

AD700908

United States Naval Postgraduate School

THEESIS

COMPUTER-AIDED NETWORK DESIGN BY OPTIMIZATION
IN THE FREQUENCY DOMAIN

by

James Lau

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151

December 1969

This document has been approved for public release and sale; its distribution is unlimited.

Computer-Aided Network Design by Optimization
in the Frequency Domain

by

James Lau
Captain, United States Marine Corps
B.S., United States Military Academy, 1962

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1969

Author James Lau
Approved by: Donald E. Kirk Thesis Advisor
Charles H.ottage
Chairman, Department of Electrical Engineering
R. J. Rineshart Academic Dean

ABSTRACT

The filter design problem is considered as an optimization problem. An iterative search technique is employed to adjust the variable network element values to approximate some desired network response, with a minimum of error. Explicit constraints are employed to ensure physical realizability. The design process uses a combination of a modified version of Calahan's network analysis program with a direct search method of minimization developed by Hooke and Jeeves. The result is a procedure which utilizes the circuit designer's experience and knowledge to set up the problem but relieves him of the tedious labor now performed by the high-speed digital computer.

TABLE OF CONTENTS

I.	INTRODUCTION	7
A.	COMPUTER-AIDED NETWORK DESIGN	7
B.	USE OF OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED NETWORK DESIGN	8
C.	OPTIMIZATION TECHNIQUES	9
D.	THE GENERAL NATURE OF THE PROBLEM	10
II.	THE OPTIMIZATION PROGRAM	15
A.	ANALYSIS PROGRAM	15
1.	A Linear Network Analysis Program	15
2.	Modification of CALAHAN for Use in the Optimization Program	16
B.	THE MINIMIZATION PROGRAM	16
1.	Direct Search	17
2.	The Specific Technique-Pattern Search	18
C.	THE OPTIMIZATION PROGRAM--A COMBINATION	23
III.	IMPLEMENTATION OF THE OPTIMIZATION PROGRAM	25
A.	PROGRAM FEATURES	25
1.	The Input Data	25
2.	The Output	25
3.	Accuracy of the Optimization Program	29
4.	Execution Time	30
B.	DESIGN EXAMPLES	33
	Example 1	34
	Example 2	37
	Example 3	39

Example 4	42
Example 5	45
IV. SUMMARY AND CONCLUSIONS	47
COMPUTER PROGRAM	51
LIST OF REFERENCES	85
INITIAL DISTRIBUTION LIST	86
FORM DD 1473	87

ACKNOWLEDGEMENT

The author wishes to express his appreciation to Professor D. E. Kirk for providing invaluable assistance, guidance, and helpful suggestions throughout the course of the investigation. The author is also grateful to his wife, Eloise, who patiently typed the preliminary efforts, and the final draft.

I. INTRODUCTION

A. COMPUTER-AIDED NETWORK DESIGN

Mathematical programming techniques have found wide use in operations research, economics, and other related fields. However, it has only been in recent years that such techniques have gained acceptance as tools for the design and evaluation of electronic circuits. The development of several general network-analysis programs has made computer-aided network design quite attractive. What is computer-aided network design? The circuit operation is first analyzed by means of a computer. It is then modified and analyzed again until the desired result is achieved--a trial-and-error procedure. Naturally the more experienced the engineer, the fewer the trials before a satisfactory design is realized.

The engineer today has a variety of analysis programs which may suit his needs in the design of networks. Some of the more well-known ones are: NET-1, ECAP, SCEPTRE, NASAP, CIRCUS, LISA, PANE, CALAHAN, and CORNAP. Programs such as these have offered great assistance to the engineer in the analysis and design of networks. Although the obvious advantages in saving of time and tedious labor are quite apparent, there are certain features that would be desirable and perhaps possible in future programs of the type mentioned. Some of these features may include:

1. A graphical output on remote terminals which will allow the engineer to check his results and make on the spot changes as necessary.
2. Automatic means for improving the circuit design; i.e., some optimization technique to obtain "best" element values.

As valuable an aid as the computer is, a significant part of the design procedure will still require the engineering judgement of the designer. The cost for relieving the engineer of all the tedious calculations required for analysis is not an inexpensive one. The engineer must use his knowledge to specify the network topology, the response desired, constraints on element values, error criteria, reasonable initial element values, and other information which only he can provide.

B. USE OF OPTIMIZATION TECHNIQUES IN COMPUTER-AIDED NETWORK DESIGN

The network designer is basically confronted with the problem of designing a circuit to meet some prescribed performance requirements. The design may be accomplished in one of many ways. If the requirements are such that an existing synthesis technique will provide the answer, the problem is essentially solved, and a satisfactory solution is obtained. In some cases a perfectly good design may be achieved in the laboratory by physically wiring the circuit on the "bread-board" and experimentally determining the "best" element values for the design.

There are classical synthesis techniques which provide a step-by-step design procedure, resulting in the circuit configuration and element values [1]. However, there are some design problems which may not be amenable to solution by any of the known synthesis techniques. The designer may be given a requirement in the form of a table of values or a graph of the response desired. Such a requirement cannot be satisfied by the classical synthesis techniques. If the circuit contains a large number of variable elements, design by a trial-and-error process in the laboratory is also highly unfeasible. Again, as with the analysis, the high-speed digital computer has offered an alternative approach to

the problem. We can now use some optimization technique to find element values in a given design configuration which yield a solution nearest to the prescribed performance requirement. The optimization technique iteratively adjusts the element values until the requirement is approximated as closely as possible.

Although synthesis techniques are available for the design of standard high- and low-pass filters, they do not take into account any constraints on the network configuration or element values. Problems of this nature would certainly be amenable to solution by an optimization technique. Networks whose transfer functions are extremely complex comprise another class of problems which could be solved by optimization. Optimization may also be used to obtain models for active devices. An optimization scheme could well be used in the design of matched filters. There are countless other examples, but suffice it to say that a combination of a good network analysis program and an efficient optimization program is certainly an excellent application of computer-aided network design.

C. OPTIMIZATION TECHNIQUES

In any optimization procedure two requirements must be satisfied. First, there must be some means to determine the behavior or performance of the system for any set of parameter values. Second, a performance measure must be selected which is a numerical measure of the behavior of the system. The optimization is basically a matter of minimizing the performance measure, which is a function of the parameters. If we think of this in geometric terms, the points in the parameter space represent different circuit element values and any change in the element

value will result in movement to another point in the space. The performance measure is defined on this parameter space and requires an additional dimension if it is to be represented geometrically.

Minimization techniques generally do not yield the global minimum. What is found is a local minimum, but by changing the starting values of the parameters, it can be determined whether the local minimum is also the global minimum. If the minimization procedure converges to different values of the performance measure, the smallest value of the performance measure is then selected as the global minimum. The different minimization techniques may be classified by the method which is utilized to find a local minimum. They may be generally classified in the three following categories:

1. Direct search methods: those which do not compute the partial derivatives of the performance measure with respect to the parameters, but use only the value of the performance measure.
2. Gradient methods: those which require the calculation of the first partial derivatives of the performance measure with respect to the parameters.
3. Second-Order methods: those requiring higher-order partial derivatives.

No attempt will be made here to discuss the various methods under each category. An excellent discussion of the methods can be found in Ref. [2].

D. THE GENERAL NATURE OF THE PROBLEM

Earlier it was stated that for problems which cannot be solved by existing synthesis techniques or by experimenting with the circuit, an optimization technique may be feasible as an alternative solution.

Problems which are amenable to solution by optimization will generally be stated as follows: "Given a particular network with a fixed number of variable elements, adjust these elements until the response of the network minimizes some preassigned criterion". The key words in this general statement are "particular network with a fixed number of variable elements". For a particular desired response there may be several network configurations which will yield comparable results. The job of the designer then is to choose among the configurations he tries, and to select the best design which satisfies the requirements. One of the desirable features the engineer would like in future programs for computer-aided design is the ability of the program to also produce the network configuration as well as the element values for the optimal network for a given response. With the existing programs the engineer starts with a particular network configuration and a fixed number of variable elements are adjusted until the performance meets some pre-assigned criterion.

Now that the type of design problem is defined, the important features of the optimization process may be studied. Figure I-1 gives the essential elements which should be a part of the optimization technique for the circuit design problems.

The choice of the network configuration and the initial element values is the task of the engineer before the actual optimization process begins. The features to be discussed now are the evaluation of the response, the performance measure and the decision-making process.

The first thing the optimization program must be capable of doing is to evaluate the response from a given set of element values. This

Fig. I-1 The Optimization Process

must be done each time the element values are adjusted. The analysis programs mentioned above all have this capability.

Once the response has been evaluated, it must be compared with the desired response. The measure of behavior is the performance measure. It is impossible to choose a single criterion and call it the universal performance measure. The nature of the problem may determine what performance measure is to be used. The experienced circuit designer will generally have in mind what performance measure is best for a given situation. The performance measure chosen must remain the same throughout

the design procedure. Some problems will dictate what performance measure is to be used, but in many cases the choice is purely subjective [3].

There are several typical forms of the performance measure the designer may use in the optimization process. The simplest form would be

$$J(p) = \sum_{i=1}^N |R_A(f_i) - R_D(f_i)|$$

where $J(p)$ is the performance measure, a function of the parameter values p , the terms $R_A(f_i)$ and $R_D(f_i)$ represent the actual and desired frequency responses, respectively, and N is the total number of points. This form of the performance measure indicates that only the magnitude of the difference is of interest, positive and negative deviations having equal weight. Another performance measure is

$$J(p) = \sum_{i=1}^N [R_A(f_i) - R_D(f_i)]^n$$

where n is some even integer. When the difference between the actual and desired responses are small, say less than 1.0, then the value of this performance measure will decrease with increasing values of the exponent, n . These are just two examples of what may be used for performance measures. By defining the performance measure in some way such as mentioned above, the optimization procedure is one in which a search is conducted to find the minimum of the performance measure.

The search for this minimum generally results in finding a local minimum as mentioned above. Only if it is known that the function is unimodal will the local minimum be the global minimum. Otherwise, it is necessary to conduct a systematic search of the entire parameter

space in order to locate the global minimum. For problems that have more than three or four variable parameters this may not be feasible. However, if the search is started with new initial values of the elements, and the function value converges to the same value, then one can be relatively certain that a global minimum has been located. By finding a minimum, whether it be local or global, a perfectly acceptable solution may be obtained. In the final analysis, it is the engineer's decision whether the final network configuration behaves in a satisfactory manner or whether further investigation is necessary to locate a "better" minimum.

This final aspect, the decision of the engineer, is perhaps the most critical item in the optimization. He must weigh the cost of further exploration to find a smaller minimum against the solution he already has. A great deal depends on what the circuit requirements are. The tolerances on the element values may be such that the procedure may have to be repeated again and again. On the other hand, there may be very weak restrictions on the element values so long as the response matches the desired response within say 0.1%. The computer relieves the engineer of the tedious work involved in any optimization procedure, but he is still responsible for making the knowledgeable decisions to use the computer most advantageously.

II. THE OPTIMIZATION PROGRAM

A. ANALYSIS PROGRAM

As mentioned in Chapter I, the optimization procedures will include an analysis program and a minimization program. Among the various programs available, the CALAHAN and ECAP programs were considered as likely choices. Both programs were subjects of study in a course in computer-aided design, taught by Professor S. G. Chan, offered at the Naval Postgraduate School. The CALAHAN program was the final choice since it provides for a graphical output of the frequency response, an output not available with ECAP. Presumably the engineer who is designing by optimization will either choose a program which he has used successfully, or he will write a program to suit his needs.

1. A Linear Network Analysis Program

The CALAHAN program is a general-purpose program designed for the analysis of linear electrical networks [4]. Input data to the program consists of the number of nodes in the circuit, the number of passive elements, the number of active elements, the input and output node numbers, and the type of output desired. A list of element values must be provided as well as a range of values of frequency (time) over which the frequency (transient) response is to be calculated. Outputs from the program are the coefficients of the specified network function, the poles and zeros, frequency and/or transient responses. The program is designed so that the user need only provide the required data cards, to obtain the desired output.

2. Modification of CALAHAN for Use in the Optimization Program

In order to incorporate CALAHAN into the optimization program, it was necessary to make some modifications to the original CALAHAN program. Before this was done, the original version was run a considerable number of times to yield frequency responses of circuits for which the actual responses were known. From the closed-form expression of the voltage transfer function of the Butterworth filter [5], the theoretical frequency responses were obtained for various orders of this type of filter. Using values of the normalized Butterworth filters [6], frequency responses were calculated by CALAHAN for different orders of the filter. The responses calculated by CALAHAN were almost exactly the same as the theoretical responses. The procedure was also repeated with the Chebyshev filter and similarly good results were obtained.

Since the goal of the optimization is to determine a set of element values for a particular network configuration whose frequency response is to match a given response as closely as possible, only the portion of CALAHAN that calculates the frequency response is needed. The main program from the original CALAHAN was reduced until only the portions involving the frequency response remained. Several subroutines that are not essential to the calculation of the frequency response were removed.

B. THE MINIMIZATION PROGRAM

The minimization program used in conjunction with CALAHAN to form the optimization program is a direct search technique [7]. This category of minimization techniques requires only the calculation of

the value of the performance measure, the calculation of derivatives not being a requirement. A gradient technique used in the design of filters by optimization is the subject of the Naval Postgraduate School thesis written by Major Charles A. Henry, USMC. Results obtained using the two methods are discussed and compared in Chapter IV.

1. Direct Search

Direct search may be basically described as a sequential examination of trial solutions which involves the comparison of the trial solution with the "best" solution obtained up to that time and a method for determining what the next trial solution will be [7]. Among the various types of problems which can be solved by direct search are solution of system of equations, curve-fitting problems, solution of integral equations, and minimizing (or maximizing) functions with or without constraints on the variables. The application of direct search methods to the solution of problems of the types mentioned above is basically the same regardless of the type of problem.

A space of P points, representing the solution space, must be defined. There must be some means to determine that one point is "better" than another. Presumably there is a "best" solution P^* in the solution space. Direct search is then accomplished in the following manner: A point B_1 , designated the first base point, is arbitrarily selected in the space. A second point, P_2 , is then selected and compared with B_1 . If P_2 is "better" than B_1 then P_2 becomes B_2 , the second base point. However if P_2 is not "better" than B_1 , then B_1 remains the base point. The process continues with each new point selected and compared with the current base point. The technique for selecting new trial points is determined by various conditions which

arise as a function of results of trials made. The technique to be used in the minimization program is pattern search.

2. The Specific Technique--Pattern Search

Pattern search is a direct search technique for finding the minimum of a function $F(p)$ of the variables $p = (p_1, p_2, p_3, \dots, p_N)^T$. The argument p is varied until a minimum value of $F(p)$ is obtained. The successive values of p represent points in an N-dimensional space.

The operation of the pattern-search routine will now be described. First, a few definitions will be of aid in the ensuing discussion. The procedure of going from one point to another point is termed a move. If the value of $F(p)$ decreases, then the move is a success; if the function $F(p)$ does not decrease, then the move is a failure. Pattern search makes two types of moves. The explore move is to acquire knowledge about the behavior of the function $F(p)$. The second type of move is the pattern move which utilizes the information gained from the explore moves to accomplish the actual minimization of the function by moving in the direction of an established pattern. The point from which a pattern move is made is known as a base point. Basically the pattern-search procedure is movement from base point to base point.

The explore move provides the information which indicates a probable direction for a successful move. A pattern is thus established. The pattern move from a given base point duplicates the combined moves from a previous base point if the direction of the pattern is unchanged. This process continues as long as the moves are successful, the step lengths increasing in magnitude. The result of each pattern move then is either a success or a failure. If the

pattern move is a success, then a series of explore moves is carried out to see if the result can be further improved.

Each explore move is carried out in the following manner: a single coordinate of the point is varied by either increasing or decreasing the coordinate by some fixed amount and seeing if the move is a success. If a success occurs, the new coordinate value is used; otherwise the old coordinate is retained. For each coordinate, these explore moves are made until the final point, as a result of all the explore moves, becomes the new base point.

If, on the other hand, the pattern move is a failure, the search continues by retreating to the base point and starting over again with new explore moves until a new pattern is established.

The pattern-search technique can be better understood with the aid of a simple example. Figure II-1 serves as an illustration of what has been discussed in the previous paragraphs. A two-dimensional parameter space is shown with equal-cost contours represented by F_1 , F_2 , ..., F_8 ; where $F_k > F_{k+1}$. The argument of the function F is $\underline{p} = (p_1, p_2)^T$. The point B_1 is selected as the first base point and explore moves are conducted from this point. First the p_1 coordinate is stepped in its positive and negative directions; a success is achieved when the step is negative. Next the p_2 coordinate is tested and it is determined that a positive step yields a success. The explore move produces a new base point B_2 . The most probable direction of a success is in the direction of the line segment $\overline{B_1 B_2}$; therefore, the pattern is established and the pattern move results in TP_1 , a temporary point. Each pattern move is followed by a series of explore moves. If the result of the explore moves is a success, then the pattern move is termed a

Scale = S

Fig. II-1 Contour Map for Pattern Search

success. The point resulting from the successful explore moves becomes the new base point. If, however, the explore moves are failures, the function value at the temporary point is calculated and if this value is greater than the function value at the previous base point, the old base point becomes the new base point and explore moves are tried again. At TP_1 explore trials are made and a successful move is made to B_3 , which becomes the new base point. This indicates that the pattern move to TP_1 was a success. By the same line of reasoning, the pattern move to TP_2 is a success. The pattern move to TP_3 is a failure since all explore moves from this point are failures and the value of the function at TP_3 is greater than the value at B_4 ; therefore B_4 becomes B_5 , the new base point, and the explore moves are tried again. The region within the F_8 contour is enlarged by a factor of five and shown in Fig. II-2. The point B_6 is a successful explore but it should be noted that there is no change in the p_2 coordinate from B_5 . A change in the p_2 coordinate would yield a failure. The pattern move to TP_4 is a failure, so B_6 now becomes B_7 and explore moves are made. Perturbations of both p_1 and p_2 in the original step size do not produce any successful explore moves. It is, therefore, necessary to reduce the step size by some fixed amount. The step reduction factor in this case is 0.2, which means that the original step size has now been reduced by a factor of five. Once again explore trials are made, now with the new step size, and a success is achieved at B_8 . The pattern move to TP_5 is a failure, so B_8 becomes B_9 . A successful explore move is achieved at B_{10} but the pattern move to TP_6 is a failure and B_{10} becomes B_{11} . This process of reducing the step size and then making the pattern moves continues until the difference between two consecutive steps is less than

Scale = 5S

Fig. II-2 Enlargement of F_8 Centour

some prescribed amount. If this criterion is a very small number then the step size will be sufficiently small to ensure that the minimum has been closely approximated. Care must be taken in the choice of both the step size and the step reduction factor. Too large a reduction factor will result in a slowdown of the search procedure. If an initial step size is too large, the minimum may be missed altogether.

The direct search procedure described above is termed pattern search since the minimization is basically performed by the pattern moves. Although the explore moves provide some reduction, their main purpose is to provide information for the improvement of the pattern move. The pattern-search program used in the optimization program is a program written by R. Bilieary¹, with some modifications to include constraints on the independent variables.

C. THE OPTIMIZATION PROGRAM--A COMBINATION

In sections A and B the individual programs in the optimization program were discussed in some detail. A brief description was given of the modifications to CALAHAN to accommodate the particular problems to be considered. How are CALAHAN and DIRECT together to be implemented into one program to be used in the design of networks by optimization? The answer to this question is the subject of this section.

The basic type of filter design problem which will be solved by the optimization program is one in which a particular frequency response is given and the objective is to design a filter which approximates the response as closely as possible. In the next chapter the exact problem

¹Subroutine DIRECT, Naval Postgraduate School Computer Facility.

problem formulation and specific example problems will be discussed in detail, but the above problem description is adequate for a general discussion of the optimization program. After the particular circuit has been selected, a choice of initial element values must be made, the engineer's knowledge and experience playing a vital role in the choice. Other information which must be supplied to the program includes the following: the number of frequency points to be matched, the values of the desired frequency response at the points to be matched, the explicit constraints on the element values, the step size, the step reduction factor, and the termination criterion for the minimization.

The initial element values serve as coordinates of the first base point for the pattern search routine, called DIRECT. An external function subprogram then calculates the value of the function to be minimized by DIRECT. The exact form of this function may differ for different problems, but in all cases it is a comparison between the actual frequency response and the desired response. This calculation is performed as part of the function subprogram utilizing the modified version of CALAHAN. Once the minimum has been determined, the element values producing the minimum are supplied to the analysis program and the actual frequency response is calculated. This process may be repeated until the overall design satisfies all of the requirements.

III. IMPLEMENTATION OF THE OPTIMIZATION PROGRAM

The use of the optimization program is dictated by the requirements for the design. An optimization technique should be used only when classical synthesis methods and experimental methods are either impossible or unfeasible. The purpose of this chapter is to discuss the use of the optimization program in circuit design. The first section of the chapter is a general discussion of the features of the program. In the concluding section several examples are given to illustrate the use of the program.

A. PROGRAM FEATURES

1. The Input Data

For input data, the optimization program requires a topological description of the network, a list of element values, a range of frequencies over which the desired and actual responses are to be matched, a description of the desired response, the number of varying and non-varying elements, and a list of the constraints on the varying elements. The following information required by DIRECT must also be included in the input data: the step size, the step reduction factor, the termination criterion, and the maximum allowable number of evaluations. Figure III-1 is a flow chart showing the sequence and coding of the input data cards.

2. The Output

The output from the optimization program consists of two parts. The first part is a result of the minimization and includes the value of the function at convergence, and the optimum values of the variable

Fig. III-1 Coding Flow Chart for Optimization Program

Fig. III-1 (continued)

Fig. III-1 (continued)

elements. The second part of the output is a result of the analysis program. With the optimum element values calculated by DIRECT, the frequency response is calculated. The output is in tabular form as well as in a graphical form. The circuit designer merely compares the values of the calculated response with those of the desired response. If the design requirements are satisfied, the element values calculated in the first part of the output are the element values of the design.

3. Accuracy of the Optimization Program

In all examples used in testing the program, the performance measure to be minimized was of the form,

$$J(p) = \sum_{i=1}^N \left[R_A(f_i) - R_D(f_i) \right]^n$$

where $J(p)$ is a function of the network elements p . $R_A(f_i)$ is the actual frequency response at the i^{th} comparison point and $R_D(f_i)$ is the desired response at the same point of comparison. N is the total number of frequency points to be compared and n is some even integer. Theoretically, the minimum of this performance measure is zero if a perfect match of frequency responses is achieved. In practice, however, a zero output is rarely, if ever, achieved. The measure of accuracy is determined by the function value at exit from DIRECT; the smaller the function value, the closer the actual response approaches the desired response.

The accuracy of the output is basically dependent upon the choice of the termination criterion for DIRECT. The pattern search ends when the difference between consecutive step sizes falls below this pre-selected termination criterion. A small criterion will result in a small function value, consequently a closer approximation to the

desired response. The program allows the user to specify the termination criterion as part of the input. Table III-1 shows a comparison of execution times, and function values, for a normalized fourth-order Butterworth filter, as a function of the step size, the step reduction factor, and the termination criterion. The performance measure used was

$$J(p) = \sum_{i=1}^{21} [R_A(f_i) - R_D(f_i)]^2.$$

The function values for a termination criterion of 10^{-4} differ by a factor of 100 from those for a termination criterion of 10^{-6} ; whereas the difference between function values for termination criteria 10^{-6} and 10^{-9} is insignificant. In this case there is no particular advantage in the choice of a termination criterion less than 10^{-6} , since the function values only change slightly but the execution times are longer. A comparison between the desired response, for the frequency range specified, and the largest and smallest function values is given in Table III-2.

4. Execution Time

The execution time for the program is dependent on several factors which will be discussed in this section. The initial choice of element values will certainly affect the execution time; if the initial guess is a poor choice the program may take an inordinate amount of time if it converges at all to a minimum. Convergence to a minimum also may be quite slow for circuits with a large number of elements. The only solution to this problem is to choose a simpler circuit configuration which may yield a response within acceptable tolerances. In the pattern search, the execution time is a function of the termination criterion. The choice of the termination criterion is a compromise between speed and accuracy; one is sacrificed for the other. If more

TABLE III-1

<u>Trial</u>	<u>Step Size</u>	<u>Step Red. Factor</u>	<u>Termination Criterion</u>	<u>Execution Time (Sec)</u>	<u>Function Value x 10⁸</u>
A	0.05	0.25	10^{-4}	50.38	203.67
B	0.05	0.25	10^{-6}	68.50	0.31191
C	0.05	0.25	10^{-9}	78.01	0.23612
D	0.05	0.125	10^{-4}	54.93	105.01
E	0.05	0.125	10^{-6}	70.18	0.11424
F	0.05	0.125	10^{-9}	71.77	0.11424
G	0.1	0.25	10^{-4}	46.37	386.91
H	0.1	0.25	10^{-6}	70.90	0.55285
I	0.1	0.25	10^{-9}	78.07	0.54994
J	0.1	0.125	10^{-4}	49.09	60.625
K	0.1	0.125	10^{-6}	57.52	7.753
L	0.1	0.125	10^{-9}	63.03	7.723
M	0.5	0.25	10^{-4}	68.27	16.730
N	0.5	0.25	10^{-6}	87.31	0.14581
O	0.5	0.25	10^{-9}	90.89	0.14581
P	0.5	0.125	10^{-4}	85.22	284.77
Q	0.5	0.125	10^{-6}	104.78	0.12187
R	0.5	0.125	10^{-9}	110.14	0.12187

TABLE III-2

<u>Desired Response</u>	<u>Trial G Response</u>	<u>Trial F Response</u>
- 0.1042320	- 0.1032002	- 0.1042283
- 0.2204427	- 0.2196893	- 0.2204416
- 0.4314420	- 0.4310329	- 0.4314427
- .7850979	- 0.7850114	- 0.7851012
- 1.3305276	- 1.3306713	- 1.3305340
- 2.1019602	- 2.1021585	- 2.1019697
- 3.1032674	- 3.1033316	- 3.1032581
- 4.3047100	- 4.3045549	- 4.3047056
- 5.6547211	- 5.6543064	- 5.6547127
- 7.0972899	- 7.0966568	- 7.0972862
- 8.5844102	- 8.5836172	- 8.5844040
-10.0806382	-10.0797758	-10.0806456
-11.5623696	-11.5614929	-11.5623751
-13.0151248	-13.0142879	-13.0151329
-14.4307494	-14.4300060	-14.4307604
-15.8052081	-15.8045635	-15.8052015
-17.1370394	-17.1365509	-17.1370392
-18.4263366	-18.4259949	-18.4263458
-19.6740983	-19.6738892	-19.6740875
-20.8818219	-20.8817902	-20.8818054
-22.0512536	-22.0513916	-22.0512390

accurate results are required then the execution time is necessarily longer. Table III-1 shows the effects of different step reduction factors and termination criteria. A further comparison of execution time as a function of the number of points compared is made for the normalized fourth-order Butterworth filter. The results of this comparison are shown in Table III-3.

TABLE III-3

<u>No. Points</u>	<u>Execution Time (Sec)</u>	<u>Function Value</u>
50	147.06	0.8699953×10^{-8}
40	112.77	0.4037205×10^{-7}
30	83.93	0.3040103×10^{-8}
20	71.77	0.1142364×10^{-8}

B. DESIGN EXAMPLES

To illustrate the use of the optimization program, several examples of filter design will be discussed in this section. In all of the examples, the desired frequency response is in the form of a table of values. These values are to be matched as closely as possible by the circuit configuration selected. In general, design specifications are not quite as stringent as this. A more likely specification would be to design a maximally flat filter in a pass band whose cut-off frequencies are at f_1 and f_2 and with a dropoff of a specified number of db per octave; however, to illustrate the capability of the program, point-by-point comparisons will be made.

Example 1

Problem: Find the optimum element values for the filter configuration shown in Fig. III-2, whose frequency response from 0.15Hz to 0.24Hz most closely approximates the 5th-order Butterworth response over the same range of frequencies.

Fig. III-2 Circuit for Example 1

Constraints on element values

$$0.5 \leq L_1 \leq 1.75$$

$$1.0 \leq C_2 \leq 2.5$$

$$1.0 \leq L_3 \leq 1.6 \quad R = 1.0$$

$$0.4 \leq C_4 \leq 1.0$$

$$0.1 \leq L_5 \leq 0.75$$

Solution:

Trial 1 Initial guess: $L_1=1.0$, $C_2=2.0$, $L_3=1.5$, $C_4=.8$, $L_5=.5$

At exit from program: $L_1=1.29$, $C_2=2.12$, $L_3=1.19$, $C_4=.888$, $L_5=.161$

Function value = $.2435 \times 10^{-6}$

Trial 2 Initial guess: $L_1=1.6$, $C_2=2.0$, $L_3=1.5$, $C_4=.8$, $L_5=.5$

At exit from program: $L_1=1.7$, $C_2=1.5$, $L_3=1.51$, $C_4=.875$, $L_5=.372$

Function value = $.6473 \times 10^{-7}$

Trial 3 Initial guess: $L_1=1.6$, $C_2=2.0$, $L_3=1.5$, $C_4=.9$, $L_5=.5$

At exit from program: $L_1=1.54$, $C_2=1.7$, $L_3=1.38$, $C_4=.895$, $L_5=.307$

Function value = $.5150 \times 10^{-13}$

Trial 4 Initial guess: $L_1=1.5$, $C_2=2.0$, $L_3=1.5$, $C_4=.9$, $L_5=.3$

At exit from program: $L_1=1.43$, $C_2=1.87$, $L_3=1.29$, $C_4=.903$, $L_5=.253$

Function value = $.1384 \times 10^{-7}$

Trial 5 Initial guess: $L_1=1.6$, $C_2=1.8$, $L_3=1.5$, $C_4=.9$, $L_5=.4$

At exit from program: $L_1=1.54$, $C_2=1.7$, $L_3=1.38$, $C_4=.895$, $L_5=.307$

Function value = $.429 \times 10^{-13}$

The optimum element values are those values calculated in trials 3 and

5. Comparison of the trial frequency responses with the Butterworth
response is shown in Table III-4.

Discussion--In this problem only ten points were compared, if more
accurate results are desired more points should be compared. The element
values for trials 3 and 5 are very close to the values for the fifth
order normalized Butterworth filter.

TABLE III-4

<u>Freq.</u>	<u>Butterworth</u>	<u>Trial 1</u>	<u>Trial 2</u>	<u>Trial 3</u>	<u>Trial 4</u>	<u>Trial 5</u>
0.15	- 1.9116645	- 1.8978281	- 1.9217176	- 1.9116898	- 1.9047451	- 1.9116688
0.16	- 3.1268136	- 3.1432962	- 3.1149416	- 3.1270609	- 3.1350603	- 3.1270981
0.17	- 4.6734886	- 4.6764345	- 4.6712990	- 4.6733904	- 4.6751757	- 4.6734352
0.18	- 6.4580720	- 6.4457130	- 6.46668531	- 6.4577456	- 6.4521284	- 6.4577742
0.19	- 8.3755182	- 8.3625135	- 8.3847713	- 8.3752613	- 8.3690329	- 8.3752661
0.20	-10.3421541	-10.3396997	-10.3439083	-10.3421764	-10.3406610	-10.3421516
0.21	-12.3032792	-12.3126831	-12.2965260	-12.3035507	-12.3075638	-12.3035259
0.22	-14.2275041	-14.2418127	-14.2172155	-14.2278433	-14.2342997	-14.2279185
0.23	-16.0987370	-16.1062012	-16.0933380	-16.0988770	-16.1024323	-16.1988617
0.24	-17.9099567	-17.8969879	-17.9191589	-17.9096069	-17.9040222	-17.9096222

Example 2

Problem: Design a filter which approximates the straight-line characteristic shown in Fig. III-4.

Solution: Select the circuit configuration by determining the slope of the straight line after cutoff. The slope is approximately 24db per octave. Each 6db/octave represents one order of a low-pass filter; therefore the circuit to be used for the design is a fourth-order low-pass filter as shown in Fig. III-3.

Fig. III-3 Circuit for Example 2

Results:

The first initial guess: $L_1=2.0$, $C_2=2.0$, $L_3=2.0$, $C_4=2.0$

At exit from program: $L_1=1.44$, $C_2=1.62$, $L_3=1.10$, $C_4=0.379$

The second initial guess: $L_1=1.5$, $C_2=1.5$, $L_3=1.0$, $C_4=0.5$

At exit from program: $L_1=1.44$, $C_2=1.63$, $L_3=1.10$, $C_4=0.381$

A plot of the actual and desired responses is shown in Fig. III-4.

Fig. III-4 Desired and Actual Responses for Example 2

Example 3

Problem: Design a filter that has a Gaussian distribution response in the frequency range from 0Hz to 4Hz.

Solution: The first step in the solution is to change the Gaussian response from a voltage ratio to db for use in the optimization program. Table III-5 contains the values for a 21-point comparison. The response is plotted in Fig. III-5.

The first trial design was a ninth-order low-pass filter. The resulting response is plotted in Fig. III-5 showing rather marked deviations from the desired response. At the lower frequencies the deviations are much greater.

The second trial design was a modified fifth-order low-pass filter. The response is plotted in Fig. III-5. There is a slight improvement in the approximation; however the deviations at some points are quite large.

Discussion: In this problem, only low-pass filter configurations were considered. Both design responses deviated considerably from the desired responses. This points out a limitation of the optimization program. The success of the optimization technique is dependent upon the circuit configuration selected. In this example, presumably there is a better circuit configuration which would approximate the desired response with less deviation.

TABLE III-5

<u>Freq.</u>	<u>Desired Gain</u>	<u>Design 1 Gain</u>	<u>Design 2 Gain</u>
0.	0.	0.	0.
0.2	- 0.174	0.389	- 1.296
0.4	- 0.693	1.827	- 2.886
0.6	- 1.563	1.172	- 3.000
0.8	- 2.779	- 3.918	- 1.969
1.0	- 4.341	- 7.501	- 3.687
1.2	- 6.253	- 8.378	- 8.179
1.4	- 8.512	- 6.531	-11.557
1.6	-11.119	-10.663	-13.150
1.8	-14.067	-17.770	-12.961
2.0	-17.368	-22.048	-14.552
2.2	-21.012	-23.421	-21.813
2.4	-25.005	-18.812	-28.598
2.6	-29.345	-22.974	-34.113
2.8	-34.067	-36.294	-38.755
3.0	-39.172	-44.084	-42.794
3.2	-44.437	-50.013	-46.388
3.4	-50.458	-54.899	-49.640
3.6	-56.478	-59.072	-52.618
3.8	-61.938	-62.697	-55.371
4.0	-70.458	-65.865	-57.933

Fig. III-5 Comparison of Two Designs with the Gaussian Response

Example 4

Problem: Design a simple bandpass filter to match the desired frequency response of Table III-6.

Solution: A simple third-order low-pass filter is transformed into a bandpass filter by frequency transformation. The resultant circuit is shown in Fig. III-6.

Fig. III-6 Bandpass Filter Design

Results:

The initial guess: $L_1=0.5$, $C_2=1.2$, $C_3=1.2$, $L_4=0.5$, $L_5=0.75$, $C_6=0.75$

Exit from program: $L_1=0.278$, $C_2=0.968$, $C_3=1.07$, $L_4=0.231$, $L_5=0.512$, $C_6=0.5$

Results are tabulated in Table III-6.

TABLE III-6

<u>Freq.</u>	<u>Desired Gain</u>	<u>Actual Gain</u>
0.12	-10.6043911	-10.6046772
0.14	- 7.8007050	- 7.8000298
0.16	- 6.5953960	- 6.5954628
0.18	- 6.1859341	- 6.1866503
0.20	- 6.0634375	- 6.0643120
0.22	- 6.0301752	- 6.0309124
0.24	- 6.0222807	- 6.0227900
0.26	- 6.0207853	- 6.0211134
0.28	- 6.0205956	- 6.0207987
0.30	- 6.0205870	- 6.0207443
0.32	- 6.0205832	- 6.0207691
0.34	- 6.0205908	- 6.0208607
0.36	- 6.0206118	- 6.0210257
0.38	- 6.0207939	- 6.0213528
0.40	- 6.0214853	- 6.0221939
0.42	- 6.0233574	- 6.0242023
0.44	- 6.0275412	- 6.0284853
0.46	- 6.0356464	- 6.0366526
0.48	- 6.0498857	- 6.0509090
0.50	- 6.0731249	- 6.0740948
0.52	- 6.1088524	- 6.1096964
0.54	- 6.1611710	- 6.1618414
0.65	- 6.2347078	- 6.2351713

TABLE III-6 (continued)

<u>Freq.</u>	<u>Desired Gain</u>	<u>Actual Gain</u>
0.58	- 6.3344698	- 6.3346691
0.60	- 6.4655190	- 6.4654360
0.62	- 6.6326761	- 6.6323280
0.64	- 6.8401451	- 6.8395615
0.66	- 7.0910606	- 7.0902948
0.68	- 7.3872252	- 7.3863807
0.70	- 7.7288332	- 7.7280092
0.72	- 8.1145258	- 8.1138344
0.74	- 8.5414162	- 8.5409737
0.76	- 9.0054874	- 9.0054045
0.78	- 9.5018768	- 9.5022497
0.80	-10.0253372	-10.0262442
0.82	-10.5705452	-10.5720444

Example 5

Problem: Determine the element values of a fourth-order low-pass filter whose frequency response approximates the response of a fourth-order Butterworth filter using:

- (a) ideal elements
- (b) inductances with nominal resistance of 0.01 ohms
- (c) inductances with nominal resistance of 0.5 ohms

Solution: The circuit selected is the same as in Fig. III-3 but there are series resistors with the inductances when non-ideal elements are considered. The initial guess for the elements is the same for all three situations. All parameters for DIRECT remain the same. The frequency range is from 0.1 Hz to 0.3 Hz, comparing 21 points. The results are shown in Table III-7. Figure III-7 is a comparison of the frequency responses for circuits with ideal and non-ideal elements.

Discussion: For nominal resistances of 0.01 ohms the element values did not change much from the values of the ideal elements since the resistances are so small. When the resistance is of the same order of magnitude as the inductance then the final element values differ considerably from the ideal element values. Also, with non-ideal elements the frequency response as shown in Fig. III-7 is attenuated at the low-frequency end.

Fig. III-7 Response of Ideal and Non-ideal Circuits

TABLE III-7

<u>Ideal Element Values</u>	<u>Non-ideal Element Values</u>	
$R_s = 0$	$R_s = 0.01$	$R_s = 0.5$
$L_1 = 1.53$	$L_1 = 1.51$	$L_1 = 1.11$
$C_2 = 1.58$	$C_2 = 1.59$	$C_2 = 1.31$
$L_3 = 1.08$	$L_3 = 1.09$	$L_3 = 1.53$
$C_4 = 0.383$	$C_4 = 0.386$	$C_4 = 0.215$

IV. SUMMARY AND CONCLUSIONS

The subject of computer-aided design by optimization techniques, although only one facet of computer-aided design, is in itself quite a diverse field. There is a large variety of optimization methods which can be effectively employed in network design. The main reason for using an optimization technique instead of a classical synthesis technique in circuit design is that classical techniques cannot satisfy all possible design specifications. A specification such as matching the response of a circuit to some desired response given by a table of values or a graph cannot be realized by classical techniques. Constraints on circuit element values generally cannot be accommodated by classical methods. Such design specifications which cannot be realized by classical methods can often be satisfied by optimization techniques.

A. SUMMARY

Chapter I is an introductory chapter presenting a general discussion of computer-aided design and application of optimization techniques in computer-aided design. The three basic categories of optimization techniques are described and the general nature of the problem is presented.

In Chapter II the optimization program is described. The optimization program used is a combination of the linear network analysis program by Calahan and the pattern-search technique for minimization of a function of several variables. Modifications to the original analysis program were made in order to incorporate it into the

optimization program. Basically this was a matter of reducing the size of CALAHAN, since only the portion pertaining to frequency response was required. The specific method of pattern search, DIRECT, in conjunction with the modified version of CALAHAN constitute the optimization program.

The specific details regarding the implementation of the optimization program are included in Chapter III. Instructions for coding of input data cards are shown as a coding flowchart in Fig. III-1. The factors affecting the accuracy of the program are shown by the data of Table III-1. A comparison of the accuracy of the program for the worst and best approximations over a series of trial runs is shown in Table III-1 and Table III-3. Five design examples are provided at the end of the chapter.

B. CAPABILITIES AND LIMITATIONS OF THE PROGRAM

For the designs attempted, results indicated that the optimization program is highly accurate and relatively fast. A comparative study between the gradient-projection method described in the Naval Post-graduate School thesis by Major C. A. Henry, and the pattern-search method was conducted to determine the relative accuracy and speed of the two methods. Examples 2, 4, and 5(a) in Chapter III were selected for the comparisons. The results are shown in Table IV-1. Very accurate results can be achieved, as shown by Example 4 in Chapter III. On the other hand, results may deviate considerably from what is desired, as illustrated in Example 3 in Chapter III. A high degree of accuracy can be achieved if the circuit configuration chosen is the proper one for the desired response. At present there is no known

optimization program that automatically alters the configuration of the network to yield an optimum solution.

TABLE IV-1

Design Problem	Method	Function Value	Execution Time(sec)
Straight-Line Approx.	Gradient Projection	1.655	132
	Pattern Search	1.651	50
Fifth-Order Butterworth	Gradient Projection	0.458×10^{-2}	133
	Pattern Search	0.204×10^{-5}	49
Band Pass	Gradient Projection	0.564×10^{-4}	328
	Pattern Search	0.220×10^{-5}	184

One of the main limitations of the optimization program is that an excessive execution time is required for circuits with more than 12 or 13 elements. The reason for this is that CALAHAN finds the tree for the network each time the elements are perturbed. This is not necessary since the circuit configuration remains the same throughout the optimization process; however no attempt was made to alter this.

The total memory requirements for the program are approximately 110 K bytes. This may or may not present a problem depending upon the computer system available to the circuit designer.

C. FUTURE REFINEMENTS

Possible areas in which the program may be improved or implemented are:

- (1) Modification of the tree-finding process so that the tree is found only once for each circuit configuration.

- (2) Use of the program to optimize active networks.
- (3) Development of a means to "grow" elements; i.e. development of a technique that will change the circuit configuration. In this manner the circuit configuration as well as optimum element values would be calculated.

CCCCCCCCCCCC

A NETWORK OPTIMIZATION PROGRAM

A COMBINATION OF THE CALAHAN LINEAR NETWORK ANALYSIS
PROGRAM AND THE DIRECT SEARCH MINIMIZATION PROGRAM
FOR THE SOLUTION OF CIRCUIT DESIGN PROBLEMS

MAIN PROGRAM

```
EXTERNAL FE
DIMENSION MP(100,3),ML(50,5),ELT(100),MAP(20,5),ELTA
1(20),VAL(100),VALA(20),C(50),G(50),H(50),Y11(60),Y12
2(60),Y(60),Z(60),Y21(60),Y22(60),VALL(50),ZZ(60,2),D
3(100),R2(100),PP(60,2),BU(15),BL(15)
DIMENSION LABEL(20)
COMMON VAL,OMGMIN,OMGMAX,Y,R2,D,ELT,ELTA,VALA,Y11,Y12,
1VALL,Y21,Y22,Z,ZZ,PP,LIN,NOM,JP,JZ,KEY1,ND,NPL,NN,JI,
2KI,JO,KO,NAL,KEY2,MP,MAP,JW,NVAR,KEY3,NRES
REAL IHC / 4HC /
10 CLOCK=ITIME(0)*.01
READ(5,11,END=26) LABEL
11 FORMAT(20A4)
WRITE(6,12) LABEL
12 FORMAT(1H1,I0X,20A4)
C READ,PRINT RLC ELEMENTS
READ(5,13) NPL,NAL,NN,JI,JI,JO,KO,(MP(J,1),MP(J,2),ELT
1(J),VAL(J),J=1,NPL)
13 FFORMAT(7(I2,1X)/(I2,1X,I2,1X,A1,1X,F10.0))
WRITE(6,14)
14 FFORMAT(//,I0X,19HCIRCUIT INPUT DATA //)
WRITE(6,15) NPL,NAL,NN,JI,JI,JO,KO,(MP(J,1),MP(J,2),
1ELT(J),VAL(J),J=1,NPL)
15 FFORMAT(9X,7(I2,1X)/(9X,I2,1X,I2,1X,A1,1X,F18.9))
IF ACTIVE ELEMENTS,READ AND PRINT
IF(NAL)16,19,16
16 READ(5,17)((MAP(J,1),I=1,4),ELTA(J),VALA(J),J=1,NAL)
17 FFORMAT(4(I2,1X),A1,1X,F10.0)
WRITE(6,18)((MAP(J,1),I=1,4),ELTA(J),VALA(J),J=1,NAL)
18 FFORMAT(9X,4(I2,1X),A1,1X,F18.9)
19 KEY1=1
KEY2=2
KEY3=1
NVAR=0
NVAL=C
READ(5,20) LIN,NOM,OMGMIN,OMGMAX
20 FFORMAT(1I,1X,I3/2F10.0)
ND INCLUDES THE STARTING POINT
ND=NCM+1
C D(I) IS THE DESIRED FREQUENCY RESPONSE
READ(5,21)(D(I),I=1,ND)
21 FFORMAT(F15.7)
JW=1
C NRES IS THE NUMBER OF CONSTANT ELEMENTS
C NFX IS THE NUMBER OF VARIABLE ELEMENTS
READ(5,22) NRES,NFX
22 FFORMAT(2I5)
READ(5,23) DEL,RHO,DEC,MAXEV
23 FFORMAT(3F15.7,I5)
C BU(I) IS THE UPPER BOUND
C BL(I) IS THE LOWER BOUND
READ(5,24)(BU(I),BL(I),I=1,NFX)
24 FFORMAT(2F15.7)
NPM=NPL-NRES
CALL DIRECT(VAL,NPM,SPSI,DEL,RHO,DEC,FE,KON,MAXEV,-1,
1BU,BL)
KEY1=2
CALL FREQQ(LIN,NOM,OMGMIN,OMGMAX,JP,JZ,Y,Z,KEY1,R2)
CLOCK=ITIME(0)*.01-CLOCK
```

```
25 WRITE(6,25) CLOCK  
FORMAT(1X,'EXECUTION TIME=',F7.2,'SEC.',/)  
GO TO 10  
26 STOP  
END
```

SURROUTINE DIRECT

TO LOCATE A MINIMUM OF A FUNCTION,S, OF K VARIABLES
BY THE METHOD OF DIRECT SEARCH (HOOKE AND JEEVES)

DESCRIPTION OF PARAMETERS

PSI IS THE VECTOR OF K INDEPENDENT VARIABLES. IT IS
INITIALLY FILLED BY USER WITH FIRST GUESS OF SOLUTION
AT EXIT FROM DIRECT IT CONTAINS BEST VALUES ATTAINED.

K IS THE NO. OF INDEPENDENT VARIABLES OF THE FUNCTION,
S, TO BE MINIMIZED

SPSI AT EXIT FROM DIRECT CONTAINS SMALLEST S(PSI)
ATTAINED

DELCAP IS THE INITIAL STEP LENGTH
DELCAP IS ALTERED BY DIRFCT. DO NOT USE A NUMERICAL
VALUE IN THE CALLING LIST

RHO IS THE STEP REDUCTION FACTOR SUGGESTED VALUES
ARE .125 OR .25

DELLC IS THE TERMINATION CRITERION WHEN THE CURRENT
STEP SIZE IS LESS THAN DELLC THE SEARCH IS ENDED.

S IS THE NAME OF THE EXTERNAL FUNCTION,S(PHI), TO BE
MINIMIZED. A FUNCTION SUBPROGRAM OF THE SAME NAME
MUST BE SUPPLIED BY THE USER

KCNVRG IS AN INDICATOR TESTED UPON EXIT FROM DIRECT.
KCNVRG=-1, A PARAMETER ERROR WAS DETECTED.

K.GT.15 OR K.LE.0,

DELCAP.LE.0,

RHO.LE.0 OR RHO.GE.1,

KCNVRG=0, MAXEV WAS EXCEEDED. MINIMUM WAS NOT FOUND
KCNVRG GREATER THAN ZERO THEN THIS NUMBER IS THE
NUMBER OF EVALUATIONS OF THE FUNCTION.

MAXEV IS THE MAX. NO. OF EVALUATIONS USER ALLOWS
TO FIND THE MINIMUM.

KN IS AN INDICATOR USED TO OBTAIN OUTPUT
KN=-1 OUTPUT OF FUNCTION VALUE AND VARIABLES IS MADE
AT ORIGIN, AFTER EACH EXPLORE MOVE, AFTER EACH PATTERN
MOVE, AND AT EXIT.
KN=0, NO OUTPUT BY DIRECT
KN=1, SAME AS FOR -1 EXCEPT EXPLORE MOVES ARE OMITTED.

```
SUBROUTINE DIRECT (X,K,SPSI,DELCAP,RHO,DELLC,S,KCNVRG,  
1MAXEV,KN,BU,BL)  
DIMENSION X(15),PSI(15),PHI(15),SLC(15),X(15),BU(15)  
1,BL(15)  
INTEGER EVAL  
DO 100 I=1,K
```

```

100 PSI(I)=X(I)
C   IF(K.GT.15) GO TO 50
    IF(K) 50,50,4
4   IF(DELCAPI) 50,50,5
5   IF(RHO) 50,50,6
6   IF(RHO.GE.1.) GO TO 50
    IF(DELLCI) 50,50,7
7   MAXEVL = MAXEV
    IF(MAXEVL) 8,8,9
8   MAXEVL = 500
C   9  DC 60 I=1,K
60  SLC(I) = DELCAP
    SPSI = S(PSI)
    EVAL = 1
C   10 IF(KN) 61,1,61
61  WRITE (6,63) DELCAP,RHO,DELLC,MAXEVL,KM,(I,I=1,K)
63  FORMAT (14H1DIRECT SEARCH,2X,8HDELCAPI,E15.6,2X,5HRHO
1  =,E15.6,2X,7HDELLC =,E15.6,2X,8HMAXEVL =,I8,2X,5H KN
2  =,I3//8HC MOVE ,15H FUNCTION VALUE,3X,3X,I2,6HST VAR,
34X,3X,I2,6HND VAR,4X, 3X,I2,6HRD VAR,4X,3{3X,I2,6HTH
4  VAR,4X)/ 26X,6(3X,I2,6HTH VAR,4X)/26X,6(3X,I2,6HTH VA
5R,4X})
    WRITE (6,62) SPSI, (PC(I),I=1,K)
62  FFORMAT(8HCORIGIN ,E15.7,3X,6E15.6 /(26X,6E15.6))
C   11 SS = SPSI
    DC 10 I=1,K
10  PHI(I)= PSI(I)
    ASSIGN 11 TO IBK
    GO TO 40
C   11 IF(KN) 12,13,13
12  WRITF (6,14) SS,(PHI(I),I=1,K)
14  FORMAT(8HCEXPLORE,E15.7,3X,6E15.6 /(26X,6E15.6))
C   13 IF(SS.GE.SPSI) GO TO 3
2  IF (EVAL.GE.MAXEVL) GO TO 51
C   DO 20 I=1,K
    IF(SLC(I)) 21,50,22
21  IF(PHI(I).GT.PSI(I)) SLC(I) = -SLC(I)
    GO TO 23
22  IF(PHI(I).LT.PSI(I)) SLC(I) = -SLC(I)
    THET = PSI(I)
    PSI(I) = PHI(I)
    PHI(I) = 2.*PHI(I) - THET
    PHI(I)=AMIN1(PHI(I),BU(I))
    PHI(I)=AMAX1(PHI(I),BL(I))
20  CCNTINUE
C   SPSI = SS
    SPHI=S(PHI)
    SS=SPHI
    EVAL = EVAL +?
    ASSIGN 25 TO IBK
C   40 DC 41 I=1,K
    THET = PHI(I)
    SLCI = SLC(I)
    PHI(I) = THET + SLCI
    PHI(I)=AMIN1(PHI(I),BU(I))
    PHI(I)=AMAX1(PHI(I),BL(I))
    SPHI = S(PHI)
    EVAL = EVAL +1
    IF(SPHI.LT.SS) GO TO 42
    PH'(I) = THET - SLCI
    PHI(I)=AMAX1(PHI(I),BL(I))
    PHI(I)=AMIN1(PHI(I),BU(I))
    SPHI=S(PHI)

```

```

EVAL = EVAL +1
IF(SPHI.GE.SSI) GO TO 44
SLC(I)=-SLCI
42 SS=SPHI
GO TO 41
44 PHI(I)=THET
41 CONTINUE
C      GO TO IBK,(11,25)
C
25 IF(KN) 27,28,27
27 WRITE(6,29) SS,(PHI(I),I=1,K)
29 FORMAT(8H PATTERN,E15.7,3X,6E15.6 / (26X,6E15.6))
C
28 IF(SS.GE.SPSI) GO TO 1
DO 26 I=1,K
IF(ABS(PHI(I)-PSI(I)).GT.0.5*ABS(SLC(I))) GO TO 2
26 CONTINUE
C
3 IF(DELCA,LT.DELLC) GO TO 52
DELCA = RHO * DELCA
DO 30 I=1,K
30 SLC(I) = RHO * SLC(I)
GO TO 1
C
50 KCONVRG = -1
GO TO 53
51 KCONVRG = 0
GO TO 53
52 KCONVRG = EVAL
53 IF(KN) 55,54,55
55 WRITE(6,56) KCONVRG,SPSI,(PSI(I),I=1,K)
56 FORMAT(1CHOKONVRG= ,I)0/8H EXIT   ,E15.7,3X,6E15.6/
1126X,6E15.6)
54 RETURN
END
CCCCC

```

FUNCTION FE

```

FUNCTION FE(X)
DIMENSION VAL(100),X(100),D(100),Y(60),Z(60),R2(100),
1MP(100,3),ML(50,5),ELT(100),MAP(20,5),ELTA(20),VALA(20
2),C(50),Y11(60),Y12(60),Y21(60),Y22(60),VALL(50),
3ZZ(60,2),PP(60,2)
COMMON VAL,OMGMIN,OMGMAX,Y,R2,D,ELT,ELTA,VALA,Y11,Y12,
1VALL,Y21,Y22,Z,ZZ,PP,LIN,NOM,JP,JZ,KEY1,ND,NPL,NN,JI,
2KI,JO,KO,NAL,KEY2,MP,MAP,JW,NVAR,KEY3,NRES
NPM=NPL-NRES
DO 2 J=1,NPM
2 VAL(J)=X(J)
CALL TOL(NPL,NAL,NN,JI,KI,JO,KO,3,KEY2,MP,ELT,VAL,
1MAP,ELTA,VALA,Y11,Y12,VALL,JW,NVAR,KEY3,Y,ND,JI)
CALL TOPOL(NPL,NAL,NN,JI,KI,JO,KO,2,KEY2,MP,ELT,VAL,
1MAP,ELTA,VALA,Y21,Y22,VALL,JW,NVAR,KEY3,Z,NZ,J22)
DO 14 J=1,60
14 IF(Y(J))6,4,6
4 IF(Z(J))6,8,6
6 JP=NP-J+1
JZ=NZ-J+1
GO TO 16
8 DO 10 K=1,NP
10 Y(K)=Y(K+1)
DO 12 K=1,NZ
12 Z(K)=Z(K+1)
14 CONTINUE
16 CONTINUE
DO 20 J=1,60
JJ=JP-J+1

```

```
18 IF(Y(JJ))18,20,18
19 JP=JP-J+1
20 GO TO 22
20 CONTINUE
22 DO 26 J=1,60
23 JJ=JJ-J+1
24 IF(Z'(JJ))24,26,24
24 JZ=J/-J+1
25 GO TO 28
26 CONTINUE
C 28 CALCULATE ZEROS
C 28 CALL MULLER(Y,JP,ZZ)
C 28 CALCULATE POLES
C 28 CALL MULLER(Z,JZ,PP)
C 28 CALCULATE FREQUENCY RESPONSE
C 28 CALL FREQ(LIN,NOM,OMGMIN,OMGMAX,JP,JZ,Y,Z,KEY1,R2)
C 28 FE=0.
C 28 DO 1 I=1,ND
C 28 FE=FE+(R2(I)-D(I))**2
C 28 RETURN
C 28 END
```

THE MODIFIED VERSION OF CALAHAN

THE SUBROUTINES ARE LISTED ALPHABETICALLY FOR CONVENIENCE

```
SUBROUTINE ASBS(LMN,C,G,H(50),NP,IMG);KEY1,JN;JP,II;NPL,NALI
SUBROUTINE C(50),G(50),H(50),NP,IMG,X(60),Z(60);MG(30,5);Y(3,50)
DIMENSION C(1-2)101,101
DO TOL(2,3,4);KEY1
100   3  NP=2*LN-1
      JH=1
      JP=2
      GO TO 5
      4  NP=2*LN-3
      JH=2
      JP=3
      GO TO 5
      2  NP=2*LN+1
      JH=0
      JP=1
      LN=LJ-NJH
      N=MG(JP-1)31
      IF(NP-2)30,31,32 102
      30  IF(NP-31,31,32 102
      32  X(1)=0.
      NP=1
      RETURN
      31  X(1)=0.
      NP=1
      RETURN
      32  X(1)=0.
      Z(1)=1.
      K2=1
      DO 130  J=1, NP
      102  DO 130  J=1, NP
      130  Z(1)=1.
      K2=1
      DO 117  J=1, JN
      117  K=JH+J
      N=MG(K,3)
      X2P=X2+2
      DO 116  K=1,3
      116  DO 117  I=K1,K2
      Y(K,I)=0.
```

```
SUBROUTINE OPOLRT (XCOF,CDF,M,ROOTR,BOOTL,IEE)
```

PURPOSE COMPUTES THE REAL AND COMPLEX ROOTS OF A REAL EQUATION

PURPOSE COMPUTES THE REAL AND COMPLEX ROOTS OF
USAGE CALL POLYRT(X,Y,COE,M,N,OPT,ROOTS,IER)

PURPOSE COMPUTES THE REAL AND COMPLEX PARTS OF THE COEFFICIENTS
 USAGE CALL POLRT(XCOF,COF,M,N)
 DESCRIPTION OF PARAMETERS
 XCOF - VECTOR OF M+1 COMPLEX NUMBERS ORDERED FROM SMALL TO LARGE
 COF - WORKING VECTOR OF LENGTH N
 M - ORDER OF POLYNOMIAL

ROOTR - RESULTANT VECTOR OF LENGTH M CONTAINING REAL ROOTS

ROOTI - RESULTANT VECTOR OF LENGTH M CONTAINING THE

CORRESPONDING IMAGINARY ROOTS OF THE POLYNOMIAL

IER - ERROR CODE WHERE

IER=0 NO ERROR

IER=1 LESS THAN ONE

IER=2 GREATER THAN 36

IER=3 UNABLE TO DETERMINE ROOT WITH 500 ITERATIONS

IER=4 HIGH ORDER COEFFICIENT IS ZERO

REMARKS

LIMITED TO 36TH ORDER POLYNOMIAL OK LESS
FLOATING POINT OVERFLOW MAY OCCUR FOR HIGH ORDER
POLYNOMIALS BUT WILL NOT AFFECT THE ACCURACY OF THE RESULTS.

NONE

METHOD

NEWTON-RAPHSON ITERATIVE TECHNIQUE. THE FINAL ITERATIONS
ON EACH ROOT ARE PERFORMED USING THE ORIGINAL POLYNOMIAL
RATHER THAN THE REDUCED POLYNOMIAL TO AVOID ACCUMULATED
ERRORS IN THE REDUCED POLYNOMIAL.

DIMENS. JDN XCOF(1),CDF(1),ROOT(1),ROOT1(1)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE'S PRECISION
STATEMENT WHICH FOLLOWS.

1 DOUBLE PRECISION XCOF,CDF,ROOT1,ROOTI,XO,YO,XPR,YPR,UX,UY,V,
YT,XT,U,XT2,YT2,SUMSQ,DX,DY,TEMP,ALPHA

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENTS
78 AND 122 MUST BE CHANGED TO DABS.

1 N=IN+1
GO TO 59
55 IF IT=1
XPR=X
YPR=Y

C EVALUATE POLYNOMIAL AND DERIVATIVES
CCCC

59 ICT=0
60 UX=0.0
UY=0.0
YT=0.0
XT=1.0
UX=CDF(N+1)
65 DO =70 I:=N
XT2=X*X-Y*T
XYT2=X*YT+Y*XT
UY=U+CDF(L)*XT2
V=Y+CDF(L)*YT2
F1=1
UX=UX+F1*XT*CDF(L)
UY=UY-F1*YT*CDF(L)
XT=XT2
70 SUMSQ=UX*UX+UY*UY
SF(SUMSQ)75 110 75
75 DX=(V*UY-U*UX)/SUMSQ
DY=DX-DY
Y=Y+DY
78 IF(ABS(DY)+DABS(DX)-1.0E-5) 100,80,30
CCCC STEP ITERATION COUNTER
80 ICT=ICT+1
IF(ICT-500) 60,85,85
85 IF(IFIT)100,90,100
90 IF(IN-5) 50,95,95
CCCC SET ERROR CODE TO 3
95 IER=3
GO TO 20
100 DO 105 L=1, NXX
MT=KJ1-L+1

```

TEMP=XCUCF(MT)
XCOF(MT)=COF(L)
L=TEMP
N=NX
NX=TEMP
IF(IFIT) 120,55,120
110 X=XPR
115 Y=YPR
120 IF(IT=0) 122,125
122 IF(DABS(Y/X)-1.0E-04) 135,125,115
125 ALPHAX=X+X
SUMSC=X*X+Y*Y
N=N-2
GO TO 140
130 XX=0.0
XX=XX-1
135 Y=0.0
SUMSD=0.0
ALPHA=X
N=N-1
CCF(2)=COF(2)+ALPHA*COF(1)
140 CCF(1)=CCF(1)+COF(1)+ALPHA*COF(1);
145 QQQQFT4+122=Y
R0000TR2+N2=X
RN2=SUMSD
150 Y=-Y
155 SUMSD=0.0
GO TO 155
156 IF(IN1 20,20,45
END
C

```

```

SUBROUTINE FREQ (NA,NB,AOB,G,W) AEL(30),AO1(30),B(60)
DIME(30) A(30),AE(30),AD(30),BD(30),BG(4)
1 CALL PARTS (NB,M1,M2,BE,N2,BE,M1,M2,BE1,N12,AD1)
CALL SUM (M1,AE,W) (M1,AE,W)
CALL SUM (M2,AE,W) (M2,AE,W)
CALL SUM (M1,AE1,W) (M1,AE1,W)
CALL SUM (M2,AE1,W) (M2,AE1,W)
33

```

```

CDDD=W#SUM (N12 BD*E1*W)
EVD1D=W#SUM (N12 BD1*W)
TOP=EVN*EVN+ODDN*ODDN
BOTTOM=EVD*EVN+ODDN*ODDN
Y=ODDN*EVD-ODDN*EVN
X=EVN*EVD+ODDN*BOTTOM) - 1.0E+65) 1.1,2
IF (ABS (X+Y+TCP+BOTTOM) = W/ 6.28318
FREQO = W/ 6.28318
2  WRITE (6,31) W, FREQO
3  FORMAT (6,31) W, "DUE TO OVERFLOW THE FREQUENCY RESPONSE DATA.",/
19X, "WILL BE UNRELIABLE FOR W=100X, W=100, RADIAN.",/
2  IF (X.EQ.0.1PE15.6) X=1.0E-50
1  IF (X.EQ.0.0) X=1.0E-50
THETA=29577.95*ATAN (Y/X)
111 THETA=THETA-180.
AMPL=TOP/BOTTOM
DELAY=(EVD*ODD1D+ODDN*EV1D)/BOTTOM-(EVN*ODD1N+ODDN*EV1N)/TOP
G(1)=W
G(2)=AMPL
G(3)=DELAY
G(4)=THETA
RETURN
END
112
160

```

C

```

SUBROUTINE FREQQ(LIN1,OMGMIN,OMGMAX,NA,NB,A,B,KEY1,R2)
12  MAXPTS = 160
KL=0
KC=0
SL=NDM
RL=0.0
W=RL*(OMGMAX-OMGMIN)/SL+OMGMIN
12  W=6.28318*W
CALL FKEQ (NA,NB,A,B,G,W)
XL=KL+1
R1(KL)=W
R2(KL)=G(4)
R3(KL)=G(4)
R4(KL)=G(3)
RL=RL+1.0
22  IF ((KL-MAXPTS) > 86,87,87
IF ((KC)91.89189 86,87,87
IF (OMGMAX-W)87,87,1
86
87

```

```

89 GC TO(93,13).KEY1
189 GO TO(1,13)
113 WRITE(6,300)
300 FORMAT(1H15X, 'CONTINUATION OF ABOVE TABLE AND GRAPH') ,
      FORMAT(1H15X, 'FORMAT(1H15X, 'FORMAT(1H15X, 'FORMAT(1H15X,
      12X, '1HDELAY (SEC), 2X), /, 12X, '1HDELAY (SEC), 2X),
      13 WRITE(6,81
      8 12X, '1HDELAY (SEC), 2X), /, 12X, '1HDELAY (SEC), 2X),
      128 WRITE(6,300)
      302 WRITE(1,219X,10HFREQ (HZ) ,4X,9HOMMS
      114 WRITE(1,219X,10HFREQ (HZ) ,4X,9HOMMS
      303 WRITE(1,219X,10HFREQ (HZ) ,4X,9HMMOS
      91 FORMAT(90,16,33,1, (R1(J), R2(J)), R3(J), J=1, KL)
      27 WRITE(1,2000,1, CALL, PLOT(R1,R2,KL)
      114 WRITE(1,2000,1, CALL, PLOT(R1,R2,KL)
      200 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS OHMS', //, 32X,
      1 IF (LN(E) > 1) CALL PLOT(R1,R3,KL)
      114 WRITE(1,2000,1, CALL, PLOT(R1,R3,KL)
      202 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS PHASE (DEG)', //
      1 IF (LN(E) > 1) CALL PLOT(R1,R3,KL)
      33 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS FREQ (HZ) ')
      90 WRITE(1,91, (R1(J), R2(J), P3(J), R4(J), J=1, KL)
      9 FORMAT(2(F20.7,F15.7,F10.3),F15.7,F10.3)
      C CALL PLOT(R1,R2,KL)
      114 WRITE(1,61, PLOT(R1,R2,KL)
      114 CALL PLOT(R1,R3,KL)
      114 CALL PLOT(R1,P4,KL)
      114 CALL PLOT(R1,P5,KL)
      GO TO 93
C
C 203 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS GAIN (DB)', //
      114 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS PHASE (DEG)', //
      204 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS DELAY (SEC)', //
      205 FORMAT(1H15X, 'PLOT OF ABOVE TABLE: Y-AXIS GAIN (DB)', //

```

```

1   /,32X, 'X-AXIS FREQ (HZ))'
1   IF(10MGMAX-W)94,94,95
1   KL=0
1   KC=KC+1
1   GO TO 1
1   RETURN
END

```

```

C      1 IF(ELT(JK)=109 VAL(J)+G(JK) GO TO 106
      105 GO TO 109
      106 IF(ELT(JK)=109 NEC(JK) GO TO 108
      107 GO TO 109
      108 H(JK)=109 VAL(J)+H(JK)
      109 G(E SAME AS PRECEDING ELEMENT, ADD VALUE TO THAT OF PRECEDING
      110 EEP(J:3)=K
      111 KK=KK+ELT(J)+NEC(K) GO TO 116
      112 G(K)=109
      113 GO TO 109
      114 IF(ELT(J)=109 NEC(K) GO TO 118
      115 G(K)=VAL(J)+EC(K)
      116 GO TO 109
      117 H(K)=109 VAL(J)+H(K)
      118 COUNTC=109
      119 COUNTINUE
      120 NPE=NPL-KK
      121 IF(NAL>100)99100
      122 TRANSFER ACTIVE ELEMENT NODE NUMBERS TO PERMANENT LIST
      123 DO 98 J=1,NAL
      124 NM=NPE+J-1
      125 NM=NM+1=MAP(J,1)
      126 NM=NM+2=MAP(J,2)
      127 NM=NM+3=MAP(J,3)
      128 NM=NM+4=MAP(J,4)
      129 NM=NM+5=MAP(J,5)
      130 MAP(J)=NM
      131 IF(ELT(J)=NEC(NM)) GO TO 11
      132 VALA(J)+G(NM)
      133 GO TO 98
      134 NM=VALA(J)+H(NM)
      135 COUNTINUE
      136 NPE=NPL+NAL-KK
      137 RETURN
      138 END
      C
FUNCTION MG{NN,NN,MG}{20,21,MM(100)}
      K=1

```


D
Z
W

۲۷

```
SUBROUTINE MAKPOL(NP,ROOT1,CR1)
RFALL#8
ROOT(1),ROOT(1),CR1,CR1)
```

TWO REAL*8 ARRAYS OF SIZE (N+1) MUST BE FURNISHED FOR THE COEFFICIENTS CR (REAL PART) AND CI (IMAG PART)

RETURN
001
001
NTR(11
LEI ROOT 100
H H H H H H H H
L E I R O D T U C
H H H H H H H H
Z Z + + + + + +
X X F O R T R U C
U C I D O R U C H
U C I D O R U C H

۲۷

```

SUBROUTINE MUL(ZRO,N8,Z)
C
      ZRO    COEFF IN ASCENDING ORDER
      N8    ORDER OF POLYNOMIAL PLUS ONE
      Z(1,1) = REAL ROOT
      Z(1,2) = CORRESPONDING IMAG PART OF ROOT
      DIMENSION ZRO(60),COE(60),Z(60,2)
      N1=N8-1
      N1F=10001
      N1L=10001
      N1R=10001
      N1M=10001
      N2=N1+1
      N3=N1+1
      N4=0
      I=N1+1
      L=1
      19 IF(N4.EQ.0)GOTO 19
      N4=N4+1
      17 IF(N4.EQ.0)GOTO 17
      N4=N4-1
      15 IF(L.NE.N1)GOTO 15
      19 CONTINUE
      10 AXR=0.8
      AXI=0.
      L=L+1
      N3=1
      ALP1R=AXR
      ALP1I=AXI
      M=1
      GOT1099
      BET1R=TEMR
      BET1I=TEMI
      AXR=0.85
      ALP2R=AXR
      ALP2I=AXI
      M=2
      GOT1099
      BET2R=TEMR
      BET2I=TEMI
      AXR=0.9
      ALP3R=AXR
      ALP3I=AXI
      12

```



```

205 TE8=TE10*TE7+TE8*TE8
      TE9=TE1*EQ1*0*TEM1*0*0E-35
      TE3=(TE1*EQ1*0*TE2*TE81)/TEM1
      TE4=(TE2*TE7-TE1*TE3*TE5-TE4*TE6
      AXR=ALP3R+TE3*TE6+TE4*TE5
      AXI=AXR
      ALP4R=AXR
      ALP4I=AXI
      M=4
      GO TO 99
15 N6=1 ABS (BELL)+ABS (BELL)-1*E-20 } 8,18,16
38 16 IF (ABS (ALP3R-AXR)+ABS (ALP3I-AXI) } 8,18,16
      AXI=(AXR EQ1*0)! AND ABS (AXI*EQ1*0)! 18,17 AXA = 1.0E-35
17 N3=N3+1
      ALP1R=ALP2R
      ALP2R=ALP3R
      ALP3I=ALP3I
      ALP4R=ALP4R
      ALP3I=ALP4I
      BET1R=BET2R
      BET1I=BET2I
      BET2R=BET3R
      BET2I=BET3I
      BET3R=TEM1
      BET3I=TEMR
      IF (N3=100) 14,18,18
18 N4=N4+1
      Z(N4+1)=ALP4R
      Z(N4+2)=ALP4I
      N3=0
      IF (N4-N1<30) 37,37
41 37 WRITE(6,555)
      555 FORMAT(//,12(1X,9HREAL PART,9X,9HIMAG PART,2X))
      5537 CALL RTCK {ZRO{N8'7}}
      C 666 FORMAT(1/,2(1PE22.7,1PE18.7);=1,N1)
      666 GO TO 300,2(1PE22.7,1PE18.7);=1,N1
      30 31 IF (ABS (Z(N4+2))-1.E-5)>10,10,31
      31 GO TO (3210),L
      32 AXR=ALP1R
      AXI=-ALP1I
      ALP1I=-ALP1I
      M=5

```


SURROUNTING PARTS (NAA:MK(AE1NK,AU1M1K,AU1N1K,AU1)
DIMENSION A(60),A(30),A(30),A(30),A(30)

```

HK=1
NK=0
M1K=0
AE(1)=A(1)
AF(1)=A(1)
IF(1)=3,3,1
I=I+1
NK=NK+1
NK=NK+1
AUU(1)=A(1)
DUMMY=I-1
AO1(NK)=DUMMY*A(1)
IF(1)=3,3,2
HK=HK+1
HK=HK+1
I=I+1

```

2

2

```

      AE(MIK)=A(1)
      DUMMY=I-1
      DUMMYY*DUMMY*A(1)
      IF(INA=I)3,3,1
      NI=NI-NK
      RETURN
      END

```

```

      C*** SUBROUTINE PLOT(X,Y,NN)
      C   GUAGE INPUT & FIND MAX & MIN FOR X & Y; CALL UTPLT
      C   X - THE X-AXIS COORDINATE
      C   Y - THE Y-AXIS COORDINATE
      C   NN - THE NUMBER OF POINTS TO BE PLOTTED
      C
      C   DIMENSION X(NN),Y(NN),RANGE(4),
      C   EQUIVALENCE (RANGE(1),XMAX),(RANGE(2),YMIN),
      C   (RANGE(4),YMAX)
      C
      1  IF (NN .GE. 4) GO TO 200
      C   WRITE (6,20) .10X, *GRAPHS OF LESS THAN FOUR POINTS ARE NOT PLOTTED
      C
      201 FORMAT (10/) .10X,
      C
      200  RETURN (61300)
      C
      300  FORMAT (61H1)
      C   XMAX=1.E20
      C   XMIN=-1.E20
      C   YMAX=-1.E20
      C   YMIN=1.E20
      DO 1 I=1,NN
      C   IF (X(I)-XMAX) 6,6,2
      C   IF (X(I)-XMIN) 3,3,7
      C   IF (Y(I)-YMAX) 8,8,4
      C   IF (Y(I)-YMIN) 5,5,1
      C
      6   XYMIN=X(I)
      C   XYMAX=Y(I)
      C
      7   XYMIN=Y(I)
      C   XYMAX=X(I)
      C
      8   XYMIN=Y(I)
      C   XYMAX=X(I)
      C
      9   XYMIN=X(I)
      C   XYMAX=Y(I)
      C
      1  CALL UTPLT(X,Y,NN,RANGE(1),YMAX,XMAX,XMIN,YMIN)
      C   WRITE (6,101) YMAX,XMAX,XMIN,YMIN

```

```

101  FORMAT (/>10X,/-1PE12.4, * AT X= *E12.4,20X,*MIN Y= * E12.4, * AT X= *
2      E12.4)
100  WRITE(6,100) XMAX, YMAX, XMIN, YMIN
    FORMAT (/>10X,/-1PE12.4, * AT Y= *E12.4,20X,*MIN X= * E12.4, * AT Y= *
2      E12.4)
    RETURN
END
C
SUBROUTINE RTCK (ZRO,N8,Z)
REAL#8 XCOF(37),COF(37)
1 COF1(37) COF2(37)
1 DIMENSION ZRO(1),Z(60,2)
M=N8-1
DO 10 I=1,N8
  XC0F(I)=ZRO(I)
  CALL DPOLRT (XCOF,COF,M,ROOTR,ROOTI,IER)
  IF (IER.EQ.0) GO TO 20
  WRITE(6,20)
  FORMAT(6,20)
  DPOLRT UNABLE TO FACTOR. NO ROOT CHECK. //1
  RETURN
C
C FORM TWO NEW POLYNOMIALS FROM THE TWO SETS OF ROOTS
20  DO 21 I=1,M
    DZR(I)=Z(I,1)
    DZI(I)=Z(I,2)
    CALL MAKPOL (M,DZR,COF1,COF2)
    CALL MAKPOL (M,ROOTR,ROOTI,COF2,COF1)
21
CUCUCUCU
C CALCULATE THE ERROR CRITERIA
THE SET OF ROOTS TO BE PRINTED OUT AND USED WILL BE THE SET WHICH
WHEN EXPANDED YIELD THE MOST NEARLY CORRECT COEFFICIENTS WHEN
COMPARED (ABS VALUES) TO THE ORIGINAL POLYNOMIAL COEFFICIENTS
ERR1 = 0.0
ERR2 = 0.0
DOR30 I=1,N8
ERR1=DABS(COF1(I)-XCOF(I)) + ERR1
ERR2=DABS(COF2(I)-XCOF(I)) + ERR2
IF (ERR2.GT. ERR1) GO TO 50
DO 40 I=1,M
  Z(I,1)=ROOTR(I)
  Z(I,2)=ROOTI(I)
40
30
40

```

```
50      RETURN  
C  
C
```

```
SUBROUTINE SORT(ML,NN,NM,NE,NEL,NALL,KEY1,NML,  
1 J1,K1)ON ML(50,5),NML(50,5)  
1 DIMENSION NML(50,5),NML(50,5)  
NALL=NN  
GC TO(20,21,21,22),KEY1  
20  NFL=NE  
    GC TO 23  
21  NM=2  
    NEL=NE+1  
    GO TO 23  
22  NM=3  
    NEL=NE+2  
23  DC=J+1-NM  
    DO 101 K=1,5  
    MCONTINUE(J,K)=NML(JJ,K)  
100  CONTINUE(1,2,2,2),KEY1  
1  RETURN  
C  REMOVE ELEMENTS IN PARALLEL WITH INPUT  
2  DO 109 J=NM,NEL  
111  IF(ML(J+1)-J)110,112,110  
110  IF(ML(J+2)-K)111,109,112,109  
113  IF(ML(J+2)-J)109,113,109,112,109  
C  INSERT LAST ELEMENT IN PLACE OF REMOVED ELEMENT  
112  DO 102 K=1,5  
    ML(J,K)=ML(NEL,K)  
    NEL=NEL-1  
    GC TO 2  
109  CONTINUE  
    GC TO(1,3,4,4),KEY1  
3  INSERT(J,K)  
    MLL(J+1)=K1  
    MLL(J+2)=K2  
    MLL(J+3)=K3  
    MLL(J+4)=K4  
    MLL(J+5)=K5  
    RETURN  
C  REMOVE ELEMENTS IN PARALLEL WITH OUTPUT  
4  DO 115 J=NM,NEL
```


**RETURN
END**

```

SUBROUTINE TOPOL(NPL,NAL,NN,Y1,Y2,VALL,KW,KEY1,KEY2,MP+ELT,VAL,
1 MAP(100,3),ML(50,5),ELT(100),MAP(20,5),ELTA(20),VALA(20),
2 NAL(50,5),NG(50,5),NML(50,5),
3 VAL(50,5),VAL(50,5),
4 H2/4H4
C   FUNCTION HAS ALREADY BEEN CALCULATED IN BILINEAR FORM,
C   CHANGE ONLY PART OF FUNCTION (6102),KEY3
C   GO TO MP(NVAR,3) 130
102  GOV=MAP(132,NV,5)
130  GCV=MAP(133)
132  IF(C(NV))133,134,133
133  DO(J=1,35)J=1(NP)*VALL(KW)+VALL(J)/VALL(KW-1)
134  DO(Y=1,Y=VALL(KW-1)*Y1(J)/VALL(KW)
135  TO 48
136  J=1(NP
137  CALL GROUP(H,NAL,MP,MAP,ELT,VALA,NPL,NAI)
C   CALL ELEMENTS ACROSS OUTPUT
C   CALL SORT(H,NAL,NEL,KEY1)
C   CALL TO ELEMENT ID=103,104,KEY2
C   PRINTE(6,801,(J,MP(J,3)),J=1,NPL)
80   WRITE(6,105),(J,MP(J,3)),J=1,NPL
C   FORMAT(1X,1,9ELEMENT ASSOCIATION ,/,1X,8PHYSICAL ,1X,11HTOPD
105  FORMAT(15,8X,1,HY,12)
106  WRITE(6,105),(J,MAP(J,51),NAL)
81   WRITE(6,82)
82   FORMAT(1X,25TREES,2-TREES,OR 3-TREES ,/1
103  NN=NN-1
NV=NV-NPL
NXK=0
DO 274 J=1,NP
Y1(J)=0.

```

274 Y2(J)=0.
 Y1(J)=IN-2
 HY=ONE+2-NN
 L=NN-1
 I=LK
 C PICK FIRST SET OF ELEMENTS TO BE TESTED AS TREE
 DO5 K=1,LH
 MAX=MAX+K
 NG(K)=K
 DO18 J=1,M(L,K,J)
 8 DOCONT IN=1,10
 5 CYTEST(J,KY) IN, CURRENT GRAPH
 100 FOR TREE IN CURRENT GRAPH
 101 TRET(IN,LN,KYIN,KYOUT,LL,MG)
 102 CALL KY(21,20,21)
 103 KY=0
 104 KYINTO 121
 20 GO1 IN=CIRCUIT HAS BEEN FORMED, REMOVE FATAL ELEMENT FROM LIST
 121 C121
 122 C122
 123 C123
 124 C124
 125 C125
 126 C126
 127 C127
 128 C128
 129 C129
 130 C130
 131 C131
 132 C132
 133 C133
 134 C134
 135 C135
 136 C136
 137 C137
 138 C138
 139 C139
 140 C140
 141 C141
 142 C142
 143 C143
 144 C144
 145 C145
 146 C146
 147 C147
 148 C148
 149 C149
 150 C150
 151 C151
 152 C152
 153 C153
 154 C154
 155 C155
 156 C156
 157 C157
 158 C158
 159 C159
 160 C160
 161 C161
 162 C162
 163 C163
 164 C164
 165 C165
 166 C166
 167 C167
 168 C168
 169 C169
 170 C170
 171 C171
 172 C172
 173 C173
 174 C174
 175 C175
 176 C176
 177 C177
 178 C178
 179 C179
 180 C180
 181 C181
 182 C182
 183 C183
 184 C184
 185 C185
 186 C186
 187 C187
 188 C188
 189 C189
 190 C190
 191 C191
 192 C192
 193 C193
 194 C194
 195 C195
 196 C196
 197 C197
 198 C198
 199 C199
 200 C200
 201 C201
 202 C202
 203 C203
 204 C204
 205 C205
 206 C206
 207 C207
 208 C208
 209 C209
 210 C210
 211 C211
 212 C212
 213 C213
 214 C214
 215 C215
 216 C216
 217 C217
 218 C218
 219 C219
 220 C220
 221 C221
 222 C222
 223 C223
 224 C224
 225 C225
 226 C226
 227 C227
 228 C228
 229 C229
 230 C230
 231 C231
 232 C232
 233 C233
 234 C234
 235 C235
 236 C236
 237 C237
 238 C238
 239 C239
 240 C240
 241 C241
 242 C242
 243 C243
 244 C244
 245 C245
 246 C246
 247 C247
 248 C248
 249 C249
 250 C250
 251 C251
 252 C252
 253 C253
 254 C254
 255 C255
 256 C256
 257 C257
 258 C258
 259 C259
 260 C260
 261 C261
 262 C262
 263 C263
 264 C264
 265 C265
 266 C266
 267 C267
 268 C268
 269 C269
 270 C270
 271 C271
 272 C272
 273 C273
 274 C274
 275 C275
 276 C276
 277 C277
 278 C278
 279 C279
 280 C280
 281 C281
 282 C282
 283 C283
 284 C284
 285 C285
 286 C286
 287 C287
 288 C288
 289 C289
 290 C290
 291 C291
 292 C292
 293 C293
 294 C294
 295 C295
 296 C296
 297 C297
 298 C298
 299 C299
 300 C300
 301 C301
 302 C302
 303 C303
 304 C304
 305 C305
 306 C306
 307 C307
 308 C308
 309 C309
 310 C310
 311 C311
 312 C312
 313 C313
 314 C314
 315 C315
 316 C316
 317 C317
 318 C318
 319 C319
 320 C320
 321 C321
 322 C322
 323 C323
 324 C324
 325 C325
 326 C326
 327 C327
 328 C328
 329 C329
 330 C330
 331 C331
 332 C332
 333 C333
 334 C334
 335 C335
 336 C336
 337 C337
 338 C338
 339 C339
 340 C340
 341 C341
 342 C342
 343 C343
 344 C344
 345 C345
 346 C346
 347 C347
 348 C348
 349 C349
 350 C350
 351 C351
 352 C352
 353 C353
 354 C354
 355 C355
 356 C356
 357 C357
 358 C358
 359 C359
 360 C360
 361 C361
 362 C362
 363 C363
 364 C364
 365 C365
 366 C366
 367 C367
 368 C368
 369 C369
 370 C370
 371 C371
 372 C372
 373 C373
 374 C374
 375 C375
 376 C376
 377 C377
 378 C378
 379 C379
 380 C380
 381 C381
 382 C382
 383 C383
 384 C384
 385 C385
 386 C386
 387 C387
 388 C388
 389 C389
 390 C390
 391 C391
 392 C392
 393 C393
 394 C394
 395 C395
 396 C396
 397 C397
 398 C398
 399 C399
 400 C400
 401 C401
 402 C402
 403 C403
 404 C404
 405 C405
 406 C406
 407 C407
 408 C408
 409 C409
 410 C410
 411 C411
 412 C412
 413 C413
 414 C414
 415 C415
 416 C416
 417 C417
 418 C418
 419 C419
 420 C420
 421 C421
 422 C422
 423 C423
 424 C424
 425 C425
 426 C426
 427 C427
 428 C428
 429 C429
 430 C430
 431 C431
 432 C432
 433 C433
 434 C434
 435 C435
 436 C436
 437 C437
 438 C438
 439 C439
 440 C440
 441 C441
 442 C442
 443 C443
 444 C444
 445 C445
 446 C446
 447 C447
 448 C448
 449 C449
 450 C450
 451 C451
 452 C452
 453 C453
 454 C454
 455 C455
 456 C456
 457 C457
 458 C458
 459 C459
 460 C460
 461 C461
 462 C462
 463 C463
 464 C464
 465 C465
 466 C466
 467 C467
 468 C468
 469 C469
 470 C470
 471 C471
 472 C472
 473 C473
 474 C474
 475 C475
 476 C476
 477 C477
 478 C478
 479 C479
 480 C480
 481 C481
 482 C482
 483 C483
 484 C484
 485 C485
 486 C486
 487 C487
 488 C488
 489 C489
 490 C490
 491 C491
 492 C492
 493 C493
 494 C494
 495 C495
 496 C496
 497 C497
 498 C498
 499 C499
 500 C500
 501 C501
 502 C502
 503 C503
 504 C504
 505 C505
 506 C506
 507 C507
 508 C508
 509 C509
 510 C510
 511 C511
 512 C512
 513 C513
 514 C514
 515 C515
 516 C516
 517 C517
 518 C518
 519 C519
 520 C520
 521 C521
 522 C522
 523 C523
 524 C524
 525 C525
 526 C526
 527 C527
 528 C528
 529 C529
 530 C530
 531 C531
 532 C532
 533 C533
 534 C534
 535 C535
 536 C536
 537 C537
 538 C538
 539 C539
 540 C540
 541 C541
 542 C542
 543 C543
 544 C544
 545 C545
 546 C546
 547 C547
 548 C548
 549 C549
 550 C550
 551 C551
 552 C552
 553 C553
 554 C554
 555 C555
 556 C556
 557 C557
 558 C558
 559 C559
 560 C560
 561 C561
 562 C562
 563 C563
 564 C564
 565 C565
 566 C566
 567 C567
 568 C568
 569 C569
 570 C570
 571 C571
 572 C572
 573 C573
 574 C574
 575 C575
 576 C576
 577 C577
 578 C578
 579 C579
 580 C580
 581 C581
 582 C582
 583 C583
 584 C584
 585 C585
 586 C586
 587 C587
 588 C588
 589 C589
 590 C590
 591 C591
 592 C592
 593 C593
 594 C594
 595 C595
 596 C596
 597 C597
 598 C598
 599 C599
 600 C600
 601 C601
 602 C602
 603 C603
 604 C604
 605 C605
 606 C606
 607 C607
 608 C608
 609 C609
 610 C610
 611 C611
 612 C612
 613 C613
 614 C614
 615 C615
 616 C616
 617 C617
 618 C618
 619 C619
 620 C620
 621 C621
 622 C622
 623 C623
 624 C624
 625 C625
 626 C626
 627 C627
 628 C628
 629 C629
 630 C630
 631 C631
 632 C632
 633 C633
 634 C634
 635 C635
 636 C636
 637 C637
 638 C638
 639 C639
 640 C640
 641 C641
 642 C642
 643 C643
 644 C644
 645 C645
 646 C646
 647 C647
 648 C648
 649 C649
 650 C650
 651 C651
 652 C652
 653 C653
 654 C654
 655 C655
 656 C656
 657 C657
 658 C658
 659 C659
 660 C660
 661 C661
 662 C662
 663 C663
 664 C664
 665 C665
 666 C666
 667 C667
 668 C668
 669 C669
 670 C670
 671 C671
 672 C672
 673 C673
 674 C674
 675 C675
 676 C676
 677 C677
 678 C678
 679 C679
 680 C680
 681 C681
 682 C682
 683 C683
 684 C684
 685 C685
 686 C686
 687 C687
 688 C688
 689 C689
 690 C690
 691 C691
 692 C692
 693 C693
 694 C694
 695 C695
 696 C696
 697 C697
 698 C698
 699 C699
 700 C700
 701 C701
 702 C702
 703 C703
 704 C704
 705 C705
 706 C706
 707 C707
 708 C708
 709 C709
 710 C710
 711 C711
 712 C712
 713 C713
 714 C714
 715 C715
 716 C716
 717 C717
 718 C718
 719 C719
 720 C720
 721 C721
 722 C722
 723 C723
 724 C724
 725 C725
 726 C726
 727 C727
 728 C728
 729 C729
 730 C730
 731 C731
 732 C732
 733 C733
 734 C734
 735 C735
 736 C736
 737 C737
 738 C738
 739 C739
 740 C740
 741 C741
 742 C742
 743 C743
 744 C744
 745 C745
 746 C746
 747 C747
 748 C748
 749 C749
 750 C750
 751 C751
 752 C752
 753 C753
 754 C754
 755 C755
 756 C756
 757 C757
 758 C758
 759 C759
 760 C760
 761 C761
 762 C762
 763 C763
 764 C764
 765 C765
 766 C766
 767 C767
 768 C768
 769 C769
 770 C770
 771 C771
 772 C772
 773 C773
 774 C774
 775 C775
 776 C776
 777 C777
 778 C778
 779 C779
 780 C780
 781 C781
 782 C782
 783 C783
 784 C784
 785 C785
 786 C786
 787 C787
 788 C788
 789 C789
 790 C790
 791 C791
 792 C792
 793 C793
 794 C794
 795 C795
 796 C796
 797 C797
 798 C798
 799 C799
 800 C800
 801 C801
 802 C802
 803 C803
 804 C804
 805 C805
 806 C806
 807 C807
 808 C808
 809 C809
 810 C810
 811 C811
 812 C812
 813 C813
 814 C814
 815 C815
 816 C816
 817 C817
 818 C818
 819 C819
 820 C820
 821 C821
 822 C822
 823 C823
 824 C824
 825 C825
 826 C826
 827 C827
 828 C828
 829 C829
 830 C830
 831 C831
 832 C832
 833 C833
 834 C834
 835 C835
 836 C836
 837 C837
 838 C838
 839 C839
 840 C840
 841 C841
 842 C842
 843 C843
 844 C844
 845 C845
 846 C846
 847 C847
 848 C848
 849 C849
 850 C850
 851 C851
 852 C852
 853 C853
 854 C854
 855 C855
 856 C856
 857 C857
 858 C858
 859 C859
 860 C860
 861 C861
 862 C862
 863 C863
 864 C864
 865 C865
 866 C866
 867 C867
 868 C868
 869 C869
 870 C870
 871 C871
 872 C872
 873 C873
 874 C874
 875 C875
 876 C876
 877 C877
 878 C878
 879 C879
 880 C880
 881 C881
 882 C882
 883 C883
 884 C884
 885 C885
 886 C886
 887 C887
 888 C888
 889 C889
 890 C890
 891 C891
 892 C892
 893 C893
 894 C894
 895 C895
 896 C896
 897 C897
 898 C898
 899 C899
 900 C900
 901 C901
 902 C902
 903 C903
 904 C904
 905 C905
 906 C906
 907 C907
 908 C908
 909 C909
 910 C910
 911 C911
 912 C912
 913 C913
 914 C914
 915 C915
 916 C916
 917 C917
 918 C918
 919 C919
 920 C920
 921 C921
 922 C922
 923 C923
 924 C924
 925 C925
 926 C926
 927 C927
 928 C928
 929 C929
 930 C930
 931 C931
 932 C932
 933 C933
 934 C934
 935 C935
 936 C936
 937 C937
 938 C938
 939 C939
 940 C940
 941 C941
 942 C942
 943 C943
 944 C944
 945 C945
 946 C946
 947 C947
 948 C948
 949 C949
 950 C950
 951 C951
 952 C952
 953 C953
 954 C954
 955 C955
 956 C956
 957 C957
 958 C958
 959 C959
 960 C960
 961 C961
 962 C962
 963 C963
 964 C964
 965 C965
 966 C966
 967 C967
 968 C968
 969 C969
 970 C970
 971 C971
 972 C972
 973 C973
 974 C974
 975 C975
 976 C976
 977 C977
 978 C978
 979 C979
 980 C980
 981 C981
 982 C982
 983 C983
 984 C984
 985 C985
 986 C986
 987 C987
 988 C988
 989 C989
 990 C990
 991 C991
 992 C992
 993 C993
 994 C994
 995 C995
 996 C996
 997 C997
 998 C998
 999 C999
 1000 C1000

```

C IF TO BE CALCULATED IN BILINEAR FORM, TEST FOR VARIABLE ELEMENT
146 IF(NVAR,146,45,146
147 DO 147 K=J,LP,LN
148 IF(MG(K,3)-NP(NVAR,3)1147,44,147
147 CONTINUE
148 GOTO 45
149 GOTO 45
144 DO 144 J=1,JP,LN
145 Y1=Y1+X(J)
145 Y2=Y2+X(J)
145 GOTO 145
149 PRINT(19,19,19,19,89),KEY2
C 89 WRITE(6,900) AA(MG(J,3),JP,LN)
900 PERMUTE ELEMENT 2X,20(1HY,12,2X1/(2(1HY,12,2X)))
C19 IF(NG(1-HK)147,48,48
4747 IF(KX-1-NEL)747,50,50
      K=NG(1-L)
      DO 265 NY=1,5
      MG(1,2,3,4,5)=ML(K,NY)
      IF(NG(1-L)-NEL)49,50,50
49   NG(1-L)=NG(L)+1
      K=NG(L)
      DO 77 J=1,5
      MG(L,J)=ML(K,J)
      GOTO 100
77   PERMUTE NEXT ELEMENT IN LIST
C EXAMINE THE ORIGINAL IN THIS AREA
C 50 L=L-1
      NG(L)=NG(L)+1
      DO 51 K=L,ML
      51 NG(K+1)=NG(K)+1
      KK=NG(L)
      DO 52 J=L,LN
      52 DO 267 NY=1,5
      MG(J,NY)=ML(KK,NY)
      KK=KK+1
      C IF 2-TREE OR 3-TREE SEE 128,428,429,KEY1
      GOTO (427,1428,428,429,KEY1
428 IF(NG(1-L)-1,427,428,429,KEY1

```

```

429 IF(NK-1)=27,100,100
427 1IF(K-NELMATION TEST FOR CONNECTED GRAPH
53 CALL(KYOUT,LL,NALL,LN,KYOUT,KK)
1950 1IF(LL-1)=48,48,50
L=NN-1
553 GOTO 100 TEST, ASSEMBLE AND SHIFT COEFFICIENTS
C8 DO 550 J=1, NP
550 Y(J)=Y(J)+Y(3J), 555
555 JNP=JP+2*NW
DO 556 J=1, NP
556 K=NP-J+NW
Y(K)=Y(K)+Y(J)
DO 557 J=1, JW
557 NW=NP-J+1
Y(J)=0.
558 Y(NW)=0.
557 RETURN
331 END
C

```

SUBROUTINE TRETS(NN,LL,KYIN,KYOUT,LL,MG)

THIS TEST IS MADE BY TRYING TO ADD ONE NEW NODE AT A TIME UNTIL

ALL NODES HAVE BEEN ACCOUNTED FOR

2 K1=1, K2=2, 25

2# K1=1, K2=2, 25

11 DO 21 J=1, NN

21 MM(J)=0

K=1

N=MG(1, K2)

M=M(1, K2)

9 KK=K

```

SUBROUTINE UTPLOT (X1,Y1,NDATA,XSCALE,YSCALE)
DIMENSION GRID(61,101),YORG(101)
DIMENSION X(1),Y(1),RANGE(4)
INTEGER#2 ZERO,IHO,IYORG,IORG,I011
INTEGER#2 GRID,BLANK,XCHAR,DOT
DATA DOT, XCHAR,BLANK, Y/2H.,2H.,2H./
DO 8 I=1,101
IYORG(I)=BLANK
IERR=0
IXMAX=RANGE(1)
IXMIN=RANGE(3)
IYMAX=RANGE(4)
IYMIN=RANGE(1)

```

GRID IS THE MATRIX USED TO PLOT THE POINTS

CHECKING X AND Y POINTS, PLOTTING THOSE OUT OF RANGE

```

C   AT THE MARGIN
DC 30 I=1,NDATA,KKZ
    IF (X(I)-XMAX) 205,205,220
220  IERR=IERR+1
      GOT0 210
205  GOT(X(I)-XMIN) 203,210,210
203  X(I)=XMIN
      IERR=IERR+1
210  IF(Y(I)-YMAX) 215,215,212
212  Y(I)=YMAX
      IERR=IERR+1
GOT0 30
215  IF(Y(I)=YMIN) 217, 30,30
217  IERR=IERR+1

C   30 CONTINUE
C   PLOTTING X AND Y AXIS , IF NECESSARY
      X RANGE=XMAX-XMIN
      Y RANGE=YMAX-YMIN

C   BLANKING OUT MATRIX-(GRID)
C
DO 300 I=1,61
  DO 301 J=1,101
    GRID(I,J)=BLANK
301  CONTINUE
300  CTEST=XMAX#YMIN
      XTEST=XMIN#YMAX
      TEST=333*444444
222  IF(XTEST<TEST) 305,*(-XMIN)/X RANGE+1.5
      IF(YAXIS<YAXIS-1) =DOT
      IF(YORG>YAXIS+1) =DOT
      DO 40 I=YAXIS+1,61
        GRID(I,YAXIS)=DOT
40   GRID(I,YAXIS)=DOT
333  IF(XAXIS<60.*#YMAX/YRANGE+1.5
      DO 60 I=1,101
        GRID(I,YAXIS,I)=DOT
60   GRID(I,YAXIS,I)=DOT

C   PLACING POINTS IN THEIR PROPER GRID POSITIONS
444  DO 70 I=1,NDATA,KKZ
      IPTX=60.*#YMAX-Y(I)/YRANGE+1.5

```

```

70 GRID(IPTX,IPTY) XCHAR
C COMPUTE PROPER SCALE NUMBERS
C
8000 X INCRE=X RANGE/5.
XY INCRE=Y RANGE/6.
XYSCALE(1)=X MAX
XYSCALE(2)=Y MAX
DO 80 I=1,3
  XSCALE(I)=XSCALE(I-1)-XINCR
  DO 81 I=2,7
    YSCALE(I)=YSCALE(I-1)-YINCR
81
C OUTPUT SECTION WITH GRAPH
WRITE(6,49) IYORG
WRITE(6,17) XSCALE(6), XSCALE(5), XSCALE(4), XSCALE(3), XSCALE(2),
1 XSCALE(1)
17 FORMAT(12X,1PE10.3,5(10X,1PE10.3)/15X,2H**,10(10H****),10H****)
1
I=0
100 IX=101, IX=102
IF(I.EQ.1) WRITE(6,18) YSCALE(11), (GRID(IX,IX), IX=1,101), YSCALE(11)
18 FORMAT(13X,1PE10.3,4H +
I=1,101
GO TO 102
IF(IX.EQ.1) NE=IXAXIS
GO TO 192
192 WRITE(6,40) (GRID(IX,IX), IX=1,101)
400 FORMAT(18X,4H0.00,3X,1H*,IX,101A1,2H *,3X,4H0.00)
GO TO 102
192 WRITE(6,19) (GRID(IX,IX), IX=1,101)
192 FORMAT(15X,1H*,IX,101A1,IX,1H#)
102 IF(I.EQ.10) GO TO 103
I=0
103 IF(I.EQ.0) CONTINUE
101 WRITE(6,22) XSCALE(6), XSCALE(5), XSCALE(4), XSCALE(3), XSCALE(2),
1 XSCALE(1)
22 1 FORMAT(15X,2H**10(10H****),10X,1PE10.3)
1 142X,E10.4011YORG
1 FCRMAT(144X101A1
1 FFCMERR(10001000,1000,1001
401 1 FORMAT(1620) JERR
10001 WRITE(6,20) JERR
1200 FORMAT(10X,1PE10.3) NUMBER OF POINTS OUT OF RANGE = 14)
1000 RETURN
END

```

LIST OF REFERENCES

1. Temes, G. C. and Calahan, D. A., "Computer-Aided Network Optimization the State of the Art," Proc. IEEE, v. 55, p. 1832-1863, November, 1967.
2. Wilde, D. J., Optimum Seeking Methods, Englewood Cliffs, New Jersey: Prentice-Hall, 1964.
3. Kirk, D. E., Optimal Control Theory: An Introduction, Prentice-Hall, to be published 1970.
4. Calahan, D. A., "Linear Network Analysis and Realization Digital Computer Programs: An Instruction Manual," University of Illinois Bulletin, v. 62, No. 58.
5. Tuttle, Jr., D. F., Network Synthesis, New York: John Wiley and Sons, Inc., 1958.
6. Weinberg, L., Network Analysis and Synthesis, New York: McGraw-Hill, 1962.
7. Hooke, R. and Jeeves, T. A., "'Direct Search' Solution of Numerical and Statistical Problems," Journal of Association for Computing Machinery, v. 8, p. 212-229, 1961.

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION Unclassified
Naval Postgraduate School Monterey, California 93940		2b. GROUP
3. REPORT TITLE Computer-Aided Network Design by Optimization in the Frequency Domain		
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates) Master's Thesis; December 1969		
5. AUTHOR(S) (First name, middle initial, last name) James Lau		
6. REPORT DATE December 1969	7a. TOTAL NO. OF PAGES 87	7b. NO. OF REFS 7
8a. CONTRACT OR GRANT NO.	8b. ORIGINATOR'S REPORT NUMBER(S)	
b. PROJECT NO		
c.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
d.		
10. DISTRIBUTION STATEMENT This document has been approved for public release and sale; its distribution is unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Naval Postgraduate School Monterey, California 93940	
13. ABSTRACT The filter design problem is considered as an optimization problem. An iterative search technique is employed to adjust the variable network element values to approximate some desired network response, with a minimum of error. Explicit constraints are employed to ensure physical realizability. The design process uses a combination of a modified version of Calahan's network analysis program with a direct search method of minimization developed by Hooke and Jeeves. The result is a procedure which utilizes the circuit designer's experience and knowledge to set up the problem but relieves him of the tedious labor now performed by the high-speed digital computer.		

DD FORM 1473 (PAGE 1)

1 NOV 68
S/N 0101-807-6811

Security Classification		LINK A		LINK B		LINK C	
14 KEY WORDS		ROLE	WT	ROLE	WT	ROLE	WT
Computer-aided network design							
Network synthesis							
Optimization							
Pattern search							

DD FORM 1 NOV 68 1473 (EACK)
 S/N 0101-607-6821