Let Σ be some alphabet.

Prove that:

$$\forall S,T \in \mathscr{P}(\Sigma^*), S \neq \emptyset \land S \subseteq T \land (\forall t \in T, \exists s \in S, s \leq^s t) \longrightarrow \Sigma^*T\Sigma^* = \Sigma^*S\Sigma^*.$$

Let $S,T \in \mathcal{P}(\Sigma^*)$ be such that $S \neq \emptyset$, $S \subseteq T$ and $\forall t \in T$, $\exists s \in S$, $s \leq^s t$. (We must show that $\Sigma^*T\Sigma^* = \Sigma^*S\Sigma^*$)

First we'll show that: $\Sigma^*T\Sigma^* \subseteq \Sigma^*S\Sigma^*$

Let $\mathbf{w} \in \mathbf{\Sigma}^* \mathbf{T} \mathbf{\Sigma}^*$, By definition of $\mathbf{\Sigma}^* \mathbf{T} \mathbf{\Sigma}^*$ we get that

 $\exists w_1,w_2 \in \Sigma^*, t \in T, w = w_1 t w_2.$

Now since $\mathbf{t} \in \mathbf{T}$ we get that $\exists \ \mathbf{s} \in \mathbf{S}, \ \mathbf{s} \leq^{\mathbf{s}} \mathbf{t}$, By definition of the $\leq^{\mathbf{s}}$ relation we get that $\exists \ \psi, \chi \in \Sigma^*, \ \mathbf{t} = \psi \ \mathbf{s} \ \chi$, Thus $\mathbf{w} = \mathbf{w}_1 \ \psi \ \mathbf{s} \ \chi \ \mathbf{w}_2$. Lets denote $\mathbf{u}_1 = \mathbf{w}_1 \ \psi$ and $\mathbf{u}_2 = \chi \ \mathbf{w}_2$, We get that $\mathbf{w} = \mathbf{u}_1 \ \mathbf{s} \ \mathbf{u}_2$, Since $\mathbf{u}_1, \mathbf{u}_2 \in \Sigma^*$ and $\mathbf{s} \in \mathbf{S}$ we get that $\mathbf{u}_1 \ \mathbf{s} \ \mathbf{u}_2 \in \Sigma^* \mathbf{S} \Sigma^*$, and so $\mathbf{w} \in \Sigma^* \mathbf{S} \Sigma^*$. Thus $\Sigma^* \mathbf{T} \Sigma^* \subseteq \Sigma^* \mathbf{S} \Sigma^*$

Now we'll show that: $\Sigma^*S\Sigma^* \subseteq \Sigma^*T\Sigma^*$

Let $\mathbf{w} \in \mathbf{\Sigma}^* \mathbf{S} \mathbf{\Sigma}^*$, By definition of $\mathbf{\Sigma}^* \mathbf{S} \mathbf{\Sigma}^*$ we get that

 $\exists \ w_1,w_2 \in \Sigma^*, \, s \in S, \, w = w_1 \, s \, w_2.$

Now since $\mathbf{s} \in \mathbf{S}$ and $\mathbf{S} \subseteq \mathbf{T}$ we get that $\mathbf{s} \in \mathbf{T}$ and we get that

 $\exists w_1, w_2 \in \Sigma^*, s \in T, w = w_1 s w_2$. Now by definition of $\Sigma^* T \Sigma^*$

we get that $\mathbf{w} \in \mathbf{\Sigma}^* \mathbf{T} \mathbf{\Sigma}^*$. Thus $\mathbf{\Sigma}^* \mathbf{S} \mathbf{\Sigma}^* \subseteq \mathbf{\Sigma}^* \mathbf{T} \mathbf{\Sigma}^*$

From the two set inclusions we get that $\Sigma^*T\Sigma^* = \Sigma^*S\Sigma^*$ as was to be shown.

Q.E.D.