Determination of Edge-Disjoint Hamiltonian Circuit

Mohd. Abdullah(ISM2014004)

Jatin Goel(ICM2014503)

Rohit Raj(ISM2014003)

Edge Disjoint Hamiltonian Circuit

- Graph shown in figure is a complete graph of 5 vertices.
- It has 24 unique Hamiltonian Circuits
- One of the pair of edge-disjoint Hamiltonian Circuit are:
 - Cycle 1 5 1 2 3 4 5
 - Cycle 2 524135

Approach 1

```
Edge_disjoint_hamiltonian()
                                                              check_hamiltonian()
//Initialize path vector
                                                                   for i=1 to V
for i=1 to V
     path[i] = i
                                                                   if(!graph[path[i]][path[(i+1)%V]])
                                                                              return false;
//Generate all Permutation
                                                                   return true;
while(next_unique_permutation(path))
     // To check given path vector is hamiltonian circuit or not
                                                              check_if_disjoint()
     check_hamiltonian(path)
     if(true)
                                                                   if(cycle pair have common edges)
          hamiltonian_cycles.append(path)
                                                                         return false;
                                                                   return true;
// To Check Disjoint
for each pair in hamiltonian_cycles
                                                              Next_unique_permutation
     check_if_disjoint();
     if(true)
                                                                   check if next_permutation is
          Edge_disjoint_hamiltonian.append(pair);
                                                                   rotation of one of the previous
                                                                   permutation
```

Approach 2

```
backtrack(current node,taken) {
   if taken == no of nodes
            e = edge(current node,start node)
            ife == -I
                     return
            edge bitset.set(e)
            all circuit.insert(circuit,edge bitset)
            edge bitset.unset(e)
            return
   for v : adjacency_list[current_node]
            if visited[v.node] is false
                     taken + = I
                     circuit.insert(v.node)
                     edge bitset.set(v.edge)
                     visited[v.node] = true
                     backtrack(v.node)
                     taken - = 1
                     visited[v.node] = false
                     circuit.pop()
                     edge bitset.unset(v.edge)
```

```
main() {
   circuit.insert(1)
    taken = l
   start node = l
    visited[1] = true
    backtrack(1)
   // Find all pairs of edge disjoint Hamiltonian circuit
   for(i \leftarrow 0 \text{ to all\_circuit.size}())
        for(j \leftarrow i+1 \text{ to all\_circuit.size}())
                    if(((all_circuit[i].edge_bitset & all_circuit[j].edge_bitset).count()) == 0)
                              print(i,j)
        Bitset B[]
                      B[i]=1: ith edge is present in circuit
                      B[i]=0: i^{th} edge is not present in circuit
```

Time Complexity Analysis

Approach 1

 $O((N+N^3\log N)*N!) + O(T^2N \log N)$

Notation

N – No of Nodes

E – No of Edges

T – No of Hamiltonian Cycles

Approach 2

 $O((N+E)*(N-1)!) + O(|T^2*E/32|)$

This approach works well for sparse graph and is a more efficient way to check edge-disjoint Hamiltonian pair.

Result Comparison

Comparison Between Approach 1 Vs Approach 2 on Complete Graph

No of Nodes	Approach 1(sec.)	Approach 2(sec.)
4	0.002664	0.000036
5	0.045459	0.000087
6	1.14136	0.000643
7	14.5678	0.016820
8		0.761507
9		47.201474

Comparison Between Approach 1 Vs Approach 2 on Sparse Graph

No of Nodes	Approach 1(sec.)	Approach 2(sec.)
4	0.000195	0.000099
5	0.000235	0.000071
6	0.000337	0.000188
7	0.009584	0.001871
8	0.018894	0.186956
9	0.139235	0.009599
10	3.00345	0.000361