SBML Model Report

Model name: "Romond1999_CellCycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by Harish Dharuri¹ at September tenth 2008 at 1:58 p.m. and last time modified at July fifth 2012 at 4:48 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	0	constraints	0
reactions	6	function definitions	0
global parameters	32	unit definitions	5
rules	8	initial assignments	0

Model Notes

The model reproduces Fig 3 of the paper. Model successfully reproduced using MathSBML and Jarnac.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it,

 $^{^{1}} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of nine unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name minute

Definition 60 s

2.2 Unit uM

Name uM

Definition $\mu mol \cdot l^{-1}$

2.3 Unit micromole

Name micromole

Definition µmol

2.4 Unit min_1

Name min_1

Definition $(60 \text{ s})^{-1}$

2.5 Unit uM_min_1

Name uM_min_1

Definition $\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$

2.6 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.7 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.8 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.9 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment			3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains six species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
C1	cyclinB	compartment	μ mol·l ⁻¹		\Box
M1	cdk1	compartment	dimensionless		
X1	ubiquitin ligase	compartment	dimensionless		\Box
C2	cyclinE	compartment	μ mol \cdot l ⁻¹		\Box
M2	cdk2	compartment	dimensionless		\Box
X2	Ubiquitin ligase 2	compartment	dimensionless		

5 Parameters

This model contains 32 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V1			0.000	$(60 \text{ s})^{-1}$	
Kc1			0.500	μ mol·l ⁻¹	
V_M1			0.300	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $
V3			0.000	$(60 \text{ s})^{-1}$	
V_M3			0.100	$(60 \text{ s})^{-1}$	
U1			0.000	$(60 \text{ s})^{-1}$	
Kc2			0.500	μ mol·l ⁻¹	
U_M1			0.300	$(60 \text{ s})^{-1}$	$\overline{\mathbf{Z}}$
U3			0.000	$(60 \text{ s})^{-1}$	
U_M3			0.100	$(60 \text{ s})^{-1}$	
vi1			0.050	$\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$	$ \overline{\mathbf{Z}} $
Kim1			0.030	dimensionless	$\overline{\mathbf{Z}}$
vd1			0.025	$\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$	$\overline{\mathbf{Z}}$
K_d1			0.020	μ mol·l ⁻¹	$\overline{\mathbf{Z}}$
kd1			0.001	$(60 \text{ s})^{-1}$	$ \overline{\mathscr{L}} $
K1			0.010	dimensionless	
V2			0.150	$(60 \text{ s})^{-1}$	
K2			0.010	dimensionless	
КЗ			0.010	dimensionless	
V4			0.050	$(60 \text{ s})^{-1}$	
K4			0.010	dimensionless	
vi2			0.050	$\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$	
Kim2			0.030	dimensionless	
vd2			0.025	$\mu \text{mol} \cdot l^{-1} \cdot (60 \text{ s})^{-1}$	
K_d2			0.020	μ mol·l ⁻¹	
kd2			0.001	$(60 \text{ s})^{-1}$	
H1			0.010	dimensionless	
U2			0.150	$(60 \text{ s})^{-1}$	
H2			0.010	dimensionless	
Н3			0.010	dimensionless	
U4			0.050	$(60 \text{ s})^{-1}$	
H4			0.010	dimensionless	

6 Rules

This is an overview of eight rules.

6.1 Rule V1

Rule V1 is an assignment rule for parameter V1:

$$V1 = \frac{[C1]}{Kc1 + [C1]} \cdot V_M1 \tag{1}$$

Derived unit $(60 \text{ s})^{-1}$

6.2 Rule V3

Rule V3 is an assignment rule for parameter V3:

$$V3 = M1 \cdot V M3$$
 (2)

Derived unit $(60 \, \mathrm{s})^{-1}$

6.3 Rule U1

Rule U1 is an assignment rule for parameter U1:

$$U1 = \frac{[C2]}{Kc2 + [C2]} \cdot U_M1 \tag{3}$$

Derived unit $(60 \text{ s})^{-1}$

6.4 Rule U3

Rule U3 is an assignment rule for parameter U3:

$$U3 = M2 \cdot U M3 \tag{4}$$

Derived unit $(60 \text{ s})^{-1}$

6.5 Rule M1

Rule M1 is a rate rule for species M1:

$$\frac{d}{dt}[M1] = \frac{V1 \cdot (1 - M1)}{K1 + (1 - M1)} - \frac{V2 \cdot M1}{K2 + M1}$$
 (5)

6.6 Rule X1

Rule X1 is a rate rule for species X1:

$$\frac{d}{dt}[X1] = \frac{V3 \cdot (1 - X1)}{K3 + (1 - X1)} - \frac{V4 \cdot X1}{K4 + X1}$$
 (6)

6.7 Rule M2

Rule M2 is a rate rule for species M2:

$$\frac{d}{dt}[M2] = \frac{U1 \cdot (1 - M2)}{H1 + (1 - M2)} - \frac{U2 \cdot M2}{H2 + M2}$$
 (7)

6.8 Rule X2

Rule X2 is a rate rule for species X2:

$$\frac{d}{dt}[X2] = \frac{U3 \cdot (1 - X2)}{H3 + (1 - X2)} - \frac{U4 \cdot X2}{H4 + X2}$$
(8)

7 Reactions

This model contains six reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	R1	cdk2 mediated cyclinB synthesis	$\emptyset \xrightarrow{M2} C1$	
2	R2	Ubiquitin ligase mediated cyclinB degradation	$C1 \xrightarrow{X1} \emptyset$	
3	R3	cyclinB degradation	$C1 \longrightarrow \emptyset$	
4	R8	cyclinE synthesis	$\emptyset \xrightarrow{M1} C2$	
5	R9	Ubiquitin ligase mediated cyclinE degradation	$C2 \xrightarrow{X2} \emptyset$	
6	R10	cyclinE degradation	$C2 \longrightarrow \emptyset$	

7.1 Reaction R1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cdk2 mediated cyclinB synthesis

Reaction equation

$$\emptyset \xrightarrow{M2} C1 \tag{9}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
M2	cdk2	

Product

Table 7: Properties of each product.

Id	Name	SBO
C1	cyclinB	

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_1 = \frac{\text{vol}(\text{compartment}) \cdot \text{vi1} \cdot \text{Kim1}}{\text{Kim1} + \text{M2}}$$
 (10)

7.2 Reaction R2

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Ubiquitin ligase mediated cyclinB degradation

Reaction equation

$$C1 \xrightarrow{X1} \emptyset \tag{11}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
C1	cyclinB	

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
X1	ubiquitin ligase	

Kinetic Law

Derived unit $10^{-6} \text{ mol} \cdot (60 \text{ s})^{-1}$

$$v_2 = \frac{\text{vol}(\text{compartment}) \cdot \text{vd1} \cdot \text{X1} \cdot [\text{C1}]}{\text{K_d1} + [\text{C1}]}$$
(12)

7.3 Reaction R3

This is an irreversible reaction of one reactant forming no product.

Name cyclinB degradation

Reaction equation

$$C1 \longrightarrow \emptyset$$
 (13)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
C1	cyclinB	

Kinetic Law

 $\textbf{Derived unit} \ \left(60 \ s\right)^{-1} \cdot \mu mol$

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{kd1} \cdot [\text{C1}]$$
 (14)

7.4 Reaction R8

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cyclinE synthesis

Reaction equation

$$\emptyset \xrightarrow{M1} C2 \tag{15}$$

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
M1	cdk1	

Product

Table 12: Properties of each product.

Id	Name	SBO
C2	cyclinE	

Kinetic Law

Derived unit $\mu mol \cdot (60 \text{ s})^{-1}$

$$v_4 = \frac{\text{vol (compartment)} \cdot \text{vi2} \cdot \text{Kim2}}{\text{Kim2} + \text{M1}}$$
 (16)

7.5 Reaction R9

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Ubiquitin ligase mediated cyclinE degradation

Reaction equation

$$C2 \xrightarrow{X2} \emptyset \tag{17}$$

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
C2	cyclinE	

Modifier

Table 14: Properties of each modifier.

Id	Name	SBO
Х2	Ubiquitin ligase 2	

Kinetic Law

Derived unit $10^{-6} \text{ mol} \cdot (60 \text{ s})^{-1}$

$$v_5 = \frac{\text{vol (compartment)} \cdot \text{vd2} \cdot \text{X2} \cdot [\text{C2}]}{\text{K}_{-}\text{d2} + [\text{C2}]}$$
(18)

7.6 Reaction R10

This is an irreversible reaction of one reactant forming no product.

Name cyclinE degradation

Reaction equation

$$C2 \longrightarrow \emptyset \tag{19}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
C2	cyclinE	

Kinetic Law

 $\textbf{Derived unit} \ \left(60 \ s\right)^{-1} \cdot \mu mol$

$$v_6 = \text{vol}\left(\text{compartment}\right) \cdot \text{kd2} \cdot [\text{C2}]$$
 (20)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species C1

Name cyclinB

Initial concentration $2 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R2, R3 and as a product in R1).

$$\frac{d}{dt}C1 = v_1 - v_2 - v_3 \tag{21}$$

8.2 Species M1

Name cdk1

Initial amount 1 dimensionless

Involved in rule M1

This species takes part in one reaction (as a modifier in R8) and is also involved in one rule which determines this species' quantity.

8.3 Species X1

Name ubiquitin ligase

Initial amount 0 dimensionless

Involved in rule X1

This species takes part in one reaction (as a modifier in R2) and is also involved in one rule which determines this species' quantity.

8.4 Species C2

Name cyclinE

Initial concentration $0 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R9, R10 and as a product in R8).

$$\frac{d}{dt}C2 = v_4 - v_5 - v_6 \tag{22}$$

8.5 Species M2

Name cdk2

Initial amount 0 dimensionless

Involved in rule M2

This species takes part in one reaction (as a modifier in R1) and is also involved in one rule which determines this species' quantity.

8.6 Species X2

Name Ubiquitin ligase 2

Initial amount 0 dimensionless

Involved in rule X2

This species takes part in one reaction (as a modifier in R9) and is also involved in one rule which determines this species' quantity.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany