1)
$$\ddot{y} = \frac{1}{m} \left[\Delta \rho \int -f_{tr} \dot{y} - F_{bad} \right]$$

2) $\Delta \dot{\rho} = \frac{2E_{b}}{V} \left[Q - J \dot{y} - \frac{\Delta \rho}{R V} \right]$

State space form: X = [y, j, ap] T; u = [Q, Flood] T

$$\dot{X}_{1} = X_{2}$$

$$\dot{X}_{2} = \frac{4}{m} \left[X_{1}J - f_{1}X_{2} - F_{1}J \right]$$

$$\dot{X}_{3} = \frac{2EL}{V} \left[Q - JX_{2} - \frac{X_{3}}{RV} \right]$$

o)
$$\Delta p = \rho_1 - \rho_2$$

1) $\Delta p S = m \ddot{y} + f_{Tr} \ddot{y} + F_{Lood}$

2) $Q = S \ddot{y} + \frac{\Delta p}{R_V} + \frac{V}{2Eh} \frac{d \Delta p}{dt}$

m-hmotnost pristu

 $S - privez$ pristu

 $f_{Tr} - kaef$. vizhozm'ho trem'

 $F_{Lood} - z \acute{a} te z$
 $O_U = \frac{\Delta p}{\Delta t} - \acute{u} m k$ kapaliny

(adpar protifu) Qu = $\frac{\Delta P}{R^{\nu}}$ - únik kapadiny
(adpar protifu) Qitl = $\frac{V}{2Ek}$ $\frac{d\Delta P}{dt}$ - průtok stlačením
kajsaliny R_{ν} - odpor těstností pístu $\frac{V}{2}$ - stlač. objem kapadiny. $\frac{V}{2}$ E_{k} - modul objemove průžností kapadiny.

$$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{f_{kr}}{m} & \frac{S}{m} \\ 0 & -\frac{2F_{ks}S}{V} & \frac{2F_{ks}}{VR_{V}} \end{bmatrix} \\ \dot{\mathbf{X}} + \begin{bmatrix} 0 & 0 \\ 0 & -1 \\ \frac{2F_{ks}}{V} & 0 \end{bmatrix} \mathbf{u}$$