

MID-TERM QUESTION SOLUTIONS

THEORY OF COMPUTATION

CSE 2233

SOLUTION BY

NURUL ALAM ADOR

UPDATED TILL FALL 2023

Index

Trimester	Page
Fall 2023	3
Summer 2023	11
Spring 2023	18
Fall 2022	24
Summer 2022	31

Fall 2023

- Design DFAs that accept the following languages:
 - a) L = accepts any string that has an even number of 'a' or odd number of 'b' over alphabet $\{a, b\}$
 - b) L = accepts any string which starts with an odd number of 'r' and ends with 'brb' over the alphabet $\{b, r\}$
 - c) L = accepts any string where the last two symbols are different over the alphabet $\{a, b\}$

Solution:

a) L = accepts any string that has an even number of 'a' or odd number of 'b' over alphabet $\{a, b\}$

The DFA has been designed below:

b) L = accepts any string which starts with an odd number of 'r' and ends with 'brb' over the alphabet $\{b, r\}$

The DFA has been designed below:

c) L = accepts any string where the last two symbols are different over the alphabet {a, b}

The DFA has been designed below:

- 2. Design NFAs that accept the following languages:
 - a) $L = \{ w \mid w \text{ starts with 'a' or 'b' and contains 'cca' and ends with 'b' or 'c' } \mid \sum = \{a,b,c\}$
 - b) $L = \{ w \mid w \text{ starts and ends with different symbols with total length of at least 2 } \mid \sum = \{ a, b, c \}$
 - c) L = { w | w contains 'xyz' or 'yzx' or 'zxx' and ends with 'yz' } | $\Sigma = \{x, y, z\}$

Solution:

a) $L = \{ w \mid w \text{ starts with 'a' or 'b' and contains 'cca' and ends with 'b' or 'c' } \mid \sum = \{a, b, c\}$ The NFA has been designed below:

b) $L = \{ w \mid w \text{ starts and ends with different symbols with total length of at least 2 } \mid \sum = \{ a, b, c \}$

The NFA has been designed below:

c) L = { w | w contains 'xyz' or 'yzx' or 'zxx' and ends with 'yz' } | $\sum = \{x, y, z\}$ The NFA has been designed below:

Consider the following NFA, and show with help of NFA-tree whether the string "aababa" is accepted.

Solution:

NFA Tree:

With help of NFA-tree, we can see the string "aababa" reach the final state. ∴ The string "aababa" is accepted.

4. Convert the following NFA over the alphabet $\Sigma = \{a, b\}$ to an equivalent DFA

Solution:

Transition Table of the given NFA:

	a	b
\rightarrow q ₀	q1, q2	Ø
q 1	Ø	q 3, q 4
\mathbf{q}_2	Ø	q ₁
* q 3	Ø	q ₁
Q 4	q ₅	Ø
* q 5	Ø	Ø

Transition Table for the Equivalent DFA:

	a	b
\rightarrow q ₀	$\{q_1, q_2\} = A$	$\{\emptyset\} = q_\emptyset$
$A = \{ q_1, q_2 \}$	$\{\emptyset\} = q_\emptyset$	$\{q_1, q_3, q_4\} = B$
$*B = \{q_1, q_3, q_4\}$	q5	$\{q_1, q_3, q_4\} = B$
* q 5	$\{\emptyset\} = q_\emptyset$	$\{\emptyset\} = q_\emptyset$
q ø = { Ø }	{ Ø } = qø	{ Ø } = qø

Equivalent DFA Diagram:

- 5. a) Convert the following regular expressions to finite automata:
 - i) $(ab)^* + (a + ab)^* b^* (a + b)^*$
 - ii) $[a + ba (a + b)]^* a (ba)^* b^*$

Solution:

i) $(ab)^* + (a + ab)^* b^* (a + b)^*$

The equivalent finite automata for the following regular expression has been constructed below:

This is our final finite automata for following regular expression.

ii) [a + ba (a + b)]* a (ba)* b*

The equivalent finite automata for the following regular expression has been constructed below:

Step 5:

This is our final finite automata for following regular expression.

- b) Convert the following regular expressions to finite automata:
 - L = $\{$ strings such that the 4th symbol from the right is b over the alphabet $\{a,b\}$ $\}$
 - ii) $L = \{ \text{ strings such that they start and end with 'a' over the alphabet } \{a, b, c \} \}$

Solution:

- L = { strings such that the 4th symbol from the right is b over the alphabet {a, b} }
 Regular Expression: (a | b)* a (a | b) (a | b)
- ii) $L = \{ \text{ strings such that they start and end with 'a' over the alphabet } \{a, b, c \} \}$ Regular Expression: $a (a | b | c)^* a | a$

Summer 2023

- 1. Design **DFA**'s that accepts the following languages:
 - a) $L = \{ w \mid w \text{ does not contain '101'} \} \mid \Sigma = \{0,1\}$
 - **b)** $L = \{ w \mid w \text{ starts with an even number of 'a', contains 'ba' and ends with 'baa' } \mid \sum = \{a, b\}$
 - c) L = { w | w is a palindrome with a max length of 3 } | Σ = {0,1}
 - d) $L = \{ a^i b^j \mid i \ge 0, j \ge 0, i + j \text{ is an odd number } \} \mid \Sigma = \{a, b\}$

Solution:

a) L = { w | w does not contain '101' } | Σ = {0,1} The DFA has been designed below:

b) $L = \{ w \mid w \text{ starts with an even number of 'a', contains 'ba' and ends with 'baa' } \mid \sum = \{a, b\}$ The DFA has been designed below:

c) L = { w | w is a palindrome with a max length of 3 } | Σ = {0,1} The DFA has been designed below:

d) $L = \{ a^i b^j \mid i \ge 0, j \ge 0, i + j \text{ is an odd number } \} \mid \Sigma = \{a, b\}$ The DFA has been designed below:

2. Design NFA's that accepts the following languages:

- a) $L = \{ w \mid w \text{ doesn't start with 'a' or 'b' and contains 'bbc' and ends with 'ab' } \mid \sum = \{a, b, c\}$
- **b)** L = { w | w starts with '10' or '21' and contains '220' and ends with '112' } | $\Sigma = \{0,1,2\}$
- c) L = { w | w starts and ends with either 'xzy' or 'xy' } | $\Sigma = \{x, y, z\}$

Solution:

a) $L = \{ w \mid w \text{ doesn't start with 'a' or 'b' and contains 'bbc' and ends with 'ab' } \mid \sum = \{a, b, c\}$ The NFA has been designed below:

b) L = { w | w starts with '10' or '21' and contains '220' and ends with '112' } | Σ = {0,1,2} The NFA has been designed below:

c) L = { w | w starts and ends with either 'xzy' or 'xy' } | Σ = {x, y, z} The NFA has been designed below:

3. Consider the following NFA, and show with help of **NFA-tree** whether the string ${}^{\circ}0100110^{\circ}$ is accepted.

Solution:

NFA Tree:

With help of NFA-tree, we can see the string "0100110" reach the final state.

 \div The string "0100110" is accepted.

4. Convert the following NFA over the alphabet $\Sigma = \{1,2,3\}$ to an equivalent DFA including the diagram.

	1	2	3
→ a	{ a, b, d }	{ a, c }	{ d }
b	Ø	{ a, d }	{ a, e }
* C	{ a, b, c, d, e }	Ø	{ b, c }
d	{ d, e }	{ d }	{ a, e }
* e	{ b, e }	Ø	Ø

Solution:

Transition Table for the Equivalent DFA:

	1	2	3
→ a	$\{a, b, d\} = q_0$	{ a, c } = q ₁	d
$q_0 = \{ a, b, d \}$	$\{a, b, d, e\} = q_2$	$\{a, c, d\} = q_3$	{ a, d, e } = q ₄
* q1 = { a, c }	$\{a, b, c, d, e\} = q_5$	{ a, c } = q ₁	$\{b, c, d\} = q_6$
d	{ d, e } = q ₇	d	{ a, e } = q ₈
* q2 = { a, b, d, e }	$\{a, b, d, e\} = q_2$	$\{a, c, d\} = q_3$	{ a, d, e } = q ₄
* q3 = { a, c, d }	$\{a, b, c, d, e\} = q_5$	$\{a, c, d\} = q_3$	$\{a, b, c, d, e\} = q_5$
* q4 = { a, d, e }	$\{a, b, d, e\} = q_2$	$\{a, c, d\} = q_3$	$\{a, d, e\} = q_4$
$* q_5 = \{ a, b, c, d, e \}$	{ a, b, c, d, e } = q ₅	$\{a, c, d\} = q_3$	{ a, b, c, d, e } = q ₅
$* q_6 = \{ b, c, d \}$	{ a, b, c, d, e } = q ₅	$\{a,d\} = q_9$	$\{a, b, c, e\} = q_{10}$
* q7 = { d, e }	$\{ b, d, e \} = q_{11}$	d	{ a, e } = q ₈
* q ₈ = { a, e }	{ a, b, d, e } = q ₂	{ a, c } = q ₁	d
$q_9 = \{ a, d \}$	{ a, b, d, e } = q ₂	$\{a, c, d\} = q_3$	{ a, d, e } = q ₄
* q ₁₀ = { a, b, c, e }	{ a, b, c, d, e } = q ₅	$\{a, c, d\} = q_3$	{ a, b, c, d, e } = q ₅
* q ₁₁ = { b, d, e }	$\{ b, d, e \} = q_{11}$	$\{a,d\} = q_9$	{ a, e } = q ₈

Equivalent DFA Diagram:

5. Convert the following ε -NFA over the alphabet $\Sigma = \{0,1\}$ to an equivalent DFA.

Solution:

Transition Table of the given ϵ -NFA:

	0	1
→ 1	2	Ø
2	Ø	2, 4
* 3	4	Ø
* 4	3	Ø

 ϵ -Closure of all state of the given ϵ -NFA:

```
\epsilon-Closure (1) = { 1, 2, 3 }
```

$$\epsilon$$
-Closure (2) = {2}

$$\epsilon$$
-Closure (3) = {3,2}

$$\epsilon$$
-Closure (4) = {4}

Transition Table for the Equivalent DFA:

	0	1
\rightarrow * A = { 1, 2, 3 }	$\{2,4\} = B$	{ 2, 4 } = B
* B = { 2, 4 }	{ 2, 3 } = C	{ 2, 4 } = B
* C = { 2, 3 }	{ 4 } = D	{ 2, 4 } = B
* D = { 4 }	{ 2, 3 } = C	$\{\emptyset\} = q_\emptyset$
$\mathbf{q}_\emptyset = \{ \emptyset \}$	$\{\emptyset\} = q_\emptyset$	$\{\emptyset\} = q_\emptyset$

Equivalent DFA Diagram:

Spring 2023

- 1. Design DFAs that accepts the following languages:
 - a) L = contains even number of 'a' and ends with 'bc' | $\Sigma = \{a, b, c\}$
 - **b)** L = does not contain 'mnm' | $\Sigma = \{m, n, w\}$
 - c) L = starts with 'gh' and contains 'kgh' and ends with 'gh' | $\Sigma = \{g, h, k\}$

Solution:

a) L = contains even number of 'a' and ends with 'bc' | $\Sigma = \{a, b, c\}$ The DFA has been designed below:

b) $L = does not contain 'mnm' \mid \Sigma = \{m, n, w\}$ The DFA has been designed below:

c) L = starts with 'gh' and contains 'kgh' and ends with 'gh' | $\Sigma = \{g, h, k\}$ The DFA has been designed below:

- 2. Design NFAs that accepts the following languages:
 - a) L = starts with 'p', and contains 'rqp', and ends with 'qr' | $\Sigma = \{p, q, r\}$
 - b) L = starts with '11' or '21' and contains '210' and ends with '101' | $\Sigma = \{0,1,2\}$
 - c) L = starts with 'xyz' and contains 'yyz' or 'zyx' and ends with 'zy' | $\Sigma = \{x, y, z\}$

Solution:

a) L = starts with 'p', and contains 'rqp', and ends with 'qr' | $\Sigma = \{p, q, r\}$ The NFA has been designed below:

b) L = starts with '11' or '21' and contains '210' and ends with '101' | $\Sigma = \{0,1,2\}$ The NFA has been designed below:

c) L = starts with 'xyz' and contains 'yyz' or 'zyx' and ends with 'zy' | $\Sigma = \{x, y, z\}$ The NFA has been designed below:

Consider the following NFA, and show with help of NFA-tree whether the string "aabaa" is accepted or not.

Solution:

NFA Tree:

With help of NFA-tree, we can see the string "aabaa" reach the final state. \therefore The string "aabaa" is accepted.

4. Convert the following **NFA** over the alphabet $\Sigma = \{0,1\}$ to an equivalent **DFA**.

Solution:

Transition Table of the given NFA:

	0	1
→ * q ₁	q1, q2	q ₂
\mathbf{q}_2	Ø	q 1, q 3
q 3	q ₁	q ₁

Transition Table for the Equivalent DFA:

	0	1
→ * q ₁	$\{q_1, q_2\} = A$	q ₂
$*A = \{ q_1, q_2 \}$	$\{q_1, q_2\} = A$	$\{q_1, q_2, q_3\} = B$
\mathbf{q}_2	$\{\emptyset\} = q_\emptyset$	$\{q_1, q_3\} = C$
$*B = \{q_1, q_2, q_3\}$	$\{q_1, q_2\} = A$	$\{q_1, q_2, q_3\} = B$
$* C = \{ q_1, q_3 \}$	$\{ q_1, q_2 \} = A$	$\{q_1, q_2\} = A$

Equivalent DFA Diagram:

- **5.** Design Regular Expression for the following languages where $\Sigma = \{a, b\}$
 - a) All strings w having even length strings and starting with a or odd length strings starting with b.
 - b) All strings w which begins and ends with \mathbf{b} .
 - c) All strings w where every a is followed by at least one b.

Solution:

a) All strings w having even length strings and starting with a or odd length strings starting with b.

Regular Expression: $a (a | b) ((a | b) (a | b))^* | b ((a | b) (a | b))^*$

b) All strings w which begins and ends with b.

Regular Expression: $b (a | b)^* b | b$

c) All strings w where every a is followed by at least one b.

Regular Expression: $b^* (ab b^*)^*$

Fall 2022

- 1. Design DFAs that accepts the following languages:
 - a) $L = \{ w \mid w \text{ starts with 'ab' and contains 'bba' and ends with 'bb' }$ | $\sum = \{a, b\}$
 - b) $L = \{ w \mid w \text{ contains the set of all strings that has length exactly 3 and its third symbol is from the left side is 'a' \} | \Sum_{=} = \{a, b\}$
 - c) L = { w | w contains the set of all strings that has neither '00' nor '11' as substring } | $\Sigma = \{0,1,2\}$
 - d) L = { w | w contains the set of all strings whose length always returns remainder 2 when divided by 4 } | $\Sigma = \{0,1\}$

Solution:

a) $L = \{ w \mid w \text{ starts with 'ab' and contains 'bba' and ends with 'bb' } \mid \sum = \{a, b\}$ The DFA has been designed below:

b) $L = \{ w \mid w \text{ contains the set of all strings that has length exactly 3 and its third symbol is from the left side is 'a' \} | \Sum = \{a, b\}$

The DFA has been designed below:

c) $L = \{ w \mid w \text{ contains the set of all strings that has neither '00' nor '11' as substring }$ | $\Sigma = \{0,1,2\}$

The DFA has been designed below:

d) L = { w | w contains the set of all strings whose length always returns remainder 2 when divided by 4 } | $\Sigma = \{0,1,2\}$

The DFA has been designed below:

Decimal	Binary	Reminder
0	0	0
1	1	1
2	10	2
3	11	3
4	100	0
5	101	1
6	110	2
7	111	3
8	1000	0

- 2. Design NFAs that accepts the following languages:
 - a) L = ends with 'x' and contains 'yxz' and starts with 'xy' $\sum = \{x, y, z\}$
 - b) L = starts with 'pq' or 'qr' and contains 'pqp' or 'qrr' and ends with 'qqr' $\sum = \{p, q, r\}$
 - c) L = starts with '211' and contains '112' or '321' and ends with '1' | $\Sigma = \{1,2,3\}$

Solution:

a) L = ends with 'x' and contains 'yxz' and starts with 'xy' | $\Sigma = \{x, y, z\}$ The NFA has been designed below:

b) L = starts with 'pq' or 'qr' and contains 'pqp' or 'qrr' and ends with 'qqr' | $\Sigma = \{p,q,r\}$ The NFA has been designed below:

c) L = starts with '211' and contains '112' or '321' and ends with '1' | $\Sigma = \{1,2,3\}$ The NFA has been designed below:

3. Consider the following NFA, and show with help of NFA-tree whether the string $^{\circ}11010^{\circ}$ is accepted or not.

Solution:

NFA Tree:

With help of NFA-tree, we can see the string "aabaa" reach the final state. $\because \text{The string "}11010\text{" is accepted}.$

4. Convert the following NFA over the alphabet $\Sigma = \{0,1\}$ to an equivalent DFA. [P.T.O]

Solution:

Transition Table of the given NFA:

	0	1
→ a	a, b, c, d, e	d, e
b	С	e
с	Ø	b
d	e	Ø
* e	Ø	Ø

Transition Table for the Equivalent DFA:

	0	1
→ a	{ a, b, c, d, e } = q ₁	{ d, e } = q ₂
* q1 = { a, b, c, d, e }	$\{a, b, c, d, e\} = q_1$	$\{ b, d, e \} = q_3$
$* q_2 = \{ d, e \}$	e	{ Ø } = qø
$* q_3 = \{ b, d, e \}$	{ c, e } = q ₄	e
* e	$\{\emptyset\} = q_\emptyset$	{ Ø } = qø
* q4 = { c, e }	$\{\emptyset\} = q_\emptyset$	b
b	С	e
с	$\{\emptyset\} = q_\emptyset$	b
* qø = { Ø }	$\{\emptyset\} = q_\emptyset$	$\{\emptyset\} = q_\emptyset$

Equivalent DFA Diagram:

5. Convert the following ε -NFA over the alphabet $\Sigma = \{0,1\}$ to an equivalent DFA.

Solution:

Transition Table of the given ϵ -NFA:

	0	1
→ A	Е	В
В	Ø	С
С	Ø	D
* D	Ø	Ø
Е	F	Ø
F	D	Ø

ε-Closure of all state of the given ε-NFA:

 ϵ -Closure (A) = {A}

 ϵ -Closure (B) = { B, D }

 ϵ -Closure (C) = { C }

 ϵ -Closure (D) = { D }

 ϵ -Closure (E) = { E, B, C, D }

 ϵ -Closure (F) = { F }

Transition Table for the Equivalent DFA:

	0	1
→ A	$\{ B, C, D, E \} = q_0$	$\{ B, D \} = q_1$
$* q_0 = \{ B, C, D, E \}$	F	$\{ C, D \} = q_2$
* q ₁ = { B, D }	$\{\emptyset\} = q_\emptyset$	С
F	D	{ Ø } = qø
$* q_2 = \{ C, D \}$	$\{\emptyset\} = q_\emptyset$	D
С	$\{\emptyset\} = q_\emptyset$	D
* D	$\{\emptyset\} = q_\emptyset$	$\{\emptyset\} = q_\emptyset$
q Ø = { Ø }	{ Ø } = qø	{ Ø } = qø

Equivalent DFA Diagram:

Summer 2022

- Design DFAs that accepts the following languages:
 - a) L = { w | w starts and ends with different symbols and the length of w is even } | $\Sigma = \{0,1\}$
 - **b)** L = { w | w contains at least two 'a's and at most one 'b' } | $\Sigma = \{a, b\}$
 - c) L = { w | w contains even number of 0's or odd number of 2's.} over $\Sigma = \{0,1,2\}$
 - d) L = { w | w contains all the binary number which is divisible by 3 or ends with with '011' } | $\Sigma = \{0,1\}$

Solution:

a) $L = \{ w \mid w \text{ starts and ends with different symbols and the length of } w \text{ is even } \} \mid \Sigma = \{0,1\}$ The DFA has been designed below:

b) $L = \{ w \mid w \text{ contains at least two 'a's and at most one 'b'} \} \mid \Sigma = \{a, b\}$ The DFA has been designed below:

c) L = { w | w contains even number of 0's or odd number of 2's. } over $\Sigma = \{0,1,2\}$ The DFA has been designed below:

d) $L = \{ w \mid w \text{ contains all the binary number which is divisible by 3 or ends with with '011' }$ The DFA has been designed below:

Decimal	Binary	Reminder
0	0	0
1	1	1
2	10	2
3	11	0
4	100	1
5	101	2
6	110	0

- 2. Design NFAs that accepts the following languages:
 - a) L = ends with 'b' and contains 'bbcb' and starts with 'aacd' | $\Sigma = \{a, b, c, d\}$
 - **b)** L = contains 'bba' or 'abb' or 'acc' and starts with 'ab' or 'bc' | $\Sigma = \{a, b, c\}$
 - c) L = starts with '121' and contains '212' or '312' and ends with '2' | $\Sigma = \{1,2,3\}$

Solution:

a) L = ends with 'b' and contains 'bbcb' and starts with 'aacd' | $\Sigma = \{a, b, c, d\}$ The NFA has been designed below:

b) L = contains 'bba' or 'abb' or 'acc' and starts with 'ab' or 'bc' | $\Sigma = \{a, b, c\}$ The NFA has been designed below:

c) L = starts with '121' and contains '212' or '312' and ends with '2' | $\Sigma = \{1,2,3\}$ The NFA has been designed below:

3. Consider the following NFA, and show with help of NFA-tree whether the string "11010" is accepted or not.

Solution:

NFA Tree:

With help of NFA-tree, we can see the string "11010" reach the final state.

 \div The string "11010" is accepted.