Comparison and analysis of three algorithms for the Minimum Spanning Tree problem

Syed Riaz Raza¹ Rana Mandal² Muhammad Tabish³

* Homework 1 Report for "Advanced Algorithms"

Keywords

Advance Algorithm,
MST,
Minimum Spanning
Tree,
Prims, Kruskal,
Union Find,
Heap, Graphs, Tree,
Asymptotic
Complexity, Data
Structure, Execution
Time, Big O,
UNIPD,
Padova, Italy

Abstract:

In this report we will do comparison and analysis between three algorithms for calculating the Minimum Spanning Tree problem given below:

- 1. Prim's Algorithm implemented with a Heap
- 2. Naive Kruskal's Algorithm having O(MN) complexity
- 3. Efficient Kruskal's Algorithm based on Union-Find

The report summarizes the result in following way:

- Visualize the result using matplotlib one-by-one
- Comparing the result of one algorithm with other one and vice versa
- Conclude the result

¹ Syed Riaz Raza; E-mail: syedriaz.raza@studenti.unipd.it; Portfolio: riazraza.me

² Rana Mandal; E-mail: <u>rana.mandal@studenti.unipd.it</u>;

³ Muhammad Tabish; E-mail: muhammad.tabish@studenti.unipd.it;

Table of Contents

1.	Ir	ntroduction:	. 4
A	Α.	Definition of MST:	. 4
	a.	Properties of the minimum spanning tree	. 4
E	3.	Generic Algorithm:	. 4
	a.	Some notations for MST are given:	. 4
	b	. To determine if a side is safe, the following theorem is used:	. 5
2.	P	roject Structure:	. 5
A	٨.	Implementation:	. 5
E	3.	Dataset:	. 5
C	Z.	Asymptotic Notation & Visualization:	. 6
Ι).	Flowchart:	. 7
3.	Q	Question 1:	. 8
A	λ.	Kruskal Naive:	. 8
	a.	. Working:	. 8
	b	. Pseudocode:	. 8
	c.	. Code Structure:	. 9
	d	. Complexity:	. 9
	e.	Visualization	10
E	3.	Kruskal Union-Find Algorithm:	11
	b	. Description	11
	c.	Pseudo Code:	12
	d	. Code Structure:	12
	e.	. Complexity	13
	f.	Visualization:	13
(7.	Prims Algorithm:	14
	b	Prims Algorithm implemented using Heap:	14
	c.	Pseudo Code:	15
	d	. Time complexities:	15
	e.	Visualization:	16
4.	Q	Question 2	17
5.	C	Conclusion	18

6. D	ataset Result	19
A.	Kruskal Naïve	19
B.	Kruskal Union Find:	21
C.	Prims Algorithm:	23

1. Introduction:

A. Definition of MST:

Given a weighted undirected graph. We want to find a subtree of this graph which connects all vertices (i.e., it is a spanning tree) and has the least weight (i.e., the sum of weights of all the edges is minimum) of all possible spanning trees. This spanning tree is called a minimum spanning tree.

a. Properties of the minimum spanning tree

- A minimum spanning tree of a graph is unique, if the weight of all the edges are distinct. Otherwise, there may be multiple minimum spanning trees. (Specific algorithms typically output one of the possible minimum spanning trees).
- Minimum spanning tree is also the tree with minimum product of weights of edges. (It can be easily proved by replacing the weights of all edges with their logarithms)
- In a minimum spanning tree of a graph, the maximum weight of an edge is the minimum possible from all possible spanning trees of that graph. (This follows from the validity of Kruskal's algorithm).
- The maximum spanning tree (spanning tree with the sum of weights of edges being maximum) of a graph can be obtained similarly to that of the minimum spanning tree, by changing the signs of the weights of all the edges to their opposite and then applying any of the minimum spanning tree algorithm.

B. Generic Algorithm:

```
A = empty_set
while A doesn't form a spanning tree
  find an edge (u, v) that is safe for A
    A = A U {(u, v)}
return A
```

a. Some notations for MST are given:

- 1. a cut $(S; V \setminus S)$ of a graph G = (V; E) and a partition of V;
- 2. one side $(u, v) \in E$ crosses the cut $(S; V \cap S)$ if $u \in S$ and $v \in V \setminus S$ or vice versa.
- 3. a cut respects a set of sides A if no side of A crosses the cut.
- 4. given a cut, the side that passes through it with minimal weight is called the **light edge.**

b. To determine if a side is safe, the following theorem is used:

Theorem: Let G = (V; E) be an undirected, connected, and weighted graph. Let A be a subset of E included in some MST of G, let $(S; V \setminus S)$ be a cut respecting A, and let (u; v) be a light edge for $(S; V \setminus S)$. Then (u; v) is safe for A.

2. Project Structure:

A. Implementation:

Other than the core data structures (for each algorithm), some functions are the same in all project files like:

Core Program Units:

- class Graph (diff for each algo)
- class MST: (diff for each algo)

Additional functions (Same for all algo implementations):

- funct load_all_dataset (Load All Dataset)
- funct populate_each_Graph_from_Dataset (Populate dataset to given Graph/MST class)
- funct execute_each_graph_in_dataset (Compute and execute each dataset with their complexity and export the result into csv)
- funct main (main calling function)

B. Dataset:

The result created as output for each algorithm implementation is in .csv format, and all the project files implementing the algorithm are using the same format to export the data.

- n vertex (# of vertex in a graph)
- n edges (# of edges in a graph)
- nano seconds time (ns time took to compute MST for each graph)
- seconds time (s time took to compute MST for each graph)
- weight (weight of each MST)
- exe times (num_time calculation done on each graph)

C. Asymptotic Notation & Visualization:

To compute Asymptotic notation for each algorithm the following parameters were created for each graph in dataset (for each algorithm implementation):

Note: Our work here is to compute the complexity and visualize the behavior of MST algorithms when given a dataset of graphs with increasing nodes. In this case, our dataset is composed of graphs whose vertices is being repeated exactly 4 times.

- n_vertices = Same number of Vertices/nodes in a dataset. (Exactly 4 e.g., 10 20)
- mean_edges = Average of edges whose number of Vertices is same.
- time = Average of time whose number of Vertices is same.

Computing Ration and Constant:

Note: n here is the number of a graph in a dataset

- ratios= MST [estimated_time][n+1] / MST [estimated_time][n]
- constant= MST [estimated_time] [n] / MST [mean_edges][n]
- reference = MST [n]['mean_edges']) * MST[n]['n_vertices']

We have created a separate file system which import the computational results of algorithm as mentioned in above paragraph and visualize the result of algorithms in following category

- Computational complexity of the algorithm
- Theoretical(C) computational complexity of the algorithm (reference variable)

Note: visualizing the comparison between Kruskal Union Find and Prims, as it has been assumed Kruskal UF and Prims is better than Kruskal Naïve.

Write the result in

.csv with given

format

D. Flowchart:

The same structure is used to compute MST for all given three algorithms:

Figure 1: Coding structure to compute MST and saving the result in a .csv

Figure 2: Structure to compute and complexity and visualize data.

3. Question 1:

Run the three algorithms you have implemented (Prim, Kruskal naive and Kruskal efficient) on the graphs of the dataset. Measure the execution times of the three algorithms and create a graph showing the increase of execution times as the number of vertices in the graph increases. Compare the measured times with the asymptotic complexity of the algorithms. For each problem instance, report the weight of the minimum spanning tree obtained by your code.

A. Kruskal Naive:

Kruskal's algorithm finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected, it finds a minimum spanning tree. (A minimum spanning tree of a connected graph is a subset of the edges that forms a tree that includes every vertex, where the sum of the weights of all the edges in the tree is minimized. For a disconnected graph, a minimum spanning forest is composed of a minimum spanning tree for each connected component.)

It is a greedy algorithm in graph theory as in each step it adds the next lowest-weight edge that will not form a cycle to the minimum spanning forest.

a. Working:

- Create a forest F (a set of trees), where each vertex in the graph is a separate tree
- Create a set S containing all the edges in the graph
- While S is nonempty and F is not yet spanning
 - \circ Remove an edge with minimum weight from S
 - \circ If the removed edge connects two different trees, then add it to the forest F, combining two trees into a single tree

At the termination of the algorithm, the forest forms a minimum spanning forest of the graph. If the graph is connected, the forest has a single component and forms a minimum spanning tree.

b. Pseudocode:

c. Code Structure:

```
Class MergeSort:
   funct algorithm
   funct _merge
class KruskalNaive:
   funct kruskal_naive
   funct _is_acyclic
   funct is_there_a_path
   funct dfs
class MST:
   funct kruskal naive
   funct get mst weight
class Graph:
   funct __init__
   funct add vertex
   funct add edge
   funct remove vertex
   funct weightBetween
funct load_all_dataset
funct populate each Graph from Dataset
funct execute each graph in dataset
funct main
```

Note: lamda functions weren't used here because of bug found when a random link was missing after each iteration resulting into an error of listIndex out of Range

d. Complexity:

To get the wight complexity we sorted the naive version of Kruskal's algorithm has a computational complexity equal to **O** (**mn**). The idea behind this algorithm is to sort the sides in ascending order with respect to their weight w.

Once sorted, for each side it is checked whether adding it to the temporary graph creates a loop. If it creates a loop then that side will not be inserted, otherwise the side will be part of the MST.

Sorting the sides according to their weight and checking that the insertion of a side does not create a loop in the graph, we will obtain a tree whose sum of its sides will be minimal.

e. Visualization

Figure 3: Kruskal Naive complexity with for each graph with equal number of nodes.

The graph just illustrated (fig. 3) shows the expected (in yellow) and effective (in blue) computational complexity for the Kruskal Naive algorithm with more executions of the algorithm. As can be seen from the image, the effective complexity curve remains slightly below the theoretical curve(C), and therefore we can say two complexities are comparable.

B. Kruskal Union-Find Algorithm:

The naive version of Kruskal's algorithm repeatedly performs the acyclicity check operation of graph A. This continuous check is responsible for the computational complexity of the algorhythm. To optimize performance, the control of the graph's cyclicality is captured through the implementation of a particular data structure: **disjoint sets.**

Consider the data structure "**Disjoint Set Union**" for implementing Kruskal's algorithm, which will allow the algorithm to achieve the time complexity of **O(M log N)**.

a) Disjoint Set Union

This part discus about the data structure **Disjoint Set Union** or **DSU**. Often it is also called **Union Find** because of its two main operations.

This data structure provides the following capabilities. We are given several elements, each of which is a separate set. A DSU will have an operation to combine any two sets, and it will be able to tell in which set a specific element is. The classical version also introduces a third operation, it can create a set from a new element.

Thus, the basic interface of this data structure consists of only three operations:

- make set (v) creates a new set consisting of the new element v
- union_sets(a, b) merges the two specified sets (the set in which the element a is located, and the set in which the element b is located)
- find_set(v) returns the representative (also called leader) of the set that contains the element v. This representative is an element of its corresponding set. It is selected in each set by the data structure itself (and can change over time, namely after union_sets calls). This representative can be used to check if two elements are part of the same set or not. a and b are exactly in the same set, if find_set(a) == find set(b). Otherwise, they are in different sets.

As described in more detail later, the data structure allows you to do each of these operations in almost **O** (1) time on average.

Also, in one of the subsections an alternative structure of a DSU is explained, which achieves a slower average complexity of $O(\log n)$ but can be more powerful than the regular DSU structure.

b. Description

Just as in the simple version of the Kruskal algorithm, we sort all the edges of the graph in non-decreasing order of weights. Then put each vertex in its own tree (i.e., its set) via calls to the $make_set$ function - it will take a total of O(N). We iterate through all the edges (in sorted

order) and for each edge determine whether the ends belong to different trees (with two find_set calls in O (1) each). Finally, we need to perform the union of the two trees (sets), for which the DSU union_sets function will be called - also in O (1).

So, we get the total time complexity of $O(M \setminus log N + N + M) = O(M \setminus log N)$.

c. Pseudo Code:

```
Kruskal-Union-Find (G, w)
    A = empty_set
    for each vertex belongs to G.V
        make-set(v)
    sort the edges of G.E into nondecreasing order by weight w
    for each edge (u, v) belongs to G.E, in nondecreasing weight order
    if find-set(u) != find-set(v)
        A = A U {(u, v)}
        Union(u, v)
    return A
```

d. Code Structure:

```
Class MergeSort:
   funct algorithm
   funct _merge
class KruskalUnionFind:
   funct kruskal union find
class DisjointSet:
   funct __init__
   funct make set
   funct find set
   funct union_by_size
class MST:
   funct kruskal union find
   funct get_mst_weight
class Graph:
   funct __init_
   funct add_vertex
   funct add edge
   funct remove_vertex
   funct weightBetween
funct load all dataset
funct populate_each_Graph_from_Dataset
```

funct execute_each_graph_in_dataset
funct main

Note: lamda functions weren't used here because of bug found when a random link was missing after each iteration resulting into an error of listIndex out of Range

e. Complexity

So, we get the total time complexity of: $O(M \log N + N + M) = O(M \log N)$

f. Visualization:

Figure 4: Kruskal with Union Find complexity with for each graph with equal number of nodes.

The graphs just illustrated (fig. 4,) show the expected (in yellow) and effective (in blue) computational complexity for the Kruskal Union Find algorithm. As it can be seen from the image, the curve of the effective complexity remains slightly above the theoretical curve as number of nodes increase.

C. Prims Algorithm:

Prim's Algorithm, an algorithm that uses the greedy approach to find the minimum spanning tree. It shares a similarity with the shortest path first algorithm. Spanning trees are the subset of Graph having all vertices covered with the minimum number of possible edges. **They are not cyclic and cannot be disconnected**. Spanning trees doesn't have a cycle. A connected Graph can have more than one spanning tree.

- So, the major approach for the prim's algorithm is finding the minimum spanning tree by the shortest path first algorithm.
- Basically, this algorithm treats the node as a single tree and keeps adding new nodes from the Graph.

a) Working of Prims Algorithm:

Prim's algorithm is a greedy algorithm that starts from one vertex and continue to add the edges with the smallest weight until the goal is reached. The steps to implement the prim's algorithm are given as follows -

- First, we have to initialize an MST with the randomly chosen vertex.
- Now, we have to find all the edges that connect the tree in the above step with the new vertices. From the edges found, select the minimum edge and add it to the tree.
- Repeat step 2 until the minimum spanning tree is formed.

The applications of prim's algorithm are -

- Prim's algorithm can be used in network designing.
- It can be used to make network cycles.
- It can also be used to lay down electrical wiring cables.

b. Prims Algorithm implemented using Heap:

- 1. Prim's algorithm selects the edge with the lowest weight between the group of vertexes already selected and the rest of vertexes so to implement Prim's algorithm, we need a minimum heap.
- 2. Each time we select an edge you add the new vertex to the group of vertexes We've already chosen, and all its adjacent edges go into the heap.
- 3. Then you choose the edge with the minimum value again from the heap.

c. Pseudo Code:

```
Let X = \text{nodes covered so far}, V = \text{all the nodes in the graph}, E = \text{all the edges in the graph} Pick an arbitrary initial node s and put that into X for v \in V - X key[v] = \text{cheapest edge } (u, v) with v \in X while X \neq V:

let v = \text{extract-min(heap)} (i.e., v is the node which has the minimal edge cost into X) Add v to X for each edge v, w \in E

if w \in V - X (i.e., w is a node which hasn't yet been covered)

Delete v = \text{min}(\text{key}[w], \text{weight } (v, w))

v = \text{min}(\text{key}[w], \text{weight } (v, w))

v = \text{min}(\text{key}[w], \text{weight of } E (v, w) is v = \text{current weight of key}). The reinsert v = \text{min}(\text{minimal edge cost into } X is v = \text{min}(\text{minimal edge cost into } X).
```

d. Time complexities:

- Choosing minimum edge = O (time of removing minimum) = O(log(E)) = O(log(V))
- **Inserting edges to heap** = O (time of inserting item to heap) = 1
- **Minheap:** Choosing minimum edge = O (time of removing minimum from heap) = O(log(E)) = O(log(V))
- **Inserting edges to heap** = $O(\text{time of inserting item to heap}) = O(\log(E)) = O(\log(V))$

Remember that $E = V^2$... so $log(E) = log(V^2) = 2log(V) = O(log(V))$. So, in total you have E inserts, and V minimum choosing (It's a tree in the end).

So, in Min heap We'll get:

• O(Vlog(V) + Elog(V)) == O(Elog(V))

e. Visualization:

Figure 5: Prim's algorithm complexity with for each graph with equal number of nodes.

The graphs just illustrated (fig. 5) show the expected (in yellow) and effective (in blue) computational complexity for the Prim's algorithm. As it can be seen from the image, the curve of the effective complexity remains below the theoretical curve. The difference is not great at the start but continues to increase as number of nodes increase. Maybe with even more large dataset, at the end it may reach a point where there the difference is greater than we analyzed in this report.

4. Question 2

Comment on the results you have obtained: how do the algorithms behave with respect to the various instances? There is an algorithm that is always better than the others? Which of the three algorithms you have implemented is more efficient?

Figure 6: Comparison between Prim and Kruskal UF with execution of each graph.

The graphs just illustrated (fig. 6) show three comparisons between the Kruskal Union Find algorithm and Prim's algorithm on a linear scale

In this case it is possible to clearly see that Kruskal's UF algorithm turns out to be more efficient than Prim's algorithm. From this therefore we can conclude that the Kruskal UF algorithm always tends to do better than the others.

5. Conclusion

At first, we had faced a lot of problems during the work of our assignment

- For Kruskal Naïve, it was getting the right complexity in our code, we faced problems with lambda function. We were trying to use lambda function for sorting, but after each sorting, one index was missing, we solved this problem by using merge sort.
- For Kruskal Union Find it was the same as Kruskal Naïve, but its implementation was easy than Kruskal Naïve as both their working is the same.
- For Prim's algorithm we were facing problems related to heap library, which at the end we were able to solve.

To conclude, what we have turned out for the algorithms is in line with what we expected, in fact:

- Kruskal Naive is the slowest of the three algorithms and the least efficient in terms of average execution time for graphs with many nodes.
- Kruskal Union Find can be ranked first as it is the fastest and most efficient of the three algorithms, especially with large graphs.
- Prim can be ranked in second place with respect to Kruskal Union Find, having a sufficiently good execution time even for large graphs.

Concluding did good on our side, although our use of the Python language, although relatively simple, it was too slow as compared to working in Java. With java we could have made a quite good interactive application, and we wouldn't have face typo error or library errors.

6. Dataset Result

A. Kruskal Naïve

Dataset	Nodes	Edges	Time (ns)	Time (s)	Weight	Repetitions
1	10	9	38309.58884	0.0000383	29316	13603
2	10	11	44351.39771	0.0000444	16940	16713
3	10	13	51044.94677	0.000051	-44448	18487
4	10	10	43787.72818	0.0000438	25217	21286
5	20	24	98822.03781	0.0000988	-32021	9787
6	20	24	105718.8574	0.0001057	25130	9276
7	20	28	134031.3407	0.000134	-41693	7132
8	20	26	114722.4179	0.0001147	-37205	8397
9	40	56	255071.3821	0.0002551	-114203	3865
10	40	50	248330.5538	0.0002483	-31929	3989
11	40	50	256882.2292	0.0002569	-79570	3874
12	40	52	241759.0395	0.0002418	-79741	3997
13	80	108	801811.0751	0.0008018	-139926	1225
14	80	99	716404.7954	0.0007164	-198094	1383
15	80	104	732120.7298	0.0007321	-110571	1351
16	80	114	934089.6933	0.0009341	-233320	1050
17	100	136	1141836.245	0.0011418	-141960	874
18	100	129	924543.3148	0.0009245	-271743	1080
19	100	137	922108.6626	0.0009221	-288906	1067
20	100	132	926144.7015	0.0009261	-229506	1072
21	200	267	2905119.571	0.0029051	-510185	336
22	200	269	3079901.241	0.0030799	-515136	328
23	200	269	3062370.963	0.0030624	-444357	326
24	200	267	3449758.758	0.0034498	-393278	289
25	400	540	11152807.22	0.0111528	-1119906	89
26	400	518	9591474.857	0.0095915	-788168	105
27	400	538	10962710.34	0.0109627	-895704	90
28	400	526	10673518.1	0.0106735	-733645	93
29	800	1063	37964609	0.0379646	-1541291	26
30	800	1058	37701474.62	0.0377015	-1578294	26
31	800	1076	36661267.07	0.0366613	-1664316	27
32	800	1049	41528325.58	0.0415283	-1652119	24
33	1000	1300	56174018.53	0.056174	-2089013	17

34	1000	1313	63600892.13	0.0636009	-1934208	15
35	1000	1328	59794412.06	0.0597944	-2229428	16
36	1000	1344	61854901.81	0.0618549	-2356163	16
37	2000	2699	236135664	0.2361357	-4811598	4
38	2000	2654	236604744.5	0.2366047	-4739387	4
39	2000	2652	234245281	0.2342453	-4717250	4
40	2000	2677	246662528.5	0.2466625	-4537267	4
41	4000	5360	912594104	0.9125941	-8722212	1
42	4000	5315	968720773	0.9687208	-9314968	1
43	4000	5340	899673136	0.8996731	-9845767	1
44	4000	5368	1003618763	1.0036188	-8681447	1
45	8000	10705	3698823422	3.6988234	-17844628	1
46	8000	10670	3665222853	3.6652229	-18798446	1
47	8000	10662	3684639303	3.6846393	-18741474	1
48	8000	10757	3829282036	3.829282	-18178610	1
49	10000	13301	5780728292	5.7807283	-22079522	1
50	10000	13340	5819827165	5.8198272	-22338561	1
51	10000	13287	5624067894	5.6240679	-22581384	1
52	10000	13311	5843340473	5.8433405	-22606313	1
53	20000	26667	23888895940	23.8888959	-45962292	1
54	20000	26826	23449849119	23.4498491	-45195405	1
55	20000	26673	23745057886	23.7450579	-47854708	1
56	20000	26670	23544887011	23.544887	-46418161	1
57	40000	53415	1.1889E+11	118.8903587	-92003321	1
58	40000	53446	1.20359E+11	120.3589457	-94397064	1
59	40000	53242	1.17939E+11	117.938669	-88771991	1
60	40000	53319	1.18289E+11	118.2887952	-93017025	1
61	80000	106914	6.4347E+11	643.4695731	-186834082	1
62	80000	106633	6.58111E+11	658.1106275	-185997521	1
63	80000	106586	6.6782E+11	667.8196926	-182065015	1
64	80000	106554	6.56983E+11	656.9827757	-180793224	1
65	100000	133395	1.11311E+12	1113.112826	-230698391	1
66	100000	133214	1.11261E+12	1112.607324	-230168572	1
67	100000	133524	1.13136E+12	1131.36465	-231393935	1
68	100000	133463	1.1103E+12	1110.298442	-231011693	1

B. Kruskal Union Find:

Dataset	Nodes	Edges	Time (ns)	Time (s)	Weight	Repetitions
1	10	9	54614.10765	0.0000546	29316	1765
2	10	11	58675.09989	0.0000587	16940	5506
3	10	13	71753.69458	0.0000718	-44448	6090
4	10	10	50375.4487	0.0000504	25217	5906
5	20	24	153512.1652	0.0001535	-32021	3099
6	20	24	177683.2212	0.0001777	25130	2080
7	20	28	144335.4093	0.0001443	-41693	3115
8	20	26	134900.0453	0.0001349	-37205	4418
9	40	56	326419.3285	0.0003264	-114203	1102
10	40	50	297562.7688	0.0002976	-31929	2976
11	40	50	272656.4812	0.0002727	-79570	2893
12	40	52	323830.334	0.0003238	-79741	2545
13	80	108	656220.8375	0.0006562	-139926	1003
14	80	99	630728.5337	0.0006307	-198094	1514
15	80	104	620904.9947	0.0006209	-110571	941
16	80	114	826494.9064	0.0008265	-233320	1335
17	100	136	949866.1314	0.0009499	-141960	685
18	100	129	929337.5143	0.0009293	-271743	877
19	100	137	873792.435	0.0008738	-288906	846
20	100	132	935897.354	0.0009359	-229506	1096
21	200	267	2034106.383	0.0020341	-510185	517
22	200	269	1815860.123	0.0018159	-515136	489
23	200	269	1745549.468	0.0017455	-444357	188
24	200	267	2043655.382	0.0020437	-393278	576
25	400	540	3539380.357	0.0035394	-1119906	112
26	400	518	3355874.667	0.0033559	-788168	225
27	400	538	3878332.127	0.0038783	-895704	221
28	400	526	3395911.034	0.0033959	-733645	145
29	800	1063	9213444.444	0.0092134	-1541291	108
30	800	1058	10307181.55	0.0103072	-1578294	103
31	800	1076	8155842.975	0.0081558	-1664316	121
32	800	1049	8317628.44	0.0083176	-1652119	109
33	1000	1300	9543010.87	0.009543	-2089013	92
34	1000	1313	13849045.65	0.013849	-1934208	46
35	1000	1328	11038460.87	0.0110385	-2229428	69
36	1000	1344	9326254.639	0.0093263	-2356163	97
37	2000	2699	20448892.86	0.0204489	-4811598	42

38	2000	2654	22608710.26	0.0226087	-4739387	39
39	2000	2652	21037453.33	0.0210375	-4717250	45
40	2000	2677	20349945	0.0203499	-4537267	40
41	4000	5360	46450720	0.0464507	-8722212	20
42	4000	5315	44838038.46	0.044838	-9314968	13
43	4000	5340	48587966.67	0.048588	-9845767	18
44	4000	5368	44489063.16	0.0444891	-8681447	19
45	8000	10705	116701075	0.1167011	-17844628	8
46	8000	10670	114580162.5	0.1145802	-18798446	8
47	8000	10662	103291377.8	0.1032914	-18741474	9
48	8000	10757	109845587.5	0.1098456	-18178610	8
49	10000	13301	130327450	0.1303275	-22079522	6
50	10000	13340	133966585.7	0.1339666	-22338561	7
51	10000	13287	147425150	0.1474252	-22581384	6
52	10000	13311	140303457.1	0.1403035	-22606313	7
53	20000	26667	274782600	0.2747826	-45962292	3
54	20000	26826	299046433.3	0.2990464	-45195405	3
55	20000	26673	282015300	0.2820153	-47854708	3
56	20000	26670	278584666.7	0.2785847	-46418161	3
57	40000	53415	839815200	0.8398152	-92003321	1
58	40000	53446	708695700	0.7086957	-94397064	1
59	40000	53242	679061400	0.6790614	-88771991	1
60	40000	53319	720011500	0.7200115	-93017025	1
61	80000	106914	1817621900	1.8176219	-186834082	1
62	80000	106633	1619099800	1.6190998	-185997521	1
63	80000	106586	1476226800	1.4762268	-182065015	1
64	80000	106554	1592142800	1.5921428	-180793224	1
65	100000	133395	2651459600	2.6514596	-230698391	1
66	100000	133214	2160093100	2.1600931	-230168572	1
67	100000	133524	2475796100	2.4757961	-231393935	1
68	100000	133463	2364580300	2.3645803	-231011693	1

C. Prims Algorithm:

Dataset	Nodes	Edges	Time (ns)	Time (s)	Weight	Repetitions
1	10	9	73384.47605	0.0000734	29316	8873
2	10	11	85553.08836	0.0000856	16940	10921
3	10	13	97357.07557	0.0000974	-44448	9912
4	10	10	86931.52518	0.0000869	25217	10762
5	20	24	246858.1311	0.0002469	-32021	3965
6	20	24	218168.3059	0.0002182	25130	4328
7	20	28	253380.6183	0.0002534	-41693	3898
8	20	26	227881.9873	0.0002279	-37205	4317
9	40	56	606313.1716	0.0006063	-114203	1632
10	40	50	561691.547	0.0005617	-31929	1757
11	40	50	566737.393	0.0005667	-79570	1743
12	40	52	576771.5317	0.0005768	-79741	1721
13	80	108	1440989.358	0.001441	-139926	688
14	80	99	1414840.605	0.0014148	-198094	730
15	80	104	1369863.437	0.0013699	-110571	725
16	80	114	1521327.684	0.0015213	-233320	649
17	100	136	1916219.344	0.0019162	-141960	520
18	100	129	1859230.528	0.0018592	-271743	536
19	100	137	1958658.725	0.0019587	-288906	512
20	100	132	1903094.246	0.0019031	-229506	524
21	200	267	4419799.484	0.0044198	-510185	225
22	200	269	4485446.865	0.0044854	-515136	223
23	200	269	4513123.795	0.0045131	-444357	220
24	200	267	4533419.136	0.0045334	-393278	221
25	400	540	10407676.17	0.0104077	-1119906	95
26	400	518	10170872.37	0.0101709	-788168	97
27	400	538	10533477.81	0.0105335	-895704	94
28	400	526	10292546.25	0.0102925	-733645	96
29	800	1063	23454574.36	0.0234546	-1541291	42
30	800	1058	23645769.29	0.0236458	-1578294	42
31	800	1076	23929648.95	0.0239296	-1664316	41
32	800	1049	23516296.57	0.0235163	-1652119	42
33	1000	1300	30235913.06	0.0302359	-2089013	33
34	1000	1313	30572566.41	0.0305726	-1934208	32
35	1000	1328	30896512.25	0.0308965	-2229428	32
36	1000	1344	30906809.16	0.0309068	-2356163	32
37	2000	2699	70873597.64	0.0708736	-4811598	14
38	2000	2654	69789933.64	0.0697899	-4739387	14

39	2000	2652	69632619.64	0.0696326	-4717250	14
40	2000	2677	70234522.86	0.0702345	-4537267	14
41	4000	5360	157046280.5	0.1570463	-8722212	6
42	4000	5315	156028482.8	0.1560285	-9314968	6
43	4000	5340	157181312	0.1571813	-9845767	6
44	4000	5368	156269539.5	0.1562695	-8681447	6
45	8000	10705	347440138.5	0.3474401	-17844628	2
46	8000	10670	348194793	0.3481948	-18798446	2
47	8000	10662	344711363.5	0.3447114	-18741474	2
48	8000	10757	347015763	0.3470158	-18178610	2
49	10000	13301	442112535.5	0.4421125	-22079522	2
50	10000	13340	446760593.5	0.4467606	-22338561	2
51	10000	13287	444743531.5	0.4447435	-22581384	2
52	10000	13311	442997466	0.4429975	-22606313	2
53	20000	26667	974610952	0.974611	-45962292	1
54	20000	26826	973262147	0.9732621	-45195405	1
55	20000	26673	974384105	0.9743841	-47854708	1
56	20000	26670	973670869	0.9736709	-46418161	1
57	40000	53415	2136591753	2.1365918	-92003321	1
58	40000	53446	2133940840	2.1339408	-94397064	1
59	40000	53242	2125702872	2.1257029	-88771991	1
60	40000	53319	2132769220	2.1327692	-93017025	1
61	80000	106914	4700060910	4.7000609	-186834082	1
62	80000	106633	4695625792	4.6956258	-185997521	1
63	80000	106586	4694558420	4.6945584	-182065015	1
64	80000	106554	4705053462	4.7050535	-180793224	1
65	100000	133395	6060222656	6.0602227	-230698391	1
66	100000	133214	6042919511	6.0429195	-230168572	1
67	100000	133524	6050503941	6.0505039	-231393935	1
68	100000	133463	6087769864	6.0877699	-231011693	1

End of the Report.