Logistic Regression

Instead can we fit a curve?

- Regression fits y = a + bx
- Instead why not fit?

$$y = f(a + bx)$$

• Common choices for f()

Probit Regression:

Log Loss

Finding the best fit logic curve?

- Linear regression minimized sum of squared residuals. This unfortunately will not work in logistic regression!
- Instead we choose to minimize the "Log Loss" or "Cross-Entropy"

How likely is a student to pass if he/she studies for 5 hrs?

Logistic Reg - Pros and Cons

- Advantages
 - A classification model that does give probabilities
 - Easily extended to multiple classes (multinomial regression)
 - Quick to train and very fast at classifying unknown records
- Disadvantages
 - Constructs linear boundaries
 - Assumes that variables are independent (eg. does not include interaction terms)
 - Interpretation of coefficients is difficult

greatlearning
Learning for Life Logistic Reg - Pros and Cons Advantages A classification model that does give probabilities -Easily extended to multiple classes (multinomial regression) Quick to train and very fast at classifying unknown records Disadvantages Constructs linear boundaries < Assumes that variables are independent (eg. does not include interaction terms) Interpretation of coefficients is difficult

Threshold

Confusion Metrix & performance measures

1 Billiam 10 lon.

P 0 0

N 10 10-10

Recall (Semikuly or TPR)

greatlearning

Learning for Life

Recall = TP

TP + FN Cout of all terr.

What fraction did

your identity

Recall (Semikul) or TPR)

greatlearning Learning for Life

Recall: TP Coult of all terr.

TP + FN what fresher did
you identify

Precion

Precion = TP out of all predicted

TP+FP Terr. what hac.

were a really terr.

greatlearning Reull Acc all an Not terr. low all as terr. predict the top T. = 2xPXR

Predictive Models

- Machine Learning fundamentally differentiates itself from classical statistics by not assuming that the data comes from a specific model
- Hence ML, justifiably, can try different models on a given dataset to eventually pick the **best** one.
- · Obviously, to do this one needs to define what it means to be best.
- Different "model performance measures" exist and any of these can be used to compare models - largely depending on the context and the kind of output:
 - Regression outputs are continuous numbers
 - · Classification outputs are either
 - Class output (from algorithms like SVM and KNN that usually give a classification) or
 - Probability output (from algorithms like Logistic Regression, Random Forest that can give probability outputs)

For classification problem with a class output, the confusion matrix greatlearning
the counts of correct and erroneous predictions:

- Classification (Error Rate: sum of Type 1 (FP) and Type 2 (FN) Errors (in percentage). Accuracy is 1-(error rate)
- Sensitivity (also called Recall or <u>True Positive Rate</u>): proportion of <u>TP</u>

 Total Positives that were correctly identified

 Total Positives that were correctly identified

 Total Positives that were correctly identified

 Total Positives that were correctly identified
- Specificity (also called True Negative Rate): proportion of Total Negatives that were correctly identified

greatlearning Learning for Life

0.5 and= 2Auc - 1

Gain & Lift Charts

% Cum Base

greatlearning

Learning for Life

renormance Measures

- Confusion Matrix
- ROC Curves, Gini Coefficient
- Gain and Lift Chart
- Kolomogorov-Smirnov (K-S) chart
- Concordance-Discordance ratio
- Root Mean Square Error, Mean Absolute Error ←

greatlearning for Life

A		
h		

Name	Right?	P	rob
A	0)	0.056
В	()	0.134
С	(0	0.156
D		1	0.512
E		0	0.235
F		0	0.25
G		1	0.25
Н		1	0.2
1		0	0.135
J		0	0.089