ICAUS 2021

International Conference on Autonomous Unmanned Systems

Sept.24-26, 2021 Changsha China

TCLF-based Obstacle avoidance path planning for HSV using Pigeon-inspired Optimization

Rugang Tang¹ and Xin Ning^{1,2,*}

School of Astronautics, Northwestern Polytechnical University, Xi'an, PR China
 National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, PR China nx_nwpu@163.com

- Background
- **Guidance Strategy**
- TCLF-based Optimization
- Numerical Examples
- 5 Conclusion

- Background
- **Guidance Strategy**
- 3 TCLF-based Optimization
- 4 Numerical Examples
- 5 Conclusion

Background

Motivation. To find a trajectory where the landing error Γ satisfies the accuracy requirement and obstacles are effectively avoided as $d_i > R_i (i = 1, 2, \dots, N)$.

Assumptions.

- ✓ The target is in the range of the HSV.
- √ The threat zone radius is between 100-500 km.

- Background
- **Guidance Strategy**
- 3 TCLF-based Optimization
- 4 Numerical Examples
- 5 Conclusion

Guidance strategy

Gliding Section

$$\alpha = \begin{cases} 40^{\circ} & v > 4570m/s \\ 40^{\circ} - k(v - 4570)^{2} & v \le 4570m/s \end{cases}$$

Turning Section

The Desired Rate $\dot{\sigma}$ $\dot{\theta}$

Input/Trajectory parameter

The Aerodynamic Force

Physical Model

The Guidance Signal $\gamma_v \alpha$

control parameter

Guidance strategy

Turning Section

$$\begin{bmatrix} \cos \gamma_{v} & \sin \gamma_{v} \\ -\sin \gamma_{0} & \cos \gamma_{0} \end{bmatrix} \begin{bmatrix} F_{y_{3}} \\ F_{z_{3}} \end{bmatrix} = \begin{bmatrix} C_{y}^{\alpha} \alpha q s \\ -C_{y}^{\alpha} \beta q s \end{bmatrix}$$

- Background
- Guidance Strategy
- TCLF-based Optimization
- 4 Numerical Examples
- 5 Conclusion

TCLF-based Optimization

The Optimization Model

$$\begin{cases} \min \ \mathbf{f} = \Gamma + \sum_{i=1}^{N} \frac{1}{\mathsf{d}_{i}^{2}} \\ s.t. \quad 0 \le \alpha \le \overline{\alpha} \\ where \quad \frac{1}{\mathsf{d}_{i}^{2}} = 0, \ \text{if} \quad \mathsf{d}_{i} > 1.5R_{i} \end{cases}$$
The Penalty Function

Truncation condition

Pigeon-inspired Optimization algorithm (PIO)

TCLF-based Optimization

- Background
- Guidance Strategy
- 3 TCLF-based Optimization
- Numerical Examples
- 5 Conclusion

Numerical Examples

Mass	Velocity	Altitude	Location	Azimuth angle	Target
1800kg	24Ma	120000km	(0°,0°)	45°	(80°,0°)

Numerical Examples

Mass	Velocity	Altitude	Location	Azimuth angle	Target
1800kg	24Ma	120000km	(0°,0°)	90°	(80°,10°)

- Background
- Guidance Strategy
- 3 TCLF-based Optimization
- 4 Numerical Examples
- 5 Conclusion

Conclusion

TCLF-based

- Good versatility and high efficiency
- Real Guidance signals obtained
- Adapt to different situations:
 - Launch conditions
 - threat zone settings
- Insufficient back-range maneuverability

Thank you & Question?

Rugang Tang¹ and Xin Ning^{1,2,*}

School of Astronautics, Northwestern Polytechnical University, Xi'an, PR China
 National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, PR China nx_nwpu@163.com