Nonlinear filtering and burst imaging

General Approach

$$i_{\text{denoised}}(x) = \frac{1}{\sum_{x'} w(x, x')} \sum_{x'} i_{\text{noisy}}(x') \cdot w(x, x')$$

- Many (not all) denoising techniques work like this
- Idea: average a number of "similar" pixels to reduce noise
- Question/difference: how similar are two noisy pixels?

General Approach

$$i_{\text{denoised}}(x) = \frac{1}{\sum_{x'} w(x, x')} \sum_{x'} i_{\text{noisy}}(x') \cdot w(x, x')$$

- 1. Local linear smoothing
- 2. Local non-linear filtering
- 3. Anisotropic diffusion
- 4. Non-local methods

1. Local, linear smoothing

$$i_{\text{denoised}}(x) = \frac{1}{\sum_{x'} w(x, x')} \sum_{x'} i_{\text{noisy}}(x') \cdot w(x, x')$$

$$w(x, x') = \exp\left(-\frac{\|x' - x\|^2}{2\sigma^2}\right)$$

 Naïve approach: average in local neighborhood, e.g. using a Gaussian low-pass filter

2. Local, non-linear filtering

$$i_{\mathrm{denoised}}(x) = \mathrm{median}\left(W\big(i_{\mathrm{noisy}}, x\big)\right)$$

$$\int$$
Small window of image i_{noisy} , centered at x

- Almost as naïve: use median filter in local neighborhood
- Sort pixels from darkest to brightest, take the one in the middle

Gaussian vs. median filters

Noisy input

3. Bilateral filtering

$$i_{\text{denoised}}(x) = \frac{1}{\sum_{x'} w(x, x')} \sum_{x'} i_{\text{noisy}}(x') \cdot w(x, x')$$

•
$$w(x, x') = \exp\left(-\frac{\|x' - x\|^2}{2\sigma^2}\right)$$
 · $\exp\left(-\frac{\|i_{noisy}(x') - i_{noisy}(x)\|^2}{2\sigma_i^2}\right)$

Penalty for spatial distance Penalty for intensity distance

 More clever: average in local neighborhood, but give more weight to pixels of similar intensity

Bilateral filtering

Illustration from Tomasi and Manduchi, ICCV 1998

Bilateral filter

• $\sigma = 1$; $\sigma_i = 0.002, 0.005, 0.01, 0.05, 0.2$

•
$$\sigma = 3$$
; $\sigma_i = 0.002, 0.005, 0.01, 0.05, 0.2$

Gaussian vs. bilateral filter

• Both with spatial $\sigma = 3$

Bilateral filter for flash-no-flash imaging

Petschnigg et al. 2004

TV Regularization

Computational Photography Matthias Hullin

Last week

• Least-squares solution for linear problem Cx = b:

$$x_{opt} = \arg\min_{x} \frac{1}{2} ||Cx - b||_{2}^{2}$$
$$\frac{1}{2} ||Cx - b||_{2}^{2} = \frac{1}{2} (Cx - b)^{T} (Cx - b) =: \frac{1}{2} f(x)$$

Necessary condition for minimum x_{opt} of f:

$$\nabla f = (C^{\mathsf{T}}C)x_{\mathrm{opt}} - C^{\mathsf{T}}b = 0$$

Solve

$$(C^{\mathsf{T}}C)x_{\mathrm{opt}} - C^{\mathsf{T}}b = 0$$

$$\Leftrightarrow x_{\mathrm{opt}} = (C^{\mathsf{T}}C)^{-1}C^{\mathsf{T}}b$$

 $C^+ = (C^TC)^{-1}C^T$ "Moore-Penrose pseudoinverse"

Last week: Deconvolution w/ Wiener filtering

 $\sigma = 0.05$ ("5% noise")

 $\sigma = 0.1$

- Results: not too bad, but noisy
- This is a heuristic => dampen noise amplification

Total Variation (TV) regularization

$$\min_{x} \frac{1}{2} \|Cx - b\|_{2}^{2} + \lambda TV(x)$$
"Data term" "Regularizer"

with

$$TV(x) = \|\nabla x\|_1 = \sum_i |(\nabla x)_i|$$

Idea: promote sparse gradients (edges)

∇ is finite difference operator, i.e. matrix

Total Variation

• Express (forward finite difference) gradient as convolution:

 $* \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $* \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

 χ

 $\nabla_{x}x$

 $\nabla_{y} x$

Total Variation

$$\sqrt{(\nabla_{\!x}x)^2+(\nabla_{\!y}x)^2}$$

anisotropic TV (easier)

Total Variation

• For simplicity, we only discuss anisotropic TV:

$$TV(x) = \|\nabla_x x\|_1 + \|\nabla_y x\|_1 = \|\begin{bmatrix}\nabla_x \\ \nabla_y\end{bmatrix}x\|_1$$

- Problem: L1-norm is not differentiable, can't use inverse filtering
- To obtain simple solution for data fitting and simple solution for TV alone => split problem!

Split deconvolution with TV prior:

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $\nabla x = z$

 General form of problem for ADMM (alternating direction method of multipliers):

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

$$f(x) = \frac{1}{2} ||Cx - b||_2^2$$

$$g(z) = \lambda ||z||_1$$

$$A = \nabla, B = -I, c = 0$$

S. Boyd et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1, 1–122, 2011.

universität

ADMM

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

Lagrangian (bring constraints into objective

= penalty method)

Dual variable
(Lagrange multiplier)

$$L(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c)$$

 Augmented Lagrangian (differentiable under mild conditions – better convergence

$$L_{\rho}(x, z, y)$$
= $f(x) + g(z) + y^{\mathsf{T}}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$

ADMM

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

ADMM consists of 3 steps per iteration k:

•
$$x^{k+1} \leftarrow \underset{x}{\operatorname{arg \, min}} L_{\rho}(x, z^k, y^k)$$

• $z^{k+1} \leftarrow \underset{z}{\operatorname{arg min}} L_{\rho}(x^{k+1}, z, y^k)$

•
$$y^{k+1} \leftarrow y^k + \rho (Ax^{k+1} + Bz^{k+1} - c)$$

These are called "proximal" or "proximity" operators

ADMM

minimize f(x) + g(z)subject to Ax + Bz = c

• Plug in L_{ρ} ; introduce scaled dual variable $u = \frac{1}{\rho}y$:

•
$$x^{k+1} \leftarrow \underset{x}{\operatorname{arg \, min}} \left(f(x) + \frac{\rho}{2} \left\| Ax + Bz^k - c + u^k \right\|_2^2 \right)$$

•
$$z^{k+1} \leftarrow \arg\min_{z} \left(g(z) + \frac{\rho}{2} ||Ax^{k+1}| + Bz - c + u^{k}||_{2}^{2} \right)$$

•
$$u^{k+1} \leftarrow u^k + Ax^{k+1} + Bz^{k+1} - c$$

• f(x) and g(z) are now split into independent problems, connected by u

minimize
$$\frac{1}{2} \|Cx - b\|_2^2 + \lambda \|z\|_1$$

subject to $Dx - z = 0$ (here with $D = \begin{bmatrix} \nabla_x \\ \nabla_y \end{bmatrix}$)

•
$$x^{k+1} \leftarrow \arg\min_{x} \left(\frac{1}{2} \|Cx - b\|_{2}^{2} + \frac{\rho}{2} \|Dx - z^{k} + u^{k}\|_{2}^{2} \right)$$

• $z^{k+1} \leftarrow \arg\min_{z} \left(\lambda \|z\|_{1} + \frac{\rho}{2} \|Dx^{k+1} - z + u^{k}\|_{2}^{2} \right)$

•
$$z^{k+1} \leftarrow \arg\min_{z} \left(\lambda \|z\|_{1} + \frac{\rho}{2} \|Dx^{k+1} - z + u^{k}\|_{2}^{2} \right)$$

•
$$u^{k+1} \leftarrow u^k + Dx^{k+1} - z^{k+1}$$

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$ (here with $D = \begin{bmatrix} \nabla_x \\ \nabla_y \end{bmatrix}$)

1. x-update

Constant during update:

$$v \coloneqq z^k - u^k$$

•
$$x^{k+1} \leftarrow \arg\min_{x} \left(\frac{1}{2} \|Cx - b\|_{2}^{2} + \frac{\rho}{2} \|Dx - v\|_{2}^{2} \right)$$

Solve normal equations:

•
$$x^{k+1} \leftarrow (C^{\mathsf{T}}C + \rho D^{\mathsf{T}}D)^{-1}(C^{\mathsf{T}}b + \rho D^{\mathsf{T}}v)$$

or use large-scale, iterative method (gradient descent, conjugate gradient, SART). For 2D deconvolution, we can also use inverse filtering

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$

2. z-update

Constant during update:
$$w := Dx^{k+1} + u^k$$

•
$$z^{k+1} \leftarrow \arg\min_{z} \left(\lambda \|z\|_{1} + \frac{\rho}{2} \|w - z\|_{2}^{2} \right)$$

Not differentiable, but there is a closed-form solution:

• $z^{k+1} \leftarrow S_{\lambda/\rho}(w)$ with "soft thresholding" function $S_{\kappa}(a)$

$$S_{\kappa}(a) = \begin{cases} a - \kappa, & a > \kappa \\ a + \kappa, & a < -\kappa \\ 0, & \text{else} \end{cases}$$

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$

- 1. Construct C, D, b; initialize ρ and λ
- 2. $x \leftarrow zeros(W \cdot H)$

- $D = \nabla$ produces 2 gradient values
- 3. $z, u \leftarrow zeros(2 \cdot W \cdot H)$ (x and y derivative) per pixel
- 4. **for** k = 1 **to** max_iters **do**

5.
$$x \leftarrow \arg\min_{x} \frac{1}{2} \left\| \begin{bmatrix} C \\ \rho D \end{bmatrix} x - \begin{bmatrix} b \\ \rho(z-u) \end{bmatrix} \right\|_{2}^{2}$$

6.
$$z \leftarrow S_{\lambda/\rho}(Dx + u)$$

7.
$$u \leftarrow u + Dx - z$$

8. end for

Deconvolution

Wiener filtering

The characteristic look of TV

Too little TV: noisy; too much TV: "patchy"

$$\lambda = 0.05, \rho = 10$$

$$\lambda=0.1, \rho=10$$

The characteristic look of TV

 Here, too much TV is okay because the image actually has sparse gradients!

What else to do with it?

Solve all sorts of linear inverse problems

- Denoising
- Superresolution
- Tomographic reconstruction
- Compressed sensing (more next week)

Denoising

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$

C = I (for noisy but sharp images) $D = \nabla$ (TV penalty)

 Increase pixel count by combining multiple images of low resolution (LR) into one super-resolved (SR) image

[Ben-Ezra et al., Jitter Camera [...], CVPR 2004]

LR images must be sub-pixel shifted

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$

with
$$C = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \end{bmatrix}$$
, $x = I_{SR}$ and $b = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \end{bmatrix}$ (downsampling operators) (stacked input images)

 $D = \nabla$ adds TV regularization if needed

LR images must be sub-pixel shifted

minimize
$$\frac{1}{2} ||Cx - b||_2^2 + \lambda ||z||_1$$

subject to $Dx - z = 0$

• In general, system is well-conditioned for noninteger pixel shifts and super-resolution factors of 2-3x (don't necessarily need priors/regularization)

Tomographic reconstruction

Radon transform

- Image formation in tomographic imaging systems described by Radon transform (= all directional projections)
- Like Fourier, it's a basis transform

Source: http://scikit-image.org

Literature

- Tomasi and Manduchi, "Bilateral filtering for gray and color images", ICCV 1998
- Petschnigg, Agrawala, Hoppe, Szeliski, Cohen and Toyama, "Digital Photography with Flash and No-Flash Image Pairs", SIGGRAPH 2004
- S. Boyd et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers." Foundations and Trends in Machine Learning 3, 1, 1–122, 2011
- Ben-Ezra, Zomet and Nayar, "Jitter Camera: High Resolution Video from a Low Resolution Detector", CVPR 2004

