Revision 2: Resit Paper

January 30, 2020

- 1. Let $A = [\sim (p \land q) \land r] \rightarrow (q \lor r)$
 - (a) Construct a truth table for expression A. Hence, determine whether the expression A is a tautology, contradiction or contingency.

	-	<u> </u>						o v			
	p	q	r	$p \wedge q$	$\sim (p \land q)$	$\sim (p \land q) \land r$	$q \vee r$	$[\sim (p \land q) \land r] \to (q \lor r)$			
	0	0	0	0	1	0	0	1			
	0	0	1	0	1	1	1	1			
	0	1	0	0	1	0	1	1			
i.	0	1	1	0	1	1	1	1			
	1	0	0	0	1	0	0	1			
	1	0	1	0	1	1	1	1			
	1	1	0	1	0	0	1	1			
	1	1	1	1	0	0	1	1			

- ii. Expression A is a Tautology
- iii. Write the Principal Disjunctive Normal Form (PDNF) and Principal Conjunctive Normal Form (PCNF) of A and $\sim A$. (ASK TEACHER, can we just write t and c instead of everything?)
 - A. PDNF of A: t
 - B. PCNF of A: c, Does not exist.
 - C. PDNF of $\sim A$: c, Does not exist.
 - D. PCNF of $\sim A$: t
- (b) Let

p: It is below freezing.

q: It is snowing.

i. Write the following proposition using p, q and logical connectives.

Proposition: If it is not snowing, then it is below freezing.

A. Answer: $\sim q \rightarrow p$

ii. Find the converse, inverse and contrapositive of the answer in part (i). Then write your final answers in the most simplified form **without connective** ' \rightarrow '

A. Converse: $p \rightarrow \sim q$

$$p \to \sim q \equiv \sim p \lor \sim q$$

B. Inverse: $q \rightarrow \sim p$

$$q \rightarrow \sim p \equiv \sim q \lor \sim p$$

C. Contrapositive: $\sim p \rightarrow q$

$$\sim p \to q \equiv \sim (\sim p) \lor q$$
$$\equiv \mathbf{p} \lor \mathbf{q}$$

- (c) Let the universe of discourse be the set of all integers $p,\,q$ and r are denoted as follows:
 - i. p(x): x is odd
 - ii. q(x): x is divisible by 3
 - iii. r(x): x is divisible by 2

Rewrite the following statements formally using quantifiers, variables and connectives. Then determine their truth values. For each false statement, provide a counterexample.

A. If x is odd, then x is divisible by 3.

$$p(x) \to q(x)$$

False. Counterexample: 1 is odd but 1 is not divisible by 3.

B. There exist an even integer divisible by 3.

$$\exists x \in \mathbb{Z}, \sim q(x) \lor r(x)$$

True.

C. If x is divisible by 2, then x is even.

$$r(x) \rightarrow \sim p(x)$$

True. OPTIONAL: $\frac{x}{2} = k, x = 2k$, is even.

(d) Use diagram to check the validity of the following argument.

All healthy people eat an apple a day. (Unstated: Major premise) Jenny eats an apple a day. (Unstated: Minor premise)

Therefore, Jenny is a healthy person. (Unstated: Conclusion)

- i. Notes: Students may use the following notations, let:
 - A. A: Set of people who eat an apple a day
 - B. B: Set of people who are healthy person
 - C. J: Jenny
- ii. Answer
 - A. The argument is INVALID
 - B. It is also possible that Jenny eats an apple a day but is not a healthy person. It is also possible that Jenny eats an apple a day and is both a healthy and not healthy person (incomplete intersection)
- 2. Question 2

(a) Find the greatest common divisor of 509 and 1177 by using Euclidean algorithm. Hence, determine the least common multiple of 509 and 1177.

$$1177 = 509(2) + 159$$

$$529 = 159(3) + 52$$

$$159 = 32(4) + 31$$

$$32 = 31(1) + 1$$

$$31 = 1(31) + 0$$

$$gcd (1177, 509) = gcd (509, 159)$$

$$= gcd (159, 32)$$

$$= gcd (32, 31)$$

$$= gcd (31, 1)$$

$$= gcd (1, 0)$$

$$= 1$$

$$lcm (1177, 609) gcd (1177, 609) = 1177 * 509$$
$$lcm (1177, 609) = \frac{1177 * 509}{gcd (1177, 609)}$$
$$= \frac{1177 * 509}{1}$$
$$= 599093$$

- (b) Prove that the sum of any two even integers is even.
 - i. By definition of even integer,

$$\begin{cases} x = 2a &, a \in \mathbb{Z} \\ y = 2b &, b \in \mathbb{Z} \end{cases}$$

ii. Then

$$x + y = 2a + 2b$$
$$= 2(a + b), a + b \in \mathbb{Z}$$

- iii. Therefore x + y is even, the sum of any two even integers is even.
- (c) Given f(x) = 2x+1, a function from $X = \{1, 2, 3\}$ to $Y = \{3, 4, 5, 6, 7\}$. Find the domain and range of the function f. Hence, determine whether the function is everywhere defined or onto. Justify your answers.

i.

ii.
$$f(x) = 2x + 1$$

iii.
$$Domain = \{1, 2, 3\} = X$$

iv.
$$Range = \{3, 5, 7\} \neq Y$$

v. Answer:

A. f is everywhere defined.

vi. Explanation:

A. Domain of f is X

B. f is not onto Y

- (d) Let A = $\{b, c, d, e, f, g\}$, $\rho_1 = (f, c, g)$ and $\rho_2 = (b, d, c, f, e)$ be permutations of A.
 - i. Compute $\rho_1 \circ \rho_2$.

$$\rho_1 \circ \rho_2 = \begin{pmatrix} b & c & d & e & f & g \\ b & g & d & e & c & f \end{pmatrix} \circ \begin{pmatrix} b & c & d & e & f & g \\ d & f & c & b & c & g \end{pmatrix}$$
$$= \begin{pmatrix} b & c & d & e & f & g \\ d & c & g & b & e & f \end{pmatrix}$$
$$= (b, d, g, f, e)$$

ii. Compute ρ_1^{-1} and write the result as the product of disjoint cycles.

$$\rho_1^{-1} = (g, c, f)$$

iii. Is ρ_2 even or odd permutation? Justify your answer.

$$\rho_2 = (b, e) \circ (b, f) \circ (b, c) \circ (b, d)$$

A. The number of transpositions is 4

B. ρ_2 is an even permutation

3. Question 3

- (a) Let R be the relation on $\{5,6,7,8\}$ given by x R y if and only if $|x-y| \ge 2$.
 - i. List the ordered pairs belonging to the relation R.

$$R = \{(5,7), (5,8), (6,8), (7,5), (8,5), (8,6)\}$$

ii. Draw the digraph of R and represent R in matrix form.

A. Digraph

B. Matrix

$$M_R = \begin{bmatrix} 5 & \begin{bmatrix} 0 & 0 & 1 & 1 \\ 6 & 0 & 0 & 0 & 1 \\ 7 & 1 & 0 & 0 & 0 \\ 8 & 1 & 1 & 0 & 0 \end{bmatrix}$$

iii. Find the domain and range of R.

A.

$$Dom(R) = \{5, 6, 7, 8\}$$

 $Ran(R) = \{5, 6, 7, 8\}$

iv. Compute the in-degree and out degree of each vertex.

		5	6	7	8
Α.	InDegree	2	1	1	2
	OutDegree	2	1	1	2

- (b) Let $A = \{1, 2, 3, 4\}$ and the relation on A is $R = \{(1, 1), (1, 2), (1, 3), (3, 1), (3, 3), (3, 4)\}.$
 - i. Determine whether the relation R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive. Give a counterexample if the answer is "No".

A.

$$M_R = egin{array}{cccc} 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 \ \end{array}$$

- B. Not reflexive, $(2,2) \notin R$
- C. Not irreflexive, $(1,1) \in R$
- D. Not symmetric, $(1,2) \in R$ but $(2,1) \notin R$
- E. Not asymmetric, $(1,3) \in R$ and $(3,1) \in R$
- F. Not antisymmetric, $(1,3) \in R$ and $(3,1) \in R$ but $3 \neq 1$
- G. Not transitive, $(1,3) \in R$ and $(3,4) \in R$ but $(1,4) \notin R$
- ii. Is R an equivalence relation on A? Justify your answer.
 - A. R is not an equivalence relation on A, because R is not reflexive, not symmetric, and not transitive.
- (c) Let $A = \{a, b, c, d\}$ and R and S be the relation on A described by the matrics

$$M_R = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } M_S = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

i. Compute $M_{S^{-1}}$, $M_{\bar{R}}$, $M_{R \cap S}$, $M_{S \circ R}$

A. $M_{S^{-1}}$

$$M_{S^{-1}} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1}$$

$$M_{S^{-1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

B. $M_{\bar{R}}$

$$M_R = egin{bmatrix} 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 \end{bmatrix}$$
 $M_{ar{R}} = egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \end{bmatrix}$ $M_{R\cap S} = egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$

C. $M_{S \circ R}$

$$M_{S \circ R} = M_R \cdot M_S$$

$$= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$M_{S \circ R} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

ii. Use Warshall's algorithm to compute the transitive closure of R.

A. W_0

$$W_0 = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & 1 & 0 & 1 \\ \mathbf{1} & 0 & 0 & 0 \\ \mathbf{0} & 0 & 1 & 1 \end{bmatrix}$$

 $C_1: \{b, c\}$ $R_1: \{b, c\}$

ADD: $\{(b,b),(b,c),(c,b),(c,c)\}$

B. W_1

$$W_1 = \begin{bmatrix} 0 & \mathbf{1} & 1 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 1 & \mathbf{1} & 1 & 1 \\ 0 & \mathbf{0} & 1 & 1 \end{bmatrix}$$

 $C_1: \{a, b, c\}$ $R_1: \{a, b, c, d\}$

C.
$$W_2$$

$$C_2: \{a, b, c, d\}$$

 $R_2: \{a, b, c, d\}$

D. W_3

$$W_3 = \begin{bmatrix} 1 & 1 & 1 & \mathbf{1} \\ 1 & 1 & 1 & \mathbf{1} \\ 1 & 1 & 1 & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}$$

$$C_3: \{a, b, c, d\}$$

 $R_4: \{b, c, d\}$

E.
$$W_4$$

- F. The transitive closure of R is $\{(a, a), (a, b), (a, c), (a, d),\}$ (note, write everything down).
- 4. Question 4
 - (a)
- i. (Note, please don't draw as framework for Hasse Diagram first, otherwise you'll kill yourself with hops)

- A.
- B. All nodes have loops (reflexive)
- C. If node a is connected to node b, and node b is connected to node c, then node a is connected to node c. (transitive)
- D. If node a and node b is related, then node a is node b. (antisymmetric)
- ii. Hasse Diagram

A.

iii.

A. Minimal elements: {1}

B. Maximal elements: $\{18, 24\}$

iv. L&G Element

A. Least element: 1

B. Greatest element: None

v. LUB & GLB of $\{2,3,6\}$

A. LUB:6

B. GLB:1

(b)

i. Start with LHS, if you want to start with RHS, go ahead

$$(x \wedge y \wedge z) \vee (x \wedge z) \equiv xyz + xz$$

$$\equiv xz (y+1)$$

$$\equiv xz$$

$$\equiv x \wedge z$$

$$= RHS$$

		z'	z'	z	z	
	x'	0	0	1	1	y'
(c)	x'	0	0	1	1	y
(0)	x	1	0	0	1	y
	x	0	1	1	0	y'
		w'	w	w	w'	

i. Simplified:

$$f(x, y, z, w) = x'z + w'xy + wxy'$$