Anti-concentration and the Gap-Hamming problem

University of Washington

Anup Rao Amir Yehudayoff

Technion

Outline

Anti-concentration

- 1. The Littlewood-Offord problem
- 2. Erdos's answer
- 3. Halasz's approach

Communication complexity

- 1. Rectangle partitions
- 2. Connection to streaming algorithms
- 3. Gap-Hamming

Our work

Halasz generalized to rectangles

Suppose

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

$$\langle x, Y \rangle = \sum_{i=1}^{n} x_i Y_i.$$

Q: What is $\max_{k} \Pr[\langle x, Y \rangle = k]$?

Suppose

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

$$\langle x, Y \rangle = \sum_{i=1}^{n} x_i Y_i$$
.

Q: What is $\max_{k} \Pr[\langle x, Y \rangle = k]$?

Example:

$$x = (1,3,3^2,...,3^{n-1})$$

Then $\langle x, Y \rangle$ determines Y, so $\max_{k} \Pr[\langle x, Y \rangle = k] = 2^{-n}$.

Suppose

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

$$\langle x, Y \rangle = \sum_{i=1}^{n} x_i Y_i$$
.

Q: What is $\max_{k} \Pr[\langle x, Y \rangle = k]$?

Example:

$$x = (1,1,...,1)$$

Let W denote number of coords of Y that are -1.

$$\langle x, Y \rangle = k \text{ means } (n - W) - W = k, \text{ so } W = (n - k)/2.$$

$$\Pr[\langle x, Y \rangle = k] = \binom{n}{(n-k)/2} \cdot 2^{-n}.$$

$$\max_{k} \Pr[\langle x, Y \rangle = k] = \binom{n}{\lfloor n/2 \rfloor} \cdot 2^{-n} = O(1/\sqrt{n}).$$

Suppose

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

Q: What is $\max_{k} \Pr[\langle x, Y \rangle = k]$?

Erdos:

wlog $x_i > 0$.

Claim: For each k, $S = \{y : \langle x, y \rangle = k\} \subseteq \{\pm 1\}^n$ is an antichain.

Antichain: $y, y' \in S$ means cannot have $y_i > y_i'$ for all i.

Sperner's theorem: The largest antichain in $\{\pm 1\}^n$ has size $\binom{n}{\lfloor n/2 \rfloor}$.

Thm:
$$\max_{k} \Pr[\langle x, Y \rangle = k] \le \binom{n}{\lfloor n/2 \rfloor} \cdot 2^{-n} \approx 1/\sqrt{n}$$
.

Suppose

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

Q: What is $\max_{k} \Pr[\langle x, Y \rangle = k]$?

Sperner's theorem: The largest antichain in $\{\pm 1\}^n$ has size $\binom{n}{\lfloor n/2 \rfloor}$.

Pf: Let $A \subseteq \{\pm 1\}^n$ be an antichain. Let a_i be number of elements of A with i 1's.

Let

 $(-1,\ldots,-1)=Y^{(0)},Y^{(1)},\ldots,Y^{(n)}=(1,\ldots,1)$ be a random chain, Where $Y^{(i)}$ is obtained from $Y^{(i-1)}$ by flipping random -1 to 1.

 $1 \ge$ probability that the chain passes through A

$$\geq \frac{a_0}{\binom{n}{0}} + \frac{a_1}{\binom{n}{1}} + \dots + \frac{a_n}{\binom{n}{n}} \geq \frac{|A|}{\binom{n}{\lfloor n/2\rfloor}}.$$

 $x \in \mathbb{R}^n$ has no zero coordinates.

 $Y \in \{\pm 1\}^n$ is uniformly random.

Erdös:
$$\max_{k} \Pr[\langle x, Y \rangle = k] \le \binom{n}{\lfloor n/2 \rfloor} \cdot 2^{-n} \le O(1/\sqrt{n})$$
.

Erdös-Moser, Sárkozy-Szemerédi: If coordinates x_i distinct, $\Pr[\langle x, Y \rangle = k] \le O(n^{-3/2})$.

Halász: Suppose $x \in \mathbb{Z}^n$, let $0 \le \theta \le 1$ be uniform.

$$\Pr[\langle x, Y \rangle = k] = \mathbb{E}_{\theta, Y}[\exp(2\pi i \cdot \theta \cdot (\langle x, Y \rangle - k))]$$

$$\leq \mathbb{E}_{\theta} | \mathbb{E}_{Y}[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)] |$$

$$= \mathbb{E}_{\theta} | \mathbb{E}_{Y}[\prod_{j=1}^{n} \exp(2\pi i \cdot \theta \cdot x_{j}Y_{j})] |$$

$$= \mathbb{E}_{\theta} | \prod_{i=1}^{n} \cos(2\pi \theta x_{j}) | \leq O(1/\sqrt{n}).$$

Communication complexity

$$\sum_{x \in \{\pm 1\}^n} f(x, y) ?$$

$$x \in \{\pm 1\}^n \qquad y \in \{\pm 1\}^n$$

Communication complexity

Communication complexity

Small communication = partition into few rectangles

The Gap-Hamming Problem

Is
$$\langle x, y \rangle > 0$$
?

$$x \in \{\pm 1\}^n \qquad y \in \{\pm 1\}^n$$
promise
$$|\langle x, y \rangle| \ge \sqrt{n}$$

Exact Gap-Hamming Problem

Is
$$\langle x, y \rangle > 0$$
?

$$x \in \{\pm 1\}^n \qquad y \in \{\pm 1\}^n$$
promise
$$|\langle x, y \rangle| = \sqrt{n}$$

Gap-Hamming Problem

promise

$$|\langle x, y \rangle| \ge \sqrt{n}$$

History:

- 1. Posed by [Indyk-Woodruff], motivated by streaming.
- 2. $\Omega(n)$ communication required [Chakrabarti-Regev]: cube -> Gaussians
- 3. [Sherstov]: SVD, Talagrand's inequality
- 4. [Vidick]: cube -> Gaussians
- 5. [Our work]: Fourier analysis

Exact Gap-Hamming Problem

Observation:	flipping x_1 changes
$n \text{ and } \prod_{j=1}^{n} x_j y_j$	sign
determine	
$\langle x, y \rangle \mod 4$	+2 mod 4

[Chakrabarti-Regev]: What is the communication required in general?

Exact Gap-Hamming Problem

New in our work:

 $\Omega(n)$ communication is required in general (Fourier analysis)

Large Rectangles

$$X \in_{R} A \subseteq \{\pm 1\}^{n}$$
$$Y \in_{R} B \subseteq \{\pm 1\}^{n}$$

What can we say about the distribution of $\langle X, Y \rangle$ if $|A| \cdot |B|$ is large?

[Chakrabarti-Regev], [Sherstov], [Vidick]:

If
$$|A| \cdot |B| > 2^{1.99n}$$
,
 $Pr[|\langle X, Y \rangle| \le \sqrt{n/100}] \le 0.99$.

(In our work: optimal anti-concentration)

Anti-concentration

$$X \in_R A \subseteq \{\pm 1\}^n$$

 $Y \in_R B \subseteq \{\pm 1\}^n$

What can we say about the distribution of $\langle X,Y\rangle$ if $|A|\cdot|B|$ is large?

Example 1:

$$A = B = \{\pm 1\}^n$$
, n even, then $\Pr[\langle X, Y \rangle = 0] = \Theta(1/\sqrt{n})$.

Example 2:

sum to 0

$$|A| \cdot |B| \ge \Omega(2^n/n)$$
 $\langle X, Y \rangle = 0$

$$X \in_{R} A \subseteq \{\pm 1\}^{n}$$
$$Y \in_{R} B \subseteq \{\pm 1\}^{n}$$

What can we say about the distribution of $\langle X,Y\rangle$ if $|A|\cdot|B|$ is large?

Our Results

Thm 1: If $|A| \cdot |B| \ge 2^{1.01n}$, for all k, $\Pr[\langle X, Y \rangle = k] \le O(1/\sqrt{n})$.

Remark: This implies all past results.

Thm 2: ... except with exp small probability over $x \in A$, $\Pr[\langle x, Y \rangle = k] \le O(1/\sqrt{n})$.

Thm 3: ... $|\Pr[\langle x, Y \rangle = k] - \Pr[\langle x, Y \rangle = k + 4]| \le O(1/n)$.

Remark: This is false if 4 is replaced with 6 or 2, as we saw.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Thm: For all
$$k$$
, if $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]| \le O(1/n)$.

Corollary 1: For all k, $\Pr[\langle X, Y \rangle = k] \leq O(1/\sqrt{n})$.

Pf Sketch:

Corollary 2: Exact-gap-Hamming requires $\Omega(n)$ communication. Pf Sketch:

If not, sample a rectangle R by feeding inputs with $|\langle X', Y' \rangle| = \sqrt{n}$. Then whp,

- $|A| \cdot |B| \ge 2^{1.01n}$
- $\Pr[|\langle X, Y \rangle| = \sqrt{n} |R] \ge \Omega(1/\sqrt{n})$

So, the protocol must make an error with significant probability.

[Halász]: Fourier analytic approach

Suppose $Y \in \{\pm 1\}^n$ is uniform, $x \in \mathbb{Z}_{\neq 0}^n$

$$\Pr[\langle x, Y \rangle = k] = \mathbb{E}_{\theta, Y}[\exp(2\pi i \cdot \theta \cdot (\langle x, Y \rangle - k))]$$

$$\leq \mathbb{E}_{\theta} |\mathbb{E}_{Y}[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]|$$

$$= \mathbb{E}_{\theta} \left| \mathbb{E}_{Y} \left[\prod_{i=1}^{n} \exp(2\pi i \cdot \theta \cdot x_{j} Y_{j}) \right] \right|$$

$$= \mathbb{E}_{\theta} \left| \left| \prod_{i=1}^{n} \cos(2\pi \theta x_{i}) \right| \leq O(1/\sqrt{n}).$$

Challenge:

In our setting the coordinates of Y are correlated!

Technical Thm: For all θ , if $|A| \cdot |B| = 2^{1.01n}$, then except with exp small probability over $x \in A$, $|\mathbb{E}_{Y}[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]| < \exp(-\Omega(n \sin^{2}(4\pi\theta)))$.

Thm: For all
$$k$$
, if $X \in A, Y \in B$, $|A| \cdot |B| > 2^{1.01n}$, $|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k+4]| \le O(1/n)$.

Pf:

 $\leq O(1/n)$.

Using:
$$\Pr[\langle x, Y \rangle = k] = \mathbb{E}_{\theta, Y}[\exp(2\pi i \cdot \theta \cdot (\langle x, Y \rangle - k))],$$

$$|\Pr[\langle X, Y \rangle = k] - \Pr[\langle X, Y \rangle = k + 4]|$$

$$\lessapprox \mathbb{E}_{\theta}[|\exp(-2\pi i \theta \cdot (k + 2))| \cdot |(\exp(4\pi i \theta) - \exp(-4\pi i \theta)) \cdot \exp(-\Omega(n \sin^2(4\pi \theta)))|]$$

$$\le 2 \cdot \mathbb{E}_{\theta}[|\sin(4\pi \theta) \cdot \exp(-\Omega(n \sin^2(4\pi \theta)))|]$$

Technical Thm: For all θ , if $|A| \cdot |B| = 2^{1.01n}$, then except with exp small probability over $x \in A$, $|\mathbb{E}_Y[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]| < \exp(-\Omega(n \sin^2(4\pi\theta)))$.

$$\begin{aligned} &|\mathbb{E}_{Y}[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]|^{2} \\ &= |\mathbb{E}_{Y_{1}}[\exp(2\pi i \theta x_{1} Y_{1}) \cdot \mathbb{E}_{Y_{>1}}[\exp(2\pi i \cdot \theta \cdot \langle x_{>1}, Y_{>1} \rangle)]]|^{2} \\ &= |\mathbb{E}_{Y_{1}}[\exp(2\pi i \theta x_{1} Y_{1}) \cdot Z_{Y_{1}}]|^{2}. \end{aligned}$$

If Y_1 has entropy, for at least **half** the choices of x_1 ,

$$\leq \exp(-\sin^2(4\pi\theta)) \cdot \mathbb{E}_{Y_1}[|Z_{Y_1}|^2]$$

If Y_1 has no entropy, $\leq \mathbb{E}_{Y_1}[|Z_{Y_1}|^2]$

Technical Thm: For all θ , if $|A| \cdot |B| = 2^{1.01n}$, then except with exp small probability over $x \in A$, $|\mathbb{E}_Y[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]| < \exp(-\Omega(n \sin^2(4\pi\theta)))$.

$$\begin{split} &|\mathbb{E}_{Y}[\exp(2\pi i \cdot \theta \cdot \langle x, Y \rangle)]|^{2} \\ &= |\mathbb{E}_{Y_{1}}[\exp(2\pi i \theta x_{1} Y_{1}) \cdot \mathbb{E}_{Y_{>1}}[\exp(2\pi i \cdot \theta \cdot \langle x_{>1}, Y_{>1} \rangle)]]|^{2} \\ &= |\mathbb{E}_{Y_{1}}[\exp(2\pi i \theta x_{1} Y_{1}) \cdot Z_{Y_{1}}]|^{2}. \end{split}$$

If Y_1 has entropy, for at least **half** the choices of x_1 ,

$$\leq \exp(-\sin^2(4\pi\theta)) \cdot \mathbb{E}_{Y_1}[|Z_{Y_1}|^2]$$

If Y_1 has no entropy, $\leq \mathbb{E}_{Y_1}[|Z_{Y_1}|^2]$ By counting arguments:

- $\Omega(n)$ coordinates of Y have entropy
- Most x will make the **right** choice in $\Omega(n)$ of these coordinates.

Open Questions

[Erdös-Moser, Sárkozy-Szemerédi]

If the coordinates of x are distinct, $Y \in \{\pm 1\}^n$ uniform, $\Pr[\langle x, Y \rangle = k] \le O(n^{-3/2})$.

Thm [Our work]: If
$$X \in_R A \subseteq \{\pm 1\} \times \{\pm 2\} \times \dots \{\pm n\}$$
, $Y \in_R B \subseteq \{\pm 1\}^n$, and $|A| \cdot |B| > 2^{1.01n}$, then $\Pr[\langle X, Y \rangle = k] \le O(\sqrt{\log n} \cdot n^{-3/2})$.

Conjecture: If
$$X \in_R A \subseteq \{\pm 1\} \times \{\pm 2\} \times \{\pm n\}$$
, $Y \in_R B \subseteq \{\pm 1\}^n$, and $|A| \cdot |B| > 2^{1.01n}$, then $\Pr[\langle X, Y \rangle = k] \leq O(n^{-3/2})$.

Thanks!