Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 17

02 de Junio

MAT1106 - Introducción al Cálculo

1) Considere la sucesión $x_n = \frac{n^j + 1}{n^k + 1}$. Pruebe que si j > k (con $j, k \in \mathbb{N}$), entonces $x_n \to \infty$.

Demostraci'on. Sea j=k+i, con i natural. Notar que

$$\frac{n^j + 1}{n^k + 1} = \frac{n^k (n^i + \frac{1}{n^k})}{n^k (1 + \frac{1}{n^k})} = \frac{n^i + \frac{1}{n^k}}{1 + \frac{1}{n^k}}$$

Sabemos que $\frac{1}{n^k} \to 0$ (porque k es natural), $n^k \to \infty$ y $1 \to 1$. Por álgebra de límites sabemos que $1 + \frac{1}{n^k} \to 1$, y como $\frac{1}{n^k}$ está acotado (por converger), sabemos que $n^i + \frac{1}{n^k} \to \infty$. Luego, tenemos que $x_n = \left(n^i + \frac{1}{n^k}\right)\left(\frac{1}{1 + \frac{1}{n^k}}\right)$, donde la primera parte tiende a infinito y la segunda está acotada lejos de 0 por abajo, por lo que la multiplicación converge a infinito, que es lo que buscábamos.

2) Sea x_n una progresión aritmética (distinta de 0 infinitas veces). ¿A qué converge $\frac{x_{n+1}}{x_n}$?

Demostración. Como x_n es una progresión aritmética, la podemos escribir como $x_n=a+dn$, para algunos d,a reales fijos. Luego, nuestra división se ve como

$$\frac{a+d(n+1)}{a+dn} = \frac{(a+d)+dn}{a+dn} = \frac{\frac{(a+d)}{dn}+1}{\frac{a}{dn}+1} \to \frac{0+1}{0+1} = 1.$$

Luego, usando álgebra de límites, tenemos que converge a 1.

3) Demuestre sin usar álgebra de límites que si $x_n \to L_x$ y $y_n \to L_y$, entonces $x_n - y_n \to L_x - L_y$.

Demostración. Sea $\varepsilon > 0$. Queremos probar que existe un n_0 natural tal que para todo $n \ge n_0$ se cumple

$$|(x_n - y_n) - (L_x - L_y)| < \varepsilon$$

Lo anterior es equivalente a mostrar que

$$|(x_n - L_x) - (y_n - L_y)| < \varepsilon$$

Por desigualdad triangular se tiene que

$$|(x_n - L_x) - (y_n - L_y)| \le |(x_n - L_x)| + |(y_n - L_y)|$$

Como $x_n \to L_x$, existe un n_1 tal que $|(x_n - L_x)| < \varepsilon/2$ para todo $n \ge n_1$. Análogamente, existe un n_2 tal que $|(y_n - L_y)| < \varepsilon/2$ para todo $n \ge n_2$. Usando transitividad llegamos a que

$$|(x_n - y_n) - (L_x - L_y)| \le |(x_n - L_x)| + |(y_n - L_y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

para todo $n \ge \max\{n_1, n_2\}$, por lo que tenemos lo pedido.

4) Considere la sucesión definida como $x_1 = \sqrt{2}, x_{n+1} = \sqrt{2 + x_n}$. Pruebe que x_n converge y use esto para calcular su límite.

Demostración. Mostraremos que x_n es creciente y está acotada por 2 usando inducción:

Caso base (n=1). Tenemos que $\sqrt{2} \le 2$. También tenemos que $x_1 = \sqrt{2+0} \le \sqrt{2+\sqrt{2}} = x_2$.

Supongamos que para algún k tenemos que $x_k \leq 2$ y $x_k \leq x_{k+1}$. Esto dice que $x_k + 2 \leq 4$, por lo que $x_{k+1} = \sqrt{x_k + 2} \leq \sqrt{4} = 2$. Del mismo modo, si $x_k \leq x_{k+1}$, entonces $x_k + 2 \leq x_{k+1} + 2$, por lo que $x_{k+1} = \sqrt{x_k + 2} \leq \sqrt{x_{k+1} + 2} = x_{k+2}$.

Por lo tanto, por inducción x_n es creciente y acotada por arriba. Esto implica que x_n converge a algún L real. Desde la recursión sabemos que $(x_{n+1})^2 = 2 + x_n$. Enviando n a infinito, se tiene $L^2 = 2 + L$, que es equivalente a (L-2)(L+1) = 0. Como $L \neq -1$ (ya que $L \geq 0$), tenemos que L = 2, que era el valor que buscábamos.

5) Sean $a, b \in \mathbb{R}$ tales que 0 < a < b. Se definen de manera recursiva las sucesiones $\{x_n\}$ e $\{y_n\}$ como

$$x_1 = \sqrt{ab}$$
 $y_1 = \frac{a+b}{2}$ $x_{n+1} = \sqrt{x_n y_n}$ $y_{n+1} = \frac{x_n + y_n}{2}$

Pruebe que ambas sucesiones convergen al mismo límite.

Demostración. Ambas sucesiones están bien definidas, ya que $x_1, y_1 > 0$. Notemos que por desigualdad MA - MG tenemos $x_n \leq y_n$ para todo n natural. Con esto podemos mostrar que x_n es creciente. Tenemos que $x_{n+1} = \sqrt{x_n y_n} \geq \sqrt{x_n x_n} = x_n$. Análogamente, y_n es decreciente. Así, tenemos que

$$x_1 \le x_n \le y_n \le y_1.$$

Esto indica que x_n y y_n son acotadas. Como eran monótonas, convergen a L_x, L_y respectivamente. Ahora, como $y_{n+1} = \frac{x_n + y_n}{2}$, enviando n a infinito, tenemos que $L_y = \frac{L_x + L_y}{2}$, lo que implica $L_y = L_x$, que es lo que queríamos probar.