Attorney's Docket: 2003DE119 Serial No.: 10/560,095 Group: 1624

Amendments to the Claims

(Currently Amended) A compound of the formula (I) 1.

wherein A is a divalent, alicyclic or heterocyclic radical of the formula (a), (c) or (f)

$$\begin{array}{c|c}
O & & \\
N & & \\
N & & \\
O & R_6
\end{array}$$

(f)

wherein

R₆ and R₇ independently of one another are hydrogen or C₁ to C₂₅ alkyl

X=0

R₁₁ is hydrogen, and

Attorney's Docket: 2003DE119

Serial No.: 10/560,095

Group: 1624

B is ortho-C₆-arylene group of the general formula (II), (III), (IV) or (V)

wherein C and D are an alicyclic or heterocyclic group;

R₁ is CN or is a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S, and R₂ and R₃ independently of one another are C₁-C₂₅ alkyl, C₅-C₁₂ cycloalkyl, C₆-C₂₄ aryl, OH, OR₄ or NR₄R₅, wherein R₄ and R₅ are identical or different and are hydrogen, C₁-C₂₅ alkyl, C₅-C₁₂ cycloalkyl, C₆-C₂₄ aryl unsubstituted or substituted by 1, 2, 3 or 4 radicals halogen, R⁰, OR⁰, SR⁰, NH₂, NHR⁰, NR⁰₂, NO₂, COOH, COOR⁰, CONH₂, CONHR⁰, CONR⁰₂, CN, SO₃H, SO₂(OR⁰), SO₂R⁰, SO₂NHR⁰, SO₂NR⁰₂ a 5-to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S, or are a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, and S,

 R^0 is C_4 - C_{18} alkyl or C_6 - C_{24} -aryl;

and B is unsubstituted or mono- to tetrasubstituted ortho-C6-C18 arylene.

2. (Currently Amended) A compound as claimed in claim 1, wherein R_6 and R_7 are hydrogen or C_1 to C_{18} -alkyl. A is a divalent alicyclic or heterocyclic radical of the formulae (a) to (g)

Attorney's Docket: 2003DE119

Serial No.: 10/560,095

Group: 1624

where R_6 and R_7 independently of one another are hydrogen, C_1 - C_{25} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} -aryl, C_1 - C_{25} alkyl(C_6 - C_{10} -aryl), a 5- to 7-membered heteroaromatic radical having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, S, -(CH₂)_n-COR₈- and -(CH₂)_m-OR₉, wherein R_8 is hydroxyl, amino, unsubstituted or mono- or polyhydroxyl- or -amino-substituted C_1 - C_{25} -alkoxy, C_1 - C_{25} -alkylamino, di(C_1 - C_{25} -alkyl)amino, C_1 - C_{25} -alkyl(C_6 - C_{10} -aryl)amino, (C_6 - C_{24} -aryl)amino, di(C_6 - C_{24} -aryl)amino, C_1 - C_{25} -alkyl(C_6 - C_{10} -aryl)amino, or C_2 - C_{24} -alkenyloxy, and R_9 is hydrogen or -CO-(C_1 - C_{25} -alkyl), and n and m independently of one another are an integer from 0 to 6, and wherein in R_6 , R_7 , R_8 , and R_9 , optionally a C- C_8 - $C_$

X is = \mathbb{Q}_{7} , = \mathbb{Q}_{7} or = \mathbb{Q}_{10} , wherein \mathbb{Q}_{10} has one of the definitions of \mathbb{Q}_{6} ; Y is hydrogen, \mathbb{Q}_{7} , $\mathbb{Q$

and R_{11} is hydrogen, halogen, CN, R_7 , OR_7 , SR_7 , NR_7R_{10} , NO_2 , $SO_2(OR_7)$, SO_2R_7 , SO_2NHR_7 , $SO_2N(R_7)_2$ or $PO_2(OR_7)$.

Attorney's Docket: 2003DE119 Serial No.: 10/560,095 Group: 1624

3. through 12 (Cancelled)