UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA/INFORMÁTICA CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2013

GEORGEA DANIELEWICZ GEOVANE VINICIUS FERREIRA

SISTEMA PARA DETECÇÃO DE COMPLEXO QRS EM SINAIS DE ELETROCARDIOGRAFIA

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Eletrônica/Informática como requisito parcial para obtenção do grau de Engenheiro no Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Professor Doutor Miguel Antonio

Sovierzoski

CURITIBA

2013

AGRADECIMENTOS

Nossos sinceros agradecimentos ao Professor Miguel Antonio Sovierzoski, por ter orientado este trabalho com grande dedicação, estando sempre presente.

Agradecemos de coração a todos os nossos familiares, pois sem eles esta realização jamais teria sido possível. E também a nossos amigos e colegas, pelos incentivos e pelo apoio.

RESUMO

DANIELEWICZ, Georgea e FERREIRA, Geovane Vinícius. Sistema para Detecção de Complexo QRS em Sinais de Eletrocardiografia. 49 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

De acordo com (ZHANG; LIAN, 2007), os exames eletrocardiográficos são considerados uma ferramenta bastante importante no diagnóstico de problemas cardíacos. Para se avaliar adequadamente a situação de um coração, é necessário detectar corretamente o complexo QRS durante a análise do sinal de Eletrocardiografia (ECG), muitas vezes corrompido por ruídos. Este fato dificulta a rotina dos profissionais que analisam este tipo de exame. Em virtude disto, são necessárias ferramentas que busquem otimizar esta leitura e busca pelo padrão QRS. O objetivo deste projeto é desenvolver um sistema computacional para reconhecimento do complexo QRS em sinais de ECG. A metodologia adotada foi composta pelas etapas de projeto, desenvolvimento e testes. As etapas de desenvolvimento e testes utilizaram uma base de dados de exames de ECG de domínio público. A etapa de testes foi realizada pela própria equipe, por meio de um módulo do sistema específico para este fim. O sistema desenvolvido é composto por cinco módulos: visualização do sinal de ECG, marcação de eventos, extração de características, reconhecimento de padrões e avaliação de resultados. O módulo de extração de características aplica a função de correlação entre o padrão escolhido e o sinal de ECG, produzindo um novo sinal que funciona como entrada para o módulo de reconhecimento de padrões. Os eventos detectados por este módulo de reconhecimento são exibidos graficamente na tela. Por fim, o módulo de avaliação compara os resultados obtidos e os esperados, e os classifica como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo. Com base nesta avaliação, foram calculadas as análises de sensibilidade e especificidade, permitindo a impressão de uma Curva ROC. Os resultados do projeto consistem, portanto, no próprio sistema e sua aplicação prática.

Palavras-chave: análise de sinal, reconhecimento de padrões, eletrocardiografia, complexo QRS

ABSTRACT

DANIELEWICZ, Georgea e FERREIRA, Geovane Vinícius. System for QRS Complex Detection in Electrocardiographical Signals . 49 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

According to (ZHANG; LIAN, 2007), electrocardiographic recordings are considered to be a highly important tool in the diagnosis of cardiac disease. So as to make a proper evaluation of the heart condition, one must accurately detect the QRS-complex during the analysis of the electrocardiographic (ECG) signal, often corrupted by noise. Such fact hinders the routines of the professionals who analyze this type of medical recording. In consequence, tools that improve the QRS-complex detection are required. The aim of this project is the development of a computing system for QRS-complex identification in ECG signals. The methodology employed in this project comprises the stages of project, development and tests. The development and tests stages have used an ECG database available in the public domain. The tests stage was performed by the team responsible for this project by using a tool built in the system for this specific purpose. The system is composed of the following modules: ECG signal visualizing, event marking, characteristic extraction, pattern classification and results evaluation. The characteristic extraction module correlates a pattern and the ECG signal, producing a new signal, which works as input for the pattern classification module. The events detected by this pattern classification module are graphically exhibited on the computer screen. Finally, the evaluation module will compare the results obtained from the system with the annotations from the database, and classify them as true positive, false positive, true negative or false negative. Based on this evaluation, both sensibility and specificity analysis were calculated, which allows the plot of a ROC graph. The achievements of this project, therefore, consist of the system itself and its practical usage.

Keywords: signal analysis, pattern classification, electrocardiography, QRS-complex

LISTA DE FIGURAS

FIGURA 1 – ANATOMIA DE UM CORAÇÃO	13
FIGURA 2 – FIBRAS MUSCULARES CARDÍACAS	14
5	
FIGURA 4 – ONDAS, SEGMENTOS E INTERVALOS DOS SINAIS DE ECG	19
FIGURA 5 – EXEMPLO DE APLICAÇÃO DA FUNÇÃO CORRELAÇÃO	20
FIGURA 6 – ESTRUTURA DE UMA REDE NEURAL ARTIFICIAL	21
FIGURA 7 – GRÁFICOS DAS FUNÇÕES DE ATIVAÇÃO	22
FIGURA 8 – REDE NEURAL DO TIPO MULTILAYER PERCEPTRON	23
FIGURA 9 – RELAÇÃO ENTRE O ERRO MÉDIO QUADRADO E TREINAMENTO	23
FIGURA 10 – EXEMPLO DE SINAL E PADRÃO DE CLASSIFICAÇÃO	25
FIGURA 11 – GRÁFICOS DE SENSIBILIDADE E ESPECIFICIDADE	27
FIGURA 12 – CURVA ROC	28
5	31
FIGURA 14 – TELA DE OPÇÕES DO PHYSIOBANK ATM	32
FIGURA 15 – DIAGRAMA UML DA BIBLIOTECA BRAINNET	33
FIGURA 16 – FLUXOGRAMA SIMPLES	
FIGURA 17 – FLUXOGRAMA COM EXTRAÇÃO DE CARACTERÍSTICAS	37
FIGURA 18 – TELA INICIAL DO SISTEMA	
FIGURA 19 – TELA DE VISUALIZAÇÃO DO SINAL NO SISTEMA	38
FIGURA 20 – CURVA ROC DOS RESULTADOS	41
FIGURA 21 – CURVA ROC DO PROCESSO COM CORRELAÇÃO	42
_ ·	
FIGURA 23 – GRÁFICO DA OUANTIDADE DE HORAS TRABALHADAS	47

LISTA DE TABELAS

TABELA 1	_	TABELA DE CONTINGÊNCIA 2X2	25
TABELA 2	_	PRINCIPAIS INTERFACES DA BRAINNET LIBRARY	34
TABELA 3	_	PRINCIPAIS CLASSES DA BRAINNET LIBRARY	34
TABELA 4	_	TABELA DE RESULTADOS OBTIDOS COM RAW ECG	41
TABELA 5	_	TABELA DE RESULTADOS UTILIZANDO CORRELAÇÃO	42
TABELA 6	_	TABELA COMPARATIVA DE MÉTODOS	43
TABELA 7	_	TABELA COM A LISTA DE TAREFAS E HORAS DE TRABALHO	46

LISTA DE SIGLAS

ECG Eletrocardiografia

GPS Global Positioning System

DNA Deoxyribonucleic Acid

MLP Multilayer Perceptron

VP Verdadeiro Positivo

FP Falso positivo

FN Falso negativo

VN Verdadeiro negativo

ROC Receiving Operating Characteristic

DER Detection Error Rate

UML Unified Modeling Language

CONEP Comissão Nacional de Ética em Pesquisa

MIT Massachusetts Institute of Technology

EDF European data format

WFDB WaveForm DataBase

ATM Automated Teller Machine

XML eXtensible Markup Language

CPOL The Code Project Open License

ECG Eletroencefalografia

SUMÁRIO

1 INTRODUÇÃO	10
1.1 MOTIVAÇÃO E JUSTIFICATIVA	
1.2 OBJETIVOS	
1.3 ESTRUTURA DO TRABALHO	11
2 FUNDAMENTAÇÃO TEÓRICA	
2.1 FISIOLOGIA DO CORAÇÃO	
2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA	14
2.3 EXAME DE ELETROCARDIOGRAFIA	
2.4 SISTEMA DE DERIVAÇÕES	
2.5 ONDAS, SEGMENTOS E INTERVALOS	17
2.6 FUNÇÃO CORRELAÇÃO	
2.7 REDES NEURAIS ARTIFICIAIS	20
2.7.1 Rede Multicamadas	22
2.7.2 Estratégia de Treinamento	
2.7.3 Validação Cruzada	
2.8 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES	
2.8.1 Tabela de Contingência	
2.8.2 Sensibilidade e Especificidade	
2.8.3 Curva ROC	
2.8.4 Outros Índices Estatísticos	
2.9 CONSIDERAÇÕES	
3 MATERIAIS E MÉTODOS	
3.1 BASE DE DADOS	
3.2 EUROPEAN DATA FORMAT	
3.3 BIBLIOTECAS UTILIZADAS	
3.3.1 NeuroLoopGain	
3.3.2 BrainNet Library	
3.4 SISTEMA	
3.4.1 Visão Geral do Sistema	
3.4.2 Módulo de Visualização do Sinal	
3.4.3 Módulo de Marcação de Eventos	
3.4.4 Módulo de Extração de Características	
3.4.5 Módulo de Reconhecimento de padrões	
3.4.6 Módulo de Avaliação de Resultados	
3.6 METODOLOGIA DE TESTES	
3.6.1 Marcação de eventos	
3.6.3 Treinamento da Rede Neural Artificial	
3.6.4 Avaliação do Classificador	
3.7 CONSIDERAÇÕES	

4	RESULTADOS	OBTIDOS	40
		SINAL DE ECG	
4.2	TESTES COM	ECG COM EXTRAÇÃO DE CARACTERÍSTICAS	41
4.3	COMPARATIV	O DOS RESULTADOS	42
4.4	CONSIDERAÇ	CÕES	43
		ÕES FINAIS	
		PROJETO	
6.1	RECURSOS D	E HARDWARE	45
6.2	RECURSOS D	E SOFTWARE	45
6.3	HORAS DE TR	RABALHO	46
RE	FERÊNCIAS	•••••	48

1 INTRODUÇÃO

"O coração humano não é imutável (ou melhor, muda quase que irreconhecivelmente no piscar de um olho) ...". Esta frase do escritor irlandês C. S. Lewis aborda a questão das constantes mudanças no coração humano. Considerando-a do ponto de vista médico, o estado do coração humano se modifica em questão de milissegundos (MALMIVUO; PLONSEY, 1995), produzindo atividade elétrica. Dá-se o nome de Eletroencefalografia (ECG) aos registros da atividade elétrica do coração.

Desta forma, o escopo deste projeto é identificar o complexo QRS, forma de onda característica em sinais de Eletroencefalografia. Foi desenvolvido como Trabalho de Conclusão de Curso pelos alunos Georgea Danielewicz e Geovane Vinicius Ferreira do curso de Engenharia de Computação, da Universidade Tecnológica Federal do Paraná.

As próximas seções deste capítulo abordarão Motivação e Justificativa 1.1, Objetivos 1.2 e Estrutura do Trabalho 1.3.

1.1 MOTIVAÇÃO E JUSTIFICATIVA

Os exames de Eletroencefalografia (ECG) atuam como uma ferramenta de grande auxílio no diagnóstico de problemas cardíacos. O sinais de ECG, muitas vezes, encontram-se corrompidos pelo ruído causado por contrações musculares ou interferências na linha de energia e desvio da linha de base devido à respiração e artefatos motores (ZHANG; LIAN, 2007). Tais fatores podem dificultar a análise do sinal.

Considerando que a detecção do complexo QRS é essencial para se avaliar adequadamente a situação de um coração, surge a necessidade de pesquisas que busquem continuamente automatizar e aprimorar esta tarefa. Por muitas décadas, a detecção do complexo QRS nos sinais de ECG tem sido tema de pesquisas, pois fornece uma visão geral do funcionamento de algoritmos e técnicas para reconhecimento(ZHANG; LIAN, 2007).

1.2 OBJETIVOS

O objetivo geral deste projeto é desenvolver um sistema para reconhecimento do complexo QRS em sinais biomédicos de Eletroencefalografia (ECG). Para melhor definição do escopo, separamos nos seguintes objetivos específicos:

- Desenvolvimento de um ambiente para visualizar sinais de ECG armazenados em arquivos digitais;
- Implementar no ambiente a funcionalidade de marcar eventos no sinal e salvá-los para uso futuro;
- Reconhecimento de padrões, realizado a partir da extração de características das marcações salvas;
- Avaliar os resultados obtidos pelo sistema.

1.3 ESTRUTURA DO TRABALHO

Este documento foi estruturado na forma de capítulos, e cada capítulo, por sua vez, é dividido em seções.

O capítulo seguinte a este capítulo introdutório corresponde a Fundamentação Teórica 2, em que são apresentados e devidamente referenciados os princípios teóricos envolvidos no desenvolvimento do trabalho. Em seguida, o capítulo Materiais e Métodos 3 descreve os recursos e metodologias empregados no projeto, cujos resultados observados na etapa de testes são apresentados e representados em gráficos no capítulo Resultados Obtidos 4. A conclusão sobre todas as informações apresentadas nos capítulos anteriores Considerações Finais 5. O capítulo de Gestão do Projeto 6 descreve as principais tarefas e horas dedicadas pela equipe a trabalho.

2 FUNDAMENTAÇÃO TEÓRICA

O capítulo de Fundamentação Teórica tem como objetivo apresentar os conceitos envolvidos no desenvolvimento do projeto. Inicialmente, serão abordados temas relativos ao coração humano e à geração do sinal de Eletrocardiografia (ECG), englobando as seções Fisiologia do Coração 2.1, Formação do Sinal de Eletrocardiografia 2.2, Exame de Eletrocardiografia 2.3, Sistema de Derivações 2.4 e Ondas, Segmentos e Intervalos 2.5. Em seguida, as seções Função Correlação 2.6 e Redes Neurais Artificiais 2.7 abordam a operação da correlação e redes neurais, respectivamente. A seção Avaliação de Sistemas Classificadores 2.8 trata assuntos relativos à análise dos resultados do sistema. E o capítulo é finalizado com a seção de Considerações 2.9.

2.1 FISIOLOGIA DO CORAÇÃO

O coração humano possui paredes compostas por músculos cardíacos estriados, chamadas de miocárdio, formando quatro compartimentos: o átrio direito, o átrio esquerdo, o ventrículo direito e o ventrículo esquerdo. A figura 1 mostra o coração com indicações dos respectivos átrios e ventrículos (MALMIVUO; PLONSEY, 1995).

O coração possui ainda quatro válvulas. Entre o átrio direito e o ventrículo direito se encontra a válvula tricúspide, e entre o átrio esquerdo e o ventrículo esquerdo fica a válvula mitral. A válvula pulmonar fica entre o ventrículo direito e a artéria pulmonar, enquanto a válvula aorta está no trato de saída do ventrículo esquerdo, e controla o fluxo para a aorta (MALMIVUO; PLONSEY, 1995).

Para retornar da circulação sistêmica, o sangue chega ao átrio direito e dele segue pela válvula tricúspide para o ventrículo direito. Então é ejetado do ventrículo direito para os pulmões, pela válvula pulmonar. Dos pulmões, o sangue oxigenado retorna para o átrio esquerdo, e passa pela válvula mitral até o ventrículo esquerdo. Finalmente, é bombeado pela válvula aorta para a aorta e para a circulação sistêmica (MALMIVUO; PLONSEY, 1995).

A fibra muscular do coração é orientada em espiral. O fato das células musculares cardíacas

Figura 1: Anatomia de um coração Fonte: (MALMIVUO; PLONSEY, 1995)

permanecerem tangencialmente e radialmente, como mostra a figura 2, e a resistência do músculo ser mais baixa em direção as fibras é importante na área da eletrocardiografia, pois a atividade elétrica pode se propagar de uma célula para outra em qualquer direção. Como resultado disso, as formas de onda de ativação são bastante complexas (MALMIVUO; PLONSEY, 1995).

Figura 2: Fibras musculares cardíacas Fonte: (MALMIVUO; PLONSEY, 1995)

2.2 FORMAÇÃO DO SINAL DE ELETROCARDIOGRAFIA

O músculo cardíaco, miocárdio, é composto por células geradoras de potencial elétricas denominadas cardiomiócitos. Em repouso, estas células especializadas em atividade elétrica permanecem polarizadas em sua membrana com um potencial elétrico de aproximadamente -90 mV. No entanto, qualquer excitação por estímulo externo pode rapidamente reverter o potencial elétrico das células miocardiais, a este processo é dado o nome de despolarização (GACEK; PREDYCZ, 2011).

A despolarização geralmente é ocasionada pelo aumento da permeabilidade da membrana ao sódio, permitindo assim que íons positivamente carregados de sódio entrem na célula. Algumas células cardíacas podem ser carregadas com íons de cálcio no lugar de íons de sódio (GACEK; PREDYCZ, 2011).

A variação negativa do potencial elétrico é chamada de fase de repolarização. Ocorre devido ao movimento de íons de potássio para fora da célula, considerando que após a despolarização, o músculo retorna a seu estado elétrico original. Durante a repolarização, o músculo cardíaco é

incapaz de ser estimulado, o que o protege de alguma eventual estimulação prematura (GACEK; PREDYCZ, 2011), evitando danos ao sistema cardíaco.

Estas mudanças no potencial elétrico durante os processos de despolarização e repolarização das fibras do miocárdio são registradas com a colocação de eletrodos posicionados na superfície do peito e nas derivações dos membros, e constituem os sinais de Eletrocardiografia (ECG). A forma de onda do ECG pode ser impressa em papel ou mostrada na tela do computador (GA-CEK; PREDYCZ, 2011).

2.3 EXAME DE ELETROCARDIOGRAFIA

Dentre as vantagens dos exames de Eletrocardiografia (ECG), podem ser citadas seu baixo custo, facilidade de implementação, o fato de ser um procedimento não invasivo e a obtenção imediata dos resultados (GACEK; PREDYCZ, 2011).

Os exames de ECG podem auxiliar em diagnósticos cardiológicos tais como (MALMI-VUO; PLONSEY, 1995):

- 1. Eixo elétrico do coração
- 2. Monitoramento de frequência cardíaca
- 3. Arritmias
 - (a) Arritmias supraventriculares
 - (b) Arritmias ventriculares
- 4. Desordens na sequência de ativação
 - (a) Defeitos na condução atrioventricular
 - (b) Bloqueio atrioventricular de primeiro grau
 - (c) Síndrome de Wolff-Parkinson-White
- 5. Aumento da espessura das paredes ou do tamanho dos átrios e ventrículos
 - (a) Hipertrofia atrial
 - (b) Hipertrofia ventricular
- 6. Isquemia e infarto do miocárdio
 - (a) Isquemia

- (b) Infarto
- 7. Efeito de drogas
- 8. Desequilíbrio eletrolítico
 - (a) Potássio
 - (b) Cálcio
- 9. Cardite
 - (a) Pericardite
 - (b) Miocardite
- 10. Monitoramento de marca-passo

Os possíveis artefatos em sinais biomédicos são os instrumentais, como os de eletrodo e fisiológicos ou biológicos, que incluem os movimentos musculares, respiratórios entre outros (ANGHINAH et al., 2006).

2.4 SISTEMA DE DERIVAÇÕES

O sistema de configuração mais comum em exames ambulatoriais de Eletrocardiografia (ECG) é o sistema 12 derivações, que consiste nas seguintes derivações (MALMIVUO; PLON-SEY, 1995):

- Derivações dos membros (*Limb leads*): I, II, III;
- Derivações aumentadas ou de Goldberger (Goldberger Augmented Leads): aV_R, aV_L;
- Derivações Precordiais (*Precordial leads*): V₁, V₂, V₃, V₄, V₅ e V₆.

As seis primeiras derivações, I, II, III, aV_R , aV_L e aV_F são derivadas dos mesmos três pontos de medição. Por isso, qualquer par dentre este grupo fornece a mesma informações que os quarto restantes (MALMIVUO; PLONSEY, 1995). A localização das derivações é ilustrada na figura 3.

Mais de 90% da atividade elétrica cardíaca pode ser explicada com a medição de três componentes independentes. A princípio, duas das derivações límbicas I II III devem ser suficiente

Figura 3: Derivações cardíacas

Fonte: (MALMIVUO; PLONSEY, 1995)

para descrever completamente o vetor elétrico cardíaco. A principal razão para que sejam gravadas as 12 derivações é porque enriquece o reconhecimento dos padrões. Esta combinação de derivações fornece ao medico a oportunidade de observar diversas projeções do vetor elétrico cardíaco, que consiste em um modo de visualizar o gerador de potencial elétrico do coração como um dipolo elétrico (MALMIVUO; PLONSEY, 1995).

2.5 ONDAS, SEGMENTOS E INTERVALOS

Além das ondas, os elementos existentes na forma de onda do Eletrocardiografia (ECG) são (GACEK; PREDYCZ, 2011):

- Linha isoelétrica: a linha horizontal quando não há atividade elétrica no ECG;
- Segmentos: a duração da linha isoelétrica entre as ondas;
- Intervalos: o tempo entre dois segmentos de ondas adjacentes.

A onda P é a primeira deflexão do ECG e resulta da despolarização dos átrios, que ocorre durante a despolarização ventricular. É positiva na maioria das derivações, mesmo sendo pouco

evidente. Sua amplitude não excede 0,15 mV e 0,25 mV nas derivações precordiais, e dura no máximo 0,12 segundos (GACEK; PREDYCZ, 2011).

A onda T, por sua vez, representa a repolarização ventricular, a restauração do repouso no potencial da membrana. As ondas T se diferenciam das ondas P, por seguirem o complexo QRS após cerca de 0,2 segundos. Após a onda T, ocorre a onda U, com a mesma polaridade da onda T que a precede. Ondas U invertidas podem aparecer na presença de hipertrofia do ventrículo esquerdo ou isquemia (GACEK; PREDYCZ, 2011).

O segmento PQ expressa tempo decorrido entre a despolarização atrial e o começo da despolarização ventricular, durando entre 0,12 e 0,2 segundos. O intervalo ventricular ST-T coincide com a repolarização do músculo ventricular. O intervalo QT corresponde à duração do potencial de ação ventricular e da repolarização. O intervalo TP é o período em que os átrios e ventrículos estão na diástole. O intervalo RR corresponde um ciclo cardíaco e é utilizado para o cálculo da frequência cardíaca (GACEK; PREDYCZ, 2011).

A identificação do complexo QRS não apresenta grandes dificuldades, uma vez que possui forma de onda característica e amplitude dominante. Esta amplitude mede cerca de 1 mV em um coração normal, mas pode ser muito maior em uma hipertrofia ventricular. O complexo QRS é o maior grupo de ondas no ECG e corresponde à despolarização ventricular. A primeira deflexão negativa é a onda Q. Seguida de uma deflexão positiva, a onda R, sendo finalizada com uma última deflexão negativa denominada de onda S, completando um complexo QRS (GACEK; PREDYCZ, 2011).

A duração normal do QRS fica entre 0,08 e 0,09 segundos. Durações maiores são geralmente devidas à despolarização assíncrona dos dois ventrículos. Isto ocorre em casos de bloqueio atrioventricular de primeiro grau, síndromes de pré-excitação ou contração ventricular prematura. Nestas situações, um ventrículo é despolarizado mais cedo que o outro, fazendo com que o complexo QRS apresente uma onda R seguida de outra onda R. Estas ondas correspondem à despolarização dos dois ventrículos (GACEK; PREDYCZ, 2011). A figura 4 mostra as formas de onda características de um ciclo cardíaco.

Figura 4: Ondas, segmentos e intervalos dos sinais de ECG Fonte: (GACEK; PREDYCZ, 2011)

2.6 FUNÇÃO CORRELAÇÃO

O conceito de correlação surgiu na antiguidade onde se comparavam padrões fazendoos deslizar um padrão sobre o outro. É é deste modo que funciona a correlação. A função
correlação permite detectar a presença de um sinal conhecido no ruído. Entre alguns exemplos
de aplicação, é possível detectar a presença de um rosto em uma multidão, comparar impressões
digitais ou padrões de vasos sanguíneos da retina para identificar pessoas e determinar que arma
disparou um projétil, mesmo que ele esteja amassado ou parcialmente derretido. É utilizada
também em radares, no sistema GPS e na análise de DNA (BLOCH, 2004).

A função correlação cruzada é utiliza dois conjuntos de dados, e calcula uma medida da semelhança entre um sinal recebido e um padrão armazenado. À medida que o padrão se desloca pelo sinal recebido, o produto de superposição é calculado e plotado para cada deslocamento. Quando atinge seu valor máximo, 1, há uma coincidência perfeita (BLOCH, 2004). Um exemplo de aplicação da função correlação é ilustrada na figura 5.

No domínio discreto de dados a função correlação pode ser calculada na equação (1), em que o índice *r* refere-se ao sinal recebido e o índice *a* se refere ao padrão armazenado. O fator de normalização K é igual à soma dos quadrados dos valores do padrão armazenado (BLOCH, 2004).

$$R_{r,a}(\tau) = \frac{1}{K} \sum_{n=0}^{N-1} f_r(n) f_s(\tau + n)$$
 (1)

O padrão de sinal armazenado para comparação pode não ser realmente ao sinal que se

Figura 5: Exemplo de aplicação da função correlação Fonte: Modificado de (SMITH, 1997)

pretende identificar, pode ser uma estimativa do sinal original, ou uma réplica. Pode ser utilizado um conjunto de padrões de sinais similares ao que se deseja buscar. É com base neste tipo de estimativas que operam astrônomos, peritos em criptografia e especialistas em supervisão eletrônica (BLOCH, 2004).

2.7 REDES NEURAIS ARTIFICIAIS

O cérebro humano funciona de modo completamente diferente dos computadores digitais convencionais. O cérebro pode ser considerado como um computador extremamente complexo, não linear que apresenta paralelismo. As unidades básicas que constituem o cérebro, chamadas neurônios, têm a capacidade de organizarem-se para desempenhar tarefas tais como reconhecimento de padrões, percepção e controle motor (HAYKIN, 2011).

De certa forma, as redes neurais artificiais foram criadas para realizar atividades mimetizando o cérebro humano. As redes neurais artificiais são modelos matemáticos que podem ser implementadas com componentes eletrônicos ou simuladas em software (HAYKIN, 2011).

As unidades básicas de processamento de uma rede neural artificial são chamadas de neurônios, analogamente ao cérebro humano. Os neurônios formam entre si grandes conexões caracterizadas por pesos sinápticos (HAYKIN, 2011).

As redes neurais artificiais passam por um processo de aprendizado, também conhecido como algoritmo de aprendizado. Neste processo, são modificados os pesos sinápticos dos neurônios de maneira ordenada visando alcançar um determinado estado objetivo (HAYKIN, 2011).

Um sinal x_j na entrada da sinapse j conectada ao neurônio k, é multiplicada pelo peso sináptico w_{kj} . Constitui também a rede neural artificial um somador, para somar os sinais da entrada ponderados pelas respectivas conexões do neurônio (estas operações constituem uma combinação linear). Uma função de ativação é empregada para limitar a amplitude da saída de um neurônio a um determinado intervalo numérico, usualmente este intervalo corresponde a [0,1] ou [-1,1]. A figura 6 ilustra a estrutura básica de uma rede neural artificial (HAYKIN, 2011).

Figura 6: Estrutura de uma rede neural artificial Fonte: (HAYKIN, 2011)

A função de ativação que limita a saída de um neurônio pode ser de três tipos básicos:

- Função de limiar ou threshold;
- Função *Piecewise* contínua;
- Função Sigmóide.

A figura 7 representa os gráficos dos três tipos de função de ativação.

Figura 7: Gráficos das funções de ativação Fonte: (HAYKIN, 2011)

2.7.1 Rede Multicamadas

Dentre os tipos de redes neurais artificiais existentes, cabe destacar as redes Perceptron Multicamadas (*Multilayer Perceptron* – MLP). Estas redes são formadas por uma camada de entrada, uma ou mais camadas de nós intermediárias escondidas e um camada de nós de saída. A figura 8 mostra a estrutura de uma rede neural com múltiplas camadas (HAYKIN, 2011).

Como mencionado anteriormente, os neurônios formam conexões representadas pelos pesos sinápticos e ao processo de modificação destes pesos dá-se o nome de algoritmo de aprendizado. As redes Perceptron multicamadas podem ser treinadas por meio do algoritmo de aprendizado *backpropagation*. Em termos gerais, um sinal de erro é originado na saída da rede, e

Figura 8: Rede neural do tipo Multilayer Perceptron Fonte: (HAYKIN, 2011)

propagado de frente para trás (*backwards*) de camada em camada, relacionando os dados de entrada e saída (HAYKIN, 2011).

2.7.2 Estratégia de Treinamento

A rede multicamadas é treinada com o algoritmo *backpropagation*, em estágios, produzindo funções de mapeamento complexas. Observa-se que o erro médio quadrado diminui com o aumento do número de épocas durante um treinamento. No início apresenta um valor elevado, diminui rapidamente, e então começa a diminuir lentamente até o valor do mínimo local na superfície de erro (HAYKIN, 2011). A figura 9 mostra a relação entre o erro médio quadrado e as épocas de treinamento.

Figura 9: Relação entre o erro médio quadrado e treinamento Fonte: Modificado de (HAYKIN, 2011)

É possível, portanto, acabar treinando a rede em excesso, se o treinamento não for interrompido no instante certo. Para identificar este instante, a cada período de treinamento, a rede é testada e o erro médio quadrado monitorado. A este procedimento dá-se o nome de método de treinamento de parada antecipada. O menor erro médio indica qual a melhor época de treinamento, com base nos testes (HAYKIN, 2011).

2.7.3 Validação Cruzada

Partindo do princípio de que as redes neurais artificiais passam por um processo de treinamento, é necessário um conjunto de dados para a realização desta etapa. Além disso é necessário testar o funcionamento da rede. Considerada uma padrão pela estatística, a validação cruzada soluciona esta questão ao dividir a base de dados inicial em dois conjuntos (HAYKIN, 2011). São eles:

- Conjunto de dados de treinamento;
- Conjunto de dados de testes.

Além destas duas divisões, o conjunto de dados de treinamento pode ser dividido em dados para estimativa e dados para validação (HAYKIN, 2011). Contudo, o estudo aprofundado deste tema não faz parte do escopo deste projeto.

2.8 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES

Esta seção vamos nos concentrar em formas de avaliar o desempenho de sistemas classificadores por meio das seções: Tabela de Contingência 2.8.1, Sensibilidade e Especificidade 2.8.2, Curva ROC 2.8.3 e Outros Índices Estatísticos 2.8.4.

2.8.1 Tabela de Contingência

A tabela de contingência, também chamada de tabela de confusão, é descrita como uma ferramenta capaz de representar, dentro de uma população, os indivíduos doentes, indivíduos sadios, indivíduos com teste positivo e indivíduos com teste negativo (MASSAD; ORTEGA; SILVEIRA, 2004), como mostrado na tabela 1.

A partir da tabela de contingência, podem ser observados os seguintes índices:

• VP (Verdadeiro positivo): doente com resultado positivo;

Tabela 1: Tabela de Contingência 2x2

		indivíduos		
		doentes	sadios	
indicação do exame (para a doença)	positivo	verdadeiro positivo (VP)	falso positivo (FP)	total de positivos (VP + FP)
	negativo	falso negativo (FN)	verdadeiro negativo (VN)	total de negativos (FN + VN)
		total dos doentes (VP + FN)	total dos sadios (FP + VN)	total $(VP + VN + FP + FN)$

Fonte: (SOVIERZOSKI, 2009)

- FP (Falso positivo): sadio com resultado positivo;
- FN (Falso negativo): doente com resultado negativo;
- VN (Verdadeiro negativo): sadio com resultado negativo.

Como este projeto pretende obter a identificação do complexo QRS em exames de Eletro-cardiografia (ECG), a etapa de testes trata como verdadeiro positivo o complexo QRS indicado como positivo, falso positivo como padrão diferente do complexo QRS indicado como positivo, falso negativo como um complexo QRS não identificado e verdadeiro negativo como um padrão diferente do complexo QRS não identificado pelo sistema (SARAIVA, 2012). A lógica desta avaliação é expressa pela figura 10.

Figura 10: Exemplo de sinal e padrão de classificação considerando o nível de decisão Fonte: (SARAIVA, 2012)

Os índices da tabela de contingência são utilizados para o cálculo de outros índices, tais como sensibilidade, especificidade, eficiência e o índice DER.

2.8.2 Sensibilidade e Especificidade

A sensibilidade pode ser descrita como a medida da capacidade de um sistema em identificar indivíduos com exame positivo entre os indivíduos verdadeiramente doentes, levando em conta outros indivíduos doentes com exames negativos, como evidencia a equação (2). Logo, quanto maior a sensibilidade de um sistema, menor o número de falsos negativos (MASSAD; ORTEGA; SILVEIRA, 2004).

$$sensibilidade = \frac{VP}{VP + FN} \tag{2}$$

Especificidade mede a capacidade do sistema em identificar os indivíduos negativos entre os verdadeiramente não doentes, representada pela equação (3). Assim, quanto menor o número de falsos positivos identificados pelo sistema, maior será sua especificidade (MASSAD; ORTEGA; SILVEIRA, 2004).

$$especificidade = \frac{VN}{VN + FP} \tag{3}$$

A sensibilidade e especificidade costumam retornar diferentes valores de acordo com a variação em algum atributo do sistema (SOVIERZOSKI, 2009). A figura 11 mostra o comportamento dos índices de sensibilidade e especificidade em função do limiar de decisão da rede neural, ferramenta utilizada no reconhecimento de padrões a ser discutida na seção X.

Figura 11: Gráficos de Sensibilidade e Especificidade Fonte: (SARAIVA, 2012)

2.8.3 Curva ROC

A Curva ROC (*Receiving Operating Characteristic*) é útil para visualização da performance de classificadores. Seu uso vem crescendo em pesquisas nas áreas de *machine learning* e *data mining* (FAWCETT, 2006).

Os valores de sensibilidade e especificidade são organizados em pares ordenados, e dispostos no primeiro quadrante de um plano cartesiano. Com algum método de interpolação, são interligados desde a origem (sensibilidade = 0 e especificidade = 1), até o extremo oposto do gráfico (sensibilidade = 1 e especificidade = 0), dando origem a curva ROC (MASSAD; ORTEGA; SILVEIRA, 2004), conforme ilustra a figura 12.

Cada ponto da curva ROC equivale a um valor diferente do limiar de decisão da rede neural, dessa forma, construindo a relação entre sensibilidade e especificidade (SOVIERZOSKI, 2009).

No eixo das ordenadas da curva ROC pode ser observada a fração dos verdadeiros positivos (sensibilidade). E no eixo das abcissas, a fração dos falsos positivos, correspondente ao complemento da especificidade (1 - especificidade) (MASSAD; ORTEGA; SILVEIRA, 2004).

A linha tracejada representa um sistema classificador incapaz de discriminar, em outras

Figura 12: Curva ROC
Fonte: (SOVIERZOSKI, 2009)

palavras, um sistema que apresenta o mesmo percentual de verdadeiros positivos e de falsos positivos. Quanto mais afastada da linha tracejada estiver a curva ROC (de modo semelhante à figura 12), melhor é o desempenho do sistema. O classificador idel possui sensibilidade = 1 e especificidade = 1 (BROWN; DAVIS, 2006).

2.8.4 Outros Índices Estatísticos

Além de inúmeros outros métodos para medição do desempenho de sistemas classificadores, existem o índice DER e eficiência.

O índice DER (*Detection Error Rate*), dado na equação (4) (ZHANG; LIAN, 2007), relaciona o número de erros do sistema, soma dos falsos positivos e falsos negativos, com o número total de eventos do sistema.

$$DER = \frac{FP + FN}{\text{Total de eventos QRS}} \tag{4}$$

Eficiência ou *accuracy* corresponde a capacidade de um sistema em identificar os verdadeiros doentes e sadios (SOVIERZOSKI, 2009). A fórmula para o cálculo da eficiência é dada na equação (5).

$$accuracy = \frac{VP + VN}{VP + VN + FP + FN} \tag{5}$$

2.9 CONSIDERAÇÕES

O capítulo de Fundamentação Teórica forneceu esclarecimento acerca de diversos conhecimentos necessários durante implementação do projeto. Entre eles, cabe destacar os conceitos abordados pelas seções Função Correlação 2.6, Redes Neurais Artificiais 2.7 e Avaliação de Sistemas Classificadores 2.8. Conceitos cujo entendimento é essencial para uma leitura proveitosa dos próximos capítulos desta monografia.

O próximo capítulo, Materiais e Métodos 3, explica a maneira como todos estes conceitos foram aplicados de modo prático, e também os recursos utilizados ao longo do desenvolvimento deste projeto.

3 MATERIAIS E MÉTODOS

Este capítulo aborda os recursos e metodologias utilizadas em todo o desenvolvimento deste trabalho. O capítulo foi dividido em seções: Base de Dados 3.1, *European Data Format* 3.2, Bibliotecas Utilizadas 3.3, Sistema 3.4, Modelagem UML 3.5, Metodologia de Testes 3.6 e por fim as Considerações sobre o capítulo 3.7.

3.1 BASE DE DADOS

De acordo com informações disponibilizadas pela Comissão Nacional de Ética em Pesquisa (CONEP, 2011), "as pesquisas envolvendo apenas dados de domínio público que não identifiquem os participantes da pesquisa, ou apenas revisão bibliográfica, sem envolvimento de seres humanos, não necessitam aprovação por parte do Sistema CEP – CONEP." Por esta razão, a equipe optou por utilizar a base de dados pública MIT-BIH Arrhythmia Database.

A MIT-BIH Arrhythmia Database foi desenvolvida pelo Beth Israel Hospital de Boston em parceria com o MIT durante uma pesquisa sobre arritmia e temas correlatos. Tem sido utilizada como um conjunto de dados padrão para testes e avaliação para sistemas detectores de arritmias e pesquisa em dinâmica cardíaca (MOODY; MARK, 1990).

Os dados correspondem à 48 gravações ECG com duração de meia hora cada uma. São apresentados dois sinais, *modified limb lead II* (MLII) e *lead* V1 (podendo ser ocasionalmente V2, V5 ou V4), ambos obtidos com os eletrodos colocados no peito. Esta é a configuração padrão utilizada pelo BIH Arrhythmia Laboratory. Pode-se observar maior proeminência dos complexos QRS no sinal superior (GOLDBERGER et al., 2000). A figura 13 mostra parte da gravação do exame 105.

Os exames foram realizados com 47 pacientes acompanhados pelo BIH Arrhythmia Laboratory entre os anos de 1975 e 1979. Vinte e três gravações foram aleatoriamente de um conjunto de 4000 exames ambulatoriais de ECG com duração de 24 horas coletadas de pacientes internos (cerca de 60%) e pacientes ambulatoriais (cerca de 40%) do Boston's Beth Israel

Figura 13: Parte da gravação 105 da base de dados MIT-BIH Arrhythmia Database Fonte: Autoria própria

Hospital. Os outros 25 exames foram selecionados do mesmo conjunto para incluir arritmias clinicamente incomuns (MOODY; MARK, 1990).

Uma equipe com dois cardiologistas realizou anotações dos batimentos em cada uma das gravações, resultando em aproximadamente 110 mil marcações. Estas foram incluídas na base de dados. A base completa tem sido disponibilizada gratuitamente pelo desde 2005 (MOODY; MARK, 1990).

Para a etapa de testes deste projeto, foi selecionado apenas o arquivo 105 por apresentar maior dificuldade na detecção do complexo QRS (SARAIVA, 2012).

O arquivo de texto contendo as anotações do sinal de ECG 105, apresenta 2691 eventos. Destes 2691 eventos, apenas 2572 são relevantes para os testes neste projeto, que correspondem às marcações de *Normal beat* (2526 ocorrências), *Premature ventricular contraction* (41 ocorrências) e *Unclassifiable beat* (5 ocorrências).

3.2 EUROPEAN DATA FORMAT

A existência de diferentes fabricantes de equipamentos para aquisição de sinais biomédicos implica em diferentes formatos de arquivo para salvar estes dados. Para solucionar este problema, foi criado o *European data format* (EDF), um formato padrão para armazenamento de dados polissonográficos e eletroencefalográficos amplamente aceito. O EDF é o único formato digital que se tornou aceito tanto comercialmente nos equipamentos disponíveis como em pesquisas científica (KEMP; OLIVAN, 2003).

Um arquivo EDF padrão consiste em um cabeçalho seguido dos dados. O cabeçalho identifica o paciente e especifica características técnicas do sinal gravado. Os dados apresentam épocas consecutivas, com duração fixa, a partir do sinal gravado. Este formato de arquivo, no entanto, não suporta anotações de eventos das gravações (KEMP; OLIVAN, 2003).

Physiobank Automated Teller Machine (ATM) é uma ferramenta open –source que permite explorar as bases de dados disponibilzadas pelo Physiobank por meio do navegador de internet. Esta toolbox oferece opções para importar anotações das formas de onda e histogramas, converter sinais em formato padrão do Physionet (WFDB – WaveForm DataBase) para texto, CSV, EDF, ou .mat files (para utilização nos programas Matlab ou Octave), entre outras funcionalidades (GOLDBERGER et al., 2000).

A figura 14 mostra a tela de opções da ferramenta *Physiobank* ATM.

Figura 14: Tela de opções do Physiobank ATM Fonte: Autoria própria

3.3 BIBLIOTECAS UTILIZADAS

O projeto utilizou as bibliotecas *NeuroLoopGain* e *BrainNet Library* para trabalhar com arquivos em formato EDF e redes neurais artificiais respectivamente.

3.3.1 NeuroLoopGain

A biblioteca *NeuroLoopGain* (NEUROLOOPGAIN, 2012) foi implementada para análise de arquivos em formato EDF. O texto da licença Apache 2.0 (The Apache Software Foundation, 2004) mostra que seu código é aplicável a distribuição pretendida do software: "[...] concede licença perpétua, mundial, não exclusiva, gratuita, isenta de royalties e irrevogável para reproduzir, preparar Obras Derivadas, de exibição pública, execução pública, sublicenciamento e distribuição do Trabalho e tais Obras Derivadas, na forma de Código Fonte ou Objeto."

Além disso, o texto da licença também atesta que: "[...] concede licença perpétua, mundial, não-exclusiva, gratuita, isenta de royalties e irrevogável [...] de licença de patente para fazer, mandar fazer, usar, oferecer para venda, vender, importar e transferir o trabalho."

3.3.2 BrainNet Library

A biblioteca *BrainNet Library*, em sua maior parte desenvolvida na plataforma .NET seguindo os preceitos do paradigma de orientação à objetos, permite criar, treinar e executar redes neurais. Um parte da biblioteca, chamada Neural XML, foi implementada em linguagem de programação XML (MADHUDSUDANAN, 2006). Está sujeita aos termos da licença *The Code Project Open License* (CPOL) 1.02. De maneira geral, os termos da licença (PROJECT, 2008) atestam os seguintes pontos:

- Código fonte e arquivos executáveis podem ser utilizados em aplicações comerciais;
- Código fonte e arquivos executáveis podem ser redistribuídos;
- Código fonte pode ser modificado para criação de obras derivativas.

A figura 15 apresenta o diagrama UML da biblioteca.

Figura 15: Diagrama UML da Biblioteca BrainNet Fonte: (MADHUDSUDANAN, 2006)

As principais interfaces disponibilizadas pela biblioteca *BrainNet Library* estão resumidas na tabela 2.

Tabela 2: Principais interfaces da BrainNet Library

INetworkFactory	Interface que define a estrutura da rede
INeuron	Interface que define o neurônio
INeuronStrategy	Interface que define estratégias do neurônio
INeuralNetwork	Interface que define a rede neural

Fonte: (MADHUDSUDANAN, 2006)

As principais classes disponibilizadas pela biblioteca *BrainNet Library* estão resumidas na tabela 3.

Tabela 3: Principais classes da BrainNet Library

BackPropNeuronStrategy	Estratégia backpropagation
NetworkHelper	Inicializa e treina a rede
NeuralNetwork	Rede neural genérica
NeuralNetworkCollection	Coleção do tipo NeuralNetwrok
Neuron	Implementação de INeuron
NeuronCollection	Coleção do tipo Neuron
NeuronConnections	Registro das conexões entre neurônios e pesos sinápticos

Fonte: (MADHUDSUDANAN, 2006)

3.4 SISTEMA

Esta seção pretende fornecer um entendimento amplo do sistema desenvolvido a partir da subseção Visão Geral do Sistema 3.4.1, e também uma visão detalhada por meio das subseções: Módulo de Visualização do Sinal 3.4.2, Módulo de Marcação de Eventos 3.4.3, Módulo de Extração de Características 3.4.4, Módulo de Reconhecimento de Padrões 3.4.5 e Módulo de Avaliação de Resultados 3.4.6.

3.4.1 Visão Geral do Sistema

O sistema pode operar de duas maneiras. A primeira, e mais simples delas, utiliza marcações do complexo QRS feitas diretamente no sinal de Eletrocardiografia (ECG). A figura 16 mostra todo este processo.

Primeiramente, o arquivo com o sinal de ECG é carregado na tela (Carregar sinal na tela), em seguida são feitas pela equipe marcações do complexo QRS diretamente no sinal (Marcar

eventos). As marcações dão origem ao conjunto de dados de treinamento (Padrões de Treinamento), utilizado durante a próxima etapa (Treinamento da Rede Neural Artificial). Uma vez treinada, a rede poderá reconhecer padrões no sinal de ECG em questão (explicado em detalhes na seção 3.1), e exibe os resultados na tela (Reconhecimento de Padrões). Um conjunto de marcações pertencente a base de dados (Marcações da base de dados) é utilizado como parâmetro de comparação com os resultados obtidos pelo sistema (Avaliação dos Resultados).

Figura 16: Fluxograma simples

Fonte: Autoria própria

A segunda maneira de funcionamento do sistema é mais complexa, e pode ser observada no fluxograma da figura 17. A diferença em relação ao método anterior ocorre no processo de geração do conjunto de dados de treinamento.

Depois que o arquivo com sinal de ECG é carregado na tela (Carregar sinal), são feitas

marcações diretamente no sinal de ECG (Marcar eventos). Estas marcações do complexo QRS (Marcações direto no sinal) passam por um processo (Extração de características) em conjunto com o sinal original (Sinal de ECG). Este processo será detalhado na subseção 3.4.4. No sinal resultante são feitas novas marcações (Segunda marcação de eventos), que dão origem ao conjunto de dados de treinamento (Padrões de Treinamento). O restante do método é idêntico ao anterior, a rede neural artificial passa pelo treinamento (Treinamento da Rede Neural Artificial), capacitando-se para reconhecer padrões (Reconhecimento de Padrões). Por fim é realizada a etapa de avaliação (Avaliação dos Resultados), que compara os resultados obtidos com os resultados esperados proveniente das marcações da base de dados original (Marcações da base de dados).

Figura 17: Fluxograma com extração de características Fonte: Autoria própria

3.4.2 Módulo de Visualização do Sinal

A figura 18.

Figura 18: Tela inicial do sistema

Fonte: Autoria Própria

A figura 19.

Figura 19: Tela de visualização do sinal no sistema Fonte: Autoria Própria

3.4.3 Módulo de Marcação de Eventos

Que tipo de eventos marcamos, em arquivo de texto, seguindo um padrão definido.

3.4.4 Módulo de Extração de Características

Aqui será explicado o modo como foi utilizada a operação da Correlação. Correlação de um evento marcado com o sinal inteiro, gerando um novo sinal... com picos onde eventos daquele tipo ocorrem.

3.4.5 Módulo de Reconhecimento de padrões

No caso utilizamos a Rede Neural MultiLayer Perceptron.

3.4.6 Módulo de Avaliação de Resultados

Módulo que compara marcações com os resultados obtidos.

3.5 MODELAGEM UML

Usamos algum padrão, MVC, etc....

3.6 METODOLOGIA DE TESTES

3.6.1 Marcação de eventos

Sinal

Total de QRS: 2572

Total Usados = 1589 Total Descartados = 72

Sinal com correlação

- 3.6.2 Promedição do Sinal de ECG
- 3.6.3 Treinamento da Rede Neural Artificial

Configuração da rede neural. Quantas épocas?

- 3.6.4 Avaliação do Classificador
- 3.7 CONSIDERAÇÕES

4 RESULTADOS OBTIDOS

Conforme foi explicado na subseção Visão Geral 3.4.1 da seção Sistema 3.4, a rede neural artificial pode ser treinada com dois conjuntos de dados diferentes: marcações feitas diretamente no sinal de Eletrocardiografia (ECG), e marcações feitas no sinal resultante do processo de extração de características (detalhado na seção). OS resultados obtidos utilizando cada uma destas bases de marcações são descritos nas seções Testes com Sinal de ECG 4.1 e Testes com ECG com correlação 4.2, respectivamente. Este capítulo termina com a seção de Comparativo dos Resultados 4.3 e a seção de Considerações 4.4.

4.1 TESTES COM SINAL DE ECG

Os resultados apresentados nesta seção dizem respeito ao treinamento realizado com marcações feitas diretamente no sinal de ECG. O conjunto de testes considera os últimos 10 minutos do sinal de ECG do arquivo 105, o que resulta em XXX ocorrências do complexo QRS.

A tabela 5 apresenta a quantidade de verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos obtidos pela etapa de reconhecimento de padrões. E também os índices estatísticos sensibilidade, especificidade, eficiência e *Detection Error Rate* (DER) considerando a variação do *threshold*.

A curva ROC do processo utilizando marcações no sinal de ECG é mostrada na figura 20.

Tabela 4: Tabela de Resultados Obtidos com Raw ECG								
Threshold	VP	VN	FP	FN	Sensibilidade	Especificidade	Eficiência	DER
0								
0,1								
0,2								
0,3								
0,4								
0,5								
0,6								
0,7								
0,8								
0,9								
1								

Fonte: Autoria Própria

Figura 20: Curva ROC dos resultados Fonte: Autoria própria

4.2 TESTES COM ECG COM EXTRAÇÃO DE CARACTERÍSTICAS

Esta seção apresenta os resultados obtidos com a utilização da base gerada após o processo de extração de características. Do mesmo modo que a seção anterior, o conjunto de testes considera os últimos 10 minutos do sinal de ECG do arquivo 105, correspondendo a XXX ocorrências do complexo QRS.

A tabela 5 apresenta a quantidade de verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos, e os índices estatísticos sensibilidade, especificidade, eficiência e

Detection Error Rate (DER) obtidos com variação do threshold.

Tabela 5: Tabela de Resultados utilizando correlação

Threshold	VP	VN	FP	FN	Sensibilidade	Especificidade	DER
0							
0,1							
0,2							
0,3							
0,4							
0,5							
0,6							
0,7							
0,8							
0,9							
1							

Fonte: Autoria Própria

A curva ROC do processo utilizando a base gerada após a extração de características é mostrada na figura 22.

Figura 21: Curva ROC do processo com correlação Fonte: Autoria própria

4.3 COMPARATIVO DOS RESULTADOS

A figura 22 mostra as curvas ROC obtidas com os testes descritos nas seções Testes com ECG com extração de características 4.1 e Testes com Sinal de ECG 4.2, permitindo uma visão comparativa entre eles.

Figura 22: Curva ROC do processo com correlação

Fonte: Autoria própria

4.4 CONSIDERAÇÕES

Então.. o sistema é classificador ou não? (De acordo com a curva ROC) Compara a outros trabalhos

Tabela 6: Comparação dos métodos utilizados para detecção do QRS oriunda da tabela de (ZHANG; LIAN, 2007) acrescido das quatro últimas linhas com resultados obtidos no trabalho de (SARAIVA, 2012)

Método	QRS	FP	FN	DER
Algoritmos genéticos	2572	86	5	3,54
Filtro passa banda	2572	67	22	3,46
Wavelet denoising	2572	78	5	3,23
Bancos de filtragem	2139	53	16	3,22
BPF/search-back	2564	53	22	2,95
Filtro adaptativo linear	2572	40	22	2,40
Filtragem otimizada	2572	35	21	2,18
Topological mapping	2572	41	4	1,75
Transformada wavelet	2572	15	12	1,09
Filtro adaptativo e rede neural	2572	10	4	0,5
Morfologia 1M	2572	49	10	2,29
Morfologia 2M	2572	27	9	1,40
Morfologia 3M	2572	19	7	1,01
Morfologia 1M	2690	40	2	1,56
Morfologia 2M	2690	41	2	1,60
Morfologia 3M	2690	40	0	1,49
Morfologia 4M	2690	39	0	1,45

Fonte: Modificada de (SARAIVA, 2012)

5 CONSIDERAÇÕES FINAIS

Alcançou os objetivos?? Quanto conseguiu atingir? A metodologia foi boa ou ruim?

Cada seção teve a sua conclusão, então completa a discussão. Elementos resultantes do processo de união. Não apresentar nenhum dado novo! 1 folha e meia no máximo.

Propostas futuras? Resultados futuros.

Com redes SOM, ou com outras bases de dados.

6 GESTÃO DO PROJETO

Inicialmente, este projeto pretendia utilizar uma base de dados de exames de Eletroencefalografia (EEG), obtida em um Hospital, mediante autorização do Comitê de Ética da Instituição. A metodologia de testes seria realizada por um médico neurologista, que avaliaria os resultados do sistema, classificando-os como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo.

Contudo, dada a limitação de tempo para a conclusão deste trabalho, e a escassez de bases de dados de EEG públicas adequadas (o que dispenderia menor tempo, por não necessitar de autorização do Comitê de Ética), a equipe alterou o escopo do projeto, passando a utilizar uma base de dados pública de ECG.

Esta mudança trouxe alguns benefícios, dentre eles a possibilidade de a própria equipe realizar os testes, uma vez que a base de dados já possui marcações dos eventos, bastando apenas compará-las aos eventos identificados pelo sistema.

Este capítulo apresenta as seções Recursos de Hardware 6.1, Recursos de Software 6.2 e Horas de Trabalho 6.3.

6.1 RECURSOS DE HARDWARE

Os recursos de *Hardware* correspondem às duas máquinas utilizadas pelos membros da equipe durante o desenvolvimento do projeto: *Macbook Pro* 13 polegadas, início de 2011, com processador Intel Core i7 de 2.7 GHz, memória de 16 GB e HD com 1TB e um *notebook* Dell Inspiron 14R-3440 com processador Intel Core i5, memória RAM de 6GB e HD com 1TB.

6.2 RECURSOS DE SOFTWARE

Os recursos de *Software* utilizados neste projeto correspondem ao seguintes itens:

• Visual Studio;

- Plataforma Microsoft .NET versão 4.5;
- Biblioteca NeuroLoopGain;
- Biblioteca BrainNet Library.

Para obter gratuitamente a licença do ambiente de desevolvimento *Visual Studio*, a equipe se associou ao programa DreamSpark, da Universidade Tecnológica Federal do Paraná. Os demais recursos utilizados são gratuitos.

6.3 HORAS DE TRABALHO

A tabela 7 mostra de modo resumido as tarefas envolvidas no projeto, e as respectivas quantidades de horas esperadas e efetivamente dedicadas.

Tabela 7: Tabela com a lista de tarefas e horas de trabalho

Tarefas	Horas esperadas	Horas dedicadas
Plano de Projeto	90	100
Pesquisa da base de dados	0	30
Estudo da base de dados	0	10
Ajustes na base de dados	0	10
Estudo de tecnologias	20	30
Módulo de visualização do sinal	40	45
Módulo de marcação de eventos	50	100
Módulo de extração de características	50	20
Módulo de reconhecimento de padrões	50	100
Módulo de avaliação	50	40
Testes	30	50
Elaboração do relatório	50	70
Reuniões	30	60
Total	460	655

Fonte: Autoria Própria

A figura 23 mostra o comparativo entre as horas esperadas e as horas realmente dedicadas ao projeto.

Figura 23: Gráfico da Quantidade de Horas Trabalhadas Fonte: Autoria própria

REFERÊNCIAS

- ANGHINAH, R. et al. Artefatos bioógicos no EEG quantitativo. **Arquivos de Neuro – Psiquiatria**, 2006.
- BLOCH, S. Excel para engenheiros e cientistas. [S.l.]: Livros Técnicos e Científicos, 2004.
- BROWN, C. D.; DAVIS, H. T. Receiver operating characteristics curves and related decision measures: A tutorial. **Chemometrics and Intelligent Laboratory Systems**, v. 80, n. 1, p. 24 38, 2006. ISSN 0169-7439. Disponível em: http://www.sciencedirect.com/science/article/pii/S0169743905000766.
- CONEP. **Perguntas e Respostas Frequentes**. 2011. Disponível em: http://conselho.saude.gov.br/Web_comissoes/conep/index.html>. Acesso em: 25 de agosto de 2013.
- FAWCETT, T. An introduction to roc analysis. **Pattern Recogn. Lett.**, Elsevier Science Inc., New York, NY, USA, v. 27, n. 8, p. 861–874, jun. 2006. ISSN 0167-8655. Disponível em: http://dx.doi.org/10.1016/j.patrec.2005.10.010.
- GACEK, A.; PREDYCZ, W. ECG Signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence. [S.l.]: Springer, 2011.
- GOLDBERGER, A. L. et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. **Circulation**, v. 101, n. 23, p. e215–e220, 2000. Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.
- HAYKIN, S. Neural Networks: A Comprehensive Foundation. 2nd. ed. [S.l.]: Pearson Prentice Hall, 2011. 823 p.
- KEMP, B.; OLIVAN, J. European data format 'plus' (edf+), an {EDF} alike standard format for the exchange of physiological data. **Clinical Neurophysiology**, v. 114, n. 9, p. 1755 1761, 2003.
- MADHUDSUDANAN, A. **Neural Networks**. 2006. Disponível em: http://www.amazedsaint.com/2008/01/neural-networks-part-iii-nxml-xml-based.html. Acesso em: 09 de setembro de 2013.
- MALMIVUO, J.; PLONSEY, R. **Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields**. New York: Oxford University Press, 1995. Disponível em: http://www.bem.fi/book/>.
- MASSAD, E.; ORTEGA, N.; SILVEIRA, P. **Métodos quantitativos em medicina**. [S.l.: s.n.], 2004.
- MOODY, G.; MARK, R. The mit-bih arrhythmia database on cd-rom and software for use with it. In: **Computers in Cardiology 1990, Proceedings.** [S.l.: s.n.], 1990. p. 185–188.

NEUROLOOPGAIN. **NeuroLoopGain**. 2012. Disponível em: http://code.google.com/p/neuroloopgain/>. Acesso em: 09 de setembro de 2013.

PROJECT, C. **The Code Project Open License (CPOL) 1.02**. 2008. Disponível em: http://www.codeproject.com/info/cpol10.aspx. Acesso em: 09 de setembro de 2013.

SARAIVA, A. A. Detecção do Complexo QRS através de Morfologia Matemática Multiescalar. Dissertação (Mestrado) — Programa de Pós –Graduação em Engenharia Biomédica – UTFPR, 2012.

SMITH, S. W. The scientist and engineer's guide to digital signal processing. San Diego, CA, USA: California Technical Publishing, 1997. ISBN 0-9660176-3-3.

SOVIERZOSKI, M. Avaliação de Descritores Morfológicos na Identificação de Eventos Epileptiformes. Tese (Doutorado) — Programa de Pós –Graduação em Engenharia Elétrica – UFSC, 2009.

The Apache Software Foundation. **Apache License, Version 2.0**. 2004. Disponível em: http://www.apache.org/licenses/LICENSE-2.0. Acesso em: 09 de setembro de 2013.

ZHANG, F.; LIAN, Y. Electrocardiogram qrs detection using multiscale filtering based on mathematical morphology. In: **Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE**. [S.l.: s.n.], 2007. p. 3196–3199. ISSN 1557-170X.