Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

Mathematik I

Name:		Vorname:		
Klasse:	Platzziffer:	Punkte:		
Aufgabe A 1			Nachtermin	

A 1.0 Punkte $C_n(x \mid x+1)$ auf der Geraden g mit der Gleichung y=x+1 ($G=IR \times IR$) und Punkte B_n auf der Geraden h mit der Gleichung y=3 ($G=IR \times IR$) bilden zusammen mit dem Punkt $A(0 \mid 0)$ Dreiecke AB_nC_n . Die Abszisse der Punkte B_n ist stets um zwei größer als die Abszisse x der Punkte C_n .

A 1.1 Zeichnen Sie die Geraden g und h sowie das Dreieck AB_1C_1 für x=3 in das Koordinatensystem zu 1.0 ein.

2 P

A 1.2 Unter den Dreiecken AB_nC_n gibt es zwei rechtwinklige Dreiecke AB_2C_2 und AB_3C_3 mit den Hypotenusen $[AB_2]$ bzw. $[AB_3]$. Bestimmen Sie rechnerisch die x-Koordinaten der Punkte C_2 und C_3 auf zwei Stellen nach dem Komma gerundet.

A 2.0 Die Axialschnitte von Rotationskörpern mit der Rotationsachse BE sind achsensymmetrische Vierecke ABCD_n.

Die Winkel BAD_n haben das Maß φ mit $\varphi \in]0^{\circ};51,32^{\circ}[$.

Es gilt: $\overline{AB} = \overline{BC} = 8 \text{ cm}$ und $\overline{AC} = 10 \text{ cm}$.

Die nebenstehende Zeichnung zeigt das Viereck $ABCD_1$ für $\phi = 20^{\circ}$.

A 2.1 Zeigen Sie durch Rechnung, dass für die Länge der Diagonalen [BD_n] der Vier-

ecke ABCD_n in Abhängigkeit von φ gilt: $\overline{BD_n}(\varphi) = \frac{8 \cdot \sin \varphi}{\sin (\varphi + 38, 68^\circ)}$ cm.

2 P

A 2.2 Für $\overline{BD_2}$ = 4,5cm entsteht das Viereck ABCD₂. Berechnen Sie das Maß φ des Winkels BAD₂.

A 2.3 Zeigen Sie rechnerisch, dass für das Volumen V der entstehenden Rotationskörper in Abhängigkeit von φ gilt: $V(\varphi) = \frac{200}{3}\pi \cdot \frac{\sin \varphi}{\sin(\varphi + 38,68^\circ)} \text{cm}^3$.

A 2.4 Die Inkreise k_n der Dreiecke AD_nC mit den Mittelpunkten $M_n \in [ED_n]$ und den Radien $r = \overline{M_nE}$ sind Axialschnitte von Kugeln.

Zeichnen Sie den Inkreis $\,k_{_1}\,$ des Dreiecks $\,AD_{_1}C\,$ in die Zeichnung zu $2.0\,$ ein. Berechnen Sie sodann den Oberflächeninhalt $\,O_{Kugel}\,$ in Abhängigkeit von $\,\phi\,$.

A 3.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = \log_2 x$ mit $G = \mathbb{R} \times \mathbb{R}$. Der Graph zu f_1 wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k ($k \in \mathbb{R} \setminus \{0\}$) sowie anschließende Parallelverschiebung mit dem Vektor \overrightarrow{v} auf den Graphen der Funktion f_2 mit der Gleichung $y = -0.5 \cdot \log_2 (x+1) - 3$ abgebildet ($G = \mathbb{R} \times \mathbb{R}$).

A 3.1 Zeichnen Sie den Graphen zu f_2 in einem geeigneten Intervall in das Koordinatensystem zu 3.0 ein. Geben Sie sodann den Affinitätsmaßstab k und den Verschiebungsvektor \overrightarrow{v} an.

A 3.2 Bestimmen Sie die nach y aufgelöste Gleichung der Umkehrfunktion f_2^{-1} von f_2 und zeichnen Sie den Graphen zu f_2^{-1} in das Koordinatensystem zu 3.0 ein.

3 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

an den Realschulen in Bayern

Mathematik I

Aufgabe B 1

Nachtermin

- B 1.0 Gegeben ist die Funktion f mit der Gleichung $y = 0,5^{x+2} + 3$ mit $G = IR \times IR$.
- B 1.1 Geben Sie die Definitionsmenge und die Wertemenge der Funktion f an sowie die Gleichung der Asymptote h. Zeichnen Sie sodann den Graphen zu f für $x \in [-4; 5]$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 5$; $-2 \le y \le 7$

3 P

B 1.2 Punkte $A_n(x|0,5^{x+2}+3)$ auf dem Graphen zu f und der Punkt B(-2|1) bilden zusammen mit Punkten C_n gleichschenklig-rechtwinklige Dreiecke A_nBC_n mit den Basen $[A_nC_n]$.

Zeichnen Sie die Dreiecke A_1BC_1 für x=-3 und A_2BC_2 für x=-0.5 in das Koordinatensystem zu 1.1 ein.

2 P

B 1.3 Zeigen Sie, dass für die Punkte C_n in Abhängigkeit von x gilt: $C_n\left(0,5^{x+2}\mid -x-1\right).$

Bestimmen Sie sodann die Gleichung des Trägergraphen t
 der Punkte $\mathbb{C}_{\scriptscriptstyle \rm n}$.

B 1.4 Der Punkt C₃ liegt auf der x-Achse. Berechnen Sie den Flächeninhalt des Dreiecks A₃BC₃. Runden Sie auf zwei Stellen nach dem Komma.

3 P

5 P

B 1.5 Eines der drei untenstehenden Diagramme stellt den Flächeninhalt A der Dreiecke A_nBC_n in Abhängigkeit von der Abszisse x der Punkte A_n dar.

Geben Sie dieses Diagramm an und begründen Sie Ihre Auswahl.

2 P

B 1.6 Punkte M_n sind die Mittelpunkte der Strecken $\left[A_nC_n\right]$. Der Punkt M_4 liegt auf der Winkelhalbierenden des I. und III. Quadranten. Bestimmen Sie die x-Koordinate des Punktes A_4 .

Prüfungsdauer: 150 Minuten

 $Ma\beta \ \phi$.

Abschlussprüfung 2013 an den Realschulen in Bayern

3 P

Mathematik I

A	ufgabe B 2	Nachtermin	
B 2.0	Die Pfeile $\overrightarrow{AB}_{n}(\varphi) = \begin{pmatrix} 5\cos\varphi - 2\\ 5\sin^{2}\varphi \end{pmatrix}$ mit $A(0 \mid 0)$ und $\varphi \in]0^{\circ}; 90^{\circ}[$ leg	en Trapeze	
	$AB_nC_nD_n$ fest, deren Eckpunkte C_n durch Achsenspiegelung der Punder Geraden g mit der Gleichung $x=-2$ ($G=IR\times IR$) entstehen. Die besitzen dieselbe Abszisse wie die Punkte C_n und liegen auf der x-Ach	Punkte D _n	
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.		
B 2.1	Berechnen Sie die Koordinaten der Pfeile $\overrightarrow{AB_1}$ für $\phi = 50^\circ$ und $\overrightarrow{AB_2}$ fund zeichnen Sie sodann die Gerade g sowie die Trapeze $AB_1C_1D_1$ und in ein Koordinatensystem.		
	Für die Zeichnung: Längeneinheit 1 cm; $-9 \le x \le 5$; $-2 \le y \le 7$		3 P
B 2.2	Berechnen Sie das Maß des Winkels C_1B_1A .		2 P
B 2.3	Zeigen Sie rechnerisch, dass für die Gleichung des Trägergraphen t (G der Punkte C_n gilt: $y = -\frac{1}{5}(x+2)^2 + 5$.	$\dot{\mathbf{r}} = \mathbf{I}\mathbf{R} \times \mathbf{I}\mathbf{R}$)	
	[Teilergebnis: $C_n \left(-5\cos\varphi - 2 \mid 5\sin^2\varphi \right)$]		3 P
B 2.4	Unter den Trapezen $AB_nC_nD_n$ gibt es das Rechteck $AB_3C_3D_3$. Überprüfen Sie rechnerisch, ob das Rechteck $AB_3C_3D_3$ ein Quadrat ist.		3 P
B 2.5	Zeigen Sie durch Rechnung, dass für den Flächeninhalt A der Trapeze Abhängigkeit von φ gilt: $A(\varphi) = (2,5\cos\varphi(-15\cos^2\varphi - 2\cos\varphi + 15) + 1)$		3 P

B 2.6 Das Trapez $AB_4C_4D_4$ hat den Flächeninhalt 5 FE . Bestimmen Sie das zugehörige