Duration: 120 minutes Name:_____Signature:____

AMS-I3 Midterm Exam-Solution Mathematical Modeling

Problem 1 (40 pts).

The **Ricker model** (Ricker 1954) is a population dynamic model that is often used in fishery management. It can be expressed by the following recursion equation:

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{K}\right)} \tag{1}$$

where:

 N_t is the number of fish that will be present in a fishery at time t;

r > 0 is interpreted as an intrinsic growth rate; and

K > 0 as the carrying capacity of the environment.

Question.

- (a) $f(x) = xe^{r(1-x/K)}$.
- (b) Find $\lim_{x \to +\infty} f(x) = 0$.

(c)
$$f'(x) = e^{r(1-x/K)} - (r/K)xe^{r(1-x/K)} = (1 - (r/K)x)e^{r(1-x/K)}$$
.

- (d) $f'(x) = (1 (r/K)x)e^{r(1 x/K)} = 0$, then x = K/r. f is increasing when x < K/r as f'(x) > 0 and is decreasing when x > K/r as f'(x) < 0. The function f have an absolute maximum at x = K/r.
- (e) $f''(x) = -(r/K)(2 (r/K)x)e^{r(1-x/K)}$. f is concave upward if f''(x) > 0 or x > 2K/r and f is concave downward if f''(x) < 0 or x < 2K/r. Moreover, f''(x) = 0 at x = 2K/r. Thus, f has an inflection point at x = 2K/r.
- (f) Draw the graph of f(x).

Duration: 120 minutes Name:_____Signature:_____

(g) Determine equilibrium point of the dynamical system (1) above. Equilibrium occurs at the point N=f(N) or $N=Ne^{r(1-N/K)}$. Then solving the equation, we have N=0 (not interesting as we start at 0, the process will be always 0) and N=K.

(h) According to the value of r and K, tell when the equilibrium point found in part (h) is stable and unstable.

At N=0, then $f'(N)=f'(0)=e^r$. Hence at this point, we have stable equilibrium if |f'(0)|<1 or at r<0 and we have unstable equilibrium if |f'(0)|>1 or r>0.

At N=K, then f'(N)=f'(K)=1-r. Hence at this point, we have stable equilibrium if |f'(K)|<1 or at |1-r|<1. Solving this inequality, we have 0< r<2.

The system has unstable equilibrium if |f'(K)| > 1 or r > 2.

(i) When $K=1{,}000$ and $r=1{.}5$, and initial population is 200, find the population for the next three years. Round the population each year to the nearest integer.

$$N_0 = 200$$
, $K = 1,000$ and $r = 1.5$, then

$$N_{t+1} = N_t e^{1.5(1 - N_t/1000)}.$$

t	$N_{t+1} = N_t e^{1.5(1 - N_t/1000)}$
0	200
1	664
2	1099
3	947

(j) When $K=1{,}000$ and $r=1{.}5$, and initial population is 200, determine equilibrium point of the dynamical system (1). Is the equilibrium stable or unstable?

$$N_0 = 200$$
, $K = 1,000$ and $r = 1.5$, then

$$N_{t+1} = N_t e^{1.5(1-N_t/1000)}.$$
 The equilibrium point is $N=1000.$ It is stable as $0 < r < 2.$

<u>Problem 2 (60 pts).</u> In any calculation, round your answer to 3 decimal places. In a research laboratory, a researcher wanted to study how a particular type of bacteria evolves by growing them in the petri dish. The daily recorded number of living bacteria (in million) for the first 5 days is given in **Table 1** below.

Duration: 120 minutes Name:_____Signature:____

Number of days (n)	0	1	2	3	4	5
Number of bacteria X_n (\times 10^6)	0.30	0.36	0.39	0.41	0.42	0.42

Question.

(a) Draw the scatterplot of the above data, using x-axis for Number of days (n) and y-axis for Number of living bacteria (X_n). Does the graph suggest any trend? Provide your comment.

Yes, the graph apparently suggests a positive trend, but it grows slowly. It looks nonlinear.

(b) If $X_{n+1} = f(X_n)$, where f is some function to be estimated. Fill in the blank of following table (do it in your paper).

Number of days, n	0	1	2	3	4	5
Number of bacteria, X_n (\times 10^6)	0.30	0.36	0.39	0.41	0.42	0.42
$X_{n+1} = f\left(X_n\right)$	0.36	0.39	0.41	0.42	0.42	

(c) Draw the scatterplot of X_n and X_{n+1} , using x-axis for X_n and y-axis for X_{n+1} . Does the graph suggest any trend? Provide your comment.

Duration: 120 minutes Name:_____Signature:_____

From the graph, it seems that as X_n increases, X_{n+1} also increases. The trend may be linear or nonlinear (we need more data to decide which one).

(d) Suppose a linear model: $f(x) = b_0 + b_1 x$ is proposed. Using the available data in part (b), estimate the coefficient b_0 and b_1 by means least squares method. What is the value of the minimized least squares?

Denote $y_i = f(x_i) = x_{i+1}$. We have $\bar{x} = 0.38$, $\bar{y} = 0.40$

$$b_1 = \frac{n\sum (x_i y_i) - (\sum x_i)(\sum y_i)}{n\sum (x_i^2) - (\sum x_i)^2} = 0.526$$

$$b_0 = \bar{y} - b_1 \bar{x} = 0.40 - (0.526)(0.38) = 0.202$$

Thus,
$$f(x) = 0.202 + 0.526 x$$

$$\min S = 2.38 \times 10^{-5}$$
.

(e) What is the value of estimated equilibrium point of the model in part (d)? Describe in word the long-run behavior of the number of living bacteria in this case.

The equilibrium point: f(x) = x or x = 0.202 + 0.526 x. Solving the equation, we have $x = \frac{0.202}{1 - 0.526} = 0.426$.

Following the model, in the long run, starting with 0.3×10^6 bacteria, the number of bacteria will eventually reach 0.426×10^6 bacteria.

(f) In real situation, the *logistic model* of the form: $f(x) = a_1 x + a_2 x^2$ is usually proposed. Using the available data in part **(b)**, estimate the coefficient a_1 and a_2 by means of least squares method. What is the value of the minimized least squares?

Denote
$$y_i = f(x_i) = x_{i+1}$$

We define $S = \sum_{i=0}^{7} (y_i - a_1 x_i - a_2 x_i^2)^2$. We minimize S with respect to a_1 , a_2

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=0}^4 x_i (y_i - a_1 x_i - a_2 x_i^2) = 0 \quad \text{or} \quad a_1 \sum_{i=1}^4 x_i^2 + a_2 \sum_{i=1}^4 x_i^3 = \sum_{i=1}^4 x_i y_i$$

$$\frac{\partial S}{\partial a_2} = -2\sum_{i=0}^4 x_i^2 (y_i - a_1 x_i - a_2 x_i^2) = 0 \quad \text{or} \quad a_1 \sum_{i=1}^4 x_i^3 + a_2 \sum_{i=1}^4 x_i^4 = \sum_{i=1}^4 x_i^2 y_i$$

Calculating all the sums, and then solving the system of equations, we have $a_1=1.667$ and $a_2=-1.584$

The model equation is $f(x) = 1.776 x - 1.584 x^2$.

The value of minimized S is min $S = 3.84 \times 10^{-5}$.

Duration: 120 minutes Name:_____Signature:____

(g) What is the value of estimated equilibrium point of the model in part (f)? Describe in word the long-run behavior of the number of living bacteria in this case.

The equilibrium point:
$$f(x) = x$$
 or $x = 1.776 x - 1.584 x^2$. Solving the equation, we $x = 0$ or $x = 1.776/1.584 = 1.121$

(h) Are the values of minimized least squares of the model in part (d) and part (f), respectively, comparable? Justify your answer.

The minimized least squares of the model in part (d): $\min S = 2.38 \times 10^{-5}$ The minimized least squares of the model in part (e): $\min S = 3.84 \times 10^{-5}$

The value found in (d) is relatively lower.

(i) If the model in part **(f)** is written in the form: f(x) = rx(M - x). Determine the value r and M.

$$f(x) = 1.776 x - 1.584 x^2 = 1.584 x (1.121 - x)$$
. Hence, $r = 1.584$ and $M = 1.121$.

- (j) Suppose now the researcher is interested in experimental model to fit the data in part **(b)**. He proposes a polynomial of 4th degree: $f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \alpha_4 x^4$. To find this polynomial, he uses the Lagrange's method by writing $f(x) = f(x_0) L_0(x) + f(x_1) L_1(x) + f(x_2) L_2(x) + f(x_3) L_3(x) + f(x_4) L_4(x)$, where L_0, L_1, L_2, L_3, L_4 are Lagrangian polynomials corresponding to x_0, x_1, x_2, x_3, x_4 , respectively.
 - 1. Determine L_0 , L_1 , L_2 , L_3 , L_4 .

Number of days, n	0	1	2	3	4	5
Number of bacteria, X_n (\times 10^6)	0.30	0.36	0.39	0.41	0.42	0.42
$X_{n+1} = f\left(X_n\right)$	0.36	0.39	0.41	0.42	0.42	

$$L_0(x) = \frac{(x - 0.36)(x - 0.39)(x - 0.41)(x - 0.42)}{(0.3 - 0.36)(0.3 - 0.39)(0.3 - 0.41)(0.3 - 0.42)}$$

$$L_0(x) = 14029.181(x - 0.36)(x - 0.39)(x - 0.41)(x - 0.42)$$

$$L_1(x) = \frac{(x - 0.3)(x - 0.39)(x - 0.41)(x - 0.42)}{(0.36 - 0.3)(0.36 - 0.39)(0.36 - 0.41)(0.36 - 0.42)}$$

$$L_1(x) = -185185.1852(x - 0.3)(x - 0.39)(x - 0.41)(x - 0.42)$$

$$L_2(x) = \frac{(x - 0.3)(x - 0.36)(x - 0.41)(x - 0.42)}{(0.39 - 0.3)(0.39 - 0.36)(0.39 - 0.41)(0.39 - 0.42)}$$

$$L_2(x) = 617283.951(x - 0.3)(x - 0.36)(x - 0.41)(x - 0.42)$$

Duration: 120 minutes Name:_____Signature:____

$$L_3(x) = \frac{(x - 0.3)(x - 0.36)(x - 0.39)(x - 0.42)}{(0.41 - 0.3)(0.41 - 0.36)(0.41 - 0.39)(0.41 - 0.42)}$$

$$L_3(x) = -909090.909(x - 0.3)(x - 0.36)(x - 0.39)(x - 0.42)$$

$$L_4(x) = \frac{(x - 0.3)(x - 0.36)(x - 0.39)(x - 0.41)}{(0.42 - 0.3)(0.42 - 0.36)(0.42 - 0.39)(0.42 - 0.41)}$$

$$L_4(x) = 462962.963(x - 0.3)(x - 0.36)(x - 0.39)(x - 0.41)$$

2. Determine the values of $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$.

We have

$$f(x) = f(x_0) L_0(x) + f(x_1) L_1(x) + f(x_2) L_2(x) + f(x_3) L_3(x) + f(x_4) L_4(x)$$

Expanding this,
$$f(x) = -22.8 + 262.2x - 1110x^2 + 2083x^3 - 1459.03x^4$$

We the get

$$\alpha_0 = -22.8$$

$$\alpha_1 = 262.2$$

$$\alpha_2 = -1110$$

$$\alpha_3 = 2083$$

$$\alpha_4 = -1459.03$$

(k) Estimate the value of X_5 using models in part (d), in part (f) and in part (j), respectively. Which model provide the closest estimate to X_5 ? Note that the exact value of X_5 is 0.42 (See Table 1).

Part	Model	Predicted	Error $ X_5 - X_5^{pred} $
(d)	f(x) = 0.202 + 0.526 x	0.423	0.003
(f)	$f(x) = 1.776 x - 1.584 x^2$	0.467	0.047
(j)	$f(x) = -22.8 + 262.2x - 1110x^2 + 2083x^3 - 1459.03x^4$	0.445	0.025

Model in part (d) provides the closest estimate to X_5 .