Indian Institute of Information Technology-Allahabad

C1 Review Test

B.Tech. (IT & ECE) 4th Semester

Computer Networks (Code: ICNE532C)

Time: 2 Hour							MM: 80	
Note: Attemp	t all ques	tions.						
1. Multiple o	hoice que	stions.					[20 Marks]	
i. Which of	he followi	ing is/are NOT (a) layer(s	s) in TCP	/IP protocol st	ack?		
(a) Ap	plication	(b) Session	(c) Tra	nsport	(d) I	nternet	(e) Physical	
ii. Which of	the followi	ing modulation	methods o	can have	higher bit rate	es than the bau	ıd rate?	
(a) Fr	equency N	Iodulation	(b) Am	plitude	Modulation	(c) Phase	Modulation - 2 Phase method	
(d) Pł	ase Modu	lation – 4 Phase	method		(e) Pulse Cod	le Modulation		
iii. Which of	the followi	ing indicates the	increasir	ng order	of accuracy in	error detectio	n?	
(a) CRC, Single Parity, Block Sum Check					(b) Block Sum Check, CRC, Single Parity			
(c) Sin	ngle Parity	, CRC, Block Sur	n Check		(d) Single Parity, Block Sum Check, CRC			
(e) CF	RC, Block S	um Check, Singl	e Parity					
iv. Identify th	ne unequa	l pair(s).						
(a)	(a) Physical Address – MAC Address (b)				IP Address – Logical Address			
(c)	Ethern	et - IEEE 802.4		(d)	Token Bus –	IEEE 802.5		
(e)	Serial p	oort – COM1						
v. The follow	ving two b	it strings show	the transr	nitted a	nd received bit	patterns over	a noisy serial data link.	
	Transm	nit: 0100101110	1000101	101110	011			
	Receive	e: 0101100110)1001101	111110	011			
What is th	e length o	f the longest err	or burst?					
(a) 4		(b) 6	(c) 16		(d) 10	(e) 5		
vi. The check	bits C ₁ , C ₂	and C ₃ of a Han	nming coo	de are co	orrectly position	ned in		
(a) $D_1C_1C_2D_2D_3C_3$.			(b) $C_1C_2 D_1D_2D_3C_3$.				(c) $C_3D_3C_2D_2C_1D_1$.	
(d) $C_1D_1C_2D_2C_3D_3$.			(e) $C_1C_2D_1C_3D_2D_3$.					

vii. The following two tables indicates the different types of transmission media and their respective characteristic features:

1	Coaxial cables
2	UTP cables
3	Fibre Optic cables
4	Micro wave cables
5	STP cables

A	Unbounded medium
В	Shield as a metal foil
С	Twisted pair wires
D	Good for very high speed
Е	Use of BNC connectors

The correct order(s) of A to E which match(es) items 1 to 5 respectively is/are

(a) EDACB.

- (b) BCDAE.
- (c) ECDAB.

(d) CASED.

(e) BADEC.

viii. Which of the following is a/are correct statement(s) with respect to the frequency components of a digital signal?

- (a) As the frequency increases the amplitude decreases.
- (b) As the frequency decreases the amplitude increases.
- (c) As the amplitude decreases the frequency increases.
- (d) There are an infinite number of frequency components.
- (e) In many cases, the very high frequency components can be ignored.

ix. With respect to Circuit Switching and Packet Switching, which of the following statement(s) is/are incorrect?

- (a) In circuit switching after data transfer begins, no busy conditions take place.
- (b) In packet switching, each packet of the same message must follow the same route.
- (c) In circuit switching, the packets of the same message are forwarded via different routes.
- (d) In packet switching, each packet must contain the addressing information.
- (e) In circuit switching, a circuit must be established on the network prior to the data transfer.

X. Flow Control is employed in data communications

- (a) Because the transmitter and the receiver may not be able work at the same speed.
- (b) Because the receiver buffer capacity is high in new computers.
- (c) In a dynamic fashion using the sliding window protocol especially at higher protocol layers.
- (d) Because the communication channels are not always error free.
- (e) To ensure that all transmitted frames are received in the order in which they have been sent.

2. We need to send 280 kbps over a noiseless channel with a bandwidth of 25 kHz. How many signal levels do we need?

[5 Marks]

- 3. The SNR is often given in decibels. Assume that SNR (dB) is 34 and the channel bandwidth is 5 MHz. Calculate the maximum theoretical channel capacity of the channel in bits/second. [5 Marks]
- **4.** Explain clearly the responsibilities and the list protocols for each layer of ISO-OSI reference model. How OSI reference model is different from TCP/IP reference model? [10 Marks]
- **5.** Assume that the voltage level at time t = 0 is high, show Manchester and HDB3 encoding for the following bit stream 10100110000000010. Why net DC component is undesirable in the encoding techniques?

[10 Marks]

6. What MAC algorithm used in IEEE 802.3 networks? Explain using a flowchart? Distinguish between 1-persistent and p-persistent and non-persistent CSMA. Why is Ethernet's binary exponential back-off scheme superior to a p-persistent scheme for any fixed p? Why the maximum and minimum frame size is defined for Ethernet frame?

[10 Marks]

- **7.** Consider an error-free 1024-kbps channel used to send 512B data frames in one direction, with very short acknowledgements coming back the other way. Assume a propagation delay of 50msec. **[10 Marks]**
 - (a) What should be the size of Sender's Window and number of bits required for the sequence number to attain maximum utilization of channel capacity
 - (b) What is the maximum throughput for a window size of 1, 7, 15, 127, and 255?
 - (c) At what minimum window size can the protocol run at the full rate of the channel?
- **8.** Given a sender-receiver pair using Hamming Codes for single bit error correction and the binary message 1100010001 at the sender, what is the actual message transmitted including the parity bits (show your calculation)? Demonstrate error correction mechanism for the given message? [10 Marks]

***********End of Paper*******