Homework 4

Lance Remigio

March 23, 2025

Problem 1. Prove the following theorem.

Theorem (Generalize Mean Value Theorem). Let $f:[a,b]\to\mathbb{R}$ be a continuous function and $g:[a,b]\to\mathbb{R}$ is integrable and either $g\geq 0$ on [a,b] or $g\leq 0$ on [a,b]. Then there exists a $c\in [a,b]$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g. \tag{*}$$

Proof. Our goal is to find a $c \in [a, b]$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g.$$

Since $f:[a,b]\to\mathbb{R}$ is a continuous function and [a,b] is a compact set, f attains its maximum and minimum on [a,b]. Then

$$m = \sup_{x \in [a,b]} f(x)$$
 and $m = \inf_{x \in [a,b]} f(x)$

and hence,

$$m \le f(x) \le M \Longrightarrow mg(x) \le f(x)g(x) \le Mg(x) \ \forall x \in [a, b].$$
 (†)

Now, note that the inequality in follows immediately if g(x) = 0 for all $x \in [a, b]$. Hence, suppose that $g(x) \neq 0$ on [a, b]. By the Order Theorem for Integrals, (\dagger) implies

$$\int_{a}^{b} mg \le \int_{a}^{b} fg \le \int_{a}^{b} Mg$$

which further implies (by the algebraic theorem for integrals) that

$$m\int_{a}^{b}g \le \int_{a}^{b}fg \le M\int_{a}^{b}g. \tag{1}$$

From (1), we may consider two cases; that is, either $\int_a^b g \neq 0$ or $\int_a^b g = 0$. If $\int_a^b g \neq 0$, then we can divide by $\int_a^b g$ on (1). So, we have

$$m \leq \frac{\int_a^b fg}{\int_a^b g} \leq M.$$

But note that f is continuous on [a,b] and so, by the Intermediate Value Theorem, there exists a $c \in [a,b]$ such that

$$f(c) = \frac{\int_a^b fg}{\int_a^b g} \Longrightarrow \int_a^b fg = f(c) \int_a^b g$$

which is our desired result.

If $\int_a^b g = 0$, then it follows from (1) that

$$\int_{a}^{b} fg = 0$$

and so

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g$$

for all $c \in [a, b]$.

Problem 2. Prove the following theorem.

Theorem (Rudin, Theorem 6.15). If a < s < b, f is bounded on [a, b], f is continuous at s, and $\alpha(x) = I(x - s)$, then

$$\int_{a}^{b} f \ d\alpha = f(s).$$

Proof. Our goal is to show that $\int_a^b f \ d\alpha = f(s)$. Define the partition

$$P_n = \left\{a, s - \frac{1}{n}, s + \frac{1}{n}, b\right\}.$$

Since $f \in R_{\alpha}[a, b]$, we have

$$\int_{a}^{b} f \ d\alpha = \lim_{n \to \infty} U(f, \alpha, P_n) = \lim_{n \to \infty} L(f, \alpha, P_n). \tag{*}$$

So, it suffices to show that

$$\lim_{n \to \infty} U(f, \alpha, P_n) = \lim_{n \to \infty} L(f, \alpha, P_n) = f(s).$$

Note that

$$\alpha(x) = I(x - s) = \begin{cases} 1 & \text{if } x > s \\ 0 & \text{if } x \le s \end{cases}$$

By definition of α , we have

$$k = 1; \Delta \alpha_1 = \alpha(s - \delta) - \alpha(a) = 0 - 0 = 0$$

 $k = 2; \Delta \alpha_2 = \alpha(s + \delta) - \alpha(s - \delta) = 1 - 0 = 1$
 $k = 3; \Delta \alpha_3 = \alpha(b) - \alpha(s + \delta) = 1 - 1 = 0.$

Hence, we have

$$U(f, \alpha, P_n) = \sum_{k=1}^{3} M_k \Delta \alpha_k$$

$$= M_1 \Delta \alpha_1 + M_2 \Delta \alpha_2 + M_3 \Delta \alpha_3$$

$$= 0 + M_2 \cdot 1 + 0$$

$$= M_2 \cdot 1$$

$$= \sup_{x \in [s - \frac{1}{n}, s + \frac{1}{n}]} f(x)$$

and similarly,

$$L(f, \alpha, P_n) = \sum_{k=1}^{3} m_k \Delta \alpha_k = m_2 = \inf_{x \in [s - \frac{1}{n}, s + \frac{1}{n}]} f(x).$$

Because f is continuous at s, we know by exercise 4 of homework 3 that

$$\lim_{n \to \infty} U(f, \alpha, P_n) = \lim_{n \to \infty} \sup_{x \in [s - \frac{1}{n}, s + \frac{1}{n}]} f(x) = f(s)$$

and

$$\lim_{n \to \infty} L(f, \alpha, P_n) = \lim_{n \to \infty} \inf_{x \in [s - \frac{1}{n}, s + \frac{1}{n}]} f(x) = f(s)$$

which is our desired result.

Problem 3. Prove the following theorem.

Theorem (Rudin, Theorem 6.16). (a) Let $N \in \mathbb{N}$. Let c_1, \ldots, c_N be nonnegative numbers. Suppose s_1, \ldots, s_N are distinct points in (a, b), and let $\alpha(x) = \sum_{n=1}^N c_n I(x - s_n)$. Let f be continuous at s. Then

$$\int_{a}^{b} f \ d\alpha = \sum_{n=1}^{N} c_n f(s_n).$$

(b) Suppose $c_n \geq 0$ for $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} c_n$ converges, (s_n) is a sequence of distinct points in (a,b), and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x-s_n)$. Let f be continuous at s. Then

$$\int_{a}^{b} f \ d\alpha = \sum_{n=1}^{\infty} c_n f(s_n).$$

Proof. (i) Denote $\alpha_n = I(x - s_n)$ for $1 \le n \le N$. Note that we can easily show that each α_n is an increasing function by definition of $I(x - s_n)$. Since f is continuous on [a, b], we see that $f \in R_{\alpha_n}[a, b]$ for each $1 \le n \le N$. Furthermore, we can easily show, through an induction argument and by an exercise 5 from homework 3, that

$$\int_{a}^{b} f \ d\left(\sum_{n=1}^{N} c_{n} a_{n}\right) = \sum_{n=1}^{N} \int_{a}^{b} f \ d(c_{n} a_{n}) \tag{1}$$

Also, note that for all $1 \le n \le N$

$$\int_{a}^{b} f \, d\alpha_n = f(s_n) \tag{2}$$

by applying the previous exercise for each $1 \le n \le N$. Then (1) and (2) imply that

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} \, d\left(\sum_{n=1}^{N} c_{n} \alpha_{n}\right)$$

$$= \sum_{n=1}^{N} \int_{a}^{b} f \, d(c_{n} \alpha_{n})$$

$$= \sum_{n=1}^{N} c_{n} \int_{a}^{b} f \, d\alpha_{n}$$

$$= \sum_{n=1}^{N} c_{n} f(s_{n}).$$
(Exercise 5 from HW3)

Hence, we have that

$$\int_{a}^{b} f \ d\alpha = \sum_{n=1}^{N} c_n f(s_n).$$

(ii) Our goal is to show that

$$\int_{a}^{b} f \ d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$$

where $c_n \geq 0$ for all $n \in \mathbb{N}$. That is, we want to show that for any $\varepsilon > 0$, there exists K such that for any N > K that

$$\left| \sum_{n=1}^{N} c_n f(s_n) - \int_a^b f \, d\alpha \right| < \varepsilon. \tag{*}$$

To this end, let $\varepsilon > 0$ be given. Note that $I(x - s_n) \le 1$ for all $x \in [a, b]$ and so we have

$$0 \le c_n I(x - s_n) \le c_n.$$

Since $\sum c_n$ is a convergent series, it follows from applying the comparison test to the above inequality that $\sum c_n I(x-s_n)$ converges. Observe that α is also an increasing function. Indeed, we can easily see that this is the case by using the fact that $\sum c_n I(x-s_n)$ is a convergent series and applying the order limit theorem for any x < y in [a,b]. Since α is an increasing function on [a,b] and f is a continuous function on [a,b], we have that $f \in R_{\alpha}[a,b]$. Now, consider $\alpha(x) = \alpha_1(x) + \alpha_2(x)$ where

$$\alpha_1(x) = \sum_{n=1}^{N} c_n I(x - s_n)$$
 and $\alpha_2(x) = \sum_{n=N+1}^{\infty} c_n I(x - s_n)$.

Also, note that by an exercise in homework 3, we have

$$\int_{a}^{b} f \ d\alpha = \int_{a}^{b} f \ d\alpha_{1} + \int_{a}^{b} f \ d\alpha_{2}. \tag{1}$$

By part (a), we see that

$$\int_{a}^{b} f \ d\alpha_1 = \sum_{n=1}^{N} c_n f(s_n).$$

Hence, the left-hand side of (*) can be written as (by using (1) and the equality above)

$$\left| \sum_{n=1}^{N} c_n f(s_n) - \int_a^b f \, d\alpha \right| = \left| \int_a^b f \, d\alpha_2 - \int_a^b f \, d\alpha \right|$$
$$= \left| \int_a^b f \, d\alpha_2 \right|.$$

Since f is bounded on [a,b] (because it is continuous on the compact interval [a,b]), we have that for some $\tilde{M}>0$, we have $|f(x)|\leq \tilde{M}$ for all $x\in [a,b]$. By the triangle inequality for integrals, we can see that

$$\left| \int_{a}^{b} f \ d\alpha_{2} \right| \leq \int_{a}^{b} |f| \ d\alpha_{2} \leq \tilde{M}(\alpha_{2}(b) - \alpha_{2}(a))$$

by a Theorem proven in lecture. Note that on the above inequality, we see that $|f| \in R_{\alpha_2}[a, b]$ since $f \in R_{\alpha_2}[a, b]$. Next, consider the difference $\alpha_2(b) - \alpha_2(a)$. Then observe that

$$\alpha_2(b) - \alpha_2(a) = \sum_{n=N+1}^{\infty} c_n$$

by definition of $I(x - s_n)$. Indeed, we see that $\alpha_2(a) = 0$ since $a < s_n$ and $\alpha_2(b) = 1$ since $a > s_n$. Since $\sum c_n$ converges, it follows from an exercise done in 230A that

$$\lim_{N \to \infty} \sum_{n=N+1}^{N} c_n = 0.$$

As a consequence, we can find a \hat{K} such that for any $n > \hat{K}$

$$\alpha_2(b) - \alpha_2(a) = \sum_{n=N+1}^{\infty} c_n < \frac{\varepsilon}{\tilde{M}}.$$

Note that we dropped the absolute value on the above quantity because of the fact that c_n is nonnegative for all $n \in \mathbb{N}$. We claim that this is the desired K we were looking for. Indeed, for any $n > \hat{K}$, we have

$$\left| \sum_{n=1}^{N} c_n f(s_n) - \int_a^b f \, d\alpha \right| = \left| \int_a^b f \, d\alpha_2 \right|$$

$$\leq \tilde{M}(\alpha_2(b) - \alpha_2(a))$$

$$< \tilde{M} \cdot \frac{\varepsilon}{\tilde{M}}$$

$$= \varepsilon$$

which is our desired result.

Problem 4. Let p, q > 0 be such that $\frac{1}{p} + \frac{1}{q} = 1$.

4-1) Prove that if $f \in R_{\alpha}[a,b]$ and $g \in R_{\alpha}[a,b]$, $f \geq 0$, $g \geq 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$

then $\int_a^b fg \ d\alpha \le 1$.

4-2) Prove that if $f \in R_{\alpha}[a,b]$ and $g \in R_{\alpha}[a,b]$, then

$$\int_a^b |fg| \ d\alpha \le \left[\int_a^b |f|^p \ d\alpha \right]^{\frac{1}{p}} \left[\int_a^b |g|^q \ d\alpha \right]^{\frac{1}{q}}.$$

Proof. 4-1) Since $f \ge 0$, and p, q > 0 such that

$$\frac{1}{p} + \frac{1}{q} = 1,$$

we have

$$fg \leq \frac{f^p}{p} + \frac{g^q}{q}$$
.

Note that if f, g = 0 on [a, b], then the result immediately holds. So, suppose f, g > 0 on [a, b]. Since $f \in R_{\alpha}[a, b]$ and $g \in R_{\alpha}[a, b]$, we can use the Order Theorem for Integrals and the

Algebraic Theorem for integrals to write

$$\int_{a}^{b} |fg| \ d\alpha = \int_{a}^{b} fg \ d\alpha$$

$$\leq \int_{a}^{b} \left[\frac{f^{p}}{p} + \frac{g^{q}}{q} \right] d\alpha$$

$$= \int_{a}^{b} \frac{f^{p}}{p} \ d\alpha + \int_{a}^{b} \frac{g^{q}}{q} \ d\alpha$$

$$= \frac{1}{p} \int_{a}^{b} f^{p} \ d\alpha + \frac{1}{q} \int_{a}^{b} g^{q} \ d\alpha$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

Hence, we have

$$\int_{a}^{b} |fg| \ d\alpha \le 1.$$

4-2) Our goal is to show that

$$\int_a^b |fg| \ d\alpha \leq \Big(\int_a^b |f|^p \ d\alpha\Big)^{\frac{1}{p}} \Big(\int_a^b |g|^q \ d\alpha\Big)^{\frac{1}{q}}.$$

Let

$$A = \left(\int_a^b |f|^p \ d\alpha\right)^{\frac{1}{p}}$$
 and $B = \left(\int_a^b |g|^q \ d\alpha\right)^{\frac{1}{q}}$.

We will consider two cases:

(i) $(A, B \neq 0)$ Let

$$f(\tilde{x}) = \frac{f(x)}{A} = \frac{f(x)}{\left(\int_a^b |f|^p d\alpha\right)^{\frac{1}{p}}}$$

and

$$g(x) = \frac{g(x)}{B} = \frac{g(x)}{\left(\int_a^b |g|^q d\alpha\right)^{\frac{1}{q}}}.$$

From here, it suffices to show that

$$\int_{a}^{b} |\tilde{f}||\tilde{g}| \ d\alpha \le 1.$$

Note that

$$\int_{a}^{b} |\tilde{f}|^{p} d\alpha = \int_{a}^{b} \frac{|f|^{p}}{\int_{a}^{b} |f|^{p} d\alpha} d\alpha$$
$$= \frac{1}{\int_{a}^{b} |f|^{p} d\alpha} \int_{a}^{b} |f|^{p} d\alpha = 1.$$

Similarly, we have

$$\int_{a}^{b} |\tilde{g}|^{q} d\alpha = 1.$$

So, by (4-1), we have

$$\int_{a}^{b} |\tilde{f}||\tilde{g}| \ d\alpha \le 1.$$

(ii) (A = 0 or B = 0) From this case, we can see that

$$\int_a^b |f|^p \ d\alpha = 0 \quad \text{or} \quad \int_a^b |g|^q \ d\alpha = 0.$$

Our goal is to show that

$$\int_a^b |fg| \ d\alpha \le \Big(\int_a^b |f|^p \ d\alpha\Big)^{\frac{1}{p}} \Big(\int_a^b |g|^q \ d\alpha\Big)^{\frac{1}{q}}.$$

It suffices to show that the left-hand side of the above inequality is zero. Suppose that

$$\int_a^b |f|^p \ d\alpha = 0.$$

The proof for the other case follows analogously. Indeed, by using Young's Inequality and a linearity property of the R.S integral, we have

$$\begin{split} 0 & \leq \int_a^b |fg| \ d\alpha \leq \int_a^b \left(\frac{|f|^p}{p} + \frac{|g|^q}{q}\right) \ d\alpha \\ & = \frac{1}{p} \int_a^b |f|^p \ d\alpha + \frac{1}{q} \int_a^b |g| \ d\alpha \\ & = \frac{1}{q} \int_a^b |g|^q \ d\alpha. \end{split}$$

Hence,

$$0 \le \int_a^b |fg| \ d\alpha \le \frac{1}{q} \int_a^b |g|^q \ d\alpha.$$

Note that for all r > 0, we have

$$0 \le \int_a^b |r \cdot fg| \ d\alpha \le \frac{1}{q} \int_a^b r^q |g|^q \ d\alpha.$$

That is,

$$0 \le r \int_a^b |fg| \ d\alpha \le \frac{1}{q} r^q \int_a^b |g|^q \ d\alpha \Longrightarrow 0 \le \int_a^b |fg| \ d\alpha \le \frac{r^{q-1}}{q} \int_a^b |g|^q \ d\alpha.$$

If we let $r \to 0$, we will get that

$$\frac{r^{q-1}}{q} \int_a^b |g|^q \ d\alpha \to 0$$

and similarly, the left-hand side of the above inequality also goes to 0 as $r \to 0$. Hence, the Squeeze Theorem implies that

$$\int_{a}^{b} |fg| \ d\alpha \to 0$$

as $r \to 0$. That is,

$$\int_{a}^{b} |fg| \ d\alpha = 0.$$

Problem 5. Suppose $f \in C^1[a,b]$, f(a) = f(b) = 0, and $\int_a^b f^2(x) dx = 1$. Prove that

$$\int_a^b x f(x) f'(x) \ dx = \frac{-1}{2}$$

and

$$\int_{a}^{b} [f'(x)]^{2} dx \cdot \int_{a}^{b} x^{2} f^{2}(x) dx \ge \frac{1}{4}.$$

Proof. Using Integration by Parts, we have

$$\int_{a}^{b} x f(x) f'(x) dx = x f^{2}(x) \Big]_{a}^{b} - \int_{a}^{b} f(x) [f(x) + x f'(x)] dx$$

$$= x f^{2}(x) \Big]_{a}^{b} - \int_{a}^{b} f^{2}(x) dx - \int_{a}^{b} x f(x) f'(x) dx$$

$$= [b f^{2}(b) - a f^{2}(a)] - 1 - \int_{a}^{b} x f(x) f'(x) dx$$

$$= -1 - \int_{a}^{b} x f(x) f'(x) dx.$$

Hence, we have

$$2\int_a^b x f(x)f'(x) \ dx = -1 \Longrightarrow \int_a^b x f(x)f'(x) \ dx = \frac{-1}{2}.$$

From our result, we can see that

$$\int_{a}^{b} -(xf(x)f'(x)) \ dx = \frac{1}{2}.$$

As a consequence of the above equality, we have

$$\left|\frac{-1}{2}\right| = \left|\int_a^b x f(x) f'(x) \ dx\right| \le \int_a^b |x f(x) f'(x)| \ dx$$

by the Triangle Inequality for integrals. Let p=q=2. Then $\frac{1}{p}+\frac{1}{q}=1$. Let u=f'(x) and v=xf(x). By applying Holder's Inequality for Integrals, we have

$$\int_{a}^{b} |xf(x)f'(x)| \ dx \le \left(\int_{a}^{b} (f'(x))^{2} \ dx\right)^{\frac{1}{2}} \left(\int_{a}^{b} x^{2} f^{2}(x) \ dx\right)^{\frac{1}{2}} \tag{2}$$

Using (1) and (2), we conclude that

$$\frac{1}{2} \le \left(\int_a^b (f'(x))^2 \ dx \right)^{\frac{1}{2}} \left(\int_a^b x^2 f^2(x) \ dx \right)^{\frac{1}{2}}$$

and so

$$\frac{1}{4} \le \int_a^b (f'(x))^2 dx \cdot \int_a^b x^2 f^2(x) dx$$

as our desired result.

Problem 6. (a) Let f be continuous on [a,b] such that for any subinterval $[c,d] \subseteq [a,b]$

$$\int_{c}^{d} f(t) \ dt = 0.$$

Prove that f(x) = 0 on [a, b].

(b) Let f be continuous on [a, b] such that

$$\int_{a}^{x} f(t) dt = \int_{x}^{b} f(t) dt, \ \forall x \in [a, b].$$

Proof. (a) Let f be continuous on [a, b] such that for any subinterval $[c, d] \leq [a, b]$

$$\int_{c}^{d} f(t) dt = 0.$$

Suppose for sake of contradiction that $f(c) \neq 0$ for some $c \in [a, b]$. Since f is continuous on [a, b], it follows that f is continuous at c. We have two cases to consider; that is, either

- (1) f(c) > 0
- (2) f(c) < 0

We will prove the case where f(c) > 0. The other case will follow analogously. Indeed, since f is continuous at c, we have

$$f(c) > 0 \Longrightarrow \exists \delta > 0 \text{ such that } \forall x \in (c - \delta, c + \delta) \ f(x) > 0.$$

By the Order Theorem for Integrals, we have

$$f(x) > 0 \Longrightarrow \int_{c-\delta}^{c+\delta} f(x) \ dx > 0.$$

But this contradicts our assumption. Hence, it must follow that f(x) = 0 for all $x \in [a, b]$.

(b) Let f be continuous on [a, b] such that

$$\int_{a}^{x} f(t) dt = \int_{x}^{b} f(t) dt \, \forall x \in [a, b].$$

Denote $F(x) = \int_a^x f(t) dt$ and $G(x) = \int_x^b f(t) dt = -\int_b^x f(t) dt$. Suppose for sake of contradiction that there exists a $c \in [a, b]$ such that $f(c) \neq 0$. Since f is continuous on [a, b] and, in particular, f is continuous at $c \in [a, b]$, then by FTC II, we have F'(c) = f(c) and G'(c) = -f'(c). But by assumption, f(c) = -f(c) which implies that

$$2f(c) = 0 \Longrightarrow f(c) = 0$$

which contradicts our assumption that $f(c) \neq 0$. Hence, it must be the case that f(x) = 0 for all $x \in [a, b]$.

Problem 7 (A Substitution Formula For Ordinary Riemann Integrals). Suppose that

- $q \in C^1[a,b]$ and $f \in C^0[c,d]$.
- The range of $g, g([a,b]) = \{g(x) : x \in [a,b]\}$, is contained in [c,d] (so that the composition $f \circ g$ is defined).
- 7-1) Explain why f is the derivative of some function.
- 7-2) Explain why $(f \circ g)g'$ is a derivative of some function.
- 7-3) Prove the substitution formula:

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du.$$

Proof. 7-1) Define the function $F:[c,d]\to\mathbb{R}$ by

$$F(x) = \int_{c}^{x} f(t) dt.$$

The above integral holds because $f \in R[c,d]$ by assumption. Since f is continuous for any $x \in [c,d]$ it follows that F'(x) = f(x) for any $x \in [g(a),g(b)]$ by the Second Fundamental Theorem of Calculus.

- 7-2) Note that $(f \circ g)g'$ is the derivative of $F \circ g$.
- 7-3) Our goal is to show that

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du.$$

Note that we can use (7-2) to write $((F \circ g)(x))' = f(g(x))g'(x)$ for all $x \in [a, b]$. Since $[g(a), g(b)] \subseteq [c, d]$, we can use the First Fundamental Theorem of Calculus to get

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{a}^{b} ((F \circ g)(x))' \ dx$$

$$= (F \circ g)(b) - (F \circ g)(a)$$

$$= F(g(b)) - F(g(a))$$

$$= \int_{g(a)}^{g(b)} F'(u) \ du$$

$$= \int_{g(a)}^{g(b)} f(u) \ du$$

which is our desired result.

Problem 8. Prove the following integration by parts for "improper" Riemann Integrals:

Theorem (Integration by Parts of Improper Riemann Integrals). Let $a \in \mathbb{R}, \ u:[a,\infty) \to \mathbb{R}$ and $v:[a,\infty) \to \mathbb{R}$ are differentiable, $\forall b>a \ u',v' \in R[a,b]$. Additionally, assume that $\int_a^\infty vu' \ dx$ exists in \mathbb{R} and

$$\lim_{b \to \infty} [u(b)v(b) - u(a)v(a)] \text{ exists (in } \mathbb{R}).$$

Then $\int_a^\infty uv' \ dx$ exists in \mathbb{R} and

$$\int_{a}^{\infty} uv' \ dx = \lim_{b \to \infty} [u(b)v(b) - u(a)v(a)] - \int_{a}^{\infty} vu' \ dx.$$

Proof. By assumption u' exists and so $u \in C[a,b]$. Hence, $u \in R[a,b]$ as an immediate consequence. Since $v' \in R[a,b]$, we can conclude that the product $v'u \in R[a,b]$. By the Ordinary Riemann Integration by Parts, we have that

$$\int_{a}^{b} u(x)v'(x) \ dx = [u(b)v(b) - u(a)v(b)] - \int_{a}^{b} u'(x)v(x) \ dx.$$

By assumption, the limit as $b \to \infty$ of each term on the right-hand side of the above equation holds. Thus, we have that

$$\lim_{b\to\infty} \int_a^b uv' \ dx \text{ exists.}$$

Hence, we have that

$$\lim_{b \to \infty} \int_a^b u(x)v'(x) \ dx = \lim_{b \to \infty} \left[(u(b)v(b) - u(a)v(a)) - \int_a^b u'(x)v(x) \ dx \right]$$

$$= \lim_{b \to \infty} \left[u(b)v(b) - u(a)v(a) \right] - \lim_{b \to \infty} \int_a^b u'(x)v(x) \ dx \quad \text{(ALT for Functions)}$$

which can be re-written into

$$\int_{a}^{\infty} u'v \ dx = \lim_{b \to \infty} [u(b)v(b) - u(a)v(a)] - \int_{a}^{\infty} uv' \ dx$$

as our desired result.

Problem 9. Let $a \in \mathbb{R}$ be a fixed number. Suppose $f \in R[a,b]$ for every b > a. Let c > a. Prove that the improper integral $\int_a^\infty f(x) \ dx$ converges if and only if the improper integral $\int_c^\infty f(x) \ dx$ converges.

Proof. (\Longrightarrow) Suppose that $\int_a^\infty f(x) dx$ converges. Our goal is to show that

$$\int_{c}^{\infty} f(x) \ dx \text{ exists}$$

Without loss of generality, suppose that b < c Suppose b < c. Then by the segment addition property of the Riemann Integral, we have that

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{b} f - \int_{c}^{b} f.$$

Hence, we have

$$\int_{c}^{b} f = \int_{a}^{b} f - \int_{a}^{c} f.$$

By the Algebraic Limit Theorem for Functions, we have that

$$\int_{c}^{\infty} f = \lim_{b \to \infty} \int_{c}^{b} f = \lim_{b \to \infty} \left[\int_{a}^{b} f - \int_{a}^{c} f \right]$$

$$= \lim_{b \to \infty} \int_{a}^{b} f - \lim_{b \to \infty} \int_{a}^{c} f$$

$$= \int_{a}^{\infty} f - \int_{a}^{c} f.$$
(ALT for Functions)

Hence, we see that $\int_c^\infty f$ exists. (\iff) Suppose $\int_c^\infty f(x) \, dx$ converges. Then by the segment addition property of integration, we have that

$$\int_{a}^{x} f(t) \ dt = \int_{a}^{c} f(t) \ dt + \int_{c}^{x} f(t) \ dt.$$

Then applying the limit as $x \to \infty$ on both sides, we have

$$\begin{split} \lim_{x \to \infty} \int_a^x f(t) \ dt &= \lim_{x \to \infty} \Big[\int_a^c f(t) \ dt + \int_c^x f(t) \ dt \Big] \\ &= \lim_{x \to \infty} \int_a^c f(t) \ dt + \lim_{x \to \infty} \int_c^x f(t) \ dt \\ &= \int_a^c f(t) \ dt + \int_c^\infty f(t) \ dt \end{split}$$

Note that the first term is just a constant so the limit always exists and the second exists by assumption. Hence, we can conclude that

$$\int_{a}^{\infty} f(t) dt \text{ converges.}$$

Problem 10. Let a > 0. Prove that $\int_a^\infty \frac{1}{x^p} dx \begin{cases} \text{converges} & \text{if } p > 1 \\ \text{diverges} & \text{if } p \leq 1 \end{cases}$.

Proof. We will consider three cases:

(i) (p=1) Consider the integral $\int_a^t \frac{1}{x} dx$. Since $(\ln x)' = \frac{1}{x}$ on [a,t] for any t>0, we can see by FTC I that

$$\int_a^t \frac{1}{x} dx = \ln(t) - \ln(a).$$

Since $\lim_{t\to\infty} \ln(t) = \infty$, it follows that when we apply the limit as $t\to\infty$ to the above equation that $\int_a^\infty \frac{1}{x} dx$ diverges.

(ii) (p > 1) Consider the integral $\int_a^t \frac{1}{x^p} dx$. Note that

$$\frac{d}{dx} \left[\frac{1}{1-p} x^{1-p} \right] = \frac{1}{x^p}$$

for all $x \in [a, t]$ where t > a. Then by FTC I, we can see that

$$\int_{a}^{t} \frac{1}{x^{p}} dx = \frac{1}{1-p} t^{1-p} + \frac{1}{1-p} a^{t-p}.$$
 (*)

Since 1-p<0 by assumption, we can see that $\lim_{t\to\infty}t^{1-p}=0$ by the fact given to us and so applying the limit as $t\to\infty$ to (*), we can see that

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = 0 - \frac{1}{1 - p} a^{t - p} = -\frac{1}{1 - p} a^{t - p}.$$

by the Algebraic Limit Theorem.

(iii) (p < 1) From the fact that was given to us, we can see that 1 - p > 0 implies $\lim_{t \to \infty} t^{1-p} = \infty$. Hence, from the equality in (*), we can see that $\int_a^\infty \frac{1}{x^p} \ dx$ diverges.

Problem 11 (Cauchy Criterion For Improper Integrals). Let $a \in \mathbb{R}$ be a fixed number. Suppose $f \in R[a,b]$ for every b > a. Prove that the improper integral $\int_a^\infty f(x) \ dx$ converges if and only if

$$\forall \varepsilon > 0 \ \exists M > a \ \text{such that} \ \forall A, B > M \ \ \Big| \int_A^B f(x) \ dx \Big| < \varepsilon.$$

Proof. (\Longrightarrow) Suppose $\int_a^\infty f(x) \ dx$ converges. Our goal is to show that for all $\varepsilon > 0$, there exists M > a such that for all A, B > M

$$\Big| \int_{A}^{B} f(x) \ dx \Big| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Without loss of generality, assume that A < B. Since $\int_a^\infty f(x) \ dx$ converges, it

follows from our given ε that there exists an $M_1 > B$ such that for any $t > M_1$, we have

$$\left| \int_{B}^{t} f(x) \, dx - L \right| < \frac{\varepsilon}{2} \tag{1}$$

Similarly, there exists an $M_2 > A$ such that for any $t > M_2$, we have

$$\left| \int_{A}^{t} f(x) \, dx - L \right| < \frac{\varepsilon}{2}. \tag{2}$$

Using the segment addition property of integration, we have

$$\int_{A}^{B} f(x) \ dx = \int_{A}^{t} f(x) \ dx + \int_{t}^{B} f(x) \ dx$$
$$= \int_{A}^{t} f(x) \ dx - \int_{B}^{t} f(x) \ dx.$$

Let $M = \max\{M_1, M_2\}$. Then we have for any B > A > M, (1) and (2) imply

$$\left| \int_{A}^{B} f(x) \ dx \right| = \left| \int_{A}^{t} f(x) \ dx - \int_{B}^{t} f(x) \ dx \right|$$

$$\leq \left| \int_{A}^{t} f(x) \ dx - L \right| + \left| L - \int_{B}^{t} f(x) \ dx \right|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

which is our desired result.

 (\Leftarrow) Suppose that for any $\varepsilon > 0$, there exists M > a such that for all A, B > M,

$$\Big| \int_A^B f(x) \ dx \Big| < \varepsilon.$$

Consider the sequence (c_n) in \mathbb{R} defined by

$$c_n = \int_a^n f(x) \ dx.$$

First, we will show that c_n converges to some $L \in \mathbb{R}$. To this end, we will show that c_n is a Cauchy sequence. We claim that the same M can be used to do this. Then for any n > m > M, we have

$$|c_n - c_m| = \left| \int_a^n f(x) \, dx - \int_a^m f(x) \, dx \right|$$
$$= \left| - \int_n^a f(x) \, dx - \int_a^m f(x) \, dx \right|$$
$$= \left| \int_n^m f(x) \, dx \right|$$
$$< \varepsilon.$$

Hence, we see that c_n is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $c_n \to L$ for some $L \in \mathbb{R}$. As a consequence, we need to show that

$$\lim_{x \to \infty} \int_{a}^{x} f(t) \ dt = L.$$

Our goal is to show that for any $\varepsilon > 0$, there exists an M > a such that for any x > M, we have

$$\left| \int_{a}^{x} f(t) \, dt - L \right| < \varepsilon. \tag{*}$$

To this end, let $\varepsilon > 0$ be given. Observe by segment addition property of the integral, we can see that

$$\int_{a}^{x} f(t) dt = \int_{a}^{\lfloor x \rfloor} f(t) dt + \int_{\lfloor x \rfloor}^{x} f(t) dt.$$

Since $\lim_{n\to\infty} \int_a^n f(x) \ dx = L$, we know there exists an $M_1 > a$ (with our given ε) such that for any $n > M_1$, we have that

$$\left| \int_{a}^{n} f(t) \ dt - L \right| < \frac{\varepsilon}{2}.$$

In particular, since $\lfloor x \rfloor \in \mathbb{N}$ and $\lfloor x \rfloor > M_1$, we have that

$$\left| \int_{a}^{\lfloor x \rfloor} f(t) \ dt - L \right| < \frac{\varepsilon}{2}. \tag{1}$$

By assumption, there also exists an $M_2 > a$ such that for any $A > B > M_2$, we have that

$$\left| \int_{A}^{B} f(t) dt \right| < \frac{\varepsilon}{2}.$$

In particular, since $x > \lfloor x \rfloor > M_2$, we have that

$$\left| \int_{\lfloor x \rfloor}^{x} f(t) \ dt \right| < \frac{\varepsilon}{2}. \tag{2}$$

Now, let $M = \max\{M_1, M_2\}$. Then using (1) and (2), we have that for any x > M,

$$\begin{split} \left| \int_{a}^{x} f(t) \ dt - L \right| &= \left| \int_{a}^{\lfloor x \rfloor} f(t) \ dt + \int_{\lfloor x \rfloor}^{x} f(t) \ dt - L \right| \\ &\leq \left| \int_{a}^{\lfloor x \rfloor} f(t) \ dt - L \right| + \left| \int_{\lfloor x \rfloor}^{x} f(t) \ dt - L \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

Hence, we conclude that

$$\lim_{x \to \infty} \int_{a}^{x} f(t) \ dt = L.$$

Problem 12 (Absolute Convergence Implies Convergence). Let $a \in \mathbb{R}$ be a fixed number. Suppose $f \in R[a,b]$ for every b > a. Prove that the improper integral $\int_a^\infty |f(x)| \ dx$ converges, then the improper integral $\int_a^\infty f(x) \ dx$ also converges.

Proof. Suppose $f \in R[a,b]$ for every b > a. Our goal is to show that for all $\varepsilon > 0$ such that there exists M > a such that for any A, B > M, we have

$$\Big| \int_A^B f(x) \ dx \Big| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Since $\int_a^\infty |f(x)| \ dx$ converges, there exists an $\hat{M} > a$ such that for all $A, B > \hat{M}$

$$\Big| \int_{A}^{B} |f(x)| \ dx \Big| < \varepsilon.$$

We claim that \hat{M} can be used as the same M we were looking for. Let $M = \hat{M}$. Indeed, we have for any A, B > M, we have

$$\left| \int_{A}^{B} f(x) \ dx \right| \le \int_{A}^{B} |f(x)| \ dx = \left| \int_{A}^{B} |f(x)| \ dx \right| < \varepsilon \tag{*}$$

by the triangle inequality for integrals. Note that the second equality holds because $|f(x)| \ge 0$ and that

$$\int_{A}^{B} |f(x)| \ dx \ge 0$$

by another theorem proven in class. Hence, we see that (*) is our desired result.

Problem 13 (Comparison Test For Improper Integrals). Let $a \in \mathbb{R}$ be a fixed number. Suppose $f,g \in R[a,b]$ for every b>a and that there exists $K \in \mathbb{R}$ such that $0 \le f(x) \le g(x)$ for all x>K. Prove that the improper integral $\int_a^\infty g(x) \ dx$ converges, so does $\int_a^\infty f(x) \ dx$.

Proof. Our goal is to show that $\int_a^\infty f(x)\ dx$ converges given that $\int_a^\infty g(x)\ dx$ converges; that is, we want to show that for all $\varepsilon > 0$, there exists an M > a such that for all A, B > M, we have

$$\left| \int_{A}^{B} f(x) \ dx \right| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Then $\int_a^\infty g(x) \ dx$ converges implies that there exists an $\hat{M} > a$ such that for any $A, B > \hat{M}$, we have

$$\left| \int_{A}^{B} g(x) \ dx \right| < \varepsilon.$$

Also, there exists a $K \in \mathbb{R}$ such that $0 \le f(x) \le g(x)$ for all x > K. Let $M = \max\{k, \hat{M}\} + 1$. Note that with this constructed M, we have, by the order property of the integral that

$$0 \le \int_A^B f(x) \ dx \le \int_A^B g(x) \ dx.$$

Then for any A, B > M, we have that

$$\Big| \int_A^B f(x) \ dx \Big| = \int_A^B f(x) \ dx \le \int_A^B g(x) \ dx = \Big| \int_A^B g(x) \ dx \Big| < \varepsilon$$

which is our desired result.

Problem 14 (Limit Comparison Test for Improper Integrals). Let $a \in \mathbb{R}$ be a fixed number. Suppose $f,g \in R[a,b]$ for every b>a and that there exists $K \in \mathbb{R}$ such that $0 \le f(x) \le g(x)$ for all x>K. Let $L=\lim_{x\to\infty}\frac{f(x)}{g(x)}$. Prove that

- (i) If $0 < L < \infty$, then $\int_a^\infty f(x) \ dx$ converges if and only if $\int_a^b g(x) \ dx$ converges.
- (ii) If $L = \infty$ and $\int_a^\infty f(x) \ dx$ converges, then $\int_a^\infty g(x) \ dx$ converges.
- (iii) If L=0 and $\int_a^\infty g(x)\ dx$ converges, then $\int_a^\infty f(x)\ dx$ converges.

Proof. Since $\lim_{x\to\infty}\frac{f(x)}{g(x)}=L$, we know that for all $\varepsilon>0$, there exists $\hat{M}>0$ such that for any $x\geq M$,

we have

$$\left| \frac{f(x)}{g(x)} - L \right| < \varepsilon$$

which can be further written as

$$-\varepsilon < \frac{f(x)}{g(x)} - L < \varepsilon$$

and so

$$L - \varepsilon < \frac{f(x)}{g(x)} < L + \varepsilon.$$
 (*)

If L = 0, then the above inequality can be re-written as

$$-\varepsilon < \frac{f(x)}{g(x)} < \varepsilon. \tag{**}$$

If $L=\infty$, then for all C>0, there exists $\kappa>0$ such that for all $x>\kappa$, we have

$$\frac{f(x)}{g(x)} > C. \tag{***}$$

(i) Suppose $0 < L < \infty$. (\Longrightarrow) Our goal is to show that $\int_a^\infty g(x) \ dx$ converges given that $\int_a^\infty f(x) \ dx$ converges. From the left-hand side of (*), we can see that for all $x > \hat{M}$, we have

$$g(x) < \frac{1}{L - \varepsilon} f(x).$$

In particular, if $\varepsilon = \frac{L}{2}$, then we have

$$g(x) < \frac{2}{L}f(x).$$

Since there exists a $K \in \mathbb{R}$ such that for all $x \geq K$, $f(x) \geq 0$ and $g(x) \geq 0$. So, if we take $M = \max\{\hat{M}, k\}$, then for any x > M > a, we have

$$0 < g(x) < \frac{2}{L}f(x).$$

Since $\int_a^\infty f(x)\ dx$ converges, we can see that $\int_a^\infty \frac{2}{L} f(x)\ dx$ converges. By the Comparison Test for Integrals, we have $\int_a^\infty g(x)\ dx$ converges.

(\iff) Suppose $\int_a^\infty g(x)\ dx$ converges. Our goal is to show that $\int_a^\infty f(x)\ dx$ converges. From the right-hand side of (*), we can see that for any $x \geq \hat{M}$, we have

$$f(x) < (L + \varepsilon)g(x).$$

In particular, if $\varepsilon = L$, then

$$f(x) < 2Lg(x)$$
.

Since there exists $K \in \mathbb{R}$ such that $f(x) \geq 0$ and $g(x) \geq 0$, define $M = \max\{K, \hat{M}\}$. Then for any $x \geq M > a$, we have

$$0 < f(x) < 2Lg(x).$$

Now, since $\int_a^\infty g(x)\ dx$ converges, it follows that $\int_a^\infty 2Lg(x)\ dx$ converges. Hence, the Comparison Test implies that $\int_a^\infty f(x)\ dx$ converges.

(ii) Our goal is to show that if $\int_a^\infty f(x) \ dx$ converges, then $\int_a^\infty g(x) \ dx$ converges. From (**), we can see that

$$g(x) < \frac{1}{C}f(x).$$

Define $\tilde{M} = \max\{\kappa, \hat{M}\}$. Then we have for any $x > \tilde{M}$

$$0 < g(x) < \frac{1}{C}f(x).$$

Since $\int_a^\infty f(x)\ dx$ converges, also have that $\int_a^\infty \frac{1}{C} f(x)\ dx$ converge. By the Comparison Test, we can see that $\int_a^\infty g(x)\ dx$ converges.

(iii) Suppose L=0. Then by (**), we can see that for any $x>\hat{M}$ that

$$f(x) < \varepsilon g(x)$$
.

In this case, if we let $\varepsilon = 1$, we have that

for all $x > \hat{M}$. Since there exists $K \in \mathbb{R}$ such that for any $x \geq K$, we have $f(x) \geq 0$ and $g(x) \geq 0$. Note that in this case, we require that g(x) > 0. Otherwise, the ratio above will not be defined. So, using the same M from part (i), we have that for any x > M,

$$0 < f(x) < g(x).$$

Since $\int_a^\infty g(x)\ dx$ converges, it follows from the Comparison Test that $\int_a^\infty f(x)\ dx$ also converges.

Problem 15. Determine all values α and β for which $\int_2^\infty \frac{1}{x^{\alpha}(\ln x)^{\beta}} dx$ is convergent.

Proof. We will consider three cases.

(i) $(\alpha = 1)$ Consider the improper integral below

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{\beta}} dx. \tag{*}$$

Using a change of variables (using $u = \ln x$ and so $u' = \frac{1}{x}$), we have that

$$\int_2^\infty \frac{1}{x(\ln x)^\beta} \ dx = \int_2^\infty \frac{1}{u^\beta} \ du.$$

From Exercise 10, we can see that the improper integral above converges if $\beta > 1$ and diverges if $\beta \leq 1$. In this case, if $\alpha = 1$ and $\beta > 1$, then the improper integral in (*) converges.

(ii) $(\alpha < 1)$ Choose $p \in (1, \alpha)$. Using Exercise 10 again, we have that

$$\int_2^\infty \frac{1}{x^p} \ dx = \lim_{t \to \infty} \int_2^t \frac{1}{x^p} \ dx$$

converges if p > 1 and diverges if $p \le 1$. Define the function $f: [2, t] \to \mathbb{R}$ by

$$f(x) = \frac{1}{x^{\alpha} (\ln x)^{\beta}}$$

and $g:[2,t]\to\mathbb{R}$ by

$$g(x) = \frac{1}{x^p}.$$

Since $p - \alpha < 0$, it follows from the fact given to us that

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{x^{p-\alpha}}{(\ln x)^\beta}=0.$$

By the Limit Comparison Test, since $\int_2^\infty g(x)\ dx$ converges, we can conclude that $\int_2^\infty f(x)\ dx$ converges. That is, if $\alpha > 1$, then regardless of the value of β , the improper integral

$$\int_2^\infty \frac{1}{x^\alpha (\ln x)^\beta} \ dx$$

converges.

(iii) $(\alpha > 1)$ Let $p \in (\alpha, 1)$. Since p > 1, it follows that $\int_2^\infty g(x) \ dx$ diverges. Since $p - \alpha > 0$, we see that

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{x^{p-\alpha}}{(\ln x)^\beta}=\infty$$

By the Limit Comparison Test, we can conclude that

$$\int_2^\infty \frac{1}{x^\alpha (\ln x)^\beta} \ dx$$

diverges.

Problem 16. (a) Prove that $\int_0^\infty \frac{\sin x}{(1+x)^2} dx$ is absolutely convergent.

(b) Use the result of Exercise 8 to prove that

$$\int_0^\infty \frac{\cos x}{1+x} \ dx = \int_0^\infty \frac{\sin x}{(1+x)^2} \ dx.$$

Proof. (a) Our goal is to show that $\int_0^\infty \frac{\sin x}{(1+x)^2} dx$ is absolutely convergent; that is, we need to show that $\int_a^\infty \left| \frac{\sin x}{(1+x)^2} \right| dx$ converges. Please note that every b > 0

$$\left|\frac{\sin x}{(1+x)^2}\right|=\frac{|\sin x|}{(1+x)^2}\in C[0,b]$$

and so it must be contained in R[0,b]. Furthermore, for all $x \in [1,\infty)$

$$\frac{|\sin x|}{(1+x)^2} \le \frac{1}{(1+x)^2} \le \frac{1}{x^2} \tag{*}$$

Since p = 2 > 1, we have that the improper integral

$$\int_{1}^{\infty} \frac{1}{x^2} dx \text{ converges}$$

by exercise 10. Using the comparison on the inequality on (*), we conclude that

$$\int_{1}^{\infty} \left| \frac{\sin x}{(1+x)^2} \right| dx \text{ converges}$$

and so the improper integral

$$\int_{1}^{\infty} \frac{\sin x}{(1+x)^2} \ dx$$

converges absolutely.

(b) By part (a), we see that

$$\int_0^\infty \frac{\sin x}{(1+x)^2} \, dx \tag{1}$$

converges and that

$$\lim_{b \to \infty} \left[\frac{-\sin x}{1+x} \right]_0^b = \frac{\sin(0)}{1+0} - \lim_{b \to \infty} \frac{\sin b}{1+b} = 0 - 0 = 0.$$
 (2)

From (1) and (2), we can use Exercise 8 to write

$$\int_0^\infty \frac{\sin x}{(1+x)^2} \ dx = \lim_{b \to \infty} \left[\frac{-\sin x}{1+x} \right]_0^b - \int_0^\infty \frac{-\cos x}{1+x} \ dx$$

which implies that

$$\int_0^\infty \frac{-\cos x}{1+x} \ dx = \lim_{b \to \infty} \left[\frac{-\sin x}{1+x} \right]_0^b - \int_0^\infty \frac{\sin x}{(1+x)^2} \ dx$$
$$= -\int_0^\infty \frac{\sin x}{(1+x)^2} \ dx.$$

Hence, we see that

$$\int_0^\infty \frac{\cos x}{1+x} \ dx = \int_0^\infty \frac{\sin x}{(1+x)^2} \ dx.$$

19