1 关于数据集的一些基本术语

1.1 数据集: 一组记录的集合

In [6]:

- 1 import sklearn
- 2 from sklearn.datasets import load_iris
- 3 import pandas as pd

In [7]:

```
print(load_iris()['DESCR'])
```

Iris Plants Database

Notes

Data Set Characteristics:

- :Number of Instances: 150 (50 in each of three classes)
- :Number of Attributes: 4 numeric, predictive attributes and the class
- :Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

:Summary Statistics:

===========	====	====	======	=====		=
	Min	Max	Mean	SD	Class Correlation	
=========	====	====	======	=====		=
sepal length:	4.3	7.9	5.84	0.83	0. 7826	
sepal width:	2.0	4.4	3.05	0.43	-0.4194	
petal length:	1.0	6.9	3.76	1.76	0.9490 (high!)	
petal width:	0.1	2.5	1.20	0.76	0.9565 (high!)	
						_

:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

This is a copy of UCI ML iris datasets.

http://archive.ics.uci.edu/ml/datasets/Iris (http://archive.ics.uci.edu/ml/datasets/Iris)

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

References

- Fisher, R.A. "The use of multiple measurements in taxonomic problems" Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical Statistics" (John Wiley, NY, 1950).
- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis. (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System Structure and Classification Rule for Recognition in Partially Exposed Environments". IEEE Transactions on Pattern Analysis and Machine

- Intelligence, Vol. PAMI-2, No. 1, 67-71.
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions on Information Theory, May 1972, 431-433.
- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II conceptual clustering system finds 3 classes in the data.
- Many, many more ...

In [8]:

```
data = sklearn.datasets.load_iris()['data']
target = sklearn.datasets.load_iris()['target']

columns = sklearn.datasets.load_iris()['feature_names']
target_names = sklearn.datasets.load_iris()['target_names']
```

In [9]:

In [10]:

```
1 iris.head()
```

Out[10]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_label
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

In [40]:

```
1  def func(num):
2    res = [0,0,0]
3    res[num] = 1
4    return res
5  iris['target_vertor']=iris['target'].apply(func)
```

In [41]:

1 iris.head()

Out[41]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	target_label	target_vertor
0	5.1	3.5	1.4	0.2	0	setosa	[1, 0, 0]
1	4.9	3.0	1.4	0.2	0	setosa	[1, 0, 0]
2	4.7	3.2	1.3	0.2	0	setosa	[1, 0, 0]
3	4.6	3.1	1.5	0.2	0	setosa	[1, 0, 0]
4	5.0	3.6	1.4	0.2	0	setosa	[1, 0, 0]

1.2 样本

数据集有许多条记录组成,关于一个时间或对象的描述,称为一个样本

In [27]:

- 1 #这是五条样本
- 2 | iris[columns].head()

Out[27]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

1.3 样例

带有样本"结果"信息(这里是哪一个种类的花)的样本成为样例

In [28]:

1 iris.head()

Out[28]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

2 机器学习的三种任务

分类,聚类,回归

分类:一种监督学习方法,如上面的鸢尾花数据集,给出一条新的鸢尾花样本,预测样本属于哪个类别(即预测的结果是离散值),是一个分类任务。只涉及两个类别的分类称为"二分类",涉及多个类别时,称为多分类任务。

聚类:一种非监督学习方法,是指在没有样本对应的结果信息的条件下,将训练集中的数据分成若干组的方法(常见的聚类方法在sklearn中均有实现,通过API即可方便的调用,详见https://github.com/apachecn/scikit-learn-doc-zh/(https://github.com/apachecn/scikit-learn-doc-zh/) 不过这不是我们这节课关注的重点,有兴趣的同学课后可以自行查阅)

回归: 预测的是连续值,如属于某一类花的概率,则为回归。

!注:有的时候回归任务也可以等同于分类任务,比如将概率p>0.5的样例视为某一类花,则任务由回归任务变成了分类任务,具体在后面会有更加详细的讲解。

根据训练数据是否拥有标记信息,学习任务可大致划分为两大类: "监督学习"和"无监督学习", 分类和回归是前者的代表, 而聚类则是后者的代表

——周志华《机器学习》

In	[]:				
1					