

1/59

FIG. 1

2/59

FIG. 2

3/59

FIG. 3

4/59

FIG. 4

5/59

FIG. 5

6/59

FIG. 6

7/59

FIG. 7

8/59

FIG. 8A

9/59

FIG. 8B

10/59

CMV ELEMENT

GFP ELEMENT

BGH ELEMENT

FIG. 9A

FIG. 9B

FIG. 9C

11/59

TABLE 1

Primer name	F#	Sequence (5'→ 3')	SEQ ID NO:
MTH1	10779	TATGTATCATACACATACGATTAGGT	1
MTH2	10780	ACCGCCTCTCCCGCGCGTT	2
GAL4r2	12667	GTTCCGAAGGGGCGATACAGTCAACTGTCTTG	3
MTH5	12505	TTGGCCAAGGGTATCTAGAAGCTCTGCAGACGCGT	4
VP16r2	12668	GTTCCGAAGGCCACCGTACTCGTCATTCCAAG	5
SV40pAf	12016	GGCCAAAAGGAACCTGTTATTGCAGCTATAATG	6
SV40pAr	561	CTCTGACTTGAGCGTCAATT	7
p53f2	12669	CGGAACAAGGGAAATTCCCTGTCAACCGAGACC	8
SVf2	12670	CGGAACAAGGGAAATTCCCGGGATCTGGAATT	9
CMVr2	7221	TCGAAAGGGTCGAGGTGACCTGCAGCTG	10
CMVf	6945	AATTACACATTGATTATTGAGTAGTTA	11
GFP-Xhof	7220	TCGAAAGGGTAATGCCAGCAAAGGAGAAG	12
GFP-Notr	6682	GGCCAAGGGTTGTAGAGCTATCCAT	13
BGHf2	7222	GGCCAAGGGTCTGAATGGGCCGATAGT	14
BGHR	6948	AAGCCATAGAGCCCGGCA	15
CMVr3	8417	GTTCCGAAGGGTCGAGGTGACCTGCAGCTG	16
GFPf3	8418	CGGAACAAGGGATGCCAGCAAAGGAGAAG	17
GFP'r3	8420	TAGGCCAAGGGTTGTAGAGCTATCCATGC	18
BGHf3	8419	GGCCTAAAGGGTAATGGGCCGATAGT	19
T7top	9304	GAAGGAGTAATACGACTCACTATAGGAGCCACCATGGCCCTTCGGAAC	20
T7bottom	9305	GTTCCGAAGGGCCATGGTGGCTCCCTATAGTGAGTCGTATTACTCCCTC	21
T7amp	9306	GAAGGAGTAATACGACTCACT	22
T3top	9661	GGCCTAAAGGGCCCTTATGTGAGGGTAATTGCGCGC	23
T3bottom	9662	GCGCGCAATTAAACCTCACTAAAGGACCCCTTAGGCC	24
lacZf2	10632	CGGAACAAGGGATGATAGATCCCGTCGTTTACA	25
lacZ1k2	10770	TAGGCCAAGGGGACCATTTCAATCCGACCT	26
lacZ2k2	10771	TAGGCCAAGGGGAGGCACCTCACCGCTGGCA	27
lacZ3k2	10772	TAGGCCAAGGGTTGACACCAGACCAACTGGTA	28

FIG. 9D

12/59

FIG. 10A

SAMPLE #	GAL4+pa	VP16+pa	pGene/lacZ	GAL4+p53+pa	VP16+T+pa	p53-VP16
1			0.26 μg	0.37 μg	0.37 μg	
2			0.4 μg	0.3 μg	0.3 μg	
3			0.4 μg			0.6 μg
4			0.4 μg	0.4 μg	10.3 μg	
5			10.3 μg	0.4 μg	10.3 μg	
6	10.3 μg		0.4 μg			10.3 μg
7			0.4 μg	4.5 μl PCR	4.5 μl PCR	
8		4.5 μl PCR	0.4 μg	4.5 μl PCR	4.5 μl PCR	
9	4.5 μl PCR		0.4 μg			4.5 μl PCR

MAMMALIAN TWO-HYBRID

13/59

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 11D

FIG. 11E

FIG. 11F

14/59

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

15/59

FIG. 13

16/59

FIG. 14

17/59

FIG. 15

18/59

FIG. 16

FIG. 17

20/59

MCS FOR pCDNAGW-DT(sc) AND pENTR-DT(sc)

L Y K K A G S A A A G R A D P A F L Y K V
...TTG TAC AAA GCA GGC TCC GCG GGC GCC GTC GAC AAA GGG GGC GAC CCA GCT TAC AAA GTC
BsrG I Xba I Asc I

FIG. 18

21/59

FIG. 19

22/59

FIG. 20

23/59

FIG. 21

24/59

FIG. 22A

25/59

1 ctttcctgctt ttatcccgtt attctgtggta taaccgtatt accgcctttg agtgagctga
61 taccgctcgcc cgcaaggcga cgaccgagcg cagcgagtca gtgagcgagg aagcggaaaga
121 gcgcggccata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca
181 cgacagggtt cccgactgga aagcggcgag tgagcgcaac gcaattaata cgcgtaccgc
241 tagccaggaa gagtttgttag aaacgcaaaa aggccatccg tcagggatggc cttctgctta
301 gtttcatgcc tggcagttt tggcggcggt cctgcccggc accctccggg ccgttgcttc
361 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcggtt caccgacaaa
421 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttgcgtttat ttgatgcctg
481 gcagttccct actctcgctt taacgcgtt atggatgttt tcccaagtac gacgttgtaa
541 aacgacggcc agtcttaagc tcgggccccca aataatgatt ttatTTTgac tgatagtgac
601 ctgttcgttg caacaaattt atgagcaatg ctttttata atgccaactt tgtacaaaaaa
661 agcaggctcc gcggccggccc cttcaccatg nnnnnnnnnna agggtggcg cggccaccca
721 gctttcttgt acaaagttgg cattataaga aagcattgt tatcaattt ttgcaacgaa
781 caggtcacta tcagtcaaaa taaaatcatt atttgccatc cagctgatcat cccctatagt
841 gagtcgtatt acatggtcat agctgtttcc tggcagctt ggccgtgtc tcaaaatctc
901 tgatgttaca ttgcacaaga taaaatata tcatcatgaa caataaaaact gtctgcttac
961 ataaaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc gaggccgca
1021 taaaattcca acatggatgc tgatttatg gggtaataat gggctcgca taatgtcgaa
1081 caatcagggt cgacaatcta tcgcttgtat gggaaagcccg atgcgccaga gttgtttctg
1141 aaacatggca aaggtagcgt tgccaatgt gttacagatg agatggtcg actaaactgg
1201 ctgacggaat ttatgcctt tccgaccatc aagcattttt tccgtactcc tgatgtatgca
1261 tggttactca ccactgcgtat ccccgaaaaa acagcattcc aggtattttaga agaatatcct
1321 gattcagggt aaaatattgt tgatgcgttgcgttgcgttgcgttgcgttgcattcgatt
1381 cctgtttgtt attgtcctt taacagcgat cgcgtatttgcgttgcgttgcgttgcgttgcattcgatt
1441 cgaatgaata acgggttgg ttagtgcgttgcgttgcgttgcgttgcgttgcattcgatt
1501 gttgaacaag tctggaaaga aatgcataaa cttttgcatt tctcacccggatcgttgcgttgcgttgcattcgatt
1561 actcatgggtt atttctcaact tgataaccattt atttttgacg agggaaaatt aataggttgt
1621 attgtatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
1681 tgcctcggtt agtttctcc ttcattacag aacggctttt ttcaaaaaata tggatttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
1741 aatcctgata tgaataaatttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
1801 ttggtaatttggtaaca ctggcagacgattacgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
1861 tcatgaccaa aatcccttaa cgtgagttac gcgtcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
1921 gaaaagatca aaggatctt ttgagatcctt tttttctgc gcgtaatctg ctgcttgcaatcgatt
1981 aaaaaaaaaac caccgctacc agcgggttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2041 ttcccgaggtaactggctt cagcagacgatcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2101 ccgttagtttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2161 atccctgttac cagttgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2221 agacgatagt taccggataa ggcgcagcgatcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2281 cccagcttgg agcgaacgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2341 agcgccacgc ttcccgaggatcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2401 acaggagagc gcacgaggatcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2461 gggtttcgcc acctctgact tgagcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2521 ctagggaaaaa acgcccggatcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcattcgatt
2581 gctcacatgt t

FIG. 22B

26/59

FIG. 23A

27/59

1 ctttcctgctt ttatcccgtt attctgtggta taaccgtatt accgcctttg agtgagctga
61 taccgctcgcc cgcaaggaa cgaccgagcg cagcgagtc gtgagcggagg aagcggaaa
121 gcgcggaaaata cgcaaaccgc ctctccccgc gcgttggccg attcattaaat gcagctggca
181 cgacagggtt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
241 tagccaggaa gagtttgttag aaacgcaaaa aggccatccg tcagggatggc cttctgctta
301 gtttcatgcc tggcagttt tggcggcggt cctgcccggcc accctccggg ccgttgcctt
361 aacaacgttca aatccgctcc cggcggattt gtcctactca ggagagcggtt caccgacaaa
421 caacagataaa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg
481 gcagttccct actctcgctt taacgcttagc atggatgttt tcccaagtac gacgtgtaa
541 aacgacggcc agtcttaagc tcgggccccca aataatgatt ttatgttgc tgatagtgc
601 ctgttcgttg caacaaattt gatgacaatg ctttttata atgccaactt tgtacaaaaaa
661 agcaggctcc gcggccgcct tggttaactt taagaaggag cccttcaccn nnnnnnaagggg
721 tgggcgcgccc gaccagctt tcttgtacaa agttggcatt ataagaaagc attgcttatac
781 aatttgttgc aacgaacagg tcactatcag tcaaaataaaa atcattattt gccatccagc
841 tgatatcccc tatagtgagt cgtattacat ggtcatagct gtttcctggc agctctggcc
901 cgtgtctcaa aatctctgtt gttacattgc acaagataaa aatatatcat catgaacaat
961 aaaactgtct gcttacataa acagtaatac aagggggtgtt atgagccata ttcaacggga
1021 aacgtcgagg ccgcgattaa attccaaacat ggatgctgtt ttatatgggt ataaatgggc
1081 tcgcgataat gtcgggcaat caggtgcgcac aatctatcgc ttgtatggga agcccgatgc
1141 gccagagttt tttctgaaac atggcaaaagg tagcgttgc aatgatgtta cagatgagat
1201 ggtcagacta aactggctga cggaaattttt gcctcttccg accatcaagc attttatccg
1261 tactcctgtat gatgcattgt tactcaccac tgcgtatcccc ggaaaaacag cattccaggt
1321 attagaagaaa tatcctgtatt caggtaaaaa tattgttgcat ggcgtggcag tgttcctgcg
1381 ccggttgcatt tcgattcctt tttgttaattt tccttttaac agcgatgcg tatttcgtct
1441 cgctcaggcg caatcacgaa tgaataacgg tttgggtgtt ggcgttgatt ttgatgacga
1501 gcgtaatggc tggcctgtt aacaagtctg gaaagaaaatg cataaacttt tgccattctc
1561 accggattca gtcgtcactc atggtgattt ctcacttgc aaccttattt ttgacgaggg
1621 gaaattaata ggttgttattt atgttggacg agtcggaatc gcagaccgat accagatct
1681 tgccatccta tggactgccc tcgggtgagtt ttctccttca ttacagaaac ggcttttca
1741 aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttgc tgctcgatga
1801 gttttctaa tcagaattgg ttaattgggtt gtaacactgg cagagcatta cgctgacttg
1861 acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cggtccactg
1921 agcgtcagac cccgtagaaa agatcaaagg atcttcttgc gatcctttt ttctgcgcgt
1981 aatctgtgc ttgcaaaacaa aaaaaccacc gtcaccagcg tgggttgc tgccggatca
2041 agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga taccaataac
2101 tgccattcttgc gtgttagccgt agttaggcca ccacttcaag aactctgttag caccgcctac
2161 atacctcgct ctgctaattcc ttttaccatggt ggctgctgcc agtggcgata agtcgtgtct
2221 taccgggtt gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg
2281 gggttcgtgc acacagcccc gcttggagcg aacgacctac accgaactga gataacctaca
2341 gcgtgagcat tgagaaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccgt
2401 aagcggcagg gtcgaaacag gagagcgcac gagggagctt ccagggggaa acgcctggta
2461 tctttatagt cctgtcggtt ttgcacccat ctgacttgcg cgtcgatattt tgtatgtgc
2521 gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gccttttac ggttcctggc
2581 ctttgctgg cttttgcctc acatgtt

FIG.23B

28/59

FIG. 24A

29/59

1 gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg
61 ccgcatagtt aaggcagtt ctgctccctg cttgtgtt ggaggcgct gagtagtgcg
121 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc
181 ttagggtag gcgtttgcg ctgcttcgcg atgtacggc cagatatacg cgttgacatt
241 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata
301 tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaaacgacc
361 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
421 attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt
481 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaaatggccc gcctggcatt
541 atgcccagta catgaccta tggacttgc tcaattggca gtacatctac gtattagtca
601 tcgctattac catggtgatg cgggtttggc agtacatcaa tggcgttga tagcggttg
661 actcacgggg atttccaagt ctccacccca ttgacgtcaa tggaggtttg ttttggcacc
721 aaaatcaacg ggactttcca aatgtcgta acaactccgc cccattgacg caaatggcg
781 gtaggcgtgt acggtggag gtctatataa gcagagctt ctggctact agagaaccca
841 ctgcttactg gcttatcgaa attaatacga ctcactatac ggagacccaa gctggctagt
901 taagctatca acaagttgt acaaaaaagc aggctccgcg gcccggccctt caccatgnnn
961 nnnnnnaagg gtggcgcgc cgaccagct ttcttgatca aagtggtga tctagaggc
1021 ccgcgggttcg aaggtaaagcc tatccctaact cctctccctg gtctcgattc tacgcgtacc
1081 gtttagtaat gagtttaaac gggggaggct aactgaaaca cggaaaggaga caataccgga
1141 aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcg
1201 ttgttcataaa acgcggggtt cggtcccagg gctggcactc tgctcgatacc ccaccgagac
1261 cccattgggg ccaatacgcc cgcgttctt cttttcccc accccaccccc ccaagttcgg
1321 gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgccata gcagatctgc
1381 gcagctgggg ctctaggggg tatccccacg cgccctgttag cggcgcattt agcgcggcgg
1441 gtgtgggtt tacgcgcagc gtgaccgcta cacttgcacg cgccctagcg cccgctcctt
1501 tcgcttctt cccttcctt ctcgcccacgt tcgcccggctt tccccgtcaa gctctaaatc
1561 ggggcattccc ttttagggtt cgttttagtgc tttagggca cctcgaccccc aaaaaacttg
1621 attagggtga tggttacgt agtgggcat cgccctgtata gacgggtttt cggcccttga
1681 cgttggagtc cacgttctt aatagtggac tcttggcca aactggaaaca acactcaacc
1741 ctatctcggt ctattcttt gatttataag ggattttggg gatttcggcc tattggtaa
1801 aaaatgagct gattaacaa aaatttaacg cgaatttaatt ctgtggatg tgtgtcagtt
1861 agggtgtgga aagtccccag gctcccccagc aggcagaagt atgcaaagca tgcatctcaa
1921 ttagtcagca accaggtgtt gaaagtcccc aggtccccca gcaggcagaa gtatgcaaag
1981 catgcatttc aattagtcag caaccatagt cccggccctt actccggccca tcccgcccc
2041 aactccgccc agttccgccc attctccgc ccatggctga ctaattttt ttatttatgc
2101 agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gctttttgg
2161 aggccttaggc ttttgcaaaa agctccggg agcttgcata tccatttcg gatctgatca
2221 agagacagga tgaggatcg ttcgcattgt tgaacaagat ggattgcacg cagggtctcc
2281 gggcgcttgg gtggagaggc tattcggcta tgactggca caacagacaa tcggctgctc
2341 ttagtgcgcgtt gtgttccggc tgtcagcgca ggggcggcccg gttcttttgc tcaagaccga
2401 cctgtccggc gccctgaatg aactgcagga cgaggcagcg cggctatcg ggtctggccac
2461 gacgggcgtt cttgcgcag ctgtgcgtca cggtgtcaact gaagcgggaa gggactggct
2521 gctattgggc gaagtgcgg ggcaggatct cctgtcatct caccctgctc ctgcccggaa
2581 agtatccatc atggctgtatg caatgcggcg gctgcatacg ttgtatccgg ctacctgccc
2641 attcgaccac caagcgaaac atcgcatcg agcgagcact gactcgatgg aagccggct
2701 ttagtgcgtatc gatgtatctgg acgaagagca tcagggggtc gcccggccg aactgttcgc
2761 caggctcaag gcgccatgc ccgacggcgaa ggatctcgatc gtgacccatg gcgatgcctg-

FIG. 24B

30/59

2821 cttgccgaat atcatggtgg aaaatggccg cttttctgga ttcatcgact gtggccggct
2881 gggtgtggcg gaccgtatc aggacatagc gttggctacc cgtatattt ctgaagagct
2941 tgccggcgaa tggctgacc gcttcctcg gctttacggt atccgcgtc ccgattcgca
3001 ggcgcattgcc ttctatcgcc ttcttgacga gttcttctga gcgggactct ggggttcgca
3061 aaatgaccga ccaaggcgc acgc cccaacctgc catcacgaga ttgcattcc accgcgcct
3121 tctatgaaag gttgggcttc ggaatcgtt tccgggacgc cggttggatg atccctccagc
3181 gccccggatct catgtggag ttcttcgccc accccaactt gtttattgca gcttataatg
3241 gttacaaata aagcaatagc atcacaaatt tcacaaataa agcattttt tcactgcatt
3301 ctatgtgtgg ttgtccaaa ctcatcaatg tatcttatca tgtctgtata ccgtcgaccc
3361 ctatgttagag cttggcgtaa tcatgttcat agctgttcc tgtgtgaaat tggtatccgc
3421 tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaatt
3481 gagtgagcta actcacatta attgcgttgc gctcaactgcc cgcttccag tcgggaaacc
3541 tgcgtgcca gctgcattaa tgaatcgcc aacgcgcggg gagaggcggt ttgcgtattg
3601 ggcgctttc cgcttcctcg ctcaactgact cgctgcgtc ggctgttcgg ctgcggcgg
3661 cggtatcagc tcactcaaag gcggtataac gtttatccac agaatcagg gataacgcag
3721 gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc
3781 tggcggtttt ccataggctc cgccccctg acgagcatca caaaaatcga cgctcaagtc
3841 agaggtggcg aaacccgaca ggactataaa gataccaggc gttccccc ggaagctccc
3901 tcgtgcgtc tcctgttccg accctggccg ttaccggata cctgtccgccc ttctccctt
3961 cgggaagcgt ggcgttttcaatgctcac gctgttaggt tctcagttcg gtgttagtgc
4021 ttgcgtccaa gctgggctgt gtgcacaac ccccggttca gcccggaccgc tgccgcctt
4081 ccggtaacta tcgtttagtgg tccaaacccgg taagacacga ctatcgcca ctggcagcag
4141 ccactggtaa caggattagc agagcgaggt atgtaggccg tgctacagag ttcttgaagt
4201 ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgt ctgctgaagc
4261 cagttacctt cggaaaaaga gttgttagt cttgatccgg caaacaacc accgcgttga
4321 gccgtggttt ttttgggtc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag
4381 atcctttagt ctttctacg gggctgtacg ctcagtgaa cgaaaaactca cgtaaggga
4441 ttttggtcat gagattatca aaaaggatct tcaccttagat ctttttaat taaaatgaa
4501 gttttaaattt aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa
4561 tcagtgggc acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc
4621 ccgtcggttta gataactacg atacgggagg gcttaccatc tggccccc gctgaatga
4681 taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa
4741 gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt
4801 gccgggaagc tagatgtt agttccggc ttaatagtt ggcgaacgtt gttgccattt
4861 ctacaggcat cgtgggtca cgctcggtt ttggatggc ttcatcagc tccgggttccc
4921 aacgatcaag gcgagttaca tgatccccca tgggtgtcaa aaaagcggtt agtccttcg
4981 gtcctccgat cgttgcaga agtaagtgg ccgcagtgtt atcactcatg gttatggcg
5041 cactgcataa ttcttctact gtcattccat ccgtaaatgt ctttctgtg actgggtgagt
5101 actcaaccaa gtcattctga gaatagtgtt tgccggcacc gagttgtct tgccggcgt
5161 caatacggga taataccgcg ccacatagca gaactttaaa agtgcgtatc attggaaaac
5221 gttcttcggg gcgaaaaactc tcaaggatct taccgttgc gagatccagt tcgatgttac
5281 ccactcggtc acccaactga tcttcagcat ctttacttt caccagcggt tctgggtgag
5341 caaaaacagg aaggaaaaat gccgaaaaaa agggataaag ggcgcacacgg aaatgttga
5401 tactcataact cttctttt caatattttt gaagcattt tcagggttat tgtctcatga
5461 gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc
5521 cccgaaaaagt gccacctgac gtc

FIG.24C

31/59

FIG. 25A

32/59

1 gacggatcg gagatctccc gatcccstat ggtgcactct cagataatc tgctctgatg
61 ccgcatagtt aaggcagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
121 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc
181 ttagggtag gcgtttgcg ctgcttcgcg atgtacggc cagatatacg cgttgacatt
241 gattattgac tagtattaa tagtaatcaa ttacggggtc attagttcat agccatata
301 tggagttccg cggtacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc
361 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
421 attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta catcaagtgt
481 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaaatggccc gcctggcatt
541 atgcccagta catgaccta tggactttc ctacttggca gtacatctac gtattagtca
601 tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggtttgc
661 actcacgggg atttccaagt ctccacccca ttgacgtcaa tggaggtttg ttttggcacc
721 aaaatcaacg ggactttcca aatgtcgta acaactccgc cccattgacg caaatggcg
781 gtaggcgtgt acgggtggag gtctatataa gcagagctt ctggctact agagaaccca
841 ctgcttactg gcttatcgaa attaatacga ctcactatac ggagacccaa gctggctagt
901 taagctatca acaagtttgt aaaaaaaaaaaggc aggctccgcg gcccggccctt caccatgnnn
961 nnnnnnaagg gtggcgcgcg cgaccagct ttcttgatc aagtgggtga tctagaggc
1021 ccgcggttcg aaggttaagcc tatccctaact cctctccctg gtctcgattc tacgcgtacc
1081 gtttagtaat gagtttaaac gggggaggct aactgaaaca cgaaaggaga caataccgga
1141 aggaacccgc gctatgacgg caataaaaaag acagaataaa acgcacgggt gttgggtcg
1201 ttgttcataaa acgcggggtt cggtcccaagg gctggcactc tgtcgatacc ccaccgagac
1261 cccattgggg ccaatacgcc cgcttctt cttttcccc accccacccca ccaagttcg
1321 gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgcccata gcagatctgc
1381 gcaagctgggg ctctaggggg tatccccacg cgccctgttag cggcgcattt agcgcggcgg
1441 gtgtgggtgt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt
1501 tcgctttctt cccttcctt ctcgcccacgt tcgcccggctt tccccgtcaa gctctaaatc
1561 ggggcatccc ttttagggttc cgatttagt ctttacggca cctcgacccca aaaaaacttg
1621 attagggtga tggttcacgt agtggccat cggccgtata gacggttttt cggcccttga
1681 cgttggagtc cacgttctt aatagtggac tcttggcca aactggaaaca acactcaacc
1741 ctatctcggt ctattttttt gatttataag ggattttggg gatttcggcc tattggtaa
1801 aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaatg tggcgtcagg
1861 agggtgtgga aagtccccag gctccccagc aggcagaagt atgcaagca tgcatactcaa
1921 ttagtcagca accaggtgtg gaaagtcccc aggtcccca gcaggcagaa gtatgaaag
1981 catgcatactc aattagtcag caaccatagt cccggccctt actccggcc tcccgccctt
2041 aactccgccc agttccgccc attctccgc ccatggctga ctaattttt ttatttatgc
2101 agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gctttttgg
2161 aggcttaggc ttttgcacaa agctccggg agcttgata tccatggatc gatctgatca
2221 gcacgtgtt gcaattaaatc atcgccatag tatatcgca tagtataata cgacaagggt
2281 aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca
2341 acggctacaa tcaacagcat ccccatctc gaagactaca gcgtcgccag cgcagctctc
2401 tctagcgacg gccgcatactt cactgggtc aatgtatatc attttactgg gggaccctgt
2461 gcagaactcg tgggtgtggg cactgctgct gctgcggcag ctggcaacct gacttgatc
2521 gtcgcgatcg gaaatgagaa caggggcattt tgagccct gcgacgggtg cggacaggtg
2581 cttctcgatc tgcatactgg gatcaaagcc atagtgaagg acagtgtatgg acagccgacg
2641 gcagttggga ttctgtgtt gctgcctct ggttatgtt gggagggtca agcacttcgt
2701 gggcgaggag caggactgac acgtgtacg agatttcgtatcc tccaccgccc cttctatga
2761 aagggttgggc ttctgtgtt gctgcctct ggttatgtt gggagggtca agcacttcgt

FIG. 25B

33/59

2821 tctcatgctg gagttctcg cccacccaa cttgttatt gcagctata atggtaaaa
2881 ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcaactgc attctagttg
2941 tggtttgtcc aaactcatca atgtatctt tcgttctgt ataccgtcga cctctagcta
3001 gagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatac cgctcacaat
3061 tccacacaaac atacgagccg gaagcataaa gtgtaaagcc tgggtgcct aatgagttag
3121 ctaactcaca ttaattgcgt tgcgtcaact gcccgttgc cagtcggaa acctgtcgtg
3181 ccagctgcat taatgaatcg gccaacgcgc ggggagaggc gtttgcgtt ttggcgctc
3241 ttccgcttcc tcgctcaactg actcgctgctg ctgcgtcggtt cgctgcggc gagcggatc
3301 agctcaacta aaggcggtaa tacggttatac cacagaatca ggggataacg cagaaagaa
3361 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcggtt
3421 tttccatagg ctccgccccct ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg
3481 gcgaaacccg acaggactat aaagatacca ggcgttccc ccttgaagct ccctcggtcg
3541 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc ttccggaaag
3601 cgtggcgctt tctcatagct cacgctgttag gtatctcagt tcgggttagg tcggtcgctc
3661 caagctggc tgtgtcactg aaccccccgt tcagccgac cgctgcgcct tatccgtaa
3721 ctatcgctt gagtccaacc cgtaagaca cgacttatcg ccactggcag cagccactgg
3781 taacaggatt agcagagcga ggtatgttagg cggtgctaca gaggcttga agtggggcc
3841 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac
3901 cttcgaaaaa agagttggta gctttgatc cggcaaaacaa accaccgtg gtagcggttt
3961 ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat
4021 ctttctacg gggtctgacg ctcaatggaa cgaaaactca cgtaaggga ttttggcat
4081 gagattatca aaaaggatct tcaccttagat ctttttaat taaaaatgaa gttttaatc
4141 aatctaaagt atatatgagt aaacttggtc tgacagttac caatgctta tcagtgaggc
4201 acctatctca gcgtctgtc tatttcgttc atccatagtt gcctgactcc ccgtcggt
4261 gataactacg atacgggagg gcttaccatc tggccccagt gctcaatga taccggaga
4321 cccacgctca ccggctccag atttacgc aataaaccag ccagccggaa gggccgagcg
4381 cagaagtggc cctgcaactt tatccgcctc catccagttt attaattgtt gccggaaagc
4441 tagagaagt agttcgccag ttaatagtt ggcgaacgtt gttccattt ctacaggcat
4501 cgtgggtgtca cgctcgctgt ttggatggc ttcatcgc tccgggtccc aacgatcaag
4561 gcgagttaca tgatccccca tggatggcaaa aaaaagggtt agtccttcg gtcctccgat
4621 cgttgcaga agtaagttgg ccgcgttgc atcaatcatg ttatggcag cactgcataa
4681 ttctcttact gtcattgccat ccgtaaatgt ctttctgtg actggtgagt actcaaccaa
4741 gtcattctga gaatagtgtt tgccggcacc gagttgtct tgccggcgt caatacgga
4801 taataccgcg ccacatagca gaactttaaa agtgcctatc attggaaaac gttctccgg
4861 gcgaaaactc tcaaggatct taccgtgtt gagatccagt tcgtatgtaac ccactcggt
4921 acccaactga ttttcagcat ctttacttt caccagcgtt tctgggtgag caaaaacagg
4981 aaggcaaaaat gccgcaaaaaa agggataag ggcgcacacgg aaatgttga tactcataact
5041 ttccctttt caatattttt gaagcattt tcagggttat tgtctcatga gcggatacat
5101 attgaatgt atttagaaaa ataaacaaat aggggttccg cgacatttc cccgaaaagt
5161 gccacctgac gtc

FIG.25C

34/59

pENTR/SD-dTOPO: 5' END

pENTR-dTOPO AND pcDNAGW-dTOPO: 5' END

pENTR/SD-dTOPO, pENTR-dTOPO, AND pcDNAGW-dTOPO: 3' END

FIG. 26

35/59

FIG. 27

36/59

FIG.28

37/59

FIG. 29

38/59

FIG.30A

Lane 1: TRex-CHO Cells + Tet
Lane 2: without secondary PCR (with purified CAT) - Tet
Lane 3: without secondary PCR (with purified CAT) + Tet
Lane 4: without secondary PCR (with unpurified CAT) + Tet
Lane 5: without secondary PCR (with unpurified CAT) -Tet
Lane 6: with secondary PCR + Tet
Lane 7: with secondary PCR - Tet

FIG.30B

39/59

Lane 1: TRex-293 Cells + Tet
Lane 2: without secondary PCR (with purified CAT) - Tet
Lane 3: without secondary PCR (with purified CAT) + Tet
Lane 4: without secondary PCR (with unpurified CAT) - Tet
Lane 5: without secondary PCR (with unpurified CAT) + Tet
Lane 6: with secondary PCR - Tet
Lane 7: with secondary PCR + Tet

FIG.30C

40/59

Lane 1: negative control; lanes 2-11: test clones; M: 500 bp marker

FIG. 31

41/59

FIG. 32

42/59

43/59

FIG. 34

44/59

FIG. 35

45/59

FIG. 36

46/59

FIG. 37

47/59

FIG. 38

48/59

FIG. 39

49/59

FIG. 40

50/59

FIG. 41

51/59

FIG.42A

FIG.42B

52/59

53/59

FIG. 43B

54/59

FIG.44A

55/59

FIG. 44B

56/59

FIG. 45B

FIG. 45A

57/59

FIG. 45D

FIG. 45C

58/59

FIG.46A

59/59

FIG.46D

T7-actin 1° PCR transcription
actin 2° PCR transcription

FIG.46C

T7-actin 1° PCR
actin 2° PCR

FIG.46B

actin PCR + linker
actin 1° PCR mock linking