+>
$$f = |xy| + yz|$$
 for $x = 1, y = 0, z = 1$,
 $f = |1.0 + 0.1|$
= $|1.1 + 0| = |1 + 0|$
+> $f = |xy| + yz|$ for $x = 1, y = 1, z = 0$
 $f = |1.1 + 1.0|$
= $|0 + 0| = |0|$

[Problem 2.2]

$$7 = -cx + -cx$$
 for $-c = 0, x = 1$
 $7 = 0.1 + 0.1$
 $2 = 0.1 + 0.1 = 0 + 0 = 0$

$$f = xy$$

 $X=0 \text{ and } y=0 \rightarrow f=0.0 = 0 = 1$
 $X=0, y=1 \rightarrow f=0.1 = 0 = 1$
 $X=1, y=0 \rightarrow f=1.0 = 0 = 1$

to f zxy	X	1 >	f]
$X=0$ and $y=0 \rightarrow f=\overline{0.0} = \overline{0} = 1$ $X=0$, $y=1 \rightarrow f=\overline{0.1} = \overline{0} = 1$ $X=1$, $Y=0 \rightarrow f=\overline{1.0} = \overline{0} = 1$ $X=1$, $Y=1 \rightarrow f=\overline{1.1} = \overline{1} = 0$	0 0 1	0 0	1140	<u>(</u> (
			Alternative Control of the Control o	

+> g=x+ y
X=0,7=0+9=0+0=1+1=1
x=0, Y=1→9=0+1=1+0=1
x=1, y=0 → g=1+0=0+1=1
x=1, y=1 -9 g=T+T=0+0=0

	×	/ ×	8	7
	0	0 - 0	1 1	(2)
1	i	ı	0	}\ -

$$\overline{xy} = \overline{x} + \overline{y}$$

Problem 2.4]

+)
$$f = x + y$$

 $X = 0, y = 0 \rightarrow f = \overline{0} + 0 = \overline{0} = 1$
 $X = 0, y = 1 \rightarrow f = \overline{0} + 1 = \overline{1} = 0$
 $X = 1, y = 0 \rightarrow f = \overline{1} + 0 = \overline{1} = 0$
 $X = 1, y = 1 \rightarrow f = \overline{1} + 1 = \overline{1} = 0$

				1
1	X	Y	f	
ı	0	0	1	
	0	1	0	C(1)
	1	0	0	
1	ı	1	0	
- 1	<u>'</u>			

+> g = x y
x=0,y=0 -> q=0.0=1.1=1
X=0,y=1 -> g=0. [=1.0=0
$x=1, y=0 \rightarrow g = T.\bar{0} = 0.1 = 0$
$x=1, y=1 \Rightarrow g=1.7=0.0=0$

	x	Y	1 9	\exists	
1		0	1		CZ)
	0	1	O	1	
	t	0	0		
	11	1]	0		

From (1) and (2) -> | X+y = x y

The avait schematic:

Problem 2.8

$$\vec{f} = \widehat{xy} + yz$$

$$= (\widehat{xy}) \cdot (\widehat{yz})$$

Applying Theorem =>
$$\overline{f} = (\overline{x} + y) \cdot (\overline{y} + \overline{z})$$

So, POS of
$$f_z$$
 $(x+y)(x+z)(y+z)$

$$= (x+y)(y+z)$$

Problem 2.9 f = xy + yz (sor) $f = \overline{xy} + yz$ $= (\overline{xy}) \cdot (\overline{yz})$ $= (\overline{x+y}) \cdot (\overline{y+z})$ Sor of $f = \overline{xy} + \overline{xz} + y\overline{y} + y\overline{z}$ $= \overline{xy} + \overline{xz} + y\overline{z}$ Pual of $f = (\overline{x+y}) (\overline{x+z}) (y+\overline{z})$ Pos of $f = (x+y) (x+z) (y+\overline{z})$ $= (x+y) (x+z) (y+\overline{z})$

a)	12	×, × _o	1 4 4 43 (Y2) Y, Y0 1	
6 2 2 4 5 6	! (0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1	1 '9 '3 (/)//	35791135
	•.	•)	10001	17

Canonical SOP expression yz:

1			_
b)	x ₂ × ₁ × ₀	Y4 Y3 Y2 Y, Y0 1	
0 1 2 3 -4 -3 -2 -1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		35+35-3-1

Min-terms for y4:

$$y_4 \neq x_1 y_2 = \sum ((100)_2, (101)_2, (110)_2)$$

Minimal SOP expression for y4:

e) Since the minimal SOP requires less number of fransisturs than the Canonical

=> transistors Canonical > transistors minimpsop