Core ML 相關 Sessions 濃縮呈現

Marvin Lin

和 Core ML 相關的 Sessions

WWDC18 中,和 Core ML 有關的 Session

703 - Introduction Create ML	34 min
708 - What's new in Core ML - Part 1	37 min
709 - What's new in Core ML - Part 2	34 min
712 - A guide to Turi Create	36 min
713 - Introducing natural language framework	38 min
716 - Object tracking in vision	34 min
717 - Vision with core ML	39 min

Total: 252 min

無法在這個 talk 放入的內容

Session 703 - CreateML

使用 Playground 訓練模型 (下一個 talk 的講者在這個場地會介紹),如果是 Image Classification 的任務,建議用 Create ML

Session 708 & 709 - What's new in Core ML (部分內容)

Quantization (縮小模型的容量) batch processing (提升批次處理訓練的速度) custom layer in CNN (導入最新理論的 layer 在繼有模型上).

Session 716 & 717 - Vision (部分內容)

VNTranslationalImageRegistrationRequest (比對畫面移動,減少硬體消耗)
Tracking Object (追蹤的演算法比較輕量,且畫面呈現比較滑順)

用結構化資料訓練模型

要做 ML Model 所需要的五個基本步驟

App Demo

• 金城武判定器

• 圖案濾鏡 Style Transfer - 克林姆風格、莫內風格、梵谷風格 etc...

Object Detection - 威利在哪裡?

Simple model creation

Tailored to your app

Leverages core Apple technologies

Powered by Mac

基本的自然語言分析流程

NLP - 辨試語系

```
let regognizer = NLLanguageRecognizer()
let testStr = "今日的臺北市只包含12個區,面積為271.7997平方公里"
regognizer.processString(testStr)
let lang = regognizer.dominantLanguage
let hypothesis = regognizer.languageHypotheses(withMaximum: 4)

> ({_rawValue "zh-Hans"}, value 0.0001164831774076447)

> ({_rawValue "zh-Hant"}, value 0.994546115398407)

> ({_rawValue "ja"}, value 0.005327472928911448)
```

語系碼使用 ISO 639-1, JA 表示日文

歐洲語系沒有問題,但是馬來語和印尼語無法正確判斷

基本的自然語言分析流程

全語系斷詞系統 - NLTokenizer

```
// Document, paragraph, sentence, word
      let tokenizer = NLTokenizer(unit: .word)
      let str = "下一個講者的演講一定很精釆,對機器學習有興趣的朋友請留下來聽
      let strRange = str.startIndex ..< str.endIndex</pre>
      tokenizer.string = str
      // tokens 會輸出 Range<Set>,
      let tokenArray = tokenizer.tokens(for: strRange)
      for each in tokenArrav {
                      let tokenize
          print(
                                      43 // Document, paragraph, sentence, word
   51
                      let str =
                                         let tokenizer = NLTokenizer(unit: .word)
\nabla
   let strRange
                                         let str = "この戦争が终わったら、俺は故郷に帰って结婚するんだ"
                      tokenizer.st
                                         let strRange = str.startIndex ..< str.endIndex</pre>
者
                      // tokens 會
                                         tokenizer.string = str
的
                                   \Box
                \Box
演講
                                   この
                きょう
一定
                                   戦争
很
                Ø
                                   が
精釆
                ぼく
對
                                   终
                に
機器
                げんかい
                                   わっ
學習
                は
                                   たら
有
                                   俺
                ない
興趣
                                   は
的
                                   故郷
朋友
                                   に
請
                                   帰っ
留下來
                                   τ
聽
                                   结婚
                                   する
https://github.com/MoonAndE
                                   だ
```

目前知名的 ML 框架

IBM Watson*

Turi Create 是什麼?

- 他是一個 Python 的 Package,可以製作 Core ML models,而且有開源
- 簡單易用,即使非 ML 專門也可以操作
- 讓 iOS 開發者只需要專注在 APIs 上
- 跨平台 (Mac, Linux)
- 學習成本低
- pip install turicreate (Mac 已經內建 Python 2.7)
- 低於 20 行的程式碼

- Jupyter Notebook (非必要)

https://github.com/apple/turicreate

偵測並辨視物體

即時偵測

手勢操作

推薦個性化鬆子

虱格變換

Jupyter Notebook

- Image Classifier
- Style Transfer
- Object Detection

Object Detection


```
"label" : "coffee",
"coordinates" : {
  "x" : 387,
  "y" : 660,
  "height" : 550,
  "width" : 814,
"label" : "croissant",
"coordinates" : {
  "x"
          : 800,
  " V "
          : 630,
  "height" : 373,
  "width" : 812,
```

標記會有個 label 和座標 要注意的是, x, y 在 turi create 裡面是中心點

你的 X, Y 是我的 X, Y 嗎?

要注意 x,y 在 turi create 裡面是中心點要注意 x,y 在 turi create 裡面是中心點要注意 x,y 在 turi create 裡面是中心點

Vision RecognizedObject 的座標

原點在左下角

座標系統 Normalized

VNUtils.h 有提供座標系統轉換工具

(但我轉出來後 frame 有偏移,不知道問題在 model 還是座標轉移)

使用 VNRequest 的時候, imageCropAndScaleOption 建議 設定為 .scaleFill 比較準

如果是 Object Detect 要驗證一下模型

標記是不是正確的範圍是不是正確的

正確的標記範例

Overlap 10%

Overlap 70%

Overlap 99%

Need correct labels AND at least 50% overlap in boxes

需要正確的標記,且範圍要超過50%(當然愈高愈好)

在裝置上更新 ML Model 的方法

並不需要每次 model 有更新,就要進版,也可以使用網路上下載的方式進行 model 的更新。

```
let compiledUrl = try MLModel.compileModel(at: modelUrl)
let model = try MLModel(contentsOf: compiledUrl)
```

Compile 完成後,可以使用 FileManager 把 model 存在裝置上。

Apple Documentation

關鍵字

你如果對原理有興趣 你可以找左邊關鍵字的社群

Tensor Flow

CNN

類神經網路

NLP

Model-based

蒙地卡羅算法

Reinforcement Learning

Model Free

Q learning Policy

Awesome CoreML GitHub Repo

https://github.com/likedan/Awesome-CoreML-Models

https://github.com/SwiftBrain/awesome-CoreML-models

這兩個 Repository 上有許多已經訓練好的 Core ML models 你可以針對特定用途,下載所需要的 Model e.g. 年齡識別、目標識別、句子主題等等

"Let's build a ML model today"