0 H2 205



# ROHDE & SCHWARZ

BESCHREIBUNG

SUN

# Beschreibung

NF-PEGELGERÄT

Type SUN BN 408710

(mit Schalt-und Filterfeld)

264 Bl. 1

Anmerkung: Wir bitten, bei technischen Anfragen, insbesondere bei einer Anforderung von Ersatzteilen, außer der Type und Bestellnummer (BN) immer auch die Fabrikationsnummer (FNr.) des Gerätes anzugeben.

#### Inhaltsübersicht

| Übersic   |                                                        | 3  |
|-----------|--------------------------------------------------------|----|
| 1.        | Eigenschaften                                          | 5  |
| 1.1.      | Pegelsender                                            | 5  |
| 1.2.      | Pegelmesser                                            | 6  |
| 1.3.      | Schalt- und Filterfeld                                 | 7  |
| 1.4.      | Gemeinsame Daten                                       | 7  |
| 1.5.      | Zubehör                                                | 8  |
| 1.6.      | Empfohlene Ergänzungen                                 | 8  |
| 2         | Inbetriebnahme und Bedienung                           | 9  |
| 2.1.      | Einstellen der mechanischen Instrument-Nullpunkte      |    |
| 2.2.      | Einstellen auf die gegebene Netzspannung               |    |
| 2.3.      | Anschlüsse an der Rückseite                            |    |
|           | Netzanschluß                                           |    |
| 2.3.2.    | Übrige Anschlüsse                                      | 9  |
|           | Anschlüsse an der Frontseite                           |    |
|           | Ausgänge des Pegelsenders                              |    |
| 2.4.2.    | Eingänge des Pegelmessers                              | 12 |
| 2.4.3.    | Ausgang des Pegelmessers                               | 12 |
| 2.4.4.    | Buchsen am Schalt- und Filterfeld links                | 13 |
| 2.4.5.    | Meßanschluß am Schalt- und Filterfeld rechts           | 13 |
| 2.5.      | Einstellen der Meßfrequenz am Pegelsender              | 13 |
| 2.6.      | Eichen des Pegelmessers                                | 13 |
| 2.7.      | Einstellen der Ausgangsspannung am Pegelsender         | 14 |
| 2.8.      | Messen mit dem Pegelmesser                             | 16 |
| 2.9.      | Messen der Verstärkung oder Dämpfung eines Vierpols    | 16 |
| 2.10.     | Messen des Klirrfaktors eines Verstärkers              | 17 |
| 2.11.     | Messen des Pegels der Modulationskanäle                | 18 |
| 2.12.     | Messen des Fremdspannungsabstandes über Demodulator    | 19 |
| <u>3.</u> | Wirkungsweise und Aufbau                               | 20 |
| 3.1.      | Pegelsender                                            | 20 |
| 3.2.      | Pegelmesser                                            | 22 |
| 3.3.      | Netzteil                                               | 24 |
| 3.4.      | Röhrenwechsel                                          | 24 |
| 3.5.      | Schalt- und Filterfeld und Kastenverdrahtung           | 25 |
| 4.        | Schaltteilliste zum Einschub Pegelsender + Pegelmesser | 27 |
| -         | Schaltteilliste zum Einschub Schalt- und Filterfeld    |    |
| _         | Schaltteilliste zur Kasten-Verdrahtung                 | •  |
|           | 5 Stromläufe                                           |    |

° 8843 64 Bl. 2

#### Übersicht

Das NF-Pegelgerät Type SUN, Ausführung BN 408710, enthält einen Pegelsender, einen Pegelmesser und ein Schalt- und Filterfeld. Der Pegelsender ist ein von 30 Hz bis 30 kHz stetig durchstimmbarer RC-Oszillator mit Ausgangsspannungsmesser. Seine praktisch verzerrungsfreie Ausgangsspannung (mit einem Klirrfaktor k<0,1 % für f > 100 Hz und k<0,2 % für f < 100 Hz) kann von 0,1 mV bis 10 V bzw. von -80 bis +22 db lückenlos eingestellt werden. Der Pegelmesser ist hinsichtlich Frequenzund Meßbereich dem Pegelsender angepaßt, das heißt, er mißt im Frequenzbereich von 30 Hz bis 30 kHz Spannungen von 0,1 mV bis 10 V bzw. von -80 bis +22 db.

Die Ausgangsspannung des Pegelsenders ist wahlweise an einem unsymmetrischen oder an einem symmetrischen Ausgang entnehmbar. Ebenso verfügt der Pegelmesser über einen unsymmetrischen und einen symmetrischen Eingang. So kann man zwischen Pegelsender-Ausgang und Pegelmesser-Eingang auch ohne weiteres solche Vierpole einschalten, die zum Beispiel eingangsseitig unsymmetrisch und ausgangsseitig symmetrisch aufgebaut sind, wie es bei Verstärkern manchmal der Fall ist.

Dieses NF-Pegelgerät weist also alle Eigenschaften auf, die an einen Meßplatz zur punktweisen Messung des Frequenzganges der Dämpfung oder der Verstärkung von Vierpolen gestellt werden. Unter der Voraussetzung, daß einem Filter 10 V Eingangsspannung zugeführt werden dürfen oder daß die Ausgangsspannung eines Verstärkers auf 10 V ansteigen darf, sind Dämpfungen oder Verstärkungen bis rund 100 db (1: 100 000) meßbar.

Das dritte Teilgerät dieses NF-Pegelgerätes, nämlich das Schalt- und Filterfeld, das besonders für die Erfordernisse der Betriebsüberwachung beim UKW-Rundfunk eingerichtet ist, ermöglicht in Verbindung mit dem Pegelsender und Pegelmesser die Ermittlung des Klirrfaktors eines Verstärkers oder einer ganzen NF-Übertragungsstrecke bei den vier günstig verteilten Frequenzen 40 Hz, 1 kHz, 5 kHz und 15 kHz. Über das Schalt- und Filterfeld kann man auch, ohne irgendwelche Kabel umstecken zu müssen, den Modulationseingang eines UKW-Senders wahlweise an den einen oder anderen Ausgang der beiden Ballempfänger, an die Modulationsleitung

R 8843

oder an den Ausgang des Pegelsenders schalten. Außerdem kann man den Eingang des Pegelmessers wahlweise verbinden mit dem einen oder anderen Ausgang der Ballempfänger, mit der Modulationsleitung oder mit dem Demodulator des UKW-Senders (zur Messung der Eigenstörspannung). Es ist auch möglich, den Pegel und den Klirrfaktor der zwei freien Modulationskanäle zu messen, während der dritte Kanal mit dem Modulationseingang des Senders verbunden ist. Dank des kleinen Eigenklirrfaktors (< 0,1 % bzw. < 0,2 %) des Pegelsenders und der relativ hohen Grundwellendämpfung (> 75 db) der vier Hochpaßfilter sind Klirrfaktoren bis 0,5 % herab einwandfrei meßbar.

Wie in der Fußnote auf Blatt 8 angegeben, kann man über den unsymmetrischen Eingang des Pegelmessers bis 100 kHz hinauf messen. Man muß dabei allerdings berücksichtigen, daß die Fehlergrenzen von ±3 % v.E. nur für den Bereich von 30 Hz bis 30 kHz gelten. Im Gebiet von 30 kHz bis 100 kHz muß mit den erweiterten Anzeige-Fehlergrenzen von ≦ ±10 % gerechnet werden.

## 1. Eigenschaften

| 1.1.                                  | Pegelsender                                                        | RC-Generator                                                                                   |
|---------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                       | Frequenzbereich                                                    | 30 Hz30 kHz                                                                                    |
|                                       | Unterteilung                                                       | 0,030,330 kHz                                                                                  |
|                                       | Fehlergrenzen der einge-<br>stellten Frequenz                      | ±2 %                                                                                           |
| -                                     | Ausgänge umschaltbar                                               | unsymmetrisch oder symmetrisch                                                                 |
| · ·                                   | Ausgangs-EMK                                                       | 0,1 mV10 V bzw80+22 db                                                                         |
|                                       | Stufen                                                             | 1/3/10/30/100/300 mV/<br>1/3/10 V bzw.                                                         |
|                                       |                                                                    | -60/-50/-40/-30/-20/-10 db $0/+10/+20$ db                                                      |
|                                       | Zugehörige Quellwiderstände und kleinste zulässige Lastwiderstände |                                                                                                |
| •                                     | Fehlergrenzen der Anzeige                                          |                                                                                                |
|                                       | •                                                                  | ≦ 0,1 % bei f > 100 Hz<br>≦ 0,2 % bei f < 100 Hz                                               |
| · · · · · · · · · · · · · · · · · · · | Fremdspannungsabstand                                              | > 60 db                                                                                        |
| · .                                   | Anschlüsse                                                         |                                                                                                |
|                                       |                                                                    | umrüstbare 13-mm-Buchse FMU 90100<br>nach DIN 47284, auch für 4-mm-<br>Bananenstecker geeignet |
|                                       | symm. Ausgang                                                      | Siemens-Dreipolbuchse 9 Rel kli 6a<br>nach DIN 41268                                           |

| 1.2.     | Pegelmesser                     | Breitband-Millivoltmeter                                                                       |
|----------|---------------------------------|------------------------------------------------------------------------------------------------|
|          | Frequenzbereich                 | 30 Hz30 kHz (siehe Fußnote Bl. 8                                                               |
|          | Spannungsmeßbereich             | 0,1 mV10 V bzw80+22 db                                                                         |
|          | Stufen                          | wie beim Pegelsender                                                                           |
|          | Eichung des Anzeigeinstrumentes | 03 V, 010 V, -20+2 db                                                                          |
|          | Fehlergrenzen der Anzeige       | ±3 % v.E. nach dem Nacheichen durch die eingebaute Nacheicheinrichtung                         |
| •        | Meßart                          | Mittelwertgleichrichtung                                                                       |
|          | Eichung                         | in Effektivwerten                                                                              |
| -        | Eingang umschaltbar             | unsymmetrisch oder symmetrisch                                                                 |
|          | Anschlüsse                      |                                                                                                |
|          | unsymm. Eingang                 | umrüstbare 13-mm-Buchse FMU 90100<br>nach DIN 47284, auch für 4-mm-<br>Bananenstecker geeignet |
|          | symm. Eingang                   | Siemens-Dreipolbuchse 9 Rel kli 6a<br>nach DIN 41268                                           |
|          | Eingangswiderstand              |                                                                                                |
|          | unsymm. Eingang                 | 1 MO    rund 30 pF                                                                             |
| =        | symm. Eingang                   | > 10 kΩ                                                                                        |
|          | Symmetriedämpfung               | > 60 db (> 40 db im 10-V-Bereich)                                                              |
|          | Kopfhörerausgang                |                                                                                                |
|          | Ausgangsspannung                | etwa 1 V EMK bei Vollausschlag<br>des Anzeigeinstrumentes                                      |
|          | Verstärkung                     | max. 1000fach                                                                                  |
|          | Innenwiderstand                 | 1,8 k $\Omega$ in Reihe mit 4 $\mu F$                                                          |
|          | Störspannung                    | < 10 mV                                                                                        |
|          | Klirrfaktor                     | < 1 %                                                                                          |
| .:·<br>· | Anschluß                        | zwei 4-mm-Telefonbuchsen                                                                       |

R 8843 264

-B1.

|                                        | Madulations Winners at mos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Modulations-Eingang eines        | Buchsen (an der Frontplatte des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | UKW-Senders an                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·  |                                  | Schalt- und Filterfeldes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        |                                  | Pegelsender-Ausgang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                  | Modulations-Leitung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                  | Ausgang Ballempfänger I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                  | Ausgang Ballempfänger II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -<br>-                                 | The same of the same of the      | Pegelsender-Ausgang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Pegelmesser-Eingang an           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  | Modulations-Leitung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                  | Ausgang Ballempfänger I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                  | Ausgang Ballempfänger II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                  | Demodulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Als Filterfeld zur Klirrfaktorme | CT CTT S SA AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | WIR LITTETH SAL VITILITAR POLIS  | a aung :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| r ·                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | 4 Hochpasfilter vor den Pegel    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | messer schaltbar zur Dämpfung    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | der Grundwellen                  | AN How to burn and the burn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                  | AC HOUR CHAR CHAR I CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Dämpfung der Grundwellen         | > 75 db                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·                                      | Fehlergrenzen der                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Klirrfaktormessung               | ≦ ±10 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·· · · · · · · · · · · · · · · · · · · | Maximal zulässige Spannung am    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Eingang des Schalt- und Filter-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -<br>-                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | feldes                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  | 10 V bei 1, 5 und 15 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.4.                                   | Gemeinsame Daten                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Netzanschluß                     | 115/125/220/235 7 -45 . 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                  | 4763 Hz, 45 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·  |                                  | THE STOP IN THE STATE OF THE ST |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Bestückung                       | 1 Röhre EF 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                      |                                  | 8 Röhren EF 804 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8843                                   |                                  | 1 Röhre EL 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 54                                     |                                  | 1 Röhre EL 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L. 7                                   |                                  | 1 Stabilisator 85 A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  | 1 Zwergglimmlampe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                  | R&S-Sach-Nr. RL 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                  | 1 Schmelzeinsatz 0,4 C DIN 41571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                  | für 220 und 235 V Netzspannung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Abmessungen                      | $540 \times 370 \times 378 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | ···                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Gewicht                          | etwa 50 ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

1.3. Schalt- und Filterfeld

Als Schaltfeld zur Verbindung:

## 1.5. Zubehör

- 1 Netz-Anschlußkabel . . . R&S-Sach-Nr. LK 333
- 2 Siemens-Dreipolstecker . . . 9 Rel stp 6ac
- 5 dreipolige Kupplungsstecker (Tuchel) . . . . R&S-Sach-Nr. FTS 20315

#### 1.6. Empfohlene Ergänzungen

- 13-mm-Steckerkabel 50 cm . . . BN 90516/50
- 13-mm-Steckerkabel 100 cm . . . BN 90516/100

R 8843 264 -Bl. 8

## Bemerkung zum Pegelmesser

Frequenzbereich des unsymmetrischen Eingangs . . . . . . . . . . . . 30 Hz... 100 kHz

Fehlergrenzen der Anzeige . . . . ±3 % v.E. bei 30 Hz...30 kHz ±10 % v.E. bei 30 kHz...100 kHz

## 2. Inbetriebnahme und Bedienung

# 2.1. Einstellen der mechanischen Instrument-Nullpunkte

Bei ausgeschaltetem Gerät müssen die Zeiger der beiden Instrumente auf dem O-Punkt der Volt-Skalen stehen. Zur Korrektur dieser Einstellung dient jeweils die im Instrumentgehäuse eingelassene Schlitzschraube.

# 2.2. Einstellen auf die gegebene Netzspannung

Ab Werk ist das Gerät für 220 V Netzspannung eingestellt.

Zur Umstellung für 115 V, 125 V oder 235 V muß man zunächst an der Frontplatte des oberen Einschubes (Pegelsender + Pegelmesser) die vier Zylinderkopfschrauben lösen und diesen Einschub aus dem Gehäuse ziehen. Dann wird auf dem Spannungswähler, der sich auf dem Netztransformator befindet und gleichzeitig Sicherungshalter ist, das mit der gegebenen Netzspannung bezeichnete Federnpaar mit einer passenden Sicherung überbrückt. Die für 220 V eingesetzte 400-mA-Sicherung (0,4 C DIN 41571) ist auch für 235 V geeignet. Für 115 V oder 125 V muß eine 800-mA-Sicherung (0,8 C DIN 41571) eingesetzt werden. Hierauf baut man den Einschub wieder ordnungsgemäß ein.

## 2.3. Anschlüsse an der Rückseite

#### 2.3.1. Netzanschluß

Hierzu dient das dem Gerät beigegebene Anschlußkabel mit Geräte- und Schukostecker. Der Anschluß am Gerät befindet sich an der Rückseite des Kastens.

# 2.3.2. Übrige Anschlüsse

1962年中国大学学院的工作特别。1960年11月1日

Die 5 dreipoligen Steckdosen werden nur dann beschaltet, wenn das Gerät an einem UKW-Sender eingesetzt wird. Über 3polige Stecker (R&S-Sach-Nr. FTS 20315) und 2adrige Abschirmkabel verbinde man Anschluß

B1.9

Q

"Sender" . . . . . . . . . . . mit dem Modulationseingang des UKW-Senders.

"Modulations-Ltg." . . . . . . . mit der zum Beispiel vom Studio kommenden Modulations-Leitung.

"Ballempfänger I" . . . . . . . mit dem Ausgang des Ballempfängers I.

"Ballempfänger II" . . . . . . . . mit dem Ausgang des Ballempfängers II.

"Demodulator" . . . . . . . . . mit dem Ausgang der Demodulationsstufe des UKW-Senders.

Durch das Bezeichnungsschild an der Rückseite ist jeweils angegeben, mit welchem Steckerstift die Kabelabschirmung verbunden werden muß.

# 2.4. Anschlüsse an der Frontseite

# 2.4.1. Ausgänge des Pegelsenders

Es ist ein unsymmetrischer und ein symmetrischer Ausgang gegeben. In die Buchse des unsymmetrischen paßt ein 13-mm-Stecker mit der R&S-Sach-Nr. FS 413/12, für den symmetrischen Ausgang paßt ein 3poliger Siemens-Stecker 9 Rel stp 6ac.

Die Ausgangsspannung ist jeweils nur an einem der beiden Ausgänge entnehmbar. Zur Wahl dient der über den Ausgängen befindliche Schalter. Beide Ausgänge haben jeweils den gleich großen Innen-widerstand. Dieser ist vor allem vom gewählten Bereich (Anzapfung am Ausgangsübertrager) und zum Teil auch von der Frequenz abhängig:

R 8843 264 Bl. 10

| Bereich          | Innenwider<br>1 kHz | stand bei<br>30 kHz | Kleinster zul.<br>Lastwiderstand |
|------------------|---------------------|---------------------|----------------------------------|
| 1 mV<br>-60 db   | 1,8Ω                | 1,85Ω               | 1 Ω                              |
| -50 db           | 5,2Ω                | 5,4 Ω               |                                  |
| 10 mV<br>-40 db  | 15,2Ω               | 16 Ω                | 1 Ω                              |
| 30 mV<br>-30 db  | 41,2 Ω              | 45                  | 1 0                              |
| 100 mV<br>-20 db | 38,2Ω               | 70 Ω                | 1Ω                               |
| 300 mV<br>-10 db | 1,3Ω                | 1,5 Ω               | 1Ω                               |
| 1 V<br>O db      | 3,1 Ω               | 3,1 \Q              | 3 \ \( \text{2} \)               |
| 3 V<br>+10 db    | 9,3 Ω               | :10,5               | 10 Ω                             |
| 10 V<br>+20 db   | 35,5 Ω              | 66,6 Q              | 200 Ω                            |

Diese Innenwiderstände beziehen sich auf einen ohmschen Lastwiderstand, an dem die Hälfte der vom Instrument angezeigten Leerlaufspannung (EMK) auftritt, wobei also Ra = Ri ist. Die Innenwiderstände sind jedoch keine reinen Wirkwiderstände, sondern bestehen wegen der unvermeidlichen Streuinduktivitäten und Wicklungskapazitäten des Ausgangsübertragers auch aus mehr oder weniger großen Blindkomponenten (deshalb die Frequenzabhängigkeit). Von den tiefsten Frequenzen bis etwa 5 kHz gelten die für 1 kHz angegebenen Werte. Über etwa 5 kHz steigt der Innenwiderstand je nach Bereich mehr oder weniger an. Außerdem sind die angegebenen Werte wegen der von Gerät zu Gerät etwas unterschiedlichen Streuinduktivitäten und Wicklungskapazitäten nur als Richtwerte anzusehen.

R 8843 264 Bl. 11

Die Abhängigkeit des Innenwiderstandes vom Bereich und von der Frequenz spielt aber bei den meisten Messungen keine nennenswerte Rolle; denn erstens braucht man beim Messen des Frequenzganges eines Filters oder

to the second of the second

Verstärkers den Bereich in der Regel nicht zu wechseln, zweitens ist die Frequenzabhängigkeit des Innenwiderstandes innerhalb eines Bereiches um so unbedeutender, je größer der Eingangswiderstand des Meßobjektes ist.

Die in obiger Tabelle angegebenen zulässigen Lastwiderstände sind für die Praxis nur von untergeordneter Bedeutung. Die Werte sind nur ein Anhaltspunkt, wie groß der Lastwiderstand mindestens sein muß, damit der unter "1. Eigenschaften" angegebene Klirrfaktor (< 0,1 %) der Ausgangsspannung noch eingehalten wird.

#### 2.4.2. Eingänge des Pegelmessers

Bezüglich Stecker gilt das unter 2.4.1. Gesagte. Auch hier ist jeweils nur einer der beiden Eingänge wirksam. Das Umschalten vom unsymmetrischen auf den symmetrischen Eingang geschieht wie beim Pegelsender. Der Eingangswiderstand des symmetrischen Eingangs liegt innerhalb des ganzen Frequenzbereiches über 10 k $\Omega$ ; der des unsymmetrischen beträgt 1 M $\Omega$  mit rund 30 pF Parallelkapazität.

#### 2.4.3. Ausgang des Pegelmessers

An den zwei mit "Ausgang" benannten 4-mm-Telefonbuchsen kann die dem unsymmetrischen oder symmetrischen Eingang zugeführte Spannung bis zu 1000fach verstärkt entnommen werden. Dieser größte Verstärkungsgrad ist im Bereich 1 mV/-60 db gegeben. Beim Umschalten auf die höheren Meßbereiche geht die Verstärkung um 10 db je Stufe zurück. Sie beträgt dann zum Beispiel 1 in der Stufe 1 V/O db. Die zu verstärkende Spannung soll jedoch nicht höher sein als der im gewählten Bereich angegebene Endwert. Bei Vollausschlag des Instrumentes beträgt die Leerlauf-Ausgangsspannung etwa 1 V. Der Innenwiderstand beträgt 1,8 kQ. Zur Gleichstromverriegelung ist im Ausgang ein 4-µF-Kondensator eingebaut. Wegen des kleinen Klirrfaktors (< 1 %) und der geringen Störspannung (< 10 mV) ist der Pegelmesser ein vorzüglicher NF-Verstärker für viele Zwecke.

to the second of the second of

7 8843 54 51. 12

#### 2.4.4. Buchsen am Schalt- und Filterfeld links

In diese 3polige Buchse paßt ein Siemens-Stecker 9 Rel stp 6ac. Wie auf der Frontplatte neben der Buchse angegeben, befindet sich im Gerät zwischen der unteren und mittleren Buchse ein 30-Ω-Widerstand, der jedoch abgeschaltet wird, wenn in die Buchse ein Stecker eingesteckt wird. Diese Buchsen sind mit dem Modulations-Eingang des Senders verbunden, wenn der Schalter "Sender an" auf "Buchsen" gestellt ist.

#### 2.4.5. MeBanschluß am Schalt- und Filterfeld rechts

Auch in diese 3polige Buchse paßt ein Siemens-Stecker 9 Rel stp 6ac. Je nach Einstellung des Schalters "Pegelmesser an" liegt der "Meßanschluß" entweder am Ausgang des Pegelsenders, an der Modulationsleitung, am Ausgang des Ballempfängers I, am Ausgang des Ballempfängers II oder am Demodulator des Senders. Weitere Verbindungsmöglichkeiten zeigt der vereinfachte Stromlauf des Schalt- und Filterfeldes (Blatt 41).

## 2.5. Einstellen der Meßfrequenz am Pegelsender

Die 3 Frequenzbereiche 0,03...0,3 kHz, 0,3...3 kHz und 3...30 kHz haben die gemeinsame, von 3...30 geeichte Skala. Für beispielsweise 50 Hz Meßfrequenz ist also der Bereichschalter auf 0,03 - 0,3 zu stellen und der Zeiger der Frequenzskala mit dem Kurbelknopf auf 5 zu drehen.

#### 2.6. Eichen des Pegelmessers

Die Meßgenauigkeit (±3 % v.E.) des Pegelmessers stützt sich auf die Genauigkeit (±2 % v.E.) des Pegelsender-Instrumentes. Zur Eichung müssen folgende Bedingungen erfüllt sein und folgende Einstellungen vorgenommen werden:

- a) Am jeweils gewählten Eingang des Pegelmessers darf keine Spannung liegen.
- b) Am Schalt- und Filterfeld muß der zweite Schalter v.l.n.r. in der unbeschrifteten Stellung stehen, d.h. in der Stellung zwischen "Pegelmessung" und "Grundwelle". Somit kann auch über das Schalt- und Filterfeld an den Pegelmesser-Eingang keine Spannung gelangen.

~\_ .--

e) Ausgangsspannungsregler des Pegelsenders so einstellen, daß das Pegelsender-Instrument genau O db anzeigt.

f) Am Pegelmesser den Knopf "Eichen O db" einregeln, daß auch das Pegelmesser-Instrument genau O db anzeigt.

# 2.7. Einstellen der Ausgangespannung am Pegelsender

In den 9 Bereichen zeigt das Instrument nicht die Ausgangsspannung (Klemmenspannung), sondern die Leerlaufspannung (EMK) bzw. den Leerlaufpegel an. Beim Einstellen einer gewünschten Ausgangsspannung sind also der jeweilige Innenwiderstand  $R_i$ . (siehe Abschnitt 2.4.1.) und die Größe des Lastwiderstandes  $R_i$  mit zu berücksichtigen. Die Ausgangsspannung ist

$$U = EMK - \frac{R_a}{R_1 + R_a}.$$

Umgekehrt ist für eine gewünschte Ausgangsspannung eine

$$EMK = U \frac{R_1 + R_2}{R_2}.$$

einzustellen. Bei R<sub>a</sub> = R<sub>i</sub> beispielsweise ist U = EMK/2. In den Bereichen 1 mV/-60 db, 10 mV/-40 db, 100 mV/-20 db, 1 V/0 db und 10 V/+20 db wird an der von 0...10 V geeichten Skala abgelesen, in den Bereichen 3 mV/-50 db, 30 mV/-30 db, 300 mV/-10 db und 3 V/+10 db an der von 0...3 V geeichten Skala. Zur Bestimmung des Ausgangspegels in Dezibel wird an der von -20...+2 db geeichten Skala abgelesen. Der Ausgangs-Leerlaufpegel ist jeweils die Summe von Schalter-db-Wert und Skalen-db-Wert. So ist zum Beispiel:

Wie bei der Spannung, so geht auch der Ausgangspegel P gegenüber dem angezeigten Leerlaufpegel  $P_o$  mit kleiner werdendem Lastwiderstand zurück. Bei einem Lastwiderstand  $R_a$ , der gleich dem Innenwiderstand  $R_i$  ist, liegt der Ausgangspegel jeweils um 6 db tiefer als der angezeigte Leerlaufpegel. Die vom Innenwiderstand und Lastwiderstand abhängige Pegeldifferenz  $p_o - p_o$  kann man ermitteln aus:

$$b = P_0 - P = 20 lg (1 + \frac{R_1}{R_2})$$

Aufgrund der relativ kleinen Innenwiderstände und der bei Filtern und Verstärkern üblichen Eingangswiderstände ( $\geq$  600  $\Omega$ ) ist die zu berücksichtigende Pegeldifferenz in der Regel so klein, daß sie bei den meisten Messungen vernachlässigt werden kann. Bei dem größten vorkommenden Innenwiderstand  $\approx$  70  $\Omega$  und einem Lastwiderstand von beispielsweise 600  $\Omega$  beträgt die Pegeldifferenz erst

$$b = 20 lg (1 + \frac{70}{600}) \approx 1.4 db.$$

An diesem Beispiel kann man ermessen, daß sowohl die Sprünge des Innenwiderstandes (von Bereich zu Bereich) als auch dessen Frequenzgang (innerhalb eines Bereiches) für die meisten Messungen nur von untergeordneter Bedeutung ist. Deshalb hielten wir es für vertretbar, auf der Frontplatte  $_{\rm II}R_{\rm I}$  < 60  $\Omega^{\rm II}$  anzugeben.

Je nach Einstellung der Schalter am Schalt- und Filterfeld kann die Ausgangsspannung des Pegelsenders gleichzeitig auch an einer anderen Stelle auftreten. Sie liegt zum Beispiel auch am Modulations-Eingang des Senders, wenn der Schalter "Sender an" auf "Pegelsender" steht; oder sie liegt auch am "Meßanschluß", wenn der Schalter "Pegelmesser an" auf "Pegelsender" gestellt ist. In dieser Stellung kann die Ausgangsspannung auch noch direkt am Pegelmesser-Eingang liegen, wenn der 2. Schalter v.l.n.r. auf "Pegelmessung" steht. Zur Orientierung diene wieder der vereinfachte Stromlauf des Schalt- und Filterfeldes.

R 8843 264 Bl. 15

## 2.8. Messen mit dem Pegelmesser

Der Pegelmesser hat mit dem Pegelsender nur den Stromversorgungsteil gemeinsam; sonst ist er ein selbständiges Breitband-Röhrenvoltmeter. Die dem unsymmetrischen oder symmetrischen Eingang zugeführte Spannung wird genau so gemessen wie die EMK des Pegelsenders; denn der Pegelmesser hat ja die gleichen Meßbereiche und die gleichen Instrumentskalen wie der Pegelsender. Nur der Drehsinn des Bereichschalters ist umgekehrt. Beide Bereichschalter, der des Pegelsenders und der des Pegelmessers, haben jedoch den der Meßpraxis entsprechenden Drehsinn. Während beim Pegelsender durch Rechtsdrehen die Ausgangsspannung ansteigt, steigt beim Pegelmesser durch Rechtsdrehen die Empfindlichkeit an. Bezüglich Frequenzbereich siehe auch Fußnote auf Blatt 8.

An den unsymmetrischen Eingang darf außer der zu messenden Wechselspannung gleichzeitig auch eine Gleichspannung angelegt werden. Der
aus Wechsel- und Gleichspannung resultierende Spitzenwert darf jedoch
500 V nicht überschreiten.

Der symmetrische Eingang darf (wegen des Symmetrierübertragers) von keinem Gleichstrom durchflossen werden. Eine zwischen den kurzgeschlossenen Buchsen und Masse auftretende Gleich- oder Wechselspannung darf nicht höher sein als 300 V- oder 220 V~.

Wenn die zu messende Spannung dem Eingang an der Frontplatte zugeführt wird, so muß man beachten, daß nicht etwa auch über das Schalt- und Filterfeld eine Spannung an den Pegelmesser-Eingang gelangt. Frei von einer anderen Spannung und Belastung ist der Pegelmesser-Eingang, wenn man zum Beispiel den 2. Schalter v.l.n.r. in die nicht bezeichnete Stellung bringt, d.h. in die Stellung zwischen "Pegelmessung" und "Grundwelle".

R 8843 .64 .31.16

From the first the state of the

# 2.9. Messen der Verstärkung oder Dämpfung eines Vierpols

Zunächst sorge man dafür, daß der Pegelsender-Ausgang und der Pegelmesser-Eingang über das Schalt- und Filterfeld nicht belastet sind.
Das ist der Fall, wenn der Schalter "Sender an" auf "Buchsen" steht,
der Schalter "Pegelmesser an" nicht auf "Pegelsender" steht und der
2. Schalter v.l.n.r. zwischen "Pegelmessung" und "Grundwelle" eingestellt ist.

tanta da la companya La companya da la compa Den Vierpol fügt man zwischen einem Ausgang des Pegelsenders und einem Eingang des Pegelmessers ein und mißt nach 2.7. und 2.8. die Ein- und Ausgangsspannung des Vierpols. Die hierbei ermittelte Spannungsdifferenz bzw. die Pegeldifferenz ist die Verstärkung oder Dämpfung.

#### 2.10 Messen des Klirrfaktors eines Verstärkers

- a) Ausgangsspannung des Pegelsenders zunächst auf einen kleinen Wert einstellen (z.B. auf -60 db).
- b) Schalter "Sender an" zum Beispiel auf "Buchsen" stellen.
- c) Schalter "Pegelmesser an" auf "Demodulator" stellen.
- d) An der Rückseite des Kastens den Stecker "Demodulator" herausziehen.
- e) Eingang des Verstärkers (je nach dessen Schaltung) mit dem symm. oder unsymm. Pegelsender-Ausgang verbinden.
- f) Ausgang des Verstärkers mit dem "Meßanschluß" verbinden. Wenn der Ausgang unsymmetrisch ist, wird der spannungführende Anschluß mit der unteren Buchse verbunden, der masseseitige mit der mittleren Buchse, wobei diese Buchse auch mit der oberen Massebuchse verbunden werden muß. Man beachte auch, ob der Eingangswiderstand der Buchse "Meßanschluß" tragbar ist. Er beträgt rund 5 kΩ. Nötigenfalls fügt man zwischen Verstärker-Ausgang und "Meßanschluß" zwei Reihenwiderstände bzw. einen Reihenwiderstand ein. Auf die Messung haben diese Widerstände keinen Einfluß.
- g) Am Pegelsender die gewünschte Meßfrequenz (Grundwelle) 40 Hz, 1 kHz, 5 kHz oder 15 kHz einstellen.
- h) Am Schalt- und Filterfeld den 3. Schalter v.l.n.r. auf die gewählte Meßfrequenz stellen.
- i) Am Schalt- und Filterfeld den 2. Schalter v.l.n.r. auf "Grundwelle" stellen.
- j) Am Pegelmesser auf "Eingang symm." schalten.
- k) Den Pegelmesser für eine Eingangsspannung einstellen, die der Ausgangsspannung des Verstärkers entspricht (z.B. +6 db).

R 8843

264

- 1) Die Ausgangsspannung des Pegelsenders erhöhen, bis das Pegelmesser-Instrument die vorgesehene Ausgangsspannung des Verstärkers anzeigt. Diese Anzeige ist nun die Amplitude P<sub>1</sub> in db oder U<sub>1</sub> in Volt der Grundwelle.
- m) Am Schalt- und Filterfeld auf "Oberwelle" umschalten.
- n) Am Pegelmesser einen Meßbereich wählen, daß das Oberwellengemisch angezeigt wird. Diese Anzeige ist die Amplitude  $P_2$  in db oder  $U_2$  in Volt.
- o) Die Klirrdämpfung ist nun  $P_1$   $P_2$ . Hatte man bei "Grundwelle" beispielsweise +6 db gemessen und bei "Oberwelle" -34 db, so beträgt die Klirrdämpfung (+6) (-34) = 40 db. Hatte man dagegen in Voltabgelesen, so zum Beispiel "Grundwelle" 10 V und "Oberwelle" 0,1 V, dann beträgt der Klirrfaktor

$$k = \frac{U_2}{U_1} 100 = \frac{0.1}{10} 100 = 1 \%.$$

Beim Messen der Klirrdämpfung mit den Grundwellen 1 kHz, 5 kHz und 15 kHz wird sinngemäß verfahren.

#### 2.11. Messen des Pegels der Modulationskanäle

Es soll zum Beispiel der Pegel der vom Studio kommenden Modulations-Leitung gemessen werden, während diese mit dem Modulations-Eingang des Senders verbunden ist.

- a) Die Verbindung zwischen Modulations-Eingang und Modulations-Leitung ist hergestellt, wenn der Schalter "Sender an" auf "Mod.-Ltg." gestellt ist.
- b) Zur Messung des Pegels sind einzustellen: Schalter "Pegelmesser an" auf "Mod.-Ltg.", 2. Schalter v.l.n.r. auf "Pegelmessung", am Pegelmesser Schalter "Eingang" auf "symm.". Hiermit liegt der Pegel der Modulations-Leitung auch am Eingang des Pegelmessers und kann gemessen werden. Zur Messung des Ausgangspegels der beiden Ballempfänger braucht man nur die beiden Schalter "Sender an" und "Pegelmesser an" entsprechend einzustellen.

R 8843

3--- ·

Übertragen die Modulationskanäle die Frequenz 40 Hz, 1 kHz, 5 kHz oder 15 kHz, so kann man anschließend gleich den Klirrfaktor messen. Dabei bleiben die Schalter "Sender an" und "Pegelmesser an" eingestellt wie beschrieben. Nur der 2. Schalter v.l.n.r. wird zuerst auf "Grundwelle" und dann auf "Oberwelle" gestellt und jeweils die Spannung gemessen wie unter 2.10. erläutert.

## 2.12. Messen des Fremdspannungsabstandes über Demodulator

Hierbei wird erst die bei unmoduliertem Sender vom Demodulator gelieferte Störspannung gemessen und dann die Spannung bei normalem Frequenzhub. Das Verhältnis dieser beiden Spannungen ist dann der Fremdspannungs-abstand.

- a) Messen der Störspannung: Schalter "Sender an" auf "Buchsen". Hiermit ist der Modulationseingang des Senders mit 30 Ω abgeschlossen. Schalter "Pegelmesser an" auf "Demodulator". 2. Schalter v.l.n.r. auf "Pegelmessung". Am Pegelmesser Schalter "Eingang" auf "symm.". Störspannung messen.
- b) Messen bei normalem Frequenzhub: Schalter "Sender an" auf "Pegelsender". Am Pegelsender symm. Ausgang wählen und Pegel für normalen Frequenzhub einstellen. Schalter "Pegelmesser an" bleibt auf "Demodulator". Spannung messen. Das einzuhaltende Mindest-Spannungsverhältnis hängt von den jeweiligen Vorschriften (Pflichtenheft) ab.

R 8843 264 Bl. 19

#### 3. Wirkungsweise und Aufbau

Das NF-Pegelgerät Type SUN, Ausführung BN 408710, besteht aus einem Stahlblechkasten mit Kastenverdrahtung und 2 Einschüben: Der obere Einschub enthält den Pegelsender und Pegelmesser mit einem gemeinsamen Netzteil. Siehe Stromlauf, Blatt 40. Der untere Einschub ist das Schaltund Filterfeld (siehe Stromlauf, Blatt 41), das über die Kastenverdrahtung (siehe Stromlauf, Blatt 43) einerseits mit dem Pegelsender und Pegelmesser in Verbindung steht, andererseits für weitere Verbindungen nach außen eingerichtet ist. Zur groben Orientierung der Schaltmöglichkeiten diene der vereinfachte Stromlauf des Schalt- und Filterfeldes, Blatt 39.

#### 3.1. Pegelsender

Zur Erzeugung der NF-Spannung dient ein RC-Generator. Nachstehendes Bild zeigt die vereinfachte Schaltung. Im wesentlichen besteht sie aus dem zweistufigen Verstärker Rö1 + Rö2, dem Wienglied RI + CI — RII + CII und dem Spannungsteiler R5-R9. Das Wienglied bildet einen frequenzabhängigen und phasendrehenden Spannungsteiler, der für die mit Hilfe des Verstärkers sich erregende Frequenz bestimmend ist. Es erregt sich jeweils eine Frequenz, bei der die Eingangsspannung Uz und Ausgangsspannung Uz des Verstärkers gleiche Phasenlage aufweisen.



R 8843 264 Bl. 20

Die beiden rein ohmschen Spannungsteilerwiderstände R5 + R9, von denen R5 ein Heißleiter ist, bewirken eine starke und von der Schwingungsamplitude abhängige Gegenkopplung, durch die die Amplitude begrenzt
und konstant gehalten wird. Das Verhältnis R5/R9 ist so bemessen,

daß die zwei Röhren Rö1 + Rö2 im normalen stark gegengekoppelten Zustand gerade so viel Verstärkung aufbringen, wie notwendig ist, die Schwingungen aufrecht zu erhalten. Steigt aus irgend einem Grund die Ausgangsspannung U<sub>A</sub> an, so vergrößert sich der Strom in R5 + R9. Dadurch wird der Widerstand des Heißleiters R5 durch die zusätzliche Erwärmung kleiner und demzufolge die Gegenkopplung stärker. Dabei sinkt die Verstärkung so weit ab, daß die Ausgangsspannung auf den ursprünglichen Betrag zurückgeht. Da die auf diese Weise konstantgehaltene, an das Gitter von Rö1 gelangende Wechselspannung nur klein und die Gegenkopplung ziemlich stark ist, weist die Ausgangsspannung einen sehr kleinen Klirrfaktor auf.

Alle anderen Einzelheiten der Schaltung des RC-Generators gehen aus dem Stromlauf hervor. Für die 3 Frequenzbereiche 0,03...0,3 kHz, 0,3...3 kHz und 3...30 kHz ist nur die eine von 3...30 geeichte Drehkondensatorskala vorgesehen. Die Übereinstimmung der drei Skalenverläufe ist hergestellt durch entsprechenden Abgleich der Trimmer C5-C7-C8-C9 und der Regelwiderstände R10-R11-R12. Damit die mit dem Heißleiter R5 bewirkte Amplitudenregelung durch die Änderungen der Außentemperatur nicht beeinflußt werden kann, ist der Heißleiter in einem Thermostaten eingebaut, dessen Innentemperatur etwa 50° C beträgt.

Die Ausgangsspannung des RC-Generators gelangt nun über den Widerstand R22 und über den Ausgangsspannungsregler R25 an den Eingang des Endverstärkers Rö3-Rö4. Der Widerstand R22 bewirkt dabei eine gute Entkopplung des RC-Generators vom Regler R25. Durch das Regeln der Ausgangsspannung kann also die erregte Frequenz nicht beeinflußt werden. Damit der sehr kleine Klirrfaktor des RC-Generators bei der Weiterverstärkung nicht nennenswert vergrößert wird, sind die zwei Stufen Rö3-Rö4 über C19+R32 sehr stark gegengekoppelt.

Das Instrument J1 zur Messung der Ausgangsspannung ist ein Drehspulstrommesser mit eingebautem Graetz-Gleichrichter. Es ist für den Frequenzbereich von 20 Hz...100 kHz geeignet und zeigt Vollausschlag bei 10 V. Die NF-Spannung an der Primärwicklung des Ausgangsübertragers Tröbeträgt 30 V (bei Vollausschlag). Die Spannungsdifferenz nimmt der Vorwiderstand R36 auf.

R 8843

261

Zur Herstellung der Ausgangsspannungen bzw. Ausgangspegel 10 V/+20 db, 3 V/+10 db, 1 V/0 db und 300 mV/-10 db dient der Ausgangsübertrager Tr3 allein. Für die kleineren Werte 100 mV/-20 db, 30 mV/-30 db, 10 mV/-40 db, 3 mV/-50 db und 1 mV/-60 db ist zusätzlich der Ausgangsübertrager Tr4 wirksam. Bei beiden Ausgangsübertragern sind durch symmetrisch angeordnete Scheibenwicklungen sowohl die Streuinduktivitäten als auch die Wicklungskapazitäten auf den kleinstmöglichen Wert gebracht. Die Anzapfungspaare an den Übertragern für die einzelnen Stufen sind gut symmetrisch gegen Masse. Hiermit sind in Verbindung mit dem Pegelmesser symmetrische Vierpolmessungen einwandfrei möglich, wenn die Schleifer der Bereichschalter S2IR-S2IIR über den Ausgangsumschalter S3 an dem symmetrischen Ausgang gelegt sind. Über die Innenwiderstände der Ausgänge siehe unter 2.4.1.

#### 3.2. Pegelmesser

Beim Messen über den symmetrischen Eingang gelangt die Spannung über die Schalter S4II-S4III des symmetrischen Vorteilers an den Übertrager Tr2 und von dessen Sekundärseite über den Eingangsumschalter S5 an die erste Verstärkerstufe Rö5. Der Vorteiler R40-R41-R39 setzt die Eingangsspannung im Meßbereich 10 V/+20 db auf ein Hundertstel bzw. um 40 db herab. In allen anderen Meßbereichen ist der Vorteiler nicht eingeschaltet. Mittels C25 ist die kapazitive Symmetrie, mittels R45 das Übertragungsmaß 1:1 und mittels R44 die Entzerrung des Frequenzganges eingestellt. Die Symmetriedämpfung ist besser als 60 db. Nur im Bereich 10 V/+20 db ist sie wegen des hier eingeschalteten Vorteilers kleiner. Sie ist jedoch auch hier besser als 40 db. Diese Dämpfungswerte gelten für Generatorinnenwiderstände (Meßobjekt-Ausgangswiderstände) bis zu 1000 C und für unsymmetrische Störspannungen bis 300 Veff.

R 8843 264 B1. 22 Beim Messen über den unsymmetrischen Eingang erfolgt (entsprechend dem symmetrischen Eingang) durch den Vorteiler R42-R43 eine Herabsetzung der Eingangsspannung auf ein Hundertstel bzw. um 40 db für den Bereich 10 V/+20 db. Durch C27 ist der Frequenzgang entzerrt. In den anderen 8 Meßbereichen ist der Vorteiler nicht eingeschaltet. Zwischen Eingangsbuchse und Vorteiler ist der Trennkondensator C26 (0,1 µF/630 V) eingefügt, damit man auch an gleichspannungführenden Punkten (z.B. unmittelbar an der Anode einer Röhre) messen kann.

Die erste Stufe Rö5 ist als Katodenverstärker geschaltet. Hiermit kann der anschließende Hauptteiler R51...R58 relativ niederohmig bemessen und damit nur aus ohmschen Widerständen (ohne Trimmer zur Korrektur des Frequenzganges) ausgeführt sein. Die drei Stufen Rö6-Rö7-Rö8 bilden einen normalen, aber stark gegengekoppelten Verstärker. Die letzte Stufe Rö9 ist mit Rücksicht auf den anschließenden Spannungsmesser als Katoden-verstärker ausgeführt. Die Gesamtverstärkung aller fünf Stufen beträgt 11 000. An der Katode von Rö9 liegt somit eine Spannung von 11 V, wenn die Eingangespannung im jeweiligen Bereich den Endwert erreicht. Der Spannungsmesser J2 ist ein Drehspulstrommesser mit eingebautem Gleichrichter in Graetzschaltung. Es ist ein Mittelwertmesser; seine Skala ist jedoch (mit sinusförmiger Spannung) in Effektivwerten geeicht. Es handelt sich um das gleiche Instrument wie im Pegelsender.

Rund 1/10 der an der Katode von Rö9 auftretenden NF-Spannung wird am Katodenwiderstand abgegriffen und über den 4-µF-Trennkondensator C43 den Buchsen "Ausgang" zugeführt. Bei Vollausschlag des Anzeigeinstrumentes beträgt die Ausgangs-Leerlaufspannung rund 1 V.

Die Eichung des Pegelmessers kann ohne eine äußere Normalspannung geprüft und berichtigt werden. Als Normalspannung dient die Leerlauf-Ausgangsspannung des Pegelsenders, und zwar die des Bereiches 100 mV/ -20 db. Bringt man den Bereichschalter des Pegelmessers in die Stellung "Eichen O db" (diese Stellung entspricht dem Bereich 100 mV/-20 db), so werden die mit ihm gekuppelten Schalter S4IV und S4VI umgeschaltet. Dadurch zieht (über S4VI) das Relais RsA an. Hierbei werden dessen Kontakte aI 5-6 und aII 11-12 geöffnet, aI 9-10 geschlossen und aII 14-15-16 auf 15-16 umgelegt. Hiermit ist also der Pegelsender-Ausgang abgeschaltet, und die Ausgangsspannung des Bereiches 100 mV/-20 db liegt über aII 15-16 und S4IV am Gitter von Rö5. Stellt man nun am Instrument J1 des Pegelsenders einen bestimmten Ausschlag ein (vorzugsweise O db), so muß, wenn die Verstärkung von Rö5... Rö9 stimmt, auch das Instrument J2 des Pegelmessers den gleichen Ausschlag zeigen. Ist dies nicht der Fall, weil sich z.B. die Verstärkung der einen oder anderen Stufe geändert hat, so braucht man nur den Instrument-Vorwiderstand R80 entsprechend nachzustellen. Dieser Regler ist an der Frontplatte bedienbar und hier mit "Eichen O db" beschriftet.

Results 1 8843 264 Bl. 23

#### 3.3. Netzteil

Primärseitig ist der Netzteil für die Netzspannungen 115 V, 125 V, 220 V und 235 V eingerichtet. Das an der 220-V-Wieklung liegende Glimmlämpchen Rl 1 dient nur zur Überwachung des Einschaltzustandes. Die Anoden- und Schirmgitterspannungen des Pegelsenders und Pegelmessers werden durch Gl 1 gleichgerichtet, durch L3-C52 gefiltert und durch die drei Röhren Rö12-Rö11-Rö10 stabilisiert. Hiervon ist Rö12 die vom gesamten Anodenstrom durchflossene Regelröhre, Rö11 ist die Steuerröhre von Rö12, und Rö10 ist ein Glimmstabilisator zur Herstellung einer bestimmten Grundgittervorspannung (Vergleichsspannung) für Rö11.

Sinkt zum Beispiel die Netzspannung, so sinkt zunächst auch die Anodenspannung; das ist die zwischen der Katode von Rö12 und Masse bestehende Spannung (180 V). Hiermit wird die an R91 abgegriffene Spannung kleiner, das heißt, die Gitterspannung von Rö11 wird negativer. Dadurch sinkt deren Anodenstrom, und demzufolge wird der Spannungsabfall am Anodenwiderstand R87 kleiner, das heißt, die Gitterspannung der Regelröhre Rö12 wird dabei weniger negativ. Dies wiederum hat zur Folge, daß deren Innenwiderstand in dem Maße kleiner wird, daß die Anodenspannung auf den ursprünglichen Betrag ansteigt.

#### 3.4. Röhrenwechsel

Von den 12 Röhren kann man Rö2, Rö3, Rö4, Rö6, Rö7, Rö8 und Rö9 ohne weiteres durch typengleiche Exemplare ersetzen. Irgendwelche Aussuchoder Trimmarbeiten sind hierbei nicht erforderlich. Nach dem Auswechseln der ersten Generator-Röhre Rö1 im Pegelsender empfehlen wir, den Ausgangsklirrfaktor (< 0,1 % bzw. < 0,2 %) nachzumessen. Diese Messung kann, wenn sich beide Einschübe im Kasten befinden, über die Hochpaßfilter des Schalt- und Filterfeldes mit dem Pegelmesser auf folgende Weise vorgenommen werden:

- a) Am Pegelsender 40 Hz Meßfrequenz und am symm. Ausgang etwa 1 V Ausgangsspannung einstellen.
- b) Am Pegelmesser auf symm. Eingang schalten und zunächst Meßbereich 1 V/O db wählen.

24

R 8843

- c) Am Schalt- und Filterfeld Schalter "Sender an" auf "Buchsen",

  2. Schalter v.l.n.r. auf "Grundwelle", 3. Schalter v.l.n.r. auf "40 Hz",

  Schalter "Pegelmesser an" auf "Pegelsender".
- d) Mit Pegelmesser die Amplitude U, der 40-Hz-Grundwelle (mit Oberwellen) messen.
- e) 2. Schalter v.l.n.r. auf "Oberwelle" umschalten und mit Pegelmesser die Amplitude  $\mathbb{U}_2$  der Oberwellen messen.
- f) Das Verhältnis  $U_1/U_2$  muß für den Klirrfaktor < 0,2 % mindestens 500 betragen.

Falls der kleine Klirrfaktor von < 0,2 % mit der neu eingesetzten Röhre nicht erreicht wird, muß man eine geeignete Röhre aussuchen. Eine der acht EF 804 S des Gerätes wird sicher geeignet sein.

Für die erste Röhre Rö5 (EF 804 S) des Pegelmessers muß ein Exemplar mit einwandfreier Heizfaden-Katoden-Isolation eingesetzt werden. Im empfindlichsten Bereich 1 mV/-60 db darf der Störausschlag nicht größer sein als etwa 1 % des Vollausschlages.

# 3.5. Schalt- und Filterfeld und Kastenverdrahtung

Zur Orientierung über das Zusammenwirken von Pegelsender, Pegelmesser und Schalt- und Filterfeld diene der vereinfachte Stromlauf in einpoliger Darstellung auf Blatt 39.

Den Stromlauf des Schalt- und Filterfeld Einschubes, der 4 Hochpaßfilter und der Kastenverdrahtung enthalten die Blätter 41, 42 und 43.

Jeder der 4 Hochpässe dämpft die Grundwelle (40 Hz, 1 kHz, 5 kHz, 15 kHz) um mindestens 75 db und hat eine Durchlaßdämpfung von 6 db. Dieser Durchlaßdämpfung ist die Dämpfung des Teilers R101-R102-R103, der beim Messen des Pegels von Grund- und Oberwellen eingeschaltet ist, angeglichen. Entsprechend der Definition des Klirrfaktors

$$k = \frac{\sqrt{\Lambda_1^2 + \Lambda_2^2 \dots}}{\sqrt{\Lambda_0^2 + \Lambda_1^2 + \Lambda_2^2 \dots}}$$

R 8843 .64 -31. 25

müßte man zur Klirrfaktormessung ein Instrument verwenden, das den quadratischen Mittelwert der Amplituden des Gesamtgemischs An + A, + A, und des Oberwellengemischs A, + A, anzeigt. Dadurch, daß das Instrument im Pegelmesser den arithmetischen Mittelwert anzeigt, entstünde ein Meßfehler, der dann am größten wäre (etwa -11 %), wenn die Amplituden der ersten und zweiten Oberwelle gleich groß sind. Die Amplituden der Oberwellen höherer Ordnungszahl sind in der Regel nur klein und können deshalb vernachlässigt werden. Um den Meßfehler, der mit dem Pegelmesser bei der Klirrfaktormessung auftritt, möglichst klein zu halten, ist die Dämpfung des Teilers R101-R102-R103 um 5,5 % größer bemessen als die jeweilige Durchlaßdämpfung der Hochpässe. Damit ist erreicht, daß sich beim Vorhandensein nur einer Oberwelle ein Meßfehler von +5,5 % und beim Vorhandensein beider Oberwellen (A. und A.) ein Meßfehler von höchstens -5,5 % ergibt. Bei der Klirrfaktormessung mit dem Pegelmesser ist also mit einem zusätzlichen Anzeigefehler von E 16 % zu rechnen. Deshalb ist unter "1. Eigenschaften" ein Gesamtfehler von ≦ ±10 % angegeben. Diese Genauigkeit ist für die Erfordernisse bei der Betriebsüberwachung meist völlig ausreichend; denn für die Übertragung der Modulation ist es unbedeutend, ob der Klirrfaktor der Modulationsspannung zum Beispiel 0,5 % oder 0,55 % beträgt.

R 8843 264 Bl. 26

# 4. Schaltteilliste zum Einschub Pegelsender + Pegelmesser

|         |                       |                                   | (ÄZ "d" Nr. 8296)        |                                |
|---------|-----------------------|-----------------------------------|--------------------------|--------------------------------|
|         | Kenn-<br>zei-<br>chen | Benennung                         | Wert                     | R&S-Sach-Nr.                   |
|         |                       |                                   |                          |                                |
|         | C1                    | Drehkondensator                   | 4 x 10530 pF             | CD 8547                        |
|         | <b>C</b> 5            | Scheibentrimmer                   | 420 pF                   | CV 924                         |
| 1000 1. | C6                    | Keramikkondensator                | 56 pF                    | CCH 31/56                      |
|         | C7                    | Scheibentrimmer                   | 420 pF                   | CV 924                         |
| •<br>•  | C8                    | Scheibentrimmer                   | 420 pF                   | CV 924                         |
| •       | C9                    | Scheibentrimmer                   | 420 pF                   | CV 924                         |
| -       | G10                   | Papierkondensator                 | 25 000 pF/250 V          | CPK 25 000/250                 |
| -       | C11                   | MP-Kondensator                    | 8 μF/250 V<br>8 μF/250 V | CMR 8 + 8/250/2                |
| •       | C15                   | MP-Kondensator                    | 8 µF/160 V               | CMR 8/160/2                    |
| · "·    | C16                   | Papierkondensator                 | 100 000 pF/250 V         | CPK 100 000/250                |
|         | C17                   | MP-Kondensator                    | 1 µF/250                 | CMR 1/250/2                    |
| •       | C18                   | Papierkondensator                 | 100 000 pF/250 V         | CPK 100 000/250                |
|         | 019                   | MP-Kondensator                    | 16 µF/250 V              | CMR 1/250/2                    |
|         | C20                   | MP-Kondensator                    | 16 μF/250 V              | CMR 8 + 8/250/2<br>parallel    |
|         | C21                   | Keramikkondensator                | 3 pF                     | CCG 41/3                       |
|         | C22                   | Keramikkondensator                | 150500 pF                | CCH 31/                        |
|         | C25                   | Lufttrimmer                       | 429 pF                   | CV 8125                        |
| 3843    | C26                   | Papierkondensator                 | 100 000 pF/630 V         | CPK 100 000/630                |
| 1 27    | C27                   | Scheibentrimmer<br>Kf-Kondensator | 1060 pF<br>50 pF/500 V   | CV 944<br>CKD 2/50/500 parall. |

|                                         | Kenn-<br>zei-<br>chen | Benennung            | Wert                     | R&S-Sach-Nr.    |
|-----------------------------------------|-----------------------|----------------------|--------------------------|-----------------|
|                                         |                       |                      |                          |                 |
|                                         | C28                   | Papierkondensator    | 100 000 pF/250 V         | CPK 100 000/250 |
|                                         | C29                   | MP-Kondensator       | 1 µF/250 V               | CMR 1/250/2     |
|                                         | C30                   | MP-Kondensator       | 16 µF/160 V              | CMR 16/160/2    |
|                                         | C31                   | Kf-Kondensator       | 600 pF/125 V             | CKD 2/600/125   |
|                                         | C32                   | MP-Kondensator       | 1 μF/250 V               | CMR 1/250/2     |
|                                         | C33                   | Papierkondensator    | 100 000 pF/250 V         | CPK 100 000/250 |
|                                         | C34                   | MP-Kondensator       | 16 µF/160 V              | CMR 16/160/2    |
| · · · · · · · · · · · · · · · · · · ·   | C35                   | Papierkondensator    | 100 000 pF/250 V         | CPK 100 000/250 |
|                                         | C36                   | MP-Kondensator       | 1 µF/250 V               | CMR 1/250/2     |
| \                                       | C37                   | MP-Kondensator       | 16 µF/160 V              | CMR 16/160/2    |
|                                         | C38                   | Papierkondensator    | 10 000 pF/250 V          | CPK 10 000/250  |
| · · · · · · · · · · · · · · · · · · ·   | C39                   | MP-Kondensator       | 1 µF/250 V               | CMR 1/250/2     |
| · · · · · · · · · · · · · · · · · · ·   | C40                   | MP-Kondensator       | 1 µF/250 V               | CMR 1/250/2     |
| · · · · · · · · · · · · · · · · · · ·   | C41                   | Papierkondensator    | 100 000 pF/250 V         | CPK 100 000/250 |
|                                         | C42                   | MP-Kondensator       | 1 μF/250 V               | CMR 1/250/2     |
|                                         | C43                   | MP-Kondensator       | 4 μF/350 V               | CMR 4/350       |
|                                         | C44                   | Papierkondensator    | 25 000 pF/250 V          | CPK 25 000/250  |
| · · · · · · · · · · · · · · · · · · ·   | C50                   | Papierkondensator    | 10 000 pF/250 V          | CPK 10 000/250  |
| :<br>:<br>:                             | C51                   | Papierkondensator    | 5000 pF/400 V            | CPK 5000/400    |
| R 8843<br>2()<br>B 28                   | C52<br>C53            | MP-Kondensator       | 8 μF/350 V<br>8 μF/350 V | CMR 8+8/350     |
|                                         | G1 1                  | Gleichrichter        | 2x360 V/85 mA            | GN 19/720/85 M  |
| - · · · · · · · · · · · · · · · · · · · | J1                    | Drehspul-Strommesser | 10 V~/20100 000 Hz       | ING 30301       |
| ·                                       | J2                    | Drehspul-Strommesser |                          |                 |

. .

\*

. .

| Kenn-<br>zei-<br>chen | Benennung            | Wert                       | R&S-Sach-Nr.    |
|-----------------------|----------------------|----------------------------|-----------------|
|                       |                      |                            |                 |
| K1                    | Leitung, geschirmt   |                            | LFA 03022       |
| K2                    | Leitung, geschirmt   |                            | LFA 03022       |
| K3                    | HochfrKabel          |                            | LKK 92220       |
| K5                    | Leitung, geschirmt   |                            | LFA 03022       |
| K7                    | Leitung, geschirmt   |                            | LFA 03022       |
| K8                    | Symm. Schaltleitung  |                            | LKS 12399       |
| K9                    | Symm. Schaltleitung  |                            | LKS 12399       |
| K10                   | Anschlußkabel        |                            | LK 333          |
| K11                   | HochfrKabel .        |                            | LKK 91600       |
| K12                   | HochfrKabel          | х.                         | LKK 92220       |
|                       |                      |                            |                 |
| L1                    | Drossel              |                            | 40871 - 28      |
| L2                    | Drossel              |                            | DB 20/2         |
| L3                    | Drossel              |                            | DB 75/2         |
|                       |                      |                            |                 |
| R1                    | Schichtwiderstand    | 5,02 MΩ ±1 %/0,5 W         | WF 5,02 M/1/0,5 |
| R2                    | Schichtwiderstand    | 502,3 kΩ ±1 %/0,5 W        | WFE 341 k 502,3 |
| R3                    | Schichtwiderstand    | 49,4 k $\Omega$ ±1 %/0,5 W | WFE 341 k 49,4  |
| R5                    | Heißleiter           |                            | enth. in RsT    |
| R6                    | Schichtwiderstand    | 5,02 MΩ ±1 %/0,5 W         | WF 5,02 M/1/0,5 |
| R7                    | Schichtwiderstand    | 496,5 kΩ ±1 %/0,5 W        | WFE 341 k 496,5 |
| R8                    | Schichtwiderstand    | 50,1 kΩ ±1 %/0,5 W         | WFE 341 k 50,1  |
| R9                    | Schichtwiderstand    | 2 kΩ ±1 %/0,5 W            | WFE 341 k 2     |
| R10                   | Schicht-Drehwiderst. | 500 kΩ lin.                | WS 9122 F/500 k |

R 8843

|                                         | Kenn-        |                      |                                              |                                    |
|-----------------------------------------|--------------|----------------------|----------------------------------------------|------------------------------------|
|                                         | zei-<br>chen | Benennung            | Wert                                         | R&S-Sach-Nr.                       |
| · · · · · · · · · · · · · · · · · · ·   |              |                      |                                              |                                    |
|                                         | R11 *        | Schicht-Drehwiderst. | 50 kΩ lin.                                   | WS 9122 F/50 k                     |
|                                         | R12          | Schicht-Drehwiderst. | 5 kΩ lin.                                    | WS 9122 F/5 k                      |
| -                                       | R15          | Schichtwiderstand    | 125 kΩ/0,5 W                                 | WFE 321 k 125                      |
|                                         | R16          | Schichtwiderstand    | 1 kg/0,5 W                                   | WFE 321 k 1                        |
|                                         | R17          | Schichtwiderstand    | $1 k\Omega/0.25 W$                           | WFE 221 k 1                        |
| · · · · · · · · · · · · · · · · · · ·   | R18          | Schichtwiderstand    | $1 M\Omega/0.5 W$                            | WFE 321 M 1                        |
|                                         | R19          | Schichtwiderstand    | 200 Ω/0,5 W                                  | WFE 321 E 200                      |
| · · · · · · · · · · · · · · · · · · ·   | R22          | Schichtwiderstand    | $> 50 k\Omega/0.5 W$                         | WFE 321 k                          |
| <b>,</b>                                | R25          | Schicht-Drehwiderst. | $50 \text{ k}\Omega$ lin.                    | WS 7126/50 k                       |
|                                         | R26          | Schichtwiderstand    | $1 M\Omega/O, 1 W$                           | WFE 221 M 1                        |
| • · · ·                                 | R28          | Schichtwiderstand    | 5 kΩ/0,5 W                                   | WFE 321 k 5                        |
|                                         | R29          | Schichtwiderstand    | $2 M\Omega/0.5 W$                            | WFE 321 M 2                        |
|                                         | R30          | Schichtwiderstand    | 300 kΩ/0,5 W                                 | WFE 321 k 300                      |
|                                         | R31          | Schichtwiderstand    | $1 k\Omega/0.3$                              | WFE 221 k 1                        |
| · •                                     | R32          | Schichtwiderstand    | 140 k $\Omega$ ±1 %/0,5 W                    | WFE 341 k 140                      |
| <u> </u>                                | R33          | Schichtwiderstand    | 600 kΩ/0,5 W                                 | WFE 321 k 600                      |
| · · · · · · · · · · · · · · · · · · ·   | R34          | Schichtwiderstand    | 80 Ω/0,5 W                                   | WFE 321 E 80                       |
| · · · · · · · · · · · · · · · · · · ·   | R35          | Schichtwiderstand    | 10 kΩ/0,5 W                                  | WFE 321 k 10                       |
| - · · · · · · · · · · · · · · · · · · · | R36          | Schichtwiderstand    | 100 k $\Omega$ /1 W etwa 3 M $\Omega$ /0,5 W | WFE 521 k 100 parall.<br>WFE 321 M |
| R 8843<br>2(                            | R37          | Schichtwiderstand    | 40 kΩ/0,5 W                                  | WFE 321 k 40                       |
| B130                                    | R38          | Schichtwiderstand    | $2 M\Omega/0.5 W$                            | WFE 321 M 2                        |
| ·                                       | R39          | Schichtwiderstand    | 1 kΩ ±0,5 %/0,5 W                            | WFE 351 k 1                        |
| <u> </u>                                | R40          | Schichtwiderstand    | 49,5 kΩ ±0,5 %/0,5 W                         | WFE 351 k 49,5                     |
|                                         |              |                      |                                              |                                    |
| •                                       |              |                      |                                              |                                    |
|                                         |              |                      |                                              |                                    |
| <del></del>                             |              |                      |                                              | 30                                 |
|                                         |              |                      |                                              |                                    |

| <u>►</u>                              | Kenn-<br>zei-<br>chen | Benennung                                 | Wert                                  | R&S-Sach-Nr.                           |         |
|---------------------------------------|-----------------------|-------------------------------------------|---------------------------------------|----------------------------------------|---------|
| -                                     | •                     |                                           |                                       |                                        |         |
| •                                     | R41                   | Schichtwiderstand                         | 49,5 kΩ ±0,5 %/0,5 W                  | WPE 351 k 49,5                         |         |
|                                       | R42                   | Schichtwiderstand                         | 990 kΩ ±0,5 %/0,5 W                   | WF 990 k/0,5/0,5                       | _       |
|                                       | R43                   | Schichtwiderstand                         | 10 kΩ ±0,5 %/0,5 W                    | WFE 351 k 10                           |         |
|                                       | R44                   | Schicht-Drehwiderst.<br>Schichtwiderstand | 10 k $\Omega$ lin. 5 k $\Omega/0.5$ W | WS 9122 F/10 k<br>WFE 321 k 5 in Serie |         |
|                                       | R45                   | Schicht-Drehwiderst.                      | 50 kΩ lin.                            | WS 9122 F/50 k                         | :.<br>- |
| <del></del>                           | R46                   | Schichtwiderstand                         | 160 kΩ/0,5 W                          | WFE 321 k 160                          |         |
|                                       | R47                   | Schichtwiderstand                         | 2 MΩ/0,5 W                            | WFE 321 M 2                            | •       |
|                                       | R48                   | Schichtwiderstand                         | 1,25 kΩ/0,5 W                         | WFE 321 k 1,25                         |         |
| <del></del>                           | R49                   | Schichtwiderstand                         | 20 kΩ/0,5 W                           | WFE 321 k 20                           |         |
|                                       | R50                   | Schichtwiderstand                         | 50 kΩ/1 W                             | WFE 521 k 50                           |         |
| •                                     | R51                   | Schichtwiderstand                         | 13,88 Ω ±0,5 %/0,5 W                  | WFE 351 E 13,88                        | -       |
|                                       | R52                   | Schichtwiderstand                         | 30 Ω ±0,5 %/0,5 W                     | WFE 351 E 30                           | _       |
| •                                     | R53                   | Schichtwiderstand                         | 95 Ω ±0,5 %/0,5 W                     | WFE 351 E 95                           |         |
| - <del></del>                         | R54                   | Schichtwiderstand                         | 300 Ω ±0,5 %/0,5 W                    | WFE 351 E 300                          |         |
|                                       | R55                   | Schichtwiderstand                         | 950 Ω ±0.5 %/0.5 W                    | WFE 351 E 950                          |         |
| - ··                                  | . R56                 | Schichtwiderstand                         | 3 kΩ ±0,5 %/0,5 W                     | WFE 351 k 3                            |         |
| . 1                                   | R57                   | Schichtwiderstand                         | 9,5 kΩ ±0,5 %/0,5 W                   | WFE 351 k 9,5                          |         |
| · · · · · · · · · · · · · · · · · · · | R58                   | Schichtwiderstand                         | 30 kΩ ±0,5 %/0,5 W                    | WFE 351 k 30                           |         |
| ·<br>                                 | R61                   | Schichtwiderstand                         | 1,6 $k\Omega/0$ ,5 W                  | WFE 321 k 1,6                          |         |
| R 8843                                | R62                   | Schichtwiderstand                         | 500 kΩ/0,5 W                          | WFE 321 k 500                          |         |
| 1. 31                                 | R63                   | Schichtwiderstand                         | 100 kΩ/0,5 W                          | WFE 321 k 100                          |         |
| *                                     | R64                   | Schichtwiderstand                         | 40 kΩ/1 W                             | WFE 521 k 40                           |         |
| <del></del>                           | R65                   | Schichtwiderstand                         | 2 MΩ/0,5 W                            | WFE 321 M 2                            |         |
| · · · · · ·                           |                       | ·<br>-                                    |                                       |                                        |         |

|                                       | Kenn-<br>zei-<br>chen | Benennung            | Wert              | R&S-Sach-Nr.   |   |
|---------------------------------------|-----------------------|----------------------|-------------------|----------------|---|
| · -                                   |                       |                      |                   |                | - |
|                                       | R66                   | Schichtwiderstand    | 500 kΩ/0,5 W      | WFE 321 k 500  |   |
| · · · · · · · · · · · · · · · · · · · | R67                   | Schichtwiderstand    | 1,25 kΩ/0,5 W     | WFE 321 k 1,25 |   |
| <b>-</b> -                            | R68                   | Schichtwiderstand    | 500 kΩ/0,5 W      | WFE 321 k 500  |   |
| , , , , , , , , , , , , , , , , , , , | R69                   | Schichtwiderstand    | 100 kΩ/0,5 W      | WFE 321 k 100  |   |
| -<br>-                                | R70                   | Schichtwiderstand    | 2 MΩ/0,5 W        | WFE 321 M 2    | l |
| -                                     | R71                   | Schicht-Drehwiderst. | $5 k\Omega lin.$  | WS 9122 F/5 k  | • |
|                                       | R72                   | Schichtwiderstand    | 500 kΩ/0,5 W      | WFE 321 k 500  |   |
| -<br>-                                | R73                   | Schichtwiderstand    | 100 kΩ/0,5 W      | WFE 321 k 100  | • |
|                                       | R74                   | Schichtwiderstand    | 20 kΩ/0,5 W       | WFE 321 k 20   |   |
| -                                     | R75                   | Schichtwiderstand    | 10 kΩ/1 W         | WFE 521 k 10   |   |
|                                       | R76                   | Schichtwiderstand    | 1 MΩ/0,5 W        | WFE 321 M 1    |   |
| •                                     | R77                   | Schichtwiderstand    | 1 kΩ/0,5 W        | WFE 321 k 1    |   |
| - ·                                   | R78                   | Schichtwiderstand    | 20 kΩ/0,5 W       | WFE 321 k 20   |   |
|                                       | R79                   | Schichtwiderstand    | $2 k\Omega/0.5 W$ | WFE 321 k 2    |   |
| <b>-</b>                              | R80                   | Schicht-Drehwiderst. | 10 kΩ lin.        | WS 9126/10 k   |   |
| ••                                    | R83                   | Schichtwiderstand    | 16 kΩ/1 W         | WFE 521 k 16   |   |
|                                       | R84                   | Schichtwiderstand    | 20 kΩ/1 W         | WFE 521 k 20   |   |
| <u> </u>                              | R85                   | Schichtwiderstand    | 100 kΩ/0,5 W      | WFE 321 k 100  |   |
|                                       | R86                   | Schichtwiderstand    | 500 kΩ/0,5 W      | WFE 321 k 500  |   |
| R 8843                                | R87                   | Schichtwiderstand    | 500 kΩ/0,5 W      | WFE 321 k 500  |   |
| 264<br>31. 32                         | R88                   | Schichtwiderstand    | 100 kΩ/0,5 W      | WFE 321 k 100  |   |
|                                       | R89                   | Schichtwiderstand    | 50 kΩ/1 W         | WFE 521 k 50   | - |
|                                       | R90                   | Schichtwiderstand    | 100 kΩ/0,1 W      | WFE 221 k 100  |   |

.

|                                         | Kenn-<br>zei-<br>chen | Benennung            | Wert                                   | R&S-Sach-Nr.   |
|-----------------------------------------|-----------------------|----------------------|----------------------------------------|----------------|
|                                         |                       |                      |                                        |                |
| · · · · · · · · · · · · · · · · · · ·   | R91                   | Schicht-Drehwiderst. | 10 kΩ lin.                             | WS 9122 F/10 k |
|                                         | R92                   | Schichtwiderstand    | 40 kΩ/0,5 W                            | WF 321 k 40    |
| ; ··· · · · · · · · · · · · · · · · · · | R93                   | Draht-Drehwiderst.   | 100 Ω lin.                             | WR 4 F/100     |
| •                                       |                       |                      | ······································ |                |
| - <del></del>                           | Rl 1                  | Zwergglimmlampe      | 220 V                                  | RL 210         |
| -<br>-<br>                              |                       |                      |                                        |                |
| · - :::                                 | Rö1                   | Pentode              |                                        | EF 804 S       |
| · · · · · · · · · · · · · · · · · · ·   | Rö2                   | Pentode              |                                        | EF 800         |
|                                         | Rö3                   | Pentode              |                                        | EF 804 S       |
| ·                                       | Rö4                   | Pentode              |                                        | EL 803         |
| :                                       | Rö5                   | Pentode              |                                        | EF 804 S       |
| ±.                                      | Rö6                   | Pentode              |                                        | EF 804 S       |
|                                         | Rö7                   | Pentode              |                                        | EF 804 S       |
| •                                       | Rö8                   | Pentode              |                                        | EF 804 S       |
| · <del></del>                           | Rö9                   | Pentode              |                                        | EF 804 S       |
| •                                       | Rö10                  | Stabilisator         |                                        | 85 A 2         |
|                                         | Rö11                  | Pentode              |                                        | EF 804 S       |
|                                         | Rö12                  | End-Pentode          |                                        | EL 86          |
|                                         |                       |                      |                                        |                |
| R 8843<br>261                           | RsA                   | Kammrelais           |                                        | RSS 230052     |
| B] 33                                   | RsT                   | Thermostat           |                                        | 40861 - 32/3   |

-

.

|                                       | '                                      |                       |                              |        |                 |
|---------------------------------------|----------------------------------------|-----------------------|------------------------------|--------|-----------------|
|                                       | •                                      |                       |                              |        |                 |
|                                       | . " "                                  | Kenn-<br>zei-<br>chen | Benennung                    | Wert   | R&S-Sach-Nr.    |
| ·                                     | · · · · · · · · · · · · · · · · · · ·  |                       |                              |        |                 |
|                                       |                                        | S1                    | Scheibenschalter             |        | SRN 324/32      |
|                                       | •                                      | <b>S2</b>             | Scheibenschalter             |        | SRN 323/32      |
| · · · ·                               |                                        | S3                    | Kleinstufenschalter          |        | SRW 07120       |
| · · · · · · · · · · · · · · · · · · · |                                        | S4                    | Meßbereichschalter           |        | 40871 - 7       |
|                                       |                                        | <b>S</b> 5            | Drehschalter                 |        | SR 113/3        |
| ·                                     |                                        | S7                    | Wetzschalter-<br>kombination |        | SRK 1           |
|                                       | · .· .· .·                             | <b>S8</b>             | Spannungswähler              |        | FD 60511        |
|                                       |                                        |                       |                              |        |                 |
| · ·                                   | ·· · · · · · · · · · · · · · · · · · · | Si1                   | Schmelzeinsatz               | 400 mA | O,4 C DIN 41571 |
|                                       |                                        | Tri                   | Netztransformator            |        | 40871 - 20/2    |
| ·**                                   |                                        | Tr2                   | Eingangsübertrager           |        | 40871 - 29      |
|                                       | ÷<br>::                                | Tr3                   | Ausgangsübertrager           |        | 40871 - 21      |
|                                       |                                        | Tr4                   | Teilertransformator          |        | 40871 - 22      |
| ******                                |                                        |                       |                              |        |                 |

R 8843 Bl. 34

|                                        | Kenn-<br>zei-<br>chen | Benennung         | Wert         | R&S-Sach-Nr.  |
|----------------------------------------|-----------------------|-------------------|--------------|---------------|
| ·<br>:                                 | C101                  | Kf-Kondensator    | 300 pF/125 V | CKD 2/300/125 |
| ·                                      | K21                   | Leitung geschirmt |              | LKS 12399     |
|                                        | X22                   | Leitung geschirmt |              | LKS 03022     |
|                                        | K23                   | Leitung geschirmt |              | LFA 03022     |
| · · ·                                  | K24                   | Leitung geschirmt |              | LFA 03022     |
| ······································ | K25                   | Leitung geschirmt |              | LFA 03022     |
|                                        | K26                   | Leitung geschirmt |              | LFA 03022     |
| · · · · · · · · · · · · · · · · · · ·  | K27                   | Leitung geschirmt |              | LFA 03022     |
| ·                                      | K28                   | Leitung geschirmt | *            | LFA 03022     |
|                                        | K101                  | HochfrKabel       | •            | LKK 91600     |
| 1-1<br>                                | K102                  | HochfrKabel       |              | LKK 91600     |
|                                        | K103                  | HochfrKabel       |              | LKK 91600     |
| · · · · · · · · · · · · · · · · · · ·  | K104                  | HochfrKabel       |              | LKK 91600     |
|                                        | K105                  | HochfrKabel       |              | LKK 91600     |
| •                                      | K106                  | HochfrKabel       |              | LKK 91600     |
|                                        | K107                  | HochfrKabel       |              | LKK 91600     |
| · · ·                                  | K108                  | HochfrKabel       |              | LKK 91600     |
| ······································ | K111                  | Leitung geschirmt |              | LFA 03022     |
| ·                                      | K112                  | Leitung geschirmt |              | LFA 03022     |
| R 8843                                 | K113                  | Leitung geschirmt |              | LFA 03022     |
| 54<br>                                 | K114                  | Leitung geschirmt |              | LFA 03022     |
|                                        | K115                  | Leitung geschirmt |              | LFA 03022     |
|                                        | K116                  | Leitung geschirmt |              | LFA 03022     |
| · · · · · · · · · · · · · · · · · · ·  | K117                  | Leitung geschirmt |              | LFA 03022     |
|                                        | K118                  | Leitung geschirmt |              | LFA 03022     |
| ·                                      | K119                  | Leitung geschirmt |              | LFA 03022     |
|                                        | K120                  | Leitung geschirmt |              | LFA 03022     |
|                                        |                       |                   | - : -        |               |

| Kenn-<br>zei-<br>chen | Benennung         | Wert                   | R&S-Sach-Nr. |
|-----------------------|-------------------|------------------------|--------------|
|                       |                   |                        |              |
| K121                  | Leitung geschirmt |                        | LFA 03022    |
| K123                  | Leitung geschirmt |                        | LFA 03022    |
| K124                  | Leitung geschirmt |                        | LFA 03022    |
| K125                  | Leitung & achirmt |                        | LFA 03022    |
| K126                  | Leitung geschirmt |                        | LFA 03022    |
| K127                  | Leitung geschirmt |                        | LFA 03022    |
| K128                  | Leitung geschirmt |                        | LFA 03022    |
| K129                  | Leitung geschirmt |                        | LFA 03022    |
| K130                  | Leitung geschirmt |                        | LFA 03022    |
| •                     |                   |                        | -<br>-       |
| R101                  | Schichtwiderstand | etwa 5 $k\Omega/0.5$ W | WFE 321 k    |
| R102                  | Schichtwiderstand | etwa 5 $k\Omega/0.5$ W | WFE 321 k    |
| R103                  | Schichtwiderstand | etwa 6 $k\Omega/0,5$ W | WFE 321 k    |
| R104                  | Schichtwiderstand | 200600 Ω/0,5 W         | WFE 321 E    |
| R105                  | Schichtwiderstand | etwa 4 $k\Omega/0,5$ W | WFE 321 k    |
| R106                  | Schichtwiderstand | etwa 12,5 kΩ/0,5 W     | WFE 321 k    |
| R111                  | Schichtwiderstand | 6001000 Ω/0,5 W        | WFE 321 E    |
| R112                  | Schichtwiderstand | etwa 6 kΩ/0,5 W        | WFE 321 k    |
| R113                  | Schichtwiderstand | etwa 6 $k\Omega/0.5$ W | WFE 321 k    |
| R114                  | Schichtwiderstand | etwa 6 $k\Omega/0,5$ W | WFE 321 k    |
| R115                  | Schichtwiderstand | 30 Ω/0,5 W             | WFE 321 E 30 |

R 8843

264

| Kenn-<br>zei-<br>chen | Benennung                              | Wert | R&S-Sach-Nr.                          |
|-----------------------|----------------------------------------|------|---------------------------------------|
|                       |                                        |      |                                       |
| S101                  | Scheibenschalter                       |      | SRN 344/32                            |
| S102                  | Scheibenschalter                       |      | SRN 354/32                            |
| S103                  | Scheibenschalter                       |      | SRN 314/32                            |
| S104                  | Scheibenschalter                       |      | SRN 314/32                            |
| S105                  | Symm. geschirmte<br>Buchse m. Schalter |      | FD/9 Rel kli 6aa mit<br>9 Rel Kfs 2 f |
|                       |                                        |      |                                       |
| Tr101                 | Übertrager                             |      | 408721 - 11/2                         |
| Tr102                 | Übertrager                             |      | 408721 - 11/2                         |

.

R 8843 264 31. 37

# Hochpaßfilter 40 Hz

R 8843

| Kenn-<br>zei-<br>chen | Benennung                                       | Wert                | R&S-Sach-Nr.                                                |
|-----------------------|-------------------------------------------------|---------------------|-------------------------------------------------------------|
| C121                  | MP-Kondensator<br>Papierkondensator             | 2,2625 µF ±1%/250 V | 2 x CMR 1/250/2<br>CPK 250 000/250<br>parallel              |
| C122                  | MP-Kondensator                                  | 1,785 µF ±1%/250 V  | 2 x CMR 1/250/2<br>parallel                                 |
| C123                  | MP-Kondensator<br>MP-Kondensator                | 8,5 µF ± 1 %/250 V  | CMR 8/160/2<br>CMR 1/250/2 parallel                         |
| C124                  | MP-Kondensator MP-Kondensator Papierkondensator | 1,675 µF ±1%/250 V  | CMR 1/250/2<br>CMR 0,5/250/2<br>CPK 250 000/250<br>parallel |
| C125                  | MP-Kondensator<br>MP-Kondensator                | 6,25 μF ±1 %/250 V  | CMR 4/350<br>2 x CMR 1/250/2<br>parallel                    |
| C126                  | MP-Kondensator                                  | 1,88 µF ±1 %/250 V  | 2 x CMR 1/250/2<br>parallel                                 |
| C127                  | MP-Kondensator Papierkondensator                | 2,2625 μF +1%/250 V | 2 x GMR 1/250/2<br>CPK 250 000/250<br>parallel              |
| L121                  | Filterspule                                     |                     | 408721 - 5.6                                                |
| L122                  | Filterspule                                     |                     | 408721 - 5.7                                                |
| L123                  | Filterspule                                     |                     | 408721 - 5.8                                                |
| L124                  | Filterspule                                     |                     | 408727 - 5.6                                                |
| Hochpaß               | filter 1 kHz                                    |                     |                                                             |
| C131                  | Kf-Kondensator                                  | 19 560 pF ±1%/250 V | CKS 19 560/1/250                                            |
| C132                  | Kf-Kondensator                                  | 13 080 pF ±1%/250 V | CKS 13 080/1/250                                            |
| C133                  | Kf-Kondensator                                  | 11 940 pF ±1%/250 V | CKS 11 940/1/250                                            |
| C134                  | Kf-Kondensator                                  | 69 750 pf ±1%/250 v | CKS 69 750/1/250                                            |
| C135                  | Kf-Kondensator                                  | 11 940 pF ±1%/250 V | CKS 11 940/1/250                                            |
| C136                  | Kf-Kondensator                                  | 13 080 pF ±1%/250 V | CKS 13 080/1/250                                            |
| C137                  | Kf-Kondensator                                  | 19 560 pF ±1%/250 V | CKS 19 560/1/250                                            |

| Kenn-<br>zei-<br>chen | Benennung                             | Wert                | R&S-Sach-Nr.     |
|-----------------------|---------------------------------------|---------------------|------------------|
| L131                  | Filterspule                           |                     | 408721 - 9.1     |
| L132                  | Filterspule                           |                     | 408721 - 9.2     |
| L133                  | Filterspule                           |                     | 408721 - 9.3     |
| L134                  | Filterspule                           |                     | 409721 - 9.2     |
| L135                  | Filterspule                           |                     | 408721 - 9.1     |
| Hochpal               | Sfilter 5 kHz                         |                     |                  |
| C141                  | Kf-Kondensator                        | 4435 pF ±1 %/500 V  | CKS 4435/1/500   |
| C142                  | Kf-Kondensator                        | 2958 pF ±1 %/500 V  | CKS 2958/1/500   |
| C143                  | Kf-Kondensator                        | 2712 pF ±1 %/500 V  | CKS 2712/1/500   |
| C144                  | Kf-Kondensator                        | 15 850 pF ±1%/250 V | CKS 15 850/1/250 |
| C145                  | Kf-Kondensator                        | 2712 pF ±1 %/500 V  | CKS 2712/1/500   |
| C146                  | Kf-Kondensator                        | 2958 pF ±1 %/500 V  | CKS 2958/1/500   |
| C147                  | Kf-Kondensator                        | 4435 pF ±1 %/500 V  | CKS 4435/1/500   |
| L141                  | Filterspule                           |                     | 408721 - 8.3     |
| L142                  | Filterspule                           |                     | 408721 - 8.4     |
| L143                  | Pilterspule                           |                     | 408721 - 8.5     |
| L144                  | Filterspule                           |                     | 408721 - 8.4     |
| L145                  | Filterspule                           |                     | 408721 - 8.3     |
| Hochpaß               | filter 15 kHz                         |                     |                  |
| C151                  | Kf-Kondensator                        | 1482 pF ±1 %/500 V  | CKS 1482/1/500   |
| C152                  | Kf-Kondensator                        | 990 pF ±1 %/500 V   | CKS 990/1/500    |
| C153                  | Kf-Kondensator                        | 906 pF ±1 %/500 v   | CKS 906/1/500    |
| C154                  | Kf-Kondensator                        | 5304 pF ±1 %/500 V  | CKS 5304/1/500   |
| C155                  | Kf-Kondensator                        | 906 pF ±1 %/500 V   | CKS 906/1/500    |
| C156                  | Kf-Kondensator                        | 990 pF ±1 %/500 V   | CKS 990/1/500    |
| C157                  | Kf-Kondensator                        | 1482 pF ±1 %/500 V  | CKS 1482/1/500   |
|                       | · · · · · · · · · · · · · · · · · · · |                     |                  |

R 8843

L-. 39

| <del>.</del><br><del>.</del> |                           |           |              |
|------------------------------|---------------------------|-----------|--------------|
| Kenn-<br>zei-<br>chen        | Benennung                 | Wert      | R&S-Sach-Nr. |
| L151                         | Filterspule               |           | 408721 - 7.3 |
| L152                         | Pilterspule               |           | 408721 - 7.4 |
| L153                         | Filterspule               |           | 408721 - 7.5 |
| L154                         | Filterspule               |           | 408721 - 7.4 |
| L155                         | Filterspule               |           | 408721 - 7.3 |
|                              |                           |           |              |
|                              |                           |           |              |
| 6. Scha                      | ltteilliste zur Kasten-Ve | rdrahtung |              |
| K11                          | Leitung geschirmt         |           | LKS 12399    |
| K12                          | Leitung geschirmt         |           | LFA 03022    |
| K13                          | Leitung geschirmt         |           | LFA 03022    |
| K14                          | Leitung geschirmt         |           | LFA 03022    |
| K15                          | Leitung geschirmt         |           | LFA 03022    |
| K16                          | Leitung geschirmt         |           | LFA 03022    |
| K17                          | Leitung geschirmt         |           | LFA 03022    |
| K18                          | Leitung geschirmt         |           | LFA 03022    |

R 8843 264 31.40

₹ 8843 264 B1.41







Stromlauf der 4 Hochpässe im Schalt- und Filterfeld



Kasten-Verdrahtung