AULA 12 MINIMIZAÇÃO DE EXPRESSÕES

Profa Letícia Rittner

Projeto lógica combinacional

- Descrição do problema em linguagem natural
- Tabela verdade
- Equações booleanas
- Minimização das equações
- Circuito com portas lógicas

Projeto lógica combinacional

- Descrição do problema em linguagem natural
- Tabela verdade
- Equações booleanas
 - 1. forma canônica de soma de produtos (mintermos)
 - forma canônica de produto de somas (maxtermos)
- 4. Minimização das equações
- Circuito com portas lógicas

Mintermos e Maxtermos

Definições

- Termo de Produto: É o produto lógico de duas ou mais literais. Ex.: x.y.z', a.b',
- Termo de Soma: É a soma lógica de duas ou mais literais. Ex.: x + y, a'+ b + c',
- Termo normal: É um termo de produto ou termo de soma em que nenhuma literal aparece mais de uma vez.

Ex.: x.y.z', x + y'+ z

Definições

- Mintermo: Para uma expressão com n variáveis, um mintermo é um termo normal de produto com n literais. Ex.: $W' \cdot X' \cdot Y' \cdot Z$
- Maxtermo: Para uma expressão com n variáveis, um maxtermo é um termo normal de soma com n literais. Ex.: W + X' + Y' + Z

Mintermos e Maxtermos

#	X	y	Z	Mintermo	Maxtermo
0	0	0	0	x'.y'.z'	x + y + z
1	0	0	1	x'.y'.z	x + y + z'
2	0	1	0	x'.y.z'	x + y' + z
3	0	1	1	x'.y.z	x' + y' + z'
4	1	0	0	x.y'.z'	x' + y + z
5	1	0	1	x.y'.z	x' + y + z'
6	1	1	0	x.y.z'	x' + y' + z
7	1	1	1	x.y.z	x' + y' + z'

Mintermos e Maxtermos

Determine se as expressões G(a,b,c,d,e) = abcd + a'bcde e H(a,b,c,d,e)
 = abcde + abcde' + a'bcde + a'bcde(a' + c) são equivalentes

```
G = abcd + a'bcde
G = abcd(e+e') + a'bcde
G = abcde + abcde' + a'bcde
G = a'bcde + abcde' + abcde (sum of minterms form)
```



```
H = abcde + abcde' + a'bcde + a'bcde(a' + c)
H = abcde + abcde' + a'bcde + a'bcdea' + a'bcdec
H = abcde + abcde' + a'bcde + a'bcde + a'bcde
H = abcde + abcde' + a'bcde
H = a'bcde + abcde' + abcde
```

Mintermos: representação compacta

- Listar cada mintermo como um número
 - a'bcde corresponde a 01111, ou 15
 - abcde' corresponde a 11110, ou 30
 - abcde corresponde a 11111, ou 31
- Então, H = a'bcde + abcde' + abcde pode ser escrito como:
 - \blacksquare H = \sum m(15,30,31)
 - □ "H é a soma dos mintermos 15, 30, e 31"

Mapa de Karnaugh

Critérios de Minimização

- 1. Número mínimo de *literais*
- 2. Número mínimo de literais em uma expressão na forma de soma de produtos ou produto de somas
- Número mínimo de termos em uma expressão na forma de soma de produtos, tal que não haja outra expressão com o mesmo número de termos e menos literais

Critérios de Minimização Típicos

- 1. Número mínimo de literais
- 2. Número mínimo de literais em uma expressão na forma de soma de produtos ou produto de somas
- 3. Número mínimo de termos em uma expressão na forma de soma de produtos, tal que não haja outra expressão com o mesmo número de termos e menos literais

Exemplos

- f(x, y, z) = xy + xz + x'y'
 - Mínima segundo critério (3)
- f(x, y, z) = x(y + z) + x'y'
 - □ Mínima segundo critério (1)

Mapa de Karnaugh

2 variáveis

X'

 m_0 m_1 m_3 m_2

3 variáveis

Y'Z YΖ YZ'

X'

 m_0 m_1 m_3 m_{Δ} m_5

 m_2

 m_7 m_6

4 variáveis

7'\\/'

7'\\/

7\\/

7W'

X' Y'

X'Y

XY

XY'

Z V V	Z V V	Z V V	Z V V
m_0	m ₁	m ₃	m_2
m_4	m_5	m ₇	m ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
m ₈	m ₉	m ₁₁	m ₁₀

Código Cíclico

Localização dos Mintermos

Agrupamento de Pares

Agrupando-se um <u>par de células com 1's</u>
<u>adjacentes</u> (mintermos) <u>elimina-se a variável</u>
(literal) que aparece na forma
complementada e não-complementada.

Implicante

	C'D'	C'D	CD	CD'	_
A'B'	0	0	1	1	
A'B	0	0	0	0	
AB	0	0	0	0	
AB'	1	0	0	1	

X = A'B'CD + A'B'CD' + AB'C'D' + AB'CD'= A'B'C + AB'D'

Adaptado do Prof. Leonardo Abdala

Primo

Agrupamento de Quartetos

Agrupando-se um <u>quarteto de 1's</u>
<u>adjacentes</u> elimina-se <u>duas variáveis</u> que aparecem nas formas complementada e não-complementada.

Agrupamento de Octetos

Agrupando-se um <u>octeto de 1's adjacentes</u> elimina-se <u>três variáveis</u> que aparecem nas formas complementada e não-

A'B'

A'B

 ΔR

AB'

complementada. Implicante Primo, c'D CD CD

	′C′D′	C'D	CD	CD'
A'B'	1	1	0	0
A'B	1	1	0	0
AB	1	1	0	0
AB'	1	1	0	0

X = A'B'C'D' + A'B'C'D + A'BC'D' + ABC'D' + ABC'D' + ABC'D' + ABC'D + AB'C'D' + AB'C'D = C'

	C'D'	C'D	CD	CD'		
	1	1	1	1		
	0	0	0	0		
	0	0	0	0		
(1	1	1	1		

X = B'

Procedimento Completo de Simplificação

- 1. Determine as células contendo 1's isolados
- 2. Agrupe todos os pares de 1's
- 3. Agrupe octetos, <u>mesmo que estes</u> contenham células com 1's já selecionadas
- 4. Agrupe quartetos que contenham 1's que ainda não tenham sido agrupados (certifique-se de usar o menor número possível de agrupamentos)
- Obtenha a soma mínima como a soma dos implicantes primos definidos nos passos anteriores

Exemplo 1

	X	y	Z	F
m _o	0	0	0	0
m ₁	0	0	1	0
m ₂	0	1	0	1
m_3	0	1	1	0
m ₄	1	0	0	1
m ₅	1	0	1	1
m ₆	1	1	0	1
m ₇	1	1	1	1

Exemplo 2

As 2 expressões são mínimas e equivalentes $F(A,B,C) = \sum m(0,1,5,6,7)$

B'C' B'C BC BC'

A'	m_0	m_1	m_3	m_2
A	m_4	m_5	m ₇	m ₆

Condições "Don't Care"

A saída pode assumir qualquer nível lógico (0 ou 1), pois as combinações das entradas são inválidas ou o nível da saída <u>não tem importância</u>

(don't care!)

Exemplo

$$f(w, x, y, z) = \sum (1,4,8) + \sum_{\Phi} (5,7,9,11,12,13,14,15)$$

	y'z'	y'z	yz	yz'
w'x'	0	1	0	0
w'x	1	Ф	θ	0
wx	Ф	Ф	Ө	Ф
wx'	1	Ф	θ	0

$$f(w,x,y,z) = xy' + y'z + wy'$$

Determinação do Produto de Somas Mínimo

- Os agrupamentos são feitos com 0's adjacentes
- A expressão final é dada pelo produto das somas dos *maxtermos* simplificados
 - As variáveis que aparecem nas formas complementada e não-complementada (em agrupamentos de pares, quartetos e octetos) são eliminadas. O termo de soma será dado pelas variáveis originais complementadas.

Exemplo

$$f(w, x, y, z) = \prod (0,1,2,3,4,7,8,11,12,13,14,15)$$

	w'x'	w'x	WX	wx'
y'z'	0	0	0	0
y'z	0	1	0	1
yz	0	0	0	0
yz'	0	1	0	1

 w'x'
 w'x
 wx
 wx'

 0
 0
 0
 0

 0
 1
 0
 1

 0
 0
 0
 0

 0
 1
 0
 1

$$f(w,x,y,z) = (w + x)(w' + x')(y + z)(y' + z')$$

$$f(w,x,y,z) = w'xy'z' + wx'y'z + w'xyz' + wx'yz'$$

$$wx'yz'$$

Adaptado do Prof. Leonardo Abdala

16 Literais!

8 Literais!

y'z'

y'z

yΖ

yz'

Encontre a soma mínima de produtos para cada soma de mintermos:

1.
$$F(A,B,C) = \sum m(0,1,2,4,7)$$

2.
$$F(A,B,C) = \sum m(1,3,5,7)$$

3. $F(A,B,C,D) = \sum m(1,5,7,9,11,13,15)$

Encontre a soma mínima de produtos para cada soma de mintermos:

1.
$$F(A,B,C) = \sum m(0,1,2,4,7)$$

Resp: F = B'C'+A'B'+ ABC+ A'C'

1.
$$F(A,B,C) = \sum m(1,3,5,7)$$

Resp: F = C

2.
$$F(A,B,C) = \sum m(0,1,5,6,7)$$

Resp: $F = AB + A'B' + B'C = AB + A'B' + AC$

Para $f(w, x, y, z) = \sum m(0, 1, 2, 3, 5, 7, 8, 10, 11, 15)$, realize os seguintes procedimentos, com o uso do mapa de Karnaugh:

- a) Encontre todos os implicantes primos.
- b) Indique quais destes implicantes primos são essenciais
- o) Obtenha uma soma de produtos mínima para f. Ela é única?
- d) Obtenha um produto de somas mínimo para f. Ele é único?
- e) Implemente uma rede de portas de dois níveis para a soma obtida em (c) e para o produto obtido em (d).

Projete uma rede de dois níveis mínima que compute o produto de dois números inteiros, com valores de 0 a 3. Lembre-se que as especificações binárias do projeto estão em suas mãos. Faça escolhas convenientes!

Resp parcial: Entradas: $x, y \in \{0, 1, 2, 3\}$

Saídas: $z \in \{0, 1, 2, 3, 4, 6, 9\}$

Função: z = xy

Codificando as entradas e saídas em binário e minimizando por Karnaugh, obtem-se:

$$z_0 = x_0 y_0$$

$$z_1 = x_1 x_0' y_0 + x_0 y_1 y_0' + x_1' x_0 y_1 + x_1 y_1' y_0$$

$$z_2 = x_1 x_0' y_1 + x_1 y_1 y_0'$$

$$z_3 = x_1 x_0 y_1 y_0$$

Projete uma **rede de dois níveis mínima** que compute o resto da divisão por $7 \pmod{7}$ para os números inteiros na faixa de 0 a 15. Lembre-se que as especificações binárias do projeto estão em suas mãos. Faça escolhas convenientes!

Resp parcial possível (mas não única): Entradas: x ∈ aos inteiros no interval de [0, 15]

Saídas: y ∈ aos inteiros no interval de [0, 7]

Função: $y = x \mod 7$

Codificando as entradas e saídas em binário e minimizando por Karnaugh, obtem-se:

$$y_2 = x_2 x_1' + x_3 x_2' x_1 x_0 + x_3' x_2 x_0'$$

$$y_1 = x_3 x_1' x_0 + x_3' x_2' x_1 + x_3' x_1 x_0' + x_2' x_1 x_0'$$

$$y_0 = x_3 x_1' x_0' + x_3 x_2' x_0' + x_3 x_2 x_1 x_0 + x_3' x_2' x_0$$

Projete uma rede de dois níveis mínima que realize a conversão de código binário de quatro bits para o código de Gray.

Resp parcial possível (mas não unica): Entradas: $b_3b_2b_1b_0$, $b_i \in \{0, 1\}$

Saídas: $g_3g_2g_1g_0, g_i \in \{0, 1\}$

Função: g é o código de Gray de b

Minimizando por Karnaugh, obtem-se:

$$g_3 = b_3$$

$$g_2 = (b_2 + b_3)(b_2' + b_3')$$

$$g_1 = (b_1 + b_1)(b_1' + b_2')$$

$$g_0 = (b_0 + b_1)(b_0' + b_1')$$