Nr. albumu: 210254 Imię i nazwisko: PATRYK LISIK Nr. albumu: 210310 Imię i nazwisko: Adam Sadowski

Nr. albumu: 210279 Imię i nazwisko: Barbara Morawska

Kierunek: Informatyka rok akademicki: 2018/2019 grupa Poniedziałek 12:30

Kryptografia

Szyfr ElGamel'a

1 Wstęp

Kryptosystem ElGamel'a jest szyfrem asymetrycznym bazującym na problemie logarytmu dyskretnego w ciele liczb całkowitych modulo duża liczba pierwsza.

2 Zasada działania

- 1. Po stronie odbiorcy:
 - (a) Wybór dużej liczby pierwszej p
 - (b) Wybór α takiego, że $\alpha \in \{2, 3 \dots p-1\}$
 - (c) Wybór klucza prywatnego k_{pr} takiego, że $k_{pr}=d\in\{2,3\ldots p-2\}$
 - (d) Obliczenie klucza publicznego $k_{pb} = \beta \equiv \alpha^{k_{pr}} \pmod{p}$
 - (e) Publikujemy (β, α, p) jako klucz publiczny
- 2. Po stronie nadawcy:
 - (a) Wybór klucza prywatnego $i \in \{2, 3, ..., p-2\}$
 - (b) Obliczenie klucza publicznego $k_E \equiv \alpha^i \pmod{p}$
 - (c) Obliczanie klucza maskującego/sesji $k_M \equiv \beta^i \pmod{p}$
 - (d) Szyfrowanie wiadomości $Y \equiv X \cdot k_M \pmod{p}$, gdzie:
 - X niezaszyfrowana wiadomość
 - Y zaszyfrowana wiadomość
 - (e) Publikujemy (Y, K_E)
- 3. Po stronie odbiorcy:
 - (a) Obliczanie klucza maskującego/sesji $k_M \equiv k_m^d \pmod p$
 - (b) Deszyfrowanie wiadomości $X \equiv Y \cdot k_M^{-1} \pmod{p},$ gdzie:
 - X niezaszyfrowana wiadomość
 - Y zaszyfrowana wiadomość
 - (c) Profit

3 Implementacja

Program zaimplementowana w języku Python3. Odbiorca i nadawca są dwoma oddzielnymi skryptami komunikującymi się za pomocą plików.

- 3.1 Generowanie dużych liczb pierwszych
- 3.1.1 Test Millera-Rabina
- 3.2 Szybkie potęgowanie modulo p
- 3.3 Szybkie odwracanie modulo p
- 3.4 Szyfrowanie