

Plan du cours

- Introduction au data mining (1h)
- Apprentissage supervisé et non supervisé
- Focus sur l'apprentissage supervisé + mesures de performance et de validation (2h)
- Focus sur l'apprentissage non supervisé + mesures de performance et de validation (2h)
- Focus sur l'analyse de texte (2h)

Plan du jour

- Apprentissage supervisé et non supervisé
 - Motivation & Use cases
 - > Formulation mathématique
 - Apprentissage supervisé
 - Apprentissage non supervisé
- Apprentissage supervisé
 - Les différentes catégories des algorithmes
 - ➤ La régression linéaire
 - La régression logistique
 - Arbres de décision
 - Random Forest
 - Les mesures de performance

Apprentissage supervisé et non supervisé - Motivation et use cases

- Marketing
 - Classification client pour
 - adapter les offres
 - ciblage publicitaire
 - anticiper le churn
- Santé
 - Prédiction de la propagation d'épidémies
 - Classification d'images médicales
 - détection de tumeur dans un scanner
 - Prédiction du traitement approprié selon les symptômes
- Assurance
 - prédire le risque d'un accident/catastrophe en fonction de ...
- Sécurité
 - détection d'attaque, de fraude, etc.
- ...etc.

- Apprentissage supervisé modélisation mathématique
 - Soit K(X1, ...Xn, Y) les données d'apprentissage. Il s'agit d'un ensemble d'observations des variables explicatives Xi (X) et de la variable à expliquer Y (Y).
 - L'objectif d'un apprentissage supervisé est de définir une bonne fonction f: X→ Y qui permet de trouver la valeur probable de Y en fonction des Xi.

- Apprentissage supervisé modélisation mathématique
 - Que veut dire une bonne fonction f
 - Celles qui minimise l'erreur
 - On définit alors la fonction de perte, ou Cost function, ou loss function en anglais
 - *l(Y, f(Xi))* pour mesurer les erreurs de prédiction de la fonction *f*
 - il peut avoir plusieurs formules à la fonction de coût

$$-I(Y, f(X)) = 1_{Y!=f(X)}$$

$$-I(Y, f(X)) = |Y - f(X)|^2$$

- Apprentissage supervisé modélisation mathématique
 - Une bonne fonction f est celle qui minimise la moyenne de l'erreur, à savoir la moyenne de l(Y, f(X)) pour tous les couples de valeurs X et Y.
 - E[I(Y, f(X))]

Trouver la fonction f qui minimise l'erreur en moyenne à partir des données d'apprentissage.

En pratique, il faudra également que la fonction f minimise l'erreur en moyenne sur les nouvelles données.

- Apprentissage <u>non</u> supervisé modélisation mathématique
 - Soit K(X1, ...Xn) les données d'apprentissage. Il s'agit d'un ensemble d'observations des variables explicatives Xi (X)
 - But :
 - Créer des regroupements (clusters) cohérents/homogène
 - Que veut dire alors cohérent et homogène ?

- Apprentissage <u>non</u> supervisé modélisation mathématique
 - − Il s'agit de définir un fonction $f: X \rightarrow D: \{1,..., k\}$
 - k étant le nombre de groupes qu'on souhaite créer à partir des observations X
 - Contrairement à un problème de classification
 - la cible n'est pas connue, pas de base de vérité
 - l'analyse se fait uniquement sur les données d'apprentissage

- Apprentissage <u>non</u> supervisé modélisation mathématique
 - L'absence de base de vérité
 nécessite de définir des mesures de qualité, qui permettraient de valider ou pas le résultat
 - Un bon regroupement (clustering) est souvent défini
 - Homogénéité intra-cluster
 - Distance (inhomogénéité) inter-clusters

- Apprentissage <u>non</u> supervisé modélisation mathématique
 - Ces métriques sont souvent basées sur la notion de distance entre les individus ou encore entre les clusters
 - Exemple de distance
 - variance intra-cluster
 - variance inter-cluster

Apprentissage supervisé – Les différentes catégories des algorithmes

- Problème de régression
 - Soit K(X1, ...Xn, Y) les données d'apprentissage
 - Y est une valeur continue, ou valeur quantitative
 - il faut définir la fonction f qui minimise l'erreur

- Problème de régression
 - Soit K(X1, ...Xn, Y) les données d'apprentissage
 - Y est une valeur continue, ou valeur quantitative
 - il faut définir la fonction f qui minimise l'erreur

- Problème de régression
 - Soit K(X1, ...Xn, Y) les données d'apprentissage
 - Y est une valeur continue, ou valeur quantitative
 - il faut définir la fonction f qui minimise l'erreur

- Problème de régression
 - Soit K(X1, ...Xn, Y) les données d'apprentissage
 - Y est une valeur continue, ou valeur quantitative
 - il faut définir la fonction f qui minimise l'erreur
- Une régression est dite linéaire lorsque f est une fonction d'une droite.

$$- y = f(X) = a_0 + a_1 X$$

•
$$y = f(X) = a_0 + a_1 X$$

 Comment trouver la meilleur f linéaire

Comment définir
 mathématiquement la
 notion de meilleure
 dans notre cas ?

- $y = f(X) = a_0 + a_1 X$
- Comment définir mathématiquement la notion de meilleure dans notre cas ?
 - Cela correspond à la fonction f qui minimise la sommes des distances entre la prédiction et la valeur réelle dans les données d'apprentissage
 - Mathématiquement, cela revient à minimiser

$$\sum_{k=0}^{n} (f(\mathbf{x}_k) - y_k)^2 = \sum_{k=0}^{n} (a_0 + a_1 x_k - y_k)^2$$

- L'algorithme de décente de gradient (Gradient Descent)
 - Un algorithme d'optimisation (pour trouver le min ou le max d'une fonction)
 - Fonction à optimiser

$$-J(a_0, a_1) = \sum_{k=0}^{n} (a_0 + a_1 x_k - y_k)^2$$

- Résumé de l'algorithme
 - Définir un point aléatoire (a₀, a₁)
 - Déplacer itérativement le point de sorte à réduire la fonction *J* jusqu'à ce qu'on arrive au minimum, ou si le nombre maximum d'itération atteint

- L'algorithme de décente de gradient (Gradient Descent)
 - Soit le jeux de données suivant

•	Tracez	ces	points	sur	un
	plan				

- Ecrire la fonction J
- En supposant que a₀=0, réécrire la fonction, que déduisez vous ?

X	У
1	1
2	2,1
3	2,9

- L'algorithme de décente de gradient (Gradient Descent)
 - Soit le jeux de données suivant
- Tracez ces points sur un plan
- Ecrire la fonction J
- En supposant que a₀=0, réécrire la fonction, que déduisez vous ?

X	у
1	1
2	2,1
3	2,9

- L'algorithme de décente de gradient (Gradient Descent)
 - Résumé de l'algorithme (illustration sur le graphe)
 - Définir un point aléatoire (a₀, a₁)
 - Déplacer itérativement le point de sorte à réduire la fonction J jusqu'à ce qu'on arrive au minimum, ou nombre maximum d'itération atteint

X	у
1	1
2	2,1
3	2,9

- L'algorithme de décente de gradient (Gradient Descent)
 - L'algorithme du point vue mathématique
 - Répéter jusqu'à convergence

$$-a_i = a_i - \alpha \frac{\partial}{\partial a_i} J(a_0, a_1) (i = 0, i = 1)$$

- La dérivé permet de définir le sens du déplacement
- Attention les a; doivent être modifiés simultanément
- Explication sur le tableau à travers un exemple sur 2D

La régression linéaire en python

 <u>numpy.corrcoef</u> permet d'avoir une estimsation de la corrélation que peut exister entre deux variables. https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.corrcoef.html

• <u>sklearn.linear_model.LinearRegression</u> implémente l'algorithme de régression linéaire. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

```
In [9]: # Fitting simple linear regression to training set
    from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
Out[9]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```

 La régression logistique est similaire à la régression linéaire sauf que

régression linéaire

- Qlqs exemples
 - Prédiction d'un prix optimal d'un produit
 - Prédiction d'un prix de maison selon ses caractéristiques
 - Prédiction d'un poids en fonction des habitude alimentaire
 - ...etc.

régression logistique

- Qlqs exemples
 - détection de spams
 - classification de mails (important, non important)
 - tumeur ou pas en fonction de la taille
 - client vip ou pas
 - ...etc.

Pourquoi on ne peut pas appliquer une régression linéaire ?

 Pourquoi on ne peut pas appliquer une régression linéaire ?

 La régression logistique est donc basée sur la fonction sigmoïde, appelée aussi, courbe en S, ou alors logistique

$$-f(x) = \frac{1}{1 + e^{-\sum_{i=0}^{m} a_i x_i}}$$

 la fonction f renvoie une probabilité que y soit égale 1 sachant x

$$-f(x) = P(y = 1/x)$$

• Comment définir f? cela revient à identifier les paramètres a_i qui minimiseraient l'erreur.

- Minimiser l'erreur (cost function)
 - L'erreur dans la régression linaire

$$cost(f(x), y) = J(A) = \sum_{k=0}^{n} (f(x_k) - y_k)^2$$

- Peut on appliquer la même fonction dans notre cas ?
- L'erreur dans la régression logistique

$$cost(f(x_k), y) = \begin{cases}
-\log(f(x_k)) & \text{si } y = 1 \\
-\log(1 - f(x_k)) & \text{si } y = 0
\end{cases}$$

Minimiser l'erreur (cost function)

•
$$cost(f(x_k), y_k) = -y_k(\log(f(x_k))) - (1 - y_k)\log(1 - f(x_k))$$

•
$$J(A) = \frac{1}{n} \sum_{k=0}^{n} cost(f(x_k), y_k)$$

•
$$f(x_k) = \frac{1}{1 + e^{-\sum_{i=0}^{m} a_i * x_{k,i}}}$$

• La fonction *J* présente l'avantage d'être convexe, et donc on peut appliquer l'algorithme de descente de gradient.

La régression logistique en python

• <u>sklearn.linear_model.LogisticRegression</u>. <u>https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html</u>

Apprentissage supervisé – Les arbres de décision

- Un arbre de décision, de manière très basique, est
 - un outil d'aide à la décision
 - un arbre où les nœuds représentes des conditions, ves et les feuilles, des décisions.
- Comment construire un arbre de décision à partir des données d'apprentissage ?
 - Algorithmes ID3 (1986),C4.5 (1993)

ChestPain

No

No

typical

nonangina

No

nontypical

asymptomatic

RestECG

[1] J.R. Quinlan (1986): "Induction of Decision Trees," Machine Learning, Vol. 1, pp.81-106.

[2] S.L. SALZBERG (1994): "C4. 5: Programs for machine learning," by j. ross quinlan. morgan kaufmann publishers, inc., 1993." *Machine Learning*, 1994, vol. 16, no 3, p. 235-240.

Apprentissage supervisé – Les arbres de décision

- Algorithme ID3
 - Intuition

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
5	6	56	1	nontypical	120	236	0	0	178	0	0.8	1	0.0	normal	No
6	7	62	0	asymptomatic	140	268	0	2	160	0	3.6	3	2.0	normal	Yes
7	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	1	0.0	normal	No
8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	2	1.0	reversable	Yes
9	10	53	- 1	asymptomatic	140	203	1	2	155	1	3.1	3	0.0	reversable	Yes

- Algorithme ID3
 - Pseudo code (détails)
 - ID3 (examples)
 - A ← le meilleur attribut (variable) à tester et partager le dataset d'apprentissage
 - Créer un nœud A (decision node)
 - Pour chaque valeur V <u>distincte</u> de A, créer un sous ensemble des exemples S, tel que S contient les exemples dont la valeur de A est égale à V
 - Pour chaque sous ensemble S, si S est « pure », s'arrêter, sinon, ré-exécuter ID3(S)

Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD	
1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No	
2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes	
3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes	
4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No	
5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No	
6	56	1	nontypical	120	236	0	0	178	0	0.8	1	0.0	normal	No	
7	62	0	asymptomatic	140	268	0	2	160	0	3.6	3	2.0	normal	Yes	
8	57	0	asymptomatic	120	354	0	0	163	1	0.6	1	0.0	normal	No	
9	63	1	asymptomatic	130	254	0	2	147	0	1.4	2	1.0	reversable	Yes	
10	53	1	asymptomatic	140	203	- 1	2	155	1	3.1	3	0.0	reversable	Yes	
	1 2 3 4 5 6 7 8	1 63 2 67 3 67 4 37 5 41 6 56 7 62 8 57 9 63	1 63 1 2 67 1 3 67 1 4 37 1 5 41 0 6 56 1 7 62 0 8 57 0 9 63 1	1 63 1 typical 2 67 1 asymptomatic 3 67 1 asymptomatic 4 37 1 nonanginal 5 41 0 nontypical 6 56 1 nontypical 7 62 0 asymptomatic 8 57 0 asymptomatic 9 63 1 asymptomatic	1 63 1 typical 145 2 67 1 asymptomatic 160 3 67 1 asymptomatic 120 4 37 1 nonanginal 130 5 41 0 nontypical 130 6 56 1 nontypical 120 7 62 0 asymptomatic 140 8 57 0 asymptomatic 120 9 63 1 asymptomatic 130	1 63 1 typical 145 233 2 67 1 asymptomatic 160 286 3 67 1 asymptomatic 120 229 4 37 1 nonanginal 130 250 5 41 0 nontypical 130 204 6 56 1 nontypical 120 236 7 62 0 asymptomatic 140 268 8 57 0 asymptomatic 120 354 9 63 1 asymptomatic 130 254	1 63 1 typical 145 233 1 2 67 1 asymptomatic 160 286 0 3 67 1 asymptomatic 120 229 0 4 37 1 nonanginal 130 250 0 5 41 0 nontypical 130 204 0 6 56 1 nontypical 120 236 0 7 62 0 asymptomatic 140 268 0 8 57 0 asymptomatic 120 354 0 9 63 1 asymptomatic 130 254 0	1 63 1 typical 145 233 1 2 2 67 1 asymptomatic 160 286 0 2 3 67 1 asymptomatic 120 229 0 2 4 37 1 nonanginal 130 250 0 0 5 41 0 nontypical 130 204 0 2 6 56 1 nontypical 120 236 0 0 7 62 0 asymptomatic 140 268 0 2 8 57 0 asymptomatic 120 354 0 0 9 63 1 asymptomatic 130 254 0 2	1 63 1 typical 145 233 1 2 150 2 67 1 asymptomatic 160 286 0 2 108 3 67 1 asymptomatic 120 229 0 2 129 4 37 1 nonanginal 130 250 0 0 187 5 41 0 nontypical 130 204 0 2 172 6 56 1 nontypical 120 236 0 0 178 7 62 0 asymptomatic 140 268 0 2 160 8 57 0 asymptomatic 120 354 0 0 163 9 63 1 asymptomatic 130 254 0 2 147	1 63 1 typical 145 233 1 2 150 0 2 67 1 asymptomatic 160 286 0 2 108 1 3 67 1 asymptomatic 120 229 0 2 129 1 4 37 1 nonanginal 130 250 0 0 187 0 5 41 0 nontypical 130 204 0 2 172 0 6 56 1 nontypical 120 236 0 0 178 0 7 62 0 asymptomatic 140 268 0 2 160 0 8 57 0 asymptomatic 120 354 0 0 163 1 9 63 1 asymptomatic 130 254 0 2 147 0	1 63 1 typical 145 233 1 2 150 0 2.3 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 4 37 1 nonanginal 130 250 0 0 187 0 3.5 5 41 0 nontypical 130 204 0 2 172 0 1.4 6 56 1 nontypical 120 236 0 0 178 0 0.8 7 62 0 asymptomatic 140 268 0 2 160 0 3.6 8 57 0 asymptomatic 120 354 0 0 163 1 0.6 9 63 1 asymptomatic 130 254 0 2 147 0 1.4	1 63 1 typical 145 233 1 2 150 0 2.3 3 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 6 56 1 nontypical 120 236 0 0 178 0 0.8 1 7 62 0 asymptomatic 140 268 0 2 160 0 3.6 3 8 57 0 asymptomatic 120 354 0 0 163 1 0.6 1 9 63 1 asymptomatic 130 254 0 2 147 0 1.4 2	1 63 1 typical 145 233 1 2 150 0 2.3 3 0.0 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3.0 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2.0 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0.0 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0.0 6 56 1 nontypical 120 236 0 0 178 0 0.8 1 0.0 7 62 0 asymptomatic 140 268 0 2 160 0 3.6 3 2.0 8 57 0 asymptomatic 120 354 0 0 163 1 0.6 1 0.0 9 63 1 asymptomatic 130 254 0 2 147 0 1.4 2 1.0	1 63 1 typical 145 233 1 2 150 0 2.3 3 0.0 fixed 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3.0 normal 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2.0 reversable 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0.0 normal 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0.0 normal 6 56 1 nontypical 120 236 0 0 178 0 0.8 1 0.0 normal 7 62 0 asymptomatic 140 268 0 2 160 0 3.6 3 2.0 normal 8 57 0 asymptomatic 120 354 0 0 163 1 0.6 1 0.0 normal	1 63 1 typical 145 233 1 2 150 0 2.3 3 0.0 fixed No 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3.0 normal Yes 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2.0 reversable Yes 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0.0 normal No 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0.0 normal No 6 56 1 nontypical 120 236 0 0 178 0 0.8 1 0.0 normal No 7 62 0 asymptomatic 140 268 0 2 160 0 3.6 3 2.0 normal Yes 8 57 0 asymptomatic 120 354 0 0 163 1 0.6 1 0.0 normal No

- Algorithme ID3
 - Pseudo code (détails)
 - ID3 (examples)
 - A ← le meilleur attribut (variable) à tester et partager le dataset d'apprentissage
 - Créer un nœud A (decision node)
 - Pour chaque valeur V distincte de A, créer un sous ensemble des exemples S, tel que S contient les exemples dont la valeur de A est égale à V
 - Pour chaque sous ensemble S, si S est « pure », s'arrêter, sinon, ré-exécuter ID3(S)

- Algorithme ID3
 - Comment repérer le meilleur attribut sur lequel on crée le nœud de décision (decision node) ?

- Le but étant d'aboutir à des ensembles le plus « pure » possible
 - 5 yes/0 no, complètement pure
 - 3 yes/3 no, complètement inpure
 - -0 yes/5 no,?

- Algorithme ID3
 - Il nous faut une métrique pour mesurer
 l'incertitude, ou la certitude
 - En d'autre termes, soit un ensemble S d'exemples positifs et de négatifs, vous tirer un exemple au hasard, à quel point vous êtes sûr d'avoir un positif ou négatif?
 - Probabilité ? P(x=yes)
 - Entropie de Shannon

- Algorithme ID3
 - Entropie de Shannon

$$- H(S) = -\sum_{i=1}^{n} P_i * log(P_i)$$

$$- H(S) = -P_{yes} \log (P_{yes}) - P_{no} \log (P_{no})$$

- Interprétation : supposons qu'un item X ∈ S, combien d'essais vous avez besoin pour savoir si X est positif ou négatif ?
- L'entropie peut être interprétée comme le nombre moyens de questions qu'il faut poser pour deviner une lettre tirée au hasard.

- Algorithme ID3
 - Comment repérer le meilleur attribut sur lequel on crée le nœud de décision (decision node) ?

 Celui qui minimise l'entropie moyenne, pondérée

$$-Gain = \sum_{i=1}^{n} \frac{|S_i|}{|S|} H(S_i)$$

- Quelques remarques
 - Un algorithme récursif, qui divise le dataset jusqu'à avoir des sous-ensembles pures
 - Marcherai parfaitement sur les données d'entrainement, mais pas sur les nouvelle données (unseen data)
 - Solution :
 - faire un test de signification statistique à chaque division
 - Utiliser les données de validation
 - » supprimer et merger certains nœuds
 - » voir l'impact sur les données de validation

- Quelques remarques
 - Variables quantitative ?
 - utilisation de seuils

- Quelques remarques
 - Avantages
 - Interprétables
 - Ignore naturellement les attributs non importants;
 n'apportant d'information
 - Rapide à l'exécution O(profondeur)
 - Limitations
 - Peut ne pas trouver le meilleur arbres (car optimisation locale, étape par étape)
 - division se font par un seul attribut

Apprentissage supervisé – Les forêts (Random Forest)

- Objectif:
 - Résoudre les problèmes des arbres de décision
- Comment?
 - ...d'une manière assez étrange, mais qui marche!
 - Au lieu de se baser est construire un seul arbre, on construit plusieurs arbres (k arbres)
 - Prendre un sous ensemble S des données d'apprentissage
 - Sous ensemble au niveau des lignes et au niveau des colonnes
 - Pour chaque sous ensemble, exécuter l'algorithme ID3 pour générer un arbre de décision
 - Lors de la prédiction, exécuter les k arbres de décision. Le résultat est le résultat de la majorité (chaque arbre donne un résultat, on prend le résultat majoritaire)

Les arbres de décision en python

• <u>sklearn.tree.DecisionTreeClassifier</u>: <u>https://scikit-learn.org/stable/modules/generated/sklearn.tree.Decision</u>
TreeClassifier.html

Les forêts en python...et autre

- <u>sklearn.ensemble.RandomForestClassifier</u>: <u>https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html</u>
- <u>sklearn.naive_bayes.MultinomialNB</u>: <u>https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB</u>
- <u>sklearn.svm.SVC</u>: <u>https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html</u>
- <u>sklearn.linear_model.SGDClassifier</u>: <u>https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html</u>

```
In [65]: from sklearn.ensemble import RandomForestClassifier clfRF300 = RandomForestClassifier(n_estimators=300, max_depth=None, min_samples_split=2, random_state=0).fit(X_train, y_from_sklearn.naive_bayes import MultinomialNE clfNB = MultinomialNB() clfNB.fit(X_train, y_train)

from sklearn import svm clfSVM1 = svm.SVC(kernel="linear", C=1, probability=True).fit(X_train, y_train)

from sklearn import neighbors clfKNN10Distance = neighbors.KNeighborsClassifier(10, weights='distance').fit(X_train, y_train)

from sklearn.linear_model import SGDClassifier clfSGD = SGDClassifier(loss='log', shuffle=True, learning_rate="optimal", max_iter=100, tol=None).fit(X_train, y_train)
```

- Définitions
 - Faux positif : un individu faussement classifié positif
 - un mail classifié comme spam, mais qui ne l'est pas
 - un patient classifié comme gravement malade alors qu'il est sain
 - Faux négatif: un individu faussement classifié négatif
 - un mail classifié comme non spam alors qu'il est
 - un patient classifié comme sain, alors qu'il est gravement malade
- Selon le cas d'utilisation, on peut vouloir minimiser l'un ou l'autre
 - détection de spam
 - détection de patient sain

- Il existe 3 mesures majeures, qui sont indicatives de la qualité d'un modèle de classification
 - la précision (precision)
 - le rappel (recall)
 - F1

•
$$Precision = \frac{Vrai\ positif}{Vrai\ positif + Faux\ positif}$$

•
$$Recall = \frac{Vrai\ positif}{Vrai\ positif + Faux\ negatif}$$

•
$$F1 = 2 * \frac{Recall * Precision}{Recall + Precision}$$

- Sur quelle données prendre ces mesures ?
 Sur les données d'apprentissage ? sur les données de production ?
- Une des solutions est de diviser les données d'apprentissage en données d'apprentissage et données de test :
 - 4/5 Données sur lesquelles on entraine l'algorithme
 - 1/5 Données sur lesquelles on teste le modèle généré par l'algorithme

_		Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
Γ	0	1	63	- 1	typical	145	233	- 1	2	150	0	2.3	3	0.0	fixed	No
	1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
Γ	2	3	67	- 1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
L	3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
Г	4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
L	5	6	56	1	nontypical	120	236	0	0	178	0	0.8	1	0.0	normal	No
Γ	6	7	62	0	asymptomatic	140	268	0	2	160	0	3.6	3	2.0	normal	Yes
L	7	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	1	0.0	normal	No
	8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	2	1.0	reversable	Yes
	9	10	53	1	asymptomatic	140	203	1	2	155	1	3.1	3	0.0	reversable	Yes

- Inconvénient ?
- Solution : validation croisée

Les mesure de performance en python

- data splitting
 - sklearn.model_selection. train_test_split : https://scikit-learn.org/stable/modules/generated/sklearn.model-selection.train-test-split.html

Cross-validation

sklearn.model_selection.cross_val_score : <a href="https://scikit-learn.org/stable/modules/generated/sklearn.model-selection.cross-val-score-html#sklearn.model-selection.cross-selection.cross-val-score-html#sklearn.model-selection.cross-sele

Annexes

Annexes

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
() 1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
2	9 3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
;	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
ţ	6	56	1	nontypical	120	236	0	0	178	0	0.8	1	0.0	normal	No
(7	62	0	asymptomatic	140	268	0	2	160	0	3.6	3	2.0	normal	Yes
-	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	1	0.0	normal	No
8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	2	1.0	reversable	Yes
9	10	53	1	asymptomatic	140	203	1	2	155	1	3.1	3	0.0	reversable	Yes

Annexes

1 Yes 2 No

4 Yes 3 No

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
5	6	56	1	nontypical	120	236	0	0	178	0	0.8	1	0.0	normal	No
6	7	62	0	asymptomatic	140	268	0	2	160	0	3.6	3	2.0	normal	Yes
7	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	1	0.0	normal	No
8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	2	1.0	reversable	Yes
9	10	53	1	asymptomatic	140	203	1	2	155	1	3.1	3	0.0	reversable	Yes