Def. Successioni di funzioni

Sia I un intervallo contenuto in R e per ogni $n \in N$ sia $f_n : I \to R$ una funzione definita in I. Consideriamo la successione di funzioni

 f_n detta famiglia di fuzioni

 $f_0, f_1, f_2, \dots, f_n, \dots$ che denoteremo anche con f_n $n \in \mathbb{N}$.

Osserviamo che $f_n(x)$ ha una doppia dipendenza: nella variabile $x \in R$ e nell'indice $n \in N$;

 $n \in N$ fissato si ha la funzione $x \to f_n(x)$;

a $x \in I$ fissato si ha la successione numerica $f_n(x)$.

Def. Convergenza puntuale

Data una successione di funzioni $(f_n)_{n\in\mathbb{N}}$ definite in I e data $f:A\subseteq I\to R$, si dice che $f_n\to f$ puntualmente in A (o che $\lim_{n\to+\infty}f_n=f$)

Se
$$\forall x \in A \lim_{n \to +\infty} f_n(x) = f(x)$$

Ciò equivale a dire, ricordando la definizione di limite per una successione, che

$$\forall x \in A \forall \epsilon > 0 \exists \nu_{x,\epsilon} \in N: \forall n > \nu_{x,\epsilon} siha |f_n(x) - f(x)| < \epsilon.$$

Def. Convergenza uniforme

Data una successione di funzioni $(f_n)_{n \in \mathbb{N}}$ definite in I e data $f: A \subseteq I \to R$, si dice che $f_n \to f$ uniformemente in A

Se
$$\forall \epsilon > 0 \exists \nu_{\epsilon} \in \mathbb{N}: \forall n > \nu_{\epsilon} siha |f_n(x) - f(x)| < \epsilon \forall x \in \mathbb{A}$$

Utilizzando la definizione di estremo superiore, si ha che per dimostrare che $f_n o f$ uniformemente in A

basta verificare che

$$\forall \epsilon > 0 \exists \nu_{\epsilon} \in N: \forall n > \nu_{\epsilon} \sup_{x \in A} |f_n(x) - f(x)| < \epsilon$$

O equivalentemente

$$\forall \epsilon > 0 \quad \exists \nu_{\epsilon} \in N : \forall n > \nu_{\epsilon} g_n < \epsilon$$

$$\lim_{n\to+\infty}g_n = 0$$

 $g_n = \sup_{x \in A} |f_n(x) - f(x)|$ successioned in umeri

Th. Continuità del limite (teorema convergenza uniforme)

Sia $(f_n)_{n \in \mathbb{N}}$ successione di funzioni <u>continue</u> definite in un intervallo $I \subseteq R$ e sia $f: I \to R$ tale che $f_n \to f$ uniformemente in I. Allora la funzione f è continua

O equivalentemente

- 1) $f_n \rightarrow f$ uniforme
- f è continua
- 2) f_n continua

N.B.

Ma non è detto che se f è continua allora $f_n o f$ uniforme e f_n continua

Th. Inversione dei limiti (teorema convergenza uniforme)

Sia $(f_n)_{n \in \mathbb{N}}$ successione di funzioni definite in un intervallo $I \subseteq R$ e sia $f: I \to R$ tale che $f_n \to f$ uniformemente in I. Supponiamo inoltre che per ogni $n \in \mathbb{N}$ esista il limite

$$\lim_{x \to x_0} f_n(x), \ x_0 \in R$$

Allora esistono e coincidono i due limiti seguenti

$$\lim_{n \to +\infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to +\infty} f_n(x) \right)$$

Th. Passaggio del limite sotto il segno di integrale (teorema convergenza uniforme)

Sia $(f_n)_{n \in \mathbb{N}}$ successione di funzioni <u>continue</u> definite in un intervallo I = [a, b] e sia $f : I \to R$ tale che $f_n \to f$ uniformemente in I.

Allora vale la seguente formula

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

Dim.

Essendo f limite uniforme di funzioni continue, allora essa è continua in [a, b] e quindi integrabile. Per avere la tesi, grazie alla definizione di limite, basta mostrare che per ogni

 $\forall \epsilon \quad \exists \nu_{\epsilon} \in N : \forall n \geq \nu_{\epsilon} \text{ si abbia}$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| < \epsilon$$

D'altra parte, poiché $f_n \to f$ uniformemente, per ogni $\forall \epsilon' \exists \nu_{\epsilon'} \in N : \forall n \geq \nu_{\epsilon'}$ si ha

$$g_n = \sup_{x \in [a,b]} |f_n(x) - f(x)| < \epsilon'$$

Quindi, fissato $\epsilon > 0$, se si sceglie $\epsilon' < \frac{\epsilon}{b-a}$

si ottiene per ogni $\forall n \geq \nu_{\epsilon'}$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f_{n}(x) dx - f(x)| dx \leq \sup_{x \in [a,b]} |f_{n}(x) - f(x)| (b - a) < \epsilon'(b - a)$$

Th. Passaggio del limite sotto il segno di derivata (teorema convergenza uniforme)

Sia $(f_n)_{n \in \mathbb{N}}$ successione di funzioni di classe C^1 (cioè <u>derivabili</u> e con <u>derivate continue</u>) definite in un intervallo I = [a, b]

E sia $f: I \to R$ tale che $f_n \to f$ puntualmente in I.

Supponiamo inoltre che la successione f_n^\prime delle derivate converga uniformemente verso una funzione g.

Allora si ha che $f_n \to f$ uniformemente in I.

f è derivabile e f'=g

Cioè vale la seguente formula

$$\lim_{n \to +\infty} f_n'(x) = f'(x)$$

Condizioni sufficienti per la convergenza uniforme:

<mark>Th.</mark> Dini

Sia $(f_n)_{n \in N}$ successione di funzioni <u>continue</u> definite in un intervallo I = [a, b] e sia $f: I \to R$ <u>funzione</u> <u>continua</u> tale che $f_n \to f$ puntualmente in I.

Assumiamo inoltre che tale successione sia monotona crescente rispetto ad $n \in N$

Cioè per ogni $x \in [a, b]$ si ha che

$$f_n(x) \le f_{n+1}(x)$$

Allora la successione $f_n \rightarrow f$ converge uniformemente in I

Th. 2

Sia $(f_n)_{n \in N}$ successione di funzioni <u>non necessariamente continue</u> definite in un intervallo I = [a,b] e sia $f: I \to R$ <u>funzione continua</u> tale che $f_n \to f$ puntualmente in I.

Assumiamo inoltre per ogni $n \in N$ la funzione $f_n(x)$ sia monotona crescente rispetto ad x

Cioè si ha che $x_1 \le x_2$

Allora
$$f_n(x_1) \leq f_n(x_2)$$

Allora la successione $f_n \to f$ uniformemente in I

Def. Convergenza puntuale serie di funzioni

Supponiamo che per ogni $x \in A \subseteq I$ la successione di funzioni $S_n(x)$ ammetta limite finito $S(x)pern \to +\infty$

Cioè

$$S(x) = \lim_{n \to +\infty} S_n(x)$$

In tal caso la serie di funzioni di termine generale $f_n(x)$ converge puntualmente ad S(x) in A e S(x) è la somma della serie e si scrive

$$\sum_{n=0}^{\infty} f_n(x) = S(x)$$

L'insieme A è l'insieme di convergenza puntuale

Def. Convergenza assoluta serie di funzioni

Si dice che la serie $\sum_{n=0}^{\infty} f_n(x)$ <u>converge assolutamente</u> in $x \in A$

se per ogni $x \in A$ converge la serie numerica

$$\sum_{n=0}^{\infty} |f_n(x)|$$

La convergenza assoluta implica la convergenza puntuale ma non vale il viceversa

Def. Convergenza uniforme serie di funzioni

Si dice che la serie $\sum_{n=0}^{\infty} f_n(x)$ <u>converge uniformemente</u> ad S(x) in A se la successione di funzioni $(S_n(x))_{n \in \mathbb{N}}$ converge uniformemente alla funzione S(x) in A nel senso delle successioni

La convergenza uniforme implica la convergenza puntuale ma non vale il viceversa

Def. Convergenza totale

Si dice che la serie $\sum_{n=0}^{\infty} f_n(x)$ <u>converge totalmente</u> in $x \in A$ se esiste una successione numerica M_n tale che

$$|f_n(x)| \le M_n \forall x \in A \forall n \in N$$

E se la serie numerica $\sum_{n=0}^{\infty} M_n$ risulta convergente

La convergenza totale implica tutte le altre convergenze

N.B.

la convergenza assoluta e la convergenza uniforme implicano quella puntuale, la convergenza totale implica l'assoluta e l'uniforme.

Ma la convergenza uniforme NON implica quella assoluta e neanche il viceversa vale

Th. Continuità della somma di una serie

Sia $(f_n)_{n \in \mathbb{N}}$ una successione di <u>funzioni continue</u> definite in un intervallo $I \subseteq R \ e \ sia \ S : I \to R$ la somma della serie avente f_n come termine generale

Cioè

$$S(x) = \sum_{n=0}^{\infty} f_n(x)$$

Supponiamo inoltre che tale serie converga uniformemente ad S(x)

Allora la funzioneS(x)è continua

Th. Integrazione per serie (o integrazione termine a termine)

Sia $(f_n)_{n \in \mathbb{N}}$ una successione di <u>funzioni continue</u> definite in un intervallo $I \subseteq R \ e \ sia \ S : I \to R$ la somma della serie avente f_n come termine generale

Cioè

$$S(x) = \sum_{n=0}^{\infty} f_n(x)$$

Supponiamo inoltre che tale serie converga uniformemente ad S(x)

Allora vale la seguente formula

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} S(x) dx$$

Dim.

Essendo S(x) il limite uniforme della successione $S_k(x) = \sum_{n=0}^k f_k(x)$ delle somme parziali (che sono funzioni continue)

Allora essa è continua in [a, b] e quindi integrabile.

Quindi si ha

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) dx = \lim_{k \to \infty} \sum_{n=0}^{k} \int_{a}^{b} f_{n}(x) dx$$

$$= \lim_{k \to \infty} \int_{a}^{b} \sum_{x=0}^{k} f_{n}(x) dx = \lim_{k \to \infty} \int_{a}^{b} S_{k}(x) dx = \int_{a}^{b} \lim_{k \to \infty} S_{k}(x) dx = \int_{a}^{b} S(x) dx$$

dove si è usato il teorema di passaggio al limite sotto il segno di integrale per la successione di funzioni $S_k(x)$ che converge uniformemente ad S(x).

Th. Derivazione per serie (o derivazione termine a termine)

Sia $(f_n)_{n \in \mathbb{N}}$ successione di funzioni di classe C^1 (cioè <u>derivabili</u> e con <u>derivate continue</u>) definite in un intervallo $I \subseteq R$ e sia $S: I \to R$ la somma della serie avente f_n come termine generale

Cioè

$$S(x) = \sum_{n=0}^{\infty} f_n(x)$$

Consideriamo la serie derivata

$$\sum_{n=0}^{\infty} f_n'(x)$$

E supponiamo che quest'ultima converga uniformemente

Allora la funzione S è anch'essa di classe C^1 e vale la seguente formula

$$S'(x) = \sum_{n=0}^{\infty} f'_n(x)$$

Def. Serie di potenze centrate nell'origine

Sia a_k , k = 0,1,2,... una successione di numeri reali e sia $f_k(x) = a_k x^k$

La serie di funzioni

$$\sum_{k>=0} f_k(x) = \sum_{k>=0} a_k x^k = a_0 + a_1 x + \dots + a_k x^k + \dots$$

Prende il nome di serie di potenze di coefficienti $a_0, a_1, \dots, a_k, \dots$

Def. Serie di potenze centrate in un punto x_0

Una serie di potenze centrata in un punto x_0

$$\sum_{k>-0} a_k (x - x_0)^k = a_0 + a_1 (x - x_0) + \dots + a_k (x - x_0)^k + \dots$$

N.B

Notiamo che k ≥ 1 si ha f_k (0) = 0 e quindi $S(0) = a_0$

Quindi in x = 0 (o in generale in $x = x_0$) la serie converge

Ne segue che l'insieme di convergenza puntuale (ICP) non può essere vuoto!

Per una serie di potenze si dimostra che **ICP** è un intorno di 0 avente raggio generalizzato ρ nullo, oppure infinito, oppure finito.

Quindi si verifica una delle seguenti circostanze:

- i) la serie converge per x = 0;
- ii) la serie converge per ogni $x \in R$;
- iii) esiste un numero $\rho > 0$ tale che la serie converge se $|x| < \rho$ e non converge se $|x| > \rho$.

Def. Raggio di convergenza

Si definisce il raggio di convergenza della serie di potenze

$$\sum_{k>=0} f_k(x) = \sum_{k>=0} a_k x^k = a_0 + a_1 x + \dots + a_k x^k + \dots$$

come l'estremo superiore $\rho \in [0, +\infty]$ dell'insieme X dei numeri reali x nei quali essa converge

cioè

$$\rho = \sup X$$
 dove $X = \{x \in R: \sum_{k>=0} a_k x^k \text{ converge } \}$

Questo estremo superiore esiste sempre e, siccome $0 \in X$, si ha che $\rho \geq 0$. Si verifica facilmente che il raggio di convergenza

$$\rho = 0$$
 se e solo se x = 0, i.e. X = $\{0\}$

$$\rho = +\infty$$
 se e solo se X = R.

Th.

Sia
$$0 < \rho < +\infty$$
.

Allora la serie di potenze

$$\sum_{k>=0} f_k(x) = \sum_{k>=0} a_k x^k = a_0 + a_1 x + \dots + a_k x^k + \dots$$

ha raggio di convergenza ρ se e solo se essa converge per $|x| < \rho$ e non converge per $|x| > \rho$.

Inoltre, se $0 < \rho$, essa converge assolutamente per $|x| < \rho$. Infine converge totalmente (e quindi uniformemente) in ogni intervallo chiuso e limitato $[-a,a] \subset (-\rho,\rho)$. Nulla si può dire, in generale, sulla convergenza della serie di potenze nei punti $x = -\rho \ e \ x = \rho$.

Criterio di Cauchy-Hadamard (ricerca raggio di convergenza)

Data la serie di potenze

$$\sum_{k>=0} a_k x^k$$

Se esiste il limite

$$l = \lim_{k \to +\infty} |a_k|^{\frac{1}{k}}$$

Allora il raggio di convergenza della serie $\sum_{k>=0} a_k x^k$ è

$$\rho = \begin{cases} +\infty & l = 0\\ \frac{1}{l} & 0 < l < +\infty\\ 0 & l = +\infty \end{cases}$$

Criterio di D'Alembert

Data la serie di potenze

$$\sum_{k>=0} a_k x^k$$

Con $a_k \neq 0$ definitivamente, se esiste il limite

$$l = \lim_{k \to +\infty} \left| \frac{a_{k+1}}{a_k} \right|$$

Allora il raggio di convergenza della serie $\sum_{k>=0} a_k x^k$

$$\rho = \left\{ \begin{array}{l} + \infty & l = 0 \\ \frac{1}{l} & 0 < l < +\infty \\ 0 & l = +\infty \end{array} \right.$$

Def. Serie derivata

Data la serie di potenze

$$\sum_{k>=0} a_k x^k$$

La serie ottenuta derivando questa termine a termine, cioè la serie

$$\sum_{k>=1} k a_k x^{k-1} = a_1 + 2a_2 x + \dots + k a_k x^{k-1} + \dots$$

Viene detta serie derivata della serie di potenze

Def. Serie integrata

Data la serie di potenze

$$\sum_{k>=0} a_k x^k$$

La serie ottenuta integrando questa serie termine a termine, cioè la serie

$$\sum_{k>=0} \frac{a_k}{k+1} x^{k+1} = a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_k}{k+1} x^{k+1} + \dots$$

Viene detta serie integrata della serie di potenze

Th.

Una serie di potenze ha lo stesso raggio di convergenza della sua serie derivata e della sua serie integrata.

Th. Di derivazione e di integrazione delle serie di potenze

Se la serie di potenze

$$\sum_{k>=0} a_k x^k$$

ha raggio di convergenza ρ non nullo e se f (x) è la sua somma

cioè

$$f(x) = \sum_{k>=0} a_k x^k \qquad \forall x: |x| < \rho con \, \rho > 0$$

Allora risulta anche

$$f'(x) = \sum_{k>=1} k a_k x^{k-1} \,\forall x : |x| < \rho$$

e

$$\int_0^x f(t)d = \sum_{k>=0} \frac{a_k}{k+1} x^{k+1} \forall x: |x| < \rho$$

N.B

Più in generale si possono considerare serie di potenze di punto iniziale x_0 , anche diverso da zero

Lo studio di tali serie di potenze viene ricondotto a quelle di punto iniziale x_0 = 0 con il semplice cambio di variabile $y = x - x_0$;

se ρ è il suo raggio di convergenza e $0 < \rho < +\infty$

allora essa <u>converge assolutamente</u> per $|x - x_0| < \rho$ e non converge per $|x - x_0| > \rho$.

Inoltre <u>converge totalmente</u> negli intervalli del tipo $|x - x_0| \le a$, con a arbitrario, $0 < a < \rho$.

Se
$$\rho = +\infty$$
,

allora essa <u>converge assolutamente</u> per ogni $x \in R$

<u>converge totalmente</u> negli intervalli del tipo $|x - x_0| \le a$, con a > 0 arbitrario.

Gli stessi criteri precedenti forniscono metodi per calcolare il raggio di convergenza anche in questo caso.

Criterio di Abel

Sia data la serie di potenze

$$\sum_{k>=0} a_k (x-x_0)^k$$

Avente raggio di convergenza $0 < \rho < +\infty$.

Se tale serie converge nel punto $x = x_0 + \rho$, i.e. se converge la serie numerica

$$\sum_{k>=0} a_k \rho^k$$

Allora la serie di potenze converge uniformemente in intervalli del tipo $[x_0 - \rho + \epsilon, x_0 + \rho]$, con $0 < \epsilon < \rho$. Lo stesso criterio vale nel punto $x = x_0 - \rho$

Si osservi che tale convergenza è SOLO uniforme, mentre la convergenza totale, come già visto, è garantita solo negli intervalli del tipo $[x_0 - \rho + \epsilon, x_0 + \rho - \epsilon]$, $con 0 < \epsilon < \rho$.

Def. Sviluppabile serie di potenze

Data una funzione $f:(a,b)\to R$ ed $x_0\in(a,b)$ ci chiediamo se esiste una serie di potenze di punto iniziale ed x_0 convergente in (a,b)verso f(x)

$$f(x) = \sum_{k>=0} a_k (x - x_0)^k$$

Con un errore

$$\sum_{m>k+1} a_k (x-x_0)^k$$

Che si riduce mano a mano che k aumenta

In tal caso si dice che f è sviluppabile in serie di potenze di punto iniziale x_0 in (a,b)

N.B.

Se la funzione f(x) è un polinomio, lo sviluppo di Taylor di essa è essa stessa

Th. Unicità dello sviluppo in serie di potenze(teorema condizione necessaria ma non sufficiente per avere serie di Taylor)

Data la serie di potenze

$$\sum_{k>=0} a_k (x-x_0)^k$$

Avente raggio di convergenza $\rho > 0$, sia f(x)la sua somma

Cioè

$$f(x) = \sum_{k>=0} a_k (x - x_0)^k \, \forall x : |x - x_0| < \rho$$

Allora f(x) è una funzione indefinitivamente derivabile (o C^{∞}) per $|x-x_0|<\rho$ e per ogni $m\in N$ la derivata di ordine m vale

$$f^{(m)}(x) = \sum_{k=m}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m}$$

Inoltre $a_k = \frac{f^{(k)}(x_0)}{k!}$ Per ogni $k \in N$ e dunque f è sviluppabile in serie nella forma

$$f(x) = \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \forall x : |x - x_0| < \rho$$

Dim.

Si applica m volte il teorema di derivazione termine a termine per le serie di potenze e si ottiene

$$f^{(m)}(x) = \sum_{k=m}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m}$$

cioè

m=1(serie derivata)

$$f'(x) = \sum_{k=1}^{+\infty} k(k-1) \dots (k-1+1) a_k (x-x_0)^{k-1} = \sum_{k=1}^{+\infty} k a_k (x-x_0)^{k-1}$$

m=2

$$f^{\prime\prime}(x) = \sum_{k=2}^{+\infty} k(k-1) \dots (k-2+1) a_k (x-x_0)^{k-2} = \sum_{k=2}^{+\infty} k(k-1) (x-x_0)^{k-2}$$

Per dimostrare la seconda parte

$$\begin{split} f^{(m)}(x) &= \sum_{k=m}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m} \\ &= m(m-1) \dots (m-m+1) a_m (x-x_0)^{m-m} \\ &+ \sum_{k=m+1}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m} \\ &= m(m-1) \dots 1 a_m + \sum_{k=m+1}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m} \\ &= m! \, a_m + \sum_{k=m+1}^{+\infty} k(k-1) \dots (k-m+1) a_k (x-x_0)^{k-m} \end{split}$$

Ponendo adesso $x=x_0$ si annullano tutti gli addendi di tale serie tranne il primo

Cioè k=m infatti

$$f^{(m)}(x_0) = m! \, a_m + \sum_{k=m+1}^{+\infty} k(k-1) \dots (k-m+1) a_k (x_0 - x_0)^{k-m} = m! \, a_m$$

Da cui si ha

$$f^{(k)}(x_0) = k! a_k$$

Ne segue che

$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad \forall k \in \mathbb{N}$$

E dunque f è sviluppabile in serie nella forma

$$f(x) = \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \quad \forall x : |x - x_0| < \rho$$

È importante notare che dal teorema precedente segue l'unicità dello sviluppo in serie di potenze.

Def. Serie di Taylor

Data f(x) una funzione C^{∞} in (a,b), si può considerare la serie

$$\sum_{k>0} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Che prende il nome di serie di Taylor di f ed i coefficienti

$$a_k = \frac{f^{(k)}(x_0)}{k!}$$

Sono detti coefficienti di Taylor di f

Nel caso in cui $x_0=0$, la serie di Taylor prende il nome di serie di Mac Laurin

N.B.

Data f(x) una funzione C^{∞} in (a,b) ci chiediamo se f coincide sempre in (a,b) con la sua serie di Taylor

$$f(x) = \sum_{k>=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Cioè se f è sviluppabile in serie di Taylor in (a, b)

Th. (Condizione sufficiente per sviluppabilità in serie di Taylor)

Data f(x) una funzione C^{∞} in (a,b), supponiamo che esistano delle costanti positive M,L \geq 0 tali che

$$|f^{(k)}(x)| \le ML^k \quad \forall x \in (a,b)$$

Allora, per ogni $x_0 \in (a, b)$, la funzione f è sviluppabile in serie di Taylor di punto iniziale x_0 nell'intervallo (a, b).

In particolare, basta che le derivate di f siano equilimitate in (a, b) (è il caso L = 1).

Sviluppi Mac Laurin

$$\frac{1}{1-x} = \sum_{n \ge -0} x^n \qquad |x| < 1$$

$$e^x = \sum_{n \ge -0} \frac{x^n}{n!} \qquad x \in R$$

$$senx = \sum_{n \ge 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad x \in R$$

$$cosx = \sum_{n>=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $x \in R$

$$senhx = \sum_{n > 0} \frac{x^{2n+1}}{(2n+1)!} \qquad x \in R$$

$$coshx = \sum_{n \ge 0} \frac{x^{2n}}{(2n)!} \qquad x \in R$$

$$arctgx = \sum_{n \ge -0} (-1)^n \frac{x^{2n+1}}{2n+1} \qquad |x| < 1$$

$$log(x+1) = \sum_{n \ge 0} \frac{x^{n+1}}{n+1} \qquad |x| < 1$$

Def. Funzione generalmente continua

Diciamo che una funzione f $\underline{\grave{e}}$ generalmente continua in un intervallo [a,b] se ha al più un numero finito di discontinuità in [a,b].

N.B.

Notiamo che esistono funzioni che non sono generalmente continue

$$f(x) = \frac{1}{sen(\frac{1}{x})}$$

Def. Funzione sommabile

Diciamo che una funzione f generalmente continua è <u>sommabile</u> in un intervallo [a, b] se

$$\int_{a}^{b} |f(x)| dx < +\infty$$

N.B.

Osserviamo che una funzione generalmente continua potrebbe non essere sommabile.

$$f(x) = \begin{cases} \frac{1}{|x|^{\beta}} & x \in [-\pi, \pi]\{0\} \\ 1 & x = 0 \end{cases} \text{ per } \beta \ge 1 \text{ non è sommabile}$$

Def. Funzioni periodiche

Una funzione $f: R \to R$ si dice periodica di periodo T (o T-periodica) se per ogni $x \in R$ si ha

$$f(x + T) = f(x)$$

Ovviamente se una funzione è periodica con periodo T>0, allora è anche periodica con periodo $2T,3T,\ldots,kT$, $con\ k\in N$.

Def. Polinomi trigonometrici

Le somme finite

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx \qquad a_0, a_k, b_k \in \mathbb{R}$$

di funzioni del tipo precedente si dicono polinomi trigonometrici di ordine n e sono funzioni $2\pi-periodiche$

Def. Serie trigonometriche

Supponiamo che la successione di funzioni

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \operatorname{senk} x$$

converga per ogni $x \in R$ ad una funzione S(x).

Ciò equivale a dire che la seguente serie

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k coskx + b_k senkx$$

Converge puntualmente e ha somma la funzione S(x).

Tale somma è necessariamente una funzione 2π -periodica. Tale serie è detta <u>serie trigonometrica</u> di coefficienti $a_0, a_k, b_k \in R$

Prop. (condizioni necessarie affinché possa sviluppare in serie trigonometrica una funzione)

Supponiamo sia f sviluppabile in serie trigonometrica

Cioè

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k coskx + b_k senkx$$

Supponiamo inoltre che *la serie converga uniformemente* in $[-\pi,\pi]$

Allora necessariamente i coefficienti hanno la seguente forma:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
 $k = 0,1,2,...$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$
 $k = 1, 2, ...$

I coefficienti a_k e b_k della precedente proposizione prendono il nome di coefficienti di Fourier e la serie con essi costruita è detta serie di Fourier di f .

Perché tali coefficienti siano ben definiti basta che f sia 2π -periodica e sommabile in $[-\pi,\pi]$.

$$|a_k| <= \int_{-\pi}^{\pi} |f(x)| |\cos kx| \, dx <= \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty$$

$$|b_k| <= \int_{-\pi}^{\pi} |f(x)| |sen \, kx| \, dx <= \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty$$

N.B.

Il coefficiente

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

È il valor medio di f sull'intervallo di periodicità

Def. Funzione continua a tratti

Diciamo che una funzione f definita su un intervallo [a, b] è <u>continua a tratti</u> in [a, b]

se esiste una suddivisione dell'intervallo [a, b] del tipo

$$a = x_0 < x_1 < \dots < x_n = b$$

tale che

- per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è continua negli intervalli aperti (x_i,x_{i+1})
- nei punti x_i ha al più discontinuità eliminabili o di tipo salto.

Def. Funzione regolare a tratti

Diciamo che una funzione f definita su un intervallo [a,b] è $\underline{C^1}$ a tratti in [a,b] (o $\underline{regolare}$ a tratti in [a,b] ose esiste una suddivisione dell'intervallo [a,b] del tipo

$$a = x_0 < x_1 < \dots < x_n = b$$

tale che

• per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è C^1 (i.e. derivabile e con derivata continua) negli intervalli aperti (x_i,x_{i+1})

- ullet nei punti x_i ha al più discontinuità eliminabili o di tipo salto
- in tali punti ha derivata destra e sinistra finita.

N.B.

- Le funzioni continue sono anche continue a tratti.
- Le funzioni C¹ sono anche C¹a tratti.
- Le funzioni continue a tratti in $[-\pi, \pi]$ (e quindi in particolare le continue e anche le C^1 a tratti) sono sommabili.
- Ma non vale il viceversa

Condizione necessaria affinché posso scrivere la serie di Fourier

Poter scrivere la serie di Fourier di f, basta che f sia sommabile e periodica.

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k coskx + b_k senkx$$

Th. Convergenza puntuale della serie di Fourier

Sia f una <u>funzione 2π -periodica e regolare a tratti in R.</u>

Allora per ogni $x \in R$ la serie di Fourier di f $\underline{converge}$ a

$$\frac{1}{2}[f(x+)+f(x-)]$$

Cioè alla media tra limite destro e sinistro in x

$$f(x+) = \lim_{y \to x^+} f(y)$$

$$f(x-) = \lim_{y \to x^-} f(y)$$

In particolare converge a f(x) nei punti di continuità

Cioè dove
$$f(x+) = f(x-)$$

Prop. (Convergenza uniforme della serie di Fourier)

Sotto le stesse ipotesi del teorema precedente, la serie di Fourier di f $\underline{converge\ uniformemente\ in\ ogni\ sotto}$ in cui f(x) è continua.

Th. Convergenza totale della serie di Fourier

Sia f una funzione 2π -periodica, continua e regolare a tratti in R.

Allora la serie di Fourier di f converge totalmente in R (e quindi uniformemente) alla funzione f .

Th. Integrazione termine a termine per una serie di Fourier

Sia f una funzione 2π -periodica e regolare a tratti in R.

Allora fissati $x_0, x \in [-\pi, \pi]$ si ha

$$\int_{x_0}^{x} f(t)dt = \frac{a_0}{2}(x - x_0) + \sum_{k=1}^{\infty} \int_{x_0}^{x} (a_k coskt + b_k senkt) dt$$

N.B.

Questo teorema afferma che una serie di Fourier di una funzione regolare a tratti in R si può integrare termine a termine anche senza la convergenza uniforme della serie stessa

Def. Prodotto scalare

Nello spazio delle funzioni continue a tratti su un intervallo [a,b] si può introdurre quello che viene detto un prodotto scalare ed è così definito:

$$(f,g) = \int_{a}^{b} f(x)g(x)dx$$

Questo prodotto tra funzioni gode delle stesse proprietà del prodotto scalare in \mathbb{R}^N :

$$(f,g) = (g,f) \qquad (f,f) \ge 0 \qquad (f,f) = 0 \Leftrightarrow f = 0$$

$$(f,g+h) = (f,g) + (f,h)$$

N.B.

Si dice che due funzioni continue a tratti f e g sono ortogonali se (f,g)=0. Inoltre nello spazio delle funzioni continue a tratti si può introdurre una distanza nel modo seguente

$$d(f,g) = \sqrt{\int_a^b (f-g)^2 dx}$$

Def. Quadrato sommabile

Si dice che una funzione 2π -periodica 'e di quadrato sommabile se

$$\int_{-\pi}^{\pi} (f(x))^2 dx < +\infty$$

N.B.

Se f è quadrato sommabile, allora è sommabile

Dim (che quadrato sommabile è sommabile)

$$(1 - |f(x)|)^2 \ge 0$$

$$|f(x)| \le \frac{1}{2}(1 + |f(x)|^2)$$

$$\int_{-\pi}^{\pi} |f(x)| dx \le \frac{1}{2} (1 + |f(x)|^2) dx \le \pi + \frac{1}{2} \int_{-\pi}^{\pi} (f(x))^2 dx < +\infty$$

Th.

Sia f una funzione 2π -periodica, <u>generalmente continua e di quadrato sommabile</u>. Siano a_0 , a_k , b_k i coefficienti di Fourier di f e sia $S_n(x)$ la somma parziale n-esima della serie di Fourier di f ,

cioè

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \operatorname{senk} x$$

Allora si ha

1)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \left[\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \right]$$

2)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) -$$
 uguaglianza di Parseval

3) al variale di $P \in F_n$ lo scarto quadratico medio

$$E_n = \int_{-\pi}^{\pi} |f(x) - P(x)|^2 dx = (d(f, P))^2$$

è minimo se $P(x) = S_n(x)$

cioè

 $S_n(\mathbf{x})$ realizza la minima distanza di f(\mathbf{x}) da F_n

$$d(f,S_n) = \min_{P \in F_n} d(f,P)$$

 $d(f, S_n) = \min_{P \in F_n} d(f, P)$ dove F_n è l'insieme dei polinomi trigonometrici di ordine n, i.e. del tipo

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k coskx + b_k senkx$$

La disuguaglianza

$$\int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) < = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$$

Che è parte dell'eguaglianza di Parseval, prende il nome di diseguaglianza di Bessel

Def. Convergenza media quadratica

Si dice che la serie di Fourier converge in media quadratica se

$$\lim_{n \to +\infty} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx = 0$$

Dalla 1) e dalla 2) del teorema precedente

Dim.

Dalla 1)

$$\lim_{n \to +\infty} \sum_{k=1}^{n} (a_k^2 + b_k^2) = \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \implies \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = 2)$$

Che a sua volta sostituendo nella 2)

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = 0$$

Segue

Corollario 1

Sia f una funzione 2π -periodica, generalmente continua e di quadrato sommabile, la serie di Fourier converge in media quadratica.

Corollario 2

Sia f una funzione 2π -periodica, generalmente continua e di quadrato sommabile, si ha

$$\lim_{k \to +\infty} a_k = \lim_{k \to +\infty} \int_{-\pi}^{\pi} f(x) \cos kx dx = 0$$

$$\lim_{k \to +\infty} b_k = \lim_{k \to +\infty} \int_{-\pi}^{\pi} f(x) \operatorname{sen} kx dx = 0$$

N.B

Data una funzione f 2π -periodica:

- Se f è <u>continua e C^1 a tratti</u>
 Allora la <u>convergenza è totale</u> (e quindi uniforme)
 La serie converge ad f(x) e dunque f è <u>sviluppabile</u> in <u>serie</u> di <u>Fourier</u>
- Se f è C^1 a tratti, allora la <u>convergenza è puntuale</u> la somma della serie è $\frac{1}{2}[f(x+)+f(x-)]$ e la <u>convergenza è uniforme</u> in ogni intervallo in cui f (x) è continua
- Se f è <u>generalmente continua e di quadrato sommabile</u> Allora la <u>convergenza è in media quadratica</u>
- Infine poiché una <u>funzione continua a tratti è generalmente continua e di quadrato</u> sommabile

Allora si ha che se

<u>f è continua a tratti</u>, la <u>convergenza è in media quadratica e vale l'equaglianza di Parseval</u>.

Def. Complessi

Dato
$$z = (x, y) \in C$$
, $x = Re(z) e y = Im(z)$.

Pertanto oltre alla notazione come coppia z=(x,y), si usa spesso anche la notazione z=x+iy. Le coordinate x e y di z sono dette anche <u>coordinate cartesiane</u>.

Avendo identificato i numeri complessi con le coppie di \mathbb{R}^2 , si parla spesso di C come del <u>piano</u> <u>complesso</u>, dove i numeri reali sono i punti dell'asse delle x, mentre i numeri immaginari sono i punti dell'asse delle y.

A differenza di R, il campo C dei numeri complessi <u>non è ordinato</u>, cioè non esiste una relazione d'ordine totale in C che sia compatibile con le operazioni algebriche.

<u>Le coordinate polari o trigonometriche</u> (ρ, θ) nel piano complesso. Dato $z = x + iy \in \mathcal{C}$ definiamo il modulo come

$$\rho \ = \ |z| := \sqrt{z\bar{z}} \ = \sqrt{x^2 + y^2}$$

Def. Argomento

Definiamo ora l'argomento θ di z. Dato $z=x+iy\in\mathcal{C}$, $z\neq0$ consideriamo il numero $\frac{z}{|z|}$

Si ha che

$$\left|\frac{z}{|z|}\right| = 1$$

Quindi esiste un angolo θ tale che

$$\frac{z}{|z|} = \cos\theta + i \operatorname{sen}\theta$$

$$z = |z|(\cos\theta + i \sin\theta)$$

Tale θ è detto argomento di z

Si indica con arg(z) l'insieme degli argomenti di z

Un elemento di questo insieme è detto anche determinazione dell'argomento di z. Si definisce infine l'argomento principale Arg(z) come l'unico elemento di arg(z) che appartiene all'intervallo $(-\pi,\pi]$.

Formula di De Moivre

$$z^n = |z|^n (\cos\theta + i \sin\theta) \quad \forall n \in \mathbb{N}$$

Formula radici

$$z = |z|^{\frac{1}{n}} \left[cos(\frac{\theta + 2k\pi}{n}) + i sen(\frac{\theta + 2k\pi}{n}) \right] \qquad k = 0, 1, \dots, n-1$$

Def. Intorno circolare

Si definisce inoltre interno circolare (o palla) di centro z_0 e raggio r > 0 l'insieme

$$Br(z_0) := \{ z \in C : |z - z_0| < r \}.$$

Def. Punto interno

z si dice <u>interno</u> ad A se $\exists r > 0 : Br(z) \subseteq A$

Def. Punto esterno

z si dice <u>esterno</u> ad A se $\exists r > 0$: $Br(z) \subseteq A^{C}$ (A^{C} complementare di A),

Def. Punto di frontiera

z si dice <u>punto di frontiera</u> di A se $\forall r > 0$ $Br(z) \cap A \neq \emptyset$ e $Br(z) \cap A^{C} \neq \emptyset$,

Def. Punto di accumulazione

z si dice <u>punto di accumulazione</u> di A se $\forall r > 0$ l'intersezione $Br(z) \cap A$ contiene infiniti punti.

Def. Insieme aperto e chiuso

Inoltre un insieme $A \subset C$ si dice <u>aperto</u> se ogni suo punto è interno ad A stesso e si dice <u>chiuso</u> se il suo complementare A^C è aperto.

 $C^* = C \setminus \{0\}$ C^* è aperto e la sua frontiera è $\{0\}$

$$C^{**} = C \setminus \{z = x + iy \in C : x \le 0, y = 0\}$$

C** è aperto e la sua frontiera è il semiasse negativo

 $\{z = x + iy \in C: x \le 0, y = 0\}$ corrisponde al semiasse negativo

Def. Limite successione di numeri complessi

Data una successione $(a_n)_{n\in\mathbb{N}}$ di numeri complessi diciamo che essa converge a $\lambda\in\mathcal{C}$,

$$\lim_{n\to+\infty}a_n=\lambda$$

Se

$$\forall \epsilon > 0 \,\exists \nu \in \mathbb{N} : \, \forall n \geq \nu \, |a_n - \lambda| < \epsilon.$$

Def. Insieme connesso

Un aperto $A \subset C$ si dice <u>connesso</u> se comunque si fissino due punti in A esiste una poligonale che li congiunge, tutta contenuta in A.

Def. Limite

Si dice che $\lambda \in C$ è il limite di f per z che tende a z_0 (punto di accumulazione di A, non necessariamente appartenente ad A), e si scrive

$$\lambda = \lim_{z \to z_0} f(z)$$

Se

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall z \in A \cap B_{\delta}(z_0) \setminus \{z_0\} \implies |f(z) - \lambda| < \epsilon.$$

Si dice che $\lambda \in C$ è il limite di f per |z| che tende a $+\infty$ e si scrive

$$\lambda = \lim_{|z| \to +\infty} f(z)$$

Se

$$\forall \epsilon > 0 \ \exists M > 0$$
: $\forall z \in A \ |z| \ge M \ \Rightarrow |f(z) - \lambda| < \epsilon$.

Def. Funzione continua variabile complessa

La funzione f si dice continua in $z_0 \in A$ se

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Cioè se

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall z \in A \cap B_{\delta}(z_0) \quad \Rightarrow |f(z) - f(z_0)| < \epsilon.$$

Infine la funzione f si dice continua in A se lo è in ogni punto $z_0 \in A$.

N.B.

 $Sia\ z = x + iy\ e\ w = f(z) = f(x,y) = u(x,y) + iv(x,y)$, dove $u,v: R\times R\to R$ sono dette *funzioni parte reale* e *parte immaginaria* di f

Le funzioni costanti, la funzione identità, la funzione modulo, coniugato e le funzioni (z^2) sono tutte continue in C

Le funzioni razionali fratte sono tutte continue in C privato degli zeri del polinomio al denominatore

Es.

$$f(z) = z^n$$
 è continua in C con $n \in N$

$$f(z) = \frac{1}{z^n}$$
è continua in C^*

Def. Funzione Arg(z)

La funzione $f: C^* \to R$ definita dà f(z) = Arg(z) è continua in C^{**}

Infatti, per tale funzione si ha v(x,y) = 0 e

$$\theta = arctg \frac{y}{x} \qquad \text{per } x \neq 0$$

$$u(x,y) = \begin{cases} arctg \frac{y}{x} & x > 0\\ \frac{\pi}{2} & x = 0, y > 0\\ -\frac{\pi}{2} & x = 0, y < 0\\ arctg \frac{y}{x} + \pi & x < 0, y > = 0\\ arctg \frac{y}{x} - \pi & x < 0, y < 0 \end{cases}$$

Che è discontinua su $\{z = x + iy \in C: x < 0, y = 0\}$

Quindi è continua tranne sul semiasse negativo

Def. Funzione derivabile variabile complessa

Sia $A \subseteq C$ un aperto connesso e sia $f: A \to C$. Per ogni $z \in A$ si definisce <u>rapporto incrementale</u> di f in z la funzione

$$z \mapsto \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Dove $\Delta z \in C^*$ ed è tale che $z + \Delta z \in A$

La funzione f si dice <u>derivabile in un punto</u> $z \in A$ se esiste in C il limite λ del rapporto incrementale per $\Delta z \mapsto 0$

$$\lambda = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Def. Derivata variabile complessa

Il numero complesso λ (se esiste) si chiama la derivata di f in z e si denota con f'(z) oppure Df(z).

Come in campo reale, la derivabilità implica la continuità

Def. Differenziabile variabile complessa

Sia
$$f(z) = f(x, y)$$
 dove $z = x + iy$.

La funzione f si dice <u>differenziabile</u> rispetto a (x, y) nel punto (x_0, y_0) se, per ogni coppia di incrementi $\Delta x \ e \ \Delta y$, si ha che

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(\sqrt{(\Delta x^2 + \Delta y^2)})$$

Dove $o(\sqrt{(\Delta x^2 + \Delta y^2)}) = |\Delta z|$ è un infinitesimo di ordine superiore alla distanza euclidea dei punti (x_0, y_0) e $(x_0 + \Delta x, y_0 + \Delta y)$

N.B

Condizione sufficiente perché f differenziabile rispetto (x, y) è che esistano le derivate parziali prime di f e siano continue in (x_0, y_0)

Def. Differenziale

L'applicazione

$$(\Delta x, \Delta y) \mapsto \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$

Si dice differenziale di f(x, y)

Condizioni di Cauchy-Riemann

La differenziabilità di f(x, y) rispetto a (x, y) NON equivale alla differenziabilità di f(z) rispetto a z.

Prop.

Sia $f: A \rightarrow C$ differenziabile rispetto a (x, y).

Allora f (z) è differenziabile (come funzione di variabile complessa) se e solo se si ha

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$
 (CR1)

Se vale l'ultima uguaglianza, allora

$$f'(x) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

Scrivendo f(x, y) = u(x, y) + iv(x, y) si ha

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{1}{i} \frac{\partial u}{\partial y} + \frac{i}{i} \frac{\partial v}{\partial y}$$

Ricordando che $\frac{1}{i} = -i$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ (CR2)

Le uguaglianze (CR2) (o equivalentemente (CR1)) sono dette condizioni di Cauchy-Riemann.

N.B.

$$grad u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y})$$
 e $grad v = (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$

Prodotto scalare è nullo $grad\ u * grad\ v = 0 \Rightarrow vettori\ gradienti\ sono\ ortogonali\ tra\ loro$

Def. Funzione olomorfa

Si dice che $f:A\to C$ è <u>olomorfa</u> in un aperto connesso A se per ogni $z_0\in A$ la funzione f è derivabile in z_0 .

Def. Funzione intera

Una funzione $f: C \to C$ olomorfa in tutto C si dice *intera*.

N.B.

Le funzioni (non costanti) che hanno valori solo puramente reali o solo puramente immaginari non sono olomorfe in alcun aperto del piano complesso, poiché non soddisfano le equazioni di Cauchy-Riemann.

Es.

$$f(z) = Imz$$

$$f(z) = Rez$$

$$f(z) = |z|$$

$$f(z) = Arg(z)$$
.

Def. Funzione esponenziale in campo complesso

Funzione olomorfa in tutto C tale che la sua restrizione all'asse reale coincida con la funzione $f(x) = e^x in R$.

$$f(z) = e^z = e^x(cosy + iseny)$$
 $\forall z = x + iy \in C$

Sia che

$$Arg e^z = Im z = y$$

Si ha che

$$|e^z| = e^{Rez} = e^x > 0$$
 che implica che $e^z \neq 0 \quad \forall z \in C$

N.B

Non si può parlare di positività di e^z poiché in C non c'è relazione d'ordine

Def. Forma esponenziale numeri complessi

Inoltre per ogni $y \in R$ si ha che $|e^{iy}| = e^0 = 1$ e vale la cosiddetta formula di Eulero

$$e^{iy} = \cos y + i \operatorname{sen} y \quad \forall y \in R$$

$$e^{iArg z} = \cos Arg z + i \operatorname{sen} Arg z \quad \forall z \in C$$

$$|z|e^{iArg z} = |z|(\cos Arg z + i \sin Arg z) = z \quad \forall z \in C$$

Quindi ogni numero complesso $z \in C$ si può scrivere nella forma esponenziale

$$z = \rho(\cos\theta + i \sin\theta) = \rho e^{i\theta}$$

N.B

Dunque i punti del tipo $\rho e^{i\theta}$ $\theta \in [0,2\pi]$, sono tutti e soli i punti della circonferenza $|z|=\rho$ di centro 0 e raggio ρ .

Proprietà esponenziale campo complesso

- 1. Per ogni z = x + iy con y = 0 si ha che $f(z) = e^x$, ossia è un'estensione della funzione esponenziale in campo reale.
- 2. La funzione e^z , è continua in tutto C poiché la sua parte reale $u(x,y)=e^x\cos y$ e la sua parte immaginaria $v(x,y)=e^x\sin y$ sono continue in R^2 .
- 3. La funzione e^z è olomorfa in tutto C poiché ammette le derivate parziali continue e vale (CR1).

Inoltre ammette come derivata se stessa, poiché dalla (CR1) si ha

$$f'(z) = \frac{\partial f}{\partial x} = e^x(\cos y + i \sin y) = e^z$$

4. La funzione e^z è periodica di periodo $2\pi i$, poiché per ogni $z \in C$ si ha $e^{z+2\pi i}=e^{x+i(y+2\pi)}=e^x(\cos(y+2\pi)+i\sin(y+2\pi))=e^z$ dove si è usata la periodicità del seno e del coseno

N.B.

Essendo periodica e^z NON si può invertire in tutto C

5. Per la funzione e^z vale la formula usuale $e^{z_1+z_2}=e^{z_1}e^{z_2}$

Condizioni di Cauchy-Riemann

Usando la forma esponenziale dei numeri complessi, le condizioni di Cauchy-Riemann in un aperto A non contenente l'origine si possono scrivere in modo equivalente in coordinate polari come segue:

$$\frac{\partial f}{\partial \rho} = \frac{1}{i\rho} \frac{\partial f}{\partial \theta}$$
 (CR3)

Infatti se f è derivabile

Allora

$$\frac{\partial f}{\partial \rho}(z) = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \rho} = \frac{\partial f}{\partial z} (\rho - e^{i\theta}) \frac{\partial}{\partial \rho} (\rho e^{i\theta}) = \frac{\partial f}{\partial z} (z) e^{i\theta}$$

$$\frac{\partial f}{\partial \theta}(z) = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} = \frac{\partial f}{\partial z} (\rho e^{i\theta}) \frac{\partial}{\partial \theta} (\rho e^{i\theta}) = \frac{\partial f}{\partial z}(z) \rho i e^{i\theta}$$

Inoltre di si ha

$$f'(z) = \frac{\partial f}{\partial \rho} \frac{1}{e^{i\theta}}$$

Da

$$\frac{\partial f}{\partial z}(z)e^{i\theta} = \frac{\partial f}{\partial \rho}(z) \Rightarrow \frac{\partial f}{\partial z}(z) = \frac{\partial f}{\partial \rho}(z)\frac{1}{e^{i\theta}} = f'(z)$$

Def. Logaritmo in campo complesso

Dato $z \in C^*$ si definisce log z nel seguente modo

Da

$$w = log z$$
 se e solo se $z = e^w$

A causa della periodicità dell'esponenziale ci sono infiniti valori per cui $z=e^w$ e dunque inifite determinazioni del logaritmo, si dice quindi che

log z è una funzione polidroma

Cerchiamo quindi $u \in v$ di w = log z

E si ha che

$$|z|(cos(arg(z)) + isen((arg(z))) = e^u(cos\ v + i\ sen\ v)$$

Da cui segue che

$$v = arg(z)$$

$$u = log|z|$$

N.B

Questo logaritmo è quello dei numeri reali poiché $|z| \in R$

Quindi

$$log z = log|z| + i arg(z)$$

Questa non è una funzione ma un insieme

Si vede ora chiaramente che $log\ z$ è una funzione a più valori i quali differiscono per multipli interi relativi di $2\pi i$ (poiché arg(z) è definita a meno di multipli di 2π).

Def. Determinazione principale Log z

Si pone

$$Log z := log|z| + i Arg(z) = log \rho + i \theta$$

Quindi

$$u = Re(Log(z)) = log|z|$$

$$v = Im(Log(z)) = Arg(z)$$

Proprietà logaritmo in campo complesso

- 1) La funzione Log z è definita in C^* Cioè per $z \neq 0$.
- 2) Per ogni z = x + iy, con y = 0 ex > 0 si ha che Log z = log x, ossia è un'estensione della funzione logaritmo in campo reale.
- 3) La funzione Log z è continua in C^{**} poiché la sua parte immaginaria Arg(z) è continua solo in C^{**} , cioè è discontinua sul semiasse reale negativo.
- 4) La funzione $Log\ z$ è olomorfa in C^{**} infatti non può essere derivabile nei suoi punti di discontinuità Cioè sul semiasse reale negativo

Altrove è olomorfa poiché ammette le derivate parziali continue e vale la condizione di Cauchy-Riemann in coordinate polari

$$\frac{\partial f}{\partial \rho} = \frac{1}{i\rho} \frac{\partial f}{\partial \theta}$$
 (CR3)

Infatti se
$$f(z) = Log z$$

Essendo
$$f(\rho, \theta) = log(\rho) + i \theta$$

Si ha che

$$\frac{\partial f}{\partial \rho} = \frac{1}{\rho}$$

$$\frac{1}{i\rho}\frac{\partial f}{\partial \theta} = \frac{1}{i\rho}i = \frac{1}{\rho}$$

$$Dim che f'(z) = \frac{1}{z}$$

Scrivo z come

$$z=
ho e^{i heta}$$
 e si ha

$$\frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial \rho} = f'(z) \frac{\partial z}{\partial \rho} = f'(z) e^{i\theta}$$

Segue

$$f'(z) = \frac{1}{e^{i\theta}} \frac{\partial f}{\partial \rho}$$

$$f'(z) = \frac{1}{e^{i\theta}} \frac{\partial}{\partial \rho} (\log \rho + i\theta) = \frac{1}{e^{i\theta}} \frac{1}{\rho} = \frac{1}{z}$$

N.B

Infine si osservi che per la funzione Log z non valgono le usuali formule del prodotto e della potenza del logaritmo reale.

Es.

$$Log(i^3) = Log(-i) = -i\frac{\pi}{2}$$

$$3Log(i) = i\frac{\pi}{2}$$

Def. Funzione potenza in campo complesso

Si tratta di definire una funzione olomorfa su un aperto contenente la semiretta reale positiva, la cui restrizione a tale semiretta coincida con la funzione potenza in campo reale.

Per ogni coppia $\beta \in C$ e $z \in C^*$ (ossia $z \neq 0$) si definisce

$$\underline{z}^{\beta} \coloneqq e^{\beta \log z}$$

In generale ci sono infinite determinazione (come per il logaritmo)

La determinazione principale è

$$z^{\beta} := e^{\beta \log z}$$

E si chiama potenza principale

Tale funzione è definita in C^* ed è continua ed olomorfa in C^{**}

Casi particolari funzione potenza campo complesso

1) Sia $\beta \in R_+$

In tal caso, la potenza (sia la sua determinazione principale, che tutte le altre) è definita anche in $z\,=\,0$ e si ha

$$0^{\beta} = 0$$

Infatti

$$\lim_{z \to 0} z^{\beta} = \lim_{z \to 0} e^{\beta(\log|z| + i \operatorname{Arg}(z))} = \lim_{z \to 0} e^{i\beta \operatorname{Arg}(z)} \lim_{z \to 0} e^{\beta \log|z|} = 0$$

Poiché

$$\lim_{z \to 0} e^{\beta \log|z|} = 0$$
$$|e^{i\beta Arg(z))}| = 1$$

Quindi in questo caso

 z^{β} è definita in tutto C e continua in $C^{**} \cup \{0\}$

2) Sia $\beta \in N$: $\beta = n$

In tal caso, c'è una sola determinazione: infatti a causa della periodicità dell'esponenziale (complesso) di periodo $2\pi i$ si ha

$$z^{\beta} = e^{n \log z} = e^{n(\log|z| + i(Arg(z) + 2k\pi))} = e^{n(\log|z| + iArg(z))} = e^{nLogz}$$

Inoltre z^{β} coincide con l'usuale potenza

$$z^n = z * z * * * * z$$
 n volte

poiché

$$z^{\beta} = e^{nLogz} = e^{nlog|z| + i n \operatorname{Arg}(z)} = e^{\log|z|^n + i n \operatorname{Arg}(z)}$$
$$= |z|^n (\cos(n\operatorname{Arg}(z)) + i \operatorname{sen}(n\operatorname{Arg}(z)) = z^n$$

Si noti che in tal caso z^{β} è definita, continua ed olomorfa in tutto C. Analogamente, nel caso $\beta \in Z$, $\beta = -n$, z^{β} è definita, continua ed olomorfa in tutto C^*

3) Sia $\beta \in Q$

$$\beta = \frac{1}{n} \operatorname{con} n \in N^* \coloneqq N\{0\}$$

In questo caso ci sono n determinazioni, quelle della radice n-esima di z Infatti per ogni $k \in \mathbb{Z}$ si ha

$$\begin{split} z^{\beta} &= e^{\frac{1}{n}log\,z} = e^{\frac{1}{n}(log\,|z| + i\,(Arg(z) + 2k\pi))} = e^{log\,|z|^{\frac{1}{n}}} e^{i\frac{(Arg(z) + 2k\pi)}{n}} \\ &= |z|^{\frac{1}{n}}(cos(\frac{(Arg(z) + 2k\pi)}{n}) + i\,sen(\frac{(Arg(z) + 2k\pi)}{n})) \end{split}$$

ma solo $k=0,1,\ldots,n-1$ danno luogo a valori distinti (infatti a causa della periodicità del seno e del coseno di periodo 2π per k=n si ottiene lo stesso valore che si ottiene per k=0 e così via).

Quindi per $k=0,1,\ldots,n-1$ la formula precedente ridà gli n valori della radice n-esima di z.

In questo caso ($\beta = \frac{1}{n}$) la potenza \mathbf{z}^{β} (con tutte le sue determinazioni) è definita e continua in C ed è olomorfa in C^{**} .

N.B.

Per ogni $z \in C^{**}$ e per ogni $\beta \in C$

$$\frac{d}{dz}z^{\beta} = \frac{d}{dz}e^{\beta logz} = e^{\beta log z} \frac{\beta}{z} = z^{\beta} \frac{\beta}{z} = \beta z^{\beta-1}$$

Def. Funzioni circolari ed iperboliche nel campo complesso

Come prima, si tratta di definire delle funzioni olomorfe su un aperto contenente la semiretta reale positiva, la cui restrizione a tale semiretta coincida con le analoghe funzioni in R

Sia
$$z = ix \operatorname{con} x \in R$$

Allora

$$e^{ix} = \cos x + i \sin x$$

$$e^{-ix} = \cos x - i \sin x$$

Si ha che per

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$sen x = \frac{e^{ix} - e^{-ix}}{2i}$$

Quindi nel campo complesso

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$sen z := \frac{e^{iz} - e^{-iz}}{2i}$$

Dalla $2\pi i-periodicit$ à della funzione esponenziale si deduce la $2\pi-periodicit$ à delle funzioni seno e coseno.

Si può dimostrare che le funzioni circolari non hanno altri zeri che quelli della loro restrizione all'asse dei numeri reali.

Dim.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{2iz} + 1}{2e^{iz}}$$

Supponiamo che $\cos z = 0$

Non mi occupo del denominatore perché tanto l'esponenziale non si annulla mai

$$e^{2iz} = -1 \Rightarrow e^{2i(x+iy)} = -1 \Rightarrow e^{-2y} e^{2ix} = -1 \Rightarrow e^{-2y} (\cos(2x) + i\sin(2x)) = -1$$

È un'identità tra due numeri complessi e due numeri complessi sono uguali se la parte reale è uguale alla parte reale corrispondente

E la parte complessa è uguale alla parte complessa corrispondente

$$\begin{cases} e^{-2y} \left(\cos \left(2x \right) \right) = -1 \\ e^{-2y} \left(\sin \left(2x \right) \right) = 0 \end{cases} \Rightarrow \begin{cases} e^{-2y} \left(\cos \left(2x \right) \right) = -1 \\ \sin \left(2x \right) = 0 \end{cases} \Rightarrow \begin{cases} e^{-2y} \left(\cos \left(k\pi \right) \right) = -1 \\ x = k\frac{\pi}{2} \end{cases}$$
$$\Rightarrow \begin{cases} e^{-2y} \left(-1 \right)^k = -1 \\ x = k\frac{\pi}{2} \end{cases}$$

$$\begin{cases} k \text{ dispari} \\ y = 0 \\ x = k\frac{\pi}{2} \end{cases}$$

Quindi ho verificato la condizione

$$cosh z := \frac{e^z + e^{-z}}{2}$$

$$senh z := \frac{e^z - e^{-z}}{2}$$

Tutte queste funzioni sono intere(poiché l'esponenziale lo è)

Cioè definite ed olomorfe in tutto C

N.B

In campo complesso non è vero che seno e coseno sono funzioni limitate.

Infatti si noti che, considerata la restrizione della funzione $\cos z$ all'asse immaginario (cioè z = iy, $y \in R$), si ha

$$\lim_{y \to +\infty} \cos(iy) = \lim_{y \to +\infty} \frac{e^{-y} + e^{y}}{2} = +\infty$$

Def. Serie di potenze in campo complesso di punto iniziale $oldsymbol{z_0}$

Data una successione a_n di numeri complessi e fissato $z_0 \in C$ si definisce serie di potenze in campo complesso di punto iniziale z_0 una serie del tipo

$$\sum_{n \ge -0} a_n (z - z_0)^n$$

I numeri complessi a_n sono detti coefficienti della serie

Se i coefficienti a_n sono definitivamente nulli (cioè esiste $n_0 \in N$ tale che $a_n = 0$ per ogni $n > n_0$) la serie si riduce al polinomio

$$\sum_{n=0}^{n_0} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + \dots + a_{n_0} (z - z_0)^{n_0}$$

N.B.

Si osservi che in $z=z_0$ la serie converge e la sua somma è a_0 .

Ricordiamo che per <u>le serie di potenze in campo reale</u>, <u>l'insieme di convergenza è un intervallo di centro il punto iniziale e raggio R.</u>

Nel caso di <u>serie di potenze in campo complesso</u>, l'insieme di convergenza è una palla di centro z_0 e raggio R.

Def. Raggio di convergenza serie complessa

Tale R si dice raggio di convergenza della serie e si calcola in maniera analoga al caso reale. Inoltre

- 1) Se R = 0La serie *converge* solo per z = 0
- 2) Se $0 < R < +\infty$ La serie <u>converge(assolutamente</u>) per |z| < R<u>Converge totalmente</u> per |z| <= r, per ogni r tale che 0 < r < RNon converge per |z| > R
- 3) Se $R = +\infty$ la serie <u>converge(assolutamente)</u> in tutto C e <u>totalmente</u> per $|z| \le r$, per ogni r > 0

Th. Olomorfia somma serie di potenze in campo complesso

La somma

$$S(z) = \sum_{n>=0} a_n (z - z_0)^n$$

Di una serie di potenze è una funzione olomorfa dove è definita

(cioè nel suo cerchio di convergenza $B_R(z_0) = \{z \in C : |z - z_0| < R\}$)

E per ogni $z \in B_R(z_0)$ si ha

$$S'(z) = \sum_{n>=1} na_n (z - z_0)^{n-1}$$

E per ogni $k \in N$

$$S^{(k)}(z) = \sum_{n>=k} n(n-1)...(n-k+1)a_n(z-z_0)^{n-k}$$

Ponendo $z = z_0$ si ha

$$S^{(k)}(z_0) = k!\, a_k$$

$$a_k = \frac{S^{(k)}(z_0)}{k!}$$

Th. Unicità sviluppo in serie di potenze in campo complesso

Se

$$S(z) = \sum_{n > 0} a_n (z - z_0)^n$$

È la somma di una serie convergente definita in $B_R(z_0)$

Allora necessariamente si ha che

$$a_n = \frac{S^{(n)}(z_0)}{n!}(z - z_0)^n \quad |z - z_0| < R$$

Cioè la serie di potenze coincide con la serie di Taylor associata alla sua funzione somma S(z)

Sviluppi Mc Laurin campo complesso

1)
$$\frac{1}{1-z} = \sum_{n>=0} z^n$$
 $|z| < 1$

2)
$$e^z = \sum_{n>=0} \frac{z^n}{n!}$$
 $|z| \in C$

3)
$$sen z = \sum_{n>=0} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
 $|z| \in C$

4)
$$\cos z = \sum_{n>=0} (-1)^n \frac{z^{2n}}{(2n)!}$$
 $|z| \in C$

5)
$$senh z = \sum_{n>=0} \frac{z^{2n+1}}{(2n+1)!}$$
 $|z| \in C$

6)
$$\cosh z = \sum_{n>=0} \frac{z^{2n}}{(2n)!}$$
 $|z| \in C$

7)
$$arct z = \sum_{n>=0} (-1)^n \frac{z^{n+1}}{2n+1}$$
 $|z| < 1$

8)
$$Log(z+1) = \sum_{n>=0} (-1)^n \frac{z^{n+1}}{n+1}$$
 $|z| < 1$

Def. Serie bilatera

Sapendo che

$$e^{inx} = \cos nx + i \sin nx$$

Scrivo una serie trigonometrica

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$$

Nella forma

$$\sum_{n=-\infty}^{+\infty} \gamma_n e^{inx} \quad x \in R$$

Che chiamiamo serie bilatera

N.B.

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2}$$

$$sen nx = \frac{e^{inx} - e^{-inx}}{2i}$$

da cui si ha

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx) = \gamma_0 + \sum_{n=1}^{+\infty} (\gamma_n e^{inx} + \gamma_{-n} e^{-inx}) = \sum_{n=-\infty}^{+\infty} \gamma_n e^{inx}$$

Dove

$$\gamma_0 = \frac{a_0}{2}$$

$$\gamma_n = \frac{a_n}{2} + \frac{b_n}{2i} = \frac{a_n - ib_n}{2}$$

$$\gamma_{-n} = \frac{a_n}{2} - \frac{b_n}{2i} = \frac{a_n + ib_n}{2}$$

$$a_n = \gamma_n + \gamma_{-n}$$

$$b_n=i(\gamma_n-\gamma_{-n})$$

Def. Serie di Fourier in forma esponenziale in campo complesso

Supponiamo che la serie bilatera converga assolutamente (basta supporre che le due serie numeriche siano convergenti)

$$\sum_{n=0}^{+\infty} |\gamma_n|$$

$$\sum_{n=-\infty}^{-1} |\gamma_n|$$

Sia f(x) la sua somma (che è $2\pi - periodica$)

$$f(x) = \sum_{n=-\infty}^{+\infty} \gamma_n e^{inx}$$

Allora necessariamente, dalla formula nota per i coefficienti di Fourier e dalla forma γ_n

Si ha per ogni $n \in \mathbb{Z}$

$$\gamma_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx$$

I coefficienti γ_n così ottenuti si dicono coefficienti di Fourier di f $\,$ e la serie

$$\sum_{n=-\infty}^{+\infty} \gamma_n e^{inx} \qquad x \in R$$

Si dice serie di Fourier in forma esponenziale

N.B.

 e^{inx} è un sistema ortogonale

Infatti

$$\int_{-\pi}^{\pi} e^{imx} e^{-inx} dx$$

È nullo se $n \neq m$ ed è uguale a 2π se n = m

Def. Curve regolari

Diremo che γ è una $\underline{curva\ regolare}$ in C

- i) Se $\gamma = \gamma_1 + i\gamma_2$: $[a, b] \rightarrow C$ è una funzione di Classe C^1 (derivabile con derivata continua)
- ii) $\gamma'(t) := \gamma'_1(t) + i\gamma'_2(t) \neq 0 \quad per \quad ogni \quad t \in [a, b]$

<u>L'immagine di $\gamma([a,b])$ di γ </u> in C

$$\gamma([a,b]) = \{z \in C : z = \gamma(t), t \in [a,b]\}$$

Si dice sostegno (o traccia) di γ

N.B.

 $\gamma(a)$ si dice punto iniziale di γ

 $\gamma(b)$ si dice punto finale di γ

La funzione γ è detta anche <u>legge oraria</u> con cui viene percorso il sostegno/traccia $\gamma([a,b])$

- Se $\gamma(a) = \gamma(b)$ la curva si dice <u>chiusa</u>
- Se γ , ristretta ad [a,b), è <u>iniettiva</u> Cioè $t_1 \neq t_2 \in [a,b) \Rightarrow \gamma(t_1) \neq \gamma(t_2)$ Allora γ si dice **semplice**
- Se γ è <u>semplice e chiusa</u>, viene detta <u>circuito</u>
- Si definisce lunghezza di $\gamma = \gamma_1 + i\gamma_2$ nel seguente modo:

$$l(\gamma) := \int_{a}^{b} |\gamma'(t)| dt = \int_{a}^{b} ({\gamma'}_{1}(t)^{2} + {\gamma'}_{2}(t)^{2})^{\frac{1}{2}} dt$$

Def. Cambiamento di parametro

Data $\gamma: [a, b] \rightarrow C$ una <u>curva regolare</u>

E data ϕ : $[\alpha, \beta] \rightarrow [a, b]$ di classe C^1 su [a, b]

Tale che

$$\phi(\alpha) = a$$

$$\phi(\beta) = b$$

 $E φ'(τ) > 0 \ per \ ogni \ τ ∈ [α, β]$ (tale φ viene detta $\underline{cambiamento} \ di \ parametro \ che \ conserva$ $\underline{l'orientamento}$)

La nuova curva definita da

$$\gamma_1 \coloneqq \gamma \cdot \phi : \tau \mapsto \gamma (\phi(\tau))$$

È una curva regolare che ha lo stesso sostegno di y e lo stesso orientamento

N.B.

Tutte le curve così ottenute formano una classe di equivalenza: esse hanno in comune lo **stesso sostegno**, ma è **diversa** la **legge oraria** con cui questo viene percorso.

Inoltre si possono considerare dei cambiamenti di parametro che cambiano l'orientamento:

Es.

Data $\gamma: [a,b] \to C$ una curva regolare, la curva $\gamma^-[a,b] \to C$ definita da $\gamma^-(t) = \gamma(b+(a-t))$ è ancora una curva regolare, ha la **stessa traccia** di γ , ma è percorsa in senso opposto e dunque scambia i punti estremi, quindi **diverso orientamento**

Def. Concatenamento di curve

Date due curve regolari $\gamma_1, \gamma_2 : [0,1] \to \mathcal{C}$ tale che $\gamma_1(1) = \gamma_2(0)$

Si possono concatenare le due curve

Definendo

$$\gamma(t) = \begin{cases} \gamma_1(2t) & 0 \le t \le \frac{1}{2} \\ \gamma_2(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

Si ha

$$\gamma(0) = \gamma_1(0)$$

$$\gamma(1) = \gamma_2(1)$$

 γ è continua ma in generale non è C^1

La concatenazione analoga di più segmenti dà una poligonale(concatenazione di più segmenti)

N.B.

Posso avere più possibilità di concatenare due curve , cioè ho la libertà sulla frazione di tempo ma devo sempre garantire che il <u>punto finale</u> di γ_1 <u>coincida</u> con il <u>punto iniziale</u> di γ_2

La concatenazione non è ottimale perché la curva non è regolare

Def. Curva regolare a tratti

Una curva γ si dice regolare a tratti se è ottenuta concatenando due o più curve regolari

Def. Integrale curvilineo

Dati $A \subseteq C$ un aperto connesso, $f: A \to C$ una funzione continua e $\gamma: [a,b] \to C$ una curva regolare (o regolare a tratti)

la cui traccia $\gamma([a,b]) \subseteq A$, si definisce l' integrale di f lungo γ nel seguente modo:

$$\int_{\gamma} f = \int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

N.B.

La funzione $t \mapsto f(\gamma(t))\gamma'(t)$ è una funzione di variabile reale a valori complessi

Cioè il parametro è reale ma il risultato è un numero complesso poiché $f:A\to\mathcal{C}$

Proprietà integrale curvilineo

1) Linearità:

$$\int_{\gamma} (c_1 f_1 + c_2 f_2) = c_1 \int_{\gamma} f_1 + c_2 \int_{\gamma} f_2$$

2) Indipendenza dal cambiamento di parametro (che conserva l'orientamento)

$$\int_{\gamma} f := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt = \int_{\alpha}^{\beta} f(\gamma(\phi(\tau))) (\gamma \circ \phi)'(\tau) d\tau$$

- 3) Cambio di seno nel passaggio a $\,\gamma^-\colon\int_{\gamma}f=-\int_{\gamma^-}f$
- 4) Additività rispetto alla curva

$$\int_{\gamma_1} f + \int_{\gamma_2} f = \int_{\gamma_1 \gamma_2} f$$

Dove $\gamma_1 \gamma_2$ denota la concatenazione di γ_1 e di γ_2

5) Se
$$M = \max_{t \in [a,b]} \left| \int_{\gamma} f(\gamma(t)) \right|$$

Allora $\left| \int_{\gamma} f \right| \le M l(\gamma)$

Th. Passaggio al limite

Sia f_n una successione di funzioni continue definite in A.

Supponiamo che $f_n \rightarrow f$ uniformemente in A

Allora

$$\int_{\gamma} f(z)dz = \lim_{n \to \infty} \int_{\gamma} f_n(z)dz$$

Def. Primitiva in campo complesso

 $Sia\ A\subseteq C$ un aperto connesso ed $f:A\to C$ una <u>funzione continua</u>.

Si dice che $F: A \rightarrow C$ è una primitiva di f <u>se è derivabile in A</u> e

se
$$F'(z) = f(z)$$
 per ogni $z \in A$.

Come in campo reale, se ${\sf F}$ è una primitiva di f

Allora per ogni $c \in R$ la funzione F + c è una primitiva di f.

La conoscenza di una primitiva permette di calcolare immediatamente gli integrali curvilinei; infatti vale un analogo del teorema di Torricelli-Barrow.

Sia A ⊆C un aperto connesso,

sia $\gamma: [a,b] \to C$ curva regolare (o regolare a tratti) la cui traccia $\gamma([a,b]) \subseteq A$

Sia $f:A\to C$ una <u>funzione continua</u> e $F:A\to C$ la sua primitiva

Allora

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

Dim.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} (F \cdot \gamma)'(t)dt = F(\gamma(b)) - F(\gamma(a))$$

N.B.

Dal teorema segue che se f ammette una primitiva

allora l'integrale <u>dipende</u> solo <u>dagli estremi</u> $\gamma(a)$ e $\gamma(b)$ e non dalla <u>curva che li connette</u>.

• Se γ è chiusa Allora $\int_{\gamma} f(z)dz = 0$

Th. Esistenza di una primitiva

Sia $A \subseteq C$ un aperto connesso e sia $f : A \rightarrow C$ una funzione continua.

Allora sono equivalenti le seguenti proposizioni:

- a) f ammette una primitiva in A;
- b) per <u>ogni curva regolare a tratti</u> $\gamma:[a,b]\to C$ la cui traccia $\gamma([a,b])\subseteq A$, l'integrale di f su γ dipende solo dagli estremi di γ ;
- c) per <u>ogni curva chiusa e regolare a tratti</u> $\gamma:[a,b]\to C$ la cui traccia $\gamma([a,b])\subseteq A$, l'integrale di f su γ è nullo.
- a) implica b) visto nel teorema di Torricelli-Barrow

e che b) implica c) segue dal teorema di Torricelli-Barrow se γ è chiusa

Dim c) implica b)

Siano γ_1 e γ_2 due <u>curve regolari a tratti</u> tali che $\gamma_1(a) = \gamma_2(a)$ e $\gamma_1(b) = \gamma_2(b)$.

Sia $\gamma = \gamma_1 \gamma_2^-$ la <u>concatenazione</u> di γ_1 con γ_2^- che risulta essere una <u>curva chiusa</u>.

 γ_2^- curva percorsa la contrario

Allora dalla c) di ha

$$0 = \int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz$$

Da cui segue la b)

Dim. b) implica a)

Sia $z_0 \in A$ un punto fissato, sia $z \in C$ e sia γ una poligonale congiungente z_0 con z.

L'integrale di f su tale poligonale <u>non</u> dipende dal cammino, ma solo da z_0 e da z; essendo z_0 fissato, tale integrale dipende solo da z.

Sia

$$F(z) \coloneqq \int_{z_0}^{z} f(s) ds$$

Dove l'ultimo integrale denota l'integrale di f lungo la poligonale.

N.B.

La buona definizione di F(z) è data da b) perché dice che l'integrale non dipende dalla poligonale scelto ma solo dal mio punto finale

Dobbiamo dimostrare che F'(z) = f(z) per ogni $z \in A$.

Fissato $z \in A$, sia $h \in C$ tale che $z + h \in A$

Allora

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \left[\int_{z_0}^{z+h} f(s) ds - \int_{z_0}^{z} f(s) ds \right] = \frac{1}{h} \int_{z}^{z+h} f(s) ds$$

Dove l'ultimo integrale si intende esteso al segmento [z, z + h]

D'altra parte, poiché la funzione g(z) = 1 ammette la primitiva G(z) = z, si ha che

$$\int_{z}^{z+h} ds = (z+h) - z = h$$

$$\frac{1}{h} \int_{z}^{z+h} g(z) ds = g(z) \text{ quindi } f(z)$$

$$\frac{F(z+h) - F(z)}{h} - f(z) = \frac{1}{h} \int_{z}^{z+h} (f(s) - f(z)) ds$$

Inoltre, dalla continuità di f in z, per ogni $\epsilon > 0$ esiste $\delta_{\epsilon} > 0$ tale che

$$|f(s)-f(z)|<\epsilon\quad\text{per ogni }|h|<\delta_\epsilon$$

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| < \frac{1}{|h|} \epsilon |h| = \epsilon$$

Def. Aperto semplicemente connesso

Un aperto connesso $A \subseteq C$ si dice <u>semplicemente connesso</u>

se per ogni curva γ <u>semplice, chiusa e regolare a tratti contenuta in A</u>

(significa che la traccia $\gamma([a,b]) \subseteq A$)

l'aperto limitato che ha γ come frontiera è interamente contenuto in A.

Es.

Intorni circolari e semipiani

Def. Insieme convesso

Un insieme A si dice convesso

Se comunque fisso due punti, il segmento che li congiunge è interamente contenuto in A.

Se A è convesso, allora A è semplicemente connesso

Il viceversa non vale

Es.

 C^{**} è semplicemente connesso, ma non è convesso.

 C^* è un aperto connesso, ma non semplicemente connesso e lo stesso vale per ogni corona circolare.

Def. Forma differenziale lineare

Se X(x,y) e Y(x,y) sono funzioni a valori reali definite e continue in $A \subseteq R^2$

si chiama *forma differenziale lineare* in A l'espressione

$$X(x,y)dx + Y(x,y)dy$$

prodotto scalare tra il campo vettoriale (X(x,y),Y(x,y)) e il vettore spostamento (dx,dy) (le due funzioni X e Y sono detti coefficienti della forma).

La forma differenziale si dice <u>regolare</u> se i coefficienti X e Y sono di <u>classe C^1 </u>.

N.B.

Se γ è una curva regolare di R^2 , contenuta in A, di equazioni $x=x(t), y=y(t), a\leq t\leq b$, si definisce l'integrale della forma differenziale nel seguente modo

$$\int_{\gamma} X(x,y)dx + Y(x,y)dy = \int_{\gamma} \big[X\big(x(t),y(t)\big)x'(t) + Y\big(x(t),y(t)\big)y'(t) \big]dt$$

Th. Teorema della divergenza (o formula di Gauss-Green in R^2

Sia $A \subseteq R^2$ un <u>aperto connesso</u>.

Sia γ un <u>circuito regolare a tratti</u>, contenuto in A e tale che

(I) γ è la frontiera di un aperto D interamente contenuto in A

Allora , date due funzioni $X,Y:A\to R$ di classe C^1 su A (cioè aventi le derivate parziali prime continue) vale la seguente formula

$$\int_{Y} X dx + Y dy = \iint_{D} \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) dx dy$$

- 1) L'ipotesi (I) è verificata subito per ogni curva γ , se A è semplicemente connesso.
- 2) Si assume che l'orientamento della curva γ (da cui dipende il primo membro) sia quello antiorario, cioè in modo tale che un osservatore che la percorri lasci i punti interni alla sua sinistra.
- 3) La formula vale anche se γ è l'unione di due curve, come nel caso della frontiera di una corona circolare.

Th. Integrale di Cauchy

Sia $A \subseteq C$ un <u>aperto connesso</u> e sia $f : A \rightarrow C$ una <u>funzione olomorfa</u>.

Allora per ogni γ *circuito regolare a tratti*, contenuto in A e tale che:

(I) γ è la frontiera di un aperto D interamente contenuto in A Si ha che

$$\int_{\gamma} f(z)dz = 0$$

Dim.

Se scriviamo la curva γ e la funzione f come

$$y(t) = x(t) + iy(t)$$

$$f(z) = f(x, y) = u(x, y) + iv(x, y)$$

Allora

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} [u(x(t),y(t)) + iv(x(t),y(t))][x'(t) + iy'(t)] dt$$

$$= \int_{a}^{b} [(ux' - vy') + i(vx' + uy')] dt = \int_{\gamma} udx - vdy + i \int_{\gamma} vdx + udy$$

Dove udx - vdy e vdx + udy sono delle forme differenziali a coefficienti reali in R^2

Dal Th. Della divergenza

$$\int_{\gamma} f(z)dz = \int_{\gamma} udx - vdy + i \int_{\gamma} vdx + udy = -\iint_{D} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) dxdy + i \iint_{D} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) dxdy$$

$$= 0$$

Poiché dall'olomorfia di f e dalle condizioni di Cauchy-Riemann si ha

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Corollario (dato dal teorema integrale di Cauchy e dall'implicazione c) -> a)

Ogni funzione $f:A\to C$ <u>olomorfa</u> in A ammette una primitiva in ogni aperto $A'\subseteq A$ <u>semplicemente connesso.</u>

In particolare, se A stesso è semplicemente connesso, allora f ammette primitiva in A.

N.B.

Notiamo che quindi sotto le ipotesi del corollario, "f ammette localmente una primitiva", cioè per ogni punto $z_0 \in A$ esiste un intorno $Br(z_0) \subset A$ in cui f ammette una primitiva.

Es.

 $f(z) = \frac{1}{z}$ è olomorfa in C*ma non ammette primitiva in C*, va d'accordo con il corollario poiché C* non è semplicemente connesse

Al contrario in C** è dotata di primitiva, poiché C** è semplicemente connesso

Osservazione 1

Il fatto che $\int_{\gamma_r} \frac{1}{z} dz = 2\pi i$ non dipenda da r, non è un caso, ma è un fatto generale:

l'integrale di una funzione olomorfa su un circuito non varia se tale circuito viene deformato senza uscire dall'aperto di olomorfia.

Prop.

Se γ_1,γ_2 sono due <u>circuiti regolari a tratti</u> con γ_2 interno a γ_1

Se f è $\underline{\mathit{olomorfa}}$ nel dominio D compreso tra γ_1 e γ_2

Allora

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

Tale proposizione è una immediata conseguenza del teorema integrale di Cauchy applicato alla curva $\gamma=\gamma_1\cup\gamma_2^-$

Nel caso particolare in cui f sia olomorfa in tutto il dominio interno a γ_1 , si ha che i due integrali sono uguali banalmente, essendo entrambi uguali a 0.

Formula integrale di Cauchy

Sia $A \subseteq C$ un <u>aperto connesso</u> e sia $f : A \rightarrow C$ una <u>funzione olomorfa</u>.

Sia γ un *circuito regolare a tratti*, contenuto in A e tale che:

(I) $\gamma \stackrel{.}{e} \underline{la\ frontiera}$ di un aperto D interamente contenuto in A.

Allora per ogni $z_0 \in D$ vale la seguente formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f(z)}{z - z_0} dz$$

Si ha

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Osservazione 2

Il risultato afferma che, una volta che si conosce in valore di f su γ ,

allora si conosce il valore di f in tutti i punti del suo interno D.

Questo valore è indipendente dalla curva γ (grazie all'osservazione 1).

Si osservi inoltre che $\frac{f(z)}{z-z_0}$ può non essere olomorfa in A.

Def. Funzioni analitiche

Sia $A \subseteq C$ un *aperto connesso* e ∂A la sua frontiera

Una funzione $f: A \rightarrow C$ si dice <u>analitica</u>

se per ogni $z_0 \in A$ essa è <u>sviluppabile in serie di Taylor</u> nell'intorno $Br(z_0) \subseteq A$ di z_0

 $con r = dist(z_0, \partial A)$, cioè

$$f(z) = \sum_{n>0} c_n (z - z_0)^n = \sum_{n>0} \frac{f^{(n)} z_0}{n!} (z - z_0)^n \qquad \forall z: |z - z_0| < r$$

N.B

Se f è analitica, allora f è olomorfa nel cerchio di convergenza della serie. Vale anche il viceversa

Sia $A \subseteq C$ un <u>aperto connesso</u> e sia $f : A \rightarrow C$ una <u>funzione olomorfa</u>.

Allora per ogni $z_0 \in A$, posto $r = dist(z_0, \partial A)$

$$f(z) = \sum_{n>0} c_n (z - z_0)^n$$

Per ogni $z \in Br(z_0)$ ed inoltre

$$c_n = \frac{f^{(n)}z_0}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Dove γ è una circonferenza di centro z_0 e raggio minore di r

Formula integrale Cauchy per le derivate

$$\int_{V} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)} z_0$$

N.B.

- n = 0 è esattamente la formula integrale di Cauchy.
- n > 0 si ottiene dalla formula di Cauchy derivando n volte rispetto ad z₀ sotto il segno di integrale.
- Se A = C si prende $r = \infty$. Il risultato afferma che basta che esista una derivata perché esistano tutte le successive. In tal caso si dice che f è $C^{\infty}(A)$, cioè infinitamente derivabile.

Inoltre f derivabile implica che f è localmente sviluppabile in serie di Taylor.

Tutto ciò non accade in campo reale.

Importante:

In campo reale

f analitica ⇒ derivabile

ma NON vale il viceversa

Es.

$$f(x) = x|x| = \begin{cases} x^2 & x > 0\\ -x^2 & x < 0 \end{cases}$$

Questa funzione è \mathcal{C}^1 ma non \mathcal{C}^2

In campo complesso

f olomorfa ⇔ f analitica

In C avere una derivata è molto più forte di avere una derivata nei reali

Th.

Sia $f = u + iv : C \rightarrow C$ una <u>funzione analitica</u>

Allora u(x,y) e v(x,y) (viste come funzioni delle due variabili reali x e y) sono <u>funzioni armoniche</u>

Cioè valgono le seguenti equazioni di Laplace

$$\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\Delta v \coloneqq \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Operatore Δ è detto Laplaciano

Dim.

Essendo f analitica (e quindi olomorfa), dalle condizioni di Cauchy-Riemann si ha

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Derivando e usando il teorema di inversione dell'ordine di derivazione (Teorema di Schwartz) si ha

$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$

Th. Morera

Sia $f: A \to C$ una <u>funzione continua</u> nell'aperto connesso $A \in C$.

Se <u>l'integrale</u> di f su ogni <u>curva semplice e chiusa</u> in A è <u>nullo</u>,

allora f è <u>analitica</u> in A.

Dim.

Sappiamo che se l'integrale di f su ogni curva semplice e chiusa in A è nullo, allora f ammette una primitiva.

Quindi f è la derivata di una funzione F olomorfa e dunque analitica.

Ne segue che anche f è analitica (essendo la derivata di una analitica).

Def. Zeri funzione analitica

Sia $f: A \to C$ una <u>funzione continua</u> nell'aperto connesso $A \in C$.

Un punto $a \in A$ si dice uno zero di f se f(a) = 0.

Se a è uno zero di f e

$$f(z) = \sum_{n \ge 0} c_n (z - a)^n = \sum_{n \ge 0} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

È lo sviluppo di Taylor in un intorno di a

Allora
$$c_0 = f(a) = 0$$

N.B.

Diremo che a è uno zero di ordine n se $f^{(n)}(a)=0$ per ogni $0 \le k \le n-1$ e $f^{(n)}(a) \ne 0$

Es.

la funzione $f(z) = (z - 1)^3$ ha uno zero di ordine 3 in a = 1;

Th.

Sia $f:A\to \mathcal{C}$ una <u>funzione analitica</u> nell'aperto connesso $A\in\mathcal{C}$.

Sono equivalenti le seguenti proposizioni

- (i) esiste $a \in A$ tale che $f^{(n)}(a) = 0$ per ogni $n \ge 0$;
- (ii) fè nulla in un intorno di a
- (iii) fè nulla in A.

Corollario 1

Se due funzioni analitiche coincidono in un intorno di a \in A, allora coincidono ovunque.

Th. Principio degli zeri isolati

L'insieme degli zeri di una funzione analitica non identicamente nulla definita in A (se non è vuoto) è costituito da punti isolati ed è privo di punti di accumulazione appartenenti ad A.

$$\begin{cases} f \neq 0 \\ f \text{ analitica} \Rightarrow a \`{e} \text{ un zero isolato} \\ f(a) = 0 \end{cases}$$

Corollario 2 (Principio di identità)

Se due funzioni analitiche coincidono su un dominio che sia dotato di un punto di accumulazione appartenente allo stesso dominio, allora le due funzioni coincidono ovunque.

Corollario 3 (Prolungamento analitico)

Dato $I \subseteq R$ un intervallo ed $f: I \rightarrow R$,

se esiste una <u>funzione analitica</u> definita in un aperto $A \subseteq C$ tale che $I \subseteq A \cap R$ e la cui restrizione ad I coincide con f(x),

allora tale funzione è univocamente determinata ed è detta prolungamento analitico.

Es.

Le funzioni e^z , cosz e senz, $con z \in C$, sono i prolungamenti analitici di e^x , cosx e senx, $con x \in R$.

N.B.

Inoltre il prolungamento analitico esiste sempre per le funzioni sviluppabili in serie di Taylor

$$f(z) = \sum_{n>0} \frac{f^{(n)}(x_0)}{n!} (z - x_0)^n \qquad \forall z \in I = B_r(x_0) \subseteq C$$

Def. Diseguaglianza di Cauchy

Sia γ una circonferenza di centro a e raggio r,

allora per n = 0 si ha

$$f(a) = \frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f(z)}{(z-a)} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a+re^{it})}{re^{it}} ire^{it} dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(a+re^{it}) dt$$

Ciò significa che il valore f(a) in un punto $a \in A$ si ottiene come <u>media integrale dei valori</u> che f assume su una qualunque circonferenza di centro a, contenuta in A.

Separando parte reale e parte immaginaria, si ottiene un risultato analogo per u=Ref e per v=Imf, che dunque godono della stessa proprietà della media

Proprietà caratteristica delle serie armoniche

Dalla formula

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

Con $\gamma = \gamma_r$ detto

$$M(r) := \max\{|f(z)| : z \in \gamma_r\}$$

$$|c_n| \le \frac{1}{2\pi} \frac{M(r)}{r^{n+1}} 2\pi r = \frac{M(r)}{r^n}$$

Per ogni $n \in N$ e per ogni r>0 tale che $B_r(a) \subseteq A$

Quest'ultima è detta diseguaglianza di Cauchy

Th. Liouville

Se f è <u>analitica</u> su C e $|f(z)| \le M$ per ogni $z \in C$, allora f è <u>costante</u>.

Dim.

Poiché A = C, la formula

$$|c_n| \le \frac{1}{2\pi} \frac{M(r)}{r^{n+1}} 2\pi r = \frac{M(r)}{r^n}$$

Vale con r arbitrario

$$|c_n| \le \frac{M(r)}{r^n} \quad \forall r > 0$$

Facendo tendere $r \to \infty$ si ha

$$c_n = 0 \quad \forall n \in \mathbb{N} \setminus \{0\}$$

$$f(z) = c_0 = costante$$

Def. Punto singolare isolato

Data $f:A\to C$ una <u>funzione analitica</u> in A, un punto $z_0\in C$ si dice un <u>punto singolare isolato</u> o una singolarità isolata per f

Se $z_0 \notin A$ (che equivale a dire che z_0 non è un punto di olomorfia di f)

Ma esiste un intorno forato

$$B_r^*(z_0) := B_r(z_0) \setminus \{z_0\} = \{z \in C : 0 < |z - z_0| < r\}$$

tutto contenuto in A (che equivale a dire che i punti $z \in B_r^*(z_0)$ sono tutti punti di olomorfia di f).

N.B

Punto singolare isolato è necessariamente un punto di frontiera per l'Aperto A di definizione di f(z)

Se f_1 , f_2 sono funzioni analitiche in A

Allora

$$f(z) = \frac{f_1(x)}{f_2(x)}$$

È analitica in A privato degli zeri di f_2

Classificazione singolarità

Sia $f: A \to C$ una funzione analitica e sia $z_0 \in C$ una singolarità isolata.

1) Singolarità eliminabili:

a. Supponiamo che esista in C il limite

$$\lim_{z \to z_0} f(z) = \lambda \in \mathcal{C}$$

Si ha che la funzione

$$\tilde{f}(z) = \begin{cases} f(z) \ z \in A \\ \lambda \quad z = z_0 \end{cases}$$

È analitica in un intorno di z_0 (ed è il prolungamento analitico di f) In tal caso z_0 si dice <u>singolarità eliminabile</u>

2) Poli:

a. Supponiamo che per un certo $n \in N *= N \setminus \{0\}$ la funzione

$$g(z) = (z - z_0)^n f(z)$$

Ammetta un limite $\lambda \neq 0$ per $z \rightarrow z_0$ cioè

$$\lim_{z \to z_0} (z - z_0)^n f(z) = \lambda$$

In tal caso si dice che z_0 è un polo di ordine n per f

3) Singolarità essenziali:

a. Un punto singolare isolato z_0 che non sia né una singolarità eliminabile, né un polo, si dice una <u>singolarità essenziale</u>. In tal caso non esiste il limite di f per $z \to z_0$, anzi questa è una <u>condizione</u> <u>necessaria e sufficiente</u> perché z_0 sia una singolarità essenziale.

Def. Residuo

Sia $f:A\to C$ una <u>funzione analitica</u> e sia $z_0\in C$ una <u>singolarità isolata</u>.

Si definisce residuo di f in z_0 il numero

$$res(f, z_0) \coloneqq \frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

dove γ è un circuito contenuto in A e contenente $z_0\,$ e nessuna altra singolarità di f.

N.B

se z_0 è una singolarità eliminabile,

allora per il teorema integrale di Cauchy si ha che $res(f, z_0) = 0$

Prop.

Sia $f:A\to C$ una <u>funzione analitica</u> e sia $z_0\in C$ un <u>polo di ordine n</u>. Allora

$$res(f, z_0) := \frac{1}{(n-1)!} \lim_{\substack{z \to z_0 \ dz^{n-1}}} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z))$$

Dim.

Sia $z_0 \in C$ un polo di ordine n, allora la funzione

$$g(z) = (z - z_0)^n f(z)$$

è analitica in un intorno z_0

$$\frac{d^{n-1}g}{dz^{n-1}}(z_0) = \frac{(n-1)!}{2\pi i} \int_{\gamma} \frac{g(z)}{(z-z_0)^n} dz = \frac{(n-1)!}{2\pi i} \int_{\gamma} f(z) dz$$

Dove γ è una circonferenza di centro z_0 e di raggio r contenuta in A

$$\frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)) = \frac{1}{(n-1)!} \frac{d^{n-1}g}{dz^{n-1}} (z_0) = \frac{1}{2\pi i} \int_{\mathcal{V}} f(z) dz = res(f, z_0)$$

N.B.

$$\int_{\mathcal{V}} f(z)dz = 2\pi i \, res(f, z_0)$$

Def. Serie bilatera

$$\sum_{-\infty < n < +\infty} c_n (z - z_0)^n$$

Per convergenza della serie precedente si intende che convergono le due seguenti serie

1)
$$\sum_{n\geq 0} c_n (z-z_0)^n$$

2)
$$\sum_{n<0} c_n (z-z_0)^n = \sum_{k>0} c_{-k} (z-z_0)^{-k} = \sum_{k>0} c_{-k} \frac{1}{(z-z_0)^k}$$

La prima serie si dice <u>parte singolare</u> (o parte caratteristica) della serie. La seconda, che è una usuale serie di potenze, si dice <u>parte regolare</u> ed ha un suo raggio di convergenza, che chiamiamo R2.

N.B.

Facendo il cambiamento di variabili, la prima serie diventa di potenze

$$w \coloneqq \frac{1}{(z - z_0)}$$

$$\sum_{n>0} c_n (z - z_0)^n = \sum_{k>0} c_{-k} (z - z_0)^{-k} = \sum_{k>0} c_{-k} w^{-k}$$

che ammette un suo raggio di convergenza, che chiamiamo $R1^*$

Se $R1^* > 0$

$$\sum_{k>0} c_{-k} w^{-k}$$
 converge se $|w| = \frac{1}{|(z-z_0)|} < R1^*$ $|(z-z_0)| < \frac{1}{R1^*}$

Ponendo
$$R1 = \frac{1}{R1^*}$$
 $|(z - z_0)| < R1$

Dunque la serie <u>converge</u> all'esterno del cerchio di raggio R1 e la somma della serie è analitica su tale insieme.

Th.

La somma di una serie bilatera è una funzione analitica in una corona circolare (se R1 < R2).

Th. Di Laurent

Sia f una <u>funzione analitica</u> su una corona circolare C_{R1R2} di centro z_0 .

Allora f è la somma di una serie bilatera,

cioè vale il seguente sviluppo di Laurent

$$f(z) = \sum_{-\infty < n < +\infty} c_n (z - z_0)^n$$

$$c_n = \frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

 γ è una circonferenza di centro z_0 e raggio r con R1 < r < R2.

N.B

se f è analitica in tutta la palla $B_{R2}(z_0)$ oppure ha una singolarità eliminabile in z_0

Allora lo sviluppo di Laurent si riduce a quello di Taylor, cioè i coefficienti della parte singolare sono tutti nulli

poiché

 $\frac{f(z)}{(z-z_0)^{n+1}}$ è analitica per n \leq -1. Inoltre i coefficienti della parte regolare c_n , n \geq 0, coincidono con quelli di Taylor poiché si ha

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\mathcal{V}} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

$$c_n = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!}$$

Se n = -1

$$c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(z) dz = res(f, z_0)$$

Prop.

Sia $f:A\to \mathcal{C}$ una <u>funzione analitica</u>, sia $z_0\in \mathcal{C}$ una <u>singolarità isolata</u> e sia

$$f(z) = \sum_{n \in \mathbb{N}} c_n (z - z_0)^n$$

lo sviluppo di Laurent di f in un intorno forato di z_0

Allora

(i) z_0 è eliminabile se e solo se la parte singolare è nulla Cioè $c_{-n}=0$ per ogni n>0

$$f(z) = \sum_{n \ge 0} c_n (z - z_0)^n$$

che è lo sviluppo di Taylor di f

(ii) $z_0 \ \text{è un polo di ordine} \ n_0 \ \text{se e solo se} \ c_{-n_0} \ \neq 0 \ \text{e} \ c_{-n} = 0 \ \text{per ogni} \ n > n_0$ $f(z) = \sum_{n \geq -n_0} c_n (z-z_0)^n$

(iii) z_0 è una singolarità essenziale se e solo se $c_{-n} \neq 0$ per infiniti indici n>0

Th. Residui

Sia $f:A\to C$ una <u>funzione analitica</u> nell'aperto connesso $A\subseteq C$ e sia γ un circuito in A. Siano $z_1,\ldots z_r$ dei punti singolari isolati di f appartenenti all'aperto D interno a γ .

Allora

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{r} res(f, z_r)$$

Dim.

Siano $\gamma_1,\ldots\gamma_r$ delle circonferenze di centro $z_1,\ldots z_r$ e raggi opportunamente piccoli in modo che ognuna sia interna a D, non si intersechino fra di loro e ognuna non contenga altre singolarità tranne il suo centro. Consideriamo la curva

$$\tilde{\gamma} = \gamma \cup \gamma_1^- \cup \ldots \cup \gamma_r^-$$

che è l'unione di curve non connesse tra di loro.

Dal teorema integrale di Cauchy (che vale anche per l'unione di curve) si ha

$$0 = \int_{\widetilde{\gamma}} f(z) \, dz = \int_{\gamma} f(z) \, dz + \sum_{k=1}^{r} \int_{\gamma_{r}^{-}} f(z) \, dz = \int_{\gamma} f(z) \, dz - \sum_{k=1}^{r} \int_{\gamma_{r}} f(z) \, dz$$

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{r} \int_{\gamma_r} f(z) dz$$

Per ogni k:1,...r

$$\int_{\mathcal{V}} f(z) \, dz = 2\pi i \, res(f, z_r)$$

Lemma del grande cerchio

Sia f una funzione <u>definita e continua</u> in un settore angolare $\theta_1 \leq Arg(z) \leq \theta_2$ (per |z| abbastanza grande) e se $\lim_{|z| \to \infty} f(z) = 0$, allora

$$\lim_{R\to\infty}\int_{\gamma_P}f(z)dz=0$$

Dove γ_R è l'intersezione della circonferenza di raggio R e centro l'origine con settore considerato

Lemma di Jordan

Sia g una funzione definita e continua in un settore angolare S contenuto nel semipiano $Imz \geq 0$,

$$S = \{z \in \mathcal{C} \colon 0 \le \theta_1 \le Arg(z) \le \theta_2 \le \pi$$

Supponiamo che $\lim_{|z| \to \infty} g(z) = 0$

Allora

$$\lim_{R\to\infty}\int_{\gamma_R}g(z)e^{iz}dz=0$$

Dove γ_R è l'intersezione della circonferenza di raggio R e centro l'origine con settore considerato

Lemma del polo semplice

Sia f una <u>funzione analitica in un intorno forato</u> dell'origine ed abbia in tale intorno un <u>polo</u> <u>semplice</u>

Allora

$$\lim_{r\to 0} \int_{\gamma_r} f(z)dz = \pi i \, res(f,0)$$

dove γ_r è la semicirconferenza di equazione $z = re^{it}$, $0 \le t \le \pi$.

Def. Funzione L-trasformabile (o trasformabile secondo Laplace)

Sia I un intervallo contenente il semiasse reale positivo: $R_+ = [0, +\infty) \subseteq I \ e \ sia \ f : I \implies C$ una <u>funzione a valori reali o complessi</u>.

La funzione f è L-trasformabile (o trasformabile secondo Laplace) se $\exists s \in C$ tale che la funzione $t \implies e^{-st} f(t)$ è <u>sommabile</u> su R_+ , cioè tale che

$$\int_0^{+\infty} |e^{-st}f(t)|dt < \infty$$

In tal caso chiameremo integrale di Laplace l'integrale

$$\int_0^{+\infty} e^{-st} f(t) dt$$

N.B

Se l'integrale converge per un assegnato $s = s_0$

Cioè $e^{-st}f(t)$ è sommabile su R_+

Allora converge $\forall s \in C$ tale che $Re(s) > Re(s_0)$

Infatti

$$|e^{-st}f(t)| = e^{-Re(s)t}|f(t)| \le e^{-Re(s_0)t}|f(t)| = |e^{-Re(s_0)t}f(t)|$$

e dunque $e^{-st}f(t)$) è maggiorata in modulo da una funzione sommabile ed è perciò sommabile a sua volta.

Se l'insieme degli $s \in C$ per cui

$$\int_0^{+\infty} e^{-st} f(t) dt$$

Converge non è vuoto

allora è costituito da un semipiano (destro), quello dei numeri complessi s per i quali si ha

$$\sigma = Re(s) > \sigma[f]$$

dove $\sigma[f]$ è l'estremo inferiore delle parti reali dei numeri $s \in C$ per cui

$$\int_0^{+\infty} e^{-st} f(t) dt$$
 converge

Def. Trasformata di Laplace

Sia $f: I \Longrightarrow C$ (dove $R_+ \subseteq I$) una <u>funzione L-trasformabile</u>

posto
$$\sigma[f] := inf\{Re(s) : e^{-st} f(t)\}$$
 è sommabile

per ogni s tale che $Re(s) > \sigma[f]$ chiameremo trasformata di Laplace di f la funzione

$$L[f](s) = F(s) = \int_{0}^{+\infty} e^{-st} f(t)dt$$

(unilatera essendo t > 0).

Diremo inoltre che $\sigma[f]$ è <u>l'ascissa di convergenza della funzione f</u>.

La trasformata è un operatore funzionale lineare che associa ad una funzione di variabile reale una funzione di variabile complessa. La trasformata di Laplace rientra nella categoria delle trasformate integrali.

Funzione Heaveside

$$H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & altrove \end{cases}$$

Funzione delta di Dirac

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ +\infty & t = 0 \end{cases}$$

Proprietà Trasformata di Laplace

1) Linearità

$$L[c_1f_1 + c_2f_2](s) = c_1L[f_1](s) + c_2L[f_2](s)$$

 $\forall s: Re(s) > max\{\sigma[f_1], \sigma[f_2]\}$

2) Limitatezza

3) Derivata della trasformata di Laplace

$$F'(s) = L[-tf(t)](s)$$

Prop. (Limitatezza)

Sia f una funzione <u>L-trasformabile</u> con ascissa di convergenza $\sigma[f]$

allora per ogni $\sigma_0 > \sigma[f]$ la funzione F(s) = L[f](s) è $\underline{limitata}$ nel semipiano chiuso $Re(s) \geq \sigma_0$

e inoltre

$$\lim_{Re(s)\to+\infty}F(s)=0$$

L'ultima affermazione significa che se $\{s_n\}$ è una successione di punti per cui $\sigma_0 \leq \sigma_n := Re(s_n) = +\infty$, allora

$$\lim_{n \to +\infty} F(s_n) = 0$$

Prop. (derivata della trasformata di Laplace)

Sia f una funzione <u>L-trasformabile</u> con ascissa di convergenza $\sigma[f]$

Allora la funzione F(s) = L[f](s) è <u>olomorfa</u> nel semipiano $Re(s) > \sigma[f]$.

La funzione $t \rightarrow -tf(t)$ è <u>L-trasformabile</u> con ascissa di convergenza $\sigma[f]$ e abbiamo

$$F'(s) = L[-tf(t)](s),$$

dove con F'(s) si intende la derivata in campo complesso.

In generale si ha $F^{(n)}(s) = L[(-t)^n f(t)](s) = (-1)^n L[t^n f(t)]$ $Re(s) > \sigma[f]$. Moltiplicazione per t alla n-esima potenza $L[t^n f(t)](s) = (-1)^n F^{(n)}(s)$.

Def. Segnali

La definizione di trasformata coinvolge solo i valori di f(t) per $t \geq 0$.

Se f(t) è definita su R denotiamo

$$f_+(t) = \begin{cases} f(t) & t \ge 0 \\ 0 & altrimenti \end{cases}$$

Cioè
$$f_+(t) = H(t)f(t)$$

Una funzione nulla per t < 0 e <u>L-trasformabile</u> viene chiamata <u>segnale</u>

Proprietà segnale:

- 1) $L[f(ct)](s) = \frac{1}{c}L[f(t)]\left(\frac{s}{c}\right) \quad \forall c > 0: Re(s) > c\sigma[f]$
- 2) Traslazione nel tempo

$$L[f(t-t_0)](s) = e^{-t_0 s} L[f(t)](s) \quad \forall t > 0 : Re(s) > \sigma[f]$$

3) Traslazione complessa

$$L[e^{at}f(t)](s) = L[f(t)](s-a) \qquad \forall a \in C : Re(s) > \sigma[f] + Re(a)$$

Sia f un segnale periodico per $t \ge 0$ di periodo T, cioè $f(t + T) = f(t) \forall t \ge 0$.

Se f è sommabile in [0, T].

Allora

$$L[f(t)](s) = \frac{1}{1 - e^{-Ts}} \int_0^T e^{-st} f(t) dt$$
 $Re(s) > 0$

Sia f un <u>segnale continuo</u> per $t \ge 0$, <u>derivabile con derivata prima continua a tratti e Laplace-</u> trasformabile.

Allora si ha che $\forall s \ con \ Re(s) > max \{\sigma[f], \sigma[f']\}$

$$L[f'](s) = sL[f](s) - f(0).$$

Th.

Se f e g sono $\underline{due\ segnali\ L\text{-}trasformabili}$ con ascisse di convergenza $\sigma[f\]$ e $\sigma[g]$ rispettivamente,

allora $(f * g) \stackrel{e}{\underline{e}} L$ -trasformabile nel semipiano $Re(s) > max\{\sigma[f], \sigma[g]\}$, e si ha

$$L[f * g](s) = L[f](s) \cdot L[g](s).$$

Th. (Inversione della trasformata di Laplace)

Sia f un *segnale regolare a tratti* e

sia F(s) la sua trasformata con ascissa di convergenza $\sigma[f]$. Per ogni $lpha > \sigma[f]$ si ha

$$\frac{1}{2\pi i}v.p.\int_{\alpha-i\infty}^{\alpha+\infty}e^{st}F(s)ds = \frac{1}{2}(f(t^-) + f(t^+))$$

Dove $f(t^-)$ ed $f(t^+)$ sono i limiti sinistro e destro in t

Qui l'integrale a valor principale v.p. è definito come

$$v.p. \int_{\alpha - i\infty}^{\alpha + \infty} = \lim_{R \to +\infty} \int_{\alpha - iR}^{\alpha + iR}$$

Corollario

In particolare,

 $\frac{1}{2}(f(t^{-})+f(t^{+}))=f(t)$ nei punti t in cui f(t) è continua. Quindi

$$\frac{1}{2\pi i}v.p.\int_{\alpha-i\infty}^{\alpha+\infty}e^{st}F(s)ds=f(t)$$

$$f(t) = \frac{1}{2\pi i} v.p. \int_{\alpha - i\infty}^{\alpha + i\infty} e^{st} F(s) ds$$

Th.

Sia $s \in \mathcal{C} \to F(s)$ una funzione analitica nel semipiano $\sigma = Re(s) > \sigma_0$ e tale che si abbia

$$|F(s)| \simeq \frac{1}{|s|^k} \quad |s| \to \infty$$

con k > 1

cioè

$$\lim_{|s|\to\infty} |F(s)| \, |s|^k = c > 0$$

Allora per ogni $\alpha \,>\, \sigma_0$ la formula

$$f(t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{st} F(s) ds$$

definisce un segnale continuo su R, indipendente da α , avente la F come trasformata.

N.B

$$f(t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{st} F(s) ds = \sum_{j=1}^{n} res(e^{st} F(s), s_j)$$

dove gli s_j sono i punti singolari della funzione $e^{st}F(s)$