第二型曲面积分

April 16, 2018

Outline

定义

性质

计算

定义

曲面侧的概念, 双侧曲面, 单侧曲面, 上下, 内外

例: 稳定不可压流体的流量

分割、近似、求和、取极限

Definition (1)

 Σ : 有向光滑曲面, $ar{A}(x,y,z)$: 向量场。任意将 Σ 分成n 小块, $\triangle S_i$ ($i=1,\ldots,n$) 面积记为 $\triangle S_i$, $d=\max_{1\leq i\leq n}\{\triangle S_i\}$, $\forall M_i(\xi_i,\eta_i,\zeta_i)\in \triangle S_i$, Σ 在 M_i 处的单位法向量: $ar{n}_i$, $\sum_{i=1}^n ar{A}(\xi_i,\eta_i,\zeta_i)\cdot ar{n}\triangle S_i$, if $d\to 0$ 时,极限存在(不依赖于分割和取点),则称此极限值为 $ar{A}(x,y,z)$ 在有向曲面上的第二型曲面积分。记为 $\iint_{\Sigma} ar{A}(x,y,z)\cdot ar{n}dS$, i.e.

$$\iint_{\Sigma} \vec{A}(x,y,z) \cdot \vec{n} dS = \lim_{d \to 0} \sum_{i=1}^{n} \vec{A}(M_i) \cdot \vec{n}_i \triangle s_i.$$

Rem:

- ▶ If $\vec{A}(x,y,z)$ 在有向曲面 Σ 上连续,则第二型曲面积分存在
- ▶ 流量 $\Phi = \iint_{\Sigma} \vec{v}(x, y, z) \cdot \vec{n} dS$

性质

- 1. 线性性质
- 2. $\Sigma = \Sigma_1 \cup \Sigma_2$, $\Sigma_1 \cap \Sigma_2$ 最多一条交线

3.
$$\iint_{\Sigma} \vec{A} \cdot \vec{n} dS = -\iint_{-\Sigma} \vec{A} \cdot \vec{n} dS$$
 (同一曲面的两侧)

设

$$\vec{A}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\},$$

$$\vec{n} = \{\cos\alpha, \cos\beta, \cos\gamma\},$$

$$\vec{A}(x,y,z) \cdot \vec{n}dS = (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS,$$

$$\vec{\Xi}d\vec{S} = \vec{n}dS = \{\cos\alpha dS, \cos\beta dS, \cos\gamma dS\}$$

$$\triangleq \{dy \wedge dz, dz \wedge dx, dx \wedge dy\}$$

$$\iint_{\Sigma} \vec{A} \cdot \vec{n}dS = \iint_{\Sigma} Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

dy ∧ *dz*: *dS* 在yoz面上的投影

dz ∧ *dx*: *dS* 在zox面上的投影

dx ∧ *dy*: *dS* 在xoy面上的投影

可正,可负,可为零,根据 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ 来定

上下、左右、前后

总结:

一代: 将Σ代入被积函数

► 二投:投影到坐标平面(dx ∧ dy, xoy, ...)

▶ 三定号: 由曲面的侧来定正负

▶ 四换域: $\Sigma \to D_{xy}$ or D_{yz} , D_{xz}

例1. $\iint_{\Sigma} z dx \wedge dy$

(1) Σ:
$$z = \sqrt{x^2 + y^2}$$
, $0 \le z \le 1$ 部分下侧

(2) Σ:
$$z = \sqrt{x^2 + y^2}$$
与 $z = 1$ 所围内侧

例2. $I = \iint_{\Sigma} y(x-z)dy \wedge dz + x^2dz \wedge dx + (y^2 + xz)dx \wedge dy$, Σ : 正六面体外侧