ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики Кафедра обчислювальної математики

Курсова робота

Метод інтегральних рівнянь для оберненої крайової задачі для бігармонійного рівняння

Студентки IV курсу групи ПМП-41	
Напряму підготовки "Прикладна математика	ι"
Багрій Å. Г.	

Зміст

Вступ		2
1	Загальні положення Алгоритм знаходення розв'язку оберненої крайової задачі	3 4
2	Розв'язування прямої задачі 2.1 Параметризація	
3	Знаходження розв'язку оберненої крайової задачі	9
4	Чисельні експерименти	11
Висновки		12
Література		

Вступ

Нехай $\Omega \subset \mathbb{R}^2$ двоз'язна область з межею $\Gamma = \Gamma_1 \cup \Gamma_2$, де Γ_1 є внутрішньою межею і Γ_2 - зовнішньою. І нехай Γ_1 невідома.

$$\begin{cases}
\Delta^{2}u(x) = 0, & x \in \Omega, \\
u(x) = \frac{\partial u(x)}{\partial n} = 0, & x \in \Gamma_{1}, \\
\frac{\partial u(x)}{\partial n} = g(x), & x \in \Gamma_{2}, \\
Mu(x) = q(x), & x \in \Gamma_{2},
\end{cases} \tag{1}$$

$$u(x) = f(x), \quad x \in \Gamma_2, \tag{2}$$

де $\Delta^2 u(x) = \frac{\partial^4}{\partial x_1^4} u(x) + 2 \frac{\partial^4}{\partial x_1^2 \partial x_2^2} u(x) + \frac{\partial^4}{\partial x_2^4} u(x) = 0, \ u(x) = u(x_1, x_2), \ n = (n_1, n_2)$ - зовнішня нормаль до Γ , $Mu = \nu \Delta u + (1 - \nu)(u_{x_1x_1}n_1^2 + 2u_{x_1x_2}n_1n_2 + u_{x_2x_2}n_2^2), \ \nu \in (0, 1)$ і g(x), q(x), f(x) - деякі задані функції. Розв'язування (1)-(2) складається зі знаходження невідомої Γ_1 для заданих граничних умов. Дана обернена задача є нелінійною.

Загальні положення

Фундаментальний роз'вязок бігармонійного рівняння має вигляд

$$G(x,y) = \frac{1}{8\pi} |x - y|^2 \ln|x - y|, \quad x, \ y \in \mathbb{R}^2.$$
 (1.1)

Розглянемо потенціал простого шару для бігармонійного рівняння з густинами φ , ψ , що визначені на Γ :

$$u(x) = \int_{\Gamma} \left(G(x, y) \varphi(y) + \frac{\partial G(x, y)}{\partial n_y} \psi(y) \right) d\sigma_y, \quad x \in \Omega.$$

Теорема 1. Розв'язок прямої крайової задачі (1) має вигляд

$$u(x) = \sum_{k=1}^{2} \int_{\Gamma_k} \left(G(x, y) \varphi_k(y) + \frac{\partial G(x, y)}{\partial n_y} \psi_k(y) \right) d\sigma_y + \omega(x), \quad x \in \Omega,$$
 (1.2)

де $\omega(x) = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 \ ((\alpha_0, \alpha_1, \alpha_2) \in R^3), \varphi_k, \psi_k \in C(\Gamma_k), k = 1, 2,$ де невідомі густини визначаються із системи інтегральних рівнянь

$$\begin{cases} \sum_{k=1}^{2} \int_{\Gamma_{k}} \left(G(x,y)\varphi_{k}(y) + \frac{\partial G(x,y)}{\partial n_{y}} \psi_{k}(y) \right) d\sigma_{y} + \omega(x) = 0, \ x \in \Gamma_{1}, \\ \sum_{k=1}^{2} \int_{\Gamma_{k}} \left(\frac{\partial G(x,y)}{\partial n_{x}} \varphi_{k}(y) + \frac{\partial^{2} G(x,y)}{\partial n_{y} \partial n_{x}} \psi_{k}(y) \right) d\sigma_{y} + \frac{\partial \omega(x)}{\partial n} = 0, \ x \in \Gamma_{1}, \\ \sum_{k=1}^{2} \int_{\Gamma_{k}} \left(\frac{\partial G(x,y)}{\partial n_{x}} \varphi_{k}(y) + \frac{\partial^{2} G(x,y)}{\partial n_{y} \partial n_{x}} \psi_{k}(y) \right) d\sigma_{y} + \frac{\partial \omega(x)}{\partial n} = g(x), \ x \in \Gamma_{2}, \end{cases}$$

$$\begin{cases} \sum_{k=1}^{2} \int_{\Gamma_{k}} \left(M_{x}G(x,y)\varphi_{k}(y) + \frac{\partial M_{x}G(x,y)}{\partial n_{y}} \psi_{k}(y) \right) d\sigma_{y} + M_{x}\omega(x) = q(x), \ x \in \Gamma_{2}, \end{cases}$$

$$\sum_{k=1}^{2} \int_{\Gamma_{k}} \varphi_{k}(y) d\sigma_{y} = A_{0},$$

$$\sum_{k=1}^{2} \int_{\Gamma_{k}} (y_{1}\varphi_{k}(y) + n_{1}(y)\psi_{k}(y)) d\sigma_{y} = A_{1},$$

$$\sum_{k=1}^{2} \int_{\Gamma_{k}} (y_{2}\varphi_{k}(y) + n_{2}(y)\psi_{k}(y)) d\sigma_{y} = A_{2},$$

$$(1.3)$$

для заданих $(A_0, A_1, A_2) \in \mathbb{R}^3$.

З умови (2) маємо

$$\sum_{k=1}^{2} \int_{\Gamma_k} \left(G(x, y) \varphi_k(y) + \frac{\partial G(x, y)}{\partial n_y} \psi_k(y) \right) d\sigma_y + \omega(x) = f(x), \ x \in \Gamma_2.$$
 (1.4)

В системі (1.3) ядра мають вигляд

$$\frac{\partial G(x,y)}{\partial n_x} = \frac{1}{8\pi} n(x) \cdot (x-y)(1+2\ln|x-y|),$$

$$\frac{\partial G(x,y)}{\partial n_y} = -\frac{1}{8\pi} n(y) \cdot (x-y)(1+2\ln|x-y|),$$

$$\frac{\partial^2 G(x,y)}{\partial n_x \partial n_y} = \frac{\partial^2 G(x,y)}{\partial n_y \partial n_x} = -\frac{1}{8\pi} \left(2\frac{n(x) \cdot (x-y)n(y) \cdot (x-y)}{|x-y|^2} + n(x) \cdot n(y)(1+2\ln|x-y|) \right),$$

$$M_x G(x,y) = \frac{1+3\nu}{8\pi} + \frac{(1-\nu)(n(x) \cdot (x-y))^2}{4\pi|x-y|^2} + \frac{(1+\nu)\ln|x-y|^2}{8\pi},$$

$$\frac{\partial M_x G(x,y)}{\partial n_y} = \frac{1-\nu}{2\pi} \left(\frac{(n(x) \cdot (x-y))^2 n(y) \cdot (x-y)}{|x-y|^4} - \frac{n(x) \cdot n(y)n(x) \cdot (x-y)}{|x-y|^2} \right) - \frac{(1+\nu)n(y) \cdot (x-y)}{4\pi|x-y|^2}.$$

Теорема 2. Обернена крайова задача (1)-(2) еквівалентна системі інтегральних рівнянь (1.3)-(3.1).

Теорема 3 (Існування і єдиність розв'язку непрямої задачі). *Нехай* $\tilde{\Gamma}_1$, Γ_1 - замкнені криві, що містяться всередині Γ_2 , \tilde{u} , u - розв'язки задачі (1) для $\tilde{\Gamma}_1$ і Γ_1 відповідно. Нехай $g \neq 0$, $q \neq 0$ і $u = \tilde{u}$ на відкритій підмножині Γ_2 . Тоді $\tilde{\Gamma}_1 = \Gamma_1$.

Доведення. Доведемо від протилежного. Нехай $\tilde{\Gamma}_1 \neq \Gamma_1$. Нехай Ω_2 - область, обмежена Γ_2 , Ω_1 , $\tilde{\Omega}_1$ - області обмежені Γ_1 , $\tilde{\Gamma}_1$ відповідно.

$$W := \Omega_2 \setminus (\Omega_1 \cup \tilde{\Omega}_1), \quad \Gamma_2 \subset \delta W.$$

За теоремою Гольмгрена маємо $u=\tilde{u}$ в W. Без втрати загальності приспустимо, що $W^*:=(\Omega_2\setminus\overline{W})\setminus\Omega_1$ непорожня множина. Тоді u є визначена в W^* як розв'язок задачі (1) для Γ_1 . Вона є неперервною в \overline{W}^* і задовольняє граничні умови на δW^* . Ця гранична умова випливає з того, що кожна точка з W^* належить або Γ_1 , або $\delta W\cap \tilde{\Gamma}_1$. Для $x\in \Gamma_1$ маємо u(x)=0 як наслідок граничних умов для u, для $x\in \tilde{\Gamma}_1$ маємо $u(x)=\tilde{u}(x)$ і тому u(x)=0 як наслідок граничних умов для \tilde{u} . Тоді за принципом максимуму u=0 в W^* і тому u=0 в D. Це суперечить тому, що $g\neq 0, q\neq 0$.

Алгоритм знаходення розв'язку оберненої крайової задачі

Знаходження розв'язку задачі (1.3)-(3.1) складається з наступного ітераційного процесу:

- Для заданого початкового наближення Γ_1 розв'язуємо пряму задачу для (1.3) і знаходимо невідомі густини.
- Лінеаризуємо рівняння (1.4) і покращуємо Γ_1 , розв'язуючи лінеаризоване рівняння (1.4) для фіксованих густин, які є відомими з (1.3).

Розв'язування прямої задачі

2.1 Параметризація

Припустимо, що криві Γ_1 і Γ_2 достатньо гладкі і їх можна подати у параметричному заданні

$$\Gamma_l = \{x_l(s) = (x_{1l}(s), x_{2l}(s)) : s \in [0, 2\pi]\},$$
(2.1)

де $x_l~(l=1,2)$ - аналітична й 2π -періодична функція, |x'(s)|>0. Тоді систему можна записати

$$\begin{cases} \frac{1}{2\pi} \sum_{k=1}^{2} \int_{0}^{2\pi} \left(H_{1k}(s,\sigma)\varphi_{k}(\sigma) + \tilde{H}_{1k}(s,\sigma)\psi_{k}(\sigma) \right) d\sigma + \omega(x_{1}(s)) = 0, \\ \frac{1}{2\pi} \sum_{k=1}^{2} \int_{0}^{2\pi} \left(\tilde{\tilde{H}}_{1k}(s,\sigma)\varphi_{k}(\sigma) + \hat{H}_{1k}(s,\sigma)\psi_{k}(\sigma) \right) d\sigma + \frac{\partial \omega(x_{1}(s))}{\partial n_{1}} = 0, \\ \frac{1}{2\pi} \sum_{k=1}^{2} \int_{0}^{2\pi} \left(\tilde{\tilde{H}}_{2k}(s,\sigma)\varphi_{k}(\sigma) + \hat{H}_{2k}(s,\sigma)\psi_{k}(\sigma) \right) d\sigma + \frac{\partial \omega(x_{2}(s))}{\partial n_{2}} = g(x_{2}(s)), \\ \frac{1}{2\pi} \sum_{k=1}^{2} \int_{0}^{2\pi} \left(\hat{\tilde{H}}_{2k}(s,\sigma)\varphi_{k}(\sigma) + \tilde{H}_{2k}(s,\sigma)\psi_{k}(\sigma) \right) d\sigma + M_{x}\omega(x_{2}(s)) = q(x_{2}(s)), \\ \sum_{k=1}^{2} \int_{0}^{2\pi} \varphi_{k}(\sigma) d\sigma = A_{0}, \\ \sum_{k=1}^{2} \int_{0}^{2\pi} (x_{1k}\varphi_{k}(\sigma) + n_{1}(x_{k}(\sigma))\psi_{k}(\sigma)) d\sigma = A_{1}, \\ \sum_{k=1}^{2} \int_{0}^{2\pi} (x_{2k}\varphi_{k}(\sigma) + n_{2}(x_{k}(\sigma))\psi_{k}(\sigma)) d\sigma = A_{2}, \end{cases}$$

Тут $\varphi_l(s):=\varphi_k(x_l(s))|x_l'(s)|, \ \psi_l(s):=\psi_k(x_l(s))|x_l'(s)|$ — невідомі густини і ядра мають вигляд

$$H_{lk}(s,\sigma) = G(x_l(s), x_k(\sigma)), \quad \tilde{H}_{lk}(s,\sigma) = \frac{\partial G(x_l(s), x_k(\sigma))}{\partial n_y},$$

$$\tilde{\tilde{H}}_{lk}(s,\sigma) = \frac{\partial G(x_l(s), x_k(\sigma))}{\partial n_x}, \quad \hat{H}_{lk}(s,\sigma) = \frac{\partial^2 G(x_l(s), x_k(\sigma))}{\partial n_y \partial n_x},$$

$$\hat{H}_{lk}(s,\sigma) = M_x G(x_l(s), x_k(\sigma)), \quad \bar{H}_{lk}(s,\sigma) = \frac{\partial M_x G(x_l(s), x_k(\sigma))}{\partial n_y},$$

$$n(x(s)) = \left(\frac{x_2'(s)}{|x'(s)|}, -\frac{x_1'(s)}{|x'(s)|}\right).$$

Дані ядра є неперервними в області $\bar{\Omega}$. Але коли точка інтегрування співпадає з точкою спостереження на Γ_l (l=1,2) під час диференціювання маємо логарифмічну особливість. Для чисельного розв'язування доцільно виділити цю особливість, виконавши певні перетворення. Отримуємо наступне подання ядер

$$H_{ll}(s,\sigma) = H_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + H_{ll}^{(2)}(s,\sigma),$$
 (2.3)

$$\tilde{H}_{ll}(s,\sigma) = \tilde{H}_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + \tilde{H}_{ll}^{(2)}(s,\sigma),\tag{2.4}$$

$$\tilde{\tilde{H}}_{ll}(s,\sigma) = \tilde{\tilde{H}}_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + \tilde{\tilde{H}}_{ll}^{(2)}(s,\sigma),\tag{2.5}$$

$$\hat{H}_{ll}(s,\sigma) = \hat{H}_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + \hat{H}_{ll}^{(2)}(s,\sigma), \tag{2.6}$$

$$\hat{\hat{H}}_{ll}(s,\sigma) = \hat{\hat{H}}_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + \hat{\hat{H}}_{ll}^{(2)}(s,\sigma),\tag{2.7}$$

$$\bar{H}_{ll}(s,\sigma) = \bar{H}_{ll}^{(1)}(s,\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) + \bar{H}_{ll}^{(2)}(s,\sigma),$$
 (2.8)

де

$$\begin{split} H_{ll}^{(1)}(s,\sigma) &= \frac{1}{8}|x_{l}(s) - x_{l}(\sigma)|^{2}, \quad H_{ll}^{(2)}(s,\sigma) = \frac{1}{8}|x_{l}(s) - x_{l}(\sigma)|^{2} \ln\left(\frac{e|x_{l}(s) - x_{l}(\sigma)|^{2}}{4\sin^{2}\frac{s-\sigma}{2}}\right), \\ &\hat{H}_{ll}^{(1)}(s,\sigma) = -\frac{1}{4}n(x_{l}(\sigma)) \cdot (x_{l}(s) - x_{l}(\sigma)), \\ &\hat{H}_{ll}^{(2)}(s,\sigma) = \frac{1}{4}n(x_{l}(\sigma)) \cdot (x_{l}(s) - x_{l}(\sigma)) \left(\ln\left(\frac{4\sin^{2}\frac{s-\sigma}{2}}{e|x_{l}(s) - x_{l}(\sigma)|^{2}}\right) - 1\right), \\ &\hat{H}_{ll}^{(1)}(s,\sigma) = \frac{1}{4}n(x_{l}(s)) \cdot (x_{l}(s) - x_{l}(\sigma)) \left(\ln\left(\frac{e|x_{l}(s) - x_{l}(\sigma)|^{2}}{4\sin^{2}\frac{s-\sigma}{2}}\right) + 1\right), \\ &\hat{H}_{ll}^{(1)}(s,\sigma) = -\frac{1}{4}n(x_{l}(s)) \cdot n(x_{l}(\sigma)), \\ &\hat{H}_{ll}^{(2)}(s,\sigma) = \frac{1}{4}n(x_{l}(s)) \cdot n(x_{l}(\sigma)) \cdot \left(\ln\left(\frac{4\sin^{2}\frac{s-\sigma}{2}}{e|x_{l}(s) - x_{l}(\sigma)|^{2}}\right) - 2\frac{(x_{l}(s) - x_{l}(\sigma))^{2}}{|x_{l}(s) - x_{l}(\sigma)|^{2}} - 1\right), \\ &\hat{H}_{ll}^{(2)}(s,\sigma) = \frac{1}{4}n(x_{l}(s)) \cdot n(x_{l}(\sigma)) \cdot \left(\ln\left(\frac{4\sin^{2}\frac{s-\sigma}{2}}{e|x_{l}(s) - x_{l}(\sigma)|^{2}}\right) - 2\frac{(x_{l}(s) - x_{l}(\sigma))^{2}}{|x_{l}(s) - x_{l}(\sigma)|^{2}} - 1\right), \\ &\hat{H}_{ll}^{(2)}(s,\sigma) = \frac{1}{2\pi}\left(\frac{(n(x) \cdot (x-y))^{2}n(y) \cdot (x-y)}{|x-y|^{4}} - \frac{n(x) \cdot n(y)n(x) \cdot (x-y)}{|x-y|^{2}}\right) - \frac{(1+\nu)n(y) \cdot (x-y)}{4\pi|x-y|^{2}} - \frac{1+\nu}{4}\ln\left(\frac{4}{e}\sin^{2}\frac{s-\sigma}{2}\right). \end{split}$$

При $s=\sigma$ всі ядра дорівнюють нулю, окрім

$$\hat{H}_{ll}^{(2)}(s,s) = \frac{1+3\nu}{4} + \frac{1+\nu}{4} \ln(e|x_l'(s)|^2),$$

$$\bar{H}_{ll}(s,s) = \frac{1-3\nu}{4} \frac{n(x_l(s)) \cdot x_l''(s)}{|x_l'(s)|^2}.$$

2.2 Чисельне розв'язування системи інтегральних рівнянь

Для чисельного розв'язування отриманої системи інтегральних рівнянь використуємо метод Нистрьома, який полягає у заміні інтегралу відповідною квадратурною формулою з певними ваговими функціями. Виберемо тригонометричні квадратури та рівновіддалений поділ,

$$\frac{1}{2\pi} \int_0^{2\pi} f(\sigma) d\sigma \approx \frac{1}{2m} \sum_{j=0}^{2m-1} f(s_j),$$
(2.9)

$$\frac{1}{2\pi} \int_0^{2\pi} f(\sigma) \ln\left(\frac{4}{e}\sin^2\frac{s-\sigma}{2}\right) d\sigma \approx \frac{1}{2m} \sum_{j=0}^{2m-1} R_j(s) f(s_j)$$
 (2.10)

з вузлами

$$s_k = kh, \ k = 0, ..., 2m - 1, \ h = \frac{\pi}{m}$$
 (2.11)

і ваговими функціями

$$R_k(s) = -\frac{1}{m} \left(\frac{1}{2} + \sum_{j=1}^{m-1} \frac{1}{j} \cos \frac{jk\pi}{m} + \frac{(-1)^k}{2m} \right).$$
 (2.12)

Застосувавши даний метод до параметризованої системи інтегральних рівнянь (2.2) із врахованими логарифмічними особливостями ядер, отримаємо повністю дискретизовану систему лінійних рівнянь,

$$\begin{cases} \sum_{j=0}^{2m-1} \left((H_{11}^{(1)}(s_i, s_j) R_{|i-j|} + \frac{1}{2m} H_{12}^{(2)}(s_i, s_j)) \varphi_{1j} + \frac{1}{2m} H_{12}(s_i, s_j) \varphi_{2j} + (\tilde{H}_{11}^{(1)}(s_i, s_j) R_{|i-j|} \right. \\ + \frac{1}{2m} \tilde{H}_{12}^{(2)}(s_i, s_j)) \psi_{1j} + \frac{1}{2m} \tilde{H}_{12}(s_i, s_j) \psi_{2j} \right) + \omega_{1i} = 0, \\ \sum_{j=0}^{2m-1} \left((\tilde{H}_{11}^{(1)}(s_i, s_j) R_{|i-j|} + \frac{1}{2m} \tilde{H}_{12}^{(2)}(s_i, s_j)) \varphi_{1j} + \frac{1}{2m} \tilde{H}_{12} \varphi_{2j} + (\hat{H}_{11}^{(1)}(s_i, s_j) R_{|i-j|} \right. \\ + \frac{1}{2m} \hat{H}_{12}^{(2)}(s_i, s_j)) \psi_{1j} + \frac{1}{2m} \hat{H}_{12} \psi_{2j} \right) + \frac{\partial \omega_{1i}}{\partial n_1} = 0, \\ \sum_{j=0}^{2m-1} \left(\frac{1}{2m} \tilde{H}_{21} \varphi_{1j} + (\tilde{H}_{22}^{(1)}(s_i, s_j) R_{|i-j|} + \frac{1}{2m} \tilde{H}_{22}^{(2)}(s_i, s_j)) \varphi_{2j} + \frac{1}{2m} \hat{H}_{21}(s_i, s_j) \psi_{1j} \right. \\ + (\hat{H}_{22}^{(1)}(s_i, s_j) R_{|i-j|} + \frac{1}{2m} \hat{H}_{22}^{(2)}(s_i, s_j)) \psi_{2j} \right) + \frac{\partial \omega_{2i}}{\partial n_2} = g_{2i}, \\ \sum_{j=0}^{2m-1} \left(\frac{1}{2m} \hat{H}_{21}(s_i, s_j) \varphi_{1j} + (\hat{H}_{22}^{(1)}(s_i, s_j) R_{|i-j|} + \frac{1}{2m} \hat{H}_{22}^{(2)}(s_i, s_j)) \varphi_{2j} + \frac{1}{2m} (\bar{H}_{21}(s_i, s_j) \psi_{1j} \right. \\ + \bar{H}_{22}(s_i, s_j) \psi_{2j} \right) + M \omega_{2i} = q_{2i}, \\ h \sum_{k=1}^{2} \sum_{j=0}^{2m-1} (x_{1k}(s_j) \varphi_{kj} + n_1(x_k(s_j)) \psi_{kj}) = A_1, \\ h \sum_{k=1}^{2} \sum_{j=0}^{2m-1} (x_{2k}(s_j) \varphi_{kj} + n_2(x_k(s_j)) \psi_{kj}) = A_2 \end{cases}$$

для i=0,...,2m-1. Тут $g_{2i}=g(x_2(s_i)),\ q_{2i}=q(x_2(s_i)),\ \omega_{1i}=\omega(x_1(s_i)),\ \frac{\partial \omega_{li}}{\partial n_l}=\frac{\partial \omega(x_l(s_i))}{\partial n_l}\ (l=1,2),\ M\omega_{2i}=\omega(x_2(s_i)),\ R_j=R(s_j)$ Розв'язавши систему (2.13), отримаємо шукані коефіцієнти $(a_0,a_1,a_2)\in R^3$ і значення густин потенціалів на вибраному розбитті $\varphi_{kj}\approx \varphi_k(s_j),\ \psi_{kj}\approx \psi_k(s_j),\ k=1,2,\ j=0,...,2m-1.$

Знаходження розв'язку оберненої крайової задачі

Ми припускаємо, що крива Γ_1 належить класу так званих "зіркових" кривих. Таким чином, параметризація задається як $x_1(t) = \{r(t)c(t) : t \in [0,2\pi]\}$, де $c(t) = (\cos(t),\sin(t))$ і $r: \mathbb{R} \to (0,\infty)$ є 2π -періодичною функцією, яка задає радіус.

Тоді допоміжне рівняння (1.4) можна записати як

$$\frac{1}{2\pi} \sum_{k=1}^{2} \int_{0}^{2\pi} \left(H_{2k}(s,\sigma) \varphi_{k}(\sigma) + \tilde{H}_{2k}(s,\sigma) \psi_{k}(\sigma) \right) d\sigma + \omega(x_{2}(s)) = f(x_{2}(s)), \tag{3.1}$$

Подамо рівняння (3.1) через оператори.

$$(S_k \varphi)(s) := \frac{1}{2\pi} \int_0^{2\pi} H_{2k}(s, \sigma) \varphi(\sigma) d\sigma,$$

$$(\tilde{S}_k \psi)(s) := \frac{1}{2\pi} \int_0^{2\pi} \tilde{H}_{2k}(s, \sigma) \psi(\sigma) d\sigma.$$

Нехай r=21. Тоді (3.1) можна записати так

$$S_1\varphi_1 + \tilde{S}_1\psi_1 + S_2\varphi_2 + \tilde{S}_2\psi_2 + \omega = f$$
 на Γ_2 . (3.2)

Лінеаризоване рівняння матиме вигляд

$$(S_1'[r,\varphi]q)(s) + (\tilde{S}_1'[r,\psi]q)(s) = f(s) - (S_1\varphi_1)(s) - (\tilde{S}_1\psi_1)(s) - (S_2\varphi_2)(s) - (\tilde{S}_2\psi_2)(s) - \omega(s),$$
(3.3)

де q - радіальна функція, що задає покращення для Γ_1 , $(S_1'[r,\varphi]q)(s)$, $(\tilde{S}_1'[r,\psi]q)(s)$ - похідні Фреше операторів S і \tilde{S} відповідно, і мають наступний вигляд

$$(S_1'[r,\varphi]q)(s) = \frac{1}{8\pi} \int_0^{2\pi} q(\sigma) N_r(s,\sigma) \varphi(\sigma) d\sigma, \tag{3.4}$$

де $N_r(s,\sigma) = c(\sigma) \cdot \nabla_{x_1(\sigma)} |x_2(s) - x_1(\sigma)|^2 \ln |x_2(s) - x_1(\sigma)| = c(\sigma) \cdot (x_1(s) - x_1(\sigma))(\ln |x_2(s) - x_1(\sigma)| + 1), c(\sigma) = (\cos(\sigma), \sin(\sigma)),$

$$(\tilde{S}_1'[r,\psi]q)(s) = -\frac{1}{8\pi} \int_0^{2\pi} q(\sigma)\tilde{N}_r(s,\sigma)\psi(\sigma)d\sigma, \tag{3.5}$$

$$\tilde{N}_r(s,\sigma) = c(\sigma)n(x_1(\sigma)) \cdot (3 + \ln|x_2(s) - x_1(\sigma)|).$$

Рівняння (3.3) розв'яжемо методом колокацій, апроксимуючи q у вигляді

$$q_m = \sum_{i=0}^{2m} q_{mi} l_i, \quad m \in N, \ n > m,$$

де $l_i(t) = \cos it$, коли i = 0, ..., m і $l_i(t) = \sin(m-i)t$ для i = m+1, ..., 2m. Тоді необхідно розв'язати таку систему лінійних рівнянь

$$\sum_{k=0}^{2m} q_{mj} A_{ij} = b_i, \quad i = 0, ..., 2n - 1,$$
(3.6)

де

$$A_{ij} = \frac{1}{8n} \sum_{k=0}^{2n-1} \left(l_j(t_k) N_r(t_i, t_k) \varphi_{1n}(t_k) + l_j(t_k) \tilde{N}_r(t_i, t_k) \psi_{1n}(t_k) \right)$$

i

$$b_{i} = f(t_{i}) - w(t_{i}) - \frac{1}{2n} \sum_{n=0}^{2n-1} \left(H_{21}(t_{i}, t_{k}) \varphi_{1n}(t_{k}) + \tilde{H}_{21}(t_{i}, t_{k}) \psi_{1n}(t_{k}) + \left(R_{j}(t_{i}) H_{22}^{(1)}(t_{i}, t_{k}) + H_{22}^{(2)}(t_{i}, t_{k}) \right) \varphi_{1n}(t_{k}) + \left(R_{j}(t_{i}) \tilde{H}_{22}^{(1)}(t_{i}, t_{k}) + \tilde{H}_{22}^{(2)}(t_{i}, t_{k}) \right) \psi_{2n}(t_{k}) \right).$$

Оскільки система (3.6) є погано обумовленою і перевизначеною, то для знаходження її розв'язку застосуємо метод найменших квадратів і регуляризацію Тихонова. Тоді розв'язок матиме такий вигляд

$$q = (A^T A + \lambda I)^{-1} A^T b. \tag{3.7}$$

Нове наближення радіальної функції r обчислюється як r=r+q. Отже, можна сформулювати наступний ітераційний процес.

- 1. Вибрати початкове наближення для r.
- 2. Розв'язати дискретизовану систему лінійних рівнянь для знаходження невідомих густин $\varphi_k, \psi_k, \ k=1,2.$
- 3. Для фіксованих $r, \varphi_k, \psi_k, \ k = 1, 2$ розв'язати лінеаризоване рівняння (3.3) відносно функції q, що задає покращення для Γ_1 .
- 4. Обрахувати нове наближення для радіальної функції r = r + q.
- 5. Якщо $||q||_2 < \epsilon$, то наближення до Γ_1 знайдено. Інакше перейти до кроку 2.

Чисельні експерименти

Висновки

Література

- [1] Chen G., Boundary Element Methods with Applications to Nonlinear Problems / Goong Chen, Jianxin Zhou. Atlantis Press, 2010. 715 p.
- [2] Chapko R. Integral Equations for Biharmonic Data Completion / Roman Chapko, B. Tomas Johansson. Inverse Problems and Imaging (accepted) 2019. 16 p.
- [3] Kress R. Linear Integral Equations / Rainer Kress. New York : Springer, 1989. 412 p.