1. SQL "employee"

Name	Department	Start Date	Experience level	Starting Salary
John	Marketing	2018-03-01	Entry	120
Jerry	Marketing	2017-01-05	Senior	140
Jack	Product	2018-04-01	Mid	160
Julius	Engineering	2018-05-01	Mid	200
Johnny	Engineering	2017-01-02	Mid	170

Q: Return a table with only the people who have the maximum starting salary for their respective department.

2. ML-Question

<u>A</u>.

<u>B.</u>

Import LinearModels from sklearn Ir=LinearModels.LogisticRegression() Ir.fit(X,y) Ir.coefs_

coefficient

Intercept	-8.702324
x1	2.079141
x2	1.286470

General form for GLM g(y) = b0 + b1x1 + b2x2

Logistic regression logit(p) = b0 + b1x1 + b2x2log(p/(1-p)) = b0+ b1*x1 + b2*x2

C.

/usr/local/lib/python3.7/site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

<u>D.</u>

0

Intercept	-30.223716
x1	4.831596
x2	9.123460