- 6. Em cada uma das alíneas seguintes define-se indutivamente um conjunto L de palavras sobre $A = \{a, b\}$. Em cada caso dê uma definição explícita para L.
- (ii) se $x \in L$, então $xb, ax, bx \in L$. (e) (i) $a \in L$;
- (ii) se $x \in L$, então $xb, xba \in L$. (f) (i) $a \in L$;

- MEA A BB NEN $L = \{ uab^{n} : u \in A^{+}, n \in \mathbb{N}_{o} \} = A^{+}a \{b\}^{+}$ $= \{ u \in A^{+} : |u|_{a} > 1 \} = \{ u \in A^{+} : |u|_{a} > 1 \}$
 - [= \ a, ab, aba, abb, abba, abab, abba, abbb, abbba, ...] L= { u e A+: a é pretino de u e aa nos é fator de u } $= a A^{+} \setminus A^{+}aa A^{+}$
 - 8. Sejam A um alfabeto, $a, b \in A$ e $u \in A^*$. Mostre que se au = ub então a = b e $u \in \{a\}^*$.

Vamo provar esta implicas por indus matemática sobre n mode n = |u| > 0.

Se n = 0, ou siga, si |u| = 0, entas $u = \varepsilon$.

Neste caso, se $a \varepsilon = \varepsilon b$, entas $a = b \cdot \varepsilon$ uma implició fizinzimenti verdadeira.

Note caso, se a \(= \epsilon \), ento \(a = b \) e'

uma implied teinziment verdadeira

Logo o cumitado e' rálido ao ca o base

de n=0.

Porhipitere chindyl, suponhamo que para entre ne 140, qualquer palamen le tal que |u|=n, verifica se au=ub, entre a=b e u e fajx.

Seja WEAX umo palavea tal que |w|=n+1. e em que aw=wb.

Queremo mostrar que a=b e WEfajx.

Da figura tirama que

Enter 141=n e au=ub, puls que da hipotese de indip resulta que a=b e u e das*

Assim, a=b, e w=anedast = dast. Isto conclui a prova do passo indutio

- 9. Seja $X = \{aa, bb\}$ e $Y = \{\varepsilon, b, ab\}$.
 - (a) Indique as palavras do conjunto XY.
 - (b) Indique as palavras do conjunto Y^* de comprimento não superior a 3.
 - (c) Quantas palavras de comprimento 6 existem em X^* .

(e) Quantas paravias de comprimento o existent en
$$X$$
.

a) $XY = \{aa, bb\} \cdot \{\epsilon, b, ab\} = \{aa, \epsilon\}$ bb ϵ , aab , bbb , $aaab$, $bbab$ $\begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$

b) $Y^{+} = Y^{\circ} \cup Y^{\circ} \cup Y^{\circ} \cup Y^{\circ} \dots = \bigcup_{n \in IN_{0}} Y^{n}$
 $L = Y^{+} \setminus \{u \in Y^{+} : |u| > 3\}$
 $= \{\epsilon, b, ab, bb, bab, abb, bbb\}$
 $Y^{\circ} = \{\epsilon\}, y = \{\epsilon, b, ab, bb\}$

C) $X = \{aa, bb\}$ $= \{E, b, abb, abab, bbb\}$ $= \{E, b, abb, abab, bbb\}$ $= \{E, b, abb, abab, bbb\}$ A 3 blown de palavear de compainentiz:

aa on bb.

No Hotal tema 23 palavear de X+ com comprimenti 6.

- 11. Sejam $A = \{a, b\}$ e $L = A^*abaA^*$.
 - (a) Determine L^2 e L^* .
 - (b) Calcule $a^{-1}L$, $b^{-1}L$, $(aa)^{-1}L$, $(ba)^{-1}L$, $(ab)^{-1}L$ e $(abab)^{-1}L$.

u= ___aba,___eL L = A + aba A + = {ue A + : aba e un fator de u} a) $L^2 = A^+ aba A^+ \cdot A^+ aba A^+ = A^+ aba (A^+A^+) aba A^+ = A^+ aba A^+ aba A^+$ = Jue A: u tem duas ocor- Se u e A*, entas u· E e A*A*, on aja, u e A* têncian nos sobrepostin Logo A* = A* A* = A* / u vjc / A* A* = A* / diaba } ûngte de todan / an palavean pobre A L² CL? As palarear de L² têm puls monn 2 0 arrênian de aba , logs € abab ∈ L? Sim tem pelo meno umo ocorrência de aba. Logo Sim, L2 CL. $L^m \subset L^n$ Genericament, se m>n, ent $L^* = \bigcup_{n \in \mathbb{N}_2} L^n = L^0 \cup L^1 \cup L^2 \cup \dots = \mathcal{A} \in \mathcal{A} \cup \mathcal{L}_{\mathcal{A}}$ b) $a^{\dagger}L = a^{\dagger} \left(\underbrace{A^{\dagger} aba A^{\dagger}}_{1} \right) = a^{\dagger}A^{\dagger} \cdot aba A^{\dagger} \cup a^{\dagger} aba A^{\dagger} =$ = AabaAt U baA = L U baA Sya $\underline{u} \in \underline{A}^{\star}$. $\underline{t} \cdot \underline{h} \cdot \underline{t} \cdot \underline{d} \cdot \underline{u} \in \underline{A}^{\star}$. $\underline{A}^{\star} = \underline{u} \in \underline{a}^{-} \underline{A}^{\star}$. $\underline{h} \cdot \underline{g} \cdot \underline{A}^{\star} = \underline{A}^{\star}$. $\underline{t} \cdot \underline{h} \cdot \underline{t} \cdot \underline{d} \cdot \underline{d}$ (b'L) = b' (Ataba At) = b'Ataba At U b' aba At = = A*aba A* U \$ = L $(aa)^{-1}L = a^{-1}(a^{-1} A^{4}abaA^{2}) = \overline{a}(L \cup baA^{2}) = \overline{a}(A \cup baA^{2}) =$ = (a'h) U a'baA* = LUbaA* U\$ = LUbaA* = a'h Nota qui a'h - (aat h. . $(ba)^{-1}L = \vec{a}(\vec{b} L) = \vec{a} L = L U ba A^{*}/$

 $1\!\!\!/ 4$. Sejam L,L_1 e L_2 linguagens sobre um alfabeto A. Mostre que:

ou 147

(a)
$$L(L_1 \cup L_2) = LL_1 \cup LL_2$$
.

(b) $L(L_1 \cap L_2) \neq LL_1 \cap LL_2$.

12a)
$$L(L_1 \cup L_2) = \{ u \vee \in A^{\dagger} : u \in L \quad e \vee \in L_1 \cup L_2 \}$$

 $= \{ u \vee \in A^{\dagger} : u \in L \quad e \quad v \in L_1 \quad ou \vee \in L_2 \}$
 $= \{ u \vee \in A^{\dagger} : u \in L \quad e \vee \in L_2 \}$

$$= \lim_{n \to \infty} e^{A^{n}} : \text{wellevel,} \quad \lim_{n \to \infty} e^{A^{n}} : \text{wellevel,}$$

$$= \lim_{n \to \infty} |a| = \lim_{n \to \infty} e^{A^{n}} : \text{wellevel,} \quad \lim_{n \to \infty} |a| = \lim_{n \to \infty}$$

- 14. Sejam A um alfabeto, L uma linguagem sobre A e $u, v, w \in A^*$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $uv = uw \Rightarrow v = w$; (b) $vu = wu \Rightarrow v = w$.
 - (c) $\varepsilon L = L\varepsilon = L$; (d) $\emptyset L = \emptyset$;
 - (e) $L\varnothing = L$; (f) $L = L^1$;
 - (g) $L^+ = L^*L$; (h) $\emptyset^+ = \emptyset$;
 - (i) $\emptyset^* = \{\varepsilon\};$
 - (j) $\varepsilon \in L^+, \forall L;$ (k) $L^+ \cup \{\varepsilon\} = L^*;$ (l) $L^+ \neq L^*, \forall L;$
 - (m) $L^+ \subseteq L^*$; (n) $L^* \subseteq L^+$.