IE2111 ISE Principles & Practice II Solutions to Assignment #4

	Project A	Project B
Initial Investment Cost	\$300,000	\$180,000
Annual Benefits	\$100,000	\$60,000
Salvage Value	\$12,000	\$6,000
Useful Life	4 years	4 years

MARR = 8%. Study period = 4 years.

(a)
$$PW(8\%)$$
 of Project A = $-300,000 + 100,000 [P/A,8\%, 4] + 12,000 [P/F, 8\%, 4]$
= $-300,000 + 100,000 (3.3121268) + 12,000 (0.7350299)$
= $\$ 40,033.04$
 $PW(8\%)$ of Project B = $-180,000 + 60,000 [P/A,8\%, 4] + 6,000 [P/F, 8\%, 4]$
= $-180,000 + 60,000 (3.3121268) + 6,000 (0.7350299)$
= $\$ 23,137.79$

Hence choose Project A which has a higher *PW*(8%).

(b) Let A_B = Annual benefits of Project B.

For decision reversal,
$$PW(8\%)$$
 of B must be increased by $40,033.04 - 23,137.79 = $16,895.25$

This can be achieved by increasing the annual benefits of B by $16,895.25 \ [A/P, 8\%, 4]$ = $16,895.25 \ (0.3019208)$ = \$ 5,101.03

(c)

Annual benefits of A ~ Normal(\$100000, \$22000)

i.

$$E[PW_A(8\%) = \sum_{k=0}^{N} \frac{EV[F_k]}{(1+0.08)^k}$$

$$= -300,000 + \frac{100,000}{(1+0.08)} + \frac{100,000}{(1+0.08)^2} + \frac{100,000}{(1+0.08)^3} + \frac{100,000 + 12,000}{(1+0.08)^4}$$

$$= \$ \underline{40,033.04}$$

ii. When all the annual cash flows are mutually independent:

$$Var[PW_A(8\%)] = \sum_{k=0}^{N} \frac{Var[F_k]}{(1+0.08)^{2k}}$$

$$= 0 + \frac{22,000^2}{(1+0.08)^2} + \frac{22,000^2}{(1+0.08)^4} + \frac{22,000^2}{(1+0.08)^6} + \frac{22,000^2+0}{(1+0.08)^8}$$

$$= \$\$1.337.198.677.29$$

$$SD[PW_A(8\%)] = \$ 36,567.73$$

(d) Let I_B = Initial Investment cash flow for Project B

$$PW(8\%)$$
 of B = $-I_B + 60,000 [P/A, 8\%, 4] + 6,000 [P/F, 8\%, 4]$
= $-I_B + 60,000 (3.3121268) + 6,000 (0.7350299)$

PW(8%) of B has the following distribution:

Initial Cost of B	PW of B	Probability
155,000	48,137.79	0.25
180,000	23,137.79	0.50
205,000	-1,862.21	0.25

i. Risk profile for Project B's *PW*:

PW of B	Probability	PW - $\mathrm{E}[PW]$	$(PW - E[PW])^2$	Prob x $(PW$ - $E[PW])^2$
48,137.79	0.25	-25,000	625,000,000	156,250,000
23,137.79	0.50	0	0	0
-1,862.21	0.25	25,000	625,000,000	156,250,000
			Sum =	312,500,000

ii.
$$E[PW(8\%)]$$
 of Project $B = 0.25 (-1,862.21) + 0.5 (23,137.79) + 0.25 (48,137.79) = $ 23,137.79$

iii.
$$Var[PW(8\%)]$$
 of Project B = \$\$ 312,500,000 // Note that $Var[PW \text{ of B}] = Var[I_B]$ $SD[PW(8\%)]$ of Project B = \$ 17,677.67

iv. Downside risk for B = Prob{
$$PW(8\%)$$
 of B \leq 0} = 0.25

v. Prob{
$$PW(8\%)$$
 of B \geq \$40,000} = 1 - 0.75 = 0.25

(e)

i.

Alternative	E[PW(8%)]	SD[PW(8%)]
Project A	\$ 40,033.04	\$ 36,567.73
Project B	\$ 23,137.79	\$ 17,677.67

E[PW(8%)] of A > E[PW(8%)] of B but SD[PW(8%)] of A] > SD[PW(8%)] of B]

Hence, there is no mean-variance dominance between the two alternatives.

(f) Monte Carlo Simulation using @Risk:

Results from 100,000 trials:

There is no first-order stochastic dominance between the two risk profiles as the crosses each other.