In the Claims:

Please amend claims 1-3, 5-7, 9, 11 and 14-15 as indicated below. This listing of claims replaces all prior versions.

- 1. (Currently Amended) An integrated circuit arrangement <u>comprising having</u> at least one electrical conductor (40) which, when a current flows through <u>the electrical</u> <u>conductor</u> it, produces a magnetic field which acts on at least a further part of the circuit arrangement, the electrical conductor (40) having a first side oriented towards the at least further part of the circuit arrangement, wherein the electrical conductor (40) comprises including a main line (41) of conductive material, and, connected to its the first side of the electric conductor, at least one field shaping strip (42) made of magnetic material.
- 2. (Currently Amended) An integrated circuit arrangement according to claim 1, wherein the <u>at least one field shaping</u> strip (42) is made of a material having a permeability of 100 or higher.
- 3. (Currently Amended) An integrated circuit arrangement according to claim 1, wherein the <u>at least one field shaping</u> strip (42) is made of a material having a coercivity of 1 kA/m or lower.
- 4. (Original) An integrated circuit arrangement according to claim 1, wherein the magnetic material is permalloy.
- 5. (Currently Amended) An integrated circuit arrangement according to claim 1, the electrical conductor (40) having a length in its longitudinal direction, wherein the magnetic strip (42) extends over a majority portion of the length of the electrical conductor (40).
- 6. (Currently Amended) An integrated circuit arrangement according to claim 1, the electrical conductor (40) having a length in its longitudinal direction, wherein the at least one strip (42) of magnetic material comprises a plurality of separate segments (42a, 42b,

App. Serial No. 10/574,365 Docket No. NL031187US1

42c, 42d) of magnetic material over the length of the electrical conductor (40).

- 7. (Currently Amended) An integrated circuit arrangement according to claim 1, the electrical conductor (40) having a width in its transversal direction, wherein the magnetic strip (42) is located substantially centrally on the electrical conductor (40), with respect to its width.
- 8. (Original) An integrated circuit arrangement according to claim 1, wherein at least two electrical conductors are provided which are located in two different planes and cross at an angle with respect to each other, the further part being located between the two different planes and the further part being located at a crossing point of two electrical conductors.
- 9. (Currently Amended) An integrated circuit arrangement according to claim 8, wherein all of the at least two electrical conductors are provided with a <u>field shaping strip</u> of magnetic <u>material strip (42)</u>.
- 10. (Original) An integrated circuit arrangement according to claim 8, wherein the further part is an MRAM device.
- 11. (Currently Amended) A method for producing an integrated circuit arrangement having at least one electrical conductor (40) which, when a current flows through the electrical conductor it, produces a magnetic field which acts on at least a further part of the circuit arrangement, the method comprising: providing a main line (41) of conductive material to form part of the electrical conductor (40), the electrical conductor (40) having a first side oriented towards the at least further part of the circuit arrangement, and shaping the magnetic field adjacent the first side of the electrical conductor by providing, attached to the first side of the electrical conductor (41), at least one magnetic strip (42).
- 12. (Original) The method of claim 11 wherein the at least one magnetic strip is made of material having a permeability of 100 or higher.

App. Serial No. 10/574,365 Docket No. NL031187US1

- 13. (Original) The method of claim 11, wherein the magnetic strip is made of material having a coercivity of 1 kA/m or lower.
- 14. (Currently Amended) A method according to claim 11, wherein the main line (41) of conductive material is provided by a damascene process.
- 15. (Currently Amended) A method according to claim 11, wherein the electrical conductor has a length in its longitudinal direction, the method further comprising forming the magnetic strip by forming a plurality of separate segments (42a) of magnetic material over the length of the electrical conductor (40).