Attention is all you need

Problem: Sequence transduction

My name is Stanisław.

我叫斯坦尼斯瓦

Encoder decoder architecture

My name is Stanisław.

Encoder

Internal representation
Decoder

我叫斯坦尼斯瓦

Sequence to sequence architecture

Problem: long range dependencies

Attention mechanism

Attention mechanism

Problem: sequential computation

Transformer: Architecture overview

Scaled dot product attention

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Q: query

K: key

V: value

Encoder

x' = LayerNorm(x + Sublayer(x))

Decoder

x' = LayerNorm(x + Sublayer(x))

Multi-head attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

3 kinds of attention

"Encoder-decoder attention"

V, K from encoder

Q from decoder

Encoder self-attention

V, K, Q - previous layer output (or encoder input in first layer)

Decoder masked self-attention

V, K, Q - previous layer output (or decoder input in first layer)

Shifted right

All inputs on right are masked out.

Positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

Position-wise feed forward block

 $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$

Transformer: Architecture overview

Training

- Data set: WMT 2014 English-German dataset (4.5 M sentence pairs)
- Optimizer: Adam
- Regularisation
 - Residual droupout
 - Label smoothing

Results: machine translation

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}	
Transformer (big)	28.4	41.0	2.3 ·	10^{19}	

Results: constituency parsing

Parser	Training	WSJ 23 F1 88.3	
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative		
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4	
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4	
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7 91.3	
Transformer (4 layers)	WSJ only, discriminative		
Zhu et al. (2013) [40]	semi-supervised	91.3	
Huang & Harper (2009) [14]	semi-supervised	91.3	
McClosky et al. (2006) [26]	semi-supervised	92.1	
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1	
Transformer (4 layers)	semi-supervised	92.7	
Luong et al. (2015) [23]	multi-task	93.0	
Dyer et al. (2016) [8]	generative	93.3	

Experiments

	N	$d_{ m model}$	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2								7	6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids							4.92	25.7			
big	6	1024	4096	16			0.3		300K	4.33	26.4	213