Introduction to Contraction Theory Seminar 2008

Helmut Hauser

Institute for Theoretical Computer Science

31.Jan, 2008

Introduction and Basic Theorems

- Introduction and Basic Theorems
- Connecting Contractive Systems

- Introduction and Basic Theorems
- Connecting Contractive Systems
- Applications of Contraction Theory

- Introduction and Basic Theorems
- Connecting Contractive Systems
- Applications of Contraction Theory
- Summary

Some Definitions

We are considering n-dimensional deterministic nonlinear systems of the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

■ with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector

Some Definitions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector
- and **f** being a nonlinear vector function

Some Definitions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector
- and **f** being a nonlinear vector function
- **f** is assumed to be smooth

Some Definitions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector
- and **f** being a nonlinear vector function
- **f** is assumed to be smooth
- all quantities assumed to be real and smooth (any required derivative or partial derivative exists)

Some Definitions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector
- and **f** being a nonlinear vector function
- **f** is assumed to be smooth
- all quantities assumed to be real and smooth (any required derivative or partial derivative exists)
- Note: system can be in general time-variant!

Some Definitions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$

- with $\mathbf{x} \in \mathbb{R}^n$ being the the state vector
- and **f** being a nonlinear vector function
- **f** is assumed to be smooth
- all quantities assumed to be real and smooth (any required derivative or partial derivative exists)
- Note: system can be in general time-variant!
- Note: may also represent closed-loop dynamics of system with state feedback $\mathbf{u}(\mathbf{x},t)$

Basic Idea

 Classical stability analysis is relative to some nominal motion or equilibrium point

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"
- Do not care about the nominal motion itself, just show that all trajectories converge

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"
- Do not care about the nominal motion itself, just show that all trajectories converge
- Analysis is inspired by fluid mechanics

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"
- Do not care about the nominal motion itself, just show that all trajectories converge
- Analysis is inspired by fluid mechanics
- Stability can be therefor analyzed differentially: Do nearby trajectories converge?

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"
- Do not care about the nominal motion itself, just show that all trajectories converge
- Analysis is inspired by fluid mechanics
- Stability can be therefor analyzed differentially: Do nearby trajectories converge?

Basic Idea

- Classical stability analysis is relative to some nominal motion or equilibrium point
- Contraction Theory states "A system is stable if in some region any initial conditions or temporary disturbances are somehow forgotten"
- Do not care about the nominal motion itself, just show that all trajectories converge
- Analysis is inspired by fluid mechanics
- Stability can be therefor analyzed differentially: Do nearby trajectories converge?

Fluid Mechanics Interpretation

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$ can be seen as an *n*-dimensional fluid flow, where $\dot{\mathbf{x}}$ is the *n*-dimensional "velocity" vector at the *n*-dimensional position \mathbf{x} and time t.

The path to Contraction Theory

With δx being a virtual displacement (= infinitesimal displacement at fixed time) we define a well defined differential relation:

$$\delta \dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}, t) \, \delta \mathbf{x}$$

Virtual dynamics of neighboring trajectories

The path to Contraction Theory

With δx being a virtual displacement (= infinitesimal displacement at fixed time) we define a well defined differential relation:

$$\delta \dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}, t) \, \delta \mathbf{x}$$

the associated quadratic tangent form of $\delta \mathbf{x}$ is $\delta \mathbf{x}^T \delta \mathbf{x}$. Looking at rate of change of the quadratic distance between to neighboring trajectories:

$$\frac{d}{dt}(\delta \mathbf{x}^T \delta \mathbf{x}) = 2\delta \mathbf{x}^T \delta \dot{\mathbf{x}} \stackrel{\text{from above}}{=} 2\delta \mathbf{x}^T \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \delta \mathbf{x}$$

Virtual dynamics of neighboring trajectories

The path to Contraction Theory

With δx being a virtual displacement (= infinitesimal displacement at fixed time) we define a well defined differential relation:

$$\delta \dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}, t) \, \delta \mathbf{x}$$

the associated quadratic tangent form of $\delta \mathbf{x}$ is $\delta \mathbf{x}^T \delta \mathbf{x}$. Looking at rate of change of the quadratic distance between to neighboring trajectories:

$$\frac{\textit{d}}{\textit{d}t}(\delta \mathbf{x}^{\mathsf{T}} \delta \mathbf{x}) = 2\delta \mathbf{x}^{\mathsf{T}} \delta \dot{\mathbf{x}} \overset{\text{from above}}{=} 2\delta \mathbf{x}^{\mathsf{T}} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \delta \mathbf{x}$$

Now we want to have a negative rate of change = trajectories converge

Virtual dynamics of neighboring trajectories

The path to Contraction Theory - cont.

$$\frac{d}{dt}(\delta \mathbf{x}^T \delta \mathbf{x}) = 2\delta \mathbf{x}^T \underbrace{\frac{\partial \mathbf{f}}{\partial \mathbf{x}}}_{\text{Jacobian}} \delta \mathbf{x}$$

The path to Contraction Theory - cont.

$$\frac{d}{dt}(\delta \mathbf{x}^T \delta \mathbf{x}) = 2\delta \mathbf{x}^T \underbrace{\frac{\partial \mathbf{f}}{\partial \mathbf{x}}}_{\text{lacobian}} \delta \mathbf{x}$$

■ Denoting $\lambda_{max}(\mathbf{x},t)$ the largest eigenvalue of the symmetric part of the Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$

$$\frac{d}{dt}(\delta \mathbf{x}^{\mathsf{T}} \delta \mathbf{x}) \leq 2\lambda_{max} \delta \mathbf{x}^{\mathsf{T}} \delta \mathbf{x}$$

The path to Contraction Theory - cont.

$$\frac{d}{dt}(\delta \mathbf{x}^T \delta \mathbf{x}) = 2\delta \mathbf{x}^T \underbrace{\frac{\partial \mathbf{f}}{\partial \mathbf{x}}}_{\text{lacebian}} \delta \mathbf{x}$$

■ Denoting $\lambda_{max}(\mathbf{x},t)$ the largest eigenvalue of the symmetric part of the Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$

$$\frac{d}{dt}(\delta \mathbf{x}^{\mathsf{T}} \delta \mathbf{x}) \leq 2\lambda_{max} \delta \mathbf{x}^{\mathsf{T}} \delta \mathbf{x}$$

and hence,

$$\|\delta \mathbf{x}\| \leq \|\delta \mathbf{x}_0\| e^{\int_0^t \lambda_{max}(\mathbf{x},t)dt}$$

if $\lambda_{max}(\mathbf{x},t)$ is uniformly strictly negative then $\|\delta\mathbf{x}\|$ converges exponentially to zero.

Definition

Given the systems equations $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)$, a region of the state space is called a **contraction region** if the Jacobian $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ is uniformly negative definite in that region.

Theorem

Given the systems equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)$, any trajectory, which starts in a ball of constant radius centered about a given trajectory and contained at all times in a contraction region, remains in that ball and converges exponentially to this trajectory.

Furthermore, global exponential convergence to the given trajectory is guaranteed if the whole state space is a contraction region.

Examples

Example

Consider the system

$$\dot{x} = -x + e^t$$

and the Jacobian $\frac{\partial f}{\partial x}=-1$ which is globally negative definite.

Examples

Example

Consider the system

$$\dot{x} = -x + e^t$$

and the Jacobian $\frac{\partial f}{\partial x}=-1$ which is globally negative definite.

Example

Consider the system

$$\dot{x} = -t(x^3 + x)$$

and the Jacobian $\frac{\partial f}{\partial x} = -t(3x^2+1)$ which is globally negative definite for $t \geq t_0 \geq 0$.

Basic Idea

 Instead of using standard differential length we can use a more general definition of differential length

- Instead of using standard differential length we can use a more general definition of differential length
- A line vector $\delta \mathbf{x}$ can be expressed by using a differential coordinate transformation

$$\delta \mathbf{z} = \mathbf{\Theta} \delta \mathbf{x}$$

Basic Idea

- Instead of using standard differential length we can use a more general definition of differential length
- A line vector δ **x** can be expressed by using a differential coordinate transformation

$$\delta \mathbf{z} = \mathbf{\Theta} \delta \mathbf{x}$$

• where $\Theta(x, t)$ is a square matrix and uniformly positive definite.

- Instead of using standard differential length we can use a more general definition of differential length
- lacktriangle A line vector $\delta \mathbf{x}$ can be expressed by using a differential coordinate transformation

$$\delta \mathbf{z} = \mathbf{\Theta} \delta \mathbf{x}$$

- lacktriangle where $oldsymbol{\Theta}(\mathbf{x},t)$ is a square matrix and uniformly positive definite.
- a quadratic distance is then

$$\delta \mathbf{z}^T \delta \mathbf{z} = \delta \mathbf{x}^T \mathbf{M} \, \delta \mathbf{x}$$

Basic Idea

- Instead of using standard differential length we can use a more general definition of differential length
- lacktriangle A line vector $\delta \mathbf{x}$ can be expressed by using a differential coordinate transformation

$$\delta \mathbf{z} = \mathbf{\Theta} \delta \mathbf{x}$$

- where $\Theta(\mathbf{x},t)$ is a square matrix and uniformly positive definite.
- a quadratic distance is then

$$\delta \mathbf{z}^T \delta \mathbf{z} = \delta \mathbf{x}^T \mathbf{M} \, \delta \mathbf{x}$$

• with $\mathbf{M}(\mathbf{x},t) = \mathbf{\Theta}^T \mathbf{\Theta}$ representing a symmetric and continuously differentiable metric.

Generalization - cont.

Same steps as before:

lacktriangle Calculating the time derivative of $\delta {f z}$

$$\frac{d}{dt}\delta\mathbf{z} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta}\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\mathbf{\Theta}^{-1}\delta\mathbf{z} = \mathbf{F}\delta\mathbf{z}$$

Generalization - cont.

Same steps as before:

lacktriangle Calculating the time derivative of $\delta {f z}$

$$\frac{d}{dt}\delta \mathbf{z} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta}\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\mathbf{\Theta}^{-1}\delta \mathbf{z} = \mathbf{F}\delta \mathbf{z}$$

 \blacksquare with $\mathbf{F}=\left(\dot{\mathbf{\Theta}}+\mathbf{\Theta}\frac{\partial f}{\partial x}\right)\mathbf{\Theta}^{-1}$ is called the <code>generalized Jacobian</code>

Generalization - cont.

Same steps as before:

■ Calculating the time derivative of δz

$$\frac{d}{dt}\delta\mathbf{z} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta}\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\mathbf{\Theta}^{-1}\delta\mathbf{z} = \mathbf{F}\delta\mathbf{z}$$

- $lackbox{ with } \mathbf{F} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta} rac{\partial \mathbf{f}}{\partial \mathbf{x}}
 ight) \mathbf{\Theta}^{-1}$ is called the *generalized Jacobian*
- the rate of change of the squared length

$$\frac{d}{dt}(\delta \mathbf{z}^T \delta \mathbf{z}) = 2\delta \mathbf{z}^T \mathbf{F} \delta \mathbf{z}$$

Definition

Given the systems equations $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)$, a region of the state space is called a **contraction region** with respect to a uniformly positive definite metric $\mathbf{M}(\mathbf{x},t) = \mathbf{\Theta}^T\mathbf{\Theta}$ if the *generalized Jacobian* $\mathbf{F} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)\mathbf{\Theta}^{-1}$ is uniformly negative definite in that region.

Theorem

Given the systems equations $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t)$, any trajectory, which starts in a ball of constant radius with respect to the metric $\mathbf{M}(\mathbf{x},t)$, centered at a given trajectory and containend at all times in a contraction region with respect to $\mathbf{M}(\mathbf{x},t)$, remains in that ball and converges exponentially to this trajectory. Furthermore, global exponential convergence to the given trajectory is guaranteed if the whole state space is a contraction region with respect the metric $\mathbf{M}(\mathbf{x},t)$.

Example

Example

For a linear system

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}$$

the coordinate transformation $\mathbf{z} = \boldsymbol{\Theta} \mathbf{x}$ (constant!) into a Jordan form.

$$\mathbf{F} = \left(\dot{\mathbf{\Theta}} + \mathbf{\Theta} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \mathbf{\Theta}^{-1} = \left(\mathbf{0} + \mathbf{\Theta} \mathbf{A}\right) \mathbf{\Theta}^{-1}$$

and therefore $\Theta A \Theta^{-1}$ has to be uniformly negative definite. This is true if and only if the system is strictly stable.

Example

Example

FitzHugh-Nagumo model (simplification of the Hodgkin-Huxley model):

$$\dot{v} = c \left(v + w - \frac{1}{3}v^3 + I \right)$$

$$\dot{w} = -\frac{1}{c} \left(v - a + bw \right)$$

with c,a and b being some constants, I the input, v the membrane voltage and w the recovery variable. With

$$\mathbf{\Theta} = \left[\begin{array}{cc} 1 & 0 \\ 0 & c \end{array} \right]$$

we get following generalized Jacobian:

$$\mathbf{F} = \left[\begin{array}{cc} c(1-v^2) & 1 \\ -1 & -\frac{b}{c} \end{array} \right]$$

■ Time varying systems can be analyzed

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too
- Hybrid Systems (discrete and continuous mixture)

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too
- Hybrid Systems (discrete and continuous mixture)
- System (plant & controller) can be designed to be contractive

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too
- Hybrid Systems (discrete and continuous mixture)
- System (plant & controller) can be designed to be contractive
- Observer can be designed to be contractive in conjunction with the plant

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too
- Hybrid Systems (discrete and continuous mixture)
- System (plant & controller) can be designed to be contractive
- Observer can be designed to be contractive in conjunction with the plant
- The rate of convergence is bounded by λ_{max}

- Time varying systems can be analyzed
- Approach extensible to MIMO (Multiple Input Multiple Output) systems
- Switching networks can be analyzed too
- Hybrid Systems (discrete and continuous mixture)
- System (plant & controller) can be designed to be contractive
- Observer can be designed to be contractive in conjunction with the plant
- The rate of convergence is bounded by λ_{max}
- Contractive systems are robust, temporal disturbances vanish exponentially

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

Possible Connections are:

One-way coupling

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling
- Parallel

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling
- Parallel
- Hierarchies

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling
- Parallel
- Hierarchies
- Feedback

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling
- Parallel
- Hierarchies
- Feedback
- and others

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

- One-way coupling
- Two-way coupling
- Parallel
- Hierarchies
- Feedback
- and others

Interesting questions raises:

Does the property of contraction hold for bigger systems built out of contractive systems? \rightarrow the answer is yes!

Possible Connections are:

- One-way coupling
- Two-way coupling
- Parallel
- Hierarchies
- Feedback
- and others

Note: They can be combined and applied recursively!

We have two systems:

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)$$

 $\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, t) + \mathbf{u}(\mathbf{x}_1) - \mathbf{u}(\mathbf{x}_2)$

- \bullet \mathbf{f}_1 and \mathbf{f}_1 are the dynamics of uncoupled oscillators.
- $\mathbf{u}(\mathbf{x}_1) \mathbf{u}(\mathbf{x}_2)$ is the coupling force.

We have two systems:

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)
\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, t) + \mathbf{u}(\mathbf{x}_1) - \mathbf{u}(\mathbf{x}_2)$$

- $lackbox{\bf f}_1$ and $lackbox{\bf f}_1$ are the dynamics of uncoupled oscillators.
- $\mathbf{u}(\mathbf{x}_1) \mathbf{u}(\mathbf{x}_2)$ is the coupling force.

if $\mathbf{f} - \mathbf{u}$ is contracting then $\mathbf{x}_1 \to \mathbf{x}_2$ exponentially regardless of initial condition. This is interesting when the two systems are two (or more) oscillators \to they synchronize!

We have two systems:

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)
\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, t) + \mathbf{u}(\mathbf{x}_1) - \mathbf{u}(\mathbf{x}_2)$$

- \mathbf{f}_1 and \mathbf{f}_1 are the dynamics of uncoupled oscillators.
- $\mathbf{u}(\mathbf{x}_1) \mathbf{u}(\mathbf{x}_2)$ is the coupling force.

if $\mathbf{f} - \mathbf{u}$ is contracting then $\mathbf{x}_1 \to \mathbf{x}_2$ exponentially regardless of initial condition. This is interesting when the two systems are two (or more) oscillators \to they synchronize!

Simple proof:

The second subsystem, with $\mathbf{u}(\mathbf{x}_1)$ as input, is contracting, and $\mathbf{x}_1(t) = \mathbf{x}_2(t)$ is a particular solution.

We have two systems:

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)
\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, t) + \mathbf{u}(\mathbf{x}_1) - \mathbf{u}(\mathbf{x}_2)$$

- \mathbf{f}_1 and \mathbf{f}_1 are the dynamics of uncoupled oscillators.
- $\mathbf{u}(\mathbf{x}_1) \mathbf{u}(\mathbf{x}_2)$ is the coupling force.

if $\mathbf{f} - \mathbf{u}$ is contracting then $\mathbf{x}_1 \to \mathbf{x}_2$ exponentially regardless of initial condition. This is interesting when the two systems are two (or more) oscillators \to they synchronize!

Simple proof:

The second subsystem, with $\mathbf{u}(\mathbf{x}_1)$ as input, is contracting, and $\mathbf{x}_1(t) = \mathbf{x}_2(t)$ is a particular solution.

This can be used to extent networks with chain or tree structures.

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

More Oscillator Couplings and Nonlinear Networks are possible:

It is possible to design the coupling to have contractive behavior and therefore synchronization.

Oscillator Death"

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

More Oscillator Couplings and Nonlinear Networks are possible:

- "Oscillator Death"
- Networks with special symmetry

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

More Oscillator Couplings and Nonlinear Networks are possible:

- "Oscillator Death"
- Networks with special symmetry
- Shutoff of synchrony by just one inhibitory link (fast inhibition)

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

More Oscillator Couplings and Nonlinear Networks are possible:

- "Oscillator Death"
- Networks with special symmetry
- Shutoff of synchrony by just one inhibitory link (fast inhibition)
- Leader Following (and even different leaders of arbitrary dynamics can define different group primitives)

We have two systems coupled like:

$$\dot{\mathbf{x}}_1 - \mathbf{h}(\mathbf{x}_1, t) = \dot{\mathbf{x}}_2 - \mathbf{h}(\mathbf{x}_2, t)$$

if h is contracting then x_1 and x_2 will converge exponentially regardless of initial condition. Again interesting for two (or more) oscillators \rightarrow they synchronize!

More Oscillator Couplings and Nonlinear Networks are possible:

- "Oscillator Death"
- Networks with special symmetry
- Shutoff of synchrony by just one inhibitory link (fast inhibition)
- Leader Following (and even different leaders of arbitrary dynamics can define different group primitives)
- and many other case

Parallel Connection

Two systems

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)$$

$$\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_2, t)$$

Parallel Connection

Two systems

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)$$

$$\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_2, t)$$

and virtual dynamics

$$\delta \dot{\mathbf{z}}_1 = \mathbf{F}_1 \delta \mathbf{z}$$

$$\delta \dot{\mathbf{z}}_2 = \mathbf{F}_2 \delta \mathbf{z}$$

Parallel Connection

Two systems

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, t)$$

$$\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_2, t)$$

and virtual dynamics

$$\delta \dot{\mathbf{z}}_1 = \mathbf{F}_1 \delta \mathbf{z}$$

$$\delta \dot{\mathbf{z}}_2 = \mathbf{F}_2 \delta \mathbf{z}$$

So we have a linear combination $\frac{d}{dt}\delta\mathbf{z}=\sum_{i}\alpha_{i}(t)\frac{d}{dt}\delta\mathbf{z}_{i}$ and combined system is contractive again with $\alpha_{i}>0$ and same metric.

Parallel Connection Example

Example

Control Primitives with biological control inputs:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) + \sum_{i} \alpha_{i}(t)\phi_{i}(\mathbf{x}, t)$$

Parallel Connection Example

Example

Control Primitives with biological control inputs:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t) + \sum_i lpha_i(t) \phi_i(\mathbf{x},t)$$

Dynamics \mathbf{f} and primitives ϕ_i all contracting in the same $\mathbf{\Theta}(\mathbf{x})$ and $\alpha_i(t) > 0$ then the whole system is contractive.

Parallel Connection Example

Example

Control Primitives with biological control inputs:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) + \sum_{i} \alpha_{i}(t)\phi_{i}(\mathbf{x}, t)$$

Dynamics \mathbf{f} and primitives ϕ_i all contracting in the same $\mathbf{\Theta}(\mathbf{x})$ and $\alpha_i(t) > 0$ then the whole system is contractive.

<u>Note:</u> in general a time-varying combination of stable systems does not have to be stable!

Hierarchical Combination

Consider following virtual dynamics

$$\frac{d}{dt} \left(\begin{array}{c} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{array} \right) = \left(\begin{array}{cc} \mathbf{F}_{11} & \mathbf{0} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{array} \right) \left(\begin{array}{c} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{array} \right)$$

and assume the \mathbf{F}_{21} is bounded and \mathbf{F}_{11} and \mathbf{F}_{22} are uniformly negative definite.

Hierarchical Combination

Consider following virtual dynamics

$$\frac{d}{dt} \left(\begin{array}{c} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{array} \right) = \left(\begin{array}{cc} \mathbf{F}_{11} & \mathbf{0} \\ \mathbf{F}_{21} & \mathbf{F}_{22} \end{array} \right) \left(\begin{array}{c} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{array} \right)$$

and assume the \mathbf{F}_{21} is bounded and \mathbf{F}_{11} and \mathbf{F}_{22} are uniformly negative definite.

Simple Proof:

The first equation does not depend on the second one and is contractive. $\mathbf{F}_{21}\delta(z)_2$ represents an exponentially decaying disturbance for the second equation. Thus the whole system converges to a single trajectory.

Examples Hierarchies

Example

Again Motion Primitives:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) + \sum_{i} \alpha_{i}(t) \phi_{i}(\mathbf{x}, t)$$

the $\alpha_i(t)$ could be outputs of contracting systems of higher up. Again we can guarantee contraction.

Examples Hierarchies

Example

Again Motion Primitives:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) + \sum_{i} \alpha_{i}(t) \phi_{i}(\mathbf{x}, t)$$

the $\alpha_i(t)$ could be outputs of contracting systems of higher up. Again we can guarantee contraction.

Example

Typical hierarchical processes are chemical chain reactions.

$$\dot{\mathbf{x}} = q(t)(\mathbf{x}_f - \mathbf{x}) + \mathbf{N}\mathbf{r}$$

with **N** the reaction rate coefficients, $\mathbf{x} = (c_1 \dots c_{n-1} T)$ with c_i the chemical concentrations and temperature T, \mathbf{x}_f the corresponding feed vector, q(t) the specific volume flow and r_i the normalized reaction rates.

Examples Hierarchies

Example

Again Motion Primitives:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) + \sum_{i} \alpha_{i}(t) \phi_{i}(\mathbf{x}, t)$$

the $\alpha_i(t)$ could be outputs of contracting systems of higher up. Again we can guarantee contraction.

Example

Typical hierarchical processes are chemical chain reactions.

$$\dot{\mathbf{x}} = q(t)(\mathbf{x}_f - \mathbf{x}) + \mathbf{N}\mathbf{r}$$

with **N** the reaction rate coefficients, $\mathbf{x} = (c_1 \dots c_{n-1} T)$ with c_i the chemical concentrations and temperature T, \mathbf{x}_f the corresponding feed vector, q(t) the specific volume flow and r_i the normalized reaction rates.

Following linear matrix inequalities have to be solved for ${f M}>{f 0}$

$$\forall i, j \qquad \mathbf{N}_{ij}^T \mathbf{M} + \mathbf{M} \mathbf{N}_{ij} \leq 0$$

Feedback Connection

Two systems

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, \mathbf{x}_2, t)$$

 $\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, \mathbf{x}_2, t)$

in the feedback combination

$$\frac{d}{dt} \begin{pmatrix} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{F}_1 & \mathbf{G} \\ -\mathbf{G}^T & \mathbf{F}_2 \end{pmatrix}$$

The augmented system is contracting if and only if the separated plants are contracting and under the rather mild assumption:

$$F_2 < G^T F_1^{-1} G$$

Feedback Connection

Two systems

$$\dot{\mathbf{x}}_1 = \mathbf{f}_1(\mathbf{x}_1, \mathbf{x}_2, t)$$

$$\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, \mathbf{x}_2, t)$$

in the feedback combination

$$\frac{d}{dt} \begin{pmatrix} \delta \mathbf{z}_1 \\ \delta \mathbf{z}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{F}_1 & \mathbf{G} \\ -\mathbf{G}^T & \mathbf{F}_2 \end{pmatrix}$$

The augmented system is contracting if and only if the separated plants are contracting and under the rather mild assumption:

$$\mathbf{F}_2 < \mathbf{G}^T \mathbf{F}_1^{-1} \mathbf{G}$$

Note: We can usually choose the connection matrix G!

Pros

■ Contraction theory is applicable for a wide range of nonlinear systems

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction
- Time delays can be incorporated

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction
- Time delays can be incorporated

Pros

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction
- Time delays can be incorporated

Cons

It is not always easy to find the right metric **M**.

200

Pros

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction
- Time delays can be incorporated

Cons

- It is not always easy to find the right metric M.
- It is not trivial to prove negative definiteness of big matrices .

Pros

- Contraction theory is applicable for a wide range of nonlinear systems
- Contraction theory can be used to design contractive systems
- Synchronization of complex networks can be assured by contraction theory
- The property of contraction holds over a wide range of possible combinations (under some assumption) - Modularity!
- One can mix different classes of nonlinear systems and still assure contraction
- Time delays can be incorporated

Cons

- It is not always easy to find the right metric M.
- It is not trivial to prove negative definiteness of big matrices .
- Lohmiller and Slotine do not show the problems hard to see what else could be a problem.

For Further Reading

Winfried Lohmiller and Jean-Jacques E. Slotine

On contraction analysis for non-linear systems.

Automatica Vol.34, p683-696, 1998.

J. J. Slotine and W. Lohmiller

Modularity, evolution, and the binding problem: a view from stability theory.

Neural Networks, Vol 14, p137-145, 2001

Wei Wang and Jean-Jacques E Slotine

On partial contraction analysis for coupled nonlinear oscillators.

Biol Cyber, Vol 92, p38-53, 2005

Jean-Jacques E Slotine

Talk about Contraction Theory hold at FIAS Summer School, Theoretical Neuroscience & Complex Systems, Frankfurt, D, August 2007.

can be found in our pdf archive

Winfried Lohmiller and Jean-Jacques E. Slotine Nonlinear Proces Control using Contraction Theory.

AIChE Journal, Vol 46, Nr:3, p588-596, 2000

