第一届八一赛数学组 B 类试题解析

- 1. (本题 15 分) 若 P 为直线 $l: x-2=\frac{y-3}{2}=\frac{z-1}{3}$ 上一点,从 P 点引椭球面 $C: 2x^2+3y^2+4z^2=1$ 的切线,切点构成的曲线 Γ 与 l 平行,求 P 点的坐标.
- **解:** 设点 P 坐标为 (x_1, y_1, z_1) ,椭球面 C 上任意一点 $Q(x_0, y_0, z_0)$ 的法向量为 $(4x_0, 6y_0, 8z_0)$,从 而 Q 处的切线方程为:

$$(x - x_0) \cdot 4x_0 + (y - y_0) \cdot 6y_0 + (z - z_0) \cdot 8z_0 = 0$$

即 $2x_0x + 3y_0y + 4z_0z = 1$. 若该切线经过 P 点,则有 $2x_0x_1 + 3y_0y_1 + 4z_0z_1 = 1$,也就是说从 P 点引出的切线与椭球面 C 的切点必然属于平面 $\pi: 2x_1x + 3y_1y + 4z_1z = 1$.

于是 Σ 为平面 π 与椭球面 C 的交线, Γ 与 l 平行等价于 π 与 l 平行. 从而有

$$2x_1 \cdot 1 + 3y_1 \cdot 2 + 4z_1 \cdot 3 = 0$$

令 $x_1 - 2 = \frac{y_1 - 3}{2} = \frac{z_1 - 1}{3} = t$,代入上面式子得到 2(2 + t) + 6(3 + 2t) + 12(1 + 3t) = 0,解得 $t = -\frac{17}{25}$,即 P 的坐标为 $\left(\frac{33}{25}, \frac{41}{25}, -\frac{26}{25}\right)$.

2. (本题 15 分) 设 $A \in m \times n$, $A^H A$ 的 n 个特征值为 $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_n^2$. 证明:

$$\sigma_k^2 = \max_{C_k} \min_{x \in C_k, x \neq 0} \frac{x^H A^H A x}{x^H x}$$

其中 C_k 为 n 维线性空间 C^n 的任意 k 维子空间, A^H 为 A 的共轭转置矩阵.

证明: 记 $B = A^H A$,则 B 为 Hermite 矩阵. 首先证明一个 n 阶 Hermite 矩阵 H 的特征值 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ 满足 $\lambda_1 \ge \frac{x^H H x}{x^H x} \ge \lambda_n$.

记 $R(x)=\frac{x^HHx}{x^Hx}, U=(u_1,u_2,,u_n)$,其中 u_k 为 λ_k 对应的特征向量且 U 为酉矩阵,则 n 维非零

向量
$$x$$
 可以由 (u_1,u_2,\cdots,u_n) 表示为 $x=U\alpha$,其中 $\alpha=\begin{bmatrix} \alpha_1\\\alpha_2\\\vdots\\a_n\end{bmatrix}$ 是一个常数向量.

因此

$$x^{H}x = \alpha^{H}U^{H}U\alpha = \sum_{i=1}^{n} |\alpha_{i}|^{2}, x^{H}Hx = \alpha^{H}U^{H}HU\alpha = \alpha^{H}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} \alpha = \sum_{i=1}^{n} \lambda_{i} |\alpha_{i}|^{2}$$

即
$$R(x) = \frac{\sum_{i=1}^{n} \lambda_i |\alpha_i|^2}{\sum_{i=1}^{n} |\alpha_i|^2}$$
, 显然满足 $\lambda_1 \geqslant \frac{x^H H x}{x^H x} \geqslant \lambda_n$.

记由 u_1,u_2,u_k 生成的子空间为为 V_k , u_k,u_{k+1},u_n 生成的子空间为 V_{n-k+1} ,显然当 $x\in V_k$ 时, $\lambda_1\geqslant R(x)\geqslant \lambda_k, x=u_1$ 时左侧不等式等号成立, $x=u_1$ 时右侧不等式等号成立。因此我们有 $\lambda_k=\min_{x\in V_k,x\neq 0}R$,同理我们能得到 $\lambda_k=\max_{x\in V_{C-k+1},x\neq 0}R(x)$.

下利用以上结论来证明 $\lambda_k = \max_{C_k} \min_{x \in C_k, x \neq 0} \frac{\|Ax\|_2^2}{\|x\|_2^2}$,注意 C_k 为 n 维线性空间 C^n 的任意 k 维子空间,显然 $C_k \cap V_{n-k+1} \neq \emptyset$ (两个空间维度之和为 n+1).

设 $z \subset C_k \cap V_{n-k+1}$,因为 $\lambda_k = \max_{x \in V_{n-k+1}, x \neq 0} R(x)$,所以 $R(z) \leq \lambda_k$. 由于 $x \in C_k$,显然 $\min_{x \in C_k, x \neq 0} R(x) \leq R(z) \leq \lambda_k$,由 C_k 的任意性,我们有 $\max_{C_k} \min_{x \in C_k, x \neq 0} R(x) \leq \lambda_k$.

与此同时利用第一步得到的结论: $\lambda_k = \min_{x \in V_k, x \neq 0} R(x)$, 我们有 $\lambda_k \leq \max_{C_k} \min_{x \in C_k, x \neq 0} R(x)$.

综合上面两个式子,我们有 $\lambda_k = \max_{C_k} \min_{x \in C_k, x \neq 0} R(x)$,因此 $\sigma_k^2 = \max_{C_k} \min_{x \in C_k, x \neq 0} \frac{x^H A^H A x}{x^H x}$ 得证.

3. (本题 20 分) 设矩阵 $A=\begin{pmatrix}Q_1&Q_2\\Q_3&Q_4\end{pmatrix}\in M_{2n\times 2n}\left(\mathbb{R}\right)$ 满足

$$A^T A = I_{2n}, A^T \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} A = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

其中 $Q_1, Q_2, Q_3, Q_4 \in M_{n \times n}(\mathbb{R})$. 证明: $B = Q_1 + iQ_2$ 是酉矩阵 (即 $\overline{B}^T B = I_n$)

证明: 由 $A^TA = I_{2n}$ 得 $AA^T = I_{2n}$,则有

$$A \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} = AA^T \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} A = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} A$$

代入
$$A = \begin{pmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{pmatrix}$$
 得

$$\begin{pmatrix} -Q_2 & Q_1 \\ -Q_4 & Q_3 \end{pmatrix} = \begin{pmatrix} Q_3 & Q_4 \\ -Q_1 & -Q_2 \end{pmatrix}$$

所以有
$$Q_1 = Q_4, Q_2 = -Q_3$$
, 也就有 $A = \begin{pmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{pmatrix}$

因此根据 $A^T A = I_n$ 得

$$Q_1^T Q_1 + Q_2^T Q_2 = I_n$$
, $Q_1^T Q_2 - Q_2^T Q_1 = 0$

则有

$$\overline{B}^{T}B = (Q_{1}^{T} - iQ_{2}^{T})(Q_{1} + iQ_{2}) = (Q_{1}^{T}Q_{1} + Q_{2}^{T}Q_{2}) + i(Q_{1}^{T}Q_{2} - Q_{2}^{T}Q_{1}) = I_{n}$$

即证.

- 4. (本题 15 分) 设 $f(x) = \sum_{n=1}^{\infty} ne^{-n} \cos nx$, 求证
 - $(1) \max_{0 \le x \le 2\pi} |f(x)| \ge \frac{2}{e};$
 - (2) f'(x) 存在;
 - $(3) \max_{0 \le x \le 2\pi} \left| f'(x) \right| \ge \frac{2}{\pi e}$

☞ 证明:

$$f(0) = \sum_{n=1}^{\infty} ne^{-n} = \frac{1}{e} + \sum_{n=2}^{\infty} ne^{-n} \ge \frac{1}{e} + 2\sum_{n=2}^{\infty} e^{-n} = \frac{1}{e} \left(1 + \frac{2}{e-1} \right) > \frac{2}{e}$$

即

$$\max_{0 \le x \le 2\pi} |f(x)| \ge |f(0)| > \frac{2}{e}$$

(2) 由于级数

$$\sum_{n=1}^{\infty} (ne^{-n}\cos nx)' = -\sum_{n=1}^{\infty} n^2 e^{-n}\sin nx$$

在实数轴上一致收敛,所以 f'(x) 存在且连续,可表示为 $f'(x) = -\sum_{n=1}^{\infty} n^2 e^{-n} \sin nx$

(3) 由贝塞尔不等式

$$\int_0^{2\pi} |f'(x)|^2 dx = \sum_{n=1}^{\infty} \pi n^2 e^{-2n} > \frac{\pi}{e^2}$$

又设 $|f'(x_0)|^2 = \max_{0 \le x \le 2\pi} |f'(x)|^2$,则

$$|f'(x_0)|^2 \ge \frac{1}{2\pi} \int_0^{2\pi} |f'(x)|^2 dx \ge \frac{1}{2e^2}$$

从而 $\max_{0 \le x \le 2\pi} |f'(x)| \ge \frac{1}{\sqrt{2}e} > \frac{2}{\pi e}$.

5. 已知正项级数 $\sum_{k=1}^{\infty} \frac{1}{a_k}$ 收敛, 常数 p > 0, 证明: 级数 $\sum_{k=1}^{\infty} \frac{k^{p+1}}{a_1 + 2^p a_2 + \dots + k^p a_k}$ 也收敛.

™ 证明: 首先由 Cauchy 不等式得

$$(a_1 + 2^p a_2 + \dots + k^p a_k) \left(\frac{1}{a_1} + \frac{2^{2p+2}}{a_2} + \dots + \frac{k^{2p+2}}{a_k} \right) \ge \left(\sum_{i=1}^k i^{\frac{3}{2}p+1} \right)^2.$$

注意到
$$\sum_{i=1}^{k} i^{\alpha} > \int_{0}^{k} x^{\alpha} dx = \frac{k^{\alpha+1}}{\alpha+1}$$
, 因此

$$\frac{k^{p+1}}{a_1 + 2^p a_2 + \dots + k^p a_k} \le \frac{k^{p+1}}{\left(\sum_{i=1}^k i^{\frac{3}{2}p+1}\right)^2} \left(\frac{1}{a_1} + \frac{2^{2p+2}}{a_2} + \dots + \frac{k^{2p+2}}{a_k}\right) \\
< \frac{k^{p+1}}{\left(\frac{k^{\frac{3}{2}p+2}}{\frac{3}{2}p+2}\right)^2} \left(\frac{1}{a_1} + \frac{2^{2p+2}}{a_2} + \dots + \frac{k^{2p+2}}{a_k}\right) < \frac{\left(\frac{3}{2}p+2\right)^2}{k^{2p+3}} \left(\frac{1}{a_1} + \frac{2^{2p+2}}{a_2} + \dots + \frac{k^{2p+2}}{a_k}\right)$$

因此

$$\begin{split} \sum_{k=1}^{n} \frac{k^{p+1}}{\sum_{i=1}^{k} i^{p} a_{i}} < \sum_{k=1}^{n} \frac{\left(\frac{3}{2}p+2\right)^{2}}{k^{2p+3}} \sum_{i=1}^{k} \frac{i^{2p+2}}{a_{i}} &= \left(\frac{3}{2}p+2\right)^{2} \sum_{i=1}^{n} \frac{i^{2p+2}}{a_{i}} \sum_{k=i}^{n} \frac{1}{k^{2p+3}} \\ < \left(\frac{3}{2}p+2\right)^{2} \sum_{i=1}^{n} \frac{i^{2p+2}}{a_{i}} \sum_{k=i}^{\infty} \frac{1}{k^{2p+3}} < \left(\frac{3}{2}p+2\right)^{2} \sum_{i=1}^{n} \frac{i^{2p+2}}{a_{i}} \int_{i-1}^{+\infty} \frac{\mathrm{d}x}{x^{2p+3}} \\ < \left(\frac{3}{2}p+2\right)^{2} \left(\sum_{i=2}^{n} \frac{i^{2p+2}}{a_{i}} \int_{i-1}^{+\infty} \frac{\mathrm{d}x}{x^{2p+3}} + \frac{1}{a_{1}} \sum_{k=1}^{\infty} \frac{1}{k^{2p+3}} \right) \end{split}$$

其中

$$\sum_{i=2}^{n} \frac{i^{2p+2}}{a_i} \int_{i-1}^{+\infty} \frac{\mathrm{d}x}{x^{2p+3}} = \sum_{i=2}^{n} \left(\frac{i}{i-1}\right)^{2p+2} \frac{1}{a_i} < 2^{2p+2} \sum_{i=2}^{n} \frac{1}{a_i}$$

$$\bar{m} \sum_{k=1}^{\infty} \frac{1}{k^{2p+3}} \text{ which } k \to \infty \text{ Images} \sum_{k=1}^{\infty} \frac{k^{p+1}}{a_1 + 2^p a_2 + \dots + k^p a_k} \text{ which } k \to \infty$$

6. (1) 若 $r \in (-1,1)$, 对 $\forall \theta \in \mathbb{R}$, 试证:

$$\frac{1 - r^2}{1 - 2r\cos\theta + r^2} = 1 + 2\sum_{k=1}^{+\infty} r^k \cos k\theta$$

(2) 设 $x \in \mathbb{R}$ 使得 $f(x^+) = f(x^-)$ 存在, 试证:

$$\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r^{2}}{1 - 2r \cos(x - t) + r^{2}} f(t) dt = \frac{1}{2} \left[f(x^{+}) + f(x^{-}) \right]$$

若 f 在 \mathbb{R} 上连续, 试证此收敛关于 $x \in \mathbb{R}$ 是一致的.

☞ 证明:

(1) 由于 |r| < 1 且 $\left| r^k e^{in\theta} \right| = |r|^k$,故函数项级数 $\sum r^k e^{ik\theta}$ 在 $\mathbb R$ 上一致收敛,且有

$$\begin{split} \sum_{k=1}^{+\infty} r^k e^{ik\theta} &= \frac{re^{i\theta}}{1 - re^{i\theta}} = \frac{r\cos\theta + ir\sin\theta}{1 - r\cos\theta - ir\sin\theta} = \frac{\left(r\cos\theta + ir\sin\theta\right)\left(1 - r\cos\theta + ir\sin\theta\right)}{\left(1 - r\cos\theta\right)^2 + r^2\sin^2\theta} \\ &= \frac{r\cos\theta\left(1 - r\cos\theta\right) - r^2\sin^2\theta + i\left(r^2\sin\theta\cos\theta + r\sin\theta\left(1 - r\cos\theta\right)\right)}{\left(1 - r\cos\theta\right)^2 + r^2\sin^2\theta} \end{split}$$

因此

$$\operatorname{Re}\left(\sum_{k=1}^{+\infty} r^k e^{in\theta}\right) = \frac{r\cos\theta - r^2}{(1 - r\cos\theta)^2 + r^2\sin^2\theta} = \frac{r\cos\theta - r^2}{1 - 2r\cos\theta + r^2}$$

即

$$1 + 2\sum_{k=1}^{+\infty} r^k \cos k\theta = 1 + 2\operatorname{Re}\left(\sum_{k=1}^{+\infty} r^k e^{ik\theta}\right) = 1 + \frac{2\left(r\cos\theta - r^2\right)}{1 - 2r\cos\theta + r^2} = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}$$

或者一步到位, 由于

$$\frac{1 + re^{i\theta}}{1 - re^{i\theta}} = \left(1 + re^{i\theta}\right) \sum_{k=0}^{\infty} r^k e^{ik\theta} = \sum_{k=0}^{\infty} \left(r^k e^{ik\theta} + r^{k+1} e^{i(k+1)\theta}\right) = 1 + 2 \sum_{k=1}^{\infty} r^k e^{ik\theta}$$

即

$$\frac{1-r^2}{1-2r\cos\theta+r^2} = \operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right) = 1 + 2\sum_{k=1}^{\infty} r^k \cos k\theta$$

(2) 令 $P_{r}(\theta) = \frac{1-r^{2}}{1-2r\cos\theta+r^{2}}$, 不难证明 $P_{r}(\theta)$ 是一个单位逼近, 即它具有下述两个性质:

•
$$P_1: \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta) d\theta = 1;$$

•
$$P_2: \forall \delta \in [0,\pi], \lim_{r \to 1^-} P_r(\theta) = 0$$
 关于 $\theta \in [-\pi,-\delta] \cup [\delta,\pi]$ 一致成立.

利用上述两性质以及 f 的 2π 周期性,则有

$$I = \left| \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r^{2}}{1 - 2r \cos(x - t) + r^{2}} f(t) dt - \frac{1}{2} \left[f(x^{+}) + f(x^{-}) \right] \right|$$

$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) P_{r}(x - t) dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left[f(x^{+}) + f(x^{-}) \right] P_{r}(t) dt \right|$$

$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) P_{r}(t) dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left[f(x^{+}) + f(x^{-}) \right] P_{r}(t) dt \right|$$

$$= \frac{1}{2\pi} \left| \int_{0}^{\pi} \left[f(x + t) + f(x - t) \right] P_{r}(t) dt - \int_{0}^{\pi} \left[f(x^{+}) + f(x^{-}) \right] P_{r}(t) dt \right|$$

$$\leq \frac{1}{2\pi} \int_{0}^{\pi} \left| f(x + t) - f(x^{+}) \right| P_{r}(t) dt + \frac{1}{2\pi} \int_{0}^{\pi} \left| f(x - t) - f(x^{-}) \right| P_{r}(t) dt \right|$$

$$\leq \frac{1}{2\pi} \left| \int_{0}^{\delta} \left| f(x + t) - f(x^{+}) \right| P_{r}(t) dt + \int_{0}^{\delta} \left| f(x - t) - f(x^{-}) \right| P_{r}(t) dt \right|$$

$$+ \frac{1}{2\pi} \left| \int_{\delta}^{\pi} \left| f(x + t) - f(x^{+}) \right| P_{r}(t) dt + \int_{\delta}^{\pi} \left| f(x - t) - f(x^{-}) \right| P_{r}(t) dt \right|$$

因为 $\lim_{t\to 0^+} f(x+t) = f\left(x^+\right)$, $\lim_{t\to 0^+} f(x-t) = f\left(x^-\right)$, 即对 $\forall \varepsilon > 0, \exists \delta_x > 0$ 使得 $\forall t \in [0,\delta_x]$, $\left|f(x+t) - f\left(x^+\right)\right| < \varepsilon$, $\left|f(x-t) - f\left(x^-\right)\right| < \varepsilon$. 于是对 $\delta_x > 0$ 有

$$\int_{0}^{\delta_{x}} \left| f\left(x+t\right) - f\left(x^{+}\right) \right| P_{r}\left(t\right) dt + \int_{0}^{\delta_{x}} \left| f\left(x-t\right) - f\left(x^{-}\right) \right| P_{r}\left(t\right) dt$$

$$< \varepsilon \left(\int_{0}^{\delta_{x}} P_{r}\left(t\right) dt + \int_{0}^{\delta_{x}} P_{r}\left(t\right) dt \right) < 2\pi\varepsilon$$

另外根据性质 $P_2, \forall \varepsilon > 0, \exists \eta > 0$ 使得: $\forall r \in [1 - \eta, 1], \forall t \in [\delta_x, \pi] \Rightarrow 0 < P_r(t) < \varepsilon$,若令 $M = \sup_{t \in \mathbb{P}} |f(t)|$,则 $M < +\infty$,于是 $\forall r \in [1 - \eta, 1]$ 有

$$\begin{split} &\int_{\delta_{x}}^{\pi} \left| f\left(x+t\right) - f\left(x^{+}\right) \right| P_{r}\left(t\right) dt + \int_{\delta_{x}}^{\pi} \left| f\left(x-t\right) - f\left(x^{-}\right) \right| P_{r}\left(t\right) dt \\ &< \varepsilon \left(\int_{\delta_{x}}^{\pi} \left(M + \left| f\left(x^{+}\right) \right| \right) dt + \int_{\delta_{x}}^{\pi} \left(M + \left| f\left(x^{-}\right) \right| \right) dt \right) < 2\pi\varepsilon \left(M + \left| f\left(x^{+}\right) \right| + \left| f\left(x^{-}\right) \right| \right) \end{split}$$

因此 $\forall r \in [1-\eta,1]$, 则有

$$\left|\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1-r^{2}}{1-2r\cos\left(x-t\right)+r^{2}} f\left(t\right) \mathrm{d}t - \frac{1}{2} \left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]\right| < \varepsilon + \left(M+\left|f\left(x^{+}\right)\right|+\left|f\left(x^{-}\right)\right|\right) \varepsilon$$

即证

$$\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 - r^{2}}{1 - 2r \cos(x - t) + r^{2}} f(t) dt = \frac{1}{2} \left[f(x^{+}) + f(x^{-}) \right]$$

若 f 在 \mathbb{R} 上连续,则有 $f(x^+) = f(x^-) = f(x)$. 由于 f 的 2π 周期性,故 f 在 \mathbb{R} 上是一致连续的,即 $\forall \varepsilon > 0, \exists \delta > 0, \forall t \in \mathbb{R}$ 且 $|t| < \delta, \forall x \in \mathbb{R}$,有

$$|f(x+t) - f(x)| < \varepsilon, |f(x-t) - f(x)| < \varepsilon$$

因此用 δ 代换上述证明中的 δ_x ,用 M 代换 $|f(x^+)|$ 与 $|f(x^-)|$,即可推出极限

$$\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(x - t) + r^2} f(t) dt = f(x)$$

关于 $x \in \mathbb{R}$ 是一致的.