Matemática Discreta

5^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Relações de equivalência

Partições

Funções

Relações de equivalência

Definição (de relação de equivalência)

Uma relação binária diz-se uma relação de equivalência se é reflexiva, simétrica e transitiva.

Exemplos:

- A relação $\mathcal{R} = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$ é uma relação de equivalência em $A = \{a, b, c\}$.
- A relação
 ^R definida por x
 ^R y se x − y é divisível por 2 é uma relação de equivalência em
 ^Z.

Definição (de classe de equivalência)

Se \mathcal{R} é uma relação de equivalência definida em A e $x \in A$, então o subconjunto $[x]_{\mathcal{R}} = \{y \in A : (x,y) \in \mathcal{R}\}$ diz-se a classe de equivalência de x e x um seu representante (quando não existem dúvidas em relação a \mathcal{R} , essa classe denota-se, simplesmente, por [x]).

Matemática Discreta

Relações de equivalência

Propriedades

Teorema

Se \mathcal{R} é uma relação de equivalência definida num conjunto A, então

- 1) $[a] \neq \emptyset$, para todo $a \in A$;
- 2) $a \mathcal{R} b \Leftrightarrow [a] = [b]$, para todos $a, b \in A$;
- 3) $A = \bigcup_{a \in A} [a].$

Definição (de conjunto quociente)

Sendo \mathcal{R} uma relação de equivalência definida num conjunto A, o conjunto das classes de equivalência de A designa-se por conjunto quociente e denota-se por A/\mathcal{R} , ou seja,

$$A/\mathcal{R} = \{[x] : x \in A\}$$

Partições

Partições

Definição (de partição de um conjunto)

Se A é um conjunto não vazio, então uma colecção de subconjuntos $P \subseteq \mathcal{P}(A)$ tal que

- 1) $S \neq \emptyset$, para todo $S \in P$;
- 2) $S_1 \neq S_2 \Rightarrow S_1 \cap S_2 = \emptyset$, quaisquer que sejam $S_1, S_2 \in P$;
- 3) $A = \bigcup_{S \in P} S$.

diz-se uma partição de A.

Nota: os elementos de uma partição *P* designam-se por blocos de *P*.

Matemática Discreta

Partições

Partições e conjuntos quociente

Teorema

Se \mathcal{R} é uma relação de equivalência definida num conjunto não vazio A, então o conjunto quociente A/\mathcal{R} é uma partição de A.

Teorema

Seja P uma partição de um conjunto não vazio A e \mathcal{R} a relação definida por x \mathcal{R} y se e só se x e y pertencem ao mesmo bloco de P. Então \mathcal{R} é uma relação de equivalência em A.

Nas condições do teorema anterior, diz-se que \mathcal{R} é a relação induzida pela partição P.

Função, conjunto de partida e conjunto de chegada

Definição (de função)

Sejam $A \in B$ dois conjuntos e $f \subseteq A \times B$ uma relação entre $A \in B$. Se, para todo $x \in A$ existe um e um só $y \in B$ tal que $(x, y) \in f$, diz-se que f é uma função definida em A e imagem em B. Nestas condições A designa-se conjunto de partida e B conjunto de chegada.

- Usualmente escreve-se: f(x) = y, em vez de $(x, y) \in f$.
- Também se escreve $f: A \rightarrow B$ ou

$$f: A \rightarrow B$$

 $x \mapsto f(x)$

para significar que f é uma uma função definida em A e com imagem em B.

Matemática Discreta

L Funções

Exemplo

Exemplo: De entre as relações binárias entre $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$ a seguir indicadas, vamos determinar as que são funções.

- 1) $f = \{(1, a), (2, a), (3, b)\}.$
- 2) $g = \{(1, a), (2, c), (3, d), (2, b)\}.$
- 3) $h = \{(1, a), (2, b)\}.$

Funções injectivas, sobrejectivas e bijectivas

Uma função $f: A \rightarrow B$ diz-se

injectiva se

$$f(x) = f(y) \Rightarrow x = y$$
, quaisquer que sejam $x, y \in A$;

sobrejectiva se

para todo
$$y \in B$$
 existe $x \in A$ tal que $f(x) = y$;

bijectiva se é injectiva e sobrejectiva.

Matemática Discreta

L Funções

Exemplos

Vamos classificar as funções a seguir indicadas quanto à injectividade e sobrejectividade.

1)
$$f: \mathbb{N} \rightarrow \mathbb{N}$$

 $n \mapsto 2n$

$$2) \quad g: \quad \mathbb{Z} \quad \to \quad \mathbb{N}$$

$$n \quad \mapsto \quad n^2$$

3)
$$h: \mathbb{R} \rightarrow \mathbb{R}$$
 $x \mapsto x^3$

4)
$$i: \mathbb{Z} \rightarrow \mathbb{N}$$
 definido por $i(n) = \begin{cases} 2n+1 & \text{se } n \geq 0 \\ -2n & \text{se } n < 0 \end{cases}$

Funções

Funções iguais

Definição (de igualdade de funções)

Duas funções f e g dizem-se iguais (e escreve-se f = g) se

- 1) dom(f) = dom(g) = D;
- 2) f(x) = g(x) para todo $x \in D$.

Exercício

De entre as funções a seguir indicadas, quais as que são iguais?

- 1) $f(x) = x^3 + x^2 x 1$, $x \in \mathbb{Z}$;
- 2) $g(x) = x^3 + x^2 x 1$, $x \in \mathbb{R}$;
- 3) $h(x) = (x^2 1)(x + 1), x \in \mathbb{R}.$

Matemática Discreta

L Funções

Imagem e imagem recíproca

Definição (de imagem e imagem recíproca)

Considere a função $f: A \rightarrow B$ e os subconjuntos $X \subseteq A$ e $Y \subseteq B$.

Designa-se imagem de X por f, o conjunto

$$f(X) = \{b \in B : f(x) = b, \text{ para algum } x \in X\}.$$

Por sua vez, img(f) = f(A).

Designa-se imagem recíproca de Y por f, o conjunto

$$f^{-1}(Y) = \{ a \in A : f(a) \in Y \}.$$

Nota: quando $Y = \{y\}$, escreve-se $f^{-1}(y)$ em vez de $f^{-1}(\{y\})$.

Imagem e imagem recíproca

Exercício

Considerando a função

$$g: \quad \mathbb{Z} \quad \to \quad \mathbb{N}$$

$$n \quad \mapsto \quad n^2$$

e os conjuntos $X_1 = \{-4, -3, -2, -1\}$ e $X_2 = \{1, 2, 3, 4\}$, determine:

- 1) $g(X_1)$;
- 2) $g(X_2)$;
- 3) $g^{-1}(X_2)$.

Matemática Discreta

L Funções

Referências bibliográficas

- ► Referência bibliográfica:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).