<u>Smart Car Price Prediction – Linear Regression</u>

Libraries Used

- pandas
- numpy
- matplotlib.pyplot
- seaborn
- sklearn.model_selection
- sklearn.linear model
- sklearn.metrics
- sklearn.preprocessing

Dataset

- <u>Dataset source:</u> Kaggle Car Price Prediction
- Contains features like Make, Model, Year, Transmission, Fuel Type, Mileage, and Engine Size.
- Target variable: Price

Preprocessing

Initial Approach: Label Encoding

- Used LabelEncoder for categorical features.
- Model performed decently but coefficient signs were illogical:
- For example, Make had a negative impact on price which didn't align with real-world expectations.

Fixed Approach: One-Hot Encoding

- Switched to pd.get dummies() for One-Hot Encoding.
- Coefficients now made logical sense:

Make \downarrow , Model \uparrow , Fuel Type \uparrow , Transmission \downarrow , Year \uparrow , Mileage \downarrow , Engine Size \uparrow

- Metrics:
 - MSE: 4,824,426 - R² Score: 0.818

Feature Importance Analysis

- Visualized feature importance using coefficient magnitudes.
- Found Year, Engine Size, and Mileage had the strongest effect.

Iterative Feature Testing

Features Used	MSE	R ² Score
Only Year	4,133,036	0.835
Year + Engine Size + Mileage	4,810,290	0.789
+ Model	4,689,777	0.843
+ Transmission	3,694,177	0.852
+ Make	4,381,645	0.849
+ Fuel Type	4,552,633	0.835
Final Features (Best combo):	4,645,040	0.833

<u>Note</u>: Although Make and Fuel Type showed high importance in the coefficient plot, they reduced performance and were therefore excluded from the final model.

Polynomial Regression (Tested and Discarded)

- Tried using polynomial features to model non-linear relationships.
- Result: Accuracy dropped. Polynomial features were not used further.

Final Model

- <u>Algorithm</u>: Linear Regression
- Final features: Year, Engine Size, Mileage, Model, Transmission
- R² Score: 0.843

Cross-Validation

• 5-Fold Cross-Validation results:

R² scores: [0.8204, 0.8063, 0.8332, 0.8413, 0.8554]

Average R²: 0.8313

• Indicates consistent and reliable performance across different data splits.

Conclusion

- One-Hot Encoding improved model interpretability and accuracy.
- Year, Engine Size, and Mileage are the key predictors.
- Final model achieves over 83% R² score with strong generalization.
- Dropping less effective features (despite visual importance) improved model performance.

Visualization

