V302

Brückenschaltung

Justus Weber Guy Lochny justus.weber@tu-dortmund.de guy.lochny@tu-dortmund.de

Durchführung: 03.12.2024 Abgabe: 10.12.2024

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziels	setzung	3							
2	The 2.1	orie Fehlerrechnung	3							
3	Dur	chführung	5							
	3.1	Wheatstone Brücke	5							
	3.2	Kapazitätsmessbrücke	6							
	3.3	Induktivitätsmessbrücke	7							
	3.4	Wien-Robinson Messbrücke	8							
4	Auswertung									
	4.1	Wheatstone Brücke	9							
	4.2	Kapazitätsmessbrücke	10							
	4.3	Induktivitätsmessbrücke	11							
	4.4	Wien-Robinson Messbrücke	11							
5	5 Diskussion									
6	Anh	ang	15							
Lit	eratı	ır	19							

1 Zielsetzung

In diesem Versuch sollen durch elektrische Brückenschaltungen unbekannte Größen wie Wiederstand, Kapazität und Induktivität bestimmt werden. Darüber hinaus soll das Filterverhalten (Frequenzabhängigkeit) der Brückenspannung einer Wien-Robinson-Brücke erforscht werden.

2 Theorie

Die Messung von durch Widerstände ausdrückbare Größen kann durch Brückenschaltungen möglich gemacht werden. In diesem Versuch geht es demnach um ohmsche Widerstände und komplexe Widerstände, wie es bei Kondensatoren und Spulen der Fall ist. Um das Prinzip von Brückenschaltungen näherzubringen, ist eine in Abbildung 1 dargestellt.

Abbildung 1: Allgemeine Brückenschaltung. [1]

Zwischen den Punkten A und B, welche wiederum zwischen den vier Widerständen R1, R2, R3 und R4 liegen besteht eine Verbindung über ein Messgerät. Diese Verbindung wird als Brücke bezeichnet. Um Fehlströme zu vermeiden und damit die Messung nicht fälschlicherweise beeinflusst werden kann, wird eine erdungsfreie Speisespannung genutzt. Es gelten die Kirchhoffschen Gesetze:

1. Die Summe aller Ströme, die an einem Knoten ein- und ausgehen, ist Null.

$$\sum_{n=0}^{N} I_n = 0 \tag{1}$$

2. Die Summe aller Spannungen in einem abgeschlossenen Stromkreis ist Null (unter

Berücksichtigung der Vorzeichen).

$$\sum_{n=0}^{N} U_n = 0 \tag{2}$$

Die Punkte A und B befinden sich im Falle des Nullabgleichs (Das Messgerät dokumentiert keinen Strom, I=0) auf gleichem Potential. Es kann eine Abgleichbedingung aufgestellt werden:

$$R_1 R_4 = R_2 R_3 \tag{3}$$

Das gleiche gilt analog für komplexe Widerstände. Ist einer der Widerstände von unbekannter Größe, kann er trivialerweise mithilfe der anderen Komponenten bestimmt werden. Jenes wird als Kompensationsmethode bezeichnet und soll im Folgenden gezeigt werden.

2.1 Fehlerrechnung

Die gemessenen Werte unterliegen Messunsicherheiten und werden demnach im Folgenden nicht als fehlerfrei angesehen. Die Fehler entstehen bei der Bildung der Mittelwerte durch den Fehler des Mittelwerts und bei der Regressionsrechnung sowie der Fehlerforpflanzung durch Python. Der Fehler des Mittelwerts ist gegeben durch

$$\begin{split} \Delta \overline{x} &= \sqrt{\overline{x^2} - \overline{x}^2} \\ &= \frac{\sqrt{\frac{1}{N-1} \sum\limits_{i=1}^{N} (x_i - \overline{x})^2}}{\sqrt{N}}. \end{split} \tag{4}$$

Um Fehler einzubeziehen, wird die Gauß'sche Fehlerfortpflanzung verwendet:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \cdot (\Delta x)^2 + \left(\frac{\partial f}{\partial y}\right)^2 \cdot (\Delta y)^2 + \dots + \left(\frac{\partial f}{\partial z}\right)^2 \cdot (\Delta z)^2}$$
 (5)

3 Durchführung

3.1 Wheatstone Brücke

Abbildung 2: Wheatstone Brücke. [1]

Bei der Wheatstone Brücke befinden sich nur Ohmsche Widerstände in dem Schaltkreis. Dabei sind R3 und R4 am Potentiometer (Spannungsteiler, an dem ein Schleifkontakt über den Widerstandtsdraht gelegt wird, was es ermöglicht, den Widerstand kontinuierlich einzustellen). Um nun den unbekannten Widerstand R_x durch die Kompensationsmethode zu bestimmen, gilt

$$R_x = R_2 \frac{R_3}{R_4}. (6)$$

Als Einstellungen werden folgende Werte genommen:

Spannungsteiler R_3 und $R_4=1\,k\Omega$ Frequenz $\nu=1\,kHz$ Amplitude $U_S=1\,V$ Widerstand $R_2=332;\,664;\,1000\,\Omega$

3.2 Kapazitätsmessbrücke

Abbildung 3: Kapazitätsmessbrücke. [1]

Da in diesem Bereich des Experiments Kapazitäten bestimmt werden sollen, muss der Wechselstrom verwendet weren. Nun werden zwei Potentiometer verwendet, das erste wird wie gehabt als Spannungsteiler für R3 und R4 verwendet. Das zweite Poti wird als Spannungsteiler für die unbekannten Komponenten C_x mit R_x und der bekannten Kapazität C_x genutzt.

Die Brücke wird nun abgeglichen, indem alternierend an dem Poti ein Minimum eingestellt wird und an dem Anderen die Spannung am Oszilloskop minimiert wird. Dieses Verfahren wird so häufig wiederholt, bis die Brücke abgeglichen ist. Für den Widerstand gilt weiterhin

$$R_x = R_2 \frac{R_3}{R_4}. (7)$$

Für die zu bestimmende Kapazität dann:

$$C_x = C_2 \frac{R_4}{R_3}. (8)$$

Als Einstellungen werden folgende Werte genommen:

Kapazität $C_2=450;\,597;\,992\,nF$ Frequenz $\nu=1\,kHz$ Amplitude $U_S=1\,V$

3.3 Induktivitätsmessbrücke

Abbildung 4: Induktivitätsmessbrücke. [1]

Der Aufbau erfolgt analog zu dem der zuvor angesprochenen Kapazitätsmessbrücke. Es werden lediglich Kondensatoren mit Spulen ausgewechselt. Folglich wird wieder der Aufbau mit Wechselstrom betrieben. Für den Serienwiderstand gilt erneut Gleichung 6. Eine Gleichung für die Induktivität ergibt sich analog zu Gleichung 8:

$$L_x = L_2 \frac{R_4}{R_3}. (9)$$

3.4 Wien-Robinson Messbrücke

Abbildung 5: Wien-Robinson Messbrücke. [1]

Bei dieser Brücke, dessen Aufbau in Abbildung 5 dargestellt ist, soll der Frequenzgang und der Klirrfaktor der Speisespannung ermittelt werden. Letzteres ist als Maß für die Qualität einer Spannungsquelle, insbesondere in Bezug auf die Reinheit der ausgegebenen Sinunsspannung, zu versethen; er gibt an, wie stark die erzeugte Spannung von einer Sinurkurve abweicht. Gegensätzlich zu den vorherigen Versuchen wird diese Brücke nicht zur Messung von Komponenten genutzt, alle Komponenten verfügen über bekannte Werte. Die Brücke dient als elektronischer Filter für die Frequenz. Für das Verhältnis von Brückenspannung U_{Br} zu der Speisespannung U_{S} gilt:

$$\left| \frac{U_{Br}}{U_S} \right|^2 = \frac{(\omega^2 R^2 C^2 - 1)^2}{9((1 - R^2 C^2)^2 + 9\,\omega^2 R^2 C^2)} \tag{10}$$

Bei Abgleichung der Brückenspannung (links) und der normierten Frequenz (rechts)

$$\omega_0 = \frac{1}{RC}, \quad \Omega = \frac{\omega}{\omega_0} \tag{11}$$

reduziert sich das Verhältnis auf

$$\left|\frac{U_{Br}}{U_S}\right|^2 = \frac{9(\Omega^2 - 1)^2}{9(1 - \Omega^2)^2 + 81\,\omega^2\Omega^2}. \tag{12}$$

Bei dieser Gleichung handelt es sich um einen Filter, welcher bei der Frequenz $\omega=\omega_0$ sperrt, sodass keine Brückenspannung mehr dokumentiert werden kann. Sollte dieser Idealfall nicht eintreten, so kommt der Klirrfaktor ins Spiel, die Oberwellen der Speisespannung führen zu einer detektierbaren Brückenspannung. Der Anteil dieser Wellen wird durch eben diesen Klirrfaktor k bestimmt. Dieser lautet

$$k = \frac{\sqrt{\sum_{i=2}^{N} U_i^2}}{U_1} \tag{13}$$

mit der Amplitude der Grundwelle U1 und den Amplituden der i-ten Oberwellen U_i . Je näher der Klirrfaktor an dem Wert Null ist, desto weniger Oberwellen werde erzeugt.

4 Auswertung

4.1 Wheatstone Brücke

Mithilfe der Wheatstone Brücke wird ausgehend von drei bekannten Widerständen R_2 , R_3 und R_4 und einer ausgeglichenen Brückenspannung Der Widerstand R_x mithilfe von Gleichung 6 berechnet.

	R_2 / Ω	R_3 / Ω	R_4 / Ω
	1000	330	670
Wert11	664	426	574
	332	597	403
	1000	474	526
Wert14	664	574	426
	332	732	268
	1000	281	719
Wert12	664	370	630

Tabelle 1: Werte der Widerstände zur Wheatstone Brücke.

Für die Bestimmung eines Widerstands R_x werden R_3 und R_4 bei ausgeglichener Brückenspannung für drei unterschiedliche R_2 bestimmt. Daraus werden die drei Widerstände er-und anschließend gemittelt. Als baubedingte Fehler für die gegebenen Wiederstände werden 2% angenommen.

541

459

332

Nach Einsetzen der Messwerte und der zugehörigen Fehler in Gleichung 6 und Mittelung der Ergebnisse ergeben sich für die unbekannten Wiederstände die Werte:

$$\begin{split} R_{x,11} &= (629,0 \pm 13,0)\,\Omega \\ R_{x,14} &= (901,0 \pm 18,0)\,\Omega \\ R_{x,12} &= (391,0 \pm 8,0)\,\Omega \end{split}$$

4.2 Kapazitätsmessbrücke

Tabelle 2: Werte der Widerstände zur Kapazitätsmessbrücke.

	C_2 / nF	R_2 / Ω	R_3 / Ω	R_4 / Ω
	992	164	772	228
Wert8	450	369	603	397
	597	728	670	330
	992	285	620	380
Wert15	450	654	413	587
	597	542	471	529
	992	204	693	307
Wert9	450	443	510	490
	597	334	580	420

Hier werden die Werte für drei unbekannte Kapazitäten ähnlich wie im letzten Abschnitt bestimmt. Analog wird der Wert für die Kapazität mit drei unterschiedlichen Wiederständen für R_2 über Gleichung 8 berechnet und Ergebnisse gemittelt. Mit den Werten aus Tabelle 2 ergeben sich einerseits für die Widerstande nach Gleichung 6 die Werte

$$\begin{split} R_{x,8} &= (865,0 \pm 19,0)\,\Omega \\ R_{x,15} &= (469,0 \pm 9,0)\,\Omega \\ R_{x,9} &= (461,0 \pm 9,0)\,\Omega \end{split}$$

und nach Gleichung 8 für die Kapazität

$$\begin{split} C_{x,8} &= (294,0\pm6,0)\,\mathrm{nF} \\ C_{x,15} &= (639,0\pm13,0)\,\mathrm{nF} \\ C_{x,9} &= (435,0\pm9,0)\,\mathrm{nF}. \end{split}$$

4.3 Induktivitätsmessbrücke

Tabelle 3: Werte der Widerstände zur Induktivitätsmessbrücke.

	L_2 / mH	R_2 / Ω	R_3 / Ω	R_4 / Ω
	14.6	58	647	353
Wert19	27.5	108	496	504
	20.1	75	572	428
	14.6	51	901	99
Wert16	27.5	86	831	169
	20.1	59	870	130
	14.6	103	773	227
Wert18	27.5	194	645	355
	20.1	138	713	287

Zusammen mit den Werten aus Tabelle 3 können die Werte die für erneut 3 unterschiedliche Widerstände analog zu Unterabschnitt 4.2 errechnet werden. An Widerständen ergibt sich inklusive Fehlern

$$\begin{split} R_{x,19} &= (104,\!3 \pm 2,\!1)\,\Omega \\ R_{x,16} &= (427,\!0 \pm 9,\!0)\,\Omega \\ R_{x,18} &= (349,\!0 \pm 7,\!0)\,\Omega \end{split}$$

und nach Gleichung 9 für die Induktivität

$$\begin{split} L_{x,19} &= (26.9 \pm 0.5) \, \mathrm{mH} \\ L_{x,16} &= (134.2 \pm 2.7) \, \mathrm{mH} \\ L_{x.18} &= (49.9 \pm 1.0) \, \mathrm{mH}. \end{split}$$

4.4 Wien-Robinson Messbrücke

Tabelle 4: Wien-Robinson Messbrücke.

$\nu/{ m Hz}$	U/mV
50	300
70	260

Weiter auf der nächsten Seite

Tabelle 4: Wien-Robinson Messbrücke. (Fortsetzung)

Weiter auf der nächsten Seite

Tabelle 4: Wien-Robinson Messbrücke. (Fortsetzung)

Mithilfe der Wien-Robinson Messbrücke kann der Klirrfaktor der Speisespannung ermittelt werden. Dazu wird in einem halblogarithmischen Diagramm das Verhältnis der Brückenspannung zur Speisespannung $(\frac{U_{Br}}{U_s})$ in Abhängigkeit von der normierten Frequenz \varOmega aufgetragen.

Abbildung 6: Verhältnis Brückenspannung zu Speisespannung, abhängig von der Frequenz und errechnete Funktion

Die Messwerte für $\frac{U_{Br}}{U_s}(\omega)$ sind in Abbildung 6 zusammen mit einer Theoriefunktion, bestimmt aus Gleichung 12, abgebildet.

Aus diesen Messwerten soll der Klirrfaktor der Speisespannung ermittelt werden. Dies geschieht durch das Ermitteln der Restspannung U_{Rest} . Diese Restspannung wird mit dem Koeffizienten g(2) multipliziert, welcher dem Verhältnis $\frac{U_{Br}}{U_s}$ aus Gleichung 6 bei $\Omega=2$ entspricht, um so einen Wert für die Amplitude der zweiten Oberwelle U_2 zu erhalten. Daraus lässt sich durch Gleichung 13 der Klirrfaktor berechnen, wenn die Annahme getroffen wird, dass nur die zweite Oberwelle wesentlich zum Klirrfaktor beiträgt. Des Weiteren wird angenommen, dass der Klirrfaktor klein ist. Es wird $U_1=U_s$ genähert. Die Restspannung bei $\Omega=0$ entspricht

$$U_{rest} = 240 \mathrm{V},$$

was zu einem Klirrfaktor von

$$k = \frac{U_2}{U_1} = \frac{U_{rest} \cdot \frac{U_{Br}}{U_s}(\Omega=2)}{U_s} = 3.57 \cdot 10^{-2}$$

führt.

5 Diskussion

Zunächst ist festzuhalten, dass jegliche bestimmte Größen nicht mit Literaturwerten zu vergleichen sind. Die tatsächlichen Werte der Wiederstände sind unbekannt. Jedoch liegen die Werte der Mittelwertbildung größtenteils verhältnismäßig nah beieinander, was auf eine gute Genauigkeit bei den Messungen hindeutet. Lediglich bei der Berechnung der Induktivität des "Wert16"wichen die berechneten Werte des Widerstands R_x mit $R_{x1}=464, R_{x2}=422$ und $R_{x3}=394$ entsprechned stark voneinander ab. Es ist anzunehmen, dass diese Abweichung durch eine Ungenauigkeit am Widerstand zurückzuführen ist, da auch bei mehrfacher Durchführung des Versuches mit dem erwähnten Widerstand große Abweichungen zustande kamen. Als Fehler für die Bauelemente wurde bei Wiederständen, Kapazitäten, sowie Induktivitäten jeweils ein Fehler von 2% angenommen. Dieser Fehler wurde auf Grundlage vorhergeganger Berechnungen abgeschätzt, sodass dieser annähernd mit den Abweichungen zusammenpasst.

6 Anhang

Abbildung 7: Messwerte Seite 1.

4/	Acabrion			whatting
monto 240	Ra	Ra	Ru	(An (2 0) Uz 2 m/
	1000	330	670	492,54 7
	664	D 25.16	10.000	492,79 \ Ward 11
	332			497.82
	1000	424	526	307,14)
	664	524	426	894,69 \ West 14
	332	232		904,81
	1000	291	249	300.62)
	664		630	389.37 Wed 12
	200300000	547	100 DOCUMENT OF THE OWNER, THE OW	397,37
1 6	market	truent	with	1 4 4 4 4 4 4
42	Ra	Rs	Ru	Rx Cx 2 mf Rank
392		722	228	555,3 292,94)
950	369	603	3 97	50.17 29637 (West 8
592	278	620	350	364.42 234,04
392	285	620	380	465 608
450	654	473	582	460 65950 West es
592	542	427	5 29	140,50 (10,50)
992	204	693	362	1626 43266 7
450	943	570	190	461,08 452,55 West 9
597	334	580	+ 23	46,24 432,31
				10,27 134,37

Abbildung 8: Messwerte Seite 2.

	July	hickory	Comerston	lie:		Line met	4-62	
	La	Ra	RS	Ry	Re]	L	Rat Rate	
	76,6	438	642	3 53	10431	26,26 7	Marrie Ry	
	27,5	103	496	504	106,29	27,06	West +9	
	82.4	75	572	121	100,23	24.86		
Dialeron	19.6	57	901	99	64,+5	132,97	7	
	22,5	86	837	169	422,86	135,22	Wed 16	
	20,1	59	870	133	394.85	134,52		
	14,6	103	273	227	350,74	49,72	7	
	27,5	194	645	3.55	352,48	49,96	wed 18	
	20,1	138	7+3	287	342,84	49,93		
Н		80/	96 60		50	300	370	44
			70				100	
		20 X	20		90	230	330	70
		59	80		110	190	350	85
		3/0	20		130	150	370	100
		60	100		150	115	390	110
	1.	90	110		170	80	410	1.20
					190	55	430	130
		la de			270	3.5	450	740
				7	250	10	420	150
				TIT.	250	10	490	760
					220	27	570	12

Abbildung 9: Messwerte Seite 3.

Literatur

 $[1] \ \ V302:$ Brückenschaltungen. TU Dortmund. 2024.