CHAPTER 7: TRIANGLES

EXERCISE 7.3

- 1. **ABC** is an isosceles triangle with **AB=AC** and **BD** and **CE** are its two medians. Show that **BD=CE**.
- 2. In Fig.7.4, $\vec{\mathbf{D}}$ and $\vec{\mathbf{E}}$ are the points on side \mathbf{BC} of a $\triangle \mathbf{ABC}$ such that $\mathbf{BD} = \mathbf{CE}$ and $\mathbf{AD} = \mathbf{AE}$. Show that $\triangle \mathbf{ABD} \cong \triangle \mathbf{ACE}$.

Figure 1

3. **CDE** is an equilateral triangle formed on a side **CD** of a square **ABCD** (Fig.7.5). Show that \triangle **ADE** $\cong \triangle$ **BCE**.

Figure 2

4. In Fig.7.6, BA \perp AC, DE \perp DF such that BA=DE and BF=EC. Show that \triangle ABC \cong \triangle DEF.

Figure 3

- 5. $\vec{\mathbf{Q}}$ is a point on the side \mathbf{SR} of $\triangle \mathbf{PSR}$ such that $\mathbf{PQ} = \mathbf{PR}$. Prove that $\mathbf{PS} > \mathbf{PQ}$.
- 6. \vec{S} is any point on side QR of a $\triangle PQR$. Show that PQ+QR+RP>2PS.
- 7. $\vec{\mathbf{D}}$ is any point on side \mathbf{AC} of a $\triangle \mathbf{ABC}$ with $\mathbf{AB} = \mathbf{AC}$. Show that $\mathbf{CD} < \mathbf{BD}$.
- 8. In Fig.7.7, $\mathbf{l} \| \mathbf{m}$ an $\vec{\mathbf{M}}$ is the mid-point of a line segment \mathbf{AB} . Show that $\vec{\mathbf{M}}$ is also the mid-point of any line segment \mathbf{CD} , having its end points on \mathbf{l} and \mathbf{m} , respectively.

Figure 4

- 9. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle with AB=AC intersect each other at \vec{O} . BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.
- 10. Bisectors of the $\angle \mathbf{B}$ and $\angle \mathbf{C}$ of an isosceles triangle \mathbf{ABC} with $\mathbf{AB} = \mathbf{AC}$ intersect each other at $\vec{\mathbf{O}}$. Show that the external angle adjacent to $\angle \mathbf{ABC}$ is equal to $\angle \mathbf{BOC}$.

11. In Fig.7.8, ${\bf AD}$ is the bisector of $\angle {\bf BAC}$. Prove that ${\bf AB}{>}{\bf BD}$.

Figure 5