Séquence 08 - TP01 - Îlot 02

Lycée Dorian Renaud Costadoat Françoise Puig

Les efforts mécaniques

Référence S08 - TP01 - I02

Compétences

Description Principe Fondamental de la Statique. Modélisation des actions méca-

niques.

Système Barrière

1 Activité 1 : Modélisation

1.1 Présentation des composants

Question 1 : Inscrire sur la figure 1 le nom technique de chaque solide et mettre ces résultats sous la forme d'un graphe des liaisons.

FIGURE 1 – Système Maxpid

Question 2 : Proposer et justifier une modélisation plane à ce problème avec un schéma cinématique.

1.2 Modélisation des actions et des liaisons mécaniques

Question 3 : Identifier et déterminer les torseur des actions mécaniques **extérieures** qui s'exercent sur les pièces du système.

Question 4 : Déterminer le torseur des actions mécaniques transmissibles par **chacune** des liaisons du système.

1.3 Résolution à l'aide du P.F.S.

Pour chaque solide du système :

- 1. Isoler la pièce,
- 2. Faire le Bilan des Action Mécaniques,
- 3. Écrire les torseurs correspondant au même point,
- 4. **Résoudre** le système d'équations.

Question 5 : Déterminer le système d'équations issu du P.F.S. La résolution du système d'équations devra être codée en Python.

Question 6 : Conclure quant à la valeur du couple moteur pour plusieurs positions angulaires du de la lisse.

θ	C_m
0 °	
15 °	
30 ° 45 °	
45 °	
60°	
75 °	
90 °	

2 Activité 2 : Simulation numérique

Cette partie sera effectuée à partir d'une simulation sur le logiciel Meca3D.

Question 1 : En utilisant le mode d'Analyse Mécanique « Statique ». Compléter le tableau suivant.

θ	C_m (1 m)	C_m (2 m)	C_m (3 m)
0 °			
15 °			
30 °			
45 °			
60 °			
75 °			
90 °			

Question 2 : Comparer ces résultats avec les résultats issus de la modélisation analytique effectuée dans la partie 1 ainsi qu'avec les résultats de l'expérimentation 3.

3 Activité 3 : Expérimentation

L'objectif de l'expérimentation va être de déterminer pour plusieurs positions le couple utile permettant de supporter la barrière.

Question 1 : En lançant une mesure du couple utile, compléter le tableau suivant.

θ	C_m (masse position 1)	C_m (masse position 2)	C_m (masse position 3)
0 °			
15 °			
30 °			
45 °			
60 °			
75 °			
90 °			

Question 2 : Comparer ces résultats avec les résultats issus de la modélisation analytique effectuée dans la partie 1 ainsi qu'avec les résultats de la simulation 2.

