Professor: Alexander Schmidt Tutor: Daniel Kliemann

Aufgabe 1

a)

$$(3,2,1)\cdot(4,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$
$$(5,4,3,2,1)\cdot(3,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

b) Z.Z.: Sind $\sigma = (a_1, \dots, a_d), \tau = (b_1, \dots, b_e)$ zwei gleiche Zyklen, dann ist e = d.

Beweis. Zwei gleiche Abbildungen haben die gleiche Ursprungs-und Zielmenge, es ist also $\sigma \in \mathfrak{S}_n \implies \tau \in \mathfrak{S}_n$. Sein nun $N = \{k \in \mathbb{N} | 1 \le k \le n\}$, $M_{\sigma} = \{k \in \mathbb{N} | \sigma(k) \ne k\}$ und $M_{\tau} = \{k \in \mathbb{N} | \tau(k) \ne k\}$. Aus $\tau = \sigma$ folgt $M_{\tau} = M_{\sigma}$. Ferner gilt $\sigma(a_i) = a_j$ mit $1 \le i, j \le d, i \ne j$ und daraus folgt mit $\forall 1 \le i, j \le d, i \ne j$: a sofort $\sigma(a_i) \ne a_i$. Für alle anderen $k \in \mathbb{N}$ ist aber nach Definition des Zyklus $\sigma(k) = k$. Daraus folgt $M_{\sigma} = \{a_i | 1 \le i \le d\}$ und schließlich $\# M_{\sigma} = d$. Analog erhalten wir $\# M_{\tau} = e$. Mit $M_{\tau} = M_{\sigma}$ folgt sofort e = d.

c) Z.Z.: Für einen Zyklus σ der Länge d gibt es genau d Darstellungen $\sigma = (a_1, \dots, a_d)$.

Beweis. Im folgenden bezeichne $\forall k \in \mathbb{N} : R(k)$ den Rest von k modulo d, insbesondere ist also R(d+1)=1.

 \bullet Z.Z.: Es gibt d verschiedene Darstellungen.

Bew.: Wir bezeichnen mit (a_1, a_2, \ldots, a_d) eine Darstellung von σ (es existiert auf jeden Fall eine). Alle Darstellungen $b_1, \ldots b_d$ für die gilt: $\forall 1 \leq i, j, k \leq d : b_i = a_{R(i+k)} \implies b_j = a_{R(j+k)}$. Es gibt genau d verschiedene solche d-Tupel. Man erhält sie, wenn man $k = 1, 2, \ldots, d$ wählt. Sobald k = d + 1 ist die Darstellung äquivalent zu der Darstellung für R(k) = R(d+1) = 1.

Damit aber alle diese d-Tupel den gleichen Zyklus darstellen, muss gelten $\forall 1 \leq i \leq d$: $\sigma(a_i) = a_{R(i+1)}$. (Im Fall i = d wird das zu $\sigma(a_d) = a_{R(d+1)} = a_1$). Es gilt:

$$\sigma(a_i) \overset{\text{Es existiert stets ein geeignetes } k}{=} \sigma(b_{R(i+k)}) = b_{R(i+1+k)} = a_{R(i+1)}$$

.

ullet Es gibt höchstens d verschiedene Darstellungen.

Beweis durch Widerspruch: Annahme: Es gibt zusätzlich zu den d oben beschriebenen Darstellungen noch mindestens eine weitere Darstellung (b_1, \ldots, b_d) . Da diese Darstellung nicht mehr der obigen Bedingung genügen kann, müssen O.B.d.A. $b_i = a_{R(i+k)}, b_i + 1 \neq a_{R(i+1+k)}$ existieren. Damit erhalten wir allerdings $\sigma(a_i) = \sigma(b_{R(i+k)}) = b_{R(i+1+k)} \neq a_{R(i+1)}$, es folgt $\sigma \neq (b_1, \ldots, b_d)$.

d) Z.Z. Jede Permutation $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma_1 & \sigma_2 & \dots & \sigma_n \end{pmatrix} \in \mathfrak{S}_n$ lässt sich als Produkt von Zyklen der Länge 2 schreiben.

Beweis.

Induktionsanfang: siehe Aufgabenblatt

Induktionsannahme: Jedes Element der \mathfrak{S}_n lässt sich als Produkt von Zyklen der Länge 2 schreiben.

Induktionsschluss: Wir betrachten die Permutation $\sigma = \begin{pmatrix} 1 & 2 & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & \sigma_n & \sigma_{n+1} \end{pmatrix} \in \mathfrak{S}_{n+1}.$

Fall 1: $n+1=\sigma_{n+1}$.

Die Permutation $\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma_1 & \sigma_2 & \dots & \sigma_n \end{pmatrix} \in \mathfrak{S}_n$ lässt sich nach Induktionsvoraussetzung als Produkt

 $\prod_{i=1}^k p_i \text{ mit } k \in \mathbb{N} \text{ und } p_i \in \mathfrak{S}_n \text{ schreiben, wobei jedes } p_i \text{ ein Zyklus der Länge zwei ist. Sei } f : \mathfrak{S}_n \to \mathfrak{S}_{n+1}, z \mapsto z \text{ ein Homomorphismus. Dann ist } f(p)_i \text{ ebenfalls ein Zyklus der Länge zwei } \text{ und } \prod_{i=1}^k f(p_i) = \begin{pmatrix} 1 & 2 & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & \sigma_n & n+1 \end{pmatrix} \in \mathfrak{S}_{n+1} = \sigma \text{ ist das gesuchte Produkt.}$

Der letze Zyklus in dem zu konstruierenden Produkt von Zweierzyklen sei $z_1 = (n+1, \sigma_{n+1}) \in$ \mathfrak{S}_{n+1} . Es existiert genau ein k, sodass $\sigma(k) = n+1$. (Das wird sofort aus unserer Darstel $n+1. \text{ Nach Induktions voraus setzung wissen wir, dass } \begin{pmatrix} 1 & 2 & \dots & k & \dots & n \\ 1 & 2 & \dots & \kappa & \dots & n \end{pmatrix} = \prod_{i=1}^k p_i$ mit $k \in \mathbb{N}$ und p_i ein Zyklus der Länge zwei aus \mathfrak{S}_n . Analog zu Fall 1 erhalten wir $z_2 = \prod_{i=1}^k f(p_i) = \begin{pmatrix} 1 & 2 & \dots & k & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & \sigma_{n+1} & \dots & \sigma_n & n+1 \end{pmatrix} \in \mathfrak{S}_{n+1}$. Das gesuchte Produkt ist $z_2 \cdot z_1 = \begin{pmatrix} 1 & 2 & \dots & k & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & \sigma_{n+1} & \dots & \sigma_n & n+1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & \dots & n & n+1 \\ 1 & 2 & \dots & n & n+1 & \dots & n & \sigma_{n+1} \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & \dots & k & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & n+1 & \dots & \sigma_n & \sigma_{n+1} \end{pmatrix}. \text{ Da } \sigma(k) = n+1, \text{ ist } n+1 = \sigma_k.$ $z_2 \cdot z_1 = \begin{pmatrix} 1 & 2 & \dots & k & \dots & n & n+1 \\ \sigma_1 & \sigma_2 & \dots & \sigma_k & \dots & \sigma_n & \sigma_{n+1} \end{pmatrix} = \sigma$ lungsweise einer Permutation ersichtlich). Dieses k ist außerdem < n + 1. Zudem ist $\sigma_{n+1} <$

Aufgabe 2

Nach Bemerkung 1.28 im Skript ist $gH = \{g' \in G | g' = g * h, h \in H\}.$

• Z.Z.: Es existiert eine bijektive Abbildung $f: H \to gH, h \to g*h$.

Beweis. Die Abbildung ist offensichtlich wohldefiniert. Angenommen, f wäre nicht surjektiv. Dann gäbe es ein $g' = g * h \in gH$ und $h \in H$, sodass es kein $h \in H$ mit $g * h = g' \in gH$ gäbe. ξ . Angenommen, die Abbildung wäre nicht injektiv, dann gäbe es $g, g' \in G$ mit $h \neq h'$, sodass $f(h) = f(h') \implies g * h = g * h'$. Sei g^{-1} das Inverse zu g (es existiert laut den Gruppenaxiomen). Dann ist $g^{-1} * g * h = g^{-1} * g * h'$ und damit $h = h' \nleq$.

Da es eine bijektive Abbildung von $H \to gH$ gibt, ist #H = #gH.

• Z.Z.: $\#G = \#H \cdot \#(G/H)$.

Beweis.

$$G = \bigcup_{M \in G/H}$$
 folgt aus den Axiomen für Äquivalenzrelationen
$$\implies \#G = \sum_{M \in G/H} \#M \qquad \#M = \#gH = \#H \quad \forall M \in G/H$$

$$\#G = \sum_{M \in G/H} \#H \qquad \text{Diese Summe addiert } \#(G/H) \text{ mal } \#H$$

$$\#G = \#(G/H) \cdot \#H$$

Aufgabe 3

a) Beweis.

$$a + b = (a + b)^{2} = a^{2} + ab + ba + b^{2} = a + ab + ba + b$$

$$0 = ab + ba$$

$$ab = -ba$$

$$(1)$$

$$a + a = (a + a)^{2} = a^{2} + a^{2} + a^{2} + a^{2} = a + a + a + a$$

$$0 = a + a$$

$$a = -a$$

$$(2)$$

Wir setzen (2) in (1) ein und erhalten

$$ab = ba (3)$$

b) Beweis. In einem Körper K gilt $\forall x \neq 0 \exists x^{-1}$ mit $x \cdot x^{-1} = 1_K$. Sei K ein Körper. Sei $x \in R$. Fall 1: $x = 0_R$. $0_R^2 = 0_R \checkmark$

Fall 2: $x \neq 0_R$. Da R ein Körper ist, existiert ein x^{-1} mit $x \cdot x^{-1} = 1_R$. Ferner ist

$$x * x = x$$

$$x * x * x^{-1} = x * x^{-1}$$

$$x = 1_R$$

R enthält also nur 0_R und 1_R .

Aufgabe 4

a) Wir zeigen die Ringaxiome.

Beweis. R1) Da die Addition komponentenweise definiert ist und $(\mathbb{Q}, +, 0)$ eine abelsche Gruppe ist, muss auch $(\mathbb{Q} \times \mathbb{Q}, +_{K_d}, (0, 0))$ eine abelsche Gruppe sein.

$$\begin{split} &((a_0,a_1)\cdot_{K_d}(b_0,b_1))\cdot_{K_d}(c_0,c_1)\\ =&(a_0b_0+a_1b_1d,a_1b_0+a_0b_1)\cdot_{K_d}(c_0,c_1)\\ =&((a_0b_0+a_1b_1d)c_0+(a_1b_0+a_0b_1)c_1d,(a_1b_0+a_0b_1)c_0+(a_0b_0+a_1b_1d)c_1)\\ =&(a_0b_0c_0+a_1b_1c_0d+a_1b_0c_1d+a_0b_1c_1d,a_1b_0c_0+a_0b_1c_0+a_0b_0c_1+a_1b_1c_1d)\\ =&(a_0(b_0c_0+b_1c_1d)+a_1(b_1c_0+b_0c_1)d,a_0(b_1c_0+b_0c_1)+a_1(b_0c_0+b_1c_1d))\\ =&(a_0,a_1)\cdot_{K_d}(b_0c_0+b_1c_1d,b_1c_0+b_0c_1)\\ =&(a_0,a_1)\cdot_{K_d}((b_0,b_1)\cdot_{K_d}(c_0,c_1)) \end{split}$$

R3)

$$\begin{split} &(a_0,a_1)\cdot_{K_d}\left((b_0,b_1)+_{K_d}\left(c_0,c_1\right)\right)\\ =&(a_0,a_1)\cdot_{K_d}\left(b_0+c_0,b_1+c_1\right)\\ =&(a_0(b_0+c_0)+a_1(b_1+c_1)d,a_1(b_0+c_0)+a_0(b_1+c_1))\\ =&(a_0b_0+a_1b_1d+a_0c_0+a_1c_1d,a_1b_0+a_0b_1+a_1c_0+a_0c_1)\\ =&(a_0b_0+a_1b_1d,a_1b_0+a_0b_1)+_{K_d}\left(a_0c_0+a_1c_1d,a_1c_0+a_0c_1\right)\\ =&(a_0,a_1)\cdot_{K_d}\left(b_0,b_1\right)+_{K_d}\left(a_0,a_1\right)\cdot_{K_d}\left(c_0,c_1\right) \end{split}$$

Damit der Ring unitär ist, muss es ein neutrales Element 1_{K_d} bezüglich der Multiplikation geben. Behauptung $1_{K_d} = (1,0)$.

Bew.:

$$(1,0)\cdot_{K_d}(a_0,a_1) = (1\cdot a_0 + 0\cdot a_1\cdot d, 1\cdot a_1 + 0\cdot a_0) = (a_0,a_1) = (a_0\cdot 1 + a_1\cdot 0\cdot d, a_1\cdot 1 + a_0\cdot 0) = (a_0,a_1)\cdot_{K_d}(1,0)$$

b) Z.Z.: $\iota:\mathbb{Q}\to K_d, x\mapsto (x,0)$ ist ein unitärer Ringhomomorphismus.

Beweis. \mathbb{Q} und K_d sind beides unitäre Ringe. Es gilt $\forall p, q \in \mathbb{Q}$:

$$\begin{split} \iota(p+q) &= (p+q,0) = (p,0) +_{K_d} (q,0) = \iota(p) +_{K_d} \iota(q) \\ \iota(p\cdot q) &= (pq,0) = (pq+0\cdot 0 \cdot d, 0\cdot q + p\cdot 0) = (p,0) \cdot_{K_d} (q,0) = \iota(p) \cdot_{K_d} \iota(q) \\ \iota(1_{\mathbb{Q}}) &= \iota(1) = (1,0) = 1_{K_d} \end{split}$$

Z.Z.: $X^2 - \iota(d) = 0$ hat eine Lösung in K_d .

Beweis. Behauptung X = (0,1) löst die Gleichung.

$$X^{2} - d$$

$$= (0, 1) \cdot_{K_{d}} (0, 1) - (d, 0)$$

$$= (0^{2} + 1^{2}d, 1 \cdot 0 + 0 \cdot 1) - (d, 0)$$

$$= (0, 0)$$

c)

 $(i)\rightarrow(ii)$ Das folgt sofort aus Lemma 1.15.

(ii) \rightarrow (iii) Wir zeigen die Kontraposition: Wenn die Gleichung $X^2-d=0$ eine Lösung in $\mathbb Q$ hat, dann gibt es $a,b\in K_d\setminus\{0_{K_d}\}$ mit $a\cdot b=0$. Wenn die Gleichung $X^2-d=0$ eine Lösung in $\mathbb Q$ hat, können wir $a_0,a_1\in\mathbb Q,a_1\neq 0$ so wählen, dass $\left(\frac{a_0}{a_1}\right)^2-d=0$. Sei außerdem $b\neq 0$. Behauptung: Dann ist $(a_0,a_1)\cdot(b,-\frac{a_1}{a_0}b)=(0,0)$

Beweis.

$$(a_0, a_1) \cdot \left(b, -\frac{a_1}{a_0}b\right)$$

$$= \left(a_0b - a_1 \cdot \frac{a_1}{a_0}bd, -a_0 \cdot \frac{a_1}{a_0} \cdot b + a_1 \cdot b\right)$$

$$= \left(b\frac{a_1^2}{a_0} \left(\frac{a_0^2}{a_1^2} - d\right), -a_1b + a_1b\right)$$

Nach unserer Wahl von a_0, a_1 gilt $\left(\frac{a_0}{a_1}\right)^2 - d = 0$.

$$= \left(b\frac{a_1^2}{a_0}(0), 0\right) = (0, 0)$$

 $a_1 \implies (a_0,a_1) \neq (0,0)$ und $b \neq 0 \implies \left(b,-\frac{a_1}{a_0}b\right) \neq (0,0)$. Es gibt also $a,b \in K_d \setminus \{0_{K_d}\}$ mit $a \cdot b = 0_{K_d}$. Damit ist die Kontraposition $\neg(iii) \rightarrow \neg(ii)$ und somit auch die Implikation $(ii) \rightarrow (iii)$ bewiesen.

(iii) \rightarrow (i) Behauptung: K_d ist ein Körper, wenn die Gleichung $X^2 - d = 0$ keine Lösung in \mathbb{Q} hat.

Beweis. Da K_d ein unitärer Ring ist, müssen wir nur noch zeigen, dass es zu jedem $(a_0,a_1) \neq (0,0) \in K_d$ ein multiplikatives Inverses $(a_0,a_1)^{-1} \in K_d$ gibt. Fall 1: $a_1=0 \implies a_0 \neq 0$. $(a_0,0) \cdot \left(\frac{1}{a_0},0\right) = \left(a_0\frac{1}{a_0} + 0 \cdot 0 \cdot d, 0 \cdot \frac{1}{a_0} + a_0 \cdot 0\right) = (1,0)\checkmark$. Das Inverse existiert stets, da $a_0 \neq 0$.

Fall 2: $a_1 \neq 0$:

$$\begin{split} &(a_0,a_1)\cdot_{K_d}\left(\frac{a_0}{a_1^2\left(\left(\frac{a_0}{a_1}\right)^2-d\right)},\frac{1}{-a_1\left(\left(\frac{a_0}{a_1}\right)^2-d\right)}\right)\\ =&(a_0,a_1)\cdot_{K_d}\left(\frac{a_0}{a_0^2-a_1^2\cdot d},\frac{a_1}{a_1^2\cdot d-a_0^2}\right)\\ =&\left(\frac{a_0^2}{a_0^2-a_1^2\cdot d}+\frac{a_1^2\cdot d}{a_1^2\cdot d-a_0^2},\frac{a_0a_1}{a_1^2\cdot d-a_0^2}+\frac{a_1a_0}{a_0^2-a_1^2\cdot d}\right)\\ =&\left(\frac{a_0^2-a_1^2\cdot d}{a_0^2-a_1^2\cdot d},\frac{a_0a_1-a_1a_0}{a_1^2\cdot d-a_0^2}\right)\\ =&(1,0)\checkmark \end{split}$$

Da die Gleichung $X^2-d=0$ keine Lösung in $\mathbb Q$ hat, ist stets $\left(\frac{a_0}{a_1}\right)^2-d\neq 0$. Da zusätzlich $a_1\neq 0$, ist außerdem stets $a_1^2\left(\left(\frac{a_0}{a_1}\right)^2-d\right)\neq 0$ und $-a_1\left(\left(\frac{a_0}{a_1}\right)^2-d\right)\neq 0$. Daher gibt es stets ein Inverses $\left(\frac{a_0}{a_1^2\left(\left(\frac{a_0}{a_1}\right)^2-d\right)},\frac{1}{-a_1\left(\left(\frac{a_0}{a_1}\right)^2-d\right)}\right)$. \square Aus $(i)\implies (ii)\implies (iii)\implies (i)$ folgt $(i)\iff (iii)$.