ENPM690 Final Project

Deep Learning for Self-Driving Cars

Pratik Acharya Abhijit Mahalle 117513615 117472288

Introduction

- Training a car to learn how to steer in a simulated environment using CNN.
- NVIDIA's paper on End to End Learning for Self-Driving Cars
- Maps raw pixels from a single front-facing camera to steering command
- Learns internal representations to detect road features

Simulator

- Udacity's self-driving car simulator
- Two modes: Training Mode, Autonomous Mode
- Two tracks

Programming

• Language: Python

Framework: PyTorch

Data Collection

- Car was driven over two laps of Track 1
- Center, left, and right views were captured for each frame
- .csv file was generated; location of center, left, right views, steering angle, acceleration, brake, and speed for each frame

	A	В	C	D	E	F	G
26	C:\Users\Pratik A	C:\Users\Pratik A	C:\Users\Pratik A	0	0.048462	0	5.982447
27	C:\Users\Pratik A	C:\Users\Pratik A	C:\Users\Pratik A	-0.06222	0	0	5.95896
28	C:\Users\Pratik A	C:\Users\Pratik A	C:\Users\Pratik A	-0.38087	0	0	5.897681
29	C:\Users\Pratik A	C:\Users\Pratik A	C:\Users\Pratik A	-0.05994	0	0	5.877697

Data Pre-Processing

Normalization:

(x / 255) - 0.5 Values between - 0.5 and 0.5

Cropping

Data Augmentation

- Left/Right camera images; steering angle +- 0.4
- Random Horizontal Image Flipping

MODEL ARCHITECTURE

CONTROLLER

Simple PI Controller

Speed: 9 MPH

CHALLENGES

 Car drifting even on straight track

Possible reasons:

Lack of sufficient data

Absence of Maxpool Layers

Simplified version of NVIDIA architecture

Results

Training Loss:

Left image: 0.041

Center image: 0.047

Right image: 0.048

Validation Loss: 0.026

HYPER-PARAMETERS

- Sample size: 24111
 - Training: 19288 Validation: 4823
- Batch size: 32
- Optimizer: Adam
- Loss: Mean Square Entropy
- Epochs: 22
- Activation function: ELU
- Parameters: 120,000
- Connections: 15 million
- Training time: 22 minutes

DEMO

CONCLUSION

- CNN learn lane and road following without manual decomposition, semantic abstraction, path planning, and control.
- Learn meaningful road features from sparse training data
- Learns features without explicit labels during training.

REFERENCES

https://arxiv.org/pdf/1604.07316v1.pdf

https://developer.nvidia.com/blog/deep-learning-self-driving-cars/

http://yann.lecun.org/exdb/publis/pdf/lecun-89e.pdf

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf