

BIK-TZP.21 – Technologické základy počítačů

ZS 2021/22 1. sobota

doc. Ing. Kateřina Hyniová, CSc.

<u>hyniova@fit.cvut.cz</u>

Katedra číslicového návrhu, FIT ČVUT v Praze

Přednáška1A– Základní elektrické veličiny a základní prvky elektrických obvodů

- 1. Terminologie
- 2. Základní elektrické veličiny
- 3. Základní prvky elektrických obvodů

DOPORUČENÁ LITERATURA

Skriptum:Kyncl,J., Novotný, M.: Číslicové a analogové obvody, FIT ČVUT, (k dostání v NTK- knihkupectví i eshop)

https://courses.fit.cvut.cz

1.Terminologie

- Elektrický obvod je vodivé spojení elektronických součástek, např. rezistorů, kapacitorů, induktorů, tranzistorů, diod a napájecích zdrojů a mnoha dalších elektronických prvků. Tyto prvky jsou mezi sebou spojovány vodiči a vytváří tak vodivou cestu a splňují funkce, které jsou od obvodu požadovány, např. zesilování signálu, vytváření oscilací apod. Musí obsahovat uzavřenou/é smyčku/y.
- Předpokládáme, že všechny obvodové prvky jsou ideální (tj nemají parazitní vlastnosti nebo jsou tak malé, že je můžeme zanedbat). Pak ale výsledky analýzy obvodu nebudou nikdy úplně přesné, ne však zásadně nepřesné..
- Vodiče v elektrických obvodech, považujeme za ideální (mající nulový odpor, tzn., že na nich nevzniká úbytek napětí při průchodu proudu. Předpokládáme, že nemají žádné parazitní vlastnosti a že v jejich okolí nevzniká elektromagnetické pole.
- Budeme vždy předpokládat, že ideální el. obvod není vystaven působení vnějšího el. ani mag. pole.

Analýza obvodu

Je disciplina, jejíž cílem je určit průběh elektrických napětí a proudů v obvodu, jehož struktura a typ i velikost všech el. prvků obvodu jsou předem dány.

Dáno: u(t)... vstupní napětí, hodnoty R_1, R_2, L, C .

Cíl analýzy: určit průběh elektrických napětí a proudů na el. prvcích v obvodu

Analýza obvodů

a) v přechodném stavu
vyvolaném náhlou změnou parametru/ů obvodu
např. po připojení napětí, zkratu, apod...

b) v ustáleném stavu

napětí a proudy v obvodu se předpokládají ustálené, tedy časově neměnné nebo periodicky se měnící s časem, k nimž dochází po odeznění přechodových jevů v obvodu.

2. Základní elektrické veličiny

a)Elektrický proud je uspořádaný pohyb nosičů elektrického náboje - elektronů. Je roven celkovému množství elektrického náboje dQ, která projde průřezem vodiče za jednotku času dt:

$$i = \frac{dQ}{dt}$$
 [A;C, s]

- Náboj 1 elektronu je cca 1.6 × 10⁻¹⁹ C.
- Jednotkou elektrického proudu je 1 Ampér [A].
- Proud je skalární veličina. Konvence-směr toku stejnosměrného proudu je od kladného pólu zdroje přes spotřebič k zápornému pólu zdroje. Tento dohodnutý směr je opačný ke skutečnému směru toku elektronů v pevných vodičích. Ve schématech vyznačujeme směr proudu plnou šipkou.

Příklad

Kolik elektronů tekoucích vodičem vytvoří proud 4 A?

<u>Řešení:</u>

Náboj 1 elektronu je přibližně 1,6 × 10⁻¹⁹ C.

1:1,6.10⁻¹⁹= 62.10¹⁷ elektronů/s na 1 Amper

4 A ---- 4 . 62.10¹⁷ = 24,8. 10¹⁸ elektronů/ s

Konvence

• Tok kladných elektrických nábojů má v obvodu stejný efekt jako stejný tok záporných nábojů tekoucích opačným směrem. Dohodnutý směr toku stejnosměrného proudu je od kladného pólu zdroje přes spotřebič k zápornému pólu zdroje. Tedy dohodnutý směr toku proudu je směr, kterým by tekly kladně nabité částice. Tento dohodnutý směr je ovšem opačný ke skutečnému směru toku elektronů v pevných vodičích.

•

• V kovech (vodičích) jsou nosiče kladného náboje nepohyblivé a nosiči náboje jsou elektrony. Elektrony jsou nosiči záporného náboje a směr jejich pohybu ve vodičích je tedy opačný vůči konvenčnímu směru toku proudu.

• El. proud značíme i, i(t),I

SS elektrický proud

Volné elektrony v pevných vodičích se mohou snadno přesouvat mezi atomy. Pokud je jeden konec vodiče připojen ke **kladnému pólu** a druhý konec k **zápornému pólu elektrického zdroje**, na volné elektrony ve vodiči působí vnější síly ze zdroje a vzniká **elektrický proud**. **Kladná elektroda** zdroje svým kladným nábojem **přitahuje elektrony** z připojeného vodiče, **chemická reakce** ve zdroji je prostřednictvím **iontů** přesune do **záporné elektrody** a z ní jsou elektrony opět doplňovány do připojeného vodiče.

Vodiče

Atom: Cu.... 1 valenční elektron

Al..... 3 valenční elektrony

- •valenční elektrony jsou v kovech vázány k jádrům velmi slabými silami, elektrony mohou opouštět jeho hranice (volné elektrony)
- v krystalu kovu jsou prakticky volné a chaoticky se pohybují
 - vodivostní elektrony (ve vodičích cca 10²⁸elektronů v metru krychlovém, rychlost pohybu cca 10⁶ m/s)
- tento stav označujeme jako elektronový plyn
- •připojením vodiče k elektrickému zdroji vznikne ve vodiči elektrické pole
- •elektronový plyn je unášen proti směru intenzity pole
- vedle chaotického pohybu vznikne uspořádaný unášivý (driftový) pohyb volných elektronů (rychlost driftu cca 5mm/s)
- nepravidelnosti krystalové mřížky brzdí uspořádaný pohyb elektronů
 - elektrický odpor

Orientace elektrického proudu

Měření el. proudu

b) Elektrické napětí

- Je rozdílem elektrických potenciálů mezi dvěma body obvodu (např. A a B). Platí U_{AB}=-U_{BA}
- Je zvykem, že směr napětí je orientován od vyššího potenciálu směrem k nižšímu, směr napětí vyznačujeme otevřenou šipkou
- Jednotkou napětí je 1 V (Volt)
- El. napětí značíme *U, U(t),U, Û*

Měření el. napětí

3. Základní prvky elektrických obvodů

- Elektrické (elektronické)prvky fyzicky neexistují. Předpokládáme totiž, že mají ideální vlastnosti, tj. mají lineární vlastnosti bez parazitních jevů.
- Elektrické (elektronické) součástky existují, jsou reálné. Nemají ideální vlastnosti, vyznačují se nelineárními vlastnostmi a řadou parazitních vlastností (parazitní kapacita apod.). Při řešení obvodů je budeme pro jednoduchost pracovat s ideálními prvky a vodiči.

Klasifikace elektronických prvků

A) Pasivní elektronické prvky

Pasivní prvky se v obvodu chovají většinou jako spotřebiče elektrického proudu. Elektrická energie je v nich spotřebovávána např. formou přeměny v jiný druh energie (např. teplo) nebo se v nich ukládá ve formě elektrického a/nebo magnetického pole. Pasivní

elektrické prvky jsou tedy buď spotřebiči

či akumulátory elektrické energie:

- Rezistor - spotřebič el. energie

 Kapacitor - akumulátor el. energie

- Induktor - akumulátor el. energie

- Konvence pro pasivní elektrické prvky
- (Orientace el. napětí a proudu je u pasivních prvků
- shodná!)

Klasifikace elektrických prvků

B) Aktivní elektronické prvky

Jsou zdroje elektrické energie které trvale dodávají energii do připojeného elektrického obvodu.

- Zdroje el. napětí
- Zdroje el. proudu

- Konvence pro aktivní elektrické prvky
- (Orientace el. napětí a el. proudu u napěťových zdrojů je navzájem opačná)

1. Ideální a reálný zdroj napětí

Protéká-li elektrický proud obvodem, protéká také elektrickým zdrojem. Ideální zdroj napětí neklade proudu žádný odpor, jeho vnitřní odpor je nulový a svorkové napětí (napětí na svorkách zdroje) má vždy stejnou velikost jako napětí naprázdno, tedy bez zátěže. U reálných zdrojů se projevuje jejich vnitřní odpor a napětí na svorkách zatíženého zdroje je

menší než napětí

naprázdno.

a) $U = U_0$

Symbol napěťového zdroje

Žádný reálný zdroj napětí není ideální. Všechny reálné zdroje napětí totiž mají nenulový vnitřní odpor. Reálný zdroj napětí se chová, jako bychom do série s ideálním zdrojem napětí zapojili resistor s odporem rovným vnitřnímu odporu zdroje.

Reálný zdroj napětí

Reálný zdroj napětí

Ri+0 vnitřní odpor zdroje

Reálný zdroj napětí

Výpočet svorkového napětí U reálného zdroje napětí

$$U = U_0 - R_i * I$$

U ... Svorkové napětí zdroje

U0 ... Napětí zdroje naprázdno

Ri... Vnitřní odpor zdroje

Rz... Zátěž

Tvrdé a měkké zdroje napětí

Podle vnitřního odporu lze rozdělit elektrické zdroje na **tvrdé zdroje**, to jsou takové zdroje, jejichž vnitřní odpor je menší než 1Ω a tedy mají velmi malý úbytek napětí na zdroji při zatížení. **Měkké zdroje** jsou zdroje s vnitřním odporem větším než 1Ω. Jejich svorkové napětí rychle klesá v závislosti na velikosti proudu, který zdrojem protéká. **Ideální zdroje** napětí mají nulový vnitřní odpor.

Zapojení více zdrojů napětí s

a) sériově (výsledné napětí je součtem napětí jednotlivých zdrojů. Sčítají se ale i vnitřní odpory dílčích zdrojů.

Pozor na řazení napěťových zdrojů v sérii!

Kladný pól zdroje připojujeme vždy na záporný pól předchozího zdroje napětí.

Příklad

b)paralelně

 Paralelním <u>zapojením dvou a více zdrojů napětí se nezvyšuje</u> <u>napětí</u>, ale celkový elektrický výkon zdrojů, které jsou schopny dodávat při stejném napětí větší elektrický proud.

Důležitou <u>pódmínkou je stejná velikosť napětí jednotlivých</u> zdrojů, aby nedocházelo k tomu, že silnější zdroj bude způsobovat elektrický proud opačného směru ve slabším zdroji. To by představovalo ztráty elektrické energie. V chemických zdrojích by to mohlo způsobit nežádoucí trvalé chemické změny.

 Paralelní zapojení baterií o stejném napětí nezvyšuje výsledné napětí, jen prodlužuje životnost baterií.

2. Ideální zdroj proudu

Ideální zdroj proudu dodává do zátěže proud i(t), jehož průběh nezávisí na velikosti zátěže. Ideální proudový zdroj dodává daný proud, nezávisle na tom, jaké napětí k tomu musí vyvinout. V praxi se s proudovými zdroji setkáme spíše jen výjimečně. Jako proudové zdroje fungují např. tranzistory.

Zapojení více zdrojů proudu

a) paralelně

Řazení dvou zdrojů proudu

Při zapojení více proudových zdrojů paralelně

• 1. Kirchhoffův proudový zákon:

$$\Sigma I_{In} - \Sigma I_{Out} = 0 A$$

$$\sum I_{In} = \sum I_{Out}$$

b)sériově

Proudové zdroje nesmíme v případě nerovnosti generovaných proudů jednotlivých zdrojů zapojit sériově. V případě rovnosti generovaných proudů jednotlivých zdrojů není důvod zapojovat do série- proud se tím nezvýší.

Pasivní prvky v elektrických obvodech

Rezistor R, je lineární elektronický prvek prvek, jehož převažující vlastnost je jeho elektrický odpor . Jeho funkcí je omezení protékajícího proudu v obvodu a snížení napětí (při zátěži). Rezistory jsou nejběžnější součástkou v elektronických zařízeních. Ideální rezistor má, nezávisle na pracovních podmínkách a fyzikálních parametrech okolního prostředí, vykazovat čistě

reálný elektrický odpor. To znamená, že napětí na svorkách rezistoru je přímo úměrné proudu, který jím protéká $u(t) = R \cdot i(t)$ Ohmův zákon základní jednotka R ... 1Ω (Oohm)

 Kondenzátor C, je pasivní elektrotechnický akumulační prvek používaný v el. obvodech k dočasnému uchování elektrického náboje. Základní vlastností je jeho elektrická kapacita C Vyjadřuje schopnost uchovávat elektrický náboj.

- Cívka L, elektrotechnická součástka vyznačující se pouze indukčností (ideální cívka).
- Energii akumuluje ve formě magnetického pole.

Pasivní prvky v elektrických obvodech

Rovnice el. prvků

$$u_{R}(t) = R. i_{R}(t)$$

$$i_{R}(t)$$

$$u_{L}(t) = L. i_{L}'(t) = L. \frac{di_{L}(t)}{dt}$$

$$i_{L}(t)$$

$$i_{C}(t) = C. u_{C}'(t) = C. \frac{du_{C}(t)}{dt}$$

$$i_{C}(t)$$

$$i_{C}(t)$$

$$i_{C}(t)$$

$$i_{C}(t)$$

$$i_{C}(t)$$

$$i_{C}(t)$$

V pasivních el. prvcích má proud protékající elementem stejnou orientaci jako má úbytek napětí na prvku.

3. Rezistor R

- Všechny materiály kladou odpor toku elektrického proudu
- Odpor rezistoru označujeme R, jeho jednotkou je 1 Ω [ohm]
- Odpor rezistoru závisí na jeho geometrických parametrech a vodivosti ρ [Ω·m] použitého materiálu:

$$R = \rho \frac{l}{S}$$

Ohmův zákon:

$$u(t)=R.i(t)$$

Neplatí v polovodičích a neohmických (nelineárních) materiálech a zařízeních (žárovka).

v elektronických obvodech obvykle řády:: 1 k Ω , 1 MΩ apod.

Klasifikace materiálů

- vodiče mají tak malý odpor (≤ 0.1Ω), že ho při analýze obvodu můžeme zanedbat a vodič můžeme považovat za ideální
- Nevodiče mají odpor velmi vysoký (>50 M Ω). Nevodiče nahrazujeme při analýze obvodu rozpojením obvodu.
- Rezistory mají odpor středně velký. Při analýze obvodů je musíme brát v úvahu. Vlastnosti resistoru popisuje VA charakteristika u(t)=f(i(t)). Odpor rezistoru je vždy kladný.

Rezistory

Obvodové symboly:

Rezitor - IEC Symbol

Rezistor - IEEE Symbol

Obvodové symboly pro potenciometr:

4. Kapacitor (kondenzátor) C

- Realizuje fyzikální veličinu kapacita C
- Jednotkou farad, značka F
- Nejčastěji v obvodech v řádech nF, pF
- Rovnice:

$$i_C(t) = C.\frac{du_C(t)}{dt}$$

- Pro řešení diferenciální rovnice 1. řádu potřebujeme znát počáteční podmínku u_c(0)=?
- Počáteční podmínku volíme nejčastěji nulovou: u_c(0)=0V

5. Induktor (cívka) L

- Realizuje fyzikální veličinu indukčnost L
- Jednotka henry, H
- Rovnice:

$$u_L(t) = L. \frac{di_L(t)}{dt}$$

- Pro řešení diferenciální rovnice 1. řádu potřebujeme znát počáteční podmínku i₁(0)=?
- Počáteční podmínku volíme nejčastěji nulovou: i₁(0)=0A

Kapacitory a induktory- shrnutí

Mají řadu duálních vlastností

- Kapacitory a induktory uchovávají energii, kapacitory ve formě el. pole, induktory ve formě magnetického pole
- Závislost u(t)-i(t) je u obou definována diferenciální rovnicí 1. řádu:

$$i_C(t) = C.\frac{du_C(t)}{dt}$$

$$u_L(t) = L. \frac{di_L(t)}{dt}$$

Rovnice základních prvků-shrnutí

$$u_R(t) = R \cdot i_R(t)$$

$$u_{L}(t) == L \cdot i_{L}'(t) = L \cdot \frac{di_{L}(t)}{dt}$$

$$i_{c}(t) = C \cdot u_{c}'(t) = C \cdot \frac{du_{c}(t)}{dt}$$

Pro řešení obou diferenciálních rovnic musíme znát počáteční podmínku (ne nutně, ale obvykle ji volíme jako nulovou). Definuje se pro tu veličinu, která je v 1. derivaci.:

$$u_c(0)=0V, i_L(0)=0A$$