

Fakulteta za elektrotehniko, računalništvo in informatiko

ELEKTROMEHANSKI PRETVORNIKI

Navodila za laboratorijske vaje - 2. del: enofazni asinhronski motorji, sinhronski generatorji in enosmerni stroji

doc. dr. Martin Petrun Študijsko leto 2020/2021

Pričujoča navodila za laboratorijske vaje so namenjena študentom 2. letnika VS študijskega programa Elektrotehnika na UM FERI, ki opravljajo predmet *Elektromehanski pretvorniki*. Obseg in vsebina laboratorijskih vaj se je pri tem predmetu oblikovala, izboljševala in prilagajala skozi pretekla desetletja skozi pridobljene pedagoške izkušnje ter želje pedagoških delavcev, razvoj stroke in razpoložljivo opremo v laboratoriju. Pri tem so sodelovali številni predhodni in sedanji sodelavci, ki so poskrbeli za evolucijo in dodali svoj kanček v skupni mozaik. Vsebina pričujočih vaj je tako zasnovana na predhodnih navodilih avtorja Hadžiselimović (2010), hkrati pa je temeljito prenovljena in prilagojena novo opremljenemu **Laboratoriju za električne stroje** (prostor G-031). Laboratorijske vaje se v prenovljenem laboratoriju izvajajo vzporedno na petih enakih merilnih mestih. Ta merilna mesta omogočajo, da študenti samostojno izvedejo vse preizkuse na najsodobnejši opremi in imajo na tak način najboljše pogoje za uspešen študij.

Laboratorijske vaje so obvezen del predmeta, pri katerem mora vsak študent izvesti praktične preizkuse v laboratoriju in nato izdelati poročila o opravljenih preizkusih. Ta navodila so zasnovana tako, da študentom omogočajo čim bolj **učinkovito**:

- 1) pripravo na laboratorijske vaje pred vstopom v laboratorij,
- 2) izvedbo preizkusov v laboratoriju ter
- 3) izdelavo poročil laboratorijskih vaj.

Ta dokument zajema drugo polovico snovi laboratorijskih vaj in zajema snov iz enofaznih asinhrosnkih strojev, sinhronskih strojev in komutatorskih strojev. Prva polovica vaj je zaradi lažje izvedbe zbrana v prvem delu, ki zajema snov iz transformatorjev in trifaznih asinhronskih strojev. Uporabljena vsebina in notacija je usklajena z zapiski predavanj avtorjev Ritonja in Zagradišnik (2013). Za vse študente, ki želijo svoje znanje razširiti z dodatno literaturo, pa so jim v knjižnici oz. skriptarnici na voljo še knjige v slovenskem jeziku avtorjev Zagradišnik (2007) in Miljavec in Jereb (2008) ter knjige v angleškem jeziku avtorjev Umans (2014) in Chapman (2012).

Ime in priimek:
Vpisna številka:
Pregledal:
Ocena poročil:
Datum zagovora LV:
Ocena zagovora LV:

Naslov: Elektromehanski pretvorniki, Navodila za laboratorijske vaje - 2. del:

enofazni asinhronski motorji, sinhronski generatorji in enosmerni stroji

Avtor: doc. dr. Martin Petrun

UM FERI

mailto://martin.petrun@um.si

Strokovna

recenzija: izr. prof. dr. Boštjan Polajžer

Izdajateljica: Fakulteta za elektrotehniko, računalništvo in informatiko (UM FERI)

Koroška cesta 46, 2000 Maribor, Slovenija

https://feri.um.si,
mailto://feri@um.si

Grafične priloge

in oblikovanje: doc. dr. Martin Petrun

Izdaja: Prva izdaja

Vrsta publikacije: e-publikacija

Dostopno na: https://dk.um.si/IzpisGradiva.php?id=75964

Izid: Maribor, marec 2020

Licenca: CC BY-NC-ND 4.0

© ⊕ ⊕ ⊕ ND ND

Navodila za tiskanje dokumenta:

Dokument je zasnovan za dvostransko tiskanje. Natisnite dokument na papir velikosti A4 z nastavitvijo tiskalnika na **dejanska velikost**. Preden natisnete celoten dokument, preverite pravilnost nastavitev tiskalnika. Pravilnost nastavitev preverite tako, da najprej natisnete samo to stran **(izberete stran b)** in preverite dimenzije na desni sliki. Ustrezno prilagodite nastavitve tiskalnika, če dimenzije ne ustrezajo realnim dimenzijam v cm.

Kazalo

4	Enofazni asinhronski motorji 1		
4.1	Preizkus obremenitve enofaznega asinhronskega motorja 1		
5	Sinhronski generatorji 9		
5.1	Nadomestno vezje sinhronskega generatorja s cilindričnim rotorjem	Ç	9
6	Enosmerni stroji 15		
6.1	Preizkus obremenitve enosmernih generatorjev 15		
6.2	Preizkus obremenitve enosmernega motorja s tujim vzbujanjem	21	
6.3	Preizkus obremenitve enosmernega motorja s trajnimi magneti 2	7	

Literatura

- Stephen J. Chapman. Electric Machinery Fundamentals. McGraw-Hill, New York, NY, fifth, international edition, 2012. ISBN 978-007-108617-2.
- Miralem Hadžiselimović. Električni in elektromehanski pretvorniki: navodila za laboratorijske vaje. UM FERI, Maribor, 1. izdaja, 2010. ISBN 978-961-248-238-1.
- Damijan Miljavec in Peter Jereb. Električni stroji: temeljna znanja. Fakulteta za elektrotehniko, Ljubljana, 2. izdaja, 2008. ISBN 978-961-243-099-3.
- Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7.
- Stephen D. Umans. Fitzgerald and Kingsley's Electric Machinery. McGraw-Hill, New York, NY, seventh, international edition, 2014. ISBN 978-007-132646-9.
- Ivan Zagradišnik. Električni rotacijski stroji. UM FERI, Maribor, 4. popravljena izdaja, 2007. ISBN 978-961-248-012-7.

Seznam splošnih oznak za nazivne vrednosti:

Oznaka	Enota	Opis
С	μС	nazivna kapacitivnost trajno vključenega kondenzatorja
$\cos \varphi_{N}$		nazivni faktor moči
$f_{ m N}$	Hz	nazivna frekvenca
$I_{v,max}$	V	največji trajni vzbujalni tok
$I_{\mathbf{N}}$	A	nazivni tok
$n_{\mathbf{N}}$	$\frac{1}{\min}$	nazivni vrtljaji
$P_{\mathbf{N}}$	W	nazivna mehanska moč
$S_{\mathbf{N}}$	VA	nazivna navidezna moč
$U_{\mathbb{C}}$	V	nazivna napetost trajno vključenega kondenzatorja
$U_{\rm v,max}$	V	največja dovoljena vzbujalna napetost
$U_{\rm N}$	V	nazivna napetost

Enofazni asinhronski motorji

Preizkus obremenitve enofaznega asinhronskega motorja

Cilji vaje:

Izvedite preizkus obremenitve enofaznega asinhronskega motorja:

- a) če motor obratuje brez pomožnega navitja s kondenzatorjem (aktivno samo glavno navitje).
- b) če motor obratuje z vključenim pomožnim navitjem in kondezatorjem za trajno obratovanje.

Pred vstopom v laboratorij se dobro pripravite! Teoretično ozadje za pripravo na to vajo najdete na straneh 89-92 v zapiskih predavanj:

Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7

Uporabljene oznake:

Oznaka	Enota	Opis
η		izkoristek
$\vartheta_{ m ref}$	$^{\circ}C$	referenčna temperatura (hladen stroj pred vsemi preizkusi)
ϑ_{t}	$^{\circ}C$	ocenjena temperatura segretih navitij (segret stroj po opravljenem preizkusu)
Ω_{m}	<u>rad</u> s	mehanska kotna hitrost gredi stroja
$\cos \varphi$		faktor moči
$I_{ m S}$	A	statorski tok (efektivna fazna vrednost)
M	Nm	mehanski navor na gredi stroja
$M_{ m pv}$	Nm	preostala vrednost (offset) senzorja navora
$M_{\rm x}$	Nm	izmerjena vrednost navora vključno s preostalo vrednostjo senzorja navora
n	$\frac{1}{\min}$	mehanska hitrost vrtenja gredi stroja
$n_{\rm ref}$	$\frac{1}{\min}$	referenčna vrednost vrtljajev aktivnega bremenskega pogona
P	W	mehanska moč stroja
$P_{ m s}$	W	skupna električna moč stroja
$R_{ m U12,ref}$	Ω	referenčna upornost navitij med sponkama U1 in U2 (hladen stroj)
$R_{\mathrm{U12,t}}$	Ω	izmerjena upornost navitij med sponkama U1 in U2 (segret stroj)
$U_{\rm s}$	V	statorska napetost (efektivna fazna vrednost)

Merjenec:

Merjenec je enofazni asihronski motor s kratkostično kletko SEIPEE (tip JMM 71B 4 B3)¹ z nazivnimi podatki:

opis	oznaka	vrednost	enota
frekvenca	f_{N}	50	Hz
napetost	U_{N}	230	V
tok	$I_{\mathbf{N}}$	2,07	A
mehaska moč	$P_{\mathbf{N}}$	0,25	kW
vrtljaji	n_{N}	1316	$\frac{1}{\min}$
faktor moči	$\cos \varphi_{ m N}$	0,97	
kapacitivnost kond.	С	20	μF
napetost kondenzatorja	U_{C}	450	V

¹ Motor je zasnovan za obratovanje s trajno vključeno pomožno fazo in kondenzatorjem.

Tabela 4.1: Nazivni podatki

Potek meritev:

Pripravite eksperiment za preizkušanje obravnavanega merjenca v skladu s shematskim prikazom na sliki 4.1,

kjer uporabite merilno opremo in naprave predstavljene v tabeli 4.2.

Tabela 4.2: Merilna oprema in naprave

_			
	oprema	model	specifikacije/opombe
	napajalni vir	laboratorijska miza	nastavljiv vir enofazne napetosti; \sim AC 0 $-$ 260 V, 6 A
	V-, A-, W-meter	Metrix PX 120	digitalni analizator moči ^a
	merilnik vrtljajev	inkrementalni enkoder	vrtljaje sistema izračuna frekvenčni pretvornik
		Siemens 1XP8001-1	Siemens SINAMICS G120-IOP
	merilnik navora	HBM T20 WN/10NM	območje: 10 Nm, 1 V/Nm, $M_{pv} = $ Nm
	Ω -meter	EXTECH EX542	digitalni multimeter

^a Posamezen digitalni analizator moči omogoča merjenje toka, napetosti in moči v eni fazi. V obravnavanem primeru je potreben samo en digitalni analizator moči.

Izvedite preizkus v petih korakih:

- 1) Odklopite pomožno navitje s kondenzatorjem ter določite referenčno vrednost upornosti glavnega navitja $R_{\rm U12,ref}$ in referenčno vrednost temperature motorja² $\vartheta_{\rm ref}$.
- 2) Izvedite preizkus obremenitve pri nazivni napetosti *U*_N in frekvenci *f*_N motorja z izključeno pomožno fazo. Povečujte mehansko breme v skladu z referenčnimi vrednostmi v tabeli 4.3, začenši z neobremenjenim stanjem motorja. Povečujte navor bremena³ posredno z uporabo hitrostne regulacije bremenskega pogona tako, da ustrezno znižujete referenčno vrednost hitrosti *n*_{ref}. Bodite pozorni na nastavljeno obratovalno stanje motorja. Aktivni bremenski pogon ima znatno višjo nazivno moč, zato lahko brez težav prisili merjen motor v kritična obratovalna stanja⁴. V vsaki merilni točki izmerite ustrezne količine v skladu s tabelo 4.3.
- 3) Takoj po končanem preizkusu izmerite upornost segretih navitij $R_{\rm U12,t}$ v obravnavanem motorju.

² Izmerite temperaturo okolice in predpostavite, da je motor že dovolj dolgo neaktiven v tem okolju in ima enako temperaturo kot okolica.

 $^{^{3}}$ Upoštevajte tudi morebitno preostalo vrednost senzorja navora $M_{\rm pv}$.

⁴ V takšnih obratovalnih stanjih izgube v stroju narastejo nad sprejemljive vrednosti, kar pozroči pregrevanje in posledično poškodovanje ali celo uničenje stroja.

- 4) Priključite pomožno navitje s kondenzatorjem in ponovite preizkus obremenitve. Izvedite preizkus pri nazivni napetosti $U_{\rm N}$ in frekvenci f_N motorja z izključeno pomožno fazo. Povečujte mehansko breme v skladu z referenčnimi vrednostmi v tabeli 4.4, začenši z neobremenjenim stanjem motorja. Povečujte navor bremena⁵ posredno z uporabo hitrostne regulacije bremenskega pogona tako, da ustrezno znižujete referenčno vrednost hitrosti n_{ref} . Bodite zelo pozorni pri določitvi ustrezne smeri vrtenja bremenskega pogona glede na naravno smer vrtenja merjenega motorja⁶. Aktivni bremenski pogon ima znatno višjo nazivno moč, zato lahko brez težav prisili merjen motor v kritična obratovalna stanja⁷. V vsaki merilni točki izmerite ustrezne količine v skladu s tabelo 4.4.
- 5) Takoj po končanem preizkusu izmerite upornost segretih navitij $R_{\text{U12,t}}$ v obravnavanem motorju.

Potek izračunov:

Pri izvedbi meritev in izračunov bodite pozorni na morebitno preostalo vrednost M_{pv} uporabljenega senzorja navora. Dejanski navor M določimo z

$$M = M_{\rm x} \mp M_{\rm pv},\tag{4.1}$$

pri čemer se predznak \mp določi glede na predznak preostale vrednosti in smer vrtenja eksperimentalnega sistema.

Med preizkusom obremenitve merjenec dovaja mehansko energijo bremenskemu pogonu. Izhodno moč merjenega motorja P lahko v našem primeru določimo po direktni metodi⁸ z

$$P = \Omega_{\rm m} M = \frac{2\pi n}{60} M,\tag{4.2}$$

izkoristek η in faktor moči $\cos \varphi$ pa določimo z

$$\eta = \frac{P}{P_c} \tag{4.3}$$

in

$$\cos \varphi = \frac{P_{\rm S}}{U_{\rm s}I_{\rm s}},\tag{4.4}$$

Temperaturo merjenega motorja po opravljenih preizkusih lahko določimo na podlagi

$$R_{\text{U12,t}} = R_{\text{U12,ref}} \frac{235 + \vartheta_{\text{t}}}{235 + \vartheta_{\text{ref}}}.$$
 (4.5)

⁵ Upoštevajte tudi morebitno preostalo vrednost senzorja navora M_{pv} .

⁶ V primeru regulacije hitrosti bremenskega pogona, se morata oba stroja vrteti v enako smer, kot je prikazano na sliki 4.1.

⁷ V takšnih obratovalnih stanjih izgube v stroju narastejo nad sprejemljive vrednosti, kar pozroči pregrevanje in posledično poškodovanje ali celo uničenje

⁸ Pojem direktna metoda pomeni, da vse potrebne količine za določitev moči določimo neposredno z ustreznimi meritvami. V primeru določitve mehanske moči *P* izmerimo tako vrtljaje *n* kot tudi navor M neposredno na gredi eksperimentalnega sistema.

Primera izračunov:

Prikažite izračune⁹ za drugo merilno točko v tabeli 4.3:

⁹ Vedno najprej prikažite vstavljene vrednosti in šele nato izračunan rezultat z ustrezno enoto. Vrednosti zaokrožite na 3 pomembna mesta.

Prikažite izračune za drugo merilno točko v tabeli 4.4:

$P_{\rm s}=$ W	z l	$I_{\rm s} = $	V I _s	= A		
$n = \frac{1}{\text{min}}$	<u>n</u>	$M_{\rm pv} = $	Nm	$M_{\rm x} =$	Nm	
$R_{\text{U12,ref}} = $	Ω	$R_{\mathrm{U12,t}} =$	Ω	$artheta_{ m ref} =$	°C	
$M = M_{\rm x} \mp M$	pv =					
$P = \frac{2\pi n}{60} = \lambda$	4					
$\cos \varphi = \frac{P_{\rm s}}{U_{\rm s}I_{\rm s}}$	=					
$\eta = \frac{P}{P_{\rm S}} =$						
$\vartheta_{\rm t} = (\vartheta_{\rm ref} + 2)$	35) $\frac{R_{\text{U12,t}}}{R_{\text{U12,ref}}}$	-235 =				

Rezultati meritev in izračunov:

V tabelo 4.3 zapišite izmerjene in izračunane vrednosti v primeru obratovanja motorja brez pomožne faze.

Tabela 4.3: Izmerjene in izračunane vrednosti v primeru obratovanja motorja brez pomožne faze

	ref. vr.		izmerjene	vrednosti			izračunane	e vrednosti	
št.	M (Nm)	$M_{\rm x}$ (Nm)	$n\left(\frac{1}{\min}\right)$	<i>I</i> _s (A)	<i>P</i> _s (W)	M (Nm)	<i>P</i> (W)	η	$\cos \varphi$
1.	2,0								
2.	1,6								
3.	1,2								
4.	0,8								
5.	0,4								

Prikažite¹⁰ spreminjanje I_s , P_s , P, n, $\cos \varphi$ in η v odvisnosti od bremenskega navora M in določite vrednosti količin za nazivno mehansko moč $P = P_N = 0.25 \text{ kW}$:

10 Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z

Slika 4.2: Grafična predstavitev dobljenih rezultatov in odčitane vrednosti za nazivno mehansko moč P_N v primeru delovanja brez pomožne faze.

V tabelo 4.4 zapišite izmerjene in izračunane vrednosti v primeru obratovanja motorja s pomožno fazo.

Tabela 4.4: Izmerjene in izračunane vrednosti v primeru obratovanja motorja s pomožno fazo

	ref. vr.		izmerjene	vrednosti			izračunane	e vrednosti	
št.	M (Nm)	M _x (Nm)	$n\left(\frac{1}{\min}\right)$	<i>I</i> _s (A)	<i>P</i> _s (W)	M (Nm)	P (W)	η	$\cos \varphi$
1.	3,0								
2.	2,4								
3.	1,8								
4.	1,2								
5.	0,6				***************************************				

Prikažite¹¹ spreminjanje $I_{\rm s}$, $P_{\rm s}$, P, n, $\cos \varphi$ in η v odvisnosti od bremenskega navora M in določite vrednosti količin za nazivno mehansko moč $P=P_{\rm N}=0.25$ kW:

¹¹ Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z eno potezo.

Slika 4.3: Grafična predstavitev dobljenih rezultatov in odčitane vrednosti za nazivno mehansko moč $P_{\rm N}$ v primeru delovanja s pomožno fazo.

Diskusija dobljenih rezultatov:

Za primer obratovanja motorja s trajno vključeno pomožno fazo primerjajte dobljene količine pri nazivni oddani moči P_N (odčitane vrednosti na sliki 4.3) z nazivnimi podatki, ki so deklarirani na ploščici motorja (vrednosti v takeli 4.4). Pojagnite reglace za morehitne odstavanja
(vrednosti v tabeli 4.1). Pojasnite razloge za morebitna odstopanja.
Primerjajte dobljene rezultate preizkusov obremenitve v obeh primerih (slika 4.2 in slika 4.3) in razložite razlike.
Pojasnite izvor pulzacije navora enofaznega asinhronskega motorja. V katerem primeru je pulzacija navora najmanjša? Zakaj se pulzacija navora spreminja z obremenitvijo motorja?
Navedite in pojasnite prednosti in slabosti enofaznih asinhronskih motorjev v primerjavi s trifaznimi.

- Sinhronski generatorji
- 5.1 Nadomestno vezje sinhronskega generatorja s cilindričnim rotorjem

Cilji vaje:

Izvedite preizkus prostega teka in preizkus kratkega stika sinhronskega generatorja s cilindričnim rotorjem in določite parametre nadomestnega vezja obravnavanega generatorja.

Pred vstopom v laboratorij se dobro pripravite! Teoretično ozadje za pripravo na to vajo najdete na straneh 104-105 in 114-116 v zapiskih predavanj:

Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7

Uporabljene oznake:

Oznaka	Enota	Opis
$I_{ m v0}$	A	enosmerni vzbujalni tok karakteristike prostega teka (amplitudna vrednost)
$I_{\mathbf{k}}$	A	statorski tok kratkega stika generatorja (efektivna fazna vrednost)
I	A	statorski tok (efektivna fazna vrednost)
I^{\star}		normirana vrednost statorskega toka
$I_{ m v}$	A	enosmerni vzbujalni tok (amplitudna vrednost)
$I_{{ m v}\delta}$	A	enosmerni vzbujalni tok karakteristike zračne reže (amplitudna vrednost)
$I_{ m vk}$	A	enosmerni vzbujalni tok karakteristike kratkega stika (amplitudna vrednost)
K_{c}		kratkostično razmerje generatorja
$R_{ m s}^{\star}$		normirana upornost statorskih navitij
R_{s}	Ω	upornost statorskih navitij (fazna vrednost)
U	V	statorska napetost (efektivna medfazna vrednost)
U_0	V	statorska napetost prostega teka generatorja (efektivna medfazna vrednost)
U^{\star}		normirana vrednost statorske napetosti
$x_{\rm d}$		normirana nasičena sinhronska reaktanca
X_{d}	Ω	nasičena sinhronska reaktanca (fazna vrednost)
$x_{d,n}$		normirana nenasičena sinhronska reaktanca
$X_{d,n}$	Ω	nenasičena sinhronska reaktanca (fazna vrednost)
Z_{Nf}	Ω	bazna impedanca (nazivna fazna vrednost)

Merjenec:

Merjenec je trifazni sinhronski stroj s cilindričnim rotorjem¹² LD DIDACTIC (tip 73237) z nazivnimi podatki:

opis	oznaka	vrednost	enota
frekvenca	f_{N}	50	Hz
napetost	U_{N}	$\Delta/Y 230/400$	V
tok	$I_{\mathbf{N}}$	$\Delta/Y 0,62/0,36$	A
navidezna moč	$S_{ m N}$	0,25	kVA
vrtljaji	n_{N}	1500	$\frac{1}{\min}$
faktor moči	$\cos \varphi_{ m N}$	0,97	
maks. vzbujalna napetost	$U_{v,max}$	150	V
maks. vzbujalni tok	$I_{ m v,max}$	0,95	A

¹² Obravnavan sinhronski stroj ima na rotorju nameščeno vzbujalno navitje in kratkostično kletko.

Tabela 5.1: Nazivni podatki

Potek meritev:

Pripravite eksperiment za preizkušanje obravnavanega merjenca v skladu s shematskim prikazom na sliki 5.1,

Slika 5.1: Vezalna shema

kjer uporabite merilno opremo in naprave predstavljene v tabeli 5.2.

Tabela 5.2: Merilna oprema in naprave

oprema	model	specifikacije/opombe
napajalni vir	laboratorijska miza	nastavljiv vir enofazne polnovalno usmerjene napetosti; \simeq DC 0 $-$ 320 V, 6 A
V-, A-, W-meter	Metrix PX 120	digitalni analizator moči ^a
voltmeter	Fluke 115	digitalni multimeter
ampermeter	Fluke 115	digitalni multimeter
merilnik vrtljajev	inkrementalni enkoder Siemens 1XP8001-1	vrtljaje sistema izračuna frekvenčni pretvornik Siemens SINAMICS G120-IOP
merilnik navora	HBM T20 WN/10NM	območje: 10 Nm, 1 V/Nm, $M_{pv} = $ Nm
Ω-meter	EXTECH EX542	digitalni multimeter

^a Posamezen digitalni analizator moči omogoča merjenje toka, napetosti in moči v eni fazi. V obravnavanem primeru je potreben samo en digitalni analizator moči.

Izvedite preizkus v dveh korakih:

- 1) Izvedite preizkus prostega teka¹³ pri nazivni frekvenci generatorja $f_{\rm N}$ z ustrezno nastavitvijo referenčne hitrosti $n_{\rm ref}=n_{\rm N}$ bremenskega pogona. Povečujte vzbujalni tok $I_{\rm v}$ v skladu z referenčnimi vrednostmi v tabeli 5.3, začenši z nevzbujenim stanjem generatorja. V vsaki merilni točki izmerite napetost U_0 na sponkah generatorja.
- ¹³ S stikalom pred preizkusom odprite sponke statorskega navitja.
- 2) Izvedite preizkus kratkega stika¹⁴ pri nazivni frekvenci generatorja f_N z ustrezno nastavitvijo referenčne hitrosti $n_{\rm ref}=n_N$
- ¹⁴ S stikalom pred preizkusom kratko sklenite sponke statorskega navitja.

bremenskega pogona. S povečevanjem vzbujalnega toka $I_{\rm v}$ posredno povečujte statorski tok Ik v skladu z referenčnimi vrednostmi v tabeli 5.4, začenši z nevzbujenim stanjem generatorja. V vsaki merilni točki izmerite vzbujalni tok I_v in statorski tok I_k .

Potek izračunov:

Za izračun normiranih vrednosti napetosti U^* in toka I^* iz izmerjenih vrednosti U in I uporabimo kot bazne vrednosti nazivne vrednosti generatorja, ki so prikazane v tabeli 5.1. Normirane vrednosi napetosti U^* v tem primeru izračunamo z

$$U^{\star} = \frac{U_0}{U_N},\tag{5.1}$$

normirane vrednosti toka I^* pa z

$$I^{\star} = \frac{I_{\mathbf{k}}}{I_{\mathbf{N}}}. (5.2)$$

Na osnovi izbranih baznih vrednosti napetosti in toka ter znane vezave statorskih navitij Y lahko izračunamo bazno vrednost fazne impedance Z_{Nf} z

$$Z_{\rm Nf} = \frac{U_{\rm N}}{\sqrt{3}I_{\rm N}}.\tag{5.3}$$

Normirane vrednosti nasičene in nenasičene sinhronske reaktance $(x_{d,n} \text{ in } x_d)$ lahko izračunamo na podlagi določenih količin na sliki 5.2

$$x_{d,n} = \frac{I_{vk}}{I_{v\delta}} \tag{5.4}$$

in

$$x_{\rm d} = \frac{I_{\rm vk}}{I_{\rm v0}}.\tag{5.5}$$

Nadalje lahko določimo tudi kratkostično razmerje K_c generatorja z

$$K_{\rm c} = \frac{1}{x_{\rm d}} = \frac{I_{\rm v0}}{I_{\rm vk}}.$$
 (5.6)

Fazno vrednost sinhronskih reaktanc $X_{d,n}$ in X_d izračunamo z

$$X_{d,n} = x_{d,n} Z_{Nf} \tag{5.7}$$

in

$$X_{\rm d} = x_{\rm d} Z_{\rm Nf}. \tag{5.8}$$

Na koncu izračunamo še normirano fazno vrednost upornosti statorskih navitij R_s^{\star} z

$$R_{\rm s}^{\star} = \frac{R_{\rm s}}{Z_{\rm Nf}}.\tag{5.9}$$

Primer izračunov:

Prikažite izračune¹⁵ za tretjo merilno točko:

¹⁵ Vedno najprej prikažite vstavljene vrednosti in šele nato izračunan rezultat z ustrezno enoto. Vrednosti zaokrožite na 3 pomembna mesta.

Rezultati meritev in izračunov:

V tabelo 5.3 zapišite izmerjene in izračunane vrednosti v primeru prostega teka generatorja pri $n_{\rm ref}=n_{\rm s}=1500\,\frac{1}{\rm min}$.

Tabela 5.3: Izmerjene in izračunane vrednosti v primeru prostega teka sinhronskega generatorja

	št. meritve										
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
$I_{\rm v}$ (A)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
U_0 (V)	0										
U*	0										

V tabelo 5.4 zapišite izmerjene in izračunane vrednosti v primeru kratkega stika generatorja pri $n_{\rm ref}=n_{\rm s}=1500\,\frac{1}{\rm min}.$

	ref. vr.	izmerjene	vrednosti	izr. vr.
št.	I_{k} (A)	$I_{k}(A)$	<i>I</i> _v (A)	I*
1.	0	0	0	0
2.	0,3			
3.	0,6			

Tabela 5.4: Izmerjene in izračunane vrednosti v primeru kratkega stika sinhronskega generatorja

Izračun parametrov nadomestnega vezja:

Prikažite¹⁶ spreminjanje I^* in U^* v odvisnosti od vzbujalnega toka I_v in določite vrednosti vzbujalnih tokov $I_{v\delta}$, I_{v0} in I_{vk} za $I^{\star}=U^{\star}=1$. Vse karakteristike narišite iz izhodišča koordinatnega sistema.

¹⁶ Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z

nih rezultatov in odčitane vrednosti za

primer $I^* = U^* = 1$.

Diskusija dobljenih rezultatov:

Narišite popolno nadomestno vezje trifaznega sinhronskega stroja s cilidričnim rotorjem in ob vsakem parametru zapišite tudi njegovo vrednost:

14 ŠTUDIJSKO LETO 2020/2021

Pojasnite razliko med nenasičeno in nasičeno sinhronsko reaktanco. Kako se X_d spreminja z nasičenjer stroja?
Katere reaktance so zajete v sinhronski reaktanci X_d ?
Primerjajte normirano vrednost upornosti statorskih navitij R_s^* z vrednostjo sinhronske reaktance x_0 Kateri parameter ima večji vpliv na delovanje stroja?
Zapišite enačbo za tok kratkega stika sinhronskega generatorja in na podlagi enačbe pojasnite zakaj i katerem območju ta tok ni odvisen od vrtjajev generatorja n .

Enosmerni stroji

6.1 Preizkus obremenitve enosmernih generatorjev

Cilji vaje:

Izmerite in primerjajte zunanje karakteristike ensmernega generatorja z različnimi izvedbami vzbujanja:

- a) Paralelno vzbujanje (samovzbujanje generatorja).
- b) Tuje vzbujanje s konstantnim vzbujalnim tokom.
- c) Tuje vzbujanje s spremenljivim vzbujalnim tokom (regulacija napetosti).

Pred vstopom v laboratorij se dobro pripravite! Teoretično ozadje za pripravo na to vajo najdete na straneh 137-142 in 150-154 v zapiskih preda-

Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7

Uporabljene oznake:

Ozn	naka Enota	Opis
I_{b}	A	enosmerni bremenski tok (amplitudna vrednost)
$I_{ m v}$	A	enosmerni vzbujalni tok (amplitudna vrednost)
n	$\frac{1}{\min}$	mehanska hitrost vrtenja gredi stroja
$n_{\rm ref}$	$\frac{1}{\min}$	referenčna vrednost vrtljajev aktivnega bremenskega pogona
R_{b}	Ω	bremenska upornost
R_{d}	Ω	dodatna upornost v vzbujalnem tokokrogu
U_a	V	enosmerna napetost na rotorskih sponkah (amplitudna vrednost)

Merjenec:

Merjenec je enosmerni komutatorski stroj BALDOR (tip CD3451) z nazivnimi podatki:

opis	oznaka	vrednost	enota
napetost	$U_{\rm N}$	180	V
tok	$I_{\mathbf{N}}$	2,6	A
mehanska moč	$P_{\mathbf{N}}$	0,37	kW
vrtljaji	$n_{\mathbf{N}}$	1750	$\frac{1}{\min}$
maks. vzbujalna napetost	$U_{v,max}$	100	V
maks. vzbujalni tok	$I_{ m v,max}$	0,5	A

Tabela 6.1: Nazivni podatki

Potek meritev:

Pripravite eksperiment za preizkušanje obravnavanega merjenca v skladu s shematskim prikazom na sliki 6.1,

kjer uporabite merilno opremo in naprave predstavljene v tabeli 6.2.

Tabela 6.2: Merilna oprema in naprave

oprema	model	specifikacije/opombe
napajalni vir	laboratorijska miza	nastavljiv vir enofazne polnovalno usmerjene napetosti; \simeq DC 0 $-$ 320 V, 6 A
voltmeter	FLUKE 115	digitalni multimeter
ampermeter	FLUKE 115	digitalni multimeter
merilnik vrtljajev	inkrementalni enkoder Siemens 1XP8001-1	vrtljaje sistema izračuna frekvenčni pretvornik Siemens SINAMICS G120-IOP
drsni upor	IEV PRN 117	območje: $0-600\Omega$, dopustni trajni tok: $0.5\mathrm{A}$, spreminajnje R_d v vzbujalnem tokokrogu
drsni upor	METREL, PRN	območje: $3 \times (0-100)\Omega$, dopustni trajni tok: 1,8 A, dopustni kratkotrajni tok: 2,5 A/15 min, spreminjanje $R_{\rm b}$ v bremenskem tokokrogu

Izvedite vse tri različice preizkusa pri konstantnih vrtljajih gredi stroja $n_{\text{ref}} = n = 2000 \frac{1}{\text{min}}$. Izvedite preizkus v štirih korakih:

- 1) Najprej preverite pogoje za samovzbujanje generatorja. Električno nepriključen generator zaženite na $n_{\text{ref}} = n = 2000 \frac{1}{\text{min}}$ vrtljajev in izmerite inducirano napetost¹⁷ v rotorskem navitju.
- 2) Samovzbujanje generatorja omogočite tako, da povežete obravnavan enosmerni generator v skladu s shematskim prikazom¹⁸ na sliki 6.1 a). Nastavite hitrost vrtenja na $n_{\text{ref}} = 2000 \frac{1}{\text{min}}$ ter prilagodite drsni upor v vzbujalnem tokokrogu tako, da bo v prostem teku generatorja napetost na sponkah rotorskega navitja znašala $U_a = 180 \text{ V. Pod tako nastavljenimi pogoji s spre-}$ minjanjem bremenske upornosti R_b povečujte bremenski tok I_b v skladu z referenčnimi vrednostmi v tabeli 6.3. V vsaki merilni točki izmerite napetost U_a , bremenski tok I_b in vzbujalni tok I_{v} .
- 3) Povežite vzbujalno navitje stroja s tujim izvorom, kot je prikazano na sliki 6.1 b). Nastavite vrtljaje na $n_{\text{ref}} = 2000 \frac{1}{\text{min}}$ ter prilagodite vzbujalni tok Iv tako, da bo v prostem teku generatorja napetost na sponkah rotorskega navitja znašala U_a 180 V. Pod tako nastavljenimi pogoji s spreminjanjem bremenske upornosti R_b povečujte bremenski tok I_b v skladu z referenčnimi vrednostmi v tabeli 6.3. V vsaki merilni točki izmerite napetost U_a , bremenski tok I_b in vzbujalni tok I_v .
- 4) Ponovite preizkus iz prejšnje točke, vendar med preizkusom obremenitve v vsaki točki prilagodite vzbujalni tok I_v tako, da bo v vseh merilnih točkah napetost na sponkah rotorskega navitja znašala $U_a = 180$ V. S spreminjanjem bremenske upornosti R_b povečujte bremenski tok I_b v skladu z referenčnimi vrednostmi v tabeli 6.3. V vsaki merilni točki izmerite napetost U_a , bremenski tok I_b in vzbujalni tok I_v .

- ¹⁷ Ta inducirana napetost je posledica remanentnega magnetnega polja v
- ¹⁸ Bodite pozorni, da vzbujalno navitje povežete na rotorsko navitje s pravilno polariteto in s tem omogočite proces samovzbujanja. V primeru, da napetost Ua po zagonu generatorja ne naraste, ustavite eksperiment, zamenjajte začetek in konec vzbujalnega navitja in ponovite preizkus.

Rezultati meritev:

Zapišite izmerjene vrednosti v tabelo 6.3.

Tabela 6.3: Izmerjene vrednosti

	ref. vr.	a) samovzbujanje $(R_d = \text{const.})$		b) tuje v $(I_{\rm v}=$	zbujanje A)	c) tuje vzbujanje (U _a =V)		
št.	<i>I</i> _b (A)	<i>I</i> _b (A)	$U_{\rm a}$ (V)	$I_{\rm v}$ (A)	<i>I</i> _b (A)	U _a (V)	<i>I</i> _b (A)	$I_{\rm v}$ (A)
1.	0	0			0		0	
2.	0,5							
3.	1,0							
4.	1,5							
5.	2,0							
6.	2,5							

Prikažite¹⁹ spreminjanje $U_{\rm a}$ in $I_{\rm v}$ v odvisnosti od bremenskega toka $I_{\rm b}$ za vse tri obravnavane primere in določite vrednosti količin za nazivni tok $I_{\rm b}=I_{\rm N}=1,\!75~{\rm A}$:

¹⁹ Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z eno potezo.

Diskusija dobljenih rezultatov:

-	. ,	1 0 ,	•	, ,	_	0	*

Napišite in pojasnite vse pogoje, ki so potrebni za samovzbujanje enosmernega generatorja.

Primerjajte izmerjeni znunanji karakteristiki v primerih a) in b) in pojasnite zakaj napetost U_a pada znaraščanjem bremenskega toka I_b v posameznem primeru.
Pojasnite kaj je reakcija kotve in kakšne so njene posledice na delovanje enosmernega generatorja.
Opišite kako lahko dobimo napetost U_a , ki je v ustreznem območju neodvisna od obremenitve generatorja

6.2 Preizkus obremenitve enosmernega motorja s tujim vzbujanjem

Cilji vaje:

Izvedite preizkus obremenitve enosmernega motorja s tujim vzbujanjem in določite vrednosti količin pri nazivni obremenitvi motorja P_N .

Pred vstopom v laboratorij se dobro pripravite! Teoretično ozadje za pripravo na to vajo najdete na straneh 154-155 v zapiskih predavanj:

Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7

Uporabljene oznake:

Oznaka	Enota	Opis
η		izkoristek
Ω_{m}	rad s	mehanska kotna hitrost gredi stroja
I_{a}	A	enosmerni tok skozi rotorsko navitje (amplitudna vrednost)
M	Nm	mehanski navor na gredi stroja
$M_{ m pv}$	Nm	preostala vrednost (offset) senzorja navora
$M_{\rm x}$	Nm	izmerjena vrednost navora vključno s preostalo vrednostjo senzorja navora
n	$\frac{1}{\min}$	mehanska hitrost vrtenja gredi stroja
P	W	mehanska moč
$P_{ m el}$	W	vhodna električna moč
$M_{ m ref}$	Nm	referenčna vrednost navora aktivnega bremenskega pogona
U_a	V	enosmerna napetost na rotorskih sponkah (amplitudna vrednost)
$U_{ m v}$	V	enosmerni vzbujalna napetost (amplitudna vrednost)

Merjenec:

Merjenec je enosmerni komutatorski stroj BALDOR (tip CD3451) z nazivnimi podatki:

opis	oznaka	vrednost	enota
napetost	$U_{\rm N}$	180	V
tok	$I_{\mathbf{N}}$	2,6	A
mehanska moč	$P_{\mathbf{N}}$	0,37	kW
vrtljaji	n_{N}	1750	$\frac{1}{\min}$
maks. vzbujalna napetost	$U_{\rm v,max}$	100	V
maks. vzbujalni tok	$I_{ m v,max}$	0,5	A

Tabela 6.4: Nazivni podatki

Potek meritev:

Pripravite eksperiment za preizkušanje obravnavanega merjenca v skladu s shematskim prikazom na sliki 6.3,

kjer uporabite merilno opremo in naprave predstavljene v tabeli 6.5.

Tabela 6.5: Merilna oprema in naprave

oprema	model	specifikacije/opombe			
napajalni vir	laboratorijska miza	nastavljiv vir enofazne polnovalno usmerjene napetosti, \simeq DC 0 $-$ 320 V, 6 A			
napajalni vir	laboratorijska miza	nastavljiv vir trifazne polnovalno usmerjene napetosti, \simeq DC 0 $-$ 610 V, 12 A			
voltmeter	FLUKE 115	digitalni multimeter			
ampermeter FLUKE 115		digitalni multimeter			
		vrtljaje sistema izračuna frekvenčni pretvornik Siemens SINAMICS G120-IOP			
merilnik navora	HBM T20 WN/10NM	območje: 10 Nm, 1 V/Nm, $M_{pv} = $ Nm			

Izvedite preizkus v štirih korakih:

- 1) Vključite aktivni bremenski pogon in nastavite referenčno vrednost navora na $M_{\rm ref}=0$.
- 2) Nato najprej vključite napetost U_v na vzbujalnem navitju in počasi nastavite vzbujalni tok I_v na nazivno vrednost. Med preizkusom se bo vzbujalni tok I_v zmanjševal zaradi segrevanja vzbujalnega navitja, zato kasneje v vsaki merilni točki popravite I_v na nazivno vrednost. Bodite izredno pozorni, da je vzbujalno navitje med vsemi preizkusi zmeraj aktivno (t.j., skozi vzbujalno navitje teče tok I_v)²⁰.

 $^{^{20}}$ Nenadno znižanje ali prekinitev vzbujalnega toka $I_{\rm v}$ povzroči močno pospeševanje enosmernega motorja, kar lahko povzroči uničenje stroja in je nevarno za okolico!

- 3) Vključite napetost na rotorskem navitju U_a . Počasi prilagodite U_a na nazivno vrednost in nato povečujte obremenitev motorja M_{ref} v skladu z referenčnimi vrednostmi v tabeli 6.6. Bodite pozorni pri določitvi ustrezne smeri vrtenja bremenskega pogona glede na naravno smer vrtenja merjenega motorja²¹. Med preizkusom sproti popravljajte rotorsko napetost na nazivno vrednost U_N . V vsaki merilni točki izmerite ustrezne količine v skladu s tabelo 6.6.
- 4) Po opravljenih meritvah najprej znižajte navor bremena M_{ref} (hkrati prilagajajte rotorsko napetost U_a na nazivno vrednost), nato znižajte Ua na 0 na konci izključite še vzbujalno napetost U_{v} .

21 V primeru regulacije navora bremenskega pogona, se morata oba stroja vrteti v nasprotno smer, kar je prikazano tudi na sliki 6.3.

Potek izračunov:

Pri izvedbi meritev in izračunov bodite pozorni na morebitno preostalo vrednost M_{pv} uporabljenega senzorja navora. Dejanski navor M določimo z

$$M = M_{\rm x} \mp M_{\rm pv},\tag{6.1}$$

pri čemer se predznak \mp določi glede na predznak preostale vrednosti in smer vrtenja eksperimentalnega sistema.

Med preizkusom obremenitve merjenec dovaja mehansko energijo bremenskemu pogonu. Izhodno moč merjenega motorja P lahko v našem primeru določimo po direktni metodi²² z

$$P = \Omega_{\rm m} M = \frac{2\pi n}{60} M. \tag{6.2}$$

Pri izračunu skupne vhodne električne moči motorja P_{el} moramo upoštevati tako rotorsko kot tudi vzbujalno navitje. Pel zato izračunamo z

$$P_{\rm el} = U_{\rm a}I_{\rm a} + U_{\rm v}I_{\rm v},\tag{6.3}$$

izkoristek η motorja pa določimo z

$$\eta = \frac{P}{P_{\rm el}}.\tag{6.4}$$

²² Pojem direktna metoda pomeni, da vse potrebne količine za določitev moči določimo neposredno z ustreznimi meritvami. V primeru določitve mehanske moči P izmerimo tako vrtljaje n kot tudi navor M neposredno na gredi eksperimentalnega sistema.

Primer izračunov:

Prikažite izračune²³ za tretjo merilno točko:

²³ Vedno najprej prikažite vstavljene vrednosti in šele nato izračunan rezultat z ustrezno enoto. Vrednosti zaokrožite na 3 pomembna mesta.

Rezultati meritev in izračunov:

Zapišite izmerjene vrednosti v tabelo 6.6.

Tabela 6.6: Izmerjene vrednosti

	ref. vr.	izmerjene vrednosti								
št.	M (Nm)	M _x (Nm)	$n \left(\frac{1}{\min}\right)$	U _a (V)	I _a (A)	<i>U</i> _v (V)	<i>I</i> _v (A)			
1.	0,5									
2.	1,0									
3.	1,5									
4.	2,0									
5.	2,5									
6.	3,0									
7.	3,5									

Zapišite izračunane vrednosti v tabelo 6.7.

	izračunane vrednosti							
št.	M (Nm)	<i>P</i> (W)	P _{el} (W)	η				
1.								
2.								
3.								
4.								
5.								
6.								
7.								

Tabela 6.7: Izračunane vrednosti

Prikažite²⁴ spreminjanje I_a , P_{el} , P, n in η v odvisnosti od bremenskega navora M in določite vrednosti količin za nazivno mehansko moč $P = P_N = 370 \text{ W}$:

²⁴ Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z eno potezo.

nih rezultatov in odčitane vrednosti za nazivno mehansko moč P_N .

Diskusija dobljenih rezultatov:

Napišite enačbo za vrtljaje n in pojasnite spreminjanje n v odvisnosti od obremenitve motorja vrtljaji spreminjajo linearno? Zakaj da oz. ne?	M. Se

26 ŠTUDIJSKO LETO 2020/2021

Pojasnite zakaj je bil v rotorskem tokokrogu potreben dodatni kondenzator za glajenje usmerjene napa- jalne napetosti, v vzbujalnem tokokrogu pa le-ta ni bil potreben.
Pojasnite kaj je reakcija kotve in kako vpliva na karakteristiko $n=\mathrm{f}\left(M\right)$.
Pojasnite na kakšne načine lahko odpravimo negativne posledice reakcije kotve.
Pojasnite kako so vrtljaji motorja n odvisni od vzbujalnega toka $I_{\rm v}$. Zakaj je v primeru delovanja z visokim vrtljaji potrebno znižati vzbujalni tok $I_{\rm v}$? Kaj se zgodi, če med obratovanjem izklopimo vzbujanje?

6.3 Preizkus obremenitve enosmernega motorja s trajnimi magneti

Cilji vaje:

Izvedite preizkus prostega teka v generatorskem obratovanju in preizkus obremenitve v motorskem obratovanju enosmernega stroja s trajnimi magneti. Na podlagi preizkusov določite konstanto navora $K_{\rm M}$ in konstanto inducirane napetosti $K_{\rm E}$ obravnavanega stroja.

Pred vstopom v laboratorij se dobro pripravite! Teoretično ozadje za pripravo na to vajo najdete na straneh 154-155 v zapiskih predavanj:

Jožef Ritonja in Ivan Zagradišnik. Električni in elektromehanski pretvorniki: zapiski predavanj. UM FERI, Maribor, 2013. ISBN 978-961-248-377-7

Uporabljene oznake:

Oznaka	Enota	Opis
η		izkoristek
Ω_{m}	rad s	mehanska kotna hitrost gredi stroja
E_{a}	V	enosmerna inducirana napetost v rotorskem navitju (amplitudna vrednost)
I_{a}	A	enosmerni tok skozi rotorsko navitje (amplitudna vrednost)
K_{E}	$\frac{\text{Vs}}{\text{rad}}$	konstanta inducirane napetosti
$K_{\mathbf{M}}$	$\frac{Nm}{A}$	konstanta navora
M	Nm	mehanski navor na gredi stroja
$M_{ m pv}$	Nm	preostala vrednost (offset) senzorja navora
$M_{\rm x}$	Nm	izmerjena vrednost navora vključno s preostalo vrednostjo senzorja navora
n	$\frac{1}{\min}$	mehanska hitrost vrtenja gredi stroja
$n_{\rm ref}$	$\frac{1}{\min}$	referenčna vrednost vrtljajev aktivnega bremenskega pogona
P	W	mehanska moč
$P_{ m el}$	W	vhodna električna moč
M_{ref}	Nm	referenčna vrednost navora aktivnega bremenskega pogona
U_a	V	enosmerna napetost na rotorskih sponkah (amplitudna vrednost)

Merjenec:

Merjenec je enosmerni komutatorski stroj HYDAC (tip 15 – 350) z nazivnimi podatki:

opis	oznaka	vrednost	enota
napetost	$U_{\rm N}$	24	V
tok	$I_{\mathbf{N}}$	12	A
mehanska moč	P_{N}	0,2	kW

Tabela 6.8: Nazivni podatki

Potek meritev:

Pripravite eksperiment za preizkušanje obravnavanega merjenca v skladu s shematskim prikazom na sliki 6.5,

Slika 6.5: Vezalna shema

kjer uporabite merilno opremo in naprave predstavljene v tabeli 6.9.

Tabela 6.9: Merilna oprema in naprave

oprema	model	specifikacije/opombe		
napajalni vir	laboratorijska miza	nastavljiv vir enofazne polnovalno usmerjene napetosti, \simeq DC 0 $-$ 40 V, 20 A		
voltmeter FLUKE 115		digitalni multimeter		
ampermeter	FLUKE 115	digitalni multimeter		
merilnik vrtljajev	inkrementalni enkoder Siemens 1XP8001-1	vrtljaje sistema izračuna frekvenčni pretvornik Siemens SINAMICS G120-IOP		
merilnik navora	HBM T20 WN/10NM	območje: 10 Nm, 1 V/Nm, $M_{pv} = $ Nm		

Izvedite preizkus v dveh korakih:

- 1) Izvedite preizkus prostega teka v generatorskem obratovanju²⁵ pri $n_{\rm ref}=1500~\frac{1}{\rm min}$ in izmerite inducirano napetost $E_{\rm a}$.
- 2) Izvedite preizkus obremenitve pri nazivni napetosti $U_{\rm N}$ v motorskem obratovanju²⁶. Povečujte navor bremena²⁷ neposredno z uporabo navorne regulacije bremenskega pogona tako, da ustrezno zvišujete referenčno vrednost $M_{\rm ref}$ v skladu z referenčnimi vrednostmi v tabeli 6.10. Bodite pozorni pri določitvi ustrezne smeri vrtenja bremenskega pogona glede na naravno smer vrtenja merjenega motorja²⁸. V vsaki merilni točki izmerite ustrezne količine v skladu s tabelo 6.10.
- ²⁵ Pred preizkusom s stikalom odklopite rotorski tokokrog kot je prikazano na sliki 6.5
- ²⁶ Pred preizkusom s stikalom priključite rotorski tokokrog na nastavljiv vir napetosti, kot je prikazano na sliki 6.5 ²⁷ Upoštevajte tudi morebitno preostalo vrednost senzorja navora $M_{\rm pv}$.
- ²⁸ V primeru regulacije navora bremenskega pogona, se morata oba stroja vrteti v nasprotno smer, kar je prikazano tudi na sliki 6.5.

Potek izračunov:

Pri izvedbi meritev in izračunov bodite pozorni na morebitno preostalo vrednost M_{pv} uporabljenega senzorja navora. Dejanski navor M določimo z

$$M = M_{\rm X} \mp M_{\rm pv},\tag{6.5}$$

pri čemer se predznak \mp določi glede na predznak preostale vrednosti in smer vrtenja eksperimentalnega sistema.

Med preizkusom obremenitve merjenec dovaja mehansko energijo bremenskemu pogonu. Izhodno moč merjenega motorja P lahko v našem primeru določimo po direktni metodi²⁹ z

$$P = \Omega_{\rm m} M = \frac{2\pi n}{60} M. \tag{6.6}$$

Skupno vhodno električno moč $P_{\rm el}$ izračunamo z

$$P_{\rm el} = U_{\rm a}I_{\rm a},\tag{6.7}$$

izkoristek η motorja pa določimo z

$$\eta = \frac{P}{P_{\rm el}}.\tag{6.8}$$

Konstanto inducirane napetosti K_E lahko določimo z

$$K_{\rm E} = \frac{E_{\rm a}}{\Omega_{\rm m}} = \frac{60E_{\rm a}}{2\pi n},$$
 (6.9)

kjer je E_a inducirana napetost pri n vrtljajih v prostem teku generatorskega obratovanja. Navorno konstanto $K_{\rm M}$ lahko ocenimo z

$$K_{\rm M} = \frac{M}{I_{\rm a}},\tag{6.10}$$

kjer je I_b rotorski tok in M navor na gredi stroja v motorskem obratovanju.

Primer izračunov:

Prikažite izračune³⁰ za tretjo merilno točko:

30 Vedno najprej prikažite vstavljene vrednosti in šele nato izračunan rezultat z ustrezno enoto. Vrednosti zaokro-

²⁹ Pojem direktna metoda pomeni, da vse potrebne količine za določitev moči določimo neposredno z ustreznimi meritvami. V primeru določitve mehanske moči P izmerimo tako vrtljaje n kot tudi navor M neposredno na gredi eksperimentalnega sistema.

Rezultati meritev in izračunov:

Zapišite izmerjene in izračunane vrednosti v tabelo 6.10.

Tabela 6.10: Izmerjene in izračunane vrednosti

	ref. vr.	izmerjene vrednosti				izračunane vrednosti			
št.	M (Nm)	$M_{\rm x}$ (Nm)	$n\left(\frac{1}{\min}\right)$	<i>I</i> _a (A)	U _a (V)	M (Nm)	P _{el} (W)	P (W)	η
1.	0,6								
2.	0,9								
3.	1,2								
4.	1,5								
5.	1,8								

Prikažite 31 spreminjanje I_a , $P_{\rm el}$, P, n in η v odvisnosti od bremenskega navora M in določite vrednosti količin za nazivni rotorski tok $I_a = I_N = 12 \text{ A}$:

³¹ Nelinearne odvisnosti narišite z uporabo krivuljnikov, linearne pa z uporabo ravnila. Aproksimacijo karakteristik izvedite tako, da upoštevate vse izmerjene točke kar se da uravnoteženo in skozi njih potegnete zvezno črto z

Slika 6.6: Grafična predstavitev dobljenih rezultatov in odčitane vrednosti za nazivni rotorski tok I_N .

Izračun parametrov stroja:

Na osnovi izvedenih preizkusov določite konstanti K_E in K_M :

Preizkus prostega teka v generatorskem obratovanju (izmerjena vrednost E_a v merilni točki)

Preizkus obremenitve v motorskem obratovanju (vrednost navora Mje določena za nazivno delovno točko na sliki 6.6):

Diskusija dobljenih rezultatov:

Primerjajte vred	Primerjajte vrednosti konstant $K_{\rm E}$ in $K_{ m M}$ ter pojasnite razliko.						
Pojasnite predr	nosti in slabosti	enosmernih ı	motorjev s tra	ajnimi magne	eti.		

32 ŠTUDIJSKO LETO 2020/2021

Razložite zakaj v normalnem obratovalnem stanju reakcija kotve nima vpliva na delovanje enosmernega motorja s trajnimi magneti.	
Pojasnite kaj se lahko zgodi, če tok $I_{\rm a}$ kratkotrajno preseže dovolje	ne vrednosti?