CH 6

CH 6

6.1 The Laplace Transform

6.2 Region of Convergence for Laplace Transform

6.3 The Inverse Laplace Transform

6.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot

6.5 Properties of the Laplace Transform

Linearity

Time shifting

Shifting in the s-domain

Time scaling

Conjugation

Convolution property

Differentiation in the time domain

Differentiation in the s-domain

Integration in the time domain

The initial-value and final-value theorems

Initial-value Theorem

Final-value Theorem

6.6 The Unilateral Laplace Transform

Differentiation in the Time Domain

Solving Differential Equations Using the Unilateral Laplace Transform

Representation of Circuits in s-domain

Resistor

Inductor

Conductor

6.7 System Function

H(s) Poles

6.8 Analysis and Characterization of LTI system Using the Laplace Transform

Causality

Stability

6.9 Frequency Response of An LTI System

6.1 The Laplace Transform

For some signals which have no Fourier transforms, we can preprocess them like

$$X(j\omega) = \int_{-\infty}^{\infty} \left[x(t) e^{-\sigma t}
ight] e^{-j\omega t} \mathrm{d}t$$

define $s=\sigma+j\omega$, and using X(s) to denote this integral

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} \mathrm{d}t$$

which is a two-sided (bilateral) Laplace Transform

And we can say that the Laplace Transform is an extension of the Fourier

The Fourier transform is a special case of the Laplace transform when $\sigma=0$

$$X(s) = \int_{0^-}^\infty x(t) e^{-st} \mathrm{d}t$$

which is a one-sided (unilateral) Laplace Transform

some useful LT pairs

$$\cos(\omega t)u(t) \overset{LT}{\longleftrightarrow} rac{s}{s^2+\omega^2}$$
, $\Re\{s\}>0 \geq \sin(\omega t)u(t) \overset{LT}{\longleftrightarrow} rac{\omega}{s^2+\omega^2}$, $\Re\{s\}>0$

Generally, the Laplace transform is rational

$$X(s) = rac{N(s)}{D(s)}$$

- the roots of N(s) are defined as the zeros
- the roots of S(s) are defined as the poles

the representation of X(s) through its poles an zeros in the s-plane is referred to a as the polezero plot of X(s)

6.2 Region of Convergence for Laplace Transform

- The ROC of X(s) consists of stripes parallel to the $j\omega$ -axis in the s-plane
- For rational Laplace transforms, the ROC does not contain any poles
- If x(t) is of finite duration and is absolutely integrable, the the ROC id the entire s-plane

the line $\Re\{s\} = \sigma_0$ is in the ROC

- If x(t) is **right sided**, then all values of s for which $\Re\{s\} > \sigma_0$ will also be in the ROC; and the ROC of a right-sided signal is a right-half plane
- If x(t) is **left sided**, then all values of s for which $\Re\{s\} < \sigma_0$ will also be in the ROC; and the ROC of a left-sided signal is a left-half plane
- If x(t) is **two sided**, then the ROC will consist of a strip in the s-plane that includes the line $\Re\{s\}=\sigma_0$

- If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC
- If the Laplace transform X(s) of x(t) is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole

6.3 The Inverse Laplace Transform

from the inverse Fourier transform, we could conclude that

$$\{x(t)e^{-\sigma t}=\mathcal{F}^{-1}\{X(s)\}=rac{1}{2\pi}\int_{-\infty}^{\infty}X(s)e^{j\omega t}\mathrm{d}\omega$$

multiplying both sides both by $e^{\sigma t}$, we can obtain

$$x(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} X(s) e^{st} \mathrm{d}\omega$$

and obtain that $\mathrm{d}s=j\mathrm{d}\omega$

$$x(t) = rac{1}{2\pi j} \int_{\sigma-i\omega}^{\sigma+j\omega} X(s) e^{st} \mathrm{d}s$$

we only discuss the class of **rational transforms**, the inverse Laplace transform can be determine by using the technique of **partial-fraction expansion**

$$X(s) = \frac{N(s)}{D(s)} = \frac{a_m s^m + a_{m-1} s^{m-a} + \dots + a_1 s + a_0}{b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$
$$= \frac{a_m (s - z_1)(s - z_2) \dots (s - z_m)}{b_n (s - p_1)(s - p_2) \dots (s - p_n)}$$

ullet m < n and no repeated roots in poles: $X(s) = \sum_{i=1}^n rac{A_i}{s+a_i}$

6.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot

a general rational Laplace transform has the form

$$X(s) = rac{N(s)}{D(s)}$$

which can be factored into the form

$$X(s) = Mrac{\prod_{i=1}^R(s-z_i)}{\prod_{j=1}^P(s-p_j)}$$

where z_i , p_j are zeros and poles of X(s)

then denote zero vectors and pole vectors:

$$j\omega-z_i=A_ie^{j\phi_i}$$

$$j\omega-p_j=B_je^{j\phi_i}$$

• Magnitude:

$$|X(j\omega)| = Mrac{\prod_{i=1}^R(j\omega-z_i)}{\prod_{j=1}^R(j\omega-p_j)}$$

• Phase:

$$egin{aligned} igtriangleup X(j\omega) &= \sum_{i=1}^R \phi_i - \sum_{j=1}^P heta_j \end{aligned}$$

6.5 Properties of the Laplace Transform

Linearity

$$ax_1(t) + bx_2(t) \longleftrightarrow aX_1(s) + bX_2(s) \qquad \mathrm{ROC} = R_1 \cap R_2$$

Time shifting

$$x(t) \longleftrightarrow X(s) \quad ext{ROC} = R$$
 $x(t-t_0) \longleftrightarrow e^{-st_0}X(s) \quad ext{ROC} = R$

Shifting in the s-domain

$$x(t) \longleftrightarrow X(s) \qquad ext{ROC} = R$$
 $e^{s_0 t} x(t) \longleftrightarrow X(s-s_0) \qquad ext{ROC} = R + \mathfrak{R}\{s_0\}$

Time scaling

$$x(t) \longleftrightarrow X(s)$$
 ROC = R
$$x(\alpha t) \longleftrightarrow \frac{1}{|\alpha|} X\left(\frac{s}{\alpha}\right)$$
 ROC = αR
$$x(-t) \longleftrightarrow X(-s)$$
 ROC = $-R$

Conjugation

$$x^*(t) \longleftrightarrow X^*(s^*) \qquad ext{ROC} = R$$

when x(t) is real: $X(s) = X^*(s^*)$

if x(t) is real and if X(s) has a pole or zero at $s=s_0$, then X(s) also has a pole or zero at the complex conjugate point $s=s_0^*$.

Convolution property

$$x_1(t)*bx_2(t)\longleftrightarrow X_1(s)X_2(s) \qquad \mathrm{ROC}=R_1\cap R_2$$

Differentiation in the time domain

$$x(t) \longleftrightarrow X(s) \qquad \mathrm{ROC} = R$$

$$rac{\mathrm{d}x(t)}{\mathrm{d}t} \longleftrightarrow sX(s) \qquad \mathrm{ROC} = R$$

Differentiation in the s-domain

$$-tx(t) \longleftrightarrow rac{\mathrm{d}X(s)}{\mathrm{d}s} \qquad \mathrm{ROC} = R$$

Integration in the time domain

$$\int_{-\infty}^t x(\tau) \mathrm{d} au \longleftrightarrow rac{X(s)}{s} \qquad \mathrm{ROC} = R \cap \{\Re\{s\} > 0\}$$

The initial-value and final-value theorems

Initial-value Theorem

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0

$$x(0^+) = \lim_{s o\infty} sX(s)$$

Final-value Theorem

If x(t)=0 for t<0 and x(t) has a finite limit as $t\to\infty$

$$\lim_{t o\infty}x(t)=\lim_{s o0}sX(s)$$

6.6 The Unilateral Laplace Transform

the bilateral transform and the unilateral transform of a casual signal are identical the ROC for the unilateral transform is always a right-half plane unilateral transform can be recognized as the bilateral transform of x(t)u(t)

Differentiation in the Time Domain

$$rac{\mathrm{d}}{\mathrm{d}t}x(t)\longleftrightarrow sX(s)-x(0^-)$$

$$rac{\mathrm{d}^n}{\mathrm{d}t^n}x(t) \longleftrightarrow s^nX(s) - \sum_{k=0}^{n-1}s^{n-k-1}x^{(k)}(0^-)$$

Solving Differential Equations Using the Unilateral Laplace Transform

$$egin{aligned} \sum_{k=0}^N a_k rac{\mathrm{d}^k y(t)}{\mathrm{d}t^k} &= \sum_{k=0}^M b_k rac{\mathrm{d}^k x(t)}{\mathrm{d}t^k} \ H(s) &= rac{\sum_{k=0}^M b_k s^k}{\sum_{k=0}^N a_k s^k} \end{aligned}$$

Representation of Circuits in s-domain

Resistor

Inductor

$$egin{aligned} v_L(t) &= Lrac{\mathrm{d}i_L(t)}{\mathrm{d}t}\ V_L(s) &= sLI_L(s) - Li_L(0^-)\ I_L(s) &= rac{1}{sL}V_L(s) = rac{1}{s}i_L(0^-) \end{aligned}$$

Conductor

$$egin{aligned} i_c(t) &= C rac{\mathrm{d}v_c(t)}{\mathrm{d}t} \ V_C(s) &= rac{1}{sC} I_C(s) + rac{1}{s} v_C(0^-) \ I_C(s) &= sC V_C(s) - C v_C(0^-) \end{aligned}$$

6.7 System Function

H(s) Poles

• Single Pole

- Positive Real Number: increase exponentially
- Negative Real Number: decrease exponentially
- Conjugation Poles

- Poles on Imaginary Axis: Constant amplitude shock
- Poles on Right Part of ROC: Shock increase
- Poles on Left Part of ROC: Shock decrease

6.8 Analysis and Characterization of LTI system Using the Laplace Transform

Causality

The ROC associated with the system function for a causal system is a right-half plane

Stability

An LTI system is stable if and only if the ROC of its system function H(s) includes the $j\omega$ -axis

A causal system with rational system function H(s) is stable if and only if all of the poles of H(s) lie in the left-half of the s-plane —i.e. all of the poles have negative real parts.

6.9 Frequency Response of An LTI System