Dengue Fever Cases Prediction

Presented By:
Nicholas Khoo
Keng Hui Wong
Michael Wong
Li Shing Chan

Presentation Outline

- Background
- Data Science Approach
- Cost-Benefit Analysis

Background

- Dengue cases are on the rise globally, including Singapore.
- More budget is being allocated to hospitals for tackling dengue fever.
- The WHO has implemented a strategic approach to address the issue.
- Urgent mitigation efforts are needed to combat the spread of dengue fever in Singapore.

GOAL: TO REDUCE THE BURDEN OF DENGUE

OBJECTIVES:

- To reduce dengue mortality by at least 50% by 2020*
- To reduce dengue morbidity by at least 25% by 2020*
- To estimate the true burden of the disease by 2015
- * The year 2010 is used as the baseline.

ENABLING FACTORS FOR EFFECTIVE IMPLEMENTATION OF THE GLOBAL STRATEGY:

- advocacy and resource mobilization
- partnership, coordination and collaboration
- communication to achieve behavioural outcomes
- capacity-building
- monitoring and evaluation

Presentation Outline

- Background
- Data Science Approach
- Cost-Benefit Analysis

Data Science Approach

Problem Statement

Data Collection

Data Cleaning & Exploratory Data Analysis

Diagnostics and Modelling

Conclusion & Recommendation

Problem Statement

Situation

The Ministry of Health (MOH) has observed an increase in hospital visitations for dengue cases in the recent years.

Complication

The increase in visitations has resulted in high healthcare costs for hospitals and increased financial burden on citizens.

Resolution

MOH engaged NEA's data science team to develop a precise predictive model for dengue outbreaks in Singapore. This helps NEA take proactive measures to prevent and control dengue outbreaks, reducing healthcare costs and citizens' financial burden.

Data Science Approach

Problem Statement

Data Collection

Data Cleaning & Exploratory Data Analysis

Pre-processing and Modelling

Conclusion & Recommendation

Data Collection

Data was collected through 3 sources:

- 1) Climate historical data from weather.gov.sg
 - Dataset downloaded directly from the website
- 2) Weekly dengue fever cases in Singapore from 2014-2018 from data.gov.sg
 - Dataset downloaded directly from the website
- 3) Google trends data based on search term
 - Accessed from Google Trends website and downloadable directly.

Data Science Approach

Problem Statement

Data Collection

Data Cleaning & Exploratory Data Analysis

Diagnostics and Modelling

Conclusion & Recommendation

Mean monthly cases peaked in mid-2014 and early 2016

Dengue cases are thought to go up during seasons with high temperature which encourages aedes mosquito breeding

Data does support this trend:

- 2014's peak was during SG's hottest mid-year period
- 2016's peak at the start of the year was due to El Nino in late 2015.

Month

10

12

26.0

Google searches for 'dengue fever' track case numbers closely

- Searches for "dengue fever" go up when actual caseloads increase
- This is likely due to higher media coverage and more people experiencing the symptoms of dengue, thus going online to look for solutions and medical advice

Timing matters: NEA's campaigns have historically preceded high case volumes (except for Jan 2016)

• Our model aims to predict the best time to start the mozzie wipeout in 2019

Data Science Approach

Problem Statement

Data Collection

Data Cleaning & Exploratory Data Analysis

Diagnostics and Modelling

Conclusion & Recommendation

Inference:

- Downward Trend, flatten from end 2016.
- Seasonal 6 months.
- Residual mean & variance not constant.

Conclusion:

- Seasonal in nature.
- Non-stationary.

Model: SARIMAX (p,d,q):(0,1,1) (P,D,Q,s):(0,0,0,26)

Exo - Google Trends

- Climate

	AIC	Log Likelihood	RMSE
Seasonal Order			
(0,0,0,26)	2229.573	-1089.786	29.44

- AIC lowest.
- Log Likelihood highest.
- RMSE within the range of different models.

Data Science Approach

Problem Statement

Data Collection

Data Cleaning & Exploratory Data Analysis

Diagnostics and Modelling

Conclusion & Recommendation

Presentation Outline

- Background
- Data Science Approach
- Cost-Benefit Analysis

Cost-Benefit Analysis

Our forecast:
13,068 cases

40% Efficacy: **7,841 cases**

$\overline{}$		
1) 1	$r \triangle Ct$	Costs
レ	1 CCL	COSIS

Hospitalization costs

Treatment costs

\$ 3.9mil \$ 39.2mil \$ 2.3mil \$ 23.5mil

Indirect Costs

Productivity lost (friction cost method)

\$ 172mil

\$ 103mil

Government intervention

Education program

Vector reduction

\$5mil

\$ 20mil

TOTAL COSTS

\$ 215mil

\$ 154mil

28% of the cost is reduced

Our recommendation: Educate and Eradicate

Focus vector control
efforts from June July: the highest
number of dengue
cases

Timing matters: drive education campaigns from April - August

Prevention is better than cure: reaps cost savings of at least 28%

Thank you

Annex

We leveraged on this report, which has a detailed cost break down

create account sign in

PUBLISH

ABOUT

BROWSE

plos.org

SEARCH

advanced sear

PLOS GLOBAL PUBLIC HEALTH

GOPEN ACCESS PEER-REVIEWED

RESEARCH ARTICLE

Economic impact of dengue in Singapore from 2010 to 2020 and the cost-effectiveness of Wolbachia interventions

Stacy Soh , Soon Hoe Ho , Annabel Seah, Janet Ong, Borame Sue Dickens, Ken Wei Tan, Joel Ruihan Koo, Alex R. Cook, Kelvin Bryan Tan, Shuzhen Sim, Lee Ching Ng, Jue Tao Lim

Published: October 13, 2021 • https://doi.org/10.1371/journal.pgph.0000024

Article	Authors	Metrics	Comments	Media Coverage
*				

Abstract

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Discussion

Abstract

The release of Wolbachia-infected mosquitoes is a promising disease intervention strategy that aims to control dengue and other arboviral infections. While early field trials and modelling studies suggest promising epidemiological and entomological outcomes, the overall cost effectiveness of the technology is not well studied in a resource rich setting nor under the suppression approach that aims to suppress the wild-type mosquito population through the release of Wolbachia-infected males. We used economical and epidemiological data from 2010

25	12
Save	Citation
6,173	8
View	Share

Friction Cost Approach

Friction cost approach is the measure of **actual** value of production loss due to illness. It is roughly 4 times of the direct cost

Source

Treatment costs

We uses the average cost of \$300 per case, and \$3000 per hospitalization

Source

Paramet	er	Value	Source		
Proportion for care g	on of children that require a parent to be absent from work giving	0.43	[33]		
Proportio	on of elderly needing to hire a care giver	0.073	[34]		
Discount	rate for premature deaths productivity lost	0.03	[35]		
Transpor	ct costs to seek medical care and household members patients ¹	3.7	[36]		
Average	household services losses per day	35	[37]		
Cost of p	roviding primary education per student per day ²	21.2-36.6	[38, 39]		
Cost of p	roviding secondary education per student per day ²	29.6-48.5	[38, 39]		
Average	costs per visit $(CHAS)^3$, $Cost_C$	32.8-56.1	МОН		
Average	costs per visit (Polyclinic) ³ , Cost _P	58.0-74.8	МОН		
Average	costs per visit (Public Hospitals) ³	1780.9-3014.0	МОН		
Average	costs per visit (Emergency Department) ³	135.3-281.5	МОН		
	productivity loss per absent day of work in individuals to 64 years ⁴	155.4–200.0	[40]		
EF_a	0–24, age dependent (constant) symptomatic rates ⁵	3.8 (1.7-3.6)	[23]		
EF_a	25–34, age dependent (constant) symptomatic rates ⁵	13.1 (3.8-8.2)	[23]		
EF_a	35–44, age dependent (constant) symptomatic rates ⁵	24.3 (6.1–13.4)	[23]		
EF_a	45–54, age dependent (constant) symptomatic rates ⁵	45.3 (11.1–24.2)	[23]		
EF_a	>55, age dependent (constant) symptomatic rates ⁵	50 (12.2–26.5)	[23]		
Average	number of ambulatory visits	4.33	ARDENT project		
Duration	of disability, reported/unreported cases	4–14	[41]		
Hospital	average length of stay	3.2-3.7	МОН		
EFh ⁶		1	МОН		

¹ Average daily ridership and average round trip distance used to calculate weighted average transportation cost. It includes Mass Rapid Transport and Light Rapid Transport systems, bus, and taxi. An average of two family visits per day per inpatient are assumed.

²Estimated by dividing the average cost of one student per year by number of schooling days for each year.

³Estimated using average bill size per notified dengue patient in respective institution type per year.

⁴Estimated by dividing the household median income by number of calendar years.

⁵Follows [23] by estimating ambulatory expansion factors using serological information in Singapore from 2004 onwards.

⁶Conservatively sets hospitalization expansion factor to 1 by assuming perfect diagnosis.

Benchmark: 40% Efficacy

								_		_	_
Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Estimated economic cost (Mn, USD2010) ¹	24.15	28.20	29.25	160.64	150.89	86.94	113.17	23.22	23.90	121.04	261.68
Estimated economic cost (Mn, SGD) ²	32.84	36.60	38.40	214.85	208.87	129.83	171.79	35.89	37.11	192.59	429.72
Case Prevention (40% Efficacy) ³	1,712	1,708	1,508	7,203	5,753	3,618	4,197	889	1,041	5,130	11,282
Incidence Prevention (40% Efficacy) ⁴	4,362	4,529	4,387	21,844	19,793	11,910	15,413	3,466	3,441	17,392	38,255
Estimated DALYs ⁵	250	252	242	1282	1139	667	842	168	173	831	1851
US\$000s per DALYs averted (40% Efficacy) ⁵	285	282	295	56	63	107	85	424	412	86	39
SG\$000s per DALYs averted (40% Efficacy) ⁶	502	498	519	98	110	188	149	749	723	151	68
					Costs A	verted (Mn	, 2010USD)				
40% efficacy ⁷	7.76	9.06	9.40	51.677	48.55	27.9	36.40	7.47	7.68	38.91	84.11
50% efficacy ⁷	9.70	11.33	11.76	64.58	60.68	34.96	45.50	9.33	9.61	48.64	105.14
60% efficacy ⁷	11.64	13.60	14.11	77.50	72.82	41.95	54.60	11.20	11.53	58.36	126.17
70% efficacy ⁷	13.58	15.86	16.46	90.42	84.95	48.94	63.71	13.07	13.45	68.09	147.20
80% efficacy ⁷	15.52	18.13	18.81	103.33	97.09	55.93	72.81	41.93	15.37	77.82	168.22
90% efficacy ⁷	17.46	20.40	21.16	116.25	109.23	62.92	81.91	16.80	17.29	87.54	189.25

¹Direct and indirect economic costs attributable to dengue from 2010 to 2020 under the friction cost method and constant symptomatic rate expansion factors in millions (Mn) 2010USD.

https://doi.org/10.1371/journal.pgph.0000024.t003

This is the cost structure, which uses 40% Efficacy as a benchmark.

Source

²Direct and indirect economic costs attributable to dengue from 2010 to 2020 under the friction cost method and constant symptomatic rate expansion factors in nominal Singapore dollars (SGD).

³Hypothetical dengue cases averted from the national implementation of Wolbachia interventions.

⁴Hypothetical dengue incidence averted from the national implementation of Wolbachia interventions, as calculated under constant symptomatic rate expansion factors.

⁵ DALYs were computed using age dependent disability weights, with constant symptomatic rate expansion factors.

⁶Hypothetical \$ per DALYs averted, assuming steady state cost of 40Mn SGD a year in 2020 for national Wolbachia programme and intervention efficacy of 40%. DALYs were computed using age dependent disability weights, with constant symptomatic rate expansion factors. \$ per DALYs averted were reported in nominal SGD here.

⁷Hypothetical economic costs averted assuming percentage reductions in dengue cases from national implementation of Wolbachia interventions in 2010USD.

Vector control costs

6. Maintenance, services and supplies

Included in maintenance, services and supplies were:

	2021/2022 \$	2020/2021 \$
Public area landscaping, cleaning services and supplies	137,973,935	134,289,464
Incineration services	114,651,455	92,994,392
Professional, consultancy and contract services	48,826,999	54,238,672
Maintenance of specialised and industrial equipment	40,181,435	34,328,409
Maintenance of building, markets and hawker centres		
and office premises	41,783,806	38,029,872
IT services	44,974,717	39,499,526
Security and enforcement services	22,813,596	19,414,686
Industrial supplies	13.242.335	12.634.712
Vector control services	23,022,011	22,950,676
Table cleaning services	15,169,709	13,455,794
Utilities charges	12,534,978	7,737,394

This is the cost for Vector control services (~\$20mil)

Source: NEA

"Mozzie Wipe Out" education costs

Up to \$10m contract for campaign against dengue

Poon Chian Hui Deputy Business Editor

PUBLISHED 27 APR 2013, 8:07 AM SGT

Singapore, in its fight against dengue, has awarded a contract worth up to \$10 million to an advertising firm for year-round campaigns against the deadly disease.

The contract from the National Environment Agency (NEA) to DDB Worldwide is made up of two parts: \$5 million for campaign costs from now till next March and another \$5 million should the contract be extended another year.

The year-round campaign against the worsening epidemic starts tomorrow and there will be no let-up even during the months when the Aedes mosquito is lying low.

This is the cost for education campaign (\$5mil/year)

Source: Straits Times

