

INTRODUCTION TO

COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 2, SEPTEMBER 16, 2021

ADMINISTRIVIA

- Homework 0 is due 9/20 (next Monday)
 - Starting from Homework 1, collaboration up to 2 people
 - Open-everything
- Come to the office hour tomorrow!

-Again, STOP me anything you have questions

WHERE WERE WE?

• Wind $_{q}(P)$

Discrete homotopy (vertex moves)

LEMMA. Wind_q(P) is invariant under safe vertex moves.

THEOREM. Two polygons P and Q are homotopic in $R^2 \setminus q$ if and only if they have the same Wind_q. [Hopf 1935]

WIND IS A COMPLETE HOMOTOPIC INVARIANT!

TAKEAWAY.

Planar curve in punctured plane is described by #times it goes around the puncture.

Remark. The punctured plane $R^2 \setminus q$ is different from the plane as spaces.

REGULAR HOMOTOPY AND ROTATION NUMBER

SWITCHING VIEWS

Polygonal

Generic

UNTANGLING GARDENING HOSE

Can you untangle the hose without lifting or twisting?

(Cables magically pass through each other)

ROTATION NUMBER

DEFINITIONS

Homotopy moves

Regular homotopy

WHITNEY-GRAUSTEIN THEOREM

[Whitney 1937] [Boy 1901] [Meister 1770]

Any two regular curves are regular homotopic if their rotation numbers are the same.

-Rotation number is invariant under regular homotopy:

- **Turn** generic curve into canonical curves $O^{Rot(C)}$:
 - Step 1. Shrink an arbitrary loop

- **Turn** generic curve into canonical curves $O^{Rot(C)}$:
 - Step 2. Move empty loop to outside

- **Turn** generic curve into canonical curves $O^{Rot(C)}$:
 - **-** Step 3. ???

- Turn generic curve into canonical curves $O^{Rot(C)}$:
 - Step 4. PROFIT

ROTIS A COMPLETE REGULAR-HOMOTOPIC INVARIANT!

TAKEAWAY.

Planar curve can be described by how many times its derivative winds around the origin.

INTERMISSION

FOOD FOR THOUGHT. Wind and Rot are really the same. Why?

COMBINATORICS OF CURVES

Q. IS THE O(n²) Bound Tight?

GAUSS SIGNING AND WRITHE

PROPOSITION. Rot(C) = $2Wind_{\heartsuit}(C)$ + Writhe(C). [Titus 1960] [Gauss ~1823]

STRANGENESS

[Arnaud 1994]

-
$$St(C) = \sum_{\text{vertex } x} sgn(x) \cdot Wind_x(C)$$

Theorem. Some generic curves require $\Omega(n^2)$ regular homotopy moves to untangle. [Nowik 2009]

Theorem. Some generic curves require $\Omega(n^2)$ regular homotopy moves to untangle. [Nowik 2009]

CANONICAL CURVES

-
$$St(C) = \sum_{\text{vertex } x} sgn(x) \cdot Wind_x(C)$$

CLOSING Q. CANONICAL CURVES IN PACMAN SPACE?

COMING UP NEXT WEEK.
GOING UPWARDS, ONE-DIMENSION HIGHER.

SMOOTHING AND SEIFERT DECOMPOSITION

[Seifert 1931] [Gauss ~1823]

SMOOTHING AND SEIFERT DECOMPOSITION

[Seifert 1931] [Gauss ~1823]

