Chasing strain variation (and what to do when you catch it)

C. Titus Brown
MBL STAMPS 2022
July 28th

Warning! Forward-looking opinions ahead!

Prediction is very difficult, especially if it's about the future!

- Niels Bohr

https://www.amazon.com/SmartSign-Caution-Falling-Cows-Funny-Road/dp/B087JRRR4V

I'm really enthusiastic about these approaches!!!!

- But I/we won't know for some time if the stuff I'll show you is a good direction.
- That's ok!
- Brainstorming and constructive criticism is very welcome! As are questions!

Summary:

- Strain variation (pangenomic variation/accessory elements) will be key to understanding a large component of microbiome function.
- Reference- and assembly-based approaches both **fail** in obvious ways when trying to discover and interpret strain variation.
- K-mer, gene, and assembly-graph based approaches are promising ways forward.
- ...but we're still building the tools and ecosystem to support this. You should come join us in the k-mer cult! We're nice people!

Two references that underlie my perspective -

- "Meta-analysis of metagenomes via machine learning and assembly graphs reveals strain switches in Crohn's disease"
 - Reiter et al., 2022 (with Tessa and Amy :)
 - https://www.biorxiv.org/content/10.1101/2022.06.30.498290v1
- "Protein k-mers enable assembly-free microbial metapangenomics"
 - Reiter et al., 2022 (with Tessa)
 - https://www.biorxiv.org/content/10.1101/2022.06.27.497795v1

tl;dr: This perspective emerges from Taylor's unrelenting drive on her thesis work, which is partly encapsulated in the above papers.

To assemble, or not to assemble?

Should you use reference genomes?

Background: Pangenomes and metapangenomics

Most (all?) microbial species have significant amounts of strain variation.

McInerny et al., DOI: 10.1038/nmicrobiol.2017.40

Let's explore this!

Backing up a bit, here are a few observations -

- Any given reference genome is a snapshot of a microbial strain in a given time/place.
 - This is true of isolates, single-cell genomes, and MAGs!
 - There is no simple way to measure the accurate inclusion of non-core/single-copy genes in MAGs! So accessory element inclusion is ???
- Metagenomes, however, do (or at least may) contain the relevant accessory elements!
 - Microbiomes gotta do their thing, yo.
- But assembling them and binning them is tricky and not guaranteed.
 - Strain confusion challenges assembly...
 - Binning is largely evaluated only on inclusion of core genes/completeness.

e.g. Prochlorococcus species/strain clades

Clusters based on gene/presence absence in different *Prochlorococcus* genomes.

This *must* be happening in metagenomes!

https://merenlab.org/2016/11/08/pangenomics-v2/

Most of a genome's k-mers are specific to that genome...

Pierce-Ward et al., in preparation.

Metagenomes contain "shards" of many different genomes from the same species.

These are pangenomic elements that are part of the strain(s) in the metagenome.

~30% of "good" 31-mers are lost during metagenome assembly

We see substantial loss of k-mers during assembly.

Our tentative interpretation is that this is due to a mixture of:

- Abundance filtering (by assembly)
- Collapse of strain variation

(We have not measured information loss during binning but it is *guaranteed* to be substantial.)

Unpublished dib-lab work.

Interim conclusion: you can't rely on reference- or assembly-based approaches to study strains in metagenomes.

- Strain variation and accessory elements are important to examine in a wild-microbe context – metagenomes.
- You *have* to use assembly-free approaches k-mers, or gene-based approaches, or ?? to dig into strain variation in metagenomes.
- (Note that 16S do not, and marker genes *may not*, have the necessary resolution to detect strain variation. Regardless, they will not generally encode niche-specific function.)
- So what do we suggest?

One approach (Taylor's approach:)

One approach (Taylor's approach:)

You all know how to do this now – QC + sourmash!

One approach (Taylor's approach:)

Taylor used random forests (machine learning) to do this.

This leaves you in a bit of a pickle...

K-mers on their own aren't very informative... need to link to (something)!

Y'all know how to do this now, too – sourmash gather!

How now, brown cow?

- Well this is still a pickle...
- ...25% of "interesting" k-mers are unannotated!
- Taylor tried *everything*. Seriously. Assembly into contigs; mapping; anger; despair; the Dark Side.
- The only thing that worked was using assembly graph neighborhoods.

Spacegraphcats software enables *reference-guided* retrieval from assembly graphs.

Brown et al., 2020: 10.1186/s13059-020-02066-4

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 percent of dominating set pieces

In a background of overall decreasing strain abundance in Crohn's Disease metagenomes (vs non-IBD), we see statistically significant increases in the abundance of five strains.

Our conclusion: this is *strain switching,* and these strain switches correlate with Crohn's Disease.

(There's no magic bullet, unfortunately)

Most differentially abundant sequences occur in metagenomes of individuals diagnosed with CD, UC and non-IBD.

Further interim conclusions

- Even in the human gut, there are many ~unknown sequences that (may) play an important role in microbiomes.
- Substantial portions of these sequences are not represented in current reference genome catalogs.
- Assembly isn't capable of robustly recovering these sequences.
- At the same time, let me just say that it's virtually impossible to interpret metagenome data without using reference genomes or assembly

These are false choices! You need to do it all!

Our recommendation(s) for > 2022

- Characterize your data in reference-independent ways first.
- Find/analyze statistically significant patterns.
- Then *interpret* those patterns using reference genomes, assembly, etc as you need.
- This approach lets you quantify information loss due to various approaches!
- Unfortunately, tools and workflows to do this all robustly are not very mature...

Tools to keep an eye on re graphs and metapangenomes -

- Sourmash and spacegraphcats
- Metagraph
- STRONG
- KOMB (Todd)
- MetaCortex
- metacherchant

Taylor's documentation and tutorials

- How to read/interpret a metagenome assembly graph: Here is a primer on metagenomes and assembly graphs
- I want to build and analyze assembly graphs myself https://spacegraphcats.github.io
- I want to run workflows that have been run before and see if they work for me https://github.com/spacegraphcats/2018-paper-spacegraphcats: metagenome bin completion (e.g. scooping in reads that didn't assemble)
- https://github.com/dib-lab/2021-metapangenome-example (metapangenome analysis with assembly graphs)
- https://github.com/dib-lab/2022-dominating-set-differential-abundance-example (differential abundance analysis on the graph)