№14. Стереометрия

Для успешного решения задачи №14 нужно знать следующие темы:

- Призмы и пирамиды с трапецией, ромбом, параллелограммом в основании
- Цилиндр, конус
- Метод объемов
- Нахождение углов и площади сечения

№14. Стереометрия. Задачи

№14.1 #27472

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1:3.

- а) Докажите, что угол $\angle APB$ меньше 60° .
- б) Найдите площадь сечения конуса плоскостью (ABP).

№14.2 #16747

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит квадрат ABCD со стороной 4, а высота призмы равна $\sqrt{17}$. Точка E лежит на диагонали BD_1 , причем BE=1.

- а) Постройте сечение призмы плоскостью (A_1C_1E) .
- б) Найдите угол наклона этой плоскости к плоскости (ABC).

№14.3 #1718

На ребрах CD и BB_1 куба $ABCDA_1B_1C_1D_1$ с ребром 12 отмечены точки P и Q соответственно, причем $DP=4,\ B_1Q=3.\ \Pi$ лоскость (APQ) пересекает ребро CC_1 в точке M.

- а) Докажите, что точка M делит ребро CC_1 пополам.
- б) Найдите расстояние от точки C до плоскости (APQ).

№14.4 #2426

Основанием четырехугольной пирамиды SABCD является прямоугольник ABCD, причем $AB=3\sqrt{2}$, BC=6. Основанием высоты пирамиды является центр прямоугольника. Из вершин A и C опущены перпендикуляры AP и CQ на ребро SB.

- а) Докажите, что P середина отрезка BQ.
- б) Найдите угол между гранями SBA и SBC, если SD = 9.

Дана четырехугольная пирамида PABCD, в основании которой лежит трапеция ABCD с большим основанием AD. Известно, что сумма углов BAD и CDA равна 90° . Грани PAB и PCD перпендикулярны плоскости основания. K — точка пересечения прямых AB и CD.

- а) Докажите, что грани *PAB* и *PCD* перпендикулярны.
- 6) Найдите объем пирамиды PBCK, если известно, что AB = BC = CD = 2, а высота пирамиды PABCDравна 12.

№14.6 #2619

В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 6. Сечение пирамиды проходит через вершину B и середину ребра PD перпендикулярно этому ребру.

- а) Докажите, что угол наклона бокового ребра пирамиды к ее основанию равен 60°.
- б) Найдите площадь сечения пирамиды.

№14.7 #2642

В цилиндре на окружности нижнего основания отмечены точки A и B. На окружности верхнего основания отмечены точки B_1 и C_1 так, что BB_1 является образующей цилиндра, перпендикулярной основаниям, а AC_1 пересекает ось цилиндра.

- а) Докажите, что прямые AB и B_1C_1 перпендикулярны.
- hkolkovo.online б) Найдите расстояние между прямыми AC_1 и BB_1 , если $AB=12, B_1C_1=9, BB_1=8$.

№14.8 #18356

В конусе с вершиной S и центром основания O радиус основания равен 13, а высота равна $3\sqrt{41}$. Точки A и B — концы образующих, M — середина SA, N — точка в плоскости основания такая, что прямая MN параллельна прямой SB.

- а) Докажите что $\angle ANO$ прямой угол.
- 6) Найдите угол между MB и плоскостью основания, если AB = 10.

№14.9 #47216

В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.

- а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
- б) Найдите площадь сечения пирамиды SABCD плоскостью α , если $AD=7,\,BC=5,\,SO=4,\,$ а прямая SO перпендикулярна прямой AD.

№14.10 #30846

Дана четырехугольная пирамида SABCD, в основании которой лежит трапеция ABCD. Известны ее основания $AD=9,\ BC=4$. На ребре BC отмечена точка N такая, что BN:NC=1:3, на ребре SD отмечена точка M такая, что SM:MD=2:3, плоскость (AMN) пересекает ребро SC в точке K.

- а) Докажите, что SK : KC = 2 : 1.
- б) Найдите отношение объемов многогранников, на которые плоскость (AMN) делит пирамиду.

№14.11 #63808

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит параллелограмм ABCD. На ребрах A_1B_1 , B_1C_1 и BC взяты точки M, K и N соответственно. Причем B_1K : $KC_1=1:2$, а AMKN — равнобедренная трапеция с основаниями 2 и 3.

- а) Докажите, что N середина BC.
- б) Найдите площадь трапеции AMKN, если объем призмы равен 12, а ее высота равна 2.

№14.12 #63806

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит равнобедренная трапеция ABCD с основаниями AD=5 и BC=4. Точка M делит ребро A_1D_1 в отношении $A_1M:MD_1=1:4$, а точка K — середина ребра DD_1 .

- а) Докажите, что плоскость (MKC) параллельна прямой BD.
- б) Найдите тангенс угла между плоскостью (MKC) и плоскостью основания призмы, если $\angle MKC = 90^\circ$, $\angle ADC = 60^\circ$.

№14. Стереометрия. Ответы

14.1. 6)
$$9\sqrt{14}$$

14.2. 6) arctg
$$(0.3\sqrt{34})$$

14.3. б)
$$\frac{12\sqrt{26}}{13}$$

14.1. 6)
$$9\sqrt{14}$$
14.2. 6) $\arctan (0,3\sqrt{34})$
14.3. 6) $\frac{12\sqrt{26}}{13}$
14.4. 6) $\arccos \left(-\frac{\sqrt{34}}{68}\right)$
14.5. 6) 4
14.6. 6) $12\sqrt{3}$

Ответы
$$14.7. \ 6) \ 7.2$$

$$14.8. \ 6) \ 45^{\circ}$$

$$14.9. \ 6) \ 12$$

$$14.10. \ 6) \ 27: 38$$

$$14.11. \ 6) \ \frac{5\sqrt{37}}{6}$$

$$14.12. \ 6) \ \frac{\sqrt{14}}{2}$$

14.12. 6)
$$\frac{\sqrt{14}}{2}$$