Déduction automatique

Éric Détrez : info at eric-detrez dot fr

February 15, 2023

Je remercie les participants du mattermost qui ont eu la patience de m'expliquer mes erreurs et mes incompréhensions.

Je remercie particulièrement Jean Starynkévitch dont la lecture attentive a permis de signaler en les corrigeant de nombreuses erreurs. Dans la lancée de la ré-écriture, il m'a permis d'en repérer d'autres.

La dernière version du document est téléchargeable.

Le code source est disponible sur le git de l'UPS

Contents

1	Règ	Règles de la déduction naturelle51.1 Logique propositionnelle minimale5																								
	1.1	Logiqu	ie j	orop	osit	tior	nne	lle	mi	nin	nal	e							 							5
	1.2	Logiqu	ie j	orop	osit	tior	nne	lle	int	uit	ior	ni	ste						 							5
	1.3	Raison	nne	mer	ıt pa	ar l	l'ab	sui	de										 							5
	1.4	Logiqu	ie o	lu p	ren	nier	or	dre											 							6
2	Exe	ercices s	sin	npl	es																					7
	2.1	Résulta	ats	na ^f	ture	$_{ m els}$													 							7
		2.1.1	\vdash	$p \rightarrow$	<i>p</i>														 							7
				$\neg p$	-																					7
		2.1.3	p	$q \vdash$	$p \wedge$	q													 							7
			- /	$\wedge q$	-	-																				7
			-	$\vee q$	-	-																				7
		2.1.6		$\neg \neg p$																						7
	2.2	Implica		_		_																				8
		2.2.1	q	$\vdash p$	\rightarrow (η.													 							8
		2.2.2	p	$\wedge q$	$\vdash p$	\rightarrow	q												 							8
		2.2.3	p	$\rightarrow q$	ı ⊢ 1	o —	÷ (χ) A	q)										 							8
		2.2.4	p	$\rightarrow r$	·	(p)	$\langle q \rangle$	\rightarrow	r										 							8
				$p \rightarrow$																						8
				⊢ (μ																						8
	2.3	Divers	_	(-		-/		_																		9
		2.3.1	p	$\vee (p$	$\wedge q$	₁) ⊢	- p												 							9
		2.3.2	p	$\wedge q$	$r \wedge$	s \vdash	- p	$\wedge s$											 							9
			_	$q \wedge$			_																			9
				- ¬		_	_																			9
			_	$\neg(p$	_																					9
3	Imr	olication	ns																							10
	3.1	Simplif			ns														 							10
		1		\rightarrow -																						10
			_	$\stackrel{\cdot}{\rightarrow} q$	_	_	_																			10
			-	$\rightarrow q$		-	-																			10
			_	$\rightarrow q$	-	_	_	_																		10
			-	\rightarrow (-		-																	10

	3.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	Égu	valences classiques 14
-	4.1	Distributivités
		4.1.1 $p \wedge (q \vee r)$ et $(p \wedge q) \vee (p \wedge r)$
		4.1.2 $p \vee (q \wedge r)$ et $(p \vee q) \wedge (p \vee r)$
	4.2	Lois de de Morgan
		4.2.1 $\neg (p \lor q) \text{ et } \neg p \land \neg q \ldots \ldots$
		4.2.2 $\neg (p \land q) \text{ et } \neg p \lor \neg q \ldots \ldots$
	4.3	3 formules équivalentes
		4.3.1 $(p \land q) \rightarrow r \text{ et } p \rightarrow (q \rightarrow r)$
		$4.3.2 (p \land q) \to r \text{ et } (p \to r) \lor (q \to r) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	4.4	4.3.3 $p \to (q \to r)$ et $(p \to r) \lor (q \to r)$
	4.4	Distributivités d'implications
		14.4.1 $p \rightarrow (q \land r)$ et $(p \rightarrow q) \land (p \rightarrow r)$
		14.4.3 $(p \rightarrow q) \lor (p \rightarrow r) \land (q \rightarrow r)$
		$4.4.4 q \to r \vdash (p \to q) \to (p \to r) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
5	_	que intuitionniste 19
	5.1	Usage de l'absurdité intuitionniste
		$5.1.1 \neg \neg p, p \lor \neg p \vdash p \dots \dots$
		$5.1.2 \neg p \vdash p \rightarrow q \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$5.1.9 \text{m} \setminus \alpha = \alpha \vdash \text{m}$
		$5.1.3 p \lor q, \neg q \vdash p \ldots \ldots \qquad 19$ $5.1.4 (p \lor r) \Rightarrow (q \lor r) \neg r \vdash p \Rightarrow q$
		$5.1.4 (p \lor r) \to (q \lor r), \neg r \vdash p \to q \dots \qquad 19$
	5.2	$5.1.4 (p \lor r) \to (q \lor r), \neg r \vdash p \to q $
	5.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	5.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	5.2	$\begin{array}{llll} 5.1.4 & (p \lor r) \to (q \lor r), \neg r \vdash p \to q & & & \\ 5.1.5 & \neg (p \to q) \vdash q \to p & & & & & & \\ Déduction de l'absurdité intuitionniste & & & & & & \\ 5.2.1 & Une autre règle & & & & & & & & \\ & 20 & & & & & & & & \\ \end{array}$
c		$\begin{array}{llll} 5.1.4 & (p \lor r) (q \lor r), \neg r \vdash p \rightarrow q & & & 19 \\ 5.1.5 & \neg (p \rightarrow q) \vdash q \rightarrow p & & & 19 \\ \text{Déduction de l'absurdité intuitionniste} & & 20 \\ 5.2.1 & \text{Une autre règle} & & & 20 \\ 5.2.2 & \text{Depuis} (\neg \neg_e) & & & 20 \\ 5.2.3 & \text{Depuis} (raa) & & & 20 \\ \end{array}$
6	Log	$\begin{array}{llllllllllllllllllllllllllllllllllll$
6		$\begin{array}{llll} 5.1.4 & (p \lor r) \to (q \lor r), \neg r \vdash p \to q & & 19 \\ 5.1.5 & \neg (p \to q) \vdash q \to p & & 19 \\ \hline \text{Déduction de l'absurdité intuitionniste} & & 20 \\ 5.2.1 & \text{Une autre règle} & & 20 \\ 5.2.2 & \text{Depuis} \ (\neg \neg_e) & & 20 \\ \hline \text{5.2.3} & \text{Depuis} \ (\text{raa}) & & 20 \\ \hline \text{que classique} & & 21 \\ \hline \text{Implication et disjonctions} & & 21 \\ \hline \end{array}$
6	Log	$\begin{array}{llll} 5.1.4 & (p \lor r) \rightarrow (q \lor r), \neg r \vdash p \rightarrow q & & 19 \\ 5.1.5 & \neg (p \rightarrow q) \vdash q \rightarrow p & & 19 \\ \hline \text{Déduction de l'absurdité intuitionniste} & & 20 \\ 5.2.1 & \text{Une autre règle} & & 20 \\ 5.2.2 & \text{Depuis} \ (\neg \neg_e) & & 20 \\ \hline \text{5.2.2} & \text{Depuis} \ (\text{raa}) & & 20 \\ \hline \text{que classique} & & & 21 \\ \hline \text{implication et disjonctions} & & 21 \\ \hline \text{5.1.1} & \neg p \rightarrow p \vdash p & & 21 \\ \hline \end{array}$
6	Log	$\begin{array}{llll} 5.1.4 & (p \lor r) \to (q \lor r), \neg r \vdash p \to q & 19 \\ 5.1.5 & \neg (p \to q) \vdash q \to p & 19 \\ \hline \text{Déduction de l'absurdité intuitionniste} & 20 \\ \hline 5.2.1 & \text{Une autre règle} & 20 \\ \hline 5.2.2 & \text{Depuis} (\neg \neg_e) & 20 \\ \hline 5.2.3 & \text{Depuis} (\text{raa}) & 20 \\ \hline \text{que classique} & 21 \\ \hline \text{Implication et disjonctions} & 21 \\ \hline 5.1.1 & \neg p \to p \vdash p & 21 \\ \hline 5.1.2 & p \to q \vdash \neg p \lor q & 21 \\ \hline \end{array}$
6	Log	$\begin{array}{llll} 5.1.4 & (p \lor r) \rightarrow (q \lor r), \neg r \vdash p \rightarrow q & & 19 \\ 5.1.5 & \neg (p \rightarrow q) \vdash q \rightarrow p & & 19 \\ \hline \text{Déduction de l'absurdité intuitionniste} & & 20 \\ 5.2.1 & \text{Une autre règle} & & 20 \\ 5.2.2 & \text{Depuis} (\neg \neg_e) & & 20 \\ 5.2.3 & \text{Depuis} (\text{raa}) & & & 20 \\ \hline \text{que classique} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & & & 21 \\ \hline \text{Sinction et disjonctions} & & & & & & & & \\ \hline \text{Sinction et disjonctions} & & & & & & \\ \hline \text{Sinction et disjonctions} & & & & & & \\ \hline \text{Sinction et disjonctions} & & & & & \\ \hline \text{Sinction et disjonctions} & & & & & \\ \hline \text{Sinction et disjonctions} & & & & \\ \hline \text{Sinction et disjonctions} & & & & \\ \hline \text{Sinction et disjonctions} & & & & \\ \hline \text{Sinction et disjonctions} & & & \\ \hline Sinction et$
6	Log	$\begin{array}{llll} 5.1.4 & (p \lor r) \rightarrow (q \lor r), \neg r \vdash p \rightarrow q & 19 \\ 5.1.5 & \neg (p \rightarrow q) \vdash q \rightarrow p & 19 \\ \hline 0.6 \text{duction de l'absurdit\'e intuitionniste} & 20 \\ \hline 0.5.2.1 & \text{Une autre r\'egle} & 20 \\ \hline 0.5.2.2 & \text{Depuis} (\neg \neg_e) & 20 \\ \hline 0.5.2.3 & \text{Depuis} (\text{raa}) & 20 \\ \hline \text{que classique} & 21 \\ \hline \text{Implication et disjonctions} & 21 \\ \hline 0.5.1.1 & \neg p \rightarrow p \vdash p & 21 \\ \hline 0.5.1.2 & p \rightarrow q \vdash \neg p \lor q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.3 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.4 & \neg p \lor q \vdash p \rightarrow q & 21 \\ \hline 0.5.1.5 &$
6	Log	$\begin{array}{llllllllllllllllllllllllllllllllllll$

	6.2	Équiva		23
		6.2.1	$(\neg \neg_e)$ donne (te)	23
		6.2.2	(raa) donne (te)	24
		6.2.3	(te) donne $(\neg \neg_e)$	24
		6.2.4	(raa) donne $(\neg \neg_e)$	24
		6.2.5	(te) donne (raa)	24
		6.2.6	$(\neg \neg_e)$ donne (raa)	24
_	-			~-
7	_	-	•	25
	7.1			25
		7.1.1	, ,	25
		7.1.2		25
		7.1.3		25
		7.1.4		25
		7.1.5		26
		7.1.6		26
		7.1.7	1 () /	26
	7.2			27
		7.2.1		27
		7.2.2		27
		7.2.3		27
		7.2.4		28
		7.2.5		28
		7.2.6		28
		7.2.7		29
	7.3		±	29
		7.3.1		29
		7.3.2		29
		7.3.3		30
		7.3.4		30
		7.3.5		31
		7.3.6		31
		7.3.7		32
		7.3.8		32
	7.4	Logiqu	1 1	33
		7.4.1		33
		7.4.2		33
		7.4.3		33
		7.4.4	$\exists x \varphi \vdash \neg (\forall x (\neg \varphi)) \dots \dots$	33
		7.4.5		34
		7.4.6		34
		7.4.7		35
		7.4.8	$\vdash \exists x (\varphi(x) \to \forall y \varphi(y))$	36

Quelques Remarques

- Ceci est un ensemble d'exercices destiné à s'exercer sur l'écriture de preuves en déduction naturelle. Il ne s'agit pas d'un ensemble d'exercices sur le chapitre de la déduction naturelle. On peut le voir comme un catalogue de samples où puiser (les sources sont accessibles) plutôt qu'une œuvre musicale.
- Les sections 2 à 4 concernent les preuves dans le cadre de la logique minimale qui semble être celui du programme d'option informatique en MP.
- La section 5 concerne les preuves dans le cadre de la logique intuitionniste ; on ajoute la règle Ex falso sequitur quod libet qui permet de déduire toute formule d'une contradiction. On peut lire le programme en incluant cette règle sous la forme d'une modification de l'élimination de la négation qui deviendrait

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \neg \varphi}{\Gamma \vdash \psi} \ \neg_e$$

• La section 6 concerne les preuves dans le cadre de la logique classique ; on ajoute de raisonnement par l'absurde. On peut y démontrer les réciproques de preuves déjà vues.

Sans en faire une démonstration générale, on illustre le fait qu'on passe de la logique minimale à la logique classique

- 1. soit avec la règle du raisonnement par l'absurde
- 2. soit par la règle de la double négation
- 3. soit par la règle du tiers exclu associée à la règle de l'absurdité intuitionniste.
- Lorsque la démonstration prenait trop de place en largeur, j'ai utilisé une abréviation. Si celle-ci n'est pas indispensable pour ce motif, j'ai préféré laissé les séquents au prix d'une présentation un peu lourde.
- De même, pour des calculs trop longs, certaines déductions, 4.1.1.2, 6.1.6, 7.4.5, 7.4.6, 7.4.7, 7.4.8, sont découpées en étapes
- Il y a enfin quelques longues déductions dans le cas d'une élimination de ∨, 4.1.2.1, 4.3.2.2, 4.3.3.2, 4.4.3.2, 7.2.4.2, pour lesquelles la preuve de la seconde branche n'a pas été écrite.
- J'introduit une règle de renommage, $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi} \rho$, qui permet de remplacer φ par ψ quand ces deux formules désignent la même chose.
- Il y a des erreurs dans ce document, n'hésitez pas à me les signaler, je corrigerai celles-ci.

1 Règles de la déduction naturelle

1.1 Logique propositionnelle minimale

• Axiome, hypothèse ou réflexivité
$$\overline{\Gamma, \varphi \vdash \varphi}$$
 ax

• Monotonie ou affaiblissement
$$\frac{\Gamma \vdash \varphi}{\Gamma, \Delta \vdash \varphi}$$
 aff

• Introduction de la conjonction
$$\frac{\Gamma \vdash \varphi_1 \quad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \land \varphi_2} \land_i$$

$$\bullet \ \, \text{\'Elimination de la conjonction} \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \ \, \wedge_e \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \ \, \wedge_e$$

$$\bullet \ \ \text{Introduction de la disjonction} \qquad \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_1 \lor \varphi_2} \ \lor_i \qquad \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \lor \varphi_2} \ \lor_i$$

• Élimination de la disjonction
$$\frac{\Gamma \vdash \varphi_1 \vee \varphi_2 \quad \ \, \Gamma, \varphi_1 \vdash \psi \quad \ \, \Gamma, \varphi_2 \vdash \psi}{\Gamma \vdash \psi} \, \vee_e$$

• Introduction de l'implication
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \to_i$$

$$\bullet \ \, \text{\'elimination de l'implication ou modus ponens} \quad \frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \to_e$$

• Introduction de la négation
$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \neg_i$$

• Élimination de la négation
$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \, \neg_e$$

1.2 Logique propositionnelle intuitionniste

• Absurdité intuitioniste
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \psi} \bot_e$$

Son emploi ne se fait que dans le cadre de la logique intuitioniste.

5

1.3 Raisonnement par l'absurde

On énonce 3 règles qui sont équivalentes.

Leur emploi ne se fait que d ans le cadre de la logique classique.

• Tiers exclu
$$\frac{}{\Gamma \vdash \varphi \lor \neg \varphi}$$
 te

• Élimination de la double négation
$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi} \ \neg \neg_e$$

• Raisonnement par l'absurde
$$-\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}$$
raa

1.4 Logique du premier ordre

La notation $\varphi[x \leftarrow t]$ signifie qu'on a remplacé la variable x par le terme t dans φ .

- Introduction du quantificateur universel $\frac{\Gamma \vdash \varphi \quad x \text{ n'est pas une variable libre de } \Gamma}{\Gamma \vdash \forall x \varphi} \ \forall_i$
- Élimination du quantificateur universel $\frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi[x \leftarrow t]} \; \forall_e$ pour tout terme t dont les variables libres ne sont pas des variables liées dans φ . En utilisant la substitution $\varphi[x \leftarrow x]$ qui redonne φ , cette règle sera souvent employée sous la forme $\frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi} \; \forall_e$
- Introduction du quantificateur existentiel $\frac{\Gamma \vdash \varphi[x \leftarrow t]}{\Gamma \vdash \exists x \varphi} \; \exists_i \; \text{En remarquant qu'on peut écrire} \; \varphi \; \text{sous}$ la forme $\varphi[x \leftarrow x]$, cette règle sera souvent employée sous la forme $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \exists x \varphi} \; \exists_i$
- Élimination du quantificateur existentiel $\frac{\Gamma \vdash \exists x \varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \ \exists_e$ si x n'est pas une variable libre de Γ ni de ψ .

2 Exercices simples

2.1 Résultats naturels

2.1.1 $\vdash p \rightarrow p$

$$\frac{\overline{p \vdash p}}{\vdash p \to p} \xrightarrow{\text{ax}}$$

2.1.2 $p, \neg p \vdash \bot$

$$\frac{\overline{p, \neg p \vdash p} \ \text{ax}}{p, \neg p \vdash \bot} \ \frac{p, \neg p \vdash \neg p}{\neg e} \ \frac{\text{ax}}{\neg e}$$

2.1.3 $p, q \vdash p \land q$

$$\frac{\overline{p,q \vdash p} \ \text{ax} \quad \overline{p,q \vdash q} \ \text{ax}}{p,q \vdash p \land q} \ \underset{\wedge_i}{\text{ax}}$$

2.1.4 $p \wedge q \vdash q \wedge p$

$$\frac{\frac{p \wedge q \vdash p \wedge q}{p \wedge q \vdash q} \overset{\text{ax}}{\wedge_e} \quad \frac{\frac{p \wedge q \vdash p \wedge q}{p \wedge q \vdash p} \overset{\text{ax}}{\wedge_e}}{\frac{p \wedge q \vdash p}{p \wedge q} \vdash q \wedge p} \wedge_i$$

2.1.5 $p \lor q \vdash q \lor p$

$$\underbrace{\frac{p \vee q \vdash p \vee q}{p \vee q, p \vdash p}}_{p \vee q, p \vdash q \vee p} \overset{\text{ax}}{\vee_{i}} \quad \underbrace{\frac{p \vee q, q \vdash q}{p \vee q, q \vdash q \vee p}}_{p \vee q, q \vdash q \vee p} \overset{\text{ax}}{\vee_{i}}$$

2.1.6 $\neg\neg\neg p \vdash \neg p$

$$\frac{\frac{}{\neg \neg \neg p, p, \neg p \vdash p} \text{ ax } \frac{}{\neg \neg \neg p, p, \neg p \vdash \neg p} \text{ ax }}{\frac{}{\neg \neg \neg p, p, \neg p \vdash \bot} \neg_{i}} \neg_{e}} \frac{}{\neg \neg \neg p, p \vdash \neg (\neg \neg p)} \text{ ax }} \frac{}{\neg \neg \neg p, p \vdash \neg (\neg \neg p)} \text{ ax }}{\frac{}{\neg \neg \neg p, p \vdash \bot} \neg_{i}} \neg_{e}}$$

2.2 Implications

2.2.1
$$q \vdash p \rightarrow q$$

$$\frac{\overline{q, p \vdash q}}{q \vdash p \to q} \xrightarrow{ax}$$

2.2.2
$$p \land q \vdash p \rightarrow q$$

$$\frac{\overline{p \wedge q, p \vdash p \wedge q}}{\frac{p \wedge q, p \vdash q}{p \wedge q, p \vdash q}} \overset{\text{ax}}{\sim_e} \\ \xrightarrow{p \wedge q \vdash p \rightarrow q} \rightarrow_i$$

2.2.3
$$p \rightarrow q \vdash p \rightarrow (p \land q)$$

$$\frac{p \to q, p \vdash p}{p \to q, p \vdash p} \text{ ax } \frac{\frac{p \to q, p \vdash p \to q}{p \to q, p \vdash p} \text{ ax }}{p \to q, p \vdash p} \to_{e} \frac{p \to q, p \vdash p \land q}{p \to q \vdash p \to (p \land q)} \to_{i}$$

2.2.4
$$p \rightarrow r \vdash (p \land q) \rightarrow r$$

$$\frac{p \to r, p \land q \vdash p \to r}{p \to r, p \land q \vdash p \land q} \text{ ax} \quad \frac{p \to r, p \land q \vdash p \land q}{p \to r, q \to r, p \land q \vdash p} \overset{\wedge_e}{\to_e} \\ \frac{p \to r, p \land q \vdash r}{p \to r \vdash (p \land q) \to r} \to_e$$

2.2.5
$$\vdash p \rightarrow (q \rightarrow p)$$

$$\frac{\frac{\overline{p,q\vdash p}}{p\vdash q\to p}}{\frac{p\vdash q\to p}{\vdash p\to (q\to p)}} \overset{\text{ax}}{\to_i}$$

2.2.6
$$p \vdash (p \rightarrow q) \rightarrow q$$

$$\frac{\overline{p,p \to q \vdash p \to q} \text{ ax } \overline{p,p \to q \vdash p}}{\frac{p,p \to q \vdash q}{p \vdash (p \to q) \to q}} \xrightarrow[\rightarrow e]{\text{ax}}$$

2.3 Divers

2.3.1 $p \lor (p \land q) \vdash p$

$$\frac{p\vee (p\wedge q)\vdash p\vee (p\wedge q)}{p\vee (p\wedge q)\vdash p} \text{ ax } \frac{p\vee (p\wedge q), p\vdash p}{p\vee (p\wedge q), p\wedge q\vdash p\wedge q} \text{ ax } \frac{p\vee (p\wedge q), p\wedge q\vdash p\wedge q}{p\vee (p\wedge q), p\wedge q\vdash p} \vee_{e}$$

2.3.2 $p \wedge q, r \wedge s \vdash p \wedge s$

$$\frac{\overline{p \wedge q, r \wedge s \vdash p \wedge q}}{\underline{p \wedge q, r \wedge s \vdash p}} \overset{\text{ax}}{\wedge_e} \quad \frac{\overline{p \wedge q, r \wedge s \vdash r \wedge s}}{\underline{p \wedge q, r \wedge s \vdash s}} \overset{\text{ax}}{\wedge_e} \\ \underline{p \wedge q, r \wedge s \vdash p} \wedge s$$

2.3.3 $p, q \wedge r \vdash p \wedge q$

$$\frac{p,q \wedge r \vdash p}{p,q \wedge r \vdash p \wedge r} \overset{\text{ax}}{\underset{p,q \wedge r \vdash q \wedge r}{\underbrace{p,q \wedge r \vdash q \wedge r}}} \overset{\text{ax}}{\wedge_e}$$

2.3.4 $p \vdash \neg \neg p$

$$\frac{\overline{p,\neg p \vdash p} \text{ ax } \frac{}{p,\neg p \vdash \neg p} \text{ ax }}{\frac{p,\neg p \vdash \bot}{p \vdash \neg \neg p} \text{ } \neg_{e}}$$

2.3.5 $\vdash \neg(p \land \neg p)$

$$\frac{\overline{p \wedge \neg p \vdash p \wedge \neg p}}{\underline{p \wedge \neg p \vdash p}} \overset{\text{ax}}{\wedge_e} \quad \frac{\overline{p \wedge \neg p \vdash p \wedge \neg p}}{\underline{p \wedge \neg p \vdash \neg p}} \overset{\text{ax}}{\wedge_e} \\ \frac{\underline{p \wedge \neg p \vdash \bot}}{\vdash \neg (p \wedge \neg p)} \neg_i$$

Implications

3.1 Simplifications

3.1.1 $p \rightarrow \neg p \vdash \neg p$

$$\frac{p \to \neg p, p \vdash p}{p \to \neg p, p \vdash p} \text{ ax } \frac{\frac{p \to \neg p, p \vdash p \to \neg p}{p \to \neg p, p \vdash \neg p}}{p \to \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{p \to \neg p, p \vdash \bot}{p \to \neg p \vdash \neg p} \xrightarrow{\neg e}$$

La forme $\neg p \rightarrow p \vdash p$ se démontre en logique classique, voir 6.1.1.

3.1.2 $p \rightarrow q, \neg q \vdash \neg p$

$$\frac{\overline{p \to q, \neg q, p \vdash p \to q} \text{ ax } \overline{p \to q, \neg q, p \vdash p} \text{ ax }}{\underline{p \to q, \neg q, p \vdash q}} \xrightarrow[\neg e]{} \frac{p \to q, \neg q, p \vdash q}{p \to q, \neg q, p \vdash \bot} \xrightarrow[\neg e]{} \frac{p \to q, \neg q, p \vdash \bot}{p \to q, \neg q \vdash \neg p} \xrightarrow[\neg e]{} \frac{\text{ax}}{p \to q, \neg q, p \vdash \bot}$$

3.1.3 $p \rightarrow q, p \lor q \vdash q$

On note $\Gamma = p \to q, p \vee q$.

$$\frac{p \rightarrow q, p \lor q \vdash p \lor q}{p \rightarrow q, p \lor q \vdash p \lor q} \text{ ax } \frac{p \rightarrow q, p \lor q, p \vdash p \rightarrow q}{p \rightarrow q, p \lor q, p \vdash q} \text{ ax } \frac{p \rightarrow q, p \lor q, p \vdash p}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q, p \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q \vdash q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q, p \vdash q}{p \rightarrow q, p \lor q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q}{p \rightarrow q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q}{p \rightarrow q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q}{p \rightarrow q} \xrightarrow[\forall e]{} \frac{p \rightarrow q, p \lor q}{p \rightarrow q} \xrightarrow[\forall e]{} \frac{p \rightarrow q}{p \rightarrow q} \xrightarrow[$$

3.1.4 $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$\frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow q} \text{ ax } \overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg p}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}}{\underline{p \rightarrow q, p \rightarrow \neg q, p \vdash \neg q}} \xrightarrow[\rightarrow e]{\text{ax}} \frac{\overline{p \rightarrow q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q, p \rightarrow \neg q, p \vdash p \rightarrow \neg q,$$

 $\textbf{3.1.5} \quad p \rightarrow (q \vee r), \neg q, \neg r \vdash \neg p$

$$\frac{\overline{\Gamma \vdash p \to (q \lor r)} \overset{\text{ax}}{=} \frac{\overline{\Gamma \vdash p}}{} \overset{\text{ax}}{\to}_{e} \frac{\overline{\Gamma, q \vdash q}}{} \overset{\text{ax}}{=} \frac{\overline{\Gamma, q \vdash q}}{} \overset{\text{ax}}{\to}_{e} \frac{\overline{\Gamma, q \vdash \neg q}}{} \overset{\text{ax}}{\to}_{e} \frac{\overline{\Gamma, r \vdash r}}{} \overset{\text{ax}}{=} \frac{\overline{\Gamma, r \vdash \neg r}}{} \overset{\text{ax}}{\to}_{e}}{} \overset{\text{ax}}{\to}_{e}} \xrightarrow{} \frac{}{} \overset{\text{ax}}{\to}_{e}} \xrightarrow{} \frac{}{} \overset{\text{ax}}{\to}_{e}} \xrightarrow{} \overset{\text{ax}}{\to}_{e}} \xrightarrow{}$$

3.1.6 $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

note
$$\Gamma = p \to (q \to r), p, \neg r, q$$
.

$$\frac{\overline{\Gamma \vdash p \to (q \to r)} \text{ ax}}{\Gamma \vdash p \to (q \to r)} \xrightarrow{\Gamma \vdash p} \text{ ax}} \xrightarrow{\overline{\Gamma \vdash p} \to e} \frac{\overline{p \to (q \to r), p, \neg r, q \vdash q}}{p \to (q \to r), p, \neg r, q \vdash r} \xrightarrow{p} e} \xrightarrow{p \to (q \to r), p, \neg r, q \vdash \bot} \neg_{e} \frac{\overline{p \to (q \to r), p, \neg r, q \vdash \bot}}{p \to (q \to r), p, \neg r \vdash \neg q} \neg_{e}$$

$$\frac{10}{p \to q} \xrightarrow{q} \neg_{e} \neg$$

3.1.7
$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash r$$

On note $\Gamma = p \to (q \to r), p \to q, p$

$$\frac{\overline{\Gamma \vdash p \to (q \to r)} \text{ ax } \overline{\Gamma \vdash p} \text{ ax }}{\underline{p \to (q \to r), p \to q, p \vdash q \to r}} \xrightarrow{\bullet_e} \frac{\overline{\Gamma \vdash p \to q} \text{ ax } \overline{\Gamma \vdash p} \text{ ax }}{\underline{p \to (q \to r), p \to q, p \vdash q}} \xrightarrow{\bullet_e} \\ \underline{p \to (q \to r), p \to q, p \vdash r}$$

3.1.8 $p \rightarrow (q \rightarrow r), q \rightarrow p \vdash q \rightarrow r$

$$\frac{p \to (q \to r), q \vdash p \to (q \to r)}{\text{ax}} \xrightarrow{p \to (q \to r), q \vdash q \to p} \xrightarrow{\text{ax}} \frac{p \to (q \to r), q \vdash q}{p \to (q \to r), q \vdash p} \xrightarrow{\rightarrow_e} \frac{p \to (q \to r), q \vdash q}{p \to (q \to r), q \vdash q} \xrightarrow{\rightarrow_e} \frac{p \to (q \to r), q \vdash q}{p \to (q \to r), q \vdash r} \xrightarrow{\rightarrow_e} \frac{p \to (q \to r), q \vdash r}{p \to (q \to r), q \to r \vdash q \to r} \xrightarrow{\rightarrow_e}$$

3.1.9
$$p \rightarrow (p \rightarrow q), p \vdash q$$

$$\frac{\overline{p \to (p \to q), p \vdash p \to (p \to q)}}{\underline{p \to (p \to q), p \vdash p \to q}} \xrightarrow{\text{ax}} \frac{\overline{p \to (p \to q), p \vdash p}}{\rightarrow_e} \xrightarrow{p \to (p \to q), p \vdash p} \xrightarrow{\text{ax}} \overline{p \to (p \to q), p \vdash p}} \xrightarrow{\text{ax}} \rightarrow_e$$

3.2 Transformations

3.2.1 $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$\frac{\overline{p \to q, \neg q, p \vdash p \to q} \text{ ax } \overline{p \to q, \neg q, p \vdash p}}{p \to q, \neg q, p \vdash q} \xrightarrow{\text{ax}} \xrightarrow{p \to q, \neg q, p \vdash \neg q} \xrightarrow{\text{p}} \xrightarrow{\neg e} \frac{p \to q, \neg q, p \vdash \bot}{p \to q, \neg q \vdash \neg p} \xrightarrow{\neg e} \xrightarrow{\neg e} \frac{p \to q, \neg q, p \vdash \bot}{p \to q \vdash \neg q \to \neg p} \xrightarrow{\rightarrow i}$$

C'est la principe de la transposition.

La réciproque se démontre dans le cadre de la logique classique, voir l'exercice 6.1.4.

3.2.2 $p \rightarrow q \vdash (p \land r) \rightarrow (q \land r)$

$$\frac{p \to q, p \land r \vdash p \to q}{p \to q, p \land r \vdash p} \xrightarrow{\land e} \frac{p \to q, p \land r \vdash p \land r}{p \to q, p \land r \vdash p} \xrightarrow{\land e} \frac{p \to q, p \land r \vdash p \land r}{p \to q, p \land r \vdash r} \xrightarrow{\land e} \frac{p \to q, p \land r \vdash p \land r}{p \to q, p \land r \vdash r} \xrightarrow{\land e} \frac{p \to q, p \land r \vdash q \land r}{p \to q \vdash (p \land r) \to (q \land r)} \xrightarrow{\rightarrow i}$$

3.2.3 $(p \wedge r) \rightarrow (q \wedge r), r \vdash p \rightarrow q$

$$\frac{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash (p \wedge r) \rightarrow (q \wedge r)}{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash p} \text{ ax } \frac{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash r}{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash p \wedge r} \xrightarrow{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash q \wedge r} \xrightarrow{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash q} \xrightarrow{\wedge_e} \frac{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash q \wedge r}{(p \wedge r) \rightarrow (q \wedge r), r, p \vdash q} \xrightarrow{\wedge_e}$$

3.2.4 $p \rightarrow q \vdash (p \lor r) \rightarrow (q \lor r)$

$$\frac{p \rightarrow q, p \lor r, p \vdash p \rightarrow q}{p \rightarrow q, p \lor r, p \vdash q} \xrightarrow{\text{ax}} \frac{p \rightarrow q, p \lor r, p \vdash p}{p \rightarrow q, p \lor r, p \vdash q} \xrightarrow{\text{ax}} \frac{p \rightarrow q, p \lor r, p \vdash p}{p \rightarrow q, p \lor r, p \vdash q \lor r} \lor_{i} \xrightarrow{p \rightarrow q, p \lor r, q \vdash q \lor r} \lor_{e} \frac{p \rightarrow q, p \lor r \vdash q \lor r}{p \rightarrow q \vdash (p \lor r) \rightarrow (q \lor r)} \rightarrow_{i}$$

On peut prouver $(p \lor r) \to (q \lor r), \neg r \vdash p \to q$ mais on a besoin de (\bot_e) , voir l'exercice 5.1.4

3.2.5 $(p \land q) \rightarrow r, \neg r \vdash p \rightarrow \neg q$

On note $\Gamma = (p \land q) \rightarrow r, \neg r, p, q$

$$\frac{\overline{(p \land q) \rightarrow r, \neg r, p, q \vdash (p \land q) \rightarrow r}}{\underbrace{(p \land q) \rightarrow r, \neg r, p, q \vdash r}} \text{ ax } \frac{\overline{\Gamma \vdash p} \text{ ax } \overline{\Gamma \vdash q} \text{ ax}}{(p \land q) \rightarrow r, \neg r, p, q \vdash p \land q} \land_{i}}{\underline{(p \land q) \rightarrow r, \neg r, p, q \vdash r}} \xrightarrow{\neg_{e}} \frac{(p \land q) \rightarrow r, \neg r, p, q \vdash \neg r}{(p \land q) \rightarrow r, \neg r, p, q \vdash \bot} \xrightarrow{\neg_{e}} \frac{(p \land q) \rightarrow r, \neg r, p, q \vdash \bot}{(p \land q) \rightarrow r, \neg r, p \vdash \neg q} \xrightarrow{\neg_{e}} \frac{(p \land q) \rightarrow r, \neg r, p, q \vdash \bot}{(p \land q) \rightarrow r, \neg r, p \vdash \neg q} \xrightarrow{\rightarrow_{i}}$$

3.2.6 $p \rightarrow q, r \rightarrow s \vdash (p \land r) \rightarrow (q \land s)$

On note $\Gamma = p \to q, r \to s, p \wedge r$.

$$\frac{\frac{\Gamma \vdash p \to q}{\Gamma \vdash p \to q} \text{ ax } \frac{\overline{\Gamma \vdash p \land r}}{\Gamma \vdash p} \overset{\text{ax}}{\land_e}}{\frac{p \to q, r \to s, p \land r \vdash q}{} \to e} \frac{\frac{\Gamma \vdash r \to s}{\Gamma \vdash r \to s} \text{ ax } \frac{\overline{\Gamma \vdash p \land r}}{\Gamma \vdash r} \overset{\text{ax}}{\land_e}}{\frac{r \vdash p \land r}{} \to e} \xrightarrow{} \underset{\rho \to q, r \to s, p \land r \vdash q \land s}{} \to_i}{\frac{p \to q, r \to s, p \land r \vdash q \land s}{} \to i}$$

3.2.7 $p \rightarrow q, r \rightarrow s \vdash (p \lor r) \rightarrow (q \lor s)$

On note $\Gamma = p \to q, r \to s, p \vee r$.

$$\frac{\frac{\overline{\Gamma,p \vdash p \to q}}{p \to q,r \to s,p \lor r,p \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,p \vdash p}}{\frac{\overline{\Gamma,p \vdash p} \to q}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,p \vdash p}}{\frac{\overline{\Gamma,p \vdash p} \to q}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r \to s}}{\frac{\overline{\Gamma,r \vdash r} \to s}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r \vdash r} \to s}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r \vdash r} \to s}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r \vdash r} \to s}} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r} \vdash r} \to s} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r} \vdash r} \to s} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r}}{\frac{\overline{\Gamma,r} \vdash r} \to s} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r} \to s}}{\frac{\overline{\Gamma,r} \vdash r} \to s} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r} \to s}}{\frac{\overline{\Gamma,r} \vdash r} \to s} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r \vdash r} \to s}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \vdash q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\lor e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to s,p \lor r,r \to q} \underset{\vdash e}{\text{ax}} \quad \frac{\overline{\Gamma,r} \vdash r}{p \to q,r \to q} \underset{\vdash e}{\text{ax}} \quad \frac{\overline{\Gamma,r$$

3.2.8 $p \rightarrow (q \lor r), q \rightarrow s, r \rightarrow s \vdash p \rightarrow s$

On note $\Gamma = p \to (q \lor r), q \to s, r \to s, p$.

$$\frac{\overline{\Gamma \vdash p \to (q \lor r)}}{\frac{\Gamma \vdash p \to (q \lor r)}{}} \overset{\text{ax}}{\xrightarrow{\Gamma \vdash p}} \overset{\text{ax}}{\xrightarrow{\Gamma}} \underbrace{\frac{\overline{\Gamma, q \vdash q \to s}}{\Gamma, q \vdash s}} \overset{\text{ax}}{\xrightarrow{\Gamma, q \vdash q}} \overset{\text{ax}}{\xrightarrow{\Gamma, q \vdash q}} \overset{\text{ax}}{\xrightarrow{\Gamma, r \vdash r \to s}} \overset{\text{ax}}{\xrightarrow{\Gamma, r \vdash r}} \overset{\text{ax}}{\xrightarrow{\Gamma, r$$

3.2.9 $p \rightarrow (q \rightarrow r) \vdash q \rightarrow (p \rightarrow r)$

$$\frac{\frac{p \to (q \to r), p, q \vdash p \to (q \to r)}{p \to (q \to r), p, q \vdash p} \xrightarrow{\text{ax}} \frac{p \to (q \to r), p, q \vdash p}{p \to (q \to r), p, q \vdash q} \xrightarrow{\text{ax}} \frac{p \to (q \to r), p, q \vdash r}{p \to (q \to r), q \vdash p \to r} \xrightarrow{\rightarrow_{i}} \frac{p \to (q \to r), q \vdash p \to r}{p \to (q \to r), q \vdash p \to r} \xrightarrow{\rightarrow_{i}}$$

4 Équivalences classiques

4.1 Distributivités

4.1.1 $p \wedge (q \vee r)$ et $(p \wedge q) \vee (p \wedge r)$

4.1.1.1 $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$ On note $\varphi = p \land (q \lor r)$.

$$\frac{\varphi \vdash p \land (q \lor r)}{\varphi \vdash q \lor r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, q \vdash p \land (q \lor r)}{\varphi, q \vdash p} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, q \vdash p \land (q \lor r)}{\varphi, q \vdash p \land q} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land (q \lor r)}{\varphi, r \vdash p} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\land}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \overset{\text{ax}}{\lor}_{e} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi, r \vdash p \land r} \qquad \frac{\varphi, r \vdash p \land r}{\varphi,$$

4.1.1.2
$$(p \wedge q) \vee (p \wedge r) \vdash p \wedge (q \vee r)$$

Lemme 1 On commence par prouver $(p \land q) \lor (p \land r) \vdash p$.

$$\frac{(p \wedge q) \vee (p \wedge r) \vdash \varphi}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash p \wedge q} \overset{\text{ax}}{\wedge_e} \quad \frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash p} \overset{\text{ax}}{\wedge_e} \quad \frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p} \vee_e$$

Lemme 2 On prouve ensuite $(p \land q) \lor (p \land r) \vdash q \lor r$.

$$\underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash p \wedge q}{q \vee r, p \wedge q \vdash q}}_{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash r}}_{(p \wedge q) \vee (p \wedge r) \vdash q \vee r}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge r \vdash p \wedge r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e}}_{\vee_{e}}^{\text{ax}} \wedge_{e} \underbrace{\frac{(p \wedge q) \vee (p \wedge r), p \wedge q \vdash q \vee r}}_{\vee_{e}}^{\text{ax}} \wedge_{e}}_{\vee_{e}}^{\text{ax}} \wedge$$

Conclusion On assemble les deux déductions

$$\frac{\text{Lemme 1}}{(p \land q) \lor (p \land r) \vdash p} \quad \frac{\text{Lemme 2}}{(p \land q) \lor (p \land r) \vdash q \lor r} \land_{i}$$
$$(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$$

4.1.2 $p \lor (q \land r)$ et $(p \lor q) \land (p \lor r)$

4.1.2.1
$$p \lor (q \land r) \vdash (p \lor q) \land (p \lor r)$$

$$\frac{p \lor (q \land r) \vdash p \lor (q \land r)}{p \lor (q \land r) \vdash p \lor q} \text{ ax } \frac{p \lor (q \land r), q \land r \vdash q \land r}{p \lor (q \land r), q \land r \vdash q} \land_{e}}{p \lor (q \land r), q \land r \vdash p \lor q} \lor_{i} \frac{p \lor (q \land r), q \land r \vdash q}{p \lor (q \land r), q \land r \vdash p \lor q} \lor_{e}}{p \lor (q \land r) \vdash p \lor q} \land_{e} \frac{\text{Idem}}{p \lor (q \land r) \vdash p \lor q} \land_{e}$$

4.1.2.2
$$(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$$

On note $\varphi = (p \vee q) \wedge (p \vee r)$ et $\Gamma = (p \vee q) \wedge (p \vee r), q$.

4.2 Lois de de Morgan

4.2.1 $\neg (p \lor q)$ et $\neg p \land \neg q$

4.2.1.1
$$\neg (p \lor q) \vdash \neg p \land \neg q$$

$$\frac{\neg(p \lor q), p \vdash \neg(p \lor q)}{\neg(p \lor q), p \vdash \neg(p \lor q)} \text{ ax } \frac{\neg(p \lor q), p \vdash p}{\neg(p \lor q), p \vdash p \lor q} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q), q \vdash \neg(p \lor q)} \text{ ax } \frac{\neg(p \lor q), q \vdash p \lor q}{\neg(p \lor q), q \vdash p \lor q} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \bot}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \bot}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \bot}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \bot}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \bot}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q) \vdash \neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{\neg(p \lor q)} \bigvee_{\neg e} \frac{\neg(p \lor q), q \vdash \neg(p \lor q)}{$$

4.2.1.2 $\neg p \land \neg q \vdash \neg (p \lor q)$

On note $\varphi = \neg p \land \neg q$ et $\psi = p \lor q$.

$$\frac{1}{\neg p \land \neg q, p \lor q \vdash p \lor q} \text{ ax } \frac{\overline{\varphi, \psi, p \vdash \neg p \land \neg q}}{\varphi, \psi, p \vdash \neg p} \text{ ax } \frac{\overline{\varphi, \psi, p \vdash \neg p \land \neg q}}{\varphi, \psi, p \vdash \neg p} \xrightarrow{\neg e} \frac{\text{ax}}{\varphi, \psi, q \vdash q} \text{ ax } \frac{\overline{\varphi, \psi, q \vdash \neg p \land \neg q}}{\varphi, \psi, q \vdash \neg p \land \neg q} \xrightarrow{\land e} \xrightarrow{\neg p \land \neg q, p \lor q, p \vdash \bot} \xrightarrow{\neg p \land \neg q, p \lor q \vdash \bot} \lor_{e}$$

4.2.2 $\neg (p \land q)$ et $\neg p \lor \neg q$

4.2.2.1 $\neg (p \land q) \vdash \neg p \lor \neg q$

La déduction se fait en logique classique, voir l'exercice 6.1.7

4.2.2.2 $\neg p \lor \neg q \vdash \neg (p \land q)$

On note $\varphi = \neg p \vee \neg q$ et $\psi = p \wedge q$.

$$\underbrace{\frac{\varphi,\psi,\neg p\vdash p\land q}{\varphi,\psi,\neg p\vdash p}}_{\text{ax}} \text{ax} \underbrace{\frac{\overline{\varphi,\psi,\neg p\vdash p\land q}}_{\varphi,\psi,\neg p\vdash p}}_{\varphi,\psi,\neg p\vdash p} \overset{\text{ax}}{\neg_e} \underbrace{\frac{\overline{\varphi,\psi,\neg q\vdash p\land q}}_{\varphi,\psi,\neg q\vdash q}}_{\varphi,\psi,\neg q\vdash q} \overset{\text{ax}}{\land_e} \underbrace{\frac{\varphi,\psi,\neg q\vdash p\land q}{\varphi,\psi,\neg q\vdash \neg q}}_{\varphi,\psi,\neg q\vdash \bot} \overset{\text{ax}}{\lor_e} \underbrace{\frac{\neg p\lor \neg q,p\land q\vdash \bot}{\neg p\lor \neg q\vdash \neg (p\land q)}}_{\neg p\lor \neg q\vdash \neg (p\land q)} \overset{\text{ax}}{\neg_e} \underbrace{\frac{\neg p\lor \neg q,p\land q\vdash \bot}{\neg p\lor \neg q\vdash \neg (p\land q)}}_{\neg e}}_{\neg e}$$

4.3 3 formules équivalentes

4.3.1
$$(p \land q) \rightarrow r$$
 et $p \rightarrow (q \rightarrow r)$

4.3.1.1
$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\frac{(p \land q) \rightarrow r, p, q \vdash (p \land q) \rightarrow r}{(p \land q) \rightarrow r, p, q \vdash p} \text{ax} \qquad \frac{(p \land q) \rightarrow r, p, q \vdash p}{(p \land q) \rightarrow r, p, q \vdash p} \xrightarrow{\text{ax}} \qquad \frac{(p \land q) \rightarrow r, p, q \vdash p \land q}{\land_{i}} \rightarrow_{e}$$

$$\frac{(p \land q) \rightarrow r, p, q \vdash r}{(p \land q) \rightarrow r, p \vdash q \rightarrow r} \rightarrow_{i}$$

$$\frac{(p \land q) \rightarrow r, p \vdash q \rightarrow r}{(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)} \rightarrow_{i}$$

4.3.1.2 $p \rightarrow (q \rightarrow r) \vdash (p \land q) \rightarrow r$

$$\frac{\frac{p \to (q \to r), p \land q \vdash p \to q}{\land e}}{\frac{p \to (q \to r), p \land q \vdash p \land q}{\land e}} \xrightarrow[p \to (q \to r), p \land q \vdash q \to r]{} \land_{e}}{\frac{p \to (q \to r), p \land q \vdash q \to r}{\land e}} \xrightarrow[p \to (q \to r), p \land q \vdash r]{} \land_{e}} \frac{\frac{p \to (q \to r), p \land q \vdash p \land q}{\land e}}{p \to (q \to r), p \land q \vdash q} \xrightarrow[h \to e]{} \land_{e}} \xrightarrow[p \to (q \to r), p \land q \vdash r]{} \rightarrow_{e}}$$

4.3.2
$$(p \land q) \rightarrow r$$
 et $(p \rightarrow r) \lor (q \rightarrow r)$

4.3.2.1
$$(p \land q) \rightarrow r \vdash (p \rightarrow r) \lor (q \rightarrow r)$$

Ce résultat se déduit dans la logique classique, voir l'exercice 6.1.8.

4.3.2.2
$$(p \rightarrow r) \lor (q \rightarrow r) \vdash (p \land q) \rightarrow r$$

On note $\Gamma = (p \to r) \lor (q \to r), p \land q$.

$$\frac{\Gamma \vdash (p \to r) \lor (q \to r)}{\Gamma \vdash (p \to r) \lor (q \to r)} \text{ ax } \frac{\overline{\Gamma, p \to r \vdash p \land q}}{\Gamma, p \to r \vdash r} \xrightarrow{\Lambda_e} \frac{\text{Idem}}{\Gamma, q \to r \vdash r} \xrightarrow{\Lambda_e} \frac{\text{Idem}}{\Gamma, q \to r \vdash r} \\ \frac{(p \to r) \lor (q \to r), p \land q \vdash r}{(p \to r) \lor (q \to r) \vdash (p \land q) \to r} \xrightarrow{\Lambda_e}$$

4.3.3
$$p \rightarrow (q \rightarrow r)$$
 et $(p \rightarrow r) \lor (q \rightarrow r)$

4.3.3.1
$$p \rightarrow (q \rightarrow r) \vdash (p \rightarrow r) \lor (q \rightarrow r)$$

Ce résultat se déduit dans la logique classique, voir l'exercice 6.1.9.

4.3.3.2
$$(p \rightarrow r) \lor (q \rightarrow r) \vdash p \rightarrow (q \rightarrow r)$$

On note $\Gamma = (p \to r) \lor (q \to r), p, q$.

$$\frac{\Gamma \vdash (p \to r) \lor (q \to r)}{\Gamma \vdash (p \to r) \lor (q \to r)} \text{ ax } \frac{\Gamma, p \to r \vdash p \to r}{\Gamma, p \to r \vdash p} \xrightarrow{\text{ax}} \frac{\Gamma, p \to r \vdash p}{\Gamma} \xrightarrow{\text{ax}} \frac{\Gamma, p \to r \vdash p}{(p \to r) \lor (q \to r), p, q, p \to r \vdash r} \xrightarrow{\bullet} \frac{\Gamma}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p \vdash q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \vdash r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \vdash p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r), p, q \to r} \xrightarrow{\bullet}_{i} \frac{\Gamma, p \to r}{(p \to r) \lor (q \to r$$

4.4 Distributivités d'implications

4.4.1
$$p \rightarrow (q \land r)$$
 et $(p \rightarrow q) \land (p \rightarrow r)$

4.4.1.1
$$p \rightarrow (q \land r) \vdash (p \rightarrow q) \land (p \rightarrow r)$$

$$\frac{\overline{p \to (q \land r), p \vdash p \to (q \land r)}}{\underbrace{\frac{p \to (q \land r), p \vdash q \land r}{p \to (q \land r), p \vdash q}}_{\rightarrow e} \land_{e}} \xrightarrow{\frac{p \to (q \land r), p \vdash p \to (q \land r)}{p \to (q \land r), p \vdash p \to (q \land r)}} \land_{e}} \xrightarrow{\frac{p \to (q \land r), p \vdash q \land r}{p \to (q \land r), p \vdash q} \land_{e}}_{\rightarrow e}} \xrightarrow{\frac{p \to (q \land r), p \vdash q \land r}{p \to (q \land r), p \vdash r} \land_{e}}_{p \to (q \land r) \vdash p \to r}} \land_{e}}$$

4.4.1.2
$$(p \rightarrow q) \land (p \rightarrow r) \vdash p \rightarrow (q \land r)$$

On note $\Gamma = (p \to q) \land (p \to r)$.

$$\frac{\overline{\Gamma,p\vdash p\to q}}{\underbrace{(p\to q)\land (p\to r),p\vdash q}}\overset{\mathrm{ax}}{\to_e} \quad \frac{\overline{\Gamma,p\vdash p\to r}}{\underbrace{(p\to q)\land (p\to r),p\vdash r}}\overset{\mathrm{ax}}{\to_e} \\ \frac{\underline{(p\to q)\land (p\to r),p\vdash q\land r}}{p\to q,p\to r\vdash p\to (q\land r)}\to_i$$

4.4.2
$$(p \lor q) \to r$$
 et $(p \to r) \land (q \to r)$

4.4.2.1
$$(p \lor q) \to r \vdash (p \to r) \land (q \to r)$$

$$\frac{(p \lor q) \to r, p \vdash (p \lor q) \to r}{(p \lor q) \to r, p \vdash p} \xrightarrow{\text{ax}} \frac{(p \lor q) \to r, p \vdash p}{(p \lor q) \to r, p \vdash p \lor q} \xrightarrow{\lor_{i}} \frac{(p \lor q) \to r, p \vdash p \lor q}{\to_{e}} \xrightarrow{(p \lor q) \to r, q \vdash (p \lor q) \to r} \xrightarrow{\text{ax}} \frac{(p \lor q) \to r, q \vdash p \lor q}{(p \lor q) \to r, q \vdash p \lor q} \xrightarrow{\lor_{i}} \xrightarrow{(p \lor q) \to r, q \vdash r} \xrightarrow{\land_{i}} \xrightarrow{(p \lor q) \to r \vdash (p \to r) \land (q \to r)}$$

4.4.2.2 $p \rightarrow r, q \rightarrow r \vdash (p \lor q) \rightarrow r$

On pose $\Gamma = p \to r, q \to r, p \lor q$.

$$\frac{p \to r, q \to r, p \lor q \vdash p \lor q}{p \to r, q \to r, p \lor q \vdash r} \text{ ax } \frac{\overline{\Gamma, p \vdash p}}{p \to r, q \to r, p \lor q, p \vdash r} \xrightarrow{\text{ax}} \frac{\overline{\Gamma, p \vdash p}}{p \to r, q \to r, p \lor q, p \vdash r} \xrightarrow{\rightarrow_{e}} \frac{\overline{\Gamma, q \vdash q \to r}}{p \to r, q \to r, p \lor q, q \vdash r} \xrightarrow{\lor_{e}} \frac{p \to r, q \to r, p \lor q \vdash r}{p \to r, q \to r \vdash (p \lor q) \to r} \to_{i}$$

4.4.3
$$(p \rightarrow q) \lor (p \rightarrow r)$$
 et $p \rightarrow (q \lor r)$

4.4.3.1
$$(p \rightarrow q) \lor (p \rightarrow r) \vdash p \rightarrow (q \lor r)$$

Ce résultat se déduit en logique classique, voir l'exercice 6.1.10

4.4.3.2
$$(p \rightarrow q) \lor (p \rightarrow r) \vdash p \rightarrow (q \lor r)$$

On note $\varphi = (p \to q) \lor (p \to r)$.

$$\frac{\varphi,p,p\to q\vdash p\to q}{\varphi,p,p\to q\vdash q} \text{ ax } \frac{\varphi,p,p\to q\vdash p}{\varphi,p,p\to q\vdash q} \xrightarrow{\Delta e} \frac{\text{Idem}}{\varphi,p,p\to q\vdash q\vee r} \lor_{i} \qquad \frac{\text{Idem}}{\varphi,p,p\to r\vdash q\vee r} \lor_{e} \\ \frac{\varphi,p\vdash q\vee r}{(p\to q)\vee (p\to r)\vdash p\to (q\vee r)} \to_{i}$$

4.4.4
$$q \rightarrow r \vdash (p \rightarrow q) \rightarrow (p \rightarrow r)$$

4.4.4.1 $q \rightarrow r \vdash (p \rightarrow q) \rightarrow (p \rightarrow r)$

$$\frac{q \to r, p \to q, p \vdash q \to r}{q \to r, p \to q, p \vdash p \to q} \text{ ax } \frac{\overline{q \to r, p \to q, p \vdash p \to q} \text{ ax } \overline{q \to r, p \to q, p \vdash p}}{q \to r, p \to q, p \vdash q} \to_{e} \frac{\overline{q \to r, p \to q, p \vdash p}}{\overline{q \to r, p \to q, p \vdash p \to r}} \to_{e} \frac{\overline{q \to r, p \to q, p \vdash p \to r}}{\overline{q \to r, p \to q, p \vdash p \to r}} \to_{e}$$

4.4.4.2 $p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$

$$\frac{p \rightarrow q, q \rightarrow r, p \vdash q \rightarrow r}{p \rightarrow q, q \rightarrow r, p \vdash p \rightarrow q} \text{ ax } \frac{p \rightarrow q, q \rightarrow r, p \vdash p}{p \rightarrow q, q \rightarrow r, p \vdash p} \xrightarrow{\Delta_e} \frac{p \rightarrow q, q \rightarrow r, p \vdash r}{p \rightarrow q, q \rightarrow r, p \vdash r} \rightarrow_e \frac{p \rightarrow q, q \rightarrow r, p \vdash r}{p \rightarrow q, q \rightarrow r \vdash p \rightarrow r} \rightarrow_e$$

Logique intuitionniste

Usage de l'absurdité intuitionniste

Dans cette section l'usage de l'absurdité intuitionniste (\perp_e) est possible.

5.1.1 $\neg \neg p, p \lor \neg p \vdash p$

5.1.1
$$\neg \neg p, p \lor \neg p \vdash p$$

$$\frac{\neg \neg p, p \lor \neg p, \neg p \vdash \neg p}{\neg \neg p, p \lor \neg p, \neg p \vdash \neg p} \text{ ax } \frac{\neg \neg p, p \lor \neg p, \neg p \vdash \neg (\neg p)}{\neg \neg p, p \lor \neg p, \neg p \vdash \bot} \underset{\neg \neg p, p \lor \neg p, \neg p \vdash p}{\bot_{e}} \underbrace{\neg \neg p, p \lor \neg p, \neg p \vdash \bot}_{\neg \neg p, p \lor \neg p, \neg p \vdash p} \underbrace{\bot_{e}}_{\lor e}$$
5.1.2 $e \vdash p \lor \neg p \lor \neg p \lor \neg p \lor \neg p, \neg p \vdash p$

5.1.2 $\neg p \vdash p \rightarrow q$

$$\frac{\neg p, p \vdash p}{\frac{\neg p, p \vdash \neg p}{\neg p, p \vdash q}} \xrightarrow{\neg p} \frac{\text{ax}}{\neg p, p \vdash q} \xrightarrow{\neg e} \frac{\neg p, p \vdash q}{\neg p, p \vdash q} \xrightarrow{\rightarrow_i}$$

5.1.3 $p \lor q, \neg q \vdash p$

$$\frac{p \lor q, \neg q \vdash p}{p \lor q, \neg q, q \vdash p} \text{ ax } \frac{p \lor q, \neg q, q \vdash q}{p \lor q, \neg q, q \vdash p} \text{ ax } \frac{p \lor q, \neg q, q \vdash \neg q}{p \lor q, \neg q, q \vdash p} \downarrow_{e} 1$$

$$\frac{p \lor q, \neg q, q \vdash p}{p \lor q, \neg q, q \vdash p} \lor_{e} 1$$

5.1.4 $(p \lor r) \to (q \lor r), \neg r \vdash p \to q$

On note $\Gamma = (p \vee r) \rightarrow (q \vee r), \neg r, p$

$$\frac{\frac{\overline{\Gamma \vdash p} \text{ ax}}{\Gamma \vdash (p \lor r) \to (q \lor r)} \text{ ax} \qquad \frac{\overline{\Gamma \vdash p} \text{ ax}}{\Gamma \vdash p \lor r} \lor_{e}}{\frac{(p \lor r) \to (q \lor r), \neg r, p \vdash q \lor r}{(p \lor r) \to (q \lor r), \neg r, p, q \vdash q}} \xrightarrow{\text{ax}} \qquad \frac{\overline{\Gamma, r \vdash r} \text{ ax}}{\Gamma, r \vdash \neg r} \xrightarrow{\neg_{e}} \frac{\text{ax}}{\Gamma, r \vdash \neg r} \xrightarrow{\neg_{e}} \frac{\overline{\Gamma, r \vdash r}}{\neg_{e}} \xrightarrow{\neg_{e}} \frac{\overline{\Gamma, r \vdash r}}{(p \lor r) \to (q \lor r), \neg r, p, q \vdash q}} \lor_{e}} \xrightarrow{\frac{(p \lor r) \to (q \lor r), \neg r, p \vdash q}{(p \lor r) \to (q \lor r), \neg r, p \vdash q}} \lor_{e}} \xrightarrow{}_{i}$$

5.1.5
$$\neg(p \rightarrow q) \vdash q \rightarrow p$$

$$\frac{\frac{\neg (p \to q), q, p \vdash q}{\neg (p \to q), q \vdash p \to q} \xrightarrow{\text{ax}} \frac{}{\neg (p \to q), q \vdash \neg (p \to q)} \xrightarrow{} \underset{\neg e}{\text{ax}} \frac{}{\neg (p \to q), q \vdash \bot} \xrightarrow{} \underset{\neg e}{\underbrace{\frac{\neg (p \to q), q \vdash \bot}{\neg (p \to q), q \vdash p} \bot_{e}}} \xrightarrow{} \underset{\neg (p \to q) \vdash q \to p}{\underbrace{\frac{\neg (p \to q), q \vdash p \vdash q}{\neg (p \to q) \vdash q \to p}}} \xrightarrow{}_{i}$$

5.2 Déduction de l'absurdité intuitionniste

5.2.1 Une autre règle

On transforme l'exercice 5.1.2 en la règle de création d'implication $\frac{\Gamma \vdash \neg p}{\Gamma \vdash p \to q} \to_c$ Dériver (\bot_e) en utilisant cette règle. On note $p = \bot \to \bot$.

$$\frac{\frac{\Gamma \vdash \bot}{\Gamma, \bot \vdash \bot} \text{ aff }}{\frac{\Gamma \vdash \bot \to \bot}{\Gamma \vdash p}} \xrightarrow{\rho}_{i} \frac{\frac{\Gamma \vdash \bot}{\Gamma, p \vdash \bot} \text{ aff }}{\frac{\Gamma \vdash \neg p}{\Gamma \vdash p \to q}} \xrightarrow{\neg_{i}}_{r}$$

5.2.2 Depuis $(\neg \neg_e)$

Dériver (\bot_e) en utilisant $(\neg \neg_e)$.

$$\frac{\frac{\Gamma \vdash \bot}{\Gamma, \neg p \vdash \bot}}{\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash p}} \stackrel{\text{aff}}{\neg \neg_e}$$

5.2.3 Depuis (raa)

Dériver (\perp_e) en utilisant (raa).

$$\frac{\frac{\Gamma \vdash \bot}{\Gamma, \neg p \vdash \bot}}{\frac{\Gamma \vdash p}{\Gamma}} \text{ aff }$$
raa

Logique classique

Dans cette partie, l'usage de (te), (raa), $(\neg \neg_e)$ ou (\bot_e) est possible.

Implication et disjonctions

6.1.1 $\neg p \rightarrow p \vdash p$

$$\frac{\neg p \to p, \neg p \vdash \neg p \to p}{\neg p \to p, \neg p \vdash p} \xrightarrow{\text{ax}} \frac{\neg p \to p, \neg p \vdash \neg p}{\neg p \to p, \neg p \vdash p} \xrightarrow{\text{ax}} \frac{\neg p \to p, \neg p \vdash \neg p}{\neg p \to p, \neg p \vdash \neg p} \xrightarrow{\neg e} \xrightarrow{\neg p \to p, \neg p \vdash \neg p} \neg e$$

$$\frac{p \to \neg p, \neg p \vdash \bot}{p \to \neg p, \vdash p} \xrightarrow{\neg \neg e} \neg \neg e$$

La forme $p \to \neg p \vdash \neg p$ se démontre en logique minimale, voir 3.1.1.

$$\frac{ \frac{\overline{p \rightarrow q, p \vdash p \rightarrow q} \text{ ax}}{\overline{p \rightarrow q, p \vdash p}} \xrightarrow{\text{pax}} \xrightarrow{p \rightarrow q, p \vdash p} \xrightarrow{\text{pax}} \xrightarrow{p \rightarrow q, p \vdash q} \xrightarrow{\text{pax}} \xrightarrow{p \rightarrow q, p \vdash q} \xrightarrow{\text{pax}} \xrightarrow{p \rightarrow q, p \vdash p} \xrightarrow{\text{pax}} \xrightarrow{\text{pax}} \xrightarrow{p \rightarrow q, p \vdash p} \xrightarrow{\text{pax}} \xrightarrow{\text{pax}}$$

6.1.3 $\neg p \lor q \vdash p \rightarrow q$

$$\frac{\neg p \lor q, \neg p, p \vdash p}{\neg p \lor q, \neg p, p \vdash p} \xrightarrow{\text{ax}} \frac{\neg p \lor q, \neg p, p \vdash \neg p}{\neg p} \xrightarrow{\neg e} \frac{\neg p \lor q, \neg p, p \vdash \bot}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{\bot_{e}} \frac{\neg p \lor q, \neg p, p \vdash \bot}{\neg p \lor q, \neg p, p \vdash p \to q} \xrightarrow{\neg p \lor q, q, p \vdash q} \xrightarrow{\text{ax}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{\searrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{\searrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{\searrow_{e}} \frac{\neg p \lor q, \neg p, p \vdash \neg p}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{\neg p \lor q, q, p \vdash q} \xrightarrow{\searrow_{e}} \frac{\neg p \lor q, \neg p, p \vdash \neg p}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{\searrow_{e}} \frac{\neg p \lor q, \neg p, p \vdash \neg p}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, \neg p, p \vdash q}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, \neg p, p \vdash q}{\neg p \lor q, \neg p, p \vdash q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, p \vdash q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash p \to q}{\neg p \lor q, q \vdash p \to q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash q}{\neg p \lor q, q \vdash q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \vdash q}{\neg p \lor q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \lor q}{\neg p \lor q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q, q \lor q}{\neg p \lor q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg p \lor q}{\neg p \lor q} \xrightarrow{}_{\downarrow_{e}} \frac{\neg$$

6.1.4 $\neg q \rightarrow \neg p \vdash p \rightarrow q$

$$\frac{-q \to \neg p, p, \neg q \vdash p}{\neg q \to \neg p, p, \neg q \vdash \neg q} \text{ ax } \frac{\neg q \to \neg p, p, \neg q \vdash \neg q}{\neg q \to \neg p, p, \neg q \vdash \neg p} \xrightarrow{\neg q} \xrightarrow{\neg q} \xrightarrow{\neg p, p, \neg q \vdash \neg p} \xrightarrow{\neg e} \xrightarrow{\neg q \to \neg p, p, \neg q \vdash \bot} \text{ raa} \xrightarrow{\neg q \to \neg p, p \vdash p} \xrightarrow{\neg q} \xrightarrow{\rightarrow}_{i}$$

C'est la réciproque de l'exercice 3.2.1

6.1.5 $q \rightarrow r, \neg q \rightarrow \neg p \vdash p \rightarrow r$

On note $\Gamma = q \rightarrow r, \neg q \rightarrow \neg p, p$

On note
$$\Gamma = q \to r, \neg q \to \neg p, p$$
.

$$\frac{\Gamma}{\Gamma, q \vdash q \to r} \text{ ax} \qquad \frac{\Gamma, \neg q \vdash q}{\Gamma, \neg q \vdash q} \text{ ax} \qquad \frac{\Gamma, \neg q \vdash q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg p} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e} \qquad \frac{\Gamma, \neg q \vdash \neg q}{\Gamma, \neg q \vdash \neg q} \xrightarrow{\neg e$$

$$\textbf{6.1.6} \quad p \lor q, \neg q \lor r \vdash p \lor r$$

On utilise (te) sous la forme $\overline{p \lor q, \neg q \lor r \vdash q \lor \neg q}$ te

Lemme 1 On commence par supposer q

$$\underbrace{\frac{\overline{p \lor q, \neg q \lor r, q, \neg q \vdash q}}_{p \lor q, \neg q \lor r, q, \neg q \vdash r} \text{ax} \quad \frac{\overline{p \lor q, \neg q \lor r, q, \neg q \vdash \neg q}}_{\neg e}}_{p \lor q, \neg q \lor r, q, \neg q \vdash r} \bot_{e} \quad \frac{\overline{p \lor q, \neg q \lor r, q, \neg q \vdash \bot}}_{p \lor q, \neg q \lor r, q, \neg q \vdash r} \bot_{e} \quad \underline{\frac{p \lor q, \neg q \lor r, q \vdash r}{p \lor q, \neg q \lor r, q \vdash p \lor r}}}_{\lor e} } \times_{e}$$

Lemme 2 On suppose maintenant $\neg q$.

time 2 On suppose maintenant
$$\neg q$$
.
$$\frac{p \lor q, \neg q \lor r, \neg q, q \vdash q}{p \lor q, \neg q \lor r, \neg q, p \vdash p} \text{ ax } \frac{p \lor q, \neg q \lor r, \neg q, q \vdash q}{p \lor q, \neg q \lor r, \neg q, p \vdash p} \xrightarrow{\text{ax}} \frac{p \lor q, \neg q \lor r, \neg q, q \vdash \bot}{p \lor q, \neg q \lor r, \neg q, p \vdash p} \xrightarrow{\bot_e} \frac{p \lor q, \neg q \lor r, \neg q, p \vdash p}{p \lor q, \neg q \lor r, \neg q \vdash p} \lor_e$$

$$\frac{p \lor q, \neg q \lor r, \neg q \vdash p}{p \lor q, \neg q \lor r, \neg q \vdash p} \lor_i$$
clusion On peut alors tout réunir.

Conclusion On peut alors tout réunir.

$$\frac{p \lor q, \neg q \lor r \vdash q \lor \neg q}{p \lor q, \neg q \lor r, q \vdash p \lor r} \text{ te } \frac{\text{Lemme 1}}{p \lor q, \neg q \lor r, q \vdash p \lor r} \frac{\text{Lemme 2}}{p \lor q, \neg q \lor r, \neg q \vdash p \lor r} \lor_{e}$$

6.1.7 $\neg (p \land q) \vdash \neg p \lor \neg q$

On note $\varphi = \neg (p \land q)$.

$$\frac{\varphi,p,q\vdash\neg(p\land q)}{\varphi,p,q\vdash\neg(p\land q)} \text{ ax } \frac{\overline{\varphi,p,q\vdash p} \text{ ax } \overline{\varphi,p,q\vdash q}}{\varphi,p,q\vdash p\land q} \stackrel{\text{ax}}{\wedge_i} \\ \frac{\varphi,p,q\vdash\bot}{\varphi,p\vdash\neg q} \stackrel{\neg_i}{\vee_i} \\ \overline{\varphi,p\vdash\neg p\lor\neg q} \stackrel{\vee_i}{\vee_i} \frac{\overline{\varphi,\neg p\vdash\neg p}}{\varphi,\neg p\vdash\neg p\lor\neg q} \stackrel{\vee_i}{\vee_i} \\ \overline{\neg(p\land q)\vdash\neg p\lor\neg q}$$

C'est la réciproque de l'exercice 4.2.2.2

6.1.8
$$(p \land q) \rightarrow r \vdash (p \rightarrow r) \lor (q \rightarrow r)$$

On note $\varphi = (p \wedge q) \to r$.

$$\frac{\varphi,p,q\vdash p}{\varphi,p,q\vdash (p\land q)\rightarrow r} \text{ ax } \frac{\overline{\varphi,p,q\vdash p}}{\varphi,p,q\vdash p} \text{ ax } \frac{\overline{\varphi,p,q\vdash p}}{\wedge_i} \wedge_i \frac{\overline{\varphi,\neg p,p\vdash p}}{\overline{\varphi,\neg p,p\vdash p}} \text{ ax } \frac{\overline{\varphi,\neg p,p\vdash p}}{\varphi,\neg p,p\vdash \neg p} \text{ ax } \frac{\varphi,\neg p,p\vdash \neg p}{\neg_e} \wedge_i \\ \frac{\varphi,\neg p,p\vdash q\rightarrow r}{\varphi,\neg p,p\vdash q\rightarrow r} \wedge_i \\ \overline{\varphi,\neg p,p\vdash q\rightarrow r} \wedge_i \\ \overline{\varphi,\neg p,p\vdash p\rightarrow r} \wedge_i \\ \overline{\varphi,\neg p\vdash p\rightarrow r} \\ \overline{\varphi,\neg$$

C'est la réciproque de l'exercice 4.3.2.2

6.1.9
$$p \rightarrow (q \rightarrow r) \vdash (p \rightarrow r) \lor (q \rightarrow r)$$

On note $\varphi = p \to (q \to r)$.

$$\frac{\varphi, \neg p, p \vdash p}{\varphi, \neg p, p \vdash p} \text{ ax } \frac{\varphi, \neg p, p \vdash \neg p}{\varphi, \neg p, p \vdash \neg p} \text{ ax } \frac{\varphi, \neg p, p \vdash \neg p}{\neg e} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, p \vdash p} \xrightarrow{$$

C'est la réciproque de l'exercice 4.3.3.2

6.1.10
$$p \rightarrow (q \lor r) \vdash (p \rightarrow q) \lor (p \rightarrow r)$$

Lemme On commence par $p \to (q \lor r), p \vdash (p \to q) \lor (p \to r)$. On note $\varphi = p \to (q \lor r)$.

Conclusion On passe alors à la déduction demandée.

$$\frac{\varphi, \neg p, p \vdash p}{\varphi, \neg p, p \vdash p} \xrightarrow{\text{ax}} \frac{\varphi, \neg p, p \vdash \neg p}{\varphi, \neg p, p \vdash \neg p} \xrightarrow{\neg e} \frac{\varphi}{\varphi, \neg p, p \vdash q} \xrightarrow{\neg e} \frac{\varphi, \neg p, p \vdash \bot}{\varphi, \neg p, p \vdash q} \xrightarrow{\rightarrow i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash p \rightarrow q}{\varphi, \neg p, p \vdash p \rightarrow q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash p \rightarrow q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \neg p, p \vdash q}{\varphi, \neg p, p \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \varphi, \varphi, \varphi}{\varphi, q \vdash q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi, \varphi}{\varphi, q} \xrightarrow{\lor i} \bigvee_{e} \frac{\varphi$$

C'est la réciproque de l'exercice 4.4.3.2

Équivalences des règles

6.2.1 $(\neg \neg_e)$ donne (te)

Dériver (te) en utilisant $(\neg \neg_e)$

$$\frac{\frac{\Gamma, \neg(p \vee \neg p), p \vdash p}{\Gamma, \neg(p \vee \neg p), p \vdash p} \text{ ax}}{\frac{\Gamma, \neg(p \vee \neg p), p \vdash \neg(p \vee \neg p)}{\Gamma, \neg(p \vee \neg p), p \vdash \bot} \underset{\neg e}{\neg e}}{\frac{\Gamma, \neg(p \vee \neg p), p \vdash \bot}{\Gamma, \neg(p \vee \neg p) \vdash \neg p} \underset{\neg e}{\vee_{i}}}{\frac{\Gamma, \neg(p \vee \neg p) \vdash \neg p}{\Gamma, \neg(p \vee \neg p) \vdash p \vee \neg p}} \underset{\neg e}{\vee_{i}}$$

$$\frac{\Gamma, \neg(p \vee \neg p) \vdash \neg p}{\Gamma, \neg(p \vee \neg p) \vdash p \vee \neg p} \underset{\neg e}{\vee_{i}}$$

$$\frac{\Gamma, \neg(p \vee \neg p) \vdash \bot}{\Gamma, \neg(p \vee \neg p)} \underset{\neg e}{\neg}_{e}$$

6.2.2 (raa) donne (te)

Dériver (te) en utilisant (raa).

6.2.3 (te) donne $(\neg \neg_e)$

Dériver $(\neg \neg_e)$ en utilisant (te) et (\bot_e)

$$\frac{\Gamma \vdash p \lor \neg p}{\Gamma \vdash p \lor \neg p} \text{ te } \frac{\frac{\Gamma \vdash \neg \neg p}{\Gamma, \neg p \vdash \neg (\neg p)}}{\frac{\Gamma, \neg p \vdash \neg p}{\Gamma, \neg p \vdash p}} \text{ aff } \frac{\frac{\Gamma}{\Gamma, \neg p \vdash \neg p}}{\frac{\Gamma}{\Gamma, \neg p \vdash p}} \downarrow_{e}}{\frac{\Gamma}{\Gamma, \neg p \vdash p}} \lor_{e}$$

6.2.4 (raa) donne $(\neg \neg_e)$

Dériver $(\neg \neg_e)$ en utilisant (raa).

$$\frac{\Gamma \vdash \neg \neg p}{\Gamma, \neg p \vdash \neg p} \text{ ax } \frac{\Gamma \vdash \neg \neg p}{\Gamma, \neg p \vdash \neg (\neg p)} \text{ aff } \frac{\Gamma, \neg p \vdash \bot}{\Gamma \vdash p} \text{ raa}$$

6.2.5 (te) donne (raa)

Dériver (raa) en utilisant (te) et (\perp_e)

$$\frac{\Gamma \vdash p \lor \neg p}{\Gamma \vdash p} \text{ te } \frac{\Gamma, \neg p \vdash \bot}{\Gamma, \neg p \vdash p} \xrightarrow{\Delta} \frac{\Gamma, \neg p \vdash \bot}{\Gamma, \neg p \vdash p} \overset{\bot_e}{\lor_e}$$

6.2.6 $(\neg \neg_e)$ donne (raa)

Dériver (raa) en utilisant $(\neg \neg_e)$.

$$\frac{\Gamma, \neg p \vdash \bot}{\Gamma \vdash \neg \neg p} \neg_{i}$$

$$\frac{\Gamma \vdash \neg \neg p}{\Gamma \vdash n} \neg \neg_{e}$$

7 Logique du premier ordre

7.1 Divers

7.1.1 $\forall x \varphi \vdash \exists x \varphi$

$$\frac{ \frac{ }{\forall x \varphi \vdash \forall x \varphi} \text{ ax} }{ \frac{ \forall x \varphi \vdash \varphi[x \leftarrow t]}{\forall x \varphi \vdash \exists x \varphi} \text{ } \exists_{i} }$$

7.1.2 $\exists t. \forall x \varphi(t, x) \vdash \forall y \exists x \varphi(z, y)$

$$\frac{\frac{\forall x \varphi(t,x) \vdash \forall x \varphi(t,x)}{\forall x \varphi(t,x) \vdash \varphi(t,x)[x \leftarrow y]}}{\frac{\forall x \varphi(t,x) \vdash \varphi(t,x)[x \leftarrow y]}{\forall x \varphi(t,x) \vdash \varphi(t,y)}} \stackrel{\forall e}{\rho} \\ \frac{\forall x \varphi(t,x) \vdash \varphi(t,y)}{\forall x \varphi(t,x) \vdash \varphi(z,y)[z \leftarrow t]} \stackrel{\beta}{\exists}_{i} \\ \frac{\forall x \varphi(t,x) \vdash \exists x \varphi(z,y)}{\forall x \varphi(t,x) \vdash \forall y \exists x \varphi(z,y)}}{\forall x \varphi(t,x) \vdash \forall y \exists x \varphi(z,y)} \stackrel{\text{aff}}{\exists}_{e} \\ \frac{\exists t. \forall x \varphi(t,x) \vdash \forall y \exists x \varphi(z,y)}{\exists t. \forall x \varphi(t,x) \vdash \forall y \exists x \varphi(z,y)} \stackrel{\text{aff}}{\exists}_{e}$$

On peut appliquer (\forall_i) car y n'est pas dans $\forall x \varphi(t, x)$ On peut appliquer (\exists_e) car t n'est pas libre dans $\exists t. \forall x \varphi(t, x)$ ni dans $\forall y \exists x \varphi(z, y)$.

7.1.3 $\forall x \varphi \vdash \neg(\exists x(\neg \varphi))$

$$\frac{\frac{\overline{\forall x\varphi, \exists x(\neg\varphi), \neg\varphi \vdash \forall x\varphi}}{\forall x\varphi, \exists x(\neg\varphi), \neg\varphi \vdash \varphi} \overset{\text{ax}}{\forall e} \frac{\overline{\forall x\varphi, \exists x(\neg\varphi), \neg\varphi \vdash \neg\varphi}}{\forall x\varphi, \exists x(\neg\varphi), \neg\varphi \vdash \bot} \overset{\text{ax}}{\neg e}}{\forall x\varphi, \exists x(\neg\varphi), \neg\varphi \vdash \bot} \underset{\neg e}{\exists e}$$

On peut éliminer \exists car x n'est pas une variable libre dans $\forall x\varphi$, $\exists x(\neg\varphi)$ ou \bot . La réciproque demande un raisonnement par l'absurde, voir l'exercice 7.4.1.

7.1.4 $\exists x(\neg \varphi) \vdash \neg(\forall x \varphi)$

$$\frac{\frac{\overline{\forall x\varphi \vdash \forall x\varphi}}{\forall x\varphi \vdash \varphi} \overset{\text{ax}}{\forall e}}{\exists x(\neg \varphi), \forall x\varphi \vdash \exists x(\neg \varphi)} \overset{\text{ax}}{\exists x} \frac{\frac{\overline{\forall x\varphi \vdash \forall x\varphi}}{\forall x\varphi \vdash \varphi} \overset{\text{aff}}{\forall e}}{\exists x(\neg \varphi), \forall x\varphi, \neg \varphi \vdash \varphi} \overset{\text{ax}}{\exists x(\neg \varphi), \forall x\varphi, \neg \varphi \vdash \neg \varphi} \overset{\text{ax}}{\neg e} \frac{\exists x(\neg \varphi), \forall x\varphi \vdash \bot}{\exists x(\neg \varphi) \vdash \neg (\forall x\varphi)} \overset{\text{ax}}{\neg e}$$

L'usage de (\exists_e) est possible car x n'est pas une variable libre dans $\exists x(\neg\varphi), \forall x\varphi$ ou \bot . La réciproque demande un raisonnement par l'absurde, voir l'exercice 7.4.2.

7.1.5
$$\neg(\exists x\varphi) \vdash \forall x(\neg\varphi)$$

$$\frac{\neg(\exists x\varphi), \varphi \vdash \varphi}{\neg(\exists x\varphi), \varphi \vdash \exists x\varphi} \stackrel{\text{ax}}{\exists_{i}} \frac{}{\neg(\exists x\varphi), \varphi \vdash \neg(\exists x\varphi)} \stackrel{\text{ax}}{\neg(\exists x\varphi), \varphi \vdash \neg(\exists x\varphi)} \frac{}{\neg(\exists x\varphi) \vdash \neg\varphi} \stackrel{\neg_{i}}{\forall_{i}} \frac{}{\neg(\exists x\varphi) \vdash \forall x(\neg\varphi)} \forall_{i}$$

L'utilisation de (\forall_i) st possible car x n'est pas une variable libre de $\neg(\exists x\varphi)$. La réciproque demande un raisonnement par l'absurde, voir l'exercice 7.4.3.

7.1.6
$$\neg (\forall x(\neg \varphi)) \vdash \exists x \varphi$$

$$\frac{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi), \varphi \vdash \varphi}{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi), \varphi \vdash \exists x\varphi} \stackrel{\exists x}{\exists_{i}} \frac{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi), \varphi \vdash \neg(\exists x\varphi)}{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi), \varphi \vdash \bot} \underset{\neg e}{\underbrace{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi) \vdash \neg\varphi}} \stackrel{\exists x}{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi) \vdash \neg\varphi} \stackrel{\exists x}{\forall_{i}} \frac{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi) \vdash \neg\varphi}{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi) \vdash \neg(\forall x(\neg\varphi))} \underset{\neg e}{\Rightarrow_{i}} \frac{\neg(\forall x(\neg\varphi)), \neg(\exists x\varphi) \vdash \bot}{\neg(\forall x(\neg\varphi)) \vdash \exists x(\neg\varphi)} \xrightarrow{\neg(e)} \frac{\neg(e), \neg(e), \neg(e),$$

L'usage de (\forall_i) est possible car x n'est pas une variable libre dans $\neg(\forall x(\neg\varphi))$ ni dans $\neg(\exists x\varphi)$. La réciproque demande un raisonnement par l'absurde, voir l'exercice 7.4.4.

7.1.7
$$\exists x \varphi(x), \forall x \forall y \big(\varphi(x) \to \psi(y) \big) \vdash \forall y \psi(y)$$

On note $\Gamma = \exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y)), \varphi(x).$

$$\frac{\overline{\Gamma \vdash \forall x \forall y (\varphi(x) \to \psi(y))}}{\overline{\Gamma \vdash \forall y (\varphi(x) \to \psi(y))}} \overset{\text{ax}}{\forall e} \\ \frac{\overline{\Gamma \vdash \forall y (\varphi(x) \to \psi(y))} [x \leftarrow x]}{\overline{\Gamma \vdash \forall y (\varphi(x) \to \psi(y))}} \overset{\text{dx}}{\varphi} \\ \frac{\overline{\Gamma \vdash \forall y (\varphi(x) \to \psi(y))} [y \leftarrow y]}{\overline{\Gamma \vdash (\varphi(x) \to \psi(y))}} \overset{\text{dx}}{\varphi} \\ \frac{\overline{\Gamma \vdash \varphi(x) \to \psi(y)}}{\overline{\exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y)), \varphi(x) \vdash \psi(y)}} \overset{\text{dx}}{\Rightarrow e} \\ \frac{\overline{\exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y)), \varphi(x) \vdash \psi(y)}}{\overline{\exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y)), \varphi(x) \vdash \forall y \psi(y)}} \overset{\text{dx}}{\Rightarrow e} \\ \overset{\text{dett introduire}}{\Rightarrow \forall \text{ car } y \text{ n'est pas une variable libre dans } \exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y)) \text{ ou } \varphi(x).}$$

On peut introduire \forall car y n'est pas une variable libre dans $\exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y))$ ou $\varphi(x)$. On peut éliminer \exists car x n'est pas une variable libre dans $\exists x \varphi(x), \forall x \forall y (\varphi(x) \to \psi(y))$ ou $\forall y \psi(y)$.

7.2 Distributivité des quantificateurs

7.2.1 $\forall x(\varphi \wedge \psi)$ et $(\forall x\varphi) \wedge (\forall x\psi)$

7.2.1.1 $\forall x(\varphi \wedge \psi) \vdash (\forall x\varphi) \wedge (\forall x\psi)$

$$\frac{\forall x(\varphi \land \psi) \vdash \forall x(\varphi \land \psi)}{\forall x(\varphi \land \psi) \vdash \varphi \land \psi} \land_{e} \qquad \frac{\forall x(\varphi \land \psi) \vdash \forall x(\varphi \land \psi)}{\forall x(\varphi \land \psi) \vdash \varphi \land \psi} \land_{e} \qquad \frac{\forall x(\varphi \land \psi) \vdash \varphi \land \psi}{\forall x(\varphi \land \psi) \vdash \psi} \land_{e} \qquad \frac{\forall x(\varphi \land \psi) \vdash \psi \land \psi}{\forall x(\varphi \land \psi) \vdash \forall x\psi} \land_{i} \qquad \frac{\forall x(\varphi \land \psi) \vdash \psi \land \psi}{\forall x(\varphi \land \psi) \vdash \forall x\psi} \land_{i}$$

Dans les deux cas (\forall_i) est valide car x n'est pas une variable libre de $\forall x (\varphi \land \psi)$.

7.2.1.2 $(\forall x\varphi) \wedge (\forall x\psi) \vdash \forall x(\varphi \wedge \psi)$

$$\frac{(\forall x\varphi) \wedge (\forall x\psi) \vdash (\forall x\varphi) \wedge (\forall x\psi)}{(\forall x\varphi) \wedge (\forall x\psi) \vdash \varphi} \underset{\wedge_{e}}{\forall e} \frac{(\forall x\varphi) \wedge (\forall x\psi) \vdash (\forall x\varphi) \wedge (\forall x\psi)}{(\forall x\varphi) \wedge (\forall x\psi) \vdash \varphi} \underset{\wedge_{e}}{\forall e} \frac{(\forall x\varphi) \wedge (\forall x\psi) \vdash \forall x\psi}{(\forall x\varphi) \wedge (\forall x\psi) \vdash \psi} \underset{\wedge_{i}}{\forall e}$$

 (\forall_i) est valide car x n'est pas une variable libre de $(\forall x\varphi) \land (\forall x\psi)$.

7.2.2 $\exists x(\varphi \land \psi) \vdash \exists x\varphi \land \exists x\psi$

$$\exists x(\varphi \land \psi) \vdash \exists x(\varphi \land \psi) \vdash \exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi \land \psi } \exists_{i} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi \land \psi} \exists_{i} \exists_{i} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\psi} \exists_{i} \exists_{i} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\psi} \exists_{i} \exists_{i} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\psi} \exists_{i} \exists_{i} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\psi} \land_{i} \exists x(\varphi \land \psi) \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi) \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi \land \exists x\psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi} \exists_{e} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi} \exists x(\varphi \land \psi), \varphi \land \psi} \exists_{e} \exists x(\varphi \land \psi), \varphi \land \psi} \exists x(\varphi \land \psi),$$

L'usage de (\exists_e) est possible car x n'est pas une variable libre dans $\exists x(\varphi \land \psi)$ ni dans $\exists x\varphi \land \exists x\psi$ La réciproque n'est pas vraie, voir l'exercice 7.3.2.2

7.2.3 $(\forall x\varphi) \lor (\forall x\psi) \vdash \forall x(\varphi \lor \psi)$

$$\frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\varphi \vdash \forall x\varphi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\varphi \vdash \varphi} \underset{\forall_{e}}{\text{ax}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\varphi \vdash \varphi}{\forall_{e}} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\varphi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \psi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi) \lor (\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\varphi), \forall x\psi \vdash \varphi}{(\forall x\varphi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\psi), \forall x\psi \vdash \varphi}{(\forall x\psi), \forall x\psi \vdash \varphi} \underset{\forall_{e}}{\forall_{e}} \qquad \frac{(\forall x\psi), \forall x\psi, \forall x\psi,$$

 $(\forall i)$ est valide car x n'est pas une variable libre de $(\forall x\varphi) \lor (\forall x\psi)$. La réciproque n'est pas vraie, voir l'exercice 7.4.5

7.2.4
$$\exists x(\varphi \lor \psi)$$
 et $(\exists x\varphi) \lor (\exists x\psi)$

7.2.4.1
$$\exists x(\varphi \lor \psi) \vdash (\exists x\varphi) \lor (\exists x\psi)$$

On note $\Gamma = \exists x (\varphi \lor \psi), \varphi \lor \psi$.

$$\underbrace{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x \varphi} \exists_i}_{\exists x (\varphi \lor \psi) \vdash \exists x (\varphi \lor \psi)} \text{ ax } \underbrace{\frac{\overline{\Gamma, \psi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x \varphi} \exists_i}_{\Box, \varphi \vdash (\exists x \varphi) \lor \psi} \lor_i \underbrace{\frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash \exists x \psi} \exists_i}_{\Box, \psi \vdash (\exists x \varphi) \lor (\exists x \psi)} \lor_e \underbrace{\frac{\exists x (\varphi \lor \psi) \vdash (\exists x \varphi) \lor (\exists x \psi)}{\exists x (\varphi \lor \psi) \vdash (\exists x \varphi) \lor (\exists x \psi)}}_{\exists z (\varphi \lor \psi) \vdash (\exists x \varphi) \lor (\exists x \psi)} \exists_e$$

L'usage de (\exists_e) est possible car x n'est pas libre dans $\exists x(\varphi \lor \psi)$ ni dans $(\exists x\varphi) \lor (\exists x\psi)$

7.2.4.2
$$(\exists x\varphi) \lor (\exists x\psi) \vdash \exists x(\varphi \lor \psi)$$

On note $\Gamma = (\exists x \varphi) \lor (\exists x \psi), \exists x \varphi$.

$$\frac{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \varphi \lor \psi} \overset{\text{ax}}{\vee_{i}}}{\frac{\overline{\Gamma, \varphi \vdash \varphi} \lor \psi}{(\exists x \varphi) \lor (\exists x \psi)}} \overset{\text{ax}}{\Rightarrow} \frac{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x (\varphi \lor \psi)}}{\frac{\overline{\Gamma, \varphi \vdash \varphi} \lor \psi}{\Gamma, \varphi \vdash \exists x (\varphi \lor \psi)}} \overset{\exists_{i}}{\exists_{i}}}{\frac{\overline{\Gamma, \varphi \vdash \varphi} \lor \psi}{(\exists x \varphi) \lor (\exists x \psi), \exists x \varphi \vdash \exists x (\varphi \lor \psi)}} \overset{\text{Idem}}{\Rightarrow_{e}} \frac{(\exists x \varphi) \lor (\exists x \psi), \exists x \psi \vdash \exists x (\varphi \lor \psi)}{(\exists x \varphi) \lor (\exists x \psi), \exists x \psi \vdash \exists x (\varphi \lor \psi)}} \lor_{e}$$

 (\exists_e) est possible car x n'est pas libre dans $(\exists x\varphi) \vee (\exists x\psi)$, $\exists x\varphi$ ou $\exists x(\varphi \vee \psi)$.

7.2.5
$$\forall x(\varphi \to \psi) \vdash (\forall x\varphi) \to (\forall x\psi)$$

$$\frac{\forall x(\varphi \to \psi), \forall x\varphi \vdash \forall x(\varphi \to \psi)}{\forall x(\varphi \to \psi), \forall x\varphi \vdash \varphi \to \psi} \xrightarrow{\text{ax}} \frac{\forall x(\varphi \to \psi), \forall x\varphi \vdash \forall x\varphi}{\forall x(\varphi \to \psi), \forall x\varphi \vdash \varphi} \xrightarrow{\text{by}} \xrightarrow{\text{constant}} \frac{\forall x(\varphi \to \psi), \forall x\varphi \vdash \psi}{\forall x(\varphi \to \psi), \forall x\varphi \vdash \psi} \xrightarrow{\forall i} \frac{\forall x(\varphi \to \psi), \forall x\varphi \vdash \psi}{\forall x(\varphi \to \psi), \forall x\varphi \vdash \forall x\psi} \xrightarrow{\rightarrow i}$$

L'usage de (\forall_i) est possible car x n'est pas une variable libre de $\forall x(\varphi \to \psi)$ ni de $\forall x\varphi$. Un forme affaiblie et sa réciproque sont faites aux exercices 7.3.5.1 et 7.3.5.2. On peut voir aussi les exercices 7.3.7.1 et 7.3.7.2.

7.2.6
$$\exists x(\varphi \to \psi) \vdash (\forall x\varphi) \to (\exists x\psi)$$

$$\frac{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi \to \psi}{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi} \xrightarrow{\text{ax}} \frac{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \forall x\varphi}{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi} \xrightarrow{\text{be}} \frac{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \psi}{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists i} \xrightarrow{\exists i} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists i} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists i} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \exists x\psi} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \psi, \forall x\varphi \vdash$$

 (\exists_e) est possible car x n'est pas libre dans $\exists x(\varphi \to \psi)$ ni dans $(\forall x\varphi) \to (\exists x\psi)$. La réciproque demande un raisonnement par l'absurde, voir l'exercice 7.4.7. Des formes affaiblies (et leurs réciproques) sont faites aux exercices 7.3.6.2 (7.4.6) et 7.3.8.1 (7.3.8.2)

7.2.7
$$\exists x(\varphi \land \psi), \forall x(\psi \rightarrow \theta) \vdash \exists x(\varphi \land \theta)$$

On note $\Gamma = \exists x (\varphi \wedge \psi), \forall x (\psi \rightarrow \theta), \varphi \wedge \psi$

$$\frac{\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \text{ ax}}{\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land_{e}} \frac{\frac{\overline{\Gamma} \vdash \forall x(\psi \to \theta)}{\Gamma \vdash \psi} \xrightarrow{\text{ax}} \frac{\overline{\Gamma} \vdash \varphi \land \psi}{\Gamma \vdash \psi} \land_{e}}{\frac{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \varphi \land \theta}{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \varphi \land \theta}} \xrightarrow{\exists i} \frac{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \varphi \land \theta}{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta)}} \xrightarrow{\exists i} \frac{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta)}{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta)}} \xrightarrow{\exists i} \frac{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta)}{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta)}} \xrightarrow{\exists i} \frac{\exists x(\varphi \land \psi), \forall x(\psi \to \theta), \psi \to \theta \vdash \exists x(\varphi \land \theta), \psi \to \theta \vdash \exists x(\varphi \land$$

L'usage de (\exists_e) est possible car x n'est pas une variable libre de $\exists x(\varphi \land \psi), \forall x(\psi \to \theta)$ ou $\exists x(\varphi \land \theta)$.

7.3 Semi-distributivité des quantificateurs

Dans cette partie on suppose que x n'est pas une variable libre dans ψ et on prouve qu'on peut affecter un quantificateur à φ uniquement quand on l'applique à $\varphi \wedge \psi$, $\varphi \vee \psi$ ou $\psi \to \varphi$. Dans le cas de $\varphi \to \psi$, le quantificateur est inversé

7.3.1 $\forall x(\varphi \wedge \psi)$ et $(\forall x\varphi) \wedge \psi$, x non libre dans ψ

7.3.1.1 $\forall x(\varphi \wedge \psi) \vdash (\forall x\varphi) \wedge \psi$

$$\frac{\forall x(\varphi \land \psi) \vdash \forall x(\varphi \land \psi)}{\forall x(\varphi \land \psi) \vdash \varphi \land \psi} \bigvee_{e}^{} \forall_{e}^{}$$

$$\frac{\forall x(\varphi \land \psi) \vdash \varphi \land \psi}{\forall x(\varphi \land \psi) \vdash \varphi} \bigvee_{e}^{} \bigvee_{e}^{} \frac{\forall x(\varphi \land \psi) \vdash \forall x(\varphi \land \psi)}{\forall x(\varphi \land \psi) \vdash \varphi \land \psi} \bigwedge_{e}^{}$$

$$\frac{\forall x(\varphi \land \psi) \vdash (\forall x\varphi) \land \psi}{} \wedge_{e}^{}$$

L'usage de $(\forall i)$ est valide car x n'est pas une variable libre de $\forall x (\varphi \land \psi)$. On a en fait repris la déduction de 7.2.1.1, simplifiée.

7.3.1.2 $(\forall x\varphi) \land \psi \vdash \forall x(\varphi \land \psi), x \text{ non libre dans } \psi$

$$\frac{(\forall x\varphi) \land \psi \vdash (\forall x\varphi) \land \psi}{(\forall x\varphi) \land \psi \vdash \forall x\varphi} \land_{e} \qquad \frac{(\forall x\varphi) \land \psi \vdash (\forall x\varphi) \land \psi}{(\forall x\varphi) \land \psi \vdash \varphi} \land_{e} \qquad \frac{(\forall x\varphi) \land \psi \vdash \psi}{(\forall x\varphi) \land \psi \vdash \psi} \land_{e} \qquad \frac{(\forall x\varphi) \land \psi \vdash \varphi \land \psi}{(\forall x\varphi) \land \psi \vdash \forall x(\varphi \land \psi)} \forall_{i}$$

 (\forall_i) est valide car x n'est pas une variable libre de $(\forall x\varphi) \land \psi$. On a en fait repris la déduction de 7.2.1.2, simplifiée.

7.3.2 $\exists x(\varphi \wedge \psi)$ et $(\exists x\varphi) \wedge \psi$, x non libre dans ψ

7.3.2.1 $\exists x(\varphi \wedge \psi) \vdash (\exists x\varphi) \wedge \psi$, x non libre dans ψ

$$\frac{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi \land \psi}{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi} \xrightarrow{\land e} \frac{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi}{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \exists x\varphi} \xrightarrow{\exists x} \frac{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \varphi \land \psi}{\exists x(\varphi \land \psi), \varphi \land \psi \vdash \psi} \xrightarrow{\land e} \xrightarrow{\exists x(\varphi \land \psi), \varphi \land \psi \vdash (\exists x\varphi) \land \psi} \exists_{e}$$

 (\exists_e) est valide car x n'est pas une variable libre de $\exists x(\varphi \land \psi)$ ni de $(\exists x\varphi) \land \psi$.

7.3.2.2 $(\exists x\varphi) \land \psi \vdash \exists x(\varphi \land \psi), x \text{ non libre dans } \psi$

$$\frac{(\exists x\varphi) \land \psi, \varphi \vdash (\exists x\varphi) \land \psi}{(\exists x\varphi) \land \psi \vdash \exists x\varphi} \land_{e} \qquad \frac{(\exists x\varphi) \land \psi, \varphi \vdash \varphi}{(\exists x\varphi) \land \psi, \varphi \vdash \varphi \land \psi} \land_{e} \qquad \frac{(\exists x\varphi) \land \psi, \varphi \vdash \varphi \land \psi}{(\exists x\varphi) \land \psi, \varphi \vdash \exists x(\varphi \land \psi)} \exists_{i} \\
(\exists x\varphi) \land \psi \vdash \exists x(\varphi \land \psi) \qquad \exists_{e} \qquad (\exists x\varphi) \land \psi \vdash \exists x(\varphi \land \psi)$$

- (\exists_e) est valide car x n'est pas une variable libre de $(\exists x\varphi) \land \psi$ ni de $\exists x(\varphi \land \psi)$.
- **7.3.3** $\forall x(\varphi \lor \psi)$ et $(\forall x\varphi) \lor \psi$, x non libre dans ψ
- **7.3.3.1** $\forall x(\varphi \lor \psi) \vdash (\forall x\varphi) \lor \psi$, x non libre dans ψ

Ce résultat se démontre dans la logique classique, voir 7.4.5

7.3.3.2 $(\forall x\varphi) \lor \psi \vdash \forall x(\varphi \lor \psi), x \text{ non libre dans } \psi$

- (\forall_i) est valide car x n'est pas une variable libre de $(\forall x\varphi) \vee \psi$.
- **7.3.4** $\exists x(\varphi \lor \psi)$ et $(\exists x\varphi) \lor \psi$, x non libre dans ψ
- **7.3.4.1** $\exists x(\varphi \lor \psi) \vdash (\exists x\varphi) \lor \psi$, x non libre dans ψ On note $\Gamma = \exists x(\varphi \lor \psi), \varphi \lor \psi$.

$$\frac{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x \varphi} \stackrel{\text{ax}}{\exists_i}}{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x \varphi}} \stackrel{\text{ax}}{\exists_i}}{\frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}{\forall_i} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}} \vee_i \frac{\overline{\Gamma, \psi \vdash \psi}}{\Gamma, \psi \vdash (\exists x \varphi) \lor \psi}}$$

L'utilisation de (\exists_i) est possible car x n'est pas libre dans $\exists x(\varphi \lor \psi)$ ni dans $(\exists x\varphi) \lor \psi$. On a en fait repris la déduction de 7.2.4.1, simplifiée.

7.3.4.2 $(\exists x\varphi) \lor \psi \vdash \exists x(\varphi \lor \psi), x \text{ non libre dans } \psi$

On note $\Gamma = (\exists x \varphi) \lor \psi, \exists x \varphi$.

$$\frac{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \varphi \lor \psi}}{(\exists x\varphi) \lor \psi \vdash (\exists x\varphi) \lor \psi} \text{ ax } \frac{\frac{\overline{\Gamma, \varphi \vdash \varphi}}{\Gamma, \varphi \vdash \exists x(\varphi \lor \psi)}}{(\exists x\varphi) \lor \psi, \exists x\varphi \vdash \exists x(\varphi \lor \psi)} \exists_{i} \frac{\overline{(\exists x\varphi) \lor \psi, \psi \vdash \psi}}{(\exists x\varphi) \lor \psi, \psi \vdash \varphi \lor \psi} \lor_{i} \frac{\exists_{i}}{(\exists x\varphi) \lor \psi, \psi \vdash \exists x(\varphi \lor \psi)} \exists_{e} \frac{(\exists x\varphi) \lor \psi, \psi \vdash \varphi \lor \psi}{(\exists x\varphi) \lor \psi, \psi \vdash \exists x(\varphi \lor \psi)} \lor_{e}$$

 (\exists_e) est possible car x n'est pas libre dans $(\exists x\varphi) \lor \psi$, $\exists x\varphi$ ou $\exists x(\varphi \lor \psi)$ On a en fait repris la déduction de 7.2.4.2, simplifiée.

7.3.5 $\forall x(\psi \to \varphi)$ et $\psi \to (\forall x\varphi)$, x non libre dans ψ

7.3.5.1 $\forall x(\psi \to \varphi) \vdash \psi \to (\forall x\varphi), x \text{ non libre dans } \psi$

$$\frac{\forall x(\psi \to \varphi), \psi \vdash \forall x(\psi \to \varphi)}{\forall x(\psi \to \varphi), \psi \vdash \psi \to \varphi} \xrightarrow{\text{ax}} \psi_e \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \psi} \psi_e \xrightarrow{\text{ax}} \psi_e \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \varphi} \psi_i \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \forall x\varphi} \psi_i \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \forall x\varphi} \psi_i \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \psi \to (\forall x\varphi)} \psi_i \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \psi \to (\forall x\varphi)} \psi_i \xrightarrow{\text{ax}} \psi_i \xrightarrow{\forall x(\psi \to \varphi), \psi \vdash \psi \to (\forall x\varphi)} \psi_i \xrightarrow{\text{ax}} \psi_i \xrightarrow$$

 (\forall_i) est possible car x n'est pas une variable libre de $\forall x(\psi \to \varphi)$ ni de ψ . On a en fait repris la déduction de 7.2.5, simplifiée.

7.3.5.2 $\psi \to (\forall x \varphi) \vdash \forall x (\psi \to \varphi), x \text{ non libre dans } \psi$

$$\frac{\psi \to (\forall x\varphi), \psi \vdash \psi \to (\forall x\varphi)}{\psi \to (\forall x\varphi), \psi \vdash \psi} \xrightarrow{\text{ax}} \frac{\psi \to (\forall x\varphi), \psi \vdash \forall x\varphi}{\psi \to (\forall x\varphi), \psi \vdash \varphi} \xrightarrow{\forall_e} \frac{\psi \to (\forall x\varphi), \psi \vdash \varphi}{\psi \to (\forall x\varphi) \vdash \psi \to \varphi} \xrightarrow{\forall_i} \frac{\psi \to (\forall x\varphi) \vdash \psi \to \varphi}{\psi \to (\forall x\varphi) \vdash \forall x(\psi \to \varphi)} \xrightarrow{\forall_i}$$

 (\forall_i) est possible car x n'est pas une variable libre de $\psi \to (\forall x \varphi)$.

7.3.6 $\psi \to (\exists x \varphi)$ et $\exists x (\psi \to \varphi)$, x non libre dans ψ

7.3.6.1 $\psi \to (\exists x \varphi) \vdash \exists x (\psi \to \varphi), x \text{ non libre dans } \psi$

Ce résultat se démontre dans la logique classique, voir 7.4.6

7.3.6.2 $\exists x(\psi \to \varphi) \vdash \psi \to (\exists x\varphi), x \text{ non libre dans } \psi$

$$\frac{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \psi \to \varphi}{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\text{ax}} \frac{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi}{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \exists x\varphi} \xrightarrow{\exists_i} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \exists x\varphi} \xrightarrow{\exists_i} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \exists x\varphi} \xrightarrow{\exists_i} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \exists x\varphi} \xrightarrow{\exists_i} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \exists x\varphi} \xrightarrow{\exists_i} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi, \psi \vdash \varphi} \xrightarrow{\exists x(\psi \to \varphi), \psi \to \varphi} \xrightarrow{\exists x(\psi \to \varphi$$

 (\exists_e) est possible car x n'est pas libre dans $\exists x(\psi \to \varphi)$ ni dans $(\psi) \to (\exists x\psi)$. On a en fait repris la déduction de 7.2.6, simplifiée.

7.3.7 $\forall x(\varphi \to \psi)$ et $(\exists x\varphi) \to \psi$, x non libre dans ψ

7.3.7.1 $\forall x(\varphi \to \psi) \vdash (\exists x\varphi) \to \psi$, x non libre dans ψ

$$\frac{\frac{\forall x(\varphi \to \psi), \exists x \varphi, \varphi \vdash \forall x(\varphi \to \psi)}{\forall x(\varphi \to \psi), \exists x \varphi, \varphi \vdash \varphi \to \psi} \overset{\text{ax}}{\forall e} \frac{\frac{\forall x(\varphi \to \psi), \exists x \varphi, \varphi \vdash \varphi}{\forall x(\varphi \to \psi), \exists x \varphi, \varphi \vdash \varphi} \xrightarrow{\text{ax}} \frac{}{\forall x(\varphi \to \psi), \exists x \varphi, \varphi \vdash \psi} \xrightarrow{}_{e} \frac{\forall x(\varphi \to \psi), \exists x \varphi \vdash \psi}{\forall x(\varphi \to \psi), \exists x \varphi \to \psi} \xrightarrow{}_{e}$$

L'utilisation de (\exists_e) est valide car x n'est pas une variable libre de $\forall x(\varphi \to \psi), \exists x\varphi$ ou ψ .

7.3.7.2 $(\exists x\varphi) \rightarrow \psi \vdash \forall x(\varphi \rightarrow \psi), x \text{ non libre dans } \psi$

$$\frac{(\exists x\varphi) \to \psi, \varphi \vdash (\exists x\varphi) \to \psi}{(\exists x\varphi) \to \psi, \varphi \vdash \varphi} \text{ ax } \frac{(\exists x\varphi) \to \psi, \varphi \vdash \varphi}{(\exists x\varphi) \to \psi, \varphi \vdash \exists x\varphi} \xrightarrow{\exists_{i}} \frac{(\exists x\varphi) \to \psi, \varphi \vdash \psi}{(\exists x\varphi) \to \psi \vdash \varphi \to \psi} \xrightarrow{\to_{i}} \frac{(\exists x\varphi) \to \psi \vdash \varphi \to \psi}{(\exists x\varphi) \to \psi \vdash \forall x(\varphi \to \psi)} \forall_{i}$$

L'utilisation de $(\forall i)$ est valide car x n'est pas une variable libre de $(\exists x\varphi) \to \psi$.

7.3.8 $\exists x(\varphi \to \psi)$ et $(\forall x\varphi) \to \psi$, x non libre dans ψ

7.3.8.1 $\exists x(\varphi \to \psi) \vdash (\forall x\varphi) \to \psi$, x non libre dans ψ

$$\frac{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi \to \psi}{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi \to \psi} \text{ ax } \frac{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash (\forall x\varphi)}{\exists x(\varphi \to \psi), \varphi \to \psi, \forall x\varphi \vdash \varphi[x \leftarrow x]} \overset{\text{ax}}{\forall e} \\ \frac{\exists x(\varphi \to \psi) \vdash \exists x(\varphi \to \psi)}{\exists x(\varphi \to \psi) \vdash (\forall x\varphi) \to \psi} \xrightarrow{\exists e} \xrightarrow{\exists x(\varphi \to \psi), \varphi \to \psi \vdash (\forall x\varphi) \to \psi} \exists_{e}$$

L'utilisation de (\exists_e) est valide car x n'est pas une variable libre de $\exists x(\varphi \to \psi)$ ni de $(\forall x\varphi) \to \psi$.

7.3.8.2 $(\forall x\varphi) \rightarrow \psi \vdash \exists x(\varphi \rightarrow \psi), x \text{ non libre dans } \psi$

$$\frac{(\exists x\varphi) \to \psi, \varphi \vdash (\exists x\varphi) \to \psi}{(\exists x\varphi) \to \psi, \varphi \vdash \varphi} \xrightarrow{\exists i} \exists_{i}$$

$$\frac{(\exists x\varphi) \to \psi, \varphi \vdash \psi}{(\exists x\varphi) \to \psi, \varphi \vdash \psi} \xrightarrow{\exists i}$$

$$\frac{(\exists x\varphi) \to \psi, \varphi \vdash \psi}{(\exists x\varphi) \to \psi \vdash \varphi \to \psi} \xrightarrow{\forall i}$$

$$\frac{(\exists x\varphi) \to \psi \vdash \forall x(\varphi \to \psi)}{\forall i}$$

L'usage de (\forall_i) est valide car x n'est pas une variable libre de $(\exists x\varphi) \to \psi$.

Logique classique du premier ordre

Dans cette partie, l'usage de (te), (raa), $(\neg \neg_e)$ ou (\bot_e) est possible.

7.4.1
$$\neg(\exists x(\neg\varphi)) \vdash \forall x\varphi$$

$$\frac{\neg(\exists x(\neg\varphi)), \neg\varphi \vdash \neg\varphi}{\neg(\exists x(\neg\varphi)), \neg\varphi \vdash \exists x(\neg\varphi)} \exists_{i} \frac{\neg(\exists x(\neg\varphi)), \neg\varphi \vdash \neg(\exists x(\neg\varphi)),}{\neg(\exists x(\neg\varphi)) \vdash \varphi} \neg_{e} \frac{\neg(\exists x(\neg\varphi)) \vdash \varphi}{\neg(\exists x(\neg\varphi)) \vdash \forall x\varphi} \forall_{i}$$

On peut utiliser (\forall_i) car x n'est pas une variable libre de $\neg(\exists x(\neg\varphi))$. C'est la réciproque de l'exercice 7.1.3

7.4.2
$$\neg(\forall x\varphi) \vdash \exists x(\neg\varphi)$$

$$\frac{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)), \neg\varphi \vdash \neg\varphi}{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)), \neg\varphi \vdash \exists x(\neg\varphi)} \exists_{i} \qquad \frac{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)), \neg\varphi \vdash \neg(\exists x(\neg\varphi))}{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \varphi} \xrightarrow{\neg e} \frac{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \varphi}{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \forall x\varphi} \forall_{i} \qquad \frac{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \neg(\forall x\varphi)}{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \neg(\forall x\varphi)} \xrightarrow{\neg e} \frac{\neg(\forall x\varphi), \neg(\exists x(\neg\varphi)) \vdash \bot}{\neg(\forall x\varphi) \vdash \exists x(\neg\varphi)} \rightarrow_{i}$$
L'usage de (\forall_{i}) est possible car x n'est pas une variable libre dans $\neg(\forall x\varphi)$ ni dans $\neg(\exists x(\neg\varphi))$.

L'usage de (\forall_i) est possible car x n'est pas une variable libre dans $\neg(\forall x\varphi)$ ni dans $\neg(\exists x(\neg\varphi))$. C'est la réciproque de l'exercice 7.1.4.

7.4.3
$$\forall x(\neg \varphi) \vdash \neg(\exists x \varphi)$$

$$\frac{1}{\frac{\forall x(\neg\varphi), \exists x\varphi \vdash \exists x\varphi}{}} = \frac{\frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \forall x(\neg\varphi)}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi \vdash \bot}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \exists x\varphi, \varphi \vdash \neg\varphi}{} = x \qquad \frac{\forall x(\neg\varphi), \varphi \vdash \neg\varphi}{} = x \qquad$$

C'est la réciproque de l'exercice 7.1.5.

7.4.4 $\exists x \varphi \vdash \neg (\forall x (\neg \varphi))$

$$\frac{\exists x\varphi, \forall x(\neg\varphi), \varphi \vdash \forall x(\neg\varphi)}{\exists x\varphi, \forall x(\neg\varphi), \varphi \vdash \neg\varphi} \overset{\text{ax}}{\forall_e} \quad \frac{\exists x\varphi, \forall x(\neg\varphi), \varphi \vdash \varphi}{\exists x\varphi, \forall x(\neg\varphi), \varphi \vdash \varphi} \overset{\text{ax}}{\Rightarrow} \quad \frac{\exists x\varphi, \forall x(\neg\varphi), \varphi \vdash \varphi}{\exists x\varphi, \forall x(\neg\varphi) \vdash \bot} \\ \frac{\exists x\varphi, \forall x(\neg\varphi) \vdash \bot}{\exists x\varphi \vdash \neg(\forall x(\neg\varphi))} \text{ raa}$$

L'usage de (\exists_e) est possible car x n'est pas une variable libre dans $\exists x\varphi, \forall x(\neg\varphi)$ ou \bot . C'est la réciproque de l'exercice 7.1.6

7.4.5 $\forall x(\varphi \lor \psi) \vdash (\forall x\varphi) \lor \psi$, x non libre dans ψ

Lemme On commence par $\forall x(\varphi \lor \psi), \neg \psi \vdash (\forall x\varphi) \lor \psi$; on note $\theta = \forall x(\varphi \lor \psi)$.

$$\frac{\frac{\theta, \neg \psi \vdash \forall x (\varphi \lor \psi)}{\theta, \neg \psi \vdash \varphi \lor \psi} \overset{\text{ax}}{\forall_{e}} \quad \frac{\frac{\overline{\theta}, \neg \psi, \varphi \vdash \varphi}{\theta, \neg \psi, \varphi \vdash \forall x \varphi} \overset{\text{ax}}{\forall_{i}}}{\frac{\theta, \neg \psi, \psi \vdash \psi}{\theta, \neg \psi, \psi \vdash (\forall x \varphi) \lor \psi}} \overset{\text{ax}}{\downarrow_{e}} \quad \frac{\overline{\theta, \neg \psi, \psi \vdash \psi}}{\frac{\theta, \neg \psi, \psi \vdash \bot}{\theta, \neg \psi, \psi \vdash (\forall x \varphi) \lor \psi}} \overset{\text{ax}}{\downarrow_{e}}}{\overset{\text{def}}{\downarrow_{e}}} \quad \frac{\neg_{e}}{\neg_{e}}$$

L'utilisation de (\forall_i) est possible car x n'est pas libre dans $\forall x(\varphi \lor \psi)$ ni dans $\neg \psi$.

Conclusion On peut utiliser le tiers-exclu

$$\frac{\theta \vdash \psi \lor \neg \psi}{\theta \vdash \psi \lor \neg \psi} \text{ te } \frac{\overline{\theta, \psi \vdash \psi}}{\theta, \psi \vdash (\forall x \varphi) \lor \psi} \bigvee_{i} \frac{\text{Lemme}}{\forall x (\varphi \lor \psi), \neg \psi \vdash (\forall x \varphi) \lor \psi} \bigvee_{e} \bigvee_{e} \overline{\psi} \left((\forall x \varphi) \lor \psi \lor \psi \right)$$

C'est la réciproque de l'exercice 7.3.3.2.

7.4.6 $\psi \to (\exists x \varphi) \vdash \exists x (\psi \to \varphi), x \text{ non libre dans } \psi$

Lemme 1 On commence par $\psi \to (\exists x \varphi), \psi \vdash \exists x (\psi \to \varphi)$

$$\frac{\psi \to (\exists x\varphi), \psi \vdash \psi \to (\exists x\varphi)}{\psi \to (\exists x\varphi), \psi \vdash \forall \to \varphi} \text{ ax}$$

$$\frac{\psi \to (\exists x\varphi), \psi \vdash \psi \to \varphi}{\psi \to (\exists x\varphi), \psi \vdash \exists x\varphi} \to_{e}$$

$$\frac{\psi \to (\exists x\varphi), \psi \vdash \psi \to \varphi}{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)} \xrightarrow{\exists_{i}}$$

$$\frac{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)}{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)} \xrightarrow{\exists_{i}}$$

$$\frac{\psi \to (\exists x\varphi), \psi \vdash \forall \varphi \to \varphi}{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)} \xrightarrow{\exists_{i}}$$

 (\exists_e) est possible car x n'est pas une variable libre de $\psi \to (\exists x \varphi), \psi$ ou $\exists x (\psi \to \varphi).$

Lemme 2 On déduit ensuite $\psi \to (\exists x \varphi), \neg \psi \vdash \exists x (\psi \to \varphi)$; c'est en fait l'analogue de l'exercice 5.1.2.

$$\frac{\psi \to (\exists x \varphi), \neg \psi, \psi \vdash \psi}{\psi \to (\exists x \varphi), \neg \psi, \psi \vdash \neg \psi} \xrightarrow{\text{ax}} \frac{\psi \to (\exists x \varphi), \neg \psi, \psi \vdash \bot}{\psi \to (\exists x \varphi), \neg \psi, \psi \vdash \varphi} \xrightarrow{\bot_{e}} \frac{\psi \to (\exists x \varphi), \neg \psi, \psi \vdash \varphi}{\psi \to (\exists x \varphi), \neg \psi \vdash \psi \to \varphi} \xrightarrow{\exists_{i}} \frac{\psi \to (\exists x \varphi), \neg \psi \vdash \psi \to \varphi}{\psi \to (\exists x \varphi), \neg \psi \vdash \exists x (\psi \to \varphi)} \xrightarrow{\exists_{i}}$$

Conclusion On utilise (te) avec ψ et sa négation.

$$\frac{\psi \to (\exists x\varphi) \vdash \psi \lor \neg \psi}{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)} \text{ te } \frac{\text{Lemme 1}}{\psi \to (\exists x\varphi), \psi \vdash \exists x(\psi \to \varphi)} \frac{\text{Lemme 2}}{\psi \to (\exists x\varphi), \neg \psi \vdash \exists x(\psi \to \varphi)} \lor_{e}$$

C'est la réciproque de 7.3.6.2

7.4.7 $(\forall x\varphi) \to (\exists x\psi) \vdash \exists x(\varphi \to \psi)$

On va utiliser (te) avec $\exists x(\neg \varphi)$ et sa négation.

Lemme 1 On commence par prouver $(\forall x\varphi) \to (\exists x\psi), \exists x(\neg\varphi) \vdash \exists x(\varphi \to \psi)$

On note $\Gamma = (\forall x \varphi) \to (\exists x \psi), \exists x (\neg \varphi).$

$$\frac{\overline{\Gamma, \neg \varphi, \varphi \vdash \varphi} \text{ ax } \overline{\Gamma, \neg \varphi, \varphi \vdash \neg \varphi} \text{ ax}}{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi), \neg \varphi, \varphi \vdash \bot} \xrightarrow{\neg e} \underbrace{\frac{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi), \neg \varphi, \varphi \vdash \bot}{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi), \neg \varphi \vdash \varphi \to \psi}}_{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi), \neg \varphi \vdash \exists x(\varphi \to \psi)} \xrightarrow{\exists i} \underbrace{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi), \neg \varphi \vdash \exists x(\varphi \to \psi)}_{(\forall x\varphi) \to (\exists x\psi), \exists x(\neg \varphi) \vdash \exists x(\varphi \to \psi)} \xrightarrow{\exists e}$$

L'élimination de \exists est légitime car x n'est pas libre dans Γ ni dans $\exists x(\varphi \to \psi)$.

Lemme 2 On prouve ensuite $(\forall x\varphi) \to (\exists x\psi), \neg(\exists x(\neg\varphi)) \vdash \exists x(\varphi \to \psi).$

On note $\Gamma' = (\forall x \varphi) \to (\exists x \psi), \neg (\exists x (\neg \varphi)).$

$$\frac{\Gamma', \neg \varphi \vdash \neg \varphi}{\Gamma', \neg \varphi \vdash \exists x (\neg \varphi)} \stackrel{\text{ax}}{\exists_{i}} \qquad \frac{\Gamma', \neg \varphi \vdash \neg (\exists x (\neg \varphi))}{\Gamma', \neg \varphi \vdash \neg (\exists x (\neg \varphi))} \stackrel{\text{ax}}{\neg_{e}} \\
\frac{\Gamma', \neg \varphi \vdash \bot}{\neg \varphi} \stackrel{\text{raa}}{\vdash} \qquad \frac{\Gamma', \psi, \varphi \vdash \psi}{\neg \varphi} \stackrel{\text{ax}}{\Rightarrow_{i}} \\
\frac{\Gamma' \vdash (\forall x \varphi) \to (\exists x \psi)}{\Gamma' \vdash \exists x \psi} \stackrel{\text{ax}}{\vdash} \qquad \frac{\Gamma', \psi, \varphi \vdash \psi}{\neg \varphi} \stackrel{\text{ax}}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\neg \varphi} \stackrel{\text{ax}}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\neg \varphi} \stackrel{\text{ax}}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\neg \varphi} \stackrel{\text{ax}}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi \vdash \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \varphi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi, \varphi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi, \psi}{\Rightarrow_{i}} \\
\frac{\Gamma', \psi, \psi}{\Rightarrow_{$$

L'élimination de \forall est légitime car x n'est pas libre dans Γ' .

L'élimination de \exists est légitime car x n'est pas libre dans Γ' ni dans $\exists x(\varphi \to \psi)$.

Conclusion On note $\theta = (\forall x \varphi) \to (\exists x \psi)$.

$$\frac{\theta \vdash \exists x (\neg \varphi) \lor \neg (\exists x (\neg \varphi))}{\theta \vdash \exists x (\neg \varphi) \lor \neg (\exists x (\neg \varphi))} \text{ te } \frac{\text{Lemme 1}}{\theta, \exists x (\neg \varphi) \vdash \exists x (\varphi \to \psi)} \frac{\text{Lemme 2}}{\theta, \neg (\exists x (\neg \varphi)) \vdash \exists x (\varphi \to \psi)} \lor_{e}$$

7.4.8
$$\vdash \exists x (\varphi(x) \rightarrow \forall y \varphi(y))$$

On utilisera (te) avec $\exists x (\neg \varphi(x))$ et sa négation.

Lemme 1 On commence par $\exists x (\neg \varphi(x)) \vdash \exists x (\varphi(x) \rightarrow \forall y \varphi(y))$

$$\frac{\neg \varphi(x), \varphi(x) \vdash \varphi(x)}{\neg \varphi(x), \varphi(x) \vdash \neg \varphi(x)} \xrightarrow{\text{ax}} \frac{\neg \varphi(x), \varphi(x) \vdash \neg \varphi(x)}{\neg \varphi(x), \varphi(x) \vdash \bot} \xrightarrow{\neg \varphi} \xrightarrow{\neg \varphi}$$

L'élimination de \exists est possible car x n'est pas libre dans $\exists x (\neg \varphi(x))$ ni dans $\exists x (\varphi(x) \to \forall y \varphi(y))$.

Lemme 2 On prouve ensuite $\neg \exists x (\neg \varphi(x)) \vdash \exists x (\varphi(x) \rightarrow \forall y \varphi(y))$

$$\frac{\neg \exists x (\neg \varphi(x)), \varphi(x), \neg \varphi(y) \vdash \neg \varphi(y)}{\neg \exists x (\neg \varphi(x)), \varphi(x), \neg \varphi(y) \vdash \exists x (\neg \varphi(x))} \exists_{i} \qquad \frac{\neg \exists x (\neg \varphi(x)), \varphi(x), \neg \varphi(y) \vdash \neg \exists x (\neg \varphi(x))}{\neg \exists x (\neg \varphi(x)), \varphi(x), \neg \varphi(y) \vdash \bot} \text{ raa}$$

$$\frac{\neg \exists x (\neg \varphi(x)), \varphi(x), \neg \varphi(y) \vdash \bot}{\neg \exists x (\neg \varphi(x)), \varphi(x) \vdash \varphi(y)} \forall_{i}$$

$$\frac{\neg \exists x (\neg \varphi(x)), \varphi(x) \vdash \forall y \varphi(y)}{\neg \exists x (\neg \varphi(x)) \vdash \varphi(x) \rightarrow \forall y \varphi(y)} \xrightarrow{\rightarrow_{i}}$$

$$\frac{\neg \exists x (\neg \varphi(x)) \vdash \exists x (\varphi(x) \rightarrow \forall y \varphi(y))}{\neg \exists x (\neg \varphi(x)) \vdash \exists x (\varphi(x) \rightarrow \forall y \varphi(y))} \exists_{i}$$

L'introduction de \forall est possible car y n'est pas libre dans $\exists x (\neg \varphi(x))$ ni dans $\varphi(x)$.

Conclusion On peut alors conclure

$$\frac{ \text{Lemme 1}}{ \vdash \exists x \big(\neg \varphi(x) \big) \lor \neg \exists x \big(\neg \varphi(x) \big) } \text{ te } \frac{ \text{Lemme 1}}{\exists x \big(\neg \varphi(x) \big) \vdash \exists x \big(\varphi(x) \to \forall y \varphi(y) \big) } \frac{ \text{Lemme 2}}{\neg \exists x \big(\neg \varphi(x) \big) \vdash \exists x \big(\varphi(x) \to \forall y \varphi(y) \big) } \vee_{e}$$