Projekt semestralny

Chodacki, Maksymilian maksymilian.chodacki@gmail.com Grzanka, Antoni antoni.grzanka@gmail.com Leniart, Eryk eryk.leniart@gmail.com Niedziałkowski, Adam adam.niedzialkowski@gmail.com

17 Stycznia 2017

- 1 Wstep
- 2 testy
- 3 Rozszerzenie

Po zaimplementowaniu podstawowego modelu postanowiliśmy podejść do tematu rozszerzenia podstawowego problemu na dwa sposoby dodaniu nowych ograniczeń oraz zastosowaniu go w innej formie. Zaproponowanym przez nas ograniczeniem jest zapewnianie minimlanej wartości przepływu a nowym zastosowaniem jest wprowadzenie kosztu jako głównej metryki decydowania o wykonalności problemu.

3.1 Zapewnienie minimalnych wartości przepływu

Istotnym aspektem nie poruszanym przez autorów pracy jest zapewnienie minimalnej wartości przepływu. Choć autorzy odnieśli sie do problemu "zagłodzenia" ruchu poprzez maksymallizacje minimalnego przepływu, czyli w praktyce zrównoważeniu podziału zasobów pomiedzy przepływy. Natomiast w przypadku jeżeli różnym przepływom chcemy zapewnić różne minimalne wartości potrzebne jest rozszerzenie problemu o nowe dane (minimalna liczbe danych per przepływ) oraz dodatkowe ograniczenie:

$$\forall_{t \in T} \forall_{f \in F_t} \quad \lambda_{tf} \ge f.minimal \tag{1}$$

3.2 Koszt przesyłu danych

W przypadku nowego zastosowania postanowiliśmy postawić na praktyczne podejście; rozszerzylismy model o koszt przesyłanych danych i zmieniliśmy funkcje

celu tak, by zrównoważyć koszt przepływów:

$$\sum_{t \in T} \max_{f \in F_t} \sum_{a \in A_f} a.cost \tag{2}$$

3.3 Wyniki roszerzonych modeli

Poniżej przedstawiamy porównanie wyników modeli rozszerzonych i podstawowego wyliczonych w środowisku CPLEX. Tabela zawiera wyniki dla trzech zestawów danych: sieci małej (4 hosty), średniej (6 hostów) i dużej (17 hostów).

4 Podsumowanie