COMP90020: Distributed Algorithms

6. Consensus in DS with Byzantine Failures

Hard as Getting Byzantine Generals to Agree on Anything

Miquel Ramirez

Semester 1, 2019

Agenda

- Models of Failure
- 2 Models of Distributed Systems & Algorithms
- 3 Consensus: Introduction
- 4 Biblio & Reading

Agenda

- Models of Failure
- 2 Models of Distributed Systems & Algorithm
- 3 Consensus: Introduction
- 4 Biblio & Reading

Lecture 6: Consensus in Byzantine DS

Distributed Systems are Complex Systems

Distributed computing radically different from uniprocessor settings

→ Process execution is interleaved, enabling race conditions

4/32

Distributed Systems are Complex Systems

Distributed computing radically different from uniprocessor settings

→ Process execution is interleaved, enabling race conditions

Non-Determinism: Running a distributed system (DS) twice from same initial conditions yields different results.

Distributed Systems are Complex Systems

Distributed computing radically different from uniprocessor settings

→ Process execution is interleaved, enabling race conditions

Non-Determinism: Running a distributed system (DS) twice from same initial conditions yields different results.

Complexity: Number of possible DS configurations exponential on the number of processes.

Distributed Systems are Complex Systems

Distributed computing radically different from uniprocessor settings

→ Process execution is interleaved, enabling race conditions

Non-Determinism: Running a distributed system (DS) twice from same initial conditions yields different results.

Complexity: Number of possible DS configurations exponential on the number of processes.

Partial Knowledge: Processes in DS lack up-to-date knowledge of the global state of the system.

Lecture 6: Consensus in Byzantine DS

Models of Non-Determinism

Both processes and comms channels can fail to uphold guarantees

- Omission failing to do something
- Timing failing to do something in a timely fashion
- Byzantine processes and channels show arbitrary behaviour

Models of Non-Determinism

Both processes and comms channels can fail to uphold guarantees

- Omission failing to do something
- Timing failing to do something in a timely fashion
- Byzantine processes and channels show arbitrary behaviour

Failure Models are useful to design robust algorithms for DS

- → Identify special cases which are easier to handle
- → Apply divide & conquer to design problem: see next slide

Reliable One-to-One Communications

Strategy: Construct reliable service masking comms channel failures

Consensus: Introduction

Reliable One-to-One Communications

Strategy: Construct reliable service masking comms channel failures

- Validity All outgoing messages eventually delivered
- Integrity Messages identical to one sent, delivered exactly once

Integrity is crucial and actionable (sequence numbers, digital certificates)

The Plan for the Next Two Lectures

- System Models:
 - → How do we define a DS formally?
- The Consensus, Byzantine Generals and Interactive Consistency problems
 - \rightarrow How to get DS components to agree on something?
- Feasibility under Byzantine failures
 - ightarrow Time to redesign your DS, no algorithm will pick up the slack
- Consensus in Asynchronous systems
 - → What can we do when comms lag masks failures?
- Las Vegas consensus algorithms
 - → Because Monte Carlo is too posh

Miguel Ramirez

Agenda

- 1 Models of Failure
- 2 Models of Distributed Systems & Algorithms
- Consensus: Introduction
- Biblio & Reading

A Distributed System consists of

ullet Finite network of N uniquely identified processes.

$$\mathcal{P} = \{p_1, p_2, \dots, p_i, \dots, p_N\}$$

A Distributed System consists of

• Finite network of N uniquely identified processes.

$$\mathcal{P} = \{p_1, p_2, \dots, p_i, \dots, p_N\}$$

- ullet Processes are connected by E channels,
- only one channel between any two processes,

$$E = \{(p_i, p_j) \mid i \neq j, \}$$

A Distributed System consists of

ullet Finite network of N uniquely identified processes.

$$\mathcal{P} = \{p_1, p_2, \dots, p_i, \dots, p_N\}$$

- ullet Processes are connected by E channels,
- only one channel between any two processes,

$$E = \{(p_i, p_j) \mid i \neq j, \}$$

ullet network diameter D is distance between any two processes.

$$D = \max |\pi(i,j)|, \ \pi(i,j) = (q_1, \dots, q_k, \dots, q_m), \ (q_k, q_{k+1}) \in E$$
$$q_k \in \mathcal{P}, q_1 = p_i, \ q_m = p_j$$

A Distributed System consists of

ullet Finite network of N uniquely identified processes.

$$\mathcal{P} = \{p_1, p_2, \dots, p_i, \dots, p_N\}$$

- Processes are connected by E channels,
- only one channel between any two processes,

$$E = \{(p_i, p_j) \mid i \neq j, \}$$

ullet network diameter D is distance between any two processes.

$$D = \max |\pi(i,j)|, \ \pi(i,j) = (q_1, \dots, q_k, \dots, q_m), \ (q_k, q_{k+1}) \in E$$
$$q_k \in \mathcal{P}, q_1 = p_i, \ q_m = p_j$$

• Channels are reliable, processes may fail

A Distributed System consists of

• Finite network of N uniquely identified processes.

$$\mathcal{P} = \{p_1, p_2, \dots, p_i, \dots, p_N\}$$

- ullet Processes are connected by E channels,
- only one channel between any two processes,

$$E = \{(p_i, p_j) \mid i \neq j, \}$$

• network diameter D is distance between any two processes.

$$D = \max |\pi(i,j)|, \ \pi(i,j) = (q_1, \dots, q_k, \dots, q_m), \ (q_k, q_{k+1}) \in E$$
$$q_k \in \mathcal{P}, q_1 = p_i, \ q_m = p_j$$

Channels are reliable, processes may fail

We will assume network of procs is fully connected (D finite)

Lecture 6: Consensus in Byzantine DS

Distributed Systems in Motion

Distributed algorithms (DA)

• Steer changes in global states of controlled DS,

Distributed Systems in Motion

Distributed algorithms (DA)

- Steer changes in global states of controlled DS,
- these follow from events generated by the execution of the DA,

Distributed Systems in Motion

Distributed algorithms (DA)

- Steer changes in global states of controlled DS,
- these follow from events generated by the execution of the DA,
- and aim at ensuring certain conditions hold for DS global states,

Distributed Systems in Motion

Distributed algorithms (DA)

- Steer changes in global states of controlled DS,
- these follow from events generated by the execution of the DA,
- and aim at ensuring certain conditions hold for DS global states,
- for every global state reached (always), or at least one (eventually).

Process	x	y	z	w
p_1	Т	\perp	Т	\perp
p_2	上	\perp	T	\perp
p_3	T	\perp	Т	Т
p_4	Т	Τ	Τ	\perp

Question!

How many global states are possible for the DS above?

(A): 4

(B): 8

(C): 64

(D): 16

Process	x	y	z	w
p_1	Т	\perp	Т	\perp
p_2	上	\perp	T	\perp
p_3	T	\perp	Т	Т
p_4	Т	Т	Τ	\perp

Question!

How many global states are possible for the DS above?

(A): 4 (B): 8

(C): 64 (D): 16

 \rightarrow (64): We have 4 procs, each proc has 4 binary local vars, 4×2^4 .

- $|\mathcal{P}| = 10$,
- each proc $p_i \in \mathcal{P}$ can send 2 messages,
- messages received by proc p_j change local variable x to \top with $\frac{1}{2}$ probability.

Question!

How many executions considering up to 10 time steps are possible for the DS above?

(A): 1,048,576 (B): $\approx 3.52^{3082}$

(C): 42 (D): 21

- $|\mathcal{P}| = 10$,
- each proc $p_i \in \mathcal{P}$ can send 2 messages,
- messages received by proc p_j change local variable x to \top with $\frac{1}{2}$ probability.

Question!

How many executions considering up to 10 time steps are possible for the DS above?

(A): 1,048,576 (B): $\approx 3.52^{3082}$

(C): 42 (D): 21

 \rightarrow ($\approx 3.52^{3082}$): At every step, there are 2^{10} , (1024) possible combinations of messages, and two possible outcomes, so the DS could be in one of $2^{2^{10}}$ states after one round of messages. Over 10 time steps, we get $2^{2^{10^{10}}} \approx 3.52^{3082}$ possible reachable states

Miquel Ramirez

Automated Vehicle Platooning

[Youtube] SCANIA's Truck Platooning

DS + DA = Transition Systems

DS under DA captured by transition system $\mathcal{T} = \langle \mathcal{C}, \delta, \mathcal{I}, F \rangle$

- ullet C is set of configurations (global states) γ of DS,
- a transition function $\delta: \mathcal{C} \mapsto \mathcal{C}$, and
- a set initial configurations $\mathcal{I} \subseteq \mathcal{C}$,
- and terminal configurations $F \subset \mathcal{C}$, such that $\delta(f) = f$, $f \in F$.

An execution of DA over DS is a sequence

$$h = (\gamma_0, \gamma_1, \gamma_2, \ldots), \ \gamma_0 \in \mathcal{I}, \ \gamma_{i+1} = \delta(\gamma_i)$$

Configs γ^* reachable if exists $h=(\gamma_0,\ldots,\gamma_k)$, $\gamma_k=\gamma^*$, where k is finite.

Configurations $\boldsymbol{\gamma}$ made up of the local states of procs and channels.

Configurations $\boldsymbol{\gamma}$ made up of the local states of procs and channels.

Events result in transitions between configurations

Configurations γ made up of the local states of procs and channels.

Events result in transitions between configurations

- Synchronous: two events happen at two different processes (p_i, p_j) .
- Asynchronous: transitions follow from one, no simultaneous events

Configurations γ made up of the local states of procs and channels.

Events result in transitions between configurations

- Synchronous: two events happen at two different processes (p_i, p_j) .
- Asynchronous: transitions follow from one, no simultaneous events

Three types of events:

- Internal: reading and writing local variables.
- Send: a message is put through a channel.
- Receive: follows from a Send event from another process.

Configurations γ made up of the local states of procs and channels.

Events result in transitions between configurations

- Synchronous: two events happen at two different processes (p_i, p_j) .
- Asynchronous: transitions follow from one, no simultaneous events

Three types of events:

- Internal: reading and writing local variables.
- Send: a message is put through a channel.
- Receive: follows from a Send event from another process.

in synchronous DS, Send & Receive happen at the same time.

Configurations γ made up of the local states of procs and channels.

Events result in transitions between configurations

- Synchronous: two events happen at two different processes (p_i, p_j) .
- Asynchronous: transitions follow from one, no simultaneous events

Three types of events:

- Internal: reading and writing local variables.
- Send: a message is put through a channel.
- Receive: follows from a Send event from another process.

in synchronous DS, Send & Receive happen at the same time.

Causally related events $a \prec b$ assigned times C(a) < C(b) by global clock

Conditions, Assertions and Properties

A condition is logical statement over γ , either true or false

 \rightarrow A condition P holds on config γ when P is true ($\gamma \models P$).

Conditions, Assertions and Properties

A condition is logical statement over γ , either true or false

 \rightarrow A condition P holds on config γ when P is true ($\gamma \models P$).

Three types of conditions (or properties)

- ullet Safety: P holds in each reachable config γ
- Liveness: P holds for some γ_i and then in each γ_j , j > i
- Invariant: P always holds
 - \bullet $\gamma \models P$, for all $\gamma \in \mathcal{I}$
 - ② if $\gamma' = \delta(\gamma)$ and $\gamma \models P$, then $\gamma' \models P$.

Conditions, Assertions and Properties

A condition is logical statement over γ , either true or false

 \rightarrow A condition P holds on config γ when P is true ($\gamma \models P$).

Three types of conditions (or properties)

- ullet Safety: P holds in each reachable config γ
- Liveness: P holds for some γ_i and then in each γ_i , j > i
- Invariant: P always holds

 - ② if $\gamma' = \delta(\gamma)$ and $\gamma \models P$, then $\gamma' \models P$.

A DA guarantees safety or liveness iff above true for every possible h.

Invariant are satisfied by a DA, then safety is guaranteed too by DA.

Transition System + Condition = Problem

To sum up:

- DA's control the evolution through time of DS
- ullet Transition systems ${\mathcal T}$ describe behaviour of DS under DA control
- Requirements on behaviour formalised as logical conditions
 - → Safety: "something bad will never happen"
 - → Liveness: "something good will eventually happen"
 - → Invariant: "safety from every beginning to every end"

Point to Take Home

We formulate the problems DA's solve as the combination of transition systems and conditions .

Agenda

- 1 Models of Failure
- 2 Models of Distributed Systems & Algorithms
- Consensus: Introduction
- 4 Biblio & Reading

Why Consensus Matters?

Leading truck wants to go straight

Consensus DA guarantee trucks working correctly will follow leading truck

What could go wrong?

Question!

What kind of issues could compromise the DS above?

- (A): "Commander" human minder asleep at wheel, NN reads incorrectly road sign.
- (C): Unit #1 network interface crash.
- (B): "Commander" truck Google Maps app flip-flops between routes.

Consensus: Introduction

000000000000

(D): Unit #2 on board computer rans out of mem due to mem leak

What could go wrong?

Question!

What kind of issues could compromise the DS above?

- (A): "Commander" human minder asleep at wheel, NN reads incorrectly road sign.
- (C): Unit #1 network interface crash.
- (B): "Commander" truck Google Maps app flip-flops between routes.

Consensus: Introduction

000000000000

- (D): Unit #2 on board computer rans out of mem due to mem leak
- → (All of them): These are all examples of "Byzantine" failures.

Miguel Ramirez

COMP90020

The Consensus Problem (restricted to Crash Failures)

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- Comms reliable, procs subject to Byzantine (crash) failures

Consensus: Introduction

000000000000

Consensus: Introduction

The Consensus Problem (restricted to Crash Failures)

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- Comms reliable, procs subject to Byzantine (crash) failures

Local variables for each p_i :

- ullet Proposed value $v(p_i) \in D$, (v_i for short) and received values, V_i^r and V_i^{r-1}
- *Decision* variable $d(p_i) \in D \cup \{\bot\}$, $(d_i \text{ for short})$
- ullet v_i is constant, d_i initially set to ot

The Consensus Problem (restricted to Crash Failures)

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- Comms reliable, procs subject to Byzantine (crash) failures

Local variables for each p_i :

- ullet Proposed value $v(p_i) \in D$, (v_i for short) and received values, V_i^r and V_i^{r-1}
- Decision variable $d(p_i) \in D \cup \{\bot\}$, $(d_i \text{ for short})$
- ullet v_i is constant, d_i initially set to ot

DA Design Problem

Find DA that guarantees the following for every execution h

- **1** Termination: eventually every correct p_i sets d_i to $x \neq \bot$.
- **2** Agreement: for every correct (p_i, p_j) , eventually $d_i = d_j$.
- **3** Validity: if $v_i = x$ for every correct p_i then $d_i = x$.

Dolev-Strong-Attiva-Welch Algorithm for Consensus

DSAW Consensus for process p_i

Initialization

$$V_i^1 \leftarrow \{v_i\}, \ V_i^0 \leftarrow \emptyset$$

In round $1 \le r \le |\mathcal{F}| + 1$

- 1. B-multicast $(V_i^r \setminus V_i^{r-1})$
- 2. $V_i^{r+1} \leftarrow V_i^r$
- * On **B-deliver** (V_i) from some p_i

a.
$$V_i^{r+1} \leftarrow V_i^{r+1} \cup V_j$$

After $|\mathcal{F}| + 1$ rounds

$$d_i \leftarrow \min V_i^{|\mathcal{F}|+1}$$

Assumptions:

comms are synchronous,

Consensus: Introduction

- $\mathcal{F} \subset \mathcal{P}$ set of faulty procs,
- \bullet $f = |\mathcal{F}|$
- failures are crashes

Notes:

- Reentrant
- Round duration based on timer

Correctness of DSAW

Termination

• Guaranteed by synchronous communication

Correctness of DSAW

Termination

Guaranteed by synchronous communication

Agreement & Integrity (Proof Sketch)

- Let γ_l , l = f + 1, be cfg with $d_i \neq d_j$ for procs p_i , p_j ,
- this can happen iff in γ_{l-1} , a proc p_k sent v_k to p_i and crashed, before being able to send to p_j ,
- if p_k had v, but p_j did not receive it, then in γ_{l-2} some other proc p_m send v to p_k and crashed,
- ullet easy to see path from γ_0 to γ_l requires f+1 crashes,
- ullet which violates assumption that at most f procs crash.

Correctness of DSAW

Termination

Guaranteed by synchronous communication

Agreement & Integrity (Proof Sketch)

- Let γ_l , l = f + 1, be cfg with $d_i \neq d_j$ for procs p_i , p_j ,
- this can happen iff in γ_{l-1} , a proc p_k sent v_k to p_i and crashed, before being able to send to p_j ,
- if p_k had v, but p_j did not receive it, then in γ_{l-2} some other proc p_m send v to p_k and crashed,
- ullet easy to see path from γ_0 to γ_l requires f+1 crashes,
- ullet which violates assumption that at most f procs crash.

Lower bound for Synchronous Systems

Consensus will require f+1 rounds of message exchanges for any kind of Byzantine failure.

Consensus equivalent to reliable, totally ordered multicast.

Models of Failure

Consensus: Introduction

000000000000

Consensus equivalent to reliable, totally ordered multicast.

How it works?

- All processes p_i form up a group g
- Every p_i makes a call to **RTO-multicast** (v_i,g)
- p_i sets d_i to m_i , first value coming via **RTO-delivers**()

Consensus equivalent to reliable, totally ordered multicast.

How it works?

- All processes p_i form up a group g
- Every p_i makes a call to **RTO-multicast** (v_i,g)
- p_i sets d_i to m_i , first value coming via **RTO-delivers**()

Why it works?

- Termination guaranteed by reliability of RTO-multicast
- Agreement and Validity guaranteed by RTO-deliver
 - Delivery is totally ordered and reliable

Consensus equivalent to reliable, totally ordered multicast.

How it works?

- All processes p_i form up a group g
- Every p_i makes a call to **RTO-multicast** (v_i,g)
- p_i sets d_i to m_i , first value coming via **RTO-delivers**()

Why it works?

- Termination guaranteed by reliability of RTO-multicast
- Agreement and Validity guaranteed by RTO-deliver
 - Delivery is totally ordered and reliable

Chandra & Toueg (1996) showed how to obtain RTO multicast from consensus

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

Consensus: Introduction 000000000000

Consensus: Introduction

000000000000

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- \bullet There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

Local variables for each p_i :

- Proposed value $v(p^*) \in D$, $(v^* \text{ for short})$, v_i^j received values
- Decision variable $d(p_i) \in D \cup \{\bot\}$, $p_i \neq p^*$, $(d_i \text{ for short})$
- ullet v^* is constant, d_i initially set to ot

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_i), (p_i, p_i) \mid i \neq j\}$
- There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

Local variables for each p_i :

- Proposed value $v(p^*) \in D$, $(v^* \text{ for short})$, v_i^j received values
- Decision variable $d(p_i) \in D \cup \{\bot\}, p_i \neq p^*, (d_i \text{ for short})$
- v^* is constant, d_i initially set to \perp

DA Design Problem

Find DA that guarantees the following for every execution h

- Termination: eventually every correct p_i sets d_i to v^* .
- **2** Agreement: for every correct (p_i, p_i) , $p_i \neq p^*$, $p_i \neq p^*$, eventually $d_i = d_i = v^*$.
- 3 Validity: if p^* correct, then every correct p_i , d_i eventually set to v^* .

Consensus: Introduction

000000000000

Lamport-Shostak-Pease's Algorithm for N > 4, f < N/3

Process p^*

In round 1

B-multicast(v^*)

In round 2

Do Nothing

Process p_i

Initialization

$$v_i \leftarrow \bot$$

In round 1

* On **B-deliver** (v^*) from p^*

Consensus: Introduction

$$v_i \leftarrow v^*$$

In round 2

1. $\operatorname{send}(v_i, p_i)$ for $p_i \neq p^*$

* On receive(v^j) from p_i

$$v_i^j \leftarrow v^j$$

2. $d_i = \text{majority}(v_i^1, \dots, v_i^N)$

 $\rightarrow \text{majority}(v_1, v_2, ..., v_n) = \operatorname{argmax}_{v_i} \sum_{v_i} I_{v_i = v_i}$

Example: majority $(1, 1, 3, 4, 4, 3, 5, 1, \bot) = 1$, majority (1, 2, 1, 2, 1, 2) = 1

Sample Execution

Notes on LPS algorithm

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v^i_j to \bot ,

Lecture 6: Consensus in Byzantine DS

Notes on LPS algorithm

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v_j^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3)-1 replicas of v^* ,
- majority will filter out messages from faulty procs

Notes on LPS algorithm

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v_j^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3) 1 replicas of v^* ,
- majority will filter out messages from faulty procs

When commander proc p^* fails and all procs correct,

• correct procs p_i will reach consensus (to something),

Notes on LPS algorithm

Implication of synchronous comms:

• if $\mathbf{send}(v_i, p_j)$ fails (times out), p_j will set v_i^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3) 1 replicas of v^* ,
- majority will filter out messages from faulty procs

When commander proc p^* fails and all procs correct,

• correct procs p_i will reach consensus (to something),

If p^* failures are fair, sends values equally often

• if all correct, procs p_i will set d_i to \perp

Self-Diagnosing Commander is Faulty

Models of Failure

Consensus: Introduction

000000000000

Question!

Models of Failure

Commander faulty, but sends v to p4 rather than w. What are the values of d_i for p_2 , p_3 and p_4 ?

(A):
$$d_2 = d_3 = d_4 = \bot$$

(B):
$$d_2 = u, d_3 = v, d_4 = w$$

Consensus: Introduction

(C):
$$d_2 = v$$
, $d_3 = u$, $d_4 = v$

(D):
$$d_2 = d_3 = d_4 = v$$

Question: "Unfair" Byzantine failures

Question!

Commander faulty, but sends v to p4 rather than w. What are the values of d_i for p_2 , p_3 and p_4 ?

(A):
$$d_2 = d_3 = d_4 = \bot$$

(B):
$$d_2 = u, d_3 = v, d_4 = w$$

Consensus: Introduction 000000000000

(C):
$$d_2 = v$$
, $d_3 = u$, $d_4 = v$

(D):
$$d_2 = d_3 = d_4 = v$$

 \rightarrow (D): Note that it is quite easy for a hacker taking over p_1 to "poison the well" for the subordinate processes.

Agenda

- 1 Models of Failure
- 2 Models of Distributed Systems & Algorithm
- 3 Consensus: Introduction
- 4 Biblio & Reading

Further Reading

Coulouris et al. Distributed Systems: Concepts & Design

- Chapter 2, Section 2.4.2
- Chapter 15, Section 15.5

Wan Fokkink's Distributed Algorithms: An Intuitive Approach

- Chapter 2 Introduction & Preliminaries
- Chapter 13 Byzantine Failures

Jeremy Kun A Programmer's Introduction to Mathematics

- Chapter 4 Section 4.1 Sets, Functions and their -Jections
- Chapter 4 Section 4.3 Proof by Induction and Contradiction