AUTOMATAS FINITOS

Ejercicio 1.

Cuando sea posible dar un autómata finito para los lenguajes de los ejercicios 1,2,3, 4 y 5 de la práctica 2.

Ejercicio 2.

Dados los siguientes AFND, definir y graficar sus equivalentes determinísticos. Probar en JFlap a)

b)

Ejercicio 3.

Minimizar los siguientes autómatas finitos. Probar en JFlap

a) AFD₁ = $\{p, q, r, s, t, u\}$, $\{a, b\}$, p, δ_1 , $\{q, r\}$ > δ_1 está definida por la siguiente tabla

Práctica 3

δ_1	a	b
P	q	p
Q	q r	S
Q R	q	t
S T	q t	u
T	S	u
U	q	u

b) AFD₂ = $\{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$, $\{a, b\}$, e_0 , δ_2 , $\{e_2, e_3, e_5\}$ > δ_2 está definido por el siguiente diagrama de transición de estados

c) AFND₃ = $\langle p, q, r, s \rangle$, $\{a, b\}$, p, δ_3 , $\{s\} \rangle$ δ_3 está definida por la siguiente tabla

δ_3	a	b
p	$\{q, r, s\}$	$\{p, q, r, s\}$
q	-	$\{p, q, r, s\}$
r	$r - \{p, q, r, s\}$	
S	s	$\{q, r, s\}$

d) AFND₄ = $\{q_0, q_1, q_2, q_3, q_4, q_5\}$, $\{a, b, c\}$, $q_0, \delta_4, \{q_2, q_5\}$ δ_4 se define como

 $\delta_4(q_2,\,c)=\{q_4\}$ $\delta_4(q_0, a) = \{q_0, q_3\}$ $\delta_4(q_0, b) = \{q_2\}$ $\delta_4(q_3, a) = \{q_0\}$ $\delta_4(q_0, c) = \{q_5\}$ $\delta_4(q_3, b) = \{q_5\}$ $\delta_4(q_1, a) = \{q_3\}$ $\delta_4(q_3, c) = \{q_2, q_5\}$ $\delta_4(q_1,\,b) = \{q_2,\,q_5\}$ $\delta_4(q_4,\,c)=\{q_5\}$ $\delta_4(q_1, c) = \{q_2\}$ $\delta_4(q_5, a) = \{q_2\}$ $\delta_4(q_2, a) = \{q_2\}$ $\delta_4(q_5, b) = \{q_4\}$ $\delta_4(q_2,\,b) = \{q_1,\,q_4\}$ $\delta_4(q_5,\,c) = \{q_1,\,q_4\}$

Práctica 3 2

Ejercicio 4

Obtener utilizando JFlap el autómata determinístico y el autómata de estados mínimos para los siguientes autómatas:

a)
$$A_1 = (Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\}, F = \{q_3\}, \delta_1)$$

b)
$$A_2 = (Q = \{0,1,2,3,4,5,6\}, \Sigma = \{a,b\}, F = \{6\}, \delta_2)$$

$$\delta_{1} = \qquad \qquad \delta_{2} =$$

	а	b
q0	q0, q1	q0
q1	q2	q0
q2	q3	q0
a 3	a 3	a 3

	а	b	λ
0	1	2	4
1	-		0, 3
2	-		0, 3
3	4		
4	-		5
5	6	6	
6	-	-	5

Ejercicio 5.

Con el alfabeto $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$, encontrar un autómata determinístico que genere números múltiplos de tres de cualquier cantidad de cifras.

Tener en cuenta que podemos subdividir el conjunto Σ en tres subconjuntos:

$$S1 = \{0,3,6,9\}$$

$$= \{ 0,3,6,9 \}$$
 $S2 = \{ 2,5,8 \}$

$$S3 = \{1,4,7\}$$

entonces:

- los números que se forman con la combinación de los dígitos de S1 son múltiplos de 3 (369, 66,
- los números que se forman con la combinación de los dígitos de S2 y S3 en igual proporción son múltiplos de 3 (1125, 4287)
- los números que se forman con la combinación de los dígitos de S2 y S3 en igual proporción, y con cualquier número de dígitos de S1 son múltiplos de 3 (3021, 21567)

Práctica 3 3

AUTOMATAS TRADUCTORES

Ejercicio 6.

Construí un autómata finito determinístico que traduzca cada cadena del lenguaje $L = \{ (ab)^n c (ba)2^{m+1} / n \ge 1, m \ge 0 \}$ en la cadena d^{2n} eee $(abc)^m$.

Ejercicio 7.

Se da como entrada un texto que contiene solamente letras minúsculas y los caracteres especiales \$ y _. Diseñá un autómata finito determinístico traductor que devuelva el texto con el siguiente formato: la primera letra después de un \$, se convierte a mayúscula; dos ocurrencias consecutivas de \$ se transforman en un salto de línea; el caracter _ se reemplaza por dos espacios en blanco. En el texto de entrada no pueden darse más de dos ocurrencias consecutivas del \$, excepto una secuencia de tres \$ que indica el fin de la cadena. El signo \$ y el _ no deben aparecer en el texto de salida.

Ejercicio 8.

Dada la siguiente codificación de caracteres

blanco = 111 a = 101 e = 100 1 = 00 n = 110 s = 01

Por ejemplo, el mensaje ana sale se codifica como 1011101011110110100100

Construí un autómata finito que dado un mensaje codificado lo devuelva decodificado.

Ejercicio 9.

Se desea modelar el comportamiento de una máquina expendedora de boletos de colectivo. El precio de cada boleto es \$1. La máquina acepta monedas de \$0.25 y \$0.50; y devuelve el cambio necesario. Para comprar un boleto se deben introducir las monedas, y luego apretar el botón B para solicitarlo.

Práctica 3 4