Input Rosistance Assume 1A

Vet $\frac{1}{2}$ Are $\frac{1}{2}$ $\frac{1}{2}$ Assume 1A

input source

1A: V = V - AAicto +(c-V)R(+ Ani = V [] + L not (n-1) R It grateri) R = no + prototet Ani

R+ no +(n-UR)

To + R

To + R Output Rosistance -AU
Ave Assure IA input,

1= V + AV [xi + RAV [xi

Gain

(0-8:der (A input. We have to bind Volvi Vi (A: V = V - Atri Th + (n-V) R

$$= V - (1 - V) (n-1)R$$

$$= V - (R-V)(n-1) = N - nR + nR + nV - V$$

$$= nV - (n-1)R$$

$$V_{\sigma} = \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}} - (n-1) R$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}} - (n-1) R$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma}}{h_{\sigma} + h_{\sigma}}$$

$$= A \sum_{n=1}^{\infty} \frac{A_{n} + h_{\sigma}}{h_{\sigma}}$$

$$= A \sum_{n=1}^$$

$$\frac{V_{i}}{V_{o}} = \frac{h_{i}^{*}h_{o} + h_{o} + h_{i}^{*} + h_{o} + h_{i}^{*} + h_{o} + h_{o}^{*} + h_{o} + h_{o}^{*}}{h_{o} + h_{o}^{*}} = \frac{h_{i}^{*}h_{o} + h_{o} + h_{i}^{*} + h_{o} + h_{o}^{*} + h_{o}^{*} + h_{o}^{*} + h_{o}^{*}}{h_{o} + h_{o}^{*}} = \frac{h_{i}^{*}h_{o} + h_{o}^{*}h_{i}^{*} + h_{o}^{*$$

	n _{o-} 70	h > 00	4-100
Total Total Total	h; + [AN: +(n-1)R)		\(\(\)
Output hosistace (R+hi)(n-UR+Rhi) ho hiho + Rho + (n-URhi+R) + (A+UhiR thain		no f(n-1)R+ (++)R non non non non non non non n	
Tito + ARTi + ORTi+ noR + A-IR	MATE TO A T	An R TotAR + OR	h

(a) (b) Vi Vi Air La Soni Assume (A

input source

1: V + V - hicharto

Rother R (+ nihnho = V [] + L n.t. (n-1) R $R = \frac{V_{i}}{IA} = \frac{V_{i}}{IA} = \frac{V_{i}}{IA} = \frac{V_{i}}{IA} + \frac{V_{i}}{IA} = \frac{V_{i}}{IA} +$ 1 + 1 (n-1) R

Output Rosistance 76 + . Je Assure (A input,

1= V + hadov [xith

1-12 + RAi

1-1 (1) R + RMi + 1+ 6, Mo M; R Nik + (n-1) R Mo (2-1)R+ R+9; + 1+ 1:R 1 20 7:R+(n-1) P(4: ER) 920 $\frac{P+x^{2}}{(R+x_{1})(R+R+1)(R+1)} \frac{1}{R+1} \frac{1}{R+1}$ = (R+n;)6-11R + Rn;) No

Rno + nino + niR + (n-1)R (ni+R) + ... niR 6... no.

= (R+h;)6-11R + Rno) No

nino + Rno + (n-1)R(ni+R) + (mno+1) hiR

Consider (A input: We have to bind Volvi Vi (A: V + V - richardo Roth-UR (+ 'n; hho = V[] + L no+ (n-1) R [] + M. (1-1) R =) V = R [n; +ho+(1) R] no+ (n-1) R Vy=V+M? = Mit harbo Mit 11
Troth-UR I + I Traterila = no + placemental = no trochetal = no trochetal V 0 = V- (1 - ×) (C-1) R

V = (R-V)(n-1) = V - NR + R + NV - V= NV - (n - 1) R

$$V_{\sigma} = \sum_{n=1}^{\infty} \frac{1}{n_{n}+n_{n}+n_{n}+n_{n}} - (n-1)R$$

$$= \lim_{n\to\infty} \frac{1}{n_{n}+n_{n}} + \frac{1}{n_{n}} - (n-1)Rn_{n} + \frac{1}{n_{n}} + \frac{1}{n_$$

	n _{o-7} 0		A=> 00
Typit Resistano Tigot	M; + [h,h,M; +(n-1)R]		000
Chest resistade (R+hi)(n-UR+Rhi) ho hiho + Rho + (n-UR)hi+R) + (hhrot) hiR hain		no t(n-1)R+(hatisty)R nonR nonR nonR	
Tito thirtitot ORTitoR + 6-1 R	Phi +(n-1) R3 = 919	hation R TothoRhat aR	h

20 contd-

Rather than use a VCVS with a large (but uncertain) gain, this problem attempts to use a VCCS with a large (but uncertain) transconductance G_m . Further, the imprecise VCCS, shown in Fig. 2(a), is not all that ideal – its input and output resistances are finite. For simplicity, we use the same symbol for the imprecise VCCS as in Fig. 1(a). It is realized to make the VCVS shown in Fig. 2(b). What is v_o/v_i when $G_m = \infty$?

Question 3a

Theoretical Calculation of Gain = Gm * ro

• A0 = 1mS * 5k = 5 can be observed from plot

• A0 = 5S * 2k = 10 can be observed from plot

Explanation: Using LTSpice, it is verified that the gain graphically = Gm * ro, which is the theoretically expected value.

Question 3b

Theoretical Calculation of Gain = Gm * ((ro * RL)/(ro + RL))

• Theoretical gain A0 = 1mS * ((5000 * 1000)/(5000 + 1000)) = 0.83 can be observed from plot. Here, gain < 1, so amplification is not achieved.

• Theoretical gain A0 = 5mS * ((2000 * 1000)/(2000 + 1000)) = 3.33 can be observed from plot

Explanation: Using LTSpice, it is verified that the gain graphically = Gm * (ro * RL)/(ro + RL)

Effect of RL = RL is a load resistance connected in parallel, so it effectively decreases the value of Output resistance ro. So, clearly, the Gain decreases.

Ques 3c
WITHOUT LOAD RESISTANCE

By theoretical calculation, closed loop gain of circuit would be 1/(1/n + 1/A0) = 1/(1/n + 1/(Gm * ro))

i) Closed Loop Gain = $1/(1/2 + 1/(2mS * 10k)) = 1/(\frac{1}{2} + 1/20) = 1.81$ by calculation, which can be verified graphically

ii) Closed Loop Gain = 1/(1/5 + 1/(2mS * 50k)) = 1/(1/5 + 1/100) = 4.76 by calculation, which can be verified graphically

iii) Closed Loop Gain = 1/(1/2 + 1/(1mS * 200k)) = 1/(1/2 + 1/200) = 1.98 by calculation, which can be verified graphically

iv) Closed Loop Gain = 1/(1/10 + 1/(1mS * 100k)) = 1/(1/10 + 1/100) = 9.09 by calculation, which can be verified graphically

v) Closed Loop Gain = 1/(1/10 + 1/(10mS * 100k)) = 1/(1/10 + 1/100) = 9.90 by calculation, which can be verified graphically

WITH LOAD RESISTANCE

By theoretical calculation, closed loop gain of circuit would be 1/(1/n + 1/(Gm * (ro * RL/(ro + RL))))

i) Gain 0.95 by theoretical calculation, which matches with simulated values

ii) Gain 1.408 by theoretical calculation, which matches with simulated values

iii) Gain 0.66 by theoretical calculation, which matches with simulated values

iv) Gain 0.90 by theoretical calculation, which matches with simulated values

v) Gain 4.97 by theoretical calculation, which matches with simulated values

Explanation: Compared to a and b, we see that the closed loop gain value is not the same as open loop gain, but depends on the value of n also.

It is verified using LTSpice that the gain is 1/(1/n + 1/(Gm * ro)) graphically. Now,

- As the value of VCVS gain (Gm * ro) increases, the closed loop gain tends to n. In the limit as VCVS gain becomes infinite, the closed loop gain = n
- As the value of n increases, the closed loop gain also increases