COMP 8551 Advanced Games Programment Exam Help $Technique {\tt U}^{\tt https://eduassistpro.github.io/}$ Add WeChat edu_assist_pro Borna Noureddin, Ph.D.

British Columbia Institute of Technology

OpenCL

OpenCL Overview

- Platform model: a high-level description of the heterogeneous system
- Execution modegament Periegres Attatible how streams of instrument geneous https://eduassistpro.github.io/ platform

- Add WeChat edu_assist_pro
 Memory model: the collection of ions within OpenCL and how they interact during an OpenCL computation
- **Programming models**: the high-level abstractions a programmer uses when designing algorithms to implement an application

Platform model

- Host interacts with environment external to OpenCL program (I/O, interaction user, etc)
- Host connected to 1+ OpenCL devices
 Assignment Project Exam Help
 Project Exam Help
 rnels)
- Device: where s rnels)

 execute (aka "c https://eduassistpro.github.io/
 - can be CPU, GPU, DSP, or any other
 - further divided into dem We Chat edu_assist_pro
 - compute units divided into one or more processing elements
 (PEs)
 - computations occur within PEs

Execution model

- OpenCL application consists of:
 - host program
 - collection of one or more kernels
- Host program runs on host

 Assignment Project Exam Help
 - OpenCL does n https://eduassistpro.github.io/, only now it interact
- Kernels execute And proceduatiedu_assist_pro
 - Do real work of application
 - Typically simple functions that transform input memory objects into output memory objects
 - OpenCL kernels: functions written in OpenCLC
 - Native kernels: functions created outside OpenCL (function pointer) [OPTIONAL]

Execution model

The OpenCL execution model defines how kernels execute

Assignment Project Exam Help Project Exam Pr

https://eduassistpro.github.io/

• How does the host define the c edu_assist_pro execution?

How are the kernels enqueued for execution?

- Host program issues command that submits kernel for execution on device
- Runtime system creates an integer index space
 Assignment Project Exam Help
 Instance of kerner executes for each point in this index space
- Each instance o https://eduassistpro.gktitem.io/
 - identified by coordinates in index s
 - · coordinates are global We Chat edu_assist_pro
- Command creates collection of work-items, each of which uses same sequence of instructions defined by single kernel
- Sequence of instructions same, but behavior of each work-item can vary (branch statements or data selected through global ID)

- Work-items organized into work-groups
- Provide coarse-grained decomposition of index space
 Assignment Project Exam Help
- Exactly span glo

https://eduassistpro.github.io/

- Work-groups sa imensions, and this size evenly designed that zedu_assisted to a second the size of t
- Work-groups assigned unique ID with same dimensionality as index space of work-items
- Work-items assigned unique local ID within work-group: can be uniquely identified by its global ID or by a combination of its local ID and work-group ID

 Work-items in given work-group execute concurrently on PEs of single compute unit

Assignment Project Exam Help f kernels (may even serialize exhttps://eduassistpro.ghingle.ke/nel invocation)

Add WeChat edu_assist_pro

- OpenCL only assures that workitems within a work-group execute concurrently
- You can never assume that work-groups or kernel invocations execute concurrently

- Index space spans an N -dimensioned range of values (NDRange)
- Assignment Project Exam Help
 N can be 1, 2, or

https://eduassistpro.github.io/

- Integer array of length Wechat edu_assist_pro each dimension
- Work-item's global and local ID is an N-dimensional tuple
- Work-groups assigned IDs using a similar approach to that used for work-items

$$L_x = G_x / W_x$$

$$L_y = G_y / W_y$$

 $g_x = w_x * L_x + l_x$ Assignment Project Exam Help $g_y = w_y * L_y + l_y$ https://eduassistpro.github.io/

 $w_x = g_x / L_x$ $w_y = g_y / L_y$ $l_x = g_x \% L_x$ $l_y = g_y \% L_y$

Add WeChat edu_assist_pro

$$g_x = w_x * L_x + l_x + o_x$$

 $g_v = w_v * L_v + l_v + o_v$

Context

- In OpenCL, computation takes place on device
- But host:
 - Defines and establishes context kernels Assignment Project Exam Help Defines NDRanges

 - Defines queues thttps://eduassistpro.github.lo/
- Context defines ich kernels are defined and executed WeChat edu_assist_pro
 - **Devices**: collection of OpenCL devices to be used by host
 - **Kernels**: OpenCL functions that run on devices
 - **Program objects**: program source code and executables that implement kernels
 - **Memory objects**: set of objects in memory that are visible to OpenCL devices and contain values that can be operated on by instances of a kernel

Context

- Created and manipulated by host using the OpenCL API
- Context also contains one or more "program objects"
 - think of these as a dynamic library from which the functions used by the kernels are pulled.

 think of these as a dynamic library from which the functions used by the kernels are pulled.
- Host program d https://eduassistpro.github.lo/
 point is it possi pile the program source code to create twe collection assist_pro

Context

- Program object built at runtime within host program (like shader program)
- Context also defines how kernels interact with memory Assignment Project Exam Help
 On heterogene e address
- On heterogene e address spaces to mana https://eduassistpro.github.io/
- Devices may have range of diff ry architectures
 Add WeChat edu_assist_pro
- OpenCL introduces idea of "memory objects"
 - explicitly defined on host
 - explicitly moved between host and OpenCL devices
 - extra burden on programmer, but allows support for much wider range of platforms

- Interaction between host and devices occurs through commands posted by host to command-queue
- Created by host and attached to single device after Assignment Project Exam Help context has been defined
- Host places comhttps://eduassistpro.gqt/fulpne/commands are t non the associated deviced WeChat edu_assist_pro
- OpenCL supports three types of commands:
 - Kernel execution commands execute kernel on PEs of device
 - **Memory commands** transfer data between host and different memory objects, move data between memory objects, or map and unmap memory objects from host address space
 - Synchronization commands put constraints on order of execution

Typical host program

- Define context and command-queues
- Define memaskianthrengrandieteskam Help
- Builds data struc https://eduassistpro.github.io/
- Use command-q from the host to devices Add WeChat edu_assist_pro
- Attach kernel arguments to memory objects
- Submit kernels to command-queue for execution
- When kernel completed, memory objects copied back to host

- When multiple kernels are submitted, may need to interact
 - E.g., one set of kernels may generate memory objects that a following set of kernels may generate memory objects that a
 - Synchronization first set to complete before https://eduassistpro.github.io/
- Many additional subtleties associated assist_processor
 commands work in OpenCL
- Commands always execute asynchronously to host
- Host submits commands to command-queue and continues without waiting for them to finish
- If necessary for host to wait on command, can be explicitly established with synchronization command

Commands within single queue execute relative to each other in one of 2 modes:

- In-order execution: Commands Junched in Order in Which they appear in commands a commands Junched in Order in Which they execution order https://eduassistpro.github.io/
- Out-of-order execution: Command er but do not wait to complete before the following commands execute (order constraints enforced by programmer through explicit synchronization mechanisms) [OPTIONAL]

- Why out-of-order? Remember load balancing?
- Application is done until all of kernels complete
- Efficient program minimizes ryptime: want all compute units to be full ximately same amount of time https://eduassistpro.github.io/
- You can often do this by carefull out order in which you submit commands to hat the in-order execution achieves a well-balanced load
- But what about when set of commands take different amounts of time to execute? Load balancing can be very hard! Out-of-order queue can take care of this for you

- Automatic load balancing: Commands can execute in any order, so if compute unit finishes its work early, it can immediately fetch a new command and start executing new kernel Assignment Project Exam Help
- Commands gen https://eduassistpro.github.io/
 - Command can b son event objects exist Add WeChat edu_assist_pro
 - Events can also be used to coordinate en host and devices
- Also possible to associate multiple queues with single context for any devices within that context
 - Run concurrently and independently with no explicit mechanisms within OpenCL to synchronize between them

Memory Model

Two types of memory objects

- **Buffer object:**

 - contiguous block of memory made available to kernels programmer can propose the programmer can be a structure on to this buffer and access buffer through p
 - flexibility to defi https://eduassistpro.github.io/
- Image object: Add WeChat edu_assist_pro
 - restricted to holding images
 - storage format may be optimized to needs of specific device
 - important to give an implementation freedom to customize image format
 - opaque object
 - OpenCL provides functions to manipulate images, but other than these specific functions, the contents of image object are hidden from kernel program

Memory Model

OpenCL memory model defines five distinct memory regions:

- Host memory: visible only to host
- Global memory: permits read/write access to all work-items in all work-groups gnment Project Exam Help
- Constant memor constant during k https://eduassistpro.glthub.io/
 - host allocates an Airlida We Chat edu_assist_pro
 - work-items have read-only access
- Local memory: local to work-group
 - can be used to allocate variables shared by all work-items
 - may be implemented as dedicated regions of memory on device or mapped onto sections of global memory
- Private memory: private to work-item
 - not visible to other work-items

Memory Model

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- How to map parallel algorithms onto OpenCL
- Programming models intimately connected to how programmers reasonabout their algorithms. Help

https://eduassistpro.github.io/

- OpenCL defined ming models in mind: task paralleland weth at redu_assist_pro
- Also possible to think in terms of a hybrid model: tasks that contain data parallelism

Data-Parallel Programming Model

- Problems well suited are organized around data structures,
 the elements of which can be updated concurrently
- Single logical sequence of instructions applied concurrently to elements of data
- Structure of algor https://eduassistpro.github.io/
 e of concurrent
 updates to data structure weithin pedu_assist_pro
- Natural fit with OpenCL's execution
- Key is the NDRange defined when kernel is launched
- Algorithm designer aligns data structures with NDRange index space and maps them onto OpenCL memory objects
- Kernel defines sequence of instructions to be applied concurrently as work-items

Data-Parallel Programming Model

• Work-items in single work-group may need to share data (local memory region) signment Project Exam Help

https://eduassistpro.github.io/

- Regardless of ord same results should be partial to the control of the control
- Work-items in same work-group can participate in a work-group barrier (all must execute before any continuing)
- NB: no mechanism for synchronization between work-items from different work-groups

Data-Parallel Programming Model

- Single Instruction Multiple Data or SIMD: no branch statements in kernel, each work-item will execute identical operations basis and some Parajrean Exemples pts global ID
- Single Program Mhttps://eduassistpro.github.io/within a kernel leading each work i edu_assist_proverute very different operations
- On platforms with restricted bandwidth to instruction memory or if PEs map onto vector unit, SIMD model can be dramatically more efficient

Data-Parallel Programming Model

- Vector instructions strictly SIMD
- E.g., numerical integration program (4.0/(1+x2)) Assignment Project Exam Help

```
float8 x,
float8 ram https://eduassistpro.github.io/
4.5, 5.5, 6.5, 7.5};
float8 fourAdd WeChat edu_assisth_pros
float8 one = (float8)(1.0); // fill with 8 1's
float step_number; // step number from loop index
float step_size; // Input integration step size
. . . and later inside a loop body . . .
x = ((float8)step_number +ramp)*step_size;
psum_vec+=four/(one + x*x);
```

Task-Parallel Programming Model

- Task = kernel that executes as a single work-item regardless of NDRange used by other kernels in application
- Concurrency is internal to the task (eg, vector operations on vector types)
- https://eduassistpro.github.jo/

 *Kernels submitted the same time with an out-of-order quarted WeChat edu_assist_pro
- Tasks connected into task graph usi event model
 - Commands submitted to event queue may optionally generate events
 - Subsequent commands can wait for these events before executing