ANIRUDHA BEHERA

Chicago, IL 60608 | +1 (312) 539-8691 | abehera1@hawk.iit.edu

Objective

I am seeking an entry-level position as a Physical Design Engineer, emphasizing my dynamic skills, Block-level design certification, and over 3 years of diverse hands-on experience. With a robust understanding of the Synopsys flow, I am dedicated to continuous learning and growth, particularly in the field of AI. I am enthusiastic about the opportunity to join a dedicated team and am prepared to begin contributing in January 2024.

Skills

- TCL
- Shell/Bash
- Python
- VHDL
- Verilog
- C/C++

- Synopsys IC Compiler II
- Design
- Compiler
- Prime Time
- Star RC

- IC Validator
- Formality
- Calibre
- Redhawk.
- Cadence
 - Virtuoso

- Encounter
- Model Sim
- Hspice
- CACTI
- WATCH
- Xilinx Vivado

Experience

Physical Design Engineer Trainee Chipedge Technology

09/2022 to 10/2023 Bengaluru, India

- Received extensive training on the VLSI Physical Design lifecycle and successfully completed two industrystandard projects: CHIPTOP and Falcon.
- Applied Block-Level design methodology and Synopsys EDA tools proficiently throughout 4 projects lifecycle.
- Transitioned to an Intern position, contributing to critical real-time projects, DTMF and OpenSPARC T1 (ORACLE)
- Led end-to-end design phases, encompassing Floorplan, Placement, Clock Tree Synthesis (CTS), and Routing, while meticulously evaluating tradeoffs between Quality of Results (QOR) and Power, Performance, and Area (PPA)
- Ensured design integrity by addressing DRC, LVS, LEC, EM/IR, ANTENNA, and DFM violations.
- Utilized ECO cycles and manual debugging for successful ideal GDSII tape-out.
- Proficient in technology nodes (14nm, 22nm, 28nm, 32nm) and advanced Shell/TCL scripting for efficient debugging in Physical Design.

Business Development Associate (BDA) Think & Learn Pvt Ltd (BYJU'S)

01/2021 to 12/2021 India, Bengaluru

- Conducted Personalized Counseling Sessions: Provided one-on-one counseling sessions to align clients' preferences and knowledge with available product segments.
- Top Revenue-Generating BDA: Achieved recognition as the top-performing Business Development Associate (BDA) with the highest customer retention rate during my tenure.
- Exceptional Skills and Performance: Leveraged excellent communication and pitching skills, coupled with indepth product knowledge and a strong work ethic, to excel in this role.

COVID-19 Lockdown Break

03/2020 to 01/2021

Asst. MEP Site Engineer Electron Electromechanical LLC

02/2019 to 02/2020 Doha, Qatar

- Asst MEP Site Engineer: Oversaw daily site progress and led a technician team.
- Key Role in "Doha Insurance Tower" Project: Ensured seamless execution and coordination of MEP activities.
- Technical Problem Solver: Provided on-site technical support and solutions, enhancing project planning and resource management.
- Quality and Safety Oversight: Conducted inspections, maintained quality, and enforced safety standards;
 reported project updates to senior management.
- Effective Collaboration: Collaborated with contractors and vendors, driving successful project outcomes.
- Punctual Project Completion: Contributed to on-time project completion.
- My exceptional blend of interpersonal and technical skills seamlessly integrated into the project's success.

Education

Master of Science: Electrical Engineering

Expected in 12/2023

Illinois Institute of Technology

Chicago, IL

- Relevant Coursework: Introduction to VLSI, CAD Techniques for VLSI Design, High-Performance VLSI/IC Systems, Digital SoC Design, Computer Organization and Design, RF Integrated Circuit Design
- GPA: 3.6
- Member of IEEE Region Zone-4, Chicago, 2022
- Eta Kappa Nu Delta Chapter HKN-IEEE Student Government Secretary General
- Research: Design and Performance Evaluation of FPGA based Audio Systems on ZedBoard-Zynq SoC, International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.11, Issue 8, pp.d778d786, August 2023, Available at :http://www.ijcrt.org/papers/IJCRT2308403.pdf
- Research: High Performance VLSI PVT-Aware Design for 10T SRAM using 15nm PDK.

B. Tech: Electrical Engineering

07/2018

Bhubaneswar, India, India

- Gandhi Institute For Technology
 - GPA 8.1
 - Department Ranked: 1
 - · Team Leader of Major and Minor Projects

Academic Projects

Hierarchical Schematic and Layout Design of 4-bit Carry Look-ahead Adder.

- Designed a 4-bit CLA adder schematic, Symbol, Testing Circuit, and Layout using Virtuoso.
- Performed Physical Verifications (LVS, DRC) and Parasitic Extraction using Calibre. Then Formal verification is performed using Formality and measured Power, Delay, and temperature using HSPICE.

Standard Cell-Based RTL to GDSII Design for 8-bit Accumulator

 Developed RTL code and Testbench, synthesized using DC. Optimized Placement and Route with Encounter by adding buffers for area, power, timing then Completed Formal Verification, generated GDSII.

Standard Cell-Based 32-bit Pipelined CPU Design with Modified New ALU Architecture (RTL to GDSII)

- Implemented 5 CPU models with ASIC flow for slack time optimization.
- Executed Synthesis, PNR, and opt then recorded optimized slack time, power, area. Obtained GDSII Layout.
- Utilized CSeA, CLA, CRA and CSA adders and comparator-CLA mix designs and compared their performance.
- I found CSeA has the highest and CRA has lowest performance speed.

CAD Tool Design for Static Timing Analysis by using TCL/Tk and C Programming

- Designed C code to calculate the required time, arrival time, and slack time from the given input vectors and optimized the code to save the output file separately.
- Designed a Static Timing Analysis CAD tool GUI using TCL/Tk, which can take set of inputs from the user and
 optimize the given input vector using implemented C code and display the output results on the GUI interface.

Multimedia Mobile Processor Configuration for Ultra-low Power Design in Modern VLSI

- System-Level: Coded Graph-based slack analysis in C. Optimized with Loop unrolling and catch technique. WATCH and CACTI tools were used. Achieved 85.68% power reduction.
- RTL-Level: Applied ACG, CCG, OCCG, LECG, ECG, hybrid techniques on MMP. Achieved max 109.75% power reduction. Used Formality, Model Sim, Power Compiler (DC) tools.

Certifications

- Certified Physical Design Engineer, Chipedge Technology 2022
- Certified Google IT Automation with Python, Coursera 2023
- Certified IBM Data Professional Certificate on Linux commands and Shell Scripting, Coursera 2023
- Certified VHDL and Verilog for FPGA Engineer with Vivado design suite, Udemy 2022

Portfolios

- https://anirudhabehera.site/
- https://www.linkedin.com/in/abehera1/
- https://github.com/BeheraAnirudh