Teoria da Computação FCT-UNL 2023-2024 Problem Set 10 Decidibilidade e Semi-Decidibilidade

- 1. Argumente que as seguintes linguagens são decidíveis descrevendo informalmente uma MT que as decide:
 - (a) $ACC_{AFN} = \{ \langle M, w \rangle \mid M \text{ \'e um AFN e aceita } w \}$
 - (b) $ACC_{RE} = \{ \langle E, w \rangle \mid E \text{ \'e um expressão regular e } w \in L(E) \}$
 - (c) $E_{AFD} = \{ \langle M \rangle \mid M \text{ \'e um AFD tal que } L(M) = \emptyset \}$
 - (d) $ALL_{AFD} = \{ \langle M \rangle \mid M \text{ \'e um AFD tal que } L(M) = \Sigma^* \}$
 - (e) $E_{GLC} = \{ \langle G \rangle \mid G \text{ \'e uma GLC tal que } L(G) = \emptyset \}$
- 2. Mostre que se L_1 e L_2 são decidíveis, então $L_1 \cap L_2$ também é decidível.
- 3. Mostre que se L_1 e L_2 são semi-decidíveis, então $L_1 \cup L_2$ também é semi-decidível.
- 4. Mostre que se L_1 e L_2 são decidíveis, então $L_1 \circ L_2$ também é decidível.
- 5. Mostre que se L é decidível, então L^* também é decidível.
- 6. Seja $INF_{AFD} = \{\langle M \rangle \mid M \text{ \'e um AFD e } L(M) \text{ \'e infinita} \}$. Mostre que $INF_{AFD} \text{ \'e decidível}$. Sugestão: Seja p o comprimento de bombagem de M. Considere um AFD que reconhece $L(M) \cap L(M_{\geq p})$, onde $M_{\geq p}$ \'e um AFD que aceita todas as sequências de tamanho pelo menos p. Use a MT do Exercício 1c.