2.4 关系的特性

定义 设 R 为A上的关系($R \subseteq A \times A$)

- (1) R在A上是自反的 $\Leftrightarrow \forall x(x \in A \rightarrow \langle x, x \rangle \in R)$
- (2) R在A上是反自反的 $\Leftrightarrow \forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$

实例:

自反:全域关系 E_A ,恒等关系 I_A ,小于等于关系 L_A ,整除关系 D_A

反自反:实数集上的小于关系、幂集上的真包含关系.

实例(自反)

$$A = \{1,2,3\}$$

$$\begin{bmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

每结点上有自回路

主对角线上元素均为1

实例(反自反)

$$A = \{1,2,3\}$$

 $R = \{\langle 2,1 \rangle, \langle 1,3 \rangle, \langle 3,2 \rangle\}$

每结点上都无自回路

$$\begin{pmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{pmatrix}$$

主对角线上元素全为0

实例

$$R = \{<1,1>,<1,2>,<3,2>,<2,3>,<3,3>\}$$

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

既不是自反的也不是反自反的

对称性与反对称性

定义2.12 设 R 为 A上的关系,

(1) R为A上对称的关系

$$\Leftrightarrow \forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$$

(2) R 为A上的反对称关系

$$\Leftrightarrow \forall x \forall y (x \in A \land y \in A \land xRy \land yRx \rightarrow x = y)$$

 $\Leftrightarrow \forall x \forall y (x \in A \land y \in A \land xRy \land x \neq y \rightarrow \gamma yRx)$

反对称

 $\forall x \forall y (x \in A \land y \in A \land x R y \land y R x \rightarrow x = y)$

 $\Leftrightarrow \forall x \forall y ((x \in A \land y \in A \land x R y \land y R x) \lor x = y)$

 $\Leftrightarrow \forall x \forall y ((x \in A \land y \in A \land x R y) \lor (y R x \lor x = y))$

 $\Leftrightarrow \forall x \forall y (\neg (x \in A \land y \in A \land x R y \land x \neq y) \lor \neg y R x)$

 $\Leftrightarrow \forall x \forall y (x \in A \land y \in A \land x R y \land x \neq y \rightarrow \gamma y R x)$

实例 (对称)

$$A = \{1,2,3\}$$

 $R = \{<1,2>,<2,1>,<1,3>,<3,1>,<1,1>\}$

$$egin{pmatrix} 1 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix}$$

如果有 a 到 b 的弧, 一定有 b 到 a 的弧

关于主对角线对称

实例(反对称)

 $A = \{1,2,3\}, R = \{<1,2>,<2,3>\}$

$$egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \ \end{pmatrix}$$

如果存在 a 到 b 的弧, 就不存在 b 到 a 的弧 (注意逆命题不成立)

如果 $a_{ji}=1$,则 $a_{ij}=0$,这里 $i\neq j$ (注意 $a_{ji}=0$,不一定 $a_{ij}=1$)

实例

对称关系: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset 反对称关系: 恒等关系 I_A 和空关系也是A上的反对称关系.

设 $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都是A上的关系, 其中 R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\} R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$

 R_1 : 对称和反对称;

 R_2 : 只有对称;

 R_3 : 只有反对称;

 R_a : 不对称、不反对称

传递性

定义R是A上的传递关系

$$\Leftrightarrow \forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$$

实例: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset ,小于等于和小于关系,整除关系,包含与真包含关系设 A={1,2,3}, R_1 , R_2 , R_3 是A上的关系,其中 R_1 ={<1,1>,<2,2>} R_2 ={<1,2>,<2,3>} R_3 ={<1,2>,<2,3>} R_3 ={<1,2>,<2,3>,<1,3>} R={<1,3>,<2,3>} (传递) R_1 和 R_3 是A上的传递关系, R_3 - R_3

关系性质成立的充要条件

定理 设R为A上的关系,则

- (1) R 在A上自反当且仅当 $I_A \subseteq R$
- (2) R 在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R 在A上对称当且仅当 $R=R^{-1}$
- (4) R 在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R 在A上传递当且仅当 $R \circ R \subseteq R$

证明:略

关系性质的三种等价条件

	自反性	反自反性	对称性	反对称性	传递性
集合	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R \circ R \subseteq R$
关系	主对角	主对角线	矩阵是	若r _{ii} =1,且	
矩阵	线元素	元素全是0	对称矩阵	$i\neq j$,则 $r_{ji}=0$	
	全是1				
关系	每个顶	每个顶点	两点之间	两点之间有	点 x_i 到 x_i 有
图	点都有	都没有环	有边,是	边,是一条有	边, x_j 到 x_k
	环		一对方向	向边	有边,则 x_i
			相反的边		到 x_k 也有边

非空集合上的空关系是反自反的,对称的,反对称的和传递的,但不是自反的.

空集合上的空关系则是自反的,反自反的,对称的,反对称的和可传递的.

A={1, 2, 3} R={<1, 1>, <1, 2>, <3, 2>, <3, 3>} 反对称 传递

作业

徐 P37 2.6 2.8

P58 22 24 30 31