Contents

1	Mo	del	1
	1.1	Problem	1
	1.2	Discretization and assumption	2
	1.3	Derivatives	2
	1.4	Monte Carlo	3
2	Tes	t Results	3
	2.1	Constraints in Optimization	5
		$2.1.1 f_+ \text{ and } f \dots \dots$	5
		2.1.2 Average Firing Rate	
	2.2	Stimulus Width	5
		2.2.1 The effect of ν	5
		2.2.2 The effect of $ au$	5
	2.3	Stimulus function shape (to be examined)	9
	2.4	Initial Conditions of Tuning curve (See Figure 1)	9
	2.5	Random choice of Saturation	
3	Pie	cewise Constant Tuning Curves	9
4	Abo	out Karush–Kuhn–Tucker conditions	15

1 Model

$$p(\theta) = \frac{1}{2\pi}$$

$$P(r_i|\theta) = \frac{(f_i(\theta)\tau)^{r_i}}{r_i!}e^{-f_i(\theta)\tau}$$
(1)

$$P(r_1, \dots r_M | \theta) = \prod_{j=1}^M \frac{(f_j(\theta)\tau)^{r_j}}{r_j!} e^{-f_j(\theta)\tau}$$

$$(2)$$

where $\theta \in (0, 2\pi)$, t is the tuning curve (periodic), s is the stimulus, τ is the time for stimulus to be active. The rate function f is obtained by convolution:

$$f(\theta) = \int t(\theta - y)s(y)dy \tag{3}$$

which specifies the firing rate (number of neurons fired in unit time).

1.1 Problem

$$\max_{t_1(\cdot),\dots,t_M(\cdot)} I(\mathbf{r};\theta)$$

$$f_- \leq f_i(\cdot) \leq f_+$$

$$\int f_i(\theta) p(\theta) d\theta = const$$
(4)

And since f is the convolution of t and s, this is equivalent to:

$$\max_{t_1(\cdot),\dots,t_M(\cdot)} I(\mathbf{r};\theta)$$

$$f_- \le t_i(\cdot) \le f_+$$

$$\int t_i(\theta) p(\theta) d\theta = const$$
(5)

1.2 Discretization and assumption

 $\theta = (\theta_1, \dots, \theta_M), f = (f_1, \dots, f_M).$ Assume the tuning curves (also the rate curves) is **rotationally invariant**, i.e. different f_i 's have the same shape but difference in translations (rotations in $(0, 2\pi)$):

$$f_i(\theta_j) = f_0(\theta_j - \theta_i) = f_{j-i} \tag{6}$$

From Rotational Invariance Assumption we get:

$$I(\mathbf{r};\theta) = D_{KL}(p(\mathbf{r},\theta)||p(\mathbf{r})p(\theta))$$

$$= \int_{\theta} \int_{\mathbf{r}} p(\mathbf{r}|\theta)p(\theta) \ln\left(\frac{p(\mathbf{r}|\theta)}{p(\mathbf{r})}\right) d\mathbf{r}d\theta$$

$$= \frac{1}{M} \sum_{i=1}^{M} D_{KL}(p(\mathbf{r}|\theta=\theta_{i})||p(\mathbf{r}))$$

$$= D_{KL}(p(\mathbf{r}|\theta=0)||p(\mathbf{r}))$$

$$= -E_{\mathbf{r}|\theta=0} \left[\ln\left(\frac{p(\mathbf{r})}{p(\mathbf{r}|\theta=0)}\right)\right]$$

$$= -E_{\mathbf{r}|\theta=0} \ln(S(\mathbf{r}))$$
(8)

where

$$P(\mathbf{r}|\theta=0) = \prod_{j=1}^{M} \frac{(f_j \tau)^{r_j}}{r_j!} e^{-(f_j \tau)}$$

$$S(\mathbf{r}) = \frac{1}{M} \sum_{k=1}^{M} \prod_{j=1}^{M} \left(\frac{(\tau f_{j-k})^{r_j}}{(\tau f_j)^{r_j}} \right) = \frac{1}{M} \sum_{k=1}^{M} \prod_{j=1}^{M} f_j^{r_{j+k} - r_j}$$

Therefore the discretized version of Problem:

$$\max_{t_1,\dots,t_M} \left[-E_{\mathbf{r}|\theta=0} \ln \left(S(\mathbf{r}) \right) \right]$$

$$f_{-} \leq t_i \leq f_{+}$$

$$\sum_{i=1}^{M} t_i = const$$

$$(9)$$

Here t_i denotes the value of tuning curve $t(t_0)$ at θ_i , not the tuning curve function as in (4), (5).

1.3 Derivatives

By writing $I({\bf r};\theta)=-\sum_{\bf r}P({\bf r}|\theta=0)\ln{(S({\bf r}))}$ we get

$$\frac{\partial I}{\partial f_i} = \tau \cdot E_{\mathbf{r}|\theta=0} \left[(1 - r_i/f_i) \ln(S) \right]$$

$$\frac{\partial^{2} I}{\partial f_{i} \partial f_{j}} = \tau^{2} \cdot E_{\mathbf{r}|\theta=0} \left[-\left(r_{i}/f_{i}-1\right) \left(r_{j}/f_{j}-1\right) \ln(S) + \frac{1}{2f_{i}f_{j}} \frac{\sum_{k} \left(r_{i}-r_{i+k}\right) \left(r_{j}-r_{j+k}\right) \prod_{l} f_{l}^{r_{l+k}}}{\sum_{k} \prod_{l} f_{l}^{r_{k+l}}} + 1_{\{i=j\}} \cdot \left(r_{i}/f_{i}^{2}\right) \ln(S) \right] \right] + \frac{1}{2f_{i}f_{j}} \left[-\frac{1}{2f_{i}f_{j}} \left(r_{i}-r_{i+k}\right) \left(r_{j}-r_{j+k}\right) \prod_{l} f_{l}^{r_{l+k}}}{\sum_{k} \prod_{l} f_{l}^{r_{k+l}}} + 1_{\{i=j\}} \cdot \left(r_{i}/f_{i}^{2}\right) \ln(S) \right] \right] + \frac{1}{2f_{i}f_{j}} \left[-\frac{1}{2f_{i}f_{j}} \left(r_{i}-r_{i+k}\right) \left(r_{j}-r_{j+k}\right) \prod_{l} f_{l}^{r_{l+k}}}{\sum_{k} \prod_{l} f_{l}^{r_{k+l}}} + 1_{\{i=j\}} \cdot \left(r_{i}/f_{i}^{2}\right) \ln(S) \right] \right] + \frac{1}{2f_{i}f_{j}} \left[-\frac{1}{2f_{i}f_{j}} \left(r_{i}-r_{i+k}\right) \left(r_{j}-r_{j+k}\right) \prod_{l} f_{l}^{r_{l+k}}}{\sum_{k} \prod_{l} f_{l}^{r_{k+l}}} + 1_{\{i=j\}} \cdot \left(r_{i}/f_{i}^{2}\right) \ln(S) \right] \right] + \frac{1}{2f_{i}f_{j}} \left[-\frac{1}{2f_{i}f_{j}} \left(r_{i}-r_{i+k}\right) \left(r_{i}-r_{i+k$$

And from the convolution relation

$$\frac{\partial I}{\partial t_i} = \sum_j \frac{\partial I}{\partial f_j} \frac{\partial f_j}{\partial t_i} = \sum_j \frac{\partial I}{\partial f_j} s_{j-i}$$

$$\frac{\partial^2 I}{\partial t_i \partial t_j} = \sum_k \sum_l \frac{\partial^2 I}{\partial f_k \partial f_l} s_{k-i} s_{l-j}$$

1.4 Monte Carlo

In computation, we approximate the above expectations by Monte Carlo:

$$\hat{I} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(S(\mathbf{r}^{(n)}) \right)$$

$$\widehat{\partial_{f_i} I} = \tau \cdot \frac{1}{N} \sum_{n=1}^{N} \left[\left(1 - r_i^{(n)} / f_i \right) \ln(S(\mathbf{r}^{(n)})) \right]$$

$$\partial \widehat{f_i} \partial \widehat{f_j} I = \tau^2 \cdot \frac{1}{N} \sum_{t=1}^{N} \left[-\left(r_i/f_i - 1 \right) \left(r_j/f_j - 1 \right) \ln(S(\mathbf{r})) + \frac{1}{2f_i f_j} \sum_{k} (r_i - r_{i+k}) (r_j - r_{j+k}) Eexp(k) + 1_{\{i=j\}} \cdot \left(r_i/f_i^2 \right) \ln(S(\mathbf{r})) \right]^{(n)}$$

where $\mathbf{r}^{(n)} = \left(r_1^{(n)}, \dots, r_M^{(n)}\right)$ are sampled from independent Poisson distributions: $r_i^{(n)} \sim Poission(f_i)$.

2 Test Results

Basic Setting for most our cases (may very in different tests):

- Constrained Optimization Method: SLSQP (Sequential Least SQuares Programming). It uses the Han-Powell quasi-Newton method with a BFGS update of the B-matrix and an L1-test function in the step-length algorithm. The optimizer uses a slightly modified version of Lawson and Hanson's NNLS nonlinear least-squares solver. Reference: Scipy ,PyOpt
- Language in C++/Python, Package: scipy.optimize.minimize
- M = numBin = 64
- $s(x) = \frac{1}{\nu\tau} 1_{[0,\nu\tau]}(x)$: rectangular stimulus function with speed ν , time period τ . Note: the integral of stim is always normalized to 1; however the rate function f is multiplied by τ , see equation 1. In some cases we set $s(x) \propto e^{-\alpha x} 1_{[0,\nu\tau]}(x)$, also normalized.
- $\nu = 16, \tau = 1.0$
- $f_- = 0.1$, $f_+ = 1.0$, $\frac{f_+}{f_-} = 10$.
- Average of tuning curve $\frac{1}{M}\sum t_i = \frac{f_- + f_+}{2} = 0.55$
- Number of iterations in Monte Carlo: 10^5 for I, 10^6 for ∇I .
- Number of iterations in optimization around 120 (the program doesn't end itself but the shape has generally stoped to change)
- Use $\ln(\cdot)$ instead of $\log_2(\cdot)$ in all information/gradient calculations.

First we vary different parameters above and did 5 experiments:

Observe the phenomenon:

- Same parameters and constraints, different initial tuning curves may 'converge' to different maximizers, so the maximizers may be local.
- But the tuning curves all seem to reach f_+ , f_- as much as possible, i.e. 'saturates' to the extremes.
- Changing stim shape from rectangle to exponential does not affect the saturation effect.
- Decreasing ν will increase the mutual information I, since we have a smaller window of convolution.

Systematically, we look at the effect of varying each test condition:

Figure 1:

Figure 2:

2.1 Constraints in Optimization

2.1.1 f_+ and f_-

Figure 3.

Same initial tuning curve, different inequality constriants. All tends to saturates to the bounds, but surprisingly $f_{+}=2$ gives higher information (though constraint of $f_{+}=4$ are more loose, but it converges to a local maximum where I is lower.)

Average Firing Rate 2.1.2

Figure 4, Figure 5. $\frac{f_+ + f_-}{2}$ might be the max, but not symmetric.

2.2Stimulus Width

2.2.1 The effect of ν

First we just calculated the mutual information for different ν with the following tuning and stimulus in Figure 6, the mutual information shown in Figure 7.

Then we did optimization with different ν : Figure 8.

The effect of τ 2.2.2

We take $\nu=8,\ f_-=0.1,\ f_+=1.0$. Note that the stimulus $s=\frac{1}{\nu\tau}1_{[0,\nu\tau)}$ (integral normalized to 1), and the poisson distribution is related to τ : $P(\mathbf{r}|\theta=0) = \prod_{j=1}^{M} \frac{(f_j\tau)^{r_j}}{r_j!} e^{-(f_j\tau)}$.

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

What we want to investigate is the trade-off between improved evidence accumulation (larger spike count average) and worsened position certainty (larger convolution window) which is entailed by increasing τ . We expect that there is an optimal τ yielding the maximum mutual information.

Figure 9 shows max at $\tau = 0.875$, i.e. $\nu \tau = 7$.

More figures see 'data2-2' directory.

2.3 Stimulus function shape (to be examined)

2.4 Initial Conditions of Tuning curve (See Figure 1)

2.5 Random choice of Saturation

Not all curves which takes either f_+ or f_- are local max. See Figure 11: randomly take different proportions of points to be f_+ (other points f_-).

3 Piecewise Constant Tuning Curves

For M=64, $\nu=16$, $\tau=1.0$, average firing rate $=\frac{f_{+}+f_{-}}{2}$, assume our local maximizers are of the form

$$f_+ \cdot 1_{[0,d_+)} + f_- \cdot 1_{[d_+,d_++d_-)} + f_+ \cdot 1_{[d_++d_-,\frac{M}{2}+d_-)} + f_- \cdot 1_{[\frac{M}{2}+d_-,M)}$$

i.e. two plateaus with width sum up to 32.

- 1. Changing d_+ , d_- we get the following diamond shape: Figure 12, optimized when $d_+ = 8$, $d_- = 16$.
- 2. When $f_{+} = 16$, $f_{-} = 1.6$ we have Figure 13. By looking at rate curves in Figure 14 (of $f_{+} = 1$) we can explain partially why we have larger plateaus with lower f_{-} , f_{+} : since neurons' firing rate is too low, we need to count spikes from more neurons.
 - 3. Not necessarily the same shape when changing M: see the diamond with M=32 in Figure 15.
- 4. Still need explanation why the gradient fails at $d_{+} = d_{-} = 16$ (knowing that it is a sharpe local minimum because of periodicity with period $\frac{M}{2}$, losing information).

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

4 About Karush-Kuhn-Tucker conditions

For convenience of reading we denote the tuning curve t as f in this section.

The Lagrangian

$$L(f; \alpha^+, \alpha^-, \mu) = I(f) + \alpha^+(f - f_+) + \alpha^-(f_- - f) + \mu(\frac{1}{M} \sum_{j=1}^{M} f_j - c)$$

where c is the average of initial tuning curve, $f - f_{+} \leq 0$, $f_{-} - f \leq 0$.

The constraints of the problem (9) are linear, so the KKT conditions are necessary conditions (although may not be sufficient since I(f) is not convex):

if $f^* = (f_1^*, ..., f_M^*)$ is a local maximizer, then there exists $\alpha^+ = (\alpha_1^+, ..., \alpha_M^+)$, $\alpha^- = (\alpha_1^-, ..., \alpha_M^-)$ and constant μ , such that

- 1. $\nabla_{f*}I(s) = \alpha^+(s) \alpha^-(s) + \mu, \forall s$
- 2. $f_{-} \leq f^* \leq f_{+}$
- 3. $\alpha^+ > 0, \alpha^- > 0$
- 4. $\alpha^+(s)(f^*(s) f_+) = 0$, $\alpha^-(s)(f_- f^*(s)) = 0$, i.e. α^+ is supported on $\{f = f_+\}$, α^- is supported on $\{f = f_-\}$.

Hence we have:

- $\nabla_{f*}I(s) = \mu$, $\forall s$ such that $f^*(s) \neq f_+$, $f^*(s) \neq f_-$
- $\nabla_{f_*}I(s) = \alpha^+(s) + \mu \ge \mu$, $\forall s$ such that $f^*(s) = f_+$
- $\nabla_{f*}I(s) = -\alpha^{-}(s) + \mu \leq \mu$, $\forall s$ such that $f^{*}(s) = f_{-}$

So

$$\nabla_{f*} I(s_{-}) \leq \mu \leq \nabla_{f*} I(s_{+})
\max_{s_{-}} \nabla_{f*} I(s_{-}) \leq \mu \leq \min_{s_{+}} \nabla_{f*} I(s_{+})$$
(10)

Therefore as long as f has the property that $\max \nabla_f I(s_-) \le \min \nabla_f I(s_+)$ (where $s_- \in \{f = f_-\}$), it is possible to find μ such that (10) holds, and satisfies the KKT conditions.

See the animations in 'mydata2' directory which shows the gradient and μ in experiments.