$\begin{array}{c} \underline{\text{MIDTERM EXAM 1}} \\ \text{CS 611: Theory of Computation} \end{array}$

Feb 21th, 2023 2:45-4:00pm (in class)

Instructions:

- 1. This is an open-note exam, you can bring a note written on a A4 paper with you, double sided is fine, and you will write down your name and NetID on the note and turned it in together with the exam.
- 2. You have 75 minutes to solve this exam, scan and submit your answers, you can scan a copy and put to Canvas for a record.
- 3. Please clearly write down your answers, points deducted due to unreadable writing will be fully your responsibility.
- 4. Make your answer concise, e.g., when 4 states is enough for a NFA, then no need to draw 5 states.

Name	
NetID	

Problem	Maximum Points	Points Earned
1	20	
2	20	
3	20	
4	30	
Note	10	
Total	100	

Problem 1. Design a DFA for the language $L_1 = \{w \in \{a, b\}^* \mid \text{number of } as \text{ in } w \text{ is at least 2 and number of } bs \text{ in } w \text{ is exactly one}\}$. You can just draw the diagram. [20 points]

Hint: Think about a DFA accepts strings that has at least two as in it and a DFA accepts strings have exactly one b in it.

Problem 2.

- 1. Give the NFA for the language defined by the Regular Expression $(aa \cup b)b^*a$. Please follow the steps in the lecture slides, start from the base case, simplify each step's NFAs by removing the ϵ transitions, and then continue on next step. [10 points]
- 2. Convert this NFA to DFA, you can just draw the diagram, you don't need to list the states that are not reachable from initial states. [10 points]

Problem 3. Convert the following DFA to the equivalent regular expression, remember to use the approach we discussed in class, that is converting the DFA to a GNFA first, and then eliminate the states one by one. To make things easier, we will just do one step, eliminating q_1 first, then q_2 . [20 points]

1. Convert the DFA to GNFA, just draw the diagram.

2. Draw the GNFA after eliminating state q_1 .

3. Draw the GNFA after eliminating state q_2 .

Problem 4.

1. Write down pumping lemma and the contrapositive of pumping lemma for regular language. [10 points]

2. Prove the language $L=\{\ a^ib^jc^k, i\leq j\leq k\}$ is not regular.

[20 points]