

CHEMISTRY

TOMO 5 y 6

ASESORÍA

COMPLETAR

En1913, <u>HENRY MOSELEY</u> basándose con rayos X, determinó los números atómicos de los elementos y con estos descubre un modo práctico de ordenar a los elementos químicos.

La tabla periódica actual las propiedades físicas y químicas de los elementos químicos son una función periódica de NÚMERO ATÓMICO.

Escriba verdadero (V) o falso (F) según corresponda.

a. En un grupo tienen las mismas propiedades físicas.

(**F**)

b. La tabla periódica actual tiene 7 periodos.

 (\mathbf{V})

c. Los elementos del IIA son elementos representativos.

d. Generalmente, en un mismo periodo, los elementos químicos tienen propiedades químicas similares.

RESOLUCIÓN

Complete el texto.

II) El metal que a condiciones ambientales se encuentra en estalo liquido <u>MERCURIO</u>

III) Son buenos conductores de la corriente eléctrica a altas Temperaturas <u>METALOIDES</u>.

RESOLUCIÓN

PARA RECORDAR

Relacione correctamente:

I. Li , Na , K . II. He , Ne ,Ar . III.F , Cl , Br.

IA	Metales Alcalinos						
IIA	Alcalinos Térreos						
IIIA	Térreos o Boroides						
IVA	Carbonoides						
VA	Nitrogenoides						
VIA	Anfígenos o Calcógenos						
VIIA	Halógenos						
VIIIA	Gases Nobles, Raros o Inertes						

a)GASES NOBLES.b)ALCALINOS.c)HALOGENOS.

1 H hidrógeno 1,008 [1,0078, 1,0082]	2		Clave:									13	14	15	16	17	He helio
3 Li litio 6,94 [6,938, 6,997]	Be berilio		número atómico Símbol nombre peso atómico convencio peso atómico están	lo mai								5 B boro 10,91 [10,806, 10821]	6 C carbono 12,011 [12,009, 12,012]	7 N nitrógeno 14,007 [14,006, 14,008]	8 Oxigeno 15,990 [15,999, 16,000]	9 F flúor 18,998	10 Ne neón 20,180
11 Na sodio 22,990	12 Mg magnesio 24,305 [24,304, 24,307]	3	4	5	6	7	8	9	10	11	12	AI aluminio	14 Si silicio 28,085 [28,084, 28,086]	15 P fósforo	16 S azufre 32,08 [32,059, 32,076]	17 CI cloro 35,45 [35,446, 35,457]	18 Ar argón 39,948
19 K potasio	20 Ca calcio	Sc escandio	22 Ti titanio	23 V vanadio	Cr cromo	Mn manganeso	26 Fe hierro	27 Co cobalto	28 Ni niquel	Cu cobre	30 Zn zinc	Ga gallo	Ge germanio	33 As arsénico	34 Se selenio	35 Br bromo 79,694	36 Kr kriptón
39,098 37 Rb rubidio	38 Sr estroncio	39 Y itrio	47,867 40 Zr circonio	41 Nb niobio	42 Mo molibdeno	43 Tc tecnecio	44 Ru rutenio	45 Rh rodio	46 Pd paladio	47 Ag plata	48 Cd cadmio	69,723 49 In indio	72,630(8) 50 Sn estaño	51 Sb antimonio	78,971(8) 52 Te telurio	(79,901, 79,907) 53 I yodo	54 Xe xenón
55 Cs cesio	56 Ba bario	57-71 lantanoides	91,224(2) 72 Hf hafnio	92,906 73 Ta tántalo	95,95 74 W wolframio	75 Re renio	76 Os osmio	77 r iridio	78 Pt platino	79 Au oro	80 Hg mercurio	81 TI talio 204,38	82 Pb plomo	83 Bi bismuto	84 Po polonio	85 At astato	86 Rn radón
87 Fr francio	137,33 88 Ra radio	89-103 actinoides	178,49(2) 104 Rf rutherfordio	105 Db dubnio	106 Sg seaborgio	107 Bh bohrio	190,23(3) 108 Hs hasio	192,22 109 Mt meitnerio	195,08 110 Ds darmstatio	111 Rg roentgenio	112 Cn copernicio	(204,38, 204,39) 113 Nh nihonio	207,2 114 FI flerovio	115 Mc moscovio	116 LV livermorio	117 Ts teneso	118 Og oganesón

Determine el periodo y grupo de un elemento que tiene número atómico igual a 14.

RESOLUCIÓN

SI LA CONFIGURACIÓN ELECTRÓNICA TERMINA EN SOP

GRUPO = (# e- de valencia) A

Si: 1s² 2s² 2p⁶3s²3p²

Periodo: 3 Grupo: IVA

mayor nivel

Determine el periodo y grupo de un elemento que tiene numero atómico igual a 21.

RESOLUCIÓN

RECORDAR

CHEMISTRY

SI LA CONFIGURACIÓN ELECTRÓNICA TERMINA EN d

$$ns^{\frac{Y}{N}}(n-1)d^{\frac{X}{N}}$$
 Periodo: \uparrow n Grupo: $(\gamma + x)$ B

Si
$$Y + x = 8$$
, 9, 10 \rightarrow Grupo VIII B (8), (9), (10)
Si $Y + x = 11$ \rightarrow Grupo I B (11)
Si $Y + x = 12$ \rightarrow Grupo II B (12)

Periodo: 4
Grupo:IIIB

mayor nivel

Sobre el fenómeno de la Radiactividad escriba verdadero (V) o falsid (F) según corresponda.

I. Es la descomposición del núcleo inestable de un átomo.

- II. los rayos gamma son de naturaleza corpuscular. (\mathbf{F})
- III. los rayos alfa poseen carga negativa. (F)
- IV . los rayos beta son los más penetrantes. (F)

Balancee la siguiente reacción nuclear y calcule x y z.

$$^{232}_{90}$$
Th + $^{4}_{2}$ He \longrightarrow $^{x}_{z}$ E + $^{1}_{0}$ n + $^{0}_{-1}$ B

RESOLUCIÓN

$$\sum A$$
 (Reactantes) = $\sum A$ (Productos)

$$232 + 4 = x + 1 + 0$$

$$235 = x$$

$$235 = x$$

$$\sum Z$$
 (Reactantes) = $\sum Z$ (Productos)

$$90 + 2 = z + 0 + (-1)$$

$$93 = z$$

$$93 = z$$

Escriba verdadero (V) o falso (F) según corresponda.

- a. Los átomos libres tienen poca energía . (F)
- b. El enlace proporciona inestabilidad. (F)
- c. La formación del enlace absorbe energía. (F)
- d. Todos los átomos logran el octeto . (F)
- e. El flúor es el mas electronegativo . (\mathbf{v})

RESOLUCIÓN

G.N. Lewis establece que todo átomo, al formar enlaces químicos y de ese modo lograr su mayor estabilidad, adquieren la distribución electrónica de un gas noble (excepto el He) ósea los elementos representativos adquieren 8 electrones en el nivel externo o nivel de valencia, pero como toda regla no es absoluta tenemos las excepciones a la regla del octeto:

OCTETO INCOMPLETO	OCTETO EXPANDIDO						
Hay algunos elementos que no cumplen con el octeto de Lewis. Ejemplos: 1H, 4Be, 5B, 13Al.	Ciertos elementos a partir del 3 ^{er} periodo de la TP pueden expandir su octeto debido a que poseen orbitales "d" vacíos . Ejemplos: PCl ₅ , SF ₆ , XeF ₂ , XeF ₄ , IF ₇ .						

De los siguientes compuestos quienes logran el octeto:

I. CH₄

II. NF₃

III. XeF₂

RESOLUCIÓN

CH₄

NF₃

C = octeto completo

H = octeto incompleto (Dueto)

F= octeto completo

N = octeto completo

XeF₂

F = octeto completo

Xe= octeto expandido

LEY PERIÓDICA MODERNA DE LOS ELEMENTOS

En 1913, Henry Moseley basándose con rayos X, determinó los números atómicos de los elementos y con estos descubre un modo práctico de ordenar a los elementos químicos.

Se enunció: "Las propiedades físicas y químicas de los elementos son funciones periódicas de los números atómicos". Es decir, que los elementos estarán ordenados de manera creciente a sus números atómicos (cantidad de protones en el núcleo).

VOLVER ALA PREGUNTA 1

ORDENAMIENTO DE LOS ELEMENTOS

PERIODOS

GRUPOS

BLOQUES

NATURALEZA

ORDEN HORIZONTAL

ORDEN EN COLUMNAS

ELEMENTO REPRESENTATIVO:s,p

METALES

IGUAL NÚMERO DE NIVELES O CAPAS

IGUAL NÚMERO
DE ELECTRONES
DE VALENCIA

ELEMENTO TRANSICIÓN:s,p **NO METALES**

METALOIDES

PROPIEDADES
FÍSICAS Y
QUÍMICAS
DIFERENTES

PROPIEDADES FÍSICAS
DIFERENTES PERO
PROPIEDADES QUÍMICAS
SIMILARES

ELEMENTO TRANSICIÓN INTERNA: f

VOLVER AL PREGUNTA 2

METALES

SON SÓLIDOS EN CONDICIONES AMBIENTAL ES, EXCEPTO EL MERCURIO, QUE ES LÍQUIDO.

PRESENTAN BRILLO METÁLICO (COLOR PLATEADO), EXCEPTO EL COBRE QUE ES ROJIZO Y EL ORO QUE ES AMARILLO DORADO.

METALOIDES (SEMIMETALES)

A TEMPERATURAS ALTAS SON BUENOS CONDUCTORES DEL CALOR Y LA ELECTRICIDAD.

RADIACTIVIDAD

Es la descomposición espontánea del núcleo atómico inestable, con la consiguiente emisión de partículas nucleares y energía electromagnética. Esta descomposición nuclear se da hasta obtener un nuevo núcleo de mayor estabilidad.

VOLVER ALA PREGUNTA 7

ENLACE QUÍMICO

Es la fuerza de naturaleza eléctrica y magnética que mantiene unidos a átomos y iones con la finalidad de lograr un sistema estable.

