Лабораторная работа № 2	Студент	Иванов И. И.
«Логический тип данных»	Группа	XX-999
	Дата	дд.мм.гг
	Допуск	
	Выполнение	
Вариант №	Отчет	

Условие задачи 1

<u>Задача 1:</u>

Написать программу, которая определяет истинность предиката.

$$L = ((A \text{ OR } B) \text{ AND } C) \text{ XOR } ((\text{NOT } B) \text{ AND } D),$$
 где $A = (m \% 3 = 1), B = (2 ! = x \cdot z \cdot y), C = (k // 2 \ge 5), D = \text{TRUE}.$

Тестовые примеры к задаче 1

вход:

$$x = 2$$
, $y = 3$, $z = 4$, $k = 5$, $m = 6$

выход:

вход:

$$x = 1$$
, $y = 1$, $z = 2$, $k = 2$, $m = 8$

выход:

$$L = ((F \text{ or } F) \text{ and } F) \text{ xor}((\text{not } F) \text{ and } T) =$$

$$= (F \text{ and } F) \text{ xor}(T \text{ and } T) = (F) \text{ xor}(T) = T = True$$

Блок-схема алгоритма к задаче 1

Листинг программы на языке Python к задаче 1

```
#Ввод исходных данных
print("Введите x")
x = float(input())
print("Введите у")
y = float(input())
print("Введите z")
z = float(input())
print ("Введите k")
k = int(input())
print("Введите m")
m = int(input())
#Вычисление промежуточных предикатов
A = m % 3 == 1
B = 2 != x*v*z
C = k // 2 >= 5
D = True
#Выводим полученные значения
print("A = ", A)
print("B = ", B)
print("C = ", C)
print("D = ", D)
#Вычисляем и выводим результирующий предикат
L = ((A or B) and C) ^ ((not B) and D)
print("L = ", L)
```

Условие задачи 2

Написать программу, которая по введённым координатам точки M(x,y) проверяет попадает ли она в заштрихованную область (попадание точки на линию раздела областей считать непринципиальным).

Пояснения к решению задачи 2

Возьмём для примера R=2, A=3, расставим точки во все области, которые образовались на чертеже (т.к. областей получилось 11, то точек тоже 11).

Чертёж образован пересечением 5-ти линий (4 прямые и 1 окружность). Судя по чертежу, построение дополнительных линий не потребуются.

Запишем основные логические выражения, описывающие разделение пространства на пары областей.

$$L_1 = x < 0;$$

 $L_2 = x > -|A|;$
 $L_3 = y > -x;$
 $L_4 = y < 0;$
 $L_5 = (x - 2R)^2 + (y + 2R)^2 < R^2;$

Поскольку заштрихованных областей меньше чем незаштрихованных, то для составления элементарных конъюнкций лучше описывать именно их. Будем выделять области в порядке возрастания номеров четвертей их содержащих.

Заштрихованной области соответствует строгое выполнение сразу всех неравенств, описывающих кривые находящиеся в контакте с этой областью. Это значит, что для связки требуется применить союз «И» (AND - конъюнкция).

$$(x < 0) \text{AND}(x > -3) \text{AND}(y > -x) = L_1 \text{ AND } L_2 \text{ AND } L_3;$$

$$(x < 0) \text{AND}(x > -3) \text{AND}(y < 0) = L_1 \text{ AND } L_2 \text{ AND } L_4;$$

$$(\text{NOT}(y > -x)) \text{AND}((x - 4)^2 + (y + 4)^2 < 2^2) = \overline{L}_3 \text{ AND } L_5;$$

$$(y > -x) \text{AND}(y < 0) \text{AND}(\text{NOT}((x - 4)^2 + (y + 4)^2 < 2^2)) = L_3 \text{ AND } L_4 \text{ AND } \overline{L}_5;$$

Пояснения даны на рисунках ниже.

Нам достаточно попадания точки в одну из областей, что соответствует союзу «ИЛИ» (OR – дизъюнкция), значит результирующий предикат будет таким:

$$L = (L_1 \text{ AND } L_2 \text{ AND } L_3) \text{ OR } (L_1 \text{ AND } L_2 \text{ AND } L_4) \text{ OR } (\overline{L}_3 \text{ AND } L_5) \text{ OR } (L_3 \text{ AND } L_4 \text{ AND } \overline{L}_5)$$

Пояснения к формированию предикатов попадания точки в заштрихованную область.

Тестовые примеры к задаче 2

Входные данные:

A=3 R=2

вход	x=4 y=3	x=-2 y=1		x=-5 y=3		x=-5 y=-3	x=-2 y=-6	x=2 y=-6	x=4 y=-5	x=4 y=-3	x=6 y=-1
выход	нет	нет	да	нет	нет	нет	да	нет	да	нет	да

Блок-схема к задаче 2

Листинг программы на Python к задаче 2

```
#Ввод исходных данных print("Введите A")
A = float(input())
print("Введите R")
R = float(input())
print("Введите координату х точки М")
x = float(input())
print ("Введите координату у точки М")
y = float(input())

#Вычисление промежуточных предикатов
L1 = x < 0
L2 = x > -abs(A)
L3 = y > -x
L4 = y < 0
L5 = (x - 2*R)**2 + (y + 2*R)**2 < R**2
```

```
#Результирующий предикат
L = (L1 and L2 and L3) or (L1 and L2 and L4) or ((not L3) and L5) or (L3 and L4 and (not L5))

if L:
   print ("Да, точка попадает в заштрихованную область")
else:
   print ("Нет, точка не попадает в заштрихованную область")
```

Дополнительные сведения для выполнения лабораторной работы

Основы алгебры логики

Любая машина для решения алгоритмических задач, как это ни странно, выполняет некий мыслительный процесс, который называют машинной логикой. Только в отличии от логики человеческой, она чрезвычайно жесткая, поскольку подчиняется определенному набору правил. Эти правила возведены в ранг математических и носят соответствующее название: математическая логика, или машинная логика. В основе алгебры логики находится так называемый предикат.

<u>Предикат</u> — это высказывание относительно которого можно сказать истинно оно или ложно. Слово образовано от английского *Predicate* (утверждение). Примеры предикатов: «Земля — третья планета от Солнца», «по календарю сейчас лето» и т.д.

Часто логику предикатов называют *Булевой* алгеброй, а выражения принимающие всего два значения *Булевыми* (*Boolean*).

Для того чтобы научить ЭВМ мыслить логикой предикатов, нужно эти самые предикаты перевести на понятный машине язык. В качестве предикатов выступают две дефиниции: логические константы и логические выражения.

<u>Логическими выражениями</u> будем называть выражения, состоящие из операций отношения и логических констант, связанных логическими операциями.

<u>Операция отношения</u> — операция сравнения результатов вычисления двух алгебраических выражений и/или числовых констант.

- < меныпе
- > больше
- <= -- меньше или равно
- >= больше или равно

¹ Джордж Буль (1815–1864) английский математик и логик. Разработал алгебру логики и основы функционирования цифровых компьютеров.

== - равно

!= - не равно

Например, условие (x*x<1000) означает значение x*x меньше 1000, а условие (2*x!=y) означает удвоенное значение переменной x не равно значению переменной y.

Результатом операции отношения всегда являются логические константы *TRUE* (*ИСТИНА*) или *FALSE* (*ЛОЖЬ*). Результат *TRUE* получается тогда, когда операция отношения записана верно, и *FALSE* в противном случае. Например, пусть x = 7, тогда операция отношения x > 0 даст результат *TRUE*, то есть истинно, что 7 > 0. А при том же значении x операция x < 5 даст ответ *FALSE*, что означает ложность, утверждения x < 5.

Для числовых данных.

Операция	Обозначение	Пример использования
Равно	==	4+2 == 3+3 # True
		False == True # False
Не равно	!=	3+1 != 2+2 # False
Больше	>	2 > 2 - 3 # True
Больше или равно	>=	2 >= 1+1 # True
Меньше	<	3 < 10 # True
Меньше или равно	<=	5 <= 1 # False
		True <= False # False

При использовании операторов присваивания с логическими значениями, последние сначала преобразуются в числовое представление – *True* в 1, *False* в 0.

Посмотрим, какие значения получаются в таком случае.

A	В	==	!=	>	>=	<	<=
False	False	1	0	0	1	0	1
False	True	0	1	0	0	1	1
True	False	0	1	1	1	0	0
True	True	1	0	0	1	0	1

Логические операции

Логические операции	применяются для связі	ки в логических выражениях.
1 '	1	

Операция	Обозначения в	В Питоне
	заданиях	
Отрицание (НЕ)	NOT	not
Дизъюнкция (И)	OR	or
Конъюнкция (ИЛИ)	AND	and
Исключающее или	XOR	^

<u>Логическое И является бинарным оператором</u> (то есть оператором с двумя операндами: левым и правым) и имеет вид and. Оператор and возвращает True тогда и только тогда, когда оба его операнда имеют значение True.

<u>Логическое ИЛИ</u> является бинарным оператором возвращает True тогда и только тогда, когда хотя бы один операнд равен True. Оператор "логическое ИЛИ" имеет вид от.

<u>Логическое НЕ</u> (отрицание) является унарным (то есть с одним операндом) оператором и имеет вид not, за которым следует единственный операнд. Логическое НЕ возвращает True, если операнд равен False и наоборот.

Таблица истинности логических операций

A	В	\mathbf{A} AND \mathbf{B}	$\mathbf{A} OR \mathbf{B}$	$\mathbf{A} XOR \mathbf{B}$	NOT A	NOT B
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	1
1	1	1	1	0	0	0

В сложном выражении, логические операции применяются в строгой последовательности согласно установленному приоритету (подобно тому как операция умножения всегда выполняется раньше чем операция сложения). Приоритет выполнения логических операций следующий (в порядке его убывания):

NOT AND OR, XOR

Операции отношения

ПРИМЕР

Для x = 5, y = 0 получим результат следующего логического выражения:

$$(x > 0) AND (y < -2).$$

Результатом первой операции отношения (x > 0) будет значение TRUE, так как истина, что 5 > 0. Результатом операции отношения (y < -2) будет

Рис. 1. Связь теории множеств и булевой алгебры значение FALSE, так как ложь, что 0 < -2. Осталось определить результат такого логического выражения:

TRUE AND FALSE, что эквивалентно 1 AND 0.

Из таблицы истинности следует, что это выражение равно 0 или FALSE, то есть (x > 0) AND (y < -2) = FALSE.

Для иллюстрации логических выражений часто применяют диаграммы, взятые из теории множеств (Рисунок 1). Заштрихованная площадь означает истинность того, что некоторая точка принадлежит этой области.

Правила использования логических выражений

При доказательстве в алгебре логики применяют набор правил и законов:

1. законы идемпотентности:

$$A = A AND A$$
, $A = A OR A$;

2. законы коммутативности:

$$A AND B = B AND A,$$
 $A OR B = B OR A;$

3. законы ассоциативности:

$$A AND (B AND C) = (A AND B) AND C,$$

 $A OR (B OR C) = (A OR B) OR C;$

4. законы дистрибутивности:

$$A AND (B OR C) = (A AND B) OR (A AND C),$$

 $A OR (B AND C) = (A OR B) AND (A OR C);$

5. законы нуля и единицы:

A
$$AND \overline{A} = FALSE$$
, A $AND TRUE = A$, A $OR \overline{A} = TRUE$, A $OR FALSE = A$;

6. правила поглощения:

$$A OR (A AND B) = A,$$

 $A AND (A OR B) = A;$

7. правила де Моргана:

$$\overline{(A OR B)} = (\overline{A} AND \overline{B}),$$

 $\overline{(A AND B)} = (\overline{A} OR \overline{B});$

8. правила склеивания:

$$(A OR \overline{B}) AND (A OR B) = A,$$

 $(A AND \overline{B}) OR (A AND B) = A.$

Арифметические операции

Результатом арифметической операции является число. Надо отметить, что в арифметическом выражении могут участвовать и данные логического типа. В таком случае True интерпретируется как 1, False — как 0.

Операция	Обозначение	Пример использования
Унарный минус	-	-10
Сложение	+	2 + 2 # 4
		False + 3 # 3
Вычитание	_	10 - 18 # -8
		True - 5 # -4
Умножение	*	4*5 # 20
Деление	/	10 / 4 # 2.5
Возведение в степень	**	2**4 # 16
Целочисленное	//	10 // 2 # 5
деление		13 // 5 # 2
A serior market		-12 // 7 # -2
		13 // -6 # -3
		-10 // -3 # 3
		10 // 2.6 # 3.0
Остаток от деления	용	10 % 2 # 0
		13 % 5 # 3
		-12 % 7 # 2
		13 % -6 # -5
		-10 % -3 # -1
		10 % 2.6 # 2.2
Взятие модуля	abs(x)	abs(-10) # 10
Абсолютное		abs(1000) # 1000
значение		

Библиотека math

Для проведения вычислений с действительными числами язык Питон содержит много дополнительных функций, собранных в библиотеку(модуль), которая называется math. Для использования этих функций в начале программы необходимо подключить математическую библиотеку, что делается командой:

import math

Например, пусть мы хотим округлять вещественные числа до ближайшего целого числа вверx. Соответствующая функция ceil от одного аргумента вызывается, например, так: math.ceil(x) (то есть явно указывается, что из модуля math используется функция ceil). Вместо

числа х может быть любое число, переменная или выражение. Функция возвращает значение, которое можно вывести на экран, присвоить другой переменной или использовать в выражении:

```
import math
x = math.ceil(4.2)
y = math.ceil(4.8)
print(x)
print(y)
5
5
```

Другой способ использовать функции из библиотеки math, при котором не нужно будет при каждом использовании функции из модуля math указывать название этого модуля, выглядит так:

```
from math import ceil
x = 7 / 2
y = ceil(x)
print(y)

from math import *
x = 7 / 2
y = ceil(x)
print(y)
Или
```

Некоторые из перечисленных функций (int, round, abs) стандартными и не требуют подключения модуля math для использования.

Таблица 1
Математические функции Python

Функция	Описание		
	Округление		
int(x)	Округляет число в сторону нуля. Это стандартная функция, для ее использования не нужно подключать модуль math.		
round(x)	Округляет число до ближайшего целого. Если дробная часть числа равна 0.5, то число округляется до ближайшего четного числа.		
round(x, n)	Округляет число х до n знаков после точки. Это стандартная функция, для ее использования не нужно подключать модуль math.		

floor(x)	Округляет число вниз («пол»), при этом floor (1.5) == 1 floor (-1.5) == 2			
ceil(x)	Округляет число вверх («потолок»), при этом ceil(1.5) == -1 == 2			
abs(x)	Модуль . Это — стандартная функция.			
	Корни, логарифмы			
sqrt(x)	Квадратный корень.			
log(x)	Натуральный логарифм. При вызове в виде log(x, b) возвращает логарифм по основанию b.			
Основание натуральных логарифмов е = 2,71828				
Тригонометрия				
sin(x)	Синус угла, задаваемого в радианах			
cos(x)	Косинус угла, задаваемого в радианах			
tan(x)	Тангенс угла, задаваемого в радианах			
asin(x)	Арксинус, возвращает значение в радианах			
acos(x)	Арккосинус, возвращает значение в радианах			
atan(x)	Арктангенс, возвращает значение в радианах			
atan2(y, x)	Полярный угол (в радианах) точки с координатами (х, у).			
degrees(x)	Преобразует угол, заданный в радианах, в градусы.			
radians(x)	Преобразует угол, заданный в градусах, в радианы.			
pi	Константа $\pi = 3.1415$			

Условия попадания точек в области образуемыми различными кривыми

Далее приведены кривые первого и второго порядка и области ими отсекаемые, которые встречаются в заданиях к этой работе.

Список задач № 1 для лабораторной работы «Логический тип данных»

Первая задача: написать программу, которая определяет истинность предиката.

1.
$$L = ((A XOR(NOT B))AND C)OR(BAND B),$$

где $A = (x + 2y \le 2), B = (5 \% k = 0), C = (e^{2\pi k} = 1).$

2.
$$L = ((A \text{ OR}(\text{NOT } B)) \text{ XOR } C) \text{ AND } (A \text{ AND } B),$$
 где $A = (\sin(x) \le 0.5), B = (k/2 > 2), C = (e^{2\pi k} > 1).$

3.
$$L = ((A \text{ OR } B) \text{ AND } C) \text{ XOR } (D \text{ OR } B),$$
 где $A = (y \cdot x \neq 4), B = (m \cdot n \% 2 = 0), C = (\sin(\pi k) = 1), D = \text{TRUE}.$

4.
$$L = \text{NOT}((D \text{AND } B) \text{AND } (D \text{OR } B)) \text{XOR } A$$
, где $A = (y \cdot x + z \neq 10)$, $B = (8 \% k = 3)$, $D = (x^2 = 2x)$.

5.
$$L = \text{NOT}((C \text{XOR } B) \text{AND } (A \text{OR } B)) \text{XOR } B$$
, где $A = (\sin(x) > \cos(x))$, $B = (|y| \ge 2\sqrt{x})$, $C = (12 // k \le 6)$.

6.
$$L = ((C XOR B) AND D) XOR (NOT (AOR B))$$

где $A = (\sin(x) = \cos(x)), B = (2^x \le x^2), C = TRUE, D = (m \% n = 0).$

7.
$$L = (C XOR B) OR (NOT (A AND B))$$

где $A = (\sin(x) = tg(x)), B = (10 \% m \neq 0), C = TRUE.$

8.
$$L = (NOT(C)ANDD)OR(AXORB)$$
 где $A = (ctg(x) = tg(x)),$ $B = FALSE, C = (m \cdot k \% 2 = 0),$ $D = (|x + y| \le 2).$

9.
$$L = ((NOT(C))XOR(NOTD)) AND(AORB)$$

где $A = (\sqrt{x^2 + y^2} < r)$, $B = (2 = 3)$, $C = ((x + y)^{-1} > 1)$, $D = (|x + y| \neq 4)$.

10.
$$L = (A XOR C) AND(AOR(NOT B))$$
,

где
$$A = (x^2 > 1/\sqrt{y^2 + 1}), B = (2 \le x \cdot y + 2x^2), C = (3 + x \ge 4).$$

11.
$$L = (AXOR(CORB))AND(BOR(NOTA))$$
,

где
$$A = (x - y \ge 3)$$
, $B = (7 \% k = 0)$, $C = (x^3 - 2 \ge 4)$.

12.
$$L = (A \text{ AND}(C \text{ XOR } B)) \text{ AND}(B \text{ OR}(\text{NOT } A)),$$
 где $A = (x + z - 2x \le 3), B = (k \% 3 = 0), C = (2 \sin(x^3) \ge 1/2).$

13.
$$L = (A \text{ AND}(C \text{ XOR } D)) \text{ AND}(B \text{ OR}(\text{NOT } B)),$$
 где $A = (\operatorname{tg}(x) + \operatorname{ctg}(x) \le 2), B = \operatorname{TRUE}, C = (x \cdot y > x^2), D = (k // n = 2).$

14.
$$L = (A \operatorname{AND}(C \operatorname{OR} D)) \operatorname{XOR}(B \operatorname{OR} A)$$
,
 $A = (\arcsin(x) + \arccos(x) = \pi)$, $B = \operatorname{FALSE}$, $C = (x > y)$, $D = (k // n \ge 3)$.

15.
$$L = \text{NOT}(A \text{XOR}(C \text{OR} D)) \text{ AND}(B \text{OR} A),$$

 $A = (\arcsin(x) \ge \pi/4), B = (k \% 2 = 0), C = \text{FALSE}, D = (x + \sqrt{x} < 2).$

16.
$$L = (NOT(COR B)) AND(B XOR D)$$
,
 $A = TRUE$, $B = (2 + sin(x) \le 2)$, $C = (x - \sqrt{|y|} < x \cdot y)$, $D = (M // 4 = 0)$.

17.
$$L = \text{NOT}(A \text{ AND}(C \text{ OR } B)) \text{ OR}(B \text{ AND } A),$$

 $A = (y + x = x \cdot y/2), B = (x \cdot y \neq 0), C = (k \% 3 = 0).$

18.
$$L = (C \text{ OR } B) \text{ AND} (B \text{ XOR} (\text{NOT } D)),$$

 $A = \text{TRUE}, B = (e^{-2x} + e^{2x} < 1), C = (x^k \ge 100), D = (M // k = 0).$

19.
$$L = (C \text{ OR}(\text{NOT } B)) \text{ AND}(B \text{ XOR } A),$$

 $A = \text{FALSE}, B = (e^{-2x} + e^{2x} < 2), C = (e^x \ge 10^2), D = (M // k \ge 3).$

20.
$$L = ((NOT C)XOR(NOT B)) AND(BOR A),$$

 $A = TRUE, B = (sin(e^{-2x} + e^{2x}) \le 1/2), C = (k \% 3 = 1).$

21.
$$L = (C \text{ AND}(\text{NOT } B)) \text{ OR}(D \text{ XOR}(\text{NOT } A)),$$

$$A = (k \% m \neq 0), B = (e^{2x} < 2), C = (\sqrt{e^x} < 10), D = FALSE.$$

22.
$$L = (A XOR(NOT B)) OR(NOT(D XOR A)),$$

 $A = (10 \% m \neq 0), B = (x^6 < 200), C = (x^2 + 2y \ge 10), D = FALSE.$

23.
$$L = (C \text{ AND}(\text{NOT } A)) \text{ XOR}(\text{NOT}(C \text{ XOR } A)),$$

 $A = (15 \% m \neq 2), B = (5 > y \cdot x \cdot z), C = (x^4 \ge 500).$

24.
$$L = (A \text{ AND}(\text{NOT } B)) \text{ OR}(C \text{ XOR } A),$$

 $A = (9 \% m \neq 0), B = (15 > 2y \cdot x), C = (x^2 \cos(y) \ge 10).$

25.
$$L = (C \text{ AND}(\text{NOT } B)) \text{ OR}(\text{NOT}(D \text{ XOR } A)),$$

 $A = (\sqrt{e^{x-y}} < 2x), B = (x \ge 2\sqrt{y}), C = (10 \text{ // } k = 3), D = \text{FALSE}.$

26.
$$L = (B \text{ AND}(\text{NOT } C)) \text{ XOR}(\text{NOT}(D \text{ OR } A)),$$

 $A = (3y \ge 2x), B = (|x \cdot y| > 2\sqrt{y}), C = \text{TRUE}, D = (k//2 > 4).$

27.
$$L = (NOT(BANDC))XOR(NOT(BORA)),$$

 $A = (y^2 \ge 2 + 2x), B = (m \% 5 = 2), C = (x^2 + 3x + 1 > 0).$

28.
$$L = \text{NOT}((A \text{ AND } C) \text{XOR}(B \text{ OR } C)),$$

 $A = (m // n = 2), B = (|x \cdot (y^2 + x)| > 2\sqrt{(y^3 + 3)}), C = (x^2 \le 3x + y).$

29.
$$L = (A \circ R(C \land D(N \circ T B))) \circ R(N \circ T D),$$

 $A = (2^x = x^2), B = (k //3 \le 5), C = (x^2 + 3y^2 \ge 10x), D = FALSE.$

30.
$$L = (A \text{ OR} (\text{NOT } C)) \text{ XOR} (\text{NOT} (D \text{ AND } A)),$$

 $A = (3 + x - y \le 2), B = (x^6 < 200), C = (x^2 - \sqrt{|2y|} \ge 10), D = \text{TRUE}.$

Список задач № 2 для лабораторной работы «Логический тип данных»

Написать программу, которая по введённым координатам точки M(x,y) проверяет попадает ли она в заштрихованную область (попадание точки на линию раздела областей считать непринципиальным)

