PHƯƠNG TRÌNH ĐƯỜNG THẮNG

TRUY CẬP https://diendangiaovientoan.vn/tai-lieu-tham-khao-d8.html ĐỂ ĐƯỢC NHIỀU

HON

Contents

A. CAU HOI	2
DẠNG 1. XÁC ĐỊNH VÉCTƠ CHỈ PHƯƠNG, VÉC TƠ PHÁP TUYẾN CỦA ĐƯỜNG THẮNG, HỆ SỐ GÓC CỦA ĐƯỜNG THẮNG	
DẠNG 2. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẮNG VÀ CÁC BÀI TOÁN LIÊN QUAN	5
Dạng 2.1 Viết phương trình đường thẳng khi biết VTPT hoặc VTCP, HỆ SỐ GÓC và 1 điểm đi qua	5
Dạng 2.2 Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước	6
Dạng 2.3 Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác	9
Dạng 2.3.1 Phương trình đường cao của tam giác	9
Dạng 2.3.2 Phương trình đường trung tuyến của tam giác	10
Dạng 2.3.3 Phương trình cạnh của tam giác	10
Dạng 2.3.4 Phương trình đường phân giác của tam giác	10
DẠNG 3. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẮNG	12
DẠNG 4. GÓC CỦA HAI ĐƯỜNG THẮNG	15
Dạng 4.1 Tính góc của hai đường thẳng cho trước	15
Dạng 4.2 Viết phương trình đường thẳng liên quan đến góc	17
DẠNG 5. KHOẢNG CÁCH	18
Dạng 5.1 Tính khoảng cách từ 1 điểm đến đường thẳng cho trước	18
Dạng 5.2 Phương trình đường thẳng liên quan đến khoảng cách	20
DẠNG 6. XÁC ĐỊNH ĐIỂM	22
Dạng 6.1 Xác định tọa hình chiếu, điểm đối xứng	22
Dạng 6.2 Xác định điểm liên quan đến yếu tố khoảng cách, góc	22
Dạng 6.3 Xác định điểm liên quan đến yếu tố cực trị	24
Dạng 6.4 Một số bài toán tổng hợp	25
DẠNG 7. MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH	28
B. LỜI GIẢI	29
DẠNG 1. XÁC ĐỊNH VÉCTƠ CHỈ PHƯƠNG, VÉC TƠ PHÁP TUYẾN CỦA ĐƯỜNG THẮNG, HỆ SỐ GÓC CỦA ĐƯỜNG THẮNG	29
DẠNG 2. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẮNG VÀ CÁC BÀI TOÁN LIÊN QUAN	31
Dạng 2.1 Viết phương trình đường thẳng khi biết VTPT hoặc VTCP, HỆ SỐ GÓC và 1 điểm đi qua	31
Dạng 2.2 Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước	32
Dạng 2.3 Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác	35
Dạng 2.3.1 Phương trình đường cao của tam giác	35
Dạng 2.3.2 Phương trình đường trung tuyến của tam giác	36

ene binto romit me orto om	D 1 (0) 10//0 10/
Dạng 2.3.3 Phương trình cạnh của tam giác	36
Dạng 2.3.4 Phương trình đường phân giác của tam giác	37
DẠNG 3. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẮNG	39
DẠNG 4. GÓC CỦA HAI ĐƯỜNG THẮNG	44
Dạng 4.1 Tính góc của hai đường thẳng cho trước	44
Dạng 4.2 Viết phương trình đường thẳng liên quan đến góc	46
DẠNG 5. KHOẢNG CÁCH	49
Dạng 5.1 Tính khoảng cách từ 1 điểm đến đường thẳng cho trước	49
Dạng 5.2 Phương trình đường thẳng liên quan đến khoảng cách	51
DẠNG 6. XÁC ĐỊNH ĐIỂM	53
Dạng 6.1 Xác định tọa hình chiếu, điểm đối xứng	53
Dạng 6.2 Xác định điểm liên quan đến yếu tố khoảng cách, góc	55
Dạng 6.3 Xác định điểm liên quan đến yếu tố cực trị	57
Dạng 6.4 Một số bài toán tổng hợp	59
DANG 7 MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH	70

A. CÂU HỎI

DANG 1. XÁC ĐINH VÉCTO CHỈ PHƯƠNG, VÉC TO PHÁP TUYẾN CỦA ĐƯỜNG THẮNG, HỆ SỐ GÓC CỦA ĐƯỜNG THẮNG

Trong mặt phẳng Oxy, đường thẳng (d): ax + by + c = 0, $(a^2 + b^2 \neq 0)$. Vecto nào sau đây là một Câu 1. vector pháp tuyến của đường thẳng (d)?

A.
$$\vec{n} = (a; -b)$$
. **B.** $\vec{n} = (b; a)$. **C.** $\vec{n} = (b; -a)$. **D.** $\vec{n} = (a; b)$.

B.
$$\vec{n} = (b; a)$$

C.
$$\vec{n} = (b; -a)$$

$$\vec{\mathbf{D}}$$
. $\vec{n} = (a;b)$.

- (Chuyên Lê Hồng Phong-Nam Định) Cho đường thẳng d có một vecto pháp tuyến là $\vec{n} = (a;b)$ Câu 2. , $a,b \in \mathbb{R}$. Xét các khẳng định sau:
 - 1. Nếu b = 0 thì đường thẳng d không có hệ số góc.
 - 2. Nếu $b \neq 0$ thì hệ số góc của đường thẳng d là $\frac{a}{b}$.
 - 3. Đường thẳng d có một vecto chỉ phương là $\vec{u} = (b; -a)$.
 - 4. Vecto $k\vec{n}$, $k \in \mathbb{R}$ là vecto pháp tuyến của d. Có bao nhiệu khẳng đinh sai?

A. 3.

B. 2.

C. 1.

D. 4.

(THPT Cộng Hiền - Lần 1 - 2018-2019) Trong mặt phẳng tọa độ Oxy, cho đường thẳng Câu 3. d: x-2y+3=0. Vecto pháp tuyến của đường thẳng d là

A. $\vec{n} = (1; -2)$

B. $\vec{n} = (2;1)$

C. $\vec{n} = (-2;3)$

D. $\vec{n} = (1;3)$

Cho đường thẳng (d): 3x + 2y - 10 = 0. Véc tơ nào sau đây là véctơ chỉ phương của (d)? Câu 4.

A.
$$\vec{u} = (3;2)$$
.

B.
$$\vec{u} = (3; -2)$$

C.
$$\vec{u} = (2; -3)$$
.

B.
$$\vec{u} = (3; -2)$$
. **C.** $\vec{u} = (2; -3)$. **D.** $\vec{u} = (-2; -3)$.

(THPT Quỳnh Lưu- Nghệ An- 2019) Cho đường thẳng Δ : $\begin{cases} x = 5 - \frac{1}{2}t \\ y = -3 + 3t \end{cases}$ một vecto pháp tuyến Câu 5. của đường thẳng Δ có tọa độ

A.
$$(5;-3)$$
.

C.
$$\left(\frac{1}{2};3\right)$$
. **D.** $\left(-5;3\right)$.

D.
$$(-5;3)$$

Trong hệ trục tọa độ Oxy, Véctơ nào là một véctơ pháp tuyến của đường thẳng $d:\begin{cases} x=-2-t \\ y=-1+2t \end{cases}$? Câu 6.

A.
$$\vec{n}(-2;-1)$$
.

B.
$$\vec{n}(2;-1)$$
.

B.
$$\vec{n}(2;-1)$$
. **C.** $\vec{n}(-1;2)$.

D.
$$\vec{n}(1;2)$$
.

Vector chỉ phương của đường thẳng d: $\begin{cases} x = 1 - 4t \\ v = -2 + 3t \end{cases}$ là: Câu 7.

A.
$$\vec{u} = (-4;3)$$
.

B.
$$\vec{u} = (4;3)$$

C.
$$\vec{u} = (3;4)$$

B.
$$\vec{u} = (4;3)$$
. **C.** $\vec{u} = (3;4)$. **D.** $\vec{u} = (1;-2)$.

Vector nào dưới đây là 1 vector chỉ phương của đường thẳng song song với trục Ox: **A.** $\vec{u} = (1;0)$. **B.** $\vec{u} = (1;-1)$. **C.** $\vec{u} = (1;1)$. **D.** $\vec{u} = (0;1)$. Câu 8.

A.
$$\vec{u} = (1; 0)$$
.

B.
$$\vec{u} = (1; -1)$$

C.
$$\vec{u} = (1;1)$$
.

D.
$$\vec{u} = (0,1)$$

Cho đường thẳng d: 7x + 3y - 1 = 0. Vecto nào sau đây là Vecto chỉ phương của d? Câu 9.

A.
$$\vec{u} = (7;3)$$
.

B.
$$\vec{u} = (3,7)$$

B.
$$\vec{u} = (3,7)$$
. **C.** $\vec{u} = (-3,7)$. **D.** $\vec{u} = (2,3)$.

D.
$$\vec{u} = (2;3)$$

Câu 10. Cho đường thẳng d: 2x+3y-4=0. Véctơ nào sau đây là véctơ pháp tuyến của đường thẳng d?

A.
$$\vec{n_1} = (3;2)$$
.

A.
$$\overrightarrow{n_1} = (3;2)$$
. **B.** $\overrightarrow{n_1} = (-4;-6)$. **C.** $\overrightarrow{n_1} = (2;-3)$. **D.** $\overrightarrow{n_1} = (-2;3)$.

C.
$$\vec{n_1} = (2; -3)$$

D.
$$\vec{n_1} = (-2;3)$$

Câu 11. Cho đường thẳng d: 5x+3y-7=0. Vectơ nào sau đây là một vec tơ chỉ phương của đường thẳng

A.
$$\vec{n_1} = (3;5)$$

B.
$$\vec{n_2} = (3; -5)$$

C.
$$\vec{n_3} = (5;3)$$

A.
$$\overrightarrow{n_1} = (3;5)$$
. **B.** $\overrightarrow{n_2} = (3;-5)$. **C.** $\overrightarrow{n_3} = (5;3)$. **D.** $\overrightarrow{n_4} = (-5;-3)$.

Câu 12. Cho đường thẳng $\Delta: x-2y+3=0$. Véc tơ nào sau đây **không là** véc tơ chỉ phương của Δ ?

A.
$$\vec{u} = (4; -2)$$
. **B.** $\vec{v} = (-2; -1)$. **C.** $\vec{m} = (2; 1)$.

B.
$$\vec{v} = (-2; -1)$$

C.
$$\vec{m} = (2;1)$$

D.
$$\vec{q} = (4;2)$$
.

Câu 13. Cho hai điểm A = (1,2) và B = (5,4). Vector pháp tuyến của đường thẳng AB là

A.
$$(-1;-2)$$
.

$$\mathbf{C.} (-2;1)$$
.

D.
$$(-1;2)$$
.

Câu 14. Cho đường thẳng d: 7x + 3y - 1 = 0. Vector nào sau đây là Vector chỉ phương của đường thẳng d?

A.
$$\vec{u} = (7;3)$$
.

B.
$$\vec{u} = (3,7)$$

B.
$$\vec{u} = (3,7)$$
. **C.** $\vec{u} = (-3,7)$. **D.** $\vec{u} = (2,3)$.

D.
$$\vec{u} = (2;3)$$

Câu 15. (THI HK1 LỚP 11 THPT VIỆT TRÌ 2018 - 2019) Vectơ nào dưới đây là một vectơ pháp tuyến của d: x-2y+2018=0?

A.
$$\vec{n}_1(0;-2)$$
.

B.
$$\vec{n}_3(-2;0)$$
. **C.** $\vec{n}_4(2;1)$.

C.
$$\vec{n}_{A}(2;1)$$
.

D.
$$\vec{n}_2$$
 (1;-2).

Câu 16. Vector nào trong các vector dưới đây là vector pháp tuyến của đường thẳng y+2x-1=0?

A.
$$(2;-1)$$
.

D.
$$(-2;-1)$$
.

Câu 17. Trong mặt phẳng Oxy, cho đường thẳng d: 2x - y + 1 = 0, một vécto pháp tuyến của d là

A.
$$(-2;-1)$$
.

B.
$$(2;-1)$$
.

$$C. (-1;-2).$$

D.
$$(1;-2)$$
.

Câu 18. Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d: 2x-3y+4=0. Vecto nào sau đây là một vecto chỉ phương của d.

A.
$$\overrightarrow{u_4} = (3; -2)$$
. **B.** $\overrightarrow{u_2} = (2; 3)$.

B.
$$\overrightarrow{u_2} = (2;3)$$

C.
$$\vec{u_1} = (2; -3)$$
. D. $\vec{u_3} = (3; 2)$

D.
$$\overrightarrow{u_3} = (3;2)$$

Câu 19. (LƯƠNG TÀI 2 BẮC NINH LÂN 1-2018-2019) Vectơ nào sau đây là một Vectơ chỉ phương của đường thẳng $\Delta: 6x-2y+3=0$?

A.
$$\vec{u}(1;3)$$
.

B.
$$\vec{u}(6;2)$$
.

C.
$$\vec{u}(-1;3)$$
. D. $\vec{u}(3;-1)$.

D.
$$\vec{u}(3;-1)$$

(THPT Yên Mỹ Hưng Yên lần 1 - 2019) Cho hai điểm M(2;3) và N(-2;5). Đường thẳng MN**Câu 20.** có một vectơ chỉ phương là:

A.
$$\vec{u} = (4; 2)$$
.

B.
$$\vec{u} = (4; -2)$$
.

B.
$$\vec{u} = (4; -2)$$
. **C.** $\vec{u} = (-4; -2)$. **D.** $\vec{u} = (-2; 4)$.

D.
$$\vec{u} = (-2; 4)$$
.

Câu 21. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x-2y+1=0. Một vecto chỉ phương của đường thẳng d là

A.
$$\vec{u} = (1; -2)$$
.

B.
$$\vec{u} = (2; 1)$$

B.
$$\vec{u} = (2; 1)$$
. **C.** $\vec{u} = (2; -1)$. **D.** $\vec{u} = (1; 2)$.

D.
$$\vec{u} = (1; 2)$$

Câu 22. Đường thẳng d có một vecto chỉ phương là $\vec{u} = (2; -1)$. Trong các vecto sau, vecto nào là một vecto pháp tuyến của d?

A.
$$\vec{n_1} = (-1, 2)$$
.

B.
$$\overrightarrow{n_2} = (1; -2)$$

B.
$$\overrightarrow{n_2} = (1; -2)$$
. **C.** $\overrightarrow{n_3} = (-3; 6)$. **D.** $\overrightarrow{n_4} = (3; 6)$.

D.
$$\vec{n_4} = (3;6)$$

Câu 23. Đường thẳng d có một vectơ pháp tuyến là $\vec{n} = (4; -2)$. Trong các vectơ sau, vectơ nào là một vecto chỉ phương của d?

A.
$$\overrightarrow{u_1} = (2; -4).$$

B.
$$\overrightarrow{u_2} = (-2; 4)$$
. **C.** $\overrightarrow{u_3} = (1; 2)$. **D.** $\overrightarrow{u_4} = (2; 1)$.

C.
$$\vec{u_3} = (1,2)$$

D.
$$\overrightarrow{u_4} = (2;1)$$

Câu 24. Đường thẳng d có một vecto chỉ phương là $\vec{u} = (3, -4)$. Đường thẳng Δ vuông góc với d có một vecto pháp tuyến là:

A.
$$\vec{n_1} = (4;3)$$
.

B.
$$\overrightarrow{n_2} = (-4; -3)$$
. **C.** $\overrightarrow{n_3} = (3; 4)$. **D.** $\overrightarrow{n_4} = (3; -4)$.

C.
$$\vec{n}_3 = (3;4)$$

D.
$$\vec{n_4} = (3; -4)$$

Câu 25. Đường thẳng d có một vecto pháp tuyến là $\vec{n} = (-2, -5)$. Đường thẳng Δ vuông góc với d có một vecto chỉ phương là:

A.
$$\overrightarrow{u_1} = (5; -2)$$
.

B.
$$\overrightarrow{u_2} = (-5; 2)$$
.

C.
$$\overrightarrow{u_3} = (2;5)$$

A.
$$\overrightarrow{u_1} = (5; -2)$$
. **B.** $\overrightarrow{u_2} = (-5; 2)$. **C.** $\overrightarrow{u_3} = (2; 5)$. **D.** $\overrightarrow{u_4} = (2; -5)$.

Đường thẳng d có một vecto chỉ phương là $\vec{u} = (3, -4)$. Đường thẳng Δ song song với d có một vecto pháp tuyến là:

A.
$$\vec{n_1} = (4;3)$$
.

B.
$$\overrightarrow{n_2} = (-4;3)$$

C.
$$\vec{n_3} = (3;4)$$
.

B.
$$\overrightarrow{n_2} = (-4;3)$$
. **C.** $\overrightarrow{n_3} = (3;4)$. **D.** $\overrightarrow{n_4} = (3;-4)$.

Câu 27. Đường thẳng d có một vecto pháp tuyến là $\vec{n} = (-2, -5)$. Đường thẳng Δ song song với d có một vecto chỉ phương là:

A.
$$\overrightarrow{u_1} = (5; -2).$$

B.
$$\overrightarrow{u_2} = (-5; -2)$$
. **C.** $\overrightarrow{u_3} = (2; 5)$. **D.** $\overrightarrow{u_4} = (2; -5)$.

C.
$$\vec{u_3} = (2;5)$$

D.
$$\overrightarrow{u_4} = (2; -5)$$

Câu 28. Cho đường thẳng d:3x+5y+2018=0. Tìm mệnh đề sai trong các mệnh đề sau:

A.
$$d$$
 có vecto pháp tuyến $\vec{n} = (3,5)$.

B. d có vecto chỉ phương $\vec{u} = (5, -3)$.

C. $d \text{ có hệ số góc } k = \frac{5}{3}$.

D. d song song với đường thẳng $\Delta: 3x + 5y = 0$.

Câu 29. Cho đường thẳng (d): x-7y+15=0. Mệnh đề nào sau đây đúng?

A. (d) có hệ số góc $k = \frac{1}{7}$

B. (d) đi qua hai điểm $M\left(-\frac{1}{3};2\right)$ và M(5;0)

C. $\vec{u} = (-7;1)$ là vecto chỉ phương của (d)

D. (d) đi qua gốc toa đô

Trên mặt phẳng tọa độ Oxy, cho hai điểm A(-2;3) và B(4;-1). Phương trình nào sau đây là **Câu 30.** phương trình đường thẳng AB?

A. x + y - 3 = 0. **B.** y = 2x + 1.

C. $\frac{x-4}{6} = \frac{y-1}{-4}$. D. $\begin{cases} x = 1+3t \\ y = 1-2t \end{cases}$.

DANG 2. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẮNG VÀ CÁC BÀI TOÁN LIÊN QUAN Dạng 2.1 Viết phương trình đường thẳng khi biết VTPT hoặc VTCP, HỆ SỐ GÓC và 1 điểm đi qua

(THI HK1 LÓP 11 THPT VIỆT TRÌ 2018 - 2019) Phương trình tham số của đường thẳng đi qua **Câu 31.** hai điểm A(2;-1) và B(2;5) là

A. $\begin{cases} x = 2t \\ y = -6t \end{cases}$ **B.** $\begin{cases} x = 2 + t \\ y = 5 + 6t \end{cases}$ **C.** $\begin{cases} x = 1 \\ y = 2 + 6t \end{cases}$ **D.** $\begin{cases} x = 2 \\ y = -1 + 6t \end{cases}$

Câu 32. Chuyên Lê Hồng Phong-Nam Định Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;-1) và B(-6,2). Phương trình nào dưới đây không phải là phương trình tham số của đường thắng AB?

A. $\begin{cases} x = 3 + 3t \\ y = -1 - t \end{cases}$ **B.** $\begin{cases} x = 3 + 3t \\ y = -1 + t \end{cases}$ **C.** $\begin{cases} x = -3t \\ y = t \end{cases}$ **D.** $\begin{cases} x = -6 - 3t \\ y = 2 + t \end{cases}$

Câu 33. Phương trình tham số của đường thẳng qua M(1,-2), N(4,3) là

A. $\begin{cases} x = 4 + t \\ y = 3 - 2t \end{cases}$ **B.** $\begin{cases} x = 1 + 5t \\ y = -2 - 3t \end{cases}$ **C.** $\begin{cases} x = 3 + 3t \\ y = 4 + 5t \end{cases}$ **D.** $\begin{cases} x = 1 + 3t \\ y = -2 + 5t \end{cases}$

Câu 34. Phương trình tham số của đường thẳng đi qua hai điểm A(3;-1), B(-6;2) là

A. $\begin{cases} x = -1 + 3t \\ y = 2t \end{cases}$ B. $\begin{cases} x = 3 + 3t \\ y = -1 - t \end{cases}$ C. $\begin{cases} x = 3 + 3t \\ y = -6 - t \end{cases}$ D. $\begin{cases} x = 3 + 3t \\ y = -1 + t \end{cases}$

Câu 35. Trong mặt phẳng tọa độ, cho hai điểm A(3,0), B(0,2) và đường thẳng d: x+y=0. Lập phương trình tham số của đường thẳng Δ qua A và song song với

A. $\begin{cases} x = t \\ y = 3 - t \end{cases}$ B. $\begin{cases} x = t \\ y = 3 + t \end{cases}$ C. $\begin{cases} x = -t \\ y = 3 - t \end{cases}$ D. $\begin{cases} x = -t \\ y = 3 + t \end{cases}$

Câu 36. Cho đường thẳng d có phương trình tham số $\begin{cases} x = 5 + t \\ v = -9 - 2t \end{cases}$. Phương trình tổng quát của đường thẳng d là

A. 2x + y - 1 = 0. **B.** -2x + y - 1 = 0. **C.** x + 2y + 1 = 0. **D.** 2x + 3y - 1 = 0.

5

Câu 37. Trong mặt phẳng Oxy cho điểm M(1;2). Gọi A,B là hình chiếu của M lên Ox,Oy. Viết phương trình đường thẳng AB.

A. x + 2y - 1 = 0.

B. 2x + y + 2 = 0. **C.** 2x + y - 2 = 0. **D.** x + y - 3 = 0.

Trong mặt phẳng tọa độ Oxy, cho đường thẳng $d:\begin{cases} x=3-5t \\ v=1+4t \end{cases}$ $(t \in \mathbb{R})$. Phương trình tổng quát của đường thẳng d là

A. 4x-5y-7=0. **B.** 4x+5y-17=0. **C.** 4x-5y-17=0. **D.** 4x+5y+17=0.

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox và Oy lần lượt tại hai điểm A(a;0) và B(0;b) $(a \neq 0; b \neq 0)$. Viết phương trình đường thẳng d.

A. $d: \frac{x}{a} + \frac{y}{b} = 0$. **B.** $d: \frac{x}{a} - \frac{y}{b} = 1$. **C.** $d: \frac{x}{a} + \frac{y}{b} = 1$. **D.** $d: \frac{x}{b} + \frac{y}{a} = 1$.

Câu 40. Phương trình đường thẳng đi qua hai điểm A(0;4), B(-6;0) là:

A. $\frac{x}{6} + \frac{y}{4} = 1$. **B.** $\frac{x}{4} + \frac{y}{-6} = 1$. **C.** $\frac{-x}{4} + \frac{y}{-6} = 1$. **D.** $\frac{-x}{6} + \frac{y}{4} = 1$.

Dạng 2.2 Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước

Câu 41. Phương trình đường thẳng d đi qua A(1,-2) và vuông góc với đường thẳng $\Delta: 3x-2y+1=0$ là:

A. 3x-2y-7=0. **B.** 2x+3y+4=0. **C.** x+3y+5=0. **D.** 2x+3y-3=0.

Câu 42. Cho đường thẳng d: 8x - 6y + 7 = 0. Nếu đường thẳng Δ đi qua gốc tọa độ và vuông góc với đường thẳng d thì Δ có phương trình là

A. 4x - 3y = 0.

B. 4x + 3y = 0. **C.** 3x + 4y = 0. **D.** 3x - 4y = 0.

Câu 43. Đường thẳng đi qua điểm A(1;11) và song song với đường thẳng y = 3x + 5 có phương trình là

A. v = 3x + 11.

B. y = (-3x + 14). **C.** y = 3x + 8. **D.** y = x + 10.

(HKI XUÂN PHƯƠNG - HN) Lập phương trình đường đi qua A(2;5) và song song với đường Câu 44. thẳng (d): y = 3x + 4?

A. (Δ): y = 3x - 2. **B.** (Δ): y = 3x - 1. **C.** (Δ): $y = -\frac{1}{3}x - 1$. **D.** (Δ): y = -3x - 1.

Câu 45. Trong hệ trục Oxy, đường thẳng d qua M(1;1) và song song với đường thẳng d': x+y-1=0 có phương trình là

A. x + y - 1 = 0. **B.** x - y = 0. **C.** -x + y - 1 = 0. **D.** x + y - 2 = 0.

Câu 46. Viết phương trình tổng quát của đường thẳng đi qua điểm I(-1,2) và vuông góc với đường thẳng có phương trình 2x - v + 4 = 0.

A. x + 2y = 0.

B. x+2v-3=0. **C.** x+2v+3=0. **D.** x-2v+5=0.

6

Câu 47. Trong hệ trục tọa độ Trong hệ trục tọa độ Oxy cho hai điểm M(1,0) và N(0,2). Đường thẳng đi qua $A\left(\frac{1}{2};1\right)$ và song song với đường thẳng MN có phương trình là

A. Không tồn tại đường thắng như đề bài yêu cầu.

B.
$$2x + y - 2 = 0$$
.

C.
$$4x + y - 3 = 0$$
.

D.
$$2x - 4y + 3 = 0$$
.

Câu 48. Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(2;0), B(0;3) và C(-3;-1). Đường thẳng đi qua điểm B và song song với AC có phương trình tham số là:

$$\mathbf{A.} \begin{cases} x = 5t \\ y = 3 + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 5 \\ y = 1 + 3t \end{cases}$$

A.
$$\begin{cases} x = 5t \\ y = 3 + t \end{cases}$$
 B. $\begin{cases} x = 5 \\ y = 1 + 3t \end{cases}$ C. $\begin{cases} x = t \\ y = 3 - 5t \end{cases}$ D. $\begin{cases} x = 3 + 5t \\ y = t \end{cases}$

$$\mathbf{D.} \begin{cases} x = 3 + 5t \\ y = t \end{cases}$$

Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2), P(4;0) và Q(0;-2). Đường thẳng đi **Câu 49.** qua điểm A và song song với PQ có phương trình tham số là:

A.
$$\begin{cases} x = 3 + 4t \\ y = 2 - 2t \end{cases}$$

B.
$$\begin{cases} x = 3 - 2t \\ v = 2 + t \end{cases}$$

A.
$$\begin{cases} x = 3 + 4t \\ y = 2 - 2t \end{cases}$$
 B. $\begin{cases} x = 3 - 2t \\ y = 2 + t \end{cases}$ C. $\begin{cases} x = -1 + 2t \\ y = t \end{cases}$ D. $\begin{cases} x = -1 + 2t \\ y = -2 + t \end{cases}$

D.
$$\begin{cases} x = -1 + 2t \\ y = -2 + t \end{cases}$$

Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có đỉnh A(-2;1) và phương trình đường thẳng chứa cạnh CD là $\begin{cases} x = 1 + 4t \\ v = 3t \end{cases}$. Viết phương trình tham số của đường thẳng chứa cạnh

A.
$$\begin{cases} x = -2 + 3t \\ y = -2 - 2t \end{cases}$$
B.
$$\begin{cases} x = -2 - 4t \\ y = 1 - 3t \end{cases}$$
C.
$$\begin{cases} x = -2 - 3t \\ y = 1 - 4t \end{cases}$$
D.
$$\begin{cases} x = -2 - 3t \\ y = 1 + 4t \end{cases}$$

B.
$$\begin{cases} x = -2 - 4t \\ v = 1 - 3t \end{cases}$$

C.
$$\begin{cases} x = -2 - 3t \\ y = 1 - 4t \end{cases}$$

D.
$$\begin{cases} x = -2 - 3t \\ y = 1 + 4t \end{cases}$$

Câu 51. Viết phương trình tham số của đường thẳng d đi qua điểm M(-3,5) và song song với đường phân giác của góc phần tư thứ nhất.

$$\mathbf{A.} \begin{cases} x = -3 + t \\ y = 5 - t \end{cases}$$

B.
$$\begin{cases} x = -3 + t \\ v = 5 + t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 3 + t \\ y = -5 + t \end{cases}$$

A.
$$\begin{cases} x = -3 + t \\ y = 5 - t \end{cases}$$
 B. $\begin{cases} x = -3 + t \\ y = 5 + t \end{cases}$ C. $\begin{cases} x = 3 + t \\ y = -5 + t \end{cases}$ D. $\begin{cases} x = 5 - t \\ y = -3 + t \end{cases}$

Câu 52. Viết phương trình tham số của đường thẳng d đi qua điểm M(4,-7) và song song với trục Ox.

$$\mathbf{A.} \begin{cases} x = 1 + 4t \\ y = -7t \end{cases}$$

A.
$$\begin{cases} x = 1 + 4t \\ y = -7t \end{cases}$$
 B.
$$\begin{cases} x = 4 \\ y = -7 + t \end{cases}$$
 C.
$$\begin{cases} x = -7 + t \\ y = 4 \end{cases}$$
 D.
$$\begin{cases} x = t \\ y = -7 \end{cases}$$

$$\mathbf{C.} \begin{cases} x = -7 + t \\ y = 4 \end{cases}$$

$$\mathbf{D.} \begin{cases} x = t \\ y = -7 \end{cases}$$

Đường thẳng d đi qua điểm M(1;2) và song song với đường thẳng $\Delta: 2x+3y-12=0$ có phương trình tổng quát là:

A.
$$2x + 3y - 8 = 0$$
.

B.
$$2x + 3y + 8 = 0$$
.

C.
$$4x + 6y + 1 = 0$$
.

B.
$$2x+3y+8=0$$
. **C.** $4x+6y+1=0$. **D.** $4x-3y-8=0$.

Câu 54. Phương trình tổng quát của đường thẳng d đi qua O và song song với đường thẳng $\Delta : 6x - 4x + 1 = 0$ là:

A.
$$3x - 2y = 0$$
.

B.
$$4x + 6y = 0$$
.

B.
$$4x + 6y = 0$$
. **C.** $3x + 12y - 1 = 0$. **D.** $6x - 4y - 1 = 0$.

D.
$$6x - 4y - 1 = 0$$

Câu 55. Đường thẳng d đi qua điểm M(-1,2) và vuông góc với đường thẳng

 Δ : 2x + y - 3 = 0 có phương trình tổng quát là:

A.
$$2x + y = 0$$
.

B.
$$x-2y-3=0$$
.

C.
$$x + y - 1 = 0$$

B.
$$x-2y-3=0$$
. **C.** $x+y-1=0$. **D.** $x-2y+5=0$.

7

Câu 56. Viết phương trình đường thẳng Δ đi qua điểm A(4,-3) và song song với đường thẳng

$$d: \begin{cases} x = 3 - 2t \\ y = 1 + 3t \end{cases}.$$

A.
$$3x + 2y + 6 = 0$$
.

A.
$$3x + 2y + 6 = 0$$
.
B. $-2x + 3y + 17 = 0$.
C. $3x + 2y - 6 = 0$.
D. $3x - 2y + 6 = 0$.

C.
$$3x + 2y - 6 = 0$$
.

$$3x - 2y + 6 = 0.$$

CÁC DẠNG TOÁN THƯỜNG GẶP DT:0946798489 Câu 57. Cho tam giác ABC có A(2;0), B(0;3), C(-3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

A. 5x - y + 3 = 0. **B.** 5x + y - 3 = 0. **C.** x + 5y - 15 = 0. **D.** x - 15y + 15 = 0.

Câu 58. Viết phương trình tổng quát của đường thẳng d đi qua điểm M(-1,0) và vuông góc với đường thẳng $\Delta : \begin{cases} x = t \\ y = -2t \end{cases}$ A 2x + y + 2 = 0.

B. 2x - y + 2 = 0.

C. x - 2y + 1 = 0.

D. x + 2y + 1 = 0.

Câu 59. Đường thẳng d đi qua điểm M(-2;1) và vuông góc với đường thẳng $\Delta:\begin{cases} x=1-3t \\ y=-2+5t \end{cases}$ có phương trình tham số là:

A. $\begin{cases} x = -2 - 3t \\ v = 1 + 5t \end{cases}$ **B.** $\begin{cases} x = -2 + 5t \\ v = 1 + 3t \end{cases}$ **C.** $\begin{cases} x = 1 - 3t \\ v = 2 + 5t \end{cases}$ **D.** $\begin{cases} x = 1 + 5t \\ v = 2 + 3t \end{cases}$

Câu 60. Viết phương trình tham số của đường thẳng d đi qua điểm A(-1;2) và song song với đường thẳng

A. $\begin{cases} x = -1 + 13t \\ y = 2 + 3t \end{cases}$ **B.** $\begin{cases} x = 1 + 13t \\ y = -2 + 3t \end{cases}$ **C.** $\begin{cases} x = -1 - 13t \\ y = 2 + 3t \end{cases}$ **D.** $\begin{cases} x = 1 + 3t \\ y = 2 - 13t \end{cases}$

Câu 61. Viết phương trình tham số của đường thẳng d qua điểm A(-1,2) và vuông góc với đường thẳng

A. $\begin{cases} x = -1 + 2t \\ y = 2 - t \end{cases}$ **B.** $\begin{cases} x = t \\ y = 4 + 2t \end{cases}$ **C.** $\begin{cases} x = -1 + 2t \\ y = 2 + t \end{cases}$ **D.** $\begin{cases} x = 1 + 2t \\ y = 2 - t \end{cases}$

Viết phương trình tổng quát của đường thẳng d đi qua điểm M(-2,-5) và song song với đường phân giác góc phần tư thứ nhất.

A. x + y - 3 = 0. **B.** x - y - 3 = 0. **C.** x + y + 3 = 0. **D.** 2x - y - 1 = 0.

Câu 63. Viết phương trình tổng quát của đường thẳng d đi qua điểm M(3;-1) và vuông góc với đường phân giác góc phần tư thứ hai. **A.** x + y - 4 = 0. **B.** x - y - 4 = 0. **C.** x + y + 4 = 0. **D.** x - y + 4 = 0.

Câu 64. Viết phương trình tham số của đường thẳng d đi qua điểm M(-4,0) và vuông góc với đường phân giác góc phần tư thứ hai.

A. $\begin{cases} x = t \\ y = -4 + t \end{cases}$ B. $\begin{cases} x = -4 + t \\ y = -t \end{cases}$ C. $\begin{cases} x = t \\ y = 4 + t \end{cases}$ D. $\begin{cases} x = t \\ y = 4 - t \end{cases}$

Câu 65. Viết phương trình tổng quát của đường thẳng d đi qua điểm M(-1,2) và song song với trục Ox. **B.** x+1=0. **C.** x-1=0. **D.** y-2=0.

A. v + 2 = 0.

Câu 66. Viết phương trình tham số của đường thẳng d đi qua điểm M(6;-10) và vuông góc với trục Oy

A. $\begin{cases} x = 10 + t \\ y = 6 \end{cases}$ **B.** $d: \begin{cases} x = 2 + t \\ y = -10 \end{cases}$ **C.** $d: \begin{cases} x = 6 \\ y = -10 - t \end{cases}$ **D.** $d: \begin{cases} x = 6 \\ y = -10 + t \end{cases}$

8

Dạng 2.3 Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác Dạng 2.3.1 Phương trình đường cao của tam giác

(ĐỘI CẦN VĨNH PHÚC LẦN 1 2018-2019) Trên mặt phẳng tọa độ Oxy, cho tam giác ABC có **Câu 67.** A(1;2), B(3;1), C(5;4). Phương trình nào sau đây là phương trình đường cao kể từ A của tam giác ABC?

A. 2x+3y-8=0. **B.** 2x+3y+8=0. **C.** 3x-2y+1=0. **D.** 2x+3y-2=0.

Câu 68. Cho $\triangle ABC$ có A(2;-1), B(4;5), C(-3;2). Đường cao AH của $\triangle ABC$ có phương trình là **B.** -3x+7y+13=0. **C.** 3x+7y+17=0. **D.** 7x+3y+10=0.

A. 7x+3y-11=0.

(Độ Cấn Vĩnh Phúc-lần 1-2018-2019) Trên mặt phẳng tọa độ Oxy, cho tam giác ABC có Câu 69. A(1;2), B(3;1), C(5;4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?

A. 2x+3y-8=0.

B. 2x+3y+8=0.

C. 3x-2y+1=0.

D. 2x+3y-2=0.

Câu 70. Trong mặt phẳng cho tam giác ABC cân tại C có B(2;-1), A(4;3). Phương trình đường cao CH là

A. x-2y-1=0. **B.** x-2y+1=0. **C.** 2x+y-2=0. **D.** x+2y-5=0.

Câu 71. Cho $\triangle ABC$ có A(2;-1), B(4;5), C(-3;2). Phương trình tổng quát của đường cao BH là

A. 3x + 5y - 37 = 0. **B.** 5x - 3y - 5 = 0. **C.** 3x - 5y - 13 = 0. **D.** 3x + 5y - 20 = 0.

Câu 72. Đường trung trực của đoạn thẳng AB với A = (-3,2), B = (-3,3) có một vecto pháp tuyến là:

A. $\vec{n_1} = (6;5)$.

B. $\vec{n_2} = (0;1)$.

C. $\vec{n_3} = (-3;5)$. **D.** $\vec{n_4} = (-1;0)$.

Câu 73. Cho tam giác ABC có A(1;1), B(0;-2), C(4;2). Lập phương trình đường trung tuyến của tam giác ABC kẻ từ A.

A. x + y - 2 = 0.

B. 2x + y - 3 = 0. **C.** x + 2y - 3 = 0.

D. x - y = 0.

Câu 74. Đường trung trực của đoạn AB với A(1,-4) và B(5,2) có phương trình là:

A. 2x + 3y - 3 = 0.

B. 3x + 2y + 1 = 0. **C.** 3x - y + 4 = 0.

D. x + y - 1 = 0.

Câu 75. Đường trung trực của đoạn AB với A(4;-1) và B(1;-4) có phương trình là:

A. x + y = 1.

B. x + y = 0.

C. y - x = 0.

D. x - y = 1.

Câu 76. Đường trung trực của đoạn AB với A(1,-4) và B(1,2) có phương trình là:

A. v + 1 = 0.

B. x+1=0.

C. v-1=0.

D. x - 4y = 0.

Câu 77. Đường trung trực của đoạn AB với A(1,-4) và B(3,-4) có phương trình là :

A. y + 4 = 0.

B. x+y-2=0. **C.** x-2=0.

D. v-4=0.

Câu 78. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ A.

A. 7x + 3y - 11 = 0.

B. -3x + 7y + 13 = 0.

C. 3x + 7y + 1 = 0.

D. 7x + 3y + 13 = 0.

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ B.

A. 3x - 5y - 13 = 0.

B. 3x + 5y - 20 = 0.

- **C.** 3x + 5y 37 = 0. **D.** 5x 3y 5 = 0.
- **Câu 80.** Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ C.

A. x + y - 1 = 0.

B. x + 3y - 3 = 0.

C. 3x + y + 11 = 0. **D.** 3x - v + 11 = 0.

Dạng 2.3.2 Phương trình đường trung tuyến của tam giác

Câu 81. Cho tam giác ABC với A(1;1), B(0;-2), C(4;2). Phương trình tổng quát của đường trung tuyến đi qua điểm B của tam giác ABC là

A. 7x + 7y + 14 = 0.

- **B.** 5x-3y+1=0. **C.** 3x+y-2=0. **D.** -7x+5y+10=0.
- Câu 82. (THPT Yên Dũng 3 Bắc Giang lần 1- 18-19) Trong hệ toa đô Oxy, cho tam giác ABC có A(2;3), B(1;0), C(-1;-2). Phương trình đường trung tuyến kẻ từ đỉnh A của tam giác ABC là: **A.** 2x-y-1=0. **B.** x-2y+4=0. **C.** x+2y-8=0.

- **D.** 2x + y 7 = 0.
- Câu 83. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;4), B(3;2) và C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác.

- **A.** $\begin{cases} x = 7 \\ v = 3 + 5t \end{cases}$ **B.** $\begin{cases} x = 3 5t \\ v = -7 \end{cases}$ **C.** $\begin{cases} x = 7 + t \\ v = 3 \end{cases}$ **D.** $\begin{cases} x = 2 \\ v = 3 t \end{cases}$
- Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;4), B(5;0) và C(2;1). Trung Câu 84. tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ bằng:

 $A_{\bullet} - 12$.

- **B.** $-\frac{25}{2}$. **C.** -13.
- **D.** $-\frac{27}{2}$.

Dạng 2.3.3 Phương trình cạnh của tam giác

(THPT NGUYÊN TRÃI-THANH HOÁ - Lần 1.Năm 2018&2019) Trong mặt phẳng với hệ toa Câu 85. độ Oxy, cho tam giác ABC có M(2;0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao qua đỉnh A lần lượt có phương trình là 7x-2y-3=0 và 6x-y-4=0. Phương trình đường thẳng AC là

A. 3x-4y-5=0. **B.** 3x+4y+5=0. **C.** 3x-4y+5=0. **D.** 3x+4y-5=0.

- (Nông Cống Thanh Hóa Lần 1 1819) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác **Câu 86.** ABC có phương trình cạnh AB là x-y-2=0, phương trình cạnh AC là x+2y-5=0. Biết trong tâm của tam giác là điểm G(3,2) và phương trình đường thẳng BC có dang x + mv + n = 0. Tìm m+n.

A. 3.

- **B.** 2.
- **C.** 5.
- **D.** 4.

Dạng 2.3.4 Phương trình đường phân giác của tam giác

- **Câu 87.** Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng $\Delta: ax + by + c = 0$ và hai điểm $M(x_m; y_m)$, $N(x_n;y_n)$ không thuộc Δ . Chọn khẳng định đúng trong các khẳng định sau:
 - **A.** M, N khác phía so với Δ khi $(ax_m + by_m + c) \cdot (ax_n + by_n + c) > 0$.
 - **B.** M, N cùng phía so với Δ khi $(ax_m + by_m + c) \cdot (ax_n + by_n + c) \ge 0$.
 - C. M, N khác phía so với Δ khi $(ax_m + by_m + c) \cdot (ax_n + by_n + c) \le 0$.
 - **D.** M, N cùng phía so với Δ khi $(ax_m + by_m + c) \cdot (ax_n + by_n + c) > 0$.
- Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:3x+4y-5=0 và hai điểm A(1;3), **Câu 88.** B(2;m). Tìm tất cả các giá trị của tham số m đề A và B nằm cùng phía đối với d.
 - $\mathbf{A}, m < 0$
- **B.** $m > -\frac{1}{4}$.
- **C.** m > -1. **D.** $m = -\frac{1}{4}$.
- **Câu 89.** Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng $d:\begin{cases} x=2+t \\ v=1-3t \end{cases}$ và hai điểm A(1;2), B(-2;m)

. Tìm tất cả các giá trị của tham số m để A và B nằm cùng phía đối với d.

- **A.** m > 13.
- **B.** $m \ge 13$.
- C. m < 13.
- **D.** m = 13.
- **Câu 90.** Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng $\Delta_1: x+2y-3=0$ và $\Delta_2 : 2x - y + 3 = 0$.
 - **A.** 3x + y = 0 và x 3y = 0.

- **B.** 3x + v = 0 và x + 3v 6 = 0.
- C. 3x + y = 0 và -x + 3y 6 = 0.
- **D.** 3x + v + 6 = 0 và x 3v 6 = 0.
- **Câu 91.** Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng $\Delta : x + y = 0$ và trục

- **A.** $(1+\sqrt{2})x+y=0$; $x-(1-\sqrt{2})y=0$. **B.** $(1+\sqrt{2})x+y=0$; $x+(1-\sqrt{2})y=0$. **C.** $(1+\sqrt{2})x-y=0$; $x+(1-\sqrt{2})y=0$. **D.** $x+(1+\sqrt{2})y=0$; $x+(1-\sqrt{2})y=0$.
- Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có $A\left(\frac{7}{4};3\right)$, B(1;2) và C(-4;3). Phương trình đường phân giác trong của góc A là:
 - **A.** 4x + 2y 13 = 0.
- **B.** 4x 8y + 17 = 0.
- C. 4x-2v-1=0.
- **D.** 4x + 8y 31 = 0.
- Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;5), B(-4;-5) và C(4;-1). Phương trình đường phân giác ngoài của góc A là:
 - **A.** v + 5 = 0.
- **B.** v-5=0.
- C. x+1=0.
- **D.** x-1=0.
- **Câu 94.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng $d_1:3x-4y-3=0$ và d_2 : 12x + 5y - 12 = 0. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng d_1 và d_2 là:
 - **A.** 3x+11y-3=0.
- **B.** 11x-3y-11=0.
- C. 3x-11y-3=0.
- **D.** 11x + 3y 11 = 0.
- Câu 95. Cho tam giác ABC có phương trình cạnh AB: 3x-4y-9=0, cạnh AC: 8x-6y+1=0, cạnh BC: x+y-5=0. Phương trình đường phân giác trong của góc A là:
 - **A.** 14x + 14y 17 = 0.
- **B.** 2x-2y-19=0.
- C. 2x + 2y + 19 = 0.
- **D.** 14x 14y 17 = 0.

- (THPT Ngô Quyền Ba Vì Hải Phòng, lần 1) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1;-2), B(2;-3), C(3;0). Phương trình đường phân giác ngoài góc A của tam giác ABClà
 - **A.** x = 1.
- **B.** v = -2.
- C. 2x + y = 0.
- **D.** 4x + y 2 = 0.

D. 0.

DẠNG 3. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG THẮNG

- Câu 97. (HKI XUÂN PHƯƠNG HN) Có bao nhiều cặp đường thẳng song song trong các đường thẳng
- $(d_1): y = -\frac{1}{\sqrt{2}}x 2; (d_2): y = -\frac{1}{2}x + 3; (d_3): y = \frac{1}{2}x + 3; (d_4): y = -\frac{\sqrt{2}}{2}x 2$
- Câu 98. Phương trình nào sau đây là phương trình đường thẳng không song song với đường thẳng d: y = 3x - 2

 - **A.** -3x+v=0. **B.** 3x-v-6=0.

 - C. 3x-y+6=0. D. 3x+y-6=0.
- **Câu 99.** Trong mặt phẳng Oxy, đường thẳng d:x-2y-1=0 song song với đường thẳng có phương trình nào sau đây?
- **A.** x+2y+1=0. **B.** 2x-y=0. **C.** -x+2y+1=0. **D.** -2x+4y-1=0.

Câu 100. Cho các đường thẳng sau.

$$d_1: y = \frac{3}{\sqrt{3}}x - 2$$
 $d_2: y = \frac{1}{\sqrt{3}}x + 1$ $d_3: y = -\left(1 - \frac{\sqrt{3}}{3}\right)x + 2$ $d_4: y = \frac{\sqrt{3}}{3}x - 1$

Khẳng định nào đúng trong các khẳng định sau?

- **A.** d_2, d_3, d_4 song song với nhau.
- **B.** d_2 và d_4 song song với nhau.
- C. d_1 và d_4 vuông góc với nhau.
- **D.** d_2 và d_3 song song với nhau.
- **Câu 101.** Tìm các giá trị thực của tham số m để đường thẳng $y = (m^2 3)x + 3m + 1$ song song với đường thẳng v = x - 5.
 - **A.** $m = \pm 2$.
- **B.** $m = \pm \sqrt{2}$
- C. m = -2
- **Câu 102.** Tọa độ giao điểm của hai đường thẳng x-3y-6=0 và 3x+4y-1=0 là
 - **A.** $\left(\frac{27}{13}; -\frac{17}{13}\right)$. **B.** $\left(-27; 17\right)$.
- C. $\left(-\frac{27}{13}; \frac{17}{13}\right)$. D. (27; -17).
- **Câu 103.** Cho đường thẳng $d_1: 2x+3y+15=0$ và $d_2: x-2y-3=0$. Khẳng định nào sau đây đúng?
 - **A.** d_1 và d_2 cắt nhau và không vuông góc với nhau. nhau.

- **B.** d_1 và d_2 song song với
- **C.** d_1 và d_2 trùng nhau. **D.** d_1 và d_2 vuông góc với nhau.
- **Câu 104.** Hai đường thẳng $d_1: mx + y = m 5, d_2: x + my = 9$ cắt nhau khi và chỉ khi
 - A. $m \neq -1$.
- **B.** $m \neq 1$.
- C. $m \neq \pm 1$.
- D, $m \neq 2$.

- Câu 105. Với giá trị nào của m thì hai đường thẳng
 - $d_1: 3x + 4y + 10 = 0$ và $d_2: (2m-1)x + m^2y + 10 = 0$ trùng nhau?
 - A. $m \pm 2$.
- **B.** $m = \pm 1$.
- **D.** m = -2.

Câu 106. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng có phương trình $d_1: mx + (m-1)y + 2m = 0$ và $d_2: 2x + y - 1 = 0$. Nếu d_1 song song d_2 thì:

A.
$$m = 2$$
.

B.
$$m = -1$$

B.
$$m = -1$$
. **C.** $m = -2$.

D.
$$m = 1$$
.

Câu 107. Tìm m để hai đường thẳng $d_1: 2x-3y+4=0$ và $d_2: \begin{cases} x=2-3t \\ y=1-4mt \end{cases}$ cắt nhau.

A.
$$m \neq -\frac{1}{2}$$
. **B.** $m \neq 2$.

B.
$$m \neq 2$$
.

C.
$$m \neq \frac{1}{2}$$
. D. $m = \frac{1}{2}$.

D.
$$m = \frac{1}{2}$$
.

Câu 108. Với giá trị nào của a thì hai đường thắng

$$d_1: 2x - 4y + 1 = 0$$
 và $d_2: \begin{cases} x = -1 + at \\ y = 3 - (a+1)t \end{cases}$ vuông góc với nhau?

A.
$$a = -2$$
.

B.
$$a = 2$$

C.
$$a = -1$$
.

D.
$$a = 1$$
.

Câu 109. Với giá trị nào của m thì hai đường thẳng

$$d_1: \begin{cases} x = -2 + 2t \\ y = -3t \end{cases}$$
 và $d_2: \begin{cases} x = 2 + mt \\ y = -6 + (1 - 2m)t \end{cases}$ trùng nhau?

A.
$$m = \frac{1}{2}$$
.

B.
$$m = -2$$

C.
$$m = 2$$
.

D.
$$m \neq \pm 2$$
.

Câu 110. Tìm tất cả các giá trị của m để hai đường thẳng

$$d_1: \begin{cases} x=2+2t \\ y=1+mt \end{cases}$$
 và $d_2: 4x-3y+m=0$ trùng nhau.

A.
$$m = -3$$
.

B.
$$m = 1$$
.

C.
$$m = \frac{4}{3}$$

C.
$$m = \frac{4}{3}$$
. **D.** $m \in \emptyset$.

Câu 111. Với giá trị nào của m thì hai đường thẳng

$$d_1: 2x + y + 4 - m = 0$$
 và $d_2: (m+3)x + y + 2m - 1 = 0$ song song?

A.
$$m = 1$$
.

B.
$$m = -1$$
. **C.** $m = 2$.

C.
$$m = 2$$
.

D.
$$m = 3$$
.

Câu 112. Tìm tất cả các giá trị của m để hai đường thẳng

$$\Delta_1: 2x - 3my + 10 = 0$$
 và $\Delta_2: mx + 4y + 1 = 0$ cắt nhau.

A.
$$1 < m < 10$$
.

B.
$$m = 1$$

D. Với mọi *m* .

Câu 113. Với giá trị nào của m thì hai đường thẳng

$$\Delta_1 : mx + y - 19 = 0$$
 và $\Delta_2 : (m-1)x + (m+1)y - 20 = 0$ vuông góc?

A. Với mọi *m* .

C. Không có m. **D.** $m = \pm 1$.

Câu 114. Với giá trị nào của m thì hai đường thắng

$$d_1: 3mx + 2y + 6 = 0$$
 và $d_2: (m^2 + 2)x + 2my + 6 = 0$ cắt nhau?

A.
$$m \neq -1$$
.

B. $m \neq 1$. **C.** $m \in \mathbb{R}$.

D. $m \neq 1$ và $m \neq -1$.

13

Câu 115. Với giá tri nào của m thì hai đường thắng

$$d_1: 2x-3y-10=0$$
 và $d_2: \begin{cases} x=2-3t \\ y=1-4mt \end{cases}$ vuông góc?

A.
$$m = \frac{1}{2}$$
.

B.
$$m = \frac{9}{8}$$

A.
$$m = \frac{1}{2}$$
. **B.** $m = \frac{9}{8}$. **C.** $m = -\frac{9}{8}$. **D.** $m = -\frac{5}{4}$.

D.
$$m = -\frac{5}{4}$$

Câu 116. Với giá trị nào của m thì hai đường thẳng

$$d_1: 4x - 3y + 3m = 0$$
 và $d_2: \begin{cases} x = 1 + 2t \\ y = 4 + mt \end{cases}$ trùng nhau?

A.
$$m = -\frac{8}{3}$$
.

B.
$$m = \frac{8}{3}$$

B.
$$m = \frac{8}{3}$$
. **C.** $m = -\frac{4}{3}$. **D.** $m = \frac{4}{3}$.

D.
$$m = \frac{4}{3}$$
.

Câu 117. Với giá trị nào của m thì hai đường thẳng

$$d_1: 3mx + 2y - 6 = 0$$
 và $d_2: (m^2 + 2)x + 2my - 3 = 0$ song song?

A.
$$m = 1$$
; $m = -1$. **B.** $m \in \emptyset$. **C.** $m = 2$.

B.
$$m \in \emptyset$$

C.
$$m = 2$$

D.
$$m = -1$$

Câu 118. Với giá trị nào của m thì hai đường thẳng

$$d_1:$$

$$\begin{cases} x = 8 - (m+1)t \\ y = 10 + t \end{cases}$$
 và $d_2: mx + 2y - 14 = 0$ song song?

A.
$$\begin{bmatrix} m = 1 \\ m = -2 \end{bmatrix}$$
 B. $m = 1$. **C.** $m = -2$. **D.** $m \in \emptyset$.

B.
$$m = 1$$
.

C.
$$m = -2$$

$$\mathbf{D}$$
. $m \in \emptyset$.

Câu 119. Với giá trị nào của m thì hai đường thắng

$$d_1: (m-3)x + 2y + m^2 - 1 = 0$$
 và $d_2: -x + my + m^2 - 2m + 1 = 0$ cắt nhau?

A.
$$m \neq 1$$
.

B.
$$\begin{cases} m \neq 1 \\ m \neq 2 \end{cases}$$
 C. $m \neq 2$.

C.
$$m \neq 2$$
.

D.
$$\begin{bmatrix} m \neq 1 \\ m \neq 2 \end{bmatrix}$$

Câu 120. Với giá trị nào của m thì hai đường thắng

$$\Delta_1: \begin{cases} x = m + 2t \\ y = 1 + (m^2 + 1)t \end{cases}$$
 và $\Delta_2: \begin{cases} x = 1 + mt \\ y = m + t \end{cases}$ trùng nhau?

A. Không có
$$m$$
.

B.
$$m = \frac{4}{3}$$
.

C.
$$m = 1$$
.

C.
$$m = 1$$
. **D.** $m = -3$.

Câu 121. Tìm tọa độ giao điểm của hai đường thẳng 7x-3y+16=0 và x+10=0.

A.
$$(-10; -18)$$
.

Câu 122. Tìm toạ độ giao điểm của hai đường thẳng

$$d_1: \begin{cases} x = -3 + 4t \\ y = 2 + 5t \end{cases}$$
 và $d_2: \begin{cases} x = 1 + 4t' \\ y = 7 - 5t' \end{cases}$

B.
$$(-3;2)$$
.

$$C. (2; -3).$$

Câu 123. Cho hai đường thẳng $d_1: 2x + 3y - 19 = 0$ và $d_2: \begin{cases} x = 22 + 2t \\ y = 55 + 5t \end{cases}$. Tìm toạ độ giao điểm của hai đường thắng đã cho.

$$\mathbf{C.} (-1;7)$$

Câu 124. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-2;0), B(1;4) và đường thẳng $d:\begin{cases} x=-t \\ v=2-t \end{cases}$. Tìm tọa độ giao điểm của đường thắng AB và d.

A. (2;0).

B. (-2;0). **C.** (0;2).

D. (0;-2).

14

Câu 125. Xác định a để hai đường thẳng $d_1: ax + 3y - 4 = 0$ và $d_2: \begin{cases} x = -1 + t \\ y = 3 + 3t \end{cases}$ cắt nhau tại một điểm nằm trên truc hoành.

A. a = 1.

B. a = -1.

C. a = 2.

D. a = -2.

Câu 126. Tìm tất cả các giá trị của tham số m để hai đường thẳng $d_1: 4x + 3my - m^2 = 0$ và $d_2: \begin{cases} x = 2 + t \\ v = 6 + 2t \end{cases}$ cắt nhau tại một điểm thuộc trục tung.

A. m = 0 hoặc m = -6. **B.** m = 0 hoặc m = 2.

C. m = 0 hoặc m = -2. D. m = 0 hoặc m = 6.

Câu 127. Cho ba đường thẳng $d_1: 3x - 2y + 5 = 0$, $d_2: 2x + 4y - 7 = 0$, $d_3: 3x + 4y - 1 = 0$. Phương trình đường thẳng d đi qua giao điểm của d_1 và d_2 , và song song với d_3 là:

A. 24x + 32y - 53 = 0. **B.** 24x + 32y + 53 = 0.

C. 24x-32y+53=0. D. 24x-32y-53=0.

Câu 128. Lập phương trình của đường thẳng Δ đi qua giao điểm của hai đường thẳng $d_1: x+3y-1=0$, d_2 : x-3y-5=0 và vuông góc với đường thẳng d_3 : 2x-y+7=0.

A. 3x + 6y - 5 = 0.

B. 6x+12y-5=0.

C. 6x+12y+10=0.

D. x + 2y + 10 = 0.

Câu 129. Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình $d_1:3x-4y+15=0$, $d_2:5x+2y-1=0$ và $d_3:mx-(2m-1)y+9m-13=0$. Tìm tất cả các giá trị của tham số m để ba đường thẳng đã cho cùng đi qua một điểm.

A. $m = \frac{1}{5}$.

B. m = -5.

C. $m = -\frac{1}{5}$.

D. m = 5.

Câu 130. Nếu ba đường thẳng

$$d_1: 2x + y - 4 = 0$$
, $d_2: 5x - 2y + 3 = 0$ và $d_3: mx + 3y - 2 = 0$

đồng quy thì m nhận giá trị nào sau đây?

B. $-\frac{12}{5}$.

C. 12.

D. −12.

Câu 131. Với giá trị nào của m thì ba đường thẳng $d_1:3x-4y+15=0$, $d_2:5x+2y-1=0$ và $d_3 : mx - 4y + 15 = 0$ đồng quy?

A. m = -5.

B. m = 5.

 $C_{1}, m = 3$

 D_{*} m = -3

Câu 132. Với giá trị nào của m thì ba đường thẳng $d_1: 2x+y-1=0$, $d_2: x+2y+1=0$ và $d_3: mx-y-7=0$ đồng quy?

A. m = -6.

B. m = 6

C. m = -5

D. m = 5.

Câu 133. Đường thẳng d:51x-30y+11=0 đi qua điểm nào sau đây?

A. $M\left(-1; -\frac{4}{3}\right)$. **B.** $N\left(-1; \frac{4}{3}\right)$. **C.** $P\left(1; \frac{3}{4}\right)$.

D. $Q\left(-1; -\frac{3}{4}\right)$.

15

DANG 4. GÓC CỦA HAI ĐƯỜNG THẮNG

Dạng 4.1 Tính góc của hai đường thẳng cho trước

CÁC DẠN	NG TOÁN THƯỜI	NG GẶP		ÐT:0946798489		
Câu 134.	(NGÔ GIA TỰ LẦN 1_2018-2019) Tính góc giữa hai đường thẳng $\Delta: x - \sqrt{3}y + 2 = 0$ v $\Delta': x + \sqrt{3}y - 1 = 0$.					
	A. 90° .	B. 120°.	C. 60°.	D. 30°.		
Câu 135.		ong thẳng $a: \sqrt{3}x - y + 7$ B. 90°.	$b = 0$ và $b : x - \sqrt{3}y - 1 = 0$ C. 60° .	0 là: D. 45°.		
	A. 30°.					
Câu 136.	Cho hai đường th bằng			Góc tạo bởi đường thẳng d_1 và d_2		
	A. 30° .	B. 135 ⁰ .	C. 45°.	D. 60° .		
Câu 137.	Tìm côsin góc gi	ữa hai đường thẳng $\Delta_{_{ m l}}$:	$2x + y - 1 = 0 \text{ và } \Delta_2 : \begin{cases} x \\ y \end{cases}$	c = 2 + t $c = 1 - t$		
	A. $\frac{\sqrt{10}}{10}$.	B. $\frac{3}{10}$.	$C. \frac{3}{5}$.	D. $\frac{3\sqrt{10}}{10}$.		
	10		_	10		
Câu 138.	Tìm góc giữa hai	đường thẳng $\Delta_1: x-2y$	(-			
	A. 5°.	B. 60°.	C. 0°.	D. 90°.		
Câu 139.	Tìm cosin góc giữa 2 đường thẳng $d_1: x + 2y - 7 = 0, d_2: 2x - 4y + 9 = 0$.					
	A. $\frac{3}{\sqrt{5}}$.	B. $\frac{2}{\sqrt{5}}$.	C. $\frac{1}{5}$.	D. $\frac{3}{5}$.		
Câu 140.	(LƯƠNG TÀI	2 BẮC NINH LÀ	N 1-2018-2019) Tín	h góc giữa hai đường thẳng		
		$0 v \stackrel{?}{a} \Delta' : x + \sqrt{3} y - 1 = 0 $				
	A. 90°.	B. 120°.	C. 60°.	D. 30°.		
Câu 141.	Tính góc tạo bởi	giữa hai đường thẳng				
		$d_1:2x-y-1$	$0 = 0 \text{ và } d_2 : x - 3y + 9 = 0$	= 0.		
	A. 30°.	B. 45°.	C. 60°.	D. 135°.		
Câu 142.	Tính góc tạo bởi	giữa hai đường thẳng $d_1: 7x-3y+6$	$6 = 0$ và $d_2 : 2x - 5y - 4$	= 0.		
	π	π	$\frac{2\pi}{3}$.	3π		
	A. $\frac{\pi}{4}$.	B. $\frac{1}{3}$.	$\frac{\mathbf{C.}}{3}$.	$\frac{1}{4}$.		
Câu 143.	Tính góc tạo bởi	giữa hai đường thẳng d	$x_1 : 2x + 2\sqrt{3}y + 5 = 0$ và	$d_2: y-6=0.$		
	A. 30°.	B. 45°.	C. 60°.	D. 90°.		
Câu 144.	Tính góc tao bởi	giữa hai đường thẳng d	$f_1: x + \sqrt{3}y = 0 \text{ và } d_2: x$	+10=0.		
	A. 30°.	B. 45°.	C. 60°.	D. 90°.		
Câu 145.	Tính góc tao bởi	giữa hai đường thẳng				
	<u>.</u>		15 = 0 và d_2 : $\begin{cases} x = 10 - 15 \\ y = 1 + 5 \end{cases}$	6t		
	A. 30°.	B. 45°.	C. 60°.	D. 90°.		

Câu 146. Cho đường thẳng $d_1: x+2y-7=0$ và $d_2: 2x-4y+9=0$. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

A.
$$-\frac{3}{5}$$
.

B.
$$\frac{2}{\sqrt{5}}$$

C.
$$\frac{3}{5}$$

D.
$$\frac{3}{\sqrt{5}}$$

Câu 147. Cho đường thẳng $d_1: x+2y-2=0$ và $d_2: x-y=0$. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

A.
$$\frac{\sqrt{10}}{10}$$
.

B.
$$\frac{\sqrt{2}}{3}$$
. **C.** $\frac{\sqrt{3}}{3}$.

C.
$$\frac{\sqrt{3}}{3}$$

D.
$$\sqrt{3}$$
 .

Câu 148. Cho đường thẳng $d_1:10x+5y-1=0$ và $d_2:\begin{cases} x=2+t\\ y=1-t \end{cases}$. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

A.
$$\frac{3\sqrt{10}}{10}$$
. **B.** $\frac{3}{5}$.

B.
$$\frac{3}{5}$$
.

C.
$$\frac{\sqrt{10}}{10}$$
.

D.
$$\frac{3}{10}$$
.

Câu 149. Cho đường thẳng $d_1: 3x + 4y + 1 = 0$ và $d_2: \begin{cases} x = 15 + 12t \\ y = 1 + 5t \end{cases}$.

Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

A.
$$\frac{56}{65}$$
.

B.
$$-\frac{33}{65}$$
.

C.
$$\frac{6}{65}$$
.

D.
$$\frac{33}{65}$$
.

Dang 4.2 Viết phương trình đường thẳng liên quan đến góc

Câu 150. Xác định tất cả các giá trị của a để góc tạo bởi đường thẳng $\begin{cases} x = 9 + at \\ v = 7 - 2t \end{cases}$ ($t \in \mathbb{R}$) và đường thẳng 3x + 4y - 2 = 0 bằng 45° .

A.
$$a = 1$$
, $a = -14$.

B.
$$a = \frac{2}{7}$$
, $a = -14$.

A.
$$a = 1$$
, $a = -14$. **B.** $a = \frac{2}{7}$, $a = -14$. **C.** $a = -2$, $a = -14$. **D.** $a = \frac{2}{7}$, $a = 14$.

D.
$$a = \frac{2}{7}$$
, $a = 14$

Câu 151. Đường thẳng Δ đi qua giao điểm của hai đường thẳng $d_1: 2x+y-3=0$ và $d_2: x-2y+1=0$ đồng thời tạo với đường thẳng d_3 : y-1=0 một góc 45^0 có phương trình:

A.
$$x + (1 - \sqrt{2})y = 0$$
 hoặc $\Delta : x - y - 1 = 0$. **B.** $\Delta : x + 2y = 0$ hoặc $\Delta : x - 4y = 0$.

B.
$$\Delta: x + 2y = 0$$
 hoặc $\Delta: x - 4y = 0$.

C.
$$\Delta : x - y = 0$$
 hoặc $\Delta : x + y - 2 = 0$. **D.** $\Delta : 2x + 1 = 0$ hoặc $y + 5 = 0$.

D.
$$\Delta: 2x + 1 = 0$$
 hoặc $y + 5 = 0$.

Câu 152. Trong mặt phẳng với hệ tọa độ Oxy, có bao nhiều đường thẳng đi qua điểm A(2;0) và tạo với trục hoành một góc 45°?

- A. Có duy nhất.
- **B.** 2.
- C. Vô số.
- D. Không tồn tai.

Câu 153. Đường thẳng Δ tạo với đường thẳng d: x+2y-6=0 một góc 45° . Tìm hệ số góc k của đường thẳng Δ .

A.
$$k = \frac{1}{3}$$
 hoặc $k = -3$. **B.** $k = \frac{1}{3}$ hoặc $k = 3$.

C.
$$k = -\frac{1}{3}$$
 hoặc $k = -3$. **D.** $k = -\frac{1}{3}$ hoặc $k = 3$.

Câu 154. Biết rằng có đúng hai giá trị của tham số k để đường thẳng d: y = kx tạo với đường thẳng $\Delta: y = x$ một góc 60° . Tổng hai giá trị của k bằng:

C. -1.

Câu 155. Trong mặt phẳng tọa độ Oxy, cho điểm M(1,-1) và hai đường thẳng có phương trình $(d_1): x-y-1=0, (d_2): 2x+y-5=0$. Gọi A là giao điểm của hai đường thẳng trên. Biết rằng có hai đường thẳng (d) đi qua M cắt hai đường thẳng trên lần lượt tại hai điểm B,C sao cho ABClà tam giác có BC = 3AB có dạng: ax + y + b = 0 và cx + y + d = 0, giá trị của T = a + b + c + d là **A.** T = 5. **B.** T = 6. **C.** T = 2. **D.** T = 0.

Câu 156. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác cân ABC có cạnh đáy BC: x-3y-1=0, cạnh bên AB: x-y-5=0. Đường thẳng AC đi qua M(-4;1). Giả sử toạ độ đỉnh C(m,n). Tính T = m + n.

A. $T = \frac{5}{9}$.

B. T = -3. **C.** $T = \frac{9}{5}$. **D.** $T = -\frac{9}{5}$.

Câu 157. (Cụm liên trường Hải Phòng-L1-2019) Trong mặt phẳng Oxy, cho hai đường thẳng $(d_1):2x-y+5=0$ và $(d_2):x+y-3=0$ cắt nhau tại I. Phương trình đường thẳng đi qua M(-2,0) cắt $(d_1),(d_2)$ tại A và B sao cho tam giác IAB cân tại A có phương trình dạng ax + by + 2 = 0. Tính T = a - 5b.

A. T = -1.

C. T = -9. D. T = 11.

DANG 5. KHOẢNG CÁCH

Dạng 5.1 Tính khoảng cách từ 1 điểm đến đường thẳng cho trước

Câu 158. Khoảng cách từ điểm A(1,1) đến đường thẳng 5x-12y-6=0 là

A. 13.

B. −13.

C. -1.

D. 1.

Câu 159. Khoảng cách từ điểm M(5;-1) đến đường thẳng 3x+2y+13=0 là:

A. $2\sqrt{13}$

B. $\frac{28}{\sqrt{13}}$.

C. 26.

D. $\frac{\sqrt{13}}{2}$.

Câu 160. (THPT Đoàn Thượng-Hải Dương-HKI 18-19) Khoảng cách từ điểm M(1;-1) đến đường thẳng $\Delta : 3x + y + 4 = 0$ là

A. 1.

B. $\frac{3\sqrt{10}}{5}$. **C.** $\frac{5}{2}$.

D. $2\sqrt{10}$

Câu 161. Trong mặt phẳng Oxy, khoảng cách từ điểm M(3,-4) đến đường thẳng $\Delta: 3x-4y-1=0$.

A. $\frac{8}{5}$.

B. $\frac{24}{5}$.

C. $\frac{12}{5}$.

D. $-\frac{24}{5}$.

Câu 162. Khoảng cách từ điểm A(-3;2) đến đường thẳng $\Delta:3x-y+1=0$ bằng:

A. $\sqrt{10}$.

B. $\frac{11\sqrt{5}}{5}$.

C. $\frac{10\sqrt{5}}{5}$.

D. $\frac{11}{\sqrt{10}}$.

Câu 163. Trong mặt phẳng Oxy, khoảng cách từ gốc tọa độ O đến đường thẳng d:4x-3y+1=0 bằng

A. 3.

B. 4.

C. 1.

 $\frac{1}{5}$.

Câu 164. Một đường tròn có tâm I(3;-2) tiếp xúc với đường thẳng $\Delta:x-5y+1=0$. Hỏi bán kính đường tròn bằng bao nhiêu?

A.
$$\frac{14}{\sqrt{26}}$$
.

B.
$$\frac{7}{13}$$
.

C.
$$\sqrt{26}$$
.

D. 6.

từ điểm M(0;4)phẳng Oxy, khoång cách đến đường thẳng Câu 165. Trong măt $\Delta : x \cos \alpha + y \sin \alpha + 4(2 - \sin \alpha) = 0$ bằng

A.
$$\sqrt{8}$$
 .

 \mathbf{B} , $4\sin\alpha$.

C.
$$\frac{4}{\cos \alpha + \sin \alpha}$$
.

D. 8.

Câu 166. Khoảng cách từ I(1;-2) đến đường thẳng $\Delta: 3x-4y-26=0$ bằng

B. 12.

D. $\frac{5}{2}$.

Câu 167. Khoảng cách từ giao điểm của hai đường thẳng x-3y+4=0 và 2x+3y-1=0 đến đường thẳng Δ : 3x + y + 4 = 0 bằng:

A.
$$2\sqrt{10}$$
 .

B.
$$\frac{3\sqrt{10}}{5}$$
. **C.** $\frac{\sqrt{10}}{5}$.

C.
$$\frac{\sqrt{10}}{5}$$
.

D. 2.

Câu 168. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

A.
$$\frac{1}{5}$$
.

B. 3.

C.
$$\frac{1}{25}$$
.

D. $\frac{3}{5}$.

Câu 169. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;-4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.

C.
$$\sqrt{26}$$
.

D. $2\sqrt{5}$

Câu 170. Khoảng cách từ điểm M(0;3) đến đường thẳng

 Δ : $x \cos \alpha + y \sin \alpha + 3(2 - \sin \alpha) = 0$ bằng:

A.
$$\sqrt{6}$$
.

B. 6.

C. $3\sin\alpha$.

D. $\frac{3}{\cos \alpha + \sin \alpha}$

Câu 171. Khoảng cách từ điểm M(2;0) đến đường thẳng $\Delta : \begin{cases} x = 1 + 3t \\ y = 2 + 4t \end{cases}$ bằng:

B.
$$\frac{2}{5}$$
. **C.** $\frac{10}{\sqrt{5}}$. **D.** $\frac{\sqrt{5}}{2}$.

Câu 172. Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng $\Delta:\begin{cases} x=2+3t \\ v=t \end{cases}$ bằng:

A.
$$\sqrt{10}$$
.

B.
$$\frac{1}{\sqrt{10}}$$
. **C.** $\frac{16}{\sqrt{5}}$.

C.
$$\frac{16}{\sqrt{5}}$$

D. $\sqrt{5}$.

Câu 173. Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(-1;2) đến đường thẳng Δ : mx + y - m + 4 = 0 bằng $2\sqrt{5}$.

A.
$$m = 2$$
.

B.
$$m = -2$$

 $m = \frac{1}{2}$ C. $m = -\frac{1}{2}$

C.
$$m = -\frac{1}{2}$$
.

D. Không tồn tại m.

Câu 174. Tìm tất cả các giá trị của tham số m để khoảng cách từ giao điểm của hai đường thẳng d_1 : $\begin{cases} x = t \\ y = 2 - t \end{cases}$ và $d_2: x-2y+m=0$ đến gốc toạ độ bằng 2. **A.** $\begin{bmatrix} m=-4 \\ m=2 \end{bmatrix}$ **B.** $\begin{bmatrix} m=-4 \\ m=-2 \end{bmatrix}$ **C.** $\begin{bmatrix} m=4 \\ m=2 \end{bmatrix}$ **D.** $\begin{bmatrix} m=4 \\ m=-2 \end{bmatrix}$

$$\mathbf{A.} \begin{bmatrix} m = -4 \\ m = 2 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} m = -4 \\ m = -2 \end{bmatrix}$$

$$\mathbf{C.} \begin{bmatrix} m = 4 \\ m = 2 \end{bmatrix}.$$

$$\mathbf{D.} \begin{bmatrix} m = 4 \\ m = -2 \end{bmatrix}$$

Câu 175. Đường tròn (C) có tâm là gốc tọa độ O(0;0) và tiếp xúc với đường thẳng $\Delta: 8x + 6y + 100 = 0$. Bán kính R của đường tròn (C) bằng:

A.
$$R = 4$$
.

B.
$$R = 6$$
.

$$C. R = 8.$$

D.
$$R = 10$$
.

Câu 176. Đường tròn (C) có tâm I(-2;-2) và tiếp xúc với đường thẳng $\Delta: 5x+12y-10=0$. Bán kính R của đường tròn (C) bằng:

A.
$$R = \frac{44}{13}$$
.

B.
$$R = \frac{24}{13}$$
. **C.** $R = 44$. **D.** $R = \frac{7}{13}$.

C.
$$R = 44$$

D.
$$R = \frac{7}{13}$$

Câu 177. Cho đường thẳng d:21x-11y-10=0. Trong các điểm M(21;-3), N(0;4), P(-19;5) và Q(1;5) điểm nào gần đường thẳng d nhất?

Câu 178. Cho đường thẳng d: 7x+10y-15=0. Trong các điểm M(1;-3), N(0;4), P(-19;5) và Q(1;5)điểm nào cách xa đường thẳng d nhất?

$$\mathbf{A}$$
. M

$$\mathbf{R}$$
. N

$$\mathbf{C}$$
, P

Câu 179. Khoảng cách giữa hai đường thắng song song

 $\Delta_1: 6x - 8y + 3 = 0$ và $\Delta_2: 3x - 4y - 6 = 0$ bằng: **B.** $\frac{3}{2}$. **C.** 2.

A.
$$\frac{1}{2}$$
.

B.
$$\frac{3}{2}$$

D.
$$\frac{5}{2}$$
.

Câu 180. Tính khoảng cách giữa hai đường thẳng d: 7x + y - 3 = 0 và $\Delta:\begin{cases} x = -2 + t \\ y = 2 - 7t \end{cases}$

A.
$$\frac{3\sqrt{2}}{2}$$
.

D.
$$\frac{9}{\sqrt{50}}$$
.

Câu 181. Khoảng cách giữa hai đường thẳng song song

 $d_1: 6x - 8y - 101 = 0$ và $d_2: 3x - 4y = 0$ bằng:

A. 10,1.

B. 1,01.

C. 101.

D. $\sqrt{101}$.

Dạng 5.2 Phương trình đường thẳng liên quan đến khoảng cách

Câu 182. Cho hai điểm A(3;1), B(4;0). Đường thẳng nào sau đây cách đều A và B?

A.
$$-2x + 2y - 3 = 0$$

A.
$$-2x + 2y - 3 = 0$$
. **B.** $2x - 2y - 3 = 0$. **C.** $x + 2y - 3 = 0$. **D.** $2x + 2y - 3 = 0$.

C.
$$x + 2y - 3 = 0$$

D.
$$2x + 2y - 3 = 0$$

Câu 183. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(2;3) và B(1;4). Đường thẳng nào sau đây

cách đều hai điểm A và B?

A.
$$x - y + 2 = 0$$
.

B.
$$x + 2y = 0$$
.

B.
$$x + 2y = 0$$
. **C.** $2x - 2y + 10 = 0$. **D.** $x - y + 100 = 0$.

D.
$$x - y + 100 = 0$$

Câu 184. Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0;1), B(12;5) và C(-3;0). Đường thẳng nào sau đây cách đều ba điểm A, B và C.

A.
$$x-3y+4=0$$
.

B.
$$-x + y + 10 = 0$$
. **C.** $x + y = 0$. **D.** $5x - y + 1 = 0$.

C.
$$x + y = 0$$
.

D.
$$5x - y + 1 = 0$$

Câu 185. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;1), B(-2;4) và đường thẳng Δ : mx - y + 3 = 0. Tìm tất cả các giá trị của tham số m để Δ cách đều hai điểm A, B.

$$\mathbf{A.} \begin{bmatrix} m = 1 \\ m = -2 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} m = -1 \\ m = 2 \end{bmatrix}.$$

A.
$$\begin{bmatrix} m=1 \\ m=-2 \end{bmatrix}$$
 B. $\begin{bmatrix} m=-1 \\ m=2 \end{bmatrix}$ C. $\begin{bmatrix} m=-1 \\ m=1 \end{bmatrix}$ D. $\begin{bmatrix} m=2 \\ m=-2 \end{bmatrix}$

$$\mathbf{D.} \begin{bmatrix} m=2\\ m=-2 \end{bmatrix}.$$

Câu 186. Đường thẳng Δ song song với đường thẳng d:3x-4y+1=0 và cách d một khoảng bằng 1 có phương trình:

A.
$$3x-4y+6=0$$
 hoặc $3x-4y-4=0$.

B.
$$3x-4y-6=0$$
 hoặc $3x-4y+4=0$.

C.
$$3x-4y+6=0$$
 hoặc $3x-4y+4=0$.

D.
$$3x-4y-6=0$$
 hoặc $3x-4y-4=0$.

Câu 187. Tập hợp các điểm cách đường thẳng $\Delta: 3x-4y+2=0$ một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

A.
$$3x-4y+8=0$$
 hoặc $3x-4y+12=0$.

B.
$$3x-4y-8=0$$
 hoặc $3x-4y+12=0$.

C.
$$3x-4y-8=0$$
 hoặc $3x-4y-12=0$.

D.
$$3x-4y+8=0$$
 hoặc $3x-4y-12=0$.

Câu 188. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng $d_1:5x+3y-3=0$ và $d_2:5x+3y+7=0$ song song nhau. Đường thẳng vừa song song và cách đều với d_1 , d_2 là:

A.
$$5x + 3y - 2 = 0$$
.

B.
$$5x + 3y + 4 = 0$$
.

C.
$$5x + 3y + 2 = 0$$
.

D.
$$5x + 3y - 4 = 0$$
.

Câu 189. Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Điểm M thuộc cạnh CD sao cho MC = 2DM, N(0;2019) là trung điểm của cạnh BC, K là giao điểm của hai đường thẳng AM và BD. Biết đường thẳng AM có phương trình x-10y+2018=0. Khoảng cách từ gốc tọa độ O đến đường thẳng NK bằng

C.
$$\frac{2018}{11}$$

B.
$$2019\sqrt{101}$$
. **C.** $\frac{2018}{11}$. **D.** $\frac{2019\sqrt{101}}{101}$.

Câu 190. Trong mặt phẳng tọa độ Oxy, gọi d là đường thảng đi qua M(4;2) và cách điểm A(1;0) khoảng cách $\frac{3\sqrt{10}}{10}$. Biết rằng phương trình đường thẳng d có dạng x + by + c = 0 với b, c là hai số nguyên. Tính b+c.

A. 4.

B. 5

 $C_{*}-1$

D. -5.

Câu 191. (TH&TT LÀN 1 – THÁNG 12) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng $\Delta: x + (m-1)y + m = 0$ (m là tham số bất kì) và điểm A(5;1). Khoảng cách lớn nhất từ điểm Ađến ∆ bằng

 $\frac{1}{C}$, $4\sqrt{10}$.

Câu 192. Chuyên Lê Hồng Phong-Nam Định Đường thẳng 12x+5y=60 tạo với hai trục toạ độ một tam giác. Tổng độ dài các đường cao của tam giác đó là

A. $\frac{60}{13}$.

B. $\frac{281}{12}$.

C. $\frac{360}{17}$.

D. 20.

Câu 193. Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;-1) và B(3;4). Gọi (d) là một đường thẳng bất kì luôn đi qua **B.** Khi khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất, đường thẳng (d)có phương trình nào dưới đây?

A. x-y+1=0.

B. 3x + 4y = 25. **C.** 5x - 2y - 7 = 0. **D.** 2x + 5y - 26 = 0.

DANG 6. XÁC ĐINH ĐIỂM

Dang 6.1 Xác định toa hình chiếu, điểm đối xứng

Câu 194. Cho đường thẳng d: 3x + 5y - 15 = 0. Trong các điểm sau đây, điểm nào **không** thuộc đường thẳng

A. $M_1(5;0)$.

B. $M_{4}(-5;6)$. **C.** $M_{2}(0;3)$.

D. $M_{2}(5;3)$.

Câu 195. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có A(4;3), B(2;7), C(-3;-8). Tọa độ chân đường cao kẻ từ đỉnh A xuống cạnh BC là:

A. (-1;4).

B. (1; -4).

C. (1;4).

D. (4;1).

Câu 196. Cho đường thẳng d:-3x+y-5=0 và điểm M(-2;1). Tọa độ hình chiếu vuông góc của M trên d là

A. $\left(\frac{7}{5}; -\frac{4}{5}\right)$. **B.** $\left(-\frac{7}{5}; \frac{4}{5}\right)$. **C.** $\left(-\frac{7}{5}; -\frac{4}{5}\right)$. **D.** $\left(-\frac{5}{7}; \frac{4}{5}\right)$.

Câu 197. Tọa độ hình chiếu vuông góc của điểm M(1,2) lên đường thẳng $\Delta: x-y=0$ là

A. $\left(\frac{3}{2}; \frac{3}{2}\right)$.

B. (1;1). **C.** (2;2).

D. $\left(-\frac{3}{2}; -\frac{3}{2}\right)$.

Câu 198. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với đỉnh A(2;4), trọng tâm $G\left[2;\frac{2}{3}\right]$. Biết rằng đỉnh B nằm trên đường thẳng (d) có phương trình x+y+2=0 và đỉnh C có hình chiếu vuông góc trên (d) là điểm H(2;-4). Giả sử B(a;b), khi đó T=a-3b bằng

A. T = 4.

B. T = -2.

C. T = 2.

D. T = 0.

Câu 199. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x+y+5=0 và điểm A(-4;8). Goi M đối xứng với B qua C, điểm N(5;-4) là hình chiếu vuông góc của B lên đường thẳng MD. Biết tọa độ C(m;n), giá trị của m-n là

B. −6.

Dạng 6.2 Xác định điểm liên quan đến yếu tố khoảng cách, góc

Câu 200. Cho hai điểm A(3;-1), B(0;3). Tìm tọa độ điểm M thuộc Ox sao khoảng cách từ M đến đường thẳng AB bằng 1.

CÁC DẠNG TOÁN THƯỜNG GẶP

A.
$$M\left(\frac{7}{2};0\right)$$
 và $M\left(1;0\right)$.

B. $M(\sqrt{13};0)$.

C.
$$M(4;0)$$
.

- **D.** M(2;0).
- **Câu 201.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;1), B(4;-3) và đường thẳng d: x-2y-1=0. Tìm điểm M thuộc d có tọa độ nguyên và thỏa mãn khoảng cách từ M đến đường thẳng AB bằng 6.

- **A.** M(3;7). **B.** M(7;3). **C.** M(-43;-27). **D.** $M\left(3;-\frac{27}{11}\right)$.
- **Câu 202.** Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(0;1) và đường thẳng $d: \begin{cases} x=2+2t \\ v=3+t \end{cases}$. Tìm điểm M thuộc d và cách A một khoảng bằng 5, biết M có hoành độ âm.
 - **A.** M(4;4).
- **B.** M(-4;4) $M(-\frac{24}{5};-\frac{2}{5})$. **C.** $M(-\frac{24}{5};-\frac{2}{5})$. **D.** M(-4;4).
- **Câu 203.** Biết rằng có đúng hai điểm thuộc trục hoành và cách đường thẳng $\Delta: 2x y + 5 = 0$ một khoảng bằng $2\sqrt{5}$. Tích hoành độ của hai điểm đó bằng:
- **B.** $-\frac{25}{4}$. **C.** $-\frac{225}{4}$.
- D. Đáp số khác.
- **Câu 204.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3,-1) và B(0,3). Tìm điểm M thuộc trục hoành sao cho khoảng cách từ M đến đường thẳng AB bằng 1.

- **A.** $M\left(\frac{7}{2};0\right)$. **B.** $M\left(\frac{14}{3};0\right)$. **C.** $M\left(-\frac{7}{2};0\right)$. **D.** $M\left(-\frac{14}{3};0\right)$. $M\left(-\frac{4}{3};0\right)$.
- **Câu 205.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3;0) và B(0;-4). Tìm điểm M thuộc trục tung sao cho diện tích tam giác MAB bằng 6.
 - **A.** M(0;0) M(0;-8). **B.** M(0;-8). **C.** M(6;0).
- **D.** M(0;0) M(0;6).
- **Câu 206.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng $\Delta_1: 3x-2y-6=0$ và $\Delta_2: 3x-2y+3=0$. Tìm điểm M thuộc trục hoành sao cho M cách đều hai đường thẳng đã cho.
- **A.** $M\left(0; \frac{1}{2}\right)$. **B.** $M\left(\frac{1}{2}; 0\right)$. **C.** $M\left(-\frac{1}{2}; 0\right)$. **D.** $M\left(\sqrt{2}; 0\right)$.
- **Câu 207.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-2;2), B(4;-6) và đường thẳng $d:\begin{cases} x=t \\ v=1+2t \end{cases}$. Tìm điểm M thuộc d sao cho M cách đều hai điểm A, B
 - **A.** *M* (3; 7).
- **B.** M(-3,-5). **C.** M(2,5). **D.** M(-2,-3)
- **Câu 208.** Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1,2), B(-3,2) và đường thẳng

d: 2x-y+3=0. Tìm điểm C thuộc d sao cho tam giác ABC cân tại C.

A.
$$C(-2;-1)$$
.

B.
$$C\left(-\frac{3}{2};0\right)$$
. **C.** $C(-1;1)$. **D.** $C(0;3)$

C.
$$C(-1;1)$$
.

D.
$$C(0;3)$$

Câu 209. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;2), B(0;3) và đường thẳng d: y = 2. Tìm điểm C thuộc d sao cho tam giác ABC cân tại B.

A.
$$C(1;2)$$
.

B.
$$C(4;2)$$
.

C.
$$C(1;2)$$
 D. $C(-1;2)$.

D.
$$C(-1;2)$$
.

Câu 210. Trong mặt phẳng với hệ tọa độ Oxy, giả sử điểm A(a;b) thuộc đường thẳng d: x-y-3=0 và cách Δ : 2x - y + 1 = 0 một khoảng bằng $\sqrt{5}$. Tính P = ab biết a > 0.

Câu 211. Trong mặt phẳng Oxy, cho biết điểm M(a;b) (a>0) thuộc đường thẳng $d:\begin{cases} x=3+t \\ y=2+t \end{cases}$ và cách đường thẳng $\Delta: 2x - y - 3 = 0$ một khoảng $2\sqrt{5}$. Khi đó a + b là.

B. 23.

D. 20.

Câu 212. Điểm A(a;b) thuộc đường thẳng $d:\begin{cases} x=3-t \\ y=2-t \end{cases}$ và cách đường thẳng $\Delta:2x-y-3=0$ một khoảng bằng $2\sqrt{5}$ và a < 0. Tính P = a.b.

A.
$$P = -72$$

B.
$$P = 72$$
.

C.
$$P = 132$$
.

D.
$$P = -132$$
.

Câu 213. (Chuyên Lam Sơn-KSCL-lần 2-2018-2019) Trong mặt phẳng tọa độ Oxy, cho điểm I(1;2) và đường thẳng (d): 2x+y-5=0. Biết rằng có hai điểm M_1,M_2 thuộc (d) sao cho $IM_1=IM_2=\sqrt{10}$. Tổng các hoành độ của M_1 và M_2 là

A.
$$\frac{7}{5}$$
.

B.
$$\frac{14}{5}$$
.

D. 5.

Câu 214. Trong hệ tọa độ Oxy cho A(1;1), B(4;-3). Gọi C(a;b) thuộc đường thẳng d:x-2y-1=0 sao cho khoảng cách từ C đến đường thẳng AB bằng 6. Biết rằng C có hoành độ nguyên, tính a+b

A.
$$a+b=10$$
.

B.
$$a+b=7$$
.

C.
$$a+b=4$$
.

D.
$$a+b=-4$$

Dạng 6.3 Xác định điểm liên quan đến yếu tố cực trị

Câu 215. Trong mặt phẳng tọa độ Oxy cho $\Delta: x-y+1=0$ và hai điểm A(2;1), B(9;6). Điểm M(a;b)nằm trên đường Δ sao cho MA + MB nhỏ nhất. Tính a + b.

A. -7.

B. −9.

C. 7.

D. 9.

Câu 216. Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: x-4y+15=0 và điểm A(2;0). Tìm tọa độ điểm M thuộc d để đoạn AM có độ dài nhỏ nhất.

A. M(-15;0).

B. M(5;5).

C. M(0;3).

D. M(1;4).

Câu 217. (Yên Định 1 - Thanh Hóa - 2018-2019) Cho 3 điểm A(-6;3); B(0;-1); C(3;2). Tìm M trên đường thẳng d: 2x - y - 3 = 0 mà $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}|$ nhỏ nhất là

A.
$$M\left(\frac{13}{15}, \frac{71}{15}\right)$$

B.
$$M\left(\frac{13}{15}; \frac{19}{15}\right)$$

C.
$$M\left(\frac{26}{15}, \frac{97}{15}\right)$$

CÁC DẠNG TOÁN THƯỜNG GẶP
 ĐT:0940

 A.
$$M\left(\frac{13}{15}; \frac{71}{15}\right)$$
 B. $M\left(\frac{13}{15}; \frac{19}{15}\right)$
 C. $M\left(\frac{26}{15}; \frac{97}{15}\right)$
 D. $M\left(\frac{-13}{15}; \frac{19}{15}\right)$

Câu 218. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2;2), B(1;-3), C(-2;2). Điểm M thuộc trục tung sao cho $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}|$ nhỏ nhất có tung độ là?

B.
$$\frac{1}{3}$$

$$C. -\frac{1}{3}$$
.

D.
$$\frac{1}{2}$$
.

Câu 219. Trong mặt phẳng tọa độ Oxy cho $\Delta : x - y + 1 = 0$ và hai điểm A(2;1), B(9;6). Điểm M(a;b) nằm trên đường Δ sao cho MA + MB nhỏ nhất. Tính a + b ta được kết quả là:

Dạng 6.4 Một số bài toán tổng hợp

Câu 220. Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử $M\left(\frac{11}{2}; \frac{1}{2}\right)$ và đường thẳng AN có phương trình 2x - y - 3 = 0. Tìm tọa độ điểm A.

A.
$$A(1;-1)$$
 hoặc $A(4;-5)$.

B.
$$A(1;-1)$$
 hoặc $A(-4;-5)$.

C.
$$A(1;-1)$$
 hoặc $A(4;5)$.

D.
$$A(1;1)$$
 hoặc $A(4;5)$.

Câu 221. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm I(1,-1) và hai đường thẳng $d_1: x+y-3=0, d_2: x-2y-6=0$. Hai điểm A,B lần lượt thuộc hai đường thẳng d_1,d_2 sao cho I là trung điểm của đoạn thẳng AB . Đường thẳng AB có một véctơ chỉ phương là

A.
$$\overrightarrow{u_1} = (1; 2)$$
.

B.
$$\overrightarrow{u_2} = (2;1)$$
.

B.
$$\overrightarrow{u_2} = (2;1)$$
. **C.** $\overrightarrow{u_3} = (1;-2)$.

D.
$$\overrightarrow{u_4} = (2; -1)$$
.

Câu 222. (TH&TT LÀN 1 – THÁNG 12) Trong mặt phẳng tọa độ Oxy, cho điểm hai điểm A(-4;2), B(2;6) và điểm C nằm trên đường thẳng $d: \frac{x-5}{3} = \frac{y+1}{-2}$ sao cho CA = CB. Khi đó tọa độ điểm

A.
$$\left(\frac{2}{5}; \frac{8}{5}\right)$$
.

B.
$$\left(\frac{-1}{5}; \frac{12}{5}\right)$$
. **C.** $\left(\frac{1}{5}; \frac{11}{5}\right)$. **D.** $\left(\frac{2}{5}; \frac{9}{5}\right)$.

$$\mathbf{C.}\left(\frac{1}{5};\frac{11}{5}\right)$$

$$\mathbf{D.}\left(\frac{2}{5};\frac{9}{5}\right).$$

Câu 223. Trong mặt phẳng với hệ tọa độ Oxy, cho A(-3;5), B(1;3) và đường thẳng d:2x-y-1=0, đường thẳng AB cắt d tại I . Tính tỉ số $\frac{IA}{IB}$.

C. 4

D. 1.

Câu 224. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2;1), B(2;-3), C(-2;-1). Trực tâm H của tam giác ABC có tọa độ (a;b). Biểu thức S = 3a + 2b bằng bao nhiêu?

C. 5.

Câu 225. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm B(-2;3) và C(3;-2). Điểm I(a;b) thuộc BCsao cho với mọi điểm M không nằm trên đường thẳng BC thì $\overrightarrow{MI} = \frac{2}{5} \overrightarrow{MB} + \frac{3}{5} \overrightarrow{MC}$. Tính $S = a^2 + b^2$

Câu 226. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2;2) và trung điểm của BC là I(-1,-2). Điểm M(a,b) thỏa mãn $2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Tính S = a + b.

 $\frac{1}{2}$.

Câu 227. (ĐỀ THI THỬ ĐỒNG ĐẬU-VĨNH PHÚC LẦN 01 - 2018 – 2019) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;1), đường cao BH có phương trình x-3y-7=0 và trung tuyến CMcó phương trình x + y + 1 = 0. Tìm tọa độ đỉnh C?

A. (-1;0).

B. (4;-5).

C. (1;-2).

D. (1; 4).

Câu 228. Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD; các điểm M, N, P lần lượt là trung điểm của AB, BC, CD; CM cắt DN tại điểm I(5;2). Biết $P(\frac{11}{2};\frac{11}{2})$ và điểm A có hoành độ âm. Toa đô điểm A và D là:

A. A(-2;3) và D(3;8). **B.** A(-2;3) và D(-3;8).

C. A(-2;3) và D(3;-8).

D. A(-2, -3) và D(3, 8).

Câu 229. Trong hệ trục tọa độ Oxy, cho tam giác ABC có B(-4;1), trọng tâm G(1;1) và đường thẳng phân giác trong góc A có phương trình d: x-y-1=0. Biết điểm A(m;n). Tính tích m.n.

A. m.n = 20.

B. m.n = 12.

C. m.n = -12.

Câu 230. Trên mặt phẳng Oxy, cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử $M\left(\frac{11}{2}; \frac{1}{2}\right)$ và đường thẳng AN có phương trình 2x-y-3=0. Gọi P(a;b) là giao điểm của AN và BD. Giá trị 2a+b bằng

A. 6

B. 5.

C. 8.

D. 7.

Câu 231. Cho $\triangle ABC$ vuông tại A, điểm M thuộc cạnh AC, sao cho AB = 3AM, đường tròn tâm I đường kính CM cắtBM tại D, đường thẳng CD có phương trình x-3y-6=0. Biết điểm I(1;-1), điểm $E\left(\frac{4}{3};0\right)$ thuộc đường thẳng BC, $x_C \in \mathbb{Z}$. Gọi B là điểm có tọa độ (a, b). Khi đó:

A. a + b = 1.

B. a+b=0. **C.** a+b=-1. **D.** a+b=2.

Câu 232. (THUẬN THÀNH SỐ 2 LẦN 1 2018-2019) Trên mặt phẳng Oxy, cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử $M\left(\frac{11}{2}; \frac{1}{2}\right)$ và đường thẳng AN có phương trình 2x-y-3=0. Gọi P(a;b) là giao điểm của AN và BD. Giá tri 2a+b bằng:

A. 6.

B. 5.

C. 8.

D. 7.

Câu 233. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh B(-12;1), đường phân giác trong của góc A có phương trình d: x+2y-5=0. $G\left(\frac{1}{3};\frac{2}{3}\right)$ là trọng tâm tam giác ABC. Đường thẳng BC qua điểm nào sau đây?

- **A.** (1;0).
- **B.** (2;-3).
- $\mathbf{C}_{\bullet}(4;-4)$. $\mathbf{D}_{\bullet}(4;3)$.

Câu 234. Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng BC: x + 7y - 13 = 0. Các chân đường cao kẻ từ B,C lần lượt là E(2;5),F(0;4). Biết tọa độ đỉnh A là A(a;b). Khi đó:

- **A.** a b = 5.
- **B.** 2a+b=6. **C.** a+2b=6.
- **D.** b a = 5

Câu 235. (THPT Đông Sơn 1 - Thanh Hóa - Lần 2 - Năm học 2018 - 2019) Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm H(1;2) là hình chiếu vuông góc của A lên BD. Điểm $M\left(\frac{9}{2};3\right)$ là trung điểm cạnh BC. Phương trình đường trung tuyến kẻ từ đỉnh A của tam giác ADH là 4x+y-4=0. Biết điểm D có tọa độ là $\left(x_{D};y_{D}\right)$ tính giá trị biểu thức $S=4x_{D}^{2}+y_{D}^{2}$

- **A.** S = 3.
- S = 4
- S = 6
- **D.** S = 5.

Câu 236. Cho tam giác ABC. Tìm tọa độ các đỉnh của tam giác biết phương trình cạnh BC: x + y - 2 = 0; hai đường cao BB': x-3=0 và CC': 2x-3y+6=0?

A. A(1,2); B(0,2); C(3,-1).

B. A(1;2); B(3;-1); C(0;2).

C. A(1;-2); B(3;-1); C(0;2).

D. A(2;1); B(3;-1); C(0;2).

Câu 237. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;0), B(3;0), C(2;6). Gọi H(a;b) là trực tâm của tam giác ABC. Tính 6ab

A. 10.

B. $\frac{5}{3}$.

C. 60.

D. 6.

Câu 238. Trong mặt phẳng tọa độ (Oxy), cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d:2x+y+5=0 và điểm A(-4;8). Gọi M là điểm đối xứng với B qua C, điểm N(5;-4) là hình chiếu vuông góc của B lên đường thẳng MD. Biết tọa độ C(m,n), giá trị của m-n là:

A. 6.

- B. -6.
- C. 8.

Câu 239. Trong mặt phẳng tọa độ Oxy, cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi M, N lần lượt là hình chiếu vuông góc của A lên BC và BD; gọi P là giao điểm của MN và AC. Biết đường thẳng AC có phương trình x-y-1=0, M(0;4), N(2;2) và hoành độ điểm A nhỏ hơn 2. Tìm toa đô các điểm P, A, B.

A.
$$P\left(\frac{5}{2}; \frac{3}{2}\right), A(0;-1), B(4;1).$$

- **B.** $P\left(\frac{5}{2}; \frac{3}{2}\right), A(0;-1), B(-1;4).$
- C. $P\left(\frac{5}{3}; \frac{3}{2}\right), A(0;-1), B(-1;4).$
- **D.** $P\left(\frac{5}{2}; \frac{3}{2}\right), A(-1;0), B(4;1).$

- Câu 240. (KSNLGV THUẬN THÀNH 2 BẮC NINH NĂM 2018 2019) Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC cân tại A, phương trình đường thẳng AB,AC lần lượt là 5x - y - 2 = 0, x - 5y + 14 = 0. Gọi D là trung điểm của BC, E là trung điểm của AD, $M\left(\frac{9}{5}; \frac{8}{5}\right)$ là hình chiếu vuông góc của D trên BE. Tính OC.
 - **A.** $OC = \sqrt{26}$.
 - **B.** $OC = \sqrt{10}$.
 - **C.** OC = 5.
 - **D.** $OC = \sqrt{52}$.
- Câu 241. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường cao hạ từ đỉnh A là $H\left(\frac{17}{5}; -\frac{1}{5}\right)$, chân đường phân giác trong góc A là D(5;3) và trung điểm của cạnh AB là M(0;1). Tìm toa đô đỉnh C.
 - **A.** C(-2;9).
- **B.** *C*(9;11).
- **C.** C(-9;-11). **D.** C(2;-10).

DANG 7. MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN DIÊN TÍCH

- Câu 242. (THPT Quỳnh Lưu- Nghệ An- 2019) Đường thắng $\Delta:5x+3y=15$ tạo với các trục tọa độ một tam giác có diện tích bằng bao nhiêu?
 - **A.** 7,5.

B. 5.

- **C.** 15.
- **D.** 3.
- **Câu 243.** Cho hai đường thẳng $d_1: y = mx 4$; $d_2: -mx 4$. Gọi S là tập hợp các giá trị nguyên dương của m để tam giác tạo thành bởi $d_{\rm 1}$, $d_{\rm 2}$ và trục hoành có diện tích lớn hơn 8. Số phần tử của tập S là **A.** 1. **B.** 3. C. 2. **D.** 4.
- **Câu 244.** Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I(1;3) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 6?

A.
$$y = (9 + \sqrt{72})x - \sqrt{72} - 6$$
.

B.
$$y = (9 - \sqrt{72})x + \sqrt{72} - 6$$
.

C.
$$y = 3x + 6$$
.

D.
$$y = -3x + 6$$
.

- Câu 245. Chuyên Lê Hồng Phong-Nam Định Cho tam giác ABC có A(1;-3), B(0;2), C(-2;4). Đường thẳng Δ đi qua A và chia tam giác ABC thành hai phần có diện tích bằng nhau. Phương trình của
- **A.** 2x-y-7=0. **B.** x+y+2=0. **C.** x-3y-10=0. **D.** 3x+y=0.
- **Câu 246.** Trong mặt phẳng Oxy, cho điểm M(2;1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A,B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là.
- **A.** 2x-y-3=0. **B.** x-2y=0. **C.** x+2y-4=0. **D.** x-y-1=0.
- **Câu 247.** (THI HK1 LỚP 11 THPT VIỆT TRÌ 2018 2019) Đường thẳng $d: \frac{x}{a} + \frac{y}{b} = 1$, $(a \ne 0; b \ne 0)$ đi qua M(-1;6) tạo với tia Ox, Oy một tam giác có diện tích bằng 4. Tính S = a + 2b.
 - **A.** $S = \frac{-5 + 7\sqrt{5}}{2}$. **B.** $S = -\frac{38}{3}$. **C.** S = 10.
- **D.** S = 6.

B. LÒI GIẢI

DẠNG 1. XÁC ĐỊNH VÉCTO CHỈ PHƯƠNG, VÉC TƠ PHÁP TUYẾN CỦA ĐƯỜNG THẮNG, HỆ SỐ GÓC CỦA ĐƯỜNG THẮNG

Câu 1. Chọn D

Ta có một vectơ pháp tuyến của đường thẳng (d) là $\vec{n} = (a;b)$.

Do đó chọn đáp án

D.
$$\vec{n_1} = (-a; b)$$
.

Câu 2. Chọn B.

d có một vecto pháp tuyến là $\bar{n} = (a;b) \Rightarrow$ phương trình d: ax + by + c = 0.

Nếu b = 0 thì đường thẳng d : ax + c = 0 không có hệ số góc \Rightarrow khẳng định 1 đúng.

Nếu $b \neq 0$ thì đường thẳng $d: y = -\frac{a}{b}x - \frac{c}{b}$ có hệ số góc là $-\frac{a}{b} \Rightarrow$ khẳng định 2 sai.

Với $\vec{u} = (b; -a) \Rightarrow \vec{u} \cdot \vec{n} = 0 \Rightarrow \vec{u} \perp \vec{n} \Rightarrow \vec{u}$ là một vecto chỉ phương của $d \Rightarrow$ khẳng định 3 đúng.

Chọn $k = 0 \in \mathbb{R} \Rightarrow \vec{kn} = (0,0)$ không phải là vecto pháp tuyến của $d \Rightarrow$ khẳng định 4 sai. Vây có 2 mênh đề sai.

Câu 3. Chon A.

Câu 4. Chọn C

Đường thẳng (d) có một vécto pháp tuyến là $\vec{n} = (3;2)$ nên (d) có một vécto chỉ phương là $\vec{u} = (2;-3)$.

Câu 5. Chon B

 $\Delta : \begin{cases} x = 5 - \frac{1}{2}t & \text{có một vecto chỉ phương là } \vec{u} = \left(-\frac{1}{2}; 3\right) \text{suy ra có một vecto pháp tuyến là} \\ y = -3 + 3t & \text{có một vecto pháp tuyến là} \end{cases}$

 $\vec{n} = \left(3; \frac{1}{2}\right)$. Do đó đường thẳng Δ cũng có một vecto pháp tuyến có tọa độ (6;1).

Câu 6. Chọn A

Một VTCP của đường thẳng d là $\vec{u}(-1;2) \Rightarrow$ một VTPT của d là $\vec{n}(-2;-1)$.

Câu 7. Chọn A.

Đường thẳng $d: \begin{cases} x = 1 - 4t \\ y = -2 + 3t \end{cases}$ có vectơ chỉ phương là $\vec{u} = (-4, 3)$.

Câu 8. Chọn A

Vector $\vec{i} = (1,0)$ là một vector chỉ phương của trục Ox

Các đường thẳng song song với truc Ox có 1 vector chỉ phương là $\vec{u} = \vec{i} = (1,0)$

Câu 9. Chọn C

Đường thẳng d có 1 VTPT là $\vec{n} = (7,3)$ nên d có 1 VTCP là $\vec{u} = (-3,7)$.

Câu 10. Chọn B

Vécto pháp tuyến của đường thẳng $d: \vec{n_1} = (-4; -6)$.

Câu 11. Chọn D

Đường thẳng d: 5x+3y-7=0 có vec tơ pháp tuyến là: $\vec{n}=(5,3)$.

Ta có: $\overrightarrow{n}.\overrightarrow{n_2} = 0$.

 \Rightarrow d có một vec tơ chỉ phương là $\overrightarrow{n_2} = (3, -5)$.

Câu 12. Chọn A

Nếu \vec{u} là một véc tơ chỉ phương của đường thẳng Δ thì $\vec{k.u}$, $\forall k \neq 0$ cũng là véc tơ chỉ phương của đường thẳng Δ .

Từ phương trình đường thẳng Δ ta thấy đường thẳng Δ có một véc tơ chỉ phương có toạ độ là (2;1). Do đó véc tơ $\vec{u} = (4;-2)$ không phải là véc tơ chỉ phương của Δ .

Câu 13. Chọn D

Ta có $\overrightarrow{AB} = (4,2) = 2(2,1)$ suy ra vecto pháp tuyến của đường thẳng \overrightarrow{AB} là $\overrightarrow{n_{AB}} = (-1,2)$.

Câu 14. Chọn C

Đường thẳng d có 1 VTPT là $\vec{n} = (7,3)$ nên d có 1 VTCP là $\vec{u} = (-3,7)$

Câu 15. Chọn D

Đường thẳng d: x-2y+2018=0 có vecto pháp tuyến là $\vec{n}_2(1;-2)$.

Câu 16. Chọn D.

(d):
$$y+2x-1=0 \Leftrightarrow 2x+y-1=0$$
; (d) có VTPT là $\vec{n}=(2;1)$ hay $\vec{n}'=(-2;-1)$

Câu 17. Chọn B

Một véctơ pháp tuyến của đường thẳng d là $\vec{n} = (2; -1)$.

Câu 18. Chọn D

Ta thấy đường thẳng d có một vecto pháp tuyến là (2;-3). Do đó $\overrightarrow{u_3} = (3;2)$ là một vecto chỉ phương của d.

Câu 19. Chọn A

+) Một véctơ pháp tuyến của đường thẳng Δ là $\vec{n}(6;-2)$ nên véctơ chỉ phương của đường thẳng Δ là $\vec{u}(1;3)$.

Câu 20. Chọn B

 $\overrightarrow{MN} = (-4, 2)$. Do đó vecto chỉ phương của MN là $\overrightarrow{u} = (4, -2)$.

Câu 21. Chon B

Đường thẳng d: x-2y+1=0. có vecto pháp tuyến là $\vec{n}=(1;-2) \Rightarrow$ Vecto chỉ phương của d là $\vec{u}=(2;1)$

- **Câu 22.** Đường thẳng d có VTCP: $\vec{u}(2;-1) \longrightarrow \text{VTPT } \vec{n}(1;2)$ hoặc $3\vec{n}=(3;6)$. **Chọn D.**
- **Câu 23.** Đường thẳng d có VTPT: $\vec{n}(4;-2) \longrightarrow \text{VTCP } \vec{u}(2;4)$ hoặc $\frac{1}{2}\vec{u}=(1;2)$. **Chọn C.**

Câu 24.
$$\begin{cases} \vec{u}_d = (3; -4) \\ \Delta \perp d \end{cases} \longrightarrow \vec{n}_\Delta = \vec{u}_d = (3; -4). \text{ Chọn}$$

Câu 25.
$$\begin{cases} \vec{n}_d = (-2; -5) \\ \Delta \perp d \end{cases} \longrightarrow \vec{u}_\Delta = \vec{n}_d = (-2; -5) \text{ hay chọn } -\vec{n}_\Delta = (2; 5). \text{ Chọn } C.$$

Câu 26.
$$\begin{cases} \vec{u}_d = (3; -4) \\ \Delta \parallel d \end{cases} \longrightarrow \vec{u}_\Delta = \vec{u}_d = (3; -4) \longrightarrow \vec{n}_\Delta = (4; 3). \text{ Chọn}$$
 A.

Câu 27.
$$\begin{cases} \vec{n}_d = (-2; -5) \\ \Delta \parallel d \end{cases} \longrightarrow \vec{n}_\Delta = \vec{u}_d = (-2; -5) \longrightarrow \vec{u}_\Delta = (5; -2). \text{ Chọn A.}$$

Câu 28. Chọn C

Ta có
$$d:3x+5y+2018=0 \Leftrightarrow d:y=-\frac{3}{5}x-\frac{2018}{5}$$
, nên d có hệ số góc $k=-\frac{3}{5}$.

Câu 29. Chọn A

Ta có (d):
$$x - 7y + 15 = 0$$
 hay $y = \frac{1}{7}x + \frac{15}{7}$

Suy ra hệ số góc của đường thẳng là $k = \frac{1}{7}$ (đúng)

DẠNG 2. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẮNG VÀ CÁC BÀI TOÁN LIÊN QUAN Dạng 2.1 Viết phương trình đường thẳng khi biết VTPT hoặc VTCP, HỆ SỐ GÓC và 1 điểm đi qua

Câu 30. Chọn D

Bốn phương trình đã cho trong bốn phương án đều là phương trình của đường thẳng. Thay lần lượt tọa độ của \boldsymbol{A} , \boldsymbol{B} vào từng phương án ta thấy tọa độ của cà \boldsymbol{A} và \boldsymbol{B} đều thỏa phương án \boldsymbol{D} .

Câu 31. Chọn D

Vecto chỉ phương $\overrightarrow{AB} = (0,6)$.

Phương trình đường thẳng AB đi qua A và có vecto chỉ phương $\overrightarrow{AB} = (0,6)$ là

$$\begin{cases} x = 2 \\ y = -1 + 6t \end{cases}$$

Câu 32. Chọn B.

- Cách 1: Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các phương án trên thì thấy phương án B không thỏa mãn.
- Cách 2: Nhận thấy rằng các phương trình ở các phương án A, C, D thì vecto chỉ phương của các đường thẳng đó cùng phương, riêng chỉ có phương án B thì không. Do đó lựa chọn B.

Câu 33. Chọn D

Đường thẳng có véctơ chỉ phương là $\overrightarrow{MN} = (3,5)$ và đi qua M(1,-2) nên có phương trình tham số

$$1a \begin{cases} x = 1 + 3t \\ y = -2 + 5t \end{cases}.$$

Câu 34. Chọn B

Ta có
$$\overrightarrow{AB} = (-9;3) \Rightarrow \overrightarrow{u_{AB}} = (3;-1).$$

Suy ra phương trình tham số của đường thẳng AB là $\begin{cases} x = 3 + 3t \\ y = -1 - t \end{cases}$.

Câu 35. Chọn A

Ta có Δ song song với d nên $\Delta: x + y + C = 0 (C \neq 0)$.

 Δ qua A(3;0), suy ra $3+0+C=0 \Leftrightarrow C=-3$ (nhận)

Như vậy $\Delta: x + y - 3 = 0$

Vậy \triangle có phương trình tham số: $\begin{cases} x = t \\ y = 3 - t \end{cases}$

Câu 36. Chọn A

Đường thẳng (d): $\begin{cases} x = 5 + t \\ y = -9 - 2t \end{cases} \Leftrightarrow \begin{cases} t = x - 5 \\ y = -9 - 2t \end{cases} \Rightarrow y = -9 - 2(x - 5) \Leftrightarrow 2x + y - 1 = 0.$

Câu 37. Chọn C.

Ta có hình chiếu của điểm M(1;2) lên Ox,Oy lần lượt là A(1;0) và B(0;2). Do đó phương

trình đường thẳng AB là $\frac{x}{1} + \frac{y}{2} = 1 \Leftrightarrow 2x + y - 2 = 0$.

Câu 38. Chọn.B.

$$d: \begin{cases} x = 3 - 5t \\ y = 1 + 4t \end{cases} (t \in \mathbb{R}) \Leftrightarrow \begin{cases} t = \frac{3 - x}{5} \\ t = \frac{y - 1}{4} \end{cases} \Rightarrow \frac{3 - x}{5} = \frac{y - 1}{4} \Leftrightarrow 4x + 5y - 17 = 0$$

Đáp án B.

Câu 39. Phương trình đoạn chắn của đường thẳng $d: \frac{x}{a} + \frac{y}{b} = 1$.

Câu 40. Chọn D

Phương trình đường thẳng đi qua hai điểm M(a;0), N(0;b) với $a,b \neq 0$ là $\frac{x}{a} + \frac{y}{b} = 1$.

Áp dụng phương trình trên ta chọn phương án D.

Dạng 2.2 Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước

Câu 41. Chọn B

Do
$$d \perp \Delta \Rightarrow \overrightarrow{n_d}(2;3)$$

Mà đường thẳng d đi qua A(1,-2) nên ta có phương trình:

$$2(x-1)+3(y+2)=0 \Leftrightarrow 2x+3y+4=0$$
.

Vậy phương trình đường thẳng d: 2x+3y+4=0.

Câu 42. Chon C

Vì Δ vuông góc với đường thẳng d: 8x - 6y + 7 = 0 nên phương trình $\Delta: 6x + 8y + C = 0$ Mà Δ đi qua gốc tọa độ nên ta có: $6.0 + 8.0 + C = 0 \Leftrightarrow C = 0$. Vậy phương trình $\Delta: 6x + 8y = 0$ hay $\Delta: 3x + 4y = 0$

Câu 43. Chon C

Gọi (d) là đường thẳng cần tìm. Vì (d) song song với đường thẳng y = 3x + 5 nên (d) có phương trình y = 3x + a, $a \ne 5$.

Vì (d) đi qua điểm A(1;11) nên ta có $11 = 3 \cdot 1 + a \Rightarrow a = 8$.

Vậy phương trình đường thẳng (d) cần tìm là y = 3x + 8.

Câu 44. Chọn B

Gọi (Δ) là đường thẳng cần tìm.

+) $(\Delta)//(d)$: y = 3x + 4. Suy ra phương trình (Δ) có dạng y = 3x + b, $b \neq 4$.

Có $A(2,5) \in \Delta \Leftrightarrow 5 = 6 + b \Leftrightarrow b = -1 \text{ (thoå } b \neq 4\text{)}$

Vậy (Δ) : y = 3x - 1.

Câu 45. Chọn D

Do đường thẳng d song song với đường thẳng d': x + y - 1 = 0 nên đường thẳng d nhận véc tơ $\vec{n} = (1;1)$ làm véc tơ pháp tuyến.

Khi đó đường thẳng d qua M(1;1) và nhận véc tơ $\vec{n}=(1;1)$ làm véc tơ pháp tuyến có phương trình là x+y-2=0.

Câu 46. Chọn B

Ta có đường thẳng vuông góc với 2x-y+4=0 có phương trình x+2y+m=0, mà đường thẳng này đi qua điểm I(-1;2), suy ra $-1+2.2+m=0 \Leftrightarrow m=-3$.

Vậy đường thẳng cần tìm có phương trình x+2y-3=0.

Câu 47. Chọn A

Có
$$\overrightarrow{MN} = (-1, 2)$$
.

Đường thẳng (d) đi qua $A\left(\frac{1}{2};1\right)$ nhận $\overrightarrow{MN} = (-1;2)$ làm vec tơ chỉ phương:

$$(d): 2(x-\frac{1}{2})+y-1=0 \Leftrightarrow 2x+y-2=0(1).$$

Thử lại: thay tọa độ của M vào (1) thì nghiệm đúng (1). Suy ra loại (1).

Vậy không tồn tại đường thẳng như đề bài yêu cầu.

Câu 48. Gọi d là đường thẳng qua B và song song với AC. Ta có

$$\begin{cases} B(0;3) \in d \\ \overrightarrow{u}_d = \overrightarrow{AC} = (-5;-1) = -1.(5;1) \end{cases} \longrightarrow d : \begin{cases} x = 5t \\ y = 3+t \end{cases} (t \in \mathbb{R}) \longrightarrow \mathbf{Chon}$$

Câu 49. Gọi d là đường thẳng qua A và song song với PQ.

Ta có:
$$\begin{cases} A(3;2) \in d \\ \vec{u}_d = \overrightarrow{PQ} = (-4;-2) = -2(2;1) \end{cases} \rightarrow d: \begin{cases} x = 3 + 2t \\ y = 2 + t \end{cases}$$
$$\xrightarrow{t=-2} M(-1;0) \in d \rightarrow d: \begin{cases} x = -1 + 2t \\ y = t \end{cases} \text{ Chọn}$$

Câu 50.
$$\begin{cases} A(-2;1) \in AB, \ \vec{u}_{CD} = (4;3) \\ AB \parallel CD \to \vec{u}_{AB} = -\vec{u}_{CD} = (-4;-3) \end{cases} \longrightarrow AB : \begin{cases} x = -2 - 4t \\ y = 1 - 3t \end{cases} (t \in \mathbb{R}). \text{ Chọn}$$
B.

Câu 51. Góc phần tư (I):
$$x - y = 0 \longrightarrow VTCP : \vec{u}(1;1) = \vec{u}_d \longrightarrow d : \begin{cases} x = -3 + t \\ y = 5 + t \end{cases} (t \in \mathbb{R}).$$

Chon B.

Câu 52.
$$\vec{u}_{Ox} = (1;0) \longrightarrow \vec{u}_d = (1;0) \longrightarrow d : \begin{cases} x = 4+t \\ y = -7 \end{cases} \longrightarrow A(0;-7) \in d \longrightarrow d : \begin{cases} x = t \\ y = -7 \end{cases}$$

Chon D.

Câu 53.
$$\begin{cases}
M(1;2) \in d \\
d \parallel \Delta : 2x + 3y - 12 = 0
\end{cases}
\rightarrow
\begin{cases}
M(1;2) \in d \\
d : 2x + 3y + c = 0 (c \neq -12)
\end{cases}$$

$$\Rightarrow 2.1 + 3.2 + c = 0 \Leftrightarrow c = -8. \text{ Vây } d : 2x + 3y - 8 = 0. \text{ Chọn A.}$$

Câu 54.
$$\begin{cases} O(0;0) \in d \\ d \parallel \Delta : 6x - 4x + 1 = 0 \end{cases} \rightarrow \begin{cases} O(0;0) \in d \\ d : 6x - 4x + c = 0 \ (c \neq 1) \end{cases} \longrightarrow 6.0 - 4.0 + c = 0 \Leftrightarrow c = 0.$$

$$Vây \ d : 6x - 4y = 0 \Leftrightarrow d : 3x - 2y = 0 \ \textbf{Chon A}.$$

Câu 55.
$$\begin{cases}
M(-1;2) \in d \\
d \perp \Delta : 2x + y - 3 = 0
\end{cases}$$

$$\begin{cases}
M(-1;2) \in d \\
d : x - 2y + c = 0
\end{cases}$$

$$Vây d: x - 2y + 5 = 0. Chọn$$
D.

Câu 56. Ta có:
$$\begin{cases} A(4;-3) \in d \\ \vec{u}_d = (-2;3) \\ \Delta \parallel d \end{cases} \rightarrow \begin{cases} A(4;-3) \in d \\ \vec{u}_{\Delta} = (-2;3) \rightarrow \vec{n}_{\Delta} = (3;2) \end{cases}$$
$$\rightarrow \Delta : 3(x-4) + 2(y+3) = 0 \Leftrightarrow \Delta : 3x + 2y - 6 = 0.$$

Câu 57.
$$\begin{cases}
B(0;3) \in d \\
\vec{u}_{AC} = \overrightarrow{AC} = (-5;1) \to \begin{cases}
B(0;3) \in d \\
\vec{n}_{d} = (1;5)
\end{cases}$$

$$\to d: 1(x-0) + 5(y-3) = 0 \Leftrightarrow d: x + 5y - 15 = 0.$$

Câu 58.
$$\begin{cases} M(-1;0) \in d \\ \vec{u}_{\Delta} = (1;-2) \\ d \perp \Delta \end{cases} \to \begin{cases} M(-1;0) \in d \\ \vec{n}_{d} = (1;-2) \end{cases} \to d:1(x+1)-2(y-0) = 0 \Leftrightarrow d:x-2y+1 = 0.$$

Chọn C.

Câu 59.
$$\begin{cases} M(-2;1) \in d \\ \vec{u}_{\Delta} = (-3;5) \\ d \perp \Delta \end{cases} \to \begin{cases} M(-2;1) \in d \\ \vec{n}_{d} = (-3;5) \to \vec{u}_{d} = (5;3) \end{cases} \to d : \begin{cases} x = -2 + 5t \\ y = 1 + 3t \end{cases} (t \in \mathbb{R}). \text{ Chọn B.}$$

Câu 60.
$$\begin{cases} A(-1;2) \in d \\ \vec{n}_{\Delta} = (3;-13) \to \begin{cases} A(-1;2) \in d \\ \vec{n}_{d} = (3;-13) \to \vec{u}_{d} = (13;3) \end{cases} \to d : \begin{cases} x = -1+13t \\ y = 2+3t \end{cases} (t \in \mathbb{R}). \text{ Chọn}$$

Câu 61.
$$\begin{cases} A(-1;2) \in d \\ \vec{n}_{\Delta} = (2;-1) \\ d \perp \Delta \end{cases} \rightarrow \begin{cases} A(-1;2) \in d \\ \vec{u}_{d} = (2;-1) \end{cases} \rightarrow d : \begin{cases} x = -1+2t \\ y = 2-t \end{cases} (t \in \mathbb{R}). \text{ Chọn}$$

Câu 62.
$$\begin{cases} M(-2;-5) \in d \\ (1): x-y=0 \ (\Delta) \to \begin{cases} M(-2;-5)=0 \\ d: x-y+c=0 \ (c \neq 0) \end{cases} \to -2-(-5)+c=0 \Leftrightarrow c=-3.$$

Vây
$$d: x - y - 3 = 0$$
. Chọn **B**

Câu 63.
$$\begin{cases} M(3;-1) \in d \\ (II): x+y=0 \ (\Delta) \rightarrow \begin{cases} M(3;-1) \\ d: x-y+c=0 \end{cases} \\ \rightarrow 3-(-1)+c=0 \Leftrightarrow c=-4 \rightarrow d: x-y \end{cases}$$

$$\to d: \begin{cases} x = t \\ y = 4 + t \end{cases} (t \in \mathbb{R}).$$

Câu 65.
$$\begin{cases} M(-1;2) \in d \\ d \parallel Ox : y = 0 \end{cases} \longrightarrow d : y = 2. \text{ Chọn} \qquad \mathbf{D}$$

Dạng 2.3 Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác Dang 2.3.1 Phương trình đường cao của tam giác

Câu 67. Chon A

> Gọi AH là đường cao kể từ A của $\triangle ABC$. Ta có: $AH \perp BC \Rightarrow vtpt AH$ là $\overrightarrow{BC} = (2,3)$. Phương trình $AH: 2(x-1)+3(y-2)=0 \Leftrightarrow 2x+3y-8=0$...

- Đường cao AH đi qua điểm A(2;-1) và có VTPT là $\overrightarrow{BC} = (-7;-3)$. Câu 68. Vậy phương trình AH là $-7(x-2)-3(y+1)=0 \Leftrightarrow 7x+3y-11=0$.
- Chon Câu 69. Ta có: $\overrightarrow{BC} = (2;3)$

Đường cao kẻ từ A của tam giác ABC nhận $\overrightarrow{BC} = (2,3)$ làm vecto pháp tuyến và đi qua điểm A nên có phương trình: $2(x-1)+3(y-2)=0 \Leftrightarrow 2x+3y-8=0$.

Chon D Câu 70.

Tam giác ABC cân tại C nên H là trung điểm của AB và $CH \perp AB$. Có H(3;1) và $\overrightarrow{AB} = (-2;-4) = -2(1;2)$.

Vậy phương trình đường cao CH là $1(x-3)+2(y-1)=0 \Leftrightarrow x+2y-5=0$.

Câu 71. Chon B

Do $BH \perp AC \Rightarrow$ Chọn VTPT của BH là $\overrightarrow{n_{BH}} = \overrightarrow{CA} = (5; -3)$.

Phương trình tổng quất của $BH: 5(x-4)-3(y-5)=0 \Leftrightarrow 5x-3y-5=0$.

- Gọi d là trung trực đoạn AB, ta có: $\begin{cases} \overrightarrow{AB} = (0;1) \\ d \perp AB \end{cases} \rightarrow \overrightarrow{n}_d = \overrightarrow{AB} = (0;1).$ Chọn **B.**
- **Câu 73.** Gọi M là trung điểm của BC. Ta cần viết phương trình đường thẳng AM. Ta có:

 $\begin{cases} B\left(0;-2\right) \\ C\left(4;2\right) \end{cases} \rightarrow M\left(2;0\right) \rightarrow \vec{u}_{AM} = \overrightarrow{AM} = \left(1;-1\right) \rightarrow \vec{n}_{AM} = \left(1;1\right) \rightarrow AM : x+y-2 = 0. \text{ Chọn}$ **A.**

Gọi I là trung điểm của AB và d là trung trực đoạn AB. Ta có

$$\begin{cases} A(1;-4), B(5;2) \to I(3;-1) \in d \\ d \perp AB \to \vec{n}_d = \overrightarrow{AB} = (4;6) = 2(2;3) \end{cases} \longrightarrow d: 2x + 3y - 3 = 0. \text{ Chon A.}$$

Goi I là trung điểm của AB và d là trung trực đoạn AB. Ta có

$$\begin{cases} A(4;-1), B(1;-4) \to I\left(\frac{5}{2};-\frac{5}{2}\right) \in d \\ d \perp AB \to \vec{n}_d = \overrightarrow{AB} = (-3;-3) = -3(1;1) \end{cases} \longrightarrow d: x+y=0. \text{ Chọn } \mathbf{B}.$$

Câu 76. Gọi I là trung điểm của AB và d là trung trực đoạn AB. Ta có

$$\begin{cases} A(1;-4), B(1;2) \rightarrow I(1;-1) \in d \\ d \perp AB \rightarrow \vec{n}_d = \overrightarrow{AB} = (0;6) = 6(0;1) \end{cases} \longrightarrow d: y+1 = 0. \text{ Chọn}$$

Câu 77. Gọi I là trung điểm của AB và d là trung trực đoạn AB. Ta có

$$\begin{cases} A\big(1;-4\big), B\big(3;-4\big) \to I\big(2;-4\big) \in d \\ d\perp AB \to \vec{n}_d = \overrightarrow{AB} = \big(2;0\big) = 2\big(1;0\big) \end{cases} \longrightarrow d: x-2 = 0. \text{ Chọn}$$

Câu 78. Gọi h_A là đường cao kẻ từ A của tam giác ABC. Ta có

$$\begin{cases} A(2;-1) \in h_A \\ h_A \perp BC \to \vec{n}_{h_A} = \overrightarrow{BC} = (-7;-3) = -(7;3) \end{cases} \to h_A : 7x + 3y - 11 = 0. \text{ Chọn}$$

Câu 79. Gọi h_B là đường cao kẻ từ B của tam giác ABC. Ta có

$$\begin{cases}
B(4;5) \in h_B \\
h_B \perp AC \to \vec{n}_{h_B} = \overrightarrow{AC} = (-5;3) = -(5;-3)
\end{cases} \to h_B : 5x - 3y - 5 = 0. \text{ Chọn}$$

Câu 80. Gọi h_C là đường cao kẻ từ C của tam giác ABC. Ta có

$$\begin{cases} C(-3;2) \in h_C \\ h_C \perp AB \rightarrow \vec{n}_{h_C} = \overrightarrow{AB} = (2;6) = 2(1;3) \end{cases} \rightarrow h_C : x + 3y - 3 = 0. \text{ Chon} \quad \mathbf{B}.$$

Dạng 2.3.2 Phương trình đường trung tuyến của tam giác

Câu 81. Chọn D

Gọi
$$M$$
 là trung điểm của cạnh $AC \Rightarrow M\left(\frac{5}{2}; \frac{3}{2}\right) \Rightarrow \overline{BM} = \left(\frac{5}{2}; \frac{7}{2}\right)$.

Đường trung tuyến BM nhận $\vec{n} = (-7,5)$ làm một véctơ pháp tuyến. Vậy phương trình tổng quát của đường trung tuyến qua điểm B của tam giác ABC là:

$$-7x + 5(y + 2) = 0 \Leftrightarrow -7x + 5y + 10 = 0$$
.

Câu 82. Chọn A

Gọi I là trung điểm của $BC \Rightarrow I(0;-1)$

Ta có $\overrightarrow{AI} = (-2, -4) \Rightarrow \overrightarrow{n} = (2, -1)$ là vecto pháp tuyến của đường thẳng AI.

Phương trình đường thẳng AI là: $2(x-2)-(y-3)=0 \Leftrightarrow 2x-y-1=0$

Câu 83.
$$\begin{cases} A(1;4) \\ B(3;2) \end{cases} \to M(2;3) \to \overrightarrow{MC} = (5;0) = 5(1;0) \to CM : \begin{cases} x = 7 + t \\ y = 3 \end{cases} (t \in \mathbb{R}). \text{ Chọn } C.$$

Câu 84.
$$\begin{cases} A(2;4) \\ C(2;1) \end{cases} \longrightarrow M\left(2;\frac{5}{2}\right) \longrightarrow \overrightarrow{MB} = \left(3;-\frac{5}{2}\right) = \frac{1}{2}(6;-5) \longrightarrow MB : \begin{cases} x = 5+6t \\ y = -5t \end{cases}.$$

Ta có:
$$N(20; y_N) \in BM \longrightarrow \begin{cases} 20 = 5 + 6t \\ y_N = -5t \end{cases} \Leftrightarrow \begin{cases} t = \frac{5}{2} \\ y_N = -\frac{25}{2} \end{cases} \longrightarrow \mathbf{Chọn}$$

Dạng 2.3.3 Phương trình cạnh của tam giác

Câu 85. Chọn C

- +) Gọi AH và AD lần lượt là các đường cao và trung tuyến kẻ từ A của tam giác ABC.
- +) Tọa độ A là nghiệm của hệ $\begin{cases} 7x 2y 3 = 0 \\ 6x y 4 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 2 \end{cases} \Rightarrow A(1; 2)$.
- +) M là trung điểm của AB nên $\begin{cases} x_B = 2x_M x_A = 3 \\ y_B = 2y_M y_A = -2 \end{cases} \Rightarrow B(3; -2).$
- +) Đường thẳng BC đi qua B(3;-2) và vuông góc với đường thẳng AH: 6x-y-4=0 nên có phương trình $x-3+6(y+2)=0 \Leftrightarrow x+6y+9=0$.
- +) D là giao điểm của BC và AN nên tọa độ D là nghiệm của hệ

$$\begin{cases} 7x - 2y - 3 = 0 \\ x + 6y + 9 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = -\frac{3}{2} \end{cases} \Rightarrow D\left(0; -\frac{3}{2}\right) \text{ mà D là trung điểm của BC suy ra } C\left(-3; -1\right)$$

+) Đường thẳng AC đi qua A(1;2) và C(-3;-1) có phương trình là 3x-4y+5=0.

Câu 86. Chọn A

Tọa độ điểm A là nghiệm của hệ $\begin{cases} x-y-2=0 \\ x+2y-5=0 \end{cases} \Leftrightarrow \begin{cases} x=3 \\ y=1 \end{cases}$ nên A(3;1)

Gọi B(b;b-2) và C(5-2c;c), G là trọng tâm tam giác ABC nên b,c là nghiệm của hệ $\begin{cases} 5-2c+b+3=9 \\ c+b-2+1=6 \end{cases} \Leftrightarrow \begin{cases} b=5 \\ c=2 \end{cases}.$

Vậy B(5;3); $C(1;2) \Rightarrow \overrightarrow{BC} = (-4;-1)$ chọn một véctơ pháp tuyến của đường thẳng BC là $\overrightarrow{n_{BC}} = (1;-4)$ suy ra phương trình đường thẳng $BC:1(x-1)-4(y-2)=0 \Leftrightarrow BC:x-4y+7=0$. Dạng 2.3.4 Phương trình đường phân giác của tam giác

Câu 87. Chọn D.

Câu 88. A(1;3), B(2;m) nằm cùng phía với d:3x+4y-5=0 khi và chỉ khi

$$(3x_A + 4y_A - 5)(3x_B + 4y_B - 5) > 0 \Leftrightarrow 10(1 + 4m) > 0 \Leftrightarrow m > -\frac{1}{4}$$
. Chọn **B.**

Câu 89. $d:\begin{cases} x=2+t \\ y=1-3t \end{cases} \longrightarrow d: 3x+y-7=0$. Khi đó điều kiện bài toán trở thành $(3x_A+y_A-7)(3x_B+y_B-7)>0 \Leftrightarrow -2(m-13)>0 \Leftrightarrow m<13$. **Chọn C.**

Câu 90. Điểm M(x; y) thuộc đường phân giác của các góc tạo bởi Δ_1 ; Δ_2 khi và chỉ khi

$$d(M; \Delta_1) = d(M; \Delta_2) \Leftrightarrow \frac{|x+2y-3|}{\sqrt{5}} = \frac{|2x-y+3|}{\sqrt{5}} \Leftrightarrow \begin{bmatrix} 3x+y=0 \\ x-3y+6=0 \end{bmatrix}.$$
 Chọn C.

Câu 91. Điểm M(x; y) thuộc đường phân giác của các góc tạo bởi Δ ; Ox : y = 0 khi và chỉ khi

$$d(M; \Delta) = d(M; Ox) \Leftrightarrow \frac{|x+y|}{\sqrt{2}} = \frac{|y|}{\sqrt{1}} \Leftrightarrow \begin{bmatrix} x + (1+\sqrt{2})y = 0 \\ x + (1-\sqrt{2})y = 0 \end{bmatrix}.$$
 Chọn **D.**

Câu 92.
$$\begin{cases} A\left(\frac{7}{4};3\right), B(1;2) \to AB: 4x - 3y + 2 = 0\\ A\left(\frac{7}{4};3\right), C(-4;3) \to AC: y - 3 = 0 \end{cases}$$

Suy ra các đường phân giác góc A là:

$$\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \begin{bmatrix} 4x + 2y - 13 = 0 \to f(x; y) = 4x + 2y - 13 \\ 4x - 8y + 17 = 0 \end{bmatrix}$$

$$\to \begin{cases} f(B(1; 2)) = -5 < 0 \\ f(C(-4; 3)) = -23 < 0 \end{cases}$$

suy ra đường phân giác trong góc A là 4x-8y+17=0. Chọn B.

Câu 93.
$$\begin{cases} A(1;5), B(-4;-5) \to AB : 2x - y + 3 = 0 \\ A(1;5), C(4;-1) \to AC : 2x + y - 7 = 0 \end{cases}$$

Suy ra các đường phân giác góc A là:

$$\frac{|2x - y + 3|}{\sqrt{5}} = \frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \begin{bmatrix} x - 1 = 0 \to f(x; y) = x - 1 \\ y - 5 = 0 \end{bmatrix} \to \begin{cases} f(B(-4; -5)) = -5 < 0 \\ f(C(4; -1)) = 3 > 0 \end{cases}$$

suy ra đường phân giác trong góc A là y-5=0. Chọn

Câu 94. Các đường phân giác của các góc tạo bởi

$$d_1: 3x - 4y - 3 = 0$$
 và $d_2: 12x + 5y - 12 = 0$ là:
 $|3x - 4y - 3|$ $|12x + 5y - 12|$ $|3x + 11y - 3|$

$$\frac{|3x-4y-3|}{5} = \frac{|12x+5y-12|}{13} \Leftrightarrow \begin{bmatrix} 3x+11y-3=0\\11x-3y-11=0 \end{bmatrix}$$

Gọi
$$I = d_1 \cap d_2 \to I(1,0)$$
; $d: 3x + 11y - 3 = 0 \to M(-10,3) \in d$,

Gọi H là hình chiếu của M lên d_1 .

Ta có:
$$IM = \sqrt{130}$$
, $MH = \frac{|-30 - 12 - 3|}{5} = 9$, suy ra

$$\sin \widehat{MIH} = \frac{MH}{IM} = \frac{9}{\sqrt{130}} \rightarrow \widehat{MIH} > 52^{\circ} \rightarrow 2\widehat{MIH} > 90^{\circ}.$$

Suy ra d:3x+11y-3=0 là đường phân giác góc tù, suy ra đường phân giác góc nhọn là 11x-3y-11=0. **Chọn B.**

Câu 95. Chọn D.

$$AB: 3x - 4y - 9 = 0$$

$$AC: 8x - 6y + 1 = 0$$

Phương trình các đường phân giác của góc A của ΔABC là:

$$\frac{3x - 4y - 9}{5} = \pm \frac{8x - 6y + 1}{10} \Leftrightarrow 2(3x - 4y - 9) = \pm (8x - 6y + 1) \Leftrightarrow \begin{bmatrix} 2x + 2y + 19 = 0(\Delta_1) \\ 14x - 14y - 17 = 0(\Delta_2) \end{bmatrix}$$

Có
$$\{B\} = AB \cap BC$$
. Suy ra $B\left(\frac{29}{7}; \frac{6}{7}\right)$.

Có
$$\{C\} = AC \cap BC$$
. Suy ra $C\left(\frac{29}{14}; \frac{41}{14}\right)$.

Xét
$$(\Delta_1)$$
: $2x + 2y + 19 = 0$ có $t_B \cdot t_c = \left(2 \cdot \frac{29}{7} + 2\frac{6}{7} + 19\right) \left(2 \cdot \frac{29}{14} + 2\frac{41}{14} + 19\right) > 0$.

Suy ra B,C nằm về cùng một phía đối với (Δ_1) , nên (Δ_1) là đường phân giác ngoài của góc A. Vậy đường phân giác trong của góc A là $(\Delta_2):14x-14y-17=0$.

Câu 96. Chon A

Bài toán tổng quát:

Gọi d là phân giác ngoài góc A của tam giác ABC.

Đặt
$$\overrightarrow{AE} = \frac{1}{AB}.\overrightarrow{AB}$$
, $\overrightarrow{AF} = \frac{1}{AC}.\overrightarrow{AC}$ và $\overrightarrow{AD} = \overrightarrow{AE} + \overrightarrow{AF}$.

Khi đó tứ giác AEDF là hình thoi (vì AE = AF = 1). (Hình bình hành có 2 cạnh kề bằng nhau).

Suy ra tia AD là tia phân giác trong góc EAF.

Do đó: $AD \perp d$. Nên \overrightarrow{AD} là vecto pháp tuyến của đường thẳng d.

đường thẳng
$$d$$
.
Áp dụng:
$$\begin{cases} \overrightarrow{AB} = (1;-1), AB = \sqrt{2} \\ \overrightarrow{AC} = (2;2), AC = 2\sqrt{2} \end{cases} \Rightarrow \overrightarrow{AD} = (\sqrt{2};0) = \sqrt{2}(1;0).$$

Xem đáp án chỉ có đáp án A có vecto pháp tuyến là (1;0).

Câu 97. Chon D

Hai đường thẳng $y = a_1 x + b_1$ và $y = a_2 x + b_2$ song song với nhau khi và chỉ khi $\begin{cases} a_1 = a_2 \\ b_1 \neq b_2 \end{cases}$.

Trong các đường thẳng trên không có đường nào thỏa mãn. Vậy không có cặp đường thẳng nào song song.

Câu 98. Chon D

$$d: y = 3x - 2 \Leftrightarrow 3x - y - 2 = 0$$
. (d) có VTPT $\vec{n} = (3, -1)$.

Đường thẳng 3x+y-6=0 có VTPT $\vec{n}_1=(3;1)\neq k\vec{n}$ nên \vec{n} và \vec{n}_1 không cùng phương. Do đó đường thẳng 3x+y-6=0 không song song với đường thẳng (d).

Câu 99. Chon D

Ta kiểm tra lần lượt các đường thẳng

.+) Với
$$d_1$$
: $x + 2y + 1 = 0$ có $\frac{1}{1} \neq \frac{2}{-2} \Rightarrow d$ cắt d_1 .

.+) Với
$$d_2$$
: $2x - y = 0$ có $\frac{2}{1} \neq \frac{-1}{-2} \Rightarrow d$ cắt d_2 .

.+) Với
$$d_3$$
: $-x + 2y + 1 = 0$ có $\frac{-1}{1} = \frac{2}{-2} \neq \frac{1}{-1} \Rightarrow d$ trùng d_3 .

.+) Với
$$d_4$$
: $-2x + 4y - 1 = 0$ có $\frac{1}{-2} = \frac{-2}{4} \neq \frac{-1}{-1} \Rightarrow d$ song song d_4 .

Câu 100. Chon B

Vì
$$d_3: y = -\left(1 - \frac{\sqrt{3}}{3}\right)x + 2 = \frac{1}{\sqrt{3}}x + 1 \Rightarrow d_3 \equiv d_2$$
. Đường thẳng d_2 và d_4 có hệ số góc bằng

nhau; hệ số tự do khác nhau nên chúng song song.

Câu 101. Chọn D

Để đường thẳng $y = (m^2 - 3)x + 3m + 1$ song song với đường thẳng y = x - 5 thì điều kiện là

$$\begin{cases} m^2 - 3 = 1 \\ 3m + 1 \neq -5 \end{cases} \Leftrightarrow \begin{cases} m = \pm 2 \\ m \neq -2 \end{cases} \Leftrightarrow m = 2.$$

Câu 102. Chọn A

Ta có tọa độ giao điểm của hai đường thẳng x-3y-6=0 và 3x+4y-1=0 là nghiệm của hệ

phương trình
$$\begin{cases} x - 3y - 6 = 0 \\ 3x + 4y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{27}{13} \\ y = -\frac{17}{3} \end{cases}$$

Câu 103. Chọn A

Đường thẳng $d_1: 2x+3y+15=0$ có một vecto pháp tuyến là $\overrightarrow{n_1}=\left(2;3\right)$ và đường thẳng $d_2: x-2y-3=0$ có một vecto pháp tuyến là $\overrightarrow{n_2}=(1;-2)$

Ta thấy
$$\frac{2}{1} \neq \frac{3}{-2}$$
 và $\overrightarrow{n_1}.\overrightarrow{n_2} = 2.1 + 3.(-2) = -4 \neq 0$.

Vậy d_1 và d_2 cắt nhau và không vuông góc với nhau.

Câu 104. Chon C

CÁCH 1

-Xét m=0 thì $d_1:y=-5$, $d_2:x=9$. Rõ ràng hai đường thẳng này cắt nhau nên m=0 thỏa

-Xét
$$m \neq 0$$
 thì $d_1: y = -mx + m - 5$ và $d_2: y = -\frac{x}{m} + 9$

Hai đường thẳng d_1 và d_2 cắt nhaut $\Leftrightarrow -m \neq -\frac{1}{m} \Leftrightarrow \begin{cases} m \neq 0 \\ m \neq +1 \end{cases}$ (2).

Từ (1) và (2) ta có $m \neq \pm 1$.

CÁCH 2

 d_1 và d_2 theo thứ tự nhận các vector $\vec{n}_1 = (m, 1)$, $\vec{n}_2 = (1, m)$ làm vec tơ pháp tuyến.

 d_1 và d_2 cắt nhau $\Leftrightarrow \vec{n}_1$ và \vec{n}_2 không cùng phương $\Leftrightarrow m.m \neq 1.1 \Leftrightarrow m \neq \pm 1.$

(Áp dụng tính chất: $\vec{n}_1 = (a;b)$ và $\vec{n}_2 = (c;d)$ cùng phương $\Leftrightarrow a.d = b.c$)

Câu 105.
$$\begin{cases} d_2: (2m-1)x + m^2y + 10 = 0 \\ d_1: 3x + 4y + 10 = 0 \end{cases} \xrightarrow{d_1 = d_2} \frac{2m-1}{3} = \frac{m^2}{4} = \frac{10}{10}$$

$$\Leftrightarrow \begin{cases} 2m-1=3\\ m^2=4 \end{cases} \Leftrightarrow m=2.$$

Câu 106.
$$\begin{cases} d_1 : mx + (m-1)y + 2m = 0 \\ d_2 : 2x + y - 1 = 0 \end{cases} \xrightarrow{d_1 || d_2|} \frac{m}{2} = \frac{m-1}{1} \neq \frac{2m}{-1}$$

$$\Leftrightarrow \begin{cases} -1 \neq 2 \\ m = 2m - 2 \end{cases} \Leftrightarrow m = 2.$$

Câu 107.
$$\begin{cases} d_1: 2x - 3y + 4 = 0 \\ d_2: \begin{cases} x = 2 - 3t \\ y = 1 - 4mt \end{cases} \longrightarrow \begin{cases} \vec{n}_1 = (2; -3) \\ \vec{n}_2 = (4m; -3) \end{cases} \xrightarrow{d_1 \cap d_2 = M} \xrightarrow{d_1 \cap d_2 = M} \xrightarrow{d_2} \frac{4m}{2} \neq \frac{-3}{-3} \Leftrightarrow m \neq \frac{1}{2}. \text{ Chọn C.}$$

Câu 108.
$$\begin{cases} d_1: 2x - 4y + 1 = 0 \\ d_2: \begin{cases} x = -1 + at \\ y = 3 - (a+1)t \end{cases} \xrightarrow{\begin{cases} \vec{n}_1 = (1; -2) \\ \vec{n}_2 = (a+1; a) \end{cases}} \xrightarrow{d_1 \perp d_2} \vec{n}_1 \cdot \vec{n}_2 = 0 \Leftrightarrow a+1-2a = 0 \Leftrightarrow a = 1.$$

Chon D.

Câu 109.
$$d_{1}: \begin{cases} x = -2 + 2t \\ y = -3t \end{cases} \rightarrow \vec{u}_{1} = (2; -3)$$

$$d_{2}: \begin{cases} x = 2 + mt \\ y = -6 + (1 - 2m)t \end{cases} \rightarrow A(2; -6) \in d_{2}, \ \vec{u}_{2} = (m; 1 - 2m) \end{cases} \xrightarrow{d_{1} \equiv d_{2}} \begin{cases} A \in d_{1} \\ \frac{m}{2} = \frac{1 - 2m}{-3} \iff m = 2. \end{cases}$$

Chon C.

Câu 110.
$$d_1: \begin{cases} x=2+2t \\ y=1+mt \end{cases} \rightarrow A(2;1) \in d_1, \vec{u}_1 = (2;m)$$

$$d_2: 4x-3y+m=0 \rightarrow \vec{u}_2 = (3;4)$$

$$d_3: 4x-3y+m=0 \rightarrow \vec{u}_2 = (3;4)$$

$$d_4: 4x-3y+m=0 \rightarrow \vec{u}_2 = (3;4)$$

$$d_3: 4x-3y+m=0 \rightarrow \vec{u}_2 = (3;4)$$

Chọn D.

Câu 111. Với
$$m = 4 \longrightarrow \begin{cases} d_1 : 2x + y = 0 \\ d_2 : 7x + y + 7 = 0 \end{cases} \longrightarrow d_1 \cap d_2 \neq \emptyset \longrightarrow \text{loại } m = 4.$$

Với $m \neq 4$ thì

$$\begin{cases} d_1: 2x + y + 4 - m = 0 \\ d_2: (m+3)x + y - 2m - 1 = 0 \end{cases} \xrightarrow{d_1 || d_2|} \frac{m+3}{2} = \frac{1}{1} \neq \frac{-2m-1}{4-m} \Leftrightarrow \begin{cases} m = -1 \\ m \neq -5 \end{cases} \Leftrightarrow m = -1.$$

Chon B.

Câu 112.
$$\begin{cases} \Delta_1: 2x - 3my + 10 = 0 \\ \Delta_2: mx + 4y + 1 = 0 \end{cases} \rightarrow \begin{cases} m = 0 \rightarrow \begin{cases} \Delta_1: x + 5 = 0 \\ \Delta_2: 4y + 1 = 0 \end{cases} \rightarrow m = 0 \text{ (thoaû maŏn)} \\ m \neq 0 \xrightarrow{\Delta_1 \cap \Delta_2 = M} \frac{2}{m} \neq \frac{-3m}{4} \Leftrightarrow \forall m \neq 0 \end{cases}$$
. Chọn D.

Câu 113. Ta có :
$$\begin{cases} \Delta_1 : mx + y - 19 = 0 \to \vec{n}_1 = (m;1) \\ \Delta_2 : (m-1)x + (m+1)y - 20 = 0 \to \vec{n}_2 = (m-1;m+1) \\ \xrightarrow{\Delta_1 \perp \Delta_1} m(m-1) + 1(m+1) = 0 \Leftrightarrow m \in \emptyset. \end{cases}$$

Câu 114.

Ta có:
$$\begin{cases} d_1: 3mx + 2y + 6 = 0 \to \vec{n}_1 = (3m; 2) \\ d_2: (m^2 + 2)x + 2my + 6 = 0 \to \vec{n}_2 = (m^2 + 2; 2m) \end{cases}$$

$$\to \begin{cases} m = 0 \to \begin{cases} d_1: y + 3 = 0 \\ d_2: x + y + 3 = 0 \end{cases} \to m = 0 \text{ (thoaû maŏn)} \\ m \neq 0 \xrightarrow{d_1 \cap d_2 = M} \xrightarrow{m^2 + 2} \frac{2m}{3m} \neq \frac{2m}{2} \Leftrightarrow m \neq \pm 1 \end{cases}$$
Chọn
D.

. Chọn B.

$$\begin{cases}
\Delta_{1} : \begin{cases}
x = m + 2t \\
y = 1 + (m^{2} + 1)t
\end{cases} \to A(m;1) \in d_{1}, \ \vec{u}_{1} = (2; m^{2} + 1) \\
\Delta_{2} : \begin{cases}
x = 1 + mt \\
y = m + t
\end{cases} \to \vec{u}_{2} = (m;1)
\end{cases} \to \begin{cases}
\frac{m}{2} = \frac{1}{m^{2} + 1}
\end{cases}$$

$$\Rightarrow \begin{cases}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0
\end{cases} \Leftrightarrow \begin{cases}
m = 1 + m(1 - m) \\
(m - 1)(m^{2} + m + 2) = 0
\end{cases} \Leftrightarrow \begin{cases}
m^{2} - 1 = 0 \\
m - 1 = 0
\end{cases} \Leftrightarrow m = 1.$$

Câu 121.
$$\begin{cases} d_1: 7x - 3y + 16 = 0 \\ d_2: x + 10 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -10 \\ y = -18 \end{cases}$$
 Chọn A.

$$\text{Câu 122.} \begin{cases} d_1: \begin{cases} x=-3+4t \\ y=2+5t \\ d_2: \begin{cases} x=1+4t' \\ y=7-5t' \end{cases} \Leftrightarrow \begin{cases} -3+4t=1+4t' \\ 2+5t=7-5t' \end{cases} \Leftrightarrow \begin{cases} t-t'=1 \\ t+t'=1 \end{cases} \Leftrightarrow \begin{cases} t=1 \xrightarrow{\rightarrow d_1} \begin{cases} x=1 \\ y=7. \text{ Chọn A.} \end{cases} \end{cases}$$

Câu 123.
$$\begin{cases} d_1: 2x + 3y - 19 = 0 \\ d_2: \begin{cases} x = 22 + 2t \\ y = 55 + 5t \end{cases} \xrightarrow{d_1 \cap d_2} 2(22 + 2t) + 3(55 + 5t) - 19 = 0 \Leftrightarrow t = -10 \rightarrow \begin{cases} x = 2 \\ y = 5 \end{cases}$$

Chọn <mark>A.</mark>

Câu 124.
$$\begin{cases} A(-2;0), B(1;4) \to AB: 4x - 3y + 8 = 0 \\ d: \begin{cases} x = -t \\ y = 2 - t \end{cases} \to d: x - y + 2 = 0 \end{cases} \xrightarrow{AB \cap d} \begin{cases} 4x - 3y + 8 = 0 \\ x - y + 2 = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 0 \end{cases}.$$

Chon B.

Câu 125.
$$Ox \cap d_2 \leftrightarrow \begin{cases} x = -1 + t \\ y = 3 + 3t = 0 \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = 0 \end{cases} \rightarrow Ox \cap d_2 = A(-2; 0) \in d_1$$

Câu 126.
$$Oy \cap d_2 \leftrightarrow \begin{cases} x = 2 + t = 0 \\ y = 6 + 2t \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 2 \end{cases} \rightarrow Oy \cap d_2 = A(0; 2) \in d_1$$

$$\Leftrightarrow 6m - m^2 = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 6 \end{bmatrix} \text{ Chọn } \mathbf{D}.$$

Câu 127.
$$\begin{cases} d_1: 3x - 2y + 5 = 0 \\ d_2: 2x + 4y - 7 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{3}{8} \\ y = \frac{31}{16} \end{cases} \to d_1 \cap d_2 = A\left(-\frac{3}{8}; \frac{31}{16}\right). \text{ Ta c\'o}$$

$$\begin{cases} A \in d \\ d \parallel d_3: 3x + 4y - 1 = 0 \end{cases} \to \begin{cases} A \in d \\ d: 3x + 4y + c = 0 \ (c \neq -1) \end{cases} \to -\frac{9}{8} + \frac{31}{4} + c = 0 \Leftrightarrow c = -\frac{53}{8}.$$

$$\text{Vậy } d: 3x + 4y - \frac{53}{8} = 0 \Leftrightarrow d_3: 24x + 32y - 53 = 0. \text{ Chọn} \qquad \textbf{A.}$$

Câu 128.
$$\begin{cases} d_1: x + 3y - 1 = 0 \\ d_2: x - 3y - 5 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = -\frac{2}{3} \Rightarrow d_1 \cap d_2 = A \left(3; -\frac{2}{3} \right). \text{ Ta có} \end{cases}$$
$$\begin{cases} A \in d \\ d \perp d_3: 2x - y + 7 = 0 \end{cases} \Rightarrow \begin{cases} A \in d \\ d: x + 2y + c = 0 \end{cases} \Rightarrow 3 + 2. \left(-\frac{2}{3} \right) + c = 0 \Leftrightarrow c = -\frac{5}{3}. \end{cases}$$
$$\text{Vậy } d: x + 2y - \frac{5}{3} = 0 \Leftrightarrow d: 3x + 6y - 5 = 0. \text{Chọn} \qquad \textbf{A.}$$

Câu 129. Ta có:
$$\begin{cases} d_1: 3x - 4y + 15 = 0 \\ d_2: 5x + 2y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 3 \end{cases} \to d_1 \cap d_2 = A(-1;3) \in d_3$$
$$\to -m - 6m + 3 + 9m - 13 = 0 \Leftrightarrow m = 5. \text{ Chon } \mathbf{D}.$$

Câu 130.
$$\begin{cases} d_1: \ 2x + y - 4 = 0 \\ d_2: 5x - 2y + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{9} \\ y = \frac{26}{9} \end{cases} \to d_1 \cap d_2 = A\left(\frac{5}{9}; \frac{26}{9}\right) \in d_3 \end{cases}$$
$$\to \frac{5m}{9} + \frac{26}{3} - 2 = 0 \Leftrightarrow m = -12. \text{ Chọn} \qquad \mathbf{D}.$$

Câu 131.
$$\begin{cases} d_1: 3x - 4y + 15 = 0 \\ d_2: 5x + 2y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 3 \end{cases} \to d_1 \cap d_2 = A(-1; 3) \in d$$
$$\to -m - 12 + 15 = 0 \Leftrightarrow m = 3. \text{ Chon } C.$$

Câu 132.
$$\begin{cases} d_1 : 2x + y - 1 = 0 \\ d_2 : x + 2y + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = -1 \end{cases} \to d_1 \cap d_2 = A(1; -1) \in d_3 \Leftrightarrow m + 1 - 7 = 0 \Leftrightarrow m = 6.$$

Câu 133. Đặt
$$f(x;y) = 51x - 30y + 11$$

$$\begin{cases} f(M) = f\left(-1; -\frac{4}{3}\right) = 0 \to M \in d \\ f(N) = f\left(-1; \frac{4}{3}\right) = -80 \neq 0 \to N \notin d \\ f(P) \neq 0 \\ f(Q) \neq 0 \end{cases}$$

Chọn A.

DẠNG 4. GÓC CỦA HAI ĐƯỜNG THẮNG

Dạng 4.1 Tính góc của hai đường thẳng cho trước

Câu 134. Chọn C

Đường thẳng Δ có vectơ pháp tuyến $\vec{n} = (1; -\sqrt{3})$, đường thẳng Δ' có vectơ pháp tuyến $\vec{n'} = (1; \sqrt{3})$.

Gọi α là góc giữa hai đường thẳng Δ, Δ' . $\cos \alpha = \left|\cos\left(\vec{n}, \vec{n'}\right)\right| = \frac{\left|1-3\right|}{\sqrt{1+3}\sqrt{1+3}} = \frac{1}{2} \Rightarrow \alpha = 60^{\circ}$.

Câu 135. Chọn A.

Đường thẳng a có vecto pháp tuyến là: $\overrightarrow{n_1} = (\sqrt{3}; -1);$

Đường thẳng b có vecto pháp tuyến là: $\overrightarrow{n_2} = (1; -\sqrt{3})$.

Áp dụng công thức tính góc giữa hai đường thẳng có:

$$\cos(a,b) = \frac{\overrightarrow{n_1}.\overrightarrow{n_2}}{\left|\overrightarrow{n_1}\right|.\left|\overrightarrow{n_2}\right|} = \frac{1.\sqrt{3} + (-1)\left(-\sqrt{3}\right)}{2.2} = \frac{\sqrt{3}}{2}$$
. Suy ra góc giữa hai đường thẳng bằng 30°.

Câu 136. Chọn C

Đường thẳng $d_1: 2x + 5y - 2 = 0$ có vecto pháp tuyến $\vec{n}_1 = (2,5)$.

Đường thẳng $d_2: 3x-7y+3=0$ có vecto pháp tuyến $\vec{n}_2=(3;-7)$

Góc giữa hai đường thẳng được tính bằng công thức

$$\cos(d_1, d_2) = \left|\cos(\vec{n}_1, \vec{n}_2)\right| = \frac{\left|\vec{n}_1, \vec{n}_2\right|}{\left|\vec{n}_1\right| \cdot \left|\vec{n}_2\right|} = \frac{\left|2.3 + 5.(-7)\right|}{\sqrt{2^2 + 5^2} \cdot \sqrt{3^2 + (-7)^2}} = \frac{29}{29\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
 $(d_1; d_2) = 45^0$

Vậy góc tạo bởi đường thẳng d_1 và d_2 bằng 45° .

Câu 137. Chọn D

Véctor pháp tuyến của đường thẳng Δ_1 là $\vec{n} = (2;1)$ nên véctor chỉ phương $\vec{u} = (1;-2)$

Vécto chỉ phương của đường thẳng Δ_2 là $\overrightarrow{u'} = (1; -1)$

Khi đó
$$\cos(\Delta_1; \Delta_2) = \left|\cos(\vec{u}; \vec{u'})\right| = \frac{|\vec{u}.\vec{u'}|}{|\vec{u}|.|\vec{u'}|} = \frac{3}{\sqrt{5}.\sqrt{2}} = \frac{3\sqrt{10}}{10}$$

Câu 138. Chon D

Đường thẳng Δ_1 có VTPT là $\overrightarrow{n_1}(1;-2) \Rightarrow 1VTCP(2;1)$

Đường thẳng Δ_2 có 1VTCP(-1;2).

Nhận xét:
$$\overrightarrow{u_1}.\overrightarrow{u_2} = 0 \Rightarrow \overrightarrow{u_1} \perp \overrightarrow{u_2} \Rightarrow \Delta_1 \perp \Delta_2 \Rightarrow (\Delta_1, \Delta_2) = 90^\circ$$
.

Câu 139. Chọn D

Ta có $vtpt\vec{n}_{d_1} = (1,2); vtpt\vec{n}_{d_2} = (2,-4)$

$$\cos(d;d') = \frac{\left|\vec{n}_{d_1}.\vec{n}_{d_2}\right|}{\left|\vec{n}_{d_1}\right|.\left|\vec{n}_{d_2}\right|} = \frac{\left|1.2 - 2.4\right|}{\sqrt{5}.2\sqrt{5}} = \frac{3}{5}.$$

Câu 140. Chọn C

 Δ có vecto pháp tuyến là $\overrightarrow{n_1} = (1; -\sqrt{3})$. Δ' có vecto pháp tuyến là $\overrightarrow{n_2} = (1; \sqrt{3})$.

Khi đó:

$$\cos(\Delta; \Delta') = \left|\cos(\overrightarrow{n_1}; \overrightarrow{n_2})\right| = \frac{\left|\overrightarrow{n_1}.\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|.\left|\overrightarrow{n_2}\right|} = \frac{\left|1.1 + \left(-\sqrt{3}\right)\sqrt{3}\right|}{\sqrt{1^2 + \left(-\sqrt{3}\right)^2}.\sqrt{1^2 + \left(\sqrt{3}\right)^2}} = \frac{\left|-2\right|}{\sqrt{4}.\sqrt{4}} = \frac{1}{2}.$$

Vậy góc giữa hai đường thẳng Δ , Δ ' là 60° .

Câu 141. Ta có

$$\begin{cases} d_1 : 2x - y - 10 = 0 \to \vec{n}_1 = (2; -1) \\ d_2 : x - 3y + 9 = 0 \to \vec{n}_2 = (1; -3) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{|2.1 + (-1).(-3)|}{\sqrt{2^2 + (-1)^2} \cdot \sqrt{1^2 + (-3)^2}} = \frac{1}{\sqrt{2}}$$

Câu 142. Ta có

$$\begin{cases} d_1: 7x - 3y + 6 = 0 \to \vec{n}_1 = (7; -3) \\ d_2: 2x - 5y - 4 = 0 \to \vec{n}_2 = (2; -5) \end{cases} \xrightarrow{\varphi = (d_1: d_2)} \cos \varphi = \frac{|14 + 15|}{\sqrt{49 + 9} \cdot \sqrt{4 + 25}} = \frac{1}{\sqrt{2}} \to \varphi = \frac{\pi}{4}.$$

Chon A.

Câu 143. Ta có

$$\begin{cases} d_1: 2x + 2\sqrt{3}y + 5 = 0 \to \vec{n}_1 = (1; \sqrt{3}) \\ d_2: y - 6 = 0. \to \vec{n}_2 = (0; 1) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{\left|\sqrt{3}\right|}{\sqrt{1 + 3} \cdot \sqrt{0 + 1}} = \frac{\sqrt{3}}{2} \to \varphi = 30^\circ.$$

Chon A.

Câu 144.
$$\begin{cases} d_1: x + \sqrt{3}y = 0 \to \vec{n}_1 = (1; \sqrt{3}) \\ d_2: x + 10 = 0 \to \vec{n}_2 = (1; 0) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{|1 + 0|}{\sqrt{1 + 3} \cdot \sqrt{1 + 0}} = \frac{1}{2}$$

 $\rightarrow \varphi = 60^{\circ}$. Chọn

Câu 145.
$$\begin{cases} d_1: 6x - 5y + 15 = 0 \to \vec{n}_1 = (6; -5) \\ d_2: \begin{cases} x = 10 - 6t \\ y = 1 + 5t \end{cases} \to \vec{n}_2 = (5; 6) \end{cases} \to \vec{n}_1 \cdot \vec{n}_2 = 0 \xrightarrow{\varphi = (d_1; d_2)} \varphi = 90^\circ. \text{ Chọn}$$

Câu 146.
$$\begin{cases} d_1: x + 2y - 7 = 0 \to \vec{n}_1 = (1; 2) \\ d_2: 2x - 4y + 9 = 0 \to \vec{n}_2 = (1; -2) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{|1 - 4|}{\sqrt{1 + 4} \cdot \sqrt{1 + 4}} = \frac{3}{5}. \text{ Chọn C.}$$

Câu 147.
$$\begin{cases} d_1: x + 2y - 2 = 0 \to \vec{n}_1 = (1; 2) \\ d_2: x - y = 0 \to \vec{n}_2 = (1; -1) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{|1 - 2|}{\sqrt{1 + 4} \cdot \sqrt{1 + 1}} = \frac{1}{\sqrt{10}}. \text{ Chọn A.}$$

$$d_2: x - y = 0 \to \vec{n}_2 = (1; -1) \qquad \sqrt{1 + 4}.\sqrt{1 + 1} \quad \sqrt{10}$$

$$\begin{cases} d_1: 10x + 5y - 1 = 0 \to \vec{n}_1 = (2; 1) \\ d_2: \begin{cases} x = 2 + t \\ y = 1 - t \end{cases} \to \vec{n}_2 = (1; 1) \end{cases} \xrightarrow{\varphi = (d_1; d_2)} \cos \varphi = \frac{|2 + 1|}{\sqrt{4 + 1}.\sqrt{1 + 1}} = \frac{3}{\sqrt{10}}. \text{ Chon}$$
A.

Câu 149.
$$\begin{cases} d_1: 3x + 4y + 1 = 0 \to \vec{n}_1 = (3;4) \\ d_2: \begin{cases} x = 15 + 12t \\ y = 1 + 5t \end{cases} \to \vec{n}_2 = (5;-12) \xrightarrow{\varphi = (d_1;d_2)} \cos \varphi = \frac{|15 - 48|}{\sqrt{9 + 16}.\sqrt{25 + 144}} = \frac{33}{65}.$$

Chon D.

Dạng 4.2 Viết phương trình đường thẳng liên quan đến góc

Câu 150. Chọn B

Gọi φ là góc giữa hai đường thẳng đã cho.

Đường thẳng
$$\begin{cases} x = 9 + at \\ y = 7 - 2t \end{cases} (t \in \mathbb{R}) \text{ có vecto chỉ phương là } \vec{u} = (a; -2).$$

Đường thẳng 3x + 4y - 2 = 0 có vecto chỉ phương là $\vec{v} = (4; -3)$.

Ta có
$$\cos \varphi = \left|\cos(\vec{u}, \vec{v})\right| \Leftrightarrow \cos 45^\circ = \frac{\left|\vec{u}.\vec{v}\right|}{\left|\vec{u}\right|.\left|\vec{v}\right|} \Leftrightarrow \frac{1}{\sqrt{2}} = \frac{\left|4a+6\right|}{5\sqrt{a^2+4}}$$

$$\Leftrightarrow 5\sqrt{a^2+4} = \sqrt{2}\left|4a+6\right| \Leftrightarrow 25a^2+100 = 32a^2+96a+72$$

$$\Leftrightarrow 7a^2+96a-28=0 \Leftrightarrow \begin{bmatrix} a=\frac{2}{7} \\ a=-14 \end{bmatrix}$$

Câu 151.
$$\begin{cases} d_1: 2x + y - 3 = 0 \\ d_2: x - 2y + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases} \to d_1 \cap d_2 = A(1;1) \in \Delta.$$

Ta có
$$d_3$$
: $y-1=0 \rightarrow \vec{n}_3=(0;1)$, gọi $\vec{n}_{\Delta}=(a;b)$, $\varphi=(\Delta;d_3)$. Khi đó

$$\frac{1}{\sqrt{2}} = \cos \varphi = \frac{|b|}{\sqrt{a^2 + b^2} \cdot \sqrt{0 + 1}} \Leftrightarrow a^2 + b^2 = 2b^2 \Leftrightarrow \begin{bmatrix} a = b \to a = b = 1 \to \Delta : x + y - 2 = 0 \\ a = -b \to a = 1, b = -1 \to \Delta : x - y = 0 \end{bmatrix}$$

Chon C.

Câu 152. Chọn B.

Cho đường thắng d và một điểm A. Khi đó.

- (i) Có duy nhất một đường thẳng đi qua A song song hoặc trùng hoặc vuông góc với d.
- (ii) Có đúng hai đường thẳng đi qua A và tạo với d một góc $0^{\circ} < \alpha < 90^{\circ}$.

Câu 153.
$$d: x + 2y - 6 = 0 \rightarrow \vec{n}_d = (1; 2)$$
, gọi $\vec{n}_{\Delta} = (a; b) \rightarrow k_{\Delta} = -\frac{a}{b}$. Ta có

$$\frac{1}{\sqrt{2}} = \cos 45^{\circ} = \frac{|a+2b|}{\sqrt{a^2+b^2} \cdot \sqrt{5}} \Leftrightarrow 5(a^2+b^2) = 2a^2 + 8ab + 8b^2$$

$$\Leftrightarrow 3a^2 - 8ab - 3b^2 = 0 \Leftrightarrow \begin{bmatrix} a = -\frac{1}{3}b \to k_{\Delta} = \frac{1}{3} \\ a = 3b \to k_{\Delta} = -3 \end{bmatrix}$$
 Chọn A.

Câu 154.
$$\begin{cases} d: y = kx \to \vec{n}_d = (k; -1) \\ \Delta: y = x \to \vec{n}_\Delta = (1; -1) \end{cases} \longrightarrow \frac{1}{2} = \cos 60^\circ = \frac{|k+1|}{\sqrt{k^2 + 1} \cdot \sqrt{2}} \Leftrightarrow k^2 + 1 = 2k^2 + 4k + 2$$

$$\Leftrightarrow k^2 + 4k + 1 = 0 \xrightarrow{\text{sol}: k = k_1, k = k_2} k_1 + k_2 = -4.$$

Chọn B.

Câu 155. Chọn C

Tọa độ A(2;1)

Gọi
$$\alpha$$
 là góc giữa hai đường thẳng (d_1) và (d_2) , $\cos \alpha = \frac{1}{\sqrt{10}} \Rightarrow \sin \alpha = \frac{3}{\sqrt{10}}$

Xét tam giác ABC ta có:
$$\frac{AB}{\sin C} = \frac{BC}{\sin A} \Rightarrow \sin C = \frac{1}{\sqrt{10}}$$

Gọi
$$\beta$$
 là góc giữa hai đường thẳng (d) và (d_1) , suy ra: $\sin \beta = \frac{1}{\sqrt{10}} \Rightarrow \cos \beta = \frac{3}{\sqrt{10}}$ (1)

Giả sử (d) có vec tơ pháp tuyến là $\vec{n}(a;b)$

Từ (1) ta có:
$$\cos \beta = \frac{3}{\sqrt{10}} \Leftrightarrow \frac{|2a+b|}{\sqrt{a^2+b^2}\sqrt{5}} = \frac{3}{\sqrt{10}} \Leftrightarrow a^2 - 8ab + b^2 = 0 \Leftrightarrow \begin{bmatrix} a=b \\ a=7b \end{bmatrix}$$

Với a = b một vec tơ pháp tuyến $\vec{n} = (1,1) \Rightarrow d : x + y = 0$

Với a = 7b một vec tơ pháp tuyến $\vec{n}(7;1) \Rightarrow d:7x + y - 6 = 0$

Vây:
$$T = 1 + 0 + 7 - 6 = 2$$

Câu 156. Chọn C

Gọi $\vec{n}(a;b)$ với $(a^2 + b^2 \neq 0)$ là véc tơ pháp tuyến của \overrightarrow{AC} , $\overrightarrow{n_1}(1;-3)$ là véc tơ pháp tuyến của đường thẳng \overrightarrow{BC} , $\overrightarrow{n_2}(1;-1)$ véc tơ pháp tuyến của đường thẳng AB.

Ta có: $\cos B = \cos C \Leftrightarrow |\cos(\vec{n}, \vec{n_1})| = |\cos(\vec{n_2}, \vec{n_1})|$ $\Leftrightarrow \frac{|\vec{n}, \vec{n_1}|}{|\vec{n}| \cdot |\vec{n_1}|} = \frac{|\vec{n_2}, \vec{n_1}|}{|\vec{n_2}| \cdot |\vec{n_1}|} \Leftrightarrow \frac{|a - 3b|}{\sqrt{10} \cdot \sqrt{a^2 + b^2}} = \frac{|1 + 3|}{\sqrt{10} \cdot \sqrt{2}}$ $2\sqrt{2(a^2 + b^2)} = |a - 3b| \Leftrightarrow 7a^2 + 6ab - b^2 = 0 \Leftrightarrow \begin{bmatrix} a = -b \\ 7a = b \end{bmatrix}$ + Với a = -b chon $a = 1, b = -1 \Rightarrow \vec{n}(1; -1)$ loai vì AC / /AB

+ Với $a = \frac{b}{7}$ chọn $a = 1; b = 7 \Rightarrow AC : x + 7y - 3 = 0$. Điểm $C = AC \cap BC \Rightarrow C\left(\frac{8}{5}; \frac{1}{5}\right)$

Đường thẳng $(d_1),(d_2)$ có véc tơ pháp tuyến lần lượt là $\overrightarrow{n_1} = (2;-1), \ \overrightarrow{n_2} = (1;1).$

Gọi (Δ) là đường thẳng cần tìm có véc tơ pháp tuyến là $\vec{n} = (a;b)$.

Góc giữa 2 đường thẳng (d_1) , (d_2) và (Δ) , (d_2) xác định bởi:

$$\cos(d_{1},d_{2}) = \frac{\left|\overrightarrow{n_{1}}.\overrightarrow{n_{2}}\right|}{\left|\overrightarrow{n_{1}}\right|.\left|\overrightarrow{n_{2}}\right|} = \frac{\left|2.1-1.1\right|}{\sqrt{2^{2}+\left(-1\right)^{2}}.\sqrt{1^{2}+1^{2}}} = \frac{1}{\sqrt{10}}.$$

$$\cos(\Delta,d_{2}) = \frac{\left|\overrightarrow{n}.\overrightarrow{n_{2}}\right|}{\left|\overrightarrow{n}\right|.\left|\overrightarrow{n_{2}}\right|} = \frac{\left|a+b\right|}{\sqrt{a^{2}+b^{2}}.\sqrt{1^{2}+1^{2}}} = \frac{\left|a+b\right|}{\sqrt{2}.\sqrt{a^{2}+b^{2}}}.$$

véctơ là CÁC DẠNG TOÁN THƯỜNG GẶP Vì (Δ) cắt (d_1) , (d_2) tại A và B tạo thành tam giác IAB cân tại A nên

$$\cos\left(d_{1},d_{2}\right) = \cos\left(\Delta,d_{2}\right) \Leftrightarrow \frac{\left|a+b\right|}{\sqrt{2}.\sqrt{a^{2}+b^{2}}} = \frac{1}{\sqrt{10}} \Leftrightarrow \sqrt{5}\left|a+b\right| = \sqrt{a^{2}+b^{2}}$$

$$\Leftrightarrow 5(a+b)^2 = a^2 + b^2 \Leftrightarrow 2a^2 + 5ab + b^2 = 0 \Leftrightarrow \begin{bmatrix} a = -2b \\ a = -\frac{1}{2}b \end{bmatrix}.$$

+a=-2b: chọn $a=2 \Rightarrow b=-1$: phương trình đường thẳng là:

$$2(x+2)-y=0 \Leftrightarrow 2x-y+4=0$$
 (L).

$$+a=-\frac{1}{2}b$$
: chọn $a=1 \Rightarrow b=-2$: phương trình đường thẳng là:

$$(x+2)-2y=0 \Leftrightarrow x-2y+2=0$$
 (T/m) . Do đó $T=a-5b=1-5(-2)=11$.

DANG 5. KHOÅNG CÁCH

Dang 5.1 Tính khoảng cách từ 1 điểm đến đường thẳng cho trước

Câu 158. Chọn D

Khoảng cách từ điểm A(1,1) đến đường thẳng $\Delta:5x-12y-6=0$ là

$$d(A,\Delta) = \frac{|5.1-12.1-6|}{\sqrt{5^2 + (-12)^2}} = 1.$$

Câu 159. Chọn A

Khoảng cách
$$d = \frac{\left|3.5 + 2.(-1) + 13\right|}{\sqrt{3^2 + 2^2}} = \frac{26}{\sqrt{13}} = 2\sqrt{13}$$
.

Câu 160. Chon B

Khoảng cách từ điểm M(1,-1) đến đường thẳng $\Delta: 3x + y + 4 = 0$ là

$$d(M;\Delta) = \frac{|3.1-1+4|}{\sqrt{3^2+1^2}} = \frac{6}{\sqrt{10}} = \frac{3\sqrt{10}}{5}.$$

Câu 161. Chọn B

Ta có:
$$d(M, \Delta) = \frac{|3.3 - 4.(-4) - 1|}{\sqrt{3^2 + (-4)^2}} = \frac{24}{5}$$
.

Câu 162. Chọn A

Ta có
$$d(A; \Delta) = \frac{|3.(-3)-2+1|}{\sqrt{3^2+(-1)^2}} = \frac{10}{\sqrt{10}} = \sqrt{10}.$$

Câu 163. Chọn D

Ta có
$$d(O,d) = \frac{|4.0-3.0+1|}{\sqrt{4^2+3^2}} = \frac{1}{5}$$
.

Câu 164. Chọn A

Gọi bán kính của đường tròn là
$$R$$
. Khi đó: $R = d(I, \Delta) = \frac{|3 - 5 \cdot (-2) + 1|}{\sqrt{1^2 + (-5)^2}} = \frac{14}{\sqrt{26}}$.

Câu 165. Chọn D

Ta có:
$$d(M, \Delta) = \frac{\left|0.\cos\alpha + 4.\sin\alpha + 4(2-\sin\alpha)\right|}{\sqrt{\cos^2\alpha + \sin^2\alpha}} = 8$$
.

Câu 166. Chọn A

Khoảng cách từ điểm $M(x_0; y_0)$ đến đường thẳng $\Delta : ax + by + c = 0$ là: $d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{x_0^2 + b^2}}$

Vậy khoảng cách từ I(1,-2) đến đường thẳng $\Delta: 3x-4y-26=0$ bằng

$$d(I,\Delta) = \frac{\left|3.1 - 4.(-2) - 26\right|}{\sqrt{3^2 + (-4)^2}} = 3$$

Câu 167.
$$\begin{cases} x - 3y + 4 = 0 \\ 2x + 3y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 1 \end{cases} \to A(-1;1) \to d(A;\Delta) = \frac{\left| -3 + 1 + 4 \right|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}$$
. Chọn Congruence (Câu 167).

Câu 167.
$$\begin{cases} x - 3y + 4 = 0 \\ 2x + 3y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 1 \end{cases} \to A(-1;1) \to d(A;\Delta) = \frac{\left| -3 + 1 + 4 \right|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}. \text{ Chọn } C.$$
Câu 168.
$$\begin{cases} A(1;2) \\ B(0;3), C(4;0) \to BC: 3x + 4y - 12 = 0 \end{cases} \to h_A = d(A;BC) = \frac{\left| 3 + 8 - 12 \right|}{\sqrt{9 + 16}} = \frac{1}{5}.$$

Chon A.

Câu 169. Cách 1:
$$\begin{cases} A(3;-4) \\ B(1;5),C(3;1) \end{cases} \to \begin{cases} A(3;-4) \\ BC = 2\sqrt{5} \\ BC: 2x+y-7=0 \end{cases} \to \begin{cases} BC = 2\sqrt{5} \\ h_A = d(A;BC) = \sqrt{5} \end{cases}$$

$$\rightarrow S_{ABC} = \frac{1}{2}.2\sqrt{5}.\sqrt{5} = 5$$
. Chọn **B**

Cách 2:
$$S_{\Delta ABC} = \frac{1}{2} \sqrt{AB^2 \cdot AC^2 - \left(\overrightarrow{AB} \cdot \overrightarrow{AC}\right)^2}$$

Câu 170.
$$d(M;\Delta) = \frac{\left|3\sin\alpha + 3(2-\sin\alpha)\right|}{\sqrt{\cos^2\alpha + \sin^2\alpha}} = 6$$
. Chọn

Câu 171.
$$\Delta: \begin{cases} x = 1 + 3t \\ y = 2 + 4t \end{cases} \to \Delta: 4x - 3y + 2 = 0 \to d(M; \Delta) = \frac{|8 + 0 + 2|}{\sqrt{16 + 9}} = 2$$
. Chọn A.

Câu 172.
$$\Delta : \begin{cases} x = 2 + 3t \\ y = t \end{cases} \to \Delta : x - 3y - 2 = 0 \xrightarrow{\forall N \in \Delta} MN_{\min} = d(M; \Delta) = \frac{|15 - 3 - 2|}{\sqrt{1 + 9}} = \sqrt{10}.$$

Câu 173.
$$d(A; \Delta) = \frac{\left|-m+2-m+4\right|}{\sqrt{m^2+1}} = 2\sqrt{5} \Leftrightarrow \left|m-3\right| = \sqrt{5}.\sqrt{m^2+1} \Leftrightarrow 4m^2+6m-4=0$$

$$\Leftrightarrow \begin{bmatrix} m = -2 \\ m = \frac{1}{2} \end{bmatrix} \cdot \mathbf{Chon} \quad \mathbf{B}$$

Câu 174.
$$\begin{cases} d_1 : \begin{cases} x = t \\ y = 2 - t \end{cases} \to \begin{cases} d_1 : x + y - 2 = 0 \\ d_2 : x - 2y + m = 0 \end{cases} \Leftrightarrow \begin{cases} x = 4 - m \\ y = m - 2 \end{cases}$$

$$\to M(4-m;m-2) = d_1 \cap d_2.$$

Khi đó:
$$OM = 2 \Leftrightarrow (4-m)^2 + (m-2)^2 = 4 \Leftrightarrow m^2 - 6m + 8 = 0 \Leftrightarrow \begin{bmatrix} m=2 \\ m=4 \end{bmatrix}$$
. Chọn C.

Câu 175.
$$R = d(O; \Delta) = \frac{|100|}{\sqrt{64 + 36}} = 10$$
. **Chọn D.**

Câu 176.
$$R = d(I; \Delta) = \frac{|-10 - 24 - 10|}{\sqrt{25 + 144}} = \frac{44}{13}$$
. Chọn

Câu 177.
$$f(x;y) = |21x - 11y - 10| \rightarrow \begin{cases} f(M(21; -3)) = 464 \\ f(N(0; 4)) = 54 \\ f(P(-19; 5)) = 464 \end{cases}$$
 Chọn D.

Câu 178.
$$f(x;y) = |7x+10y-15| \rightarrow \begin{cases} f(M(1;-3)) = 38 \\ f(N(0;4)) = 25 \\ f(P(-19;5)) = 98 \end{cases}$$
 Chọn C. $f(Q(1;5)) = 42$

Câu 179.
$$\begin{cases} A(2;0) \in \Delta_2 \\ \Delta_2 \parallel \Delta_1 : 6x - 8y + 3 = 0 \end{cases} \rightarrow d(\Delta_1; \Delta_2) = d(A; \Delta_1) = \frac{|12 + 3|}{\sqrt{100}} = \frac{3}{2}. \text{ Chọn } \mathbf{B}.$$

Câu 180.
$$\begin{cases} A(-2;2) \in \Delta, \ \vec{n}_{\Delta} = (7;1) \\ d: 7x + y - 3 = 0 \rightarrow \vec{n}_{d} = (7;1) \end{cases}$$

$$\rightarrow \Delta \uparrow \uparrow d \rightarrow d(d;\Delta) = d(A;d) = \frac{\left|-14+2-3\right|}{\sqrt{50}} = \frac{3}{\sqrt{2}}$$
. Chọn A.

Câu 181.
$$\begin{cases} A(4;3) \in d_2 \\ d_2 \parallel d_1 : 6x - 8y - 101 = 0 \end{cases} \rightarrow d(d_1;d_2) = \frac{|24 - 24 - 101|}{\sqrt{100}} = \frac{101}{10} = 10,1. \text{ Chọn}$$
A.

Dạng 5.2 Phương trình đường thẳng liên quan đến khoảng cách

Câu 182. Chọn D

Gọi d là đường thẳng được cho trong các phương án. Khi đó:

+) Phương án

$$d(A,d) = \frac{\left|-2.3 + 2.1 - 3\right|}{\sqrt{\left(-2\right)^2 + 2^2}} = \frac{7}{2\sqrt{2}}; d(B,d) = \frac{\left|-2.4 + 2.0 - 3\right|}{\sqrt{\left(-2\right)^2 + 2^2}} = \frac{11}{2\sqrt{2}} \Rightarrow d(A,d) \neq d(B,d).$$

Loại phương án A.

+) Phương án

$$d(A,d) = \frac{|2.3 - 2.1 - 3|}{\sqrt{2^2 + (-2)^2}} = \frac{1}{2\sqrt{2}}; d(B,d) = \frac{|2.4 - 2.0 - 3|}{\sqrt{2^2 + (-2)^2}} = \frac{5}{2\sqrt{2}} \Rightarrow d(A,d) \neq d(B,d).$$

Loại phương án B.

+) Phương án C.

$$d(A,d) = \frac{|3+2.1-3|}{\sqrt{1^2+2^2}} = \frac{2}{\sqrt{5}}; d(B,d) = \frac{|4+2.0-3|}{\sqrt{1^2+2^2}} = \frac{1}{\sqrt{5}} \Rightarrow d(A,d) \neq d(B,d)$$

Loại phương án C.

+) Phương án D.

$$d(A,d) = \frac{|2.3 + 2.1 - 3|}{\sqrt{2^2 + 2^2}} = \frac{5}{2\sqrt{2}}; d(B,d) = \frac{|2.4 + 2.0 - 3|}{\sqrt{2^2 + (-2)^2}} = \frac{5}{2\sqrt{2}} \Rightarrow d(A,d) = d(B,d)$$

Chọn phương án D.

Câu 183. Đường thẳng cách đều hai điểm A, B thì đường thẳng đó hoặc song song (hoặc trùng) với AB,

hoặc đi qua trung điểm I của đoạn AB.

Ta có:
$$\begin{cases} A(2;3) \\ B(1;4) \end{cases} \rightarrow \begin{cases} I\left(\frac{3}{2};\frac{7}{2}\right) \\ \overrightarrow{AB} = (-1;1) \rightarrow \overrightarrow{n}_{AB} = (1;1) \end{cases} \rightarrow AB \parallel d : x - y - 2 = 0. \text{ Chọn}$$

Câu 184. Dễ thấy ba điểm A, B, C thẳng hàng nên đường thẳng cách điều A, B, C khi và chỉ khi chúng song song hoặc trùng với AB.

Ta có:
$$\overrightarrow{AB} = (12; 4) \rightarrow \overrightarrow{n}_{AB} = (1; -3) \rightarrow AB \parallel d : x - 3y + 4 = 0$$
. Chọn A.

Câu 185. Gọi
$$I$$
 là trung điểm đoạn $AB \rightarrow \begin{cases} I\left(-\frac{1}{2}; \frac{5}{2}\right) \\ \overline{AB} = (-3; 3) \rightarrow \vec{n}_{AB} = (1; 1) \end{cases}$

Khi đó: $\Delta : mx - y + 3 = 0$ $(\vec{n}_{\Delta} = (m; -1))$ cách đều A, B

$$\Leftrightarrow \begin{bmatrix} I \in \Delta \\ \frac{m}{1} = \frac{-1}{1} \Leftrightarrow \begin{bmatrix} -\frac{m}{2} - \frac{5}{2} + 3 = 0 \\ m = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m = 1 \\ m = -1 \end{bmatrix}.$$
 Chọn C.

Câu 186.
$$\begin{cases} d: 3x - 4y + 1 = 0 \to M(1;1) \in d \\ \Delta \parallel d \to \Delta: 3x - 4y + c = 0 \end{cases} \to 1 = d(d;\Delta) = d(M;\Delta) = \frac{|c-1|}{5} \Leftrightarrow \begin{bmatrix} c = -4 \\ c = 6 \end{bmatrix}.$$

Chon A.

Câu 187.
$$d(M(x;y);\Delta) = 2 \Leftrightarrow \frac{|3x-4y+2|}{5} = 2 \Leftrightarrow \begin{bmatrix} 3x-4y+12=0\\ 3x-4y-8=0 \end{bmatrix}$$
. **Chọn B**.

Câu 188.
$$d(M(x;y);d_1) = d(M(x;y);d_2) \Leftrightarrow \frac{|5x+3y-3|}{\sqrt{34}} = \frac{|5x+3y+7|}{\sqrt{34}} \Leftrightarrow 5x+3y+2 = 0.$$

Chon

Câu 189. Chọn D

Gọi cạnh hình vuông bằng
$$a$$
. Do $\triangle ABK \sim \triangle MDK \Rightarrow \frac{MD}{AB} = \frac{DK}{KB} = \frac{1}{3} \Rightarrow \frac{DK}{DB} = \frac{1}{4}$.

Ta có
$$\overrightarrow{AM} = \overrightarrow{AD} + \overrightarrow{DM} = \overrightarrow{AD} + \frac{1}{3}\overrightarrow{DC}$$
 (1)

$$\overrightarrow{NK} = \overrightarrow{BK} - \overrightarrow{BN} = \frac{3}{4}\overrightarrow{BD} - \frac{1}{2}\overrightarrow{BC} = \frac{3}{4}(\overrightarrow{BA} + \overrightarrow{BC}) - \frac{1}{2}\overrightarrow{BC} = \frac{3}{4}\overrightarrow{BA} + \frac{1}{4}$$

Từ (1) và (2) suy ra
$$\overrightarrow{AM}.\overrightarrow{NK} = \frac{1}{4}\overrightarrow{AD}.\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BA}.\overrightarrow{DC} = 0 \Rightarrow AM \perp$$

Vì $AM \perp NK$ nên NK có phương trình tổng quát: 10x + y - 2019

Khoảng cách từ O đến NK là
$$d(O, NK) = \frac{\left|-2019\right|}{\sqrt{10^2 + 1^2}} = \frac{2019\sqrt{101}}{101}$$
.

Ta có:
$$M(4;2) \in d \Leftrightarrow 4+2b+c=0 \Rightarrow c=-4-2b$$
. (1)

$$d(A,d) = \frac{|1+c|}{\sqrt{1+b^2}} = \frac{3\sqrt{10}}{10} \Leftrightarrow 10(1+c)^2 = 9(1+b^2).$$
 (2)

Thay
$$c = -4 - 2b$$
 vào PT (2) ta được PT: $31b^2 + 120b + 81 = 0 \Leftrightarrow \begin{bmatrix} b = -3(tmdk) \\ b = -\frac{27}{31}(ktmdk) \end{bmatrix}$

$$\Rightarrow b = -3, c = 2 \Rightarrow b + c = -1..$$

Câu 191. Chọn A

$$\Delta: x + (m-1)y + m = 0 \Leftrightarrow (y+1)m + x - y = 0 \ \forall m \Leftrightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}.$$

Suy ra Δ luôn đi qua điểm cố định H(-1;-1).

Khi đó, với mọi $M \in \Delta$, ta có $d(A; \Delta) = AM \le AH$.

Giá trị lớn nhất của $d(A; \Delta) = AH$ khi $M \equiv H \Rightarrow \max d(A, \Delta) = AH = 2\sqrt{10}$.

Câu 192. Chọn B.

Gọi A, B lần lượt là giao điểm của đường thẳng đã cho với Ox, Oy.

Ta có
$$12x + 5y = 60 \Leftrightarrow \frac{x}{5} + \frac{y}{12} = 0$$
. Do đó $A(5;0)$, $B(0;12)$.

Gọi H là hình chiếu của O lên AB. Khi đó: $OH = d(O; AB) = \frac{|12.0 + 5.0 - 60|}{\sqrt{12^2 + 5^2}} = \frac{60}{13}$.

Tam giác OAB là tam giác vuông tại O nên tổng độ dài các đường cao là

$$OA + OB + OH = 5 + 12 + \frac{60}{13} = \frac{281}{13}$$
.

Câu 193. Chọn D

Gọi H là hình chiếu của điểm A lên đường thẳng (d). Khi đó ta có:

 $d(A,(d)) = AH \le AB = \sqrt{(3-1)^2 + (4+1)^2} = \sqrt{29}$. Do đó khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất bằng $\sqrt{29}$ khi H = B hay $(d) \perp AB$ tại B.

Vì vậy (d) đi qua B và nhận $\overrightarrow{AB} = (2,5)$ làm VTPT.

Do đó phương trình của đường thẳng (d) là $2(x-3)+5(y-4)=0 \Leftrightarrow 2x+5y-26=0$.

DANG 6. XÁC ĐINH ĐIỂM

Dạng 6.1 Xác định tọa hình chiếu, điểm đối xứng

Câu 194. Chọn D

Thay tọa độ các điểm vào phương trình đường thẳng d, ta có $M_1, M_4, M_2 \in d$ và $M_3 \notin d$.

Câu 195. Chọn C

Phương trình đường thẳng đi qua hai điểm B và C có dạng: $\frac{x+3}{2+3} = \frac{y+8}{7+8} \Leftrightarrow 3x-y+1=0$.

Đường thẳng đi qua A và vuông góc với BC có phương trình:

$$1(x-4)+3(y-3)=0 \Leftrightarrow x+3y-13=0$$

Tọa độ chân đường cao kẻ từ đỉnh A xuống cạnh BC là nghiệm của hệ phương trình:

$$\begin{cases} 3x - y + 1 = 0 \\ x + 3y - 13 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 4 \end{cases}.$$

Câu 196. Chọn B

Gọi Δ là đường thẳng đi qua M và vuông góc với d .

Ta có phương trình của Δ là: x+3y-1=0

Tọa độ hình chiếu vuông góc của M trên d là nghiệm của hệ phương trình:

$$\begin{cases} -3x + y - 5 = 0 \\ x + 3y - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{7}{5} \\ y = \frac{4}{5} \end{cases}.$$

Câu 197. Chọn A

Đường thẳng Δ có 1 VTPT là $\vec{n} = (1; -1)$ nên Δ có 1 VTCP là $\vec{u} = (1; 1)$

Gọi H là hình chiếu vuông góc của M(1,2) lên đường thẳng Δ , tọa độ H(t,t)

$$\overrightarrow{Vi} MH \perp \Delta \Rightarrow \overrightarrow{MH} \perp \overrightarrow{u} \Rightarrow \overrightarrow{MH} . \overrightarrow{u} = 0 \Leftrightarrow t - 1 + t - 2 = 0 \Leftrightarrow t = \frac{3}{2} \Rightarrow H\left(\frac{3}{2}; \frac{3}{2}\right)$$

Câu 198. Chọn C

Gọi M là trung điểm của cạnh BC. Ta có

$$\overrightarrow{AM} = \frac{3}{2} \overrightarrow{AG} \Leftrightarrow \begin{cases} x_M - 2 = \frac{3}{2}(2 - 2) \\ y_M - 4 = \frac{3}{2}(\frac{2}{3} - 4) \end{cases}, \text{ suy ra } M(2; -1).$$

 $\overrightarrow{HM} = (0,3)$ suy ra HM không vuông góc với (d) nên B không trùng với H.

$$B(a;b) \in (d) \Rightarrow b = -a - 2$$
.

Tam giác BHC vuông tại H và CM là trung tuyến nên ta có

$$MB = MH \Leftrightarrow (a-2)^2 + (a+1)^2 = 9 \Leftrightarrow a^2 - a - 2 = 0 \Leftrightarrow \begin{bmatrix} a = -1 \\ a = 2 \ (l) \end{bmatrix}$$

Suy ra
$$B(-1;-1)$$
 và $T = a - 3b = 2$.

Câu 199. Chọn C

Gọi $C(t; -2t - 5) \in (d)$.

Dễ thấy hai tứ giác BCND và ADNB nội tiếp.

Suy ra
$$\begin{cases} \overline{BNC} = \widehat{BDC} \\ \overline{BNA} = \overline{BDA} \end{cases} \Rightarrow \widehat{ANC} = 90^{\circ} \Leftrightarrow CN \perp AN.$$

Do đó
$$\overrightarrow{CN}.\overrightarrow{AN} = 0 \Leftrightarrow 9(5-t)-12(2t+1) = 0 \Leftrightarrow t=1 \Rightarrow C(1;-7)$$
.

Vậy
$$m - n = 1 + 7 = 8$$

Dạng 6.2 Xác định điểm liên quan đến yếu tố khoảng cách, góc

Câu 200. Chọn A

Gọi M(x;0).

Ta có
$$\overrightarrow{AB} = (-3, 4)$$

Phương trình đường thẳng $AB: 4x+3(y-3)=0 \Leftrightarrow 4x+3y-9=0$.

$$d(M; AB) = \frac{|4x - 9|}{5} \Leftrightarrow 5 = |4x - 9| \Leftrightarrow \begin{bmatrix} x = \frac{7}{2} \\ x = 1 \end{bmatrix}$$

Vậy
$$M\left(\frac{7}{2};0\right); M\left(1;0\right)$$
.

Câu 201. $\begin{cases} M \in d : x - 2y - 1 = 0 \to M(2m + 1; m), m \in \mathbb{Z} \\ AB : 4x + 3y - 7 = 0 \end{cases}$. Khi đó

$$6 = d\left(M; AB\right) = \frac{\left|8m + 4 + 3m - 7\right|}{5} \Leftrightarrow \left|11m - 3\right| = 30 \Leftrightarrow \begin{bmatrix} m = 3 \\ m = \frac{27}{11} \left(1\right) & \to M\left(7; 3\right). \text{ Chọn} \end{bmatrix}$$
B.

Câu 202.

$$M \in d: \begin{cases} x = 2 + 2t \\ y = 3 + t \end{cases} \rightarrow M(2 + 2t; 3 + t) \text{ v\'oi } 2 + 2t < 0 \Leftrightarrow t < -1. \text{ Khi đ\'o}$$

$$5 = AM \iff (2t+2)^{2} + (t+2)^{2} = 25 \iff 5t^{2} + 12t - 17 = 0 \iff \begin{bmatrix} t = 1 \ (l) \\ t = -\frac{17}{5} \end{bmatrix} M \left(-\frac{24}{5}; ; -\frac{2}{5} \right).$$

Chon C.

Câu 203. Gọi $M(x;0) \in Ox$ thì hoành độ của hai điểm đó là nghiệm của phương trình:

$$d(M;\Delta) = 2\sqrt{5} \Leftrightarrow \frac{|2x+5|}{\sqrt{5}} = 2\sqrt{5} \Leftrightarrow \begin{vmatrix} x = \frac{5}{2} = x_1 \\ x = -\frac{15}{2} = x_2 \end{vmatrix} \longrightarrow x_1 \cdot x_2 = -\frac{75}{4}. \text{ Chọn}$$

Câu 204.
$$\begin{cases} M(x;0) \\ AB: 4x + 3y - 9 = 0 \end{cases} \to 1 = d(M;AB) = \frac{|4x - 9|}{5} \Leftrightarrow \begin{bmatrix} x = \frac{7}{2} \to M(\frac{7}{2};0) \\ x = 1 \to M(1;0) \end{bmatrix}. \text{ Chọn A.}$$

Câu 205. Ta có

$$\begin{cases} AB: 4x - 3y - 12 = 0 \\ AB = 5 \end{cases} \rightarrow 6 = S_{\Delta MAB} = \frac{1}{2}.5. \frac{|3y + 12|}{5} \Leftrightarrow \begin{bmatrix} y = 0 \to M(0; 0) \\ y = -8 \to M(0; -8) \end{bmatrix}.$$

Chon A.

Câu 206.
$$\begin{cases} M(x;0) \\ d(M;\Delta_1) = d(M;\Delta_2) \end{cases} \to \frac{|3x-6|}{\sqrt{13}} = \frac{|3x+3|}{\sqrt{13}} \Leftrightarrow x = \frac{1}{2} \to M(\frac{1}{2};0). \text{ Chọn} \end{cases}$$
B.

Câu 207.
$$\begin{cases} M \in d : \begin{cases} x = t \\ y = 1 + 2t \end{cases} \to M(t; 1 + 2t) \to (t + 2)^2 + (2t - 1)^2 = (t - 4)^2 + (2t + 7)^2 \\ MA = MB \end{cases}$$

$$\Leftrightarrow 20t + 60 = 0 \Leftrightarrow t = -3 \rightarrow M(-3, -5)$$
. Chọn

Câu 208.
$$\begin{cases} M \in d : 2x - y + 3 = 0 \to M (m; 2m + 3) \\ MA = MB \end{cases} \to (m+1)^2 + (2m+1)^2 = (m+3)^2 + (2m+1)^2$$
$$\Leftrightarrow m = -2 \to M (-2; -1). \text{ Chon} \qquad A.$$

Câu 209.
$$\begin{cases} C \in d : y = 2 \to C(c; 2) \\ BA = BC \end{cases} \to 2 = c^2 + 1 \Leftrightarrow c = \pm 1 \to \begin{bmatrix} C(1; 2) \\ C(-1; 2) \end{bmatrix}$$
 Chọn C.

Câu 210. Chon B

Do A(a;b) thuộc đường thẳng d: x-y-3=0 nên $a-b-3=0 \Leftrightarrow b=a-3 \Rightarrow A(a;a-3)$.

Khoảng cách từ điểm A(a;a-3) đến đường thẳng $\Delta: 2x-y+1=0$ là

$$d(a,\Delta) = \frac{|2a - (a-3) + 1|}{\sqrt{2^2 + 1^2}} = \frac{|a+4|}{\sqrt{5}}.$$

Theo đề bài
$$d(a, \Delta) = \sqrt{5} \Leftrightarrow \frac{|a+4|}{\sqrt{5}} = \sqrt{5} \Leftrightarrow |a+4| = 5 \Leftrightarrow \begin{bmatrix} a+4=5 \\ a+4=-5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a=1 \\ a=-9 \end{bmatrix}$$
.

Theo đề bài điểm A(a;b) có hoành độ dương nên $a=1 \Rightarrow A(1;-2)$. Vậy P=ab=1(-2)=-2.

Câu 211. Chọn B

$$Vi M(a;b) \in d \Rightarrow M(3+t;2+t).$$

Lại có M cách đường thẳng $\Delta: 2x-y-3=0$ một khoảng $2\sqrt{5}$ suy ra

$$\frac{\left|2(3+t)-(2+t)-3\right|}{\sqrt{5}} = 2\sqrt{5} \iff \left|t+1\right| = 10 \iff \begin{bmatrix} t=9\\ t=-11 \end{bmatrix} \implies \begin{bmatrix} M(12;11)\\ M(-8;-9) \end{bmatrix}.$$

Vì a > 0 nên điểm M(-8, -9) không thỏa mãn.

Vây: $M(12;11) \Rightarrow a+b=23$.

Câu 212. Chọn B

$$A(a;b) \in d \Rightarrow \begin{cases} a = 3 - t \\ b = 2 - t \end{cases}$$

Giả thiết: $a < 0 \Leftrightarrow 3 - t < 0 \Leftrightarrow t > 3$.

Ta có
$$d(A;d) = 2\sqrt{5} \Leftrightarrow \frac{\left|2(3-t)-(2-t)-3\right|}{\sqrt{2^2+(-1)^2}} = 2\sqrt{5} \Leftrightarrow \left|1-t\right| = 10 \Leftrightarrow \begin{bmatrix} t=11\\ t=-9 \end{bmatrix}.$$

Vì t > 3 nên chọn t = 11. Khi đó $\begin{cases} a = -8 \\ b = -9 \end{cases} \Rightarrow P = 72$. Do đó chọn đáp án **B.**

Câu 213. Chon B

$$M_1 \in (d)$$
: $2x + y - 5 = 0 \Rightarrow M_1(m; 5 - 2m) \Rightarrow \overrightarrow{IM_1}(m-1; 3 - 2m)$.

$$IM_1 = \sqrt{10} \Rightarrow \sqrt{(m-1)^2 + (3-2m)^2} = \sqrt{10} \Leftrightarrow 5m^2 - 14m + 10 = 10 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = \frac{14}{5} \end{bmatrix}$$

 \Rightarrow có 2 điểm thỏa mãn yêu cầu bài toán là $M_1 (0;5); M_2 \left(\frac{14}{5}; -\frac{3}{5}\right)$.

Tổng các hoành độ của M_1 và M_2 là: $0 + \frac{14}{5} = \frac{14}{5}$.

Câu 214. Chọn A

Ta có $\overrightarrow{AB} = (3, -4)$.

 \Rightarrow phương trình tổng quát của đường thẳng AB có dạng 4x + 3y + m = 0.

Vì $A(1;1) \in AB$ nên $4.1+3.1+m=0 \Leftrightarrow m=-7 \Rightarrow AB:4x+3y-7=0$.

Vì
$$C(a;b) \in d : x-2y-1=0 \Rightarrow a-2b-1=0 \Rightarrow a=2b+1$$
.

Theo đề ra
$$d(C; AB) = 6 \Leftrightarrow \frac{|4a+3b-7|}{\sqrt{4^2+3^2}} = 6 \Leftrightarrow |4a+3b-7| = 30$$
.

Thay a = 2b + 1 vào ta được:

$$|4(2b+1)+3b-7| = 30 \Leftrightarrow |11b-3| = 30 \Leftrightarrow \begin{bmatrix} 11b-3=30 \\ 11b-3=-30 \end{bmatrix} \Leftrightarrow \begin{bmatrix} b=3 \\ b=-\frac{27}{11} \end{bmatrix}$$

Do C có tọa độ nguyên nên b = 3; $a = 7 \Rightarrow a + b = 10$.

Dạng 6.3 Xác định điểm liên quan đến yếu tố cực trị

Câu 215. Chọn C

Gọi A' đối xứng A qua d ta có A'(0;3) khi đó điểm $M = A'B \cap d$ Tìm được M(3;4).

Câu 216. Chọn D

Điểm $M \in d \Leftrightarrow M(4t-15;t)$

Ta có:
$$AM = \sqrt{\left(4t - 17\right)^2 + t^2} = \sqrt{17\left(t^2 - 8t + 17\right)} = \sqrt{17\left[\left(t - 4\right)^2 + 1\right]} \ge \sqrt{17}$$
, $\forall t \in \mathbb{R}$.

 \Rightarrow min $AM = \sqrt{17}$, đạt được tại t = 4. Khi đó M(1;4).

Câu 217. Chọn D

Cách 1:

Tìm tọa độ điểm
$$I(x; y)$$
 sao cho $\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} = \overrightarrow{0}$. Suy ra $I\left(-1; \frac{4}{3}\right)$

Ta có:
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MI} + \overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC}$$

$$\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right| = 3 \left| \overrightarrow{MI} \right|$$
. Vậy $\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right|$ nhỏ nhất khí $\left| \overrightarrow{MI} \right|$ nhỏ nhất.

 $|\overrightarrow{MI}|$ nhỏ nhất khi M là hình chiếu vuông góc của I xuống đường thẳng d .

Đường thẳng d' đi qua I và vuông góc với d có phương trình: $x + 2y = \frac{5}{3}$

M là giao điểm của d và d' nên M là nghiệm của hệ: $\begin{cases} 2x - y = 3 \\ x + 2y = \frac{5}{3} \end{cases} \Rightarrow M\left(\frac{-13}{15}; \frac{19}{15}\right)$

Cách 2:

M thuộc d suy ra M(t; 2t+3)

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = (-3 - 3t; -6t - 5)$$

$$\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right| = \sqrt{\left(-3 - 3t\right)^{2+} + \left(-6 - 5t\right)^{2}}$$

$$\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right| = \sqrt{45t^2 + 78t + 34} = \sqrt{45\left(t + \frac{13}{15}\right)^2 + \frac{1}{5}}$$

$$\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right|$$
 nhỏ nhất khi $t = -\frac{13}{15}$. Suy ra $M\left(\frac{-13}{15}, \frac{19}{15} \right)$.

Câu 218. Chọn B

Gọi G(a;b) là trọng tâm tam giác ABC. Suy ra

$$\begin{cases} a = \frac{x_A + x_B + x_C}{3} \\ b = \frac{y_A + y_B + y_C}{3} \end{cases} \Leftrightarrow \begin{cases} a = \frac{2 + 1 - 2}{3} \\ b = \frac{2 - 3 + 2}{3} \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ b = \frac{1}{3} \end{cases} \Rightarrow G\left(\frac{1}{3}; \frac{1}{3}\right).$$

Ta có:
$$|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}| = |\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} + \overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}| = |3\overrightarrow{MG}| = 3MG$$
.

Suy ra $|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}|$ nhỏ nhất khi MG nhỏ nhất.

Mặt khác M thuộc trục tung nên MG nhỏ nhất khi M là hình chiếu của G lên trục tung. Vậy $M\left(0;\frac{1}{3}\right)$.

Câu 219. Chọn D

Goi A' là điểm đối xứng của A qua đường thẳng Δ

Ta có: $MA + MB = MA' + MB \ge A'B$

Đẳng thức xảy ra \Leftrightarrow M trùng với M_0 (M_0 là giao điểm của Δ và A'B)

Ta có: AA' $\perp \Delta$ nên $\overrightarrow{n}_{AA'} = \overrightarrow{a}_{\Delta} = (1;1)$

$$(AA'): x + y - 3 = 0$$

Gọi $H=AA'\cap \Delta \Rightarrow H(1;2)$

Vì A' đối xứng với A qua Δ nên H là trung điểm AA' \Rightarrow A'(0;3)

Đường thẳng A'B qua B có VTCP $\overrightarrow{A'B} = (9;3) = 3(3;1) \Rightarrow \overrightarrow{n_{A'B}} = (1;-3)$

$$\Rightarrow$$
 A'B: $x - 3y + 9 = 0$

Tọa độ M_0 thỏa hệ: $\begin{cases} x-y+1=0 \\ x-3y+9=0 \end{cases} \Leftrightarrow M_0\left(3;4\right)$

$$\Rightarrow$$
 M(3;4). Vậy $a+b=7$

Dạng 6.4 Một số bài toán tổng hợp

Câu 220. Chọn C

Goi a > 0 là đô dài canh của hình ABCD.

Trên tia đối của tia DC lấy điểm P sao cho $DP = \frac{1}{2}a$.

Tam giác
$$MCN$$
 có $MN = \sqrt{MC^2 + CN^2} = \frac{5}{6}a$.

Tam giác
$$ANP$$
 có $NP = ND + DP = \frac{5}{6}a$.

Vậy $\triangle AMN = \triangle APN$ (c.c.c) suy ra $\widehat{MAN} = 45^{\circ}$.

Suy ra với H lầ hình chiếu vuông góc của M trên đường thẳng thì tam giác AHM vuông cân tai H.

Tính được $H\left(\frac{5}{2};2\right)$, $HM=\frac{3\sqrt{5}}{2}$ suy ra tọa độ A là nghiệm của hệ phương trình

$$\begin{cases} \left(x - \frac{5}{2}\right)^2 + \left(y - 2\right)^2 = \frac{45}{4} \Leftrightarrow \begin{cases} \begin{cases} x = 4 \\ y = 5 \end{cases} \\ \begin{cases} x = 1 \end{cases} \end{cases}$$

Câu 221. Chọn A

Vì $A \in d_1$, giả sử A(a;3-a); Vì $B \in d_2$, giả sử B(2b+6;b)

$$I$$
 là trung điểm của đoạn thẳng AB khi và chỉ khi
$$\begin{cases} \frac{a+2b+6}{2} = 1\\ \frac{3-a+b}{2} = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a+2b=-4 \\ a-b=5 \end{cases} \Leftrightarrow \begin{cases} a=2 \\ b=-3 \end{cases} \Rightarrow A(2;1); B(0;-3) \Rightarrow \overrightarrow{BA} = (2;4) \Rightarrow \overrightarrow{BA} = 2.\overrightarrow{u_1}.$$

Vậy đường thẳng AB có một vécto chỉ phương là $\overrightarrow{u_1} = (1,2)$.

Câu 222. Chon C

d có phương trình tham số là
$$\begin{cases} x = 5 + 3t \\ y = -1 - 2t \end{cases}$$
Gọi $C(5+3t;-1-2t) \in d$, ta có: $\overrightarrow{CA} = (-9-3t;3+2t), \overrightarrow{CB} = (-3-3t;7+2t)$

$$CA = CB \Leftrightarrow CA^2 = CB^2 \Leftrightarrow (9+3t)^2 + (3+2t)^2 = (3+3t)^2 + (7+2t)^2$$

$$\Leftrightarrow 20t = -32 \Leftrightarrow t = \frac{-8}{5}$$
Suy ra: $C\left(\frac{1}{5}; \frac{11}{5}\right)$

Câu 223. Chọn A

Véc tơ chỉ phương của AB là: $\overrightarrow{AB} = (4; -2) \implies \text{véc tơ pháp tuyến của AB là: } \overrightarrow{n} = (1; 2)$ Phương trình đường thẳng AB là: $(x+3)+2(y-5)=0 \implies x+2y-7=0$

Tọa độ điểm I là nghiệm của hệ phương trình: $\begin{cases} 2x - y - 1 = 0 \\ x + 2y - 7 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{9}{5} \\ y = \frac{13}{5} \end{cases}$

$$\Rightarrow I\left(\frac{9}{5}; \frac{13}{5}\right).$$

Vậy tỉ số
$$\frac{IA}{IB} = \frac{\sqrt{(x_I - x_A)^2 + (y_I - y_A)^2}}{\sqrt{(x_I - x_B)^2 + (y_I - y_B)^2}} = \frac{\sqrt{(\frac{9}{5} + 3)^2 + (\frac{13}{5} - 5)^2}}{\sqrt{(\frac{9}{5} - 1)^2 + (\frac{13}{5} - 3)^2}} = 6.$$

Câu 224. Chọn B

Ta có $\overrightarrow{BC} = (-4, 2)$, $\overrightarrow{AC} = (-4, -2)$, $\overrightarrow{AH} = (a - 2, b - 1)$, $\overrightarrow{BH} = (a - 2, b + 3)$.

Vì H là trực tâm của tam giác ABC nên ta có

$$\begin{cases} \overrightarrow{AH} \perp \overrightarrow{BC} \Leftrightarrow \begin{cases} -4(a-2)+2(b-1)=0 \\ -4(a-2)-2(b+3)=0 \end{cases} \Leftrightarrow \begin{cases} 2a-b=3 \\ 2a+b=1 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=-1 \end{cases}.$$

Vậy $S = 3a + 2b = 3 \times 1 + 2 \times (-1) = 1$.

Câu 225. Chọn A

Gọi
$$M(x;y)$$
. Khi đó: $\overrightarrow{MI} = \frac{2}{5}\overrightarrow{MB} + \frac{3}{5}\overrightarrow{MC} \Leftrightarrow \begin{cases} a - x = \frac{2}{5}(-2 - x) + \frac{3}{5}(3 - x) \\ b - y = \frac{2}{5}(3 - y) + \frac{3}{5}(-2 - y) \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 0 \end{cases}$

Nên I(1,0). Vậy $S = a^2 + b^2 = 1$.

Câu 226. Chọn A

Gọi K trung điểm $AI \Rightarrow K\left(\frac{1}{2};0\right)$.

Ta có
$$2\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow 2\overrightarrow{MA} + 2\overrightarrow{MI} = \overrightarrow{0} \Leftrightarrow 4\overrightarrow{MK} = \overrightarrow{0} \Leftrightarrow M \equiv K$$

 $\Rightarrow a + b = \frac{1}{2} + 0 = \frac{1}{2}$. Chọn A

Câu 227. Chọn B

Điểm C thuộc đường trung tuyến CM nên gọi tọa độ điểm C(x; -x-1).

Tọa độ $\overrightarrow{AC} = (x-2; -x-2)$, tọa độ vecto chỉ phương của đường thẳng BH là $\overrightarrow{u} = (3;1)$.

Vì
$$AC \perp BH$$
 nên $\overrightarrow{AC}.\overrightarrow{BH} = 0 \Leftrightarrow (x-2).3 - x - 2 = 0 \Leftrightarrow x = 4$.

Vây
$$C(4;-5)$$
.

Câu 228. Chọn A

Gọi H là giao điểm của ND, AP

Ta có:
$$\triangle MBC = \triangle NCD (c - g - c)$$
 nên $\widehat{MCB} = \widehat{NDC}$.

Mà
$$\widehat{MCB} + \widehat{MCD} = 90^{\circ} \Rightarrow \widehat{NDC} + \widehat{MCD} = 90^{\circ} \Rightarrow \widehat{DIC} = 90^{\circ} \Rightarrow ND \perp MC \Rightarrow ID \perp AP$$
 (1)

Do AMCP là hình bình hành nên $AP//MC \Rightarrow HP//IC$ suy ra H là trung điểm của ID (2)

Từ
$$(1),(2) \Rightarrow AP$$
 là đoạn trung trực của $ID \Rightarrow \Delta ADP = \Delta AIP \Rightarrow AI \perp IP$,

$$AI = 2IP = 2.\frac{5\sqrt{2}}{2} = 5\sqrt{2}$$
.

Phương trình đường thẳng $AI : \begin{cases} x = 5 + 7t \\ y = 2 - t \end{cases}$.

$$A \in AI$$
, $A \not\equiv I$, $x_A < 0 \Leftrightarrow A(5+7t;2-t)$, $5+7t < 0$.

$$AI = 5\sqrt{2} \Leftrightarrow 50t^2 = 50 \Leftrightarrow \begin{bmatrix} t = -1 \text{ (nhaä)} \\ t = 1 \text{ (loaî)} \end{bmatrix}$$

$$t = -1 \Rightarrow A(-2;3)$$
.

$$AP: x-3y+11=0$$
, $DN: 3x+y-17=0$.

$$H = AP \cap DN \Rightarrow$$
 Tọa độ của H là nghiệm của hệ
$$\begin{cases} x - 3y + 11 = 0 \\ 3x + y - 17 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 4 \\ y = 5 \end{cases}$$

$$H(4;5), I(5;2) \Rightarrow D(3;8).$$

Vậy
$$A(-2;3)$$
, $D(3;8)$.

Câu 229. Chọn B

Gọi M là trung điểm cạnh AC, suy ra $\overrightarrow{BG} = 2\overrightarrow{GM} \Rightarrow M\left(\frac{7}{2};1\right)$.

Gọi điểm B' là điểm đối xứng với B qua đường phân giác trong của góc A. Suy ra điểm B' nằm trên AC.

Đường thẳng BB' qua B và vuông góc với đường thẳng d: x-y-1=0 nên có phương trình BB': x+y+3=0

Gọi $I = BB' \cap d$, suy ra tọa độ điểm I(-1, -2) là trung điểm của BB' nên tọa độ B'(2, -5)

Đường thẳng AC đi qua B'(2;-5) và có véc tơ chỉ phương $\overline{B'M} = \left(\frac{3}{2};6\right)$, suy ra véc tơ pháp

tuyến của AC có tọa độ (4;-1). Đường thẳng AC có phương trình là: 4x-y-13=0 Điểm $A=d\cap AC\Rightarrow A(4;3)$.

Vậy tích m.n = 12.

Câu 230. Chọn D

Ta chứng minh được $MP \perp AN$, nên P là hình chiếu của M trên AN.

(Thật vậy gắn hệ trục toạ độ Dxy, D(0;0), C(1;0), B(1;1), A(0;1). Khi đó $M(1;\frac{1}{2})$; $N(\frac{1}{3};0)$.

Phương trình đường thẳng BD: y = x. Phương trình đường thẳng AN: 3x + y = 1.

Điểm
$$P\left(\frac{1}{4}; \frac{1}{4}\right)$$
. Khi đó $\overrightarrow{MP} = \left(\frac{-3}{4}; \frac{-1}{4}\right)$; $\overrightarrow{AN} = \left(\frac{1}{3}; -1\right) \Rightarrow \overrightarrow{MP} \cdot \overrightarrow{AN} = 0 \Rightarrow MP \perp AN$ (đpcm).

Phương trình đường thẳng MP qua M và vuông góc với AN là $x+2y-\frac{13}{2}=0$.

P là giao điểm MP và AN nên toạ độ P là nghiệm hệ $\begin{cases} 2x - y = 3 \\ x + 2y = \frac{13}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{2} \\ y = 2 \end{cases}$

Từ đó: $a = \frac{5}{2}$, $b = 2 \Rightarrow 2a + b = 7$.

Câu 231. Chọn B

Gọi H là hình chiếu của I lên cạnh CD. Do tứ giác ABCD nội tiếp đường tròn nên

$$\widehat{ABM} = \widehat{MCD} = \widehat{ICH} \Rightarrow \tan \widehat{ABM} = \tan \widehat{MCD} = \tan \widehat{ICH} = \frac{AM}{AB} = \frac{1}{3}$$
.

$$\Rightarrow \sin \widehat{ICH} = \frac{IH}{IC} = \frac{1}{\sqrt{10}}$$
.

Có
$$IH = d(I, CD) = \frac{2}{\sqrt{10}} \Rightarrow IC = 2 \Rightarrow IC^2 = 4.$$

$$C \in CD$$
: $x - 3y - 6 = 0 \Rightarrow C(3t + 6; t)$

Mà
$$IC^2 = 4$$
 và $x_C \in Z \Rightarrow C(3;-1)$

Đường thẳng BC qua C(3;-1) và $E(\frac{4}{3};0)$ có phương trình là BC:3x+5y-4=0.

I là trung điểm của MC nên M(-1;-1).

Đường thẳng BD qua M(-1;-1) và vuông góc với CD có phương trình là BD:3x+y+4=0.

Có
$$B = BC \cap BD \Rightarrow B(-2; 2)$$

Câu 232. Chọn D

Ta chứng minh được $MP \perp AN$, nên P là hình chiếu của M trên AN.

(Thật vậy gắn hệ trục toạ độ Dxy, D(0;0), C(1;0), B(1;1), A(0;1). Khi đó $M\left(1;\frac{1}{2}\right)$; $N\left(\frac{1}{3};0\right)$.

Phương trình đường thẳng BD: y = x. Phương trình đường thẳng AN: 3x + y = 1.

Điểm
$$P\left(\frac{1}{4}; \frac{1}{4}\right)$$
. Khi đó $\overrightarrow{MP} = \left(\frac{-3}{4}; \frac{-1}{4}\right)$; $\overrightarrow{AN} = \left(\frac{1}{3}; -1\right) \Rightarrow \overrightarrow{MP} \cdot \overrightarrow{AN} = 0 \Rightarrow MP \perp AN$ (đpcm).

Phương trình đường thẳng MP qua M và vuông góc với AN là $x+2y-\frac{13}{2}=0$.

P là giao điểm MP và AN nên toạ độ P là nghiệm hệ $\begin{cases} 2x - y = 3 \\ x + 2y = \frac{13}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{2} \\ y = 2 \end{cases}$

Từ đó:
$$a = \frac{5}{2}$$
, $b = 2 \Rightarrow 2a + b = 7$.

Câu 233. Chọn D

Gọi D là điểm đối xứng với B qua đường thẳng d: x+2y-5=0 suy ra $D\in AC$.

Phương trình của đường thẳng BD: -2x + y - 25 = 0.

Gọi H là giao điểm của d và BD suy ra tọa độ điểm H là nghiệm của hệ phương trình

$$\begin{cases} x + 2y - 5 = 0 \\ -2x + y - 25 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -9 \\ y = 7 \end{cases} \Rightarrow H(-9, 7).$$

Mà H là trung điểm của BD suy ra D(-6;13).

Gọi $A(5-2a;a) \in d$.

Ta có $G\left(\frac{1}{3}; \frac{2}{3}\right)$ là trọng tâm tam giác ABC nên

$$\begin{cases} x_A + x_B + x_C = 3x_G \\ y_A + y_B + y_C = 3y_G \end{cases} \Leftrightarrow \begin{cases} 5 - 2a - 12 + x_C = 1 \\ a + 1 + y_C = 2 \end{cases} \Leftrightarrow \begin{cases} x_C = 2a + 8 \\ y_C = 1 - a \end{cases} \Rightarrow C(2a + 8; 1 - a)$$

Ta có
$$\overrightarrow{DA} = (11 - 2a; a - 13); \overrightarrow{DC} = (2a + 14; -12 - a)$$

Mà 3 điểm D, A, C thẳng hàng nên $\overrightarrow{DA}, \overrightarrow{DC}$ cùng phương $\Leftrightarrow \frac{11-2a}{2a+14} = \frac{a-13}{-12-a} \Leftrightarrow a = -2$

Suy ra điểm C(4;3) nên đường thẳng BC đi qua điểm C(4;3).

Câu 234. Chọn D

Gọi I(13-7n;n) là trung điểm của BC,khi đó ta có: IE = IF

mà
$$IE = 50n^2 - 164n + 146$$
; $IF = 50n^2 - 190n + 185$

$$\Rightarrow 50n^2 - 164n + 146 = 50n^2 - 190n + 185 \Leftrightarrow n = \frac{3}{2}$$

$$\Rightarrow I\left(\frac{5}{2}; \frac{3}{2}\right)$$

Gọi B(13-7m;m). Vì I là trung điểm của BC nên C(7m-8;3-m).

$$\Rightarrow \overrightarrow{BE} = (7m-11;5-m); \overrightarrow{CE} = (10-7m;2+m).$$
Vì $BE \perp AC$

nên
$$\overrightarrow{BE}.\overrightarrow{CE} = 0 \Leftrightarrow m^2 - 3m + 2 = 0$$

$$\Leftrightarrow \begin{bmatrix} m=1\\ m=2 \end{bmatrix}$$

+ Với
$$m = 1 \Rightarrow B(6;1), C(-1;2) \Rightarrow A\left(\frac{2}{3};\frac{11}{3}\right)$$
. Trường hợp này không thỏa mãn các đáp án.

+ Với
$$m = 2 \Rightarrow B(-1,2); C(6,1) \Rightarrow A(1,6)$$
 Suy ra **Chọn D**

Câu 235. Chọn B

Gọi I, K lần lượt là trung điểm của AH và $DH \Rightarrow IK \parallel = \frac{1}{2}AD \Rightarrow IK \parallel = BM \Rightarrow$ tứ giác IBMK là hình bình hành $\Rightarrow BI \parallel MK$. (1)

Do $IK \parallel AD$ và $AD \perp AB \Rightarrow IK \perp AB \Rightarrow I$ là trực tâm tam giác $ABK \Rightarrow BI \perp AK$. (2) Từ (1), (2) suy ra $MK \perp AK$.

Phương trình AK: 4x+y-4=0, suy ra phương trình MK: 2x-8y+15=0.

Tọa độ điểm K là nghiệm của hệ phương trình $\begin{cases} 4x + y - 4 = 0 \\ 2x - 8y + 15 = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} \Rightarrow K\left(\frac{1}{2}; 2\right). \end{cases}$

Do đó
$$\begin{cases} x_D = 2x_K - x_H = 0 \\ y_D = 2y_K - y_H = 2 \end{cases} \Rightarrow D(0; 2) \Rightarrow P = 4..$$

Câu 236. Chọn B

 $B = BC \cap BB'$ nên có tọa độ là nghiệm của hệ $\begin{cases} x - 3 = 0 \\ x + y - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = -1 \end{cases} \Rightarrow B(3; -1).$

$$C = BC \cap CC' \text{ nên có tọa độ là nghiệm của hệ} \begin{cases} x + y - 2 = 0 \\ 2x - 3y + 6 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 2 \end{cases} \Rightarrow C(0; 2).$$

AB qua B và vuông với CC' có phương trình: 3x + 2y - 7 = 0.

AC qua C và vuông với BB' có phương trình: y = 2

 $A = AB \cap AC$ nên có tọa độ là nghiệm của hệ $\begin{cases} 3x + 2y - 7 = 0 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases} \Rightarrow A(1; 2)$.

Câu 237. Chọn A

Đường thẳng AH đi qua A(-3;0) và nhận $\overrightarrow{BC} = (-1;6)$ làm véctơ pháp tuyến. Suy ra phương trình đường thẳng AH là: x-6y+3=0.

Đường thẳng BH đi qua B(3;0) và nhận $\overrightarrow{AC} = (5;6)$ làm véctơ pháp tuyến. Suy ra phương trình đường thẳng BH là: 5x+6y-15=0.

Ta có $H = AH \cap BH \Leftrightarrow$ Tọa độ H là nghiệm của hệ $\begin{cases} x - 6y + 3 = 0 \\ 5x + 6y - 15 = 0 \end{cases} \Leftrightarrow H\left(2; \frac{5}{6}\right)$.

Do đó a = 2; $b = \frac{5}{6} \Rightarrow 6ab = 10$.

Câu 238.

Chon C

Gọi I (a; b) là trung điểm BD

Có $\widehat{BAD} = \widehat{BND} = 90^{\circ}$. Suy ra BAND nội tiếp đường tròn đường kính BD, tâm I

Có
$$IA = IN \iff (a+4)^2 + (b-8)^2 = (a-5)^2 + (b+4)^2 \iff 6a-8b+13=0$$

Có I là trung điểm AC. Nên C(2a+4;2b-8)

Có
$$C \in d$$
. Suy ra $2(2a+4)+(2b-8)+5=0 \Leftrightarrow 4a+2b+5=0$

Giải hệ:
$$\begin{cases} 6a - 8b + 13 = 0 \\ 4a + 2b + 5 = 0 \end{cases} \Leftrightarrow \begin{cases} a = -\frac{3}{2} \\ b = \frac{1}{2} \end{cases}.$$

Có
$$m-n=(2a+4)-(2b-8)=8$$
.

Câu 239. Chon B

* Ta chứng minh P là trung điểm của AC.

Thật vậy: do các tứ giác ABMN, ABCD là các tứ giác nội tiếp nên $\widehat{AMP} = \widehat{ABN} = \widehat{ACD}$

Lại do : AM //CD (cùng vuông góc với BC) nên $\widehat{ACD} = \widehat{CAM} \Rightarrow \widehat{PAM} = \widehat{PMA}$

- \Rightarrow $\triangle PAM$ cân tại $P \Rightarrow PA = PM$. Đồng thời $\triangle PCM$ cân tại P nên PC = PM
- $\Rightarrow PA = PC$ hay P là trung điểm của AC.
- Ta có : $\overrightarrow{MN} = (2; -2) \Rightarrow$ đường thẳng MN có phương trình: x + y 4 = 0

Điểm P có tọa độ là nghiệm của hệ $\begin{cases} x-y-1=0 \\ x+y-4=0 \end{cases} \Leftrightarrow \begin{cases} x=\frac{5}{2} \\ y=\frac{3}{2} \end{cases} \Rightarrow P=\left(\frac{5}{2};\frac{3}{2}\right)$

- Do $A \in AC: x - y - 1 = 0 \Rightarrow A = (a; a - 1)$ (với a < 2)

- Do
$$PA = PM \Leftrightarrow \left(a - \frac{5}{2}\right)^2 + \left(a - \frac{5}{2}\right)^2 = \frac{25}{2} \Leftrightarrow \left(a - \frac{5}{2}\right)^2 = \frac{25}{4}$$

$$\Leftrightarrow \begin{bmatrix} a - \frac{5}{2} = \frac{5}{2} \\ a - \frac{5}{2} = -\frac{5}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} a = 5 \\ a = 0 \end{bmatrix} \Rightarrow a = 0 \Rightarrow A = (0; -1) \Rightarrow C = (5; 4)$$

- Do BC đi qua M(0;4) và C(5;4) nên BC có phương trình: y-4=0.
- Lại có: $\overrightarrow{AN} = (2;3)$ là vectơ pháp tuyến của BD nên phương trình BD là: 2x + 3y 10 = 0.

Tọa độ điểm B là nghiệm của hệ phương trình: $\begin{cases} y-4=0 \\ 2x+3y-10=0 \end{cases} \Leftrightarrow \begin{cases} x=-1 \\ y=4 \end{cases} \Rightarrow B=\left(-1;4\right).$

Vậy
$$P\left(\frac{5}{2}; \frac{3}{2}\right)$$
, $A(0; -1)$, $B(-1; 4)$.

Câu 240. Chọn D *Cách 1:*

Ta có
$$A = AB \cap AC \Rightarrow \begin{cases} 5x - y - 2 = 0 \\ x - 5y + 14 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 3 \end{cases} \Rightarrow A(1;3)$$

Dễ chứng minh được $AM \perp MC \Rightarrow$ Phương trình MC: 4x - 7y + 4 = 0

$$C = MC \cap AC \Rightarrow \begin{cases} 4x - 7y + 4 = 0 \\ x - 5y + 14 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = 4 \end{cases} \Rightarrow C(6; 4)$$

Vậy
$$OC = \sqrt{52}$$

Chứng minh $AM \perp MC$

PP1: Dùng phương pháp véc tơ.

*
$$\overrightarrow{MA}.\overrightarrow{MC} = (\overrightarrow{MD} + \overrightarrow{DA})(\overrightarrow{MB} + \overrightarrow{BC}) = \overrightarrow{MD}.\overrightarrow{BC} + \overrightarrow{DA}.\overrightarrow{MB} = 2(\overrightarrow{MD}.\overrightarrow{DC} + \overrightarrow{DE}.\overrightarrow{MB})$$

*
$$\overrightarrow{MD}.\overrightarrow{DC} + \overrightarrow{DE}.\overrightarrow{MB} = \overrightarrow{MD}.\overrightarrow{BD} + \overrightarrow{DE}.\overrightarrow{MB}$$

*
$$\cos(\overrightarrow{MD}, \overrightarrow{BD}) = \cos\widehat{MDB} \Leftrightarrow \frac{\overrightarrow{MD}.\overrightarrow{BD}}{DM.DB} = \frac{DM}{DB} \Leftrightarrow \overrightarrow{MD}.\overrightarrow{BD} = MD^2$$

*
$$\cos(\overrightarrow{DE}, \overrightarrow{MB}) = -\cos\widehat{MED} \Leftrightarrow \frac{\overrightarrow{DE}.\overrightarrow{MB}}{DEMB} = -\frac{ME}{DE} \Leftrightarrow \overrightarrow{DE}.\overrightarrow{MB} = -ME.MB = -MD^2$$

Do đó $\overrightarrow{MA}.\overrightarrow{MC} = 0$ nên $MA \perp MC$. PP2:

Vẽ hình chữ nhật ADCF (1)

Dễ thấy tứ giác AHDB là hình bình hành (vi AH / /BD; AH = BD)

Nên BH qua trung điểm E của AD

$$\Rightarrow \widehat{HMD} = 90^{\circ} (2)$$

Từ (1) và (2) ta có 5 điểm A, M, D, C, F cùng thuộc đường tròn đường kính AC.

Nên
$$\widehat{AMC} = 90^{\circ} \Rightarrow AM \perp MC$$
.

Cách 2:

Ta có:
$$A = AB \cap AC \implies A(1,3)$$
.

Giả sử
$$DB = kDE(k > 0) \Rightarrow \frac{MB}{ME} = \frac{DB^2}{DE^2} = k^2 \Rightarrow \overrightarrow{MB} + k^2 \overrightarrow{MC} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{DM} = \frac{1}{k^2 + 1} \overrightarrow{DB} + \frac{k^2}{k^2 + 1} \overrightarrow{DE}$$

Ta có:
$$\overrightarrow{MA} = \overrightarrow{DA} - \overrightarrow{DM} = 2\overrightarrow{DE} - \overrightarrow{DM} = -\frac{1}{k^2 + 1}\overrightarrow{DB} + \frac{k^2 + 2}{k^2 + 1}\overrightarrow{DE}$$
.

$$\overrightarrow{MC} = \overrightarrow{DC} - \overrightarrow{DM} = -\overrightarrow{DB} - \overrightarrow{DM} = -\frac{k^2 + 2}{k^2 + 1} \overrightarrow{DB} - \frac{k^2}{k^2 + 1} \overrightarrow{DE}$$
.

$$\Rightarrow \overrightarrow{MA}.\overrightarrow{MC} = \frac{k^2 + 2}{k^2 + 1}DB^2 - \frac{k^2(k^2 + 2)}{k^2 + 1}ED^2 = 0 \Rightarrow MA \perp MC.$$

Lại có:
$$\overrightarrow{AM} = \left(\frac{4}{5}; -\frac{7}{5}\right) \Rightarrow MC: 4x - 7y + 4 = 0$$
.

Vậy
$$C = MC \cap AC \implies C(6;4) \implies OC = \sqrt{52}$$
.

Câu 241. Chọn B

Đường thẳng chứa cạnh BC có phương trình:

$$\frac{x-5}{\frac{17}{5}-5} = \frac{y-3}{-\frac{1}{5}-3} \Leftrightarrow 2x-y-7 = 0$$

Đường thẳng chứa đường cao AH của tam giác đi qua $H\left(\frac{17}{5}; -\frac{1}{5}\right)$ có véc tơ pháp tuyên

$$\overrightarrow{HD}\left(\frac{8}{5};\frac{16}{5}\right)$$
 có phương trình: $\frac{8}{5}\left(x-\frac{17}{5}\right)+\frac{16}{5}\left(y+\frac{1}{5}\right)=0 \Leftrightarrow x+2y-3=0$.

Gọi $B(x_0; y_0)$, vì M là trung điểm của AB nên $A(-x_0; 2-y_0)$.

CÁC DẠNG TOÁN THƯỜNG GẶP

Ta có:
$$B \in BC \Leftrightarrow 2x_0 - y_0 - 7 = 0$$
 (1)

$$A \in AH \Leftrightarrow -x_0 + 2(2 - y_0) - 3 = 0 \Leftrightarrow x_0 + 2y_0 - 1 = 0$$
 (2)

Từ (1) và (2) ta có hệ:

$$\begin{cases} 2x_0 - y_0 - 7 = 0 \\ x_0 + 2y_0 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x_0 = 3 \\ y_0 = -1 \end{cases} \Rightarrow A(-3;3)$$

Gọi $\vec{u}(a;b)(a^2+b^2\neq 0)$ là véc tơ chỉ phương của đường thẳng AC

+)
$$\overrightarrow{AM}(3;-2), \overrightarrow{AD}(8;0)$$

Đường thẳng AD là phân giác trong góc A nên:

$$\widehat{BAD} = \widehat{CAD} \Leftrightarrow \cos \widehat{BAD} = \cos \widehat{CAD} \Leftrightarrow \left| \cos \left(\overrightarrow{AM}; \overrightarrow{AD} \right) \right| = \left| \cos \left(\overrightarrow{AD}; \overrightarrow{u} \right) \right|$$

$$\Leftrightarrow \frac{|24|}{\sqrt{13.8}} = \frac{|8a|}{8\sqrt{a^2 + b^2}} \Leftrightarrow 3\sqrt{a^2 + b^2} = |a|\sqrt{13}$$

$$\Leftrightarrow 4a^2 = 9b^2 \Leftrightarrow \begin{bmatrix} a = \frac{3}{2}b \\ a = -\frac{3}{2}b \end{bmatrix}$$

Với $a = -\frac{3}{2}b$. Chọn $b = 2 \Rightarrow a = -3 \Rightarrow \vec{u}(-3;2)$ (loại vì cùng phương với \overrightarrow{AM})

Với $a = \frac{3}{2}b$. Chọn $b = 2 \Rightarrow a = 3 \Rightarrow \vec{u}(3;2)$. Đường thẳng AC có phương trình: $\begin{cases} x = -3 + 3t \\ v = 3 + 2t \end{cases}$

Điểm C là giao điểm của AC và BC nên có tọa độ là nghiệm của hệ:

$$\begin{cases} 2x - y - 7 = 0 \\ x = -3 + 3t \\ y = 3 + 2t \end{cases} \Leftrightarrow \begin{cases} -6 + 6t - 3 - 2t - 7 = 0 \\ x = -3 + 3t \\ y = 3 + 2t \end{cases} \Leftrightarrow \begin{cases} t = 4 \\ x = 9 \Rightarrow C(9;11) \\ y = 11 \end{cases}$$

DANG 7. MÔT SỐ BÀI TOÁN LIÊN QUAN ĐẾN DIÊN TÍCH

Câu 242. Chọn A

Đường thẳng $\Delta:5x+3y=15$ cắt các trục tọa độ tại các điểm A(3;0), B(0;5).

Ta có
$$OA = 3$$
, $OB = 5$. Khi đó $S_{OAB} = \frac{1}{2}OA.OB = \frac{15}{2} = 7.5$.

Câu 243. Chọn A

$$d_1: y = mx - 4$$
, $d_2: y = -mx - 4$.

 d_1 , d_2 cắt nhau cùng cắt trực hoành khi $m \neq 0$.

Gọi $A\left(\frac{4}{m};0\right)$, $B\left(-\frac{4}{m};0\right)$ lần lượt là giao điểm của d_1 , d_2 và trục hoành.

Phương trình hoành độ giao điểm của d_1 , d_2 : $mx-4=-mx-4 \Leftrightarrow x=0$.

Gọi C là giao điểm của d_1 và d_2 thì C(0;-4).

$$S_{ABC} = \frac{1}{2}d(C, Ox).AB$$
, có $d(C, Ox) = |y_C| = 4$, $AB = |x_A - x_B| = \frac{8}{|m|}$.

Câu 244.

Hướng dẫn giải.

Chọn D

Vì đường thẳng d đi qua điểm I(1;3) nên ta có: 3 = a + b

Đường thẳng d: y = ax + b cắt trục Ox, Oy lần lượt là $A\left(-\frac{b}{a}; 0\right), B\left(0; b\right), (a \neq 0)$.

Theo giả thiết
$$S_{\Delta OAB} = \frac{1}{2}OA.OB = \frac{1}{2} \left| \frac{b}{a} \right| . |b| = \frac{1}{2} \frac{b^2}{|a|} = 6$$
 (2).

Từ phương trình (1) $\Leftrightarrow a = 3 - b$ thay vào phương trình (2):

$$\frac{b^2}{|3-b|} = 12 \Leftrightarrow b^2 = 12|3-b| \Leftrightarrow \begin{bmatrix} b^2 = 12(3-b), & (b<3) \\ b^2 = -12(3-b), & (b>3) \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} b^2 + 12b - 36 = 0, & (b < 3) \\ b^2 - 12b + 36 = 0, & (b > 3) \end{bmatrix} \Leftrightarrow \begin{bmatrix} b = -6 + 6\sqrt{2} \\ b = -6 - 6\sqrt{2} \\ b = 6 & (b > 3) \end{bmatrix}$$

Với b = 6 ta được a = -3.

Vậy phương trình d: y = -3x + 6.

Ghi chú: Với $\begin{vmatrix} b = -6 + 6\sqrt{2} \\ b = -6 - 6\sqrt{2} \end{vmatrix}$ thì nhìn vào 4 đáp án không có nên ta không cần tìm nữa.

Câu 245. Chọn

Goi I là giao điểm của Δ và BC.

Goi H là hình chiếu của A trên BC.

Theo đề bài ta có: $S_{AIB} = S_{AIC} \Leftrightarrow \frac{1}{2}.AH.IB = \frac{1}{2}.AH.IC \Leftrightarrow IB = IC$.

 $\Rightarrow I$ là trung điểm của $BC \Rightarrow I(-1;3)$.

$$\Rightarrow \overrightarrow{AI} = (-2;6)$$
.

Đường thẳng Δ đi qua A và nhận vector $\vec{n} = (3,1)$ làm vector pháp tuyến.

Phương trình đường thẳng Δ là $3(x-1)+(y+3)=0 \Leftrightarrow 3x+y=0$.

Câu 246. Chọn C

Gọi đường thẳng d cắt tia Ox, Oy lần lượt tại A(a;0) và B(0;b);a,b>0

$$\Rightarrow (d): \frac{x}{a} + \frac{y}{b} = 1$$

Vì
$$(d)$$
 qua $M(2;1) \Rightarrow \frac{2}{a} + \frac{1}{b} = 1$

$$\Rightarrow 1 \ge 2\sqrt{\frac{2}{ab}} \Rightarrow ab \ge 8$$

Ta có diện tích tam giác vuông OAB tại O là $S = \frac{1}{2}.OA.OB = \frac{1}{2}.a.b \ge 4$

Diện tích tam giác vuông OAB đạt giá trị nhỏ nhất $S = 4 \Leftrightarrow \frac{2}{a} = \frac{1}{b} \Leftrightarrow a = 2b$

$$\Rightarrow \frac{2}{2h} + \frac{1}{h} = 1 \Rightarrow b = 2, a = 4$$

$$\Rightarrow$$
 $(d): \frac{x}{4} + \frac{y}{2} = 1 \Leftrightarrow x + 2y - 4 = 0$.

Câu 247. Chọn C

$$d$$
 đi qua $M(-1;6) \Leftrightarrow \frac{-1}{a} + \frac{6}{b} = 1$ (1).

Đường thẳng cắt tia Ox tại A(a;0), $a > 0 \Rightarrow OA = a$.

Đường thẳng cắt tia Oy tại B(0;b), $b > 0 \Rightarrow OB = b$.

 $\triangle OAB$ vuông tại O nên có diện tích là $\frac{1}{2}OA.OB = \frac{1}{2}ab$.

Theo đề
$$\frac{1}{2}ab = 4 \Leftrightarrow ab = 8$$
 (2).

Từ
$$(1),(2)$$
 suy ra: $a = 2; b = 4 \Rightarrow S = a + 2b = 10$.