

CS/ECE/EEE/INSTR F215:Digital Design

Lecture 32: ASM Sat, 27 Nov 2021

BITS Pilani

Hyderabad Campus

Hyderabad Campus

Dr. R. N. Ponnalagu, EEE

Sometimes we are tested,

Not to expose our weakness,

But to discover our strengths.

➤ Flowchart developed to design Digital Hardware Algorithms is Algorithmic State Machines (ASM) chart

ASM CHART composed of three basic elements

- ☐ The State box
- ☐ The decision box
- ☐ The conditional box

- A state is indicated by the state box (Rectangle in shape) within which are written i) register operations that occur when state transitions to next state are written and/or ii) the names of the output signal that the control generates while being in the present state.
- > State is given a symbolic name (Upper left corner of the box), binary code assigned to state (upper right)

- **Decision box (diamond shaped)** indicates the effect of an input on the control subsystem
- Condition to be tested is written inside the box
- > One exit path is taken if the condition is true (label 1) and another if false (label 0)

> State box and decision box are similar to those used in conventional flowchart

- > The conditional box (Shape: rounded corners) is unique to ASM chart
- > Input path to conditional box comes from one of exit paths of a decision box
- The outputs listed inside a conditional box are generated during a given state and the register operations are associated with a transition from the state

ASM Block in ASM Chart

- A structure consisting of one state box and all the decision and conditional boxes connected to its exit path.
- An ASM block has one entrance and any number of exit paths represented by the structure of the decision boxes
- > ASM Chart may have one or more interconnected blocks.
- Each block in the ASM chart describes the state of the system during one clock pulse. (interval between two successive active edges of clock)
- The operations within the state and conditional boxes are executed with a common clock pulse while the system transits from one state to next.
- > Same clock pulse transfers system controller to next states.
- > ASM chart is very similar to state diagram.

- Each state block is equivalent to a state in a sequential circuit.
- Decision box is equivalent to the binary information written along the directed lines that connects two states in a state diagram
- ASM chart can be easily converted to state diagram and then proceed with the design
- The <u>unconditional and conditional operations</u> that must be performed in the data path unit are not indicated in the state diagram of the controller

- In a digital system clock pulses are applied not only to registers of the data path but also to all the FFs in the state machine implementing control unit.
- Inputs are also synchronized to clock and change state in response to an edge transition (synchronous sequential circuit)
- ➤ Major difference between a conventional flowchart and an ASM chart is interpreting the timing relations among the various operations
- ➤ In conventional flowchart the listed operations follow one after the other in a sequence. No concept of timing and synchronization.
- ➤ In contrast, ASM chart consider the entire block as one unit.
- ➤ All operations within a block must occur in synchronism during clock edge transition.

During transition

A is incremented, If E = 1, R is cleared

Depending on values of E and F control transferred to states S_1 or S_2 or S_3

Draw an ASM chart for a synchronous state machine that is to monitor input x and assert output y after three consecutive 1s are received and remain asserted until a 0 is received.

Example

- Design a Digital system having two FFs E and F, one 4-bit binary counter A (individual FFs: A4A3A2A1).

 A3 A2 A1 A0
- ➤ Initial state is the reset state: S_idle (state reached by application of reset_b)
- A Start signal initiates the operation by clearing counter A and flip-flop F.
- > Counter incremented by one starting from next clock pulse, continues to increment until operations are such that it stops.
- Counter bits A2 and A3 determine sequence of operations
 - ✓ If A2 = 0, E is cleared to 0 and count continues
 - ✓ If A2 = 1, E set to 1; then if A3=0, count continues,
 - ✓ but if A3 = 1, F is set to 1 on next clock pulse and system stops counting.
- \triangleright If Start = 0 system remains in initial state, but if Start = 1 cycle repeats.

Block diagram of the design

- \triangleright When no operations the system is in initial state S_{idle} awaiting for *Start* signal
- When input Start = 1, state changes to S_1 and the counter A and flip-flop F are cleared. The register operations occur unconditionally (Moore type).
- \triangleright Register A is incremented at every clock edge while machine is state S_1 .
- In state S_1 when the counter is incremented with every clock pulse and at the same time, one of three operations occur during clock transition either
 - \checkmark E is cleared and control stays in state S_1 (A2 = 0); or
 - \checkmark E is set and control stays in state S_1 (A2A $\overline{3}$ = 10); or
 - ✓ E is set and control goes to state S_2 (A2A3 = 11).
- \triangleright Hence block with state S_1 has two decision and two conditional boxes
- \triangleright In state S_2 , a Moore type control signal is asserted to set flipflop F and state changes to S idle.

Sequence of operations

	AZ ,			
Counter	Flipflops			0011
A3 A2 A1 A0	E F	Conditions	State_	0 000
$0 \ 0 \ 0 \ $	1 0/	A2=0, $A3=0$	<i>S_1</i>	010
0 0 0 1	$\int 0 \ \ 0$			
0 0 1 0	0 0			
0 0 1 1	0 / 0			
0 1 0 0	0 0	A2=1, A3=0		
0 1 0 1	1 0			
0 1 1 0	1 0			
0 1 1 1	1 0			
1 0 0 0	1 0	A2=1, A3=0		
1 0 0 1	$\int_{0}^{\infty} 0$			
1 0 1 0	0 0			
1 0 1 1	0 0			
1 1 0 0	0 0	(A2=1, A3=1)		
1 1 0 1	1 0		(S_2)	
1 1 0 1	1 🏈 I		S_idle	

Counter			Flip-Flops				
A_3	A ₂	A_1	A_0	E	F	Conditions	State
0	0	0	0	1	0	$A_2 = 0, A_3 = 0$	S_1
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	0	0		
0	1	0	0	0	0	$A_2 = 1, A_3 = 0$	
0	1	0	1	1	0		
0	1	1	0	1	0		
0	1	1	1	1	0		
1	0	0	0	1	0	$A_2 = 0, A_3 = 1$	
1	0	0	1	0	0		
1	0	1	0	0	0		
1	0	1	1	0	0		
1	1	0	0	0	0	$A_2 = 1, A_3 = 1$	
1	1	0	1	1	0		S_2
1	1	0	1	1	1 /	/	S_idle