Nota: Como se trata de um amplificador de emissor à massa, vem

$$\beta = \frac{I_c}{I_b} = \frac{80}{0.4} = 200$$

Ver "Nota" da pergunta nº. 3.1.14.1

3.1.14.3

Uma corrente de 20 ma circula entre a base e o emissor de um transistor que apresenta um ganho de 40. Em consequência, entre colector e emissor circula uma corrente de:

Nota:
$$\beta = \frac{I_C}{I_b}$$
 on $40 = \frac{I_C}{20}$
 $\Rightarrow D I_C = 40 \times 20 = 800 \text{ mA} = 0.8 \text{ A}$

Ver "Nota" da pergunta nº. 3.1.14.1

3.1.15.1

Um transistor na configuração de base comum apresenta:

a)	alta impedância de entrada	Ш
ъ)	alto ganho de tensão	\boxtimes
c)	baixa impedância de saída	
a)	ganho de corrente maior que l	
Nata	. escreme de um amplificador de base à massa (=base comun)	ı

Nota: esquema de um amplificador de base à massa (=base comun)

