

Датчики уровня топлива Omnicomm LLS 20160, LLS 20230, LLS-AF 20310

Руководство пользователя 17.06.2016

Содержание

- з Общая информация
- з Внимание
- 3 Технические характеристики
- 5 Электрические искробезопасные параметры Omnicomm LLS 20230
- 8 Подготовка
- 8 Подготовка бака
- 9 Подготовка датчика
- 9 Настройка
- 10 Калибровка
- 11 Настройка датчиков Omnicomm LLS 20160 и LLS20230
- 12 Настройка датчиков Omnicomm LLS-AF 20310
- 12 Установка и подключение
- 14 Особенности установки Omnicomm LLS 20230 на топливозаправщик
- 15 Тарирование
- 17 Пломбирование
- 18 Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

Общая информация

Руководство пользователя приведено для датчиков уровня топлива Omnicomm LLS 20160, LLS 20230, LLS-AF 20310

Omnicomm LLS 20160 – датчик уровня топлива с интерфейсами RS-232 и RS-485.

Omnicomm LLS 20230 – датчик уровня топлива во взрывобезопасном исполнении.

Omnicomm LLS-AF 20310 – датчик уровня топлива с аналоговым и частотным интерфейсами.

Внимание

При проведении монтажа необходимо соблюдать технику безопасности и требования нормативной документации для данного вида работ.

Минимальная длина обрезки измерительной части 150 мм.

Диэлектрическая проницаемость измеряемой среды должна быть постоянной. Не соблюдение данного требования приводит к увеличению погрешности измерения.

Технические характеристики

V	Значение		
Характеристика	LLS 20160	LLS 20230	LLS-AF 20310
Степень защиты корпуса	IP57		
Режим работы	продолжительный		
Средний срок службы, лет	8		

Технические характеристики

Характеристика	Значение		
Размер внутреннего фильтра	от 0 до 20		
Период измерения, с	1		
Габаритные размеры	78×74×(27+длина измерительной части)		
Масса, кг, не более	2		
Температура окружающей среды, °C;	от минус 45 до +80		
Предельные температуры, °C	минус 60 и +85		
Относительная влажность при температуре 25°C (без конденсации влаги), %;	от 5 до 95		
Атмосферное давление, кПа	от 84 до 107		
Предельная относительная влажность при температуре 25°C (без конденсации влаги), %;	100		
Основная приведённая погрешность измерений уровня, %	±1		
Диапазон измерения	0700, 1000, 1500, 2000, 2500, 3000	0700, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000	0700, 1000, 1500, 2000, 2500, 3000
Напряжение питания, В	7 – 50	8,5 – 10,5	7 – 45
Потребляемая мощность, Вт	0,4 Типовая – 0,6 Максимальна – 0,9		Максимальная
Omnicomm LLS 20160, LLS 20230			
Интерфейс выдачи измеренных значений	RS-232, RS-485		

Технические характеристики

Характеристика	Значение
Программируемая скорость передачи интерфейса, бит/с	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
Диапазон изменения цифрового кода, соответствующего максимальному значению измеряемого уровня	14095
Диапазон изменения цифрового кода, соответствующего минимальному значению измеряемого уровня	01023
Диапазон измерения температуры, °С	от минус 55 до +80
Абсолютная погрешность измерения температуры во всем диапазоне рабочих температур, °С	±2
Omnicomm LLS-AF 20310	
Аналоговый выход:	
Диапазон выходных напряжений, В	020
Максимальное выходное напряжение, В	520
Минимальное выходное напряжение, В	015
Разрядность цифро-аналогового преобразования, бит	12
Сопротивление нагрузки на аналоговый выход, Ом	не менее 2000
Пульсации выходного сигнала, %	не более 0,15
Частотный выход:	
Модуляция выходного сигнала	Частотно-импульсная

Характеристика	Значение
Диапазон выходных частот, Гц	302000
Максимальная частота выходного сигнала, Гц	1002000
Минимальная частота выходного сигнала, Гц	301900
Максимальный ток нагрузки на частотном выходе в режиме «открытый коллектор», мА	300
Сопротивление внутренней "подтяжки" к плюсу напряжения питания, Ом	1500

Электрические искробезопасные параметры Omnicomm LLS 20230

Параметры	Значение
Максимальное входное напряжение Ui, B	10,5
Максимальный входной ток li, A	0,45
Максимальная внутренняя емкость Сі, мкФ	10
Максимальная внутренняя индуктивность Li, мГн	0,5

Подготовка

Подготовка бака

- 1. Выберите место установки датчика Omnicomm LLS с учетом следующих требований:
- Место установки должно быть максимально приближено к геометрическому центру бака и являться самым глубоким местом в баке (Рисунок 1).

Рисунок 1. Выбор места установки датчика Omnicomm LLS

 Установленный датчик не должен касаться ребер жесткости и дополнительного оборудования внутри бака.

Установка двух датчиков в один топливный бак позволяет значительно уменьшить зависимость уровня топлива от угла наклона TC (Рисунок 2).

Рисунок 2. Место установки двух датчиков Omnicomm LLS

- 2. Для соблюдения техники безопасности произведите выпаривание бака.
- 3. Просверлите центральное отверстие биметаллической коронкой ø35 мм (Рисунок 3).
- 4. Просверлите четыре крепежных отверстия согласно схеме (Рисунок 3). Диаметр крепежных отверстий выбирается в зависимости от материала бака:
- ø 4 мм для металлического бака с толщиной стенок более 3 мм (нарезать резьбу М5);
- Ø 7 мм для пластикового и металлического бака со стенками до 3 мм (под заклепки);
- Ø 4 мм для пластикового бака более 3 мм.

Рисунок 3. Подготовка места установки датчика Omnicomm LLS

Подготовка датчика

- 1. Измерьте глубину бака. Отрежьте измерительную часть датчика, таким образом, чтобы ее длина была на 20 мм меньше глубины бака. Линия среза должна быть перпендикулярна продольной оси датчика.
- 2. Заполните маслобензостойким токонепроводящим герметиком изолирующий колпачок, входящий в комплект поставки, на 1/4 1/5 от объема. Рекомендуемые герметики: PERMATEX™ MotoSeal® Black, ABRO™ Black, ABRO™ Red.
- 3. Наденьте изолирующий колпачок на центральный стержень датчика Omnicomm LLS.

Настройка

Подключите датчик к ПК согласно схемам: Omnicomm LLS 20160 и Omnicomm LLS-AF 20310 (Рисунок 4), Omnicomm LLS 20230 (Рисунок 5).

Рисунок 4. Подключение датчиков Omnicomm LLS 20160 и LLS-AF 20310 к ΠK

Рисунок 5. Подключение датчика Omnicomm LLS 20230 к ПК

Настройки подключения Индикатор стабилизации уровня - - X Omnicomm Configurator 5.0.2.64 Датчик Режим работы Сервис Помощ **Ж** Настройки 🐞 Тарировка Монитеринг 🕜 Справка 🔀 Тип датчика Интервал автоматической выдачи Версия прошивки 1.0.1.3 данных Установите интервал 4 005 Сетевой адрес самостоятельной выдачи данных Датчиком уровня топлива LLS внешнему устройству. Интервал значений от 0 до 255 секунд. Значение по умолчанию — 1 Минимальное показание (0...1023) Нет Фильтрация сек. В случае установки значения «Интервал выдачи Интервал выдачи (1...255),с $\lambda \alpha u u u u v = 0 cos$ Скорость обмена (бит/с) 19200 вка «Пустой/Полный» Верхний предел измерения 161582 Полный Нижний предел измерения Пустой N = 4075Записать в датчик CNTT = 161433 T = 23 °C LLS 20160 СОМ4, 19200 Бит/с

Запустите программу Omnicomm Configurator (Рисунок 6).

Рисунок 6. Настройка датчика Omnicomm LLS в программе Omnicomm Configurator

В меню «Сервис»/ «Настройки»/ «Соединение» укажите порт и скорость подключения.

В разделе «Мониторинг» значение уровня топлива отображается без учета фильтрации.

Калибровка «Пустой/Полный»

Настройку производите в том топливе, в котором данный датчик уровня топлива Omnicomm LLS будет работать.

- 1. Залейте топливо в мерную ёмкость.
- 2. Погрузите датчик Omnicomm LLS в топливо на всю длину измерительной части.
- 3. Дождитесь появления зеленого индикатора «Уровень стабилизирован». Во вкладке «Настройки» в разделе «Калибровка Пустой/Полный» нажмите кнопку «Полный», будет зафиксировано значение, соответствующее полному баку.
- 4. Выньте датчик Omnicomm LLS из емкости и дайте топливу стечь из измерительной части в течение 1 минуты. В разделе «Калибровка Пустой/Полный» нажмите кнопку «Пустой», будет зафиксировано значение, соответствующее пустому баку.
- 5. Нажмите кнопку «Записать в датчик».

Настройка датчиков Omnicomm LLS 20160 и LLS 20230

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

«**Сетевой адрес**» (от 1 до 254) – установите сетевой адрес датчика уровня топлива Omnicomm LLS. При подключении нескольких датчиков к одному внешнему устройству сетевые адреса должны быть уникальны.

«Максимальное показание» (от 1 до 4095) – выберите максимальное показание датчика уровня топлива LLS. Значение по умолчанию – 4095.

«**Минимальное показание**» (от 0 до 1023) – выберите минимальное показание датчика уровня топлива LLS. Значение по умолчанию – 0.

«Фильтрация» – установите параметры фильтрации выходного сигнала:

- «Нет» фильтрация не производится. Используется в случаях, когда фильтрация осуществляется внешним устройством.
- «Минимальная» фильтрация используется в случаях установки изделия в стационарных топливохранилищах и малоподвижной технике.
- «Средняя» фильтрация используется в случаях работы ТС в нормальных дорожных условиях.
- «Максимальная» фильтрация используется в случаях работы ТС в тяжелых дорожных условиях.

«Автоматическая выдача данных» – выберите:

- «Нет выдачи» самостоятельная выдача данных (без запроса) не производится.
- «Бинарная» самостоятельная выдача данных в бинарном формате;
- «Символьная» самостоятельная выдача данных в символьном формате;
- «Интервал выдачи данных» (от 1 до 255 секунд) установите интервал самостоятельной выдачи данных.

«Режим тяжелых условий эксплуатации» – включите при необходимости дополнительной фильтрации значений измерения, учитывающей сложные условия работы.

«Скорость обмена» – выберите скорость, на которой будет осуществляться обмен данными с внешним устройством. Значение по умолчанию – 19200 бит/сек.

Настройка датчиков Omnicomm LLS-AF 20310

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

Значения «Фильтрация» и режим «Тяжелых условий эксплуатации» указываются аналогично датчикам Omnicomm LLS 20160, LLS 20230.

«Тип сигнала» – выберите «Аналоговый» или «Частотный».

Для аналогового сигнала:

- «Макс. знач. напряжения (5 ... 20) В» установите максимальное значение напряжения. Значение по умолчанию 5 В.
- «Мин. знач. напряжения (0 ... 15) В» установите минимальное значение напряжения. Значение по умолчанию 0 В.

Для частотного сигнала:

- «Макс. знач. частоты (100 до 2000) Гц» установите максимальное значение частоты. Значение по умолчанию 2000 Гц.
- «Мин. знач. частоты (30 до 1900) Гц» установите минимальное значение частоты. Значение по умолчанию 30 Гц.
- «Подтяжка». В случае если к входу внешнего устройства, по описанию производителя, подключается сигнал напряжения, выберите «Вкл». Если подключается сигнал типа «сухой контакт» или «транзисторный n-p-n ключ», выберите «Выкл».

Установка и подключение

- 1. Наденьте на измерительную часть датчика Omnicomm LLS прокладку для места крепления, входящую в комплект поставки.
- 2. Установите датчик Omnicomm LLS в бак и закрепите:
- при креплении заклепками используйте клепальщик.
- при креплении болтами, предварительно наденьте пломбу (на один болт), шайбу и гровер (Рисунок 14).
- при креплении на пластиковые баки с толщиной стенок более 3 мм используйте саморезы и пломбу (на один саморез), входящие в комплект поставки (Рисунок 14).
- 3. Подключите датчики Omnicomm LLS к внешнему устройству согласно схемам:

Omnicomm LLS

датчики Omnicomm LLS 20160 (Рисунок 7), Omnicomm LLS-AF 20310 (Рисунок 8) и Omnicomm LLS 20230 (Рисунок 9):

Omnicomm LLS 20160 Монтажный кабель Omnicomm LLS-AF 20310 Монтажный кабель

Рисунок 7. Подключение датчика Omnicomm LLS 20160

Рисунок 8. Подключение датчика Omnicomm LLS-AF 20310

Рисунок 9. Подключение датчика Omnicomm LLS 20230

Назначение проводов монтажного кабеля датчиков Omnicomm LLS 20230 и LLS 20160

Название сигнала	Цвет провода	
RS-485 A	Оранжево-белый	
RS-485 B	Бело-голубой	
RS-232 Tx	Розовый	
RS-232 Rx	Серый	
+Uпит	Коричневый	
Общий	Белый	

Назначение проводов монтажного кабеля датчиков Omnicomm LLS-AF 20310

Название сигнала	Цвет провода	
Аналогово-частотный выход	Зеленый	
Плюс питания	Коричневый	
Общий аналогового сигнала	Зелено-белый	
Общий (минус) питания	Белый	

- 4. Подключите держатель предохранителя к проводу питания датчика LLS (коричневый провод) в непосредственной близости к цепи питания TC.
- 5. Установите предохранитель в держатель предохранителя.

При установке датчика уровня топлива Omnicomm LLS 20230 совместно с БИС 20240, установка предохранителя осуществляется в цепь питания БИС 20240.

Подключение нескольких датчиков Omnicomm LLS 20160 и LLS 20230 производится параллельно по интерфейсу RS-485.

Особенности установки Omnicomm LLS 20230 на топливозаправщик

Датчик уровня топлива LLS 20230 устанавливается на специальных видах техники или хранилищах, к которым предъявляются требования взрывозащиты оборудования, и имеет маркировку взрывозащиты «0ExialIBT6X».

Датчик уровня топлива Omnicomm LLS 20230 настраивается и эксплуатируется только совместно с блоком искрозащиты БИС 20240, производимым компанией Omnicomm. В случае подключения датчика к питанию ТС до прерывателя массы необходимо использовать блок гальванической развязки Omnicomm БР15.

При монтаже датчиков с длиной измерительной части более 1,5 м в топливные баки TC, рекомендуется усиление измерительной части датчика LLS одним из двух вариантов: с

Omnicomm LLS

использованием стальных шпилек и хомутов (Рисунок 10) или стальной арматуры (Рисунок 11).

Рисунок 10. Укрепление стальными шпильками

Рисунок 11. Укрепление стальной арматурой

Тарирование

Тарирование топливного бака необходимо для установки соответствия цифрового кода, выдаваемого датчиком Omnicomm LLS, и объема топлива в конкретном топливном баке.

Тарировка топливного бака представляет собой заправку топлива в бак – от пустого до полного, с определенным шагом заправки, и фиксацию показаний датчика Omnicomm LLS в тарировочной таблице. Имеется возможность тарировки емкости методом слива.

Тарировка емкости с одним датчиком Omnicomm LLS:

- 1. Опустошите топливный бак.
- 2. Подключите датчик Omnicomm LLS к ПК с помощью устройства настройки УНУ согласно схемам (Рисунок 4, Рисунок 5).
- 3. Запустите программу Omnicomm Configurator. Выберите режим работы «Тарирование ёмкости».
- 4. В случае если столбец показаний датчика не отображается, нажмите кнопку «Добавить датчик» (Рисунок 12). Выберите тип датчика Omnicomm LLS. Для датчиков Omnicomm LLS 20160 и LLS 20230 укажите сетевой адрес, установленный в датчике при настройке.
- 5. Установите шаг пролива в литрах.
- 6. Нажмите кнопку «Начать/продолжить тарировку».
- 7. Залейте объем топлива, равный шагу пролива.
- 8. Нажмите «Добавить строку».

Столбец показаний датчика

Рисунок 12. Тарирование емкости

В столбце «Литры» отобразится объем заправки согласно установленному шагу пролива.

Заправку производите мерной емкостью или под контролем расходомера жидкости с заданным шагом. Емкость должна иметь метрологическую поверку.

В столбце «Датчик» отобразится значение, соответствующее объему заправки.

- 9. Нажмите «Добавить строку».
- 10. Повторите выполнение пунктов 7, 8 и 9 согласно количеству контрольных точек. Рекомендуемое минимальное количество контрольных точек 20.
- 11. Нажмите кнопку «Закончить тарировку».
- 12. Сохраните тарировочную таблицу в файл тарировки (.ctb)/ файл Omnicomm Online (.xml)/ в Терминал/ или в Индикатор, нажав кнопку «Экспорт».

Тарирование емкости с несколькими датчиками Omnicomm LLS 20160 или LLS 20230 производится аналогично тарировке с одним датчиком. Перед началом тарировки добавьте необходимое количество датчиков Omnicomm LLS и укажите сетевые адреса. Тарировка производится для всех датчиков одновременно. Подключение нескольких датчиков Omnicomm LLS к ПК производится с помощью разветвителя КТЗ.

Пломбирование

Для датчиков Omnicomm LLS предусмотрено пломбирование болта или самореза (Рисунок 13).

Рисунок 13. Пломбирование

Рисунок 14. Установка пломбы

- 1. Установите болт или саморез через отверстие в пломбе.
- 2. Защелкните крышку пломбы.
- 3. Внесите в акт номера пломбы и крышки.

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

Nº	Наименование	Количество
1.	Коронка биметаллическая ø35мм	1 шт.
2.	Хвостовик к коронке	1 шт.
3.	Сверло по металлу ø7мм или ø4мм	1 шт.
4.	Ножовка по металлу	1 шт.
5.	Ключ гаечный на 8мм	1 шт.
6.	Метчик M5 c держателем	1 шт.
7.	Роторная пломба	2 шт.
8.	Проволока пломбировочная ø0.7мм	до 0,8 м.
9.	Персональный компьютер	1 шт.
10.	Программа Omnicomm Configurator	1 шт.
11.	Устройство настройки УНУ (с комплектом проводов)	1 шт.
12.	Блок питания постоянного напряжения (10 – 15) В, 0.5А	1 шт.
13.	Мерная ёмкость	1 шт.
14.	Топливо	
15.	Емкость для тарировки	1шт.

OOO «Омникомм Технологии» Россия, 127055 г. Москва ул. Бутырский вал, д. 68/70 Тел.: 8-800-100-2442

info@omnicomm.ru www.omnicomm.ru