Partiel - 19 octobre 2018

Durée: 2h – documents interdits

Exercice 1 (*Induction*). Un *palindrome* sur l'alphabet $\{0,1\}$ est un mot $a_1a_2 \ldots a_n \in \{0,1\}^*$ tel que $a_1a_2 \ldots a_n = a_n \ldots a_2a_1$. On note \mathcal{P}_p l'ensemble des palindromes sur $\{0,1\}$ de longueur paire. Par exemple, $101101 \in \mathcal{P}_p$ mais $1001001 \notin \mathcal{P}_p$. Cet ensemble admet la définition inductive suivante :

Cas de base : $\varepsilon \in \mathcal{P}_p$;

Règles: si $u \in \mathcal{P}_p$, alors $0u0 \in \mathcal{P}_p$ et $1u1 \in \mathcal{P}_p$.

À l'aide de cette définition, montrez par induction que pour tout $u \in \mathcal{P}_p$, les entiers $|u|_0$ et $|u|_1$ sont pairs. (On rappelle que $|u|_x$ désigne le nombre d'occurences de la lettre x dans le mot u.)

Exercice 2. On considère la formule $\varphi = (\neg((a \lor b) \to c) \land (\neg(a \lor b) \lor \neg(\neg a \lor c)))$.

- 1) Représentez son arbre syntaxique et listez ses sous-formules.
- 2) Calculez tous ses modèles et représentez-les sous forme de tableau.
- 3) Cette formule est-elle satisfaisable? Est-elle tautologique? Est-elle contingente?
- 4) Calculez sa forme clausale.

Exercice 3. Exécutez l'algorithme DPLL sur l'ensemble de clauses :

$$(a \lor b), (\overline{b} \lor c), (\overline{c} \lor d), (a \lor \overline{d} \lor e), (a \lor \overline{c} \lor f), (\overline{e} \lor \overline{f}), (g \lor h), (\overline{a} \lor \overline{h}), (\overline{a} \lor \overline{g}).$$

Si cet ensemble est satisfaisable, donnez le modèle que vous avez obtenu par DPLL.

Exercice 4. Soit Γ un ensemble de formules propositionnelles. Rappelez les définitions :

- 1) d'un $mod \`ele$ de Γ ;
- 2) d'une conséquence logique de Γ .

Pour tout ensemble Γ de formules, on note $\mathsf{mod}(\Gamma)$ l'ensemble de ses modèles et $\mathsf{cons}(\Gamma)$ l'ensemble de ses conséquences logiques. Soient Γ et Σ deux ensembles de formules propositionnelles tels que $\Gamma \subseteq \Sigma$. Démontrez les inclusions :

- 3) $mod(\Sigma) \subseteq mod(\Gamma)$.
- 4) $cons(\Gamma) \subseteq cons(\Sigma)$.

Exercice 5. Soient $\Gamma \subseteq \mathcal{F}_0$ et $\varphi \in \mathcal{F}_0$. Montrez l'équivalence :

 $\Gamma \models \varphi \text{ ssi } \Gamma \cup \{\neg \varphi\} \models \bot$.