patient, the graft capable of assuming a compressed condition and an uncompressed condition, and the at least one attachment system being compressible and expandable radially between an expanded and compressed condition, the method comprising:

inserting the graft into the vascular system by direct percutaneous insertion;

applying a traction force to opposing ends of the graft to control the position of the graft within the vasculature, wherein the traction force is carried out using a plurality of catheters, each catheter configured to exert a force on the graft from a different point outside the vasculature;

positioning the graft adjacent a diseased portion of the */ascular system;

subsequently inserting at least one attachment system into the graft in compressed condition by direct percutaneous insertion into a point of access to the vascular system over a prepositioned guidewire;

positioning the at least one attachment system within the bore of the graft; and activating the at least one attachment system from its compressed condition to its expanded condition;

wherein the attachment system is implanted in the graft to form a seal between the graft and the vascular wall.

7. (Twice Amended) The method of claim 3, wherein the graft is configured to have a bifurcated profile having a superior trunk with a superior end and first and second inferior legs each with an inferior end, and wherein a first catheter having a first end and a second end is releasably connected by the first end to the superior end of the graft and configured so that the second end thereof extends through a point of access to the vasculature in the left axillary artery, a second catheter having a first end and a second end is releasably connected by the first end to

Serial No.: 09/684,008 Docket No.: ENDOV-54176 the inferior end of the first leg and configured so that the second end thereof extends through a point of access to the vasculature in a first iliac artery, and a third catheter having a first and second end is releasably connected by the first end to the inferior end of the second leg and configured so that the second end thereof extends through a point of access to the vasculature in a second iliac artery.

11. (Amended) A method of implanting a modular graft device within vasculature, the modular graft device including a bifurcated main body having a first end portion and a second end portion including a first leg and a second leg, comprising:

inserting the bifurcated main body within asculature;

applying a traction force to the first end of the main body to advance and place the main body in a desired position within vasculature; and

inserting a radially self-expanding device within one of the first and second legs.

16. (Amended) The method of claim 11, further comprising positioning the main body adjacent a diseased portion of vasculature, the positioning step including applying a traction force to each of the first end and first and second legs of the bifurcated main body.

REMARKS

By this paper, claims 1, 7, 11 and 16 have been amended. Claims 1, 3, 7 and 11-20 are pending.

In the outstanding Office action dated May 21, 2003, claims 1, 7 and 17 were rejected under 35 U.S.C. § 112. In response thereto, claims 1 and 7 have been amended as suggested by the Examiner and are believed to now satisfy § 112. With respect to claim 17, it is respectfully

Serial No.: 09/684,008 Docket No.: ENDOV-54176