1

2

3

4 5

6 7

8

9

10

11

12

13

1 2

3

4

WHAT IS CLAIMED IS:

า	Δn	aconstic	resonator	comprising:
	, vi i	accusic	1 C3OHALOI	comprising.

a substrate: and

a layer stack integrated to said substrate such that said layer stack includes a suspended region, said suspended region including:

a piezoelectric body and electrodes positioned to apply an electrical field to said piezoelectric body, said piezoelectric body and electrodes having a resonance and a negative temperature coefficient of frequency; and

a compensator acoustically coupled to said piezoelectric body and electrodes, said compensator body being formed of a material having properties by which said compensator at least partially offsets temperatureinduced effects on said resonance, where said temperature-induced effects are a function of said negative temperature coefficient of frequency.

- 2. The acoustic resonator of claim 1 wherein said compensator is a ferromagnetic layer that is spaced apart from said piezoelectric body by one of said electrodes, said ferromagnetic layer being associated with a positive temperature coefficient of frequency.
- 3. The acoustic resonator of claim 1 wherein said layer stack includes a peripheral region that contacts said substrate to support said suspended region, said compensator being a layer of a nickel-iron alloy.
- 4. The acoustic resonator of claim 1 wherein said layer stack further includes a metallic flashing layer on a side of said compensator opposite to said electrodes and said piezoelectric body.
- 5. The acoustic resonator of claim 1 wherein said layer stack is a thin film bulk resonator (FBAR) stack.

1 2 3 4 5 6	6. The acoustic resonator of claim 1 wherein said compensator is formed of a material having a positive temperature coefficient of frequency and has a thickness such that a magnitude of temperature-induced effects on said resonance by presence of said compensator is similar to a magnitude of said temperature-induced effects on said resonance as a function of said negative temperature coefficient of frequency.
1 2	7. The acoustic resonator of claim 1 wherein said substrate is a silicon substrate and wherein said electrodes and compensator are metallic layers.
1 2 3 4 5 6 7	8. An acoustic resonator comprising:
1 2	9. The acoustic resonator of claim 8 wherein said electrode-piezoelectric stack and said metallic compensator layer combine to define an FBAR.
1 2	10. The acoustic resonator of claim 9 wherein a major portion of said FBAR is suspended from contact with said substrate.
1 2	11. The acoustic resonator of claim 8 wherein said metallic compensator layer is formed of a nickel-iron alloy.

1 12. The acoustic resonator of claim 11 wherein said nickel-iron alloy is approximately 35 percent nickel and approximately 65 percent iron.

3

1	13. The acoustic resonator of claim 8 wherein said metallic compensator
2	layer has a thickness selected to neutralize influences of temperature
3	variations on resonance of said electrode-piezoelectric stack such that said
4	target resonant frequency is substantially maintained.
1 2	14. A method of fabricating an acoustic resonator comprising the steps of: providing a substrate; and
3	forming a membrane on said substrate such that at least a
4	portion of said membrane is suspended from contact with a substrate,
5	including:
6 7	 (a) forming an electrode-piezoelectric stack having a negative temperature coefficient of frequency, and
8	(b) forming a compensator layer adjacent to said
9	electrode-piezoelectric stack, including selecting a material having a positive
10	temperature coefficient of frequency.
1 2	15. The method of claim 14 wherein said step (b) that includes selecting said material includes selecting a nickel-iron alloy.
1	16. The method of claim 14 wherein said step (b) includes depositing said
2	material as approximately 35 percent nickel and approximately 65 percent
3	iron.
1	17. The method of claim 14 wherein said step (b) includes selecting a layer
2	thickness to substantially match a magnitude of temperature-induced effects
3	on resonance by operation of said electrode-piezoelectric stack with a
4	magnitude of temperature-induced effects on said resonance as a
5	consequence of said compensator layer.
1	18. The method of claim 14 wherein said step of forming said membrane
2	further includes (c) forming a metallic flashing layer on a side of said

compensator layer opposite to said electrode-piezoelectric stack.

- 1 19. The method of claim 18 further comprising using fabrication alignment
- techniques in said steps (b) and (c) to prevent spurious mode generation
- 3 resulting from partial coverage of said suspended membrane by said
- 4 compensator layer or said flashing layer.