PHYS 357 Pset 4. Due 11:59 PM Thursday Oct. 3

- 1. Townsend 3.1
- 2. Townsend 3.2. If you choose, you may just verify that the states shown are eigenvectors rather than solve the full eigenvector problem by hand.
- 3. Townsend 3.7
- 4. For a 3-state spin-1 system, we know the raising/lowering operators need to look like

$$J_{+} \propto egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

and J_{-} is the conjugate-transpose. We know that for J_z , $J_{\pm} = J_x \pm iJ_y$. Use these forms to solve for J_x and J_y in terms of J_{+} and J_{-} . For a spin-1 system, the eigenvalues of $J_{x,y,z}$ must be $\hbar(1,0,-1)$. Use this fact to find the coefficient of proportionality for J_x , J_y and write the properly weighted forms of J_x and J_y . If all has gone well, they should agree with Equation 3.28 in Townsend.

- 5. Show that the commutation relations we expect for angular momentum hold for the spin-1 basis you've just worked out. You may do this on a computer if you choose.
- 6. What are the eigenstates of J_x and J_y in the J_z basis? What are the raising and lowering operators? Show that the raising and lowering operators for J_x behave as expected on the eigenstates of J_x . Do the same for J_y . Once again, you may do this on a computer.