

DATA ANALYTICS PORTFOLIO

DIEU THUY TRINH-SANTOS

Linked in

AQUIRED TECHNIQUES

- Python3/Jupyter Notebook
 - Project 1
 - Project 2
- Tableau Dashboards
 - Project 1
 - Project 2

- <u>SQL</u>
- Machine Learning
- Exploratory Data Analysis
- Data visualization
- Excel

As seen in the case studies on the following slides

CASE STUDIES

- 1. World Happiness Reports
- Advanced analysis of survey data from 2015-2019

2. Python: Instacart

- Marketing strategy
- 3. SQL: Rockbuster Stealth
- Analysis to answer business questions
- 4. EDA: Influenza preparation
- Preparing a medical staffing plan upcoming flu season in the US

5. DA: GameCo

• Analysis on global video game sales

6. Machine Learning:
Pig E. Bank

Anti-money laundering project

1. WORLD HAPPINESS REPORTS

Objective Discover the life factor contributing most to the surveyed Happiness levels

Dataset World Happiness Report datasets from 2015 to 2019 sourced from Kaggle

Tools Python3/Jupyter Notebook, Tableau, Excel **Skills** deployed:

- Data sourcing
- Exploratory Data Analysis
- Geospatial Analysis
- Linear Regression Analysis
- Time-Series Analysis
- Machine Learning (both supervised and unsupervised)

The World Happiness Report

The World Happiness Report provides ranking and individual scores of countries, measuring the happiness of their populations.

- Out of 6 life factors, Economy is correlated to felt Happiness the most
- Economy alone is not enough to accurately predict Happiness Levels
- Improved accuracy with more life factors included

3 clusters analyzed:

- Smooth transition between them
- As soon as the Economy factor increases to a certain value, the Happiness Levels are more likely to increase as well

RECOMMENDATIONS

"Money doesn't buy you happiness"

 ... But it does contribute to a person's perceived happiness, along with the factors of Health and Social Support

Government level

- Officials may want to pay heed to these findings to make datadriven decisions in order to meet their citizens' needs.
- Content inhabitants are more likely to contribute to a country's economy and peace.

Deliverables: Tableau Dashboard

Github Repository

Objective Perform exploratory analysis to derive insights on sale patterns and provide segmentations based on given criteria

Datasets containing departments, products and orders sourced via <u>Kaggle</u> in 2017; dataset containing fictional customer information provided by CareerFoundry

Tools Jupyter Notebook

Skills deployed:

- Python3 Jupyter Notebook (libraries: pandas, numpy, matplotlib, seaborn)
- Data Wrangling and Merging
- Deriving variables
- Grouping and Aggregating Data

Deliverables: Github Repository

- Most orders carried out during the weekend
- Most frequent orders carried out between 10am and 4pm

- Customers prefer mid-ranged products and tend to be low spenders
- Customers with dependents order more frequently than those without dependents

RECOMMENDATIONS

Promotions

- Distribute time-restricted discounts for peak hours and for the weekend to boost sales
- Promote advertisements for any end-of-the-day-sales to increase order frequencies during the end of the day

Segmentation

- Reduce amounts of High-range products to save on inventory space and costs.
- Adjust item prices or add more products into the lower-mid priced ranges.

3. ROCKBUSTER STEALTH

Objective: Answer business questions for a video rental company for its potential entry into the online streaming service business

Dataset sourced from: CareerFoundry's Rockbuster dataset

Tools: SQL, Tableau

Skills deployed:

- Relational database
- Database querying
- Writing queries with joins, subqueries and common table expressions
- Data dictionary

Deliverables: PowerPoint

Github Repository

Tableau Bubble Map

- Top 10 countries based on number of customers: India, China, USA, Japan, Mexica, Russian Federation, Brazil, Philippines, Turkey, Indonesia
- Customers with the highest individual payments also coming from the top 10 countries

Top 5 customers based in the top 10 cities First Name Last Name Country City 111,76\$ India Ambattur Arlene Harvey 109,71\$ Kyle Spurlock China Shanwei 106,77\$ Iwaki Marlene Welch Japan Mexico Acua Glen Talbert 100,77\$ United States 98,76\$ Buford Aurora Clinton

RECOMMENDATIONS

Update movies in database

- Add movies released beyond 2006 to be up to date
- Add multilingual movies to accommodate diversity in customer heritages
- Add movies with higher MPAAratings to ensure ageappropriateness for customers

Customer relations

 Implement reward systems for highvalue customers to promote recurring customers

4. INFLUENZA PREPARATIONS

Objective: Provide distribution plan of temporary hires of a medical staffing agency for the upcoming Influenza season

Datasets containing regional influenza deaths and Census data sourced from CDC and US Census Bureau, respectively

Tools: Excel, Tableau

Skills deployed:

- Forecasting
- Visual analysis
- Statistical hypothesis testing
- Storytelling in Tableau

Deliverables: <u>Tableau storyboard</u>
<u>Video presentation</u>

 Based on historical data, Influenza seasons recur from December to March with peak of Influenza related deaths in January

 Influenza mortality strongly correlated to vulnerable elderly population above 65 years

RECOMMENDATION

Distribution plan

Deployment of hires to States per density of vulnerable population and mortality rates:

- ➤ High priority/ Long deployment: California
- ➤ <u>Middle priority/ moderate deployment</u>: New York, Florida, Pennsylvania, Texas, Ohio
- ➤ Low priority/ short deployment: Illinois, North Carolina, Michigan, New Jersey

Objective: Perform descriptive analysis of dataset to assess potential performance of their own new games

Dataset containing historical sales of video games sold over 10.000 copies each

sourced from: VGChartz

Tools: Microsoft Excel, Microsoft Powerpoint

Skills deployed:

- Data cleaning
- Grouping data
- Summarizing data

- Developing insights
- Visualizing results in Excel
- Descriptive analysis

Deliverables: Powerpoint

- Recent global drop in sales correlates to drop in game releases
- Revenue gained from EUbased customers overtook
 North American revenues since 2015
- Steady sale revenues in Japan

- Different preferences of biggest customer bases for genres and gaming platforms
- European& American
 customer preferences similar,
 Japanese market should be
 looked at separately

RECOMMENDATIONS

Online shop

- Promote game sales online to stay competitive in times of advancing online markets
- Introduce advertisement strategies promoting the game online to boost sales

USA/EU

- With Europe bringing the biggest revenue, the focus should shift towards that region as well
- Customer preferences similar to North American ones
- Focus on genres such as: Action, Shooter, Sports

Japan

- Customer preferences differ from Western regions, chance to test out different genres
- Focus on genres such as: Roleplaying, Action, Miscellaneous

6. PIG E. BANK

This Photo by Unknown Author is licensed under CC BY-NC

Objective Identify indicators for customers likely to leave the bank **Dataset** provided by <u>CareerFoundry</u>

Tools Excel

Skills deployed:

- Big Data
- Data Ethics
- Data mining
- Predictive Analysis

- Leading indicators for customers leaving are:
 Gender, Age, Activity
- Women over the age of 29 with inactive status are most likely to leave the bank
- Customers under the age of 28 are less likely to leave the bank regardless of gender and activity status

