• 作业讲解

- -TC第12.1节练习2、5
- -TC第12.2节练习5、8、9
- -TC第12.3节练习5
- TC第12章问题1
- -TC第13.1节练习5、6、7
- -TC第13.2节练习2
- -TC第13.3节练习1、5
- -TC第13.4节练习1、2、7

TC第12.1节练习2

- BST的性质
 - ≥左子节点,≤右子节点,这样对吗?
 - ≥左子树中的节点, ≤右子树中的节点

TC第12.1节练习5

- Any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(nlgn)$ time in the worst case.
 - 反证法: 假设只需o(nlgn),则comparison-based sorting只需o(nlgn)。

TC第12.2节练习8

- k successive calls to TREE-SUCCESSOR take O(k+h) time.
 - 其实是在做中序遍历
 - 运行时间即经过顶点的总次数,分两种情况
 - 向上到达
 - 在首顶点向上走到根的路径上(<=h)
 - 其它每次向上到达必然伴随着一次向下到达,不影响渐进时间
 - 向下到达
 - k个后继(=k)
 - 其它都是花费在那些key更大的顶点上,只存在于末顶点到根的路径上(<=h)

TC第12.2节练习9

- 为什么y1一定是x1的后继?
- 为什么y2一定是x2的前驱?

• 注意: 讨论的范围不能限于以y为根的子树。

TC第12.3节练习5

- Instead of x.p, keeps x.succ.
 - 实现getParent函数
 - 注意维护受影响顶点的succ

TC第12章问题1

- (a) insert n items with identical keys.
 - $-n^2$
- (b) alternates between x.left and x.right.
 - nlgn
- (c) list
 - n
- (d) randomly between x.left and x.right.
 - Worst-case: n²
 - Expected: nlgn

TC第13.1节练习6

- Number of internal nodes with black-height k?
 - Largest: 2^{2k}-1, 不是2^{2k+2}-1(P309: from, but not including, a node...)
 - Smallest: 2^k-1,不是k(P308: We shall regard these NILs as...)

TC第13.1节练习7

- Ratio of red internal nodes to black internal nodes.
 - Largest: 2
 - Smallest: 0

TC第13.2节练习2

- Exactly n-1 possible rotations.
 - 每个rotation都将一个顶点提到了其父顶点的位置
 - 每个非根顶点对应一种被提的rotation,总共n-1种

- 教材讨论
 - -TC第16章第1、2、3节
 - TC第17章

- 你怎么理解greedy algorithms的两个重要性质?
 - greedy-choice property
 - optimal substructure
- 你能不能结合activity-selection problem解释为什么这两个性质缺一不可?
- 为什么greedy algorithms比dynamic programming快?

- 你怎么理解greedy algorithms的两个重要性质?
 - greedy-choice property
 - optimal substructure
- 你能不能结合activity-selection problem解释为什么这两个 性质缺一不可?
- 为什么greedy algorithms比dynamic programming快?
 - making the first choice before solving any subproblems
 - making one greedy choice after another reducing each given problem instance to a smaller one

- 关于Huffman codes的greedy algorithm
 - greedy choice是什么?
 - greedy-choice property是什么?
 - optimal substructure是什么?

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Describe an efficient algorithm that, given a set $\{x_1, x_2, \dots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

Describe an efficient algorithm that, given a set $\{x_1, x_2, \dots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

Sol: First we sort the set of n points $\{x_1, x_2, ..., x_n\}$ to get the set $Y = \{y_1, y_2, ..., y_n\}$ such that $y_1 \leq y_2 \leq ... \leq y_n$. Next, we do a linear scan on $\{y_1, y_2, ..., y_n\}$ started from y_1 . Everytime while encountering y_i , for some $i \in \{1, ..., n\}$, we put the closed interval $[y_i, y_i + 1]$ in our optimal solution set S, and remove all the points in Y covered by $[y_i, y_i + 1]$. Repeat the above procedure, finally output S while Y becomes empty. We next show that S is an optimal solution.

We claim that there is an optimal solution which contains the unit-length interval $[y_1, y_1 + 1]$. Suppose that there exists an optimal solution S^* such that y_1 is covered by $[x', x'+1] \in S^*$ where x' < 1. Since y_1 is the leftmost element of the given set, there is no other point lying in $[x', y_1)$. Therefore, if we replace [x', x'+1] in S^* by $[y_1, y_1+1]$, we will get another optimal solution. This proves the claim and thus explains the greedy choice property. Therefore, by solving the remaining subproblem after removing all the points lying in $[y_1, y_1 + 1]$, that is, to find an optimal set of intervals, denoted as S', which cover the points to the right of $y_1 + 1$, we will get an optimal solution to the original problem by taking union of $[y_1, y_1 + 1]$ and S'.

• 建议阅读打星号的16.4节

• amortized analysis和average-case analysis 有什么异同?

- amortized analysis和average-case analysis 有什么异同?
 - per operation vs. per algorithm
 - worst-case vs. average-case

- 这些问题的分析难在哪儿? amortized analysis能带来什么好处?
 - stack operations

```
PUSH(S, x) pushes object x onto stack S.
POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.
```

```
MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0

2 POP(S)

3 k = k - 1
```

incrementing a binary counter

Counter	00000000	Total
value	47,46,87,47,87,87,90	cost
0	00000000	0
1	0 0 0 0 0 0 0 1	1
2	0 0 0 0 0 0 1 0	3
3	00000011	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0	31

- aggregate analysis
 - 该方法的基本思路是什么?
 - 如何用来解决这两个问题?
 - 如果增加一个DECREMENT, 结果又如何?
 - 它在使用上有什么局限吗?

```
PUSH(S, x) pushes object x onto stack S.
POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.
MULTIPOP(S, k)
1 while not STACK-EMPTY(S) and k > 0
2 POP(S)
3 k = k - 1
```

- accounting method
 - 该方法的基本思路是什么? 右侧这个式子是什么含义?

$$\sum_{i=1}^{n} \widehat{c}_i \ge \sum_{i=1}^{n} c_i$$

- 如何用来解决这两个问题? 上述式子是如何保证成立的?
 - 如果增加一个RESET,结果又如何? (Keep a pointer to the high-order 1.)

```
PUSH(S, x) pushes object x onto stack S.
```

POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

```
MULTIPOP(S,k)
```

- 1 while not STACK-EMPTY (S) and k > 0
- 2 Pop(S)
- $3 \quad k = k 1$

potential method

- 该方法的基本思路是什么? 右侧这组式子是什么含义?
- 如何用来解决这两个问题? 以及一个新问题:

Implement a queue with two stacks.

The amortized cost of ENQ and DEQ is O(1).

```
PUSH(S, x) pushes object x onto stack S.
```

POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

MULTIPOP(S,k)

- 1 while not STACK-EMPTY (S) and k > 0
- 2 Pop(S)
- $3 \quad k = k 1$

```
\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}).
\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))
= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).
\Phi(D_{n}) \geq \Phi(D_{0}).
```

问题3: dynamic tables

• 对于table expansion,你能解释aggregate和 accounting的分析过程吗?

• 对于potential function Φ(T)=2·T.num-T.size 你能结合accounting来解释它的走势吗?