

biographer

Systems Biologists want meaningful visualizations!

SBGN = Systems Biology Graphical Notation http://SBNG.org/

SBGN

SBGN standardizes, how nodes in a model are supposed to look like

neuro-muscular junction from http://sbgn.org/

SBGN

LABEL

unspecified entity

simple chemical

LABEL

macromolecule

SBGN

and not only nodes, but also: interactions

this brought me to the idea

The challenge

"bringing life to modelled life"

visualize the network's activity state inside it's SBGN illustration

bringing together modelling and testing

Theoretical models

1. model kinetics using equations:* Copasi

Oscillating MAPK network from CellDesigner Online Help

2. model as Boole'an network using logical expressions:

* R

* BooleNet

BooleNet

BooleNet Python library:

- * completely open-source
- * runs platform-independent
- * established solution for Boole'an network analysis
- * enables extraordinary quick and easy modelling

model = file of Update Rules e.g.

my example BooleNet model Ras* = Glucose and GlucoseReceptor and (not Inhibitor)

Visualization

Interactivity

- * click to simulate
- * watch the progression of acitivitiy changes inside your network in "real time"
- * click to see node annotation
- * in-browser logic editor

State characterization

isn't simulation only with 0s and 1s kind of a too simple approach?

State characterization

isn't simulation only with 0s and 1s kind of a too simple approach?

present/absent
active/inactive
phosphorylated/dephosphorylated
complexed/dissociated
receptor firing/off
gene transcription/silent

State characterization

isn't simulation only with 0s and 1s kind of a too simple approach?

present/absent
active/inactive
phosphorylated/dephosphorylated
complexed/dissociated
receptor firing/off
gene transcription/silent

States of Glucose: True="present", False="absent"

Annotations

1. single nodes

included via Python comment "# Annotation of ..."

e.g.

Glucose* = not metabolism
Annotation of Glucose: "my energy source"

2. whole pathway

via SBGN labels

Ras pathway

Demonstration ...

Future aims

allow offline usage

SBML import/export

automated model generation

update rules controlling other node properties, e.g. localization

full SBGN conformity

in-browser modelling

different layouting possibilities

and fancy tablet support (touch gestures: slide, zoom, node drag'n'drop)

Future aims

will be addressed in ...

http://code.google.com/p/biographer/wiki/Simulator

Thank you very much for your attention!