Validation par analyse statique Interprétation abstraite - Deuxième partie

Pierre-Loïc Garoche

ONERA

Cours ISAE 2014-2015

Slides majoritairement empruntés au docteur Pierre Roux

1/68

Sémantique abstraite - suite

Virgule flottante

2/68

Sémantique abstraite - suite

Polyèdres

Virgule flottante

Analyse en arrière

On avait défini la sémantique abstraite des gardes comme

$$\llbracket e > 0
bracket^{\sharp}_{\mathrm{C}}
ho = \left\{ egin{array}{ll}
ho \left[v \mapsto
ho(v) \ \sqcap^{\sharp} lpha\left(\llbracket 1, + \infty
bracket
ight)
ight] & ext{si } e = v \
ho & ext{sinon} \end{array}
ight.$$

Comment faire pour x - 4 > 0?

Analyse en arrière

On avait défini la sémantique abstraite des gardes comme

$$\llbracket e > 0
bracket^{\sharp}_{\mathrm{C}} \
ho = \left\{ egin{array}{ll}
ho \left[v \mapsto
ho(v) \ \sqcap^{\sharp} lpha \left(\llbracket 1, + \infty \llbracket
ho
ight]
ight] & ext{si } e = v \
ho & ext{sinon} \end{array}
ight.$$

Comment faire pour x - 4 > 0?

On va utiliser une analyse en arrière des expressions : partant du résultat de l'expression, on en déduit les valeurs possibles des variables.

Analyse en arrière (suite)

Sémantique en arrière des expressions : $\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} o \mathcal{D}^{\sharp}) imes \mathcal{D}^{\sharp} o (\mathbb{V} o \mathcal{D}^{\sharp})$

5 / 68

4/68

Analyse en arrière (suite)

Sémantique en arrière des expressions :

$$\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\mathbb{V} \to \mathcal{D}^{\sharp})$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (\rho, r) = \rho \left[v \mapsto \rho(v) \sqcap r \right] (v)$$

Analyse en arrière (suite)

Sémantique en arrière des expressions :

$$\llbracket e \rrbracket \downarrow^{\sharp} : (\mathbb{V} o \mathcal{D}^{\sharp}) imes \mathcal{D}^{\sharp} o (\mathbb{V} o \mathcal{D}^{\sharp})$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (
ho, r) =
ho \left[v \mapsto
ho(v) \sqcap r \right] (v)$$

$$\llbracket n \rrbracket \downarrow^{\sharp} (\rho, r)$$
 $= \left\{ egin{array}{ll} \bot & ext{si } n^{\sharp} \sqcap^{\sharp} r = \bot \\
ho & ext{sinon} \end{array} \right.$

Analyse en arrière (suite)

Sémantique en arrière des expressions :

$$\llbracket e \rrbracket \downarrow^{\sharp} : (\overset{\cdot}{\mathbb{V}} \to \mathcal{D}^{\sharp}) \times \mathcal{D}^{\sharp} \to (\overset{\cdot}{\mathbb{V}} \to \mathcal{D}^{\sharp})$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (\rho, r) = \rho \left[v \mapsto \rho(v) \sqcap r \right] (v)$$

$$\llbracket n \rrbracket \downarrow^{\sharp} (\rho, r)$$
 $= \left\{ egin{array}{ll} \bot & ext{si } n^{\sharp} \sqcap^{\sharp} r = \bot \\
ho & ext{sinon} \end{array} \right.$

$$\llbracket \mathsf{rand}(n_1, n_2) \rrbracket \downarrow^{\sharp}(\rho, r) = \left\{ egin{array}{ll} \bot & \mathsf{si} \ \mathsf{rand}^{\sharp}(n_1, n_2) \sqcap^{\sharp} r = \bot \\ \rho & \mathsf{sinon} \end{array} \right.$$

Analyse en arrière (suite)

Sémantique en arrière des expressions :

$$\llbracket e \rrbracket \downarrow^\sharp : (\mathbb{V} o \mathcal{D}^\sharp) imes \mathcal{D}^\sharp o (\mathbb{V} o \mathcal{D}^\sharp)$$

$$\llbracket v \rrbracket \downarrow^{\sharp} (\rho, r) = \rho \left[v \mapsto \rho(v) \sqcap r \right] (v)$$

$$\llbracket n \rrbracket \downarrow^{\sharp} (\rho, r)$$
 $= \left\{ egin{array}{ll} \bot & ext{si } n^{\sharp} \sqcap^{\sharp} r = \bot \\
ho & ext{sinon} \end{array} \right.$

$$\llbracket \mathsf{rand}(n_1, n_2) \rrbracket \downarrow^\sharp(\rho, r) = \left\{ egin{array}{ll} \bot & \mathsf{si} \ \mathsf{rand}^\sharp(n_1, n_2) \sqcap^\sharp r = \bot \\
ho & \mathsf{sinon} \end{array} \right.$$

$$\begin{split} \llbracket e_1 + e_2 \rrbracket \downarrow^\sharp(\rho, r) & = \llbracket e_1 \rrbracket \downarrow^\sharp(\rho, r_1) \sqcap_{\mathrm{nr}}^\sharp \llbracket e_2 \rrbracket \downarrow^\sharp(\rho, r_2) \\ & \mathsf{avec} \ (r_1, r_2) = + \downarrow^\sharp \left(\llbracket e_1 \rrbracket_{\mathrm{E}}^\sharp \left(\rho \right), \llbracket e_2 \rrbracket_{\mathrm{E}}^\sharp \left(\rho \right), r \right) \end{aligned}$$

. . .

ONERA 5 / 68

5 / 68

Analyse en arrière, arithmétique

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$

Analyse en arrière, arithmétique

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0,\geqslant 0,\leqslant 0)=(0,0)$$
 (si $x\geqslant 0,\ y\geqslant 0$ et $x+y\leqslant 0$ alors $x=y=0$)

Analyse en arrière, arithmétique

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp}(\geqslant 0, \geqslant 0, \leqslant 0) = (0, 0)$$

(si $x \geqslant 0$, $y \geqslant 0$ et $x + y \leqslant 0$ alors $x = y = 0$)

Exemple

Dans le domaine des intervalles :

$$+\downarrow^{\sharp}([0,2],[3,8],[4,7])=([0,2],[3,7])$$

Analyse en arrière, arithmétique

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp} (\geqslant 0, \geqslant 0, \leqslant 0) = (0, 0)$$

(si $x \geqslant 0$, $y \geqslant 0$ et $x + y \leqslant 0$ alors $x = y = 0$)

Exemple

Dans le domaine des intervalles :

$$+\downarrow^{\sharp}([0,2],[3,8],[4,7])=([0,2],[3,7])$$

Exercices

▶ Donner la table de +↓[‡] pour le domaine des signes (tout au moins une partie, la table ayant 125 entrées).

Analyse en arrière, arithmétique

Exemple

Dans le domaine des signes :

$$+\downarrow^{\sharp} (\geqslant 0, \geqslant 0, \leqslant 0) = (0, 0)$$
 (si $x \geqslant 0$, $y \geqslant 0$ et $x + y \leqslant 0$ alors $x = y = 0$)

Exemple

Dans le domaine des intervalles :

$$+\downarrow^{\sharp}([0,2],[3,8],[4,7])=([0,2],[3,7])$$

Exercices

- ▶ Donner la table de $+\downarrow^{\sharp}$ pour le domaine des signes (tout au moins une partie, la table ayant 125 entrées).
- ▶ Définir $-\downarrow^{\sharp}$ pour le domaine des intervalles.

Analyse en arrière, arithmétique (suite et fin)

Réponse

$$-\downarrow^{\sharp}(\llbracket a,b\rrbracket,\llbracket c,d\rrbracket,\llbracket e,f\rrbracket)=(\llbracket \max(a,e+c),\min(b,f+d)\rrbracket,\\ \llbracket \max(c,a-f),\min(d,b-e)\rrbracket)$$

$$-\downarrow^{\sharp}(x^{\sharp},y^{\sharp},r^{\sharp})=(\bot,\bot)$$
 sinon (si x^{\sharp} , y^{\sharp} ou z^{\sharp} est \bot).

Exercice, analyse en arrière (suite et fin)

Exercice

- ► Avec la sémantique en arrière des expressions, définir une sémantique abstraite pour les gardes plus précise.
- Puis calculer cette sémantique dans le domaine des intervalles pour la garde $x + y \le z$ avec $\rho(x) = [1, 10], \ \rho(y) = [3, 10]$ et $\rho(z) = [3, 5]$.

Exercice, analyse en arrière (suite et fin)

Exercice

- ► Avec la sémantique en arrière des expressions, définir une sémantique abstraite pour les gardes plus précise.
- Puis calculer cette sémantique dans le domaine des intervalles pour la garde $x+y\leqslant z$ avec $\rho(x)=[1,10]$, $\rho(y)=[3,10]$ et $\rho(z)=[3,5]$.

Réponse

 $\blacktriangleright \llbracket e > 0 \rrbracket_{\mathrm{C}}^{\sharp} \ \rho = \llbracket e \rrbracket \downarrow^{\sharp} (\rho, \alpha (\llbracket 1, +\infty \llbracket))$

ONERA

8 / 68

THE CONTROL OF THE CO

Exercice, analyse en arrière (suite et fin)

Exercice

- ► Avec la sémantique en arrière des expressions, définir une sémantique abstraite pour les gardes plus précise.
- Puis calculer cette sémantique dans le domaine des intervalles pour la garde $x+y\leqslant z$ avec $\rho(x)=[1,10]$, $\rho(y)=[3,10]$ et $\rho(z)=[3,5]$.

Réponse

- On obtient : $\rho(x) = [1, 3], \ \rho(y) = [2, 5] \ \text{et} \ \rho(z) = [4, 5].$

Exercice : domaine des congruences

Exercice

- Concevoir un domaine abstrait non relationnel pour les congruences (exemple : x est congru à 2 modulo 4 : x ∈ 4Z + 2).
- ► Analyser avec le programme du premier exemple :

```
x = rand(0, 12); y = 42;

while (x > 0) \{

x = x - 2;

y = y + 4;

}
```

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avion

Si le cours avait duré un semestre.

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avior

Si le cours avait duré un semestre

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

ONERA 11/68

ONERA 10 / 68

Comment abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$?

Deux grandes solutions

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - non relationnel : les valeurs de x et y sont indépendantes

Comment abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$?

Deux grandes solutions

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - non relationnel : les valeurs de x et y sont indépendantes
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - ightharpoonup relationnel: certaines combinaisons de x et y sont impossibles

Comment abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$?

Deux grandes solutions

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux

Comment abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$?

Deux grandes solutions

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ► non relationnel : les valeurs de x et y sont indépendantes
 - ▶ la semaine dernière
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux
 - cette semaine

ONERA 12 / 68

12/68

Exemple précédent au point de programme 2 (invariant de boucle)

Deux petits dessins valent mieux que de longs discours

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

ONERA 13 / 68

13 / 68

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Limitations des domaines non relationnels

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 \leftarrow x = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4;$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4y = y + 4$$

$$4 \leftarrow x = x - 2$$

$$4 \leftarrow x = x -$$

- ▶ Pour borner y, on a besoin de l'invariant $2x + y \le 66$.
- ► Cet invariant de boucle ne peut être exprimé par aucun domaine non relationnel.

ONERA 14 / 68

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avion

Si le cours avait duré un semestre..

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Polyèdres

On s'intéresse aux polyèdres fermés convexes soit des ensembles de la forme $\left\{\rho \middle| \bigwedge_i \left(\sum_j a_{ij} \rho(v_j) \geqslant b_i\right)\right\}$ avec $a_{ij}, b_i \in \mathbb{Z}$ et $v_i \in \mathbb{V}$.

ONERA 15 / 68

Polyèdre, treillis

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

En pratique, on ne calcule que des intersections finies, donc ce n'est pas gênant.

ONERA

17 / 68

17 / 68

Polyèdre, treillis

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

En pratique, on ne calcule que des intersections finies, donc ce n'est pas gênant.

ONERA 17/68

Polyèdre, treillis

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

En pratique, on ne calcule que des intersections finies, donc ce n'est pas gênant.

Polyèdre, treillis

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

En pratique, on ne calcule que des intersections finies, donc ce n'est pas gênant.

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

ONERA

18 / 68

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

ONERA 18 / 68

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

Représentation des polyèdres

Deux représentations duales :

Contraintes

(M,c) avec $M \in \mathbb{Z}^{m \times n}$ et $c \in \mathbb{Z}^m$:

$$\gamma(M,c) = \{v \mid Mv \geqslant c\}$$

avec $v = (v_1, \dots, v_n)$ vecteur des variables $(v_i \in \mathbb{V})$.

Représentation des polyèdres

Deux représentations duales :

Contraintes

(M,c) avec $M \in \mathbb{Z}^{m \times n}$ et $c \in \mathbb{Z}^m$:

$$\gamma(M,c) = \{v \mid Mv \geqslant c\}$$

avec $v = (v_1, \dots, v_n)$ vecteur des variables $(v_i \in \mathbb{V})$.

Générateurs

(P,R) avec $P \in \mathbb{Z}^{n \times p}$ et $R \in \mathbb{Z}^{n \times r}$:

$$\gamma(P,R) = \left\{ \left(\sum_{i=1}^{p} a_i P_{.i} \right) + \left(\sum_{i=1}^{r} b_i R_{.i} \right) \middle| \begin{array}{c} \forall i, a_i \geqslant 0, b_i \geqslant 0 \\ \sum_{i=1}^{p} a_i = 1 \end{array} \right\}$$

P est nommé ensemble de points et R ensemble de rayons.

19 / 68

Représentation des polyèdres, exemples

Contraintes

ONERA 20 / 68

Représentation des polyèdres, exemples

Contraintes

Représentation des polyèdres, exemples

Contraintes

Générateurs

20 / 68

Représentation des polyèdres, exemples

Contraintes y ↑

Générateurs

Minimalité de la représentation

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

ONERA 21 / 68

Minimalité de la représentation

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Remarques

- ► La représentation minimale n'est pas unique.
 - contraintes

Minimalité de la représentation

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Remarques

- ▶ La représentation minimale n'est pas unique.
 - contraintes

générateurs

21 / 68

ERA 21

21 / 68

Minimalité de la représentation

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Remarques

- La représentation minimale n'est pas unique.
 - contraintes

- générateurs
- ▶ Il est intéressant de garder une représentation minimale pour minimiser la complexité spatiale et temporelle.

ONERA 21 / 68

Remarques sur la dualité

Remarques

- ► Les opérations sont souvent plus faciles sur une des représentations que sur l'autre.
- On a un algorithme (Chernikova) pour passer d'une représentation à l'autre.
- ► Complexité au pire cas exponentielle en *n* (l'hypercube de dimension *n* a 2*n* faces et 2ⁿ sommets).

ONERA 22 / 68

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$
- $> x^{\sharp} \sqcap^{\sharp} y^{\sharp} : union des ensembles de contraintes$

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$
- $> x^{\sharp} \sqcap^{\sharp} y^{\sharp} :$ union des ensembles de contraintes
- $\rightarrow x^{\sharp} \sqcup^{\sharp} y^{\sharp}$: union des ensembles de générateurs

ONERA 23 / 68

ONERA 23 / 68

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$
- $\rightarrow x^{\sharp} \sqcap^{\sharp} y^{\sharp}$: union des ensembles de contraintes
- $\rightarrow x^{\sharp} \sqcup^{\sharp} y^{\sharp}$: union des ensembles de générateurs
- ► Gardes : on ajoute des contraintes :

$$\left[\left[\sum_{i} a_{i} v_{i} + b > 0\right]\right]_{C}^{\sharp} (M, c) = \left(\left(\begin{array}{c} M \\ a_{1} \dots a_{n} \end{array}\right), \left(\begin{array}{c} c \\ 1 - b \end{array}\right)\right)$$

Opérations abstraites, affectation

On applique simplement l'affectation aux générateurs :

$$\left[v_i = \sum_i a_i v_i + b \right]_C^{\sharp} (P, R) = (AP + B, AR)$$

avec

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ a_1 & \cdots & a_i & \cdots & a_n \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \vdots \\ b \\ \vdots \\ 0 \end{pmatrix}$$

Opérations abstraites, affectation

On applique simplement l'affectation aux générateurs :

$$\left[v_i = \sum_i a_i v_i + b \right]_{\mathrm{C}}^{\sharp} (P, R) = (AP + B, AR)$$

avec

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ a_1 & \cdots & a_i & \cdots & a_n \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \vdots \\ b \\ \vdots \\ 0 \end{pmatrix}$$

Remarques

- Malgré l'absence de correspondance de Galois, toutes ces opérations sont optimales (et même exactes, sauf □[♯]).
- ▶ Dans le cas non linéaire, il faudrait abstraire par du linéaire...

ONERA 24 / 68

Opérations abstraites, affectation, exemples

Exemple
$$(x = x - y - 1)$$

ONERA 25 / 68

Opérations abstraites, affectation, exemples

Exemple
$$(x = x - y - 1)$$

$$P = \left(\begin{array}{ccc} -2 & 2 & 2 \\ -1 & -1 & 1 \end{array} \right)$$

Opérations abstraites, affectation, exemples

Exemple (x = x - y - 1)

Opérations abstraites, affectation, exemples

Exemple (x = x - y - 1)

Exemple
$$(x = 2y)$$

Opérations abstraites, affectation, exemples

Exemple
$$(x = x - y - 1)$$

Exemple (x = 2y)

25 / 68

25 / 68

ONERA 25 / 68

Opérations abstraites, affectation, exemples

Exemple (x = x - y - 1)

Exemple (x = 2y)

Opérations abstraites, affectation, exemples

Exemple (x = x - y - 1)

Exemple (x = 2y)

Exercice (*)

Définir l'opérateur abstrait d'affectation sur les contraintes.

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

Idée

Toujours la même : ne conserver que les contraintes stables.

ONERA NORMAN 26 / 68

ONERA 26 / 68

26 / 68

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

ldée

Toujours la même : ne conserver que les contraintes stables.

Élargissement (suite et fin)

Plus formellement :

Définition

Pour x^{\sharp} et y^{\sharp} sous forme d'ensemble de contraintes minimaux, $x^{\sharp} \nabla y^{\sharp} =$

$$x^{\sharp} \nabla y^{\sharp} = \left\{ c \in x^{\sharp} \mid y^{\sharp} \in \{ c \} \right\} \cup \left\{ c \in y^{\sharp} \mid \exists c' \in x^{\sharp}, x^{\sharp} = {\sharp} \left(x^{\sharp} \setminus c' \right) \cup \left\{ c \right\} \right\}$$

Exemple

Exemple

Exemple

$$\begin{array}{c}
0x = \text{rand}(0, 12); 1y = 42; & 4 \leftarrow x = x - 2 \\
\text{while } 2(x > 0) \{ \\
3x = x - 2; \\
4y = y + 4; & y = y + 4
\end{array}$$

$$\begin{array}{c}
y = y + 4 \\
x > 0
\end{array}$$

$$\begin{array}{c}
0 \\
x = \text{rand}(0, 12)
\end{array}$$

Т

0

Exemple

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 \leftarrow x = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x = 0$$

Exemple

ONERA 28 / 68

ONERA 28 / 68

ONERA 28 / 68

ONERA 28 / 68

Exemple

Exemple

Exemple (suite)

Exemple (suite)

ONERA 28 / 68

Exemple (suite)

$$_{0}x = rand(0, 12);_{1}y = 42;$$
 $_{0}x = rand(0, 12);_{1}y = 42;$
 $_{1}x = x - 2;$
 $_{2}x = x - 2;$
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$

ONERA 30 / 68

Exemple (suite)

$$_{0}x = rand(0, 12);_{1}y = 42;$$
 $_{4} \leftarrow x = x - 2$
while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$ $y = y + 4$
}

Exemple (suite)

$$_{0}x = rand(0, 12);_{1}y$$

while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}$

Exemple (suite)

ONERA 31 / 68

Exemple (suite)

$$0x = rand(0, 12);_{1}y = 42; 4 \leftarrow x = x - 2
while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}$

$$0 \rightarrow x = rand(0, 12)$$

$$y = 42$$

$$x = x - 2 \rightarrow 3$$

$$y = y + 4 \rightarrow x > 0$$$$

ONERA 32 / 68

Exemple (suite)

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$x > 0$$

$$y = y + 4$$

$$x > 0$$

$$x = rand(0, 12)$$

$$y = 42$$

Exemple (suite)

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$x > 0$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x \le 0$$

Exemple (suite)

ONERA 33 / 68

33 / 68

Exemple (suite)

$$_{0}x = rand(0, 12);_{1}y = 42;$$
 $_{0}x = rand(0, 12);_{1}y = 42;$
 $_{1}x = x - 2;$
 $_{2}x = x - 2;$
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}x = x - 2;$
 $_{7}x = x - 2;$
 $_{8}x = x - 2;$
 $_{1}x = x - 2;$
 $_{1}x = x - 2;$
 $_{2}x = x - 2;$
 $_{3}x = x - 2;$
 $_{4}x = x - 2;$
 $_{5}x = x - 2;$
 $_{7}x = x - 2;$
 $_{7}x = x - 2;$
 $_{7}x = x - 2;$
 $_{8}x = x - 2;$
 $_{1}x = x - 2;$
 $_{2}x = x - 2;$
 $_{3}x = x - 2;$
 $_{4}x = x - 2;$
 $_{3}x = x - 2;$
 $_{4}x = x -$

Exemple (suite)

Exemple (suite)

ONERA 34 / 68

Exemple (suite)

Exemple (suite et fin)

$$_{0}x = \text{rand}(0, 12);_{1}y = 4$$

while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$

ONERA 35 / 68

Exemple (suite et fin)

$$_{0}x = rand(0, 12);_{1}y = 42;$$
 $_{0}x = rand(0, 12);_{1}y = 42;$
 $_{4}x = x - 2$
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
 $_{5}y = y + 4$
 $_{7}y = y + 4$

Exemple (suite et fin)

$$_{0}x = rand(0, 12);_{1}y = 0$$

while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$

Abstractions relationnelles

Octogones

Virgule flottante

ONERA 35 / 68

Octogones

Similaire aux polyèdres mais en autorisant seulement les pentes multiples de 45°.

ONERA 37 / 68

Octogones

Similaire aux polyèdres mais en autorisant seulement les pentes multiples de 45°.

- moins précis
- + meilleure complexité : chaque opération est en $O(n^3)$ (complexité au pire cas exponentielle pour les polyèdres)

ONERA 37 / 68

Octogones, exercice

Exercice

On considère le programme suivant :

$$\begin{array}{l} _{0}x = \mathsf{rand}(0,\,12)\,;_{1}y = 0\,; \\ \text{while }_{2}(x > 0)\; \{\\ _{3}\mathsf{if}\; (\mathsf{rand}(0,\,1) > 0)\; \{\\ _{4}x = x - 1\,;\\ _{3}\mathsf{else}\; \{\\ _{5}x = x - 2\,;\\ _{6}y = y + 1\,;\\ \end{array}$$

- 1. Dessiner le graphe de flot de contrôle.
- 2. Calculer le point fixe.
- 3. Le raffiner par une itération descendante (avec \triangle).

Autres domaines relationnels

Il existe bien d'autres domaines relationnels :

Autres domaines relationnels

Il existe bien d'autres domaines relationnels :

• égalités affines (2x + 3y = 5)

Autres domaines relationnels

Il existe bien d'autres domaines relationnels :

- égalités affines (2x + 3y = 5)
- ▶ congruences (x + 2y congru à 3 modulo 5)

ONERA 39 / 68

ONERA 39 / 68

Autres domaines relationnels

Il existe bien d'autres domaines relationnels :

- égalités affines (2x + 3y = 5)
- ▶ congruences (x + 2y congru à 3 modulo 5)
- polyèdres tropicaux (polyèdres sur une algèbre (max, +))

> ...

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogone

Contrôleurs d'avion

Si le cours avait duré un semestre.

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Étude des propriétés

Propriétés :

- ▶ du système complet : système + controleur boucle fermée
- ▶ du controleur seul boucle ouverte

Propriétés classiques :

- > stabilité de la boucle fermée, de la boucle ouverte
- robustesse
- performance (overshoot borné, temps pour atteindre la consigne, ...)

Stabilité

► Stabilité de la boucle fermée

commande y_d bornée $\Rightarrow x_c$ et x_p bornés

(et donc y_c et y_p bornés)

_

ONERA 43 / 68

44 / 68

42 / 68

Stabilité

► Stabilité de la boucle fermée

commande y_d bornée $\Rightarrow x_c$ et x_p bornés

(et donc y_c et y_p bornés)

► Stabilité de la boucle ouverte

ONERA 43 / 68

Analyse statique de controleurs

Le contrôleur

```
\begin{array}{l} \text{x0} := 0 \, ; \, \text{x1} := 0 \, ; \, \text{x2} := 0 \, ; \\ \text{while} \ -1 \leqslant 0 \ \text{do} \\ \text{in} := ? \big(-1, \, 1\big) \, ; \\ \text{x0}' := \text{x0} \, ; \, \text{x1}' := \text{x1} \, ; \, \text{x2}' := \text{x2} \, ; \\ \text{x0} := 0.9379 \times \text{x0}' - 0.0381 \times \text{x1}' - 0.0414 \times \text{x2}' + 0.0237 \times \text{in} \, ; \\ \text{x1} := -0.0404 \times \text{x0}' + 0.968 \times \text{x1}' - 0.0179 \times \text{x2}' + 0.0143 \times \text{in} \, ; \\ \text{x2} := 0.0142 \times \text{x0}' - 0.0197 \times \text{x1}' + 0.9823 \times \text{x2}' + 0.0077 \times \text{in} \, ; \\ \text{od} \end{array}
```

est stable en boucle ouverte :

 $|x_0| \le 0.4236 \land |x_1| \le 0.3371 \land |x_2| \le 0.5251.$

Analyse statique de controleurs

```
Le contrôleur
```

```
x0 := 0; x1 := 0; x2 := 0;
     while -1 \leqslant 0 do
        in := ?(-1, 1);
        x0' := x0 : x1' := x1 : x2' := x2 :
        x0 := 0.9379 \times x0' - 0.0381 \times x1' - 0.0414 \times x2' + 0.0237 \times in;
        x1 := -0.0404 \times x0' + 0.968 \times x1' - 0.0179 \times x2' + 0.0143 \times in;
        x2 := 0.0142 \times x0' - 0.0197 \times x1' + 0.9823 \times x2' + 0.0077 \times in;
     od
est stable en boucle ouverte :
|x_0| \leq 0.4236 \land |x_1| \leq 0.3371 \land |x_2| \leq 0.5251.
```

Objectif

Construire un programme (d'analyse statique) pour calculer ces bornes à partir du code source.

44 / 68

Analyse statique de controleurs

Le contrôleur

```
x0 := 0; x1 := 0; x2 := 0;
     while -1 \le 0 do
        in := ?(-1, 1);
        x0' := x0 ; x1' := x1 ; x2' := x2 ;
        x0 := 0.9379 \times x0' - 0.0381 \times x1' - 0.0414 \times x2' + 0.0237 \times in;
        x1 := -0.0404 \times x0' + 0.968 \times x1' - 0.0179 \times x2' + 0.0143 \times in;
        x2 := 0.0142 \times x0' - 0.0197 \times x1' + 0.9823 \times x2' + 0.0077 \times in;
     od
est stable en boucle ouverte :
|x_0| \le 0.4236 \land |x_1| \le 0.3371 \land |x_2| \le 0.5251.
```

Objectif

Construire un programme (d'analyse statique) pour calculer ces bornes à partir du code source.

Analyse statique de controleurs

Le contrôleur

```
x0 := 0; x1 := 0; x2 := 0;
     while -1 \leqslant 0 do
        in := ?(-1, 1);
        x0' := x0; x1' := x1; x2' := x2;
        x0 := 0.9379 \times x0' - 0.0381 \times x1' - 0.0414 \times x2' + 0.0237 \times in
        x1 := -0.0404 \times x0' + 0.968 \times x1' - 0.0179 \times x2' + 0.0143 \times in;
        x2 := 0.0142 \times x0' - 0.0197 \times x1' + 0.9823 \times x2' + 0.0077 \times in:
      od
est stable en boucle ouverte :
|x_0| \le 0.4236 \land |x_1| \le 0.3371 \land |x_2| \le 0.5251.
```

Objectif

Construire un programme (d'analyse statique) pour calculer ces bornes à partir du code source.

Types d'invariants

- les invariants linéaires utilisés habituellement en analyse statique ne sont pas adaptés :
 - ▶ au mieux, ils sont coûteux;
 - au pire, inefficaces.

Types d'invariants

- les invariants linéaires utilisés habituellement en analyse statique ne sont pas adaptés :
 - ▶ au mieux, ils sont coûteux;
 - ▶ au pire, inefficaces.

45 / 68

Types d'invariants

- les invariants linéaires utilisés habituellement en analyse statique ne sont pas adaptés :
 - ▶ au mieux. ils sont coûteux:
 - ▶ au pire, inefficaces.

45 / 68

Types d'invariants

- les invariants linéaires utilisés habituellement en analyse statique ne sont pas adaptés :
 - ▶ au mieux, ils sont coûteux;
 - ▶ au pire, inefficaces.
- les automaticiens savent depuis longtemps que les *invairants* quadratiques sont pertinents pour l'analyse de systèmes linéaires.

Types d'invariants

- les invariants linéaires utilisés habituellement en analyse statique ne sont pas adaptés :
 - ▶ au mieux, ils sont coûteux;
 - ▶ au pire, inefficaces.
- les automaticiens savent depuis longtemps que les *invairants* quadratiques sont pertinents pour l'analyse de systèmes linéaires.

Invariants quadratiques

Remark

L'espace d'état réel n'est *pas* en général un ellipsoide.

Invariants quadratiques

Remark

L'espace d'état réel n'est pas en général un ellipsoide.

Exemple

$$x_0 := 0$$
 et $x_{k+1} := Ax_k + Bu_k$ où $||u_k||_{\infty} \le 1$ et

$$A := \begin{bmatrix} 0.92565 & -0.0935 \\ 0.00935 & 0.935 \end{bmatrix} \qquad B := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

NERA 46 / 68

ONERA 46 / 68

46 / 68

Invariants quadratiques

Remark

L'espace d'état réel n'est pas en général un ellipsoide.

Exemple

$$x_0 := 0$$
 et $x_{k+1} := Ax_k + Bu_k$ où $||u_k||_{\infty} \leqslant 1$ et

$$A := \begin{bmatrix} 0.92565 & -0.0935 \\ 0.00935 & 0.935 \end{bmatrix} \qquad B := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Mais c'est pas loin.

Stabilité de Lyapunov [Lyapunov47]

Theoreme

Pour tout $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, la série

$$\begin{cases} x_0 \in \mathbb{R}^n \\ x_{k+1} = Ax_k + Bu_k \end{cases}$$

est bornée pour tout $u \in (\mathbb{R}^p)^{\mathbb{N}}$ tel que pour tout $k \in \mathbb{N}$, $||u_k||_{\infty} \leqslant 1$ ssi il existe $P \in \mathbb{R}^{n \times n}$ semi-définie positif tel que

$$P - A^T P A > 0$$

où $M \succ 0$ signifie que pour tout $x \in \mathbb{R}^n : x \neq 0 \Rightarrow x^T M x > 0$.

Stabilité de Lyapunov, Invariant

Ellipsoide invariante

De plus, il existe un $\lambda > 0$ tel que x reste dans l'ellipsoide $\left\{ x \in \mathbb{R}^n \;\middle|\; x^T P \, x \leqslant \lambda \right\}$.

Pour un informaticien

La propriété " $x^T P x \leq \lambda$ " est un invairant de boucle.

ONERA 48 / 68

50 / 68

Outils

Pour résoudre l'équation de Lyapunov $P - A^T P A > 0$:

Semidefinite Programming [VandenbergheB96]

Minimise un fonction objectif linéaire en les variables y_i sous la contrainte

$$A_0 + \sum_{i=1}^k y_i A_i \succeq 0$$

où les matrices A_i sont connues et $M \succeq 0$ signifie $x^T M x \geqslant 0$ pour tout vecteur x.

1 (condition number) 2 (preserving shape) 3 (in smallest sphere)

51/68

Calcul de la borne

Sur le code

```
\begin{array}{l} \text{x0} := 0\,;\, \text{x1} := 0\,;\, \text{x2} := 0\,;\\ \text{while} \ -1 \leqslant 0 \ \text{do} \\ \text{in} := \textbf{?(-1, 1)}\,;\\ \text{x0'} := \text{x0}\,;\, \text{x1'} := \text{x1}\,;\, \text{x2'} := \text{x2}\,;\\ \text{x0} := 0.9379 \times \text{x0'} - 0.0381 \times \text{x1'} - 0.0414 \times \text{x2'} + 0.0237 \times \text{in}\,;\\ \text{x1} := -0.0404 \times \text{x0'} + 0.968 \times \text{x1'} - 0.0179 \times \text{x2'} + 0.0143 \times \text{in}\,;\\ \text{x2} := 0.0142 \times \text{x0'} - 0.0197 \times \text{x1'} + 0.9823 \times \text{x2'} + 0.0077 \times \text{in}\,;\\ \text{od} \end{array}
```

l'outil calcule la forme quadratique puis les bornes

```
6.2547x_0^2+12.1868x_1^2+3.8775x_2^2-10.61x_0x_1-2.4306x_0x_2+2.4182x_1x_2\leqslant 1.0029\\ \wedge x_0^2\leqslant 0.1795 \wedge x_1^2\leqslant 0.1136 \wedge x_2^2\leqslant 0.2757
```

enfin

```
|x_0| \le 0.4236 \land |x_1| \le 0.3371 \land |x_2| \le 0.5251.
```

52 / 68

Calcul de la borne

Sur le code

```
\begin{array}{l} \text{x0} := 0\,;\, \text{x1} := 0\,;\, \text{x2} := 0\,;\\ \text{while} \ -1 \leqslant 0 \ \text{do} \\ \text{in} \ := ?(-1,\,1)\,;\\ \text{x0'} \ := \text{x0}\,;\, \text{x1'} \ := \text{x1}\,;\, \text{x2'} \ := \text{x2}\,;\\ \text{x0} \ := 0.9379\times\text{x0'} - 0.0381\times\text{x1'} - 0.0414\times\text{x2'} + 0.0237\times\text{in}\,;\\ \text{x1} \ := -0.0404\times\text{x0'} + 0.968\times\text{x1'} - 0.0179\times\text{x2'} + 0.0143\times\text{in}\,;\\ \text{x2} \ := 0.0142\times\text{x0'} - 0.0197\times\text{x1'} + 0.9823\times\text{x2'} + 0.0077\times\text{in}\,;\\ \text{od} \end{array}
```


l'outil calcule la forme quadratique puis les bornes

```
6.2547x_0^2 + 12.1868x_1^2 + 3.8775x_2^2 - 10.61x_0x_1 - 2.4306x_0x_2 + 2.4182x_1x_2 \le 1.0029
\land x_0^2 \le 0.1795 \land x_1^2 \le 0.1136 \land x_2^2 \le 0.2757
```

enfin

```
|x_0| \le 0.4236 \land |x_1| \le 0.3371 \land |x_2| \le 0.5251.
```

ONERA 52 / 68

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avior

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Sémantique abstraite - suite

Abstractions relationnelles

Rappe

Polyèdres

Octogones

Contrôleurs d'avior

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnemen

Stratégies d'itération

Outils existants

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non nil).

ONERA 55 / 68

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non_nil).

Exemple : concaténation de deux listes

0	nil	non_nil
nil	nil	non_nil
non_nil	non_nil	non_nil

ONERA 55 / 68

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non nil).

Exemple : concaténation de deux listes

@	nil	non_nil
nil	nil	non_nil
non nil	non nil	non nil

Exemple d'utilisation : prouver qu'on n'essaye jamais d'acceder à la tête d'une liste vide (List.hd [] en Caml).

Sémantique abstraite - suite

Abstractions relationnelles

Rappe

Polyèdre

Octogone

Contrôleurs d'avion

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Virgule flottante

Les nombres réels ne sont pas représentable en machine.

Virgule flottante

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.

ONERA 57 / 68

ONERA 57 / 68

Virgule flottante

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).

Virgule flottante

- Les nombres réels ne sont pas représentable en machine.
- ► On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- ▶ Problème : comment abstraire correctement ces arrondis.

Virgule flottante

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- ▶ Problème : comment abstraire correctement ces arrondis.

Solutions:

pour les intervalles : arrondir les bornes vers l'extérieur ;

ONERA 57 / 68

Virgule flottante

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- ▶ Problème : comment abstraire correctement ces arrondis.

Solutions:

- pour les intervalles : arrondir les bornes vers l'extérieur ;
- ▶ plus généralement : on peut abstraire une opération flottante round(a + b) par une opération réelle $(1 + \epsilon)(a + b)$ puis utiliser des domaines sur les réels ;
- reste alors à implémenter correctement des domaines sur les réels, c'est un autre problème (on peut utiliser des rationnels par exemple).

ONERA 57 / 68

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avion

Si le cours avait duré un semestre...

Domaines non numériques Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

Partitionnement, exemple

```
_{0}x = rand(-12, 12);
_{1}if (x > 0) \{
_{2}x = x + 1;
_{3}x = x - 1;
_{4}y = 1 / x;
```

Partitionnement, exemple

```
_{0}x = rand(-12, 12);
_{1}if (x > 0) \{
_{2}x = x + 1;
} else {
_{3}x = x - 1;
}
_{4}y = 1 / x;_{5}

Après 2, on a a x \in [2, 13]
Après 3, on a a x \in [-13, -1]
```

Partitionnement, exemple

ONERA 59 / 68

ONERA 59 / 68

Partitionnement, exemple

Solution : déplacer le calcul de la borne supérieure des intervalles après l'affectation $y:=1\ /\ x.$

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avion

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Outils existants

ONERA 60 / 68

Stratégies d'itération

▶ Le widening/narrowing marche plutôt bien.

Stratégies d'itération

- ▶ Le widening/narrowing marche plutôt bien.
- ▶ Mais il est difficile de concevoir un bon widening.

61 / 68

ONERA 61/68

Stratégies d'itération

- Le widening/narrowing marche plutôt bien.
- ▶ Mais il est difficile de concevoir un bon widening.
- D'où l'intérêt pour d'autres méthodes d'itération :
 - accélération ;
 - ▶ itération sur les stratégies (policy iteration).

Polyèdres

Virgule flottante

Outils existants

Sémantique abstraite - suite

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Contrôleurs d'avion

Si le cours avait duré un semestre.

Domaines non numériques Virgule flottante Partitionnement Stratégies d'itération

Outils existants

ONERA 63 / 68

Astrée

- ▶ Développé par l'équipe de Patrick Cousot à l'ÉNS Ulm.
- ► Preuve d'absence d'erreur à l'exécution dans du code temps réel embarqué.
- ▶ Utilisé pour les commandes de vol des Airbus (plusieurs centaines de milliers de lignes de C).

http://www.astree.ens.fr/

NERA 64 / 68

IKOS – Inference Kernel for Static Analyzers

- ► Développé par la NASA. Open-source
- ▶ Objectifs similaires à Astrée.
- ▶ successeur de CGS C Global Surveyor
- ► CGS Utilisé sur les contrôleurs de vols de : Mars Pathfinder, Deep Space One,...

http://ti.arc.nasa.gov/opensource/ikos/

Fluctuat

- ▶ Développé par l'équipe d'Éric Goubault au CEA.
- ► Analyse des erreurs d'arrondi en virgule flottante.
- ▶ Utilisé par divers industriels.

http:

//www-list.cea.fr/labos/fr/LSL/fluctuat/index.html

Polyspace

- ► Vendu par MathWorks.
- ► Plus généraliste.
- ► Moins précis.
- ► Utilisé par divers industriels.

http://www.polyspace.com/

Apron

67 / 68

- ► Librairie de domaines relationnels développée par Bertrand Jeannet (INRIA Rhône-Alpes) et Antoine Miné (CNRS, ÉNS).
- ► Polyèdres.
- Octogones.
- ► Implémenté en C.
- ► Interface en OCaml.

http://apron.cri.ensmp.fr/library/

ONERA 68 / 68