PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-164431

(43)Date of publication of application: 10.06.2003

(51)Int.Cl.

A61B 5/026 A61B A61B GOIN 21/17 GO1P GO1P 1/00 GO6T

G06T

(21)Application number: 2001-365419

(71)Applicant:

7/20

FUJII HITOSHI KONISHI NAOKI TOPCON CORP

(22)Date of filing:

30.11.2001

(72)Inventor:

FUJII HITOSHI TAKARA KAZUHIRO

(54) BLOOD FLOW VELOCITY MEASURING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a blood flow velocity measuring apparatus capable of providing an accurate, shape image of the distribution of blood flow velocities by correcting mismatching between a plurality of images used for computation of blood flow velocity. SOLUTION: The blood flow velocity measuring apparatus comprises a laser beam irradiation system 1 for irradiating corpuscles in a living tissue with laser beams; a light receiving system 2 having a light receiving part 5 consisting of a number of pixels which detect the beams reflected from the living tissue; an image importing part 12 for importing a plurality of images in succession at predetermined time intervals according to signals sent from the light receiving part 5; an image storage part 16 for storing the plurality of images; and a computing part 17 for computing the velocities of blood flow in the living tissue on the basis of the time rate of changes in the signal outputted from each of the pixels corresponding to the plurality of stored images. The computing part has a position mismatch detecting part for detecting information about mismatching between the positions of the plurality of images, correcting the mismatching between the plurality of stored images according to the mismatch information.

LEGAL STATUS

[Date of request for examination]

26.12.2003 14.03.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-164431 (P2003-164431A)

(43)公開日 平成15年6月10日(2003.6.10)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)		
A61B	5/026		G01N	21/17		Α	2G059	
	3/10		G01P	5/00		G	4 C O 1 7	
	3/12			5/20		F	5B057	
G01N	21/17		G06T	1/00		290Z	5L096	
G01P	5/00			7/20		В		
0011	•, ••	審查請求	水糖 水糖未	マダス できゅう できゅう マグラ マグラ マグラ マグラ マグラ マグラ マグラ マグラ マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マイ・マ	OL	(全 8 頁)	最終頁に続く	
(21)出顧番号		特顯2001-365419(P2001-365419)	(71)出願	人 59417 藤居			•	
(22)出顯日		平成13年11月30日(2001.11.30)	福岡県宗像市日の里2丁目26番地8					
			(71)出願					
					直樹			
			福岡県嘉穂郡庄内町仁保232-15				32-15	
			(71) 出願			D		
	٠				会社トプ			
				2,		連沼町75番1	号	
			(74)代理			in the Chi	t + 8+1	
			-	弁埋:	上 西脇	5 民雄 (9)	(1名)	
			<u></u>			最終頁に続く		

(54) 【発明の名称】 血流速度測定装置

(57)【要約】

【課題】 血流速度を演算するための複数枚の画像のずれを補正し、商精度で鮮明な血流速度分布画像を得ることができる血流速度測定装置を提供する。

【解決手段】 本発明の血流速度測定装置は、生体組織の血球にレーザ光を照射するレーザ光照射系1と、生体組織からの反射光を検出する多数の画素からなる受光部5を有する受光系2と、受光部5からの信号に基づき所定時間間隔で連続的に複数の画像を取り込む画像取り込む画像を記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部17とからなる血流速度測定装置であり、前記演算部は前記複数画像の相互の位置ずれ情報を検出する位置ずれ検出部を有し、位置ずれ情報に基づき記憶された複数画像の位置ずれを補正する。

【特許請求の範囲】

【請求項1】 生体組織の血球にレーザ光を照射するレーザ光照射系と、前記生体組織からの反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部からの信号に基づき所定時間間隔で連続的に複数の画像を取り込む画像取り込み部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部とからなる血流速度測定装置において

前記演算部は前記複数画像の相互の位置ずれ情報を検出 する位置ずれ検出部を有し、前記位置ずれ情報に基づき 記憶された複数画像の位置ずれを補正することを特徴と する血流速度測定装置。

[請求項2] 前記位置ずれ検出部は、各画素出力を該 画素の近傍の複数の画素の出力に基づき演算した値とし た暫定マッチング用画像を作成する請求項1に記載の血 流速度測定装置。

[請求項3] 前記位置ずれ検出部は、2つの前記暫定マッチング用画像のマッチングをとることにより各画像の相互の位置ずれを検出する請求項2に記載の血流速度測定装置。

【請求項4】 前記画像のマッチングは、一方の画像を他方の画像上でとびとびの所定画素毎に所定ステップ数移動させて各移動ステップで求めた相関値から第1画像移動量を算出する第1測定ステップと、前記第1測定ステップで算出された第1画像移動量を基準として1画素毎に所定ステップ数移動させて各移動ステップで求めた相関値から第2画像移動量を算出する第2測定ステップとからなり、前記第1画像移動量と第2画像移動量とから全体の画像移動量を算出する請求項3に記載の血流速度測定装置。

【請求項5】 前記第1測定ステップは、移動画素数を順次少なくする複数の測定ステップからなる請求項4に記載の血流速度測定装置。

【請求項6】 前記第1測定ステップは、所定間隔離間 した各画素間で相関をとる請求項4に記載の血流速度測 定装置。

【請求項7】 前記受光部は固体撮像素子であり、前記画像取り込み部は、奇数走査線に基づく奇数フィールド 40画像と偶数走査線の信号に基づく偶数フィールド画像とを1組として取り込み、前記画像記憶部は前記奇数フィールド画像と偶数フィールド画像との組み合わせからなる合成フレーム画像として記憶する請求項1に記載の血流速度測定装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、血球を有する生体 組織にレーザ光を照射し、その血球から反射されたスペックル信号に基づき血流速度を測定するための血流速度 50

測定装置に関する。

[0002]

【従来の技術】従来、被検眼の眼底等の生体組織の血球 にレーザ光を照射して、その血球からの反射光により形 成された画像を固体撮像装置(CCD)等のイメージセ ンサー上に導き、との画像を連続的に所定時間間隔で多 数枚取り込み・記憶し、その記憶された多数の画像の中 から所定枚数の画像を選択し、各画像の各画素における 出力の時間変動量を積算した値を算出し、この値から血 10 球の速度(血流速度)を算出する血流速度測定装置が知 られている。

【0003】との種の血流速度測定装置では、各画素の 出力変動量が血球の移動速度に対応するので、との算出 された各画素の出力変動量値に基づき、生体組織での血 流速度分布を二次元画像としてモニター画面上に表示し ている。

[0004]

20

【発明が解決しようとする課題】しかしながら、この種の血流速度測定装置では、所定数枚の一連の画像について演算を行っているが、これらを取り込む間に測定対象画像の対応する画素の位置関係がずれ、それらを演算した結果、精細な血流速度分布画像を得られないという欠点を有している。

【0005】特に、眼底像をCCD上に導く場合、固視微動或いは眼球の運動の影響により、CCD上に形成される画像は常にその位置が変動し、鮮明な血流速度分布画像を得ることが非常に困難となっている。

[0006]本発明は、この従来の問題点を解決することを目的とし、血流速度を演算するための複数枚の画像 30 のずれを補正し、高精度で鮮明な血流速度分布画像を得ることができる血流速度測定装置を提供することを目的とする。

[0007]

【課題を解決するための手段】請求項1 に記載の血流速度測定装置は、生体組織の血球にレーザ光を照射するレーザ光照射系と、前記生体組織からの反射光を検出する多数の画素からなる受光部を有する受光系と、前記受光部からの信号に基づき所定時間間隔で連続的に複数の画像を取り込む画像取り込み部と、前記複数の画像を記憶する画像記憶部と、該記憶された複数画像の対応する各画素の出力信号の時間的変化から生体組織内の血流速度を演算する演算部とからなる血流速度測定装置において、前記演算部は前記複数画像の相互の位置ずれ情報を検出する位置ずれ検出部を有し、前記位置ずれ情報を検出する位置ずれ検出部を有し、前記位置ずれ情報をを検出する位置ずれ検出部を有し、前記位置ずれ情報を

[0008]請求項2に記載の血流速度測定装置は、前記位置ずれ検出部が、各画素出力を該画素の近傍の複数の画素の出力に基づき演算した値とした暫定マッチング用画像を作成することを特徴とする。

[0009]請求項3に記載の血流速度測定装置は、前記位置ずれ検出部が、2つの前記暫定マッチング用画像のマッチングをとることにより各画像の相互の位置ずれを検出することを特徴とする。

[0010]請求項4に記載の血流速度測定装置は、前記画像のマッチングが、一方の画像を他方の画像上でとびとびの所定画素毎に所定ステップ数移動させて各移動ステップで求めた相関値から第1画像移動量を算出する第1測定ステップと、前記第1測定ステップで算出された第1画像移動量を基準として1画素毎に所定ステップ数移動させて各移動ステップで求めた相関値から第2画像移動量を算出する第2測定ステップとからなり、前記第1画像移動量と第2画像移動量とから全体の画像移動量を算出することを特徴とする。

【0011】請求項5に記載の血流速度測定装置は、前記第1測定ステップが、移動画素数を順次少なくする複数の測定ステップからなることを特徴とする。

【0012】請求項6に記載の血流速度測定装置は、前 記第1測定ステップは、所定間隔離間した各画素間で相 関をとることを特徴とする。

【0013】請求項7に記載の血流速度測定装置は、前記受光部が固体撮像素子であり、前記画像取り込み部は、奇数走査線に基づく奇数フィールド画像と偶数走査線の信号に基づく偶数フィールド画像とを1組として取り込み、前記画像記憶部は前記奇数フィールド画像と偶数フィールド画像との組み合わせからなる合成フレーム画像として記憶するととを特徴とする。

[0014]

【発明の実施の形態】図1は血流測定装置の光学系の概要を示すもので、1はレーザー光照射系、2は受光系、Eは被検眼である。レーザー光照射系1のレーザー光は、例えば、ハーフミラー3を介して被検眼Eの生体組織としての例えば眼底Erに照射される。

【0015】受光系2は受光レンズ4、受光部としてのCCD(固体撮像素子)5、増幅回路6を有する。眼底Erからのレーザー反射光は受光レンズ4によりCCD5に生体組織像として結像される。CCD5はその受光面上に多数の画素を有し、受光レンズ4により結像された生体組織像を電気信号に変換し、フレーム蓄積方式で信号電荷を読み出して映像信号として出力する。その映40像信号は、信号増幅回路6により増幅され、信号増幅回路6により増幅された映像信号は利得制御等を行うアナログ信号処理手段7に出力され、A/D変換器8によりデジタル信号に変換される。

[0016] 9はタイミングバルス発生器であり、10は電子シャッター制御手段、11は固体撮像素子駆動手段であり、タイミングバルス発生器9は電子シャッター制御手段10と信号選択手段12とにタイミングバルスを出力する。固体撮像素子駆動手段11はタイミングバルスに基づき駆動される。

[0017]信号選択手段12にはA/D変換器8によりA/D変換された映像信号としてのデジタル信号が入力され、タイミングパスル発生器9からのタイミングパルスに基づいて、信号選択手段12は、A/D変換器8からの映像信号のうち、偶数フィールドの画像を第1画像記録手段13へ送信し、奇数フィールドの画像を第2画像記録手段14へ送信し、第1画像記録手段13には偶数フィールドの画像が記憶され、第2画像記録手段14には奇数フィールドの画像が記録される。その信号選択10手段12、第1画像記録手段13、第2画像記録手段14は、所定時間間隔で複数枚の画像を取り込む画像取り込み部の一部として機能する。

【0018】その第1画像記録手段13、第2画像記録手段14に記録された奇数フィールドの画像データと偶数フィールドの画像データとは、画像合成手段15により合成され、1/30秒間隔で撮影した1フレームの画像データとされ、その1フレームの画像データは画像記録器16に記憶される。

【0019】との画像記憶器16に記憶された画像信号 20 は演算処理部17に入力され、演算処理部17は、後述 する演算処理を行う。なお、18はTVモニターであ

【0020】ところで、複数枚の画像を多数枚撮影する場合、CCD受光面上での生体組織像の位置がずれる。これは、被検眼等に固視微動等があるからである。すなわち、例えば、図2(a)に示すように、画像GOが時刻tOにおいて撮影された画像データであるとして、図2(b)で示す画像G1が時刻t1において撮影された画像データとするとき、時刻t0で撮影された画像G0の点g1と時刻t1において撮影された画像G1の点g1と時刻t1において撮影された画像G1の点g1とが対応関係にあるものであるが、CCD5の受光面の画素上での位置がずれている。なお、図2において、破線は、血管の輪郭線g2を示す。なお、時刻t0と時刻t1との時間間隔△は30分の1秒とする。

【0021】通常、テンプレート法により、二つの画像を重ねて、一方の画像を基準にして他方の画像を順次ずらしてゆき、各画素毎にその差分を求め、その差分の総和を算出して、これらを演算に使用した総画素数で割った値の最小値を画像が一致した状態として求めるものであるが、画像データにはスペックルバターン(スペックル信号)が混在しているので、各画像の輪郭線g2がはっきりせず、画像記憶器16に記憶されている画像データをそのまま用いたとしても、ずれ量△x、△yを求めることができない。

【0022】従って、本発明では、まず、演算処理部17は、画像の輪郭線g2の像をはっきりさせて、画像マッチングを容易にするために暫定マッチング画像を作成する。

【0023】図3は、例えばその合成画像G0の一部の 50 領域を示すもので、Oは奇数フィールドの画像に相当す る走査線、Eは偶数フィールドの画像に相当する走査線 である。との合成画像GOから奇数フィールドにおける 暫定マッチング用画像と、偶数フィールドにおける暫定 マッチング#用画像とをそれぞれ演算する。この演算は 演算処理部17の位置ずれ検出部によって行う。

【0024】いま、偶数フィールドの暫定マッチング用 画像を演算により求める場合について説明する。

【0025】図3に示すpijの画素について演算を行 う場合には、画素 p i j を中心として縦方向と横方向と 出力値 (画素値) に基づいて演算を行う。なお、画素 p i jの()内の文字はその画素の出力値(グレイスケー ル値)を表す。

【0026】すなわち、縦方向については、奇数の走査 線の画素を飛ばして一つおきの画素pij1、pij 2、pij3、pij4の出力値を用い、横方向につい ては、一画素を飛ばして一つおきの画素pij5、pi j6、pij7、pij8の出力値を用いて演算を行 う。

【0027】その演算式は以下の通りである。

 $[0028]x = (x+a) + (x+b) + \dots +$ $(x+h)/|x-a|+|x-b|+\cdots+|x-h|$ このx値が暫定マッチング用画像のpij画像の出力と なる。

【0029】この式に基づいて、偶数フィールドについ て、i=0、j=0の第1番目の画素からi=n、j=mの最後の画素までについて行う。

[0030] 奇数フィールドの暫定マッチング用画像を 演算により求める場合についても、同様に上記式を用い る。

【0031】とのようにして、時刻t0において撮影さ れた画像に対応する暫定マッチング用の合成画像が求め られる。同様に、時刻 t 1 において撮影された画像に対 応する暫定マッチング用の合成画像が求められ、画像記 録部16に記憶された残りの複数枚の合成画像について も、同様の処理によって暫定マッチング用画像が求めら れる。

【0032】この一連の暫定マッチング用画像の作成処 理によって、スペックルパターンが大略除去されて、輪 郭線g2が浮き上がった暫定マッチング用画像が得られ

【0033】すなわち、位置ずれ検出部は、その各画素 の出力を、その各画素近傍の出力に基づいて補正し、と れによって、輪郭線が強調される。

【0034】次に、これらの暫定マッチング用画像に基 づいて、所定時間間隔毎の複数枚の画像の移動量を測定 する方法について述べる。

【0035】図4は、時間間隔△(1/30秒間隔で)での2 枚の暫定マッチング用画像G0′と暫定マッチング用画 像G1'とを示している。暫定マッチング用画像G0'

の各画素の番地と暫定マッチング用画像G1'の番地と が一致しているときを基準位置とする。

【0036】ことでは、この2つの暫定マッチング用画 像の相関が最も高い位置を求め、暫定マッチング用画像 の移動量 (ずれ量)を求めるテンプレート手法を採用す る。このテンプレート手法では、一方の画像を他方の画 像上で所定ステップ毎に移動させ、それぞれの位置での 画像の相関度を求める。

【0037】との相関度を検出する際、例えば、移動さ について一画素おきの画素 p i j l ~ p i j 8 の 8 個の 10 せた位置での 2 つの画像の対応する各画素の出力の差の **積算値を求め、この積算に用いた画素の個数で割り算し** たものを用いる。この積算値が小さいほど、相関度が高 いと判定される。ととで精度の高いマッチングを行う場 合、1 画素分づつ移動させて画像の全ての各画素での出 力の差の絶対値の積算値を算出して1画素での精度での マッチングを行うことが必要であるが、この演算を行う と極めて膨大な演算を必要とするため、本実施例では、 下記の順序でマッチングを行い、演算量を少なくしてい る。

> 20 (1) 出力の差の積算値を求めるための画素は、図5に 拡大して示すように、4画素刻みとし、4画素刻みで演 算に用いる画素を選択する。ここでは、基準位置での演 算に用いる画素が斜線で示されている。例えば、画素の 番地(g0,0)を演算に用いるとすると、x方向につ いて次ぎに演算に用いる画素の番地は(g4、0)であ り、y方向について次ぎに演算に用いる画素の番地は (g0、4)であり、一般に演算に用いる画素の番地は (gi+4, j+4) である。

【0038】また、画像の移動ステップ幅Wは、図6に 30 示すように、基準位置〇。を基準に8画素刻みとする。 画像の移動のステップ数は基準位置〇。を基準としてプ ラスマイナス 1 2 ステップとする。例えば、図6 (a) に示すように、暫定マッチング用画像G1'を右横方向 (+x方向) に8画素刻みに移動させることを12回繰 り返し、次いで、基準位置〇。に戻って暫定マッチング 用画像G1'を左横方向(-x方向)に8画素刻みに移 動させることを12回繰り返した後、図6(b)に示す ように、暫定マッチング用画像G1'を下縦方向(+y 方向)に8画素刻み移動させる。次いで、暫定マッチン グ用画像G1'を右横方向(+x方向)に8画素刻みに 移動させることを12回繰り返し、基準位置0。に戻っ て暫定マッチング用画像G1'を左横方向(-x方向) に8 画素刻みに移動させることを12回繰り返す。この 暫定マッチング用画像G1'の8画素刻みの移動を+y 方向に12回、- y方向に12回繰り返すと、総計62 5回 (= 25×25) の移動処理が行われる。

[0039] そして、暫定マッチング用画像G1'の各 移動ステップ位置で、4画素刻みのそれぞれの各画素の 出力の差の積算値を計算し、その積算値を演算に用いた 50 画素数で割り算する。そして、その積算値の割り算値の うち最小(最も相関度が高い)ものの方(小さい方)から 5点の移動位置を選んで、その5点の平均移動位置を算 出する。この平均移動位置を Δx 。、 Δy 。とする。これ によって、大まかな移動量(ズレ量)を把握できる。

[0040] 暫定マッチング用画像G0'、G1'を使用し、画像同士の対応関係をつけやすくなっているので、相関量の検出が容易となっている。

【0041】この平均移動位置△x。,△y。を基準位置 とする。

(2) 次いで、出力の差の積算値を求めるための画素を、図7に拡大して示すように、3画素刻みとし、3画素刻みで演算に用いる画素を選択する。その図7において、ハッチングは相関の演算に用いる画素を示す。

[0042]画像の移動ステップ幅Wは、図8に示すように6画素刻みとする。移動のステップ数は項目(1)で算出した平均移動位置(Δx , Δy)を基準位置としてプラスマイナス [4 ステップとする。

[0043]項目(1)で述べたと同様に、この移動ステップ幅Wでプラスマイナス4ステップ数(総計81ステップ)で移動させ、各移動位置で、3画素刻みの各の各画素の出力の差の積算値を計算し、その積算値を演算に用いた画素数で割り算する、その積算値の割り算値の最小(最も相関度が高い)ものの方(小さい方)から5点の移動位置を選んで、その5点の平均移動位置を算出する。この平均移動位置をAx1、Ay2とする。これによって、項目(1)で粗く求めたズレ量よりもより精度の良好なズレ量を求めることができる。この平均移動位

置を基準位置(△x1, △y2)とする。 (3) 出力の差の積算値を求めるための画素は、すべての画素として、画像の移動ステップ幅Wは、3画素刻みとする。

[0044] との移動ステップ幅Wで、同様にプラスマイナス4ステップ数(総計81ステップ)で移動させ、各移動位置で、項目(2)で算出した平均移動位置(Δx 1, Δy 1)を基準位置として全各画素の出力の差の積算値を計算し、その積算値を演算に用いた画素数で割り算する。その積算値の割り算値のうち最小(最も相関度が高い)ものの方(小さい)方から5点の移動位置を選んで、その5点の平均移動位置を算出する。との平均移動位置を Δx 3, Δy 3とする。

[0045]項目(1)ないし項目(3)の処理を、第 1画像移動量を算出する第1測定ステップといい、第1 測定ステップでは飛び飛びに所定ステップ数暫定マッチング用画像を移動させて、相関量(画像のずれ量)が求められる。

(4) 出力の差の積算値を求めるための画素は、全画素として、画像の移動ステップ幅Wは1画素刻みとする。 [0046] この移動ステップ幅Wで同様にプラスマイナス6ステップ数(総計169ステップ)で移動させ、各移動位置で、すべての各画素の出力の差の積算値を計算 50

し、その積算値を演算に用いた画素数で割り算する。その積算値のうち最小値(最も相関度が高い)を選んで移動量を算出する。この移動位置をΔx4, Δy4とする。【0047】との項目(4)の処理を、第2画像移動量を算出する第2測定ステップといい、第2測定ステップでは、1画素毎に暫定マッチング用画像G1′を移動させて相関量(画像のずれ量)が求められる。

[0048] このように、漸次サーチ範囲を狭くしなが ち画像の移動量(ズレ量)を順次算出し、最終的には、 10 精密な画像移動量 $\Delta X = \Delta x 1 + \Delta x 2 + \Delta x 3 + \Delta x 4$,

 $\Delta Y = \Delta y 1 + \Delta y 2 + \Delta y 3 + \Delta y 4$ が算出される。 【0049】なお、 $\Delta x 1 \sim \Delta x 4$ 、 $\Delta y 1 \sim \Delta y 4$ は 下旬の符号を含むものとする。

【0050】以上の例では、暫定マッチング用画像の2つの画像についてその移動量(ズレ量)を算出する方法について述べたが、同様の手法により、下記記載する画像に基づき移動量を求めることができる。

【0051】最初に偶数フィールド画像の暫定マッチング用画像の移動量(ズレ量)を求める。

20 ①最初の偶数フィールドでの暫定マッチング用画像E1 を基準として、次の偶数フィールドの暫定マッチング用画像E2の移動量(ズレ量)を算出する。

②偶数フィールドでの暫定マッチング用画像E2を基準として、次の偶数フィールドにおける暫定マッチング用画像E3の移動量(ズレ量)を算出する。

③ 以下、同様に移動量(ズレ量)の算出を行い、との 算出結果から、暫定マッチング用画像Elを基準とした 各E2、…、Enの画像の移動量(ズレ量)を算出す 2

30 【0052】次に、奇数フィールド画像の暫定マッチン グ用画像の移動量 (ズレ量) を算出する。

 ①最初の偶数フィールドでの暫定画像E1を基準として、 最初の奇数フィールドの暫定マッと、ング画像○1の移動量 (ズレ量)を算出する。

②次いで、奇数フィールドの暫定マッチング用画像○1 を基準として次の奇数フィールドでの暫定マッチング用 画像○2の移動量(ズレ量)を算出する。

③次いで、奇数フィールドでの暫定マッチング用画像○2を基準として、次の奇数フィールドでの暫定マッチン40 グ用画像○3の移動量(ズレ量)を算出する。

【0053】以下、同様に奇数フィールドでの移動量 (ズレ量)の算出を行い、この算出結果から、最初の偶数フィールド画像E0を基準とする各奇数フィールドでの暫定マッチング用画像O1、…、Onの画像の移動量 (ズレ量)を算出する。

【0054】との算出により、1つの基準画像、ここでは、偶数フィールドでの暫定マッチング用画像E1を基準として、奇数フィールド、偶数フィールド毎に記憶された全ての暫定マッチング用画像の移動量(ズレ量)が算出される。

【0055】との暫定マッチング用画像を用いて算出さ れた移動量(ズレ量)に基づき、画像記録器16に記憶 されている1つの画像を基準として、残りの各複数画像 の位置関係が座標変換され、像の移動量(ズレ量)が補 正された複数画像を得ることができる。すなわち、画像 記録器16に記憶されている複数の画像の移動量(相対 的ズレ量)が補正される。

[0056] この像の移動量 (ズレ量) が補正されてか つ座標変換された複数の画像情報に基づき、血流速度 は、下記式で演算される。

*【0057】すなわち、1秒間に例えば60フレーム分 の速度で連続的に画像記録器16に連続的に複数個のフ レームが記憶されているものとする。記憶された画像情 報に基づき固体撮像素子5の(m、n)番目の画素につ いて、k回目の出力をIk(m、n)とし、k+1回目 の出力を I_{k+1} (m、n) とするとき、下記数 1 式に基 づいて、各画素におけるスペックルの変動率を積算した AD値(平均差異)を演算する。

[0058]

*10 【数1】

| I x+1 (m, n) - 1 h (m, n) | k=1 (IK-1 (m, n) + Ik (m, n)) 1/2

【0059】この演算式において、分母は各画素の出力 値をノーマライズ化するもので、これにより、血管部の 反射率の差に起因する要因は除去され、AD値はスペッ クルの変動量、すなわち、血流速度の関数となる。この AD値は血流の速度を示す。

【0060】このAD値の演算は各画素毎に行い、この 演算で求めた各画素でのA D値に基づいて、二次元的に 血流速度が例えばTVモニター18に表示される。

【0061】なお、この演算式については、特開平8-112262号により公知である。

[0062]

【発明の効果】本発明は、以上説明したように構成した ので、血流速度の演算に用いる複数枚の画像の位置ズレ を補正し、高精度で鮮明な血流速度分布画像を得ること ができるという効果を奏する。

【図面の簡単な説明】

【図1】 本発明の血流速度測定装置の要部構成を示す 図である。

【図2】 図1に示す画像記録部に記録された画像の一 例を示す説明図であって、(a)はある時刻において撮 影された眼底像を示し、(b)は他の時刻において撮影 された眼底像を示し、(a)に示す画像と(b)に示す 画像とでその位置関係がずれていることを示している。

【図3】 図2(a)に示す画像に基づき暫定マッチン グ用画像G0′、G1′を作成するときに用いる画素の 説明図である。

【図4】 図3に示す画素を用いて作成された暫定マッ チング用画像G0′、G1′とを基準位置で重ね合わせ 40 17…演算部 た状態を示す図である。

【図5】 暫定マッチング用画像に基づきずれ量を算出 するのに使用する画素の一例を示す説明図であって、ず れ量を算出する画素を4画素毎にした例を示している。 【図6】 暫定マッチング用画像に基づきずれ量を算出 する場合の画像のずらし方の説明図で、(a)は暫定マ ッチング用画像G1'を暫定マッチング用画像G0'に 対して右に8画素毎にずらしている状態を示し、(b) 20 は暫定マッチング用画像G1'を暫定マッチング用画像 G0'に対して下に8画素ずらした後、右に8画素毎ず

【図7】 暫定マッチング用画像に基づきずれ量を算出 するのに使用する画素の一例を示す説明図であって、ず れ量を算出する画素を3画素毎にした例を示している。

【図8】 暫定マッチング用画像に基づきずれ量を算出 する場合の画像のずらし方の説明図で、先に演算で求め た平均ずれ量を基準位置として、暫定マッチング用画像 G1'を暫定マッチング用画像G0'に対して右に6画 30 素毎にずらしている状態を示す説明図である。

【符号の説明】

1…レーザー照射系

らしている状態を示している。

2…受光系

5…CCD (受光部)

12…信号選択手段(画像取り込み部)

13…第1画像記録手段(画像取り込み部)

14…第2画像記録手段(画像取り込み部)

15…画像合成手段(画像取り込み部)

16…画像記録器(画像記憶部)

[図3]

【図2】

【図4】

DC02 DC32

5L096 BA06 BA13 CA02 GA08 HA04

フロントページの続き

(51)Int.C1, ⁷ G 0 1 P G 0 6 T	識別記号 5/20 1/00 2 9 0 7/20	F I A 6 1 B	5/02 3/12 3/10	3 4 0 D E R	-マコード(参考)
(72)発明者	藤居 仁 福岡県宗像市日の里2丁目26番8	Fターム(参	考) 2G(059 AA05 BB12 BB13 FF01 GG01 JJ11	
(72)発明者	高良 一弘 福岡県福岡市早良区南庄4丁目12-201号		400	MM03 MM05 MM09 017 AA11 AB07 AC28	
	HHM3K HHM411-1-2CF-1147F-1-4-2		5B(CC03 FF30 057 AA07 BA02 CA12	CA16 DB02