Chapter 1

Vector Space

Definition (Vector Space). A vector space (or linear space) W over a Field \mathbb{F} consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined so that for each pair of elements x, y, in W there is a unique element x+y in W, and for each element x in y there is a unique element y in y, such that the following conditions hold.

§ Subspace

<u>Definition</u> (Subspace). A subset W of a vector space W over a field \mathbb{F} is called a subspace of W if W is a vector space over \mathbb{F} with the operations of addition and scalar multiplication defined on W.

Remark. Trivial subspaces of a vector space V, namely V itself and $\{0\}$. Note that empty set ϕ is not a vector space, since it does not contains a zero vector.

Theorem 1.1. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

- (a) $0 \in W$.
- (b) $x + y \in W$ whenever $x \in W$ and $y \in W$.
- (c) $cx \in W$ whenever $c \in F$ and $x \in W$.

Corollary 1.1.1. Let W be a subset of vector space V. W is a subspace of V if and only if $0 \in W$ and $ax + y \in W$ whenever $a \in F$ and, $x, y \in W$.

Theorem 1.2. Any intersection of subspaces of a vector space W is a subspace of V.

Theorem 1.3. Let W_1 and W_2 be subspaces of a vector space V, then $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

<u>Definition.</u> If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Theorem 1.4. Let W_1 and W_2 be subspaces of a vector space V.

- (a) $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .
- (b) Any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Definition (Direct Sum). A vector space V is called the direct sum of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Theorem 1.5. Let W_1 and W_2 be subspaces of a vector space V. V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely written as $x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$

§ Linear Combinations and Bases

<u>Definition</u> (Linearly Dependent). A subset S of a vector space W is called linearly dependent if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero, such that

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0.$$

In this case we also say that the vectors of S are linearly dependent.

<u>Definition</u> (Linearly Independent). A subset S of a vector space that is not linearly dependent is called linearly independent. As before, we also say that the vectors of S are linearly independent.

Remark.

- 1. The empty set is linearly independent, for linearly dependent sets must be nonempty.
- 2. A set consisting of a single nonzero vector is linearly independent. For if $\{u\}$ is linearly dependent, then au=0 for some nonzero scalar a. Thus

$$u = a^{-1}(au) = a^{-1}0 = 0$$

3. A set is linearly independent if and only if the only representations of 0 as linear combinations of its vectors are trivial representations.

Theorem 1.6. Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Corollary 1.6.1. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

<u>Definition</u> (Basis). A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.7. Let V be a vector space and $\beta = \{u_1, u_2, ..., u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$V = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

for unique scalars a_1, a_2, \cdots, a_n .

Theorem 1.8. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem 1.9 (Replacement Theorem). Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n-m vectors such that $L \cup H$ generates V.

Definition (Finite-Dimensional). A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted by dim(V). A vector space that is not finite-dimensional is called infinite-dimensional.

Corollary 1.9.1. Let V be a vector space with dimension n.

- 1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- 2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- 3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 1.10. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Propersition 1.11. Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. $W_1 \subseteq W_2$ if and only if $\dim(W_1 \cap W_2) = \dim(W_1)$

Theorem 1.12. Let v_1, v_2, \dots, v_k, v be vectors in a vector space V, and define $W_1 = span(\{v_1, v_2, \dots, v_k\})$, and $W_2 = span(\{v_1, v_2, \dots, v_k, v\})$. Then $v \in span(W_1)$ if and only if $dim(W_1) = dim(W_2)$.

Remark. We may give an example for satisfying the conditions on above but $\dim(W_1) \neq \dim(W_2)$.

Theorem 1.13. Let W_1 and W_2 be finite-dimensional subspaces of a vector space V.

(a) Then the subspace $W_1 + W_2$ is finite-dimensional, and

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

(b) Let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if

$$\dim(V) = \dim(W_1) + \dim(W_2)$$

Theorem 1.14. Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 \oplus W_2$ if and only if there exist base β_1 , β_2 of W_1 , W_2 , respectively such that $\beta_1 \cup \beta_2$ is a basis for V.

Theorem 1.15.

If W_1 is any subspace of vector space of V, then there exists a subspace W_2 of V such that

$$V = W_1 \oplus W_2$$