Tìm vùng vô thanh và hữu thanh của tín hiệu tiếng nói

Outline

Thuật toán phân vùng hữu thanh, vô thanh với STE, ACF và ZCR

II Kết quả thực nghiệm

III Demo chương trình

Thuật toán phân vùng vô thanh, hữu thanh

I

Thuật toán phân vùng VÔ thanh, hữu thanh

Autocorrelation Function (ACF)

Ý Ý tưởng

Hàm ACF đạt cực đại khi độ dịch (lag) bằng 0, hoặc khi độ dịch bằng một số n lần chu kì (nT)

ਓ Cách thực hiện

Nếu một khung có giá trị hàm ACF với độ dịch k tương quan đến **80**% so với giá trị hàm ACF với độ dịch bằng 0 thì coi như tuần hoàn (không hoàn hảo)

$$xx_{(0)} = \sum_{i=1}^{(n-k)} x[i] \times x[i] \qquad xx_{(k)} = \sum_{i=1}^{(n-k)} x[i] \times x[i+k]$$

Thuật toán phân vùng thanh, hữu thanh

0

Autocorrelation Function (ACF)

Thuật toán phân vùng VÔ thanh, hữu thanh

0

C

Autocorrelation Function (ACF)

- **V** Cách chọn độ dịch k (lag)
 - Khoảng lặp của k **không** chọn từ 1 đến n (số mẫu trong 1 khung) vì:
 - Tín hiệu biến đổi chậm theo thời gian
 - Độ dịch lớn làm số mẫu tính toán thu nhỏ
 - Giọng nói con người có tần số 60 450 Hz. Nếu lấy độ dài của một khung là 0.025 giây thì 1 chu kì giọng nói tương đương với 8.89% 66.8% độ dài một khung
 - => từ đây ước lượng khoảng giá trị của k

I

Thuật toán phân vùng VÔ thanh, hữu thanh

0

Short-time Energy (STE)

- **Ý** Ý tưởng
 - Tìm **khoảng tin cậy** cho giá trị STE của miền vô thanh và hữu thanh, với độ tin cậy là 95%
- **♂**Cách thực hiện
 - Các file tín hiệu tiếng nói có tần số khác nhau > số mẫu trong một khung
 (0.025 giây) khác nhau > giá trị STE là khác nhau (không phụ thuộc vào tính
 chất) > chuẩn hóa
 - Khoảng tin cậy với phương sai chưa biết $\bar{x} \pm t_{\frac{\infty}{2},n-1} \times \frac{3}{\sqrt{n}}$
 - So sánh với ngưỡng STE đã xác định

Thuật toán phân vùng VÔ thanh, hữu thanh

Zero-crossing Rate (ZCR)

- **Ý** tưởng
 - Tìm giá trị ZCR x sao cho 99% các khung hữu thanh đều có giá trị ZCR nhỏ hơn x
 - 1% còn lại là những giá trị ZCR quá lớn sẽ được loại bỏ ra khỏi tập mẫu
- **♂**Cách thực hiện
 - Chuẩn hóa tương tự STE
 - So sánh với ngưỡng ZCR đã xác định

Demo chương trình trên Matlab

Cảm ơn thầy và các bạn đã lắng nghe.