PID Control Implementation Record

1. Variable Operations Record

```
Low-Pass Filter Coefficient Calculation
case 5'd21:
TwoTau = 2 * iHsVd LPF tau
TwoTau_A_T = TwoTau + iHsCtrl_SplIntv
TwoTau_S_T = TwoTau - iHsCtrl_SplIntv
HsVd_Coeff = iHsCtrl_SplIntv / TwoTau_A_T
case 5'd29:
HsVd_LPF_Coeff1 = TwoTau_S_T / TwoTau_A_T
Low-Pass Filter Operations
case 9'd21:
HsVd_Coeff_M_HsVd_VECT6_0 = iHsVd_VECT6[0] * HsVd_Coeff
HsVd_Coeff_M_HsVd1_VECT6_0 = HsVd1_VECT6[0] * HsVd_Coeff
case 9'd22:
HsVd LPF Coeff1 M HsVd1 LPF VECT6 0 = HsVd1 LPF VECT6[0] * HsVd LPF Coeff1
case 9'd35:
HsVd_ForLPF_Sum_VECT6_0 = HsVd_Coeff_M_HsVd_VECT6_0 + HsVd_Coeff_M_HsVd1_VECT6_0
HsVd_LPF_VECT6_0 = HsVd_ForLPF_Sum_VECT6_0 + HsVd_LPF_Coeff1_M_HsVd1_LPF_VECT6_0
PID Coefficient Calculation
case 5'd0:
HsIgain_M_SplIntv02_VECT6[0] = iHsIgain_VECT6[0] * iHsCtrl_SplIntv02
HsDgain_D_SplIntv02_VECT6[0] = iHsDgain_VECT6[0] / iHsCtrl_SplIntv02
HsIgain_M_SplIntv_VECT6[0] = iHsIgain_VECT6[0] * iHsCtrl_SplIntv
case 5'd7:
Intm Coeff VECT6[0] = HsDgain D SplIntv02 VECT6[0] + HsIgain M SplIntv02 VECT6[0]
case 5'd13:
FourHsDgain_D_SplIntv_VECT6[0] = 2 * HsDgain_D_SplIntv02_VECT6[0]
case 5'd15:
oHsCoeff_VECT6[0] = Intm_Coeff_VECT6[0] + iHsPgain_VECT6[0]
oHsCoeff1_VECT6[0] = Intm_Coeff_VECT6[0] - iHsPgain_VECT6[0]
case 5'd27:
oHsCoeff2_VECT6[0] = HsIgain_M_SplIntv_VECT6[0] - FourHsDgain_D_SplIntv_VECT6[0]
Error Calculation
case 9'd56:
oHsVerr_VECT6[0] = HsVd_LPF_VECT6[0] - iHsVm_VECT6[0]
```

case 9'd63:

oHsVctrlFF VECT6[0] = HsVd LPF VECT6[0] / iHsFFgain VECT6[0]

PID Control Calculation

case 9'd64:

HsVerr_M_HsCoeff_VECT6[0] = oHsVerr_VECT6[0] * oHsCoeff_VECT6[0]

case 9'd70:

HsVerrHsCoeff_A_HsVctrl2_VECT6[0] = HsVerr_M_HsCoeff_VECT6[0] +
HsVctrlCompl_2_VECT6[0]

case 9'd76:

HsVerr1_M_HsCoeff1_VECT6[0] = HsVerr1_VECT6[0] * oHsCoeff1_VECT6[0]

case 9'd82:

HsVerr2_M_HsCoeff2_VECT6[0] = HsVerr2_VECT6[0] * oHsCoeff2_VECT6[0]

case 9'd90:

HsVerr1HsCoeff1_A_HsVerr2HsCoeff2_VECT6[0] = HsVerr2_M_HsCoeff2_VECT6[0] +
HsVerr1_M_HsCoeff1_VECT6[0]

case 9'd98:

 $ohs VctrlCompl_VECT6[0] = HsVerr1 HsCoeff1_A_HsVerr2 HsCoeff2_VECT6[0] + HsVerrHsCoeff_A_HsVctrl2_VECT6[0]$

oHsVctrlTot_VECT6[0] = oHsVctrlCompl_VECT6[0] + oHsVctrlFF_VECT6[0]

2. Difference Equation Derivation

Low-Pass Filter Difference Equation

$$Vd_{LPF}[n] = \frac{\scriptscriptstyle T}{\scriptscriptstyle 2\tau+T} \cdot (Vd[n] + \stackrel{\scriptscriptstyle -}{V}d[n-1]) + \frac{\scriptscriptstyle 2\tau-T}{\scriptscriptstyle 2\tau+T} \cdot Vd_{LPF}[n-1]$$

Where:

- *T* = iHsCtrl_SplIntv (Sampling period)
- τ = iHsVd_LPF_tau (Filter time constant)
- HsVd_Coeff = $T/(2\tau + T)$
- HsVd_LPF_Coeff1 = $(2\tau T)/(2\tau + T)$

PID Control Difference Equation

$$e[n] = Vd_{LPF}[n] - Vm[n]$$

$$\begin{aligned} u_{PID}[n] &= \left(K_p + K_i \cdot T/2 + K_d/(T/2)\right) \cdot e[n] \\ &+ \left(K_i \cdot T - 4 \cdot K_d/T\right) \cdot e[n-2] \end{aligned} \\ &+ u[n-2] \end{aligned}$$

Where:

- K_p = iHsPgain_VECT6[0] (Proportional gain)
- K_i = iHsIgain_VECT6[0] (Integral gain)
- K_d = iHsDgain_VECT6[0] (Derivative gain)
- *T* = iHsCtrl_SplIntv (Sampling period)

Coefficient Mapping:

- oHsCoeff_VECT6[0] = $K_p + K_i \cdot T/2 + K_d/(T/2)$
- oHsCoeff1_VECT6[0] = $K_i \cdot T/2 + K_d/(T/2) K_p$

- oHsCoeff2_VECT6[0] = $K_i \cdot T - 4 \cdot K_d/T$

Total Control Output

$$u_{total}[n] = u_{PID}[n] + u_{FF}[n] \label{eq:utotal}$$

Where:

- FFgain = iHsFFgain_VECT6[0]

Timing Marks

case $5'd0 \rightarrow case \ 5'd10$: PID coefficient calculation completed

 $case \ 5'd21 \rightarrow case \ 5'd29$: Low-Pass Filter coefficient calculation completed

case 9'd56 → **case 9'd98:** PID control operation completed, output oHsVctrlTot_VECT6[0]