hecture	ι:	lntn	r	Multivariable	Functions

Today: (1) Mikale Reddy
mikale.reddy@mail.utoronto.ca -> cmtent related questions
(2) All admin related questions -> admin 235@ math. toronto.ca
·
(3) Section 0101 > MWF 9:10 - 10:00 MP103 MP103
(4) Office Hrs -> W 10:10-11:00 Room TBA.
(5) Fall Semester - Vector Functions
- Partial Derivatives
- Optimization
(· ····catilit
Questin: How do we visualize n-dim space in our minds?
10:
$R \times R \cong R^2$

3D:

RXRXR = R3

4D:

IR 4.

SD . . .

The way we created these was by taking two copies of the n-1 dim space and identifying them.

	Single Vow Calculus	Multi Var Cabulus		
	Functions (real valuea)	Functions of Several Variable		
	f: IR → IR	$f: \mathbb{R}^2 \to \mathbb{R}$, $f: \mathbb{R}^3 \to \mathbb{R}$		
1st T	Representations	Representations		
1 Jeun /	Limits of S.V. functions	Limits of M.V. functions		
	Continuity	Continuity		
	Derivatives - Chaih Rule	Partial Derivatives - Charl Rule		
	- Max / Min Values	- Max/Min Values		
		- Lagrange Multipliers		
	Integrals - Sub. Rule	Double / Triple Integrals - Changing order of integration		
	- F.T.o.C.	- Greens Trevern		
2 nd Term		- Stokes Theorem		
		- The Divergence Theorem.		
		V		

<u>Functions</u> of Two Variables

Recall: we denote by IR the set of all real numbers

Questin : What is the set IR2

H's simply
$$\mathbb{R}^2 = \left\{ (x_{1}y_1 \mid x_{1}y_{1}) \mid x_{1}y_{1} \in \mathbb{R} \right\}$$

Question: What is the set \mathbb{R}^3 $\mathbb{R}^3 = \left\{ (x_1y_1 \in \mathbb{R}) \mid x_1y_1 \in \mathbb{R}^3 \right\}$

Remark: We can graph an eq involving variables
$$x_1y_1 \neq x_2$$
 in \mathbb{R}^3 s.t. the graph $x_2 \neq x_3 \neq x_4$ a pictum of all $x_1y_1 \neq x_2 \neq x_3 \neq x_4 \neq x_4$

Ex. (1)
$$z = 0 \Rightarrow S = \left\{ (x_1y_1z) \mid x_1y \in \mathbb{R}, z = 0 \right\}$$

(2)
$$z = -3$$
 \Rightarrow $S = \left\{ (x_1y_1z) \mid x_1y \in \mathbb{R}, z = -3 \right\}$

Ex. (1)
$$yz - plan$$
 \Rightarrow $S = \left\{ (\chi_1 y_1 z) \mid y_1 z \in \mathbb{R}, \chi = 0 \right\}.$

(2)
$$\chi_2 - plan = 5 = \{(\chi_1 y_1 + 1) \mid \chi_1 + \epsilon \mid R, y = 0\}.$$

(3) 4 units below the
$$xy$$
-plane and in the yz -plane. \Rightarrow $S = \{(x,y,z) \mid y \in \mathbb{R}, x = 0, z = -9\}$

$$= \{(0,y,-9)\}.$$

Distance Between Two Points

Suppose we have two pts
$$(x_1, y_1) + (x_2, y_2)$$
 in \mathbb{R}^2 .

Q: What is the distance

A:
$$d = ((x_2 - x_1)^2 + (y_2 - y_1)^2)^{\frac{1}{2}}$$

Q: What about in
$$\mathbb{R}^3 \rightarrow P_1 = (x_1, y_1, z_1)$$

$$P_2 = (x_2, y_2, z_2)$$

A:
$$d = ((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2)^{\frac{1}{2}}$$

$$d = 2 = ((x-o)^{2} + (y-o)^{2} + (z-o)^{2})^{1/2}$$

$$= (x^{2} + y^{2} + z^{2})^{1/2}$$

The general formula for a sphere 1s r2 = x2+y2+22.

Recall: Single Variable Functions.

Lue think of functions as machines that eat something and spit out something for a domain to a range.

The most useful method for visualizing them is by them graphs

Def: Let $f: \mathbb{R} \to \mathbb{R}$ be a fet with domain D. Then the graph of f, denoted G_f is the set of ordered pairs $G_f = \{(x, f(n)) \mid x \in D\}$.

Note: The graph of a fet of one variable is the set of points in IR2

Ex. The fet $f: R \to IR$ given by $y = f(x) = x^2$

1 f(x) = x?

These	need	+ 0	pass	the	vertical	line	4054.
			•				