Decision Tree

Yun-Nan Chang

Tree Structure

Prediction based on some tree structure

Tree Structure

Prediction based on some tree structure

Function of NSYSU logo

Depth = 5

Depth = 10

Depth = 15

Depth = 30

Learning Flowchart of the decision tree

Algorithm 1 决策树学习基本算法

输入:

- 训练集 $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\};$
- 属性集 $A = \{a_1, \ldots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

- 1: 生成结点 node:
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a+;
- 9: for a* 的每一个值 a* do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

1All the samples belong to the same class.

2Notest feature left or all the samples have the samefeature.

3There is no sample in the current node.

Split

♦ We want to split can make 'purity' more and more higher.

Entropy

- ◆Is there any metric used to evaluate the decision model?
 - Precision of the training data?
- Classic metrics used to measure the selection of the attribute
 - ◆Information Gain 信息增益
 - ◆Gain Ratio 增益率
 - ◆Gini factor 基尼指數
- Any function satisfying the following conditions can be used to measure the impurity of a split

- Weather data
- ♦Should I play today?

$$Entropy(D) = -\sum_{k=1}^{|y|} p_k log_2 p_k$$

Outlook	Тетр	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Outlook	Play
Sunny	No
Sunny	No
Overcast	Yes
Rainy	Yes
Rainy	Yes
Rainy	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rainy	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rainy	No

Outlook = Sunny

$$Entropy(D) = -\frac{2}{5} * \log\left(\frac{2}{5}\right) - \frac{3}{5} * \log\left(\frac{3}{5}\right) = 0.971$$

Outlook = Overcast

$$Entropy(D) = -\frac{4}{4} * \log\left(\frac{4}{4}\right) - \frac{0}{4} * \log\left(\frac{0}{4}\right) = 0$$

Outlook = Rainy

$$Entropy(D) = -\frac{3}{5} * \log\left(\frac{3}{5}\right) - \frac{2}{5} * \log\left(\frac{2}{5}\right) = 0.971$$

Expected info

$$0.971 * \left(\frac{5}{14}\right) + 0 * \left(\frac{4}{14}\right) + 0.971 * \left(\frac{5}{14}\right) = 0.693$$

Calculate the entropy of all attributes.

Outlook 0.693

Temperature 0.744

Humidity 0.788

Windy 0.899

- We want to get greatest Information Gain when we create a tree.
- ♦In this case, if we use 'can eat or not?' to classify, it's not helpful.

Greater the information gain better the purity of a node

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^{V}|}{|D|} Ent(D^{V})$$

- ♦Information Gain = Information before split Information after split.
- ♦Example : Gain(Outlook) = Info(Origin) info(Outlook)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

♦Information Gain = Information before split - Information after split.

Entro	ору	Information	on Gain
Origin	0.940	Outlook	0.247
Outlook	0.693	Temperature	0.196
Temperature	0.744	Humidity	0.152
Humidity	0.788	Windy	0.048
Windy	0.899		

Gini factor

♦Gini factor is smaller, dataset is purer.

♦ CART use Gini factor.

$$\begin{aligned} \operatorname{Gini}(D) &= \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'} \\ &= 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2 \ . \end{aligned}$$

$$\label{eq:Gini_index} \text{Gini_index}(D,a) = \sum_{v=1}^V \frac{|D^v|}{|D|} \text{Gini}(D^v) \ .$$

Gini factor example

Windy	Play
False	No
True	No
False	Yes
False	Yes
False	Yes
True	No
True	Yes
False	No
False	Yes
False	Yes
True	Yes
True	Yes
False	Yes
True	No

Gini factor example

Windy = False

$$Gini(D) = 1 - (\frac{2^2}{8} + \frac{6^2}{8}) = 0.375$$

Windy = True

$$Gini(D) = 1 - (\frac{3^2}{6} + \frac{3^2}{6}) = 0.5$$

Expected info

$$0.375 * \left(\frac{8}{14}\right) + 0.5 * \left(\frac{6}{14}\right) = 0.428$$

Why we Pruning?

- "Pruning" is used in decision learning to tackle "overfitting"
- Reduce the number of splits through pruning in order to avoid the overfitting based on some specific attributes of the data

Validation Sets

•We can use validation sets to judges whether the generalization performance of the decision tree is improved.

sepal length	sepal width	petal length	petal width	class
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica
6.3	2.9	5.6	1.8	virginica
6.5	3.0	5.8	2.2	virginica
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.9	3.1	4.9	1.5	versicolor
5.5	2.3	4.0	1.3	versicolor
6.5	2.8	4.6	1.5	versicolor

															۰						

sepal length	sepal width	petal length	petal width	class
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.9	3.1	4.9	1.5	versicolor

sepal length	sepal width	petal length	petal width	class
6.3	2.9	5.6	1.8	virginica
6.5	3.0	5.8	2.2	virginica
5.5	2.3	4.0	1.3	versicolor
6.5	2.8	4.6	1.5	versicolor

Pre-pruning

- Estimate before splitting node.
- ♦ Base on information gain.

Pre-pruning

- Estimate before splitting node.
- ♦ Base on information gain.

Validation set

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No

Acc: 0.83

Pre-pruning

- Split new node, but validation set accuracy is worse than before.
- ♦So we don't split this node.

Validation set

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No

Down
Acc: 0.83
Acc: 0.67

Pre-pruning pro and cons

♦Pro

- ♦ Reduce over-fitting risk
- ♦ Reduce training time

♦Cons

♦ Under-fitting risk

- Pruning after learning.
- ♦If delete some nodes we can get better result, delete them.
- ◆Bottom-up

Original tree

Down
Acc: 0.83 Acc: 0.67

Don't remove

Up
Acc: 0.83 Acc: 0.85

Remove it

Post-pruning pro and cons

♦Pro

♦ Low risk of under-fitting

♦Cons

Increase training time

Univariate and Multivariate Trees

- Univariate decision tree classification boundary: axis parallel
- Multivariate decision tree classification boundary: Not necessarily

X

Univariate

Multivariate

Univariate and Multivariate Trees

Decision tree in sklearn

- from sklearn.tree import DecisionTreeClassifier
- \$clf = DecisionTreeClassifier(max_depth=10)
- ♦clf.fit(data, target)
- predict = clf.predict(test_data)

Decision tree parameters in sklearn

criterion

splitter

max_depth

min_samples_split

min_samples_leaf

min_weight_fraction_leaf

max_features

random_state

max_leaf_nodes

min_impurity_decrease

min_impurity_split

class_weight

Information Gain

- ♦criterion='gini', default
- ♦Supported criteria are
 - ◆ "gini" for the Gini impurity
 - ◆ "entropy" for the information gain

criterion

Avoid over-fitting

max_depth

min_samples_split

max_features

min_impurity_decrease

min_samples_leaf

max_leaf_nodes

min_impurity_split

max_depth

max_depth = None

$max_depth = 3$

Ensemble learning

Use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone.

Why use Ensemble learning?

- One classifier may not get result good enough.
- Use many classifier to obtain better predictive performance.
- Many hands make light work.

Ensemble learning

Bagging

Bias and Variance

Bagging

- Complex models are easy to overfit
- We can use 'bagging' to reduce the variance

Bagging Train

Ever dataset 1 ~ N can have same data.

Function of NSYSU logo

Random Forest 100 trees

Depth = 5

Depth = 10

Depth = 15

Depth = 20

Boosting

Training data:

$$\{(x^1, \hat{y}^1), \dots, (x^n, \hat{y}^n), \dots, (x^N, \hat{y}^N)\}$$

$$\hat{y} = \pm 1 \text{ (binary classification)}$$

- ♦ Guarantee:
 - ◆ If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - ◆ You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - ♦ Find another function $f_2(x)$ to help $f_1(x)$
 - \diamond However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - ◆ Finally, combining all the classifiers
- ♦ The classifiers are learned sequentially.

Function of NSYSU logo

Adaboost + Decision Tree

Depth = 5

N = 3

N = 5

N = 20

N = 100

Boosting

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - ◆ Re-sampling your training data to form a new set
 - ◆ Re-weighting your training data to form a new set
 - ◆In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \quad 0.4$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \quad 2.1$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \quad 0.7$$

$$L(f) = \sum_{n} l(f(x^{n}), \hat{y}^{n})$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

Idea of Adaboost

- \diamond Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- \diamond How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$
 The performance of f_{1} for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- \diamond Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- \diamond How to find a new training set that fails $f_1(x)$?

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \qquad \qquad u^{1} = 1/\sqrt{3}$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \qquad \qquad u^{2} = \sqrt{3}$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \qquad \qquad u^{3} = 1/\sqrt{3}$$

$$(x^{4}, \hat{y}^{4}, u^{4}) \quad u^{4} = 1 \qquad \qquad u^{4} = 1/\sqrt{3}$$

$$\varepsilon_{1} = 0.25$$

$$f_{1}(x)$$

$$0.5$$

- \diamond Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- \diamond How to find a new training set that fails $f_1(x)$?

```
 \begin{cases} \text{If } x^n \text{ misclassified by } f_1 \ (f_1(x^n) \neq \hat{y}^n) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \\ \text{If } x^n \text{ correctly classified by } f_1 \ (f_1(x^n) = \hat{y}^n) \\ u_2^n \leftarrow u_1^n \text{ divided by } d_1 \end{cases}
```

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}$$

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}$$

$$= \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \qquad = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{2}^{n} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{2}^{n}$$

$$= \sum_{n} u_{2}^{n} \qquad = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}$$

$$\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2$$

$$\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}$$

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}$$

$$\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1$$

$$\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \quad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} = d_{1} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n}$$

$$\varepsilon_{1} = \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n}}{Z_{1}} \quad Z_{1}(1 - \varepsilon_{1}) \quad Z_{1}\varepsilon_{1}$$

$$Z_{1}(1 - \varepsilon_{1}) / d_{1} = Z_{1}\varepsilon_{1} d_{1}$$

$$d_{1} = \sqrt{(1 - \varepsilon_{1})/\varepsilon_{1}} > 1$$