Lecture Module - Electrical Signals

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Module 4 - Electrical Signals

Module 4 - Electrical Signals

- Topic 1 Classification of Signals
- Topic 2 Signal Analysis
- Topic 3 Sampling and Aliasing

Topic 1 - Classification of Signals

- Introduction to Signal Concepts
- Analog, Discrete, or Digital
- Static or Dynamic
- Deterministic or Non-Deterministic

Introduction to Signal Concepts

Signal, Amplitude, and Frequency

The shape and form of a

are often referred
to as its ______. The
______. The
______. contains
information about the
magnitude and ______,
which indicate the size of the
input quantity, and the
______, which indicates
the way the ______
changes in time.

Text: Theory and Design for Mechanical Measurements

Introduction to Signal Concepts

A ______ is the physical information about a measured variable being transmitted between a process and the measurement system, between the stages of a measurement system, or as the output from a measurement system.

Introduction to Signal Concepts Analog, Discrete, or Digital Static or Dynamic Deterministic or Non-Deterministic

Analog, Discrete, or Digital

-	
• _	Signal- magnitude at points in time
	- sampling at repeated time intervals

- magnitude is also discrete

Signal- magnitude is continuous in time

Signal- exists in discrete points in time

4 D > 4 A > 4 B > 4 B > B 9 Q (

Analog, Discrete, or Digital

Analog describes a signal that is continuous in time. Because physical variables tend to be continuous, an analog signal provides a ready representation of their time-dependent behavior.

Examples: voltage in a circuit

...a discrete time signal, for which information about the magnitude of the signal is available only at discrete points in time. A discrete time signal usually results from the sampling of a continuous variable at repeated finite time intervals.

Examples:

A digital signal has two important characteristics. First, a digital signal exists at discrete values in time, like a discrete time signal. Second, the magnitude of a digital signal is discrete, determined by a process known as quantization at each discrete point in time.

Examples:

Introduction to Signal Concepts Analog, Discrete, or Digital Static or Dynamic Deterministic or Non-Deterministic

Static or Dynamic

Signals may be characterized as either static or dynamic. A static signal does not vary with time.

A dynamic signal is defined as a time-dependent signal. In general, dynamic signal waveforms, y(t), may be classified as shown in Table 2.1.

Introduction to Signal Concepts Analog, Discrete, or Digital Static or Dynamic Deterministic or Non-Deterministic

Static or Dynamic

Deterministic or Non-Deterministic

A deterministic signal varies in time in a predictable manner, such as a sine wave, a step function, or a ramp function, as shown in Figure 2.5. A signal is steady periodic if the variation of the magnitude of the signal repeats at regular intervals in time. Also described in Figure 2.5 is a non-deterministic signal that has no discernible pattern of repetition. A non-deterministic signal cannot be prescribed before it occurs, although certain characteristics of the signal may be known in advance.

Deterministic or Non-Deterministic

Table 2.1 Classification of Waveforms

I.	Static	$y(t) = A_0$
II.	Dynamic	7(7)
	Periodic waveforms	
	Simple periodic waveform	$y(t) = A_0 + C\sin(\omega t + \phi)$
	Complex periodic waveform	$y(t) = A_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega t + \phi_n)$
	Aperiodic waveforms	
	Step ^a	$y(t) = A_0 U(t)$ = A_0 for $t > 0$
	Ramp	$y(t) = A_0 t \text{ for } 0 < t < t_f$
	Pulse ^b	$y(t) = A_0 U(t) - A_0 U(t - t_1)$
III.	Nondeterministic waveform	$y(t) \approx A_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega t + \phi_n)$

 $^{^{}a}U(t)$ represents the unit step function, which is zero for t < 0 and 1 for t > 0.

 b_{t_1} represents the pulse width.

Topic 2 - Signal Analysis

- Signal Mean Value
- Power Dissipation
- Signal Root Mean Square (RMS) Value
- Discrete-Time or Digital Signals

Signal Mean Value

Mean Value

$$\bar{y} \equiv \frac{\int\limits_{t_1}^{t_2} y(t)dt}{\int\limits_{t_1}^{t_2} dt}$$

Signal Mean Value

Dissipation - Time Rate of Energy Dissipation

$$P = I^2 R$$

Total Electrical Energy

$$E = \int_{t_1}^{t_2} Pdt = \int_{t_1}^{t_2} [I(t)]^2 Rdt$$

Power Dissipation

- For a cyclically alternating electric current, RMS is equal to the value of the direct current that would produce the same average power dissipation in a resistive load.
- In Estimation theory, the root mean square error of an estimator is a measure of the imperfection of the fit of the estimator to the data.
- The RMS value of a signal having a zero mean is a statistical measure of the magnitude of the fluctuations in the signal.

Signal Root Mean Square (RMS) Value

$$(I_e)^2 R(t_2 - t_1) = \int_{t_1}^{t_2} [I(t)]^2 R dt$$

$$I_{e} = \sqrt{\frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} [I(t)]^{2} dt}$$

$$y_{rms} = \sqrt{\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [y]^2 dt}$$

Signal Root Mean Square (RMS) Value

$$\bar{y} = \frac{1}{N} \sum_{i=0}^{N-1} y_i$$

$$y_{RMS} = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} y_i^2}$$

Text: Theory and Design for Mechanical Measurements

Signal Mean Value Power Dissipation Signal Root Mean Square (RMS) Value Discrete-Time or Digital Signals

Signal Root Mean Square (RMS) Value

Signal Mean Value Power Dissipation Signal Root Mean Square (RMS) Value Discrete-Time or Digital Signals

Discrete-Time or Digital Signals

Signal Mean Value Power Dissipation Signal Root Mean Square (RMS) Value Discrete-Time or Digital Signals

Discrete-Time or Digital Signals

Topic 3 - Sampling and Aliasing

- Sampling
- The Aliasing Phenomenon
- Example by Hand
- MATLAB Example

Sampling
The Aliasing Phenomenon
The Aliasing Phenomenon

Sampling

Sampling
The Aliasing Phenomenon
The Aliasing Phenomenon

Sampling

Sampling
The Aliasing Phenomenon
The Aliasing Phenomenon
MATLAB Example

The Aliasing Phenomenon

Example by Hand

Example by Hand

MATLAB Example

MATLAB Example