

All-in at the River

Coach	教练
Yong Yu	俞勇
Weihao Zhu	朱玮昊
Contestant	队员
Contestant Boren Tan	队员 谭博仁

Co	onte	nts				2.20.5 树链的交	12
							12
1	Geo	ometry	2		:	2.20.7 LCT常见应用	12
	1.1	凸包	2		:	2.20.8 差分约束	12
	1.2	闵可夫斯基和	2		:	2.20.9 李超线段树	12
	1.3	最小覆盖圆	2		:	2.20.10 Segment Tree Beats	12
	1.4	二维几何基础操作	2		:	2.20.11 二分图	12
	1.5	直线半平面交	3		:	2.20.12 稳定婚姻问题	12
	1.6	凸包快速询问	3		:	2.20.13 三元环	12
	1.7	三相之力	4		:	2.20.14 图同构	12
	1.8	圆并	4		:	2.20.15 竞赛图 Landau's Theorem	12
	1.9	多边形与圆交	5				12
	1.10	阿波罗尼茨圆	5		:	2.20.17 树的计数 Prufer序列	12
	1.11	圆幂 圆反演 根轴	5		:	2.20.18 有根树的计数	12
	1.12	球面基础	5				12
	1.13	经纬度球面距离	5				12
	1.14	圆上整点	5		:	2.20.21 有向图欧拉回路计数 BEST Thoerem	12
	1.15	相关公式	5				12
		1.15.1 Heron's Formula	5		:	2.20.23 Count Acyclic Orientations	12
		1.15.2 四面体内接球球心	5	2	Ctuin	. co	
		1.15.3 三角形内心	5	3	Strin		13
		1.15.4 三角形外心	5				13
		1.15.5 三角形垂心	5				13
		1.15.6 三角形偏心	5			1	13
		1.15.7 三角形内接外接圆半径	5				13
		1.15.8 Pick's Theorem	5				13
		1.15.9 Euler's Formula	5			•	13
	1.16	三角公式	5				13
		1.16.1 超球坐标系	6			8	14 14
		1.16.2 三维旋转公式	6				
		1.16.3 立体角公式	6				14 14
		1.16.4 常用体积公式	6				14 14
		1.16.5 高维球体积	6				14 14
	1.17	三维几何基础操作	7				14 14
	1.18	三维凸包	7				14 14
	1.19	最小覆盖球	7				14
2	1.19	最小覆盖球	7	4	Matl	1 数学	14
2	1.19 Tre	最小覆盖球e & Graph	7 8	4	Matl	1 数学 Long Long O(1) 乘	
2	1.19 Tre	最小覆盖球 \dots	7 8 8	4	Math	1 数学 Long Long O(1) 乘	14
2	1.19 Tre- 2.1 2.2	最小覆盖球 $e \& Graph$ Hopcroft-Karp $O(\sqrt{V}E)$	7 8 8 8	4	Math 4.1 1 4.2 4 4.3	1 数学 Long Long O(1) 乘	14 14
2	1.19 Tre 2.1 2.2 2.3	最小覆盖球 $e \& Graph$ Hopcroft-Karp $O(\sqrt{V}E)$	7 8 8 8 8	4	Math 4.1 1 4.2 4 4.3 4 4.4 1	1 数学 Long Long $O(1)$ 乘	14 14 14
2	1.19 Tre 2.1 2.2 2.3 2.4	最小覆盖球 $e \& Graph$ Hopcroft-Karp $O(\sqrt{V}E)$	7 8 8 8 8 8	4	Math 4.1 1 4.2 4 4.3 4 4.4 1 4.5 3	1 数学 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯	14 14 14 14 14
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5	最小覆盖球 $e \& Graph$ Hopcroft-Karp $O(\sqrt{V}E)$	7 8 8 8 8 8 8	4	Math 4.1 1 4.2 4 4.3 4 4.4 1 4.5 4 4.6	1 数学 Long Long $O(1)$ 乘	14 14 14 14 14 14
2	1.19 Tre- 2.1 2.2 2.3 2.4 2.5 2.6	最小覆盖球 $e \& Graph$ Hopcroft-Karp $O(\sqrt{V}E)$	7 8 8 8 8 8 8	4	Matl 4.1 4.2 4.3 4.4 4.5 4.6 4.7	n 数学 Long Long $O(1)$ 乘 Long Long $O(1)$ 乘 Exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 L类欧几里得直线下格点统计	14 14 14 14 14 14
2	1.19 Tre- 2.1 2.2 2.3 2.4 2.5 2.6 2.7	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双	7 8 8 8 8 8 8 8	4	Matl 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	n 数学 Long Long $O(1)$ 乘 Long Long $O(1)$ 和 Long Long Long $O(1)$ 和 Long Long $O(1)$ 和 Long Long $O(1)$ 和 Long Long Long Long Long Long Long Long	14 14 14 14 14 14 15
2	1.19 Tree 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT	7 8 8 8 8 8 8 8 8	4	Matl 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	n 数学 Long Long $O(1)$ 乘 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余	14 14 14 14 14 15 15
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树	7 8 8 8 8 8 8 8 8 9	4	Matl 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	n 数学 Long Long $O(1)$ 乘 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式	14 14 14 14 14 15 15 15
2	1.19 Tre- 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT	7 8 8 8 8 8 8 8 8 9 9	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	n 数学 Long Long O(1) 乘 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 . 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 EFT NTT FWT 多项式操作	14 14 14 14 14 15 15 15
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图	7 8 8 8 8 8 8 8 9 9	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1 4.12 1	n 数学 Long Long O(1) 乘 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作	14 14 14 14 14 15 15 15 15
2	1.19 Tre- 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图	7 8 8 8 8 8 8 8 8 9 9 9	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1 4.12 1	n 数学 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 K 进制 FWT	14 14 14 14 14 15 15 15 15 16
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树	7 8 8 8 8 8 8 8 8 9 9 9 9	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1 4.12 1 4.13 8	n 数学 Long Long O(1) 乘 Long Long Long Long Long Long Long Long	14 14 14 14 14 15 15 15 15 16 16
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流	7 8 8 8 8 8 8 8 8 9 9 9 10 10	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 1 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.11 4.12 1 4.11 4.12 1 4.11 4.12 1 4.11 4.1	n 数学 Long Long O(1) 乘 Long Long Long O(1) 和 Long Long Long Long Long Long Long Long	14 14 14 14 14 15 15 15 16 16 16
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流	7 8 8 8 8 8 8 8 9 9 10 10 10	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1 4.12 1 4.13 4.14 4.15 1	n 数学 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 X 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式	14 14 14 14 14 15 15 15 16 16 16 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治	7 8 8 8 8 8 8 8 9 9 10 10 10 10	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1 4.12 1 4.13 4.14 4.15 1 4.16 1	n 数学 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 X 进制 FWT 1.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程	14 14 14 14 14 15 15 15 16 16 16 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1.4.12 1.4.13 4.14 4.15 1.4.16 1.4.17 1.4.17 1.4.18 4.17 1.4.18 1.4.19 1.4.	n 数学 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 . 类欧几里得直线下格点统计 平方剩余 . 线性同余不等式 夏根 CFT NTT FWT 多项式操作 K 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 M一元三次方程	14 14 14 14 15 15 15 16 16 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11	4	Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 1.4.12 1.4.13 4.14 4.15 1.4.16 1.4.17 1.4.17 1.4.18 4.17 1.4.18 1.4.19 1.4.	n 数学 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 CFT NTT FWT 多项式操作 X 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程	14 14 14 14 14 15 15 15 16 16 16 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11		Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 14.14 4.15 14.16 14.17 4.18	Long Long $O(1)$ 乘 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 K 进制 FWT L1.2.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 解一元三次方程 自适应 Simpson	14 14 14 14 15 15 15 16 16 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle $-$ 般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(V^2E)$ 以 网络流总结 2.19.1 最小割集,最小割必须边以及可行边	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11	5	Math 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 App	n 数学 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 K 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 W—元三次方程 自适应 Simpson	14 14 14 14 15 15 15 16 16 17 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11		Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.12 1 4.12 1 4.13 4.14 4.15 1 4.16 1 4.17 4.18 App 5.1	Long Long O(1) 乘 Long Long O(1) 和 Long Long U Long Lon	14 14 14 14 15 15 15 16 16 17 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题 2.19.3 一些网络流建图	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11 11		Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.12 1 4.12 1 4.13 4.14 4.15 1 4.16 1 4.17 4.18 App 5.1	Long Long O(1) 乘 Long Long Long O(1) 和 Long Long Long O(1) 和 Long Long Long Long Long Long Long Long	14 14 14 14 15 15 15 16 16 17 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题 2.19.3 一些网络流建图 2.19.4 整数线性规划转费用流	7 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11 11 11		Math 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 App 5.1	Long Long O(1) 乘 Long Long O(1) 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 京根 FFT NTT FWT 多项式操作 X 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 解一元三次方程 自适应 Simpson endix Formulas 公式表 5.1.1 Mobius Inversion 5.1.2 Gcd Inversion	14 14 14 14 15 15 15 16 16 17 17 17 17 17
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题 2.19.3 一些网络流建图 2.19.4 整数线性规划转费用流 图论结论	7 8 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11 11 11 11		Math 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 App 5.1	Long Long $O(1)$ 乘 Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 X 进制 FWT L1.2.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 解一元三次方程 自适应 Simpson endix Formulas 公式表 5.1.1 Mobius Inversion 5.1.2 Gcd Inversion 5.1.3 Arithmetic Function	14 14 14 14 15 15 15 16 16 17 17 17 17 17 18
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题 2.19.3 一些网络流建图 2.19.4 整数线性规划转费用流 图论结论 2.20.1 最小乘积问题原理	7 8 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11 11 11 11 11		Math 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 App 5.1	Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 K 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 解一元三次方程 自适应 Simpson endix Formulas 公式表 5.1.1 Mobius Inversion 5.1.2 Gcd Inversion 5.1.3 Arithmetic Function 5.1.4 Binomial Coefficients	14 14 14 14 15 15 15 16 16 17 17 17 17 18 18
2	1.19 Tre 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19	最小覆盖球 e & Graph Hopcroft-Karp $O(\sqrt{VE})$ Hungarian $O(VE)$ Shuffle 一般图最大匹配 $O(VE)$ 极大团计数 有根树同构 Hash KM 最大权匹配 $O(V^3)$ Tarjan 点双,边双 2-SAT Dominator Tree 支配树 Minimum Mean Cycle 最小平均值环 $O(n^2)$ 弦图 欧拉回路 斯坦纳树 Dinic 最大流 Dijkstra 费用流 点分治 Gomory-Hu 无向图最小割树 $O(V^3E)$ Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$ 网络流总结 2.19.1 最小割集,最小割必须边以及可行边 2.19.2 常见问题 2.19.3 一些网络流建图 2.19.4 整数线性规划转费用流 图论结论	7 8 8 8 8 8 8 8 8 9 9 10 10 10 10 11 11 11 11 11 11 11		Math 4.1 1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 1 4.13 4.14 4.15 1 4.16 1 4.17 4.18 App 5.1	Long Long $O(1)$ 乘 exgcd CRT 中国剩余定理 Miller Rabin, Pollard Rho 扩展卢卡斯 价乘取模 类欧几里得直线下格点统计 平方剩余 线性同余不等式 原根 FFT NTT FWT 多项式操作 K 进制 FWT 4.12.1 单位根反演 Simplex 单纯形 线性递推 Berlekamp-Massey 最小多项式 Pell 方程 解一元三次方程 自适应 Simpson endix Formulas 公式表 5.1.1 Mobius Inversion 5.1.2 Gcd Inversion 5.1.3 Arithmetic Function 5.1.4 Binomial Coefficients 5.1.5 Fibonacci Numbers	14 14 14 14 15 15 15 16 16 17 17 17 17 17 18

12

18

19

20

--cnt, ret.pop_back ();

ret.pop_back (); return ret;

++cnt, ret.push_back (a[i]); }

```
Stirling Cycle Numbers . . . . . . . . . . .
                                                     19 21 | } // counter-clockwise, ret[0] = min(pair(x, y))
         5.1.9
                Stirling Subset Numbers . . . . . . . . . . .
                                                     19
                                                              闵可夫斯基和
         5.1.10
                Motzkin Numbers . . . . . . . . . . . . . . .
                                                     19
                                                          1.2
         5.1.11
                Eulerian Numbers . . . . . . . . . . . . . . . .
                                                     19 1 // a[0..1]: 逆时针凸包. 结果不是严格凸包
                                                          for (int i = 0; i < 2; i++) a[i].push_back(a[i].front());</pre>
         5.1.12
                Harmonic Numbers . . . . . . . . . . . . . . .
                                                     19 3 int i[2] = \{0, 0\},
                五边形数定理求拆分数 ......
         5.1.13
                                                            len[2] = {(int)a[0].size() - 1, (int)a[1].size() - 1};
         5.1.14
                Bell Numbers . . . . . . . . . . . . . . . . . .
                                                     19
                                                          vector<point> mnk:
                                                     19 6
         5.1.15
                Bernoulli Numbers . . . . . . . . . . . . . . .
                                                          mnk.push_back(a[0][0] + a[1][0]);
                                                          do { // 输入不合法时会死循环; 存在精度问题, 考虑用整数
| int d = sgn(det(a[1][i[1] + 1] - a[1][i[1]],
                                                     19
         5.1.16
                19
                5.1.17
                                                                           a[0][i[0] + 1] - a[0][i[0]])) >= 0;
                                                     19 10
                伍德伯里矩阵不等式 . . . . . . . . . . . . . . .
         5.1.18
                                                             mnk.push\_back(a[d][i[d] + 1] - a[d][i[d]] + mnk.back());
         5.1.19
                Sum of Squares . . . . . . . . . . . . . . . . .
                                                     19 11
                                                             i[d] = (i[d] + 1) \% len[d];
                                                     19 12 } while(i[0] || i[1]);
         5.1.20
                枚举勾股数 Pythagorean Triple . . . . . .
                四面体体积 Tetrahedron Volume . . . . . . .
                                                     19
         5.1.21
                                                          1.3 最小覆盖圆
                杨氏矩阵与钩子公式 .......
                                                     19
         5.1.22
                                                     19 1
                                                          struct circle {
         5.1.23
                point c; double r;
                                                     20 <sup>2</sup>
         5.1.24
                circle () {}
                最大最小定理求纳什均衡点 . . . . . . . . . .
         5.1.25
                                                     20
                                                           | circle (point C, double R) {c = C, r = R;} };
                20 5
         5.1.26
                                                          bool in_circle(cp a, const circle &b) {
                                                           | return (b.c - a).len() <= b.r; }
                                                     20
         5.1.27
                circle make_circle(point u, point v) {
         5.1.28
                20
                                                             point p = (u + v) / 2;
                                                     20 9
         5.1.29
                return circle(p, (u - p).len()); }
                邻接矩阵行列式的意义 ......
                                                     20 10 circle make_circle(cp a, cp b, cp c) {
         5.1.30
                                                     20^{\ 11}
                                                           | point p = b - a, q = c - a,
                Others (某些近似数值公式在这里) . . . . . .
         5.1.31
                                                     20 12 13
                                                             | s(dot(p, p) / 2, dot(q, q) / 2);
         double d = det(p, q);
                                                     20 14
         p = point( det(s, point(p.y, q.y)),
                                                     20 15
                ax^2 + bx + c(a > 0) \dots \dots \dots \dots
         5.3.1
                                                             | det(point(p.x, q.x), s) ) / d;
                                                     20^{\ 16}
                                                           return circle(a + p, p.len())
                \sqrt{\pm ax^2 + bx} + c(a > 0) \quad \dots \quad \dots \quad \dots
         5.3.2
                                                       17
                                                          } // make circle : 过参数点的最小圆
                                                     20 18
         5.3.3
                \sqrt{\pm \frac{x-a}{x-b}} 或 \sqrt{(x-a)(x-b)} ......
                                                          circle min_circle (vector <point> p) {
                三角函数的积分..........
                                                     20 19
         5.3.4
                                                           | circle ret;
                                                     21 20
                                                             random_shuffle (p.begin (), p.end ());
         5.3.5
                反三角函数的积分 (其中 a > 0) . . . . . . .
                                                     21 21
                                                             for (int i = 0; i < (int) p.size (); ++i)
                指数函数的积分......
         5.3.6
                                                        22
                                                             | if (!in_circle (p[i], ret)) {
                对数函数的积分......
         5.3.7
                                                     21 23
                                                                  ret = circle (p[i], 0);
                                                                  for (int j = 0; j < i; ++j) if (!in_circle (p[j],
     5.4
         \hookrightarrow ret)) {
         Python Hint
                                                                   ret = make_circle (p[j], p[i]);
                                                                   | for (int k = 0; k < j; ++k)
                                                        26
    Miscellany
                                                     22 _{27}^{-1}
                                                                22 28
                                                                     | | ret = make_circle(p[i],p[j],p[k]);
                                                     22\ ^{29}
     6.2
         } } return ret; }
                22
         6.2.1
                                                          1.4
                                                              二维几何基础操作
         6.2.2
                一类树形背包优化 .........
                                                     22
    6.3
         22 1 bool point_on_segment(cp a,cl b){
                                                          return sgn (det (a - b.s, b.t - b.s)) == 0//pol
         基数排序.......
    6.4
                                                     22
                                                           | && sgn (dot (b.s - a, b.t - a)) <= 0;}
     6.5
         22
                                                          bool two_side(cp a,cp b,cl c) {
                                                     22 <sub>5</sub>
    6.6
         return sgn (det (a - c.s, c.t - c.s))
                                                             | * sgn (det (b - c.s, c.t - c.s)) < 0; }
         I used to roll the dice . . . . . . . . . . . . . . . .
                                                     22
     6.7
                                                           bool intersect_judge(cl a,cl b) {
         if (point_on_segment (b.s, a)
  1. Geometry
                                                             || point_on_segment (b.t, a)) return true;
                                                             if (point_on_segment (a.s, b)
  1.1 凸包
                                                             || point_on_segment (a.t, b)) return true;
                                                        11
  #define cp const point &
                                                       12
                                                             return two_side (a.s, a.t, b)
  bool turn_left(cp a, cp b, cp c) {
    | return sgn (det (b - a, c - a)) >= 0; }
                                                        13
                                                              | && two_side (b.s, b.t, a); }
                                                          point line_intersect(cl a, cl b) {
                                                       14
  vector <point> convex_hull (vector <point> a) {
                                                       15
                                                             double s1 = det (a.t - a.s, b.s - a.s);
     int n = (int) a.size (), cnt = 0;
                                                       16
                                                             double s2 = det (a.t - a.s, b.t - a.s);
                                                             return (b.s * s2 - b.t * s1) / (s2 - s1); }
     if (n < 2) return a;
                                                       17
     sort (a.begin(), a.end()); // less<pair>
                                                          bool point_on_ray (cp a, cl b) {
                                                           | return sgn (det (a - b.s, b.t - b.s)) == 0
8
     vector <point> ret;
                                                        19
9
     for (int i = 0; i < n; ++i) {
                                                           | && sgn (dot (a - b.s, b.t - b.s)) >= 0; }
                                                       20
                                                          bool ray_intersect_judge(line a, line b) {
10
       while (cnt > 1
                                                       21
11
       && turn_left (ret[cnt - 2], a[i], ret[cnt - 1]))
                                                       22
                                                             double s1, s2; // can be LL
                                                             s1 = det(a.t - a.s, b.s - a.s);
s2 = det(a.t - a.s, b.t - a.s);
        --cnt, ret.pop_back ();
                                                        23
13
      | ++cnt, ret.push_back (a[i]); }
                                                       24
14
     int fixed = cnt;
                                                       25
                                                             if (sgn(s1) == 0 && sgn(s2) == 0) {
                                                               return sgn(dot(a.t - a.s, b.s - a.s)) >= 0
| || sgn(dot(b.t - b.s, a.s - b.s)) >= 0; }
15
     for (int i = n - 2; i >= 0; --i) {
                                                       26
16
      | while (cnt > fixed
                                                        27
17
       && turn_left (ret[cnt - 2], a[i], ret[cnt - 1]))
                                                       28
                                                             if (!sgn(s1 - s2) || sgn(s1) == sgn(s2 - s1)) return 0;
```

29

30

31

swap(a, b);

s1 = det(a.t - a.s, b.s - a.s); s2 = det(a.t - a.s, b.t - a.s);

```
| return sgn(s1) != sgn(s2 - s1); }
   double point_to_line (cp a, cl b) {
33
    return abs (det (b.t-b.s, a-b.s)) / dis (b.s, b.t); }
35
    point project_to_line (cp a, cl b) {
      return b.s + (b.t - b.s)
       * (dot (a - b.s, b.t - b.s) / (b.t - b.s).len2 ()); }
    double point_to_segment (cp a, cl b) {
38
       if (sgn (dot (b.s - a, b.t - b.s))
39
       * sgn (dot (b.t - a, b.t - b.s)) <= 0)
40
41
        return abs(det(b.t - b.s, a - b.s)) / dis(b.s, b.t);
      return min (dis (a, b.s), dis (a, b.t)); }
    bool in_polygon (cp p, const vector <point> & po) {
43
      int n = (int) po.size (); int counter = 0;
       for (int i = 0; i < n; ++i) {
45
46
          point a = po[i], b = po[(i + 1) \% n];
47
          if (point_on_segment (p, line (a, b))) return true;
48
          int x = sgn (det (p - a, b - a)),
          | y = sgn (a.y - p.y), z = sgn (b.y - p.y);
if (x > 0 && y <= 0 && z > 0) ++counter;
49
50
        | if (x < 0 \&\& z <= 0 \&\& y > 0) --counter; }
51
     return counter != 0; }
52
53
    vector <point> line_circle_intersect (cl a, cc b) {
     | if (sgn (point_to_line (b.c, a) - b.r) > 0)
55
        return vector <point> ();
       double x = sqrt(sqr(b.r)-sqr(point_to_line (b.c, a)));
56
57
       return vector <point>
58
       (\{project\_to\_line\ (b.c, a) + (a.s - a.t).unit\ () * x
       project_to_line (b.c, a) - (a.s - a.t).unit () * x});}
    double circle_intersect_area (cc a, cc b) {
60
      double d = dis (a.c, b.c);
       if (sgn (d - (a.r + b.r)) >= 0) return 0;
if (sgn (d - abs(a.r - b.r)) <= 0) {
62
63
        double r = min (a.r, b.r);
         return r * r * PI; }
65
       double x = (d * d + a.r * a.r - b.r * b.r) / (2 * d),
             t1 = acos (min (1., max (-1., x / a.r))),
67
68
             t2 = acos (min (1., max (-1., (d - x) / b.r)));
      return sqr(a.r)*t1 + sqr(b.r)*t2 - d*a.r*sin(t1);}
70
    vector <point> circle_intersect (cc a, cc b) {
     if (a.c == b.c
72
         || sgn (dis (a.c, b.c) - a.r - b.r) > 0
          || sgn (dis (a.c, b.c) - abs (a.r - b.r)) < 0)
73
74
         return {}:
75
       point r = (b.c - a.c).unit();
       double d = dis (a.c, b.c);
76
       double x = ((sqr (a.r) - sqr (b.r)) / d + d) / 2;
77
78
       double h = sqrt (sqr (a.r) - sqr (x));
79
       if (sgn (h) == 0) return \{a.c + r * x\};
       return \{a.c + r * x + r.rot90 () * h,
80
               a.c + r * x - r.rot90 () * h}; }
81
    // 返回按照顺时针方向
82
    vector <point> tangent (cp a, cc b) {
    circle p = make_circle (a, b.c);
     return circle_intersect (p, b); }
    vector <line> extangent (cc a, cc b) {
87
      vector <line> ret;
       if (sgn(dis (a.c, b.c)-abs (a.r - b.r))<=0) return ret;</pre>
88
       if (sgn (a.r - b.r) == 0) {
89
          point dir = b.c - a.c;
90
          dir = (dir * a.r / dir.len ()).rot90 ();
91
          ret.push_back (line (a.c + dir, b.c + dir));
92
         ret.push_back (line (a.c - dir, b.c - dir));
93
94
95
        | point p = (b.c * a.r - a.c * b.r) / (a.r - b.r);
96
          vector pp = tangent (p, a), qq = tangent (p, b);
97
          if (pp.size () == 2 && qq.size () == 2) {
             if (sgn (a.r-b.r) < 0)
99
             | swap (pp[0], pp[1]), swap (qq[0], qq[1]);
100
             ret.push_back(line (pp[0], qq[0]));
           101
102
      return ret; }
103
    vector <line> intangent (cc a, cc b) {
      vector <line> ret;
104
       point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
105
106
       vector pp = tangent (p, a), qq = tangent (p, b);
107
       if (pp.size () == 2 && qq.size () == 2) {
108
        ret.push_back (line (pp[0], qq[0]));
109
        | ret.push_back (line (pp[1], qq[1])); }
110
       return ret; }
111
    vector <point> cut (const vector<point> &c, line p) {
112
       vector <point> ret;
    if (c.empty ()) return ret;
```

```
for (int i = 0; i < (int) c.size (); ++i) {
       | int j = (i + 1) % (int) c.size ();
         if (turn_left (p.s, p.t, c[i])) ret.push_back (c[i]);
116
117
         if (two_side (c[i], c[j], p))
118
            ret.push_back (line_intersect (p, line (c[i],
             119
   | return ret; }
```

1.5 直线半平面交

```
bool turn_left (const line &l, const point &p) {
   | return turn_left (l.s, l.t, p); }
  vector <point> half_plane_intersect (vector <line> h) {
   | typedef pair <double, line> polar;
     vector <polar> g; // use atan2, caution precision
5
     for (auto &i : h) {
      | point v = i.t - i.s;
8
      | g.push_back({atan2 (v.y, v.x), i}); }
9
     sort (g.begin(), g.end(), [] (const polar &a, const
       → polar &b) {
      | if (!sgn (a.first - b.first))
     | return sgn (det (a.second.t - a.second.s,
11
            | else return sgn (a.first - b.first) < 0; });
13
     h.resize (unique (g.begin(), g.end(),
14
     [] (const polar &a, const polar &b)
     { return ! sgn (a.first - b.first); }) - g.begin());
15
16
     for (int i = 0; i < (int) h.size(); ++i)</pre>
17
      | h[i] = g[i].second;
     int fore = 0, rear = -1;
     vector <line> ret;
19
20
     for (int i = 0; i < (int) h.size(); ++i) {</pre>
21
      | while (fore < rear && !turn_left (h[i],
         | --rear; ret.pop_back(); }
23
      | while (fore < rear && !turn_left (h[i],
         24
        | ++fore;
       ++rear;
       ret.push_back (h[i]); }
26
     while (rear - fore > 1 && !turn_left (ret[fore],
       28
      | --rear; ret.pop_back(); }
   while (rear - fore > 1 && !turn_left (ret[rear],
       if (rear - fore < 2) return vector <point>();
31
32
     vector <point> ans; ans.resize (rear - fore);
33
     for (int i = 0; i < (int) ans.size(); ++i)
        ans[i] = line_intersect (ret[fore + i],
34
      | | ret[fore + (i + 1) % ans.size()]);
   | return ans; }
36
```

1.6 凸包快速询问

```
/* 给定凸包,\log n 内完成各种询问,具体操作有 :
   1. 判定一个点是否在凸包内
   2. 询问凸包外的点到凸包的两个切点
   3. 询问一个向量关于凸包的切点
   4. 询问一条直线和凸包的交点
   INF 为坐标范围,需要定义点类 operator < > 为 pair(x, y)
   改成实数只需修改 sgn 函数, 以及把 LL 改为 double 即可
   传入凸包要求无重点,面积非空,pair(x,y)最小点放在第一个 */
   const int INF = 1e9;
   struct Convex {
10
   int n;
12
    vector<point> a, upper, lower;
13
    Convex(vector<point> _a) : a(_a) {
      n = a.size(); int k = 0;
      for(int i = 1; i < n; ++ i) if (a[k] < a[i]) k = i;
15
16
       for(int i = 0; i <= k; ++ i) lower.push_back(a[i]);</pre>
      for(int i = k; i < n; ++ i) upper.push_back(a[i]);</pre>
17
18
      upper.push_back(a[0]);
19
   pair <LL, int> get_tan(vector <point> & con, point vec) {
      int 1 = 0, r = (int) con.size() - 2;
21
      for (; l + 1 < r; ) {
22
23
        int mid = (1 + r) / 2;
        if (sgn(det(con[mid + 1] - con[mid], vec)) > 0) r =
           → mid;
       | else l = mid;
25
26
27
     return max(make_pair (det(vec, con[r]), r),

    make_pair(det(vec, con[0]), 0));
```

```
28
29
    void upd_tan(cp p, int id, int &i0, int &i1) {
30
     | if (det(a[i0] - p, a[id] - p) > 0) i0 = id;
31
      if (det(a[i1] - p, a[id] - p) < 0) i1 = id;
32
33
    void search(int 1, int r, point p, int &i0, int &i1) {
34
     | if (1 == r) return;
       upd_tan(p, 1 % n, i0, i1);
35
       int sl = sgn(det(a[1 \% n] - p, a[(1 + 1) \% n] - p));
36
37
     for (; l + 1 < r; ) {
         int mid = (1 + r) / 2;
38
         int smid = sgn(det(a[mid % n] - p, a[(mid + 1) % n]
39

    - p));
         if (smid == sl) l = mid;
40
41
       | else r = mid;
42
     | }
43
     | upd_tan(p, r % n, i0, i1);
44
    int search(point u, point v, int l, int r) {
45
     | int sl = sgn(det(v - u, a[1 % n] - u));
46
47
      for (; l + 1 < r;) {
48
        | int mid = (1 + r) / 2;
49
         int smid = sgn(det(v - u, a[mid % n] - u));
50
          if (smid == sl) l = mid;
51
         else r = mid;
52
      }
53
     return 1 % n;
    }
    ,
// 判定点是否在凸包内, 在边界返回 true
55
56
    bool contain(point p) {
    \mid if (p.x < lower[0].x \mid \mid p.x > lower.back().x) return
57
         → false;
58
      int id = lower_bound(lower.begin(), lower.end(),
         \hookrightarrow point(p.x, -INF)) - lower.begin();
       if (lower[id].x == p.x) {
60
        | if (lower[id].y > p.y) return false;
      } else if (det(lower[id - 1] - p, lower[id] - p) < 0)</pre>
61
         → return false;
62
      id = lower_bound(upper.begin(), upper.end(), point(p.x,
         if (upper[id].x == p.x) {
64
        if (upper[id].y < p.y) return false;</pre>
      } else if (det(upper[id - 1] - p, upper[id] - p) < 0)</pre>
65
         → return false;
66
      return true;
67
    // 求点 p 关于凸包的两个切点,如果在凸包外则有序返回编号,共
      → 线的多个切点返回任意一个, 否则返回 false
69
    bool get_tan(point p, int &i0, int &i1) {
70
     | i0 = i1 = 0;
71
     int id = int(lower_bound(lower.begin(), lower.end(), p)

    - lower.begin());
72
       search(0, id, p, i0, i1);
73
       search(id, (int)lower.size(), p, i0, i1);
74
     | id = int(lower_bound(upper.begin(), upper.end(), p,

    greater <point> ()) - upper.begin());
       search((int)lower.size() - 1, (int) lower.size() - 1 +
75
         \hookrightarrow id, p, i0, i1);
      search((int)lower.size() - 1 + id, (int) lower.size() -
76
         \hookrightarrow 1 + (int)upper.size(), p, i0, i1);
77
       return true;
78
    }
    // 求凸包上和向量 vec 叉积最大的点,返回编号,共线的多个切点
79
      → 返回任意一个
80
    int get_tan(point vec) {
                                                                22
81
       pair<LL, int> ret = get_tan(upper, vec);
       ret.second = (ret.second + (int)lower.size() - 1) % n;
83
      ret = max(ret, get_tan(lower, vec));
     return ret.second;
                                                                25
84
85
    }
    // 求凸包和直线 u,v 的交点,如果无严格相交返回 false. 如果有
86
      → 则是和 (i,next(i)) 的交点,两个点无序,交在点上不确定返回
      → 前后两条线段其中之-
    bool get_inter(point u, point v, int &i0, int &i1) {
87
     | int p0 = get_tan(u - v), p1 = get_tan(v - u);
88
89
       if (sgn(det(v - u, a[p0] - u)) * sgn(det(v - u, a[p1] -

    u)) < 0) {</pre>
90
        | if (p0 > p1) swap(p0, p1);
91
          i0 = search(u, v, p0, p1);
92
         i1 = search(u, v, p1, p0 + n);
                                                                34
93
         return true;
      } else return false;
                                                                36
```

```
}};
```

1.7 三相之力

```
point incenter (cp a, cp b, cp c) {
   | double p = dis (a, b) + dis (b, c) + dis (c, a);
   | return (a * dis (b, c) + b * dis (c, a) + c * dis (a,
 3
        \hookrightarrow b)) / p; }
   point circumcenter (cp a, cp b, cp c) {
   | point p = b - a, q = c - a, s (dot (p, p) / 2, dot (q,
        \hookrightarrow q) / 2);
    | double d = det (p, q);
    | return a + point (det (s, point (p.y, q.y)), det (point
        \hookrightarrow (p.x, q.x), s)) / d; }
   point orthocenter (cp a, cp b, cp c) {
   | return a + b + c - circumcenter (a, b, c) * 2.0; }
10
   point fermat_point (cp a, cp b, cp c) {
    | if (a == b) return a; if (b == c) return b;
    if (c == a) return c;
12
13
    | double ab = dis (a, b), bc = dis (b, c), ca = dis (c,
        → a);
      double cosa = dot (b - a, c - a) / ab / ca;
14
      double cosb = dot (a - b, c - b) / ab / bc;
      double cosc = dot (b - c, a - c) / ca / bc;
16
      double sq3 = PI / 3.0; point mid;
17
18
      if (sgn (cosa + 0.5) < 0) mid = a;
19
      else if (sgn (cosb + 0.5) < 0) mid = b;
20
      else if (sgn (cosc + 0.5) < 0) mid = c;
      else if (sgn (det (b - a, c - a)) < 0)
21
      | mid = line_intersect (line (a, b + (c - b).rot
            \hookrightarrow (sq3)), line (b, c + (a - c).rot (sq3)));
    else
23
      | mid = line_intersect (line (a, c + (b - c).rot
           \hookrightarrow (sq3)), line (c, b + (a - b).rot (sq3)));
    | return mid; } // minimize(|A-x|+|B-x|+|C-x|)
```

```
圆并
  1.8
   int C; circle c[MAXN]; double area[MAXN];
   struct event {
      point p; double ang; int delta;
      event (point p = point (), double ang = 0, int delta =
        \hookrightarrow 0) : p(p), ang(ang), delta(delta) {}
    | bool operator < (const event &a) { return ang < a.ang; }
 5
   void addevent(cc a, cc b, vector<event> &evt, int &cnt) {
   | double d2 = (a.c - b.c).dis2(), dRatio = ((a.r - b.r) *
        \hookrightarrow (a.r + b.r) / d2 + 1) / 2,
       \mid pRatio = sqrt (max (0., -(d2 - sqr(a.r - b.r)) * (d2
           \hookrightarrow - sqr(a.r + b.r)) / (d2 * d2 * 4)));
      point d = b.c - a.c, p = d.rot(PI / 2),
10
         q0 = a.c + d * dRatio + p * pRatio,
       | q1 = a.c + d * dRatio - p * pRatio;
11
      double ang0 = atan2 ((q0 - a.c).y, (q0 - a.c).x), ang1 =
12

    atan2 ((q1 - a.c).y, (q1 - a.c).x);
      evt.emplace_back(q1,ang1,1);

    evt.emplace_back(q0,ang0,-1);
    | cnt += ang1 > ang0; }
15
   bool issame(cc a, cc b) {
   | return sgn((a.c-b.c).dis()) == 0 && sgn(a.r-b.r) == 0; }
17
   bool overlap(cc a, cc b) {
   | return sgn(a.r - b.r - (a.c - b.c).dis()) >= 0; }
18
   bool intersect(cc a, cc b) {
19
20
   | return sgn((a.c - b.c).dis() - a.r - b.r) < 0; }
   void solve() {
    | fill (area, area + C + 2, 0);
23
      for (int i = 0; i < C; ++i) { int cnt = 1;
24
         vector<event> evt;
         for (int j=0; j<i; ++j) if (issame(c[i],c[j])) ++cnt;
         for (int j = 0; j < C; ++j)
      | | if (j != i && !issame(c[i], c[j]) && overlap(c[j],
              \hookrightarrow c[i])) ++cnt;
       | for (int j = 0; j < C; ++j)
28
        | if (j != i && !overlap(c[j], c[i]) &&
29
              | addevent(c[i], c[j], evt, cnt);
30
         if (evt.empty()) area[cnt] += PI * c[i].r * c[i].r;
         else {
32
33
            sort(evt.begin(), evt.end());
            evt.push_back(evt.front());
35
            for (int j = 0; j + 1 < (int)evt.size(); ++j) {
               cnt += evt[j].delta;
               area[cnt] += det(evt[j].p,evt[j + 1].p) / 2;
```

1.9 多边形与圆交

```
double sector_area (cp a, cp b, double r) {
    | double c = (2.0 * r * r - (a - b).norm2 ()) / (2.0 * r *
      double al = acos (c);
     return r * r * al / 2.0; }
 4
   double area(cp a,cp b, double r) { // point() : (0, 0)
    \mid double dA = dot (a, a), dB = dot (b, b), dC =
 6

    point_to_segment (point (), line (a, b)), ans = 0;

      if (sgn (dA - r * r) \le 0 \&\& sgn (dB - r * r) \le 0)
        \hookrightarrow return det (a, b) / 2.0;
      point tA = a.unit () * r;
      point tB = b.unit() * r;
9
      if (sgn (dC - r) >= 0) return sector_area (tA, tB, r);
      pair <point, point> ret = line_circle_intersect (line
11
        \hookrightarrow (a, b), circle (point (), r));
12
      if (sgn (dA - r * r) > 0 && sgn (dB - r * r) > 0) {
         ans += sector_area (tA, ret.first, r);
13
         ans += det (ret.first, ret.second) / 2.0;
15
         ans += sector_area (ret.second, tB, r);
         return ans; }
16
      if (sgn (dA - r * r) > 0)
17
         return det (ret.first, b) / 2.0 + sector_area (tA,
18

    ret.first, r);
19
20
      return det (a, ret.second) / 2.0 + sector_area
           \hookrightarrow (ret.second, tB, r); }
21
   double solve(const vector<point> &p, cc c) {//p 逆时针
      double ret = 0;
      for (int i = 0; i < (int) p.size (); ++i) {
23
24
       | int s = sgn (det (p[i] - c.c, p[(i + 1) \% p.size()]
           25
         if (s > 0)
       | ret += area (p[i] - c.c, p[ (i + 1) % p.size ()] -
               else
         | ret -= area (p[ (i + 1) % p.size ()] - c.c, p[i] -
               return abs (ret); }
```

1.10 阿波罗尼茨圆

```
種币问题: 两两相切的圆 r1, r2, r3, 求与他们都相切的圆 r4 分母取负号,答案再取绝对值,为外切圆半径 分母取正号为内切圆半径 // r_4^\pm = \frac{r_1 r_2 r_3}{r_1 r_2 + r_1 r_3 + r_2 r_3 \pm 2 \sqrt{r_1 r_2 r_3 (r_1 + r_2 + r_3)}}
```

1.11 圆幂 圆反演 根轴

圆幂: 半径为 R 的圆 O,任意一点 P 到 O 的幂为 $h = OP^2 - R^2$ 圆幂定理: 过 P 的直线交圆在 A 和 B 两点, 则 $PA \cdot PB = |h|$

根轴: 到两圆等幂点的轨迹是一条垂直于连心线的直线

反演: 已知一圆 C, 圆心为 O, 半径为 r, 如果 P 与 P' 在过圆心 O 的直线 上, 且 $OP \cdot OP' = r^2$, 则称 P 与 P' 关于 O 互为反演. 一般 C 取单位圆. 反演的性质:

不过反演中心的直线反形是过反演中心的圆, 反之亦然.

不过反演中心的圆,它的反形是一个不过反演中心的圆.

两条直线在交点 A 的夹角,等于它们的反形在相应点 A' 的夹角,但方向相

直线和圆周在交点 A 的夹角等于它们的反演图形在相应点 A' 的夹角, 但方向相反.

正交圆反形也正交. 相切圆反形也相切, 当切点为反演中心时, 反形为两条平行线.

1.12 球面基础

球面距离: 连接球面两点的大圆劣弧 (所有曲线中最短)

球面角: 球面两个大圆弧所在半平面形成的二面角

球面凸多边形:把一个球面多边形任意一边向两方无限延长成大圆,其余边都在此大圆的同旁.

球面角盈 E: 球面凸n边形的内角和与 $(n-2)\pi$ 的差

离北极夹角 θ , 距离 h 的球冠: $S = 2\pi Rh = 2\pi R^2(1 - \cos\theta)$, $V = \frac{\pi h^2}{2}(3R - h)$

球面凸n边形面积: $S = ER^2$

1.13 经纬度球面距离

```
// lontitude 经度范围: \pm\pi, latitude 纬度范围: \pm\pi/2 double sphereDis(double lon1, double lat1, double lon2, \hookrightarrow double lat2, double R) { | return R * acos(cos(lat1) * cos(lat2) * cos(lon1 - lon2) \hookrightarrow + sin(lat1) * sin(lat2)); }
```

1.14 圆上整点

```
vector <LL> solve(LL r) {
      vector <LL> ret; // non-negative Y pos
3
      ret.push_back(0);
      LL 1 = 2 * r, s = sqrt(1);
4
       for (LL d=1; d<=s; d++) if (1%d==0) {
         LL lim=LL(sqrt(1/(2*d)));
          for (LL a = 1; a <= lim; a++) {
          | LL b = sqrt(1/d-a*a);
8
9
             if (a*a+b*b==1/d \&\& \_gcd(a,b)==1 \&\& a!=b)
              | ret.push_back(d*a*b);
          } if (d*d==1) break;
          \lim = \operatorname{sqrt}(d/2);
          for (LL a=1; a<=lim; a++) {</pre>
13
             LL b = sqrt(d - a * a);
if (a*a+b*b==d && __gcd(a,b)==1 && a!=b)
14
15
              ret.push_back(1/d*a*b);
16
      } } return ret; }
```

1.15 相关公式

1.15.1 Heron's Formula

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
$$p = \frac{a+b+c}{2}$$

1.15.2 四面体内接球球心

假设 s_i 是第 i 个顶点相对面的面积,则

$$\begin{cases} x = \frac{s_1x_1 + s_2x_2 + s_3x_3 + s_4x_4}{s_1 + s_2 + s_3 + s_4} \\ y = \frac{s_1y_1 + s_2y_2 + s_3y_3 + s_4y_4}{s_1 + s_2 + s_3 + s_4} \\ z = \frac{s_1z_1 + s_2z_2 + s_3z_3 + s_4z_4}{s_1 + s_2 + s_3 + s_4} \end{cases}$$

体积可以使用 1/6 混合积求, 内接球半 径为

 $s_1 + s_2 + s_3 + s_4$

1.15.3 三角形内心

$$\frac{a\vec{A} + b\vec{B} + c\vec{C}}{a + b + c}$$

$$\frac{\vec{A} + \vec{B} - \frac{\vec{BC} \cdot \vec{CA}}{\vec{AB} \times \vec{BC}} \vec{AB}^T}{2}$$

$$\vec{H} = 3\vec{G} - 2\vec{O}$$

1.15.6 三角形偏心

1.15.6 三用形偏心
$$\frac{-a\vec{A} + b\vec{B} + c\vec{C}}{-a + b + c}$$

剩余两点的同理.

1.15.7 三角形内接外接圆半径

$$r = \frac{2S}{a+b+c}$$
, $R = \frac{abc}{4S}$

1.15.8 Pick's Theorem

$$S = I + \frac{B}{2} - 1$$

S is the area of lattice polygon, I is the number of lattice interior points, and B is the number of lattice boundary points.

1.15.9 Euler's Formula

For convex polyhedron: V - E + F = 2.

For planar graph: |F| = |E| - |V| + n + 1, n denotes the number of connected components.

1.16 三角公式

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$$

$$\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a) \cos(b)}$$

$$\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\cos(a) - \cos(b) = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\sin(a) = n\cos^{n-1} a \sin a - \binom{n}{3}\cos^{n-3} a \sin^3 a + \binom{n}{5}\cos^{n-5} a \sin^5 a - \dots$$

$$\cos(na) = \cos^n a - \binom{n}{2} \cos^{n-2} a \sin^2 a + \binom{n}{4} \cos^{n-4} a \sin^4 a - \dots$$

1.16.1 超球坐标系

$$\begin{array}{rcl} x_1 & = & r\cos(\phi_1) \\ x_2 & = & r\sin(\phi_1)\cos(\phi_2) \\ \dots & \\ x_{n-1} & = & r\sin(\phi_1)\cdots\sin(\phi_{n-2})\cos(\phi_{n-1}) \\ x_n & = & r\sin(\phi_1)\cdots\sin(\phi_{n-2})\sin(\phi_{n-1}) \\ \phi_{n-1} & \in & [0,2\pi] \\ \forall i = 1..n - 1\phi_i & \in & [0,\pi] \end{array}$$

1.16.2 三维旋转公式

绕着 (0,0,0) – (ux,uy,uz) 旋转 θ , (ux,uy,uz) 是单位向量

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

1.16.3 立体角公式

$$\phi: 二面角 \\ \Omega = (\phi_{ab} + \phi_{bc} + \phi_{ac}) \text{ rad} - \pi \text{ sr}$$

$$\tan\left(\frac{1}{2}\Omega/\mathrm{rad}\right) = \frac{\left|\vec{a}\;\vec{b}\;\vec{c}\right|}{abc + \left(\vec{a}\cdot\vec{b}\right)c + \left(\vec{a}\cdot\vec{c}\right)b + \left(\vec{b}\cdot\vec{c}\right)a}$$
$$\theta_{s} = \frac{\theta_{a} + \theta_{b} + \theta_{c}}{2}$$

1.16.4 常用体积公式

- Pyramid $V = \frac{1}{3}Sh$.
- Sphere $V = \frac{4}{3}\pi R^3$.
- Frustum $V = \frac{1}{3}h(S_1 + \sqrt{S_1S_2} + S_2)$.
- Ellipsoid $V = \frac{4}{3}\pi abc$.

1.16.5 高维球体积

$$\begin{split} V_2 &= \pi R^2, \, S_2 = 2\pi R \\ V_3 &= \frac{4}{3}\pi R^3, \, S_3 = 4\pi R^2 \\ V_4 &= \frac{1}{2}\pi^2 R^4, \, S_4 = 2\pi^2 R^3 \\ \text{Generally,} \, V_n &= \frac{2\pi}{n} V_{n-2}, \, S_{n-1} = \frac{2\pi}{n-2} S_{n-3} \\ \text{Where,} \, S_0 &= 2, \, V_1 = 2, \, S_1 = 2\pi, \, V_2 = \pi \end{split}$$

```
1.17
         三维几何基础操作
   /* 右手系逆时针绕轴旋转,(x,y,z)A=(x_{\text{new}},y_{\text{new}},z_{\text{new}})
   new[i] += old[j] * A[j][i] */
   void calc(p3 n, double cosw) {
      double sinw = sqrt(1 - cosw * cosw);
      n.normalize();
      for (int i = 0; i < 3; i++) {
       | int j = (i + 1) % 3, k = (j + 1) % 3;
         double x = n[i], y = n[j], z = n[k];
         A[i][i] = (y * y + z * z) * cosw + x * x;
9
         A[i][j] = x * y * (1 - cosw) + z * sinw;
10
       A[i][k] = x * z * (1 - cosw) - y * sinw; } 
11
   p3 cross (const p3 & a, const p3 & b) {
12
    | return p3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z,
13
        \hookrightarrow a.x * b.y - a.y * b.x); }
14
   double mix(p3 a, p3 b, p3 c) {
    return dot(cross(a, b), c); }
16
   struct Line { p3 s, t; };
   struct Plane { // nor 为单位法向量, 离原点距离 m
18
      p3 nor; double m;
19
      Plane(p3 r, p3 a) : nor(r){
       | nor = 1 / r.len() * r;
         m = dot(nor, a); } };
21
22
   // 以下函数注意除以0的情况
   // 点到平面投影
23
24
   p3 project_to_plane(p3 a, Plane b) {
   return a + (b.m - dot(a, b.nor)) * b.nor; }
   // 点到直线投影
   p3 project_to_line(p3 a, Line b) {
   return b.s + dot(a - b.s, b.t - b.s) / dot(b.t - b.s, b.t -
28
     ⇔ b.s) * (b.t - b.s); }
   // 直线与直线最近点
30
   pair<p3, p3> closest_two_lines(Line x, Line y) {
   double a = dot(x.t - x.s, x.t - x.s);
double b = dot(x.t - x.s, y.t - y.s);
   double e = dot(y.t - y.s, y.t - y.s);
33
   double d = a*e - b*b; p3 r = x.s - y.s;
   double c = dot(x.t - x.s, r), f = dot(y.t - y.s, r);
35
   double s = (b*f - c*e) / d, t = (a*f - c*b) / d;
   return \{x.s + s*(x.t - x.s), y.s + t*(y.t - y.s)\}; \}
37
   // 直线与平面交点
39
   p3 intersect(Plane a, Line b) {
   double t = dot(a.nor, a.m * a.nor - b.s) / dot(a.nor, b.t -
    → b.s);
   return b.s + t * (b.t - b.s); }
41
   // 平面与平面求交线
42
43
   Line intersect(Plane a, Plane b) {
   p3 d=cross(a.nor,b.nor), d2=cross(b.nor,d);
   double t = dot(d2, a.nor);
   p3 s = 1 / t * (a.m - dot(b.m * b.nor, a.nor)) * d2 + b.m *
     → b.nor;
   return (Line) {s, s + d}; }
   // 三个平面求交点
48
   p3 intersect(Plane a, Plane b, Plane c) {
   return intersect(a, intersect(b, c));
  p3 c1 (a.nor.x, b.nor.x, c.nor.x);
   p3 c2 (a.nor.y, b.nor.y, c.nor.y);
   p3 c3 (a.nor.z, b.nor.z, c.nor.z);
  p3 c4 (a.m, b.m, c.m);
   return 1 / mix(c1, c2, c3) * p3(mix(c4, c2, c3), mix(c1,
     \hookrightarrow c4, c3), mix(c1, c2, c4)); }
```

1.18 三维凸包

```
vector <p3> p;
   int mark[N][N], stp;
   typedef array <int, 3> Face;
   vector <Face> face;
  double volume (int a, int b, int c, int d) {
   | return mix (p[b] - p[a], p[c] - p[a], p[d] - p[a]); }
   void ins(int a, int b, int c) {face.push_back({a, b, c});}
   void add(int v) {
Q
      vector <Face> tmp; int a, b, c; stp++;
10
      for (auto f : face) {
       | if (sgn(volume(v, f[0], f[1], f[2])) < 0) {
11
12
          | for (auto i : f) for (auto j : f)
13
            | mark[i][j] = stp; }
14
         else {
         | tmp.push_back(f);}
16
      } face = tmp;
      for (int i = 0; i < (int) tmp.size(); i++) {</pre>
17
       | a = tmp[i][0], b = tmp[i][1], c = tmp[i][2];
```

```
if (mark[a][b] == stp) ins(b, a, v);
        if (mark[b][c] == stp) ins(c, b, v);
20
       | if (mark[c][a] == stp) ins(a, c, v); } }
   bool Find(int n) {
22
23
    | for (int i = 2; i < n; i++) {
       | p3 ndir = cross (p[0] - p[i], p[1] - p[i]);
         if (ndir == p3(0,0,0)) continue;
25
         swap(p[i], p[2]);
         for (int j = i + 1; j < n; j++) {
27
28
          | if (sgn(volume(0, 1, 2, j)) != 0) {
               swap(p[j], p[3]);
30
               ins(0, 1, 2);
               ins(0, 2, 1);
32
             return 1;
33
      } } return 0; }
   mt19937 rng;
35
   bool solve() {
36
    | face.clear();
     int n = (int) p.size();
37
      shuffle(p.begin(), p.end(), rng);
38
39
      if (!Find(n)) return 0;
40
      for (int i = 3; i < n; i++) add(i);
    | return 1; }
```

1.19 最小覆盖球

```
vector<p3> vec;
   Circle calc() {
       if(vec.empty()) { return Circle(p3(0, 0, 0), 0);
    | }else if(1 == (int)vec.size()) {return Circle(vec[0],
         → 0);
      }else if(2 == (int)vec.size()) {
       | return Circle(0.5 * (vec[0] + vec[1]), 0.5 * (vec[0]
             → - vec[1]).len());
      }else if(3 == (int)vec.size()) {
       | double r = (vec[0] - vec[1]).len() * (vec[1] -
 8

    vec[2]).len() * (vec[2] - vec[0]).len() / 2 /
            \hookrightarrow fabs(cross(vec[0] - vec[2], vec[1] -
             \hookrightarrow \text{vec}[2]).len());
    | | Plane ppp1 = Plane(vec[1] - vec[0], 0.5 * (vec[1] +

  vec[0]));
    | return Circle(intersect(Plane(vec[1] - vec[0], 0.5 *
             \hookrightarrow (vec[1] + vec[0])), Plane(vec[2] - vec[1], 0.5 *
            \hookrightarrow (vec[2] + vec[1])), Plane(cross(vec[1] - vec[0],
            \hookrightarrow \text{vec}[2] - \text{vec}[0]), \text{vec}[0]), r);
11
    | }else {
    | | p3 o(intersect(Plane(vec[1] - vec[0], 0.5 * (vec[1] +
            \hookrightarrow vec[0])), Plane(vec[2] - vec[0], 0.5 * (vec[2] + \hookrightarrow vec[0])), Plane(vec[3] - vec[0], 0.5 * (vec[3] +

  vec[0]))));
13
       | return Circle(o, (o - vec[0]).len()); } }
   Circle miniBall(int n) {
15
    | Circle res(calc());
       for(int i(0); i < n; i++) {</pre>
17
          if(!in_circle(a[i], res)) { vec.push_back(a[i]);
18
             res = miniBall(i); vec.pop_back();
             if(i) { p3 tmp(a[i]);
                 memmove(a + 1, a, sizeof(p3) * i);
20
                 a[0] = tmp; } } }
22
    | return res; }
23
   int main() {
24
    | int n; scanf("%d", &n);
       for(int i(0); i < n; i++) a[i].scan();</pre>
25
26
      sort(a, a + n); n = unique(a, a + n) - a;
      vec.clear(); random_shuffle(a, a + n);
27
28
       printf("%.10f\n", miniBall(n).r); }
```

2. Tree & Graph

2.1 Hopcroft-Karp $O(\sqrt{V}E)$

```
// 左侧n个点,右侧k个点,1-base,初始化将mx[],my[] 都置为0
   int n, m, k, q[N], dx[N], dy[N], mx[N], my[N];
   vector <int> E[N];
   bool bfs() { bool flag = 0; int qt = 0, qh = 0;
      for(int i = 1; i \le k; ++ i) dy[i] = 0;
      for(int i = 1; i <= n; ++ i) { dx[i] = 0;
       | if (! mx[i]) q[qt ++] = i; }
      while (qh < qt) \{ int u = q[qh ++];
8
9
       | for(auto v : E[u]) {
10
          | if (! dy[v]) { dy[v] = dx[u] + 1;}
11
               if (! my[v]) flag = 1; else {
12
                  dx[my[v]] = dx[u] + 2;
13
                 q[qt ++] = my[v]; } } }
14
     return flag; }
15
   bool dfs(int u) {
    | for(auto v : E[u]) {
16
       | if (dy[v] == dx[u] + 1) { dy[v] = 0;}
17
18
           if (! my[v] || dfs(my[v])) {
19
            | mx[u] = v; my[v] = u; return 1; }}}
20
    return 0; }
21
   void hk() {
   fill(mx + 1, mx + n + 1, 0); fill(my + 1, my + k + 1, 0);
   while (bfs()) for(int i=1; i<=n; ++i) if (!mx[i]) dfs(i);}
```

2.2 Hungarian O(VE)

```
int n, k, mat[N], vis[N]; vector<int> E[N];
  bool dfs(int tim, int x) {
     for (auto y : E[x]) {
       if (vis[y] == tim) continue;
        vis[y] = tim;
6
        if (!mat[y] || dfs(tim, mat[y])) {
         | mat[y] = x; return 1; } }
    return 0; }
   int solve() {
10
    | fill(vis + 1, vis + k + 1, 0);
11
      int ans = 0;
     for (int i = 1; i <= n; ++i)
12
      | if (dfs(i, i)) ans++;
13
      return ans; }
```

2.3 Shuffle 一般图最大匹配 O(VE)

```
mt19937 rng(233);
  int n, m, mat[N], vis[N]; vector<int> E[N];
  bool dfs(int tim, int x) {
      shuffle(E[x].begin(), E[x].end(), rng);
      vis[x] = tim;
      for (auto y : E[x]) {
        int z = mat[y]; if (vis[z] == tim) continue;
8
         mat[x] = y, mat[y] = x, mat[z] = 0;
        if (!z || dfs(tim, z)) return true;
       | mat[x] = 0, mat[y] = z, mat[z] = y; }
     return false; }
   int main() {
12
13
     for (int T = 0; T < 10; ++T) {
14
        fill(vis + 1, vis + n + 1, 0);
15
         for (int i = 1; i <= n; ++i)
         | if (!mat[i]) dfs(i, i); } }
```

2.4 极大团计数

2.5 有根树同构 Hash

```
ULL get(vector <ULL> ha) {
    | sort(ha.begin(), ha.end());
    | ULL ret = 0xdeadbeef;
    | for (auto i : ha) {
```

```
5 | | ret = ret * P + i;
5 | ret ^= ret << 17; }
7 | return ret * 997; }
```

2.6 KM 最大权匹配 $O(V^3)$

```
struct KM {
   int n, nl, nr;
   LL a[N][N];
   LL h1[N], hr[N], s1k[N];
   int fl[N], fr[N], vl[N], vr[N], pre[N], q[N], ql, qr;
   int check(int i) {
    | if (vl[i] = 1, fl[i] != -1)
       | return vr[q[qr++] = fl[i]] = 1;
      while (i != -1) swap(i, fr[fl[i] = pre[i]]);
10
    | return 0; }
   void bfs(int s) {
12
    | fill(slk, slk + n, INF);
      fill(vl, vl + n, \emptyset); fill(vr, vr + n, \emptyset);
13
      q[ql = 0] = s; vr[s] = qr = 1;
15
      for (LL d;;) {
16
       | for (; ql < qr; ++ql)
         for (int i = 0, j = q[q1]; i < n; ++i)
17
18
         if (d=hl[i]+hr[j]-a[i][j], !vl[i] \&\& slk[i] >= d) {
          | if (pre[i] = j, d) slk[i] = d;
19
20
          | else if (!check(i)) return; }
         d = INF:
         for (int i = 0; i < n; ++i)
22
23
         if (!vl[i] && d > slk[i]) d = slk[i];
         for (int i = 0; i < n; ++i) {
24
25
          | if (vl[i]) hl[i] += d; else slk[i] -= d;
          | if (vr[i]) hr[i] -= d; }
27
         for (int i = 0; i < n; ++i)
          | if (!vl[i] && !slk[i] && !check(i)) return; } }
28
29
   void solve() {
30
    | n = max(nl, nr);
31
    | fill(pre, pre + n, -1); fill(hr, hr + n, 0);
32
      fill(fl, fl + n, -1); fill(fr, fr + n, -1);
      for (int i = 0; i < n; ++i)
34
       | hl[i] = *max_element(a[i], a[i] + n);
35
      for (int i = 0; i < n; ++i)
36
       | bfs(i); }
   LL calc() {
37
    | LL ans = 0;
      for (int i = 0; i < nl; ++i)
39
40
       | if (~fl[i]) ans += a[i][fl[i]];
    | return ans; }
42
   void output() {
    | for (int i = 0; i < nl; ++i)
    | printf("%d ", (~fl[i] && a[i][fl[i]] ? fl[i] + 1 : 0));
44
45
   } } km;
```

2.7 Tarjan 点双, 边双

```
/** 边双 **/
 2 \mid \text{int n, m, head[N], nxt[M << 1], to[M << 1], ed;}
   int dfn[N], low[N], bcc_id[N], bcc_cnt, stp;
   bool bri[M << 1], vis[N];</pre>
   vector<int> bcc[N];
   void tar(int now, int fa) {
      dfn[now] = low[now] = ++stp;
 7
 8
       for (int i = head[now]; \sim i; i = nxt[i]) {
 9
       | if (!dfn[to[i]]) {
            tar(to[i], now);
             low[now] = min(low[now], low[to[i]]);
             \quad \text{if } (low[to[i]] \ \text{> } dfn[now])
             | bri[i] = bri[i ^ 1] = 1; }
14
         else if (dfn[to[i]] < dfn[now] && to[i] != fa)</pre>
15
          | low[now] = min(low[now], dfn[to[i]]); } }
16
   void DFS(int now) {
17
    | vis[now] = 1;
      bcc_id[now] = bcc_cnt;
18
      bcc[bcc_cnt].push_back(now);
19
20
      for (int i = head[now]; ~i; i = nxt[i]) {
21
       | if (bri[i]) continue;
       if (!vis[to[i]]) DFS(to[i]); } }
22
23
   void EBCC() {// clear dfn low bri bcc_id vis
24
    | bcc_cnt = stp = 0;
      for (int i = 1; i <= n; ++i) if (!dfn[i]) tar(i, 0);
      for (int i = 1; i <= n; ++i)
26
       | if (!vis[i]) ++bcc_cnt, DFS(i); }
    /** 点双 **/
29 | vector<int> G[N],bcc[N];
```

```
int dfn[N], low[N], bcc_id[N], bcc_cnt, stp;
   bool iscut[N]; pii stk[N]; int top;
31
   void tar(int now, int fa) {
32
33
      int child = 0;
34
      dfn[now] = low[now] = ++stp;
35
      for (int to: G[now]) {
         if (!dfn[to]) {
36
37
             stk[++top] = mkpair(now, to); ++child;
38
             tar(to, now);
39
             low[now] = min(low[now], low[to]);
40
             if (low[to] >= dfn[now]) {
                iscut[now] = 1;
41
                bcc[++bcc_cnt].clear();
42
43
                while (1) {
44
                   pii tmp = stk[top--];
45
                   if (bcc_id[tmp.first] != bcc_cnt) {
46
                      bcc[bcc_cnt].push_back(tmp.first);
                      bcc_id[tmp.first] = bcc_cnt; }
47
                   if (bcc_id[tmp.second] != bcc_cnt) {
48
49
                      bcc[bcc_cnt].push_back(tmp.second);
                      bcc_id[tmp.second] = bcc_cnt; }
50
51
                   if (tmp.first == now && tmp.second == to)
52
                    53
         else if (dfn[to] < dfn[now] && to != fa) {</pre>
            stk[++top] = mkpair(now, to);
low[now] = min(low[now], dfn[to]); } }
56
      if (!fa && child == 1) iscut[now] = 0; }
   void PBCC() { // clear dfn low iscut bcc_id
      stp = bcc_cnt = top = 0;
58
      for (int i = 1; i <= n; ++i) if (!dfn[i]) tar(i, 0); }</pre>
```

2.8 2-SAT

```
int stp, comps, top;//清点清边要两倍
   int dfn[N], low[N], comp[N], stk[N];
   void add(int x, int a, int y, int b) {
   //取 X_a 则必须取 Y_b,则 X_a 向 Y_b 连边
   //注意连边是对称的,即,此时实际上 X_b 也必须向 Y_a 连边.
   | E[x << 1 | a].push_back(y << 1 | b); }
   void tarjan(int x) {
 8
      dfn[x] = low[x] = ++stp;
      stk[top++] = x;
      for (auto y : E[x]) {
10
11
       | if (!dfn[y])
         | tarjan(y), low[x] = min(low[x], low[y]);
12
         else if (!comp[y])
13
         | low[x] = min(low[x], dfn[y]);
14
15
      if (low[x] == dfn[x]) {
16
17
         comps++;
         do {int y = stk[--top];
18
          comp[y] = comps;
19
20
        } while (stk[top] != x);
21
     } }
   bool answer[N];
   bool solve() {
23
24
     int cnt = n + n + 1;
      stp = top = comps = 0;
25
26
      fill(dfn, dfn + cnt, 0);
27
      fill(comp, comp + cnt, 0);
      for (int i = 0; i < cnt; ++i) if (!dfn[i]) tarjan(i);</pre>
28
29
      for (int i = 0; i < n; ++i) {
       \mid if (comp[i << 1] == comp[i << 1 | 1]) return false;
30
31
       | answer[i] = (comp[i << 1 | 1] < comp[i << 1]); }
      return true; }
```

2.9 Dominator Tree 支配树

```
struct Dominator_Tree{
   //n为点数,s为起点,e[] 中记录每条边
   int n,s,cnt;int dfn[N],id[N],pa[N],
     \hookrightarrow semi[N],idom[N],p[N],mn[N];
   vector<int>e[N],dom[N],be[N];
   void dfs(int x){//先得到DFS树
      dfn[x]=++cnt;id[cnt]=x;
      for(auto i:e[x]){
        if(!dfn[i])dfs(i),pa[dfn[i]]=dfn[x];
        be[dfn[i]].push_back(dfn[x]);
   int get(int x){//带权并查集
11
     if(p[x]!=p[p[x]]){
12
13
         if(semi[mn[x]]>semi[get(p[x])]) mn[x]=get(p[x]);
        p[x]=p[p[x]];
```

```
| }return mn[x];
   }void LT(){//求出semi和idom得到支配树
   | for(int i=cnt;i>1;i--){
         for(auto j:be[i]) semi[i]=min(semi[i],semi[get(j)]);
18
         dom[semi[i]].push_back(i); int x=p[i]=pa[i];
19
         for(auto j:dom[x]) idom[j]=(semi[get(j)]<x?get(j):x);</pre>
         dom[x].clear();
     }for(int i=2;i<=cnt;i++){</pre>
       if(idom[i]!=semi[i])idom[i]=idom[idom[i]];
         dom[id[idom[i]]].push_back(id[i]);
   }void build(){//建立支配树
26
   | for(int i=1;i<=n;i++) dfn[i]=0,dom[i].clear(),
      | be[i].clear(),p[i]=mn[i]=semi[i]=i;
28
      cnt=0;dfs(s);LT();
29
   } }G;
30
```

Minimum Mean Cycle 最小平均值环 $O(n^2)$ 2.10

```
// 点标号为 1, 2, \cdots, n, 0为虚拟源点向其他点连权值为0的单向边.
   // f[i][v] : 从 0 到 v 恰好经过 i 条路的最短路
  ll f[N][N] = \{Inf\}; int u[M], v[M], w[M]; f[0][0] = 0;
   for(int i = 1; i <= n + 1; i ++)
   | for(int j = 0; j < m; j ++)
      | f[i][v[j]] = min(f[i][v[j]], f[i - 1][u[j]] + w[j]);
   double ans = Inf;
   for(int i = 1; i <= n; i ++) {
     double t = -Inf;
9
10
     for(int j = 1; j <= n; j ++)
      | t = max(t, (f[n][i] - f[j][i]) / (double)(n - j));
     ans = min(t, ans); }
```

弦图 2.11

All-in at the River

弦图的定义 连接环中不相邻的两个点的边称为弦. 一个无向图称为弦图, 当图中任意长度都大于 3 的环都至少有一个弦.

单纯点 一个点称为单纯点当 $\{v\} \cup A(v)$ 的导出子图为一个团. 任何一个 弦图都至少有一个单纯点, 不是完全图的弦图至少有两个不相邻的单纯点.

完美消除序列 一个序列 $v_1, v_2, ..., v_n$ 满足 v_i 在 v_i, \cdots, v_n 的诱导子图 中为一个单纯点. 一个无向图是弦图当且仅当它有一个完美消除序列.

最大势算法 从 n 到 1 的顺序依次给点标号. 设 label; 表示第 i 个点与多 少个已标号的点相邻,每次选择 label 最大的未标号的点进行标号. 用桶维 护优先队列可以做到 O(n+m).

弦图的判定 判定最大势算法输出是否合法即可. 如果依次判断是否构成 团, 时间复杂度为 O(nm). 考虑优化, 设 v_{i+1}, \cdots, v_n 中所有与 v_i 相邻的 点依次为 $N(v_i) = \{v_{j1}, \cdots, v_{jk}\}$. 只需判断 v_{j1} 是否与 v_{j2}, \cdots, v_{jk} 相 邻即可. 时间复杂度 O(n+m).

弦图的染色 完美消除序列**从后往前**染色, 染上出度的 mex.

最大独立集 完美消除序列从前往后能选就选.

团数 最大团的点数. 一般图团数 ≤ 色数, 弦图团数 = 色数.

极大团 弦图的极大团一定为 $\{x\} \cup N(x)$.

最小团覆盖 用最少的团覆盖所有的点. 设最大独立集为 $\{p_1, \ldots, p_t\}$, 则 $\{p_1 \cup N(p_1), ..., p_t \cup N(p_t)\}$ 为最小团覆盖.

弦图 k 染色计数 $\prod_{v \in V} k - N(v) + 1$.

区间图 每个顶点代表一个区间,有边当且仅当区间有交.区间图是弦图, 个完美消除序列是右端点排序.

```
vector <int> L[N];
   int seq[N], lab[N], col[N], id[N], vis[N];
3
   void mcs() {
      for (int i = 0; i < n; i++) L[i].clear();</pre>
      fill(lab + 1, lab + n + 1, 0);
      fill(id + 1, id + n + 1, 0);
      for (int i = 1; i <= n; i++) L[0].push_back(i);</pre>
 8
      int top = 0;
      for (int k = n; k; k--) {
         int x = -1;
         for (;;) {
          | if (L[top].empty()) top --;
13
             x = L[top].back(), L[top].pop_back();
               if (lab[x] == top) break;
15
         }
         seq[k] = x; id[x] = k;
         for (auto v : E[x]) {
            if (!id[v]) {
20
21
               L[++lab[v]].push_back(v);
               top = max(top, lab[v]);
```

```
| | } } }
   bool check() {
24
     fill(vis + 1, vis + n + 1, 0);
25
      for (int i = n; i; i--) {
26
27
       int x = seq[i];
         vector <int> to;
         for (auto v : E[x])
29
           if (id[v] > i) to.push_back(v);
30
         if (to.empty()) continue;
31
         int w = to.front();
32
         for (auto v : to) if (id[v] < id[w]) w = v;
33
         for (auto v : E[w]) vis[v] = i;
34
        for (auto v : to)
35
        | if (v != w && vis[v] != i) return false;
36
37
      } return true; }
   void color() {
38
39
    | fill(vis + 1, vis + n + 1, 0);
      for (int i = n; i; i--) {
40
       int x = seq[i];
41
42
         for (auto v : E[x]) vis[col[v]] = x;
43
         for (int c = 1; !col[x]; c++)
44
         | if (vis[c] != x) col[x] = c;
```

2.12 欧拉回路

```
/* comment : directed */
   int e, cur[N]/*, deg[N]*/;
   vector<int>E[N];
   int id[M]; bool vis[M];
   stack<int>stk;
   void dfs(int u) {
      for (cur[u]; cur[u] < E[u].size(); cur[u]++) {</pre>
       int i = cur[u];
         if (vis[abs(E[u][i])]) continue;
10
         int v = id[abs(E[u][i])] ^ u;
         vis[abs(E[u][i])] = 1; dfs(v);
       | stk.push(E[u][i]); }
   }// dfs for all when disconnect
13
   void add(int u, int v) {
    | id[++e] = u ^ v; // s = u
14
     E[u].push_back(e); E[v].push_back(-e);
16
17
   /* | E[u].push_back(e); deg[v]++; */
   } bool valid() {
    | for (int i = 1; i <= n; i++)
      | if (E[i].size() & 1) return 0;
20
   /* | | if (E[i].size() != deg[i]) return 0;*/
    return 1;}
```

2.13 斯坦纳树

```
LL d[1 << 10][N]; int c[15];
   priority_queue < pair <LL, int> > q;
   void dij(int S) {
      for (int i = 1; i <= n; i++) q.push(mp(-d[S][i], i));
5
      while (!q.empty()) {
         pair <LL, int> o = q.top(); q.pop();
6
         if (-o.x != d[S][o.y]) continue;
         for (auto v : E[x]) if (d[S][v.v] > d[S][x] + v.w) {
10
          | d[S][v.v] = d[S][x] + v.w;
            q.push(mp(-d[S][v.v], v.v));}}}
11
12
   void solve() {
13
      for (int i = 1; i < (1 << K); i++)
      | for (int j = 1; j <= n; j++) d[i][j] = INF;
for (int i = 0; i < K; i++) read(c[i]), d[1 << i][c[i]]
14
      for (int S = 1; S < (1 << K); S++) {
16
17
       | for (int k = S; k > (S >> 1); k = (k - 1) & S) {
             for (int i = 1; i <= n; i++) {
18
19
                d[S][i] = min(d[S][i], d[k][i] + d[S ^ k][i]);
         } } | dij(S);}}
```

2.14 Dinic 最大流

复杂度证明思路 假设 dist 为残量网络上的距离. Dinic 一轮增广会找到一个极大的长度为 dist(s, t) 的增广路集合 blocking flow, 增广后 dist(s, t) 将会增大. 因此只有 O(V) 轮; 如果一轮增广是 O(VE) 的, 总复杂度是 $O(V^2E)$. 没有当前弧优化的 Dinic 复杂度应是指数级别的.

单位流量网络 在 0-1 流量图上 Dinic 有更好的性质.

- 复杂度为 $O(\min\{V^{2/3}, E^{1/2}\}E)$.
- dist(s, t) = d, 残量网络上至多还存在 E/d 的流.

• 每个点只有一个入/出度时复杂度 $O(V^{1/2}E)$, 例如 Hopcroft-Karp.

```
| int v, nxt; LL f;
   } e[M * 2];
   int ecnt = 1, head[N], cur[N];
   void add(int u, int v, LL f) {
    | e[++ecnt] = {v, head[u], f};
                                        head[u] = ecnt;
    | e[++ecnt] = {u, head[v], 011}; head[v] = ecnt; }
   int n, S, T;
   int q[N], tag[N], he = 0, ta = 1;
   bool bfs() {
      for (int i = S; i<= T; i++) tag[i] = 0;</pre>
      he = 0, ta = 1; q[0] = S;
      tag[S] = 1;
      while (he < ta) {
       | int x = q[he++];
          for (int o = head[x]; o; o = e[o].nxt)
          | if (e[o].f && !tag[e[o].v])
17
18
          | tag[e[o].v] = tag[x] + 1, q[ta++] = e[o].v;
19
      }
20
      return !!tag[T]; }
21
   LL dfs(int x, LL flow) {
      if (x == T) return flow;
22
      LL used = 0;
      for (int &o = cur[x]; o; o = e[o].nxt) {
   | if (e[o].f && tag[x] < tag[e[o].v]) {</pre>
24
25
          | LL ret = dfs(e[o].v, min(flow - used, e[o].f));
             if (ret) {
                e[o].f -= ret; e[o ^ 1].f += ret;
                used += ret;
              if (used == flow) return flow;
30
          | } } }
32
    | return used; }
   LL dinic() {
    | LL ans = 0;
34
35
      while (bfs()) {
       | for (int i = S; i <= T; i++) cur[i] = head[i];
36
         ans += dfs(S, INF);
37
      } return ans; }
```

2.15 Dijkstra 费用流

```
pii solve() {
      LL res = 0, flow = 0;
      for (int i = S; i \leftarrow T; i++) h[i] = 0;
 3
      while (true) {// first time may SPFA
          priority_queue <pii, vector<pii>, greater<pii>> q;
          for (int i = S; i <= T; i++) dis[i] = INF;</pre>
          dis[S] = 0; q.push(pii(0, S));
         while (!q.empty()) {
           | pii now = q.top(); q.pop(); int x = now.second;
             if (dis[x] < now.first) continue;</pre>
             for (int o = head[x]; o; o = e[o].nxt) {
11
             | if (e[o].f > 0 \&\& dis[e[o].v] > dis[x] + e[o].w
                  \hookrightarrow + h[x] - h[e[o].v]) {
13
                 | dis[e[o].v] = dis[x] + e[o].w + h[x] -
                       \hookrightarrow h[e[o].v];
14
                    prevv[e[o].v] = x; pree[e[o].v] = o;
                     q.push(pii(dis[e[o].v], e[o].v)); } } }
          if (dis[T] == INF) break;
          for (int i = S; i <= T; i++) h[i] += dis[i];</pre>
17
          int d = INF;
          for (int v = t; v != S; v = prevv[v]) d = min(d, v)
            \hookrightarrow e[pree[v]].f);
          flow += d; res += (LL)d * h[t];
21
          for (int v = t; v != S; v = prevv[v]) {
          | e[pree[v]].f -= d; e[pree[v] ^ 1].f += d; } }
      return make_pair(flow, res); }
```

2.16 点分治

```
int x = q[head++]; sz[x] = 1; son[x] = 0;
for (auto [y, _] : G[x]) if (!vis[y] && y != pr[x]) {
            pr[y] = x; q[tail++] = y; } }
11
      for (int i = tail - 1; i; i--) {
12
13
         int x = q[i]; sz[pr[x]] += sz[x];
       | if (sz[x] > sz[son[pr[x]]]) son[pr[x]] = x; }
      int x = q[0];
      while (son[x] \&\& sz[son[x]] * 2 >= s) x = son[x];
17
      return x: }
18
   void getdis(int o, int k) {
      int head = 0, tail = 0; q[tail++] = o;
19
      while (head != tail) {
20
21
       | int x = q[head++]; sz[x] = 1; rt[x][k] = o;
         for (auto [y, w] : G[x]) if (!vis[y] && y != pr[x]) {
22
23
          | pr[y]=x; d[y][k] = d[x][k] + w; q[tail++]=y; } 
      for (int i = tail - 1; i; i--)sz[pr[q[i]]] += sz[q[i]];
24
   void build(int o, int k, int s, int fa) {
26
      int x = getcenter(o, s);
27
      vis[x] = true; depth[x] = k; pr[x] = fa;
      for (auto [y, w] : G[x]) if (!vis[y]) {
28
29
       | d[y][k] = w; pr[y] = x; getdis(y, k); }
      for (auto [y, w] : G[x]) if (!vis[y])
31
       | build(y, k + 1, sz[y], x); }
   void modify(int x) {
   | int t = col[x] ? -1 : 1; cnt_all[x] += t;
32
33
      for (int u = pr[x], k = depth[x] - 1; u; u = pr[u], k--)
34
         sum_all[u] += t * d[x][k]; cnt_all[u] += t;
35
        sum[rt[x][k]][k] += t*d[x][k]; cnt[rt[x][k]][k] += t;
36
      } col[x] ^= true; }
37
38
   int query(int x) { int ans = sum_all[x];
39
      for (int u = pr[x], k = depth[x] - 1; u; u = pr[u], k--)
         ans += sum_all[u] - sum[rt[x][k]][k]
40
          | + d[x][k] * (cnt_all[u] - cnt[rt[x][k]][k]);
41
      return ans; }
42
```

2.17 Gomory-Hu 无向图最小割树 $O(V^3E)$

每次随便找两个点 s,t 求在原图的最小割,在最小割树上连 (s,t,w_{cut}) ,递 归对由割集隔开的部分继续做. 在得到的树上,两点最小割即为树上瓶颈路. 实现时,由于是随意找点,可以写为分治的形式.

2.18 Stoer-Wagner 无向图最小割 $O(VE + V^2 \log V)$

```
const int N = 601;
   int f[N], siz[N], G[N][N];
   int getf(int x) {return f[x] == x ? x : f[x] = getf(f[x]);}
   int dis[N], vis[N], bin[N];
   int contract(int &s, int &t) { // Find s,t
      memset(vis, 0, sizeof(vis));
      memset(dis, 0, sizeof(dis));
8
      int i, j, k, mincut, maxc;
      for (i = 1; i <= n; i++) {
10
11
         k = -1; maxc = -1;
         for (j = 1; j <= n; j++)
12
13
            if (!bin[j] && !vis[j] && dis[j] > maxc) {
               k = j;
14
               maxc = dis[j]; }
         if (k == -1) return mincut;
         s = t; t = k; mincut = maxc; vis[k] = true;
17
18
         for (j = 1; j <= n; j++)
19
          if (!bin[j] && !vis[j]) dis[j] += G[k][j];
20
      } return mincut; }
   const int inf = 0x3f3f3f3f;
22
   int solve() {
23
      int mincut, i, j, s, t, ans;
      for (mincut = inf, i = 1; i < n; i++) {</pre>
24
25
         ans = contract(s, t);
         bin[t] = true;
27
         if (mincut > ans) mincut = ans;
         if (mincut == 0) return 0;
         for (j = 1; j <= n; j++)
29
         | if (!bin[j]) G[s][j] = (G[j][s] += G[j][t]);
30
31
     } return mincut; }
32
   int main() {
33
34
      for (int i = 1; i \le n; ++i) f[i] = i, siz[i] = 1;
35
      for (int i = 1, u, v, w; i \le m; ++i) {
       | cin >> u >> v >> w;
36
         int fu = getf(u), fv = getf(v);
37
38
         if (fu != fv) {
          if (siz[fu] > siz[fv]) swap(fu, fv);
```

```
40 | | | f[fu] = fv, siz[fv] += siz[fu]; }
41 | | G[u][v] += w, G[v][u] += w; }
42 | cout << (siz[getf(1)] != n ? 0 : solve()); }
```

2.19 网络流总结

2.19.1 最小割集, 最小割必须边以及可行边

最小割集 从 S 出发, 在残余网络中BFS所有权值非 0 的边 (包括反向边), 得到点集 $\{S\}$, 另一集为 $\{V\}$ — $\{S\}$.

最小割集必须点 残余网络中S直接连向的点必在S的割集中,直接连向T的点必在T的割集中;若这些点的并集为全集,则最小割方案唯一.

最小割可行边 在残余网络中求强联通分量,将强联通分量缩点后,剩余的边即为最小割可行边,同时这些边也必然满流.

最小割必须边 在残余网络中求强联通分量, 若S出发可到u, T出发可到v, 等价于 $\sec_S = \sec_u$ 且 $\sec_T = \sec_v$, 则该边为必须边.

2.19.2 常见问题

最大权闭合子图 适用问题:每个点有点权,限制条件形如:选择A则必须选择B,选择B则必须选择C, D. 建图方式: B向A连边, CD向B连边.求解: S向正权点连边,负权点向T连边,其余边容量 ∞,求最小割,答案为S所在最小割集.

二元关系 适用问题: 有 n 个元素, 每个元素可选A或者B, 各有代价; 有 m 个限制条件, 若元素 i 与 j 的种类不同则产生额外的代价, 求最小代价. 求解: S向i连边 A_i , i向T连边 B_i , 一组限制 (i,j) 代价为 z, 则i与j之间连双向容量为 z 的边, 求最小割.

混合图欧拉回路 把无向边随便定向, 计算每个点的入度和出度, 如果有某个点出入度之差 $\deg_i = \operatorname{in}_i - \operatorname{out}_i$ 为奇数, 肯定不存在欧拉回路. 对于 $\deg_i > 0$ 的点, 连接边 $(i,T,\deg_i/2)$; 对于 $\deg_i < 0$ 的点, 连接边 $(S,i,-\deg_i/2)$. 最后检查是否满流即可.

二**物流** 水源 S_1 , 水汇 T_1 , 油源 S_2 , 油汇 T_2 , 每根管道流量共用. 求流量和最大. 建超级源 SS_1 汇 TT_1 , 连边 $SS_1 \to S_1$, $SS_1 \to S_2$, $T_1 \to TT_1$, 设最大流为 x_1 . 建超级源 SS_2 汇 TT_2 , 连边 $SS_2 \to S_1$, $SS_2 \to T_2$, $T_1 \to TT_2$, $S_2 \to TT_2$, 设最大流为 $S_2 \to TT_2$, 边最大流中水流量 $S_1 \to TT_2$, 油流量 $S_2 \to TT_2$, 油流量 $S_1 \to TT_2$

2.19.3 一些网络流建图

无源汇有上下界可行流 每条边 (u,v) 有一个上界容量 $C_{u,v}$ 和下界容量 $B_{u,v}$,我们让下界变为 0,上界变为 $C_{u,v}$ — $B_{u,v}$,但这样做流量不守恒. 建立超级源点 SS 和超级汇点 TT,用 du_i 来记录每个节点的流量情况, $du_i = \sum B_{j,i} - \sum B_{i,j}$,添加一些附加弧. 当 $du_i > 0$ 时,连边 (SS,i,du_i) ;当 $du_i < 0$ 时,连边 $(i,TT,-du_i)$. 最后对 (SS,TT) 求一次最大流即可,当所有附加边全部满流时(即 $maxflow == du_i > 0$)时有可行解.

有源汇有上下界最大可行流 建立超级源点 SS 和超级汇点 TT, 首先判断是否存在可行流, 用无源汇有上下界可行流的方法判断. 增设一条从 T 到 S 没有下界容量为无穷的边, 那么原图就变成了一个无源汇有上下界可行流问题. 同样地建图后, 对 (SS,TT) 进行一次最大流, 判断是否有可行解. 如果有可行解, 删除超级源点 SS 和超级汇点 TT, 并删去 T 到 S 的这条边, 再对 (S,T) 进行一次最大流, 此时得到的 maxflow 即为有源汇有上下界最大可行流.

有源汇有上下界最小可行流 建立超级源点 SS 和超级汇点 TT, 和无源汇有上下界可行流一样新增一些边,然后从SS到TT跑最大流. 接着加上边 (T,S,∞) , 再从 SS 到 TT 跑一遍最大流. 如果所有新增边都是满的,则存在可行流,此时 T 到 S 这条边的流量即为最小可行流.

有上下界费用流 如果求无源汇有上下界最小费用可行流或有源汇有上下界最小费用最大可行流,用1.6.3.1/1.6.3.2 的构图方法,给边加上费用即可、求有源汇有上下界最小费用最小可行流,要先用1.6.3.3的方法建图,先求出一个保证必要边满流情况下的最小费用. 如果费用全部非负,那么这时的费用就是答案. 如果费用有负数,那么流多了可能更好,继续做从 S 到 T 的流量任意的最小费用流,加上原来的费用就是答案.

费用流消负环 新建超级源SS汇TT, 对于所有流量非空的负权边e, 先流满 (ans+=e.f*e.c, e.rev.f+=e.f, e.f=ø), 再连边SS \rightarrow e.to, e.from \rightarrow TT, 流量均为e.f(>0), 费用均为0. 再连边T \rightarrow S流量 ∞ 费用0. 此时没有负环了. 做一遍SS到TT的最小费用最大流, 将费用累加ans, 拆掉T \rightarrow S的那条边 (此边的流量为残量网络中S \rightarrow T的流量). 此时负环已消, 再继续跑最小费用最大流.

2.19.4 整数线性规划转费用流

首先将约束关系转化为所有变量下界为 0. 上界没有要求, 并满足一些等式, 每个变量在均在等式左边且出现恰好两次, 系数为 +1 和 -1, 优化目标为 $\max\sum v_ix_i$ 的形式. 将等式看做点, 等式i右边的值 b_i 若为正, 则 S 向 i 连边 $(b_i,0)$, 否则i向T连边 $(-b_i,0)$. 将变量看做边, 记变量 x_i 的上界为 m_i (无上界则 $m_i=\inf f$), 将 x_i 系数为 +1 的那个等式 u 向系数为 -1 的等式 v 连边 (m_i,v_i) .

2.20 图论结论

2.20.1 最小乘积问题原理

每个元素有两个权值 $\{x_i\}$ 和 $\{y_i\}$,要求在某个限制下 (例如生成树,二分图匹配) 使得 $\Sigma x \Sigma y$ 最小。 对于任意一种符合限制的选取方法,记 $X = \Sigma x_i, Y = \Sigma y_i$,可看做平面内一点 (X,Y). 答案必在下凸壳上,找 出该下凸壳所有点,即可枚举获得最优答案。可以递归求出此下凸壳所有点,分别找出距 x,y 轴最近的两点 A,B,分别对应于 Σy_i , Σx_i 最小。找出距离 线段最远的点 C,则 C 也在下凸壳上,C 点满足 $AB \times AC$ 最小,也即

$$(X_B - X_A)Y_C + (Y_A - Y_B)X_C - (X_B - X_A)Y_A - (Y_B - Y_A)X_A$$

最小, 后两项均为常数, 因此将所以权值改成 $(X_B - X_A)y_i + (Y_B - Y_A)x_i$, 求同样问题 (例如最小生成树, 最小权匹配) 即可. 求出 C 点以后, 递归 AC,

2.20.2 最小环

无向图最小环: 每次floyd到 k 时, 判断 1 到 k-1 的每一个 i, j:

ans =
$$\min\{\text{ans}, d(i, j) + G(i, k) + G(k, j)\}.$$

有向图最小环: 做完floyd后, d(i,i) 即为经过 i 的最小环.

2.20.3 度序列的可图性

判断一个度序列是否可转化为简单图,除了一种贪心构造的方法外,下列方法更快速. EG定理: 将度序列从大到小排序得到 $\{d_i\}$,此序列可转化为 简单图当且仅当 $(1)\Sigma d_i$ 为偶数. (2) 对于任意的 $1 \le k \le n-1$ 满足 $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(k, d_i).$

2.20.4 切比雪夫距离与曼哈顿距离转化

曼哈顿距离转切比雪夫距离: (x+y,x-y), 适用于一些每次只能向四联通 的格子走一格的问题.

切比雪夫距离转曼哈顿距离: $(\frac{x+y}{2}, \frac{x-y}{2})$, 适用于一些统计距离的问题.

2.20.5 树链的交

```
bool cmp(int a,int b){return dep[a]<dep[b];}</pre>
2
  path merge(path u, path v){
     int d[4], c[2];
     if (!u.x||!v.x) return path(0, 0);
5
     d[0]=lca(u.x,v.x); d[1]=lca(u.x,v.y);
     d[2]=lca(u.y,v.x); d[3]=lca(u.y,v.y);
     c[0]=lca(u.x,u.y); c[1]=lca(v.x,v.y);
8
     sort(d,d+4,cmp); sort(c,c+1,cmp);
     if (dep[c[0]] \leftarrow dep[d[0]] \& dep[c[1]] \leftarrow dep[d[2]])
      return path(d[2],d[3]);
     else return path(0, 0); }
```

2.20.6 带修改MST

维护少量修改的最小生成树,可以缩点缩边使暴力复杂度变低. (银川 21: 求有 16 个 '某两条边中至少选一条' 的限制条件的最小生成树)

找出必须边 将修改边标 $-\infty$, 在MST上的其余边为必须边, 以此缩点. 找出无用边 将修改边标 ∞, 不在MST上的其余边为无用边, 删除之.

假设修改边数为 k, 操作后图中最多剩下 k+1 个点和 2k 条边.

2.20.7 LCT常见应用

动态维护边双 可以通过LCT来解决一类动态边双连通分量问题. 即静态 的询问可以用边双连通分量来解决, 而树有加边等操作的问题.

把一个边双连通分量缩到LCT的一个点中, 然后在LCT上求出答案. 缩点的 方法为加边时判断两点的连通性,如果已经联通则把两点在目前LCT路径上的点都缩成一个点.

2.20.8 差分约束

 $x_a-x_b \leq c$:add(b, a, c) $x_a-x_b \geq c$:add(a, b, -c) 2.20.9 李超线段树

添加若干条线段或直线 $(a_i, b_i) \rightarrow (a_i, b_i)$, 每次求 [l, r] 上最上面的那 条线段的值. 思想是让线段树中一个节点只对应一条直线, 如果在这个区间 加入一条直线,如果一段比原来的优,一段比原来的劣,那么判断一下两条线的交点,判断哪条直线可以完全覆盖一段一半的区间,把它保留,另一条 直线下传到另一半区间. 时间复杂度 $O(n \log n)$.

2.20.10 Segment Tree Beats

区间 min, max, 区间求和. 以区间取 min 为例, 额外维护最大值 m, 严格次 大值 s 以及最大值个数 t. 现在假设我们要让区间 [L,R] 对 x 取 \min , 先在 线段树中定位若干个节点,对于每个节点分三种情况讨论: 1, 当 $m \le x$ 时,显然这一次修改不会对这个节点产生影响,直接退出; 2, 当 se < x < ma时,显然这一次修改只会影响到所有最大值,所以把num加上t*(x-ma), 把 ma 更新为 x, 打上标记退出; 3, 当 $se \ge x$ 时, 无法直接更新着一个节点的信息, 对当前节点的左儿子和右儿子递归处理. 单次操作均摊复杂度 $O(\log^2 n)$.

2.20.11 二分图

最大独立集 =总顶点数-最大匹配数

最小点覆盖 =最大匹配数

最大独立集 S 与最小覆盖集 T 互补. 构造方法: 1. 做最大匹配,没有匹配的空闲点 $u \in S$ 2. 如果 $u \in S$ 那么 u 的邻点必然属于 T 3. 如果一对匹配的点中有一个属于 T 那么另外一个属于 S 4. 还不能确定的, 把左子图的放入 S, 右子图放入 T.

一定在最大匹配中的点. 由于二分图左右两侧是对称的, 我们只考 虑找左侧的关键点. 先求任意一个最大匹配, 然后给二分图定向: 匹配边从 右到左, 非匹配边从左到右, 从左侧每个不在最大匹配中的点出发DFS, 给到 达的那些点打上标记, 最终左侧每个没有标记的匹配点即为关键点. 时间复

Hall定理 $G = (X, Y, E), |M| = |X| \Leftrightarrow \forall S \subseteq X, |S| \le |A(S)|.$ 2.20.12 稳定婚姻问题

男士按自己喜欢程度从高到底依次向每位女士求婚,女士遇到更喜欢的男士 时就接受他,并抛弃以前的配偶.被抛弃的男士继续按照列表向剩下的女士依次求婚,直到所有人都有配偶.算法一定能得到一个匹配,而且这个匹配 一定是稳定的. 时间复杂度 $O(n^2)$.

2.20.13 三元环

对于无向边 (u,v), 如果 $\deg_u < \deg_v$, 那么连有向边 (u,v)(以点标号为 第二关键字). 枚举 x 暴力即可. 时间复杂度 $O(m\sqrt{m})$.

2.20.14 图同构

(i-a)) mod P, 枚举点 a, 迭代 K 次后求得的就是 a 点所对应的 hash值, 其中 K, A, B, C, D, P 为 hash 参数, 可自选.

2.20.15 竞赛图 Landau's Theorem

n 个点竞赛图点按出度按升序排序,前 i 个点的出度之和不小于 $\frac{i(i-1)}{2}$,度 数总和等于 $\frac{n(n-1)}{2}$. 否则可以用优先队列构造出方案.

2.20.16 Ramsey Theorem R(3,3) = 6, R(4,4) = 18

6个人中存在3人相互认识或者相互不认识.

2.20.17 树的计数 Prufer序列

树和其prufer编码一一对应, 一颗 n 个点的树, 其prufer编码长度为 n-2, 且度数为 d_i 的点在prufer 编码中出现 $d_i - 1$ 次.

由树得到序列: 总共需要 n-2 步, 第 i 步在当前的树中寻找具有最小标号 的叶子节点,将与其相连的点的标号设为Prufer序列的第i个元素 p_i ,并将 此叶子节点从树中删除,直到最后得到一个长度为 n-2 的Prufer 序列和 一个只有两个节点的树.

由序列得到树: 先将所有点的度赋初值为 1, 然后加上它的编号在Prufer序列中出现的次数, 得到每个点的度; 执行 n-2 步, 第 i 步选取具有最小标号 的度为 1 的点 u 与 $v = p_i$ 相连,得到树中的一条边,并将 u 和 v 的度减一. 最后再把剩下的两个度为1的点连边,加入到树中.

相关结论: n 个点完全图, 每个点度数依次为 $d_1,d_2,...,d_n$, 这样生成树的棵 (n-2)!树为: $\frac{(d_1-1)!(d_2-1)!...(d_n-1)!}{(d_1-1)!(d_2-1)!...(d_n-1)!}$

左边有 n_1 个点, 右边有 n_2 个点的完全二分图的生成树棵树为 $n_1^{n_2-1}$ × $n_2^{n_1-1}$.

m 个连通块,每个连通块有 c_i 个点,把他们全部连通的生成树方案数: $(\sum c_i)^{m-2} \prod c_i$

2.20.18 有根树的计数

首先, 令 $S_{n,j} = \sum_{1 \leq j \leq n/j}$; 于是 n+1 个结点的有根树的总数为 $20, a_9 = 286, a_{11} = 1842.$

2.20.19 无根树的计数

n 是奇数时,有 $a_n - \sum_i^{n/2} a_i a_{n-i}$ 种不同的无根树. n 时偶数时,有 $a_n - \sum_i^{n/2} a_i a_{n-i} + \frac{1}{2} a_{n/2} (a_{n/2} + 1)$ 种不同的无根树.

2.20.20 生成树计数 Kirchhoff's Matrix-Tree Thoerem

Kirchhoff Matrix T = Deg - A, Deg 是度数对角阵, A 是邻接矩阵. 无向 图度数矩阵是每个点度数; 有向图度数矩阵是每个点入度.

邻接矩阵 A[u][v] 表示 $u \to v$ 边个数, 重边按照边数计算, 自环不计入度

无向图生成树计数: c = |K| 的任意1个 n1 阶主子式 | 有向图外向树计数: c = | 去掉根所在的那阶得到的主子式 |

2.20.21 有向图欧拉回路计数 BEST Thoerem

$$ec(G) = t_w(G) \prod_{v \in V} (\deg(v) - 1)!$$

其中 \deg 为入度 (欧拉图中等于出度), $t_w(G)$ 为以 w 为根的外向树的个 数. 相关计算参考生成树计数.

欧拉连通图中任意两点外向树个数相同: $t_v(G) = t_w(G)$.

2.20.22 Edmonds Matrix

Edmonds matrix A of a balanced (|U| = |V|) bipartite graph G =(U, V, E):

$$A_{ij} = \begin{cases} x_{ij} & (u_i, v_j) \in E \\ 0 & (u_i, v_j) \notin E \end{cases}$$

where the x_{ij} are indeterminates. G 有完美匹配当且仅当关于 x_{ij} 的多 项式 $det(A_{ij})$ 不恒为 0. 完美匹配的个数等于多项式中单项式的个数.

2.20.23 Count Acyclic Orientations

The chromatic polynomial is a function $P_G(q)$ that counts the number of *q*-colorings of *G*.

Triangle $K_3 : t(t-1)(t-2)$

Complete graph $K_n: t(t-1)(t-2)\cdots(t-(n-1))$

Tree with *n* vertices : $t(t-1)^{n-1}$ Cycle $C_n : (t-1)^n + (-1)^n (t-1)$

The number of acyclic orientations of an n-vertex graph G is $(1)^n P_G(1)$, where $P_G(q)$ is the chromatic polynomial of the graph

3. String

3.1 最小表示法

```
int min_pos(vector <int> a) {
int n = a.size(), i = 0, j = 1, k = 0;
```

```
3  | while (i < n && j < n && k < n) {
4  | auto u = a[(i + k) % n];
5  | auto v = a[(j + k) % n];
6  | int t = u > v ? 1 : (u < v ? -1 : 0);
7  | if (t == 0) k++;
8  | else {
9  | | if (t > 0) i += k + 1; else j += k + 1;
10  | | if (i == j) j++;
11  | k = 0; } }
12  | return min(i, j); }
```

3.2 Manacher

3.3 Multiple Hash

```
Primes available at Page 22.
```

```
const int HA = 2;
   const int PP[] = {318255569, 66604919, 19260817},
           QQ[] = \{1010451419, 1011111133, 1033111117\};
   int pw[HA][N];
5
   struct hashInit { hashInit () {
      for (int h = 0; h < HA; h++) {
       | pw[h][0] = 1;
         for (int i = 1; i < N; i++)
          | pw[h][i] = (LL)pw[h][i - 1] * PP[h] % QQ[h];
     } } __init_hash;
10
   struct Hash {
   int v[HA], len;
12
13
   Hash () \{memset(v, 0, sizeof v); len = 0;\}
14
   Hash (int x) { for (int h = 0; h < HA; h++) v[h] = x; len =
     → 1; }
   friend Hash operator + (const Hash &a, const int &b) {
     Hash ret; ret.len = a.len + 1;
16
17
      for (int h = 0; h < HA; h++)
18
       | ret.v[h] = ((LL)a.v[h] * PP[h] + b) % QQ[h];
19
      return ret; }
   friend Hash operator - (const Hash &a, const Hash &b) {
21
      Hash ret; ret.len = a.len - b.len;
22
      for (int h = 0; h < HA; h++) {
       | ret.v[h] = (a.v[h] - (LL)pw[h][ret.len] * b.v[h]) %
23
           \hookrightarrow QQ[h];
       if (ret.v[h] < 0) ret.v[h] += QQ[h];</pre>
    } return ret; }
   friend bool operator == (const Hash &a, const Hash &b) {
27
    | for (int h = 0; h < HA; h++)
28
       if (a.v[h] != b.v[h]) return false;
     return a.len == b.len; }
   // below : not that frequently used
30
   friend Hash operator + (const Hash &a, const Hash &b) {
    | Hash ret; ret.len = a.len + b.len;
32
33
      for (int h = 0; h < HA; h++)
      | ret.v[h] = ((LL)a.v[h] * pw[h][b.len] + b.v[h]) %
           \hookrightarrow QQ[h];
    return ret; }
36
   friend Hash operator + (const int &a, const Hash &b) {
      Hash ret; ret.len = b.len + 1;
37
      for (int h = 0; h < HA; h++)
38
       | ret.v[h] = ((LL)a * pw[h][b.len] + b.v[h]) % QQ[h];
39
     return ret; }
41
   int to_int() {
42
    unsigned ret = 114;
43
      for (int h = 0; h < HA; h++) ret = ret * 997 + v[h];
      return ret & 0x7ffffffff; } | };
```

3.4 KMP exKMP

```
void kmp(string A,int*p){//A 为模式串, p 为失配数组

int n=A.length(),i=1,j=0;

for(CL(p);i<n;i++){

for(;j&&A[j]^A[i];j=p[j-1]);

if(A[i]==A[j])j++;

| p[i]=j;}

https://line.com/pii/string B,int*p){
```

```
//B 为标准串, A 为待匹配串, p 为失配数组
    int n=B.length(),m=A.length(),j=0;
     fr(i,0,m-1){
        for(;j&&B[j]^A[i];j=p[j-1]);
        if(B[j]==A[i])j++;
      | if(j==n)an++,j=p[j-1];
     } return an; }
14
   void exkmp(char *s, int *a, int n) {
   // 如果想求一个字符串相对另外一个字符串的最长公共前缀,可以把他
16
    → 们拼接起来从而求得
   | a[0] = n; int p = 0, r = 0;
     for (int i = 1; i < n; ++i) {
18
      | a[i] = (r > i) ? min(r - i, a[i - p]) : 0;
        while (i + a[i] < n \&\& s[i + a[i]] == s[a[i]]) +
20
          → +a[i];
      | if (r < i + a[i]) r = i + a[i], p = i; }}
```

3.5 AC 自动机

```
int ch[maxn][26], fail[maxn], q[maxn], sum[maxn], cnt = 0;
int insert(const char *c) { int x = 0; while (*c) {
    | if (!ch[x][*c - 'a']) ch[x][*c - 'a'] = ++cnt;
    | x = ch[x][*c++ - 'a']; } return x; }

void getfail() { int x, head = 0, tail = 0;
    | for (int c = 0; c < 26; c++) if (ch[0][c])
    | | q[tail++] = ch[0][c];
    | while (head != tail) { x = q[head++];
    | | for (int c = 0; c < 26; c++) { if (ch[x][c]) {
    | | | fail[ch[x][c]] = ch[fail[x]][c];
    | | | | q[tail++] = ch[x][c];
    | | | | q[tail++] = ch[x][c];
}</pre>
```

3.6 Lydon Word Decomposition

```
1 //满足s的最小后缀等于s本身的串s称为Lyndon串.
   //等价于: s是它自己的所有循环移位中唯一最小的一个.
  //任意字符串s可以分解为 s=s_1s_2s_k, 其中 s_i 是Lyndon串,
    \hookrightarrow s_i \ge s_{i+1}. 且这种分解方法是唯一的.
   void mnsuf(char *s, int *mn, int n) { // 每个前缀的最小后缀
     for (int i = 0; i < n; ) {
      | int j = i, k = i + 1; mn[i] = i;
        for (; k < n \&\& s[j] <= s[k]; ++ k)
         | if (s[j] == s[k]) mn[k] = mn[j] + k - j, ++j;
            | else mn[k] = j = i;
        for (; i <= j; i += k - j) {} } //
          \hookrightarrow lyn+=s[i..i+k-j-1]
   void mxsuf(char *s, int *mx, int n) { // 每个前缀的最大后缀
11
   | fill(mx, mx + n, -1);
     for (int i = 0; i < n; ) {
13
        int j = i, k = i + 1; if (mx[i] == -1) mx[i] = i;
14
        for (; k < n \&\& s[j] >= s[k]; ++k) {
16
         | j = s[j] == s[k] ? j + 1 : i;
         if (mx[k] == -1) mx[k] = i; }
17
      | for (; i <= j; i += k - j) {} } }
```

3.7 后缀数组

```
void Sort(int in[], int out[], int p[], int n, int m) {
    | static int P[N];
      for (int i = 1; i \leftarrow m; i++) P[i] = 0;
      for (int i = 1; i <= n; i++) P[in[i]]++;</pre>
      for (int i = 2; i <= m; i++) P[i] += P[i - 1];
    for (int i = n; i; i--) out[P[in[p[i]]]--] = p[i]; }
   int n; char s[N]; int sa[N], rk[N], h[N];
   void getsa() {
9
    | static int t1[N], t2[N], *x = t1, *y = t2; //clear n + 1
      int m = 127;
      for (int i = 1; i \le n; i++) x[i] = s[i], y[i] = i;
11
12
       Sort(x, sa, y, n, m);
13
      for (int j = 1, i, k = 0; k < n; m = k, j <<=1) {
        | for (i = n - j + 1, k = 0; i \le n; i++) y[++k] = i;
14
15
          for (i = 1; i <= n; i++)
          | if (sa[i] > j) y[++k] = sa[i] - j;
16
         Sort(x, sa, y, n, m);
for(swap(x, y), i = 2, x[sa[1]] = k = 1; i <= n; i++)</pre>
17
18
           | x[sa[i]] = (y[sa[i - 1]] == y[sa[i]] &&
| y[sa[i - 1] + j] == y[sa[i] + j]) ? k : ++k; } }
19
20
21
      for (int i = 1; i <= n; i++) rk[sa[i]] = i;
      for (int i = 1, k = 0; i <= n; h[rk[i++]] = k) {
22
23
         k -= !!k;
24
          for(int j = sa[rk[i] - 1]; s[i + k] == s[j + k]; k++); }}
```

```
3.8 String Conclusions
                                                            21
3.8.1 双回文串
如果 s = x_1x_2 = y_1y_2 = z_1z_2, |x_1| < |y_1| < |z_1|, x_2, y_1, y_2, z_1 是回文 ^{22}
                                                            23
串,则 x_1 和 z_2 也是回文串.
                                                            24
3.8.2 Border 和周期
如果 r 是 S 的一个border, 则 |S| - r 是 S 的一个周期.
                                                            26
如果 p 和 q 都是 S 的周期, 且满足 p+q \leq |S|+gcd(p,q), 则 gcd(p,q) \stackrel{-}{\underset{27}{\longrightarrow}}
也是-
     ·个周期.
                                                            28
3.8.3 字符串匹配与Border
若字符串 S, T 满足 2|S| \ge |T|, 则 S 在 T 中所有匹配位置成一个等差数 30
   一步地, 若 S 的匹配次数大于2, 则等差数列的周期恰好等于 S 的最小周 _{32}^{-1}
进-
期
                                                            33
3.8.4 Border 的结构
字符串 S 的所有不小于 |S|/2 的border长度组成一个等差数列.
字符串 S 的所有 border 按长度排序后可分成 O(\log |S|) 段, 每段是一个 35
3.8.5 回文串Border
```

回文串长度为 t 的后缀是一个回文后缀,等价于 t 是该串的border. 因此回文后缀的长度也可以划分成 $O(\log |S|)$ 段.

3.8.6 子串最小后缀

设 s[p..n] 是 s[i..n], $(l \le i \le r)$ 中最小者, 则minsuf(l, r) 等于 s[p..r] 的最短非空 border. minsuf(l, r) = min{s[p..r], minsuf(r - 2^k + 1, r)}, $(2^k < rl + 1 \le 2^{k+1})$.

3.8.7 子串最大后缀

从左往右扫, 用set维护后缀的字典序递减的单调队列, 并在对应时刻添加"小于事件"点以便在之后修改队列; 查询直接在set里lower_bound.

4. Math 数学

4.1 Long Long O(1) 乘

```
1  // kactl, M \le 7.2 \cdot 10^{18}
2  ULL modmul(ULL a, ULL b, LL M) {
3   | LL ret = a * b - M * ULL(1.L / M * a * b);
4   | return ret + M * (ret < 0) - M * (ret >= (LL)M); }
5   // orz@CF, M in 63 bit
6  ULL modmul(ULL a, ULL b, LL M) {
7   | ULL c = (long double)a * b / M;
8   | LL ret = LL(x * y - c * M) % M; // must be signed
9   | return ret < 0 ? ret + M : ret;}
10  // use int128 instead if c > 63 bit
```

4.2 exgcd

```
LL exgcd(LL a, LL b, LL &x, LL &y) {
    | if (b == 0) return x = 1, y = 0, a;
    | LL t = exgcd(b, a % b, y, x);
    | y -= a / b * x; return t;}
LL inv(LL x, LL m) {
    | LL a, b; exgcd(x, m, a, b); return (a % m + m) % m; }
```

4.3 CRT 中国剩余定理

```
1 bool crt_merge(LL a1, LL m1, LL a2, LL m2, LL &A, LL &M) {
LL c = a2 - a1, d = __gcd(m1, m2); //合并两个模方程
3 if(c % d) return 0; // gcd(m1, m2) | (a2 - a1) 时才有解
4 c = (c % m2 + m2) % m2; c /= d; m1 /= d; m2 /= d;
5 c = c * inv(m1 % m2, m2) % m2; //0逆元可任意值
6 M = m1*m2*d; A = (c *m1 %M *d %M +a1) % M; return 1;}//有解
```

4.4 Miller Rabin, Pollard Rho

```
mt19937 rng(123);
   #define rand() LL(rng() & LLONG_MAX)
   const int BASE[] = \{2, 7, 61\}; //int(7, 3e9)
   //{2,325,9375,28178,450775,9780504,1795265022}LL(37)
   struct miller_rabin {
   bool check (const LL &M, const LL &base) {
      LL a = M - 1;
      while (~a & 1) a >>= 1;
      LL w = power (base, a, M); // power should use mul
10
      for (; a != M - 1 && w != 1 && w != M - 1; a <<= 1)
       | w = mul(w, w, M);
    return w == M - 1 || (a & 1) == 1; }
12
13
   bool solve (const LL &a) \{//O((3 \text{ or } 7) \cdot \log n \cdot \text{mul})\}
     if (a < 4) return a > 1;
14
      if (~a & 1) return false;
      for (int i = 0; i < sizeof(BASE)/4 && BASE[i] < a; ++i)
16
17
       if (!check (a, BASE[i])) return false;
      return true; } };
19 miller_rabin is_prime;
```

```
LL get_factor (LL a, LL seed) \{//O(n^{1/4} \cdot \log n \cdot \text{mul})\}
   LL x = rand() \% (a - 1) + 1, y = x;
   for (int head = 1, tail = 2; ; ) {
      x = mul(x, x, a); x = (x + seed) % a;
      if (x == y) return a;
      LL ans = gcd (abs (x - y), a);
      if (ans > 1 && ans < a) return ans;</pre>
      if (++head == tail) { y = x; tail <<= 1; } } }</pre>
void factor (LL a, vector<LL> &d) {
| if (a <= 1) return;
   if (is_prime.solve (a)) d.push_back (a);
  else {
    | LL f = a;
      for (; f >= a; f = get_factor (a, rand() % (a - 1) +

→ 1));

      factor (a / f, d);
    factor (f, d); } }
```

4.5 扩展卢卡斯

```
int 1,a[33],p[33],P[33];
   U fac(int k,LL n){// 求 n! mod pk^tk, 返回值 U{ 不包含 pk 的
     → 值 ,pk 出现的次数 }
    | if (!n)return U{1,0};LL x=n/p[k],y=n/P[k],ans=1;int i;
      if(y){// 求出循环节的答案
         for(i=2;i<P[k];i++)if(i%p[k])ans=ans*i%P[k];</pre>
         ans=Pw(ans,y,P[k]);
      }for(i=y*P[k];i<=n;i++) if(i%p[k])ans=ans*i%M;// 求零散部
        →分
    U z=fac(k,x);return U{ans*z.x%M,x+z.z};
9
   }LL get(int k,LL n,LL m){// 求 C(n,m) mod pk^tk
10
    | U a=fac(k,n),b=fac(k,m),c=fac(k,n-m);// 分三部分求解
      return Pw(p[k],a.z-b.z-c.z,P[k])*a.x%P[k]*
        \hookrightarrow inv(b.x,P[k])%P[k]*inv(c.x,P[k])%P[k];
   }LL CRT(){// CRT 合并答案
12
13
    | LL d,w,y,x,ans=0;
    | fr(i,1,1)w=M/P[i],exgcd(w,P[i],x,y),

    ans=(ans+w*x%M*a[i])%M;

      return (ans+M)%M;
   }LL C(LL n, LL m){// 求 C(n, m)
16
17
    | fr(i,1,1)a[i]=get(i,n,m);
18
      return CRT();
   }LL exLucas(LL n,LL m,int M){
19
    | int jj=M,i; // 求 C(n,m)mod M,M=prod(pi^ki), 时间
20
        \hookrightarrow O(pi^kilg^2n)
      for(i=2;i*i<=jj;i++)if(jj%i==0) for(p[+</pre>
21
        ← +1]=i,P[1]=1;jj%i==0;P[1]*=p[1])jj/=i;
22
      if(jj>1)l++,p[l]=P[l]=jj;
      return C(n,m);}
```

4.6 阶乘取模

```
// n! mod p^q Time : O(pq^2 \frac{\log^2 n}{\log p})
   // Output : {a, b} means a*p^b
   using Val=unsigned long long; //Val 需要 mod p^q 意义下 + *
   typedef vector<Val> poly;
   poly polymul(const poly &a,const poly &b){
6
      int n = (int) a.size(); poly c (n, Val(0));
      for (int i = 0; i < n; ++ i) {
       | for (int j = 0; i + j < n; ++ j) {
8
9
         | c[i + j] = c[i + j] + a[i] * b[j]; } 
   return c; } Val choo[70][70];
10
11
   poly polyshift(const poly &a, Val delta) {
      int n = (int) a.size(); poly res (n, Val(0));
13
      for (int i = 0; i < n; ++ i) { Val d = 1;
         for (int j = 0; j <= i; ++ j) {
          | res[i - j] = res[i - j]+a[i]*choo[i][j]*d;
| d = d * delta; } } return res; }
15
16
   void prepare(int q) {
   | for (int i = 0; i < q; ++ i) { choo[i][0] = Val(1);
18
        for (int j = 1; j <= i; ++ j)
19
          20
21
   pair<Val, LL> fact(LL n, LL p, LL q) { Val ans = 1;
      for (int r = 1; r < p; ++ r) {
22
       | poly x (q, Val(0)), res (q, Val(0));
23
24
         res[0] = 1; LL _res = 0; x[0] = r; LL _x = 0;
25
         if (q > 1) x[1] = p, _x = 1; LL m = (n - r + p) / p;
26
         while (m) { if (m & 1) {
            res=polymul(res,polyshift(x,_res)); _res+=_x; }
28
            m >>= 1; x = polymul(x, polyshift(x, _x)); _x+=_x;
              → }
       | ans = ans * res[0]; }
29
```

```
| LL cnt = n / p; if (n >= p) { auto tmp=fact(n / p, p, p)
       | ans = ans * tmp.first; cnt += tmp.second; }
31
      return {ans, cnt}; }
```

4.7 类欧几里得直线下格点统计

```
// \sum_{i=0}^{n-1} \lfloor \frac{a+bi}{m} \rfloor, n, m, a, b > 0 ll solve(ll n, ll a, ll b, ll m){
    if (b == 0) return n * (a / m);
    if (a >= m) return n * (a / m) + solve(n, a % m, b, m);
    if (b >= m) return (n-1)*n/2*(b/m) + solve(n,a,b%m,m);
    return solve((a + b * n) / m, (a + b * n) % m, m, b); }
```

4.8 平方剩余

```
// x^2=a (mod p),0 <=a<p, 返回 true or false 代表是否存在解
  // p必须是质数,若是多个单次质数的乘积,可以分别求解再用CRT合并
   // 复杂度为 O(log n)
  void multiply(ll &c, ll &d, ll a, ll b, ll w) {
   | int cc = (a * c + b * d % MOD * w) % MOD;
   int dd = (a * d + b * c) % MOD; c = cc, d = dd; }
   bool solve(int n, int &x) {
    | if (n==0) return x=0,true; if (MOD==2) return x=1,true;
     if (power(n, MOD / 2, MOD) == MOD - 1) return false;
     ll c = 1, d = 0, b = 1, a, w;
     // finding a such that a^2 - n is not a square
11
12
     do { a = rand() \% MOD; w = (a * a - n + MOD) \% MOD;
13
      | if (w == 0) return x = a, true;
     } while (power(w, MOD / 2, MOD) != MOD - 1);
14
     for (int times = (MOD + 1) / 2; times; times >>= 1) {
15
      | if (times & 1) multiply(c, d, a, b, w);
16
17
        multiply(a, b, a, b, w); }
18
     // x = (a + sqrt(w)) ^ ((p + 1) / 2)
     return x = c, true; }
```

4.9 线性同余不等式

```
// Find the minimal non-negtive solutions for
     \hookrightarrow l \le d \cdot x \mod m \le r
   // 0 \le d, l, r < m; l \le r, O(\log n)
   LL cal(LL m, LL d, LL l, LL r) {
      if (l==0) return 0; if (d==0) return MXL; // 无解
      if (d * 2 > m) return cal(m, m - d, m - r, m - 1);
      if ((1 - 1) / d < r / d) return (1 - 1) / d + 1;
      LL k = cal(d, (-m \% d + d) \% d, 1 \% d, r \% d);
      return k==MXL ? MXL : (k*m + 1 - 1)/d+1;}// 无解 2
   // return all x satisfying l1<=x<=r1 and l2<=(x*mul+add)</pre>
     // here LIM = 2^32 so we use UI instead of "%".
   // O(\log p + \#solutions)
11
   struct Jump { UI val, step;
      Jump(UI val, UI step) : val(val), step(step) { }
13
      Jump operator + (const Jump & b) const {
       | return Jump(val + b.val, step + b.step); }
16
      Jump operator - (const Jump & b) const {
       return Jump(val - b.val, step + b.step); }};
   inline Jump operator * (UI x, const Jump & a) {
    return Jump(x * a.val, x * a.step); }
18
19
   vector<UI> solve(UI 11, UI r1, UI 12, UI r2, pair<UI,UI>
     → muladd) {
      UI mul = muladd.first, add = muladd.second, w = r2 - 12;
      Jump up(mul, 1), dn(-mul, 1); UI s(11 * mul + add);
22
23
      Jump lo(r2 - s, 0), hi(s - 12, 0);
      function<void(Jump&, Jump&)> sub=[&](Jump& a, Jump& b){
24
25
         if (a.val > w) {
            UI t(((LL)a.val-max(OLL, w+1LL-b.val)) / b.val);
            a = a - t * b; } };
      sub(lo, up), sub(hi, dn);
28
29
      while (up.val > w || dn.val > w) {
30
       | sub(up, dn); sub(lo, up);
31
       | sub(dn, up); sub(hi, dn); }
      assert(up.val + dn.val > w); vector<UI> res;
32
      Jump bg(s + mul * min(lo.step, hi.step), min(lo.step,
        → hi.step));
      while (bg.step <= r1 - l1) {
34
35
       | if (12 <= bg.val && bg.val <= r2)
36
          res.push_back(bg.step + 11);
         if (12 <= bg.val-dn.val && bg.val-dn.val <= r2) {
37
38
          | bg = bg - dn;
39
         } else bg = bg + up; }
      return res; }
```

4.10 原根

定义 使得 $a^x \mod m = 1$ 的最小的x, 记作 $\delta_m(a)$. 若 $a \equiv g^s$ mod m, 其中 g 为 m 的一个原根. 则虽然 s 随 g 的不同取值有所不同, 但是必然满足 $\delta_m(a) = \gcd(s, \varphi(m))$.

性质
$$\delta_m(a^k) = \frac{\delta_m(a)}{\gcd(\delta_m(a),k)}$$

k 次剩余 给定方程 $x^k \equiv a \mod m$, 求所有解. 若 $k \ni \varphi(m)$ 互质, 则可以直接求出 k 对 $\varphi(m)$ 的逆元. 否则, 将 k 拆成两部分, k = uv, 其中 $u\perp\varphi(m)$, $v|\varphi(m)$, 先求 $x^v\equiv a\mod m$, 则 $ans=x^{u^{-1}}$. 下 面讨论 $k|\varphi(m)$ 的问题. 任取一原根 g, 对两侧取离散对数, 设 $x=g^s$, $a = q^t$, 其中 t 可以用BSGS求出, 则问题转化为求出所有的 s 满足 $ks \equiv t$ $\operatorname{mod} \varphi(m)$, exgcd 即可求解, 显然有解的条件是 $k|\delta_m(a)$.

```
4.11 FFT NTT FWT 多项式操作
 1 \mid \text{// double} 精度对 10^9 + 7 取模最多可以做到 2^{20}
 2 // FFT(Reverse(FFT(a,N)),N)=Na, Reverse是a_0不变,1到N-1反过
   const int MOD = 1e9 + 7; const double PI = acos(-1);
   typedef complex<double> Complex;
   const int MAXN = 262144, L = 15, MASK = (1<<L) - 1;
   Complex w[MAXN];
   void FFTInit(int N) {
   | for (int i = 0; i < N; ++i)
      | w[i] = Complex(cos(2*i*PI/N), sin(2*i*PI/N));}
   void FFT(Complex p[], int n) { FFTInit(N);
    | for (int i = 1, j = 0; i < n - 1; ++i) {
         for (int s = n; j ^= s >>= 1, ~j & s;);
       | if (i < j) swap(p[i], p[j]); }
13
      for (int d = 0; (1 << d) < n; ++d) {
         int m = 1 << d, m2 = m * 2, rm = n >> (d+1);
15
         for (int i = 0; i < n; i += m2) {
16
          | for (int j = 0; j < m; ++j) {
18
             | Complex &p1 = p[i+j+m], &p2 = p[i+j];
               Complex t = w[rm * j] * p1;
             p1 = p2 - t, p2 = p2 + t; } } }
20
   void FFT_inv(Complex p[],int n) {
   | FFT(p,n); reverse(p + 1, p + n);
    | for (int i = 0; i < n; ++ i) p[i] /= n; }
   Complex A[MAXN], B[MAXN], C[MAXN], D[MAXN];
   void mul(int *a, int *b, int N) {
25
      for (int i = 0; i < N; ++i) {
       | A[i] = Complex(a[i] >> L, a[i] & MASK);
28
         B[i] = Complex(b[i] >> L, b[i] & MASK); 
      FFT(A, N), FFT(B, N);
      for (int i = 0; i < N; ++i) { int j = (N - i) % N;
30
         Complex da = (A[i]-conj(A[j]))*Complex(0, -0.5),
               db = (A[i]+conj(A[j]))*Complex(0.5, 0),
dc = (B[i]-conj(B[j]))*Complex(0, -0.5),
32
33
             | dd = (B[i]+conj(B[j]))*Complex(0.5, 0);
         C[j] = da * dd + da * dc * Complex(0, 1);
35
         D[j] = db * dd + db * dc * Complex(0, 1); }
      FFT(C, N), FFT(D, N);
37
38
      for (int i = 0; i < N; ++i) {
         LL da = (LL)(C[i].imag() / N + 0.5) \% MOD,
39
            db = (LL)(C[i].real() / N + 0.5) % MOD,
40
            dc = (LL)(D[i].imag() / N + 0.5) % MOD,
            dd = (LL)(D[i].real() / N + 0.5) % MOD;
42
         a[i]=((dd << (L*2)) + ((db+dc) << L) + da) %MOD;}
   // 4179340454199820289LL (4e18) 原根=3 两倍不会爆 LL
   // 2013265921 原根=31 两倍平方不会爆 LL
45
   // 998244353 原根=3 // 1004535809 原根=3 // 469762049 原根=3
   void NTT(int *a,int n,int f=1){
    | int i,j,k,m,u,v,w,wm;
49
      for(i=n>>1,j=1,k;j<n-1;j++){</pre>
50
         if(i>j)swap(a[i],a[j]);
       for(k=n>>1;k<=i;k>>=1)i^=k;i^=k;
      }for(m=2;m<=n;m<<=1)
52
      for(i=0, wm=Pw(G, f==1?(M-1)/m:

    (M-1)/m*(m-1),M);i<n;i+=m)</pre>
          for(j=i,w=1;j<i+(m>>1);j++){
               u=a[j],v=111*w*a[j+(m>>1)]%M;
56
               if((a[j]=u+v)>=M)a[j]-=M;
               if((a[j+(m>>1)]=u-v)<0) a[j+(m>>1)]+=M;
             w=111*w*wm%M;
58
59
   | if(f==-1)for(w=Pw(n,M-2,M),i=0;i<n;i+
60
        \hookrightarrow +)a[i]=111*a[i]*w%M;
62 void FWT(int w){//w=1为正运算, w=0为逆运算
```

```
63
      int i,j,k,x,y;
      for(i=1;i<N;i*=2)for(j=0;j<N;j+=i*2){</pre>
64
65
         for(k=0;k<i;k++) {</pre>
          x=a[j+k],y=a[i+j+k];
66
67
          if(w){
          | //xor a[j+k]=x+y a[i+j+k]=x-y
68
             //and a[j+k]=x+y
69
70
             //or a[i+j+k]=x+y
71
         }else{
72
            //xor a[j+k]=(x+y)/2 a[i+j+k]=(x-y)/2
73
             //and a[j+k]=x-y
74
           | //or a[i+j+k]=y-x
         } } } }
```

4.12 K 进制 FWT

```
// n : power of k, omega[i] : (primitive kth root) ^ i
  void fwt(int* a, int k, int type) {
3
     static int tmp[K];
     for (int i = 1; i < n; i *= k)
        for (int j = 0, len = i * k; j < n; j += len)
5
           for (int low = 0; low < i; low++) {</pre>
            | for (int t = 0; t < k; t++)
7
8
               | tmp[t] = a[j + t * i + low];
              for (int t = 0; t < k; t++){
                 int x = j + t * i + low;
11
                 a[x] = 0;
                 for (int y = 0; y < k; y++)
12
                  | a[x] = int(a[x] + 1ll * tmp[y] * omega[(k
13
                      \hookrightarrow + type) * t * y % k] % MOD);
14
            | }
         | }
15
     if (type == -1) for (int i = 0, invn = inv(n); i < n; i+
16
        17
  }
```

```
void Inv(int*A,int*B,int n){ //注意数组大小2n
   //多项式求逆,B = A^{-1},n需为2的幂次
    | static int C[N];B[0]=Pw(A[0],M-2,M);B[1]=0; //n=1时
        \hookrightarrow B[0] = A[0]^{-1}
      for(int m=2,i;m<=n;m<<=1){//递归转递推
5
         for(i=0;i<m;i++)C[i]=A[i];</pre>
       | for(i=m;i<2*m;i++)C[i]=B[i]=0; //在模 x^m 意义下超
 6
           → 过m次均为0
       NTT(C,m*2);NTT(B,m*2);
               //g(x) = g_0(x)(2 - f(x)g_0(x)) \pmod{x^n}
       | for(i=0;i<m*2;i++)
9
10
               B[i]=111*B[i]*(2-111*B[i]*C[i]%M+M)%M;
11
       | NTT(B,m*2,-1);for(i=m;i<m*2;i++)B[i]=0;}
12
   }
   void Sqrt(int*A,int*B,int n){//多项式开根, B=sqrt(A), n为2的
13
     → 幂次
      static int D[N],IB[N];
      B[0]=1;B[1]=0;//n=1时根据题意或二次剩余求解
15
16
      int I2=Pw(2,M-2,M),m,i;
17
      for(m=2;m<=n;m<<=1){//递归转递推
18
         for(i=0;i<m;i++)D[i]=A[i];</pre>
         for(i=m;i<2*m;i++)D[i]=B[i]=0;</pre>
19
         NTT(D,m*2);Inv(B,IB,m);NTT(IB,m*2);NTT(B,m*2);
20
21
         for(i=0;i<m*2;i++)</pre>
               B[i]=(111*B[i]*I2+111*I2*D[i]%M*IB[i])%M;
22
23
       | NTT(B,m*2,-1);for(i=m;i<m*2;i++)B[i]=0;
24
    | }
   }
25
   // 多项式除法: 给定 n 次多项式 A(x) 和 m \le n 次多项式 B(x),
     \hookrightarrow 求出 D(x), R(x) 满足 A(x) = D(x)B(x) + R(x), 并且
     \hookrightarrow degD \le n - m, degR < m, 复杂度 O(n \log n), 常用于线性
     \hookrightarrow 递推将 2k 项系数拍回 k 项时的优化: 本质是将 2k 项的多项式
     \hookrightarrow 除以 k 项零化多项式得到的余数
   void Div(int *a, int n, int *b, int m, int *d, int *r) { | // 注意这里 <math>n 和 m 为多项式长度,注意需要4倍空间
27
      static int A[MAXN], B[MAXN]; while (!b[m - 1]) m --;
29
30
      int p = 1, t = n - m + 1; while (p < t << 1) p <<= 1;
31
      fill(A, A+p, 0); reverse_copy(b, b+m, A); Inv(A, B, p);
      fill(B+t, B+p, 0); NTT(B, p); reverse_copy(a, a+n, A);
32
33
      fill(A + t, A + p, 0); NTT(A, p);
      for (int i = 0; i < p; ++i) A[i] = 1LL*A[i]*B[i] % M;
34
35
      NTT(A, p, -1); reverse(A,A+t); copy(A,A+t,d); //lenD<=t
      for (p = 1; p < n; p <<= 1);
36
      fill(A + t, A + p, \theta); NTT(A, p); copy(b, b + m, B);
37
      fill(B + m, B + p, \theta); NTT(B, p);
      for (int i = 0; i < p; ++i) A[i] = 1LL*A[i]*B[i] % M;
```

```
40 | NTT(A, p, -1);
41 | for (int i = 0; i < m; ++i) r[i] = (a[i]-A[i]+M) % M;
42 | fill(r+m, r+p, 0); assert(r[m-1] == 0); } //lenR < m
```

```
求 \sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} C_{ik}^{ik}.
引理: \frac{1}{k} \sum_{i=0}^{k-1} \omega_{k}^{in} = [k \mid n].
反演: Ans = \sum_{i=0}^{n} C_{n}^{i} [k \mid i]
= \sum_{i=0}^{n} C_{n}^{i} (\frac{1}{k} \sum_{j=0}^{k-1} \omega_{k}^{ij})
= \frac{1}{k} \sum_{i=0}^{n} C_{n}^{i} \sum_{j=0}^{k-1} \omega_{k}^{ij}
= \frac{1}{k} \sum_{j=0}^{k-1} (\sum_{i=0}^{n} C_{n}^{i} (\omega_{k}^{j})^{i})
= \frac{1}{k} \sum_{j=0}^{k-1} (1 + \omega_{k}^{j})^{n}.
B, 如果要求的是 [n\%k = t], 其实就是 [k \mid (n-t)]. 同理推式子即可.
```

```
4.13 Simplex 单纯形
```

4.12.1 单位根反演

```
// 标准型: maximize c^Tx, subject to Ax \leq b and x \geq 0
   // 对偶型: minimize b^Ty, subject to A^Tx \geq c and y \geq 0
   const LD eps = 1e-9, INF = 1e9; const int N = 105;
   namespace Simplex {
   int n, m, id[N], tp[N]; LD a[N][N];
   void pivot(int r, int c) {
      swap(id[r + n], id[c]);
      LD t = -a[r][c]; a[r][c] = -1;
      for (int i = 0; i <= n; i++) a[r][i] /= t;
      for (int i = 0; i <= m; i++) if (a[i][c] && r != i) {
11
         t = a[i][c]; a[i][c] = 0;
       | for (int j = 0; j <= n; j++) a[i][j] += t * a[r]
           → [i];}}
   bool solve() {
13
14
      for (int i = 1; i <= n; i++) id[i] = i;
15
      for (;;) {
         int i = 0, j = 0; LD w = -eps;
16
17
         for (int k = 1; k <= m; k++)
18
          | if (a[k][0] < w || (a[k][0] < -eps && rand() & 1))
             | w = a[i = k][0];
         if (!i) break;
20
         for (int k = 1; k <= n; k++)
          | if (a[i][k] > eps) {j = k; break;}
23
         if (!j) { printf("Infeasible"); return 0;}
        pivot(i, j);}
25
      for (;;) {
26
         int i = 0, j = 0; LD w = eps, t;
27
         for (int k = 1; k <= n; k++)
28
          | if (a[0][k] > w) w = a[0][j = k];
         if (!j) break;
         w = INF;
30
         for (int k = 1; k <= m; k++)
         | if (a[k][j] < -eps && (t = -a[k][0] / a[k][j]) <
33
             | w = t, i = k;
         if (!i) { printf("Unbounded"); return 0;}
34
       | pivot(i, j);}
      return 1;}
36
37
   LD ans() {return a[0][0];}
   void output() {
    | for (int i = n + 1; i <= n + m; i++) tp[id[i]] = i - n;
39
    for (int i = 1; i <=n; i++) printf("%.91f ", tp[i] ?</pre>
        \hookrightarrow \mathsf{a[tp[i]][0]} \,:\, 0);\}
   }using namespace Simplex;
   int main() { int K; read(n); read(m); read(K);
   for (int i = 1; i \leftarrow n; i++) {LD x; scanf("%lf", &x); a[0]
43
     \hookrightarrow [i] = x;}
   for (int i = 1; i <= m; i++) {LD x;
44
    | for (int j = 1; j <= n; j++) scanf("%lf", &x), a[i][j] =
45
    | scanf("%lf", &x); a[i][0] = x;}
46
   if (solve()) { printf("%.91f\n", (LD)ans()); if (K)
```

4.14 线性递推

```
// Complexity: init O(n^2log) query O(n^2logk)
// Requirement: const LOG const MOD

// Example: In: {1, 3} {2, 1} an = 2an-1 + an-2
// Out: calc(3) = 7

typedef vector<int> poly;
struct LinearRec {
```

```
int n; poly first, trans; vector<poly> bin;
   poly add(poly &a, poly &b) \{
      poly res(n * 2 + 1, 0);
      // 不要每次新开 vector, 可以使用矩阵乘法优化
11
      for (int i = 0; i <= n; ++i) {
       | for (int j = 0; j <= n; ++j) {
         | (res[i+j]+=(LL)a[i] * b[j] % MOD) %= MOD;
13
      for (int i = 2 * n; i > n; --i) {
       | for (int j = 0; j < n; ++j) {
15
16
         | (res[i-1-j]+=(LL)res[i]*trans[j]%MOD) %=MOD;}
        res[i] = 0; }
      res.erase(res.begin() + n + 1, res.end());
      return res; }
   LinearRec(poly &first, poly &trans): first(first),
     n = first.size(); poly a(n + 1, 0); a[1] = 1;
      bin.push_back(a); for (int i = 1; i < LOG; ++i)
22
       | bin.push_back(add(bin[i - 1], bin[i - 1])); }
   int calc(int k) { poly a(n + 1, 0); a[0] = 1;
     for (int i = 0; i < LOG; ++i)</pre>
       | if (k >> i & 1) a = add(a, bin[i]);
26
      int ret = 0; for (int i = 0; i < n; ++i)
       | if ((ret += (LL)a[i + 1] * first[i] % MOD) >= MOD)
        ret -= MOD;
29
      return ret; }};
```

4.15 Berlekamp-Massey 最小多项式

```
// Complexity: O(n^2) Requirement: const MOD, inverse(int)
           // Input: the first elements of the sequence % \left( 1\right) =\left( 1\right) \left( 1\right) \left
            // Output: the recursive equation of the given sequence
           // Example In: {1, 1, 2, 3}
           // Example Out: {1, 1000000006, 1000000006} (MOD = 1e9+7)
            struct Poly { vector<int> a; Poly() { a.clear(); }
                       Poly(vector<int> &a): a(a) {}
                       int length() const { return a.size(); }
                       Poly move(int d) { vector<int> na(d, 0);
                                  na.insert(na.end(), a.begin(), a.end());
                               return Poly(na); }
12
                       int calc(vector<int> &d, int pos) { int ret = 0;
                           | for (int i = 0; i < (int)a.size(); ++i) {
                                      | if ((ret+=(LL)d[pos - i]*a[i]%MOD) >= MOD) {
14
15
                                               | ret -= MOD; }}
                                return ret; }
16
17
                       Poly operator - (const Poly &b) {
                                 vector<int> na(max(this->length(), b.length()));
                                   for (int i = 0; i < (int)na.size(); ++i) {
19
20
                                           int aa = i < this->length() ? this->a[i] : 0,
                                               | bb = i < b.length() ? b.a[i] : 0;
21
22
                                             na[i] = (aa + MOD - bb) % MOD; }
                                return Poly(na); } };
            Poly operator * (const int &c, const Poly &p) {
                       vector<int> na(p.length());
26
                       for (int i = 0; i < (int)na.size(); ++i) {</pre>
                           | na[i] = (LL)c * p.a[i] % MOD; }
                      return na; }
29
            vector<int> solve(vector<int> a) {
                       int n = a.size(); Poly s, b;
                       s.a.push_back(1), b.a.push_back(1);
                       for (int i = 0, j = -1, ld = 1; i < n; ++i) {
                                 int d = s.calc(a, i); if (d) {
33
                                            if ((s.length() - 1) * 2 <= i) {
34
                                                         Poly ob = b; b = s;
                                                         s=s-(LL)d*inverse(ld)%MOD*ob.move(i - j);
36
37
                                                         j = i; ld = d;
                                             } else {
39
                                                 | s=s-(LL)d*inverse(ld)%MOD*b.move(i-j);}}}
                       //Caution: s.a might be shorter than expected
41
                       return s.a; }
                      求行列式 -> 求特征多项式: det(A)=(-1)^nPA(0)
                求矩阵或向量列最小多项式 : 随机投影成数列
43
               如果最小多项式里面有 x 的因子,那么行列式为 0,否则
               随机乘上对角阵 D, det(A)=det(AD)/det(D)*/
```

4.16 Pell 方程

```
1// x^2 - n * y^2 = 1 最小正整数根,n 为完全平方数时无解  
2// x_{k+1} = x_0 x_k + n y_0 y_k  
3// y_{k+1} = x_0 y_k + y_0 x_k  
4 pair<ll, LL> peLL(LL n) {  
5 | static LL p[N], q[N], g[N], h[N], a[N];  
6 | p[1] = q[0] = h[1] = 1; p[0] = q[1] = g[1] = 0;  
7 | a[2] = (LL)(floor(sqrtl(n) + 1e-7L));
```

```
8 | for(int i = 2; ; i ++) {
9 | | g[i] = -g[i - 1] + a[i] * h[i - 1];
10 | | h[i] = (n - g[i] * g[i]) / h[i - 1];
11 | a[i + 1] = (g[i] + a[2]) / h[i];
12 | | p[i] = a[i] * p[i - 1] + p[i - 2];
13 | | q[i] = a[i] * q[i - 1] + q[i - 2];
14 | | if(p[i] * p[i] - n * q[i] * q[i] == 1)
15 | | return {p[i], q[i]}; }}
```

4.17 解一元三次方程

4.18 自适应 Simpson

```
1 // Adaptive Simpson's method : double simpson::solve
     \hookrightarrow: integrates f over (1, r) with error eps.
   struct simpson {
   double area (double (*f) (double), double 1, double r) {
   | double m = 1 + (r - 1) / 2;
| return (f (1) + 4 * f (m) + f (r)) * (r - 1) / 6;
   double solve (double (*f) (double), double 1, double r,
    | double m = 1 + (r - 1) / 2;
     double left = area (f, 1, m), right = area (f, m, r);
     if (fabs (left + right - a) <= 15 * eps) return left +
       \hookrightarrow right + (left + right - a) / 15.0;
     return solve (f, 1, m, eps / 2, left) + solve (f, m, r,
       \hookrightarrow eps / 2, right);
12
  double solve (double (*f) (double), double 1, double r,

    double eps) {
   return solve (f, l, r, eps, area (f, l, r));
14
```

5. Appendix

5.1 Formulas 公式表

5.1.1 Mobius Inversion

$$F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$

$$F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)$$

$$[x = 1] = \sum_{d|x} \mu(d), \quad x = \sum_{d|x} \mu(d)$$

5.1.2 Gcd Inversion

$$\begin{split} \sum_{a=1}^{n} \sum_{b=1}^{n} gcd^{2}(a,b) &= \sum_{d=1}^{n} d^{2} \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} [gcd(i,j) = 1] \\ &= \sum_{d=1}^{n} d^{2} \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{n}{d}} \sum_{t|gcd(i,j)} \mu(t) \\ &= \sum_{d=1}^{n} d^{2} \sum_{t=1}^{\frac{n}{d}} \mu(t) \sum_{i=1}^{\frac{n}{d}} [t|i] \sum_{j=1}^{\frac{n}{d}} [t|j] \\ &= \sum_{d=1}^{n} d^{2} \sum_{t=1}^{\frac{n}{d}} \mu(t) \lfloor \frac{n}{dt} \rfloor^{2} \end{split}$$

The formula can be calculated in O(nlogn) complexity. Moreover, let l=dt, then

$$\sum_{d=1}^{n} d^2 \sum_{t=1}^{\lfloor \frac{n}{d} \rfloor} \mu(t) \lfloor \frac{n}{dt} \rfloor^2 = \sum_{l=1}^{n} \lfloor \frac{n}{l} \rfloor^2 \sum_{d|l} d^2 \mu(\frac{l}{d})$$

Let $f(l) = \sum_{d|l} d^2 \mu(\frac{l}{d})$. It can be proven that f(l) is multiplicative. Besides, $f(p^k) = p^{2k} - p^{2k-2}$. Therefore, with linear sieve the formula can be solved in O(n) complexity.

5.1.3 Arithmetic Function

$$(p-1)! \equiv -1 \pmod{p}$$

$$a > 1, m, n > 0, \text{ then } \gcd(a^m - 1, a^n - 1) = a^{\gcd(n, m)} - 1$$

$$\mu^2(n) = \sum_{d^2 \mid n} \mu(d)$$

$$a > b, \gcd(a, b) = 1, \text{ then } \gcd(a^m - b^m, a^n - b^n) = a^{\gcd(m, n)} - b^{\gcd(m, n)}$$

$$\prod_{k=1, g \in d(k, m)=1}^m k \equiv \begin{cases} -1 & \text{mod } m, m = 4, p^q, 2p^q \\ 1 & \text{mod } m, \text{ otherwise} \end{cases}$$

$$\sigma_k(n) = \sum_{d \mid n} d^k = \prod_{i=1}^{\omega(n)} \frac{p_i^{(a_i+1)k} - 1}{p_i^k - 1}$$

 $J_k(n)$ is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k+1)-tuple together with n.

 $J_k(n) = n^k \prod_{i=1}^{k} (1 - \frac{1}{p^k})$

$$\sum_{\delta \mid n} J_k(\delta) = n^k$$

$$\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j) = 1]ij = \sum_{i=1}^n i^2 \varphi(i)$$

$$\sum_{\delta \mid n} \delta^s J_r(\delta) J_s(\frac{n}{\delta}) = J_{r+s}(n)$$

$$\sum_{\delta \mid n} \varphi(\delta) d(\frac{n}{\delta}) = \sigma(n), \quad \sum_{\delta \mid n} |\mu(\delta)| = 2^{\omega(n)}$$

$$\sum_{\delta \mid n} 2^{\omega(\delta)} = d(n^2), \quad \sum_{\delta \mid n} d(\delta^2) = d^2(n)$$

$$\sum_{\delta \mid n} d(\frac{n}{\delta}) 2^{\omega(\delta)} = d^2(n), \quad \sum_{\delta \mid n} \frac{\mu(\delta)}{\sigma(\delta)} = \frac{\varphi(n)}{n}$$

$$\sum_{\delta \mid n} \frac{\mu(\delta)}{\varphi(\delta)} = d(n), \quad \sum_{\delta \mid n} \frac{\mu^2(\delta)}{\varphi(\delta)} = \frac{n}{\varphi(n)}$$

$$n|\varphi(a^n - 1)$$

$$\sum_{1 \le k \le n} f(\gcd(k - 1, n)) = \varphi(n) \sum_{\delta \mid n} \frac{(\mu * f)(d)}{\varphi(d)}$$

$$\varphi(\operatorname{lcm}(m, n)) \varphi(\gcd(m, n)) = \varphi(m) \varphi(n)$$

$$\sum_{\delta \mid n} d^3(\delta) = (\sum_{\delta \mid n} d(\delta))^2$$

$$d(uv) = \sum_{\delta \mid \gcd(u, v)} \mu(\delta) d(\frac{u}{\delta}) d(\frac{v}{\delta})$$

$$\sigma_k(u) \sigma_k(v) = \sum_{\delta \mid \gcd(u, v)} \delta^k \sigma_k(\frac{uv}{\delta^2})$$

$$\mu(n) = \sum_{k=1}^n [\gcd(k, n) = 1] \cos 2\pi \frac{k}{n}$$

$$\varphi(n) = \sum_{k=1}^n [\gcd(k, n) = 1] = \sum_{k=1}^n \gcd(k, n) \cos 2\pi \frac{k}{n}$$

$$\begin{cases} S(n) = \sum_{k=1}^n (f * g)(k) \\ \sum_{k=1}^n S(\lfloor \frac{n}{k} \rfloor) = \sum_{i=1}^n f(i) \sum_{j=1}^n (g * 1)(j) \end{cases}$$

$$\begin{cases} S(n) = \sum_{k=1}^{n} (f \cdot g)(k), g \text{ completely multiplicative} \\ \sum_{k=1}^{n} S(\lfloor \frac{n}{k} \rfloor) g(k) = \sum_{k=1}^{n} (f * 1)(k) g(k) \end{cases}$$

5.1.4 Binomial Coefficients

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \quad \sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\sum_{k=0}^n \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sqrt{1+z} = 1 + \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k \times 2^{2k-1}} \binom{2k-2}{k-1} z^k$$

$$\sum_{k=0}^r \binom{r-k}{m} \binom{s+k}{n} = \binom{r+s+1}{m+n+1}$$

$$C_{n,m} = \binom{n+m}{m} - \binom{n+m}{m-1}, n \ge m$$

$$\binom{n}{k} \equiv [n\&k = k] \pmod{2}$$

$$\binom{n_1 + \dots + n_p}{m} = \sum_{k_1 + \dots + k_p = m} \binom{n_1}{k_1} \dots \binom{n_p}{k_p}$$

5.1.5 Fibonacci Numbers

$$F(z) = \frac{z}{1 - z - z^2}$$

$$f_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

$$\sum_{k=1}^n f_k = f_{n+2} - 1, \quad \sum_{k=1}^n f_k^2 = f_n f_{n+1}$$

$$\sum_{k=0}^n f_k f_{n-k} = \frac{1}{5}(n-1)f_n + \frac{2}{5}nf_{n-1}$$

$$\frac{f_{2n}}{f_n} = f_{n-1} + f_{n+1}$$

$$f_1 + 2f_2 + 3f_3 + \dots + nf_n = nf_{n+2} - f_{n+3} + 2$$

$$\gcd(f_m, f_n) = f_{\gcd(m, n)}$$

$$f_n^2 + (-1)^n = f_{n+1}f_{n-1}$$

$$f_{n+k} = f_n f_{k+1} + f_{n-1}f_k$$

$$f_{2n+1} = f_n^2 + f_{n+1}^2$$

$$(-1)^k f_{n-k} = f_n f_{k-1} - f_{n-1}f_k$$

$$m \mod 4 = 0;$$

$$\begin{cases} f_r, & m \mod 4 = 0; \\ (-1)^{r+1}f_{n-r}, & m \mod 4 = 1; \\ (-1)^{r+1}f_{n-r}, & m \mod 4 = 2; \\ (-1)^{r+1+n}f_{n-r}, & m \mod 4 = 3. \end{cases}$$

5.1.6 Lucas Numbers

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1-\sqrt{5}}{2}\right)^n$$
$$L(x) = \frac{2-x}{1-x-x^2}$$

5.1.7 Catlan Numbers

$$c_1 = 1, c_n = \sum_{i=0}^{n-1} c_i c_{n-1-i} = c_{n-1} \frac{4n-2}{n+1} = \frac{\binom{2n}{n}}{n+1} = \binom{2n}{n} - \binom{2n}{n-1}$$

$$c(x) = \frac{1 - \sqrt{1-4x}}{2x}$$

Usage: n 对括号序列; n 个点满二叉树; n*n 的方格左下到右上不过对角线方案数; n+2 边形三角形分割数; n 个数的出栈方案数; n 个顶点连接, 线段两两不交的方案数.

5.1.8 Stirling Cycle Numbers

把 n 个元素集合分作 k 个非空环方案数.

$$s(n,0) = 0, s(n,n) = 1, s(n+1,k) = s(n,k-1) - nS(n,k)$$
$$s(n,k) = (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}$$

$$\begin{bmatrix} n+1 \\ k \end{bmatrix} = n \begin{bmatrix} n \\ k \end{bmatrix} + \begin{bmatrix} n \\ k-1 \end{bmatrix}, \begin{bmatrix} n+1 \\ 2 \end{bmatrix} = n! H_n \text{ (see 5.1.12)}$$
$$x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k, \ x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

5.1.9 Stirling Subset Numbers

把 n 个元素集合分作 k 个**非空子集**方案数.

For fixed k, generating functions:

$$\sum_{n=0}^{\infty} {n \brace k} x^{n-k} = \prod_{r=1}^{k} \frac{1}{1 - rx}$$

5.1.10 Motzkin Numbers

圆上 n 点间画不相交弦的方案数. 选 n 个数 $k_1,k_2,...,k_n \in \{-1,0,1\}$,保证 $\sum_i^a k_i (1 \le a \le n)$ 非负且所有数总和为 0 的方案数.

$$M_{n+1} = M_n + \sum_{i}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} Catlan(k)$$

$$M(X) = \frac{1-x-\sqrt{1-2x-3x^2}}{2x^2}$$

5.1.11 Eulerian Numbers

5.1.12 Harmonic Numbers

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

$$\sum_{k=1}^{n} kH_k = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$$

$$\sum_{k=1}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} (H_{n+1} - \frac{1}{m+1})$$

5.1.13 五边形数定理求拆分数

$$\Phi(x) = \prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$

记 p(n) 表示 n 的拆分数, f(n,k) 表示将 n 拆分且每种数字使用次数必须小于 k 的拆分数. 则

$$P(x)\Phi(x) = 1, F(x^k)\Phi(x) = 1$$

暴力拆开卷积, 可以得到将1,-1,2,-2... 带入五边形数 $(-1)^k x^{k(3k-1)/2}$ 中, 由于小于n的五边形数只有 \sqrt{n} 个, 可以 $O(n\sqrt{n})$ 计算答案:

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

 $f(n,k) = p(n) - p(n-k) - p(n-2k) + p(n-5k) + p(n-7k) - \cdots$

5.1.14 Bell Numbers

n个元素集合划分的方案数.

$$B_{n} = \sum_{k=1}^{n} {n \choose k}, \ B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_{k}$$

$$B_{p^{m}+n} \equiv mB_{n} + B_{n+1} \pmod{p}$$

$$B(x) = \sum_{k=0}^{\infty} \frac{B_{n}}{n!} x^{n} = e^{e^{x} - 1}$$

5.1.15 Bernoulli Numbers

$$B_n = 1 - \sum_{k=0}^{n-1} \binom{n}{k} \frac{B_k}{n-k+1}$$

$$G(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k = \frac{1}{\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} B_k n^{m-k+1}$$

5.1.16 Sum of Powers

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = (\frac{n(n+1)}{2})^2$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

5.1.17 kMAX-MIN反演

$$kMAX(S) = \sum_{T \subset S, T \neq \emptyset} (-1)^{|T|-k} C_{|T|-1}^{k-1} MIN(T)$$

代入 k = 1 即为MAX-MIN反演

$$MAX(S) = \sum_{T \subset S, T \neq \emptyset} (-1)^{|T|-1} MIN(T)$$

5.1.18 伍德伯里矩阵不等式

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

该等式可以动态维护矩阵的逆, 令 C=[1], U, V 分别为 $1 \times n$ 和 $n \times 1$ 的向量, 这样可以构造出 UCV 为只有某行或者某列不为0的矩阵, 一次修改复杂度为 $O(n^2)$.

5.1.19 Sum of Squares

 $r_k(n)$ 表示用 k 个平方数组成 n 的方案数. 假设:

$$n = 2^{a_0} p_1^{2a_1} \cdots p_r^{2a_r} q_1^{b_1} \cdots q_s^{b_s}$$

其中 $p_i \equiv 3 \mod 4$, $q_i \equiv 1 \mod 4$, 那么

$$r_2(n) = \begin{cases} 0 & \text{if any } a_i \text{ is a half-integer} \\ 4 \prod_{i=1}^{r} (b_i + 1) & \text{if all } a_i \text{ are integers} \end{cases}$$

 $r_3(n) > 0$ 当且仅当 n 不满足 $4^a(8b+7)$ 的形式 (a, b) 为整数)

5.1.20 枚举勾股数 Pythagorean Triple

枚举 $x^2+y^2=z^2$ 的三元组: 可令 $x=m^2-n^2$, y=2mn, $z=m^2+n^2$, 枚举 m 和 n 即可 O(n) 枚举勾股数. 判断素勾股数方法: m,n 至少一个为偶数并且 m,n 互质, 那么 x,y,z 就是素勾股数.

5.1.21 四面体体积 Tetrahedron Volume

If U, V, W, u, v, w are lengths of edges of the tetrahedron (first three form a triangle; u opposite to U and so on)

$$V = \frac{\sqrt{4u^2v^2w^2 - \sum_{cyc} u^2(v^2 + w^2 - U^2)^2 + \prod_{cyc} (v^2 + w^2 - U^2)}}{12}$$

5.1.22 杨氏矩阵与钩子公式

满足: 格子 (i,j) 没有元素,则它右边和上边相邻格子也没有元素;格子 (i,j) 有元素 a[i][j],则它右边和上边相邻格子要么没有元素,要么有元素且比 a[i][j] 大.

计数: $F_1=1, F_2=2, F_n=F_{n-1}+(n-1)F_{n-2}, F(x)=e^{x+\frac{x^2}{2}}$ 钩子公式: 对于给定形状 λ , 不同杨氏矩阵的个数为:

$$d_{\lambda} = \frac{n!}{\prod h_{\lambda}(i,j)}$$

 $h_{\lambda}(i,j)$ 表示该格子右边和上边的格子数量加1.

5.1.23 重心

半径为 r,圆心角为 θ 的扇形重心与圆心的距离为 $\frac{4r\sin(\theta/2)}{3\theta}$ 半径为 r,圆心角为 θ 的圆弧重心与圆心的距离为 $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$

5.1.24 常见游戏

Nim-K游戏 n 堆石子轮流拿,每次最多可以拿k堆石子,谁走最后一步输。 结论:把每一堆石子的sg值(即石子数量)二进制分解,先手必败当且仅当每一位二进制位上1的个数是(k+1)的倍数.

Anti-Nim游戏 n 堆石子轮流拿,谁 走最后一步输。结论: 先手胜当且仅当1. 所有堆石子数都为1且游戏的SC值为0 (即有偶数个孤单堆-每堆只有1个石子数) 2. 存在某堆石子数大于1且游戏的SC值不为0.

斐波那契博弈 有一堆物品,两人轮流取物品,先手最少取一个,至多无上限,但不能把物品取完,之后每次取的物品数不能超过上一次取的物品数的二倍且至少为一件,取走最后一件物品数n 不是斐波那契数,

威佐夫博弈 有两堆石子, 博弈双方 每次可以取一堆石子中的任意个, 不 能不取,或者取两堆石子中的相同个. 先取完者贏. 结论: 求出两堆石子 A和 B 的差值 C, 如果 $\left\lfloor C * \frac{\sqrt{5}+1}{2} \right\rfloor = min(A,B)$ 那么后手赢, 否则先手赢.

阶梯Nim 在一个阶梯上,每次选一个台阶上任意个式子移到下一个台阶上,不可移动者输.结论: SG值等于奇数层台阶上石子数的异或和.对于树形结构也适用,奇数层节点上所有石子数异或起来即可.

图上博弈 给定无向图, 先手从某点开始走, 只能走相邻且未走过的点, 无法移动者输, 对该图求最大匹配, 若某个点不一定在最大匹配中则先手必败, 否则先手必胜,

5.1.25 最大最小定理求纳什均衡点

最大最小定理 在二人零和博弈中,可以用以下方式求出一个纳什均衡点: 在博弈双方中任选一方,求混合策略 p 使得对方选择任意一个纯策略时,已方的最小收益最大(等价于对方的最大收益最小). 据此可以求出双方在此局面下的最优期望得分,分别等于己方最大的最小收益和对方最小的最大收益.一般而言,可以得到形如

$$\max_{\mathbf{p}} \min_{i} \sum_{p_{j} \in \mathbf{p}} p_{j} w_{i,j}, \text{s.t. } p_{j} \geq 0, \sum_{i} p_{j} = 1$$

的形式. 当 $\sum p_j w_{i,j}$ 可以表示成只与 i 有关的函数 f(i) 时, 可以令初始时 $p_i=0$, 不断调整 $\sum p_j w_{i,j}$ 最小的那个i的概率 p_i , 直至无法调整或者 $\sum p_j=1$ 为止.

5.1.26 错排公式

$$D_1 = 0, D_2 = 1, D_n = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right)$$

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

5.1.27 概率相关

对于随机变量 X, 期望用 E(X) 表示, 方差用 D(X) 表示, 则 $D(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2$, $D(X + Y) = D(X) + D(Y)D(aX) = a^2D(X)$

$$E[x] = \sum_{i=1}^{\infty} P(X \ge i)$$

5.1.28 常用泰勒展开

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots$$

$$\frac{1}{(1 - x)^n} = 1 + \binom{n}{1} x + \binom{n + 1}{2} x^2 + \binom{n + 2}{3} x^3 + \cdots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^i}{i!}$$

5.1.29 类卡特兰数

从 (1,1) 出发走到 (n,m), 只能向右或者向上走, 不能越过 y=x 这条线 (即保证 $x\geq y$), 合法方案数是 $C^{n-1}_{n+m-2}-C^n_{n+m-2}$

5.1.30 邻接矩阵行列式的意义

在无向图中取若干个环,一种取法权值就是边权的乘积,对行列式的贡献是 $(-1)^{even}$,其中 even 是偶环的个数.

5.1.31 Others (某些近似数值公式在这里)

$$S_{j} = \sum_{k=1}^{n} x_{k}^{j}$$

$$h_{m} = \sum_{1 \leq j_{1} < \dots < j_{m} \leq n} x_{j_{1}} \dots x_{j_{m}}, \ H_{m} = \sum_{1 \leq j_{1} \leq \dots \leq j_{m} \leq n} x_{j_{1}} \dots x_{j_{m}}$$

$$h_{n} = \frac{1}{n} \sum_{k=1}^{n} (-1)^{k+1} S_{k} h_{n-k}$$

$$H_{n} = \frac{1}{n} \sum_{k=1}^{n} S_{k} H_{n-k}$$

$$\sum_{k=0}^{n} k c^{k} = \frac{n c^{n+2} - (n+1) c^{n+1} + c}{(c-1)^{2}}$$

$$\sum_{i=1}^{n} \frac{1}{n} \approx \ln(n+\frac{1}{2}) + \frac{1}{24(n+0.5)^{2}} + \Gamma, (\Gamma \approx 0.5772156649015328606065)$$

$$n! = \sqrt{2\pi n} (\frac{n}{e})^{n} (1 + \frac{1}{12n} + \frac{1}{288n^{2}} + O(\frac{1}{n^{3}}))$$

$$\max \{x_a - x_b, y_a - y_b, z_a - z_b\} - \min \{x_a - x_b, y_a - y_b, z_a - z_b\}$$

$$= \frac{1}{2} \sum_{cyc} |(x_a - y_a) - (x_b - y_b)|$$

$$(a+b)(b+c)(c+a) = \frac{(a+b+c)^3 - a^3 - b^3 - c^3}{3}$$

$$b^3 - (a+b)(a^2 - ab + b^2) a^3 - b^3 - (a-b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2), a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

 $a \mod 2 = 1$:

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1})$$

划分问题: $n \uparrow k - 1$ 维向量最多把 k 维空间分为 $\sum_{i=0}^k C_n^i$ 份.

5.2 Calculus Table 导数表

$$\begin{aligned} &(\frac{u}{v})' = \frac{u'v - uv'}{v^2} \\ &(a^x)' = (\ln a)a^x \\ &(\tan x)' = \sec^2 x \\ &(\cot x)' = \csc^2 x \\ &(\sec x)' = \tan x \sec x \\ &(\csc x)' = -\cot x \csc x \\ &(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} \\ &(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}} \\ &(\arctan x)' = \frac{1}{1 + x^2} \\ &(\arctan x)' = -\frac{1}{1 + x^2} \\ &(\arccos x)' = -\frac{1}{|x|\sqrt{1 - x^2}} \end{aligned}$$

$$(\cosh x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arccot} x)' = \frac{1}{x^2 - 1}$$

$$(\operatorname{arccot} x)' = -\frac{1}{|x|\sqrt{1 + x^2}}$$

$$(\operatorname{arcsech} x)' = -\frac{1}{|x|\sqrt{1 - x^2}}$$

$$(\operatorname{arcsech} x)' = -\frac{1}{x\sqrt{1 - x^2}}$$

5.3 Integration Table 积分表

5.3.1 $ax^2 + bx + c(a > 0)$

1.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}$$

2.
$$\int \frac{x}{ax^2+bx+c} dx = \frac{1}{2a} \ln|ax^2+bx+c| - \frac{b}{2a} \int \frac{dx}{ax^2+bx+c}$$

5.3.2
$$\sqrt{\pm ax^2 + bx + c}(a > 0)$$

1.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

2.
$$\int \sqrt{ax^2 + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8\sqrt{a^3}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

3.
$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2\sqrt{a^3}} \ln|2ax + b + 2\sqrt{a} \sqrt{ax^2 + bx + c}| + C$$

4.
$$\int \frac{\mathrm{d}x}{\sqrt{c+bx-ax^2}} = -\frac{1}{\sqrt{a}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

5.
$$\int \sqrt{c + bx - ax^2} dx = \frac{2ax - b}{4a} \sqrt{c + bx - ax^2} + \frac{b^2 + 4ac}{8\sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C$$

6.
$$\int \frac{x}{\sqrt{c+bx-ax^2}} dx = -\frac{1}{a} \sqrt{c+bx-ax^2} + \frac{b}{2\sqrt{a^3}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

5.3.3 $\sqrt{\pm \frac{x-a}{x-b}}$ 或 $\sqrt{(x-a)(x-b)}$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C(a < b)$$

2.
$$\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C, (a < b)$$

5.3.4 三角函数的积分

1.
$$\int \tan x \, \mathrm{d}x = -\ln|\cos x| + C$$

$$2. \int \cot x \, \mathrm{d}x = \ln|\sin x| + C$$

3.
$$\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$$

4.
$$\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$$

5.
$$\int \sec^2 x dx = \tan x + C$$

6.
$$\int \csc^2 x dx = -\cot x + C$$

7.
$$\int \sec x \tan x dx = \sec x + C$$

8.
$$\int \csc x \cot x dx = -\csc x + C$$

9.
$$\int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin 2x + C$$

10.
$$\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$$

```
上海交通大学 Shanghai Jiao Tong University
      11. \int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx
     12. \int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx
     13. \int \frac{dx}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}
     14. \int \frac{dx}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}
                         \int \cos^m x \sin^n x dx
                    = \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx
                    = -\frac{1}{m+n}\cos^{m+1}x\sin^{n-1}x + \frac{n-1}{m+1}\int \cos^m x\sin^{n-2}x dx
     16.  \int \frac{\mathrm{d}x}{a+b\sin x} = \begin{cases} \frac{2}{\sqrt{a^2 - b^2}} \arctan \frac{a\tan \frac{x}{2} + b}{\sqrt{a^2 - b^2}} + C & (a^2 > b^2) \\ \frac{1}{\sqrt{b^2 - a^2}} \ln \left| \frac{a\tan \frac{x}{2} + b - \sqrt{b^2 - a^2}}{a\tan \frac{x}{2} + b + \sqrt{b^2 - a^2}} \right| + C & (a^2 < b^2) \end{cases} 
     17.  \int \frac{dx}{a+b\cos x} = \begin{cases} \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan\left(\sqrt{\frac{a-b}{a+b}} \tan\frac{x}{2}\right) + C & (a^2 > b^2) \\ \frac{1}{a+b} \sqrt{\frac{a+b}{a-b}} \ln\left|\frac{\tan\frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan\frac{x}{2} - \sqrt{\frac{a+b}{b-a}}}\right| + C & (a^2 < b^2) \end{cases} 
      18. \int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C
     19. \int \frac{dx}{a^2 \cos^2 x - b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x - a} \right| + C
      20. \int x \sin ax dx = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax + C
      21. \int x^2 \sin ax dx = -\frac{1}{a}x^2 \cos ax + \frac{2}{a^2}x \sin ax + \frac{2}{a^3}\cos ax + C
      22. \int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C
      23. \int x^2 \cos ax dx = \frac{1}{a}x^2 \sin ax + \frac{2}{a^2}x \cos ax - \frac{2}{a^3} \sin ax + C
5.3.5 反三角函数的积分 (其中 a > 0 )
        1. \int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C
        2. \int x \arcsin \frac{x}{a} dx = \left(\frac{x^2}{2} - \frac{a^2}{4}\right) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 - x^2} + C
        3. \int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 - x^2} + C
        4. \int \arccos \frac{x}{a} dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C
        5. \int x \arccos \frac{x}{a} dx = \left(\frac{x^2}{2} - \frac{a^2}{4}\right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C
        6. \int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 - x^2} + C
        7. \int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2) + C
        8. \int x \arctan \frac{x}{a} dx = \frac{1}{2} (a^2 + x^2) \arctan \frac{x}{a} - \frac{a}{2} x + C
        9. \int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} - \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C
5.3.6 指数函数的积分
        1. \int a^x dx = \frac{1}{\ln a} a^x + C
        2. \int e^{ax} dx = \frac{1}{a} a^{ax} + C
        3. \int xe^{ax} dx = \frac{1}{a^2}(ax - 1)a^{ax} + C
        4. \int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx
```

Java Template import java.io.*; import java.util.*; import java.math.*; public class Main { static class solver { public void run(Scanner cin, → PrintStream out) {} } public static void main(String[] args) { // Fast Reader & Big Numbers InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); BigInteger c = in.nextInt(); out.println(c.toString(8)); out.close(); // as Oct BigDecimal d = new BigDecimal(10.0); // d=d.divide(num, length, BigDecimal.ROUND_HALF_UP) d.setScale(2, BigDecimal.ROUND_FLOOR); // 用于输出 System.out.printf("%.6f\n", 1.23); // C 格式 BigInteger num = BigInteger.valueOf(6); num.isProbablePrime(10); // 1 - 1 / 2 ^ certainty BigInteger rev = num.modPow(BigInteger.valueOf(-1)) → BigInteger.valueOf(25)); // rev=6^-1mod25 要互质 num = num.nextProbablePrime(); num.intValue(); Scanner cin=new Scanner(System.in);//SimpleReader int n = cin.nextInt(); int [] a = new int [n]; // 初值未定义 // Random rand.nextInt(N) [0,N) Arrays.sort(a, 5, 10, cmp); // sort(a+5, a+10) ArrayList<Long> list = new ArrayList(); // vector // .add(val) .add(pos, val) .remove(pos) Comparator cmp=new Comparator<Long>(){ // 自定义逆序 @Override public int compare(Long o1, Long o2) { /* o1 < o2 ? 1 :(o1 > o2 ? -1 : 0) */ } }; // Collections. shuffle(list) sort(list, cmp) Long [] tmp = list.toArray(new Long [0]); // list.get(pos) list.size() Map<Integer,String> m = new HashMap<Integer,String>(); //m.put(key,val) get(key) containsKey(key) remove(key) for (Map.Entry<Integer,String> entry:m.entrySet()); // ⇔ entry.getKey() getValue() Set<String> s = new HashSet<String>(); // TreeSet //s.add(val)contains(val)remove(val);for(var : s) solver Task=new solver(); Task.run(cin, System.out); PriorityQueue<Integer> Q=new PriorityQueue<Integer>(); // Q. offer(val) poll() peek() size() // Read / Write a file : FileWriter FileReader PrintStream } static class InputReader { // Fast Reader public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { | reader = new BufferedReader(new → InputStreamReader(stream), 32768); | tokenizer = null; } public String next() { while (tokenizer==null||!tokenizer.hasMoreTokens()) { try { String line = reader.readLine();

```
5. \int xa^x dx = \frac{x}{\ln a}a^x - \frac{1}{(\ln a)^2}a^x + C
6. \int x^n a^x dx = \frac{1}{\ln a} x^n a^x - \frac{n}{\ln a} \int x^{n-1} a^x dx
7. \int e^{ax} \sin bx dx = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C
8. \int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C
```

 $\frac{n(n-1)b^2}{a^2+b^2n^2} \int e^{ax} \sin^{n-2} bx dx$

 $\frac{n(n-1)b^2}{a^2+b^2n^2} \int e^{ax} \cos^{n-2} bx dx$

3. $\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$

4. $\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$

5. $\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$

1. $\int \ln x dx = x \ln x - x + C$ 2. $\int \frac{dx}{x \ln x} = \ln \left| \ln x \right| + C$

5.3.7 对数函数的积分

9. $\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a \sin bx - nb \cos bx) +$

```
def IO_and_Exceptions():
    | with open("a.in", mode="r") as fin:
         for line in fin:
          | a = list(map(int, line.split()))
            print(a, end = "\n")
  except:
| assert False, '17 cards can\'t kill me'
| import random as rand
   rand.normalvariate(0.5, 0.1)
   l = [str(i) for i in range(9)]
  sorted(1), min(1), max(1), len(1)
```

/*line == null ? end of file*/

throw new RuntimeException(e); } } return tokenizer.nextToken(); }

} catch (IOException e) {

public BigInteger nextInt() {

tokenizer = new StringTokenizer(line);

| //return Long.parseLong(next()); Double Integer return new BigInteger(next(), 16); // as Hex

```
10. \int e^{ax} \cos^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \cos^{n-1} bx (a \cos bx + nb \sin bx) +
```

5.5 Python Hint

} } }

```
15
      rand.shuffle(1)
16
      1.sort(key=lambda x:x ^ 1,reverse=True)
17
      import functools as ft
      1.sort(key=ft.cmp\_to\_key(lambda \ x, \ y:(y^1)-(x^1)))
18
19
   def FractionOperation():
    | from fractions import Fraction
      a = Fraction(0.233).limit_denominator()
21
      a == Fraction("0.233") #True
    a.numerator, a.denominator, str(a)
23
24
   def DecimalOperation():
25
      import decimal
26
      from decimal import Decimal, getcontext
      getcontext().prec = 100
27
28
      getcontext().rounding = getattr(decimal,
        → 'ROUND_HALF_EVEN')
      # default; other: FLOOR, CELILING, DOWN, ...
30
      getcontext().traps[decimal.FloatOperation] = True
      Decimal((0, (1, 4, 1, 4), -3)) # 1.414
      a = Decimal(1<<31) / Decimal(100000)</pre>
32
      print(round(a, 5)) # total digits
33
34
      print(a.quantize(Decimal("0.00000")))
35
      # 21474.83648
    | print(a.sqrt(), a.ln(), a.log10(), a.exp(), a ** 2)
   def Complex():
37
38
39
    print(a.real, a.imag, a.conjugate())
40
   def FastIO():
41
      import atexit
42
      import io
43
      _INPUT_LINES = sys.stdin.read().splitlines()
44
45
      input = iter(_INPUT_LINES).__next__
      _OUTPUT_BUFFER = io.StringIO()
46
      sys.stdout = _OUTPUT_BUFFER
47
48
      @atexit.register
49
      def write():
       | sys.__stdout__.write(_OUTPUT_BUFFER.getvalue())
```

6. Miscellany

6.1 Zeller 日期公式

6.2 DP 优化

6.2.1 四边形不等式

6.2.2 一类树形背包优化

一类树形背包限制: 若父节点不取, 则子节点必不取, 也即最后必须取与根节点相连的一个连通块.

转化: 考虑此树的任意DFS序,一个点的子树对应于DFS序中的一个区间. 则每个点的决策为, 取该点, 或者舍弃该点对应的区间. 从后往前dp, 设 f(i,v) 表示从后往前考虑到i号点, 总体积为V的最优价值, 设i号点对应的 区间为 $[i,i+size_i-1]$, 转移为 $f(i,v)=max\{f(i+1,V-v_i)+w_i,f(i+size_i,v)\}$.

如果要求任意连通块,则点分治后转为指定根的连通块问题即可.

6.3 Hash Table

```
template <class T,int P = 314159/</pre>

→ *,451411,1141109,2119969*/>

   struct hashmap {
   ULL id[P]; T val[P];
   int rec[P]; // del: no many clears
   hashmap() {memset(id, -1, sizeof id);}
   T get(const ULL &x) const {
   | for (int i = int(x \% P), j = 1; \sim id[i]; i = (i + j) \% P,
        \rightarrow j = (j + 2) % P /*unroll if needed*/) {
       | if (id[i] == x) return val[i]; }
    | return 0; }
   T& operator [] (const ULL &x) {
10
    | for (int i = int(x % P), j = 1;
                                             ; i = (i + j) \% P,
        \hookrightarrow j = (j + 2) % P) {
       if (id[i] == x) return val[i];
         else if (id[i] == -1llu) {
          | id[i] = x;
14
15
            rec[++rec[0]] = i; // del: no many clears
16
          | return val[i]; } } }
17
   void clear() { // del
   | while(rec[0]) id[rec[rec[0]]] = -1, val[rec[rec[0]]] =
        19
   void fullclear() {
20
   | memset(id, -1, sizeof id); rec[0] = 0; } };
```

6.4 基数排序

```
const int SZ = 1 << 8; // almost always fit in L1 cache
void SORT(int a[], int c[], int n, int w) {
    | for(int i=0; i<SZ; i++) b[i] = 0;
    | for(int i=1; i<=n; i++) b[(a[i]>>w) & (SZ-1)]++;
    | for(int i=1; i<SZ; i++) b[i] += b[i - 1];
    | for(int i=n; i; i--) c[b[(a[i]>>w) & (SZ-1)]--] = a[i];}
void Sort(int *a, int n){
    | SORT(a, c, n, 0);
    | SORT(c, a, n, 8);
    | SORT(a, c, n, 16);
    | SORT(c, a, n, 24); }
```

6.5 O3 与读入优化

```
//fast = 03 + ffast-math + fallow-store-data-races
pragma GCC optimize("Ofast")

#pragma GCC target("lzcnt,popcnt")

const int SZ = 1 << 16;
int getc() {
    | static char buf[SZ], *ptr = buf, *top = buf;
    | if (ptr == top) {
    | ptr = buf, top = buf + fread(buf, 1, SZ, stdin);
    | if (top == buf) return -1; }
    | return *ptr++; }

bitset._Find_first();bitset._Find_next(idx);
struct HashFunc{size_t operator()(const KEY &key)const{}};</pre>
```

6.6 Vimrc, Bashrc

```
source $VIMRUNTIME/mswin.vim
behave mswin
set mouse=a ci ai si nu ts=4 sw=4 is hls backup undofile
color slate
map <F7>: ! make %<<CR>
map <F8>: ! time ./%< <CR>
```

6.7 I used to roll the dice

```
1e3 983 997 1009 1013 1019 1031 1033 1039 1049 1051
1e5 98689 98869 99787 102001 102253 103141 103681 104723 104761 105829
```

5e5 482393 484153 500699 502339 503927 504989 509741 513673 513781 519919

1e6 971821 983819 997681 998071 999101 1045199 1049717 1051081 1052041 1054909

2e6 1969307 1972571 1980289 2007149 2027309 2027323 2031037 2040449 2078851 2116351

1e7 9691931 9739777 9851011 9931283 9987433 10117699 10279001 10453081 10480901 10569277

1e9 960252407 975062279 981021871 982819837 986389021 987610891 1032344591 1055997749 1058190677 1058690387

6.8 Constant Table 常数表

n	log10 n	n!	C(n,n/2)	LCM(1n)
2	0.30	2	2	2
3	0.48	6	3	6
4	0.60	24	6	12
5	0.70	120	10	60
6	0.78	720	20	60
7	0.85	5040	35	420
8	0.90	40320	70	840
9	0.95	362880	126	2520
10	1	3628800	252	2520
11		39916800	462	27720
12		479001600	924	27720
15			6435	360360
20			184756	232792560
25			5200300	
30			155117520	

```
Java Example
                                                                          ans = BigDecimal.ZERO;
                                                                 69
   import java.util.*;
                                                                 70
   import java.math.*;
                                                                             a[i] = new point();
   import java.text.*;
                                                                 72
   import java.io.*;
                                                                 73
                                                                          }
                                                                 74
   // Byte Camp 2021 Final : F
   // Calulate a, b \sim Polygon, E[|a.x - b.x| + |a.y - b.y|]
                                                                 76
 8
   public class Main {
                                                                          }
      static class point {
                                                                 78
                                                                          S = BigDecimal.ZERO;
10
       | BigDecimal x, y;
11
         point () {}
12
         point (int xx, int yy) {x = new BigDecimal(xx); y =
                                                                                \hookrightarrow \text{new BigDecimal(yy);} \}
                                                                 81
13
      | point (BigDecimal xx, BigDecimal yy) {x = xx; y =
                                                                 82
                                                                 83
                                                                          work();
15
         point add(point a) {
                                                                            | BigDecimal t = a[i].x;
                                                                 85
          return new point(x.add(a.x), y.add(a.y));
16
                                                                             a[i].x = a[i].y;
17
                                                                 87
                                                                           | a[i].y = t;
18
         point sub(point a) {
                                                                 88
                                                                          }
         return new point(x.subtract(a.x),
                                                                          work();

    y.subtract(a.y));
                                                                 90
20
21
     }
22
                                                                        | System.out.println(new
                                                                 92
23
    | static BigDecimal det(point a, point b) {return
        93
24
25
      static BigDecimal ans, S, C:
                                                                 95
                                                                    // | | System.out.println(
26
     static MathContext fuckJava = new MathContext(100,
        97
                                                                    // |
28
    | static BigDecimal getlen(point a1, point a2, point b1,
                                                                 98
                                                                     | }

    point b2, BigDecimal x) {
                                                                    }
                                                                 99
       | BigDecimal k1 =
29
                                                                 100

    a2.y.subtract(a1.y).divide(a2.x.subtract(a1.x),

    fuckJava);
                                                                 102
                                                                    // Closest Pair of Points

    b2.y.subtract(b1.y).divide(b2.x.subtract(b1.x),
                                                                    public class Main {
                                                                 104

    fuckJava);
                                                                 105
31
    | BigDecimal p1 =
                                                                 106
           107
           .08
32
       return p2.subtract(p1).abs();
33
                                                                          long x, y;
    /* ... */
34
                                                                          public point () {}
35
                                                                 112
      static int n;
                                                                 113
37
      static point[] a = new point[31111];
                                                                 114
38
      static List<point> p = new ArrayList<>();
                                                                 115
39
                                                                       }
                                                                 116
40
      static void work() {
                                                                     | static point[] p;
                                                                 117
41
         BigDecimal minx = BigDecimal.TEN.pow(18);
                                                                 118
         int id = 0;
42
                                                                 119
                                                                       static long sqr(long x) {
         for (int i = 0; i < n; i++) {
43
                                                                        return x * x;
44
          if (a[i].x.compareTo(minx) < 0) {</pre>
45
               minx = a[i].x;
                                                                 22
46
               id = i;
                                                                 123
47
          | }
                                                                 124
                                                                          int m = (1 + r) / 2;
48
                                                                           long mx = p[m].x;
49
         p.clear();
                                                                 126
50
         for (int i = id; i < n; i++) p.add(a[i]);</pre>
                                                                 27
51
         for (int i = 0; i < id; i++) p.add(a[i]);</pre>
                                                                 128
52
         p.add(p.get(0));
                                                                 29
53
54
         C = BigDecimal.ZERO;
                                                                          Collections.sort(v);
55
         int l = 1, r = n - 1;
56
         for (;;) {
                                                                 133
57
            solve(p.get(1 - 1), p.get(1), p.get(r + 1),
                                                                 134
              \hookrightarrow p.get(r));
58
            if (1 == r) break;
59
            if (p.get(1).x.compareTo(p.get(r).x) < 0) {</pre>
                                                                                  \hookrightarrow v.get(j).x));
60
             1++;
                                                                 136
                                                                           | }
61
            } else {
                                                                 137
                                                                          }
62
             | r--;
                                                                 138
                                                                          v.clear();
            } } }
63
                                                                 139
                                                                        return ret;
64
      static Scanner scanner;
                                                                 140
      public static void main(String[] args) {
65
                                                                 141
66
       | scanner = new Scanner(new
                                                                 142
           → BufferedInputStream(System.in));
                                                                 143
       n = scanner.nextInt();
```

```
for (int i = 0; i < n; i++) {
       | int x = scanner.nextInt();
         a[i].x = new BigDecimal(x);
     for (int i = 0; i < n; i++) {
       int x = scanner.nextInt();
        a[i].y = new BigDecimal(x);
     for (int i = 1; i < n - 1; i++) {
      | S = S.add(det(a[i].sub(a[0]), a[i +
     S = S.divide(BigDecimal.valueOf(2), fuckJava);
      for (int i = 0; i < n; i++) {
   | ans = ans.divide(S.multiply(S),

    fuckJava).multiply(new BigDecimal(2));

    DecimalFormat("0.00000000000").format(ans))
// | | ans = ans.setScale(20, RoundingMode.HALF_EVEN);

    ans.stripTrailingZeros().toPlainString());
     | System.out.printf("%.9f\n", ans.doubleValue());
| public static final int N = 111111;
| public static final long INF = (11 << 63) - 1;
  static class point implements Comparable<point> {
      public point (long xx, long yy) \{x = xx; y = yy;\}
     public int compareTo(point b) {
      | return y > b.y ? 1 : (y < b.y ? -1 : 0);
   static long solve(int 1, int r) {
    | if (1 + 1 >= r) return INF;
     List <point> v = new ArrayList<>();
      long ret = Long.min(solve(1, m), solve(m, r));
      for (int i = 1; i < r; i++) {
      | if (sqr(p[i].x - mx) < ret) v.add(p[i]);
      for (int i = 0; i < v.size(); i++) {
      | for (int j = i + 1; j < v.size(); j++) {
         if (sqr(v.get(i).y - v.get(j).y) > ret) break;
         ret = Long.min(ret, sqr(v.get(i).y -
             \hookrightarrow v.get(j).y) + sqr(v.get(i).x -
  static class InputReader { // Fast Reader
   | public BufferedReader reader;
```

```
public StringTokenizer tokenizer;
          public InputReader(InputStream stream) {
145
             reader = new BufferedReader(new
146
               147
            tokenizer = null; }
148
         public String next() {
          while
149
               150
              try { String line = reader.readLine();
151
                   tokenizer = new StringTokenizer(line);
152
                } catch (IOException e) {
                | throw new RuntimeException(e); }
153
            } return tokenizer.nextToken(); }
154
155
          public int nextInt() {
           | return Integer.valueOf(next());
156
157
          }
158
159
       public static void main(String[] args) {
160
         InputReader in = new InputReader(System.in);
161
162
          int n = in.nextInt();
         p = new point[n];
163
          for (int i = 0; i < n; i++) {
164
165
             int x = in.nextInt();
             int y = in.nextInt();
166
            p[i] = new point(x, y); |
167
168
169
         Arrays.sort(p, new Comparator <point>() {
          | public int compare(point a, point b) { return a.x
170
               \hookrightarrow b.x ? 1 : (a.x < b.x ? -1 : 0); }
171
         });
172
          System.out.printf("%.4f\n", Math.sqrt(solve(0, n)));
173
      }
174
    // Yinchuan 2019, I. Base62
175
176
    public class Main {
177
      public static void main(String[] args) {
178
       | Scanner in = new Scanner(new
            → BufferedInputStream(System.in));
179
          int x = in.nextInt();
          int y = in.nextInt();
180
181
          String z = in.next();
182
          int n = z.length();
183
          BigInteger val = BigInteger.ZERO;
          for (int i = 0; i < n; i++) {
184
185
             char ch = z.charAt(i);
186
             int v;
             if (ch >= '0' \&\& ch <= '9') v = ch - '0';
187
             else if (ch >= 'A' && ch <= 'Z') v = ch - 'A' +
188
             else v = ch - 'a' + 36;
             val = val.multiply(BigInteger.valueOf(x))
190

    .add(BigInteger.valueOf(v));

191
         StringBuilder ans = new StringBuilder();
192
          while (val.compareTo(BigInteger.ZERO) > 0) {
193
194
          | int last =

    val.mod(BigInteger.valueOf(y)).intValue();
             if (last < 10) ans.append((char)('0' + last));</pre>
195
             else if (last < 36) ans.append((char)('A' + last -</pre>
196

→ 10));
             else ans.append((char)('a' + last - 36));
197
198
            val = val.divide(BigInteger.valueOf(y));
199
200
          String s = ans.reverse().toString();
         System.out.println(s.length() == 0 ? "0" : s);
202
       }
203
```

Python Example

```
import math
import sys
def inp():
   while True:
      _INPUT = input().split() # sys.stdin.read().split()
      for j in _INPUT:
       | yield j
read = inp().__next_
a = []
def solve(1, r):
 | if 1 + 1 >= r:
```

```
return 2 ** 64
     m = (1 + r) // 2
13
     mx = a[m][0]
     v = []
15
16
     ret = min(solve(1, m), solve(m, r))
17
     for i in range(l, r):
      | if (a[i][0] - mx) ** 2 < ret:
18
           v.append(a[i])
     v.sort(key=lambda x : x[1])
21
     for i in range(len(v)):
        for j in range(i + 1, len(v)):
         | if (v[i][1] - v[j][1]) ** 2 > ret:
23
           25
26
27
28
   n = int(read())
   for i in range(n):
29
   | x = int(read())
     y = int(read())
31
   | a.append((x, y))
  a.sort(key=lambda x : x[0])
  print("%.4f" % math.sqrt(solve(0, n)))
```

Blossom

```
\label{eq:define_define_define} \mbox{\#define DIST(e) (lab[e.u]+lab[e.v]-g[e.u][e.v].w*2)}
   struct Edge{ int u,v,w; } g[N][N];
   int n,m,n_x,lab[N],match[N],slack[N]
   st[N],pa[N],fl_from[N][N],S[N],vis[N];
   vector<int> fl[N];
   deque<int> q;
   void update_slack(int u,int x){
    if(!slack[x]||DIST(g[u][x])<DIST(g[slack[x]][x]))</pre>
         \hookrightarrow slack[x]=u; }
   void set_slack(int x){
10
    \mid slack[x]=0;
      for(int u=1; u<=n; ++u)
       | if(g[u][x].w>0&&st[u]!
            \rightarrow =x&&S[st[u]]==0)update_slack(u,x);
13
14
   void q_push(int x){
      if(x<=n)return q.push_back(x);</pre>
15
      for(int i=0; i<fl[x].size(); i++)q_push(fl[x][i]);</pre>
16
17
18
   void set_st(int x,int b){
19
      st[x]=b;
      if(x<=n)return;</pre>
20
21
      for(int i=0; i<fl[x].size(); ++i)set_st(fl[x][i],b);</pre>
22
   int get_pr(int b,int xr){
      int pr=find(fl[b].begin(),fl[b].end(),xr)-fl[b].begin();
24
         reverse(fl[b].begin()+1,fl[b].end());
26
27
          return (int)fl[b].size()-pr;
28
29
      else return pr;
30
31
   void set_match(int u,int v){
32
      match[u]=g[u][v].v;
33
       if(u<=n)return;
34
      Edge e=g[u][v];
       int xr=fl_from[u][e.u],pr=get_pr(u,xr);
      for(int i=0; i<pr; ++i)set_match(fl[u][i],fl[u][i^1]);
36
37
       set match(xr,v);
38
      rotate(fl[u].begin(),fl[u].begin()+pr,fl[u].end());
39
40
   void augment(int u,int v){
41
      int xnv=st[match[u]];
42
       set_match(u,v);
43
       if(!xnv)return;
44
      set_match(xnv,st[pa[xnv]]);
45
      augment(st[pa[xnv]],xnv);
46
   int get_lca(int u,int v){
    | static int t=0;
48
49
       for(++t; u||v; swap(u,v)){
          if(u==0)continue;
50
51
          if(vis[u]==t)return u;
52
          vis[u]=t;
          u=st[match[u]];
```

```
| if(u)u=st[pa[u]];
55
56
       return 0;
57
    }
58
    void add_blossom(int u,int lca,int v){
59
       int b=n+1;
       while(b<=n_x&&st[b])++b;</pre>
60
61
        if(b>n_x)++n_x;
       lab[b]=0,S[b]=0;
62
63
       match[b]=match[lca];
64
       fl[b].clear();
65
       fl[b].push_back(lca);
       for(int x=u,y; x!=lca; x=st[pa[y]])
67
          fl[b].push_back(x),
68
          fl[b].push_back(y=st[match[x]]),q_push(y);
69
       reverse(fl[b].begin()+1,fl[b].end());
70
       for(int x=v,y; x!=lca; x=st[pa[y]])
71
           fl[b].push_back(x),
        fl[b].push_back(y=st[match[x]]),q_push(y);
72
73
       for(int x=1; x<=n_x; ++x)g[b][x].w=g[x][b].w=0;
for(int x=1; x<=n; ++x)fl_from[b][x]=0;</pre>
74
75
76
       for(int i=0; i<fl[b].size(); ++i){</pre>
77
           int xs=fl[b][i];
78
           for(int x=1; x<=n_x; ++x)
              if(g[b][x].w==0||DIST(g[xs][x]) < DIST(g[b][x]))
79
80
               | g[b][x]=g[xs][x],g[x][b]=g[x][xs];
81
           for(int x=1; x <= n; ++x)
           if(fl_from[xs][x])fl_from[b][x]=xs;
82
83
84
       set slack(b);
85
86
    void expand_blossom(int b){
       for(int i=0; i<fl[b].size(); ++i)</pre>
87
88
        | set_st(fl[b][i],fl[b][i]);
89
       int xr=fl_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
90
       for(int i=0; i<pr; i+=2){</pre>
91
          int xs=fl[b][i],xns=fl[b][i+1];
92
          pa[xs]=g[xns][xs].u;
          S[xs]=1,S[xns]=0;
93
94
          slack[xs]=0,set_slack(xns);
95
          q_push(xns);
96
97
       S[xr]=1,pa[xr]=pa[b];
       for(int i=pr+1; i<fl[b].size(); ++i){</pre>
98
        | int xs=fl[b][i];
99
100
          S[xs]=-1,set_slack(xs);
101
       st[b]=0;
103
    }
104
    bool on_found_Edge(const Edge &e){
105
       int u=st[e.u],v=st[e.v];
106
       if(S[v]==-1){
107
          pa[v]=e.u,S[v]=1;
108
           int nu=st[match[v]];
           slack[v]=slack[nu]=0;
109
          S[nu]=0,q_push(nu);
110
111
       }
112
       else if(S[v]==0){
113
          int lca=get_lca(u,v);
           if(!lca)return augment(u,v),augment(v,u),1;
114
          else add_blossom(u,lca,v);
115
116
       }
117
       return 0;
118
119
    bool matching(){
       fill(S,S+n_x+1,-1),fill(slack,slack+n_x+1,0);
120
121
       q.clear();
122
       for(int x=1; x<=n_x; ++x)</pre>
123
         if(st[x]==x&&!match[x])pa[x]=0,S[x]=0,q_push(x);
124
       if(q.empty())return 0;
125
       for(;;){
          while(q.size()){
126
              int u=q.front();
127
128
              q.pop_front();
129
              if(S[st[u]]==1)continue;
130
              for(int v=1; v<=n; ++v)
                 if(g[u][v].w>0&&st[u]!=st[v]){
131
132
                    if(DIST(g[u][v])==0){
133
                     if(on_found_Edge(g[u][v]))return 1;
134
                    }
                  else update_slack(u,st[v]);
```

```
int d=INF;
          for(int b=n+1; b<=n_x; ++b)
139
L40
           | if(st[b]==b&&S[b]==1)d=min(d,lab[b]/2);
141
          for(int x=1; x<=n_x; ++x)
           | if(st[x]==x&&slack[x]){
142
                if(S[x]==-1)d=min(d,DIST(g[slack[x]][x]));
43
                 else if(S[x]==0)d=min(d,DIST(g[slack[x]])
144
                   \hookrightarrow [x])/2);
45
           | }
          for(int u=1; u<=n; ++u){</pre>
146
             if(S[st[u]]==0){
L47
148
                if(lab[u]<=d)return 0;</pre>
149
               | lab[u]-=d;
             }
150
             else if(S[st[u]]==1)lab[u]+=d;
151
          }
          for(int b=n+1; b<=n_x; ++b)</pre>
153
             if(st[b]==b){
               | if(S[st[b]]==0)lab[b]+=d*2;
155
156
                 else if(S[st[b]]==1)lab[b]-=d*2;
             }
          q.clear();
          for(int x=1; x<=n_x; ++x)</pre>
59
           if(st[x]==x&&slack[x]&&st[slack[x]]!
                \hookrightarrow =x&&DIST(g[slack[x]][x])==0)
               if(on_found_Edge(g[slack[x]][x]))return 1;
          for(int b=n+1; b<=n_x; ++b)</pre>
162
           | if(st[b]==b&&S[b]==1&&lab[b]==0)expand_blossom(b);
                → }
164
     | return 0; }
    pair<ll,int> weight_blossom(){
       fill(match, match+n+1,0);
166
167
       n x=n;
       int n_matches=0;
169
       11 tot_weight=0;
170
       for(int u=0; u<=n; ++u)st[u]=u,fl[u].clear();</pre>
71
       int w_max=0;
       for(int u=1; u<=n; ++u)</pre>
          for(int v=1; v<=n; ++v){</pre>
173
174
            | fl_from[u][v]=(u==v?u:0);
75
             w_max=max(w_max,g[u][v].w); }
176
       for(int u=1; u<=n; ++u)lab[u]=w_max;</pre>
       while(matching())++n_matches;
       for(int u=1; u<=n; ++u)</pre>
          if(match[u]&&match[u]<u)</pre>
180
        | | tot_weight+=g[u][match[u]].w;
181
     return make_pair(tot_weight,n_matches); }
182
    int main(){
    | cin>>n>>m;
184
       for(int u=1; u<=n; ++u)</pre>
          for(int v=1; v<=n; ++v)
           | g[u][v]=Edge {u,v,0};
186
187
       for(int i=0,u,v,w; i<m; ++i){</pre>
          cin>>u>>v>>w;
189
        | g[u][v].w=g[v][u].w=w; }
       cout<<weight_blossom().first<<'\n';</pre>
190
       for(int u=1; u<=n; ++u)cout<<match[u]<<' '; }</pre>
```

Chu-liu

```
struct UnionFind {
      int fa[N * 2];
      UnionFind() { memset(fa, 0, sizeof(fa)); }
      void clear(int n) { memset(fa + 1, 0, sizeof(int) * n);
      int find(int x) { return fa[x] ? fa[x] = find(fa[x]) :
   int operator[](int x) { return find(x); } };
   struct Edge { int u, v, w, w0; };
 8
   struct Heap {
    | Edge *e;
9
      int rk, constant;
      Heap *lch, *rch;
    Heap(Edge *_e) : e(_e), rk(1), constant(0), lch(NULL),
12

    rch(NULL) {}
     void push() {
13
14
         if (lch) lch->constant += constant;
         if (rch) rch->constant += constant;
15
16
         e->w += constant;
17
         constant = 0; } };
18 Heap *merge(Heap *x, Heap *y) {
```

```
19
      if (!x) return y;
      if (!y) return x;
20
     if (x\rightarrow e\rightarrow w + x\rightarrow constant > y\rightarrow e\rightarrow w + y\rightarrow constant)
21
        \hookrightarrow swap(x, y);
22
      x->push();
23
      x->rch = merge(x->rch, y);
    | if (!x->lch | x->lch->rk < x->rch->rk) swap(x->lch,
24
          → x->rch);
      if (x-)rch) x-)rk = x-)rch-)rk + 1;
25
26
      else x \rightarrow rk = 1;
27
     return x;
28
   Edge *extract(Heap *&x) {
29
30
      Edge *r = x->e; x->push();
31
      x = merge(x->lch, x->rch);
32
      return r;
33
   }
   vector<Edge> in[N];
   int n, m, fa[N \stackrel{\cdot}{*} 2], nxt[N * 2];
35
   Edge *ed[N * 2];
   Heap *Q[N * 2];
37
38
   UnionFind id;
39
   void contract() {
      bool mark[N * 2];
/* 将图上的每一个结点与其相连的那些结点进行记录 */
40
41
      for (int i = 1; i <= n; i++) {
42
43
         queue<Heap *> q;
          for (int j = 0; j < in[i].size(); j++) q.push(new

    Heap(&in[i][j]));

45
         while (q.size() > 1) {
            auto u = q.front(); q.pop();
46
47
            auto v = q.front(); q.pop();
48
            q.push(merge(u, v)); }
       Q[i] = q.front(); }
49
50
      mark[1] = true;
      for (int a = 1, b = 1, p; Q[a]; b = a, mark[b] = true) {
51
52
         /* 找最小入边及其端点, 保证无环 */
53
         do {
54
            ed[a] = extract(Q[a]);
            a = id[ed[a]->u];
55
          } while (a == b && Q[a]);
56
          if (a == b) break;
57
         if (!mark[a]) continue;
58
          /* 收缩环,环内的结点重编号,总权值更新 */
59
          for (a = b, n++; a != n; a = p) {
            id.fa[a] = fa[a] = n;
61
62
            if (Q[a]) Q[a]->constant -= ed[a]->w;
63
            Q[n] = merge(Q[n], Q[a]);
64
            p = id[ed[a]->u];
65
            nxt[p == n ? b : p] = a;
66
       | } } }
   LL expand(int x, int r);
68
69
   LL expand_iter(int x) {
70
      LL r = 0;
      for (int u = nxt[x]; u != x; u = nxt[u]) {
71
       | if (ed[u]->w0 >= INF) return INF;
72
73
       | else r += expand(ed[u]->v, u) + ed[u]->w0; }
74
      return r;
75
76
   LL expand(int x, int t) {
77
      LL r = 0;
78
      for (; x != t; x = fa[x]) {
79
       | r += expand_iter(x);
80
       if (r >= INF) return INF; }
81
      return r;
   void adde(int u, int v, int w){
83
    | in[v].push_back({u, v, w, w}); }
84
85
86
   int main() {
      int rt;
87
      scanf("%d %d %d", &n, &m, &rt);
88
      for (int i = 0; i < m; i++) {
89
90
       | int u. v. w:
          scanf("%d %d %d", &u, &v, &w);
91
        adde(u, v, w); }
      /* 保证强连通 */
93
94
      for (int i = 1; i <= n; i++)
       | adde(i > 1 ? i - 1 : n, i, INF);
95
96
      contract();
      LL ans = expand(rt, n);
```

```
if (ans >= INF) puts("-1");
else printf("%lld\n", ans); }
```

```
天动万象
   typedef double D;
   #define cp const p3 &
   struct p3 {
    | D x, y, z;
      void read() {
       | int xx, yy, zz;
| scanf("%d%d%d", &xx, &yy, &zz);
       | x = xx, y = yy, z = zz;
10
      p3 () \{x = y = z = 0;\}
    | p3 (D xx, D yy, D zz) \{x = xx; y = yy; z = zz;\}
11
    \mid p3 operator + (cp a) const {return {x + a.x, y + a.y, z}
    | p3 operator - (cp a) const {return {x - a.x, y - a.y, z
        \hookrightarrow - a.z};}
    p3 operator * (const D &a) const {return {x * a, y * a,
        \hookrightarrow z * a;
    \mid p3 operator / (const D &a) const {return {x / a, y / a,
15
        \hookrightarrow z / a;}
    | D & operator [] (const int a) { return a == 0 ? x : (a ==
16
        \hookrightarrow 1 ? y : z); }
    | const D &operator [] (const int a) const { return a == 0
17
         \hookrightarrow ? x : (a == 1 ? y : z); }
    | D len2() const { return x * x + y * y + z * z; }
18
      void normalize() {
19
       | D 1 = sqrt(len2());
       | x /= 1; y /= 1; z /= 1; }
21
22
   };
   const D pi = acos(-1);
23
24
   D A[3][3];
   void calc(p3 n, D cosw) {
    | D sinw = sqrt(1 - cosw * cosw);
26
      n.normalize();
      for (int i = 0; i < 3; i++) {
28
29
         int j = (i + 1) \% 3, k = (j + 1) \% 3;
30
         D x = n[i], y = n[j], z = n[k];
         A[i][i] = (y * y + z * z) * cosw + x * x;
A[i][j] = x * y * (1 - cosw) + z * sinw;
31
       |A[i][k] = x * z * (1 - cosw) - y * sinw;
33
34
    | }
   }
35
36
   p3 turn(p3 x) {
      р3 у;
      for (int i = 0; i < 3; i++)
38
       | for (int j = 0; j < 3; j++)
39
       | | y[i] += x[j] * A[j][i];
40
41
      return y;
42
   p3 cross(cp a, cp b) { return p3(a.y * b.z - a.z * b.y, a.z
43

    * b.x - a.x * b.z, a.x * b.y - a.y * b.x); }

   D dot(cp a, cp b) {
44
    | D ret = 0;
45
      for (int i = 0; i < 3; i++)
46
       | ret += a[i] * b[i];
    return ret;
49
   }
50
   const int N = 5e4 + 5;
   const D eps = 1e-5;
   int sgn(D x) \{ return (x > eps ? 1 : (x < -eps ? -1 : 0));
     → }
53 D det(cp a, cp b) { return a.x * b.y - b.x * a.y; }
   p3 base;
   bool cmp(cp a, cp b) {
56
    int d = sgn(det(a - base, b - base));
    if (d) return d > 0;
    | else return (a - base).len2() < (b - base).len2();
58
59
60 bool turn_left(cp a, cp b, cp c) { return sgn(det(b - a, c
     \hookrightarrow - a)) >= 0; }
   vector <p3> convex_hull (vector <p3> a) {
    | int n = (int) a.size(), cnt = 0;
62
    | base = a[0];
    | for (int i = 1; i < n; i++) {
64
65
       int s = sgn(a[i].x - base.x);
       | if (s == -1 || (s == 0 && a[i].y < base.y))
66
67
       | | base = a[i];
68
    | sort(a.begin(), a.end(), cmp);
```

```
70
       vector <p3> ret;
                                                                               for (int i = 1; i <= n; i++) {
                                                                                | ap[i] = turn(ap[i]);
       for (int i = 0; i < n; i++) {
71
72
        | while (cnt > 1 && turn_left(ret[cnt - 2], a[i],
                                                                     111
                                                                                | ap[i].z = 0;
            \hookrightarrow ret[cnt - 1])) {
                                                                     112
                                                                               }
                                                                             for (int i = 1; i <= m; i++) bp[i] = turn(bp[i]),</pre>
73
           --cnt; ret.pop_back();
                                                                     113
74
        | }
                                                                                 \hookrightarrow bp[i].z = 0;
75
        ret.push_back(a[i]); ++cnt;
                                                                     114
                                                                            }
76
                                                                     115
                                                                            vector <p3> a[2]; |
       }
       int fixed = cnt;
77
                                                                            for (int i = 1; i <= n; i++) a[0].push_back(ap[i]);</pre>
                                                                     116
       for (int i = n - 2; i >= 0; i--) {
78
                                                                     117
                                                                            for (int i = 1; i <= m; i++) a[1].push_back(p3()-bp[i]);</pre>
79
       while (cnt > fixed && turn_left(ret[cnt - 2], a[i],
                                                                     118
                                                                            a[0] = convex_hull (a[0]);
            \hookrightarrow ret[cnt - 1])) {
                                                                          | a[1] = convex_hull (a[1]);
                                                                     119
           | --cnt; ret.pop_back();
                                                                     120
80
                                                                     121
81
          }
                                                                          vector <p3> mnk;
82
        ret.push_back(a[i]); ++cnt;
                                                                     122
                                                                               a[0].push_back(a[0].front());
83
       }
                                                                     123
84
       ret.pop_back();

    a[1].push_back(a[1].front());
85
       return ret;
                                                                     124
                                                                               int i[2] = \{0, 0\};
                                                                             | int len[2] = {(int)a[0].size() - 1, (int)a[1].size()
   }
                                                                     125
86
   int n, m;
87

→ - 1};

   p3 ap[N], bp[N];
                                                                               mnk.push_back(a[0][0] + a[1][0]);
88
                                                                     126
89
    int main() {
                                                                     27
                                                                               do {
90
     | scanf("%d", &n);
                                                                     128
                                                                               | int d = sgn(det(a[1][i[1] + 1] - a[1][i[1]],
91
       for (int i = 1; i <= n; i++) ap[i].read();</pre>
                                                                               129
92
       ap[0].read();
                                                                     130
                                                                               | mnk.push_back(a[d][i[d] + 1] - a[d][i[d]] +
       scanf("%d", &m);
93

    mnk.back());
94
       for (int i = 1; i <= m; i++) bp[i].read();</pre>
                                                                     131
                                                                                | i[d] = (i[d] + 1) \% len[d];
                                                                               } while(i[0] || i[1]);
95
       bp[0].read();
                                                                     132
       p3 from = ap[0] - bp[0], to = \{0, 0, 1\};
                                                                            }
96
97
       if (from.len2() < eps) {</pre>
                                                                     134
                                                                          //mnk = convex_hull(mnk);
98
          puts("NO");
                                                                     135
                                                                            p3 p; // 0
                                                                            for (int i = 0; i < (int)mnk.size(); i++) {</pre>
99
          return 0;
                                                                     136
100
                                                                     137
                                                                             | p3 u = mnk[i], v = mnk[(i + 1) % int(mnk.size())];
       from.normalize();
                                                                               if (det(p - u, v - u) > eps) {
                                                                     138
102
       p3 c = cross(from, to);
                                                                     139
                                                                                | puts("NO");
       if (abs(c.len2()) < eps) {</pre>
                                                                                | return 0;
103
                                                                     140
104
        | // ok
                                                                     141
                                                                             | }
105
       }
                                                                     142
                                                                            }
106
       else {
                                                                     143
                                                                            puts("YES");
        | D cosw = dot(from, to);
                                                                     144
                                                                         }
108
        calc(c, cosw);
```