Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання курсової роботи з дисципліни: «Твердотільна електроніка-3»

Варіант №50

Виконавець: Студент 3-го курсу		А.С. Мнацаканов	
	(підпис)		
Перевірив:	(підпис)	Л.М. Королевич	

Завдання

Розрахувати геометричні розміри транзисторів

Виконання завдання

Рис. 1: Прототип схеми.

Перш за все запишу всі константи, які знадобляться:

$$arepsilon_0=8,85\cdot 10^{-14}\,rac{\Phi}{\mathrm{cm}}$$
 $\phi_F=0,283B$ $arepsilon_{ox}=3,9$ $C_{ox}=3,45\cdot 10^{-8}\,rac{\Phi}{\mathrm{cm}^2}$ $U^0=-1,1$ В $U^0=-1,1$ В

Спочатку знайдемо напругу пробою:

$$U_{\text{проб}} = 3 \cdot d_{ox} \cdot E_{\text{кp}} \cdot U_{33} - |U_{\text{пор зах}}|, \tag{1}$$

де $U_{\text{пор зах}} = U_{\text{пор}}^{0}$, тому $U_{\text{проб}} = 30, 5 \text{ B}$

Далі шукаємо робочу частоту:

$$f = \frac{2}{t_{\text{вимк}} + t_{\text{вкл}}} = 2,33 \cdot 10^6 \, \Gamma$$
ц (2)

Тепер шукаємо струмообмежуючий опір.

$$R_6 \le 0,01 \cdot C_{\text{BX}}^{-1} \cdot f_{\text{po6}}^{-1},$$

де $C_{\text{вх}} = C_{ox} \cdot W_T \cdot L_T, W_T, L_T$ — розміри вхідного транзистора.

Тоді маємо, що:

$$R_6|_{T_1,T_2} \le \frac{0.01}{C_{ox} \cdot W_{T_1,T_2} \cdot L_T \cdot f_{\text{po6}}} = 22, 6 \text{ Om} \Rightarrow R_6|_{T_1,T_2} = 20 \text{ Om}$$

 $R_6|_{T_3} \le \frac{0.01}{C_{ox} \cdot W_{T_3} \cdot L_T \cdot f_{\text{po6}}} = 45, 2 \text{ Om} \Rightarrow R_6|_{T_1,T_2} = 40 \text{ Om}$

Потім шукаємо динамічний опір за формулою:

$$U_{\text{3atb}} = U_{\text{проб}} + (U_{\text{вх}} - U_{\text{проб}}) \cdot \frac{R_{\partial}}{R_{\partial} + R_{6}}$$
$$U_{\text{3atb}} \leq \frac{2}{3} \cdot U_{\text{проб.SiO}_{2}}$$

максимально допустима напруга на затворі вхідного транзистора; $U_{\rm npo6.SiO_2}=E_{\rm npo6}\cdot d_{\rm ox}$ - напруга пробою діелектрика; $U_{\rm вx}=5000~{\rm B}$ напруга, від якої наш пристрій захищає.

 $E_{\rm npo6}$ обирається по технології, має бути термічне оксилення (так як $\varepsilon_{\rm ox}$), тому цей парамет береться максимальний, тобто $E_{\rm npo6}=10\cdot 10^6~{\rm \frac{B}{cm}}$.

Тоді: $U_{\rm npo6.SiO~_2}=100~{\rm B},~~U_{\rm затв}\leq 66,7~{\rm B}\Rightarrow U_{\rm затв}=60~{\rm B}.$ Виразивши Rд, отримаємо, що:

$$R_{\partial}|_{T_1,T_2} \approx 119 \text{ Om}, R_{\partial}|_{T_3} \approx 238 \text{ Om}$$

Тепер графічно треба знайти ширину.

$$W_{3ax.T_3}pprox 119\ {
m MKM_i}W_{{
m 3ax}T_1,T_2}pprox 238\ {
m MKM}$$

Рис. 2: Графік для знаходження ширини

І треба знайти довжину струмообмежуючого опору: $L_R=\frac{R_0\cdot W_R}{\rho_S}$, де $W_R|_{T_1,T_2,T_3}=5$ мкм - ширина дифузійної шини, $\rho_S=100$ Ом— питомий опір дифузійної шини. Тоді

$$L_R|_{T_1,T_2}=rac{R_6|_{T_1,T_2}\cdot W_R}{
ho_S}=1000$$
 мкм $L_R|_{T_3}=rac{R_6|_{T_3}\cdot W_R}{
ho_S}=2000$ мкм

Табл. 1: Таблиця розмірів ПЗ для кожного входу

				Діод	Діод	Транзистор	Транзистор
	T_1	T_2	T_3	(T_1,T_2)	T_3	(T_1,T_2)	(T_3)
W, MKM	110	110	55	238	119	5	5
L, MKM	5	5	5	5	5	1000	2000
W/L	22	22	10,17				