

ChatGLM2

- ➤ ChatGLM2技术解析(基于ChatGLM的改进点)
 - Multi-Query Attention
 - > Flash Attention

> ChatGLM2推理部署代码演示

▶ChatGLM3特性介绍

采取自回归填空 (Autoregressive Blank Infilling) 框架,使得模型具有兼顾自然语言理解和文本生成的能力

算法框架	生成 vs. 理解	自然语言理解	Cond. Gen.	Uncond. Gen.
自回归 (GPT)	单向注意力	_	_	√
自编码 (BERT)	双向注意力	√	×	×
编码器-解码器 (T5)	编解码	_	√	_
自回归填空 (GLM)	双向注意力	√	√	√

Like a complete unkown, like a rolling stone

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

- 更强大的性能=混合目标函数+1.4T中英标识符
- 更长的上下文=Flash Attention技术+上下文长度扩展到32K+8K训练+多轮对话
- 更高效的推理=Multi-Query Attention技术+INT4量化
- 更开放的协议=对学术研究完全开发,受限商用

Motivation

Transformer结构的模型的推理被称作"incremental inference",即decoder根据当前输入预测下一个token,生成的token再加入原序列组成新的输入,以此往复,直到出现终止符或达到可生成的最大长度。

因此每一次预测,都需要加载一次权重,导致推理效率较低。

之所以没有关注到,是因为之前很少做文本生成,解码序列长度也没有现阶段大模型的要求那么高。

MQA最早是出现在2019年谷歌的一篇论文Fast Transformer Decoding: One Write-Head is All You Need。MQA的思想其实比较简单(如果对MHA比较熟悉的话),论文中给出的描述如下:

3 Multi-Query Attention

We introduce **multi-query Attention** as a variation of multi-head attention as described in [Vaswani et al., 2017]. Multi-head attention consists of multiple attention layers (heads) in parallel with different linear transformations on the queries, keys, values and outputs. Multi-query attention is identical except that the different heads share a single set of keys and values. The code for (incremental) multi-query (self) attention is identical to the code listed above for multi-head attention, except that we remove the letter "h" from the tf.einsum equations where it represents the "heads" dimension of K, V, P_k , or P_v .

论文的意思是:MQA和MHA除了不同的attention head共享一份keys和values权重之外,其他的都是一样的。

Attention

Table 2: Amortized training and inference costs for WMT14 EN-DE Translation Task with sequence length 128. Values listed are in TPUv2-microseconds per output token.

Attention	Training	Inference	Beam-4 Search
Type		enc. $+$ dec.	enc. + dec.
multi-head	13.2	1.7 + 46	2.0 + 203
multi-query	13.0	1.5 + 3.8	1.6 + 32
multi-head local	13.2	1.7 + 23	1.9 + 47
multi-query local	13.0	1.5 + 3.3	1.6 + 16

Table 3: Billion-Word LM Benchmark Results.

Attention	h	d_k, d_v	d_{ff}	dev-PPL
multi-head	8	128	8192	29.9
multi-query	8	128	9088	30.2
multi-head	1	128	9984	31.2
$\operatorname{multi-head}$	2	64	9984	31.1
multi-head	4	32	9984	31.0
multi-head	8	16	9984	30.9

推理速度上生成一个token时MHA和MQA的encoder分别耗时1.7us和1.5us,而decoder分别46us和3.8us,说明decoder上MQA比MHA快很多。另外在效果上MQA的PPL(越小越好)有所上升,BLEU(越大越好)有所下降,换句话说就是效果有所下降。

生成 2000 个字符的平均速度对比如下

Model	推理速度 (字符/秒)
ChatGLM-6B	31.49
ChatGLM2-6B	44.62

Multi-Query Attention的演变: Grouped-Query Attention

Grouped-Query Attention将Q分为G组,每组共享一对K,V。使得模型的质量高于 MQA,但比MHA 更快。

Uptraining:将MHA预训练模型转换为MQA


```
self.multi_query_attention = config.multi_query_attention
self.qkv_hidden_size = 3 * self.projection_size

if self.multi_query_attention:
    self.num_multi_query_groups_per_partition = config.multi_query_group_num
    self.qkv_hidden_size = (
        self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num)
```

参考链接:

https://gitee.com/mindspore/mindformers/blob/dev/mindformers/models/glm2/glm2_transformer.py

Motivation

因为Transformer的自注意力机制(self-attention)的计算的**时间复杂度**和**空间复杂度**都与序列长度有关,所以在处理长序列的时候会变的更慢,同时内存会增长更多。

通常的优化是针对计算复杂度(通过FLOPs数衡量), 优化会权衡模型质量和计算速度。

在FlashAttention中考虑到attention算法也是IO敏感的,通过对GPU显存访问的改进来对attention算法的实现进行优化。如图,在GPU中片上存储SRAM访问速度最快,对应的HBM(high bandwidth memory)访问速度较慢,为了加速要尽量减少HBM的访问次数。

Memory Hierarchy with Bandwidth & Memory Size

让我们看看通常情况下是如何访问HBM进行Attention计算的

让我们看看通常情况下是如何访问HBM进行Attention计算的

让我们看看通常情况下是如何访问HBM进行Attention计算的

为了减少对HBM的读取,FlashAttention把 attention计算融合为一个算子,将参与计算的矩 阵送入SRAM,来提高整体的读写速度。

但SRAM容量较小,需要将矩阵分块送入,同时 动态更新softmax结果(softmax的tiling展开)。

不对中间的运算结果 (P, S) 进行存储, 在反向 传播过程中重新计算需要的数据。

为了减少对HBM的读取,FlashAttention把 attention计算融合为一个算子,将参与计算的矩 阵送入SRAM,来提高整体的读写速度。

但SRAM容量较小,需要将矩阵分块送入,同时 动态更新softmax结果(softmax的tiling展开)。

不对中间的运算结果 (P, S) 进行存储, 在反向 传播过程中重新计算需要的数据。

结果展示

Table 1: Training time of BERT-large, starting from the same initialization provided by the MLPerf benchmark, to reach the target accuracy of 72.0% on masked language modeling. Averaged over 10 runs on 8×A100 GPUs.

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [58]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

OpenWebText (ppl) Model implementations Training time (speedup) GPT-2 small - Huggingface [87] 9.5 days $(1.0 \times)$ 18.2GPT-2 small - Megatron-LM [77] $4.7 \text{ days } (2.0 \times)$ 18.2GPT-2 small - FlashAttention 2.7 days $(3.5\times)$ 18.2GPT-2 medium - Huggingface [87] 14.2 $21.0 \text{ days } (1.0\times)$ GPT-2 medium - Megatron-LM [77] 11.5 days $(1.8\times)$ 14.3 GPT-2 medium - FLASHATTENTION 6.9 days $(3.0\times)$ 14.3

ChatGLM2推理部署代码演示

- 1. 导航至启智AI协作平台(https://openi.pcl.ac.cn/),进行账号注册或登录
- 2. 在最上方搜索栏中输入"step_into_llm",并选择第一个搜索结果

3. 代码仓内有昇思MindSpore技术公开课第一&二期的课件ppt与实验代码,点击右上角派生代码仓

4. 按照指引填写项目名称、路径,后点击派生项目

5. 派生完成后,可在"个人中心"中找到对应项目

6. 点击进入项目,选择云脑-调试任务-新建调试任务

7. 基本信息中选择智算网络集群-昇腾NPU,镜像选择mindspore2.0.0_cann6.3_notebook;最后点击最下方的"新建任务"

8. 在状态变为RUNNING后,即可点击"调试"进入 调试任务

9. 进入任务后,导航至home/ma-user路径下,点击新建terminal,进行后续环境配置

环境准备

MindSpore 2.0版本, MindSpore Transformers dev版本

- 1. 安装MindSpore和MindSpore Transformers
 - 1. 参考: https://www.mindspore.cn/install
 - 2. 安装MindSpore Transformers:
 - git clone -b dev https://gitee.com/mindspore/mindformers.git
 - cd mindformers
 - bash build.sh
- 2. (如果使用启智算力)更新opency-python
 - pip install opencv-python install "opencv-python-headless<4.3" -i https://pypi.tuna.tsinghua.edu.cn/simple
- 3. cd.. && git clone https://github.com/mindspore-courses/step_into_llm
 - 使用启智社区的可以clone自己的个人仓
- 4. cd step_into_llm/Season2.step_into_llm/o2.ChatGLM2/
- 5. python chatglm2_demo.py

代码调用

可以通过如下代码调用 ChatGLM2-6B 模型来生成对话:

```
from mindformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from pretrained("glm2 6b")
model = AutoModel.from pretrained("glm2 6b")
query = "你好"
prompted inputs = tokenizer.build prompt(query)
input tokens = tokenizer([prompted inputs])
outputs = model.generate(input_tokens["input_ids"], max_length=100)
response = tokenizer.decode(outputs)[0]
print(response)
```

问: 你好

答: 你好**幻**! 我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。

ChatGLM3特性介绍

ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:

- **更强大的基础模型**: 基础模型ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练 步数和更合理的训练策略。具有在 10B 以下的基础模型中最强的性能。
- 更完整的功能支持:全新设计的 Prompt 格式。原生支持工具调用 (Function Call) 、代码执行 (Code Interpreter) 和 Agent 任务等复杂场景。
- **更全面的开源序列**: ChatGLM3-6B, 基础模型 ChatGLM3-6B-Base、长文本对话模型 ChatGLM3-6B-32K开源,亦允许免费商业使用。

全新Prompt格式

之前的 ChatGLM2模型中依旧使用了自然语言的prompt格式,通过用户问,模型答的方式进行对话生成。

[Round 1]

问:{用户输入}

答: {模型输出}

这样的设计会带来几个问题:

- 1. 进行多轮训练时操作比较复杂,不好控制loss mask, 微调时效率会稍低一些
- 2. 无法进行原生工具调用,推理系统需要从生成的自然语言内容中解析出需要调用的工具,再进行调用

全新Prompt格式

ChatGLM3设计了四种special token,用于间隔开角色之间的对话内容。

- <|system|>:系统信息,设计上可穿插于对话中,但目前规定仅可以出现在开头
- < |user|>: 用户,不会连续出现多个来自 < |user|> 的信息
- < |assistant|>: AI 助手,在出现之前必须有一个来自 < |user|> 的信息
- < |observation|>:外部的返回结果,必须在 < |assistant|>的信息之后

全新Prompt格式

special token之前遵循前不间隔后间隔的方式,即speicial token之前不用'\n'隔开,后用'\n'隔开,组合成的prompt形式如下:

<|system|>

You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully.

Respond using markdown. < |user|>

Hello<|assistant|>

Hello, I'm ChatGLM3. What can I assist you today?<|user|>

■ 用户输入,对应<|user|>

<mark>今天天气怎么样?</mark><|assistant|>

模型输出,对应<|assistant|>

XXXXX

之前的推理中,我们往往通过<eos>或最大序列长度来识别生成的结束。在全新的prompt格式下,也可以通过识别**<|user|>**来定位生成句子的结束,表示AI助手对话结束,该进行用户输入了。

对话模式

对系统的角色设定, 为<|system|>后接 的内容

ChatGLM3 Demo

工具模式

构建system prompt

用list of dict的形式说明可调用的工具

• 输入1: location, 地理位置

• 输入2: unit, 温度单位

模型调取对应工具,并进行参数输入 工具返回输出

```
<|system|>
Answer the following questions as best as you can. You have access to the following tools:
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                "unit": {"type": "string"},
            },
            "required": ["location"],
< user >
```

今天北京的天气怎么样? <|assistant|> 好的,让我们来查看今天的天气

```
<|assistant|>get_current_weather
```python
tool_call(location="beijing", unit="celsius")
...
```

```
<|observation|>
{"temperature": 22}
```

<|assistant|>

根据查询结果,今天北京的气温为 22 摄氏度。

除了<|user|>以外,模型 也可以通过识别 <|observation|>来定位 生成句子的结束,表示AI 助手对话结束,该返回调 用工具的输出了。

#### 工具模式

可以在tool\_registory.py中注册新的工具增强模型能力,具体形式为使用 @register\_tool 装饰函数

```
@register tool
def get_weather(
 city_name: Annotated[str, 'The name of the city to be queried', True],
) -> str:
 Get the current weather for `city name`
 if not isinstance(city_name, str):
 raise TypeError("City name must be a string")
 key_selection = {
 "current_condition": ["temp_C", "FeelsLikeC", "humidity", "weatherDesc", "observation_time"],
 import requests
 resp = requests.get(f"https://wttr.in/{city_name}?format=j1")
 resp.raise_for_status()
 resp = resp.json()
 ret = {k: {_v: resp[k][0][_v] for _v in v} for k, v in key_selection.items()}
 except:
 import traceback
 ret = "Error encountered while fetching weather data!\n" + traceback.format exc()
 return str(ret)
```

#### ChatGLM3 Demo



- ☐ Chat O % Tool 👰 🗷 Code Interpreter
- ◯ Manual mode ②
- ⑥ 欧洲有哪些好玩的地方?
- 欧洲是一个非常有趣的地方,有许多好玩的地方。例如,可以前往法国的巴黎,欣赏埃菲尔铁塔和卢浮宫等著名景点;可以前往意大利的罗马,游览古罗马斗兽场和梵蒂冈等著名景点;可以前往德国的柏林,参观勃兰登堡门和柏林墙等著名景点。当然,欧洲还有许多其他好玩的地方,这只是其中的一部分。
- ⑥ 查查巴黎的天气怎么样?
- 🍅 我需要调用天气预报工具来获取巴黎的天气信息。
- Calling tool get\_weather:

  tool\_call(city\_name='巴黎')
  - ₀ Observation:

```
{'current_condition': {'temp_C': '12', 'FeelsLikeC': '10', 'humidity': '88'
```

ি 根据天气预报工具返回的信息,巴黎现在的天气情况是:温度为12摄氏度,湿度为88%, 天气状况为雨天。这些信息可以帮助您更好地了解巴黎的天气情况。

Chat with ChatGLM3!

#### 代码解释器模式

拥有代码执行环境,所以可以进行绘制图表,数学运算等较为复杂的 任务

这种模式下,<|assistant|>后的{metadata}只有一种情况: Interpreter,<|observation|>中通过[image]显示图片

```
帮我画一个爱心
<|assistant|>interpreter
 python
import numpy as np
import matplotlib.pyplot as plt
爱心形状的参数方程
def heart(t):
 x = 16 * np.sin(t) ** 3
 y = 13 * np.cos(t) - 5 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(4 * t)
 return x, y
t = np.linspace(0, 2 * np.pi, 1000)
x, y = heart(t)
plt.figure(figsize=(6, 6))
plt.plot(x, y, color='red')
plt.axis('equal')
plt.axis('off')
plt.show()
<|observation|>
```result
[Image]
```

ChatGLM 3 Demo

```
○ ⊕ Chat ○ 🏋 Tool O 🧸 Code Interpreter
```

```
⑥ 用 Python 画一个爱心
```

```
import matplotlib.pyplot as plt
import numpy as np

# 學数方程

t = np.linspace(0, 2 * np.pi, 1000)

x = 16 * np.sin(t)**3

y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t)

plt.figure(figsize=(6,6))
plt.plot(x, y, label='Heart')
plt.title('Heart Shape')
plt.ylabel('x')
plt.ylabel('y')
plt.ylabel('y')
plt.legend()
plt.grid(True)
plt.axis('equal')
plt.show()
```

Executing...

🍅 这是一个爱心形状的图形。如果您有其他要求或问题,请告诉我。

Chat with ChatGLM 3!

Thanks

课后小练习

1. 运行ChatGLM2推理部署代码,尝试和模型进行对话; (如果出现回复不理想、内容比较奇怪的情况,也欢迎在代码仓issue中进行反馈)

2. 尝试ChatGLM3的各种模式对话

加入我们,一同学习大模型!

课程报名

课程资源获取 (课件+代码)

课程学习群

