

APPLICATION
FOR
UNITED STATES LETTERS PATENT

TITLE: DATA FRAMER
APPLICANT: JEAN-MICHEL CAIA

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. EL870691534US

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

February 7, 2002

Date of Deposit

Signature

Gabriel Lewis
Typed or Printed Name of Person Signing Certificate

DATA FRAMER

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional
5 Application No. 60/336,291, filed on October 31, 2001 and
entitled "Multi-rate SONET/SDH Frame and Word Alignment".

TECHNICAL FIELD

This invention relates to a data framer that recovers
10 frames of data from a data stream.

BACKGROUND

Transmission protocols, such as SONET (Synchronous
Optical Networking) and SDH (Synchronous Digital Hierarchy),
transmit data in structured frames. The SONET/SDH frame
structure includes frameword bytes 10, 11 and payload bytes
14, as shown in Fig. 1. The frameword bytes contain NxA1
bytes (A1 typically has a value of F6_H) and Nx A2 bytes (A2
typically has a value of 28_H), where N is an integer that
20 depends on the data transmission rate (N = 1, 3, 12, 48, etc.)
and subscript "H" stands for hexadecimal (also referred to as
"HEX"). Frameword bytes are used to delineate a frame and
payload bytes carry the data transmitted in that frame.

Data frames are transmitted over an optical network in a serial data stream. A de-serializer device is required at the termination of the optical network in order to convert the serial data stream to parallel data. The conversion, however, 5 can change the byte alignment (phase) of the frames. As a result, the frame and byte boundaries of the converted data are unknown. A data framer may be used at the recipient end of the optical network to restructure the frame and thereby correct any misalignment (i.e., phase errors).

10
5
20
FIGURE EIGHT

DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a SONET/SDH data frame.

Fig. 2 is a block diagram of a receiver portion of an optical network, which includes a data framer for identifying and recovering frames transmitted over the optical network.

Fig. 3 is a block diagram of a phase and frameword detector included in the data framer of Fig. 2.

Fig. 4, comprised of Figs. 4a, 4b, 4c, 4d, 4e and 4f, includes block diagrams showing data misalignment following 20 serial-to-parallel conversion.

Fig. 5 is a state machine included within the data framer of Fig. 2.

Fig. 6 is a block diagram of an alternate embodiment of the phase and frameword detector shown in Fig. 3.

Fig. 7 is a block diagram of an alternate embodiment of the phase and frameword detector shown in Fig. 3

5

DESCRIPTION

Referring to Fig. 2, elements of a receiver at the termination of an optical transmission network 15 are shown, including data framer 16. Optical transmission network 15 includes an optical receiver 17. Optical receiver 17 is connected to an optical transmission medium 19, such as fiber optic cable, from which receiver 17 receives SONET/SDH data frames. Optical receiver 17 receives the data as optical signals and converts the optical signals into serial electrical data, which is transmitted to clock recovery and de-serializer circuit 20.

Clock recovery and de-serializer circuit 20 receives the serial data stream from optical receiver 17. The serial data stream is typically received at a relatively high rate. Clock recovery and de-serializer circuit 20 converts the serial data stream into a parallel data stream that is transmitted at an intermediate rate (which is lower than the high rate), such as 622.08 megabits-per-second (Mb/s) for a 16-bit parallel data

stream for a 10 gigabit transmission line. The values of the high rate and the intermediate rate may vary based on characteristics of the optical network and data framer.

Clock recovery and de-serializer circuit 20 transmits the 5 intermediate-rate parallel data to framer 16. Framer 16 includes a parallel-to-parallel converter 21 that converts the intermediate-rate parallel data to low-rate (e.g., 38.88 Mb/s, 19.44 Mb/s, etc.) parallel data. Parallel-to-parallel converter 21 transmits the low-rate parallel data over a receive data bus 22 (which may be, e.g., an 8/32P-bit bus, where P \geq 1) to receive circuitry 24.

Receive circuitry 24 includes a phase and frameword detector ("detector") 25, a frame/word alignment state machine and counter ("state machine") 26, and a word/phase alignment rotator ("word rotator") 27. Detector 25 receives the low-rate parallel data from receive data bus 22 and identifies a start of a SONET/SDH frame and a phase of that frame concurrently based on frameword bytes in the frame. In more detail, detector 25 contains N (N \geq 2) registers which receive 20 data for a frame and which store the data. Fig. 3 shows an example of detector 25, which includes seven parallel registers 29, each for storing 8-bit parallel data. Detector 25 receives the 8-bit parallel data (e.g., a data word) 30

from receive data bus 22 and stores successive blocks of 8-bit parallel data in the registers. In this embodiment, the first 8 bits are stored in register 30a, the second 8 bits are stored in register 30b, and so on until registers 30a to 30g contain data.

The data may be misaligned in the registers, meaning that an 8-bit word may be split between two registers. Referring to Fig. 4, the data may be misaligned in a number of ways.

Fig. 4a shows a case where the data is not misaligned, i.e., the first 8 bits are in register 30a and the second 8 bits are in register 30b. Fig. 4b shows the case where the data is misaligned by one bit, i.e., the most significant bit (MSB) of an 8-bit word 31 is bit 32 in register 30a and the least significant bit (LSB) of the 8-bit word is bit 34 in register 30b.

Fig. 4c shows the case where the data is misaligned by two bits, i.e., the MSB of an 8-bit word 35 is bit 36 in register 30a and the LSB of the 8-bit word is in register 30b.

Fig. 4d shows the case where the data is misaligned by 3 bits; Fig. 4e shows the case where the data is misaligned by 6 bits; and Fig. 4f shows the case where the data is misaligned by 7 bits. Other cases (e.g., 5-bit misalignment) are not shown.

Detector 25 contains comparators 37 (Fig. 3) for comparing the data in the registers to predetermined values

that correspond to the frameword bytes of a SONET/SDH data frame. In this embodiment, the comparators sequentially compare the data in the registers to predetermined values. In this embodiment, the registers are a 7x8-bit words buffer (W{6:0}{7:0}) that is used to detect an F6-F6-F6-28-28-28 (HEX) frame pattern, which comprises the last three A1 bytes of a frameword followed by the first three A2 bytes. The comparators include a 16-bit sliding comparator 37a made up of 8x16-bit comparators. The sliding comparator identifies the start of a frame and its phase by locating the frameword bytes. In more detail, the 8x16-bit comparators are used to detect the A1/A2 bytes out of the data in registers 30a, 30d and 30g, i.e., the W(0), W(3) and W(6) words, which correspond to the A1(N-2), A(N), A2(1) and A2(3) framewords. A subset of the registers that contain the first and last bits of a frameword is thus selected for comparison. However, all registers may be compared, as described in more detail below.

The comparison identifies the framewords of a SONET/SDH frame and the phase of those framewords. In this context, the phase is identified based on a location of the start of the frameword bytes (and thus, the start of the frame) in the registers. That is, ideally, each successive 8-bit frameword should fit into successive registers 30a to 30g (e.g., as

shown in Fig. 3). However, when the frame is out-of-phase, a part of one frameword byte will be stored in one register and the remainder of that same frameword byte will be stored in another register, as shown, e.g., in Figs. 4b to 4f. To determine the phase, therefore, detector 25 determines the location of the first bit of a frameword in a register.

By way of example, the A1/A1 frameword boundary is defined by a HEX value of F6 followed by a HEX value of 28. Therefore, in this example, to detect the A1/A1 frameword boundary, it is necessary to detect a HEX value of F6 followed by a HEX value of 28. In mathematical notation:

10
 PHASE i={1:7} if $F628_H$
 $= A1(N-2)\{7:1\} \& A1(N)\{i-1:0\} \& A2(1)\{7:i\} \& A2(3)\{i-1:0\}$
 $= W(6)\{i-1:0\} \& W(3)\{7:0\} \& W(0)\{7:1\}$

15
 PHASE 8 or 0 if $F628_H$
 $= A1(N)\{7:0\} \& A2(3)\{7:0\}$
 $= W(6)\{7:0\} \& W(3)\{7:0\}.$

20

In the foregoing, "Phase(i={1:7})" means that the phase is between 1 and 7 - the value of "i", the values of A1 and A2

comprise frameword bytes in a SONET/SDH frame, and the values of W correspond to words in registers 30a to 30g.

Once the sliding comparator has detected the A1/A2 framing pattern and the phase over 16 non-consecutive bits,
 5 the rest of the data in registers 30f, 30e, 30c, and 30b (corresponding to words W(1), W(2), W(4) and W(5)), respectively, may be checked to determine if that data corroborates the detected frameword and phase. The additional comparisons are as follows:

10 PHASE i={1:8} if

$$W(4)\{7:0\} \& W(1)\{7:0\} = W(5)\{7:0\} \& W(2)\{7:0\} = VALUE(i),$$

15 where the set of predefined values for VALUE(i), in HEX, is shown in Table 1 below for each phase, i.e., PHASE(i):

Table 1

<u>PHASE(i)</u>	<u>VALUE(i)</u>
1	DB-A0
2	ED-50
3	B7-41
4	6F-82
5	DE-05
6	BD-0A
7	7B-14
8 or 0	F6-28

For example, if the values of

$W(4)\{7:0\} \& W(1)\{7:0\} = W(5)\{7:0\} \& W(2)\{7:0\} = 7B \& 14,$

5

then the data has a phase of "7".

Detector 25 is programmable to change the amount of data to compare. For example, referring to Fig. 3, 16-bit (2 byte) detection is performed using a sliding comparator 37a over registers 30g (word $W(0)$), 30d (word $W(3)$), and 30a (word $W(6)$). A 32-bit (4-byte) detection is performed using sliding comparator 37a over registers 30g (word $W(0)$), 30d (word $W(3)$), and 30a (word $W(6)$) and using a fixed comparator 37b or 37c to compare values in registers 30c (word $W(4)$) and 30f (word $W(1)$), or to compare values in registers 30b (word $W(5)$) and 30e (word $W(2)$). A 48-bit (6 byte) detection is performed using sliding comparator 37a over registers 30g (word $W(0)$), 30d (word $W(3)$), and 30a (word $W(6)$) and using two fixed comparators - comparator 37b to compare values in registers 30c (word $W(4)$) and 30f (word $W(1)$), and comparator 37c to compare values in registers 30b (word $W(5)$) and 30e (word $W(2)$). Additional fixed comparators 37d and 37e may be used to compare the values in registers 30g (word $W(0)$) and 30d

(word W(3)), and to compare the values in registers 30d (word W(3)) and 30a (word W(6)) with values in Table 1 above.

Discriminator 40 is programmable to select the phase output(s) of one or more of comparators 37a to 37e to provide 5 to state machine 26 (Fig. 2). For example, if 16-bit detection is being performed, discriminator 40 selects and outputs only the phase output of sliding comparator 37a.

If discriminator 40 is programmed to select more than one phase output, discriminator 40 may also be programmed to ensure that the phase information coming from comparators 37a to 37e is coherent, i.e., that the same phase information is coming from each comparator. If discriminator 40 determines that the phase information is not coherent, discriminator 40 may select the phase information coming, e.g., from a majority of the comparators, wait until the phase information is coherent, or wait for another contingency.

State machine 26 (Fig. 2) identifies a predetermined number of frames following identifying the start of a first frame and a phase of the first frame. This is done to ensure 20 that the framewords are being received in synchronism. In this embodiment, state machine 26 (shown in Fig. 5) uses both a frameword detection indication and the phase output by detector 25. State machine 26 uses the frameword detection

indication and the phase to synchronize both the receive frame time base (performed in detector 25) and to initiate the word phase alignment (performed in word rotator 27).

Referring to Fig. 5, in state 42, a first frame is detected by detector 25. This is known as a PRESYNC (pre-synchronization) state. If, after a predetermined time period, in this case 125 microseconds (μ s), a second frameword is not detected or a second frameword with the same state is not detected, state machine 26 moves to out-of-frame (HUNT) state 44. In HUNT state 44, state machine 26 searches for a new frameword. In accordance with SONET/SDH standards, two consecutive framewords (partial or full detection) with the same phase are detected before going into the locked-in-frame (SYNC - synchronization) state 45.

Following a HUNT state 44, a PRESYNC state 42 may be achieved, in which case a first frameword is detected and the content and phase of the frameword are stored. If a second frameword is detected with the same content and phase as the first frameword after a predetermined time, e.g., 125 μ s (during which time one or more intervening framewords may be ignored), state machine 26 goes into SYNC state 45. At transition from the HUNT state to SYNC state 45, state machine

26 provides an indication 47 (Fig. 2) to word rotator 27 in order to realign data words to the byte and frame boundaries.

Word rotator 27 aligns data in subsequent frames, based on the phase determined by detector 25 and state machine 26, 5 to make starts of the subsequent frames coincide with a start of a data word and byte boundary. Rotating the frameworks in this manner changes the phase of the frameworks, thereby completing the data recovery at the framer. For example, referring to Fig. 4, the data shown there may be rotated accordingly to realign the word and byte boundaries.

In this embodiment, word rotator 27 is a parallel bit rotator that uses the phase (e.g., the MSB bit position of each 8-bit block) to move bits to achieve a desired phase. Stated mathematically, the bits are rotated as follows:

If PHASE i={1..7} then

Dataout(7:0) = W(t)(i-1:0) & W(t-1)(7:i)

If PHASE 8/0 then

Dataout(7:0) = W(t)(8:1),

20

where "Dataout" is the rotated data word, "i" is an integer, W(t)(x:y) is the content of a register 30a to 30g from bit "x" to bit "y", W(t) is the current register (e.g., 30b in Fig. 3)

and $W(t-1)$ is the register before the current register (e.g., 30a in Fig. 3). The output of word rotator 27 is provided to Section/Line Termination and Overhead Extraction circuit 49 (or simply "extraction circuit 49").

5 Extraction circuit 49 receives rotated data words 50 from word rotator 27 and a timing signal 51, from time base circuit 52, that is based on the frame synchronization signal 54 from state machine 26. Extraction circuit 49 searches for and extracts the framing and overhead bytes from the frames and outputs 55 the remainder.

10 The foregoing describes performing frameword and phase detection on an 8-bit parallel data stream. The invention, however, is not limited to use with an 8-bit parallel data stream. For data streams with wider parallel data paths (e.g., 128 bit parallel data versus 16 bit parallel data), the data may be divided into 8-bit blocks (or slices) and the start of a frame and the phase of the frame may be identified in one of the resulting blocks. Block sizes other than 8-bit blocks may also be used.

15 Fig. 6 shows an example of a detector 56 that may be used in framer 16 (in lieu of 8-bit detector 25) to process a 32-bit parallel data stream. In this example, circuitry (not shown) divides each 32-bit parallel data word into four blocks

57a to 57d, each having 8 bits. Each block 57a to 57d can then be processed using an 8-bit detector 59a to 59d, respectively, as in the 8-bit example described above.

In more detail, each of the four detectors 59a to 59d processes a specific 8-bit block of the 32-bit parallel data (for 8-bit processing only, three of the detectors may be disabled). Each detector 59a to 59d is identical to detector 25 described above. In this example, detector 59a may be used to process bits (31:24) of the 32-bit parallel data, detector 10 59b may be used to process bits (23:16), detector 59c may be used to process bits (15:8), and detector 59d may be used to process bits (7:0). The phase output of each detector is sent to discriminator 60, which will check for coherency between the four phase outputs and which will determine the final phase out of the 32 possible word phases (since there are 32 bits, there are 32 possible phases).

In 32-bit mode, the combined four detectors 59a to 59d are able to detect the $12 \times F6_H - 12 \times 28_H$ framing pattern ($A1(N-11), A1(N-10) \dots A1(N-1), A1(N), A2(1), A2(2) \dots A2(11), A2(12)$) 20 and corresponding phase associated with a 32-bit word.

Detector 59a uses first a 16-bit sliding comparator to determine if the data word MSB is present in the data that it is processing. This is performed in the same manner as in the

8-bit case. That is, detector 59a detects the F6_H-28_H frameword bytes out of the W(0), W(3) and W(6) words, i.e., out of A1(N-11), A1(N), A2(1) and A2(12). This process will indicate whether the MSB of the 32-bit word is present in the
 5 8-bit block (basically, the first framing bit), as well as its position in the 8-bit block. Stated mathematically, the MSB is detected as follows

PHASE i={1:7} if F6-F28 (HEX)

```
10      = A1(N-11){7:i} & A1(N){i-1:0} & A2(0){7:i} & A2(12){i-1:0}
        = W(6){i-1:0} & W(3){7:0} & W(0){7:i}
```

PHASE 8 or 0 if F6-F28 (HEX)

```
= A1(N){7:0} & A2(12){7:0}
= W(6){7:0} & W(3){7:0}
```

15
 If the MSB (the first framing bit) is not present in the 8-bit block processed by detector 59a, i.e., the sliding comparator does not find a match, then two other fixed comparisons may be used to determine if the block contains the
 20 frameword bytes.

The data may instead comprise payload bits.

Alternatively, if the data includes framing bits without the

MSB, the data is referred to herein as "INFOa" and "INFOb".

The data is considered INFOa or INFOb if

PHASE i = {8:1} and W(6){7:0} & W(3){7:0}

5 = VALUEi (from Table 1); or

PHASE i = {8:1} and W(3){7:0} & W(0){7:0}

= VALUEi (from Table 1).

10 As was the case in the 8-bit mode described above, each
detector 59a to 59d can optionally check to determine if the
rest of the data, i.e., the W(1), W(2), W(4) and W(5) words,
matches the frameword and to determine the phase of that data.
This is done using additional comparators, as described above.
Mathematically, this comparison is written as follows

20 PHASE i={1..8) if

W(4){7:0} & W(1){7:0} = W(5){7:0} & W(2){7:0}

= VALUEi (of Table 1)

20 Each detector will output the following information if a
coherent phase is detected. The information includes an
indication that at least a partial frameword has been

detected, an indication as to whether the MSB of a frameword has been detected or not, INFOa or INFOb if the MSB has not been detected, and/or an 8-bit block having PHASE $i=\{1..8\}$ to account for the eight possible phases per block.

5 Discriminator 60 receives the foregoing information from the four detectors 59a to 59d and resolves the phase and frameword detection. That is, discriminator 60 takes the partial information received from each detector and analyzes that information to determine the phase and frameword location for the entire 32-bit block of parallel data. Discriminator 60 resolves the phase and frameword detection using either full detection (Table 2) or partial detection (Table 3).

10

Table 2: Full Detection, 24 Framing Bytes

DETECTOR 59a	DETECTOR 59b	DETECTOR 59c	DETECTOR 59d	CONCLUSION
PHASEi MSB	PHASEi Not MSB INFOb	PHASEi Not MSB INFOb	PHASEi Not MSB INFOb	Phase = {24+Phasei} Framework Detected
PHASEi Not MSB INFOa	PHASEi MSB	PHASEi Not MSB INFOb	PHASEi Not MSB INFOb	Phase = {16+Phasei} Framework Detected
PHASEi Not MSB INFOa	PHASEi Not MSB INFOa	PHASEi MSB	PHASEi Not MSB INFOb	Phase = {8+PHASEi} Framework Detected
PHASEi Not MSB INFOa	PHASEi Not MSB INFOa	PHASEi Not MSB INFOa	PHASEi MSB	Phase = {PHASEi} Framework Detected
PHASE8	PHASE8	PHASE8	PHASE8	Phase = 32 Framework Detected
ANY OTHER COMBINATION	ANY OTHER COMBINATION	ANY OTHER COMBINATION	ANY OTHER COMBINATION	INVALID PHASE AND FRAMEWORD NOT DETECTED

Table 3: Partial Detection on 48 Framing Bits

DETECTOR 59a	DETECTOR 59b	DETECTOR 59c	DETECTOR 59d	CONCLUSION
PHASEi MSB (disabled optional comparators)	PHASEi INFOb (disabled optional comparators)		PHASEi INFOb (disabled optional comparators)	Phase = {24+Phasei} Framework Detected
PHASEi INFOa (disabled optional comparators)	PHASEi MSB (disabled optional comparators)	PHASEi INFOb (disabled optional comparators)		Phase = {16+Phasei} Framework Detected
	PHASEi INFOa (disabled optional comparators)	PHASEi MSB (disabled optional comparators)	PHASEi INFOb (disabled optional comparators)	Phase = {8+PHASEi} Framework Detected
PHASEi INFOa (disabled optional comparators)		PHASEi INFOa (disabled optional comparators)	PHASEi MSB (disabled optional comparators)	Phase = {PHASEi} Framework Detected
PHASE8 (disabled optional comparators)	PHASE8 (disabled optional comparators)	PHASE8 (disabled optional comparators)	PHASE8 (disabled optional comparators)	Phase = 32 Framework Detected
ANY OTHER COMBINATION	ANY OTHER COMBINATION	ANY OTHER COMBINATION	ANY OTHER COMBINATION	INVALID PHASE AND FRAMEWORD NOT DETECTED

Table 1 shows the case where all detectors are enabled and Table 2 shows the case where only some detectors are enabled. To "disable" a detector, the detector may be disabled physically or its outputs may be suppressed or not accepted by the discriminator.

In more detail, discriminator 60 arrives at its conclusion (the "conclusion" column of Tables 2 and 3) based on the outputs of the detectors, shown in the "detectors" columns of Tables 2 and 3. For example, if detector 59a
5 outputs a PHASEi and MSB; detector 59b outputs a PHASEi, not MSB, and INFOb; detector 59c outputs a PHASEi, not MSB, and INFOb; and detector 59d outputs a PHASEi, not MSB, and INFOb, discriminator 60 determines that the phase of the frameword is 24+PHASEi and that the frameword is detected.

10 The output of discriminator 60 would be provided to word rotator 27 and state machine 26 as in Fig. 2. State machine 26 operates in the same manner as described above. In this "32-bit" example, word rotator 27 would align the 32-bit output data to the frame boundary as follows

15
If PHASE i={1..31} then Dataout{31:0}
= W(t) (i-1:0) & W(t-1) (32:i)

20 If PHASE 32 or 0 then Dataout{31:0} = W(t){31:0}.

The foregoing describes 8-bit and 32-bit implementations of a data framer. Such a framer, however, can be extended to any data path using a 4Px8-bit ($P>1$) parallel bus for

SONET/SDH word and frame alignment. In this case, 4xP detector blocks may operate in parallel. Each detector block processes an 8-bit block of data (8 consecutive bits) extracted from the 4Px8-bit parallel input receive bus.

5 Referring to Fig. 7, the phase and frameword detectors 60 used in the 4Px8-bit implementation for each 8-bit data slice are identical to the ones described in the 8-bit and 32-bit examples shown above. The discriminator 71 receives the outputs of the detectors and, based on those outputs, identifies the MSB position of the 4P-byte (relative to the frame boundary) and detects the frameword. The word phase value (MSB position) will be between 1 and 4P.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415<br

Among the advantages of the invention are the following.

Byte/word and frame alignment may be performed at low rate using a parallel clock and data. This is independent of both the serial-to-parallel conversion performed at high-speed and
5 the parallel-to-parallel conversion performed at the framer input. In the case of a transmission beyond repair with a high probability of a false frameword in the incoming parallel data, the data path and the framer time base may not be affected unless a different frame alignment is found.

Basically, while the state machine is in "HUNT mode", the framer time base and word alignment are not modified until a new phase/frame alignment is determined.

The same circuitry can be re-used for 8-bit, 32-bit and 4Px8-bit implementations, since the comparisons for word/phase alignment are performed using simple 16-bit comparators. This lowers timing constraints. The framer may be pipelined, since the frameword/phase detection over a $32 \times P$ -bit data path may be broken into $4P$ independent 8-bit detector blocks. The framer is scaleable to any SONET/SDH framing and word alignment over
20 a $32 \times P$ -bit parallel data path simply by increasing the number of 8-bit detector blocks. For word and phase alignment, the framer is less expensive in terms of the number of comparisons and load on data bits.

Although the data framers described herein are primarily hardware implementations, the processes implemented by the data framers may be implemented as machine-executable instructions that are executed by a processor out of a memory, such as a random access memory (RAM). The processes, however, are not limited to this; they may find applicability in any computing or processing environment.

The processes may be implemented in hardware, software, or a combination of the two. The processes may be implemented in computer programs executing on programmable machines that each includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language. The language may be a compiled or an interpreted language.

Each computer program may be stored on a storage medium or device (e.g., CD-ROM, hard disk, or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform

the process. The processes may be implemented as one or more articles of manufacture, such as a machine-readable storage medium, configured with a computer program, where, upon execution, instructions in the computer program cause the machine to operate in accordance with the process.

The invention is not limited to the embodiments described above. For example, the invention is not limited to use with SONET/SDH frames. Instead, it may be used with any suitable protocol that transfers data in frames. The invention is not limited to use with optical data transmission. The invention is not limited to the architectures described herein or to the order of processing in those architectures.

Other embodiments not described herein are also within the scope of the following claims.

What is claimed is: