1. Since A is OAROS and AERM we know the following relations hold

$$\mathbb{E}_{S \sim D^m} \left[L_D(A(S)) - L_S(A(S)) \right] = \mathbb{E}_{(S, z') \sim P^{m+1}, i \sim U[m]} \left[\tilde{\ell}(A(S^{(i)}); z_i) - \tilde{\ell}(A(S); z_i) \right] \le \epsilon_1(m)$$

$$\mathbb{E}_{S \sim D^m} \left[L_S(A(S)) - \min_{h \in \mathcal{H}} L_S(h) \right] \le \epsilon_2(m)$$

Combining the two inequalities, we get

$$\mathbb{E}_{S \sim D^m} \left[L_D(A(S)) - \min_{h \in \mathcal{H}} L_S(h) \right] \le \epsilon_1(m) + \epsilon_2(m)$$

Note that

$$\mathbb{E}\big[\min_{h\in\mathcal{H}}L_S(h)\big] = \mathbb{E}\big[\min_{h\in\mathcal{H}}\frac{1}{m}\sum_{i=1}^m\tilde{\ell}(h;z_i)\big] = \min_{h\in\mathcal{H}}\frac{1}{m}\sum_{i=1}^m\mathbb{E}\big[\tilde{\ell}(h;z_i)\big] = \min_{h\in\mathcal{H}}L_D(h)$$

and so we can make a substitution in the last inequality

$$\mathbb{E}_{S \sim D^m} \left[L_D(A(S)) - \min_{h \in \mathcal{H}} L_D(h) \right] \le \epsilon_1(m) + \epsilon_2(m)$$

showing that A learns \mathcal{H} at with rate $\epsilon_1(m) + \epsilon_2(m)$.

2. The symmetry of both functions is obvious. The first can be represented as an inner product as follows.

$$k_1(x,z)k_2(x,z) = \phi_1^T(x)\phi_1(z)\phi_2^T(x)\phi_2(z)$$

$$= \sum_i \phi_{1i}(x)\phi_{1i}(z)(\phi_{21}(x)\phi_{21}(z) + \dots + \phi_{2n}(x)\phi_{2n}(x))$$

$$= \sum_{i,j} \phi_{1i}(x)\phi_{2j}(x)\phi_{1i}(z)\phi_{2j}(z) = \phi^T(x)\phi(z)$$

where

$$\phi(x) = (\phi_{11}(x)\phi_{21}(x), \dots, \phi_{11}(x)\phi_{2n}(x), \phi_{12}(x)\phi_{21}(x), \dots, \phi_{1i}(x)\phi_{2j}(x), \dots, \phi_{1n}(x)\phi_{2n}(x))^T$$

By induction we can infer that powers, $h^k(x,z)$, of kernels are also kernels. Thus we can decompose the second expression into the following product

$$e^{h(x,z)} = \sum_{k=0}^{\infty} \frac{h^k(x,z)}{k!} = \sum_{k=0}^{\infty} \frac{\phi_k(x)^T \phi_k(z)}{k!} = \phi(x)^T \phi(z)$$

where

$$\phi(x) = \sum_{k=0}^{\infty} \frac{\phi_k(x)^T}{\sqrt{k!}}$$

and $\phi_k(x)$ is the map associated with kernel $h^k(x,z)$.

3. (a) Since $\{v_a\}$ and $\{\alpha^{(a)}\}$ are eigenvalues of C and K_0 respectively we can write

$$CX\alpha^{(a)} = \frac{1}{N}XX^{T}X\alpha^{(a)} = X(\frac{1}{X}^{T}X)\alpha^{(a)} = XK_{0}\alpha^{(a)} = \sigma_{a}^{2}X\alpha^{(a)}$$

This implies that $X\alpha^{(a)}$ is an eigenvector of C with corresponding eigenvalue σ_a^2 . In other words,

$$v_a = \sum_i \alpha_i^{(a)} x_i.$$

(b) Applying the transform ϕ and performing PCA on the new space, the objective becomes to express $\phi(x_{\text{test}})$ in terms of the left singular vectors of $\frac{1}{\sqrt{N}}\Phi$, which themselves form an orthonormal basis fort the new space. This can be done by computing the vector

$$\bar{x}_{\text{test}} = [\phi(x_{\text{test}})^T v_1, \dots, \phi(x_{\text{test}})^T v_d]^T$$

Given that we've already demonstrated $v_k = \sum_i \beta_i^{(k)} \phi(x_i)$, we can rewrite \bar{x}_{test} as

$$\bar{x}_{\text{test}} = \left[\sum_{i} \beta_{i}^{(1)} \phi(x_{\text{test}})^{T} \phi(x_{i}), \dots, \sum_{i} \beta_{i}^{(d)} \phi(x_{\text{test}})^{T} \phi(x_{i})\right]^{T}$$
$$= \left[\sum_{i} \beta_{i}^{(1)} K(x_{i}, x_{\text{test}}), \dots, \sum_{i} \beta_{i}^{(d)} K(x_{i}, x_{\text{test}})\right]^{T}$$

4. (a) SVM's over a spearable set of points satisfy Slater's condition in general. Thus strong duality holds and we can find an optimal w by solving the dual problem. In the case of hard-SVM over the class of homogeneous hyperplanes, the corresponding optimization problem is

$$\min \frac{1}{2} ||w||_2^2$$
s.t. $1 - y_i w^T x_i \le 0$

and the associated Lagrangian is

$$L = \frac{1}{2} ||w||_2^2 + \sum_i \alpha_i (1 - y_i w^T x_i)$$

L is is a convex, differentiable function of w so we can find its minimum with respect to w by setting its gradient to zero. Thus

$$\nabla_w L = w - \sum_i \alpha_i x_i = 0 \implies w - \sum_i \alpha_i x_i$$

and we see that the optimal w can always be expressed as a linear combination of the support vectors $\{x_i\}_{i\in\mathcal{I}}$ for which α_i may be non-zero.

- (b) Removing samples does not change which points x_i are support vectors. The dual problem involves a maximization over the constrianed vector α . Removing points x_i for which $\alpha_i = 0$ at the optimal point will not change the elements of α associated with the remaining points. Thus $w = \sum_i \alpha_i x_i$ will remain the same.
- (c) An anologous argument holds in the soft-SVM case. The initial Lagrangian is slightly different

$$L = \frac{1}{2} \|w\|_2^2 + \sum_{i} \alpha_i (1 - y_i w^T x_i - \zeta_i) - \sum_{i} \lambda_i \zeta_i$$

but it's graient with respect to w remains the same, meaning $w = \sum_i \alpha_i x_i$. Furthermore, removing points associated with inactive constraints will not change the non-zero elements of the optimal vector $\alpha*$. Thus w is not affected by the removal of non-supporting vectors.

(d) In the dual problem of the hard-SVM case, the only constraint on α is that each element must be greater than zero. In the soft case, we also have that $0 \le \alpha_i \le C$. Noting that the soft objective function can be re-written as $\frac{1}{2}||w||_2^2 + \frac{1}{2\lambda m}\sum_i \zeta_i$, this must mean $0 \le \alpha_i \le \frac{1}{2\lambda m}$.

Given a finite solution for each α_i in the hard case, let $\alpha_{\max} = \max_i \{\alpha_i\}_{i \in \mathcal{I}}$. If we set $\lambda \leq \frac{1}{2\alpha_{\max}m}$ then the extra constraint on α won't prevent the soft-SVM problem from selecting the same optimal vector α^* as in the hard case.

However, this is only for a specific sample set \mathcal{D} . In the more general case, where we don't know D ahead of time, for fixed λ we can always pick a sample \mathcal{D} which induces some α_i that violates our constraint on C. So no, the learning rules can, but will not always, return the same weight vector.

5. We'll prove the first result by induction.

Base Case: $(x_1y_1 + c) = (x_1, \sqrt{c})(y_1, \sqrt{c})^T$. Here we see that the feature space associated to K is two-dimensional, since $\phi(x) = (x, \sqrt{c})^T$. This agrees with the formula $\text{Dim}(\phi(x)) = \binom{1+1}{1} = 2$.

Induction 1: Assume that the kernal K_d associated with $(x^Ty + c)^d$ maps to a space of dimension $\binom{N+d}{d}$. We can decompose $(x^Ty + c)^{d+1}$ as

$$(x^{T}y + c)^{d+1} = (x^{T}y + c)^{d}(x^{T}y + c) = \sum_{i} x_{i}y_{i}\phi_{d}(x)^{T}\phi_{d}(x) + \sqrt{c}\sqrt{c}\phi_{d}(x)^{T}\phi_{d}(y).$$

Appealing of the multinomial choice theorem, ϕ_{d+1} associated with K_{d+1} maps into a feature space of size $\binom{N+d+1}{d+1}$

Induction 2: Assume that the kernal K_d associated with $(x^Ty+c)^d$ maps to a space of dimension $\binom{N+d}{d}$. We can decompose $(x^Ty+c+x_{N+1}y_{N+1})^d$ as

$$(x^{T}y + c + x_{N+1}y_{N+1})^{d} = \sum_{i=0}^{d} {d \choose i} (x^{T}y + c)^{d-i} (x_{N+1}y_{N+1})^{i}$$
$$= \sum_{i=0}^{d} {d \choose i} \phi_{d-i}(x)^{T} \phi_{d-i}(y) (x_{N+1}y_{N+1})^{i}$$

Appealing of the multinomial choice theorem, ϕ_{d+1} associated with K_{d+1} maps into a feature space of size $\binom{N+d+1}{d}$

K can be written in terms of kernels as

$$K(x,y) = \sum_{i=0}^{d} \binom{d}{i} (x^{T}y)^{i} c^{d-i} = \sum_{i=0}^{d} \binom{d}{i} c^{d-i} k_{i}$$

the coefficient of each k-i being $\binom{d}{i}c^{d-i}$. Each coefficient is then proportional to the i^{th} power of c.

- 6. (a) Documents D_1 and D_2 contain (m-k+1) and (n-k+1) words of size k respectively. Filling each vector $\phi(D_i)$ has complexity on the order of the number of words in the largest document.
 - (b) Taking the inner product has complexity on the order of $|\Sigma|^k$.

- (c) If we manually compare each word in D_1 to every work in D_2 , keeping a sum of matches, it will take (m-k+1)(n-k+1) steps. We could also say it's on the order of the square of the number of words in the largest document.
- (d) Assuming that $|\Sigma|^k$ is way larger than the work count in either dictionary (which is likely) the algorithm in (c) is more efficient.