Espressioni Regolari, GNFA e Pumping Lemma

Consigli e conversioni

Tutorato 3: GNFA-ER e conversioni, Pumping Lemma per Linguaggi Regolari

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Anno Accademico 2024-2025

Contents

1	\mathbf{Esp}	oressioni Regolari				
	1.1	Concetti di base				
	1.2	Sintassi formale				
	1.3	Semantica delle espressioni regolari				
	1.4	Regole di precedenza				
	1.5	Esempi di espressioni regolari				
2	Equ	ivalenza tra Espressioni Regolari e Automi				
	2.1	Da espressione regolare a NFA $(\varepsilon\text{-NFA})$				
		2.1.1 Approccio costruttivo				
	2.2	Da NFA a espressione regolare				
		2.2.1 Automi Nondeterministici Generalizzati (GNFA)				
		2.2.2 Forma standard di un GNFA				
		2.2.3 Conversione da NFA a GNFA				
		2.2.4 Eliminazione degli stati (State Elimination)				
3	Il Pumping Lemma per Linguaggi Regolari					
	3.1	Enunciato del Lemma				
	3.2	Dimostrazione del Lemma				
	3.3	Il Pumping Lemma come gioco				
	3.4	Utilizzo del Pumping Lemma				
	3.5	Esempi classici				
		3.5.1 Esempio 1: $L = \{0^n 1^n \mid n \ge 0\}$				
		3.5.2 Esempio 2: $L = \{ww^R \mid w \in \{a, b\}^*\}$ (stringhe palindromi doppie).				
	3.6	Limiti del Pumping Lemma				

4	Ese	rcizi Risolti	10
	4.1	Linguaggi che non sono regolari	10
		4.1.1 $L_{ab} = \{w \in \{a, b\}^* \mid \text{numero di } a \text{ uguale al numero di } b\} \dots$	10
		4.1.2 $L_p = \{1^p \mid p \text{ è primo}\}\dots$	10
	4.2	Linguaggi regolari	11
		4.2.1 $L_{nm} = \{a^n b^m \mid n \text{ è dispari oppure } m \text{ è pari}\}$	11
5	Con	nclusioni	11

1 Espressioni Regolari

1.1 Concetti di base

Un'espressione regolare (RE) è un modo dichiarativo per descrivere linguaggi regolari, mentre gli automi a stati finiti (DFA, NFA) rappresentano il metodo costruttivo.

Concetto chiave

Un linguaggio è regolare se e solo se può essere rappresentato da un'espressione regolare, e allo stesso tempo se e solo se può essere riconosciuto da un automa a stati finiti.

Le espressioni regolari sono utilizzate in molti contesti pratici:

- Comandi UNIX (come grep)
- Strumenti per l'analisi lessicale (lex, flex)
- Editor di testo
- Pattern matching in linguaggi di programmazione

1.2 Sintassi formale

Le espressioni regolari sono costruite utilizzando:

- 1. Costanti di base:
 - ε per la stringa vuota
 - Ø per il linguaggio vuoto
 - a, b, \ldots per i simboli $a, b, \ldots \in \Sigma$
- 2. Operatori:
 - + per l'unione
 - · per la concatenazione (spesso omesso)
 - * per la chiusura di Kleene
- 3. Parentesi: () per il raggruppamento

1.3 Semantica delle espressioni regolari

Se E è un'espressione regolare, allora $\mathcal{L}(E)$ è il linguaggio rappresentato da E. La definizione è induttiva:

· Caso base:

$$\mathcal{L}(\varepsilon) = \{\varepsilon\} \tag{1}$$

$$\mathcal{L}(\emptyset) = \emptyset \tag{2}$$

$$\mathcal{L}(a) = \{a\} \tag{3}$$

• Caso induttivo:

$$\mathcal{L}(E+F) = \mathcal{L}(E) \cup \mathcal{L}(F) \tag{4}$$

$$\mathcal{L}(EF) = \mathcal{L}(E) \cdot \mathcal{L}(F) \tag{5}$$

$$\mathcal{L}(E^*) = \mathcal{L}(E)^* \tag{6}$$

$$\mathcal{L}((E)) = \mathcal{L}(E) \tag{7}$$

1.4 Regole di precedenza

Come nelle espressioni aritmetiche, anche per le espressioni regolari esistono regole di precedenza:

- 1. Chiusura di Kleene (*) (più alta)
- 2. Concatenazione (\cdot)
- 3. Unione (+) (più bassa)

Errore comune

Molti errori derivano dalla mancata considerazione delle regole di precedenza. Ad esempio, $01^* + 1$ viene interpretato come $(0(1^*)) + 1$, non come $(01)^* + 1$.

1.5 Esempi di espressioni regolari

- 1. Stringhe con 0 e 1 alternati: $(01)^* + (10)^* + 1(01)^* + 0(10)^*$ oppure $(+1)(01)^*(+0)$
- 2. Stringhe con numero pari di a: $(b^*ab^*a)^*b^*$
- 3. Stringhe che contengono la sottostringa 101: $\Sigma^*101\Sigma^*$
- 4. Stringhe che non contengono la sottostringa 101: questo è più complesso e richiede scomposizione in casi

2 Equivalenza tra Espressioni Regolari e Automi

Un risultato fondamentale nella teoria dei linguaggi regolari è che automi a stati finiti (FA) ed espressioni regolari (RE) hanno lo stesso potere espressivo.

Concetto chiave

L'equivalenza tra espressioni regolari e automi a stati finiti può essere dimostrata in due direzioni:

- 1. Per ogni espressione regolare R esiste un NFA A tale che $\mathcal{L}(A) = \mathcal{L}(R)$
- 2. Per ogni NFA A possiamo costruire un'espressione regolare R tale che $\mathcal{L}(R) = \mathcal{L}(A)$

2.1 Da espressione regolare a NFA (ε -NFA)

2.1.1 Approccio costruttivo

La dimostrazione è per induzione strutturale su R:

• Caso base:

- Per ε : un automa con un solo stato, sia iniziale che finale
- Per ∅: un automa con un solo stato non finale
- Per a: un automa con due stati, il secondo finale, connessi da una transizione etichettata a

• Caso induttivo:

- Per R+S: un nuovo stato iniziale con ε -transizioni verso gli stati iniziali degli automi per R e S
- Per RS: gli stati finali dell'automa per R connessi con ε -transizioni allo stato iniziale dell'automa per S
- Per R^* : un nuovo stato iniziale (anche finale) con ε-transizioni allo stato iniziale dell'automa per R, e ε-transizioni dagli stati finali di R al suo stato iniziale

Suggerimento

Questa costruzione produce sempre un ε -NFA, che può poi essere convertito in un NFA standard, e infine in un DFA se necessario.

2.2 Da NFA a espressione regolare

2.2.1 Automi Nondeterministici Generalizzati (GNFA)

La conversione da NFA a espressione regolare utilizza un passaggio intermedio attraverso GNFA.

Concetto chiave

Un **GNFA** (Generalized Nondeterministic Finite Automaton) è un automa non deterministico dove:

- Le transizioni sono etichettate con espressioni regolari anziché singoli simboli
- L'automa legge blocchi di simboli dall'input che appartengono al linguaggio dell'espressione regolare sull'arco

2.2.2 Forma standard di un GNFA

Un GNFA in forma standard ha le seguenti caratteristiche:

1. Lo stato iniziale ha transizioni verso ogni altro stato, ma nessuna transizione entrante

- 2. Un unico stato finale, senza transizioni uscenti, con una transizione proveniente da ogni altro stato
- 3. Esiste sempre una transizione per ogni coppia di stati, e un self-loop per ogni stato (eccetto iniziale e finale)

2.2.3 Conversione da NFA a GNFA

La conversione da NFA a GNFA di forma standard richiede:

- 1. Aggiungere un nuovo stato iniziale q_{start} con transizioni ε verso lo stato iniziale originale
- 2. Aggiungere un nuovo stato finale q_{accept} con transizioni ε dagli stati finali originali
- 3. Aggiungere transizioni mancanti etichettate con ∅ (linguaggio vuoto)
- 4. Unire transizioni multiple tra stati con operatore di unione

2.2.4 Eliminazione degli stati (State Elimination)

Una volta ottenuto un GNFA, si riducono gli stati uno alla volta:

Procedimento di risoluzione

Algoritmo di eliminazione degli stati:

- 1. Iniziare con un GNFA con k stati
- 2. Se k=2 (solo stato iniziale e finale), l'etichetta sulla transizione è l'espressione regolare cercata
- 3. Altrimenti, scegliere uno stato q_{rip} da eliminare (né iniziale né finale)
- 4. Per ogni coppia di stati q_i e q_j tali che esistono transizioni da q_i a q_{rip} e da q_{rip} a q_j :
 - Sia R_1 l'espressione sulla transizione $q_i \to q_{rip}$
 - Sia R_2 l'espressione sulla transizione $q_{rip} \to q_{rip}$ (self-loop)
 - Sia R_3 l'espressione sulla transizione $q_{rip} \rightarrow q_i$
 - Sia R_4 l'espressione sulla transizione $q_i \to q_i$ (se esiste, altrimenti \emptyset)
 - Creare una nuova transizione $q_i \to q_j$ con espressione $(R_1(R_2)^*R_3) + R_4$
- 5. Rimuovere q_{rip} e tutte le transizioni ad esso connesse
- 6. Ripetere finché non rimangono solo due stati

Errore comune

In fase di eliminazione degli stati, dimenticare di considerare i self-loop o l'esistenza di transizioni dirette tra stati porta a espressioni regolari errate.

3 Il Pumping Lemma per Linguaggi Regolari

Il Pumping Lemma è uno strumento fondamentale per dimostrare che certi linguaggi non sono regolari.

3.1 Enunciato del Lemma

Concetto chiave

Pumping Lemma: Se L è un linguaggio regolare, allora esiste una costante p > 0 (pumping length) tale che ogni stringa $s \in L$ con $|s| \ge p$ può essere scomposta in s = xyz dove:

- 1. |y| > 0 (il secondo pezzo è non vuoto)
- 2. $|xy| \le p$ (i primi due pezzi insieme hanno lunghezza al massimo p)
- 3. $\forall i \geq 0, \ xy^iz \in L$ (la stringa ottenuta ripetendo y un numero arbitrario di volte appartiene ancora a L)

3.2 Dimostrazione del Lemma

Procedimento di risoluzione

- 1. Se L è regolare, esiste un DFA A con un certo numero p di stati che lo riconosce
- 2. Consideriamo una stringa $w \in L$ con lunghezza $|w| \ge p$
- 3. Consideriamo gli stati $p_0, p_1, \ldots, p_{|w|}$ visitati durante il riconoscimento di w
- 4. Tra i primi p+1 stati (p_0, p_1, \ldots, p_p) deve esserci almeno una ripetizione (principio dei cassetti)
- 5. Sia $p_l = p_m$ con $0 \le l < m \le p$ la ripetizione
- 6. Definiamo $x = w[1 \dots l], y = w[l+1 \dots m], z = w[m+1 \dots |w|]$
- 7. Allora w = xyz con |y| > 0 (perché l < m) e $|xy| \le p$ (perché $m \le p$)
- 8. Per ogni $i \geq 0$, la stringa xy^iz viene accettata dall'automa, perché ripercorre il loop di stati che include $p_l=p_m$

3.3 Il Pumping Lemma come gioco

Una strategia utile per comprendere e applicare il Pumping Lemma è vederlo come un gioco tra due giocatori.

Concetto chiave

Gioco del Pumping Lemma:

- 1. L'avversario (che sostiene che il linguaggio sia regolare) sceglie una lunghezza \boldsymbol{p}
- 2. Noi scegliamo una stringa $w \in L$ con $|w| \ge p$
- 3. L'avversario spezza w in xyz con |y| > 0 e $|xy| \le p$
- 4. Noi scegliamo un valore $i \geq 0$ tale che $xy^iz \notin L$
- 5. Se troviamo un valore i tale che $xy^iz \notin L$, allora **abbiamo vinto**, dimostrando che L non è regolare

3.4 Utilizzo del Pumping Lemma

Per dimostrare che un linguaggio L non è regolare:

Procedimento di risoluzione

- 1. Assumere per assurdo che L sia regolare
- 2. Quindi, per il Pumping Lemma, esiste una costante p > 0
- 3. Scegliere sapientemente una stringa $w \in L$ con $|w| \ge p$
- 4. Considerare tutte le possibili scomposizioni w=xyz con |y|>0 e $|xy|\leq p$
- 5. **Dimostrare** che per ogni scomposizione, esiste un valore $i \geq 0$ tale che $xy^iz \not\in L$
- 6. Concludere che L non può essere regolare (per contraddizione)

Suggerimento

Nella scelta della stringa w, cercare una stringa con una struttura che viene facilmente alterata dalla ripetizione di y. Spesso, i=0 (rimozione di y) o i=2 (duplicazione di y) sono scelte efficaci.

3.5 Esempi classici

3.5.1 Esempio 1: $L = \{0^n 1^n \mid n \ge 0\}$

Procedimento di risoluzione

- 1. Assumiamo per assurdo che Lsia regolare, quindi esiste una costante p>0 del Pumping Lemma
- 2. Scegliamo $w = 0^p 1^p \in L$ (lunghezza $2p \ge p$)
- 3. Consideriamo una qualsiasi scomposizione w=xyz con |y|>0 e $|xy|\leq p$
- 4. Poiché $|xy| \leq p$, la stringa y è fatta solo di 0 (cade nella prima metà della stringa)
- 5. Consideriamo $xy^2z=x0^{|y|}0^{|y|}z=0^{p+|y|}1^p$
- 6. Questa stringa ha più 0 che 1, quindi $xy^2z\not\in L$
- 7. Contraddizione, quindi L non è regolare

3.5.2 Esempio 2: $L = \{ww^R \mid w \in \{a, b\}^*\}$ (stringhe palindromi doppie)

Procedimento di risoluzione

- 1. Assumiamo per assurdo che L sia regolare con costante p>0
- 2. Scegliamo $w = a^p b a^p = a^p (b a^p)^R \in L$
- 3. Qualsiasi scomposizione w=xyz con $|xy|\leq p$ e |y|>0 avrà y contenente solo a (nella prima parte della stringa)
- 4. Consideriamo $xy^0z=xz$ che rimuove alcune a dalla prima parte
- 5. Questa stringa non può essere scritta nella forma uu^R per alcun u
- 6. Quindi $xy^0z\not\in L,$ contraddizione

3.6 Limiti del Pumping Lemma

Concetto chiave

Il Pumping Lemma fornisce una condizione necessaria ma non sufficiente per i linguaggi regolari:

- Tutti i linguaggi regolari soddisfano il Pumping Lemma
- Esistono linguaggi non regolari che soddisfano comunque il Pumping Lemma

Errore comune

Un errore comune è credere che se un linguaggio soddisfa il Pumping Lemma, allora sia regolare. Questo non è vero, come dimostra l'esempio $L = \{a^{\ell}b^{m}c^{n} \mid \ell, m, n \geq 0 \text{ e se } \ell = 1 \text{ allora } m = n\}$ che non è regolare ma soddisfa il Pumping Lemma per un'appropriata scelta di p.

4 Esercizi Risolti

4.1 Linguaggi che non sono regolari

4.1.1 $L_{ab} = \{w \in \{a,b\}^* \mid \text{numero di } a \text{ uguale al numero di } b\}$

Procedimento di risoluzione

- 1. Assumiamo per assurdo che L_{ab} sia regolare con costante p > 0
- 2. Scegliamo $w = a^p b^p \in L_{ab}$
- 3. Per ogni scomposizione w=xyz con |y|>0 e $|xy|\leq p$, la stringa y contiene solo a
- 4. Consideriamo xy^2z , che contiene più a che b
- 5. Quindi $xy^2z \notin L_{ab}$, contraddizione

4.1.2 $L_p = \{1^p \mid p \text{ è primo}\}$

Procedimento di risoluzione

- 1. Assumiamo per assurdo che L_p sia regolare con costante p > 0
- 2. Scegliamo $w=1^q$ dove q è un numero primo e q>p+2
- 3. Per ogni scomposizione w = xyz con |y| > 0 e $|xy| \le p$, definiamo |y| = m > 0
- 4. Consideriamo $xy^{q-m}z$ che ha lunghezza $q-m+(q-m)\cdot m=(q-m)(m+1)$
- 5. Poiché m > 0, abbiamo m + 1 > 1
- 6. Poiché $m \le |xy| \le p < q 2$, abbiamo q m > 2 > 1
- 7. Quindi (q-m)(m+1) è il prodotto di due numeri maggiori di 1, quindi non è primo
- 8. Così $xy^{q-m}z \notin L_p$, contraddizione

4.2 Linguaggi regolari

4.2.1 $L_{nm} = \{a^n b^m \mid n \text{ è dispari oppure } m \text{ è pari}\}$

Questo linguaggio è regolare e può essere rappresentato dall'espressione regolare: $a(aa)^*b^* + a^*(bb)^*$

Equivalentemente, può essere riconosciuto da un automa che traccia la parità di n e m utilizzando 4 stati.

5 Conclusioni

La teoria dei linguaggi regolari offre strumenti potenti per descrivere e analizzare linguaggi:

- Espressioni regolari: descrizione dichiarativa e concisa
- Automi a stati finiti: modelli computazionali che riconoscono linguaggi
- GNFA: ponte concettuale per convertire automi in espressioni regolari
- Pumping Lemma: strumento per dimostrare che un linguaggio non è regolare

Concetto chiave

L'equivalenza tra espressioni regolari e automi a stati finiti è un risultato fondamentale che dimostra che queste diverse rappresentazioni hanno lo stesso potere espressivo.

La comprensione di questi concetti e strumenti è essenziale per la teoria dei linguaggi formali e ha applicazioni pratiche in molti campi dell'informatica, dalla compilazione all'analisi di testi, alla verifica di sistemi.

Suggerimento

Quando si studia un nuovo linguaggio, è utile chiedersi:

- È regolare?
- Se sì, quale automa lo riconosce? Quale espressione regolare lo descrive?
- Se no, posso utilizzare il Pumping Lemma per dimostrarlo?