APA laboratory_01

Terman Emil FAF161 October 11, 2017

Prof: M. Catruc

Subject: Algorithm analyzing

Purpose:

- Analiza empirică a algoritmilor.
- $\bullet\,$ Analiza teoretică a algoritmilor.
- Determinarea complexității temporale și asimptotice a algoritmilor

Conditions:

- 1. Efectuați analiza empirică a algoritmilor propuși.
- 2. Determinați relația ce determină complexitatea temporală pentru acești algoritmi.
- 3. Determinați complexitatea asimptotică a algoritmilor.
- 4. Faceți o concluzie asupra lucrării efectuate.

1 Recursive method

Algorithm 1: Recursive method

```
function fib1(n)
fin < 2 then
return n
else
return fib1(n - 1) + fib1(n - 2)</pre>
```

$$T(n)$$
 - ?

For line 2 and 3: O(1)
For line 5:
$$T(n-1)+T(n-2)$$

So: $T(n)=2, n<2$
 $T(n)=T(n-1)+T(n-2)+3\approx T(n-1)+T(n-2), n\geq 2$

$$t_n-t_{n-1}-t_{n-2}=0$$

$$x^2-x-1=0$$

$$\begin{bmatrix} x_1=\frac{1-\sqrt{5}}{2}\\ x_2=\frac{1+\sqrt{5}}{2} \end{bmatrix}$$

$$t_n=C_1(\frac{1-\sqrt{5}}{2})^n+C_2(\frac{1+\sqrt{5}}{2})^n$$

The fraction: $\frac{1+\sqrt{5}}{2}$ is also known as the Golden Ratio denoted as φ . The most significant part of t_n is φ , thus:

$$T(n) = O(\varphi^n)$$

This method is very uneficient since it has to recalculate multiple timess the same values. We can clearly see why it's not a good idea to use this algorithm:

2 Iterative method

Algorithm 2: Iterative method

For line 2 and 3, the time is O(1).

Line 5 and 6 are executed n times, therefore the time for both of these lines will be $2 \cdot n$. We consider line 4 to be executed n times.

$$t_n = 2 + n + 2n$$

Therefore:

$$T(n) = O(n)$$

3 Logarithmic method

Algorithm 3: Logarithmic method

From the line 14, we can see that the while loop will be executed $\log_2 n$ times, due to the operation:

 $n \leftarrow n \ div \ 2$

Therefore:

$$T(n) = log_2 n$$

Those steps are generated when the if statement is executed.

4 Iterative with saved values

Algorithm 4: Iterative with saved values

- For the line 2, we declare $(n + 2) \cdot sizeof(int) = (n + 2) * 4$ Bytes of memory. That's roughly $4 \cdot n$ Bytes.
- Line 4 and 5 have a complexity of O(n).
- The line 7 has 4 operations, that is another O(n).
- The for loop is executed n-1 times. So the inside part of the loop will have $4 \cdot (n-1)$ operations. Resulting that the entire loop will have complexity of O(n).

Since the most significant part is the *for* loop, results that:

$$T(n) = O(n)$$

This method has a very big drawback: it needs more memory than other algorithms.

5 Conclusion

- \bullet The fastest and the most eficient Fibonacci algorithm is the $O(\log_2 n)$ algorithm.
- Sometimes, it's enough to have a very simple implemented algorithm, but less efficient, because we don't always need a huge performance.
- The calculation of the time complexity of an algorithm helps us to choose which is the best algorithm of all.

