Adaboost

He He

Slides based on Lecture 11c from David Rosenberg's course materials

(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 6, 2021

Boosting

Overview

- Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel.
- Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequential.
 - A weak/base learner is a classifier that does slightly better than chance.
 - Weak learners are like "rules of thumb":
 - ullet "Viagra" \Longrightarrow spam
 - ullet From a friend \Longrightarrow not spam
 - Key idea:
 - Each weak learner focuses on different examples (reweighted data)
 - Weak learners have different contributions to the final prediction (reweighted classifier)

AdaBoost: Setting

- Binary classification: $y = \{-1, 1\}$
- Base hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \{-1, 1\}\}.$
- Typical base hypothesis spaces:
 - Decision stumps (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions

Weighted Training Set

Each base learner is trained on weighted data.

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Weights (w_1, \ldots, w_n) associated with each example.
- Weighted empirical risk:

$$\hat{R}_n^W(f) \stackrel{\text{def}}{=} \frac{1}{W} \sum_{i=1}^n w_i \ell(f(x_i), y_i)$$
 where $W = \sum_{i=1}^n w_i$

• Examples with larger weights have more influence on the loss.

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Find base classifier $G_m(x)$ that tries to fit weighted training data (but may not do that well)
 - Increase weight on the points $G_m(x)$ misclassifies
- So far, we've generated M classifiers: $G_1, \ldots, G_M : \mathcal{X} \to \{-1, 1\}$.

AdaBoost: Schematic

From ESL Figure 10.1

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - Increase weight on the points $G_m(x)$ misclassifies
- Final prediction $G(x) = \mathrm{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$. (recall $G_m(x) \in \{-1,1\}$)
- What are desirable α_m 's?
 - nonnegative
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted \mathcal{D} less well

Adaboost: Weighted Classification Error

- Weights of base learners depend on their performance. How to evaluate each base learner?
- In round m, base learner gets a weighted training set.
 - Returns a base classifier $G_m(x)$ that minimizes weighted 0-1 error.
- The weighted 0-1 error of $G_m(x)$ is

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

• Notice: $err_m \in [0, 1]$.

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$.

- Higher weighted error ⇒ lower weight
- When is $\alpha_m < 0$?

Adaboost: Example Reweighting

- We train G_m to minimize weighted error, and it achieves m.
- Then $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$ is the weight of G_m in final ensemble.

We want the base learner to focus more on examples misclassified by the previous learner.

- Suppose w_i is weight of example i before training:
 - If G_m classfies x_i correctly, then w_i is unchanged.
 - Otherwise, w_i is increased as

$$w_i \leftarrow w_i e^{\alpha_m}$$

$$= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right)$$

• For $err_m < 0.5$ (weak learner), this always increases the weight.

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- ② For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - ② Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

- Compute classifier weight: $\alpha_m = \ln\left(\frac{1 \text{err}_m}{\text{err}_m}\right)$.
- Update example weight: $w_i \leftarrow w_i \cdot \exp[\alpha_m 1(y_i \neq G_m(x_i))]$
- **3** Return voted classifier: $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

AdaBoost with Decision Stumps

• After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

Typical Train / Test Learning Curves

• Might expect too many rounds of boosting to overfit:

From Rob Schapire's NIPS 2007 Boosting tutorial.

Learning Curves for AdaBoost

- In typical performance, AdaBoost is surprisingly resistant to overfitting.
- Test continues to improve even after training error is zero!

Summary

- Shallow decision tree + boosting
 - "best off-the-shelf classifier in the world"—Leo Brieman
 - Used in the first successful real-time face detector (Viola and Jones, 2001)
 - XGBoost: very popular in competitions
- Next week
 - What is the objective function of Adaboost?
 - Generalize to other loss functions.