Polarity Practice Worksheet

For each of the following pairs of compounds, determine which is most polar based on their Lewis structures.

1)	methyl chloride (CHCl ₃) or methyl bromide (CHBr ₃)
2)	water or hydrogen sulfide (H ₂ S)
3)	hydrochloric acid (HCI) or hydroiodic acid (HI)
4)	bromoacetylene (C ₂ HBr) or chloroacetylene (C ₂ HCl)
5)	methanol (CH $_3$ OH) or diethyl ether [(CH $_3$) $_2$ O]
6)	acetone [(CH $_3$) $_2$ CO] or propanol (C $_3$ H $_8$ O)
Need	homework help? Visit www.chemfiesta.com!

Polarity Practice Worksheet - Solutions

For each of the following pairs of compounds, determine which is most polar based on their Lewis structures.

1) methyl chloride (CHCl₃) or methyl bromide (CHBr₃)

Since chlorine is more electronegative than bromine, the molecule has a higher polarity.

2) water or hydrogen sulfide (H₂S)

Since oxygen is more electronegative than sulfur, the moelcule has a higher polarity.

3) hydrochloric acid (HCI) or hydroiodic acid (HI)

Chorine is more electronegative than iodine, making HCl more polar.

4) bromoacetylene (C₂HBr) or chloroacetylene (C₂HCl)

Chlorine is more electronegative than bromine, making chloroacetylene more polar.

5) methanol (CH₃OH) or diethyl ether [(CH₃)₂O]

Since diethyl ether has the oxygen at the middle of the molecule rather than on the end, it is far less polar than methanol.

6) asetone [(CH₃)₂CO] or propanol (C₃H₈O)

A quick look at the Lewis structures of this molecule should convince you that acetone is far more polar, as the molecule appears more unbalanced.

Need homework help? Visit www.chemfiesta.com!