Introduction to Machine Learning

Classification: Linear Classifiers

LINEAR CLASSIFIERS

Linear classifiers are an important subclass of classification models. If the discriminant function(s) $f_k(\mathbf{x})$ can be specified as linear function(s) (possibly through a rank-preserving, monotone transformation $g: \mathbb{R} \to \mathbb{R}$), i. e.

$$g(f_k(\mathbf{x})) = \mathbf{w}_k^{\top} \mathbf{x} + b_k,$$

we will call the classifier a linear classifier.

NB: \mathbf{w}_k and b_k do not directly refer to the parameters θ_k of k-th scoring function f_k but the transformed version.

LINEAR CLASSIFIERS / 2

We can also easily show that the decision boundary between classes i and j is a hyperplane. For every \mathbf{x} where there is a tie in scores:

$$f_i(\mathbf{x}) = f_j(\mathbf{x})$$

$$g(f_i(\mathbf{x})) = g(f_j(\mathbf{x}))$$

$$\mathbf{w}_i^{\top} \mathbf{x} + b_i = \mathbf{w}_j^{\top} \mathbf{x} + b_j$$

$$(\mathbf{w}_i - \mathbf{w}_i)^{\top} \mathbf{x} + (b_i - b_i) = 0$$

This is a **hyperplane** separating two classes.

LINEAR VS NONLINEAR DECISION BOUNDARY

