1

Assignment

Barath surya M — EE22BTECH11014

Question 9.3.3 Five cards are drawn successively with replacement from well shuffled deck of 52 cards, what is the probability that

- 1) all the five cards are spades?
- 2) only 3 cards are spades
- 3) None is a spade

Solution:

let Y be a gaussian Random variable

Parameter	Value	Description	
X	{0,1,2,3,4,5}	Number of spade cards drawn	
n	5	Number of cards drawn	
p	0.25	Drawing a spade card	
q	0.75	Drawing any other card	
$\mu = np$	1.25	Mean of Binomial distribution	
$\sigma^2 = npq$	0.9375	Varience of Binomial distribution	

TABLE 1: Random variable and Parameter

$$Y \sim N(\mu, \sigma) \tag{1}$$

$$\sim N(1.25, 0.9375)$$
 (2)

Due to continuity correction Pr(X = x) can be approximated using gaussian distribution as

$$p_Y(x) \approx \Pr(x - 0.5 < Y < x + 0.5)$$
 (3)

$$\approx \Pr(Y < x + 0.5) - \Pr(Y < x - 0.5) \tag{4}$$

$$\approx F_Y(x+0.5) - F_Y(x-0.5) \tag{5}$$

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y < x) \tag{6}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{7}$$

$$\implies \frac{Y - \mu}{\sigma} \sim N(0, 1) \tag{8}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{x-\mu}{\sigma}\right) \tag{9}$$

$$= \begin{cases} 1 - Q\left(\frac{x-\mu}{\sigma}\right) & x \ge \mu \\ Q\left(\frac{\mu-x}{\sigma}\right) & x < \mu \end{cases}$$
 (10)

Then probability in terms of Q funtion is

$$\implies p_Y(x) \approx Q\left(\frac{(x-0.5)-\mu}{\sigma}\right) - Q\left(\frac{(x+0.5)-\mu}{\sigma}\right) \tag{11}$$

1) The Gaussian approximation for Pr(X = 5) is

$$p_Y(5) \approx Q\left(\frac{4.5 - 1.25}{0.9375}\right) - Q\left(\frac{5.5 - 1.25}{0.9375}\right)$$
 (12)

$$\approx Q(3.356) - Q(4.389) \tag{13}$$

$$\approx 0.0003888\tag{14}$$

2) The Gaussian approximation for Pr(X = 3) is

$$p_Y(3) \approx Q\left(\frac{2.5 - 1.25}{0.9375}\right) - Q\left(\frac{3.5 - 1.25}{0.9375}\right)$$
 (15)

$$\approx Q(1.2909) - Q(2.3237) \tag{16}$$

$$\approx 0.08828\tag{17}$$

3) The Gaussian approximation for Pr(X = 0) is

$$p_Y(0) \approx Q\left(\frac{-0.5 - 1.25}{0.9375}\right) - Q\left(\frac{0.5 - 1.25}{0.9375}\right)$$
 (18)

$$\approx (1 - Q(1.8073)) - (1 - Q(0.7745)) \tag{19}$$

$$= Q(0.7745) - Q(1.8073) \tag{20}$$

$$\approx 0.1839\tag{21}$$

Comparison				
Number of spade cards	Binomial distribution	Gaussian approximation	Error (%)	
5	0.0009765625	0.00038880	60.18688	
3	0.087890625	0.088279	0.4430	
0	0.2373046875	0.18390	22.5046	

TABLE 2: Comparison between the approximation

Fig. 1: Binomial and gaussian distribution