

ORGANIC CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Hydrocarbons

ENGLISH MEDIUM

Build Up Your Understanding

Chemistry: Hydrocarbons

EXERCISE-I (Conceptual Questions)

ALKANES

- 1. The order of reactivity of alkyl halides in Wurtz reaction is
 - (1) R-I > R-Br > R-CI
- (2) R-I < R-Br < R-CI
- (3) R-Br > R-I < R-CI
- (4) R-I > R-Cl > R-Br

HC0001

- 2. Kolbe's electrolysis of a mixture of pot. Propanoate and pot. 3-Methylbutanoate gives
 - (1) Butane and isobutane
 - (2) Butane and 2,5-dimethylhexane
 - (3) Butane, 2,5-dimethylhexane and isohexane
 - (4) Butane and isohexane

HC0002

- 3. The Corey-House alkane synthesis is carried out by treating an alkyl halide with
 - (1) Lithium metal
 - (2) Copper metal
 - (3) Lithium metal followed by reaction with cuprous iodide and then treating the product with an alkyl halide
 - (4) Cuprous iodide followed by reaction with alkyl halide

HC0003

- 4. Which of the following compound is not suitable to obtain from wurtz reaction?
 - (1) ethane
- (2) butane
- (3) isobutane
- (4) hexane

HC0005

- **5**. When ethyl chloride and n-propyl chloride undergoes wurtz reaction which is not obtained
 - (1) n-butane
- (2) n-pentane
- (3) n-hexane
- (4) isobutane

HC0006

6.
$$CH_3$$
-CH-MgCl + CH_3 -C-OH \longrightarrow 'Q'; CH_3 CH_3

What is 'Q'?

- (1) isobutane
- (2) isopropane
- (3) tert. butyl chloride
- (4) propane

HC0009

- **7**. ⊨O can not be converted to by:
 - (1) Red P + HI
 - (2) Wollf Kishner reduction
 - (3) Clemmensen reaction
 - (4) LiAlH₄

HC0010

- 8. Which of the following reactions does not involve a C-C bond formation
 - (1) Hydrolysis of a Grignard reagent
 - (2) Combination of two alkyl free radicals
 - (3) Corey-House synthesis of alkanes
 - (4) RNa + R-Br \longrightarrow R-R + NaBr

HC0012

- 9. Which of the following reactions of methane is incomplete combustion :-
 - (1) $2CH_4 + O_2 \xrightarrow{Cu/523K/100atm.} 2CH_3OH$
 - (2) $CH_4 + O_2 \xrightarrow{MO_2O_3} HCHO + H_2O$ (3) $CH_4 + O_2 \xrightarrow{C(s)} C(s) + 2H_2O(\ell)$

 - (4) $CH_4 + 2O_2 \longrightarrow CO_2(g) + 2H_2O(\ell)$

HC0016

- **10.** Which is correct about Wurtz reaction?
 - (a) It can proceed through free radical mechanism
 - (b) Alkanes having even no. of C-atom can be prepared
 - (c) Sodium in Ammonia is used
 - (d) Sodium in dry ether is used
 - (1) c, d
- (2) a, b, d
- (3) b,c
- (4) a, b, c, d

HC0072

11.
$$C_2H_5-Cl \xrightarrow{Zn, H_2}$$
 (A)

Na

Dry ether (B) $\leftarrow H_2/Pt$ (C) or (D)

The incorrect statement is:

- (1) (A) is C_2H_6
- (2) (C) can be 1-butene
- (3) (A) and (B) are alkane (4) (D) is ethene

HC0073

- Arrange the following in their boiling points.
 - (i) n-butane
- (ii) iso-butane
- (iii) n-pentane
- (iv) iso-pentane
- (v) neopentane
- (1) iii > i > ii > iv > v
- (2) v > iv > ii > i > iii
- (3) iii > iv > v > i > ii
- (4) ii > i > v > iv > iii

13. For CH_3 –C– $ONa \xrightarrow{Electrolysis}$ (A) alkane

Which is incorrect?

- (1) A is ethane
- (2) (A) is formed at anode
- (3) CO₂ evolves at cathode
- (4) pH near cathode increases during the process

HC0075

ALKENE

- **14.** Ozonolysis of 3–Methyl–1–butene gives a mixture of
 - (1) Propanal and ethanal
 - (2) Propanone and ethanal
 - (3) 2-Methylpropanal and methanal
 - (4) Butanone and methanal

HC0017

- **15.** Oxidation of isobutylene with acidic potassium permanganate gives
 - (1) Acetone + CO₂
- (2) Acetic acid
- (3) Acetic acid + \overrightarrow{CO}_{2}
- (4) Acetic acid + acetone

HC0019

16.
$$CH_3CH_2CH_2Br \xrightarrow{\text{alc. KOH}} A \xrightarrow{\text{(i) O}_3 \atop \text{(ii) Zn, H}_2O} B + C$$

In the above reaction A, B and C are given by the set

- (1) Propylene, acetone, formaldehyde
- (2) Propene, ethanal, methanal
- (3) Propyne, acetaldehyde, formaldehyde
- (4) Propylene, propionaldehyde, formaldehyde

HC0021

- **17**. Which of the following alkenes on ozonolysis give a mixture of ketones only?
 - (a) CH₃-CH=CH-CH₃
 - (b) CH₃-CH-CH=CH₂

(c)
$$CH_3$$

- (d) $(CH_3)_2C = C < CH_3$
- (1) a and b
- (2) b and c
- (3) b and d
- (4) c and d

HC0025

- **18.** Which reaction will not happen at room temperature:
 - (1) $CH_2 = CH_2 \xrightarrow{H_2/Pt} CH_3 CH_3$
 - (2) $CH_2 = CH_2 \xrightarrow{H_2/Pd} CH_3 CH_3$
 - (3) $CH_2 = CH_2 \xrightarrow{H_2/N_i} CH_3 CH_3$
 - (4) CH \equiv CH $\xrightarrow{H_2/Pt}$ CH₃-CH₃

HC0076

- **19.** Which of the following is not electrophilic addition reaction?
 - (1) Addition of H⁺/H₂O on alkene
 - (2) Addition of dihydrogen on alkenes
 - (3) Addition of halogen on alkenes
 - (4) Addition of hydrogen halides on alkenes

HC0077

20.
$$CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH-CH_3$$
(A)
+
 $CH_3-CH_2-CH_2-Br$
(B)

- (a) The product A is major
- (b) Formation of A follows markovnikov rule
- (c) Carbocation formed in A is less stable than that formed in B
- (d) Formation of B follows markovnikov rule

The correct statements are:

- (1) c, d
- (2) a, b, c, d
- (3) a, b
- (4) a, d

HC0078

21. For the reaction

$$CH_2 = CH_2 \xrightarrow{Br_2 \atop CCl_4} (A) \xrightarrow{alc. KOH} (B) \xrightarrow{NaNH_2} (C)$$

The product (C) is:

- (1) $CH_2 = CH_2$
- (2) $CH_2 = CH$

Br

- (3) H-C≡C-H
- (4) CH₂-CH₃ Br

HC0079

- **22.** An alkene A on ozonolysis gives a mixture of ethanal and pentan-3-one. The IUPAC name of A is.
 - (1) 3-ethyl-3-pentene
 - (2) 3-ethylidene pentane
 - (3) 3-ethyl pent-2-ene
 - (4) 1,1-diethyl prop-1-ene

Chemistry: Hydrocarbons

Pre-Medical

23. For the reaction :

$$\begin{array}{c|c} CH_{3}-CH-CH=CH_{2} \xrightarrow{HBr} & (A) \text{ (major)} \\ CH_{3} & \xrightarrow{HBr} & (B) \text{ (major)} \end{array}$$

The incorrect statement is:

- (1) A and B are chain isomers
- (2) A and B are position isomers
- (3) A is 1-bromo-3-methyl butane
- (4) B is 2-bromo-2-methyl butane

HC0081

24. For the reaction

$$H_3C$$
 $C=CH-CH_3 \xrightarrow{O_3} (A) + (B)$
Products

- (1) One of the product only show positive tollens test
- (2) Both product shows positive tollen's test
- (3) Both product shows positive haloform test
- (4) Both 1 & 3 are correct

HC0082

ALKYNES

- **25.** Which of the following compound will not give a precipitate with Tollen's reagent
 - (1) ethyne
- (2) 1-butyne
- (3) 3-methyl-1-butyne
- (4) 1-pentene

HC0028

26. B
$$\leftarrow \frac{BH_3/THF}{H_2O_2/OH}$$
 CH₃-C=CH $\stackrel{HgSO_4/H_2SO_4}{\longrightarrow}$ A

A and B are

- (1) CH₃CH₂CHO, CH₃COCH₃
- (2) CH₃COCH₃,CH₃CH₂CHO
- (3) both are CH₃COCH₃
- (4) CH₃COCH₃, CH₃CH₂CH₂OH

HC0029

- **27.** MeCH₂C \equiv CH $\xrightarrow{NH_3/NaNH_2}$ A $\xrightarrow{Et Br}$ B, A and B are
 - (1) MeCH₂C≡CNa, MeCH₂C≡C-Et
 - (2) MeCH₂CH=CH₂, MeCH₂-CHEt-CH₃
 - (3) MeCH₂CH=CHNH₂,MeCH₂CH=CH-NHBr
 - (4) MeCH₂C≡C-NH₂, MeC≡C-NH-Br

HC0030

28.
$$N_a \longrightarrow P_{\text{Liq},NH_3} \longrightarrow P_{\text{roduct will be}}$$
:

$$(1) \begin{array}{c} CH_2 \\ H \end{array} C = C \begin{array}{c} CH_3 \\ H \end{array}$$

(2)
$$CH_2$$
 $C=C$ CH_2

$$(4) \bigcirc H C = C < H$$

HC0031

- **29.** To distinguish between propene and propyne, the reagent would be -
 - (1) Bromine
 - (2) Alkaline KMnO₄
 - (3) Ammonical silver nitrate
 - (4) Ozone

HC0032

- **30.** The most suitable reagent to differentiate ethyne and ethene is :
 - (1) Br₂ in CCl₄
- (2) NaHCO₃
- (3) NaOH
- (4) NaNH₂

HC0083

31. For the reaction :

$$CH_3-C = CH \xrightarrow{HBr} (A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Consider statements :-

(a) Product A is
$$CH_3-CH_2-CH$$

(b) Product A is
$$CH_3$$
– C – CH_3
 H_3
 H_4
 H_5
 H_5
 H_5

- (c) Product B is CH₃-CH₂-CH=O
- (d) Product B is CH_3 –C– CH_3

The correct statements are:

- (1) b, d
- (2) a, c
- (3) only b
- (4) only a

AROMATIC HYDROCARBONS

 $\textbf{32.} \quad A \xleftarrow{Br_2} \quad \bigodot^{CH=CH_2} \quad \xrightarrow{KMnO_4} \quad B; \ A \ \text{and} \ B$

respectively are

- (1) o-bromo styrene, benzoic acid
- (2) p-bromostyrene, benzaldehyde
- (3) m-bromostyrene, benzaldehyde
- (4) Styrene dibromide, benzoic acid

HC0035

33. The ozonolysis product of 1, 2-dimethyl benzene is/are:

HC0036

34. For the reaction:

Correct statement is :-

- (1) A is n-propyl benzene
- (2) It is a friedel craft alkylation
- (3) A is iso propyl benzene
- (4) Both 2 & 3

AH0085

35. For the reaction

- (1) A is not aromatic
- (2) B is aromatic
- (3) A is aromatic
- (4) B is hexachlorobenzene

AH0086

EXERCISE-I (Conceptual Questions)							ANSWER KEY								
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	3	3	4	4	4	1	3	2	4	3	3	3	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	3	2	3	3	3	1	4	4	2	1	2	3	4
Que.	31	32	33	34	35										
Ans.	1	4	4	4	3										

EXERCISE-II (Previous Year Questions)

AIPMT 2007

- **1.** Reduction of aldehydes and ketones into hydrocarbons using zinc amalgam and conc. HCl is called
 - (1) Cope reduction
 - (2) Dow reduction
 - (3) Wollf-kishner reduction
 - (4) Clemmensen reduction

AH0039

- **2.** Which of the compounds with molecular formula C_5H_{10} yields acetone on ozonolysis
 - (1) 3-Methyl-1-butene
 - (2) Cyclopentene
 - (3) 2-Methyl-1-butene
 - (4) 2-Methyl-2-butene

HC0040

AIPMT 2010

- **3.** Liquid hydrocarbons can be converted to a mixture of gasesous hydrocarbons by :-
 - (1) Hydrolysis
 - (2) Oxidation
 - (3) Cracking
 - (4) Distillation under reduced pressure

HC0041

AIPMT 2015

4. A single compound of the structure :-

$$\begin{array}{cccc} & CH_3 & CH_3 \\ & I & I \\ OHC & C & C \\ & C & C & C \\ & H_2 & H_2 \end{array}$$

is obtainable from ozonolysis of which of the following cyclic compounds?

HC0044

AIPMT/NEET

Re-AIPMT 2015

- **5.** 2,3–Dimethyl–2–butene can be prepared by heating which of the following compounds with a strong acid?
 - (1) $(CH_3)_2C = CH CH_2 CH_3$
 - (2) $(CH_3)_2CH-CH_2-CH=CH_2$
 - (3) (CH₃)₂CH-CH-CH=CH₂
 - $(4) (CH_3)_3 C-CH=CH_2$

HC0045

- **6.** The oxidation of benzene by V_2O_5 in the presence of air produces :
 - (1) benzoic acid
- (2) benzaldehyde
- (3) benzoic anhydride
- (4) maleic anhydride

HC0046

NEET(UG) 2018

- 7. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1) CH≡CH
- (2) $CH_2 = CH_2$
- (3) CH₃-CH₃
- (4) CH₄

HC0049

8. The compound C_7H_8 undergoes the following reactions:

$$C_7H_8 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

The product 'C' is

- (1) m-bromotoluene
- (2) o-bromotoluene
- (3) 3-bromo-2,4,6-trichlorotoluene
- (4) p-bromotoluene

AH0050

NEET(UG) 2019

9. The most suitable reagent for the following conversion is :-

$$H_3C-C=C-CH_3 \longrightarrow H_3C \xrightarrow{CH_3} H$$

cis-2-butene

- (1) Na/liquid NH₃
- (2) H₂, Pd/C, quinoline
- (3) Zn/HCl
- (4) Hg^{2+}/H^{+} , $H_{2}O$

An alkene "A" on reaction with O₃ and Zn-H₂O gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is :-

HC0088

11. Among the following, the reaction that proceeds through an electrophilic substitution is:

$$(1) \left(\begin{array}{c} & \oplus \\ & N_2 \text{Cl} \end{array} \right) \xrightarrow{\text{Cu}_2 \text{Cl}_2} \left(\begin{array}{c} & \text{Cl} + N_2 \end{array} \right)$$

$$(2) \bigcirc + \operatorname{Cl}_2 \xrightarrow{\operatorname{AlCl}_3} \bigcirc -\operatorname{Cl} + \operatorname{HCl}$$

$$(4) \bigcirc CH_2OH + HCl \xrightarrow{heat} \bigcirc CH_2Cl + H_2O$$

AH0089

NEET(UG) 2019 (ODISHA)

- **12**. The alkane that gives only one mono-chloro product on chlorination with Cl2 in presence of diffused sunlight is :-
 - (1) 2,2-dimethylbutane
 - (2) neopentane
 - (3) n-pentane
 - (4) Isopentane

HC0090

In the following reaction, **13**.

$$H_3C - C \equiv CH \xrightarrow{\text{red hot iron tube}} A$$
,

the number of sigma(o) bonds present in the product A is :-

(1) 21

(2)9

- (3)24
- (4) 18

AH0091

NEET(UG) 2020

- 14. Which of the following alkane cannot be made in good yield by Wurtz reaction?
 - (1) n-Butane
- (2) n-Hexane
- (3) 2,3-Dimethylbutane (4) n-Heptane

HC0110

15. Identify compound X in the following sequence of reactions:

$$\begin{array}{c}
\text{CH}_{3} & \text{CHO} \\
& \xrightarrow{\text{Cl}_{b}/\text{hv}} X \xrightarrow{\text{H}_{b}\text{O}} & \\
\end{array}$$

AH0111

An alkene on ozonolysis gives methanal as one of the product. Its structure is:

$$CH_2$$
- CH = CH_2

Pre-Medical

NEET(UG) 2020 (COVID-19)

17.
$$CH_3CH_2CH = CH_2 \xrightarrow{B_2H_6 \atop H_3O_2,OH^-} Z$$

What is Z?

- (1) CH₃CH₂CH₂CH₂OH
- (2) CH₃CH₂CHCH₃
- (3) CH₃CH₃CH₃CHO
- (4) CH₃CH₂CH₂CH₃

HC0113

NEET(UG) 2021

- **18**. The product formed major dehydrohalogenation reaction of pentane is Pent-2-ene. This product formation is based on?
 - (1) Saytzeff's Rule
- (2) Hund's Rule
- (3) Hoffmann Rule
- (4) Huckel's Rule

HC0114

19. $CH_3CH_2COO^-Na^+ \xrightarrow{NaOH, +?} CH_3CH_3$

 $+Na_2CO_3$.

Consider the above reaction and identify the missing reagent/chemical.

- $(1) B_2H_6$
- (2) Red Phosphorus
- (3) CaO
- (4) DIBAL-H

HC0115

NEET(UG) 2021 (Paper-2)

20. Rank the following compounds in decreasing order of reactivity towards electrophilic aromatic substitution reaction (ESR).

- (1) (c) > (a) > (b) > (d)
- (2) (c) > (a) > (d) > (b)
- (3) (d) > (c) > (b) > (a)
- (4) (a) > (c) > (d) > (b)

AH0116

In the following reaction, 21.

$$\begin{array}{c|c} & O \\ & &$$

Chemistry: Hydrocarbons

the structure of major product 'X' is

$$(1) \bigcirc \bigcap_{\substack{N \\ H}} \bigcirc NO_2$$

$$(3) \bigcirc \bigcap_{\substack{N \\ H}} \bigcirc \bigcap_{NO_2}$$

AH0117

- 22. Which of the following alcohols on dehydration with conc. H₂SO₄ at 440 K will give propylene?
 - (i) n-propyl alcohol
 - (ii) Isobutyl alcohol
 - (iii) Isopropyl alcohol
 - (iv) n-butyl alcohol
 - (1) (ii), (iii)
- (2) (i), (iii)
- (3) (i), (ii), (iii)
- (4) (ii), (iii), (iv)

HC0118

23.
$$C = CH_2 \xrightarrow{Cl_2 + H_2O} A'$$

Compound (A) is

$$(1)$$
 CH_3 C CH_2C

$$(1) \begin{array}{ccc} Ph \\ CH_{3} \end{array} C \begin{array}{ccc} OH \\ CH_{2}CI \end{array} \qquad (2) \begin{array}{ccc} Ph \\ CH_{3} \end{array} C \begin{array}{cccc} CI \\ CH_{2}OH \end{array}$$

(3)
$$CH_3$$
 CCH_2 CH_2 CH_3 CCH_2 CH_3 CCH_2 CH_3 CCH_2 CH_3

$$^{(4)}$$
 $\stackrel{\text{Ph}}{\text{CH}_{3}}$ $\stackrel{\text{C}}{\text{CH}_{2}}$ $\stackrel{\text{CH}_{2}}{\text{H}}$

24. If the following compound is treated with Pd/C in excess of H₂ gas, how many stereoisomers of the product will be obtained?

(1) 1

(2) 2

(3) 3

(4) 4

HC0120

- **25.** Which of the following gives white precipitate with ammoniacal AgNO₃?
 - (1) C_2H_6
- (2) C_3H_4
- (3) C_3H_8
- $(4) C_4 H_{10}$

HC0121

NEET(UG) 2022

- **26.** Compound X on reaction with O_3 followed by Zn/H_2O gives formaldehyde and 2-methyl propanal as products. The compound X is :
 - (1) 2-Methylbut-l-ene
 - (2) 2-Methylbut-2-ene
 - (3) Pent-2-ene
 - (4) 3-Methylbut-l-ene

HC0122

NEET(UG) 2022 (OVERSEAS)

27. The correct reaction among the following is

(2) $2CH_3CH_2Br \xrightarrow{Mg} CH_3CH_2CH_2CH_3$

(3) $2CH_3CH_2Br \xrightarrow{N_a} CH_3CH_2CH_2CH_3$

(4)
$$CH_3CH_2Br + 2 \longrightarrow Br \xrightarrow{N_a \text{dry ether}}$$

AH0123

28. Match **List-I** with **List-II**:

List-I

List-II

(Compound)

(Boiling Point in K)

(i) 300.9

(ii) 282.5

(iii) 309.1

(iv) 341.9

Choose the **correct answer** from the options given below:

- (1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (4) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)

HC0124

29. The product formed in the following reaction sequence is

$${\rm CH_3-CH_2-CH=CH_2} \quad {\rm \begin{tabular}{c} (ii) HBr, Benzoyl peroxide, heating \\ (ii) Alcoholic KOH \end{tabular}}$$

- (1) CH₃-CH=CH-CH₃
- (2) CH₃-CH₂-CH=CH₂
- (3) CH₃-CH₂-CH₂-CH₂-OH

HC0125

- 30. The compound obtained by addition of water to an alkyne having more than two carbons, in presence of HgSO₄ and dilute H₂SO₄ at 333 K is
 - (1) an aldehyde
 - (2) an alcohol
 - (3) a ketone
 - (4) a vicinal diol

Pre-Medical

Re-NEET(UG) 2022

- **31.** The decreasing order of boiling points of the following alkanes is :
 - (a) Heptane
 - (b) butane
 - (c) 2-methylbutane
 - (d) 2-methylpropane
 - (e) hexane

Choose the **correct answer** from the options given below:

$$(1)$$
 (a) > (c) > (e) > (d) > (b)

$$(2)$$
 $(c) > (d) > (a) > (e) > (b)$

(3) (a)
$$>$$
 (e) $>$ (b) $>$ (c) $>$ (d)

$$(4)$$
 (a) > (e) > (c) > (b) > (d)

HC0127

- **32.** The incorrect method for the synthesis of alkenes is:
 - (1) treatment of alkynes with Na in liquid NH₃
 - (2) heating alkyl halides with alcoholic KOH
 - (3) treating alkyl halides in aqueous KOH solution
 - (4) treating vicinal dihalides with Zn metal

HC0128

33. The products A and B in the following reaction sequence are :

Ph
$$\longrightarrow$$
 $\frac{\text{(i) HBr}}{\text{(ii) Mg, dry ether}} A \frac{\text{(i) SOCl}_2}{\text{(ii) CH}_3 - \text{NH}_2} \Rightarrow B$

(1)
$$A = \bigcirc OH$$
 ; OH ; OH

(3)
$$A = \bigcup_{B=}^{OH} \bigcup_{N=0}^{H} CH_3$$

(4)
$$A = \bigcirc OH$$
; CH_3

EX	EXERCISE-II (Previous Year Questions) ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	3	4	4	4	4	1	2	3	2	2	1	4	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	1	3	2	2	2	1	3	2	4	1	2	2	3
Que.	31	32	33												
Ans.	4	3	2												

EXERCISE-III (Analytical Questions)

1. $\xrightarrow{Br_2} A \xrightarrow{alc. KOH} B$;

What is the structure of B

- **2.** Which of the following is maximum reactive towards NBS
 - (1) PhCH₃
 - (2) Ph CH₂-CH₃
 - (3) PhCH₂-CH=CH₂
 - (4) Ph-CH-CH=CH₂ CH₃

HC0058

3. Which of the following is not carcinogenic?

HC0092

Master Your Understanding

4. For the reaction given :-

Which is incorrect?

HC0093

5.
$$CH_3-C \equiv C-H \xrightarrow{40\% \text{ H}_2SO_4} X \xrightarrow{\text{(y)}} Intermediate} X \xrightarrow{\text{Isomerism}} Z$$

Identify X, Y and Z

	X	Y	Z		
(1)	Prop-1-en-2-ol	Metamerism	Acetone		
(2)	Prop-1-en-1-ol	Tautomerism	Propionaldehyde		
(3)	Prop-2-en-2-ol	Geometrical	Acetone		
		isomerism			
(4)	Prop-1-en-2-ol	Tautomerism	Acetone		

HC0094

EXERCISE-III (Analytical Questions)

ANSWER KEY

Que.	1	2	3	4	5
Ans.	4	4	4	3	4