

IT Enrichment

Database SQL & SQL Server

Pengenalan Database, SQL, dan SQL Server

Apa yang dimaksud dengan Database, DBMS, RDBMS?

Database?

Database atau basis data adalah Kumpulan data atau tabel yang dikelola secara sistematis berdasarkan ketentuan tertentu yang saling berhubungan sehingga mudah dalam pengelolaannya.

Database memiliki fungsi lainnya, antara lain:

- Mengelompokan data dan informasi.
- Memudahkan dalam identifikasi data.
- Memudahkan proses akses, menyimpan, pembaharuan, dan penghapusan data.
- Menjadi alternatif terkait masalah penyimpanan ruang dalam suatu aplikasi.
- Menjaga kualitas data yang diakses sesuai input.
- Menunjang kinerja aplikasi yang memerlukan penyimpanan data.

DBMS vs RDBMS

DBMS (Database Management System) adalah program/aplikasi yang digunakan untuk membuat, dan mem-maintain database serta menyediakan akses kontrol pada data dalam database. Diperlukan bahasa query yang digunakan untuk memanipulasi data di DBMS, biasa dikenal dengan **SQL** atau structured query language.

RDBMS (Relational Database Management System) merupakan versi ter-advanced dari DBMS adalah program yang melayani sistem basis data yang entitas utamanya terdiri dari tabel-tabel yang mempunyai **relasi** dari satu tabel ke tabel yang lain.

DBMS vs RDBMS

DBMS VS RDBMS

DBMS vs RDBMS

No.	DBMS	RDBMS
1)	DBMS applications store data as file .	RDBMS applications store data in a tabular form.
2)	In DBMS, data is generally stored in either a hierarchical form or a navigational form.	In RDBMS, the tables have an identifier called primary key and the data values are stored in the form of tables.
3)	Normalization is not present in DBMS.	Normalization is present in RDBMS.
4)	DBMS does not apply any security with regards to data manipulation.	RDBMS defines the integrity constraint for the purpose of ACID (Atomocity, Consistency, Isolation and Durability) property.
5)	DBMS uses file system to store data, so there will be no relation between the tables .	in RDBMS, data values are stored in the form of tables, so a relationship between these data values will be stored in the form of a table as well.
6)	DBMS has to provide some uniform methods to access the stored information.	RDBMS system supports a tabular structure of the data and a relationship between them to access the stored information.
7)	DBMS does not support distributed database.	RDBMS supports distributed database.
8)	DBMS is meant to be for small organization and deal with small data. it supports single user.	RDBMS is designed to handle large amount of data. it supports multiple users.
9)	Examples of DBMS are file systems, xml etc.	Example of RDBMS are mysql , postgre , sql server , oracle etc.

RDBMS Softwares

Terminologi dalam RDBMS

Struktur Table

Terminologi

Tabel

Tabel digunakan untuk menyimpan informasi tentang objek yang akan direpresentasikan dalam database. Merupakan kumpulan dari baris dan kolom.

Kolom (Atribut/field)

Tiap kolom pada tabel memuat jenis data tertentu dan bidang menyimpan nilai aktual atribut.

Contoh: Kolom FirstName, kolom LastName, kolom BirthDate.

Baris (Row/Tuple/Record)

Baris pada tabel merepresentasikan kumpulan nilai terkait dari satu objek atau entitas. Tiap baris pada tabel dapat ditandai dengan pengidentifikasi unik yang disebut kunci utama (*Primary Key*)

Contoh: 1 baris / 1 entitas pelanggan, memiliki data CustomerId, FirstName, LastName dan BirthDate.

Primary Key

Kolom yang bersifat identifikasi suatu entitas. **Setiap tabel memiliki 1 primary key** yang bersifat unik dan tidak boleh bernilai null (kosong).

Foreign Key

Primary Key yang berada pada table lain.

Primary Key vs Foreign Key

Primary Key vs Foreign Key

Primary Key	Foreign Key		
Primary key uniquely identify a record in the table.	Foreign key is a field in the table that is primary key in another table.		
Primary Key can't accept null values.	Foreign key can accept multiple null value.		
By default, Primary key is clustered index and data in the database table is physically organized in the sequence of clustered index.	Foreign key do not automatically create an index, clustered or non-clustered. You can manually create an index on foreign key.		
We can have only one Primary key in a table.	We can have more than one foreign key in a table.		

Database Diagram

Relationship dalam database

Relationship / Relasi merupakan hubungan yang terjadi pada suatu tabel dengan lainnya yang mempresentasikan hubungan antar objek di dunia nyata dan berfungsi untuk mengatur operasi suatu database.

Macam-macam Relasi dalam database, antara lain:

- 1. One to One
- 2. One to Many
- 3. Many to Many

Yang dipelajari dalam sesi ini adalah relasi one to one dan one to many

ONE TO ONE

Relasi **ONE to ONE** adalah relasi dimana setiap satu baris data pada tabel satu hanya berhubungan dengan satu baris data di tabel dua. Artinya masing - masing **hanya memiliki satu hubungan** saja.

Struktur Tabel

Gambar di atas merupakan struktur tabel **employees** dan tabel **titles** beserta dengan field-field didalamnya.

Kedua tabel tersebut terpisah, namun belum ada penghubung antara keduanya.

Bagaimana cara menghubungkannya?

Primary Key dan Foreign Key

Primary key adalah suatu nilai dalam basis data yang digunakan untuk mengidentifikasi suatu baris dalam tabel. Nilai dari primary key adalah unik.

Foreign Key adalah sebuah column atau field yang berfungsi sebagai kunci tamu dimana kunci ini akan kita gunakan untuk relasi antar tabel.

Atau dapat juga dikatakan, Primary Key tabel1 yang berada di tabel2.

Pada sebuah database, relasi dihubungkan dengan cara memberikan satu kolom dengan value yang sama dengan tabel yang berhubungan dengan **foreign key**

Diagram ONE TO ONE

Tentukan terlebih dahulu relasi antara kedua tabel ini.

Contoh, 1 Employee mempunyai 1 Title

Sehingga, **tabel titles pasti mempunyai Foreign Key dari tabel employees**. Secara gambar diagram, akan dihubungkan dengan garis ONE to ONE.

Representasi isi table ONE TO ONE

Table employees				
emp_no		first_name	last_name	
	1	Sumant	Peac	
	2	Mary	Sluis	
	3	Eberdhant	Tekki	
	4	Berni	Genin	

Table titles					
title_id	emp_no	title			
1	3	Director			
2	2	Manager			
3	1	Assistant			
4	4	ОВ			

Tabel diatas merupakan contoh isi dari 2 tabel yang memiliki relasi ONE to ONE.

Dapat dilihat, bahwa tidak ada emp_no yang sama dalam tabel titles.

Atau, 1 employee hanya memiliki 1 title.

ONE TO MANY

Relasi **ONE to MANY** adalah relasi yang mana setiap baris dari tabel pertama dapat dihubungkan dengan satu baris ataupun lebih dari tabel kedua. Artinya satu baris dari **tabel pertama dapat mencangkup banyak data pada tabel kedua**.

Struktur Tabel

salaries				
PK	salary id			
	salary			
	from_date			
	to_date			

Gambar di atas merupakan struktur tabel **employees** dan tabel **salaries** beserta dengan field-field didalamnya.

Kedua tabel tersebut terpisah, namun belum ada penghubung antara keduanya.

Bagaimana cara menghubungkannya?

ONE TO MANY

Tentukan terlebih dahulu relasi antara kedua tabel ini.

Contoh, 1 Employee mempunyai satu atau lebih salary (karena data gaji berdasar range waktu)

Sehingga, tabel **salaries** pasti mempunyai Foreign Key dari tabel employees. Secara gambar diagram, akan dihubungkan dengan garis ONE to MANY.

Representasi isi table ONE TO MANY

Table employees						
emp no first name last name			Table salaries			
emp_no	mst_name	last_name	emp_no	salary	from_date	to_date
1	Sumant	Peac	1	5000	2000-01-01	2000-01-
2	Mary	Sluis	2	4300	2000-02-01	2000-02-
	Eberdhant	Tekki	3	2000	2000-03-01	2000-03-
	Luciunant	IGKKI	3	3000	2000-02-01	2000-02-
4	Berni	Genin	5	2000	2000-01-01	

Table salaries					
emp_no		salary		from_date	to_date
	1		5000	2000-01-01	2000-01-31
	2		4300	2000-02-01	2000-02-29
·	3		2000	2000-03-01	2000-03-31
	3		3000	2000-02-01	2000-02-29
	5		2000	2000-01-01	2000-01-31

Tabel diatas merupakan contoh isi dari 2 tabel yang memiliki relasi ONE to MANY. Dapat dilihat, bahwa terdapat dua record salary untuk emp_no 3 di tabel salaries.

Atau, 1 employee dapat memiliki 1 atau lebih salary.

Diagram Database Employees

Contoh Lain Diagram Database

Student courses

Contoh Lain Diagram Database

Movie Rental

PENGGUNAAN TOOLS ERD

ERD (Entity Diagram Relationship)

ERD adalah model atau rancangan untuk membuat database, supaya lebih mudah dalam menggambarkan data yang memiliki hubungan atau relasi dalam bentuk sebuah desain.

Dengan adanya ER diagram, maka sistem database yang terbentuk dapat digambarkan dengan lebih terstruktur dan terlihat rapi.

Macam-macam Tools untuk membuat ERD:

- Draw.io (yang digunakan dalam sesi ini)
- Creately
- DrawSQL

Penggunaan tools (draw.io)

Step 1.

Akses website https://www.draw.io

Tentukan lokasi penyimpanan. Atau bisa pilih **Decide Later**.

Penggunaan tools (draw.io)

Step 2.

Di bagian kiri, pilih dropdown entity relation, dan drag komponen yang diperlukan.

Komponen yang digunakan

(Dalam sesi ini)

Table

One to Many (Line)

One to One (Line)

Pengenalan SQL Server

SQL Server adalah salah satu software manajemen basis data (RDBMS) yang menggunakan perintah dasar SQL (Structured Query Language).

Alasan memilih SQL Server:

- **Keamanan Data:** Keamanan data dan dukungan untuk pemrosesan transaksional yang menyertai versi SQL Server terbaru, dapat sangat menguntungkan bisnis apa pun terutama jika itu adalah bisnis eCommerce yang melibatkan transfer uang.
- **Skalabilitas On-Demand:** SQL Server menawarkan skalabilitas yang tak tertandingi untuk memudahkan pengelolaan suatu aplikasi baik itu yang bersifat kecil hingga besar.
- **Performa Yang Tinggi:** SQL Server memiliki kerangka penyimpanan engine yang berbeda yang memudahkan administrator sistem untuk mengkonfigurasi server database SQL Server dengan kinerja yang sempurna.
- **Fleksibilitas Dari Open Source:** SQL Server adalah database open source sehingga Anda tidak perlu membayar satu sen

Data Type	Lower limit	Upper limit	Memory
bigint	-2^63 (-9,223,372, 036,854,775,808)	2^63-1 (-9,223,372, 036,854,775,807)	8 bytes
int	-2^31 (-2,147, 483,648)	2^31-1 (-2,147, 483,647)	4 bytes
smallint	-2 ¹⁵ (-32,767)	2^15 (-32,768)	2 bytes
tinyint	0	255	1 byte
bit	0	1	1 byte/8bit column
decimal	-10^38+1	10^381–1	5 to 17 bytes
numeric	-10^38+1	10^381–1	5 to 17 bytes
money	-922,337, 203, 685,477.5808	+922,337, 203, 685,477.5807	8 bytes
smallmoney	-214,478.3648	+214,478.3647	4 bytes

Approximate numeric data types

The approximate numeric data type stores floating point numeric data. They are often used in scientific calculations.

Data Type	Lower limit	Upper limit	Memory	Precision
float(n)	-1.79E+308	1.79E+308	Depends on the value of n	7 Digit
real	-3.40E+38	3.40E+38	4 bytes	15 Digit

Tipe Data Angka (Numerik).

Tipe Data Angka (Numerik)
merupakan tipe data yang dapat
kita gunakan pada suatu variabel
konstanta yang dapat menyimpan
nilai berupa angka. Pada tipe data
angka terbagi menjadi beberapa
jenis seperti pada kolom tabel
dibawah ini.

2. Tipe Data Teks (String).

Tipe Data Teks (String) merupakan tipe data yang bisa kita gunakan untuk menampung banyak karakter dengan jumlah maksimum data yang dapat ditampung yakni sebanyak 255 karakter. Dibawah ini ada beberapa jenis-jenis tipe data string yang terdapat pada Database SQL Server.

Character strings data types

Character strings data types allow you to store either fixed-length (char) or variable-length data (varchar). The text data type can store non-Unicode data in the code page of the server.

Data Type	Lower limit	Upper limit	Memory
char	0 chars	8000 chars	n bytes
varchar	0 chars	8000 chars	n bytes + 2 bytes
varchar (max)	0 chars	2^31 chars	n bytes + 2 bytes
text	0 chars	2,147,483,647 chars	n bytes + 4 bytes

3. Tipe Data Date.

Tipe Data Date digunakan untuk menyimpan data tanggal dengan format tahun, bulan, tanggal. Beberapa jenis tipe data date yang dapat digunakan.

The date and time data types store data and time data, and the date time offset.

Data Type	Storage size	Accuracy	Lower Range	Upper Range
datetime	8 bytes	Rounded to increments of .000, .003, .007	1753-01-01	9999-12-31
smalldatetime	4 bytes, fixed	1 minute	1900-01-01	2079-06-06
date	3 bytes, fixed	1 day	0001-01-01	9999-12-31
time	5 bytes	100 nanoseconds	00:00:00.0000000	23:59:59.9999999
datetimeoffset	10 bytes	100 nanoseconds	0001-01-01	9999-12-31
datetime2	6 bytes	100 nanoseconds	0001-01-01	9999-12-31

4. Tipe Data Binary

Tipe Data Binary merupakan tipe data yang dapat digunakan untuk menampung gambar, musik, video dan lain-lain nya.

The binary data types stores fixed and variable length binary data.

Data Type	Lower limit	Upper limit	Memory
binary	0 bytes	8000 bytes	n bytes
varbinary	0 bytes	8000 bytes	The actual length of data entered + 2 bytes
image	0 bytes	2,147,483,647 bytes	

Perintah Dasar

Semua Perintah SQL Server dapat dikategorikan menjadi 3 sub perintah, yaitu DDL (Data Definition Language), DML (Data Manipulation Language), dan DCL (Data Control Language).

DDL - Data Definition Language

Data Definition Language (DDL) ialah kumpulan perintah SQL Server yang digunakan untuk membuat (create), mengubah (alter), menghapus (drop) dan mendefinisikan metadata dari objek-objek database.

Objek-objek database yang dimaksud ialah : Database, Table, View, Index, Procedure (Stored Procedure), Function, Trigger

Berikut adalah perintah DDL yang digunakan pada SQL Server.

- CREATE (membuat)
- ALTER (mengubah): perintah untuk mengubah struktur tabel. Seperti mengganti nama tabel, menambah kolom, mengubah kolom, menghapus kolom maupun memberikan atribut pada kolom.
- DROP (menghapus)
- TRUNCATE menghapus semua catatan dari tabel
- COMMENT menambah komentar pada data
- RENAME mengubah nama objek

Perintah Dasar

DML - Data Manipulation Language

Data Manipulation Language (DML) ialah kumpulan perintah SQL Server yang digunakan untuk mengolah atau memanipulasi data dalam tabel.

Adapun perintah DML yang digunakan pada SQL Server ialah :

- SELECT untuk mengambil atau menampilkan data dari tabel.
- INSERT untuk menyimpan data ke dalam tabel.
- UPDATE untuk mengubah data dalam tabel.
- DELETE untuk menghapus data dari tabel.
- MERGE UPSERT operasi (insert atau update).
- CALL memanggil subprogram PL / SQL atau Java
- EXPLAIN PLAN menjelaskan jalur akses ke data
- LOCK TABLE mengunci tabel.

Perintah Dasar

DCL - Data Control Language

Data Control Language (DCL) ialah perintah SQL Server yang digunakan untuk melakukan pengontrolan data dan server database.

Perintah DCL yang digunakan pada SQL Server ialah:

- GRANT untuk memberikan hak akses pengguna ke database.
- REVOKE untuk menghilangkan hak akses yang telah diberikan dengan perintah GRAN

*Dalam course ini, tidak membahas semua perintah SQL. Namun hanya akan membahas perintah-perintah DDL dan DML yang sangat sering digunakan.