#### Kernel construction

Manel Martínez-Ramón

ECE, UNM

October, 2018

#### Mercer's theorem



- Mercer's theorem is one of the best known results of James Mercer (1883 – 1932).
- It has fundamental importance for kernel methods.
- It is the key idea behind the *kernel trick*, which allows to solve nonlinear optimization problems through the construction of kernelized counterparts of linear algorithms.
- The Mercer's Theorem can be stated as follows.

### Mercer's theorem



Theorem: (Mercer's Theorem, Aizerman et Al, 64) Let  $K(\mathbf{x}, \mathbf{x}')$  be a bivariate function fulfilling the Mercer condition, i.e.,

$$\int_{\mathbb{R}^{N_r} \times \mathbb{R}^{N_r}} f(\mathbf{x}) K(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d\mathbf{x} d\mathbf{x}' \ge 0$$

for any function such that

$$\int f^2(\mathbf{x})d\mathbf{x} < \infty$$

.

Then, an RKHS  $\mathcal{H}$  and a mapping function  $\varphi(\cdot)$ , such that

$$K(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle$$

exist.

## Mercer's theorem: interpretation



If we sample the integral, the inequality holds:

$$\int_{\mathbb{R}^{N_r} \times \mathbb{R}^{N_r}} f(\mathbf{x}) K(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d\mathbf{x} d\mathbf{x}' \ge 0 \Leftrightarrow \sum_{i,j=1}^{N} f(\mathbf{x}_i) K(\mathbf{x}_i, \mathbf{x}_j) f(\mathbf{x}_j) \ge 0$$

With the change of notation  $f(\mathbf{x}_i) = \alpha_i$  we can say that  $K(\mathbf{x}_i, \mathbf{x}_j)$  is a dot product in a given  $\mathcal{H}$  if and only if

$$\sum_{i,j=1}^{N} \alpha_i K(\mathbf{x}_i, \mathbf{x}_j) \alpha_j = \boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} \ge 0$$



The following are called the closure properties of kernels, and allows us to produce new kernels from combinations of simple ones.

• Property 1 (direct sum of Hilbert spaces): The linear combination

$$k(\mathbf{x}, \mathbf{z}) = ak_1(\mathbf{x}, \mathbf{z}) + bk_2(\mathbf{x}, \mathbf{z})$$

where  $a, b \ge 0$  is a kernel.

• Proof: Let  $\mathbf{x}_1, \dots, \mathbf{x}_N$  be a set of points, and  $\mathbf{K}_1$  and  $\mathbf{K}_2$  the corresponding kernel matrices constructed with  $k_1(\cdot, \cdot)$  and  $k_2(\cdot, \cdot)$ . Since these matrices are definite positive, so is  $\mathbf{K}$  constructed with  $k(\cdot, \cdot)$ . Indeed, for any vector  $\boldsymbol{\alpha} \in \mathbb{R}^N$ 

$$\boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} = a \boldsymbol{\alpha}^{\top} \mathbf{K}_1 \boldsymbol{\alpha} + b \boldsymbol{\alpha}^{\top} \mathbf{K}_2 \boldsymbol{\alpha} \ge 0$$



The previous property can be also proved as follows:

- Proof: Let  $\varphi_1(\mathbf{x})$  and  $\varphi_2(\mathbf{x})$  be transformations to the RKHS spaces  $\mathcal{H}_1$  and  $\mathcal{H}_2$  respectively endowed with dot products  $k_1(\cdot, \cdot)$  and  $k_2(\cdot, \cdot)$ .
- A vector in a composite or embedded Hilbert Space  $\mathcal{H}$  can be constructed as

$$\varphi(\mathbf{x}) = \begin{pmatrix} \sqrt{a}\varphi_1(\mathbf{x}) \\ \sqrt{b}\varphi_2(\mathbf{x}) \end{pmatrix}$$



• The corresponding kernel  $k(\mathbf{x}, \mathbf{z})$  in space  $\mathcal{H}$  is

$$k(\mathbf{x}, \mathbf{z}) = \begin{pmatrix} \sqrt{a}\varphi_1(\mathbf{x}) \\ \sqrt{b}\varphi_2(\mathbf{x}) \end{pmatrix}^{\top} \begin{pmatrix} \sqrt{a}\varphi_1(\mathbf{z}) \\ \sqrt{b}\varphi_2(\mathbf{z}) \end{pmatrix}$$
$$= a\varphi_1^{\top}(\mathbf{x})\varphi_1(\mathbf{z}) + b\varphi_2^{\top}(\mathbf{x})\varphi_2(\mathbf{z})$$
$$= ak_1(\mathbf{x}, \mathbf{z}) + bk_2(\mathbf{x}, \mathbf{z})$$

- Hence, the linear combination of two kernels correspond to a kernel in a space H that embeds the corresponding RKHSs of both kernels.
- This is often called direct sum of Hilbert spaces.



• Property 2 (*Tensor product of kernels*): The product of kernels

$$k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) \cdot k_2(\mathbf{x}, \mathbf{z})$$

is a kernel.

- Proof: Let  $\mathbf{K} = \mathbf{K}_1 \otimes \mathbf{K}_2$  be the tensor product between kernel matrices, where each element  $k_1(\mathbf{x}_i, \mathbf{x}_j)$  of matrix  $\mathbf{K}_1$  is replaced by the product  $k_1(\mathbf{x}_i, \mathbf{x}_j)\mathbf{K}_2$ .
- The eigenvalues of the tensor product are all the products of eigenvalues of both matrices. Then, for any  $\alpha \in \mathbb{R}^{N \cdot N}$

$$\boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} \geq 0$$



• In particular, the Schur product matrix  $\mathbf{H}$  with entries  $H_{i,j} = k_1(\mathbf{x}_i, \mathbf{x}_j)$  is a submatrix of  $\mathbf{K}$  defined by a set of columns and the same set of rows. Assume that a vector  $\boldsymbol{\alpha}$  exists with nonnull elements in these positions, and zero in the rest. Then

$$\boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha} = {\boldsymbol{\alpha}'}^{\top} \mathbf{H} \boldsymbol{\alpha}' \ge 0$$

where  $\alpha' \in \mathbb{R}^N$  is the vector constructed with the nonnull components of  $\alpha$ .



- Property 3:  $k(\mathbf{x}, \mathbf{z}) = f(\mathbf{x}) \cdot f(\mathbf{z})$  is a kernel. Straightforwardly, function  $f(\mathbf{x})$  is a one dimensional map to  $\mathbb{R}$ .
- Property 4.  $k(\varphi(\mathbf{x}), \varphi(\mathbf{z}))$  is a kernel.
- Property 5. If **B** is positive semi definite, then  $\mathbf{x}^{\top}\mathbf{B}\mathbf{z}$  is a kernel.
- Exercise. Determine in what cases the product  $\mathbf{x}^{\top}\mathbf{Bz}$  with  $\mathbf{X} \in \mathbb{R}^{D_1}$ ,  $\mathbf{X} \in \mathbb{R}^{D_2}$  and  $\mathbf{B}$  has dimensions  $D_1 \times D_2$ . Hint: use eigendecomposition

#### Kernel construction

Manel Martínez-Ramón

ECE, UNM

October, 2018



Let  $k_1(\mathbf{x}, \mathbf{z})$  be a kernel. The following are also kernels:

- $k(\mathbf{x}, \mathbf{z}) = p(k_1(\mathbf{x}, \mathbf{z}))$  where p(v) is a polynomial function of  $v \in \mathbb{R}$  with positive coefficients.
- $k(\mathbf{x}, \mathbf{z}) = \exp(k_1(\mathbf{x}, \mathbf{z}))$
- $k(\mathbf{x}, \mathbf{z}) = \exp\left(\frac{-||\mathbf{x} \mathbf{z}||^2}{2\sigma^2}\right)$  where

$$||\mathbf{x} - \mathbf{z}||^2 = \langle \boldsymbol{\varphi}(\mathbf{x}) - \boldsymbol{\varphi}(\mathbf{z}), \boldsymbol{\varphi}(\mathbf{x}) - \boldsymbol{\varphi}(\mathbf{z}) \rangle$$



#### Proofs:

• By property 2,  $k_p(\mathbf{x}, \mathbf{z}) = k(\mathbf{x}, \mathbf{z})^p$ , where  $p \in \mathbb{N}$ , is a kernel. Then, by property 1 we can say that

$$k(\mathbf{x}, \mathbf{z}) = \sum_{p=1}^{P} a_p k(\mathbf{x}, \mathbf{z})^p + a_0$$

where  $a_p \geq 0$ , is a kernel.



Proofs:

3 The Taylor series expansion of the exponential is

$$\exp(v) = \sum_{k=0}^{\infty} \frac{1}{k!} v^k$$

It is a polynomial with positive coefficients, hence a kernel.



Proofs:

We can expand the norm of a distance vector as

$$||\mathbf{x} - \mathbf{z}||^2 = \langle \varphi(\mathbf{x}) - \varphi(\mathbf{z}), \varphi(\mathbf{x}) - \varphi(\mathbf{z}) \rangle$$
$$= k(\mathbf{x}, \mathbf{x}) + k(\mathbf{z}, \mathbf{z}) - 2k(\mathbf{x}, \mathbf{z})$$

The squared exponential of this norm is

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(\frac{-||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{k(\mathbf{x}, \mathbf{x})}{2\sigma^2} - \frac{k(\mathbf{z}, \mathbf{z})}{2\sigma_2} + \frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right)$$

$$= \frac{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right)}{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{2\sigma^2}\right) \exp\left(\frac{k(\mathbf{z}, \mathbf{z})}{2\sigma_2}\right)}$$



$$= \frac{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right)}{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{2\sigma^2}\right) \exp\left(\frac{k(\mathbf{z}, \mathbf{z})}{2\sigma_2}\right)}$$

$$= \frac{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right)}{\sqrt{\exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right) \exp\left(\frac{k(\mathbf{z}, \mathbf{z})}{\sigma_2}\right)}}$$

$$= \frac{\kappa(\mathbf{x}, \mathbf{z})}{\sqrt{\kappa(\mathbf{x}, \mathbf{x})\kappa(\mathbf{z}, \mathbf{z})}}$$

Since by previous property  $\kappa(\mathbf{x}, \mathbf{z}) = \exp\left(\frac{k(\mathbf{x}, \mathbf{z})}{\sigma^2}\right)$  is a kernel, this expression is a (normalized) kernel, since it is also positive semidefinite.



Linear: 
$$k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y} + c$$
  
Polynomial:  $k(\mathbf{x}, \mathbf{y}) = (\alpha \mathbf{x}^{\top} \mathbf{y} + c)^d$   
Gaussian:  $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$   
Exponential:  $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|}{2\sigma^2}\right)$   
Laplacian:  $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|}{\sigma}\right)$ 



Hyperbolic Tangent (Sigmoid): 
$$k(\mathbf{x}, \mathbf{y}) = \tanh(\alpha \mathbf{x}^{\top} \mathbf{y} + c)$$
  
Rational Quadratic:  $k(\mathbf{x}, \mathbf{y}) = 1 - \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{y})^2 + c}$ 

Multiquadric: 
$$k(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^2 + c^2}$$

Inverse Multiquadric: 
$$k(\mathbf{x}, \mathbf{y}) = \frac{1}{\sqrt{(\mathbf{x} - \mathbf{y})^2 + \theta^2}}$$



Power: 
$$k(\mathbf{x}, \mathbf{y}) = -(x - y)^d$$
  
Log:  $k(\mathbf{x}, \mathbf{y}) = -\log((\mathbf{x} - \mathbf{y})^d + 1)$   
Cauchy:  $k(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + \frac{(\mathbf{x} - \mathbf{y})^2}{\sigma^2}}$   
Chi-Square:  $k(\mathbf{x}, \mathbf{y}) = 1 - \sum_{k=1}^d \frac{(\mathbf{x}^{(k)} - \mathbf{y}^{(k)})^2}{\frac{1}{2}(\mathbf{x}^{(k)} + \mathbf{y}^{(k)})}$ 

Histogram (or min) Intersection:  $k(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{d} \min(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$ 



Generalized Hist. Intersection: 
$$k(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{m} \min(|\mathbf{x}^{(k)}|^{\alpha}, |\mathbf{y}^{(k)}|^{\beta})$$
  
Generalized T-Student:  $k(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + (\mathbf{x} - \mathbf{y})^d}$ 

The book "Kernel Methods for Pattern Analysis" by J. Shawe-Taylor and N. Cristianini is a comprehensive document in this topic. Please take an online look at it from the UNM library. It is part of the reference documents of this class.

#### Outcomes of this lesson



We have seen the Mercer's theorem, a property that is fundamental to kernel definition and for its use in Machine Learning. This allows to justify the construction of kernels. We have reviewed the following kernels:

- Sum of kernels (slide 5)
- Products of kernels (slide 8)
- Kernels as product of functions (slide 10)
- Kernels embedded in kernels (slide 11)
- Polynomials odf kernels (slide 12)
- Some closed form kernels (slide 16)