Definitions

Let **F** be a vector field on \mathbb{R}^3 with $\mathbf{F} = (F_1, F_2, F_3)$

- $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$
- $curl \mathbf{F} = \nabla \times \mathbf{F}$
- $div\mathbf{F} = \nabla \cdot \mathbf{F}$

Let f be a scalar function of three variables

- $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$
- $\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$, where ∇^2 is called the Laplace operator

Questions

1. Find the $curl \mathbf{F}$ and $div \mathbf{F}$ given the vector field $\mathbf{F}(x,y,z) = (x+yz,y+xz,z+xy)$

2. Let $\mathbf{F}(x,y,z) = (x,y,z)$ be a vector field on \mathbb{R}^3 , and let $f(x,y,z) = |\mathbf{F}(x,y,z)|$ be a scalar function. Verify the following identities using the above definitions

(a)
$$div \mathbf{F} = 3$$

(b) $div(f\mathbf{F}) = 4f$, where $(f\mathbf{F})(x,y,z) = f(x,y,z)\mathbf{F}(x,y,z) = (f(x,y,z)x, f(x,y,z)y, f(x,y,z)z)$ is a vector field on \mathbb{R}^3

(c) $\nabla^2 f^3 = 12f$

(d) $curl \mathbf{F} = (0, 0, 0)$

- 3. Sketch the vector fields \mathbf{F} by drawing the diagram with some points.
 - (a) $\mathbf{F}(x,y) = (3,4)$
 - (b) $\mathbf{F}(x,y) = (y, x + y)$

4. Prove the following identities assuming the partial derivatives exists and are continuous. Let \mathbf{F} , \mathbf{G} be vector fields on \mathbb{R}^3 , and let f be a scalar function with three variables.

(a)
$$div(\mathbf{F} + \mathbf{G}) = div(\mathbf{F}) + div(\mathbf{G})$$

(b)
$$curl(\mathbf{F} + \mathbf{G}) = curl(\mathbf{F}) + curl(\mathbf{G})$$

(c)
$$div(f\mathbf{F}) = fdiv\mathbf{F} + \mathbf{F} \cdot \nabla f$$