准稳态法测不良导体的导热系数和比热 实验报告

实验者姓名: 李昭阳 学号: 2021013445 实验日期: 2022/10/27 实验台号: 15

实验目的

- 1、理解准稳态法测量不良导体的导热系数和比热原理,并通过快速测量学习掌握该方法:
 - 2、掌握使用热电偶测量温度的方法;
 - 3、学习使用数字万用表。

实验仪器

- (1) $90mm \times 90mm \times 10mm$ 的有机玻璃样品
- (2)薄膜加热器
- (3)铜-康铜热电偶
- (4)泡沫绝热体
- (5)函数信号发生器
- (6)数字万用表
- (7) 直流稳压电源
- (8) 保温杯 (恒温冷端)
- (9)双向闸刀开关
- (10) 电容、电阻、二极管
- (11) 秒表

数据处理及结果

准稳态法测不良导体的导热系数和比热

实验前准备:

中心面热电偶阻值 = 4.406 Ω

加热面热电偶阻值 = 3.121 Ω

中心面冷端热电偶阻值 = 3.443 Ω

加热面冷端热电偶阻值 = 3.571 Ω

两个相同电加热薄膜并联后的阻值 = 55.159 Ω

冷端水温 = 22.2 ℃

直流电源加热电压: $U_{\rm fi} = 18.0020V$

实验记录数据:

τ(min)	0	1	2	3	4	5	6	7	8
$U_2(t_1, t_c)$	0.041	0.041	0.042	0.055	0.073	0.094	0.117	0.140	0.166
$U_1(t_2,t_1)$	0.014	0.118	0.148	0.168	0.178	0.183	0.186	0.187	0.189
τ(min)	9	10	11	12	13	14	15	16	17
$U_2(t_1, t_c)$	0.188	0.213	0.237	0.262	0.285	0.310	0.334	0.359	0.383
$U_1(t_2,t_1)$	0.189	0.190	0.189	0.189	0.189	0.189	0.188	0.189	0.188
τ(min)	18	19	20	21	22	23	24	25	
$U_2(t_1, t_c)$	0.407	0.430	0.455	0.477	0.499	0.523	0.545	0.567	
$U_1(t_2, t_1)$	0.188	0.188	0.188	0.188	0.188	0.188	0.187	0.187	

数据处理:

作出 $U_1(t_2,t_1)- au$ 曲线和 $U_2(t_1,t_c)- au$ 曲线

从图中可知,当 $9min < \tau < 23min$ 时, $U_1(t_2,t_1)$ 的变化幅度较小,可认为系统达到准稳态,对此后的点进行拟合,得

准稳态期间 $U_2(t_1,t_c)$ - τ 关系图

在准稳态下, 计算加热面与中心面的温差, 得

其拟合方程为

$$U_2(t_1, t_c) = 0.024\tau - 0.026$$

 $R^2 = 0.9998$,则可认为

$$rac{\mathrm{d}U}{\mathrm{d} au}=0.024~mV/min$$

故可知升温速率为

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{\mathrm{d}U}{\mathrm{d}\tau} \div k = 24 \div 40 \div 60 = 1 \times 10^{-2} \quad K/s$$

由于玻璃长宽均为0.09m,加热器电阻 $R=2\times 55.159=110.318\Omega$,加热电压 U=18.0020V,则热流密度为

$$q_c = rac{U^2}{2FR} = rac{18.0020^2}{2 imes 0.09 imes 0.09 imes 110.318} = 181.334 \;\; W/m^2$$

厚度L=0.01m,则导热系数为

$$\lambda = \frac{q_c L}{2\Delta t} = \frac{181.334 \times 0.01}{2 \times 4.35} = 0.208 \ \ W/(m \cdot K)$$

密度 $\rho = 1196kg/m^3$, 则比热为

$$c = rac{q_c}{
ho L rac{{
m d}t}{{
m d} au}} = rac{181.334}{1196 imes 0.01 imes 1 imes 10^{-2}} = 1516.17 \;\; J/(kg \cdot K)$$

修正:

考虑薄膜加热器的热容、边缘绝热条件没满足等,热流密度按电功率的85%来修正,重新计算热流密度、导热系数与比热:

$$\dot{q}_{\,c} = q_c imes 85$$
 $\dot{\lambda} = rac{q_c imes 85}{2\Delta t} = 0.177 \;\; W/(m \cdot K)$ $\dot{c} = rac{q_c imes 85}{
ho L rac{{
m d}t}{{
m d} au}} = rac{181.334}{1196 imes 0.01 imes 1 imes 10^{-2}} = 1288.75 \;\; J/(kg \cdot K)$

数字万用表的使用

数据表格如下

测量任务	测量值	万用表量程	不确定度计算公式及计算结果	完整测量结果			
电阻R	10.9273kΩ	20kΩ	$0.02\% \times 10.9273$ k + $0.004\% \times 20$ k = 2.9855Ω	$(10.9273 \pm 2.9855 \times 10^{-3})$ k Ω			
电容C	1.040µF	2μF	$1\% \times 1.040 + 0.5\% \times 2 = 0.0204 \mu F$	$(1.040 \pm 0.0204) \mu F$			
交流电压U	4.2123V	20V	$0.2\% \times 4.2123 + 0.05\% \times 20 = 0.0184V$	(4.2123 ± 0.0184) V			
交流信号f	1.1999kHZ	20HZ - 20kHZ	$0.01\%1.1999k + 0.003\% \times 20k = 0.7199HZ$	$(1.1999 \pm 7.1999 \times 10^{-4})$ kHZ			
二极管导通电压	0.5703						

反思

准稳态能否无限保持?实验时间是否是越长越好?

准稳态不能无限保持。当样品持续升温时,对外散热的速率会增大,由于散热导致的误差会增大。这会使得温差越来越小,故准稳态无法无限保持下去,所以并不是实验时间越长实验数据越好。

原始数据记录

