Bayesian Statistics |

Lecture 11 - Bayesian Model Comparison

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Overview

- Bayesian model comparison
- Marginal likelihood
- Log Predictive Score

Using likelihood for model comparison

- Consider two models for the data $y = (y_1, ..., y_n)$: M_1 and M_2 .
- Let $p(y|\theta_k, M_k)$ denote the data density under model M_k .
- If we know θ_1 and θ_2 , the likelihood ratio is useful

$$\frac{p(y|\theta_1, M_1)}{p(y|\theta_2, M_2)}.$$

The likelihood ratio with ML estimates plugged in:

$$\frac{p(y|\hat{\theta}_1, M_1)}{p(y|\hat{\theta}_2, M_2)}.$$

- Bigger models always win in estimated likelihood ratio.
- Hypothesis tests are problematic for non-nested models. End results are not very useful for analysis.

Bayesian model comparison

Posterior model probabilities

$$\underbrace{\Pr(M_k|y)}_{\text{posterior model prob.}} \propto \underbrace{p(y|M_k)}_{\text{marginal likelihood prior model prob.}} \cdot \underbrace{\Pr(M_k)}_{\text{prior model prob.}}$$

The marginal likelihood for model M_k with parameters θ_k

$$\underline{p(y|M_k)} = \int p(y|\theta_k, M_k) p(\theta_k|M_k) d\theta_k.$$

- \blacksquare θ_k is 'removed' by the averaging wrt prior. Priors matter!
- The Bayes factor

$$B_{12}(y) = \frac{p(y|M_1)}{p(y|M_2)}.$$

Jeffreys scale of evidence for the Bayes factor

- \blacksquare Barely worth mentioning: $1 < BF \le 3$
- Positive: $3 < BF \le 20$
- \blacksquare Strong: 20 < BF \leq 150
- Very strong: > 150

Bayesian hypothesis testing - Bernoulli

Hypothesis testing is just a special case of model selection:

$$M_0 : x_1, ..., x_n \stackrel{iid}{\sim} Bernoulli(\theta_0)$$

$$M_1 : x_1, ..., x_n \stackrel{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha, \beta)$$

$$p(x_1, ..., x_n | M_0) = \theta_0^s (1 - \theta_0)^f,$$

$$p(x_1, ..., x_n | M_1) = \int_0^1 \theta^s (1 - \theta)^f B(\alpha, \beta)^{-1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$$

$$= B(\alpha + s, \beta + f) / B(\alpha, \beta),$$

where $B(\cdot, \cdot)$ is the Beta function.

Posterior model probabilities

$$\Pr(M_k|x_1,...,x_n) \propto p(x_1,...,x_n|M_k)\Pr(M_k)$$
, for $k = 0, 1$.

■ The Bayes factor

$$BF(M_0; M_1) = \frac{p(x_1, ..., x_n | M_0)}{p(x_1, ..., x_n | M_1)} = \frac{\theta_0^s (1 - \theta_0)^t B(\alpha, \beta)}{B(\alpha + s, \beta + f)}.$$

Mattias Villani Bayesian model comparison

Normal example

- Model: $x_1, \ldots, x_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2), \sigma^2 \text{ known.}$
- Prior: $\theta \sim N(\mu_0, \sigma^2/\kappa_0)$.
- **Likelihood**: \bar{x} is sufficient for θ and $\bar{x} | \theta \sim N(\theta, \sigma^2/n)$.
- Marginal likelihood: $\rho(\bar{x}|M_1) = N(\mu_0, \sigma^2(1/n + 1/\kappa_0))$.
- Testing a sharp null: $M_0: \theta = \mu_0$ vs $M_1: \theta \neq \mu_0$.

$$B_{01} = \frac{p(\bar{x}|M_0)}{p(\bar{x}|M_1)} = \frac{N(\bar{x}|\mu_0, \sigma^2/n)}{N(\bar{x}|\mu_0, \sigma^2(1/n + 1/\kappa_0))}$$

$$\log \frac{p(\bar{x}|M_0)}{p(\bar{x}|M_1)} = -\frac{1}{2} \log \left(\frac{\kappa_0}{\kappa_0 + n}\right) - \frac{n(\bar{x} - \mu_0)^2}{2\sigma^2} \left(\frac{n}{\kappa_0 + n}\right)$$

- $lacksquare \kappa_0 o \infty$ then $B_{0\,1} o 1$ (prior under M_1 is a point mass at 0)
- lacksquare $\kappa_0 o 0$ then $B_{01} o \infty$ $(
 ho(ar x|M_1)$ is average ho(ar x| heta) wrt prior)

Internet speed data - Bayes factor

Internet speed data - prior predictive density

Vague priors for marginal likelihoods is a bad idea

- Smaller models always win when priors are very vague.
- Improper priors cannot be used for model comparison.

Internet speed data with $\bar{x} = 12$

Example: Geometric vs Poisson

- Model 1 Geometric with Beta prior:
 - \triangleright $y_1, ..., y_n | \theta_1 \sim \text{Geo}(\theta_1)$
 - \blacktriangleright $\theta_1 \sim \text{Beta}(\alpha_1, \beta_1)$
- Model 2 Poisson with Gamma prior:
 - \rightarrow $y_1, ..., y_n | \theta_2 \sim \text{Poisson}(\theta_2)$
 - \triangleright $\theta_2 \sim \text{Gamma}(\alpha_2, \beta_2)$
- Marginal likelihood for M₁

$$p(y_1, ..., y_n | M_1) = \int p(y_1, ..., y_n | \theta_1, M_1) p(\theta_1 | M_1) d\theta_1$$

$$= \frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

 \blacksquare Marginal likelihood for M_2

$$p(y_1, ..., y_n | M_2) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

Geometric and Poisson

Geometric vs Poisson

Use priors to match prior predictive means:

$$E(y|M_1) = E(y|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

- Geometric model: $\alpha_1 = 10$, $\beta_1 = 20$.
- Poisson model: $\alpha_2 = 20$, $\beta_2 = 10$.

	$y_1 = 0, y_2 = 0$	$y_1 = 3, y_2 = 3.$
BF_{12}	4.54	0.29
$\Pr(M_1 y)$	0.82	0.22
$\Pr(M_2 y)$	0.18	0.78

Geometric vs Poisson for Pois(1) data

Geometric vs Poisson for Pois(1) data

Asymptotic properties of marginal likelihood

- Set of compared models: $\mathcal{M} = \{M_1, ..., M_K\}$.
- \mathcal{M} -closed: data generating process M^* is in \mathcal{M} .
- M-closed consistency:

$$\Pr\left(M = M^{\star}|\mathsf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

- \mathcal{M} -open: data generating process M^* is **not** in \mathcal{M} .
- \longrightarrow \mathcal{M} -open is the realistic case.
- George Box: all models are false but some are useful.
- Where do posterior model probabilities go in \mathcal{M} -open?

Geometric vs Poisson for NegBin(2,0.5) data

Geometric vs Poisson for NegBin(2,0.5) data

Marginal likelihood is KL-consistent in \mathcal{M} -open

- **M**-open: data generating process M^* is **not** in \mathcal{M} .
- **KL**-consistency: when $M^* \notin \mathcal{M}$

$$\Pr\left(M = \tilde{M}|\mathsf{y}
ight) o 1$$
 as $n o \infty$,

 \tilde{M} minimizes KL divergence between p(y|M) and $p(y|M^*)$:

$$\mathrm{KL}(M^{\star}, M) = \int \log \frac{\rho(\mathbf{y}|M^{\star})}{\rho(\mathbf{y}|\hat{\theta}_{M}, M)} \rho(\mathbf{y}|M^{\star}) d\mathbf{y}$$

 $\hat{\theta}_M$ - model parameter that makes M as KL-close as possible to M^* .

Model choice in multivariate time series¹

Multivariate time series

$$\mathbf{x}_{t} = \alpha \beta' \mathbf{z}_{t} + \Phi_{1} \mathbf{x}_{t-1} + ... \Phi_{k} \mathbf{x}_{t-k} + \Psi_{1} + \Psi_{2} t + \Psi_{3} t^{2} + \varepsilon_{t}$$

Need to choose:

- **Lag length**, (k = 1, 2..., 4)
- ▶ **Trend model** (s = 1, 2, ..., 5)
- **Long-run (cointegration) relations** (r = 0, 1, 2, 3, 4).

The most prof	BABLE	(k, r, s)	COM	BINATI	ONS IN	THE	Danish	MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

Mattias Villani Bayesian model comparison

¹Corander and Villani (2004). Statistica Neerlandica.

Graphical models for multivariate time series²

- Graphical models for multivariate time series.
- Zero-restrictions on the effect from time series i on time series j, for all lags. (Granger Causality).
- Zero-restrictions on inverse covariance matrix of the errors. Contemporaneous conditional independence.

Mattias Villani Bayesian model comparison

²Corander and Villani (2004). Journal of Time Series Analysis.

Laplace approximation

Taylor approximation of the log likelihood

$$\ln p(\mathbf{y}|\theta) \approx \ln p(\mathbf{y}|\hat{\theta}) - \frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^2$$
,

SO

$$\begin{split} \rho(\mathbf{y}|\theta)\rho(\theta) &\approx \rho(\mathbf{y}|\hat{\theta}) \exp\left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta-\hat{\theta})^2\right]\rho(\hat{\theta}) \\ &= \rho(\mathbf{y}|\hat{\theta})\rho(\hat{\theta})(2\pi)^{\rho/2} \left|J_{\hat{\theta},\mathbf{y}}^{-1}\right|^{1/2} \\ &\times \underbrace{(2\pi)^{-\rho/2} \left|J_{\hat{\theta},\mathbf{y}}^{-1}\right|^{-1/2} \exp\left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta-\hat{\theta})^2\right]} \end{split}$$

multivariate normal density

■ The Laplace approximation:

$$\ln \hat{p}(y) = \ln p(y|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},y}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$

where p is the number of unrestricted parameters.

BIC

■ The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},\mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi).$$

- $\hat{\theta}$ and $J_{\hat{\theta},\mathbf{y}}$ can be obtained with optimization/autodiff.
- The BIC approximation assumes that $J_{\hat{\theta},y}$ behaves like $n \cdot I_p$ in large samples and the small term $\frac{p}{2} \ln(2\pi)$ is ignored

$$\ln \hat{p}(y) = \ln p(y|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

$Pr(M_k|y)$ can be overfident - macroeconomics³

Table: Posterior model probabilities - Smets-Wouters DSGE model

Base	М1	M2	M3	M4	M5	M6	M7	M8
0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00

Mattias Villani

³Oelrich et al (2020). When are Bayesian model probabilities overconfident?

$Pr(M_k|y)$ can be overfident - neuroscience⁴

Table: Posterior model probabilities - Dynamic Causal Models

A	F	Р	AF	PA	PF	PAF
0.00	0.00	1.00	0.00	0.00	0.00	0.00

⁴Oelrich et al (2020). When are Bayesian model probabilities overconfident?

Mattias Villani

Marginal likelihood measures out-of-sample predictive performance

The marginal likelihood can be decomposed as

$$p(x_1,...,x_n) = p(x_1)p(x_2|x_1)\cdots p(x_n|x_1,x_2,...,x_{n-1})$$

a product of intermediate predictive densities

$$p(x_i|x_1,...,x_{i-1}) = \int p(x_i|x_1,...,x_{i-1},\theta) p(\theta|x_1,...,x_{i-1}) d\theta$$

and $p(\theta|x_1,...,x_{i-1})$ is the intermediate posterior.

- **Prediction** of x_1 is based on the prior of θ . Sensitive to prior.
- Prediction of x_n uses almost all the data to infer θ . Not sensitive to prior when n is not small.

Normal example

- Model: $x_1, ..., x_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- Prior: $\theta \sim N(0, \sigma^2/\kappa_0)$.
- Intermediate predictive density at time i-1

$$x_i|x_1,\ldots,x_{i-1}\sim N\left(\mu_{i-1},\sigma^2\left(1+\frac{1}{i-1+\kappa_0}\right)\right),$$

where

- $\mu_{i-1} = w_{i-1}\bar{x}_{i-1} + (1 w_{i-1})\mu_0$
- $ightharpoonup ar{x}_{i-1}$ is the sample mean of the first i-1 obs
- $w_{i-1} = (i-1)/(i-1+\kappa_0)$
- = i=1, $x_1\sim N\left[0,\sigma^2\left(1+rac{1}{\kappa_0}
 ight)
 ight]$ can be very sensitive to κ_0 .
- Large $i: x_i | x_1, ..., x_{i-1} \stackrel{\text{approx}}{\sim} N(\bar{x}_{i-1}, \sigma^2)$, not sensitive to κ_0 .

First observations are sensitive to κ_0

First observations are sensitive to κ_0 - zoomed

Log Predictive Score - LPS

- Reduce prior sensitivity: use n^* observations to train the prior.
- (Log) Predictive (Density) Score (PS):

$$\underbrace{p(x_1)p(x_2|x_1)\cdots p(x_{n^*}|x_{1:(n^*-1)})}_{training} \underbrace{p(x_{n^*+1}|x_{1:n^*})\cdots p(x_n|x_{1:(n-1)})}_{test}$$

- Time-series: obvious which data are used for training.
- Cross-sectional data: training-test split by cross-validation:
 n data observations

$\overline{1}, 2, \ldots, n-1, \overline{n}$							
Split 1:	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
Split 2:	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
Split 3:	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
Split 4:	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
Split 5:	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		

LPS not sensitive to κ_0

And hey! ... let's be careful out there

- Be especially careful with Bayesian model comparison when
 - ► The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - ▶ The priors for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - The data
 - has outliers (in all models)
 - has a multivariate response.