Надежность в технических системах

к.т.н. Никаноров А.В.

Структура лекции

- Основные понятия и определения
- Классификация отказов
- Невосстанавливаемые системы
- Восстанавливаемые системы
- Способы повышения надежности
- Структурное резервирование
- Виды ЗИП. Расчет ЗИП
- Виды испытаний

Зачем нужен анализ надежности?

Конструирование с учетом надежности. Основные понятия и определения

Надёжность — это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

ГОСТ 27.002-89 НАДЕЖНОСТЬ В ТЕХНИКЕ Основные понятия. Термины и определения

Свойства ВТ, связанные с надежностью

С точки зрения надёжности ВТ обладают следующими свойствами:

- **1. Безотказность** свойство ВТ непрерывно сохранять работоспособность в течение некоторого времени.
- **2. Долговечность** свойство ВТ сохранять при выполнении технического обслуживания и ремонтов работоспособность до наступления предельного состояния.
- **3. Ремонтопригодность** это приспособленность ВТ к предупреждению и обнаружению причин возникновения отказов и устранению их путём проведения ТО и ремонта.
- **4. Сохраняемость** это свойство ВТ непрерывно сохранять исправное и работоспособное состояние в течение и после хранения и/или после транспортирования.
- Количественно указанные свойства, составляющие надежность ВТ, характеризуются единичными (ТЭЗ и ВТ) или комплексными показателями надежности (ВТ и системы).

Взаимосвязь состояний системы

Свойство надежности	Показатели надежности		
Надежность	Вероятность безотказной работы Интенсивность отказов Параметр потока отказов Средняя наработка		
Ремонтопригодность	Вероятность восстановления Интенсивность восстановления Среднее время восстановления Назначенный ресурс Межремонтный ресурс Средний срок службы		
Долговечность			
Сохраняемость	Средний срок сохраняемости Гамма-процентный срок сохраняемости		
Комплексные показатели	Коэффициент готовности Коэффициент простоя Коэффициент технического использования		

Конструирование с учетом надежности. Основные понятия и определения

ВТ может быть:

- исправна или неисправна,
- работоспособна или неработоспособна

ВТ **исправна** – если соответствует всем требованиям нормативнотехнической и (или) конструкторской документации.

ВТ неисправна, если не соответствует хотя бы одному.

ВТ может быть в работоспособном или неработоспособном состоянии.

Состояние ВТ работоспособное, если значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской документации.

Состояние ВТ **неработоспособное**, если хотя бы один из параметров не соответствует указанным требованиям.

Отказы и сбои

При работе ВТ может произойти отказ или сбой.

Отказ – это событие, состоящее в полной или частичной утрате работоспособности и приводящее к неправильному выполнению функций, в частном случае тестов и задач.

Сбой – это событие, состоящее во временной утрате работоспособности и характеризующееся возникновением ошибки при функционировании.

Для восстановления работоспособности ВТ при отказе требуется проведение ремонта или регулировки. При сбое – повторный запуск теста или решение задачи.

Отказы

- Классификация отказов по характеру появления:
 - Внезапные (результат мгновенного изменения одного или нескольких связанных параметров)
 - Постепенные (результат постепенного изменения параметра до тех пор, пока он не превысит предельное значение)
- По причине возникновения:
 - Конструктивный (нарушение норм проектирования, неправильные проектные решения)
 - Производственный (несовершенство или нарушения производственного процесса)
 - Эксплуатационный (нарушение правил или условий эксплуатации)

Отказы внезапные и постепенные

Внезапные отказы – характеризуются резким, скачкообразным изменением параметра. Причина – скрытые конструкторские и технологические дефекты.

Постепенные отказы — возникают из-за изменения параметров элементов до тех пор, пока значение хотя бы одного из них не выйдет за установленные пределы. Постепенные отказы обусловлены старением, износом и воздействием окружающей среды.

Признаки отказа: непосредственное или косвенное воздействие на органы чувств наблюдателей явлений, характерных для неработоспособного состояния (изменение показателей системы индикации и т.п.).

Зависимость интенсивности отказов от времени

Для внезапных отказов:

- Интервал времени (0 t₁) является **временем приработки**. Интенсивность отказов переменна.
- Интервал времени (t₁ t₂) является нормальным периодом работы. Интенсивность отказов минимальна и постоянна.
- С момента (t₂) интенсивность отказов растет в связи со старением и износом

Отказы

- Классификация отказов по взаимосвязи:
 - Зависимый
 - Диаграмма событий и причинных факторов
 - Дерево отказов
 - Независимый
- По способу обнаружения:
 - Явный
 - Скрытый

Классификация систем с точки зрения теории надежности

Система, рассматриваемая в теории надежности

Восстанавливаемая

Невосстанавливаемая

Объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния **предусмотрено** в нормативно-технической документации

Объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния **не предусмотрено** в нормативно-технической документации

Восстанавливаемые и невосстанавливаемые системы

Различают объекты восстанавливаемые и невосстанавливаемые.

Невосстанавливаемые –

функционируют до первого отказа.

При этом случайной величиной является наработка до первого отказа.

Восстанавливаемые – при отказе

выполняется ремонт или регулировка.

При этом случайными являются время работы между отказами и время восстановления работоспособности.

Показатели надежности

невосстанавливаемой системы

Эти объекты характеризуются следующими показателями:

- 1. Интенсивностью отказов.
- 2. Средней наработкой до первого отказа.
- 3. Вероятностью безотказной работы.

Интенсивность отказов $\lambda(t)$ [1/час] — условная плотность вероятности возникновения отказа к моменту времени (t) при условии, что до этого момента отказ не возникал:

$$\lambda(t) = f(t)/(1 - \int_{0}^{t} f(t)dt)$$

где f(t) - плотность распределения наработки до отказа

По результатам статистических испытаний интенсивность отказов (1/ч)

$$\lambda(t) = \frac{(N(t) - N(t + \Delta t))}{N(t)\Delta t}$$

где Δt – длительность испытаний,

N(t) и $N(t+\Delta t)$ - число объектов, работоспособных к моменту времени t и $(t+\Delta t)$ соответственно

Расчет надежности аппаратуры делается для периода нормальной эксплуатации (t1 - t2), которому соответствует экспоненциальный закон плотности распределения наработки до отказа:

$$f(t) = \lambda e^{-\lambda t} \qquad (1)$$

Средняя наработка до отказа Mean time to failure, MTTF определяется как математическое ожидание наработки до отказа:

$$t_{
m cp}=\int\limits_0^\infty tf(t)dt$$
 с учетом формулы (1) $t_{
m cp}=1/\lambda$

17

Вероятность безотказной работы, т. е. вероятность того, что не будет отказа в пределах заданной наработки:

$$P(t) = 1 - \int_{0}^{t} f(t)dt$$

Для внезапных отказов $P(t) = e^{-\lambda t}$ Для постепенных отказов при нормальном законе распределения вероятностей наработки до отказа

$$P(t) = 1/(\sqrt{2\pi\sigma}) \int_{t}^{\infty} e^{-(t-t_{\rm cp})^2/(2\sigma^2)} dt$$

Где σ^2 - дисперсия средней наработки до отказа.

Поток событий

- 1. Поток событий называется стационарным, если вероятность попадания того или иного числа событий на участок времени зависит только от длины участка и не зависит от того, где именно на оси расположен этот участок.
- 2. Поток событий называется потоком без последействия, если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.
- 3. Поток событий называется ординарным, если вероятность попадания на элементарный участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.
- Если поток событий обладает всеми тремя свойствами (стационарен, ординарен и не имеет последействия), то он называется простейшим (или стационарным пуассоновским) потоком.

Эти ВТ характеризуются следующими показателями:

- 1. Параметром потока отказов.
- 2. Наработкой между отказами (наработка на отказ) Mean time between failures, MTBF.
- 3. Наработкой на сбой.
- 4. Вероятностью безотказной работы.
- 5. Средним временем восстановления.
- 6. Коэффициентом технического использования.
- 7. Коэффициентом готовности.

Параметр потока отказов

 $\omega(t)$ – плотность вероятности возникновения отказов в данный момент времени, статистически определяемый как

$$\omega^*(t) = \frac{n_{\Delta t}}{N\Delta t}$$

где N – число средств ВТ, наблюдаемых на промежутке времени Δt $n_{\Delta t}$ – число отказов средств ВТ с учетом отказов после восстановлений (отказавшее устройство немедленно заменяется новым)

Наработка на отказ - это отношение наработки восстанавливаемой ВТ к математическому ожиданию числа ее отказов в течение этой наработки.

После окончания периода приработки

$$T_0 = 1/\omega$$

Статистически наработка на отказ (средняя)

$$T_0 = \sum_{i=1}^{N} t_{i,r} / N_r$$

где $t_{i,r}$ - наработка на r-й отказ i-го средства BT

 N_r - число отказов N-го средства BT

Наработка на сбой – среднее значение наработки между сбоями.

Среднее время восстановления Тв - это математическое ожидание времени восстановления работоспособности ЭВМ, статистически определяемое как

$$T_{\rm B} = \sum_{i=1}^{m} \tau_i/m$$

где

 au_i -время, необходимое для обнаружения и устранения і-го отказа;

т - число отказов.

Коэффициент технического использования Кт.и определяется как математическое ожидание времени работоспособного состояния к сумме математических ожиданий времени неработоспособного состояния, технического обслуживания и ремонтов за некоторый период эксплуатации.

На основании статистических данных

$$K_{\text{т.и.}} = \sum_{i=1}^{N} t_i^p / (NT_{\text{экспл}})$$

где t_i^p - время пребывания і-й изделия в работоспособном состоянии;

N - число наблюдаемых изделий; $T_{
m экспл}$ - продолжительность эксплуатации (сумма интервалов времени работы, технического обслуживания и ремонтов).

Коэффициент готовности Кг — это вероятность того, что ВТ окажется в работоспособном состоянии в любой момент времени, кроме периодов, в которые ее использовать не планируют. Статистически

$$K_r = \sum_{i=1}^{N} t_{ip} / (NT_{\text{pa6}})$$

где Траб – продолжительность работы, состоящая из чередующихся интервалов времени работы и восстановления.

Исходные данные:

- схема электрическая принципиальная с указанием типов деталей, входящих в нее;
- режимы работы всех деталей (электрические, механические, климатические);
- интенсивности внезапных отказов для всех компонентов ненадежности;
- среднее время безотказной работы и дисперсия для элементов, подверженных постепенным отказам.

Для КМ различных уровней оценивают следующие показатели надежности:

- Λ (интенсивность отказов) для субблоков;
- ↑ и tcp (средняя наработка до отказа) для блоков невосстанавливаемых ВТ;
- Л, Т0 (наработка на отказ) и Тв (среднее время восстановления) – для блоков и рам восстанавливаемых средств ВТ;
- P(t) (вероятность безотказной работы) и Кг (коэффициент готовности) для восстанавливаемых средств ВТ;
- P(t) для невосстанавливаемых.

По результатам анализа влияния на работоспособность КМ входящих в него элементов/деталей составляют структурную схему надежности. Элемент включают в нее, если его отказ приводит к отказу КМ.

Например, суммарную интенсивность отказов субблока рассчитывают по формуле:

$$\Lambda = \sum_{i=1}^{N} \lambda_i n_i$$

где N - число типов элементов в структурной схеме надежности; λ_i - интенсивность отказов и количество элементов i-го типа. Наработка на отказ

$$T_0 = 1/\Lambda$$

Интенсивность отказов комплектующих элементов, являющаяся их исходной характеристикой надежности, зависит от режима работы и степени тяжести таких внешних воздействий, как температура, тепловой удар, влажность, вибрации, линейные ускорения, удары, радиация и т. п.

$$\lambda = \lambda_0 K_1 K_2 \dots K_n,$$

где λ_0 - интенсивность отказов элемента при нормальных условиях работы (температура окружающей среды 20°C, относительная влажность 60%, коэффициент электрической нагрузки К н = 1);

 K_1 , K_2 ... K_n - поправочные коэффициенты, учитывающие режимы работы и условия эксплуатации.

На начальных этапах проектирования влияние внешних воздействий на интенсивность отказов для ВТ различного назначения можно учитывать с помощью интегрального поправочного коэффициента

 $K = \lambda/\lambda_0$.

Значения поправочного коэффициента К для аппаратуры различного назначения

Современные образцы ракет	700	Поезд	59
Ранние образцы ракет	400	Автомобиль	50
Самолет	100	Корабль	40
Аппаратура для высокогорной		Наземная аппаратура	20
местности	68	Лабораторные условия	1

Способы повышения надежности ВТ

- Использование элементов, конструктивных деталей, <u>изделий</u>
 <u>с высокими показателями надежности</u>.
- Применение способов монтажа, обеспечивающих более низкую интенсивность отказов электросоединений.
- Разработка конструкций, обеспечивающих более эффективную <u>защиту от дестабилизирующих факторов</u>.
- Использование <u>облегченных тепловых и электрических</u> <u>режимов</u> работы комплектующих элементов.
- Снижение количества элементов.
- Снижение времени непрерывной работы.
- Периодическое техническое обслуживание.
- Резервирование.

Резервирование

- Резервирование введение избыточности:
 - Структурной
 - Функциональной
 - Информационной
 - Временной
- По виду исполнения
 - схемные;
 - конструкторско-технологические;
 - информационные (программно-алгоритмические)

Структурное резервирование

При этом способе надежность повышают за счет использования избыточных элементов, частей схемы или КМ в целом.

Различают общее и поэлементное резервирование.

Общее резервирование.

Вероятность наступления отказа всей системы определяется одновременным отказом основной и всех S резервных цепей.

Вероятность отказа для основной цепи $Q_{\rm och}(t) = 1 - \prod_i^N p_i(t)$

для всей системы

Общее резервирование

Переходя к вероятности безотказной работы, имеем

$$P_{\text{общ.p}}(t) = 1 - \left[1 - \prod_{i=1}^{N} p_i(t)\right]^{s+1}$$

где N - количество элементов основной цепи; Pi(t) — вероятность безотказной работы i-го элемента основной цепи; S - количество резервных цепей.

Пользуясь этой формулой, можно определить необходимое количество резервных цепей для получения заданной вероятности безотказной работы при общем резервировании:

$$S = \ln \left(1 - P_{\text{общ.p}}(t)\right) / \ln \left[1 - \prod_{i=1}^{N} p_i(t)\right] - 1$$

Поэлементное резервирование

Вероятность безотказной работы *i-го* и всех его резервных элементов:

где N — количество элементов основной цепи; Si — количество резервных цепей для i-го элемента;

 $p_i(t)$ - вероятность безотказной работы i-го элемента.

Если все элементы обладают одинаковой вероятностью безотказной работы p(t), то для обеспечения требуемой надежности число резервных цепей

$$S = \frac{ln[1 - \sqrt[N]{P_{\rm Tp}(t)}]}{ln[1 - p(t)]} - 1$$

ЗИП. Расчет ЗИП

ЗИП – запасные части, инструменты и принадлежности

ГОСТ 18322-78 Система технического обслуживания и ремонта техники. Термины и определения

• Запасная часть

Составная часть изделия, предназначенная для замены находившейся в эксплуатации такой же части с целью поддержания или восстановления исправности или работоспособности изделия

• Комплект ЗИП

Запасные части, инструменты, принадлежности и материалы, необходимые для технического обслуживания и ремонта изделий и скомплектованные в зависимости от назначения и особенностей использования.

Испытания

- Испытания экспериментальное определение (оценивание - получение количественных или качественных значений характеристик свойств объекта и/или контроль установление соответствия характеристик объекта заданным требованиям) количественных и /или качественных характеристики свойств объекта испытаний как результата воздействия на него, при его функционировании, при моделировании объекта и/или воздействия.
- Объект испытаний продукция, подвергаемая испытаниям.

Виды испытаний

- Этапы разработки продукции
 - Доводочные
 - Предварительные
 - Приемочные

Условия испытаний – совокупность воздействующих факторов и/или режимов функционирования объекта при испытаниях.

К условиям испытаний относятся внешние воздействующие факторы как естественные, так и искусственно создаваемые, а также внутренние воздействия, вызываемые функционированием объекта, способы и место его установки, монтажа, крепления, скорость перемещения и т.д.

Виды испытаний (ВТ)

Испыт. готовой продукции

- Квалификационные
- Предъявительские
- Приемо-сдаточные
- Периодические
- Инспекционные
- Типовые
- Аттестационные
- Сертификационные

Вид воздействия

- Механические
- Климатические
- Термические
- Радиационные
- Электрические
- Электромагнитные
- Магнитные
- Химические
- Биологические

ГОСТ 16504-81 ИСПЫТАНИЯ И КОНТРОЛЬ КАЧЕСТВА ПРОДУКЦИИ Основные термины и определения

Виды испытаний (ВТ)

Результат воздействия

- Неразрушающие
- Разрушающие
- Испытания на стойкость
- Испытания на прочность
- Испытания на устойчивость

Определяемые характеристики объекта

- Функциональные
- Испытания на надежность
- Испытания на безопасность
- Испытания на транспортабельность
- Граничные испытания
- Технологические испытания

ГОСТ 16504-81 ИСПЫТАНИЯ И КОНТРОЛЬ КАЧЕСТВА ПРОДУКЦИИ Основные термины и определения

Литература

- Шкляр В.Н. Надежность систем управления: учебное пособие / В.Н.Шкляр; Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2009. 126 с.
- ГОСТ 27.002-89 Надежность в технике. Основные понятия. Термины и определения
- Надежность технических систем: Справочник / Ю.К.Беляев,
 В.А.Богатырев, В.В.Болотин и др.; Под ред. И.А.Ушакова. М.: Радио и связь, 1985. 608 с. ил.
- Методики оценки достаточности и расчета запасов в комплектах ЗИП для средств электросвязи. Книга 2. Методики оценки достаточности и расчета запасов в комплектах ЗИП для средств электросвязи без использования ПЭВМ
- ГОСТ РВ 27.3.03-2005 Государственный военный стандарт РФ. Надежность военной техники. Оценка и расчет запасов в комплектах ЗИП