

Deeper Investigations into Alignment Residuals and Proposal for Second CRAFT Reprocessing (fast download version)

Jim Pivarski

Alexei Safonov

Texas A&M University

21 January, 2009

- ▶ We have the means of producing alignment constants (and can do it before next Wednesday)
- But what we need to do is
 - strengthen the case that the results are true, physical positions
 - make the calculation more robust, where necessary
- ▶ Due to the distribution of cosmic rays, we must align the barrel before the endcap
 - globalMuons connect barrel to tracker
 - standAloneMuons connect endcap to barrel

What we saw last time

▶ Shapes in the wheel-by-wheel residuals that indicated some real misalignments and some apparent tracking biases

- ▶ Improved fitting procedures with better control of B-field and scattering
- Zoomed in to chamber-by-chamber level of detail (rather than wheels)
- Discovered evidence for
 - real several-millimeter DT misalignments in local x, ϕ_z
 - **possible** misalignments in R (radial) or ϕ_v (rotation around local y)
 - \triangleright interesting distribution of \vec{B} -field mismodelling
 - local y misalignments on top of a tracking bias in this direction

What we can do about it

- ▶ Definitely align DT local x, ϕ_z (my recommendation)
- ▶ Possibly align DT ΔR (or ϕ_v) and local y, pending other studies

Outline for this talk

- Justified assumptions that underlie this analysis
- Plots illustrating key effects
- Appendix: complete set of 152 plots (see full version of this talk)

- 1. A discontinuity or sharp edge in the residuals distribution at a chamber boundary is due to an effect in the chamber itself, not a tracking bias
 - timing miscalibration? no, wrong timing affects two sides of wire in opposite ways, cancelling in the residuals mean
 - chamber description? (this happened for CSCs) only if all chambers of the same type show the same effect
 - misalignment by process of elimination
- 2. Residuals from \vec{B} -field mismodelling strictly flip sign with charge
 - key point: cosmic charge ratio is not 1:1, but momentum spectra for the two charges are proportional (this fact is used in the charge ratio analysis)
- 3. Broad distortion across all of CMS is probably (but not certainly) due to a bias in the tracks source, rather than misalignment

- ▶ Last time:
 - distinguished misalignment from \vec{B} -field and scattering effects by a calculus-style $p \to \infty$ limit
 - but detailed plots were simple TProfiles (bin-by-bin truncated mean of residuals)

Shortcomings:

- ▶ TProfiles don't incorporate the same limit (just a high p_T cut)
- $ightharpoonup p o \infty$ limit fit is sensitive to choice of binning
- ightharpoonup doesn't take advantage of the useful fact that \vec{B} -field displaces the peak of the distribution, while scattering adds tails

Improvements:

- ▶ determine every bin from a fit
- incorporate scattering tails in the fit ansatz
- ▶ handle \vec{B} -field with exactly two bins: positively-charged tracks in one, negative in the other
 - (positive bin + negative bin)/2 is insensitive to antisymmetric errors from \vec{B} -field
 - (positive bin negative bin)/2 is maximally sensitive

Residuals ansatz

Residuals in each bin are fit to a convolution of a Gaussian and a Cauchy-Lorentzian

$$f(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-\xi^2}{2\sigma^2}\right) \times \frac{1}{\pi} \frac{\Gamma/2}{(x-\xi)^2 + (\Gamma/2)^2} d\xi$$

- ▶ Naturally has a Gaussian core, power-law tails, and is self-normalized
- Models the physical process: scattering effects yield power-law distributions, experimental resolution adds Gaussian convolution
- Unbinned fit acts like a mean that de-emphasizes outliers
 - power-law contributes far less to log liklihood than exponential
 - regular mean $(\sum x_i/N)$ would be equal to center of an unbinned Gaussian fit; this is a small extension, adding the tails

What difference does it make?

Jim Pivarski

- ► Similar to old profile plots (this is the "twist" plot from last time)
- Small corrections compared to the effects we showed before
- Added confidence that what we're doing is rigorous

Cartography

Jim Pivarski

- ▶ I've split up the data so that we can see individual chambers
 - ightharpoonup plots vs. z are split by sector, plots vs. ϕ are split by wheel: you only see one chamber at a time
- ► All have the same features:
 - ▶ grey background is raw 2-D residuals distribution
 - red points are bin-by-bin fit results, insensitive to \vec{B} -field mismodelling because of +/- averaging procedure
 - ightharpoonup small blue points are +/- difference: the error we would incur if we were crazy enough to use only positive tracks (maximal)

Geography: local x cliffs

Jim Pivarski

- ▶ Offsets in local x residuals from one chamber to the next are (rather large) $r\phi$ displacements
 - discontinuities in the curve are a smoking gun!
- \blacktriangleright Linear slopes with respect to z can be easily explained by local $\phi_{\rm Z}$ rotations

Geography: sawtooth mountains Jim Pivarski 10/13

- Linear slopes in local x residuals vs. ϕ can be explained by
 - rather large radial displacements:

$$\Delta R pprox ({\sf maximum}\ {\sf residual}) imes (R/{\sf chamber}\ {\sf half-length})$$

• or huge local ϕ_y rotations: $(\Delta\phi_y)^2 \approx 1 - ({\rm maximum\ residual})/({\rm chamber\ half-length})$

▶ If one of these is responsible, it will become more clear in the track-by-track calculation of ΔR and $\Delta \phi_y$ (I can also plot that vs. ϕ)

Geography: \vec{B} -field plateaus

Jim Pivarski

11/13

- $ightharpoonup \vec{B}$ -field mismodelling (blue points) is visible in station 3 and especially 4
- They can be better localized by considering track-by-track differences in station 3 residuals minus station 2 residuals (for example)
- In wheel 0 only, they show a chamber-by-chamber dependence: a clue to the problem in B-field modelling? (material between chambers?)

Geography: smooth valleys

- Local y residuals have a global trend with a maximum amplitude at $\phi=\pm\pi/2$ and large |z|
 - ightharpoonup appears in all stations, consistently in "vs. ϕ " and "vs. z" plots
- ► Though in principle this could be a systematic distortion of the whole barrel, we first consider the possibility that it is a tracking bias
 - ightharpoonup could be due to tracker TEC misalignment (also misaligned parallel to beamline, affecting large |z| the most)
 - easy to check: drop tracks with TEC hits and replot

Minimal:

- incorporate improved fitting in alignment procedure
- align local x $(r\phi)$ and local ϕ_z
- the plots present a clear picture of their current misalignment

More ambitious 1:

- make these kinds of plots for track-by-track ΔR and $\Delta \phi_v$
- ▶ if one of these parameters is confirmed as being responsible for the "sawtooth," apply corrections

More ambitious 2:

- exclude tracks with TEC hits
- ▶ if "smooth valleys" disappear, leaving only local y cliffs, align local v (an important parameter)
- Combine with anything better measured by hardware, of course (through the DTAlignmentRcd format as input to track-based)
- ► Too ambitious: aligning CSCs as well. I don't think I have enough time. . .