Sensitivity Analysis of Internal Erosion Models for Dam Safety

Mitchell Neilsen, Chendi Cao

Department of Computer Science Kansas State University Manhattan, KS, USA

Auxiliary Spillway Discharge (1993)

Peak Flow: 60,000 cfs = 1,700 cms

Duration: 21 days

Example:

Tuttle Creek Spillway

Crest = 1090.0, BW = 600.0, FILE = Tuttle_073_0 Identifier = Tuttle Creek Spillway

Crest = 1090.0, BW = 600.0, FILE = Tuttle_073_0
Identifier = Tuttle Creek Spillway, Percent Eroded = 0.64, Breach Time = N/A

Example:

Tuttle Creek Spillway

Causes of Dam Failures

Causes of Dam Failures*	Percentage		
Dam overtopping and auxiliary spillway failure			
Piping/seepage/internal erosion Slides	25 – 44% 2 – 15%		
Miscellaneous	9 – 40%		

^{*} V. Singh, "Dam breach modeling technology", 1993.

Windows* Dam Analysis Modules (WinDAM)

WinDAM is a modular framework for the design and analysis of water control structures (dams).

Weir Upstream of Test Embankment USDA Hydraulic Engineering Research Unit (HERU)

Dam Overtopping Breach Analysis

Dam Overtopping Breach Analysis

Internal Erosion Analysis

(weak silty sand material - SM)

$\tau >> \tau_c$ Rapid Internal Erosion

WinDAM Headcut Model Input

Silty sand (SM) material properties

Internal Erosion Analysis

(stronger clay material - CL)

$\tau \sim \tau_c$ Negligble Internal Erosion

WinDAM Headcut Model Input

Clay (CL) material properties

JET Field test for k_d

- Submerged jet from known orifice diameter
- Measured height above bare soil
- Erosion is measured over time → k_d

JET Lab Samples

Figure 3. Breach model input

WinDAM Computational Model

Internal Erosion Flow Conditions

Figure 6. Internal erosion flow conditions

WinDAM Output

Using DAKOTA to drive the Analysis

DAKOTA

- DAKOTA: <u>Design</u> and <u>Analysis too</u><u>Kit for <u>Optimization</u> and <u>Terascale</u> <u>Applications - by Sandia National Laboratories
 </u></u>
- DAKOTA adds value to simulation-based analysis:
 - Sensitivity which input parameters affect performance metrics?
 - Uncertainty (quantification) how safe, reliable, robust or variable is the system?
 - Optimization which design performs best?
 - Calibration which models and parameters best match empirical data?
 - Parameter studies vary input, how does output change?
- All require iterative analysis with the computational model.

DAKOTA User Interface

(for parameter studies)

DAKOTA Input File

```
    dakota windam multidim.in + (~\...heticInternalErosionExample) - VIM

  DAKOTA INPUT FILE - dakota_windam_multidim.in
environment,
           graphics,tabular_graphics_data
             tabular_graphics_file = 'dakota_multidim.dat'
method,
         multidim_parameter_study
           partitions = 5 50
model,
         single
variables.
         continuous_design = 2
           lower_bounds 108 0.017
                               56.55
           upper_bounds 112
           descriptors 'Tw'
                                   'Kd'
interface,
         system
           analysis_driver = 'WinDam.bat'
           parameters_file = 'params.in'
           results_file = 'results.out'
         file_save
responses,
        num_response_functions = 1
        no_gradients
         no hessians
```

Using DAKOTA to drive the Analysis

Using DAKOTA to drive the Analysis

DAKOTA Analysis Driver (WinDam.bat)

```
winDAM.bat (~\Dakota\SyntheticInternalErosionExample) - VIM

perl parseWinDamIn params.in newParams.in

perl dprepro newParams.in example.WDT example.WDC

WinDamSim.exe example.WDC

perl parseWinDamOut example.OUT results.out
```

params.in

DAKOTA Analysis Driver (WinDam.bat)

WinDAM.bat (~\Dakota\SyntheticInternalErosionExample) - VIM

perl parseWinDamIn params.in newParams.in

perl dprepro newParams.in example.WDT example.WDC

WinDamSim.exe example.WDC

perl parseWinDamOut example.OUT results.out

example.WDT

**Example.WDT (~\Dakota\SyntheticInternalErosionExample) - VIM								
WINDAM	01/01/2009Internal Erosion							
OPTION *	SIMPLE	EARTH	NOPS		INTERNAL			
IEMODEL	2	{Tw	} {Kd	}	100	0		
HYD	Constant	0.05	Ō		0C			
		10	10		10	10	10	
		10	10		10	10	10	
		10	10		10	10	10	

example.WDC

dprepro

example.WDC (~\Dakota\SyntheticInternalErosionExample) - VIM							_
WINDAM OPTION *	01/01/200 SIMPLE	9Internal I EARTH	Erosion NOPS	INTERNAL			
IEMODEL HYD	2 Constant		0000.0170 0 10	100 0C 10	0 10	10	
		10	10	10	10	10	

Using DAKOTA to drive the Analysis

DAKOTA Analysis Driver (WinDam.bat)

 $\label{eq:windaw} \begin{tabular}{ll} \hline \& WinDAM.bat (\sim\Dakota\SyntheticInternalErosionExample) - VIM \\ \hline \end{tabular}$

perl parseWinDamIn params.in newParams.in perl dprepro newParams.in example.WDT example.WDC WinDamSim.exe example.WDC perl parseWinDamOut example.OUT results.out

Using DAKOTA to drive the Analysis

Dakota 6.10 Input Format

Figure 14. Dakota centered-parameter study input file

Centered Parameter Study Results


```
# DAKOTA INPUT FILE
environment
   tabular data
       tabular_data_file "tabular_data13.txt"
   output_file "dakota.out"
   error_file "dakota.err"
   write_restart "dakota.rst"
method
   id method "method1"
   sampling
       sample_type lhs
       samples = 100
       variance_based_decomp
model
   id model "model1"
   single
variables
   id_variables "variables1"
   active all
   continuous design = 5
       initial_point 110.0 0.5
                                   400.0 0.008 0.1
       lower_bounds 100.0 0.05 100.0 0.0001 0.8
       upper_bounds 120.0 5.0 800.0 0.85
                                                  1.2
       descriptors
                       "Tw"
                              "Kd"
                                    "Us"
                                           "Tc"
                                                  "Cw"
```

Figure 16. Variance-based decomposition study input

Resulting Sobel Indices

Main	Total	Variable
3.6583120264e-04	6.1933580748e-04	Tw
7.9733886725e-01	8.1438160208e-01	Kd
7.5951019306e-03	2.0226039927e-03	Us
2.8293990703e-01	4.0351278028e-01	Te
-1.7264200992e-04	2.1209241177e-03	Cw

Figure 17. Sobel indices for peak flow

Summary

- WinDAM
 - Provides a framework to combine existing models and develop new models for dam erosion analysis
- Dakota
 - Provides a framework for parameters studies, uncertainty quantification, and sensitivity analysis
- Together, they provide a powerful framework for dam safety analysis

http://www.damsafety.info

Natural Resources
Conservation Service

Agricultural Research Service

Kansas State University

WinDAM C (Ver 1.1.9) Installation Set (6/28/2019)

2011 Hunter Rouse Hydraulic Engineering Award Lecture Visuals

SITES 2005.1.8 Water Resource Site Analysis Software Installation Set

ARS Dam Breach Research

NRCS Hydrology & Hydraulics

NRCS Watershed Rehabilitation Information

ARS Hydraulic Engineering Research The United States Department of Agriculture (USDA) and its partners are actively involved in providing the tools and technology for maintaining safe dams. Through the programs of the USDA, Natural Resources Conservation Service (NRCS), USDA has assisted in the construction of over 11,000 dams in 47 states since 1948. These dams provide flood control as well as water supply and recreation opportunities. The USDA, Agricultural Research Service (ARS) works closely with the NRCS to develop the technology needed for the economical design and rehabilitation of these dams. Kansas State University is partnering with the USDA to incorporate the results of research and field experience into computational tools for use in design and maintenance of safe dams. These tools provide the basis for optimal use of natural materials such as vegetation to protect embankments and spillways.

Additional information on the available resources and ongoing research is available by following the links to the left.

Watershed Project Locations

Next Steps

- International Internal Erosion Breach Model Performance Evaluation
 - 1. EMBREA HR Wallingford (<u>www.dambreach.org</u>)
 - 2. WinDAM USDA, KSU (www.damsafety.info)
 - 3. AREBA EDF
 - 4. DL BREACH Clarkson University
 - 5. RUPRO IRSTEA

Next Steps

Questions?