IN THE CLAIMS

Please amend claims 1-3, 13 and 24-26 as follows.

1. (Currently amended) An apparatus, comprising:

first and second multi-mode interference (MMI) coupling devices disposed in a

semiconductor substrate, each of the first and second MMI coupling devices including first

and second inputs and first and second outputs, wherein an optical beam is to be optically

coupled to the first input and to the first and second outputs through the first MMI coupling

device;

a first optical coupler having a first optical path length, the first output of the first

MMI coupling device optically coupled to the first input of the second MMI coupling device

through the first optical coupler; and

a second optical coupler having a second optical path length, the second output of the

first MMI coupling device optically coupled to the second input of the second MMI coupling

device through the second optical coupler, wherein the first optical path length is different

than the second optical path length.

2. (Currently amended) The apparatus of claim 1 wherein the first input of the first MMI

coupling device is optically coupled to receive an the optical beam having a plurality of

channels, each one of the plurality of channels having a corresponding wavelength, wherein

the first output of the second MMI coupling device is optically coupled to output a first one

of the plurality of channels of the optical beam, wherein the second output of the second

MMI coupling device is optically coupled to output a second one of the plurality of channels of the optical beam.

3. (Currently amended) The apparatus of claim 1 wherein the first input of the first MMI coupling device is optically coupled to receive an the optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength, wherein the first output of the second MMI coupling device is optically coupled to output a first subset of the plurality of channels of the optical beam, wherein the second output of the second MMI coupling device is optically coupled to output a second subset of the plurality of channels of the optical beam.

4. (Original) The apparatus of claim 1 wherein the first output of the second MMI coupling device is optically coupled to receive a first optical beam having a first wavelength, wherein the second output of the second MMI coupling device is optically coupled to receive a second optical beam having a second wavelength, wherein the first input of the first MMI coupling device is optically coupled to output a multichannel optical beam including the first and second wavelengths combined.

5. (Original) The apparatus of claim 1 wherein the first and second optical couplers comprise first and second waveguides, respectively, disposed in the semiconductor substrate.

6. (Original) The apparatus of claim 5 wherein each of the first and second waveguides comprise silicon channels with oxide cladding disposed in the semiconductor substrate.

042390.P11003 Serial No. 09/819,520

7. (Original) The apparatus of claim 1 wherein each of the first and second MMI coupling devices comprise silicon channels with oxide cladding disposed in the semiconductor substrate.

12

8. (Original) The apparatus of claim 7 wherein the insulative cladding of the first and second MMI coupling devices include a buried insulating layer of a silicon on insulator (SOI) wafer.

9. (Original) The apparatus of claim 1 wherein the semiconductor substrate comprises silicon.

(Original) The apparatus of claim 1 wherein the semiconductor substrate comprises a III-V type semiconductor material.

11. (Original) The apparatus of claim 1 further comprising an optical switch disposed in the semiconductor substrate having first and second inputs and first and second outputs, the first and second inputs of the optical switch optically coupled to the first and second outputs, respectively, of the second MMI coupling device.

12. (Original) The apparatus of claim 1 further comprising an optical switch disposed in the semiconductor substrate having first and second inputs and first and second outputs, the first and second outputs of the optical switch optically coupled to the first and second inputs, respectively, of the first MMI coupling device.

13. (Currently amended) An apparatus, comprising:

a-first, second and third optical interleavers, each of the first, second and third interleavers including:

first and second multi-mode interference (MMI) coupling devices disposed in a semiconductor substrate, each of the first and second MMI coupling devices of each of the first, second and third optical interleavers including first and second inputs and first and second outputs;

a first optical coupler having a first optical path length, the first output of the first

MMI coupling device optically coupled to the first input of the second MMI coupling device
through the first optical coupler; and

a second optical coupler having a second optical path length, the second output of the first MMI coupling device optically coupled to the second input of the second MMI coupling device through the second optical coupler, wherein the first optical path length is different than the second optical path length,

wherein the first output of the second MMI coupling device of the first optical interleaver is optically coupled to the first input of the first MMI coupling device of the second optical interleaver,

wherein the second output of the second MMI coupling device of the first optical interleaver is optically coupled to the second input of the first MMI coupling device of the third optical interleaver.

042390.P11003 Serial No. 09/819,520

14. (Original) The apparatus of claim 13 wherein the first input of the first MMI coupling device of the first optical interleaver is optically coupled to receive an optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength,

wherein the first output of the second MMI coupling device of the second interleaver is optically coupled to output a first one of the plurality of channels of the optical beam,

wherein the second output of the second MMI coupling device of the second interleaver is optically coupled to output a second one of the plurality of channels of the optical beam,

wherein the first output of the second MMI coupling device of the third interleaver is optically coupled to output a third one of the plurality of channels of the optical beam,

wherein the second output of the second MMI coupling device of the third interleaver is optically coupled to output a fourth one of the plurality of channels of the optical beam.

15. (Original) The apparatus of claim 13 wherein the first input of the first MMI coupling device of the first optical interleaver is optically coupled to receive an optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength,

wherein the first output of the second MMI coupling device of the second interleaver is optically coupled to output a first subset of the plurality of channels of the optical beam,

wherein the second output of the second MMI coupling device of the second interleaver is optically coupled to output a second subset of the plurality of channels of the optical beam,

042390.P11003 Serial No. 09/819,520

wherein the first output of the second MMI coupling device of the third interleaver is optically coupled to output a third subset of the plurality of channels of the optical beam,

wherein the second output of the second MMI coupling device of the third interleaver is optically coupled to output a fourth subset of the plurality of channels of the optical beam.

Q1

16. (Original) The apparatus of claim 13 wherein the first output of the second MMI coupling device of the second interleaver is optically coupled to receive a first optical beam having a first wavelength,

wherein the second output of the second MMI coupling device of the second interleaver is optically coupled to receive a second optical beam having a second wavelength,

wherein the first output of the second MMI coupling device of the third interleaver is optically coupled to receive a third optical beam having a third wavelength,

wherein the second output of the second MMI coupling device of the third interleaver is optically coupled to receive a fourth optical beam having a fourth wavelength,

wherein the first input of the first MMI coupling device of the first optical interleaver is optically coupled to output a multichannel optical beam including the first, second, third and fourth wavelengths combined.

17. (Original) The apparatus of claim 13 further comprising:

a first optical switch having first and second inputs and first and second outputs, the first and second outputs of the first optical switch optically coupled to the first and second inputs, respectively, of the first MMI coupling device of the first optical interleaver;

042390.P11003 Serial No. 09/819,520 a second optical switch having first and second inputs and first and second outputs, the first and second inputs of the second optical switch optically coupled to the first and second outputs, respectively, of the second MMI coupling device of the second optical interleaver; and

ar

a third optical switch having first and second inputs and first and second outputs, the first and second inputs of the third optical switch optically coupled to the first and second outputs, respectively, of the second MMI coupling device of the third optical interleaver.

18. (Original) A method, comprising:

splitting an optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength, into first and second split optical beams;

directing the first split optical beam through a first optical coupler having a first optical path length into a first input of a first multi-mode interference (MMI) coupling device;

directing the second split optical beam through a second optical coupler having a second optical path length into a second input of the first MMI coupling device, wherein the second optical path length is different than the first optical path length;

outputting a first one of the plurality of channels of the optical beam from a first output of the first MMI coupling device; and

outputting a second one of the plurality of channels of the optical beam from a second output of the first MMI coupling device.

19. (Original) The method of claim 18 wherein outputting the first one of the plurality of channels of the optical beam comprises outputting a first subset of the plurality of channels

of the optical beam from the first output of the first MMI coupling device.

20. (Original) The method of claim 18 wherein outputting the second one of the plurality of

channels of the optical beam comprises outputting a second subset of the plurality of

channels of the optical beam from the second output of the first MMI coupling device.

21. (Original) The method of claim 18 further comprising selectively optically coupling the

first one of the plurality of channels to be output from a first or second output of an optical

switch.

22. (Original) The method of claim 18 further comprising selectively optically coupling the

second one of the plurality of channels to be output from a first output of an optical switch.

23. (Original) The method of claim 18 wherein splitting the optical beam into the first and

second split optical beams comprises:

directing the optical beam into a first input of a second MMI coupling device;

outputting the first split optical beam from a first output of the second MMI coupling

device; and

outputting the second split optical beam from a second output of the second MMI

coupling device.

24. (Currently amended) An apparatus, comprising:

an optical splitter having a first input and first and second outputs, wherein an optical beam is to be optically coupled to the first input and to the first and second outputs through the optical splitter;

a first optical coupler having a first optical path length;

a second optical coupler having a second optical path length, the first optical path length different than the second optical path length; and

a first multi-mode interference (MMI) coupling device having first and second inputs and first and second outputs, the first input of the first MMI coupling device optically coupled to the first output of the optical splitter through the first optical coupler, the second input of the first MMI coupling device optically coupled to the second output of the optical splitter through the second optical coupler.

- 25. (Currently amended) The apparatus of claim 24 wherein the input of the optical splitter is optically coupled to receive an the optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength, wherein the first output of the first MMI coupling device is optically coupled to output a first one of the plurality of channels of the optical beam, wherein the second output of the first MMI coupling device is optically coupled to output a second one of the plurality of channels of the optical beam.
- 26. (Currently amended) The apparatus of claim 24 wherein the input of the optical splitter is optically coupled to receive an the optical beam having a plurality of channels, each one of the plurality of channels having a corresponding wavelength, wherein the first output of the

042390.P11003 Serial No. 09/819,520

first MMI coupling device is optically coupled to output a first subset of the plurality of channels of the optical beam, wherein the second output of the first MMI coupling device is optically coupled to output a second subset of the plurality of channels of the optical beam.

as

27. (Original) The apparatus of claim 24 wherein the optical splitter comprises a second MMI coupling device having first and second inputs and first and second outputs, the first and second outputs of the second MMI coupling device optically coupled to the first and second optical couplers, respectively.

28. (Original) The apparatus of claim 24 further comprising an optical switch having first and second inputs and first and second outputs, the first and second inputs of the optical switch optically coupled to the first and second outputs, respectively, of the first MMI coupling device, the first and second outputs of the optical switch selectively optically coupled to the first or second inputs of the optical switch.

29. (Original) The apparatus of claim 27 further comprising an optical switch having first and second inputs and first and second outputs, the first and second outputs of the optical switch optically coupled to the first and second inputs, respectively, of the second MMI coupling device, the first and second outputs of the optical switch selectively optically coupled to the first or second inputs of the optical switch.