Wavelet Example: Haar Wavelet

Suppose we specify the MRE coefficients to be $h[n] = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$

Then the MRE becomes
$$\phi(t) = \sum_{n} h(n)\sqrt{2}\phi(2t-n)$$
 $\phi(t) = \varphi(2t) + \varphi(2t-1)$

Clearly the scaling function $\phi(t)$ as shown below satisfies this MRE

- Special case: finite number N of nonzero h(n) and ON wavelets & scaling functions
- Given the h(n) for the scaling function, then the $h_1(n)$ that define the wavelet function are given by $h_1[n] = (-1)^n h(N-1-n)$ where N is the length of the filter

Thus the WE coefficients are
$$h_1[n] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$$

Then the WE becomes
$$\psi(t) = \sum_{n} h_1(n) \sqrt{2} \varphi(2t - n)$$
 $\psi(t) = \varphi(2t) - \varphi(2t - 1)$

Clearly the scaling function $\phi(t)$ as shown below satisfies this MRE

Define a nested set of signal spaces

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2$$

Let V_0 be the space spanned by the integer translations of scaling function $\phi(t)$ so that **if** $x_0(t)$ is in V_0 **then** it can be represented by:

$$x_0(t) = \sum_k a_k \varphi(t - k)$$

Q: For the Haar scaling function what kind of functions are in V_0 ??

A: Those that are "piece-wise" constant on the intervals [k,k+1] for integer k...

If we let V_1 be the space spanned by integer translates of $\phi(2t)$ then V_1 is indeed a space of functions having higher resolution.

Q: For the Haar scaling function what kind of functions are in V_1 ??

A: Those that are "piece-wise" constant on the intervals [k/2,k/2+1/2] for integer k

Note: $x_0(t)$ is also in V_1 because it is also "piece-wise" constant on [k/2, k/2 + 1/2]In fact, $x_0(t)$ is also in every V_j for $j \ge 0$... that is the nesting!!!

If we keep going to higher j values we get finer and finer resolution and can ultimately express (in the limit of j) any finite energy signal

This MRA development started at V_0 and worked its way up to higher resolutions...

Figure 15.8 from Textbook

How do the wavelets enter into this?

- To go from V_i to higher resolution V_{i+1} requires the addition of "details"
 - These details are the part of V_{i+1} not able to be represented in V_i
 - This is captured through W_i the "orthogonal complement" of V_i w.r.t V_{i+1}

EE269 Signal Processing for Machine Learning

Lecture 17

Instructor: Mert Pilanci

Stanford University

March 13, 2019

Wavelets

Higher value of $W_{\psi}(s,\tau_2)$

Discrete Wavelet Transform

- \blacktriangleright Discrete shifts and scales $\psi(\frac{t-\tau}{s})$
- Suppose we have a signal of length N

$$x = [x_1, x_2, ...x_N]$$

▶ Consider a length N/2 approximation of x, e.g., for transmission

Discrete Wavelet Transform

- ▶ Discrete shifts and scales $\psi(\frac{t-\tau}{s})$
- Suppose we have a signal of length N

$$x = [x_1, x_2, ...x_N]$$

- Consider a length N/2 approximation of x, e.g., for transmission
- pairwise averages:

$$x_k = \frac{x_{2k-1} + x_{2k}}{2}, \quad k = 1, ..., N/2$$

Discrete Wavelet Transform

- \blacktriangleright Discrete shifts and scales $\psi(\frac{t-\tau}{s})$
- Suppose we have a signal of length N

$$x = [x_1, x_2, ...x_N]$$

- ▶ Consider a length N/2 approximation of x, e.g., for transmission
- pairwise averages:

$$x_k = \frac{x_{2k-1} + x_{2k}}{2}, \quad k = 1, ..., N/2$$

example

$$x = [6, 12, 15, 15, 14, 12, 120, 116] \rightarrow s = [9, 15, 13, 118]$$

- ightharpoonup suppose that we are allowed to send N/2 more numbers
- differences

$$d_k = \frac{x_{2k-1} - x_{2k}}{2}, \quad k = 1, ..., N/2$$

we can recover x

$$x = [6, 12, 15, 15, 14, 12, 120, 116] \rightarrow$$

 $[s \mid d] = [9, 15, 13, 118 \mid 3, 0, -1, -2]$

- ightharpoonup suppose that we are allowed to send N/2 more numbers
- differences

$$d_k = \frac{x_{2k-1} - x_{2k}}{2}, \quad k = 1, ..., N/2$$

we can recover x

$$x = [6, 12, 15, 15, 14, 12, 120, 116] \rightarrow$$

 $[s \mid d] = [9, 15, 13, 118 \mid 3, 0, -1, -2]$

▶ One step Haar Transformation $x \rightarrow [s|d]$

One Step Haar Transformation

Discrete Haar Transform Matrix

- repeat the computation on the **means**
- keep differences in each step

Discrete Haar Wavelet Transform

Wavelet Transform Features

- mean, median
- variance
- zero crossing rate, mean crossing rate
- entropy

Results: training set: 7724 signals, test set: 2575 signals

3-Nearest Neighbors, ℓ_2 -norm distance on x[n]. Accuracy : 0.77

3-Nearest Neighbors, ℓ_2 -norm distance on |X[k]|. Accuracy : 0.85

Human Activity Recognition dataset

▶ 3-Nearest Neighbors, ℓ_2 -norm distance on x[n].

accuracy : 77%

▶ 3-Nearest Neighbors, ℓ_2 -norm distance on |X[k]|.

accuracy : 85%

▶ 1D Convolutional Net (4 layers)

accuracy : 91%

► Wavelet Transform Features (entropy, zero crossing, simple statistics) + linear classifier

 $\mathbf{accuracy}:\ 95\%$

Other Wavelets

Other Wavelets

► In MATLAB

[c,1] = wavedec(x,n,wname) returns the wavelet decomposition of the signal x at level n using the wavelet wname

What makes a good wavelet

Application specific

- Compact time support vs frequency support
- Smoothness
- Orthogonality