Approximating Probability Distributions Done Right

Disclaimer: This post is written based on the syllabus for Cambridge International AS and A Levels, and may not be applicable for higher level studies.

Approximation

- 1. Binomial to Normal:
 - Conditions*: np > 5 and nq > 5 (n is sufficiently large).
 - Apply continuity correction.
- 2. Binomial to Poisson:
 - A Poisson distribution can be used to model a discrete probability distribution in which the events
 - occur singly,
 - at random and independently,
 - in a given interval of space or time.
 - The mean and variance of a Poisson distribution are equal.
 - Conditions*: n > 50 and np < 5 (n is large, p is small/rare event).
- 3. Poisson to Normal:
 - Conditions*: $\lambda > 15$
 - Apply continuity correction.

Central Limit Theorem

The central limit theorem (CLT) states that, provided n is large, the distribution of **sample means** of size n is:

$$\overline{X}(n) \sim N\left(\mu, rac{\sigma^2}{n}
ight),$$

where the original population has mean μ and variance σ^2 .

• CLT can be used for sample size $n > 50^*$ (or $n > 30^{**}$).

*Rule of thumb

**For Further Statistics

References:

 Chalmers, Dean. Cambridge International AS & A Level Mathematics: Probability & Statistics 1 -Coursebook. Cambridge University Press, 2018.

- 2. Kranat, Jayne. Cambridge International AS & A Level Mathematics: Probability & Statistics 2 Coursebook. Cambridge University Press, 2018.
- 3. McKevley, Lee, and Crozier, Martin. Cambridge International AS & A Level Further Mathematics Coursebook. Cambridge University Press, 2018.