# Einführung in die Integralrechnung: Teil 2

Andreas Henrici

MANIT2 IT18ta\_ZH

26.02.2019

- Das bestimmte Integral
  - Einführung und Definition
  - Beispiele
- Beziehung zwischen unbestimmtem und bestimmtem Integral
  - Integral mit unbestimmter oberer Grenze
  - Hauptsätze der Integralrechnung

# **Fragestellung**

#### Ziel: Fläche zwischen Kurve und x-Achse berechnen:



### Grundidee



Abbildung: Approximatives Verfahren zur Berechnung von Flächen

# Vorgehen zur Flächenberechnung

 Zerlegung von [a, b] in n Teilintervalle, durch Einfügen von Zwischenwerten:

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

- Wahl von Zwischenstelle/Messpunkt  $\xi_i \in [x_{i-1}, x_i]$  für  $1 \le i \le n$
- Approximation des Flächeninhalts im Bereich  $[x_{i-1}, x_i]$  durch

$$A_i = f(\xi_i) \cdot \Delta x_i = f(\xi_i) \cdot (x_i - x_{i-1})$$

Näherungswert für die ganze Fläche im Bereich [a, b]:

$$S_n = A_1 + A_2 + \ldots + A_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i.$$

• Exakte Fläche im Limes  $n \to \infty$ ,  $\Delta x \to 0$ :

$$A = \lim_{\substack{n \to \infty \\ (\Delta x \to 0)}} S_n = \lim_{\substack{n \to \infty \\ (\Delta x \to 0)}} \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i.$$

# **Definition des bestimmten Integrals**

### **Definition**

Sei f(x) eine auf dem Intervall [a,b] definierte Funktion. Der Grenzwert

$$\lim_{\substack{n\to\infty\\(\Delta x\to 0)}}\sum_{k=1}^n f(\xi_k)\cdot \Delta x_k$$

heisst, falls er existiert, bestimmtes Integral von f  $\ddot{u}$ ber [a,b]. Man schreibt dafür

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

# Bemerkung

- Das bestimmte Integral ist eine Zahl.
- Umbenennung der Integrationsvariablen:

$$\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(u) du = \dots$$

# Zusammenhang mit Flächenberechnungen

• Falls  $f(x) \ge 0$  für alle  $x \in [a, b]$ , ist

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

die Fläche zwischen der Funktionskurve von f(x) und der x-Achse im Bereich [a, b].

• Falls  $f(x) \ge 0$  nicht überall gilt auf [a, b], ist das bestimmte Integral immer noch definiert, aber es ist dann nicht mehr die Fläche zwischen der Funktionskurve und der x-Achse.



# Flächenberechnung: Beispiel

### **Beispiel**

- Ziel: Fläche zwischen Kurve  $y = x^2$  und x-Achse im Intervall I = [0, 2] berechnen
- Zerlegung von I in n Stücke der Breite  $\Delta x = \frac{2}{n}$ : das k-te Stück ist

$$[x_{k-1},x_k]=\left\lceil\frac{2(k-1)}{n},\frac{2k}{n}\right\rceil \qquad (1\leq k\leq n)$$

- Messpunkte  $\xi_k = x_k = k \cdot \Delta x = \frac{2k}{n}$  (rechter Endpunkt des *k*-ten Teilstücks)
- n-ter N\u00e4herungswert f\u00fcr die Fl\u00e4che:

$$S_n = \sum_{k=1}^n f(\xi_k) \cdot \Delta x = \sum_{k=1}^n \left(\frac{2k}{n}\right)^2 \cdot \frac{2}{n} = \frac{8}{n^3} \sum_{k=1}^n k^2.$$

# Flächenberechnung: Beispiel

### **Beispiel (Fortsetzung)**

• n-ter Näherungswert für die Fläche:

$$S_n = \sum_{k=1}^n f(\xi_k) \cdot \Delta x = \frac{8}{n^3} \sum_{k=1}^n k^2.$$

Verwendung der Formel

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

ergibt für den n-ten Näherungswert

$$S_n = \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{4}{3} \cdot \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right).$$

• Im Limes  $n \to \infty$ :

$$A = \lim_{n \to \infty} S_n = \frac{4}{3} \cdot 1 \cdot 2 = \frac{8}{3}$$

# Flächenberechnung: Beispiel

### **Beispiel (Fortsetzung)**

- Fläche unter der Kurve  $y = x^2$  im Bereich I = [0, 2]:  $A = \frac{8}{3}$
- Fläche unter der Kurve  $y = x^2$  im Bereich I = [0, x] für ein beliebiges  $x \in \mathbb{R}$ :  $\Delta x = \frac{x}{n}$ , n-ter Näherungswert für die Fläche:

$$S_n = \sum_{k=1}^n f(\xi_k) \cdot \Delta x_k = \sum_{k=1}^n \left(\frac{x \cdot k}{n}\right)^2 \cdot \frac{x}{n} = \frac{x^3}{n^3} \sum_{k=1}^n k^2.$$

• Verwendung der Formel  $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$  ergibt

$$S_n = \frac{x^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{x^3}{6} \cdot \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right).$$

• Im Limes  $n \to \infty$ :

$$A(x) = \lim_{n \to \infty} S_n = \frac{x^3}{6} \cdot 1 \cdot 2 = \frac{x^3}{3}$$

# Flächenberechnung

### Beispiel (Fortsetzung)

Fläche A(x) unter der Kurve der Funktion

$$f(x) = x^2$$

im Bereich I = [0, x]:

$$A(x)=\frac{x^3}{3}$$

- Beziehung zwischen den Funktionen  $f(x) = x^2$  und  $A(x) = \frac{x^3}{3}$ : A(x) ist eine Stammfunktion von f(x)!
- Fläche B(x) unter der Kurve der Funktion  $f(x) = x^2$  im Bereich I = [2, x]:

$$B(x)=\frac{x^3}{3}-\frac{8}{3}$$

• Beziehung zwischen den Funktionen  $f(x) = x^2$  und  $B(x) = \frac{x^3}{2} - \frac{8}{2}$ : B(x) ist eine Stammfunktion von f(x)!

#### Feste vs. variable obere Grenze

- Annahme:  $f(x) \ge 0$  für alle x im betrachteten Bereich
- Gesehen: Die Fläche "unter der Kurve" im Bereich [a, b] ist

$$\int_{a}^{b} f(t) \, \mathrm{d}t.$$

- Wie sieht es aus mit variabler oberer Grenze?
- Wir betrachten also die Funktion

$$F_a(x) = \int_a^x f(t) dt.$$

- F<sub>a</sub>(x) ist die Integralfunktion oder Flächenfunktion zu f zur unteren Grenze a.
- Ziel: Beziehung zwischen den Funktionen f(x) und F<sub>a</sub>(x) herstellen

### Variable obere Grenze: Beispiel

### **Beispiel (Fortsetzung)**

Die Integralfunktion  $F_a(x)$  der Funktion  $f(x) = x^2$ 

- für die untere Grenze a = 0 ist  $F_0(x) = \frac{x^3}{3}$ .
- für die untere Grenze a = 2 ist  $F_2(x) = \frac{x^3}{3} \frac{8}{3}$ .

Beide Integralfunktionen sind *Stammfunktionen* von  $f(x) = x^2$ .

### **Beispiel**

Bestimmen Sie die Integralfunktion  $F_a(x)$  der Funktion f(x) = x für eine beliebige untere Grenze a, indem Sie die Formel für die Fläche eines Trapezes benützen.

#### Variable obere Grenze: Resultate

Wir beobachten im vorigen Beispiel, dass  $F'_a(x) = f(x)$  gilt. Dies ist eine allgemeine Tatsache:

### Satz (Erster Hauptsatz der Integralrechnung)

Sei f(x) eine im Intervall [a,b] stetige Funktion. Dann ist die Integralfunktion  $F_a(x)$  von f(x) differenzierbar, und es gilt

$$F'_a(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left( \int_a^x f(t) \, \mathrm{d}t \right) = f(x).$$

Die Integralfunktion  $F_a(x)$  von f(x) ist eine Stammfunktion von f(x).

#### Beweis.

siehe Skript



## Integralfunktion und beliebige Stammfunktion

• Zusammenhang von Integralfunktionen  $F_a(x)$  und irgendeiner Stammfunktion F(x) von f(x): Für irgendeine Konstante  $C \in \mathbb{R}$  muss gelten

$$F_a(x) = F(x) + C$$

• Einsetzen von x = a:

$$\underbrace{F_a(a)}_{=0} = F(a) + C.$$

Also:

$$C = -F(a)$$

d.h.

$$F_a(x) = F(x) - F(a)$$

• Einsetzen von x = b:

$$\underbrace{F_a(b)} = \underbrace{F(b) - F(a)}_{a}$$

Fläche unter der Kurve

## Flächenberechnungen mit beliebigen Stammfunktionen

### Satz (Zweiter Hauptsatz der Integralrechnung)

Sei f(x) eine im Intervall [a, b] stetige Funktion, und sei F(x) eine beliebige Stammfunktion von f(x). Dann gilt

$$\int_a^b f(t) dt = F(b) - F(a).$$

### **Bemerkung**

- Für die Differenz F(b) F(a) gibt es auch die Schreibweisen  $F(x)|_a^b$ ,  $[F(x)]_a^b$ .
- Abhängigkeit von  $f(x) \ge 0$ ?
- Die Aussage des zweiten Hauptsatzes ist auch richtig ohne die Voraussetzung  $f(x) \ge 0$ . Aber falls für  $a \le x \le b$  (teilweise) f(x) < 0 gilt, ist die Grösse  $\int_a^b f(t) \, \mathrm{d}t$  nicht mehr die Fläche zwischen Kurve und x-Achsel

# Flächenberechnungen/bestimmte Integrale: Beispiele

## **Beispiel**

 Berechnen Sie die Fläche, die durch die Kurve der Funktion  $f(x) = x^2$  und die x-Achse im Intervall I = [0, 2] begrenzt wird.

• Berechnen Sie das bestimmte Integral  $\int_{-\infty}^{b} x \, dx$  für beliebige  $a, b \in \mathbb{R}$  mit a < b.

 Berechnen Sie den Flächeninhalt unter der Sinuskurve in der ersten Halbperiode, d.h. im Intervall  $[0, \pi]$ .

# Flächenberechnungen/bestimmte Integrale: Beispiele

# Beispiel

Berechnen Sie die folgenden bestimmten Integrale:

a) 
$$\int_{1}^{2} \sqrt{x} \, \mathrm{d}x$$

**b)** 
$$\int_{1}^{3} (24t^2 + 15t) dt$$