Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3209	К работе допущен		
Студент	Кулагин Вячеслав	Работа выполнена	21/11/2024	
Преподаватель Агабабаев В. А.		Отчет принят		

Рабочий протокол и отчет по лабораторной работе № 1.05

Физический маятник

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника

2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

- Измерение периода N числа колебаний маятника с разными положениями груза, параллельно отмечая время, когда амплитуда отклонения маятника от равновесного положения будет равна 25, 20, 15, 10 и 5.
- Построение графиков зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.
- Определение, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое.
- Вычисление экспериментальной и теоретической приведенной длины маятника при разных его конфигурациях.

5. Рабочие формулы и исходные данные.

Зависимость логарифма отношения амплитуд от времени

$$ln\frac{A}{A_0} = -\beta t,$$

Зависимость амплитуды колебаний от ширины зоны застоя

$$A(t=nT) = A_0 - 4n\Delta\varphi_3.$$

Расстояния центров грузов от оси вращения

$$R = l_1 + (n-1)l_0 + b/2$$

Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HMK}^2 + 2R_{\rm 60K}^2).$$

Период колебаний маятника от момента инерции

$$T = 2\pi \sqrt{\frac{I}{mgl}}.$$

2

Приведенная длина маятника от момента инерции

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

6. Измерительные приборы.

Таблица 1: Измерительные приборы

№ п/п	Наименование средства измерения	Предел измерений	Цена деления	Погрешность прибора
1	Секундомер	500c	0,01 c	0,01 c
2	Шкала	60°	1°/дел.	1°

	Параметры установки						
1.	Масса каретки	(47,0 ± 0,5) г					
2.	Масса шайбы	(220,0 ± 0,5) г					
3.	Масса грузов на крестовине	(408,0 ± 0,5) г					
4.	Расстояние от оси до первой риски	(57,0 ± 0,5) мм					
5.	Расстояние между рисками	(25,0 ± 0,2) мм					
6.	Диаметр ступицы	(46.0 ± 0.5) мм					
7.	Диаметр груза на крестовине	(40,0 ± 0,5) мм					
8.	Высота груза на крестовине	(40,0 ± 0,5) мм					
9.	Расстояние, проходимое грузом (h)	(700,0 ± 0,1) мм					

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рисунок 1: Установка

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*). Таблица 2: результаты прямых измерений

Замеры 10 колебаний маятника (N = 10)

t ₁	18,50 c
t_2	19,01 c
t 3	18,06 c

$$\bar{t} = \frac{t_1 + t_2 + t_3}{3} = \frac{18,50 + 19,01 + 18,06}{3} = 18,52 \text{ c.}$$

$$T = \frac{\bar{t}}{N} = \frac{18,52}{10} = 1,85 \text{ c.}$$

Таблица 2

Амплитуда отклонения Время, с.	25°	20°	15°	10°	5°
t ₁	48,82	94,19	152,66	243,30	311,59
t ₂	50,15	86,57	156,56	243,41	308,51
t ₃	52,38	103,22	153,51	261,40	308,46
\bar{t}	50,45	94,66	154,24	249,37	309,52

Таблица 3

Положение боковых грузов	t ₁	t ₂	t ₃	t⁻	Т
1 риска	17,44	16,56	16,99	17,00	1,70
2 риски	17,29	17,41	17,36	17,35	1,74
3 риски	18,48	18,48	18,33	18,43	1,84
4 риски	19,76	19,73	19,45	19,65	1,96
5 рисок	20,87	21,12	21,05	21,01	2,10
6 рисок	22,52	22,30	22,42	22,41	2,24

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Построив График 1, видно, что вязкая сила трения играет главную роль в затухании колебаний, строим график:

t, c	A, °	In(A/A ₀)
50,45	25	-0,34
94,66	20	-0,56
154,24	15	-0,85
249,37	10	-1,25
309,52	5	-1,95

$$\beta = \frac{\sum_{i=1}^{5} t_i A_i}{\sum_{i=1}^{5} t_i^2} = 0,0058 c^{-1}$$

$$\theta = \frac{1}{\beta} = 174 c$$

Риски	1	2	3	4	5	6		
Rверх		0,077						
R _{ниж}			0,2	202				
Rбок	0,077	0,102	0,127	0,152	0,177	0,202		
I _{rp}	0,024	0,028	0,032	0,038	0,045	0,052		
I	0,032	0,036	0,040	0,046	0,053	0,060		
Іпр эксп	0,732	0,763	0,860	0,978	1,119	1,272		
Іпр теор	0,506	0,564	0,639	0,729	0,835	0,958		

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1

График 2

12. Окончательные результаты.

Риски	1	2	3	4	5	6
Іпр эксп	0,732	0,763	0,860	0,978	1,119	1,272
Іпр теор	0,506	0,564	0,639	0,729	0,835	0,958

13. Выводы и анализ результатов работы.

В результате выполнения этой работы была найдена зависимость и составлен график зависимости амплитуды колебаний от времени, он имеет экспоненциальный вид, а значит, имеет место преобладание вязкой силы трения над сухим. Также были посчитаны и записаны теоретические и экспериментальные моменты инерции.

Время затухания колебаний составило 174 секунды. Коэффициент затухания же составил 0,0058 c^{-1}