Wavelet Trees: Extending Rank, Select and Access to non-binary alphabets

Trees

We're used to binary trees that repeatedly partition "value space"

Trees

We're used to binary trees that repeatedly partition "value space"

Rank and select are about alphabet space; where are the 0s and 1s? Where are the a's, c's, t's and g's?

Trees

We're used to binary trees that repeatedly partition "value space"

Rank and select are about alphabet space; where are the 0s and 1s? Where are the a's, c's, t's and g's?

Idea: partition alphabet space

mississippi

mississippi

mississippi
Partition alphabet into {i, m}, {p, s}
mississippi

```
mississippi
```

```
mississippi
00110110110
```

mississippi

```
mississippi
001101101
Split
1
```

mississippi

mississippi

mississippi

What goes in this next layer?

Can we do full-alphabet versions of access, rank and select?

How big is this?

$$S$$
. access $(i) = S[i]$

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. select_c(i) = max{ $j \mid S$. rank_c(j) = i }

RSA queries extend naturally to strings:

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Where S is a string with alphabet Σ and $c \in \Sigma$

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Wavelet tree access(i):

```
N \leftarrow root
while N is not leaf
B \leftarrow N. bitvector
b \leftarrow B[i]
N \leftarrow N. child(b)
i \leftarrow B. rank_b(i)
return N. label
```

Wavelet tree access(i):

Given offset *i*:

 $N \leftarrow root$ while N is not leaf $B \leftarrow N$. bitvector $b \leftarrow B[i]$ $N \leftarrow N$. child(b) $i \leftarrow B$. rank $_b(i)$ return N. label

Could have picked a different shape for the tree

Could have picked a different shape for the tree

Could have picked a different shape for the tree

Tree shape defines a (prefix) code

Tree shape defines a (prefix) code

$$C(i) = 0$$

$$C(s) = 10$$

$$C(p) = 110$$

$$C(m) = 111$$

Tree shape defines a (prefix) code

$$C(i) = 0$$

$$C(s) = 10$$

$$C(p) = 110$$

$$C(m) = 111$$

i msssspp {s}, {m, p} 1000011 {s}, {m, p} 1000011 {p}, {m}

{ i }, {m, p, s}

mississippi 101101101

This tree is Huffman; previous (balanced) tree was not

$$S$$
. access $(i) = S[i]$

$$S. \operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Note that rank can ask about any character \boldsymbol{c} at any position \boldsymbol{i}

$$S. \operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

Algorithm will be similar to access...

$$S. \operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

Algorithm will be similar to access...

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

Algorithm will be similar to access...

But the path we follow corresponds to c, which isn't necessarily the character at S[i]

Wavelet tree rank_{χ}(i):

$$N \leftarrow root$$
 $k \leftarrow 0$
while N is not leaf
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B \cdot rank_b(i)$
 $N \leftarrow N \cdot child(b)$
 $k \leftarrow k + 1$
return i

Wavelet tree rank_{χ}(i):

Given character x and offset i:

$$N \leftarrow root$$
 $k \leftarrow 0$
while N is not leaf
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B \cdot rank_b(i)$
 $N \leftarrow N \cdot child(b)$
 $k \leftarrow k + 1$
return i

$$S$$
. access $(i) = S[i]$

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
. access $(i) = S[i]$

$$S. \operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

 $S.\operatorname{select}_{c}(i) = \max\{j \mid S.\operatorname{rank}_{c}(j) = i\}$

Answer:

Answer: 6

Wavelet tree select_{χ}(i):

$$N \leftarrow \operatorname{leaf}(x)$$
 $l \leftarrow |c(x)| - 1$
while N is not root
 $N \leftarrow N$. parent()
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B$. select_b(i)
 $k \leftarrow k - 1$
return i

Wavelet tree select_{χ}(i):

Given character x and rank i:

$$N \leftarrow \operatorname{leaf}(x)$$
 $l \leftarrow |c(x)| - 1$
while N is not root
 $N \leftarrow N$. parent()
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B$. select_b(i)
 $k \leftarrow k - 1$
return i

	: Time	Note
S.access		
S . $rank_{\mathcal{C}}$		
S . $select_c$		

	Time	Note		
S.access			$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_{\mathcal{C}}$				
S . $select_c$				

	Time	Note		
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $\operatorname{rank}_{\mathcal{C}}$				
S . $select_c$				

	Time	Note		
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $\mathrm{rank}_{\mathcal{C}}$				
S . $select_{\mathcal{C}}$				

	Time	No	ote	
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_{\mathcal{C}}$			$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$				

	: Time	Note		
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_{c}$	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$				

	Time	: No	ote	
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_c$	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$				

	Time	: No	ote	
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_c$	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$			$\log_2 \sigma$	

	Time	No	ote	
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_{c}$	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$			$\log_2 \sigma$	Clark's select is $O(1)$ time

	Time	No	ote	
S.access	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $rank_{\mathcal{C}}$	$O(\log \sigma)$		$\log_2 \sigma$	Jacobson's rank is $O(1)$ time
S . $select_c$	$O(\log \sigma)$		$\log_2 \sigma$	Clark's select is $O(1)$ time