QCD measurements in the forward region at LHCb

Cédric Potterat * on behalf of LHCb collaboration

* Universitat de Barcelona, Spain

XLVIIth Rencontres de Moriond QCD and High Energy Interactions

Outline

- 1. LHCb experiment
- 2. Selected QCD results
 - \bullet $\sigma(\chi_c \to J/\psi \gamma)/\sigma(J/\psi)$
 - $\psi(2S)$ production cross section
 - ► Double charm production
 - ► Charged track multiplicity
 - $ightharpoonup \overline{p}/p$ ratio

LHCb experiment

- Designed for CP violation and rare decays of heavy mesons
- ▶ Single arm forward spectrometer, $b\bar{b}$ pair production correlated, 40% in the acceptance.
- ▶ Unique kinematic region (among the LHC experiments): high rapidity $(2 < \eta < 5)$ and able to access low p_T
- ► Huge amount of $b\overline{b}$ produced $(\sigma \sim 300 \,\mu\text{b})$
- Excellent momentum resolution and PID

New result - Never shown before.

$$\sigma(\chi_c \to J/\psi\gamma)/\sigma(J/\psi)$$

LHCb-PAPER-2011-030

$\sigma(\chi_c \to J/\psi\gamma)/\sigma(J/\psi)$

- ightharpoonup χ_c provide important test of NRQCD and color-singlet / color-octet production mechanisms
- ▶ Prompt χ_c give substantial feed-down to J/ψ production: crucial for polarization studies

first measurement

- ▶ Ratio of P-wave charmonia $\chi_{cJ}(1P)$ with J=0,1,2 production cross-section to the production of J/ψ in promptly produced charmonium $\sigma(\chi_c \to J/\psi \gamma)/\sigma(J/\psi)$ as a function of $p_{J/\psi}^T$.
- Complementary to the measurement of J/ψ production [EPJ C71 (2011) 1645] and to the cross-section ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ for prompt production [LHCb-PAPER-2011-019].
- Extend the $p_{J/\psi}^T$ coverage with respect from HERA-B and CDF measurements [PRD 79 (2009) 012001, PRL 98 (2007) 232001].

$\sigma(\chi_c \to J/\psi\gamma)/\sigma(J/\psi)$

photon efficiency

- Measurement relies on knowing the photon efficiency $\epsilon_{\gamma}^{\chi_{cJ}}$.
- \bullet $\epsilon_{\gamma}^{\chi_{cJ}}$ using MC is validated on data $B^{\pm} \to J/\psi K^{\pm}$ and $B^{\pm} \to \chi_{c} K^{\pm}$

J/ψ and χ_c polarization's

- ▶ J/ψ and χ_c polarized states modify ϵ_x^{part} from MC (unpolarized)
- ▶ A polarisation weights in $p_{J/\psi}^T$ bins all combinations $(J/\psi, \chi_{c1}, \chi_{c2})$ with $\lambda_{J/\psi} = +1, -1, 0$: ie. fully transverse, fully longitudinal, unpolarised
- ► The polarisation error is given separately

$\sigma(\chi_c \to J/\psi \gamma)/\sigma(J/\psi)$

ratio $\sigma(\chi_c \to J/\psi \gamma)/\sigma(J/\psi)$ in bins of $p_{J/\psi}^T$

- ▶ Lines surrounding the data: the maximum effect of the unknown J/ψ and χ_c polarizations.
- ▶ Results in agreement with NLO NRQCD (Ma, Wang and Chao [PR D83 (2001) 111503])
- ▶ ChiGen Monte Carlo generator (LO+CSM) does not well reproduce the total J/ψ cross-section (prompt + feeddown) at low p_T [hepforge.org/superchic/chigen.html]

 $\psi(2S)$

LHCb-PAPER-2011-045

$\psi(2S)$ production cross section

- ▶ Ideal laboratory for QCD studies: since prompt $\psi(2S) = \text{direct } \psi(2S)$ the cross-section is easy to interpret (no feed-down mechanism).
- Several theoretical predictions (NRQCD CSM and COM) have been carried out over the last years.

measurement

▶ $\psi(2S)$ cross-section through two decay channels: $\psi(2S) \to \mu^- \mu^+$ and $\psi(2S) \to J/\psi(\mu^- \mu^+)\pi^+\pi^-$

$$2 < y_{\psi(2S)} < 4.5$$

 $p_{\psi(2S)}^T < 16 \,\text{GeV}/c$
 $\int \mathcal{L} = 36 \,\text{pb}^{-1}$

Separation between prompt and coming from B hadron with the decay time variables $(t=d_Z(M/p_Z))$

$\psi(2S)$ production cross section

Results

 $\psi(2S)$ production cross sections

$$\begin{split} &\sigma_{\mathrm{prompt}}(\psi(2S)) = 1.44 \pm 0.01(\mathrm{stat}) \pm 0.12(\mathrm{sys})^{+0.20}_{-0.40}(\mathrm{pol})\,\mu\mathrm{b}^{-1} \\ &\sigma_b(\psi(2S)) = 0.25 \pm 0.01(\mathrm{stat}) \pm 0.02(\mathrm{sys})\,\mu\mathrm{b}^{-1} \end{split}$$

MWC: Ma, Wang and Chao [1012:1030]

KB: Kniehl and Butenschön [PRL 106 (2006) 022003]

AL: Artoisenet et al [PRL 101 (2008) 152001] and Lansber [EPJ C61 (2009) 693]

FONLL: [JHEP 0407 (2004) 033]

$\psi(2S)$ production cross section

Results

inclusive $b \to J/\psi$ and $b \to \psi(2S)$ can be used to extract $\mathcal{B}(b \to \psi(2S)X)$ know at 50 % level: $(4.8 \pm 2.4) \times 10^{-3}$ [PDG]

$$\mathcal{B}(b \to \psi(2S)X) = \zeta \frac{\sigma_b(\psi(2S))}{\sigma_b(J/\psi)} \mathcal{B}(b \to J/\psi X),$$

 ζ : extrapolation factor to the full phase space of both decays.

$$\mathcal{B}(b \to \psi(2S)X) = (2.73 \pm 0.06(\text{stat}) \pm 0.16(\text{stat}) \pm 0.24(\text{BR})) \times 10^{-3}$$

agreement with CMS [CMS-BPH-10-014]: $\mathcal{B}(b \to \psi(2S)X) = (3.08 \pm 0.18(\text{stat} + \text{sys}) \pm 0.42(\text{BR})) \times 10^{-3}$

LHCb-PAPER-2012-003

Double J/ψ , J/ψ with open charm $(J/\psi C)$ and double open charm (CC)

Double Charm production models:

- ▶ Pertubative QCD (pQCD) matrix elements, agrees well with $J/\psi J/\psi$ $gg \rightarrow J/\psi J/\psi$ is measured by NA3 in 1982 [PLB 114 457,PLB 158, 85] and LHCb in 2011 [PLB 707 52] LHCb measurement is in excellent agreement with pQCD calculations for $\sigma_{\text{LHCb}} = 5.1 \pm 1.0 \pm 1.1$ nb vs $\sigma_{\text{pQCD}} = 4.1 \pm 1.2$ nb
- ► Intrinsic Charm Model (IC): testing/constraining (badly known) charm PDFs

Calculation in LHCb acceptance region: $\sigma(J/\psi C) \sim 18\,\mathrm{nb}$ and : $\sigma(CC) \sim 100\,\mathrm{nb}$

▶ Double Parton Scattering (DPS), neglecting partonic correlation in the proton: $\sigma^{A} \quad \sigma^{B}$

$$\sigma_{DPS}^{AB} = \frac{m}{2} \frac{\sigma_{SPS}^{A} \sigma_{SPS}^{B}}{\sigma_{eff}^{DPS}}, m = 1 (2) \text{ for A} = B (\neq),$$

CDF measured in multi-jet events: $\sigma_{e\!f\!f}^{DPS}=14.5\pm1.7^{+1.7}_{-2.3}\,\mathrm{mb}$ [PDR 56 3811 (1997)]

Mode		$\sigma_{ m gg}$	$\sigma_{ ext{DPS}}$	$\sigma_{ m IC}$
		[n]	b]	
$J/\psi D^0$	10 ± 6	7.4 ± 3.7	146 ± 39	220
$J/\psi D^+$	5 ± 3	2.6 ± 1.3	60 ± 17	100
$J/\psi D_s^+$	1.0 ± 0.8	1.5 ± 0.7	24 ± 7	30
$J/\psi \Lambda_c^+$	0.8 ± 0.5	0.9 ± 0.5	56 ± 22	

measurements

Double Charm @ LHCb

- ▶ We want to measure $c\overline{c}$ $c\overline{c}$: $J/\psi C$ and CC (bonus: $C\overline{C}$, dominated by the regular $gg \to c\overline{c}$)
- ► In total 25 possible modes: $c\overline{c} c\overline{c}$: $J/\psi J/\psi + 4J/\psi C + 10CC$ $qq \rightarrow c\overline{c}$: $10C\overline{C}$
- ► Charm hadron selection:
 - Cuts on tracks χ^2 and particle PID
 - Vertex quality cuts: PV and decay consistency
 - Cut on c_{τ} for open charm hadrons
 - Require both hadrons consistent with the same PV

$C = D^0, D^+, D_s^+, \Lambda_c^+$
$2 < y_{J/\psi,C} < 4$
$3 < p_C^T < 12 { m GeV}/c$
$p_{J/\psi}^T < 12 \mathrm{GeV}/c$
$\int \mathcal{L} = 355 \mathrm{pb}^{-1}$
$J/\psi \to \mu^+\mu^-,$
$D^0 \to K^- \pi^+,$
$D^+ \to K^- \pi^+ \pi^+,$
$D_s^+ \to (K^+ K^-)_\phi \pi^+,$
$\Lambda_c^+ \to p K^- \pi^+$.

	Mode,	\mathcal{Y}	S_{σ}
_	$J/\psi D^0$	4875 ± 86	$> 30\sigma$
	D^0D^0	1087 ± 37	27σ

- ▶ $J/\psi C$ production has been measured (> 7σ) for the first time in a hadron machine. CC production has been observed for the first time for six modes with > 5σ significance.
- ▶ the $J/\psi C$ measured coress-section significantly exceed the expectation from gluon-gluon fusion, but agree qualtitatively with the DPS.
- ▶ For $c\overline{c}c\overline{c}$ and $c\overline{c}$ theoretical uncertainties cancel in the ratio. In DPS the ratio is the effective cross-section. Effective Cross-section for $J/\psi C$ agrees with Tevatron value, for $c\overline{c}c\overline{c}\sim 3$ higher.

Results - properties

Extensive study of spectra in transverse momenta and global invariant mass. Harder p_T for J/ψ from J/ψ C compared to prompt one (a), no difference for C.

Azimuthal (a) and rapidity (b) correlations for three $J/\psi C$ decays. No correlation in the angle (expected in gluon fusion), but mostly uncorrelated.

Charged Track Multiplicity

LHCb-PAPER-2011-011

Charged Track Multiplicity

- ► Important for good simulation of environment aside from hard scatter
- Particles counted by reconstructing tracks in the VELO outside magnetic field, no momentum measurement
- ▶ Correction for non-prompt contamination (5-10%) and for efficiency drop at low p_T (residual field)
- All models fail to describe the mean charged particle multiplicity per unit of pseudorapidity, (mainly at high η).
- ▶ The Perugia (NOCR) tune [PR D82 (2010) 074018] gives the best description of the data in the backward direction but fails to reproduce the size of the asymmetry.

 \overline{p}/p ratio

 $LHCb\text{-}CONF\text{-}2010\text{-}009 \ Updated$

at
$$\sqrt{s} = 900 \,\text{GeV}$$
 and $\sqrt{s} = 7 \,\text{TeV}$

- ▶ $\overline{p}/p = \frac{\sigma pp \to \overline{p}X}{\sigma pp \to pX}$ probes the baryon number transport.
- ► Several models exist to describe this transport, but it is not clear which mechanisms are most important in driving the phenomenon.
- ▶ Prompt protons with $p > 5\,\text{GeV}/c$ are selected with PID requirements ($\sim 95\,\%$ purity on MC, with efficiency $\sim 85\,\%$).
- ▶ Efficiency and purity of the PID evaluated on data using tag and probe method on calibration samples: $\phi \to K^+K^-$, $K_S^0 \to \pi^+\pi^-$ and $\Lambda \to \pi p$

- ▶ Measurements are done in 3 bins of p_T (0; 0.8; 1.2 GeV/c) and 5 bins of rapidity 2.0 < y < 4.5
- ▶ Measurements performed at $\sqrt{s} = 900 \,\text{GeV} \, (0.3 \,\text{nb}^{-1})$ and $\sqrt{s} = 7 \,\text{TeV} \, (1.8 \,\text{nb}^{-1})$.

\overline{p}/p at $\sqrt{s} = 900 \,\text{GeV}$

\overline{p}/p at $\sqrt{s} = 7 \,\text{TeV}$

analysis extented to $K^-/K^+, \ \pi^-/\pi^+, \ (\overline{p}+p)/(K^-+K^+), \ (\overline{p}+p)/(\pi^-+\pi^+)$ and $(K^-+K^+)/(\pi^-+\pi^+)$

results

- ▶ No evidence of significant p_T dependency.
- ▶ Consistent with previous experiments but significantly more precise.

Conclusions

- LHCb probes high rapidity region at LHC.
- ▶ Important results for improving models, charged track multiplicity above any generator prediction.
- ► A lot of measurements in the quarkonia sector as input for theories: production cross-sections, ratios.
- ▶ This was only a non-exhaustive list of LHCb soft QCD measurements, more are available and/or in preparation.
- ▶ Looking forward to run at 8 TeV.