Load Cell Calibration Equation

Created by A.J. Brown, 28 August 2024, Ansley.Brown@colostate.edu

Generic form of the load cell calibration equation:

$$\alpha \frac{kg}{mV/V} \left(\frac{1 \ m^3}{1000 \ kg} \right) \left(\frac{1}{\beta \ m^2} \right) \left(\frac{1000 \ mm}{1.0 \ m} \right) = 151.09 \ \frac{mm}{mV/V}$$

Where,

 α is the load cell conversion coefficient (i.e., mV/V to kg), which is the slope of the linear calibration equation relating mV/V to kg weight on the lysimeter from a standard weight β is the effective surface area of the lysimeter surface

Assuming the density of water is 1000 kg/m3

For CSU AVRC Lysimeters:

From Lane Simmons, 8/18/2024

My 2021 LL calibration is: **76.20mm/mV/V**, where density of water is 1000 kg/m3 and the LL surface area is 9.181 m2.

My 2021 LL calibration is: **157.43 mm/mV/V**, where density of water is 1000 kg/m3 and the SL surface area is 2.341 m2.

Lysimeter	Slope (lbs / mV / V)	Slope, α (kg / mV / V)	Effective Surface Area, β (m²)	Conversion factor (mm/mV/V)
Large	1542.3367902	699.5922	9.181	76.20
Small	812.4875135	368.53813684387	2.341	157.43