(Binary) Heaps

Revisiting FindMin

- Application: Find the smallest (or highest priority) item quickly
 - Operating system needs to schedule jobs according to priority instead of FIFO
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
 - Find student with highest grade, employee with highest salary etc.

Priority Queue ADT

- Priority Queue can efficiently do:
 - FindMin (and DeleteMin)
 - Insert
- What if we use...
 - Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 - Binary Search Trees: What is the run time for Insert and FindMin?
 - Hash Tables: What is the run time for Insert and FindMin?

Less flexibility -> More speed

- Lists
 - If sorted: FindMin is O(1) but Insert is O(N)
 - If not sorted: Insert is O(1) but FindMin is O(N)
- Balanced Binary Search Trees (BSTs)
 - Insert is O(log N) and FindMin is O(log N)
- Hash Tables
 - Insert O(1) but O(N) for FindMin
- BSTs look good but...
 - BSTs are efficient for all Finds, not just FindMin
 - We only need FindMin

Better than a speeding BST

- We can do better than Balanced Binary Search Trees?
 - Very limited requirements: Insert, FindMin, DeleteMin.
 - The goals are:
 - FindMin is O(1)
 - Insert is O(log N)
 - DeleteMin is O(log N)

Binary Heaps

- A binary heap is a binary tree (NOT a BST) that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the <u>heap order property</u>
 - every node is less than or equal to its children (MinHeap, the default)
 - or every node is greater than or equal to its children (for MaxHeap)
- The root node is always the smallest node
 - or the largest, depending on the heap order (for MaxHeap)

Heap order property

- A heap provides limited ordering information
- Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

Binary Heap vs Binary Search Tree

Binary Heap

Binary Search Tree

Parent is less than both left and right children

Parent is greater than left child, less than right child

Structure property

- A binary heap is a complete tree
 - All nodes are in use except for possibly the right end of the bottom row

Examples

Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Children of A[i] = A[2i], A[2i + 1]
- Parent of A[j] = A[j // 2]
- Keep track of current size N (number of nodes)

FindMin and DeleteMin

- FindMin: Easy!
 - Return root valueA[1]
 - Run time = ?
- DeleteMin:
 - Delete (and return) value at root node?

Problem

Delete (and return)
 value at root node

Maintain the Structure Property

- We now have a "Hole" at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 - we need to find a new place for it

DeleteMin: Percolate Down

- Keep comparing with children A[2i] and A[2i + 1]
- Copy smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?

```
PercDown(i:integer, x: integer): {
       // N is the number elements, i is the hole,
          x is the value to insert
       Case{
no children 2i > N : A[i] := x; //at bottom//
         2i = N : if A[2i] < x then
one child
at the end
                      A[i] := A[2i]; A[2i] := x;
                   else A[i] := x;
         2i < N : if A[2i] < A[2i+1] then j := 2i;
2 children
                   else j := 2i+1;
                   if A[j] < x then
                      A[i] := A[j]; PercDown(j,x);
                   else A[i] := x;
       } }
```

DeleteMin: Run Time Analysis

- Run time is O(depth of heap)
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - depth = $log_2(N)$
- Run time of DeleteMin is O(log N)

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

The new value goes where?

Insert: Percolate Up

- Start at last node and keep comparing with parent A[i/2]
- If parent larger, copy parent down and go up one level
- Done if parent ≤ item or reached top node A[1]

Insert: Done

• Run time?

Binary Heap Analysis

- Space needed for heap of N nodes: O(MaxN)
 - An array of size MaxN, plus a variable to store the size N
- Time
 - FindMin: O(1)
 - DeleteMin and Insert: O(log N)
 - BuildHeap from N inputs ???

Build Heap

```
BuildHeap {
                    for i = N/2 to 1
                       PercDown(i, A[i])
N=11
       4
```

Build Heap

Build Heap

Time Complexity

- Naïve considerations:
 - n/2 calls to PercDown, each takes c*log(n)
 - Total: c*n*log(n)
- More careful considerations:
 - Only O(n)

Analysis of Build Heap

Assume $n = 2^{h+1}-1$ where h is height of the tree

- Thus, level h has 2^h nodes but there is nothing to PercDown
- At level h-1 there are 2^{h-1} nodes, each might percolate down 1 level
- At level h-j, there are 2^{h-j} nodes, each might percolate down j levels

$$T(n) = \sum_{j=0}^{n} j2^{h-j} = \sum_{j=0}^{n} j\frac{2^{h}}{2^{j}}.$$

Total Time = O(n)

- Find(X, H): Find the element X in heap H of N elements
 - What is the running time? O(N)
- FindMax(H): Find the maximum element in H
- Where FindMin is O(1)
 - What is the running time? O(N)
- We sacrificed performance of these operations in order to get O(1) performance for FindMin

- DecreaseKey(P,Δ,H): Decrease the key value of node at position P by a positive amount Δ, e.g., to increase priority
 - First, subtract Δ from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: O(log N)

- IncreaseKey(P, Δ,H): Increase the key value of node at position P by a positive amount Δ, e.g., to decrease priority
 - First, add Δ to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: O(log N)

- Delete(P,H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use DecreaseKey(P, Δ,H) followed by DeleteMin
 - –Running Time: O(log N)

- Merge(H1,H2): Merge two heaps H1 and H2 of size O(N). H1 and H2 are stored in two arrays.
 - Can do O(N) Insert operations: O(N log N) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: O(N)

Heap Sort

• Idea: buildHeap then call deleteMin n times

```
E[] input = buildHeap(...);
E[] output = new E[n];
for (int i = 0; i < n; i++) {
   output[i] = deleteMin(input);
}</pre>
```

• Runtime?

Best-case _____

Worst-case

Average-case _____

- Stable?_____
- In-place?

Heap Sort

• Idea: buildHeap then call deleteMin n times

```
E[] input = buildHeap(...);
E[] output = new E[n];
for (int i = 0; i < n; i++) {
   output[i] = deleteMin(input);
}</pre>
```

- Runtime?
 Best-case, Worst-case, and Average-case:
 O(n log(n))
- Stable?No
- In-place? No. But it could be, with a slight trick...

In-place Heap Sort

But this reverse sorts

– how would you fix
that?

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i]
 - That array location isn't needed for the heap anymore!

put the min at the end of the heap data

"AVL sort"? "Hash sort"?

AVL Tree: sure, we can also use an AVL tree to:

- -insert each element: total time $O(n \log n)$
- Repeatedly deleteMin: total time $O(n \log n)$
 - Better: in-order traversal O(n), but still $O(n \log n)$ overall
- But this cannot be done in-place and has worse constant factors than heap sort