MATH 321 2.5 - SUBSEQUENCES AND THE BOLZANO-WEIERSTRASS THEOREM

• Last time: we showed that the sequence of partial sums (s_m) of the harmonic series does not converge by focusing on a particular subsequence (s_{2^k}) of the original sequence:

Theorem 1. (Cauchy Condensation Test) Suppose (b_n) is decreasing and satisfies $b_n \geq 0$ for all $n \in \mathbb{N}$. Then, the series $\sum_{n=1}^{\infty} b_n$ converges if and only if the series

$$\sum_{n=0}^{\infty} 2^n b_{2^n} = b_1 + 2b_2 + 4b_4 + 8b_8 + 16b_{16} + \dots$$

converges.

Corollary 2. The series $\sum_{n=1}^{\infty} 1/n^p$ converges if and only if p > 1.

- A rigorous argument for this corollary requires a few basic facts about geometric series, which we'll deal with in Section 2.7.
- Today: we'll put infinite series aside and focus on the important concept of subsequences.

Definition 3. Let (a_n) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < n_4 < \dots$ be an increasing sequence of natural numbers. Then the sequence

$$(a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, \dots)$$

is called a **subsequence** of (a_n) and is denoted by (a_{n_k}) , where $k \in \mathbb{N}$ indexes the subsequence.

Example 4. The order of the terms in a subsequence must be the same as in the original sequence, and repetitions are not allowed. Thus if $(a_n) = (\frac{1}{n})$, then $(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots)$ and $(\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}, \dots)$ are legitimate subsequences, while

$$\left(\frac{1}{10}, \frac{1}{5}, \frac{1}{100}, \frac{1}{50}, \dots\right)$$
 and $\left(1, 1, \frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \dots\right)$

are not.

• We'll see in a second that if 0 < b < 1, then $\lim(b^n) = 0$. Use this fact to prove:

Exercise 5. (reading question) Show $\lim(b^n) = 0$ if and only if -1 < b < 1.

Proof. (\Longrightarrow) Suppose that $\lim(b^n) = 0$, and suppose that b > 1. (The case b < -1 will follow.) We show that b^n becomes arbitrarily large, and thus that b^n diverges.

Proof. Let $x \in \mathbb{R}$ be a real number. Then, if we take $n = \log_h x + 1$, we have that

$$b^n = b^{\log_b x + 1} = b^{\log_b x} \cdot b = bx > x,$$

hence $(b^n) \to \infty$. [Why doesn't this proof work for -1 < b < 1?]

(\Leftarrow) Suppose that -1 < b < 1. If 0 < b < 1, Example 2.5.3 shows that $\lim(b^n) = 0$. Thus, we concern ourselves with the case -1 < b < 0. We show using the definition that $\lim(b^n) = 0$ in this case.

- (1) Let $\epsilon > 0$ be arbitrary.
- (2) [scratch work] we want to show that $|b^n| < \epsilon$. Since -1 < b < 0, we have that b = -a for some 1 > a > 0. Thus

$$|b^n| = |(-a)^n| = |(-1)^n a^n| = a^n.$$

But we know that (a^n) converges for any 0 < a < 1.

- (3) Since (a^n) converges if 0 < a < 1, we may choose $N \in \mathbb{N}$ such that $a^n < \epsilon$ whenever $n \geq N$.
- (4) Assume $n \geq N$.
- (5) Then

$$|b^n| = a^n < \epsilon$$

and hence $\lim(b^n) = 0$, as desired.

Exercise 6. [slide] [Crannell Worksheet 2.5]

Theorem 7. Subsequences of a convergent sequence converge to the same limit as the original sequence.

Exercise 8. (Reading question) Prove the Theorem.

Proof. Assume $(a_n) \to a$ and let (a_{n_k}) be a subsequence. Given $\epsilon > 0$, there exists N such that $|a_n - a| < \epsilon$ whenever $n \ge N$. Because $n_k \ge k$ for all k, the same N will suffice for the subsequence; that is, $|a_{n_k} - a| < \epsilon$ whenever $k \ge N$.

Example 9. (Back to geometric sequences) Let 0 < b < 1. Because

$$b > b^2 > b^3 > b^4 > \dots > 0.$$

the sequence (b^n) is decreasing and bounded below. The MCT lets us conclude that (b^n) converges to some limit l satisfying b > l > 0.

To compute l, note that (b^{2n}) is a subsequence, so $(b^{2n}) \to l$ by the Theorem. Because limits are unique, $l^2 = l$, and thus l = 0.

- We can use this result in some clever ways to understand when infinite sums are associative (Claimed HW).
- We'll also use it to prove divergence:

Example 10. We now have the tools to prove divergence. Show that

$$\left(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \dots\right)$$

diverges.

Proof. Note that

$$\left(\frac{1}{5},\frac{1}{5},\frac{1}{5},\dots\right)$$

is a subsequence that converges to 1/5. Also,

$$\left(-\frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}, \ldots\right)$$

is a subsequence that converges to -1/5. Because we have two subsequences converging to two different limits, we can rigorously conclude that the original sequence diverges.

Exercise 11. Show that the sequence $((-1)^n)$ diverges.

- The subsequences (1) and (-1) converge to different limits.
- (\mathbf{T}/\mathbf{F}) If every subsequence of (x_n) converges to the same limit, then (x_n) converges.
 - True; (x_n) is a subsequence of (x_n) , so (x_n) converges.
- (T/F) Every sequence of real numbers contains a convergent subsequence.
 - False; consider (n).
- (T/F) Every increasing sequence of real numbers contains a convergent subsequence.
 - False; consider (n).
 - In our divergence example, we spotted convergent subsequences hiding in the original sequence.
 - For bounded sequences, it turns out that we can always find at least one convergent subsequence.

Theorem 12. (Bolzano-Weierstrass Theorem) Every bounded sequence contains a convergent subsequence.

- Importance of B-W:
 - next time, lets us show that Cauchy sequences converge
 - equivalent to Axiom of Completeness as characterizing property of \mathbb{R}
 - completely characterizes "compact sets", an important topological concept, as closed & bounded sets in $\mathbb R$

- lets us solve the optimization problem $\max\{f(x):x\in X\subseteq\mathbb{R}\}$ where $X\subseteq\mathbb{R}$ is closed and bounded and f is continuous.
 - * used in economics to argue that it's possible for consumers to maximize utility subject to a budget constraint
 - * used in economics to argue that it's possible to efficiently allocate resources among members of a society
 - * used to argue that the competitive equilibrium price (where demand = supply in all markets) depends on the existence of demand

Exercise 13. Prove the Bolzano-Weierstrass Theorem by doing the following:

- (1) Let (a_n) be a bounded sequence. Recall the definition of "bounded" for sequences and translate this into an inequality that each term a_n must satisfy.
- (2) Translate your statement from (1) into interval notation and bisect the interval. Argue that one of the two resulting intervals (call it I_1) contains infinitely many terms of (a_n) . Define a_{n_1} to be one of the infinitely many terms of (a_n) in one of the two intervals.
- (3) Bisect I_1 again and repeat the argument in (2).
- (4) Write a general argument for how to choose the interval I_n and the term a_{n_k} of (a_n) .
- (5) Use the Nested Interval Property to get a candidate, x, for $\lim a_{n_k}$.
- (6) Find a formula for the length of I_k . Use this formula to prove that $(a_{n_k}) \to x$.

Proof. The idea isn't too different from one way of defining the 1-1 correspondence $f:(0,1)\to S$, where S is the set of sequences of 0s and 1s. (remember this involved bisecting the interval (0,1) over and over.)

- (1) Let (a_n) be a bounded sequence. Then there exists M>0 satisfying $|a_n|\leq M$ for all $n\in\mathbb{N}$. [draw]
- (2) Bisect the closed interval [-M, M] into the two closed intervals [-M, 0] and [0, M].
- (3) It must be that one of these closed intervals contains infinitely many terms of (a_n) . (Else (a_n) contains only finitely many terms, but sequences are defined to be infinite.)
- (4) Select one interval that contains infinitely many terms of (a_n) and label the interval I_1 .
- (5) Let a_{n_1} be some term in the sequence (a_n) satisfying $a_{n_1} \in I_1$.

- (6) Now we bisect I_1 again into closed intervals of equal length and let I_2 be a half that again contains an infinite number of terms of the original sequence. Because there are an infinite number of terms of (a_n) to choose from, we can select an a_{n_2} from the original sequence with $n_2 > n_1$ and $a_{n_2} \in I_2$.
- (7) In general, we construct the closed interval I_k by taking a half of I_{k-1} containing an infinite number of terms of (a_n) and then select

$$n_k > n_{k-1} > \dots > n_2 > n_1$$

so that $a_{n_k} \in I_k$.

We want to argue that (a_{n_k}) is a convergent subsequence, but we need a candidate for the limit. Whatever the limit is, it seems likely that it's in all of the intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$$

but wait! These form a nested sequence of closed intervals, and by the Nested Interval Property there's at least one $x \in \mathbb{R}$ contained in every I_k ! Let's guess that x is the limit. It just remains to show that $(a_{n_k}) \to x$.

Let $\epsilon > 0$. How close can we make x to the terms of (a_n) ? It has to do with the size of the intervals. By construction, the length of I_k is $M(1/2)^{k-1}$, which converges to 0. (This follows from your "geometric sequence" reading question and the Algebraic Limit Theorem.)

Choose N so that $k \geq N$ implies that the length of I_k is less than ϵ . Because x and a_{n_k} are both in I_k , it follows that $|a_{n_k} - x| < \epsilon$.