Reinforcement Learning

Dr. Hao Wang

Louisiana State University

Outline

- FlappyBird Competition
- Introducing RL
- Q-learning

Supervised Learning → RL

It is challenging to label data in some tasks.

..... machine can know the results are good or not.

≈ Looking for a Function Machine Learning

Example: Playing Video Game

Space invader

or your spaceship is destroyed. Termination: all the aliens are killed,

Example: Playing Video Game

Example: Playing Video Game

Find an actor maximizing expected reward.

Example: Learning to play Go

Example: Learning to play Go

Find an actor maximizing expected reward

Machine Learning is so simple

Step 1: function with unknown

Step 2: define loss from training data

Step 3: optimization

Step 1: Function with Unknown

- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network: each action corresponds to a neuron in output layer

Step 2: Define "Loss"

Start with

Step 2: Define "Loss"

Start with observation s_1

Observation s₂

Observation s_3

After many turns

This is an *episode*.

Total reward (return): $R = \sum_{r=1}^{T} r^{r}$

 $R = \sum_{t=1}^{n} r_t$

What we want to maximize

Action a_T

How to do the optimization here is the main challenge in RL

$$R(\tau) = \sum_{t=1}^{T} r_t$$

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Critic

The output values of a critic depend on the actor evaluated.

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
- When using actor π , the *cumulated* reward expects to be obtained after visiting state s

 $V^{\pi}(s)$ is smaller

Critic

 $V^{you}(Pencil) = bad$ $V^{John Wick}(Pencil) = good$

How to estimate $V^{\pi}(s)$

- Monte-Carlo (MC) based approach
- The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_b

How to estimate $V^{\pi}(s)$

Temporal-difference (TD) approach

delaying all learning until an episode's end is too slow. Some applications have very long episodes, so that

MC v.s. TD

Smaller variance

May be inaccurate

MC v.s. TD

[Sutton, v2, Example 6.4]

The critic has the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$S_b, r = 1$$
, END

•
$$S_b, r = 0$$
, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

Temporal-difference:

$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$

3/4 3/4 0

Another Critic

- State-action value function $Q^{\pi}(s, a)$
- When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

State-action value function

atureControlDeepRL.pdf https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N

Another Way to use Critic: Q-Learning

 π interacts with the environment

 $\pi = \pi'$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

Q-Learning

 π interacts with the environment

nent

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

- Given $Q^{\pi}(s,a)$, find a new actor π' "better" than π
- "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

- $\blacktriangleright \pi'$ does not have extra parameters. It depends on Q
- ${m \succ}$ Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = arg \max_a Q^{\pi}(s,a)$$

$$V^{\pi'}(s) \ge V^{\pi}(s), \text{ for all state s}$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

 $\leq \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s))$

$$V^{\pi}(s) \le Q^{\pi}(s, \pi'(s))$$

$$= E[r_{t+1} + V^{\pi}(s_{t+1})|s_t = s, a_t = \pi'(s_t)]$$

$$\leq E[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) | s_t = s, a_t = \pi'(s_t)]$$

$$= E[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2})| \dots]$$

$$\leq E[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))| \dots] \dots \leq V^{\pi'}(s)$$

Target Network

Exploration

$$S \bigwedge_{a_1} a_2$$

$$-a_1$$
 $Q(s,a)=0$ Never explore

$$A_2$$
 $Q(s,a) = 1$ Always sample a_3 $Q(s,a) = 0$ Never explore

$$+a_2$$
 $Q(s,a) = 1$ Always sampled

The policy is based on Q-function

$$a = arg \max_{a} Q(s, a)$$

for data collection This is not a good way

Epsilon Greedy

arepsilon would decay during learning

$$a = \begin{cases} arg \max_{a} Q(s, a), \\ random, \end{cases}$$

with probability $1-\varepsilon$ otherwise

Boltzmann Exploration

$$P(a|s) = \frac{exp(Q(s,a))}{\sum_{a} exp(Q(s,a))}$$

Replay Buffer

Put the experience into buffer.

the environment π interacts with

Buffer exp exp exp exp S_t , a_t , T_t , S_{t+1}

if the buffer is full. different policies. Drop the old experience buffer comes from The experience in the

 $\pi = \pi'$

 π' "better" than π Find a new actor

Learning $Q^{\pi}(s, a)$

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

Sample a batch
 Update Q-

2. Update Q-function
Off-policy

Typical Q-Learning Algorithm

- Initialize Q-function Q, target Q-function Q=Q
- In each episode
- For each time step t
- Given state s_t , take action a_t based on Q (epsilon greedy)
- Obtain reward r_t , and reach new state s_{t+1}
- Store (s_t, a_t, r_t, s_{t+1}) into buffer
- Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
- Target $y = r_i + \max_a Q(s_{i+1}, a)$
- Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
- Every C steps reset Q = Q

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Double DQN

Q value is usually over-estimated

Double DQN

Q value is usually over estimate

$$Q(s_t, a_t) \longleftarrow r_t + \max_t Q(s_t, a_t)$$

$$r_t + \max_a Q(s_{t+1}, a)$$

Tend to select the action that is over-estimated

Double DQN

Q value is usually over estimate

$$Q(s_t, a_t) \leftarrow r_t + \max_a Q(s_{t+1}, a)$$

Double DQN: two functions Q and Q' Target Network

$$Q(s_t, a_t) \longleftarrow r_t + Q'(s_{t+1}, arg \max_a Q(s_{t+1}, a))$$

How about Q' overestimate? The action will not be selected by Q. If Q over-estimate a, so it is selected. Q' would give it proper value.

Double Q-learning", AAAI 2016 Hado van Hasselt, Arthur Guez, David Silver, "Deep Reinforcement Learning with Hado V. Hasselt, "Double Q-learning", NIPS 2010

State State Dueling DQN network structure Only change the Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc arXiv preprint, 2015 Architectures for Deep Reinforcement Learning", Lanctot, Nando de Freitas, "Dueling Network A(s,a)Q(s,a) Q(s,a)= A(s,a)+V(s)

Dueling DQN

(J)	
2)	J	
		_	_

act

U
ع و

state

V(s) Average of column

Q 1	
4	

A(s,a)sum of column = 0

0	-1	1
-2	-1	3
-1	2	-1
0	0	0

Dueling DQN - Visualization

Dueling DQN - Visualization

Prioritized Reply

training has higher probability to be sampled. The data with larger TD error in previous

Experience Buffer

Multi-step

Balance between MC and TD

Noisy Net

https://arxiv.org/abs/1706.10295 https://arxiv.org/abs/1706.01905

Noise on Action (Epsilon Greedy)

$$a = \begin{cases} arg \max_{a} Q(s, a), & with pro \\ random, & otherwise \end{cases}$$

with probability $1-\varepsilon$

otherwise

Noise on Parameters

each episode of Q-function at the beginning of Inject noise into the parameters

$$a = arg \max_{a} Q(s, a)$$

Add noise

Q(s,a)

Q(s,a)

The noise would **NOT** change in an episode.

Noisy Net

- Noise on Action
- Given the same state, the agent may takes different actions
- No real policy works in this way

Random Testing

- Noise on Parameters
- Given the same (similar) state, the agent takes the same action.
- State-dependent Exploration
- Explore in a consistent way

Systematically...

Demo

Distributional Q-function

- State-action value function $Q^{\pi}(s, a)$
- When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

Different distributions can have the same values.

Distributional Q-function

A network with 3 outputs

A network with 15 outputs (each action has 5 bins)

Demo

0.5

Laser -

Rainbow

Rainbow

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Continuous Actions

Action α is a continuous vector

$$a = \arg\max_{a} Q(s, a)$$

Solution 1

Sample a set of actions: $\{a_1, a_2, \dots, a_N\}$

See which action can obtain the largest Q value

Solution 2

Using gradient ascent to solve the optimization problem.

Continuous Actions

Solution 3 Design a network to make the optimization easy.

https://www.youtube.com/watch?v=ZhsEKTo7V04

Continuous Actions

