NTU 2020 Spring Machine Learning

Self-Supervised Learning

Chi-Liang Liu, Hung-Yi Lee NTU

Previously on this Course

Supervised Learning

• Given: a dataset $\mathcal{D} = \{(\boldsymbol{x}, \boldsymbol{y})_i\}_{i=1}^N$ and a loss function $\ell: \hat{\mathcal{Y}} \times \mathcal{Y} \to \mathbb{R}, (\hat{\boldsymbol{y}}, \boldsymbol{y}) \to \ell(\hat{\boldsymbol{y}}, \boldsymbol{y})$

```
Goal: \min_{\theta} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \left[ \ell(f_{\theta}(\boldsymbol{x}), \boldsymbol{y}) \right]
```

- Works well when labeled data is abundant.
- Learn useful representation with the supervision.
- Problem:

Can we learn useful representation without the supervision?

Why Self-Supervised Learning?

Labeled Data

Unlabeled Data

Slide: Thang Luong

Why Self-Supervised Learning?

- "Pure" Reinforcement Learning (cherry)
- ➤ The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- ➤ The machine predicts a category or a few numbers for each input
- ➤ Predicting human-supplied data
- ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
 - The machine predicts any part of its input for any observed part.
 - ► Predicts future frames in videos
 - ► Millions of bits per sample

Yann LeCun's cake

What is Self-Supervised Learning?

A version of unsupervised learning where data provides the supervision.

I Now call it "self-supervised learning", because
"unsupervised" is both a loaded and confusing term.

In self-supervised learning, the system learns to predict part of its input from other parts of it input. In...

- In general, withhold some part of the data and the task a neural network to predict it from the remaining parts.
- Goal: Learning to represent the world before learning tasks.

Self-Supervised Learning= Filling the Blanks

- Predict any part of the input from any other part.
- ► Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- ► Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Methods of Self-Supervised Learning

- Reconstruct from a corrupted (or partial) data
 - Denoising Autoencoder
 - Bert-Family (Text)
 - In-painting (Imagae)
- Visual common sense tasks
 - Jigsaw puzzles
 - Rotation
- Contrastive Learning
 - word2vec
 - Contrastive Predictive Coding (CPC)
 - SimCLR

Denoising AutoEncoder

Slide: CS294-158

BERT-Family

Language Model

- A statistical **language model** is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability $P(w_1, \ldots, w_m)$ to the whole sequence. ex. P("Is it raining now?") > P("Is it raining yesterday?")
- How to Compute?
 - n-gram model

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

Neural Network

$$P(w_t | \text{context}) \, \forall t \in V$$

Wiki: Language Model

ELMO & GPT & BERT

Devlin et al. 2018

GPT - Language Model

BERT - Masked LM

Masked LM:

Predict 15% of the tokens in the input.

80% replaced with a masked token 10% replaced with a random word 10% remain the same

ex.

Input: The [mask] sat on the [mask].

Output: The cat sat on the mat.

BERT - Pipeline

ARLM vs AELM

- Autoregressive Language Model (ARLM)
 - Pro: Does not rely on data corruption
 - Con: Can only be forward or backward

- Autoencoding Language Model (AELM a.k.a MaskedLM)
 - Pro: Can use bidirectional information (Context Dependency)
 - Con: Pretrain-Finetune discrepancy (Input Noise), Independence Assumption

Yang et al. 2019

XLNet - Permutation LM

Permutation LM:

Step 1. Permutation

Step 2. Autoregressive

ex.

Given Sequence [x1, x2, x3, x4]

Step 1. $[x1, x2, x3, x4] \rightarrow [x2, x4, x3, x1]$

Step 2. Given [x2] predict [x2, x4]

- -> Given [x2, x4] predict [x2, x4, x3]
- -> Given [x2, x4, x3] predict [x2, x4, x3, x1]

Yang et al. 2019

BART - Encoder & Decoder

Previous: Fixed-length to Fixed-length

Lewis et al. 2018

ELECTRA - Discriminator

Clark et al. 2018

Others

- RoBERTa: A Robustly Optimized BERT Pretraining Approach
- ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING
 OF LANGUAGE REPRESENTATIONS

Predict missing pieces

Pathak et al. 2016 Slide: CS294-158

Context Encoder

(a) Central region

(b) Random block

(c) Random region

Pathak et al 2016 Slide: CS294-158

Predicting one view from another

Solving Jigsaw Puzzles

Slide: CS294-158

Rotation

90° rotation

270° rotation

180° rotation

 0° rotation

Rotation

Contrastive Predictive Coding

Remember Word2Vec? They are almost the same idea.

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

van den Oord et al. 2020

SimCLR

Chen et al. 2020

SimCLR

Reference

- CS294-158 Deep Unsupervised Learning Lecture 7
- AAAI 2020 Keynotes Turing Award Winners Event
- Learning From Text OpenAl
- Learning from Unlabeled Data Thang Luong