Homework 6

Antonio Zea Jr

December 7, 2022

Problems

- 7.1 Answer each part TRUE or FALSE.
 - 1. $2n = \mathcal{O}(n)$ is TRUE
 - $2n \le c(n)$, where c = 3 and $n_0 = 1$ then
 - $2n \leq 3(n)$, $n \geq 1$
 - 2. $n^2 = \mathcal{O}(n)$ is FALSE
 - $n^2 \ge c(n)$, $\forall c \in \mathbb{N}$
 - 3. $n^2 = \mathcal{O}(n\log^2 n)$ is FALSE $n^2 \ge c(n\log^2 n)$, $\forall c \in \mathbb{N}$

 - 4. $n \log n = \mathcal{O}(n^2)$ is TRUE
 - $n \log n \le c(n^2)$, where c = 1 and $n_0 = 2$ then
 - $n\log n \le 1(n^2)$, $n \ge 2$
 - 5. $3^n = 2^{\mathcal{O}(n)}$ is FALSE
 - $3^n \ge 2^{c(n)}$, $\forall c \in \mathbb{N}$

 - 6. $2^{2^n} = \mathcal{O}(2^{2^n})$ is TRUE $2^{2^n} \le c(2^{2^n})$, where c=1 and $n_0=1$ then $2^{2^n} \le 1(2^{2^n})$, $n \ge 1$
- 7.2 Answer each part TRUE or FALSE.
 - 1. n = o(2n) is TRUE
 - n < c(2n), where c = 1 and $n_0 = 1$ then
 - $n < 1(2n) , n \ge 1$
 - 2. $2n = o(n^2)$ is TRUE
 - $2n < c(n^2)$, where c = 1 and $n_0 = 3$ then
 - $2n < 1(n^2), n \ge 3$
 - 3. $2^n = o(3^n)$ is TRUE
 - $2^n < c(3^n)$, where c = 1 and $n_0 = 1$ then
 - $2^n < 1(3^n)$, $n \ge 1$
 - 4. 1 = o(n) is TRUE
 - 1 < c(n), where c = 1 and $n_0 = 2$ then
 - $1 < 1(n), n \ge 2$
 - 5. $n = o(\log n)$ is FALSE
 - $n \ge c \log n, \, \forall c \in \mathbb{N}$
 - 6. $1 = o(\frac{1}{n})$ is FALSE $1 \ge c\frac{1}{n}, \forall c \in \mathbb{N}$

7.3 Which of the following pairs of numbers are relatively prime? Show the calculations that led to your conclusions.

$$10505 = 1274 \cdot 8 + 313$$

$$1274 = 313 \cdot 4 + 22$$
1.
$$313 = 22 \cdot 14 + 5$$

$$22 = 5 \cdot 4 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$8029 = 7289 \cdot 1 + 740$$

$$7289 = 740 \cdot 9 + 629$$
2.
$$740 = 629 \cdot 1 + 111$$

$$629 = 111 \cdot 5 + 74$$

$$111 = 74 \cdot 1 + 37$$

$$74 = 37 \cdot 2 + 0$$

$$\therefore \gcd(7289, 8029) = 37$$

 $7.5~\mathrm{Is}$ the following formula satisfiable?

$$(x \vee y) \wedge (x \vee \overline{y}) \wedge (\overline{x} \vee y) \wedge (\overline{x} \vee \overline{y})$$

x	y	$(x \lor y)$	$(x \vee \overline{y})$	$(\overline{x} \lor y)$	$(\overline{x} \vee \overline{y})$	$(x \lor y) \land (x \lor \overline{y}) \land (\overline{x} \lor y) \land (\overline{x} \lor \overline{y})$
0	0	0	1	1	1	0
1	0	1	1	0	1	0
0	1	1	0	1	1	0
1	1	1	1	1	0	0

 $[\]overline{(x \lor y) \land (x \lor \overline{y}) \land (\overline{x} \lor y) \land (\overline{x} \lor \overline{y})}$ is not satisfiable.

7.6 Show that P is closed under union, concatenation, and complement.

For any two $A, B \in \mathcal{P}$, let M_1 and M_2 be the deterministic single-tape Turing machines that decide them in polynomial time. We construct M' a deterministic single-tape Turing machines that decides the union of A and B in polynomial time. "On input $w \in A \cup B$:

- 1. Run M_1 on w if it accepts then M' accepts. If M_1 rejects then move onto step 2.
- 2. Run M_2 on w if it accepts then M' accepts. If M_2 rejects then M' rejects."

For any two $A, B \in \mathcal{P}$, let M_1 and M_2 be the deterministic single-tape Turing machines that decide them in polynomial time. We construct M' a deterministic single-tape Turing machines that decides the intersection of A and B in polynomial time. "On input $w \in A \cap B$:

- 1. Run M_1 and M_2 on w.
- 2. If either rejects, then M' rejects.
- 3. If both accept, then M' accepts."

For any two $A, B \in \mathcal{P}$, let M_1 and M_2 be the deterministic single-tape Turing machines that decide them in polynomial time. We construct M' a deterministic single-tape Turing machines that decides the concatenation of A and B in polynomial time. "On input $w \in A \circ B$:

- 1. Divide w into two substrings where $w = w_1 \circ w_2$, where $w_1 \in A$ and $w_2 \in B$.
- 2. Run M_1 on w_1 . Run M_2 on w_2 . Because M_1 and M_2 are deciders the TMs do not need to be run in lockstep unison.
- 3. If M_1 and M_2 accept then M' accepts.
- 4. This process needs to be repeated for every possible subdivision of w. All of those subdivisions need to be run against M_1 and M_2 in parallel.
- 5. M' rejects if all subdivisions reject."

For any $A \in \mathcal{P}$, let M_1 be the deterministic single-tape Turing machine that decides A in polynomial time. We construct M' a deterministic single-tape Turing machines that decides the complement of A in polynomial time. "On input $w \in \overline{A}$:

- 1. Run M_1 on w.
- 2. If M_1 accepts, then M' will reject.
- 3. If M_1 rejects, then M' will accept."

7.7 Show that NP is closed under union and concatenation.

For any $A, B \in \mathcal{NP}$, let M_1 and M_2 be the nondeterministic single-tape Turing machines that decide them in polynomial time. We construct M' a nondeterministic single-tape Turing machines that decide the union of A and B in polynomial time. "On input $w \in A \cup B$:

- 1. Run M_1 on w if it accepts then M' accepts. If M_1 rejects then move onto step 2.
- 2. Run M_2 on w if it accepts then M' accepts. If M_2 rejects then M' rejects."

For any two $A, B \in \mathcal{NP}$, let M_1 and M_2 be the nondeterministic single-tape Turing machines that decide them in polynomial time. We construct M' a nondeterministic single-tape Turing machines that decides the concatenation of A and B in polynomial time.

"On input $w \in A \circ B$:

- 1. Divide w into two substrings where $w = w_1 \circ w_2$, where $w_1 \in A$ and $w_2 \in B$.
- 2. Run M_1 on w_1 . Run M_2 on w_2 . Because M_1 and M_2 are deciders the TMs do not need to be run in lockstep unison.
- 3. If M_1 and M_2 accept then M' accepts.
- 4. This process needs to be repeated for every possible subdivision of w. All of those subdivisions need to be run against M_1 and M_2 in parallel.
- 5. M' rejects if all subdivisions reject."

7.8 Let CONNECTED = $\{\langle G \rangle | G \text{ is a connected undirected graph} \}$. Analyze the algorithm given on page 185 to show that this language is in P.

M = "On input $\langle G \rangle$, the encoding of a graph G:

- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until no new nodes are marked:
 - (a) For each node in G, mark it if it is attached by an edge to a node that is already marked.
- 3. Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

Let m be the number of nodes in G. Stages 1 and 3 are executed only once. Stage 2.a runs at most m times because each time except the last it marks an additional node in G. Thus, the total numbers of stages used is at most 1+1+m, giving a polynomial in the size of G. Stages 1 and 3 of M are implemented in polynomial time easily. Stage 2.a involves looking at each node in G and testing whether it is attached to node that already marked, which also is easily implemented in polynomial time. Therefore M is a polynomial time algorithm for CONNECTED

7.10 Show that ALL_{DFA} is in P.

Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is DFA and } L(A) = \Sigma^* \}$

A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible. To test this condition, we can design a TM T that uses a marking algorithm.

T = "On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat until no new states are marked:
 - (a) Mark any state that has a transition coming into it from any state that is alread marked.
- 3. If no accept state is marked, reject; otherwise accept."

Stage 1 executes once. Stage 3 has to check each accept state to see if any have been marked, this will take |F| steps (the number of accept states in the DFA). Stage 2.a runs at most |Q| times (the number of states in the DFA), because each time xcept the last it mark an additional state in A. Stage 2.a involves looking at each state A the DFA and testing whether its has a transition coming into it from a state that is already marked, this can be implemented in polynomial time. Therefore A a polynomial time algorithm for A and A are A are A are A and A are A and A are A and A are A and A are A are A and A are A are A and A are A are A are A are A are A and A are A are A are A are A are A are A and A are A are A are A are A and A are A and A are A