

用于开漏模式和推拉模式的 2bit 双向电平转换器

产品简述

MS4553S 是一款双向电平转换器,可以用作混合电压的数字信号系统中。其使用两个独立构架的电源供电,A端供电电压范围是 1.65V 到 5.5V,B端供电电压范围是 2.3V 到 5.5V。可用在电压为 1.8V、2.5V、3.3V 和 5V 的信号转换系统中。当 OE 端为低电平时,所有 IO 端口为高阻态,降低了静态功耗。当 VCCA 上电后,OE 端内部集成了下拉电流源。为了确保在上电或下电过程中端口保持高阻特性,OE 端应通过下拉电阻接地,下拉电阻的阻值由驱动电流源的能力决定。

主要特点

- 无需方向控制信号
- 数据速率:推拉模式为 20Mbps,开漏模式为 2Mbps
- A 端电压范围 1.65V 到 5.5V, B 端电压范围是 2.3V 到 5.5V (VCCA≤VCCB)
- VCC 隔离: 如果任何一个电源拉到地,则端口呈现高阻态
- 支持掉电模式

应用

- I²C/SMBus(系统管理总线)
- UART (通用异步收发传输器)
- GPIO (通用输入/输出)

产品规格分类

产品	封装形式	丝印名称
MS4553S	SOT23-8	4553S

SOT23-8

内部框图

管脚排列图

管脚描述

D MA IMAGE			
管脚编号	管脚名称	管脚属性	管脚描述
1	VCCB		B 端口供电电压,2.3V≤VCCB≤5.5V
2	B1	1/0	输入/输出端口 B,参考 VCCB
3	B2	1/0	输入/输出端口 B,参考 VCCB
4	OE	I	输出使能端,拉低 OE 以将所有输出至于高阻态
5	GND		地
6	A2	1/0	输入/输出端口 A,参考 VCCA
7	A1	1/0	输入/输出端口 A,参考 VCCA
	Vaca		A 端口供电电压,1.65V≤VCCA≤5.5V,
8	VCCA		且 VCCA≤VCCB

极限参数

绝对最大额定值

注意:应用中任何情况下都不允许超过下表中的最大额定值

参数	条件	额定值	单位
电源电压范围 VCCA		-0.3∼+6.0	V
电源电压范围 VCCB		-0.3∼+6.0	V
输入端口电压范围		-0.3∼+6.0	V
高阻或掉电状态下加到 输出端口的电压		-0.3∼+6.0	V
正常输出态时加到输出	A端口	-0.3∼VCCA+0.3V	V
端口的电压	B端口	-0.3∼VCCB+0.3V	V
输入钳位电流	VI<0V	-50	mA
输出钳位电流	VO<0V	-50	mA
持续输出电流 IO		±50	mA
持续通过 VCCA、VCCB、GND 的电流		±100	mA
工作温度范围		-40∼+100	$^{\circ}$
结温		150	${\mathbb C}$
储藏温度		-60∼+150	${\mathbb C}$
焊接温度(10s)		260	${\mathbb C}$

电气参数

(VCCA=1.6V-5.5V, VCCB=2.3V-5.5V, 在 T_A=25℃情况下的典型值,除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位
		推荐工作条件 (1) (2)			
	VCCA		1.2		5.5	
供电电压 (3)	VCCB		1.8		5.5	V
	. Mile	VCCA=1.65V~1.95V VCCB=2.3V~5.5V	V _{CCI} -0.1		V _{cci}	
高电平输入电压 V _{IH}	A端口	VCCA= $2.3V\sim5.5V$, VCCB= $2.3V\sim5.5V$	V _{cci} -0.3		V _{CCI}	V
	B端口		V _{CCI} -0.3		V _{CCI}	
	OE 端口		VCCA×0.8		5.5	
	A端口		0		0.1	
低电平输入电压 VIL	B端口		0		0.1	V
	OE 端口		0		VCCA×0.2	
		A 端口推拉驱动			10	
输入信号沿变化	۷(Δt/ΔV)	B端口推拉驱动			10	ns/V
		控制输入			10	
		电学特性	I			T
A 端口输出高电	压(V _{OHA})	I _{OH} =-20μΑ, V _{IB} ≥VCCB-0.4V		VCCA×0.8		
A 端口输出低电	压(V _{OLA})	I _{OL} =1mA, V _{IB} ≤0.15V		0.2		V
В 端口输出高电压(Vонв)		I _{OH} =-20μA, V _{IA} ≥VCCA-0.4V		VCCB×0.8		
В端口输出低电压(Volв)		I _{OL} =1mA,V _{IA} ≤0.15V		0.2		
OE 输入电流(I _I) OE				0.1		
掉电漏电流(I _{OFF})	A端口	VCCA=0V, VCCB=0V \sim 5.5V		0.1		μΑ
	B端口	VCCA=0V∼5.5V, CCB=0V		0.1		

三态输出漏电流 (I _{oz})	A或B端口	OE=0V	0.1		μΑ
	V _I =V _O =OPEN,	VCCA=1.65V∼VCCB, VCCB=2.3V∼5.5V	0.1		
静态电流(I _{CCA})	I _O =0	VCCA=5.5V, VCCB=0V	0.1		μΑ
		VCCA=0V, VCCB=5.5V	0.1		
熟太中沟(1 1)	V _I =V _O =OPEN,	VCCA = $1.65V \sim VCCB$,	5.5		
静态电流(Icca+Icca)	I _O =0	VCCB = 2.3V∼5.5V	5.5		μΑ
		VCCA=1.65V∼VCCB,			
数十小次 / ,	V _I =V _O =OPEN,	VCCB=2.3V∼5.5V	5.5		
静态电流(Icca)	I _O =0	VCCA=5.5V, VCCB=0V	0.1		μΑ
		VCCA=0V, VCCB=5.5V	0.1		
	V _I =V _O =OPEN	VCCA=1.65V \sim VCCB,	0.1		
静态电流(I _{ccza})	I _O =0, OE=GND	VCCA=5.5V, VCCB=0V	0.1		μΑ
		VCCA=0V, VCCB=5.5V	0.1		
	V _I =V _O =OPEN	VCCA=1.65V \sim VCCB, VCCB=2.3V \sim 5.5V	0.1		
静态电流(I _{cczB})	I ₀ =0,	VCCA=5.5V, VCCB=0V	0.1		μΑ
	OE=GND	VCCA=0V, VCCB=5.5V	0.1		
OE 输入电容(C _I)	VCCA=3.3V,VCCB=3.3V		5		pF
A 端口输入电容 (C _{IO})			6.5		
B 端口输入电容 (C _{IO})	VCCA=	3.3V,VCCB=3.3V	6.5		pF

- 注 1: Vcci 是与输入端口相关联的 Vcc。
 - 2: Vcco 是与输出端口相关联的 Vcc。
 - 3: VCCA 必须小于等于 VCCB,且 VCCA 不能超过 5.5V。

时序要求:

#1/1 X40		VCCB=2.5V	VCCB=3.3V	VCCB=5V	
		典型值	典型值	典型值	単位
(T _A = +25 °C, VCCA	= 1.8V,除非另有说明)				_
	推拉模式	18	18	16	
数据速率	开漏模式	2	2	2	Mbps
(T _A = +25 °C , VCCA	=2.5V,除非另有说明)				
	推拉模式	20	18	17	
数据速率	开漏模式	2	2	2	Mbps
(T _A = +25 °C , VCCA	= 3.3V,除非另有说明)				
No. 115 August	推拉模式		20	17	
数据速率	开漏模式		2	2	Mbps
(T _A = +25 °C , VCCA	= 5V,除非另有说明)				
	推拉模式			17	
数据速率	开漏模式			2	Mbps

开关特性:

(T_A = +25℃, VCCA = 1.8V, 除非另有说明)

(1 _R 125 5) 166.1 2.0	13, 11 33	, , , = , ,					
			VCCB = 2.5V	VCCB = 3.3V	VCCB = 5V		
参数 	符号	测试条件	TYP	TYP	TYP	单位	
		VCCA = 1	.8V				
		推拉模式	2.4	3.0	5.4		
	tPHL	开漏模式	26.0	26.3	26.7		
A 到 B 延时		推拉模式	4.0	3.6	3.5	ns	
	tPLH	开漏模式	175	145	110		
	tPHL	推拉模式	2.0	2.6	3.6		
Til acal		开漏模式	26.0	26.1	26.2		
B 到 A 延时		推拉模式	1.7	1.5	1.4	ns	
	tPLH	开漏模式	133	69	51		
OE 开启时间							
(tPZH 和 tPZL)	tEN		5.2	4.4	3.8	ns	

					1	_
OE 关断时间						
(tPHZ 和 tPLZ)	tDIS		614	616	626	ns
		推拉模式	16	15	14	
A端口上升沿	trA	开漏模式	89	31	10	ns
		推拉模式	12	11	9	
B端口上升沿	trB	开漏模式	128	98	58	ns
		推拉模式	10	9	8	
A端口下降沿	tfA	开漏模式	1.9	1.7	1.6	ns
		推拉模式	9	14	18	
B端口下降沿	tfB	开漏模式	2.2	2.3	2.9	ns
通道延时偏差	tsk(0)		0.5	0.5	0.5	ns
		推拉模式	18	18	17	
数据速率		开漏模式	2	2	2	Mbps
		VCCA = 2	.5V			
		推拉模式	2.7	3.3	4.8	ns
	tPHL	开漏模式	26.2	26.4	26.7	
A到B延时		推拉模式	2.6	2.4	2.3	
	tPLH	开漏模式	169	144	110	
		推拉模式	2.4	2.3	2.4	
	tPHL	开漏模式	26.3	26.4	26.5	
B到A延时		推拉模式	2.0	1.9	1.8	ns
	tPLH	开漏模式	165	118	55	
OE 开启时间						
(tPZH 和 tPZL)	tEN		14	13	12	
OE 美断时间						ns
(tPHZ 和 tPLZ)	tDIS		630	635	640	
. Mi — 1 ~1 M		推拉模式	13	13	12	
A 端口上升沿	trA	开漏模式	120	70	10	ns
5 7H → 1 ~1 VI		推拉模式	4.5	3.4	2.6	
B端口上升沿	trB	开漏模式	122	96	62	ns

		+0:+2:+#=+		_		
A端口下降沿	tfA	推拉模式	8	7	6	ns
		开漏模式	2.0	1.9	1.7	
B端口下降沿	tfB	推拉模式	8	12	15	ns
		开漏模式	1.9	2.1	2.7	
通道延时偏差	tsk(0)		0.5	0.5	0.5	ns
		VCCA = 3.3	3V			
		推拉模式		3.5	4.9	
	tPHL	开漏模式		26.3	26.7	
A到B延时		推拉模式		2.2	2.0	ns
	tPLH	开漏模式		133	104	
		推拉模式		3.0	3.2	
	tPHL	开漏模式		26.6	26.8	
B到A延时		推拉模式		1.8	1.7	ns
	tPLH	开漏模式		132	83	
OE 开启时间						
(tPZH 和 tPZL)	tEN			12	11	
						ns
OE 关断时间	tDIS			630	635	
(tPHZ 和 tPLZ)						
A 端口上升沿	trA	推拉模式		12	11	ns
		开漏模式		87	36	
B 端口上升沿	trB	推拉模式		10	9	ns
		开漏模式		87	56	113
A 进口工版》几	150	推拉模式		12	11	
A 端口下降沿	tfA	开漏模式		2.3	2.0	ns
- MI 16 M		推拉模式		13	16	
B端口下降沿	tfB	开漏模式		2.0	2.5	ns
通道延时偏差	tsk(0)			0.5	0.5	ns

		VCCA = 5.0V		
		推拉模式	5.4	
. 7d = 7f p l	tPHL	开漏模式	26.7	
A 到 B 延时		推拉模式	1.9	ns
	tPLH	开漏模式	120	
		推拉模式	5.6	
D ZU A ZIH-	tPHL	开漏模式	27.3	
B到A延时		推拉模式	1.7	ns
	tPLH	开漏模式	126	
OE 开启时间	+FN		10	
(tPZH 和 tPZL)	tEN		10	
OE 美断时间	+DIC		636	ns
(tPHZ 和 tPLZ)	tDIS		030	
A 端口上升沿	trA	推拉模式	8	
A岬口上川伯	UA	开漏模式	79	ns
B 端口上升沿	+ »D	推拉模式	7	
B 缅口上开拓	trB	开漏模式	73	ns
A 进口工版训	150	推拉模式	8.7	
A 端口下降沿	tfA	开漏模式	2.7	ns
D 治山 (二 17/1/2/)(1	4.50	推拉模式	8.6	
B端口下降沿	tfB	开漏模式	2.4	ns
通道延时偏差	tsk(0)		0.5	ns

应用说明

MS4553S 可以用于桥接两个不同的电压节点,以成功连接电子系统中的逻辑门电平。它可以用在点对点拓扑中,用于连接在不同接口电压下相互操作的设备或系统中。它的主要目标是用开漏模式与I/O 口进行数据连接,例如 I²C 和 1-Wire,数据是双向传输且不需要控制信号,也可以用推拉模式与I/O 口进行数据连接。

输入驱动需求

信号的下降时间(t_{fA} , t_{fB})取决于驱动 MS4553S 的数据 I/O 口外部驱动器的输出阻抗,同样的, t_{PHL} 和数据速率也取决于外部驱动器的输出阻抗。数据表中 t_{fA} , t_{fB} , t_{PHL} 的值和转换速率定义为假设外部驱动器的输出阻抗小于 50Ω 情况下的值。

上电

在操作期间,要保证 VCCA≤VCCB。在上电操作期间,每个电源的排序不会损坏设备,因此可以首先提升任意一个电源。

输出负载注意事项

我们建议使用 PCB 布线长度小的 PCB 布局,以避免过大的电容负载并确保正确的单次触发发生。 PCB 信号线走线长度应保持足够短,以使每次影射的往返延迟小于单次触发持续时间。通过确保任何一次影射都能在驱动器处看到一个低阻抗,从而改善信号完整性。设计的单次触发周期保持在接近30ns。可以驱动的集总负载的最大电容也直接取决于单次持续时间。对于非常大的容性负载,单次触发可以在信号被完全驱动到正轨之前超时。通过对动态参数 Icc、负载驱动能力和最大比特率之间的权衡,设置单次触发的持续时间为最佳状态。从 MS4553S 的输出可以看到 PCB 走线长度和连接器都会使电容增加,因此建议考虑使用集总负载电容,以避免重新单次触发、总线竞争、输出信号震荡或其他不利的系统级影响。

启用和关断

MS4553S 有一个 OE 输入端口以用来当 OE 为低电平时使器件关断,使所有 I/O 口在高阻状态。只要 V_{CCA} 通电,OE 就会存在一个内部的下拉电流源,关断时间(t_{DIS})表示 OE 变为低电平和输出为高阻状态之间的延迟。启用时间(t_{EN})表示用户必须允许单次触发电路在 OE 被提升为高电平后才能运行的时间。

I/O 口的上拉和下拉电阻

每一个 A 端口对于 V_{CCA} 都有一个 10kΩ的内部上拉电阻,每一个 B 端口对于 V_{CCB} 都有一个 10kΩ的内部下拉电阻。如果需要一个更小的上拉电阻,必须在 I/O 口到 V_{CCA} 或 V_{CCB} 之间添加一个外部电阻,然而加上一个阻值更小的上拉电阻将会影响 V_{OL} 电平,当 OE 为低电平时,MS4553S 内部上拉电阻会被关断。

参数测试信息

注 1: CL包括探针和夹电容。

传输延时电压波形

Output

2: 波形 1 用于具有内部条件的输出, 使输出为低电平, 除非输出控制端关断, 波形 2 用于具有内部条件的输出, 使输出为高电平, 除非输出控制端关断。

(见注释2)

启用和禁用电压波形

- 3: 所有的输入脉冲由具有以下特性的发生器提供: PRR≤10MHz, Z₀=50Ω, dv/dt ≥1V/ns。
- 4:输出一次测量一次,每次测量都要转换一次。
- 5: t_{PLZ}、t_{PHZ}与t_{DIS}相同。

- 6: t_{PZL}、t_{PZH}与t_{EN}相同。
- 7: t_{PLH}、t_{PHL}与t_{PD}相同。
- 8: Vcci 是与输入端口相关联的 Vcc。
- 9: Vcco是与输出端口相关联的 Vcc。
- 10: 所有参数和波形并不是适用于所有设备。

典型应用图

封装外形图

SOT23-8L:

hts El	单位:	毫米	单位: 英寸		
符号	最小值	最大值	最小值	最大值	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E1	1.500	1.700	0.059	0.067	
E	2.650	2.950	0.104	0.116	
e	0.65	OBSC	0.026BSC		
e1	0.975BSC		0.038BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

印章与包装规范

一、印章内容介绍

4553S: 产品型号

XXXX: 生产批号

二、印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三,包装说明:

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只 / 箱
MS4553S	SOT23-8	3000	10	30000	4	120000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号 高新软件园9号楼701室

http://www.relmon.com