

Ecoulement dans une conduite

X. Fischer ESTIA

Flow simulations in a T-Junction

Laminar flow
Turbulent flow
Without viscosity AND No-Slip-Wall

Fluid Characteristics
 Water

Flow characateristics

Isotherm
Not considering Heat Transfer

<u>Mono-Physic Simulation</u>

1- Preparing Simulation

 Open workbench and choose the CFX Component

Next, Import the mesh
 file: T pipe.msh

Edit the Mesh with CFX

1- Preparing Simulation

CFX is based on a Tree Architecture

Mesh Structure

Expanding the mesh object allows to have details on:

- 3D object : here the fluid domain
- 2D objects: here the wall of the pipe and the inlet/outlet of the pipe

 By default, the 3D domain is named in the model « Default Domain »

Here the fluid domain is named the « default domain »

It is possible to change the name with a right click

2- Flow Characteristics

- Modelling of Flow Characteristics
 - Double click on « default domain » in order to define the characteristics of the FLUID DOMAIN
 - Define the fluid domain as being WATER
 - The pressure of reference is 101 325 Pa (1 atm)
 - The flow is stationary (permanentà

2- Flow Characteristics

Modelling of Flow Characteristics

We are not considering the heat transfer

The flow is, first, considered as being laminar

- The boundary conditions are linked to the « default domain »
 - Right click on the « default domain » object on the tree
 - Select insert Boundary
 - Give a name to the BC

We define the BC on the inlet face of the pipe

- (1) Precise that the BC is related to an inlet condition

(2) Choose the inlet y CAD object to support the BC (location)

of the BC)

Inlet of the Fluid

- We define the BC on the inlet face of the pipe
 - The inlet speed of the fluid is 3 m/s

Basic Settings	Boundary Details	Sources	Plot Op	tions	
Flow Regime					⊟
Option	Subsonic			•	
Mass And Mome	entum				⊟
Option	Normal Spee	d		•	
Normal Speed	22	m	s^-1	-	<mark>√∝</mark>

We define the BC on the second inlet face of the T pipe

This time, The inlet is located on the inletz CAD object

The inlet normal speed is 1 m/s

- We define the BC on the Outlet face of the T pipe
 - The outlet is located on the outlet CAD object
 - The relative pressure is 0 Pa

The 3 BCs are integrated in the tree

- The BC named « Default Domain Default » is related to the detail on the wall behavior
- We consider the water not having viscosity:
 - **1-** Double clic on the wall BC object
 - **2-** choose the right option for avoiding viscosity

4- Processing

- For launching the numerical process, go back to workbench
- Edit the SOLUTION object

4- Processing

 You can analyze the convergence by clicking on monitor editing icon and choosing other elements

5- Post Processing

 The kind of results is defining in the head menu of the Post Processing Tool

- Display the contour of pressure on the wall:
 - 1. Clic on contour icon
 - 2. Choose the wall domain (here default domain)

5- Post Processing

- Next display the speed field in the fluid domain
 - Confirm that the water is non-viscous
 - Note the profile

- Next display the speed field in the fluid domain
 - 1. Create a mid plane in the YZ plane
 - 2. Create the speed profile in this plane

 In order to have a good view only have the BC on the plan being checked

- Observe the speed profile

1. The speed at inlety is 22m/s and 12m/s at inletz

Implement a laminar simulation

next implement a turbulent simulation by using k & model

2. Realize the simulation considering the water being Viscous

What are your conclusions on the speed?

