1. Curvas en el plano y en el espacio

1.1. Curvas en general

- Una curva plana es una aplicación continua $\alpha : I \subset \mathbb{R}^n$ definida por $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$.
- La **rapidez** es la derivada $\alpha'(t) = (\alpha'_1(t), \dots, \alpha'_n(t))$
- \blacksquare La **velocidad** es la norma de la rapidez $v_{\alpha}(t) = \|\alpha'(t)\|$
 - α es regular $\iff v_{\alpha}(t) > 0, \forall t \in I$
 - La derivada (o rapidez) normalizada es $T_{\alpha}(t) = \frac{\alpha'(t)}{v_{\alpha}(t)}.$
- La longitud es $l_{\alpha} = \int_{I} v_{\alpha}(t) dt$.
- \blacksquare Una parametrización es un difeomorfismo $\varphi:J\subset\mathbb{R}\to I\subset\mathbb{R}$
 - El signo de una parametrización es

$$\varepsilon(\varphi) = \begin{cases} +1 & \text{si } \varphi'(t) > 0, \forall t \in J \\ -1 & \text{si } \varphi'(t) < 0, \forall t \in J \end{cases}$$

- Una curva está parametrizada por longitud de arco o p.p.a ⇔ ||α'(t)|| = 1, ∀t ∈ I.
- Si para dos curvas α, β existe φ difeomorfismo tal que $\alpha = \beta \circ \varphi$ decimos que $\alpha \sim \beta$
 - $\bullet~\sim$ es una relación de equivalencia
 - Dos curvas en una misma clase de equivalencia comparten la traza o imagen.
 - Se cumple

$$\alpha'(t) = \beta'(\varphi(t))\varphi'(t)$$
$$\|\alpha'(t)\| =$$

- Una curva es birregular ⇔ para una parametrización α se tiene que α' y α" son linealmente independientes.
 - En particular, $\alpha', \alpha'' \neq 0$ y por tanto α también es regular.
- El diedro de Frenet-Serret formado por los vectores

$$\mathbf{t}_{\alpha}(t) = \frac{\alpha'(s)}{\|\alpha'(s)\|}$$
$$\mathbf{n}_{\alpha}(t) = J\mathbf{t}_{\alpha}(s) \text{ con } J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

■ La **curvatura** (con signo)

$$k_{\alpha}(t) = \frac{\langle \mathbf{t}'_{\alpha}(t), \mathbf{n}_{\alpha}(t) \rangle}{\|\alpha'(t)\|}$$

$$k_{\alpha}(t) = \frac{\det(\alpha'(t), \alpha''(t))}{\|\alpha'(t)\|^{3}} \quad \text{si } \alpha \text{ regular}$$

$$k_{\alpha}(t) = \|\alpha''(t)\| \quad \text{si } \alpha \text{ está p.p.a.}$$

- El vector curvatura es $\mathbf{k}_{\alpha}(t) = k_{\alpha}(t)\mathbf{n}_{\alpha}(t)$
- El radio de curvatura

$$\rho_{\alpha}(t) = \frac{1}{k_{\alpha}(t)}$$

• El centro de curvatura

$$C_{\alpha}(t) = \alpha(t) + \frac{1}{k_{\alpha}(t)} \mathbf{n}_{\alpha}(t)$$

ullet El circulo osculador o circunferencia osculatriz

$${p \in \mathbb{R}^2 : ||p - C_{\alpha}(t)|| = \frac{1}{k_{\alpha}(t)}, \text{ para } t \in I \text{ fijado }}$$

■ Las ecuaciones de Frenet-Serret salen de tomar la submatriz 2×2 de las ecuaciones en el espacio.

1.2. Curvas en el espacio

■ El triedro de Frenet-Serret formado por los vectores

$$\begin{aligned} \mathbf{t}_{\alpha}(s) &= \frac{\alpha'(s)}{\|\alpha'(s)\|} \\ \mathbf{n}_{\alpha}(s) &= \frac{\mathbf{t}_{\alpha}'(s)}{\|\mathbf{t}_{\alpha}'(s)\|} \\ \mathbf{b}_{\alpha}(s) &= \mathbf{t}_{\alpha}(s) \times \mathbf{n}_{\alpha}(s) \end{aligned}$$

- Los 3 planos del triedro de Frenet-Serret para un punto $\alpha(s)$ de la curva [afines] son:
 - El **plano osculador** span $\{\mathbf{t}_{\alpha}(s), \mathbf{n}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{b}_{\alpha}(s) \rangle = 0$
 - El **plano normal** span $\{\mathbf{n}_{\alpha}(s), \mathbf{b}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{t}_{\alpha}(s) \rangle = 0$
 - El **plano rectificante** span $\{\mathbf{t}_{\alpha}(s), \mathbf{b}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos cumplen $\langle P \alpha(s), \mathbf{n}_{\alpha}(s) \rangle = 0$
- La curvatura (siempre ≥ 0)

$$k_{\alpha}(s) = \frac{\|\mathbf{t}'_{\alpha}(s)\|}{\|\alpha'(s)\|}$$
$$k_{\alpha}(s) = \frac{\|\alpha'(s) \times \alpha''(s)\|}{\|\alpha''(s)\|^3} \quad \text{si } \alpha \text{ regular}$$
$$k_{\alpha}(s) = \|\alpha''(s)\| \quad \text{si } \alpha \text{ p.p.a}$$

■ El vector curvatura

$$\mathbf{k}_{\alpha}(s) = \frac{\mathbf{t}_{\alpha}'(s)}{\|\alpha'(s)\|} \text{ colineal con } \mathbf{n}_{\alpha}(s)$$

■ La torsión

$$\begin{split} \tau_{\alpha}(s) &= -\frac{\langle \mathbf{b}_{\alpha}'(s), \mathbf{n}_{\alpha}(s) \rangle}{\|\alpha'(s)\|} \\ \tau_{\alpha}(s) &= \frac{\det(\alpha'(s), \ \alpha''(s), \ \alpha'''(s))}{\|\alpha'(s) \times \alpha''(s)\|^2} \text{ si } \alpha \text{ regular} \end{split}$$

■ Las ecuaciones de Frenet-Serret

$$\mathbf{t}'_{\alpha} = k_{\alpha} v_{\alpha} \mathbf{n}_{\alpha}$$

$$\mathbf{n}'_{\alpha} = -k_{\alpha} v_{\alpha} \mathbf{t}_{\alpha} + \tau_{\alpha} v_{\alpha} \mathbf{b}_{\alpha}$$

$$\mathbf{b}'_{\alpha} = -v_{\alpha} \tau_{\alpha} \mathbf{n}_{\alpha}$$

$$\begin{pmatrix} \mathbf{t}'_{\alpha} \\ \mathbf{n}'_{\alpha} \\ \mathbf{b}'_{\alpha} \end{pmatrix} = \|\alpha'(s)\| \begin{pmatrix} 0 & k_{\alpha} & 0 \\ -k_{\alpha} & 0 & \tau_{\alpha} \\ 0 & -\tau_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{t}_{\alpha} \\ \mathbf{n}_{\alpha} \\ \mathbf{b}_{\alpha} \end{pmatrix}$$

1.3. Superficies

- Un homeomorfismo entre dos espacios topológicos es una aplicación biyectiva continua y con inversa continua.
 - Un difeomorfismo es un homeomorfismo diferenciable con inversa diferenciable.
 - Dos conjuntos son **homeomorfos** si existe un homeomorfismo entre ellos.
- Una superficie regular S es un subconjunto no vacío $S \subset \mathbb{R}^3$ tal que para todo $p \in S$ existe un abierto $U \subset \mathbb{R}^2$, un entorno abierto V de p en \mathbb{R}^3 y una parametrización $\mathbf{x}: U \subset \mathbb{R}^2 \to V \subset S \subset \mathbb{R}^3$ tal que
 - 1. \mathbf{x} es diferenciable como aplicación $x: U \to \mathbb{R}^3$

- $2. \mathbf{x}$ es un homeomorfismo
- 3. $\forall (u,v) \in U, (d\mathbf{x})_{(u,v)} : \mathbb{R}^2 \to \mathbb{R}^3 \text{ es inyectiva} \iff \text{los}$ vectores coordenaods son linealmente independientes $\forall (u,v) \in U.$
- Puede ocurrir (esfera, cono...) que no valga con una única parametrización $\forall p \in S$. Si nos vale con una única parametrización entonces S es homeomorfa a un abierto de \mathbb{R}^2 .
- Los vectores coordenados en un punto $\mathbf{x}(u, v) \in S$ son

$$\mathbf{x}_{u}(u,v) = \frac{\partial \mathbf{x}}{\partial u}(u,v) = (d\mathbf{x})_{(u,v)} \cdot e_{1}\mathbf{x}_{v}(u,v) = \frac{\partial \mathbf{x}}{\partial v}(u,v) = (d\mathbf{x})_{(u,v)} \cdot e_{2}$$

■ El **plano tangente** a S en $p \in S$ es un subvespacio vectorial de \mathbb{R}^3 con dimensión 2 dado por:

$$T_pS = \{\alpha'(0) \mid \exists \varepsilon > 0, \alpha : (-\varepsilon, \varepsilon) \to S$$
$$\land \alpha(0) = p$$
$$\land \alpha \text{ diferenciable } \}$$

- Si q es la preimagen de p por \mathbf{x} (es decir, $\mathbf{x}(q) = p$) entonces $T_p S = (d\mathbf{x})_q(\mathbb{R}^2)$
- El plano tangente (afín) a S en $p = \mathbf{x}(u, v) \in S$

$$T_p S = p + \underbrace{\operatorname{span}\{\mathbf{x}_u(u, v), \mathbf{x}_v(u, v)\}}_{\text{plano tangente vectorial}}$$

- La **recta normal** a S en $p \in S$ es el complemento ortogonal del plano tangente T_pS^{\perp} .
 - Para cada $p \in S$ existen dos vectores normales unitarios (opuestos) en la recta normal.
- La primera forma fundamental I
 - Es bilineal, simétrica y definida positiva.
- La aplicación de Gauss
- El operador de Weingarten se define para cada $p \in T_pS$ como la aplicación

$$W: T_pS \to T_pS$$
 con $Wp(x) := -(dN)_px$

• Es una aplicación autoajunta: $\langle W_p x, y \rangle = \langle x, W_p y \rangle$