

DISCRETE STRUCTURE

Reaccredited by NAAC with A+

TOPIC: GRAPH THEORY
(INTRODUCTION TO TREES, PROPERTIES, APPLICATION OF TREES)

PRESIDENCY COLLEGE

(AUTONOMOUS)

AFFILIATED TO BENGALURU CITY UNIVERSITY, APPROVED BY AICTE, DELHI & RECOGNISED BY THE GOVT. OF KARNATAKA

RE-ACCREDITED BY NAAC WITH 'A+' GRADE

PRESENTATION BY:

Damini A V: Properties of tree

Deepak kumar Thakur : Rooted tree

Dhanya P R: M-ary tree

Dileep Kumar: Binary search tree

Erick Solomon J: Decision tree

INTRODUCTION TO TREE

Trees were introduced long ago in the year 1857 in order to count certain types of chemical compounds. Since then trees have been employed to solve problems.

A Tree is a connected graph that contains no simple circuit.

It is denoted by **T.**

A graph is said to be connected if there exists a path between every pair of vertices

EXAMPLES:

PROPERTIES OF TREES:

- 1. There is only one path between every pair of vertices in a tree.
- 2. Every edge in a tree is a bridge.
- 3. A tree with n vertices have n-1 edges.
- 4. Every tree is a graph but every graph is not a tree.

THEOREM:

STATEMENT: There is only one path between every pair of vertices in a tree.

PROOF: Since T is a connected graph, there must exist atleast 1 path between every pair of vertices.

Now, suppose that between Two vertices 1 and 6 there are 2 distinct paths.

The union of these 2 paths Will contain a circuit .Hence T Cannot be a Tree.

Rooted Tree

A rooted tree is a connected acyclic graph with a special node that is called the root of the tree and every edge directly or indirectly originates from the root.

Ordered rooted tree:

An ordered rooted tree is a rooted tree where the children of each internal vertex are ordered.

Left child:

The node to the left of the root is called its left child.

Right child:

The node to the right of the root is called its right child.

Parent node:

A node having both left and right child are called parent node.

Siblings: Two nodes having the same parent are called siblings.

Descendant: A node is called descendant of another node if it is the child of the node or child of some other descendant of that node.

Internal node: It is a node which carries atleast one child.

Leaf node: A node with no children is called a leaf node

Reaccredited by NAAC with A+

40 YEARS OF ACADEMIC WISDOM

M-ARY TREES

- A rooted tree is called an m ary tree if every internal vertex has no more than m children
- The tree is called a full m-ary tree if every internal vertex has exactly m children

Reaccredited by NAAC with A+

m-ary tree for m=5 it is 5 ary tree but is not a full 5 ary tree

Reaccredited by NAAC with A+

This is a full 3 ary tree

not a full m ary tree

COMPLETE M-ARY TREE

A complete m ary tree is an m-ary tree in which every internal vertex has exactly m children and all leaves have same depth

Reaccredited by NAAC with A+

complete 3 aray tree because all leaves have same depth

Reaccredited by NAAC with A+

This is a full 2 ary tree but not complete 2 ary tree because all leaves are not having same depth

BALANCED M-ARY TREE

A rooted m-ary tree of height h is balanced if all leaves are at level h or h-1.

Reaccredited by NAAC with A+

height is took based on the number of internal vertex that edge has

here h=2 h-1=1 hence it is a balance m ary tree

Here, h=3

h-1=2

But there is one more leave at height 1 which does not satisfy the condition of balanced m-ary tree that all leaves should be at the level h or h-1, so this is not a balanced m-ary tree.

APPLICATION OF TREES:

Reaccredited by NAAC with A+

1. BINARY SEARCH TREES:

A binary tree is defined as a tree in which there is exactly one vertex of degree 2 and each of the remaining vertices of degree 1 or 3.

Reaccredited by NAAC with A+

EXAMPLES:

2. Decision trees

Decision trees

Reaccredited by NAAC with A+

Presidency Group

40 YEARS OF ACADEMIC WISDOM

Example 1

(Autonomous)

Example 2

Reaccredited by NAAC with A+

40 YEARS OF ACADEMIC WISDOM

Reaccredited by NAAC with A+

40 YEARS OF ACADEMIC WISDOM

THANK YOU

