Logistic Regrussion
BIOE 210

Problems to using a linear model

- 1. Classification is discrete
- Z. Bounds

Solution: Logistic Regrussion

We predict
$$P(y=1)$$
, but probabilitées [0,1]

$$odds(y) = \frac{P(y=1)}{P(y=0)}$$

$$P(y=1) + P(y=0) = 1 \Rightarrow P(y=0) = 1 - P(y=1)$$

$$adds(y) = \frac{P(y=1)}{1-P(y=1)} \in [0,\infty)$$

$$P(y=1) = \frac{odds(y)}{1 + odds(y)} \in [0, 1]$$

$$log(odds(y)) \in (-\infty, \infty)$$

Logistic Regression
$$log(odds(y)) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

$$odds(y) = e \qquad \equiv e$$

$$P(y=1) = \frac{odds(y)}{1 + odds(y)} = \frac{e^t}{1 + e^t} = \frac{1}{1 + e^{-t}}$$

$$\times \Rightarrow (inear) \Rightarrow t \Rightarrow \frac{1}{1 + e^{-t}} \Rightarrow P(y=1) = \frac{e^t}{\beta_0 + \beta_1 x_1 + \dots}$$

$$Link = \frac{1}{\beta_0 + \beta_1 x_1 + \dots}$$

$$Link = \frac{1}{\beta_0 + \beta_1 x_1 + \dots}$$

$$Link = \frac{1}{\beta_0 + \beta_1 x_1 + \dots}$$

Josloddsly)

Huntingtin (HTT)

Leu Lys Ser Phe Gln Gln ... Gln Gln Gln Gln Pro ctc aag tcc ttc cag cag ... cag cag caa cag ccg

# of CAG Repeats	Disease Outcome
< 28	Not affected.
28-35	Increased risk.
36-40	Affected; some offspring affected.
> 40	Affected; all offspring affected.

Source: Walker FO. Huntington's disease. The Lancet. 2007: 369, (9557), 218-228

P(disease) =
$$f(\text{coags}]$$

 $\log(\text{odds}(\text{chisease})) = \beta_0 + \beta_1[\text{cags}]$

$$\log(odds(disease)) = \beta_0 + \beta_1 [CAG5]$$

$$= -14.0 + 0.51[CAG5]$$

$$P(disease) = \frac{1}{1 + \rho^{-14.0} + 0.51[CAG5]}$$

How do we interpret the
$$\beta$$
 to 7

odds natio(χ_i) = $\frac{\text{odds}(\chi_i+1)}{\text{odds}(\chi_i)}$

odds natio($[\text{CAGs}]$) = $\frac{\text{odds}([\text{CAGs}]+1)}{\text{odds}([\text{CAGs}]+1)}$

= $\frac{e^{\beta_0 + \beta_1[\text{CAGs}]}}{e^{\beta_0 + \beta_1[\text{CAGs}]}} = e^{\beta_1}$

odds natio(χ_i) = $\frac{\text{odds}(\chi_i+1)}{\text{odds}(\chi_i)} = e^{\beta_1}$