Professor: Dr. Howard

October 11, 2023

MATH 554 Homework 8

Problem 3.35 Prove that a set is closed if and only if it contains all its adherent points.

Let (E,d) be a metric space and $S \subset E$. We have that a point p is an adherent point of S if for all r > 0, $B(p,r) \cap S \neq \emptyset$.

- (\Rightarrow) Suppose S is closed. Let $q \in \mathcal{C}(S)$. Since $\mathcal{C}(S)$ is open by definition, there exists an $r_q > 0$ such that $B(q, r_q) \subseteq \mathcal{C}(S)$. Thus, $B(q, r_q) \cap S = \emptyset$, so q is not an adherent point of S. Therefore, every adherent point of S must be contained in S.
- (\Leftarrow) Suppose S contains all its adherent points. Let $q \in \mathcal{C}(S)$. Since q is not an adherent point, there exists some $r_q > 0$ such that $B(q, r_q) \cap S = \emptyset$. So $B(q, r_q) \subseteq \mathcal{C}(S)$, and thus $\mathcal{C}(S)$ is open. So S is closed.

Problem 3.36 Let S be a set in a metric space and p an adherent point of S. Prove that there is a sequence of points $\langle p_n \rangle_{n=1}^{\infty}$ from S that converges to p.

Since p is an adherent point of S, we have that B(p,r) contains a point of S for all r > 0. Thus, we can construct $\langle p_n \rangle$ such that for all $n \in \mathbb{Z}^+$, p_n is a point from S in B(p,1/n). We claim $\langle p_n \rangle$ converges to p. To see this, let $\varepsilon > 0$. Then, for all $n > N := \frac{1}{\varepsilon}$, we have $\frac{1}{n} < \varepsilon$. Since $p_n \in B(p,1/n)$, we $d(p_n,p) < \frac{1}{n} < \varepsilon$, so $\langle p_n \rangle$ converges to p.

Problem 3.37 Let S be a set in a metric space and p a point that is a limit of a sequence of points from S. Prove that p is an adherent point of S.

Suppose $\langle p_n \rangle$ is in S and converges to p. Let r > 0. By definition of convergence, there exists an N such that $d(p_N, p) < r$. So $p_N \in B(p, r)$, so $B(p, r) \cap S \neq \emptyset$. Thus, p is an adherent point of S.

Problem 3.38 Let S be a subset of the metric space E. Prove that S is closed if and only if S contains the limits of its sequences in the sense that if $\langle p_n \rangle_{n=1}^{\infty}$ is a sequence of points from S that converges to x, then $x \in S$.

- (\Rightarrow) Suppose S is closed. Let $\langle p_n \rangle$ be a sequence in S that converges to some point x. By problem 3.37, x is an adherent point of S, and since S contains all its adherent points by problem 3.35, x is in S. Therefore, S contains the limits of its sequences.
- (\Leftarrow) Suppose S contains the limits of its sequences. Let p be an adherent point of S. By problem 3.36, we can find a sequence of points $\langle p_n \rangle$ in S that converges to p. Since S contains the limits of its sequences, p is in S. So S contains all its adherent points, and therefore by problem 3.35, S is closed.

Problem 3.39 Let F be a closed subset of \mathbb{R} and $f: \mathbb{R} \to \mathbb{R}$ a polynomial. Show that

$$S := f^{-1}[F] = \{x : f(x) \in F\}$$

is a closed subset of \mathbb{R} .

Nathan Bickel

Let $\langle p_n \rangle$ be a sequence of points in S that converge to p. By definition of S, we have $f(p_n) \in F$ for all n. We have also previously shown that $\lim_{n \to \infty} f(p_n) = f(p)$, and since F is closed, we have from problem 3.39 that $f(p) \in F$ since $\langle f(p_n) \rangle$ is in F. Thus, $p \in S$ by definition, so p is the limit of a sequence in S. Therefore, S contains the limits of its sequences, so by problem 3.39, S is closed.

Problem 3.40 Prove that every convergent sequence is a Cauchy sequence.

Suppose $\langle p_n \rangle$ is a sequence that converges to p. Let $\varepsilon > 0$. By definition, there exists some N such that for all n > N, $d(p_n, p) < \frac{\varepsilon}{2}$. So for all m, n > N, we have from the triangle inequality that

$$d(p_n, p_m) \le d(p_n, p) + d(d_m, p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, by definition $\langle p_n \rangle$ is Cauchy.

Problem 3.41 Let E = (0,1) be the open unit interval with metric d(x,y) = |x-y|. Then show that the sequence $\langle 1/n \rangle_{n=1}^{\infty}$ is a Cauchy sequence that is not convergent to any point of E.

Suppose (toward contradiction) that there does exist some $x \in (0,1)$ such that $\langle 1/n \rangle$ converges to x. So x > 0. Consider $\varepsilon := \frac{x}{2}$. Since the sequence converges to x, there exists an N such that for all n > N, we have $\left|\frac{1}{n} - x\right| < \varepsilon$. So we have

$$\left|x - \frac{1}{n} \le \left|\frac{1}{n} - x\right| < \frac{x}{2} \implies \frac{x}{2} < \frac{1}{n}\right|$$

for all n > N, but this contradicts Archimedes.

Problem 3.42 Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in the metric space E, such that some subsequence of $\langle p_{n_k} \rangle_{k=1}^{\infty}$ converges. Prove that the original sequence $\langle p_n \rangle_{n=1}^{\infty}$ converges.

Since $\langle p_{n_k} \rangle$ converges to some p, there exists a K such that for all k > K, we have $d(p_{n_k}, p) < \frac{\varepsilon}{2}$. Since $\langle p_n \rangle$ is Cauchy, there exists an N such that for all m, n > N, we have $d(p_m, p_n) < \frac{\varepsilon}{2}$. Let n > N, and choose a k such that k > K and $n_k > N$ (which will exist because n_k is strictly increasing and discrete). Since $n, n_k > N$, we have $d(p_n, p_{n_k}) < \frac{\varepsilon}{2}$, and since k > K, we have $d(p_{n_k}, p) < \frac{\varepsilon}{2}$. Thus, from the triangle inequality we have

$$d(p_n, p) \le d(p_n, p_{n_k}) + d(p_{n_k}, p) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, $\langle p_n \rangle$ converges to p by definition.

Problem 3.43 Let $\langle p_n \rangle_{n=1}^{\infty}$ be a convergent sequence in the metric space E. Let $\langle p_{n_k} \rangle_{k=1}^{\infty}$ be a subsequence of this sequence. Prove that $\langle p_{n_k} \rangle_{k=1}^{\infty}$ is also convergent and has the same limit as the original sequence.

Let $\varepsilon > 0$. Since $\langle p_n \rangle$ converges, there exists $p \in E$, N such that for all n > N, $d(p_n, p) < \varepsilon$. Let k > N. Then, as we have shown in class, we have $n_k \geq k > N$, so we have $d(p_{n_k}, p) < \varepsilon$ by our choice of N. Therefore, $\langle p_{n_k} \rangle$ converges to p.