

Signals and Systems

Assignment 3

Fall 2020

 $\label{lem:mohammadKhalaji76@gmail.com-JaliliA370@gmail.com} Telegram Channel: @signals_systems_99$

Question 1

Determine the Fourier Series coefficients \boldsymbol{a}_k for the following periodic signals:

(a)
$$x(t) = 2\sin(\frac{2\pi t}{6} + \frac{\pi}{6}) + 5\cos(\frac{2\pi t}{12})$$

(b)
$$x(t) = 2\cos(\frac{2\pi t}{3} + \frac{\pi}{6})$$

(c) .

Question 2

Determine the Fourier Series coefficients a_k for x(t):

(a) .

(b) .

Question 3

(Textbook Section 3.8 - Fourier Series and LTI Systems) Consider a signal x(t) with Fourier Series representation like this:

$$a_{-2} = a_2 = \frac{1}{8}$$

$$a_{-1} = a_1 = \frac{1}{4}$$
$$a_0 = 1$$

$$a_0 = 1$$

And otherwise $a_k = 0$. Keep in mind that T = 4. Consider an LTI System with frequency response $H(j\omega)$ as plotted below.

- (a) Determine the output y(t), and its Fourier Series coefficients b_k , if we apply x(t) as input.
- (b) Using Parseval's relation, determine the average power of y(t).