# High Dimensional Probability Notes

## Nong Minh $Hieu^1$

 $^{1}$  School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

## Contents

| 1            | Random variables      |          |                                               |    |  |
|--------------|-----------------------|----------|-----------------------------------------------|----|--|
|              | 1.1                   | Basic I  | nequalities                                   | 2  |  |
|              | 1.2                   | Limit '  | Γheorems                                      | 4  |  |
|              |                       | 1.2.1    | Weak Law of Large Numbers                     | 4  |  |
|              |                       | 1.2.2    | Strong Law of Large Numbers                   | 6  |  |
|              |                       | 1.2.3    | Central Limit Theorem                         | 8  |  |
|              | 1.3                   | Conver   | rgence of Random Variables                    | 8  |  |
|              |                       | 1.3.1    | Convergence in Distribution                   | 8  |  |
|              |                       | 1.3.2    | Convergence in Probability                    | 9  |  |
|              |                       | 1.3.3    | Convergence in $L^p$ norm                     | 10 |  |
|              |                       | 1.3.4    |                                               | 10 |  |
| 2            | Statistical Inference |          |                                               |    |  |
|              | 2.1                   | Sufficie | ency & Likelihood                             | 12 |  |
|              |                       | 2.1.1    | Sufficiency                                   | 12 |  |
|              |                       | 2.1.2    | Likelihood                                    | 13 |  |
|              | 2.2                   | Point I  | Estimation                                    | 13 |  |
|              |                       | 2.2.1    | Bias, Variance, Consistency and MSE           | 13 |  |
|              |                       | 2.2.2    | Sufficient Statistics & Rao-Blackwell Theorem | 13 |  |
|              |                       | 2.2.3    | Estimator Variance & Cramer-Rao Lower Bound   | 13 |  |
|              |                       | 2.2.4    | Maximum Likelihood Estimation (MLE)           | 14 |  |
| A            | A List of Definitions |          |                                               | 15 |  |
| В            | Imp                   | ortant   | Theorems                                      | 15 |  |
| $\mathbf{C}$ | Imp                   | ortant   | Propositions                                  | 15 |  |
| D            | Refe                  | erences  | 3                                             | 16 |  |

### 1 Random variables

#### 1.1 Basic Inequalities

First, we revisit the definition of a random variable as well as some basic inequalities that we learned in introductory statistics.

**Definition 1.1** (Random variable).

Let  $(\Omega, \Sigma, \mathbb{P})$  be a probability space. A random variable X is defined as a mapping from the sample space  $\Omega$  to  $\mathbb{R}$ :

$$X:\Omega\to\mathbb{R}$$
 (1)

 $\Sigma$  is the  $\sigma$ -algebra containing the possible events (collection of subsets of  $\Omega$ ) and  $\mathbb{P}$  is a probability measure that assigns events with probabilities:

$$\mathbb{P}: \Sigma \to [0, 1] \tag{2}$$

For a given probability space  $(\Omega, \Sigma, \mathbb{P})$  and a random variable  $X : \Omega \to \mathbb{R}$ , we will use the following basic notations throughout this note:

•  $||X||_{L^p}$  - The  $p^{th}$  root of the  $p^{th}$  moment of the random variable X.

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p}, \ p \in (0, \infty)$$
 (3)

$$||X||_{L^{\infty}} = \operatorname{ess\,sup}|X| \tag{4}$$

•  $L^p(\Omega, \Sigma, \mathbb{P})$  - The space of random variables X satisfying:

$$L^{p}(\Omega, \Sigma, \mathbb{P}) = \left\{ X : \Omega \to \mathbb{R} \middle| \|X\|_{L^{p}} < \infty \right\}$$
 (5)

Some basic inequalities and identities:

• 1. Jensen's Inequality - For a random variable X and a convex function  $\varphi : \mathbb{R} \to \mathbb{R}$ , we have:

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X) \tag{6}$$

• 2. Monotonicity of  $L^p$  norm - For a random variable X:

$$||X||_{L^p} \leqslant ||X||_{L^q}, \ 0 \leqslant p \leqslant q \leqslant \infty. \tag{7}$$

• 3. Minkowski's Inequality - For  $1 \le p \le \infty$  and two random variables X, Y in  $L^p(\Omega, \Sigma, \mathbb{P})$  space:

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}. \tag{8}$$

• 4. Holder's Inequality - For  $p, q \in [1, \infty]$  such that 1/p + 1/q = 1. Then, for random variables  $X \in L^p(\Omega, \Sigma, \mathbb{P})$  and  $Y \in L^q(\Omega, \Sigma, \mathbb{P})$ , we have:

$$|\mathbb{E}XY| \leqslant ||X||_{L^p} \cdot ||Y||_{L^q}. \tag{9}$$

• 5. Markov's Inequality - For a non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}X}{t}.\tag{10}$$

We can also generalize Markov's Inequality for  $p^{th}$  moment:

$$\mathbb{P}(|X| \ge t) \le \frac{\mathbb{E}[|X|^p]}{t^p}, \forall t > 0, k \in [2, \infty). \tag{11}$$

• 6. Chebyshev's Inequality - For a random variable X with mean  $\mu$  and variance  $\sigma^2$ . Then, for any t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.\tag{12}$$

• 7. Integral Identity - Let X be a non-negative random variable, we have:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt. \tag{13}$$

#### **Exercises**

#### Exercise 1.1.1: Generalized Integral Identity

Let X be a random variable (not necessarily non-negative). Prove the following identity:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt - \int_{-\infty}^0 \mathbb{P}(X < t)dt. \tag{14}$$

Solution (Exercise 1.1.1).

For  $x \in \mathbb{R}$ , using the basic integral indentity, we have:

$$|x| = \int_0^\infty \mathbf{1}\{t < |x|\}dt$$

We consider the following cases:

• When  $x < 0 \implies x = -|x|$ :

$$x = -\int_0^\infty \mathbf{1}\{t < |x|\}dt = -\int_0^\infty \mathbf{1}\{t < -x\}dt = -\int_0^\infty \mathbf{1}\{-t > x\}dt = -\int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

• When  $x \ge 0 \implies x = |x|$ :

$$x = \int_0^\infty \mathbf{1}\{t < |x|\}dt = \int_0^\infty \mathbf{1}\{t < x\}dt.$$

Therefore, for  $x \in \mathbb{R}$ , we can write:

$$x = \int_0^\infty \mathbf{1}\{t < x\}dt - \int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

Therefore, for a random variable X not necessarily non-negative, we have:

$$\begin{split} \mathbb{E}X &= \mathbb{E}\Bigg[\int_0^\infty \mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbf{1}\{t > X\}dt\Bigg] \\ &= \mathbb{E}\int_0^\infty \mathbf{1}\{t < X\}dt - \mathbb{E}\int_{-\infty}^0 \mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{E}\mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbb{E}\mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{P}(t < X)dt - \int_{-\infty}^0 \mathbb{P}(t > X)dt. \end{split}$$

ο.

### Exercise 1.1.2: $p^{th}$ -moments via tails

Let X be a random variable and  $p \in (0, \infty)$ . Show that:

$$\mathbb{E}|X|^p = \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt. \tag{15}$$

Π.

Solution (Exercise 1.1.2).

Let X be a random variable that is not necessarily non-negative. Using the integral identity, we have:

$$\mathbb{E}|X|^p = \int_0^\infty \mathbb{P}(u < |X|^p) du.$$

Let  $t^p = u \implies pt^{p-1}dt = du$ . Since we integrate u from  $0 \to \infty$ , we also integrate t from  $0 \to \infty$  when changing the variables. Hence, we have:

$$\mathbb{E}|X|^{p} = \int_{0}^{\infty} \mathbb{P}(t^{p} < |X|^{p})pt^{p-1}dt = \int_{0}^{\infty} \mathbb{P}(t < |X|)pt^{p-1}dt.$$

Hence, we obtained the desired identity.

#### 1.2 Limit Theorems

#### 1.2.1 Weak Law of Large Numbers

#### Theorem 1.1: Weak Law of Large Numbers (WLLN

Let  $X_1, \ldots, X_N$  be *i.i.d* random variables with mean  $\mu$ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to  $\mu$  in probability  $(S_N/N \xrightarrow{p} \mu)$ :

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = 0, \ \forall \epsilon > 0$$
 (16)

**Proof** (Weak Law of Large Numbers (WLLN)).

We split the proof into two sections corresponding to the assumptions of finite variance and non-finite variance.

1. Finite variance case: Suppose that  $\operatorname{Var} X_i = \sigma^2 < \infty$  for all  $1 \le i \le N$ . Let  $\bar{X} = S_N/N$ . Then,  $\bar{X}$  is a random variable with the following mean and variance:

$$\mathbb{E}\bar{X} = \mu \quad and \quad \operatorname{Var}\bar{X} = \frac{\sigma^2}{N}.$$

Hence, by the Chebyshev's inequality, we have:

$$\mathbb{P}(|S_N/N - \mu| > \epsilon) = \mathbb{P}(|\bar{X} - \mu| > \epsilon) \leqslant \frac{\sigma^2}{N\epsilon^2}.$$

Therefore, we have:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) \leqslant \lim_{N \to \infty} \frac{\sigma^2}{N\epsilon^2} = 0.$$

Hence, we have  $\lim_{N\to\infty} \mathbb{P}(|S_N/N - \mu| > \epsilon) = 0$  and we obtained (WLLN).

2. Non-finite variance case: In this case, we rely on the Levy Continuity Theorem (LCT), which relies on the convergence of the characteristic function. For  $n \ge 1$ , define the sequence of random variable  $Y_n = S_n/n$ . Hence, we have:

$$\varphi_{Y_n}(t) = \varphi_{S_n/n}(t)$$

$$= \varphi_{S_n}(t/n)$$

$$= \prod_{i=1}^n \varphi_{X_i}(t/n) = \left[\varphi_X(t/n)\right]^n,$$

Where  $X = X_1 = \cdots = X_n$ . By Taylor's expansion, we have:

$$\varphi_X(t/n) = 1 + \frac{it\mathbb{E}[X]}{n} + \mathcal{O}(1/n^2) = 1 + \frac{it\mu}{n} + \mathcal{O}(1/n^2).$$

Hence, we have:

$$\lim_{n\to\infty}\varphi_{Y_n}(t)=\lim_{n\to\infty}\left(1+\frac{it\mu}{n}+\mathcal{O}(1/n^2)\right)^n=e^{it\mu}.$$

Therefore, by (**LCT**), we have  $Y_n \xrightarrow{p} \mu$ .

**Remark 1.1** (Taylor expansion of Moment Generating and Characteristic Functions). \_\_\_\_\_\_ Given a random variable X. For reference, the following are the Taylor expansions of the Moment Generating Function  $M_X(t)$  and the Characteristic Function  $\varphi_X(t)$ :

$$M_X(t) = \mathbb{E}[e^{tX}] = 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n],$$

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = 1 + \sum_{n=1}^{\infty} \frac{(it)^n}{n!} \mathbb{E}[X^n].$$
(17)

For the sake of my laziness, here are the Taylor expansion for the first three terms of both the MGF and the CF:

$$M_X(t) = 1 + t\mathbb{E}[X] + \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3),$$
  

$$\varphi_X(t) = 1 + it\mathbb{E}[X] - \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3).$$
(18)

□.

#### Theorem 1.2: Levy Continuity Theorem

Let  $X_1, X_2, \ldots$  be *i.i.d* random variables. Then:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \iff X_n \stackrel{d}{\to} X, \tag{19}$$

for some random variable X. In a special case where X=c for some  $c\in\mathbb{R}$ , we have:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = e^{itc} \iff X_n \xrightarrow{p} c.$$
 (20)

**Proof** (Levy Continuity Theorem (**LCT**)).

The proof for (LCT) can be found in Gut 2004, Section 9.1, Theorem 9.1 and Collorary 9.1  $\,$   $\,$ 

#### 1.2.2 Strong Law of Large Numbers

#### Theorem 1.3: Strong Law of Large Numbers

Let  $X_1, \ldots, X_N$  be *i.i.d* random variables with mean  $\mu$ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to  $\mu$  almost surely  $(S_N/N \xrightarrow{a.s} \mu)$ :

$$\mathbb{P}\left(\limsup_{N\to\infty}|S_N/N-\mu|>\epsilon\right)=0,\ \forall\epsilon>0$$
(21)

**Proof** (Strong Law of Large Numbers (SLLN)).

For the sake of simplicity, we will present the proof for (SLLN) with an additional assumption that  $\mathbb{E}[|X_n|^4] < \infty$ ,  $\forall n \geq 1$ . The proof for the general case of (SLLN) (also called the Kolmogorov Strong Law) can be found in Gut 2004, Section 6, Theorem 6.1. For convenience, we assume the following:

- 1.  $\mathbb{E}[|X_n|^4] = K < \infty$ .
- 2.  $\mathbb{E}[X_n] = 0$ . For non-zero mean case, we can set  $Y_n = X_n \mu$  and repeat the same arguments made below.

We aim to prove that  $\mathbb{P}\Big(\limsup_{N\to\infty}|S_N/N|>\epsilon\Big)=0$  for any  $\epsilon>0$ . Firstly, use the Multinomial formula to expand  $\mathbb{E}[S_n]$ . The expansion will contain the terms in the following forms:

$$X_i^2, X_i^3 X_i, X_i^2 X_i^2, X_i^2 X_i X_i X_k, X_i X_i X_k X_\ell,$$

where  $i, j, k, \ell$  are distinct indices. By independence, we have:

$$\mathbb{E}[X_i^3 X_i] = \mathbb{E}[X_i^2 X_i X_k] = \mathbb{E}[X_i X_l X_k X_\ell] = 0.$$

As a result, we have the following remaining terms by the Multinomial formula:

$$\mathbb{E}[S_n^4] = \sum_{i=1}^n \mathbb{E}[X_i^4] + \binom{4}{2} \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= \sum_{i=1}^n \mathbb{E}[X_i^4] + 6 \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= nK + 3n(n-1)\mathbb{E}[X_i^2 X_j^2].$$

By independence, we have  $\mathbb{E}[X_i^2 X_j^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_j^2]$  and for any  $1 \le i \le n$ . Furthermore, we have  $\mathbb{E}[X_i^2] = \text{Var}(X_i) + \mu^2 = \sigma^2 + \mu^2$ . Therefore:

$$\mathbb{E}[S_n^4] = nK + 3n(n-1)(\sigma^2 + \mu^2) < nK + 3n^2(\sigma^2 + \mu^2).$$

Applying Markov's Inequality with the fourth moment, we have:

$$\begin{split} \mathbb{P}(|S_n/n| \geqslant \epsilon) &= \mathbb{P}(|S_n| \geqslant n\epsilon) \\ &\leqslant \frac{\mathbb{E}[S_n^4]}{n^4 \epsilon^4} \\ &< \frac{K}{n^3 \epsilon^4} + \frac{3(\sigma^2 + \mu^2)}{n^2}. \end{split}$$

Therefore, we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(|S_n/n| \ge \epsilon) < \frac{K}{\epsilon^4} \sum_{n=1}^{\infty} n^{-3} + 3(\sigma^2 + \mu^2) \sum_{n=1}^{\infty} n^{-2} < \infty$$
 (22)

Finally, by the Borel-Cantelli Lemma (BCL), we have:

$$\mathbb{P}\left(\limsup_{n\to\infty}|S_n/n|\geqslant\epsilon\right)=0,\quad\forall\epsilon>0.$$

□.

#### Theorem 1.4: Borel-Cantelli Lemma

**1. First Borel-Cantelli Lemma**: Given a probability space  $(X, \mathcal{S}, \mathbb{P})$  and a sequence  $\{A_n\}_{n=1}^{\infty} \subset \mathcal{S}$ . If  $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ , we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0. \tag{23}$$

**2. Second Borel-Cantelli Lemma**: On the other hand, if  $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$ , we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1. \tag{24}$$

Proof (Borel-Cantelli Lemma (BCL)).

We focus on proving the first Borel-Cantelli lemma. We define another sequence of S-measurable sets  $\{B_n\}_{n=1}^{\infty}$  such that:

$$B_n = \bigcup_{k=n}^{\infty} A_n.$$

Hence, we have  $B_{\ell+1} \subset B_{\ell}$  for every  $\ell \geqslant 1$ . In other words,  $B_n$  is a decreasing sequence of S-measurable sets. By continuity of measure, we have:

$$\mathbb{P}\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n)$$

$$= \lim_{n\to\infty} \sum_{k=n}^{\infty} \mathbb{P}(A_n) \quad (By \ additivity)$$

$$= \sum_{i=1}^{\infty} \mathbb{P}(A_i) - \lim_{n\to\infty} \sum_{k=1}^{n} \mathbb{P}(A_n)$$

$$= 0.$$

Furthermore, we have:

$$\mathbb{P}\Big(\lim_{n\to\infty}B_n\Big)=\mathbb{P}\bigg(\lim_{n\to\infty}\bigcup_{k=n}^{\infty}\bigg)=\mathbb{P}\bigg(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_n\bigg)=\mathbb{P}\bigg(\limsup_{n\to\infty}A_n\bigg).$$

Hence proved the first Borel-Cantelli Lemma. To prove the second Borel-Cantelli Lemma, we prove the following:

$$1 - \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = \mathbb{P}\left(\left\{\limsup_{n \to \infty} A_n\right\}^c\right)$$
$$= \mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) = 0.$$

#### 1.2.3 Central Limit Theorem

#### Theorem 1.5: Central Limit Theorem (C

Let  $X_1, ... X_n$  be a sequence of *i.i.d* random variables with expected value  $\mu$  and finite variance  $\sigma^2$ . Then, we have:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad as \quad n \to \infty, \tag{25}$$

where  $\bar{X}_n = S_n/n$  and  $\mathcal{N}(0,1)$  is the standard normal distribution.

**Proof** (Central Limit Theorem (CLT)).

We prove this via the Characteristic Function. Let  $\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ , notice that:

$$\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma},$$

Let  $Z_i = X_i - \mu$  for  $1 \le i \le n$  and suppose  $Z = Z_1 = \cdots = Z_n$ , we have:

$$\varphi_{\bar{Z}_n}(t) = \varphi_{\sum_{i=1}^n Z_i} \left( \frac{t}{\sqrt{n}} \right) = \left[ \varphi_Z \left( \frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \left[ 1 + \frac{it \mathbb{E}[Z]}{\sqrt{n}} - \frac{t^2}{2n} \mathbb{E}[Z^2] + \mathcal{O}(1/n) \right]^n \quad (Taylor's Expansion)$$

$$= \left[ 1 - \frac{t^2}{2n} + \mathcal{O}(1/n) \right]^n.$$

The final equality comes from the fact that  $\mathbb{E}[Z] = 0$  and  $\mathbb{E}[Z^2] = \mathbb{E}[Z]^2 + \text{Var}(Z) = 1$ . Finally, we have:

$$\lim_{n\to\infty} \varphi_{Z_n}(t) = \lim_{n\to\infty} \left[1-\frac{t^2}{2n} + \mathcal{O}(1/n)\right]^n = e^{-t^2/2}.$$

Since  $e^{-t^2/2}$  is the Characteristic Function of the standard normal distribution, by (**LCT**), we have  $\bar{Z}_n \xrightarrow{d} \mathcal{N}(0,1)$ .

#### 1.3 Convergence of Random Variables

In this section, we revise the modes of convergence in random variables.

#### 1.3.1 Convergence in Distribution

**Definition 1.2** (Convergence in Distribution).

Given a sequence of real-valued random variables  $X_1, X_2, \ldots$  with CDFs  $F_1, F_2, \ldots$  We say that the sequence converges in distribution to a random variable X with CDF F, denoted  $X_n \stackrel{d}{\to} X$  if:

$$\lim_{n \to \infty} F_n(x) = F(x),\tag{26}$$

for all  $x \in \mathbb{R}$  at which F is continuous. Convergence in distribution can also be referred to as weak convergence in measure theory.

#### 1.3.2 Convergence in Probability

**Definition 1.3** (Convergence in Probability). \_

Given a sequence of real-valued random variables  $X_1, X_2, \ldots$  We say that the sequence converges in probability to a random variable X, denoted  $X_n \xrightarrow{p} X$  if:

$$\lim_{n \to \infty} \mathbb{P}\Big(|X_n - X| \ge \epsilon\Big) = 0, \quad \forall \epsilon > 0.$$
 (27)

□.

We also refer to convergence in probability as convergence in measure in measure theory.

## Proposition 1.1: $X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$

Let X and the sequence  $X_1, X_2, \ldots$  be real-valued random variables. If  $X_n \xrightarrow{p} X$ , then  $X_n \xrightarrow{d} X$ .

**Proof** (Proposition 1.1).

We first prove the following claim: Let X, Y be random variables,  $a \in \mathbb{R}$  and  $\epsilon > 0$ , the inequality  $\mathbb{P}(Y \leq a) \leq \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|Y - X| \geq \epsilon)$  holds. We have:

$$\begin{split} \mathbb{P}(Y\leqslant a) &= \mathbb{P}(Y\leqslant a,X\leqslant a+\epsilon) + \mathbb{P}(Y\leqslant a,X\geqslant a+\epsilon) \\ &\leqslant \mathbb{P}(X\leqslant a+\epsilon) + \mathbb{P}(Y-X\leqslant a-X,a-X\leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X\leqslant a+\epsilon) + \mathbb{P}(Y-X\leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X\leqslant a+\epsilon) + \mathbb{P}(Y-X\leqslant -\epsilon) + \mathbb{P}(Y-X\geqslant \epsilon) \\ &= \mathbb{P}(X\leqslant a+\epsilon) + \mathbb{P}(|Y-X|\geqslant \epsilon). \end{split}$$

Using the above inequality, we have:

$$\mathbb{P}(X \leqslant a - \epsilon) - \mathbb{P}(|X_n - X| \geqslant \epsilon) \leqslant \mathbb{P}(X_n \leqslant a) \leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(|X_n - X| \geqslant \epsilon).$$

Taking limits as  $n \to \infty$  from both sides, we have:

$$F_X(a-\epsilon) \leqslant \lim_{n \to \infty} F_{X_n}(a) \leqslant F_X(a+\epsilon).$$

Taking  $\epsilon \to 0^+$ , we have  $\lim_{n\to\infty} F_{X_n}(a) = F_X(a)$ .

## **Proposition 1.2:** $X_n \stackrel{d}{\to} c \iff X_n \stackrel{p}{\to} c$

Let  $c \in \mathbb{R}$  be a constant and  $X_1, X_2, \ldots$  be a sequence of real-valued random variables. Then,  $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c$ .

**Proof** (Proposition 1.2, Pishro-Nik 2014).

Since  $X_n \stackrel{d}{\rightarrow} c$ , we immediately have the following:

$$\lim_{n \to \infty} F_{X_n}(c - \epsilon) = 0,$$
$$\lim_{n \to \infty} F_{X_n}(c + \epsilon/2) = 1.$$

Then, for any  $\epsilon > 0$ , we have:

$$\lim_{n \to \infty} (|X_n - c| \ge \epsilon) = \lim_{n \to \infty} \mathbb{P} \Big[ \mathbb{P}(X_n \le c - \epsilon) + \mathbb{P}(X_n \ge c + \epsilon) \Big]$$

$$= \lim_{n \to \infty} F_{X_n}(c - \epsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon)$$

$$\le \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon/2)$$

$$= 1 - \lim_{n \to \infty} F_{X_n}(c + \epsilon/2)$$

$$= 0$$

From the above, we have  $\lim_{n\to\infty} \mathbb{P}(|X_n-c| \ge \epsilon) = 0$  and  $X_n \xrightarrow{p} c$ .

#### 1.3.3 Convergence in $L^p$ norm

**Definition 1.4** (Convergence in  $L^p$  norm).

Given a sequence of random variables  $X_1, X_2, \ldots$  and a real number  $p \in [1, \infty)$ . We say that the sequence converges in  $L^p$  norm to a random variable X, denoted as  $X_n \xrightarrow{L^p} X$  if:

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^p = 0. \tag{28}$$

## Proposition 1.3: $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$

Let  $p \geqslant 1$  and  $X_1, X_2, \ldots$  be a sequence of real-valued random variables. Let X be a random variable, then,  $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$ .

**Proof** (Proposition 1.3). Let  $\epsilon > 0$ , we have:

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}(|X_n - X|^p \ge e^p) \quad (p \ge 1)$$

$$\le \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p}. \quad (Markov's Inequality)$$

Taking the limits from both sides, we have  $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$  and  $X_n \xrightarrow{p} X$ .

#### 1.3.4 Almost-sure Convergence

**Definition 1.5** (Convergence almost-surely). Let  $X_1, X_2, ...$  be a sequence of real-valued random variables that map from a sample space  $\Omega$ . Let X also be a real-valued random variable. We say that  $X_n$  converges almost surely to X, denoted as  $X_n \xrightarrow{a.s} X$ , if:

$$\mathbb{P}\Big(\limsup E_n\Big) = 0 \quad \text{where} \quad E_n = \Big\{\omega \in \Omega: |X_n(\omega) - X(\omega)| \geqslant \epsilon\Big\}.$$

Remark 1.2 (Consequence of (BCL)).

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \implies X_n \xrightarrow{a.s} X. \tag{29}$$

□.

□.

## **Proposition 1.4:** $X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X$

Let  $X_1, X_2, \ldots$  be a sequence of real-valued random variables and also let X be a real valued random variables. If  $X_n \xrightarrow{a.s} X$  then  $X_n \xrightarrow{p} X$ .

**Proof** (Proposition 1.4).

Let  $f_n:\Omega\to\mathbb{R}_+$  be a sequence of nonnegative Borel-measurable functions such that  $f_n(\omega)=$  $|X_n(\omega) - X(\omega)|$ . By Fatou's Lemma (reverse), we have:

$$\underbrace{\mathbb{P}\Big(\limsup_{n\to\infty}\{\omega\in\Omega:|X_n(\omega)-X(\omega)|\geqslant\epsilon\}\Big)}_{=0} = \int f_n d\mathbb{P}$$

$$\geqslant \limsup_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon)$$

$$\geqslant \lim_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon).$$

Hence, we have  $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$  and  $X_n \stackrel{p}{\to} X$ .

## Theorem 1.6: Continuous Mapping Theorem

Let  $f: \mathbb{R} \to \mathbb{R}$  be a <u>continuous</u> function and  $X_1, X_2, \ldots$  be a sequence of real-valued random variables. Then, the following statements hold true:

1. 
$$X_n \stackrel{d}{\to} X \implies f(X_n) \stackrel{d}{\to} f(X)$$
.  
2.  $X_n \stackrel{p}{\to} X \implies f(X_n) \stackrel{p}{\to} f(X)$ .

$$2. \ X_n \xrightarrow{p} X \implies f(X_n) \xrightarrow{p} f(X).$$

3. 
$$X_n \xrightarrow{a.s} X \implies f(X_n) \xrightarrow{a.s} f(X)$$
.

**Proof** (Continuous Mapping Theorem (CMT)).

Since almost-sure convergence implies the other two modes of convergence, we only have to handle the almost-sure convergence case. Since h is continuous, for any  $\omega \in \Omega$  such that  $X_n(\omega) \to X(\omega)$ , we have  $f(X_n(\omega)) \to f(X(\omega))$ . Therefore, we have:

$$\Big\{\omega\in\Omega:X_n(\omega)\to X(\omega)\Big\}\subseteq \Big\{\omega\in\Omega:f(X_n(\omega))\to f(X(\omega))\Big\}.$$

Therefore, we have:

$$\mathbb{P}\Big(\limsup_{n\to\infty}\Big\{\omega\in\Omega:|f(X_n(\omega))-f(X(\omega))|\leqslant\epsilon\Big\}\Big)$$
  
$$\geqslant \mathbb{P}\Big(\limsup_{n\to\infty}\Big\{\omega\in\Omega:|X_n(\omega)-X(\omega)|\leqslant\epsilon\Big\}\Big)=1,$$

for all  $\epsilon > 0$ . Therefore, we have  $f(X_n) \xrightarrow{a.s} f(X)$ .

## 2 Statistical Inference

### 2.1 Sufficiency & Likelihood

#### 2.1.1 Sufficiency

Definition 2.1 (Sufficient Statistics).

Let  $\mathbf{X} = (X_1, \dots, X_n) \sim p(.; \boldsymbol{\theta})$  be a random sample drawn i.i.d from a distribution with parameters  $\boldsymbol{\theta}$ . Let  $\mathbf{U} = T(\mathbf{X})$  be a statistic, then it is called a <u>sufficient statistic</u> if the conditional distribution  $p_{\mathbf{X}|\mathbf{U}}$  does not depend on  $\boldsymbol{\theta}$ .

Example 2.1 (Bernoulli random variables). \_

Let  $\mathbf{X} = (X_1, \dots, X_n) \sim \text{Bernoulli}(\theta)$  be a random sample from the Bernoulli distribution. Let  $\mathbf{U} = \frac{1}{n} \sum_{i=1}^{n} X_i$ , then  $\mathbf{U}$  is a sufficient statistic of  $\theta$ . To illustrate this, suppose that  $\mathbf{x} = (x_1, \dots, x_n)$  is an observation of the random sample  $\mathbf{X}$  and  $\mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} x_i$ . We have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x}, \mathbf{U} = \mathbf{u})}{\mathbb{P}(\mathbf{U} = \mathbf{u})} \\
= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\
= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\
= \frac{\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}.$$

Now, setting  $k = \sum_{i=1}^{n} x_i$ , The denominator is basically the probability that the Bernoulli variables sums up to k. Hence, we can calculate the denominator as follows:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i = k\right) = \binom{n}{k} \theta^k (1-\theta)^{n-k}.$$

Therefore, we have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) = \frac{\theta^k (1 - \theta)^{n - k}}{\binom{n}{k} \theta^k (1 - \theta)^{n - k}} = \frac{1}{\binom{n}{k}}.$$

Therefore, the conditional distribution does not depend on  $\theta$  and U is a sufficient statistic.

**Definition 2.2** (Sufficiency Principle).

If  $\mathbf{U} = T(\mathbf{X})$  is a sufficient statistic for  $\boldsymbol{\theta}$ , then any inference about  $\boldsymbol{\theta}$  should only depend on the sample  $\mathbf{X}$  through  $\mathbf{U}$ . In other words, if we estimate  $\boldsymbol{\theta}$  using an estimator  $\hat{\boldsymbol{\theta}}$ , only  $\mathbf{U}$  shows up in the formula of  $\hat{\boldsymbol{\theta}}$ , not the sample  $\mathbf{X}$  itself. We will see why this is the case in the Factorisation Theorem (FacT), which states that we can factorise the density function into a function of  $\mathbf{U}, \boldsymbol{\theta}$  and a function of the observations  $\mathbf{x}$  and thus, the inference about  $\boldsymbol{\theta}$  is independent of the observations  $\mathbf{x}$ .

#### Theorem 2.1: Factorisation Theorem (FacT

Let  $\mathbf{X} = (X_1, \dots, X_n)$  be a random sample with joint density function  $p(\mathbf{x}; \boldsymbol{\theta})$ . The statistic  $\mathbf{U} = T(\mathbf{X})$  is sufficient for the parameters  $\boldsymbol{\theta}$  if and only if we can find functions h, g such that:

$$p(\mathbf{x}; \boldsymbol{\theta}) = g(T(\mathbf{x}), \boldsymbol{\theta})h(\mathbf{x}),$$

for all  $\mathbf{x} \in \mathbb{R}^n$  and  $\boldsymbol{\theta} \in \Theta$ .

**Proof** (Factorisation Theorem (FacT)).

We have to conduct the proof in both directions.

- $T(\mathbf{X})$  is sufficient  $\implies$  Factorisation exists.
- Factorisation exists  $\implies$   $T(\mathbf{X})$  is sufficient.
- 1. T(X) is sufficient  $\implies$  Factorisation exists.

#### 2.1.2 Likelihood

**Definition 2.3** (Likelihood Function).

Let  $\mathbf{X} = (X_1, \dots, X_n)$  be a random sample from a distribution  $p(.|\theta)$  that depends on parameters  $\theta \in \Theta$ . Let  $\mathbf{x} = (x_1, \dots, x_n)$  be an observation of the random sample  $\mathbf{X}$ . Then, the likelihood function  $L(\theta; \mathbf{x})$  is defined as follows:

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} p(x_i; \theta), \quad \theta \in \Theta.$$
 (30)

Essentially,  $L(\theta; \mathbf{x})$  quantifies the likelihood that  $\theta$  generates the observations  $\mathbf{x}$ . In a way, it is the inverse of probability density (mass) functions.

#### 2.2 Point Estimation

#### 2.2.1 Bias, Variance, Consistency and MSE

#### 2.2.2 Sufficient Statistics & Rao-Blackwell Theorem

#### Theorem 2.2: Rao-Blackwell Theorem (RI

#### 2.2.3 Estimator Variance & Cramer-Rao Lower Bound

**Definition 2.4** (Fisher Information).

Let  $\mathbf{X} = (X_1, \dots, X_n) \sim p(.; \boldsymbol{\theta})$  be a random sample from a distribution parameterized by  $\boldsymbol{\theta}$ . The (total) Fisher Information about  $\boldsymbol{\theta}$  in the random sample  $\mathbf{X}$  is defined as follows:

$$\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{X}} \left[ \left( \frac{\partial}{\partial \boldsymbol{\theta}} \log L(\boldsymbol{\theta}; \mathbf{X}) \right)^2 \quad \middle| \quad \boldsymbol{\theta} \right]. \tag{31}$$

The Fisher Information is the total information about  $\theta$  contained in the sample X.

#### Theorem 2.3: Cramer-Rao Lower Bound (CRLB)

2.2.4 Maximum Likelihood Estimation (MLE)

## A List of Definitions

|                  | 1.1        | Definition (Random variable)                                                                                                                                          | 2             |
|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                  | 1.2        | Definition (Convergence in Distribution)                                                                                                                              | 8             |
|                  | 1.3        | Definition (Convergence in Probability)                                                                                                                               | 9             |
|                  | 1.4        | Definition (Convergence in $L^p$ norm)                                                                                                                                | 10            |
|                  | 1.5        | Definition (Convergence almost-surely)                                                                                                                                | 10            |
|                  | 2.1        | Definition (Sufficient Statistics)                                                                                                                                    | 12            |
|                  | 2.2        | Definition (Sufficiency Principle)                                                                                                                                    | 12            |
|                  | 2.3        | Definition (Likelihood Function)                                                                                                                                      | 13            |
|                  | 2.4        | Definition (Fisher Information)                                                                                                                                       | 13            |
|                  |            |                                                                                                                                                                       |               |
| $\mathbf{B}$     | Ι          | mportant Theorems                                                                                                                                                     |               |
|                  | 1 1        | W1-I f I N (WIIIN)                                                                                                                                                    | 4             |
|                  | 1.1<br>1.2 | Weak Law of Large Numbers (WLLN)                                                                                                                                      | $\frac{4}{5}$ |
|                  | 1.3        |                                                                                                                                                                       | 6<br>6        |
|                  | 1.3        | Strong Law of Large Numbers (SLLN)                                                                                                                                    | 7             |
|                  | 1.4        | Borel-Cantelli Lemma (BCL)                                                                                                                                            | 8             |
|                  | 1.6        | Central Limit Theorem (CLT)                                                                                                                                           | 11            |
|                  | 2.1        | Factorisation Theorem (FacT)                                                                                                                                          | 13            |
|                  | 2.1        | Rao-Blackwell Theorem ( <b>RB</b> )                                                                                                                                   | 13            |
|                  | 2.3        | Cramer-Rao Lower Bound (CRLB)                                                                                                                                         | 13            |
|                  | 2.3        | Cramer-rao Lower Bound (CILLB)                                                                                                                                        | 10            |
| $\boldsymbol{C}$ | т          | manantant Duan acitiana                                                                                                                                               |               |
| C                | 1          | mportant Propositions                                                                                                                                                 |               |
|                  | 1.1        | $X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X \dots $   | 9             |
|                  | 1.2        | $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c \dots $       | 9             |
|                  |            | $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X \dots $ |               |
|                  | 1.4        | $X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X \dots $ | 11            |

## **D** References

## References

- Durrett, Rick (2010). *Probability: Theory and Examples*. 4th. USA: Cambridge University Press. ISBN: 0521765390.
- Gut, Allan (2004). A Graduate Course in Probability. Graduate Text in Mathematics.
- Pishro-Nik, Hossein (2014). Introduction to Probability, Statistics and Random Processes. Kappa Research, LLC.
- undefinedinlar, Erhan (2011). *Probability and Stochastics*. Springer New York. ISBN: 9780387878591. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- Wikipedia (2023). Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023].