Answer Set Programming: Semántica de programas sin variables

Jorge A. Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile

Reglas

Definición

Una regla en programación en lógica es un objeto de la forma:

$$Head \leftarrow Body$$
,

donde Head y Body son conjuntos de átomos.

En el sistema clingo estas reglas, respectivamente, se anotan así:

```
u :- t, r.
t.
:- r.
p; q :- r, s.
```


Qué es un programa

Definición

Un programa es un conjunto de reglas.

Modelo de un progama

■ Una regla $Head \leftarrow Body$ intuitivamente establece que si Body es parte de un modelo, entonces al menos algo en Head también debe pertenecer al modelo.

Modelo de un progama

■ Una regla *Head* ← *Body* intuitivamente establece que si *Body* es parte de un modelo, entonces al menos algo en *Head* también debe pertenecer al modelo.

Definición (Modelo de un Programa Sin Negación)

M es un **modelo** de un programa Π instanciado y sin negación si y solo si M es un conjunto minimal (respecto de la relación subconjunto) de átomos de Π , tal que si $Head \leftarrow Body \in \Pi$ y $Body \subseteq M$, entonces $Head \cap M \neq \emptyset$.

Reglas con Negación

Definición

Una regla en programación en lógica es un objeto de la forma:

$$Head \leftarrow Pos, not(Neg),$$

donde Head, Pos y Neg son conjuntos de átomos.

```
Ejemplo: \{p, q\} \leftarrow \{r, s\}, not(\{t\}), \{t\} \leftarrow \{\}, not(\{\}), \{\} \leftarrow not(\{r, s\}).
```

En el sistema clingo estas reglas, respecticamente, se anotan así:

```
p;q :- r,s,not t.
t.
:- not r, not s.
```


Reducción y Conjunto Respuesta

Definición (Reducción)

La reducci'on un programa Π relativa a un conjunto X, denotada por Π^X es la que resulta de hacer:

- $\Pi^X := \Pi$
- **2 Borrar** toda regla $Head \leftarrow Pos \cup not(Neg)$ de Π^X cuando $Neg \cap X \neq \emptyset$.
- **Reemplazar** cada regla $Head \leftarrow Pos \cup not(Neg)$ en Π^X por $Head \leftarrow Pos$ cuando $Neg \cap X = \emptyset$.

Reducción y Conjunto Respuesta

Definición (Reducción)

La reducci'on un programa Π relativa a un conjunto X, denotada por Π^X es la que resulta de hacer:

- $\Pi^X := \Pi$
- **2 Borrar** toda regla $Head \leftarrow Pos \cup not(Neg)$ de Π^X cuando $Neg \cap X \neq \emptyset$.
- **Reemplazar** cada regla $Head \leftarrow Pos \cup not(Neg)$ en Π^X por $Head \leftarrow Pos$ cuando $Neg \cap X = \emptyset$.

Definición (Modelo de un programa con negación)

X es un modelo de un programa con negación Π ssi X es un modelo para Π^X .

