The Indian Liver Patient Dataset is from UCI's Machine Learning Database. It contains information on people who were and were not liver patients, including age, gender, and clinical measures. Some of those clinical measures include total Bilirubin, proteins, Aspartate, and Alkaline Phosphotase. The main reason for analyzing this data is to see if any of these measures are indicators of liver disease.

The first thing I did was clean the data. I removed any observations that had missing cell counts as well as any outliers. I then looked at some general statistics and plots to see any difference between those who were liver patients and those who were not.

1)By looking at the mean values of clinical measures and ages by liver patients and those who are not, it seems that liver patients have much higher Alkphos, Alamine, and Aspartate levels than non liver patients. Liver patients also have slightly higher TB, DB, and age levels.

The MEANS Procedure

LiverPatient	N Obs	Variable	N	Mean	Std Dev	Minimum	Maximum
No	165	ТВ	165	1.1448485	1.0096127	0.5000000	7.3000000
		DB	165	0.3963636	0.5219442	0.1000000	3.6000000
		Alkphos	165	220.6848485	141.5278050	90.0000000	1580.00
		Alamine	165	33.8363636	25.1462287	10.0000000	181.0000000
		Aspartate	165	40.7636364	36.5631580	10.0000000	285.0000000
		TP	165	6.5393939	1.0533163	3.7000000	9.2000000
		ALB	165	3.3393939	0.7785773	1.4000000	5.0000000
		AGRatio	165	1.0295758	0.2872522	0.3700000	1.9000000
		Age	165	41.3636364	17.0591120	4.0000000	85.0000000
Yes	409	ТВ	409	3.8799511	5.9596798	0.4000000	32.6000000
		DB	409	1.8660147	3.0957346	0.1000000	18.3000000
		Alkphos	409	313.3300733	252.3581160	63.0000000	1896.00
		Alamine	409	92.8508557	184.0133461	12.0000000	1680.00
		Aspartate	409	119.8924205	199.5128458	11.0000000	1600.00
		TP	409	6.4579462	1.1016662	2.7000000	9.6000000
		ALB	409	3.0621027	0.7906354	0.9000000	5.5000000
		AGRatio	409	0.9160636	0.3259254	0.3000000	2.8000000
		Age	409	46.1907090	15.6886937	7.0000000	90.0000000

I then wanted to see if the clinical measures, gender, and ages could predict if a patient had liver disease.

2) By using backwards selection, the best model I obtained includes DB, alamine, TP, ALB, and age. When DB increases by one unit, the odds of having liver disease is 1.720 times higher. When alamine increases by one unit, the odds of having liver disease is 1.016 times higher. When TP increases by one unit, the odds of having liver disease is 1.543 times higher. When ALB increases by one unit, the odds of having liver disease is 0.514 times lower. When age increases by one unit, the odds of having liver disease is 1.018 times lower.

The LOGISTIC Procedure

Model Information					
Data Set	WORK.LIVER2				
Response Variable	LiverPatient				
Number of Response Levels	2				
Model	binary logit				
Optimization Technique	Fisher's scoring				

Model Fit Statistics						
Intercept and Criterion Only Covariates						
AIC	690.638	589.209				
sc	694.990	637.088				
-2 Log L	688.638	567.209				

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	121.4288	10	<.0001				
Score	71.1155	10	<.0001				
Wald	53.9247	10	<.0001				

Model Fit Statistics							
Intercept Intercept Criterion Only Covariates							
AIC	690.638	587.224					
sc	694.990	630.750					
-2 Log L	688.638	567.224					

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	121.4140	9	<.0001				
Score	70.0223	9	<.0001				
Wald	53.7659	9	<.0001				

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	117.4463	6	<.0001				
Score	62.7850	6	<.0001				
Wald	51.9754	6	<.0001				

Model Fit Statistics						
Intercept Criterion Only Covaria						
AIC	690.638	585.861				
sc	694.990	611.977				
-2 Log L	688.638	573.861				

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	114.7765	5	<.0001				
Score	62.7107	5	<.0001				
Wald	51.2081	5	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-1.6709	0.7758	4.6386	0.0313		
DB	1	0.5425	0.1740	9.7253	0.0018		
Alamine	1	0.0157	0.00391	16.1446	<.0001		
ТР	1	0.4339	0.1755	6.1082	0.0135		
ALB	1	-0.6652	0.2498	7.0878	0.0078		
Age	1	0.0180	0.00636	8.0401	0.0046		

Odds Ratio Estimates							
Effect Point 95% Wald Confidence Limits							
DB	1.720	1.223	2.419				
Alamine	1.016	1.008	1.024				
TP	1.543	1.094	2.177				
ALB	0.514	0.315	0.839				
Age	1.018	1.006	1.031				

I then wanted to see how the clinical measures , age, and gender relate to total proteins. To do that, I created a general linear model.

3) In order to obtain the best model, I used backwards selection. I started with all the terms in the model, looked at the type 3 analysis, removed the most insignificant term, and then I refitted the model. I did this until all the terms were significant. The final model includes DB, Alamine, Aspartate, ALB, and AGRatio as predictors for Total Proteins. When DB, Aspartate, and ALB increase, total proteins increase, but when Alamine and AGRatio increase, total proteins decrease.

The GLM Procedure

Dependent Variable: TP

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	74	400.9098889	5.4177012	19.20	<.0001
Error	334	94.2667859	0.2822359		
Corrected Total	408	495.1766748			

R-Square	Coeff Var	Root MSE	TP Mean
0.809630	8.226435	0.531259	6.457946

Source	Source DF Type III SS		Mean Square	F Value	Pr > F	
тв	1	0.2489776	0.2489776	0.88	0.3483	
DB	1	0.0646814	0.0646814	0.23	0.6324	
Alkphos	1	0.0654924	0.0654924	0.23	0.6303	
Alamine	1	2.0041541	2.0041541	7.10	0.0081	
Aspartate	1	0.7483514	0.7483514	2.65	0.1044	
ALB	1	288.9718152	288.9718152	1023.87	<.0001	
AGRatio	1	53.4555659	53.4555659	189.40	<.0001	
Gender	1	0.0151422	0.0151422	0.05	0.8170	
Age	66	13.8485240	0.2098261	0.74	0.9278	

The GLM Procedure

Dependent Variable: TP

Source DF		Type III SS	Mean Square	F Value	Pr > F
тв	1	0.1693399	0.1693399	0.63	0.4291
DB	1	0.1791510	0.1791510 0.66		0.4161
Alkphos	Alkphos 1 0.00018		0.0001833	0.00	0.9792
Alamine	1	2.6823425	2.6823425	9.92	0.0018
Aspartate	1	0.9367798	0.9367798	3.47	0.0634
ALB	1	356.0312366	356.0312366	1317.23	<.0001
AGRatio	1	71.1140180	71.1140180	263.10	<.0001
Gender	1	0.0000072	0.0000072	0.00	0.9959

The GLM Procedure

Dependent Variable: TP

Source	DF	Type III SS	Mean Square	F Value	Pr > F
тв	1	0.1699572	0.1699572	0.63	0.4277
DB 1 0.1804845		0.1804845	0.67	0.4137	
Alkphos	1	0.0001944	0.0001944	0.00	0.9786
Alamine	1	2.6832072	2.6832072	9.95	0.0017
Aspartate	1	0.9375310	0.9375310	3.48	0.0629
ALB	1	362.5406113	362.5406113	1344.66	<.0001
AGRatio	1	71.4922588	71.4922588	265.16	<.0001

Dependent Variable: TP

Source	DF	Type III SS	Mean Square	F Value	Pr > F
тв		0.1698605	0.1698605	0.63	0.4272
DB 1		0.1802961	0.1802961	0.67	0.4134
Alamine	1	2.6907263	2.6907263	10.00	0.0017
Aspartate	1	0.9381447	0.9381447	3.49	0.0625
ALB	1	362.7043233	362.7043233	1348.62	<.0001
AGRatio	1	73.2702282	73.2702282	272.44	<.0001

The GLM Procedure

Dependent Variable: TP

3)Final model

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	386.8913029	77.3782606	287.97	<.0001
Error	403	108.2853720	0.2686982		
Corrected Total	408	495.1766748			

R-Square	R-Square Coeff Var		TP Mean
0.781320	8.026717	0.518361	6.457946

Source	DF	Type III SS	Mean Square	F Value	Pr > F
DB	1	13.3919909	13.3919909	49.84	<.0001
Alamine	1	2.7828237	2.7828237	10.36	0.0014
Aspartate	1	1.0925022	1.0925022	4.07	0.0444
ALB	1	362.5345141	362.5345141	1349.23	<.0001
AGRatio	1	73.8558776	73.8558776	274.87	<.0001

Parameter Estimate		Standard Error	t Value	Pr > t
Intercept	3.031557048	0.11140347	27.21	<.0001
DB	0.062649873	0.00887422	7.06	<.0001
Alamine	-0.000829866	0.00025787	-3.22	0.0014
Aspartate	0.000490597	0.00024330	2.02	0.0444
ALB	1.609156431	0.04380826	36.73	<.0001
AGRatio	-1.746258400	0.10532909	-16.58	<.0001

4)Since the researcher is interested in groupings of the measures, I used cluster analysis. However, the measures did not cluster nicely, so I first used principal component analysis to reduce the dimensions. I ended up keeping the first 3 principal components. By looking at the graphs, liver patients and non liver patients overlap quite a bit. Liver patients tend to be higher in principal components 1 and 2, while on average they are about equal to non liver patients in component 3.

The PRINCOMP Procedure

Observations	574
Variables	9

	Simple Statistics												
	ТВ	DB	Alkphos	Alamine	Aspartate	TP	ALB	AGRatio	Age				
Mean	3.093728223	1.443554007	286.6986063	75.8867596	97.1463415	6.481358885	3.141811847	0.9486933798	44.80313589				
StD	5.207381226	2.710174466	229.8697592	158.1327321	173.2352339	1.087699383	0.796476222	0.3192156619	16.22748161				

	Correlation Matrix													
	тв	DB	Alkphos	Alamine	Aspartate	TP	ALB	AGRatio	Age					
ТВ	1.0000	0.9785	0.2475	0.2455	0.3538	0148	2371	2041	0.0122					
DB	0.9785	1.0000	0.2466	0.2270	0.3247	0097	2279	1917	0.0187					
Alkphos	0.2475	0.2466	1.0000	0.1198	0.1372	0294	1651	2375	0.0863					
Alamine	0.2455	0.2270	0.1198	1.0000	0.8400	0405	0261	0086	1028					
Aspartate	0.3538	0.3247	0.1372	0.8400	1.0000	0464	1036	0817	0750					
TP	0148	0097	0294	0405	0464	1.0000	0.7874	0.2408	1875					
ALB	2371	2279	1651	0261	1036	0.7874	1.0000	0.6888	2641					
AGRatio	2041	1917	2375	0086	0817	0.2408	0.6888	1.0000	2156					
Age	0.0122	0.0187	0.0863	1028	0750	1875	2641	2156	1.0000					

	Eigenvalues of the Correlation Matrix									
	Eigenvalue	Difference	Proportion	Cumulative						
1	2.88320909	0.79557510	0.3204	0.3204						
2	2.08763400	0.73243269	0.2320	0.5523						
3	1.35520131	0.41539455	0.1506	0.7029						
4	0.93980676	0.10379195	0.1044	0.8073						
5	0.83601482	0.16718562	0.0929	0.9002						
6	0.66882920	0.51626025	0.0743	0.9745						
7	0.15256894	0.09669020	0.0170	0.9915						
8	0.05587874	0.03502162	0.0062	0.9977						
9	0.02085712		0.0023	1.0000						

The PRINCOMP Procedure

	Eigenvectors									
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	
тв	0.454464	0.224481	0.411895	230522	0.093106	0.045908	016909	059923	0.711069	
DB	0.446128	0.220277	0.431265	232524	0.099979	0.060736	074309	033487	701472	
Alkphos	0.246103	0.004487	0.180647	0.733213	418127	0.440242	0.021892	0.007196	0.001804	
Alamine	0.289811	0.375345	523846	0.116613	0.086248	030628	685783	0.089768	0.019470	
Aspartate	0.346997	0.361291	455647	0.085747	0.100346	092343	0.713333	070932	040288	
TP	240471	0.436977	0.322852	0.324544	0.040598	515158	0.042788	0.522253	0.006911	
ALB	391144	0.471466	0.138359	0.162170	0.119771	0.016445	069199	748210	007863	
AGRatio	327948	0.345141	030142	192445	0.233332	0.723524	0.088619	0.386559	0.013131	
Age	0.105348	311928	0.073522	0.406911	0.847679	0.042188	009912	012356	0.005477	

4)After doing cluster analysis on the principal components, the data still did not cluster well. I ended up choosing 8 clusters. Clusters 2,3, and 5-8 contained all or mostly all liver patients, while clusters 1 and 4 contained about 2 out of 3 liver patients in each. Since the clusters with mostly liver patients are high in principal component 1 (which compares TB and DB to ALB and AGRatio) and 2 (which compares TP and ALB to age), liver patients tend to have higher TP and DB.

The CLUSTER Procedure Complete Linkage Cluster Analysis

	Cluster History														
Number of Clusters					Clusters		Freq	Semipartial R-Square	R-Square	Approximate Expected R-Square	Cubic Clustering Criterion	Pseudo F Statistic	Pseudo t-Squared	Norm Maximum Distance	Tie
15	CL18	CL42	35	0.0063	.843	.844	13	215	14.0	1.4199					
14	CL34	CL23	12	0.0028	.840	.836	1.03	227	5.5	1.5369					
13	CL28	CL22	189	0.0111	.829	.827	0.52	227	64.5	1.5924					
12	CL15	CL17	43	0.0087	.820	.817	0.79	233	13.6	1.7883					
11	CL19	CL16	269	0.0240	.796	.805	-1.6	220	87.8	1.8294					
10	CL26	CL27	5	0.0036	.793	.791	0.27	240	3.7	1.8586					
9	CL20	CL35	10	0.0050	.788	.775	2.28	262	6.3	1.9484					
8	CL21	CL14	16	0.0086	.779	.756	4.09	285	11.9	1.9982					
7	CL11	CL13	458	0.1311	.648	.732	-12	174	426	2.2231					
6	CL12	CL24	84	0.0711	.577	.702	-16	155	133	2.6491					
5	CL8	OB197	17	0.0131	.564	.663	-12	184	10.6	3.0539					
4	CL7	CL6	542	0.1341	.430	.607	-20	143	187	3.1503					
3	CL9	CL10	15	0.0328	.397	.448	-5.5	188	23.8	3.2532					
2	CL4	CL5	559	0.1751	.222	.253	-3.5	163	177	3.8765					
1	CL2	CL3	574	0.2220	.000	.000	0.00		163	5.9117					

The CLUSTER Procedure Complete Linkage Cluster Analysis

The FREQ Procedure

Frequency

Table of CLUSTER by LiverPatient							
	LiverPatient						
CLUSTER	No Yes To						
1	81	188	269				
2	0	10	10				
3	8	33	41				
4	75	114	189				
5	1	42	43				
6	0	16	16				
7	0	5	5				
8	0	1	1				
Total	165	409	574				

5) Since the researcher is interested in classification, I used discriminant analysis. In order to obtain the best model, I used stepwise discriminant analysis. The final model includes DB, Alkphos, age, and Aspartate. The researcher was correct, it is difficult to classify the four groups. A female who is not a liver patient had a classification error rate of 0.1837, while the three other groups had error rates above .7. There is a large gap between females, while a smaller gap between men. Male liver patients and non liver patients may have similar levels of DB, Alkphos, age, and Aspartate.

The STEPDISC Procedure

	Stepwise Selection Summary										
Step	Number In	Entered	Removed	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Average Squared Canonical Correlation	Pr > ASCC	
1	1	DB		0.0668	13.60	<.0001	0.93318583	<.0001	0.02227139	<.0001	
2	2	Alkphos		0.0291	5.69	0.0008	0.90598909	<.0001	0.03180427	<.0001	
3	3	Age		0.0248	4.81	0.0026	0.88355074	<.0001	0.03959133	<.0001	
4	4	Aspartate		0.0267	5.18	0.0015	0.85997941	<.0001	0.04768164	<.0001	

The DISCRIM Procedure **Test of Homogeneity of Within Covariance Matrices**

Chi-Square	DF	Pr > ChiSq
1061.083394	30	<.0001

Since the Chi-Square value is significant at the 0.1 level, the within covariance matrices will be used in the discriminant function.

Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.LIVER2 Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into cell								
From cell	FemaleNo	FemaleYes	Male No	Male Yes	Total			
FemaleNo	40	0	9	0	49			
	81.63	0.00	18.37	0.00	100.00			
FemaleYes	50	13	13	15	91			
	54.95	14.29	14.29	16.48	100.00			
Male No	80	10	25	1	116			
	68.97	8.62	21.55	0.86	100.00			
Male Yes	113	34	83	88	318			
	35.53	10.69	26.10	27.67	100.00			
Total	283	57	130	104	574			
	49.30	9.93	22.65	18.12	100.00			
Priors	0.25	0.25	0.25	0.25				

Error Count Estimates for cell									
	FemaleNo	FemaleYes	Male No	Male Yes	Total				
Rate	0.1837	0.8571	0.7845	0.7233	0.6371				
Priors	0.2500	0.2500	0.2500	0.2500					

While it is difficult to tell, the results show that high TB and DB levels are an indicator of liver disease. As shown in the model in (2), when DB increases by one unit, the odds of having liver disease is 1.720 times higher. When TP increases by one unit, the odds of having liver disease is 1.543 times higher. However, as shown in (4) and (5), there is quite a bit of overlap between liver patients and non liver patients.