

On considère la fonction suivante définie sur] – $\frac{3}{20}$; + ∞ [:

$$f(x) = \ln(20x + 3) - 3x + 2$$

- 1. Calculer la limite de f en $-\frac{3}{20}$
- 2. Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** En déduire le nombre de solutions de f(x) = 0 et un encadrement d'amplitude 10^{-2} de cette solution.

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to -\frac{3}{20}^{+}} \ln(20x+3) = -\infty$$

$$\lim_{x \to -\frac{3}{20}^{+}} -3x+2 = \frac{3}{20} \times 3+2$$
donc
$$\lim_{x \to -\frac{3}{20}^{+}} \ln(20x+3) + 3x + 2 = -\infty$$

2.

$$\lim_{x \to +\infty} \ln(20x+3) = +\infty$$

$$\lim_{x \to +\infty} -3x + 2 = -\infty$$
donc
$$\lim_{x \to +\infty} \ln(20x+3) - 3x + 2 = -\infty \quad \text{par dominance de } x$$

3.

$$f'(x) = \frac{20}{20x+3} - 3$$

$$= \frac{20-3 - (20x+3)}{20x+3}$$

$$= \frac{20-60x-9}{20x+3}$$

$$= \frac{11-60x}{20x+3}$$

$$= \frac{11-60x}{20x+3}$$

4.

$$f'(x) > 0 \Leftrightarrow \frac{11 - 60x}{20x + 3} > 0$$
$$\Leftrightarrow 11 - 60x > 0 \text{ car } 20x + 3 > 0$$
$$\Leftrightarrow x < \frac{11}{60}$$

5. On a:

х	$-\frac{3}{20}$ $\frac{11}{60}$ $+\infty$
g'(x)	+ 0 -
g(x)	3.3471199848859 -∞

6. Comme la fonction g est continue, croissante de $-\infty$ à 3.3471199848859 > 0, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_1 \in]-\frac{3}{20}; \frac{11}{60}[$ tel que $g(\alpha_1)=0$. Comme la fonction g est continue, croissante de 3.3471199848859 > 0 à $-\infty$

Logarithme TG

, alors, d'après le théorème des valeurs intermédiaires, on en déduit qu'il existe une unique solution $\alpha_2 \in]-\frac{3}{20};+\infty[$ tel que $g(\alpha_2)=0.$

$$f(-0.15) < 0$$

$$f(-0.14) > 0$$

$$donc -0.15 < \alpha_1 < -0.14$$

$$f(1.9) > 0$$

$$f(1.91) < 0$$

$$donc 1.9 < \alpha_2 < 1.91$$