CS 303, Paul Cao, Lecture 31

Plan: transitive closure, Johnson's algorithm

Review

• Floyd-Marshall's algorithm for all pair shortest path- O(n³) using matrix operations

Warshall's algorithm for transitive closure Definition:

The transitive closure of a directed graph with n vertices can be defined as the n-by-n matrix $T=\{t_{ij}\}$, in which the element in the i^{th} row and j^{th} column is 1 if there exists a non-trivial directed path (i.e. a directed path of a positive length) from the i^{th} vertex to the j^{th} vertex. Otherwise, t_{ij} is zero.

It basically tells us the existence of all nontrivial paths in a digraph. Its format is kind of similar to adjacency matrix.

e.g.

	1	2	3	4	
1	0	0	1	0	-
2	0	0	0	1	
3	0	0	0	0	
4	0	1	0	0	

Adjacency Matrix

Transitive Closure

e.g.

	1	2	3	4	
1	0	0	1	0	
	1				
3	0				
4	1	1	1	1	

Adjacency Matrix

	1	2	3	4	
1	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	0	1	0	
2	1	1	1	1	
3	0	0	0	0	
4	1	1	1	1	

Transitive Closure

Q:/ How to find the transitive closure of a graph?

A:/ Solution1:

- Use DFS or BFS for each vertex, i.e. vertex i.
- Use the search tree to indicate which vertices are reachable from vertex i

Lecture 31

if we do a DFS on 1, the tree we have is

Thus 1 can only go to 3

if we do another DFS on 2, the tree we have is

Thus 2 can go to 1, 3, and 4

Complexity: $|V|*\Theta(|V|^2)=\Theta(|V|^3)$

Solution 2: Warshall's algorithm based on DP **Idea:**

CS 303, Paul Cao, Lecture 31

Important observation: If there is a path from a to z via s then there must be a path from a to s and from s to z

Let $R^{(k)}$ be the optimal answer when we only allow the first k nodes to be intermediate nodes in paths. We can compute the optimal solution for k + 1 nodes $R^{(k+1)}$ efficiently. In here, k is the number in the node.

So we can construct transitive closure T as the last matrix in the sequence of n-by-n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where

 $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate

Q:/ What is $R^{(0)}$?

A:/ It is the adjacency matrix

Q:/ What is $R^{(n)}$?

A:/ It is the transitive closure

As k goes to k+1, the recurrence can be set up as the following

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices 1, ..., k allowed as intermediate $R^{(k)}[i,j]$

1. = $R^{(k-1)}[i,j]$ (path using just 1,...,k-1)

2. $= R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j]$ (path from i to k and from k to i using just 1,...,k-1)

where the dash represent the first scenario and the dotted line represent the second scenario.

With this idea, recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is: $R^{(k)}[i,j] = R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the rules above for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

CS 303, Paul Cao, Lecture 31

Find the transitive closure of the following graph

Iteration 1

	1	2	3	4			
1	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	0	1	0	1		
1 2	1	0	1	1			
3	0	0	0	0			
4	0	1	0	0			

 $R^{(1)}$ (with intermediate vertices numbered no higher than 1, i.e. just vertex 1)

Iteration 2

	1	2	3	4	
1	0	0	1	0	7
2	1	0	1	1	
3	0	0	0	0	
4	0	1	0	0	

 $R^{(1)}$ (with intermediate vertices numbered no higher than 1, i.e. just vertex 1)

 $R^{(2)}$ (with intermediate vertices numbered no higher than 2, i.e. vertices 1 and 2)

Iteration 3

CS 303, Paul Cao,

т	4	2 1
	ecuire	• • I

	1	2	3	4	
1	0	0	1	0	1
2	1	0	1	1	
3	0	0	0	0	
4	1	1	1	1	

 $R^{(2)}$ (with intermediate vertices numbered no higher than 2, i.e. vertices 1 and 2)

		4			
	1	2	3	4	
1	0	0	1	0	
2	1	0	1	1	
3	0	0	0	0	
4	1	1	1	1	

 $R^{(3)}$ (with intermediate vertices numbered no higher than 3, i.e. vertices 1,2 and 3)

Iteration 4

	1	2	3	4	
1	0	0	1	0	7
2	1	0		1	
3	0	0	0	0	
4	1	1	1	1	

 $R^{(3)}$ (with intermediate vertices numbered no higher than 3, i.e. vertices 1,2 and 3)

 $R^{(4)}$ (with intermediate vertices numbered no higher than 3, i.e. vertices 1,2,3,4) It is the transitive closure

The overall algorithm is

```
CS 303, Paul Cao, Lecture 31

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure

//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(n)}
```

Efficiency:

Time efficiency: $\Theta(n^3) \rightarrow \text{ same as DFS traversals but very very succinct$ **Space efficiency:**Matrices can be written over their predecessors

Topic 2: Johnson's algorithm

Johnson's algorithm

Idea: graph re-weighting and try to use Dijketra IVI times

Grouph reweighting:

Griven function $h: V \rightarrow |R|$, reweight each edge $(u,v) \in E$ by $w_h(u,v) = w(u,v) + h(u) - h(v)$

then for any U, VEV, all paths from U to V are reversited by the same amount.

Collary: $S_h(u,v) = f(u,v) + h(u) - h(v)$

Thus we'll try to find h: V > IR s.t. W, (u,v) ≥0 for ell (u,v) € E Then run Dijkertra to set Salu, v), then set Su, v)

i.e. W(u, v) + h(u) - h(v) ≥0

Solve
a system
of linear
equations
then we are close.

If we run Dijketra on a on the new oraph $a \rightarrow d = 5$ \longrightarrow distance on the old graph is $W_h(a,d) - h(a) + h(d)$