Performance Analysis:

Median run time of the test(in ms):

Function	Design 1	Design 1	Design 2	Design 3	Design 5	Design 5
	(Initial with	(Initial	2 00.811 2	2 03.81. 3	(Initial with	(Initial
	Polar)	with			Polar)	with
	,	Cartesian)			,	Cartesian)
getX()	273	12	258	3	238	3
	Min: 260	Min: 12	Min: 239	Min: 2	Min: 235	Min: 2
	Max: 295	Max: 13	Max: 283	Max: 3	Max: 239	Max: 3
getY()	233	33	230	2	210	2
	Min: 225	Min: 32	Min: 209	Min: 1	Min: 208	Min: 2
	Max: 243	Max: 37	Max: 244	Max: 2	Max: 211	Max: 3
getRho()	3	16	3	2	2	2
	Min: 3	Min: 14	Min: 2	Min: 2	Min: 2	Min: 2
	Max: 3	Max: 18	Max: 3	Max: 3	Max :3	Max: 3
getTheta()	3	1227	3	1138	2	1253
	Min: 3	Min: 1213	Min: 2	Min: 1127	Min: 2	Min: 1230
	Max: 3	Max: 1241	Max: 3	Max: 1157	Max: 3	Max: 1292
getDistance()	890	8	843	3	825	4
	Min: 881	Min: 7	Min: 801	Min: 3	Min: 802	Min: 3
	Max: 904	Max: 8	Max: 869	Max: 4	Max: 852	Max: 4
rotatePoint()	1318	802	1208	801	1253	846
	Min: 1277	Min: 771	Min: 1189	Min: 800	Min: 1207	Min: 808
	Max: 1398	Max: 831	Max: 1233	Max: 802	Max: 1291	Max: 874
Total Run	2721	2098	2545	1949	2531	2110
Time	Min: 2684	Min: 2099	Min: 2387	Min: 1940	Min: 2462	Min: 2056
	Max: 2770	Max: 2120	Max: 2593	Max: 1966	Max: 2567	Max: 2177

Description of test:

The above result was tested using the program PerformanceTest, which is also available on GitHub. To obtain accurate data, five tests were performed, and the median, minimum and maximum were recorded.

For the tests, a fixed number of iterations (100,000,000) were used to calculate the elapsed time for each method, namely getX, getY, getRho, getTheta, getDistance, and rotatePoint.

The program is designed to test the elapsed time by creating different instances of point classes with random variables and then invoking the respective methods (testPointCP, testPointCP2, testPointCP3, testPointCP5Polar, testPointCP5Cartesian). It will then print out the elapsed time for each method, including the total time of the test.

Discussion:

In the PointCP class, the "get" method for each coordinate will only perform quickly when the point is created with that type of coordinate. For example, when the point is initialized with polar coordinates, the average time for retrieving rho and theta is 3ms, while retrieving the x and y coordinates takes around 250ms.

In design 2 and design 3, there is the same issue as in PointCP; however, on average, the time taken to retrieve each coordinate has decreased by around 20ms when computing different types of coordinates.

In design 5, since it is an abstract class with subclasses of design 2 and 3, it has similar results to design 2 and 3, but it has a clearer and simpler method calling.

In conclusion, the efficiency of computation will be slower when calculating different types of coordinates compared to their initial type. However, PointCP is relatively slower than other designs.