

变分法与最优控制方法

谭 忠

厦门大学数学科学学院

目录

- 1 引子
- 2 源头问题与当今应用
- 3 变分思想与建模方法
- 4 案例分析

1 引子

过去遇到的问题:

求函数的极值

但有时在现象或事件中需要寻求对那些 自变量也是函数的 特殊函数求极值

即这种特殊函数是 "函数的函数"。 称为泛函, 求泛函的极值问题 称为变分问题.

求解这类变分问题的方法 称为**变分法**, 其理论形成了 一门数学分支 称为**变分学**

源头问题与当今应用

确定某一函数

$$z = f(x)$$

的极值问题

源头问题与当今应用

是催生微积分 产生和发展的 源头问题之一, 而确定一个 泛函的极值问题.

则是催生变分学 诞生和发展的 源头问题。 历史上曾经出现了 许多有名的 变分问题.

一、催生变分学产生的源头问题

例8.1、最速降线问题

(brachistochrone)

约翰·伯努利

1696年提出了

一个难题:

"设在垂直平面内 有任意两点,

一个质点

受地心引力的作用,

自较高点下滑 至较低点, 不计摩擦, 问沿什么曲线下滑, 时间最短?"

以此挑战

全欧洲的数学家.

这就是著名的

"最速降线"问题.

源头问题与当今应用

它比通常的求函数的 极大极小值不同, 它是要求出 一个未知函数(曲线), 来满足所给的条件.

这问题的新颖 和别出心裁 引起了广泛注意,

罗比塔、 雅可比·伯努利、 莱布尼茨和牛顿 都得到了解答。

后来欧拉和 拉格朗日 建立了这一类 问题的普遍解法,

从而确立了 数学的一个分支 -变分学.

例8.2、最小旋转面问题

设有一正值函数

$$y = y(x) > 0$$
,

它所代表的曲线

源头问题与当今应用

通过 (x_1,y_1) ,

 (x_2, y_2) 两点,

当这条曲线

绕x轴旋转的时候,

得一旋转面,

求使旋转面的 面积最小的 那个函数 y = y(x).

例8.3、悬索形状问题

(The Hanging Chain Problem)

1690年,约翰·伯努利

的哥哥雅可比·伯努利

提出了如下问题 向数学界征解, 即,固定项链的两端, 在重力场中 让它自然垂下,

问项链的曲线 方程是什么。 这就是著名的 悬链线问题

源头问题与当今应用

在大自然中, 除了悬垂的项链外, 我們还可以观察到 吊桥上方的悬垂钢索,

挂着水珠的蜘蛛网, 以及两根电线杆之间 所架设的电线, 这些都是悬链线.

伽利略更早 注意到悬链线, 他猜测悬链线 是抛物线. 但实际上不是。

源头问题与当今应用

1646年,惠更斯17岁, 经由物理的论证, 得知伽利略的 猜测不对, 但他也求不出答案。

到1691年。 即雅可比·伯努利 提出悬链线 问题的第二年.

莱布尼兹、

惠更斯(已62岁)

约翰·伯努利

各自得到了正确答案.

所用方法就是

诞生不久的微积分.

例8.4、费马(Fermat)原理

费马原理说:

通过介质的光路,

使光线通过

这一段光路

所需时间为最小值.

这里涉及折射率, 即光在真空中的 传播速度 与光在该介质中的 传播速度之比.

源头问题与当今应用

材料的折射率越高, 使入射光发生 折射的能力越强。 设光在某种 介质中的速度为v,

由于真空中的 光速为c, 所以这种介质的 绝对折射率公式:

比如海市蜃楼 是一种因光的折射 而形成的自然现象, 它也简称蜃景,

是地球上物体 反射的光 经大气折射 而形成的虚像.

例8.5、测地线(Geodesic line)问题

设
$$\varphi(x,y,z)=0$$

是一已知曲面,

求在该曲面上

所给两点(A,B)间 长度最短的曲线。 这个最短曲线 叫测地线。

球面上两点的 测地线即为通过 两点的大圆。 这是一个典型的 变分问题,

这个问题已经

在1697年

约翰·伯努利所解决.

但这一类问题

的普遍理论

直到1744年 通过欧拉以及 1762年拉格朗日 的努力才解决的.

例8.6、等周问题

(isoperimetric problem)

在长度一定的

封闭曲线中,

什么曲线

所围成面积最大.

该问题在古希腊时

已有答案:圆,

但它的变分特性

直到1744年

才被欧拉察觉出来.

以上所有例子均 来自于物理现象. 另一类来源 是几何问题.

如1760年的

Lagrange**的**

极小曲面方程和

1755 年的

蒙日(Monge)-

安培(Ampere)方程.

例8.7、极小曲面问题

以空间中一条 简单的闭曲线为界

张成的曲面中

有没有一个

面积最小的曲面?

背景问题

极小曲面(Plateau)问题

比利时物理学家

普拉托(Plateau)

在1873年写了一本书

源头问题与当今应用

书中指出将具有 闭曲线形状的金属丝 浸到甘油溶液 或肥皂水中. 然后把金属丝取出来,

那么肥皂水 以金属丝为边界 张成的具有 最小面积的曲面 形状的肥皂薄膜.

于是, 为了研究 由一条空间闭曲线 所围的极小曲面问题, 数学家们找到了 新的源动力.

这个问题称为 普拉托(Plateau)问题, 由此导致了解的 存在性、正则性和 解的性质的研究.

谢 谢!

二、变分学在当今世界的应用

变分法 在最优化问题中 发挥着重要作用。

人们在处理 实际问题时, 都希望获得 最佳的处理结果.

如何获取最佳 处理结果的问题 称为最优化问题.

源头问题与当今应用

针对最优化问题, 如何选取满足要求的 方案和具体措施, 使所得结果最佳的方法 称为**最优化方法**.

源头问题与当今应用

最优化问题 大体分为两类, 一类是求函数的极值; 另一类是本章的 求泛函的极值.

求函数极值的方法 称为**数学规划**, 包括**线性规划** 和**非线性规划**.

求函数极值 问题又被称为 静态最优化问题.

源头问题与当今应用

求泛函极值问题 需要应用变分法 最小(大)值原理 或动态规划来处理,

这一类问题称为 动态最优化问题, 通常称为 最优控制问题.

例8.8 物体在液体中 作直线运动时, 它所受到的阻力 与运动速度的 平方成正比.

现假设该物体 要在规定的 时间 $[0,t_f]$ 内,

从起点x(0)=0

到达终点 $x(t_f) = S$,

源头问题与当今应用

且终点速度

不受限制.

问该物体采用

什么运动方式x(t),

它所消耗的能量最少?

源头问题与当今应用

消耗的能量 等于克服阻力 所作的功, 为速度的平方 乘一个比例常数,

由于该常数 在求极值过程中 不起作用. 因此,目标函数为

$$\min J = \int_0^{t_f} \dot{x}^2(t) dt$$

约束(边界)条件为 $x(0) = 0,$ $x(t_f) = S$

该例的目标函数的 自变量是表示 物体运动方式的 时间函数.

静态最优化和 动态最优化问题 并无截然的界限, 但在数学基础上 分属两个不同范畴,

静态最优化问题 属于运筹学范畴, 而动态最优化问题 属于变分学范畴, 其理论框架不同.

最优化问题的 三个基本要素是 目标函数、 约束条件 和求解方法.

目标函数:

就是用数学方法 描述处理问题 所能够达到 结果的函数,

该函数的自变量是 表示可供选择的方案 及具体措施的 一些参数或函数, 最佳结果表现为 目标函数取极值.

在处理实际问题时, 通常会受到 诸多因素的限制, 这些限制的数学描述 称为**最优化问题的约束条件**.

求解方法是 使目标函数取极值, 所得结果称为

最优解.

例8.9:火箭飞行问题

设有一质量为m的 火箭作水平飞行,

用s(t)表示飞行距离, 其升力L与重力mg相平衡, *q* 为重力加速度

空气阻力R 与

火箭飞行速度

 $v = \frac{ds}{dt}$

及升力L

有以下关系:

$$R = av^2 + bL^2$$

式中, $a > 0$,
 $b > 0$ 为常数。
试求火箭飞行
的最大距离。

例8.10:产品价格 最佳调整

物价管理部门 根据市场预测和 经济协调发展的需要,

决定将A产品的 价格p(t) 由现在的 $p_0 = 70$ 元调整到 $p_1 = 100 \; \bar{\pi}$

便要求各公司 自行在一年内 完成这一 调价任务.

某公司经营 A产品多年, 知道A产品的 销售量S与其价格p以及价格的变化率

p' 的关系, 利用这种关系 为使得总利润最大, 如何制定最佳 调价方案?

例8.11: 升降机的

最速降落问题

设有一升降机w.

其质量为m。

如下图所示

它一方面 受重力的作用, 其值为mg(g为重力加速度),

另一方面受控制器 作用力的作用, 其值为u(x), 并且u(x)满足

下列不等式 $u(x) \leq u_M$ 其中 u_M 为 大于mg的常数。

设y(x)是升降机W

离地面的高度。

 $\dot{y}(x)$ 是

升降机W 垂直

运动的速度.

假定在初始时刻

 x_0 时,

升降机W

离地面的高度

与垂直运动的速度

分别为

 $y(x_0) = y_{10}$

 $\dot{y}(x_0)=y_{20}$

问:如何选择 控制作用u(x)的 变化规律 使得升降机W最快地到达地面,

并且要求到达 地面的速度为零, 即要求 $y(x_f)=0$ 和 $\dot{y}(x_f)=0$ 。

例8.12: 登月舱的 月球软着陆问题 为了使宇宙飞船 登月舱在月球表面

实现软着陆, 即落到月球 表面的速度为零,

需要选择发动机 推力的变化规律, 以便使燃料 消耗量为最少。 如下图所示,

设登月舱的 质量为m(t), 它离月球表面的 高变为h(t),

垂直运动速度为v(t), 发动机的推力为u(t), 月球表面的引力 加速度为常数g,

设登月舱自身的 质量为 M_1 , 所携带的燃料 质量为 M_2 ,

初始高度为 h_0 , 初始的垂直速度为 v_0 , 登月舱自某时刻 $t_0=0$ 开始 进人登月着陆过程,

问如何选择 发动机推力的 变化规律, 以使燃料 消耗量为最少。

例8.13: 姿态控制问题

下图是人造卫星

姿态控制示意图。

小喷嘴喷出燃料时 产生的反作用力 可以使卫星体旋转 并进入要求的姿态。

用A和B表示的 两组斜对称配置的 喷嘴是成对工作的。

源头问题与当今应用

如果在某时刻 t_0 卫星体偏离要求的姿态 一个 $\theta(t_0)$ 角, 并且正以 $\dot{\theta}(t_0)$ 的 角速度继续偏离。

源头问题与当今应用

要求从 t_0 时刻起加上适当的控制力,使卫星经过最短时间重新回到要求的姿态。

如果用 t_f 表示终端时间, 则要求 $\theta(t_f)=0$, $\dot{ heta}(t_f)=0$,

$$J = t_f - t_0$$

最小。

这就是上述姿态

最优控制问题的 性能泛函(指标)。 这是一个 最短时间问题。

在姿态控制问题中 还可以从 另外一种观点 对控制系统提出要求,

例如要求 在控制过程中 消耗燃料最少。

反作用力F是由于从小喷嘴 喷射出高速燃料 (推进剂)产生的,

其大小与 单位时间里 喷射出燃料的 数量成正比。

若由 A 喷射出时 F为正, 则由B 喷射出时 F为负。

但是,单位时间里 消耗的燃料总是正的. 它与F的绝对值 成正比. 因而与u(t)的 绝对值也成正比。

于是,最省燃料问题的 性能泛函可以定义为 $J=\int_{t_0}^{t_f}|u(t)|dt$ 达到最小。 这是一个最少燃料问题。

如果在要求

少消耗燃料的同时,

还要兼顾时间也要短,

那么, 性能泛函

可以定义为

$$J[u(t)] = \int_{t_0}^{t_f} [
ho + |u(t)|] dt$$

式中权系数 ρ 的大小 表示了燃料同时间的 相对重要性。

若要求动作快, 则加大 ρ ; 若强调省燃料, 则减小 ρ 。

基于性能指标的 最优控制问题, 称为燃料-时间问题。

许多现实问题 都可以应用 变分法建模解决.

谢谢!

😿 变分思想与建模方法

变分思想与建模方法

一、变分模型的构建 泛函的定义

🎹 变分思想与建模方法

回顾函数的定义:

如果对于变量x

的某一区域中

的每-x值.

y有一值与之对应,

堂分思想与建模方法

或者数y对应于 x的关系成立, 则称变量y是 变量x的函数. 即y = y(x).

变分思想与建模方法

具有某种共同 性质的函数 构成的集合 称为函数类 (Function Class).

堂分思想与建模方法

例如, 在例8.1中, 所有的平面曲线 都通过点A和B. 而过点A和B就是 这个函数集合 所具有的共同性质.

📝 变分思想与建模方法

已经学过的

常见函数类有:

在开区间 (x_0,x_1) 内

连续的函数集,

堂 变分思想与建模方法

称为在区间 (x_0, x_1) 上的 连续函数类,

记为 $C(x_0, x_1)$.

📝 变分思想与建模方法

在闭区间[x_0, x_1]上 连续的函数集, 称为在区间[x_0, x_1]上的 连续函数类,

② 变分思想与建模方法

记为 $C[x_0, x_1]$, 其中函数在区间的 左端点右连续, 在区间的右端点左连续.

堂分思想与建模方法

在开区间 (x_0,x_1) 内 n阶连续可微的函数集, 称为在区间 (x_0,x_1) 上 n阶连续可微的函数类. 记为 $C^n(x_0, x_1)$,

📝 变分思想与建模方法

并约定

$$C^0(x_0,x_1)=C(x_0,x_1).$$

如果对于每个n.

都有 $y(x) \in C^n(x_0, x_1)$,

② 变分思想与建模方法

那么y(x)

称为无穷可微函数,

记作 $y(x) \in C^{\infty}(x_0, x_1)$.

堂分思想与建模方法

在闭区间 $[x_0,x_1]$ 上 n阶连续可微的函数集, 称为区间 $[x_0,x_1]$ 上 n阶连续可微的函数类. 记为 $C^n[x_0,x_1]$,

其中函数的n阶导数 在区间端点单边连续, 并约定 $C^0[x_0,x_1]=C[x_0,x_1].$

对于记号C和 C^n , 同样也适用于多元函数, 只要把上述区间 换成函数所依赖的区域.

泛函的定义:

设S为一函数集合,

若对于每一个函数

 $y(x) \in S$,

有一个实数J与之对应,

变分思想与建模方法

则称J是对应

在S上的泛函,

记作J(y(x)).

S 称为J 的

容许函数集。

即泛函就是

"函数的函数"。

函数是变量

和变量的关系,

泛函是变量

与函数的关系

如果一个函数类中的 某个函数能够 使某个泛函取得极值 或可能取得极值,

则该函数类 称为变分问题的

容许函数类

(Admissible Function Class).

容许函数类 对应的曲线(曲面) 称为容许曲线(曲面)类(或族)。

函数类中能使 泛函取得极值 或可能取得 极值的函数(或曲线)

称为极值函数, 或极值曲线, 也称为变分问题的解。

变分思想与建模方法

如果可取曲线类的端点

预先给出且为定值,

则所求泛函极值的问题

称为固定端点的

变分问题(Variational Problem with Fixed end point)。

比如: 在C([a,b])上 考虑积分 $J[y(x)] = \int_a^b y(x) dx$ 任取一个在C([a,b])上

变分思想与建模方法

连续的函数y(x)

有唯一确定的值

与它对应,

J可视为y(x)的函数,

因此是泛函。

再比如:给定函数y(x),

 $x_1 \leq x \leq x_2$,

在 $x = x_a(x_1 \le x_a \le x_2)$ 时的值

 $J = y(x)|_{x=x_a}$

为一泛函。

因为当函数

y(x)给定后,

 $y(x_a)$ 是一确定的值。

比如:考察函数的

不定积分

$$J = \int_0^x y(\tau) d\tau$$

因为当函数y(x)给定后,

上面的不定积分 仍是一个函数, 而不等于某个确定的值。 因此不是泛函。

变分法中有三类基本问题,即拉格朗日(Lagrange)问题、马耶耳(Mayer)问题和波尔札(Bolza)问题。

这三类问题 在最优控制问题中 都会遇到. 它们之间的主要区别 在于性能泛函的形式不同。

(1)拉格朗日问题

拉格朗日问题的

性能泛函表示为:

 $J[y(x)] = \int_{x_0}^{x_f} F[x,y(x),y'(x)] dx$

这里F[x,y(x),y'(x)]

是三个独立变量

x, y(x), y'(x)

在区间 $[x_0,x_f]$ 上的

变分思想与建模方法

已知函数,

且二阶连续可微。

在例8.13中的

最小燃料问题

就是拉格朗日问题。

(2)马耶耳问题

马耶耳问题的

泛函表示为

 $J[y(x)] = \Phi_1(x_f, y(x_f)) - \Phi_2(x_0, y(x_0))$

在例8.13中的 最短时间控制问题 就是马耶耳问题的特例。

(3)波尔札问题

波尔札问题的

性能泛函是

$$egin{aligned} J[y(x)] &= \Phi_1(x_f,y(x_f)) - \Phi_2(x_0,y(x_0)) \ &+ \int_{x_0}^{x_f} F[x,y(x),y'(x)] dx \end{aligned}$$

在例8.13中, 如果在要求 少消耗燃料的同时, 还要兼顾时间也要短,

那么, 性能泛函 就是波尔札 问题的一个实例。

从上面的分析可以看出, 拉格朗日问题的 性能泛函是一个积分, 马耶耳问题的

堂分思想与建模方法

性能泛函是 关于初始时间、

初始状态

和终端时间、

终端状态的某个函数,

而波尔札问题的 性能泛函 则是两者之和。

可见,波尔札问题 具有更一般的形式。 但是,在这3类问题之间 常可互相转化。

比如、把泛函

$$J=x_f-x_0$$

改写成

$$J=\int_{x_0}^{x_f}dx$$

谢谢!

变分思想与建模方法

二、固定边界变分模型的构建

(1)最简泛函的变分模型的构建

具有一个一元函数的

泛函的变分模型

称为最简泛函

的变分模型,

建立这样的变分模型 只用到一元微积分.

F[x,y(x),y'(x)]

是三个独立变量

x, y(x), y'(x)

在区间 $[x_1,x_2]$ 上 的已知函数, 且二阶连续可微,

灰 变分思想与建模方法

则泛函

$$J[y(x)] = \int_{x_1}^{x_2} F[x,y(x),y'(x)] dx (2.1)$$

称为最简单的积分型泛函,

简称**最简泛函**。

📝 变分思想与建模方法

因对F 的积分 得到的J[y(x)]值 取决于函数y(x)的形式, 故J[y(x)]是y(x)的泛函, 也称为**变分积分**。

📝 变分思想与建模方法

J[y(x)]不仅仅

只是y(x) 的函数,

还是x 和y'(x)的函数,

变分思想与建模方法

但是只要求出了 y(x), y'(x)也能求出来了, 于是只需写成 J[y(x)]的形式。

变分思想与建模方法

下面就前面源头问题, 应用微积分思想 建立变分模型.

😿 变分思想与建模方法

例8.1、最速降线问题建模

设A和B是

铅直平面上

不在同一

铅直线上的两点,

👽 变分思想与建模方法

在所有连结A 和B的平面曲线中, 求一曲线, 使质点仅受重力作用,

😿 变分思想与建模方法

初速度为零时, 沿此曲线从A点 滑行至B点 的时间最短。

▼ 变分思想与建模方法

【问题分析】

显然,最快的路线 决不是连结A, B 两点的直线段.

🎹 变分思想与建模方法

当然, 这条直线段 在A、B两点间的 路程最短, 但沿这条直线 自由下落时,

双 变分思想与建模方法

运动速率的增长 是比较慢的. 如果我们取一条 较陡的路程,

堂分思想与建模方法

则虽然路程是加长了, 但在路程相当 大的一部分中, 物体的运动速率较大, 所需时间反而较少.

🎹 变分思想与建模方法

【模型构建】

在过A和B两点的 铅直平面上 建立坐标系,

堂 变分思想与建模方法

将A点取为

坐标原点,

B点取为

 $B(x_1, y_1),$

② 变分思想与建模方法

根据能量守恒定律, 质点在A点的势能 将转化为动能 设在曲线y(x) 上 任一点处的速度 $\frac{ds}{dt}$

📝 变分思想与建模方法

动能与势能守恒有(s为弧长)

$$rac{1}{2}m\left(rac{ds}{dt}
ight)^2=mgy$$

弧长微元可以表示为:

$$ds = \sqrt{1 + y'^2(x)} dx$$

😿 变分思想与建模方法

代入动势能守恒式得

$$dt = \sqrt{rac{1+y'^2}{2gy}} dx$$

干是质点滑行时间

应表为y(x)的泛函

$$J(y(x))=\int_0^{x_1}\sqrt{rac{1+y'^2}{2gy}}dx.$$

* 变分思想与建模方法

例8.2、最小旋转面问题建模

设有一正值函数

y = y(x) > 0,

它所代表的曲线

通过 $(x_1,y_1),(x_2,y_2)$ 两点,

堂分思想与建模方法

当这条曲线 绕x 轴旋转的时候, 得一旋转面, 求使旋转面的面积最小的 那个函数y = y(x).

* 变分思想与建模方法

【问题分析】

在y = y(x)上

对 $[x_1,x_2]$ 分割,

对应于y = y(x)上

有弧长微元为 $\triangle S_i$,

📝 变分思想与建模方法

它旋转一周可看成是

长为 $2\pi y(\xi_i)$,

高为 $\triangle s_i$ 的

长方形带状物体。

变分思想与建模方法

📝 变分思想与建模方法

因此, 微元面积为

 $2\pi y(\xi_i) \triangle x_i$

将所有微元面积

累积求和取极限可得。

🎔 变分思想与建模方法

即在
$$y(x_1)=y_1,$$
 $y(x_2)=y_2$ 的端点条件下求使泛函 $S=\int_{x_1}^{x_2}2\pi y\sqrt{1+(rac{dy}{dx})^2}dx$ (1.9) 最小的函数 $y(x).$

😿 变分思想与建模方法

例8.3、悬索形状问题建模

求长度已知的 均匀悬索的

悬线形状.

堂分思想与建模方法

【问题分析】

悬线形状是由 悬线达到最低位能的 要求来决定的. 而悬线的位能 则由悬线的重心决定.

灰 变分思想与建模方法

【模型构建】

设悬线各点的 铅垂线坐标为y(x), 并通过 $A(0,y_0)$,

 $B(x_1,y_1)$ 两点,

₩ 变分思想与建模方法

悬线长度为

$$L = \int_0^{x_1} \sqrt{1 + (\frac{dy}{dx})^2} dx$$
 (1.11)

悬索重心高度为

$$y_c = rac{1}{L} \int_0^L y ds$$

$$= \frac{1}{L} \int_0^{x_1} y \sqrt{1 + (\frac{dy}{dx})^2} dx \quad (1.12)$$

📝 变分思想与建模方法

问题变为:

在通过
$$y(0)=y_0,$$
 $y(x_1)=y_1$ 两点,

$$y(x_1)-y_1$$
MM,

一切曲线
$$y = y(x)$$
中,

🔽 变分思想与建模方法

求使(1.12)式中的 y_c 为极小的

函数y = y(x),

这是一个端点

已定不变的条件变分命题,

变分思想与建模方法

悬索的形状和坐标

🎹 变分思想与建模方法

归纳起来, 可把最简单的 边界已定不变的 变分命题写为:

📝 变分思想与建模方法

在通过
$$y(x_1)=y_1$$
,

$$y(x_2)=y_2$$

两点的条件下,

选取y(x),

👿 变分思想与建模方法

使泛函

$$J=\int_{x_1}^{x_2}F[x,y(x),y'(x)]dx$$
为极值。其中 $y'(x)=rac{dy}{dx},$ $F(x,y,y')$ 为一已知的 x,y,y' 的函数,

堂分思想与建模方法

F(x, y, y')还有 一些可微的条件。 y(x)也视所处理 的问题的不同 而有一些可微的条件,

🌹 变分思想与建模方法

它是在变分法的 发展过程中, 欧拉和拉格朗日 所最先处理的变分命题.

灰 变分思想与建模方法

例8.4、费马(Fermat)原理建模

通过介质的光路,

使光线通过

这一段光路

所需时间为最小值。

👿 变分思想与建模方法

以二维空间为例。

设介质的折光率为u(x,y),

而光线通过

介质的速度

📝 变分思想与建模方法

$$v(x,y) = \frac{c}{u(x,y)}$$
,
其中 c 为真空光速,
从原点(0,0)
到(x,y)点的
光行时间为

📝 变分思想与建模方法

$$T=\int_{0}^{t}rac{ds}{v} \ =rac{1}{c}\int_{0}^{x_{1}}u(x,y)\sqrt{1+(rac{dy}{dx})^{2}}dx \quad (1.10) \$$
 其中 $y=y(x)$ 为待定的光线

▼ 变分思想与建模方法

费马定理成为:

"xy(x),

使(1.10) 式中的

泛函T成为最小值".

🎹 变分思想与建模方法

(2)具有高阶导数的变分模型

上述泛函还可以 推广为包括y(x)的

高阶导数

 $y''(x), y'''(x), y^{(n)}(x)$ 等.

变分思想与建模方法

例如对泛函

$$J=\int_{x_1}^{x_2} F[x,y(x),y'(x),y''(x),...,y^{(n)}(x)]dx$$
的变分问题,
在这样的变分问题中,

边界条件可如下

ז 变分思想与建模方法

$$y(x_1)=y_1,$$

$$y'(x_1)=y_1',$$

$$y''(x_1)=y_1'',$$

$$y^{(n-1)}(x_1) = y_1^{(n-1)}$$

ז 变分思想与建模方法

$$y(x_2)=y_2,$$

$$y'(x_2) = y_2',$$

$$y''(x_2)=y_2'',$$

$$y^{(n-1)}(x_2)=y_2^{(n-1)}$$

📝 变分思想与建模方法

亦即在边界点上 不仅给出函数的值, 而且还给出 (n-1)阶以下的导数值.

🎹 变分思想与建模方法

(3)具有多个一元函数的变分模型

还可以推广到

泛函有两个或

多个函数的情况。

双 变分思想与建模方法

如泛函形式为

$$J=\int_{x_1}^{x_2} F(x,y,y',...,y^{(n)};z,z',z'',...,z^{(n)}) dx$$

🎹 变分思想与建模方法

(4)具有多元函数的变分模型

也可以推广到 含有多个自变量 的函数的泛函。

🎹 变分思想与建模方法

这时, 泛函是一个重积分, 例如二个自变量的泛函为 $J=\int\int_{\Omega}\!F(x,y,z,rac{\partial z}{\partial x},rac{\partial z}{\partial u})dxdy$ 所有函数z(x,y)

📝 变分思想与建模方法

在域 Ω 的边界 $\partial\Omega$ 上 的值已给出, 即所有容许曲面 都要经过 $\partial\Omega$ 。

🎹 变分思想与建模方法

例8.7、极小曲面问题建模

考虑平面上

有界区域 Ω .

🕶 变分思想与建模方法

在边界 $\partial\Omega$ 上

给定空间闭曲线

$$l: \left\{egin{array}{l} x=x(s) \ y=y(s) \ u=arphi(s) \end{array}
ight. \left(0\leq s\leq s_0
ight) \end{array}
ight.$$

😿 变分思想与建模方法

这里
$$x = x(s)$$
,

$$y = y(s)$$

为平面曲线

 $\partial\Omega$ 的方程.

👽 变分思想与建模方法

求一张定义

在 Ω 上

的曲面S,使得

(1) S以*l*为界

(2) S的表面积最小.

🎹 变分思想与建模方法

换言之,在所有 定义在Ω上 并以1为 周界的曲面中,

📝 变分思想与建模方法

要寻求一张曲面,

使它的表面积最小.

即给定函数集合

$$M_arphi = \{v|v\in C^1(ar\Omega), v|_{\partial\Omega} = arphi\}$$

👿 变分思想与建模方法

$$J(u) = MinJ(v) \qquad (1.13)$$

其中

$$J(v) = \iint_{\Omega} \sqrt{1 + {v_x}^2 + {v_y}^2} dx dy$$

灰 变分思想与建模方法

J是一个

从 M_{ω} 到

实数轴的函数

 $J:M_{arphi}
ightarrow R$

😿 变分思想与建模方法

这里J(v)称为 定义在函数集合

 M_{φ} 上的泛函.

📝 变分思想与建模方法

u是泛函J(v)

在集合 M_{φ} 上

达到极小值的"点",

谢谢!

😿 变分思想与建模方法

三、可动边界变分模型的构建

前面在研究泛函的 极值问题时,

都假设其积分限

固定不变.

🎹 变分思想与建模方法

即其容许曲线 都通过A,B这两个固定端点。 但在许多实际问题中,

💎 变分思想与建模方法

泛函的积分限 既可以固定, 也可以变动。

😿 变分思想与建模方法

如果泛函的 积分限可变, 或积分区域 固定而缺少边界条件,

* 变分思想与建模方法

则这样的变分问题 称为**可动边界的变分问题**。 当泛函的容许曲线 在边界上的值 没有明显给出时,

😿 变分思想与建模方法

这样的变分问题

称为无约束变分问题。

设泛函

 $J[y(x)] = \int_{x_0}^{x_1} F(x, y, y') dx$

其可取曲线 $y = y(x) \in C^2$ 函数,

② 变分思想与建模方法

且两个端点 $A(x_0, y_0)$,

 $B(x_1,y_1)$

分别在两个给定的

灰 变分思想与建模方法

$$C^2$$
函数 $y=arphi(x)$ 与 $y=\psi(x)$ 上移动,见下图,

变分思想与建模方法

😿 变分思想与建模方法

这个泛函称为 可动边界的最简泛函。

四、条件极值变分模型的构建

在自然科学

和工程技术中

所遇到的变分问题,

有时要求极值函数

除满足给定的 边界条件外, 还要满足一定的 附加约束条件.

这就是泛函的 条件极值问题。 在泛函所依赖的函数上 附加某些约束条件

来求泛函的极值问题 称为条件极值的 变分问题。

泛函的条件极值的 计算方法 与函数的条件极值的 计算方法类似,

可用拉格朗日 乘数法来实现, 这就是,选一个新的泛函, 使原泛函的

条件极值问题 转化为与之等价的 无条件极值问题。

例8.5、测地线(Geodesic line)问题建模

设
$$\varphi(x,y,z)=0$$

求曲面
$$\varphi(x,y,z)=0$$
上

变分思想与建模方法

所给两点

 $A(x_0, y_0, z_0),$

 $B(x_1,y_1,z_1)$ 间

长度最短的曲线C。

这个最短曲线叫测地线。

变分思想与建模方法

【问题分析】

设这条曲线的

方程可以写成

$$y = y(x), z = z(x),$$

 $x_0 \le x \le x_1$

式中, y(x), z(x)是连续可微函数, 因为曲线

在曲面
$$\varphi(x,y,z)=0$$
上,所以 $y(x)$, $z(x)$
满足约束条件

 $\varphi(x,y(x),z(x))=0$

【模型构建】

在曲面上 $A(x_0, y_0, z_0)$

和 $B(x_1,y_1,z_1)$

两点间的曲线

弧长微元

$$ds = \sqrt{1+(rac{dy}{dx})^2+(rac{dz}{dx})^2}dx$$

长度为

$$L = \int_{x_0}^{x_1} \sqrt{1 + (\frac{dy}{dx})^2 + (\frac{dz}{dx})^2} dx \quad (1.5)$$

于是, 变分模型可写成:

在满足
$$\varphi(x,y,z)=0$$
的一切 $y=y(x)$, $z=z(x)$ 的函数中,

选取一对y(x), z(x),使(1.5)式中的 泛函L为最小。

例8.6、等周问题(isoperimetric problem)建模 在长度一定的 封闭曲线中, 什么曲线所围成 面积最大.

【问题分析】

将所给曲线

用参数形式表达为

x = x(s), y = y(s),

因为这条曲线是封闭的.

所以
$$x(s_0) = x(s_1)$$
,

$$y(s_0)=y(s_1),$$

这条曲线的周长为:

$$L = \int_{s_0}^{s_1} \sqrt{(\frac{dx}{ds})^2 + (\frac{dy}{ds})^2} ds$$
 (1.7)

【模型构建】

根据格林公式, 其所围成面积 S为:

变分思想与建模方法

$$egin{align} S &= \int \int_R dx dy \ &= rac{1}{2} \oint_c (x dy - y dx) \ &= rac{1}{2} \int_{s_0}^{s_1} (x rac{dy}{ds} - y rac{dx}{ds}) \end{array} \ \ (1.8)
onumber$$

等周问题于是可写成:

在满足
$$x(s_0) = x(s_1)$$
,

$$y(s_0) = y(s_1)$$

一切
$$x = x(s)$$
, $y = y(s)$ 的函数中选取一对 $x = x(s)$,

y = y(s)函数, 使(1.8)式中的 泛函S为最大.

同时,其边界(这里是端点)

也已固定不变:

而且它是两个函数

x = x(s), y = y(s)

所确定的泛函。

谢谢!

>> 变分思想与建模方法

变分学的基本概念

1、函数的连续和泛函的连续

如果对于变量

x的微小改变.

变分思想与建模方法

有相对应的函数 y(x)的微小改变, 则就说函数y(x)是连续的,

亦即是说:

如果对于一个

任给的正数 ε .

可以找到一个 δ ,

当
$$|x-x_1|<\delta$$
 时,能使 $|y(x)-y(x_1)|,就说 $y(x)$ 在 $x=x_1$ 处连续.$

变分思想与建模方法

对于泛函也有 类似的定义. 为了研究泛函的 连续与极值, 需引入函数的距离

和邻域的概念.

设函数y(x), $y_0(x)$ 在区间[a,b]上 有连续的n阶导数, 则这两个函数

0到n阶导数之差的

绝对值中最大的那个数

$$d_n[y(x),y_0(x)]$$

$$= \max_{0 \leq i \leq n} \max_{a \leq x \leq b} |y^{(i)}(x) - y_0^{(i)}(x)|$$

称为函数y(x), $y_0(x)$ 在区间[a,b]上的 n阶距离

或n级距离.

特别, 当
$$n=0$$
时

$$d_0[y(x),y_0(x)]$$

$$= \max_{a \le x \le b} |y^{(0)}(x) - y_0^{(0)}(x)|$$

$$=\max_{a\leq x\leq b}|y(x)-y_0(x)|$$

称为函数y(x), $y_0(x)$ 在区间[a,b]上的 零阶距离或零级距离. 显然,两条曲线 重合的充要条件

是两条曲线间的

零阶距离等于零.

$$d_1[y(x),y_0(x)]$$

$$= \max_{0 \leq i \leq 1} \max_{a \leq x \leq b} |y^{(i)}(x) - y_0^{(i)}(x)|$$

称为函数y(x), $y_0(x)$

在区间[a,b]上的

一阶距离

或一级距离.

变分思想与建模方法

设已知函数 $y_0(x)$ 在区间[a,b]上 有连续的n阶导数, 则所有与函数 $y_0(x)$ 在区间[a,b]上的

n 级距离小于

正数 δ 的

函数y(x)所组成的集合

称为函数 $y_0(x)$

在区间[a,b]上的

n级 δ 邻域.

记为 $N_n[\delta, y_0(x)]$, 即

 $N_n[\delta, y_0(x)]$

 $= \{y(x)|y(x) \in C^n[a,b], d_n[y(x),y_0(x)] < \delta\}$

根据上述定义,

函数 $y_0(x)$ 的

n级 δ 邻域内的

任一函数y(x)

应在所讨论的区间内

同时满足下列不等式:

$$|y(x)-y_0(x)|<\delta,$$

零级 δ 邻域

$$|y'(x)-y_0'(x)|<\delta, \cdots \ |y^{(n)}(x)-y_0^{(n)}(x)|<\delta$$

函数 $y_0(x)$ 的

由所有满足

 $|y(x)-y_0(x)|<\delta$ 的

函数y(x)所组成。

而函数 $y_0(x)$ 的

 $-级\delta$ 邻域

则由所有满足

$$|y(x)-y_0(x)|<\delta,$$
 $|y'(x)-y_0'(x)|<\delta$ 的 函数 $y(x)$ 所组成。

所以 $y_0(x)$ 的

 $-级\delta$ 邻域

是 $y_0(x)$ 的

零级 δ 邻域的一部分。

若
$$y(x) \in N_n[\delta, y_0(x)]$$
,则 $y(x)$ 与 $y_0(x)$ 称为具有 n 阶的 δ 接近度。

设函数 $y(x) \in F = C^n[a,b]$, J[y(x)]是定义域 为F的泛函。

若对于任意给定的

一个正数 ε .

总可以找到一个 $\delta > 0$,

只要
$$d_n[y(x),y_0(x)]<\delta,$$
 即 $y(x)\in N_n[\delta,y_0(x)]\subset F$ 都有 $|J[y(x)]-J[y_0(x)]| 成立。$

则J[y(x)]称为**在函数** $y_0(x)$ **处** 具有n阶 δ 接近度的

连续泛函。

谢谢!

2、函数的微分和泛函的变分

函数的微分

有两个定义,

变分思想与建模方法

一个通常的定义, 对函数y = y(x)定义域中的一点 x_0 , 若存在一个 只与 x_0 有关.

而与 $\triangle x$

无关的数 $A(x_0)$,

使得当 $\triangle x \rightarrow 0$.

函数的增量

$$\triangle y = y(x_0 + \triangle x) - y(x_0)$$

可以展开为

线性项和非线性项

堂分思想与建模方法

$$\triangle y = A(x_0) \triangle x + o(\triangle x)$$

于是,就称 $y(x)$ 是可微的,
此时, $\triangle x$
称为自变量的微分,
记为 dx 。

而将 $\triangle y$

线性主要部分

就称为因变量(函数)的微分,

记为
$$dy=A(x) riangle x=y'(x) riangle x$$
这是因为根据定义, $A(x)=y'(x)$

是函数的导数,而且

$$\lim_{ riangle x o 0} rac{ riangle y}{ riangle x} = y'(x)$$

所以, 函数的微分

是函数增量的主部,

这个主部 对于 $\triangle x$ 来说是线性的。 同样,设 ε 为一小参数, 并将 $y(x+\varepsilon \triangle x)$

对 ε 求导数,

即得:

$$\frac{\partial}{\partial \varepsilon} y(x + \varepsilon \triangle x)$$

$$=y'(x+\varepsilon\triangle x)\triangle x$$

当 ε 趋近于零时。

$$egin{aligned} rac{\partial}{\partial arepsilon} y(x + arepsilon \triangle x)|_{arepsilon o 0} \ &= y'(x) \triangle x = dy(x) \ & ext{这就证明了} y(x + arepsilon \triangle x) \ & ext{在}arepsilon = 0 ext{处} \end{aligned}$$

了变分思想与建模方法

对 ϵ 的导数

就等于y(x)

在x处的微分.

这是函数微分的

第二种定义.

泛函的变分 也有类似的两个定义: 对于y(x)在 $y_0(x)$ 的增量记为

$$\delta y(x) = y(x) - y_0(x)$$
 也称为函数的变分。
由它所引起的
泛函的增量,定义为

和非线性的泛函项

$$riangle J = J[y(x) + \delta y(x)] - J[y(x)]$$
可以展开为
线性的泛函项

変分思想与建模方法

$$riangle J = L[y(x), \delta y(x)] \ + r[(y(x), \delta y(x))(2.8)] \$$
 其中 $L[y(x), \delta y(x)]$ 对 $\delta y(x)$ 说来 是线性的泛函项,即

$$egin{aligned} L[y(x),C\delta y(x)]\ &=CL[y(x),\delta y(x)],\ c$$
是任意常数

$$L[y(x),\delta y(x)+\delta y_1(x)]$$

$$=L[y(x),\delta y(x)]$$

$$+L[y(x),\delta y_1(x)]$$

例:典型的线性泛函有

$$J[y(x)]=\int_{x_1}^{x_2}[p(x)y(x)+q(x)y'(x)]dx$$

例:内积

$$(f,g)=rac{1}{2\pi}\int_{-\pi}^{\pi}fgdx$$

例:
$$J[y(x)]=\int_{x_1}^{x_2}y^3(x)dx$$

変分思想与建模方法

(2.8)式中的 $r(y(x), \delta y(x))$

是 $\delta y(x)$ 的

高阶无穷小项。

于是(2.8)式中

泛函增量riangle J

对于 $\delta y(x)$ 说 是线性主要部分, 即 $L[y(x), \delta y(x)],$ 就叫做泛函J[y(x)]

用 $\delta J[y(x)]$

或 δJ 来表示.

$$\delta J = L[y(x), \delta y(x)].$$

所以, 泛函的变分 是泛函增量的 线性主部,

变分思想与建模方法

而且这个主部 对于变分 $\delta y(x)$ 来说是线性的.

同样也有拉格朗日的

泛函变分定义:

泛函变分

是 $J[y(x) + \varepsilon \delta y(x)]$ 对 ε

的导数在 $\varepsilon = 0$ 时的值.

因为根据(2.8) 式,我们有

$$J[y(x) + \varepsilon \delta y(x)]$$

$$=J[y(x)]+L[y(x)+arepsilon\delta y(x)]$$

$$+r(y(x),arepsilon\delta y(x))$$

而且根据L

和r的性质

$$L[y(x), \varepsilon \delta y(x)]$$

$$= \varepsilon L[y(x), \delta y(x)]$$

$$egin{aligned} &\lim_{arepsilon o 0} rac{r(y(x),arepsilon\delta y(x))}{arepsilon} \ &= \lim_{arepsilon o 0} rac{r(y(x),arepsilon\delta y(x))}{arepsilon\delta y(x)} \delta y(x) = 0 \end{aligned}$$

于是有

$$egin{aligned} rac{\partial}{\partial arepsilon} J[y(x) + arepsilon \delta y(x)] \ = \lim_{arepsilon o 0} rac{J[y(x) + arepsilon \delta y(x)] - J[y(x)]}{arepsilon} \end{aligned}$$

$$egin{aligned} &= \lim_{arepsilon o 0} rac{L[y(x),arepsilon\delta y(x)]+r(y(x),arepsilon\delta y(x))}{arepsilon} \ &= L[y(x)+\delta y(x)] \ &= \delta J[y(x)] \end{aligned}$$

就证明了拉格朗日的

$$\delta J = rac{\partial}{\partial arepsilon} J[y(x) + arepsilon \delta y(x)] \Big|_{arepsilon
ightarrow 0} (2.9)$$

通常我们应用 这个定义来 求泛函的一阶变分。

例: 试求泛函

$$J[y(x)] = y^2(x_0) + \int_{x_1}^{x_2} (xy + y'^2(x)) dx$$
的变分。

解:根据变分的定义

$$J[y(x) + \varepsilon \delta y]$$

$$=[y(x_0)+arepsilon\delta y(x_0)]^2$$

$$egin{aligned} &= \left[y(x_0) + arepsilon g(x_0)
ight] \ &+ \int_{x_1}^{x_2} [x(y + arepsilon \delta y) + (y' + arepsilon \delta y')^2] dx \end{aligned}$$

于是

$$\frac{\partial J[y(x)+\varepsilon\delta y]}{\partial \varepsilon}$$

$$=2[y(x_0)+arepsilon\delta y(x_0)]\delta y(x_0)$$

$$+\int_{x_1}^{x_2}[x\delta y+2(y'+arepsilon\delta y')\delta y']dx$$

因此有

$$egin{aligned} \delta J &= rac{\partial J[y(x) + arepsilon \delta y]}{\partial arepsilon}|_{arepsilon = 0} \ &= 2y(x_0)\delta y(x_0) \ &+ \int_{x_1}^{x_2} (x\delta y + 2y'\delta y') dx \end{aligned}$$

谢谢!

了变分思想与建模方法

3、极值与变分 如果函数y(x)在 $x = x_0$ 的附近的 任意点上的值 都不大(小)于 $y(x_0)$,

也即
$$dy=y(x)-y(x_0)\leq 0(\geq 0)$$
时,则称函数 $y(x)$

 $在x=x_0$ 上

达到极大(极小)。

若在 x_0 处可导,则 dy = 0对于泛函J[y(x)]而言, 也有相类似的定义:

设J[y(x)]为 在某一容许函数类 $F = \{y(x)\}$ 中 定义的泛函,

 $y_0(x)$ 为F中的一个函数。

如果对于F中

任一函数y(x),都有

则泛函J[y(x)]

称为在 $y_0(x)$ 上

取得绝对极小值

或绝对极大值。

绝对极小值与

绝对极大值统称为

绝对极值(Absolute Extremum)。

如果函数y(x)

仅限于 $y_0(x)$ 的

某个邻域,且有

则泛函J[y(x)]称为 在 $y_0(x)$ 上 取得相对极小值 或相对极大值。

相对极小值与 相对极大值统称为 相对极值(Relative Extremum)。

利用变分的表达式(2.9) 可以得到泛函极值 与变分的关系. 若J[y(x)]在 $y_0(x)$

达到极值(极大或极小),则 $\delta J[y_0(t)] = 0$ (2.10) 这是因为 对任意给定的 δy ,

$$J(y_0+arepsilon\delta y)$$

 $E \varepsilon$ 的函数,

该函数在 $\varepsilon = 0$ 处

达到极值.

根据函数极值的

必要条件知

$$rac{\partial}{\partial arepsilon} J(y_0(x) + arepsilon \delta y(x))|_{arepsilon = 0} = 0$$

于是由(2.9)式

直接得到(2.10)式.

若泛函J[y(x)]

则在它在y = y(x)上的 变分 δJ 等于零。 泛函的变分 δJ

等干零

▼ 变分思想与建模方法

称为泛函极值的 必要条件, 也称为泛函J[y(x)]的 欧拉方程。

谢 谢!

4 变分问题的求解

变分问题的求解 有两种方法. 一种是归结为 求解对应的欧拉方程的 边值问题,

称为变分问题的间接方法。

但由于只有

一些特殊情形的

欧拉方程

才求得出精确解,

文 变分问题的求解

因此需要另外的 求解方法, 这就形成了 **变分问题的直接方法**。

1900年8月, 著名数学家 希尔伯特 在巴黎举行的

第二届国际 数学家大会上, 提出了23个 重大数学问题,

其中最后一个问题 就是关于变分问题的 直接求解问题,

是指不通过 求解欧拉方程而 直接从泛函出发, 求出使泛函取得 极值的近似表达式。

一、变分问题的间接方法

为了后面的推导,

我们先给出

下面的预备定理:

变分法的基本预备定理:

如果函数F(x)

在线段 (x_1,x_2) 上连续,

且对于只满足

某些一般条件的 任意选定的函数 $\delta y(x)$,有

灰 变分问题的求解

$$\int_{x_1}^{x_2} F(x) \delta y(x) dx = 0$$
 (2.10)
则在线段 (x_1,x_2) 上,有 $F(x)=0$

$\delta y(x)$ 一般条件为:

- (1) 一阶或若干阶可微分;
- (2) 在线段 (x_1, x_2)
- 的端点处为0;

(3)
$$|\delta y(x)| < \varepsilon$$
,

或
$$|\delta y(x)|$$

及
$$|\delta y'(x)| < \varepsilon$$
等。

灰 变分问题的求解

证明 用反证法, 假设F(x)在点 $x = \bar{x}$ 处 不等于零,

则我们可以选取区域

 $\overline{x_1} \leq \overline{x} \leq \overline{x_2}$, 使得在这个区域内,

F(x)正负号不变。

如图,选取函数 $\delta y(x)$, 使当 $x_1 < x < \overline{x_1}$

 $\overline{x_2} < x < x_2$

有 $\delta y(x)=0$,

👿 变分问题的求解

当
$$\overline{x_1} \leq x \leq \overline{x_2}$$
时有 $\delta y(x) = k(x-\overline{x_1})^{2n}(\overline{x_2}-x)^{2n},$ 这个函数 $\delta y(x)$ 在 (x_2,x_1) 内,

除 $x=\overline{x}$ 附近 即 $\overline{x_1} < \overline{x} < \overline{x_2}$ 外, 都等于零。满足 (1) 到处 都2n-1阶可导:

- (2) $在(x_1, x_2)$ 的端点
- 都等于零;
 - (3) 如果选取一个
- 很小的k,

则一定能使
$$|\delta y(x)|,或 $|\delta y(x)|$ 及 $|\delta y'(x)|得到满足。$$$

灰 变分问题的求解

于是又

$$\int_{x_1}^{x_2} F(x) \delta y(x) dx$$

$$= \int_{\overline{x_1}}^{\overline{x_2}} F(x) k(x - \overline{x_1})^{2n} (\overline{x_2} - x)^{2n} dx \neq 0$$
这和(2.10)式的条件矛盾,

😿 变分问题的求解

因此F(x)

一定等于零,

但 $x = \overline{x}$ 是任意选取的, 所以F(x)到处都等于零。

即 $F(x) = 0, x_1 < x < x_2$ 这就证明了变分法的 基本预备定理。

对于多变量的问题, 也有类似的 变分预备定理。

例如:如果F(x,y)在(x,y)平面内S域中连续,

设
$$\delta z(x,y)$$

在 S 域的边界上为零,

 $\mid \delta z \mid \leq arepsilon, \mid \delta z_{x}^{'} \mid < arepsilon, \mid \delta z_{u}^{\prime} \mid < arepsilon$

还满足连续性

及一阶或若干阶的可微性,

灰 变分问题的求解

对于这样选取的 $\delta z(x,y)$ 而言,有 $\int\int\limits_{\Omega}F(x.y)\delta z(x,y)dxdy=0$

则在域S内 $F(x,y) \equiv 0$ 其证明方法 和单变量的 F(x)很相似。

谢 谢!

端点固定的最简泛函的欧拉方程

5 端点固定的最简泛函的欧拉方程

求泛函	
$J=\int_{x_1}^{x_2}F(x,y(x),y'(x))dx$	(2.14)
的极值,	

端点固定的最简泛函的欧拉方程

一般是用

泛函极值的

必要条件

端点固定的最简泛函的欧拉方程

去寻找一条曲线y(x), 使给定的二阶连续 可微函数F沿该曲线的积分 达到极值.

常称这条曲线 为极值曲线(或轨线), 记为 y^* .

1、端点固定的情况

现在研究 最简单的泛函式的 极值问题

所得到的欧拉方程,

其中能够确定 泛函的极值曲线 y = y(x)的边界 是已定不变的,

而且 $y(x_1)=y_1,$

 $y(x_2)=y_2,$

函数F(x,y,y')

将认为是三阶可微的。

首先让我们

用拉格朗日法

求泛函变分

$$J[y+arepsilon\delta y]=\int_{x_1}^{x_2}F[x,y+arepsilon\delta y,y'+arepsilon\delta y']dx$$

于是有

$$egin{aligned} &rac{\partial}{\partial arepsilon} J[y + arepsilon \delta y] \ &= \int_{x_1}^{x_2} \Big\{ rac{\partial}{\partial y} F[x, y + arepsilon \delta y, y' + arepsilon \delta y'] \delta y \ &+ rac{\partial}{\partial y'} F[x, y + arepsilon \delta y, y' + arepsilon \delta y'] \delta y' \Big\} dx \end{aligned}$$

让
$$arepsilon o 0$$
,得 $\delta J = rac{\partial}{\partial arepsilon} J[y + arepsilon \delta y] \mid_{arepsilon o 0} = \int_{x_1}^{x_2} [rac{\partial F}{\partial y} \delta y + rac{\partial F}{\partial y'} \delta y'] dx \quad (2.15)$

其中

$$egin{aligned} rac{\partial F}{\partial y} &= rac{\partial}{\partial y} F(x,y,y') \ rac{\partial F}{\partial y'} &= rac{\partial}{\partial y'} F(x,y,y') \end{aligned}$$

而且

$$\int_{x_1}^{x_2} rac{\partial F}{\partial y'} \delta y' dx$$

$$\int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \delta y' dx$$

$$=\int_{x_1}^{x_2} \left\{ rac{d}{dx} [rac{\partial F}{\partial y'} \delta y] - rac{d}{dx} (rac{\partial F}{\partial y'}) \delta y
ight\} dx \quad (2.16)$$

所以,得 $\delta J = rac{\partial F}{\partial y'} \delta y \left| egin{smallmatrix} x_2 \ x_1 \end{smallmatrix}
ight|$ $+\int_{x_1}^{x_2} \left\{ rac{\partial F}{\partial y} - rac{d}{dx} (rac{\partial F}{\partial y'})
ight\} \delta y dx = 0 (2.15)$

但是
$$\delta y(x_2)=\delta y(x_1)=0$$
,

这是固定的

边界条件、所以得

$$\int_{x_1}^{x_2} rac{\partial F}{\partial y'} \delta y' dx = - \int_{x_1}^{x_2} rac{d}{dx} (rac{\partial F}{\partial y'}) \delta y dx$$

变分极值条件

$$\delta\Pi=\int_{x_1}^{x_2}\Big\{rac{\partial F}{\partial y}-rac{d}{dx}(rac{\partial F}{\partial y'})\Big\}\delta ydx$$

根据变分法的

基本预备定理,

求得本题的欧拉方程

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0 \quad (2.17)$$

这里的第二项是

对x的全导数.

不是偏导数,

而且F = F(x, y, y'),

所以

$$\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \\
= \frac{\partial^2 F}{\partial x \partial y'} + \frac{\partial^2 F}{\partial y \partial y'} \frac{dy}{dx} + \frac{\partial^2 F}{\partial y'^2} \frac{dy'}{dx}$$

$$=F_{xy'}''+F_{yy'}''y'+F_{y'y'}'y''$$

其中 $F_{xy'}'',F_{yy'}'',F_{y'y'}''$

都是F = F(x, y, y')

对x, y, y'的

二阶偏导数,

 $y'=rac{dy}{dx},y''=rac{d^2y}{dx^2}$

所以欧拉方程(2.17)式 也可以写成 $F'_{u} - F''_{xu'} - F''_{uu'}y'$ $-F_{\nu'\nu'}''y''=0$ (2.18)

这是1744年

欧拉方程所

得出的著名方程。

欧拉原著(1744)用了

很迂回繁琐的

推导过程,

拉格朗日用了 现在称为 拉格朗日法的方法 简捷地得到了 相同的结果(1755),

所以现在也有人 称这个方程为 欧拉-拉格朗日方程。

这是y(x)的 一个二阶微分方程, 其积分有两个常数 $C_1, C_2,$

它的积分曲线 $y = y(x, C_1, C_2)$

叫作极值曲线。

只有在这族 极值曲线上, 泛函(2.14) 式 才能达到极值。

积分常数是

极值曲线通过 $y(x_1)=y_1,$

 $y(x_2) = y_2$

这两个端点

条件所决定的。

谢

谢!

2、最简泛函的几种特殊情形

(1)**F**不依赖于 \dot{y} ,

即
$$F = F(x, y)$$

这时 $F_{\dot{y}}\equiv 0$,

欧拉方程为

 $F_u(x,y)=0$,

这是一个函数方程,

以隐函数形式

给出y(x),

其不满足边界条件:

$$y(x_0)=y_0$$
 ,

$$y(x_1)=y_1,$$

因此变分问题无解.

(2)**F**不依赖y, 即 $F = F(x, \dot{y}),$ 欧拉方程为

将上式积分便得

$$F_{\dot{y}}(x,\dot{y})=c_1$$
 ,

由此可求出

$$\dot{y}=\varphi(x,c_1),$$

积分后得到 可能的极值曲线族

$$(3)$$
F只依赖于 \dot{y} ,

即
$$F = F(\dot{y})$$

这时
$$F_u=0$$

$$\Sigma$$
FJ $T_y = 0$

 $F_{x\dot{y}}=0, F_{y\dot{y}}=0,$

欧拉方程为 $\dot{\dot{y}}F_{\dot{y}\dot{y}}=0$ 由此可设 $\dot{m{y}}=0$ 或 $F_{\dot{u}\dot{u}}$,

如果 $\dot{y}=0$, 则得到含有 两个参数的直线族 $y=c_1x+c_2,$

另外若 $F_{\dot{u}\dot{u}}=0$ 有一个或几个实根时, 则除了上面的直线族外, 又得到含有一个 参数c的直线族 y = kx + c

它包含于上面 含有两个参数的 直线族 $y = c_1 x + c_2$ 中, 于是,在 $F = F(\dot{y})$ 情况下, 极值曲线必然是直线族.

$$(4)$$
F只依赖于 y 和 \dot{y} ,

即
$$F = F(y, \dot{y})$$

这时有
$$F_{x\dot{y}}=0$$
,

$$F_y - \dot{y}F_{y\dot{y}} - \dot{\dot{y}}F_{\dot{y}\dot{y}} = 0$$

注意到
$$F$$
不依赖于 x ,于是有

$$egin{aligned} &rac{d}{dx}(F-\dot{y}F_{\dot{y}})\ &=F_y\dot{y}+F_{\dot{y}}\dot{\dot{y}}-\dot{\dot{y}}F_{\dot{y}}-\dot{y}rac{d}{dx}F_{\dot{y}}\ &=\dot{y}(F_y-rac{d}{dx}F_{\dot{y}}) \end{aligned}$$

展开
$$rac{d}{dx}F_{\dot{y}}$$
得到 $rac{d}{dx}(F-\dot{y}F_{\dot{y}})=\dot{y}(F_y-\dot{y}F_{y\dot{y}}-\dot{y}F_{\dot{y}\dot{y}})=0$ 由此方程积分得 $F-\dot{y}F_{\dot{y}}=c_1$

谢 谢!

例8.1、最速降线问题求解

设A和B是

铅直平面上不在

同一铅直线上的两点,

在所有连接A和B的

平面曲线中, 求一曲线,

当质点仅

受重力作用,

且初速为零, 沿此曲线 从A滑行至B 时,

使所需时间最短.

解:将A点

取为坐标原点,

X轴水平向右,

Y轴垂直向下,

B点为 $B(x_2,y_2)$. 根据能量守恒定律, 质点在曲线y(x) 上 任一点处的速度

$rac{a_0}{dt}$ 满足(s 为弧长)
$rac{1}{2}m(rac{ds}{dt})^2=mgy$
将 $ds=\sqrt{1+y'^2(x)}dx$

代入上式得 $dt=\sqrt{rac{1+y'^2}{2gy}}dx$ 于是质点滑行时间

应表为y(x)的泛函 $J(y(x))=\int_0^{x_2}\sqrt{rac{1+y'^2(x)}{2gy}}dx$ $=rac{1}{\sqrt{2g}}\int_0^{x_2}\sqrt{rac{1+y'^2}{u}}dx$

端点条件为 $y(0) = 0, y(x_2) = y_2$ 因为 $F(y,y')=\sqrt{rac{1+y'^2}{y}}$ 不含自变量x,

所以欧拉方程可写作

$$F_y - F_{yy'}y' - F_{y'y'}y'' = 0$$

等价于 $rac{d}{dx}(F - y'F_{y'}) = 0$

作一次积分得 $y(1+y'^2)=c_1$ $\diamondsuit y' = \cot \frac{\theta}{2},$ 则方程简化为

$$egin{aligned} y &= rac{c_1}{1+y'^2} \ &= c_1 sin^2 rac{ heta}{2} \ &= rac{c_1}{2} (1-cos heta) \end{aligned}$$

又因

$$egin{aligned} dx &= rac{dy}{y'} \ &= rac{c_1 sin rac{ heta}{2} cos rac{ heta}{2} d heta}{cot rac{ heta}{2}} \ &= rac{c_1}{2} (1 - cos heta) d heta \end{aligned}$$

积分之,得
$$x=\frac{c_1}{2}(\theta-sin\theta)+c_2$$
由边界条件 $y(0)=0$,可知 $c_2=0$ 故得

$$\begin{cases} x=rac{c_1}{2}(\theta-sin heta) \ y=rac{c_1}{2}(1-cos heta) \$$
这是摆线(圆滚线)

其中,常数 c_1 可利用另一边界条件 $y(x_2)=y_2$ 来确定.

从这个最速降线的 泛函变分极值问题上 我们可以看到 变分法的几个 主要步骤:

(1) 从背景问题上 建立泛函及其条件:

(2) 通过泛函变分,

利用变分法

基本预备定理

求得欧拉方程:

(3) 求解欧拉方程, 这是微分方程的 求解问题。

例8.2、最小旋转面问题求解

$$J(y(x)) = 2\pi \int_{x_1}^{x_2} y(x) \sqrt{1 + y'^2(x)} dx$$

$$J(y(x))=2\pi\int_{x_1}^{x_2}y(x)\sqrt{1+y'^2(x)}dx$$

 $S = \{y|y \in C^1[x_1,x_2], y(x_1) = y_1, y(x_2) = y_2\}$

解 因 $F = y\sqrt{1+y'^2(x)}$

不包含x.

故由欧拉方程积分得

$$F-y'F_y' \ = y\sqrt{1+y'^2}-y'yrac{y'}{\sqrt{1+y'^2}}=c_1$$

化简得

$$y=c_1\sqrt{1+y'^2}$$
令 $y'=sht$,代入上式得 $y=c_1\sqrt{1+sh^2t}=c_1sht$

由于
$$dx=rac{dy}{dy'}=rac{c_1shtdt}{sht}=c_1dt,$$
积分之,得 $x=c_1t+c_2,$ 消去 t ,就得到 $y=c_1chrac{x-c_2}{c_1}$ 这是悬链线方程.

3、最简泛函的推广

最简泛函取极值的 必要条件可以 推广到其它地方.

(1)含多个函数的泛函

使泛函

$$J(y(x),z(x))=\int_{x_1}^{x_2}F(x,y,y',z,z')dx$$

取极值且满足

固定边界条件.

$$egin{aligned} y(x_1) &= y_1, y(x_2) = y_2 \ z(x_1) &= z_1, z(x_2) = z_2 \ \end{pmatrix}$$
的极值曲线 $y &= y(x), z = z(x) \ \end{pmatrix}$

必满足欧拉方程组
$$\left\{egin{aligned} F_y - rac{d}{dx} F_{y'} = 0 \ F_z - rac{d}{dx} F_{z'} = 0 \end{aligned}
ight.$$

(2)含高阶导数的泛函

使泛函

$$J(y(x)) = \int_{x_1}^{x_2} F(x, y, y', y'') dx$$

取极值且满足

固定边界条件

$$egin{aligned} y(x_1) &= y_1, y(x_2) = y_2 \ y'(x_1) &= y_1', y'(x_2) = y_2' \end{aligned}$$

的极值曲线

$$y = y(x)$$

$$F_y-rac{d}{dx}F_{y'}+rac{d^2}{dx^2}F_{y''}=0$$

(3)含多元函数的泛函

设
$$z(x,y)\in C^2, (x,y)\in D$$
,使泛函

$$J(z(x,y))\in C$$
 , $(x,y)\in D$,反之国 $J(z(x,y))=\int\int_{\Omega}F(x,y,z,z_{x},z_{y})dxdy$

取极值且在区域

D的边界线I上

取已知值的

极值函数z = z(x, y)

必满足方程

$$F_z - rac{\partial}{\partial x} F_{z_x} - rac{\partial}{\partial y} F_{z_y} = 0$$

上式称为奥氏方程.

例8.7、极小曲面问题的求解

设u是

变分问题

$$\min_{v\in M_{arphi}}\iint_{\Omega}\sqrt{1+{v_x}^2+{v_y}^2}dxdy$$
 (2.4)的解。

现任意取定
$$v \in M_0$$
,

$$M_0=\{v|v\in C^1(ar\Omega),v|_{\partial\Omega}=0\}$$
 .

则对任意

$$\varepsilon\in(-\infty,+\infty),$$

有
$$u + \varepsilon v \in M_{\varphi}$$
,记

$$egin{aligned} j(arepsilon) &= J(u+arepsilon v) \ & ext{它是一个定义} \ & ext{在 R 上的} \ & ext{可微函数.} \end{aligned}$$

由(2.4)知

$$j(arepsilon) \geq j(0), orall arepsilon \in R^1$$
即函数 $\mathrm{j}(arepsilon)$

作为 ϵ 的

常义函数

 $\pm \varepsilon = 0$

达到最小值、从而有

$$j'(0) = 0$$

不难计算出

$$j^{'}(arepsilon)=\int_{\Omega}rac{(u+arepsilon v_{x}\cdot v_{x}+(u+arepsilon v)_{y}\cdot v_{y}}{\sqrt{1+(u_{x}+arepsilon v_{x})^{2}+(u_{y}+arepsilon v_{y})^{2}}}dxdy$$

利用(2.4)式得

$$egin{aligned} &\iint_{\Omega}[rac{u_x}{\sqrt{1+{u_x}^2+{u_y}^2}}v_x+rac{u_y}{\sqrt{1+{u_x}^2+{u_y}^2}}v_y]dxdy\ &=\iint_{\Omega}(rac{u_x}{\sqrt{1+{u_x}^2+{u_y}^2}},rac{u_y}{\sqrt{1+{u_x}^2+{u_y}^2}})\cdot
abla vdy=0,\ &orall v\in M_0 \end{aligned}$$

如果
$$u \in C^2(\bar{\Omega})$$
,

सिंGreen दे दिन्हें
$$\int_{\Omega} [(\frac{\partial}{\partial x}(\frac{u_x}{\sqrt{1+u_x^2+u_y^2}})+\frac{\partial}{\partial y}(\frac{u_y}{\sqrt{1+u_x^2+u_y^2}})]vdxdy + \int_{\partial\Omega} \frac{v}{\sqrt{1+u_x^2+u_y^2}}\cdot \frac{\partial u}{\partial \nu}ds = 0$$

由于 $v|_{\partial arphi}=0$ 。

因此上式左端

第二个积分为0.

从而由被积函数的 连续性以及 v的任意性,得到

它称为变分问题

(2.4)**的**Euler方程.

因此定义在

 $\bar{\Omega}$ \vdash \exists

以空间曲线l

为边界的极小曲面

u = u(x, y)必定

在Ω内

适合方程(2.18)

和在 $\partial\Omega$ 上

适合边界条件

 $u|_{\partial\Omega}=arphi(x,y)$ (2.19).

由于(2.18)只是

必要条件,

因此人们自然关心

由边值问题(2.18)(2.19)

解出的解是否就是 变分问题(2.4)的解, 也就是(2.4)是否充分?

为此计算i''.

不难得到

$$j''(\varepsilon)$$

$$= \textstyle \iint_{\Omega} \frac{{v_x}^2 + {v_y}^2 + [v_y[u_x + \varepsilon v_x) - v_x(u_y + \varepsilon v_y)]^2}{[1 + (u_x + \varepsilon v_x)^2 + (u_y + \varepsilon v_y)^2]^{3/2}} dx dy.$$

因此j''>0, 故对于上面 提出的问题, 回答肯定,

即如果边值问题

$$(2.18)$$
、 (2.19) 的

$$解u(x,y)$$
存在

肿
$$u(x,y)$$
1子1士

且属于 $C^1(\bar{\Omega}) \cap C^2(\Omega)$.

那么它必是

变分问题(2.4)的解.

这就证明了

变分问题(2.4)与 边值问题(2.18)、(2.19)等价.

谢 谢!

在上一节研究泛函 $J = \int_{x_0}^{x_f} F(x,y(x),y'(x)) dx (2.20)$ 的极值问题时,

曾假定极值曲线

y(x) 的两端点

 $A(x_0,y_0)$

和 $B(x_f, y_f)$

是固定不变的。

但是,实际上 却常常遇到 极值曲线的一个 或两个端点不是固定的.

而是可以变动的情况, 那么,当极值曲线的 端点为可变时, 泛函(2.20)达到极值的 必要条件将如何呢?

在这一节里,

先讨论端点时间固定,

但函数y(x)

在端点的值

是自由的泛函问题。

这种端点条件的 变分问题称为

自由端点问题,

即在给定 x_0 和 x_f 的情况下, 求y(x)使泛函 (2.20)达到极值。

设自由端点问题的

解是 y^* ,

它在端点的值为 $y^*(x_0)$

和 $y^*(x_f) = y_f$ 。

显然, y^* 也应 是以 $y^*(x_0)$ 和 $y^*(x_f) = y_f$ 为边界值的 固定端点问题的解,

即满足欧拉方程式(2.16),

$$\frac{\partial F}{\partial u} - \frac{d}{dx}(\frac{\partial F}{\partial u'}) = 0$$
(2.16)

 $\delta J = rac{\partial F}{\partial y'} \delta y \left| egin{smallmatrix} x_f \ x_0 \end{smallmatrix} + \int_{x_0}^{x_f} \left\{ rac{\partial F}{\partial y} - rac{d}{dx} (rac{\partial F}{\partial y'})
ight\} \delta y dx = 0 (2.15)$

- - 代人式(2.15)

$$\partial$$

得到

 $rac{\partial F}{\partial y^*}\delta y|_{x_0}^{x_f}=0$

由于在自由端点条件下, $\delta y(x_0)$ 和 $\delta y(x_f)$

是相互独立变化的,

因此得到正交条件

$$rac{\partial F}{\partial y^*}\delta y=0,\,orall x=x_0,\,x_f$$
考虑到 $\delta y(x_0)$

和 $\delta y(x_f)$ 的任意性,

得到欧拉方程式 的边界条件 $rac{\partial F}{\partial u^*}=0,\,orall x=x_0,\,x_f(2.21)$ 该条件通常称为 自然边界条件。

自由端点问题的解 y^* 需要满足的 必要条件归纳为

$$\left\{egin{array}{l} rac{\partial F}{\partial y}-rac{d}{dx}(rac{\partial F}{\partial y'})=0\ rac{\partial F}{\partial y^*}=0,\,orall x=x_0,\,x_f \end{array}
ight.$$
 (2.22)

例: 求取下列泛函

为极小值的

极值曲线(自由端点)

 $J[y(x)] = \int_0^2 (y'^2(x) + y'(x) + y(x)y'(x) + y(x))dx$

解: 欧拉方程及

由欧拉方程导出的

二阶微分方程为

$$y' + 1 - (2y' + 1 + y)' = 0,$$

2x - 1 = 0

得到通解

确定待定常数

$$y(x) = 0.25x^2 + c_1x + c_2, \ y'(x) = 0.5x + c_1$$

再由自然边界条件

$$egin{aligned} rac{\partial F}{\partial y'} &= 2y' + 1 + y \ &= 0.25x^2 + (1+c_1)x + 2c_1 + c_2 = 0, \ orall x &= 0, 2 \end{aligned}$$

得到极值曲线

 $J^* = -rac{1}{\epsilon}$

- $y^*(x) = 0.25x^2 1.5x + 3,$

下面考虑端点可变情形:

如果函数 $y^*(x)$

能使泛函(2.20)

在端点可变的

情况下达到极值.

若函数y = y(x)能在可动边界的 容许函数类中 使泛函(2.20)取得极值,

那么必能 在固定边界的 容许函数类中 使泛函取得极值,

这是因为可动 边界泛函的 容许曲线类的 范围扩大了,

当然包含了 固定边界泛函的 容许曲线,

而在固定边界情况下 使泛函取得 极值的函数 必须满足欧拉方程,

所以函数y = y(x)在可动边界情况下

也应当满足欧拉方程。

所以,函数 $y^*(x)$ 应当满足端点

固定时的必要条件.

换句话说,函数 $y^*(x)$

应当是欧拉方程

$$F_{y^*} - rac{d}{dx} F_{y^*} = 0$$

的解。该解中包含

两个待定的积分常数。

两个端点条件

在端点固定的情况下,

 $y(x_0) = y_0$

 $y(x_f)=y_f$

恰好可以用来 确定两个积分常数。 但是,在端点可变的情况下, 如何确定这两个 积分常数呢?

下面就来回答这个问题。 为了简化问题, 又不失一般性,

我们假定极值曲线的 始端 $A(x_0,y_0)$ 是固定的, 而终端 $B(x_f, y_f)$ 是可变的,

并沿着给定的曲线 $y(x_f) = \varphi(x_f)(2.22)$ 变动,如图8.14所示。

现在的问题是,

需要确定一条

从给定的点 $A(x_0,y_0)$

到给定的曲线(2.22)上的

某一点 $B(x_f, y_f)$ 的 连续可微的曲线y(x),

使泛函(2.20)达到极小值。

设 $y^*(x)$

是泛函(2.20)的极值曲线。

 $y^*(x)$ 的邻域

 $\dot{y}(x) = \dot{y}^*(x) + \alpha \delta \dot{y}(x) (2.24)$

曲线可表示为

 $y(x) = y^*(x) + \alpha \delta y(x)(2.23)$

由图8.14可见。 每一条邻域曲线y(x)

都对应一个 终端时刻 x_f ,

设极值曲线 $y^*(x)$ 所对应的终端时刻 为 x_f^* ,

则邻域曲线y(x)

所对应的终端

时刻 x_f 可以表示为

 $x_f = x_f^* + lpha dx_f, (2.25)$

将式(2.23)(2.25)

代入式(2.20),则得

 $J=\int_{x_0}^{x_f^*+lpha dx_f} F[x,y^*(x)]$

 $+\alpha\delta y(x),\dot{y}^*(x)+\alpha\delta\dot{y}(x)]dx$

 $egin{aligned} &=\int_{x_0}^{x_f^*} F[x,y^*(x)+lpha\delta y(x),\dot{y}(x)+lpha\delta\dot{y}(x)]dx \ &+\int_{x_f^*}^{x_f^*+lpha dx_f} F[x,y^*(x)+lpha\delta y(x),\dot{y}^*(x)+lpha\delta\dot{y}(x)]dx \end{aligned}$

🐺 端点变动的情形	(構截条件)	的欧拉方和
"以" "你从这一个时间,你	(関戦末計)	ロふたくシオンノル

根据泛函达到

 $\delta J = rac{\partial}{\partial lpha} J[y(x) + lpha \delta y(x)]|_{lpha = 0} = 0$

则有

$$rac{\partial}{\partial lpha} \int_{x_0}^{x_f^*} F[x,y^*(x) + lpha \delta y(x), \dot{y}^*(x) + lpha \delta \dot{y}(x)] dx|_{lpha=0} \ + rac{\partial}{\partial lpha} \int_{x_f^*}^{x_f^* + lpha dx} F[x,y^*(x) + lpha \delta y(x),$$

 $\dot{y}^*(x) + \alpha \delta \dot{y}(x) |dx|_{\alpha=0} = 0$ (2.27)

式(2.27)左边第一项 相当于 x_f 固定时 泛函的变分, 按照上一节

 $egin{aligned} rac{\partial}{\partiallpha}\int_{x_0}^{x_f^*}F[x,y^*(x)+lpha\delta y(x),\dot{y}^*(x)+lpha\delta\dot{y}(x)]dx|_{lpha=0}\ &=\int_{x_0}^{x_f^*}(F_x-rac{d}{dx}F_{\dot{y}})\delta y(x)dx+F_{\dot{y}}\delta y(x)|_{x_0}^{x_f^*}(2.28) \end{aligned}$

式(2.28) 左边第二项 先利用中值定理, 然后再求导,则得

- - - - $rac{\partial}{\partial lpha} \int_{x_f^*}^{x_f^* + lpha dx_f} F[x,y^*(x) + lpha \delta y(x),$

 $|\dot{y}^*(x) + \alpha \delta \dot{y}(x)| dx|_{\alpha=0}$

 $| = F[x, y^*(x), \dot{y}^*(x)]|_{x=x_f^*} dx_f(2.29)$

将式(2.28) 和式(2.29) 代入式(2.27),得 $\int_{x_0}^{x_f^*} (F_y - rac{d}{dx} F_{\dot{y}}) \delta y(x) dx$ $+F_{\dot{y}}\delta y(x)|_{x_0}^{x_f^*}$ $+F[x, y^*(x), \dot{y}^*(x)]|_{x=x_f^*} dx_f = 0$ (2.30)

前面已经指出, 在所讨论的情况下, 欧拉方程 $F_y - \frac{d}{dx}F_{\dot{y}} = 0$

仍然成立。

又因为始端 是固定的,所以有

 $\delta y(x_0) = 0(2.31)$

 $+F[x,y^*(x),\dot{y}^*(x)]|_{x=x_f^*}dx_f=0$ (2.32)

考虑到式(2.31),

则式(2.30)变为

 $|[F_{\dot{y}}|_{x=x_f^*}\delta y(x_f^*)|$

若 $\delta y(x_f^*)$

与 dx_f 互不相关, 则由上式得

- - - $F_{\dot{y}}|_{x=x_f} = 0$ $F|_{x=x_f} = 0$ (2.33)

但是,终端点是沿着 曲线(2.22)变动的, 所以 $\delta y(x_f^*)$ 与 dx_f 是相关的。

为进一步简化式(2.32), 应当求出 dx_f 与 $\delta y(x_f^*)$ 之间的关系。

根据终端约束条件(2.22),应有 $y^*(x_f + \alpha dx_f)$ $+lpha\delta y(x_f^*+lpha dx_f)$ $= \varphi(x_f^* + \alpha dx_f)$ 将上式对 α 取偏导数.

并令
$$lpha=0$$
,则得 $\dot{y}(x_f^*)dx_f+\delta y(x_f^*) = \dot{arphi}(x_f^*)dx_f,$ 或 $\delta y(x_f^*)=[\dot{arphi}(x_f^*)-\dot{y}(x_f^*)]dx_f$

将上式代入式(2.32),可得 $[F+(\dot{arphi}-\dot{y})F_{\dot{y}}]\mid_{x=x_f^*} dx_f=0.$ 由于 dx_f 是任意的,所以

 $[F + (\dot{\varphi} - \dot{y})F_{\dot{y}}] \mid_{x=x_{f}^{*}} = 0.(2.34)$ 上式建立了极值曲线

终端斜率 \dot{y}

与给定曲线斜率

 $\dot{\varphi}$ 之间的关系,

称为横截条件。

综上所述,可得如下定理:

定理 若曲线y(x)

由一给定的点 (x_0,y_0)

到给定的曲线

 $y(x_f) = \varphi(x_f) \perp$

某一点 (x_f, y_f) ,则泛函

 $J[y(x)] = \int_{x_0}^{x_f} F[x,y(x),\dot{y}(x)] dx$

达到极值的必要条件是,

$$y(x)$$
满足欧拉方程

$$F_y - \frac{d}{dx}F_{\dot{y}} = 0$$

和横截条件

$$[F+(\dot{arphi}-\dot{y})F_{\dot{y}}]_{x=x_f^*}=0$$

其中 $y(x)$ 应有
连续的二阶导数。

 $F[x,y(x),\dot{y}(x)]$ 至少 应是二次连续可微, 而 $\varphi(t)$ 则应有 连续的一阶导数。

若极值曲线的 始端不是固定的, 并沿着曲线 $y(x_0) = \Psi(x_0)$

变动,则同样

可以推导出

始端的横截条件

 $[F + (\dot{\Psi} - \dot{y})F_{\dot{y}}]|_{x=x_0^*} = 0(2.35)$

当 x_0 和 x_f 可变, 而 $y(x_0)$ 和 $y(x_f)$ 是固定的,这时

 $\dot{arphi}=\dot{\Psi}=0$

则式(2.34)和式(2.25)变为

$$egin{aligned} (F-\dot{y}F_{\dot{y}})|_{x=x_f^*} &= 0 (2.36) \ (F-\dot{y}F_{\dot{y}})|_{x=x_0^*} &= 0 (2.37) \end{aligned}$$

当
$$x_0$$
和 x_f 固定,

而
$$y(x_0)$$
和

$$y(x_f)$$
是可变的,这时

$$\dot{arphi}=\infty, \qquad \dot{\Psi}=\infty$$

则横截条件变为

(2.34)和(2.35)变为

 $F_y|_{x=x_f^*}=0(2.38)$

 $|F_{\dot{y}}|_{x=x_0^*}=0$ (2.39)

谢 谢!

例: $\bar{x}x - y$ 平面上

的一固定点A(0,1)

至直线 $\varphi(x)=2-x$ 的

最短弧长的曲线,

如图8.15 所示。

解:我们所要

求解的问题是, 从始发点A(0,1),

终止于曲线 $\varphi(x) = 2 - x$ 上的点B 的 连续可微的曲线中

确定一条曲线y(x),

使连接A.B 两点的弧长

$$J=\int_{x_0}^{x_f}\sqrt{1+\dot{y}^2}dt$$

为最短。这是一个始端因定

为最短。这是一个始端固定,

终端可变的 泛函的变分问题。

由于泛函的被积函数

$$L = \sqrt{1 + \dot{x}^2}$$

中不显含y(x), 所以欧拉方程为 $\frac{d}{dx}F_y=0$

即 $\frac{d}{dx}\frac{\dot{y}}{\sqrt{1+\dot{y}^2}} = 0$ 由此得

经变换得 $\dot{y}=c_1$ 所以 $y(x) = c_1 x + c_2$

代入初端条件y(0) = 1后, 得 $c_2 = 1$. 于是 $y(x) = c_1 x + 1$

它是一条通过 点(0,1)的直线。 为确定另一个 积分常数 c_1 . 需要利用橫截条件。

本例的横截条件 具有如下形式 $\sqrt{1+c_1^2}+(-1-c_1)rac{c_1}{\sqrt{1+c_1^2}}=0$

由此解得 $c_1 = 1$

所以,极值曲线为 y(x) = x + 1

由于所求泛函的 极值曲线y(x)实际上为一直线, 即y(x) = x + 1,

/ 端点变动的情形(横截条件)的欧拉方和

其斜率为 $\dot{y}=1$, 而给定直线 $\varphi(x) = 2 - x$ 的 斜率为 $\dot{\varphi}=-1$, 它们之间互为负倒数。

所以y(x) 与 $\varphi(x)$ 互相垂直。

由此可见, 由直线外一点到

该直线的最短距离, 是由该点到直线的垂线. 这个在平面几何中 广为人知的问题,

在这里又通过

变分法予以证实了。

5、有约束条件的泛函极值问题

在自然科学

和工程技术中

所遇到的变分问题,

有时要求极值函数 除满足给定的 边界条件外,

还要满足一定的附加条件, 这就是泛函的

条件极值问题.

泛函在满足一定 附加条件下 取得的极值称为 条件极值.

在泛函所依赖的函数上 附加某些约束条件 来求泛函的极值问题 称为条件极值的变分问题.

涉及的完整约束、 微分约束和

等周问题的

泛函的条件极值.

它们的计算方法与 函数的条件极值的 计算方法类似, 可用拉格朗日 乘数法来实现.

谢

谢!

7 案例分析

案例一、巧妙的蘑菇

问题背景:

考虑生长中的蘑菇

要使水分损失减小,

它们应该为 表面积最小 以减少水分蒸发量。

根据这个假设, 试通过解数学建模的方法 寻找蘑菇的最佳形状, 并与实际蘑菇作比较.

【问题分析】

考虑在(x,y)平面的 连接固定点 $P_1=(x_1,y_1)$ 和 $P_2=(x_2,y_2)$ 的 曲线y=y(x)。

我们绕x 轴旋转曲线 以获得表面。 问题在于哪个曲线 使其旋转的表面积最小?

【模型构建】

当变量x介于 变量x和x + dx之间时, 考虑其表面的微元带。

其微元带的面积为

$$2\pi x ds = 2\pi x \sqrt{1+y'^2} dx$$

$$(ds)^2 = (dx)^2 + (dy)^2$$

从而

$$ds = \sqrt{1 + y'^2} dx$$

$$S=2\pi\int_{x_1}^{x_2}x\sqrt{1+y'^2}dx$$

【模型求解】

从而,我们得到

如下变分方程:

找出基于拉格朗日公式

$$L=x\sqrt{1+y'^2}$$

的变分积分曲线 $\int L(x,y,y')dx$
其取极值的必要条件

等同于欧拉-拉格朗日方程:

$$rac{\partial L}{\partial y} - D_x \left(rac{\partial L}{\partial y'}
ight) = 0 (3.1)$$

因为在我们的例子里有

$$\frac{\partial L}{\partial y} = 0,$$
 $\frac{\partial L}{\partial y'} = \frac{xy'}{\sqrt{1+y''^2}}$

方程(3.1)写成

守恒定律的形式:

$$D_x\left(rac{xy'}{\sqrt{1+y'^2}}
ight)=0 (3.2)$$

因此, 经微分后,

我们得到如下

二阶非线性微分方程:

$$y'' + \frac{1}{x}(y' + y'^3) = 0(3.3)$$

守恒定律(3.2)

满足方程(3.3)的

如下一次积分:

$$rac{xy'}{\sqrt{1+y'^2}}=A=$$
常数

解以上关于y'的方程, 积分得到通解 $y = B + k \arccos h(\frac{x}{k})$

其包含有两个

积分常数B和k.

将解写为

$$egin{aligned} y &= B + k \ln \left| rac{x + \sqrt{x^2 - k^2}}{k}
ight| \ &= C + k \ln \left| x + \sqrt{x^2 - k^2}
ight| \end{aligned}$$

$$x^2 - k^2$$

其中
$$C = B - k \ln |k|$$
.

因此, 所求曲线由

以下方程给出

$$y=C+k\ln\left|x+\sqrt{x^2-k^2}
ight|,$$

满足方程(10.24)

边界条件

$$y(x_1) = y_1, y(x_2) = y_2.$$

谢 谢!