4. Combinational Logic

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

Functional Specifications

There are many ways of specifying the function of a combinational device, for example:

Concise alternatives:

- *truth tables* are a concise description of the combinational system's function.
- *Boolean expressions* form an algebra whose operations are AND (multiplication), OR (addition), and inversion (overbar).

$$Y = \overline{C} \cdot \overline{B} \cdot A + \overline{C}BA + CB\overline{A} + CBA$$

Any combinational (Boolean) function can be specified as a truth table or an equivalent <u>sum-of-products</u> Boolean expression!

Here's a Design Approach

Truth Table

- 1. Write out our functional spec as a truth table
- 2. Write down a Boolean expression with

3. We'll show how to build a circuit using this equation in the next two slides.

This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS

Sum-of-products Building Blocks

INVERTER:

$$A \circ \longrightarrow Z = \overline{A}$$

AND:

$$\begin{array}{ccc}
A & \circ \\
B & \circ \\
\end{array}$$

$$Z = A \cdot B$$

OR:

$$A \circ \longrightarrow Z = A + B$$

Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS
with just three levels of logic:

- 1. Inverters
- 2. ANDs
- 3.OR

Propagation delay --

No more than 3 gate delays?*

 $Y = \overline{CBA} + \overline{CBA} + \overline{CBA} + \overline{CBA}$ AΘ BO A_O BO Co AΘ Bo-CO A_O-BO CO-

(这里每个AND gate可以有三个input, OR gate可以有四个input)

*assuming gates with an arbitrary number of inputs, which, as we'll see, isn't a good assumption!

ANDs and ORs with > 2 Inputs

 $Z = A \cdot B \cdot C = (A \cdot B) \cdot C$

Tree: Propagation delay increases <u>logarithmically</u> with number of inputs

More Building Blocks

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so CMOS gates are naturally inverting. Want to use NANDs and NORs in CMOS designs... But NAND and NOR operations are not associative, so wide NAND and NOR gate can't use a chain or tree strategy. Stay tuned for more on this!

XOR is very useful when implementing parity and arithmetic logic. Also used as a "programmable inverter": if A=0, Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with chains or trees of 2-input XORs.

Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Good news for CMOS technologies!

CMOS Value Inverting Logic

See "The Standard Cell Library" handout in *Updates & Handouts*

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R. Design note: use trees of smaller devices...

CMOS Sum-of-products Implementation

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules:
$$a + 1 = 1$$
, $a + 0 = a$, $a + a = a$

AND rules:
$$a1 = a$$
, $a0 = 0$, $aa = a$

Commutative:
$$a + b = b + a$$
, $ab = ba$

Associative:
$$(a + b) + c = a + (b + c)$$
, $(ab)c = a(bc)$

Distributive:
$$a(b+c) = ab + ac$$
, $a + bc = (a+b)(a+c)$

Complements:
$$a + \overline{a} = 1$$
, $a\overline{a} = 0$

Absorption:
$$a + ab = a$$
, $a + \overline{a}b = a + b$ $a(a + b) = a$, $a(\overline{a} + b) = ab$

Reduction:
$$ab + \overline{a}b = b$$
, $(a+b)(\overline{a}+b) = b$

DeMorgan's Law:
$$\overline{a} + \overline{b} = \overline{ab}$$
, $\overline{a}\overline{b} = \overline{a+b}$

Boolean Minimization

Let's (again!) simplify

$$Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}$$

Using the identity

$$\alpha A + \alpha \overline{A} = \alpha (A + \overline{A}) = \alpha \cdot 1 = \alpha$$

For any expression α and variable A:

$$Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}$$

$$Y = \overline{CBA} + CB + \overline{CBA}$$

$$Y = \overline{CA} + CB$$

Can't he come up with a <u>new</u> example???

Truth Tables with "Don't Cares"

One way to reveal the opportunities for a more compact implementation is to rewrite the truth table using "don't cares" (-- or X) to indicate when the value of a particular input is irrelevant in determining the value of the output.

	_								
	Y	A	В	C	_	Y	A	В	C
	0	0	X	0		0	0	0	0
$\rightarrow \overline{C}A$	1	1	X	0		1	1	0	0
CA	_				N		0	1	Λ
		X	Λ	1		U	U	1	U
						1	1	1	0
$\longrightarrow CB$	1	X	1	1		0	0	0	1
		0	0	v		1			
	U	U	U	Λ		U	1	U	1
$\rightarrow BA$	1	1	1	X		1	0	1	1
211	I					1	1	1	1

Note: Some input combinations (e.g., 000) are matched by more than one row in the "don't care" table. It would be a bug if all the matching rows didn't specify the same output value!

The Case for a Non-minimal SOP

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

Truth Table						
В	A	Y				
0	0	0				
0	1	1				
1	0	0				
1	1	1				
0	0	0				
0	1	0				
1	0	1				
1	1	1				
	B 0 0 1 1 0 0	B A 0 0 1 1 1 0 1 1 0 0 1 1 1 0				

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

C\AB	00	01	11	10
0	0	0	1	1
1	0	1	1	0

Why did he shade that row Gray?

It's cyclic. The left edge is adjacent to the right edge. (It's really just a flattened out cube).

Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):

\AB CD\	00	01	11	10	
00	0	1	1	1	\
01,	1	1	1	1	1
11	1	1	1	1	
10	1	0	0	1	

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

For functions of 5 or 6 variables, we'd need to use the 3rd dimension to build a 4x4x4 K-map. But then we're out of dimensions...

Finding Implicants

An implicant

- is a rectangular region of the K-map where the function has the value 1 (i.e., a region that will need to be described by one or more product terms in the sum-of-products)
- has a width and length that must be a power of 2: 1, 2, 4
- can overlap other implicants
- is a prime implicant if it is not completely contained in any other implicant.

• can be uniquely identified by a single product term. The larger the implicant, the smaller the product term.

Finding Prime Implicants

We want to find all the prime implicants. The right strategy is a greedy one.

- Find the uncircled prime implicant with the greatest area
 - Order: $4x4 \Rightarrow 2x4$ or $4x2 \Rightarrow 4x1$ or 1x4 or $2x2 \Rightarrow 2x1$ or $1x2 \Rightarrow 1x1$
 - Overlap is okay
- Circle it
- Repeat until all prime implicants are circled

\AB CD\	00	01	11	10
00	0	1	H	Ī
01	1	1	1	1
11	Ð	1	1	
10	1	0	0	1

Write Down Equations

Picking just enough prime implicants to cover all the 1's in the KMap, combine equations to form minimal sum-of-products.

Prime Implicants, Glitches & Leniency

This circuit produces a glitch on Y when A=1, B=1, C: $1\rightarrow0$

To make the circuit lenient, include product terms for ALL prime implicants.

We've Been Designing a Mux

2-input Multiplexer

Truth Table

S	$\mathbf{D_1}$	$\mathbf{D_0}$	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

MUXes can be generalized to 2^k data inputs and k

... and implemented as a tree of smaller MUXes:

L4: Logic Syntnesis, Slide #22

Systematic Implementation Strategies

Consider implementing some arbitrary Boolean function, F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

Synthesis By Table Lookup

Is this practical for BIG truth tables? How about 10-input function? 20-input?

L4: Logic Synthesis, Slide #24

A New Combinational Device

DECODER:

- k SELECT inputs,
- N = 2^k DATA OUTPUTs.

Select inputs choose one of the D_j to assert HIGH, all others will be LOW.

Have I
mentioned
that HIGH
is a synonym
for '1' and
LOW means
the same
as '0'

NOW, we are well on our way to building a general purpose table-lookup device.

We can build a 2-dimensional ARRAY of decoders and selectors as follows ...

Read-only Memory (ROM)

A	В	C_{i}	s	C_{o}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Each column is large fan-in "NOR." Note location of pulldowns correspond to a "1" output in the truth table!

For K inputs, decoder produces 2^K signals, only 1 of which is asserted at a time -- think of it as one signal for each possible product term.

One column for each output

Read-only Memory (ROM)

Read-only Memory (ROM)

Full Adder

LONG LINES slow down propagation times...

The best way to improve this is to build square arrays, using some inputs to drive output selectors (MUXes):

2D Addressing: Standard for ROMs, RAMs, logic arrays...

Logic According to ROMs

ROMs ignore the structure of combinational functions ...

- Size, layout, and design are independent of function
- Any Truth table can be "programmed" by minor reconfiguration:
 - Metal layer (masked ROMs)
 - Fuses (Field-programmable PROMs)
 - Charge on floating gates (EPROMs) ... etc.

ROMs tend to generate "glitchy" outputs. WHY?

Model: LOOK UP value of function in truth table...

Inputs: "ADDRESS" of a T.T. entry

ROM SIZE = # TT entries...

... for an N-input boolean function, size ≅ 2^N x #outputs

Summary

- Sum of products
 - Any function that can be specified by a truth table or, equivalently, in terms of AND/OR/NOT (Boolean expression)
 - "3-level" implementation of any logic function
 - Limitations on number of inputs (fan-in) increases depth
 - SOP implementation methods
 - NAND-NAND, NOR-NOR
- Muxes used to build table-lookup implementations
 - Easy to change implemented function -- just change constants
- ROMs
 - Decoder logic generates all possible product terms
 - Selector logic determines which terms are ORed together