The Bright Side of the Dark Side of DSP: Audio Effects using GNU Radio

Ashish Chaudhari GNU Radio Conference 2018 Henderson, NV, U.S.A.

Deconstructing the Title

The Bright Side of the Dark Side of DSP: Audio Effects using GNU Radio

- Signal processing phenomena that RF and communications engineers try to avoid, or work around...
- ... that we **embrace**, in order to build...
- ... some cool guitar effects in GNU Radio.

Presentation Outline

Overview: Audio DSP

Filter Resonance

- Wah-Wah Guitar Effect
- Demo

Non Linearity

- Distortion Guitar Effect
- Demo

Takeaways

Audio Spectrum: Frequency

Frequency Range: 20 Hz to 20 kHz

Human Perception Bands

- 1. Sub-bass (20 60 Hz): Deep bass that is "felt"
- 2. Bass (60 250 Hz): Determines thickness of sound
- 3. Low Midrange (250 500 Hz): Low order harmonics of instruments
- 4. Midrange (500 Hz 2 kHz): Vocals
- 5. Upper Midrange (2 4 kHz): Determines the timbre of the audio
- 6. Presence (4 6 kHz): Conveys the distance of sound
- 7. Brilliance (6 20 kHz): Conveys sparkle and air of a sound

Human perception of frequency is logarithmic

Audio Spectrum: Amplitude

- The "amplitude" of sound is defined in terms of sound pressure level.
- dB SPL (decibels of sound pressure level) is the unit loudness. dB SPL is often abbreviated as dB.
- Human perception of loudness (volume) is logarithmic
- Human threshold of hearing is assumed to be 0 dBSPL (typically 20 uPa)
- Volume Ranges
 - Whisper: 15-25 dB
 - Background noise: about 35 dB
 - Normal home or office background: 40-60 dB
 - Normal speaking voice: 65-70 dB
 - Live Rock music: 120 dB+
 - Pain Threshold: 130 dB
 - Jet aircraft: 140-180 dB

Is Audio DSP Really Different from RF DSP?

Fundamentally, NO. There are some differences though.

- Sample rates are much lower than typical RF applications
 - 44.1 kHz, 48 kHz, 96 kHz, 192 kHz (studio quality)
- Human perception drives filter design
- Frequency axis on spectrum plots is often logarithmic
 - So are cutoff frequencies on filters
- It's hard for us to "hear" phase except in the stereo sense
 - IIR filters for the win!
 - It is typical to do audio DSP in the spectral domain

Resonance

Wah-Wah Effect

Resonance

Resonance is the tendency of a physical system to oscillate at a high amplitude at certain frequencies.

- The term actually originates from acoustics
- Resonance is not inherently bad, however, it can cause filters and control systems to go unstable.
- A filter can "ring" indefinitely when stimulated with an input at the resonant frequency
- Resonance is usually minimized (damped) when designing a filter or control loop

LOW-PASS FILTER WITH RESONANCE

The Wah-Wah Effect

A guitar effect that alters the tone of the guitar signal to create a distinctive sound, mimicking the human voice saying the onomatopoeic name "wah-wah".

The effect sweeps the cutoff frequency of a resonant digital State-Variable Filter (SVF) to create the sound, a spectral glide, know as the wah effect.

Recognizable as the quintessential Jimi Hendrix sound

State Variable Filter (SVF)

A filter comprised of multiple series integrators, each feeding back and summing.

Example: 2-pole Butterworth LP filter

Hardware Implementation of an SVF

Digital State Variable Filter

Digitize the SVF using the Forward and Backward Euler transform

The Wah SVF

- Effect = A linear combination of the bandpass and lowpass output of the SVF
- Vary the cutoff frequency (ω_c) over time

Wah SVF: DEMO

Options

ID: wah wah Ifo ex Title: Wah-Wah LFO Example Author: Ashish Chaudhari Generate Options: QT GUI

Python Module

OT GUI Tab Widget

Num Tabs: 2 Label 0: Time Domain Plots Label 1: Waterfall Plots

Parameter

ID: samp rate Label: Sample Rate Value: 44.1k Type: Float

Parameter

ID: param enabled Label: Enabled Value: False Type: Int

QT GUI Check Box

ID: effect en Label: Effect Enabled Default Value: False True: True False: False

Parameter ID: param Ifo freq Label: LFO Freq Value: 500m Type: Float

OT GUI Range

ID: Ifo freq Label: LFO Freq Default Value: 500m Start: 0 Stop: 5 Step: 100m

Parameter

ID: param gain Label: Gain Value: 1 Type: Float

OT GUI Range

ID: gain ID: damp_factor Label: Gain Label: Damping Default Value: 1 Default Value: 400m Start: 100m Start: 100m Stop: 1 Stop: 1 Step: 100m Step: 100m

Parameter

ID: param damp factor ID: param max cutoff freq Label: Damping Factor Label: Max Cutoff Freq Value: 400m Value: 2.5k Type: Float Type: Float

Parameter

OT GUI Range OT GUI Range ID: max cutoff freq Label: Max Cutoff Freq Default Value: 2.5k Start: 20 Stop: 5.512k Step: 250

Parameter

ID: param min cutoff freq Label: Min Cutoff Freq Value: 750 Type: Float

OT GUI Range

ID: min cutoff freq Label: Min Cutoff Freq Default Value: 750 Start: 20 Stop: 5.512k Step: 250

Non-Linearity

Distortion

Do we care about non-linearity?

Yes, all the time!

- Power Amplifiers
 - PAs are driven outside their linear range for higher efficiency
 - Sophisticated methods like digital predistortion (DPD) to make a non-linear PA linear
- RF/Comms Design
 - Calibration to remove physical nonlinear effects
 - We prefer FIR filters because phase is linear
- ...

Generally we go through a lot of effort to make nonlinear things linear

Distortion Effect

Distortion (a.k.a. overdrive) is an effect where the gain of an instrument is increased to push amplitudes into a non-linear region of operation to produce a "fuzzy" or "gritty" tone.

Stages of Distortion

- 1. Boost the input signal (apply gain)
- 2. Apply a non-linearity to the signal, primarily to drive it into clipping

Typically used with an electric guitar

Prevalent in gernes like rock, metal, blues

Clipping Functions

Soft Clip

Clipping Function Evaluation

Hard Clipping

Soft Clipping

Oversampling + Clipping

Hard Clipping

Soft Clipping

Post Filtering

Distortion can be post-filtered using shelving equalization filters to add "character"

While high and low pass filters are useful for removing unwanted signal above or below a set frequency, shelving filters can be used to reduce or increase signals above or below a set frequency.

Distortion Block Diagram

Distortion Chain Components

- 1. Interpolating IIR Filter: Upsample and anti-imaging IIR filter
- 2. Distortion: Boost and apply non-linearity
- 3. Decimating IIR Filter: Anti-aliasing IIR filter and downsample
- 4. Shelving Filter: Attenuate frequencies higher than the upper midrange

Distortion: DEMO

Takeaways

Educational Value

- Easy to perceive a DSP algorithm when you hear it
 - That's how I learned my DSP (my background is in computer architecture, not DSP or Comms)
- The effects I presented are not complicated but they cover several fundamental concepts
 - Easy to present in an educational setting
- Implementing them in GNU Radio was extremely easy
 - No need for additional hardware to "graduate" from simulation.
 Every computer has a sound card.
 - Started with Python, moved to C++ because Python is not real-time (even for 44.1 kHz)
- Focus on the DSP, not the plumbing or data movement.

Thank You!

gr-guitar

https://github.com/achaudhari/gr-guitar