MVSplat:

Efficient 3D Gaussian Splatting from Sparse Multi-View Images

Reviewer: Vitor Pereira Matias

Archeologist: Vitor Pereira Matias

Hacker: Davi

PhD Student: Veronika

Reviewer

Vitor Pereira Matias

Hot topic!

GS + (Large models, transformers, attention, NeRF, Diffusion)

Title	Date	Citations		
TrackNeRF	20 Aug 2024	1		
V3D	11 Mar 2024	24		
Flash3D	6 Jun 2024	6		
GS-LRM	30 Apr 2024	29		
LGM	7 Feb 2024	121		
DNGaussian	24 Mar 2024	27		
GRM	21 Mar 2024	51		
<u>PixelSplat</u>	19 Dec 2023	76		

Explain the key ideas, contributions, and their significance.

Summary

- Multiview transformer
 - transformer = Swin transformer

Summary:

Explain the key ideas, contributions, and their significance.

feature matching

flow propagation

sourcer: gmflow

• Cost computation: The cost volume expresses how well a pixel i in image I matches the same pixel in the second image I shifted by vector I.

Figure 1: Illustration of the space-sweep method. Features from each image are backprojected onto successive positions $Z = z_i$ of a plane sweeping through space.

Summary:

Explain the key ideas, contributions, and their significance.

Refinement

source: diffusion networks

Summary:

Explain the key ideas, contributions, and their significance.

- Depth estimation
 - refining is done with u-net as well

Explain the key ideas, contributions, and their significance.

Depth estimation. We use the **softmax** operation to obtain per-view depth predictions. Specifically, we first normalize the refined cost volume \hat{C}^i in the depth dimension and then perform a weighted average of all depth candidates $G = [d_1, d_2, \dots, d_D] \in \mathbb{R}^D$:

$$V^i = \operatorname{softmax}(\hat{C}^i)G \in \mathbb{R}^{H \times W}.$$
 (6)

Gaussian generation

Summary:

Explain the key ideas, contributions, and their significance.

Strenghts

- 10x fewer parameters
- 2x faster
- better outputs than pixelsplat
- less pos-processing than pixelsplat
- better gneralization for N images

Strengths:

What about the paper provides value? --

Strenghts

Strengths:

Table 1: SOTA results

What about the paper provides value? --

Method	$\begin{array}{c} \mathbf{Time} \\ \mathrm{(s)} \end{array}$	$\begin{array}{c} \mathbf{Param} \\ \mathrm{(M)} \end{array}$	RealEstate10K [54]			ACID [21]		
			PSNR†	SSIM†	LPIPS↓	PSNR†	SSIM†	LPIPS↓
pixelNeRF [49]	5.299	28.2	20.43	0.589	0.550	20.97	0.547	0.533
GPNR [35]	13.340	9.6	24.11	0.793	0.255	25.28	0.764	0.332
AttnRend [10]	1.325	125.1	24.78	0.820	0.213	26.88	0.799	0.218
MuRF [44]	0.186	5.3	26.10	0.858	0.143	28.09	0.841	0.155
pixelSplat [1]	0.104	125.4	25.89	0.858	0.142	28.14	0.839	0.150
MVSplat	0.044	12.0	26.39	0.869	0.128	28.25	0.843	0.144

Strenghts

Strengths:

What about the paper provides value? --

Table 2: Better generalization

Training data	Method	ACID [21]			DTU [17]		
		PSNR†	SSIM†	LPIPS↓	PSNR†	SSIM†	LPIPS↓
RealEstate10K [54]	pixelSplat [1]	27.64	0.830	0.160	12.89	0.382	0.560
	MVSplat	28.15	0.841	0.147	13.94	0.473	0.385

Weaknesses

- Need camera poses
- Non-lambertian surfaces (mirrors and glasses)

Input MVSplat Ground Truth Error Map

Weaknesses:

What detracts from the contributions?

Archeologist

Vitor Pereira Matias

Citations graph

Foundations

- NeRF/Gaussian Splatting
- Depth estimation
- Multi-View Stereo (as features)
 - Gmflow (<u>1</u>/<u>2</u>)
 - Swin transformer
- Cost volume
 - Space-Sweep, Unifying Flow, Mvsnet
- (Cost volume, depth) Refinement (2d u-net)/(diffusion)

Foundations: Math

- inverse depth domain
- Warping cnn features
- From depth to 3d point clouds
- From depth softmax to Opacity
- Conv applied to image feature + cost volume + original images returns Covariance and Color
- Loss: LPIPS

Prior/concurrent works

Nerfs Splats

- pixelNerf
- MuRF
- AttnRend
- GPNR

- pixelSplat
- LaRa
- GS-LRM
- GPS-Gaussian

Derivative works

Nerfs **Splats**

- <u>TrackNeRF</u> (noisy sparse)
 <u>HumanSplat</u>

 - <u>V3D</u> (diffusion) (git)
 - Flash3D
 - NoPoSplat

Similar, not cited

Splats

- DNGaussian
- Ges: Generalized exponential splatting
- SparseGS
- FSGS

Other methods

- Dust3r
- Spann3r
- PR-LRM

MVSplat vs PixelSplat

MVSplat vs PixelSplat

MVSplat vs GS-LRM

MVSplat vs NoPoSplat

MVSplat vs NoPoSplat

Hacker

Davi

PhD Student

Veronika

Problem: MVSplat might be less effective on non-Lambertian and reflective surfaces

Fig. B: Failure cases. Our MVSplat might be less effective on the non-Lambertian and reflective surfaces.

Project: MVSplat with Shading Functions for Reflective Surfaces

- train the model with more diverse datasets
- combine with article GaussianShader: 3D Gaussian Splatting with Shading Functions for Reflective Surfaces

GaussianShader

 novel method that applies a simplified shading function on 3D Gaussians to enhance the neural rendering in scenes with reflective surfaces while preserving the training and rendering efficiency

Research plan

- incorporate GaussianShader code into MVSplat
- train on various datasets:
 - a. NeRF Synthetic
 - reflective objects datasets: Shiny Blender and Glossy Synthetic
 - c. real-world large-scale scenes: Tanks and Temples
 - d. datasets previously used
- compare results and, if necessary, adjust models
- check if MVSplat loses effectiveness significantly

References

[1] CVPR Reviewer Guidelines CVPR 2024 Reviewer Tutorial Slides