

Image Processing

Frequency Domain Processing (Part I)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Introduction

Transformation

Introduction

Types of Transforms

- Fourier Transform
- Hanamard Transform
- KLT Transform
- Discrete Cosine Transform
- Wavelet Transform
- **.**..

2D Discrete Fourier Transform

A frequency domain processing is denoted by the expression.

Frequency Domain

Transformation

The expression.

$$F(u,v) = T[f(x,y)]$$
Spatial Domain

2D Discrete Fourier Transform

Periodicity property of DFT: 1-D case

|F(u)|

Periodicity property of DFT: 2-D case

2D Discrete Fourier Transform

Computing and Visualizing the 2-D DFT in MATLAB

>> ex4_01 % See demonstration

Computing and Visualizing the 2-D DFT in MATLAB

Filtering in the Frequency Domain

Fundamental Concepts

$$f(x, y) * h(x, y) \Leftrightarrow F(u, v)H(u, v)$$

$$f(x, y)h(x, y) \Leftrightarrow F(u, v) * H(u, v)$$

Filtering in the Frequency Domain

>> ex4_02 % See demonstration

