CS 228 : Logic in Computer Science

Krishna. S

ightharpoonup A formula φ is satisfiable when . . .

2/3

- ightharpoonup A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .

- ightharpoonup A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .
- ▶ A formula φ is satisfiable iff $\neg \varphi$ is not valid.

- ightharpoonup A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .
- ▶ A formula φ is satisfiable iff $\neg \varphi$ is not valid.
- ▶ Two formulae φ_1 and φ_2 are equivalent iff . . .

- A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .
- ▶ A formula φ is satisfiable iff $\neg \varphi$ is not valid.
- ▶ Two formulae φ_1 and φ_2 are equivalent iff . . Same Truth Table
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

- A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .
- ▶ A formula φ is satisfiable iff $\neg \varphi$ is not valid.
- ▶ Two formulae φ_1 and φ_2 are equivalent iff . . .
- ▶ Two formulae φ_1 and φ_2 are equisatisfiable iff . . .
- ▶ A disjunction of literals $L_1 \lor L_2 \lor ... L_n$ is valid iff ...

- ightharpoonup A formula φ is satisfiable when . . .
- ightharpoonup A formula φ is valid when . . .
- ▶ A formula φ is satisfiable iff $\neg \varphi$ is not valid.
- ▶ Two formulae φ_1 and φ_2 are equivalent iff . . .
- ▶ Two formulae φ_1 and φ_2 are equisatisfiable iff . . .
- A disjunction of literals L₁ ∨ L₂ ∨ ... Ln is valid iff^{Any} one is true for all assignment.
 A conjunction of literals L₁ ∧ L₂ ∧ ... Ln is satisfiable iff ...

all are true for any one assignment

Normal Forms: CNF Validity

Let $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$ be in CNF.

- ▶ Checking if φ is satisfiable is NP-complete.
- \blacktriangleright Checking if φ is valid is polynomial time. Why?
- Question raised in class: If validity is polytime, so should be satisfiability. Is this true?

3/3