Introduction

Logic Design

Teaching Team

Instructor

Kasım Sinan Yıldırım

<u>sinan.yildirim@ege.edu.tr</u>

<u>sinanyil81@gmail.com</u>

Teaching Assistants

Hazal Türkmen hazal.turkmen@ege.edu.tr

Okan Bursa
okan.bursa@ege.edu.tr

Textbooks

Digital Design and Computer
 Architecture, Sarah Harris, David Harris

 Mano M. M., Kime C. R., Logic and Computer Design Fundamentals, 4th Edition, Prentice Hall, 2008.

Grading

- 28% Midterm + 12% Labs + %60 Final
- Attendance to labs is mandatory
 - -for all students taking the course for the first time
 - -for all students failed with a grade **FF**
- We are planning to have 6+ labs
 - You should attend to all labs
 - Absence without any acceptable reason may result in you failing the course.

Computers are Everywhere!!!

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.

What is Computation?

- Why do we have computers?
 - image processing, AI,..., any other example?
- How does a computer solve problems?
 - What is an algorithm? Example?

Layers We Will Cover

- Understand what's under the hood of a computer
- Learn the principles of digital design
- Learn to systematically debug increasingly complex designs
- Design and build a microprocessor

Why Logic Design?

- As long as everything goes well, not knowing what happens underneath (or above) is not a problem.
- What if
 - —The program you wrote is running slow, does not run correctly, or consumes too much energy?
- What if
 - -The hardware is too hard to program or it is too slow?
- What if
 - You want to design a much more efficient and higher performance system?

Why Logic Design?

- You are computer engineers
 - Build <u>hardware</u>/software systems
- System performance is important
- Designing <u>efficient</u> systems
 - How the machine works!
 - Hardware-software interaction
- Assessing/evaluating/improving the performance of systems
 - Fundamental hardware knowledge

Topics

- Number Systems
- Gates and Boolean Equalities
- Minterms, Maxterms, Standard Forms
- Karnough Maps
- Combinational Circuits
- Decoders, Encoders, Multiplexers,
- Arithmetic Circuits
- Sequential Circuits