WERS				
6. (<i>e</i>)	7. (b)	8. (b)	9. (a	10. (b)
16. (<i>c</i>)	17. (<i>b</i>)	18. (<i>b</i>)	19. (c)	20. (b)
26. (<i>d</i>)	27. (<i>b</i>)	28. (<i>b</i>)	29. (<i>b</i>	30. (c)
36. (<i>b</i>)	37. (<i>d</i>)	38. (<i>c</i>)	39. (<i>d</i>	40. (c)
46. (<i>d</i>)	47. (<i>d</i>)	48. (<i>b</i>)	49. (d	50. (<i>d</i>)
56. (<i>a</i>)	57. (<i>a</i>)	58. (<i>a</i>)	59. (<i>b</i>	60. (b)
66. (<i>c</i>)	67. (<i>e</i>)	68. (<i>c</i>)	69. (<i>b</i>	70. (c)
76. (<i>c</i>)	77. (<i>d</i>)	78. (<i>c</i>)	79. (c)	80. (c)
86. (<i>a</i>)	87. (<i>a</i>)	88. (<i>d</i>)	89. (<i>b</i>	90. (<i>e</i>)
96. (<i>d</i>)	97. (<i>e</i>)	98. (<i>c</i>)	99. (c)	100. (b)
106. (<i>d</i>)	107. (<i>c</i>)	108. (<i>d</i>)	109. (<i>b</i>) 110. (c)
116. (a)	117. (<i>b</i>)	118. (<i>d</i>)	119. (c)) 120. (c)
126. (<i>a</i>)	127. (<i>c</i>)	128. (<i>d</i>)	129. (c)	130. (c)
136. (<i>c</i>)	137. (<i>c</i>)	138. (<i>b</i>)	139. (<i>d</i>	(1) 140. (d)
146. (c)	147. (<i>d</i>)	148. (<i>b</i>)	149. (a) 150. (b)
156. (<i>a</i>)	157. (<i>a</i>)	158. (<i>b</i>)	159. (a) 160. (<i>d</i>)
166. (<i>a</i>)	167. (<i>c</i>)	168. (<i>c</i>)	169. (c)) 170. (c)
176. (a)	177. (c)			

TIONS

7. We have:

Mean working hours	4	6	8	10	12	14
No. of employees	7	10	18	57	14	8

Sum of working hours of all the employees

$$= (4 \times 7 + 6 \times 10 + 8 \times 18 + 10 \times 57 + 12 \times 14 + 14 \times 8)$$

$$= (28 + 60 + 144 + 570 + 168 + 112) = 1082.$$

Total number of employees

$$= (7 + 10 + 18 + 57 + 14 + 8) = 114.$$

:. Average number of working hours

$$= \left(\frac{1082}{114}\right) = 9.49 \approx 9.5.$$

8. We have:
$$a = \frac{0+5+4+3}{4} = 3$$
; $b = \frac{-1+0+1+5+4+3}{6} = 2$; $c = \frac{5+4+3}{3} = 4$.

$$\therefore a:b:c=3:2:4.$$

∴ a: b: c = 3: 2: 4.
9. Total money paid for 115 books = ₹ (1050 + 1020) = ₹ 2070.

∴ Average price paid per book =
$$\sqrt[8]{\left(\frac{2070}{115}\right)} = \sqrt[8]{18}$$
.

10. Required average =
$$\frac{\left(\frac{1}{x} + \frac{1}{y}\right)}{2} = \frac{x + y}{2xy}.$$

11. Sum of numbers = 2XY.

$$\therefore$$
 Other number = $2XY - X$.

12. Weight of first box = 200 kg.

Weight of third box = 125% of 200 kg = 250 kg.

Weight of second box = 120% of 250 kg = 300 kg.

Weight of fourth box = 350 kg.

Let the weight of fifth box be x kg.

Then, 70% of
$$x = 350 \text{ kg} \Rightarrow x = \left(\frac{350 \times 100}{70}\right) = 500 \text{ kg}.$$

Average weight of four heaviest boxes

$$= \left(\frac{500 + 350 + 300 + 250}{4}\right) \text{kg} = 350 \text{ kg}.$$

Average weight of four lightest boxes

$$= \left(\frac{200 + 250 + 300 + 350}{4}\right) kg = 275 \text{ kg}.$$

- \therefore Required difference = (350 275) kg = 75 kg.
- 13. Let Arun's weight be X kg.

According to Arun, 65 < X < 72.

According to Arun's brother, 60 < X < 70.

According to Arun's mother, X > 68 i.e. $X \le 68$.

The values satisfying all the above conditions are 66, 67 and 68.

$$\therefore \text{Required average} = \left(\frac{66 + 67 + 68}{3}\right) \text{kg} = \left(\frac{201}{3}\right) \text{kg} = 67 \text{ kg}.$$

- **14.** Average of 20 numbers = 0.
 - \therefore Sum of 20 numbers = $(0 \times 20) = 0$.

It is quite possible that 19 of these numbers may be positive and if their sum is a, then 20th number is (-a).

15. Required mean =
$$\left(\frac{2+4+6+\cdots+20}{10}\right) = \frac{2(1+2+\cdots+10)}{10}$$

= $\left(\frac{1}{5} \times \frac{10 \times 11}{2}\right) = 11$.

$$\left[\because 1+2+3+\cdots+n=\frac{n(n+1)}{2}\right]$$

16. Required mean =
$$\left(\frac{1+2+\dots+11}{11}\right) = \left(\frac{1}{11} \times \frac{11 \times 12}{2}\right) = 6$$
.

$$\left[\because 1 + 2 + \dots + n = \frac{n(n+1)}{2} \right]$$

17. Average =
$$\left(\frac{10+15+20+25+30}{5}\right) = \frac{100}{5} = 20.$$

18. Average =
$$\frac{3(1+2+3+4+5)}{5} = \frac{45}{5} = 9$$
.

19. Average =
$$\left(\frac{2+3+5+7+11+13+17+19+23}{9}\right)$$

= $\frac{100}{9} = 11\frac{1}{9}$.

20. Clearly, we have

$$\left(\frac{3+11+7+9+15+13+8+19+17+21+14+x}{12}\right) = 12$$

or
$$137 + x = 144$$
 or $x = 144 - 137 = 7$.

21. We have :
$$\left(\frac{2+7+6+x}{4}\right) = 5$$
 or $15+x=20$ or $x=5$.

Also,
$$\left(\frac{18+1+6+x+y}{5}\right) = 10$$
 or $25+5+y=50$ or $y=20$.

22.
$$P + C + M = C + 120 \Rightarrow P + M = 120.$$

∴ Required average =
$$\frac{P+M}{2} = \frac{120}{2} = 60$$
.

23. Required average =
$$\left(\frac{1+2+3+\cdots+100}{100}\right)$$

= $\frac{1}{100} \times \frac{100 \times 101}{2} = 50.5$.

$$= \frac{50}{2} [2 + (50 - 1) \times 2] = 2500.$$

$$\lceil \because \text{Sum of } n \text{ terms of an A.P. with} \rceil$$

first term *a* and common diff.
$$d = \frac{n}{2} [2a + (n-1) d]$$

∴ Required average =
$$\frac{2500}{50}$$
 = 50.

25. Sum of ages of father and mother =
$$(35 \times 2)$$
 years = 70 years.

Sum of ages of father, mother and son = (27×3) years = 81 years.

$$\therefore$$
 Son's age = $(81 - 70)$ years = 11 years.

26.
$$X_1 + X_2 + X_3 = (14 \times 3) = 42.$$

 $2(X_2 + X_3) = 30 \Rightarrow X_2 + X_3 = 15.$

$$2(X_2 + X_3) = 30 \Rightarrow X_2 + X_3 = 15$$

$$X_1 = (42 - 15) = 27.$$

27.
$$x_1 + x_2 + x_3 + x_4 = 16 \times 4 = 64.$$

$$2(X_2 + X_3) = 30 \Rightarrow X_2 + X_3 = 13.$$

$$\therefore X_1 = (42 - 15) = 27.$$
27. $x_1 + x_2 + x_3 + x_4 = 16 \times 4 = 64.$

$$\frac{1}{2}(x_2 + x_3 + x_4) = 23 \Rightarrow x_2 + x_3 + x_4 = 46.$$

$$x_1 = 64 - 46 = 18$$

$$\therefore x_1 = 64 - 46 = 18.$$
28. We have:
$$\left[\frac{x + (x+2) + (x+4) + (x+6) + (x+8)}{5}\right] = 11 \text{ or }$$

$$5x + 20 = 55$$
 or $x = 7$.

So, the numbers are 7, 9, 11, 13, 15.

:. Required mean =
$$\left(\frac{11+13+15}{3}\right) = \frac{39}{3} = 13$$
.

29. We have :
$$\left(\frac{a+b+c}{3}\right) = M$$
 or $(a+b+c) = 3M$.

Now,
$$(a + b + c)^2 = (3M)^2 = 9M^2$$

$$\Leftrightarrow a^2 + b^2 + c^2 + 2 (ab + bc + ca) = 9M^2$$

$$\Leftrightarrow a^2 + b^2 + c^2 = 9M^2$$
. [:: $(ab + bc + ca) = 0$]

$$\therefore \quad \text{Required mean} = \left(\frac{a^2 + b^2 + c^2}{3}\right) = \frac{9M^2}{3} = 3M^2.$$

30. Average =
$$\left(\frac{11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99}{9} \right)$$
$$= \left[\frac{(11 + 99) + (22 + 88) + (33 + 77) + (44 + 66) + 55}{9} \right]$$

$$=\left(\frac{4\times110+55}{9}\right)=\frac{495}{9}=55.$$