PHYS516 ASSIGNMENT 7 — RANDOM WALK AND POISSON PROCESS

Due: Friday, April 21, 2023

The purpose of this assignment is to gain hands-on experience in stochastic simulations based on random walks and Poisson processes.

Assignment: Submit answers to ONE of the following three Monte Carlo (MC) simulations — (I) stock price; (II) quantum MC; and (III) kinetic MC.*

Part I — Stock-Price Simulation

1. Write a program that performs MC simulations of a stock price, S, as a function of time, t, assuming that S follows a discrete stochastic equation,

$$dS = \mu S dt + \sigma S \varepsilon \sqrt{dt},$$

where dt is the time discretization unit and ε is a random variable following the normal distribution with unit variance (cf. the Box-Muller algorithm in assignment 2). If the stock price becomes 0, let us assume that the company is bankrupt and you have lost all your investment.

- 2. Let us measure the time in years, and choose dt = 0.00274 year (~ 1 day). Suppose that the expected return from the stock is 14% per annum ($\mu = 0.14$) and the standard deviation of the return is 20% per annum ($\sigma = 0.20$). Starting stock price is \$20.0. Run MC simulations for 1 year (365 steps). Plot the stock price as a function of time.
- 3. Repeat MC simulations 1,000 times with the same parameters but with different random-number seeds. Plot the distribution of the stock price at step 365.

Part II — Quantum Monte Carlo Simulation

- 1. Write a program that performs diffusion quantum Monte Carlo (QMC) simulation of a one-dimensional electron wave function in a harmonic potential, $V(x) = x^2/2$ (in the atomic unit) following the lecture note on "Quantum Monte Carlo simulation".
- 2. Run the program for the initial number of walkers $N_0 = 50$, unit random-walk length ds = 0.1, and the number of Monte Carlo steps per walker mcs = 500, and plot the resulting histogram of random walkers. Before the mcs MC steps, you perform $nequil = 0.4 \times 500 = 200$ MC steps to equilibrate random walkers but do not include the equilibration MC steps in the histogram.

Part III — Kinetic Monte Carlo Simulation

1. Write a program that performs kinetic Monte Carlo (KMC) simulation of electron transfer on a one-dimensional chain of redox molecules as an asymmetric simple exclusion process, following the lecture slides on "Kinetic Monte Carlo Simulation of Electron Transfer."

^{*} You are welcome to submit more than one parts to make up any missed assignments.

2. Run the program for the number of molecules N = 20, the electron hopping rate $k^{\text{hop}} = 10^9 \text{ s}^{-1}$, and the number of KMC steps $Max_step = 10^6$. Run two simulations with the reduction and oxidation rates, $(k^{\text{red}}, k^{\text{ox}}) = (1 \times 10^7 \text{ s}^{-1}, 2 \times 10^7 \text{ s}^{-1})$ and $(2 \times 10^7 \text{ s}^{-1}, 1 \times 10^7 \text{ s}^{-1})$. For each of the two simulations, plot the occupation occ(i) averaged over all KMC steps as a function of the molecular ID i ($i \in [0, N-1]$).

Submit your source code and the plot for the simulation of your choice.