Le but de ce problème est de calculer de deux façons la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

On notera $(S_n)_{n\geqslant 1}$ la suite définie par :

$$\forall n \geqslant 1 \quad S_n = \sum_{k=1}^n \frac{1}{k^2}$$

Partie I : Convergence de la série $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

1. Démontrer que pour tout entier $k \ge 2$, on a la majoration : $\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$.

En déduire la convergence de la série $\sum \frac{1}{n^2}$ et donner un majorant de la somme $S = \sum_{n=1}^{+\infty} \frac{1}{n^2}$.

2. On considère la suite $(T_n)_{n\geqslant 1}$, définie par

$$\forall n \geqslant 1 \quad T_n = S_n + \frac{1}{n}.$$

Démontrer que les suites $(S_n)_{n\geqslant 1}$ et $(T_n)_{n\geqslant 1}$ sont adjacentes et donner un encadrement d'amplitude 10^{-1} de la limite commune notée S de ces deux suites.

- **3.** Montrer par une autre méthode (en utilisant une comparaison avec une intégrale) la convergence de la suite $(S_n)_{n\geqslant 1}$.
- 4. Sachant maintenant que la série $\sum \frac{1}{n^2}$ converge, montrer l'existence des sommes et prouver :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{3}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} \quad \text{puis} \quad \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

Partie II : Calcul de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ en utilisant les racines complexes de l'unité

1. Montrer que pour tout réel $x \in]0, \frac{\pi}{2}[$, on a

$$0 < \sin(x) < x < \tan(x)$$
 et $\cot^2(x) < \frac{1}{x^2} < 1 + \cot^2(x)$.

2. Pour tout entier $n \ge 1$, on note :

$$T_n = \sum_{k=1}^n \cot^2 \left(\frac{k\pi}{2n+1} \right)$$

Montrer que :

$$T_n < \frac{(2n+1)^2}{\pi^2} \sum_{k=1}^n \frac{1}{k^2} < n + T_n.$$

3. Nous allons montrer en utilisant les racines du polynôme $P_n(z)=(z+1)^{2n+1}-(z-1)^{2n+1}$, que :

$$\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3}$$

- (a) Vérifier que P_n est un polynôme pair de degré 2n.
- (b) Montrer que les 2n racines complexes du polynôme P_n sont les :

$$z_k = i\cot \left(\frac{k\pi}{2n+1}\right)$$
 et $-z_k$, pour $1 \le k \le n$

- (c) Si on note $P_n(z) = \sum_{k=0}^n a_k z^{2k}$, on définit le polynôme Q_n par $Q_n(z) = \sum_{k=0}^n a_k z^k$. Préciser le degré et les racines de Q_n à partir de celle de P_n . On note $\lambda_1, \lambda_2, \ldots, \lambda_n$ les racines de Q_n , on peut écrire $Q_n = a_n \prod_{k=1}^n (z - \lambda_k)$. Déterminer une relation liant $\sum_{k=1}^n \lambda_k$, a_n et a_{n-1} .
- (d) Montrer que:

$$T_n = \sum_{k=1}^n \cot^2 \left(\frac{k\pi}{2n+1}\right) = \frac{n(2n-1)}{3}$$

- (e) Conclure.
- (f) En déduire que :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

(Remarque : En utilisant les idées qui précédent, on peut aussi démontrer que : $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.)

Partie III: Calcul de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ preuve due à MATSUOKA (American Mathematical Monthly, 1961).

Pour tout entier $n \in \mathbb{N}$, on pose :

$$I_n = \int_0^{\frac{\pi}{2}} \cos^{2n}(t) dt, \quad J_n = \int_0^{\frac{\pi}{2}} t^2 \cos^{2n}(t) dt.$$

- **1.(a)** Démontrer que pour tout $n \ge 1$, on a : $I_n = \frac{2n-1}{2n}I_{n-1}$.
 - **(b)** En déduire que pour tout $n \in \mathbb{N}$, on $a : I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} = \frac{\binom{2n}{n}}{2^{2n}} \frac{\pi}{2}$.
- **2.** Soit $n \ge 1$.
 - (a) Montrer que:

$$I_n = n(2n-1)J_{n-1} - 2n^2J_n.$$

(b) En déduire que :

$$\frac{\pi}{4n^2} = K_{n-1} - K_n.$$

où on a noté $K_n = \frac{2^{2n}(n!)^2}{(2n)!}J_n$, puis que :

$$\frac{\pi}{4} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^3}{24} - K_n$$

- **3.** Nous allons montrer que $\lim_{n \to +\infty} K_n = 0$.
 - (a) Démontrer que pour tout réel $x \in [0, \frac{\pi}{2}]$, on a : $x \leq \frac{\pi}{2} \sin x$.
 - (b) En déduire que, pour tout entier n, on a :

$$0 \leqslant J_n \leqslant \frac{\pi^2 I_n}{8(n+1)}$$
, puis $0 \leqslant K_n \leqslant \frac{\pi^3}{16(n+1)}$.

(c) En déduire que

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$