## Problem optymalnego nawiasowania



ABCD



L. 
$$(0,0)$$

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $(0,0)$ 

( $($ 

$$(qp) = Cn$$

$$(qp) = Cn$$

$$(qp) = Cn$$

$$(qp) = (ABQD)$$

$$(ABQD) = (AB$$

## Własność optymalnej podstruktury

W optymalnym nawiasowaniu iloczynu

$$A_1 \dots A_n$$

każdy blok

$$A_i \dots A_j$$

powinien być nawiasowany według optymalnego nawiasowania tego bloku.







 $A^{-1} \cdot A = I_n$ 

 $\begin{array}{ccc}
\widehat{AI_{n}} & \overline{I_{n}} & A & = A \\
\overline{I_{n}} & \sim & \mathbf{1}
\end{array}$ 

## Macierz odwrotna

Niech A będzie macierzą kwadratową wymiaru  $n \times n$ . Jeżeli istnieje macierz B, spełniająca warunek

$$AB = BA = I_n$$

to nazywamy ją macierzą odwrotną do macierzy A. Piszemy wtedy

$$B = A^{-1}$$
.

1. Cry  $A^{-1}$  jest usuanone poolisuonne?

2. Kiedy  $A^{-1}$  istuleje?

3. You usuanod  $A^{-1}$ ?

 $AB = BA = AC = CA = I$ 
 $AB = BA = AC = CA = I$ 
 $AB = BA = AC = CA = I$ 
 $AB = BA = AC = CA = I$ 

2. A istniage (=) 
$$nLA = n$$

A hxn

3. Algorithm Gaussian

[A | b]  $ne$  whatshad

[T | b]

[A | b]  $ne$  whatshad

[T | b]

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]  $ne$  whatshad

[A | 3 2 | 1 0 0]

[A | 4 | 5 | 6 | 5 |

[A | 6 | 6 | 6 |

[A | 6 | 6 | 6 |

[A | 6 |

[A | 6 | 6 |

[A | 6 | 6 |

[A | 6 |

Hyznaunihi  $\bigwedge$   $n \times n$ A → a ∈ R f: Rn×n

det - determinant Def. (Prier posted medhovera)

Meieli medern A pert replsene u posted
schoolhousef to det A pert ilonghelm elements
ne prelighter. det(A) det lan = an an ... ans det(A') = c det A det(A') = - det A W: Co K A mitchij 4: + 4:C det(A') = detA Tym reven molemy who is ved rounter operage elementerne ne bolumnach.