□ 예외상황 표출을 위한 의사결정지원 시스템(시뮬레이터) 기술 개발 연구

가. 연구목적

• 재난 발생 시 예외상황 표출을 통해 신속하고 정확한 의사결정을 지원하는 시스템을 개발하는 데 연구의 목적이 있습니다. 침수, 지진 등 다양한 재난 유형에서 실시간 데이터와 AI 예측 결과를 관리하고, 3D GIS 시각화를 통해 결과를 직관적으로 제공 함으로써, 재난 피해를 최소화하고 효율적인 대응 프로세스를 구축

나. 기술 개발 개요

- 예외상황 표출 중심의 재난 시뮬레이션 엔진 설계
 - 실시간 재난 데이터를 기반으로 한 표준 메타데이터 구축.
 - 인공지능 학습모델을 통해 예외상황을 자동으로 감지 및 표출.
 - 재난 발생 시, 시뮬레이션 결과를 즉각적으로 시각화하여 의사결정을 지원.

- 시각화 및 분석 기능 강화
 - Maptalks, Three.js, Cesium 등 오픈소스 GIS 기술을 활용한 3D 도시 시뮬레이션.
 - 예외상황 표출을 통해 침수, 지진, 미세먼지 등 다양한 재난 데이터를 실시간으로 분석하고 가시화.
 - 주요 위험 지역을 한눈에 확인할 수 있도록 예외상황 레이어를 추가하여 관리자의 의사결정을 지원.

- 데이터 자동 분류 및 표준화
 - 분석 결과를 자동으로 분류하고 CSV 파일로 저장하여 관리 효율성 극대화.
 - 표준화된 데이터 구조를 통해 재난 데이터의 활용성과 신뢰성을 향상

다. 예외상황 표출을 위한 메타데이터 구축 방안

- 메타데이터의 역할
 - 예외상황 표출에 필요한 데이터를 표준화하고, 논리적/물리적 데이터 모델을 통해 신속한 분석이 가능하도록 지원
- 구축 방식
 - 논리 모델 작성:
 - 재난별 표준 메타데이터를 기반으로 데이터 모델 작성.
 - 예: 지진 메타데이터(깊이, 위도, 경도), 침수 메타데이터(지형 높낮이, 토양 구성).
- 물리 모델 생성:
 - 표준화된 논리 모델을 기반으로 물리 모델 자동 생성.
 - DBMS와 연계된 스크립트 생성 및 반영.
 - 데이터 품질 관리 및 갭 분석:
 - 예외상황 표출을 위한 데이터 모델과 DBMS의 갭 분석 및 품질 검증 수행.
- 데이터 표준화의 필요성
 - 다양한 재난 상황에서 발생하는 데이터를 통합적으로 관리하기 위해 표준화된 메타 데이터 필요.
 - 예외상황 표출 시 데이터의 신뢰성을 확보하여 의사결정의 정확성을 보장.
- 메타데이터는 조직 내외에서 관리하는 모든 데이터와 지식에 관한 정보임
- 재난 시뮬레이션 기능은 재난 데이터를 재난별 표준 메타데이터로 구축된 인공지능 재난학습모델에 입력하고 시계열 재난 시뮬레이션 데이터를 출력하도록 설계됨. 예를 들어, 지진 메타데이터는 지하의 암반 구성을 중심으로 구축될 수 있고, 침수 메타데 이터는 지형의 높낮이, 토양구성을 중심으로 구축될 수 있음

• 이에 국내 재난데이터 표준화를 제시하고, 재해 발생 시 즉각적인 대응을 위해 침수, 지진 등의 실시간 재난 데이터를 재해 시뮬레이션 엔진에 제공하여 재난별 표준 메 타데이터로 구축된 인공지능 재난학습모델을 통해 재난 피해를 사전에 예지보전할 수 있는 재난예측 시스템을 제시하여 기존 재난시스템과의 차별성을 명확히 함

유형(Type) 업무(Business)		목적(Purpose) 비니지스 측면에서 데이터의 의미 이해를 돕기 위함	설 명(Examples) 각종 문서, 보고서, 사용자 화면에 나타나는 업무용어 등	사용자 (Audience) 현업사용자	원천(Origin) 매뉴얼 (Manual)
Operational	운영시스템의 모델 및 품질관리 지원 데이터웨어하우스 운영처리를 지원	운영담당자 DW 관리자	시스템 생성정보 System Generated		
Relationships	모든 가능한 Object에 대한 연관성 추적 분석을 지원	Application, Component, Document, DB, Message, Log Etc.	모든 사용자	매뉴얼 / Agent 등	

▲ 메타데이터 구조도

- ① 메타데이터를 활용한 논리 모델 작성
 - 미리 정의된 메타데이터를 활용하여 데이터 모델을 작성하여 기업의 구성원들 간 명확한 의사소통을 가능하도록 함
 - 예1) 지진 메타데이터 : depth, address, longitde, latitude 데이터 등
 - 예2) 명확한 표준용어 : magnitude => 진도
 - 예3) 지도연계 타입, 그래프 타입, 테이블 타입, OPEN API 타입 등의 데이터 종류별로 표준화
- ② 메타데이터에 의한 물리 모델 자동 생성 메타데이터의 표준 사전을 활용하여 작성된 논리 모델을 기반으로 자동화된 물리 모델을 생성
- ③ 모델링 도구에서 직접 모델 신청 모델러는 모델 작성을 완료하면 자동화된 표준 준수, 충실도 등을 수행하고 모델링 도구에서 현재 버전의 Publishing을 위한 승인 신청 수행
- ④ DBMS 반영 스크립트 자동 생성 직전 Publishing한 모델과의 갭분석을 통한 DDL 스크립트 생성 현재 DBMS와의 갭분석을 통한 DDL 스크립트 생성

- ⑤ DDL 스크립트 반영 명확한 작업 대상을 통한 DBMS 변경 작업 진행
- ⑥ DDL 반영된 DBMS 최종 정보 수집 변경된 DBMS 카탈로그 정보 수집(배치/수시)
- ⑦ 물리 모델과 DBMS 정보 갭 분석 최종 Publishing 된 데이터 모델과 최신 DBMS 카탈로그 정보간 갭 분석 지원
- ⑧ 데이터 구조 기반의 품질 검증 및 데이터 흐름 관리 메타데이터를 활용한 데이터 모델 기반의 데이터 구조 관리가 확립되었다면 이를 데이터 품질 검증 및 흐름 관리로 확장

▲메타 기반 데이터 품질 관리체계

- 지역구 (방사능안전정보 공개센터 등)의 신속한 복합재난 적시대응 의사결정 체계 구축, 재난 취약지구 분석 및 재해별 메타데이터 표준 개발
 - 지역구 재난 관련 데이터 및 관리체계 분석을 통한 개선방안 도출
 - 3D GIS, 지형, 건물, 하천 등의 정보를 연계한 데이터 관리 표준 마련
 - ☞ 재난 데이터 표준화 관련 선행 연구조사, 문제해결을 위한 데이터 흐름 분석
 - ☞ 침수, 지진 문제해결을 위한 수집·생성된 데이터 특성을 분석하여 데이터 모델 정의
 - ☞ 재난 데이터 관리를 위한 표준 가이드라인을 정의하고 표준을 제정
- 기존 데이터 수집을 통한 지역특화 재난데이터 구축(연계) 및 표준화
 - 공공데이터, 부산군의 기 보유 각종 데이터 등을 활용한 지역 특화 DB 구축
 - ☞ (지형정보) 수치표고모델, 토지피복도, 경사도 등
 - ☞ (지하매설물 정보) 하수관망, 맨홀, 펌프시설 등
 - ☞ (하천, 지하차도 정보) 하천대장 및 지하차도 도면, CCTV/수위계 설치정보, 배수시설정 보 등
 - ☞ (암반, 토양 정보) 지역별 지반 깊이, 지하의 암반과 토양 구성 정보 등
 - ☞ (기타 정보) 지역별 주요 시설 및 건축물 정보, 인구통계 정보, 관공서(주민센터, 경찰서, 소방서, 병원 등) 정보, GIS 정보

라. 시스템 주요 기능 및 특징

- 예외상황 표출 중심의 시뮬레이션 엔진
 - 재난별 예외상황을 자동으로 탐지하고, 신속히 시각화하여 표출.
 - 복합재난 상황에서도 예외상황을 우선 표출하여 대응 우선순위 설정 지원.
- 3D GIS 기반 시각화 및 데이터 분석
 - 도시 및 지역 단위의 예외상황을 3D GIS로 직관적으로 제공.
 - 위험 지역의 침수, 지진, 미세먼지 데이터를 레이어별로 구분하여 표출.
- AI 기반 예측 및 시나리오 분석
 - 예외상황 발생 가능성을 사전에 예측하여 사용자에게 경고 메시지 전송.
 - 시나리오별 대응 가이드를 통해 관리자의 의사결정을 지원.
- 실시간 데이터 통합 및 대시보드 제공
 - 실시간 재난 데이터(기상, CCTV, GIS 등)를 통합하여 하나의 대시보드에 표시.
 - 예외상황 표출 및 중요 데이터 우선 배치로 의사결정 효율화.
 - 재난 시뮬레이션 엔진은 재해별 표준 메타데이터를 구축하여 신속하고 정확한 시뮬레이션을 제공하고, 3D GIS 표출 기능으로 사용자에게 직관적인 가시 정보를 제공함
 - GIS(Geographic Information System)을 통해 지리적 위치를 갖고 있는 대상에 대한 위치자료(spatial data)와 속성자료(attribute data)를 통합·관리하여 지도, 도표 및 그림들과 같은 여러 형태의 정보를 제공함으로써 통합적 재난 관리 시스템을 구축하여 현장 상황 및 분석적 측면의 정확도를 높여 정확하고 신속한 재난 관리 및 의사결정을 제공함

시뮬레이션 기반 분석 시각화

시뮬레이션 기반 하천홍수 범람도

- AI 기반 재난 예측 및 지역에 최적화된 모델 개발 · 적용
 - 재해 상습 지역의 실시간 상황인지를 위한 시계열 기반 시뮬레이션 기술 개발
 - 재난영상감시장치(CCTV) 데이터 판독 및 딥러닝 기반 예측 기술 개발
 - 3차원 GIS 기반 신속한 재난 대응 의사결정 솔루션 구축
 - 상황 단계별 재난대응 프로세스 기술 구축
 - ☞ 1단계 : 관심

- 재난 징후 접수 후 상황 전파 및 보고
- ☞ 2단계 : 주의
- 시민들에게 재난주의보 메시지 전송 및 상황 모니터링
- ☞ 3단계 : 경계
- 시민들에게 대피소 정보 메시지 전송 및 재난상황실 운영
- ☞ 4단계 : 심각
- 현장출동 대응을 통한 고립된 시민 구출 및 수습/복구 활동

- 대응 단계별 특징
 - 국내.외 복합재난 발생 사례조사를 바탕으로 복합재난 대응단계를 크게 재해발생전 인 관심·주의·경계 단계, 재해가 발생한 직후 및 재해발생 후 단기복구와 장기복구 가 필요한 심각 단계 등 4단계로 구분하고 각 단계별 주요 특징을 도출
 - ☞ 관심·주의·경계 단계에서는 자연재해 발생 시 복합재난으로 악화될 수 있는 시설물이 밀집되어 있는 지역이 취약하다고 판단하고, 취약 지점을 예의 주시하고, 재난 상황을 시뮬레이션함으로써 신속한 인명구조와 더불어 피해확산 저감이 가능하도록 대응함
 - ☞ 심각 단계는 단기복구단계와 장기복구단계로 구분하여, 단기복구단계에서는 피해를 받은 주민들의 기본적인 의식주를 지원하고, 장기복구단계에서는 주민들이 정상적인 경제생활 및 사회생활을 할 수 있도록 회복부분에 초점을 두고 관리함
- 시민생활안전을 위한 3차원 GIS 기반 도시 예지보전 솔루션 개발 · 적용
 - 시뮬레이션을 통한 실시간 도심지 재난위험 예측/분석
 - 재난예측 및 모니터링 데이터를 기반으로 시민생활안전을 위한 다양한 서비스 제공

- ☞ 실시간 재난현황 모니터링으로 교통 혼잡 최소화(CCTV): 교통통제, 우회경로 안내 등
- ☞ AI 기반 재난 대피경로 탐색 및 대응 지원으로 재난구역 시민 위험 대피로 안내 등
- ☞ 시각화, GIS 기반 재해정보 지도 제공(시민안전단리 내비게이션)으로 안전한 시민대피

실시간 재해도 표시

대피경로 시각화

- 대상공간 환경 센싱정보 기반 복합재난 전조 감지 및 자율학습 기술
 - 지상공간(전통시장, 역사, 다중이용시설 등), 지하공간(공동구, 일반구 등)
 - 대상공간 환경정보 수집 표준 입출력 인터페이스 개발
 - 표준격자 기반 재난 전조감지 경보 디지털트윈 공간 매핑 기술 개발
 - 자윸·강화학습 기반 전조감지 모델 개발
- 복합재난 확산정보 및 요구조자 위치정보 기반 능동대응정보 전달기술
 - 복합재난 확산정보 기반 실내 지역(Zone) 단위 능동대응 정보 생성 및 전달 기술개발
 - 실내 지역 구조조간 복합재난 확산정보 공유 및 협업 기술개발
- 구조자 상황 맞춤형 디지털트윈 계층 정보 추출 및 전달 기술
 - 구조자 실내 지역(Zone) 기반 디지털트윈 정보 분할 및 계층정보 추출 통합 기술 개발
 - 구조자 상황 맞춤형 디지털트윈 정보 압축·전달 기술 개발
 - 구조자 집단 정보 공유 기술 개발
- 복합재난 능동대응 장치 원격제어 기술
 - 실내 지역 단위 능동대응 정보 기반 재난지역 IoT 장치 원격제어기술 개발
 - 실내 공간 모델링을 위한 대상지역 이동형 영상장치 원격제어 기술 개발
- 방사능 재난 표준 시나리오 모형 유형
 - 상황발생시 관심, 주의 단계에서 백색비상, 경계단계에서 청색비상, 심각단계에서 적색비상을 선포하고, 수소 폭발 등의 경계선을 넘어서면 재난으로 선포