STOCHASTIK FÜR INFORMATIKER - HAUSAUFGABE 6

Tom Nick 342225 Alexander Mühle 339497 Maximilian Bachl 341455

Aufgabe 1

X = Anzahl von Köpfen in den letzten drei Würfen

Y = Anzahl von Köpfen in den ersten und zweiten Würfen

(i)
$$\Omega = \{(w_1, w_2, w_3, w_3) | w_1, w_2, w_3, w_4 \in \{K, Z\}\}\$$

 $\forall \omega \in \Omega. \mathbb{P}\{\omega\} = \frac{1}{2}^4 = \frac{1}{16}$

(ii) Verteilung von X:

$$X(\Omega) = \{0, 1, 2, 3\}$$

$$P(X = 0) = \frac{2}{16} = \frac{1}{8}$$

$$P(X = 1) = \frac{6}{16} = \frac{3}{8}$$

$$P(X = 2) = \frac{6}{16} = \frac{3}{8}$$

$$P(X = 3) = \frac{2}{16} = \frac{1}{8}$$

Verteilung von Y:

$$Y(\Omega) = \{0, 1, 2\}$$

$$P(Y = 0) = \frac{4}{16} = \frac{2}{8}$$

$$P(Y = 1) = \frac{8}{16} = \frac{4}{8}$$

$$P(Y = 2) = \frac{4}{16} = \frac{2}{8}$$

(iii) Verteilu

	X/Y	0	1	2	P(X=x)
ung von X und Y	0	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{8}$
	1	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{3}{8}$
	2	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{3}{8}$
	3	0	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$
	$\mathbb{P}(Y=y)$	$\frac{2}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	1

(iv) Nein! Da:

$$\mathbb{P}(X=3, Y=0) = 0 \neq \mathbb{P}(X=3) \cdot \mathbb{P}(Y=0) = \frac{1}{8} \cdot \frac{2}{8} = \frac{2}{64} = \frac{1}{32}$$

Aufgabe 2

(i)
$$\mathbb{P}(X > Y) = 0$$

(ii)
$$\mathbb{P}(X \ge Y) = \frac{3}{8}$$

(iii)
$$\mathbb{P}((X+Y) \text{mod } 2 = 0) = \frac{3}{8} + \frac{1}{16} + \frac{1}{16} = \frac{8}{16} = \frac{1}{2}$$

(iv)
$$\mathbb{P}(X - Y \le 1) = 1$$

(v)
$$\mathbb{P}(Y \ge X) = 1$$

Aufgabe 3

(ii)
$$X(\Omega) = \{1,2,3,4\}$$

 $\mathbb{P}(X = 1, Y = 2) = \frac{1}{20}, \ \mathbb{P}(X = 2, Y = 1) = \frac{3}{20}$
 $\mathbb{P}(X = 3, Y = 1) = \frac{3}{20}, \ \mathbb{P}(X = 4, Y = 1) = \frac{1}{20}$

Aufgabe 4

$$\mathbb{P}(X=k) = \frac{2}{(n-1)\cdot n} \cdot (n-k)$$

$$\mathbb{P}(Y = k) = \frac{2}{(n-1)\cdot n} \cdot (k-1)$$

Gemeinsame Verteilung

$$\forall x, y \in \{1...n\}. \ y > x \Rightarrow \mathbb{P}(X = x, Y = y) = \frac{2}{(n-1) \cdot n}$$

Sei Y - X = k

$$\mathbb{P}(Y-X) = \frac{2}{(n-1)\cdot n} \cdot (n-k)$$