TD 3. Sémantique de CCS

Exercice 1 Donner la sémantique (systèmes de transition) des programmes CCS suivants

- a. $P \triangleq a.b.0$
- b. $P \triangleq a.0 + b.0$
- c. $P \triangleq a.0 || b.0$
- d.

$$\begin{array}{ccc} P & \triangleq & \mathtt{a.}(Q \,||\, \mathtt{b.0}) \\ Q & \triangleq & \mathtt{a.}R \\ R & \triangleq & \mathtt{a.}0 + \mathtt{b.}Q \end{array}$$

- e. $P \triangleq \nu c.(a.0 || b.0)$
- f. $P \triangleq \nu a.(a.0 || b.0)$
- g. $P \triangleq \nu a.\nu b.(a.0 || b.0)$
- h. $P \triangleq a.0 || \overline{a}.0$
- i. $P \triangleq \nu a.(a.0 || \bar{a}.0)$
- j. $P \triangleq \nu$ a.(b.a.0 || \overline{a} .c.0)

1 Compteurs

On souhaite modéliser, à l'aide de CCS, les compteurs étudiés dans le TD2. On ignorera le test à zéro. On notera S_j^i les variables de processus représentant le compteur C_j dans l'état i. On oubliera le test à zéro et on notera p l'incrémentation et m la décrémentation.

Exercice 2 (Modélisation) Modéliser les compteurs C_2 et C_3 .

Exercice 3 (Composition parallèle) On souhaite maintenant simplifier la modélisation des compteurs en utilisant la composition parallèle.

- a. Donner la sémantique de C_3 .
- b. Donner la sémantique de $C_1 || C_2$.
- c. Montrer que $C_3 \sim C_1 || C_2$.
- d. Montrer que pour tout $i \in \mathbb{N}$ on a $C_{i+1} \sim C_1 || C_i$.
- e. Montrer que pour tout $i \in \mathbb{N}$ on a $C_i \sim \underbrace{C_1 \mid\mid \ldots \mid\mid C_1}_{i \text{ fois}}$.