#### DISTRIBUIRANI ALGORITMI I SISTEMI

CE 668 Autor izvorne prezentacije:
2014 Prof. Jennifer Welch

## Model deljenje memorije (SM = Shared Memory)

- Procesori komuniciraju preko skupa deljenih promenljivih, umesto slanjem poruka.
- Svaka deljena promenljiva ima tip, koji definiše skup operacija koje se mogu izvoditi atomski.

## Primer modela deljene memorije



### Model deljene memorije

- Razlike u odnosu na model sa slanjem poruka:
  - nema inbuf i outbuf komponenti stanja
  - konfiguracija uključuje vrednosti za sve deljene promenljive
  - Jedini tip događaja je korak procesorskog računanja
  - Izvršenje je prihvatljivo ako svaki procesor izvodi beskonačan broj koraka

### Korak računanja u modelu deljenje memorije

- □ Kada procesor p; izvodi korak:
  - stanje pi u staroj konfiguraciji određuje kojim deljenim promenljivama treba pristupati i sa kojim operacijama
  - operacija se obavi: vrednost deljene prom. u novoj konfiguraciji se menja u skladu sa semantikom operacije
  - stanje p<sub>i</sub> u novoj konfiguraciji se menja na osnovu starog stanja i rezultata operacije

# Opservacije na modelu deljene memorije

- Pristupi deljenim promenljivama tokom koraka računanja modeluju se kao ternutni (atomski), jedan pristup po koraku
- Definicija prihvatljivog izvršenja implicira
  - asinhronizam
  - nema otkaza

# Problem međusobnog isključivanja (Mutex)

□ Kod svakog procesora je podeljen u 4 sekcije:



- ulaz: sinhronizacija sa drugima radi međusobnog isključivanja prilikom pristupa...
- kritičan: koristi neki resurs; iza toga, uđi u...
- □ izlaz: raščišćavanje; iza toga, uđi u...
- ostatak: bez korišćenja resursa

## Algoritmi međusobnog isključivanja

- Algoritam međusobnog isključivanja specificira kod za sekcije ulaza i izlaza radi obezbeđivanja:
  - međusobnog isključivanja: najviše 1 procesor je u svojoj kritičnoj sekciji u bilo kom trenutku, i
  - neka vrstu uslova "životnosti" ili "napredka" (progress).
    Postoji 3 uobičajena uslova koji se razmatraju...

### Mutex uslovi napredka

- nema međusobnog blokiranja: ako je procesor u svojoj ulaznoj sekciji u nekom treunutku, onda je kasnije neki procesor u svojoj kritičnoj sekciji
- nema trajnog zaključavanja: ako je procesor u svojoj ulaznoj sekciji u nekom trenutku, onda je kasnije isti procesor u svojoj kritičnoj sekciji
- bgraničeno čekanje: kao predhodno + dok je procesor u svojoj ulaznoj sekciji, drugi procesori ulaze u kritičnu sekciju ograničen broj puta.
- Ovi uslovi su navedeni u rastućem redosledu snage.

## Algoritmi međusobnog isključivanja

- U kodu za ulazne i izlazne sekcije su dozvoljene sledeće predpostavke:
  - ni jedan procesor ne ostaje u svojoj kritičnoj sekciji zauvek
  - deljenim prom., koje se koriste u ulaznim i izlaznim sekcijama, ne pristupa se u kritičnoj sekciji i sekciji ostatka

#### Mere složenosti za Mutex

- Važna mera složenosti za mutex algoritme je potrebna količina deljenog prostora.
- Veličina prostora zavisi od toga:
  - koliko je snažan tip deljenih promenljivih
  - koliko je snažan uslov napredka koji treba zadovoljiti (nema blokiranja ili nema trajnog zaključavanja ili ograničeno čekanje)

### Mutex rezultati korišćenjem RMW

 Kad se koriste moćne deljene promenljive "readmodify-write" tipa

| broj SM              | gornja granica | donja granica         |
|----------------------|----------------|-----------------------|
| stanja               |                |                       |
| nema međusobnog      | 2              | 2                     |
| blokiranja           | (test&set alg) | (očigledno)           |
| nema trajnog zaklju. | n/2 + c        | $\sqrt{(2n)}$ $(n/2)$ |
| (bez pamćenja)       | (Burns et al.) | (Burns et al.)        |
| ograničeno čekanje   | $n^2$          | n                     |
|                      | (queue alg.)   | (Burns & Lynch)       |

## Mutex rezultati korišćenjem Read/Write

#### Kad se koriste read/write deljene promenljive

| broj različitih prom.         | gornja granica                          | donja granica        |
|-------------------------------|-----------------------------------------|----------------------|
| nema međusobnog<br>blokiranja |                                         | n<br>(Burns & Lynch) |
| nema trajnog<br>zaključavanja | 3 <i>n</i> bool prom. (Tournament alg.) |                      |
| ograničeno čekanje            | 2n neograničeno<br>(Bakery alg.)        |                      |

## Test-and-Set deljena promenljiva

- test-and-set promenljiva V uzima 2 vred., 0 ili 1, i podržava 2 (atomske) operacije:
  - □ test&set(V):

```
temp := V
V := 1
return temp
```

□ reset(V):

$$V := 0$$

## Mutex algoritam koji koristi Test&Set

□ kod za ulaznu sekciju:

```
repeat
t := test&set(V)
until (t = 0)
```

Alternativna sintaksna konstrukcija je:

```
wait until test&set(V) = 0
```

□ kod za izlaznu sekciju:

```
reset(V)
```

# Međusobno isključivanje je osigurano

Pred. da nije. Razmotri prvo narušavanje, kada neki p<sub>i</sub> uđe u KS a drugi p<sub>i</sub> je već u KS

> $p_j$  ulazi u KS: vidi V = 0, postavi V to 1

 $p_i$  ulazi KS: vidi V = 0, postavi V to 1

# Međusobno isključivanje je osigurano

Pred. da nije. Razmotri prvo narušavanje, kada neki p<sub>i</sub> uđe u KS a drugi p<sub>i</sub> je već u KS

> $p_j$  ulazi u KS: vidi V = 0, postavi V to 1

 $p_i$  ulazi KS: vidi V = 0, postavi V to 1

niko ne izlazi iz KS pa V ostaje 1

## Međusobno isključivanje je osigurano

Pred. da nije. Razmotri prvo narušavanje, kada neki p<sub>i</sub> uđe u KS a drugi p<sub>i</sub> je već u KS

> $p_{j}$  ulazi u KS: vidi V = 0, postavi V to 1  $p_{j}$  ulazi KS: vidi V = 0, postavi V to 1  $p_{j}$  ulazi KS: vidi V = 0, postavi V to 1

## Nema međusobnog blokiranja

- $\square$  Tvrdnja: V = 0 akko ni jedan procesor nije u KS.
  - Dokaz je indukcijom po događajima u izvršenju, uz oslonac na činjenicu da međusob. isključivanje važi.
- Predpost. postoji trenutak posle kad je proc. p u svojoj ulaznoj sekciji ali ni jedan proc. nikada ne ulazi u KS.

p je u ulazu ali ni jedan procesor ne ulazi u KS

## Nema međusobnog blokiranja

- $\square$  Tvrdnja: V = 0 akko ni jedan procesor nije u KS.
  - Dokaz je indukcijom po događajima u izvršenju, uz oslonac na činjenicu da međusob. isključivanje važi.
- Predpost. postoji trenutak posle kad je proc. p u svojoj ulaznoj sekciji ali ni jedan proc. nikada ne ulazi u KS.

p je već u ulazu, nema procesora u KS

p je u ulazu ali ni jedan procesor ne ulazi u KS

## Nema međusobnog blokiranja

- $\square$  Tvrdnja: V = 0 akko ni jedan procesor nije u KS.
  - Dokaz je indukcijom po događajima u izvršenju, uz oslonac na činjenicu da međusob. isključivanje važi.
- Predpost. postoji trenutak posle kad je proc. p u svojoj ulaznoj sekciji ali ni jedan proc. nikada ne ulazi u KS.

p je već u ulazu, nema procesora u KS V je uvek jednak 0, sledeći t&s na p vraća 0 p ulazi u KS, kontradikcija!

p je u ulazu ali ni jedan procesor ne ulazi u KS

## Da li ima trajnog zaključavanja?

- Neki procesor bi mogao da uvek pobeđuje u test&set utakmici, i da "izgladnjuje" druge.
- Uslov odsustva trajnog zaključavanja nije ispunjen.
- Sledi da ni uslov ograničenog čekanja nije ispunjen.

## Read-Modify-Write deljena promenljiva

- Stanje ove vrste promenljive može biti bilo šta i bilo koje veličine.
- Promenljiva V podržava (atomske) operacije
  - $\square$  rmw(V,f), gde je f bilo koja funkcija

```
temp := V
V := f(V)
return temp
```

 Ovaj tip promenljive je toliko jak da nema smisla imati više promenljivih (sa teorijskog stanovišta).

## Mutex algoritam koji koristi RMW

- Konceptualno, lista procesora koji čekaju je smeštena
   u deljeni kružni red dužine n
- Svaki procesor pamti svoju lokaciju u redu u svom lokalnom stanju (umesto da se ova informacija drži u deljenoj promenljivoj)
- □ Deljena RMW prom. V čuva zapis o aktivnom delu reda pomoću indeksa first i last, to su indeksi reda (između 0 i n-1)
  - □ tako V ima dve komponente, first i last

### Konceptualna struktura podataka



### Mutex algoritam koji koristi RMW

#### □ Kod za ulaznu sekciju:

```
// povećaj last da bi ulančao sebe
position := rmw(V,(V.first,V.last+1))
// čekaj dok first ne dobije ovu vrednost
repeat
    queue := rmw(V,V)
until (queue.first = position.last)
```

#### □ Kod za izlaznu sekciju:

```
// povećaj first da bi izlančao sebermw(V,(V.first+1,V.last))
```

#### Skica dokaza korektnosti

#### Međusobno isključivanje:

Samo pocesor na vrhu reda (V.first) može ući u KS, i samo jedan procesor je na vrhu u bilo kom trenutku.

#### □ *n*-ograničeno čekanje:

FIFO redosled ulančavanja, i činjenica da ni jedan procesor ne ostaje u KS zauvek, daje ovaj rezultat.

### Veličina potrebnog prostora

- Deljena RMW promenljiva V ima dve komponente u svom stanju, first i last.
- □ Obe su celi brojevi u opsegu od 0 do n-1, dakle n različitih vrednosti.
- $\square$  Ukupan broj različitih stanja za V je onda  $n^2$ .
- $\square$  Sledi da je potrebna veličina V u bitima  $2*\log_2 n$  .

## Kruženje (Spinning)

- Nedostatak RMW algoritma sa redom čekanja: procesor u ulaznoj sekciji u više prolaza pristupa istoj deljenoj promenljivoj
  - □ tzv. kruženje
- Kruženje više procesora na istoj deljenoj prom. može biti vrlo vremenski neefikasno ne nekim arhitekturama
- Promeni algoritam sa redom čekanja tako da svaki procesor kruži na drugoj različitoj deljenoj prom.

# RMW Mutex algoritam sa zasebnim kruženjem (1/2)

#### Deljene RMW promenljive:

- □Last: odgovara indeksu last iz org. alg.
  - □kruži od 0 do *n*−1
  - vodi zapis o indeksu koji se dodeljuje sledećem procesoru da započne čekanje
  - □inicijalno je 0

# RMW Mutex algoritam sa zasebnim kruženjem (2/2)

Deljene RMW promenljive (nastavak):

- $\Box Flags[0..n-1]$ : niz binarnih promenljivih
  - ■to su prom. na kojima procesori kruže
  - treba osigurati da procesori ne kruže na istim promenljivama u istom trenutku
  - □ inicijalno Flags[0] = 1 (proc "ima bravu") i Flags[i] = 0 (proc "mora da čeka") za i > 0

## Pregled algoritma

- ulazna sekcija:
  - uzmi sledeći indeks iz Last i smesti ga u lokalnu promenljivu myPlace
    - povećaj Last (sa zamotavanjem eng. wrap-around)
  - kruži na Flags[myPlace] dok ne postane 1 (znači proc "ima bravu" i može ući u KS)
  - postavi Flags[myPlace] na 0 ("nema bravu")
- □ izlazna sekcija:
  - postavi Flags[myPlace+1] na 1 (tj., daj prioritet sledećem proc)
    - koristiti modulo aritmetiku za zamotavanje

## Pitanje

Da li deljene promenljive Last i Flags moraju da budu RMW promenljive?

## Pitanje

Da li deljene promenljive Last i Flags moraju da budu RMW promenljive?

Odgovor: RMW semantika (atomsko čitanje i ažuriranje promenljive) je potrebna za Last, da dva procesora ne bi dobili isti indeks u preklopljenim vremenskim intervalima.

### Invarijante algoritma

- Najviše jedan element Flags ima vred. 1 ("ima bravu")
- 2. Ako ni jedan element element Flags nema vred. 1, onda je neki procesor u KS.
- Ako je Flags[k] = 1, onda je tačno (Last - k) mod n procesora u ulaznoj sekciji, kruže na Flags[i], za i = k, (k+1) mod n, ..., (Last-1) mod n.

## Primer invarijanti



k = 2 i Last = 5.
Znači 5 - 2 = 3 procesora su u ulazu,
kruže na Flags[2], Flags[3], Flags[4]

#### Korektnost

- □ Ove 3 invarijante se mogu koristiti da se dokaže:
  - Da je zadovoljeno međusobno isključivanje.
  - □ Da je zadovoljeno *n*-ograničeno čekanje.

# Donja granica broja memorijskih stanja (1/4)

**Teorema (4.4):** bilo koji mutex algoritam sa *k*-ograničenim čekanjem (i bez među. blokiranja) koristi barem *n* stanja deljene memorije.

**Dokaz:** predpost. u cilju kontradikcije da postoji algoritam koji koristi manje od *n* stanja deljene memorije.

## Donja granica broja memorijskih stanja (2/4)

Razmotrimo izvršenje ovog algoritma:

Postoje i i j takvi da C<sub>i</sub> i C<sub>j</sub> imaju isto stanje deljene memorije.

## Donja granica broja memorijskih stanja (2/4)

Razmotrimo izvršenje ovog algoritma:

Postoje i i j takvi da C<sub>i</sub> i C<sub>j</sub> imaju isto stanje deljene memorije.

## Donja granica broja memorijskih stanja (3/4)

Stanje deljene memorije je isto u  $C_i$  kao u  $C_j$ 

```
p_{i+1}, p_{i+2}, ..., p_j
p_0 u KS,
                                         p_0 u KS,
p_1-p_i u ulazu,
                                         p_1-p_i u ulazu,
drugi u ost.
                                          drugi u ost.
 \rho = raspored u kom
 p_0-p_i izvode korake redom u krug
           jer NMB, neki p_h
                                                p_h ulazi u KS
           je ušao u KS
                                                k+1 puta dok je
           k+1 puta
                                                p_{i+1} u ulazu
```

## Donja granica broja memorijskih stanja (3/4)

Stanje deljene memorije je isto u  $C_i$  kao u  $C_j$ 

```
p_{i+1}, p_{i+2}, ..., p_j
p_0 u KS,
                                         p_0 u KS,
p_1-p_i u ulazu,
                                         p_1-p_i u ulazu,
drugi u ost.
                                         drugi u ost.
 \rho = raspored u kom
 p_0-p_i izvode korake redom u krug
           jer NMB, neki p_h
                                                p_h ulazi u KS
           je ušao u KS
                                                k+1 puta dok je
           k+1 puta
                                               p_{i+1} u ulazu
                                            Kojraujkcija k-ograničenog
```

## Donja granica broja memorijskih stanja (4/4)

- Ali zašto p<sub>h</sub> radi istu stvar dok izvršava sekvencu koraka u ρ kad kreće iz C<sub>j</sub> kao kad kreće iz C<sub>i</sub>?
- $\square$  Svi procesori  $p_0, \ldots, p_i$  rade istu stvar zato što:
  - oni su u istim stanjima u te dve konfiguracije
  - stanje deljene memorije je isto u te dve konfiguracije
  - $\blacksquare$  jedine razlike između  $C_i$  i  $C_j$  su (možda) stanja od  $p_{i+1}, \ldots, p_j$  a ti procsori ne izvode nikakve korake u  $\rho$

## Diskusija donje granice

- Donja granica na n samo pokazuje broj mem. stanja i samo važi za algoritme koji garantuju ograničeno čekanje u svakom izvršenju.
- Predpost. da oslabimo uslov napredka da samo nema trajnog zaključavanja u svakom izvršenju: tada granica postaje n/2 različitih stanja deljene memorije.
- Ako uslov napredka oslabimo da samo nema međusob. blok. u svakom izvršenju, onda je granica samo 2.

## "Pobeđivanje" donje granice randomizacijom

- Alternativan način da se oslabe zahtevi je da se odustane od uslova životnosti u svakom izvršenju
- Probabilistički uslov da nema neograničenog blokiranja: svaki proc ima verovatnoću koja nije 0 da će uspeti svaki put kad uđe u ulaznu sekciju.
- □ Za to postoji algoritam koji koristi O(1) stanja deljene memorije.