PS₅

Note: Yu Zhe gave me lots of help, and I'm very grateful to him.

1.1

```
import pandas as pd
# ff means fossel fuel carbon emission
ff = pd.read csv('global.1751 2020.csv')
# select data of 1987-2004
ff.loc[(ff['Year']>=1987) & (ff['Year']<=2004)]
# initial carbon contents in PgC
atmC = 740
atmC_{copy} = 740
oceC = 900
list atmCO2 = []
list_year = []
for i in range(18):
     # select each year
     index = ff.iloc[236+i]
     # calculate γ and transfer its unit to PgC
     # \gamma is carbon emissions from fossil fuel comsumption
     gamma = (index['Total carbon emissions from fossil fuel consumption and
cement production (million metric tons of C)'] - index['Carbon emissions from cement
production']) / 1000
     # calculate carbon contents each year in the atmosphere and the surface of the
ocean respectively
```

atmC = atmC - 105/740 * atmC + 102/900 * oceC + gamma

```
oceC = oceC + 105/740 * atmC_copy - 102/900 * oceC
    atmC\_copy = atmC
    # calculate atmospheric CO2 level in ppm each year
    atmCO2 = atmC / 2.13
    year = 1987 + i
    list_atmCO2.append(atmCO2)
    list_year.append(year)
    i += 1
# create a pandas series
series_atmCO2_withoutBufferEffect = pd.Series(list_atmCO2, index=list_year)
series\_atmCO2\_withoutBufferEffect
The output is:
1987
         348 630047
```

198/	348.03004/
1988	349.924711
1989	351.255856
1990	352.567821
1991	353.891078
1992	355.153956
1993	356.429623
1994	357.713454
1995	359.046179
1996	360.436941
1997	361.834626
1998	363.213484
1999	364.641389
2000	366.121565
2001	367.596334
2002	369.123826
2003	370.802330
2004	372.556663

```
1.2
```

```
# initial carbon contents in PgC
# Here I use N1, N2, N2 0 in the article to represent carbon contents
N1 = 740
N1 copy = 740
N2 = 900
N2 0 = 821
#ξ
xi = 3.69 + 1.86 * 0.01 * (740 / 2.13) - 1.8 * 0.000001 * (740 / 2.13) * (740 / 2.13)
list atmCO2 = []
list year = []
for i in range(18):
     # select each year
     index = ff.iloc[236+i]
     # calculate γ and transfer its unit to PgC
     # \gamma is carbon emissions from fossil fuel comsumption
     gamma = (index['Total carbon emissions from fossil fuel consumption and
cement production (million metric tons of C)'] - index['Carbon emissions from cement
production']) / 1000
     # calculate atmospheric CO2 level in ppm each year
     N1 = N1 - 105/740 * N1 + 102/900 * (N2 0 + xi*(N2-N2 0)) + gamma
     atmCO2 = N1 / 2.13
     xi = 3.69 + 1.86 * 0.01 * atmCO2 - 1.8 * 0.000001 * atmCO2 * atmCO2
     N2 = N2 + 105/740 * N1 copy - 102/900 * (N2 0 + xi*(N2-N2 0))
     N1_{copy} = N1
     year = 1987 + i
     list atmCO2.append(atmCO2)
```

```
list_year.append(year)
i += 1
```

create a pandas series
series_atmCO2_withBufferEffect = pd.Series(list_atmCO2, index=list_year)
series_atmCO2_withBufferEffect

The output is:

1987	386.186604
1988	375.535973
1989	382.234874
1990	383.274132
1991	386.277107
1992	388.572018
1993	391.127948
1994	393.614240
1995	396.188448
1996	398.817574
1997	401.472430
1998	404.126639
1999	406.846784
2000	409.630682
2001	412.428679
2002	415.301866
2003	418.342870
2004	421.484025

1.3

```
# load observed values at Mauna Loa
observation = pd.read csv('Mauna Loa CO2 annual mean data.csv')
observation slice = observation.loc[(observation['year']>=1987) &
(observation['year']<=2004)]
observation slice
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
# Set the font
plt.rcParams['font.sans-serif'] = ['Times New Roman']
plt.rcParams['axes.unicode minus'] = False
# Set the figure
plt.figure(figsize=(8,5), dpi=100)
# Plot lines
plt.plot(series atmCO2 withBufferEffect, 'k-', label='calculation with buffer effect')
plt.plot(series atmCO2 withoutBufferEffect, color='gray', linestyle='-',
label='calculation without buffer effect')
plt.scatter(observation slice['year'], observation slice['mean'], color='gray',
marker='o', label='observations')
# Adjust xy axis ticks
plt.xticks(ticks=np.arange(1985, 2010, 5), fontsize=12, rotation=45, ha='center',
va='top')
plt.yticks(ticks=np.arange(340, 430, 10), fontsize=12, rotation=0, ha='right',
va='center')
# Tick parameters
plt.tick_params(axis='both', bottom=True, top=False, left=True, right=False,
                    direction='in', which='major')
```

```
# x and y labels
plt.xlabel('Year', fontproperties='Arial', fontsize=12)
plt.ylabel('CO2 concentration (ppm)', fontproperties='Arial', fontsize=12)

# Add title and legend
plt.title('The CO2 trend predicted (lines) and observed (dots)', fontproperties='Arial', fontsize=14)
plt.legend(loc='best', prop={'family':'Arial', 'size':10})

# Show plot
plt.tight_layout()
plt.show()
```


Bonus

The following result has some bugs but I couldn't find bugs in the code. (; ' \cap ')

The CO2 trend calculated for 250 years by the seven-box model

calculations, β=0.38 calculations, β=0.50 observations

(edd) void observations

100 320 320 300 280 260

Year

7 / 7