[0238] Each of R_{51} and R_{53} in formula (a) more preferably represents a hydrogen atom, an alkyl group or a halogen atom, and especially preferably a hydrogen atom, a methyl group, an ethyl group, a trifluoromethyl group (—CF $_3$), a hydroxymethyl group (—CH $_2$ —OH), a chloromethyl group (—CH $_2$ —Cl), or a fluorine atom (—F). R_{52} more preferably represents a hydrogen atom, an alkyl group, a halogen atom, or an alkylene group (forming a ring together with L_5), and especially preferably a hydrogen atom, a methyl group, an ethyl group, a trifluoromethyl group (—CF $_3$), a hydroxymethyl group (—CH $_2$ —OH), a chloromethyl group (—CH $_2$ —Cl), a fluorine atom (—F), a methylene group (forming a ring together with L_5), or an ethylene group (forming a ring together with L_5).

[0239] As the divalent linking group represented by L_5 , an alkylene group, a divalent aromatic cyclic group, —COO- L_1 -, —O- L_1 -, - L_1 -O—, and a group formed by combining two or more of these groups are exemplified, wherein L_1 represents an alkylene group, a divalent aliphatic hydrocarbon cyclic group, a divalent aromatic cyclic group, or a group obtained by combining an alkylene group and a divalent aromatic cyclic group, which may further be substituted with a fluorine atom or the like.

[0240] L₅ preferably represents a single bond, —COO- L_1 -(L_1 is preferably an alkylene group having 1 to 5 carbon atoms, and more preferably a methylene group or a propylene group), or a group represented by a divalent aromatic cyclic group.

[0241] The alkyl group of R_{54} to R_{56} is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and especially preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a t-butyl group.

[0242] The monovalent aliphatic hydrocarbon cyclic group represented by R_{55} and R_{56} is preferably a monovalent aliphatic hydrocarbon cyclic group having 3 to 20 carbon atoms, which group may be monocyclic such as a cyclopentyl group or a cyclohexyl group, or may be polycyclic such as a norbonyl group, an adamantyl group, a tetracyclodecanyl group, or a tetracyclododecanyl group.

[0243] $\,$ The ring formed by bonding R_{55} to R_{56} to each other is preferably a ring having 3 to 20 carbon atoms, which may be monocyclic such as a cyclopentyl group or a cyclohexyl group, or may be polycyclic such as a norbonyl group, an adamantyl group, a tetracyclodecanyl group, or a tetracyclodecanyl group. When R_{55} and R_{56} form a ring by bonding to each other, R_{54} preferably represents an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.

[0244] The monovalent aromatic cyclic group represented by R_{55} and R_{56} is preferably an aromatic cyclic group having 6 to 20 carbon atoms, e.g., a phenyl group and a naphtyl group are exemplified. When either one of R_{55} and R_{56} is a hydrogen atom, the other is preferably a monovalent aromatic cyclic group.

[0245] A monomer corresponding to the repeating unit represented by formula (a) can be synthesized according to an ordinary synthesizing method of a polymerizable group-containing ester without any restriction.

[0246] The specific examples of the repeating units represented by formula (a) are shown below, but the invention is not restricted thereto.

$$\begin{array}{c|c}
CH_3 \\
H_2 \\
C
\end{array}$$
O

$$\begin{array}{c}
CH_2OH \\
C - C
\end{array}$$

$$\begin{array}{c}
\begin{pmatrix}
H_2 & H \\
C & -C
\end{pmatrix}$$

$$\begin{array}{c}
\begin{pmatrix}
H_2 \\
C
\end{pmatrix} \\
O
\end{array}$$
O

$$\begin{array}{c}
\begin{pmatrix}
H_2 \\
C
\end{pmatrix}
\\
O
\end{array}$$
O

$$\begin{array}{c|c}
 & CH_3 \\
 & C \\
 & C
\end{array}$$
(V-8)