Задание № 4

Кокорин Илья, М3439

7 октября 2019 г.

1 Описание задания

Дано отношение с атрибутами StudentId, StudentName, GroupId, GroupName, CourseId, CourseName, LecturerId, LecturerName, Mark.

- 1. Инкрементально приведите данное отношение в 5 нормальную форму.
- 2. Постройте соответствующую модель сущность-связь.
- 3. Постройте соответствующую физическую модель.
- 4. Реализуйте SQL-скрипты, создающие схему базы данных.
- 5. Создайте базу данных по спроектированной модели.
- 6. Заполните базу тестовыми данными.

2 Функциональные зависимости

В данном отношении есть следующие функциональные зависимости (обозначим за S множество всех ФЗ):

- 1. $StudentId \rightarrow StudentName, GroupId$ (студент имеет имя и обучается в группе)
- 2. $GroupId \rightarrow GroupName$ (группа имеет название)
- 3. GroupName o GroupId (название группы определяет её идентификатор)
- 4. $CourseId \rightarrow CourseName$ (предмет имеет название)
- 5. $LecturerId \rightarrow LecturerName$ (лектор имеет имя)
- 6. $GroupId, CourseId \rightarrow LecturerId$ (в группе предмет ведёт определённый человек, в разных группах предмет могут вести разные люди)
- 7. $StudentId, CourseId \rightarrow Mark$ (студент имеет оценку по предмету)

3 Приведение в 1НФ

Заметим, что отношение уже находится в $1H\Phi$, так как в нём нет повторяющихся групп, все атрибуты атомарны, а у отношения есть ключ (StudentId, CourseId)

4 Приведение в 2НФ

Заметим, что отношение не находится в 2H Φ , так как у нас есть Φ 3 $StudentId \rightarrow StudentName$ То есть StudentName зависит только от части составного ключа.

Декомпозируем по ней отношение на два:

- $1. \ StudentId, StudentName$
- 2. StudentId, CourseId, CourseName, GroupId, GroupName, LecturerId, LecturerName, Mark

Заметим, что второе отношение не находится в 2H Φ , так как у нас есть Φ 3 $CourseId \rightarrow CourseName$ То есть CourseName зависит только от части составного ключа.

Декомпозируем по ней второе отношение:

- $1. \ StudentId, StudentName$
- 2. <u>CourseId</u>, CourseName
- $3. \ StudentId, CourseId, GroupId, GroupName, LecturerId, LecturerName, Mark$

Заметим, что $GroupId \rightarrow GroupName$. Кроме того, GroupId, $CourseId \rightarrow GroupId$ (тривиальная Φ 3). Транзитивно комбинируя эти Φ 3, получаем нетривиальную Φ 3 GroupId, $CourseId \rightarrow GroupName$.

Кроме того, GroupId, $CourseId \rightarrow LecturerId$.

Кроме того, $LecturerId \rightarrow LecturerName$

Тогда, по правилу транзитивности, GroupId, $CourseId \rightarrow LecturerName$

Пользуясь правилом слияния Φ 3, получаем $GroupId, CourseIds \rightarrow LecturerId, LecturerName$ из

 $GroupId, CourseIds \rightarrow LecturerId \ \ GroupId, CourseIds \rightarrow LecturerName$

Тогда, пользуясь правилом слияния, получаем GroupId, $CourseId \rightarrow LecturerId$, LecturerName, GroupName из GroupId, $CourseIds \rightarrow LecturerId$, LecturerId, LecturerName и GroupId, $CourseIds \rightarrow GroupName$

Декомпозируем по этой ФЗ, пользуясь теоремой Хита

- $1. \ StudentId, StudentName$
- 2. CourseId, CourseName
- $3. \ Group Id, \underline{Course Id}, Group Name, Lecturer Id, Lecturer Name$
- 4. StudentId, CourseId, GroupId, Mark

Заметим, что четвёртое отношение не находится во 2 Н Φ , так как существует Φ 3 $StudentId \to GroupId$, то есть GroupId зависит только от части ключа.

Декомпозируем по этой ФЗ.

- 1. <u>StudentId</u>, StudentName
- 2. CourseId, CourseName
- $3. \ Group Id, \underline{Course Id}, \underline{Group Name}, \underline{Lecturer Id}, \underline{Lecturer Name}$
- 4. StudentId, GroupId
- $5. \ StudentId, CourseId, Mark$

Заметим, что третье отношение не находится во второй Φ З, так как есть Φ З $GroupId \to GroupName$. Декомпозируем по ней.

- 1. <u>StudentId</u>, StudentName
- $2.\ CourseId, CourseName$
- $3. GroupId, \underline{CourseId}, \underline{LecturerId}, \underline{LecturerName}$
- $4. \ Group Id, Group Name$

- 5. <u>StudentId</u>, GroupId
- $6. \ StudentId, CourseId, Mark$

Попробуем слить $\underline{StudentId}$, $\underline{StudentName}$ и $\underline{StudentId}$, $\underline{GroupId}$ в одно отношение. Мы хотим так делать, потому что у каждого студента есть как имя, так и группа.

- $1.\ CourseId, CourseName$
- $2. \ Group Id, \underline{Course Id}, \underline{Lecturer Id}, \underline{Lecturer Name}$
- $3.\ Group Id, Group Name$
- 4. <u>StudentId</u>, GroupId, StudentName
- $5. \ StudentId, CourseId, Mark$

Докажем, что в отношениях 1, 3, 4 нет составных ключей.

4.1 Отношение 1

 $CourseId \notin \{CourseName\}_S^+$, поэтому CourseId должен входить в любой надключ, кроме того, он ялвяется ключом, поэтому составного ключа не существует.

4.2 Отношение 3

В отношении есть 2 атрибута, оба являются ключами, поэтому составного ключа не существует.

4.3 Отношение 4

 $StudentId \notin \{GroupName, StudentName\}_{S}^{+}$, поэтому StudentId должен входить в любой надключ, кроме того, он ялвяется ключом, поэтому составного ключа не существует.

Заметим, что отношения 1, 3, 4 имеют только простые ключи, и поэтому находятся в 2 НФ. Докажем, что отношения 2, 5 находятся в 2 НФ.

```
LecturerId \notin \{GroupId\}_{S}^{+}, LecturerName \notin \{GroupId\}_{S}^{+}
```

 $LecturerId \not\in \{CourseId\}_S^+, LecturerName \not\in \{CourseId\}_S^+$

То есть ни один из неключевых атрибутов отношения 3 функционально не зависит от части ключа.

 $Mark \notin \{StudentId\}_{S}^{+}, Mark \notin \{StudentId\}_{S}^{+}$

То есть ни один из неключевых атрибутов отношения 5 функционально не зависит от части ключа.

То есть отношения 3 и 5 находятся в 2 Н Φ .

5 Приведение в 3 НФ

Заметим, что 2 отношение не находится в 3 НФ из-за ФЗ $GroupId, CourseId \rightarrow LecturerId$ и $LecturerId \rightarrow LecturerName$. То есть неключевой атрибут LecturerName транзитивно зависит от ключа GroupId, CourseId Декомпозируем по ФЗ $LecturerId \rightarrow LecturerName$

- 1. CourseId, CourseName
- $2. \ Group Id, \underline{Course Id}, \underline{Lecturer Id}$
- $3.\ LecturerId, LecturerName$
- $4. \ Group Id, Group Name$
- $5. \ \underline{StudentId}, GroupId, StudentName$
- $6. \ StudentId, CourseId, Mark$

Очевидно, что любое отношение, содержащее всего два один неключевой атрибут A, находится в $3 \text{ H}\Phi$ (так как для транзитивной зависимости неключевого атрибута A от ключа C должен найтись такой неключевой атрибут B, не совпадающий с A, что $C \to B, B \to A$). Поэтому 1, 2, 3, 6 отношения находятся в $3\text{H}\Phi$.

4 отношение также находится в $3~{\rm H}\Phi,$ так как в нём нет неключевых атрибутов.

Проверим, что 5 отношение находится в 3 НФ. Докажем от противного. Чтобы неключевой атрибут (либо GroupId, либо StudentName) транзитивно зависел от ключа $\underline{StudentId}$, нужно чтобы выполнялось либо $GroupId \to StudentName$, либо $StudentName \to GroupId$, Заметим, что $GroupId \notin \{StudentName\}_S^+$ и $StudentName \notin \{GroupId\}_S^+$, так что ни одна из требуемых ФЗ не выполняется, поэтому 5 отношение назходится в 3НФ.

6 Приведение в НФБК

Известно, что если отношение находится в $3H\Phi$ и не имеет пересекающихся ключей, то оно находится в $H\Phi BK$.

Так как все отношения из прошлого пункта находятся в $3H\Phi$ и не имеют пересекающихся ключей (докажем ниже), они находятся в $H\Phi$ БК.

Докажем, что все отношения из прошлого пункта не имеют пересекающихся ключей.

6.1 CourseId, CourseName

Так как $CourseId \notin \{CourseName\}_S^+$, CourseId входит в любой надключ. Так как CourseId является ключом, то у отношения есть только один ключ. (а значит, нет и перекрывающихся ключей).

6.2 GroupId, <u>CourseId</u>, LecturerId

Так как $GroupId \notin \{CourseId, LecturerId\}_S^+$ и $CourseId \notin \{GroupId, LecturerId\}_S^+$, то GroupId, CourseId входят в любой надключ. Так как они являются ключом, то у отношеня единственный ключ (а значит, нет перекрывающихся ключей)

6.3 <u>LecturerId</u>, LecturerNames

Так как $LecturerId \notin \{LecturerName\}_S^+$, LecturerId входит в любой надключ. Так как LecturerId является ключом, то у отношения есть только один ключ. (а значит, нет и перекрывающихся ключей).

$\textbf{6.4} \quad \underline{\textit{GroupId}}, \underline{\textit{GroupName}}$

У отношения два атрибута, каждый из которых является ключом, значит, ключи не пересекаются.

$\textbf{6.5} \qquad \underline{StudentId}, GroupId, StudentName$

 $StudentId \notin \{GroupId, StudentName\}_S^+$, значит, StudentId должен входить в любой надключ. Так как он является ключом, то у отношения единственный ключ (а значит, нет перекрывающихся ключей)

6.6 StudentId, CourseId, Mark

Так как $StudentId \notin \{CourseId, Mark\}_S^+$ и $CourseId \notin \{StudentId, Mark\}_S^+$, то CourseId, StudentId должны входить в любой наделюч. Так как они являются ключом, у отношения всего один ключ (а значит, нет и перекрывающихся ключей)

7 Приведение в 4 НФ

- 1. <u>CourseId</u>, CourseName
- $2. \ Group Id, \underline{Course Id}, \underline{Lecturer Id}$
- 3. <u>LecturerId</u>, LecturerName

- $4.\ Group Id, Group Name$
- $5.\ \underline{StudentId}, GroupId, StudentName$
- $6. \ StudentId, CourseId, Mark$

Заметим, что в этих отношениях нет нетривиальных M3, которые не являются $\Phi 3$, и эти отношения находятся в $H\Phi BK$. Значит, они находятся в $4H\Phi$.

8 Приведение в 5 НФ

Докажем, что у отношения 3 все ключи простые.

 $LecturerId \notin \{LecturerName\}_S^+$, поэтому LecturerId должен входить в любой надключ, кроме того, он ялвяется ключом, поэтому составного ключа не существует. (значит, все ключи простые)

Для отношений 1, 4, 5 аналогичный факт был доказан выше.

Заметим, что у отношений 1, 3, 4, 5 только простые ключи (доказывали ранее), и они находятся в $3H\Phi$. Следовательно, они находятся в $5H\Phi$.

Нужно доказать, что в 5 НФ находятся отношения 2 и 6.

$\textbf{8.1} \quad Group Id, \underline{Course Id}, \underline{Lecturer Id}$

Найдём все нетривиальные зависимости соединений.

Попытаемся разрезать только на 3 части, так как на 2 бесполезно, так как лучшая Н Φ в смысле разрезания на 2 части - 4 Н Φ , а на 4 части не хватит атрибутов.

Очевидно, что имеет смысл включать в проекции только по два атрибута (три не имеет смысла, так как тогда получится тривиальная зависимость соединения).

Так как операция соединения ассоциатитивна и коммутативна, у нас есть только один вариант разбиения на 3 проекции:

- 1. GroupId, CourseId
- $2. \ Group Id, Lecturer Id$
- 3. CourseId, LecturerId

Очевидно, что их соединение не даст исходное отношение.

Представим такое отношение R: GroupId, CourseId, LecturerId:

GroupId:	CourseId,	LecturerId
1	1	1
1	2	2
2	1	2
2	2	1

Тогда $\pi_{GroupId,CourseId} =$

GroupId	CourseId
1	1
1	2
2	1
9	9

Тогда $\pi_{GroupId,LecturerId} =$

GroupId	LecturerId
1	1
1	2
2	2
2	1

Тогда $\pi_{CourseId, LecturerId} =$

CourseId	LecturerId
1	1
2	2
1	2
2	1

 $\pi_{GroupId,CourseId} \bowtie \pi_{GroupId,LecturerId} =$

GroupId:	CourseId,	LecturerId
1	1	1
1	2	1
1	1	2
1	2	2
2	1	1
2	1	2
2	2	1
2	2	2

 $(\pi_{GroupId,CourseId}\bowtie\pi_{GroupId,LecturerId})\bowtie\pi_{CourseId,LecturerId}=$

GroupId:	CourseId,	$\operatorname{LecturerId}$
1	1	1
1	2	1
1	1	2
1	2	2
2	1	1
2	1	2
2	2	1
2	2	2

То есть $\pi_{GroupId,CourseId} \bowtie \pi_{GroupId,LecturerId} \bowtie \pi_{CourseId,LecturerId} \neq R$, так как в отношении появились лишние строки. То есть не сущесвует нетривиальных зависимостей соединений для отношения 2.

8.2 StudentId, CourseId, Mark

Доказывается аналогично предыдущему пункту, заменой GroupId на StudentId, CourseId на CourseId, lecturerId на Mark.

Таким образом, в отношении 6 тоже нет нетривиальных ЗС.

Тогда отношения 2 и 6 находятся в 5 НФ, и все отношения находятся в 5 НФ.

9 Итог

- $1. \ \underline{CourseId}, CourseName$
- $2. GroupId, \underline{CourseId}, \underline{LecturerId}$
- $3. \ \underline{LecturerId}, LecturerName$
- $4. \ Group Id, Group Name$
- $5. \ StudentId, GroupId, StudentName$
- $6.\ \underline{StudentId}, \underline{CourseId}, Mark$

Находится в $5~{\rm H}\Phi$