Kontejnery a video

Multimediální kontejner

- Obálka užitečných dat
 - několik datových proudů
 - multiplexing
 - nespecifikuje, jak jsou data (video, zvuk, ...) komprimována
- Různé druhy dat
 - video např. pohledy různých kamer
 - audio různé jazyky
 - titulky, informace o kapitolách, tagy, atd.
- Běžné
 - RIFF: AVI (zastaralé), WAV...
 - MP4, MOV, ASF, MKV (Matroska), RealMedia, OGG, MPEG-TS, MPEG-PS atd.

Video

Komprese videa

- CODEC = Coder/DECoder
- Klíčové snímky
 - nejsou závislé na ostatních
 - nutné kvůli editaci
- Symetrický x Asymetrický systém
 - podle nároků na kompresi/dekompresi
 - asymetrický komprese výrazně náročnější
- Psychovizuální model
 - výrazně zvyšuje kvalitu
 - obvykle příliš náročné pouze offline

Bezeztrátové komprese

- Pro úpravy, editaci, mezivýsledky
 - Přímo data barevného modelu s různým uspořádáním
 - RGB, YUV, UYVY, YV12, ...
 - Velké datové objemy a toky
- Každý snímek je klíčový
 - nezávislý na ostatních, můžeme stříhat kdekoliv
- Plně bezeztrátové
 - HuffYUV, Lagarith, FFV1,
- Ztrátové kodeky s neobvyklým nastavením
 - H.264 Lossless, H.265 Lossless, AV1
- Nezávislé (klíčové) snímky, každý z nich ztrátový
 - MJPEG, ProRes, DV, ...

Ztrátové komprese videa

- redukce dat v místě (spatial, intraframe)
 - vyhledává podobnosti v jednom snímku
- redukce dat v čase (temporal, interframe)
 - vyhledává podobnosti mezi různými snímky, tj. v čase
- Nejběžnější jsou rodiny formátů MPEG, VC a AV1
 - malé množství klíčových snímků
 - ostatní snímky jsou vzájemně silně závislé
 - nelze jednoduše editovat (stříhat) nutné překódování
 - asymetrický systém komprese výrazně náročnější
 - většinou sdílené know-how s JPEG
 - YCbCr, subsampling, makrobloky 16x16, DCT, RLE,
 Huffman, +vektory pohybu, +m-vec odkazy mezi snímky

MPEG

- Skupina ztrátových formátů od Motion Picture Expert Group
 - každá generace zhruba zdvojnásobí max. rozlišení, a půlí potřebný datový tok při zachování kvality
- MPEG-1
 - VCD
 - MPEG1 layer 3 = MP3, audiostopa
- MPEG-2
 - DVD, původní digitální televizní a satelitní vysílání
 (DVBT = Digital Video Broadcasting Terrestrial, DVBS = Sattelite)
- MPEG-4 ASP
 - DivX, Xvid...
- MPEG-4 AVC = H.264
 - MP4, BD, iTunes...
- MPEG-H part 2 = HEVC = H.265
 - současné digitální televizní a satelitní vysílání
- VVC = h.266
 - nadcházející standard (představen r.2022), zatím skoro žádná podpora

AV1, VP8+9

- MPEG jsou (draze) placené kodeky
 - firmy hledají náhradu, nejlépe zdarma
- 2015 AV1 (≈ h266 = VVC)
 - open-source konsorcium AOM
 - hardwarová podpora
 - současná špička
- 2010: VP8 (≈ h264)
 - Google kupuje a uvolňuje zdarma
- 2015: VP9 (≈ h265 = HEVC)
 - většina Youtube videa, přechází se na AV1

Historie formátů video komprese

Obchodní název	ISO/IEC standard	ITU-T standard	Dokončení
H.261	-	H.261	1988
MPEG-1 Video	MPEG-1 Part 2	-	1993
MPEG-2 Video	MPEG-2 Part 2	H.262	1995
H.263	-	H.263	1996
MPEG-4 Visual (DivX, Xvid)	MPEG-4 Part 2	-	1999
AVC	MPEG-4 Part 10	H.264	2003
HEVC	MPEG-H Part 2	H.265	2013
AV1	-	-	2018
EVC	MPEG-5 Part 1	-	2020
VVC	MPEG-I Part 3	H.266	2020
H.262 (H.263+)	(H.263++) H.264 (2nd Ed.)	(SVC) (MVC)	H.265 (V.2) (V.3) (V.4)

Vývoj efektivity MPEG kodeků

Target for the final VVC standard

pokračování MPEG

- Sdílí techniky a postupy s JPEG
 - YCbCr, podvzorkování barev, makrobloky (16x16, adaptivní), DCT, kvantizace, RLE, Huffmann
 - + vektory pohybu oblastí ve snímku
 - + vektory pohybu oblastí mezi snímky
- Vektor pohybu (motion vector) se snaží zakódovat pohyb stejné oblasti, a ušetřit tak data
 - vznikají vizuální chyby
 - → je nutné přidat data k opravě chyb
 - tvoří většinu datového proudu
- Ztrátovost formátu
 - podvzorkování barev, omezení frekvencí kvantizací, omezení množství dat pro opravu chyb

MPEG

- Podvzorkování barev
 - obvykle 4:2:0
- GOP
 - Group Of Pictures
 - skupina navzájem závislých snímků
 - nemohou být odděleny
 - začínají l snímkem (klíčovým, nezávislým), od něj se odvíjejí další

Příklad převodu a podvzorkování

Cb

P, B snímky (I = klíčový)

- Obsahují vektory pohybu + opravu chyby
- I = 1 m-vektor na makroblok, intraframe (uvnitř snímku)
- P = 1 m-vektor na makroblok, interframe (mezi snímky)
- B = 2 m-vektor na makroblok, interframe (mezi snímky)
 + interpolace
- NULL frame = nic se nezměnilo (užitečné např. pro záznam obrazovky)
- Jak vyrobit I, P a B snímek?

Vektory pohybu (Motion Vectors)

Příklad intra-frame MV

Vektory pohybu v P, B snímku

(I snímek = klíčový = přibližně JPEG)

- Odhad pohybu (motion estimation)
 - = Vyhledání podobnosti
 - Na makroblocích (16x16)
 - Přesnost 1, ½ nebo ¼ pixelu
 - SAD Sum of Absolute Differences

$$SAD = \sum_{x=0}^{w-1} \sum_{y=0}^{h-1} |B_2(x, y) - B_1(x, y)|$$

- exhaustive (-15...+15)
- logaritmicky (2ⁿ)
- hierarchicky, ...
- P snímky = 1 vektor na MB
- B snímky = 2 vektory na MB+ interpolace

Příklad rozdílu dopředné predikce a očekávaného výsledku

- rozdíl následně zakódován obdobně JPEG
 - DCT → kvantizace → neztrátová komprese

Video Encoder

Pořadí uložených snímků

- snímek
- P snímek
- B snímek

pamatujte, GOP =

Velikosti snímků

- snímek
 - úplný, nezávislý, největší
- P snímek
 - může použít jen data I, střední
- B snímek
 - může použít data I a P, nejmenší

HEVC...

H.264 Vs H.265

H.264/AVC

Quadtree coding structure

Prediction Unit and Transform Unit partitioning

Multiples sizes/forms: 64x64 to 4x4

35 Intra prediction directions

Efficient spatio-temporal mv prediction

HEVC

Coding Unit

Využití ztrátových kodeků (MPEG a spol.)

- Pouze koncový formát
 - není určen pro další úpravy
- Ztrátový
 - při opakovaných úpravách ztrácí stále víc informace, až je výsledek nepoužitelný

- Demo
 - Re-encoding MP4 videa

https://www.youtube.com/watch?v=icruGcSsPp0

2D akcelerace obrazu

2D akcelerace

- Není to akcelerace vykreslování čar, obdélníků apod.
 - to by byla akcelerace vektorové grafiky (OpenVG)
- Využívá se pro statické obrázky i video
- Rutinní opakované operace
 - per-pixel = konverze barev, hloubky barev apod.
 - BitBLT Bit BLock Transfer, blitter
 - kopírování oblastí obrazovky
 - zároveň možnost matematické kombinace s cílem: XOR, +, -, *, ...
 - dithering
 - změna velikosti obrázků + interpolace
 - úpravy jasu, kontrastu, gamma korekce (nelineární korekce jasu), ...

Vektorová grafika

Vektorová grafika

- Nezávislá na rozlišení
- Obraz vytvořen z geometrických primitiv
 - matematicky definovaná primitiva
 - úsečka, obdélník, elipsa, Beziérova křivka, text (fonty jsou z Beziérových křivek), barevný přechod apod.
 - speciální primitivum vložená rastrová data
- Nutná rasterizace obrazu
 - Při zvětšení obrázků bez degradace kvality
 - Při zmenšení → nutná filtrace (vyhlazení)
- Menší paměťové nároky
- Větší nároky na CPU (GPU)
 - rasterizace obrazu

Běžné 2D vektorové obrazové formáty

SVG

SVG

- Scalable Vector Graphics
- Konsorcium W3C
- Založeno na XML, nejen pro Web
- Hardwarová akcelerace OpenVG
 - v mobilních telefonech
- Statické i dynamické obrázky
 - SMIL animace
 - JavaScript
 - reakce na události OnMouseOver …
- Součást HTML5
 - plná podpora hlavních prohlížečů

Windows MetaFile (WMF) Enhanced MetaFile (EMF)

- Vektorová i rastrová grafika
 - WMF 16bit
 - EMF 32bit
- Běžný, ale...
 - Nepříliš bezpečný formát
 - opakované napadání windows pomocí vkládání "nevhodných" systémových volání
 - Nízká přenositelnost

PostScript (PS) Encapsulated PostScript (EPS)

- Programovací jazyk pro popis stránek
 - především pro tisk
 - zajišťuje že bude všude vypadat stejně
 - nepředpokládá se editace
- Předchůdce PDF
- Vektorová i rastrová data, fonty
- Nízké paměťové nároky
 - přenáší se jen program, bitmapa stránky se počítá až v tiskárně
 - A4 v 600 DPI = 30 megapixelů
- Vysoká rychlost zpracování
 - ale nutnost inteligentní tiskárny s vlastním CPU

Portable Document Format – PDF

- Nástupce PostScriptu
- ISO standard
 - 32000-1:2008, PDF 2.0 ISO 32000-2:2020
- Formát pro popis stránky
 - zajišťuje že bude všude vypadat stejně
 - nepředpokládá se editace
 - obecně lze jen přidávat nové elementy do stránky
- Různé metody komprese rastrových dat
 - RLE, LZW, CCITT, JPEG ...
- Vkládání fontů, formuláře, 3D, ...
- Dynamika pomocí ECMAScript
 - Pozor na problémy s bezpečností

AutoCAD DXF

- Drawing Exchange Format
- Vnitřně textový formát (především)
 - binární verze (kratší, menší podpora)
- Kompletně zdarma dokumentován
- Jednoduchý formát
- Hojně rozšířený
- Neumožňuje všechny vlastnosti AutoCADu
 - Hlavní formát AutoCADu je DWG
 - nulová dokumentace zdarma
 - zpětné inženýrství
- Velké soubory, pomalé zpracování

Výběr vhodného formátu

Volba formátu

- V průběhu editace
 - nativní formát aplikace, neztrátový
- Finální výstup
 - pro krátkodobé vlastní využití
 - dle libosti
 - pro dlouhodobé, široké využití
 - standardní formáty s obvyklým nastavením
 - ztrátové v dostatečné kvalitě (úspora místa a kapacity sítě)

Volba formátu pro neznámé publikum

(např. na webu)

- Jednoduchá čárová grafika
 - SVG = vektory (je-li to možné)
 - PNG, GIF
- Animace
 - SVG + externí JS, GIF
- Video
 - kontejner: MKV nebo MP4; uvnitř MPEGx (HEVC) + AAC
- Fotografie, barevné naskenované obrázky
 - JPG (prokládaný), HEIF, WebP
- 3D
 - Jednoduché: OBJ, STL
 - Složitější: X3D, Collada, gITF+WebGL (viz např. http://p3d.in/)
- Kompletní dokumenty
 - PDF, PDF/A

