Skaler ve Vektörel Nicelikler

Skaler büyüklük

Skaler büyüklük:
Sayısal bir değer ve
bir birimle ifade
edilebilen
büyüklüklere skaler
büyüklük denir.
Kütle, uzunluk ve
hacim skaler
büyüklüklerdir.
Örn: 5 metre, 10

litre, 6 kilogram

Vektörel büyüklük

Vektörel büyüklük:
Yönlü doğru parçalarına
vektör denir. Şiddeti, yönü,
doğrultusu ve uygulama
noktası belli olan
büyüklüklere vektörel
büyüklük denir. Örneğin hız,
yer değiştirme, ağırlık ve
kuvvet vektörel
büyüklüklerdir.

Skaler Büyüklükler	Vektörel Büyüklükler
Kütle-kg	Kuvvet-Newton
Zaman-saniye	Hız-m/s
Enerji-Joule	Ağırlık-Newton
Sıcaklık-Kelvin	Konum-Metre
Hacim-m³	Yerdeğiştirme-metre
Sürat-m/s	İvme-m/s²
Basınç-Pascal	Tork-N.m
Isi-Joule	Elektrik alan-N/C
İş-Joule	Manyetik alan-Tesla

Vektörler

Vektörel büyüklükler: Sadece sayı ile ifade edilemeyen,

- Doğrultusu
- Yönü
- Şiddeti (Büyüklüğü)
- Uygulama noktası (Başlangıç noktası) bilinen büyüklüklere denir. Vektörlerin gösterimi aşağıdaki gibidir.

Doğrultusu K'dan M'ye doğru Siddeti 2 birim Uygulama noktası K

Vektörlerin özellikleri:

1-) İki vektörün toplamı ya da farkı yine bir vektördür.

$$\vec{A} + \vec{B} = \vec{C}$$
 $\vec{A} - \vec{B} = \vec{D}$

2-) Vektörlerde toplamada değişme özelliği vardır.

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

3-) Bir vektörü skaler bir sayıyla çarpmak yada bölmek o vektörün büyüklüğünü çarpmak yada bölmek demektir.

$$\overrightarrow{A} = 2 \text{ br}$$

$$2.\overrightarrow{A} = 4 \text{ br}$$

4-) Bir vektörü (-) ile çarpınca aynı vektörün zıt yönlü olanını elde ederiz. Büyüklüğü ve doğrultusu aynı, zıt yönlü vektörlere zıt vektör denir.

- 5-) Bir vektörün doğrultusu, yönü ve şiddeti değiştirilmeden istenilen yere taşınabilir.
- **6-**) Doğrultusu, yönü ve şiddeti aynı olan vektörler eşit vektörlerdir. Uygulama noktası (Başlangıç noktası) farklı olabilir

Vektörlerin Toplanması:

Vektörlerin toplanmasında üç yöntem vardır.

- 1) Paralel kenar metodu
- 2) Uç uca ekleme metodu
- 3) Bileşenlere ayırma metodu

1) Paralel kenar metodu

Başlangıç noktası aynı olan vektörler paralel kenara tamamlanır. Başlangıç noktası ile kesim noktasını birleştiren vektör, toplam vektörü verir.

$$\vec{R} = \vec{A} + \vec{B}$$

Cosinus teoremi:

$$R^2 = A^2 + B^2 - 2.A.B.Cos\alpha$$

İkiden fazla vektörün toplanması paralel kenar metoduna göre yapılırken önce rastgele iki vektörün toplamı yapılır, sonra toplam vektör ile diğer vektör paralel kenar metoduna göre yapılarak işlem devam ettirilir.

2) Uç uca ekleme metodu:

Vektörler den biri rastgele seçilip diğer vektörlerin doğrultusu, yönü ve şiddeti değiştirilmeden sıra ile uç uca eklenir. Birinci vektörün başlangıç noktası ile son vektörün ucuna doğru toplam vektör çizilir.

3) Bileşenlere Ayırma:

Bir vektörün bileşenleri o vektörün x ve y düzlemlerinde ki izdüşümüdür.

$$\vec{F} = \vec{F}_X + \vec{F}_y$$

$$|\vec{F}_x| = |F|.Cos\alpha$$

$$|\vec{F}_y| = |F|.Sin\alpha$$

Vektörlerin Çıkarılması:

İki vektör arasındaki çıkarma işlemi bir vektör ile diğer vektörün zıt işaretlisinin toplamı seklinde ifade edilir.

Üç boyutlu kartezyen koordinat sisteminde tanımlanan \overrightarrow{K} vektörü şekildeki gibidir.

Buna göre, bu vektör aşağıdakilerden hangisinde doğru ifade edilmiştir?

A)
$$\vec{K}(4, 3, 2)$$

B)
$$\vec{K}(4, 2, 3)$$

D)
$$\vec{K}(2, 4, 3)$$

E)
$$\vec{K}(3, 4, 2)$$