

10/560723

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 December 2004 (29.12.2004)

PCT

(10) International Publication Number
WO 2004/113571 A2

(51) International Patent Classification⁷:

C12Q 1/68

(21) International Application Number:

PCT/IB2004/002394

(22) International Filing Date: 25 June 2004 (25.06.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/482,595 26 June 2003 (26.06.2003) US

(71) Applicant (*for all designated States except US*): EXON-HIT THERAPEUTICS SA [FR/FR]; 26, rue Brunel, F-75017 Paris (FR).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): EINSTEIN, Richard [US/US]; 12421 Galesville Dr., Gaithersburg, MD 20878 (US). MCGOWAN, Kevin, M. [US/US]; 15132 Winesap Drive, N. Potomac, MD 20878 (US). PANDO, Matthew, P. [US/US]; 2004 N. Cleveland Street, Arlington, VA 22201 (US).

(74) Agents: BECKER, Philippe et al.; Becker & Associés, 35 rue des Mathurins, F-75008 Paris (FR).

(81) Designated States (*unless otherwise indicated, for every kind of national protection available*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— *of inventorship (Rule 4.17(iv)) for US only*

Published:

— *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/113571 A2

(54) Title: PROSTATE SPECIFIC GENES AND THE USE THEREOF AS TARGETS FOR PROSTATE CANCER THERAPY AND DIAGNOSIS

(57) Abstract: Genes that are upregulated in human prostate tumor tissues and the corresponding proteins are identified. These genes and the corresponding antigens are suitable targets for the treatment, diagnosis or prophylaxis of prostate cancer.

**PROSTATE SPECIFIC GENES AND THE
USE THEREOF AS TARGETS FOR PROSTATE CANCER
THERAPY AND DIAGNOSIS**

5

FIELD OF THE INVENTION

The present invention relates to the identification of DNA sequences that correspond to alternatively spliced events in genes expressed on the surface of prostate cancer cells. These genes or their corresponding proteins are to be targeted for the treatment, prevention and/or diagnosis of cancers wherein these genes are differentially regulated and/or spliced,
10 particularly in prostate cancer.

BACKGROUND OF THE INVENTION

Genetic detection of human disease states is a rapidly developing field (Taparowsky et al., 1982; Slamon et al., 1989; Sidransky et al., 1992; Miki et al., 1994; Dong et al., 1995;
15 Morahan et al., 1996; Lifton, 1996; Barinaga, 1996). However, some problems exist with this approach. A number of known genetic lesions merely predispose an individual to the development of specific disease states. Individuals carrying the genetic lesion may not develop the disease state, while other individuals may develop the disease state without possessing a particular genetic lesion. In human cancers, genetic defects may potentially occur in a large
20 number of known tumor suppresser genes and proto-oncogenes.

Genetic detection of cancer has a long history. Some of the earliest genetic lesions shown to predispose to cancer were transforming point mutations in the ras oncogenes (Taparowsky et al., 1982). Transforming ras point mutations may be detected in the stool of individuals with benign and malignant colorectal tumors (Sidransky et al., 1992). However,
25 only 50% of such tumors contained a ras mutation (Sidransky et al., 1992). Similar results have been obtained with amplification of HER-2/neu in breast and prostate cancer (Slamon et al., 1989), deletion and mutation of p53 in bladder cancer (Sidransky et al., 1991), deletion of DCC in colorectal cancer (Fearon et al., 1990) and mutation of BRCA1 in breast and prostate cancer (Miki et al., 1994).

30 None of these genetic lesions are capable of predicting a majority of individuals with cancer and most require direct sampling of a suspected tumor, and make screening difficult. Further, none of the markers described above are capable of distinguishing between metastatic

and non-metastatic forms of cancer. In effective management of cancer patients, identification of those individuals whose tumors have already metastasized or are likely to metastasize is critical. Because metastatic cancer kills 560,000 people in the U.S. each year (ACS home page), identification of markers for metastatic prostate cancer would be an important advance.

5 A particular problem in cancer detection and diagnosis occurs with prostate cancer. Carcinoma of the prostate is the most frequently diagnosed cancer among men in the United States (Veltri et al., 1996). Prostate cancer was diagnosed in approximately 189,500 men in 1998 and about 40,000 men succumbed to the malignancy (Landis et al, 1998). Although relatively few prostate tumors progress to clinical significance during the lifetime of the
10 patient, those which are progressive in nature are likely to have metastasized by the time of detection. Survival rates for individuals with metastatic prostate cancer are quite low. Between these extremes are patients with prostate tumors that will metastasize but have not yet done so, for whom surgical prostate removal is curative. Determination of which group a patient falls within is critical in determining optimal treatment and patient survival.

15 The FDA approval of the serum prostate specific antigen (PSA) test in 1984 changed the way that prostate disease was managed (Allhoff et al., 1989; Cooner et al., 1990; Jacobson et al, 1995; Orozco et al., 1998). PSA is widely used as a serum biomarker to detect and monitor therapeutic response in prostate cancer patients (Badalament et al., 1996; O'Dowd et al., 1997). Several modifications in PSA assays (Partin and Oesterling, 1994; Babian et al.,
20 1996; Zlotta et al, 1997) have resulted in earlier diagnoses and improved treatment.

25 Although PSA has been widely used as a clinical marker of prostate cancer since 1988 (Partin and Oesterling, 1994), screening programs utilizing PSA alone or in combination with digital rectal examination (DRE) have not been successful in improving the survival rate for men with prostate cancer (Partin and Oesterling, 1994). Although PSA is specific to prostate tissue, it is produced by normal and benign as well as malignant prostatic epithelium, resulting in a high false-positive rate for prostate cancer detection (Partin and Oesterling, 1994).

30 While an effective indicator of prostate cancer when serum levels are relatively high, PSA serum levels are more ambiguous indicators of prostate cancer when only modestly elevated, for example when levels are between 2-10 ng/ml. At these modest elevations, serum PSA may have originated from non-cancerous disease states such as BPH (benign prostatic hyperplasia), prostatitis or physical trauma (McCormack et al, 1995). Although application of

the lower 2.0 ng/ml cancer detection cutoff concentration of serum PSA has increased the diagnosis of prostate cancer, especially in younger men with nonpalpable early stage tumors (Stage T1c) (Soh et al., 1997; Carter and Coffey, 1997; Harris et al., 1997; Orozco et al., 1998), the specificity of the PSA assay for prostate cancer detection at low serum PSA levels remains
5 a problem.

Several investigators have sought to improve upon the specificity of serologic detection of prostate cancer by examining a variety of other biomarkers besides serum PSA concentration (Ralph and Veltri, 1997). One of the most heavily investigated of these other biomarkers is the ratio of free versus total PSA (f/t PSA) in a patient's blood. Most PSA in
10 serum is in a molecular form that is bound to other proteins such as alpha1-antichymotrypsin (ACT) or alpha2-macroglobulin (Christensson et al., 1993; Stenman et al., 1991; Lilja et al., 1991). Free PSA is not bound to other proteins. The ratio of free to total PSA (f/tPSA) is usually significantly higher in patients with BPH compared to those with organ confined prostate cancer (Marley et al., 1996; Oesterling et al., 1995; Pettersson et al., 1995). When an
15 appropriate cutoff is determined for the f/tPSA assay, the f/tPSA assay can help distinguish patients with BPH from those with prostate cancer in cases in which serum PSA levels are only modestly elevated (Marley et al., 1996; Partin and Oesterling, 1996). Unfortunately, while f/tPSA may improve on the detection of prostate cancer, information in the f/tPSA ratio is insufficient to improve the sensitivity and specificity of serologic detection of prostate cancer
20 to desirable levels.

Other markers that have been used for prostate cancer detection include prostatic acid phosphatase (PAP) and prostate secreted protein (PSP). PAP is secreted by prostate cells under hormonal control (Brawn et al., 1996). It has less specificity and sensitivity than does PSA. As a result, it is used much less now, although PAP may still have some applications for
25 monitoring metastatic patients that have failed primary treatments. In general, PSP is a more sensitive biomarker than PAP, but is not as sensitive as PSA (Huang et al., 1993). Like PSA, PSP levels are frequently elevated in patients with BPH as well as those with prostate cancer.

Another serum marker associated with prostate disease is prostate specific membrane antigen (PSMA) (Horoszewicz et al., 1987; Carter and Coffey, 1996; Murphy et al., 1996).
30 PSMA is a Type II cell membrane protein and has been identified as Folic Acid Hydrolase (FAH) (Carter and Coffey, 1996). Antibodies against PSMA react with both normal prostate

tissue and prostate cancer tissue (Horoszewicz et al., 1987). Murphy et al. (1995) used ELISA to detect serum PSMA in advanced prostate cancer. As a serum test, PSMA levels are a relatively poor indicator of prostate cancer. However, PSMA may have utility in certain circumstances. PSMA is expressed in metastatic prostate tumor capillary beds (Silver et al., 5 1997) and is reported to be more abundant in the blood of metastatic cancer patients (Murphy et al., 1996). PSMA messenger RNA (mRNA) is down-regulated 8-10 fold in the LNCaP prostate cancer cell line after exposure to 5-alpha-dihydroxytestosterone (DHT) (Israeli et al., 1994).

Two relatively new potential biomarkers for prostate cancer are human kallekrein 2 10 (HK2) (Piironen et al., 1996) and prostate specific transglutaminase (pTGase) (Dubbink et al., 1996). HK2 is a member of the kallekrein family that is secreted by the prostate gland (Piironen et al., 1996). Prostate specific transglutaminase is a calcium-dependent enzyme expressed in prostate cells that catalyzes post-translational cross-linking of proteins (Dubbink et al., 1996). In theory, serum concentrations of HK2 or pTGase may be of utility in prostate 15 cancer detection or diagnosis, but the usefulness of these markers is still being evaluated.

Interleukin 8 (IL-8) has also been reported as a marker for prostate cancer. (Veltri et al., 1999). Serum IL-8 concentrations were reported to be correlated with increasing stage of prostate cancer and to be capable of differentiating BPH from malignant prostate tumors. (Id.) The wide-scale applicability of this marker for prostate cancer detection and diagnosis is still 20 under investigation.

In addition to these protein markers for prostate cancer, several genetic changes have been reported to be associated with prostate cancer, including: allelic loss (Bova, et al., 1993; Macoska et al., 1994; Carter et al., 1990); DNA hypermethylation (Isaacs et al., 1994); point mutations or deletions of the retinoblastoma (Rb), p53 and KAI1 genes (Bookstein et al., 25 1990a; Bookstein et al., 1990b; Isaacs et al., 1991; Dong et al., 1995); and aneuploidy and aneusomy of chromosomes detected by fluorescence in situ hybridization (FISH) (Macoska et al., 1994; Visakorpi et al., 1994; Takahashi et al., 1994; Alcaraz et al., 1994). None of these have been reported to exhibit sufficient sensitivity and specificity to be useful as general screening tools for asymptomatic prostate cancer.

30 In current clinical practice, the serum PSA assay and digital rectal exam (DRE) is used to indicate which patients should have a prostate biopsy (Lithrup et al., 1994; Orozco et al.,

1998). Histological examination of the biopsied tissue is used to make the diagnosis of prostate cancer. Based upon the 189,500 cases of diagnosed prostate cancer in 1998 (Landis, 1998) and a known cancer detection rate of about 35% (Parker et al., 1996), it is estimated that in 1998 over one-half million prostate biopsies were performed in the United States (Orozco et al., 1998; Veltri et al., 1998). Clearly, there would be much benefit derived from a serological test that was sensitive enough to detect small and early stage prostate tumors that also had sufficient specificity to exclude a greater portion of patients with noncancerous or clinically insignificant conditions.

There remain deficiencies in the prior art with respect to the identification of the genes linked with the progression of prostate cancer and the development of diagnostic methods to monitor disease progression. Likewise, the identification of genes, which are differentially expressed in prostate cancer, would be of considerable importance in the development of a rapid, inexpensive method to diagnose cancer. Although a few prostate specific genes have been cloned (PSA, PSMA, HK2, pTGase, etc.), these are typically not upregulated in prostate cancer. The identification of a novel, prostate specific gene that is differentially expressed in prostate cancer, compared to non-malignant prostate tissue, would represent a major, unexpected advance for the diagnosis, prognosis and treatment of prostate cancer.

The use of therapeutic antibodies for treatment of cancers that target surface proteins is known. Examples thereof include RITUXAN® that targets CD20 on B cell lymphoma, Campath® that targets a surface antigen CD52 expressed by chronic lymphocytic leukemia, Herceptin® that targets erbB2 on breast and other cancers and Mytara that targets CD33 surface antigen expressed on leukemia cells. However, to date, a monoclonal antibody for treatment of prostate cancer has not been approved for therapeutic use.

25

SUMMARY OF THE INVENTION

The present invention relates to the identification of novel nucleic acid and amino acid sequences that are characteristic of prostate cancer cell or tissue, and which represent targets for therapy or diagnosis of such a condition in a subject.

The invention more specifically discloses 159 specific, isolated nucleic acid molecules that encode novel expression sequences. Of these, 122 are expressed sequence tags that are differentially spliced and correspond to SEQ ID NOS 1-65, 74, 80, 85, 102-134, 136, 141, 146,

150-165, 167, 168. In addition, 42 specific isoforms of known genes have been identified corresponding to SEQ ID NOS. 67-72, 75-77, 81-83, 86-90, 92, 93, 95-98, 100, 101, 137-139, 143, 144, 147-149, 169-173, 175, 177, 179, and 181. These novel sequences were found to be differentially expressed between normal prostate and prostate cancer. The expressed sequence 5 tag represent novel exons that are alternatively spliced in prostate cancer, and as such, directly identify distinct isoforms. These sequences and molecules represent targets and valuable information to develop methods and materials for the detection, diagnosis, and treatment of prostate cancer.

10 It is an object of the invention to provide methods and materials for treatment and diagnosis of prostate cancer.

It is a more specific object of the invention to identify novel exons (novel splice variants) that are expressed by prostate cancer tissue which are potential gene targets for treatment and diagnosis of prostate cancer.

15 It is a specific object of the invention to develop novel therapies for treatment of prostate cancer involving the administration or use of anti-sense oligonucleotides corresponding to novel gene targets that are specifically expressed by the prostate cancer.

It is another specific object of the invention to identify exons and the corresponding protein domain encoded by those exons specifically upregulated in prostate cancer cells.

20 It is another specific object of the invention to produce ligands that bind antigens encoded by the exons, expressed as a protein domain by certain prostate cancers, including, but not limited to, monoclonal antibodies.

25 It is another specific object of the invention to provide novel therapeutic regimens for the treatment of prostate cancer that involve the administration or use of antigens expressed by certain prostate cancers, alone or in combination with adjuvants that elicit an antigen-specific cytotoxic T-cell lymphocyte response against cancer cells that express such antigen.

It is another object of the invention to provide novel therapeutic regimens for the treatment of prostate cancer that involve the administration or use of ligands, especially monoclonal antibodies that specifically bind novel antigens that are expressed by certain 30 prostate cancers.

It is an other object of this invention to provide pharmaceutical compositions comprising a ligand or antigen as defined above, in combination with a pharmaceutically acceptable carrier or excipient and/or an adjuvant.

It is another object of the invention to provide a novel method for diagnosis of prostate
5 cancer by using ligands, e.g., monoclonal antibodies, which specifically bind to antigens that are specifically expressed by certain prostate cancers, in order to detect whether a subject has or is at increased risk of developing prostate cancer.

It is another object of the invention to provide a novel method of detecting persons having, or at increased risk of developing prostate cancer by use of labeled DNAs that
10 hybridize to novel gene targets expressed by certain prostate cancers.

It is yet another object of the invention to provide diagnostic test kits for the detection of persons having or at increased risk of developing prostate cancer that comprise a ligand, e.g., monoclonal antibody that specifically binds to an antigen expressed by prostate cancer cells, and a detectable label, e.g. indicator enzymes, a radiolabels, fluorophores, or
15 paramagnetic particles.

It is another object of the invention to provide diagnostic kits for detection of persons having or at risk of developing prostate cancer that comprise DNA primers or probes specific for novel gene targets specifically expressed by prostate cancer cells, and a detectable label, e.g. indicator enzymes, a radiolabels, fluorophores, or paramagnetic particles.

20 It is another object of this invention to provide methods for selecting, identifying, screening, characterizing or optimizing biologically active compounds, comprising a determination of whether a candidate compound binds, preferably selectively, an antigen or a polynucleotide as disclosed in the present application. Such compounds represent drug candidates or leads for treating cancer diseases, particularly prostate cancer.

25 It is another object of the invention to identify genes that are expressed in altered forms in prostate cancer cells. These forms represent splice variants of the gene, where the DATAS™ fragment either 1) indicates the splice event occurring within the gene, or 2) points to a gene that is actively spliced to produce different gene products. These different splice variants or isoforms can be targets for therapeutic intervention.

LEGEND TO THE FIGURES

Figure 1 : Expression of Sequence ID: No. 92 in normal human tissue. Primers were designed to detect the DATAS clone sequence and RT-PCR analysis was performed for 30 cycles. Lane 1, Prostate; lane 2, Heart; lane 3, Lung; lane 4, Kidney; lane 5, Liver; lane 6, 5 Brain; lane 7, Placenta; lane 8, Sk. Muscle; lane 9, Pancreas; lane 10, Spleen; lane 11, Thymus; lane 12, Testis; lane 13, Ovary; lane 14, Sm. Intestine; lane 15, Colon; lane 16 Leukocyte.

Figure 2 : Expression of clone (SEQ ID NO 92) in normal and tumor prostate samples. Primers were designed to detect the DATAS clone and RT-PCR analysis was performed for 40 10 cycles. Individual RNA samples (normal and tumor) were tested both as pooled and as individual samples. The pooled RNA samples were used to produce cDNA using either an oligo dT approach (dT) or through a random primer protocol (RP). Individual patient cDNA samples (lanes 9-12) were prepared through the random primed protocol. Lane 1, prostate tumor pool 1 (RP cDNA); lane 2, normal prostate pool 1 (RP cDNA); lane 3, prostate tumor 15 pool 2 (RP cDNA); lane 4, normal prostate pool 2 (RP cDNA); lane 5, prostate tumor pool 1 (dT cDNA); lane 6, normal prostate pool 1 (dT cDNA); lane 7, normal prostate pool 2 (dT cDNA); lane 8, NTC; lane 9, Patient 1 (OHK); lane 10, Patient 2 (T523); lane 11, Patient 3 (82B) ; lane 12, Patient 4 (4BK).

Figure 3 : Alignment of the different isoforms isolated from structural analysis of clone 20 (DATAS clone number). The sequences isolated from the DATAS derived events were mapped using Blat against the Human genome to annotate the gene and determine the each unique splicing event. Five events are mapped with AK092666, an EST that closely resembles the five events.

Figure 4 : Western blot analysis for the expression of STEAP2 isoforms. Protein 25 extracts from prostate cancer cell lines were separated on SDS_PAGE gels and transferred to nitrocellulose, and probed with an antibody raised against a peptide sequence present in the N-terminal portion of the wild type STEAP2 protein. Five different cell lines were analyzed: lane 1) LNCaP; 2) 22Rv1 3) MDA-PCa2b; 4) PC3; 5) DU145. The blot was developed using standard chemiluminescence reagents.

DETAILED DESCRIPTION OF THE INVENTION

DATAS (Different Analysis of Transcripts with Alternative Splicing) analyzes structural differences between expressed genes and provides systematic access to alterations 5 in RNA splicing (disclosed in U.S. Patent No.6,251,590, the disclosure of which is incorporated by reference in its entirety). Having access to these spliced sequences, which are critical for cellular homeostasis, represents a useful advance in functional genomics.

The DATAS Technology generates two libraries when comparing two samples, such as 10 normal vs. tumor tissue. Each library specifically contains clones of sequences that are present and more highly expressed in one sample. For example, library A will contain sequences that are present in genes in the normal samples but absent in the tumor samples. These sequences are identified as being removed or spliced out from the genes in the tumor samples. In contrast, library B will contain sequences that are present only in the tumor samples and not 15 present in the normal samples. These represent exons/introns that are alternatively spliced into genes expressed *only* in the tumor samples.

The present invention is based in part on the identification of exons that are isolated 20 using DATAS and then determined to be differentially regulated or expressed in prostate tumor samples. Specifically, 122 expressed sequence tags were identified through DATAS and confirmed to be differentially expressed between normal prostate tissue and prostate tumor tissue. These DATAS fragments (DF) are small sections of genes that are selected for inclusion or exclusion in one sample but not the other. These small sections are part of the expressed gene transcript, and can consist of sequences derived from several different regions 25 of the gene, including, but not limited to, portions of single exons, several exons, sequence from introns, and sequences from exons and introns. This alternative usage of exons in different biological samples produces different gene products from the same gene through a process well known in the art as alternative RNA splicing. In particular, 37 alternatively spliced isoforms have been identified from the DATAS fragment sequences, and produce 30 alternate gene products that fit all the descriptions of targets and gene products below.

Alternatively spliced mRNA's produced from the same gene contain different ribonucleotide sequence, and therefore translate into proteins with different amino acid sequences. Nucleic acid sequences that are alternatively spliced into or out of the gene products can be inserted or deleted in frame or out of frame from the original gene sequence. This leads to the translation 5 of different proteins from each variant. Differences can include simple sequence deletions, or novel sequence information inserted into the gene product. Sequences inserted out of frame can lead to the production of an early stop codon and produce a truncated form of the protein. Alternatively, in-frame insertions of nucleic acid may cause an additional protein domain to be expressed from the mRNA. The end stage target is a novel protein containing either a novel 10 epitope or function. Many variations of known genes have been identified and produce protein variants that can be agonistic or antagonistic with the original biological activity of the protein.

DATAS fragments thus identify genes and proteins which are subject to differential regulation and alternative splicing(s) in prostate cancer cells. DATAS fragments thus allow the definition 15 of target molecules suitable for diagnosis or therapy of prostate cancers, which target molecules comprise all or a portion of genes or RNAs comprising the sequence of a DATAS fragment, or of genes or RNA from which the sequence of a DATAS fragment derives, as well as corresponding polypeptides or proteins, and variants thereof.

A first type of target molecule is a target nucleic acid molecule comprising the sequence of a 20 full gene or RNA molecule comprising the sequence of a DATAS fragment as disclosed in the present application. Indeed, since DATAS identifies genetic deregulations associated with prostate tumor, the whole gene or RNA sequence from which said DATAS fragment derives can be used as a target of therapeutic intervention or diagnosis.

Similarly, another type of target molecule is a target polypeptide molecule comprising the 25 sequence of a full-length protein comprising the amino acid sequence encoded by a DATAS fragment as disclosed in the present application.

A further type of target molecule is a target nucleic acid molecule comprising a fragment of a gene or RNA as disclosed above. Indeed, since DATAS identifies genes and RNAs that are altered in prostate tumor cells, portions of such genes or RNAs, including portions that do not 30 comprise the sequence of a DATAS fragment, can be used as a target for therapeutic intervention or diagnosis. Examples of such portions include : DATAS fragments, portions

thereof, alternative exons or introns of said gene or RNA, exon-exon, exon-intron or intron-intron junction sequences generated by splicing(s) in said RNA, etc. Particular portions comprise a sequence encoding a extra-cellular domain of a polypeptide.

Similarly, another type of target molecule is a fragment of a protein comprising the amino acid 5 sequence encoded by a DATAS fragment as disclosed in the present application. Such fragments may comprise or not the DATAS sequence, and may comprise newly generated amino acid sequence resulting, for instance, from a frame shift, a novel exon-exon or exon-intron junction, the creation of new stop codon, etc.

- 10 These target molecules (including genes, fragments, proteins and their variants) can serve as diagnostic agents and as targets for the development of therapeutics. For example, these therapeutics may modulate biological processes associated with prostate tumor viability. Agents may also be identified that are associated with the induction of apoptosis (cell death) in prostate tumor cells. Other agents can also be developed, such as monoclonal antibodies, that 15 bind to the protein or its variant and alter the biological processes important for cell growth. Alternatively, antibodies can deliver a toxin which can inhibit cell growth and lead to cell death.

Specifically, the invention provides sequences that are expressed in a variant protein 20 and are prostate tumor specific or prostate specific. These sequences are portions of genes identified to be in the plasma membrane of the cell through bioinformatic analysis, and the specific sequences of the invention are expressed on the extracellular region of the protein, so that the sequences may be useful in the preparation of prostate tumor vaccines, including prophylactic and therapeutic vaccines.

25 Based thereon, it is anticipated that the disclosed genes that are associated with the differentially expressed sequences and the corresponding variant proteins should be suitable targets for prostate cancer therapy, prevention or diagnosis, e.g. for the development of antibodies, small molecular inhibitors, anti-sense therapeutics, and ribozymes. The potential therapies are described in greater detail below.

30 Such therapies will include the synthesis of oligonucleotides having sequences in the antisense orientation relative to the subject nucleic acids which appear to be up-regulated in

prostate cancer. Suitable therapeutic antisense oligonucleotides will typically vary in length from two to several hundred nucleotides in length, more typically about 50-70 nucleotides in length or shorter. These antisense oligonucleotides may be administered as naked nucleic acids or in protected forms, e.g., encapsulated in liposomes. The use of liposomal or other 5 protected forms may be advantageous as it may enhance *in vivo* stability and thus facilitate delivery to target sites, i.e., prostate tumor cells.

Also, the subject novel genes may be used to design novel ribozymes that target the cleavage of the corresponding mRNAs in prostate tumor cells. Similarly, these ribozymes may be administered in free (naked) form or by the use of delivery systems that enhance stability 10 and/or targeting, e.g., liposomes.

Also, the present invention embraces the administration of use of nucleic acids that hybridize to the novel nucleic acid targets identified *infra*, attached to therapeutic effector moieties, e.g., radiolabels, (e.g., ⁹⁰Y, ¹³¹I) cytotoxins, cytotoxic enzymes, and the like in order to selectively target and kill cells that express these nucleic acids, i.e., prostate tumor cells.

15 Also, the present invention embraces the treatment and/or diagnosis of prostate cancer by targeting altered genes or the corresponding altered protein particularly splice variants that are expressed in altered form in prostate tumor cells. These methods will provide for the selective detection of cells and/or eradication of cells that express such altered forms thereby minimizing adverse effects to normal cells.

20 Still further, the present invention encompasses non-nucleic acid based therapies. For example, the invention encompasses the use of a DNA containing one of the novel cDNAs corresponding to novel antigen identified herein. It is anticipated that the antigens so encoded may be used as therapeutic or prophylactic anti-tumor vaccines. For example, a particular contemplated application of these antigens involves their administration with adjuvants that 25 induce a cytotoxic T lymphocyte response.

Administration of the subject novel antigens in combination with an adjuvant may result in a humoral immune response against such antigens, thereby delaying or preventing the development of prostate cancer.

These embodiments of the invention will comprise administration of one or more of 30 the subject novel prostate cancer antigens, ideally in combination with an adjuvant, e.g., PROVAX™ (as disclosed U.S. Patents Nos. 5,709,860, 5,695,770, and 5,585,103, which

comprises a microfluidized adjuvant containing Squalene, Tween and Pluronic), ISCOM'S[®], DETOX[®], SAF, Freund's adjuvant, Alum[®], Saponin[®], among others. This composition will be administered in an amount sufficient to be therapeutically or prophylactically effective, e.g. on the order of 50 to 20,000 mg/kg body weight, 100 to 5000 mg/kg body weight.

5 Yet another embodiment of the invention will comprise the preparation of monoclonal antibodies against the antigens encoded by the novel genes containing the nucleic acid sequences disclosed infra. Such monoclonal antibodies may be produced by conventional methods and include human monoclonal antibodies, humanized monoclonal antibodies, chimeric monoclonal antibodies, single chain antibodies, e.g., scFv's and antigen-binding
10 antibody fragments such as Fab and Fab' fragments. Methods for the preparation of monoclonal antibodies are known in the art. In general, preparation of monoclonal antibodies will comprise immunization of an appropriate (non-homologous) host with the subject prostate cancer antigens, isolation of immune cells therefrom, use of such immune cells to isolate monoclonal antibodies and screening for monoclonal antibodies that specifically bind to either
15 5 of such antigens. Antibody fragments may be prepared by known methods, e.g., enzymatic change of monoclonal antibodies.

These monoclonal antibodies and fragments will be useful for passive anti-tumor immunotherapy, or may be attached to therapeutic effector moieties, e.g., radiolabels, cytotoxins, therapeutic enzymes, agents that induce apoptosis, and the like in order to provide
20 for targeted cytotoxicity, i.e., killing of human prostate tumor cells. Given the fact that the subject genes are apparently not significantly expressed by many normal tissues this should not result in significant adverse side effects (toxicity to non-target tissues).

In one embodiment, of the present invention such antibodies or fragments will be administered in labeled or unlabeled form, alone or in conjunction with other therapeutics,
25 e.g., chemotherapeutics such as cisplatin, methotrexate, adriamycin, and the like suitable for prostate cancer therapy. The administered composition will also typically include a pharmaceutically acceptable carrier, and optionally adjuvants, stabilizers, etc., used in antibody compositions for therapeutic use.

Preferably, the subject monoclonal antibodies will bind the target antigens with high
30 affinity, e.g., possess a binding affinity (Kd) on the order of 10⁻⁶ to 10⁻¹² M.

As noted, the present invention also embraces diagnostic applications that provide for detection of the expression of prostate specific splice variants disclosed herein. This will comprise detecting the expression of one or more of these genes at the RNA level and/or at the protein level.

5 For nucleic acids, expression of the subject genes will be detected by known nucleic acid detection methods, e.g., Northern blot hybridization, strand displacement amplification (SDA), catalytic hybridization amplification (CHA), and other known nucleic acid detection methods. Preferably, a cDNA library will be made from prostate cells obtained from a subject to be tested for prostate cancer by PCR using primers corresponding to the novel isoforms
10 disclosed in this application.

The presence or absence of prostate cancer can be determined based on whether PCR products are obtained, and the level of expression. The levels of expression of such PCR product may be quantified in order to determine the prognosis of a particular prostate cancer patient (as the levels of expression of the PCR product often will increase or decrease
15 significantly as the disease progresses.) This may provide a method for monitoring the status of a prostate cancer patient.

Alternatively, the status of a subject to be tested for prostate cancer may be evaluated by testing biological fluids, e.g., blood, urine, lymph, and the like with an antibody or antibodies or fragment that specifically binds to the novel prostate tumor antigens disclosed
20 herein.

Methods for using antibodies to detect antigen expression are well known and include ELISA, competitive binding assays, and the like. In general, such assays use an antibody or antibody fragment that specifically binds the target antigen directly or indirectly bound to a label that provides for detection, e.g. indicator enzymes, a radiolabels, fluorophores, or
25 paramagnetic particles.

Patients which test positive for the enhanced presence of the antigen on prostate cells will be diagnosed as having or being at increased risk of developing prostate cancer. Additionally, the levels of antigen expression may be useful in determining patient status, i.e., how far disease has advanced (stage of prostate cancer).

30 As noted, the present invention provides novel splice variants that encode antigens that correlate to human prostate cancer. The present invention also embraces variants thereof. As

used herein "variants" means sequences that are at least about 75% identical thereto, more preferably at least about 85% identical, and most preferably at least 90% identical and still more preferably at least about 95-99% identified when these DNA sequences are compared to a nucleic acid sequence encoding the subject DNAs or a fragment thereof having a size of at 5 least about 50 nucleotides. This includes allelic and splice variants of the subject genes. The present invention also encompasses nucleic acid sequences that hybridize to the subject splice variants under high, moderate or low stringency conditions e.g., as described infra.

Also, the present invention provides for primer pairs that result in the amplification of DNAs encoding the subject novel genes or a portion thereof in an mRNA library obtained 10 from a desired cell source, typically human prostate cell or tissue sample. Typically, such primers will be on the order of 12 to 50 nucleotides in length, and will be constructed such that they provide for amplification of the entire or most of the target gene.

Also, the invention embraces the antigens encoded by the subject DNAs or fragments thereof that bind to or elicits antibodies specific to the full-length antigens. Typically, such 15 fragments will be at least 10 amino acids in length, more typically at least 25 amino acids in length.

As noted, the subject DNA fragments are expressed in a majority of prostate tumor samples tested. The invention further contemplates the identification of other cancers that express such genes and the use thereof to detect and treat such cancers. For example, the 20 subject DNA fragments or variants thereof may be expressed on other cancers, e.g., breast, ovary, pancreas, lung or prostate cancers. Essentially, the present invention embraces the detection of any cancer wherein the expression of the subject novel genes or variants thereof correlate to a cancer or an increased likelihood of cancer. To facilitate under-study of the invention, the following definitions are provided.

25 "Isolated tumor antigen or tumor protein" refers to any protein that is not in its normal cellular environment. This includes by way of example compositions comprising recombinant proteins encoded by the genes disclosed infra, pharmaceutical compositions comprising such purified proteins, diagnostic compositions comprising such purified proteins, and isolated protein compositions comprising such proteins. In preferred embodiments, an isolated prostate 30 tumor protein according to the invention will comprise a substantially pure protein, in that it is substantially free of other proteins, preferably that is at least 90% pure, that comprises the

amino acid sequence contained herein or natural homologues or mutants having essentially the same sequence. A naturally occurring mutant might be found, for instance, in tumor cells expressing a gene encoding a mutated protein according to the invention.

“Native tumor antigen or tumor protein” refers to a protein that is a non-human primate homologue of the protein having the amino acid sequence contained infra.

“Isolated prostate tumor gene or nucleic acid sequence” refers to a nucleic acid molecule that encodes a tumor antigen according to the invention which is not in its normal human cellular environment, e.g., is not comprised in the human or non-human primate chromosomal DNA. This includes by way of example vectors that comprise a gene according to the invention, a probe that comprises a gene according to the invention, and a nucleic acid sequence directly or indirectly attached to a detectable moiety, e.g. a fluorescent or radioactive label, or a DNA fusion that comprises a nucleic acid molecule encoding a gene according to the invention fused at its 5’ or 3’ end to a different DNA, e.g. a promoter or a DNA encoding a detectable marker or effector moiety. Also included are natural homologues or mutants having substantially the same sequence. Naturally occurring homologies that are degenerate would encode the same protein including nucleotide differences that do not change the corresponding amino acid sequence. Naturally occurring mutants might be found in tumor cells, wherein such nucleotide differences may result in a mutant tumor antigen. Naturally occurring homologues containing conservative substitutions are also encompassed.

“Variant of prostate tumor antigen or tumor protein” refers to a protein possessing an amino acid sequence that possess at least 90% sequence identity, more preferably at least 91% sequence identity, even more preferably at least 92% sequence identity, still more preferably at least 93% sequence identity, still more preferably at least 94% sequence identity, even more preferably at least 95% sequence identity, still more preferably at least 96% sequence identity, even more preferably at least 97% sequence identity, still more preferably at least 98% sequence identity, and most preferably at least 99% sequence identity, to the corresponding native tumor antigen wherein sequence identity is as defined infra. Preferably, this variant will possess at least one biological property in common with the native protein.

“Variant of prostate tumor gene or nucleic acid molecule or sequence” refers to a nucleic acid sequence that possesses at least 90% sequence identity, more preferably at least 91%, more preferably at least 92%, even more preferably at least 93%, still more preferably at

least 94%, even more preferably at least 95%, still more preferably at least 96%, even more preferably at least 97%, even more preferably at least 98% sequence identity, and most preferably at least 99% sequence identity, to the corresponding native human nucleic acid sequence, wherein "sequence identity" is as defined infra.

5 "Fragment of prostate antigen encoding nucleic acid molecule or sequence" refers to a nucleic acid sequence corresponding to a portion of the native human gene wherein said portion is at least about 50 nucleotides in length, or 100, more preferably at least 150 nucleotides in length.

10 "Antigenic fragments of prostate tumor antigen" refer to polypeptides corresponding to a fragment of a prostate protein or a variant or homologue thereof that when used itself or attached to an immunogenic carrier elicits antibodies that specifically bind the protein. Typically such antigenic fragments will be at least 8-15 amino acids in length, and may be much longer.

15 Sequence identity or percent identity is intended to mean the percentage of the same residues shared between two sequences, referenced to human protein A or protein B or gene A or gene B, when the two sequences are aligned using the Clustal method [Higgins et al, Cabios 8:189-191 (1992)] of multiple sequence alignment in the Lasergene biocomputing software (DNASTAR, INC, Madison, WI), or alignment programs available from the Genetics Computer Group (GCG Wisconsin package, Accelrys, San Diego, CA). In this method, 20 multiple alignments are carried out in a progressive manner, in which larger and larger alignment groups are assembled using similarity scores calculated from a series of pairwise alignments. Optimal sequence alignments are obtained by finding the maximum alignment score, which is the average of all scores between the separate residues in the alignment, determined from a residue weight table representing the probability of a given amino acid 25 change occurring in two related proteins over a given evolutionary interval. Penalties for opening and lengthening gaps in the alignment contribute to the score. The default parameters used with this program are as follows: gap penalty for multiple alignment=10; gap length penalty for multiple alignment=10; k-tuple value in pairwise alignment=1; gap penalty in pairwise alignment=3; window value in pairwise alignment=5; diagonals saved in pairwise 30 alignment=5. The residue weight table used for the alignment program is PAM250

[Dayhoff et al., in *Atlas of Protein Sequence and Structure*, Dayhoff, Ed., NDRF, Washington, Vol. 5, suppl. 3, p. 345, (1978)].

Percent conservation is calculated from the above alignment by adding the percentage of identical residues to the percentage of positions at which the two residues represent a conservative substitution (defined as having a log odds value of greater than or equal to 0.3 in the PAM250 residue weight table). Conservation is referenced to human Gene A or gene B when determining percent conservation with non-human Gene A or gene B, e.g. mgene A or gene B, when determining percent conservation. Conservative amino acid changes satisfying this requirement include: R-K; E-D, Y-F, L-M; V-I, Q-H.

10

Polypeptide Fragments

The invention provides polypeptide fragments of the disclosed proteins. Polypeptide fragments of the invention can comprise at least 8, more preferably at least 25, still more preferably at least 50 amino acid residues of the protein or an analogue thereof. More particularly such fragment will comprise at least 75, 100, 125, 150, 175, 200, 225, 250, 275 residues of the polypeptide encoded by the corresponding gene. Even more preferably, the protein fragment will comprise the majority of the native protein, e.g. about 100 contiguous residues of the native protein.

20 *Biologically Active Variants*

The invention also encompasses mutants of the novel prostate proteins disclosed infra which comprise an amino acid sequence that is at least 80%, more preferably 90%, still more preferably 95-99% similar to the native protein.

Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity can be found using computer programs well known in the art, such as DNASTAR or software from the Genetics Computer Group (GCG). Preferably, amino acid changes in protein variants are conservative amino acid changes, *i.e.*, substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one of a family of amino acids which are related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine,

leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids.

5 A subset of mutants, called muteins, is a group of polypeptides in which neutral amino acids, such as serines, are substituted for cysteine residues which do not participate in disulfide bonds. These mutants may be stable over a broader temperature range than native secreted proteins. See Mark *et al.*, U.S. Patent 4,959,314.

It is reasonable to expect that an isolated replacement of a leucine with an isoleucine or
10 valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the biological properties of the resulting secreted protein or polypeptide variant.

Protein variants include glycosylated forms, aggregative conjugates with other molecules, and covalent conjugates with unrelated chemical moieties. Also, protein variants
15 also include allelic variants, species variants, and muteins. Truncations or deletions of regions which do not affect the differential expression of the gene are also variants. Covalent variants can be prepared by linking functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue, as is known in the art.

It will be recognized in the art that some amino acid sequence of the prostate proteins
20 of the invention can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there are critical areas on the protein which determine activity. In general, it is possible to replace residues that form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the
25 alteration occurs at a non-critical region of the protein. The replacement of amino acids can also change the selectivity of binding to cell surface receptors. Ostade *et al.*, *Nature* 361:266-268 (1993) describes certain mutations resulting in selective binding of TNF-alpha to only one of the two known types of TNF receptors. Thus, the polypeptides of the present invention may include one or more amino acid substitutions, deletions or additions, either from natural
30 mutations or human manipulation.

The invention further includes variations of the prostate proteins disclosed infra which show comparable expression patterns or which include antigenic regions. Such mutants include deletions, insertions, inversions, repeats, and site substitutions. Guidance concerning which amino acid changes are likely to be phenotypically silent can be found in Bowie, J.U., et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science* 247:1306-1310 (1990).

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the characteristics of the disclosed protein. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard et al., *Clin. Exp. Immunol.* 2:331-340 (1967); Robbins et al., *Diabetes* 36:838-845 (1987); Cleland et al., *Crit. Rev. Therapeutic Drug Carrier Systems* 10:307-377 (1993)).

Amino acids in the polypeptides of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, *Science* 244: 1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as binding to a natural or synthetic binding partner. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., *J Mol. Biol.* 224:899-904 (1992) and de Vos et al. *Science* 255: 306-312 (1992)).

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein. Of course, the number of amino acid substitutions a skilled artisan would make depends on many factors, including those described above. Generally speaking, the number of substitutions for any given polypeptide will not be more than 50, 40, 30, 25, 20, 15, 10, 5 or 3.

Fusion Proteins

Fusion proteins comprising proteins or polypeptide fragments of the subject prostate tumor antigen can also be constructed. Fusion proteins are useful for generating antibodies against amino acid sequences and for use in various assay systems. For example, fusion 5 proteins can be used to identify proteins which interact with a protein of the invention or which interfere with its biological function. Physical methods, such as protein affinity chromatography, or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can also be used for this purpose. Such methods are well known in the art and can also be used as drug screens. Fusion proteins comprising a signal 10 sequence and/or a transmembrane domain of a protein according to the invention or a fragment thereof can be used to target other protein domains to cellular locations in which the domains are not normally found, such as bound to a cellular membrane or secreted extracellularly.

A fusion protein comprises two protein segments fused together by means of a peptide bond. As noted, these fragments may range in size from about 8 amino acids up to the full 15 length of the protein.

The second protein segment can be a full-length protein or a polypeptide fragment. Proteins commonly used in fusion protein construction include β -galactosidase, β -glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase 20 (HRP), and chloramphenicol acetyltransferase (CAT). Additionally, epitope tags can be used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Other fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain 25 (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP 16 protein fusions.

These fusions can be made, for example, by covalently linking two protein segments or by standard procedures in the art of molecular biology. Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises a coding sequence encoding a possible antigen according to the invention or a fragment thereof 30 in proper reading frame with a nucleotide encoding the second protein segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion

proteins are available from companies that supply research labs with tools for experiments, including, for example, Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), Clontech (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, 5 Canada; 1-888-DNA-KITS).

Proteins, fusion proteins, or polypeptides of the invention can be produced by recombinant DNA methods. For production of recombinant proteins, fusion proteins, or polypeptides, a sequence encoding the protein can be expressed in prokaryotic or eukaryotic host cells using expression systems known in the art. These expression systems include 10 bacterial, yeast, insect, and mammalian cells.

The resulting expressed protein can then be purified from the culture medium or from extracts of the cultured cells using purification procedures known in the art. For example, for proteins fully secreted into the culture medium, cell-free medium can be diluted with sodium acetate and contacted with a cation exchange resin, followed by hydrophobic interaction 15 chromatography. Using this method, the desired protein or polypeptide is typically greater than 95% pure. Further purification can be undertaken, using, for example, any of the techniques listed above.

It may be necessary to modify a protein produced in yeast or bacteria, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain a functional 20 protein. Such covalent attachments can be made using known chemical or enzymatic methods.

A protein or polypeptide of the invention can also be expressed in cultured host cells in a form which will facilitate purification. For example, a protein or polypeptide can be expressed as a fusion protein comprising, for example, maltose binding protein, glutathione-S-transferase, or thioredoxin, and purified using a commercially available kit. Kits for 25 expression and purification of such fusion proteins are available from companies such as New England BioLabs, Pharmacia, and Invitrogen. Proteins, fusion proteins, or polypeptides can also be tagged with an epitope, such as a "Flag" epitope (Kodak), and purified using an antibody which specifically binds to that epitope.

The coding sequence of the protein variants identified through the sequences disclosed 30 herein can also be used to construct transgenic animals, such as mice, rats, guinea pigs, cows, goats, pigs, or sheep. Female transgenic animals can then produce proteins, polypeptides, or

fusion proteins of the invention in their milk. Methods for constructing such animals are known and widely used in the art.

Alternatively, synthetic chemical methods, such as solid phase peptide synthesis, can be used to synthesize a secreted protein or polypeptide. General means for the production of peptides, analogs or derivatives are outlined in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins -- A Survey of Recent Developments, B. Weinstein, ed. (1983). Substitution of D-amino acids for the normal L-stereoisomer can be carried out to increase the half-life of the molecule.

Typically, homologous polynucleotide sequences can be confirmed by hybridization under stringent conditions, as is known in the art. For example, using the following wash conditions: 2 x SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 0.1% SDS, room temperature twice, 30 minutes each; then 2 x SSC, 0.1% SDS, 50 °C once, 30 minutes; then 2 x SSC, room temperature twice, 10 minutes each, homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

The invention also provides polynucleotide probes which can be used to detect complementary nucleotide sequences, for example, in hybridization protocols such as Northern or Southern blotting or *in situ* hybridizations. Polynucleotide probes of the invention comprise at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, or 40 or more contiguous nucleotides of the nucleic acid sequences provided herein. Polynucleotide probes of the invention can comprise a detectable label, such as a radioisotopic, fluorescent, enzymatic, or chemiluminescent label.

Isolated genes corresponding to the cDNA sequences disclosed herein are also provided. Standard molecular biology methods can be used to isolate the corresponding genes using the cDNA sequences provided herein. These methods include preparation of probes or primers from the nucleotide sequence disclosed herein for use in identifying or amplifying the genes from mammalian, including human, genomic libraries or other sources of human genomic DNA.

Polynucleotide molecules of the invention can also be used as primers to obtain additional copies of the polynucleotides, using polynucleotide amplification methods. Polynucleotide molecules can be propagated in vectors and cell lines using techniques well

known in the art. Polynucleotide molecules can be on linear or circular molecules. They can be on autonomously replicating molecules or on molecules without replication sequences. They can be regulated by their own or by other regulatory sequences, as is known in the art.

5 *Polynucleotide Constructs*

Polynucleotide molecules comprising the coding sequences of the gene variants identified through the sequences disclosed herein can be used in a polynucleotide construct, such as a DNA or RNA construct. Polynucleotide molecules of the invention can be used, for example, in an expression construct to express all or a portion of a protein, variant, fusion protein, or single-chain antibody in a host cell. An expression construct comprises a promoter which is functional in a chosen host cell. The skilled artisan can readily select an appropriate promoter from the large number of cell type-specific promoters known and used in the art. The expression construct can also contain a transcription terminator which is functional in the host cell. The expression construct comprises a polynucleotide segment which encodes all or a portion of the desired protein. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter. The expression construct can be linear or circular and can contain sequences, if desired, for autonomous replication.

Also included are polynucleotide molecules comprising the promoter and UTR sequences of the subject novel genes, operably linked to the associated protein coding sequence and/or other sequences encoding a detectable or selectable marker. Such promoter and/or UTR-based constructs are useful for studying the transcriptional and translational regulation of protein expression, and for identifying activating and/or inhibitory regulatory proteins.

25

Host Cells

An expression construct can be introduced into a host cell. The host cell comprising the expression construct can be any suitable prokaryotic or eukaryotic cell. Expression systems in bacteria include those described in Chang *et al.*, *Nature* 275:615 (1978); Goeddel *et al.*, *Nature* 281: 544 (1979); Goeddel *et al.*, *Nucleic Acids Res.* 8:4057 (1980); EP 36,776;

U.S. 4,551,433; deBoer *et al.*, *Proc. Natl. Acad. Sci. USA* 80: 21-25 (1983); and Siebenlist *et al.*, *Cell* 20: 269 (1980).

Expression systems in yeast include those described in Hinnnen *et al.*, *Proc. Natl. Acad. Sci. USA* 75: 1929 (1978); Ito *et al.*, *J Bacteriol* 153: 163 (1983); Kurtz *et al.*, *Mol. Cell. Biol.* 6: 142 (1986); Kunze *et al.*, *J Basic Microbiol.* 25: 141 (1985); Gleeson *et al.*, *J. Gen. Microbiol.* 132: 3459 (1986), Roggenkamp *et al.*, *Mol. Gen. Genet.* 202: 302 (1986)); Das *et al.*, *J Bacteriol.* 158: 1165 (1984); De Louvencourt *et al.*, *J Bacteriol.* 154:737 (1983), Van den Berg *et al.*, *Bio/Technology* 8: 135 (1990); Kunze et al., *J. Basic Microbiol.* 25: 141 (1985); Cregg *et al.*, *Mol. Cell. Biol.* 5: 3376 (1985); U.S. 4,837,148; U.S. 4,929,555; Beach and Nurse, *Nature* 300: 706 (1981); Davidow *et al.*, *Curr. Genet.* 10: 380 (1985); Gaillardin *et al.*, *Curr. Genet.* 10: 49 (1985); Ballance *et al.*, *Biochem. Biophys. Res. Commun.* 112: 284-289 (1983); Tilburn *et al.*, *Gene* 26: 205-22 (1983); Yelton *et al.*, *Proc. Natl. Acad. Sci. USA* 81: 1470-1474 (1984); Kelly and Hynes, *EMBO J.* 4: 475479 (1985); EP 244,234; and WO 91/00357.

15 Expression of heterologous genes in insects can be accomplished as described in U.S. 4,745,051; Friesen *et al.* (1986) "The Regulation of Baculovirus Gene Expression" in: THE MOLECULAR BIOLOGY OF BACULOVIRUSES (W. Doerfler, ed.); EP 127,839; EP 155,476; Vlak *et al.*, *J. Gen. Virol.* 69: 765-776 (1988); Miller *et al.*, *Ann. Rev. Microbiol.* 42: 177 (1988); Carbonell *et al.*, *Gene* 73: 409 (1988); Maeda *et al.*, *Nature* 315: 592-594 (1985);
20 Lebacq-Verheyden *et al.*, *Mol. Cell Biol.* 8: 3129 (1988); Smith *et al.*, *Proc. Natl. Acad. Sci. USA* 82: 8404 (1985); Miyajima *et al.*, *Gene* 58: 273 (1987); and Martin *et al.*, *DNA* 7:99 (1988). Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6: 47-55, Miller *et al.*, in GENETIC ENGINEERING (Setlow, J.K. *et al.* eds.), Vol. 8, pp. 277-279 (Plenum Publishing, 1986); and Maeda *et al.*, *Nature*, 315: 592-594 (1985).

25 Mammalian expression can be accomplished as described in Dijkema *et al.*, *EMBO J.* 4: 761(1985); Gorman *et al.*, *Proc. Natl. Acad. Sci. USA* 79: 6777 (1982b); Boshart *et al.*, *Cell* 41: 521 (1985); and U.S. 4,399,216. Other features of mammalian expression can be facilitated as described in Ham and Wallace, *Meth Enz.* 58: 44 (1979);

30 Expression constructs can be introduced into host cells using any technique known in the art. These techniques include transferrin-polycation-mediated DNA transfer, transfection

with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, “gene gun,” and calcium phosphate-mediated transfection.

The invention can also include hybrid and modified forms thereof including fusion proteins, fragments and hybrid and modified forms in which certain amino acids have been deleted or replaced, modifications such as where one or more amino acids have been changed to a modified amino acid or unusual amino acid.

Also included within the meaning of substantially homologous is any human or non-human primate protein which may be isolated by virtue of cross-reactivity with antibodies to proteins encoded by a gene described herein or whose encoding nucleotide sequences including genomic DNA, mRNA or cDNA may be isolated through hybridization with the complementary sequence of genomic or subgenomic nucleotide sequences or cDNA of a gene herein or fragments thereof. It will also be appreciated by one skilled in the art that degenerate DNA sequences can encode a tumor protein according to the invention and these are also intended to be included within the present invention as are allelic variants of the subject genes.

Preferred is a prostate protein according to the invention prepared by recombinant DNA technology. By “pure form” or “purified form” or “substantially purified form” it is meant that a protein composition is substantially free of other proteins which are not the desired protein.

The present invention also includes therapeutic or pharmaceutical compositions comprising a protein according to the invention in an effective amount for treating patients with disease, and a method comprising administering a therapeutically effective amount of the protein. These compositions and methods are useful for treating cancers associated with the subject proteins, e.g. prostate cancer. One skilled in the art can readily use a variety of assays known in the art to determine whether the protein would be useful in promoting survival or functioning in a particular cell type.

Anti-Prostate Antigen Antibodies

As noted, the invention includes the preparation and use of anti-prostate antigen antibodies and fragments for use as diagnostics and therapeutics. These antibodies may be polyclonal or monoclonal. Polyclonal antibodies can be prepared by immunizing rabbits or other animals by injecting antigen followed by subsequent boosts at appropriate intervals. The

animals are bled and sera assayed against purified protein usually by ELISA or by bioassay based upon the ability to block the action of the corresponding gene. When using avian species, e.g., chicken, turkey and the like, the antibody can be isolated from the yolk of the egg. Monoclonal antibodies can be prepared after the method of Milstein and Kohler by 5 fusing splenocytes from immunized mice with continuously replicating tumor cells such as myeloma or lymphoma cells. [Milstein and Kohler, *Nature* 256:495-497 (1975); Galfre and Milstein, *Methods in Enzymology: Immunochemical Techniques* 73:1-46, Langone and Banatis eds., Academic Press, (1981) which are incorporated by reference]. The hybridoma cells so formed are then cloned by limiting dilution methods and supernates assayed for antibody 10 production by ELISA, RIA or bioassay.

The unique ability of antibodies to recognize and specifically bind to target proteins provides an approach for treating an overexpression of the protein. Thus, another aspect of the present invention provides for a method for preventing or treating diseases involving overexpression of the protein by treatment of a patient with specific antibodies to the protein. 15

Specific antibodies, either polyclonal or monoclonal, to the protein can be produced by any suitable method known in the art as discussed above. For example, by recombinant methods, preferably in eukaryotic cells murine or human monoclonal antibodies can be produced by hybridoma technology or, alternatively, the protein, or an immunologically active fragment thereof, or an anti-idiotypic antibody, or fragment thereof can be administered to an 20 animal to elicit the production of antibodies capable of recognizing and binding to the protein. Such antibodies can be from any class of antibodies including, but not limited to IgG, IgA, IgM, IgD, and IgE or in the case of avian species, IgY and from any subclass of antibodies.

The availability of isolated protein allows for the identification of small molecules and low molecular weight compounds that inhibit the binding of protein to binding partners, 25 through routine application of high-throughput screening methods (HTS). HTS methods generally refer to technologies that permit the rapid assaying of lead compounds for therapeutic potential. HTS techniques employ robotic handling of test materials, detection of positive signals, and interpretation of data. Lead compounds may be identified via the incorporation of radioactivity or through optical assays that rely on absorbance, fluorescence or 30 luminescence as read-outs. [Gonzalez, J.E. et al., *Curr. Opin. Biotech.* 9:624-631 (1998)].

Model systems are available that can be adapted for use in high throughput screening for compounds that inhibit the interaction of protein with its ligand, for example by competing with protein for ligand binding. Sarubbi *et al.*, *Anal. Biochem.* 237:70-75 (1996) describe cell-free, non-isotopic assays for discovering molecules that compete with natural ligands for binding to the active site of IL-1 receptor. Martens, C. *et al.*, *Anal. Biochem.* 273:20-31 (1999) describe a generic particle-based nonradioactive method in which a labeled ligand binds to its receptor immobilized on a particle; label on the particle decreases in the presence of a molecule that competes with the labeled ligand for receptor binding.

Antibody Preparation

10 (i) Starting Materials and Methods

Immunoglobulins (Ig) and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Pat. No. 4,745,055; EP 256,654; EP 120,694; EP 125,023; EP 255,694; EP 266,663; WO 30 88/03559; Faulkner et al., *Nature*, 298: 286 (1982); Morrison, J. *Immun.*, 123: 793 (1979); Koehler et al., *Proc. Natl. Acad. Sci. USA*, 77: 15 2197 (1980); Raso et al., *Cancer Res.*, 41: 2073 (1981); Morrison et al., *Ann. Rev. Immunol.*, 2: 239 (1984); Morrison, *Science*, 229: 1202 (1985); and Morrison et al., *Proc. Natl. Acad. Sci. USA*, 81: 6851 (1984). Reassorted immunoglobulin chains are also known. See, for example, U.S. Pat. No. 4,444,878; WO 88/03565; and EP 68,763 and references cited therein. The immunoglobulin moiety in the chimeras of the present invention may be obtained from 20 IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA, IgE, IgD, or IgM, but preferably from IgG-1 or IgG-3.

(ii) Polyclonal Antibodies

25 Polyclonal antibodies to the subject prostate antigens are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the antigen and an adjuvant. It may be useful to conjugate the antigen or a fragment containing the target amino acid sequence to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues),

glutaraldehyde or succinic anhydride.

Animals are immunized against the polypeptide or fragment, immunogenic conjugates, or derivatives by combining about 1 mg or 1 . μ g of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution 5 intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer to the antigen or a fragment thereof. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same polypeptide or 10 fragment thereof, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

(iii) Monoclonal Antibodies

15 Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies.

20 For example, monoclonal antibodies using for practicing this invention may be made using the hybridoma method first described by Kohler and Milstein, Nature, 256: 495 (1975), or may be made by recombinant DNA methods (Cabilly et al., *supra*).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of 25 producing antibodies that will specifically bind to the antigen or fragment thereof used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 [Academic Press, 1986]).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for 5 the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, 10 such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Md. USA.

Culture medium in which hybridoma cells are growing is assayed for production of 15 monoclonal antibodies directed against the prostate antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107: 220 (1980).

20 After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, *supra*). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

25 The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxyapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

30 DNA encoding the monoclonal antibodies of the invention is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are

capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese hamster ovary (CHO) cells, or 5 myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., *Curr. Opinion in Immunol.*, 5: 256-262 (1993) and Pluckthun, *Immunol. Revs.*, 130: 151-188 (1992).

The DNA also may be modified, for example, by substituting the coding sequence for human 10 heavy- and light-chain constant domains in place of the homologous murine sequences (Morrison, et al., *Proc. Natl. Acad. Sci. USA*, 81: 6851 [1984]), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. In that manner, "chimeric" or "hybrid" antibodies are prepared that have the binding specificity of an anti-prostate antigen monoclonal antibody herein.

15 Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody of the invention, or they are substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for prostate antigen according to the invention and another antigen-combining site having specificity for a different 20 antigen.

Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, 25 immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptopbutyrimidate.

(iv) Humanized Antibodies

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" 30 residues, which are typically taken from an "import" variable domain. Humanization can be

essentially performed following the method of Winter and co-workers (Jones et al., *Nature* 321, 522-525 [1986]; Riechmann et al., *Nature* 332, 323-327 [1988]; Verhoeyen et al., *Science* 239, 1534-1536 [1988]), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric
5 antibodies (Cabilly et al., *supra*), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

10 The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized
15 antibody (Sims et al., *J. Immunol.*, 151: 2296 [1993]; Chothia and Lesk, *J. Mol. Biol.*, 196: 901 [1987]). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., *Proc. Natl. Acad. Sci. USA*, 89: 4285 [1992]; Presta et al., *J. Immunol.*, 151: 2623 [1993]).

20 It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly
25 available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its
30 antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target

antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.

(v) Human Antibodies

Human monoclonal antibodies can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor, J. Immunol. 133, 3001 (1984); Brodeur, et al., Monoclonal Antibody Production Techniques and Applications, pp.51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86-95 (1991).

It is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551 (1993); Jakobovits et al., Nature, 362: 255-258 (1993); Brugermann et al., Year in Immuno., 7: 33 (1993).

Alternatively, the phage display technology (McCafferty et al., Nature, 348: 552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from non-immunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson and Chiswell, Curr. Op. Struct. Biol., 3: 564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352: 624-628 (1991) isolated a diverse array

of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from non-immunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol.

5 Biol., 222: 581-597 (1991), or Griffith et al., EMBO J., 12: 725-734 (1993).

In a natural immune response, antibody genes accumulate mutations at a high rate (somatic hypermutation). Some of the changes introduced will confer higher affinity, and B cells displaying high-affinity surface immunoglobulin are preferentially replicated and differentiated during subsequent antigen challenge. This natural process can be mimicked by 10 employing the technique known as "chain shuffling" (Marks et al., Bio/Technology, 10: 779-783 [1992]). In this method, the affinity of "primary" human antibodies obtained by phage display can be improved by sequentially replacing the heavy and light chain V region genes with repertoires of naturally occurring variants (repertoires) of V domain genes obtained from non-immunized donors. This technique allows the production of antibodies and antibody 15 fragments with affinities in the nM range. A strategy for making very large phage antibody repertoires has been described by Waterhouse et al., Nucl. Acids Res., 21: 2265-2266 (1993).

Gene shuffling can also be used to derive human antibodies from rodent antibodies, where the human antibody has similar affinities and specificities to the starting rodent antibody. According to this method, which is also referred to as "epitope imprinting", the 20 heavy or light chain V domain gene of rodent antibodies obtained by phage display technique is replaced with a repertoire of human V domain genes, creating rodent-human chimeras. Selection on antigen results in isolation of human variable capable of restoring a functional antigen-binding site, i.e., the epitope governs (imprints) the choice of partner. When the process is repeated in order to replace the remaining rodent V domain, a human antibody is 25 obtained (see PCT WO 93/06213, published Apr. 1, 1993). Unlike traditional humanization of rodent antibodies by CDR grafting, this technique provides completely human antibodies, which have no framework or CDR residues of rodent origin.

· (vi) Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that 30 have binding specificities for at least two different antigens. In the present case, one of the

binding specificities will be to a prostate antigen according to the invention. Methods for making bispecific antibodies are known in the art.

Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains 5 have different specificities (Milstein and Cuello, *Nature*, 305: 537-539 [1983]). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar 10 procedures are disclosed in WO 93/08829 published May 13, 1993, and in Traunecker et al., *EMBO J.*, 10: 3655-3659 (1991).

According to a different and more preferred approach, antibody-variable domains with the desired binding specificities (antibody-antigencombining sites) are fused to immunoglobulin constant-domain sequences. The fusion preferably is with an 15 immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH₂, and CH₃ regions. It is preferred to have the first heavy-chain constant region (CH₁), containing the site necessary for light-chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. 20 This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the production of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of 25 no particular significance. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin 30 chain combinations, as the presence of an immunoglobulin light chain in only one half of the

bispecific molecule provides for a facile way of separation.

For further details of generating bispecific antibodies, see, for example, Suresh et al., *Methods in Enzymology*, 121: 210 (1986).

(vii) Heteroconjuqate Antibodies

- 5 Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/00373; and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods.
- 10 Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.

The polynucleotides and polypeptides of the present invention may be utilized in gene delivery vehicles. The gene delivery vehicle may be of viral or non-viral origin (*see generally*, Jolly, *Cancer Gene Therapy* 1:51-64 (1994); Kimura, *Human Gene Therapy* 5:845-852 (1994); Connelly, *Human Gene Therapy* 1:185-193 (1995); and Kaplitt, *Nature Genetics* 6:148-153 (1994)). Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic according to the invention can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches. Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence can be either constitutive or regulated. Preferred vehicles for gene therapy include retroviral and adeno-viral vectors.

Representative examples of adenoviral vectors include those described by Berkner, *Biotechniques* 6:616-627 (Biotechniques); Rosenfeld et al., *Science* 252:431-434 (1991); WO 93/19191; Kolls et al., *P.N.A.S.* 215-219 (1994); Kass-Bisler et al., *P.N.A.S.* 90: 11498-11502 (1993); Guzman et al., *Circulation* 88: 2838-2848 (1993); Guzman et al., *Cir. Res.* 73: 1202-1207 (1993); Zabner et al., *Cell* 75: 207-216 (1993); Li et al., *Hum. Gene Ther.* 4: 403-409 (1993); Cailaud et al., *Eur. J. Neurosci.* 5: 1287-1291 (1993); Vincent et al., *Nat. Genet.* 5: 130-134 (1993); Jaffe et al., *Nat. Genet.* 1: 372-378 (1992); and Levrero et al., *Gene* 101: 195-202 (1992). Exemplary adenoviral gene therapy vectors employable in this invention also include those described in WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO

95/11984 and WO 95/00655. Administration of DNA linked to kill adenovirus as described in Curiel, *Hum. Gene Ther.* 3: 147-154 (1992) may be employed.

Other gene delivery vehicles and methods may be employed; including polycationic condensed DNA linked or unlinked to kill adenovirus alone, for example Curiel, *Hum. Gene Ther.* 3: 147-154 (1992); ligand-linked DNA, for example see Wu, *J. Biol. Chem.* 264: 16985-16987 (1989); eukaryotic cell delivery vehicles cells, for example see U.S. Serial No. 08/240,030, filed May 9, 1994, and U.S. Serial No. 08/404,796; deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; ionizing radiation as described in U.S. Patent No. 5,206,152 and in 10 WO 92/11033; nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip, *Mol. Cell Biol.* 14:2411-2418 (1994), and in Woffendin, *Proc. Natl. Acad. Sci.* 91:1581-1585 (1994).

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and U.S. Patent No. 5,580,859. Uptake efficiency may be 15 improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm. Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422,120, PCT Patent Publication Nos. WO 95/13 20 796, WO 94/23697, and WO 91/14445, and EP No. 0 524 968.

Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al., *Proc. Natl. Acad. Sci. USA* 91(24): 11581-11585 (1994). Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional 25 methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. Patent No. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. Patent No. 5,206,152 and PCT Patent Publication No. WO 92/11033.

The subject antibodies or antibody fragments may be conjugated directly or indirectly 30 to effective moieties, e.g., radionuclides, toxins, chemotherapeutic agents, prodrugs, cytosstatic agents, enzymes and the like. In a preferred embodiment the antibody or fragment will be

attached to a therapeutic or diagnostic radiolabel directly or by use of a chelating agent. Examples of suitable radiolabels are well known and include ⁹⁰Y, ¹²⁵I, ¹³¹I, ¹¹¹I, ¹⁰⁵Rh, ¹⁵³Sm, ⁶⁷Cu, ⁶⁷Ga, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁸⁶Re and ¹⁸⁸Re.

Examples of suitable drugs that may be coupled to antibodies include methotrexate, 5 adriamycin and lymphokines such as interferons, interleukins and the like. Suitable toxins which may be coupled include ricin, cholera and diphtheria toxin.

In a preferred embodiment, the subject antibodies will be attached to a therapeutic radiolabel and used for radioimmunotherapy.

Anti-sense Oligonucleotides

10 In certain circumstances, it may be desirable to modulate or decrease the amount of the protein expressed by a prostate cell. Thus, in another aspect of the present invention, anti-sense oligonucleotides can be made and a method utilized for diminishing the level of expression a prostate antigen according to the invention by a cell comprising administering one or more anti-sense oligonucleotides. By anti-sense oligonucleotides reference is made to 15 oligonucleotides that have a nucleotide sequence that interacts through base pairing with a specific complementary nucleic acid sequence involved in the expression of the target such that the expression of the gene is reduced. Preferably, the specific nucleic acid sequence involved in the expression of the gene is a genomic DNA molecule or mRNA molecule that encodes the gene. This genomic DNA molecule can comprise regulatory regions of the gene, 20 or the coding sequence for the mature gene.

The term complementary to a nucleotide sequence in the context of antisense oligonucleotides and methods therefor means sufficiently complementary to such a sequence as to allow hybridization to that sequence in a cell, i.e., under physiological conditions. Antisense oligonucleotides preferably comprise a sequence containing from about 8 to about 25 100 nucleotides and more preferably the antisense oligonucleotides comprise from about 15 to about 30 nucleotides. Antisense oligonucleotides can also contain a variety of modifications that confer resistance to nucleolytic degradation such as, for example, modified internucleoside linkages [Uhlmann and Peyman, *Chemical Reviews* 90:543-548 (1990); Schneider and Banner, *Tetrahedron Lett.* 31:335, (1990) which are incorporated by reference], 30 modified nucleic acid bases as disclosed in 5,958,773 and patents disclosed therein, and/or sugars and the like.

Any modifications or variations of the antisense molecule which are known in the art to be broadly applicable to antisense technology are included within the scope of the invention.

Such modifications include preparation of phosphorus-containing linkages as disclosed in U.S. Patents 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361, 5,625,050 and 5,958,773.

The antisense compounds of the invention can include modified bases. The antisense oligonucleotides of the invention can also be modified by chemically linking the oligonucleotide to one or more moieties or conjugates to enhance the activity, cellular distribution, or cellular uptake of the antisense oligonucleotide. Such moieties or conjugates include lipids such as cholesterol, cholic acid, thioether, aliphatic chains, phospholipids, polyamines, polyethylene glycol (PEG), palmityl moieties, and others as disclosed in, for example, U.S. Patents 5,514,758, 5,565,552, 5,567,810, 5,574,142, 5,585,481, 5,587,371, 5,597,696 and 5,958,773.

Chimeric antisense oligonucleotides are also within the scope of the invention, and can be prepared from the present inventive oligonucleotides using the methods described in, for example, U.S. Patents 5,013,830, 5,149,797, 5,403,711, 5,491,133, 5,565,350, 5,652,355, 5,700,922 and 5,958,773.

In the antisense art a certain degree of routine experimentation is required to select optimal antisense molecules for particular targets. To be effective, the antisense molecule preferably is targeted to an accessible, or exposed, portion of the target RNA molecule. Although in some cases information is available about the structure of target mRNA molecules, the current approach to inhibition using antisense is via experimentation. mRNA levels in the cell can be measured routinely in treated and control cells by reverse transcription of the mRNA and assaying the cDNA levels. The biological effect can be determined routinely by measuring cell growth or viability as is known in the art.

Measuring the specificity of antisense activity by assaying and analyzing cDNA levels is an art-recognized method of validating antisense results. It has been suggested that RNA from treated and control cells should be reverse-transcribed and the resulting cDNA populations analyzed. [Branch, A. D., *T.I.B.S.* 23:45-50 (1998)].

The therapeutic or pharmaceutical compositions of the present invention can be administered by any suitable route known in the art including for example intravenous,

subcutaneous, intramuscular, transdermal, intrathecal or intracerebral. Administration can be either rapid as by injection or over a period of time as by slow infusion or administration of slow release formulation.

Additionally, the subject prostate tumor proteins can also be linked or conjugated with agents that provide desirable pharmaceutical or pharmacodynamic properties. For example, the protein can be coupled to any substance known in the art to promote penetration or transport across the blood-brain barrier such as an antibody to the transferrin receptor, and administered by intravenous injection (see, for example, Friden et al., *Science* 259:373-377 (1993) which is incorporated by reference). Furthermore, the subject protein A or protein B can be stably linked to a polymer such as polyethylene glycol to obtain desirable properties of solubility, stability, half-life and other pharmaceutically advantageous properties. [See, for example, Davis et al., *Enzyme Eng.* 4:169-73 (1978); Buruham, *Am. J. Hosp. Pharm.* 51:210-218 (1994) which are incorporated by reference].

The compositions are usually employed in the form of pharmaceutical preparations. Such preparations are made in a manner well known in the pharmaceutical art. See, e.g. Remington Pharmaceutical Science, 18th Ed., Merck Publishing Co. Eastern PA, (1990). One preferred preparation utilizes a vehicle of physiological saline solution, but it is contemplated that other pharmaceutically acceptable carriers such as physiological concentrations of other non-toxic salts, five percent aqueous glucose solution, sterile water or the like may also be used. It may also be desirable that a suitable buffer be present in the composition. Such solutions can, if desired, be lyophilized and stored in a sterile ampoule ready for reconstitution by the addition of sterile water for ready injection. The primary solvent can be aqueous or alternatively non-aqueous. The subject prostate tumor antigens, fragments or variants thereof can also be incorporated into a solid or semi-solid biologically compatible matrix which can be implanted into tissues requiring treatment.

The carrier can also contain other pharmaceutically-acceptable excipients for modifying or maintaining the pH, osmolarity, viscosity, clarity, color, sterility, stability, rate of dissolution, or odor of the formulation. Similarly, the carrier may contain still other pharmaceutically-acceptable excipients for modifying or maintaining release or absorption or penetration across the blood-brain barrier. Such excipients are those substances usually and customarily employed to formulate dosages for parental administration in either unit dosage or

multi-dose form or for direct infusion into the cerebrospinal fluid by continuous or periodic infusion.

Dose administration can be repeated depending upon the pharmacokinetic parameters of the dosage formulation and the route of administration used.

5 It is also contemplated that certain formulations containing the subject antibody or nucleic acid antagonists are to be administered orally. Such formulations are preferably encapsulated and formulated with suitable carriers in solid dosage forms. Some examples of suitable carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, calcium silicate, microcrystalline cellulose, 10 polyvinylpyrrolidone, cellulose, gelatin, syrup, methyl cellulose, methyl- and propylhydroxybenzoates, talc, magnesium, stearate, water, mineral oil, and the like. The formulations can additionally include lubricating agents, wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavoring agents. The compositions may be formulated so as to provide rapid, sustained, or delayed release of the 15 active ingredients after administration to the patient by employing procedures well known in the art. The formulations can also contain substances that diminish proteolytic degradation and promote absorption such as, for example, surface active agents.

The specific dose is calculated according to the approximate body weight or body surface area of the patient or the volume of body space to be occupied. The dose will also be 20 calculated dependent upon the particular route of administration selected. Further refinement of the calculations necessary to determine the appropriate dosage for treatment is routinely made by those of ordinary skill in the art. Such calculations can be made without undue experimentation by one skilled in the art in light of the activity disclosed herein in assay preparations of target cells. Exact dosages are determined in conjunction with standard dose-response studies. It will be understood that the amount of the composition actually 25 administered will be determined by a practitioner, in the light of the relevant circumstances including the condition or conditions to be treated, the choice of composition to be administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the chosen route of administration.

30 In one embodiment of this invention, the protein may be therapeutically administered by implanting into patients vectors or cells capable of producing a biologically-active form of

the protein or a precursor of protein, *i.e.*, a molecule that can be readily converted to a biological-active form of the protein by the body. In one approach, cells that secrete the protein may be encapsulated into semipermeable membranes for implantation into a patient. The cells can be cells that normally express the protein or a precursor thereof or the cells can 5 be transformed to express the protein or a precursor thereof. It is preferred that the cell be of human origin and that the protein be a human protein when the patient is human. However, it is anticipated that non-human primate homologues of the protein discussed infra may also be effective.

Detection of Subject Prostate Proteins or Nucleic Acids

10 In a number of circumstances it would be desirable to determine the levels of protein or corresponding mRNA in a patient. Evidence disclosed infra suggests the subject prostate proteins may be expressed at different levels during some diseases, e.g., cancers, provides the basis for the conclusion that the presence of these proteins serves a normal physiological function related to cell growth and survival. Endogenously produced protein according to the 15 invention may also play a role in certain disease conditions.

The term "detection" as used herein in the context of detecting the presence of protein in a patient is intended to include the determining of the amount of protein or the ability to express an amount of protein in a patient, the estimation of prognosis in terms of probable outcome of a disease and prospect for recovery, the monitoring of the protein levels over a 20 period of time as a measure of status of the condition, and the monitoring of protein levels for determining a preferred therapeutic regimen for the patient, e.g. one with prostate cancer.

To detect the presence of a prostate protein according to the invention in a patient, a sample is obtained from the patient. The sample can be a tissue biopsy sample or a sample of blood, plasma, serum, CSF, urine or the like. It has been found that the subject proteins are 25 expressed at high levels in some cancers. Samples for detecting protein can be taken from prostate tissues. When assessing peripheral levels of protein, it is preferred that the sample be a sample of blood, plasma or serum. When assessing the levels of protein in the central nervous system a preferred sample is a sample obtained from cerebrospinal fluid or neural tissue. The sample may be obtained by non-invasive methods, such as from tissue collection(s) 30 or culture(s), or using directly available tissue material (urine, saliva, stools, hair, etc.).

In some instances, it is desirable to determine whether the gene is intact in the patient or in a tissue or cell line within the patient. By an intact gene, it is meant that there are no alterations in the gene such as point mutations, deletions, insertions, chromosomal breakage, chromosomal rearrangements and the like wherein such alteration might alter production of 5 the corresponding protein or alter its biological activity, stability or the like to lead to disease processes. Thus, in one embodiment of the present invention a method is provided for detecting and characterizing any alterations in the gene. The method comprises providing an oligonucleotide that contains the gene, genomic DNA or a fragment thereof or a derivative thereof. By a derivative of an oligonucleotide, it is meant that the derived oligonucleotide is 10 substantially the same as the sequence from which it is derived in that the derived sequence has sufficient sequence complementarity to the sequence from which it is derived to hybridize specifically to the gene. The derived nucleotide sequence is not necessarily physically derived from the nucleotide sequence, but may be generated in any manner including for example, chemical synthesis or DNA replication or reverse transcription or transcription.

15 Typically, patient genomic DNA is isolated from a cell sample from the patient and digested with one or more restriction endonucleases such as, for example, TaqI and AluI. Using the Southern blot protocol, which is well known in the art, this assay determines whether a patient or a particular tissue in a patient has an intact prostate gene according to the invention or a gene abnormality.

20 Hybridization to a gene would involve denaturing the chromosomal DNA to obtain a single-stranded DNA; contacting the single-stranded DNA with a gene probe associated with the gene sequence; and identifying the hybridized DNA-probe to detect chromosomal DNA containing at least a portion of a gene.

25 The term "probe" as used herein refers to a structure comprised of a polynucleotide that forms a hybrid structure with a target sequence, due to complementarity of probe sequence with a sequence in the target region. Oligomers suitable for use as probes may contain a minimum of about 8-12 contiguous nucleotides which are complementary to the targeted sequence and preferably a minimum of about 20.

30 A gene according to the present invention can be DNA or RNA oligonucleotides and can be made by any method known in the art such as, for example, excision, transcription or chemical synthesis. Probes may be labeled with any detectable label known in the art such as,

for example, radioactive or fluorescent labels or enzymatic marker. Labeling of the probe can be accomplished by any method known in the art such as by PCR, random priming, end labeling, nick translation or the like. One skilled in the art will also recognize that other methods not employing a labeled probe can be used to determine the hybridization. Examples 5 of methods that can be used for detecting hybridization include Southern blotting, fluorescence in situ hybridization, and single-strand conformation polymorphism with PCR amplification.

Hybridization is typically carried out at 25° - 45° C, more preferably at 32° - 40° C and more preferably at 37° - 38° C. The time required for hybridization is from about 0.25 to about 96 hours, more preferably from about one to about 72 hours, and most preferably from about 4 10 to about 24 hours.

Gene abnormalities can also be detected by using the PCR method and primers that flank or lie within the gene. The PCR method is well known in the art. Briefly, this method is performed using two oligonucleotide primers which are capable of hybridizing to the nucleic acid sequences flanking a target sequence that lies within a gene and amplifying the target 15 sequence. The terms "oligonucleotide primer" as used herein refers to a short strand of DNA or RNA ranging in length from about 8 to about 30 bases. The upstream and downstream primers are typically from about 20 to about 30 base pairs in length and hybridize to the flanking regions for replication of the nucleotide sequence. The polymerization is catalyzed by a DNA-polymerase in the presence of deoxynucleotide triphosphates or nucleotide analogs to 20 produce double-stranded DNA molecules. The double strands are then separated by any denaturing method including physical, chemical or enzymatic. Commonly, a method of physical denaturation is used involving heating the nucleic acid, typically to temperatures from about 80°C to 105°C for times ranging from about 1 to about 10 minutes. The process is repeated for the desired number of cycles.

25 The primers are selected to be substantially complementary to the strand of DNA being amplified. Therefore, the primers need not reflect the exact sequence of the template, but must be sufficiently complementary to selectively hybridize with the strand being amplified.

After PCR amplification, the DNA sequence comprising the gene or a fragment thereof is then directly sequenced and analyzed by comparison of the sequence with the sequences 30 disclosed herein to identify alterations which might change activity or expression levels or the like.

In another embodiment, a method for detecting a tumor protein according to the invention is provided based upon an analysis of tissue expressing the gene. Certain tissues such as prostate tissues have been found to overexpress the subject gene. The method comprises hybridizing a polynucleotide to mRNA from a sample of tissue that normally expresses the gene. The sample is obtained from a patient suspected of having an abnormality in the gene.

To detect the presence of mRNA encoding the protein, a sample is obtained from a patient. The sample can be from blood or from a tissue biopsy sample. The sample may be treated to extract the nucleic acids contained therein. The resulting nucleic acid from the sample is subjected to gel electrophoresis or other size separation techniques.

The mRNA of the sample is contacted with a DNA sequence serving as a probe to form hybrid duplexes. The use of a labeled probes as discussed above allows detection of the resulting duplex.

When using the cDNA encoding the protein or a derivative of the cDNA as a probe, high stringency conditions can be used in order to prevent false positives, that is the hybridization and apparent detection of the gene nucleotide sequence when in fact an intact and functioning gene is not present. When using sequences derived from the gene cDNA, less stringent conditions could be used, however, this would be a less preferred approach because of the likelihood of false positives. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, length of time and concentration of formamide. These factors are outlined in, for example, Sambrook et al. [Sambrook et al. (1989), *supra*].

In order to increase the sensitivity of the detection in a sample of mRNA encoding the protein A or protein B, the technique of reverse transcription/ polymerization chain reaction (RT/PCR) can be used to amplify cDNA transcribed from mRNA encoding the prostate tumor antigen. The method of RT/PCR is well known in the art, and can be performed as follows. Total cellular RNA is isolated by, for example, the standard guanidium isothiocyanate method and the total RNA is reverse transcribed. The reverse transcription method involves synthesis of DNA on a template of RNA using a reverse transcriptase enzyme and a 3' end primer. Typically, the primer contains an oligo(dT) sequence. The cDNA thus produced is then amplified using the PCR method and gene A or gene B specific primers. [Belyavsky et al.,

Nucl. Acid Res. 17:2919-2932 (1989); Krug and Berger, *Methods in Enzymology*, 152:316-325, Academic Press, NY (1987) which are incorporated by reference].

The polymerase chain reaction method is performed as described above using two oligonucleotide primers that are substantially complementary to the two flanking regions of the
5 DNA segment to be amplified. Following amplification, the PCR product is then electrophoresed and detected by ethidium bromide staining or by phosphoimaging.

The present invention further provides for methods to detect the presence of the protein in a sample obtained from a patient. Any method known in the art for detecting proteins can be used. Such methods include, but are not limited to immunodiffusion,
10 immunoelectrophoresis, immunochemical methods, binder-ligand assays, immunohistochemical techniques, agglutination and complement assays. [*Basic and Clinical Immunology*, 217-262, Sites and Terr, eds., Appleton & Lange, Norwalk, CT, (1991), which is incorporated by reference]. Preferred are binder-ligand immunoassay methods including reacting antibodies with an epitope or epitopes of the prostate tumor antigen protein and
15 competitively displacing a labeled prostate antigen according to the invention or derivative thereof.

As used herein, a derivative of the subject prostate tumor antigen is intended to include a polypeptide in which certain amino acids have been deleted or replaced or changed to modified or unusual amino acids wherein the derivative is biologically equivalent to gene and
20 wherein the polypeptide derivative cross-reacts with antibodies raised against the protein. By cross-reaction it is meant that an antibody reacts with an antigen other than the one that induced its formation.

Numerous competitive and non-competitive protein binding immunoassays are well known in the art. Antibodies employed in such assays may be unlabeled, for example as used
25 in agglutination tests, or labeled for use in a wide variety of assay methods. Labels that can be used include radionuclides, enzymes, fluorescers, chemiluminescers, enzyme substrates or co-factors, enzyme inhibitors, particles, dyes and the like for use in radioinunoassay (RIA), enzyme immunoassays, e.g., enzyme-linked immunosorbent assay (ELISA), fluorescent immunoassays and the like.

A further aspect of this invention relates to a method for selecting, identifying, screening, characterizing or optimizing biologically active compounds, comprising a determination of whether a candidate compound binds, preferably selectively, a target molecule as disclosed above. Such target molecules include nucleic acid sequences, 5 polypeptides and fragments thereof, typically prostate-specific antigens, even more preferably extracellular portions thereof. Binding may be assessed in vitro or in vivo, typically in vitro, in cell based or acellular systems. Typically, the target molecule is contacted with the candidate compound in any appropriate device, and the formation of a complex is determined. The target molecule and/or the candidate compound may be immobilized on a support. The compounds 10 identified or selected represent drug candidates or leads for treating cancer diseases, particularly prostate cancer.

While the invention has been described supra, including preferred embodiments, the following examples are provided to further illustrate the invention.

15

EXAMPLE

Tissue Sources:

Appropriate patient samples were procured for evaluation of research protocol. Samples were provided with relevant clinical parameters, and patient consent. Histological 20 assessment was performed on all samples and diagnosis by pathology confirmed the presence and/or absence of malignancy within each sample. Clinical data generally included patent history, physiopathology, and parameters relating to prostate cancer physiology. Ten normal and ten malignant samples were procured along with available clinical information. In addition, ten samples from organs other than normal prostate and prostate cancer were 25 procured to determine the tissue specific expression profile of epitopes. RNA derived from normal tissue samples was obtained from known commercial sources.

Generation of the DATAS Library

Samples were pooled based on their pathological diagnosis (normal vs. tumor). 30 Samples were pooled based on equivalent amounts of total RNA to produce total pooled RNA samples of 100ug. DATAS libraries were constructed as previously disclosed in U.S. Patent

No. 6,251,590, the disclosure of which is incorporated by reference in its entirety. Briefly, total RNA was isolated from the normal and tumor pooled samples and mRNA was subsequently purified from the total RNA for each pooled sample. Synthesis of cDNA was performed using a biotinylated oligo (dT) primer. The biotinylated cDNA was hybridized with 5 the mRNA of the opposite sample to form heteroduplexes between the cDNA and the mRNA. For example, the biotinylated cDNA of the pooled normal prostate sample was hybridized with prostate tumor mRNA. Similarly, prostate tumor biotinylated cDNA was hybridized with prostate normal RNA to generate the second DATAS library. Streptavidin coated beads were used to purify the complexes by binding the biotin present on the cDNA. The heteroduplexes 10 were digested with RNase H to degrade the RNA that was complementary to the cDNA. All mRNA sequences that were different from the cDNA remained intact. These single stranded RNA fragments or "loops" were subsequently amplified with degenerate primers and cloned into either pGEM-T or pCR II TOPO vector (Company source) to produce the DATAS library.

15 **Clone sequencing and Bioinformatics Analysis:**

The DATAS library was used to transform E. coli so that individual clones could be isolated using standard molecular biology techniques. From these libraries, 10,665 individual clones were isolated and sequenced using an automated Applied Biosystems 3100 sequencer. The nucleotide sequences that were obtained were submitted to the bioinformatics pipeline for 20 analysis. As the DATAS library is prepared with PCR amplified DNA, many copies of the same sequence are present in the clones isolated from the libraries. Therefore it is important to reduce the redundancy of the clones to identify the number of unique, nonrepeating sequences that are isolated. From this large set of DATAS fragments, 1699 unique, nonredundant sequences were identified and each DATAS fragment was annotated with a candidate gene. 25 The annotation was performed by aligning the DATAS fragment to the human genome sequence by two methods; 1) a publicly available alignment and genome viewer tool, Blat (Kent et al., 2002); and 2) a commercially available genomic alignment and viewer tool, Prophecy (Doubletwist). Each DATAS fragment sequence was annotated with a corresponding gene that overlapped the genomic sequence containing the DATAS fragment. 30 Genes were annotated with either the RefSeq accession number, or a hypothetical gene prediction from different algorithms, for example, Genscan, Twinscan, or Fgenesh++.

- Identified genes were either matched to the sequence of the DATAS fragment (in case of exon to fragment match), or overlapped with the DATAS fragment (in case of intron to fragment match), and the full length sequence of the gene was identified. These sequences were further analyzed to detect all potential membrane spanning proteins. Membrane proteins were
5 predicted through the use of different algorithms publicly available. For example, TMHMM (CBS) was used to identify membrane-spanning domains present within the amino acid sequence of the candidate gene. DATAS fragments were located within the sequence in an attempt to determine whether the spliced event affected intracellular or extracellular domains.
10 Genes associated with the sequence were ranked in order to maximize the identification of successful therapeutic targets. The highest priority genes had characteristics where the gene was a known membrane protein, the function of the gene was known, and the DATAS fragment mapped to an intron on the extracellular domain of the protein, indicating that the DATAS fragment would be presented outside the cell, and available for therapeutic intervention by monoclonal antibodies.
- 15 Based on the bioinformatic analysis, clones were prioritized in three groups:
A) Known transmembrane genes with DATAS fragments located in introns on the extracellular domain.
B) Known and predicted transmembrane genes with DATAS fragments located in exons in either the extracellular or intracellular domain.
20 C) DATAS fragments that did not match the genome

Expression Monitoring:

A valid epitope target for prostate cancer requires that the expression of the epitope be limited to prostate tissue, or preferably to prostate tumors. Assessment of the expression profile for each prioritized sequence was performed by RT-PCR, a procedure well known in the art. A protocol known as touchdown PCR was used, described in the user's manual for the GeneAmp PCR system 9700, Applied Biosystems. Briefly, PCR primers were designed to the DATAS fragment and used for end point RT-PCR analysis. Each RT reaction contained 5 µg of total RNA and was performed in a 100 µl volume using Archive RT Kit (Applied
25 Biosystems). The RT reactions were diluted 1:50 with water and 4 µl of the diluted stock was used in a 50 µl PCR reaction consisting of one cycle at 94°C for 3 min, 5 cycles at 94°C for 30
30

seconds, 60°C for 30 seconds and 72°C for 45 seconds, with each cycle reducing the annealing temperature by 0.5 degree. This was followed by 30 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72 °C for 45 seconds. 15 µl was removed from each reaction for analysis and the reactions were allowed to proceed for an additional 10 cycles. This produced reactions for 5 analysis at 30 and 40 cycles, and allowed the detection of differences in expression where the 40 cycle reactions had saturated. The level of expression profile of the DATAS fragment was determined in normal and tumor prostate total RNA, as well as total RNA from normal samples of brain, heart, liver, lung, kidney, colon, bone marrow, muscle, spleen, and testis. Expression profiles were prioritized accordingly for specific expression in prostate tumor and 10 low expression found in normal tissues, including normal prostate.

Verification of RNA Structure:

DATAS identifies sequences that are altered between the experimental samples. However, the exact sequence of the junctions or borders that the DATAS fragment represents 15 can not be determined directly from the isolated DATAS fragment sequence. The DATAS fragment was used, however, to design experiments that elucidate the sequence of each transcript present in each sample. Primers were designed to amplify a region of the gene larger than the proposed DATAS fragment sequence. These amplicons were subsequently cloned and sequenced for the identification of the exact junctions of all exons and introns. This 20 required partial cloning of the isoforms from an identified sample to verify the primary structure (sequence) of the isoforms. All twenty samples (10 normal and 10 tumor samples) initially used to generate the DATAS libraries were used for the verification of the mRNA structure of the prioritized genes.

25 Isolation of full-length clones of isoforms:

Isolation of the full-length clones containing both isoforms was accomplished utilizing the information and DNA fragments generated during the structure validation process. Several methods are applicable to isolation of the full length clone. Where full sequence information regarding the coding sequence is available, gene specific primers were designed from the 30 sequence and used to amplify the coding sequence directly from the total RNA of the tissue samples. An RT-PCR reaction was set up using these gene specific primers. The RT reaction

- was performed as described infra, using oligo dT to prime for cDNA. Second strand was produced by standard methods to produce double stranded cDNA. PCR amplification of the gene was accomplished using gene specific primers. PCR consisted of 30 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72 °C for 45 seconds. The reaction products were 5 analyzed on 1% agarose gels and the amplicons were ligated into prepared vectors with A overhangs for amplicon cloning. 1 µl of the ligation mixture was used to transform E. coli for cloning and isolation of the amplicon. Once purified, the plasmid containing the amplicon was sequenced on an ABI 3100 automated sequencer.
- 10 Where limited sequence information was available, the oligo pulling method was utilized. Briefly, a gene-specific oligonucleotide was designed based on the DATAS fragment. The oligonucleotide was labeled with biotin and used to hybridize with a single stranded plasmid DNA library prepared from either normal prostate tissue or prostate tumor tissue following the procedures of Sambrook et al (1989). The hybridized cDNA was separated by streptavidin 15 conjugated beads and eluted by heating. The eluted cDNA was converted to double strand plasmid DNA and used to transform E. coli cells and the longest cDNA clone was subjected to DNA sequencing.

RESULTS

20 Using methods described above, 1699 DNA fragments have been identified that putatively correspond to exons (novel splice variants) expressed exclusively or at an increased level in prostate tumor tissue when compared to matched normal prostate tissue.

These sequences were used to search public databases containing human genomic 25 sequences to identify related genes. This search identified 122 fragments that correspond to exons of either known or potential cell surface proteins.

Additionally, thirty seven distinct alternatively spliced isoforms were identified from the initial sequence tags that appear to contain novel sequence information of cell surface proteins.

30 These DNA sequences are disclosed in the Sequence Listing as well as in Table 1, and correspond to the nucleic acid sequences having SEQ ID NOS: 1-173, 175, 177, 179, and 181. Oligonucleotide primers were designed to each DATAS fragment to determine the specific

expression of the mRNA in a panel of normal human tissue. An example is shown in figure 1, where the clone corresponding to Sequence ID: No. 92 displays specific expression in prostate with very low levels detected in kidney (lane 4) and pancreas (lane 9). All clones that were found to be either specifically expressed in prostate or highly expressed in prostate compared
5 to other tissues were analyzed for expression in tumor samples.

Figure 2 illustrates the expression profile of one DATAS clone in normal and tumor prostate tissue. Expression of this clone is upregulated in two of the three tumor pooled samples and is highly expressed in three of the four individual tumor samples. The high expression of this splice event in tumor samples as compared to normal prostate, and the low
10 expression in other normal human tissues is an example of one candidate that has utility for development as a novel epitope for prostate cancer.

The splice events for DATAS clones that displayed a specific expression profile for prostate and a high differential expression profile for prostate tumors were isolated and the sequences for each event was determined. An example is shown in figure 3, where the
15 sequence of the isolated event was mapped to the genome in Blat, and genomic viewer developed by the bioinformatics department at UCSC (Kent et al., 2002). Five distinct clones were isolated that mapped to the gene locus for STEAP2. One expressed sequence tag (EST), AK092666, contained many similar domains as the splice events that were isolated using DATAS. The sequences and predicted protein translations for all five clones are described in
20 SEQ NOS. 173 – 182 and are graphically illustrated in figure 3. The length of the open reading frame and the predicted protein size for each isoform is described in Table 2. The EST, AK092666 contains a large deletion in exon 5, the terminal 3' exon of STEAP2, with two novel exons in the 5' region of the transcript. The nomenclature for the DATAS derived
25 events was based on AK092666 because of higher similarity when compared to the RefSeq sequence for STEAP2. The first isoform identified, AK092666_01 (SEQ ID NO 173), contains a novel C-terminal exon when compared to AK092666, and therefore generates a novel junction, and a novel sequence for translation and generates a unique amino acid sequence (SEQ ID NO 183). The same novel sequence was generated by isoform AK092666_03 (SEQ ID NO 177), which contains the same novel exon with an additional
30 splicing event of an in frame truncation of exon 4, and by isoform AK092666_05 (SEQ ID NO 181), which contains a single codon deletion from AK092666_01. AK092666_02 (SEQ ID

NO 175) skipped exon 6 of AK092666 and generated the novel amino acid sequence in SEQ ID NO 184. AK092666_04 (SEQ ID NO 179) contains a short out of frame truncation of exon 4, which results in the creation of 8 novel amino acids before encountering a premature stop codon (SEQ ID NO 185).

5

Table 2. Length of the open reading frame and the predicted protein size for each novel isoform.

Clone Name	ORF length (bp)	Protein size (KD)
STEAP2	1473	56
AK092666	1365	51.7
AK092666_01	1389	52.7
AK092666_02	1260	47.8
AK092666_03	900	34.1
AK092666_04	705	26.7
AK092666_05	1386	52.5

10 The novel amino acids found in SEQ ID NOS 183 and 184 represent novel epitopes that are specifically expressed in prostate cancer in a membrane protein. These epitopes are targets for monoclonal antibody immunotherapy for the treatment of prostate cancer. To illustrate the different isoforms present, an antibody was generated from the invariant sequence present in the 5' region (or the amino terminal portion of the protein) that recognizes all the
15 different isoforms.

An antibody was generated against an amino acid sequence that was common to all five isoforms, as well as present in STEAP2 and AK092666. Prostate cancer cell lines were analyzed by western blot to determine what different isoforms would be expressed at the protein level. Figure 4 illustrates two bands that were specifically detected by the antibody.
20 Band A potentially represents the glycosylated, wild type STEAP2 and band B indicates isoforms AK092666, AK092666_01, or AK092666_05, which is unresolvable in the gel analysis. In addition, multiple bands of the proper size were detected suggesting that isoforms of the STEAP2 locus are expressed and represent targets for the immunotherapy in prostate cancer.

Table 1. Sequence information of the DATAS fragments and the alternatively spliced isoforms.

5 Sequence ID: No. 1
Accession #: NM_005656
Genomic sequence: chr21:39407238-39450894
Sequence definition: transmembrane protease serine 2

10 Sequence ID: No. 2
Accession #: NM_001423
Genomic sequence: chr12:13265134-13265266
Sequence definition: Homo sapiens epithelial membrane protein 1 EMP1

15 Sequence ID: No. 3
Accession #: NM_000484
Genomic sequence: chr21:23832850-24123073
Sequence definition: beta amyloid A4

20 Sequence ID: No. 4
Accession #: NM_002841
Genomic sequence: chr3:62548596-63240788_1
Sequence definition: protein tyrosine phosphatase G-type

25 Sequence ID: No. 5
Accession #: NM_022124
Genomic sequence: chr10:74968313-75112962
Sequence definition: cadherin related 23 isoform 1 precursor

30 Sequence ID: No. 6
Accession #: NM_033056
Genomic sequence: chr10:55940286-56920530_02
Sequence definition: protocadherin 15 precursor

35 Sequence ID: No. 7
Accession #: NM_002847
Genomic sequence: chr7:158586667-159621018_01
Sequence definition: protein tyrosine phosphatase receptor type N

40 Sequence ID: No. 8
Accession #: NM_002222
Genomic sequence: chr3:5000696-5354641_1
Sequence definition: ITPR inositol 145-triphosphate receptor type 1

45 Sequence ID: No. 9
Accession #: AC078864.20
Genomic sequence: chr12:52201280-52201714
Sequence definition: Genscan prediction

50 Sequence ID: No. 10
Accession #: NM_014554; NM_001844; NT_009785.3
Genomic sequence: chr12:45785273-45856561
Sequence definition: chr12_498 potential fusion of SENP1 and Collagen 2A;
also overlaps GS prediction

55 Sequence ID: No. 11
Accession #: AB064665
Genomic sequence: chrM:9411-9524
Sequence definition: Homo sapiens mRNA for OK/SW-CL.16

Sequence ID: No. 12
Accession #: NM_024029
Genomic sequence: chr19:10880041-10883719
5 Sequence definition: hypothetical protein MGC3262

Sequence ID: No. 13
Accession #: NT_008748.79
Genomic sequence: chr10:80881918-80882092
10 Sequence definition: Genscan prediction

Sequence ID: No. 14
Accession #: AB002360
Genomic sequence: chr13:112761227-112761344
15 Sequence definition: KIAA0362

Sequence ID: No. 15
Accession #: AK057572
Genomic sequence: chr16:14547315-14547422
20 Sequence definition: FLJ33010

Sequence ID: No. 16
Accession #: NT_034410.56/NM_033102.1
Genomic sequence: chr1:203503646-203554883/chr1:192169879-192474008
25 Sequence definition: Genscan - Elk4/LOC85414 - Homo sapiens prostein
protein LOC85414

Sequence ID: No. 17
Accession #: NT_019696.29
30 Genomic sequence: chrx:64173951-64275396
Sequence definition: Genscan prediction

Sequence ID: No. 18
Accession #: NT_007834.17
35 Genomic sequence: chr7:71656530-71727938
Sequence definition: Genscan prediction

Sequence ID: No. 19
Accession #: NT_005403.1000
40 Genomic sequence: chr2:208067141-208067324
Sequence definition: Genscan prediction

Sequence ID: No. 20
Accession #: NT_009654.19
45 Genomic sequence: chr12:116716120-116840364
Sequence definition: Genscan prediction

Sequence ID: No. 21
Accession #: AC126564.7
50 Genomic sequence: chr12:131440407-131440735
Sequence definition: genomic match

Sequence ID: No. 22
Accession #: NT_006171.64
55 Genomic sequence: chr4:172269202-172299375
Sequence definition: Genscan prediction

Sequence ID: No. 23
Accession #: NM_025149.1
60 Genomic sequence: chr17:61361324-61409903
Sequence definition: FLJ20920

Sequence ID: No. 24
Accession #: NT_026437.145
Genomic sequence: chr14:72272372-72462407
Sequence definition: Genscan prediction

5 Sequence ID: No. 25
Accession #: NT_030059.13
Genomic sequence: chr10:103933731-103955924
Sequence definition: Genscan prediction

10 Sequence ID: No. 26
Accession #: AK058112
Genomic sequence: chr19:1815692-1822319
Sequence definition: FLJ25383

15 Sequence ID: No. 27
Accession #: NM_002205.1
Genomic sequence: chr12:55541534-55565494
Sequence definition: Homo sapiens integrin alpha 5 fibronectin receptor
alpha polypeptide

20 Sequence ID: No. 28
Accession #: NM_004716.1
Genomic sequence: chr11:117114115-117114448
Sequence definition: Homo sapiens proprotein convertase subtilisin/kexin
type 7 PCSK7 mRNA

25 Sequence ID: No. 29
Accession #: NM_030774
Genomic sequence: chr11:5003431-5021099
Sequence definition: prostate specific G-protein coupled receptor [Homo
sapiens]

30 Sequence ID: No. 30
Accession #: AB007932
Genomic sequence: chr1:204846394-204846755
Sequence definition: Homo sapiens plexin A2 PLXNA2 mRNA

35 Sequence ID: No. 31
Accession #: AB023177
Genomic sequence: chr7:11157196-11157402
Sequence definition: Homo sapiens mRNA for KIAA0960 protein

40 Sequence ID: No. 32
Accession #: NT_004858.23
Genomic sequence: chr1:147688399-147725025
Sequence definition: Genscan prediction

45 Sequence ID: No. 33
Accession #: NT_004873.61
Genomic sequence: chr1:14678698-14732191
Sequence definition: Genscan prediction

50 Sequence ID: No. 34
Accession #: NT_029860.99
Genomic sequence: chr1:110751286-110854188
Sequence definition: Genscan prediction

55 Sequence ID: No. 35
Accession #: NM_032385.1
Genomic sequence: chr5:170086201-170251515
Sequence definition: Homo sapiens chromosome 5 open reading frame 4

C5orf4

Sequence ID: No. 36
Accession #: NM_014752.1
5 Genomic sequence: chr11:73182947-73211393
Sequence definition: KIAA0102

Sequence ID: No. 37
Accession #: NP_000295
10 Genomic sequence: chr17:15500091-15500332
Sequence definition: Homo sapiens peripheral myelin protein 22

Sequence ID: No. 38
Accession #: NM_020433
15 Genomic sequence: chr20:42528457-42528759
Sequence definition: Homo sapiens junctophilin 2

Sequence ID: No. 39
Accession #: NT_999999.2
20 Genomic sequence: chrm:9411-9524
Sequence definition: Genscan Gene Predictions

Sequence ID: No. 40
Accession #: NT_004754.1
25 Genomic sequence: chr1:117988850-117989247
Sequence definition: Genscan Gene Predictions

Sequence ID: No. 41
Accession #: NT_011568.108
30 Genomic sequence: chrX:47583156-47583796
Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 42
Accession #: NP_061116
35 Genomic sequence: chr7:140900079-140900876
Sequence definition: transient receptor potential cation channel

Sequence ID: No. 43
Accession #: NT_011295.163
40 Genomic sequence: chr19:19799239-19804450
Sequence definition: Genscan prediction

Sequence ID: No. 44
Accession #: NP_056051
45 Genomic sequence: chr4:62284401-62284770
Sequence definition: lectomedin-3

Sequence ID: No. 45
Accession #: NT_033927.57
50 Genomic sequence: chr11:75518014-75562375
Sequence definition: Genscan prediction

Sequence ID: No. 46
Accession #: NM_030774
55 Genomic sequence: chr11:5003431-5021099
Sequence definition: prostate specific G-protein coupled receptor Homo sapiens

Sequence ID: No. 47
Accession #: NM_022119
60 Genomic sequence: chr16:2939532-2939842
Sequence definition: protease serine 22

Sequence ID: No. 48
Accession #: NP_000155
Genomic sequence: chr19:46824678-46824801
5 Sequence definition: Homo sapiens gastric inhibitory polypeptide receptor

Sequence ID: No. 49
Accession #: NM_001627
Genomic sequence: chr3:104784804-104787209
10 Sequence definition: activated leukocyte cell adhesion molecule

Sequence ID: No. 50
Accession #: NP_056343
Genomic sequence: chr17:5263335-5263632
15 Sequence definition: Homo sapiens DKFZP566H073 protein

Sequence ID: No. 51
Accession #: NT_033275.9
Genomic sequence: chr15:19767754-19767842
20 Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 52
Accession #: NT_004511.105
Genomic sequence: chr1:37657082-37657508
25 Sequence definition: Genscan Gene Predictions

Sequence ID: No. 53
Accession #: NT_007819.76
Genomic sequence: chr7:2293638-2293859
30 Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 54
Accession #: NT_008046.179
Genomic sequence: chr8:101509107-101509191
35 Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 55
Accession #: NP_001668
Genomic sequence: chr1:166712801-166712951
40 Sequence definition: ATPase Na+/K+ transporting beta 1 polypeptide

Sequence ID: No. 56
Accession #: NP_061332
Genomic sequence: chr7:105724807-105753208
45 Sequence definition: B-cell receptor-associated protein BAP29

Sequence ID: No. 57
Accession #: NT_008251.42
Genomic sequence: chr8:36531104-36531405
50 Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 58
Accession #: NT_008984.116
Genomic sequence: chr11:97792879-97792961
55 Sequence definition: Genscan Gene Predictions

Sequence ID: No. 59
Accession #: NT_011176.84
Genomic sequence: chr19:11151260-11154382
60 Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

Sequence ID: No. 60

Accession #: ENST00000255124
Genomic sequence: chr20:46047371-46047445
Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

5 Sequence ID: No. 61
Accession #: ENST00000262657
Genomic sequence: chr20:29935469-29937596
Sequence definition: Acembly Gene Predictions/Genscan Gene Predictions

10 Sequence ID: No. 62
Accession #: NT_033903.44
Genomic sequence: chr11:58671001-58671164
Sequence definition: Genscan Gene Predictions

15 Sequence ID: No. 63
Accession #: NP_000360
Genomic sequence: chr14:78989775-78989913
Sequence definition: Homo sapiens thyroid stimulating hormone receptor

20 Sequence ID: No. 64
Accession #: NP_005219
Genomic sequence: chr7:54724858-54725037
Sequence definition: Homo sapiens epidermal growth factor receptor
erythroblastic leukemia viral v-erb-b oncogene homolog avian

25 Sequence ID: No. 65
Accession #: NP_149093
Genomic sequence: chr1:203548697-203549088
Sequence definition: Homo sapiens prostein protein

30 Sequence ID: No. 66
Accession #: NM_030774
Genomic sequence: chr11:5003431-5021099
Sequence definition: prostate specific G-protein coupled receptor Homo
sapiens

35 Sequence ID: No. 67
Accession #: NM_030774
Genomic sequence: chr11:5004995-5010301
Sequence definition: prostate specific G-protein coupled receptor Homo
sapiens

40 Sequence ID: No. 68
Accession #: NM_030774
Genomic sequence: chr11:5004983-5010305
Sequence definition: prostate specific G-protein coupled receptor Homo
sapiens

45 Sequence ID: No. 69
Accession #: NM_030774
Genomic sequence: chr11:5004983-5010305
Sequence definition: prostate specific G-protein coupled receptor Homo
sapiens

50 Sequence ID: No. 70
Accession #: NM_030774
Genomic sequence: chr11:4667240-4678100
Sequence definition: prostate specific G-protein coupled receptor Homo
sapiens

55 Sequence ID: No. 71
Accession #: NM_030774

Genomic sequence: chr11:4677792-46777987
Sequence definition: prostate specific G-protein coupled receptor Homo sapiens

5 Sequence ID: No. 72
Accession #: NM_030774
Genomic sequence: chr11:5003430-5007773
Sequence definition: prostate specific G-protein coupled receptor Homo sapiens

10 Sequence ID: No. 73
Accession #: AK075546
Genomic sequence: chr11:36643617-36930167
Sequence definition: predicted protein

15 Sequence ID: No. 74
Accession #: AK075546
Genomic sequence: chr11:36643626-36931023
Sequence definition: predicted protein

20 Sequence ID: No. 75
Accession #: AK075546
Genomic sequence: chr11:36643617-36929351
Sequence definition: predicted protein

25 Sequence ID: No. 76
Accession #: AK075546
Genomic sequence: chr11:36643617-36929351
Sequence definition: predicted protein

30 Sequence ID: No. 77
Accession #: AK075546
Genomic sequence: chr11:36643617-36929351
Sequence definition: predicted protein

35 Sequence ID: No. 78
Accession #: NT_033927.57
Genomic sequence: chr11:75518014-75562375
Sequence definition: Genscan prediction

40 Sequence ID: No. 79
Accession #: NM_000300
Genomic sequence: chr1:19337078-19342056
Sequence definition: phospholipase A2 group IIIA platelets synovial

45 Sequence ID: No. 80
Accession #: NM_000300
Genomic sequence: chr1:19337078-19342056
Sequence definition: phospholipase A2 group IIIA platelets synovial

50 Sequence ID: No. 81
Accession #: NM_000300
Genomic sequence: chr1:19337078-19342056
Sequence definition: phospholipase A2 group IIIA platelets synovial

55 Sequence ID: No. 82
Accession #: NM_000300
Genomic sequence: chr1:19337078-19342056
Sequence definition: phospholipase A2 group IIIA platelets synovial

60 Sequence ID: No. 83
Accession #: NM_000300

Genomic sequence: chr1:19337078-19342056
Sequence definition: phospholipase A2 group IIA platelets synovial

5 Sequence ID: No. 84
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102 - refseq

10 Sequence ID: No. 85
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

15 Sequence ID: No. 86
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

20 Sequence ID: No. 87
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

25 Sequence ID: No. 88
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

30 Sequence ID: No. 89
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

35 Sequence ID: No. 90
Accession #: NM_032323
Genomic sequence: chr1:152017962-152027457
Sequence definition: hypothetical protein MGC13102

40 Sequence ID: No. 91
Accession #: AK092666
Genomic sequence: chr7:88376306-88402240
Sequence definition: STEAP2/AK092666

45 Sequence ID: No. 92
Accession #: AK092666
Genomic sequence: chr7:88376306-88402240
Sequence definition: STEAP2/AK092666

50 Sequence ID: No. 93
Accession #: AK092666
Genomic sequence: chr7:88376306-88402240
Sequence definition: STEAP2/AK092666

55 Sequence ID: No. 94
Accession #: NM_005656
Genomic sequence: chr21:39493446-39537043
Sequence definition: TMPRSS2

60 Sequence ID: No. 95
Accession #: NM_005656
Genomic sequence: chr21:39493446-39537043
Sequence definition: TMPRSS2

Sequence ID: No. 96
Accession #: NM_005656
Genomic sequence: chr21:39493446-39537043
5 Sequence definition: TMPRSS2

Sequence ID: No. 97
Accession #: NM_005656
Genomic sequence: chr21:39493446-39537043
10 Sequence definition: TMPRSS2

Sequence ID: No. 98
Accession #: NM_005656
Genomic sequence: chr21:39493446-39537043
15 Sequence definition: TMPRSS2

Sequence ID: No. 99
Accession #: NM_004476
Genomic sequence: chr11:50361918-50423952
20 Sequence definition: PSMA/FOLH1

Sequence ID: No. 100
Accession #: NM_004476
Genomic sequence: chr11:50361918-50423952
25 Sequence definition: PSMA/FOLH1

Sequence ID: No. 101
Accession #: NM_004476
Genomic sequence: chr11:50361918-50423952
30 Sequence definition: PSMA/FOLH1

Sequence ID: No. 102
Accession #: no match to index
Genomic sequence: No match BLAT
35 Sequence definition: No match BLAT

Sequence ID: No. 103
Accession #: AC105101.8
Genomic sequence: chr18:45441503-45442177
40 Sequence definition: genomic match

Sequence ID: No. 104
Accession #: BC043509
Genomic sequence: chr2:7566735-7567210
45 Sequence definition: genomic match

Sequence ID: No. 105
Accession #: no match to index
Genomic sequence: No match BLAT
50 Sequence definition: No match BLAT

Sequence ID: No. 106
Accession #: NT_007914.345
Genomic sequence: chr7:150965224-150965948
55 Sequence definition: Genscan prediction

Sequence ID: No. 107
Accession #: NM_002474
Genomic sequence: chr16:15123743-15124024
60 Sequence definition: smooth muscle myosin heavy chain 11 isoform

Sequence ID: No. 108

Accession #: no match to index
Genomic sequence: No match BLAT
Sequence definition: No match BLAT

5 Sequence ID: No. 109
Accession #: AL450472.14
Genomic sequence: chrX:132596913-132597349
Sequence definition: genomic match

10 Sequence ID: No. 110
Accession #: no match to index
Genomic sequence: No match BLAT
Sequence definition: No match BLAT

15 Sequence ID: No. 111
Accession #: NM_024490
Genomic sequence: chr15:18676827-18681314
Sequence definition: ATPase Class V type 10A

20 Sequence ID: No. 112
Accession #: NT_007741.24
Genomic sequence: chr7:154483727-154484200
Sequence definition: Genscan prediction

25 Sequence ID: No. 113
Accession #: NT_010168.1
Genomic sequence: chr14:100136759-100137109
Sequence definition: Genscan prediction

30 Sequence ID: No. 114
Accession #: AK074158
Genomic sequence: chr7:2347770-2347996
Sequence definition: Homo sapiens mRNA for FLJ00231 protein

35 Sequence ID: No. 115
Accession #: no match to index
Genomic sequence: No match BLAT
Sequence definition: No match BLAT

40 Sequence ID: No. 116
Accession #: AL549429
Genomic sequence: chr11:9027915-9028089
Sequence definition: genomic match

45 Sequence ID: No. 117
Accession #: NM_015541
Genomic sequence: chr3:65899978-65900329
Sequence definition: leucine-rich repeats and immunoglobulin-like

50 Sequence ID: No. 118
Accession #: NM_024897
Genomic sequence: chr1:151978744-151978881
Sequence definition: hypothetical protein FLJ22672

55 Sequence ID: No. 119
Accession #: NM_006598
Genomic sequence: chr5:1165896-1168793
Sequence definition: solute carrier family 12 potassium/chloride

60 Sequence ID: No. 120
Accession #: NM_021569
Genomic sequence: chr9:131740238-131740388

Sequence definition: NMDA receptor 1 isoform NR1-2 precursor

Sequence ID: No. 121
Accession #: AL445467.6

5 Genomic sequence: chrX:15985515-15985779
Sequence definition: genomic match

Sequence ID: No. 122
Accession #: BM976799

10 Genomic sequence: chr1:54049149-54049432
Sequence definition: genomic/EST match

Sequence ID: No. 123
Accession #: no match to index

15 Genomic sequence: No match BLAT
Sequence definition: No match BLAT

Sequence ID: No. 124
Accession #: NT_007933.414

20 Genomic sequence: chr7:98285605-98286140
Sequence definition: Genscan prediction

Sequence ID: No. 125
Accession #: NM_020428

25 Genomic sequence: chr19:10964586-10965036
Sequence definition: Homo sapiens CTL2 gene CTL2 mRNA

Sequence ID: No. 126
Accession #: no match to index

30 Genomic sequence: No match BLAT
Sequence definition: No match BLAT

Sequence ID: No. 127
Accession #: NM_006292

35 Genomic sequence: chr11:19444265-19444422
Sequence definition: Homo sapiens tumor susceptibility gene 101 TSG101 mRNA

Sequence ID: No. 128
Accession #: NM_052932

40 Genomic sequence: chr11:102306433-102306907
Sequence definition: Homo sapiens pro-oncrosis receptor inducing membrane injury gene PORMIN mRNA

45 Sequence ID: No. 129
Accession #: NM_000014

Genomic sequence: chr12:9416444-9416720
Sequence definition: Homo sapiens alpha-2-macroglobulin A2M mRNA

50 Sequence ID: No. 130
Accession #: NM_002337

Genomic sequence: chr4:3426547-3433294
Sequence definition: low density lipoprotein-related

55 Sequence ID: No. 131
Accession #: AL834445

Genomic sequence: chr20:23304135-23304477
Sequence definition: Homo sapiens mRNA; cDNA DKFZp761J109

60 Sequence ID: No. 132
Accession #: NM_004986

Genomic sequence: chr14:49879277-49880762

Sequence definition: kinectin 1

Sequence ID: No. 133
Accession #: NM_024295

5 Genomic sequence: chr8:124092754-124095061
Sequence definition: hypothetical protein MGC3067

Sequence ID: No. 134
Accession #: AC018457.14

10 Genomic sequence: chr3:165236534-165236724
Sequence definition: genomic match

Sequence ID: No. 135
Accession #: NM_004753

15 Genomic sequence: chr1:12208898-12258427
Sequence definition: Homo sapiens short-chain dehydrogenase/reductase 1
SDR1 mRNA

Sequence ID: No. 136
Accession #: NM_004753

20 Genomic sequence: chr1:12221576-12258383
Sequence definition: Homo sapiens short-chain dehydrogenase/reductase 1
SDR1 mRNA

25 Sequence ID: No. 137
Accession #: NM_004753
Genomic sequence: chr1:12221576-12258383
Sequence definition: Homo sapiens short-chain dehydrogenase/reductase 1
SDR1 mRNA

30 Sequence ID: No. 138
Accession #: NM_004753
Genomic sequence: chr1:12221576-12258383
Sequence definition: Homo sapiens short-chain dehydrogenase/reductase 1
SDR1 mRNA

35 Sequence ID: No. 139
Accession #: NM_004753
Genomic sequence: chr1:12221576-12258383
Sequence definition: Homo sapiens short-chain dehydrogenase/reductase 1
SDR1 mRNA

40 Sequence ID: No. 140
Accession #: D87438
Genomic sequence: chr16:14996279-15058862
Sequence definition: Human mRNA for KIAA0251 gene partial cds

45 Sequence ID: No. 141
Accession #: D87438
Genomic sequence: chr16:15018972-15027737
Sequence definition: Human mRNA for KIAA0251 gene partial cds

50 Sequence ID: No. 142
Accession #: AB007932
Genomic sequence: chr1:204843635-205060532
Sequence definition: Homo sapiens plexin A2 long form PLXNA2 mRNA

55 Sequence ID: No. 143
Accession #: AB007932
Genomic sequence: chr1:204843635-205060532
Sequence definition: Homo sapiens plexin A2 long form PLXNA2 mRNA

60 Sequence ID: No. 143
Accession #: AB007932
Genomic sequence: chr1:204843635-205060532
Sequence definition: Homo sapiens plexin A2 long form PLXNA2 mRNA

Sequence ID: No. 144
Accession #: AB007932
Genomic sequence: chr1:204843635-205060532
Sequence definition: Homo sapiens plexin A2 long form PLXNA2 mRNA

5 Sequence ID: No. 145
Accession #: AB037745
Genomic sequence: chr1:108833848-108851509
Sequence definition: Homo sapiens mRNA for KIAA1324 protein partial cds

10 Sequence ID: No. 146
Accession #: AB037745
Genomic sequence: chr1:108851126-108851424
Sequence definition: Homo sapiens mRNA for KIAA1324 protein partial cds

15 Sequence ID: No. 147
Accession #: AB037745
Genomic sequence: chr1:108851126-108851424
Sequence definition: Homo sapiens mRNA for KIAA1324 protein partial cds

20 Sequence ID: No. 148
Accession #: AB037745
Genomic sequence: chr1:108851126-108851424
Sequence definition: Homo sapiens mRNA for KIAA1324 protein partial cds

25 Sequence ID: No. 149
Accession #: AB037745
Genomic sequence: chr1:108851126-108851424
Sequence definition: Homo sapiens mRNA for KIAA1324 protein partial cds

30 Sequence ID: No. 150
Accession #: NM_002253
Genomic sequence: chr4:55795152-55795458
Sequence definition: Homo sapiens kinase insert domain receptor a type III receptor tyrosine kinase KDR mRNA

35 Sequence ID: No. 151
Accession #: NM_004879
Genomic sequence: chr11:125479160-125481382
Sequence definition: Homo sapiens etoposide induced 2.4 mRNA EI24 mRNA

40 Sequence ID: No. 152
Accession #: BC041788
Genomic sequence: chr8:144841449-144841809
Sequence definition: Homo sapiens Similar to RIKEN cDNA 1110025J15 gene clone MGC:32881 IMAGE:4738372 mRNA complete cds

45 Sequence ID: No. 153
Accession #: AB033073
Genomic sequence: chr20:46925235-46925516
Sequence definition: Homo sapiens mRNA for KIAA1247 protein partial cds

50 Sequence ID: No. 154
Accession #: NT_011520.136
Genomic sequence: chr22:21548074-21562329
Sequence definition: Genscan prediction

55 Sequence ID: No. 155
Accession #: NM_005581
Genomic sequence: chr19:49998069-49998792
Sequence definition: Homo sapiens Lutheran blood group Auberger b antigen included LU mRNA

Sequence ID: No. 156
Accession #: NM_004355
Genomic sequence: chr5:149769000-149775442

5 Sequence definition: Homo sapiens CD74 antigen invariant polypeptide of major histocompatibility complex class II antigen-associated CD74 mRNA

Sequence ID: No. 157
Accession #: NM_000484
Genomic sequence: chr21:26174980-26175131

10 Sequence definition: Homo sapiens amyloid beta A4 precursor protein protease nexin-II Alzheimer disease APP mRNA

Sequence ID: No. 158
Accession #: NM_005745
Genomic sequence: chrX:150566783-150575554

15 Sequence definition: Homo sapiens accessory protein BAP31 BCAP31 mRNA

Sequence ID: No. 159
Accession #: NM_005570
Genomic sequence: chr18:56780509-56781078

20 Sequence definition: Homo sapiens lectin mannose-binding 1 LMAN1 mRNA

Sequence ID: No. 160
Accession #: NT_029218.14
Genomic sequence: chr1:19080562-19080917

25 Sequence definition: Genscan prediction

Sequence ID: No. 161
Accession #: NT_011387.8
Genomic sequence: chr20:410654-410816

30 Sequence definition: Genscan prediction

Sequence ID: No. 162
Accession #: NM_002587
Genomic sequence: chr5:141227996-141231527

35 Sequence definition: Homo sapiens protocadherin 1 PDCH1

Sequence ID: No. 163
Accession #: NT_035036.5
Genomic sequence: chr10:51263955-51274232

40 Sequence definition: Genscan prediction

Sequence ID: No. 164
Accession #: NM_007176
Genomic sequence: chr14:74107662-74107815

45 Sequence definition: Homo sapien Chr 14 open reading frame

Sequence ID: No. 165
Accession #: AP000531.1
Genomic sequence: chr22:14703272-14703359

50 Sequence definition: poor genomic match to repeat

Sequence ID: No. 166
Accession #: NM_020182
Genomic sequence: chr20:56850452-56936716

55 Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

Sequence ID: No. 167
Accession #: NM_020182
Genomic sequence: chr20:56850452-56936716

Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

Sequence ID: No. 168

5 Accession #: NM_020182

Genomic sequence: chr20:56850452-56936716

Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

10 Sequence ID: No. 169

Accession #: NM_020182

Genomic sequence: chr20:56850452-56936716

Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

15 Sequence ID: No. 170

Accession #: NM_020182

Genomic sequence: chr20:56850452-56936716

20 Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

Sequence ID: No. 171

Accession #: NM_020182

Genomic sequence: chr20:56850452-56936716

25 Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

Sequence ID: No. 172

Accession #: NM_020182

30 Genomic sequence: chr20:56850452-56936716

Sequence definition: Homo sapiens transmembrane prostate androgen induced RNA TMEPAI mRNA

35 Sequence ID: No. 173

Accession #: AK092666_01

Sequence definition: Novel spliced isoform of STEAP2

40 Sequence ID: No. 174

Accession #: AK092666_01

Sequence definition: Protein translation of novel spliced isoform of STEAP2

45 Sequence ID: No. 175

Accession #: AK092666_02

Sequence definition: Novel spliced isoform of STEAP2

50 Sequence ID: No. 176

Accession #: AK092666_02

Sequence definition: Protein translation of novel spliced isoform of STEAP2

55 Sequence ID: No. 177

Accession #: AK092666_03

Sequence definition: Novel spliced isoform of STEAP2

60 Sequence ID: No. 178

Accession #: AK092666_03

Sequence definition: Protein translation of novel spliced isoform of STEAP2

Sequence ID: No. 179

Accession #: AK092666_04

Sequence definition: Novel spliced isoform of STEAP2

Sequence ID: No. 180

Accession #: AK092666_04

5 Sequence definition: Protein translation of novel spliced isoform of STEAP2

Sequence ID: No. 181

Accession #: AK092666_05

10 Sequence definition: Novel spliced isoform of STEAP2

Sequence ID: No. 182

Accession #: AK092666_05

Sequence definition: Novel spliced isoform of STEAP2

15 Sequence ID: No. 183

Accession #: AK092666_01aa

Sequence definition: Novel amino acids generated by spliced isoforms
AK092666_01, AK092666_03, AK092666_05

20 Sequence ID: No. 184

Accession #: AK092666_02aa

Sequence definition: Novel amino acids generated by spliced isoform
AK092666_02

25 Sequence ID: No. 185

Accession #: AK092666_04aa

Sequence definition: Novel amino acids generated by spliced isoform
AK092666_04

30

REFERENCES

- Alcaraz et al., *Cancer Res.*, 55:3998-4002, 1994.
- 5 Allhoff et al., *World J. Urol.*, 7:12-16, 1989.
- An et al., *Proc. Amer. Assn. Canc. Res.*, 36:82, 1995.
- An et al., *Molec. Urol.*, 2: 305-309, 1998.
- 10 Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1988.
- Babian et al., *J. Urol.*, 156:432-437, 1996.
- 15 Badalament et al., *J. Urol.*, 156:1375-1380, 1996.
- Baichwal and Sugden, In: *Gene Transfer*, Kucherlapati (Ed.), Plenum Press, New York, pp 117-148, 1986.
- 20 Bangham et al., *J. Mol. Biol.* 13: 238-252, 1965.
- Barinaga, *Science*, 271: 1233, 1996.
- 25 Bedzyk et al., *J. Biol. Chem.*, 265:18615, 1990
- Bell et al., "Gynecological and Genitourinary Tumors," In: *Diagnostic Immunopathology*, Colvin, Bhan and McCluskey (Eds.), 2nd edition, Ch. 31, Raven Press, New York, pp 579-597, 1995.
- 30 Bellus, *J Macromol. Sci. Pure Appl. Chem.*, A31(1):1355-1376, 1994.
- Benvenisty and Neshif, *Proc. Nat. Acad Sci. USA*, 83:9551-9555, 1986.
- Bittner et al., *Methods in Enzymol.*, 153:516-544, 1987.
- 35 Bookstein et al., *Science*, 247:712-715, 1990a.
- Bookstein et al., *Proc. Nat'l Acad. Sci. USA*, 87:7762-7767, 1990b.
- 40 Bova et al., *Cancer Res.*, 53:3869-3873, 1993
- Brawn et al., *The Prostate*, 28:295-299, 1996.
- Campbell, In: *Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology*, Burden and Von Knippenberg (Eds.), Vol.13:75-83, Elsevier, Amsterdam, 1984.
- 45 Capaldi et al., *Biochem. Biophys. Res. Comm.*, 76:425, 1977.
- 50 Carter and Coffey, In: *Prostate Cancer: The Second Tokyo Symposium*, J. P. Karr and H. Yamanak

- (Eds.), Elsevier, New York, pp 19-27, 1989.
- Carter and Coffey, Prostate, 16:3948, 1990.
- 5 Carter et al., Proc. Nat'l Acad Sci. USA, 87:8751-8755, 1990.
- Carter et al., Proc. Nat'l Acad Sci. USA93: 749-753, 1996.
- Carter et al., J. Urol., 157:2206-2209, 1997.
- 10 Cech et al., Cell, 27:487496, 1981.
- Chang et al., Hepatology, 14: 124A, 1991.
- 15 Chaudhary et al., Proc. Nat'l Acad. Sci., 87:9491, 1990
- Chen and Okayama, MoL Cell Biol., 7:2745-2752, 1987.
- Chen et al., Clin. Chem., 41:273-282, 1995a.
- 20 Chen et al., Proc. Am. Urol. Assn, 153:267A, 1995.
- Chinault and Carbon, "Overlap Hybridization Screening: Isolation and Characterization of Overlapping DNA Fragments Surrounding the LEU2 Gene on Yeast Chromosome III," Gene, 5:111-126, 1979.
- 25 Chomczynski and Sacchi, Anal. Biochem., 162:156-159, 1987.
- Christensson et al., J. Urol., 150:100-105, 1993.
- 30 Coffin, In: Virology, Fields et al. (Eds.), Raven Press, New York, pp 1437-1500, 1990.
- Colberre-Garapin et al., J. Mol. Biol., 150:1, 1981.
- 35 Colvin et al., Diagnostic Immunopathology, 2nd edition, Raven Press, New York, 1995.
- Conner et al., J. Urol., 143:1146-1154, 1990.
- Couch et al., Am. Rev. Resp. Dis., 88:394-403, 1963.
- 40 Coupar et al., Gene, 68:1-10, 1988.
- Culver et al., Science, 256:1550-1552, 1992.
- 45 Davey et al., EPO No. 329 822.
- Deamer and Uster, "Liposome Preparation: Methods and Mechanisms," In: Liposomes, M. Ostro (Ed.), 1983.
- 50 Diamond et al., J. Urol., 128:729-734, 1982.

- Donahue et al., *J. Biol. Chem.*, 269:8604-8609, 1994.
- Dong et al., *Science*, 268:884-886, 1995.
- 5 Dubensky et al., *Proc. Natl. Acad. Sci. USA*, 81:7529-7533, 1984.
- Dumont et al., *J. Immunol.*, 152:992-1003, 1994.
- 10 Elledge et al., *Cancer Res.* 54:3752-3757, 1994
- European Patent Application EPO No. 320 308
- Fearon et al., *Science*, 247:47-56, 1990.
- 15 Fechheimer et al., *Proc. Natl. Acad. Sci. USA*, 84:8463-8467, 1987.
- Forster and Symons, *Cell*, 49:211-220, 1987.
- Fraley et al., *Proc. Natl. Acad. Sci USA*, 76:3348-3352, 1979.
- 20 Friedmann, *Science*, 244:1275-1281, 1989.
- Freifelder, In: *Physical Biochemistry Applications to Biochemistry and Molecular Biology*, 2nd ed., Wm. Freeman and Co., New York, N.Y., 1982.
- 25 Frohman, In: *PCR Protocols: A Guide to Methods and Applications*, Academic Press, New York, 1990.
- Gefter et al., *Somatic Cell Genet.*, 3:231-236, 1977.
- 30 Gerlach et al., *Nature (London)*, 328:802-805, 1987.
- Ghosh-Choudhury et al., *EMBO J.*, 6:1733-1739, 1987.
- 35 Gingeras et al., PCT Application WO 88/10315.
- Ghosh and Bachhawat, In: *Liver Diseases, Targeted Diagnosis and Therapy Using Specific Receptors and Ligands*, Wu et al. (Eds.), Marcel Dekker, New York, pp 87-104, 1991.
- 40 Goding, In: *Monoclonal Antibodies: Principles and Practice*, 2nd ed., Academic Press, Orlando, Fla., pp 60-61, 65-66, 71-74, 1986.
- Gomez-Foix et al., *J. Biol. Chem.*, 267:25129-25134, 1992.
- 45 Gopal, *Mol. Cell Biol.*, 5:1188-1190, 1985.
- Graham et al., *J. Gen. Virol.*, 36:59-72, 1977.
- 50 Graham and van der Eb, *Virology*, 52:456-467, 1973.
- Graham and Prevec, In: *Methods in Molecular Biology: Gene Transfer and Expression Protocols* 7,

- E. J. Murray (Ed.), Humana Press, Clifton, N.J., pp 205-225, 1991.
- Gregoriadis (ed.), In: Drug Carriers in Biology and Medicine, pp 287-341, 1979.
- 5 Grunhaus and Horwitz, *Sem. Virol.*, 3:237-252, 1992.
- Harland and Weintraub, *J. Cell Biol.*, 101:1094-1099, 1985.
- Harris et al., *J. Urol.*, 157:1740-1743, 1997.
- 10 Heng et al., *Proc. Natl. Acad. Sci. USA*, 89: 9509-9513, 1992.
- Hermonat and Muzycska, *Proc. Natl. Acad. Sci. USA*, 81:6466-6470, 1984.
- 15 Hersdorffer et al., *DNA Cell Biol.*, 9:713-723, 1990.
- Herz and Gerard, *Proc. Natl Acad Sci. USA*, 90:2812-2816, 1993.
- Hess et al., *J. Adv. Enzyme Reg.*, 7:149, 1968.
- 20 Hitzeman et al., *J. Biol. Chem.*, 255:2073, 1980.
- Holland et al., *Biochemistry*, 17:4900, 1978.
- 25 Horoszewicz, Kawinski and Murphy, *Anticancer Res.*, 7:927-936, 1987.
- Horwich, et al., *J. Virol.*, 64:642-650, 1990.
- Huang et al., *Prostate*, 23: 201-212, 1993.
- 30 Innis et al., In: *PCR Protocols*, Academic Press, Inc., San Diego Calif., 1990.
- Inouye et al., *Nucl. Acids Res.*, 13:3101-3109, 1985.
- 35 Isaacs et al., *Cancer Res.*, 51:4716-4720, 1991.
- Isaacs et al., *Sem. Oncol.*, 21:1-18, 1994.
- 40 Israeli et al., *Cancer Res.*, 54:1807-1811, 1994.
- Jacobson et al., *JAMA*, 274:1445-1449, 1995.
- 45 Johnson et al., In: *Biotechnology and Pharmacy*, Pezzuto et al., (Eds.), Chapman and Hall, New York, 1993.
- Jones, *Genetics*, 85:12, 1977.
- Jones and Shenk, *Cell*, 13:181-188, 1978.
- 50 Joyce, *Nature*, 338:217-244, 1989.

- Kaneda et al., *Science*, 243:375-378, 1989.
- Kato et al., *J. Biol. Chem.*, 266:3361-3364, 1991.
- 5 Kent, et al., *Genome Res.* 12:996-1006 (2002).
- Kim and Cech, *Proc. Natl. Acad. Sci. USA*, 84:8788-8792, 1987.
- Kingsman et al., *Gene*, 7:141, 1979.
- 10 Klein et al., *Nature*, 327:70-73, 1987.
- Kohler and Milstein, *Nature*, 256:495-497, 1975.
- 15 Kohler and Milstein, *Eur. J. Immunol.*, 6:511-519, 1976.
- Kwoh et al., *Proc. Nat. Acad. Sci. USA*, 86:1173, 1989.
- Landis et al., *CA Cancer J. Clin.*, 48: 6-29, 1998.
- 20 Le Gal La Salle et al., *Science*, 259:988-990, 1993.
- Levrero et al., *Gene*, 10 1: 195-202, 1991.
- 25 Liang and Pardee, *Science*, 257:967-971, 1992.
- Liang and Pardee, U.S. Pat. No. 5,262,311, 1993.
- Liang et al., *Cancer Res.*, 52:6966-6968, 1992.
- 30 Lifton, *Science*, 272:676, 1996.
- Lilja et al., *Clin. Chem.*, 37:1618-1625, 1991.
- 35 Lithrup et al., *Cancer*, 74:3146-3150, 1994.
- Lowy et al., *Cell*, 22:817, 1980.
- Macoska et al., *Cancer Res.*, 54:3824-3830, 1994.
- 40 Mann et al., *Cell*, 33:153-159, 1983.
- Markowitz et al., *J. Virol.*, 62:1120-1124, 1988.
- 45 Marley et al., *Urology*, 48(6A): 16-22, 1996.
- McCormack et al., *Urology*, 45:729-744, 1995.
- Michel and Westhof, *J. Mol. Biol.* 216:585-610, 1990.
- 50 Miki et al., *Science*, 266:66-71, 1994.

- Miller et al., PCT Application, WO 89/06700.
- Mok et al., Gynecol. Oncol., 52:247-252, 1994.
- 5 Morahan et al., Science 272:1811, 1996.
- Mulligan et al., Proc. Nat'l Acad. Sci. USA, 78:2072, 1981.
- 10 Mulligan, Science, 260:926-932, 1993.
- Murphy et al., Cancer, 78: 809-818, 1996.
- Murphy et al., Prostate, 26:164-168, 1995.
- 15 Nakamura et al., In: Handbook of Experimental Immunology, (4th Ed.), Weir, E., Herzenberg, L. A., Blackwell, C., Herzenberg, L. (Eds.), Vol. 1, Chapter 27, Blackwell Scientific Publ., Oxford, 1987.
- 20 Nicolas and Rubinstein, In: Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Rodriguez and Denhardt (Eds.), Butterworth, Stoneham, p 494-513, 1988.
- Nicolau and Sene, Biochim. Biophys. Acta, 721:185-190, 1982.
- 25 O'Dowd et al., J. Urol., 158:687-698, 1997.
- O'Hare et al., Proc. Nat'l Acad Sci. USA, 78:1527, 1981.
- Oesterling et al., J. Urol., 154:1090-1095, 1995.
- 30 Ohara et al., Proc. Nat'l Acad. Sci. USA, 86:5673-5677, 1989.
- Orozco et al., Urology, 51:186-195, 1998.
- 35 Parker et al., CA Cancer J. Clin., 65:5-27, 1996.
- Partin and Oesterling, Urology, 48 (6A):1-3, 1996.
- Partin and Oesterling, J. Urol., 152:1358-1368, 1994.
- 40 Partin and Oesterling (Eds.), Urology, 48(6A) Supplement:1-87, 1996.
- Paskind et al., Virology, 67:242-248, 1975.
- 45 PCT Application No. PCT/US87/00880
- Pettersson et al., Clin. Chem., 41(10):1480-1488, 1995.
- Piironen et al., Clin. Chem. 42:1034-1041, 1996.
- 50 Potter et al., Proc. Nat. Acad. Sci. USA, 81:7161-7165, 1984.

- Racher et al., *Biotechnology Techniques*, 9:169-174, 1995.
- Ragot et al., *Nature*, 361:647-650, 1993.
- 5 Ralph and Veltri, *Advanced Laboratory*, 6:51-56, 1997.
- Ralph et al., *Proc. Natl. Acad. Sci. USA*, 90(22):10710-10714, 1993.
- 10 Reinhold-Hurek and Shub, *Nature*, 357:173-176, 1992.
- Renan, *Radiother. Oncol.*, 19:197-218, 1990.
- 15 Ribas de Pouplana and Fothergill-Gilmore, *Biochemistry*, 33:7047-7055, 1994.
- Rich et al., *Hum. Gene Ther.*, 4:461-476, 1993.
- 20 Ridgeway, In: *Vectors: A Survey of Molecular Cloning Vectors and Their Uses*, Rodriguez R L, Denhardt D T (Eds.), Butterworth, Stoneham, pp 467-492, 1988.
- Rippe et al., *Mol. Cell Biol.*, 10:689-695, 1990.
- Rosenfeld et al., *Science*, 252:431-434, 1991.
- 25 Rosenfeld et al., *Cell*, 68:143-155, 1992.
- Roux et al., *Proc. Nat'l Acad. Sci. USA*, 86:9079-9083, 1989.
- Sager et al., *FASEB J.*, 7:964-970, 1993.
- 30 Sambrook et al., (ed.), In: *Molecular Cloning*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.
- Santerre et al., *Gene*, 30: 147-156, 1984.
- 35 Sarver, et al., *Science*, 247:1222-1225, 1990.
- Scanlon et al., *Proc Natl Acad Sci USA*, 88:10591-10595, 1991.
- 40 Sidransky et al., *Science*, 252:706-709, 1991.
- Sidransky et al., *Cancer Res.*, 52:2984-2986, 1992.
- Silver et al., *Clin. Cancer Res.*, 3:81-85, 1997.
- 45 Slamon et al., *Science*, 224:256-262, 1984.
- Slamon et al., *Science*, 235:177-182, 1987.
- 50 Slamon et al., *Science*, 244:707-712, 1989.

- Smith, U.S. Pat. No. 4,215,051.
- Soh et al., J. Urol., 157:2212-2218, 1997.
- 5 Stennan et al., Cancer Res., 51:222-226, 1991.
- Stinchcomb et al., Nature, 282:39, 1979.
- Stratford-Perricaudet and Perricaudet, In: Human Gene Transfer, O. Cohen-Haguener et al.,
10 (Eds.), John Libbey Eurotext, France, pp 51-61, 1991.
- Stratford-Perricaudet et al., Hum. Gene. Ther., 1:241-256, 1990.
- 15 Sun and Cohen, Gene, 137:127-132, 1993.
- Szoka and Papahadjopoulos, Proc. Nat'l. Acad. Sci. USA, 75: 4194-4198, 1978.
- Szybalska et al., Proc. Nat'l Acad. Sci. USA, 48:2026, 1962.
- 20 Takahashi et al., Cancer Res., 54:3574-3579, 1994.
- Taparowsky et al., Nature, 300:762-764, 1982.
- Temin, In: Gene Transfer, Kucherlapati R. (Ed.), Plenum Press, New York, pp 149-188; 1986.
- 25 Tooze, In: Molecular Biology of DNA Tumor Viruses, 2nd ed., Cold Spring Harbor Laboratory,
Cold Spring Harbor, N.Y., 1991.
- Top et al., J. Infect. Dis., 124:155-160, 1971.
- 30 Tschemper et al., Gene, 10:1 57, 1980.
- Tur-Kaspa et al., Mol. Cell Biol., 6:716-718, 1986.
- 35 U.S. patent application Ser. No. 08/692,787
U.S. Pat. No. 4,196,265
U.S. Pat. No. 4,215,051
- 40 U.S. Pat. No. 4,683,195
U.S. Pat. No. 4,683,202
- 45 U.S. Pat. No. 4,800,159
U.S. Pat. No. 4,883,750
U.S. Pat. No. 5,354,855
- 50 U.S. Pat. No. 5,359,046

- Varmus et al., *Cell*, 25:23-36, 1981.
- Veltri et al., *J. Cell Biochem.*, 19(suppl):249-258, 1994.
- 5 Veltri et al., *Urology*, 48: 685-691, 1996.
- Veltri et al., *Sem. Urol. Oncol.*, 16:106-117, 1998.
- 10 Veltri et al., *Urology*, 53:139-147, 1999.
- Visakorpi et al., *Am. J. Pathol.*, 145:1-7, 1994.
- Wagner et al., *Science*, 260:1510-1513, 1993.
- 15 Walker et al., *Proc. Nat'l Acad. Sci. USA*, 89:392-396, 1992.
- Watson et al., *Cancer Res.*, 54:4598-4602, 1994.
- 20 Welsh et al., *Nucl. Acids Res.*, 20:4965-4970, 1992.
- Wigler et al., *Cell*, 11:223, 1977.
- 25 Wigler et al., *Proc. Nat'l Acad. Sci. USA*, 77:3567, 1980.
- Wingo et al., *CA Cancer J. Clin.*, 47: 239-242, 1997.
- WO 90/07641, filed Dec. 21, 1990.
- 30 Wong et al., *Int. J. Oncol.*, 3:13-17, 1993.
- Wu and Wu, *J. Biol. Chem.*, 262: 4429-4432, 1987.
- 35 Wu and Wu, *Biochemistry*, 27: 887-892, 1988.
- Wu and Wu, *Adv. Drug Delivery Rev.*, 12: 159-167, 1993.
- Wu et al., *Genomics*, 4:560, 1989.
- 40 Yang et al., *Proc. Natl. Acad. Sci. USA*, 87:9568-9572, 1990.
- Yokoda et al., *Cancer Res.* 52, 3402-3408, 1992.
- Zlotta et al., *J. Urol.*, 157:1315-1321, 1997.
- 45

WHAT IS CLAIMED IS:

1. An isolated nucleic acid sequence that is expressed by human prostate cancer
5 cells, selected from the group consisting of:
 - (i) the nucleic acid sequence contained in SEQ ID NOS.: 1 to 173, 175, 177, 179, 181;
 - (ii) variants thereof, wherein such variants have a nucleic acid sequence that is at least 70% identical to the sequence of (i) when aligned without allowing for
10 gaps; and
 - (iii) fragments of (i) or (ii) having a size of at least 20 nucleotides in length.
2. The nucleic acid sequence of Claim 1 which comprises the nucleic acid sequence contained in any one of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181 or a fragment
15 thereof.
3. A primer mixture that comprises primers that result in the specific amplification of one of the nucleic acid sequences of Claim 1.
- 20 4. A method of detecting prostate cancer comprising determining whether a human prostate cell sample expresses a target nucleic acid molecule, wherein said target nucleic acid molecule comprises the sequence of a gene or RNA comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181 or of a fragment of said gene or RNA having a size of at least 20 nucleotides in length.
25
5. The method of Claim 4, wherein said method comprises detecting the expression of said target nucleic acid molecule using a nucleic acid sequence that specifically hybridizes thereto.
- 30 6. The method of Claim 5, wherein said method comprises detecting the expression of said target nucleic acid molecule using primers that result in the amplification thereof.

7. The method of Claim 5, wherein the expression of said target nucleic acid molecule is detected by assaying for the antigen encoded by said nucleic acid.

5 8. The method of Claim 7, wherein said assay involves the use of a monoclonal antibody or fragment that specifically binds to said antigen.

9. The method of Claim 8, wherein said assay comprises an ELISA or competitive binding assay.

10

10. An antigen expressed by human prostate cancer cells, wherein said antigen is selected from the group consisting of:

- (i) the antigen encoded by a nucleic acid sequence having at least 90% sequence identity in SEQ ID NOS.: 1 to 173, 175, 177, 179, 181;
- 15 (ii) an antigen derived from a protein comprising a sequences having at least 90% identity in SEQ ID NOS. 174, 176, 178, 180, 182-185; and
- (iii) an antigenic fragment of (i) or (ii).

11. A prostate antigen comprising (i) the amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs.: 1 to 173, 175, 177, 179, 20 181 or (ii) an amino acid sequence selected from SEQ ID NOS. : 174, 176, 178, 180, and 182-185, or (iii) an antigenic fragment of (i) or (ii).

25 12. A monoclonal antibody or antigen-binding fragment thereof that specifically binds to a target polypeptide molecule selected from:

- (i) a polypeptide encoded by a nucleic acid molecule comprising the sequence of a gene or RNA comprising a sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181, or by a fragment of said gene or RNA having a size of at least 20 nucleotides in length, or a polypeptide derived from SEQ ID NOS. :174, 176, 178, 180, and 182 - 185
- 30 (ii) an antigen according to Claim 10 or 11, and

(iii) an antigenic fragment of (i) or (ii).

13. A monoclonal antibody or fragment thereof that specifically binds the antigen of Claim 11.

5

14. The antigen of Claim 10 or 11 which is attached directly or indirectly to a detectable label.

15. The antibody of Claim 12 or 13 which is attached directly or indirectly to a
10 detectable label.

16. A diagnostic kit for detection of prostate cancer which comprises a DNA according to Claim 1 and a detectable label.

15 17. A diagnostic kit for detection of prostate cancer which comprises primers according to Claim 3 and a diagnostically acceptable carrier.

18. A diagnostic kit for detection of prostate cancer which comprises a monoclonal antibody according to Claim 12 or 13 and a detectable label.

20

19. A method for treating prostate cancer, which comprises administering to a subject a therapeutically effective amount of a ligand which specifically binds a target molecule selected from (i) a gene or RNA comprising a sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181, a variant thereof or a fragment of said gene or RNA having a size of at least 20 nucleotides in length, and (ii) a protein or polypeptide encoded by a gene or RNA comprising a sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181, a variant thereof or a fragment of said gene or RNA having a size of at least 20 nucleotides in length, or a polypeptide derived from SEQ ID NOS. :174, 176, 178, 180, and 182 - 185.

25
30

20. The method of claim 19, wherein the ligand is a ribozyme or antisense

oligonucleotide that inhibits the expression of a gene having a DNA sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181 or a fragment, or variant thereof, or a polypeptide derived from SEQ ID NOS. :174, 176, 178, 180, and 182 - 185.

5 21. The method of claim 19 or 20, wherein the ligand is directly or indirectly attached to an effector moiety.

22. The method of Claim 21, wherein said effector moiety is a therapeutic radiolabel, enzyme, cytotoxin, growth factor, or drug.

10

23. A method for treating prostate cancer comprising administering to a subject a therapeutically effective amount of an antigen according to Claim 10 or 11, and optionally an adjuvant that elicits a humoral or cytotoxic T-lymphocyte response to said antigen.

15

24. A method for treating prostate cancer comprising administering to a subject a therapeutically effective amount of a ligand which specifically binds to a protein encoded by a gene or RNA comprising a sequence selected from the group consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181 or a fragment, or variant thereof, or a polypeptide derived from SEQ ID NOS. :174, 176, 178, 180, and 182 - 185 optionally directly or indirectly attached to a therapeutic effector moiety.

20

25. The method of Claim 24, wherein said effector moiety is a radiolabel, enzyme, cytotoxin, growth factor, or drug.

25

26. The method of Claim 25 wherein the radiolabel is yttrium.

27. The method of Claim 25 wherein the radiolabel is indium.

30

28. The method of claim 24 wherein said ligand is a monoclonal antibody or fragment thereof.

29. The method of claim 24 wherein said ligand is a small molecule.

30. The method of claim 24 wherein said ligand is a peptide.

5 31. The method of claim 24, wherein said ligand binds an extracellular domain of said
protein.

32. A molecule, selected from:

- (i) a polypeptide comprising the sequence of an extracellular domain of a
10 protein encoded by a gene or RNA comprising a sequence selected from the
group consisting of SEQ ID NOS.: 1 to 185; and
(ii) a nucleic acid molecule encoding a polypeptide of (i).

33. The molecule of claim 32, wherein said polypeptide has 8 to 100 amino acids in
15 length.

34. A method for selecting, identifying, screening, characterizing or optimizing
biologically active compounds, comprising contacting a candidate compound with a target
molecule and determining whether the candidate compound binds said target molecule,
20 wherein said target molecule is selected from (i) a nucleic acid molecule comprising the
sequence of a gene or RNA comprising a nucleic acid sequence selected from the group
consisting of SEQ ID NOS.: 1 to 173, 175, 177, 179, 181, (ii) a fragment of said gene or RNA
having a size of at least 20 nucleotides in length, and (iii) a polypeptide encoded by (i) or (ii)
or a polypeptide derived from SEQ ID NOs. :174, 176, 178, 180, and 182 - 185.

1/2

Figure 1

Figure 2

2/2

Figure 3

Figure 4

10/560/23

Rec'd PCT/PTO 17 FEB 2006

PCT/IB2004/002394

WO 2004/113571

B0213WO seq list.ST25.txt
SEQUENCE LISTING

<110> EXONHIT THERAPEUTICALS

<120> PROSTATE SPECIFIC GENES AND THE USE THEREOF AS TARGETS FOR PROSTATE CANCER THERAPY AND DIAGNOSIS

<130> B0213WO

<160> 185

<170> PatentIn version 3.1

<210> 1

<211> 151

<212> DNA

<213> Homo sapiens

<400> 1
ccggccccagg catgcacaca ctcttctgga gcacacgcga ccctccctag accgccttgtct 60

tctcggctcc cctgcacatt agagcttctc aagacacggc ctgcacttgc cacctctgca 120

tttcccactc tcgctttgct gcctccggc c 151

<210> 2

<211> 138

<212> DNA

<213> Homo sapiens

<400> 2
ggaggggaaag ttccggctcca gccacatagg tgtgtgtcct ccttatcctc tgaccaaagc 60

ttgtcccttcc tacatatgct cctttgctag cactcccacc tgaatgcatac cctatgatcc 120

ttccacacctc cctgctcc 138

<210> 3

<211> 459

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 3
 ggaaccctac gaagaaccac agggagaaca ccagcattgc caccaccacc accaccacca 60
 cagagtctgt ggaagaggtg gttcgagttc ctacaacagc agccagtacc cctgatgccg 120
 ttgacaagta tctcgagaca cctggggatg agaatgaaca tgcccatttc cagaaagcca 180
 aagagaggct tgaggccaaag caccgagaga gaatgtccca ggtcatgaga gaatggaaag 240
 aggcagaacg tcaagcaaag aacttgccata aagctgataa gaaggcagtt atccagcatt 300
 tccaggagaa agtggaatct ttggaacagg aagcagccaa cgagagacag cagctggtgg 360
 agacacacat ggccagatgt gaagccatgc tcaatgaccg ccgcccctg gccctggaga 420
 actacatcac cgctctgcag gctgttcctc ctcccgcc 459

<210> 4

<211> 562

<212> DNA

<213> Homo sapiens

<400> 4
 tggggggagg gcagggaaat gaactcaatg agataaccag ggacaagatg atatgatgcc 60
 tttcttctag cactcgagga tttcggaaatc aaatctgaga gaggcaagaa attgtgagaa 120
 gattgttaagc agagatgaaa cagaaaagat acctgaaact ctgatcttgg agctttctt 180
 ccgtgatata agatctaaca gggtccactg catagagctg ttgtgaggat gacaagagat 240
 cactaacact gtaaactctc aatccacagc cttcacataa ctgggtctca agacatgccc 300
 tctcccttct cctctgcact tcttcatgtg tttaaaggag aatgtgggaa ggggcttatg 360
 taaaataggg gactacaggt atcagactga accaattctt cttgttgaac tttatctact 420
 ggtatggccaa ggttataagg aacaccacca ccttctcatg ccctggggtg ccctagagaa 480
 aggtaaagcag accaagggtc tcagactccc tgtgaaagaa agaccactgc acccaagctt 540
 tacaaacgca tccctcgcc gt 562

<210> 5

<211> 328

<212> DNA

<213> Homo sapiens

<400> 5
 gggcacccta gctgcaaggg aggttagaaa aaatgaggga caggattatc atggtcagca 60
 tattacttgg gggccagata tatcacttcc cacacaaaag caggcctctg tcagtgagga 120

B0213WO seq list.ST25.txt
 agaagtggag aatggatttg gggtgggcat ctgacagcat ttgccacact gcccctccca 180
 atcctaattgc aggccagtca acgcaccacc cccactcccc acccacactc caaccccccac 240
 agtcctaggg tctctcaggg agaccatcg gg tggaaatccat aacattctaa gaccctgcag 300
 tttgtaggca aaatcaggct tcctttgg 328

<210> 6
 <211> 168
 <212> DNA
 <213> Homo sapiens

<400> 6
 gacctcgaa tacaggcatg agccaccgtg cctggccctt tcttttctt taagctactt 60
 tttaatatat agtaatgact gttaatata tag tatatactat gctattcatc aatgctgtaa 120
 ctittcttagt ttcatttct cactcaattt aagtccaggt acccaggt 168

<210> 7
 <211> 317
 <212> DNA
 <213> Homo sapiens

<400> 7
 agaacccctgg agcaactttag ggaccagaga cccggcatgg tccagacgaa ggtactgtca 60
 gtctctccctc cgggacgcag acccattcaa ggtgcctctc tgccggccgtg ttccctgagag 120
 gagcacgggg agggccttgtt ttaatgtgag ccgcacaccg attgctctgc tctgaccgac 180
 ctcgtccatg ccggccttgc atgggggggg tcacttctgg gcccccaaaag gtccactggc 240
 gtttcctgca acacctccag atgcagccac atctcaagtc ctaggaactc gatccactgg 300
 ctctttccat tcacttag 317

<210> 8
 <211> 277
 <212> DNA
 <213> Homo sapiens

<400> 8
 ggggtgcgagg attcttggc ctcatcctac agcacagctt tagtaagctg gggtgacaga 60
 gtcctggcgt cagtatattt ggaaacaata agtctgtatga acatccccct cgttaagaat 120
 ccctgagacc aactttcatt ttacagatga aaaaactgag accggtaggg gtaaaaatgcc 180

B0213WO seq list.ST25.txt

acagtcatga tcatgccgct agtaggtggc agagtgccat ctacaattca tttgtcatct	240
gagcttgcact ggggctccctc ttaccacttc ctccctcg	277

<210> 9

<211> 441

<212> DNA

<213> Homo sapiens

<400> 9 ggggcagga gatagccaga tgtggtggca caccctgtta gtcccagcta ctggggaggc	60
tgagatagga ggatcacttg agcccaggag tttgagacta gaatgagcca tgattgtgcc	120
actgcactcc agcctggta aagagtgata ccctgttttca ataagaaaaa aataacaaaa	180
acaaaaacaa gaaaggagag agttggctaa gccttatcac ctttgggtt ttggAACCT	240
tacttgatcc ttcaactaaag tacttcttgg gcatccagtg aggttcagtg tgtattgaga	300
ggatggtag gatggcagcc aggcgtggta tctgtattca agaagaagct gccccactcg	360
ctggccatct atggatttcc agccaacaag catttccaac cacctatgga tttccaacaa	420
ctgagaactc atgagactgg c	441

<210> 10

<211> 508

<212> DNA

<213> Homo sapiens

<400> 10 aggctatgag ttgaaaatttgc gctctcccttgc gacagtccctc aagcactaca tttttttcag	60
tgactctcac cagaccacaca gatgaatttgc ccttctctgc gtatgccttt tgactggttc	120
tgtttcaggg aaccgcacgc tcaataagct ccactgttct accaagctgg acaaacagcc	180
acgtctctgt tctcttgcc agaccctgag gcctggagtt ctgccttcag gaattccaga	240
attcttagaaa gtttagagcta gacaagacct cagccttcat ctgtcttgc tccaaaccact	300
gtgcggatgg ggaaacaagg catggctgg ggatgactta aggggtataaa aatgttgggc	360
tttcttttgtt caagcccacgc atgtgcctcc tataggcacc agtggtctct gcaagtccctg	420
gcctgctggc ctcgcagcca cagagagctc ggactcttc aggcagctca cttcattgct	480
ggaacaatag caatgttctt cctaatgc	508

<210> 11

<211> 135

<212> DNA

B0213WO seq list.ST25.txt

<213> Homo sapiens

<400> 11
agaagcgtta tacggggag gctggagtgg taaaaggctc agaaaaatcc tgcgaagaaa 60
aaaacttctg aggtaataaa taggattatc ccgtatcgaa ggccttttg gacaggtggt 120
gtgtggtggc ctgcg 135

<210> 12

<211> 248

<212> DNA

<213> Homo sapiens

<400> 12
gaggatgagg tggaggagga gagtgacaag gccgcgtcc tgcaggagca gcagcagcag 60
cagcagccgg gattctggac cttcagctac tatcagagct tcttgacgt ggacacctca 120
caggtcctgg accggatcaa aggctca 180
caccatctgc ggaatcggcc ggatctgtat ggcccttct ggatctgtgc cacgttggcc 240
tttgtcct 248

<210> 13

<211> 183

<212> DNA

<213> Homo sapiens

<400> 13
cccgccgacc tggcaggac atgccttagga aaagatggtg tcaacagacc cacaacacag 60
aaccacactg tgggttgggg aagcagagag gcgggaccag ccacttccag caggaagtt 120
ccaacctgga ctgggttggg acggtgaggg gatagtcatc tgccatcagt ttacataggt 180
ggt 183

<210> 14

<211> 124

<212> DNA

<213> Homo sapiens

<400> 14
cggcaggcat cacacaagag ggtgtcccta agatgcata cgtccgtgga gaaaacaaag 60

B0213WO seq list.ST25.txt
caggacacac gtgtgagtcg tcacaccctt ggtcacccgg cttggccgtc acacatgcct 120
ccct 124

<210> 15
<211> 132
<212> DNA
<213> Homo sapiens

<400> 15
gttagggagg gaaccagcta ctagatggtt cgattagtct ttcgccccata tacccaggtc 60
ggacgaccga tttgcacgtc aggaccgcta cggacacctca ccagagtttc ctctggcttc 120
gccctggggc cg 132

<210> 16
<211> 124
<212> DNA
<213> Homo sapiens

<400> 16
cacaccttgg ggacaggcat gaggaacaga ttaatgtgag atattctaga ggtacatgca 60
tcaggccatg gtgaccaatt gtctgtggag ggtgaggcag aaggaattgt tgaggatgac 120
tgag 124

<210> 17
<211> 489
<212> DNA
<213> Homo sapiens

<400> 17
gggaggcaat cattgagaga taatagctga gagttttca gaaaggaaaa gaggtatgag 60
tttcaggggag aaagggcggg ccaaggacta agccaaataa ataaaataag tctataccta 120
gacactttgt gggaaattca cagaccatca aagataaggg aaaaacctca tgggctacag 180
cagaaaagag acccattcta cacaagaac aagttcacaa tatgagacag agccacgcac 240
agaggatgac tgctatgacc tgacgacggg gaagtgtctt gttctcttgt aagccgcctc 300
taaagatggc caaagacatg gttttccata ggtttgaggt gcactacttc agggttcctg 360
cttacccctt gtcgttctc tggccctcat tgtgaccatg cttcactctc ccattctgtg 420
ctgggacaac cattttctt tccttattgc tgctactgca gagtgaggtt gggctgtggc 480

	B0213WO seq list.ST25.txt	
ctcgcaccg		489
<210> 18		
<211> 244		
<212> DNA		
<213> Homo sapiens		
<400> 18		
cggtggagg cggcccccga ctaaggtagg gacccagatg gaaatggac gctcttgca	60	
ccatggagg caaaaataca aattccatca ccaagagggc acgccatgcg gtgttgtcc	120	
ataagggtga gcaaagctgc caggcccaca ggagagagag cccacaggag ccctggatcc	180	
tgtggactt tggatcctac acagtgagtg atctcagaac tttgcaaggc tgaggcaggg	240	
agac	244	
<210> 19		
<211> 195		
<212> DNA		
<213> Homo sapiens		
<400> 19		
gggcgggacc agtgagagaa aggatagagc gtgtgagatg aaagggtctgg tcttattaag	60	
ccctacaata ctctgggtc caagcaatcc tgctgtggga ccctgctaag tgaacataat	120	
gccgaggaag aacagctctc ctcttttgc caaagcctgc caaggtgtca aggcttgaga	180	
aagagtggtg gccta	195	
<210> 20		
<211> 346		
<212> DNA		
<213> Homo sapiens		
<400> 20		
ccgggtgcagg cattgtgata atagttggaa tgcagaggtg aattaaagag tatggcttg	60	
tctatataaaa taaataaaaata tatatgtata tggtgtgtat aacccttata tatatattat	120	
gtatttaggtg gtgttgtata tatatgttta tatatgtgtg tgtttatgtta taagtatata	180	
tgtgataaga gtttataatc ctatataagag acagatgtat taaaatggat tttttttttt	240	
tgagacagag tcttactctg tcatcaaagc tggagtgcag tggtgcaatc taggctcaca	300	
gtgacctaca cctcccatgt tcaaaccattt ctcctgcctc ggccgg	346	

B0213WO seq list.ST25.txt

<210> 21

<211> 168

<212> DNA

<213> Homo sapiens

<400> 21		
cgctgggagg ctgtcgtgt ttgctttgt tcatctgttt aactgcagcc cgatttatgt	60	
ttctggatcc tggaatttag ttgacactat cggtagttag aaagtgacag acaccaggat	120	
gaagtcaactc ttgtcagacc cagaggaaac agggtcagga ggcctggg	168	

<210> 22

<211> 435

<212> DNA

<213> Homo sapiens

<400> 22		
agccggcagg actgtatcat caacgcaagt ctcttgagat gccttgtga tcggtagatc	60	
aagttatagc ctcggtttct gatttgctg tggtgatact ggatgttagca ttcaaggagt	120	
aaatggagaa tccacaaaat aactttccca aggattataa ccgtctgaac tttcaatggg	180	
tttgtgtaat ttcctgggca cttgtcctca tttggattag gataagaaca aagcacacct	240	
gttaaaaaatg ctaaaacaac aaacacgaga tgaataaacc acagaagatt cactatgatg	300	
actgttaggaa gaggatggaa tcggggtcta aagttagctt gtaatgagtg gtgtgggaga	360	
agctggccat ccagaagtgg gtcgtctca atactctggg tgatatccaa ggaaccgtcc	420	
tccatcctgc cgccg	435	

<210> 23

<211> 199

<212> DNA

<213> Homo sapiens

<400> 23		
cggggaaagg acaggccctgc tgctttattc acagatttag atgtcggtcc atctgctctc	60	
gaagttgaa tttctggatc tttcctgaaa tggtgagggg gtagtttg acaaacacga	120	
tgtacttcgg aatcttgaag tgagagatct tccctttgca gaaagctttt atctcctcca	180	
ccgtggcttc ctctcgccg	199	

<210> 24

B0213WO seq list.ST25.txt

<211> 258

<212> DNA

<213> Homo sapiens

<400> 24
ggcgcaggc tatggaggag accgtggtgg tggcagtggc tacggtgag accgaagtgg 60
aggctatgga ggagacagga gtggtggcg ctatggagga gaccgaggtg ggggctacgg 120
aggagaccga ggtggctatg gaggcaaaat gggaggaaga aacgactaca gaaatgatca 180
gcgcaaccga ccatactgat gactgtttt aatgttcctt tgtctctgac atgatccata 240
gtgaaattgc cagagttt 258

<210> 25

<211> 171

<212> DNA

<213> Homo sapiens

<400> 25
ggtcaggca ggtcagcaag gaacacaaaag gcatctgcc cctgagcaag tatcgaacac 60
catcacctgc atccttcaag ggttccaggt agatctccag cctctttag gagagaacca 120
agttgaaaag gtcaaacgct ggggacttgg taggaaaagg tggagactcc a 171

<210> 26

<211> 223

<212> DNA

<213> Homo sapiens

<400> 26
cagtgcgagg agccgtcaact ctgctaagcc tgtatctgct gttcggctac ggagcgtctc 60
tgctgtgcaa tctcatcgga ttttgttacc ccgcataatgc ctcaatcaaa gctatcgaga 120
gccccagcaa ggacgacgac actgtgtggc tcacctactg ggtggtgtac gcccgtttt 180
ggctggccga gttcttcagc gatctactcc tgtcctgccc ccc 223

<210> 27

<211> 249

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 27
tggggagagg tgagcagctt tgaacttttt cttagggagt gtcagaacga gcccagtctg 60
ccttatgcc atgtggcctc aggcacctac agtgaagtct taaaaccagt ggatgctctc 120
tacagtgcct tctagctgtg gtagtctgtg tctccaagga ccaacccttc catttctgag 180
gcttcagaat aaattctggc agttatttct tctctcagac tctatttcag aaaagtgtac 240
ctgccccca 249

<210> 28

<211> 334

<212> DNA

<213> Homo sapiens

<400> 28
caggctggag tgtggtagca tgagcatggc tcactgcaat ctccacctcc caggctcaag 60
cgatcctccc acctcacccct ccccggtagt gggaccacag gtgcacacca ccacacctgg 120
ctatatgctt ctttgagat tgctttttc actcacataa tttgctgaa atttatccac 180
cagcattttt taaaaattaa ctgtgcatca tcttcagtga gatgtgtgca tttcgcttt 240
gttcatgctt tttccactgc ctagaatgcc ctctaccaac cctgtctacc gatctgtatt 300
catttccttc agtgtgtctc actgctgtgt gcct 334

<210> 29

<211> 226

<212> DNA

<213> Homo sapiens

<400> 29
aggtccaaag tggaaagatg gaaaagctca gatgatacag gcctacagac tagatttttt 60
gtttatgtt ttctgtacac tactactaca aaggatagca aatagagctg aagggaaaagg 120
atggagatac tcaaagtccct aaaaatggaa aggagaaaag ggaatgtcaa cctcaaggac 180
aactgagatg ttcacagaac ttctgcagat tcttgcctcc caccc 226

<210> 30

<211> 372

<212> DNA

<213> Homo sapiens

<400> 30

B0213WO seq list.ST25.txt
 gggatagggg agagaagaag aagctgggaa gctgggaaca tcatctcagg ctggaggaca 60
 agcctgcac aggaccggtt ccacagagga gtcaaaagag ttaaagccca gaaggcagct 120
 ggaagagaag gcaaagctgg aaaagaagt aaaagcagca gctgttctga ttttgaagga 180
 gagataatgg gcttatttgc tttatggtct aaggagcaga gaaaactcat tctccctgg 240
 ttataaattc ccgagttgca gaaggaagtc tcctaactac tgatcggtc ctctggggt 300
 gggaaaatct ctgagctaca gtgagtcatt cccaggatgc caacaatggc ctccacttct 360
 ccctctgccc ct 372

<210> 31
 <211> 207
 <212> DNA
 <213> Homo sapiens

<400> 31
 cctctgttct tccagcttgg cttggagaag aactggcaga tgaacacgac ctgcatggtg 60
 gaatgccctg tgaactgtca gctttctgat tggtctcctt ggtcagaatg ttctcaaaca 120
 tgtggcctca cagggttgtt tgtaccataa ctatattag gtcctggtc aaggaatatg 180
 aaataaaaata tccctcttgc tttaacc 207

<210> 32
 <211> 179
 <212> DNA
 <213> Homo sapiens

<400> 32
 tgggtggagg tcactgctt aaggagtcac atagacgtgg tgtgtgacac ttgtgccccat 60
 ttccctgtgcc tgatgtgttag caaagaaagg ttgcattgctc cttgtctccc tggtctcttc 120
 cagaccgtct atgaccagta ttcatcacc ctgtataaca tcgtgtacac ctaacgccc 179

<210> 33
 <211> 484
 <212> DNA
 <213> Homo sapiens

<400> 33
 tgaggaggtg aaggaccgga tcctggagaa catctcgctg tcggtaaga agttgcagag 60
 ctatggct gcatgtgagg atgagacccc tgccatccgg aaccatgaca aggtcctaca 120

B0213WO seq list.ST25.txt
 gcgtctgtgt gaggcacctgg accacgcctt gctgtacgga ctgcaagacc ttcctctgg 180
 ctactgggtg ctcgtggtgat attttactcg gagagaggcc atcaaggcaga tcgagggtct 240
 gcagcacgtg gccaccaacc tggggcgcag ccgtgcctgg ctgtacctgg ccctcaacga 300
 gaactccttg gagagctacc tgcggttgtt ccaggagaac ctgggcctgc tgcataagta 360
 ctacgtcaag aatgccctgg tctgcagcca cgatcacctg acgctttcc tgaccttgg 420
 gtccgggcta gagttcattt gttcgagct ggatctggat gccccttacc tagacctccc 480
 cacg 484

<210> 34
<211> 443
<212> DNA
<213> Homo sapiens

<400> 34
 ggggaggtga ttccatccag agtcatatct gttgtcaccc caataagtctg atcagcaagg 60
 ctgacaggct gtgagggaaac cccggccttg tagcctgtca cctctggggg gatgtatgact 120
 gcctggcaga cgtaggctgt gatagattt gagaaccctg actcacccctc aggaatccgg 180
 aggtcagtga cattgtcggt gcacacagac atttcctac cctggtttcc acagagactg 240
 agggtaaaagt gatggaagta tttcaaccct ttggaaagtga agcttggccc tccagcaaga 300
 gtgacgggtgt ttgccaaagc ggagaagttg tagttgaaag tcctgggttg agtgttgcgt 360
 gagaagggtgc aatcattgtta gcacagagag tggatcttgcgt tggtcttggt ccctggacca 420
 cagggcacac agacctcgcc gca 443

<210> 35
<211> 272
<212> DNA
<213> Homo sapiens

<400> 35
 ggacagggggt ctctccacca tttgaggaag ggatagagga agaccaccat gggaaaagat 60
 atcatgcact ggttggaaag aactgtgcgg atagactggc gcagttcac aggatccaca 120
 ggttcattct tgccgacctg aattcggttag cgagagatga agtttaggttt tcctgggttg 180
 tcaaccacca atagaagccc attgaagctc cagaagaaga gacaaggcac ttggatggca 240
 cctataaaga agaggatcca ctccctccct ac 272

<210> 36
<211> 224

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400> 36
gatggaaagg ctgttagtggg gctgggtgg cttccaaactg cgggacagga agtggccgta 60
gcggcttgg ggataagtgg aagatagatg ataagcctgt aaaaattgac aagtgggatg 120
gatcagctgt gaaaaactct ttggatgatt ctgccaaaaa ggtacttctg gaaaaataca 180
aatatgtgga gaattttggc ctaattgatg gtcgccttgt aacc 224

<210> 37

<211> 342

<212> DNA

<213> Homo sapiens

<400> 37
tgtcttgagg cactgttagta tcaatcagac caggaatatc cttctctcct ttttttacaa 60
tagccaagtt gcaatgcaac cgcgaaactga ttttctctt ctttctccag gtctccctgg 120
tcttcctaaa caatcaacag caacccccac ctccactgct ttctgtttgg tttggtttga 180
gtttgggatt ttgggcttagc tctttttct ttgtctgctt tctgggttcc cttcctccct 240
tccctatgta cgctcagac ctcagacaga ccgtctgggc gcctcattcg cgtgagaagg 300
gccaggggga aggccaccag gccaggatgt aggcgaaacc gt 342

<210> 38

<211> 315

<212> DNA

<213> Homo sapiens

<400> 38
tcgggggagg tgggacctga gcatgctgtg ttccagaaaa ggctggagca cagactcaga 60
gagagagaga gtgggggtggc cgaggctgga gagattggca aagcccagat tatgagggtt 120
ttgtgggtca cagtgaggag cttgaacttc atccttctag tagattctag gctacccctt 180
cagacactcc ttaggaccag ggacacattc cccgagctgc caggagtgtt agcagctgac 240
agatccctggc tgggtatttc tctccaacaa agggagctgc ctccttcaca tctaattgact 300
gtaatgaccc accac 315

<210> 39

<211> 127

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400> 39
tgcttttag gctggagtgg taaaaggctc agaaaaatcc tgcgiaagaaa aaaacttctg 60
aggtaataaa taggattatc ccgtatcgaa ggcccttttg gacaggttgt gtgtggtggc 120
ctggccc 127

<210> 40

<211> 408

<212> DNA

<213> Homo sapiens

<400> 40
gggggaggca cattctcaact gaagataaag aactccgcatttccatcaccc 60
acaacccccgc gaaacaaaaag ctataaacac acacaagtca gaggatctat aaaccagtgg 120
gagaaaaaaaaa attagatgaa ggttaaccat taaaaagctg cagttggaa aacacacact 180
cgattgttac atcagaaagt gccgtgggaa gaagagccgt gtgctggtaa acatgtccgc 240
gctcagaact tgacatgcag aaaagagaga gcgccaagtc ccacctgaga ttagagagga 300
ctggttttta gtgtaaacaca ctttggggtaa aaatatcaact gtcctttct tgcccaatt 360
gctccttagaa cgtccctctg tcactccccct cccgggcccag cctctccg 408

<210> 41

<211> 314

<212> DNA

<213> Homo sapiens

<400> 41
ggcgtggagg tacaaggcagt cagttctcg caggggccga ccgggcaact tcccccccttg 60
tgtccctcta ccctgcttg gagtgccggg ccctcattca gcagatgtcc ccctctgcct 120
ttggtctgaa tgactggat gatgatgaga tcctagcttc ggtgctggca gtgtcccaac 180
aggaataacct agacagtatg aagaaaaaca aagtgcacag agacccgccc ccagacaaga 240
gttgatggag acccaggatgatggacaccat cttccaaaccc cagtaactcct gctctccggt 300
gccacctcac cgcc 314

<210> 42

<211> 352

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400> 42
tctggggagg tggtccccat gtctgtcgta ggacagcaac aggttgtaca tctggcaggc 60
aaaggtttg ttgggctgga ggatgaggat gtgtAACACT gtgtttccca gggagtccctg 120
ggcccggatg tcagctccat gctaatgag cagccgcacg atctcctcac tgttcacaca 180
ggcagcaaag gacaaagggt gctcccaaa gtagatgagg ttgcagggac tacggcgaa 240
ggcagtgcct gtggctctgg cagagacact ggcctgcgg gcaagcaggg ctcgcaccag 300
gttcatgttc tggttcacaa cagcgatgtg cagtgcagtc tgacctccat cc 352

<210> 43

<211> 292

<212> DNA

<213> Homo sapiens

<400> 43
ggctgggggt aaggaccctg acagggcctc aggtggggac ttgcgttca ggccgggatc 60
aggtgctgtg aagctgcctg tggagctggc cttggcttcc cgaaactcct ccagcttctg 120
tcggtagtac ttgtaccctt ggctattggg ctcatacaga aagctgaatg cctggttctc 180
acggttgttc tggagggcaa tggttccac ctcgggaccc ccgtccgcta tgaacctggc 240
caactttctt gcaaggttct tgaccttcc gtcctctggg ggtgaaactt tc 292

<210> 44

<211> 372

<212> DNA

<213> Homo sapiens

<400> 44
ttcttagttt aagtgcagt gatcctgctt tgtacctctt caactatgat tcagttttta 60
caagtgaggt tcaattaagc tgagatgttag ttgaaatatt tgagcaccag aatcaccttc 120
tgaactccca atcatctggg gcttaggtgt agttacctcc caggaacaga tctcccagcc 180
caaggtccca cattgtacct tgatgttct ttactgccta tcaaaatgag ccccaggtac 240
ctacgttatt actgggtttt gctctccaat ttccttattt tcccttgctc ccaaccacat 300
caacagaaca acaacaaaaa gaatccttta tcttcatgca acactacagt agtacagagc 360
aaaagaactgg tg 372

B0213WO seq list.ST25.txt

<210> 45

<211> 158

<212> DNA

<213> Homo sapiens

<400> 45
aggcctgaga gggaaagtttc tggagtttag atactctctg ttgggaacag gacatctcaa 60
cagtctcagg ttcgatcagt gggtctttg gcactttgaa ccttgaccac agggaccaag 120
aagtggcaat gaggacacct gcaggagggg ctagcctt 158

<210> 46

<211> 157

<212> DNA

<213> Homo sapiens

<400> 46
gagggcttaa gaaagtaccc agctctgggt ccaataaaga ctcttgat ctgtcagcac 60
tgcatgttgtt agcatggca aaaggcatta agaaagtaaa tatacgtccc tgtgttcccc 120
ttgctctccc tccatgcctg ctctttctt caccctg 157

<210> 47

<211> 310

<212> DNA

<213> Homo sapiens

<400> 47
aggacagcac tgacagcgag tggccctgga tcgtgagcat ccagaagaat gggacccacc 60
actgcgcagg ttctctgctc accagccgct gggtgatcac tgctgccac tttcaagg 120
agtatgtaca gccggcctgg ggcacttgat cttctaaggc cttggcttt gtccccagg 180
ccctgggctc ctttacagg ctctgcttcc gggcctctgt tcaatcttgg tgccctcg 240
ttctacctag aagcctctcc tgccttcagg ggccttcaca cccatgctgt tccccaggt 300
acccctcccc 310

<210> 48

<211> 124

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 48
ccggcacct ggggaagggg gagtagagct aagagataga aaaactctag actcaccgat 60
caccaagctc atttggtcgg tagggcccgc ccacccggact tgagaacaca cacattctct 120
aagg 124

<210> 49

<211> 191

<212> DNA

<213> Homo sapiens

<400> 49
aatctcctaa tattaatggc aggtattata gtaaaaattat cattttccct gaagagaatg 60
ttacattaac ttgcacagca gaaaaccaac tggagagaac agtaaaactcc ttgaatgtct 120
ctgctaataatga aaacagagaa aaggtgaatg accaggcaaa actaattgtg ggaatcggtt 180
ttggtctcct c 191

<210> 50

<211> 305

<212> DNA

<213> Homo sapiens

<400> 50
ccgaagtttt tctgtcacct gtgttaggct ccgtcccctt tccgcgtttt atccccgtac 60
cagaaaagga tacatttiagc gcctccacc cagctccact aaacgggttg gatatctcat 120
tctttgagtt ggtgttcctt ccccgccgc cccatgttagc tgggaagtgg gacctgggg 180
tggttggacc cctgggatcc taaaggaggg gcagggaggg cgcagaactc cgcttctgct 240
ccttgctacc aggacgcgcg gcctccctcag cctctttcct cccgctgcc a tgcaccctac 300
gctcg 305

<210> 51

<211> 108

<212> DNA

<213> Homo sapiens

<400> 51
ggctgacagg gtgggattct cgctccctca tttcaggtta ctcgttctc agcaagttgg 60

B0213WO seq list.ST25.txt
 caaaaacagac atcatgctgg tgagtgccac gttactcccc tggggtgc 108

<210> 52
 <211> 439
 <212> DNA
 <213> Homo sapiens

<400> 52
 cgcggcgagg ggagaggtct ctttgagtcc cacctgagct gcctcagtgc cccccagctg 60
 ctgcaggta gggcctgtca ccatcaagcc atcagtggga caaaaaactt gggccctcaa 120
 cccaccagca ctgctctgca ttctctgaag ccctggagat aagctggga ccatggcccc 180
 cacactctca gacacagatg acacaagtgg gaccattctg agcctaagag attttaccaa 240
 aaataacctca atatggtttgc gctacgtccc cacccaaatc ttatcttcaa ttgtaatcgc 300
 cgtaatcccc acgtgtttag ggagggatcc agtggaaagg tattaggtca tggaggttgt 360
 tttccccatg ctgttctcat gatagtgagg gagtttcac aagatctgat gttttataa 420
 gccagtttcc cctccggcc 439

<210> 53
 <211> 234
 <212> DNA
 <213> Homo sapiens

<400> 53
 ccgagacagg accaactcac acacctgcca gaaagcctca ctctccagcc tcaggaccaa 60
 cttacacacc tgccagaaag cctcactctc cagcctcagg accaacttac acacctgcca 120
 gaaagcctca ctctccagcc tcaggaccaa cttacacacc tgcttagaaag cctcactctc 180
 cagcctcagg accaacttac acacctgcca gaaagcctca ctctccccc cggg 234

<210> 54
 <211> 92
 <212> DNA
 <213> Homo sapiens

<400> 54
 gcctgcgagg agctttatttc ttccagctta atatggttgc tgcgaaaaca ctgcaggatg 60
 aactgactt ttttgggt gatgttctc ct 92

<210> 55

B0213WO seq list.ST25.txt

<211> 164

<212> DNA

<213> Homo sapiens

<400> 55
cgggggtacc tgtaccgtgg aacatggaag ggaagaggag gcaagtacag cagtcctggg 60
tctacattca caaatcagca tactgatagc ttgctggata ttatatcaag acataaaaat 120
tgacacacac ggtctctctt tctctctc atggaggttc ctgc 164

<210> 56

<211> 202

<212> DNA

<213> Homo sapiens

<400> 56
tggggtggac caggagaaac tgaaaactga attaaggaag acttcagatg ccctttctaa 60
ggcacaaaaat gatgtgatgg aaatgaagat gcagtcagag agatttcga aagaatatga 120
tcaactcctg aaagaacact ctgaacttca ggaaaaatgtc tattctactt aactacctcc 180
ttatgagggaa gtggtctctc ca 202

<210> 57

<211> 314

<212> DNA

<213> Homo sapiens

<400> 57
cagggggagg agttcagagc ttacggtag cccatcac gctattgcac tccaacttgg 60
gtgacagacc gagatccctag cttaaaaaaaaaaaagtt ggtggggaaa atggaaaaat 120
agggtgccat gaaaaagaaa aagaaaaaca caccataatg gcattgtaa ttggccttac 180
aacttgtt tactttctta aagtttctg aggtgtaa agaaaaaaa tattgtaaac 240
cttcaagatc tactgtaat taaaattccc tgctgcttaa aaaagagtga aatctttgga 300
aggcctcccc cccca 314

<210> 58

<211> 92

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 58
ggacgggacc acagttctaa acgaataaac gaatgagacg caaattttt atgttcagtc 60
ctttcatctc tatgaaaacc ctatatggtc gt 92

<210> 59

<211> 179

<212> DNA

<213> Homo sapiens

<400> 59
cggggccagg atcccagagc cacagccaac atcaagaacg atcttgtcct tgaagtcggt 60
gtgggtttgc aggatggcgc gctggtaggt gcctgtccgt ttttagtcct gcatcatgtt 120
ctgctgctgg gacaggttagc cataaaactg gaagtacttc tttgcagaag actcctctt 179

<210> 60

<211> 89

<212> DNA

<213> Homo sapiens

<400> 60
tcgcggggag gcgtgaatat tgtgggctg aatcctcagg gccgtgggg gctgcatggc 60
tgatgaccat gaggactggc ctccgccc 89

<210> 61

<211> 169

<212> DNA

<213> Homo sapiens

<400> 61
tgggggttcc aggtataffa gggcaggctg agcatgctt aagatgtgca tgatgaagat 60
ggtaaggccc aggccgaaga tgtaggctgc aaagctggtg tagaagttagg tgtgggtatt 120
cttcttcaag ctgatgtcaa agcgcagcag caaggcaatg aagatccat 169

<210> 62

<211> 171

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 62
cagcggtaacc atagttcact aggaaaggca ctcatccacc aagttcagag aggtggccat 60
ccgcattgct aaacagaata aaacaaaaat tcactttgtc atttcctga cattggcatt 120
gctataagat agcctcataa actgcctgaa aggcatttatt ttttcaaag g 171

<210> 63

<211> 140

<212> DNA

<213> Homo sapiens

<400> 63
aaggcaattc ttaggtactc tcgtgattga acctctgcac caaagaggaa aaagtataag 60
ttagaaagga atttataagc accatacaca aaaatagcca tgactcaggc ctccacatct 120
catttgct gtcacttccc 140

<210> 64

<211> 195

<212> DNA

<213> Homo sapiens

<400> 64
tatggagg ggggtatggg agggaaagag ctttagaaac ggctctccct gcaaagtcca 60
accaaacttt aacgttaacc aaaccattaa tggccatg aatttgaagt gaaccagagg 120
gaggtggcag aagaagctta atgggaata gttccggtag agaaatgagg cttaagatga 180
actacccttc tcccc 195

<210> 65

<211> 397

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (364)..(364)

<223> n = a t c or g

B0213WO seq list.ST25.txt

<400> 65
tgccagctga ataaaacttag tcacctggtt tccccatctt aagcccccta acctgcagct 60
tcgttaatg tagctcttc atgggagttt cttaggatgaa acactcctcc atgggatttg 120
aacatatgaa agttattttgt aggggaagag tccctgagggg caacacacaa gaaccaggc 180
ccctcagccc acagcactgt cttttgctg atccacccccc ctcttacctt ttatcaggat 240
gtggcctgtt ggtcccttcg ttgccatcac agagacacag gcatttaaat atttaactta 300
tttatttaac aaagtagaag ggaatccatt gctagcttt ctgtgttggt gtctaatttt 360
tggngtaggg tgggggatcc ccaacaatca ggtcccc 397

<210> 66
<211> 2799
<212> DNA
<213> Homo sapiens

<400> 66
ctcacacacc ctgaagacac agtgagttag caccaccacc aggaattggc ctttagctc 60
tgtgcctgtc tccagtcagg ctggaaataag ttccttcata tttgcaagct cggccctccc 120
ctggaaatcta aagcctccctc agcttctga gtcagcctga aaggaacagg ccgaactgct 180
gtatgggctc tactgccagt gtgacccac cctctccagt caccctccct cagttccagc 240
tatgagttcc tgcaacttca cacatgccac cttgtgctt attggtatcc caggattaga 300
gaaagcccat ttctgggttg gcttcccccct cctttccatg tatgttagtgg caatgtttgg 360
aaactgcac tcgttccatc tcgttaaggac ggaacgcagc ctgcacgcct cgatgtaccc 420
ctttctctgc atgcttgcag ccattgaccc ggccttatcc acatccacca tgcctaagat 480
ccttgccctt ttctggtttg attcccgaga gattagctt gaggcctgtc ttacccagat 540
gttctttatt catgcccctc cagccattga atccaccatc ctgctggcca tggccttga 600
ccgttatgtg gccatctgcc acccaactgcg ccatgctgca gtgctcaaca atacagtaac 660
agcccagatt ggcatcggttgg ctgtggtccg cggatccctc tttttttcc cactgcctct 720
gctgatcaag cggctggcct tctgccactc caatgtcctc tcgcactcct attgtgtcca 780
ccaggatgtt atgaagttgg cctatgcaga cactttgccc aatgtggat atggctttac 840
tgccattctg ctggatcatgg gcgtggacgt aatgttcatc tccttgcctt attttctgat 900
aatacgaacg gttctgcaac tgccttccaa gtcagagcgg gccaaggcct ttggAACCTG 960
tgtgtcacac attgggtgtgg tactgcctt ctatgtgcca cttattggcc tctcagttgt 1020
acaccgcctt ggaaacagcc ttcatccat tgtgcgtgtt gtcatgggtg acatctaccc 1080
gctgctgcct cctgtcatca atcccatcat ctatggtgcc aaaaccaaac agatcagaac 1140
acgggtgtcg gctatgttca agatcagctg tgacaaggac ttgcaggctg tggaggccaa 1200

B0213WO seq list.ST25.txt
 gtgaccctta acactacact ttccttatac tttattggct tgataaacat aattatttct 1260
 aacactagct tattccagt tgcccataag cacatcgta ctttctctg gctggaatag 1320
 taaactaaag tatggtacat ctacctaaag gactattatg tggaaaataata catactaatg 1380
 aagtattaca tgatttaaag actacaataa aaccaaacat gcttataaca ttaagaaaaaa 1440
 caataaaagat acatgattga aaccaagttg aaaaatagca tatgccttgg aggaaatgtg 1500
 ctcaaattac taatgattta gtgtgtcccc tactttctct ctctttttc tttcttttt 1560
 ttttattatg gttagctgtc acatacaact ttttttttt tgagatgggg ttcgcctcg 1620
 tcaccaggct ggagtgcagt ggcgcgatct cggtcactg caacctccac atcccatgtt 1680
 gaagtaattc ttctgcctca gcctcccgag tagctggac tagaggaacg tgccaccatg 1740
 actggctaat tttctgtatt ttttagtaga gacagagttt caccatgtt gccaggatgg 1800
 ttcgcgttc ctgaccttgt gatccaccccg cctcagcctc ccaaagtgtt gggattacag 1860
 gtgtgaacca ctgtgcccgg cctgtgtaca actttttaaa taggaaatat gatagttcg 1920
 catggtggtg tgcacctata gccccactg cctggaaagc tgaggtggga gaatcgcttg 1980
 agtccaggag tttgaggta cagtgttca cgatcgtaacc actacactcc agcctggca 2040
 acggagcaag accctgttc aaagcataaa atgaaataac atatcaaatg aaacaggaa 2100
 aatgaagctg acaatttatg gaagccagg 2160
 tacctggaa tttatataag cccttaataa taatgccaat gaacatctca tgtgtgctca 2220
 caatgttctg gcactattat aagtgttca caggtttat gtgttctcg taactttatg 2280
 gagtaggtac catttgttc tctttattat aagtgagaga aatgaagttt atattatcaa 2340
 ggggactaaa gtcacacggc ttgtggcac tgtgccaaga tttaaaatta aattgtatgg 2400
 ttgaatacag ttacttaatg accatgttat attgcttcgttg 2460
 ttcctcagct gtacaaatcc tctgtttct ctctgttaca cactaacatc aatggcttg 2520
 tacttgtat gagagataac ttgccttag ttgtggcaa cacatgcaga ataatcctgt 2580
 ttacagctg ctttcgtga tcttattgtc tgctttttc cagattcagg gagaatgtt 2640
 ttgtctattt gtctcttaca tctccctgtat catgtttca tttttaaatg tgctctgtac 2700
 ctgtcaaaaaa ttttgaatgt acaccacatg ctattgtctg aacctgagta taagataaaa 2760
 taaaatttta ttttaaattt taaaaaaaaa aaaaaaaaaa 2799

<210> 67

<211> 1982

<212> DNA

<213> Homo sapiens

<400> 67
 tactcaaagt cctaaaaatg gaaaggagaa aaggaaatgt caacctcaag gacaactgag 60

B0213WO seq list.ST25.txt

atgttcacag aacttctgca gattctcgca ccccacctca cctcacaat gctaacctgt	120
ggacagtcct cctgtccaa acgtcctggca gcttataagc ttccatctat aggaaattgg	180
taatgttagac accgagactg ggtgggttgc agaacaatg tcatgctctg accaagatgg	240
ataagctcac aatgagttgg ggactttcct aaaagccagg gcacttagtag tcacatggcc	300
actgttgttag ctacgtgaac atggtagtgg tggtaagat gcaaataaga gaaacatgc	360
aaaagatttt tagaaggaaa aatagacaag atcgggttcaa taattggatg tgaaggatga	420
gaaaaatgcta tgtatcttaa gttccgtct cacatgacta aattcataag cacttccact	480
tgcgtccctt caaattcacc ctccccacag cttctggaa agcaatctga aacacatgtc	540
tagttgttat gtccctgctt aaaaccattt attcacccctt ccattcctac aggtgaagt	600
ccttgagttc acagcatatc atcagttcac atccattgac ctctccagtt tctcttcctt	660
ttttgggtga ctctatgctt cagccaagct acaactcttc gtaattcttc tatagaaaat	720
tctgtttctt tcatgatttt ctgcctgctt aaataccctc tttttggacc cacccaatga	780
ctaaataaaat acccttctca agttcctata aaaatctgtg gcattcactg ctcttcata	840
ccatttcagg tttgtttggg taggtgtgta tgaccaccctt gaaggcaagg actttgtctt	900
attcacctctt ggcaccctaa actcagcaca gtgcctgcac aaaactagcc ttgagaatgt	960
gcttattaca caatgaatga attaattaac tccattgcca gatatacatg accaataaaat	1020
acttaatggc tcatgatggc acttctgttt ctgtgttcaa agattacagt gacaatgaca	1080
aagcaagact catgtgttag gcatacttag aaaggatggc agatagaaca gtttagtgtt	1140
aaatattaaat aaagtatgaa ggttaaccctg ctgggtatga cgtaggggac acgtcactgg	1200
aagacagcca tcaagcatca tgaggtactg aggataccctc aatatcctgg agaaggtgt	1260
tgggtgagt ttttttatac tattttgtttt ataacattgt aagccttgc caaacatttg	1320
ttaatgtga ataaacagtc ggaataccctg gttctccaa acatattatc actaattaac	1380
tatatgaccc agacaaaaaa gctgtcatat catctggct ttatctgtaa tctaggagca	1440
atgaagagca gctttgatac attaagggtt gttttgttccaa ccagaagaaa ggttagggaa	1500
agatatggag aattgcatac cccttattttt aattatggaa ctataactttt gtatttttag	1560
agaggatgca aactcctaaa gcccaaggac catgcctagt cacatatgat gtctgctgg	1620
catggcgtg gacgtaatgt tcatctcctt gtccttattttt ctgataatac gaacgggtct	1680
gcaactgcct tccaaatcaga gcggccaaag gcctttggaa cctgtgtgtc acacattgg	1740
gtggtaactcg ctttctatgt gccacttattt ggcctctcag tggtaacccg ctttggaaac	1800
agccttcatac ccattgtcg tggtaatgt ggtgacatct acctgctgtc gcctcctgtc	1860
atcaatccca tcatctatgg tgccaaaacc aaacagatca gaacacgggt gctggctatg	1920
ttcaagatca gctgtgacaa ggacttgcag gctgtggag gcaagtgacc cttaacacta	1980
ca	1982

B0213WO seq list.ST25.txt

<211> 2306

<212> DNA

<213> Homo sapiens

<400> 68	
gagatactca aagtccctaaa aatggaaagg agaaaaaggga atgtcaacct caaggacaac	60
ttagatgttc acagaacttc tgcagattct cgtccccac ctcacccac aatgctaac	120
ctgggacagt cctccgttcc aacagtcctg gcagcttata agttccatc tataggaaat	180
tggtaatgta gacaccgaga ctgggtgggt tgcagaacaa atgtcatgct ctgaccaaga	240
tggataagct cacaatgagt tggggacttt cctaaaagcc agagcactag tagtcacatg	300
gccactgttg tagctacgtg aacatggtag tgggtgtcaa gatggaaata agaggaaaca	360
tgc当地atgat ttttagaagg aaaaatagac aagatcggtt gaataattgg atgtgaagga	420
tgagggaaatg ctatgtatct taagttccctg tctcacatga ctaaattcat aagcacttcc	480
acttcgtcct cctcaaattc accctccaa cagcttctgg aatagcaatc tgaaacacat	540
gtctagttgt gatgtccctg cttaaaaccca tttattcacc tcccaattcc tacaggatga	600
atgc当地ttgag ttccacagcat atcatcagtt cacatccatt gaccccttca gtttcttt	660
ccttttttgt tgactctatg cttcagccaa gctacaactc ttcgttaattc ttctatagaa	720
aattctgttt ctttcatgat tttctgcctg ctgaaatacc ctcttttgg acccacccaa	780
tgactaaata aatacccttc tcaagttcct ataaaaatct gtggcattca ctgctttc	840
ataccatttc aggtttgttt gggttaggtgt gtatgaccac cctgaaggca aggactttgt	900
cttattcacc tctggcacccc taaactcagc acagtgcctg cacaaaagta gccttgagaa	960
tgtgcttatt acacaatgaa tgaattaatt aactccattt ccagatatacg atgaccaata	1020
aatacttaat ggctgatgga agtacttctg tttctgtgtt caaagattac agtgc当地atg	1080
acaaaagcaag actcatgtgt gaggcatact tagaaaggat ggcagataga acaggtagt	1140
gttaaatatt aataaaagtat gaaggtaacc ctgctgggtt tgacgtaggg gacacgtcac	1200
tgaaagacag ccatcaagca tcatgaggta ctgaggatac atcaatatcc tggagaaggt	1260
agttggact gccagtgtga cctcaccctc tccagtcacc cctcctcagg tccagctatg	1320
agttcctgca acttcacaca tgccacccctt gtgcttattt gtatcccagg attagagaaa	1380
gcccatattct gggtagctt cccctccctt tccatgtatg tagtggcaat gtttggaaac	1440
tgc当地gtgg tcttcatgtt aaggacggaa cgcagccgc acgctccggat gtaccccttt	1500
ctctgc当地gc ttgcagccat tgacccgttcc ttatccacat ccaccatgcc taagatccctt	1560
gccctttctt ggtttgatcc ccgagagatt agctttgagg cctgtttac ccagatgttc	1620
tttattcatg ccctctcagc cattgaatcc accatccgtc tggccatggc ctttgc当地gtt	1680
tatgtggcca tctgccaccc actgc当地ccat gctgc当地gtc tcaacaatac agtaacagcc	1740

B0213WO seq list.ST25.txt
 cagattggca tcgtggctgt ggtccgcgga tccctttt tttcccact gcctctgctg 1800
 atcaagcggc tggcttctg ccactccaat gtccctcgac actcctattg tgtccaccag 1860
 gatgtaatga agttggccta tgcagacact ttgcccaatg tggtatatgg tcttactgcc 1920
 attctgctgg tcatggcggt ggacgtaatg ttcatctcct tgccttattt tctgataata 1980
 cgaacggttc tgcaactgcc ttccaagtca gagcgggcca aggccttgg aacctgttg 2040
 tcacacattt gtgtggtaact cgccctctat gtgccactta ttggcctctc agttgtacac 2100
 cgcttggaa acaggcattca tcccattgtg cgtgtgtca tgggtgacat ctacctgctg 2160
 ctgcctcctg tcatcaatcc catcatctat ggtgccaaaa ccaaacagat cagaacacgg 2220
 gtgctggcta tggtaagat cagctgtgac aaggacttgc aggctgtggg aggcaagtga 2280
 cccttaaacac tacacttctc cttatc 2306

<210> 69
 <211> 2767
 <212> DNA
 <213> Homo sapiens

<400> 69
 gagatactca aagtccctaaa aatggaaagg agaaaaggga atgtcaacct caaggacaac 60
 tgagatgttc acagaacttc tgcagattct cgtccccac ctcacccac aaatgctaac 120
 ctgtggacag tcctcctgtc caacagtcct ggcagcttat aagcttccat ctataggaaa 180
 ttggtaatgt agacaccgag actgggtggg ttgcagaaca aatgtcatgc tctgaccaag 240
 atggataagc tcacaatgag ttggggactt tcctaaaagc cagagcacta gtatgcacat 300
 ggcactgtt gtagctacgt gaacatggta gtgggtgtga agatggaaat aagagggaaac 360
 atgcaaaaga tttttagaag gaaaaataga caagatcggt tgaataattt gatgtgaagg 420
 atgagggaaat gctatgtatc ttaagttcct gtctcacatg actaaattca taagcacttc 480
 cacttcgtcc tcctcaaatt cacccctcca acagttctg gaatagcaat ctgaaacaca 540
 tgtctagtt tgatgtccct gcttaaagcc atttattcac ctcccaattc ctacaggatg 600
 aagtcccttga gttcacagca tatcatcagt tcacatccat tgacctctcc agttctctt 660
 tccttttgg ttgactctat gttcagccca agctacaact cttcgtaatt cttctataga 720
 aaattctgtt tctttcatga ttttgcct gctgaaatac ccttttttg gaccaccca 780
 atgactaaat aaataccctt ctcaagttcc tataaaaatc tggcatttc actgctttt 840
 cataccattt caggtttgtt tggtaggtg tggatgacca ccctgaaggc aaggactttg 900
 tcttattcac ctctggcacc ctaaactcag cacagtgcct gcacaaaagt agccttgaga 960
 atgtgcttat tacacaatga atgaattaat taactccatt gccagatata gatgaccaat 1020
 aaatgcttaa tggctgatgg aagtacttct gttctgtgt tcaaagatta cagtgacaat 1080

B0213WO seq list.ST25.txt

gacgaagcaa	gactcatgtg	tgaggcatac	ttagaaagga	tggcagatag	aacaggtag	1140
tgttaaatat	taataaaagta	tgaaggtaac	cctgctgggt	atgacgttag	ggacacgtca	1200
ctggaagaca	gccatcaagc	atcatgaggt	actgaggata	catcaatatc	ctggagaagg	1260
tagttgggt	gagttttttt	tatctatTTT	gcttataaca	ttgtaagcct	ttgacaaaca	1320
tttgttaat	gtgaataaaac	agtcggaata	cctggttctc	caaccaatat	tatcactaat	1380
tagctatatg	acctaggaca	aaaagctgtc	atatcatctg	ggcttatct	gtaatctagg	1440
agcaatgaag	agcagcttg	atacattaag	ggctgtttt	ttaaccagaa	gaaaggtag	1500
ggaaagatAT	ggagaattgc	atgcccctat	tttgaattat	ggaactatac	ttttgtattt	1560
tttagagagga	tgcaaactcc	taaagccaa	ggaccatgcc	tagtcacata	tgatgtctgc	1620
tgcgtctagc	agagtggcac	atgaagaaac	acactaatcc	tgtggctgac	tgtgtgtgct	1680
tggtttagct	tggagaagt	ggagcagatt	gtcgagagcc	ctgtatatac	tgccagtgtg	1740
acctcaccct	ctccagtcac	ccctccctcg	ttccagctat	gagttccctgc	aacttcacac	1800
atgccacctt	tgtgcttatt	ggtatcccag	gattagagaa	agccatttc	tgggtggct	1860
tccccctcct	ttccatgtat	gtagtggcaa	tgtttggaaa	ctgcacatcg	gtcttcatcg	1920
taaggacgga	acgcagcctg	cacgcctcg	tgtacctt	tctctgcatg	cttgcagcca	1980
ttgacctggc	cttatccaca	tccaccatgc	ctaagatcct	tgccttttc	tggtttgatt	2040
cccgagagat	tagcttgag	gcctgtctta	cccagatgtt	ctttattcat	gccctctcag	2100
ccattgaatc	caccatcctg	ctggccatgg	cctttgaccg	ttatgtggcc	atctgccacc	2160
cactgcgcca	tgctgcagtg	ctcaacaata	cagtaacagc	ccagattggc	atcgtggctg	2220
tggtccgcgg	atccctctt	tttttcccac	tgcctctgct	gatcaagcgg	ctggccttct	2280
gccactccaa	tgtcctctcg	cactcctatt	gtgtccacca	ggatgtaatg	aagttggcct	2340
atgcagacac	tttgcccaat	gtggtatatg	gtcttactgc	cattctgctg	gtcatggcgc	2400
tggacgtaat	gttcatctcc	ttgtcctatt	ttctgataat	acgaacggtt	ctgcaactgc	2460
cttccaagtc	agagcgggcc	aaggcctttg	gaacctgtgt	gtcacacatt	ggtgtggtac	2520
tcgccttcta	tgtgccactt	attggcctct	cagtggtaca	ccgctttgga	aacagccttc	2580
atcccattgt	gcgtgttgtc	atgggtgaca	tctacctgct	gctgcctcct	gtcatcaatc	2640
ccatcatcta	tggtgccaaa	accaaacaga	tcagaacacg	ggtgctggct	atgttcaaga	2700
tcagctgtga	caaggacttg	caggctgtgg	gaggcaagtg	acccttaaca	ctacacttct	2760
ccttatac						2767

<210> 70

<211> 322

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 70
tgtgaacatc tcagttgtcc ttgagggtga cattcccttt tctccttcc attttagga 60
cttgagtat ctccgtgtgg gtgagaaaagt ccaattcatc tagagtcaag catttcact 120
gaacaaaaca gttttactta cagagcccat acagcagttc ggcctgttcc tttcaggctg 180
actcagaagg ctgaggaggc tttagattcc aggggagggc cgagcttgca aatatgagga 240
gacttattcc agcctgactg gagacaggca cagagctgaa aggccaattc ctgggtgtgg 300
tgctaactca ctgtgtcttc ag 322

<210> 71

<211> 206

<212> DNA

<213> Homo sapiens

<400> 71
gaatctaaag ctcctcagc ccaccatacc aacatctaatt ctaattctgc acattgtgag 60
gaaattactc cctgtgggtg agaaagtcca attcatctag agtcaagcat tttcattgaa 120
caaaacagtt ttacttacag agcccataca gcagttcgcc ctgttccctt caggttgact 180
cagaaggctg aggaggcttt agattc 206

<210> 72

<211> 4344

<212> DNA

<213> Homo sapiens

<400> 72
ctgggtccca tttctctgga acacagtgg ctgtgatct gacctcttt cagggaggt 60
tcccttagttc tgtccccat atttcgttat gatttggtaa aagttctata tcccccttccc 120
caagctatga cggatacaga aatggatgga tggatgcaag atgcaaacta tcttgtatct 180
cactaaagga tgcaatcatc tgcttctgaa aagggtttt catgttctga tagcaactgg 240
gagccaaata tgggatttaa tatttgcata ggagcttagc tggtttgtct gcacaagttc 300
tgaagggtgga gaagagaaaa tacaggcaga agtatgggtt ttgtaacctt caaacccaa 360
atctgtcctt ctttgcttat ccaagatggg gagaatccag ttcaaatttc tttgtactaa 420
ttttatcata ttgtacttta agatcactgg tatctaaccctt ctctacatta aggccaaact 480
gaagggcatc tcccagctgc agtaagaact cagatgatga gtgaagaatt ctgggttgg 540
gggagtgcaa tataagcaag ctaacctgtt tcaatgaaac agatgatcaa tgaagacact 600
gcatcatttgc tttccaaaag tttaggccttgc cagccaaaggc tttggcttt tagagaaaaat 660

B0213WO seq list.ST25.txt

tagctctaaa	gaccaggcca	cctaggcaac	ctagcagaga	agaagttca	tgaagtcaga	720
gcccgagtgt	ttgggtgagg	gtagggajtt	ggggcaaagc	aacactggc	ttctaaaaaa	780
gaaatgtctc	ccctgagatg	aatgacttgt	tggcacaagt	ttcaggaaag	acaaagctct	840
aaaaatatca	ttgtaaaatt	aataatactt	ctccaaagta	aggactcaac	tcaaactatc	900
cttggatgca	attaaaatgg	ccttggaga	agctttcagg	tgcggaggt	ctcaccagtg	960
tcctgccagc	accttcatct	ctgaagaagt	catcgaggg	agccactacc	ttgattttat	1020
gaccacagat	gagtttcctt	taatccgaaa	gagattgact	tttggcattt	ttttcttagt	1080
ttttgttat	ttatattctt	ttaagcttta	aaaaaaaaagt	tcattgctgt	gtttcttatt	1140
cctctggctg	actttagaat	tgaggactgg	gaatcctgaa	aatttgc	aaatctcct	1200
atcctca	cttggaaaca	cccattattc	cactctgtct	aatttctact	catgttcaa	1260
gtctaaacag	gaagattcct	ctgtgatcat	gcctctccct	ttctcatgaa	ttaaatgcat	1320
atattatgct	agtaatgctt	ctggaatgaa	tgaataatag	aaagaaagaa	agtgggggaa	1380
gggaaggcagg	gaaagtaaaa	tgagaaaggc	agccttatct	ggaaggagct	ccccaaagt	1440
tatctttaa	cacctatcag	aaaaaaaaagg	gccaacaaat	atccaggcaa	cgaaggat	1500
gaccagttagg	aagaatctga	gggaattaca	tttggaaaa	agcattgctc	tcccaagatt	1560
ccctttaaa	aatttaataa	aaccttgaga	gtagtgatgc	ataaatgaat	ttgatctgtc	1620
acagtcccgc	ctttggaaaga	gggcctcaga	gcttatgaaa	gaccctaagt	gggggtggga	1680
gaagacaaaa	gggggtggat	gtcagtttca	agtttccagg	gcattctctg	attgtgctct	1740
atgtccctgc	agactgccag	tgtgacctca	ccctctccag	tcacccctcc	tcagttccag	1800
ctatgagttc	ctgcaacttc	acacatgcca	ccttgtgct	tattggtatac	ccaggattag	1860
agaaagccca	tttctgggtt	ggcttccccc	tccttccat	gtatgtatgt	gcaatgtttg	1920
gaaactgcat	cgtggtcttc	atcgttaagga	cggAACGcag	cctgcacgct	ccgatgtacc	1980
tctttctctg	catgcttgca	gccattgacc	tggccttatac	cacatccacc	atgcctaaga	2040
tccttgcctt	tttctggttt	gattcccgag	agattagctt	tgaggcctgt	cttacccaga	2100
tgttctttat	tcatgccc	tca	gcccatttgc	aatccaccat	cctgctggcc	2160
accgttatgt	ggccatctgc	cacccactgc	gccatgctgc	agtgtcaac	aatacagtaa	2220
cagcccagat	tggcatcgtg	gctgtggtcc	gcggatccct	cttttttttc	ccactgcctc	2280
tgctgatcaa	gcggctggcc	ttctgcccact	ccatgtcct	ctcgactcc	tattgtgtcc	2340
accaggatgt	aatgaagttg	gcctatgcag	acactttgcc	caatgtggta	tatggtctta	2400
ctgccattct	gctggtcatg	ggcgtggacg	taatgttcat	ctccttgcc	tattttctga	2460
taatacgaac	ggttctgcaa	ctgccttcca	agtcagagcg	ggccaaggcc	tttggAACCT	2520
gtgtgtcaca	cattggtg	gtactcgcc	tctatgtgcc	acttattggc	ctctcagtgg	2580
tacaccgctt	tggaaacagc	cttcatccca	ttgtgcgtgt	tgtcatgggt	gacatctacc	2640
tgctgctgcc	tcctgtcatc	aatccatca	tctatgtgc	caaaacccaaa	cagatcagaa	2700

B0213WO seq list.ST25.txt

cacgggtgct ggctatgttc aagatcagct gtgacaagga cttgcaggct gtggaggca	2760
agtgaccctt aacactacac ttctccattt ctttattggc ttgataaaaca taattatttc	2820
taacactagc ttatcccag ttgcccataa gcacatcagt acttttctct ggctggaata	2880
gtaaaactaaa gtatggtaca tctaccaa ggactattat gtgaaataat acataactaat	2940
gaagtattac atgatttaaa gactacaata aaaccaaaca tgcttataac attaagaaaa	3000
acaataaaga tacatgattt aaaccaagtt gaaaaatagc atatgcctt gagggaaatgt	3060
gctcaaatta ctaatgattt agtgttgtcc ctactttctc tctctttttt ctttcttttt	3120
tttttattat ggttagctgt cacatacaac tttttttttt tttgagatgg ggtctcgctc	3180
tgtcaccagg ctggagtgca gtggcgcgtat ctcggctcac tgcaacccatc acatccccatg	3240
ttgaagtaat tcttctgcct cagcctcccg agtagctggg actagaggaa cgtgccacca	3300
tgactggcta attttctgtt ttttttagta gagacagagt ttcaccatgt tggccaggat	3360
ggtctcgatc tcctgaccctt gtgatccacc cgccctcagcc tcccaaagtg ttgggattac	3420
agggtgtgaac cactgtgccc ggcctgtgtt caactttta aatagggaaat atgatagtt	3480
cgcattgtgg tgtgcaccta tagccccac tgcctggaaa gctgagggtgg gagaatcgct	3540
ttagtccagg agttttaggt tacagtgtac cacgatcgta ccactacact ccagcctggg	3600
caacagagca agaccctgtc tcaaagcata aaatggaaata acatataaaa tgaaacaggg	3660
aaaatgaagc tgacaattta tggaagccag ggcttgcac agtctctact gttattatgc	3720
attacctggg aatttatata agcccttaata aataatgcca atgaacatct catgtgtgt	3780
cacaatgttc tggcactatt ataagtgcctt cacaggtttt atgtgttctt cgtaactttt	3840
tggagtaggt accatttgta tctctttattt ataagtgaga gaaatgaagt ttatattatc	3900
aaggggacta aagtcacacg gcttggggc actgtgc当地 gatTTAAAT taaatttgc	3960
gggtgaatac agttacttaa tgaccatgtt atattgcctt ctgtgttaaca tctgccattt	4020
atttcccttag ctgtacaaat cctctgtttt ctctctgtta cacactaaca tcaatggctt	4080
tgtacttgta atgagagata accttgcctt agttgtggc aacacatgca gaataatcct	4140
gttttacagc tgcccttcgt gatcttattt cttgtttttt tccagattca gggagaatgt	4200
tgtgtctat ttgtctctta catctccttgc atcatgtctt catttttaa tgtgtctgt	4260
acctgtcaaa aattttgaat gtacaccaca tgctattgtc tgaacttgag tataagataa	4320
aataaaaattt tattttaaat tttt	4344

<210> 73

<211> 2969

<212> DNA

<213> Homo sapiens

<400> 73

B0213WO seq list.ST25.txt

agcaacgacg	ccgggcagcg	ggagcggcgg	ccgcgcctatg	tggctgctgg	ggccgctgtg	60
cctgctgctg	agcagcgcgg	cggagagcca	gctgctcccc	gggaacaact	tcaccaatga	120
gtgcaacata	ccaggcaact	tcatgtgcag	aatggacgg	tgcattccgg	gcgcctggca	180
gtgtgacggg	ctgcctgact	gcttcgacaa	gagtgtatgag	aaggagtgcc	ccaaggctaa	240
gtcgaatgt	ggcccaacct	tcttcccctg	tgccagcggc	atccattgca	tcattggctg	300
cttccggtgc	aatgggtttg	aggactgtcc	cgtggcagc	gatgaagaga	actgcacagc	360
aaaccctctg	ctttgctcca	ccgcccgccta	ccactgcaag	aacggcctct	gtattgacaa	420
gagcttcatc	tgcgatggac	agaataactg	tcaagacaac	agtgtatgagg	aaagctgtga	480
aagttctcaa	gaacccggca	gtgggcagg	gtttgtact	tcagagaacc	aacttgttga	540
ttaccccagc	atcacctatg	ccatcatcg	cagctccgtc	atttttgtgc	tgggtggc	600
cctgctggca	ctggctttgc	accaccagcg	gaagcggAAC	aacctcatga	cgctgcccgt	660
gcacccggctg	cagcacccctg	tgctgctgtc	ccgcctggtg	gtccctggacc	accccccacca	720
ctgcaacgtc	acctacaacg	tcaataatgg	catccagttat	gtggccagcc	aggcggagca	780
gaatgcgtcg	gaagtaggct	ccccaccctc	ctactccgag	gccttgctgg	accagaggcc	840
tgcgtggtat	gaccccttc	caccgcctta	ctcttctgac	acggaatctc	tgaaccaagc	900
cgacccctccc	ccctaccgct	cccggtccgg	gagtgcacac	agtgcacgt	cccaggcagc	960
cagcagccctc	ctgagcgtgg	aagacaccag	ccacagcccc	gggcagccctg	gccccccagga	1020
gggcactgct	gagcccaaggg	actctgagcc	cagccaggc	actgaagaag	tataagtccc	1080
agttatttcca	aagtccatat	gggttaatct	gctctgactt	gttgcattc	taacaatttg	1140
tgctcatggg	aagctcttta	agcacctgta	aggatgtctc	aagttacagt	ttggatattt	1200
aactatctct	gcattccct	cctccccca	acttcagaga	tgttttctg	gcgtctcagt	1260
tgacatgatc	tgttgtgcgt	cttttctgtc	aggtcactct	tcccttggga	cccgagatca	1320
caccctcatt	tttcacat	ttctgtttct	gttggagaga	cagcatataa	aacagtattt	1380
aaataggctg	ggagagagca	atgtttctgt	gctatattgg	atgctcagaa	gtcaggaga	1440
cgcgtggaccc	aattctctct	gctgggttagt	taccttata	catttgggg	tttgggttag	1500
atgatcta	caggaggcca	tcactggatg	gtcacccccc	caaaaaaattt	ccatttgc	1560
atcaaaaccc	gtttgcaca	atcctat	atgc	ttcagcagag	tcagtggcca	1620
aagaaaactt	tggacgtgag	taacaccctt	cagcagtcgc	aacgttattt	tggtttgtg	1680
aaggactctg	aaaccatcta	ccctgtataa	attctggctt	tagaaatttg	cccaagaatg	1740
ctcattctga	gagctttcct	cagcagcata	tatcatcage	ctcatctaa	aataggcagg	1800
gagccctcc	catgagttta	tccaagttct	cagctcctaa	aatgcaggct	gccaaagaccc	1860
tacacc	ctggctctac	agccacttac	ctggttctg	gactgtcacc	ctccctggct	1920
acctgcccgt	agccaaggaa	tgaggaccta	acttgagtt	gccc	aaagtc tgacctggct	1980
gtatgtccct	gtggccca	cccaaggcctgt	cttgctcatt	catgcagcct	caacactggc	2040

B0213WO seq list.ST25.txt
 ctccaaagtt cccttaacac ttgcaaagtc ctttttacct gtgcatttg acttgaggac 2100
 actggttct atcacagggtg agagccatgt tcaatacctc cagcaagctc tcctggctcc 2160
 ctgcactgtg cacgctccctc ttcccaaggt cccaatacca gcacctctag ttagagttag 2220
 ggtcagggtc aggccctccc caacatccca gtatccc tctgagaca catggcaag 2280
 agacaatttg gagtcaagat tttccatttg gatctatTTT aaatctttt gaaatgcatt 2340
 tgaaaacagtg tgTTTgtttt ttcccttcta gttaaaggac tatttatatg tgtataggaa 2400
 agctgtctct tttttgtttt ttccctttaac aagggtccaaa gaaagatgca aaaggagatc 2460
 acacccttgc cccgctgagc cccgtgataa caagtcaactc cagactaacc tgtgtgccag 2520
 acatTTTgtc attgttgcac tttgaggta ttatTTTatca agttcttgc aaaggcagaa 2580
 agaggactc ctctctccct ccgtgtatag tctctatgtt tgtgcttagtt tttttttttt 2640
 ttctctgtgt ccagtcagcc acaggccccg cctccctgca ggaataagggtt gtaaaacgtt 2700
 aggtgttgtt tggcaagaaaa ccacactgac tggatggggg taaaatggaa ccaggttagag 2760
 ccactccggg cagctgtcac ccattcagaa ctTCTTCCG cagctgaaga aatgttcagt 2820
 aacctgtttt acgctaattt aaacagagcc tgcaggaagt ggggctaaag tggcattcag 2880
 tggatcctgtt ctgttagactt ttccctttt tttaaccaa atccaaagga tgttacagaa 2940.
 aagctagcca ctggTattttt gttttgtttt 2969

<210> 74
<211> 350
<212> DNA
<213> Homo sapiens

<400> 74
 gccagtcatc acagtgtAAC taatttaatg ctaaaataaa acacggatct catttgagaa 60
 aaaaagagat gagactatTTT tctggTTggc gtagatTTTg gcaatgtata aaaaagcttc 120
 ctggTTggaa tgagttaaaa aatattgctg gacactaatg tgccatcttgg agttggaaaa 180
 caaACCCCTT ccccccaaaa aaaACCCtgc cgTTTggtg tcctattttt atatttttAA 240
 aaacattcat taaaaaaaaatc aaatctataa taaaaatgtc cctgTTTgtt taaaaaaAGC 300
 attagtaggc atcccttATC tactAAAACC ATTTGTttt CCTAAGATGC 350

<210> 75
<211> 2006
<212> DNA
<213> Homo sapiens

<400> 75

B0213WO seq list.ST25.txt

agcaacgacg ccgggcagcg ggagccgcgg cccgcgcattg tggctgtgg gcccgtgtg	60
cctgctgctg agcagcgccg cggccaaggc taagtcggaa tgtggccaa cttcttccc	120
ctgtgccagc ggcattccatt gcatcattgg tcgcttccgg tgcaatgggt ttgaggactg	180
tcccgtggc agcgatgaag agaactgcac agcaaaccct ctgtttgtc ccaccgccc	240
ctaccactgc aagaacggcc tctgtattga caagagcttc atctgcgtat gacagaataa	300
ctgtcaagac aacagtgtatg aggaaagctg taaaagttct caagaaccggc gcagtggca	360
ggtgtttgtg acttcagaga accaacttgt gtattacccc agcatcacct atgccccat	420
cggcagctcc gtcatttttg tgctgggtt ggccctgtg gcactggct tgcaccacca	480
gcggaaagcgg aacaacctca tgacgctgcc cggtcaccgg ctgcagcacc ctgtgtgt	540
gtccccgttg gtggccctgg accacccca ccactgcaac gtcacccata acgtcaataa	600
tggcatccag tatgtggcca gccaggcggc gcagaatgcg tcggaaatgt gctccccacc	660
ctcctactcc gaggccttgc tggaccagag gcctgcgtgg tatgacccctc ctccaccgccc	720
ctactcttct gacacggaat ctctgaacca agccgacccgt ccccccattc gctccggc	780
cgggagtgcc aacagtgcgc aacctccaggc agccagcaggc ctccctgagcg tggaagacac	840
cagccacagc ccggggcagc ctggcccccgg ggagggact gctgagccca gggactctga	900
gccccagccag ggcactgaag aagtataagt cccagtttatt ccaaagtcca tatgggttaa	960
tctgctctga ttgtttggcca ttctaaacaaat ttgtgtcat gggaaatctt ttaaggcacct	1020
gttaaggatgt ctcaagttac agttttggat attaactatc tctgcattcc ctcctccccc	1080
cagacttcag agatgtttt ctggcgtctc agttgacatg atctgtgtg cgtctttct	1140
gtcaggtcac tctcccttg ggacccgaga tcacaccctc attttcaca ttattctgtt	1200
tctgttggag agacagcata taaaacagta ttgaaatagg ctggagaga gcaatgtttc	1260
tgtgctatat tggatgctca gaagtgcagg agacgctgg cccattctc tctgtgggt	1320
agttaccta tagcatttg ggattttgggt tagatgtatc aaccaggagg ccatcactgg	1380
atggtcaccc cccaaaaaaa attccatttg agcataaaa cctgcatttc acaatcctat	1440
ttgatgcccc cagttcagca gagtcagtgg cccaaagaaaa ctttggacgt gagtaacacc	1500
cttcagcagt cgcaacgtta ttttggttt gtgaaggact ctgaaaccat ctaccctgt	1560
taaattctgg ctttagaaat ttgccaaga atgctcattc tgagagctt ctcagcagc	1620
atatatcatc agcctcatcc taaaataggc agggagcccc tcccatgtatc ttatccaagt	1680
tctcagctcc taaaatgcag gctgccaaga ccctacacccgt gcccggctc tacagccact	1740
tacctggttt ctggactgtc accctcccg ctgacccgtcc cgtagccaaag gaatggggac	1800
ctaacttgcgtt tggcccaaaa gtctgacccgt gctgtatgtc cctgtggccc acaccagcc	1860
tgtcttgctc attcatgcag cctcaacact ggcctccaaa gttccctaa cacttgc	1920
gtccctttta cctgtgcatt tggacttgag gacactgggt tctatcacag gtgagagcc	1980
tgttcaatac ctccagcaag ctctcc	2006

B0213WO seq list.ST25.txt

<210> 76
<211> 3094
<212> DNA
<213> Homo sapiens

<400> 76						
agcaacgacg	ccgggcagcg	ggagcggcgg	ccgcgccatg	tggctgctgg	ggccgctgtg	60
cctgctgctg	agcagcgccc	cgggtctgtg	actactttgc	tccaatacca	agatggacag	120
aacagccctt	tgattaccctt	gggagactgt	caagtttgc	tctggtaat	ctctgtttta	180
tatataagga	aactgaggca	cagggtggag	agccagctgc	tccccggaa	caacttcacc	240
aattagtgca	acataccagg	caacttcatg	tgcaagcaatg	gacggtgcat	ccgggcgcc	300
tggcagtgtg	acgggctgcc	tgactgcttc	gacaagagtg	atgagaagga	gtgccccaaag	360
gctaagtcga	aatgtggccc	aactttcttc	ccctgtgcca	gcggcatcca	ttgcatcatt	420
ggtcgcttcc	ggtgcaatgg	gtttgaggac	tgtcccgatg	gcagcgatga	agagaactgc	480
acagcaaacc	ctctgctttg	ctccaccgc	cgcttaccact	gcaagaacgg	cctctgtatt	540
gacaagagct	tcatctgcga	tggacagaat	aactgtcaag	acaacagtga	tgagggaaagc	600
tgtgaaagtt	ctcaagaacc	cggcagtggg	caggtgtttt	tgacttcaga	gaaccaactt	660
gtgtattacc	ccagcatcac	ctatgccatc	atcggcagct	ccgtcatttt	tgtgtgggt	720
gtggccctgc	tggcacttgt	cttgcaccac	cagcggaaagc	ggaacaacct	catgacgctg	780
cccggtcacc	ggctgcagca	ccctgtgctg	ctgtcccgcc	tggtggtcct	ggaccacccc	840
caccactgca	acgtcaccta	caacgtcaat	aatggcatcc	agtatgtggc	cagccaggcg	900
gagcagaatg	cgtcggaaat	aggctccca	ccctcctact	ccgaggcctt	gctggaccag	960
aggcctgcgt	ggtatgaccc	ccctccaccc	ccctactctt	ctgacacgga	atctctgaac	1020
caagccgacc	tgccccctta	ccgctcccg	tccgggagtg	ccaacagtgc	cagctcccg	1080
gcagccagca	gcctccctgag	cgtgaaagac	accagccaca	gccccgggca	gcctggcccc	1140
caggagggca	ctgctgagcc	cagggactct	gagcccagcc	agggcactga	agaagtataa	1200
gtccccagtt	ttccaaagtc	catatgggtt	aatctgctct	gacttggcgc	cattctaa	1260
atttgtgctc	atgggaagct	ctttaagcac	ctgtaaggat	gtctcaagtt	acagtttggg	1320
atattaacta	tctctgcatt	ccccctcc	cccagacttc	agagatgttt	ttctggcg	1380
tcagttgaca	tgtatctttt	tgctgtttt	ctgtcaggc	actcttccct	tgggacccga	1440
gatcacaccc	tcattttca	cattattctg	tttctgttgg	agagacagca	tataaaacag	1500
tattgaaata	ggctgggaga	gagcaatgtt	tctgtgctat	attggatgct	cagaagtgc	1560
ggagacgctg	gacccaattc	tctctgctgg	gtagttacct	tatagcattt	ggggatttgg	1620
gttagatgat	ctaaccagga	ggccatca	ggatggtac	cccccaaaa	aaattccatt	1680

B0213WO seq list.ST25.txt

tgagcatcaa aacctgcttt gcacaatcct atttgatgcc cccagtttagt cagagtcatg	1740
ggccaaagaa aactttggac gtgagtaaca cccttcagca gtcgcaacgt tattttggtt	1800
tttgtgaagga ctctgaaacc atctaccctg tataaattct ggcttttagaa atttgccaa	1860
gaatgctcat tctgagagct ttccctcagca gcatatatca tcagcctcat cctaaaatag	1920
gcagggagcc cctcccatga gtttatccaa gttctcagct cctaaaatgc aggctgccaa	1980
gaccctacac ctgcccctgac tctacagcca cttacctggt ttctggactg tcaccctccc	2040
agctgacctg cccgtagcca aggaatgagg acctaacttg agttggccca aagtctgacc	2100
tggctgtatg tccctgtggc ccacacccag cctgtcttgc tcattcatgc agcctaaca	2160
ctggcctcca aagttccctt aacacttgca aagtcccttt tacctgtgca tttggacttg	2220
aggacactgg tttctatcac aggtgagagc catgttcaat acctccagca agctctcctg	2280
gctccctgca ctgtgcacgc tcctttcccc aagggtcccaa taccagcacc tctagttaga	2340
gttagggtca gggtcaggcc tctcccaaca tcccagttagt ttctccctcg agacacatgg	2400
gcaagagaca atttggagtc aagattttcc atttggatct attttaaatc ttttagaaat	2460
gcatttgaaa cagtgtgttt gttttttccc ttctagttaa gggactattt atatgtgtat	2520
aggaaagctg tctcttttt tgtttttcct ttaacaaggt ccaaagaaag atgaaaagg	2580
agatcacacc cttgccccgc tgagccccgt gataacaagt cactccagac taacctgtgt	2640
gccagacatt tgtgcattgt tgcactttga ggttattatt tatcaagttc ttgaaggaag	2700
cagaaagagg gactcccttc tccctccgtg tatagtctct atgtttgtgc tagttttct	2760
ttttttctc tgtgtccagt cagccacagg gccgcctcc ctgcaggaat aagggtaaaa	2820
acgttaggtg ttgtttggca agaaaccaca ctgactgatg aggggtaaaa tggaaaccagg	2880
tagagccact ccgggcagct gtcacccatt cagaacttct ttccgcagct gaagaaatgt	2940
tcagtaacct gtttgacgct aattaaaaca gagcctgcag gaagtggggc taaagtggca	3000
ttcagtgatc ctgtttgtta gactttctt tctttttta accaaatcca aaggatgtta	3060
cagaaaagct agccactggt attttgtttt gttt	3094

<210> 77

<211> 3024

<212> DNA

<213> Homo sapiens

<400> 77	
ctggggccgc tgtgcctgct gctgagcagc gccgcggaa agtgcctgga aaaatagatg	60
acagccagaa agagagctt gaaaaaaa tgactccaag gagaaggtag tcatttccta	120
gagtctggct tgtcagttag agccagctgc tccccggaa caacttcacc aatgagtgca	180
acataccagg caacttcatg tgcagcaatg gacggtgcat cccggcgcc tggcagtgtg	240

80213WO seq list.ST25.txt
acgggctgcc tgactgcttc gacaagagtg atgagaagga gtgccccaaag gctaagtcga 300
aatgtggccc aaccttcttc ccctgtgcca gcggcatcca ttgcattcatt ggtcgcttcc 360
ggtgcaatgg gttttagggac tgtcccgatg gcagcgatga agagaactgc acagcaaacc 420
ctctgcttgc ctccaccgccc cgctaccact gcaagaacgg cctctgtatt gacaagagct 480
tcatctgcga tggacagaat aactgtcaag acaacagtga tgaggaaagc tgtgaaagtt 540
ctcaagaacc cggcagtggg caggtgttt tgacttcaga gaaccaactt gtgtattacc 600
ccagcatcac ctatgccatc atcggcagct ccgtcatttt tgcgtgggt gtggccctgc 660
tggcactggg cttgcaccac cagcggaaagc ggaacaaccc catgacgctg cccgtgcacc 720
ggctgcagca ccctgtgctg ctgtcccgcc tgggtgcct ggaccacccc caccactgca 780
acgtcaccta caacgtcaat aatggcatcc agtatgtggc cagccaggcg gagcagaatg 840
cgtcggaagt aggctccccca ccctcctact ccgaggccct gctggaccag aggctgcgt 900
ggatgcacct tcctccaccg ccctactt ctgacacggc atctctgaac caagccgacc 960
tgccccccca ccgctcccg tccgggagtg ccaacagtgc cagctcccg gcagccagca 1020
gcctccgtag cgtgaaagac accagccaca gcccgggca gcctggccccc caggaggcga 1080
ctgctgagcc cagggactct gagcccagcc agggcactga agaagtataa gtcccaagtta 1140
ttccaaagtc catatgggtt aatctgctct gacttggcatt cattctaaca atttggcgtc 1200
atggaaagct cttaagcac ctgtaaggat gtctcaagtt acagtttggg atattaacta 1260
tctctgcatt cccctccctcc cccagacttc agagatgtt ttctggcgtc tcagttgaca 1320
tgatctgtt tgcgtctttt ctgtcaggtc actcttccct tgggacccga gatcacaccc 1380
tcattttca cattattctg tttctgttgg agagacagca tataaaacag tattgaaata 1440
ggctgggaga gagcaatgtt tctgtgctat attggatgct cagaagtgc ggagacgctg 1500
gaccaattc tctctgctgg gtagttaccc tatagcattt ggggatttgg gtttagatgat 1560
ctaaccagga ggccatcaact ggatggtcac ccccccaaaa aaattccatt tgagcatcaa 1620
aacctgctt gcacaatcct atttgatgcc cccagttcagc cagagtcaatg ggccaaagaa 1680
aactttggac gtgagtaaca cccttcagca gtcgcaacgt tattttgggtt ttgtgaaggaa 1740
ctctgaaacc atctaccctg tataaattct ggcttttagaa atttgccttca gaatgctcat 1800
tctgagagct tccctcagca gcatastatca tcagccatc cctaaaatag gcagggagcc 1860
cctccatga gtttatccaa gttctcagct cctaaaatgc aggctgccaa gaccctacac 1920
ctgcccggc tctacagcca cttacctggt ttctggactg tcaccctccc agctgaccc 1980
cccgtgcca aggaatgagg acctaacttg agttggccaa aagtctgacc tggctgtatg 2040
tccctgtggc ccacacccag cctgtcttc tcattcatgc agcctcaaca ctggccctca 2100
aagttccctt aacacttgca aagtcccttt tacctgtgca tttggacttg aggacactgg 2160
tttctatcactc aggtgagagc catgtcaat acctccagca agctctccctg gctccctgc 2220
ctgtgcacgc tcctcttccca aaggtcccaa taccagcacc tcttagttaga gtttagggtca 2280

B0213WO seq list.ST25.txt

gggtcaggcc	tctccaaaca	tcccagtat	tttcctctg	agacacatgg	gcaagagaca	2340
atttggagtc	aagattttcc	atttggatct	attttaaatc	tttagaaat	gcatttgaaa	2400
cagtgtgttt	gtttttccc	ttctagttaa	gggactat	atatgtgtat	aggaaagctg	2460
tctctttttt	tgttttctt	ttaacaaggt	ccaaagaaag	atgcaaaagg	agatcacacc	2520
cttgccccgc	tgagccccgt	gataacaagt	cactccagac	taacctgtgt	gccagacatt	2580
tgtgcattgt	tgcactttga	ggttattatt	tatcaagttc	ttgaaggaag	cagaaagagg	2640
gactcctctc	tccctccgtg	tatagtctct	atgtttgtgc	tagttttct	ttttttctc	2700
tgtgtccagt	cagccacagg	gccccctcc	ctgcaggaat	aagggtaaaa	acgttaggtg	2760
ttgtttggca	agaaaccaca	ctgactgtat	aggggtaaaa	tggaccagg	taggccact	2820
ccgggcagct	gtcacccatt	cagaacttct	ttccgcagct	gaagaaatgt	tcaactaacct	2880
gtttgacgct	aattaaaaca	gacctgcag	gaagtggggc	taaagtggca	ttcagtgtatc	2940
ctgttctgtat	gactttctt	tctttttta	accaaattca	aaggatgtta	cagaaagct	3000
agccactggt	attttgtttt	gttt				3024

<210> 78

<211> 1668

<212> DNA

<213> Homo sapiens

<400>	78					
atgggtcctg	gggcgcggct	ggcggcgctg	ctggcggtgc	tggcgctcg	gacaggagac	60
ccagaaaggg	ctgcggctcg	ggcgacacg	ttctcgccgc	tgaccagcg	ggcgccgc	120
ctggcgcccg	agcgccggct	gctggggctg	ctgaggcggt	acctgcgcgg	ggaggaggcg	180
cggctgcggg	acctgactag	attctacgac	aaggtaactt	ctttgcata	ggattcaaca	240
acccctgtgg	ctaaccctct	gcttcattt	actctcatca	aacgcctgca	gtctgactgg	300
aggaatgtgg	tacatgtct	ggaggccagt	gagaacatcc	gagctctgaa	ggatggctat	360
gagaaggtgg	agcaagacct	tccagcctt	gaggacctt	agggagcagc	aaggccctg	420
atgcggctgc	aggacgtgtat	catgctcaat	gtgaaaggcc	tggcccgagg	tgtctttcag	480
agagtcactg	gctctgccc	caactgacctg	tacagccca	aacggcttctt	ttctctcaca	540
ggggatgact	gcttccaagt	tggcaaggtg	gcctatgaca	tgggggatta	ttaccatgcc	600
attccatggc	tggaggaggc	tgtcagtctc	ttccgaggat	cttacggaga	gtggaaagaca	660
gaggatgagg	caagtctaga	agatgcctt	gatcacttgg	cctttgcctt	tttccgggtt	720
agggagccag	ttaggagatt	tgaaagatct	agtggagcca	agaatgaatt	agcttccaat	780
tctctgggaa	agaataggtt	gggtcctttt	gcaataggct	ttggcttct	ggacttctct	840
ttcattgcac	ttatcatatt	tttgtgcac	gataataaga	ggatggccag	aatgtcttgc	900

B0213WO seq list.ST25.txt
aaatatgaaa ggctttggc agagagcccc aaccacgtgg tagctgaggc tgtcatccag 960
aggcccaata taccccacct gcagaccaga gacacctacg aggggctatg tcagaccctg 1020
ggttcccagc ccactctcta ccagatccct agcctctact gttcctatga gaccaattcc 1080
aacgcctacc tgctgctcca gcccattccgg aaggaggtca tccacctgga gccctacatt 1140
gctctctacc atgacttcgt cagtgactca gaggctcaga aaatttagaga acttgcagaa 1200
ccatggctac agaggtca ggtggcatca ggggagaagc agttacaagt ggagtaccgc 1260
atcagcaaaa gtgcctggct gaaggacact gttgacccaa aactggtgac cctcaaccac 1320
cgcatcgctg ccctcacagg cttgtatgtc cgccctccct atgcagagta tctgcaggtg 1380
gtgaactatg gcatcgagg acactatgag cctcactttg accatgctac gctgagctcg 1440
gtggaagctg gaggagccac agccttcatc tatgccaacc tcagcgtgcc tgtggtagg 1500
aatgcagcac tgccccggcgaacactgcac aggagtggtg aaggggacag tgacacactt 1560
catgctggct gtccgtcct ggtggagat aagtgggtgg ccaacaagtg gatacatgag 1620
tatggacagg aattccgcag accctgcagc tccagccctg aagactga 1668

<210> 79

<211> 997

<212> DNA

<213> Homo sapiens

<400> 79
gaaggaaaaa gagcaacaga tccagggagc attcacctgc cctgtctcca aacagcctt 60
tgcctcacct acccccaacc tcccagaggg agcagctatt taaggggagc aggagtgcag 120
aacaacaag acggcctggg gataacaactc tggagtccctc tgagagagcc accaaggagg 180
agcaggggag cgacggccgg ggcagaagtt gagaccaccc agcagaggag ctggccagt 240
ccatctgcat ttgtcaccca agaactctt ccatgaagac cctcctactg ttggcagtga 300
tcatgatctt tggcctactg caggccatg ggaatttggt gaatttccac agaatgatca 360
agttgacgac agggaaaggaa gccgcactca gttatggctt ctacggctgc cactgtggcg 420
tgggtggcag aggatcccc aaggatgcaa cggatcgctg ctgtgtcaact catgactgtt 480
gctacaacg tctggagaaa cgtggatgtg gcaccaaatt tctgagctac aagtttagca 540
actcggggag cagaatcacc tgtgaaaac aggactcctg cagaagtcaa ctgtgtgagt 600
gtgataaggc tgctgccacc tgccccgtca gaaacaagac gacctacaat aaaaagtacc 660
agtactattc caataaacac tgcagagggc gcacccctcg ttgctgagtc cccttccc 720
tggaaacctt ccacccagtg ctgaatttcc ctctctata ccctccctcc ctaccctaacc 780
caagttcctt ggccatgcag aaagcatccc tcacccatcc tagaggccag gcaggagccc 840
ttctataaccc acccagaatg agacatccag cagattcca gccttctact gctctccccc 900

B0213WO seq list.ST25.txt
 acctcaactc cgtgcttaac caaagaagct gtactccggg gggtctttc tgaataaagc 960
 aattagcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 997

<210> 80
 <211> 260
 <212> DNA
 <213> Homo sapiens

<400> 80
 tgagagggtgg gtgtgatcac tcatttgctg tttaaaggcc cagaaaggag acagagaagg 60
 gatggacaga gagggagaag gggaaactgag cgagaaggtc aaggagttag taaggaaatg 120
 gttagcaagg gccaaatgaa cagggagtcc tccatgaaaa gggccaacaa ggctcccctg 180
 gatgttgagg cagaaacgcg tggggactc agggaaagct gtttccatgg agtcgggggg 240
 gcaaagccag attagaccag 260

<210> 81
 <211> 201
 <212> DNA
 <213> Homo sapiens

<400> 81
 ttccttcct gtcgtcaact tgcattca aagatcatga tcactgccaa cagtaggagg 60
 gtcttcatgg taagagttct tgggtgacaa atgcagatgg actggccctg ctcctctgct 120
 gggtgtctc aacttctgcc ccggccgtcg ctccccgtct ctccttggt ggctctgttt 180
 ggagacaggg caggtgaatg a 201

<210> 82
 <211> 272
 <212> DNA
 <213> Homo sapiens

<400> 82
 tcattcacct gcccgtctc caacagggtt gatgggagag catgtctgtg tgtctcagag 60
 ccaccaagga ggagcagggg agcgacggcc gggcagaag ttgagaccac ccagcagagg 120
 agctaggcca gtccatctgc atttgcacc caagaactct taccatgaag accctcctac 180
 tggggcagt gatcatgatc tttggcctac tgcaggccca tggaaatttg gtgaatttcc 240
 acagaatgtt caagttgacg acaggaaagg aa 272

B0213WO seq list.ST25.txt

<210> 83

<211> 258

<212> DNA

<213> Homo sapiens

<400> 83		
tcattcacct gcccgtctc caaacagagc caccaggag gagcagggga gcgacggccg	60	
gggcagaagt tgagaccacc cagcagagga gctaggccag tccatctgca tttgtcaccc	120	
aagaactctt accatgaaga ccctcctact gtggcagtg atcatgatct ttggcctact	180	
gcaggccat gggatattgg tgaattcca cagaatgatc aagttgacga cagggaaagga	240	
agccgcactc agttatga	258	

<210> 84

<211> 2226

<212> DNA

<213> Homo sapiens

<400> 84		
ggcagcatgg cgtctttccg gcttctccaa acccttgcga aaaactttat tggcaaagct	60	
atcagagaac ggacagtgtt cccactgagg cggccaaagc ttaactggat cagggcagga	120	
ttagatgacc ttgtggtaga tcccagaact gaggccccag gatgacagaa caggagaccc	180	
tggccctact ggaagtgaag aggtctgatt ccccagagaa gagctcaccc caggccttg	240	
ttcccaatgg cccgcagcca gaaggggaag gtggggccga atccccggga gctgagtccc	300	
tcagagtggg gtcctcagct ggatctccca cagccataga gggggctgag gatggtctag	360	
acagcacagt aagtggggct gccaccttgc cctgggggac tggccctcag cccagtgctc	420	
cgttcccgga tccccctggc tgggggaca ttgaaccaga gccccctgag tcagaaccac	480	
ttaccaagct agaggagctg cccgaagacg atgccaacct gctgcctgag aaagcggccc	540	
gtgccttcgt gcctattgac ctacagtgc ttgagcggca gccccaaagaa gaccttatcg	600	
tgcgctgtga ggcaggcgg ggcgagtgcc gaaccttcat gcccccccg gtcacccacc	660	
ccgaccccac tgagcgcaag tggctgagg cagtggtag gccgcctggc tggccctgt	720	
ggggctgcgg gagctgtgga gaccgtgagt ggctaaggc tggccctcc gtggagccg	780	
cactcattct cttcccttgc ctactatacg gggcatatgc cttccctggc tttgatgtcc	840	
cacggctgcc caccatgagt tccgcctga tctacacact ggcgtgcgg gtcttgcca	900	
ccttccccat tgtgctgggg atcctgggt acgggctgag cctgttatgc tttctgccc	960	
ttcggccctt tggggagcca cggcgggagg tggagatcca cggcgtat gtggcccaagt	1020	

B0213WO seq list.ST25.txt

cggccagct	ctttattctc	tacttcttca	acctggccgt	gctttccact	tacctgcccc	1080
aggataccct	caaactgctc	cctctgctca	ctggctcttt	tgccgtctcc	cggctgatct	1140
actggctac	cttgcgttg	ggccgctcct	tccgaggctt	cggctacggc	ctgacgttc	1200
tgccactgct	gtcgatgctg	atgtggAAC	tctactacat	gttcgtggtg	gagccggagc	1260
gcatgctcac	tgccaccgag	agccgcctgg	actacccgga	ccacgcccgc	tcggccctcg	1320
actacaggcc	ccgcccctgg	ggctgagcct	ctccgccttc	gccctcggag	taggggtag	1380
cggcttgggt	ctgacacatc	tttgaacctt	gtggccaggc	ctggacttcg	cccccaggcc	1440
taggaccgcg	gtgggtggaa	ccctgctact	gccccaacag	ggactccaat	caatcgagt	1500
tctcccttg	ccggagctgc	ccttcacatt	tggggcccg	gacagtcata	agggatggac	1560
ttagtttct	tgcagggaaa	aagggtggaca	gccgtgttcc	ttaaggatgc	tgagggcatg	1620
ggccaggac	caggggagag	gcacagctcc	ttccctgagca	gcctctcacc	actgcccacaa	1680
ggctccctaa	tgctggcttc	tgctccactc	cccggtttcc	cgtgaggcag	gaggcagagc	1740
cacagccaag	gccctgacca	tttctgtgcc	agttgtctaa	gcagagcgcc	tcagggacgc	1800
tggaaatgcc	ttaaggatag	aggctggca	tcacatcaa	tggactgtg	gtgtttggtg	1860
aaaacttcc	tgaggatctg	gattcaggac	cctccatgac	tggcttattt	actgtttaca	1920
gctggccagt	gcagagctgc	tgctctttta	cctttttagg	ccccgttaac	ttcccacatt	1980
taaactgccc	agaaggcatg	cctctccac	aggaagaggg	gagcagacag	ggaaatctgc	2040
ctaccaagag	gggtgtgtgt	gtctttgtgc	ccacacgtgg	tggctgggaa	gtgcctggat	2100
ggtgccgtgg	ttgatgttaa	cctagtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgttaaca	2160
ataaaattact	accagtcaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2220
aaaaaaa						2226

<210> 85

<211> 328

<212> DNA

<213> Homo sapiens

<400>	85					
tgaggccgcc	tggctgttcc	tgtggggct	gcgggagctg	tggagaccgt	gagtggctaa	60
gggctgtggc	ctccgtgggaa	gccgcactca	ttctcttccc	ttgcctacta	tacggggcat	120
atgccttcct	gccgtttgat	gtcccacggc	tgcccaccat	gagttccgc	ctgatctaca	180
cactgcgtg	cggggctttt	gccacattcc	ccattgtgct	ggggatcctg	gtgtacggc	240
tgagcctgtt	atgctttct	gcccttcggc	ccttgggaa	gccacggcgg	gaggtggaga	300
tccaccggcg	atatgtggcc	cagtcggt				328

<210> 86

B0213WO seq list.ST25.txt

<211> 1469

<212> DNA

<213> Homo sapiens

<400> 86	
cagagaacgg acagtgtacc cactgaggcg gccaaagctt aactggatca gggcaggatg	60
acatgacctt gtggtagatc ccagaactga ggccccagga tgacagaaca ggagaccctg	120
gccctactgg aagtgaagag gtctgattcc ccagagaaga gctcacccca ggccttggtt	180
cccaatggcc ggcagccaga agggaaaggt ggggccaat ccccgggagc tgagtccctc	240
agagtgggtt cttcagctgg atctcccaca gccatagagg gggctgagga tggtagac	300
agcacagtaa gtgaggctgc caccttgccc tggggactg gccctcagcc cagtgtccg	360
tcccccggatc cccctggctg gcgggacatt gaaccagagc cccctgagtc agaaccactt	420
accaagctag aggagctgcc cgaagacgt gccaacctgc tgcctgagaa agcggccgt	480
gccttcgtgc ctattgacct acagtgcatt gagcggcagc cccaagaaga ctttatcgtg	540
cgtgtgagg caggcgaggg cgagtgcga accttcatgc ccccccgggt caccaccccc	600
gaccccaactg agcgcaagt ggctgaggca gtggtgaggc cgccctggctg ttccctgtgg	660
ggctgcggga gctgtggaga ccgtgagtgg ctaagggtcg tggcctccgt gggagccgca	720
ctcattctct tcccttgcc actatacggg gcatatgcct tcctgccc ttgatgtccca	780
cggctgccc ccatgagttc ccgcctgatc tacacactgc gctgcgggt ctttgccacc	840
ttccccattt tgctgggtga gccygtgaga agaaaggggg catcgggaag tggacttgag	900
gagggcaggg cctgccttgtt gtggggagca ggaggatttc ctttcacttg acctgggccc	960
ctcagggtct cccacccctt gccagtctgc atgcccattt cttcccagga ccacctccac	1020
cccaactgtgt agagcccatg cactgcccac agtgaatctg ccccccagtt actgccttct	1080
gtgccttcc cctgcctttt ctgaccctac ccyytttccc aactccaccc agggatcctg	1140
gtgtacgggc tgagcctgtt atgctttctt gcccttcggc ctttgggga gccacggcgg	1200
gaggtggaga tccaccggcg atatgtggcc cagtcggtcc agctctttat tctctacttc	1260
ttcaacctgg ccgtgcttc cacttacctg ccccaaggata ccctcaaact gctccctctg	1320
ctcaactggtc tctttccgtt ctccggctg atctactggc tgaccttgc cgtggccgc	1380
tccttccgag gcttcggcta cggcctgacg tttctgccac tgctgtcgat gctgatgtgg	1440
aacctctact acatgttcgtt ggtggagcc	1469

<210> 87

<211> 180

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 87
tcagagaacg gacagtgtac ccactgaggc ggccaaagct taactggatc agggcaggct 60
gatctactgg ctgacccttg ccgtggggccg ctcccttccga ggcttcggct acggcctgac 120
gtttctgcca ctgctgtcga tgctgatgtg gaacctctac tacatgttcg tggtgagcc 180

<210> 88

<211> 477

<212> DNA

<213> Homo sapiens

<400> 88
cagagaacgg acagtgtacc cactgaggcg gccaaagctt aactggatca gggcaggatg 60
acatgacctt gtggtagatc ccagaactga ggccccagga tgacagaaca ggagaccctg 120
gccctactgg aagtgaagag ggatcctgggt gtacgggctg agcctgttat gctttctgc 180
cttcggccc tttggggagc cacggcgaaa ggtggagatc caccggcgat atgtggccca 240
gtcggtccaa ctctttatcc tctacttctt caacctggcc gtgcttcca cttacctgcc 300
ccaggatacc ctcaaactgc tccctctgct cactggtctc tttgccgtct cccggctgat 360
ctactggctg acctttggcg tggccgctc cttccgaggc ttggctacg gcctgacgtt 420
tctgccactg ctgtcgatgc tgatgtggaa cctctactac atgttcgtgg tggagcc 477

<210> 89

<211> 1013

<212> DNA

<213> Homo sapiens

<400> 89
cagagaacgg acagtgtacc cactgaggcg gccaaagctt aactggatca gggcaggatg 60
acatgacctt gtggtagatc ccagaactga ggccccagga tgacagaaca ggagaccctg 120
gccctactgg aagtgaagag gtctgattcc ccagagaaga gctcacccca ggccttggtt 180
cccaatggcc ggcagccaga aggggaaggt gggccgaat ccccgccgat tgagtccctc 240
agagtgggtt cttcagctgg atctcccaca gccatagagg gggctgagga tggtctagac 300
agcacagtaa gtgaggctgc cgccctgccc tggggactg gccctcagcc cagtgcctcg 360
ttcccggtat cccctggctg gcgggacatt gaaccagagc cccctgagtc agaaccactt 420
accaagctag aggagctgcc cgaagacgtat gccaacctgc tgcctgagaa agcggcccg 480
gccttcgtgc ctattgacct acagtgcatt gagcggcagc cccaagaaga ctttatcatg 540

B0213WO seq list.ST25.txt
 cgctgtgagg caggcgaggg cgagtgccga accttcatgc cccccgggt cacccacccc 600
 gaccccactg agcgcaagt ggctgaggca gtggtgaggc cgcctggctg ttccctgtggg 660
 ggctgcggga gctgtggaga cggatctggt gtacggctga cctgttatgc tttctgcctt 720
 cggcccttg gggagccacg gcgggagggtg gagatccacc ggcgatatgt ggcccagtgc 780
 gtccagctct ttattctcta cttcttcaac ctggccgtgc tttccactta cctgccccag 840
 gataccctca aactgctccc tctgctcaact ggtctcttg ccgtctcccg gctgatctac 900
 tggctgacct ttgccgtggg ccgctcccttc cgaggcttcg gctacggcct gacgttctg 960
 ccactgctgt cgatgctgat gtggAACCTC tactacatgt tcgtggtgaa gcc 1013

<210> 90

<211> 737

<212> DNA

<213> Homo sapiens

<400> 90
 cccccaggatg acagaacagg agaccctggc cctactggaa gtgaagagtg cattgagcgg 60
 cagcccccaag aagacccttat cgtgcgcgtgt gaggcaggcg agggcgagtg ccgaaccttc 120
 atgccccccc gggtcaccca ccccgacccc actgagcgca agtgggctga ggcagtggtg 180
 aggccgcctg gctgttcctg tggggctgc gggagctgtg gagaccgtga gtggctaagg 240
 gctgtggcct ccgtgggagc cgcactcatt ctcttccctt gcctactata cggggcatat 300
 gccttcctgc cgtttgcgtgt cccacggctg cccaccatga gttccgcct gatctacaca 360
 ctgcgcgtcg gggtcttcgc cacccccc attgtgctgg ggatcctggt gtacggcgt 420
 agcctgttat gctttctgc cttcggccc tttggggagc cacggcggga ggtggagatc 480
 caccggcgat atgtggccca gtcggtccag ctcttatttc tctacttctt caacctggcc 540
 gtgctttcca cttacctgccc ccaggatacc ctcaaactgc tccctctgct cactggtctc 600
 tttggcgtct cccggctgtat ctactggctg acctttcccg tggggccctc cttccgaggc 660
 ttccggctacg gcctgacgtt tctgccactg ctgtcgatgc tgatgtggaa cctctactac 720
 atgttcgtgg tggagcc 737

<210> 91

<211> 2469

<212> DNA

<213> Homo sapiens

<400> 91
 agcgttccctc gggccctcgg cgccacaagg tgtccgggca cgccggccct agcggcgcgt 60

B0213WO seq list.ST25.txt

cgctgccaag	ccggcctccg	cgcgcctccc	tccttccttc	tcccctggct	gttcgcgatc	120
cagcttgggt	aggcggggaa	gcagctggag	tgcgaccgcc	acggcagcca	ccctgcaacc	180
gccagtcgga	ggtgcagtcc	gtagggccctg	gccccccgggt	ggggcccttgg	ggagtcggcg	240
ccgcctccga	ggagctgcaa	ggctcgcccc	tgcccccgt	ggagggcgcg	gggggcgcgg	300
agatattct	tggtgatctt	ggaagtgtcc	gtatcatgga	atcaatctct	atgatggaa	360
gccctaagag	ccttagtgaa	acttgtttac	ctaatggcat	aatggtatc	aaagatgcaa	420
ggaaggtcac	tgttaggtgt	attggaaagtg	gagatttgc	caaattccttgc	accattcgac	480
ttattagatg	cggttatcat	gtggtcatag	gaagtagaaaa	tcctaagttt	gcttctgaat	540
tttttcctca	tgtggtagat	gtcactcatc	atgaagatgc	tctcacaaaa	acaatataaa	600
tatttgttgc	tatacacaga	gaacattata	cctccctgtg	ggacctgaga	catctgcttgc	660
tgggtaaaat	cctgattgtat	gtgagcaata	acatgaggat	aaaccagtagc	ccagaatcca	720
atgctgaata	tttggcttca	ttattccctag	attctttgtat	tgtcaaagga	tttaatgttg	780
tctcagcttgc	ggcacttcag	ttaggaccta	aggatgccag	ccggcagggtt	tatatatgca	840
gcaacaatat	tcaagcgcga	caacaggta	ttgaacttgc	ccgcccaggtt	aatttcattc	900
ccattgactt	gggatcctta	tcatcagcca	gagagattga	aaatttaccc	ctacgactct	960
ttactctctg	gagagggcca	gtgggttag	ctatgagctt	ggccacattt	tttttccttt	1020
attcctttgt	cagagatgt	attcatccat	atgctagaaaa	ccaacagagt	gacttttaca	1080
aaattctat	agagattgt	aataaaacct	tacctatagt	tgcattact	ttgctctccc	1140
tagtataacct	tgcaggtctt	ctggcagctg	cttatcaact	ttattacggc	accaagtata	1200
ggagatttcc	accttgggt	gaaacctgg	tacagtgttag	aaaacagctt	ggattactaa	1260
gtttttctt	cgctatggtc	catgtgcct	acagcctctg	cttaccgatg	agaaggtcg	1320
agagatattt	gtttctcaac	atggcttac	agcaggttca	tgcaaataatt	gaaaactctt	1380
ggaatgagga	agaagtttg	agaattgaaa	tgtatatctc	ctttggcata	atgagccttgc	1440
gcttactttc	cctccctggca	gtcacttcta	tcccttcagt	gagcaatgt	ttaaactggaa	1500
gagaattcag	ttttattcag	tctacacttgc	gatatgtcgc	tctgctcata	agtactttcc	1560
atgttttaat	ttatggatgg	aaacgagctt	ttgaggaaga	gtactacaga	ttttatacac	1620
caccaaactt	tgttcttgct	cttgggttgc	cctcaattgt	aattctggat	ctttgcagc	1680
tttgcagata	cccagactga	gctggactg	gaatttgct	tcctattgac	tctacttctt	1740
taaaagcggc	tgcccattac	attcctcagc	tgccttgca	gttaggtgt	catgtgactg	1800
agtgttggcc	agtgagatga	agtccctca	aaggaaggca	gcatgtgtcc	tttttcatcc	1860
cttcatcttgc	ctgctggat	tgtggatata	acaggagccc	tggcagctgt	ctccagagga	1920
tcaaagccac	acccaaagag	taaggcagat	tagagaccag	aaagaccttgc	actacttccc	1980
tacttccact	gcttttcct	gcatttaagc	cattgtaaat	ctgggtgtgt	tacatgaagt	2040
gaaaattaat	tctttctgcc	tttcagttct	ttatcctgat	accatttaac	actgtctgaa	2100

B0213WO seq list.ST25.txt
ttaactagac tgcaataatt ctttccttg aaagttta aaggataatg tgcaattcac 2160
attaaaattg atttccatt gtcaattagt tatactcatt ttccctgcctt gatcttcatt 2220
tagatatttt gtatctgcctt ggaatatattt atcttctttt taactgtgta attggtaatt 2280
actaaaaactc tgtaatctcc aaaatattgc tatcaaatta cacaccatgt tttcttatcat 2340
tctcatagat ctgccttata aacattnaaa taaaaagtac tatttaatga tttaacttct 2400
gttttgaat gttgtataaca cgtggatttt tttctcatta aataataatt ctataaaaaa 2460
aaaaaaaaag 2469

<210> 92
<211> 2562
<212> DNA
<213> Homo sapiens

<400> 92
agcgttcctc gggccctcgg cgccacaagc tgtccggca cgcagccct agcggcgcgt 60
cgctgccaag ccggcctcgg cgccctccc tccttccttc tccccctggct gttcgcgatc 120
cagcttgggt aggccggaa gcagctggag tgcgaccgca acggcagcca ccctgcaacc 180
gccagtcgga ggtgcagtcc gtaggcctg gccccgggt gggcccttgg ggagtccgg 240
ccgctcccga ggagctgcaa ggctcgcccc tgcccccgt ggagggcgcg gggggcgcgg 300
aggatattct tggtgatctt ggaagtgtcc gtatcatgga atcaatctct atgatggaa 360
gccctaagag ccttagtgaa acttgtttac ctaatggcat aaatggtac aaagatgcaa 420
ggaaggtcac tgttaggtgt attggaagtg gagatttgc caaatcttgc accattcgac 480
ttatttagatg cggctatcat gtggctatcg gaagtagaaaa tcctaagttt gcttctgaat 540
ttttcctca tgtggtagat gtcactcatc atgaagatgc tctcacaaaa acaaataataa 600
tatttgtgc tatacacaga gaacattata cttccctgtg ggacctgaga catctgctt 660
tgggtaaaat cctgattgtat gtgagcaata acatgaggat aaaccagtac ccagaatcca 720
atgctgaata tttggcttca ttattcccag attctttgat tgtcaaagga tttaatgtt 780
tctcagcttgc ggcacttcag ttaggaccta agatgccag ccggcaggat tatatatgca 840
gcaacaatat tcaagcgcga caacaggta ttgaacttgc cggccagttt aatttcattc 900
ccattgactt gggatccctt tcatcagcca gagagattga aaatttaccc ctacgactct 960
ttactctctg gagagggcca gtgggttag ctatgagttt ggccacatit ttttccttt 1020
attccttgc ttagatgtt attcatccat atgctagaaa ccaacagagt gacttttaca 1080
aaattcctat agagattgtt aataaaacct tacctatagt tgccattact ttgctctccc 1140
tagtataacct tgcaggctt ctggcagctg cttatcaact ttattacggc accaagtata 1200
ggagatttcc accttgggtt gaaacctggc tacagtgttag aaaacagctt ggattactaa 1260

B0213WO seq list.ST25.txt
 gtttttctt cgctatggtc catgtgcct acagcctcg cttaccgatg agaaggtag 1320
 agagatattt gtttctcaac atggcttac agcagggtca tgcaaataatt gaaaactctt 1380
 ggaatgagga agaagtttg agaattgaaa tgtatatctc cttggcata atgagcctt 1440
 gcttactttc cctcctggca gtcacttcta tcccttcagt gagcaatgct tttaactgga 1500
 gagaattcag ttttatttag tctacacttg gatatgtcgc tctgctcata agtactttcc 1560
 atgttttaat ttatggatgg aaacgagctt ttgaggaaga gtactacaga ttttatacac 1620
 caccaaactt tgttcttgct cttgtttgc cctcaattgt aattctggta gagacggagt 1680
 ttcaccgtgt tagccaggat ggtctcgatc tcctgacctc gtatccgccc cgcctggcc 1740
 tccaaagtgc tgggattaca gatctttgc agctttgcag atacccagac tgagctggaa 1800
 ctggaatttg tcttcctatt gactctactt cttaaaaagc ggctgcccatt tacattcctc 1860
 agctgtcctt gcagtttagt gtacatgtga ctgagtgttg gccagtgaga tgaagtctcc 1920
 tcaaaggaag gcagcatgtg tccttttca tcccttcattc ttgctgctgg gattgtggat 1980
 ataacaggag ccctggcagc tgcctccaga ggatcaaagc cacacccaaa gagtaaggca 2040
 gattagagac cagaaagacc ttgactactt ccctacttcc actgctttt cctgcattta 2100
 agccattgtt aatctgggtg tgttacatga agtggaaattt aattctttctt gcccctcagt 2160
 tctttatcct gataccattt aacactgtct gaattaacta gactgcaata attttttttt 2220
 ttgaaagctt ttaaaggata atgtcaattt cacattaaaa ttgatttcc attgtcaattt 2280
 agttataactc attttcctgc cttgatcttt cattagatatttttcttgc tttggatatt 2340
 attatcttct tttaactgt gtaattggta attactaaaa ctctgtaatc tccaaaatatt 2400
 tgctatcaaa ttacacacca tgtttctat cattctcata gatctgcctt ataaacattt 2460
 aaataaaaaag tactattttaa tgatttaact tctgtttga aatgttgat acacgtggat 2520
 tttttctca ttaaataata attcttagtaa aaaaaaaaaa ag 2562

<210> 93
<211> 2321
<212> DNA
<213> Homo sapiens

<400> 93
 agcgttcctc gggccctcgg cgccacaagc tgtccggca cgccggccctt agcggcgcg 60
 cgctgccaag ccggccctccg cgccctcccc tccttccttc tccccctggctt gttcgcgatc 120
 cagcttgggtt aggccggggaa gcagctggag tgcgaccgccc acggcagccca ccctgcaacc 180
 gccagtcggaa ggtgcagtcc gtaggccctg gccccccgggtt gggcccttgg ggagtcggcg 240
 ccgctcccgaa ggagctgcaa ggctgcccc tcctccggctt ggagggcgccg gggggcgccgg 300
 aggtatattct tggatgtttt ggaagtgtcc gtatcatgaa atcaatctt atgatgggaa 360

B0213WO seq list.ST25.txt
gccctaagag ccttagtcaa acttgttac ctaatggcat aaatggtatac aaagatgcaa 420
ggaagggtcac tgttaggtgt attggaaagtg gagatttgc caaatcctg accattcgac 480
ttattagatg cggttatcat gtggtcata gaagtagaaa tcctaagttt gttctgaat 540
ttttccctca tgtggtagat gtcactcatc atgaagatgc tctcacaaaa acaaataaa 600
tatttgtgc tatacacaga gaacattata cttccctgtg ggacctgaga catctgcctt 660
tgggtaaaat cctgattgat gtgagcaata acatgaggat aaaccagtac ccagaatcca 720
atgctgaata tttggctca ttattccca agtcttgc tgcataaggaa ttaatgttg 780
tctcagctt ggcacttcag ttaggaccta aggtccag ccggcaggta tatatatgca 840
gcaacaatat tcaagcgcga caacaggta ttgaacttgc ccgccagttt aatttcattc 900
ccattgactt gggatccctta tcatcagcca gagagattga aaatttaccc ctacgactt 960
ttactctctg gagagggcca gtgggttag ctatgagctt ggccacattt tttttccctt 1020
attccttgc cagagatgtt attcatccat atgctagaaa ccaacagatg gacttttaca 1080
aaattccat agagattgtt aataaaacct tacctatagt tgccattact ttgctctccc 1140
tagtataacct tgcaggctt ctggcagctg cttatcaact ttattacggc accaagtata 1200
ggagatttcc accttgggtt gaaacctggt tacagtgttag aaaacagctt ggattactaa 1260
gtttttctt cgctatggtc catgttgcct acagcctctg cttaccgatg agaaggctag 1320
agagatattt gtttctcaac atggcttatac agcagggtca tgcaaattt gaaaactctt 1380
ggaatgagga agaagttgg agaattgaaa tgtatatctc cttggcata atgagcctt 1440
gtttacttcc cctccctggca gtcacttcta tcccttcagt gagcaatgct taaaactgga 1500
gagaattcag ttttattcag atcttttgc gctttcaga taccctactt gagctggAAC 1560
tggattttgt cttccctattt actctacttcc tttaaaagcg gctgcccatt acattcctca 1620
gctgtccctt cagtttaggtg tacatgtgac tgagtgtgg ccagttagat gaagtctcct 1680
caaaggaagg cagcatgtgt ctttttcat cccttcattt tgctgctggg attgtggata 1740
taacaggagc cttggcagct gtctccagag gatcaaagcc acacccaaag agtaaggcag 1800
attagagacc agaaagaccc tgactacttc cttacttcca ctgcttttc ctgcattttaa 1860
gccattgtaa atctgggtgt gttacatgaa gtgaaaattt attctttctg cccttcaggat 1920
ctttatcctg ataccatttta acactgtctg aattaacttag actgcaataaa ttctttctt 1980
tgaaagctt taaaggataa tgtgcaattt acattaaaat tgattttcca ttgtcaattt 2040
gttataactca tttccctgccc ttgatcttcc attagatatt ttgtatctgc ttggaaatata 2100
ttatctctt tttaactgtg taattggtaa ttactaaaac tctgtatctt cccaaatattt 2160
gctatcaaatt tacacaccat gttttctatc attctcatag atctgcccattt taaaacattt 2220
aataaaaaagt actatttaat gatttaactt ctgtttgaa atggtgtata cacgtggatt 2280
ttttctcat taaaataataa ttcttagtaaa aaaaaaaaaa g 2321

B0213WO seq list.ST25.txt

<211> 3226

<212> DNA

<213> Homo sapiens

<400>	94					
cgcgagctaa	gcaggaggcg	gaggcggagg	cggagggcga	ggggcgggga	gcgccgcctg	60
gagcgcggca	ggtcatattg	aacattccag	atacctatca	ttactcgatg	ctgttgataa	120
cagcaagatg	gctttaact	cagggtcacc	accagctatt	ggaccttact	atgaaaacca	180
tggataccaa	ccggaaaacc	cctatcccgc	acagcccact	gtggccccca	ctgtctacga	240
ggtgcattccg	gctcagtact	acccgtcccc	cgtgccccag	tacgccccga	gggtcctgac	300
gcaggcttcc	aaccccgtcg	tctgcacgca	gcccaaattcc	ccatccggga	cagtgtgcac	360
ctcaaagact	aagaaagcac	tgtgcattcac	cttgaccctg	gggaccttcc	tcgtgggagc	420
tgcgctggcc	gctggcctac	tctgaaagtt	catgggcagc	aagtgcctca	actctggat	480
agagtgcac	tcctcaggta	cctgcataa	ccccctcta	tggtgtgatg	gcgtgtcaca	540
ctgccccggc	ggggaggacg	agaatcggt	tgtgcctc	tacggacca	acttcatcct	600
tcagatgtac	tcatctcaga	ggaagtccctg	gcaccctgt	tgccaagacg	actggAACGA	660
gaactacggg	cgggcggcct	gcagggacat	gggctataag	aataattttt	actcttagcca	720
aggaatagt	gatgacagcg	gatccaccag	ctttatgaaa	ctgaacacaa	gtgccggcaa	780
tgtcgatatc	tataaaaaac	tgtaccacag	tgtgcctgt	tcttcaaaag	cagtggtttc	840
tttacgctgt	atagcctgcg	gggtcaactt	gaactcaagc	cggcagagca	ggatcgtggg	900
cggtgagagc	gcgcgtcccg	gggcctggcc	ctggcagg	agcctgcacg	tccagaacgt	960
ccacgtgtgc	ggaggctcca	tcatcacccc	cgagtggatc	gtgacagccg	cccactgcgt	1020
ggaaaaaccc	cttaacaatc	catggcattt	gacggcattt	gcggggattt	tgagacaatc	1080
tttcatgttc	tatggagccg	gataccaat	agaaaaatgt	atttctcatc	caaatttatga	1140
ctccaagacc	aagaacaatg	acattgcgt	gatgaagctg	cagaagcctc	tgactttcaa	1200
cgtacgt	aaaccagtgt	gtctgccaa	cccaggcatg	atgctgcagc	cagaacagct	1260
ctgctggatt	tccgggtggg	gggcaccga	ggagaaagg	aagacctcg	aagtgcgtaa	1320
cgtgcacag	gtgcttc	ttgagacaca	gagatgcaac	agcagatatg	tctatgacaa	1380
cctgatcaca	ccagccatga	tctgtgccgg	cttcctgcag	gggaacgtcg	attcttgc	1440
gggtgacagt	gggggcctc	ttggcacttc	gaagaacaat	atctggggc	tgatagggg	1500
tacaagctgg	ggttctggct	gtgcacaa	ttacagacca	ggagtgtacg	ggaatgtgat	1560
ggtattcacg	gactggattt	atcgacaaat	gagggcagac	ggctaattcc	catggcttc	1620
gtccttgacg	tcgttttaca	agaaaacaat	ggggctgggtt	ttgctcccc	gtgcattt	1680
tactctttaga	gatgattcag	aggtcacttc	attttattt	aacagtgaac	ttgtctggct	1740

B0213WO seq list.ST25.txt

ttggcactct	ctgccattct	gtgcaggctg	cagtggctcc	cctgcccagc	ctgctctccc	1800
taaccccttg	tccgcaaggg	gtgatggccg	gctggttgtg	ggcactggcg	gtcaagtgtg	1860
gaggagaggg	gtggaggctg	ccccatttag	atcttccctgc	tgagtccctt	ccagggggcca	1920
attttggatg	agcatggagc	tgtcacctct	cagctgctgg	atgactttag	atgaaaaagg	1980
agagacatgg	aaagggagac	agccaggtgg	cacctgcagc	ggctgcccctc	tggggccact	2040
tgttagtgtc	cccagcctac	ctctccacaa	ggggattttg	ctgatggggtt	cttagagcct	2100
tagcagccct	ggatggtggc	cagaataaaa	gggaccagcc	cttcatgggt	ggtgacgtgg	2160
tagtcacttg	taaggggaac	agaaacattt	ttgttcttat	ggggtgagaa	tatagacagt	2220
gcccttggtg	cgagggaaagc	aattaaaaag	gaacttgccc	tgagcactcc	tggtcaggt	2280
ctccacctgc	acattgggtg	gggctcctgg	gagggagact	cagccttcct	cctcatcctc	2340
cctgaccctg	ctccttagcac	cctggagagt	gcacatgccc	cttggcctg	gcagggcgcc	2400
aagtctggca	ccatgttggc	ctttcaggc	ctgcttagtca	ctggaaattt	aggtccatgg	2460
ggaaatcaa	ggatgctcag	tttaaggtac	actgtttcca	tgttatgtt	ctacacattt	2520
ctacctcagt	gctcctggaa	acttagcttt	tgtgtctcc	aagtagtcca	cttcattta	2580
actctttgaa	actgtatcac	ctttgccaag	taagagtgg	ggcctatttc	agctgcttt	2640
acaaaatgac	tggctcctga	cttaacgttc	tataaatgaa	tgtgctgaag	caaagtggcc	2700
atggtggcgg	cgaagaagag	aaagatgtgt	tttgggggtt	actctctgtg	gtcccttcca	2760
atgctgtggg	tttccaacca	ggggaaagggt	cccttttgc	ttgccaagtg	ccataaccat	2820
gagcactact	ctaccatgg	tctgcctcct	ggccaagcag	gctggttgc	aagaatgaaa	2880
tgaatgattc	tacagctagg	acttaactt	gaaatggaaa	gtcttgcaat	cccatattgca	2940
ggatccgtct	gtgcacatgc	ctctgttagag	agcagcattc	ccagggacct	tggaaacagt	3000
tggcactgta	aggtgcttgc	tcccaagac	acatcctaaa	aggtgttga	atggtaaaaa	3060
cgtcttcctt	ctttattgcc	ccttcttatt	tatgtgaaca	actgtttgtc	ttttttgtt	3120
tcttttttaa	actgtaaaat	tcaattgtga	aaatgaatat	catgcaaata	aattatgcga	3180
tttttttttc	aaagcaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaa	3226

<210> 95

<211> 3106

<212> DNA

<213> Homo sapiens

<400> 95						
cgcgagctaa	gcaggaggcg	gaggcggagg	cggagggcga	ggggcgggga	gcgccgcctg	60
gagcgcggca	ggtcatattt	aacattccag	atacctatca	ttactcgatg	ctgttgataa	120
cagcaagatg	gtttgaact	cagggtcacc	accagctatt	ggaccttact	atgaaaacca	180

B0213WO seq list.ST25.txt

tggataccaa	ccggaaaacc	cctatccgc	acagcccact	gtggccccca	ctgtctacga	240
ggtgcatccg	gctcagtact	acccgtcccc	cgtccccag	tacgccccga	gggtccctgac	300
gcaggcttc	aaccccgctg	tctgcacgca	gccaaatcc	ccatccggga	cagtgtgcac	360
ctcaaagact	aagaaagcac	tgtcatcac	cttgaccctg	gggaccttcc	tcgtgggagc	420
tgcgctggcc	gctggctac	tctgaaagtt	cattgcctc	tacggaccaa	acttcatcct	480
tcagatgtac	tcatctcaga	ggaagtcctg	gcaccctgtg	tgccaagacg	actggaacga	540
gaactacggg	cgggcggcct	gcagggacat	gggctataag	aataattttt	actctagcca	600
aggaatagtg	gatgacagcg	gatccaccag	ctttatgaaa	ctgaacacaa	gtgcccggcaa	660
tgtcgatatc	tataaaaaaac	tgtaccacag	tgtgcctgt	tcttcaaaag	cagtggttc	720
tttacgctgt	atagcctgct	gggtcaactt	gaactcaagc	cgcagagca	ggatcgtggg	780
cggtagagc	gcgcgtcccc	gggcctggcc	ctggcaggtc	agcctgcacg	tccagaacgt	840
ccacgtgtc	ggaggctcca	tcatcacccc	cgagtggatc	gtgacagccg	cccactgcgt	900
ggaaaaacct	cttaacaatc	catggcattt	gacggcattt	gcggggattt	tgagacaatc	960
tttcatgttc	tatggagccg	gataccaagt	agaaaaagtg	atttctcatc	caaatttatga	1020
ctccaagacc	aagaacaatg	acattgcgt	gatgaagctg	cagaagcctc	tgactttcaa	1080
cgacctagt	aaaccagtgt	gtctgccc	cccaggcatg	atgctgcagc	cagaacagct	1140
ctgctggatt	tccgggtgg	gggcaccg	ggagaaaggg	aagacctcg	aagtgctgaa	1200
cgcgtccaag	gtgcttctca	ttgagacaca	gagatgcaac	agcagatatg	tctatgacaa	1260
cctgatcaca	ccagccatga	tctgtgccc	cttcctgcag	gggaacgtcg	attcttgcca	1320
gggtgacagt	ggagggcctc	tggtaacttc	gaagaacaat	atctggtggc	tgatagggga	1380
tacaagctgg	ggttctggct	gtgc当地	ttacagacca	ggagtgtacg	ggaatgtgat	1440
ggatttcacg	gactggattt	atcgacaaat	gagggcagac	ggctaattcc	catggcttcc	1500
gtccttgacg	tcgttttaca	agaaaacaat	ggggctgg	ttgcttcccc	gtgcatgatt	1560
tactctttaga	gatgattcag	aggtcacttc	attttatta	aacagtgaac	ttgtctggct	1620
ttggcactct	ctgcccattt	gtgcaggctg	cagtggctcc	cctgccc	ctgctctccc	1680
taacccttg	tccgcaaggg	gtgatggcc	gctgggttg	ggcaactggc	gtcaagtgt	1740
gaggagaggg	gtggaggctg	ccccatttag	atcttcc	tgagtcc	ccaggggcca	1800
atttggatg	agcatggac	tgtcacct	cagctgtgg	atgacttgag	ataaaaagg	1860
agagacatgg	aaagggagac	agccagg	cac	ggctgc	tggggccact	1920
tggtagtgtc	cccagctac	ctctcc	ggggat	ctgatgg	cttagagcct	1980
tagcagccct	ggatgg	caga	aaa	ggacc	ttcatgg	2040
tagtcactt	taaggg	aaacattt	ttgtt	gggtg	agaa	2100
gcccttgg	cgagg	aaag	gaa	acttgc	tgac	2160
ctccac	ttgg	ggc	ttcc	ggag	acttgc	2220

B0213WO seq list.ST25.txt
 cctgaccctg ctcctagcac cctggagagt gcacatgccccc cttggccttg gcagggcgcc 2280
 aagtctggca ccatgttggc ctcttcaggc ctgctagtca ctggaaatttgg aggtccatgg 2340
 gggaaatcaa ggtatgcctag tttaaaggta actgtttcca tggttatgtttt ctacacattt 2400
 ctacacctgt gctcctggaa acttagcttt tgatgtctcc aagtagtcca ctttcattta 2460
 actctttgaa actgtatcac ctttgcctaaag taagagtgg ggcctatttc agctgctttg 2520
 aaaaaatgac tggctccctga cttaacgttc tataaatgaa tgtgctgaag caaagtgc 2580
 atggtggcgg cgaagaagag aaagatgtgt tttgttttgg actctctgtg gtcccttcca 2640
 atgctgtggg tttccaaacca ggggaagggt cccttttgc ttgccaagtgc ccataaccat 2700
 gagcactact ctaccatggt tctgcctcctt ggccaaggcag gctggtttgc aagaatgaaa 2760
 tgaatgatttac tacagcttagg acttaacctt gaaatggaaa gtcttgcaat cccatttgc 2820
 ggatccgtct gtgcacatgc ctctgttagag agcagcatttcc ccaggacactt tgaaacagt 2880
 tggcactgtta aggtgcttgc tccccaaagac acatcctaaa aggtgttgta atggtaaaaa 2940
 cgtcttcctt ctttatttgc ctttcttattt tatgtgaaca actgttttgc ttttttttgta 3000
 tcttttttaa actgtaaagt tcaatttgta aaatgaatat catgcaaata aattatgcga 3060
 ttttttttgc aaagcaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 3106

<210> 96
 <211> 3003
 <212> DNA
 <213> Homo sapiens

<400> 96
 cgcgagctaa gcaggaggcg gaggcggagg cgagggcgaa gggggcggggga gcgcgcctg 60
 gagcgcggca ggtcatatttgc aacattccag atacctatca ttactcgatg ctgttgataa 120
 cagcaagatg gctttgaactt caagactaag aaagactgtt gcatcacctt gaccctgggg 180
 accttcctcg tgggagctgc gctggccgtt ggcctactctt ggaagttcat gggcagcaag 240
 tgctccaactt ctgggataga gtgcacttcc tcaggtacctt gcatcaaccc ctctaacttgg 300
 tgtgtatggcg tgtcacactg cccggcggg gaggacgaga atcgggtgttgc tgcctctac 360
 ggacccaaactt tcatccctca gatgtactca tctcagagga agtcctggca ccctgtgtgc 420
 caagacgactt ggaacgagaa ctacgggcgg gcccgcctgca gggacatggg ctataagaat 480
 aatttttactt ctggccagg aatagtggat gacagcggat ccaccagctt tatgtaaactg 540
 aacacaagtgc ccggcaatgtt cgatatactt aaaaaaaaaactgtt accacagtgttgc tgcctgttct 600
 tcaaaaaggcag tggtttctt acgctgtata gcctgcgggg tcaacttgcga ctcaagccgc 660
 cagagcagga tcgtggcgg tgagagcgcg ctccgggggg cctggccctg gcaggtcagc 720
 ctgcacgttcc agaacgttcca cgtgtgcggaa ggctccatca tcaccccgaa gtggatcgttgc 780

B0213WO seq list.ST25.txt
 acagccgccc actgcgtgga aaaaccttctt aacaatccat ggcattggac ggcatttgcg 840
 gggattttga gacaatcttt catgttctat ggagccggat accaagtaga aaaagtgatt 900
 tctcatccaa attatgactc caagaccaag aacaatgaca ttgcgctgat gaagctgcag 960
 aagcctctga ctttcaacga cctagtgaaa ccagtgtgtc tgcccaaccc aggcatgatg 1020
 ctgcagccag aacagctctg ctggatttcc ggggtggggg ccaccgagga gaaaggaaag 1080
 acctcagaag tgctgaacgc tgccaaagggtg cttctcattt agacacagag atgcaacagc 1140
 agatatgtct atgacaacct gatcacacca gccatgatct gtgccggctt cctgcagggg 1200
 aacgtcgatt cttgccaggg tgacagtgga gggcctctgg tcacttcgaa gaacaatatc 1260
 tggtgtgctga taggggatac aagctgggt tctggctgtg ccaaagctta cagaccagga 1320
 gtgtacggga atgtgatggt attcacggac tggatttattc gacaaatgag ggcagacggc 1380
 taatccacat ggtttcgctc cttgacgtcg ttttacaaga aaacaatggg gctggtttg 1440
 cttccccgtg catgatttac tcttagagat gattcagagg tcacttcatt tttattaaac 1500
 agtgaacttg tctggctttg gcactctctg ccattctgtg caggctgcag tggctccct 1560
 gcccagcctg ctctccctaa ccccttgcctc gcaaggggtg atggccggct ggttgtggc 1620
 actggcggtc aagtgtggag gagaggggtg gaggctgccc cattgagatc ttccctgctga 1680
 gtcctttcca gggccaatt ttggatgagc atggagctgt cacctctcag ctgctggatg 1740
 acttgagatg aaaaaggaga gacatggaaa gggagacagc caggtggcac ctgcagcggc 1800
 tgccctctgg ggccacttgg tagtgtcccc agcctacctc tccacaaggg gattttgctg 1860
 atgggttctt agagccttag cagccctgga tggtgccag aaataaaggg accagccctt 1920
 catgggtggt gacgtggtag tcacttgtaa gggaaacaga aacatttttgg ttcttatggg 1980
 gtgagaatat agacagtgcc cttggtgcga gggaaagcaat tgaaaagaa cttgcccctga 2040
 gcactccctgg tgcagggtctc cacctgcaca ttgggtgggg ctccctggag ggagactcag 2100
 ccttcctccct catcctccct gacccctgctc ctagcacccct ggagagtgca catgcccctt 2160
 ggtccctggca gggcgccaag tctggcacca tggtgccctc ttccaggcctg ctgtcactg 2220
 gaaattgggg tccatggggg aaatcaagga tgctcagttt aaggtacact gtttccatgt 2280
 tatgtttcta cacattgcta cctcagtgtc cctggaaact tagtttga tgtctccaag 2340
 tagtccaccc tcatattaact ctttggaaact gtatcacctt tgccaaagtaa gagtggtggc 2400
 ctatccatgc tgctttgaca aaatgactgg ctccctgactt aacgcttctat aaatgaatgt 2460
 gctgaagcaa agtgcggcatg gtggcgccga agaagagaaa gatgtttt gtttggact 2520
 ctctgtggtc ctttccatgt ctgtgggttt ccaaccaggga gaagggtccc ttttcattt 2580
 ccaagtgcca taaccatgag cactactcta ccatggttct gcctccctggc caagcaggct 2640
 ggtttgcaag aatgaaatga atgattctac agctaggact taaccttcaa atggaaagtc 2700
 ttgcaatccc atttgcagga tccgtctgtc cacatgcctc tgttagagagc agcattccca 2760
 gggacccctgg aaacagttgg cactgttaagg tgcttgctcc ccaagacaca tcctaaaagg 2820

B0213WO seq list.ST25.txt
tgttgtaatg gtgaaaacgt cttccttctt tattgcccct tcttattttat gtgaacaact 2880
gtttgtcttt ttttgtatct tttttaaact gtaaagttca attgtgaaaa tgaatatcat 2940
gcaaataaat tatgcgattt tttttcaaa gaaaaaaaaaaaaaaaaaaaaaaaaa 3000
aaa . 3003

<210> 97
<211> 3102
<212> DNA
<213> Homo sapiens

<400> 97
cgcgagctaa gcaggaggcg gaggcggagg cggagggcga ggggcgggga ggcgcgcctg 60
gagcgcggca ggtcatattt aacattccag atacctatca ttactcgatg ctgttgataa 120
cagcaagatg gcttgaact cagggtcacc accagctatt ggaccttact atgaaaacca 180
tggataccaa ccggaaaacc cctatccgc acagcccact gtggtccccca ctgtctacga 240
gagactaaga aagcaactgtg catcaccttg accctggga ctttcctcgt gggagctgcg 300
ctggccgcgtg gcctactctg gaagttcatg ggcagcaagt gctccaactc tggatagag 360
tgcgactcct caggtacctg catcaacccc tctaactggt gtgatggcgt gtcacactgc 420
cccgccgggg aggacgagaa tcggtgtgtt cgcctctacg gacaaacctt catccttcag 480
atgtactcat ctcagaggaa gtcctggcac cctgtgtgcc aagacgactg gaacgagaac 540
tacgggcggg cggcctgcag ggacatgggc tataagaata attttactc tagccaagga 600
atagtggatg acagcggatc caccagctt atgaaactga acacaagtgc cggcaatgtc 660
gatatctata aaaaactgtt caacagtgtt gcctgttctt caaaagcagt gttttcttta 720
cgctgtatag cctgcggggt caacattgaac tcaagccgc agagcaggat cgtggcgggt 780
gagagcgcgc tcccggggc ctggccctgg caggtcagcc tgcacgtcca gaacgtccac 840
gtgtgcggag gctccatcat caccggcag tggatcgtga cagccgcctt ctgcgtggaa 900
aacaccttta acaatccatg gcattggacg gcatttgcgg ggatttttag acaatcttc 960
atgttctatg gagccggata ccaagtagaa aaagtgtttt ctcattccaaa ttatgactcc 1020
aagaccaaga acaatgacat tgcgtgtatg aagctgcaga agccctgtac tttcaacgac 1080
ctagtgaaac cagtgtgtct gcccaacccca ggcattgtatgc tgcagccaga acagctctgc 1140
tggatcccg ggtggggggc caccggaggaa aagggaaaga cctcagaagt gctgaacgct 1200
gccaagggtgc ttctcattgtt gacacagaga tgcaacagca gatatgtcta tgacaacctg 1260
atcacaccag ccatgatctg tgccggcttc ctgcaggggaa acgtcgattt ttgcctgggt 1320
gacagtggag ggcctctggc cacttcgaag aacaatatct ggtggctgtat aggggataca 1380
agctgggtt ctggctgtgc caaagcttac agaccaggag tgtacggaa tgtgtatggta 1440

B0213WO seq list.ST25.txt

ttcacggact ggatttatcg acaaatgagg gcagacggct aatccacatg gtcttcgtcc	1500
ttgacgtcgt tttacaagaa aacaatgggg ctggtttgc ttccccgtgc atgatttact	1560
cttagagatg attcagaggt cacttcattt ttattaaaca gtgaacttgt ctggcttgg	1620
cactctctgc cattctgtgc aggctgcagt ggctccctg cccagcctgc tctccctaac	1680
cccttgtccg caaggggtga tggccggctg gttgtggca ctggcggtca agtgtggagg	1740
agaggggtgg aggctgccccc attgagatct tcctgctgag tcctttccag gggccaattt	1800
tggatgagca tggagctgtc acctctcagc tgctggatga cttgagatga aaaaggagag	1860
acatggaaag ggagacagcc aggtggcacc tgcaagcggct gccctctggg gccacttgg	1920
agtgtccccca gcctacctct ccacaaggggg attttgcgtga tgggttctta gagccttagc	1980
agccctggat ggtggccaga aataaaggga ccagcccttc atgggtggtg acgtggtagt	2040
cacttgcataag gggAACAGAA acattttgt tcttatgggg tgagaatata gacagtgc	2100
ttgggtgcag ggaagcaatt gaaaaggaac ttgccttgag cactccttgt gcaggtctcc	2160
acctgcacat tgggtggggc tcctgggagg gagactcagc ctccctccctc atcctccctg	2220
accctgctcc tagcaccctg gagagtgcac atgccccttg gtcctggcag ggcgc当地	2280
ctggcaccat gttggcctct tcaggcctgc tagtcactgg aaattgaggt ccatggggga	2340
aatcaaggat gctcagtttta aggtacactg tttccatgtt atgtttctac acattgtac	2400
ctcagtgcctc ctggaaactt agctttgtat gtctccaagt agtccacccctt catttaactc	2460
tttgcactg tatcaccctt gccaagtaag agtgggtggcc tatttcagct gctttgacaa	2520
aatgactggc tcctgactta acgttctata aatgaatgtg ctgaagcaaa gtgc当地	2580
tggcggcgaa gaagagaaag atgtgttttgg ttttgactc tctgtggtcc ct当地	2640
tgtgggttcc caaccagggg aagggtccct tttgcattgc caagtgc当地 aaccatgagc	2700
actactctac catggttctg cctccctggcc aagcaggctg gtttgc当地 aatgaaatgaa	2760
tgtttctaca gctaggactt aacttgaaa tggaaagtct tgcaatccca tttgcaggat	2820
ccgtctgtgc acatgc当地 ctgtgc当地 atagagagca gcattccag ggaccttggaa aacagttggc	2880
actgttaaggat gcttgc当地 ccaagacacat cctaaaagggt gttgtatgg tgaaaacgtc	2940
ttcccttcttt attgcccctt cttatattatg tgaacaactg tttgtcttt tttgtatctt	3000
ttttaaactg taaagttcaa ttgtgaaaat gaatatcatg caaataaatt atgc当地	3060
ttttcaag caaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aa	3102

<210> 98

<211> 2916

<212> DNA

<213> Homo sapiens

<400> 98

B0213WO seq list.ST25.txt

cgcgagctaa	gcaggaggcg	gaggcggagg	cggagggcga	ggggcgggga	gcgcgcctg	60
gagcgcggca	ggtcataattg	aacattccag	atacctatca	ttactcgatg	ctgttgataa	120
cagcaagatg	gctttaact	catgggcgc	aagtgcctca	actctggat	agagtgcgac	180
tcctcaggta	cctgcatcaa	cccctctaac	tgggtgtatg	gcgtgtcaca	ctgccccggc	240
ggggaggacg	agaatcggtg	tgttcgcctc	tacggaccaa	acttcatcct	tcaagatgtac	300
tcatctcaga	ggaagtgcctg	gcaccctgtg	tgccaagacg	actggAACGA	gaactacggg	360
cgggcggcct	gcagggacat	gggctataag	aataattttt	actctagcca	aggaatagtg	420
gatgacagcg	gatccaccag	ctttatgaaa	ctgaacacaa	gtgccggcaa	tgtcgatatc	480
tataaaaaac	tgttaccacag	tgtatgcctgt	tcttcaaaag	cagtggtttc	tttacgctgt	540
atagcctgcg	gggtcaactt	gaactcaagc	cggccagagca	ggatcgtggg	cggtgagagc	600
gcgcgtccgg	gggcctggcc	ctggcaggc	agcctgcacg	tccagaacgt	ccacgtgtgc	660
ggaggctcca	tcatcacccc	cgagtggatc	tgacagccg	cccactgcgt	ggaaaaaacct	720
cttaacaatc	catggcattt	gacggcattt	gcggggattt	ttagacaatc	tttcatgttc	780
tatggagccg	gataccaagt	agaaaaagtg	atttctcatc	caaattatga	ctccaagacc	840
aagaacaatg	acattgcgct	gatgaagctg	cagaagcctc	tgactttcaa	cgacctagtg	900
aaaccagtgt	gtctgccccaa	cccaggcatg	atgctgcagc	cagaacagct	ctgctggatt	960
tccgggtggg	gggcaccga	ggagaaaggg	aagacctcag	aagtgcgtaa	cgctgccaag	1020
gtgttctca	ttgagacaca	gagatgcac	agcagatatg	tctatgacaa	cctgatcaca	1080
ccagccatga	tctgtgccgg	cttcctgcag	gggaacgtcg	attcttgcct	gggtgacagt	1140
ggagggcctc	tggtcacttc	gaagaacaat	atctggtgcc	tgtatgggaa	tacaagctgg	1200
ggttctggct	gtgccaaagc	ttacagacca	ggagtgtacg	ggaatgtgat	ggtattcacf	1260
gactggattt	atcgacaaat	gagggcagac	ggctaatcca	catggcttcc	gtccttgacg	1320
tcgttttaca	agaaaacaat	ggggctgggt	ttgcttcccc	gtgcatgatt	tactctttaga	1380
gatgattcag	aggtcacttc	atttttatta	aacagtgaac	ttgtctggct	ttggcactct	1440
ctgccattct	gtgcaggctg	cagtggctcc	cctgcccagc	ctgctctccc	taacccttgc	1500
tccgcaaggg	gtgatggccg	gctgggtgtg	ggcactggcg	gtcaagtgtg	gaggagaggg	1560
gtggaggctg	ccccattttag	atcttcctgc	tgagtccctt	ccaggggcca	attttggatg	1620
agcatggagc	tgtcacctct	cagctgtgg	atgacttgag	atggaaaagg	agagacatgg	1680
aaagggagac	agccagggtgg	cacctgcagc	ggctgcctc	tggggccact	tggtagtgtc	1740
cccagcctac	ctctccacaa	ggggatttttgc	ctgtatgggtt	cttagagccct	tagcagccct	1800
ggatgggtggc	cagaataaaa	gggaccagcc	cttcatgggt	ggtgacgtgg	tagtcacttg	1860
taaggggaac	agaaaacattt	ttgttcttat	gggggtgagaa	tatagacagt	gcccttggtg	1920
cgagggaaagc	aattgaaaag	gaacttgccc	tgagcactcc	tggtgcaagg	ctccacactgc	1980
acattgggtg	gggctcctgg	gagggagact	cagccttcct	cctcatcctc	cctgaccctg	2040

B0213WO seq list.ST25.txt

ctcctagcac	cctggagagt	gcacatgccc	cttggtcctg	gcagggcgcc	aagtctggca	2100
ccatgttggc	ctcttcaggc	ctgctagtca	ctggaaattt	aggtccatgg	gggaaatcaa	2160
ggatgctcag	ttaaggtac	actgtttcca	tgttatgttt	ctacacattt	ctacctcagt	2220
gctccctggaa	acttagcttt	tgtatgttcc	aagttagtcca	ccttcatttt	actctttgaa	2280
actgtatcac	ctttgccaag	taagagtgg	ggccttattt	agctgcattt	acaaaatgac	2340
tggctcctga	cttaacgttc	tataaatgaa	tgtgctgaag	caaagtgcc	atggtgtgg	2400
cgaagaagag	aaagatgtgt	tttggtttgg	actctctgtt	gtcccttcca	atgctgtgg	2460
tttccaacca	gggaaagggt	cccttttgc	ttgccaagt	ccataaccat	gagcactact	2520
ctaccatgg	tctgcctcct	ggccaagcag	gctgggttgc	aagaatgaaa	tgaatgattt	2580
taacagctagg	acttaacctt	gaaatggaaa	gtcttgcatt	cccatttgc	ggatccgtct	2640
gtgcacatgc	ctctgttagag	agcagcattt	ccagggacct	tggaaacagt	tggcactgtt	2700
aggtgcttgc	tccccaaagac	acatcctaaa	aggtgttgc	atggtgaaaa	cgtcttcctt	2760
ctttatttgc	ccttcttattt	tatgtgaaca	actgtttgtt	ttttttgtt	tctttttttt	2820
actgtaaagt	tcaattgtga	aatgaatat	catgcaaata	aattatgcga	tttttttttt	2880
aaagcaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaa		2916

<210> 99

<211> 2653

<212> DNA

<213> Homo sapiens

<400>	99					
ctcaaaagg	gccggattt	cttctcctgg	aggcagatgt	tgcctcttc	tctcgctcg	60
attggttcag	tgcactctag	aaacactgct	gtgggtggaga	aactggaccc	caggtctgg	120
gcgaatttca	gcctgcaggg	ctgataagcg	aggcatttagt	gagattgaga	gagactttac	180
cccgccgtgg	tgggtggagg	gcgcgcagta	gagcagcagc	acaggcgccg	gtcccccggag	240
gccggctctg	ctcgcgcga	gatgtggaa	ctccttcacg	aaaccgactc	ggctgtggcc	300
accgcgcgcc	gcccgcgtg	gctgtgcgt	ggggcgctgg	tgctggcg	tggcttctt	360
ctcctcggct	tcctctcgg	gtgggttata	aaatcctcca	atgaagctac	taacattact	420
ccaaaggata	atatgaaagc	atttttggat	gaattgaaag	ctgagaacat	caagaagttc	480
ttatataatt	ttacacagat	accacattt	gcaggaacag	aacaaaacctt	tcagcttgca	540
aagcaaattt	aatcccagt	gaaagaattt	ggcctggatt	ctgttgagct	agcacattat	600
gatgtccctgt	tgtcctaccc	aaataagact	catcccaact	acatctcaat	aattaatgaa	660
gatggaaatg	agatttcaa	cacatcatta	tttgaaccac	ctccctccagg	atatgaaaat	720
gtttcgata	ttgttaccacc	tttcagtgtt	ttctcttc	aaggaatgcc	agagggcgat	780

B0213WO seq list.ST25.txt

ctagtgtatg ttaactatgc acgaactgaa gacttctta aattggaaacg ggacatgaaa	840
atcaattgct ctggaaaaat tgtaattgcc agatatggaa aagtttcag aggaaataag	900
gttaaaaatg cccagctggc aggggccaaa ggagtcatc tctactccga ccctgctgac	960
tactttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtgggtgc	1020
cagcgtggaa atatcctaaa tctgaatggt gcaggagacc ctctcacacc aggttaccca	1080
gcaaataaat atgcttataag gcgtggaaatt gcagaggctg ttggctctcc aagtattcct	1140
gttcatccaa ttggataacta tgatgcacag aagctcctag aaaaaatggg tggctcagca	1200
ccaccagata gcagctggag aggaagtctc aaagtgcctt acaatgttgg acctggcttt	1260
actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca	1320
agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt	1380
ctgggaggtc accgggactc atgggtgttt ggtggatttg accctcagag tggagcagct	1440
gttggatcatg aaattgtgag gagcttggaa acactgaaaa aggaagggtg gagacctaga	1500
agaacaattt tgtttgcaag ctgggatgca gaagaatttgc gtcttcctgg ttctactgag	1560
tggcagagg agaattcaag actcctcaa gagcgtggcg tggcttatataat taatgctgac	1620
tcatctatag aaggaaacta cactctgaga gttgatttgc caccgctgat gtacagcttg	1680
gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gcttgcagg caaatctctt	1740
tatgaaagtt ggactaaaaaa aagtccctcc ccagagttca gtggcatgcc caggataagc	1800
aaattgggat ctggaaatga ttttggggatgttgc ttcttccaaac gacttggaaat tgcttcaggc	1860
agagcacggtaatactaaaaaa ttggggaaaca aacaaattca gcggctatcc actgtatcac	1920
agtgtctatg aaacatatga gttggggaa aagttttatgt atccaatgtt taaatatcac	1980
ctcaactgtgg cccaggttcg aggagggatg gtgtttgagc tagccatttc catagtgtc	2040
ccttttattt gtcgagatta tgctgtatgtt ttaagaaagt atgctgacaa aatctacagt	2100
atttctatga aacatccaca gggaaatgaag acatacagtg tatcatttgc ttcaactttt	2160
tctgcagtaa agaattttac agaaatttgc tccaaatgtca gtgagagact ccaggacttt	2220
gacaaaagca acccaatagt attaagaatgt atgaatgtc aactcatgtt tctggaaaga	2280
gcattttattt atccatttgc gttaccagac aggccctttt ataggcatgt catctatgct	2340
ccaaagcagcc acaacaagta tgcagggggag tcattcccag gaattttatgt tgctctgttt	2400
gatattgaaa gcaaagtggaa cccttccaag gcctggggag aagtgaagag acagatttat	2460
gttgcagcct tcacagtgc ggcagctgca gagacttgc gtgaagttagc ctaagaggat	2520
tcttttagaga atccgtatttgc aattttgtgtgt gtatgtcact cagaaagaat cgtaatgggt	2580
atattgataa atttttaaaaat tggtatattt gaaataaaatgt tgaatattat atataaaaaaa	2640
aaaaaaaaaaaaaaa aaa	2653

<210> 100

<211> 2466

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400>	100					
ctcaaaaaggg	gccggatttc	cttctcctgg	aggcagatgt	tgcctcttc	tctcgctcg	60
attggttcag	tgcactctag	aaacactgct	gtgggtggaga	aactggaccc	caggtctgga	120
gCGAATTCCA	GCCTGCAGGG	CTGATAAGCG	AGGCATTAGT	GAGATTGAGA	GAGACTTTAC	180
CCCGCCGTGG	TGGTTGGAGG	GCGCAGCTGA	GAGCAGCAGC	ACAGGCCGCG	GTCCCAGGAG	240
GCCGGCTCTG	CTCGCGCCGA	GATGTTGAAT	CTCCCTTCACG	AAACCGACTC	GGCTGTGGCC	300
ACCGCGCGCC	GCCCAGCTG	GCTGTGCCTG	GGGGCGCTGG	TGCTGGCGGG	TGGCTTCTT	360
CTCCCTCGCT	TCCCTTCTGG	GTGGTTTATA	AAATCCTCCA	ATGAAGCTAC	TAACATTACT	420
CCAAAGCATA	ATATGAAAGC	ATTTTGGAT	GAATTGAAAG	CTGAGAACAT	CAAGAAGTTC	480
TTATATAATT	TTACACAGAT	ACCACATTAA	GCAGGAACAG	AACAAAACCTT	TCAGCTTGCA	540
AAGCAAATT	AATCCCAGTG	GAAGAAATT	GGCCTGGATT	CTGTTGAGCT	AGCACATTAT	600
GATGTCCTGT	TGTCCTACCC	AAATAAGACT	CATCCCAACT	ACATCTCAAT	AATTAATGAA	660
GATGGAAATG	AGATTTCAA	CACATCATTAA	TTGAAACCAC	CTCCCTCCAGG	ATATGAAAAT	720
GTTTCGGATA	TTGTACCAACC	TTTCAGTGCT	TTCTCTCTC	AAGGAATGCC	AGAGGGCGAT	780
CTAGTGTATG	TAACTATGTC	ACGAACTGAA	GACTTCTTAA	AATTGGAACG	GGACATGAAA	840
ATCAATTGCT	CTGGGAAAAT	TGTAATTGCC	AGATATGGGA	AAGTTTCAG	AGGAAATAAG	900
AAATATGCTTA	TAGGCCTGGA	ATTGCAGAGG	CTGTTGGTCT	TCCAAGTATT	.CCTGTTCATC	960
CAATTGGATA	CTATGATGCA	CAGAAGCTCC	TAGAAAAAAAT	GGGTGGCTCA	GCACCAACAG	1020
ATAGCAGCTG	GAGGAGGAATG	CTCAAAGTGC	CCTACAATGT	TGGACCTGGC	TTTACTGGAA	1080
ACTTTTCTAC	ACAAAAAGTC	AAGATGCACA	TCCACTCTAC	CAATGAAGTG	ACAAGAATT	1140
ACAATGTGAT	AGGTACTCTC	AGAGGAGCAG	TGGAACCAGA	CAGATATGTC	ATTCTGGGAG	1200
GTCACCGGGA	CTCATGGGTG	TTTGGTGGTA	TTGACCCCTCA	GAGTGGAGCA	GCTGTTGTT	1260
ATGAAATTGT	GAGGAGCTTT	GGAACACTGA	AAAAGGAAGG	GTGGAGACCT	AGAAGAACAA	1320
TTTTGTTGC	AAGCTGGGAT	GCAGAAGAAT	TTGGTCTTCT	TGGTTCTACT	GAGTGGGAG	1380
AGGAGAACATT	AAGACTCCTT	CAAGAGCGTG	GCCTGGCTTA	TATTAATGCT	GACTCATCTA	1440
TAGAAGGAAA	CTACACTCTG	AGAGTTGATT	GTACACCGCT	GATGTACAGC	TTGGTACACA	1500
ACCTAACAAA	AGAGCTGAAA	AGCCCTGATG	AAGGCTTGA	AGGCAAATCT	CTTTATGAAA	1560
GTTGGACTAA	AAAAAGTCCT	TCCCCAGAGT	TCAGTGGCAT	GCCAGGATA	AGCAAATTGG	1620
GATCTGGAAA	TGATTTGAG	GTGTTCTTCC	AACGACTTGG	AATTGCTTCA	GGCAGAGCAC	1680
GGTATACTAA	AAATTGGAA	ACAAACAAAT	TCAGCGGCTA	TCCACTGTAT	CACAGTGTCT	1740
ATGAAACATA	TGAGTGGTG	GAAGAGTTT	ATGATCCAAT	GTAAATAT	CACCTCACTG	1800

B0213WO seq list.ST25.txt

tggcccaggt	tcgaggaggg	atggtgttg	agcttagccaa	ttccatagtg	ctcccctttg	1860
attgtcgaga	ttatgcgtga	gttttaagaa	agtatgcgtga	caaaatctac	agtatttcta	1920
tgaaacatcc	acaggaaatg	aagacataca	gtgtatcatt	tgattcactt	tttctgcag	1980
taaagaattt	tacagaaaatt	gcttccaagt	tcagtgagag	actccaggac	tttgacaaaa	2040
gcaacccaat	agtattaaga	atgatgaatg	atcaactcat	gtttctggaa	agagcattta	2100
ttgatccatt	agggttacca	gacaggcctt	tttataggca	tgtcatctat	gctccaagca	2160
gccacaacaa	gtatgcaggg	gagtcatcattc	caggaattta	tgatgctctg	tttgatattg	2220
aaagcaaagt	ggacccttcc	aaggcctggg	gagaagtgaa	gagacagatt	tatgtgcag	2280
ccttcacagt	gcaggcagct	gcagagactt	tgagtgaagt	agcctaagag	gattctttag	2340
agaatccgta	ttgaatttgt	gtggtatgtc	actcagaaag	aatcgtaatg	ggtatattga	2400
taaattttaa	aatttgtata	tttgaataaa	agttgaatat	tatataataaa	aaaaaaaaaa	2460
aaaaaaa						2466

<210> 101

<211> 2560

<212> DNA

<213> Homo sapiens

<400> 101	ctcaaaaagggg	gccggatttc	cttctcctgg	aggcagatgt	tgcctctctc	tctcgctcgg	60
	attggttcag	tgcactctag	aaacactgct	gtggtgagaa	aactggaccc	caggtctgga	120
	gcgaattcca	gcctgcaggg	ctgataagcg	aggcattagt	gagattgaga	gagactttac	180
	cccgccgtgg	tggttggagg	gcgcgcagta	gagcagcagc	acaggcgcgg	gtcccggag	240
	gccggctctg	ctcgcgcccga	gatgtggaat	ctccttcacg	aaaccgactc	ggctgtggcc	300
	accgcgcgcc	gcccgcgtg	gctgtgcgt	ggggcgctgg	tgctggcggg	ttgcttcttt	360
	ctccctcggt	tcctcttcgg	gtggttataa	aaatccctcca	atgaagctac	taacattact	420
	ccaaaggcata	atatgaaagc	atttttggat	gaattgaaag	ctgagaacat	caagaagttc	480
	ttatataatt	ttacacagat	accacattta	gcaggaacag	aacaaaacctt	ttagcttgca	540
	aagcaaattc	aatcccagt	gaaagaattt	ggcctggatt	ctgttgagct	agcacattat	600
	gatgtcctgt	tgtcctaccc	aaataagact	catcccaact	acatctcaat	aattaatgaa	660
	gatggaaatg	agatttcaa	cacatcatta	tttgaaccac	ctccctccagg	atatgaaaat	720
	gtttcggata	ttgttaccacc	tttcagtgct	ttctctccctc	aaggaatgcc	agagggcgat	780
	ctagtgtatg	ttaactatgc	acgaactgaa	gacttcttta	aattggaacg	ggacatgaaa	840
	atcaattgct	ctggaaaaat	tgtaattgcc	agatatggaa	aagttttcag	aggaaataag	900
	gttaaaaaatg	cccagctggc	agggggccaaa	ggagtcattc	tctactccga	ccctgctgac	960

B0213WO seq list.ST25.txt

tactttgctc	ctggggtaaa	gtcctatcca	gatggttgga	atcttcctgg	aggtgtgtc	1020
cagcgtggaa	atatcctaaa	tctgaatggt	gcaggagacc	ctctcacacc	aggttacccaa	1080
gcaaatgaat	atgcttatacg	gcgttggaaatt	gcagaggctg	ttggtcttcc	aagtattcct	1140
gttcatccaa	ttggataacta	tgtatgcacag	aagctcctag	aaaaaatggg	tggctcagca	1200
ccaccagata	gcagctggag	aggaagtctc	aaagtgcctt	acaatgttgg	acctggcttt	1260
actggaaact	tttctacaca	aaaagtcaag	atgcacatcc	actctaccaa	tgaagtgaca	1320
agaatttaca	atgtgatagg	tactctcaga	ggagcagtgg	aaccagacag	atatgtcatt	1380
ctgggaggtc	accgggactc	atgggtgttt	ggtgttattt	accctcagag	tggagcagct	1440
gttgttcatg	aaattgtgag	gagcttggaa	acactgaaaa	aggaagggtt	gagacctaga	1500
agaacaattt	tgtttgcaag	ctgggatgca	gaagaatttgc	gtttcttgg	ttctactgag	1560
tggcagagg	agaattcaag	actccttcaa	gagcgtggcg	tggcttataat	taatgtctgac	1620
tcatctatag	aggaaacta	cactctgaga	gttgattgtt	caccgctgtat	gtacagcttgc	1680
gtacacaacc	taacaaaaga	gctgaaaagc	cctgtatgaag	gctttgaagg	caaatctctt	1740
tatgaaagtt	ggactaaaaa	aagtccccc	ccagagttca	gtggcatgcc	caggataagc	1800
aaattggat	ctggaaatga	ttttgaggtt	ttcttccaaac	gacttggaaat	tgcttcaggc	1860
agagcacggt	atactaaaaa	ttggggaaaca	aacaaattca	gcggctatcc	actgtatcac	1920
agtgtctatg	aaacatatga	gttggggaa	aagttttatg	atccaatgtt	taaatatcac	1980
ctcaactgtgg	cccagggttc	aggaggatgt	gtgtttgagc	tagccaattc	catagtgtc	2040
ccttttgatt	gtcgagatta	tgctgttagtt	ttaagaaaagt	atgctgacaa	aatctacagt	2100
atttctatga	aacatccaca	ggaaatgaag	acatacagt	tatcatttga	ttcacttttt	2160
tctgcagtaa	agaattttac	agaaatttgc	tccaagttca	gtgagagact	ccaggacttt	2220
gacaaaagca	agcatgtcat	ctatgctcca	agcagccaca	acaagtatgc	agggggagtca	2280
ttccccagggaa	tttatgtatgc	tctgtttgat	attgaaagca	aagtggaccc	ttccaaggcc	2340
tggggagaag	tgaagagaca	gatttatgtt	gcagccttca	cagtgcaggc	agctgcagag	2400
actttggatgt	aagtgccta	agaggattct	ttagagaatc	cgtattgaat	ttgtgtggta	2460
tgtcaactcag	aaagaatcgt	aatgggtata	ttgataaattt	ttaaaaattgg	tatatttga	2520
ataaaaggta	atattatata	taaaaaaaaaa	aaaaaaaaaa			2560

<210> 102

<211> 212

<212> DNA

<213> Homo sapiens

<400> 102
 ggagtgcacc cgctgtccac atgccgcgt ctggtggcgg tcgtgcacatcg tccagcaaac 60

B0213WO seq list.ST25.txt
 ggaagatgac cctggaaacg ttcaaacgg gcgtccagca gcggctgact gtagagctcc 120
 tatctgatag ctgcgtgttc agggtagatg gtgaagtgtt cgagacgatc cggcttccg 180
 acatggcgg a tggatata tc tgggtcccc ca 212

<210> 103

<211> 675

<212> DNA

<213> Homo sapiens

<400> 103
 ctagactgac tgaatcaaaa tccctgggt tttgtgcaca tgacggttcg agaaacgcca 60
 gcctaaggga ccctctgcag tctgtccagc ttgtcccttc aacctcatgc caaccaacac 120
 actccagact caaatgtcct tctctcaacc cccgctattt aagtacatgtt ccccaagcca 180
 gttacaagtt cattcctgtt tcattttctc tggagggctg ccatcaatgtt gattgttatt 240
 tatgttgta tgcctcacc aaagtgtctg ccaggcctat cacagtccgt gagctcagg 300
 gagaccaag caaaccaaca cacatttgc aggaccccag gatggaccta agcaagctgt 360
 ctggcccac caggagttcc tgggtggcc aggaggacct gcctgttaca catgaactat 420
 gattcaaaac gtagacatat agtcttcaat taataataac atttaaaaaaa gacaaaaagt 480
 aggtatacat tttgaatgag aatacaa atg agaaatgccc ccattcctcc aagtgcactt 540
 tggtaaaaaa tgagaaggaa agggaggtgc ctgggtggttt cagggaaagg aatgtgtgga 600
 acgcaggct tccatgagca tggggctggc agtaggaaca aagactcgct tgcactggc 660
 ttgcgcctgc gctgg 675

<210> 104

<211> 476

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (464)..(464)

<223> n = a t g or c

<400> 104
 ctgcctccac acactctcca ttggctcaact cagccccctt cctgtgccttc ttttatgtg 60
 ttgtcacac tgccttggt tttgtggagg ccagttcacc atcctaactt ataaattctc 120

B0213WO seq list.ST25.txt
 aagagcaagg accagggctt gttgtgttgcattttgga ttaccccaag aagcagactg 180
 tggatgaca tttaggtaca ggccatttaa caaaggagct cctttgagga acacacttgt 240
 gaaagtggag gtgggagaag agcataatt agaaaagaaga agaagtcaga tgtgatggag 300
 acccagggac agcttccata cctgaggaat tctggagcta gctagtggtc gctggcagtt 360
 gtcccaaatt gaaaagagat ggccaggcat tgataaacct gatatttaga gacagatagt 420
 ggctctggc agaaagatca tctgatggtg ttctcagcac cgngaacaa catttc 476

<210> 105

<211> 265

<212> DNA

<213> Homo sapiens

<400> 105
 gaccaggaaa tcgaaggaa gcgtccgcgc acagaacgtg gcccgtatct tgccgtgatc 60
 gataccccag ggtcgatgca cggactacca gagcaggtgg cttaagctat cgtgctggaa 120
 gcgcttcgaa cagcgcataa agaaaaagcgc cgatgttcc tttacgccta cagtggacca 180
 gggcaagtcc ttgagcacga gctgtatctt tcaccggacg gcatggggcg gcttctagaa 240
 tttctcggct tctcttttgg tggcg 265

<210> 106

<211> 726

<212> DNA

<213> Homo sapiens

<400> 106
 cgttaatttgtaa gaaggagtca cggaaagtgg agacaggaaa ggctgtgagg agccaaggaa 60
 aagaggcgaa gagaaaggcg gacaggagag aggacgagaa tggaaagagaa atcaacagg 120
 gggaaagagaa caacaggcag agggaaaagg aagtaagttt gctgaattct atattaagaa 180
 actggtaaat gtcctgttagg tcaataaaac cataaacttt gaggttatct ttgcatttag 240
 tcagaaaaaaaa atgagaaccc tttgtcagat ttctgcaatg taaccgctaa ttttacagg 300
 ttgtaaaaaca cctgggtctc aatcaattgc tagtggaaaca caattaccct tcccatgagt 360
 cagatgacct tcaggtggac atgatattca caggttggta aaccatgttt tgccctttt 420
 caaatgttag gctactttt cctgaaaatc ctctgcatga aaaattctac cgcccttagt 480
 gtgtctcaca caaggataac ttcaacccaa gctgtgttca acctggcctc caggtccctg 540
 tccttagggc gggacccatc ctctgcttcc cgaataacca acactccctt ccattgccc 600
 gaaaccatcc ctgctacccctc gtgaggaatt aactttaccc aaagaaggc ctgacccctg 660

B0213WO seq list.ST25.txt
tcccagggtcc tgggagaaaag tccctgaact cctagaaggt cccaagcgcac aggagtgtct 720
gttcac 726

<210> 107
<211> 253
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (98)..(98)
<223> n = a t g or c

<400> 107
cggggatgag aacgtatctg ggaggagcac tgccggcaag gggtgctgaa ggattccatg 60
tgccggcagg gcattcccaa ccgtaatcg tctccagnngt gtccgccaac gttcgagat 120
cctggcggcg aatgccatcc ccaaaggctt catggacggg aagcaggcct gcattctcat 180
gatcaaagcc ctggaacttg accccaactt atacaggata gggcagagca aaatcttctt 240
ccgaactggc gtc 253

<210> 108
<211> 448
<212> DNA
<213> Homo sapiens

<400> 108
ccggcaggct gttggttccc gatctccgag cgccaggctcg atccccgtggc gccggccggaa 60
cgccgcgaagc gcgcgtctttt gcccgcgcg cttgcgcgatc aacgcgtcga tctccgcgcg 120
ccgcgtgagg gcaagcgcgcg ctatattttc gcggaaagcc cggtcgatcccg cgctgttcca 180
tcttgggtta ccaccgcgcg actgccggcg cttgggtgcag gacgtatcg tcatgcgcctc 240
ggcgcgcgcgt tcgatctgcc gttcaatgtat gccgagatga cggcttgcgtct cgagaagtgc 300
atttccatg cgccaggatgta aggcgcatttgc aggcgtgagc gacatcagaa tgccctccat 360
ggccctgaccc ataacgccttc tcaatcacta gtgcggccgc ctgcaggatcg accatatggg 420
agagctccca acgcgttggc tgcatagc 448

<210> 109
<211> 437

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400> 109	
cagagggtgc agtgagccga gatcatgccca ctgtactgca gtctggcga cagagaaga	60
ttccatctca taaaaactgt gaactaggca aagtttgtt ccaggaata atcacatccc	120
catcttaata atccccatccc tatctaataat taggcacaat tcttagctgg ccccatgatc	180
tccaatcctt ggtgttacat cctgtataat attcttcct tgagtgtggg tgggacctgt	240
gacttgcttc tagttgagat tatctacatt acataaggct ccatcttgg aтаагагат	300
tctctgctgg ccctgaagta gcagctatgt tgtgaacagc caatggagaa agccatatgg	360
cagagacctg caacagaagg tggacctgaa ggtggcctct ggtcaccagc aacagccccca	420
agaaaaatgaa ttctgcc	437

<210> 110

<211> 244

<212> DNA

<213> Homo sapiens

<400> 110	
ctggcaggc gtagcaggcc ggccctgggt aggccccat actgtcgaaa ccgagcgtca	60
ctatgtcgcc tctcacgcgc gcaacgctgc cacctccgag agcggccgat ctgagaagaa	120
tccaagggtgt cttcagcggt attccaaaga agtttgcctc ctcggaggtt aacggttctc	180
cgttaacgac gatccccatc ttccggtag ttccaccgac atcaagcgag ataacctccc	240
caga	244

<210> 111

<211> 272

<212> DNA

<213> Homo sapiens

<400> 111	
gtgacgagaa gagcagatta aagaagatta gataccactg gtcaatcatg gtagatgcag	60
agaagccaca gaaaaactgg aacccaaaca ggaggccac gaacattgtg tttttgtaga	120
agaagtacag caccatgtt gcaagtcggg agtagcacca atgcccgtga agaatcaaga	180
gcctctccag gtatcgaaat ttccggactg caaagtcgct ggccatcact gccttcaaag	240
ggagagggat tcctgttact ggtgatgccc ac	272

B0213WO seq list.ST25.txt

<210> 112

<211> 413

<212> DNA

<213> Homo sapiens

<400> 112

gtggagccca	cagaaaggag	agggcatcaa	agacacactt	cgctggctgc	accatttgct	60
cagggttggg	cccagctccg	gttacagctc	cataatccat	tgtgttcacc	actgtttgct	120
taggttaac	tcggagtttag	aattctggtt	ttgtttctca	cttagggaaa	aaaaatagct	180
ttgtaaaggg	aggttactaa	ataaaacttt	gagaactcta	ttcacccctca	caggatgact	240
tttggcttc	aattcaatcc	ctggcaggtt	actgttcatg	tatagaattt	ccaggcgact	300
agaaggcatt	tgaaaggaat	tcttaccgaa	cattaacctg	ccttggtaac	cacagaaggc	360
atttctacct	gccaaagctca	ggctgggagc	tttggtgca	tccgacctgc	gcc	413

<210> 113

<211> 541

<212> DNA

<213> Homo sapiens

<400> 113

gtcaggctga	cctggttctt	ggtcatctcc	tcccgggatg	ggggcagggt	gtacacctgt	60
ggttctcggg	gctgtccttt	ggttttggag	atggtttct	cgatgggggc	tgggagggct	120
ttgttggaga	ccttgcactt	gtactccttgc	ccgttcagcc	agtccctggtg	caggacggtg	180
aggacgctga	ccacacggaa	cgtgcgttg	gactgctcct	cccgccgctt	tgtctggca	240
ttatgcacct	accacgccgt	ccacgttaca	gttaaacttg	acctcaggg	ttcgtggct	300
cacgtccacc	accacgcatg	tgacctcagg	ggtccgggag	atcatgaggg	tgtccttggg	360
ttttgggggg	aagaggaaga	actgacggc	cccccaggag	ttcaggtgct	gggcacggtg	420
ggcatgtgt	agttttgtca	caagatttgg	gctcaactct	tttgtccacc	atggtgttgc	480
tgggcttgc	attcactttg	cagatgtaag	tctcatgaat	acggttttct	aattcccgcg	540
g						541

<210> 114

<211> 226

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 114
gtggtgaggc cagggcttcc agcctcggtc tgtctcgaaa ctccgtaccg tggtgtgcgt 60
gtgtgcccattt ctgtgactttt ctactcacca aggttgaaga aaggaaacgg ggaaaatcaa 120
aagggttca aaccccacct cagtaggtgg aggggagcgc ctgccattgg ttgtatTTT 180
gttctgagtt ttcggtgccg tgttccataac tactccatcc catgac 226

<210> 115

<211> 439

<212> DNA

<213> Homo sapiens

<400> 115
ttttagccaa gatacggcgt atatgcaagg gtttgcagt ttattagaag ggattgtgaa 60
gccggtatAG ctagtgcttt tttaaaaAGt tgTTaaaaAA agagccgtat taaacattaa 120
tatggcttCTTT ttTTattGTT gagTTTTat tattacaaaa tcaatttAAA caaataAAAG 180
ccaattGCCG ttgctaataa cgtcagcccc acatgtaacc caatcagtcc taaACCCGCA 240
agcagTTGc cgTTatGGat aaaggtAAAT acttcagcac taaaggtact AAAAGTCGTC 300
agtCCGCCA AAAAACCGAT tatgacaAAAC AACCTGACAT tgggagacAA gtcgctgcAC 360
ataacgCTTC tcaatcacta gtgcggccgc ctgcaggTCG accatatGGG agagCTCCC 420
acgcgttGGA tgcataGCT 439

<210> 116

<211> 175

<212> DNA

<213> Homo sapiens

<400> 116
gggagtGAAG atttctcacc tcgggtCTTC ctagacCTTC aggtcacacG ggaattGTTc 60
tgTTTatAGA cggcgctGGC cttAGTACTC actCTCCCTC tATTTCCCTt GCTTCCttAT 120
aactAGGTttt ccctactCAC ttcctcaAAA agAGTGTatGT aggtccacGT gtacc 175

<210> 117

<211> 521

<212> DNA

<213> Homo sapiens

<400> 117

B0213WO seq list.ST25.txt
 gctacaacca catttggcca caggagttt tggcgggg tggaaaggat ggaaggcctt 60
 ggatttatat tgcacttcat agaccctag gctgctgtgc ggtggactc cacatgcgcc 120
 ggaaggagct tcaggtgagc actgctcatg tgtggatgcc cctgcaacag gcttccctgt 180
 ctgttagagcc aggggtgcaa gtgcctcca cacttgcagt gaatggcttt tccttttagg 240
 tttaagtccct gtctgtctgt aaggcgtaga atctgtccgt ctgtaaggcg tagaatgagg 300
 gttgttaatc catcacaagc aaaaggtcag aacagtaaa cactgcctt ctcctccctc 360
 ttatTTTatg ataaaagcaa atgtggcctt ctcagtatca ttgcattgtt atttgagact 420
 tttaaattaa ggtaaaggct gctgggttg gtacctgtgg attttctat actgtatgtt 480
 tcgtttgcc aataaatga gtattacatt ggcctctcgt a 521

<210> 118

<211> 131

<212> DNA

<213> Homo sapiens

<400> 118
 ctgaagatgc ccctatattc tgtcaaaggt tggcgggggg aggtgttggg gtccttcatt 60
 ctggctccgt ttctggtgct tctggaagtc tctgctcagc acaggaaaga actaacacga 120
 ctaacctagg c 131

<210> 119

<211> 212

<212> DNA

<213> Homo sapiens

<400> 119
 gtggggaga tggttaaaaa cgacatatct gctttcacct acgagaggac actaatgatg 60
 gagcagaggt cgccagatgtt gaagcagatg cagctgtcca agaacgagca ggagcgagag 120
 gcccagctga tccacgacag gaacaccgcg tccccacaccg cggcggcagc caggacccaa 180
 gcgcgccta cgccagacaa ggtgcagatg ac 212

<210> 120

<211> 137

<212> DNA

<213> Homo sapiens

<400> 120

B0213WO seq list.ST25.txt
 accgaagggc tgcatttctt tgtggccta ttctcgagaa aactgggggc agatccctcc 60
 tcaaggaggg gagggccacc ttggttcca gtcaagtatt gtgaaaatta tccaacactc 120
 aggcaatcca cccaaacc 137

<210> 121
 <211> 265
 <212> DNA
 <213> Homo sapiens

<400> 121
 gtggcagtga aggaaaaatc ccacaacagc cttggaatac cagagctcct gaccgtgggt 60
 tagaatggtc ttttattatg aaggacaacc cattgaattt gagaagtcta cagtgaaagc 120
 aaaatgtttt cttaaaatgc aatactatct cgaggcagtt taaattctaa caataggagc 180
 ctacatacca gatggctttg aaatatttac aggtccttta tgccctgaatt ttttagttatc 240
 caggaacaac cattataact tatac 265

<210> 122
 <211> 285
 <212> DNA
 <213> Homo sapiens

<400> 122
 gtcctcgcat cagcgtcatc gtgtgcaccc gcttgggggg ctggagttcc ggttttcttt 60
 gttttttctc tttattcgtc ctttctaaa gatggataac tgatcagaat tgctctgtat 120
 atgcttggga ctggatggaa agactttgga gcagctgtgg ggggtggggg gacaccgaca 180
 accaaacaga cgtgctggct ccagtcctgt ttttactttc aaaaaccaac aagcccgaca 240
 gtggagcctg tcccccccg ggagggtgct catggccca ctcac 285

<210> 123
 <211> 269
 <212> DNA
 <213> Homo sapiens

<400> 123
 gggccggatc tacgccatag attgcacatt gatttctata ctcaatagta cgtataggaa 60
 tattaaaaac catacgccct tctggtaata acatacacctat cgttccacaa taaattgagc 120
 gaggagatga ctctaattgt tcaatatatt tcatggtaact taatttatgt ggcggggata 180

B0213WO seq list.ST25.txt
 acgcttctca atcactatgt cgccgcctg caggtcgacc atatgggaga gctcccaacg 240
 cgttggatgc atagcttgag tattctata 269

<210> 124
 <211> 203
 <212> DNA
 <213> Homo sapiens

<400> 124
 gccgacgatc tcctcggttc tgccctttca ccacaaacac cctctgtcct gacaccgtca 60
 ccagcagtgt gtgttctcca aagaccacag acaggcgctt gaagggcaca ttcatgccgc 120
 ggtgcggccg gaaaccgcag gctgtgctga ccagctcaga gatggcactg gctgcctgct 180
 catcattctc caggtccacc cga 203

<210> 125
 <211> 239
 <212> DNA
 <213> Homo sapiens

<400> 125
 atacagaaga ggggtttgt gggatgagg acagcaggc agtcaccatc tcgaagcacc 60
 tcagccactc ctttattgtt cttgaagcca ggaacacaga actgcttata gtactcaaag 120
 tcccgccgac tgcgagcatt caggtacgtg agtagcggt cggggcattt ttccacgcag 180
 atctggggag cgggacattt gaattccagc agaaccagg ggctggcaca tttcacaat 239

<210> 126
 <211> 461
 <212> DNA
 <213> Homo sapiens

<400> 126
 gacgtcgcat gctccggcc gccatggccg cgggattagc gttatcggtc gcaggcgtca 60
 gtccgtatac atcaacataa gttttcgac ggacctgtgt ttttagtaaa cagtcgttt 120
 cccctagcct ctgcgaccac cccacgccc ccaaccgcaa gagtcggcga cccaaagggtgg 180
 ctccccatct cccaaagtta cggggacaat ttgccgaatt ccttaaccac agttcacccg 240
 caagccttag tataactcaac ccaactacca gcgtcggtt cgggtacggg caacaccacc 300
 actcgcttag aggctttctt cgacagcaca ggatcaccac catcaccaca aacgtggcta 360

B0213WO seq list.ST25.txt
 cgcacacgc ctccctcgca taacgcttct caatcaactag tgccggccgc tgaggcga 420
 ccatatggga gagctcccaa cgcggtggat gcatacgctt a 461

<210> 127
 <211> 284
 <212> DNA
 <213> Homo sapiens

<400> 127
 tcaccgaatc tactgataaa aggaagagaa gaatacttta agaagagctc aaccccagc 60
 tggtatcaga gaagttagt gaggtcactg agaccggcag tctttcttgc ttttgatt 120
 agtgccctca gctggactg ttacgggac agaagacgta catgcttcag gaagacatcc 180
 aggtcggtac catacgcctt ctaatcacta gtccggccgc ctgcaggcgt accatatgg 240
 agagctccca acgcgttggta tgcatagctt gagtattcta tagt 284

<210> 128
 <211> 252
 <212> DNA
 <213> Homo sapiens

<400> 128
 accatgaaac ctacagcggc atctaataca acaacaccag ggatggtctc aacaatatg 60
 acttctacca ccttaaagtc tacacccaaa acaacaagtg tttcacagaa cacatctcag 120
 atatcaacat ccacaatgac cgtaacccac aatagttcag tgacatctgc tgcttcatca 180
 gtaacaatca caacaactat gcattctgaa gcaaagaaag gatcaaaatt tgatactgg 240
 agctttgttg gt 252

<210> 129
 <211> 382
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (380)..(380)
 <223> n = a t c or g

B0213WO seq list.ST25.txt

<400> 129
 gcaggccagg aattaaccaa gactataaaat aggcaccaaa tgacccccc agagaatgtt 60
 cagagaccc aactttgttt agaggtcttg tgtgggtgga acttcctgtt tgcacacaga 120
 gcagcataaa gcccgatgtc tttgggaagt gttgggacc agatggattt ttgggagtag 180
 ggtacaatac agtctggctt cctccagctc cttctttctg caacatgggg aagaacaaac 240
 tccttcatcc aagtctggtt ctctccctct tggccctcct cgctataacg cttctcaatc 300
 actagtgcgg ccgcctgcag gtcgaccata tggagagct cccaacgcgt tggatgcata 360
 gcttgagtat tctatagtgn tc 382

<210> 130

<211> 305

<212> DNA

<213> Homo sapiens

<400> 130
 ggctaatttac gttctcggtgg atttcttcgg tcctgctcag ggtctccagc aggacgttgt 60
 actcgtgaac tttctttttt tgatgcagga actcccgcca gagcttgcctt agttcttcgc 120
 cggagaattt cccagaggctc ttcgccttgc gccacagctt ttccagccgtt gggcatcca 180
 gccccgtcttc ctgggtgccca ctgagagagt tgctggtcac ctgcccgcgt tcctttttc 240
 cgtccagacc atacttggcc aagatgacat tgaggttgcg tatgagtctc gttcccttct 300
 cccccc 305

<210> 131

<211> 337

<212> DNA

<213> Homo sapiens

<400> 131
 atatattattt aggtggggaa acaaaacccc actttctct ctgatcattt tttcataaga 60
 gattctaaga gggagtgaaa aagtaccaac tggactccat tccaggtctt acctctagaa 120
 gacagccagc tctcatttaa gaatctcaga acttggagg aaggaggaaa tccacattaa 180
 attcttagggc ccaacagaca gagtgtcttc attgccaccc ccagtagtgg ggactacagt 240
 gcacctgttag tcccagtaga tgctctgaca tcacagagct tcctgctcta ccagcccacc 300
 tcatgcatgt caccaccata actatagcct gcaagtc 337

<210> 132

<211> 174

B0213WO seq list.ST25.txt

<212> DNA

<213> Homo sapiens

<400> 132
ataaaaaggt ggaaactctc atggtaccat caaaaaggca agaagcattg cccctccacc 60
aagagactaa acaagaaaagt ggatcaggga agaagaaaagc ttcataaag aaacaaaaga 120
cagaaaaatgt cttagat gaacccctta ttctgtcaac tacttatatt cctc 174

<210> 133

<211> 113

<212> DNA

<213> Homo sapiens

<400> 133
cataaaagtac tgacatgatc agaggaatca tcagcaactg catatccatt gctaagccag 60
taatcacat gcaaattccag taaaagagga gcatgaataa atagtctgct ggc 113

<210> 134

<211> 191

<212> DNA

<213> Homo sapiens

<400> 134
aaattatgca tctgtgagga gagaagagag ggaaaaaaaaa aggaaaaaaca aaccaagaaa 60
gtatgccttt ttactttctt attatcctga atagggcata ctccattcac ccttaaggtt 120
ctagaatgaa ccagtcttac tatgtatcta taaccttgcc tttatctcta ttctaatatg 180
gtaatctgtt a 191

<210> 135

<211> 1481

<212> DNA

<213> Homo sapiens

<400> 135
ggcacgaggg ggacgcctct ctcctcctta ttcggtttac tattttattgt tcgggggttt 60
tttaattcc tgtattgctc ggccccggga gtttcgcccc ctgcccggct ccgcggcg 120
gaggatggtg tggaaacggc tggcgcgct ggtgatgttc cctctacaga tggatctatct 180

B0213WO seq list.ST25.txt

ggtgtgaaa gcagccgtcg gactggtgct gcccccaag ctgcgggacc tgtcgcggga	240
gaacgtcctc atcaccggcg gcgggagagg catcgggctg cagctgccc gcgagttcgc	300
ggagcgcggc gccagaaaga ttgttctctg gggccggact gagaaatgcc tgaaggagac	360
gacggaggag atccggcaga tgggactga gtgccattac ttcatctgtg atgtggcaa	420
ccgggaggag gtgtaccaga cggccaaggc cgccggag aagggtgggt acatcaccat	480
cctggtaac aatgccccc tggtccatgg gaagagccta atggacagt atgatgatgc	540
cctccctcaag tcccaacaca tcaacaccct gggccagttc tggaccacca aggccttcct	600
gccgcgtatg ctggagctgc agaatggcca catcgtgtgc ctcaactccg tgctggact	660
gtctgcccattt cccgggtCCA tcgactactg cacatccaa gctgcagcct tcgccttcatt	720
ggagagcctg accctggggc tgctggactg tccggagtc agcgcacca cagtgtgcc	780
cttccacacc agcaccgaga tttccaggcatgagatc aggtttccca accttttcc	840
cccactgaag ccggagacgg tggccggag gacagtggaa gctgtgcagc tcaaccaggc	900
cctccctcctc ctccccatggaa caatgcattgc cctcggttac ttgaaaagca tacttccaca	960
ggctgcactc gaggagatcc acaaatttctc aggaacctac acctgcattga acactttcaa	1020
aggcgacata tagagacagg atgaagacat gtttggggatcc ccacggagtt tggggggccac	1080
agcacctggg cacacaccccg agcacctgtc cattggcatg cttctgtgg gtgagcagga	1140
cagctcctgt ccccgacgaa gaatccggct gcccctggc cagtcggcagg acctttgcac	1200
aggactgtatg ggtataactg accccacacgg ggaggcagga aaacagccag aagccacatt	1260
gacacttttg aacatttcca gttctgttaga gtttattgtc aattgttttca caagtctaacc	1320
cagcctcagc agtgcata gaccatttcc aggagggtct gtcccccagat gctctgcctc	1380
ccgttccaaa acccactcat cctcagcttg cacaactgg ttgaacggca ggaatgaaaa	1440
ataaaagagag atggcttttg tgaaaaaaaaaaaaaaa a	1481

<210> 136

<211> 344

<212> DNA

<213> Homo sapiens

<400> 136 gggttttt taattcctgt attgctggc ccggggagtt tcgccccctg cccggctccg	60
cggcgccggag gatgggtgg aaacggctgg gcgcgtgtgt gatgtttccct ctacagacga	120
tctatctgggt ggtgaaagca gccgtcggac tgggtgtgcc cgccaagctg cgggacctgt	180
cgcgggagaa cgtcctcatc accggcggcg ggagaggcat cgggcgtcag ctcgcccgcg	240
agttcgcgga gcgcggcgcc agaatgattt ttctctgggg ccggactgag aatgcctga	300
aggagacgac ggaggagatc cggcagatgg gcactgagtg ccat	344

B0213WO seq list.ST25.txt

<210> 137

<211> 1088

<212> DNA

<213> Homo sapiens

<400> 137	
tgtatctatct ggtggtgaaa gcagccgtcg gactggtgct gcccgc当地 60	
tgtcgc当地 gaacgtcctc atcaccggcg gc当地ggagagg catc当地ggc当地 cagctc当地ccc 120	
gca当地ggtc当地 ggagc当地ggc当地 gcca当地aaaga tt当地ttctctg gggcc当地ggact gaga当地atgcc 180	
tgaaggagac gacagaggag atccggcaga tggcactga gt当地ccattac tt当地catctgtg 240	
atgtggc当地 aa当地gggaggag gt当地taccaga cggc当地aaggc cgtcc当地gggagg aagg当地gggtg 300	
acatcaccat cctggt当地gaac aatgccc当地cg tggtccatgg gaagac当地cta atggacagtg 360	
atgatgatgc cctc当地ctcaag tcccaacaca tcaacaccct gggcc当地agt当地c tggaccacca 420	
aggc当地ttccct gccgc当地gtatg ctggagctgc agaa当地tggcc当地 catc当地gt当地tc ct当地caactccg 480	
tgctggc当地act gt当地tgc当地catc cccgg当地tgc当地 tc当地gactactg cacatcc当地aa gct当地cagc当地ct 540	
tc当地gcttcat ggagagc当地ctg accctggglocal tggactg tccggaggc aycgc当地ccacca 600	
cagtgctglocal cttccacacc agcaccgaga tggactg catgagactc aggttccca 660	
acctcttcc cccactgaag cggagacgg tggccggag gacactggaa gctgtgc当地c 720	
tcaaccaggc cctc当地ctc当地 ctcccatggc caatgc当地atgc cctc当地gt当地tac tt当地aaaagca 780	
tacttccaca ggctgc当地actc gaggagatcc acaaattctc aggaacctac acctgc当地atga 840	
acacttcaa agggc当地ggaca tagagacagg atgaagacat gcttggagg ccacggagg 900	
tggggglocalccac agcacctggg cacacacccg agcacctgc cattggcatg cttctgctgg 960	
gtgagc当地gga cagctc当地tgtt cccagc当地gaa gaatccggct gccc当地tggc cagtc当地ccagg 1020	
accttgc当地ac aggactgatg ggtataactg accccc当地acag ggaggc当地aggaa aaacagcc当地ag 1080	
aaggccacc 1088	

<210> 138

<211> 399

<212> DNA

<213> Homo sapiens

<400> 138	
tgcattgtcc atgggaggag gaggaggglocal tggttgagct gcacagctc cactgc当地tc 60	
cggccaccg tctccggctt cagtgggglocal aagagggtgg gaaaccttct cccggacggc 120	
cttggccgtc tggtaacaccct cctccggtt gccccacatca cagatgaagt aatggcactc 180	

80213WO seq list.ST25.txt

agtgcccatc tgccggatct cctccgtcg tcccttcagg catttcttag tccggcccc	240
gagaacaatc tttctggcgc cgcgctccgc gaactcgccg gcgagctgac gcccgtatgcc	300
tctcccgccg ccggtgatga ggacgttctc ccgcgacagg tcccgcagct tggcgggcag	360
caccagtccg acggctgctt tcaccaccag atagatcat	399

<210> 139

<211> 745

<212> DNA

<213> Homo sapiens

<400> 139	
ggttggcttct ggctgttttc ctgcctccct gtgggggtca gttacaccca tcagtcctgt	60
gcaaagggtcc tgggactggc ccaggggcag ccggattctt cgctggggac aggagctgtc	120
ctgctcaccc agcagaagca tgccaatgga caggtgctcg ggtgtgtgcc caggtgctgt	180
ggcccccaaa ctccgtggct cctcaagcat gtcttcatcc tgtctctatg tccgccttt	240
gaaagtgttc atgcagggtt aggttccctga gaatttgtgg atctcctcga gtgcagcctg	300
tggaagtatg ctgactctca tgccctggaa catctcggtg ctgggtgtgaa agggcagcac	360
tgtggtggcg ctgactcccg gacagtcccg cagccccagg gtcaggctct ccatgaaggc	420
gaaggctgac gctttggatg tgcagtagtc gacggcaccg gggatggcag acagtgccag	480
cacggagttg aggcacacga tgtggccatt ctgcagctcc agcatacgcg gcaggaaggc	540
cttggtggtc cagaactggc ccaggggttt gatgtgttgg gacttgagga gggcatcatc	600
atcaactgtcc attaggctct tcccatggac cacggcggca ttgttcacca ggatggtgat	660
gtcacccacc ttctcccgga cggccttggc cgtctggta acctccccc ggttgcac	720
atcacagatg aagtaatggc actca	745

<210> 140

<211> 3875

<212> DNA

<213> Homo sapiens

<400> 140	
cggggggacgt cagcgctgcc agcgttgaag gagctgcggg gcgcgggagg aggaagtata	60
gccccggacc gccaggccac caccggccgc ctcagccatg gacgcgtccc tggagaagat	120
agcagacccc acgttagctg aaatggaaa aaacttgaag gaggcagtga agatgtggaa	180
ggacagtccag agaagaacag aagagaaaa tgaaaagaag ctcatatccg gagatattcc	240
aggcccactc cagggcagtg ggcaagatat ggtgagcatc ctccagttt tagtttc	300

B0213WO seq list.ST25.txt

catgcatgga gatgaagatg aggagccccca gagcccccaga atccaaaata ttggagaaca	360
aggctcatatg cttttgtgg gacatagtct gggagcttat atttcaactc tggacaaaga	420
gaagctgaga aaacttacaa ctaggatact ttcagatacc accttatggc tatgcagaat	480
tttcagataat gaaaatgggt gtgcttattt ccacgaagag gaaagagaag gacttgcaaa	540
gatatgtagg cttgccattc attctcgata tgaagacttc gtatggatg gcttcaatgt	600
gttatataac aagaagcctg tcataatatct tagtgctgct gctagacctg gcctggcca	660
ataccttgtt aatcagctcg gcttgcctt cccctgctt tgccgtgtac cctgtaacac	720
tgttttggta tcccagcatc agatggatgt tgccctcctg gagaaactga ttaaagatga	780
tatagagcga ggaagactgc ccctgttgct tgtcgcaa at gcaggaacgg cagcagtagg	840
acacacagac aagattggga gattgaaaga actctgtgag cagtagggca tatggcttca	900
tgtggagggt gtgaatctgg caacatggc tctgggttat gtctcctcat cagtgtggc	960
tgcagccaaa tgtatagca tgacgatgac tcctggcccg tggctgggt tgccagctgt	1020
tcctgcggtg acactgtata aacacatgca ccctgcctt accttagttt ctggcttac	1080
atcaaataag cccacagaca aactccgtgc cctgcctctg tggttatctt tacaataactt	1140
gggacttgcgat gggtttggta agaggatcaa gcatgcctgt caactgagtc aacgggttgc	1200
ggaaagtttta aagaaagtga attacatcaa aattttttttgaagatgagc tcagctcccc	1260
agtgggtgtt ttcagatttt tccaggaatt accaggctca gatccgggtt ttaaagccgt	1320
cccagtgcggcc aacatgacac cttcaggagt cggccgggag aggcaactcg gtgacgcgc	1380
aatcgctgg ctgggagaac agctgaagca gctgggtgcct gcaagcggcc tcacagtcat	1440
ggatctggaa gctgagggca cgtgtttcg gttcagccct ttatgaccg cagcagttt	1500
aggaactcgg ggagaggatg tggatcagct cgtgcctgc atagaaagca aactgccagt	1560
gctgtgtgt acgctccagt tgcgtgaaga gttcaagcag gaatggaaag caacagcagg	1620
tctcctataat gttatgacc ctaactggc tggataggg gttgtcaggat atgaacatgc	1680
taatgtatgat aagacgtttt tggaaatcaga tcccaaggg gaaaacatcc atgctggact	1740
cctgaagaag ttaaatgaac tggaaatctga cctaaccctt aaaataggcc ctgagttaa	1800
gagcatgaag agctgcctt atgtcgccat ggcgagcgcac aacgtcgatg ctgctgagct	1860
cgtggagacc attgcggcca cagccggga gatagaggag aactcgaggc ttctggaaaa	1920
catgacagaa gtggttcgaa aaggcattca ggaagctcaa gtggagctgc agaaggcaag	1980
tgaagaacgg cttctggaaag aggggggtttt gccccggatc cctgttagtgg gctccgtgc	2040
gaattggttt tctccgggtcc aggctttaca gaaggaaaga acttttaact tgacagcagg	2100
ctctctggag tccacagaac ccatatatgt ctacaaagca caaggtgcag gagtcacgct	2160
gcctccaacg ccctcgggca gtcgcaccaa gcagaggctt ccaggccaga agcctttaa	2220
aaggcccctg cgagggttcag atgctttgag tgagaccagc tcagtcagtc acattgaaga	2280
cttagaaaag gtggagcgcc tatccagtgg gccggagcag atcaccctcg aggccagcag	2340

B0213WO seq list.ST25.txt

cactgaggga	cacccagggg	ctcccagccc	tcagcacacc	gaccagacgg	aggcttcca	2400
gaaaggggtc	ccacacccag	aagatgacca	ctcacaggta	gaaggacccg	agagcttaag	2460
atgagactca	ttgtgtggtt	tgagactgta	ctgagtattg	tttcagggaa	gatgaagttc	2520
tattggaaat	gtgaactgtg	ccacatacta	atataaatta	ctgttggttt	tgcttcaactg	2580
ggattttggc	acaatatgt	gcctgaaagg	taggcttct	aggaggggag	tcagctgtc	2640
taacttcatg	tacatgtaga	accacgtttg	ctgtcctact	acgactttc	cctaagttac	2700
cataaacaca	tttattcac	aaaaaacact	tcgaatttca	agtgtctacc	agtagcaccc	2760
ttgcttttc	taaacataag	cctaagtata	tgaggttgcc	cgtggcaact	ttttggtaaa	2820
acagcttttc	attagcactc	tccaggttct	ctgcaacact	tcacagaggc	gagactggct	2880
gtatccttg	ctgtcggtct	ttagtacgat	caagttgcaa	tatacagtgg	gactgctaga	2940
cttgaaggag	agcagtgatt	gtgggattgt	aaataagagc	atcagaagcc	ctccccagct	3000
actgctcttc	gtggagactt	agtaaggact	gtgtctactt	gagctgtggc	aaggctgctg	3060
tctggactg	tcctctgccca	caaggccatt	tctccattt	tataccgttt	gtaaagagaa	3120
actgtaaagt	ctccctctga	ccatatattt	ttaaaatactg	gcaaagctt	taaaaattggc	3180
acacaagtac	agactgtgct	catttctgtt	tagtatctga	aaacctgata	gatgctaccc	3240
ttaagagctt	gctctccgt	gtgctacgta	gcacccacct	ggttaaaatc	tgaaaacaag	3300
tacccctttg	acctgtctcc	cactgaagct	tctactgccc	tggcagctcg	cctggccca	3360
actcagaaac	aggagccagc	agagcactct	ctcacgctga	tccagccggg	caccctgctt	3420
aagtcahtag	aagctcgctg	gcactgccc	ttccctacttt	tccgaagtac	tgcgtcactt	3480
tgtcgtaagt	aatggccct	gtgccttctt	aatccagcag	tcaagctttt	gggagacctg	3540
aaaatggaa	aattcacact	gggtttctgg	actgttagtat	tggaaagcctt	agttatagta	3600
tattaaggct	ataattatac	tctgatttga	tgggattttt	gacatttaca	cttgtcaaaa	3660
tgcaaaaaaaaa	ttttttttgt	gcagatgatt	aaacagtctt	ccctattttg	tgcaatgaag	3720
tatagcagat	aaaatggggg	agggtaaat	tatcaccttc	aagaaaattt	catgtttta	3780
tatataatttg	gaattgttaa	attggttttt	ctgaaacatt	tcacccttga	gatattttt	3840
gaatgttggt	ttcaataaaag	gttcttgaaa	ttgttt			3875

<210> 141
<211> 493
<212> DNA
<213> Homo sapiens

<400>	141					
aggcagtgaa	gatgctggag	gacagtca	gaagaacaga	agaggaaaat	ggaaagaagc	60
tcatatccgg	agatattcca	ggcccactcc	agggcagtgg	gcaagatatg	gtgagcatcc	120

B0213WO seq list.ST25.txt
tccagttagt tcacaatcta atgcatggag atgaagatga ggagccccag agccccagaa 180
tgcaaaatat tggagaacaa gggcatatgg ctttgttag acatagtctg ggagcttata 240
tttcaactct ggacaaagag aagctgagaa aacttacaac taggatactt tcagatacca 300
ccttatggct atgcagaatt ttcagatatg aaaatgggtg tgcttatttc cacgaagagg 360
aaagagaagg acttgcaaag atatgttagc ttgccattca ttctcgatat gaagacttcg 420
tagtggatgg cttcaatgtg ttatataaca agaagcctgt catatatctt agtgctgctg 480
ctagacctgg cct 493

<210> 142

<211> 6263

<212> DNA

<213> Homo sapiens

<400> 142
gtggatttgg tcgtctccct gattccgagc tgcggcagg gagaggggcc tcgcgccgcc 60
ctcagcagcc ggcggcggcc gaggtagacc gagcggggac ggaaggacag accgacgtcg 120
ccgagcttggaa atcatgttag ggcacccgg ggaagggttggaa gcagatgagc acacacagga 180
gccgtctccct caccgccgcc cctctcagca tggAACAGAG gcggccctgg ccccgccc 240
tggaggttggaa cagccgtctt gtggctctgc tctcagtggt ctgggtgctg ctggcccccc 300
cagcagccgg catgcctcag ttcagcacct tccactctga gaatcgtgac tggaccctca 360
accacttgac cgtccaccaa gggacggggg ccgtctatgt gggggccatc aaccgggtct 420
ataagctgac aggcaacctg accatccagg tggctcataa gacagggcca gaagaggaca 480
acaagtcttgc ttacccgccc ctcatcgtgc agccctgcag cgaagtgcgc accctcacca 540
acaatgtcaa caagctgctc atcattgact actctgagaa ccgcctgctg gcctgtggaa 600
gcctctacca gggggctctgc aagctgctgc ggctggatga cctcttcatc ctggtgagc 660
catccccacaa gaaggagcac tacctgtcca gtgtcaacaa gacgggcacc atgtacgggg 720
tgattgtgcg ctctgagggt gaggatggca agctttcat cggcacggct gtggatggaa 780
agcaggattt cttcccgacc ctgtccagcc ggaagctgccc ccgagaccct gagtccctcag 840
ccatgctcga ctatgagcta cacagcgatt ttgtctccctc tctcatcaag atcccttcag 900
acaccctggc cctggctctcc cactttgaca tcttctacat ctacggcttt gctagtgggg 960
gctttgtctta ctttctcact gtccagcccg agacccctga ggggtgtggcc atcaactccg 1020
ctggagacct cttctacacc tcacgcacg tgcggctctg caaggatgac cccaaagtcc 1080
actcatacgt gtccctgccc ttccggctgca cccggggccgg ggtggaaatac cgcctccctgc 1140
aggctgctta cctggccaag cctggggact cactggccca ggccttcaat atcaccagcc 1200
aggacgatgt actctttgcc atcttctcca aaggcagaa gcagtatcac caccggcccg 1260

B0213WO seq list.ST25.txt

atgactctgc	cctgtgtgcc	ttccctatcc	ggccatcaa	cttcagatc	aaggcgcc	1320
tacagtccctg	ctaccagggc	gagggcaacc	tggagctcaa	ctggctgtg	ggaaaggacg	1380
tccagtgcac	caaggcgcc	gtccccatcg	atgataactt	ctgtggactg	gacatcaacc	1440
agccccctggg	aggctcaact	ccagtgagg	gcctgaccct	gtacaccacc	agcagggacc	1500
gcatgaccc	tgtggctcc	tacgtttaca	acggctacag	cgtggtttt	gtggggacta	1560
agagtggcaa	gctaaaaaag	attcgggccc	acggtcccc	ccatggtggg	gtccagtcg	1620
agatggtctc	tgtgctcaag	gacggaagcc	ccatccctcg	ggacatggcc	ttctccattg	1680
atcagcgcta	cctgtacgtc	atgtctgaga	gacaggtcac	cagggtcccc	gtggagtc	1740
gtgagcagta	tacgacttgt	ggggagtgcc	ttagctctgg	ggaccctcac	tgtggctgg	1800
gtgccctgca	caacatgtgc	tcccgaggg	acaaatgcca	acaggcctgg	gaacctaattc	1860
gatttgcgc	cagcatcagc	cagtgtgtga	gccttgcagt	gcatcccgac	agcatctcag	1920
tatctgagca	cagccggttt	cttagcctgg	tagtgagtga	tgctccctgat	ctatctgcgg	1980
gtatcgccctg	tgcctttggg	aacctgacag	aggtggaggg	gcaggtgtcc	gggagccagg	2040
tcatctgcatt	ctcacctggg	cccaaggatg	tccctgtcat	cccgctggat	caagactgg	2100
ttgggcttgg	gctacagctg	aggtccaagg	agacagggaa	gatatttgc	agcaccgagt	2160
tcaagttta	caactgcagt	gcccaccaac	tgtgcgtgc	ctgtgtcaac	agcgccttcc	2220
gctgccattt	gtgcaagtac	cgcaacctct	gcactcatga	ccccaccacc	tgctccctcc	2280
aggagggccg	gatcaatatt	tcaaggact	gtcccccagct	ggtgcccaca	gaggagatct	2340
tgattccagt	cggggaggta	aagccaatca	cccttaaggc	gcgaaatctg	ccccagccgc	2400
agtccggcca	gcgaggctat	gagtgtgtcc	tcaacataca	aggagccatc	caccgggtcc	2460
ccgctctgcg	tttcaacagc	tccagcggtc	agtgtcagaa	cagctcgatc	cagtatgtat	2520
gcatggacat	cagcaatctg	gccgtggatt	tgcgtgttgt	gtggAACGGC	aatttcatca	2580
ttgacaacccc	tcaggacctg	aaagtccatc	tctacaagtg	tgcagcccag	cgggagagct	2640
gcggccctcg	cctcaaggcc	gaccgaaagt	ttgagtgtgg	ctggcgcagc	ggcgcagcgc	2700
ggcgcaccct	ccaccagcac	tgtaccagcc	cttccagccc	ctggctcgac	tggccagcc	2760
acaatgtcaa	gtgctccaac	cctcaaattca	ccgagatttt	gacgggtct	ggaccgcgg	2820
aaggagggac	gcgagtgacc	atccatggcg	tgaacctggg	tctggacttc	tccgagatcg	2880
cccaccatgt	gcaggtggct	gggggtccct	gcacgccc	cccaggggaa	tacatcatcg	2940
ctgagcagat	tgtctgtgag	atggggccatg	ccctcggtgg	aaccacctcc	ggcccgatc	3000
gcctgtgtat	tggcgagtt	aagccagat	tcatgacgaa	gtcccatcag	cagtacacct	3060
tcgtgaaccc	ttctgtgtcg	tcactcaacc	caatccgagg	tcccagtc	ggaggcacta	3120
tggtgaccat	taccggccat	taccttgggg	ctgggagcag	cgtggcagtc	tacctggca	3180
accagacctg	cgagttctac	gggaggtcaa	ttagtgagat	cgtgtgttc	tcaccccat	3240
catccaatgg	ccttggcccg	gtccctgttt	ctgtgagtgt	cgaccgagcc	catgtggata	3300

B0213WO seq list.ST25.txt

gcaacctgca	gtttgagtac	atagatgacc	ctcggtcca	gcgcacatcgag	ccagagtggaa	3360
gcattgccag	tggccacaca	ccccctgacca	tcacaggcctt	caacctggat	gtcattcagg	3420
agccaaggat	ccgagtcaaa	ttcaatggca	aagaatctgt	caatgtgtgt	aaagttgtga	3480
acacaaccac	cctcacctgc	ctggcaccct	ctctgaccac	ggactaccgc	cctggcctgg	3540
acactgtgga	acgcccagat	gagtttgat	ttgtctttaa	caatgtccaa	tccttgctaa	3600
tttacaacga	caccaagttt	atctactacc	ccaaacccgac	ctttgaactg	cttagcccta	3660
ctggagtctt	ggatcaaaaag	ccaggatcgc	ccatcattct	gaagggcaaa	aacctctgcc	3720
ctccgcctc	tggaggggcc	aaactcaact	acactgtgct	catcgagag	acccttgtg	3780
ctgtcaccgt	atctgagacc	cagcttctct	gcgagcctcc	caacctcacc	ggcagcaca	3840
aggtcatggt	tcacgtggc	gggatgggt	tctcgctgg	ctcggtgagt	gtcatctcag	3900
acagcttgct	gaccctgcca	gccatcgta	gcatcgccgc	cgccggcagc	ctccctctca	3960
tcatcgcat	catcgccctc	attgcctaca	agcgcaagtc	tcgagaaaat	gacctcactc	4020
tcaagcggct	gcaaatgcag	atggacaatc	tggagtccc	tgtggccttg	gagtgcaagg	4080
aagctttgc	tgagctccag	acggatatca	atgagttgac	cagtgacctg	gaccgctcag	4140
gaatccctta	cctggactat	cgtacactacg	ctatgcgagt	cctgttccc	ggcatcgagg	4200
accacccct	cctgcgggag	ctggaggtac	aaggaaacgg	gcagcagcac	gtggagaagg	4260
ccctgaagct	ctttgcccag	ctcatcaaca	acaagggtgtt	cctgctgacc	ttcatccgca	4320
ccctggagct	gcagcgcagt	ttctccatgc	gcgaccgggg	caacgtggct	tcgctcatca	4380
tgaccggcct	gcagggccgc	ctggaatatg	ccactgtatgt	cctcaagcag	ctgctctctg	4440
acctcatcga	taagaacctg	gagaacaaga	accacccaa	gctgctactc	cgaggacag	4500
agtctgtggc	tgaaaagatg	ctgaccaatt	ggttcgcctt	cctccctgcac	aagttcctaa	4560
aggagtgcgc	aggggagcca	ctttcatgc	tatactgtgc	catcaagcag	cagatggaga	4620
aggccccat	tgatgccatc	acgggcgagg	cccgctactc	cctgagcgcag	gacaagctca	4680
tccggcagca	gatcgagtac	aagacctga	tcctgaactg	cgtcaaccct	gacaacgaga	4740
acagtccaga	gatcccagt	aagggtttaa	actgtgacac	catcacacag	gtcaaggaga	4800
agattcttga	tgccgtgtat	aagaatgtgc	cctattccca	gcggccgagg	gcagtgac	4860
tggacttgg	gtggcgccaa	ggccggatcg	cccggtcg	gctgcaagat	gaggacatca	4920
ccaccaagat	tgagggtgac	tggaagcggc	tcaacacact	gatgcattat	caggtgtcag	4980
acaggtcggt	ggtggctctg	gtccccaaac	agacccctc	ctacaacatc	cctgcctctg	5040
ccagcatctc	ccggacgtcc	atcagcagat	atgactcc	cttcaggat	acgggcagcc	5100
ccgacagcct	gcggtcccgg	gccccatga	tcacccaga	cctggaaagt	ggggtcaagg	5160
tgtggcatct	ggtgaagaac	catgaccacg	gtgaccagaa	ggagggtgac	cggggcagca	5220
agatgggtgc	cgagatctac	ctgacccggc	tactggccac	caagggcacc	ctgcagaagt	5280
ttgtggacga	cttggggag	accttggatca	gcactgtgca	ccggggcagc	gctctcccc	5340

B0213WO seq list.ST25.txt

tggccatcaa gtacatgttt gatttcctag atgagcaggc agacaggcac agcatccatg	5400
acacagatgt gcggcacacc tggaaaagca actgcctccc tctgcgttc tgggtgaacg	5460
tgattaagaa cccccagttc gtgttgaca tccacaaggg cagcatcacg gacgcctgcc	5520
tctctgttgt ggcccagacc ttcatggact ctgttcaac gtcagagcac cggctggca	5580
aggactcccc ctccaacaag ctgctctatg ccaaggacat ccccagctac aagagctggg	5640
tggagagata ctacgcagac atcgccaagc tcccagccat cagtgaccag gacatgaatg	5700
cctacctcgc cgagcagtcc cgccctgcacg ccgtggagtt caacatgctg agtgcctca	5760
atgagatcta ctcctatgtc agcaagtata gtgaggagct catcggggcc ctagagcagg	5820
atgagcaggc acggcggcag cggctggctt ataagggttga gcagctcatt aatgcctgt	5880
ccattgagag ctgagaggag gagcctcgca ttccctggaa gagggacctg tccaagctgt	5940
cacactggga gtctcagatg gaaggacaag tgatggggat caggccccag agcttgctgt	6000
ccccctgagac cccatcctgg ggagagggga ggactcctct ccctacgcca gccaaatttc	6060
gtcatagcca gttccagctg ggagagacag tgggcgtcgt ccatcctcag tgagaacacc	6120
agagaacccg gggccgggag aaggtgggttcaagccga gaggcacgag ctggggacag	6180
ttctgcctct gtgactgctg ctttgcataa aaactcattt gatgttatatt gggaaataa	6240
tgagaacttt atttaatttt ttt	6263

<210> 143

<211> 1725

<212> DNA

<213> Homo sapiens

<400> 143	
tgtgtcaaca ggcgcattccg ctgcattgg tgcaagtacc gcaacctctg cactcatgac	60
cccacccacct gctcattcca ggagggccgg atcaatattt cagaggactg tccccagctg	120
gtgcccacag aggagatctt gattccagtc ggggaggtaa agccaatcac ccttaaggcg	180
cgaaatctgc cccagccgca gtccggccag cgaggctatg agtgtgtcct caacatacaa	240
ggagccatcc accgggtccc cgctctgcgc ttcaacagct ccagcgttca gtgtcagaac	300
agctcgtacc agtatgtgg catggacatc agcaatctgg ccgtggattt cgctgtggt	360
tggAACGGCA atttcatcat tgacaaccct caggacctga aagtccatct ctacaagtgt	420
gcagcccagc gggagagctg cggccctctgc ctcaaggccg accggaagtt tgagtgtggc	480
tgggtcagcg gcgagcgcag gtgcaccctc caccagcact gtaccagccc ttccagcccc	540
tggctcgact ggtccagcca caatgtcaag tgctccaacc ctcaaatcac cgagattttg	600
acgggtgtctg gaccgcccga aggagggacg cgagtgacca tccatggcgt gaacctgggt	660
ctggacttctt ccgagatcgc ccaccatgtg caggtggctg gggtgccctg cacgccccctc	720

B0213WO seq list.ST25.txt

ccaggggaat acatcatcgc tgagcagatt gtctgtgaga tggccatgc cctcgtaaaa	780
accaccccg ggccagtacg cctgttatt ggcagtgta agccagatt catgacgaag	840
tccccatcgc agtacacccct cgtgaaccct tctgtgtgt cactcaaccc aatccgaggt	900
cccagtcag gaggcactat ggtgaccatt accggccatt accttgggc tggagcagc	960
gtggcagtct acctggcaa ccagacctgc gagttctacg ggaggtaat gagttagatc	1020
gtgtgtgtct caccatccatc atccaatggc cttggcccg tccctgtttc tgtgagtgtc	1080
gaccgagccc atgtggatag caacctgcag tttgagtaca tagatgaccc tcgggtccag	1140
cgcacatcgacg cagagtggag cattgccagt ggccacacac ccctgaccat cacaggcttc	1200
aacctggatg tcattcagga gccaaggatc cgagtcaaat tcaatggcaa agaatctgtc	1260
aatgtgtgtta aagttgtgaa cacaaccacc ctcacctgcc tggcacccctc tctgaccacg	1320
gactaccgcc ctggcctgga cactgtggaa cgcccagatg agtttggatt tgtcttaac	1380
aatgtccaat ctttgctaatttacaacgac accaagtttatactaccc caacccgacc	1440
tttgaactgc ttagccctac tggagtcctt gatcaaaagc caggatgcc catcattctg	1500
aaggggcaaaa acctctgccc tcctgcctct ggaggggcca aactcaacta cactgtgctc	1560
atcggagaga ccccttgtgc tgtcaccgta tctgagaccc agcttctctg cgagctccc	1620
aacctcaccg gycagcacaa ggtcatggtt cacgtggcg ggtatggttt ctcgcctggc	1680
tcggtgagtgc tcatctcaga cagcttgcgtg accctgcccag ccattt	1725

<210> 144

<211> 558

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (462)..(462)

<223> n = a t c or g

ggggcccttct ccatctgctg cttgatggca cagtagatgca tgaagagtttgc ctccccctgcg	60
cactccctta ggaacttgtg caggaggaag ggcgaaccaat tggtcagcat cttttcagcc	120
acagactctg tcctccggag tagcagctt ggggtgttct ttttctccag gtttttatcg	180
atgaggtcag agagcagctg cttgaggaca tcagtggcat attccaggcg gccctgcagg	240
ccggcgtatga tgagcgaagc cacgttgcacc cggcgtcgca tggagaaact ggcgtgcagc	300
tccagggtgc ggtatggatgtt cagcaggaac accttggatgt tggatggatgtt ggcaaaagac	360

B0213WO seq list.ST25.txt
 ttcagggcct tctccacgtg ctgctgcccgg tttccttgta cctccagctc ccgcaggacg 420
 gggtgtcct ccatgccccgg gaacaggact cgcatagcgt angtacgata gtccaggtaa 480
 gggattcctg agcggtccag gtcactggtc aactcattga tatccgtctg gagctcagca 540
 aaagcttcct tgcaactcc 558

<210> 145

<211> 5567

<212> DNA

<213> Homo sapiens

<400> 145
 atggtggAAC acgctgcccc caaacatgga aacgaccgtt ctcagtggga tcaacttcga 60
 gtacaaggGC atgacaggct gggaggtggc tgggtgatcac atttacacag ctgctggAGC 120
 ctcagacaat gacttcatga ttctcactct ggTTgtGCCA ggATTTAGAC ctccGAGTC 180
 ggtgatggCA gacacagaga ataaagaggt ggCCAGAAATC acATTTGTCT ttgagaccCT 240
 ctgttCTgtG aactgtgAGC tctacttcat ggtgggtgtG aattcttagGA ccaacACTCC 300
 tgtggagACG tggaaaggTT ccaaaggCAA acAGTCCAT acctacatCA ttgaggAGAA 360
 cactaccACG agcttcACCT gggCCTTCCA gaggaccACT tttcatgAGG caAGCAGGAA 420
 gtacaccaat gacgttgCCA agatctactC catcaatgtC accaatgtTA tgaatggCGT 480
 ggcctccTAC tgccgtccCT gtgccCTAGA agcctctgat gtgggctccT cctgcacCTC 540
 ttgtccTgCT ggTTactATA ttgaccgAGA ttcaGGAAACC tgccactccT gccccCTAA 600
 cacaattCTG aaagcccACC agcTTatgg tggcaggCC tggTgCCCT gtggTCCAGG 660
 gaccaAGAAC aacaAGATCC actCTCTgtG ctacaatgat tgcacCTTCT cacGcaACAC 720
 tccaaccAGG actTTcaACT acaacttCtC cgCTTggCA aacaccgtCA ctCTTgCTgg 780
 agggCCAAGC ttcaCTTCCA aagggttgAA atacttCCat cactttACCC tcagTCTCTg 840
 tgaaaaccAG ggttaggAAAA tgtCTGTgtG caccgacaat gtcactgACC tccggATTCC 900
 tgagggtgAG tcagggttCT ccaaATCTat cacagcCTAC gtctGCCAGG cagTCatCAT 960
 cccccccAGAG gtgacaggCT acaaggCCGG ggTTCCtCA cagcCTgtCA gcCTTgCTgA 1020
 tcgacttatt ggggtgacAA cagatATgAC tctggatgGA atCACCTCCC cagCTGAact 1080
 tttccacCTG gagTCCTTgg gaatACCggA cgtgatCTC ttttatAGGT ccaatgatgt 1140
 gacCCAGtCC tgcagTTCTG ggagatCAAC caccatCCGC gtcaggtgCA gtCCACAGAA 1200
 aactgtccCT ggaagTTgC tgctGCCAGG aacgtgCTCA gatggacCT gtgatggCTg 1260
 caacttCCAC ttccTGTgg agagCgCggC tgcttGCCG ctctgCTCAg tggCTgACTA 1320
 ccatgCTATC gtcagcAgCT gtgtggCTgg gatCCAGAAG actacttACg tggCTgAGA 1380
 acccaAGCTA tgctCTggTG gcatttCTCT gcctgAGCAG agagTCACCA tctgcaAAAC 1440

B0213WO seq list.ST25.txt

catagatttc tggctgaaag tggcatctc tgcaggcacc tgtactgcc	1500
cgtcttgacc tgctactttt gaaaaaagaa tcaaaaacta gagtacaagt actccaagct	1560
ggtgatgaat gctactctca aggactgtga cctgccagca gctgacagct gcgcctat	1620
ggaaggcgag gatgttagagg acgacccat ctttaccagc aagaagtac tacccggaa	1680
gatcaaatac tttacctcca agcagccgc tcctgtcacc atctctttt cagaggactc	1740
ctgatggatt tgactcagtg ccgctgaaaga catcctcagg aggcccagac atggacctgt	1800
gagaggcact gcctgcctca cctgcctcct cacccatgcat agcacccctt caagcctgcg	1860
gcgatttggg tgccagcatc ctgcaacacc cactgctgga aatctcttca ttgtggcctt	1920
atcagatgtt tgaatttcag atctttttt atagagtacc caaacccctt tttctgtctt	1980
cctcaaacct gccaaatata cccacactt gttgtaaat tatgccctt cttgtatctt	2040
gttccccaaa atggcccatc cgccagagcc atagcttcgt ctgctcataa ttcttatagc	2100
tttggaaatga aaatatttct atcttcttaa gtatagaaac tatttcctt gtcctctaacc	2160
ttaagggcag aaacagctgg gagtttcctt cgcattgcctt cagctcatga tctttcagg	2220
agagaggctg ggtgaggagg gtgtcggtt tccctgggtt ataatcttca tagcagcctg	2280
gatccatttc ccctggataa ccagctaaa gggagtgaaa atggtagtctt gaggcaagg	2340
ggagcaaggc ctggtaaga aaagccttga aaagcataaa aagaggccgg gcgcgggtggc	2400
tcacgcctgt aatcccagca ctttggagg ccgaggccgg cagatcatga ggtcgggaga	2460
ttgagaccat cctggcttac acggtaagc cccgtctctt ctggaaatac aaaaatttt	2520
ccggcgtgg tggcggtgc ctgtggtccc agctactcg gaggctgagg cgggagaata	2580
gcgtggcctt ggaaggcggg gcttgcagtg agccgagatc gcgcactgc actccatcca	2640
gcctgggtga cagagtgaga ctctgcctca aaaaaaaaaa aaaaaaagaa aagcacaaag	2700
agaggcaaca aggaatgttt ttgttttga gacaggctct cactctgtca cctaggctgg	2760
agtgcagtgg cgtaatact gttcagtgca gcctcaagctt cttggcttca ggctatcctc	2820
ccatctcagc ctctcaagta gctggacta cgagtgtgca ccaccaggct cactaatttt	2880
tgtttttt gttagacacgg gtttcaccg ttttgccag gctggcttcc aactccctgg	2940
ctcaagtgtt ctgtccgcctt cggccccc aactgctggg attacaggca taagccactg	3000
cactcagctt tttttttttt ttttaaacca cgtagctcat tgccttctt taagtaatgtt	3060
atagatattt tcaactgaagc caaaggaaata agttcatcaa gaaaatgccca aaagccctgg	3120
tggatacatc ctccctatct tttttttttt cttccacta tcactctatg acactgaaaa	3180
gaaccaggta agcccaaac ccagatgttc cagccatttc ctctattggg tttaccacaa	3240
gacatagcaa accctgtcag tgagaaaaat tccccatctt tgagtgcggc cgtccatgaa	3300
gtttggccca tattatggaa caggggtctc ttatggaaa agagcacaag gaggccaaga	3360
ttttatggg gcacttttagg ggatacagcc cacaatggca tggccctgag gtggccgtga	3420
tgtctgcttc taagcttaac gcatctgctc aggcacagaa taaacgtctt ggctggccaa	3480

B0213WO seq list.ST25.txt

aaaaggaact gaatcccagg cccatacgcc agcaccagaa tcaaaccagt cttcaaggaa	3540
ggaaggctag gagagtttaa caagatttc actgggccca gcatggtgc tcacacctgt	3600
aatcccaagg cagaatggtg gcttgagctc aggagttcaa gaccagcctg ggcaacacag	3660
ttagacccctg tctctaaaaa atttaaaaat aaacaaggta ttcaccaagc tggataactt	3720
ctcaactatta agccccatc ttctctttt ttctattctc aattgctttg tgtgataaaa	3780
aactaaagag acttctggtc caatttctgg caacatccct tctgaaaggt gagtagagt	3840
ggtgtcttct atgcccattt tcccccaattt tacacaaact attatcaatg aacttttaag	3900
tacctagaat gggtaaaacc agagcaagac tttaaattac cttcttctt cttctactgg	3960
cagttctgcc tccatcacta tcaggctagg gtgacccccc cttggtcaag ccccaattgc	4020
ccatgatttg tgccctgtgcc ctttctccag tgaccatttg gtgaccagat ggtagatata	4080
gaaaggggat ggcatttgca agtgactagt ctgccacaaa atgctcatct gattagccac	4140
tgctgcccctg gcaatggctt tgtaagagtc aatgagaact agagccaggc tgtggccct	4200
ggccatcaac agtgttggtg acggcaggga gtcctttgg ttaataaat ccagttttc	4260
tttgggtatc caaattctcc ctcctttt taggagtcag gctctcagaa cctgtgtcca	4320
tgttggact tcccccaactg tggatgcaga tacgcagctc ctgagctcca gcctaaagtc	4380
ttctgttagcc tcagcaatac ttggcacct gctgtctcac tgaatagctt tctttgtga	4440
caaaggccac agacagccct tagactattc cgaaaacagt aggaaaaatt acatatgtct	4500
ttgacttctt tattctgact ccactgattt tagccataat actttaagga gctactttt	4560
actacccctt accgtgctga cttctgcagg tctgcccgt gacctgtcag gaactcctga	4620
gttacgctac tgggtcacc tggatgcacc ctagcaagtt aggcatgtca tatattttt	4680
acagctttat tgagatataa ttcacatatt atacaattca cctttaaaac atacgattca	4740
atggtttca gcaaactcac agagttgtcc gcccacttga gagcaaacac atgttcaatt	4800
ttctttctt tttttttt gagacagagt cagcttgc gcccaggctg gagtgcagt	4860
ccatgatctt ggctcactgc agcctccca tcctgggttc aagtgtccct tctgcttcag	4920
cctccccagt agctgggatt acaggcatgc gccaccacgc ctagctaatt tttgttttt	4980
tagtagagat ggggtttcac cgtgtggcc aggctggct caaactcctg gactcaagt	5040
atccacccac ctcggccctcc caaagtgcgt ggattgcagg tgtgagccac cgtgcctggc	5100
ctacgtgttc aattttctat gaacaaaggc ttttagtcctt gacccaggc taaagtggc	5160
tgtccaaagct gttgttgta gagggagtat gataaaatgt ttaaatctca tttggttacc	5220
ttgagtcctg gaacacgcag taactgtcat gctatagtca tcatctgtat ttggctggga	5280
atacaaatga agattgttgt gtattcaagc agtagggttt ttgctttgt ttttggtaa	5340
gtgccaacaa aactttttt tgtctgacta cattaaagat aagactgact atatttatac	5400
aacagaaaact ttgtaataga tttttcagc tttgtgaaat cgaatttttt ttcatcaggg	5460
ctgggttggat ttccctttta ccctgtatc caagcgtaa tagttgtta gaagatgggt	5520

B0213WO seq list.ST25.txt
tattgcatgt cactttttt tttttgtaaa ataaaaacat accttac 5567

<210> 146

<211> 299

<212> DNA

<213> Homo sapiens

<400> 146
gtaaaaagga aatccaacca gcccgtatga aaaaaaattc gatttcacaa agctgaaaaa 60
atcttattaca aagtttctgt tgtataaata tagtcagtct tatcttaat gtgtcagac 120
aaaaaaaaagt tttgttggca ctAAAacaaa aacAAAagca AAAACCCtac tgcttgaata 180
caccacaatc ttcatTTGta ttcccAGCCA aatacAGATG acgactataG catgacAGTT 240
actgcgtgtt ccaggactca aggtaaccaa atgagatttA aacatTTTat cataCTCCC 299

<210> 147

<211> 1326

<212> DNA

<213> Homo sapiens

<400> 147
gactcaggca ctgggctagg tgcttggat acatccgtga gccacacaaa gttccccacc 60
ccagaggagc tcttacctgg cccagaatct ggatctctgc ccccagCCCC tatcctcaag 120
gttagAGTCCC aaAGATGTCC taaATCTCAC acaggctgag ttgtgcttaa tccatttctg 180
cagacacaac tcATGTACAA atggGCCAAG cCGAAAATCT gtAGCgAGGA CTTGAGGGG 240
gcAGTGAAGC tgCCtGCCTC tggTGTGAAG accCACTGCC CACCCtGCAA CCCAGGCTTC 300
ttcaAAACCA acaACAGCAC ctGCCAGCCC tgCCCATATG gttCCTACTC caATGGCTCA 360
gactgtaccc gctGCCtGC AGGGACTGAA CCTGCTGTGG gatttGAATA caaatGGTGG 420
aacACGCTGC ccacAAACAT ggAAACGACC gttCTCAGTG ggatCAACTT CGAGTACAAG 480
ggCATGACAG gCTGGGAGGT ggCTGGTGTAC cacATTACA cAGCTGTGG AGCCTCAGAC 540
aatGACTTCA tgattCTCAC tCTGGTTGTG ccAGGATTa gacCTCCGCA gTCGGTGTGATG 600
gcAGACACAG agaATAAAAGA ggtGGGCCAGA attCACATTG tCTTTGAGAC CCTCTGTTCT 660
gtGAACtGTG agCTCTACTT catGGTGGGT gtGAATTCTA ggACCAACAC tCCtGTGGAG 720
acgtggAAAG gttCCAAAGG caAACAGTCC tataCCTACA tcATTGAGGA gaACACTACC 780
acgAGCTTCA CCTGGGCCtt ccAGGAGCC ACTTTCTAG aggCAAGCAG gaAGTACACC 840
aatGACGTTG ccaAGATCTA CTCCATCAAT gTCACCAATG ttATGAATGG tGTGGCCTCC 900
tactGCCGTC CCTGTGCCtC agaAGCCTCT gatGTGGGCT CCTCCTGCAC CTCTGTCCt 960

B0213WO seq list.ST25.txt
 gctggttact atattgaccg agattcagga acctgccact cctgccccac taacacaatt 1020
 ctgaaagccc accagccta tggtgtccag gcctgtgtgc cctgtggtcc agggaccaag 1080
 aacaacaaga tccactctct gtgctacaac gattgcacct tctcacgcaa cactccgacc 1140
 aggactttca actacaactt ctccgccttg gcaaacactg tcactcttgc tggagggcca 1200
 agcttcactt ccaaagggtc gaaaatacttc catcacatca ccctcagtct ctgtggaaac 1260
 cagggtagga aaatgtctgt gtgcaccgac aatgtcactg acctccggat tcctgagggt 1320
 gagtc 1326

<210> 148

<211> 698

<212> DNA

<213> Homo sapiens

<400> 148
 cttccatgt ggccgcagctg tcagctgctg gcaggtcaca gtccttgaga gtagcattca 60
 tcaccagctt ggagtacttg tactctagtt tttgattctt ttccaaaag tagcaggtca 120
 agacggtgag caggatggca gtacaggtgc ctgcagagat gcccacttgc agccagaaat 180
 ctatggtttt gcagatggtg actctctgtc cagggcagaga aatgccacca gagcatagct 240
 tgggttctcg ccacacgtaa gtagtcttgc ggatcccagc cacacagctg ctgacgatag 300
 catggtagtc agccactgag cagagcgggc aagcagccgc gctctccac aggaagtgga 360
 agttgcagcc atcacaggtc ccatctgagc acgttccctgg cagcagcaaa cttccaggga 420
 cagtttctg tggactgcac ctgacgcggta tgggtggta tctcccagaa ctgcaggact 480
 gggtcacatc attggaccta taaaagaaga tcacgtccgg tattcccaag gactccaggt 540
 ggaaaagttc agctggggag gtgattccat ccagagtcat atctgttgc accccaataa 600
 gtcgatcagc aaggctgaca ggctgtgagg aaaccccgcc cttgtagcct gtcacctctg 660
 gggggatgat gactgcctgg cagacgtagg ctgtgata 698

<210> 149

<211> 478

<212> DNA

<213> Homo sapiens

<400> 149
 cttccatgt ggccgcagctg tcagctgctg gcaggtcaca gtccttgaga gtagcattca 60
 tcaccagctt ggagtacttg tactctagtt tttgattctt ttccaaaag tagcaggtca 120
 agacggtgag caggatggca gtacaggtgc ctgcagagat gcccacttgc agccagaaat 180

B0213WO seq list.ST25.txt
 ctatggttt gcagatggtg actctctgct caggcagaga aatgccacca gagcatagct 240
 tgggttctcg ccacacgtaa gtagtcttct ggccacctct ttattctctg tgtctgccc 300
 cacccactgc ggaggtctaa atccctggcac aaccagagtg agaatcatga agtcattgtc 360
 tgaggctcca gtagctgtgt aaatgtgatc accagccacc tcccagcctg tcatgccctt 420
 gtactcgaag ttgatcccac tgagaacggt cgttccgtg tttgtgggca gcgtgttc 478

<210> 150

<211> 315

<212> DNA

<213> Homo sapiens

<400> 150
 cgtggtagg gcacggggtc tttctgaaa tgtaaagggt tcagacgggg tttctggttt 60
 tagaagggtt cgtggtcttc gagttggct aaagtagagt tcgttgtgt gtttctgact 120
 cctaatgaga gttccttcca gaccgttacg tgtctcttgg ccaagccccca ggaaggaaat 180
 gatcagctc tggctcttgc tctccaggc tgatccttta ttcagaatac cacaagaaaa 240
 ggacattcag ctcaggcgc cctgcccgtgt tgaagagttc tgactgcaca aaccagcttc 300
 tggtttcttc tggaa 315

<210> 151

<211> 219

<212> DNA

<213> Homo sapiens

<400> 151
 tttgaggca agtagtgtct tggcacagag aagagccag agtatacgc ggaagcaaga 60
 gagttagcca cgtattgtta gtagaatttt ccagtgttgt gcttggaaatg gtggagtgtt 120
 ctggttcagt ctccctttgt tttatcgagt atttattcct gtgcttcagt cggttaacagc 180
 ccgaattatc ggtgacccat cactacatgg agatgtttg 219

<210> 152

<211> 351

<212> DNA

<213> Homo sapiens

<400> 152
 gccttaacc atgtacaact ggctggcggc caggaccgac agggcagcaa ggctccagg 60

B0213WO seq list.ST25.txt

gtgccttcgc cggaagtccc cacaacagct gaggacgatg agagagatga agaacacagc	120
ataggagaca tagtaggtcc aaacattctc ccggacaaag cccttcacct ccgcaacaga	180
agtgaacaca gacaccgtgg acagggtcac cgacagctgc aaggtcagca ctaggaacac	240
cttgcggatg aaggcctgtc ggatgcttt gtcatcccag ttggtgccag ggaagtcctg	300
gttgtcatag taagatgggg gaccctccctc ctggtaaat tgataacgc t	351

<210> 153

<211> 286

<212> DNA

<213> Homo sapiens

<400> 153	
tgagctgagg gtttagtggtg actttttgat acgaaaaaat gcattttgtg cagctggta	60
ggtataatcc aaagcaaaag caggggcaaa aatggacttc ctgaagttat ctctgctcct	120
gctggttatc ctccagaatc tgtcatgtt actgagagtg cgtgcttgct ttctcaggcc	180
tcctggctaa tagcacaggc ctgctggaaa tcacccat ggttttcat tgcctgtgca	240
gtcaggtgat gccttatgt ttttggaggt ccacccctt actcaa	286

<210> 154

<211> 419

<212> DNA

<213> Homo sapiens

<400> 154	
gttaggtagg ctatggatga ggctgactat tactgtcagg cgtggacacag caacattgct	60
tatgtcttcg gaactggac caaggtcacc gtcttaggtc agcccaaggc caaccccaact	120
gtcactctgt tcccgcctc ctctgaggag ctccaagcca acaaggccac actagtgtgt	180
ctgatcgtg acttctaccc gggagctgtg acagaggcct ggaaggcaga tggcagcccc	240
gtcaaggcgg gagtggagac caccaaaccc tccaaacaga gcaacaacaa gtacgcggcc	300
agcagctacc tgagcctgtc cataataacg ctctcaatc actagtgcgg ccgcctgcag	360
gtcgaccata tgggagagct cccaacgcgt tggatgcata gcttgagtat tctatagt	419

<210> 155

<211> 424

<212> DNA

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 155
tagggggagg tctggggcgt cacggcgccg aagtggaga catggcgctt gttcccggtgg 60
gggttggagg cttcacagga gatgccatcg cggtcgagg cgctggtcac tttcagggtc 120
agagagctgc tcacccaacc ctgccgtccg gggattggct ctgcggggct gcccccaat 180
tggctccagc tgagtttggg gtctggatgg ccgcgggcag agcagatgag tgtgacttcg 240
tctccttccc tccagctgcc atctgccttg ggctctattt ccgctgtctt tagctctggc 300
gagccttsga ccagcagcgt gaagttctgg gtgcggctga ggaccgggac tgtggcagg 360
gaggcctcac atacgttaggt gccattggaa tcgaaggta tagaactgag cgacagcatg 420
gggc 424

<210> 156

<211> 396

<212> DNA

<213> Homo sapiens

<400> 156
gcaggggaagg tcagaagcca gtcatggatg accagcgca ctttatctcc aacaatgagc 60
aactgccccat gctggggccgg cgccctgggg ccccgagag caagtgcagc cgccggagccc 120
tgtacacagg cttttccatc ctggtactc tgccctcgcc tggccaggcc accaccgcct 180
acttcctgtta ccagcagcag ggccggctgg acaaactgac agtcacccctcc cagaacctgc 240
agctggagaa cctgcgcatg aagcttccca agccctccaa gcctgtgagc aagatgcgca 300
tggccacccc gctgctgatg caggcgctgc ccatgggagc cctgccccag gggcccatgc 360
agaatgccac caagtatggc aacatgacag aggacc 396

<210> 157

<211> 161

<212> DNA

<213> Homo sapiens

<400> 157
gcagaggggg ggtggggagg ggtgctctgc tggcttcaa ttaccaagaa ttctccaaaa 60
caattttctg caggatgatt gtacagaatc attgctttag acatgatgc tttctacact 120
gtattacata aataaattaa ataaaataac cccgggtcct a 161

<210> 158

<211> 382

<212> DNA

B0213WO seq list.ST25.txt

<213> Homo sapiens

<400> 158
 acgtcgccgg gattgttctg gaggttcacc tttccgtca catcatcata cttccgaatt 60
 tcgcgcacgg catcgatgac caacagcaca aggatgacaa tgagaaccac aaagaaggtg 120
 ttgccatagg acactaacaa ctccaccagc cgggacttga aaatcttctg ccatcttta 180
 ggagaaatga agggaatgca gagaagcaac acaacaaaga cctccgcata gaggaaggtg 240
 gcaactgcag tccactgcag actcatcctg ttgctagaag gtttcccaca ggaagatgtg 300
 agcttgttc cgagttccc acagtcaacg tgcaggcccc gccgcagcaa ccgaactctc 360
 ccacagcagc cccccattcc ca 382

<210> 159

<211> 292

<212> DNA

<213> Homo sapiens

<400> 159
 gtacaggcag gcttgaagat gggagtttc atggcttgac catgaatgat ctcaagatga 60
 tttcataaga ttaaaagcca tcacgaaaat actgaaagca acaggtaata atctggattc 120
 agtctgttgt tgctcatgaa ccacgcgttt taataaaagg aacattaagt aaattgtagg 180
 tataaaagaa tcagtgcata tctgttaatg tcattgacaa taaaaataca ttatcttctc 240
 agctcagctc taaattaaca aaacacctat tttttttcc cactccttagc ca 292

<210> 160

<211> 447

<212> DNA

<213> Homo sapiens

<400> 160
 gggggggagg tggagtctgg agacgacgtg cagaaatggc acctcgaaag gggaggaaa 60
 agaaggaaga acaggtcatc agcctcggac ctcaggtggc tgaaggagag aatgtatttg 120
 gtgtctgcca tatcttgca tccttcaatg acacttttgt ccattgtcaact gatctttctg 180
 gcaaggaaac catctgccgt gtgactggtg ggatgaaggt aaaggcagac cgagatgaat 240
 cctcaccata tgctgctatg ttggctgccc aggatgtggc ccagaggtgc aaggagctgg 300
 gtatcaccgc cctacacatc aaactccggg ccacaggagg aaataggacc aagaccctg 360
 gacctccacc caataacgct tctcaatcac tagtgcggcc gcctgcaggt cgaccatatg 420

B0213WO seq list.ST25.txt
 ggagagctcc caacgcgtt gatgcat 447

<210> 161
 <211> 239
 <212> DNA
 <213> Homo sapiens

<400> 161
 ttggtaagg catcatagat aaacgttaatt gttggggag ttaaatttaa tgaacttatac 60
 taactttgta accatcttg cttagttaa ctttatcaag gtgggtggctt tagtgaatat 120
 aatggtaaac tttagaggac gctaaagcct cactaaaata acgcttctca atcactagt 180
 cggccgcctg caggtcgacc atatggaga gctcccaacg cggtggatgc atagcttga 239

<210> 162
 <211> 410
 <212> DNA
 <213> Homo sapiens

<400> 162
 tgctggagg tcctcacgt ccacgggcc ctgaacagt ataagtccag tgttcctgtc 60
 cagtcgaaga agacgcctca caacttcggg cgcctggatg aatgtgtatt cgatttctgc 120
 attggcacct tggctcgagt cattgacctt cacctggatg accgagtggc ctatgggct 180
 attctcagat agttcggcct cataggaggg ccgctcaaac ttggggcgt tgtcattgg 240
 gtcaagcacy gtgacacgca gcagggcact gctggcgcgt gggggcgtc cgccatcctg 300
 caccttgatg gtgaggtcat aggatcccacgg tccaggttgc ccatcacaat 360
 gagctgttgt tgcttctcct cctggccctc tgccacctcg gccccataac 410

<210> 163
 <211> 327
 <212> DNA
 <213> Homo sapiens

<400> 163
 tgaggaaggc catgttctgg gtttccttca atcctagccg aagaccattc attgcaccaa 60
 acgcagcccc tgtcatgcaa catcctccaa tcgtaaagaa ggccagctca aatctgcccc 120
 gggttttatt agctccggta ggtaaaataa actcatctgt atcctgcacg aggtatcgt 180
 gatccacatt taaataagga gacagagggt tcataccagt tagcgggacg ccagccaaat 240

B0213WO seq list.ST25.txt
 ccgcgtgcga gtaacctgct ccggccgctc cgaaaaagca ggccaatccc cctgtggttt 300
 tgtgccgct tcccccgccct cccccc 327

<210> 164
 <211> 300
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (204)..(204)
 <223> n = a t c or g

<400> 164
 tagcggaga aagatggaa ctccgttcc acctgcactc tctcgccccc ctctattctt 60
 tcaccacatt gctttatcct tttacccttt tttttatttt aaattaaaga atgaactgaa 120
 aagatataac atgacgtaca attaaagaat aattttaaag tgaatactac gtaactccat 180
 ccaagtcaag aaattgccag cttncggaag cccactgtgc tcctcccccataacgctt 240
 ctcatcctag tgcgccgcct gcagcgacca tatggagagc tccaacgcgt tggatgcata 300

<210> 165
 <211> 351
 <212> DNA
 <213> Homo sapiens

<400> 165
 cggagccagg caatacaaaa aatgcaatta tccattgcaa tggaaccacc aaagaatgcc 60
 tcgcaaccga atataccatc cccttttgg gtccggtttt attcgctccc aagcgctaa 120
 tcttgagtt taagccgtcg tttaaggatt caagtcaaggc atttaaggaa cgacactacg 180
 agatggatg aggccgaaga tgatcaattt taaaggcgcc gcccgcacac gggcctccga 240
 caccgcctcc ccgtataataac gcttctcaat cactagtgcg gccgcctgca ggtcgaccat 300
 atgggagagc tcccaacgcgt ttggatgcata agcttgagta ttctatagtg t 351

<210> 166
 <211> 4839
 <212> DNA
 <213> Homo sapiens

B0213WO seq list.ST25.txt

<400>	166					
ggaaagctag	cggcagaggc	ttagccccgg	cggcagcgcg	cgtcccgctg	ccagcccatt	60
ttccggacgc	cacccgcggg	caactgcccac	gccccccgggg	ctgcccgggg	gaggccgggg	120
gggcgcagcg	gagcgcggtc	ccgcgcactg	agccccgcgg	cgtcccgggga	acttggcggc	180
gaccgcggcc	cggcgagcc	gggcgcgcct	ccccgcgcgc	gcgcctcctg	catgcggggc	240
cccgagctccg	ggcgccggcc	ggagccccc	ccggccgc	ccgagccccc	cgcgcggc	300
gccgcgcgc	cgcgcgtcc	atgcaccgct	tgtatgggggt	caacagcacc	gccgcgcgc	360
ccgcggggca	gcccaatgtc	tccgtcacgt	gcaactgcaa	acgctcttg	ttccagagca	420
tggagatcac	ggagctggag	tttgttcaga	tcatcatcat	cgtgggtggt	atgtatggta	480
tggatgggtgt	gatcacgtgc	ctgctgagcc	actacaagct	gtctgcacgg	tccttcatca	540
gccggcacag	ccaggggcgg	aggagagaag	atgcctgtc	ctcagaaggaa	tgcctgtggc	600
cctcggagag	cacagtgtca	ggcaacggaa	tcccagagcc	gcaggtctac	gcggccctc	660
ggcccaccga	ccgcctggcc	gtgcccct	tcgcccagcg	ggagcgccttc	caccgttcc	720
agcccaccta	tccgtacctg	cagcacgaga	tcgacctgccc	acccaccatc	tgcgtgtcag	780
acggggagga	gcccccaccc	taccagggccc	cctgcacccct	ccagcttcgg	gacccggagc	840
agcagctgga	actgaaccgg	gagtcggtgc	gcgcacccccc	aaacagaacc	atcttcgaca	900
gtgacctgtat	ggatagtgcc	aggctggcg	gccccctgccc	ccccagcagt	aactcgggca	960
tcagcgccac	gtgctacggc	agcggcgggc	gcatggaggg	gccgcgc	acctacagcg	1020
aggtcatcg	ccactacccg	gggtccctc	tccagcacca	gcagagcagt	ggccgc	1080
ccttgctgga	ggggacccgg	ctccaccaca	cacacatcg	gcccctagag	agcgcagcca	1140
tctggagcaa	agagaaggat	aaacagaaag	gacaccctct	ctagggtccc	caggggggccc	1200
gggctgggc	tgcgttaggt	aaaaggcaga	acactccgcg	cttcttagaa	gaggagttag	1260
aggaaggcgg	ggggcgcagc	aacgcacgt	gtggccctcc	cctcccacct	ccctgtgtat	1320
aaatatttac	atgtgatgtc	tggctgaat	gcacaagcta	agagagctt	aaaaaaa	1380
aagaaaaaa	aaaaaaaaaa	accacgtt	tttgttgagc	tgtgtcttga	aggcaaaaga	1440
aaaaaaat	ctacagttagt	ctttcttgc	tctagttgag	ctgcgtgcgt	aatgcttat	1500
tttctttgt	ttatgataat	ttcacttaac	tttaaagaca	tatgtcaca	aaacctttgt	1560
ttaaagatct	gcaatattat	atataaaat	atataaaaga	taagagaaac	tgtatgtgcg	1620
agggcaggag	tattttgc	ttagaagagg	cctattaaaa	aaaaaaatgt	ttttctgaac	1680
tagaagagga	aaaaaaatggc	aattttgag	tgccaagtca	gaaagtgtgt	attaccttgc	1740
aaagaaaaaa	attacaaagc	aggggtttag	agttat	ataaatgtt	agat	1800
ctat	tttaaataat	gtcagtgc	tgc	tgtatgtt	gtgtctgtt	1860
agactttaag	ggagaaatgt	cggaatttca	gagtgc	cctg	acggcagagg	1920

B0213WO seq list.ST25.txt

gtggagtctg cagagaggcc ttggccagga gcggcgggct ttcccaggg gccactgtcc	1980
ctgcagagtg gatgtttctg cctagtgaca ggtttatcacc acgttatata ttcccttaccg	2040
aaggagacac cttttccccc ctgaccaga acagcctta aatcacaagc aaaataggaa	2100
agtaaccac ggaggcaccc agttccaggt agtggttttgc cttttccaa aaatgaaaat	2160
aaactgttac cgaaggaatt agttttcct cttttttt ccaactgtga aggtccccgt	2220
ggggtggagc atggtgcccc tcacaagccg cagcggctgg tgcccggtt accagggaca	2280
tgcagaggg ctcgatgact tgtctctgca gggcgctttg gtgggtgttc agctggctaa	2340
aggttcacccg gtgaaggcag gtgcggtaac tgccgactg gaccctagga agccccaggt	2400
attcgcaatc tgaccccttc ctgtctgtt cccttcacgg atcaattctc acttaagagg	2460
ccaataaaca acccaacatg aaaaggtgac aagcctgggt ttctcccagg ataggtgaaa	2520
gggttaaat gagtaaagca gttgagcaaa caccaacccg agttcgggc gcagaattct	2580
tcaccccttc ttccctttt catctcttt ccccgccgaa acaacgcttc cttctgggt	2640
tgtctgttga tctgtgtttt catttacatc tctcttagac tccgcttttgc ttctccaggt	2700
tttaccaga tagatttggg gttggcgaaa cctgctgggt acgtgcaggt gaaggacagg	2760
aaggggcatg tgagctaaa tagagggtgac cagaggagag catgagggggt ggggctttgg	2820
gaccacccgg ggccagtggc tggagcttga cgtctttctt ccccatgggg gtgggagggc	2880
ccccagctgg aagagcagac tcccaagctgc tacccttcc cttccatgg gagtggctt	2940
ccattttggg cagaatgctg actagtagac taacataaaa gatataaaaag gcaataacta	3000
ttgtttgtga gcaacttttt tataacttcc aaaacaaaaa cctgagcaca gttttgaagt	3060
tctagccact cgagctcatg catgtaaac gtgtgtttt cgaagggtggc agctgacaga	3120
cgtgggctct gcatgccccc agccttagtag aaagttctcg ttcatggca acagcagaac	3180
ctgcctctcc gtgaagtcgt cagcctaaaa ttgtttctc tcttgaagag gattcttga	3240
aaaggtcctg cagagaaatc agtacagggtt atcccgaaaag gtacaaggac gcacttgtaa	3300
agatgattaa aacgtatctt tccttatgt gacgcgttcc tagtgccttta ctgaagaagc	3360
agtgcacactc ccgtcgctcg gtgaggacgt tcccgacag tgcctcactc acctggact	3420
ggtatccctt cccagggtcc accaagggtt cctgttttc agacacccca tcatcctcgc	3480
gcgtccctcac cctgtctcta ccagggaggt gcctagtttgc tgaggttac tcctgtcct	3540
ccaaacctttt tttgccaagg tttgtacacg actccatct aggctgaaaa cctagaagtg	3600
gaccttgtgt gtgtgcatttgc tgcaggccca aaggcaggct gagacagtcc tcataatcctc	3660
ttgagccaaa ctgtttgggt ctgcgttgcatttgcatggatgg tctggatttgc tggttgc	3720
tttgcgttgcag aaaggggagg agagtgggttgc tgcctctcag ccggcttgcag gacagaccc	3780
gtccctctca tgacaactca gtgttgcatttgc cagttcatg tccagtttgc	3840
ggcagaagttt catggggtag tggcctctca aaggcgggc gcatccaaag acagccagca	3900
ggttgtctct ggaaacgacc agagtttgc tctcggttgc tctgttgcagg gtgcaccctt	3960

B0213WO seq list.ST25.txt
tcctctagat ggttagttgtc acgttatctt tgaaaactct tggactgctc ctgaggaggc 4020
cctctttcc agtaggaagt tagatggggg ttctcagaag tggctgattg gaaggggaca 4080
agcttcgttt caggggtctg ccgttccatc ctggttcaga gaaggccgag cgtggcttc 4140
tctagccttg tcactgtctc cctgcctgtc aatcaccacc ttccctccag aggaggaaaa 4200
ttatctcccc tgc当地agccc gggttctacac agatccaca aattgtgcta agaaccgtcc 4260
gtgttctcag aaagcccagt gttttgcaa agaatgaaaa gggaccccat atgtagcaaa 4320
aatcagggct gggggagagc cgggttcatt ccctgtcctc attggtcgtc cctatgaatt 4380
gtacgttca gagaaatttt tttcctatg tgc当地acacga agcttccaga accataaaat 4440
atcccgtcga taaggaaaga aaatgtcgtt gttgttgc ttctggaaac tgcttgc当地 4500
cttgctgtac tatagagctc agaaggacac agcccgctt cccctgcctg cctgattcca 4560
tggctgtgt gctgattcca atgcttcac gttggccctt ggcgtggaa ctgcttcct 4620
ttgc当地cccc atttcccaag ctctgttcaa gttaaactta tgtaagctt ccgtggcatg 4680
cggggcgcgc acccacgtcc cc当地gtc当地 agactctgtt tttggatgcc aatccacagg 4740
cctgaagaaa ctgcttgc当地 tgtatcgtt atcattagtg gcaatgtgta cattctgaaa 4800
agctgcaata cttatacaat aaattttaca attctttgg 4839

<210> 167
<211> 200
<212> DNA
<213> Homo sapiens

<400> 167
cccacagg gatgccatca gggacttcag ggggttcaccc cactttccag aggagaaaact 60
ggggatgaga gaggtggaaac atttgccgga gcccacactg cttgtcactg cc当地gtgaa 120
gagcccacag cctattccgt cctccctcaa gtgctggggaa gagtgacggt gc当地ggacat 180
tccagaaggc accagccctg 200

<210> 168
<211> 355
<212> DNA
<213> Homo sapiens

<400> 168
agggggaaa aggtgtctcc ttccggtaggg aatatataac gtggtgataa cctgtcacta 60
ggcagaagca tccactctgc agggacagtg gcccctcggg aaagcccgcc gctccctggcc 120
aaggcctctc tgc当地actcc acggggctc accctctgcc gtcaggcgac tctgaaattc 180

B0213WO seq list.ST25.txt
 cgacatttct cccttaaagt ctcaacagac acaagagaag tttccatcaa gcaagcactg 240
 acatatttat attaaaaaaat agtgcaaaat ctcaacattt atataaataa ctctaaaccc 300
 ctgcttgta attttttct ttacaaggta atacacactt tctgacttgg cactc 355

<210> 169

<211> 579

<212> DNA

<213> Homo sapiens

<400> 169
 ttcccagtat gcaagtcgca tcagcatcgag gagtggaaaga gtctctgctg gtccttaagg 60
 tctccaggag gggccagttc catcaactggc tttgggagca tgaaagtgtac aaatccagcc 120
 atgaatttgc ctgagtgta gtggtaaga atacaaaag gggtccccctt ctccctccaa 180
 ctgctccctc cctgggcccc taagaagggt ctgtgaccgt ctgcccggc ctttggccag 240
 cgacaggagc cagtgcgcag ggctcccttt ctgccagtc gctcacgctg tgcatctgca 300
 gaacggctcc aggaggctct gagagcagag agcagggcct tcctcctgca tgcgtccgtt 360
 cctccttccg cggagctgca gtttggtag atcatcatca tcgtgggtgt gatgtatggtg 420
 atggtgttgg tgatcacgtc cctgctgagc cactacaagc tgtctgcacg gtccttcatc 480
 agccggcaca gccaggggcgc gaggagagaa gatgcccgtt cctcagaagg atgcctgtgg 540
 ccctcggaga gcacagtgtc aggcaacgga atcccagag 579

<210> 170

<211> 310

<212> DNA

<213> Homo sapiens

<400> 170
 tccttgggtt cgggtgaaag cgcttgggg ttcagtgggc catgatcccc gagctgctgg 60
 agaactgaag gcccacatgc tcctgcaaa ccaggcaatg gcggagctgg agtttggca 120
 gatcatcatc atcgtgggtt tgatgtatggt gatgggtggt gtgtacacgt gcctgctgag 180
 ccactacaag ctgtctgcac ggtccttcat cagccggcgc agccaggggc ggaggagaga 240
 agatgccctg tcctcagaag gatgcctgtg gccctcggag agcacagtgt caggcaacgg 300
 aatcccagag 310

<210> 171

<211> 301

<212> DNA

B0213WO seq list.ST25.txt

<213> Homo sapiens

<400> 171		
ggacaggcgtttctcc tccgccccctg gctgtgccgg ctgtatgaagg accgtgcaga	60	
cagctttagt tggctcagca ggcacgtat caccaccacc atcaccatca tcaccaccac	120	
gatgtatgtat atctgaacaa actccagtc cgctagatcca gagcgaattc atcctgaaga	180	
actcagagaa agccggtgca ggaagtgggt tcccgtctc cctgcacagg cacagtatg	240	
ctgcccagagc tctccagaa agaccaggag gcttgttctg gagaagtcaa gcccaggat	300	
g	301	

<210> 172

<211> 529

<212> DNA

<213> Homo sapiens

<400> 172		
ctctgggatt ccgttgccctg acactgtgct ctccgaggc cacaggcatc cttctgagga	60	
cagggcatct tctctccctcc gcccctggct gtgccggctg atgaaggacc gtgcagacag	120	
ctttagtgg ctcagcaggc acgtatcac caccaccatc accatcatca ccaccacat	180	
gatgtatgtat tgaacaaact ccagctccgc tttttgtatt cttaccact gacactcagg	240	
caaattcatg gctggatttg tcactttcat gctccaaag ccagtatgg aactggcccc	300	
tccctggagac cttaaggacc agcagagact ctccactcc tgatgctat gcgacttgca	360	
tactggaat ccatgacaac cttagaccaga gctaattat cctgaagaac tcagagaaag	420	
ccgggtcagg aagtgggttc ccgttctccc tgcacaggca cagtatgct gccagagctc	480	
tcccagaaag accaggaggc ttgttctgga gaagtcaagc ccagggatg	529	

<210> 173

<211> 1429

<212> DNA

<213> Homo sapiens

<400> 173		
ttggaaatgtt ccgttatcatg gaatcaatct ctatgtatgg aagccctaag agccttagtg	60	
aaaccttggttt acctaattggc ataaatggta tcaaagatgc aaggaaggatc actgttaggt	120	
tgattggaaatggatgtttt gccaaatcct tgaccattcg acttattaga tgcggctatc	180	
atgtggtcat aggaagtatgaa aatccataatgtt tgcattctgaa atttttccatgtggtag	240	

B0213WO seq list.ST25.txt

atgtcaactca	tcatgaagat	gctctcacaa	aaacaaaatat	aatatttggtt	gctatacaca	300
gagaacatta	tacctccctg	tgggacctga	gacatctgct	tgtgggtaaa	atcctgattg	360
atgtgagcaa	taacatgagg	ataaaaccagt	acccagaatc	caatgctgaa	tatggcgctt	420
cattattccc	agattcttg	attgtcaaag	gatTTAATGT	tgtctcagct	tgggacttc	480
agtaggacc	taaggatgcc	agccggcagg	tttatatatg	cagcaacaat	attcaagcgc	540
gacaacaggt	tattgaactt	gccccccagt	tgaatttcat	tcccattgac	ttgggatcct	600
tatcatcagc	cagagagatt	gaaaatttac	ccctacgact	ctttactctc	tggagagggc	660
cagtgggtgt	agctataagc	ttggccacat	ttttttcct	ttattcctt	gtcagagatg	720
tgattcatcc	atatgctaga	aaccaacaga	gtgactttta	caaaattcct	atagagattg	780
tgaataaaac	cttacctata	gttgcattta	cttgctctc	cctagtatac	cttgccaggc	840
ttctggcagc	tgcttatcaa	ctttattatg	gcaccaagta	taggagattt	ccacccgggt	900
tggaaacctg	gttacagtgt	agaaaaacagc	ttggattact	aagtttttc	ttcgctatgg	960
tccatgttgc	ctacagccctc	tgcttaccga	tgagaaggc	agagagat	ttgtttctca	1020
acatggctta	tcaGcaggTT	catgcaaata	ttgaaaactc	ttggaatgag	gaagaagttt	1080
ggagaattga	aatgtatac	tcctttggca	taatgagcct	tggcttactt	tccctcctgg	1140
cagtcacttc	tatcccttca	gtgagcaatg	cttAAactg	gagagaattc	agttttattc	1200
agtctacact	tggatATGTC	gctctgctca	taagtacttt	ccatgttttta	atttatggat	1260
ggaaacgagc	ttttgaggaa	gagtactaca	gatTTTatac	accaccaaAC	tttGTTCTTG	1320
ctcttggTTT	gccctcaatt	gtaattctgg	tagagacgga	gtttcaccgt	gttagccagg	1380
atggtctcga	tctcctgacc	tcgtgatccg	cccgccTTGG	cctccaaag		1429

<210> 174

<211> 462

<212> PRT

<213> Homo sapiens

<400> 174

Met	Glu	Ser	Ile	Ser	Met	Met	Gly	Ser	Pro	Lys	Ser	Leu	Ser	Glu	Thr
1							5			10				15	

Cys	Leu	Pro	Asn	Gly	Ile	Asn	Gly	Ile	Lys	Asp	Ala	Arg	Lys	Val	Thr
								20		25			30		

Val	Gly	Val	Ile	Gly	Ser	Gly	Asp	Phe	Ala	Lys	Ser	Leu	Thr	Ile	Arg
								35		40			45		

Leu	Ile	Arg	Cys	Gly	Tyr	His	Val	Val	Ile	Gly	Ser	Arg	Asn	Pro	Lys
								50		55			60		

B0213WO seq list.ST25.txt

Phe Ala Ser Glu Phe Phe Pro His Val Val Asp Val Thr His His Glu
65 70 75 80

Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe Val Ala Ile His Arg Glu
85 90 95

His Tyr Thr Ser Leu Trp Asp Leu Arg His Leu Leu Val Gly Lys Ile
100 105 110

Leu Ile Asp Val Ser Asn Asn Met Arg Ile Asn Gln Tyr Pro Glu Ser
115 120 125

Asn Ala Glu Tyr Leu Ala Ser Leu Phe Pro Asp Ser Leu Ile Val Lys
130 135 140

Gly Phe Asn Val Val Ser Ala Trp Ala Leu Gln Leu Gly Pro Lys Asp
145 150 155 160

Ala Ser Arg Gln Val Tyr Ile Cys Ser Asn Asn Ile Gln Ala Arg Gln
165 170 175

Gln Val Ile Glu Leu Ala Arg Gln Leu Asn Phe Ile Pro Ile Asp Leu
180 185 190

Gly Ser Leu Ser Ser Ala Arg Glu Ile Glu Asn Leu Pro Leu Arg Leu
195 200 205

Phe Thr Leu Trp Arg Gly Pro Val Val Val Ala Ile Ser Leu Ala Thr
210 215 220

Phe Phe Phe Leu Tyr Ser Phe Val Arg Asp Val Ile His Pro Tyr Ala
225 230 235 240

Arg Asn Gln Gln Ser Asp Phe Tyr Lys Ile Pro Ile Glu Ile Val Asn
245 250 255

Lys Thr Leu Pro Ile Val Ala Ile Thr Leu Leu Ser Leu Val Tyr Leu
260 265 270

Ala Gly Leu Leu Ala Ala Ala Tyr Gln Leu Tyr Tyr Gly Thr Lys Tyr
275 280 285

Arg Arg Phe Pro Pro Trp Leu Glu Thr Trp Leu Gln Cys Arg Lys Gln
290 295 300

Leu Gly Leu Leu Ser Phe Phe Ala Met Val His Val Ala Tyr Ser
305 310 315 320

Leu Cys Leu Pro Met Arg Arg Ser Glu Arg Tyr Leu Phe Leu Asn Met
325 330 335

B0213WO seq list.ST25.txt

Ala Tyr Gln Gln Val His Ala Asn Ile Glu Asn Ser Trp Asn Glu Glu
340 345 350

Glu Val Trp Arg Ile Glu Met Tyr Ile Ser Phe Gly Ile Met Ser Leu
355 360 365

Gly Leu Leu Ser Leu Leu Ala Val Thr Ser Ile Pro Ser Val Ser Asn
370 . 375 380

Ala Leu Asn Trp Arg Glu Phe Ser Phe Ile Gln Ser Thr Leu Gly Tyr
385 390 395 400

Val Ala Leu Leu Ile Ser Thr Phe His Val Leu Ile Tyr Gly Trp Lys
405 410 415

Arg Ala Phe Glu Glu Glu Tyr Tyr Arg Phe Tyr Thr Pro Pro Asn Phe
420 425 430

Val Leu Ala Leu Val Leu Pro Ser Ile Val Ile Leu Val Glu Thr Glu
435 440 445

Phe His Arg Val Ser Gln Asp Gly Leu Asp Leu Leu Thr Ser
450 455 460

<210> 175

<211> 1329

<212> DNA

<213> Homo sapiens

<400>	175	atggaatcaa tcttatgtat gggaaaggccct aagagcctta gtgaaacttt tttacctaattttcccaat ctttgaccat tcgacttatt agatgcggct atcatgtgg cataggaagt	60
	120	ggcataaaatg gtatcaaaga tgcaaggaag gtcactgttag gtgtgattgg aagtggagat	
	180	tttgc当地 ccttgaccat tcgacttatt agatgcggct atcatgtgg cataggaagt	
	240	agaaaatccta agtttgcttc tgaattttt cctcatgtgg tagatgtcac tc当地atgaa	
	300	gatgctctca caaaaacaaa tataatattt gttgtatac acagagaaca tt当地acctcc	
	360	ctgtgggacc tgagacatct gcttggggt aaaatcctga tt当地gtgag caataacatg	
	420	aggataaacc agtaccaggaa atccaatgct gaatatttgg ct当地cattatt cccagattct	
	480	ttgattgtca aaggatttaa tggatgtctca gcttgggac ttc当地gttgg acctaaggat	
	540	gccagccggc aggtttatat atgcagcaac aatattcaag cgccgacaaca gg当地ttattgaa	
	600	cttgc当地ccgc agttaattt cattcccatt gacttgggat ctttatcatc agccagagag	
	660	attgaaaatt tacccttacg actctttact ct当地tggagag ggccagtggt ggtagctata	
	720	agcttggcca cattttttt ctttattcc tttgtcagag atgtgattca tccatatgct	

B0213WO seq list.ST25.txt
 agaaaccaac agagtgactt ttacaaaatt cctatagaga ttgtgaataa aacttacct 780
 atagttgcca ttactttgct ctccctagta tacctcgtag gtcttcggc agctgcttat 840
 caactttatt acggcaccaa gtataggaga tttccacctt gggtggaaac ctggttacag 900
 tgttagaaaaac agcttgatt actaagttt ttcttcgcta tggtccatgt tgcctacagc 960
 ctctgcttac cgatgagaag gtcagagaga tatttgtttc tcaacatggc ttatcagcag 1020
 gttcatgcaa atattgaaaa ctcttggaat gaggaagaag tttggagaat tgaaatgtat 1080
 atctccttg gcataatgag ctttggctta cttccctcc tggcagtcac ttctatccct 1140
 tcagtgagca atgctttaaa ctggagagaa ttcagttta ttcagatctt ttgcagcttt 1200
 gcagataccc agactgagct ggaactggaa tttgtcttcc tattgactct acttctttaa 1260
 aagcggctgc ccattacatt cctcagctgt ctttgcagtt aggtgtacat gtgactgagt 1320
 gttggccag 1329

<210> 176

<211> 419

<212> PRT

<213> Homo sapiens

<400> 176

Met Glu Ser Ile Ser Met Met Gly Ser Pro Lys Ser Leu Ser Glu Thr
 1 5 10 15

Phe Leu Pro Asn Gly Ile Asn Gly Ile Lys Asp Ala Arg Lys Val Thr
 20 25 30

Val Gly Val Ile Gly Ser Gly Asp Phe Ala Lys Ser Leu Thr Ile Arg
 35 40 45

Leu Ile Arg Cys Gly Tyr His Val Val Ile Gly Ser Arg Asn Pro Lys
 50 55 60

Phe Ala Ser Glu Phe Phe Pro His Val Val Asp Val Thr His His Glu
 65 70 75 80

Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe Val Ala Ile His Arg Glu
 85 90 95

His Tyr Thr Ser Leu Trp Asp Leu Arg His Leu Leu Val Gly Lys Ile
 100 105 110

Leu Ile Asp Val Ser Asn Asn Met Arg Ile Asn Gln Tyr Pro Glu Ser
 115 120 125

Asn Ala Glu Tyr Leu Ala Ser Leu Phe Pro Asp Ser Leu Ile Val Lys
 Page 103

B0213WO seq list.ST25.txt

130		135		140											
Gly	Phe	Asn	Val	Val	Ser	Ala	Trp	Ala	Leu	Gln	Leu	Gly	Pro	Lys	Asp
145					150					155				160	
Ala	Ser	Arg	Gln	Val	Tyr	Ile	Cys	Ser	Asn	Asn	Ile	Gln	Ala	Arg	Gln
						165			170				175		
Gln	Val	Ile	Glu	Leu	Ala	Arg	Gln	Leu	Asn	Phe	Ile	Pro	Ile	Asp	Leu
						180			185			190			
Gly	Ser	Leu	Ser	Ser	Ala	Arg	Glu	Ile	Asp	Asn	Leu	Pro	Leu	Arg	Leu
						195			200			205			
Phe	Thr	Leu	Trp	Arg	Gly	Pro	Val	Val	Val	Ala	Ile	Ser	Leu	Ala	Thr
						210			215			220			
Phe	Phe	Leu	Tyr	Ser	Phe	Val	Arg	Asp	Val	Ile	His	Pro	Tyr	Ala	
						225			230			235			240
Arg	Asn	Gln	Gln	Ser	Asp	Phe	Tyr	Lys	Ile	Pro	Ile	Glu	Ile	Val	Asn
						245			250			255			
Lys	Thr	Leu	Pro	Ile	Val	Ala	Ile	Thr	Leu	Leu	Ser	Leu	Val	Tyr	Leu
						260			265			270			
Ala	Gly	Leu	Leu	Ala	Ala	Ala	Tyr	Gln	Leu	Tyr	Tyr	Gly	Thr	Lys	Tyr
						275			280			285			
Arg	Arg	Phe	Pro	Pro	Trp	Leu	Glu	Thr	Trp	Leu	Gln	Cys	Arg	Lys	Gln
						290			295			300			
Leu	Gly	Leu	Leu	Ser	Phe	Phe	Ala	Met	Val	His	Val	Ala	Tyr	Ser	
						305			310			315			320
Leu	Cys	Leu	Pro	Met	Arg	Arg	Ser	Glu	Arg	Tyr	Leu	Phe	Leu	Asn	Met
						325			330			335			
Ala	Tyr	Gln	Gln	Val	His	Ala	Asn	Ile	Glu	Asn	Ser	Trp	Asn	Glu	Glu
						340			345			350			
Glu	Val	Trp	Arg	Ile	Glu	Met	Tyr	Ile	Ser	Phe	Gly	Ile	Met	Ser	Leu
						355			360			365			
Gly	Leu	Leu	Ser	Leu	Leu	Ala	Val	Thr	Ser	Ile	Pro	Ser	Val	Ser	Asn
						370			375			380			
Ala	Leu	Asn	Trp	Arg	Glu	Phe	Ser	Phe	Ile	Gln	Ile	Phe	Cys	Ser	Phe
						385			390			395			400
Ala	Asp	Thr	Gln	Thr	Glu	Leu	Glu	Leu	Glu	Phe	Val	Phe	Leu	Leu	Thr

B0213WO seq list.ST25.txt
405 410 415

Leu Leu Leu

<210> 177
<211> 940
<212> DNA
<213> Homo sapiens

<400> 177						
tggaagtgtc	cgtatcatgg	aatcaatctc	tatgatggga	agccctaaga	gccttagtga	60
aacttgttta	cctaattggca	taaaatggtat	caaagatgca	aggaagggtca	ctgttaggtgt	120
gatttggaaat	ggagattttg	ccaaatcctt	gaccattcga	cttatttagat	gcggctatca	180
tgtggtcata	ggaagttagaa	atcctaagtt	tgcttctgaa	tttttcctc	atgtggtaga	240
tgtcactcat	catgaagatg	ctctcacaaa	aacaaatata	atatttggat	ctatacacag	300
agaacattat	accccctgt	gggacctgag	acatctgctt	gtgggtaaaa	tcctgattga	360
tgtgagcaat	aacatgagga	taaaccagta	cccagaatcc	aatgctgaat	atttggcttc	420
attattccca	gattcttga	ttgtcaaagg	atthaatgtt	gtctcagctt	gggcacttca	480
gttaggacct	aggatgccca	gccggcaggt	ttatatatgc	agcaacaata	ttcaagcgcg	540
acaacagggtt	catgcaaata	ttgaaaactc	ttggaatgag	gaagaagttt	ggagaattga	600
aatgtatatac	tcctttggca	taatgagcct	tggcttactt	tccctcctgg	cagtcacttc	660
tatcccttca	gtgagcaatg	ctttaaactg	gagagaattc	agttttattc	agtctacact	720
tggatatgtc	gctctgctca	taagtacttt	ccatgtttta	atttatggat	ggaaacgagc	780
ttttgaggaa	gagtactaca	gattttatac	accaccaaac	tttggcttg	ctctgtttt	840
gccctcaatt	gtaattctgg	tagagacgga	gtttcaccgt	gttagccagg	atggtctcga	900
tctcctgacc	tcgtgatccg	ccgccttgg	cctccaaagt			940

<210> 178
<211> 299
<212> PRT
<213> Homo sapiens

<400> 178

Met	Glu	Ser	Ile	Ser	Met	Met	Gly	Ser	Pro	Lys	Ser	Leu	Ser	Glu	Thr
1							5			10				15	

Cys Leu Pro Asn Gly Ile Asn Gly Ile Lys Asp Ala Arg Lys Val Thr
Page 105

B0213WO seq list.ST25.txt
20 25 30

Val Gly Val Ile Gly Ser Gly Asp Phe Ala Lys Ser Leu Thr Ile Arg
35 40 45

Leu Ile Arg Cys Gly Tyr His Val Val Ile Gly Ser Arg Asn Pro Lys
50 55 60

Phe Ala Ser Glu Phe Phe Pro His Val Val Asp Val Thr His His Glu
65 70 75 80

Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe Val Ala Ile His Arg Glu
85 90 95

His Tyr Thr Ser Leu Trp Asp Leu Arg His Leu Leu Val Gly Lys Ile
100 105 110

Leu Ile Asp Val Ser Asn Asn Met Arg Ile Asn Gln Tyr Pro Glu Ser
115 120 125

Asn Ala Glu Tyr Leu Ala Ser Leu Phe Pro Asp Ser Leu Ile Val Lys
130 135 140

Gly Phe Asn Val Val Ser Ala Trp Ala Leu Gln Leu Gly Pro Lys Asp
145 150 155 160

Ala Ser Arg Gln Val Tyr Ile Cys Ser Asn Asn Ile Gln Ala Arg Gln
165 170 175

Gln Val His Ala Asn Ile Glu Asn Ser Trp Asn Glu Glu Val Trp
180 185 190

Arg Ile Glu Met Tyr Ile Ser Phe Gly Ile Met Ser Leu Gly Leu Leu
195 200 205

Ser Leu Leu Ala Val Thr Ser Ile Pro Ser Val Ser Asn Ala Leu Asn
210 215 220

Trp Arg Glu Phe Ser Phe Ile Gln Ser Thr Leu Gly Tyr Val Ala Leu
225 230 235 240

Leu Ile Ser Thr Phe His Val Leu Ile Tyr Gly Trp Lys Arg Ala Phe
245 250 255

Glu Glu Glu Tyr Tyr Arg Phe Tyr Thr Pro Pro Asn Phe Val Leu Ala
260 265 270

Leu Val Leu Pro Ser Ile Val Ile Leu Val Glu Thr Glu Phe His Arg
275 280 285

Val Ser Gln Asp Gly Leu Asp Leu Leu Thr Ser
Page 106

290 295 B0213WO seq list.ST25.txt

<210> 179
<211> 1388
<212> DNA
<213> Homo sapiens

<400>	179	tggaaagtgtc cgtatcatgg aatcaatctc tatgatggga agccctaaga gccttagtga	60
aacttgttta	cctaattggca taaatggtat caaagatgca aggaaggcata ctgttaggtgt	120	
gatttggaaagt	ggagattttg ccaaattccctt gaccattcgat cttatttagat gcggctatca	180	
tgtggtcata	ggaagtagaa atcctaagtt tgcttctgaa ttttttcctc atgtggtaga	240	
tgtcactcat	catgaagatg ctctcacaaa aacaatata atatttggatg ctatacacag	300	
agaacattat	acctccctgt gggacctgag acatctgctt gtgggtaaaa tcctgattga	360	
tgtgagcaat	aacatgagga taaaccagta cccagaatcc aatgctgaat atttggcttc	420	
attattccca	gattcttga ttgtcaaagg atttaatgtt gtctcagctt gggcacttca	480	
gttaggacct	aaggatgcca gccggcaggt ttatatatgc agcaacaata ttcaagcgcg	540	
acaacagggtt	attgaacttg cccgcccagtt gaatttcatt cccattgact tgggatcctt	600	
atcatcagcc	agagagattg aaaatttacc cctacgactc tttactctct ggagagggcc	660	
agtggtggtt	gctataagct tggccacatt tttttccctt attcccttgc tggatgtgt	720	
attcatccat	atgcttagaaa ccaacagagt gacttttaca aaattcctat agagattgtg	780	
aataaaaacct	tacctatagt tgccattact ttgctctccc tagtataacct tgcaggctt	840	
ctggcagctg	cttataact ttattacggc accaagtata ggagattcc accttgggttgc	900	
gaaacctggt	tacagtgttag aaaacagctt ggattactaa gtttttctt cgctatggtc	960	
catgttgcct	acagcctctg cttaccgatg agaagggtca tgcaaattatt gaaaactctt	1020	
ggaatgagga	agaagtttgg agaattgaaa tgtatatctc ctttggcata atgagccttgc	1080	
gtttactttc	cctccctggca gtcacttcta tccccgtcagt gagcaatgct taaaactggaa	1140	
gagaatttcag	ttttatttcag tctacacttg gatatgtcgc tctgctcata agtactttcc	1200	
atgttttaat	ttatggatgg aaacgagctt ttgaggaaga gtactacaga ttttatacac	1260	
cacccaaacctt	tgttcttgct cttgtttgc cctcaattgt aattctggta gagacggagt	1320	
ttcaccgtgt	tagccaggat ggtctcgatc tcctgacccctc gtgatccgccc cgcccttggcc	1380	
tccaaagt		1388	

<210> 180

<211> 234

<212> PRT

B0213WO seq list.ST25.txt

<213> Homo sapiens

<400> 180

Met Glu Ser Ile Ser Met Met Gly Ser Pro Lys Ser Leu Ser Glu Thr
1 5 10 15Cys Leu Pro Asn Gly Ile Asn Gly Ile Lys Asp Ala Arg Lys Val Thr
20 25 30Val Gly Val Ile Gly Ser Gly Asp Phe Ala Lys Ser Leu Thr Ile Arg
35 40 45Leu Ile Arg Cys Gly Tyr His Val Val Ile Gly Ser Arg Asn Pro Lys
50 55 60 :Phe Ala Ser Glu Phe Phe Pro His Val Val Asp Val Thr His His Glu
65 70 75 80Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe Val Ala Ile His Arg Glu
85 90 95His Tyr Thr Ser Leu Trp Asp Leu Arg His Leu Leu Val Gly Lys Ile
100 105 110Leu Ile Asp Val Ser Asn Asn Met Arg Ile Asn Gln Tyr Pro Glu Ser
115 120 125Asn Ala Glu Tyr Leu Ala Ser Leu Phe Pro Asp Ser Leu Ile Val Lys
130 135 140Gly Phe Asn Val Val Ser Ala Trp Ala Leu Gln Leu Gly Pro Lys Asp
145 150 155 160Ala Ser Arg Gln Val Tyr Ile Cys Ser Asn Asn Ile Gln Ala Arg Gln
165 170 175Gln Val Ile Glu Leu Ala Arg Gln Leu Asn Phe Ile Pro Ile Asp Leu
180 185 190Gly Ser Leu Ser Ser Ala Arg Glu Ile Glu Asn Leu Pro Leu Arg Leu
195 200 205Phe Thr Leu Trp Arg Gly Pro Val Val Val Ala Ile Ser Leu Ala Thr
210 215 220Phe Phe Ser Phe Ile Pro Leu Ser Glu Met
225 230

<210> 181

B0213WO seq list.ST25.txt

<211> 1425

<212> DNA

<213> Homo sapiens

<400> 181						
tggaagtgtc	cgtatcatgg	aatcaatctc	tatgatggga	agccctaaga	gccttagtga	60
aacttgttta	cctaattggca	taaatggtat	caaagatgca	aggaaggcata	ctgttaggtgt	120
gattggaaat	ggagattttg	ccaaatccctt	gaccattcgat	cttatttagat	gcggctatca	180
tgtggtcata	ggaagttagaa	atcctaagtt	tgcctctgaa	tttttcctc	atgtggtaga	240
tgtcactcat	catgaagatg	ctctcacaaa	aacaaatata	atatttggtg	ctatacacag	300
agaacattat	accccctgt	gggacctgag	acatctgcctt	gtgggtaaaa	tcctgattga	360
tgtgagcaat	aacatgagga	taaaccagta	cccagaatcc	aatgctgaat	atttggcttc	420
attattccca	gattcttga	ttgtcaaagg	atthaatgtt	gtctcagctt	gggcacttca	480
gtttaggacct	aaggatgcca	gccggcagggt	ttatatatgc	agcaacaata	ttcaagcgcg	540
acaacagggtt	attgaacttg	cccgccagtt	gaatttcatt	cccattgact	tggatccctt	600
atcatcagcc	agagagattg	aaaatttacc	cctacgactc	tttactctct	ggagagggcc	660
agtgggtgta	gctataagct	tggccacatt	tttttcctt	tattcctttg	tcagagatgt	720
gattcatcca	tatgctagaa	accaacagag	tgacttttac	aaaattccta	tagagattgt	780
gaataaaaacc	ttacctata	ttgcccattac	tttgctctcc	ctagtatacc	ttgcaggct	840
tctggcagct	gcttatcaac	tttattatgg	caccaagtat	aggagatttc	caccttgggt	900
ggaaacctgg	ttacagtgt	aaaaacagct	tggattacta	agtttttct	tcgctatgg	960
ccatgttgc	tacagccct	gcttaccgat	gagaaggcata	gagagatatt	tgtttctcaa	1020
catggcttat	cagcagggtc	atgcaaatat	tgaaaactct	tggaatgagg	aagaagttt	1080
gagaattgaa	atgtatatct	ccttggcat	aatgagcctt	ggcttacttt	ccctcctggc	1140
agtcaactct	atcccattcag	tgagcaatgc	tttaaactgg	agagaattca	gttttattca	1200
gtctacactt	ggatatgtcg	ctctgctcat	aagtactttc	catgtttaa	tttatggatg	1260
gaaacgagct	tttgaggaag	agtactacag	attttataca	ccaccaaact	ttgttcttgc	1320
tcttgttttgc	ccctcaatttgc	taattctgga	gacggagttt	caccgtgtt	gccaggatgg	1380
tctcgatctc	ctgacctcg	gatccgcccc	ccttggcctc	caaag		1425

<210> 182

<211> 461

<212> PRT

<213> Homo sapiens

B0213WO seq list.ST25.txt

<400> 182

Met Glu Ser Ile Ser Met Met Gly Ser Pro Lys Ser Leu Ser Glu Thr
1 5 10 15Cys Leu Pro Asn Gly Ile Asn Gly Ile Lys Asp Ala Arg Lys Val Thr
20 25 30Val Gly Val Ile Gly Ser Gly Asp Phe Ala Lys Ser Leu Thr Ile Arg
35 40 45Leu Ile Arg Cys Gly Tyr His Val Val Ile Gly Ser Arg Asn Pro Lys
50 55 60Phe Ala Ser Glu Phe Phe Pro His Val Val Asp Val Thr His His Glu
65 70 75 80Asp Ala Leu Thr Lys Thr Asn Ile Ile Phe Val Ala Ile His Arg Glu
85 90 95His Tyr Thr Ser Leu Trp Asp Leu Arg His Leu Leu Val Gly Lys Ile
100 105 110Leu Ile Asp Val Ser Asn Asn Met Arg Ile Asn Gln Tyr Pro Glu Ser
115 120 125Asn Ala Glu Tyr Leu Ala Ser Leu Phe Pro Asp Ser Leu Ile Val Lys
130 135 140Gly Phe Asn Val Val Ser Ala Trp Ala Leu Gln Leu Gly Pro Lys Asp
145 150 155 160Ala Ser Arg Gln Val Tyr Ile Cys Ser Asn Asn Ile Gln Ala Arg Gln
165 170 175Gln Val Ile Glu Leu Ala Arg Gln Leu Asn Phe Ile Pro Ile Asp Leu
180 185 190Gly Ser Leu Ser Ser Ala Arg Glu Ile Glu Asn Leu Pro Leu Arg Leu
195 200 205Phe Thr Leu Trp Arg Gly Pro Val Val Val Ala Ile Ser Leu Ala Thr
210 215 220Phe Phe Phe Leu Tyr Ser Phe Val Arg Asp Val Ile His Pro Tyr Ala
225 230 235 240Arg Asn Gln Gln Ser Asp Phe Tyr Lys Ile Pro Ile Glu Ile Val Asn
245 250 255

Lys Thr Leu Pro Ile Val Ala Ile Thr Leu Leu Ser Leu Val Tyr Leu

B0213WO seq list.ST25.txt
 260 265 270

Ala Gly Leu Leu Ala Ala Ala Tyr Gln Leu Tyr Tyr Gly Thr Lys Tyr
 275 280 285

Arg Arg Phe Pro Pro Trp Leu Glu Thr Trp Leu Gln Cys Arg Lys Gln
 290 295 300

Leu Gly Leu Leu Ser Phe Phe Phe Ala Met Val His Val Ala Tyr Ser
 305 310 315 320

Leu Cys Leu Pro Met Arg Arg Ser Glu Arg Tyr Leu Phe Leu Asn Met
 325 330 335

Ala Tyr Gln Gln Val His Ala Asn Ile Glu Asn Ser Trp Asn Glu Glu
 340 345 350

Glu Val Trp Arg Ile Glu Met Tyr Ile Ser Phe Gly Ile Met Ser Leu
 355 360 365

Gly Leu Leu Ser Leu Leu Ala Val Thr Ser Ile Pro Ser Val Ser Asn
 370 375 380

Ala Leu Asn Trp Arg Glu Phe Ser Phe Ile Gln Ser Thr Leu Gly Tyr
 385 390 395 400

Val Ala Leu Leu Ile Ser Thr Phe His Val Leu Ile Tyr Gly Trp Lys
 405 410 415

Arg Ala Phe Glu Glu Glu Tyr Tyr Arg Phe Tyr Thr Pro Pro Asn Phe
 420 425 430

Val Leu Ala Leu Val Leu Pro Ser Ile Val Ile Leu Glu Thr Glu Phe
 435 440 445

His Arg Val Ser Gln Asp Gly Leu Asp Leu Leu Thr Ser
 450 455 460

<210> 183

<211> 18

<212> PRT

<213> Homo sapiens

<400> 183

Val Glu Thr Glu Phe His Arg Val Ser Gln Asp Gly Leu Asp Leu Leu
 1 5 10 15

Thr Ser

B0213WO seq list.ST25.txt

<210> 184

<211> 24

<212> PRT

<213> Homo sapiens

<400> 184

Ile Phe Cys Ser Phe Ala Asp Thr Gln Thr Glu Leu Glu Leu Glu Phe
1 5 10 15

Val Phe Leu Leu Thr Leu Leu Leu
20

<210> 185

<211> 8

<212> PRT

<213> Homo sapiens

<400> 185

Ser Phe Ile Pro Leu Ser Glu Met
1 5