Topic 23 - Unequal Replication

STAT 525 - Fall 2013

STAT 525

Outline

- Data
- Model
- Parameter Estimates
- Inference

Topic 23

STAT 525

Data for Two Factor ANOVA

- \bullet Y is the response variable
- Factor A has levels i = 1, 2, ..., a
- Factor B has levels j = 1, 2, ..., b
- Y_{ijk} is the k^{th} observation from cell (i, j)
- Now $k = 1, 2, ..., n_{ij}$

STAT 525

Example Page 954

- Synthetic growth horomone administered to growth horomone deficient pre-pubescent children
- Interested in two factors
 - Gender (a=2)
 - Bone development level (b=3)
- Y is the difference between growth rate during treatment and prior to treatment
- Set up as balanced design (n = 3) but four children were unable to complete the study
 - -i = 1, 2 and j = 1, 2, 3
 - $\ n_{ij} = 3, 2, 2, 1, 3, 3$

Topic 23

Topic 23

STAT 525

General Plan

- Construct scatterplot / interaction plot
- Run full model
- Check assumptions
 - Residual plots
 - Histogram / QQplot
 - Ordered residuals plot
- Check significance of interaction

Topic 23

```
STAT 525
```

```
proc means data=a1;
   output out=a2 mean=avgrowth;
   by gender bone;
title1 'Plot of the means';
symbol1 v='M' i=join c=black;
                                         *****Interaction plot;
symbol2 v='F' i=join c=black;
proc gplot data=a2;
   plot avgrowth*bone=gender/frame;
run;
```

STAT 525

SAS Commands

```
options nocenter;
data a1; infile 'u:\.www\datasets525\CH23TA01.txt';
   input growth gender bone;
proc print data=a1; run;
data a1; set a1;
   if (gender eq 1)*(bone eq 1) then gb='1_Msev ';
   if (gender eq 1)*(bone eq 2) then gb='2_Mmod';
   if (gender eq 1)*(bone eq 3) then gb='3_Mmild';
   if (gender eq 2)*(bone eq 1) then gb='4_Msev';
   if (gender eq 2)*(bone eq 2) then gb='5_Mmod';
   if (gender eq 2)*(bone eq 3) then gb='6_Mmild';
title1 'Plot of the data';
symbol1 v=circle i=none c=black;
proc gplot data=a1;
                                          ****Scatterplot;
   plot growth*gb/frame;
```

Topic 23

STAT 525

Output

0bs	growth	gender	bone
1	1.4	1	1
2	2.4	1	1
3	2.2	1	1
4	2.1	1	2
5	1.7	1	2
6	0.7	1	3
7	1.1	1	3
8	2.4	2	1
9	2.5	2	2
10	1.8	2	2
11	2.0	2	2
12	0.5	2	3
13	0.9	2	3
14	1.3	2	3

Topic 23

Topic 23

10

STAT 525

The Cell Means Model

• Expressed numerically

$$Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$

where μ_{ij} is the theoretical mean or expected value of all observations in cell (i, j)

- The ε_{ijk} are iid $N(0, \sigma^2)$ which implies the Y_{ijk} are independent $N(\mu_{ij}, \sigma^2)$
- Parameters

$$- \{\mu_{ij}\}, i = 1, 2, ..., a, j = 1, 2, ..., b$$
$$- \sigma^2$$

STAT 525

Topic 23

Estimates

• Estimate μ_{ij} by the sample mean of the observations in cell (i, j)

$$\hat{\mu}_{ij} = \overline{Y}_{ij.}$$

• For each cell (i, j), also estimate of the variance

$$s_{ij}^2 = \sum (Y_{ijk} - \overline{Y}_{ij.})^2 / (n_{ij} - 1)$$

 \bullet These s_{ij}^2 are pooled to estimate σ^2

SAS Commands

Topic 23

STAT 525

STAT 525

Parameter Estimates

- The solution option gives parameter estimates for the factor effects model under the GLM restriction
 - $-\alpha_2=0$
 - $-\beta_3 = 0$
 - $-(\alpha\beta)_{13} = (\alpha\beta)_{23} = (\alpha\beta)_{21} = (\alpha\beta)_{22} = 0$
- Produces the cell means in the usual way

STAT 525

Will now pool to increase error df;

proc glm data=a1;
 class gender bone;
 model growth=gender bone/solution;
 means gender bone/ tukey lines;
 lsmeans gender bone/ adjust=tukey pdiff;

Topic 23

Output

Sum of Source Squares Mean Square F Value Pr > F Model 5 4.47428571 0.89485714 5.51 0.0172 8 1.30000000 0.16250000 Error Corrected Total 13 5.77428571 Source Type I SS Mean Square F Value Pr > F gender 1 0.00285714 0.00285714 0.02 0.8978 2 4.39600000 13.53 0.0027 bone 2.19800000 gender*bone 2 0.07542857 0.03771429 0.23 0.7980 DF Type III SS Mean Square F Value Pr > F Source 1 0.12000000 0.12000000 0.74 0.4152 gender 2 4.18971429 2.09485714 bone 12.89 0.0031 2 0.07542857 0.03771429 0.23 0.7980 gender*bone

Topic 23 15 Topic 23

Parameter			Estimat	ce	Std Error	t Value	Pr > t
Intercept			0.9000	В	0.23273733	3.87	0.0048
gender	1		-0.0000	В	0.36799004	-0.00	1.0000
gender	2		0.0000	В	•		
bone	1		1.5000	В	0.46547467	3.22	0.0122
bone	2		1.2000	В	0.32914029	3.65	0.0065
bone	3		0.0000	В	•		
gender*bone	1	1	-0.4000	В	0.59336610	-0.67	0.5192
gender*bone	1	2	-0.2000	В	0.52041650	-0.38	0.7108
gender*bone	1	3	0.0000	В			
gender*bone	2	1	0.0000	В			
gender*bone	2	2	0.0000	В			
gender*bone	2	3	0.0000	В	•		

Topic 23

Comments

- Type I and Type III SS's are different
 - Type I: 0.003 + 4.396 + 0.075 = 4.474 = Model SS
 - Type III: $0.120 + 4.190 + 0.075 = 4.385 \neq Model SS$
- A * B same because last term in model
- Type I and Type III hypotheses are different
- Most prefer Type III analysis
- Can be misleading if n_{ij} widely different
- Use contrasts to understand the difference

Topic 23

STAT 525

Contrast for A * B

- Same for Type I and Type III
- Null Hypothesis is that the mean profiles are parallel (recall interaction plot)
- Null hypothesis can be expressed

$$\mu_{12} - \mu_{11} = \mu_{22} - \mu_{21}$$
 and
$$\mu_{13} - \mu_{12} = \mu_{23} - \mu_{22}$$

contrast 'gender*bone Type I and III'
gender*bone 1 -1 0 -1 1 0,
gender*bone 0 1 -1 0 -1 1;

STAT 525

Topic 23

Type III Contrast for A

- Null Hypothesis is that the marginal gender means are the same
- Null hypothesis can be expressed

$$1\mu_{11} = 1(\mu + \alpha_1 + \beta_1 + (\alpha\beta)_{11})
1\mu_{12} = 1(\mu + \alpha_1 + \beta_2 + (\alpha\beta)_{12})
1\mu_{13} = 1(\mu + \alpha_1 + \beta_3 + (\alpha\beta)_{13})
-1\mu_{21} = -1(\mu + \alpha_2 + \beta_1 + (\alpha\beta)_{21})
-1\mu_{22} = -1(\mu + \alpha_2 + \beta_2 + (\alpha\beta)_{22})
-1\mu_{23} = -1(\mu + \alpha_2 + \beta_3 + (\alpha\beta)_{23})
= 3\alpha_1 - 3\alpha_2 + (\alpha\beta)_{1.} - (\alpha\beta)_{2.}$$

contrast 'gender Type III'
gender 3 -3 gender*bone 1 1 1 -1 -1 -1;

Type I Contrast for A

• Null Hypothesis is that the "weighted" marginal gender means are the same

```
3\mu_{11} = 3(\mu + \alpha_1 + \beta_1 + (\alpha\beta)_{11})
  2\mu_{12} = 2(\mu + \alpha_1 + \beta_2 + (\alpha\beta)_{12})
  2\mu_{13} = 2(\mu + \alpha_1 + \beta_3 + (\alpha\beta)_{13})
-1\mu_{21} = -1(\mu + \alpha_2 + \beta_1 + (\alpha\beta)_{21})
-3\mu_{22} = -3(\mu + \alpha_2 + \beta_2 + (\alpha\beta)_{22})
-3\mu_{23} = -3(\mu + \alpha_2 + \beta_3 + (\alpha\beta)_{23})
               = 7\alpha_1 - 7\alpha_2 + 2\beta_1 - \beta_2 - \beta_3 +
                      3(\alpha\beta)_{11} + 2(\alpha\beta)_{12} + 2(\alpha\beta)_{13} -
                      (\alpha\beta)_{21} - 3(\alpha\beta)_{22} - 3(\alpha\beta)_{23}
```

contrast 'gender Type I' gender 7 -7 bone 2 -1 -1 gender*bone 3 2 2 -1 -3 -3;

Topic 23

STAT 525

Interaction Not Significant

- Determine whether pooling is beneficial
- If yes, rerun analysis without interaction
- Check significance of main effects
- If factor insignificant, determine whether pooling is beneficial
- If yes, rerun analysis as one-way ANOVA
- If statistically significant factor has more than two levels, use multiple comparison procedure to assess differences
- Contrasts and linear combinations can also be used

STAT 525

Output

Contrast Contrast SS Mean Square F Value Pr > F gender Type III 0.12000000 0.12000000 0.74 0.4152 gender Type I 0.00285714 0.00285714 0.02 0.8978 bone Type III 4.18971429 2.09485714 12.89 0.0031 gender*bone 0.07542857 0.03771429 0.23 0.7980

Standard

Parameter Estimate Error t Value Pr > |t| gender Type III -0.60000000 0.69821200 -0.86 0.4152 gender Type I 0.20000000 1.50831031 0.13 0.8978

Topic 23

22

24

STAT 525

Output

Sum of

Source Squares Mean Square F Value Pr > F Model 3 4.39885714 1.46628571 10.66 0.0019 Error 0.13754286

10 1.37542857

Corrected Total 13 5.77428571

Coeff Var R-Square Root MSE growth Mean 0.761801 0.370868 1.642857 22.57456

Source Type I SS Mean Square F Value Pr > F gender 1 0.00285714 0.00285714 0.02 0.8883 bone 4.39600000 2.19800000 15.98 0.0008

Source DF Type III SS Mean Square F Value Pr > F 0.67 0.4311 gender 1 0.09257143 0.09257143 bone 2 4.39600000 2.19800000 15.98 0.0008

Topic 23

STAT 525

Output

*** MEANS STATEMENT ***
Tukey's Studentized Range (HSD) Test for growth

 Alpha
 0.05

 Error Degrees of Freedom
 10

 Error Mean Square
 0.137543

Critical Value of Studentized Range 3.15106
Minimum Significant Difference 0.4417

Mean N gende A 1.6571 7 1 A 1.6286 7 2

 Alpha
 0.05

 Error Degrees of Freedom
 10

 Error Mean Square
 0.137543

 Critical Value of Studentized Range
 3.87676

 Minimum Significant Difference
 0.6692

 Harmonic Mean of Cell Sizes
 4.615385

 Mean
 N
 bone

 A
 2.1000
 4
 1

 A
 2.0200
 5
 2

B 0.9000 5 3

Topic 23

Output

Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

H0:LSMean1=
growth LSMean2
ender LSMEAN Pr > |t|
1.59047619 0.4311
1.76190476

growth LSMEAN
bone LSMEAN Number
1 2.14285714 1
2 2.00285714 2

0.88285714

Least Squares Means for effect bone Pr > |t| for HO: LSMean(i)=LSMean(j)

Dependent Variable: growth
i/j 1 2 3
1 0.8538 0.0017
2 0.8538 0.0020
3 0.0017 0.0020

Topic 23

STAT 525

Comments

- The means and Ismeans not the same
 - means: raw sample mean similar to a weighted average of cell means (Type I)
 - Ismeans: uses parameter estimates similar to Type III approach
- Ismeans most commonly used

STAT 525

Topic 23

Background Reading

- KNNL Chapter 23
- knnl954.sas
- KNNL Chapter 24

Topic 23

27

2

26