Fractal Geometry and Computer-Generated Art

Ben Kushigian

Date

Contents

Pre	liminaries
	Fractals - Some Definitions and Notions
2.2	Types of Fractals
2.3	Fractals in Nature
2.4	Complex Numbers
2.5	Topology and Manifolds

1 Abstract

In this project I will delve into fractal geometry, computer generated visual art, and how the two tie together. I will draw from set theory, topology, manifold theory, the theory of dynamics.

2 Preliminaries

I lay out some fundamental concepts that we will build on. Some of this will get advanced so skim over material if it seems too dense.

2.1 Fractals - Some Definitions and Notions

The term 'fractal' is most likely familiar to you though one runs the risk of being imprecise with its use. We briefly state how we use the term.

Definition. A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every scale. If the replication is exactly the same at every scale, it is called a self-similar pattern. [4]

These are very general and somewhat wishy-washy definitions - not really definitions at all. However they will suffice for our purposes as long as we note a couple things. Firstly, in nature recursive patterns must bottom out, so we use the phrase "at all scales" very loosely. A classic example of the fractal geometry being exhibited in nature is looking at a coastline. There is, at any 'reasonable' scale (read *not too close* and *not too far away*), a boundary between a land mass and the water that surrounds it. When we ask what the length of the coastline is we will get differing results, depending on what are base unit of measurement is.

In fact, coast lines exhibit a fractal nature. If you were given just the line of the coast (say a part of the British coast, small enough to not have distinctive features) and asked to guess what scale you were looking at it would be impossible to tell. This is the essence of fractals. Note that there is not 'pattern' featured here, but rather the lack of a pattern. However we may notice that the lack of a pattern is consistent - that is, the 'roughness' of the coastline is approximately the same at all scales. This brings us to another definition of fractals which addresses this nuance.

Definition. A **fractal** is a curve or geometric figure, each part of which has the same statistical character as the whole.[3]

Figure 1: The length of the coast of Britain with increasing precision - Taken from Wikipedia.com

Here we aren't talking about patterns anymore but statistical characteristics of a set or curve. But this still doesn't quite get to the core of the matter. We want to be able to cast aside degenerate examples such as lines or planes. But the real line looks identical at all scales and fulfills both of our definitions so far.

Theorem 1. An open interval is homeomorphic to the real line.

This is a topological theorem and we will later describe both what topology is and what a homeomorphism is. For now it suffices to understand that in mathematics a morphism is a structure-preserving map from one object to another. Morphisms are a way of formalizing similarities between different mathematical structures.

Proof. Let a < b be real numbers and so that the interval (a,b) is well defined. We would like a bijective continuous open map $\phi: (a,b) \to \mathbb{R}$. Without loss of generality assume that $a = -\pi/2$ and $b = \pi/2$ (a simple scale and translation allows us to do this and meets the requirements of ϕ). Taking $\phi(x) = \arctan(x)$ we have our desired result.

This means that the real line is topologically identical to an open interval. A similar statement is true for an open disc in \mathbb{R}^2 and \mathbb{R}^2 itself. This brings us to our third and final definition of a fractal:

Definition. fractal: You'll know it when you see it.

In truth we can supply more rigour by talking about *fractional dimensions*, and we will, though perhaps not at a great enough depth to classify exactly *why* an open interval is not fractal.

2.2 Types of Fractals

There are many types of fractals and to my knowledge their categorizion is not standardized. We enumerate a few of them here.

Deterministic Iterated Funcion Systems (IFS) This is a method of constructing fractals that involves taking the union of several images of an initial figure under contractive 1 maps f_1, f_2, \ldots, f_n and repeating the process ad infinitum. Often these maps are required to be linear or affine though many IFS fractals are created with nonlinear functions. The classic example is the Sierpinski Gaskett. This mathematical oddity has many interesting properties, some of which we will have a chance to look at. The basic affine transformation

Figure 2: The Sierpinski Gaskett is a classic example of an IFS. Rendered in C++ using OpenGL

is to make three copies of the original image contracted to half their original size and place them in a triangular formation.

Figure 3: The newton fractal for $f(z) = z^3$. Rendered in C++ using OpenGL. Complex-Dynamic Fractals (CDF)

- i **Newton Fractals:** Newton fractals use Newton's method of approximation in the complex plane to observe how a function tends to its roots. While in the real case it is rather easy to predict where point will end up, in the complex case it is much more difficult.
- ii **Julia Sets:** The Julia set, named after mathematician Gaston Julia, is another fractal generated in the complex plane. From a very simple equation and endless iteration we get a glimpse at how dynamic the complex plane really is.

Physical Simulations We have recently begun to notice the order inherant in chaos - that behind much of the worlds seeming randomness there is actually a very fine order; a beauty behind the clutter. Perhaps one of the most striking visualizations of this is the (Magnetic) Chaos Pendulum. Here is the basic setup: We have a table on which lie three magnets of equal charge and polarity, all equadistant from some center point p and equadistant frome one another; that is they lie on a circle with center p and describe an equilateral triangle.

Now associate with each magnet a color: Red, Yellow and Blue. We conduct an experiment where we hang a magnetic pendulum above the table so that it hangs down above the point p. Assume that the pendulum is attracted to each of the magnets, and assume that the attraction is powerful enough that the pendulum can be 'affixed' at an angle so that it is held steady by one of the magnets.

We take a birds eye view and let the pendulum be moved to occupy a point above

the table. We then release it and see, after a while, which magnet the pendulum eventually ends up at. We color the point over which the pendulum initially hung the color associated with the magnet. The image on your left is the result.

2.3 Fractals in Nature

2.4 Complex Numbers

We assume some familiarity with complex numbers. We briefly state some facts that will be useful. First we talk about the **field** of complex numbers and denote it \mathbb{C} . We will also refer to complex numbers as existing in

In die Mitte joder der Seiten von p_1 setzen wir die Spitze eines gleicheiteigen Dreickes von der Seitendings (k_H^A) dessen Seiten den Seiten von p_1 serallel sind, und dass (d. h. dessen Inneres) ganz in W_1 liegt, L, R, R_1 , R_2 , R_3 , R_4 , and wei dieser Dreickee. p_1 hildet mit den se konstruierten Dreickeen einen geschlossenen poltgonalen Zoug p_2 , dessen Beken in der Richenfolge A_1 , B_1 , B_1 , A_2 , B_3 , B_4 ,

Wir denken uns diesen Prozeß unendlich oft wiederholt. Der Gre wert des geschlossenen polygonalen Zuges p_i für $i \to \infty$, d. h. die k

 Der Deutlichkeit halber sind alle Nebendreiecke in der Figur in ver grüßertem Maßstabe gezeichnet worden.

Figure 4: The Julia Set before computer graphics, drawn in 1924 by Hubert Cremer [5]

the **complex plane**. This gives us a geometric handle on how these objects act.

We denote complex numbers in a few ways. First we write them as ordered pairs z = (x, y) where x is called the *real part* and y is called the *imaginary part*. This notation lets us work with \mathbb{C} as the real plane \mathbb{R}^2 with some extra structure (the multiplication operation). We may also write z = (x, y) = x + iy where i represents the square root of negative one: $i = \sqrt{-1}$. Note that there are actually two square roots of negative one: $i^2 = (-i)^2 = -1$. Finally it is often convenient

to write elements of $\mathbb{C}^* = \mathbb{C} \setminus (0,0)$ in polar form: $z = x + iy = r(\cos\theta + i\sin\theta)$, where $r = \sqrt{x^2 + y^2}$ and θ is the angle of elevation from the positive real line (up to an additive term of $2\pi i$). By Euler's formula we can write this as $re^{i\theta}$. This is called the exponential form. Note that exponential and polar form are not bijective.

Figure 6: Complex conjugate of z = x + iy with exponential form. Taken from Wikipedia.com

We define addition in the same manner as addition in \mathbb{R}^2 : $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$. Let $w = x_1 + iy_1$ and $z = x_2 + iy_2$. We define multiplication $w \cdot z$ as

$$w \cdot z = (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$$

Letting $re^{i\theta}=z$, $se^{i\phi}=w$ be the exponential forms of z,w we can write $zw=rse^{i(\phi+\theta)}$ and we see that complex multiplication is a rotation composed with a dilation.

As stated, \mathbb{C} is a field under addition and operation, which means

- 1. \mathbb{C} is an abelian group under addition;
- 2. $\mathbb{C} \setminus \{0\}$ is an abelian group under multiplication.

Both of these properties are easy to check. Further we note that \mathbb{C} is the **extension field** of \mathbb{R} - that is, an n-degree polynomial P[X] over \mathbb{R} has exactly n solutions counting multiplicity in \mathbb{C} , and \mathbb{C} has no proper subset with this property (Fundamental Theorem of Algebra).

It will at times be useful to view \mathbb{C} as a subset of \mathbb{S} , the Riemann Sphere. We can imagine attaching a point at infinity, written $\mathbb{S} = \mathbb{C} \cup \{\infty\}$. This has the very nice property that \mathbb{S} contains all of its limit points. We say it is **limit-point compact** or simply **compact**. Compactness is a topological notion and in general compactness is stronger than limit-point compactness. However in the Euclidean plane this the two are equivalent and we lose no rigor switching be-

tween the terms.

Since $\mathbb S$ is compact we call $\mathbb S$ the **one-point compactification of** $\mathbb C$. Compact topological spaces have many nice features. Our main focus for considering $\mathbb S$ instead of $\mathbb C$ is that we can consider functions such as $\frac{1}{z}$ as a map from $\mathbb S$ to $\mathbb S$ if we define $\frac{1}{0}=\infty$ and $\frac{1}{\infty}=0$. Additionally we will be discussing fractal basins, attractors in $\mathbb C$ for iterated functions. By dealing with $\mathbb S$ instead of $\mathbb C$ this will unify our theory and simplify concepts.

2.5 Topology and Manifolds

We will use some notions from topology and manifold theory. First we define an open disc $D(z_0, r)$ to be the set of points $\{z \in \mathbb{C} \mid |z - z_0| < r\}$. This is the familiar definition. Then an **open set** in the complex plane is a set

that can be formed as

$$U = \bigcup_{\alpha \in J} D_{\alpha},$$

where J is an arbitrary index set and D_{α} is an open disc. The collection $\{D(z_0, r) \mid z_0 \in \mathbb{C}, r \in \mathbb{R}^+\}$ is called the **basis that generates** \mathbb{C} .

An n-manifold is a topological space that is locally euclidean, Hausdorff and second-countable. We inspect these ideas briefly.

Definition. Let X, Y be topological spaces. We say that $f: X \to Y$ is **continuous** if for every $V \subset Y$ the pre-image $U = f^{-1}(V) \subset X$ is open. We say that f is an **open map** if for every open set $U \subset X$ the image f(U) is open in Y. We say that the map f is **bijective** if it is onto and into. Finally we say that f is a **homeomorphism** if it is a continuous open bijection. If $f: X \to Y$ is a homeomorphic then we say that X is homeomorphic to Y and write $X \cong Y$.

We leave the following statement unproved (it is a simple exercise if the reader is interested).

Theorem 2. Homeomorphism is an equivalence relation.

We define three terms needed to define a manifold.

Definition. A space X is **locally Euclidean** if for every point $x \in X$ we may find an open set $U \subset X$ with a homeomorphism $\phi: U \to \tilde{U} \subset \mathbb{R}^n$.

Definition. A space X is **Hausdörff** if for every pair of distinct points $x, y \in X$ we may find open sets $U, V \subset X$ so that $x \in U, y \in V, \ U \cap V = \emptyset$.

Definition. A space X is **Second Countable** if it has a countable basis.

The most

References

- [1] The Fractal Foundation
 http://fractalfoundation.org/
- [2] Peitgen, Jürgens and Saup Chaos and Fractals Springer-Verlag, New York, New York, 1992.
- [3] Google Search
 https://www.google.com
- [4] Wikipedia Fractals https://en.wikipedia.org/wiki/Fractal
- [5] wahl.org http://benkushigian.com/misc/pdfs/defs455.pdf