Zadanie: USN

Usuwanie

Warsztaty ILO, grupa olimpijska. Dostępna pamięć: 128 MB.

Rozwiązanie wzorcowe $O(n \cdot log(n))$

Przez r_i oznaczmy tablicę zawierającą 0 i 1 zależące od tego jeżeli i-ty element był dobrym miejscem, lub nie był. Możemy to łatwo zrobić w czasie O(n).

Niech x_i będzie różnica pomiędzy liczbą dobrych miejsc po usunięciu i-tego elementu, a i początkową liczbą dobrych miejsc.

Pomyślmy jak usunięcie a_i wpływa na tablicę r_i . Najpierw r_i staje się równe 0, r_j dla (j < i) nie zmieniają się w tym przypadku. Natomiast kilka z r_j dla (j > i), może się zmienić z 0 na 1). Te elementy początkowo nie były dobrymi miejscami, natomiast po usunięciu a_i nimi się stały. To są te elementy, które mają jedynie jedną większą liczbę występującą przed nimi i jest to a_i . W ten sposób doszliśmy do rozwiązania brutalnego. Wybierzmy sobie a_i jako element do usunięcia. Niech $x_i = -r_i + \text{liczba } j$ takich, że j > i, $a_i > a_j$ i dla każdego k ($K \neq i, k < j$) $a_k < a_j$. Możemy policzyć to po prostu iterując się przez wszystkie j i trzymając maksimum z elementów na lewo.

Zauważmy, że ustalanie elementu do usunięcia jest niepotrzebne. r_j może zmienić się na 1 z 0 tylko wtedy, jeżeli szczególny element jest usunięty, Przeiterujmy się przez wszystkie a_j i ustalmy czy istnieje taki element a_i na lewo do a_j , że $a_i > a_j$ i żaden więcej z elementów występujących wcześniej nie jest większy od a_j . Możemy sprawdzić to używając ordered set, lub drzewa przedziałowego. Następnie użyjemy zliczania, żeby sprawdzić ile każdy element może nam dać nowych dobrych miejsc. Wybieramy z nich maksymalny wynik i otrzymujemy rozwiązanie.