LECTURE 16

Feature Engineering

Transforming data to improve model performance.

Data Science, Spring 2024@ Knowledge Stream Sana Jabbar

sklearn

Lecture 16

- sklearn
- Feature Engineering
- One-Hot Encoding
- Polynomial Features
- Complexity and Overfitting

We have done "heavy lifting" of model creation ourselves – via calculus, ordinary least squares, or gradient descent.

$$\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}$$

$$\hat{\theta}_1 = r \frac{\sigma_y}{\sigma_x}$$

We have done "heavy lifting" of model creation ourselves – via calculus, ordinary least squares, or gradient descent

$$\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}$$

$$\hat{\theta}_1 = r \frac{\sigma_y}{\sigma_x}$$

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

We have done "heavy lifting" of model creation ourselves – via calculus, ordinary least squares, or gradient descent

$$\hat{\theta}_{0} = \bar{y} - \hat{\theta}_{1}\bar{x}$$

$$\hat{\theta}_{1} = r\frac{\sigma_{y}}{\sigma_{x}}$$

$$\hat{\theta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y \qquad \theta^{(t+1)} = \theta^{(t)} - \alpha \frac{d}{d\theta}L(\theta^{(t)})$$

We have done "heavy lifting" of model creation ourselves – via calculus, ordinary least squares, or gradient descent

sklearn uses an <u>object-oriented</u> programming. Different types of models are defined as their own classes. To use a model, we initialize an instance of the model class. .

$$\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}$$

$$\hat{\theta}_1 = r \frac{\sigma_y}{\sigma_x}$$

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{d}{d\theta} L(\theta^{(t)})$$

In Data science, we will use <u>Scikit-Learn</u>, commonly called **sklearn**


```
import sklearn
my_model = linear_model.LinearRegression()
my_model.fit(X, y)
my_model.predict(X)
```

The sklearn Workflow

At a high level, there are three steps to creating an **sklearn** model:

Initialize a new model instance

Make a "copy" of the model template

2 Fit the model to the training data Save the optimal model parameters

3 Use fitted model to make predictions Fitted model outputs predictions for y

The sklearn Workflow

At a high level, there are three steps to creating an **sklearn** model:

Initialize a new model instance

Make a "copy" of the model template

my_model = lm.LinearRegression()

2 Fit the model to the training data Save the optimal model parameters

my_model.fit(X, y)

Use fitted model to make predictions

Fitted model makes predictions for y

my_model.predict(X)

To extract the fitted parameters: my_model.coef_ and my_model.intercept_

Lecture 16

- sklearn
- Feature Engineering
- One-Hot Encoding
- Polynomial Features
- Complexity and Overfitting

Features in machine learning

- Building blocks
- input variables

Types of features

Numerical Features

- Continuous values that can be measured on a scale.
- Examples: age, height, weight, and income
- Can be use directly

Categorical Features

- Discrete values can be grouped into categories
- Examples: gender, color, and zip code
- Need to be converted to numerical
- Using one-hot, label, and ordinal encoding

Time-series Features-

- These features are measurement taken over time
- Examples: stock prices, weather data, and sensor reading
- You can use these features to train machine learning models that can predict future values or identify patterns in the data.

Text Features

- These features are text strings represent words, phrases, or sentences
- Examples of text features include product reviews, social media posts, and medical records
- You can use text features to train machine learning models that can understand the meaning of text or classify text into different categories

- Feature engineering in ML contains mainly four processes:
 - Feature Creation refers to the creation of new features from existing data to help with better predictions

Examples: one-hot-encoding, binning, splitting, and calculated features.

2. Transformations include steps for replacing missing features or features that are not valid.

Examples: Binning numeric variables into categories, creating domain-specific features.

3. Feature Extraction involves reducing the amount of data to be processed using dimensionality reduction techniques.

Techniques: Principal Components Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA).

4. Feature Selection is the process of selecting a subset of extracted features.

This is the subset that is relevant and contributes to minimizing the error rate of a trained model.

Feature importance score and correlation matrix can be factors in selecting the most relevant features for model training

Feature engineering is the process of transforming raw features into more informative features for use in modeling

Allows us to:

- Capture domain knowledge
- Use non-numeric features in models

Feature Functions

A **feature function** describes the transformations we apply to raw features in the dataset to create transformed features. Often, the dimension of the featurized dataset increases.

Example: a feature function that adds a squared feature to the design matrix

	hp	mpg
0	130.00	18.00
1	165.00	15.00
2	150.00	18.00
•••		
395	84.00	32.00
396	79.00	28.00
397	82.00	31.00
392 rows × 2 columns		

	hp	hp^2	mpg	
0	130.00	16900.00	18.00	
1	165.00	27225.00	15.00	
2	150.00	22500.00	18.00	
395	84.00	7056.00	32.00	
396	79.00	6241.00	28.00	
397	82.00	6724.00	31.00	
392 rows × 3 columns				

Dataset of raw features:

$$\mathbb{X} \in \mathbb{R}^{n \times p}$$

After applying the feature function Φ :

$$\Phi(\mathbb{X}) \in \mathbb{R}^{n imes p'}$$

Feature Functions

A **feature function** describes the transformations we apply to raw features in the dataset to create transformed features. Often, the dimension of the *featurized* dataset increases.

Linear models trained on transformed data are sometimes written using the symbol Φ instead of X:

$$\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$\hat{Y} = X \theta$$

$$\hat{y} = \theta_0 + \theta_1 \phi_1 + \theta_2 \phi_2$$

$$\hat{Y} = \Phi \theta$$

Shorthand for "the design matrix after feature engineering"

One-Hot Encoding

Lecture 16

- Implementing Models in Code
- sklearn
- Feature Engineering
- One-Hot Encoding
- Polynomial Features
- Complexity and Overfitting

Regression Using Non-Numeric Features

In tips dataset we used when first exploring regression

	total_bill	size	day
0	16.99	2	Sun
1	10.34	3	Sun
2	21.01	3	Sun
3	23.68	2	Sun
4	24.59	4	Sun

Before, we were limited to only using numeric features in a model - total_bill and size

By performing feature engineering, we can incorporate *non-numeric* features like the day of the week

One-hot Encoding

One-hot encoding is a feature engineering technique to transform non-numeric data into numeric features for modeling

- Each category of a categorical variable gets its own feature
 - Value = 1 if a row belongs to the category
 - Value = 0 otherwise

Regression Using the One-Hot Encoding

The one-hot encoded features can then be used in the design matrix to train a model

	total_bill	size	day_Fri	day_Sat	day_Sun	day_Thur
0	16.99	2	0.0	0.0	1.0	0.0
1	10.34	3	0.0	0.0	1.0	0.0
2	21.01	3	0.0	0.0	1.0	0.0
3	23.68	2	0.0	0.0	1.0	0.0
4	24.59	4	0.0	0.0	1.0	0.0
	Raw features			One-hot e	ncoded fea	atures

$$\hat{y} = \theta_1(\text{total_bill}) + \theta_2(\text{size}) + \theta_3(\text{day_Fri}) + \theta_4(\text{day_Sat}) + \theta_5(\text{day_Sun}) + \theta_6(\text{day_Thur})$$

In shorthand: $\hat{y}= heta_1\phi_1+ heta_2\phi_2+ heta_3\phi_3+ heta_4\phi_4+ heta_5\phi_5+ heta_6\phi_6$

Regression Using the One-Hot Encoding

Using **sklearn** to fit the new model:

$$\hat{y} = heta_1(ext{total_bill}) + heta_2(ext{size}) + heta_3(ext{day_Fri}) + heta_4(ext{day_Sat}) + heta_5(ext{day_Sun}) + heta_6(ext{day_Thur})$$

Model Coefficient

Feature	
total_bill	0.092994
size	0.187132
day_Fri	0.745787
day_Sat	0.621129
day_Sun	0.732289
day_Thur	0.668294

Interpretation: how much the fact that it is Friday impacts the predicted tip

Regression Using the One-Hot Encoding

Party of 3, \$50 total bill, eating on a Friday:

$$\hat{y} = heta_1(ext{total_bill}) + heta_2(ext{size}) + heta_3(ext{day_Fri}) + heta_4(ext{day_Sat}) + heta_5(ext{day_Sun}) + heta_6(ext{day_Thur})$$
 $\hat{y} = 0.092994(50) + 0.187132(3) + 0.745787(1) + 0.621129(0) + 0.732289(0) + 0.668294(0)$

Model Coefficient

Feature	
total_bill	0.092994
size	0.187132
day_Fri	0.745787
day_Sat	0.621129
day_Sun	0.732289
day_Thur	0.668294

$$\hat{y} = 5.9568643$$

One-hot Encode Wisely!

Any set of one-hot encoded columns will always sum to a column of all ones.

If we also include a bias column in the design matrix, there will be linear dependence in the model. $\mathbb{X}^{\top}\mathbb{X}$ is not invertible, and our OLS estimate $\hat{\theta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbb{Y}$ fails.

How to resolve? Omit one of the one-hot encoded columns or do not include an intercept term

One-hot Encode Wisely!

How to resolve? Omit one of the one-hot encoded columns or do not include an intercept term

Adjusted design matrices:

We still retain the same information – in both approaches, the omitted column is simply a linear combination of the remaining columns

Polynomial Features

Lecture 16

- sklearn
- Feature Engineering
- One-Hot Encoding
- Polynomial Features
- Complexity and Overfitting

Accounting for Curvature

We've seen a few cases now where models with linear features have performed poorly on datasets with a clear non-linear curve.

$$\hat{y} = \theta_0 + \theta_1(\mathrm{hp})$$

MSE: 23.94

When our model uses only a single linear feature (**hp**), it cannot capture non-linearity in the relationship

Solution: incorporate a non-linear feature!

Polynomial Features

We create a new feature: the square of the hp

$$\hat{y} = heta_0 + heta_1(ext{hp}) + heta_2(ext{hp}^2)$$

This is still a **linear model**. Even though there are non-linear *features*, the model is linear with respect to θ

Degree of model: 2

MSE: 18.98

Looking a lot better: our predictions capture the curvature of the data.

Polynomial Features

What if we add more polynomial features?

MSE continues to decrease with each additional polynomial term

Complexity and Overfitting

Lecture 16

- sklearn
- Feature Engineering
- One-Hot Encoding
- Polynomial Features
- Complexity and Overfitting

How Far Can We Take This?

Model Complexity

As we continue to add more and more polynomial features, the MSE continues to decrease

Equivalently: as the **model complexity** increases, its *training error* decreases

33

An Extreme Example: Perfect Polynomial Fits

Math fact: given N non-overlapping data points, we can always find a polynomial of degree N-1 that goes through all those points.

For example, there always exists a degree-4 polynomial curve that can perfectly model a dataset of 5 datapoints

Model Performance on Unseen Data

New (more realistic) example:

- We are given a training dataset of just 6 datapoints
- We want to train a model to then make predictions on a different set of points

We may be tempted to make a highly complex model (eg degree 5)

Complex model makes perfect predictions on the training data...

...but performs *horribly* on the rest of the population!

Model Performance on Unseen Data

What went wrong?

- The complex model overfit to the training data – it essentially "memorized" these 6 training points
- The overfitted model does not generalize well to data it did not encounter during training

This is a problem: we want models that are generalizable to "unseen" data

Model Variance

Complex models are sensitive to the specific dataset used to train them – they have high **variance**, because they will *vary* depending on what datapoints are used for training them

Our degree-5 model varies erratically when we fit it to different samples of 6 points from vehicles

Error, Variance, and Complexity

We face a dilemma:

- We know that we can decrease training error by increasing model complexity
- However, models that are too complex start to overfit and do not generalize well their high variance means they can't be reapplied to new datasets

