CORRIGÉ DM N°7 ESIM 2003 PC

Première partie

- **1.** a) $F \subset E$, car, si la série de terme général $|u_k|$ converge, alors $u_k \xrightarrow[k \to \infty]{} 0$, donc $(u_k)_{k \geqslant 0}$ est bornée.
 - $F \neq \emptyset$, car la suite nulle est dans F.
 - Si $\alpha \in \mathbb{C}$, $u = (u_k)_{k \ge 0} \in F$, $u' = (u_k')_{k \ge 0} \in F$, alors les séries de termes généraux $|u_k|$ et $|u_k'|$ convergent, donc, comme $|\alpha u_k + u_k'| \le |\alpha| |u_k| + |u_k'|$, la série de terme général $|\alpha u_k + u_k'|$ converge, et donc $\alpha u + u' \in F$.

On conclut que F est un \mathbb{C} -sous-espace vectoriel de E.

b)

$$S_n(v) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}$$
 si $z \neq 1$ et $S_n(v) = \sum_{k=0}^n 1 = n + 1$ si $z = 1$.

2. On a, pour tout $n \in \mathbb{N}$:

$$\left|u_n \frac{x^n}{n!} e^{-x}\right| \leq M e^{-x} \frac{|x|^n}{n!},$$

donc, comme la série de terme général $\frac{|x|^n}{n!}$ converge (cours), la série de terme général $u_n \frac{x^n}{n!} e^{-x}$ converge.

3.
$$\Phi_{\nu}(x) = \sum_{n=0}^{+\infty} z^n \frac{x^n}{n!} e^{-x} = \left(\sum_{n=0}^{+\infty} \frac{(zx)^n}{n!}\right) e^{-x} = e^{zx} e^{-x} = e^{(z-1)x}.$$

4. Puisque $u \in E$, il existe M > 0 tel que : $\forall n \in \mathbb{N}, |u_n| \leq M$,

d'où, par l'inégalité triangulaire : $\forall n \in \mathbb{N}, |S_n(u)| \leq M(n+1)$.

La règle de d'Alembert montre que la série entière $\sum_{n\geqslant 0} \mathrm{M}(n+1) \frac{x^n}{n!}$ est de rayon infini, donc la série entière $\sum \mathrm{S}_n(u) \frac{x^n}{n!}$ est aussi de rayon infini.

5. • Si $z \neq 1$, on a, en manipulant des séries numériques qui sont toutes convergentes :

$$\Psi_{\nu}(x) = \sum_{n=0}^{+\infty} S_n(\nu) \frac{x^n}{n!} e^{-x} = \sum_{n=0}^{+\infty} \frac{1 - z^{n+1}}{1 - z} \frac{x^n}{n!} e^{-x} = \frac{e^{-x}}{1 - z} e^x - \frac{ze^{-x}}{1 - z} e^{zx} = \frac{e^{-x}}{1 - z} (e^x - ze^{zx})$$

• Si z = 1:

$$\Psi_{\nu}(x) = \sum_{n=0}^{+\infty} (n+1) \frac{x^n}{n!} e^{-x} = \sum_{n=0}^{+\infty} n \frac{x^n}{n!} e^{-x} + \sum_{n=0}^{+\infty} \frac{x^n}{n!} e^{-x} = x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} e^{-x} + \sum_{n=0}^{+\infty} \frac{x^n}{n!} e^{-x} = x + 1.$$

6. Puisque les séries entières $\sum_{n\geqslant 0}u_n\frac{x^n}{n!}$ et $\sum_{n\geqslant 0}S_n(u)\frac{x^n}{n!}$ sont de rayon infini, leurs sommes sont de classe C^∞ sur \mathbb{R} , et donc, par multiplication par la fonction $x\longmapsto \mathrm{e}^{-x}$, qui est aussi de classe C^∞ , on conclut que Φ_u et Ψ_u sont de classe C^∞ sur \mathbb{R} , autrement dit sont indéfiniment dérivables sur \mathbb{R} .

Deuxième partie

7. On a: $\Psi_{\nu}(x) = \frac{e^{-x}}{1-z} \left(e^x - z e^{zx} \right) = \frac{1 - z e^{(z-1)x}}{1-z} \xrightarrow{x \to +\infty} \frac{1}{1-z},$

car $\left| e^{(z-1)x} \right| = e^{\text{Re}((z-1)x)} = e^{(\text{Re}(z)-1)x}$ et Re(z) - 1 < 0

D'autre part : $\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n = S(v).$

Enfin: $\int_0^{+\infty} \Phi_{\nu}(x) \, \mathrm{d}x = \int_0^{+\infty} \mathrm{e}^{(z-1)x} \, \mathrm{d}x = \left[\frac{\mathrm{e}^{(z-1)x}}{z-1} \right]_0^{+\infty} = -\frac{1}{z-1} = \frac{1}{1-z},$

d'où les égalités voulues.

8. a)
$$\int_0^{+\infty} e^{-x} x^n dx = \int_0^{+\infty} x^{(n+1)-1} e^{-x} dx = \Gamma(n+1) = n!.$$

- **b)** Considérons, pour tout $n \in \mathbb{N}$, l'application $f_n : [0; +\infty[\longrightarrow \mathbb{C}, x \longmapsto \frac{u_n}{n!} x^n e^{-x}]$.
 - Pour tout $n \in \mathbb{N}$, f_n est intégrable sur $[0; +\infty[$ (cf. a)).
 - La série de fonctions $\sum_{n\geq 0} f_n$ converge simplement sur $[0;+\infty[$ (cf. 2.), et a pour somme Φ_u .
 - Φ_u est continue par morceaux sur $[0; +\infty[$, puisqu'elle est de classe C^{∞} (cf. 6.)
 - La série $\sum_{n>0} \int_0^{+\infty} |f_n|$ converge car, pour tout $n \in \mathbb{N}$:

$$\int_{0}^{\infty} |f_{n}(x)| \, \mathrm{d}x = \int_{0}^{+\infty} \frac{|u_{n}|}{n!} |x|^{n} \mathrm{e}^{-x} \, \mathrm{d}x = \frac{|u_{n}|}{n!} \int_{0}^{+\infty} x^{n} \mathrm{e}^{-x} \, \mathrm{d}x = |u_{n}|,$$

et que $u \in F$.

D'après un théorème du cours sur séries de fonctions et intégration sur un intervalle quelconque, on en conclut que Φ_u est intégrable sur $[0;+\infty[$ et que :

$$\int_{0}^{+\infty} \Phi_{u}(x) dx = \int_{0}^{+\infty} \left(\sum_{n=0}^{+\infty} f_{n}(x) \right) dx = \sum_{n=0}^{+\infty} \int_{0}^{+\infty} f_{n}(x) dx = \sum_{n=0}^{+\infty} u_{n} = S(u).$$

9. a) Notons, pour tout $n \in \mathbb{N}$: $f_n: [0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto f_n(x) = u_n \frac{x^n}{n!} e^{-x}$.

Pour tout $n \in \mathbb{N}$, f_n est de classe C^1 sur $[0; +\infty[$ et, pour tout $n \ge 1$ et tout $x \in [0; +\infty[$:

$$f'_n(x) = \frac{u_n}{n!}(nx^{n-1}e^{-x} - x^ne^{-x}) = \frac{u_n}{n!}(n-x)x^{n-1}e^{-x}.$$

Il en résulte que $|f_n|$ est croissante sur [0;n] et décroissante sur $[n+\infty[$, et que :

$$||f_n||_{\infty} = |f_n(n)| = |u_n| \frac{n^n}{n!} e^{-n}.$$

D'après la formule de Stirling, $n! \underset{n \to \infty}{\sim} \frac{n^n}{\mathrm{e}^n} \sqrt{2\pi n}$, donc $\frac{n^n}{n!} \mathrm{e}^{-n} \underset{n \to \infty}{\sim} \frac{1}{\sqrt{2\pi n}}$, d'où $||f_n||_{\infty} \underset{n \to \infty}{=} o(|u_n|)$.

Comme la série de terme général $|u_n|$ converge, il en résulte que la série de terme général $||f_n||_{\infty}$ converge, et donc la série de fonctions $\sum_{n\geq 0} u_n \frac{x^n}{n!} e^{-x}$ converge normalement sur $[0;+\infty[$.

b) La série de fonctions $\sum_{n\geqslant 0} f_n$ définie en 9.a) converge normalement, donc converge uniformément, sur $[0;+\infty[$, et, pour tout $n\in\mathbb{N}$, $f_n(x)=u_n\frac{x^n}{n!}\mathrm{e}^{-x}\underset{x\longrightarrow +\infty}{\longrightarrow} 0$, donc, d'après un théorème du cours sur convergence uniforme et limites :

$$\Phi_u(x) = \sum_{n=0}^{+\infty} u_n \frac{x^n}{n!} e^{-x} \xrightarrow[x \to +\infty]{} 0.$$

10. a) La série entière $\sum_{n\geqslant 0} u_n \frac{x^n}{n!}$ est de rayon infini, donc sa somme est de classe C^{∞} sur \mathbb{R} et on peut dériver terme à terme, d'où, pour tout $x\in\mathbb{R}$:

$$e^{-x} \frac{d}{dx} \Big[\Phi_u(x) e^x \Big] = e^{-x} \sum_{n=1}^{+\infty} u_n \frac{nx^{n-1}}{n!} = e^{-x} \sum_{n=1}^{+\infty} u_n \frac{x^{n-1}}{(n-1)!}.$$

D'où:

$$e^{-x} \frac{d}{dx} \left[\Phi_u(x) e^x \right] + \Psi_u(x) = e^{-x} \sum_{n=1}^{+\infty} u_n \frac{x^{n-1}}{(n-1)!} + \sum_{n=0}^{+\infty} S_n(u) \frac{x^n}{n!} e^{-x}$$

$$= \sum_{n=1}^{+\infty} \left(S_{n-1}(u) + u_n \right) \frac{x^{n-1}}{(n-1)!} e^{-x} = e^{-x} \sum_{n=1}^{+\infty} S_n(u) \frac{x^{n-1}}{(n-1)!}.$$

b) Comme en a), l'application Ψ_u est de classe C^{∞} sur \mathbb{R} et on peut dériver terme à terme, d'où, pour tout $x \in \mathbb{R}$:

$$\begin{split} \Psi_u'(x) &= \mathrm{e}^{-x} \frac{\mathrm{d}}{\mathrm{d}x} \left[\sum_{n=0}^{+\infty} \mathrm{S}_n(u) \frac{x^n}{n!} \right] - \mathrm{e}^{-x} \sum_{n=0}^{+\infty} \mathrm{S}_n(u) \frac{x^n}{n!} = \mathrm{e}^{-x} \sum_{n=1}^{+\infty} \mathrm{S}_n(u) \frac{x^{n-1}}{(n-1)!} - \Psi_u(x) \\ &= \Psi_u(x) + \mathrm{e}^{-x} \frac{\mathrm{d}}{\mathrm{d}x} \left[\Phi_u(x) \mathrm{e}^x \right] - \Psi_u(x) = \mathrm{e}^{-x} \left(\Phi_u(x) \mathrm{e}^x + \Phi_u'(x) \mathrm{e}^x \right) = \Phi_u(x) + \Phi_u'(x). \end{split}$$

c) On a donc, pour tout $t \in \mathbb{R}$:

$$\begin{split} \Psi_u(t) &= \Psi_u(0) + \int_0^t \Psi_u'(x) \, \mathrm{d}x = \Psi_u(0) + \int_0^t \left(\Phi_u(x) + \Phi_u'(x) \right) \mathrm{d}x \\ &= \Psi_u(0) + \int_0^t \Phi_u(x) \, \mathrm{d}x + \left[\Phi_u(x) \right]_{x=0}^{x=t} = \int_0^t \Phi_u(x) \, \mathrm{d}x + \Phi_u(t), \end{split}$$

car $\Psi_{u}(0) = \Phi_{u}(0) = u_0$.

11. D'après 9.b), $\Phi_u(t) \xrightarrow[t \to +\infty]{} 0$.

D'après 8.b), Φ_u est intégrable sur $[0;+\infty[$ et $\int_0^{+\infty}\Phi_u(x)\,\mathrm{d}x=\mathrm{S}(u).$

On déduit, d'après 10 c):

$$\Psi_u(t) = \int_0^t \Psi_u(x) \, \mathrm{d}x + \Phi_u(t) \underset{t \longrightarrow +\infty}{\longrightarrow} S(u).$$

Troisième partie

12. a) On a, pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \sum_{k=0}^{n} (-1)^k \int_0^1 x^k \, \mathrm{d}x = \int_0^1 \sum_{k=0}^{n} (-x)^k \, \mathrm{d}x$$
$$= \int_0^1 \frac{1 - (-x)^{n+1}}{1+x} \, \mathrm{d}x = \int_0^1 \frac{1}{1+x} \, \mathrm{d}x - (-1)^{n+1} \int_0^1 \frac{x^{n+1}}{1+x} \, \mathrm{d}x.$$

Comme:

$$0 \leqslant \int_0^1 \frac{x^{n+1}}{1+x} \, \mathrm{d}x \leqslant \int_0^1 x^{n+1} \, \mathrm{d}x = \frac{1}{n+2} \lim 0,$$

il en résulte que la série de terme général $u_n = \frac{(-1)^n}{n+1}$ converge et que :

$$S(u) = \int_0^1 \frac{1}{1+x} \, dx = \ln 2.$$

b) Soit $n \in \mathbb{N}$ fixé. La série $\sum_{k \ge n+1} \frac{(-1)^k}{k+1}$ est alternée et son terme général, en valeur absolue, décroît vers 0.

D'après le théorème spécial à certaines séries alternées, cette série converge (ce qu'on vient de voir) et la valeur absolue du reste est inférieure ou égale à la valeur absolue du premier terme du reste, c'est-à-dire :

$$|r_n| \le \left| \frac{(-1)^n}{n+1} \right| = \frac{1}{n+1}.$$

c) Remarquons que $u \in E$ (car la suite u est bornée), mais que $u \notin F$ (car la série de terme général $|u_k|$ diverge).

On a, d'après 12 a), pour tout $n \in \mathbb{N}$: $S_n(u) = S(u) - r_n = \ln 2 - r_n$.

Considérons, pour tout $n \in \mathbb{N}$, l'application $h_n : [0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto h_n(x) = r_n \frac{x^n}{n!} e^{-x}]$.

Comme en 9.a): $||h_n||_{\infty} = |h_n(n)| = |r_n| \frac{n^n}{n!} e^{-n} \le \frac{1}{n+1} \frac{n^n}{n!} e^{-n} \sim \frac{1}{n+1} \frac{1}{\sqrt{2\pi n}} \sim \frac{1}{\sqrt{2\pi}} \frac{1}{n^{3/2}}$

d'où, d'après l'exemple de Riemann, la convergence normale, donc uniforme, de la série des h_n . Comme la série des h_n converge uniformément sur $[0\,;+\infty[$ et que, pour tout $n\in\mathbb{N},\ h_n(x)_x\longrightarrow_{+\infty}0$, on déduit, d'après un théorème du cours sur convergence uniforme et limites, $\sum_{n=0}^{+\infty}h_n(x)_x\longrightarrow_{+\infty}0$, et donc $\lim_{x\longrightarrow_{+\infty}}\Psi_u(x)=\ln 2$.

13. a) • On a, pour tout
$$x \in \mathbb{R}$$
: $\Phi_u(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} \frac{x^n}{n!} e^{-x} = \left(\sum_{n=0}^{+\infty} \frac{(-x)^n}{(n+1)!}\right) e^{-x}$,
d'où, si $x \neq 0$: $\Phi_u(x) = -\frac{1}{x} \left(\sum_{n=0}^{+\infty} \frac{(-x)^{n+1}}{(n+1)!}\right) e^{-x} = -\frac{1}{x} (e^{-x} - 1) e^{-x} = \frac{e^{-x} - e^{-2x}}{x}$.

D'autre part, d'après le premier terme de la série entière, $\Phi_{\shortparallel}(0)=1.$

- L'application Φ_u est continue sur $[0;+\infty[$ (cf. I6.), et $x^2\Phi_u(x)=x(\mathrm{e}^{-x}-\mathrm{e}^{-2x})_{x\longrightarrow +\infty}0$ (par prépondérance classique), donc Φ_u est intégrable sur $[0;+\infty[$.
- b) Considérons l'application

$$g:[a;+\infty[\times]0;+\infty[\longrightarrow \mathbb{R}, (x,t)\longmapsto g(x,t)=\frac{\mathrm{e}^{-at}-\mathrm{e}^{-bt}}{t}.$$

- g est continue sur $[a; +\infty[\times]0; +\infty[$.
- Soit $b \in [a; +\infty[$. On a, pour tout $(x, t) \in [a; b] \times]0; +\infty[$:

$$|g(x,t)| = \frac{e^{-at} - e^{-xt}}{t} \le \frac{e^{-at} - e^{-bt}}{t}$$

et l'application $\varphi_b: t \longmapsto \frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{t}$ est continue par morceaux, positive ou nulle, et intégrable sur $]0; +\infty[$, car, en $0, \ \varphi_b(t) = \frac{(\mathrm{e}^{-at} - 1) - (\mathrm{e}^{-bt} - 1)}{t} \underset{t \longrightarrow 0}{\longrightarrow} -a + b$, et, en $+\infty, \ t^2 \varphi_b(t) \underset{t \longrightarrow +\infty}{\longrightarrow} 0$, par prépondérance classique.

Ceci montre que g vérifie l'hypothèse de domination locale.

- L'application $\frac{\partial g}{\partial x}:(x,t)\longmapsto \mathrm{e}^{-xt}$ existe et est continue sur $[a;+\infty[\times]0;+\infty[$.
- On a, pour tout $(x, t) \in [a; +\infty[\times]0; +\infty[:$

$$\left| \frac{\partial g}{\partial x}(x,t) \right| = e^{-xt} \leqslant e^{-at},$$

et l'application $t \mapsto e^{-at}$ est continue par morceaux, positive ou nulle et intégrable sur $]0;+\infty[$. Ceci montre que $\frac{\partial g}{\partial x}$ vérifie l'hypothèse de domination.

D'après le théorème de dérivation sous le signe $\int_0^{+\infty}$, il en résulte que F est de classe C^1 sur $[a; +\infty[$ et que, pour tout $x \in [a; +\infty[$:

$$F'(x) = \int_0^{+\infty} \frac{\partial g}{\partial x}(x, t) dt = \int_0^{+\infty} e^{-xt} dt = \left[\frac{e^{-xt}}{t}\right]_0^{+\infty} = \frac{1}{x}.$$

Par primitivation, on obtient, pour tout $x \in [a; +\infty[$:

$$F(x) = F(a) + \int_{a}^{+\infty} F'(t) dt = \int_{a}^{+\infty} \frac{1}{t} dt = \ln x - \ln a.$$

Remarque : On pouvait calculer F(x) par une autre méthode, utilisant la linéarité de l'intégrale, des changements de variable, la relation de Chasles.

14. D'après 13.a), Φ_u est intégrable sur $[0; +\infty[$ et :

$$\int_0^{+\infty} \Phi_u(x) \, \mathrm{d}x = \int_0^{+\infty} \frac{\mathrm{e}^{-x} - \mathrm{e}^{-2x}}{x} \, \mathrm{d}x = F_1(2) = \ln 2.$$

D'autre part, d'après 12.c) : $\Psi_u(x) \underset{x \longrightarrow +\infty}{\longrightarrow} \ln 2$. On conclut :

$$\lim_{x \to +\infty} \Psi_u(x) = \int_0^{+\infty} \Phi_u(x) \, \mathrm{d}x.$$

