# Semantic Segmentation Optimization

By: SDDec25-01







### **SDDec25-01**

Team Members: Advisor: Client:

Joey Metzen - CprE Dr. Namrata Vaswani JR Spidell

Aidan Perry - CprE

Conner Ohnesorge - EE

Tyler Schaefer - SE

### **Problem Statement**



### Problem

- People with disabilities face risks from undetected medical issues. Traditional methods lack real-time monitoring.
- Using eye movement tracking with semantic segmentation can detect warning signs and automatically reposition users to prevent incidents, improving safety needs.

#### Client

- Volunteered to help individuals with cerebral palsy.
- Create an assistive wheelchair technology.

### Team

 Update the system to increase throughput.



# Resources/Data Management





### Hardware/Software:

- Kria Board Kv260
- Xilinx
- Vitis-Al
- Pytorch
- ONNX & ONNX-Runtime
- Petalinux

### Mem Components:

- DDR4 RAM (Main Memory) [4GB]
- Quad-SPI Flash (Boot ROM) [64MB]
- Cortex-A53 L1 Data Cache
- Cortex-A53 L2 Cache [1MB]

### **Project Overview**



Increase throughput by splitting the U-net algorithm over 4 cores and across the DPU.



What is Semantic Segmentation





- Convolution = sliding window
- NN basically Turns func(3x3) into func(...func(func(3x3)))

## **U-net Semantic Segmentation cont.**

### **Contracting Encoder**

- Downsampling (i.e. 2x2 Max Pool) compensated by the doubles # channels
- Transmit to across to decoder Includes spatial info

### **Expanding Decoder**

- Receive from encoder
- Upsampling (i.e. 2x2 Convolution) decreases the amount of channels Includes semantic Info



Each "forward step" applies a relu function to the output of a repeated convolutional layer application over input channels.

## **U-net Semantic Segmentation**





### Quantization

32 fp -> 8b int Less precise More processable DPU needs integer inputs Post Training Quantization



### **Data Version Control**

- S3 compatible store
  Versioned on top of Git
- Distributed (Supports cross country cooperation)
- Low Learning Curve





# Questions before we continue?

# Task Decomposition and Decision Making

### **Member Roles**



# **Proposed Pipelining**



#### **Tracked Metrics**





Accuracy



Resource Utilization



### **Emphasis on Resource Utilization**



X24999-012122

### **Milestones**

- Mathematical division of the Algorithm
- Loading of Split Algorithm weights onto DPU
- Pipelined Implementation of the Semantic
  Segmentation algorithm across the 4 developed
  threads.
- Increased Throughput over multiple frames

# **Project Management Style**

Waterfall & Agile





### Gantt Chart



# **Segmenting the Model**

### **Computational Complexity of Model**



### **Traditional Convolutions**

 $O(H \times W \times Cin \times K \times Cout)$ 

### **Computational Complexity Analysis**



# **Depthwise Separable Convolutions**

Depthwise

 $O(H \times W \times Cin \times K)$ 

**Pointwise** 

O(H x W x Cin x Cout)



### Conclusion

Problem Solved: Real-time monitoring for individuals with disabilities using eye tracking.

Outcome: Improve safety and throughput with pipelined U-Net on DPU.

Next Steps: Optimize Performance and Thorough Safety Testing.

# Thank You Questions