Aeroelasticity Xeno Meienberg

Constants

• Normdruck: $p_{ref} = 1atm = 1.01325 \ bar$

• Normtemperatur: $T_{ref} = 298 \ K \approx 25^{\circ} \ C$

• Pferdestärke: 1 hp = 1 PS = 0.735 kW

• Elementarladung: $e = 1.60219 \cdot 10^{-19} C$

 • Faraday-Konstante: $F = N_A \cdot e = 96485.3 \frac{C}{mol} = \frac{A \cdot s}{mol}$

• ppm = parts per million: $1 ppm = 10^{-6}$

 • Gaskonstante: $\overline{R}=8.314\frac{J}{molK}$, spez. – $R=\frac{\overline{R}}{M}[\frac{J}{kgK}]$

Parameters

- Aerodynamic Force F_A
- Aerodynamic Moment M_A
- Lift Coefficient $C_l = L/(1/2\rho V^2 c)$
- Drag Coefficient $C_d = D/(1/2\rho V^2 c)$
- Moment Coefficient $C_m = M_A/(1/2\rho V^2 c^2)$
- Angle of Attack α angle between connection leading and the trailing edge and reference line
- Lift curve slope $a = C_l/\alpha$

Steady Aerofoil and Wing Section Aerodynamics

- Aerofoil = 2-D wing section with goal to generate lift force perpendicular to the relative airspeed
- Convention: Lift is up, Drag is in direction of windspeed and Aerodynamic moment in clockwise direction acting on the aerodynamic center. Aerodynamic center is normally at the quarter chord position $c_{m,c/4}$ for syymetric airfoils. $x_{ac}=-m_0/2\pi+0.25$ with m_0 as a shape constant

- \bullet Further assumptions: No viscosity, incompressible fluid, $Ma < 0.2, 0.3, \ {\rm no} \ {\rm vortices}, \ {\rm potential} \ {\rm flow} \ ({\rm Navier-Stokes})$
- Another centre is the shear center (elastic axis) from mechanics
- $L=1/2\rho V^2 ca\alpha$, with a from tables (CFD and Wind Tunnel)
- $M_a = 1/2\rho V^2 c^2 c_{m\phi}$ with $c_{m\phi}$ also from tables

Lift curve $C_l(\alpha)$ and drag curve $C_d(\alpha)$

•

The aerodynamic moment

Assessment of C_l/α