第三章 常用的統計量數

例 某安親班中的 10 名學生其身高分別為 105, 100, 98, 105, 120, 80, 92, 99, 100, 112, 試求這 10 名學生身高的算術平均數。

MODE 2

105 M+ 100 M+ 98 M+ 105 M+ 120 M+ 80 M+ 92 M+ 99 M+ 100 M+ 112 M+ SHIFT 2 1 =

例 已知一組樣本數為 10,平均數 15。若事後發現其中一個樣本值從 7 修正為 17 時,其修正後的平均數應為多少?

例 已知資管系 50 名學生統計學成績如下:

I	分數	0-9	10-19	20-29	30-39	40-49	50-59	60-69
	人數	1	5	10	15	10	8	1

(1)試求平均成績。

MODE 2

4.5 M+ 14.5 SHIFT |; 5 M+ 24.5 SHIFT |; 10 M+ 34.5 SHIFT |; 15 M+

44.5 SHIFT | 10 M+ 54.5 SHIFT | 8 M+ 64.5 M+

SHIFT 2 1 =

例 下表為小明本學期的課業成績,試求小明的學期總平均。

課程名稱	國文	英文	微積分	心理學	憲法
成績	90	85	52	88	75
學分數	4	4	3	2	2

MODE 2

90 M+ M+ M+ 85 M+ M+ M+ 52 M+ M+ M+

88 M+ M+ 75 M+ M+

SHIFT 2 1 =

例 一項從民國 84 年到 88 年台灣地區經常上網的人口統計如下:

民國(年)	84	85	86	87	88
人數(萬人)	2	10	30	100	300

求這五年的上網人口平均成長率。

例 25 現有二組資料,試分別計算母體平均數與母體變異數,請問哪組資料的平均數比較具有代表性。

A: 8,9,10,11,12 B: 4,7,10,13,16

MODE 2

8 M+ 9 M+ 10 M+ 11 M+ 12 M+

求 $\overline{\mu_A}$: SHIFT 21 目

求: σ_A^2 :SHIFT 2 2 x^2 目

例 下表為資管系統計學成績,經整理次數分配表如下:

分數	0-9	10-19	20-29	30-39	40-49	50-59	60-69
人數	1	5	10	15	10	8	1

試計算統計學成績的變異數與標準差。

MODE 2

4.5 M+ 14.5 SHIFT ; 5 M+ 24.5 SHIFT ; 10 M+ 34.5 SHIFT ; 15 M+

44.5 SHIFT | 10 M+ 54.5 SHIFT | 8 M+ 64.5 M+

求標準差

SHIFT 2 2 目 ── 求異數

接續著按,不要中斷

 $x^2 = \blacksquare$

例 試求下列資料之樣本變異數:

3 4 2.5 4.1 1.2 2.8 3.7

MODE 2

3 M+4 M+2.5 M+4.1 M+1.2 M+2.8 M+3.7 M+

SHIFT 2 3 x^2

例 計算下列某工廠工人之年齡分配之一至四階主動差,並求其平均數、標準 差、偏態係數及峰度係數。

年齡	20 - 23	23 - 26	26-29	29-32	32-35	35-38
人數	16	31	62	48	29	14

MODE $3 \Rightarrow 3$

21.5 SHIFT | 16 M+ 24.5 SHIFT | 31 M+ 27.5 SHIFT | 62 M+ 30.5 SHIFT | 48 M+ 33.5 SHIFT | 29 M+ 36.5 SHIFT | 14 M+

求 m_1 :

SHIFT 2 1 =

求 m_2 :

SHIFT 1 1 : 200 =

求 m_3 :

SHIFT [] ⇒ □ : 200 =

求 m_4 :

SHIFT 1 ⇒ ⇒ 3 ÷ 200 =

例 已知資料如下:

Ī	х	2	5	1	3	4	1	5	3	4	2	
Ī	y	50	57	41	54	54	38	63	48	59	46	

試求共變異數,並根據共變異數判斷 x 與 y 之關係。

因為 $\sigma_{xy} = \rho_{xy} \times \sigma_x \times \sigma_y$

MODE 3 1

2 , 50 M+5 , 57 M+1 , 41 M+3 , 54 M+4 , 54 M+1 , 38 M+

5 , 63 M+3 , 48 M+ , 59 M+2 , 46 M+

先求相關係數 σ_{xy} :

SHIFT 2 ⇒ 3 = 得 0.93049

次求 σ_r :

SHIFT 2 = 得 1.41421

最後求

 σ 、順便乘上兩個數據:

SHIFT 2 ≥ 2 × 0.93049 × 1.41421 = 即得共變異數

例 承上題,求相關係數。

MODE 3 1

2 , 50 M+ 5 , 57 M+ 1 , 41 M+ 3 , 54 M+ 4 , 54 M+ 1 , 38 M+

5 , 63 M+ 3 , 48 M+ , 59 M+ 2 , 46 M+

SHIFT 2 ⇒ ⇒ 3 =

例 已知資料如下:

										22
у	21	31	37	44	58	65	60	73	84	91

請分別用 Spearman 等級相關係數的兩個公式求 Spearman 等級相關係數。

先求出排序名次

X_s										
y_s	1	2	3	4	5	7	6	8	9	10

MODE 3 1

1 1 M+ 2.5 2 M+ 2.5 3 M+ 4 4 4 M+ 5 5 5 M+ 6 7 M+

7 7 6 M+8 7 8 M+9 7 9 M+10 7 10 M+

SHIFT 2 ⇒ ⇒ 3 =

第四章 機率

- 例 某家汽車出租公司,擁有 10 部進口車與 15 部國產車,但一次最多只能提供 6 部車出租。假設某人欲向此汽車出租公司租車,他以隨機選取的方式選任 6 部汽車。
 - (1) 求此人選出的6部汽車中,恰3部進口車3部國產車的機率?
 - (2) 求此人選出的 6 部汽車中國產車至少 3 部的機率?

$$(2)\frac{C_3^{10}C_3^{15} + C_2^{10}C_4^{15} + C_1^{10}C_5^{15} + C_0^{10}C_6^{15}}{C_6^{25}} = \frac{1079}{1265} = 0.853$$

(10 nCr 3 × 15 nCr 3 + 10 nCr 2 × 15 nCr 4 + 10 nCr 1 × 15 nCr 5 + 15 nCr 6)

25 nCr 6

- 例 某大專院校畢業生舉行兵役抽籤,已知 200 枝籤中有 2 枝陸戰隊
 - (1) 若此人排在第一個抽籤位置,他抽中陸戰隊的機率為何?
 - (2) 若此人排在第二個抽籤位置,他抽中陸戰隊的機率為何?
 - (3) 若此人排在第50個抽籤位置,他抽中陸戰隊的機率為何?
 - (4)此大專生希望抽中陸戰隊的機率最小,請問他應該排在第幾位抽籤?

(2)

- $2 \boxed{a \%} 200 \times 1 \boxed{a \%} 199 \oplus 198 \boxed{a \%} 200 \times 2 \boxed{a \%$
- (3)本題因超過計算機的計算位數,必須部分使用手算後,在輔以計算機
- 例 大葉大學根據某年度 EMBA 申請入學的學生,詢問選擇就讀大葉大學的原因做一調查,結果如下表所示:

	申	請	原	乜
	知名度	學費	其他	
男性	400	300	70	
女性	350	250	30	

- (1)請根據上述表格製作聯合機率分配表。
- (2)請驗證機率總和是否等於1?

(2) $2 \boxed{a \%} 7 \boxplus 3 \boxed{a \%} 14 \boxplus 1 \boxed{a \%} 20 \boxplus 1 \boxed{a \%} 4 \boxplus 5 \boxed{a \%} 28 \boxplus 3 \boxed{a \%} 140 \boxed{=}$

第五章 機率分配

例 已知隨機變數 X 之機率分配表如下:
x 1 2 3 4
f(x) = 0.2 = 0.1 = 0.4 = 0.3
求隨機變數X的期望值。
17 THE TAX XX 11 17 791 LEE
MODE 2
2 SHIFT 0.2 M+ 2 SHIFT 0.1 M+ 3 SHIFT 0.4 M+ 4 SHIFT 0.3 M+
SHIFT 2 1 =
例 以知隨機變數 X 之機率分配表如下:
x 1 2 3 4
f(x) = 0.2 = 0.1 = 0.4 = 0.3
求隨機變數 X 的變異數與標準差。
THE DAY OF THE PARTY OF THE PAR
延續上題之資料,標準差:
医HIFT 22 =
變異數:(緊接其後)
$ x^2 = $

第六章 二元隨機變數

例 設有一個二元隨機變數 X,Y, 其聯合機率質量函數為: $\begin{bmatrix} x & 1 & 2 & 3 \end{bmatrix}$

y x	1	2	3
1	0.2	0.2	0
2	0.1	0.3	0.2

 $\cancel{x}(1)E(x), E(y)$ (2)V(x), V(y)

MODE 3 1

1 , 1 SHIFT ; 0.2 M+1 , 2 SHIFT ; 0.1 M+2 , 1 SHIFT ; 0.2 M+

2 , 2 SHIFT ; 0.3 M+ 3 , 2 SHIFT ; 0.2 M+

註:若機率值為零,該筆資料不需輸入

求E(x):

SHIFT 2 1 =

求E(y):

SHIFT 2 ⇒ 1 =

求V(x):

SHIFT 2 2 x^2 =

求V(y):

SHIFT $2 \Rightarrow 2 \quad x^2 =$

例 底下是兩離散隨機變數 X 和 Y 在 -1,0,1 的聯合機率分配 f(x,y)

$\begin{array}{ c c c }\hline x\\ y \end{array}$	-1	0	1	
-1	1/18	1/9	1/6	
0	1/9	0	1/6	
1	1/6	1/9	1/9	

試求X和Y的共變異數Cov(x,y)與相關係數 ρ_{xy} 並藉此判斷X和Y是否為獨立隨機變數。

本題有兩種輸入法,第一種將聯合機率分配表轉換成次數分配表再輸入資料,因 個數不大,故輸入筆數時,直接按 M+速度較快,若機率值為零,該筆資 料不需輸入

1114 17447			
$\begin{array}{ c c c }\hline x\\ y \end{array}$	-1	0	1
-1	1	2	3
0	2	0	3
1	3	2	2

-1 , 1 SHIFT ; 1 a ½ 6 M+
0 , -1 SHIFT ; 1 a ½ 9 M+
0 , 1 SHIFT ; 1 a ½ 9 M+
1 , -1 SHIFT ; 1 a ½ 6 M+
1 , 0 SHIFT ; 1 a ½ 6 M+

1 1 SHIFT ; 1 a ½ 9 M+

求 $ho_{\scriptscriptstyle xy}$:

SHIFT 2 ⇒ ⇒ 3 =

求V(x):

SHIFT 22 = 記錄其值

求V(y),並利用 $Cov(x,y) = \rho_{xy} \times \sigma_x \times \sigma_y$,一次處理完畢:

SHIFT $2 \Rightarrow 2 \times \rho_{xy} \times \sigma_x =$

第九章 常用的機率分配

- 例 由以往記錄可知台灣科技公司第一工廠之研磨機製造產品之缺點平均數為 20%,現隨機選取 10 個產品,試問下列各題之機率為何?
 - (1)恰有兩個缺點 (2)兩個及兩個以上缺點。
- (1) $10 \text{ nCr} \ 2 \ 0.2 \ \boxed{x^2} \ \boxtimes \ 0.8 \ \square \ 8 \ \square$
- 例 一批產品共有十件,其中含有兩件不良品,今隨機抽取三件,求均為良品的機率。
- 8 nCr 3 ÷ 10 nCr 3 =
- 例 假設台灣的高速公路所發生的車禍中,平均有52%屬於小擦撞,30%為嚴重車禍,18%為致命車禍。假設某天高速公路一共發生10車禍,求這10次車禍中恰好發生7次小擦撞、2次嚴重車禍以及1次致命車禍的機率。
- 10 SHIFT $!! \div 2$ SHIFT $!! \div 7$ SHIFT $!! \times 0.52 \land 7 \times 0.3 \quad x^2 \quad \times 0.18 =$
- 例 自一副撲克牌中隨機以不放回方式抽五張,令X 表"A"被抽中的張數,Y 表 "Queens"被抽中的張數,Z 表"Kings"被抽中的張數。
 - (1)試寫出X,Y,Z之聯合機率分配f(x,y,x),並請問此分配的名稱為何?
 - (2)計算取出的五張撲克牌中恰 2 張"A"、2 張"Queens"、1 張"Kings"的機率。
 - (3)計算 $f(x \ge 2)$ 。
 - (4)計算 f(x = 2 或 y = 2)。
 - (5)求E(X),E(Y),E(Z)
- $(2)4 \text{ nCr } 2 \times 4 \text{ nCr } 2 \times 4 \div 52 \text{ nCr } 5 =$
- $(3)1 \rightarrow 48 \text{ nCr} 5 \div 52 \text{ nCr} 5 \rightarrow 4 \times 48 \text{ nCr} 4 \div 52 \text{ nCr} 5 \rightarrow 6$
- $(4)(2 \times 4 \text{ nCr } 2 \times 48 \text{ nCr } 3 4 \text{ nCr } 2 \times 4 \text{ nCr } 2 \times 44 \text{ nCr})$

第十三章 區間估計

車輛編號	1	2	3	4	5	6	7	8
裝設前	3.2	4.6	3.6	5.3	6.2	3.2	3.6	4.5
裝設後	2.9	4.7	3.2	5.0	5.7	3.3	3.4	4.3

假設每輛汽車耗油量皆呈常態分配,求裝設這種省油裝置之前與之後行駛 100公里平均耗油量差的 90%信賴區間。

MODE 2				
3.2 - 2.9 M + 4.	$.6 \mid 4.7 \mid M + 3.6 \mid 3$	3.2 M + 5.3 - 5 M	M + 6.2 - 5.7 M + 1	$3.2 \mid 3.3 \mid M+$
$3.6 \square 3.4 M+4.$	6 4.7 M+ 3.6 3 5 4.3 M+			
求 \bar{d} :				
SHIFT 2 1 =				
求 s_d :				
SHIFT 23 =				
其餘自推				

第十六章 變異數分析

例 隨機從三個母體各取出五個樣本,資料如下表所示:

編號	樣本 1	樣本 2	樣本 3
1	32	44	33
2	30	43	36
3	30	44	35
4	26	46	36
5	32	48	40
樣本平均數	30	45	36
樣本變異數	6.00	4.00	6.50

- (1)求因子 A 所造成的變異(組間變異)。
- (2)求隨機變異(組內變異)。
- (3)建構變異數分析表。
- (4)在顯著水準 $\alpha = 0.05$ 的條件下,請檢定三個母體平均數是否相等?

(1)MODE 2

30 M+ 45 M+ 36 M+

SHIFT 2 2 $x^2 \times 15 =$

例 某項為瞭解台灣地區稻米的產量是否會因北、中、南產生差異,於是自北、 中、南隨機抽取若干樣本,得到資料如下所示:(單位:公噸/公畝)

產量

 北部
 1
 3
 2

 中部
 3
 2
 4
 2

南部 7 6 4

假設母體滿足變異數分析之假設,請你利用上述資料檢定,台灣區稻米的產量是否會因北、中、南產生差異。 $(\alpha=0.05)$

北部	1	3	2		$s_1^2 = 1$
中部	3	2	4	2	$s_2^2 = 0.917$
南部	7	6	4		$s_3^2 = 2.333$

求SST:

MODE 2

1 M+ 3 M+ 2 M+ 3 M+ 2 M+ 4 M+ 2 M+ 7 M+ 6 M+ 4 M+

SHIFT 2 2 $x^2 \times 10 =$

求 s_1^2 :

MODE 2

1 M+ 3 M+ 2 M+

SHIFT 2 3 x^2 =

求 s_2^2 :

MODE 2

3 M+ 2 M+ 4 M+ 2 M+

SHIFT 2 3 x^2

求 s_3^2 :

MODE 2

7 M+ 6 M+ 4 M+

SHIFT 2 3 x^2

接著求 SSE: $SSE = \sum_{j=1}^{k} (n_j - 1)s_j^2$ 請讀者自行完成

A 汽油	14	21	19	11	15	16	8	32	37	10
B汽油	16	24	20	15	17	19	10	33	39	11

- (1)試以 $\alpha = 0.05$ 利用t分配檢定: $A \cdot B$ 兩種汽油的效率是否相同。
- (2)上述問題如果用變異數分析(ANOVA),是屬於何種實驗設計?請寫出變異數分析表,並以此表再檢定一次,看結果是否相同?

(2) 先求 SST

MODE 2

- 14 M+ 21 M+ 19 M+ 11 M+ 15 M+ 16 M+ 8 M+ 32 M+ 37 M+ 10 M+
- 16 M+ 24 M+ 20 M+ 15 M+ 17 M+ 19 M+ 10 M+ 33 M+ 39 M+ 11 M+

SHIFT 2 2 $x^2 \times 20 =$

接著求每列與每行的平均數:請讀者自行推求

											$\overline{x}_A = 18.3$
B汽油	16	24	20	15	17	19	10	33	39	11	$\overline{x}_B = 20.4$
平均	15	22.5	19.5	13	16	17.5	9	32.5	38	10.5	

求 SSA:

MODE 2

18.3 M+ 20.4 M+

SHIFT 2 2 $x^2 \times 20 =$

求 SSB:
MODE 2

15 M+ 22.5 M+ 19.5 M+ 13 M+ 16 M+ 17.5 M+ 9 M+ 32.5 M+ 38 M+ 10.5 M+

SHIFT $22 \times 20 =$

再利用 SSE = SST - SSA - SSB = 4.45

例 設有甲、乙、丙三種不同品種的稻米,分別使用 X、Y、Z、W 四種不同的 肥料。今隨機選擇面積等條件相同的 12 塊田地做實驗,得到收穫量(以 千公斤計)如下表:

品種肥料	甲	Z	丙
X	8	3	7
Y	10	4	8
Z	6	5	6
W	8	4	7

試分別檢定(1)不同品種(2)不同肥料,所得到的平均收穫量有無顯著差異。(假設收穫量呈常態分配,且變異數相同, $\alpha = 0.05$)

先計算每一行每一列之平均

, == , , , , , ,	· · · · · ·			
品種肥料	甲	Z	丙	平均
X	8	3	7	6
Y	10	4	8	22/3
Z	6	5	6	17/3
W	8	4	7	19/3
平均	8	4	7	

求 SSA:

MODE 2

8 M+ 4 M+ 7 M+

SHIFT 2 2 $x^2 \times 12 =$

求 SSB:

MODE 2

6 M + 22 a % 3 M + 17 a % 3 M + 19 a % 3 M +

SHIFT 2 2 $x^2 \times 12 =$

SSE = SST - SSA - SSB = 7.333

例 某工廠隨機選取三名操作人員,針對四種不同品牌的機器各操作兩次,測得 資料如下表所示:

			機是	2	
		甲	乙	丙	丁
操作員	1	109	110	108	110
		110	115	110	106
	2	110	110	112	114
		112	111	109	112
	3	116	112	114	120
		114	115	119	117

- (1)請建立變異數分析表。
- (2)試檢定機器與操作員間對產品的產量是否有交互影響?
- (3)不同操作員對產量是否有影響?
- (4)不同機器對產量是否有影響?

設機器為因子 A,操作員為因子 B,分別計算行、列平均與細格平均 先分別計算行、列平均與細格平均

		機	器		列平均
	甲	乙	丙	丁	列平均
1	$\overline{B_1 A_1} = 109.5$	$\overline{B_1 A_2} = 112.5$	$\overline{B_1 A_3} = 109$	$\overline{B_1 A_4} = 108$	$\overline{B}_1 = 109.75$
2	$\overline{B_2 A_1} = 111$	$\overline{B_2 A_2} = 110.5$	$\overline{B_2 A_3} = 110.5$	$\overline{B_2 A_4} = 113$	$\overline{B}_2 = 111.25$
3	$\overline{B_3 A_1} = 115$	$\overline{B_3 A_2} = 113.5$	$\overline{B_3 A_3} = 116.5$	$\overline{B_3 A_4} = 118.5$	$\overline{B}_3 = 115.875$
	$\overline{A}_1 = 111.833$	$\overline{A}_2 = 112.167$	$\overline{A}_3 = 112$	$\overline{A}_4 = 113.167$	$\overline{\overline{x}} = 112.29$

求 SST:

MODE 3 1

SHIFT 2 2
$$x^2 \times 24 =$$

註:上面只要將所有的資料輸入即可,不用按照順序

SHIFT [1] [1]
$$=$$
 求 $\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} x_{ijk}^2 = 302903$,後面求 SSE 會用到

求 SSA:

MODE 2

111.833 M+ 112.167 M+ 112 M+ 113.167 M+

SHIFT 2 2
$$x^2 \times 24 =$$

求 SSB:

109.75 M+ 111.25 M+ 115.875 M+

SHIFT 2 2 $x^2 \times 24 =$

求 SSE:

MODE 3 1

109.5 M+ 111 M+ 115 M+ 112.5 M+ 110.5 M+ 113.5 M+ 109 M+ 110.5 M+

116.5 M+ 108 M+ 113 M+ 118.5 M+

表重複次數2

若讀者對求 SSAB 的計算機按法有興趣,可參考下面輸入法。

求 SSAB:

MODE 2

109.5 - 109.75 - 111.833 + 112.29 M+ 111 - 111.25 - 111.833 +112.29 M+

115 - 115.875 - 111.833 +111.29 M+ 112.5 - 109.75 - 112.167 +112.29 M+

110.5 - 112.25 - 112.167 +112.29 M+ 113.5 - 115.875 - 112.167 +112.29 M+

109 - 109.75 - 112 +112.29 M+ 110.5 - 111.25 - 112 +112.29 M+

116.5 - 115.875 - 112 +112.29 M+ 108 - 109.75 - 113.167 +112.29 M+

113 - 111.25 - 113.167 +112.29 M+ 118.5 - 115.875 - 113.167 +112.29 M+

SHIFT 2 2 $x^2 \times 24 =$

第十七章 簡單線性迴歸與相關分析

例 假設下列資料為某公司近五年的投資金額:
$x_i = 1 + 2 + 3 + 4 + 5 \dots (47)$
y _i 1 1 3 4 6 (單位千元)
(1)請繪 X、Y 的散佈圖,並請你依散佈圖的情形大約畫出迴歸線。
(2)試求迴歸方程式。
(3)請你利用(2)所求出的迴歸方程式來預測此公司第七年度的投資金額大
約是多少?
MODE [3] [1]
1
求 \hat{a} :
$SHIFT$ $2 \Rightarrow 1 =$
求 \hat{eta} :
_
SHIFT 2 D D 2 D
例 某飲料公司欲知各商店所裝設的自動販賣機數 X 與每個月所販賣的罐裝飲
料數 Y 間的關係,隨機選取 8 家商店,其資料如下:
x 1 1 1 2 4 4 5 6
y 568 577 652 657 755 759 840 832
(1)試求迴歸直線 $\hat{y} = \hat{\alpha} + \hat{\beta}x$ 。
(2)試列出迴歸變異數分析表,並利用此表檢定迴歸模型是否適合
$(\alpha = 0.05)$ °
(3)求判定係數 R^2 。
MODE 3 1
1 , 568 M+ 1 , 577 M+ 1 , 652 M+ 2 , 657 M+ 4 , 755 M+ 4 , 759
M+5 840 $M+6$ 832 $M+$
求 \hat{lpha} :
求 \hat{eta} :
SHIFT 2 D D D
$\overline{(2)}$
(2) 求 SST:
(2) 求 SST: 求 SSR:
(2) 求 SST:

註:計算機的答案會與課文答案有些許誤差,計算機的值為精確的答案,但計算 過程中, $\hat{\beta}$ 寫答案時經過四捨五入。

隨機選取 10 個人,其年資(X)與薪水(Y)如下表如下表所示:

Х	8	6.2	7.1	7.55	8.75	8.15	10.25	9.6	11.3	7.7
y	18	33	48	50	54	56	62	65	71	83

假設資料符合迴歸分析的假設。

- (1)試求迴歸方程式。
- (2)求 XY 的相關係數,並檢定 $X \times Y$ 是否具相關性,顯著水準 $\alpha = 5\%$ 。

(1) MODE 3 1

求 $\hat{\alpha}$:

SHIFT 2 ⇒ □ 1 =

求 $\hat{\beta}$:

SHIFT 2 ⇒ ⇒ 2 =

(2)

求 r_{xv} :

SHIFT 2 ⇒ ⇒ 3 =

第十八章 多元迴歸

已知資料如下表所示:

у	6	10	10	14	16	20
x_1	1	1	2	2	3	3
x_2	0	1	0	1	0	1

試求迴歸方程 $\hat{y} = \hat{\alpha} + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$

解:

MODE 3 1

先求 $\overline{x_1} = 2$, $\sum x_1^2 = 28$, $\overline{x_2} = 0.5$, $\sum x_2^2 = 3$, $\sum x_{1i}x_{2i} = 6$ 1 0 M+1 1 1 M+2 0 M+2 1 M+3 0 M+3 1 M+

求 \bar{x}_1 :

SHIFT 2 1 =

求 \bar{x} ,:

SHIFT 2 ⇒ 1 =

求 $\sum x_1^2$:

 \underline{SHIF} T [1] [1] =

求 $\sum x_2^2$:

SHIFT 1 ⇒ 1 =

求 $\sum x_{1i}x_{2i}$:

SHIFT 1 ⇒ 3 =

接著求 \bar{y} , $\sum x_i, y_i$

接向下方向鍵, 把x, 的資料換成y的資料, 即左上方螢幕出現y1=時, 輸入6=, 即可把 x, 的第一筆資料換成 y 的第一筆資料,繼續按向下方向鍵,左上方螢幕 出現 y2=時,輸入 10= ,即可把 x5 的第二筆資料換成 y6 的第二筆資料,依此類 推,把全部x,的資料置換成 y 資料

功能鍵的呼叫方式仿造上面。

最後求 $\sum x_{i}, y_{i}$,仿照上方,此時必須把 x_{i} 的資料換成 x_{i} 的資料

註:除了上述的方法外,當然還有更快速的按法,因受限於紙本無法表現出來, 請讀者自行摸索。

例如我們可以改寫公式:

$$S_{11} = \sum_{i=1}^{n} x_{1i}^{2} - n\overline{x}_{1}^{2} = \sigma_{x_{1}}^{2} \times n$$

$$S_{22} = \sigma_{x_{2}}^{2} \times n$$

$$S_{12} = S_{21} = \rho_{x_{1}x_{2}} \times \sigma_{x_{1}} \times \sigma_{x_{2}}$$

$$S_{1y} = \sum_{i=1}^{n} x_{1i} y_{i} - n\overline{x}_{1} \overline{y} = \rho_{x_{1}y} \times \sigma_{x_{1}} \times \sigma_{y}$$

$$S_{2y} = \sum_{i=1}^{n} x_{2i} y_i - n \overline{x}_2 \overline{y} = \rho_{x_2 y} \times \sigma_{x_2} \times \sigma_{y}$$