

Biology/Statistics 2244

Statistics for Science

STUDY DESIGNS & CONSIDERATIONS

Objectives

By the end of this topic, you should be able to:

- apply vocabulary associated with study designs (e.g. observational, case-cohort, treatment, etc.);
- use methods to prevent confounding;
- design common study designs to address a research question.

Plan: Thinking about measurement

Question: Can outdoor cycling improve well-being in seniors?

Describe what you will use to characterize/measure well-being.

they can take longe walks

standardized fitness test
big 5 personality trait
mental health blood pressure
heart rate

SURVEY
neural activity
rate your happiness

heart respiratory health

happiness levels

Create a plan—including data collection and analysis—to address the research question(s)

- What are the sampling frame and sampling strategies?
- What will be measured for the response variable(s)?
- How will you deal with (potential) explanatory variables?
- What statistical procedures do you plan to use?

Confounding

presence of additional ("confounding") variables whose effects on the response cannot be separated from that of the factor(s) of interest

Example: Can outdoor cycling improve cognitive function in seniors?

Group 1

Group 2

Group 3

Mean: +4

Mean: +1

Mean: +4

What is responsible for the observed group differences?

General classes of study design

Observational: measure both explanatory and response variables from units, as they naturally occur

Use stroop test to measure Cognitive function (response)

Experimental: impose a condition ("treatment") related to the explanatory variable(s) to effect change on the response variable(s)

Assign each Senior to a Darticular outdoor cycling amount:

Use stroop test to measure cognitive function (response)

Control

accounting for variation in potential explanatory variables, to isolate impact of factor(s) of interest

A. Limit variation in the variables

Variables constant

Variable of concern:

Social structure of activity

hold constant to all seniors

performing activity alone

downfall: limits "ecological

validity" (ie realism)

Select a narrower sampling frame
variable of concerns: age
reduce/restrict Sampling frame
to only Seniors aged 70-75 y
downfall: reduces generalizability
to entire pop. (ie undercoverage)

* don't confuse with Stratified sampling Control

implies experiment.

B. Distribute variation across treatments

Blocking: subdivide units into homogeneous groups based on variable of concern) prior to assigning

* ideally
Ne assign
to treatments
randomly
from each
block.

Outcome: ensures treatment groups are similarly composed with respect to variable of concern

Control

C. Use comparison groups

Why? Provides opportunity to attribute change to factor of interest, rather than 'natural' change

Control

D. Collect data on variables of concern

Cofactors: Additional variables for which data is collected for comparison/explanatory purposes, but

collect data on confactors

- . Compliance with
- · Sleep amount prior to "test

Note: doesn't really control for confounding variables, but could help us account for them Randomization

implies experiment

using chance to assign individuals / units from the sample to treatments, or, the treatment order

- · variation still exists in the sample for potential contounding variables
- · Similarly composed treatment groups are more frequents (le probable) than dissimilar groups when randomizing true for variables we didn't anticipate in advance

 - For our single randomization, we expect (trust) to get a similarly composed outcome.

Conclusion: randomization creates similarly composed treatment groups, reducing/eliminating confounding (when we can't block or otherwise explicitly control).

* be careful not to confuse this with reproducing or repeating a study on an a new sample.

inclusion of more than one **individual**/**unit** from the sample in a treatment or comparison group

- accounts for variation in response among units
- can focus on typical or most frequent response

Completely randomized design

units from the sample are each randomly assigned ('randomized') to a treatment

Research Question: What impact do different studying resources have on academic performance in undergrads?

Randomized block design

units from the sample are subdivided into 'blocks' based on preexisting characteristic(s), then randomly assigned from blocks to a

Matched pairs design

pairs of units from the sample are matched based on similarity across pre-existing characteristics, then randomly assigned from pairs to treatments.

Repeated measures design

each unit in the sample is assigned to both/all treatments, ideally with treatment order determined randomly

Survey

an observational study that collects information about variables of interest from a sample

Typically collect data on additional variables (e.g. demographics, environmental characteristics)

Cohort studies

examine the emergence of a specific condition over time in a homogeneous group of individuals

- typically prospective and longitudinal
- used to connect exposure factors to outcome
- may yield incidence rate of outcome

Case-Control study

a sample of 'cases' with the outcome of interest is selected, and compared against a sample of 'controls' known to not have the condition

- cases and controls can be 'matched'
- useful for rare conditions

