COMP0118-Coursework 1-Figures

Francesco Seracini

February 2025

1 Parametric models

1.1 Parameter estimation and mapping

1.1.1

Figure 1: Maps of MRI scans computed using a Linear Diffusion Tensor estimator. Mean Diffusivity Map (left); Fractional Anisotropy Map (middle); Colour-coded Principal Direction Map(right)

1.1.2

Figure 2: Comparison between the data and the estimated model. The model is the Ball-and-Stick without any constraints on the parameters

1.1.3

Figure 3: Comparison between the data and the estimated model. The model is the Ball-and-Stick constraints on the S0,d and f parameters

1.1.4

parameters	STD noise
S0	10^{3}
d	$10^{-}3$
f	$10^{-}1$
heta	$10^{-}1$
ϕ	$10^{-}1$

Table 1: Chosen STD noise values for each parameter of the Ball-and-Stick model

Voxel	Percentage	Num_runs
Avox = dwis(:, 92, 65, 72);	9.6400×10^{-1}	9.0118×10^{-1}
Avox = dwis(:, 115, 50, 72);	4.9000×10^{-1}	4.4490
Avox = dwis(:, 70, 90, 72);	6.8700×10^{-1}	2.5791
Avox = dwis(:, 112, 33, 72);	3.3700×10^{-1}	7.2892
Avox = dwis(:, 37, 44, 72);	6.1200×10^{-1}	3.1642
Avox = dwis(:, 100,100,72);	5.6100×10^{-1}	3.6389
Avox = dwis(:, 40, 100, 72);	9.3100×10^{-1}	1.1205
Avox = dwis(:, 90, 50, 72);	9.7900×10^{-1}	7.7545×10^{-1}
Avox = dwis(:, 77, 95, 72);	2.6400×10^{-1}	9.7732
Avox = dwis(:, 85, 70, 72);	7.5400×10^{-1}	2.1361

Table 2: Percentage of times the minimum RESNORM value was found across all runs from different starting points and number of runs required to be 95% confident in finding the global minimum for 10 different voxels.

1.1.5

option	value
MaxFunctionEvaluations	20000
Algorithm	sqp
MaxIter	2000
TolX	1×10^{-10}
TolFun	1×10^{-10}
lb	$\begin{bmatrix} 0 & 0 & 0 & -inf & -inf \end{bmatrix}$
ub	[inf inf 1 inf inf]

Table 3: Options used for fmincon function

Figure 4: Maps of MRI scans computed using a Ball-and-Stick model estimation over all the voxel in the 72nd slice. S0 Map (left-left); Diffusivity (d) Map (left); Volume Fraction (f) Map (middle); Residual Error (RESNORM) Map(right); Fibre Direction Map (right-right).

1.1.6

Figure 5: Maps of MRI scans computed using a Ball-and-Stick model estimation over all the voxel in the 72nd slice using the fmincon function to impose constraints to the parameters. S0 Map (left-left); Diffusivity (d) Map (left); Volume Fraction (f) Map (middle); Residual Error (RESNORM) Map(right); Fibre Direction Map (right-right).

Voxel	Percentage	Num_runs
Avox = dwis(:, 92, 65, 72);	4.8000×10^{-1}	4.5811
Avox = dwis(:, 115, 50, 72);	7.4000×10^{-1}	2.2239
Avox = dwis(:, 70, 90, 72);	4.2600×10^{-1}	5.3965
Avox = dwis(:, 112, 33, 72);	8.3800×10^{-1}	1.6459
Avox = dwis(:, 37, 44, 72);	6.8700×10^{-1}	2.5791
Avox = dwis(:, 100,100,72);	4.8400×10^{-1}	4.5277
Avox = dwis(:, 40, 100, 72);	4.3200×10^{-1}	5.2962
Avox = dwis(:, 90, 50, 72);	4.6000×10^{-1}	4.8617
Avox = dwis(:, 77, 95, 72);	4.9700×10^{-1}	4.3596
Avox = dwis(:, 85, 70, 72);	4.9100×10^{-1}	4.4361

Table 4: Percentage of times the minimum RESNORM value was found using fmincon to constraints the parameters across all runs from different starting points and number of runs required to be 95% confident in finding the global minimum for 10 different voxels.

1.2 Uncertainty estimation

Figure 6: Maps of MRI scans computed using a Ball-and-Stick model estimation over all the voxel in the 72nd slice using the result of the Linear Diffusion Tensor as a starting point for the optimization process. S0 Map (left-left); Log of the Diffusivity (d) Map (left); Volume Fraction (f) Map (middle); Residual Error (RESNORM) Map(right); Fibre Direction Map (right-right).

1.2.1

	parameter	$2-\sigma$	$95\%\ range$
	S0	[4136.0206099 4373.15407004]	[4131.31772944 4370.79343194]
ĺ	f	[0.00088345174 0.0013340582]	[0.00075187509 0.00119869186]
ĺ	d	[0.11173601735 0.5424787294]	$[6.3570069 \times 10^{-12} 0.4075320969]$

Table 5: $2-\sigma$ range and 95% confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Classic Bootstrap algorithm

Figure 7: Posterior distributions for the $Classical\ Bootstrap$ method for the parameters S0 (left); d (middle); f (right).

Voxel	2-sigma range	95% range
Avox = $dwis(:, 92, 65, 72);$	$ \begin{array}{c} [4.1360206\times10^3,4.3731541\times10^3] \\ [8.835\times10^{-4},1.3341\times10^{-3}] \\ [1.117360\times10^{-1},5.424787\times10^{-1}] \end{array}$	
Avox = $dwis(:, 100,100,72);$	$ \begin{array}{c} [2.3827959\times10^3,3.0382754\times10^3] \\ [3.581\times10^{-4},1.1574\times10^{-3}] \\ [-1.100992\times10^{-1},8.292790\times10^{-1}] \end{array}$	$ \begin{array}{l} [1.8345533\times10^3,2.8239784\times10^3] \\ [2.4133\times10^{-18},9.559\times10^{-4}] \\ [1.4701\times10^{-16},6.082507\times10^{-1}] \end{array}$
Avox = $dwis(:, 40, 100, 72);$	$ \begin{array}{c} [3.5945588\times10^3,3.7198799\times10^3] \\ [8.161\times10^{-4},1.4039\times10^{-3}] \\ [1.42203\times10^{-2},5.577154\times10^{-1}] \end{array}$	$ \begin{array}{c} [3.5956130\times10^3,3.7179327\times10^3] \\ [7.755\times10^{-4},1.2340\times10^{-3}] \\ [1.2618\times10^{-12},3.812613\times10^{-1}] \end{array}$
Avox = dwis(:, 77, 95, 72);	$ \begin{array}{l} [8.8816172\times10^3,9.3088169\times10^3] \\ [3.925619\times10^2,2.4911690\times10^3] \\ [-1.854952\times10^{-1},8.549589\times10^{-1}] \end{array}$	$ \begin{aligned} [8.8843714\times10^3,9.3005809\times10^3] \\ [5.570198\times10^2,2.6450035\times10^3] \\ [1.58278\times10^{-2},9.016526\times10^{-1}] \end{aligned}$
Avox = $dwis(:, 85, 70, 72);$	$ \begin{array}{c} [3.0385140\times10^3,3.2119367\times10^3] \\ [7.177\times10^{-4},1.5054\times10^{-3}] \\ [1.261494\times10^{-1},9.400686\times10^{-1}] \end{array}$	$ \begin{array}{l} [3.0366230\times10^3,3.2117073\times10^3] \\ [5.801\times10^{-4},1.2732\times10^{-3}] \\ [6.9531\times10^{-12},6.744089\times10^{-1}] \end{array}$

Table 6: $2-\sigma$ range and 95% confidence interval for different voxels for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Classic Bootstrap algorithm

1.2.2

Figure 8: Posterior distributions for the Metropolis-Hastings MCMC method for the parameters S0 (left); d (middle); f (right).

Specification	Value
Number of samples (T)	1000000
Burn in samples	20000
Sampling interval	2000

Table 7: Specifications for the Metroplis-Hastings MCMC algorithm

parameter	$2-\sigma$	$95\%\ range$
S0	[4136.9534103 4363.5615563]	[4100.39516493 4353.303826223]
f	[0.0010846100	$\begin{bmatrix} 0.0010705101 & 0.0012058503677 \end{bmatrix}$
d	[0.3562016184 0.3737022973]	$\begin{bmatrix} 0.35620452269 & 0.370940663224 \end{bmatrix}$

Table 8: $2-\sigma$ range and 95% confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Metropolis-Hastings algorithm

1.2.3

Figure 9: Posterior distributions for the *Parametric Bootstrap* method for the parameters S0 (left); d (middle); f (right).

1.3

Parameter	$2-\sigma$		95% r	range
S0	[4257.31	4258.52]	[4257.34]	4258.53]
f	[0.001141	0.001142]	[0.001141]	0.001142]
d	[0.35707	0.35756	[0.35708]	0.35755

Table 9: $2 - \sigma$ range and 95% confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Parametric Bootstrap method.

Figure 10: Posterior distributions for the Residual Bootstrap method for the parameters S0 (left); d (middle); f (right).

Parameter	2 -	- σ	95% r	range
S0	[3764.54	4736.79]	[3820.91	4677.33]
f	[0.000922]	0.001392]	[0.000977	0.001392]
d	[0.35520]	0.35912	[0.35515]	0.35862

Table 10: $2 - \sigma$ range and 95% confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Residual Bootstrap method.

Figure 11: Posterior distributions for the Wild Bootstrap method for the parameters S0 (left); d (middle); f (right).

Parameter	2 -	- σ	95% r	range
S0	[3995.95	4546.48]	[3969.78	4577.72]
f	[0.001011	0.001267]	[0.001010	0.001293]
d	[0.35626]	0.35838]	[0.35602]	0.35835]

Table 11: $2 - \sigma$ range and 95% confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Wild Bootstrap method.

Parameter	$2-\sigma$
S0	[4257.0637 4258.78434]
f	$[4.8924 \times 10^{-6} 0.0022874]$
d	$\begin{bmatrix} 0.29421423 & 0.420405484 \end{bmatrix}$

Table 12: $2 - \sigma$ range confidence interval for the parameters S0, d, and f in the Ball-and-Stick model for the Avox = dwis(:, 92, 65, 72) obtained with the Laplace Method.

1.3.1

Figure 12: Comparison between the data and the estimated model. The model is the Ball-and-Stick applied to the new data set

parameters	STD noise
S0	10^{1}
d	$10^{-}3$
f	$10^{-}1$
heta	$10^{-}1$
ϕ	$10^{-}1$

Table 13: Chosen STD noise values for each parameter of the Ball-and-Stick model for the new data set

1.3.2

Model	Percentage	Num_runs
Zeppelin-and-Stick	0.993	0.60375
Zeppelin-and-Stick with Tortuosity	0.99800	0.48205

Table 14: Percentage of times the minimum RESNORM value was found across all runs from different starting points and number of runs required to be 95% confident in finding the global minimum for the two different models.

Figure 13: Comparison between the data and the estimated model. The model is the Linear Diffusion Tensor applied to the new data set

Figure 14: Comparison between the data and the estimated model. The model is the Zeppelin-and-Stick applied to the new data set

Figure 15: Comparison between the data and the estimated model. The model is the Zeppelin-and-Stick with Tortuosity applied to the new data set

1.3.3

MODEL	AIC	BIC
DT	-8660.48	-8824.21
BS	-19770.65	-19397.98
ZS	-20975.07	-20550.69
ZST	-20722.91	-20300.18

Table 15: AIC and BIC values for different models (DT, BS, ZS, ZST).

1.3.5

MODEL	AIC	BIC
DT	-8660.48	-8824.21
	-8470.49	-8685.83
	-8466.81	-8564.64
	-8610.95	-8774.67
	-8420.96	-8636.30
	-8417.27	-8515.10
BS	-19770.65	-19397.98
	-18768.89	-18387.46
	-19033.09	-19289.12
	-19733.50	-19360.83
	-18731.73	-18350.31
	-18995.93	-19251.97
ZS	-20975.07	-20550.69
	-20122.82	-19263.30
	-20405.68	-20783.56
	-20931.73	-20507.35
	-20079.48	-19219.96
	-20362.33	-20740.22
ZST	-20722.91	-20300.18
	-19743.23	-19048.18
	-19964.16	-20248.77
	-20685.76	-20263.03
	-19706.08	-19011.02
	-19927.01	-20211.62

Table 16: AIC and BIC values for different models (DT, BS, ZS, ZST) for all 6 voxel.

MODEL	VFCV	MCVC	L10CV
BS constraints	0.1585	0.0811	0.0126
ZS	0.1124	0.0613	0.0090
ZST	0.1210	0.0688	0.0100

Table 17: VFCV, MCVC, and L1OCV values for different models.

1.3.6

Figure 16: Map of the best model between Zeppelin-and-Stick, in blue, and Zeppelin-and-Stick with Tortuosity, in red for the 72nd slice of the data set used in sections 1.1 and 1.2

Figure 17: Log of the RESNORM map obtained by weighting the estimated signals obtained from different models with the Akaike weights