Lambda calculus (cont)

Deian Stefan

(adopted from my & Edward Yang's CSE242 slides)

Logistics

- Assignments:
 - HW 1 is out and due this week (Sunday)
 - There will be one more homework on functions
 - After this: 1 homework / general topic area
- Podcasting: no video while projector is broken
 - Sorry :(
- Come to section and office hours!

Questions

- How are you finding PA1?
 - A: easy, B: okay, C: hard, D: wtf is PA1?

Questions

- How are you finding HW1?
 - A: easy, B: okay, C: hard

Questions

- How are you finding the pace of the lectures?
 - A: too slow, B: it works for me, C:too fast

Today

- Recall syntax of λ calculus
- Semantics of λ calculus
 - Recall free and bound variables
 - Substitution
 - Evaluation order

Review

- λ -calculus syntax: $e := x | \lambda x.e | e_1 e_2$
 - > Is $\lambda(x+y)$.3 a valid term? (A: yes, B: no)
 - > Is λx . (x x) a valid term? (A: yes, B: no)
 - \triangleright Is λx . (x) y a valid term? (A: yes, B: no)

More compact syntax (HW)

- Function application is left associative
 - ightharpoonup $e_1 e_2 e_3 \stackrel{\text{def}}{=} (e_1 e_2) e_3$
- Lambdas binds all the way to right: only stop when you find unmatched closing paren ')'
 - $\rightarrow \lambda x.\lambda y.\lambda z.e \stackrel{\text{def}}{=} \lambda x.(\lambda y.(\lambda z.e))$

More on syntax

- Write the parens: $\lambda x.x x$
 - **A**: λx.(x x)
 - **B**: (λx.x) x

More on syntax

- Write the parens: $\lambda y.\lambda x.x.x.x =$
 - A: λy.(λx.x) x
 - **B**: λy.(λx.(x x))
 - C: (λy.(λx.x)) x

More on syntax

- Is $(\lambda y.\lambda x.x) x = \lambda y.\lambda x.x x$?
 - A: yes
 - **B**: no

How do we compute in λ calculus?

How do we compute in λ calculus?

- Substitution!
 - When do we use substitution?
 - What's the challenge with substitution?

Example terms

- Reduce $(\lambda x.(2 + x))$ 5
- Reduce $(\lambda x.(\lambda y.2) 3) 5 \rightarrow (\lambda x. 2) 5 \rightarrow 2$
- Reduce (board): $((\lambda x.(\lambda y.2)) 3) 5 \rightarrow ((\lambda y.2) 5) \rightarrow 2$
- Reduce: $(\lambda x.\lambda y.\lambda z.y+3)$ 4 5 6

Even more compact syntax

- Can always variables left of the .
 - $\rightarrow \lambda x. \lambda y. \lambda z. e \stackrel{\text{def}}{=} \lambda xyz. e$
- This makes the term look like a 3 argument function
 - Can implement multiple-argument function using single-argument functions: called currying (bonus)
- We won't use this syntax, but you may see in the wild

Why is substitution hard?

What does this reduce to if we do it blindly?

```
let x = a+b in

let a = 7 in

x + a
```

- Recall: let $x = e_1$ in $e_2 \stackrel{\text{def}}{=} (\lambda x.e_2) e_1$
 - Reduce $(\lambda x. (\lambda a. x + a) 7) (a+b)$

How do we fix this?

- Renaming!
 - A: rename all free variables
 - B: rename all bound variables

Def: free variables (recall)

- If a variable is not bound by a λ , we say that it is **free**
 - \triangleright e.g., y is free in $\lambda x.(x+y)$
 - \triangleright e.g., \times is bound in $\lambda \times .(\times + y)$
- We can compute the free variables of any term:
 - ightharpoonup FV(x) = {x}
 - \rightarrow FV(λ x.e) = FV(e) \ {x}

 \rightarrow FV(e₁ e₂) = FV(e₁) \cup FV(e₂)

think: build out!

Def: free variables (recall)

- If a variable is not bound by a λ , we say that it is **free**
 - \triangleright e.g., y is free in $\lambda x.(x+y)$
 - \triangleright e.g., \times is bound in $\lambda \times .(\times + y)$
- We can compute the free variables of any term:
 - ightharpoonup FV(x) = {x}
 - \rightarrow FV(λ x.e) = FV(e) \ {x}

think: build out!

ightharpoonup FV(e₁ e₂) = FV(e₁) u FV(e₂)

Def: free variables (recall)

- If a variable is not bound by a λ , we say that it is **free**
 - \triangleright e.g., y is free in $\lambda x.(x+y)$
 - \triangleright e.g., \times is bound in $\lambda \times .(\times + y)$
- We can compute the free variables of any term:
 - ightharpoonup FV(x) = {x}
 - \rightarrow FV(λ x.e) = FV(e) \ {x}

ightharpoonup FV(e₁ e₂) = FV(e₁) \cup FV(e₂)

think: build out!

Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - x[x:=e] = e
 - \rightarrow y[x:=e] = y if y \neq x
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
 - \rightarrow $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - ► $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if y ≠ x and y ∉ FV(e₂)

Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - x[x:=e] = e
 - \rightarrow y[x:=e] = y if y \neq x
 - \rightarrow (e₁ e₂)[x := e] = (e₁[x := e]) (e₂[x := e])
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - ► $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if y ≠ x and y ∉ FV(e₂)
 - Why the if?

Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - x[x:=e] = e
 - \rightarrow y[x:=e] = y if y \neq x
 - \rightarrow (e₁ e₂)[x := e] = (e₁[x := e]) (e₂[x := e])
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - ► $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if y ≠ x and y ∉ FV(e₂)
 - ➤ Why the if? If y is free in e₂ this would capture it!

Lambda calculus: equational theory

- α -renaming or α -conversion
 - $\lambda x.e = \lambda y.e[x:=y]$ where $y \notin FV(e)$
- β-reduction
 - \rightarrow ($\lambda x.e_1$) $e_2 = e_1 [x:=e_2]$
- η-conversion
 - $\rightarrow \lambda x.(e x) = e \text{ where } x \notin FV(e)$
- We define our → relation using these equations!

- Instead of 1, let's add x to argument (and do it 2x):
 - \rightarrow ($\lambda f.(\lambda x. f (f x)) (\lambda y.y+x)$

- Instead of 1, let's add x to argument (and do it 2x):
 - \rightarrow ($\lambda f.(\lambda x. f (f x)) (\lambda y.y+x)$
 - $=\alpha$ (λ f.(λ z. f (f z)) (λ y.y+x)

Instead of 1, let's add x to argument (and do it 2x):

$$\rightarrow$$
 ($\lambda f.(\lambda x. f (f x)) (\lambda y.y+x)$

$$=\alpha$$
 (λ f.(λ z. f (f z)) (λ y.y+x)

$$=\beta \lambda z. (\lambda y.y+x) ((\lambda y.y+x) z)$$

Instead of 1, let's add x to argument (and do it 2x):

$$\rightarrow$$
 ($\lambda f.(\lambda x. f (f x)) (\lambda y.y+x)$

$$=\alpha$$
 (λ f.(λ z. f (f z)) (λ y.y+x)

=
$$\beta \lambda z. (\lambda y.y+x) ((\lambda y.y+x) z)$$

$$=\beta \lambda z. (\lambda y.y+x) (z+x)$$

Instead of 1, let's add x to argument (and do it 2x):

$$\rightarrow$$
 ($\lambda f.(\lambda x. f (f x)) (\lambda y.y+x)$

$$=\alpha$$
 (λ f.(λ z. f (f z)) (λ y.y+x)

=
$$\beta \lambda z. (\lambda y.y+x) ((\lambda y.y+x) z)$$

$$=\beta \lambda z. (\lambda y.y+x) (z+x)$$

$$=\beta \lambda z. z+x+x$$

Today

- Recall syntax of λ calculus \checkmark
- Semantics of λ calculus \checkmark
 - ➤ Recall free and bound variables ✓
 - ➤ Substitution ✓
 - Evaluation order

Evaluation order

- What should we reduce first in (λx.x) ((λy.y) z)?
 - \triangleright A: The outer term: $(\lambda y.y)$ z
 - \triangleright B: The inner term: $(\lambda \times . \times)$ z

Evaluation order

- What should we reduce first in $(\lambda x.x)$ $((\lambda y.y) z)$?
 - \triangleright A: The outer term: $(\lambda y.y)$ z
 - \triangleright B: The inner term: $(\lambda \times . \times)$ z
- Does it matter?

Evaluation order

- What should we reduce first in $(\lambda x.x)$ $((\lambda y.y) z)$?
 - \triangleright A: The outer term: $(\lambda y.y)$ z
 - \triangleright B: The inner term: $(\lambda \times . \times)$ z
- Does it matter?
 - No! They both reduce to z!
 - Church-Rosser Theorem: "If you reduce to a normal form, it doesn't matter what order you do the reductions." This is known as confluence.

Does evaluation order really not matter?

Does evaluation order really not matter?

• Consider a curious term called Ω

• Consider a curious term called Ω

$$=\beta (\times \times)[\times := (\lambda \times \times)]$$

• Consider a curious term called Ω

$$=\beta (x x)[x:=(\lambda x.x x)]$$

$$=\beta$$
 ($\lambda \times ... \times$) ($\lambda \times ... \times$)

• Consider a curious term called Ω

$$=\beta (x x)[x:=(\lambda x.x x)]$$

$$=\beta$$
 ($\lambda \times ... \times$) ($\lambda \times ... \times$)

$$=$$
 Ω

Deja vu!

$$2 \to \Omega \to \Omega \to \Omega \to \Omega \to \Omega$$

(Ω has no normal form)

- Consider a function that ignores its argument: $(\lambda x.y)$
- What happens when we call it on Ω ?

$$(\lambda x.y) \Omega$$

- Consider a function that ignores its argument: (λx.y)
- What happens when we call it on Ω ?

- Consider a function that ignores its argument: $(\lambda x.y)$
- What happens when we call it on Ω ?

$$(\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega$$

- Consider a function that ignores its argument: (λx.y)
- What happens when we call it on Ω ?

$$(\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega$$

- Consider a function that ignores its argument: (λx.y)
- What happens when we call it on Ω ?

$$(\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega$$

- Consider a function that ignores its argument: $(\lambda x.y)$
- What happens when we call it on Ω ?

$$(\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega \longrightarrow (\lambda x.y) \Omega$$

Nope! Evaluation order does matter!

- Reduce function, then reduce args, then apply
 - ► e₁ e₂
- JavaScript's evaluation strategy is call-by-value (ish)
 - What does this program do?
 - \rightarrow (x => 33) ((x => x(x)) (x => x(x)))

```
\rightarrow e<sub>1</sub> e<sub>2</sub> \rightarrow \cdots \rightarrow (\lambda x.e_1') e<sub>2</sub>
```

- JavaScript's evaluation strategy is call-by-value (ish)
 - What does this program do?

$$\rightarrow$$
 (x => 33) ((x => x(x)) (x => x(x)))

```
\rightarrow e<sub>1</sub> e<sub>2</sub> \rightarrow \cdots \rightarrow (\lambda x.e_1') e<sub>2</sub> \rightarrow \cdots \rightarrow (\lambda x.e_1') n
```

- JavaScript's evaluation strategy is call-by-value (ish)
 - What does this program do?

$$\rightarrow$$
 (x => 33) ((x => x(x)) (x => x(x)))

```
\rightarrow e<sub>1</sub> e<sub>2</sub> \rightarrow ··· \rightarrow (\lambdax.e<sub>1</sub>') e<sub>2</sub> \rightarrow ··· \rightarrow (\lambdax.e<sub>1</sub>') n \rightarrow e<sub>1</sub>'[x:=n]
```

- JavaScript's evaluation strategy is call-by-value (ish)
 - What does this program do?

$$\rightarrow$$
 (x => 33) ((x => x(x)) (x => x(x)))

```
\rightarrow e<sub>1</sub> e<sub>2</sub> \rightarrow ··· \rightarrow (\lambdax.e<sub>1</sub>') e<sub>2</sub> \rightarrow ··· \rightarrow (\lambdax.e<sub>1</sub>') n \rightarrow e<sub>1</sub>'[x:=n]
```

- JavaScript's evaluation strategy is call-by-value (ish)
 - What does this program do?
 - \rightarrow (x => 33) ((x => x(x)) (x => x(x)))
 - RangeError: Maximum call stack size exceeded

- Reduce function, then reduce args, then apply
 - ► e₁ e₂
- Haskell's evaluation strategy is call-by-name
 - It only does what is absolutely necessary!

```
ightharpoonup e_1 e_2 \rightarrow \cdots \rightarrow (\lambda x.e_1') e_2
```

- Haskell's evaluation strategy is call-by-name
 - It only does what is absolutely necessary!

```
\rightarrow e<sub>1</sub> e<sub>2</sub> \rightarrow ··· \rightarrow (\lambdax.e<sub>1</sub>') e<sub>2</sub> \rightarrow e<sub>1</sub>'[x:=e<sub>2</sub>]
```

- Haskell's evaluation strategy is call-by-name
 - It only does what is absolutely necessary!

```
ightharpoonup e_1 e_2 \rightarrow \cdots \rightarrow (\lambda x.e_1') e_2 \rightarrow e_1'[x:=e_2] \rightarrow \cdots
```

- Haskell's evaluation strategy is call-by-name
 - It only does what is absolutely necessary!

Summary

- A term may have many redexes (subterms can reduce)
 - Evaluation strategy says which redex to evaluate
 - Evaluation not guaranteed to find normal form
- Call-by-value: evaluate function & args before β reduce
- Call-by-name: evaluate function, then β-reduce

Today

- Recall syntax of λ calculus \checkmark
- Semantics of λ calculus \checkmark
 - ➤ Recall free and bound variables ✓
 - ➤ Substitution ✓
 - ➤ Evaluation order

Takeaway

- λ -calculus is a formal system
 - "Simplest reasonable programming language"-Ramsey
 - Binders show up everywhere!
 - Know your capture-avoiding substitution!
 - Macros in HW1
 - JavaScript modules in PA1

Bonus: multi-argument \(\lambda'\)s

curry.js