CompTIA Security+ Exam SY0-701

Lesson 12

Explain Alerting and Monitoring Concepts

Objectives

- Summarize incident response and digital forensics procedures
- Utilize appropriate data sources for incident investigations
- Explain security alerting and monitoring concepts and tools

Topic 12A

Incident Response

Incident Response Processes

Preparation (1)

- Cybersecurity infrastructure
- Cyber Incident Response Team
 - Reporting, categorizing, and prioritizing (triage)
 - CIRT/CERT/CSIRT/SOC
 - Management/decision-making authority
 - Incident analysts
 - Roles beyond technical response
 - Legal, Human Resources (HR), Marketing

Preparation (2)

- Communication plan
 - Prevent inadvertent disclosure
 - Call list identifying trusted parties
 - Share data on a need to know basis
 - Out-of-band communications—avoid alerting intruder
- Stakeholder management
 - Communication with internal and external stakeholders
 - Notification and reporting
- Incident response plan (IRP)

Detection

- Detection channels
 - Monitoring and alerting from logs and other data sources
 - Deviation from baseline metrics
 - Manual inspection
 - Notification procedures
 - Public reporting and whistleblowing
- First responder
 - Member of CIRT taking charge of a reported incident

Analysis

- Analysis and incident identification
 - Classify and prioritize
 - Downgrade low priority alerts to log-only
- Impact
 - Data integrity, downtime
 - Economic/publicity
 - Scope
 - Detection time, recovery time
- Category
 - Kill chains and threat intelligence
- Playbooks

Containment

- Issues
 - Loss control
 - Countermeasures available
 - Preserving evidence
- Isolation-based containment
- Segmentation-based containment

Eradication and Recovery

- Reconstitution of affected systems
- Reaudit security controls
- Ensure that affected parties are notified

Lessons Learned

- Meet and report
- Root cause analysis
 - Five whys
 - Drill through incident with questions: Who, why, when, where, how, what
 - Walkthrough timeline

Testing and Training

Members of the Kentucky and Alabama National Guard participate in a simulated network attack exercise.

(Photo by Kentucky National Guard Maj. Carla Raisler.)

Testing

- Tabletop
 - Facilitator presents a scenario
 - Does not involve live systems
- Walkthroughs
 - Responders demonstrate response actions
- Simulations
 - Red team performs a simulated intrusion
- Training

Threat Hunting

The Hunt dashboards in Security Onion can help to determine whether a given alert affects a single system only (as here), or whether it is more widespread across the network. (Screenshot courtesy of Security Onion <u>securityonion.net</u>.)

- Proactive process compared to reactive incident response
- Warning of new threat types
- Intelligence fusion and threat data
- Maneuver
 - Awareness that threat actor might take countermeasures

Review Activity: Incident Response

- Incident response processes
 - Preparation
 - Detection
 - Analysis
 - Containment
 - Eradication
 - Recovery
 - Lessons learned
- Testing and training
- Threat hunting

Lab Activity

• APPLIED LAB: Incident Response: Detection

Topic 12B

Digital Forensics

Due Process and Legal Hold

- Digital forensics
 - Collecting evidence from computer systems to a standard that will be accepted in a court of law
- Evidence, documentation, and admissibility
 - Latent evidence
 - Collection must be documented
- Due process
 - Evidence collection and analysis procedures that ensure fairness
- Legal hold
 - Right to seize systems as evidence

Acquisition

- Legal seizure and search of devices
- Computer on/off state
- Order of volatility
 - CPU registers, cache memory, and non-persistent system memory (RAM)
 - Data on persistent storage
 - Remote logging and monitoring data
 - Physical configuration and network topology
 - Archival media

System Memory Acquisition

- Evidence recovery from nonpersistent memory
 - Contents of temporary file systems, registry data, network connections, cryptographic keys, ...
- Live acquisition
 - Pre-install kernel driver

olatility Foundat	nloads>volatility_2.6_u ion Volatility Framewo	k 2.6					,p				
offset(V)	Name	PID	PPID	Thds	Hnds	Sess	Wow64	Start			E
xfffffa83020a7040	System	4	0	106	632		9	2020-01-09	21:20:03	UTC+0000	
xfffffa8303d6d1d0		308	4	2				2020-01-09			
xfffffa83035f26a0		396	388	8	370	0		2020-01-09			
xfffffa83034fe060		432	388	3	75	ē		2020-01-09			
xfffffa83036295e0		444	424	8	293	1		2020-01-09			
xfffffa8303716b30		492	424	3	109	1		2020-01-09			
xfffffa83035fab30		528	432	10	276	0	a	2020-01-09	21:20:05	UTC+0000	
xfffffa8303732b30		536	432	8	636	0		2020-01-09			
xffffffa830373db30	lsm.exe	544	432	10	142	0	a	2020-01-09	21:20:05	UTC+0000	
xfffffa83037436a0		652	528	10	349	ø		2020-01-09			
xfffffa83037e66a0	sychost.exe	716	528	7	235	0	9	2020-01-09	21:20:05	UTC+0000	
xfffffa83036566a0		772	528	18	445	ø		2020-01-09			
xfffffa83038bb060	sychost.exe	892	528	18	417	0	0	2020-01-09	21:20:06	UTC+0000	
xfffffa83038fcb30	sychost.exe	936	528	32	940	0	a	2020-01-09	21:20:06	UTC+0000	
xfffffa830393c060		324	528	17	385	0		2020-01-09			
xfffffa8303960060	sychost.exe	744	528	15	379	ø	a	2020-01-09	21:20:06	UTC+0000	
xfffffa83039b7060		1060	528	12	271	ø		2020-01-09			
xfffffa83039dd060		1096	528	19	316	0	9	2020-01-09	21:20:06	UTC+0000	
xfffffa8303a58960		1192	528	5	126	ø		2020-01-09			
xfffffa8303a70b30	vmicsvc.exe	1216	528	7	217	0	0	2020-01-09	21:20:06	UTC+0000	
xfffffa8303a8c060		1264	528	4	78	0		2020-01-09			
xfffffa8303accb30	vmicsvc.exe	1296	528	5	92	0	0	2020-01-09	21:20:06	UTC+0000	
xfffffa8303b32920	vmicsvc.exe	1340	528	3	82	0	0	2020-01-09	21:20:07	UTC+0000	
xfffffa8302ab3210	sychost.exe	1436	528	10	179	0	0	2020-01-09	21:20:07	UTC+0000	
xfffffa8303bcf800	svchost.exe	1528	528	3	43	0	0	2020-01-09	21:20:08	UTC+0000	
xfffffa8303c963a0	svchost.exe	1816	528	5	99	0	0	2020-01-09	21:20:08	UTC+0000	
xfffffa8303ac5b30	svchost.exe	1976	528	14	323	0	0	2020-01-09	21:20:10	UTC+0000	
xfffffa8303155b30	taskhost.exe	1964	528	9	157	1	0	2020-01-09	21:20:14	UTC+0000	
xfffffa83031c3830	sppsvc.exe	2072	528	7	158	0		2020-01-09			
xfffffa8303262060		2352	892	3	70	1	0	2020-01-09	21:20:18	UTC+0000	
xfffffa8303238060	explorer.exe	2376	2344	24	784	1	0	2020-01-09	21:20:18	UTC+0000	
xfffffa83033a2b30		2520	2456	8	233	1	1	2020-01-09	21:20:18	UTC+0000	
xfffffa8303ba0b30		2568	528	11	656	0	0	2020-01-09	21:20:24	UTC+0000	
xfffffa830326a060		2900	2376	8	382	1	0	2020-01-09	21:20:45	UTC+0000	
xfffffa83036406a0		3024	652	7	118	0		2020-01-09			
xfffffa8303703190	Tcpview.exe	916	2376	6	139	1	1	2020-01-09	21:21:27	UTC+0000	
xfffffa8302839b30		1808	2376	6	134	1		2020-01-09			
xfffffa8303818230	WMTADAP.exe	380	936	5	85	9		2020-01-09			

Screenshot: Volatility Framework volatilityfoundation.org.)

Disk Image Acquisition

```
root@kali:~# dcfldd if=/dev/sda hash=sha256 of=/root/FORENSIC/ROGUE.dd bs=512 co
nv=noerror
134217728 blocks (65536Mb) written.Total (sha256): 7a72be231f393d40e0ac72c62b3a7
3798f29f0ca7e0e279b8aececa29la34137

134217728+0 records in
134217728+0 records out
root@kali:~# sha256sum /dev/sda
7a72be231f393d40e0ac72c62b3a73798f29f0ca7e0e279b8aececa29la34137 /dev/sda
root@kali:~#
```

Using dcfldd (a version of dd with additional forensics functionality created by the DoD) and generating a hash of the source-disk data (sda).

- Non-volatile storage media and devices
- Acquisition types
 - Live acquisition
 - Static acquisition by shutting down the host
 - Static acquisition by pulling the plug
- Imaging utilities
 - Forensic software suites and file formats

Preservation

- Timeline and provenance
 - Record process of evidence acquisition
 - Use a write blocker
- Evidence integrity and non-repudiation
 - Cryptographic hashing and checksums
 - Take hashes of source device, reference image, and copy of image for analysis
- Chain of custody
 - Integrity and proper handling of evidence from collection, to analysis, to storage, and finally to presentation
 - Secure tamper-evident bagging
 - Secure storage facility and protection against environmental hazards

Reporting

- Summarizes contents of the digital data
- Conclusions from the investigator's analysis
- Professional ethics
 - Analysis must be performed without bias
 - Analysis methods must be repeatable
 - Evidence must not be changed or manipulated
- E-discovery
 - Electronically Stored Information (ESI)
 - Identify and de-duplicate files and metadata and facilitate search and tagging
 - Protect access and make tamper-evident
 - Facilitate disclosure

Review Activity: Digital Forensics

- Due process and legal hold
- Acquisition
 - Order of volatility
- System memory acquisition
- Disk image acquisition
- Preservation
 - Evidence integrity, reference hash, chain of custody
- Reporting
 - E-discovery

Lab Activity

• APPLIED LAB: Performing Digital Forensics

Topic 12C

Data Sources

Data Sources, Dashboards, and Reports (1)

- System memory and media device file system data and metadata
- Log files generated by network appliances
- Network traffic captured by sensors and/or intrusion detection systems
- Log files and alerts generated by network-based vulnerability scanners
- Log files generated by the OS components of client and server hosts
- Log files generated by applications and services running on hosts
- Log files and alerts generated by endpoint security software installed on hosts

Data Sources, Dashboards, and Reports (2)

Screenshot courtesy of Security Onion (securityonion.net.)

- Analyst dashboard
 - Console of alerts that require prioritization and investigation
- Manager dashboard
 - Overall status indicators
- Automated reports
 - Alerts and alarms
 - Status reports for response team, business managers, business owners, and compliance

Log Data

- Event
 - Format and source (local or redirected over network)
 - Event data versus metadata
- Windows Event Viewer
- Syslog
 - PRI facility and severity
 - Header with timestamp and host
 - Message part

Host Operating System Logs

```
00:01:57 lamp sshd[453]: Server listening on 0.0.0.0 port 22.

00:01:57 lamp sshd[453]: Server listening on :: port 22.

00:17:01 lamp CRON[744]: pam_unix(cron:session): session opened for user root(uid=0) by (ui-
00:17:01 lamp CRON[744]: pam_unix(cron:session): session closed for user root

00:26:47 lamp login[415]: pam_unix(login:auth): authentication failure; logname=LOGIN uid=0

00:26:51 lamp login[415]: FAILED LOGIN (1) on '/dev/ttyl' FOR 'root', Authentication failur

00:26:59 lamp login[415]: FAILED LOGIN (2) on '/dev/ttyl' FOR 'root', Authentication failur

00:27:05 lamp login[415]: FAILED LOGIN (3) on '/dev/ttyl' FOR 'root', Authentication failur

00:27:11 lamp login[415]: pam_unix(login:session): session opened for user lamp(uid=1000) b

00:27:11 lamp systemd-logind[396]: New session 3 of user lamp.

00:27:11 lamp systemd: pam_unix(systemd-user:session): session opened for user lamp(uid=100

00:29:26 lamp sudo: lamp: TTY=ttyl; PWD=/home/lamp; USER=root; COMMAND=/usr/bin/cat

00:29:26 lamp sudo: pam_unix(sudo:session): session opened for user root(uid=0) by lamp(uid=100)
```

Linux authentication log showing SSH remote access is enabled, failed authentication attempts for root user, and successful login for lamp user.

- Security/audit logs
 - Authentication and authorization events
 - File system events
- Windows
 - Application, security, and system
- Linux
 - Syslog versus Journald
 - Common log files
- macOS unified logging

Application and Endpoint Logs

Windows Defender logging detection and quarantine of malware to Event Viewer. (Screenshot used with permission from Microsoft.)

- Application logs
- Endpoint logs
 - Security software running on hosts
 - Summarize volume of detection incidents to indicate threat levels
 - Incident attribution and threat intelligence
- Vulnerability scans

Network Data Sources

- Network logs
 - Traffic and access data from network appliances
- Firewall logs
 - Correlate to malicious activity on hosts
- IPS/IDS logs
 - Summarize volume of detection incidents to indicate threat levels
 - Attribution and threat intelligence

Viewing the raw log message generated by a Suricata IDS alert in the Security Onion SIEM.

Packet Captures

Using the Wireshark packet analyzer to identify malicious executables being transferred over the Windows file-sharing protocol. (Screenshot Wireshark <u>wireshark.org</u>.)

- Pivot from alert event to perpacket or frame analysis
- Extract binary data

Metadata

- File
 - Date/time and security attributes
 - Extended attributes and properties
- Web
 - Request and response headers
- Email
 - Internet header listing message transfer agents
 - Spam/security analysis

Analyzing headers in a phishing message: the sender is using typosquatting to hope the recipient confuses <u>structureality.com</u> with the genuine domain <u>structureality.com</u>.

(Screenshot courtesy of Mozilla.)

Review Activity: Data Sources

- Data sources, dashboards, and reports
- Log data
- Host operating system logs
- Application and endpoint logs
- Network data sources
 - Network appliance logs, firewall logs, IPS/IDS logs
- Packet captures
- Metadata

△ Lab Activity

Applied Lab: Using Network Sniffers

Lesson 12

Topic 12D

Alerting and Monitoring Tools

Security Information and Event Management

Wazuh SIEM dashboard—Configurable dashboards provide the high-level status view of network security metrics. (Screenshot used with permission from Wazuh Inc.)

Log collection

- Agent-based
 - Local agent to forward logs
- Listener/collector
 - Protocol-based remote log forwarding (syslog)
- Sensor
 - Packet capture and traffic flow data
- Log aggregation
 - Consolidation of multiple log formats to facilitate search/query and correlation
 - Normalization of fields
 - Time synchronization

Alerting and Monitoring Activities

- Alerting and correlation
 - Static rules and logical expressions
 - Threat intelligence feeds
 - Validation of alerts as true positives versus false positives
 - Quarantine for remediation
- Reporting
 - Executive, managerial, and compliance audiences
- Archiving
 - Preserve evidence of attack
 - Facilitate threat hunting and retrospective incident identification

Alert Tuning (1)

- Correlation action to log only, trigger alert, or trigger alarm
- Reduce false positives without increasing false negatives
 - False positives raise an alert when there is no actual malicious activity
 - False negatives do not raise an alert when there is malicious activity
 - True positives measure successful detection of incidents

Alert Tuning (2)

- Techniques for tuning
 - Refining detection rules and muting alert levels
 - Redirecting sudden alert "floods"
 - Redirecting infrastructure-related alerts
 - Continuous monitoring of alert volume and analyst feedback
 - Deploying machine learning (ML) analysis

Monitoring Infrastructure

- Network monitors
 - Appliance state data
 - Heartbeat availability monitoring
 - Simple Network Management Protocol (SNMP) traps
- Netflow/IPFIX
 - Records traffic statistics
 - Flows defined by endpoints and ports (keys)
 - Netflow exporters and collectors

ntopng community edition being used to monitor NetFlow traffic data. (Screenshot used courtesy of ntop.)

Monitoring Systems and Applications

- System monitors and logs
 - System health reporting
 - System logs to diagnose availability issues
 - Security logs to audit access
- Application and cloud monitors
 - Application health monitoring
 - Cloud service health
- Vulnerability scanners
- Antivirus
- Data loss prevention (DLP)

Benchmarks

Monitoring template aligned to NIST 800-53 framework requirements.

- Scanning for configuration vulnerabilities
 - Lack of controls
 - Improper configuration
- Security content automation protocol (SCAP)
 - Language to enable scanners to load configuration benchmarks and scan for deviations

Review Activity: Alerting and Monitoring Tools

- Security Information and Event Management
 - Collection and aggregation
- Alerting and monitoring activities
 - Correlation, reporting, archiving
- Alert tuning
 - False positives, false negatives, alert fatigue
- Monitoring infrastructure
 - Network monitors, NetFlow
- Monitoring systems and applications
- Benchmarks
 - SCAP, OVAL, XCCDF configuration baseline scanning

△ Lab Activity

Assisted Lab: Performing Root Cause Analysis

CompTIA Security+ Exam SY0-701

Lesson 12

Summary