sec5.md 2025-08-03

5. グラフ理論

第十一回~第十二回の内容。

キルヒホッフ則

KCL - 第一法則

任意の節点に対する流入電流の並列積算は0である。

$$\sum_{i}I_{i}=0$$

KVL - 第二法則

任意の閉路に沿った電圧の直列積算は 0 である。

$$\sum_i V_i = 0$$

回路の記述

- 補木枝 c_1, \dots, c_m
- 木枝 t_1, \dots, t_n
- ・ 電流ベクトル $I=(I_{c_1}\,\cdots\,I_{c_m}\,I_{t_1}\,\cdots\,I_{t_n})^{\mathrm{T}}$
- 閉路電流 $I_{\mathcal{L}}=(I_{\mathcal{L}_1}\ \cdots\ I_{\mathcal{L}_m})^{\mathrm{T}}=(I_{c_1}\ \cdots\ I_{c_m})^{\mathrm{T}}$
- 電圧ベクトル $V=(V_{c_1}\cdots V_{c_m}V_{t_1}\cdots V_{t_n})^{\mathrm{T}}$
- 木枝電圧 $V_{\mathcal{C}}=(V_{\mathcal{C}_1}\ \cdots\ V_{\mathcal{C}_n})^{\mathrm{T}}=(V_{t_1}\ \cdots\ V_{t_n})^{\mathrm{T}}$
- 基本タイセット $\mathcal{L}_1, \dots, \mathcal{L}_m$
- 基本カットセット C_1, \dots, C_n
- ullet 基本タイセット行列 B_f : $I=B_f^{
 m T}I_{\cal L}$ を満たす行列
- 基本カットセット行列 C_f : $V = C_f^{\mathrm{T}} V_{\mathcal{C}}$ を満たす行列

$$B_f = (I_m \mid B_p) = egin{pmatrix} egin{pmatrix} c_1 & \cdots & c_m & t_1 & \cdots & t_n \ egin{pmatrix} \mathcal{L}_1 & 1 & & 0 & b_{11} & \cdots & b_{1n} \ dots & \ddots & & dots & \ddots & dots \ \mathcal{L}_m & 0 & & 1 & b_{m1} & \ldots & b_{mn} \end{pmatrix}$$

$$C_f = (C_p \mid I_n) = egin{pmatrix} rac{c_1}{\mathcal{C}_1} & rac{c_1}{c_{11}} & ldots & rac{c_m}{c_{1m}} & rac{t_1}{1} & ldots & rac{t_n}{0} \ dots & dots & \ddots & dots & \ddots & dots \ \mathcal{C}_n \mid c_{n1} & \dots & c_{nm} \mid 0 & 1 \end{pmatrix}$$

sec5.md 2025-08-03

KCL と KVL の行列表現

KCL

$$egin{pmatrix} \sum_i c_{1i} I_i \ dots \ \sum_i c_{ni} I_i \end{pmatrix} = \mathbf{0} \implies C_f I = \mathbf{0}$$

KVL

$$egin{pmatrix} \sum_i b_{1i} V_i \ dots \ \sum_i b_{mi} V_i \end{pmatrix} = \mathbf{0} \implies B_f V = \mathbf{0}$$

回路方程式の解法

$$A\boldsymbol{x} = \boldsymbol{0} \implies \det A = 0$$

閉路電流法

- 1. 枝電流を基本タイセットによる閉路電流で表現する、つまり基本タイセット行列 B_f を求める
- 2. 電流 $I_{\mathcal{L}}$ により電圧 $V=ZI-E=Z(B_f^{
 m T}I_{\mathcal{L}})-E$ を表現する
- 3. KVL : $B_fV=\mathbf{0}$ を適用して $I_{\mathcal{L}}$ を求める

節点電位法

節点電位とは名ばかりで実際には木枝電圧を使うことで自由度を1削減することが多い。

- 1. 枝電圧を基本カットセットによる木枝電圧で表現する、つまり基本カットセット行列 C_f を求める
- 2. 電圧 $V_{\mathcal{C}}$ により電流 $I=YV+J=Y(C_f^{\mathrm{T}}V_{\mathcal{C}})+J$ を表現する
- 3. KCL : $C_f I = \mathbf{0}$ を適用して V_C を求める

枝電流法

- 1. 基本セット行列 b_f および C_f を求める
- 2. 電流Iにより電圧V=ZI-Eを表現する
- 3. KCL : $B_fV=B_f(ZI-E)=\mathbf{0}$ および KVL : $C_fI=\mathbf{0}$ を適用して I を求める