

movieConnoisseur.io

Movies Dataset ML & NLP

Team -- Tyson's Big Cat

Alannah Danni Tianchi

Agenda

Objective

Methods

Models

Demo

Limitations & Next Steps

Objective

- Predict movie box office
- Predict movie oscar nominations
- Predict movie MPA ratings

THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR APPROPRIATE AUDIENCES

BY THE MOTION PICTURE ASSOCIATION OF AMERICA, INC.

THE FILM ADVERTISED HAS BEEN RATED

www.filmratings.com

www.mpaa.org

Methods

Data Collection

- Kaggle
- o OMDB API

Machine Learning

- Multiple Linear Regression
- Logistic Regression
- o SVM
- Random Forests
- Deep Learning

NLP

- Movie plot
- Predictor App

Data Collection

- Our base dataset was a collection of movies data obtained from Kaggle
- 200 movies per year from 1986 2016
- Variables:

Budget	Company	Country	Director	Genre	Box Office	Name	Rating	 Non
Year	Released Date	Runtime	IMDB score	IMDB votes	Star	Actors	Writers	genres
Action	Adventure	Fantasy	Sci-Fi	Crime	Drama	History	Comedy	
Biography	Romance	Horror	Thriller	Adult	Film-Noir	Documentary	Musical	Genres
War	Animation	Family	Sport	Music	Mystery	Short	Western	

 We then used the OMDB api to retrieve additional information on each film, such as plot, genre (multiple), awards and nominations

Models & Process

Box Office

Multiple Linear Regression

Features:

- Time
 - year
 - month (seasonalized)
- o **Genres (24)**
 - One movie can have multiple genres
- General
 - score (IMDB)
 - votes (IMDB)
 - runtime
 - budget (adjusted for inflation)

0.0

-0.2

- -0.4

Residual

Training Data MSE: 2888532442004727.0 Testing Data MSE: 2888532442004727.0

Training Data Score: 0.6158
Testing Data Score: 0.5895

2	features	coefficients	feature_type
1	votes_imdb	0.4599	General
2	adjusted_budget	0.2235	General
0	runtime	0.0219	General
8	score_imdb	0.0031	General
9	rating	-0.0068	General

	feature_type	coefficients	features
	Genre	0.0231	film-noir
Top 3	Genre	0.0117	family
ĭ	Genre	0.0098	animation
n 3	Genre	-0.0109	history
Bottom 3	Genre	-0.0142	musical
Во	Genre	-0.0158	documentary

	features	coefficients	feature_type
0	year	-0.0008	Year
1	summer	0.0082	Season
2	winter	0.0008	Season
3	spring	-0.0016	Season
4	fall	-0.0074	Season

Oscar Nominations

Logistic Regression

Binary classification problem

Features

- Plot
- Plot length
- Genres

NLP

- HashingTF Vectorizer
- TF-IDF transformation
- Pyspark vs sklearn

Oscar Nominations

Unweighted

	precision	recall	f1-score	support
0 1	0.86 0.46	0.99 0.06	0.92 0.11	1006 177
accuracy macro avg weighted avg	0.66 0.80	0.52 0.85	0.85 0.51 0.80	1183 1183 1183
	We	iahted		

	precision	recall	f1-score	support
0	0.90	0.81	0.86	1006
1	0.32	0.50	0.39	177
accuracy			0.77	1183
macro avg	0.61	0.66	0.62	1183
weighted avg	0.82	0.77	0.79	1183

Oscar Nominations

- Limitations and lessons:
 - Small set of oscar winners
 - Overall plot data was similar between classes

MPA Rating

• Features:

- Plot
- Plot length
- Genres

Models

- Multiclass classification problem
 - Decision Tree & Random Forests
 - Deep Learning
 - Linear SVM (for application)

Random Forests

- Feature importances
- Good f1-score
- Number of trees (200 vs. 3000)
- Balance issue
- Genres play an important part

	precision	recall	f1-score	support
G PG PG-13 R	0.00 0.74 0.60 0.65	0.00 0.49 0.29 0.94	0.00 0.59 0.39 0.77	33 219 444 778
accuracy macro avg weighted avg	0.50 0.64	0.43 0.66	0.66 0.44 0.61	1474 1474 1474

```
Random Forests model feature importances
```

```
[(0.032852177149722335, 'family'),
 (0.013346226312506912, 'animation'),
 (0.010207138268718689, 'adventure'),
 (0.008127192141042662, 'thriller'),
(0.006962489022086924, 'length'),
 (0.006900903206820905, 'crime'),
 (0.005912805986435832, 'comedy'),
 (0.005706837066290208, 'fantasy'),
 (0.005398193847265688, 'musical'),
 (0.005079553221749293, 'horror'),
 (0.004001656943561991, 'drama'),
 (0.003198898198649997, 'action'),
 (0.0022222759262747445, 'romance'),
 (0.0011141939563632242, 'mystery'),
 (0.0010973285156303742, 'sci-fi'),
 (0.0008325564880059716, 'sport'),
 (0.0006532225028020425, 'music'),
 (0.00048019905010564446, 'biography'),
 (0.00042025690022487683, 'short'),
 (0.000346805653817972, 'history'),
 (0.00033653152961183957, 'war'),
 (0.00019510778977511122, 'western'),
 (0.00015336024470198882, 'documentary'),
 (1.1635011838982446e-05, 'film-noir'),
(4.26660331001538e-06, 'stemmed'),
(0.0, 'adult')1
```


Linear SVM

Application

Technical Diagram

Live Demo

Limitations & Next Steps

- Data:
 - Volume
 - Unbalanced
- Features:
 - Box office: factoring in cast and production
 - Oscar model: factoring in cast and production
 - o Ratings model: production company data
- Next steps:
 - Training the plot
 - Incorporate "sureness" (certainty of prediction) into the App

Thank You!!!

X

"To Infinity and Beyond! -- Buzz Lightyear

Applaud

Boo...

Demo

- R
 - o detective finds murderer, cuts off own leg.
 - o Crime, Thriller, Mystery
- PG-13
 - o harry porter goes to magic school, goes through wall.
 - Drama, Fantasy
- PG
 - o dragon gets trained and fights bad guys.
 - Action, Adventure, Animation
- G
 - o lion loses father, comes back to be the king.
 - Animation, Family, Musical

guidelines

- 1. You should keep your presentation around 10 minutes and allow for 5 minutes of questions
- 2. When discussing your model, talk about...
 - a. Why the problem you're working on lends itself to ML problem vs a traditional if/then logic
 - b. How you made your feature selection (i.e., why the features you focused on were important)
 - c. The challenges you had in avoiding bias or balanced/unbalanced data sets, etc...
 - d. Why the model you chose makes sense for this problem (i.e., this model works well for categorization vs regression or this model works well when you have more or less data, etc...)
 - e. What you'd consider adding in terms of features or alternative models
- Notice what I avoided above...not a lot of talk on your accuracy. Obviously
 discuss it, but don't make it the focus.