Report on LOAN RISK PREDICTION

DATA VISUALIZATION

Different types of graphs have been generated to study how the features relate to each other and how they affect the deciding factor i.e if a person will be at a high risk or not.

Correlation Map

Distribution of Risk Flag

Income VS Risk Flag

• Count of risk flag by profession

Count of Risk Flags by Experience

• Count of Risks Flags by Age

High Risk Count by Profession

DATA EXPLORATION INSIGHTS

Numerical values have been printed to understand how many people turn out to be at high risk according to the category they fall in.

Counts for Married/Single:			
	Low Risk (0)	High Risk (1)	
Married/Single			
married	23092	2636	
single	197912	28360	

Counts for House_Ownership:			
	Low Risk (0)	High Risk (1)	
House_Ownership			
norent_noown	6469	715	
owned	11758	1160	
rented	202777	29121	

Counts for Car_Ownership:		
	Low Risk (0)	High Risk (1)
Car_Ownership		
no	153439	22561
yes	67565	8435

Counts for Profession:		
counts for Profession.	Low Risk (0)	High Risk (1)
Profession	Low Hisk (o)	112611 K13K (1)
Air_traffic_controller	4566	715
Analyst	4101	567
Architect	4046	611
Army officer	3952	709
Artist	4265	596
Aviator	4116	642
Biomedical_Engineer	4473	654
Chartered Accountant	3803	690
_ Chef	4072	563
Chemical_engineer	4624	581
Civil_engineer	3989	627
Civil servant	3902	511
 Comedian	4630	629
Computer_hardware_engineer	4682	690
Computer_operator	4371	619
Consultant	4206	602
Dentist	4258	524
Design_Engineer	4223	506
Designer	4096	502
Drafter	4754	605
Economist	4119	454
Engineer	3570	478
Technical_writer	4498	697
Technician	4240	624
Technology_specialist	4351	386
Web_designer	4808	589

```
High Risk Counts for Married/Single:
Married/Single
single 28360
married 2636
```

```
High Risk Counts for House_Ownership:
House_Ownership
rented 29121
owned 1160
norent_noown 715
```

```
High Risk Counts for Car_Ownership:
Car_Ownership
no 22561
yes 8435
```

MODEL PERFORMANCE

After training multiple machine learning model, it was found that Random Forest gives the most satisfying results.

	_		Random Forest	Gradient Boosting
Accuracy	0.877368	0.844299	0.906931	0.877526
Precision	0.438684	0.645382	0.822198	0.876263
Recall	0.500000	0.655037	0.684096	0.500740

AdaBoost	Bagging	SVM
0.877368	0.887844	0.877368
0.438684	0.786055	0.438684
0.500000	0.575978	0.500000

K-Nearest Neighbors	Naive Bayes	Multilayer Perceptron
0.859907	0.514802	0.126508
0.551776	0.507417	0.472137
0.514685	0.517227	0.498451

UNDERSTAND MAIN DECIDING FACTORS ASSOCIATED WITH RISK

After careful analysis of the data, it can be concluded that the features 'Id', 'State', 'City' can be dropped from the dataframe and the rest of the features can be used to train the Machine Learning model. After training multiple machine learning model, it was found that Random Forest gives the most satisfying results.