CLAIM AMENDMENTS

1	1.	(Currently Amended) A method for facilitating Internet security protocol (IPsec)
2		based communications through a device that employs address translation in a
3		telecommunications network, the method comprising the steps of:
4		receiving a first electronic message from a first node, wherein:
5		the first node is associated with a first network address;
6		the first electronic message is based on IPsec; and
7		the first electronic message is associated with a first identifier;
8		the first identifier is generated by the first node; and
9		the first electronic message is addressed to a second network address;
10		the device generating a value based on the first identifier and a specified scheme;
11		sending the first electronic message to a second node based on the second network
12		address, wherein the first electronic message includes a particular network
13		address that is associated with the device instead of the first network address;
14		receiving a second electronic message from the second node, wherein:
15		the second electronic message is based on IPsec; and
16		the second electronic message is addressed to the particular network address;
17		the second electronic message is associated with a second identifier that is
18		different than the first identifier;[[,]] wherein and
19		the second identifier is generated, based on the first identifier and the specified
20		scheme, by the second node;
21		the device determining whether the second electronic message is directed to the first
22		node based on the value and the second identifier; and
23		sending the second electronic message to the first node at the first network address
24		when the second electronic message is determined to be directed to the first
25		node.

1	2.	(Currently Amended) A method as recited in claim 1, further comprising the steps of:
2		receiving a third electronic message from a third node, wherein:
3		the third node is associated with a third network address;
4		the third electronic message is based on IPsec; and
5		the third electronic message is associated with a third identifier;
6		the third identifier is generated by the third node; and
7		the third electronic message is addressed to the second network address;
8		the device generating an additional value based on the third identifier and the
9		specified scheme;
10		sending the third electronic message to the second node based on the second network
11		address, wherein the first electronic message includes the particular network
12		address that is associated with the device instead of the third network address;
13		wherein the step of receiving comprises
14		receiving, after sending the first electronic message and the third electronic message
15		to the second node, the second electronic message from the second node[[,]];
16		wherein:
17		the second electronic message is based on IPsec; and
18		the second electronic message is addressed to the third network address;
19		the second electronic message is associated with the second identifier that is
20		different than the first identifier and the third identifier; and
21		the second identifier is generated, based on the third identifier and the
22		specified scheme, by the second node;
23		the device determining whether the second electronic message is directed to the third
24		node based on the additional value and the second identifier; and
25		when the second electronic message is determined to be directed to the third node,
26		sending the second electronic message to the third node at the third network
27		address.
1	3.	(Cancelled)

1	4.	(Currently Amended) A method as recited in claim 31, wherein the specified scheme
2		is selected from the group consisting of a first scheme that produces a fixed length
3		output, a second scheme that includes a hash algorithm, and a third scheme that
4		includes a Message Digest 5 one-way hash function.
1	5.	(Cancelled)
1	6.	(Cancelled)
1	7.	(Cancelled)
1	8.	(Cancelled)
1	9.	(Currently Amended) A method as recited in claim <u>81</u> , wherein:
2		the value is a hash value;
3		the second identifier is based at least in part on the hash value;
4		the hash value is comprised of a first plurality of bytes;[[,]] wherein
5		the second identifier is comprised of a second plurality of bytes;[[,]] and wherein
6		a last pair of bytes of the second plurality of bytes is a first pair of bytes of the first
7		plurality of bytes;[[,]] and wherein
8		the step of determining whether the second electronic message is directed to the first
9		node <u>further</u> comprises the step steps of:
10		comparing the last pair of bytes of the second identifier to the first pair of
11		bytes of the hash value; and
12		when the last pair of bytes of the second identifier match the firs pair of bytes
13		of the hash value, determining that the second electronic message is
14		directed to the first node.
1	10.	(Currently Amended) A method as recited in claim 1, wherein:
2		the first node is an IPsec originator node;
3		the second node is an IPsec responder node;
4		the first identifier is a first IPsec security parameter index; and

)		the second identifier is a second iPsec security parameter index;
6		the device employs a feature selected from the group consisting of network address
7		translation (NAT), dynamic address NAT, and network address port
8		translation (NAPT);
9		and the method further comprises the steps of:
10		creating and storing a mapping between the value and the first IPsec security
11		parameter index;
12		creating an association between the value and the first identifier; and
13		storing the association in a translation table.
1	11.	(Currently Amended) A method as recited in claim 1, wherein the first electronic
2		message is based on IPsec tunnel mode and the second electronic message is are both
3		based on an IPsec feature selected from the group consisting of IPsec tunnel mode and
4		IPsec Encapsulation Security Payload.
1	12.	(Cancelled)
1	13.	(Cancelled)
1	14.	(Cancelled)
1	15.	(Cancelled)
1	16.	(Currently Amended) A method as recited in claim 1, further comprising the steps of:
2		when the second electronic message is determined to be directed to the first node,
3		creating an association between the first identifier network address and the
4		second identifier; and
5		storing the association in a table;
6		receiving a third electronic message from the second node, wherein the third
7		electronic message is based on IPsec and is associated with the second
8		identifier; and
9		determining that the third electronic message is directed to the first node based on the
10		association.

1	17.	(Cancelled)
1	18.	(Currently Amended) A method as recited in claim 1, further comprising the steps of:
2		receiving a third electronic from the second node, wherein:
3		the third electronic message is based on IPsec; and
4		the third electronic message is addressed to the specified network address;
5		the third electronic message is associated with a third identifier that is
6		different than both the first identifier and the second identifier;
7		the third identifier is generated, based on the first identifier and the specified
8		scheme, by the second node;
9		the device determining whether the third electronic message is directed to the first
10		node based on the value and the third identifier; and
11		when the third electronic message is determined to be directed to the first node,
12		sending the third electronic message to the first node at the first network
13		address.
1	19.	(Currently Amended) A method as recited in claim 1, wherein the step of the device
2		generating the value is performed before the step of receiving the second electronic
3		message.
1	20.	(Currently Amended) A method as recited in claim 1, wherein the step of the device
2		generating the value is performed after the step of receiving the second electronic
3		message.
1	21.	(Cancelled)
1	22.	(Cancelled)
1	23.	(Cancelled)

1	24.	(Currently Amended) A method for facilitating Internet security protocol (IPsec)
2		based communications through a device that employs address translation in a
3		telecommunications network, the method comprising the steps of:
4		receiving a first electronic message from a first node, wherein:
5		the first node is associated with a first network address;
6		the first electronic message is based on IPsec; and
7		the first electronic message is associated with a first identifier[[,]]; wherein
8		the first identifier is generated by the first node based on a second identifier
9		and a specified scheme; and
10		the first identifier is different than the second identifier; and
11		the first electronic message is addressed to a second network address;
12		sending the first electronic message to a second node based on the second network
13		address, wherein the first electronic message includes a particular network
14		address that is associated with the device instead of the first network address;
15		receiving a second electronic message from the second node, wherein:
16		the second electronic message is based on IPsec; and
17		the second electronic message is address to the particular network address;
18		the second electronic message is associated with the second identifier; and
19		the second identifier is generated by the second node;
20		the device generating a value based on the second identifier and the specified scheme;
21		the device determining whether the second electronic message is directed to the first
22		node based on the value and the first identifier; and
23		sending the second electronic message to the first node at the first network address
24		when the second electronic message is determined to be directed to the first
25		node.
1	25.	(Currently Amended) A method An apparatus for facilitating Internet security
2		protocol (IPsec) based communications with a device that employs address translation
3		in a telecommunications network, the method apparatus comprising the steps of:
4		a processor; and
4		a processor; and

5		one or more stored sequences of instructions which, when executed by the processor,
6		cause the processor to carry out the steps of:
7		generating a value based on both a first identifier that is associated with a first node
8		and a specified scheme, wherein the first identifier is generated by the first
9		node;
10		the apparatus generating a second identifier based on the value and the specified scheme;
11		receiving, from the device that employs address translation, a first electronic message
12		that originates from the first node, wherein:
13		the first electronic message is based on IPsec; and
14		the first electronic message is associated with the first identifier;
15		the first electronic message includes a particular network address that is
16		associated with the apparatus instead of a first network address that is
17		associated with the first node; and
18		the first electronic message is addressed to a second network address that is
19		associated with the second node;
20		in response to receiving the first electronic message, generating a second electronic
21		message to the first node, wherein:
22		the second electronic message is based on IPsec; and
23		the second electronic message is associated with the second identifier; and
24		the second electronic message is addressed to the particular network address;
25		sending the second electronic message to the device that employs address translation
26		at the particular network address;
27		wherein the device determines whether the second electronic message is directed to the
28		first node based on the second identifier and an additional the value that is
29		generated by the device based on the first identifier and the specified scheme; and
30		wherein the device sends the second electronic message to the first node at the first
31		network address when the device determines that the second electronic
32		message is directed to the first node.
1	26.	(Cancelled)

1	27.	(Cancelled)
1	28.	(Currently Amended) A method An apparatus as recited in claim 27 25, wherein the
2		value is a hash value, the first identifier is a first IPsec Security Parameter Index (SPI),
3		the second identifier is a second IPsec SPI, and the step of instructions for generating
4		the second IPsec SPI further comprises one or more stored sequences of instructions
5		which, when executed by the processor, cause the process to carry out the step of
6		generating, prior to receiving the first electronic message, the second IPsec SPI based
7		on the hash value.
1	29.	(Currently Amended) A method An apparatus as recited in claim 28 25, wherein the
2		value is a hash value, the first identifier is a first IPsec Security Parameter Index (SPI).
3		the second identifier is a second IPsec SPI, the first IPsec SPI is a first randomly
4		generated fixed length value and the step of instructions for generating the second
5		IPsec SPI further comprises one or more stored sequences of instructions which, when
6		executed by the processor, cause the process to carry out the step of generating the
7		second IPsec SPI based on at least a first portion of the hash value and a second
8		portion of a second randomly generated fixed length value.
1	30.	(Currently Amended) A method An apparatus for facilitating Internet security
2		protocol (IPsec) based communications through a router that employs network address
3		translation in a telecommunications network, the method apparatus comprising the
4		steps of:
5		a processor; and
6		one or more stored sequences of instructions which, when executed by the processor,
7		cause the processor to carry out the steps of:
8		receiving a first electronic message from a first IPsec originator node, wherein:
9		the first IPsec originator node is associated with a first network address;
10		the first electronic message is secured using IPsec: and
11		the first electronic message is associated with a first security parameter index
12		(SPI);

13	the first SPI is generated by the first IPsec originator node; and
14	the first electronic message is addressed to a third network address;
15	the router generating a first hash value based on the first SPI and a hash algorithm;
16	sending the first electronic message to an IPsec responder node based on the third
17	network address, wherein the first electronic message includes a particular
18	network address that is associated with the router instead of the first network
19	address;
20	receiving a second electronic message from a second IPsec originator node, wherein:
21	the second IPsec originator node is associated with a second network address;
22	the second electronic message is secured using IPsec; and
23	the second electronic message is associated with a second SPI;
24	the second SPI is generated by the second IPsec originator node; and
25	the second electronic message is address to the third network address;
26	the router generating a second hash value based on the second SPI and the hash
27	algorithm;
28	sending the second electronic message to the IPsec responder node based on the third
29	network address, wherein the second electronic message includes the
30	particular network address that is associated with the router instead of the
31	second network address;
32	after sending the first electronic message and the second electronic message to the
33	IPsec responder node, receiving a third electronic message from the IPsec
34	responder node, wherein:
35	the third electronic message is secured using IPsec; and
36	the third electronic message is associated with a third SPI that is different than
37	the first SPI and the second SPI[[,]]; wherein
38	the third electronic message is addressed to the particular network address;
39	the third SPI is generated by the IPsec responder node based at least in part on
40	the hash algorithm;
41	the router determining whether the third electronic message is directed to the first
42	IPsec originator node based on the first hash value and the third SPI;

43		when the third electronic message is determined to be directed to the first IPsec
44		originator node, sending the third electronic message to the first IPsec
45		originator node at the first network address;
46		determining whether the third electronic message is directed to the second IPsec
47		originator node based on the second hash value and the third SPI; and
48		when the third electronic message is determined to be directed to the second IPsec
49		originator node, sending the third electronic message to the second IPsec
50		originator node at the second network address.
1	31.	(Currently Amended) A method An apparatus as recited in claim 30, wherein the first
2		electronic message is based on IPsec tunnel mode and IPsec Encapsulating Security
3		Payload (ESP), the second electronic message is based on IPsec tunnel mode and IPsec
4		ESP, and the hash algorithm is a Message Digest 5 one-way hash function.
1	32.	(Currently Amended) A computer-readable medium carrying one or more sequences
2		of instructions for facilitating Internet security protocol (IPsec) based communications
3		through a device that employs address translation in a telecommunications network,
4		which instructions, when executed by one or more processors, cause the one or more
5		processors to carry out the steps of:
6		receiving a first electronic message from a first node, wherein:
7		the first node is associated with a first address;
8		the first electronic message is based on IPsec; and
9		the first electronic message is associated with a first identifier;
10		the first identifier is generated by the first node; and
11		the first electronic message is addressed to a second network address;
12		the device generating a value based on the first identifier and a specified scheme;
13		sending the first electronic message to a second node base on the second network
14		address, wherein the first electronic message includes a particular network
15		address that is associated with the device instead of the first network address;
16		receiving a second electronic message from the second node, wherein:
17		the second electronic message is based on IPsec: and

18		the second electronic message is associated with a second identifier that is
19		different than the first identifier[[,]] wherein
20		the second identifier is generated, based on the first identifier and the specified
21		scheme, by the second node;
22		the device determining whether the second electronic message is directed to the first
23		node based on the value and the second identifier; and
24		sending the second electronic message to the first node at the first network address
25		when the second electronic message is determined to be directed to the first
26		node.
1	33.	(Currently Amended) A An apparatus for computer readable medium carrying one or
2	55.	more sequences of instructions for facilitating Internet security protocol (IPsec) based
3		communications through a device that employs while employing address translation
4		in a telecommunications network, which instructions, when executed by one or more
5		processors, cause the one or more processors to carry out the steps of comprising:
6		a processor; and
7		one or more stored sequences of instructions which, when executed by the processor,
8		cause the processor to carry out the steps of:
9		receiving a first electronic message from a first node, wherein:
10		the first node is associated with a first network address;
11		the first electronic message is based on IPsec; and
12		the first electronic message is associated with a first identifier[[,]] wherein
13		the first identifier is generated by the first node based on a second identifier
14		and a specified scheme; and
15		the first identifier is different than the second identifier; and
16		the first electronic message is addressed to a second network address;
17		sending the first electronic message to a second node based on the second network
18		address, wherein the first electronic message includes a particular network
19		address that is associated with the apparatus instead of the first network
20		address;
21		receiving a second electronic message from the second node, wherein:

22		the second electronic message is based on IPsec; and
23		the second electronic message is address to the particular network address;
24		the second electronic message is associated with the second identifier; and
25		the second identifier is generated by the second node;
26		generating a value based on the second identifier and the specified scheme;
27		determining whether the second electronic message is directed to the first node based
28		on the value and the first identifier; and
29		sending the second electronic message to the first node at the first network address
30		when the second electronic message is determined to be directed to the first
31		node.
1	34.	(Cancelled)
1	35.	(New) An apparatus for facilitating Internet security protocol (IPsec) based
2		communications while employing address translation in a telecommunications
3		network, the apparatus comprising:
4		means for receiving a first electronic message from a first node, wherein:
5		the first node is associated with a first network address;
6		the first electronic message is based on IPsec;
7		the first electronic message is associated with a first identifier;
8		the first identifier is generated by the first node; and
9		the first electronic message is addressed to a second network address;
10		means for generating a value based on the first identifier and a specified scheme;
11		means for sending the first electronic message to a second node based on the second
12		network address, wherein the first electronic message includes a particular
13		network address that is associated with the apparatus instead of the first
14		network address;
15		means for receiving a second electronic message from the second node, wherein:
16		the second electronic message is based on IPsec;
17		the second electronic message is addressed to the particular network address;

18		the second electronic message is associated with a second identifier that is
19		different than the first identifier; and
20		the second identifier is generated, based on the first identifier and the specified
21		scheme, by the second node;
22		means for determining whether the second electronic message is directed to the first
23		node based on the value and the second identifier; and
24		means for sending the second electronic message to the first node at the first network
25		address when the second electronic message is determined to be directed to
26		the first node.
1	36.	(New) An apparatus as recited in claim 35, further comprising:
2		means for receiving a third electronic message from a third node, wherein:
3		the third node is associated with a third network address;
4		the third electronic message is based on IPsec;
5		the third electronic message is associated with a third identifier;
6		the third identifier is generated by the third node; and
7		the third electronic message is addressed to the second network address;
8		means for generating an additional value based on the third identifier and the
9		specified scheme;
10		means for sending the third electronic message to the second node based on the
11		second network address, wherein the first electronic message includes the
12		particular network address that is associated with the apparatus instead of the
13		third network address;
14		means for receiving, after sending the first electronic message and the third electronic
15		message to the second node, the second electronic message from the second
16		node;
17		wherein:
18		the second electronic message is based on IPsec;
19		the second electronic message is addressed to the third network address;
20		the second electronic message is associated with the second identifier that is
21		different than the first identifier and the third identifier; and

22		the second identifier is generated, based on the third identifier and the
23		specified scheme, by the second node;
24		means for determining whether the second electronic message is directed to the third
25		node based on the additional value and the second identifier; and
26		means for sending the second electronic message to the third node at the third
27		network address, when the second electronic message is determined to be
28		directed to the third node.
1	37.	(New) An apparatus as recited in claim 35, wherein the specified scheme is selected
2		from the group consisting of a first scheme that produces a fixed length output, a
3		second scheme that includes a hash algorithm, and a third scheme that includes a
4		Message Digest 39 one-way hash function.
1	38.	(New) An apparatus as recited in claim 35, wherein:
2		the value is a hash value;
3		the second identifier is based at least in part on the hash value;
4		the hash value is comprised of a first plurality of bytes;
5		the second identifier is comprised of a second plurality of bytes;
6		a last pair of bytes of the second plurality of bytes is a first pair of bytes of the first
7		plurality of bytes; and
8		the means for determining whether the second electronic message is directed to the
9		first node further comprises:
10		means for comparing the last pair of bytes of the second identifier to the first
11		pair of bytes of the hash value; and
12		means for determining that the second electronic message is directed to the
13		first node, when the last pair of bytes of the second identifier match the
14		firs pair of bytes of the hash value.
1	39.	(New) An apparatus as recited in claim 35, wherein:
2		the first node is an IPsec originator node;
3		the second node is an IPsec responder node;
4		the first identifier is a first IPsec security parameter index;

5		the second identifier is a second IPsec security parameter index;
6		the apparatus employs a feature selected from the group consisting of network address
7		translation (NAT), dynamic address NAT, and network address port translation
8		(NAPT);
9		and the apparatus further comprises:
10		means for creating and storing a mapping between the value and the first IPsec
11		security parameter index;
12		means for creating an association between the value and the first identifier; and
13		means for storing the association in a translation table.
1	40.	(New) An apparatus as recited in claim 35, wherein the first electronic message and
2		the second electronic message are both based on an IPsec feature selected from the
3		group consisting of IPsec tunnel mode and IPsec Encapsulation Security Payload.
1	41.	(New) An apparatus as recited in claim 35, further comprising:
2		means for creating an association between the first network address and the second
3		identifier, when the second electronic message is determined to be directed to
4		the first node;
5		means for storing the association in a table;
6		means for receiving a third electronic message from the second node, wherein the
7		third electronic message is based on IPsec and is associated with the second
8		identifier; and
9		means for determining that the third electronic message is directed to the first node
10		based on the association.
1	42.	(New) An apparatus as recited in claim 35, further comprising:
2		means for receiving a third electronic from the second node, wherein:
3		the third electronic message is based on IPsec;
4		the third electronic message is addressed to the specified network address;
5		the third electronic message is associated with a third identifier that is
6		different than both the first identifier and the second identifier;

/		the third identifier is generated, based on the first identifier and the specified
8		scheme, by the second node;
9		means for determining whether the third electronic message is directed to the first
10		node based on the value and the third identifier; and
11		means for sending the third electronic message to the first node at the first network
12		address, when the third electronic message is determined to be directed to the
13		first node.
1	43.	(New) An apparatus as recited in claim 35, wherein the value is generated before the
2		second electronic message is received.
1	44.	(New) An apparatus as recited in claim 35, wherein the value is generated after the
2		second electronic message is received.
1	45.	(New) An apparatus for facilitating Internet security protocol (IPsec) based
2		communications while employing address translation in a telecommunications
3		network, comprising:
4		a processor; and
5		one or more stored sequences of instructions which, when executed by the processor,
6		cause the processor to carry out the steps of:
7		receiving a first electronic message from a first node, wherein:
8		the first node is associated with a first network address;
9		the first electronic message is based on IPsec;
10		the first electronic message is associated with a first identifier;
11		the first identifier is generated by the first node; and
12		the first electronic message is addressed to a second network address;
13		generating a value based on the first identifier and a specified scheme;
14		sending the first electronic message to a second node based on the second network
15		address, wherein the first electronic message includes a particular network
16		address that is associated with the apparatus instead of the first network
17		address;
18		receiving a second electronic message from the second node, wherein:

19		the second electronic message is based on IPsec;
20		the second electronic message is addressed to the particular network address;
21		the second electronic message is associated with a second identifier that is
22		different than the first identifier; and
23		the second identifier is generated, based on the first identifier and the specified
24		scheme, by the second node;
25		determining whether the second electronic message is directed to the first node based
26		on the value and the second identifier; and
27		sending the second electronic message to the first node at the first network address
28		when the second electronic message is determined to be directed to the first
29		node.
1	46.	(New) An apparatus as recited in claim 45, further comprising one or more stored
2		instructions which, when executed by the processor, cause the processor to carry out
3		the steps of:
4		receiving a third electronic message from a third node, wherein:
5		the third node is associated with a third network address;
6		the third electronic message is based on IPsec;
7		the third electronic message is associated with a third identifier;
8		the third identifier is generated by the third node; and
9		the third electronic message is addressed to the second network address;
10		generating an additional value based on the third identifier and the specified scheme;
11		sending the third electronic message to the second node based on the second network
12		address, wherein the first electronic message includes the particular network
13		address that is associated with the apparatus instead of the third network
14		address;
15		receiving, after sending the first electronic message and the third electronic message
16		to the second node, the second electronic message from the second node;
17		wherein:
18		the second electronic message is based on IPsec;
19		the second electronic message is addressed to the third network address;

20		the second electronic message is associated with the second identifier that is
21		different than the first identifier and the third identifier; and
22		the second identifier is generated, based on the third identifier and the
23		specified scheme, by the second node;
24		determining whether the second electronic message is directed to the third node based
25		on the additional value and the second identifier; and
26		when the second electronic message is determined to be directed to the third node,
27		sending the second electronic message to the third node at the third network
28		address.
1	47.	(New) An apparatus as recited in claim 45, wherein the specified scheme is selected
2		from the group consisting of a first scheme that produces a fixed length output, a
3		second scheme that includes a hash algorithm, and a third scheme that includes a
4		Message Digest 49 one-way hash function.
1	48.	(New) An apparatus as recited in claim 45, wherein:
2		the value is a hash value;
3		the second identifier is based at least in part on the hash value;
4		the hash value is comprised of a first plurality of bytes;
5		the second identifier is comprised of a second plurality of bytes;
6		a last pair of bytes of the second plurality of bytes is a first pair of bytes of the first
7		plurality of bytes; and
8		the instructions for determining whether the second electronic message is directed to
9		the first node further comprises one or more stored instructions which, when
10		executed by the processor, cause the processor to carry out the steps of:
11		comparing the last pair of bytes of the second identifier to the first pair of
12		bytes of the hash value; and
13		when the last pair of bytes of the second identifier match the firs pair of bytes
14		of the hash value, determining that the second electronic message is
15		directed to the first node.

1	49.	(New) An apparatus as recited in claim 45, wherein:
2		the first node is an IPsec originator node;
3		the second node is an IPsec responder node;
4		the first identifier is a first IPsec security parameter index;
5		the second identifier is a second IPsec security parameter index;
6		the apparatus employs a feature selected from the group consisting of network address
7		translation (NAT), dynamic address NAT, and network address port
8		translation (NAPT);
9		and the apparatus further comprises one or more stored instructions which, when
10		executed by the processor, cause the processor to carry out the steps of:
11		creating and storing a mapping between the value and the first IPsec security
12		parameter index;
13		creating an association between the value and the first identifier; and
14		storing the association in a translation table.
1	50.	(New) An apparatus as recited in claim 45, wherein the first electronic message and
2		the second electronic message are both based on an IPsec feature selected from the
3		group consisting of IPsec tunnel mode and IPsec Encapsulation Security Payload.
1	51.	(New) An apparatus as recited in claim 45, further comprising one or more stored
2		instructions which, when executed by the processor, cause the processor to carry out
3		the steps of:
4		when the second electronic message is determined to be directed to the first node,
5		creating an association between the first network address and the second
6		identifier;
7		storing the association in a table;
8		receiving a third electronic message from the second node, wherein the third
9		electronic message is based on IPsec and is associated with the second
10		identifier; and
11		determining that the third electronic message is directed to the first node based on the
12		association.

1	52.	(New) An apparatus as recited in claim 45, further comprising one or more stored
2		instructions which, when executed by the processor, cause the processor to carry out
3		the steps of:
4		receiving a third electronic from the second node, wherein:
5		the third electronic message is based on IPsec;
6		the third electronic message is addressed to the specified network address;
7		the third electronic message is associated with a third identifier that is
8		different than both the first identifier and the second identifier;
9		the third identifier is generated, based on the first identifier and the specified
10		scheme, by the second node;
11		determining whether the third electronic message is directed to the first node based on
12		the value and the third identifier; and
13		when the third electronic message is determined to be directed to the first node,
14		sending the third electronic message to the first node at the first network
15		address.
1	53.	(New) An apparatus as recited in claim 45, wherein the value is generated before the
2		second electronic message is received.
1	54.	(New) An apparatus as recited in claim 45, wherein the value is generated after the
2		second electronic message is received.