MAT-INF3360 Mandatory Exercises 1

Jonas van den Brink

j.v.d.brink@fys.uio.no

February 7, 2014

Exercise 2.30

In this exercise we will show the orthogonality relation between the discrete eigenfunctions of the operator L_h , which is defined as the negative of a 2. order central difference, meaning we have:

$$L_h v(x_j) = \frac{-v(x_{j+1}) + 2v(x_j) - v(x_{j-1})}{h^2}.$$

So we are studying the functions $v \in D_{h,0}$ that satisfy the eigenvalue problem

$$L_h v = \mu v.$$

From the text we know that the eigenstates are:

$$v_k(x_j) = \sin(k\pi x_j) \text{ for } k = 1, 2, \dots, n.$$

And we will show the orthogonality

$$\langle v_n, v_m \rangle_h = \delta_{n,m}/2,$$

where $\delta_{n,m}$ denotes the Kronecker-delta.

a)

We will show that the sum

$$S_k = \sum_{j=0}^n \cos(k\pi x_j),$$

is $S_k = 0$ for k even, and $S_k = 1$ if k is odd. For k = 0 the sum is trivial and obviously equal to n + 1.

We start by writing the cosine term into a linear combination of expoentials with a purely imaginary argument and splitting the sum into parts

$$\sum_{j=0}^{n} \cos(k\pi x_j) = \frac{1}{2} \left(\sum_{j=0}^{n} \exp(ik\pi x_j) + \sum_{j=0}^{n} \exp(-ik\pi x_j) \right).$$

by introducing the step size h through $x_j = h \cdot j$, we can rewrite these sums as finite geometric sums, to which the value is known¹. We have

$$\sum_{j=0}^{n} \exp(\pm ik\pi x_j) = \sum_{j=0}^{n} [\exp(\pm ik\pi h)]^j = \frac{1 - [\exp(\pm ik\pi h)]^{n+1}}{1 - \exp(\pm ik\pi h)}.$$

So our sum can be written

$$S_k = \frac{1}{2} \left(\frac{1 - [\exp(ik\pi h)]^{n+1}}{1 - \exp(ik\pi h)} + \frac{1 - [\exp(-ik\pi h)]^{n+1}}{1 - \exp(-ik\pi h)} \right).$$

Now we use the fact that

$$[\exp(\pm ik\pi h)]^{n+1} = \exp(\pm ik\pi h(n+1)) = \exp(\pm ik\pi) = (-1)^k.$$

Due to the fact that h(n+1) = 1.

We now expand the latter fraction by $\exp(ik\pi h)$ and add the two fractions together to get

$$S_k = \frac{1}{2} \frac{1 - \exp(ik\pi h) - (-1)^k (1 - \exp(ik\pi h))}{1 - \exp(ik\pi h)} = \frac{1 - (-1)^k}{2}.$$

And from this expression we readily see that

$$S_k = \begin{cases} 0 & \text{for } k \text{ even} \\ 1 & \text{for } k \text{ odd.} \end{cases}$$

b)

We now turn to the inner-product, and will first show the orthogonality property of the discrete eigenfunctions v_k . Remebering that the inner product in the space $D_{h,0}$ is defined

$$\langle u, v \rangle_h = h \sum_{j=1}^n u_j v_j,$$

we can write the inner product as

$$\langle v_k, v_m \rangle_h = h \sum_{j=0}^n \sin(k\pi x_j) \sin(m\pi x_j).$$

Note that we let j run from 0 and not 1, this is ok as $v_k(x_0) = 0$ for all k anyway, so it doesn't affect the sum.

Now, using the trigonometric identity

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$$

we can rewrite this sum as

$$\langle v_k, v_m \rangle_h = \frac{h}{2} \left(\sum_{j=0}^n \cos((k-m)\pi x_j) - \sum_{j=0}^n \cos((k+m)\pi x_j) \right),$$

¹See for example *Rottman* page 112.

which using the results of exercise a) can be written as

$$\langle v_k, v_m \rangle_h = \frac{h}{2} \left(S_{(k-m)} - S_{(k+m)} \right).$$

We now see that for any integer values of k and m, both the difference k-m and the sum k+m will either be odd or even, and so the two sums cancel out, and we have

$$\langle v_k, v_m \rangle_h = 0$$
 when $k \neq m$.

When k = m, the first sum becomes $S_0 = n + 1$, and so this result does not apply to that case.

c)

We now look at the case

$$\langle v_k, v_k \rangle_h$$
.

Using the same steps as in the previous exercise we can show that this is equal to

$$\langle v_k, v_k \rangle_h = \frac{h}{2} \Big(S_0 - S_{2k} \Big).$$

From exercise a), we know that $S_{2k}=0$ as 2k is even for all non-zero integers k, and we also know that $S_0=n+1=1/h$. Using this we have

$$\langle v_k, v_k \rangle_h = \frac{1}{2}.$$

And we have thus shown that

$$\langle v_k, v_m \rangle_h = \delta_{k,m}/2$$
 q.e.d.

Project 2.1

We will be studying the problem

$$-u''(x) = f(x),$$
 $x \in (0,1),$ $u(0) = u(1) = 0.$

Which has solutions on the form

$$u(x) = x \int_0^1 (1-y)f(y) dy - \int_0^x (x-y)f(y) dy.$$

We will be looking at numerical schemes that result from using numerical approximations to the integrations in this form.

(a) The Trapezoidal Rule

The trapezoidal rule is an intutive approximation to a definite integral. It is most easily understood from a geometric perspective. The definite integral

$$I = \int_{a}^{b} F(x) \, \mathrm{d}x,$$

is the area under the curve F(x) between the limits a and b. The trapezoidal rule approximates this area as many small trapezoids, from which the area is easily calculated. See figure 1 and 2 for illustrations.

Using more trapezoids should give a better approximation, but will also require more samplings. Using n+1 trapezoids, means using n+2 mesh points and thus n+2 samplings of the function F(x).

Looking at figure 2, it is easy to see that the area of a single trapezoid is

$$a_i = (x_{i+1} - x_i) \frac{F(x_{i+1}) + F(x_i)}{2}.$$

Here, the width of the trapezoid is given as $x_{i+1} - x_i$, which is the general case. In this project however, we will assume uniformly spaced mesh points, meaning we use

$$x_i = a + ih,$$
 $h = x_{i+1} - x_i = \frac{b-a}{n+1}.$

Summing over all the trapezoids, we see that all the internal mesh points are added twice, while the endpoints are added just once, we thus have

$$I = \int_a^b F(x) dx \approx h \left(\frac{F(a) + F(b)}{2} + \sum_{i=1}^n F(x_i) \right).$$

Figure 1: Illustration of using the trapezoidal rule to approximate an integral using 4 trapezoids, meaning we have n=3 internal mesh points

Figure 2: A single trapezoid element.

(b) Writing a Trapezoidal Integration Function

We will now implement a procedure that for a given a, b, F(x) and n computes the approximation given by the trapezoidal rule.

For simplicity, we write the code in Python:

```
def trapez(F,a,b,n):
    h = (b-a)/(n+1)

s = F(a)/2. + F(b)/2.
    for i in range(n):
        x += h
        s += F(x)

return s*h
```

Note that this function is not very efficient. For practical use, it should either be vectorized using numpy or implemented in some other language, like for example C++.

(c)

We now set $F(x)=x^5$ and $G(x)=\sqrt{|x-\frac{1}{2}|}$ and will compute the integrals

$$I_1 = \int_0^1 F(x) dx$$
 and $I_2 = \int_0^1 G(x) dx$,

using the trapezoidal rule. We first compute them analytically, so that we have an exact solution to compare our results to.

The first integral is trivial

$$I_1 = \int_0^1 x^5 \, \mathrm{d}x = \frac{1}{6}.$$

The second integral can be solved by realizing it is symetric about x = 1/2, and substituting u = x - 1/2:

$$I_2 = \int_0^1 \sqrt{|x - \frac{1}{2}|} dx = 2 \int_0^{\frac{1}{2}} \sqrt{u} du = \frac{\sqrt{2}}{3}.$$

Using the function trapez(F,a,b,n) defined above, we calculate numerical approximations to I_1 and I_2 using n = 10, 20, 40, 80, 160 internal mesh points.

To estimate the rate of convergence for the approximations of these integrals, we assume that the error is proportional to some order of the step length h:

$$e_h = ch^r$$
,

where c is a proportionality constant. To find r, we compare for two different values of h

$$r = \frac{\ln(e_{h_1}/e_{h_2})}{\ln(h_1/h_2)}.$$

The results are shown in table 1.

n	Rel. error I_1	Conv. rate I_2	Rel. error I_2	Conv. rate I_2
10	$2.06 \cdot 10^{-2}$		$9.15 \cdot 10^{-3}$	
20	$5.67 \cdot 10^{-3}$	1.9981	$3.25 \cdot 10^{-3}$	1.5995
40	$1.49 \cdot 10^{-3}$	1.9995	$1.13 \cdot 10^{-3}$	1.5760
80	$3.81 \cdot 10^{-4}$	1.9999	$3.92 \cdot 10^{-4}$	1.5567
160	$9.64 \cdot 10^{-5}$	2.0000	$1.36 \cdot 10^{-4}$	1.5417

Table 1: Results of using the trapez function to evalute the integrals of F(x) and G(x) on the unit interval.

(d)

We now define the functions

$$\alpha(x) = \int_0^x f(y) dy$$
 and $\beta(x) = \int_0^x y f(y) dy$.

And will use these to redwrite the general solution to our boundary value problem

$$u(x) = x \int_0^1 (1 - y) f(y) dy - \int_0^x (x - y) f(y) dy.$$

Divding the integrals makes this an easy task

$$u(x) = x \left(\underbrace{\int_0^1 f(y) \, \mathrm{d}y}_{\alpha(1)} - \underbrace{\int_0^1 y f(y) \, \mathrm{d}y}_{\beta(1)} \right) + \underbrace{\int_0^x y f(y) \, \mathrm{d}y}_{\beta(x)} - x \underbrace{\int_0^x f(y) \, \mathrm{d}y}_{\alpha(x)}.$$

So we see that we can write the solution as

$$u(x) = x(\alpha(1) - \beta(1)) + \beta(x) - x\alpha(x)$$
 q.e.d.

(e)

We will now find approximations to $\alpha(x_i)$ and $\beta(x_i)$. Remember that

$$\alpha(x_i) = \int_0^{x_i} f(y) \, \mathrm{d}y, \quad \beta(x_i) = \int_0^{x_i} y f(y) \, \mathrm{d}y \quad \text{where } x_i = ih.$$

We will also be using the shorthand $f(x_i) = f_i$. We start by realizing that if the value of $\alpha(x_i)$ is known, calculating the value of $\alpha(x_{i+1})$ can be simplified in the following manner:

$$\alpha(x_{i+1}) = \int_0^{x_{i+1}} f(y) \, \mathrm{d}y = \int_0^{x_i} f(y) \, \mathrm{d}y + \int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y = \alpha(x_i) + \int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y.$$

The integral from x_i to x_{i+1} can then be approximated with the trapezoidal rule, using one internal mesh point—as this mesh point will lie between x_i and x_{i+1} it is a kind of *virtual* mesh point. We then have

$$\int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y \approx \frac{h}{4} (f_i + 2f_{i+1/2} + f_{i+1}).$$

For simplicity, we let α_i denote the approximation to $\alpha(x_i)$ and not the exact. We then have

$$\alpha_0 = 0,$$
 $\alpha_{i+1} = \alpha_i + \frac{h}{4} (f_i + 2f_{i+1/2} + f_{i+1}).$

For $\beta(x_i)$, we do the exact same steps, and find

$$\beta_0 = 0,$$
 $\beta_{i+1} = \beta_i + \frac{h}{4} (x_i f_i + 2x_{i+1/2} f_{i+1/2} + x_{i+1} f_{i+1}).$

(f)

As $\alpha(x_{n+1}) = \alpha(1) \approx \alpha_{n+1}$, we can define an approximation to the solution of the boundary value problem u as:

$$u_i = x_i(\alpha_{n+1} - \beta_{n+1}) + \beta_i - x_i\alpha_i.$$

Note that as previously, u_i is the discrete approximation in the point x_i , and not the exact solution evaluated in x_i . From our Dirichlet boundary conditions we also know that $u_0 = u_{n+1} = 0$.

We will now implement this approximation on a computer. There is however one problem, in some cases, we might not be able to evaluate the source-term f in the virtual point $x_{i+1/2}$, which is not a mesh point. In some cases, we will therefore have to approximate this value, using a mean

$$f_{i+1/2} \approx (f_i + f_{i+1})/2.$$

This is effectively the same as using the trapezoidal rule with no internal mesh points for the integral

$$\int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y.$$

 \mathbf{g}

$$\beta_{i+1} = \beta_i + \frac{h}{2} \left(x_i f_i + 2x_{i+1/2} f_{i+1/2} + x_{i+1} f_{i+1} \right)$$

$$\beta_i - x_i \alpha$$

```
from pylab import *

a[n+1] = a[i] + h/2*(f[i] + 2*f[i+0.5] + f[i+1])
b[n+1] = b[i] + h/2()

def boundary_value_problem_solver(f, n):
    u = zeros(n+2)
    a = zeros(n+2)
    b = zeros(n+2)
    x = linspace(0,1,n+2)
    h = x[1]-x[0]

if callable(f):
    for i in range(n+1):
        a[i+1] = a[i] + h/2*(f(x[i] + 2*f(x[i]+h/2.) + f(x[i+1]))
```

We now want to test our solver, and will do so for the following source terms

$$f(x) = 1,$$

$$f(x) = x,$$

$$f(x) = x^{2},$$

$$f(x) = e^{x},$$

$$f(x) = \cos(ax) \text{ for } a \in \mathbb{R}.$$

All of these are solvable, with known exact solutions, giving us a perfect chance to compare our numerical solution.