Problema 795

Sean dos triángulos equiláteros $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$ y $\stackrel{\scriptscriptstyle \Delta}{\mathsf{DBC}}$ que tienen un lado común $\overline{\mathsf{BC}}$.

Por el punto D se traza una secante variable que corta la prolongación del lado \overline{AB} en E y la del lado \overline{AC} en F.

Determinar el lugar geométrico del punto intersección M de las rectas BF i CE.

Solución con Cabri

Solución con MuPaD:

Sean O(0, 0) circuncentro del triángulo ABC A(0, 2), B(-sqrt(3), -1), C(sqrt(3), -1), D(0, -4) P(a, -1)

La recta AB

• rab:=y-2=sqrt(3)*x

La recta AC

• rac:=y-2=-sqrt(3)*x

La recta DP

• rdp:=y+4=3/a*x

El punto E

• solve({rdp,rab}, {x,y})

$$\begin{cases} \left\{ \left[x = -\frac{2 \cdot \sqrt{3} \cdot a}{a - \sqrt{3}}, \ y = -\frac{4 \cdot a + 2 \cdot \sqrt{3}}{a - \sqrt{3}} \right] \right\} \text{ if } \neg a \in \left\{ \sqrt{3} \right\} \\ \emptyset & \text{if } a \in \left\{ \sqrt{3} \right\} \end{cases}$$

El punto F

• solve({rdp,rac},{x,y})

$$\begin{cases} \left\{ \left[x = \frac{2 \cdot \sqrt{3} \cdot a}{a + \sqrt{3}}, \ y = \frac{2 \cdot \sqrt{3} - 4 \cdot a}{a + \sqrt{3}} \right] \right\} \text{ if } \neg a \in \left\{ -\sqrt{3} \right\} \\ \varnothing \text{ if } a \in \left\{ -\sqrt{3} \right\} \end{cases}$$

La recta BF

• rbf:=y+1=(-a+sqrt(3))/(sqrt(3)*a+1)*(x+sqrt(3))

$$y + 1 = -\frac{(x + \sqrt{3}) \cdot (a - \sqrt{3})}{\sqrt{3} \cdot a + 1}$$

La recta CE

• rce:=y+1=(a+sqrt(3))/(sqrt(3)*a-1)*(x-sqrt(3))

$$y + 1 = \frac{(a + \sqrt{3}) \cdot (x - \sqrt{3})}{\sqrt{3} \cdot a - 1}$$

El punto M

• solve({rce,rbf}, {x,y})

$$\begin{cases} \left\{ \left[x = \frac{4 \cdot a}{a^2 + 1}, \ y = -\frac{2 \cdot a^2 - 2}{a^2 + 1} \right] \right\} & \text{if } a \in \mathbb{C} \setminus \{-1 \cdot i, i, -\sqrt{3}\} \\ \left\{ \left[x = -\sqrt{3}, \ y = -1 \right] \right\} & \text{if } a \in \{-\sqrt{3}\} \end{cases}$$

Calculemos OM

• $sqrt((-4*a/(a^2+1))^2+(-(2*a^2-2)/(a^2+1))^2)$

$$\sqrt{\frac{(2 \cdot a^2 - 2)^2}{(a^2 + 1)^2} + \frac{16 \cdot a^2}{(a^2 + 1)^2}}$$

• simplify(%)

2

M pertenece a la circunferencia circunscrita al triángulo ABC