

第十一讲 锁存器和触发器 Latch and Flip-flop

佟冬 tongdong@mprc.pku.edu.cn

http://mprc.pku.edu.cn/courses/digital/2013spring

课程回顾

- □二进制及编码
- □布尔代数(共设和定理)
- □开关函数和开关电路
 - 开关函数和开关电路的对应关系
- □组合电路分析与综合
 - 组合电路的刻画:输入、输出、函数公式
 - 原理图、Verilog语言
- □组合电路的化简(门数和扇入)
 - 开关函数的化简、卡诺图法、Q-M方法
- □自顶向下的设计方法
- □标准组合电路模块(多选择/译码器/加法器)

组合电路总结

自顶向下的层次化设计方法学

人是如何计算的?

□简单的模型?

数字电路的分析与设计

11.1 时序电路的引入

- □电梯控制电路的设计
- □ 当前状态(现态, present state)
 - 电梯所在的层数
 - 电梯的运行方向
- □下一个状态(次态, next state)
 - 电梯将要运行的方向
 - 电梯将要去的层数
- □ 输入(input)
 - 电梯内部的控制按钮
 - 各楼层的电梯控制按钮
- □ 输出(output)
 - 对电梯电机系统发出的控制信号
- □ 状态转换(state transition)

时序电路举例

- □帯反馈(feedback)的电路
 - outputs = f(inputs, past inputs, past outputs)
 - 在逻辑电路中构造"记忆"的基础
 - 门组合锁例子
 - 状态是记忆
 - 状态是组合逻辑的输出和输入
 - 存储单元的组合

带反馈的电路

- □如何控制反馈?
 - 如何从无限循环中停止?

时序电路的基本概念

- \square 输入 $\mathbf{x}=(x_1, x_2, ..., x_n)$
- 口输出 $Z=(Z_1, Z_2, ..., Z_m)$
- □组合电路
 - $-z_i=f_i(x_1, x_2, ..., x_m), i=1, ..., m$
- □状态 (State)
 - 现态 $(y_1, y_2, ..., y_r)$
 - 次态(Y₁, Y₂, ..., Y_r)
- □时序电路函数表示
 - $-z_i=g_i(x_1, x_2, ..., x_m, y_1, y_2, ..., y_r), i=1, ..., m$
 - $-Y_{i}=h_{i}(x_{1}, x_{2}, ..., x_{m}, y_{1}, y_{2}, ..., y_{r}), i=1, ..., m$

时序电路的表示—图表示

状态表和状态图

□状态图和状态表

- 圆: 状态

- 线: 状态变换

- 线上标注:产生状态变换的输入和相应输出

状态变换实例 (续)

输入: x = 0110101100

初始状态: A

		Inp	ut x
		0	1
	\boldsymbol{A}	D/0	C/1
Present	\boldsymbol{B}	<i>B</i> /1	A/0
state	\boldsymbol{C}	C/1 A/0	D/0
	\boldsymbol{D}	A/0	<i>B</i> /1
		(a)	<u> </u>

时间: 012345678910

现态: ADBADBBAC C C C 输入: 0/1/1/0/1/0/1/1/0/0 / 次态: DBADBBAC C C

输出: 0100110111

输出: z = 0100110111

最后状态: C

11.2 存储元件

- □存储元件(Memory device)
 - 双稳态(bistable)电子线路
 - 状态 0
 - 状态 1
- □二进制的存储
 - 状态0,表示存储逻辑"0"。
 - 状态1,表示存储逻辑"1"。
 - 输出Q, 指示存储元件的现态

存储元件(2)

- □激励输入(excitation inputs)
 - 每个存储元件有多个输入,能激励或者驱动存储元件 进入确定的状态的输入,被称为激励输入。
 - 一般的存储元件的命名是根据它与其它存储元件不同的激励输入。
- □存储元件的类型
 - 锁存器(latch)
 - 触发器(flip-flop)

存储元件(3)

□锁存器

- 锁存器的激励输入控制元件的状态。
- 置位锁存器(set latch),激励输入强制元件的输出为1。
- 复位锁存器(reset latch),激励输入强制元件的输出为0。
- 置位复位锁存器(set-reset latch),同时具有置位和复位 激励信号的元件。

存储元件(4)

□触发器

- 时钟控制信号(clock)
- 时钟信号向触发器发命令,触发器根据激励信号改变 状态。
- 在多触发器的电路中,时钟信号可以使所有的触发器同步(synchronized)的改变状态。
- 时钟树的概念

存储元件(4)

- □锁存器和触发器的操作
 - 锁存器立即响应激励输入
 - 触发器只依赖时钟响应激励输入

存储元件的特征性质

- □锁存器和触发器
- □预置(preset)端和清零(clear)端
 - 同步的预置端和清零端
 - 异步的预置端和清零端
- □脉冲(pulse)触发和边沿(edged)触发
 - 正脉冲触发和负脉冲触发
 - 上升沿触发和下降沿触发

11.3 锁存器 Latch

□或非门(NOR)—复习

a	b	$f_{NOR}(a, b) = \overline{a + b}$
0	0	1
0	1	0
1	0	0
1	1	0
		(a)

A	В	Y
L L H H	L H L H	H L L L
	(b)

- (a) 或门的逻辑功能
- (b) 或门的电子功能
- (c)(d) 标准符号表示
- (e) IEEE 块符号表示.

■功能

- (a) 正逻辑:输入同时为0,输出为1。任意输入为1,输出为0
- (b) 0取反的功能

带反馈的简单电路

- □两个反相器形成一个静态记忆单元
 - 上电后永久保留固定值

- □如何将新的值存入存储单元?
 - 有选择性的打断反馈路径

R-S锁存器

□或非门(NOR)实现

□与非门(NAND)实现

RS锁存器的时序行为Timing behavior

RS锁存器的状态行为

R Q Q

□RS锁存器行为的真值表

,	_		
	O	0'	
	0	1	
\	Š		/

	_		
	0	Q'	
(1	Õ	
\	_		/

S	R	Q
0	0	hold
0	1	0
1	0	1
1	1	unstable

RS锁存器的理论行为

- 状态: 可能的值

- 状态转换: 基于输

入改变

可观测的RS锁存器行为

- □ 观测RS锁存器的11状态非常困难
 - 微观上通常R和S中的必定不同时变化
 - 不确定最终返回状态01还是10

SR = 00

SR=00

R-S 锁存器分析

S	R	Q(t)	Q(1	t+∆)
0	0	0	0	hold
0	0	1	1	Holu
0	1	0	0	reset
0	1	1	0	10000
1	0	0	1	set
1	0	1	1	
1	1	0	X	not allowed
1	1	1	X	

特征方程: $Q(t+\Delta) = S + R' Q(t)$ $Q^*=S+R'Q$

SR锁存器的激励输入限制

- □置位端S和复位端R不能同时变为无效
 - 产生信号追逐(race)
 - 输出将产生震荡(oscillate)
 - 最终必有一个门获胜,锁存器达到稳态,但是不能确定输出的结果。
 - 恢复时间(Recovery Time, t_{rec}),复位和置位有效信号间的最小时间
- □置位端S和复位端R的有效脉冲不能太短
 - 进入亚稳态(metastable)状态
 - 脉冲的宽度基本上要大于恢复时间 t_{rec}
- □应该在设计电路时,十分注意。

亚稳态(Metastable)

- 锁存器的两个稳态:逻辑0和逻辑1
- 亚稳态为两个稳态之外的第三个平衡的状态。
- 随着噪声的介入,会在比较长的时间内变为稳态, 但是并不能确定稳态的类型。
- 亚稳态的危害:不同的门对相同的亚稳态信号地解释,逻辑0或者逻辑1并不一致。

门控RS锁存器(Gated R-S latch)

□控制R和S输入 信号是否对存储 值产生影响

激励表和特征方程

Enable inputs		tation outs	Present state	Next state	
\boldsymbol{C}	S	R	Q	Q^*	
0	×	×	0	0	Hold
0	X	×	1	1	
1	0	0	0	0	No change
1	0	0	1	1	
1	0	1	0	0	Reset
1	0	1	1	0	
1	1	0	0	1	Set
1	1	0	1	1	
1	1	1	0	×	Not allowed
1	1	1	1	×	
			'	1	

(a)

$$Q^* = SC + RQ + CQ$$

时钟 Clocks

- □用来保证时间
 - 等待足够长的时间使输入信号 (R' and S') 稳定
 - 然后再准许影响存储的值
- □时钟是规整的周期性信号
 - 时钟周期 (period): 两个相同跳变的时间间隔
 - 占空比(duty-cycle): 高电平所占时钟周期的比例

时钟(续)

- □用时钟控制RS锁存器
 - 不让R和S在时钟信号有效时变化
 - 只有一半的时钟周期用来信号传播
 - 另一半的时钟周期输出(状态)保持不变

	stable changing	stable	changing	stable
R' and S'	XX		χχ	
clock'				

11.3 主从触发器 (master-slave flip-flop)

- □将锁存器级联: 一个锁存器的输出连接另一个锁存器的输入
 - 用时钟信号的两个电平分别控制两个锁存器
 - 两倍的逻辑门(与锁存器相比)
 - 输出在相同的时钟边沿间(一个时钟周期内)一直保持稳定

RS主从触发器

特征方程和激励表

S	R	Q	\boldsymbol{C}	Q^*	No
0	0	0	Ŋ	0	change
0	0	1	Л	1	
0	1	0		0	Reset
0	1	1	\prod	0	
1	0	0	几	1	Set
1 1	0	0 1	片	1 1	Set
1 1 1	0 0 1			1	Set Not allowed
1	0 0 1 1	1		1	

Q* = S + RQ

1捕获问题(0捕获问题)

- □主从触发器的第一级RS锁存器
 - 如果时钟电平高时产生一个0静态冒险(static hazard)
 - 导致必须限制输入逻辑是无冒险的电路

主从D 触发器 (D Flip-flop)

□让S和R互补

- 可以消除1捕获问题
- D的值需在时钟变低之前保证是要存储的值
- -D=S+R'Q

主从D触发器的特性

$$Q^* = D$$

11.4 JK触发器

- □在SR锁存器和触发器中,S=1且R=1不被容许。
- □在JK触发器中,J=S,K=R,当J=1 且K=1时, JK触发器产生**状态翻转(toggle)**

J	K	Q	C	Q^*
0	0	0	ļ	0 Hold
0	0	1	$\int_{-\infty}^{\infty}$	1
0	1	0	П	0 Reset
0	1	1	<u> </u>	0
1	0	0		1 Set
1	0	1	J L	1
1	1	0	\Box	1 Toggle
1	1	1	JL	0
			(a)	

 $Q^* = K'Q + JQ'$

主从JK触发器结构

11.5 边沿触发器

□主从触发器需要时钟的上升沿和下降沿

- □边沿触发器
 - 只需要时钟的上升沿或者下降沿。
- □正沿触发器(上升沿触发器)
 - 时钟信号由0->1的转变
- □负沿触发器(下降沿触发器)
 - 时钟信号由1->0的转变

边沿D触发器分析7474(1 -> 0)

边沿触发D触发器(0 -> 1)

D触发器的时序限制

- □建立时间(setup time, t_{su})
 - 在使能信号变化前,激励信号必须保持的一段时间。
- □保持时间(hold time, t_h)
 - 在使能信号变化后,激励信号必须保持的一段时间。
- □最小脉冲宽度(t_w):
 - 为保证状态的稳定,时钟信号需要的最小脉冲宽度。

D触发器的时序约束

异步控制信号

- □上图中的PRE和RST
- □异步控制信号对状态的影响,不需要与时钟同步
- □需要注意最后一级锁存器的回复时间限制
- □74116 D Latch中的异步控制信号:

11.6 T触发器

T触发器特性

T	Q	Q^*	
Y	0 1	1 0	Toggle Toggle
	(a)		

$$Q^* = Q'$$

钟控T触发器

钟控T触发器的激励表

T	Q	C	Q^*	
0	0	—	0	Hold
0	1	\downarrow	1	
1	0	\downarrow	1	Toggle
1	1	\downarrow	0	

$$Q^* = T'Q + TQ'$$

时序部件总结

- □状态图、状态表、状态转换
- □锁存器
- □触发器
 - 脉冲触发器(主从触发器)
 - 边沿触发器
- □异步控制信号
 - 异步复位端
 - 异步置位端

锁存器和触发器的总结

电路器件

SR锁存器

门控SR锁存器

D锁存器

SR触发器

D触发器

JK触发器

T触发器(边沿触发)

T触发器(钟控)

特征方程

$$Q^* = S + \overline{R}Q$$

$$Q^* = SC + \overline{Q}R + \overline{C}Q$$

$$Q^* = DC + \overline{C}Q$$

$$Q^* = S + \overline{R}Q$$

$$Q^* = D$$

$$Q^* = \overline{K}Q + J\overline{Q}$$

$$Q^* = \overline{Q}$$

$$Q^* = T\overline{Q} + \overline{T}Q$$

