微电子器件实验 MOS 管直流特性

范云潜, 学号: 18373486, 搭档: 徐靖涵, 教师: 彭守仲

微电子学院 184111 班

日期: 2020年10月19日

1 实验目的

从场效应管的直流特性特性的测量与分析中,验证并加深对场效应管原理与性质的理解。

2 实验所用设备及器件

主要设备有: 电压源,手持式万用表,台式万用表,相关线缆等,主要器件有 N 沟道 MOS 管 IRF3205 和 IRFR214。

3 实验基本原理及步骤

3.1 MOS 管基本结构

场效应管(Field Effect Transistor, FET)是一种压控电流元件,仅靠多子进行导电,又称为单极型晶体管,并且体积小、重量轻、寿命长、噪音低、热稳定性好、耗电低是现代的超大规模数字集成电路(Very Large Scale Integration, VLSI)的基本器件。

FET 主要可以分为结型场效应管(Junction Field Effect Transistor, JFET)和绝缘栅型场效应管(Insulated Gate Effect Transistor, IGFET)。后者有常见的金属-氧化物-半导体结构,也就是所谓的 MOS 管。MOSFET 有增强型和耗尽型两类器件,又可以分别分为 N 沟道与 P 沟道。

NMOS 的基本结构如 $\mathbf{81}$,一个低掺杂的 \mathbf{P} 型硅片为衬底,两个高掺杂的 \mathbf{N} 型阱区引出电极作为源极和漏极,覆盖一层二氧化硅绝缘层后再覆盖一层金属铝引出电极作为栅极。

3.2 NMOS 电学特性

在栅极-源极不外加电压 $V_{GS}=0$ 时,源漏之间是两个 PN 结,不存在导电沟道,因此 $V_{DS}\neq0$ 时也不会有电流通过;在 $V_{GS}>0$ 时,电压透过绝缘层作用到栅极下方,排斥其中的空穴,留下电离的杂质负离子形成了耗尽层,但是由于没有自由移动的载流子,因此仍然无法形成电流;当 V_{GS} 进一步增大,已经不存在可以排斥的空穴,因此吸引来了电子,形成了 N 型的层,也就是反型层,构成了导电的沟道。产生导电沟道的临界电压称为阈值电压 V_{th} 。

图 1: NMOS 基本结构

当 $V_{GS} > V_{th}$ 时,源漏电压可以引起漏极电流。当 V_{DS} 较小时,未产生夹断,并且 I_D 随着 V_{DS} 线性变化,称为线性区;当 V_{DS} 较大时,沟道出现了夹断,进一步增大会造成夹断区的延长,而夹断区的长度变化几乎不会影响电流,电流几乎仅取决于 V_{GS} ,此时称为饱和区。

对上述的直流特性进行总结,可以得到图2。

图 2: NMOS 输出特性曲线

由于工作在饱和区时,不同的 V_{DS} 输出电流几乎相同,可用转移特性曲线进行描述饱和区的电流特性,如 $\{ {f B} {f 3} \}$ 。

3.3 操作步骤

3.3.1 实验一: IRF3205 源漏伏安特性曲线

- 1. 将元器件连接到面包板,尽量减少杜邦线的使用。电路如图4
- 2. 连线完成后打开 ED 测试仪表是否工作正常
- 3. 调节 E_D 为 0-1.5V

图 3: NMOS 转移特性曲线

4. 测量对应的 V_{DS} 和 I_D 并绘图

图 4: 实验一电路

3.3.2 实验二: IRF3205 转移特性曲线

- 1. 将元器件连接到面包板,尽量减少杜邦线的使用。电路如图5。
- 2. 连线完成后打开 E_D 和 E_G 测试仪表是否工作正常
- 3. 调节 E_D 为 0.5, 1, 1.5V
- 4. 分别将 E_G 在 0.1 7V 取值
- 5. 测量对应的 V_{GS} 和 I_D 并绘图

3.3.3 实验三: IRFR214 转移特性曲线

- 1. 将元器件连接到面包板,尽量减少杜邦线的使用。电路如图6。
- 2. 连线完成后打开 E_D 和 E_G 测试仪表是否工作正常
- 3. 调节 E_D 为 1.0V
- 4. 分别将 E_G 在 0.1-10V 取值
- 5. 测量对应的 V_{GS} 和 I_D 并绘图

图 5: 实验二电路

图 6: 实验三电路

3.3.4 实验四: IRFR214 输出特性曲线

- 1. 将元器件连接到面包板,尽量减少杜邦线的使用。电路如图7。
- 2. 连线完成后打开 E_D 和 E_G 测试仪表是否工作正常
- 3. 调节 E_G 为 3.3, 3.5, 3.7V
- 4. 分别将 E_D 在 0.1 2V 取值
- 5. 测量对应的 V_{DS} 和 I_D 并绘图

4 实验数据记录

原始数据请见 这里。

图 7: 实验四电路

4.1 实验一

IRF3205 源漏伏安特性曲线如图 8。

图 8: IRF3205 源漏伏安特性曲线

4.2 实验二

IRF3205 转移特性曲线如图 9。

4.3 实验三

IRFR214 转移特性曲线如图 10。

图 9: IRF3205 转移特性曲线

图 10: IRFR214 转移特性曲线

4.4 实验四

IRF3205 源漏伏安特性曲线如图 11。

5 实验结果分析

5.1 实验一

图 11: IRFR214 输出特性曲线

5.2 实验二

在 V_{GS} 较小时,器件处于截止状态,因此电流较小,不同的 V_D 对电流影响较小;稍大的 V_{GS} 使得器件工作在饱和状态, V_{GS} 对电流的影响是二次的,不同 V_{DS} 在可变电阻区的影响体现在饱和区的人口,也就是为什么同一 V_{GS} 下电流的大小不同;进一步增大,由于栅极电压过高,管子工作在线性区, V_{GS} 对电流的影响较小,因此很小的电流变化就涵盖了较大的 V_{GS} 区域。

5.3 实验三

同 5.2。

5.4 实验四

在 E_D 较小时,电路处在线性区,电流较小; E_D 增大时,逐渐进入线性区,电流迅速上升;继续增大,进入饱和区,电流几乎保持不变。较小的栅极偏置差距下,电流差距变化迅速,体现了平方增长的特点。

6 总结与思考

转移特性曲线变平的原因:此时由于栅极电压过高,管子工作在线性区, V_{GS} 对电流的影响较小,因此很小的电流变化就涵盖了较大的 V_{GS} 区域。

Q1. 请列举场效应管与双极型晶体管的几个不同点

- MOS 是压控器件, BJT 是流控器件, 因此 MOS 的功耗更低
- MOS 仅有多子参与导电, BJT 多子少子均参与, 因此 MOS 的温度性更好
- MOS 集成性好

Q2. 请根据转移特性曲线图画出输出特性曲线中的恒流区曲线示意图。如 图 12。

图 12: 恒流区曲线