

Evolutionary Probability の応用による ヒト適応的アミノ酸変異の検出

✓ ヒト適応的アミノ酸変異を高精度に検出する

性質や特徴が有利になるようなアミノ酸の個体差

- ✔ 何故そのような進化を遂げたのか解明する手がかりとなる
- ✔ 既存の方法はボトルネック効果の影響を受けてしまう

Evolutionary Probability (EP)

- ✓ あるタンパク質の1アミノ酸を未知だと仮定した際 どのアミノ酸となるのが尤もらしいかを表した確率 (1)
- ✓ EP < 0.05 のとき、有害または適応的なアミノ酸置換</p>

(1) Liu et al. 2016. Molecular Biology and Evolution.

Candidate Adaptive Polymorphism (CAP)

- ✓ <u>有害または適応的</u>で、<u>集団内で高い頻度</u>のアミノ酸変異 (2) EP < 0.05 アレル頻度 AF > 5%
- ✓ CAP は適応的変異候補

(2) Patel et al. 2018. Molecular Biology and Evolution.

CAP の問題点

- ✓ CAP に対して、先行研究で示された適応的変異を SAP (Suggested Adaptive Polymorphism) とする 例 | LOXL1 にある SAP は、緑内障リスクを 20 倍低下
- ✓ CAP の個数は SAP の個数の約 200 倍もあり 適応的でないと考えられる CAP が多く含まれてしまっている

材料と本研究の流れ

材料

- ✓ 先行研究で示された CAP データ
 mypeg http://www.mypeg.info/caps より取得
- ✓ 遺伝子配列データ NCBI <u>https://www.ncbi.nlm.nih.gov/</u> より取得
- ✓ 世界 5 地域 2,504 人の全ゲノムデータ 1000 Genomes Project https://www.internationalgenome.org/ より取得

本研究の流れ
Unambiguous

EP < 0.05 の変異に新基準

本研究で得た UCAP の評価

- ✔ 現生人と近縁種の共通祖先で生じた変異を対象外とした
 - > 現生人特有の適応的変異を発見するため

✔ 現生人で生じた変異なため扱う対象

- ✔ 現生人と近縁種の共通祖先で生じた変異を対象外とした
 - > 現生人特有の適応的変異を発見するため

✓ 現生人とゴリラの共通祖先で生じた変異なため対象外

- ✓ 複数集団でアレル頻度 AF > 25% となる変異を対象とした
 - ▶ 単一集団のみで偶然広まった変異を除去するため

✓ アフリカ・東アジア集団で AF > 25% なため扱う対象

- ✓ 複数集団でアレル頻度 AF > 25% となる変異を対象とした
 - ▶ 単一集団のみで偶然広まった変異を除去するため

✓ アフリカ集団のみで AF > 25% なため対象外

評価 | CAP, UCAP に対する SAP の割合

評価 本研究で除去した変異の特徴

✔ 除去した変異の大部分は

種ごとでドメイン構造が大きく異なるアミノ酸に含まれていた

例丨 <i>MUC4</i>	MUC4 Species A		chitecture			
	Homo sapiens human		Bos taurus cattle	0000—		
	Rattus norvegicus Norway rat		Canis lupus familiaris dog			
NCBI (<u>https://www.nc</u> <u>bi.nlm.nih.gov/</u>)	Mus musculus house mouse	-10-0-00-I	Callorhinchus milii elephant shark	0 100 100 1		

✓ 構造の保存が必要でないため、中立と思われる変異を多く含む

評価 | CAP, UCAP が多く含まれる遺伝子

先行研究			本研究				
遺伝子	CAP数	SAP数	種間の 構造保存性	遺伝子	UCAP数	SAP数	種間の 構造保存性
MUC4	261	0	×	MUC12	17	0	×
AHNAK2	153	0	×	AHNAK2	16	0	×
FLG	90	0	×	MUC4	15	0	×
MUC17	74	0	×	PKD1L2	14	0	0
MUC12	66	0	×	OBSCN	11	0	0
MUC5B	49	0	0	ALMS1	9	7	0
PKD1L2	49	0	×	ADGRV1	9	0	0
HLA-A	39	0	-	ZAN	9	0	0
<i>FCGBP</i>	34	0	×	<i>FCGBP</i>	9	0	×
IGFN1	29	0	×	PCNT	8	0	0
HLA-C	29	0	-	USH2A	8	0	0
HLA-B	28	1	-	FAT1	8	0	0

(遺伝子間のアライメントスコアの正負により'○','×'を判断、'-' は種が非常に少ないことを意味)

✓ 種間で構造が保存されていない遺伝子が含む変異を除去

評価 | CAP, UCAP が多く含まれる遺伝子

先行研究			本研究					
遺伝子	CAP数	SAP数	種間の 構造保存性		遺伝子	UCAP数	SAP数	種間の 構造保存性
MUC4	261	0	×		MUC12	17	0	×
AHNAK2	153	0	×		AHNAK2	16	0	×
FLG	90	0	×		MUC4	15	0	×
MUC17	74	0	×		PKD1L2	14	0	0
MUC12	66	0	×		OBSCN	11	0	0
MUC5B	49	0	0		ALMS1	9	7	0
PKD1L2	49	0	×		ADGRV1	9	0	0
HLA-A	39	0	-		ZAN	9	0	0
<i>FCGBP</i>	34	0	×		FCGBP	9	0	×
IGFN1	29	0	×		PCNT	8	0	0
HLA-C	29	0	-		USH2A	8	0	0
HLA-B	28	1			FAT1	8	0	0

(遺伝子間のアライメントスコアの正負により'○','×'を判断、'-' は種が非常に少ないことを意味)

✓ 正の自然選択を受けている遺伝子だが SAP が見つかっていない

- ✓ EP < 0.05 の変異に新基準を設定することで 中立と思われる変異を多く除去し 先行研究で示されていない適応的変異を発見した可能性がある
- ✓ ②複数集団でAF > 25% の変異を対象とする基準に関して 系統樹を作成して詳細に集団を区分することで より高精度な適応的変異の発見が見込める
- ✓ 本研究の手法はヒト以外の種にも応用可能であるため 哺乳類や鳥類をはじめとした脊椎動物でも検証していく