A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EH

Bookmark

Show all steps: (

ON

Problem

An integer a is called a *quadratic residue* modulo m if there is an integer x such that $x^2 \equiv a \pmod{m}$. This is the same as saying that \bar{a} is a square in m. If a is not a quadratic residue modulo m, then a is called a *quadratic nonresidue* modulo m. Quadratic residues are important for solving quadratic congruences, for studying sums of squares, etc. Here, we will examine quadratic residues modulo an arbitrary prime p > 2.

Let
$$h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$$
 be defined by $h(\bar{a}) = \bar{a}^2$.

Referring to part 2, let the two cosets of R be called 1 and -1. Then $\mathbb{Z}_p^*/R = \{1, -1\}$. Explain why

$$\left(\frac{a}{p}\right) = h(\bar{a})$$

for every integer α which is not a multiple of p.

Step-by-step solution

Step 1 of 4

Here, objective is to explain why $\left(\frac{a}{P}\right) = h(\bar{a})$ for every integer a which is not a multiple of p.

Comment

Step 2 of 4

Consider the congruence $x^2 = a \pmod{p}$ where p is odd prime, is solvable, if and only if the

Legendre symbol $\left(\frac{a}{P}\right) = 1$.Where, $\left(\frac{a}{P}\right) = a^{(p-1)/2} \pmod{p}$				
Comment				
Step 3 of 4				
Consider				
$Z_p / R = \{1, -1\}$				
if $a^2 = b^2$				
$a = \pm b$				
$x \neq \pm a$ $x = a$				
Comment				
Step 4 of 4				
Consider $(1,-1)$, have the same square. $(1)^2 = (-1)^2$ $\left(\frac{a}{P}\right) = 1$				
Then, $\left(\frac{a}{P}\right) = a^2$ $\left(\frac{a}{P}\right) = h(\overline{a})$				
Therefore,				
$\left(\frac{a}{P}\right) = h(a)$ for every integer a which is not a multiple of p .				
Hence, proved.				

Comment