AMENDMENTS TO THE CLAIMS

2-

Please amend claims 1, 3, 4, 5, 6, 17, 19, 20, 24, 25 and 26 and cancel claims 9-16 and 27-28 such that the status of the claims is as follows:

- 1. (Currently amended) Method for producing ceramic articles, comprising the steps of:
 - using a rapid prototyping process to produce a disposable mold having a cavity with a. microcircuit dimensions which has the shape of the desired ceramic article;
 - filling said cavity with microcircuit dimensions with a ceramic slurry of ultrafine particles b. which includes a liquid carrier;
 - cooling the slurry-filled mold cavity to solidify said slurry; c.
 - d. removing said disposable mold; and
 - removing substantially all of the original liquid carrier from said solidified slurry to produce e. a ceramic article.
- 2. (Original) Method as in Claim 1 wherein said slurry is aqueous based.
- 3. (Currently amended) Method as in Claim 1 wherein said slurry consists essentially of (by wt.):
 - from about 70% to about 90% ultrafine ceramic particles a.
 - an amount of at least one cryoprotectant material sufficient to suppress the formation of b. large crystals during solidification.
 - from about 10% to about 30% of a liquid suspension of at least one colloidal ceramic c. material,
 - up to about 5% of other additives, and d.
 - balance essentially water. e.

First Named Inventor: John E. Holowczak Application No.: 10/761,908

3-

4. (Currently amended) Method as in Claim 1 wherein the disposable mold <u>containing features with</u> <u>microcircuit dimensions</u> is made of a material selected from the group consisting of polymers, waxes, plastics and hard particles coated with a material selected from the group consisting of polymers, waxes,

plastics and mixtures thereof.

5. (Currently amended) Method as in Claim 1 wherein the disposable mold containing features with

microcircuit dimensions is removed prior to the removal of the original liquid carrier.

6. (Currently amended) Method as in Claim 1 wherein the removal of the original liquid carrier is performed

prior to the removal of the disposable mold containing features with microcircuit dimensions.

7. (Original) Method as in Claim 1 wherein the original carrier is removed by a process selected from

the group consisting of sublimation, vacuum dewatering and combinations thereof.

8. (Original) Method as in Claim 1 wherein the ceramic article is treated by sintering improve its mechanical

properties.

9-16. (Canceled)

17. (Currently amended) Method for producing an integral ceramic core mold for casting metallic parts

having an external shape and having at least one internal passage with microcircuit dimensions having an

internal shape, including the steps of:

a. using a rapid prototyping process to produce a disposable pattern whose external shape

corresponds to the desired external configuration of the metallic part and an internal

passage shape corresponds to the shape of the desired metallic part internal passage with microcircuit dimensions,

- b. placing said disposable model in a container,
- c. filling said container and said internal cavity <u>with microcircuit dimensions</u> with a ceramic slurry,
- d. cooling the slurry filled container and cavity <u>with microcircuit dimensions</u> to solidify said slurry,
- e. removing said disposable model from said solidified slurry, and
- f. removing substantially all original liquid carrier from said solidified slurry.
- 18. (Original) Method as in Claim 17 wherein said slurry is aqueous based.
- 19. (Currently amended) Method as in Claim 17 wherein said slurry consists essentially of (by wt.):
 - a. from about 70% to about 90% ultrafine ceramic particles,
 - b. an amount of at least one cryoprotectant material sufficient to suppress the formation of large crystals during solidification,
 - c. from about 10% to about 30% of a liquid suspension of at least one colloidal ceramic material,
 - d. up to about 5% of other additives
 - e. balance essentially water.
- 20. (Currently amended) Method as in claim [[20]] 17 wherein the disposable pattern is made of a material selected from the group consisting of polymers, waxes, plastics and hard particles coated with a material selected from the group consisting of polymers, waxes, plastics and mixtures thereof.

21. (Original) Method as in Claim 17 wherein the disposable pattern is removed prior to the removal of the original liquid carrier.

- 22. (Original) Method as in Claim 17 wherein the removal of the original liquid carrier is performed prior to the removal of the disposable pattern.
- 23. (Original) Method as in Claim 17 wherein the removal of the original liquid carrier is performed at a temperature below the solidification point of the ceramic slurry.
- 24. (Currently amended) Method as in Claim 17 wherein the ceramic article is sintered to [[by]] improve its mechanical properties.
- 25. (Currently amended) A method as in claim 17 in which said pattern includes a plurality of channels with microcircuit dimensions which extend through the model and connect the external surface of the model with the internal surface of the model.
- 26. (Currently amended) Method as in claim 17 in which at least one of said channels with microcircuit dimensions has a complex geometry.

27-28. (Canceled)