2) Multi-Conditional Datando Learing, Mulyor Methodys	D= 2(x'n'), (x", n")}	noted has premoted B = [A,, Bu], estimated w/:	$Q(\Theta; \emptyset) = (1 - \alpha) \lambda_{MX} (\Theta; \emptyset) + \alpha \lambda_{MY} (\Theta; \emptyset)$	Defined by Mustre V Nothersky W/ Winnetter (D) Some w/ 1/4x	We have a feature of (X, Y) where X Y we possibly.	(1) Write full objective function of (Bip) in tous of all f and 9.	Pux (0,0) = 1 19p(0,0) = 1 50 f(1,0) - 1 2 (0,2(x,0))	12/14 (O.D) = - SO Try a) Sbyz (a, O)	= = = f(1,1) - 1	2 × 2 0 f (2, γ) - (1-α) 1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	$= I \cdot \left[\frac{1}{10^4} \sum_{x,y \in \mathcal{V}} f(x,y) \right] - (I - \alpha) \left[\frac{1}{10} \sum_{x \in \mathcal{V}} b(yz(x,y)) - \alpha \left[\frac{1}{10} \sum_{y \in \mathcal{V}} b(x,y) \right] \right]$ $ \text{where } Z(X,\Theta) = \sum_{y \in \mathcal{V}} f(x,y), Z(y,\Theta) = \sum_{x \in \mathcal{V}} f(x,x)$	
b) for ()	W)	P(C,=H V,, 11/4) for H= 1,, K	(,[11,, C.[M]) = L	() For (sibbs Sampling to wall, it must be that that A(vil) = 1 = min (11) =	(C-1) P(W14-2)	P(V, 1C, =2) · P(Tz (z=1)	This wild not mall because there is no modutes his evantating == 1	J. 1 (1/2)	$\frac{\lambda(b)}{\lambda(b,0)} = \frac{1}{\sqrt{1 + (x/y)}} = \frac{1}{1 +$	St O= empirical dist.	SEQ = D (W 7=2);	