June 2006 6664 Core Mathematics C2 Mark Scheme

Question number	Scheme	Marks
1.	$(2+x)^6 = 64$	B1
	$(2+x)^{6} = 64 \dots + (6 \times 2^{5} \times x) + \left(\frac{6 \times 5}{2} \times 2^{4} \times x^{2}\right), + 192x, + 240x^{2}$	M1, A1, A1 (4)
		Total 4 marks
2.	$\int (3x^2 + 5 + 4x^{-2}) dx = \frac{3x^3}{3} + 5x + \frac{4x^{-1}}{-1} \qquad (= x^3 + 5x - 4x^{-1})$ $[x^3 + 5x - 4x^{-1}]_1^2 = (8 + 10 - 2) - (1 + 5 - 4), = 14$	M1 A1 A1
	$\left[x^3 + 5x - 4x^{-1}\right]_1^2 = (8+10-2)-(1+5-4), = 14$	M1, A1
		Total 5 marks
3. (i) (ii)	$2 2\log 3 = \log 3^2 $ (or $2\log p = \log p^2$)	B1 (1) B1
	$\log_a p + \log_a 11 = \log_a 11p, = \log_a 99$ (Allow e.g. $\log_a (3^2 \times 11)$)	M1, A1 (3)
		Total 4 marks

1

Question number	Scheme	Marks
	$f(-2) = 2(-2)^3 + 3(-2)^2 - 29(-2) - 60$	
4. (a)	M: Attempt f(2) or f(-	M1
	2)	
	= -16 + 12 + 58 - 60 = -6	A1 (2
(b)	$f(-3) = 2(-3)^3 + 3(-3)^2 - 29(-3) - 60$	M1
(b)	M: Attempt f(3) or f(-	IVII
	(=-54+27+87-60)=0 : $(x+3)$ is a factor	A1 (2
(c)	$(x+3)(2x^2-3x-20)$	M1 A1
(-)	=(x+3)(2x+5)(x-4)	M1 A1 (4
		Total 8 marks
()		
(a)	Alternative (long division): Divide by $(x + 2)$ to get $(2x^2 + ax + b)$, $a \ne 0, b \ne 0$.	
	[M1] Divide by $(x + 2)$ to get $(2x + ax + b)$, $a \neq 0$, $b \neq 0$.	
	$(2x^2 - x - 27)$, remainder = -6 [A1]	
	(b) A1 requires zero and a simple conclusion (even just a	
(b)	tick, or Q.E.D.).	
	First M requires division by $(x+3)$ to get	
(c)	$(2x^2 + ax + b), a \neq 0, b \neq 0.$ Second M for the attempt to factorize their quadratic	
()	Second M for the attempt to factorise their quadratic. Usual rule: $(2x^2 + ax + b) = (2x + c)(x + d)$, where $ cd = b $.	
	Alternative (first 2 marks): $(x+3)(2x^2 + ax + b) = 2x^3 + (6+a)x^2 + (3a+b)x + 3b = 0$,	
	then compare	
	coefficients to find <u>values</u> of a and b . [M1]	
	a = -3, b = -20 [A1]	
	Alternative:	
	Factor theorem: Finding that $f\left(-\frac{5}{2}\right) = 0$: factor is, $(2x + 1)$	
	[M1, A1]	
	Finding that $f(4) = 0$: factor is, $(x-4)$ [M1, A1]	
	"Combining" all 3 factors is <u>not</u> required.	
	If just one of these is found, score the <u>first 2 marks</u>	
	M1 A1 M0 A0.	
	Losing a factor of 2: $(x+3)\left(x+\frac{5}{2}\right)(x-4)$ scores M1 A1 M1	
	A0.	
	Answer only, one sign wrong: e.g. $(x+3)(2x-5)(x-4)$	
	scores M1 A1 M1 A0.	

Question number	Scheme	Marks
5. (a)	Shape (0, 1), or just 1 on the y-axis, or seen in table for (b)	B1 B1 (2)
(b)	Missing values: 1.933, 2.408 (Accept awrt)	B1, B1 (2)
(c)	$\frac{1}{2} \times 0.2, \{(1+3)+2(1.246+1.552+1.933+2.408)\}$	B1, M1 A1ft
	= 1.8278 (awrt 1.83)	A1 (4) Total 8 marks
6. (a)	$an \theta = 5$ $an \theta = k$ $an \theta = k$ $an \theta = 8$ $an \theta = 78.7$, $an \theta = 10$ (Accept awrt)	B1 (1) M1 A1, A1ft (3) Total 4 marks
7. (a)	Gradient of PQ is $-\frac{1}{3}$	B1
	$y-2=-\frac{1}{3}(x-2)$ $(3y+x=8)$	M1 A1 (3)
(b)	y = 1: 3 + x = 8 $x = 5$ (*)	B1 (1)
(c)	$("5"-2)^2 + (1-2)^2$ M: Attempt PQ^2 or PQ	M1 A1
	$(x-5)^2 + (y-1)^2 = 10$ M: $(x \pm a)^2 + (y \pm b)^2 = k$	M1 A1 (4) Total 8 marks
8. (a)	$r\theta = 2.12 \times 0.65$ 1.38 (m)	M1 A1 (2)
(b)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 2.12^2 \times 0.65$ 1.46 (m ²)	M1 A1 (2)
	$\frac{\pi}{2} - 0.65 \qquad 0.92 \text{ (radians)} \qquad (\alpha)$	M1 A1 (2)
(d)	$\Delta ACD: \frac{1}{2}(2.12)(1.86)\sin\alpha \text{ (With the value of } \alpha \text{ from part (c))}$	M1
	Area = "1.46" + "1.57", 3.03 (m ²)	M1 A1 (3) Total 9 marks

Question number	Scheme	Marks
9. (a)	$ar = 4$, $\frac{a}{1-r} = 25$ (These can be seen elsewhere) a = 25(1-r) $25r(1-r) = 4$ M: Eliminate $a25r^2 - 25r + 4 = 0 (*)$	B1, B1
	a = 25(1-r) $25r(1-r) = 4$ M: Eliminate a	M1
	$25r^2 - 25r + 4 = 0 \tag{*}$	A1cso (4)
(b)	$(5r-1)(5r-4) = 0$ $r =$, $\frac{1}{5}$ or $\frac{4}{5}$	M1, A1 (2)
	$r = \dots \Rightarrow a = \dots$, 20 or 5	M1, A1 (2)
(d)	$S_n = \frac{a(1-r^n)}{1-r}$, but $\frac{a}{1-r} = 25$, so $S_n = 25(1-r^n)$ (*)	B1 (1)
(e)	$25(1-0.8^n) > 24$ and proceed to $n =$ (or $>$, or $<$) with no unsound algebra.	M1
	$\left(n > \frac{\log 0.04}{\log 0.8} (=14.425)\right) \qquad n = 15$	A1 (2)
	log o.o	Total 11 marks
10. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 16x + 20$	M1 A1
	$3x^2 - 16x + 20 = 0 (3x - 10)(x - 2) = 0 x =,$ $\frac{10}{3}$ and 2	dM1, A1 (4)
(b)	$\frac{d^2 y}{dx^2} = 6x - 16$ At $x = 2$, $\frac{d^2 y}{dx^2} =$	M1
		A1ft (2)
(c)	$-4 \text{ (or } < 0, \text{ or both), therefore maximum}$ $\int (x^3 - 8x^2 + 20x) dx = \frac{x^4}{4} - \frac{8x^3}{3} + \frac{20x^2}{2} \text{ (+C)}$ $4 - \frac{64}{3} + 40 \qquad \left(= \frac{68}{3} \right)$ A: $x = 2$: $y = 8 - 32 + 40 = 16$ (Maybe scored elsewhere)	M1 A1 A1 (3)
(d)	$4 - \frac{64}{3} + 40 \qquad \left(=\frac{68}{3}\right)$	M1
		B1
	Area of $\Delta = \frac{1}{2} \left(\frac{10}{3} - 2 \right) \times 16$ $\left(\frac{1}{2} (x_B - x_A) \times y_A \right)$ $\left(= \frac{32}{3} \right)$	M1
	Shaded area = $\frac{68}{3} + \frac{32}{3} = \frac{100}{3} = (= 33\frac{1}{3})$	M1 A1 (5)
	, ,	Total 14 marks