On Exploration, Exploitation and Learning in Adaptive Importance Sampling

Xiaoyu Lu¹, Tom Rainforth¹, Yuan Zhou¹, Yee Whye Teh¹, Frank Wood¹, Hongseok Yang², Jan-Willem van de Meent³

 $^1\mbox{University}$ of Oxford; $^2\mbox{KAIST},$ South Korea; $^3\mbox{Northeastern University}$

{xiaoyu.lu, rainforth, y.w.teh}@stats.ox.ac.uk, yuan.zhou@cs.ox.ac.uk, fwood@robots.ox.ac.uk, hongseok.yang@kaist.ac.kr, j.vandemeent@northeastern.edu

• Draw samples $x_t \sim q_t(x)$.

- Draw samples $x_t \sim q_t(x)$.
- Adapt the proposals $q_t(x)$ according to previous samples $x_1, \dots x_{t-1}$.

- Draw samples $x_t \sim q_t(x)$.
- Adapt the proposals $q_t(x)$ according to previous samples $x_1, \cdots x_{t-1}$.
- Targer π is learnt through a sequence of queries at x_t .

- Draw samples $x_t \sim q_t(x)$.
- Adapt the proposals $q_t(x)$ according to previous samples $x_1, \dots x_{t-1}$.
- Targer π is learnt through a sequence of queries at x_t .
- \rightarrow Trade off between **Exploitation** and **Exploration**.

AdaIS as a Bandit Problem

Partition the sample space \mathcal{X} into K disjoint subspaces $\mathcal{X}_1, \dots, \mathcal{X}_K$. **Proposal**:

$$q_t(x) = \sum_{a=1}^{K} q_{at} g_a(x)$$
 (1)

where q_{at} are the mixing proportions at time t, $g_a(x)$ is the importance proposal on \mathcal{X}_a .

- Arm: Subspace
- Reward: Importance weights
- Regret: $R(q_t) = \mathit{KL}(\pi \| q_t) \mathit{KL}(\pi \| q^*) = \sum_a \pi_a \log \frac{\pi_a}{q_{at}}$

AdalS as a Bandit Problem

Partition the sample space \mathcal{X} into K disjoint subspaces $\mathcal{X}_1, \dots, \mathcal{X}_K$. **Proposal**:

$$q_t(x) = \sum_{a=1}^{K} \underbrace{q_{at}}_{\substack{\text{boost when} \\ \text{under exploration}}} g_a(x)$$
 (2)

where q_{at} are the mixing proportions at time t, $g_a(x)$ is the importance proposal on \mathcal{X}_a .

- Arm: Subspace
- Reward: Importance weights
- Regret: $R(q_t) = \mathit{KL}(\pi \| q_t) \mathit{KL}(\pi \| q^*) = \sum_a \pi_a \log \frac{\pi_a}{q_{at}}$

Banana-shaped Example

