Student Information

Full Name : Beyazıt Yalçınkaya

 $Id\ Number:\ 2172138$

Answer 1

Table 2: Answer 1.2					
p	q	r	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$		
T	T	T	T		
T	\overline{F}	T	T		
F	T	T	T		
\overline{F}	F	T	T		
T	T	F	T		
T	F	F	T		
\overline{F}	T	F	T		
F	F	F	T		

Answer 2

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r) \qquad Using \ Table \ 7$$

$$\equiv \neg (q \lor r) \to \neg p \qquad Using \ Table \ 7$$

$$\equiv (\neg q \land \neg r) \to \neg p \qquad De \ Morgan's \ Laws$$

$$(1)$$

We started from the first equation and we managed to get the second equation by using some logical equivalences from given tables. Thus, it can be concluded that $(p \to q) \lor (p \to r)$ and $(\neg q \land \neg r) \to \neg p$ are logically equivalent.

Answer 3

- 1. (a) Every cat has at least one dog friend.
 - (b) Some cats are friends with all dogs.
- 2. (a) $\neg(\exists x \exists y (\neg Customer(x) \land Meal(y) \land Eats(x, y)))$
 - (b) $\exists x \exists y (Chef(x) \land Meal(y) \land \neg Cooks(x, y))$
 - (c) $\exists x(Customer(x) \land \exists y(Chef(y) \land \neg(\exists z(Meal(z) \land Cooks(y, z) \land \neg Eats(x, z)))))$
 - (d) $\forall x (Chef(x) \rightarrow \exists y (Chef(y) \land Knows(x, y) \land \neg (\exists z (Meal(z) \land \neg Cooks(x, z) \land \neg Cooks(y, z)))))$

Answer 4

The truth value of $\neg p$ is given as T, so it can be concluded that the truth value of p is F, since $\neg p \equiv \neg F$ and $\neg F \equiv T$. Thus, the following truth table can be constructed.

]	Table	e 3:	Answer	4
	p	q	$p \rightarrow q$	
	F	T	T	
	F	F	T	

From the table it can be seen that, the truth value of $\neg q$ cannot be determined as T. Since the compound proposition is a tautology, the truth value of the compound proposition $p \to q$ does not depends on the truth value of q. The propositions $p \to q$ and $\neg p$ being T does not concludes that $\neg q$ is also T. Hence, it cannot be a deduction rule.

Answer 5

Table 4: Answer 5

$p \to q$	premise
$q \to r$	premise
$r \to p$	premise
q	assumption
r	$\rightarrow e$, 2, 4
p	$\rightarrow e, 3, 5$
$q \rightarrow p$	<i>→i, 4-6</i>
p	assumption
q	$\rightarrow e, 1, 8$
r	$\rightarrow e, 2, 9$
$p \to r$	<i>→i,</i> 8-10
$p \leftrightarrow q$	$\leftrightarrow i, 1, 7$
$p \leftrightarrow r$	$\leftrightarrow i, 3, 11$
$(p \leftrightarrow q) \land (p \leftrightarrow r)$	<i>∧i, 12, 13</i>
	$q \rightarrow r$ $r \rightarrow p$ q r p $q \rightarrow p$ p q r p q r $p \rightarrow r$ $p \leftrightarrow q$ $p \leftrightarrow r$

Answer 6

Table 5: Answer 6

1.		$\forall x (Q(x) \to R(x))$	premise
2.		$\exists x (P(x) \to Q(x))$	premise
3.		$\forall x P(x)$	premise
4.	c	$P(c) \to Q(c)$	assumption
5.		P(c)	$\forall e, 3$
6.		$Q(c) \to R(c)$	$\forall e, 1$
7.		Q(c)	$\rightarrow e, 4, 5$
8.		R(c)	$\rightarrow e, 6, 7$
9.		$P(c) \wedge R(c)$	$\wedge i, 5, 8$
10.		$\exists x (P(x) \land R(x))$	$\exists i, \ 9$
11.		$\exists x (P(x) \land R(x))$	$\exists e, 2, 4-10$