

資料結構

MATLAB進階程式語言與實作

盧家鋒 副教授 生物醫學影像暨放射科學系 alvin4016@nycu.edu.tw

Teaching Materials

Contents in this Week

O1 MATLAB Data Types Images, datastore, table arrays

O2 Datastore and Table Usage A hands-on example

Reference

[Textbook 2]

- MATLAB Machine Learning Recipes, 2nd Ed, 2018
 Michael Paluszek, Stephanie Thomas
- Online resources:

https://github.com/Apress/matlab-machine-learning-recipes

 Chapter 2: Representation of Data for Machine Learning in MATLAB

Download MATLAB Add-On

Install MachineLearning.mltbx

Disease Classification/Detection in Chest X-ray

- Provided by NIH Clinical Center, 2017
 - https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345
- Overall 112,120 chest x-ray images from 30805 patients
- Covering 14 common chest diseases
 - Atelectasis; Cardiomegaly; Effusion; Infiltration; Mass; Nodule; Pneumonia; Pneumothorax; Consolidation; Edema; Emphysema; Fibrosis; Pleural Thickening; Hernia
- With bounding box (BBox) locating lesions in 984 images

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Wang et al. ChestX-ray8. IEEE CVPR 2017

Demo Dataset - ChestX-ray14

- MLmaterials_L3\BBox_List_2017.csv
- MLmaterials_L3\bbox_display.m

- 4	Δ	R	-	D	F	F
	7		_		_	
1	Image Index	Finding Label	Bbox [x	у	W	h]
586	00029579_005.png	Mass	609.28	189.1935	73.95556	71.68
587	00013659_019.png	Mass	559.2178	167.5757	102.4	136.5333
588	00010815_006.png	Mass	311.1822	241.5313	146,7733	256
589	00026695 000 ppg	Ma			R	4
					7	De la
		THE PERSON NAMED IN		No. of the last of		1

Mass

Cardiomegaly

Images, datastore, table arrays

MATLAB Data Types

- Matrices
- Cell arrays
- Structure arrays
- Images
- Datastore
- Tables
- Categoricals
- Tall arrays
- Sparse matrices
- Large MAT-files

Images

- MATLAB supports a variety of formats including GIF, JPG, TIFF, PNG, HDF, FITS, and BMP.
- >> imread Read image from graphics file.
- A = imread(FILENAME,FMT) reads a grayscale or color image from the file specified by the character vector or string scalar FILENAME.
- >> imfinfo Information about graphics file.
- INFO = imfinfo(FILENAME,FMT) returns a structure whose fields contain information about an image in a graphics file.

Exercise For Mac users, please replace '\' by '/' in the file path.

imdata = imread('.\dataset\Mass\00029579_005.png');

figure, imshow(imdata,[],'border','tight')

info = imfinfo('.\dataset\Mass\00029579_005.png')

```
Filename: 'C:\Users\Alvin\Desktop\MLmaterials_L3\dataset\Mass\00029579_005.pr
 FileModDate: '14-Jul-2017 01:07:10'
   FileSize: 383238
    Format: 'png'
 FormatVersion: []
     Width: 1024
    Height: 1024
   BitDepth: 8
   ColorType: 'grayscale'
FormatSignature: [137 80 78 71 13 10 26 10]
   Colormap: []
   Histogram: []
 InterlaceType: 'none'
 Transparency: 'none'
```

Figure 1

Useful Functions for Images

Function	Purpose				
imread	Read an image in a variety of formats				
imfinfo	Gather information about an image file				
imformats	Manage file format registry				
imwrite	Write data to an image file				
image Display image from array					
imagesc	Display image data scaled to the current colormap				
imshow	Display an image, optimizing figure, axes, and image object properties, and taking an array or a filename as an input				
rgb2gray	Convert RGB image or colormap to grayscale				
ind2rgb	Convert index data to RGB				
rgb2ind	Convert RGB data to indexed image data				
fitsread	Read a FITS file				
fitswrite	Write data to a FITS file				
fitsinfo	Information about a FITS file returned in a data structure				
fitsdisp	Display FITS file metadata for all HDUs in the file				

Datastore

- Datastores allow you to interact with files containing data that are too large to fit in memory.
- >> datastore Create a datastore for working with collections of data.
- DS = datastore(LOCATION) creates a datastore DS based on the LOCATION of the data.

```
DS = datastore(LOCATION,'Type',TYPE) specifies the type of the datastore. The supported types are:

'tabulartext' - For tabular text files
'image' - For image files
'spreadsheet' - For spreadsheet files
'file' - For custom format files
'tall' - For tall data files from tall/write
'keyvalue' - For use with key-value data from mapreduce
'database' - For use with Database Toolbox
```

Exercise – image datastore

```
dirname='.\dataset';
ds = datastore(dirname, 'type', 'image',...
                       'IncludeSubfolders',true,...
                       'LabelSource', 'foldernames', ...
                       'ReadFcn', @customreader);
ImageDatastore with properties:
         Files: {
            '...\Alvin\Desktop\MLmaterials L3\dataset\Cardiomegaly\00000211 041.png';
            '...\Alvin\Desktop\MLmaterials_L3\dataset\Cardiomegaly\00000661_000.png';
            '...\Alvin\Desktop\MLmaterials L3\dataset\Cardiomegaly\00003394 006.png'
             ... and 27 more
         Labels: [Cardiomegaly; Cardiomegaly; Cardiomegaly ... and 27 more categorical]
```

AlternateFileSystemRoots: {}

ReadSize: 1

ReadFcn: @customreader

>> doc datastore
>> doc imageDatastore
for more detailed information

customreader – ReadFcn

 MLmaterials_L3\customreader.m 🚻 imdata *1024x1024 uint8* **imgout** function imgout = customreader(filename) *512x512x3 uint8* % Chia-Feng Lu, 2020.3.18 img=imread(filename); % If the image is grayscale. Replicate the image 3 times to create an RGB % image if ismatrix(img) img=repmat(img,1,1,3); end % Resize (or crop, if needed) the image as required for the analysis imgout=imresize(img,[512 512]);

Useful Functions for Datastore

Function	Purpose						
datastore	Create a datastore						
read	Read a subset of data from the datastore						
readall	Read all of the data in the datastore						
hasdata	Check to see if there are more data in the datastore						
reset	Initialize a datastore with the contents of a folder						
partition	Excerpt a portion of the datastore						
numpartitions	Estimate a reasonable number of partitions						
ImageDatastore	Datastore of a list of image files						
TabularTextDatastore	A collection of one or more tabular text files						
SpreadsheetDatastore	Datastore of spreadsheets						
FileDatastore	Datastore for files with a custom format, for which you provide a reader function						
KeyValueDatastore	Datastore of key-value pairs						
DatabaseDatastore	Database connection, requires the Database Toolbox						

Using a Datastore

- ds.Files
- ds.Labels
- ds.countEachLabel
- shuffle_ds=ds.shuffle
- ds.ReadSize

- [img,info]=ds.read; or img=read(ds);
 ds.hasdata;
 read next image set from ds ImageDatastore
- ds.reset;
 or reset(ds);
 reset the counter to the first image file
- imgall=ds.readall;
 or imgall=readall(ds);
 read all image files and output as a cell array: 30 x 1 cell

Using a Datastore

% Partition the datastore into three parts on three workers in a parallel pool. n = 3; p = parpool('local',n); parfor ii=1:n subds = partition(ds,n,ii); while hasdata(subds) img = read(subds); end end

Exercise – Tabular Datastore

ds = datastore('Data_Entry_2017.csv', 'type', 'tabular');

```
Files: {
              '...\Lesson3_MATLAB資料結構forML\MLmaterials_L3\Data_Entry_2017.csv'
      FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
    ReadVariableNames: true
      VariableNames: {'ImageIndex', 'FindingLabels', 'Follow_up_' ... and 8 more}
     DatetimeLocale: en_US
Text Format Properties:
     NumHeaderLines: 0
        Delimiter: ','
                                                                    >> doc datastore
      RowDelimiter: '\r\n'
                                                                    >> doc TabularTextDatastore
     TreatAsMissing: "
      MissingValue: NaN
                                                                    for more detailed information
```

Using a Tabular Datastore

ds.VariableNames

ds.ReadSize % 20000 in default

tabledata=ds.read; % Output as a table array

## 20000x11 <u>table</u>											
	1	2	3	4	5	6	7	8	9	10	11
	ImageIndex	FindingLabels	Follow_up	PatientID	PatientAge	PatientGe	rViewPosi	OriginalIma	Height_	OriginalImaç	y_
1	'00000001_0	'Cardiomegaly'	0	1	58	'M'	'PA'	2682	2749	0.1430	0.1430
2	'00000001_0	'Cardiomegaly <mark> </mark>	1	1	58	'M'	'PA'	2894	2729	0.1430	0.1430
3	'00000001_0	'Cardiomegaly <mark></mark>	2	1	58	'M'	'PA'	2500	2048	0.1680	0.1680
4	'00000002_0	'No Finding'	0	2	81	'M'	'PA'	2500	2048	0.1710	0.1710
5	'00000003_0	'Hernia'	0	3	81	'F'	'PA'	2582	2991	0.1430	0.1430
6	'00000003_0	'Hernia'	1	3	74	'F'	'PA'	2500	2048	0.1680	0.1680
7	'00000003_0	'Hernia'	2	3	75	'F'	'PA'	2048	2500	0.1680	0.1680
8	'00000003_0	'Hernia Infiltrat	3	3	76	'F'	'PA'	2698	2991	0.1430	0.1430
9	'00000003_0	'Hernia'	4	3	77	'F'	'PA'	2500	2048	0.1680	0.1680
10	'00000003_0	'Hernia'	5	3	78	'F'	'PA'	2686	2991	0.1430	0.1430
4.4	100000000	0.12		٦	70	ILI	ID A I	2002	2001	0.1420	0 1 1 2 0

Table Array

- Tables were introduced in release R2013 of MATLAB and allow tabular data to be stored with metadata in one workspace variable.
- The table columns can be named, assigned units and descriptions, and accessed as one would fields in a data structure.
- tabledata.PatientAge

→ 20000x1 double

tabledata(:,3:4)

- → 20000x2 table
- tabledata(:,3:4). Variables
- → 20000x2 double
- tabledata.Properties.VariableNames
- tabledata.Properties.VariableUnits
- tabledata.Properties.VariableDescriptions

Useful Functions for Table

Function	Purpose
table	Create a table from workspace variables
readtable	Create a table by reading from a file
join	Merge two tables by matching up rows using key variables
innerjoin	Join tables A and B retaining only the rows that match
outerjoin	Join tables including all rows
stack	Stack data from multiple table variables into one variable
unstack	Unstack data from a single variable into multiple variables
summary	Calculate and display summary data for the table
struct2table	Convert structure array to table
table2struct	Convert table to structure array
table2array	Convert table to a homogeneous array

- structdata=table2struct(tabledata);
- tablesummary=summary(tabledata);

A hands-on example

Problem to be Solved

- **Problem:** We want to compare temperature frequencies in 1993 and 2015 using weather data from a table.
- **Solution:** Use **tabularTextDatastore** to load the data and perform the fast Fourier transform (FFT) on the data.
- Switch current directory
 - ~\MachineLearning\Chapter_02

Create Tabular Datastore

- tableds=datastore('.\Weather','type','tabular')
- tableds. Variable Names % 23 variables

```
<u>TabularTextDatastore</u> with properties:
          Files: {
              '...\Toolboxes\MachineLearning\Chapter_02\Weather\HistKTTN_1990.txt
              '...\Toolboxes\MachineLearning\Chapter_02\Weather\HistKTTN_1993.txt
              '...\Toolboxes\MachineLearning\Chapter_02\Weather\HistKTTN_1999.txt
              ... and 5 more
      FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
  PreserveVariableNames: false
    ReadVariableNames: true
      VariableNames: {'EST', 'MaxTemperatureF', 'MeanTemperatureF' ... and 20 more}
     DatetimeLocale: en_US
```

Select Variables and Read

```
tableds.SelectedVariableNames={'EST','MaxTemperatureF'};
tableds.preview
AllTemp=tableds.readall;
%% identify 1993 and 2015 data indices
dateinfo=AllTemp{:,1};
% tempdata=AllTemp.EST; datatime format
y=year(dateinfo);
ind_1993=find(y==1993);
ind_2015 = find(y = 2015);
```


Perform FFT on Temperature Data

```
%% Extract temperature data in 1993 and 2015, respectively
tempdata=AllTemp{:,2}; %tempdata=AllTemp.MaxTemperatureF;
temp1993=tempdata(ind_1993);
temp2015=tempdata(ind_2015);
figure, subplot(1,2,1), plot(1:365, temp1993','b', 1:365, temp2015','r'), grid on
title('Temperature'),xlabel('Days'),ylabel('Degree (F)'),legend('1993','2015')
SampTime=86400; % interval between days in seconds
[p1993,f1993]=FFTEnergy(temp1993',SampTime);
[p2015,f2015]=FFTEnergy(temp2015',SampTime);
subplot(1,2,2), plot(f1993, p1993','b', f2015, p2015','r'), set(gca,'YScale','log'), grid on
title('FFT Data'),xlabel('Frequency (Rad/s)'),ylabel('Magnitude'),legend('1993','2015')
```

Result Plots

Contact:

盧家鋒 alvin4016@nycu.edu.tw