Clase 03 - Operaciones aritméticas y lógicas

IIC2343 - Arquitectura de Computadores

- Felipe Valenzuela González

Correo:

Profesor:

frvalenzuela@alumni.uc.cl

Resumen de la clase pasada

Compuertas lógicas

_ A	Q
0	1
1	0

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Α	Hunga	0
В	XNOR)O—	Q

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Algebra booleana

Equivalence	Name of Identity
$p \land T \equiv p$ $p \lor F \equiv p$	Identity Laws
$p \land F \equiv F$ $p \lor T \equiv T$	Domination Laws
$p \land p \equiv p$ $p \lor p \equiv p$	Idempotent Laws
$\neg(\neg p) \equiv p$	Double Negation Law
$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	Commutative Laws
$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative Laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Ditributive Laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's Laws
$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$	Absorption Laws
$p \land \neg p \equiv F$ $p \lor \neg p \equiv T$	Negation Laws

Half Adder

Α	В	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a) Half Adder

Full Adder

Sumador/Restador

¿Dudas?

Introducción:

- Un computador lo definimos como una **máquina programable que ejecuta programas.**
- Para programar necesitamos:
 - Datos: números (enteros, reales) , texto, imágenes, etc
 - Operaciones: suma, resta, multiplicación, división, etc
 - Variables: simples, arreglos
 - Control de flujo: comparaciones, manejo de ciclos
- La clase de hoy veremos más **operaciones**, y lo básico de variables y control

Objetivos de la clase

- Conocer más operaciones aritméticas y lógicas
- Conocer circuitos básicos de control de flujo
- Comenzar el entendimiento de almacenamiento de datos

Resolución de circuitos

Minterm

- Las señales de input se conectan con compuertas AND
- Los valores 0 se niegan con la compuerta NOT
- Todas las combinaciones se conectan con compuertas OR
- Las combinación de de input debe dar 1

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Minterm

Ejemplo:

NOT(A) AND B AND NOT(C)

OR

A AND NOT(B) AND C

OR

A AND B AND C

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Maxterm

- Las señales de **input** se conectan con compuertas **OR**
- Los valores 1 se niegan con la compuerta NOT
- Todas las combinaciones se conectan con compuertas OR
- Las combinación de de input debe dar 0

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Maxterm

Ejemplo:

A OR B OR C

AND A OR B OR NOT(C)

AND A OR NOT(B) OR NOT(C)

AND NOT(A) OR B OR C

AND NOT(A) OR NOT(B) OR C

Α	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

¿Dudas?

Circuitos de control - Enabler

OUT	Е
0	0
Α	1

Circuitos de control - Enabler 4 bits

03020100	E
0	0
A3A2A1A0	1

Circuitos de control - Enabler - Bus Format

OUT	E
0	0
Α	1

Circuitos de control - Multiplexor

Circuitos de control - Multiplexor 4 bits

S	M
0	Α
1	В

Circuitos de control - 4 bit x 4 Mux

S1	S0	M
0	0	Α
0	1	В
1	0	С
1	1	D

Circuitos de control - Demux

S1	S0	Output
0	0	D0 = I
0	1	D1 = I
1	0	D2 = I
1	1	D3 = I

Circuitos de control - Decoder

S1	S0	Output
0	0	D0 = I
0	1	D1 = I
1	0	D2 = I
1	1	D3 = I

¿Dudas?

Operaciones: Sumador y Restador de 4 bits

Operaciones: Sumador-Restador de 4 Bits

Operaciones: Lógicas - Shift Lógico

- Una operación muy ocupada es el **shifting** o desplazamiento.

 Consiste en mover todas las cifras a la izquierda o la derecha.

Operaciones: Lógicas - Shift Left Lógico (SHL)

- Definiremos el desplazamiento a la izquierda como SHIFT LEFT (SHL)
- En binario, desplazar a la izquierda es análogo a multiplicar por 2
- Se agrega un cero en el bit menos significativo

Operaciones: Lógicas - Shift Right Lógico (SHR)

- Definiremos el desplazamiento a la izquierda como SHIFT RIGHT (SHR)
- En binario, desplazar a la izquierda es análogo a división entera por 2
- Se agrega un cero en el bit **más** significativo

¿Dudas?

Operaciones: Operadores lógicos bitwise

Unidad Aritmética Lógica: ALU

- Es el componente principal para hacer operaciones en un computador
- Se basa en operaciones lógicas bitwise y operaciones aritméticas como lo son el sumador-restador
- Su comportamiento interno lo verán próxima semana en la actividad de laboratorio

Unidad Aritmética Lógica: ALU

- Tabla de valores:

S 2	S1	S0	M
0	0	0	Suma
0	0	1	Resta
0	1	0	And
0	1	1	Or
1	0	0	Not
1	0	1	Xor
1	1	0	Shift left
1	1	1	Shift right

Introducción del curso:

- Un computador lo definimos como una **máquina programable que ejecuta programas.**
- Para programar necesitamos:
 - Datos: números (enteros, reales) , texto, imágenes, etc
 - Operaciones: suma, resta, multiplicación, división, etc
 - Variables: simples, arreglos
 - Control de flujo: comparaciones, manejo de ciclos
- Para terminar la clase de hoy, y veremos lo básico para tener variables

Almacenamiento de datos

- Es componente esencial de todo computador
- Es *hardware* especializado para **almacenar** un estado
- Permite realizar un cambio en un instante determinado de tiempo

Almacenamiento de datos: Latch RS

S	R	Q(t+1)
0	0	-
0	1	0
1	0	1
1	1	Q(t)

Clase 03 - Operaciones aritméticas y lógicas

IIC2343 - Arquitectura de Computadores

- Felipe Valenzuela González

Correo:

Profesor:

frvalenzuela@alumni.uc.cl