Примеры решения задач практических занятий.

Задача 3

Комментарии. Положительная оценка получается, если операции сложения и вычитания выполнены в двоично-десятичном коде (BCD). Выполнение в двоичном коде не принимается.

Вторую часть со сдвигами выполнять в модифицированном коде. Даже если это на прямую не указывается.

Если двух байт не хватает, можно размер хранения увеличить до 4.

Двоично-десятичный код предусматривает запись каждого числа десятичного числа с помощью отдельных независимых тетраед. На знак используется вся старшая тетраеда, но в задаче такой результат исключен.

Сложения и вычитание выполняются по правилам двоичного кода. Используется стандартные возможности АЛУ, но из-за несовпадения кодировок требуется коррекция. Коррекция всегда производится с помощью 0110. Кодировка проводится в тех разрядах, которые в результате операций привели к появлению в тетраеде кода числа превышающего 1001. Коррекция необходима, когда происходит перенос бита между соседними тетраедами.

Операцию вычитания производим без использования обратного или обратного дополнительного кода.

При выполнении сдвига и вправо, и влево происходит перемещение позиции каждого бита на размер сдвига в нужном направлении. При сдвиге вправо крайние биты отбрасываются, однако последний отбрасываемый бит используется для процедуры округления. Для положительных чисел и прямого кода если уходит последней 1, то она добавляется

Ī		2	2			8	3			()			5	5	
	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1

	_	-			ç)			6	5			7	7	
1	1	1	1	1	0	0	1	0	1	1	0	0	1	1	1

Условие примера

1.	A	В	D	Представить числа в двоично-десятичном коде и произвести
	5985	2674	1394	вычисления $C_1 = A + B$, $C_2 = A - D$. Представить результат в
				десятичном виде. Представить $-C_2$ в модифицированном
				двоичном дополнительной коде (размер два байта)и выполнить
				сдвиг влево 3 и право на 4. С2 в двоичном модифицированном
				прямом коде и выполнить сдвиг влево на 4 и право на 3.

Решение

Результат преобразования в ВСО

		5			Ç)			{	3			- 4	5	
0	1	0	1	1	0	0	1	1	0	0	0	0	1	0	1

	2	2			6	5			7	7			۷	1	
0	0	1	0	0	1	1	0	0	1	1	1	0	1	0	0

]	[3	3			ç)				1	
0	0	0	1	0	0	1	1	1	0	0	1	0	1	0	0

Сложение

													*			
	0	1	0	1	1	0	0	1	1	0	0	0	0	1	0	1
+	0	0	1	0	0	1	1	0	0	1	1	1	0	1	0	0
_	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1

Требуется коррекция в во второй и третье тетраедах

Полученное число 8659 соответствует результату обыкновенных правил математики. Вычитание

Требуется коррекция в третьем разряде

После коррекции 4591 результат соответствует правилам математики

Для выполнения операций сдвига получим двоичный код числа 4591 через восьмеричный код

Число $4591_{10} = 11757_8 = 0.001 \ 001 \ 111 \ 101 \ 111_2$

Соответственно в модифицированном коде

$$C_2 = 4591_{10} = 11757_8 = 00.001\ 001\ 111\ 101\ 111_2$$

Тогда

 $-C_2 = -4591_{10} = 11.001\ 001\ 111\ 101\ 111_{\Pi K} = 11.110\ 110\ 000\ 010\ 000_{OK} =$

 $= 11.110 \ 110 \ 000 \ 010 \ 001_{MK}$

Выполним сдвиг для С₂ на 4 влево и на 3 вправо.

Сдвиг для положительного числа.

 $C_2 = 00.001\ 001\ 111\ 101\ 111_2$ © $00.000\ 001\ 001\ 111\ 110_2$ (так как последней ушла 1, то к последнему биту добавлена 1, синим обозначена неизменившееся часть).

 $C_2 = 00.001 \ 001 \ 111 \ 101 \ 111_2 \ \frac{4}{3} \ 01.001 \ 111 \ 101 \ 111 \ 000_2$. Переполнение на 3 шаге сдвига. Дальше сдвигать нельзя (синим обозначена неизменившееся часть).

Выполним сдвиг для и -С2 в прямом коде на 2 влево и на 4 вправо

 $-C_2 = 11.001\ 001\ 111\ 101\ 111_{\text{ПК}}$ (так как последней ушла 1, то к последнему биту добавлена 1, синим обозначена неизменившееся часть).

 $-C_2 = 11.001\ 001\ 111\ 101\ 111_{\text{IIK}} \stackrel{?}{=} 11.100\ 111\ 110\ 111\ 100_{\text{IIK}}$

Выполним сдвиг для и -С2 в обратном коде на 3 влево и на 5 вправо

 $-C_2 = 11.110\ 110\ 000\ 010\ 000_{OK}$ (так как последней ушла 1, то последний бит неизменился, синим обозначена неизменившееся часть).

 $-C_2 = 11.110\ 110\ 000\ 010\ 000_{\rm OK}\ \frac{3}{2}\ 10.110\ 000\ 010\ 000\ 111_{\rm OK}$ Переполнение на 3 шаге слвига.

Выполним сдвиг для и $-C_2$ в обратном дополнительном коде на 2 влево и на 4 вправо

Положительные числа в прямом, обратном и дополнительном коде.

При сдвиге происходит изменение числа. Сдвиг вправо приводит к уменьшению значения в 2^n , где n- где величина сдвига. Сдвиг влево приводит, соответственно, к увеличению в 2^n . Это является основной цель операции сдвига.

При выполнении сдвига существуют ограничения. Сдвиги на n позиций осуществляется не сразу. Операция проводится последовательно микропроцессором с контролем корректности выполнения операции. При сдвиге влево происходит контроль переполнения. В случае его обнаружения с помощью модифицированного кода, операция сдвига останавливается. Происходит запуск специального алгоритма отработки возникшей ошибки или просто формируется сообщение об ошибке. При сдвиге вправо происходит контроль обнуления числа. Дальше сдвиг не производится. В случае сдвига вправо, после последнего такта сдвига, производится процедура округления на основании отброшенных битов.

При сдвиге положительных чисел правила для прямого, обратного и дополнительного кодов кода одинаковы. При необходимости сдвига вправо или влево на п позиций, происходит, соответственно, последовательное выпадения п битов справа или слева. Остальные биты передвигаются с сохранением той же последовательности на освобождающие места. Крайние биты заполняются нулями. В простейшем случае процедура округления осуществляется математическим прибавлением 1, если на последнем такте была отброшена 1. Смотри две следующие таблицы Единица, отбрасывания которой, требует добавление единицы к младшему биту, обозначена красным цветом

Исходное	Исходный	Сдвиг на 1	Результат с	Десятичный	Результат
десятичное	прямой	вправо (треб. по	учетом	эквивалент	деления
значение	код	округ)	округления		на 2
31	00.0011111	00.0001111(+1)	00.0010000	16	15,5
30	00.0011110	00.0001111	00.0001111	15	15
29	00.0011101	00.0001110(+1)	00.0001111	15	14,5
28	00.0011100	00.0001110	00.0001110	14	14
27	00.0011011	00.0001101(+1)	00.0001110	14	13,5
26	00.0011010	00.0001101	00.0001101	13	13
25	00.0011001	00.0001100(+1)	00.0001101	13	12,5
24	00.0011000	00.0001100	00.0001100	12	12
23	00.0010111	00.0001011(+1)	00.0001100	12	11,5

Все результаты соответствуют правилам математики

Исходное	Исходный	Сдвиг на 3	Результат с	Десятичный	Результат
десятичное	прямой	вправо (треб. по	учетом	эквивалент	деления
значение	код	округ)	округления		на 8
31	00.0011111	00.0000011(+1)	00.0000100	4	3,875
30	00.0011110	00.0000011(+1)	00.0000100	4	3,75
29	00.0011101	00.0000011(+1)	00.0000100	4	3,625
28	00.0011100	00.0000011(+1)	00.0000100	4	3,5
27	00.0011011	00.0000011	00.0000011	3	3,375
26	00.0011010	00.0000011	00.0000011	3	3,25
25	00.0011001	00.0000011	00.0000011	3	3,125
24	00.0011000	00.0000011	00.0000011	3	3

	_				
23	00.0010111	00.0000010(+1)	00.0000011	3	2.875

Как мы видим, соблюдение выше указанного правила округления позволяет операции сдвига, соответствовать правилам математики.

Сдвиг влево. При однобайтном хранении чисел сдвиг чисел больше чем на 3 разряда приводит к переполнению для десятичных эквивалентов больше 15.

приводии и	- P CII COIII CIIII	о дли десити шви	0112112 00 1411102	CONDENS TO	
Исходное	Исходный	Сдвиг на 1	Десятичный	Сдвиг на	Десятичный
десятичное	прямой	влево	эквивалент	влево 3	эквивалент
значение	код				
31	00.0011111	00.0111110	62	01.111100	переполнение
30	00.0011110	00.0111100	60	01.111000	переполнение
29	00.0011101	00.0111010	58	01.110100	переполнение
28	00.0011100	00.0111000	56	01.110000	переполнение
27	00.0011011	00.0110110	54	01.101100	переполнение
16	00.0010000	00.0100000	32	01.000000	переполнение
15	00.0001111	00.0011110	30	00.111100	90
14	00.0001110	00.0011100	28	00.111000	86
13	00.0001101	00.0011010	26	00.110100	82

Прямой код отрицательных чисел

При сдвиге в право отрицательных чисел в прямом коде, кроме контроля за обнулением, осуществляют контроль округления. Как и для положительных чисел, при отбрасывании в прямом коде на последнем такте сдвига 1, производится прибавлении ее к младшему биту.

Исходное	Исходный	Сдвиг на 1 вправо	Результат с	Десятичный	Результат
десятичное	прямой	(треб. по округ)	учетом	эквивалент	деления
значение	код		округления		на 2
-31	11.0011111	11.0001111(+1)	11.0010000	-16	-15,5
-30	11.0011110	11.0001111	11.0001111	-15	-15
-29	11.001110 <mark>1</mark>	11.0001110(+1)	11.0001111	-15	-14,5
-28	11.0011100	11.0001110	11.0001110	-14	-14
-27	11.0011011	11.0001101(+1)	11.0001110	-14	-13,5
-26	11.0011010	11.0001101	11.0001101	-13	-13
-25	11.001100 <mark>1</mark>	11.0001100(+1)	11.0001101	-13	-12,5
-24	11.0011000	11.0001100	11.0001100	-12	-12
-23	11.0010111	11.0001011(+1)	11.0001100	-12	-11,5

Все результаты соответствуют правилам математики

Исходное	Исходный	Сдвиг вправо	Результат с	Десятичный	Результат
десятичное	прямой	на 3 (треб. по	учетом	эквивалент	деления
значение	код	округ)	округления		на 2
-31	11.0011111	11.0000011(+1)	11.0000100	-4	-3,875
-30	11.0011110	11.0000011(+1)	11.0000100	-4	-3,75
-29	11.0011101	11.0000011(+1)	11.0000100	-4	-3,625
-28	11.0011100	11.0000011(+1)	11.0000100	-4	-3,5
-27	11.0011011	11.0000011	11.0000011	-3	-3,375
-26	11.0011010	11.0000011	11.0000011	-3	-3,25
-25	11.0011001	11.0000011	11.0000011	-3	-3,125
-24	11.0011000	11.0000011	11.0000011	-3	-3
-23	11.0010111	11.0001110(+1)	11.0000011	-3	-2,875

Все результаты соответствуют правилам математики

Сдвиг влево. При осуществлении сдвига происходит инверсия бита перед тем как перейти на позицию знака. При однобайтном размере при сдвиге с седьмой на восьмую позицию. Как и ранее, сдвиг чисел больше чем на 3 разряда приводит к переполнению для десятичных эквивалентов больше 15.

17	11	C	π	C 2	П
Исходное	Исходный	Сдвиг влево на	Десятичный	Сдвиг на 3	Десятичный
десятичное	прямой	1	эквивалент	влево	эквивалент
значение	код				
-31	11.0011111	11.0111110	-62	10.111100	переполнение
-30	11.0011110	11.0111100	-60	10.111000	переполнение
-29	11.0011101	11.0111010	-58	10.110100	переполнение
-28	11.0011100	11.0111000	-56	10.110000	переполнение
-27	11.0011011	11.0110110	-54	10.101100	переполнение
-16	11.0010000	11.0100000	-32	10.000000	переполнение
-15	11.0001111	11.0011110	-30	10.111100	-120
-14	11.0001110	11.0011100	-28	10.111000	-118
-13	11.0001101	11.0011010	-26	10.110100	-104

Обратный код отрицательных чисел

При сдвиге отрицательных чисел вправо при отбрасывании 0 производится вычитание 1 из младшего бита. Ноль, отбрасывания которой, требует вычитание единицы из младшего бита, обозначена красным цветом

онта, обобна тена краенъм дветом												
Исходное	Исходный	Исходный	Сдвиг на 1	Результат с	Результат в	Десятичный	Результат					
десятичное	прямой код	обратный	вправо (треб.	учетом	прямом	эквивалент	деления на					
значение		код	по округ)	округления	коде		2					
-31	11.0011111	11.1100000	11.1110000(-1)	11.1101111	11.0010000	-16	-15,5					
-30	11.0011110	11.1100001	11.1110000	11.1110000	11.0001111	-15	-15					
-29	11.0011101	11.110001 <mark>0</mark>	11.1110001(-1)	11.1110000	11.0001111	-15	-14,5					
-28	11.0011100	11.1100011	11.1110001	11.1110001	11.0001110	-14	-14					
-27	11.0011011	11.1100100	11.1110010(-1)	11.1110001	11.0001110	-14	-13,5					
-26	11.0011010	11.1100101	11.1110010	11.1110010	11.0001101	-13	-13					
-25	11.0011001	11.1100110	11.1110011(-1)	11.1110010	11.0001101	-13	-12,5					
-24	11.0011000	11.1100111	11.1110011	11.1110011	11.0001100	-12	-12					
-23	11.0010111	11.1101000	11.1110100(-1)	11.1110011	11.0001100	-12	-11,5					

Все результаты соответствуют правилам математики

При сдвиге отрицательных чисел вправо при отбрасывании 0 производится вычитание 1 из младшего бита. Ноль, отбрасывания которой, требует вычитание единицы из младшего бита, обозначена красным цветом

oniu, ooosi	na iena kpae	пын цьстон	1			onta, ocosita iena kpaenisim que iom												
Исходное	Исходный	Исходный	Сдвиг вправо	Результат с	Результат в	Десятичный	Результат											
десятичное	прямой код	обратный	на 3 (треб. по	учетом	прямом	эквивалент	деления											
значение		код	округ)	округления	коде		на 8											
-31	11.0011111	11.1100 <mark>0</mark> 00	11.1111100(-1)	11.1111011	11.0000100	-4	-3,875											
-30	11.0011110	11.1100001	11.1111100(-1)	11.1111011	11.0000100	-4	-3,75											
-29	11.0011101	11.1100010	11.1111100(-1)	11.1111011	11.0000100	-4	-3,625											
-28	11.0011100	11.1100011	11.1111100(-1)	11.1111011	11.0000100	-4	-3,5											
-27	11.0011011	11.1100100	11.1111100	11.1111100	11.0000011	-3	-3,375											
-26	11.0011010	11.1100101	11.1111100	11.1111100	11.0000011	-3	-3,25											
-25	11.0011001	11.1100110	11.1111100	11.1111100	11.0000011	-3	-3,125											
-24	11.0011000	11.1100111	11.1111100	11.1111100	11.0000011	-3	-3											
-23	11.0010111	11.1101 <mark>0</mark> 00	11.1111101(-1)	11.1111100	11.0000011	-3	-2,875											

Все результаты соответствуют правилам математики

1	Исходное	Исходный	Исходный	Сдвиг	Результат в	Десятичный	Сдвиг	Результат в	Десятичный
	десятичное	прямой код	обратный	влево на 1	прямом	эквивалент	влево на 3	прямом	эквивалент
	значение		код		коде			коде	

-31	11.0011111	11.1100000	11.1000001	11.0111110	-62	10.0000111	10.1111000	переполнение
-30	11.0011110	11.1100001	11.1000011	11.0111100	-60	10.0001111	10.1110000	переполнение
-29	11.0011101	11.1100010	11.1000101	11.0111010	-58	10.0010111	10.1101000	переполнение
-28	11.0011100	11.1100011	11.1000111	11.0111000	-56	10.0011111	10.1100000	переполнение
-27	11.0011011	11.1100100	11.1001001	11.0110110	-54	10.0010011	10.1101100	переполнение
-16	11.0010000	11.1101111	11.1011111	11.0100000	-32	10.1111111	10.0000000	переполнение
-15	11.0001111	11.1110000	11.1100001	11.0011110	-30	11.0000111	11.1111000	-120
-14	11.0001110	11.1110001	11.1100011	11.0011100	-28	11.0001111	11.1110000	-118
-13	11.0001101	11.1110010	11.1100101	11.0011010	-26	11.0010111	11.1101000	-104

Все результаты соответствуют правилам математики

Исходное десятичное значение	Исходный прямой код	Исходный обратный код	Сдвиг влево на 3	Результат в прямом коде	Десятичный эквивалент
-31	11.0011111	11.1100000	10.0000001	11.0111110	-62
-30	11.0011110	11.1100001	10.1000011	11.0111100	-60
-29	11.0011101	11.1100010	10.1000101	11.0111010	-58
-28	11.0011100	11.1100011	11.1000111	11.0111000	-56
-27	11.0011011	11.1100100	11.1001001	11.0110110	-54
-26	11.0011010	11.1100101	11.1001011	11.0110100	-52
-25	11.0011001	11.1100110	11.1001101	11.0110010	-50
-24	11.0011000	11.1100111	11.1001111	11.0110000	-48
-23	11.0010111	11.1101000	11.1010001	11.0101110	-46

Обратный дополнительный код отрицательных чисел

При сдвиге в право чисел в обратном дополнительном коде ситуация более сложная. Как и при сдвиге вправо, отрицательных чисел в обратном коде, на освобождающееся место после знака появляются единицы.

Исходное	Исходный	Исходный	Исходный	Сдвиг на 1	Результат с	Результат в	Результат в	Десятичный	Результат
10	прямой код	обратный	обратный		учетом	обратном	прямом	эквивалент	деления на
значение		код	дополнительный		округления	коде	коде		2
			код						
-36	11.0100100	11.1011011	11.1011100	11.1101110	11.1101110	11.1101101	11.0010010	-18	18
-35	11.0100011	11.1011100	11.1011101	11.1101110	11.1101110	11.1101101	11.0010010	-18	17,5
-34	11.0100010	11.1011101	11.1011110	11.1101111	11.1101111	11.1101110	11.0010001	-17	17
-33	11.0100001	11.1011110	11.1011111	11.1101111	11.1101111	11.1101110	11.0010001	-17	16,5
-32	11.0100000	11.1011111	11.1100000	11.1110000	11.1110000	11.1101111	11.0010000	-16	16
-31	11.0011111	11.1100000	11.1100001	11.1110000	11.1110000	11.1101111	11.0010000	-16	-15,5
-30	11.0011110	11.1100001	11.1100010	11.1110001	11.1110001	11.1110000	11.0001111	-15	-15
-29	11.0011101	11.1100010	11.1100011	11.1110001	11.1110001	11.1110000	11.0001111	-15	-14,5
-28	11.0011100	11.1100011	11.1100100	11.1110010	11.1110010	11.1110001	11.0001110	-14	-14
-27	11.0011011	11.1100100	11.1100101	11.1110010	11.1110010	11.1110001	11.0001110	-14	-13,5
-26	11.0011010	11.1100101	11.1100110	11.1110011	11.1110011	11.1110010	11.0001101	-13	-13
-25	11.0011001	11.1100110	11.1100111	11.1110011	11.1110011	11.1110010	11.0001101	-13	-12,5
-24	11.0011000	11.1100111	11.1101000	11.1110100	11.1110100	11.1110011	11.0001100	-12	-12
-23	11.0010111	11.1101000	11.1101001	11.1110100	11.1110100	11.1110011	11.0001100	-12	-11,5
-22	11.0010110	11.1101001	11.1101010	11.1110101	11.1110101	11.1110100	11.0001011	-11	11

Все результаты соответствуют правилам математики

Как мы видим, при сдвиге на 1 проблемы округления нет, как при прямом или обратном коде.

Совсем другие аспекты возникаю при сдвиге на 2 и более. Теперь для обеспечения математических правил нужно следить, что отбрасываем. Для соблюдения правил математики при округлении требует прибавления 1, если последней отбрасывается 1 и в

предыдущих битах присутствовали хотя бы одна единица.

иг на 3 Результат с	Результат в	Результат	Десятичны	Результат
учетом	обратном	в прямом	й	деления на
округления	коде	коде	эквивалент	8
1011 11.1111011	11.1111010	11.0000101	-5	-4,5
1011(+1) 11.1111100	11.1111011	11.0000100	-4	-4,375
1011(+1) 11.1111100	11.1111011	11.0000100	-4	-4,25
1011(+1) 11.1111100	11.1111011	11.0000100	-4	-4,125
1100 11.1111100	11.1111011	11.0000100	-4	4
	учетом округления 1011 11.11111011 1011(+1) 11.1111100 1011(+1) 11.1111100 1011(+1) 11.1111100	учетом обратном коде 1011 11.1111011 11.1111010 1011(+1) 11.1111100 11.1111011 1011(+1) 11.1111100 11.1111011 1011(+1) 11.1111100 11.1111011	учетом округления коде в прямом коде 1011 11.1111011 11.1111010 11.0000101 1011(+1) 11.1111100 11.1111011 11.0000100 1011(+1) 11.1111100 11.1111011 11.0000100 1011(+1) 11.1111100 11.1111011 11.0000100	учетом обратном коде в прямом й эквивалент 1011 11.1111011 11.1111010 11.0000101 —5 1011(+1) 11.1111100 11.1111011 11.0000100 —4 1011(+1) 11.1111100 11.1111011 11.0000100 —4 1011(+1) 11.1111100 11.1111011 11.0000100 —4

-31	11.0011111	11.1100000	11.1100001	11.1111100	11.1111100	11.1111011	11.0000100	-4	-3,875
-30	11.0011110	11.1100001	11.1100010	11.1111100	11.1111100	11.1111011	11.0000100	-4	-3,75
-29	11.0011101	11.1100010	11.1100011	11.1111100	11.1111100	11.1111011	11.0000100	-4	-3,625
-28	11.0011100	11.1100011	11.1100100	11.1111100	11.1111100	11.1111011	11.0000100	-4	-3,5
-27	11.0011011	11.1100100	11.1100101	11.1111100(+1)	11.1111101	11.1111100	11.0000011	-3	-3,375
-26	11.0011010	11.1100101	11.1100110	11.1111100(+1)	11.1111101	11.1111100	11.0000011	-3	-3,25
-25	11.0011001	11.1100110	11.1100111	11.1111100(+1)	11.1111101	11.1111100	11.0000011	-3	-3,125
-24	11.0011000	11.1100111	11.1101000	11.1111101	11.1111101	11.1111100	11.0000011	-3	-3
-23	11.0010111	11.1101000	11.1101001	11.1111101	11.1111101	11.1111100	11.0000011	-3	-2,875
-22	11.0010110	11.1101001	11.1101010	11.1111101	11.1111101	11.1111100	11.0000011	-3	-2,75

Исходное	Исходный	Исходный	Исходный	Сдвиг на 2	Результат с	Результат в	Результат	Десятичны	Результат
десятичное	прямой код	обратный	обратный		учетом	обратном	в прямом	й	деления на
значение		код	дополните		округления	коде	коде	эквивалент	4
			льный код						
-36	11.0100100	11.1011011	11.1011100	11.1110111	11.1110111	11.1110110	11.0001001	-9	-9
-35	11.0100011	11.1011100	11.1011101	11.1110111	11.1110111	11.1110110	11.0001001	-9	-8,75
-34	11.0100010	11.1011101	11.1011110	11.1110111	11.1110111	11.1110110	11.0001001	-9	-8,5
-33	11.0100001	11.1011110	11.1011111	11.1110111(+1)	11.1111000	11.1110111	11.0001000	-8	-8,25
-32	11.0100000	11.1011111	11.1100000	11.1111000	11.1111000	11.1110111	11.0001000	-8	8
-31	11.0011111	11.1100000	11.1100001	11.1111000	11.1111000	11.1110111	11.0001000	-8	-7,75
-30	11.0011110	11.1100001	11.1100010	11.1111000	11.1111000	11.1110111	11.0001000	-8	-7,5
-29	11.0011101	11.1100010	11.1100011	11.1111000(+1)	11.1111001	11.1111000	11.0000111	-7	-7,25
-28	11.0011100	11.1100011	11.1100100	11.1111001	11.1111001	11.1111000	11.0000111	-7	-7
-27	11.0011011	11.1100100	11.1100101	11.1111001	11.1111001	11.1111000	11.0000111	-7	-6,75
-26	11.0011010	11.1100101	11.1100110	11.1111001	11.1111001	11.1111000	11.0000111	-7	-6,5
-25	11.0011001	11.1100110	11.1100111	11.1111001(+1)	11.1111011	11.1111001	11.0000110	-6	-6,25
-24	11.0011000	11.1100111	11.1101000	11.1111010	11.1111011	11.1111001	11.0000110	-6	-6
-23	11.0010111	11.1101000	11.1101001	11.1111010	11.1111011	11.1111001	11.0000110	-6	-5,75
-22	11.0010110	11.1101001	11.1101010	11.1111010	11.1111011	11.1111001	11.0000110	-6	-5,5

Все результаты соответствуют правилам математики Исходное число

$$11.111\ 110\ 011\ 100\ 111_{\text{JK}} = 11.111\ 110\ 011\ 100\ 110_{\text{OK}} = 11.000\ 001\ 100\ 011\ 001_{\text{IIK}} = (-1)\ (1+8+16+256+512) = -793_{10}$$

Примеры сдвига вправо чисел в дополнительном коде

```
-793_{10} = 11.111\ 110\ 011\ 100\ 111_{\rm ДK} \textcircled{b} = 11.111\ 111\ 001\ 110\ 011_{\rm ДK} » (поскольку последней ушла 1 только одна 1, то необходимости прибавить 1 нет) » 11.111\ 111\ 001\ 110\ 011_{\rm ДK} -793/2 = -396,5 » -397 = 11.111\ 111\ 001\ 110\ 011_{\rm ДK}
```

```
-793_{10} = 11.111 \ 110 \ 011 \ 100 \ 111_{\text{JK}} \stackrel{2}{\otimes} = 11.111 111 110 011 100<sub>JK</sub> »
```

» 11.111 111 110 011 $101_{\rm ДK}$ (поскольку последней ушла 1 и в предыдущих битах присутствовала 1, то необходимо прибавить 1)

$$-793/8 = -99,125 \text{ } \text{"} -99 = 11.111 \ 111 \ 110 \ 011 \ 101_{\text{ДK}}$$

$$-793_{10} = 11.111\ 110\ 011\ 100\ 111_{\rm JK}$$
 \clubsuit = 11.111\ 111\ 111\ 100\ 110_{\rm JK} »

» 11.111 111 111 001 $110_{\rm ДK}$ (поскольку последним ушел ноль, то не прибавляем 1) -793/16 = -49,5625» -50 = 11.111 111 111 001 $110_{\rm JK}$

$$-793_{10} = 11.111\ 110\ 011\ 100\ 111_{\rm JK}$$
 \bigcirc = 11.111\ 111\ 111\ 110\ 011_{\rm JK} \triangleright

» 11.111 111 111 110 100_{ЛК}

(поскольку последней ушла 1 и в предыдущих битах присутствовала 1, то необходимо прибавить 1)

```
-793/64 = -12,390625» -12 = 11.111 111 111 110 100_{\text{ДK}}
```

```
-800_{10} = 11.111 \ 110 \ 011 \ 100 \ 000_{\text{TK}} (a) = 11.111 111 111 110 011<sub>TK</sub> »
» 11.111 111 110 100_{\rm ЛK} (поскольку последней ушла 1 и в предыдущих битах не
присутствуют 1, то необходимости прибавить 1 нет)
-800/64 = -12.5» -13 = 11.111 111 111 110 011_{JIK}
-799_{10} = 11.111 \ 110 \ 011 \ 100 \ 001_{\text{JK}} (a) = 11.111 111 111 110 011<sub>JK</sub> »
»11.111 111 111 110 100_{\rm ЛK} (поскольку последней ушла 1 и в предыдущих битах
присутствует 1, то необходимо прибавить 1)
-799/64 = -12,484375» -12 = 11.111 111 111 110 100<sub>TK</sub>
Примеры сдвига вправо чисел в обратном коде
-793_{10} = 11.111\ 110\ 011\ 100\ 110_{OK} = 11.111\ 111\ 001\ 110\ 011_{OK} » (поскольку последним
ушел 0, то необходимо вычесть 1) » 11.111\ 111\ 001\ 110\ 010_{\rm OK}
-793/2 = -396.5 \text{ } \text{>} -397 = 11.111 \ 111 \ 001 \ 110 \ 010_{OK}
-793_{10} = 11.111 \ 110 \ 011 \ 100 \ 110_{OK} \stackrel{2}{\otimes} = 11.111 111 110 011 100<sub>OK</sub> »
» 11.111 111 110 011 100_{OK} (поскольку последней ушла 1, то не вычитаем 1)
-793/8 = -99,125 \text{ } \text{ } \text{ } -99 = 11.111 111 110 011 100_{OK}
-793_{10} = 11.111 \ 110 \ 011 \ 100 \ 110_{OK} = 11.111 \ 111 \ 111 \ 001 \ 110_{OK} »
 » 11.111 111 111 001 101<sub>ОК</sub> (поскольку последним ушел 0, то необходимо вычесть 1)
-793/16 = -49,5625 \text{ } -50 = 11.111 \ 111 \ 111 \ 001 \ 101_{OK}
-793_{10} = 11.111 \ 110 \ 011 \ 100 \ 110_{OK} (a) = 11.111 111 111 110 011 _{OK} »
» 11.111 111 111 110 011 <sub>ОК</sub> (поскольку последней ушла 1, то не вычитаем 1)
-793/64 = -12,390625 \text{ }» -12 = 11.111 111 111 110 011_{OK}
-800_{10} = 11.111 \ 110 \ 011 \ 011 \ 111_{OK} \bigcirc = 11.111 111 111 110 011<sub>OK</sub> \bigcirc
» 11.111 111 111 110 010 <sub>ОК</sub> (поскольку последним ушел 0, то необходимо вычесть 1)
-800/64 = -12.5 \text{ } -13 = 11.111 111 111 110 010_{OK}
-799_{10} = 11.111 \ 110 \ 011 \ 100 \ 000_{OK} (a) = 11.111 111 111 110 011 _{OK} »
»11.111 111 111 110 011<sub>ОК</sub> (поскольку последней ушла 1, то не вычитаем 1)
-799/64 = -12,484375» -12 = 11.1111111111111110011<sub>OK</sub>
Примеры сдвига вправо чисел в прямом коде
-793_{10} = 11.000\ 001\ 100\ 011\ 001_{\text{ПК}} \rightleftharpoons = 11.000\ 000\ 110\ 001\ 100_{\text{ПК}} » (поскольку последним
ушла 1, то необходимо прибавить 1) » 11.000\,000\,110\,001\,101_{\Pi K}
-793/2 = -396.5 » -397 = 11.000\ 000\ 110\ 001\ 101_{\text{TIK}}
-793_{10} = 11.000\ 001\ 100\ 011\ 001_{\text{TIK}} \approx 11.000\ 000\ 001\ 100\ 011_{\text{TIK}} »
» 11.000\ 000\ 001\ 100\ 011_{\rm HK} (поскольку последним ушел 0, то не прибавляем 1)
-793/8 = -99,125 \text{ } \text{ } \text{ } \text{ } -99 = 11.000\ 000\ 001\ 100\ 011_{\text{TIK}}
-793_{10} = 11.000\ 001\ 100\ 011\ 001_{\Pi K} \textcircled{8} = 11.000\ 000\ 000\ 110\ 001_{\Pi K} \overset{\bullet}{} »
 » 11.000 000 000 110 010<sub>ПК</sub> (поскольку последним ушла 1, то необходимо прибавить 1)
```

```
-793/16 = -49,5625» -50 = 11.000\ 000\ 000\ 110\ 010_{\Pi K} = 11.000\ 000\ 000\ 001\ 100_{\Pi K} » » 11.000\ 000\ 000\ 001\ 100_{\Pi K} (поскольку последним ушел 0, то не прибавляем 1) -793/64 = -12,390625» -12 = 11.000\ 000\ 000\ 001\ 100_{\Pi K} » » 11.000\ 000\ 001\ 100\ 100\ 000_{\Pi K} = 11.\ 11.000\ 000\ 000\ 001\ 100_{\Pi K} » » 11.000\ 000\ 000\ 001\ 101_{\Pi K} (поскольку последним ушла 1, то необходимо прибавить 1) -800/64 = -12,5» -13 = 11.\ 11.000\ 000\ 000\ 001\ 101_{\Pi K} = 11.\ 11.000\ 000\ 000\ 001\ 100_{\Pi K} » » 11.000\ 000\ 001\ 100\ 011\ 111_{\Pi K} = 11.\ 11.000\ 000\ 000\ 001\ 100_{\Pi K} » » 11.000\ 000\ 000\ 001\ 100_{\Pi K} (поскольку последним ушел 0, то не прибавляем 1) -799/64 = -12,484375» -12 = 11.000\ 000\ 000\ 001\ 100_{\Pi K}
```