Genome-wide association and sequencing studies

Pubh 8446

3/2/2020

Logit factor analysis (LFA) and inverse regression for association test (GCAT)

- Refs
 - 1. Hao W, Song M, Storey JD. Probabilistic models of genetic variation in structured populations applied to global human studies. Bioinformatics. 2016 Mar 1;32(5):713–21.
 - 2. Gopalan P, Hao W, Blei DM, Storey JD. Scaling probabilistic models of genetic variation to millions of humans. Nat Genet. 2016 Dec;48(12):1587–90.
 - 3. Song M, Hao W, Storey JD. Testing for genetic associations in arbitrarily structured populations. Nat Genet. 2015 May;47(5):550–4.
- Given genotype matrix $G = (g_{ij})$ for sample i = 1, ..., n; and marker j = 1, ..., m
 - model $g_{ij} \sim Binom(2, \theta_{ij})$, where θ_{ij} is the marker MAF
 - approx $[logit(\theta_{ii})] = \Gamma F$
 - Γ: latent factors/variables (nxd)
 - F: coefficient/loading matrix (dxm)
 - latent dimension $d \ll n, m$
 - In downstream analyses, say, adjuting for population stratification
 - treat fitted $(\hat{\theta}_{ij}) = [\exp(\hat{\Gamma}\hat{F})]$ as the population stratification component (uni-covariate)
 - smaller number of params, potentially leading to more power
 - Treat the latent factors Γ as d ancestry covariates to be adjusted in any statistical models
 - more flexible
 - compared to PCA approx: $G \approx L = \Gamma F$
 - model identifiability: need some constraint on Γ and F, say, orthogonality
- Estimations
 - PCA estimation: $\min_{\Gamma,F} \|G \Gamma F\|^2$
 - bilinear regressions: row and column wise LS
 - (composite) likelihood maximization
 - $\max_{\Gamma,F} \sum_{i,j} \Pr(g_{ij} | \theta_{ij})$
 - computationally intensive ($n \sim 10^5, m \sim 10^5$)
 - 2-step PCA approx
 - 1. PCA/SVD of G to approx \hat{G} , used to form $\hat{L} = logit(\hat{G})$ (thresholded to [0,1])
 - 2. PCA/SVD of $\hat{L} \approx \Gamma F$
 - 3. Fix Γ , fit logit model to estimate/update F.
 - each column of F can be estimated by fitting a logit model for each marker (column of G).
 - Note, $L_{.j} = \sum_{k=1}^{K} \Gamma_{.k} \gamma_{kj}$

Genotype-conditional association test (GCAT)

- Consider a SNP with genotypes $G = (g_1, \dots, g_n)$, marginally following $Binom(2, \theta)$
- Given a quantitative or binary trait Y,
 - outcome model $Y \sim N(\alpha + G\beta, \sigma^2)$ or $logit[Pr(Y = 1|G)] = \alpha + G\beta$
 - interested in testing $H_0: \beta = 0$
- GCAT
 - consider the following GCAT model, $(G|Y) \sim Binom(2, \tau)$
 - $logit(\tau) = \nu + Y\gamma + logit(\theta)$
 - can show that $\beta = 0$ implies $\gamma = 0$
 - so an equivalent test $H_0: \gamma = 0$
 - check LM and Logit model (TBD)
 - modeling $logit(\theta) = \Gamma \Delta$
 - leverage information across all SNPs to estimate Γ
 - treat Δ as params to be estimated jointly with other parameters.

Association test of imputed SNPs

- Previous model implicitly assumes we directly observe G, taking values in $\{0, 1, 2\}$.
- For those not directly genotyped SNPs (not in the chip)
 - we can predict/impute their genotypes pretty accurately by leveraging the local LD and the powerful HMM (TBD)
 - we obtain imputation prob instead, (p_0, p_1, p_2)
 - here $\sum_i p_i = 1$, telling us the relative prob of observing each genotype for the imputed SNP
- · How to test imputed SNPs?
 - use the best-guess genotypes, $\hat{G} = \arg \max_i p_i$
 - some obvious loss of information
 - how to best account for the imputation scores? (TBD)
 - score functions/imputation scores/GEE
 - quasi-likelihood

Statistical test in binomial regression model

- Consider e.g. a logistic regression model $logit[Pr(Y = 1|G)] = \alpha + G\beta$
 - interested in testing $H_0: \beta = 0$
- · Three asymptotically equivalent tests
 - Wald test
 - $\hat{\beta}^2/\widehat{Var}(\hat{\beta})$, asymptotically a χ_1^2 rv
 - asymptotic covariance from the Fisher information matrix (computed under the MLE)
 - Score test
 - score function $U = G^T(Y \hat{\theta}_0)$
 - $\hat{ heta}_0$ estimated event prob under the null
 - asymptotic covariance from the Fisher information matrix (computed under the null model)
 - $U^2/\widehat{Var}(U) \sim \chi_1^2$ under the null
 - LRT

- fit two models, under $\beta = 0$ and without constraint
- compute the LRT (likelihood ratio test), asymptotically a χ_1^2 rv
- · Wald test
 - computed under the MLE (potential problems due to quasi-separation etc)
 - degenerate power as $n \to \infty$
 - need large sample size n and work well for small-dim test problems ($p \ll n$)
- · Score test
 - o computed under the null
 - well-behaved, though slightly conservative
 - · computationally convenient
 - work well even when dimension of $G p \gg n!$
- LRT
 - Fit two models under the null and alternative
 - · computationally intensive
 - well-calibrated and generally the most powerful
 - need large sample size n and work well for small-dim test problems ($p \ll n$)