Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica - FEELT

Instrumentos de Medição: Voltímetro

Laboratório de Metrologia

Prof.: Eduardo Tavares

Aluno Matrícula

Pedro Paulo Costa Castro Alves 11721ECP017

Índice

1	Intro	odução	2			
2	Obje	etivos	2			
3	Mate	eriais e Métodos	2			
4 Resultados e Discussões						
	4.1	Multímetro e Circuito	3			
	4.2	Protoboard	4			
	4.3	Conversões de unidades e medidas	5			
5	Cone	clusões	5			
6	Refe	rências Bibliográficas e Bibliografia	5			

1 Introdução

Trata-se de um estudo da elétrica sob o escopo da metrologia. Nesta disciplina uma das leis mais importantes e que servirá de base teórica para os experimentos é a de Ohm, ela conjectura que num circuito linear o valor da tensão (V) é igual o produto da resistência (R) pela corrente (i) [1]

$$V = R.i \tag{1}$$

O valor da resistência dos resistores dum circuito em série é igual sua soma tal que:

$$R_1 + R_2 + R_3 \cdots + R_n = R_{total} \tag{2}$$

Para resistores em paralelo pode-se calcular uma resistência equivalente assim:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 (3)

Na metrologia elétrica há aparelhos diversos para medir as grandezas tais como voltímetro (tensão), ohmímetro (resistência), amperímetro (corrente), etc...

O multímetro é um aparelho que fornece as funções citadas anteriormente e mais algumas.

2 Objetivos

O objetivo do experimento é verificar a razoabilidade entre a teoria elétrica e sua prática metrológica, o conhecimento do aluno referente a alguns elementos de circuitos elétricos e às grandezas e seus múltiplos.

3 Materiais e Métodos

- Fonte DC regulada em 10V
- 3 resistores (470, 1k e 3,3 Ω) que são identificados pelos códigos:
 Amarelo, violeta e marrom (470); marrom, preto e vermelho (1k) e laranja, laranja e laranja (3,3k). Todos com a última faixa (tolerância) dourada.
- Multímetro

• Protoboard

O Circuito fora montado da seguinte forma:

Figura 1: Montagem do Circuto usado no experimento.

4 Resultados e Discussões

4.1 Multímetro e Circuito

A Resistência equivalente R_{eq} dos resistores R_2 e R_3 obtida através da fórmula (3) é igual a 767 ohm.

Para o cálculo da tensão V_1 e V_2 usaremos a lei de ohm, assim:

$$V_{total} = V_1 + V_2 \Leftrightarrow V_{total} = R_1.i + R_{eq}.i \tag{4}$$

Como R_1 e R_{eq} estão em série a corrente nos dois é a mesma logo:

$$V_{total} = V_1 + V_2 \Leftrightarrow V_{total} = R_1.i + R_{eq}.i \tag{5}$$

Como R_1 e R_{eq} estão em série sua corrente é igual.

$$i = 8mA \tag{6}$$

Dessa forma forma obtidos os seguintes valores para as tensões

Tabela 1: Valores obtidos por cálculo.

V_1	3,76 V
V_2	6,14 V
V_{total}	9,90 V

Para medirmos as tensões com o multímetro as pontas de prova serão colocadas paralelamente aos elementos do circuito pois a tensão é um fenômeno que acontece entre dois teminais, lembrando que a resistência interna do multímetro é para fins práticos infinita, o que torna sua interferência no circuito desprezível portanto não influenciará nos resultados.

A partir da medição foram obtidas as tensões:

Tabela 2: Valores obtidos pela medição.

V_1	3,75 V
V_2	6,22 V
V_{total}	9,97 V

Comparando as duas tabelas é possível dizer que os valores estão **adequados**, considerando as incertezas aleatórias e instrumentais.

4.2 Protoboard

Na protoboard há duas seções de furos com linhas representadas por letras e colunas por números, cada coluna enumerada tem seus furos interligados.

As seções são divididas entre as linhas "a" a "e" e "f" a "j" e não são ligadas.

Em cada extremidade superior e inferior há duas linhas de furos representadas por '+' e '-', os furos em toda extensão de uma linha são interligados.

Figura 2: Protoboard e o sentido de conexão representados por diferentes fios de diferentes cores.

4.3 Conversões de unidades e medidas

Tabela 3: Volt e seus múltiplos.

Volts	mV	kV	MV	μV
1	1000	0,001	1×10^{-6}	1×10^{6}
598	$5,98 \times 10^5$	0,598	598×10^{-6}	$5,98 \times 10^{-8}$
13800	$1,38 \times 10^{7}$	13,8	0,0138	$1,38 \times 10^{10}$
0,01	10	1×10^{-5}	1×10^{-8}	10000

Tabela 4: Watt e seus múltiplos.

Watts	mW	kW	MW	GW
1	1000	0,001	1×10^{-6}	1×10^{-9}
250	$2,5\times10^5$	0,25	$2,5 \times 10^{-4}$	$2,5 \times 10^{-7}$
233500	$2,335 \times 10^8$	233,5	0,2335	$2,335 \times 10^{-4}$
0,256	256	$2,56 \times 10^{-4}$	$2,56 \times 10^{-7}$	$2,56 \times 10^{-10}$

Tabela 5: Temperaturas.

Celsius	Fahrenheit	Kelvin
0	32	273
25	77	298
100	212	283
-30	-22	243
50	122	323
-7	19	266

5 Conclusões

A partir do exprimento concluímos que os valores das tensões medidas através do multímetro no modo voltímetro, o objeto de estudo do relátorio, são satisfatórios em relação àqueles que correspondem à teoria.

6 Referências Bibliográficas e Bibliografia

[1] Mattew. N. O. ALEXANDER, Charles K.; SADIKU. Fundamentos de Circuitos Elétricos.