CARACTERÍSTICAS HARDWARE Motorola 68HC11

Familia 68HC11

DISPOSITIVO	RAM	ROM	EPROM	EEPROM
MC68HC11A0	256	0	0	0
MC68HC11A1	256	0	0	512
MC68HC11A7	256	8K	0	0
MC68HC11A8	256	8K	0	512
MC69HC11D0	192	0	0	0
MC68HC11D3	192	4K	0	0
MC68HC711D3	192	0	4K	0
MC68HC11ED0	512	0	0	0
MC68HC11E0	512	0	0	0
MC68HC11E1	512	0	0	512
MC68HC11E8	512	12K	0	0
MC68HC11E9	512	12K	0	512
MC68HC711E9	512	0	12K	512
MC68HC811E2	256	0	0	2K
MC68HC11E20	768	20K	0	512
MC68HC711E20	768	0	20K	512
MC68HC11F1	1K	0	0	512

LOS REGISTROS DEL 68HC11

La CPU del microcontrolador 68HC11 dispone de un registro D de 16 bits. La parte alta del registro D es el acumulador A de 8 bits, y la parte baja es el acumulador B de 8 bits:

Registro D (16 bits)

Acumulador A (8 bits)	Acumulador B (8 bits)
Dispone además de 2 registros de 16 bits para	direccionamiento indexado denominados X e Y:
Registro índ	dice X (16 bits)
Registro íno	dice Y (16 bits)

El puntero de pila (SP) y el contador de programa (PC) son también de 16 bits lo que limita la longitud de un programa a 64KBytes, espacio máximo direccionable por el 68HC11:

Puntero de pila SP (16 bits)
Contador de programa PC (16 bits)

El puntero de pila (SP) debe ser inicializado por el usuario. Esta crece desde direcciones altas hacia direcciones bajas, por lo que al añadir un elemento en la pila, el puntero SP se decrementa en 1 ó 2 bytes dependiendo del tamaño del dato que se introduce en la pila. Del mismo modo, al sacar un elemento de la pila, SP se incrementa.

El contador de programa (PC) se incrementa para apuntar a la instrucción que se va a ejecutar. Es por esto que los programas se ejecutan desde direcciones bajas hacia direcciones altas al contrario que el puntero de pila, por lo que tendremos que impedir que la pila se solape con el código (si este se encuentra en RAM y no en la EEPROM). Tendremos que dar pues al puntero SP un valor seguro.

El registro CCR de 8 bits, llamado registro de estado, contiene unos bits que describen el estado de la CPU:

CCR (8 bits)

- o S: stop deshabilitado
- o X: máscara de interrupción especial
- o H: medio acarreo
- o I: máscara de interrupción normal
- o N: negativo
- o Z: cero
- o V: overflow
- o C: acarreo

MODOS DE DIRECCIONAMIENTO DEL 68HC11

Existen 6 maneras de acceder (llamadas modos de direccionamiento) a los datos que están en memoria:

- 1. Direccionamiento inmediato
- 2. Direccionamiento extendido
- 3. Direccionamiento directo
- 4. Direccionamiento indexado
- 5. Direccionamiento relativo
- 6. Direccionamiento inherente

DIRECCIONAMIENTO INMEDIATO:

La instrucción contiene el dato al que hacemos referencia por lo cual no tenemos que acceder a la memoria. Este dato puede ser de 1 ó 2 bytes y debe ser precedido por el símbolo # (almohadilla, sostenido).

Ejemplo:

LDAA #01

Carga en el acumulador A el valor 01

DIRECCIONAMIENTO EXTENDIDO:

En este caso tenemos que buscar el dato en una dirección de memoria que se obtiene de la instrucción. La dirección de memoria ocupa 2 bytes y puede tomar valores entre \$0000 (0 en decimal) y \$FFFF (65535 en decimal).

Ejemplo:

LDAA \$FA0E

Carga en el acumulador A el valor almacenado en la posición de memoria \$FA0E (el contenido de la dirección \$FA0E).

DIRECCIONAMIENTO DIRECTO:

Igual que el modo anterior (direccionamiento extendido) salvo que utiliza direcciones comprendidas entre \$00 y \$FF (256 bytes de memoria). Este modo tiene como ventaja que sólo necesita 1 byte para determinar la dirección del dato.

Ejemplo:

LDAA \$0E

Carga en el acumulador A el valor almacenado en la posición de memoria \$0E (el contenido de la dirección \$0E).

DIRECCIONAMIENTO INDEXADO:

Este modo de direccionamiento es utilizado para acceder a tablas en la memoria. Para obtener la dirección de memoria donde está almacenado el dato se toma la dirección del registro índice (X o Y) y se le suma un desplazamiento de 8 bits.

Ejemplo:

• LDAB 5,X

Carga en el acumulador B el valor almacenado en la posición de memoria especificada por X más el desplazamiento 5.

DIRECCIONAMIENTO RELATIVO:

Este modo de direccionamiento se utiliza sólo para las instrucciones de bifurcación. Sirve para indicar a la CPU que efectúe un salto de cierto número de bytes hacia delante o hacia detrás. Este desplazamiento tiene signo y es de un byte por lo que las bifurcaciones sólo se pueden realizar de 128 bytes hacia detrás ó 127 bytes hacia delante.

No tienes que especificar explícitamente la dirección de salto pues de esto se encarga automáticamente el ensamblador. Sin embargo has de tener en cuenta que sólo se pueden realizar saltos con instrucciones BR (BRanch) hacia direcciones de memoria que estén a menos de 128 bytes por debajo y a menos de 127 bytes por arriba. En caso de no respetar este rango el ensamblador deberá dar un mensaje de error.

Ejemplo:

• correcto:

```
bucle ... ;dirección 0 ... ... BE bucle ;dirección 10 (bytes)
```

• incorrecto:

```
bucle ... ;dirección 0
...
...
BE bucle ;dirección 255 (bytes)
```

DIRECCIONAMIENTO INHERENTE:

Los operando no se encuentran en memoria sino que son registros. Por el código de la intrucción la CPU sabe de qué registros se trata.

Ejemplo:

• INCA

Incrementa el valor del acumulador A en una unidad.

• INX

Incrementa el valor del registro índice X en una unidad.

CONJUNTO DE INSTRUCCIONES

INSTRUCCIONES DE CARGA, ALMACENAMIENTO Y TRANSFERENCIA:

• Instrucciones de carga: permiten introducir un nuevo valor en los registros, leer una posición de memoria...

LDAA, LDAB, LDD, LDX, LDY, LDS, CLRA, CLRB

o LDAA: Introduce un dato de 8 bits en el acumulador A

Ejemplos:

LDAA #30; A:=30 (direccionamiento inmediato)

LDAA \$1000; mete en el acumulador A el contenido de la dirección \$1000.

o LDAB: Introduce un dato de 8 bits en el acumulador B

Ejemplos:

LDAB #30; B:=30 (direccionamiento inmediato)

LDAB \$1000; mete en el acumulador B el contenido de la dirección \$1000.

- o LDD: Introduce un dato de 8 ó 16 bits en el doble acumulador D
- o Ejemplos:

LDD #\$FFCC; D:=\$FFCC, A:=\$FF, B:=\$CC

LDD #\$20; D:=\$0020, A:=\$00, B:=\$20

o LDX: Introduce un dato de 16 bits en el registro índice X

Ejemplos:

LDX #\$3000 ; X:=\$3000

LDX 4,Y; mete en el registro índice X el contenido de la dirección Y+4

LDX 4,X; mete en el registro índice X el contenido de la dirección X+4

o LDY: Introduce un dato de 16 bits en el registro índice Y

Ejemplos:

LDY #\$3000; X:=\$3000

LDY 4,X; mete en el registro índice Y el contenido de la dirección X+4

LDY 4,Y; mete en el registro índice Y el contenido de la dirección Y+4

o LDS: Introduce un dato de 16 bits en el registro SP (puntero de pila).

Ejemplo:

LDS #\$FC00; inicializa la pila para que vaya de la dirección \$FC00 hacia abajo

o CLRA: Borra el contenido del acumulador A. Equivale a LDAA #0 con la diferencia que el direccionamiento es inherente y sólo ocupa 1 byte mientras que LDAA #0 ocupa 2 bytes.

Ejemplo:

CLRA ; A:=0

o CLRB: Borra el contenido del acumulador B. Equivale a LDAB #0 con la diferencia que el direccionamiento es inherente y sólo ocupa 1 byte mientras que LDAB #0 ocupa 2 bytes.

Ejemplo:

CLRB ; B:=0

• Instrucciones de almacenamiento: permiten alterar una posición de memoria, un puerto...

```
STAA, STAD, STD, STX, STY, STS, CLR
```

o STAA: Almacena el acumulador A en una dirección de memoria.

Ejemplos:

STAA \$1000; almaceno el acumulador A en la dirección de memoria \$1000

o **STAB**: Almacena el acumulador B en una dirección de memoria.

Ejemplos:

STAB \$1000; almaceno el acumulador B en la dirección de memoria \$1000

o STD: Almacena el doble acumulador D (16 bits) en una dirección de memoria.

Ejemplos:

STD \$1000; almaceno el doble acumulador D en la dirección de memoria \$1000

o STX: Almacena el registro X (16 bits) en una dirección de memoria.

Ejemplos:

STX \$1000 ; almaceno el registro X en la dirección de memoria \$1000

o **STY**: Almacena el registro Y (16 bits) en una dirección de memoria.

Ejemplos:

STY \$1000 ; almaceno el registro Y en la dirección de memoria \$1000

o STS: Almacena el puntero de pila (SP) en una dirección de memoria.

Ejemplos:

STS \$1000 : almaceno SP en la dirección de memoria \$1000

o CLR: Pone a cero el contenido de una dirección de memoria.

Ejemplos:

CLR \$1000; pone a ceros la dirección de memoria \$1000

• **Instrucciones de transferencia**: permiten transferir datos entre registros y registros o entre registros y memoria. El direccionamiento es inherente por lo que no es necesario especificar dirección.

PSHA, PSHB, PSHX, PSHY, PULA, PULB, PULX, PULY, TAB, TBA, TSX, TSY, TXS, TYS, XGDX,XGDY

- **PSHA**: Introduce el acumulador A en la pila. Se introduce A en la dirección especificada por SP. SP se decrementa en 1.
- o **PSHB:** Introduce el acumulador B en la pila.
- **PSHX:** Introduce el registro de índice X en la pila. Se introduce X en la pila. SP se decrementa en 2 unidades puesto que X es de 16 bits.
- **PSHY:** Introduce el registro de índice Y en la pila.
- o PULA: Saca A de la pila.
- o PULB: Saca B de la pila.
- o PULX: Saca X de la pila. SP se incrementa en 2 unidades ya que X es de 16 bits.
- PULY: Saca Y de la pila. SP se incrementa en 2 unidades ya que Y es de 16 bits.
- o TAB: Introduce el valor de A en B.
- TBA: Introduce el valor de B en A.
- o TSX: Introduce el valor de SP en X.
- o TSY: Introduce el valor de SP en Y.
- TXS: Introduce el valor de X en SP.
- TYS: Introduce el valor de Y en SP.
- XGDX: Intercambia el registro D con el X.
 XGDY: Intercambia el registro D con el Y.

Instrucciones aritméticas: suma, resta, comparaciones, complemento a dos, multiplicaciones y divisiones:

• Suma:

ADDA, ADDB, ADDD, ADCA, ADCB, ABA, ABX, ABY, INCA, INCB, INC, INX, INY, INAS

o ADDA: Añade un dato al acumulador A.

Ejemplos:

ADDA #5; suma 5 al acumulador A

ADDA \$C000 ; suma el contenido de la dirección de memoria \$C000 al acumulador A

o ADDB: Añade un dato al acumulador B.

Ejemplos:

ADDB #6; suma 6 al acumulador B

ADDB \$D0C0 ; suma el contenido de la dirección de memoria \$D0C0 al acumulador R

ADDD: Añade un dato al acumulador D (16 bits).

Ejemplos:

ADDD #\$FFFF; suma \$FFFF al acumulador D

ADDD \$C000 ; suma el contenido (dato de 16 bits) de la dirección de memoria \$C000 al acumulador D

- o ADCA: Añade al acumulador A un dato y el contenido del acarreo.
- o ADCB: Añade al acumulador B un dato y el contenido del acarreo.
- o ABA: Suma el contenido de B con el de A y almacena el resultado en A
- o ABX: Suma el contenido de B con el de X y almacena el resultado en X
- o ABY: Suma el contenido de B con el de Y y almacena el resultado en Y
- o INCA: Incrementa el contenido del acumulador A en una unidad
- o INCB: Incrementa el contenido del acumulador B en una unidad
- o INC: Incrementa el contenido de una dirección de memoria
- o INX: Incrementa el contenido del registro índice X en una unidad
- o INY: Incrementa el contenido del registro índice Y en una unidad
- o INS: Incrementa el puntero de pila SP

LISTADO DE LOS NEMÓNICOS DEL 68HC11

ABA	añade el contenido del acumulador B al acumulador A.
ABX	añade el contenido del acumulador B (sin signo) al contenido del registro X.
ABY	añade el contenido del acumulador B (sin signo) al contenido del registro Y.
ADCA	añade al acumulador A un dato y el bit de acarreo.
ADCA	añade al acumulador B un dato y el bit de acarreo.
ADDA	añade un dato al registro A.
ADDB	
ADDD	añade un dato al registro B.
	añade un dato de 16 bits al registro.
ANDA	realiza una operación lógica AND entre un dato y el acumulador A. Resultado en A.
ANDB	realiza una operación lógica AND entre un dato y el acumulador B. Resultado en B.
ASLA	desplaza un bit a la izquierda el acumulador A.
ASLB	desplaza un bit a la izquierda el acumulador B.
ALSD	desplaza un bit a la izquierda el acumulador D.
ASRA	desplaza un bit a la derecha el acumulador A.
ASRB	desplaza un bit a la derecha el acumulador B.
BCC	salta si no hay acarreo.
BCLR	pone a cero bits de la memoria.
BCS	salta si hay acarreo.
BEQ	salta si igual.
BGE	salta si mayor que o igual a cero.
BGT	salta si mayor que cero.
BHI	salta si es mayor.
BHS	salta si mayor o igual.
BITA	comprobar el bit específico del acumulador A.
BITB	comprobar el bit específico del acumulador B.
BLE	salta si es menor que o igual a cero.
BLO	salta si es menor (lo mismo que BCS).
BLS	salta si es menor o igual.
BLT	salta si es menor que cero.
BMI	salta si es negativo
BNE	salta si no es igual
BPL BRA	salto si es positivo
	salto incondicional
	salta si los bits especificados estan a cero
BRN	no saltar nunca (es equivalente a una operación NOP de 2 bytes)
BRSET BSET	salta si los bits especificados estan a uno pone los bits especificados a uno
	salta a una subrutina
BSR BVC	salta a una subrutina salta si no ha habido desbordamiento (overflow)
BVS	salta si no na nabido desbordamiento (overnow) salta si ha habido overflow
CBA	compara el acumulador A con el B
CLC	pone a cero el bit de acarreo
CLI	habilita las interrupciones
CLR	pone a cero el contenido de memoria especificado
CLRA	pone a cero el acumulador A
CLRA	pone a cero el acumulador A pone a cero el acumulador B
CLRB	pone a cero el bit de overflow
CMPA	compara el acumulador A con un dato
CMPB	compara el acumulador A con un dato
COMA	complementa a uno el acumulador A
	•
COMB	complementa a uno el acumulador B

COM	complementa a uno el contenido de la memoria especificado
CPD	compara el registro D con un dato
CPX	compara el registro X con un dato
CPY	compara el registro Y con un dato
DAA	ajuste decimal
DEC	decrementa una posición de memoria especificada
DECA	decrementa el acumulador A
DECB	decrementa el acumulador B
DES	decrementa el puntero de pila SP
DEX	decrementa el registro X
DEY	decrementa el registro Y
EORA	operación XOR entre un dato y el acumulador A
EORA	operación XOR entre un dato y el acumulador B
FDIV	división
IDIV	división entera
INC	
	incrementa el contenido de una posición de memoria
INCA	incrementa el acumulador A
INCB	incrementa el acumulador B
INS	incrementa el puntero de pila SP
INX	incrementa el registro X
INY	incrementa el registro Y
JMP	salto incondicional
JSR	salto a una subrutina
LDAA	carga un dato en el acumulador A
LDAB	carga un dato en el acumulador B
LDD	carga un dato de 16 bits en el registro D
LDS	carga un dato de 16 bits en el puntero de pila SP
LDX	carga un dato de 16 bits en el registro X
LDY	carga un dato de 16 bits en el registro Y
LSL	desplaza un bit hacia la izquierda el contenido de una posición de memoria
LSLA	desplaza un bit hacia la izquierda el acumulador A
LSLB	desplaza un bit hacia la izquierda el acumulador B
LSLD	desplaza un bit hacia la izquierda el acumulador D
LSR	desplaza un bit hacia la derecha el contenido de una posición de memoria
LSRA	desplaza un bit hacia la derecha el acumulador A
LSRB	desplaza un bit hacia la derecha el acumulador B
LSRD	desplaza un bit hacia la derecha el acumulador D
MUL	multiplicación sin signo
NEG	complementa a dos el contenido de una posición de memoria
NEGA	complementa a dos el contenido del acumulador A
NEGB	complementa a dos el contenido del acumulador B
NOP	no opera
ORAA	realiza la operación lógica OR entre un dato y el acumulador A
ORAB	realiza la operación lógica OR entre un dato y el acumulador B
PSHA	mete el acumulador A en la pila
PSHB	mete el acumulador B en la pila
PSHX	mete el registro X en la pila
PSHY	mete el registro Y en la pila
PULA	saca el acumulador A de la pila
PULB	saca el acumulador B de la pila
PULX	saca el registro X de la pila
PULY	saca el registro Y de la pila
ROL	rota a la izquierda el contenido de una posición de memoria

ROLA	rota a la izquierda el acumulador A
	rota a la izquierda el acumulador B
	rota a la derecha el contenido de una posición de memoria
	rota a la derecha el acumulador A
	rota a la derecha el acumulador B
	retorno de interrupción
	retorno de subrutina
	resta un dato al acumulador A
	resta un dato y el bit de acarreo al acumulador A
	resta un dato y el bit de acarreo al acumulador B
	pone a uno el bit de acarreo
	deshabilita todas las interrupciones
	pone a uno el bit de overflow
	almacena el acumulador A en una posición de memoria
	almacena el acumulador B en una posición de memoria
	almacena el registro D
	para el reloj del sistema
	almacena el puntero de pila SP
	almacena el registro X
	almacena el registro Y
	resta un dato al acumulador A
SUBB	resta un dato al acumulador B
SUBD	resta un dato al registro D
SWI	provoca una interrupción software
TAB	transfiere el acumulador A al acumulador B
TAP	transfiere el acumulador A al registro CCR
TAB	transfiere el acumulador B al acumulador A
TEST	instrucción de test (sólo se puede ejecutar en el modo de test)
	transfiere el registro CCR al acumulador A
TST	comprueba si una posición de memoria está a cero
TSTA	comprueba si el acumulador A está a cero
TSTB	comprueba si el acumulador B está a cero
TSX	transfiere el puntero de pila al registro X
TSY	transfiere el puntero de pila al registro Y
TXS	transfiere el registro X al puntero de pila
TYS	transfiere el registro Y al puntero de pila
WAI	espera a que se produzca una interrupción
XHDX	intercambia los valores de los registros D y X
XGDY	intercambia los valores de los registro D e Y

68HC11 PROGRAMMING CARD

Programming Model

7	Accum A	0	7	Accum B	0	
15	D (A & B combined)					
15	Index register X				0	
15	Index register Y				0	
15	Stack Pointer SP				0	
15	Program counter PC				0	

Addressing modes

airect	:	adr8	extended	:	adr16
immediate	э:	data8/data16	indexed	:	off,i
relative	:	rel			

16 bit information is stored with msbyte in low address & Isbyte in high address

Abbreviations: ccr = condition code register i = index registers X or Y opr8 = 8 bit operand opr16 = 16 bit operand * = infinity or till reset B = number of bytes (X/Y) CC = number of E cycles (X/Y)

E frequency is 1/4 that of crystal frequency

Flags:

- 3	
S Stop disable	X X-interrupt mask
H Half carry (from bit 3)	I I-interrupt mask

N Negative Z Zero

V Overflow C Carry/Borrow from msb

Flag status after instr.

-	unchanged	? not defined
	changed accordingly	0 cleared
-		\ h. 0 h

set \ may be 0, cannot become 1

SP points to the next unused byte at the top of the stack

					-
8 BIT L	OADREGI	STER	SXHINZVC	В	CC
LDAa	#data8	a ← opr8	0-	2	2
LDAa	adr8			2	3
LDAa	adr16			3	4
LDAa	off,i			2/3	4/5
16-BIT	LOADRE	SISTER	SXHINZVC	В	CC
LDD	#data16	D ← opr16	0-	3	3
LDD	adr8			2	4
LDD	adr16			3	5
LDD	off,i			2/3	5/6
LDS	#data16	SP ← opr16	0-	3	3
LDS	adr8			2	4
LDS	adr16			3	5
LDS	off,i			2/3	5/6
LDi	#data16	i ← opr16	0-	3/4	3/4
LDi	adr8			2/3	4/5
LDi	adr16				5/6
LDi	off,X			2/3	5/6

Ngee Ann Polytechnic, ECE Dept

LDi	off,Y			3	6	ABi	
8-BITS	TORETO	MEMORY	SXHINZVC	в	CC	ADDD	#da
STAa	adr8	opr8 ← a	0-			ADDD	adr8
STAa	adr16	·		3	4	ADDD ADDD	adr1 off,i
STAa	off,i			2/3	3 4/5		
16-BIT	STORETO	OMEMORY	SXHINZVC	В	CC	8-BITS	_
STD	adr8	opr16 ← D	0-	2	4	SUBa SUBa	#dat
STD	adr16			3	5	SUBa	adra
STD	off,i				3 5/6	SUBa	off,i
STS	adr8	opr16 ← SP	0-		4	SBA	o,.
STS	adr16			3	5	SBCa	#da
STS STi	off,i adr8	opr16 ← i	0-		3 5/6 3 4/5	SBCa	adr8
STi	adr16	opi 10 ← 1	0-		4 5/6	SBCa	adr1
STi	off,X				3 5/6	SBCa	off,i
STi	off,Y				6	16-BIT	SUB
8-RITT	RANSFER	•	SXHINZVC	В	CC	SUBD	#da
TAB	it alto Li	B ← A	0-		2	SUBD	adr8
TBA		$A \leftarrow B$	0-		2	SUBD	adr1
TAP		$ccr \leftarrow A$	тиніін		2	SUBD	off,i
TPA		$A \leftarrow ccr$		1	2	8-BITIN	NCRE
16-BIT	TRANSFE	R	SXHINZVC	В	cc	INCa	
TSi		$i \leftarrow SP+1$			2 3/4	INC	adr1
TiS		$SP \leftarrow i\text{-}1$		1/2	2 3/4	INC DECa	off,i
16-BIT	EXCHANG	SE .	SXHINZVC	В	cc	DEC	adr1
XGDi		$i \leftrightarrow D \\$		1/2	2 3/4	DEC	off,i
8-BITP	USH/PUL	L	SXHINZVC	в	CC	16-BIT	INCF
PSHa		SP ← SP-1			3	INS	
PULa	SP ← SP+	1; a ← (stk)		1	4	INi	
16-BIT	PUSH/PU	LL	SXHINZVC	В	CC	DES	
-	(stk) ← i; S					DEi	
PULi		2; i ← (stk)				MULTI	PLY
8-BIT C	IFAR		SXHINZVC	B	CC	MUL	
CLRa		a ← 0	0100		2	FDIV	frac
CLR	adr16	opr8 \leftarrow 0	0100	3	6	IDIV	inte
CLR	off,i				3 6/7	8-BITE	BCD/
8-RITS	ADDITION	NS.	SXHINZVC	В	CC	DAA	
	#data8	a ← a+opr8+C	-		2	8-BIT C	СОМЕ
ADCa		а с аторгото	1 11111	2	3	СВА	
	adr8						
ADCa	adr8 adr16			3	4	CMPa	#dat
ADCa ADCa				3 2/3		_	
ADCa ADDa	adr16 off,i #data8	a ← a+opr8	-	3 2/3 2	4 3 4/5 2	CMPa CMPa CMPa	adr8 adr1
ADCa ADDa ADDa	adr16 off,i #data8 adr8	a ← a+opr8	-	3 2/3 2 2	4 3 4/5 2 3	CMPa CMPa	adr8 adr1
ADCa ADDa ADDa ADDa	adr16 off,i #data8 adr8 adr16	a ← a+opr8	1-1111	3 2/3 2 2 3	4 3 4/5 2 3 4	CMPa CMPa CMPa	adr8 adr1 off,i
ADCa ADDa ADDa ADDa ADDa	adr16 off,i #data8 adr8	·		3 2/3 2 2 3 2/3	4 3 4/5 2 3 4 3 4/5	CMPa CMPa CMPa CMPa	adr8 adr1 off,i
ADCa ADDa ADDa ADDa ADDa ABA	adr16 off,i #data8 adr8 adr16 off,i	A ← A+B	-	3 2/3 2 2 3 2/3 1	4 3 4/5 2 3 4 4 3 4/5 2	CMPa CMPa CMPa CMPa CMPa 16-BIT CPD CPD	adr8 adr1 off,i CON #dat adr8
ADCa ADDa ADDa ADDa ADDa ABA	adr16 off,i #data8 adr8 adr16	A ← A+B		3 2/3 2 2 3 2/3 1	4 3 4/5 2 3 4 3 4/5	CMPa CMPa CMPa CMPa 16-BIT CPD	adr8 adr1 off,i CON #dar

ABi ADDD ADDD ADDD ADDD	#data16 adr8 adr16 off,i	$\begin{array}{l} i \leftarrow i + B \\ D \leftarrow D + opr16 \end{array}$		1/2 3 3 4 2 5 3 6 2/3 6	ļ 5
8-BITS	SUBTRACT	TIONS	SXHINZVC	вс	C
SUBa SUBa SUBa SUBa SBA	#data8 adr8 adr16 off,i	a ← a - opr8		2 2 2 3 3 4 2/3 4 1 2	2 3 1 1/5
SBCa SBCa SBCa SBCa	#data8 adr8 adr16 off,i	a ← a-opr8-C		2 2 2 3 3 4 2/3 4	<u>?</u> }
16-BIT	SUBTRAC	CTION	SXHINZVC	вс	C
SUBD SUBD SUBD SUBD	#data16 adr8 adr16 off,i	D ← D - opr16		3 4 2 5 3 6 2/3 6	6
8-BITIN	NCREMEN	T/DECREMENT	SXHINZVC	вс	C
INCa	· · · · · · · · · · · · · · · · · · ·	opr8 \leftarrow opr8+1	-	1 2	
INC	adr16	орго — орго-т	111-	3 6	
INC	off,i			2/36	
DECa		opr8 ← opr8-1	-	1 2	2
DECa DEC	adr16	opr8 ← opr8-1	-	1 2 3 6	-
	adr16 off,i	opr8 ← opr8-1	-		6
DEC DEC	off,i		-	3 6	6
DEC DEC	off,i	NT/DECREMENT	-	3 6 2/3 6	5 5/7
DEC DEC 16-BIT	off,i		-	3 6 2/3 6	5 5/7 8
DEC DEC 16-BIT INS	off,i	NT/DECREMENT SP←SP+1		3 6 2/3 6 1 3	5 5/7 8 8/4
DEC DEC 16-BIT INS INi	off,i	NT/DECREMENT SP←SP+1 i ← i+1		3 6 2/3 6 1 3 1/2 3	5 5/7 8 8/4
DEC DEC 16-BIT INS INI DES DEI	off,i	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$		3 6 2/3 6 1 3 1/2 3 1/2 3	5 5/7 8 8/4
DEC DEC 16-BIT INS INI DES DEI	off,i INCREME	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$		3 6 2/3 6 1 3 1/2 3 1 3 B C	5 5/7 8 8/4 8
DEC DEC 16-BIT INS INI DES DEI MULTI	off,i INCREME	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE	 SXHINZVC	3 6 2/3 6 1 3 1/2 3 1/2 3 B C 1 1	5 5/7 8/4 8/4 8/4
DEC DEC 16-BIT INS INI DES DEI MULTI MUL	off,i INCREME	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$	 SXHINZVC	3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 1 4	33/4 33/4 33/4 0
DEC DEC 16-BIT INS INI DES DEI MULTI MUL FDIV IDIV	off,i INCREME PLY & DIV fractional	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/X; X \leftarrow q, D \leftarrow r$		3 6 2/3 6 1 3 1/2 3 1/2 3 B C 1 1 4 1 4	66/7 66/7 88/4 88/4 0
DEC DEC 16-BIT INS INI DES DEI MULTI MUL FDIV IDIV	off,i INCREME PLY & DIV fractional integer	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/X; X \leftarrow q, D \leftarrow r$		3 6 2/3 6 1 3 1/2 3 1/2 3 B C 1 1 4 1 4	3 3/4 3/4 0 11
DEC DEC 16-BIT INS INI DES DEI MULTI MUL FDIV IDIV 8-BITE DAA	off,i INCREME PLY & DIV fractional integer BCD ADJU	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$		3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 4 1 4 B C	3 3/4 3/4 0 11
DEC DEC 16-BIT INS INI DES DEI MULTI MUL FDIV IDIV 8-BITE DAA	off,i INCREME PLY & DIV fractional integer BCD ADJU	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/ X; X \leftarrow q, D \leftarrow r$ ST		3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 4 1 4 B C 1 2	66 66 67 83 84 83 84 94 11 11 12 12
DEC DEC DEC 16-BIT INS INI DES DEI MULTI FDIV IDIV 8-BITE DAA 8-BITC	off,i INCREME PLY & DIV fractional integer BCD ADJU	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$		3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 4 1 4 B C 1 2 CC	66/7 66/7 88/4 88/4 11 11
DEC	off,i INCREME PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr8	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/X; X \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$		1 3 1/2 3 1/2 3 B C 1 1 4 B C C 1 2 2 2 3 3	66/7 83/4 83/4 0 11 11 12 2
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr8 adr16	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/X; X \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$		3 6 2/3 6 1 3 1/2 3 1/2 3 1/2 3 B C 1 1 1 4 1 4 B C C 1 2 2 2 3 3 4 4	66/7 83/4 83/4 0 11 11 20 2
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr8 adr16 off,i	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$ $a - opr8$		1 3 1/2 3 1/2 3 B C 1 1 4 B C C 1 2 2 2 3 3	66/7 83/4 83/4 0 11 11 20 2
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr8 adr16 off,i COMPAR	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$ $a - opr8$		3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 4 4 B C C 1 2 2 2 3 3 3 4 2/3 4 B C	66666666666666666666666666666666666666
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr16 off,i COMPAR #data16	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$ $a - opr8$	 SXHINZVC 0 SXHINZVC 1 SXHINZVC 1 1 B 1	3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 4 1 4 B C C 2 2 3 3 4 4 2/3 4 B C 4 5 5	666/7 886/4 886/4 1111 CC 1228 146/5 147/5
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr8 adr16 off,i COMPAR #data16 adr8	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$ $a - opr8$		3 6 2/3 6 1 3 1/2 3 1	66/7 66/7 66/7 66/7 67/8 67/8 67/8 67/8
DEC	PLY & DIV fractional integer BCD ADJU COMPARE #data8 adr16 off,i COMPAR #data16	NT/DECREMENT $SP \leftarrow SP+1$ $i \leftarrow i+1$ $SP \leftarrow SP-1$ $i \leftarrow i-1$ IDE $D \leftarrow A * B$ $D/X; X \leftarrow q, D \leftarrow r$ $D/IX; IX \leftarrow q, D \leftarrow r$ ST $dec adjust A to BCI$ $SXHINZVC$ $A - B$ $a - opr8$		3 6 2/3 6 1 3 1/2 3 1 3 1/2 3 B C 1 1 1 4 1 4 B C C 2 2 3 3 4 4 2/3 4 B C 4 5 5	66/7 88/4 88/4 111 111 120 121 14/5 156

CPi CPi CPi CPi CPi	#data16 adr8 adr16 off,X off,Y	i - opr16		3/4 4/5 2/3 5/6 3/4 6/7 2/3 6/7 3 7
8-BITT TSTa TST TST	adr16 off,i	opr8 - 0	SXHINZVC	B CC 1 2 3 6 2/3 6/7
_		BIT AND TEST	SXHINZVC	B CC
BITa BITa BITa BITa	#data8 adr8 adr16 off,i	a & opr8	0-	2 2 2 3 3 4 2/3 4/5
8-BITL	OGICALO	PERATIONS	SXHINZVC	в сс
ANDa ANDa ANDa ANDa	#data8 adr8 adr16 off,i	a ← a & opr8	0-	2 2 2 3 3 4 2/3 4/5
EORa EORa EORa ORAa ORAa ORAa	#data8 adr8 adr16 off,i #data8 adr8 adr16	$a \leftarrow a \land opr8$ $a \leftarrow a \mid opr8$	0-	2 2 2 3 3 4 2/3 4/5 2 2 2 3 3 4
ORAa	off,i			2/3 4/5
	IEGATE &	COMPLEMENT	SXHINZVC	B CC
NEGa NEG NEG COMa COM	adr16 off,i adr16 off,i	opr8 ← -opr8 opr8 ← ~opr8	01	1 2 3 6 2/3 6/7 1 2 3 6 2/3 6/7
8-BIT B	IT SET/CL	EAR	SXHINZVC	в сс
BCLR BCLR BSET BSET	adr8,msk off,i,msk adr8,msk off,i,msk	opr8 ← opr8 & ~msl opr8 ← opr8 msk	0-	3 6 3/4 7/8 3 6 3/4 7/8
8-BITS	HIFTS		SXHINZVC	B CC
LSLa	c □ +	A, B or Memory b7 b0		1 2
LSL LSL	adr16 off,i			3 6 2/3 6/7
LSRa	0	A, B or Memory C	0	1 2
LSR LSR	adr16 off,i	20		3 6 2/3 6/7

	ASLa	[C A, B or Memory		1	2
	ASL ASL	adr16 off,i	57 50		3 2/3	6 6/7
	ASRa		A, B or Memory C		1	2
	ASR ASR	adr16 off,i	D/ DU		3 2/3	6 6/7
	16-BIT	SHIFTS	S	SXHINZVC	в	CC
	LSLD	[C D D 0		1	3
	LSRD		0-b15 b0 C	0	1	3
	ASLD	[D 0		1	3
	8-BITR	OTATE	≣	SXHINZVC	В	CC
	ROLa	[C A, B or Memory b7 b0		1	2
	ROL ROL	adr16 off,i			3 2/3	6 6/7
	RORa	[C A, B or Memory b7 b0		1	2
	ROR ROR	adr16 off,i			3 2/3	6 6/7
	CONDI	TIONO	ODE BIT SET/CLEAR			
		LICING				
	CLC	HONG	C bit \leftarrow 0	0	1	2
		TIONC		0 0	1	2
	CLC	HONC	C bit \leftarrow 0	-		
	CLC CLI CLV SEC	HONC	$ \begin{array}{l} \textbf{C} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{I} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{V} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{C} \leftarrow \textbf{1} \end{array} $	0	1 1 1	2 2 2
	CLC CLI CLV SEC SEI	HONG	$\begin{array}{l} C \text{ bit } \leftarrow 0 \\ I \text{ bit } \leftarrow 0 \\ V \text{ bit } \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \end{array}$	0 0- 1	1 1 1	2 2 2 2
	CLC CLI CLV SEC	HONC	$ \begin{array}{l} \textbf{C} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{I} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{V} \ \textbf{bit} \leftarrow \textbf{0} \\ \textbf{C} \leftarrow \textbf{1} \end{array} $	0 0- 1	1 1 1	2 2 2
;	CLC CLI CLV SEC SEI SEV		$\begin{array}{l} C \text{ bit } \leftarrow 0 \\ I \text{ bit } \leftarrow 0 \\ V \text{ bit } \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \end{array}$	0 1 1	1 1 1	2 2 2 2
	CLC CLI CLV SEC SEI SEV		$\begin{array}{l} C \ bit \leftarrow 0 \\ I \ bit \leftarrow 0 \\ V \ bit \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \\ V \leftarrow 1 \end{array}$	0 1 1	1 1 1	2 2 2 2
	CLC CLI CLV SEC SEI SEV UNCON	NDITIO	$\begin{array}{l} C \ bit \leftarrow 0 \\ I \ bit \leftarrow 0 \\ V \ bit \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \\ V \leftarrow 1 \end{array}$	0 1 1	1 1 1 1 1 2 3	2 2 2 2 2 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA	NDITIO	$\begin{array}{l} C \ bit \leftarrow 0 \\ I \ bit \leftarrow 0 \\ V \ bit \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \\ V \leftarrow 1 \end{array}$	0 1 1	1 1 1 1 1 2 3	2 2 2 2 2
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP	NDITIO rel adr16 off,i	$\begin{array}{l} C \ bit \leftarrow 0 \\ I \ bit \leftarrow 0 \\ V \ bit \leftarrow 0 \\ C \leftarrow 1 \\ I \leftarrow 1 \\ V \leftarrow 1 \end{array}$	0 0- 1 1 1S	1 1 1 1 1 2 3	2 2 2 2 2 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP	NDITIO rel adr16 off,i	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP	0 0- 1 1 1S	1 1 1 1 1 2 3	2 2 2 2 2 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BMI BPL	NDITIO rel adr16 off,i ECONI	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP DITIONAL BRANCHE if minus (N=1) if plus (N=0)	0 0- 1 1 1S	1 1 1 1 1 2 3 2/3	2 2 2 2 2 3 3/4 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BMI BPL BEQ	NDITIO rel adr16 off,i E CONI rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP DITIONAL BRANCHE if minus (N=1) if plus (N=0) if equal (Z=1)	0	1 1 1 1 1 2 3 2/3 2 2 2	2 2 2 2 2 3 3/4 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BMI BPL BBQ BNE	NDITIO rel adr16 off,i E CONI rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP DITIONAL BRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2	2 2 2 2 2 2 3 3 3/4 3 3 3 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BMI BPL BBQ BNE BVS	NDITIO rel adr16 off,i E CONI rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP: DITIONAL BRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2	2 2 2 2 2 2 3 3/4 3/3/4
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP BMI BBPL BBPL BBPL BBVS BVC	NDITIO rel adr16 off,i E CONII rel rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NAL BRANCH/JUMP: DITIONAL BRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1) if overflow clear (V=1)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 3 3/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BBPL BBPL BBPL BBVS BVC BCS	NDITIO rel adr16 off,i E CONII rel rel rel rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NALBRANCH/JUMP DITIONALBRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1) if overflow clear (V=1) if carry set (C=1)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 3 3/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP BMI BBNI BBPL BBVS BBVC BCS BCC	NDITIO rel adr16 off,i E CONII rel rel rel rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NALBRANCH/JUMPS DITIONALBRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1) if overflow clear (V=1) if carry set (C=1) if carry clear (C=0)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 3 3/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP SIMPLI BBNI BPL BPL BVS BVC BCS BCC SIGNEI	NDITIO rel adr16 off,i E CONI rel rel rel rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NALBRANCH/JUMP: DITIONALBRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1) if overflow clear (V=1) if carry set (C=1) if carry clear (C=0) DITIONALBRANCHE	0	1 1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 3 3 3/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	CLC CLI CLV SEC SEI SEV UNCON BRA JMP JMP BMI BBNI BBPL BBVS BBVC BCS BCC	NDITIO rel adr16 off,i E CONII rel rel rel rel rel rel rel rel	C bit \leftarrow 0 I bit \leftarrow 0 V bit \leftarrow 0 C \leftarrow 1 I \leftarrow 1 V \leftarrow 1 NALBRANCH/JUMPS DITIONALBRANCHE if minus (N=1) if plus (N=0) if equal (Z=1) if not equal 0 (Z=0) if overflow set (V=1) if overflow clear (V=1) if carry set (C=1) if carry clear (C=0)	0	1 1 1 1 1 2 3 2/3 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 3 3/4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

BEQ	re	l	if r	== m					2	3
BNE	re	rel if r !=m							2	3
BLE	re	rel if $r \le m$							2	3
BLT	re	I	if r	< m					2	3
UNSIGNED CONDITIONAL BRANCHES										
BHI	re			> m					2	3
BHS	re				(or BC	CC)			2	3
BEQ	re	I		== m	,	- /			2	3
BNE	re		if r	!= m					2	3
BLS	re	I	if r	<= m					2	3
BLO	re	I	if r	< m (or BCS	S)			2	3
BR∆	NCH	IFRIT	(S)S	FT/C	FΔR		SXHIN	7370	в	CC
BRCI		lr8,msl							4	6
BRCI		f,i,msk		٠,	msk b				-	7/8
BRS		lr8,msl			if all	-			3	6
BRS		f,i,msk	,		ed bit		clr			7/8
								IDN	., -	
	ROU	,	•				KEI	JKN	2	C
BSR	re		psr	ı PC,	PC ←	opr			2	6
JSR		lr8							2	5
JSR		lr16							3	6
JSR RTS	of	1,1	nul	I PC					2/3	5 6/7 5
SWI			•		Y,X,A,			DC/	•	-
SVVI			psi	1 PC,	1 ,A,A,	,	<,ι← ι, 1-		1	14
			(60	mo a	s hard		_		-	14
RTI			`		R,B,A,				лрі) 1	12
OTH	ERS						SXHIN	zvc	в	CC
BRN	re	l	nev	er br	anch				2	3
WAI			psł	n PC	,Y,X,A	B,ccr;	wait i	nterr		
									1	14+n
NOP			no	oper	ation				1	2
TES.	Т		ado	dr bus	count	in tes	st mod	е		
0.7.0			-1-						1	*
STO				•	rnal c	4			1	2
hex Isd	<i>msd</i> bin	000	001	2 010	3 011	100	5 101	6 110		7 111
0	0000	NUL	DLE	SP	0	@	P	` ')
1	0001	SOH	DC1	!	1	A	Q Q	а		a l
2	0010	STX	DC2	"	2	В	R	b	1	
3	0011	ETX	DC3	#	3	С	S	С	5	6
4	0100	EOT	DC4	\$	4	D	Т	d	t	:
5	0101	ENQ	NAK	%	5	Е	U	е	ι	ı l
6	0110	ACK	SYN	&	6	F	V	f	١	/
7	0111	BEL	ETB	'.	7	G	W	g		N
8	1000	BS	CAN	(8	H	X	h		(
9	1001	HT	EM) *	9	ļ.	Y	i :)	
A B	1010	LF VT	SUB		:	J K	Z	j k		<u>z</u>
C	1011 1100	FF	FS	+	; <	L]	K I	{	
D	1100	CR	GS	,	=	M]	n m		
E	1110	SO	RS	_	>	N	V 1	n		
F	1111	SI	US	/	?	Ö	_	0		DEL
	l	l								

WSS 10/95