REG.NO.:

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II WINTER SEMESTER 2024-2025

SLOT: D1 +TD1

Programme Name & Branch

: Integrated M. Tech. (MIC & MID), CSE

Course Code and Course Name

: CSI4005 - Augmented Reality and Virtual Reality

Faculty Name(s)

: Prof. Niha K, Prof. Durgesh Kumar, Prof. Somasundaram S K

Class Number(s)

: VL2024250502145, VL2024250502149, VL202425050215

Date of Examination

: 19-March-2025

Exam Duration

: 90 minutes

Maximum Marks: 50

General instruction(s):

- Answer All Questions
- M Max mark; CO Course Outcome; BL Blooms Taxonomy Level (1 Remember, 2 Understand, 3 Apply, 4 Analyse, 5 Evaluate, 6 Create)
- Course Outcomes (Type the CO statements covered in this question paper. Use the CO number as per the syllabus copy)
- CO1: Understand the fundamental of AR, VR, Mixed Reality and to design a customized solution.
- C02: Familiarize on the concepts, techniques, and reporting methods of AR and VR.
- C05: Familiarize the techniques, technologies and approaches needed for developing VR applications.

Q. No		Question			CO 1	_
1.	Virtual Reality (VR) has significantly transformed medical training and surgical simulations. Critically analyze how the fundamental components of VR (such as hardware, software, and interaction techniques) contribute to its primary features (such as immersion, presence, and interactivity) in the context of VR-based surgical training. Analyse and illustrate how have recent advancements in VR technology improved these aspects, and what key challenges must be overcome to achieve highly realistic and effective VR surgical simulations? Support your arguments with relevant examples from VR-based healthcare applications.					2
2.	A triangular surface in a 3D scene is illuminated by a point light source positioned at L (10, 15, 20). The triangle's normal vector at a vertex is N (0.5, 0.7, 0.5), and the viewer is located at V (5, 10, 15). The surface material has the following properties: Ambient reflection coefficient $(K_a) = 0.2$ Diffuse reflection coefficient $(K_b) = 0.5$			10	2	3
	Phong exponent (n) = 16 Light intensity (I) = 1.0 The light source emits white light with components (R = 1, G = 1, B = 1). Using the Phong shading model, compute the final intensity (I) at the vertex for the red color channel (I_r) using the equation: $I_r = I_a + I_d + I_s$ where: • Ambient Component: $I_a = K_a \cdot I$ • Diffuse Component: $I_d = K_d \cdot I \cdot \max(0, N \cdot L)$					

REG.NO.:

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II WINTER SEMESTER 2024-2025

SLOT: D1 +TD1

		gio in a commentación	gitar investment	-
	• Specular Component: $I_s = K_s \cdot I \cdot \max(0, R \cdot V)^n$			
	where R is the reflection vector computed as: $R = 2(N \cdot L) N - L$			
	a. Calculate the diffuse and specular components using the given values.			
	b. Compute the total intensity I_r for the red channel.			
2	The share the size	10	2	3
3.	Using the pinhole camera model, establish the relationship between the size	10	2	3
	of an image formed on the retina, the distance of the object from the eye, and			
	the focal length of the human eye. Assume that the eye behaves as an ideal			
	pinhole camera with a known focal length f and a retinal pixel size ps.			
	Furthermore, using this principle, solve the following problem:			
	 The human eye has an approximate focal length of 17mm (0.017m). 			
	• The size of a single retinal photoreceptor (ps) is $4\mu m~(4\times 10^{-6}~m~per$			
	pixel).			
	 A person observes an object of height h = 80cm placed 2.5m away. 			
	a. Determine the size of the image (h') formed on the retina using the			
	pinhole camera model.			
	•			
	b. Estimate how many retinal pixels (n) the image spans on the retina.			
	Note: Assume that the image undergoes no lens distortions or aberrations.	10	_	2
4./	In a virtual reality (VR) environment, an object is placed at an initial position	10	5	3
-	P = (2, 3, 1) in homogeneous coordinates. The object undergoes the following			
	transformations in sequence: $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	[i.] Scaling by a factor of $S_x = 2$, $S_y = 1.5$, $S_z = 1$.			
	[ii.] Rotation about the Z-axis by 45° .			
	[iii.] Translation by $T_x = 3$, $T_y = -2$, $T_z = 1$.			
	a. Compute the final position of the object after these transformations.			
	b. If this transformed object is used in a picking operation, determine how its coordinates would be affected in a different frame of			
	reference where the viewer's position is offset by $(1, 1, 0)$.			
	c. Discuss how these transformations impact user interaction in flying			
	navigation mode within a Virtual Environment.			
5.	Statement: In a VR-based robotic surgery simulation, precise collision	10	5	4
	detection is crucial to ensure safe interaction between virtual surgical			
	instruments and anatomical structures.			
	a. Analyze the trade-off between usage of spatial partitioning techniques			
	and GPU-based collision detection in virtual surgery as per the above			
	statement.			
	b. How would a haptic feedback system be integrated to enhance user			
	experience when a collision is detected in virtual surgery as per the	7		
	above statement?			

Page 2 of 2