华东师范大学期末试卷 (A) 2023-2024 学年第二学期

星名称: 涓	高等数学 II								
学生姓名:		_							
专业:									
星性质:	专业必修								
二	三	四	五.	六	七	八	总分	阅卷人签名	
A) 单叶 设有向曲 当 $f(x,y)$ 当 $f(x,y)$ A) 2	曲面、 B) 由面 Σ 关于 Σ (z) 为关于 z (z) 为关于 z 2, B) 2	双叶曲面, XOY 平面 z 的奇函数 z 的偶函数 0,	$C)$ 双臣对称, Σ^+ 饮时, $\iint_{\Sigma} f$ 饮时, $\iint_{\Sigma} f$	曲面, D 为其 $z \ge C(x,y,z)$ $C(x,y,z)$ D) 旋转由 0 的那部 $1x dy = 1x dy = 0$	由面. 邓分. 则: ×	-		
如果 \sum_{r} A) 绝对	$\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty}$ 收敛,B)	$\sum_{n=1}^{+\infty} v_n$ 都是条件收敛。	是绝对收敛 C) 不中	文,则 ∑ _n ; 收敛, □	∞ =1(u _n +)) 无法判	v _n) 是_		向量.	
A) 1,	B) 2, C)			H J D I 30.7 .	·				
题 填空	题 (每小是	圆 4 分, 共	20分)						
重积分	$\int_{0}^{1} \int_{x^{2}}^{x} g(x, y)$) d y d x 在	交换积分	次序后为	·				
计算曲面	可积分 $\iint_{\Sigma} x_i$	yz d S 为_	, 其□	中Σ为平ῖ	面 $x+y$	+z = 2	在第一卦阵	艮的那部分.	
体积微元	ī d <i>V</i> 在柱ī	五小松下 百	力丰元为	- /. ∵⊤	+111 == 4:	二十十十二	<u> </u>		
	- , ,—,	可工小小!」	111111111111111111111111111111111111111	,仕‡	氷刞坐仞	、下的衣/	不刃		
	上 L L L L L L L L L L L L L L L L L L L	上: 型性质: 专业必修 上: 型性质: 专业必修 上: 型性质: 专业必修 上: 上: 上: 二	主姓名:	上注 上:	上性名:	上性名:	上性名:	上注	

5.
$$y' - y = 2x - 3$$
 的通解是_____.

Answer: 1.
$$\int_0^1 \int_y^{\sqrt{y}} g(x, y) dx dy$$

2. $\sqrt{3}/30$

3.
$$dV = r dr d\theta dz$$
 $dV = r^2 \sin \varphi dr d\varphi d\theta$

4. $\frac{1}{2}$

5.
$$Ce^x - 2x + 1$$

第三题 (10 分) 已知 $x = r \cos \theta$ 和 $y = r \sin \theta$. 求以下偏导数 x'_r , x'_θ , y'_r , y'_θ , r'_x , r'_y , θ'_x , θ'_y . **Answer:** (4 分) 先计算偏导数

$$x'_r = \cos \theta, \qquad x'_{\theta} = -r \sin \theta, \qquad y'_r = \sin \theta, \qquad y'_{\theta} = r \cos \theta.$$

(2 分) 再求反函数 $r = \sqrt{x^2 + y^2}$ 和 $\theta = \arctan(y/x)$.

(4分) 最后计算偏导数

$$r'_x = x/\sqrt{x^2 + y^2}, \qquad r'_y = y/\sqrt{x^2 + y^2}, \qquad \theta'_x = -y/(x^2 + y^2), \qquad \theta'_y = x/(x^2 + y^2).$$

第四题 (10 分) 求由圆锥曲面 $z^2 = x^2 + y^2$ ($z \ge 0$) 和平面 z = h 所围成立体的形心. (即质量密度均匀时立体的重心)

Answer: (2 分) 由于该立体 Ω 关于 Z 轴旋转而成, 因此 $\bar{x} = 0$, $\bar{y} = 0$.

(2 分) 令 $D_{xy} := x^2 + y^2 \le h$, 立体 Ω 可表示为 $\sqrt{x^2 + y^2} \le z \le h$, 其中 $(x, y) \in D_{xy}$.

(4分) 不妨设密度系数为1, 我们有

$$\begin{split} \iiint\limits_{\Omega} \,\mathrm{d}\,x \,\mathrm{d}\,y \,\mathrm{d}\,z &= \iint\limits_{D_{xy}} \,\mathrm{d}\,x \,\mathrm{d}\,y \int_{\sqrt{x^2 + y^2}}^h \,\mathrm{d}\,z = \int_0^{2\pi} \,\mathrm{d}\,\theta \int_0^h r \,\mathrm{d}\,r \int_r^h \,\mathrm{d}\,z \\ &= 2\pi \int_0^h r(h-r) \,\mathrm{d}\,r = 2\pi \frac{h^3}{6} = \frac{\pi h^3}{3}, \\ \iiint\limits_{\Omega} z \,\mathrm{d}\,x \,\mathrm{d}\,y \,\mathrm{d}\,z &= \iint\limits_{D_{xy}} \,\mathrm{d}\,x \,\mathrm{d}\,y \int_{\sqrt{x^2 + y^2}}^h z \,\mathrm{d}\,z = \int_0^{2\pi} \,\mathrm{d}\,\theta \int_0^h r \,\mathrm{d}\,r \int_r^h z \,\mathrm{d}\,z \\ &= 2\pi \int_0^h \frac{r(h^2 - r^2)}{2} \,\mathrm{d}\,r = 2\pi \frac{h^4}{8} = \frac{\pi h^4}{4}. \end{split}$$

(2 分) 因此
$$\bar{z} = \frac{\iiint_{\Omega} z \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z}{\iiint_{\Omega} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z} = \frac{3h}{4}$$
, 该立体的形心为 $(0, 0, \frac{3h}{4})$.

第五题 (8 分) 计算第二型曲线积分 $\int_L y \, \mathrm{d} x + x \, \mathrm{d} y$, 其中 L 为沿着抛物线 $y = x^2$ 从 (1,1) 移动 到 (2,4) 的那段曲线.

Answer: (8 分)

$$\int_L y \, \mathrm{d}\, x + x \, \mathrm{d}\, y = \int_L x^2 \, \mathrm{d}\, x + x \, \mathrm{d}\, x^2 = \int_1^2 x^2 \, \mathrm{d}\, x + x \, \mathrm{d}\, x^2 = \int_1^2 3x^2 \, \mathrm{d}\, x = x^3 \big|_1^2 = 7.$$

第六题 (12 分) 设 Ω 是空间一单连通域,函数P,Q,R在 Ω 内具有连续一阶偏导数.证明以下四个命题互相等价:

a 对 Ω 内任一分段光滑曲线 L, 积分 $\int_L P dx + Q dy + R dz$ 是路径无关的.

b 在 Ω 上存在某一函数 u, 使得 du = P dx + Q dy + R dz.

c 在
$$\Omega$$
 内处处有 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$.

d 对Ω内任一分段光滑闭曲线L,都有 $\oint_L P dx + Q dy + R dz = 0$.

Answer: (3 分) $a \Rightarrow b$. 在 Ω 内取一点 $A(x_0, y_0, z_0)$, 由条件得, 对 Ω 内任意一点B(x, y, z), $\int_{\widehat{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z$ 只与A, B有关, 而与路径无关. 令

$$u(x, y, z) = \int_{\widehat{AB}} P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z.$$

因为

$$\Delta_x u = u(x + \Delta x, y, z) - u(x, y, z) = \int_{(x, y, z)}^{(x + \Delta x, y, z)} P(x, y, z) dx$$
$$= \int_x^{x + \Delta x} P(t, y, z) dt$$
$$= P(x + \theta \Delta x, y, z) \Delta x, \quad 0 < \theta < 1.$$

所以

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x u}{\Delta x} = \lim_{\Delta x \to 0} P(x + \theta \Delta x, y, z) = P(x, y, z).$$

同理可证, $\frac{\partial u}{\partial y} = Q(x, y, z)$ 和 $\frac{\partial u}{\partial z} = R(x, y, z)$. 又因为 P, Q, R 在 Ω 内连续, 故 u(x, y, z) 在 Ω 内可微, 因此得 $\mathrm{d} u = P \, \mathrm{d} x + Q \, \mathrm{d} y + R \, \mathrm{d} z$.

 $(3 分) b \Rightarrow c.$ 在 Ω 上存在某一函数u, 使得du = P dx + Q dy + R dz, 则

$$\frac{\partial u}{\partial x} = P, \quad \frac{\partial u}{\partial y} = Q, \quad \frac{\partial u}{\partial z} = R.$$

又由于P,Q,R在 Ω 上都具有连续一阶偏导数,因而

$$\frac{\partial P}{\partial y} = \frac{\partial^2 u}{\partial x \partial y}, \quad \frac{\partial P}{\partial z} = \frac{\partial^2 u}{\partial x \partial z},$$
$$\frac{\partial Q}{\partial x} = \frac{\partial^2 u}{\partial y \partial x}, \quad \frac{\partial Q}{\partial z} = \frac{\partial^2 u}{\partial y \partial z},$$
$$\frac{\partial R}{\partial x} = \frac{\partial^2 u}{\partial z \partial x}, \quad \frac{\partial R}{\partial y} = \frac{\partial^2 u}{\partial z \partial y}$$

在Ω内都连续, 因此

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}.$$

 $(3 \, \mathcal{G}) \, c \Rightarrow d$. 设光滑曲线 L 围成的区域为 G, 根据 Stokes 公式,

$$\iint\limits_{\mathcal{O}} \left(\frac{\partial \, R}{\partial \, y} - \frac{\partial \, Q}{\partial \, z} \right) \mathrm{d} \, y \, \mathrm{d} \, z + \left(\frac{\partial \, P}{\partial \, z} - \frac{\partial \, R}{\partial \, x} \right) \mathrm{d} \, z \, \mathrm{d} \, x + \left(\frac{\partial \, Q}{\partial \, x} - \frac{\partial \, P}{\partial \, y} \right) \mathrm{d} \, x \, \mathrm{d} \, y = \oint_L P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z,$$

其中L关于G取正向,由c中的条件得

$$\oint_L P \, \mathrm{d} x + Q \, \mathrm{d} y + R \, \mathrm{d} z = \iint_G 0 \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = 0.$$

 $(3 \, \mathcal{G}) \, d \Rightarrow a.$ 对于 Ω 内任一分段光滑曲线 L, 设其端点为 A 和 B. 任取区域 Ω 内从 A 到 B 的分段光滑有向曲线 L_0 , 且记 L_0^- 为 L_0 的同路径但反方向的曲线.

若 L_0 和L不相交,此时 $L \cup L_0^-$ 为分段光滑的封闭曲线,因此由条件得

$$\begin{split} & \int_{L} P \, \mathrm{d}\,x + Q \, \mathrm{d}\,y + R \, \mathrm{d}\,z - \int_{L_{0}} P \, \mathrm{d}\,x + Q \, \mathrm{d}\,y + R \, \mathrm{d}\,z \\ & = \int_{L} P \, \mathrm{d}\,x + Q \, \mathrm{d}\,y + R \, \mathrm{d}\,z + \int_{L_{0}^{-}} P \, \mathrm{d}\,x + Q \, \mathrm{d}\,y + R \, \mathrm{d}\,z \\ & = \left(\int_{L} + \int_{L_{0}^{-}} \right) P \, \mathrm{d}\,x + Q \, \mathrm{d}\,y + R \, \mathrm{d}\,z = 0. \end{split}$$

因此

$$\int_{L} P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z = \int_{L_0} P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y + R \, \mathrm{d} \, z.$$

若 L_0 和 L 相交,可做第三条从 A 到 B 的有向光滑曲线 L_1 ,使其与 L 和 L_0 都不相交.由已证结果得,沿着 L_1 的积分和沿着 L, L_0 的积分都相等,因此沿着 L 的积分和 L_0 的积分相等.

第七题 (10分) 求以下两个幂级数的收敛半径,并讨论在收敛区间端点处的收敛性.

$$\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!} \, x^n \qquad \text{ fill } \qquad \sum_{n=1}^{+\infty} a^{n^2} x^n \, \, (\sharp \pitchfork \, 0 < a < 1).$$

Answer: 对于 $\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!} x^n$: (3 分) 我们有一般项系数 $u_n = \frac{(n!)^2}{(2n)!}$. 故

$$\rho = \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \left| \frac{(n+1)^2}{(2n+2)(2n+1)} \right| = \frac{1}{4},$$

即收敛半径为4.

(3分) 定义双阶乘记号

$$n!! = n \cdot (n-2)!!$$
 $(n > 2)$
 $1!! = 0!! = 1.$

当 $x = \pm 4$ 时,级数一般项的绝对值为

$$|u_n x^n| = \frac{(n!)^2}{(2n)!!} (4)^n = \frac{(2n)!!(2n)!!}{(2n)!!(2n-1)!!} = \frac{(2n)!!}{(2n-1)!!} > 1$$

不收敛到零. 因此级数在收敛区间端点处发散.

对于
$$\sum_{n=1}^{+\infty} a^{n^2} x^n$$
: (4 分) 我们有一般项系数 $u_n = a^{n^2}$. 故

$$\rho = \lim_{n \to +\infty} \sqrt[n]{a^{n^2}} = \lim_{n \to +\infty} a^n = 0,$$

因此级数的收敛半径为 $R = +\infty$,收敛区域为 $(-\infty, +\infty)$.

第八题 (10 分) 设p > 0, 证明级数

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^p}$$

收敛, 且和在 $\frac{1}{2}$ 和 1 之间. (提示: 当 x>0 时, $f(x)=1/x^p$ 是凸函数.)

Answer: (3 分) 交错级数 + 一般项递减收敛到 0, 所以级数收敛.

(2 分) 首项 $u_1 = 1$, 所以级数小于 1.

(5分) 因为凸函数, 偶数项

$$u_{2k} = -\frac{1}{k^p} \ge -\frac{1}{2} \left[\frac{1}{(k-1)^p} + \frac{1}{(k+1)^p} \right] = -\frac{1}{2} [u_{2k-1} + u_{2k+1}],$$

从而

$$S_{2n} = \sum_{k=1}^{2n} u_k \ge \frac{1}{2}u_1 - \frac{1}{2}u_{2n+1}$$
 以及 $S_{2n+1} \ge \frac{1}{2}u_1 + \frac{1}{2}u_{2n+1}$.

部分和序列收敛值 $\lim_{n\to\infty} S_n \geq \frac{1}{2}u_1 = \frac{1}{2}$.