DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER VI [COMPUTER ENGINEERING] SUBJECT: (CE623) NAME: THEORY OF AUTOMATA AND FORMAL LANGUAGES

Examinati Date Fime	: Regular : 23/04/2021- : 10-wto 1.00 pm	Seat No Day Max. Marks	: Wednesday	
INSTRUC				
1. 2. 3. 4. 5.	Answer each section in a separate Figures to the right indicate material The symbols used carry their use. Assume suitable data, if require Draw neat sketches wherever near the symbols are the symbols and the symbols used carry their use.	ximum marks for that question. sual meanings. ed & mention them.		
Q.1 CO2 CO3	A (b) Perform Left-Factor	r Expression into Finite Automoring on the given grammar		
CO2 CO2 CO2	R (c) Define: Regular Grand R (d) Explain Greibach N	ammar Normal Form (GNF) with a suit apression for the following land and w does not contain two co	able example. [2] guage. [2]	
Q.2 CO2		41 C. Hawing questions	[10] s with input symbols {0, 1, 2} [5]	
CO2	where 2 nd last symbol (b) Minimize the given	n DFA.	[5]	
		(q3)		
		b b 6 Q4) a, b	
CO2	A (c) Using Pumping L	emma prove $L = \{a^{3^n} \mid n >= 1\}$	can't be accepted by FA. [5]	1
Q.3 CO4	Attempt the following C (a) Consider the following $L_1 = \{wcw^R \mid w \in \mathbb{R} \}$	wing languages: {0,1}* and c is a symbol not	[10] [5] equal to 0 or 1}	
CO2	language only if to A (b) Convert the follow S → AbA Ab	the language(s) is/are DCFL? the language is DCFL. wing CFG into Chomsky Nort	Construct a DPDA for any one nal Form.	5
	$A \rightarrow Aa \mid a$	OR		0
Q.3 CO4 CO2	A (b) Write a Context-	a anostions	[1] \(\frac{1}{2} \) or $j > k$ and $i, j, k > 0$ } [1] anguage.	

SECTION - II

Q.4		Do a	as directed.	[10]
CO3	R	(a)	In what way the working of Turning Machines is different from FAs and PDAs?	[2]
CO3	N	(b)	"Every recursive language is recursively enumerable". Prove the statement.	[2]
CO3	A	(c)	Does every Turing Machine compute a Partial Function? Justify your answer.	[2]
CO4	U	(d)	Mention advantages and disadvantages, if any, of non-determinism in models of	[2]
			computation.	
COI	U	(e)	Is Minimal Counter Example Principle related to any other proof technique(s)?	[2]
			Justify your answer.	
0.5		A ++	empt Any TWO from the following questions.	[10]
Q.5	~	ALL	Construct a Turing Machine for reversing the input string. Perform execution	[5]
CO3	C	(a)	Construct a furning Machine for feversing and in-	
			Trace for the input "abb".	[5]
CO3	C	(b)	Draw a transition diagram for a Turing Machine for accepting	
			$\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}.$	
			Here, ni(x) means no. of i's in the input string x.	[5]
CO3	C	(c)	Construct Transition Diagram of Execute Sub-Turing Machine (Deterministic	[2]
			Turing Machine) for a given below non-deterministic Turing Machine,	

Assume that NDTM (T_1) has alphabet 'a' other than ' Δ '. Make and clearly specify necessary assumptions.

	Attempt the following questions.	[10] [8]
U	(a) Prove the following statement:	
	If $I \subset \Sigma^*$ is a language that is accepted by the NFA- Λ M = $(Q, Z, q_0, A, 0)$,	
	$A_1 = A_2 = A_3 = A_4 $	
U	(b) Write a recursive definition for a subset of {a, b} having the set of an sum g	[-]
	containing at least one 'a' and all the a's precede all the b's.	
	OR	[10]
	Attempt the following questions.	[10] [8]
U	() Ct-to and prove Kleene's Theorem - Part I.	
U	(b) Write a recursive definition for a subset of {a, b} naving the set of an sumgs	[4]
	that start with 'a' and do not contain the substring "aa".	
	U	 Attempt the following questions. U (a) Prove the following statement: If L ⊆ ∑*, is a language that is accepted by the NFA-Λ M = (Q, ∑, q₀, A, δ), then there is an NFA M₁ = (Q₁, ∑, q₁, A₁, δ₁) that also accepts L. U (b) Write a recursive definition for a subset of {a, b}* having the set of all strings containing at least one 'a' and all the a's precede all the b's. OR Attempt the following questions. U (a) State and prove Kleene's Theorem – Part I. U (b) Write a recursive definition for a subset of {a, b}* having the set of all strings that start with 'a' and do not contain the substring "aa".

Bloom's Taxonomy levels: R-Remembering, U- Understanding, A-Applying, N-Analyzing, E- Evaluating, C-Creating