Neural Networks Verification as Piecewise Linear Optimization

DIMACS Rutgers University May 23-26, 2022

Tu Anh-Nguyen Joey Huchette

Abstract

In this work, we provide a strong (ideal) MIP formulation for the neural network verification task, which extends the work of Anderson et al. [1] Our contributions are summarized as follows.

- > We derive a polynomial algorithm to obtain the facet-defining hyperplane for the Cayley embedding of the graph of activation functions.
- > Empirically, our formulation are shown to give tighter LP relaxations for relaxed verifiers and improves the performance of exact verifiers.

MIP Formulation of NN Verification using Cayley Embedding

output of a neural net $\lim_{x \in X_{\epsilon}(x_0)} c \cdot \boxed{M(x)} \leq \xi?$ $\lim_{x \in X_{\epsilon}(x_0)} c \cdot \boxed{M(x)} \leq \xi?$ expanded form $\lim_{x \in X_{\epsilon}(x_0)} c \cdot \underbrace{M(x)} \leq \exp(c_1 x_1, \dots, x_{i-1}) + \cdots + c_{i-1} x_{i-1}) + \cdots + c_{i-1} x_{i-1} + \cdots$

➤ The convex hull of the Cayley embedding is infact a polytope with an exponential number of faces. Hence, we need to derive an efficient separation procedure.

Lemma 1. Given $(\hat{x}, \hat{y}, \hat{z})$, if the optimal value of the following problem is greater than \hat{y} then $(\hat{x}, \hat{y}, \hat{z})$ is feasible, otherwise, the optimal solution α^* corresponds to a hyperplane that cut off $(\hat{x}, \hat{y}, \hat{z})$

$$\min \ \ s \sum_{i=1}^k z_i (\sum_{j=1}^n u_j | w_j | \bar{\beta}_j^i - \sum_{j=1}^n l_j | w_j | \bar{\gamma}_j^i + (h_i - b) \bar{\theta}_1^i - (h_{i-1} - b) \bar{\theta}_2^i) + s \sum_{j=1}^n x_j | w_j | \bar{\alpha}_j | \bar{\beta}_j^i - \sum_{j=1}^n l_j | w_j | \bar{\alpha}_j | \bar{\beta}_j^i - \sum_{j=1}^n l_j | w_j | \bar{\beta}_j^i - \sum_{j=1$$

$$\text{\it subject to} \ \underbrace{ \begin{bmatrix} A & 0 & \dots & 0 & I_n \\ 0 & A & \dots & 0 & I_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & A & I_n \end{bmatrix}}_{\hat{A}} \begin{array}{c} \bar{\beta}^1 \\ \bar{\gamma}^1 \\ \bar{\theta}^1 \\ \vdots \\ \bar{\beta}^k \\ \bar{\gamma}^k \\ \bar{\theta}^k \\ \bar{\alpha} \end{array} = \begin{bmatrix} \frac{a_1}{\underline{s}} \bar{w} \\ \frac{a_2}{\underline{s}} \bar{w} \\ \frac{a_3}{\underline{s}} \bar{w} \\ \vdots \\ \frac{a_k}{\underline{s}} \bar{w} \end{bmatrix}, \ \textit{and} \ \begin{bmatrix} \bar{\beta}^1 \\ \bar{\gamma}^1 \\ \bar{\theta}^1 \\ \vdots \\ \bar{\beta}^k \\ \bar{\gamma}^k \\ \bar{\theta}^k \end{bmatrix} \geq$$

>>> Theorem 1. The separation procedure can be done in $O(n \log(n + \max(k, n)))$ time complexity

Motivating Example: Staircase Function

A univariate piecewise linear function $f: \mathbb{R} \to \mathbb{R}$ with k pieces is a staircase function if there exists $s \in \mathbb{R}$ such that every pieces slope $a_i \in \{0, s\}$.

Fig. 1: 1D Staircase Function

A piecewise linear function $f:\mathbb{R}^n \to \mathbb{R}$ is a k-piece staircase function if $f=g(w\cdot x)$ where g is a univariate staircase function.

Fig. 2: 2D Staircase Function and Cayley Embeddings

Let $D^i := \{x \in D | h_{i-1} \le w \cdot x + b \le h_i\}$, the Cayley Embedding [2] for the closure of graph of f is:

$$S_{\text{Cayley}}(g) \coloneqq \bigcup_{i=1}^k \{(x, y, z) | x \in D^i, y = f(x), z = e^i \}$$

Composition of Staircase Functions

Experimental Results

Table 1: Relaxed Verifiers

NN Arch.	_	DeepPoly		Big-M Formulation		Cayley Emb. Formulation	
	ϵ	#Verified	Time (s)	#Verified	Time (s)	#Verified	Time (s)
	0.008	118	0.338 ± 0.056	138	1.060 ± 0.005	138	1.100 ± 0.008
Dense 2×256	0.016	59	0.338 ± 0.058	112	1.056 ± 0.006	113	1.129 ± 0.086
Dorefa 2	0.024	19	0.336 ± 0.055	65	1.075 ± 0.004	66	1.139 ± 0.078
	0.032	0	0.326 ± 0.054	28	1.080 ± 0.006	29	1.174 ± 0.086
Dense 2 x 256 Dorefa 3	0.008	132	0.339 ± 0.059	142	1.056 ± 0.005	142	1.102 ± 0.075
	0.016	87	0.340 ± 0.059	125	1.058 ± 0.005	125	1.120 ± 0.070
	0.024	11	0.341 ± 0.058	90	1.078 ± 0.005	91	1.169 ± 0.079
	0.032	0	0.324 ± 0.052	27	1.080 ± 0.006	29	1.210 ± 0.090
	0.008	132	0.329 ± 0.055	143	1.082 ± 0.005	144	1.113 ± 0.082
Dense 2×256	0.016	78	0.329 ± 0.056	126	1.063 ± 0.006	126	1.134 ± 0.072
Dorefa 4	0.024	6	0.330 ± 0.056	86	1.071 ± 0.006	90	1.178 ± 0.086
	0.032	0	0.331 ± 0.056	25	1.100 ± 0.006	34	1.286 ± 0.160
Dense 2 x 256	0.008	140	0.329 ± 0.056	143	1.060 ± 0.006	143	1.130 ± 0.083
	0.016	78	0.332 ± 0.056	138	1.087 ± 0.005	140	1.169 ± 0.078
Dorefa 5	0.024	4	0.331 ± 0.056	98	1.107 ± 0.007	100	1.256 ± 0.113
	0.032	1	0.328 ± 0.056	33	1.144 ± 0.007	44	1.409 ± 0.190

Table 2: Exact Verifier using Cayley Embedding

NN Arch.	ϵ	Cayley Embedding Formulation					
	C	#Nodes	Gap (%)	Gurobi Time (s)	User Callbacks (s)		
Dorefa 2 Dorefa 3 Dorefa 4	0.008	2984.4 ± 1590.1 53277.0 ± 18666.20 33248.4 ± 268.06	$0.00 \ 4.19 \pm 1.74 \ 4.28 \pm 1.06$	2.84 ± 0.66 Timeout Timeout	1.14 ± 0.4 17.73 ± 5.12 14.09 ± 0.32		
Dorefa 2 Dorefa 3 Dorefa 4	0.016	45925.4 ± 17338.72 33406.3 ± 639.79 42701.2 ± 20587.1	11.57 ± 5.70 12.33 ± 6.09 9.34 ± 6.22	Timeout Timeout Timeout	16.51 ± 6.52 14.46 ± 0.35 19.63 ± 9.63		

Table 3: Exact Verifier using Big-M

			O	0		
NN Arch.	ϵ	Big-M Formulation				
ININ AICH.		#Nodes	Gap (%)	Solve Time (s)		
Dorefa 2		3925.5 ± 2326.01	0.00	3.11 ± 0.87		
Dorefa 3	0.008	51285.8 ± 20756.89	5.89 ± 4.37	Timeout		
Dorefa 4		33063.8 ± 607.23	4.46 ± 1.64	Timeout		
Dorefa 2		33340.6 ± 427.03	13.09 ± 4.90	Timeout		
Dorefa 3	0.016	33224.5 ± 317.93	12.48 ± 5.08	Timeout		
Dorefa 4		33091.6 ± 406.6	11.41 ± 7.90	Timeout		

All neural networks are training using the quantized network training open-source package Larq. The activation Dorefa κ is a constant piecewise function with 2^{κ} pieces.

Neural Networks Verification Procedure

Theoretical Section