Introduction to Complex Analysis

Qitian Liao

Aug 3, 2020

Contents

1	\mathbf{Alg}	ebra of	the Complex Plane	2			
	1.1	Introdu	uction to Complex Numbers	2			
	1.2	Conjug	gate of Complex Numbers	2			
			Definition of Conjugate	2			
			Properties of Conjugate	2			
			Real and Imaginary Parts	2			
	1.3		us of Complex Numbers	2			
			Definition of Modulus	3			
			Properties of Modulus	3			
		1.3.3	Triangle Inequality	3			
		1.3.4	Complex Division	3			
			Distance in the plane	3			
	1.4		ex Polynomial	3			
	1.1	_	Fundamental Theorem of Algebra	3			
		1.1.1	Tundamental Theorem of Higeora	0			
2	Geo	metry	of the Complex Plane	4			
	2.1		ties of Polar Forms	4			
	2.2		ion of Argument and argument	4			
	2.3		Formula	4			
	2.4		etric Understanding of Multiplication	5			
3	Stereographic Projections, Exponentials and Logs						
	3.1	Stereog	graphic Projections	6			
		3.1.1	Mapping	6			
	3.2	Comple	ex Logarithm	6			
		3.2.1	Logarithm of Real Numbers	6			
		3.2.2	Logarithm of Complex Numbers	6			
		3.2.3	Derivation of Complex Logarithm	6			
		3.2.4	Conclusion from Derivation	7			
		3.2.5	How Logarithm acts on curves	7			
4	-	ology i		8			
	4.1		ex Sequence	8			
			Cauchy Sequence	8			
		4.1.2	Sequence Convergence	8			
		4.1.3	Completeness of $\mathbb C$	8			
	4.2	_	ex Set	8			
		4.2.1	Open Set	8			
		4.2.2	Closed Set	8			
		4.2.3	Compact Set	8			
		4.2.4	Compact Set	8			
		4.2.5	Connected Set	8			
		4.2.6	Boundary of Set	9			
		4.2.7	Interior of Set	9			
		4.2.8	Closure of Set	9			

	4.2.9 Domain	9
5	Continuity and Branch Cuts 5.1 Complex Continuity	10 10 10 10
	5.3.1 Example of a Branch Cut	10 10 10
6	Differentiability in \mathbb{C} 6.1 Difference between \mathbb{R} and \mathbb{C} differentiability 6.1.1 Complications with \overline{z} 6.2 Properties of $f'(z)$ 6.3 Geometric behavior of $f'(z)$ 6.3.1 Dilation 6.3.2 Rotation 6.3.3 Conclusion	12 12 13 13 13 13 14
7	The Cauchy Riemann Equations 7.1 The Cauchy Riemann Equations 7.1.1 Properties of the Cauchy Riemann Equations 7.1.2 Sufficiency of the Cauchy Riemann Equations to f' 7.2 Cauchy Riemann with Logarithm 7.3 Lack of Complex Mean Value Theorem 7.4 Wirtinger Equations 7.4.1 Relationship with the Cauchy Riemann Equations	15 15 15 16 16 17
8	Harmonic Functions 8.1 Laplacian 8.2 Harmonic Functions	18 18 18
9	Conformal Maps 9.1 Preservation of Angles 9.2 Conformal Function 9.2.1 Conditions of Conformal Functions 9.2.2 e ^z is conformal 9.3 Conformal Map 9.3 Conformal Map	19 20 20 20 20
10	Bilinear Transformations	21
11	Contour Integral in $\mathbb C$	23
12	Cauchy's Closed Curve Theorem and the Fundamental Theorem of Calculus	23
13	Cauchy's Integral Formula	23
1⊿	Growth Conditions of Holomorphic Functions	23

15 Convergence of Infinite Series in $\mathbb C$	23
16 Power Series in $\mathbb C$	23
17 Series Expansion of Holomorphic Functions	2 3
18 Open Mapping Theorem and Reflection Principle	23
19 Laurent Series	23
20 Residue Theorem	23
21 Improper Integrals	23
22 Argument Principle and Rouche's Theorem	23

1 Algebra of the Complex Plane

1.1 Introduction to Complex Numbers

Let $z = a + ib \in \mathbb{C}$ where $a, b \in \mathbb{R}$ and $i^2 = -1$.

This number can be thought of as a point in 2-space, \mathbb{R}^2 , (a,b) or as a position in \mathbb{C} .

 \mathbb{R}^2 : \oplus addition; \odot scalar multiplication.

 $\mathbb{C}:\oplus$ addition; \odot scalar multiplication; a vector space; have multiplication of elements, \mathbb{C} is a field.

If
$$z = a + ib$$
, $w = c + id$, then $zw = (ac - bd) + i(ad + cb)$

$$zw = wz$$

$$z(w + \alpha) = zw + z\alpha$$

$$(zw)\alpha = z(w\alpha)$$

1.2 Conjugate of Complex Numbers

1.2.1 Definition of Conjugate

The complex conjugate of z, \overline{z} , is defined by

$$\overline{z} = a - ib$$

Geometric representation: The image of \bar{z} is the reflection of z about the Real axis.

1.2.2 Properties of Conjugate

$$\overline{\overline{z}} = z$$

$$\overline{zw} = \overline{zw}$$

$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\overline{z} = z \text{ if and only if } z \in \mathbb{R}$$

1.2.3 Real and Imaginary Parts

We can project z onto the Real or Imaginary axis and measure its distance from 0:

$$\Re(z) = a$$

$$\Im(z) = b, \text{ not } ib$$

Each function is a map $\mathbb{C} \to \mathbb{R}$. Then

$$\Re(z) = \frac{z + \overline{z}}{2}$$

$$\Im(z) = \frac{z - \overline{z}}{2i}$$

2

This is similar to the pattern with even/odd functions.

1.3 Modulus of Complex Numbers

Note:
$$z\overline{z} = (a+ib)(a-ib) = a^2 + b^2 \in \mathbb{R}$$

1.3.1 Definition of Modulus

|z| length/modulus of z is defined by:

$$|z| = (a^2 + b^2)^{\frac{1}{2}} = (z\overline{z})^{\frac{1}{2}} \in \mathbb{R}$$

1.3.2 Properties of Modulus

$$\begin{aligned} |zw| &= |z||w| \\ |z| &= |\overline{z}| \\ |z| &\geqslant 0 \\ |z| &= 0 \text{ if and only if } z = 0 \end{aligned}$$

1.3.3 Triangle Inequality

Triangle Inequality:

$$|z + w| \leqslant |z| + |w|$$

Reverse Triangle Inequality:

$$|z| - |w| \leqslant |z - w|$$

$$z = z - w + w \Rightarrow |z| = |z - w + w| \Rightarrow |z| \leqslant |z - w| + |w| \Rightarrow |z| - |w| \leqslant |z - w|.$$

1.3.4 Complex Division

With $z\overline{z} \in \mathbb{R}$, we can define complex division by reducing it to a multiplication problem.

$$\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{1}{w\overline{w}}(z\overline{w})$$

We also have

$$\left|\frac{z}{w}\right| = \frac{|z|}{|w|} \text{ for } w \neq 0$$

1.3.5 Distance in the plane

A disk in the complex plane centered at c of radius $r \in \mathbb{R}$ is of the form

$$\{z \in \mathbb{C} \mid |z - c| \leqslant r\}$$

1.4 Complex Polynomial

A complex polynomial p(z) of degree n is of the form:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

where $a_n \neq 0$ and $a_i \in \mathbb{C}$ for $i = 0, \dots, n$

1.4.1 Fundamental Theorem of Algebra

The factorization of p(z) factors over \mathbb{C} is unique,

$$p(z) = c(z - z_1)^{m_1}...(z - z_k)^{m_k}$$

We have roots $z_i \in \mathbb{C}$ of p(z) with order $m_i \in \mathbb{N}$.

For example, if $p(z) = z^2 + 4 = (z + 2i)(z - 2i)$, then it factors over $\mathbb C$ but not $\mathbb R$.

Note: \mathbb{C} is an algebraically closed field, there are no irreducible polynomials in \mathbb{C} .

Note: \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} are not algebraically closed.

2 Geometry of the Complex Plane

2.1 Properties of Polar Forms

Complex numbers can be represented in polar forms:

$$z = |z|(\cos\theta + i\sin\theta)$$

with modulus |z| and argument θ . To change between the coordinate systems it follows:

$$|z| = (a^2 + b^2)^{\frac{1}{2}}$$
$$\tan \theta = \frac{b}{a}$$
$$a = |z| \cos \theta = \Re(z)$$
$$b = |z| \sin \theta = \Im(z)$$

Note: $\theta_R = \arctan(\frac{b}{a})$ is a reference angle of z. To find θ from θ_R , you need to consider the signs of a and b.

Example:

$$\begin{split} z &= -3 + 3i = 3\sqrt{2}(\cos\frac{3\pi}{4} + \sin\frac{3\pi}{4}) \\ \theta_R &= \arctan(\frac{3}{-3}) = -\frac{\pi}{4} \\ \theta &= \pi + \theta_R = \pi - \frac{\pi}{4} = \frac{3\pi}{4}, \text{ since } \theta \text{ is in } II. \end{split}$$

2.2 Definition of Argument and argument

Arg(z) is z's principle polar angle θ , $z \neq 0$, where $\theta \in (-\pi, \pi]$. arg(z) is all of z's polar angles, $\theta + 2k\pi$, $k \in \mathbb{Z}$.

2.3 Euler's Formula

Euler's Formula is defined as a linear combination of $\cos \theta$ and $\sin \theta$, \mathbb{R} -valued functions.

$$e^{i\theta} = \cos\theta + i\sin\theta$$

It allows us to express z in polar form by

$$z = |z|e^{i\theta}$$

-1 has polar angle π and modulus 1,

$$-1 = e^{i\pi}$$
 or $e^{i\pi} + 1 = 0$

By the angle addition formulas from trigonometry we find:

$$e^{i\theta}e^{i\varphi} = e^{i(\theta+\varphi)}$$

$$(e^{i\theta})^k = e^{i\theta k}$$

Geometric Understanding of Multiplication

The polar angle of zw is the sum of the polar angles of z and w. The modulus is the product of the moduli.

$$Arg(zw) = Arg(z) + Arg(w)$$

 $Arg(\overline{z}) = -Arg(z)$

Question: How about $\frac{z}{w}$ and z^4 ? It follows from trigonometry that $|e^{i\theta}| = 1$, if $\theta \in (-\pi, \pi]$ we get a parametrization of the unit circle.

Example: Discover all solutions to $w^3 = i = z$

Let $p(z) = w^3 - i$. By Fundamental Theorem of Algebra, there are 3 roots of p(z).

Therefore, $3\theta = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$

This gives us infinitely many solutions, but the solutions form 3 equivalence classes.

All we need is k=0,1,2, which gives $\theta_1=\frac{\pi}{6},\ \theta_2=\frac{5\pi}{6},\ \theta_3=\frac{3\pi}{2}$ Our solutions partitioned the unit circle into 3 equally spaced wedges. The solutions to $w^3=i$ are $w_1=\frac{\sqrt{3}}{2}+\frac{1}{2}i,\ w_2=-\frac{\sqrt{3}}{2}+\frac{1}{2}i$ and $w_3=-i$. This problem of unity can be extended to solving $w^k=z$ for $k\in\mathbb{N},\ z\in\mathbb{C}$ for unknown k-solutions w.

Stereographic Projections, Exponentials and Logs 3

Stereographic Projections

We can express the complex plane on the unit sphere in \mathbb{R}^3 . To perform this we project points on the surface of the sphere along the line from the North Pole (0,0,1) through the point and onto the plane $z=0,\mathbb{C}$

$$p_1 = (x_1, x_2, x_3) \to z = a + ib = \frac{x_1 + ix_2}{1 - x_3}$$

$$x_1 = \frac{2a}{|z|^2 + 1}, \ x_2 = \frac{2b}{|z|^2 + 1}, \ x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}$$

 $p_1 = (x_1, x_2, x_3) \rightarrow z = a + ib = \frac{x_1 + ix_2}{1 - x_3}$ $x_1 = \frac{2a}{|z|^2 + 1}, x_2 = \frac{2b}{|z|^2 + 1}, x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}$ Points in the northern hemisphere P_1 , have $|z_1| > 1$; while points in the southern hemisphere P_2 , have $|z_2| < 1$.

3.1.1 Mapping

$$\mathbb{S}^2 \to \mathbb{C}$$

$$N = (0, 0, 1) \to \infty$$

$$S = (0, 0, -1) \rightarrow 0$$

lines of latitude $\rightarrow |z| = r$, circles

lines of longitude $\rightarrow \text{Arg}(z) = \pm \theta$, lines through (0,0)

Note: In general, circles on \mathbb{S}^2 map to circles and lines in \mathbb{C} , orientation is not always preserved.

3.2Complex Logarithm

Logarithm of Real Numbers

Anytime we are dealing with power, the log function is very useful.

$$\log x = \int_{1}^{x} \frac{1}{t} dt \text{ for } x \in \mathbb{R}$$
 (1)

$$\frac{d}{dx}x^{x} = \frac{d}{dx}e^{\ln x^{x}} = \frac{d}{dx}e^{x \ln x} = e^{x \ln x}(x \cdot \frac{1}{x} + \ln x) = x^{x}(1 + \ln x)$$

3.2.2 Logarithm of Complex Numbers

Remember from Euler's Formula, $e^{i\theta} = \cos \theta + i \sin \theta$.

$$e^z = e^{a+ib} = e^a e^{ib}$$

$$Arg(e^z) = b, |e^z| = e^a > 0$$

Therefore, if a is held fixed, e^z maps to a circle as b changes.

On the other hand, if b is held fixed, e^z maps to a line through (0,0).

3.2.3 Derivation of Complex Logarithm

We want $e^{\log(z)} = z$ for all $z \neq 0$, and thus

$$\begin{split} e^{\Re(\log(z)) + i\Im(\log(z))} &= e^{\Re(\log(z))} e^{i\Im(\log(z))} = |z| e^{i\theta} = z \\ \Rightarrow |z| &= e^{\Re(\log(z))} \\ \Rightarrow \Re(\log(z)) &= \log|z| \end{split}$$

From the imaginary part we find

$$e^{i\theta} = e^{i\Im(\log(z))}$$

$$\Rightarrow \arg(z) = \theta = \Im(\log(z))$$

$$\Rightarrow \Im(\log(z)) = \operatorname{Arg}(z)$$

because arg(z) is not well defined.

Our constructed inverse of e^z is a multi-valued function

$$\log(z) = \log|z| + i\arg(z)$$

3.2.4 Conclusion from Derivation

$$\log(z) = \log|z| + i\arg(z)$$

$$Log(z) = log |z| + i Arg(z)$$

Note: Log(z) does not have all the nice behavior as \mathbb{R} -valued log(x): $\text{Log}(z^k)$. Sometimes they are co-terminal angles, but they are not equal. See the following example:

$$\begin{cases} \text{Log}(i^3) = \text{Log}(-i) = -i\frac{\pi}{2} \\ 3 \text{Log}(i) = 3 \cdot (i\frac{\pi}{2}) = i\frac{3\pi}{2} \end{cases}$$

Example: Compute 3^i :

$$3^{i} = e^{\text{Log } 3^{i}} = e^{i \text{ Log } 3} = \cos(\text{Log } 3) + i \sin(\text{Log } 3)$$

3.2.5 How Logarithm acts on curves

 $\begin{cases} \text{Maps a circle with radius } r \text{ to a vertical line passing through } (\ln(r), 0) \\ \text{Maps a line with angle } \theta \text{ passing through the origin to a horizontal line passing through } (0, i\theta) \end{cases}$

4 Topology in \mathbb{C}

4.1 Complex Sequence

Let $\{Z_n\}$ be a sequence in \mathbb{C} .

4.1.1 Cauchy Sequence

The sequence is Cauchy if for all $\epsilon > 0$, there is a $N \in \mathbb{N}$ such that for all n, m > N, $|z_n - z_m| < \epsilon$.

4.1.2 Sequence Convergence

The sequence converges if $|z_n - z| \to 0$ as $n \to \infty$. The distance between z_n and z vanishes.

4.1.3 Completeness of \mathbb{C}

 $\{z_n\}$ converges if and only if $\{z_n\}$ is Cauchy.

Proof

We show this by treating \mathbb{C} as \mathbb{R}^2 and exploiting $\{X_n\}$ converges if and only if $\{X_n\}$ is Cauchy. (\Longrightarrow) (If $z_n \to z$, then $\Re(z_n) \to \Re(z)$ and $\Im(z_n) \to \Im(z)$. Since the sequences of \mathbb{R}^2 converge, they are Cauchy

$$|Z_n - Z_m| \le |\Re(Z_n - Z_m)| + |\Im(Z_n - Z_m)| = |\Re(Z_n) - \Re(Z_m)| + |\Im(Z_n) - \Im(Z_m)|$$

Upper bounds can be picked to be less than $\frac{\epsilon}{2}$ for some N. Therefore, $|Z_n - Z_m| \to 0$.

 (\Leftarrow) If $\{Z_n\}$ is Cauchy, so are $\{\Re(Z_n)\}$ and $\{\Im(Z_n)\}$. But these are \mathbb{R} -sequences that converge. Therefore, $\{Z_n\}$ converges.

4.2 Complex Set

Let $\Omega \subset \mathbb{C}$. Sets can be open, closed, both, or neither.

4.2.1 Open Set

If for any $z_0 \in \mathbb{C}$, there exist some $\epsilon > 0$, such that the set $B_{\epsilon}(z_0) = \{z | |z - z_0| < \epsilon\}$ is contained in Ω , then Ω is open.

 Ω is open if and only if Ω^c is closed.

 Ω is open if and only if Ω is equal to its own interior, which means it does not contain its boundary points $\partial\Omega$, i.e. it does not contain its closure.

4.2.2 Closed Set

If Ω contains its limit point, then Ω is closed.

 Ω is closed if and only if Ω^c is open.

 Ω is closed if and only if Ω contains its boundary points.

4.2.3 Compact Set

If Ω can be contained in a disk of finite radius, then Ω is bounded.

4.2.4 Compact Set

If Ω is closed and bounded, then Ω is compact. This resembles [a, b] in \mathbb{R} .

4.2.5 Connected Set

If any two points in Ω can be connected by a path, then Ω is connected.

Simply Connected Set: A simply connected set has no "holes" in it. For example, $\Omega = \{z | |z - c| < 4\}$.

A connected but not simply connected set is an annulus, $\Omega = \{z | z < |z - c| < 4\}$

4.2.6 Boundary of Set

The boundary of Ω , $\partial\Omega$ is all points with ϵ -balls intersecting Ω and Ω^c for all $\epsilon > 0$.

4.2.7 Interior of Set

The interior of Ω , Int(Ω), is all points in Ω with a ϵ -ball contained in Ω for some $\epsilon > 0$. "Largest open set in Ω ".

4.2.8 Closure of Set

The closure of Ω is the union of Ω and its boundary $\partial\Omega$.

4.2.9 Domain

If a set is open and connected in \mathbb{C} , it is a domain.

A domain can be traversed by a path of horizontal and vertical line segments.

4.2.10 Practice Examples

Determine whether the following sets are open or closed.

- 1. $\Omega = \mathbb{C} \setminus \{0\}$
 - Ω is open since it does not contain its closure, the point 0.
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{n}$. Then $z_n = \frac{1}{n} \to 0 \notin \Omega$. Therefore, Ω is open.
- 2. $\Omega = \{z | |z| \ge 1\}$
 - Ω is not open since any ϵ -ball at 1 intersects Ω^c .
 - Ω is closed since Ω^c is open.

Therefore, Ω is closed.

- 3. $\Omega = \{z | |z| > 1\}$
 - Ω is open since Ω^c is closed.
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{n} + 1$. Then $z_n = \frac{1}{n} + 1 \to 1 \notin \Omega$.
- 4. $\Omega = \mathbb{C} \setminus (0,1)$
 - Ω is not open. Its complement is [0,1]. Even though it is closed in \mathbb{R} , it is not closed in \mathbb{C} , because any 2D ϵ -ball will always extend outside of the set $z \in (0,i)$. Hence, Ω^c is not open and not closed. Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{3} + i\frac{1}{n}$. Then $z_n = \frac{1}{3} + i\frac{1}{n} \to \frac{1}{3} \notin \Omega$. Therefore, Ω is neither open nor closed.
- 5. $\Omega = \mathbb{C}\setminus[0,1]$ Ω is open since $\Omega^c = [0,1]$ is closed in \mathbb{C} .
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{3} + i\frac{1}{n}$. Then $z_n = \frac{1}{3} + i\frac{1}{n} \to \frac{1}{3} \notin \Omega$. Therefore, Ω is open.

Note: Ω^c is not open in \mathbb{C} .

5 Continuity and Branch Cuts

5.1 Complex Continuity

Let $f: \Omega \to \mathbb{C}$, Ω is open and connected. If $z_n \to z_0$ implies $f(z_n) \to f(z_0)$, then f is continuous at z_0 . Also, f is bounded near z_0 .

f is continuous if for every $\epsilon > 0$, there is $\delta > 0$ such that $|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$.

- In either case, $\Re(f(z))$ and $\Im(f(z))$ are each continuous if and only if f(z) is continuous. This follows the pattern as \mathbb{C} being complete.
- If f and g are continuous, then so are $f + g \operatorname{m} f \times g$ and $\frac{f}{g}$ (provided $g(z) \nrightarrow 0$)

5.2 Complex Limits

Just like in \mathbb{R}^2 , limits are direction independent. Do not restrict limits to just $\Re \to 0$ or $\Im \to 0$. See the following example.

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$$
 does not exist

as $x \to 0$, y = 0, then $f \to 0$, while $y = x^2, x \to 0$, then $f \to 1$.

5.3 Branch Cuts

Log, $z^{\frac{1}{2}}$ and $\arctan(z)$ are constructed by restricting the range of e^z , z^2 and $\tan(z)$.

For example, in creating $\text{Log}(z) = \ln|z| + i \operatorname{Arg}(z)$, we made a choice that $\operatorname{Arg}(z) \in (-\pi, \pi]$, $\operatorname{Arg}(0)$ does not exist.

5.3.1 Example of a Branch Cut

Consider a path around $z_0 \neq 0$, $\gamma(t) = z_0 + re^{it}$. $\theta(t) = \arg(\gamma(t))$ As we traverse the circle, $t \in (-\pi, \pi]$,

$$\theta(t) = \arg(\gamma(t)) = \arg(z_0 + re^{it}) + 2\pi k = \arg(z_0 + re^{i(t+2\pi)}) + 2\pi k = \arg(\gamma(t+2\pi)) = \theta(t+2\pi)$$

Therefore, the angle $\theta(t)$ changes smoothly for all t and we stay on the same branch of $Arg(\gamma(t))$. That is to say, the $k \in \mathbb{Z}$ is the same for all t.

Compare this with any circular path about $z=0, \gamma_0$. Let $\gamma_0(t)=re^{it}, t\in (-\pi,\pi]$. As we traverse the circle once, we have a discontinuity in the principal angle of $\gamma_0(t)$. In particular, $\theta(\gamma_0(t))\neq\theta(\gamma_0(t+2\pi))$

$$\theta(t) = \arg(\gamma(t)) = \arg(re^{it}) + 2\pi k \neq \arg(re^{i(t+2\pi)}) + 2\pi(k+1) = \arg(\gamma(t+2\pi)) = \theta(t+2\pi)$$

We jump from the kth to the (k+1)th branch of Arg. Therefore, Arg(z) has a branch point at z=0.

5.3.2 Definition of Branch Cuts and Branch Points

If every neighborhood of z_0 contains a path $\gamma(t)$ around z_0 that leads to a jump discontinuity in f, then z_0 is a branch point of f(z).

Finding branches: At this point, it suffices to study paths of the form $\gamma(t) = z_0 + re^{it}$ for $t \in (-\pi, \pi)$, and see if $f(\gamma(t)) = f(\gamma(t+2\pi))$ holds for all t.

• Arg is discontinuous for all x on the negative \mathbb{R} -axis, \mathbb{R}^- . We call this the principal branch cut of the

multi-valued function arg. Specifically,

$$Arg(\gamma_0(t)) \to \pi \text{ as } t \to \pi^-$$

$$\operatorname{Arg}(\gamma_0(t)) \to -\pi \text{ as } t \to -\pi^+$$

but $\gamma_0(\pi) = \gamma_0(-\pi)$ since π and $-\pi$ are coterminal.

 \mathbb{R}^- is the principal branch of Log, Arg, and $z^{\frac{1}{2}}$.

ullet The endpoints of a branch cut are branch points, Arg has 0 and ∞ as its branch points.

Differentiability in \mathbb{C}

Let $f:\Omega\to\mathbb{C}$ for some domain Ω . Then f is differentiable at z_0 if the following exists.

$$\frac{d}{dz}f(z)|_{z=z_0} = f'(z_0) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

This limit must exist on all paths to z_0 , since $h \in \mathbb{C}$. We could also take $z_n \to z_0$ and use $\frac{f(z_0) - f(z_n)}{z_0 - z_n} \to f'(z_0)$. Remember limits are computed by looking at the difference in the modulus, $|\frac{f(z_0) - f(z_n)}{z_0 - z_n} - f'(z_0)| \to f'(z_0)$. $0 \text{ as } n \to \infty.$

If $f'(z_0)$ exists on all points $z_0 \in \Omega$, open and connected in \mathbb{C} , then f is holomorphic/ \mathbb{C} -differentiable/analytic on Ω . The connection between \mathbb{R} and \mathbb{C} analytic will be clear when we cover \mathbb{C} -power series. If f'(z) exists everywhere in \mathbb{C} , then f is an entire/meromorphic function.

Difference between \mathbb{R} and \mathbb{C} differentiability

• $f: \mathbb{R} \to \mathbb{R}$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

has only two paths to x, namely $h \to 0^+$ and $h \to 0^-$.

Tangent plane or linear approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

• $f: \mathbb{R}^2 \to \mathbb{R}$

$$\lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = f_x$$

is also a 1D limit and a partial derivative.

Tangent plane or linear approximation:

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

• $f: \mathbb{R}^2 \to \mathbb{R}^2$ f(x,y) = (u(x,y), v(x,y))

Then f is differentiable if the Jacobian Matrix

$$J(f) = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

can approximate the local change in f.

In each of the cases above, we are only measuring change in a few directions. However, $h \to 0$ in $\mathbb C$ can be from any direction in 2-space. Therefore, f'(z) existing is a much stronger condition for f on $\mathbb C$ than on \mathbb{R} .

6.1.1 Complications with \overline{z}

Consider the following example:

Let $g(z) = \Re(z) = \frac{z+\overline{z}}{2}$, which is a linear combination of continuous functions.

Assume $h \in \mathbb{R}$, $\frac{g(z+ih)-g(z)}{h} = \frac{\Re(z)-\Re(z)}{h} \to 0$ as $h \to 0$ Compare this with $\frac{g(z+ih)-g(z)}{h} = \frac{\Re(z)+h-\Re(z)}{h} = 1 \to 1$ as $h \to 0$.

Therefore, the function is nowhere differentiable in \mathbb{C} . The problem with g'(z) had to do with \overline{z} , despite reflection in \mathbb{R}^2 about y=0 is differentiable. We will discover conditions on u_x , u_y , v_x , and v_y that ensure f' exists for f(z) = u(x, y) + iv(x, y) in the next chapter.

6.2 Properties of f'(z)

Proposition: If f is differentiable on Ω , it is continuous on Ω .

Proposition: The power rule holds too: $\frac{d}{dz}z^n = nz^{z-1}$

As does the product, quotient, L'Hospital's and chain rule. In fact, most old results hold as well. In each of the following cases, there are branch points where f'(z) does not exist.

- 1. If f(z) = Log(z), then $f'(z) = \frac{1}{z}$
- 2. If $f(z) = \tan^{-1}(z)$, then $f'(z) = \frac{z}{z^2 + 1} = \frac{1}{(z+i)(z-i)}$, which does not exist for $z = \pm i$
- 3. If $f(z) = z^{\frac{1}{2}}$, then $f'(z) = \frac{1}{2}z^{-\frac{1}{2}}$

Proposition: Suppose f(z) is holomorphic on Ω . then $g(z) = \overline{f(\overline{z})}$ is holomorphic on $\Omega^* = \{z | \overline{z} \in \Omega\}$ **Proof**:

Suppose f is holomorphic on Ω . Let $z_0 \in \Omega^*$ and $z_n \in \Omega^*$ for all n and $z_n \to z$. Then $\overline{z_n} \to \overline{z_0}$ in Ω and for $\epsilon > 0$, there is a $N \in \mathbb{N}$ such that for n > N.

$$\left| \frac{f(\overline{z_0}) - f(\overline{z_n})}{\overline{z_0} - \overline{z_n}} - f'(\overline{z_0}) \right| < \epsilon$$

$$\left| \frac{f(\overline{z_0}) - f(\overline{z_n})}{\overline{z_0} - \overline{z_n}} - f'(\overline{z_0}) \right| = \overline{\left| \frac{f(\overline{z_0}) - f(\overline{z_n})}{\overline{z_0} - \overline{z_n}} - f'(\overline{z_0}) \right|} = \overline{\left| \frac{f(\overline{z_0}) - f(\overline{z_n})}{\overline{z_0} - \overline{z_n}} - f'(\overline{z_0}) \right|} = \left| \frac{\overline{f'(\overline{z_0}) - f(\overline{z_n})}}{\overline{z_0} - \overline{z_n}} - \overline{f'(\overline{z_0})} \right|$$

$$= \left| \frac{\overline{f'(\overline{z_0}) - f(\overline{z_n})}}{z_0 - z_n} - \overline{f'(\overline{z_0})} \right| = \left| \frac{g(z_0) - g(z_n)}{z_0 - z_n} - \overline{f'(\overline{z_0})} \right| < \epsilon$$

$$\implies g'(z_0) = \overline{f'(\overline{z_0})}$$

Therefore, g is holomorphic on Ω^* .

This proof is different from when we showed $\frac{d}{dz}\overline{z}$ does not exist. Conjugation must be handled with care.

6.3 Geometric behavior of f'(z)

6.3.1 Dilation

 $w = f(z) \approx f'(a)(z-a) + f(a)$. Small changes in z should give small changes in w.

The functions |z| and Arg(z) are continuous on their domains.

If $f'(z_0) \neq 0$ and f' exists on Ω , then

$$|f'(z_0)| = \left| \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \right| = \lim_{h \to 0} \left| \frac{f(z_0 + h) - f(z_0)}{h} \right| = \lim_{h \to 0} \frac{|f(z_0 + h) - f(z_0)|}{|h|}$$
$$\implies |f'(z_0)||h| \approx |f(z + h) - f(z)|$$

The size of $|f'(z_0)|$ tells us how much f is contracting/dilating near z_0 .

6.3.2 Rotation

$$\operatorname{Arg}(f'(z_0)) = \operatorname{Arg}\left(\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}\right) = \lim_{h \to 0} \operatorname{Arg}\left(\frac{f(z_0 + h) - f(z)}{h}\right)$$
$$= \lim_{h \to 0} \operatorname{Arg}(f(z_0 + h) - f(z_0)) - \operatorname{Arg}(h)$$
$$\Longrightarrow \operatorname{Arg}(f'(z_0)) \approx \operatorname{Arg}(f(z_0 + h) - f(z_0))$$

$$\Longrightarrow \operatorname{Arg}(f'(z_0)) + \operatorname{Arg}(h) \approx \operatorname{Arg}(f(z_0 + h) - f(z_0))$$

Therefore, f rotates vectors from z_0 to $z_0 + h$ by the angle $Arg(f'(z_0))$.

6.3.3 Conclusion

In conclusion, $w = f(z) \approx f(z_0) + f'(z_0)(z - z_0) = c + \rho e^{i\theta}(z - z_0)$

 $\begin{cases} c: \text{ Translation} \\ \rho: \text{ Dilation} \\ e^{i\theta}: \text{ rotation about } z_0 \text{ or complex multiplication.} \end{cases}$

7 The Cauchy Riemann Equations

7.1 The Cauchy Riemann Equations

Let f(z) = f(x+iy) = u(x,y)+iv(x,y), then f(z) is holomorphic implies the Cauchy Riemann Equations:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

Proof: For f, which is \mathbb{C} -differentiable, the following representation of f'(z) holds for any path to z.

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

Along the path $x + h + iy \rightarrow x + iy$, we get

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{f(x+h+iy) - f(x+iy)}{h} = f_x = u_x(x,y) + iv_x(x,y)$$

Along the path $x + iy + ih \rightarrow x + iy$, we get

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{f(x+i(y+h)) - f(x+iy)}{ih} = \frac{f_y}{i} = -if_y = -i(u_y(x,y) + iv_y(x,y)) = v_y(x,y) - iu_y(x,y)$$

Equate components in $f_x = -if_y$, and it is proven that $u_x = v_y$ and $u_y = -v_x$.

7.1.1 Properties of the Cauchy Riemann Equations

Proposition: If the Cauchy Riemann Equations do not hold at z_0 , then $f'(z_0)$ does not exist.

Proposition: If f is holomorphic on a domain Ω , an open and connected set in \mathbb{C} , then the Cauchy Riemann Equations hold at all points in Ω .

Example:

If $f(x+iy) = x^2 + iy^2$, $u_x = 2x$, $v_x = 0$, $u_y = 0$, $v_y = 2y$. Then $2x = 2y \Rightarrow x = y$, which is a line.

The set of points on the line is not open in \mathbb{C} . Therefore, f is nowhere holomorphic in \mathbb{C} . However, we will see that f'(z) does exist on the line y=x.

7.1.2 Sufficiency of the Cauchy Riemann Equations to f'

Follow-Up Question: The Cauchy Riemann Equations do a great job showing f' does not exist. But what about it being sufficient for f'?

Claim: Satisfying the Cauchy Riemann Equations at z_0 implies that f' exists at z_0 .

Proof:

f is \mathbb{C} -differentiable at z_0 if and only if u(x,y) and v(x,y) have continuous partial derivatives that satisfy the Cauchy Riemann Equations at z_0 . This requires us to treat f(x+iy) as a function on \mathbb{R}^2 , or f(z) induces a map on \mathbb{R}^2 .

Let $h = \Delta x + i \Delta y$,

$$\frac{f(z+h)-f(z)}{h} = \frac{u(x+\Delta x,y+\Delta y)+iv(x+\Delta x,y+\Delta y)}{\Delta x+i\Delta y} - \frac{u(x,y)+iv(x,y)}{\Delta x+i\Delta y}$$

$$u(x + \Delta x, y + \Delta y) - u(x, y) = u(x + \Delta x, y + \Delta y) - u(x, y + \Delta y) + u(x, y + \Delta y) - u(x, y)$$

The function $u(\cdot,\cdot)$ is differentiable in x and y, we can use the M.V.T (Mean Value Theorem) from \mathbb{R} to rewrite our difference in u by

$$u(x + \Delta x, y + \Delta y) - u(x, y + \Delta y) = \Delta x U_x(x, y + \Delta y)$$

where $\underline{x} \in (x, x + \Delta x)$.

If u_x is continuous, $u_x(\underline{x}, y + \Delta y) \approx u_x(x, y) + \epsilon_1$, and as $\Delta y \to 0$ and $\underline{x} \to x$, by Taylor approximation and linear approximation on u_x , we have the error function $\epsilon_1 \to 0$.

Next $u(x, y + \Delta y) - u(x, y) = \Delta y u_y(x, \overline{y})$ and $u_y(x, \overline{y}) \approx u_y(x, y) + \epsilon_2$.

Likewise, for the function v(x,y), we get a v_x and v_y with error terms ϵ_3 and ϵ_4 . s

$$\frac{f(z+h) - f(z)}{h} = \frac{\Delta x(u_x + \epsilon_1 + iv_x + i\epsilon_3) + \Delta y(u_y + \epsilon_2 + iv_y + i\epsilon_4)}{\Delta x + i\Delta y}$$

From the Cauchy Riemann Equations, we get $f_x = \frac{f_y}{i} \Rightarrow if_x = f_y \Rightarrow i(u_x + iv_x) = u_y + iv_y$. Substituting the terms, we have

$$f'(z) = \frac{\Delta x(u_x + iv_x) + i\Delta y(u_x + iv_x)}{\Delta x + i\Delta y} + \frac{\lambda}{\Delta x + i\Delta y}$$

where $\lambda = \Delta x(\epsilon_1 + i\epsilon_2) + \Delta y(\epsilon_3 + i\epsilon_4)$. However

$$\left| \frac{\lambda}{\Delta x + i\Delta y} \right| \leqslant \left| \frac{\Delta x (\epsilon_1 + i\epsilon_2)}{\Delta x + i\Delta y} \right| + \left| \frac{\Delta y (\epsilon_3 + i\epsilon_4)}{\Delta x + i\Delta y} \right| \leqslant |\epsilon_1 + i\epsilon_2| + |\epsilon_3 + i\epsilon_4|$$

because $\left| \frac{\Delta x}{\Delta x + i \Delta y} \right| \le 1$.

As $\Delta z \to 0$, $\left| \frac{\lambda}{\Delta x + i \Delta y} \right| \to 0$, and thus $f'(z) = u_x + i v_x = f_x = \frac{f_y}{i}$.

Therefore, the Cauchy Riemann Equations are an easy way to show f'(z) exists and they provide a set of partial differential equations that f must satisfy.

Example: Let $f(z) = e^z = e^x(\cos(y) + i\sin(y))$

 $u = e^x \cos(y), v = e^x \sin(y)$

 $u_x = e^x \cos(y), v_x = e^x \sin(y)$

 $u_y = e^x \sin(y), v_x = e^x \cos(y)$

Therefore, f(z) is \mathbb{C} -differentiable on \mathbb{C} , f is entire/meromorphic. $f'(z) = f_x = u_x + iv_x = f(z)$

7.2 Cauchy Riemann with Logarithm

$$e^{\text{Log(z)}} = z \Rightarrow \frac{d}{dz}e^{\text{Log(z)}} = 1 \Rightarrow z\frac{d}{dz}\log(z) = 1 \Rightarrow \frac{d}{dz}\log(z) = \frac{1}{z}$$

We have a branch point in Log(z) where its derivative is undefined. Then Log(z) is \mathbb{C} -differentiable on $\mathbb{C}\setminus\{0\}$. This is true regardless of the branch cut on Log(z).

7.3 Lack of Complex Mean Value Theorem

Claim: $\frac{f(z)-f(w)}{z-w} \neq f'(c)$ for some c between z and w.

Proof: Let z = 1, w = 0 and $f(t) = e^{i\pi t}$, then $f(1) - f(0) = e^{i\pi} - 1 = -2$. However, $|f'(t)| = \pi$ for all $t \in [0, 1]$.

Follow-Up Question: Does the lack of a Mean Value Theorem for f'(z) suggest f'(z) = 0 not imply f'(z) = 0

is constant?

Answer: Suppose f is \mathbb{C} -differentiable on Ω and one of the following holds, then f is constant on Ω .

$$\begin{cases} f'(z) = 0 \\ |f(z)| \text{ is constant} \\ Re(f(z)) \text{ is constant} \\ \text{f's conjugate is \mathbb{C}-differentiable on Ω} \end{cases}$$

7.4 Wirtinger Equations

There is another way to study the Cauchy Riemann Equations by introducing two operators:

$$\frac{\partial f}{\partial z} = f_z \text{ and } \frac{\partial f}{\partial \overline{z}} = f_{\overline{z}}$$

$$f(x,y) \equiv f(x+iy) = u(x,y) + iv(x,y)$$

$$f(x,y) = f(\Re(z), \Im(z)) = f(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i})$$

From the chain rule, we get

$$f_z = f_x x_z + f_y y_z = \frac{1}{2} f_x + \frac{1}{2i} f_y = \frac{1}{2} f_x - \frac{i}{2} f_y$$
$$f_{\overline{z}} = f_x x_{\overline{z}} + f_y y_{\overline{z}} = \frac{1}{2} f_x - \frac{1}{2i} f_y = \frac{1}{2} f_x + \frac{i}{2} f_y$$

where $f_x = u_x + iv_x$ and $f_y = u_y + iv_y$

These are the Wirtinger Equations.

$$\begin{cases} \frac{\partial}{\partial z} = \frac{1}{2} (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}) \\ \frac{\partial}{\partial \overline{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}) \end{cases}$$

7.4.1 Relationship with the Cauchy Riemann Equations

From the Cauchy Riemann Equations $if_x = f_y$ we get:

$$f_{\overline{z}} = \frac{1}{2}f_x + \frac{i}{2}f_y = \frac{1}{2}f_x - \frac{1}{2}f_x = 0$$
$$f_z = \frac{1}{2}f_x - \frac{i}{2}f_y = \frac{1}{2}f_x - \frac{i^2}{2}f_x = f_x = f'(z)$$

f is \mathbb{C} -differentiable at z_0 if and only if f(x,y) = u(x,y) + iv(x,y) is \mathbb{R} -differentiable at z_0 and $f_{\overline{z}}(z_0) = 0$. Then $f'(z_0) = f_z(z_0)$. In other words, f(z) does not depend on \overline{z} .

8 Harmonic Functions

8.1 Laplacian

Let $u: \mathbb{R}^2 \to \mathbb{R}$, then the Laplacian of u is

$$\Delta u = u_{xx} + u_{yy} = \nabla \cdot \nabla u$$

where $\nabla = [\frac{\partial}{\partial x}, \frac{\partial}{\partial y}]^T$ is the divergence operator and $\nabla u = [u_x, u_y]^T$ is the gradient of u.

8.2 Harmonic Functions

If $\Delta u = 0$, then u(x, y) satisfies Laplace's (partial differential) equation or u is a harmonic function. This means:

 $\begin{cases} u \text{ is continuous} \\ u \text{'s } 1^{\text{st}} \text{ and } 2^{\text{nd}} \text{ order partial derivatives exist and are smooth.} \end{cases}$

Proposition: Suppose f = u + iv is holomorphic on Ω where u(x, y) and v(x, y) have continuous 2^{nd} order partial derivatives, then u and v are harmonic and v is the harmonic conjugate of u.

Proof:

By the Cauchy Riemann Equations, $u_x = v_y$ and $v_x = -u_y$, then $u_{xx} = v_{yx}$ and $v_{xy} = -u_{yy}$. By continuity of v_{yx} and v_{xy} , $v_{yx} = v_{xy}$. This implies $u_{xx} = -u_{yy} \Rightarrow u_{xx} + u_{yy} = 0$

Later on, we will find that the conditions on 2^{nd} order partial derivatives is implied by f being holomorphic on Ω , or f'' exists.

Definition: Harmonic Conjugate

The harmonic conjugate to u(x,y) is a function v(x,y), such that f(x,y) = u(x,y) + iv(x,y) is holomorphic.

Example. Show that $u(x,y) = x^3 - 3xy^2 + y$ is a harmonic function. $u_x = 3x^2 - 3y^2$, $u_y = -6xy + 1$ $u_{xx} = 6x$, $u_{yy} = -6x$. Therefore, $u_{xx} + u_{yy} = 0$

Example. Find the harmonic conjugate of $u(x,y) = x^3 - 3xy^2 + y$. $u_x = 3x^2 - 3y^2 = v_y$ $u_y = -6xy + 1 = -v_x$ $\Rightarrow v = 3x^2y - y^3 + C(x)$ or $v = 3x^2y - x + C(y)$ Therefore, $v = 3x^2y - y^3 - x + C$ is u's harmonic conjugate.

Proposition:

If u is harmonic on a domain Ω , then u_x is the real part of a holomorphic function on Ω . If Ω is simply connected, unlike $\mathbb{C}\setminus\{0\}$, then u is the real part of a holomorphic function on Ω .

Proof:

Assume u is harmonic and Ω is connected. If $f = u_x - iu_y$, then $f_y = if_x$. Hence, f is differentiable on Ω . The simply connected statement requires future theorems to show F'(z) = f(z) for some holomorphic antiderivative F(z).

9 Conformal Maps

Example. Let $f(z) - (x + iy)^2 + 2(x + iy) = (x^2 + 2x - y^2) + i2(xy + y)$. When are the component functions, u(x, y) and v(x, y) constant?

When are the component functions, u(x,y) and v(x,y), constant?

The function $f(z) = e^z = e^x(\cos(y) + i\sin(y))$ maps the set $\Omega = \{z : |\Im(z)| < \pi\}$ to circles of radius $r \in (-\infty, \infty)$, or all points in $\mathbb{C}\backslash\mathbb{R}^-$. This coincides with the branch cut of Log(z), or how we made e^z invertible.

9.1 Preservation of Angles

We will now show e^z preserves the angles between curves in Ω . Let us first look at the following example. Let $\gamma_1(t) = 2i\pi t - i\pi$, $\gamma_2(t) = t + i\frac{\pi}{4}$. $\gamma_1(0) = -i\pi$, $\gamma_1(1) = i\pi$.

The curves γ_1 and γ_2 intersect at an angle $\frac{\pi}{2}$. Also $f(\gamma_1)$ is a circle centered at 0 while $f(\gamma_2)$ is a line through z=0. Their intersection in the w-plane is $\frac{\pi}{2}$ as well.

We will show why $f(z) = e^z$ does this by studying the angles between curves γ_1 and γ_2 and curves $\tau_1 = f(\gamma_1)$ and $\tau_2 = f(\gamma_2)$. If $\gamma(t)$ parameterizes a smooth curve in \mathbb{C} , then its tangent vector is $\gamma'(t)$. The angle between any two curves at z_0 is the angle between their tangent vectors at z_0 .

Assume the curves intersect at $\gamma(r_0) = \gamma(s_0) = z_0$.

Let the angle of intersection, θ , measured from γ'_1 to γ'_2 in the counter-clockwise direction.

Let the angle of intersection after transformation of f, φ , measured from τ'_1 to τ'_2 in the counter-clockwise direction. From past chapters, we know $\theta \approx \varphi$ if f is holomorphic. Now, let us assume f is only \mathbb{R} -differentiable and see how f acts on the angle θ .

Curve: $\gamma(t) = (x(t), y(t))$

New curve, f on γ : $\tau(t) = f(\gamma(t)) = u(\gamma(t)) + iv(\gamma(t)) = (\overline{\underline{X}}(t), \overline{\underline{Y}}(t))$

New tangent vector: $\tau'(t) = \frac{t}{dt}\tau(t) = (\underline{\underline{X}}'(t), \underline{\underline{Y}}'(t))$, where we can invoke the chain rule:

$$\overline{\underline{X}}'(t) = u_x(\gamma(t))x'(t) + u_y(\gamma(t))y'(t)$$

$$\overline{\underline{Y}}'(t) = v_x(\gamma(t))x'(t) + v_y(\gamma(t))y'(t)$$

If we have f = u(x, y) + iv(x, y) is \mathbb{R} -differentiable, then

$$J(f) = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

is the Jacobian Matrix of f and $\tau'(t) = \gamma'(t) \cdot J(f)^T$

If f is C-differentiable and $\gamma(r_0) = z_0$ where $\gamma(t) = x(t) + iy(t)$, then $f'(z) = u_x + iv_x$ and $\gamma'(t) = x' + iy'$.

$$f'(z_0)\gamma'(r_0) = f'(\gamma(r_0))\gamma'(r_0) = (u_x + iv_x)(x' + iy') = (u_x x' - v_x y') + i(u_x y' + v_x x')$$

Applying the Cauchy Riemann Equations.

$$(u_x x' - v_x y') + i(u_x y' + v_x x') = (u_x x' + u_y y') + i(v_x x' + v_y y') = (u_x x' + u_y y', v_x x' + v_y y') \text{ in } \mathbb{R}^2$$
$$= \gamma'(r_0) \text{Jf}(z_0)^T = \tau'$$

By now, we have an understanding of how f acts on tangent vectors when $f' \neq 0$, namely $\theta = \varphi$.

9.2 Conformal Function

9.2.1 Conditions of Conformal Functions

We say f is a conformal map at z_0 if the following hold:

- (1) f is \mathbb{R}^2 -differentiable at z_0
- $(2) |Jf| \neq 0$
- (3) f preserves the oriented angle θ , between γ_1 and γ_2 and τ_1 and τ_2 at z_0 and $f(z_0)$.

9.2.2 e^z is conformal

Now let us take a closer look at e^z and figure out why it is conformal.

- (1) holds apparently.
- (2) $f(z) = e^z = e^x \cos(y) + ie^x \sin(y)$, then

$$J(f(x,y)) = \begin{bmatrix} e^x \cos(y) & -e^x \sin(y) \\ e^x \sin(y) & e^x \cos(y) \end{bmatrix} = e^x \begin{bmatrix} \cos(y) & -\sin(y) \\ \sin(y) & \cos(y) \end{bmatrix}$$

$$\Rightarrow |J(f(x,y))| \neq 0$$

(3) Now we have shown in the previous part that Jf is the product of a dilation matrix, $e^x I$, and a rotation matrix, which means f preserves the angles between γ'_1 and γ'_2 . Their image under f:

$$\tau_1'(t) = \gamma_1'(t) \cdot J(f)^T$$

$$\tau_2'(t) = \gamma_2'(t) \cdot J(f)^T$$

In fact, f preserving oriented angles implies Jf is a rotation \otimes dilation matrix. Hence, it is proven that e^z is conformal.

9.3 Conformal Map

Definition: If f is conformal, infinitely differentiable, and one-to-one on a domain Ω to V, then f is a conformal map from Ω to V.

For example, e^z is conformal map from $\Omega = \{z : |\Im(z)| < \pi\}$ to $V = \mathbb{C} \setminus \mathbb{R}^-$.

Proposition: If f is complex differentiable and $f'(z_0) \neq 0$, it is a linear transform of a dilation by $|f'(z_0)|$ and a rotation by $Arg(f'(z_0))$. Hence, f is conformal because 3 is satisfied.

Example. $f(z) = z^2$ on $\Omega = \{z | 1 < |z| < 3 \text{ and } \Im(z) > 0\}$ is conformal.

Inverse Function Theorem:

If f is a continuously differentiable function with nonzero derivative at the point a, then f is invertible in a neighborhood of a, the inverse is continuously differentiable, and the derivative of the inverse function at b = f(a) is the reciprocal of the derivative of f at a:

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

Proposition: If f is invertible at z_0 and conformal, then f^{-1} is conformal at $f(z_0)$ by the inverse function theorem provided f is continuously differentiable.

From the proposition above, we know that Log(z) is conformal on $\mathbb{C}\backslash\mathbb{R}^-$.

Bilinear Transformations 10

In complex analysis, the term linear transformation is used to describe affine transformations, f(z) =

A bilinear/Möbius transformation is of the form

$$\frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$.

Now, $f(\infty) = \frac{a}{c}$ by L'Hospital argument and we say $f(-\frac{d}{c}) = \infty$. If $ad - bc \neq 0$, then $f' \neq 0$ by the quotient rule and f is not constant. The constants are not unique, as $f(z) = \frac{az+b}{cz+d} = \frac{(az+b)k}{(cz+d)k}$. Therefore, we only have 3 degrees of freedom.

We have already seen these functions of this form before f is:

(1) Composition of a finite number of

$$\begin{cases} \text{Translations, } f(z) = z + k \\ \text{Rotations, } f(z) = e^{i\theta}z \\ \text{Dilations, } f(z) = kz, k \in \mathbb{R} \\ \text{Inversions, } f(z) = \frac{1}{z} \end{cases}$$

(2) Conformal, f is holomorphic away from $z = -\frac{d}{c}$, $f' \neq 0$, and f is one-to-one.

(3) Maps circles/lines to either lines or circles, "lines are circles of ∞ -radius in \mathbb{C} or $\mathbb{C} \cup \{\infty\}$.

If the line or circle passes through $z=-\frac{d}{c}$, where f is undefined, then it will be mapped to a line. Otherwise, it is mapped to a circle.

(4) f can be identified by

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then,

$$\begin{cases} f\circ f\equiv A\circ A=A^2\\ f^{-1}\equiv A^{-1}\\ f\circ g\equiv AB \end{cases}$$

and so there is a group homomorphism with Möbius transforms and invertible matrices in $\mathbb{C}^{2\times 2}$.

$$f(z) = (3+2i)z - i^3 = \frac{(3+2i)z - i^3}{\delta z + 1}$$

(5) We can conformally map 3 points in $\mathbb{C} \cup \{\infty\}$ to any 3 points in $\mathbb{C} \cup \{\infty\}$.

This type of argument is similar to showing norms are equivalent in \mathbb{R}^n or uniqueness of power series expansions.

Given any 3 points $z_0, z_1, z_2 \in \mathbb{C}$, we can create a Möbius transformation T such that

$$\begin{cases} T(z_0) = 0 \\ T(z_1) = 1 \\ T(z_2) = \infty \end{cases}$$

then $T(z) = (z, z_0, z_1, z_2) = \frac{(z-z_0)(z_1-z_2)}{(z-z_2)(z_1-z_0)}$ is called the cross-ratio of $z, z_0, z_1,$ and z_2 . Special cases:

$$\begin{cases} (z, \infty, z_1, z_2) = \frac{z_1 - z_2}{z - z_2} \\ (z, z_0, \infty, z_2) = \frac{z - z_0}{z - z_2} \\ (z, z_0, z_1, \infty) = \frac{z - z_0}{z_1 - z_0} \end{cases}$$

$$\begin{cases} T^{-1}(0) = z_0 \\ T^{-1}(1) = z_1 \\ T^{-1}(\infty) = z_2 \end{cases}$$

- 11 Contour Integral in \mathbb{C}
- 12 Cauchy's Closed Curve Theorem and the Fundamental Theorem of Calculus
- 13 Cauchy's Integral Formula
- 14 Growth Conditions of Holomorphic Functions
- 15 Convergence of Infinite Series in \mathbb{C}
- 16 Power Series in \mathbb{C}
- 17 Series Expansion of Holomorphic Functions
- 18 Open Mapping Theorem and Reflection Principle
- 19 Laurent Series
- 20 Residue Theorem
- 21 Improper Integrals
- 22 Argument Principle and Rouche's Theorem

Chapter 1: Algebra in C

$$f(x) = x^2$$

this formula is an example f(x) = x

$$1 + 2 = 3$$

 $1 = 3 - 2$

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$h(x) = \int_{b}^{a} \frac{1}{x} x^{3}$$

$$F(x) = \frac{1}{\sqrt{x}}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\left(\frac{1}{\sqrt{x}}\right)$$

Core Material: 1. Finding patterns in data; using them to make predictions. 2. Models and statistics help us understand patterns. 3. Optimization algorithms "learn" the patterns. Classification: 1.