Question 1: Assignment 5: CS 663, Fall 2024

Amitesh Shekhar IIT Bombay 22b0014@iitb.ac.in Anupam Rawat IIT Bombay 22b3982@iitb.ac.in Toshan Achintya Golla IIT Bombay 22b2234@iitb.ac.in

November 07, 2024

- Read Section 1 of the paper 'An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration' published in the IEEE Transactions on Image Processing in August 1996. A copy of this paper is available in the homework folder.
 - (a) Describe the procedure in the paper to determine translation between two given images. What is the time complexity of this procedure to predict translation if the images were of size $N \times N$? How does it compare with the time complexity of pixel-wise image comparison procedure for predicting the translation?
 - (b) Also, briefly explain the approach for correcting for rotation between two images, as proposed in this paper in Section II. Write down an equation or two to illustrate your point.

[10+10=20 points]

Soln:

(a) Determining the Translation:-

For determining the translation (x_0, y_0) between two images $f_1(x, y)$ and $f_2(x, y)$ such that $f_2(x, y) = f_1(x - x_0, y - y_0)$, we can proceed as follows:

- Step 1: Take the Fourier transforms of f_1 and f_2 , giving $F_1(\mu, \nu)$ and $F_2(\mu, \nu)$.
- Step 2: Apply the Fourier Shift theorem to get:

$$F_2(\mu,\nu) = F_1(\mu,\nu)e^{-j\frac{2\pi}{N}(\mu x_0 + \nu y_0)}.$$

Compute the cross-power spectrum of the two images:

$$C(\mu, \nu) = \frac{F_2^*(\mu, \nu)F_1(\mu, \nu)}{|F_2(\mu, \nu)||F_1(\mu, \nu)|}$$

where $F_2^*(\mu,\nu)$ denotes the complex conjugate of $F_2(\mu,\nu)$.

The cross-power spectrum turns out to be:

$$C(\mu, \nu) = e^{-j\frac{2\pi}{N}(\mu x_0 + \nu y_0)}$$

• Step 3: The inverse Fourier transform of $C(\mu, \nu)$ turns out to be:

$$F^{-1}\left(e^{j\frac{2\pi}{N}(\mu x_0 + \nu y_0)}\right) = \delta(x + x_0, y + y_0),$$

where $\delta(x+x_0,y+y_0)$ is a delta function that is zero everywhere except at $(-x_0,-y_0)$.

The translation between the two images is then given by inverting the signs of the observed nonzero point. Clearly, we have determined the displacement using the above steps.

Time complexity:-

The time complexity of this procedure is $O(N^2 \log N)$, where $N \times N$ is the size of the images. This is because the Fourier Transform can be computed in $O(N^2 \log N)$ time, and the remaining operations (like element-wise multiplication and normalization used in cross-power spectrum computation) are $O(N^2)$. So, steps 1 and 3 have a time complexity of $O(N^2 \log N)$ each, while step 2 has a time complexity of $O(N^2)$, resulting in an overall time complexity of $O(N^2 \log N)$.

On the other hand, a pixel-wise image comparison to estimate translation involves sliding one image over the other, resulting in a time complexity of $O(N^4)$ for $N \times N$ images. If we use a window of size $W \times W$ for the pixel comparison, we would have a time complexity of $O(N^2W^2)$. Therefore, the FFT-based method is much faster, especially

for large images.

(b) Correcting the rotation:-

Let there be two images $f_1(x, y)$ and $f_2(x, y)$, where $f_2(x, y)$ is a rotated and translated version of $f_1(x, y)$, such that:

$$f_2(x,y) = f_1(x\cos\theta_0 + y\sin\theta_0 - x_0, -x\sin\theta_0 + y\cos\theta_0 - y_0)$$

This means that $f_2(x, y)$ is obtained by rotating $f_1(x, y)$ by an angle θ_0 and then translating it by (x_0, y_0) . Now, let $F_1(u, v)$ and $F_2(u, v)$ represent the Fourier transforms of $f_1(x, y)$ and $f_2(x, y)$, respectively. According to the Fourier Rotation Theorem, the Fourier transform of the rotated image $f_2(x, y)$ will be a rotated version of the Fourier transform of the original image $f_1(x, y)$. Specifically, we have:

$$F_2(u,v) = F_1(u\cos\theta_0 + v\sin\theta_0, -u\sin\theta_0 + v\cos\theta_0)$$

Translation in the spatial domain corresponds to a phase shift in the frequency domain. The translation by (x_0, y_0) introduces a phase shift of $e^{-i2\pi(ux_0+vy_0)}$ in the Fourier transform. Thus, we can write:

$$F_2(u, v) = F_1(u\cos\theta_0 + v\sin\theta_0, -u\sin\theta_0 + v\cos\theta_0) \cdot e^{-i2\pi(ux_0 + vy_0)}$$

So, the magnitudes M_1 and M_2 are related as follows:

$$M_2(u,v) = M_1(u\cos\theta_0 + v\sin\theta_0, -u\sin\theta_0 + v\cos\theta_0)$$

Clearly, the magnitudes of both $F_1(u, v)$ and $F_2(u, v)$ are same, but one of them is a rotated replica of the other. Using polar coordinates, we can write:

$$M_1(\rho,\theta) = M_2(\rho,\theta-\theta_0)$$

A shift in the angle θ by θ_0 in the polar coordinates is equivalent to Rotation by θ_0 in Cartesian coordinates. By applying the shift theorem on M_1 and M_2 and then finding their cross-power spectrum, we will get a peak at $-\theta_0$, and hence the rotation angle is negative of the value of θ at which the peak was obtained.