Multidimensional Disjunctive Inequalities for Chance-Constrained Stochastic Problems with Finite Support

Martine Labbé

Computer Science Department Université Libre de Bruxelles INOCS Team, INRIA Lille

Joint work with Diego Cattaruzza, Matteo Petris, Marius Roland and Martin Schmidt

(Mixed-Integer) Linear Chance-Constrained Problem (LCCP)

$$\min_{x} c^{\top} x$$
s.t. $x \in X$,
$$\mathbb{P}(A^{\omega} x - b^{\omega} \ge 0) \ge 1 - \tau$$

 ω : random variable with discrete support

LCCP: applications

- Energy: optimal power flow
- Finance: portfolio optimisation
- Communication: reliable network design
- Chemical processing
- Production planning
- Water resources management

LCCP

$$\mathbb{P}(F^i) = \frac{1}{3}, i = 1, 2, 3$$

$$1 - \tau = \frac{2}{3}$$

LCCP

Feasible domain

_

union of exponential number of convex sets

LCCP: Complexity

LCCP is strongly NP-hard even if all scenanios have equal probability and

there is only one constraint per scenario (Amaldi & Kann 1995)

only the RHS vector is random (Luedtke et al. 2010)

LCCP: MIP formulation

$$\min_{x,y} c^{\top}x$$
s.t.
$$x \in X,$$

$$A^{s}x \geq \bar{b}^{s} + (b^{s} - \bar{b}^{s})y^{s}, \quad s \in S,$$

$$\sum_{s \in S} p^{s}y^{s} \geq 1 - \tau,$$

$$y^{s} \in \{0, 1\}, \quad s \in S.$$

Performance of CPLEX (from Qiu et al. 2014)

20 variables, 200 scenarios, 1 constraint per scenario

Table 1 Performance of CPLEX on CKVLP

		Dense data		Sp	arse data	Random objective			
k	Gap closed (%)	Nodes	Time	Gap closed (%)	Nodes	Time	Gap closed (%)	Nodes	Time
15	2	3,537,864	2,454	7	158,039	83	17	1,777	1
20	2	43,296,679	25,948	6	1,769,574	917	21	6,227	2

Some related papers

Qiu, F., Ahmed, S., Dey, S. S., & Wolsey, L. A. (2014). Covering linear programming with violations. *INFORMS Journal on Computing*, 26(3), 531-546.

Luedtke, J. (2014). A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. *Mathematical Programming*, 146(1-2), 219-244.

Ahmed, S., Luedtke, J., Song, Y., & Xie, W. (2017). Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs. *Mathematical Programming*, *162*, 51-81.

Xie, W., & Ahmed, S. (2018). On quantile cuts and their closure for chance constrained optimization problems. *Mathematical Programming*, 172, 621-646.

Song, Y., & Luedtke, J. R. (2013). Branch-and-cut approaches for chance-constrained formulations of reliable network design problems. *Mathematical Programming Computation*, *5*(4), 397-432.

Song, Y., Luedtke, J. R., & Küçükyavuz, S. (2014). Chance-constrained binary packing problems. *INFORMS Journal on Computing*, 26(4), 735-747.

Cattaruzza, D., Labbé, M., Petris, M., Roland, M., & Schmidt, M. (2024). Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems. INFORMS Journal on Computing.

Quantile cut

$$\beta_{\alpha}^{s} = \min_{x} \{ \alpha^{\mathsf{T}} x : A^{s} x \ge b^{s}, x \ge 0 \}$$

$$\beta^{\alpha} = \mathbb{Q}_{1-\tau}(\beta_{\alpha}^{s})$$

$$\alpha^{\top} x \ge \beta_{\alpha}$$

Mixing set inequality (Günlük and Pochet 2001)

$$\alpha^{\mathsf{T}} x \ge \beta_{\alpha} + (\beta_k - \beta_{\alpha}) y_k$$

for
$$\beta_k > \beta_\alpha$$

Relaxed Problem

$$\lambda^s \ge 0, \quad e^{\mathsf{T}} \lambda^s = 1, \quad s \in S$$

$$(\lambda^{s})^{\top} A^{s} x \ge (\lambda^{s})^{\top} \bar{b}^{s} + (\lambda^{s})^{\top} (b^{s} - \bar{b}^{s}) y^{s}, \quad s \in S,$$

$$\sum_{s \in S} p^{s} y^{s} \ge 1 - \tau,$$

$$y^{s} \in \{0, 1\}, \quad s \in S.$$

$$\mathbb{Q}_{1-\tau}[(\lambda^s)^{\mathsf{T}}(b^s - A^s x)] \le 0$$

Quantile

$$\max_{u,q}$$

$$\max_{u,q} \qquad (1-\tau)q - \sum_{s \in \mathcal{S}} p^s u^s$$
s.t.
$$q - u^s \le d^s, \quad u^s \ge 0, \quad s \in \mathcal{S},$$

$$q \in \mathbb{R}.$$

$$\min_w$$

$$\sum_{s \in \mathcal{S}} d^s w^s$$

s.t.
$$\sum_{s \in \mathcal{S}} w^s = 1 - \tau,$$
$$0 \le w^s \le p^s, \quad s \in \mathcal{S}.$$

$$(1 - \tau)q - \sum_{s \in S} p^s u^s \ge \sum_{s \in S} d^s w^s$$

Primal-Dual (PD) inequality

$$\sum_{s \in \hat{S}} p^s (\lambda^s)^\top (A^s x - b^s) - \sum_{i=1}^n U_i(\lambda) x_i + L(\lambda) \le 0$$

$$U_i(\lambda) = \max_{w} \{ \sum_{s \in S} (\lambda^s)^{\top} A_{.i}^s w^s : \sum_{s \in S} w^s = 1 - \tau, \ 0 \le w^s \le p^s, \ s \in S \}$$

and

$$L(\lambda) = \min_{w} \{ \sum_{w \in S} (\lambda^s)^\top b^s w^s : \sum_{s \in S} w^s = 1 - \tau, \ 0 \le w^s \le p^s, \ s \in S \}$$

multi-disjunctive (multi-D) inequality

Set \bar{S} of scenarios s.t. $p(\bar{S}) \geq \tau$

$$(\lambda^s)^{\mathsf{T}}(A^sx - b^s) \ge 0$$
, for $s \in \hat{S} \subseteq \bar{S} : p(\hat{S}) \ge p(\bar{S}) - \tau$

$$\sum_{s \in \hat{S}} w^s (\lambda^s)^\top A^s x \ge \sum_{s \in \hat{S}} w^s (\lambda^s)^\top b^s$$

multi-disjunctive (multi-D) inequality

$$\sum_{i=1}^{n} U_i(\lambda, \bar{S}) x_i \ge L(\lambda, \bar{S}), \quad \bar{S} \subseteq \mathcal{S}, \ p(\bar{S}) > \tau,$$

with

$$U_i(\lambda, \bar{S}) = \max_{w} \{ \sum_{s \in \bar{S}} (\lambda^s)^{\top} A^s_{.i} w^s : \sum_{s \in \bar{S}} w^s = p(\bar{S}) - \tau, \ 0 \le w^s \le p^s, \ s \in \bar{S} \}$$

and

$$L(\lambda, \bar{S}) = \min_{w} \{ \sum_{w \in \bar{S}} (\lambda^s)^\top b^s w^s : \sum_{s \in \bar{S}} w^s = p(\bar{S}) - \tau, \ 0 \le w^s \le p^s, \ s \in \bar{S} \}$$

dominates P-D inequality

Separation

- All VIs are hard to separate: Determine \bar{S} and $\lambda^s, s \in S$
- For given $\lambda^s, s \in S$, PD inequalities are easy to separate
- For given $\lambda^s, s \in S$, multi-D inequalities are hard to separate
- \bullet For given S, PD and multi-D inequalities are easy to separate (LPs)

Chance Constraint- Covering LP

 $\min_{x,y}$

$$c^{\top}x$$

s.t.

$$A^s x \ge y^s 1, \quad s \in S,$$

$$x \geq 0$$
,

$$\sum_{s \in S} p^s y^s \ge 1 - \tau,$$

$$y^s \in \{0, 1\}, \quad s \in S$$

Closures for CC-Covering-LP

- $Q = \cap$ all quantile cuts
- multi- $\mathcal{D} = \cap$ all multi-disjunctive inequalities
- single- $\mathscr{D}=\bigcap$ all single-disjunctive inequalities $(p(\bar{S})>\tau \text{ and } p(\bar{S}\backslash\{s\})<\tau \text{, for all }s\in\bar{S}$

Theorem: multi - $\mathscr{D} \subseteq \text{single} - \mathscr{D} = \mathscr{Q}$

There exists instances where the inclusion is strict

Cut impact: single-covering

Table 1. Results of the CP-tests with MD-VIs, mixing-set inequalities and quantile cuts on the instances of the CKVLP.

1	Instances			MD-V	Is	N	Mixing-	set	Quantile			
n-m	Gen.	$ \mathcal{S} $	T	it.	v (%)	T	it.	v(%)	T	it.	v~(%)	
		100	0.00	3.80	58.90	0.00	2.40	17.32	0.00	2.40	15.82	
	lit	500	0.01	3.40	50.97	0.01	2.00	23.10	0.01	2.00	22.30	
	ш	1000	0.02	3.40	34.43	0.01	3.60	19.87	0.01	2.40	19.03	
20-1		3000	0.08	3.20	36.53	0.05	6.40	20.92	0.04	3.40	17.88	
	new	100	0.00	3.00	32.61	0.00	2.40	30.57	0.00	2.20	30.11	
		500	0.01	3.00	37.24	0.01	2.20	41.82	0.01	2.00	41.72	
		1000	0.02	3.00	34.01	0.01	3.20	48.76	0.01	2.00	48.76	
		3000	0.09	3.00	31.72	0.05	6.20	37.67	0.04	2.20	37.46	
		100	0.00	4.40	35.99	0.00	3.00	6.14	0.00	2.40	3.51	
	lit	500	0.01	4.00	33.03	0.01	3.60	7.81	0.01	2.60	5.88	
	ш	1000	0.03	4.40	22.91	0.02	3.80	6.38	0.02	3.20	3.77	
80-1		3000	0.10	3.20	42.22	0.07	4.00	8.36	0.07	2.20	7.21	
		100	0.00	3.20	27.04	0.00	3.40	17.37	0.00	3.20	15.39	
	2011	500	0.01	3.00	31.13	0.01	3.00	26.55	0.01	2.60	24.79	
	new	1000	0.03	3.00	30.64	0.02	4.40	28.29	0.02	3.40	27.46	
		3000	0.12	3.00	33.62	0.08	6.00	30.99	0.07	2.60	30.80	

MIP 2025 20

Cut impact: multi- knapsack

Table 2. Results of the CP with MD-VIs, Mixing-set inequalities and quantile cuts on the instances of the CCMKP.

						MD-VIs									
Instances			ADM			C-wise			Mixing-set			Quantile			
n- m	Gen.	$ \mathcal{S} $	$s(\lambda)$	Т	it.	v (%)	T	it.	v (%)	T	it.	v(%)	T	it.	v (%)
		100	0.87	0.18	18.80	30.21	0.01	4.00	28.05	0.11	4.80	25.07	0.11	4.20	21.18
	lit	500	0.73	0.42	13.80	25.50	0.04	4.00	23.47	0.52	6.20	22.10	0.51	3.80	19.84
	III	1000	0.89	0.81	15.00	27.00	0.07	3.80	25.14	1.09	9.00	24.47	1.04	5.00	21.89
20-10		3000	0.88	3.27	11.80	25.80	0.26	3.40	24.77	3.88	17.80	22.99	3.23	4.80	20.82
20 10	new	100	0.33	0.23	21.60	24.03	0.01	3.60	4.30	0.12	5.20	16.30	0.12	2.40	0.92
		500	0.33	0.43	30.80	27.27	0.04	4.20	10.97	0.60	8.00	18.60	0.58	4.00	1.55
		1000	0.29	0.79	15.80	25.10	0.09	3.00	11.31	1.17	8.40	15.92	1.09	4.20	2.65
		3000	0.31	3.04	22.20	25.20	0.37	3.80	5.21	3.72	18.20	16.67	3.40	3.80	2.11
		100	0.77	0.62	39.80	27.65	0.05	4.20	25.05	1.36	6.40	22.78	1.37	5.60	15.81
	lit	500	0.79	1.27	21.00	26.13	0.19	3.80	23.66	6.72	7.40	19.72	6.67	4.60	16.04
	IIL	1000	0.73	3.17	47.40	28.19	0.50	4.20	25.46	13.55	12.40	22.74	11.83	6.20	18.94
40-30		3000	0.79	8.96	20.80	25.59	1.66	3.60	23.25	41.06	17.20	19.05	38.16	5.20	15.85
20 00		100	0.23	0.76	63.80	26.08	0.07	2.60	4.18	1.25	6.80	17.78	1.37	3.00	0.99
	now	500	0.26	1.15	31.80	23.30	0.28	3.20	6.42	6.89	6.80	14.27	6.74	4.00	1.67
	new	1000	0.22	2.64	39.80	24.47	0.67	3.00	4.40	13.18	10.80	15.73	12.66	4.20	2.14
		3000	0.25	8.75	32.20	25.08	2.80	3.80	7.13	40.25	19.80	14.93	36.87	4.00	1.77

MIP 2025 21

MIP tests: single-covering

Table 3. Results of the MIP with MD-VIs, the mixing-set inequalities, and the quantile cuts for CKVLP instances.

Instances			MIP	N	/IP-MD	MI	P-MS	MIP-Q		
\overline{n} - m	Gen.	$ \mathcal{S} $	$\overline{\mathrm{gap/time}}$	cuts	gap/time	cuts	gap/time	cuts	gap/time	
		100	0.24s	2.80	0.73s	24.80	0.48s	1.40	0.37s	
	lit	500	3.35s	2.40	1.01s	100.00	4.74s	1.00	2.49s	
	ш	1000	0.03%(4)	2.40	0.10%(4)	199.40	0.06%(4)	1.40	272.61s	
20-1		3000	3.18%(2)	2.20	1.61%(3)	501.00	4.43%(1)	2.40	4.75%(0)	
	new	100	0.13s	2.00	0.28s	24.40	0.34s	1.20	0.28s	
		500	10.01s	2.00	1.18s	104.00	2.07s	1.00	0.91s	
		1000	20.57s	2.00	1.67s	151.60	1.65s	1.00	1.22s	
		3000	0.72%(4)	2.00	0.97%(4)	466.00	0.97%(3)	1.20	1.25%(4)	
		100	0.98s	3.40	0.91s	30.60	1.31s	1.40	0.97s	
	lit	500	0.58%(4)	3.00	0.03%(4)	213.60	0.61%(4)	1.60	0.58%(4)	
	III	1000	3.01%(1)	3.40	1.94%(1)	252.80	2.62%(2)	2.20	3.29%(0)	
80-1		3000	0.90%(1)	2.20	0.13%(4)	271.20	2.14%(2)	1.20	0.52%(3)	
		100	0.59s	2.20	0.59s	44.00	1.19s	2.20	0.68s	
		500	12.42s	2.00	4.95s	161.60	22.85s	1.60	6.06s	
	new	1000	0.01%(4)	2.00	472.05s	281.80	0.21%(4)	2.40	0.34%(4)	
		3000	1.02%(3)	2.00	0.76%(4)	459.60	1.55%(2)	1.60	0.53%(4)	

MIP tests: multi- knapsack

TABLE 5. Results of the MIP with MD-VIs, the mixing-set inequalities, and the quantile cuts for the CCMKP instances, where the x-variables are continuous.

					MIP-	MD					
Instances		MIP	MIP		ADM (MIP-MS		MIP-Q		
n- m	Gen.	$ \mathcal{S} $	$\overline{\mathrm{gap/time}}$	cuts	gap/time	cuts	gap/time	cuts	gap/time	cuts	gap/time
		100	204.87s	17.80	172.64s	18.60	114.96s	202.80	202.04s	15.60	117.55s
	lit	500	3.35%(0)	12.80	2.76%(0)	20.80	2.20%(0)	380.80	2.60%(0)	14.60	2.31%(0)
	IIT	1000	11.92%(0)	14.00	8.61%(0)	17.20	6.99%(0)	674.00	7.12%(0)	18.20	8.85%(0)
20-10		3000	32.96%(0)	10.80	9.40%(0)	17.80	10.69%(0)	1538.00	11.27%(0)	17.60	14.21%(0)
20 10	new	100	313.56s	20.60	227.12s	10.20	305.02s	166.20	368.67s	3.60	292.92s
		500	10.10%(0)	29.80	10.83%(0)	12.40	9.47%(0)	503.60	9.73%(0)	6.60	9.87%(0)
		1000	16.77%(0)	14.80	14.60%(0)	7.20	13.25%(0)	593.40	13.17%(0)	6.80	13.21%(0)
		3000	44.58%(0)	21.20	19.84%(0)	9.40	26.31%(0)	1552.40	29.96%(0)	7.40	24.86%(0)
		100	0.15%(2)	38.80	0.21%(3)	46.60	0.12%(3)	214.80	0.14%(4)	44.00	0.08%(4)
	lit	500	10.35%(0)	20.00	8.49%(0)	41.20	8.67%(0)	430.00	6.95%(0)	35.60	6.56%(0)
	IIT	1000	24.77%(0)	46.40	13.21%(0)	46.80	14.44%(0)	801.00	15.64%(0)	52.60	14.38%(0)
40-30		3000	35.04%(0)	19.80	11.91%(0)	38.80	15.44%(0)	1412.20	18.89%(0)	34.80	20.17%(0)
10 00		100	1.47%(1)	62.80	0.80%(1)	13.60	1.26%(1)	185.00	1.31%(1)	6.60	0.94%(1)
		500	16.61%(0)	30.80	15.14%(0)	11.00	14.36%(0)	387.00	13.36%(0)	10.00	13.60%(0)
	new	1000	30.26%(0)	38.80	19.85%(0)	16.20	21.40%(0)	700.40	24.04%(0)	16.80	21.83%(0)
		3000	41.97%(0)	31.20	18.78%(0)	17.20	33.37%(0)	1694.80	36.25%(0)	16.00	30.81%(0)

MIP 2025 23

MIP tests: multi- knapsack

Table 4. Results of the MIP-tests with MD-VIs, the mixing-set inequalities, and the quantile cuts for the CCMKP instances, where the x-variables are binary.

					MIP	-MD					
Instances		MIP		ADM	DM C-wise		MI	P-MS	MIP-Q		
n- m	Gen.	$ \mathcal{S} $	$\overline{\mathrm{gap/time}}$	cuts	gap/time	cuts	gap/time	cuts	gap/time	cuts	gap/time
		100	9.28s	17.80	7.47s	18.60	4.31s	202.80	6.34s	15.60	5.49s
	lit	500	110.42s	12.80	46.33s	20.80	21.53s	380.80	60.40s	14.60	39.13s
	ш	1000	642.60s	14.00	111.55s	17.20	120.40s	674.00	260.68s	18.20	164.71s
20-10		3000	12.03%(1)	10.80	2.19%(4)	17.80	$696.69 \mathrm{s}$	1538.00	4.60%(4)	17.60	$1500.19\mathrm{s}$
20 10	new	100	14.43s	20.60	13.01s	10.20	8.40s	166.20	8.01s	3.60	13.11s
		500	91.75s	29.80	$\bf 62.04s$	12.40	70.99s	503.60	72.04s	6.60	91.51s
		1000	388.66s	14.80	254.66s	7.20	$296.24\mathrm{s}$	593.40	356.02s	6.80	442.39s
		3000	41.46%(0)	21.20	32.92%(0)	9.40	33.83%(1)	1552.40	37.82%(0)	7.40	52.73%(0)
		100	10.17%(0)	38.80	9.16%(1)	46.60	8.32%(1)	214.80	11.73%(0)	44.00	12.05%(0)
	lit	500	29.22%(0)	20.00	5.73%(2)	41.20	1.81%(4)	430.00	14.44%(0)	35.60	15.76%(0)
	ш	1000	52.17%(0)	46.40	20.85%(0)	46.80	24.03%(0)	801.00	29.35%(0)	52.60	34.95%(0)
40-30		3000	41.63%(0)	19.80	15.07%(0)	38.80	18.14%(0)	1412.20	24.66%(0)	34.80	29.13%(0)
10 00		100	19.70%(0)	62.80	22.23%(0)	13.60	18.79%(0)	185.00	21.98%(0)	6.60	19.05%(0)
		500	39.24%(0)	30.80	20.45%(0)	11.00	32.42%(0)	387.00	27.21%(0)	10.00	34.72%(0)
	new	1000	48.89%(0)	38.80	29.81%(0)	16.20	55.00%(0)	700.40	39.56%(0)	16.80	52.94%(0)
		3000	49.05%(0)	31.20	27.68%(0)	17.20	48.18%(0)	1694.80	42.26%(0)	16.00	50.00%(0)