

Software Lab Computational Engineering Science

Group 12, Pusher Mechanism

Aaron Floerke, Arseniy Kholod, Xinyang Song and Yanliang Zhu

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Software and Tools for Computational Engineering

Contents

Preface

Introduction

Analysis

User Requirements

System Requirements

Design

System Requirements

Class Model(s)

Implementation

Development Infrastructure

Four-Bar Linkage Model

Software Tests

GUI

Results

27 movement types

Optimization problem

Documentation

Project Management

Live Software Demo

Preface

Four-bar linkage model

Introduction

Degree of freedom

Formular:

$$M = 3(N-1-j) + \sum_{i=1}^{j} f_i$$

- M: DOF
- N: Number of links. (4)
- ▶ *j*: Number of joints. (4 revolute joints)
- ▶ f_i : DOF provided by each joint i, equal 1 for revolute (rotational) joints.
- Calculation for the four-bar linkage:

$$M = \sum_{i=1}^{J} f_i - 3 = 4(1) - 3 = 1$$

► Four-bar linkage has 1 degree of freedom, meaning the mechanism can be fully controlled by a single input. (We use angular velocity as input)

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

Software and Tools for Computational Engineering

Grashof's Theorem

Grashof's theorem states that a four-bar mechanism has at least one revolving link if

$$s + I <= p + q$$

(5-1)

and all three mobile links will rock if

$$s + l > p + q$$

(5-2)

The inequality 5-1 is **Grashof's criterion**.

All four-bar mechanisms fall into one of the four categories listed in Table 5-1:

Case	I + s vers. p +	q Shortest Bar	Type
1	<	Frame	Double-crank
2	<	Side	Rocker-crank
3	<	Coupler	Doubl rocker
4	=	Any	Change point
5	>	Any	Double-rocker

Table 5-1 Classification of Four-Bar Mechanisms

https://www.cs.cmu.edu/~rapidproto/mechanisms/chpt5.html

Analysis

User Requirements

- Implement 27 motion types of the four-bar linkage with one bar fixed:
 - Classification values:

►
$$T_1 = g + h - b - a$$

$$T_2 = b + g - h - a$$

►
$$T_3 = h + b - g - a$$

- Implement GUI with motion animation and the ability to choose geometrical parameters:
 - Length of the bars
 - Position of the coupler
 - Input angle
 - Angle relative to the horizon
 - Classification values as alternative input

	m	m	m	m m	m m		
No.	$T_{_I}$	T_2	T_3	$T_{_{I}}T_{_{2}}$	$T_{_{I}}T_{_{3}}$	а	ь
1	+	+	+	+	+	crank	rocker
2	0	+	+	0	0	crank	π-rocker
3	-	+	+	-	-	$\pi\text{-rocker}$	$\pi\text{-rocker}$
4	+	0	+	0	+	crank	0-rocker
5	0	0	+	0	0	crank	crank
6	-	0	+	0	-	crank	crank
7	+	-	+	-	+	π-rocker	0-rocker
8	0	-	+	0	0	crank	crank
9	-	-	+	+	-	crank	crank
10	+	+	0	+	0	crank	π-rocker
11	0	+	0	0	0	crank	π-rocker
12	-	+	0	-	0	π-rocker	π-rocker
13	+	0	0	0	0	crank	crank
14	0	0	0	0	0	crank	crank
15	-	0	0	0	0	crank	crank
16	+	-	0	-	0	π-rocker	crank
17	0	-	0	0	0	crank	crank
18	-	-	0	+	0	crank	crank
19	+	+	-	+	-	0-rocker	π-rocker
20	0	+	-	0	0	0-rocker	π-rocker
21	-	+	-	-	+	rocker	rocker
22	+	0	-	0	-	0-rocker	crank
23	0	0	-	0	0	0-rocker	crank
24	-	0	-	0	+	0-rocker	0-rocker
25	+	-	-	-	-	rocker	crank
26	0	-	-	0	0	0-rocker	crank
27	-	-	-	+	+	0-rocker	0-rocker
-201	8-26	1-26	6 by	Ivana	Cvet	kovic et	al.

Figure from "Classification, geometrical and kinematic analysis of four-bar linkages" 10.15308/Sinteza-2018-261-266

User Requirements

- Solve an optimization problem:
 - Push box with size 80×60 from x = 220 to x = 0
 - ▶ Do not cross the area of the labelling machine (Area with x < 80 and y > 70).
 - ▶ Pass above points (120,80) and (220,80)

System Requirements

Functional

► Four-bar linkage model:

- System simulates all the motion types of the four-bar linkage.
- System does not crash with any input of geometrical configuration.

► Tests:

- Implement test cases for geometry.
- Implement test cases with bad input to test system stability.

Graphical User Interface:

- ► GUI provides the four-bar linkage visualization and motion animation.
- User can input geometrical data by moving a point on a slide bar.
- GUI is coupled with the four-bar linkage model to use implemented motion cases for animation.
- GUI provides tracing for trajectories of the points.
- GUI classifies of the linkage.

▶ Optimization problem:

- It should be possible to find a solution (manually) for the optimization problem using the four-bar linkage model.
- GUI visualizes the solution.

System Requirements

Non-Functional

Performance:

- The four-bar linkage model is fast enough to provide smooth GUI animations.
- ► GUI animations are not slower than 30 frames per second.

Usability:

- Every essential part of the four-bar linkage model is well documented.
- ▶ GUI is easy to operate and all functionalities are self-explanatory.
- GUI source code is well documented.

Design

Design

Class Model(s)

Development Infrastructure

► 1. Operating System:

Xubuntu/Windows

2. Developing Environment:

- Programming Language: Python.
- ▶ IDE: Spyder/Pycharm.
- Package Manager: Anaconda.

3. Libraries:

- Frontend: tkinter, math, numpy
- ► Backend: math, numpy

4. Version Control System:

 GitHub: Remote code repositories for team collaboration, code reviews, and version control.

https://github.com/einsflash/Project_Pusher_Mechanism

5. Frameworks:

- Pdoc: Used for generating project documentation, helping the team understand and maintain the code better.
- ► Makefile: For build management.

Four-Bar Linkage Model

Software Tests

GUI, Tkinter Intro

► Initiate all tkinter objects inside GUI class and generate app window: GUI().tk.mainloop()

GUI, Animation

 Update objects in tk.Canvas every animation step using coords and/or itemconfigure for optimization

```
class GUI:
def __init__(self):
  self.init_toolbar()
def init_toolbar(self):
  self.enable_animation = tk.IntVar()
  self.animation_button = tk.Checkbutton(self.toolbar_frame, text="animation",
                                           variable=self.enable_animation.
                                           onvalue=1, offvalue=0, command=self.animation)
  self.animation_button.grid(sticky="W", row=10, column=2)
def refresh(self):
  self.linkage.run()
  self.update_linkage_display()
def animation(self):
  self.run_animation()
def run_animation(self):
  if self.enable_animation.get():
    self.linkage.animation_alpha() # alpha = alpha + d_alpha
    self.refresh()
    self.tk.after(25, self.run_animation)
def update_linkage_display(self):
  self.model_animation.coords(self.model_animation.AB_line, [A_x, A_y, B_x, B_y])
```

GUI, Show and hide objects

- ► To display different modes, some objects have to be hidden or shown.
- For objects in tk.Canvas use itemconfigure:
 - Hide:
 - $self.model_animation.itemconfigure (self.model_animation. AB_line, \ state='hidden')$
 - ► Show:
 - $self.model_animation.itemconfigure (self.model_animation.AB_line, \ state='normal')$
- For widgets like tk.Scale or tk.Text:
 - Hide: self.slider_T1.grid_remove()
 - Show: self.slider_T1.grid()

GUI, Invalid Setup Handling

GUI, Invalid Setup Handling

```
class GUI:
def __init__(self):
  self.init_linkage_display()
def init_linkage_display(self):
  self.model_animation.invalid_text = self.model_animation.create_text(round(self.model_animation.width/2),
                                                                      round(self.model_animation.height/2),
                                                                      text="Invalid setup, change geometrical values",
                                                                      fill="black", font=('Helvetica 11 bold'))
  self.model_animation.itemconfigure(self.model_animation.invalid_text, state='hidden')
def update_linkage_display(self):
  if self.linkage.geometric_Validity:
    self.show_linkage()
    if self.enable_optimization_problem.get():
      self.show_optimization_problem()
    self.model_animation.itemconfigure(self.model_animation.invalid_text, state='hidden')
  else:
    self.hide_linkage()
    self.hide_optimization_problem()
    self.model_animation.itemconfigure(self.model_animation.invalid_text, state='normal')
    return
```

Results

27 movement types

 $T_{1,2,3} = -1.0, 0.0, 1.0$ $T_{1,2,3} = 1.0, -1.0, 1.0$ $T_{1,2,3} = 0.0, -1.0, 1.0$ $T_{1,2,3} = -1.0, -1.0, 1.0$

 $T_{1,2,3} = 0.0, 1.0, 0.0$ $T_{1,2,3} = -1.0, 1.0, 0.0$ $T_{1,2,3} = 1.0, 0.0, 0.0$

 $T_{1,2,3} = 0.0, 0.0, 0.0$

 $T_{1,2,3} = -1.0, 0.0, 0.0$

Results

27 movement types

 $T_{1,2,3} = 1.0, -1.0, 0.0$ $T_{1,2,3} = 0.0, -1.0, 0.0$

 $T_{1,2,3} = -1.0, -1.0, 0.0$

 $T_{1,2,3} = 1.0, 1.0, -1.0$

 $T_{1,2,3} = 0.0, 1.0, -1.0$

 $T_{1,2,3} = -1.0, 1.0, -1.0$

 $T_{1,2,3} = 1.0, 0.0, -1.0$

 $T_{1,2,3} = 0.0, 0.0, -1.0$

 $T_{1,2,3} = -1.0, 0.0, -1.0$ $T_{1,2,3} = 1.0, -1.0, -1.0$ $T_{1,2,3} = 0.0, -1.0, -1.0$

 $T_{1,2,3} = -1.0, -1.0, -1.0$

Results

Optimization problem

- ▶ 9 degrees of freedom (all lengths in cm):
 - Length of four bars: a = 124.0, b = 171.2, g = 172.1, h = 122.6.
 - ► Coupler position: $P_{pos} = 20.0\%$, $P_{offset} = 42.0\%$ of h.
 - Position of point A: $A_x = 27.0$, $A_y = 66.0$.
 - ▶ Angle of ground bar relative to horizon: $\theta = -70.0^{\circ}$

112

for Computational

Documentation for Frontend(GUI)

API Documentation class GUI linkage tk width height model frame model animation toolbar frame trace C() trace D() trace P() positions C positions D positions P x axis y axis Αx Αv pin box to coupler prev coupler position prev box position init toolbar() init linkage display() display classification values() display bars values() display information() scaling factor() calculate normalities() update parameter a() update parameter q() update parameter b() update parameter h() update_parameter_p_pos() update parameter p off() update parameter alpha()

Documentation for Backend

API Documentation

four_bar_linkage

Project Management

Task

1.Discuss and Design:

- weekly discussion in discord.
- gathering information / generating ideas for program.

▶ 2.Frontend:

- Design of GUI
- Implementation
- Debug

► 3.Backend:

- Algorithm for calculating positions and angle extremum
- Interface for animation
- Two types of input
- Display information(Grashof condition, geometric validity)

4.Test the motion case:

5.Presentation:

- Analysis (user requirements)
- Frontend
- Project management
- Backend
- *The following page outlines the responsibilities of each person.

Project Management

Gantt Chart

Project Management

Task Assignment

A = ALL members in group	
K = Kholod Arseniy	
F = Floerke Aaron Albert	Π
S= Song Xinyang	Ī
Z = Zhu Yanliang	_

Project Management

																					1:
Person	Task	Duration	Start	End	18 August 2024				25 August 2024						01 September 2024						
	rask				јм т	W	T	F .	s s	М	T۱	N 1	T F	S	s	M i	T W	/ T	F	s s	М
0	Four Bar Linkage Model	62 days	12.08	13.10																	
1	Discuss and Design	Weekly	12.08	15.09																	
Α	weekly discussion in discord	Wednesday	1	1																	
Α	gathering information / generating ideas for program	14 days	1	1																	
2	Frontend	35 days	09.09	06.10																	
K	Design of GUI	1	1	1																	
K	Implementation	1	1	1																	
Α	Debug	1	1	1																	ш
3	Backend	35 days	09.09	06.10																	
Z	Algorithm for calculating positions and angle extremum	1	1	1																	
K	Interface for animation	1	1	1																	
Z	Two types of input	1	1	1																	
S	Display information(Grashof condition, geometric validity)	1	1	1																	
4	Test Case	14 days	23.09	06.10																	
F	Test the motion case																				
5	Presentation	14 days	30.09	13.10																	
Α	Task assignment ()																				
F	Analysis (user requirements)																				
K	Frontend																				
S	Project management																				
Z	Backend																				

Live Software Demo

- 1. Changing the input of slidebar.
- 2. Start the animation.
- 3. Test different motion types.
- 4. Enable points tracing.
- 5. Solve the optimization problem.

Summary and Conclusion

Literature

Cvetkovic, Ivana and Stojicevic, Misa and Popkonstantinović, Branislav and Cvetković, Dragan. (2018). Classification, geometrical and kinematic analysis of four-bar linkages. 261-266. 10.15308/Sinteza-2018-261-266.