Estudiante: Héctor Rincón

Laboratorio 5

Primero instalamos packet tracer y después crear un red conformada de un router que se conecta a un switched y ese switched se le conectan cincon PC

Despues a cada PC se le asigna una ip y el mismo gateway a todos

Despues desde el PC1 hacemos ping entre los demas PC para ver si hay conexión entre ellos y podemos ver que si por que los paquetes llegaron

Y tambien usamos el comando ipconfig para confirmar que cada PC tiene bien establecido sus ip

```
C:\>ipconfig
FastEthernet0 Connection: (default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address..... FE80::2E0:F9FF:FE58:8AB
  IPv6 Address.....::
  IPv4 Address..... 192.168.1.2
  Subnet Mask..... 255.255.255.0
  Default Gateway....:
                            192,168,1,1
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....: ::
  IPv6 Address.....::::
  IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
  Default Gateway....: ::
                            0.0.0.0
```

Ahora para que tener conexión entre el router y el switched tenemos que asiganrle el puerta de enlace para que tenga conexion

Y ahora podemos ver que hay conexión entre el router y el swiched

Ahora hacemos ping desde un PC a un ip que no está asignada y podemos ver que no llegan los paquetes a pesar que estan dentro del mismo rango ip

```
C:\>ping 192.168.1.8

Pinging 192.168.1.8 with 32 bytes of data:

Request timed out.

Ping statistics for 192.168.1.8:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Y también hacemos ping a una red que no esta siendo usada y podemos ver que tampoco llegan los paquetes

```
C:\>ping 192.168.2.1

Pinging 192.168.2.1 with 32 bytes of data:

Reply from 192.168.1.1: Destination host unreachable.
Reply from 192.168.1.1: Destination host unreachable.
Reply from 192.168.1.1: Destination host unreachable.
Request timed out.

Ping statistics for 192.168.2.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Modelo OSI y su Aplicación en Redes

Capa	Nombre de la Capa	Función Principal	Protocolos/Dispositivos
7	Aplicación	· ·	HTTP, FTP, SMTP, DNS, navegadores web, clientes de correo
6	Presentacion	Traduce, cifra o comprime los datos. Se encarga del formato de datos entre sistemas.	SSL/TLS, JPEG, MPEG, ASCII, codificadores/decodificadores
5	Capa de Sesión	Establece, gestiona y termina sesiones de comunicación entre aplicaciones.	RPC, NetBIOS, PPTP, sockets
4	Capa de Transporte	Proporciona transferencia confiable de datos entre hosts; controla el flujo y la corrección de errores.	TCP, UDP, puertos lógicos
3	Capa de Red	Determina la ruta de los datos y gestiona las direcciones lógicas.	IP, ICMP, Routers, IPv4, IPv6

Capa	Nombre de la Capa	Función Principal	Protocolos/Dispositivos
2	Enlace de	ldatos entre nodos en la misma	Ethernet, Wi-Fi (802.11), MAC, Switches, ARP
1	Capa Física	l ransmite bits sin estructura por	Cables (UTP, fibra), Hubs, repetidores, señales eléctricas/ópticas

Comparación entre OSI y TCP/IP

Capa OSI	Capa TCP/IP	Protocolos/Servicios Ejemplares
Capa de Aplicación	Capa de Aplicación	HTTP, FTP, SMTP, DNS, TELNET
Capa de Presentación	(Incluida en la de Aplicación)	SSL/TLS, JPEG, MPEG, ASCII
Capa de Sesión	(Incluida en la de Aplicación)	RPC, NetBIOS, PPTP
Capa de Transporte	Capa de Transporte	TCP, UDP
Capa de Red	Capa de Internet	IP, ICMP, ARP, IPv4, IPv6
Capa de Enlace de Datos	Capa de Acceso a la Red	Ethernet, Wi-Fi (802.11), MAC, PPP
Capa Física	Capa de Acceso a la Red	Cables, señales eléctricas, hubs, fibra óptica

1. ¿Qué capa del modelo OSI se encarga de la entrega confiable de datos? La Capa 4: Capa de Transporte.

Esta capa garantiza la entrega confiable de datos mediante protocolos como **TCP**, que incluye control de errores, control de flujo y confirmación de recepción de los datos.

2. ¿Qué dispositivos de red operan en la capa 2 del modelo OSI? Switches y puentes (bridges) operan principalmente en la Capa 2: Capa de Enlace de Datos.

Estos dispositivos gestionan direcciones **MAC** y se encargan de reenviar tramas dentro de una red local.

3. ¿Cómo puedes identificar la capa de transporte (capa 4) al analizar un paquete capturado en Wireshark?

En **Wireshark**, puedes identificar la **Capa 4** observando el protocolo que aparece en la columna de protocolo como **TCP** o **UDP**.

También puedes ver los **números de puerto origen y destino**, que indican los servicios (por ejemplo, puerto 80 para HTTP). Al expandir el encabezado del protocolo TCP/UDP, puedes ver detalles como números de secuencia, acuses de recibo y flags (SYN, ACK, etc.).

4. ¿Cuáles son las diferencias clave entre los modelos OSI y TCP/IP?

Característica	Modelo OSI	Modelo TCP/IP
Número de capas	7 capas	4 capas (a veces representadas como 5)
II -	Tiene capas separadas de Presentación y Sesión	Esas funciones se integran en la Capa de Aplicación
III Jesarrollo	Modelo teórico desarrollado por la ISO	Modelo práctico desarrollado por el Departamento de Defensa de EE.UU.
	Más utilizado para fines académicos y de referencia	Es el modelo real utilizado en redes como Internet
Flexibilidad	Más detallado y específico	Más simple y directo para implementación