Nanomatériaux et santé

Benhassine w
Médecin du travail
Ergonome

Objectifs

- Définir les nanomatériaux et identification des sources d'exposition
- Comprendre la problématique posée par les nanomatériaux en tant que facteurs de risque professionnels
- Connaitre leurs effets probables sur la santé selon
- Comprendre le principe de précaution suivi par l'OMS en matière de prévention

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Définition de Nanomatériau

- Définition de l'ISO: The term nanomaterials refers to materials that have at least one dimension (height, width or length) that is smaller than 100 nanometres (10⁻⁷metre) = taille d'un virus
- Ils ont une Origine naturelle ou bien ils sont fabriqués soit accidentellement ou bien pour des usages industriels = Manufactured NanoMaterialS (MNMs)
- Les MNMs sous surveillance particulière de l'OMS :
 - guideline (WHO GUIDELINES FROM POTENTIAL RISKS ON PROTECTING WORKERS OF MANUFACTURED NANOMATERIALS)

Classification des nanomatériaux

- 1. les nanoparticules d'origine naturelle (cendres volcaniques, embruns, minéraux composites),
- 2. les nanoparticules qui apparaissent comme des sous-produits de l'activité humaine (émissions de moteurs diesels, d'activités industrielles, vapeurs de soudage, sablage)
- 3. les nanoparticules manufacturées, qui ont été spécifiquement conçues et synthétisées (nanotubes de carbone, oxyde de cérium, fullerènes, boîtes quantiques, silice amorphe de synthèse, nano-argent, etc.).

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Problématique

- Grace à leur taille; les MNMs ont des applications très intéressantes dans l'industrie (pharmaceutique, électronique, peintures,)
- À cause de leurs taille; ils présentent des effets différents de la même substance dont la taille est micro ou macroscopique
- L'évaluation du risque, de l'exposition et de la toxicité nécessite probablement des méthodes de tests différents que pour les microparticules
- Études sur la toxicité ne sont disponibles qu'in vitro pour l'inhalation et uniquement pour quelques éléments
- À ce jour, aucun effet indésirable n'a été noté chez l'homme probablement à cause de leur récente introduction dans l'industrie

D'Où application du principe de la prudence la nécessité de mise en place d'un dispositif de surveillance

Problématique

 La production et l'utilisation de plus en plus importante dans des produits de consommation et des produits industriels rend l'exposition des travailleurs qui les manipulent les plus à risque d'intoxication

D'où le programme de surveillance doit avoir comme première cible les travailleurs

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Deux circonstances d'exposition

- Exposition non intentionnelle : Lors de la génération non intentionnelle de MNMs dans un process de fabrication ne manipulant pas les MNMs
- 2. Exposition intentionnelle : Manipulation des MNMs lors de leur production ou leur utilisation dans d'autres procédés industriels

Donc:

1

- Procédé thermique: soudage, coupage, métallisation, galvanisation, application de cire, de peintures, par une source thermique (laser, torche thermique etc)
- Procédé mécanique : usinage, perçage, ponçage, polissage
- Procédé de combustion : émissions des moteurs (Diesel, essence, gaz); centrale d'incinération; fumage de denrées alimentaires; chauffage au gaz

- Peinture et Revêtement : dioxyde de titane, dioxyde de silicium, oxyde de fer, argent, azoïques;...)
 - Peinture autolavable
 - Peinture de voiture
 - Revêtement transparent et photoactifs
- Denrées alimentaires (dioxyde de titane;) :
 - colorants des bonbons;
 - gomme à mâcher;
 - additifs et exhausteurs de gout
- Encres et toners (argent, azoïques, phtalocyanine, noir carbone)
 - Imprimantes à jet d'encre
 - Encres pour tatouage

- Produits pharmaceutiques (argent, or, lyposomes, silice amorphe)
 - Comprimés, suppositoires, crèmes
 - Compresses et pansements
 - Test de grossesse
 - Médicaments anti cancer
- Cosmétiques: (argent, dioxyde de titane, oxyde de zinc, noir carbone, silice amorphe, hydroxyapatite, fullerenes)
 - Déodorants, écrans solaires, dentifrice, maquillage, crème anti âge, contours des yeux, crème pour bébé (érythème fessier)

- Jouets (argent)
 - Jouets en peluche
- Articles de sport (dioxyde de titane, nanotubes de carbone)
 - Raquettes de tennis
 - Cadres de vélo
 - Clubs de golf
- Pesticides (oxyde de calcium, oxyde d'aluminium, silice amorphe)

- Produits en caoutchouc (noir carbone)
 - Pneus
- Produits électriques / électroniques (nanotubes de carbone)
 - Écrans plats
- Plastiques (nitrure de titane, argent)
 - Bouteille en plastique
 - Emballages alimentaires antibactériens
- Textile (argent, dioxyde de titane, nanotubes, oxyde d'aluminium, silice amorphe)
 - vêtements déperlant
 - Lingettes antimicrobiens (bébés)
 - Lingettes anti rayons ultraviolets

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Facteurs de toxicité

- 1. Propriétés physico-chimiques
 - La taille (1 à 100 nm)
 - La dimension
 - La forme
 - La composition
 - Les caractéristiques de surface
 - La charge
 - La vitesse de dissolution

Facteurs de toxicité

- 2. Voies de pénétration et durée et importance de l'exposition
 - Inhalation : principale voie de pénétration
 - Voie digestive : directe (mains souillées) et indirecte (nasopharynx)
 - Contact de la peau avec surfaces contaminées ; voie controversée sauf si effraction de la peau
- 3. Facteurs individuels
 - Susceptibilité individuelle
 - Charge physique
 - Facteurs biocinétiques

Toxicocinétique

Distribution

- Les MNMs dont la taille < 10nm agissent comme des gaz et traversent toutes les barrières. Ils pénètrent dans tous les organes et perturbent l'environnement biochimique des cellules
- Après inhalation ou ingestion les MNMs se trouvent dans le poumon et le tractus digestif mais aussi dans le foie, le cœur la rate et le cerveau

Toxicocinétique

- Élimination : deux processus sont incriminés
 - Élimination chimique : par dissolution des molécules solubles dans tous les liquides biologiques de l'appareil respiratoire
 - Élimination physique : par transport des particules peu ou pas solubles vers d'autres sites de l'appareil respiratoire notamment vers :
 - la bouche et le nez par le mucus et les cils pour être soit déglutis, soit éliminés par éternuement ou toux
 - Les alvéoles par les macrophages cependant, certains MNMs ne sont pas phagocytés et s'accumulent dans les alvéoles provoquant une inflammation. La demi vie dans les poumons est de 700 j

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Les effets ne sont pas généralisés, les résultats des études sont parfois controversés

- Effet inflammatoire général
- Effet sur le poumon, la plèvre
 - Obstruction réversible des voies respiratoires
 - Fibrose
- Effet cardiovasculaire
 - Ischémie myocardique
- Effet neurologique

- 1. Définition / généralités
- 2. Problématique
- 3. Sources d'exposition
- 4. Toxicité
- 5. Effets sur la santé
- 6. Mesures préventives

Recommandations de l'OMS

- Evaluer les risques sanitaires des MNMs
- Evaluer l'exposition (VLEP)
- Contrôler l'exposition : exposition par inhalation,
- Veille sanitaire
- Formation et implication des travailleurs

Bibliographie

- https://www.cairn.info/les-risques-du-travail--97827071784 04-page-299.htm
- https://iris.who.int/bitstream/handle/10665/259 671/9789241550048eng.pdf;jsessionid=7D1C7960D43A509826D6E59 B8BF3EF68?sequence=1
- https://euon.echa.europa.eu/fr/world-healthorganisation-who-
- Toxicité des nanoparticules et aperçu des modèles expérimentaux actuels <u>Haji</u> <u>Bahadar</u>, ¹ <u>Faheem Maqbool</u>, ¹ <u>Kamal</u> <u>Niaz</u>, ¹ et <u>Mohammad Abdollahi</u> *, ¹, ², ³