

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC140177
Page: 1 of 119

FCC Radio Test Report FCC ID: XMF-MID721-U

Original Grant

Report No. : TB-FCC140177

Applicant: Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name: MID

Model No. : MID721-U

Serial No. : MID713-U, MID710-U, DL700D, DL700D(B),

D2-741G_XX(XX represents different color)

Brand Name : N/A

Receipt Date : 2014-04-28

Test Date : 2014-04-28 to 2014-05-06

Issue Date : 2014-05-07

Standards : FCC Part 15, Subpart C (15.247:2012)

Test Method : ANSI C63.4:2003

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Test Facility	8
2.	TEST SUMMARY	9
3.	CONDUCTED EMISSION TEST	10
	3.1 Test Standard and Limit	10
	3.2 Test Setup	10
	3.3 Test Procedure	10
	3.4 Test Equipment Used	11
	3.5 EUT Operating Mode	11
	3.6 Test Data	11
4.	RADIATED EMISSION TEST	16
	4.1 Test Standard and Limit	16
	4.2 Test Setup	17
	4.3 Test Procedure	18
	4.4 EUT Operating Condition	18
	4.5 Test Equipment	
	4.6 Test Data	19
5.	RESTRICTED BANDS REQUIREMENT	48
	5.1 Test Standard and Limit	48
	5.2 Test Setup	48
	5.3 Test Procedure	48
	5.4 EUT Operating Condition	
	5.5 Test Equipment	
	5.6 Test Data	
6.	BANDWIDTH TEST	78
	6.1 Test Standard and Limit	78
	6.2 Test Setup	78
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Equipment	
	6.6 Test Data	
7.	PEAK OUTPUT POWER TEST	87

Page: 3 of 119

	7.1 Test Standard and Limit	87
	7.2 Test Setup	87
	7.3 Test Procedure	87
	7.4 EUT Operating Condition	87
	7.5 Test Equipment	87
	7.6 Test Data	87
8.	POWER SPECTRAL DENSITY TEST	96
	8.1 Test Standard and Limit	96
	8.2 Test Setup	96
	8.3 Test Procedure	96
	8.4 EUT Operating Condition	96
	8.5 Test Equipment	96
	8.6 Test Data	96
9.	ANTENNA CONDUCTED SPURIOUS EMISSION	105
	9.1 Test Standard and Limit	105
	9.2 Test Setup	105
	9.3 Test Procedure	
	9.4 EUT Operating Condition	106
	9.5 Test Equipment	106
	9.6 Test Data	106
10.	ANTENNA REQUIREMENT	119
	10.1 Standard Requirement	119
	10.2 Antenna Connected Construction	
	10.2 Result	119

Page: 4 of 119

1. General Information about EUT

1.1 Client Information

Applicant: Lightcomm Technology Co., Ltd.

Address : RM 1708-10, 17/F, PROSPERITY CENTRE, 25 CHONG YIP

STREET, KWUN TONG, KOWLOON, HONG KONG

Manufacturer : Huizhou Hengdu Electronics Co., Ltd.

Address : DIP South Area, Huiao Highway, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

FUT No.		T			
EUT Name	:	2			
Models No.	:	, , , , , , , , , , , , , , , , , , , ,	, ,,,		
		D2-741G_XX(XX represe	ents different color)		
Model	:	DL700D, DL700D(B) doe	sn't have the back camera and DC input jack,		
Difference		the other models are iden	itical in the same PCB layout, interior		
		structure and electrical ci	rcuits, The only difference is model name for		
		commercial purpose.			
		Operation Frequency:			
		802.11b/g/n(HT20): 2412			
		802.11b/g/n(HT40): 2422	MHz~2452MHz		
Product		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
Description	:		802.11b/g/n(HT40): 7 channels see note(3)		
		RF Output Power:	802.11b: 9.40 dBm		
			802.11g: 9.51 dBm		
			802.11n (HT20): 9.46 dBm		
		802.11n (HT40): 9.46 dBm			
		Antenna Gain: 0 dBi (PIFA Antenna)			
		Modulation Type:	Modulation Type: 802.11b: DSSS (CCK, QPSK, BPSK)		
			802.11g: OFDM		
			802.11n: OFDM		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps		
			802.11g:54/48/36/24/18/12/9/6 Mbps		
			802.11n:up to 150Mbps		
Power Supply	:	DC power supplied by AC/DC Adapter			
		DC Voltage supplied from Li-Polymer battery.			
Power Rating	:				
		AC/DC Adapter(TEKA01-0502000UK) 1# (DC Power Jack):			
		Input: AC 100~240V 50/60Hz 0.35A Max. Output: DC 5V 2A			
		AC/DC Adapter(TEKA01-0502000UK) 2# (USB Port):			
		Input: AC 100~240	V 50/60Hz 0.35A Max. Output: DC 5V 2A		

Report No.: TB-FCC140177
Page: 5 of 119

	DC 3.7V 2100mAh from Li-Polymer battery	
Connecting I/O Port(S)	:	The equipent have USB port for link with PC, so the equipment is considered as a Computing Device Peripheral.
		Please refer to the User's Manual

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r01.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

CH 01~CH 11 for 802.11b/g/n(HT20)

CH 03~CH 09 for 802.11b/g/n(HT20)

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	80	2447		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information						
Name	Name Model S/N Manufacturer Used "√"					
1	/	1	/	/		
Cable Information						
Number Shielded Type Ferrite Core Length Note						

Report No.: TB-FCC140177
Page: 6 of 119

Cable 1	NO	NO	1.0M	Accessories
Cable 2	NO	NO	1.0M	Accessories

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test		
Final Test Mode	Description	
Mode 1	AC Charging with TX B Mode	
Note: Test with Adapter 1# and 2#		

For Radiated Test			
Final Test Mode	Description		
Mode 3	TX Mode B Mode Channel 01/06/11		
Mode 4	TX Mode G Mode Channel 01/06/11		
Mode 5	TX Mode N(HT20) Mode Channel 01/06/11		
Mode 6 TX Mode N(HT40) Mode Channel 01/06/11			
Note: Pre-Test with Adapter 1# and 2#, ar	nd only show the worst mode data with Adapter 2#.		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 119

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	Test Program: Realtek MP Tool.apk		
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	27	25	26
IEEE 802.11g OFDM	27	28	28
IEEE 802.11n (HT20)	27	27	28
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	29	28	28

Page: 8 of 119

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

Page: 9 of 119

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS-210: 2010				
Standar	rd Section	Test Item	Judgment	Remark
FCC	IC	rest item	Juagment	Remark
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS-210	6dB Bandwidth	PASS	N/A
15.247 (a)(2)	A.8.2(a)	odb Bandwidth		
15.247(b)	RSS-210	Peak Output Power	PASS	N/A
13.247(0)	A.8.4(4)	Feak Output Fower	FAGG	IN/A
15.247(e)	RSS-210	Power Spectral Density	PASS	N/A
15.247 (e)	A.8.2(b)	Fower Spectral Delisity	PASS	IN/A
15 247(d)	RSS-210	Transmitter Radiated Spurious	PASS	N/A
15.247(d)	Annex 8 (A8.5)	Emission	FASS	IN/A
15.247(d)	RSS-210	Antenna Conducted	PASS	N/A
13.247 (u)	Annex 8 (A8.5)	Spurious Emission	FASS	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 10 of 119

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Eraguanav	Maximum RF Lir	ne Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC140177
Page: 11 of 119

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date	
EMI Test	ROHDE&		400004	2013-08-10	2014-08-09	
Receiver	SCHWARZ	ESCI	100321	2013-00-10	2014-08-09	
50ΩCoaxial	Anritsu	MP59B	X10321	2013-08-10	2014-08-09	
Switch	Aillisu	MESSE	X10321	2013-00-10	2014-00-09	
L.I.S.N	Rohde & Schwarz	ENV216	101131	2013-08-10	2014-08-09	
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	2013-08-10	2014-08-09	

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

EUT: MID **Model Name:** MID713-U **25** ℃ **Relative Humidity:** 55% Temperature: **Test Voltage:** AC 120V/60 Hz Terminal: Line **Test Mode:** AC Charging with TX B Mode Remark: Adapter 1# 90.0 dBuV QP: AVG: 30 -30 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB dBuV MHz dBuV dΒ Detector Comment 0.1940 32.90 10.01 42.91 63.86 -20.95 QΡ 1 2 0.1940 18.02 10.01 28.03 53.86 -25.83 AVG 3 0.4900 32.62 10.02 42.64 56.17 -13.53 QΡ 4 0.4900 14.84 10.02 24.86 46.17 -21.31 AVG 56.00 -15.02 QP 5 0.5700 30.93 10.05 40.98 6 0.5700 14.43 10.05 24.48 46.00 -21.52 AVG 7 0.9700 27.48 10.07 37.55 56.00 -18.45 QΡ 8 0.9700 6.83 10.07 16.90 46.00 -29.10 AVG 2.2580 56.00 -17.95 QΡ 28.00 10.05 38.05 9 46.00 -24.27 10 2.2580 11.68 10.05 21.73 **AVG** 11 3.5860 25.36 10.01 35.37 56.00 -20.63 QΡ 46.00 -25.02 12 AVG 3.5860 10.97 10.01 20.98 **Emission Level= Read Level+ Correct Factor**

EUT: MID **Model Name:** MID713-U **25** ℃ **Relative Humidity:** 55% Temperature: **Test Voltage:** AC 120V/60 Hz Terminal: Neutral **Test Mode:** AC Charging with TX B Mode Remark: Adapter 1# 90.0 dBuV QP: AVG: 30 AVG 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV MHz dΒ dBuV dBuV dΒ Detector Comment 1 0.1860 36.06 10.12 46.18 64.21 -18.03 QΡ 2 0.1860 20.86 10.12 30.98 54.21 -23.23 AVG 3 0.4620 44.44 56.66 -12.22 QΡ 34.41 10.03 4 0.4620 17.45 10.03 27.48 46.66 -19.18 AVG 5 0.5620 32.77 10.02 42.79 56.00 -13.21 QΡ 6 16.07 0.5620 10.02 26.09 46.00 -19.91 AVG 7 0.8700 30.36 10.10 40.46 56.00 -15.54 QΡ 8 0.8700 13.60 10.10 23.70 46.00 -22.30 AVG 1.1740 30.43 40.57 56.00 -15.43 QΡ 9 10.14 1.1740 14.29 46.00 -21.57 10 10.14 24.43 AVG 11 2.4260 27.22 10.06 37.28 56.00 -18.72 QΡ 12 2.4260 12.47 10.06 22.53 46.00 -23.47 AVG **Emission Level= Read Level+ Correct Factor**

EUT: MID **Model Name:** MID713-U 25 ℃ **Relative Humidity:** 55% Temperature: Test Voltage: AC 120V/60 Hz Terminal: Line **Test Mode:** AC Charging with TX B Mode Remark: Adapter 2# 90.0 dBuV QP: AVG: 30 -30 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV dBuV dΒ Detector Comment 1 0.5299 25.80 10.03 35.83 56.00 -20.17 QΡ 2 0.5299 0.79 10.03 10.82 46.00 -35.18 AVG QΡ 3 0.6580 30.91 10.10 41.01 56.00 -14.99 0.6580 4.29 10.10 14.39 46.00 -31.61 AVG 4 36.00 QΡ 5 1.4220 25.94 10.06 56.00 -20.00 1.4220 0.93 10.06 46.00 -35.01 AVG 10.99 6 7 2.5300 20.22 10.04 30.26 56.00 -25.74 QP AVG 8 2.5300 -0.4810.04 9.56 46.00 -36.44 9 4.5260 18.58 9.98 28.56 56.00 -27.44 QΡ 4.5260 -1.39 9.98 8.59 46.00 -37.41 AVG 10 QΡ 11 10.8420 22.65 10.18 32.83 60.00 -27.17 AVG 12 10.8420 1.28 10.18 11.46 50.00 -38.54

EUT: MID **Model Name:** MID713-U 25 ℃ **Relative Humidity:** 55% Temperature: Test Voltage: AC 120V/60 Hz Terminal: Neutral **Test Mode:** AC Charging with TX B Mode Remark: Adapter 2# 90.0 dBuV QP: AVG: 30 -30 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment Detector MHz dBuV dΒ dBuV dBuV dΒ Comment 0.5340 30.50 10.02 40.52 56.00 -15.48 QΡ 1 0.5340 2 6.33 10.02 16.35 46.00 -29.65 AVG 3 0.6419 31.17 10.02 41.19 56.00 -14.81 QΡ 4 0.6419 7.35 10.02 17.37 46.00 -28.63 AVG QΡ 5 1.4980 22.86 10.11 32.97 56.00 -23.03 1.4980 2.20 10.11 12.31 46.00 -33.69 AVG 6 7 2.7060 19.17 29.23 56.00 -26.77 QΡ 10.06 2.7060 0.86 10.06 10.92 46.00 -35.08 AVG 8 21.28 10.06 31.34 56.00 -24.66 QP 9 4.0420 10 4.0420 1.78 10.06 11.84 46.00 -34.16 AVG 22.21 60.00 -27.66 QΡ 11 11.5980 10.13 32.34 3.72 AVG 12 11.5980 10.13 13.85 50.00 -36.15 **Emission Level= Read Level+ Correct Factor**

Page: 16 of 119

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

(0.11.2)					
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	Peak Average		Peak	Average	
Above 1000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 17 of 119

4.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Report No.: TB-FCC140177
Page: 18 of 119

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

Report No.: TB-FCC140177
Page: 19 of 119

Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

UT:	MID		Model:	MI	D713-U				
emperature:	25 ℃		Relative Humidit	t y : 55	5%				
est Voltage:	AC 120V/60	Hz							
nt. Pol.	Horizontal	Horizontal							
est Mode:	TX B Mode	TX B Mode 2412MHz							
lemark:	With Adapte	r 1#							
80.0 dBuV/m									
30	- Augustus A	Marine and Analysis and Analysi	(RF)	FCC PART 1	ISC Radiation Margin -6	6 dB			
May any any shall				** \Q	INITE WAY				
20 30.000 40 50	60 70 80	(MHz)	300	400 50	0 600 700	1000.00			
	Read eq. Leve	ling Correc	t Measure-	400 50	0 600 700 Over	1000.00			
30.000 40 50 No. Mk. Fr	Read	ling Correctel Factor	t Measure- ment L			1000.00			
30.000 40 50 No. Mk. Fr	Read eq. Lev	ling Correctel Factor	t Measure- r ment L dBuV/m d	imit	Over	Detector			
No. Mk. Fr	Read eq. Leve Hz dBu	ling Correctel Factor V dB/m 11 -23.79	t Measure- ment L dBuV/m d	.imit IBuV/m	Over	Detector peak			
No. Mk. Fr	Read eq. Leve Hz dBu 9075 61.1	Correct Factor V dB/m -23.79 -23.85	t Measure- ment L dBuV/m d 37.32 4	imit BuV/m 43.50	Over dB -6.18	Detector peak peak			
No. Mk. Fr 1 164.9 2 ! 189.7	Read Level 12 dBu 19075 61.1 64.6 64.2	Correct Factor V dB/m 11 -23.79 63 -23.85 24 -23.06	t Measure- ment L dBuV/m d 37.32 4 40.78 4	imit IBuV/m 43.50 43.50	Over dB -6.18 -2.72				
No. Mk. Fr 1 164.9 2 ! 189.7 3 * 206.3	Read Level 1	Correct Factor V dB/m 11 -23.79 63 -23.85 24 -23.06	t Measure- ment L dBuV/m d 37.32 4 40.78 4 41.18 4 36.83	imit IBuV/m 43.50 43.50 43.50	Over dB -6.18 -2.72 -2.32	Detector peak peak peak			

EUT: Model: MID MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX B Mode 2412MHz Remark: With Adapter 1# 80.0 dBuV/m (RF) FCC PART 15C Radiation Margin -6 dB 30 -20 30.000 60 70 80 (MHz) 500 600 700 1000.000 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 58.07 33.93 1 42.4508 -24.1440.00 -6.07 peak 2 90.8554 64.01 -25.56 38.45 43.50 -5.05 peak 3 164.9075 57.29 -23.79 33.50 43.50 -10.00 peak 4 188.4125 -23.80 33.20 -10.30 57.00 43.50 peak 5 256.5211 49.99 -20.93 29.06 46.00 -16.94 peak 6 504.7062 44.37 -14.36 30.01 46.00 -15.99 peak **Emission Level= Read Level+ Correct Factor**

EUT: Model: MID MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX B Mode 2412MHz Remark: With Adapter 2# dBuV/m (RF) FCC PART 15C Radiation Margin -6 dB 30 -20 30.000 60 70 80 (MHz) 600 700 1000.000 50 400 500 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dBuV/m dBuV/m dΒ MHz Detector dB/m 1 57.9992 60.69 -27.4533.24 40.00 -6.76peak 2 66.0340 63.75 36.82 -26.93 40.00 -3.18peak 3 131.7575 61.48 -25.09 36.39 43.50 -7.11 peak 4 150.0107 60.97 -24.12 36.85 43.50 -6.65 peak 5 ļ 164.9073 61.64 -23.79 37.85 43.50 -5.65 peak 6 180.0165 62.90 -23.5239.38 43.50 -4.12peak **Emission Level= Read Level+ Correct Factor**

EUT: Model: MID MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX B Mode 2412MHz Remark: With Adapter 2# 80.0 dBuV/m (RF) FCC PART 15C Radiation Margin -6 dB 30 -20 1000.000 60 70 80 (MHz) 500 600 700 30.000 50 400 40 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ MHz dBuV/m dBuV/m Detector dB/m 1 30.9618 54.83 -17.5037.33 40.00 -2.67peak 2 62.8708 62.64 -27.21 35.43 -4.5740.00 peak 3 Ţ 66.0340 63.34 -26.9336.41 40.00 -3.59peak 4 ļ 71.8319 63.22 -26.51 36.71 40.00 -3.29peak 5 98.8324 59.07 -24.87 34.20 43.50 -9.30 peak 6 164.9073 61.76 -23.7937.97 43.50 -5.53peak **Emission Level= Read Level+ Correct Factor**

Report No.: TB-FCC140177
Page: 24 of 119

EUT:	MID	Model:	MID713-U
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emissio prescribed limit.	n which more than 10 c	dB below the

No	. Mk	. Freq.	-	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.967	31.74	8.19	39.93	54.00	-14.07	AVG
2		4823.989	42.55	8.19	50.74	74.00	-23.26	peak

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX B Mode 2412MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.987	42.65	8.19	50.84	74.00	-23.16	peak
2	*	4823.987	32.60	8.19	40.79	54.00	-13.21	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX B Mode 2437MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

١	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4873.989	42.82	8.21	51.03	74.00	-22.97	peak
2	ř	k	4873.989	32.68	8.21	40.89	54.00	-13.11	AVG

27 of 119 Page:

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX B Mode 2437MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.989	41.79	8.21	50.00	74.00	-24.00	peak
2	*	4873.989	31.63	8.21	39.84	54.00	-14.16	AVG

EUT:	MID	MID713-U				
Temperature:	25 ℃ Relative Humidity: 55%					
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX B Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

N	o. I	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4923.985	43.94	8.22	52.16	74.00	-21.84	peak
2	*		4923.985	33.59	8.22	41.81	54.00	-12.19	AVG

Page: 29 of 119

EUT:	MID	Model:	MID713-U		
Temperature:	25 °C Relative Humidity: 55%				
Test Voltage:	AC 120V/60 Hz				
Ant. Pol.	Vertical				
Test Mode:	TX B Mode 2462MHz				
Remark:	No report for the emissio	n which more than 10 c	B below the		
	prescribed limit.				
80.0 dBuV/m					

1	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4923.986	44.13	8.22	52.35	74.00	-21.65	peak
2		*	4923.986	34.98	8.22	43.20	54.00	-10.80	AVG

Report No.: TB-FCC140177
Page: 30 of 119

EUT:	MID	MID713-U			
Temperature:	25 °C Relative Humidity: 55%				
Test Voltage:	AC 120V/60 Hz				
Ant. Pol.	Horizontal				
Test Mode:	TX G Mode 2412MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

N	o.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4823.856	41.93	8.19	50.12	74.00	-23.88	peak
2	*	r	4823.856	31.06	8.19	39.25	54.00	-14.75	AVG

Report No.: TB-FCC140177
Page: 31 of 119

MID Model: MID713-U				
25 °C Relative Humidity: 55%				
AC 120V/60 Hz				
Vertical				
TX G Mode 2412MHz				
No report for the emission which more than 10 dB below the prescribed limit.				
	AC 120V/60 Hz Vertical TX G Mode 2412MHz No report for the emission	AC 120V/60 Hz Vertical TX G Mode 2412MHz No report for the emission which more than 10 c		

N	No.	Mk.	Freq.	-		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4823.987	42.12	8.19	50.31	74.00	-23.69	peak
2		*	4823.987	31.96	8.19	40.15	54.00	-13.85	AVG

32 of 119 Page:

EUT:	MID	Model:	MID713-U		
Temperature:	25 ℃	55%			
Test Voltage:	AC 120V/60 Hz				
Ant. Pol.	Horizontal				
Test Mode:	TX G Mode 2437MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.988	43.65	8.21	51.86	74.00	-22.14	peak
2	*	4873.988	30.76	8.21	38.97	54.00	-15.03	AVG

Report No.: TB-FCC140177
Page: 33 of 119

EUT:	MID	MID713-U				
Temperature:	25 ℃	55%				
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX G Mode 2437MHz					
Remark:	Mark: No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.988	41.90	8.21	50.11	74.00	-23.89	peak
2	*	4873.988	31.08	8.21	39.29	54.00	-14.71	AVG

Page: 34 of 119

EUT: MID		Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2462MHz					
Remark:	rk: No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.989	43.11	8.22	51.33	74.00	-22.67	peak
2	*	4923.989	30.56	8.22	38.78	54.00	-15.22	AVG

35 of 119 Page:

EUT:	MID	Model:	MID713-U			
Temperature:	emperature: 25 °C		55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX G Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4923.987	42.45	8.22	50.67	74.00	-23.33	peak
2	2	*	4923.987	31.34	8.22	39.56	54.00	-14.44	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2412MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.983	39.74	8.19	47.93	74.00	-26.07	peak
2	*	4823.983	30.11	8.19	38.30	54.00	-15.70	AVG

Report No.: TB-FCC140177
Page: 37 of 119

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2412N	ИHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.983	42.11	8.19	50.30	74.00	-23.70	peak
2	*	4823.983	30.53	8.19	38.72	54.00	-15.28	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2437MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.988	41.43	8.21	49.64	74.00	-24.36	peak
2	*	4873.988	30.79	8.21	39.00	54.00	-15.00	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX N(HT20) Mode 2437MHz Remark: No report for the emission which more than 10 dB below the

N	lo.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4873.986	42.20	8.21	50.41	74.00	-23.59	peak
2		*	4873.986	31.10	8.21	39.31	54.00	-14.69	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2462MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

No	o. Mł	c. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.987	42.34	8.22	50.56	74.00	-23.44	peak
2	*	4923.987	30.61	8.22	38.83	54.00	-15.17	AVG

Report No.: TB-FCC140177
Page: 41 of 119

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2462N	ИHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.986	41.90	8.22	50.12	74.00	-23.88	peak
2	*	4923.986	30.76	8.22	38.98	54.00	-15.02	AVG

EUT:	MID	Model:	MID713-U				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2422N	ИHz					
Remark:	No report for the emissio prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4843.988	41.58	8.20	49.78	74.00	-24.22	peak
2	*	4843.988	30.98	8.20	39.18	54.00	-14.82	AVG

Report No.: TB-FCC140177
Page: 43 of 119

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT40) Mode 2422N	ИHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
00.0 ID VI						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4843.989	42.99	8.20	51.19	74.00	-22.81	peak
2	*	4843.989	31.17	8.20	39.37	54.00	-14.63	AVG

Report No.: TB-FCC140177
Page: 44 of 119

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT40) Mode 2437N	ИHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
	prescribed limit.					

	No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	I		4873.988	41.66	8.21	49.87	74.00	-24.13	peak
2	2	*	4873.988	30.77	8.21	38.98	54.00	-15.02	AVG

Page: 45 of 119

EUT:	MID	Model:	MID713-U				
Temperature:	25 ℃ Relative Humidity: 55%						
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX N(HT40) Mode 2437MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

ı	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4873.987	42.02	8.21	50.23	74.00	-23.77	peak
2		*	4873.987	30.74	8.21	38.95	54.00	-15.05	AVG

EUT:	MID	Model:	MID713-U				
Temperature:	25 °C Relative Humidity: 55%						
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2452MHz						
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4903.986	41.75	8.21	49.96	74.00	-24.04	peak
2	*	4903.986	30.68	8.21	38.89	54.00	-15.11	AVG

Page: 47 of 119

EUT:	MID	Model:	MID713-U				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX N(HT40) Mode 2452MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	<u> </u>		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4903.988	41.35	8.21	49.56	74.00	-24.44	peak
2	*	4903.988	29.91	8.21	38.12	54.00	-15.88	AVG

Report No.: TB-FCC140177

Page: 48 of 119

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3 M)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit

Report No.: TB-FCC140177
Page: 49 of 119

Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

Peak Detection:

Set the center frequency of the emission to be measured (within 2 MHz of the authorized band edge), set span to 2 MHz, with RBW/VBW=100 kHz/300 kHz, detector mode is Peak, then use band power function to measure the Bandwidth of 1 MHz.

Average Detection (EUT transmitting continuously and duty cycle>=98 percent):

Set the center frequency of the emission to be measured (within 2 MHz of the authorized band edge), set span to 2 MHz, with RBW/VBW=100 kHz/300 kHz, detector mode is RMS or Average, then use band power function to measure the Bandwidth of 1 MHz.

(5) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Please see the next page.

(1) Radiation Test

eratur foltage fol. flode: rk:		Horiz	20V/6 contal	60 Hz e 2412			Re	lativo	e Hur	nid	ity:	55%		
Pol. Node: rk:	:	Horiz TX B	ontal											
/lode: rk:		ТХВ		e 2412										
rk:			Mode	e 2412										
		N/A			MHz									
dBuV/m														
												6		
											-	5 X		
											- J	1 -		
											(RF) FC	PART 15C	PEAK	j
											/			
										3 X	(DE) 5	C DADT 150	1	
								1 X		4 X	(nr) ri	C PANT 190	L	,
								2 X		/				
1.000 234	1.00	2351.00	2361.0	00 237	71.00	2381	.00	2391	.00	2401	00 241	1.00	2	431.00
	_			_							1 ::4	0		
). MK.					F	acto	r						er ——	
	M	Hz	dE	Bu∨	d	B/m		dBı	uV/m		dBuV/n	n dB		Detec
	2390	.000	51	.52	0	.77		52	2.29		74.00	-21.	71	pea
	2390	.000	40	.12	0	.77		40	.89		54.00	-13.	11	ΑV
	2400	.000	58	.72	0	.81		59	.53		74.00	-14.	47	pea
	2400	.000	50	.31	0	.81		51	.12		54.00	-2.8	88	AV
*	2411	.300												AV
Х	2413	.100	97	.35	0	.86		98	3.21		74.00	24.2	21	pea
,	. Mk.	. Mk. Fr 2390 2390 2400 2400 * 2411 X 2413	. Mk. Freq. MHz 2390.000 2390.000 2400.000 2400.000 * 2411.300 X 2413.100	Rea Le MHz dE 2390.000 51 2390.000 58 2400.000 50	Reading Level MHz dBuV 2390.000 51.52 2390.000 40.12 2400.000 58.72 2400.000 50.31 * 2411.300 92.65	Reading Confidence	Reading Correct Level Factor MHz dBuV dB/m 2390.000 51.52 0.77 2390.000 40.12 0.77 2400.000 58.72 0.81 2400.000 50.31 0.81 * 2411.300 92.65 0.86 X 2413.100 97.35 0.86	Reading Level Factor MHz dBuV dB/m 2390.000 51.52 0.77 2390.000 40.12 0.77 2400.000 58.72 0.81 2400.000 50.31 0.81 * 2411.300 92.65 0.86 X 2413.100 97.35 0.86	Reading Correct Mea Level Factor me MHz dBuV dB/m dB/m 2390.000 51.52 0.77 52 2390.000 40.12 0.77 40 2400.000 58.72 0.81 59 2401.300 92.65 0.86 93 X 2413.100 97.35 0.86 98	Reading Correct Measure Factor ment MHz dBuV dB/m dBuV/m 2390.000 51.52 0.77 52.29 2390.000 40.12 0.77 40.89 2400.000 58.72 0.81 59.53 2400.000 50.31 0.81 51.12 * 2411.300 92.65 0.86 93.51 X 2413.100 97.35 0.86 98.21	Reading Correct Measure-Factor ment MHz dBuV dB/m dBuV/m 2390.000 40.12 0.77 52.29 2390.000 58.72 0.81 59.53 2400.000 50.31 0.81 51.12 * 2411.300 92.65 0.86 93.51 X 2413.100 97.35 0.86 98.21	. Mk. Freq. Reading Correct Measure-Limit MHz dBuV dB/m dBuV/m 2390.000 51.52 0.77 52.29 74.00 2390.000 40.12 0.77 40.89 54.00 2400.000 58.72 0.81 59.53 74.00 2400.000 50.31 0.81 51.12 54.00 * 2411.300 92.65 0.86 93.51 54.00 X 2413.100 97.35 0.86 98.21 74.00	. Mk. Freq. Reading Correct Measure-Limit Over MHz dBuV dB/m dBuV/m dBuV	. Mk. Freq. Reading Level Factor Measure— MHz

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% Test Voltage: AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX B Mode 2412MHz Remark: N/A

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	52.97	0.77	53.74	74.00	-20.26	peak
2		2390.000	39.99	0.77	40.76	54.00	-13.24	AVG
3		2400.000	57.18	0.81	57.99	74.00	-16.01	peak
4		2400.000	49.72	0.81	50.53	54.00	-3.47	AVG
5	Χ	2411.000	96.91	0.86	97.77	74.00	23.77	peak
6	*	2411.300	92.27	0.86	93.13	54.00	39.13	AVG

EUT:	MID	Model:	MID713-U
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz		
Remark:	N/A		

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2436.200	90.82	0.97	91.79	54.00	37.79	AVG
2	Χ	2438.100	95.50	0.98	96.48	74.00	22.48	peak

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX B Mode 2437MHz Remark: N/A

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2435.900	94.39	0.97	95.36	74.00	21.36	peak
2	*	2436.300	89.73	0.97	90.70	54.00	36.70	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX B Mode 2462MHz Remark: N/A

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2460.900	94.15	1.06	95.21	74.00	21.21	peak
2	*	2461.200	89.55	1.07	90.62	54.00	36.62	AVG
3		2483.500	50.35	1.17	51.52	74.00	-22.48	peak
4		2483.500	39.45	1.17	40.62	54.00	-13.38	AVG
5		2500.000	52.38	1.23	53.61	74.00	-20.39	peak
6		2500.000	39.34	1.23	40.57	54.00	-13.43	AVG

Page: 55 of 119

EUT:	•		MID				Мо	del:			N	/ID713-U		
Tem	peratur	e :	25 °C	C			Rel	ative	Hur	nidity	: 5	5%		
Test	Voltage):	AC 1	20V/60	Hz	,								
Ant.	Pol.		Verti	cal										
Test	Mode:		TX B	Mode 2	2462N	ИHz								
Rem	nark:		N/A											
110.0) dBuV/m													,
(RF) FCC PART 15C (PEAK) 3 5 (RF) FCC PART 15C (AVG) 4 6								, , , , , , , , , , , , , , , , , , ,						
10.0 24	40.000 2450	1.00 2	460.00	2470.00	2480.	00 2490	0.00	2500.	00	2510.00	2520	0.00	2540.00	MHz
N	lo. Mk.	Fre	eq.	Read Leve	_	Correc		me		Lir		Over		
		MH		dBu\	/	dB/m		dBu	V/m	dB	uV/m	dB	Detec	tor
1	Χ	2460.	900	95.7	4	1.06		96.	.80	74	1.00	22.80	pea	ak
2	*	2461.	200	91.0	8	1.07		92.	.15	54	1.00	38.15	AV	G
3		2483.	500	53.2	.0	1.17		54.	.37	74	1.00	-19.63	pea	ak
4		2483.	500	39.6	0	1.17		40.	.77	54	1.00	-13.23	AV	G
5		2500.	.000	52.8	1	1.23		54.	.04	74	1.00	-19.96	pea	ak
6		2500.	.000	39.4	1	1.23		40.	.64	54	1.00	-13.36	AV	G

EUT: MID Model: MID713-U

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX G Mode 2412MHz

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	51.54	0.77	52.31	74.00	-21.69	peak
2		2390.000	40.14	0.77	40.91	54.00	-13.09	AVG
3		2400.000	70.32	0.81	71.13	74.00	-2.87	peak
4		2400.000	44.39	0.81	45.20	54.00	-8.80	AVG
5	Χ	2408.600	94.43	0.85	95.28	74.00	21.28	peak
6	*	2409.500	83.69	0.85	84.54	54.00	30.54	AVG

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX G Mode 2412MHz Remark: N/A 110.0 dBuV/m (RF) FCC PART 15C (PEAK) (RF) FCC PART 15C (AVG) 2 X 10.0 2332.000 2342.00 2352.00 2362.00 2372.00 2382.00 2392.00 2402.00 2412.00 2432.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 1 2390.000 50.98 0.77 51.75 74.00 -22.25 peak 2 2390.000 39.83 0.77 40.60 54.00 -13.40 AVG 3 67.60 74.00 -5.59 2400.000 0.81 68.41 peak 4 43.56 2400.000 0.81 44.37 54.00 -9.63 AVG 5 2408.500 92.24 0.85 93.09 74.00 19.09 peak 6 2416.200 81.53 0.88 82.41 54.00 28.41 AVG **Emission Level= Read Level+ Correct Factor**

58 of 119 Page:

EUT:	MID	Model:	MID713-U
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2437MHz		
Remark:	N/A		

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2433.500	92.94	0.96	93.90	74.00	19.90	peak
2	*	2434.600	82.20	0.97	83.17	54.00	29.17	AVG

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX G Mode 2437MHz Remark: N/A

N	No. Mk.		Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		X	2433.600	92.14	0.96	93.10	74.00	19.10	peak
2		*	2442.400	81.48	0.99	82.47	54.00	28.47	AVG

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX G Mode 2462MHz Remark: N/A 110.0 dBuV/m 1 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 6 X 10.0 2442.000 2452.00 2462.00 2472.00 2482.00 2492.00 2502.00 2522.00 2542.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 1 Χ 2458.500 91.92 1.06 92.98 74.00 18.98 peak 2 2466.100 81.26 1.09 82.35 54.00 28.35 AVG 3 2483.500 51.72 52.89 1.17 74.00 -21.11 peak 4 2483.500 39.43 1.17 40.60 54.00 -13.40 AVG 5 2500.000 52.11 1.23 53.34 74.00 -20.66 peak 6 2500.000 39.38 1.23 40.61 54.00 -13.39 AVG

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX G Mode 2462MHz Remark: N/A 110.0 dBuV/m 1 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 6 × 2472.00 2442.000 2452.00 2462.00 2482.00 2492.00 2502.00 2512.00 2522.00 2542.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ MHz dBuV/m dBuV/m Detector dB/m 1 Χ 2458.500 92.63 1.06 93.69 74.00 19.69 peak 2 2459.500 81.88 82.94 54.00 28.94 AVG 1.06 3 2483.500 51.72 1.17 52.89 74.00 -21.11 peak 4 2483.500 39.41 1.17 40.58 54.00 -13.42 AVG 5 2500.000 50.99 1.23 52.22 -21.78 74.00 peak 6 2500.000 39.30 1.23 40.53 54.00 -13.47 AVG **Emission Level= Read Level+ Correct Factor**

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2412MHz Remark: N/A 110.0 dBuV/m 6 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 2 10.0 2332.000 2342.00 2352.00 2362.00 2372.00 2382.00 2392.00 2402.00 2412.00 2432.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ MHz dBuV/m dBuV/m Detector dB/m 1 2390.000 51.04 0.77 51.81 74.00 -22.19 peak 2 2390.000 39.52 0.77 40.29 54.00 -13.71 AVG 3 69.04 69.85 74.00 2400.000 0.81 -4.15 peak 4 2400.000 43.96 0.81 44.77 54.00 -9.23 AVG 5 2408.800 82.30 28.30 AVG 81.45 0.85 54.00 6 2408.900 92.95 0.85 93.80 74.00 19.80 Χ peak **Emission Level= Read Level+ Correct Factor**

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX N(HT20) Mode 2412MHz N/A Remark: 110.0 dBuV/m (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 10.0 2332.000 2342.00 2352.00 2362.00 2372.00 2382.00 2392.00 2402.00 2412.00 2432.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ MHz dBuV/m dBuV/m Detector dB/m 1 2390.000 51.55 0.77 52.32 74.00 -21.68 peak 2 2390.000 39.48 0.77 40.25 -13.75AVG 54.00 3 2400.000 67.48 68.29 74.00 -5.71 0.81 peak 4 2400.000 43.58 0.81 44.39 54.00 -9.61 AVG 5 2408.800 91.48 0.85 92.33 74.00 18.33 Х peak 2415.200 AVG 6 80.23 0.88 81.11 54.00 27.11 **Emission Level= Read Level+ Correct Factor**

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2437MHz Remark: N/A

N	10.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	2433.800	80.84	0.96	81.80	54.00	27.80	AVG
2		X	2434.000	92.27	0.96	93.23	74.00	19.23	peak

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2437MHz					
Remark: N/A						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2433.800	91.33	0.96	92.29	74.00	18.29	peak
2	*	2440.200	80.26	0.98	81.24	54.00	27.24	AVG

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT20) Mode 2462MHz Remark: N/A 110.0 dBuV/m 1 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 10.0 2440.000 2450.00 2460.00 2470.00 2480.00 2490.00 2500.00 2510.00 2520.00 2540.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 2458.700 92.49 1 1.06 93.55 74.00 19.55 peak 2 2458.700 81.11 1.06 82.17 54.00 28.17 AVG 3 2483.500 50.40 1.17 51.57 74.00 -22.43 peak 4 2483.500 39.36 1.17 40.53 54.00 -13.47 AVG 5 2500.000 51.25 1.23 52.48 74.00 -21.52 peak 6 1.23 2500.000 39.23 40.46 54.00 -13.54AVG **Emission Level= Read Level+ Correct Factor**

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX N(HT20) Mode 2462MHz N/A Remark: 110.0 dBuV/m 1 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) X 10.0 2440.000 2450.00 2460.00 2470.00 2490.00 2500.00 2510.00 2520.00 2540.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV/m dBuV/m Detector dB/m 2458.800 91.69 92.75 74.00 18.75 1 Χ 1.06 peak 2 2465.100 81.50 27.50 AVG 80.41 1.09 54.00 3 2483.500 50.83 1.17 52.00 74.00 -22.00 peak 4 2483.500 39.27 1.17 40.44 54.00 -13.56 AVG 5 2500.000 51.12 1.23 52.35 74.00 -21.65 peak 6 2500.000 1.23 AVG 39.18 40.41 54.00 -13.59**Emission Level= Read Level+ Correct Factor**

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** TX N(HT40) Mode 2422MHz Remark: N/A

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	52.24	0.77	53.01	74.00	-20.99	peak
2		2390.000	39.53	0.77	40.30	54.00	-13.70	AVG
3		2400.000	57.27	0.81	58.08	74.00	-15.92	peak
4		2400.000	44.68	0.81	45.49	54.00	-8.51	AVG
5	*	2425.400	78.29	0.93	79.22	54.00	25.22	AVG
6	Χ	2426.400	89.08	0.93	90.01	74.00	16.01	peak

TOBY

EUT	'		MID				M	odel:			N	1ID713-U		
Temperature:			25 ℃				R	Relative Humidity: 55%				5%		
Test Voltage:			AC 120V/60 Hz											
Ant.	Pol.		Vertical											
Test	Mode:		TX N(HT40) Mode 2422MHz											
Rem	ark:		N/A											
110.0) dBuV/m													
												6 X		
											5	*		
										- O	F) FCC	FCC PART 15C (PEAK)		
								\top					$\uparrow \neg \uparrow$	
60						1	3 3	1		(RF) FC	C PART 15C (A	va	
						X	4 ×						-	
						2 X	/ "							
10.0														
23	348.000 23	58.00	2368.00	2378	1.00 23	88.00 2	398.00	240	8.00	2418.00	2428	3.00	2448.00 N	МHz
				Rea	ading	Corre	ect	Mea	sure-			_		
N	lo. Mk	. Fre	eq.	Le	evel	Fac	tor	me	ent	Lim	iit	Over		
		MH	Ηz	d	BuV	dB/n	า	dBı	uV/m	dBu	V/m	dB	Detecto	or
1		2390	.000	50	0.61	0.7	7	51	.38	74.	.00	-22.62	peak	(
2		2390	.000	39	9.49	0.7	7	40	.26	54.	.00	-13.74	AVG	•
3		2400	.000	56	3.83	0.8	1	57	.64	74.	.00	-16.36	peak	(
4		2400	.000	44	1.55	0.8	1	45	.36	54.	.00	-8.64	AVG	-
5	*	2425	100	77	7.74	0.93	3	78	3.67	54.	.00	24.67	AVG	-
6	Х	2430	900	88	3.43	0.9	5	89	.38	74.	.00	15.38	peak	(
Emi	Emission Level= Read Level+ Correct Factor													

EUT:	MID	Model:	MID713-U				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2437MHz						
Remark:	N/A						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2427.800	77.09	0.94	78.03	54.00	24.03	AVG
2	Χ	2433.900	87.87	0.96	88.83	74.00	14.83	peak

Report No.: TB-FCC140177
Page: 71 of 119

EUT:	MID	Model:	MID713-U				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical						
Test Mode:	TX N(HT40) Mode 2437MHz						
Remark:	N/A						

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
_	1	*	2431.500	76.90	0.95	77.85	54.00	23.85	AVG
-	2	Χ	2433.400	87.79	0.96	88.75	74.00	14.75	peak

EUT: MID Model: MID713-U

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: AC 120V/60 Hz

Ant. Pol. Horizontal

Test Mode: TX N(HT40) Mode 2452MHz

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2442.200	87.95	0.99	88.94	74.00	14.94	peak
2	*	2442.800	77.17	0.99	78.16	54.00	24.16	AVG
3		2483.500	51.57	1.17	52.74	74.00	-21.26	peak
4		2483.500	39.19	1.17	40.36	54.00	-13.64	AVG
5		2500.000	52.78	1.23	54.01	74.00	-19.99	peak
6		2500.000	39.15	1.23	40.38	54.00	-13.62	AVG

EUT: MID Model: MID713-U Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Vertical **Test Mode:** TX N(HT40) Mode 2452MHz Remark: N/A 110.0 dBuV/m 2 X (RF) FCC PART 15C (PEAK) 60 (RF) FCC PART 15C (AVG) 10.0 2424.000 2434.00 2444.00 2454.00 2464.00 2474.00 2484.00 2494.00 2524.00 MHz Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment dBuV MHz dBuV/m dBuV/m dΒ Detector dB/m 1 77.61 78.67 24.67 2460.400 1.06 54.00 AVG 2 Χ 2461.000 88.53 1.06 89.59 74.00 15.59 peak 3 2483.500 51.90 1.17 53.07 74.00 -20.93 peak 4 2483.500 39.26 1.17 40.43 54.00 -13.57 AVG 5 2500.000 52.02 1.23 53.25 74.00 -20.75 peak 54.00 6 2500.000 39.18 1.23 40.41 -13.59AVG

Emission Level= Read Level+ Correct Factor

(2) Co

EUT:	MID	Model:	MID713-U			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60 Hz					
Test Mode:	TX B Mode 2412MHz /	TX B Mode 2412MHz / TX B Mode 2462MHz				
Peak Power	Emission Read	Result of Band	Band edge Limit			
Output (dBm)	Value (dBm)	Edge (dBc)	(dBc)			
-5.50	-48.90	43.40				
-5.61	-48.66	43.05	>20			
Date	Ref 20 dBm *Att 35 dB 20 10	F1 F2				
	Ref 20 dBm *Att 35 dB 20 -10 -0 -11 -20 -20 -25.61 dBm -40	RBW 100 kHz Marker 4 [T1]				

EUT:MIDModel:MID713-UTemperature:25 °CRelative Humidity:55%Test Voltage:AC 120V/60 Hz

Test Mode: TX G Mode 2412MHz / TX G Mode 2462MHz

Peak Power Output (dBm)	Emission Read Value (dBm)	Result of Band Edge (dBc)	Band edge Limit (dBc)
-13.63	-48.44	34.81	
-14.29	-48.87	34.58	>20

Date: 2.MAY.2014 06:56:39

Date: 2.MAY.2014 06:48:38

EUT: MID Model: MID713-U Temperature: **25** ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz **Test Mode:** TX N(HT20) Mode 2412MHz / TX N(HT20) Mode 2462MHz **Peak Power Emission Read Result of Band Band edge Limit** Output (dBm) Value (dBm) Edge (dBc) (dBc) -13.72 -47.74 34.02 >20 -13.96 -49.00 35.04 * *RBW 100 kHz Marker 4 [T1]

*VBW 300 kHz -47.74 dB
SWT 10 ms 2.359200000 GB 1 PK VIEW 3 [T1 Date: 2.MAY.2014 06:42:04 1 PK Center 2.488 GHz Span 100 MHz

Date: 2.MAY.2014 06:43:38

EUT:MIDModel:MID713-UTemperature:25 °CRelative Humidity:55%Test Voltage:AC 120V/60 Hz

Test Mode: TX N(HT40) Mode 2422MHz / TX N(HT40) Mode 2452MHz

ı				
	Peak Power Emission Read		Result of Band	Band edge Limit
	Output (dBm)	Value (dBm)	Edge (dBc)	(dBc)
	-15.62	-48.47	32.85	>20
	-17.23	-47.33	30.10	>20

Date: 2.MAY.2014 06:30:01

Date: 2.MAY.2014 06:32:43

Report No.: TB-FCC140177

Page: 78 of 119

6. Bandwidth Test

6.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(MHz)				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

6.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

6.6 Test Data

802.11b					
Channel frequency (MHz)	Limit				
2412	10.08	14.96	>=500 kHz		
2437	10.08	15.00	>=500 kHz		
2462	10.08	14.96	>=500 kHz		

2412 MHz

Date: 2.MAY.2014 06:59:45

Date: 2.MAY.2014 07:03:47

2462 MHz

Date: 2.MAY.2014 07:05:10

802.11g					
Channel frequency 6dB Bandwidth 99% Bandwidth Limit (MHz) (MHz)					
2412	16.60	16.52	>=500 kHz		
2437	16.56	16.48	>=500 kHz		
2462	16.60	16.52	>=500 kHz		

Date: 2.MAY.2014 06:52:43

Date: 2.MAY.2014 06:51:05

2462 MHz

Date: 2.MAY.2014 06:46:27

802.11n(HT20)					
Channel frequency (MHz)	Limit				
2412	17.84	17.72	>=500 kHz		
2437	17.84	17.68	>=500 kHz		
2462	17.84	17.72	>=500 kHz		

Date: 2.MAY.2014 06:40:30

Date: 2.MAY.2014 06:38:34

2462 MHz

Date: 2.MAY.2014 06:44:52

802.11n(HT40)					
Channel frequency 6dB Bandwidth 99% Bandwidth Limit (MHz) (MHz) (MHz)					
2422	36.32	35.92	>=500 kHz		
2437	36.32	36.00	>=500 kHz		
2452	36.32	36.00	>=500 kHz		

Date: 2.MAY.2014 06:28:07

Date: 2.MAY.2014 06:36:39

2452 MHz

Date: 2.MAY.2014 06:34:56

Report No.: TB-FCC140177

Page: 87 of 119

7. Peak Output Power Test

7.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(MHz				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

7.2 Test Setup

7.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

7.6 Test Data

801.11b Mode					
Test Channel Frequency (MHz) Peak Output Power (dBm) Limit (dBm)					
CH 01	2412	9.38	30		
CH 06	2437	9.40	30		
CH 11	2462	9.25	30		

Date: 2.MAY.2014 07:15:40

Date: 1.MAY.2014 14:45:39

2462 MHz

Date: 1.MAY.2014 14:47:09

801.11g Mode				
Test Channel	nel Frequency Peak Output Power (MHz) (dBm)			
CH 01	2412	9.06	30	
CH 06	2437	9.51	30	
CH 11	2462	9.47	30	

Date: 1.MAY.2014 14:53:56

Date: 1.MAY.2014 14:52:32

2462 MHz

Date: 1.MAY.2014 14:50:55

801.11n(HT20) Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 01	2412	9.46	30	
CH 06	2437	9.27	30	
CH 11	2462	9.41	30	

Date: 1.MAY.2014 14:55:26

Date: 1.MAY.2014 14:57:27

2462 MHz

Date: 1.MAY.2014 14:59:11

801.11n(HT40) Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 03	2422	9.46	30	
CH 06	2437	9.40	30	
CH 09	2452	9.16	30	

Date: 2.MAY.2014 06:18:42

Date: 2.MAY.2014 06:08:07

2452 MHz

Date: 2.MAY.2014 06:10:48

Report No.: TB-FCC140177

Page: 96 of 119

8. Power Spectral Density Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (e)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)			
Test Item Limit Frequency Range(MHz			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Measure the spectral power density the spectrum analyzer was set to Resolution Bandwidth=100 kHz, and Video Bandwidth≥300 kHz, Detector: Peak, Span to 5%~30% greater than EBW, Sweep time auto.
- (3) Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a BWCF=-15.2 dB.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

8.6 Test Data

802.11b Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 01	2412	-24.69	8	
CH 06	2437	-24.88	8	
CH 11	2462	-24.86	8	

Date: 1.MAY.2014 14:44:38

Date: 1.MAY.2014 14:46:10

2462 MHz

Date: 1.MAY.2014 14:47:33

802.11g Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 01	2412	-28.05	8	
CH 06	2437	-28.87	8	
CH 11	2462	-27.95	8	

Date: 1.MAY.2014 14:54:27

Date: 1.MAY.2014 14:53:05

2462 MHz

Date: 1.MAY.2014 14:51:44

802.11n(HT20) Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 01	2412	-27.20	8	
CH 06	2437	-28.27	8	
CH 11	2462	-27.77	8	

Date: 1.MAY.2014 14:56:20

Date: 1.MAY.2014 14:58:00

2462 MHz

Date: 1.MAY.2014 14:59:55

802.11n(HT40) Mode				
Test Channel	Frequency (MHz)	Limit (dBm)		
CH 03	2422	-27.49	8	
CH 06	2437	-29.60	8	
CH 09	2452	-29.09	8	

Date: 2.MAY.2014 06:19:50

Date: 2.MAY.2014 06:17:31

2452 MHz

Date: 2.MAY.2014 06:12:32

Report No.: TB-FCC140177
Page: 105 of 119

9. Antenna Conducted Spurious Emission

9.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (d)

10.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above~960	500	3

(2)If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

9.2 Test Setup

9.3 Test Procedure

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

Report No.: TB-FCC140177

Page: 106 of 119

(2) Spectrum Setting:

RBW=100 KHz, VBW=300 KHz.

Frequency range: from 30MHz to 26.5 GHz.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

9.6 Test Data

802.11b Mode TX CH 01 2412MHz

Below 1 GHz

802.11b Mode TX CH 06 2437MHz

Below 1 GHz

802.11b Mode

TX CH 11 2462MHz

Below 1 GHz

802.11g Mode TX CH 01 2412MHz

Below 1 GHz

802.11g Mode TX CH 06 2437MHz

Below 1 GHz

802.11g Mode

TX CH 11 2462MHz

Below 1 GHz

802.11n (HT20) Mode TX CH 01 2412MHz

Below 1 GHz

802.11n (HT20) Mode TX

TX CH 06 2437MHz

Below 1 GHz

802.11n (HT20) Mode

TX CH 11 2462MHz

Below 1 GHz

802.11n (HT40) Mode TX CH 03 2422MHz

Below 1 GHz

802.11n (HT40) Mode TX CH 06 2437MHz

Below 1 GHz

802.11n (HT40) Mode

TX CH 09 2452MHz

Below 1 GHz

Report No.: TB-FCC140177

Page: 119 of 119

10. Antenna Requirement

10.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.2 Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.