

Ch 5. Synchronous sequential logic

5.1 Introduction

- In order to perform useful or flexible sequences of operations, we need to be able to construct cir cuits that can store information between the oper ations.
- latches and Flip-Flops
- Sequential circuits consisting of both flip-flop an d combinational logic

5.2 Sequential circuits

- Outputs are function of inputs and present states
- Present states are supplied by memory elements

5.2 Sequential circuits

- Two types of sequential circuit
- Synchronous : behavior depends on the signals affecting storage elements at discrete time
- Asynchronous : behavior depends on inputs at any in stance of time

5.3 Latches

- SR latch : consist of two cross-coupled NOR gates
- S=1,R=0 then Q=1(set)
- S=0,R=1 then Q=0(reset)
- S=0,R=0 then no change(keep condition)
- S=1,R=1 Q=Q'=0 (undefined)

Fig. 5-3 SR Latch with NOR Gates

5.3 Latches - SR latch

- S'R' latch with NAND gates
 - Require the complement value of NOR latch

Fig. 5-4 SR Latch with NAND Gates

5.3 Latches - SR latch

- SR latch with control input
 - Add two NAND gate and control signal
 - C=0(no action), C=1(act as SR latch)

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

diagram (b) Function table

5.3 Latches - D latch

- Eliminate indeterminate state in SR latch
 - C=1, output value is equal to D

CD	Next state of Q
0 X	No change
1 0	Q = 0; Reset state
1 1	Q = 1; Set state

(a) Logic diagram

(b) Function table

Fig. 5-6 D Latch

5.4 Flip-Flops

- Latch : case (a), output changes as input changes
- Flip-flop : output only changes at clock edge

5.4 Flip-flops - Edge-Triggered Flip-Flop

- Negative edge triggered D flip-flop
- C=0 : master disable, slave enable
- Output has no relation with input
- C=1 : master enable, slave disable

Fig. 5-9 Master-Slave D Flip-Flop

5.4 Flip-flops - Other Flip-Flop

- D-type positive edge triggered flip flop
 - Consist of 3 SR-latches
 - Q changes only when C becomes 0 to 1

5.4 Flip-flops - Other Flip-Flop

- JK flip-flop
 - Performs three operations
 - Set(J), Reset(K), Complement(J=K=1)
 - D=JQ'+K'Q

JK Flip-Flop			
J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

(a) Circuit diagram

(b) Graphic symbol

Fig. 5-12 JK Flip-Flop

5.4 Flip-flops - Other Flip-Flop

- T flip-flop
 - Complementing flip-flop
 - D=TQ'+T'Q

T Flip-Flop

T	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement

Fig. 5-13 T Flip-Flop

5.4 Flip-flops - Characteristic Equations

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	Clk	D	Q	Q'
	1	X ↑	X 0 1	0 0 1	1 1 0

(b) Function table

- Propagation Delay (Gate Delays)
 - Actual circuits need time to raise/bring down volta ges
 - OPD of a gate: output delay in response to input

- Gate delays
 - Delays adds up!
 - If a signal has to go through n gates
 - total delay

$$\sum_{i=1}^{n} t_i, \quad t_i \text{ is the gate delay of } i \text{th gate}$$

FIGURE 8-5

Timing Diagram for AND-NOR Circuit

© Cengage Learning 2014

- metastability
- Consider the following logic with feedback

○ There are three state possible: Q=0, Q=1 and Q~0.5!

- metastability
- Consider the following logic with feedback

○ If Q~0.5 we say the system is metastable

5.9 Timing: D-Latch

CD	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; Reset state $Q = 1$; Set state

(b) Function table

Fig. 5-6 D Latch

Figure 7-14 Timing parameters for a D latch.

D should NOT change quickly when C also changes!

Timing of positive-edge triggered flip-flop

- Setup time
 - OD should not change during t_{su} before clock edge
- Hold time
 - D should not change during t_h after clock edge

FIGURE 11-20

Setup and Hold Times for an Edge-Triggered D Flip-Flop

© Cengage Learning 2014

Timing of positive-edge triggered D flip-flop

Figure 7-17 Timing behavior of a positive-edge-triggered D flip-flop.

- Design of Sequential logic
 - Propagation (gate) delay should be considered to sati sfy setup and hold time!

- Design of Sequential logic
 - Propagation (gate) delay should be considered to sati sfy setup and hold time!

- Design of Sequential logic
 - Propagation (gate) delay should be considered to sati sfy setup and hold time!

- Gate delays
 - What is the minimum # of gates a signal has to pass?2
 - What is the maximum # of gates a signal has to pass?

- Critical path
 - a signal path with maximum total propagation delay
- Delay of combinational logic
 - determined by the critical path

- Clock period
 - length of one clock cycle
- Clock frequency
 - **1/t**_{clk}
 - ounit: Hz (Hertz)

• Ex: consider a processor with frequency 1GHz = 10⁹ HZ

clk

- What is its period?
- \circ 1/10⁹ = 10⁻⁹ sec = 1 ns
- Most digital systems: runs by clock
- Clock frequency determines how fast your system is

- Digital system with sequential logic
- All the critical paths must meet the timing of clock
- Clock period usually permits a critical path of 20~50 gate

- Lets say we allow 35 gates at maximum
- suppose clock frequency = 500 MHz clock period = $(5\times10^8 \text{ s}^{-1})^{-1}$ = 2 × 10 ⁻⁹s = 2 ns (nanoseconds)
- Gate delay must be less than

$$(1/35) \times Period = (2 ns)/35 = 57 ps (picoseconds)$$

• How fast is this? Speed of light: $c = 3 \times 10^8$ m/s Distance traveled in 57 ps is:

$$(3\times10^8 \text{m/s})(57\times10^{-12s}) = 17\times10^{-4} \text{ m} = 1.7\text{cm}$$

- Behavior of clocked sequential circuit is determined from input, output and present state
- Output, next state are a function of input and present state

- Finite State Machine (FSM)
 - An abstract model of the operation of a (automated) s ystem which is in one of the states at any given time. The state information is stored in the system
 - System may make transition to another state depending on the input and current state
 - System may produce an output
 - Many machinery can be modeled using FSM

- Elements of FSM
- States
 - A specific status of the system at a given time
- Input
 - External information which determines the operation of the system
- Output
 - Generated by the system, may depend on state and in nput
- Transition
 - The system moves to another state

- Example: vending machine
 - Operation of many systems (machines) can be de scribed using FSM

- Synchronous FSM
 - System can make transition only at particular instants in time
 - In our case, we consider clocked FSM, which is a FS M synchronized at clock edges
 - That is, FSM can make transition at clock edges

5.5 Analysis of clocked sequential circuits - State equations

Specifies the next state and output as a function of the present state and inputs

$$\circ$$
 A(t+1)=Ax + Bx

- B(t+1)=A'x
- \circ Y=(A+B)x'

5.5 Analysis of clocked sequential circuits - State table

- Time sequence table of inputs, outputs and flip-flop state
 s
- two types of state table exist

Table 5-2 *State Table for the Circuit of Fig. 5-15*

Present State		Input	Next State		Output	
Α	В	X	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Table 5-3Second Form of the State Table

Present State	Next S	tate	Output	
	x = 0	x = 1	x = 0	x = 1
AB	\overline{AB}	AB	y	y
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

5.5 Analysis of clocked sequential circuits - State diagram

- A kind of flow diagram
- Can be derived from state table
- State-circle, transition-line, I/O

Table 5-2 *State Table for the Circuit of Fig. 5-15*

Present State		Input	Ne Sta	0.0000000000000000000000000000000000000	Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

5.5 Analysis of clocked sequential circuits - Analysis with D flip-flops

- Input equation : $D_A = A \oplus x \oplus y$
- State equation is equal to input equation

Fig. 5-17 S	Sequential	Circuit	with	D	Flip-Flop
-------------	------------	---------	------	---	-----------

Present state	Inputs	Next state
A	хy	A
0	0 0	0
0	0 1	1
0	1 0	1
0	1 1	0
1	0 0	1
1	0 1	0
1	1 0	0
1	1 1	1

(b) State table

5.5 Analysis of clocked sequential circuits - Analysis with JK flip-flops

- State equation is not the same as the input equation
- Have to refer characteristic table or characteristic equation
- Input equations

$$J_A=B$$
 $K_A=Bx'$
 $J_B=x'$ $K_B=A'x+Ax'$

5.5 Analysis of clocked sequential circuits - Analysis with JK flip-flops

State table and state diagram

Table 5-4State Table for Sequential Circuit with JK Flip-Flops

	esent ate	Input		ext ate	Flip-Flop Inputs			
Α	В	x	Α	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

5.5 Analysis of clocked sequential circuits - Analysis with T flip-flops

Input equations and output equation

$$T_A=Bx$$
, $T_B=x$
 $y=AB$

State equations are derived from characteristic equation A(t+1)=T_AA'+T_A'A
 B(t+1)=T_BB'+T_B'B

5.5 Analysis of clocked sequential circuits - Analysis with T flip-flops

Table 5-5State Table for Sequential Circuit with T Flip-Flops

	esent ate	Input		ext ate	Output	`
Α	В	X	A	В		
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	(11/
1	0	1	1	1	0	>
1	1	0	1	1	1	
1	1	1	0	0	1	

5.5 Analysis of clocked sequential circuits - Mealy and Moore models

- Mealy model : output is a function of the present state and input
- Inputs must be synchronized with the clock
- Outputs must be sampled at the clock edge
- Moore model : output is a function of the present state only
- Outputs are synchronized with the clock

5.7 State reduction and assignment

- State reduction is used to reduce the number of flip-flop
- Only input/output sequences are important
- Interested in present states that go to the same next state e and have the same output

5.7 State reduction and assignment - State reduction

Table 5-6
State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	C	d	0	0	
c	a	d	0	0	
d	e	f	O	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

Reducing the State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	е	f	0	1	
e	а	f	0	1	
f	e	f	0	1 🔸	

Fig. 5-22 State Diagram

5.7 State reduction and assignment - State reduction

Table 5-8 *Reduced State Table*

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
a	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Fig. 5-23 Reduced State Diagram

5.7 State reduction and assignment - State assignment

- o *m* states circuit, codes must contain *n* bits where 2^{*n*≥}*m*
- Three possible binary state assignments

Table 5-9 *Three Possible Binary State Assignments*

State	Assignment 1 Binary	Assignment 2 Gray code	Assignment 3 One-hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

5.8 Design procedure

- Sequential circuit design : requires state table
 - ⇔ Combinational circuit: truth table
- The number of flip-flop is determined from the number of states in circuit
- If 2ⁿ states exist, there are *n* flip-flops

5.8 Design procedure

- Design steps
 - 1)Derive a state diagram or state table
 - 2)Reduce the number of states if necessary
 - 3)Assign binary code to the state
 - 4) Choose the type of flip-flops to be used
 - 5)Derive the flip-flop input equations and output equations
 - 6)Draw the logic diagram

5.8 Design procedure

- Derive a state diagram
 - Sequential detector
 - Three or more consecutive 1's in a string of bits coming through an input line

Fig. 5-24 State Diagram for Sequence Detector

5.8 Design procedure - Synthesis using D flip-flops

Input equations are obtained directly from the next states

Table 5.11 *State Table for Sequence Detector*

Present State		Input	Ne Sta	xt ate	Outpu	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

5.8 Design procedure - Synthesis using D flip-flops

K-maps and logic diagram

FIGURE 5.29 Logic diagram of a Moore-type sequence detector

5.8 Design procedure - Synthesis using D flip-flops

Example waveform

5.8 Design procedure - Synthesis using T flip-flops

- 3-bit binary counter
- 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1(n=3)

Fig. 5-29 State Diagram of 3-Bit Binary Counter

5.8 Design procedure - Synthesis using T flip-flops

State table and logic diagram

Table 5-14State Table for 3-Bit Counter

Present State		Next State			Flip-Flop Inputs			
A ₂	A ₁	A ₀	A ₂	Α	A _o	TA2	T_{A1}	TAO
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	. 0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

$$T_{A2}=A_1A_0$$
, $T_{A1}=A_0$, $T_{A0}=1$

