



## Modern Architectures and Programming Paradigms

CSCS-USI Summer School 2014



## Trends in Top 500 : June 2010 - multicore

#### **Cores per Socket System Share**



#### **Cores per Socket Performance Share**





## Trends in Top 500: June 2014 - multicore

#### **Cores per Socket System Share**



#### **Cores per Socket Performance Share**





## **Trends in Top 500: June 2010 – accelerators**

#### **Accelerator/Co-Processor System Share**



#### Accelerator/Co-Processor Performance Share





## Trends in top 500: June 2014 - accelerators

#### Accelerator/Co-Processor System Share



#### Accelerator/Co-Processor Performance Share





## A generic HPC System at a glance...





### Zoom-in: "Pure" Multicore node





## Zoom-in: hybrid node (with i.e GPU)





# How do we program these machines?



## Programming for multicore architectures.







## **Hybrid MPI+OpenMP**





## **Programming GPUs**

- CUDA
- OpenACC
  - OpenCL





## Your task for this course:

Refactor a code in

OpenMP, MPI, CUDA and OpenCC!



## Thank you for your attention.