

Figure 37.35: The stereographic projections of $x^2 + y^2 + (z - 1)^2 = 1$ onto the xy-plane.

according to stereographic projection. See Figure 37.36. A simpler example takes a line and gets a circle as its compactification. The Alexandroff compactification is a generalization of these simple constructions.

Definition 37.32. Let (E, \mathcal{O}) be a locally compact space. Let ω be any point not in E, and let $E_{\omega} = E \cup \{\omega\}$. Define the family, \mathcal{O}_{ω} , as follows:

$$\mathcal{O}_{\omega} = \mathcal{O} \cup \{(E - K) \cup \{\omega\} \mid K \text{ compact in } E\}.$$

The pair, $(E_{\omega}, \mathcal{O}_{\omega})$, is called the Alexandroff compactification (or one point compactification) of (E, \mathcal{O}) . See Figure 37.37.

The following theorem shows that $(E_{\omega}, \mathcal{O}_{\omega})$ is indeed a topological space, and that it is compact.

Theorem 37.36. Let E be a locally compact topological space. The Alexandroff compactification, E_{ω} , of E is a compact space such that E is a subspace of E_{ω} and if E is not compact, then $\overline{E} = E_{\omega}$.

Proof. The verification that \mathcal{O}_{ω} is a family of open sets is not difficult but a bit tedious. Details can be found in Munkres [131] or Schwartz [150]. Let us show that E_{ω} is compact. For every open cover, $(U_i)_{i \in I}$, of E_{ω} , since ω must be covered, there is some U_{i_0} of the form

$$U_{i_0} = (E - K_0) \cup \{\omega\}$$

where K_0 is compact in E. Consider the family, $(V_i)_{i \in I}$, defined as follows:

$$V_i = U_i$$
 if $U_i \in \mathcal{O}$,
 $V_i = E - K$ if $U_i = (E - K) \cup \{\omega\}$,