Matgeo-q.1.4.14

Al25BTECH11039-Harichandana Varanasi

August 29, 2025

Question

Points A(-6,10), B(-4,6) and C(3,-8) are collinear such that $AB = \frac{2}{9}AC.$

Solution

Given:
$$\mathbf{A} = \begin{pmatrix} -6 \\ 10 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 3 \\ -8 \end{pmatrix}.$$

Assume: B divides **AC** in the ratio k:1.

$$\mathbf{B} = \frac{k\mathbf{C} + \mathbf{A}}{k+1}$$

Compute *k*:

$$k(\mathbf{B} - \mathbf{C}) = \mathbf{A} - \mathbf{B}$$

 $\Rightarrow k = \frac{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{B} - \mathbf{C})}{\|\mathbf{B} - \mathbf{C}\|^2}$

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} -6 \\ 10 \end{pmatrix} - \begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix},$$

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} - \begin{pmatrix} 3 \\ -8 \end{pmatrix} = \begin{pmatrix} -7 \\ 14 \end{pmatrix},$$

$$\|\mathbf{B} - \mathbf{C}\|^2 = (-7)^2 + 14^2 = 245.$$

Solution

Finish k:

$$k = \frac{\binom{-2}{4}^{\top} \binom{-7}{14}}{245} = \frac{(-2)(-7) + (4)(14)}{245} = \frac{70}{245} = \begin{bmatrix} \frac{2}{7} \end{bmatrix}$$

Ratios:

$$AB : BC = 2 : 7,$$
 $\frac{AB}{AC} = \frac{2}{2+7} = \frac{2}{9}.$

Check:

$$\mathbf{B} = \frac{7\mathbf{A} + 2\mathbf{C}}{9} = \frac{7\begin{pmatrix} -6\\10 \end{pmatrix} + 2\begin{pmatrix} 3\\-8 \end{pmatrix}}{9}$$
$$= \frac{\begin{pmatrix} -42\\70 \end{pmatrix} + \begin{pmatrix} 6\\-16 \end{pmatrix}}{9} = \frac{\begin{pmatrix} -36\\54 \end{pmatrix}}{9} = \begin{pmatrix} -4\\6 \end{pmatrix}.$$

Graphical Representation

Figure: 3D view (embedded in z = 0 plane) confirming collinearity