Definitions

We find the best model for y over function class \mathcal{G} . Presume $g^* \in \mathcal{G}$ is the true model and

$$y = g^*(X) + \epsilon$$

Given a training set T, We define the fitted models

$$\hat{g}_{\lambda} = \|y - g\|_T^2 + \lambda^2 I^v(g)$$

Given a validation set T, let the CV-fitted model be

$$\hat{g}_{\hat{\lambda}} = \arg\min_{\lambda} \|y - \hat{g}_{\lambda}\|_{V}^{2}$$

Assumptions

Suppose we have sub-Gaussian errors ϵ for constants K and σ_0^2 :

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Suppose $v > 2\alpha/(2+\alpha)$.

Suppose that the entropy of the class \mathcal{G}' is

$$H\left(\delta, \mathcal{G}' = \left\{\frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0\right\}, P_n\right) \leq \tilde{A}\delta^{-\alpha}$$

Suppose for all $\lambda \in \Lambda$, $I^v(\hat{g}_{\lambda})$ is upper bounded by $\|\hat{g}_{\lambda}\|_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{g}_{\lambda}(x_i)$. See Lemma 1 below for the specific assumption. This assumption includes Ridge, Lasso, Generalized Lasso, Group Lasso, and the Sobelov norm. In the example below, I show that the Sobelov norm also satisfies these conditions.

Result 1:

For now, we will suppose $P_n = \{X_i\}_{i=1}^n$ are the same between the validation and training set. Also, suppose the penalty normalizes the empirical norm such that:

$$\sup_{g \in \mathcal{G}} \frac{\|g - g^*\|_n}{I(g) + I(g^*)} \le R < \infty$$

Suppose for all $\lambda \in \Lambda$, $I^{v}(\hat{g}_{\lambda})$ is upper bounded by its L_{2} -norm with some constant M and M_{0} such that

$$I^{v}(\hat{g}_{\lambda}) \le M \|\hat{g}_{\lambda}\|_{n}^{2} + M_{0}$$

Then

$$\|\hat{g}_{\hat{\lambda}} - g^*\|_n = O_p(n^{-1/(2+\alpha)}) \left(M^{\alpha/\nu(2+\alpha)} \|g^*\|_n^{\alpha/2\nu(2+\alpha)} \vee I^{2\alpha/(2+\alpha)}(g^*) \right)$$

Proof

Let $\tilde{\lambda}$ be the optimal λ under the given assumptions, as specified by Van de geer. From the definition of $\hat{\lambda}$, we get the following basic inequality

$$\begin{aligned} \|g^* - \hat{g}_{\hat{\lambda}}\|_{V}^2 & \leq \|g^* - \hat{g}_{\tilde{\lambda}}\|_{V}^2 + 2(\epsilon, \hat{g}_{\hat{\lambda}} - \hat{g}_{\tilde{\lambda}})_{V} \\ & \leq \|g^* - \hat{g}_{\tilde{\lambda}}\|_{V}^2 + 2(\epsilon, \hat{g}_{\hat{\lambda}} - g^*)_{V} + 2(\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_{V} \\ & \leq \|g^* - \hat{g}_{\tilde{\lambda}}\|_{V}^2 + 2\left|(\epsilon, \hat{g}_{\hat{\lambda}} - g^*)_{V}\right| + 2\left|(\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_{V}\right| \end{aligned}$$

By considering the largest term on the RHS, we have following three cases.

Case 1: $||g^* - \hat{g}_{\tilde{\lambda}}||_V^2$ is the largest

Since we have assumed that the validation and training set are equal, then $||g^* - \hat{g}_{\tilde{\lambda}}||_V$ converges at the optimal rate $O_p(n^{-1/(2+\alpha)})$.

Case 2: $|(\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_V|$ is the largest

In this case, since ϵ_V is independent of $\hat{g}_{\tilde{\lambda}}$, then by Cauchy Schwarz,

$$\begin{aligned} \left| (\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_V \right| &\leq \|\epsilon_V \| \|g^* - \hat{g}_{\tilde{\lambda}} \|_V \\ &\leq O_p \left(n^{-1/2} \right) \|g^* - \hat{g}_{\tilde{\lambda}} \|_V \end{aligned}$$

Hence $|(\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_V|$ will shrink a bit faster than the optimal rate at a rate of $O_p(n^{-(\frac{1}{2+\alpha} + \frac{1}{2})})$.

Case 3: $|(\epsilon, g^* - \hat{g}_{\hat{\lambda}})_V|$ is the largest.

By the assumptions given, Vandegeer (10.6) gives us that

$$\sup_{g \in \mathcal{G}} \frac{|(\epsilon, g - g*)_n|}{\|g - g*\|_n^{1 - \alpha/2} (I(g^*) + I(g))^{\alpha/2}} = O_p(n^{-1/2})$$

Hence

$$|(\epsilon, g^* - \hat{g}_{\hat{\lambda}})_V| \le O_p(n^{-1/2}) \|\hat{g}_{\hat{\lambda}} - g^*\|_n^{1-\alpha/2} (I(g^*) + I(\hat{g}_{\hat{\lambda}}))^{\alpha/2}$$

If $I(g^*) \ge I(g_{\hat{\lambda}})$, then

$$||g^* - \hat{g}_{\hat{\lambda}}||_V \le O_p(n^{-1/(2+\alpha)})I(g^*)^{\alpha/(2+\alpha)}$$

Otherwise, we have

$$\|\hat{g}_{\hat{\lambda}} - g * \|_n^{1+\alpha/2} \le O_p(n^{-1/2})I(\hat{g}_{\hat{\lambda}})^{\alpha/2}$$

By Lemma 1 below, using the assumption that the penalty of \hat{g}_{λ} is bounded above by its $L_2(P_n)$ norm, we have that

$$||g^* - \hat{g}_{\hat{\lambda}}||_n \le O_p(n^{-1/(2+\alpha)}) M^{\alpha/v(2+\alpha)} ||g^*||_n^{\alpha/2v(2+\alpha)}$$

Result 2:

Now suppose that the training and validation set are independently sampled, so the values X_i are not necessarily the same. We suppose the training and validation sets are both of size n.

Suppose the penalty normalizes the empirical norm as follows:

$$\sup_{g \in \mathcal{G}} \frac{\|g - g^*\|_T}{I(g) + I(g^*)} \le R < \infty, \ \sup_{g \in \mathcal{G}} \frac{\|g - g^*\|_V}{I(g) + I(g^*)} \le R < \infty$$

Suppose for all $\lambda \in \Lambda$, $I^v(\hat{g}_{\lambda})$ is upper bounded by its L_2 -norm with constants M and M_0 :

$$I^{v}(\hat{g}_{\lambda}) \leq M(\|\hat{g}_{\lambda}\|_{T}^{2} + \|\hat{g}_{\lambda}\|_{V}^{2}) + M_{0} = M\|\hat{g}_{\lambda}\|_{2n}^{2} + M_{0}$$

Then for any $\xi > 0$,

$$\|\hat{g}_{\hat{\lambda}} - g^*\|_V = O_p(n^{-1/(2+\alpha+\xi)}) \left(M^{\alpha/v(2+\alpha)} \|g^*\|_{2n}^{\alpha/2v(2+\alpha)} \vee I(g^*) \right)$$

Hence the convergence rate is infinitely close to the optimal convergence rate $O_p(n^{-1/(2+\alpha)})$ attained by $\tilde{\lambda}$, but it doesn't actually attain it.

Proof: We follow the same proof structure of going thru the three cases, modifying the proofs as appropriate:

Case 1: $||g^* - \hat{g}_{\tilde{\lambda}}||_V^2$ is the largest

By Lemma 2, we have

$$\left| \|g^* - \hat{g}_{\tilde{\lambda}}\|_T - \|g^* - \hat{g}_{\tilde{\lambda}}\|_V \right| \le O_p(n^{-1/(2+\alpha+\xi)}) \left(I(\hat{g}_{\tilde{\lambda}}) + I(g^*) \right)$$

Therefore, for any $\xi > 0$, we have

$$||g^* - \hat{g}_{\tilde{\lambda}}||_V \leq O_p(1)||g^* - \hat{g}_{\tilde{\lambda}}||_V \leq O_p(1)||g^* - \hat{g}_{\tilde{\lambda}}||_T + O_p(n^{-1/(2+\alpha+\xi)})I(g^*)$$

Case 2: $|(\epsilon, g^* - \hat{g}_{\tilde{\lambda}})_V|$ is the largest

The same proof still holds.

Case 3: $|(\epsilon, g^* - \hat{g}_{\hat{\lambda}})_V|$ is the largest.

Again, we have by Van de geer (10.6),

$$\left| (\epsilon, g^* - \hat{g}_{\hat{\lambda}})_V \right| \le O_p(n^{-1/2}) \|\hat{g}_{\hat{\lambda}} - g^*\|_V^{1-\alpha/2} (I(g^*) + I(\hat{g}_{\hat{\lambda}}))^{\alpha/2}$$

If $I(g^*) \ge I(g_{\hat{\lambda}})$ is true, then result is clearly attained.

Otherwise, we have

$$\|\hat{g}_{\hat{\lambda}} - g * \|_{V}^{1+\alpha/2} \le O_p(n^{-1/2})I(\hat{g}_{\hat{\lambda}})^{\alpha/2}$$

By Lemma 1 below, since the penalty is bounded above by the $L_2(P_n)$ norm, it follows that

$$\|g^* - \hat{g}_{\hat{\lambda}}\|_V \le O_p(n^{-1/(2+\alpha)}) M^{\alpha/\nu(2+\alpha)} \|g^*\|_{2n}^{\alpha/2\nu(2+\alpha)}$$

Lemmas

Lemma 1:

Suppose for all $\lambda \in \Lambda$, the penalty function $I^{v}(g_{\lambda})$ is upper-bounded by $||g_{\lambda}||_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} g_{\lambda}^{2}(x_{i})$ with constants M_{0} and M:

$$I^{v}(g_{\lambda}) \leq M \|g_{\lambda}\|_{n}^{2} + M_{0}$$

Suppose there is some function $g^* \in \mathcal{G}$ such that

$$||g^* - g_{\lambda}||_n^{1+\alpha/2} \le O_p(n^{-1/2})I^{\alpha/2}(g_{\lambda})$$

then for sufficiently large n,

$$||g^* - g_{\lambda}||_n \le O_p(n^{-1/(2+\alpha)}) M^{\alpha/\nu(2+\alpha)} ||g^*||_n^{\alpha/2\nu(2+\alpha)}$$

Proof:

From the assumption that $I^{v}(g_{\lambda})$ is upper-bounded by $\|g_{\lambda}\|_{n}^{2}$,

$$\|g^* - g_{\lambda}\|_n^{1+\alpha/2} \le O_p(n^{-1/2}) (M\|g_{\lambda}\|_n^2 + M_0)^{\alpha/2v}$$

If $M_0 > \|g_{\lambda}\|_n^2$, then the result immediately follows.

Otherwise, if $M_0 \leq ||g_{\lambda}||_n^2$, then

$$||g^* - g_{\lambda}||_n^{1+\alpha/2} \leq O_p(n^{-1/2})M^{\alpha/2v}||g_{\lambda}||_n^{\alpha/v}$$

$$\leq O_p(n^{-1/2})M^{\alpha/2v}(||g_{\lambda} - g^*||_n + ||g^*||_n)^{\alpha/v}$$

Case 1: $||g_{\lambda} - g^*||_n \le ||g^*||_n$

The result immediately follows.

Case 2: $||g_{\lambda} - g^*||_n > ||g^*||_n$

We show for sufficiently large n, this case will not occur. Suppose this case occurs. Then

$$\|g^* - g_{\lambda}\|_n^{1+\alpha/2} \le O_p(n^{-1/2})M^{\alpha/\nu(2+\alpha)}\|g_{\lambda} - g^*\|_n^{\alpha/\nu}$$

Rearranging, we have that

$$||g^* - g_{\lambda}||_n^{1+\alpha/2-\alpha/\nu} \le O_p(n^{-1/2})M^{\alpha/\nu(2+\alpha)}$$

Since the LHS exponent is $1 + \alpha/2 - \alpha/v > 0$, $||g^* - g_{\lambda}||_n$ decreases with n. With sufficiently large n, we can ensure that only Case 1 occurs. (Check this statement!!!)

Note: I believe we can often provide a good estimate of M for the entire class \mathcal{G} , which means that we can always estimate the sample size needed to ensure this case never occurs. That is, I believe we can often estimate M s.t.

$$I^{v}(g) \leq M \|g\|_{n}^{2} + M_{0} \forall g \in \mathcal{G}$$

Lemma 2:

Let $P_{n'}$ and $P_{n''}$ be empirical distributions over $\{X_i'\}_{i=1}^n$, $\{X_i''\}_{i=1}^n$. Let $P_{2n} = \frac{1}{2} (P_{n'} + P_{n''})$. Suppose $|X_i| \le R_X < \infty$.

Let
$$\mathcal{G}' = \left\{ \frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0 \right\}$$
. Suppose

$$\sup_{f \in \mathcal{G}'} \|f\|_{P_{2n}} \le R < \infty$$

and

$$H\left(\delta, \mathcal{G}', P_{n'}\right) \leq \tilde{A}\delta^{-\alpha}, \ H\left(\delta, \mathcal{G}', P_{n''}\right) \leq \tilde{A}\delta^{-\alpha}$$

Then

BAD :(

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le 2\exp\left(2\tilde{A}\delta^{-\alpha} - \frac{4\delta^2}{\left(R + \sqrt{2}\delta\right)^2}\right)$$

Proof: The proof is very similar to that in Pollard 1984 (page 32), so some details below are omitted. First note that for any function f and h, we have

$$||f||_{P_{n'}} - ||h||_{P_{n'}} \le ||f - h||_{P_{n'}} \le \sqrt{2}||f - h||_{P_{2n}}$$

Similarly for $P_{n''}$.

Let $\{h_j\}_{j=1}^N$ be the $\sqrt{2}\delta$ -cover for \mathcal{G}' (where $N=N(\sqrt{2}\delta,\mathcal{G}',P_{2n})$). Let h_j be the closest function (in terms of $\|\cdot\|_{P_{2n}}$) to any $f\in\mathcal{G}'$.

$$\begin{split} \|f\|_{P_{n'}} - \|f\|_{P_{n''}} & \leq \|f - h_j\|_{P_{n'}} + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| + \|f - h_j\|_{P_{n''}} \\ & \leq 4\delta + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \end{split}$$

Then

$$Pr\left(\sup_{g\in\mathcal{G}}\frac{\left|\|g^*-g\|_{P_n}-\|g^*-g\|_{P_{n''}}\right|}{I(g^*)+I(g)} \ge 6\delta\right) \le Pr\left(\sup_{j\in 1:N}\left|\|h_j\|_{P_{n'}}-\|h_j\|_{P_{n''}}\right| \ge 2\delta\right)$$

$$\le N\max_{j\in 1:N}Pr\left(\left|\|h_j\|_{P_{n'}}-\|h_j\|_{P_{n''}}\right| \ge 2\delta\right)$$

Now note that

$$\begin{aligned} \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| &= \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2}{\|h_j\|_{P_{n'}} + \|h_j\|_{P_{n''}}} \\ &\leq \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2}{\sqrt{2} \|h_j\|_{P_{2n}}} \end{aligned}$$

By Hoeffding's inequality,

$$\begin{split} Pr\left(\left|\|h_{j}\|_{P_{n'}} - \|h_{j}\|_{P_{n''}}\right| &\geq 2\delta\right) &\leq Pr\left(\left|\|h_{j}\|_{P_{n'}}^{2} - \|h_{j}\|_{P_{n''}}^{2}\right| \geq 2\sqrt{2}\delta\|h_{j}\|_{P_{2n}}\right) \\ &= Pr\left(\left|\sum_{i=1}^{n} W_{i}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)\right| \geq 2\sqrt{2}n\delta\|h_{j}\|_{P_{2n}}\right) \\ &\leq 2\exp\left(-\frac{16\delta^{2}n^{2}\|h_{j}\|_{P_{2n}}^{2}}{4\sum_{i=1}^{n}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)^{2}}\right) \end{split}$$

Since

$$\sum_{i=1}^{n} \left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'') \right)^{2} \leq \sum_{i=1}^{n} h_{j}^{4}(x_{i}') + h_{j}^{4}(x_{i}'')
\leq n^{2} ||h_{j}||_{P_{2n}}^{4}
\leq n^{2} ||h_{j}||_{P_{2n}}^{2} \left(||f||_{P_{2n}} + ||f - h_{j}||_{P_{2n}} \right)^{4}
\leq n^{2} ||h_{j}||_{P_{2n}}^{2} \left(R + \sqrt{2}\delta \right)^{2}$$

Hence

$$Pr(|||h_j||_{P_{n'}} - ||h_j||_{P_{n''}}| \ge 2\delta) \le 2\exp\left(-\frac{4\delta^2}{(R+\sqrt{2}\delta)^2}\right)$$

Since

$$N(\sqrt{2}\delta, \mathcal{G}', P_{2n}) \le N(\delta, \mathcal{G}', P_{n''}) + N(\delta, \mathcal{G}', P_{n''})$$

then

$$Pr\left(\sup_{g\in\mathcal{G}}\frac{\left|\|g^*-g\|_{P_n}-\|g^*-g\|_{P_{n''}}\right|}{I(g^*)+I(g)}\geq 6\delta\right)\leq 2\exp\left(2\tilde{A}\delta^{-\alpha}-\frac{4\delta^2}{\left(R+\sqrt{2}\delta\right)^2}\right)$$

Using shorthand, we can write that for any $\xi > 0$,

$$\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} = O_p(n^{-1/(2 + \alpha + \xi)})$$

Example 1: Sobelov norm

Consider the functions

$$\mathcal{G} = \left\{ g : [0,1] \mapsto \mathbb{R} : \int_0^1 g^{(m)}(z)^2 dz < \infty \right\}$$

Suppose x_i are all unique. Then the Sobelov norm for the class $\{\hat{g}_{\lambda} \in \mathcal{G} : \lambda \in \Lambda\}$ is bounded above by its $L_2(P_n)$ norm.

$$I^{2}(\hat{g}_{\lambda}) = \int_{0}^{1} \left(\hat{g}_{\lambda}^{(m)}(z)\right)^{2} dz \leq M \|\hat{g}_{\lambda}\|_{n}^{2} + M_{0} \forall \lambda \in \Lambda$$

Proof:

Let \tilde{g} satisfy $\tilde{g}(x_i) = y_i$ and have the smallest value for $\int_0^1 (\tilde{g}^{(m)}(z))^2 dz$. This function \tilde{g} should always exist.

Case 1: $\lambda \leq 1/2$ By definition of \hat{g}_{λ}

$$||y - \hat{g}_{\lambda}||_n^2 + \lambda^2 I^2(\hat{g}_{\lambda}) \le ||y - (\tilde{g} - \lambda \hat{g}_{\lambda})||_n^2 + \lambda^2 I^2(\tilde{g} - \lambda \hat{g}_{\lambda})$$

Note that

$$I^{2}(\tilde{g} - \lambda \hat{g}_{\lambda}) = \int_{0}^{1} \left(\tilde{g}^{(m)} - \lambda \hat{g}_{\lambda}^{(m)}\right)^{2} dz$$
$$= 2 \int_{0}^{1} \max\left(\left|\tilde{g}^{(m)}\right|^{2}, \left|\lambda \hat{g}_{\lambda}^{(m)}\right|^{2}\right) dz$$
$$= 2 \left(\int_{0}^{1} \left|\tilde{g}^{(m)}\right|^{2} dz + \int_{0}^{1} \left|\lambda \hat{g}_{\lambda}^{(m)}\right|^{2} dz\right)$$

Hence

$$\lambda^2 I^2(\hat{g}_{\lambda}) \le \lambda^2 \|\hat{g}_{\lambda}\|_n^2 + 2\lambda^2 I^2(\tilde{g}) + 2\lambda^4 I^2(\hat{g}_{\lambda})$$

The following ineq follows, where the RHS is maximized when $\lambda = 1/2$

$$I^{2}(\hat{g}_{\lambda}) \leq \frac{\lambda^{2}}{\lambda^{2} - 2\lambda^{4}} \left(\|\hat{g}_{\lambda}\|_{n}^{2} + 2I^{2}(\tilde{g}) \right) \leq 2\|\hat{g}_{\lambda}\|_{n}^{2} + 4I^{2}(\tilde{g})$$

Case 2: $\lambda > 1/2$ By definition of \hat{g}_{λ}

$$||y - \hat{g}_{\lambda}||_{n}^{2} + \lambda^{2} I^{2}(\hat{g}_{\lambda}) \le ||y||_{n}^{2}$$

The RHS is maximized when $\lambda = 1/2$, so

$$I^2(\hat{g}_{\lambda}) \le 4||y||_n^2$$

Hence we have an upper bound for the Sobelov norm

$$I^{2}(\hat{g}_{\lambda}) \leq 2\|\hat{g}_{\lambda}\|_{n}^{2} + 4I^{2}(\tilde{g}) + 4\|y\|_{n}^{2}$$

Appendix

A cute lemma I found but never used: Supposing that $I^{v}(\hat{g}_{\lambda})$ is continuous in λ , then given training data T,

$$\frac{\partial}{\partial \lambda} L_T(\hat{g}_{\lambda}, \lambda) = 2\lambda I^v(\hat{g}_{\lambda})$$

Also, L_T is convex in λ .

Proof:

By definition,

$$L_T(\hat{g}_{\lambda}, \lambda) = \|y - \hat{g}_{\lambda}\|_T^2 + \lambda^2 I^v(\hat{g}_{\lambda}) \le \|y - \hat{g}_{\lambda'}\|_T^2 + \lambda^2 I^v(\hat{g}_{\lambda'}) = L_T(\hat{g}_{\lambda'}, \lambda)$$

Then we can provide upper and lower bounds for $L_T(\hat{g}_{\lambda_2}, \lambda_2) - L_T(\hat{g}_{\lambda_1}, \lambda_1)$:

$$\begin{array}{lcl} L_{T}(\hat{g}_{\lambda_{2}},\lambda_{2}) - L_{T}(\hat{g}_{\lambda_{1}},\lambda_{1}) & \leq & L_{T}(\hat{g}_{\lambda_{1}},\lambda_{2}) - L_{T}(\hat{g}_{\lambda_{1}},\lambda_{1}) \\ & = & \|y - \hat{g}_{\lambda_{1}}\|_{T}^{2} + \lambda_{2}^{2}I^{v}(\hat{g}_{\lambda_{1}}) - \|y - \hat{g}_{\lambda_{1}}\|_{T}^{2} - \lambda_{1}^{2}I^{v}(\hat{g}_{\lambda_{1}}) \\ & = & (\lambda_{2}^{2} - \lambda_{1}^{2})I^{v}(\hat{g}_{\lambda_{1}}) \end{array}$$

$$\begin{array}{lcl} L_{T}(\hat{g}_{\lambda_{2}},\lambda_{2}) - L_{T}(\hat{g}_{\lambda_{1}},\lambda_{1}) & \geq & L_{T}(\hat{g}_{\lambda_{2}},\lambda_{2}) - L_{T}(\hat{g}_{\lambda_{2}},\lambda_{1}) \\ & = & \|y - \hat{g}_{\lambda_{2}}\|_{T}^{2} + \lambda_{2}^{2}I^{v}(\hat{g}_{\lambda_{2}}) - \|y - \hat{g}_{\lambda_{2}}\|_{T}^{2} - \lambda_{1}^{2}I^{v}(\hat{g}_{\lambda_{2}}) \\ & = & (\lambda_{2}^{2} - \lambda_{1}^{2})I^{v}(\hat{g}_{\lambda_{2}}) \end{array}$$

So suppose WLOG $\lambda_2 > \lambda_1$:

$$(\lambda_2 + \lambda_1)I^{v}(\hat{g}_{\lambda_2}) \leq \frac{L_T(\hat{g}_{\lambda_2}, \lambda_2) - L_T(\hat{g}_{\lambda_1}, \lambda_1)}{\lambda_2 - \lambda_1} \leq (\lambda_2 + \lambda_1)I^{v}(\hat{g}_{\lambda_1})$$

So as $\lambda_1 \to \lambda_2 = \lambda$, we have by the sandwich theorem,

$$\frac{\partial}{\partial \lambda} L_T(\hat{g}_{\lambda}, \lambda) = 2\lambda I^v(\hat{g}_{\lambda})$$

Furthermore, given training data T

$$\frac{\partial}{\partial \lambda} L_T(\hat{g}_{\lambda}, \lambda) = \frac{\partial}{\partial \lambda} \|y - \hat{g}_{\lambda}\|_T^2 + 2\lambda I^v(\hat{g}_{\lambda}) + \lambda^2 \frac{\partial}{\partial \lambda} I^v(\hat{g}_{\lambda})$$

then, combining this with the lemma, we have that

$$\frac{\partial}{\partial \lambda} \|y - \hat{g}_{\lambda}\|_{T}^{2} = -\lambda^{2} \frac{\partial}{\partial \lambda} I^{v}(\hat{g}_{\lambda})$$

Finally, to see that L_T is convex in λ , note that

$$\frac{\partial^2}{\partial \lambda^2} L_T(\hat{g}_{\lambda}, \lambda) = 2I^v(\hat{g}_{\lambda}) + 2\lambda v I^{v-1}(\hat{g}_{\lambda}) \frac{\partial}{\partial \lambda} I(\hat{g}_{\lambda}) > 0$$

since $\frac{\partial}{\partial \lambda} I(\hat{g}_{\lambda}) > 0$.