HW5: due November 18 5

In the following problems concern an alternative definition of integral with respect to a measure. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $f: \Omega \to \mathbb{R}$ be a function, which may not be measurable. Let $\underline{\mathcal{P}}$ be the collection of all finite \mathcal{F} -partition of Ω . Let

$$\int_{\underline{\star}} \underline{f d\mu} = \sup_{\{A_i\} \in \mathcal{P}} \sum_{i} \left[\inf_{A_i} f(\omega) \right] \mu(A_i), \quad \int_{\underline{\star}}^{\underline{\star}} f d\mu = \inf_{\{A_i\} \in \mathcal{P}} \sum_{i} \left[\sup_{A_i} f(\omega) \right] \mu(A_i).$$

Problem 5.1. Suppose that f is measurable and nonnegative. Show that $\int^* f d\mu = \infty$ if $\mu(\{\omega : \{\omega : \{\omega = 1\}\})\}$ $f(\omega) > 0\} = \infty.$

Problem 5.2. Suppose that f is measurable and nonnegative. Show that $\int_{0}^{+} f d\mu = \infty$ if, for any $a > 0, \mu(\{\omega : f(\omega) > a\}) > 0.$

Problem 5.3. Let $\{A_i\}$ and $\{B_i\}$ be members of \mathcal{P} . We say that $\{B_i\}$ refines $\{A_i\}$ if for every $B_j \in \{B_j\}$ there exists an $A_i \in \{A_i\}$ such that $B_j \subseteq A_i$.

- 1. Show that for any $A_i \in \{A_i\}$, there is a $B_j \in \{B_j\}$ such that $A_i \supseteq B_j$;
- 2. Show that for each i,

$$A_i = \bigcup_{\{j: B_j \subseteq A_i\}} B_j.$$
 Under the assumption {B_j} refines {A_i}.

Problem 5.4. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

$$\sum_{i} \left[\inf_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \leq \sum_{j} \left[\inf_{\omega \in B_{j}} f(\omega) \right] \mu(B_{j})$$

Problem 5.5. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

$$\sum_{i} \left[\sup_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \ge \sum_{j} \left[\sup_{\omega \in B_{j}} f(\omega) \right] \mu(B_{j})$$

Problem 5.6. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

 $\int f d\mu \le \int_{-\infty}^{\infty} f d\mu.$

Note that, in the above three problems, f is not required to be measurable.

Problem 5.7. Now suppose $\mu(\Omega) < \infty$, f is bounded; that is, there is an $M < \infty$ such that $|f(\omega)| \leq M$ for all $\omega \in \Omega$, and f is measurable \mathcal{F}/\mathcal{R} . Consider the partition

$$A_i\{\omega : i\epsilon < f(\omega) \le (i+1)\epsilon\}, \quad i = -N, -N+1, \dots, N-1, N,$$

where N is an integer such that $\epsilon N > M$. Show that

$$\sum_{i} \left[\sup_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) - \sum_{i} \left[\inf_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \leq \epsilon \mu(\Omega).$$

Conclude that

 $\int f d\mu = \int^* f d\mu.$

Where did you use the condition that f is measurable?

Equality sign missing.

Problem 5.8. Define set functions $\mu^*: 2^{\Omega} \to \overline{\mathbb{R}}$ and $\mu_*: 2^{\Omega} \to \overline{\mathbb{R}}$ as follows: for any $A \in 2^{\Omega}$,

$$\underline{\mu^*(A)} = \inf\{\mu(B) : B \supseteq A, \ B \in \mathcal{F}\}$$
$$\underline{\mu_*(A)} = \sup\{\mu(B) : B \subseteq A, \ B \in \mathcal{F}\}.$$

1. Show that, for any $B \in \mathcal{F}$, $B \supseteq A$, there is $\{A_i\} \in \mathcal{P}$ such that

$$\sum_i \left[\sup_{A_i} I_A \right] \mu(A_i) \leq \mu(B).$$
 P is the collection of finite partitions of \Omega.

Conclude that $\int^* I_A d\mu \leq \mu(B)$, and hence that $\int^* I_A d\mu \leq \mu^*(A)$.

2. Show that, for any $\{A_i\} \in \mathcal{P}$, there is $B \supseteq A$, $B \in \mathcal{F}$ such that

$$\sum_{i} \left[\sup_{A_i} I_A \right] \mu(A_i) = \mu(B).$$

Conclude that $\sum_{i} [\sup_{A_i} I_A] \mu(A_i) \ge \mu^*(A)$, and hence that $\int^* I_A d\mu \ge \mu^*(A)$.

3. Show that, for any $B \subseteq A$, $B \in \mathcal{F}$, there is $\{A_i\} \in \mathcal{P}$ such that

This is I_A.
$$\mu(B) \leq \sum_i \left[\inf_{A_i} I_A\right] \mu(A_i).$$

Conclude that $\mu(B) \leq \int_* f d\mu$, and hence that $\mu_*(A) \leq \int_* I_A d\mu$.

4. Show that, for any $\{A_i\} \in \mathcal{P}$, there is $B \subseteq A, B \in \mathcal{F}$ such that

$$\mu(B) = \sum_{i} \left[\inf_{A_i} I_A \right] \mu(A_i).$$

Conclude that $\mu_*(A) \geq \sum_i [\inf_{A_i} I_A] \mu(A_i)$, and hence that $\mu_*(A) \geq \int_* I_A d\mu$.