2021-MA-'40-52'

EE24BTECH11007 - Arnav Makarand Yadnopavit

- 40) The equation $xy z \log y + e^{xz} = 1$ can be solved in a neighborhood of the point (0, 1, 1) as y = f(x, z)for some continuously differentiable function f. Then
 - a) $\nabla f(0,1) = (2,0)$

c) $\nabla f(0,1) = (0,1)$

b) $\nabla f(0,1) = (0,2)$

- d) $\nabla f(0,1) = (1,0)$
- 41) Consider the following topologies on the set \mathbb{R} of all real numbers.

 T_1 is the upper limit topology having all sets (a, b) as basis.

 $T_2 = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite}\} \cup \{\phi\}.$

 T_3 is the standard topology having all sets (a, b) as basis. Then

- a) $T_2 \subset T_3 \subset T_1$ b) $T_1 \subset T_2 \subset T_3$ c) $T_3 \subset T_2 \subset T_1$ d) $T_2 \subset T_1 \subset T_3$

1

42) Let \mathbb{R} denote the set of all real numbers. Consider the following topological spaces.

 $X_1 = (\mathbb{R}, T_1)$, where T_1 is the upper limit topology having all sets (a, b) as basis.

 $X_2 = (\mathbb{R}, T_2)$, where $T_2 = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite}\} \cup \{\phi\}$. Then

- a) both X_1 and X_2 are connected
- b) X_1 is connected and X_2 is NOT connected
- c) X_1 is NOT connected and X_2 is connected
- d) neither X_1 nor X_2 is connected
- 43) Let $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be an inner product on the vector space \mathbb{R} over \mathbb{R} . Consider the following statements:

 $P: |\langle u, v \rangle| \leq \frac{1}{2} (\langle u, u \rangle + \langle v, v \rangle)$ for all $u, v \in \mathbb{R}^n$.

 $Q: If\langle u, v \rangle = \langle 2u, -v \rangle$ for all $v \in \mathbb{R}^n$, then u = 0. Then

- a) both P and Q are TRUE
- b) P is TRUE and Q is FALSE
- c) P is FALSE and Q is TRUE
- d) both P and Q are FALSE
- 44) Let G be a group of order 5^4 with center having 5^2 elements. Then the number of conjugacy classes in G is $_$
- 45) Let F be a finite field and F^{\times} be the group of all nonzero elements of F under multiplication. If F^{\times} has a subgroup of order 17, then the smallest possible order of the field F is
- 46) Let $R = \{z = x + iy \in \mathbb{C} : 0 < x < 1 \text{ and } -11\pi < y < 11\pi\}$ and Γ be the positively oriented boundary of R. Then the value of the integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{e^z dz}{e^z - 2}$$

47) Let $D = \{z \in \mathbb{C} : |z| < 2\pi\}$ and $f : D \to \mathbb{C}$ be the function defined by

$$f(z) = \begin{cases} \frac{3z^2}{(1-\cos z)} & \text{if } z \neq 0, \\ 6 & \text{if } z = 0. \end{cases}$$

If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 for $z \in D$, then $6a_2 =$

- 48) The number of zeroes (counting multiplicity) of $P(z) = 3z^5 + 2iz^2 + 7iz + 1$ in the annular region $\{z \in \mathbb{C} : 1 < |z| < 7\}$ is ___
- 49) Let A be a square matrix such that $\det(xI A) = x^4(x 1)^2(x 2)^3$, where $\det(M)$ denotes the determinant of a square matrix M.

If $\operatorname{rank}(A^2) < (A^3) = (A^4)$, then the geometric multiplicity of the eigenvalue 0 of A is _____.

- 50) If $y = \sum_{k=0}^{\infty} a_k x^k$, $(a_0 \neq 0)$ is the power series solution of the differential equation $\frac{d^2 y}{dx^2} 24x^2y = 0$, the $\frac{a_4}{a_0} = \frac{1}{100}$.

 51) If $u(x,t) = Ae^{-t} \sin x$ solves the following initial boundary value problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \pi, \quad t > 0,$$

$$u(0, t) = u(\pi, t) = 0, \quad t > 0,$$

$$u(x, 0) = \begin{cases} 60, 0 < x \le \frac{\pi}{2}, \\ 40, \frac{\pi}{2} < x < \pi, \end{cases}$$

$$T(p) = (p(0) - p(1)) + (p(0) + p(1))x + p(0)x^{2}.$$

Then the sum of the eigenvalues of T is ______.