

EECS 203 Exam 1 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2638/

table 1

 $\begin{array}{l} \textbf{TABLE 7 Logical Equivalences} \\ \textbf{Involving Conditional Statements.} \\ p \rightarrow q = rp \lor q \\ p \rightarrow q = rq \rightarrow rp \\ p \lor q = rp \rightarrow q \\ p \land q = r(p \rightarrow rq) \\ r(p \rightarrow q) \land (p \rightarrow rq) = p \land rq \\ (p \rightarrow q) \land (p \rightarrow r) = p \rightarrow (q \land r) \\ (p \rightarrow r) \land (q \rightarrow r) = (p \lor q) \rightarrow r \\ (p \rightarrow r) \lor (q \rightarrow r) = (p \lor q) \rightarrow r \\ \end{array}$

kk

Proof Laws

TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

k

Inference

TABLE 1 Rules of	Inference.	
Rule of Inference	Tautology	Name
$\begin{array}{c} p \\ p \rightarrow q \\ \therefore \overline{q} \end{array}$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \rightarrow q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore \overline{p \rightarrow r} \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \vee q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \vee q) \wedge \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$ \begin{array}{c} p \vee q \\ \neg p \vee r \\ \therefore \overline{q \vee r} \end{array} $	$((p \vee q) \wedge (\neg p \vee r)) \rightarrow (q \vee r)$	Resolution

k

Set ID's

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$ A \cup U = U $ $ A \cap \emptyset = \emptyset $	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

wow

By Kalbi cheatography.com/kalbi/

Published 6th October, 2014. Last updated 12th May, 2016. Page 1 of 1.

DeMorgans Quant

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x

k

Quant Inference

TABLE 2 Rules of Inference for Quantified Statements.	
Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization

m

2 Var Quant

Statement	When True?	When False?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x , y .

k

Union/Intersect Collection

The usion of a collection of one, is the set the contains those elements that are needless of a last one set in the collection. We note the noticine $A_1 \cup A_2 \cup \cdots \cup A_m = \bigcup_{i=1}^m A_i$ to denote the union of the set A_1, A_2, \ldots, A_m .

..

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com