大学物理(IIB) 试卷

学号:_____ 成绩:____

一选择题 (共30分)

1. (本题 3分)(5182)

一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的

- (A) 1/4.
- (B) 1/2. (C) $1/\sqrt{2}$.
- (D) 3/4.
- (E) $\sqrt{3}/2$.

Γ

2. (本题 3分)(3413)

下列函数 f(x,t)可表示弹性介质中的一维波动,式中 $A \setminus a$ 和 b 是正的常量.其 中哪个函数表示沿 x 轴负向传播的行波?

- (A) $f(x,t) = A\cos(ax + bt)$. (B) $f(x,t) = A\cos(ax bt)$. (C) $f(x,t) = A\cos ax \cdot \cos bt$. (D) $f(x,t) = A\sin ax \cdot \sin bt$.

3. (本题 3分)(3071)

一平面简谐波以速度 u 沿 x 轴正方向传播, 在 t = t' 时波形曲线如图所示. 则 坐标原点 O 的振动方程为

(A)
$$y = a \cos[\frac{u}{b}(t - t') + \frac{\pi}{2}]$$
.

(C)
$$y = a \cos[\pi \frac{u}{b}(t+t') + \frac{\pi}{2}].$$

(D)
$$y = a \cos[\pi \frac{u}{h}(t - t') - \frac{\pi}{2}].$$

Γ 7

4. (本题 3分)(5321)

 S_1 和 S_2 是波长均为 λ 的两个相干波的波源,相距 3λ /4, S_1 的相位比 S_2 超前 $\frac{1}{2}$ π. 若两波单独传播时,在过 S_1 和 S_2 的直线上各点的强度相同,不随距离变 化,且两波的强度都是 I_0 ,则在 S_1 、 S_2 连线上 S_1 外侧和 S_2 外侧各点,合成波的 强度分别是

(A) $4I_0$, $4I_0$.

(B) 0, 0.

(C) $0, 4I_0$.

- (D) $4I_0$, 0.

٦

5. (本题 3分)(3101)

在驻波中,两个相邻波节间各质点的振动

- (A) 振幅相同,相位相同.
- (B) 振幅不同,相位相同.
- (C) 振幅相同,相位不同.
- (D) 振幅不同,相位不同.

6. (本题 3分)(3674)

在双缝干涉实验中,设缝是水平的. 若双缝所在的平板稍微向上平移,其它 条件不变,则屏上的干涉条纹

- (A) 向下平移, 且间距不变. (B) 向上平移, 且间距不变.
- (C) 不移动,但间距改变. (D) 向上平移,且间距改变. []

7. (本题 3分)(5367)

光电效应和康普顿效应都包含有电子与光子的相互作用过程. 对此, 在以下 几种理解中, 正确的是

- (A) 两种效应都相当于电子与光子的弹性碰撞过程.
- (B) 两种效应都属于电子吸收光子的过程.
- (C) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性 碰撞过程.
- (D) 康普顿效应是吸收光子的过程, 而光电效应则相当于光子和电子的弹性 碰撞过程. Γ

8. (本题 3分)(4197)

由氢原子理论知, 当大量氢原子处于 n=3 的激发态时, 原子跃迁将发出:

- (A) 一种波长的光. (B) 两种波长的光.
- (C) 三种波长的光.
- (D) 连续光谱.

٦ Γ

9. (本题 3分)(5619)

波长 $\lambda = 5000$ Å 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda = 10^{-3}$ Å,则 利用不确定关系式 $\Delta p_x \Delta x \ge h$ 可得光子的 x 坐标的不确定量至少为

- (A) 25 cm.
- (B) 50 cm.
- (C) 250 cm. (D) 500 cm.

Γ

10. (本题 3分)(4440)

直接证实了电子自旋存在的最早的实验之一是

- (A) 康普顿实验.
- (B) 卢瑟福实验.
- (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [

7

二填空题 (共33分)

11. (本题 3分)(3032)

已知两个简谐振动的振动曲线如图所示.两

简谐振动的最大速率之比为

12. (本题 3分)(5314)

一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

$$x_1 = 0.05\cos(\omega t + \frac{1}{4}\pi)$$
 (SI), $x_2 = 0.05\cos(\omega t + \frac{9}{12}\pi)$ (SI)

其合成运动的运动方程为 x =

13. (本题 3 分)(3673)
距离为 d 的双缝上,入射角为 θ . 在图中的屏中 $\overline{\theta}$
央 O 处($\overline{S_1O} = \overline{S_2O}$),两束相干光的相位差为
\mathcal{L}_{S_2}
14. (本题 4分)(3358)
在单缝夫琅禾费衍射示意图中,所画出的各 L L
条正入射光线间距相等,那末光线 1 与 2 在幕上
P点上相遇时的相位差为, P 点应为 3
点.
15. (本题 3分)(3374)
当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振
当一术自然允证内有开展分外面是及工及对和开 加时,有 及对允为 以 偏派
光,则折射光为
·
16. (本题 3分)(4624)
氢原子由定态 l 跃迁到定态 k 可发射一个光子. 已知定态 l 的电离能为 0.85
eV,又知从基态使氢原子激发到定态 k 所需能量为 $10.2 eV$,则在上述跃迁中氢
原子所发射的光子的能量为eV.
京
17. (本题 3分)(4524)
静止质量为 m_e 的电子,经电势差为 U_{12} 的静电场加速后,若不考虑相对论
效应,电子的德布罗意波长λ=
18. (本题 5分)(4986)
普朗克的量子假说是为了解释的实验规律而提出
来的. 它的基本思想是

19. (本题 3分)(4783)

根据量子力学理论, 氢原子中电子的动量矩在外磁场方向上的投影为

 $L_z = m_i \hbar$,当角量子数 l = 2 时, L_z 的可能取值为______

20. (本题 3分)(4787)

在主量子数 n=2,自旋磁量子数 $m_s=\frac{1}{2}$ 的量子态中,能够填充的最大电子

米行 曰.	
 	

三 计算题 (共25分)

21. (本题 5分)(3264)

一质点作简谐振动, 其振动方程为

$$x = 6.0 \times 10^{-2} \cos(\frac{1}{3}\pi t - \frac{1}{4}\pi)$$
 (SI)

- (1) 当x值为多大时,系统的势能为总能量的一半?
- (2) 质点从平衡位置移动到上述位置所需最短时间为多少?

22. (本题 5分)(3514)

两块平板玻璃,一端接触,另一端用纸片隔开,形成空气劈形膜.用波长为2的单色光垂直照射,观察透射光的干涉条纹.

- (1) 设 A 点处空气薄膜厚度为 e, 求发生干涉的两束透射光的光程差;
 - (2) 在劈形膜顶点处,透射光的干涉条纹是明纹还是暗纹?

23. (本题10分)(5226)

- 一双缝, 缝距 d=0.40 mm, 两缝宽度都是 a=0.080 mm, 用波长为 λ =480 nm (1 nm = 10^{-9} m) 的平行光垂直照射双缝, 在双缝后放一焦距 f =2.0 m 的透镜求:
 - (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距 1;
 - (2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目 N 和相应的级数.

24. (本题 5分)(4526)

粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a) \qquad (0 < x < a)$$

- (1) 试写出粒子处于 n=3 状态时出现概率密度最大的位置;
- (2) 若粒子处于 n=1 的状态,则它在 0-3a/4 区间内的概率是多少?

[提示:
$$\int \sin^2 x \, dx = \frac{1}{2}x - (1/4)\sin 2x + C$$
]