Responses of estuarine and inshore fish and fisheries to climate change

Stephen Lamberth & Sven Kerwath

Estuary and shore fisheries

Recreational & subsistence angling, cast-netting, artisanal, commercial beach-seine & gillnet fisheries

500 000 fishers

15 000 t per year

99 % of catch comprises estuary-associated fish

Boat-based commercial & recreational linefishery, recreational spear-fishery

100 000 fishers

20 000 t per year

<10 % of catch comprises estuary-associated fish

Estuary and nearshore responses to climate change

Drivers	Response	Subtropical	Transition zone	Warm temperate	Transition zone	Cool temperate
Ocean circulation Current speed						
	Current position					
	Upwelling					
Precipitation	Runoff					
	Estuary mouth closure					
	Salinity					
	Nutrients fluxes					
	Floods & sediment					
	Flushing of pollutants					
Sea level rise	Salinity					
	Increased tidal prism					
	Mouth closure					
Rising	Species range					
temperatures	Community composition					
Acidification	Calcifying organisms					
Coastal storms	Estuary mouth closure					
	Overwash					
	Marine sediment					

Range expansion

MDS of fish abundance (*cpue*) in the Breede Estuary 2003-2012

Tropical estuarine species

Tropical marine species

Range expansion & stock separation: Spotted grunter Pomadasys commersonnii

Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

Estuarine fish response to altered freshwater flow - cool / warm temperate transition zone

Obligate estuarine dependents

— Dusky kob
— Leervis

- ▲ - White steenbras

Cape moony

Flathead mullet

Spotted grunter
Cape stumpnose

Marine opportunists

-▲- Dassie

Harder mullet

......E

White stumpnose

These fish have to spend the first year of life in estuaries

These fish follow optimum conditions between estuaries & sea

Dependence categories after Whitfield (1994)

Components of freshwater flow to the sea

- Export of nutrients sediment and detritus
- Turbidity
- Productive plumes / fronts (S, T, turbidity)
- Temperature refugia
- Migration, spawning cues
- Coastal connectivity
- Debris ➤ nurseries / refugia, "natural" fish aggregating devices (FADs)

Cause changes in:

- Fleet structure
- Changes in catch per unit effort
- Spatial and temporal distribution of effort
- Economic value of the fisheries concerned

Marine fish response to altered freshwater flow – Thukela Banks line-fishery

Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

West coast sole and freshwater flow

- West coast sole *Austroglossus microlepis* are targeted in South African and Namibian waters whereas east coast sole *Austroglossus pectoralis* are caught on SAs eastern seaboard
- The west coast sole fishery collapsed in the 1970s whereas the east coast one has remained stable.
- The sole trawl industry have long used rainfall (terrestrial runoff) as a predictor of catches in the following season
- From 1970 to 1980, dam storage capacity on the Orange-Senqu rose from 10% to 90% of that in the present day
- The west coast sole fishery collapsed in the mid 1970s
- Demersal trawl survey data (DAFF 1984-2011) indicate a weak but positive relationship between Orange-Senqu flow and biomass estimates.
- However, there are stronger but negative relationships between sole and their predators e.g. gurnard
- Damming saw sediment discharge into the sea change in composition from predominantly silt to cohesive clays
- Hypothetically, this influenced the burying ability and crypsis of juvenile sole leaving them more exposed to predators on the sediment surface and abrupt stock collapse
- Changes in nutrient and food availability may also have played a role

UNDP-GEF Orange-Senqu River Basin Strategic Action Programme

Anchovy density (g.m⁻²)

1 Juvenile anchovy densities g.m⁻² on the west coast of South Africa during May of each year from 2004 - 2013. Data and map source Dagmar Merkle, DAFF Small Pelagic Acoustic Survey.

Changes in wind speed and direction are influencing fleet behaviour

Summary observations

- More than 40 range extensions of tropical fish into estuaries in the warm/cool temperate transition zone
- Mostly erratic summer occurrences of marine species with high mortalities
- Estuary-dependent species have persisted, some establishing new breeding populations
- Fish with specialist niche requirements or subject to life-history bottlenecks (e.g. estuary dependence, late maturity) are more sensitive to change than opportunistic generalists
- Fish populations under intense exploitation more susceptible to change than those under low fishing pressure
- Estuarine and marine fish and fisheries are influenced by freshwater flow
- Increases in wind speed over the past two decades have led to a significant decline in seadays by the line-fishery (but without a concomitant increase in *cpue*)

- Spatial planning in fisheries will become more important in the future
- Small-scale fisheries' resilience rests in their ability to move
- Distributional changes not compatible with Small Scale Fisheries Policy and shift towards local-level fisheries management

Acknowledgements: DAFF Fisheries Research, CSIR, SAIAB, DWS, Cape Nature, SANParks, SANBI, East Cape Parks, Dwesa-Cwebe, Lower Breede River Conservancy, DEA Oceans & Coasts, Eden District Municipality