ELE 364: Assignment #4 Solutions

- 1. (10 pts)
 - (a) The prediction is as follows:

ID	$\mathbf{d}[1]$	$\mathbf{d}[2]$	d[3]	Target	Predict
1	1	2	3	27	14
2	2	3	4	39	20
3	3	4	5	51	26
4	4	5	6	63	32

As a result: $L_2 = 1/2 \times (169 + 361 + 625 + 961) = 1058$.

(b) The prediction is as follows (ED = ErrorDelta):

ID	$\mathbf{d}[1]$	d[2]	d[3]	Target	Predict	Error	$ED \mathbf{w}[0]$	$ED \mathbf{w}[1]$	$ED \mathbf{w}[2]$	$ED \mathbf{w}[3]$
1	1	2	3	27	14	13	13	13	26	39
2	2	3	4	39	20	19	19	38	57	76
3	3	4	5	51	26	25	25	75	100	125
4	4	5	6	64	32	31	31	124	155	186
						Sum	88	250	338	426

Thus, the new values after one iteration are:

- $\mathbf{w}[0] = 0.0088$.
- $\mathbf{w}[1] = 1.0250.$
- $\mathbf{w}[2] = 2.0338$.
- $\mathbf{w}[3] = 3.0426$.
- 2. (10 pts) The first step is to handle the missing values. The mean for the Age feature is 32.7 and the mode for the socio-economic band feature is a. Hence, the question marks in the query instances are changed to reflect these values. Each continuous feature should then be range-normalized to [-1,1]. These normalized values are shown in the following table.

With this information, we can calculate the prediction by plugging these values into the regression equation as follows.

- Logistic (0.668 + (-0.580×-0.347) + (-0.198×1) + 3.409 × 0.769 + (2.050 × -0.565)) = 0.894. Hence, yes.
- Logistic($0.668 + (-0.580 \times 0.956) + (-0.160 \times 1) + (3.409 \times -0.065) + (2.050 \times -0.750)$) = 0.141 Hence, no.

3. (10 pts) The output for the SVM model is given by

```
 \begin{array}{l} (-1\times1.6811\times(\langle-0.4549,0.0095,0.2203\rangle\cdot\langle-0.8945,-0.3459,0.5520\rangle)-0.0216)\\ +(-1\times0.2384\times(\langle-0.2843,-0.5253,0.3668\rangle\cdot\langle-0.8945,-0.3459,0.5520\rangle)-0.0216)\\ +(-1\times0.2055\times(\langle0.3729,0.0904,-1.0836\rangle\cdot\langle-0.8945,-0.3459,0.5520\rangle)-0.0216)\\ +(-1\times1.7139\times(\langle0.5580,0.2217,0.2115\rangle\cdot\langle-0.8945,-0.3459,0.5520\rangle)-0.0216)\\ =-0.9045-0.1737-0.2195-0.8083=-2.1061 \end{array}
```

Because the output is less than -1, the model predicts the negative level: low risk.

4. (10 pts)

- (a) $\phi(v_1) = \langle 0.25, 0.64, 0.566, 0.707, 1.131, 1 \rangle$ and $\phi(v_2) = \langle 1, 0.49, 0.99, 1.414, 0.99, 1 \rangle$.
- (b) $\phi(v_1)\cdot\phi(v_2) = 0.25\times1 + 0.64\times0.49 + 0.566\times0.99 + 0.707\times1.414 + 1.131\times0.99 + 1\times1 = 4.244.$
- (c) $kernel(v_1, v_2) = (0.5 \times 1 + 0.8 \times 0.7 + 1)^2 = 4.244$. This matches the result in (b).
- (d) $kernel(v_1, v_2) = 4.244$, $kernel(v_0, v_2) = (0.9 \times 1 + 0.7 \times 0.6 + 1)^2 = 5.382$. $(-1 \times 0.71 \times kernel(v_0, v_2) + 0.21) + (+1 \times 0.98 \times kernel(v_1, v_2) + 0.21)$ $= (-1 \times 0.71 \times 5.382 + 0.21) + (+1 \times 0.98 \times 4.244 + 0.21) = -3.611 + 4.369 = 0.758$ Even though this value is less than 1 and, hence, within the margin, since it is greater than 0, the class of v_2 is predicted as 1.