

RESUMEN DE LA CLASE ANTERIOR

HARDWARE

- Motherboard
- Procesador
- → RAM
- ROM, Caché, otras memorias.
- → La tarjeta gráfica.
- → La tarjeta de sonido, red, demás.
- Disco duro.
- Periféricos

SOFTWARE

- → S(
 - Kernel.
 - Librerías del Sistema.
 - Controladores.
 - Sistemas de Archivos.
 - Gestor de Ventanas.
 - Software de Administración.
 - Shell".

"Vivimos en una sociedad exquisitamente dependiente de la ciencia y la tecnología, pero en la que nadie sabe nada acerca ni de la ciencia ni de la tecnología. Ello constituye en una fórmula para el desastre" Carl Sagan

CAPAS DE ABSTRACCIÓN

UNA CIUDAD DE DATOS

DATOS = BITS

DECIMAL A BINARIO

$$0.65 * 2 = 1.3 \longrightarrow 1$$
 $0.3 * 2 = 0.6 \longrightarrow 0$
 $0.6 * 2 = 1.2 \longrightarrow 1$
 $0.2 * 2 = 0.4 \longrightarrow 0$
 $0.4 * 2 = 0.8 \longrightarrow 0$

BINARIO A DECIMAL

1x2³ 1x2² 0x2¹ 1x2⁰ 1x2⁰ 0x2⁻² 1x2⁻³ 1x2⁻⁴

1 1 0 1 1 0 1 1

8 4 0 1 0.5 0 0.125 0.0625

Binary point

8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 + 0.0625 = 13.6875 (Base 10)

ALGUNOS EJERCICIOS

FORMATO PUNTO COMA FLOTANTE (IEEE)

FORMATO PUNTO FLOTANTE

64bit = precision doble

1 11bit

32bit = precisión simple

1 8bit

bit

23bit

52bit

bit del signo bits del exponente bits de la mantisa

_{16bit} = media precisión

1 5bit

10bit

89526.125

Pasar este número a formato IEEE 32 y 64 bits

Proceso es fácil

- \rightarrow 10101110110110.001
- \rightarrow 1.0101110110110110001 * 2^16 S=0
- $(32b) E=16+127=143 \rightarrow 10001111$
- (64b) $E=16+1023=1039 \rightarrow 10000001111$
- 0_10001111_01011101101101100010000

VALORES MÁXIMO Y MÍNIMO

Numeric Primitive Data

 "Objects" of different numeric data types occupy different number of cells

Type	Storage	Min Value	Max Value	
byte	8 bits	-128	127	
short	16 bits	-32,768	32,767	
int	32 bits	-2,147,483,648	2,147,483,647	
long	64 bits	$< -9 \times 10^{18}$	$> 9 \times 10^{18}$	
float	32 bits	$+/-3.4 \times 10^{38}$ with 7 significant digits		IEEE 754
double	64 bits	+/- 1.7 x 10 ³⁰⁸ with 15 significant digits format		

ESPACIO DE DIRECCIONES: HACE REFERENCIA LA MEMORIA QUE PUEDE DIRECCIONAR UN BUS, SE CALCULA AL ELEVAR 2 A LA N BUSES DE DIRECCIONES. POR EJEMPLO, PARA DIRECCIONAR UNA MEMORIA DE 256 BITS (32 BYTES), SON NECESARIAS AL MENOS 8 LÍNEAS, PUES 2⁸ = 256.

RECORDAR:

1 BYTE \rightarrow 8 BITS

2^10 BYTES \rightarrow KB 2^20 BYTES \rightarrow MB 2^30 BYTES \rightarrow GB

2^40 BYTES \rightarrow TB 2^50 BYTES \rightarrow PB 2^60 BYTES \rightarrow EB

