PHYS 1512: Week 12

Connor Feltman

University of Iowa

23 January 2020

Equations

$$E = hf = \frac{hc}{\lambda} \quad \text{(Energy of a photon)} \tag{1}$$

$$KE_{max} = hf - \phi_o$$
 (Photoelectric effect) (2)

$$\lambda = \frac{h}{p} \quad (\text{De Broglie}) \tag{3}$$

$$(\Delta p_x)(\Delta x) \ge \frac{h}{4\pi}$$
 (Uncertainly Principle) (4)

$$(\Delta E)(\Delta t) \geq \frac{h}{4\pi}$$
 (Uncertainly Principle) (5)

Some notes

$$h = 6.626E-34$$
 Js

$$1J=6.242E18\ eV$$

Discrete Energy

An AM radio station broadcasts an electromagnetic wave with a frequency of 665kHz, whereas an FM station broadcasts an electromagnetic wave with a frequency of 91.9MHz. How many AM photons are needed to have a total energy equal to that of one FM photon?

Einstein's Victory

The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 485nm. What is the work function ϕ_o of this metal? Express your answer in electron volts.

Faster than a speeding proton

An electron and proton have the same speed. Ignore relativistic effects and determine the ratio $\frac{\lambda_{electron}}{\lambda_{proton}}$ of their De Broglie wavelengths.

$$m_{electron} = 9.11 * 10^{-31} kg$$

 $m_{proton} = 1.67 * 10^{-27} kg$

What's really down in an atom?

A proton is confined to a nucleus that has a diameter of $5.5*10^{-15}$ m. If this distance is considered to be the uncertainty in the position of the proton, what is the minimum uncertainty in its momentum?

Electric potential energy in motion

An electron, starting from rest, accelerates through a potential difference of 418V. What is the final de Broglie wavelength of the electron, assuming that its final speed is much less than the speed of light?