2011-2012 学年第一学期 高等数学(2-1)(工科类)期末试卷(A)

一、填空题(每小题 3 分, 共 15 分)

1. 函数
$$y = \frac{x^2 - 4}{x^2 - 3x + 2}$$
 的可去间断点是______.

- 2. 曲线 $y = 1 e^{-x^2}$ 的下凸区间是 . .
- 3. 设 $f'(\ln x) = x \ln x$,则 f(x) =______.

4.
$$\int_{1}^{+\infty} \frac{1}{1+x^2} dx = \underline{\hspace{1cm}}$$

5.
$$y' - \frac{1}{x}y = x^2 \cos x^2$$
 的通解是______.

二**、选择题**(每小题 3 分, 共 15 分)

1. 设函数
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则 $f(x)$ 在点 $x = 0$ 处 ().

A 极限不存在, B 极限存在但不连续, C 连续但不可导, D 可导.

2. 已知
$$x \to 0$$
时, $f(x) = 3\sin x - \int_0^{3x} \cos t dt = \int_0^{3x} \cos t dt =$

A.
$$k=1$$
, $c=4$, B. $k=1$, $c=-4$, C. $k=3$, $c=4$, D. $k=3$, $c=-4$.

A. 2; B.
$$\infty$$
; C. 1; D. $\frac{1}{2}$.

4. 函数
$$y = f(x)$$
 在 $x = 1$ 处有连续导数, $\lim_{x \to 1} \frac{f'(x)}{x - 1} = 2$,则 $f(x)$ 在 $x = 1$ 处取得() A. 拐点; B. 极大值; C. 极小值; D. 都不是.

5. 微分方程 $y'' - y = e^x + e^{-x}$ 的特解形式为 ().

A.
$$a(e^x + e^{-x})$$
, B. $ax(e^x + e^{-x})$, C. $x^2(ae^x + be^{-x})$, D. $x(ae^x + be^{-x})$.

三、计算题(每小题6分,共30分)

1. 求极限
$$\lim_{x\to 0} \frac{\int_{\cos x}^{1} t \ln t dt}{e^{x^4} - 1}$$

2. 方程
$$\begin{cases} x = \int_0^t \frac{t-u}{1+(t-u)^2} du \\ y = t - \arctan t \end{cases}$$
 确定 $y \ni x$ 的函数,求 $\frac{dy}{dx}$ 及 $\frac{d^2y}{dx^2}$.

3. 求极限
$$\lim_{x\to 0} \frac{[\sin x - \sin(\sin x)]\sin x}{x^4}$$
.

4. 求积分
$$\int_0^{\frac{1}{2}} \frac{x \arcsin x}{\sqrt{1-x^2}} dx.$$

四、应用题 (共 24 分)

1. (本题 6 分) 求
$$f(x) = \frac{1}{x} + \ln(1 + e^x)$$
 的渐近线.

- 2. (本题 12 分)设由曲线 $y = e^x$ 与过点 (1, e) 的切线及 y 轴所围平面图形为 D.
 - (1). 求 D 的面积 A;
 - (2). 求 D 绕 y 轴旋转一周所得旋转体的体积 V.

3. (本题 6 分) 有半径为 R 的半球形容器如图,设容器中已注满水 ,求将其全部抽出所做的功最少应为多少 ?

五、证明题 (16分)

1. (本题 9 分) 设 x > 0, 证明: $\frac{x}{1+x} < \ln(1+x) < x$.

- 2. (本题 7 分) 设函数 f(x) 在 [0,5] 上连续,在 (0,5) 内存在二阶导数,且 $\int_0^2 f(x) dx = 2f(3) = f(4) + f(5) , \ \text{证明}:$
 - (1) 存在 $\eta \in [0,3)$, 使 $f(\eta) = f(3)$;
 - (2) 存在 $\xi \in (0,5)$, 使 $f''(\xi) = 0$.