Decision Boundary for $(2x_1 - x_2 - 6)$

Question 1: Decision Boundary in \mathbb{R}^2 for $(2x_1 - x_2 - 6)$

Step 1: Understand the Prediction Rule

The prediction rule is based on the sign of the linear function:

$$f(x_1, x_2) = 2x_1 - x_2 - 6$$

The decision boundary is defined by:

$$f(x_1, x_2) = 0 \implies 2x_1 - x_2 - 6 = 0$$

Step 2: Rewrite as Line Equation

Solve for x_2 :

$$x_2 = 2x_1 - 6$$

This is a straight line in \mathbb{R}^2 with:

- Slope: 2
- y-intercept: -6

Step 3: Find Axis Intercepts

To find the *x*-intercept: set $x_2 = 0$

$$2x_1 - 6 = 0$$
$$x_1 = 3$$

To find the *y*-intercept: set $x_1 = 0$

$$x_2 = -6$$

Step 4: Determine Classification Sides

Choose test points on either side of the boundary:

- Test point (0,0): $f(0,0) = -6 < 0 \Rightarrow \mathbf{Negative}$
- Test point (5,2): $f(5,2) = 10 2 6 = 2 > 0 \Rightarrow \textbf{Positive}$

Figure 1: Decision boundary $x_2 = 2x_1 - 6$ with axis intercepts and classification regions

Step 5: Draw the Decision Boundary

Region where $2x_1 - x_2 - 6 > 0$ is classified as Positive

Region where $2x_1 - x_2 - 6 < 0$ is classified as Negative