Project Luther:

Predicting Return on Investment of Movies

San Francisco, 10/07/2016, Herr Nils

Goal: Predict Return on investment before the movie is produced

Return on Worldwide adjusted Gross – adj. Budget 1 Target investment Adjusted Budget (RoI) Budget Reputation of Reputation of Runtime Genre (adjusted) **Actors** Director 10 Features Book 3D enabled? Season True story? **MTAA Rating** Adaption? 2400 2400 Movies scraped using three sources: Box Office Mojo, IMDb and goodread.com Movies

Overview: RoI varies between -1 and ~86 between movies

Result: Random forest model with R² of 0.26 is more accurate than Linear Regressions

Standard Linear Regression

Highest correlations:

- **Adj. Budget:** -0.14

- Action/ Adventure: -0.07

- Rat-PG-14: -0.6

- Actors' Reputation: 0.05

Lasso Regression

Highest correlations:

- See Standard linear regression

Random Forest

Most relevant features:

- Adjusted Budget
- Runtime
- Actors' Reputation

R²: 0.26

Major accuracy improvement when looking within selected Genres only

Sci-Fi/ Fantasy Movies only (Random Forest)

- Random Forest Model for Sci-Fi/ Fantasy movies
- 228 movies in dataset

Animation Movies only (Random Forest Model)

- Random Forest Model for Animation Movies
- 149 respective movies in dataset

Potential Next steps

- •Examine additional subsets e.g.
 - -Different rating categories
 - -3D movies only

- . . .

Consider further regression models