Final Project

Pratheek Sreerangam

2022-12-15

Problem

In this case study, tasks included assessing costs and figuring out the car characteristics the buyer will get. In this case study, we'll try to gather data on the least expensive, most affordable, average, and most expensive cars.

What are the specifications that clients will receive based on these four price ranges?

About dataset

For this project, the data came from Kaggle. The car dataset has 26 columns and 205 rows. All vehicle parameters, including body type, driving wheel position, engine position, wheelbase, length, breadth, and height, as well as a few more, are covered by the dataset.

Let's look at dataset details

oolin nor	nalize make	fuel-typ	e aspiratio	r num-of-	body-sty	drive-wheels	engine-locati	wheel-base	length	width	height	curb-weigl engine-type	num-of-c	cy engine-siz fuel-systi bi	re	stroke	compres: h	orsepov p	eak-rpn	city-mpg high	way-mpg	price
3 ?	alfa-rome		std	two	convertib		front	88.6				2548 dohc	four	130 mpfi	3.47	2.68	9	111	5000	21	27	134
3?	alfa-rome	gas	std	two	convertib	rwd	front	88.6	168.8	64.1	48.8	2548 dohc	four	130 mpfi	3.47	2.68	9	111	5000	21	27	165
1?	alfa-rome	gas	std	two	hatchbar	rwd	front	94.5	171.2	65.5	52.4	2823 ohov	SİX	152 mpfi	2.68	3.47	9	154	5000	19	26	165
2	164 audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337 ohc	four	109 mpfi	3.19	3.4	10	102	5500	24	30	135
2	164 audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824 ohc	five	136 mpfi	3.19	3.4	8	115	5500	18	22	174
2 ?	audi	gas	std	two	sedan	fwd	front	99.8	177.3	66.3	53.1	2507 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	153
1	158 audi	gas	std	four	sedan	fwd	front	105.8	192.7	71.4	55.7	2844 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	17
1?	audi	gas	std	four	wagon	fwd	front	105.8	192.7	71.4	55.7	2954 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	18
1	158 audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	71.4	55.9	3086 ohc	five	131 mpfi	3.13	3.4	8.3	140	5500	17	20	23
0 ?	audi	gas	turbo	two	hatchbar	4wd	front	99.5	178.2	67.9	52	3053 ohc	five	131 mpfi	3.13	3.4	7	160	5500	16	22	?
2	192 bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2395 ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	16
0	192 bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2395 ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	16
0	188 bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2710 ohc	SİX	164 mpfi	3.31	3.19	9	121	4250	21	28	20
0	188 bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2765 ohc	SİX	164 mpfi	3.31	3.19	9	121	4250	21	28	2
1?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7	3055 ohc	SİX	164 mpfi	3.31	3.19	9	121	4250	20	25	2
0 ?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7	3230 ohc	SİX	209 mpfi	3.62	3.39	8	182	5400	16	22	30
0 ?	bmw	gas	std	two	sedan	rwd	front	103.5	193.8	67.9	53.7	3380 ohc	SİX	209 mpfi	3.62	3.39	8	182	5400	16	22	4
0 ?	bmw	gas	std	four	sedan	rwd	front	110	197	70.9	56.3	3505 ohc	SİX	209 mpfi	3.62	3.39	8	182	5400	15	20	36
2	121 chevrolet	gas	std	two	hatchbar	fwd	front	88.4	141.1	60.3	53.2	1488 I	three	61 2ЫЫ	2.91	3.03	9.5	48	5100	47	53	
1	98 chevrolet	gas	std	two	hatchbar	fwd	front	94.5	155.9	63.6	52	1874 ohc	four	90 2ЫЫ	3.03	3.11	9.6	70	5400	38	43	(
0	81 chevrolet	gas	std	four	sedan	fwd	front	94.5	158.8	63.6	52	1909 ohc	four	90 2ЫЫ	3.03	3.11	9.6	70	5400	38	43	(
1	118 dodge	gas	std	two	hatchbar	fwd	front	93.7	157.3	63.8	50.8	1876 ohc	four	90 2ЫЫ	2.97	3.23	9.41	68	5500	37	41	
1	118 dodge	gas	std	two	hatchbar	fwd	front	93.7	157.3	63.8	50.8	1876 ohc	four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	6
1	118 dodge	gas	turbo	two	hatchbar	fwd	front	93.7	157.3	63.8	50.8	2128 ohc	four	98 mpfi	3.03	3.39	7.6	102	5500	24	30	
1	148 dodge	gas	std	four	hatchbar	fwd	front	93.7	157.3	63.8	50.6	1967 ohc	four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	6
1	148 dodge	gas	std	four	sedan	fwd	front	93.7	157.3	63.8	50.6	1389 ohc	four	90 2ЫЫ	2.97	3.23	9.4	68	5500	31	38	

https://www.kaggle.com/code/natigmamishov/edaand-regression-on-automobile-dataset/data

Approach

I'll try grouping the automobiles based on their specifications. I'll remove the normalized-losses and symbolling variables from the data set and only use the specification variables, which are categorical and numerical, for this.

The K-means method is one of the most frequently used clustering techniques. Simply described, K is a collection of clusters into which the data can be divided according to the similarities and differences in their attribute values. The center of each cluster is more like adjacent observatories. In K-means clustering, the number of similarities that will be utilized to form a group can be stated as the distance between two observations. This distance is then used in the calculation to establish which cluster each observational member belongs to. With each new observation, a new cluster center is found, and the correct cluster is then given to the new observations.

Why K-means

K-means is the simplest. to erect and maintain. Simply select "k" and repeat the process numerous times. Most clever algorithms require a lot more parameters to be configured and are far more complicated to design. Additionally, most people don't need high-quality clusters. Anything that can be done for them remotely makes them happy. Additionally, they are unsure of what to do when they have more complicated clusters. They need K-means, which reduces a vast amount of data to centroids to build clusters using the most basic model ever.

I chose to apply the techniques listed below to obtain the desired outcomes.

- Launch the necessary libraries
- Importing the data
- Cleaning data
- Factorial evaluation
- Cluster Analysis

The conclusions I came to because of my investigation are as follows.

I selected 4 centers to apply the K-means algorithm by utilizing Factorial analysis of mixed data (PCAmix) to analyze a data table in which observations are described using both quantitative and qualitative factors. I found the results accordingly

The four clusters' results are in line with these analyses.

Cluster 1: Cheapest, most efficient, compact, small-engine vehicles Cluster

Cluster 2: standard vehicles with standard specifications and standard prices

Cluster3: Diesel, four-door sedans, or wagons that are reasonably expensive, large, and heavy, and have low RPM

Cluster 4: Most expensive, powerful, and powerful engines Cluster

Conclusion

Based on the results and considering their desired features and spending limits, people can make direct car choices.

Companies frequently provide their customers with advice on which qualities, based on their budget, they should purchase.