Глава 18

СГРУППИРОВАННЫЕ ДАННЫЕ

Нередко данные, находящиеся в распоряжении исследователя, представляют собой таблицу количеств попаданий наблюдений в некоторые множества. В этой главе будут рассмотрены методы, позволяющие анализировать такие данные. Все они имеют в качестве предельного закона для статистики критерия распределение хи-квадрат, определенное в примере 3 гл. 11.

Эти методы весьма универсальны, но одновременно довольно грубы из-за потери информации при группировке. Их можно рекомендовать для применения на предварительной стадии статистического анализа.

Ба! Знакомые все лица! Фамусов в «Горе от ума» А. С. Грибоедова

§1. ПРОСТАЯ ГИПОТЕЗА

Пусть ξ_1, \ldots, ξ_n — выборка (см. § 1 гл. 4) из закона с функцией распределения F(x). Разобьем множество значений ξ_1 на N промежутков (возможно, бесконечных) $\Delta_j = (a_j, b_j], \ j = 1, \ldots, N$ (рис. 1).*) Положим $p_j = \mathbf{P}(\xi_1 \in \Delta_j)$, а случайные величины ν_j — равными количеству элементов выборки в Δ_j ($\nu_1 + \ldots + \nu_N = n$). Функция F неизвестна. Проверяется гипотеза

$$H_0\colon F(x)=F_0(x),$$

где F_0 — заданная функция распределения. Если гипотеза верна, то согласно закону больших чисел (Пб) частоты попадания в промеждутки $\hat{p}_j = \nu_j/n$ при достаточно больших n должны быть близки к соответствующим вероятностям $p_j^0 = F_0(b_j) - F_0(a_j)$.

В качестве *меры отклонения* от гипотезы H_0 Карл Пирсон в 1900 г. предложил статистику

$$X_n^2 = n \sum_{j=1}^N \frac{1}{p_j^0} \left(\widehat{p}_j - p_j^0 \right)^2 = \sum_{j=1}^N \frac{\left(\nu_j - n p_j^0 \right)^2}{n p_j^0} \,. \tag{1}$$

Замечание 1. Первое представление в формуле (1) показывает, что X_n^2 есть взвешенная сумма квадратов отклонений частот от

 $[\]overline{\ ^*)}$ Если множество значений ξ_1 является интервалом, то $a_j=b_{j-1}.$

гипотетических вероятностей. Для фиксированного промежутка в силу центральной предельной теоремы (П6) каждое отклонение асимптотически нормально (см. § 4 гл. 7) и имеет порядок малости $1/\sqrt{n}$. Множитель n перед суммой необходим для того, чтобы предельное распределение статистики не вырождалось в 0. Поскольку складываются квадраты отклонений с весами, обратно пропорциональными гипотетическим вероятностям (чтобы «уравнять» слагаемые между собой), представляется правдоподобным, что предельным законом будет распределение хи-квадрат — сумма квадратов независимых и одинаково распределенных по закону $\mathcal{N}(0,1)$ случайных величин.

Теорема 1. Если $0 < p_j^0 < 1, \ j = 1, \dots, N$, то при $n \to \infty$ $X_n^2 \xrightarrow{d} \zeta \sim \chi_{N-1}^2$.

Вопрос 1. Почему число степеней свободы предельного закона не совпадает с числом слагаемых в суммах из (1)?

Доказательство. Раскладывая независимые «шарики» ξ_i $(i=1,\ldots,n)$ по «ящикам» Δ_j $(j=1,\ldots,N)$ с вероятностями p_j^0 попадания в j-й «ящик» (см. § 5 гл. 10), получим

$$\mathbf{P}(\nu_1 = l_1, \dots, \nu_N = l_N) = \frac{n!}{l_1! \dots l_N!} (p_1^0)^{l_1} \dots (p_N^0)^{l_N},$$

если все $l_i \geqslant 0$ и $l_1 + \ldots + l_N = n$, иначе вероятность равна 0.

Используя известную формулу возведения суммы в n-ю степень

$$(a_1 + \ldots + a_N)^n = \sum_{\substack{l_1 \geqslant 0, \ldots, l_N \geqslant 0, \\ l_1 + \ldots + l_N = n}} \frac{n!}{l_1! \ldots l_N!} \ a_1^{l_1} \ldots a_N^{l_N},$$

находим, что характеристическая функция (см. П9) случайного вектора $\boldsymbol{\nu}=(\nu_1,\dots,\nu_N)$ имеет вид

$$\psi_{\nu}(t) = \mathbf{M}e^{it^{T}\nu} = (p_{1}^{0}e^{it_{1}} + \dots + p_{N}^{0}e^{it_{N}})^{n}, \quad t = (t_{1}, \dots, t_{N}).$$
 (2)

Нетрудно убедиться, что для преобразованного случайного вектора $\boldsymbol{\nu}^*=(\nu_1^*,\dots,\nu_N^*)$ с компонентами $\nu_j^*=(\nu_j-np_j^0)/\sqrt{n}$ характеристическая функция выглядит так:

$$\psi_{m{
u}^*}(m{t}) = e^{-i\sqrt{n}\,m{t}^Tm{p}^0} \left[1 + \sum_{i=1}^N p_j^0 \left(e^{it_j/\sqrt{n}} - 1\right)\right]^n, \quad m{p}^0 = \left(p_1^0, \dots, p_N^0\right).$$

Логарифмируя и раскладывая при $\varepsilon \to 0$ в ряды Тейлора функции $\ln(1+\varepsilon) = \varepsilon - \varepsilon^2/2 + O(\varepsilon^3)$ и $e^{i\varepsilon} = 1 + i\varepsilon - \varepsilon^2/2 + O(\varepsilon^3)$ (см. [82, с. 573]), получаем:

$$egin{aligned} & \ln \psi_{m{
u}^*}(m{t}) = -i\,\sqrt{n}\,m{t}^Tm{p}^0 + n\,\sum_{j=1}^N\,p_j^0\,\left(e^{it_j/\sqrt{n}} - 1
ight) - \ & -rac{n}{2}\left[\,\sum_{j=1}^N\,p_j^0\,\left(e^{it_j/\sqrt{n}} - 1
ight)
ight]^2 + O\left(1/\sqrt{n}
ight) = \ & = -rac{1}{2}\,\sum_{j=1}^N\,p_j^0t_j^2 + rac{1}{2}\left(\,\sum_{j=1}^N\,p_j^0t_j
ight)^2 + O\left(1/\sqrt{n}
ight) = -rac{1}{2}\,\,m{t}^T\,m{\Sigma}m{t} + O\left(1/\sqrt{n}
ight), \end{aligned}$$

где (см. П10)

$$\Sigma = \|\sigma_{jk}\|_{N \times N}, \ \sigma_{jk} = \begin{cases} p_j^0 \left(1 - p_j^0\right) & \text{при } k = j, \\ -p_j^0 p_k^0 & \text{при } k \neq j. \end{cases}$$
(3)

Отсюда следует, что предел $\psi_{\nu^*}(t)$ при $n \to \infty$ есть характеристическая функция $\exp\left\{-\frac{1}{2} t^T \Sigma t\right\}$ многомерного нормального закона $\mathcal{N}(\mathbf{0}, \Sigma)$ (см. П9). (Неотрицательная определенность матрицы Σ устанавливается в задаче 5.) По теореме непрерывности из П9 распределение случайной величины ν^* сходится к указанному закону.

Заметим, что ковариационная матрица Σ вырождена (П10). Причиной этого является линейная зависимость компонент вектора ν^* :

$$\nu_1^* + \ldots + \nu_N^* = 0. \tag{4}$$

Однако, ее подматрица ${\bf A}$ размера $(N-1)\times (N-1)$ уже не вырождена. Действительно, нетрудно убедиться, что обратной к ней служит матрица

$$m{A}^{-1} \equiv m{B} = \|b_{jk}\|_{(N-1) \times (N-1)}, \ b_{jk} = egin{cases} 1/p_j^0 + 1/p_N^0 & ext{при } k = j, \\ 1/p_N^0 & ext{при } k
eq j. \end{cases}$$

Таким образом, для подвектора $c = (\nu_1^*, \dots, \nu_{N-1}^*)$ предельным будет невырожденный нормальный закон $\mathcal{N}(\mathbf{0}, \mathbf{A})$. Согласно последнему утверждению из П9 и свойству 3 сходимости из П5

$$cBc^T \xrightarrow{d} \zeta \sim \chi^2_{N-1}$$
 при $n \to \infty$. (5)

С другой стороны, из формул (1) и (4) имеем

$$X_n^2 = \sum_{j=1}^N \frac{1}{p_j^0} \left(\nu_j^*\right)^2 = \sum_{j=1}^{N-1} \frac{1}{p_j^0} \left(\nu_j^*\right)^2 + \frac{1}{p_N^0} \left(\nu_1^* + \ldots + \nu_{N-1}^*\right)^2.$$

Но правая часть совпадает с cBc^T , что с учетом сходимости (5) завершает доказательство теоремы 1.

Как отмечено в [32, с. 111], приближение распределения статистики X_n^2 с помощью закона χ_{N-1}^2 является достаточно точным при $n\geqslant 50$ и $np_j^0\geqslant 5$ для всех $j=1,\ldots,N$.

Замечание 2. Последнее условие предназначено для того, чтобы обеспечивать возможность попадания хотя бы нескольких наблюдений ξ_i в каждый из промежутков Δ_j . Это необходимо для пригодности лежащего в основе теоремы 1 нормального приближения для распределения величин $\sqrt{n}\,(\widehat{p}_j-p_j^0)$: чем больше для заданного j ожидаемое количество попаданий np_j^0 , тем приближение точнее. Поэтому число промежутков N не должно быть слишком большим. Однако, его не следует брать и очень малым, так как в этом случае

набор вероятностей p_1^0, \ldots, p_N^0 недостаточно хорошо представляет гипотетическую функцию распределения $F_0(x)$. Обычно на практике берут $N \approx \log_2 n$.

Когда N выбрано, возникает вопрос, каким образом задавать промежутки $\Delta_j=(a_j,b_j].$ Если областью возможных значений случайной величины ξ_1 служит ограниченный интервал, то можно разбить его на равные по длине части. Альтернативным выбором (годящимся для неограниченных областей значений ξ_1) является разбиение действительной прямой на равновероятные промежутки, у которых $a_j=b_{j-1}$, а правые границы b_j находятся из уравнений $F_0(b_j)=j/N,\ j=1,\ldots,N.$

Иногда N и p_j^0 не выбираются исследователем, а определяются самой изучаемой проблемой.

Г. И. Мендель (1822—1884), австрийский естествоиспытатель.

Пример 1. Генетические законы Менделя (см. [35, с. 563]). В экспериментах с селекцией гороха (1856—1863) Мендель наблюдал частоты различных видов семян, получаемых при скрещивании растений с круглыми желтыми семенами и растений с морщинистыми зелеными семенами. Эти данные и значения теоретических вероятностей, определяемые в соответствии с законом Менделя независимого расщепления признаков, приведены в следующей таблице:

Тип семян	Частота \widehat{p}_j	Вероятность p_j^0
Круглые и желтые	315/556	9/16
Морщинистые и желтые	101/556	3/16
Круглые и зеленые	108/556	3/16
Морщинистые и зеленые	32/556	1/16

Проверим гипотезу H_0 о согласованности частот с теоретическими вероятностями при помощи критерия хи-квадрат. Статистика критерия (см. формулу (1)) $X_n^2 \approx 0,47$. Из табл. Т3 получаем, что это значение находится между квантилями уровня 0,05 и 0,1 закона χ_3^2 . Таким образом, согласие наблюдений с гипотезой H_0 очень хорошее.

Вопрос 2. Чем подозрителен датчик псевдослучайных чисел, у которого в промежутки / 17 / 1 1

$$\begin{pmatrix} 0, \frac{1}{4} \end{bmatrix}, \begin{pmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}, \\ \begin{pmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix} \text{ in } \begin{pmatrix} \frac{3}{4}, 1 \end{bmatrix}$$

попали соответственно 504, 505, 492 и 499 точек?

§ 2. СЛОЖНАЯ ГИПОТЕЗА

Метод группировки наблюдений с последующим применением критерия хи-квадрат применим и для проверки сложной гипотезы H_0' о принадлежности неизвестной функции распределения элементов выборки некоторому заданному классу функций распределения $\mathcal{F} = \{F(x, \theta), \; \theta \in \Theta \subseteq \mathbb{R}^k\}.$

В этом случае общая (при всевозможных $\theta \in \Theta$) область значений ξ_1 также разбивается на N промежутков $\Delta_j = (a_j, b_j],$

 $j=1,\ldots,N$. Как и ранее ν_j обозначает число элементов выборки в Δ_j . Однако теперь вероятности $\mathbf{P}(\xi_1\in\Delta_j)$ при H_0' уже не будут заданы однозначно, а представляют собой функции от $\boldsymbol{\theta}$: $p_j(\boldsymbol{\theta})=F(b_j,\boldsymbol{\theta})-F(a_j,\boldsymbol{\theta})$ (рис. 2). Из-за этой зависимости от неизвестного параметра нельзя просто подставить $p_j(\boldsymbol{\theta})$ вместо p_j^0 в (1). Р. Фишер (1924 г.) доказал, что если подставить $p_j(\boldsymbol{\tilde{\theta}})$, где $\boldsymbol{\tilde{\theta}}-$ оценка максимального правдоподобия, основанная на частотах (определяемая ниже), то при некоторых условиях на класс \mathcal{F} функций распределения (см. [32, с. 115]) статистика

$$p_j(\theta)$$
 $F(x,\theta)$
 $a_j \Delta_j b_j$
Proc. 2

$$\tilde{X}_{n}^{2} = \sum_{j=1}^{N} \left(\nu_{j} - n p_{j}(\tilde{\boldsymbol{\theta}}) \right)^{2} / \left[n p_{j}(\tilde{\boldsymbol{\theta}}) \right]$$
 (6)

будет иметь в качестве предельного закона снова распределение хи-квадрат, только уже с (N-1-k) степенями свободы, где k — размерность вектора ${\pmb \theta}$.

Определение. Значением оценки максимального правдоподобия, основанной на частотах $\tilde{\boldsymbol{\theta}}$, служит вектор $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$, на котором достигается максимум вероятности

$$\mathbf{P}(\nu_1 = l_1, \dots, \nu_N = l_N) = \frac{n!}{l_1! \dots l_N!} [p_1(\boldsymbol{\theta})]^{l_1} \dots [p_N(\boldsymbol{\theta})]^{l_N}.$$

Это равносильно максимизации по θ функции

$$\sum_{j=1}^{N} l_j \ln p_j(\boldsymbol{\theta}) \tag{7}$$

или (для гладких моделей) решению системы, вообще говоря, нелинейных уравнений

$$\sum_{j=1}^{N} l_j \frac{\partial \ln p_j(\boldsymbol{\theta})}{\partial \theta_m} = 0, \quad m = 1, \dots, k.$$
 (8)

Пример 2. Критерий χ^2 для пуассоновской модели (см. [32, с. 116]). Положим $\pi_m(\theta)=e^{-\theta}\theta^m/m!,\ m\geqslant 0.$ Возьмем промежутки $\Delta_j=[j-1,j),\ j=1,\dots,N-1;\ \Delta_N=[N-1,\infty).$ Тогда вероятности $p_j(\theta)=\pi_{m-1}(\theta),\ j=1,\dots,N-1;\ p_N(\theta)=\sum\limits_{m=N-1}^\infty\pi_m(\theta).$ Так как θ — скалярный параметр, причем $(d/d\theta)\ln\pi_m(\theta)=m/\theta-1,$

$$\sum_{j=0}^{N-2} l_{j+1} \left(j/\theta - 1 \right) + l_N \sum_{m=N-1}^{\infty} \left(m/\theta - 1 \right) \pi_m(\theta) / \sum_{m=N-1}^{\infty} \pi_m(\theta) = 0.$$

Поскольку $l_1 + \ldots + l_N = n$, отсюда получаем соотношение

то система (8) сводится к одному уравнению:

$$\theta = \frac{1}{n} \left[\sum_{j=0}^{N-2} j \, l_{j+1} + l_N \sum_{m=N-1}^{\infty} m \, \pi_m(\theta) \, \middle/ \sum_{m=N-1}^{\infty} \pi_m(\theta) \, \right]. \tag{9}$$

Доказательство этой теоремы можно найти в [44, с. 462–470].

Вопрос 3. Почему ξ — ОМП для пуассоновской модели?

Рис. 3

Первый член в скобках равен сумме всех значений ξ_i , меньших или равных N-2. Второй член представляет собой l_N $\mathbf{M}(\xi_1\,|\,\xi_1\geqslant N-1)$ (см. П7). Он *приближенно* равен сумме всех значений ξ_i , которые больше или равны N-1. Поэтому решение $\tilde{\theta}$ уравнения (9) близко к среднему арифметическому $\overline{\xi}$ — оценке максимального правдоподобия параметра θ , построенной по всей выборке.

Применим критерий хи-квадрат к данным о падениях самолетов-снарядов в южной части Лондона во время второй мировой войны (см. [81, с. 177]). Опасность попадания в жилые дома вместо военных объектов велика при низкой точности стрельбы (при так называемой стрельбе по площадной цели).

Карта южной части Лондона была разбита на $n=24\times24=576$ небольших участков, каждый площадью 1/4 кв. км. На карте были отмечены места падения самолетов-снарядов (подобно рис. 3). В таблице ниже приведены количества участков l_{j+1} ровно с j падениями, $j=0,1,\ldots,7$. Так как участков много, а вероятность попадания самолета-снаряда на отдельный участок мала, то при справедливости гипотезы о низкой точности стрельбы можно воспользоваться законом редких событий (см. § 1 гл. 5), согласно которому число попаданий на любой из участков есть (приближенно) пуассоновская случайная величина с некоторым общим для всех участков параметром θ . Мы также предположим, что попадания на разные участки независимы.

Общее число падений $M = \sum j \, l_{j+1} = 537$. Возьмем в качестве начальной оценки неизвестного параметра закона Пуассона среднее число падений на один участок $\hat{\theta} = M/n \approx 0,932$. Тогда ожидаемые количества участков ровно с j падениями примерно равны $n\pi_j(\hat{\theta})$.

j	0	1	2	3	4	5	6	7
l_{j+1}	229	211	93	35	7	0	0	1
$n\pi_j(\widehat{ heta})$	226,7	211,4	98,5	30,6	7,14	1,33	0,21	0,03
$n\pi_j(ilde{ heta})$	228,6	211,3	97,6	30,1	8,46			

Прежде чем вычислять статистику критерия хи-квадрат, надо объединить последние 4 столбца таблицы для того, чтобы ожидаемое количество оказалось не меньше 5: $l_4+\ldots+l_7=8$ и $n(\pi_4(\widehat{\theta})+\ldots+\pi_7(\widehat{\theta}))=8,71.$

Теперь заменим начальную оценку $\hat{\theta}$ на $\hat{\theta}$, максимизируя по θ функцию (7) на компьютере (удобно вычислять $p_5(\theta)$ по формуле $p_5(\theta) = 1 - p_1(\theta) - \ldots - p_4(\theta)$). Вероятно, проще всего уменьшать θ с шагом h = 0,001 до тех пор, пока функция возрастает. Ответ таков: $\hat{\theta} = 0,924$ (отличие от $\hat{\theta}$ составляет всего-навсего 0,008). Соответствующие ожидаемые количества приведены в третьей строке таблицы.

Значение статистики \tilde{X}_n^2 (см. формулу (6)) для таких данных равно 1,05. Поскольку N=5 и k=1, предельный закон должен иметь N-k-1=3 степени свободы. Из табл. Т3 находим, что значение статистики попадает в интервал (0,58; 2,37), обра-

зованный 10% и 50% квантилями χ_3^2 (с помощью таблицы из [10, с. 140] уточняем, что фактический уровень значимости равен 0,79). Поэтому гипотеза о низкой точности стрельбы принимается. В [81, с. 177] отмечено:

«Большинство населения верило в тенденцию точек падения скапливаться в нескольких местах. Если бы это было верно, то следовало бы ожидать большую долю участков без попаданий либо с большим числом попаданий и меньшую долю участков промежуточного класса. Приведенная таблица показывает, что точки падения были совершенно случайными, все участки — равноправными; здесь мы имеем поучительную иллюстрацию того установленного факта, что неискушенному человеку случайность представляется регулярностью или стремлением к скоплению.»

Обратим внимание на необходимость объединения маловероятных промежутков: если оставить N=8, то $\tilde{\theta}\approx \hat{\theta}=0.932$ и $\tilde{X}_n^2=32.6$. Это значимо велико для χ_6^2 даже на уровне 10^{-5} (см. [10, с. 144]). Причиной резкого роста значения статистики является малая величина $np_8(\tilde{\theta})\approx 0.03$, придающая слишком большой вес квадрату отклонения наблюдаемого количества $l_8=1$ от ожидаемого количества $np_8(\tilde{\theta})$.

Если данные предварительно группируются, то оценить θ можно и до группировки наблюдений, например, методом максимального правдоподобия (см. § 4 гл. 9). Однако, как показывает следующий пример, в этом случае статистика \tilde{X}_n^2 будет сходиться, вообще говоря, к другому предельному закону.

Пример 3. Проверка нормальности по сгруппированным данным. Пусть $\xi_i \sim \mathcal{N}(\mu, \sigma^2), \ i=1,\dots,n$, причем оба параметра μ и σ неизвестны. Для разбиения прямой на промежутки $\Delta_j=(a_j,b_j],\ j=1,\dots,N$, оценим неизвестную функцию распределения $\Phi((x-\mu)/\sigma)$ при помощи $\Phi((x-\overline{\xi})/S)$, где $\overline{\xi}=\frac{1}{n}\sum \xi_i$ и $S^2=\frac{1}{n}\sum (\xi_i-\overline{\xi})^2$. Чтобы вероятности попадания ξ_i в промежутки Δ_j были примерно одинаковы, возьмем в качестве b_j решения уравнений

$$\Phi((x-\overline{\xi})/S)=j/N, \quad j=1,\ldots,N-1,$$

(см. табл. T2 или приближение Хамакера для Φ^{-1} из \S 5 гл. 4).

Далее подсчитаем ν_j — количества попаданий в построенные промежутки. Затем вычислим основанную на частотах оценку максимального правдоподобия $\tilde{\boldsymbol{\theta}}=(\tilde{\theta}_1,\hat{\theta}_2)$ при помощи численного поиска точки максимума функции (7), исходя из точки с координатами $(\bar{\xi},S)$. При этом для нахождения $p_j(\boldsymbol{\theta})$ понадобится запрограммировать приближенное вычисление $y=\Phi(x)$, например,

с помощью алгоритма Морана (см. [58, с. 282]):

$$s = 0$$

 $t = x * Sqr(2)/3$
For $i = 0$ To 12
 $z = i + 0.5$
 $s = s + Sin(z * t) * Exp(-z * z/9)/z$
Next i
 $y = 0.5 + s/3.1415926536$

(Он обеспечивает 9 точных десятичных цифр у $\Phi(x)$ при $|x|\leqslant 7.$)

Важно отметить, что сами оценки $\bar{\xi}$ и S использовать в формуле (6) нельзя. В [80, с. 322] указано, что в случае нарушения этого запрета статистика \tilde{X}_n^2 не будет (асимптотически) следовать распределению хи-квадрат с N-3 степенями свободы: график ее функции распределения пройдет несколько ниже графика функции распределения закона χ^2_{N-3} . Не будет она следовать и распределению хи-квадрат с N-1 степенями свободы (как было бы при точно известных параметрах). График ее функции распределения пройдет несколько выше. *)

В качестве иллюстрации на рис. 4 приведены графики функций F_7 и F_9 распределения законов χ^2_7 и χ^2_9 соответственно. Они ограничивают полосу, в которой будет проходить график функции распределения предельного закона для \tilde{X}^2_n при N=10, если для вычисления $p_j(\theta)$ использовать оценки $\bar{\xi}$ и S. Согласно табл. Т3 на уровне 0,95 ширина полосы равна 16,9-14,1=2,8.

30 s

Рис. 4

0.6

§ 3. ПРОВЕРКА ОДНОРОДНОСТИ

Допустим, что имеется k независимых между собой выборок размеров n_i из распределений $F_i,\,i=1,\ldots,k$. Общее число наблюдений $n=n_1+\ldots+n_k$. Проверим гипотезу однородности

$$H_0''$$
: $F_1 = \ldots = F_k$

с помощью критерия хи-квадрат. Для этого сгруппируем данные: разобьем общую для всех выборок область значений наблюдений на промежутки $\Delta_j,\ j=1,\ldots,N,$ и для каждой пары индексов (i,j) подсчитаем величину $\nu_{ij}-$ количество попаданий элементов i-й выборки в j-й промежуток (рис. 5). В результате получим $k\times N$ таблицу (рис. 6), которую и будем анализировать в дальнейшем.

Иногда данные с самого начала имеют дискретную структуру: в опытах наблюдается некоторый переменный признак, принимающий конечное число N значений (см. пример 4 ниже).

Рис. 5

^{*)} Как показали Чернов и Леман в 1954 г. (см. [13, с. 284]), статистика \tilde{X}_n^2 асимптотически распределена как сумма $\xi_1^2+\ldots+\xi_{N-3}^2+\gamma_1\xi_{N-2}^2+\gamma_2\xi_{N-1}^2$, где ξ_i — независимые $\mathcal{N}(0,1)$ -случайные величины; числа γ_1 и γ_2 лежат между 0 и 1 и зависят от проверяемого закона и способа разбиения на промежутки области возможных значений наблюдений.

Если гипотеза H_0'' верна, то ожидаемое количество наблюдений в ячейке с индексами i и j равно $n_i p_j$, где $p=(p_1,\ldots,p_N)$ обозначает (неизвестный) вектор вероятностей попадания в промежутки Δ_j при справедливости гипотезы H_0'' . Естественной оценкой для p_j служит $\widehat{p}_j=(\nu_{1j}+\ldots+\nu_{kj})/n$ — общая по всем выборкам частота попаданий в Δ_j (см. задачу 6). Тогда статистика

$$\widehat{X}_{n}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{N} (\nu_{ij} - n_{i}\widehat{p}_{j})^{2} / (n_{i}\widehat{p}_{j})$$
(10)

измеряет отклонение наблюдаемых количеств от ожидаемых. Если справедлива гипотеза H_0'' , то, как доказано в [44, с. 483], статистика \widehat{X}_n^2 сходится по распределению к хи-квадрат случайной величине с (k-1)(N-1) степенями свободы при $\min\{n_1,\ldots,n_k\}\to\infty$.

Следующий любопытный пример из [72, с. 132] показывает, что к выводам, основанным на применении этого предельного результата, следует относиться с известной осторожностью.

Пример 4. *Парадокс критерия хи-квадрат* [72, с. 132]. Ниже приведены три таблицы, в которых отражено действие некоторого лекарства (способа лечения) только на мужчин, только на женщин и, наконец, на больных обоего пола (объединенные результаты).

Мужчины	В	\overline{B}	Женщины	B .	\overline{B}	Вместе	В	\overline{B}
A	700	800	A	150	70	A	850	870
\overline{A}	80	130	\overline{A}	400	280	Ā	480	410

Здесь A — принимавшие лекарство, \overline{A} — не принимавшие лекарство, B — выздоровевшие, \overline{B} — не выздоровевшие.

Заметим, что среди принимавших лекарство мужчин доля выздоровевших $700/(700+800)\approx 0,467$ больше, чем $80/(80+130)\approx 0,381$ — доля выздоровевших среди мужчин, не принимавших лекарство. Такая же картина и у женщин: $150/220\approx 0,682>>400/680\approx 0,588$.

Статистики \widehat{X}_n^2 (см. формулу (10)) для таблиц данных мужчин и женщин принимает значения 5,456 и 6,125. Из [10, с. 141] (см. также табл. Т3) для закона хи-квадрат с 1 степенью свободы находим, что фактические уровни значимости равны соответственно 0,020 и 0,013. Это говорит о существенности различия вероятностей выздоровления между теми, кто принимал лекарство и теми, кто его не принимал.

С другой стороны, как это ни странно, из таблицы с объединенными результатами следует, что доля выздоровевших больше среди тех людей, которые лекарство не принимали (!): $480/870 \approx 0.539 > 850/1720 \approx 0.494$, причем статистика \widehat{X}_n^2 для третьей таблицы равна 4,782, что значимо велико на уровне 0,029.

Факты — упрямая вещь, но статистика гораздо сговорчивее.

Лоренс Питер

Рассчитано, что петербуржец, проживающий на солнцепеке, выигрывает двадцать процентов здоровья.

Козьма Прутков

В [72, с. 133] Г. Секей пишет:

«Аналогично, новое лекарство может оказаться эффективным в каждом из десяти различных госпиталей, но объединение результатов укажет на то, что это лекарство либо бесполезно, либо вредно».

Статистика — самая точная из всех лженаук.

Джин Ко

тов укажет на то, что это лекарство лиоо оесполезно, лиоо вредно».

Причина парадокса заключается в непропорциональном представительстве в разных категориях: мужчины выздоравливают хуже, но лекарство испытывалось в основном на них.

Кроме того, число мужчин (210), не принимавших лекарство, недостаточно велико: согласно таблице, приведенной в книге Дж. Флейс «Статистические методы для изучения таблиц долей и пропорций», вероятность β ошибки II рода, для таких данных равна 50%. Чтобы обеспечить $\beta=10\%$, необходимо иметь не менее 475 пациентов в этой категории.

ЗАДАЧИ

Опыт — лучший учитель.

- **1.** Проверьте первый столбец табл. Т1 на равномерность с помощью критерия хи-квадрат.
- 2. В [10, с. 21] проводится анализ 2000 четырехзначных псевдослучайных чисел из книги М. Кадырова «Таблицы случайных чисел» (Ташкент, 1936). Первая цифра оказалась нулем у 160, тройкой—у 247, шестеркой—у 191, девяткой—у 185 чисел (остальные 1217 чисел начинались с других цифр). Стоит ли пользоваться такой таблицей?
- 3. Ниже приведены данные о количестве студентов двух групп, решивших в течение месяца занятий 0, 1–7, 8–15 и более 15 задач. Проверьте гипотезу о том, что студенты обеих групп одинаково активно решают задачи.

Число задач	0	1-7	8-15	> 15
Группа 1	9	8	5	4
Группа 2	3	5	9	11

- **4.** Выведите теорему 1 при N=2 непосредственно из центральной предельной теоремы (Пб).
- 5* Докажите неотрицательную определенность матрицы Σ , задаваемой формулой (3), а) вычислив главные миноры (см. П10), б) установив, что она является ковариационной матрицей случайного вектора ν^* из доказательства теоремы 1.
- **6*** Покажите при помощи метода неопределенных множителей Лагранжа (см. [46, с. 271]), что оценка \widehat{p}_j из § 3 максимизирует функцию правдоподобия сгруппированной выборки при условии $p_1+\ldots+p_N=1$.

РЕШЕНИЯ ЗАДАЧ

Мало хотеть — надо уметь.

1. Поскольку длина столбца n=20 возьмем $N=4 \approx \log_2 n$ промежутков. При справедливости гипотезы равномерности равные

Повторные наблюдения

Критерий Мак-Немара (McNemar) для парных наблюдений

Таблицы вида 2 х 2 могут содержать сгруппированные данные бинарных повторных наблюдений. Например, v_{11} — студенты, выполнившие успешно тестовое задание и в начале, и в конце обучения, v_{12} — те, кто в начале выполнили, а в конце не выполнили и т. п. Пусть проверяемая гипотеза H_0 заключается в том, что вероятности $p_{12} \approx v_{12}/N$ и $p_{21} \approx v_{21}/N$ одинаковы. (Здесь $N = v_{11} + v_{12} + v_{21} + v_{22}$.) Предположим, что гипотеза H_0 не верна, а верна альтернатива H_1 : $p_{21} > p_{12}$, равносильная неравенству

$$p_{11} + p_{21} > p_{11} + p_{12}$$
.

Последнее неравенство означает, что вероятность успешного выполнения теста в конце больше вероятности успешного выполнения теста в начале. В таком случае величина v_{21} должна быть «заметно» больше, чем величина v_{12} . Значимость различия можно проверить с помощью *критерия Мак-Немара*, основанного на сходимости

$$(|\nu_{21} - \nu_{12}| - 1)^2/(\nu_{12} + \nu_{21}) \to \chi_1^2,$$

в которой использована поправка -1, предложенная Эдвардсом (Edwards).

Критерий Кохрэна

Критерий Кохрэна обобщает критерий Мак-Немара на k>2 зависимых дихотомических выборок. Типичный пример его применения — сравнение частот утвердительных ответов на k вопросов типа "да — нет" некоторой анкеты.

Статистика критерия Кохрэна имеет следующий вид:

$$Q = (k-1) \left[k \sum u_j^2 - N^2 \right] / \left(kN - \sum v_i^2 \right),$$

где v_i — число единиц в i-й строке, u_j — число единиц в j-м столбце, N — общее число единиц во всей таблице. В предположении однородности столбцов статистика Q имеет в качестве предельного закона распределение χ^2_{k-1} .

Поскольку $\sum_{j=1}^k u_j = N$, то числитель формулы, определяющей Q, пропорционален величине

$$\frac{1}{k}\sum u_j^2 - \left(\frac{N}{k}\right)^2,$$

которая представляет собой дисперсию случайной величины ξ , принимающей значения u_j с одинаковыми вероятностями 1/k. Большие отличия между u_j приводят к большим значениям $\mathbf{D}\xi$.

Задачи

- 1. Вычислить математическое ожидание и дисперсию распределения хи-квадрат с k степенями свободы.
- 2. Доказать теорему Пирсона для случая N = 2. (Используйте центральную предельную теорему.)
- 3. Вычислить математическое ожидание статистики \boldsymbol{X}_{n}^{2} , определённой формулой (1).
- 4. Объясните, почему предельное распределение статистики \hat{X}_n^2 , определённой формулой (10), имеет (k-1)(N-1)=kN-k-N+1 степеней свободы.
- 5^* . Покажите при помощи неопределённых множителей Лагранжа, что оценка \hat{p}_j максимизирует функцию правдоподобия сгруппированной выборки при условии $p_1+\ldots+p_N=1$.