More on Determining Complexity

Loay Shqair

September 9, 2025

This document refers to Q III of Assignment 1.

We've shown that $\sqrt{n\log(n)}$ grows faster than $n^{\frac{1}{3}}\log^2(n^2)$ using L'Hôpital's rule. For large enough n, the sum of the two functions, $T(n) = n^{\frac{1}{3}}\log^2(n^2) + \sqrt{n\log(n)}$, should then approach $\sqrt{n\log(n)}$ because the value of the other term, $n^{\frac{1}{3}}\log^2(n^2)$, becomes insignificant in comparison.

$$T(n) \sim \sqrt{n \log(n)}$$

or we could also write

$$\lim_{n \to \infty} \frac{T(n)}{\sqrt{n \log(n)}} = 1 \tag{1}$$

Since 1 < 2, there exists some N_1 such that

$$\frac{T(n)}{\sqrt{n\log(n)}} \le 2, \forall n \ge N_1$$

Multiplying both sides of the inequality by $\sqrt{n \log(n)}$ yields

$$T(n) \le 2\sqrt{n\log(n)}, \forall n \ge N_1$$
 (2)

We note that equation (2) resembles the definition of O(). Thus

$$T(n)$$
 is $O\left(\sqrt{n\log(n)}\right)$

Referring back to equation (1), since $\frac{1}{2} < 1$, then there exists some N_2 such that

$$\frac{T(n)}{\sqrt{n\log(n)}} \ge \frac{1}{2}, \forall n \ge N_2$$

Multiplying both sides of the inequality by $\sqrt{n \log(n)}$ yields

$$T(n) \ge \frac{1}{2} \sqrt{n \log(n)}, \forall n \ge N_2$$
 (3)

We note that equation (3) resembles the definition of Ω (). Thus

$$T(n)$$
 is $\Omega\left(\sqrt{n\log(n)}\right)$

Since T(n) is both $O\left(\sqrt{n\log(n)}\right)$ and $\Omega\left(\sqrt{n\log(n)}\right)$, we finally conclude that

$$T(n)$$
 is $\Theta\left(\sqrt{n\log(n)}\right)$

Figure 1: T(n), represented by the blue line, approaches $\sqrt{n\log(n)}$, represented by the orange line. Also, T(n) is bounded between the two multiples of $\sqrt{n\log(n)}$.