CSE-170 Computer Graphics

Lecture 20 Spline Interpolators

Dr. Renato Farias rfarias2@ucmerced.edu

- A piecewise interpolating curve, given:
 - Points to interpolate: $\mathbf{p}_0, \dots, \mathbf{p}_m$
 - And knot values: u_0, \dots, u_m
 - Find spline \mathbf{q} such that: $\mathbf{q}(u_i) = \mathbf{p}_i$ How...?

Catmull-Rom solution:

$$\mathbf{I}_i = \frac{(\mathbf{p}_{i+1} - \mathbf{p}_{i-1})}{2}$$

half the vector from the previous point to the next point

$$\mathbf{p}_i^- = \mathbf{p}_i - \frac{\mathbf{I}_i}{3}$$

$$\mathbf{p}_i^+ = \mathbf{p}_i + \frac{\mathbf{I}_i}{3}$$

now add and subtract one third of $\mathbf{p}_i^+ = \mathbf{p}_i^- + \frac{\mathbf{l}_i^-}{\mathbf{q}}$ \leftarrow the vector to each point in order to define all needed control points

(Note: the "l" in the image is the "I" in the equations above)

 Once new points are created, just compute a cubic Bezier for the control polygon formed by each: P_i , P_i^+ , P_{i+1}^- , P_{i+1}

- Note that first and last points are not interpolated
 - But this is not really a problem
 - Allows to model initial/final curve shape direction
- Possible undesired effect: overshooting
 - How to avoid overshooting…?

 Overshooting can be solved with a parameterization close to chord-length:

 $\mathbf{p}_i^+ = \mathbf{p}_i + \frac{1}{3}(u_{i+1} - u_i)\mathbf{v}_i$

- 1. Choose knot vectors *u* close to chord-length (common to use distance between control points)
- 2. Weight intermediate points according to distances:

$$\mathbf{v}_{i^{+}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_{i}}{u_{i+1} - u_{i}} \qquad \mathbf{v}_{i^{-}} = \frac{\mathbf{p}_{i} - \mathbf{p}_{i-1}}{u_{i} - u_{i-1}} \qquad \leftarrow \textit{vectors scaled to have similar lengths}$$

$$\mathbf{v}_{i} = \frac{(u_{i+1} - u_{i})\mathbf{v}_{i^{-}} + (u_{i} - u_{i-1})\mathbf{v}_{i^{+}}}{u_{i+1} - u_{i-1}} \qquad \leftarrow \textit{weighted average of vectors give the direction of the adjacent control points}$$

$$\mathbf{p}_{i}^{-} = \mathbf{p}_{i} - \frac{1}{3}(u_{i} - u_{i-1})\mathbf{v}_{i} \qquad \leftarrow \textit{previous control point is scaled by the "distance" to the original previous point}$$

mext control point is scaled by the "distance" to the original next point

Ex.: using distances between the points:

$$d_{i^{-}} = \|\mathbf{p}_{i} - \mathbf{p}_{i-1}\|, \quad d_{i^{+}} = \|\mathbf{p}_{i+1} - \mathbf{p}_{i}\|$$

$$\hat{\mathbf{v}}_{i^{+}} = \frac{\mathbf{p}_{i+1} - \mathbf{p}_{i}}{d_{i^{+}}}$$
 $\hat{\mathbf{v}}_{i^{-}} = \frac{\mathbf{p}_{i} - \mathbf{p}_{i-1}}{d_{i^{-}}}$

$$\mathbf{v}_{i} = \frac{d_{i^{+}} \hat{\mathbf{v}}_{i^{-}} + d_{i^{-}} \hat{\mathbf{v}}_{i^{+}}}{d_{i^{+}} + d_{i^{-}}}$$

$$\mathbf{p}_i^- = \mathbf{p}_i - \frac{1}{3} d_{i^-} \mathbf{v}_i$$

$$\mathbf{p}_i^+ = \mathbf{p}_i + \frac{1}{3} d_{i^+} \mathbf{v}_i$$

Example:

Compute control segments before and after p₁

• Example:

$$d_{1^{-}} = \|\mathbf{p}_{1} - \mathbf{p}_{0}\| = 5, \quad d_{1^{+}} = \|\mathbf{p}_{2} - \mathbf{p}_{1}\| = 1$$

$$\hat{\mathbf{v}}_{1^{+}} = \frac{\mathbf{p}_{2} - \mathbf{p}_{1}}{1}$$
 $\hat{\mathbf{v}}_{1^{-}} = \frac{\mathbf{p}_{1} - \mathbf{p}_{0}}{5}$

Example:

$$d_{1^{-}} = \|\mathbf{p}_{1} - \mathbf{p}_{0}\| = 5, \quad d_{1^{+}} = \|\mathbf{p}_{2} - \mathbf{p}_{1}\| = 1$$

$$\hat{\mathbf{v}}_{1^{+}} = \frac{\mathbf{p}_{2} - \mathbf{p}_{1}}{1}$$
 $\hat{\mathbf{v}}_{1^{-}} = \frac{\mathbf{p}_{1} - \mathbf{p}_{0}}{5}$

$$\mathbf{v}_1 = \frac{1\hat{\mathbf{v}}_{i^-} + 5\hat{\mathbf{v}}_{i^+}}{5+1}$$

• Example:

$$d_{1^{-}} = \|\mathbf{p}_{1} - \mathbf{p}_{0}\| = 5, \quad d_{1^{+}} = \|\mathbf{p}_{2} - \mathbf{p}_{1}\| = 1$$

$$\hat{\mathbf{v}}_{1^{+}} = \frac{\mathbf{p}_{2} - \mathbf{p}_{1}}{1}$$
 $\hat{\mathbf{v}}_{1^{-}} = \frac{\mathbf{p}_{1} - \mathbf{p}_{0}}{5}$

$$\mathbf{v}_1 = \frac{1\hat{\mathbf{v}}_{i^-} + 5\hat{\mathbf{v}}_{i^+}}{5+1}$$

$$\mathbf{p}_{1}^{-} = \mathbf{p}_{1} - \frac{1}{3} 5 \mathbf{v}_{1} \qquad \mathbf{p}_{1}^{+} = \mathbf{p}_{1} + \frac{1}{3} \mathbf{v}_{1}$$

• Result:

Extension to Surfaces

Surface Interpolation

- The interpolators we have seen are defined by Bézier curves
 - The same strategy used to define Bézier surface patches can be used to interpolate given points in 3D
 - There are analogous formulations for the surface interpolation cases of Catmull-Rom splines and Bessel-Overhauser splines