1. Ejercicio 56, TP 3

Convierta la integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) dz dx dy$ en una integral equivalente en coordenadas cilíndricas y evalúe el resultado.

Determinamos primero los rangos de variación de cada una de las variables: $0 \le z \le x$, $0 \le x \le \sqrt{1-y^2}$ y $-1 \le y \le 1$.

Esto quiere decir que z varía entre el plano z=0 y plano z=x mientras que x e y varían dentro de un semidisco centrado en el origen de radio 1 con $0 \le x$ (ver la figura).

Para describir la región en coordenadas cilíndricas tomamos: $x = r\cos\theta$, $y = r\sin\theta$, z = z. Vemos que: $0 \le z \le r\cos\theta$ (esto es equivalente a $0 \le z \le x$), $0 \le r \le 1$ y $-\pi/2 \le \theta \le \pi/2$, la región de variación de r y θ se ve en la siguiente figura:

y recordando que $f(x,y,z)=x^2+y^2$, al reemplazar tenemos $f(r\cos\theta,r\sin\theta,z)=(r\cos\theta)^2+(r\sin\theta)^2=r^2$. Luego:

1

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) dz dx dy = \int_{-\pi/2}^{\pi/2} \int_{0}^{1} \int_{0}^{r \cos \theta} r^2 dz r dr d\theta = 4/5$$