第4章 电化学基础与金属腐蚀

2.

M: (1) 2KMnO₄ + 5K₂SO₃ + 3H₂SO₄ → 2MnSO₄ + 6K₂SO₄ + 3H₂O;

- (2) 5NaBiO₃ + 2MnSO₄ + 16HNO₃ → 2HMnO₄ + 5Bi(NO₃)₃ + 2Na₂SO₄ + NaNO₃ + 7H₂O;
- (3) $K_2Cr_2O_7 + 6KI + 7H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 3I_2 + 4K_2SO_4 + 7H_2O_5$
- (4) $2CrCl_3 + 3H_2O_2 + 10NaOH \rightarrow 2Na_2CrO_4 + 6NaCl + 8H_2O_3$
- (5) $Cl_2 + 2NaOH \rightarrow NaClO + NaCl + H_2O_{\circ}$

3.

- 解: (1) $\varphi^{\Theta}(MnO_{4}^{-}/Mn^{2+}) = 1.51 \text{ V}$; φ^{Θ} (Fe³⁺/Fe²⁺) = 0.771 MnO₄⁻是最强的氧化剂,Fe²⁺是最强的还原剂。
 - (2) φ^{Θ} (Cr₂O₇²⁻/Cr³⁺) = 1.232 V; φ^{Θ} (CrO ½/Cr) = -1.2 V Cr₂O₇²⁻是最强的氧化剂,Cr 是最强的还原剂。
 - (3) φ^{Θ} (Cu ²⁺/Cu) = 0.3419 V; φ^{Θ} (Fe ³⁺/Fe ²⁺) = 0.771V; φ^{Θ} (Fe ²⁺/Fe) = -0.447 V Fe³⁺是最强的氧化剂,Fe 是最强的还原剂。

4.

解: (a)
$$2Ag^+ + Cu(s) = 2Ag(s) + Cu^{2+}$$
 Ag^+ 是氧化剂, $Cu(s)$ 是还原剂。
半反应: 还原反应 $Ag^+ + e = Ag$
氧化反应 $Cu = Cu^{2+} + 2e^-$
原电池符号: -) $Cu \mid Cu^{2+} \mid Ag^+ \mid Ag(+)$

(b) Ni(s) + Sn⁴⁺ = Ni²⁺ + Sn²⁺
Sn⁴⁺ 是氧化剂,Ni(s) 是还原剂。

半反应: 还原反应 Sn⁴⁺ + 2e⁻= Sn²⁺ 氧化反应 Ni(s) = Ni²⁺ + 2e⁻

原电池符号: 一) Ni | Ni ^{2+ ||} Sn ⁴⁺ . Sn ²⁺ | Pt (+

(c) $2I^- + 2Fe^{3+} = I_2 + 2Fe^{2+}$

 Fe^{3+} 是氧化剂, I^- 是还原剂。

半反应: 还原反应 Fe³⁺+e⁻=Fe²⁺

氧化反应 2I-=I2+2e-

原电池符号: 一) Pt | I₂(s) | I^{-||} Fe³⁺ Fe²⁺ | Pt (+

(d) $Pb(s) + 2H^{+} + 2Cl^{-} = PbCl_{2}(s) + H_{2}(g)$

H⁺是氧化剂, Pb(s)是还原剂。

半反应: 还原反应 $2H^+ + 2e^- = H_2(g)$

氧化反应 Pb(s) + 2Cl⁻=PbCl₂(s) + 2e⁻

原电池符号: 一) Pb | PbCl₂ (s) | Cl^{-||} H⁺ | H₂, Pt (+

5. 解: 查得各电对的标准电极电势分别为:

 $\varphi^{\Theta}(\text{Cu}^{2+}/\text{Cu}) = 0.3419 \text{ V}; \varphi^{\Theta}(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0.771 \text{ V}; \varphi^{\Theta}(\text{Fe}^{2+}/\text{Fe}) = -0.447 \text{ V}$

- (1) 因为 $\varphi^{\Theta}(Cu^{2+}/Cu) < \varphi^{\Theta}(Fe^{3+}/Fe^{2+})$,所以 Cu^{2+} 和 Fe^{2+} 不能发生氧化还原反应,可以共存。
- (2) 因为 $\phi^{\Theta}(Fe^{3+}/Fe^{2+}) > \phi^{\Theta}(Fe^{2+}/Fe)$,所以 Fe^{3+} 可以氧化 Fe,即反应 $2Fe^{3+}+Fe=3Fe^{2+}$ 可自发进行, Fe^{3+} 和 Fe 不能共存。
- (3) 因为 $\varphi^{\Theta}(Cu^{2+}/Cu) > \varphi^{\Theta}(Fe^{2+}/Fe)$,所以 Cu^{2+} 可以氧化 Fe,即反应 $Cu^{2+}+Fe = Cu+Fe^{2+}$ 可自发进行, Cu^{2+} 和 Fe 不能共存。
- (4) $\phi^{\Theta}(Fe^{3+}/Fe^{2+}) > \phi^{\Theta}(Cu^{2+}/Cu)$,所以 Fe^{3+} 可以氧化 Cu,即反应 $2Fe^{3+}+Cu = 2Fe^{2+}+Cu^{2+}$ 可自发进行, Fe^{3+} 和 Cu 不能共存。
- (5) 因为 $\phi^{\Theta}(Cu^{2+}/Cu) > \phi^{\Theta}(Fe^{2+}/Fe)$,所以 Cu 和 Fe^{2+} 不能发生氧化还原反应,可以共存。

所以(1),(5)能共存,(2),(3),(4)不能共存。

7.

解: (1) 电极反应为:

$$(-)$$
 Ag + Cl⁻ \equiv AgCl(s) + e⁻

$$(+)$$
 Fe³⁺ + e⁻ = Fe²⁺

电池反应为: Ag + Fe³⁺ + Cl⁻ = AgCl(s) + Fe²⁺

(2) 电极反应为:

$$(-)$$
 Fe²⁺ = Fe³⁺ + e⁻

$$(+)$$
 MnO₄ + 8H⁺ + 5e⁻ = Mn²⁺ + 4 H₂O

电池反应为: $MnO_4^- + 5Fe^{2+} + 8H_{=}^+ Mn^{2+} + 5Fe^{3+} + 4H_2O$

8.

解: (1)
$$E^{\theta} = \varphi_{\text{IE}}^{\theta} - \varphi_{\text{ ff}}^{\theta} = \varphi_{\text{ ff}}^{\theta} - \varphi_{\text{ ff}}^{\theta} = \varphi_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\theta} - \varphi_{\text{Sn}^{4+}/\text{Sn}^{2+}}^{\theta}$$

= 0.771V - 0.151V =0.620 V
(2) $\Delta_{r}G_{m}^{\theta} = -nFE^{\theta} = -2 \times 96485 \times 0.620 = -119.64 \text{ kJ} \cdot \text{mol}^{-1}$

(4)
$$\varphi_{\text{Sn}^{4+}/\text{Sn}^{2+}} = \varphi_{\text{Sn}^{4+}/\text{Sn}^{2+}}^{\theta} + \frac{0.05917V}{2} \lg \frac{c_{\text{Sn}^{4+}}/c^{\theta}}{c_{\text{Sn}^{2+}}/c^{\theta}}$$

$$= 0.151V + \frac{0.05917V}{2} \lg \frac{1}{1.00 \times 10^{-2}} = 0.2102 V$$

$$\varphi_{\text{Fe}^{3+}/\text{Fe}^{2+}} = \varphi_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\theta} + \frac{0.05917V}{2} \lg \frac{c_{\text{Fe}^{3+}}/c^{\theta}}{c_{\text{Fe}^{2+}}/c^{\theta}}$$

$$= 0.771V + \frac{0.05917V}{2} \lg \frac{1}{10} = 0.7118V$$

$$E = \varphi_{\text{TF}} - \varphi_{\text{ff}} = 0.7118V - 0.2102 V = 0.5016 V$$

10.

解: ::
$$E = \varphi_{\text{TF}} - \varphi_{\text{fg}} = 0.016 \text{ V}$$

$$\varphi_{\text{IE}} = \varphi_{\text{H}^{+}/\text{H}_{2}}^{\theta} + \frac{0.05917\text{V}}{2} \lg \frac{\left(c_{\text{H}^{+}}/c^{\theta}\right)^{2}}{p_{\text{H}_{2}}/p^{\theta}} = 0 + \frac{0.05917\text{V}}{2} \lg x^{2} = 0.05917\text{V} \lg x$$

$$\varphi_{\text{ff}} = \varphi_{\text{H}^{+}/\text{H}_{2}}^{\theta} + \frac{0.05917\text{V}}{2} \lg \frac{\left(c_{\text{H}^{+}}/c^{\theta}\right)^{2}}{p_{\text{H}_{2}}/p^{\theta}} = 0 + \frac{0.05917\text{V}}{2} \lg (0.10)^{2} = -0.005917\text{ V}$$

:.
$$E = \varphi_{\text{IE}} - \varphi_{\text{fg}} = 0.05917 \text{V lg } x^{+} 0.005917 \text{ V} = 0.016 \text{ V}$$

 $x = 0.1863 \text{ mol} \cdot \text{L}^{-1}$

13.

解: (1)
$$\operatorname{Sn}^{2+} + 2\operatorname{Fe}^{3+} \Longrightarrow \operatorname{Sn}^{4+} + 2\operatorname{Fe}^{2+}$$

 $\varphi^{+}(\operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}) = 0.771 \text{ V} > \varphi^{+}(\operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}) = 0.151 \text{ V}$

此反应正向进行。

(3)
$$Cu + 2FeCl_3 \implies CuCl_2 + FeCl_2$$
 $\varphi^{\circ} (Fe^{3+}/Fe^{2+}) = 0.771 \text{ V} > \varphi^{\circ} (Cu^{2+}/Cu) = 0.3419 \text{ V}$ 此反应正向进行。

14.

解:
$$(1) \operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}^+ + \operatorname{Br}^- \to \operatorname{Br}_2 + \operatorname{Cr}^{3+} + \operatorname{H}_2 \operatorname{O}$$

氧化反应: $2\operatorname{Br}^- = \operatorname{Br}_2 + 2\operatorname{e}^-$

$$\varphi (Br_2/Br^-) = \varphi^{+} (Br_2/Br^-) = 1.066V$$

还原反应:
$$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$$

$$\varphi\left(Cr_{2}O_{7}^{2-}/Cr^{3+}\right) = \varphi^{\Theta}\left(Cr_{2}O_{7}^{2-}/Cr^{3+}\right) + \frac{0.05917V}{6} \lg \frac{\left(c_{Cr_{2}O_{7}^{2-}}/c^{\Theta}\right)\cdot\left(c_{H^{+}}/c^{\Theta}\right)^{14}}{c_{Cr_{3}^{3+}}/c^{\Theta}}$$

=
$$1.232V + \frac{0.05917V}{6} lg(10^{-3})^{14} = 0.8178V$$

$$\varphi(\operatorname{Cr}_2\operatorname{O}_7^{2-}/\operatorname{Cr}^{3+}) < \varphi(\operatorname{Br}_2/\operatorname{Br}^{-})$$

: 反应不能自发向右进行。

(2)
$$MnO_4^- + H^+ + Cl^- \rightarrow Cl_2 + Mn^{2+} + H_2O$$

氧化反应: $2Cl^{-} = Cl_2 + 2e^{-}$

$$\varphi(\text{Cl}_2/\text{Cl}^-) = \varphi^{\circ}(\text{Cl}_2/\text{Cl}^-) = 1.35827\text{V}$$

$$\varphi\left(\text{MnO}_{4}^{-}/\text{Mn}^{2+}\right) = \varphi^{\Theta}\left(\text{MnO}_{4}^{-}/\text{Mn}^{2+}\right) + \frac{0.05917V}{5} \text{ lg } \frac{\left(c_{\text{Mn}O_{4}^{-}}/c^{\Theta}\right) \cdot \left(c_{\text{H}^{+}}/c^{\Theta}\right)^{8}}{c_{\text{Mn}^{2+}}/c^{\Theta}}$$

=
$$1.507V + \frac{0.05917V}{5} lg(10^{-3})^8 = 1.223V$$

$$\therefore \varphi(MnO_4^-/Mn^{2+}) < \varphi(Cl_2/Cl^-)$$

: 反应不能自发向右进行。

16.

解: (1) 2Fe³⁺ + Fe
$$\Longrightarrow$$
 3Fe²⁺
 φ^{Θ} (Fe³⁺/Fe²⁺) = 0.771 V; φ^{Θ} (Fe²⁺/Fe) = -0.447 V
 $\lg K^{\Theta} = \frac{nE^{\Theta}}{0.05917\text{V}} = \frac{2 \times (0.771 + 0.447)\text{V}}{0.05917\text{V}} = 41.17$

$$K^{\theta} = 1.48 \times 10^{41}$$

(2)
$$\text{Fe}^{3+} + \text{I}^{-} \Longrightarrow \text{Fe}^{2+} + \text{1/2I}_2(s)$$

$$\varphi^{\Theta}$$
 (Fe³⁺/Fe²⁺) = 0.771 V; φ^{Θ} (I₂/I⁻) =0.5353V

$$\lg K^{\theta} = \frac{nE^{\Theta}}{0.05917V} = \frac{1 \times (0.771 - 0.5353)V}{0.05917V} = 3.98$$

$$K^{\theta} = 9.63 \times 10^3$$

(3)
$$3Cu + 2NO_{3}^{-} + 8H^{+} \rightleftharpoons 3Cu^{2+} + 2NO + 4H_{2}O$$

 $\varphi^{+}(Cu^{2+}/Cu) = 0.3419 \text{ V}; \quad \varphi^{+}(NO_{3}^{-}/NO) = 0.957 \text{ V}$

$$\lg K^{\theta} = \frac{nE^{\Theta}}{0.05917V} = \frac{6 \times (0.957 - 0.3419)V}{0.05917V} = 62.37$$

$$K^{\theta} = 2.36 \times 10^{62}$$