COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 4)

DFAs vs. NFAs

Deterministic finite automaton $D = (Q, \Sigma, \delta, q, F)$:

- for each state $r \in Q$ and each symbol $a \in \Sigma$ there exists a **unique** successor state $s \in Q$
- for each input string w over Σ there exists **exactly one run** over w

DFAs vs. NFAs

Deterministic finite automaton $D = (Q, \Sigma, \delta, q, F)$:

- for each state $r \in Q$ and each symbol $a \in \Sigma$ there exists a **unique** successor state $s \in Q$
- for each input string w over Σ there exists **exactly one run** over w

Nondeterministic finite automaton $N = (Q, \Sigma, \delta, q, F)$:

- for each state $r \in Q$ and each symbol $a \in \Sigma$ there exists a **set of** successor states $R \subseteq Q$
- \bullet ϵ -transitions may exist that can be taken without reading a symbol
- for each input string w over Σ there may exist **multiple runs** over w

However, DFAs and NFAs are equally powerful.

Equivalence of DFAs and NFAs

Each language that can be accepted by a DFA can be accepted by an NFA and vice versa:

Theorem (1)

Let D be a DFA with language L(D).

Then there exists an NFA N with language L(N) = L(D).

Theorem (2)

Let N be an NFA with language L(N).

Then there exists a DFA D with language L(D) = L(N).

Construction of NFA from DFA

Theorem (1)

Let D be a DFA with language L(D).

Then there exists an NFA N with language L(N) = L(D).

Proof by Construction:

- let $D = (Q, \Sigma, \delta, q, F)$
- then we construct $N = (Q, \Sigma, \delta', q, F)$ where δ' is defined as follows:
 - ▶ for each $r \in Q$ and $a \in \Sigma$:

if
$$\delta(r, a) = s$$
 then $\delta'(r, a) = \{s\}$

▶ for each $r \in Q$:

$$\delta'(r,\epsilon) = \emptyset$$

 state transition diagrams of D and N are equal and therefore accept the same language

Given NFA $N = (Q, \Sigma, \delta, q, F)$.

How to construct DFA $D = (Q', \Sigma, \delta', q', F')$ with L(D) = L(N)?

Given NFA $N = (Q, \Sigma, \delta, q, F)$.

How to construct DFA $D = (Q', \Sigma, \delta', q', F')$ with L(D) = L(N)?

Transitions of N map to subsets of states $R \subseteq Q$:

δ	0	1
q_0	$\{q_0\}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	Ø
q_2	Ø	\emptyset

Transitions of D must map to **single states** $r \in Q'$.

 \rightarrow Each subset of states in N becomes a single state in D

DFA $D = (Q', \Sigma, \delta', q', F')$:

- $Q' = \{R : R \subseteq Q\}$ set of all subsets of Q
- $q' = \{q\}$ set that contains the initial state of N only
- $F' = \{R : \text{there exists } r \in R \text{ with } r \in F\}$ set of states that contain at least one accepting state of N

$$\underbrace{\delta'(R,a)}_{a\text{-successor of }R\text{ in }D} = \bigcup_{r \in R} \underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N}$$

$$\underline{\delta'(R,a)} = \bigcup_{r \in R} \underline{\delta(r,a)}$$
a-successor of R in D set of a-successors of r in N

$$\underbrace{\delta'(R,a)}_{a\text{-successor of }R\text{ in }D} = \bigcup_{r \in R} \underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N}$$

	1	
δ	0	1
q ₀	$\{q_0\}$	$\{q_0,q_1\}$
<i>q</i> ₁	$\{q_2\}$	Ø
q_2	Ø	Ø

δ'	0	1
$\{q_0\}$		
$\{q_1\}$		
$\{q_2\}$		
$\{q_0,q_1\}$?	
$\{q_0,q_2\}$		
$q_1,q_2\}$		
$\boxed{\{q_0,q_1,q_2\}}$		

$$\underbrace{\delta'(R,a)}_{a\text{-successor of }R\text{ in }D} = \bigcup_{r \in R} \underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N}$$

$$\delta'(\{q_0,q_1\},0) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$$

$$\underbrace{\delta'(R,a)}_{a\text{-successor of }R\text{ in }D} = \bigcup_{r \in R} \underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N}$$

δ	0	1
9 0	$\{q_0\}$	$\{q_0,q_1\}$
91	$\{q_2\}$	Ø
q_2	Ø	Ø

δ'	0	1	
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$	
$\{q_1\}$	$\{q_2\}$	Ø	
$\{q_2\}$	Ø	Ø	
$\{q_0,q_1\}$	$\{q_0,q_2\}$	$\{q_0,q_1\}$	
$\{q_0,q_2\}$	$\{q_0\}$	$\left[\begin{array}{c} \{q_0,q_1\} \end{array}\right]$	
$\{q_1,q_2\}$	$\{q_2\}$	\emptyset	
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0,q_1\}$	
Ø	Ø	Ø	

$$\delta'(\{q_0,q_1\},0) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$$

Complete DFA *D*:

Several states of *D* are unreachable:

Reduced DFA *D*:

Original NFA N:

 $L(D) = L(N) = \{w : w \text{ ends with } 10\}$

Reduced DFA *D*:

Original NFA N:

$$L(D) = L(N) = \{w : w \text{ ends with } 10\}$$

$$w = 10$$

$$\{q_0\} \to \{q_0, q_1\} \to \{q_0, q_2\}$$

$$q_0 \rightarrow q_0 \rightarrow q_0$$

$$q_0 \rightarrow q_1 \rightarrow q_2$$

Reduced DFA *D*:

Original NFA N:

$$L(D) = L(N) = \{w : w \text{ ends with } 10\}$$

The following general theorem holds:

Theorem (3)

Let N be an NFA, without ϵ -transitions, with language L(N).

Then there exists a DFA D with language L(D) = L(N).

Proof by Construction:

Given $N = (Q, \Sigma, \delta, q, F)$, we construct $D = (Q', \Sigma, \delta', q', F')$ as follows

- set of states $Q' = \{R : R \subseteq Q\}$
- initial state $q' = \{q\}$
- set of accepting states $F' = \{R : \text{there exists } r \in R \text{ with } r \in F\}$

Proof Cont:

• transition function δ' , for each $R \in Q'$ and each $a \in \Sigma$:

$$\underbrace{\delta'(R,a)}_{\text{a-successor of }R\text{ in }D} = \bigcup_{r \in R} \underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N}$$

Sketch of the remaining proof:

- in the constructed DFA D all possible runs of the NFA N over an input string w are considered **simultaneously**
- based on the definitions of q, q', δ , δ' , F, and F' it can be shown that each string accepted by N is accepted by D and vice versa.
- It follows that L(N) = L(D)

20

Given NFA $N = (Q, \Sigma, \delta, q, F)$.

How to construct DFA $D = (Q', \Sigma, \delta', q', F')$ with L(D) = L(N)?

- ullet Q' and F' as before
- Presence of ϵ -transitions requires alternation of q' and δ'
- In which state can N start reading some input string w?
- Answer: q_0 , q_1 , or q_2 . Hence, $\{q_0, q_1, q_2\}$ is initial state of D

ϵ -Closure of States

The idea used to determine the initial state of D is based on the ϵ -closure:

Definition

Let r be a state of an NFA N. Then the ϵ -closure of r, denoted by $C_{\epsilon}(r)$, is the set of all states that are reachable from r by zero or more ϵ -transitions.

This can be generalised to **sets of states**:

Definition

Let R be a subset of states of an NFA N. Then the ϵ -closure of R is

$$C_{\epsilon}(R) = \bigcup_{r \in R} C_{\epsilon}(r)$$

i.e. the union of all ϵ -closures of states $r \in R$.

Theorem (2)

Let N be an NFA, with ϵ -transitions, with language L(N).

Then there exists a DFA D with language L(D) = L(N).

Proof:

Given $N = (Q, \Sigma, \delta, q, F)$, we construct $D = (Q', \Sigma, \delta', q', F')$ as follows

- set of states $Q' = \{R : R \subseteq Q\}$
- ullet initial state $q^{'}=\mathcal{C}_{\epsilon}(q)$
- set of accepting states $F' = \{R : \text{there exists } r \in R \text{ with } r \in F\}$
- transition function, for each $R \in Q'$ and each $a \in \Sigma$:

$$\underbrace{\delta'(R,a)}_{a\text{-successor of }R\text{ in }D} = \bigcup_{r \in R} C_{\epsilon}(\underbrace{\delta(r,a)}_{\text{set of }a\text{-successors of }r\text{ in }N})$$

• it can be further shown that L(D) = L(N)

Construct the DFA *D* corresponding to the following NFA *N*:

$$D = (Q', \Sigma, \delta', q', F')$$
:

- $\Sigma = \{a, b\}$
- $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- $q' = C_{\epsilon}(\{1\}) = \{1, 2\}$
- $F' = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$

Construct the DFA *D* corresponding to the following NFA *N*:

Construct the DFA *D* corresponding to the following NFA *N*:

ϵ -closure:

R	$C_{\epsilon}(R)$
{1}	{1,2}
{2}	
{3}	
$\boxed{ \{1,2\}}$	
$[\{1,3\} $	
$\boxed{ \{2,3\}}$	
$\boxed{\{1,2,3\}}$	
\emptyset	

Construct the DFA *D* corresponding to the following NFA *N*:

ϵ -closure:

R	$C_{\epsilon}(R)$
{1}	{1,2}
{2}	{2}
{3}	{3}
$\{1,2\}$	
{1,3}	{1,2,3}
{2,3}	{2,3}
$\{1, 2, 3\}$	{1,2,3}
$-\emptyset$	\bigcirc \emptyset

Transition function δ' :

Transition function δ' :

$\delta^{'}(R,a)$	= [$\int C_{\epsilon}(\delta(r,a))$

δ	а	b	C
1	{3}	Ø	{2}
2	{1}	Ø	Ø
3	{2}	{2,3}	Ø

δ'	а	b
{1}		
{2}		
{3}		
{1,2}	5	
$\{1,3\}$		
{2,3}		
$\boxed{\{1,2,3\}}$		
\emptyset		

Transition function δ' :

			$\delta'(R$, a)	=
δ	а	b	ϵ		
1	{3}	Ø	{2}		

 $\{2, 3\}$

	R			$C_{\epsilon}(R)$	
	{1}	,		$\{1, 2\}$	
	{2}			{2}	
	{3}			{3}	
{	1, 2	-	-	$\{1, 2\}$	
{	1, 3	-	{	[1, 2, 3]	}
{	2, 3	-		$\{2,3\}$	
$\lceil \{1$, 2, 3	}	{	[1, 2, 3]	}
	Ø			Ø	

	\bigcap
	$C_{\epsilon}(\delta(r,a))$
\bigcup	$c_{\epsilon}(\sigma(r,a))$
$r \in R$	\bigcup

$\boxed{ \delta^{'} }$	а	b
{1}		
{2}		
{3}		
{1,2}	?	
$\{1,3\}$		
{2,3}		
$\{1,2,3\}$		
\emptyset		ı

{2}

 $\overline{\emptyset}$

Transition function δ' :

$\delta^{'}(R,a)$	$= \bigcup_{r \in R} C_{\epsilon}(\delta(r,a))$
	$r \in R$

δ'	а	b
{1}		
{2}		
{3}		
{1,2}	{1,2,3}	
$\{1,3\}$		'
{2,3}		
$\boxed{\{1,2,3\}}$		
Ø		

R	$C_{\epsilon}(R)$
{1}	{1,2}
{2}	{2}
{3}	{3}
$\{1,2\}$	$\{1,2\}$
$\boxed{ \{1,3\}}$	$\{1,2,3\}$
$\boxed{ \{2,3\}}$	$\left\{2,3\right\}$
$\boxed{\{1,2,3\}}$	{1,2,3}
Ø	Ø

 $\{2, 3\}$

Transition function δ' :

	ð (R	', a)
b	ϵ	
Ø	{2}	

 $\{2,3\}$

R	$C_{\epsilon}(R)$	
{1}	{1,2}	
{2}	{2}	
{3}	{3}	
$\boxed{ \{1,2\}}$	$\boxed{ \{1,2\}}$	
$ [\{1,3\} $	$ \{1,2,3\} $	
$ [\{2,3\}]$	{2,3}	
$\boxed{\{1,2,3\}}$	{1,2,3}	
Ø	Ø	

$\delta^{'}(R,a)$	=		$C_{\epsilon}(\delta(r,a))$
6		$r \in R$	

δ'	а	b
{1}	{3}	Ø
{2}	$\{1,2\}$	Ø
{3}	{2}	{2,3}
{1,2}	$\{1, 2, 3\}$	Ø
$\boxed{\{1,3\}}$	{2,3}	{2,3}
$\boxed{\{2,3\}}$	$\{1,2\}$	{2,3}
$\{1, 2, 3\}$	{1,2,3}	{2,3}
Ø	Ø	Ø

$$\delta'(\{1,2\},a) = C_{\epsilon}(\delta(1,a)) \cup C_{\epsilon}(\delta(2,a))$$

= $C_{\epsilon}(\{3\}) \cup C_{\epsilon}(\{1\})$
= $\{3\} \cup \{1,2\} = \{1,2,3\}$

Now we can draw the DFA:

Now we can draw the DFA:

Reduced DFA:

Original NFA:

