Functions of complex variable:

A map
$$f: S \rightarrow C$$
 from a set $S \subset C$ to C
 $S: \underline{Domain} \text{ of } \underline{definition} \text{ of } f.$
 $W = f(Z) : Value of function at point Z.$

representing
$$z = x + iy$$
, we can rewrite
$$f(z) = u(x, y) + i V(x, y)$$

where u(x,y) is v(x,y) are real functions of $(x,y) \in \mathbb{R}$. Equivalently u is v also be regarded as functions of the polar components of $Z = xe^{i\theta}$ $u(x,\theta)$, $v(x,\theta)$.

• If
$$f(z)$$
 gives only one value for every z in its domains then it referred to as Single valued function

e.g. $f(z) = \frac{1}{z}$, $(\overline{z})^2$, $z^9 + 20\overline{z}^5 + 7z\overline{z}$, e^z

• If
$$f(z)$$
 gives more then one values for some z in its domain \rightarrow Multivalued function e.g. $f(z) = z^{1/n}$, $tan^{-1}(z)$, $Lag(z)$

Exponential Junction:
$$\omega = e^{\frac{z}{2}}$$

using $z = x + iy$, we have

 $\omega = e^{x + iy} = e^{x} e^{iy}$

i.e. $|\omega| = e^{x}$, $arg(\omega) = y$

Limit of a function:

Lim $f(z) = \omega_0$ means that the value of the function $z \to z_0$ f(z) get arbitrarily close to ω_0 as z approaches the point z_0 .

For the above statement to make sense, f(z) must be defined in the region $0 < |z-z_0| < \delta$

This is referred to as the deleted neighbourhood of Zo.

Ex! $\lim_{z \to i} \frac{i(z-i)\overline{z}}{z^2+1}$

In the neighbourhood of i, we can write $Z = i + \epsilon e^{i\theta} \quad \text{Then } Z \rightarrow i = \epsilon \rightarrow 0$ $\lim_{Z \rightarrow i} \left[\frac{i(Z - i)Z}{Z^2 + 1} \right] = \lim_{\epsilon \rightarrow 0} \left[\frac{i \cancel{\xi} \cancel{\xi}^{i\theta} \cdot (-i + \epsilon e^{i\theta})}{\cancel{\xi} \cancel{\xi}^{i\theta} \cdot (2i + \epsilon e^{i\theta})} \right] \quad \text{Using } Z_{+1}^2 = \lim_{\epsilon \rightarrow 0} \left[\frac{i(Z - i)(Z + i)}{2i + \epsilon e^{i\theta}} \right] = -\frac{1}{2}$

Ex: Lim (Z) Z→0 (Z)

Near 0, $Z = \epsilon e^{i\theta}$. $\lim_{Z \to 0} () = \lim_{\epsilon \to 0} ()$

 $\lim_{z \to 0} \left(\frac{z}{z} \right) = \lim_{\varepsilon \to 0} \left(\frac{\varepsilon e^{-i\theta}}{\varepsilon e^{i\theta}} \right) = e^{-2i\theta}$

-> depends on B 1-e. the direction from which we approach the origin. E.g. it take value +1 or -1 when we approach from +ve or -ve x-axis respectively.

-> The limit is not well defined.

Including the "point of infinity" & the Riemann sphere

Consider the stereographic projection between a 2-sphere and a complex plane

 $E_X: (\theta, \phi) \longrightarrow (x, y)$ Find $Z(\theta,\phi) = \chi(\theta,\phi) + i y(\theta,\phi)$

- The figure gives a one-to-one mapping between points P on the sphere I the Z on the complex
- · The south pole make to the origin The equator maps to the unit circle.
 - · As we approach the north pole on sphere the constant of circles map to larger & larger circles on the complex plane.
- · The "infinity" on the complex plane maps to a single point on the sphere, namely the North pole.

This representation of the complex plane with the infinity included as a single point is referred to as the Riemann sphere I gives a nice visualization for limits of complex functions when the $Z \rightarrow \infty$.

Computing Limits involving ∞ : of discuss in tutorially

•
$$\lim_{z\to\infty} f(z) = \lim_{z\to 0} f(\frac{1}{z})$$

•
$$\lim_{Z \to Z_0} f(Z) = \infty$$
 \iff $\lim_{Z \to Z_0} \frac{1}{f(Z)} = 0$

e.g.
$$\lim_{Z \to \infty} \frac{iZ+1}{5Z-i} = \lim_{E \to 0} \frac{i(\frac{1}{E}e^{i\theta})+1}{5(\frac{1}{E}e^{i\theta})-i} = \lim_{E \to 0} \frac{i \cdot e^{i\theta}+E}{5e^{i\theta}-iE}$$

$$= \frac{ie^{i\theta}}{5e^{i\theta}} = \frac{i}{5}$$

$$\lim_{Z \to \infty} \frac{iZ^3+1}{Z^2-1} = \lim_{E \to 0} \frac{i \frac{e^{3i\theta}}{E^3}+1}{(\frac{e^{2i\theta}}{E^2}-1)} = \lim_{E \to 0} \frac{i e^{3i\theta}+E^3}{E^2-E^2}$$

Continuous functions

- f(z) is continuous at point z=z, if $\lim_{z\to z_0} f(z)=f(z_0)$.
- · If a function is said to be <u>continuous in region R</u> if it is continuous at every point in R.
- Note that composing continuous functions result in continuous functions e.g. $f(z) = e^z$ 1 $g(z) = z^2$ are both continuous \triangle so are $f(g(z)) = e^{z^2}$, $g(f(z)) = e^{z^2}$.

 $- f(z) = u(x,y) + i V(x,y) \quad Confinuous$ $\Rightarrow u \leq v \quad \text{are confinuous}.$

Theorem: If f(z) is continuous in a region R which is both closed and bounded then J M > 0 s.t. $|f(z)| \leq M + z \in R$

 \rightarrow follows from the boundedness of real & imaginary part of f(z).

Derivatives of complex functions!

$$f(z)$$
 is differentiable at z , if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f(z_0)$ exists.

e.g. $f(z) = z^n$ is differentiable for all $n \in \mathbb{Z}^T$ throught the complex plane.

$$\lim_{z \to z_0} \frac{\overline{z} - \overline{z}_0}{z - z_0} = \lim_{\varepsilon \to 0} \left(\frac{\overline{z}_0 + \varepsilon e^{-i\theta}}{\varepsilon e^{i\theta}} \right) = e^{-2i\theta}$$

Lets look at
$$f(z) = |z|^2 = zz$$

$$\lim_{\epsilon \to 0} \left[\frac{(z_0 + \epsilon e^{i\theta})(\bar{z}_0 + \epsilon \bar{e}^{i\theta}) - z_0 \bar{z}_0}{\epsilon e^{i\theta}} \right]$$

$$= \lim_{\varepsilon \to 0} \left[\frac{\mathcal{Z}(z, e^{i\theta} + \bar{z}, e^{i\theta})}{\mathcal{Z}(z, e^{i\theta})} \right] = z_0 e^{2i\theta} = z_0 e^{2i\theta}$$

Not differentiable!

 $M = Re(ZZ) = (x^2 + y^2), \quad V = Im(ZZ) = 0$ As real functions both u e v are nice différential Junction with well defined all order partial derivatives w. v.t. x & y but still the complex function f(z) is not differentiable in the above sense.

The complex differentiability condition is stronger then the of real differentiability of real & imagin any part of the function.

What is the extra condition required for complex differentiability on top of real differentiability of us v?