Обработка пропусков

На стадии обучения:

- $\beta_{\nu}(x)$ не определено $\Rightarrow x_i$ исключается из U для $I(\beta,U)$
- ullet ullet $q_{v}=rac{|\mathcal{U}_{0}|}{|\mathcal{U}|}$ оценка вероятности левой ветви, $orall v \in V_{ exttt{BHYTP}}$
- ullet $P(y|x,v)=rac{1}{|U|}\#ig\{x_i\in U\colon y_i=yig\}$ для всех $v\in V_{ exttt{ iny NUCT}}$

На стадии классификации:

• $\beta_{v}(x)$ не определено \Rightarrow пропорциональное распределение:

$$P(y|x, v) = q_v P(y|x, L_v) + (1-q_v) P(y|x, R_v).$$

ullet $eta_{
u}(x)$ определено \Rightarrow либо напево, либо направо:

$$P(y|x, v) = (1 - \beta_v(x))P(y|x, L_v) + \beta_v(x)P(y|x, R_v).$$

• Окончательное решение — наиболее вероятный класс:

$$a(x) = \arg\max_{y \in Y} P(y|x, v_0).$$

Решающие деревья ID3: достоинства и недостатки

Достоинства:

- Интерпретируемость и простота классификации.
- Гибкость: можно варьировать множество \mathscr{B} .
- Допустимы разнотипные данные и данные с пропусками.
- Трудоёмкость линейна по длине выборки $O(|\mathscr{B}|h\ell)$.
- Не бывает отказов от классификации.

Недостатки:

- Жадный ID3 переусложняет структуру дерева, и, как следствие, сильно переобучается.
- Фрагментация выборки: чем дальше v от корня, тем меньше статистическая надёжность выбора β_v , c_v .
- Высокая чувствительность к шуму, к составу выборки, к критерию информативности.