Q1)

Q1)							
1							
Assignment #2							
Q1) After 20 characters have been encrypted,							
the rotor system will be as follows:							
4 26 1							
26							
3 2	5 :						
25 26							
AA LILL MARANT CEUNIN							
My plaintext will be "AARO.NISFUN"							
P1 + + +	() + + (f-+)	Output (med)	(1. tout (class)				
1 Join Lex L	Unipul (105.)	T T	F				
A	\d	M	I				
8	Ā	Y	Q				
0	7	Q	D				
N	X	N	7				
T	K	Y	Q				
5	IL	Y	R				
F	W	X	N				
1)	M	P	R				
N	M	P	R				
	100000 9.8						

CSI 4108 A2 Aaron Ng (300176901) Oct 17, 2022 Q2)

The following was my 4-bit s-box

```
# My 4-bit s-box
inputX = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
outputY = [10,9,8,3,2,5,13,6,1,4,11,15,14,12,0,7]
```

A difference distribution table was created from the s-box. Refer to difference_distribution_table.py for code.

Difference Distribution Table

```
3 4 5 6 7 8 9 10 11 12 13 14 15
    0 1 2
  [0, 0, 2, 2, 2, 2, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0]
   [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 2]
2
   [0, 2, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 2, 0, 2, 2]
4 [0, 0, 0, 0, 0, 4, 0, 0, 6, 0, 0, 2, 2, 0, 0, 2]
   [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4]
5
   [0, 2, 0, 4, 0, 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2]
   [0, 4, 0, 0, 4, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0]
7
   [0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 4, 4, 0, 0]
8
   [0, 0, 0, 0, 0, 0, 2, 2, 4, 0, 2, 2, 0, 0, 4, 0]
9
10 [0, 2, 4, 2, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0]
11 [0, 2, 4, 0, 0, 6, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0]
12 [0, 2, 0, 2, 4, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0]
13 [0, 0, 2, 2, 2, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2]
14 [0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 4, 0, 2, 0, 2, 2]
15 [0, 0, 0, 0, 2, 0, 0, 2, 0, 4, 0, 0, 0, 6, 2, 0]
```

The best differential characteristic was made using data from the difference distribution table.

Probability of (1000 1000 0000 0000)

$$\frac{6}{16} \cdot \frac{6}{16} \cdot \frac{4}{16} = \frac{9}{256} = 0.0352$$

CSI 4108 A2 Aaron Ng (300176901) Oct 17, 2022

Then, I generated 10,000 16-bit plaintext and encrypted them. Details of the code can be found in Encryption.py. The plaintext-ciphertext pairs can be found in pc-pairs.txt I proceeded to attempt a differential cryptoanalysis attack. Details of code can be found in Differential_Attack.py. The results of the attack are shown in the frequency table below.

I was unable to find any partial subkey with noticeably high probability. I suspect I may have incorrectly implemented counting the frequency for the differential attack.

Since I worked alone, I "switched" Person1 and Person2 by generating a different set of round keys

Again I was unable to find any partial subkey with significant high probability, hence why the guess for the partial subkey was incorrect.

\sim	1	١
u	13)

Q3) p=787	, 9 = 367				
n = 288					
Let s=.					
	122 mod 288	829			
= 262 144					
i	XZ	bi			
1	125740	0			
2	48140	0			
3	184533	1			
4	66 647	1			
5	210 247	1			
6	255 533	1			
7	97914	0			
8	50 399	1			
9	96 975	1			
10	167 214	0			
11	141 622	0			
12	216 295	1			
13	160 921	1			
14	26 588	0			
15	157 181	1			
	The state of the second se				
& Verilland Shakit asing to the A DEC					
& We will need 56-bit primes to match security of DES and 128-bit primes to match security of AES-128					
and	and 120 bil primes to match sewity of ALS-128				