Optimal Work-from-Home Policy Analysis

Mitchell Valdes-Bobes

Model Environment

Key Components

1. Firm Productivity:

- A firm's output depends on the fraction of work done remotely (α) and its remote work efficiency (ψ) .
- Production Function:

$$Y = A \left[(1 - \alpha) + \alpha (\psi - \psi_0) \right]$$

- A: Total factor productivity (baseline productivity).
- α : Fraction of work done remotely ($\alpha \in [0,1]$).
- ψ : Efficiency of remote work ($\psi \in [0,1]$).
- ψ_0 : Minimum efficiency threshold for remote work to be viable $(\psi_0 \in [0,1])$.

2. Worker Utility:

- Workers receive utility $x = w + \alpha^{\chi}$, where:
 - -w: Wage paid by the firm.
 - $-\chi$: Parameter capturing worker preference for remote work ($\chi > 0$).

3. Firm's Problem:

• The firm chooses α to maximize profit:

$$\pi = Y - w = A \left[(1 - \alpha) + \alpha (\psi - \psi_0) \right] - (x - \alpha^{\chi}).$$

• Subject to providing a fixed utility x to the worker.

Figure 1: Firm productivity as a function of remote work

Derivation of Optimal Remote Work Fraction (α^*)

Step 1: Profit Maximization

Substitute $w = x - \alpha^{\chi}$ into the profit function:

$$\pi = A \left[(1 - \alpha) + \alpha (\psi - \psi_0) \right] - x + \alpha^{\chi}.$$

Step 2: First-Order Condition (FOC)

Take the derivative of π with respect to α and set to zero:

$$\frac{\partial \pi}{\partial \alpha} = -A(1-(\psi-\psi_0)) + \chi \alpha^{\chi-1} = 0.$$

Rearranging:

$$\chi \alpha^{\chi - 1} = A (1 - (\psi - \psi_0)).$$

Step 3: Solve for α^*

Case 1: $\psi \leq \psi_0$

- Remote work is harmful or neutral $(\psi \psi_0 \le 0)$.
- Optimal Policy: $\alpha^* = 0$ (no remote work).

Case 2: $\psi > \psi_0$

- Remote work is viable $(\psi_{\text{net}} = \psi \psi_0 > 0)$.
- Interior Solution ($\chi < 1$):

$$\alpha^* = \min \left\{ \left(\frac{\chi}{A \left(1 - \psi_{\mathrm{net}} \right)} \right)^{\frac{1}{1 - \chi}}, \ 1 \right\}.$$

• Example: If $\chi=0.5,\,A=2,\,\psi_0=0.3,\,{\rm and}\,\,\psi=0.4$ ($\psi_{\rm net}=0.1$):

$$\alpha^* = \left(\frac{0.5}{2(1-0.1)}\right)^2 \approx 0.077.$$

- Corner Solutions $(\chi \geq 1)$:
 - If $\chi \ge A (1 \psi_{\text{net}})$: $\alpha^* = 1$ (full remote work).
 - Otherwise: $\alpha^* = 0$.

Interpretation

Role of ψ_0

- ψ_0 acts as a viability threshold:
 - Firms with $\psi \leq \psi_0$ avoid remote work entirely.
 - Firms with $\psi > \psi_0$ face a trade-off between productivity loss and wage savings.

Figure 2: Optimal remote work fraction as a function of remote work efficiency

Worker Preferences (χ)

- Low χ (χ < 1):
 - Workers value remote work highly (slow diminishing returns to α).
 - Firms offer partial remote work ($\alpha^* > 0$) even for modest ψ .
- High χ ($\chi \geq 1$):
 - Workers prioritize wages over remote work (rapid diminishing returns to α).
 - Firms adopt remote work $(\alpha^*=1)$ only if $\psi_{\rm net}$ is sufficiently high.

Policy Implications

1. Adoption of Remote Work:

- Firms with $\psi > \psi_0$ adopt remote work, but the extent depends on χ and ψ_{net} .
- Example: A tech firm $(\psi = 0.9, \psi_0 = 0.2)$ with $\chi = 0.5$ chooses $\alpha^* \approx 0.69$, while a manufacturing firm $(\psi = 0.25, \psi_0 = 0.3)$ sets $\alpha^* = 0$.

2. Productivity vs. Wage Costs:

- High- ψ firms leverage remote work to reduce wages without significant productivity loss.
- Low- ψ firms avoid remote work to preserve output.

Summary

The optimal remote work fraction α^* depends critically on:

- 1. Remote efficiency threshold (ψ_0) .
- 2. Worker preference for remote work (χ) .
- 3. Firm-specific remote efficiency (ψ) .

This model explains why firms in certain industries (e.g., tech) embrace remote work, while others (e.g., manufacturing) avoid it, even within the same economy.