

Tabu Search, Simulated Annealing, and Guided Local Search (Vienna 2022)

Christian Blum

Artificial Intelligence Research Institute (IIIA-CSIC)

Tabu Search (TS)

Artificial Intelligence Research Institute (IIIA-CSIC)

Essential information

- Introduced by [Glover, 1986]^a, based on ideas already published in [Glover, 1977]^b
- **A similar idea:** steepest ascent mildest descent, invented by [Hansen, 1986]^c

^aF. Glover, 1986. Future paths for integer programming and links to artificial intelligence. *Computers & Operations Research*, *13*, 533–549

^bF. Glover. Heuristics for integer programming using surrogate constraints, *Decision Sciences*, 8:156–166, 1977

^cP. Hansen, 1986. The steepest ascent mildest descent heuristic for combinatorial programming. In *Congress on Numerical Methods in Combinatorial Optimization*, Capri, Italy, 1986

TS: main ideas

Artificial Intelligence Research Institute (IIIA-CSIC)

Ideas

- 1 Allow to move to solutions worse than the current one if necessary
- 2 Use a mechanism that prevents moves to recently visited solutions \rightarrow tabu lists

Why are both ideas necessary?

Tabu lists (1)

Artificial Intelligence Research Institute (IIIA-CSIC)

Tabu lists: characteristics

- Generally implemented as FIFO (first-in-first-out) lists
- They may have a fixed or variable length
- They might store entire solutions. **Disadvantage:**
 - 1 Storage space requirements
 - 2 Comparing solutions might be expensive
- Therefore: tabu lists rather store solution attributes instead of complete solutions

Note

For each type of solution attribute (for example, nodes resp. edges of a graph) a tabu list is maintained

How are tabu lists used?

- lacktriangle Tabu lists are used to classify the solutions $s' \in \mathcal{N}(s)$:
 - **tabu:** s' can not be considered for a move
 - **not tabu:** s' is a feasible neighbor
- **2** This results in the restricted set $\mathcal{N}^{nt}(s) \subseteq \mathcal{N}(s)$ of neighbors
- **3** Choose the best solution s' from $\mathcal{N}^{nt}(s)$
- **4** Update the tabu list according to the move $s \mapsto s'$

Tabu lists: graphical illustration

Artificial Intelligence Research Institute (IIIA-CSIC)

Tabu lists: TSP example (1)

Artificial Intelligence Research Institute (IIIA-CSIC)

2-opt neighborhood

- Solution attributes:
 - 1 Edges that are removed from a solution/tour
 - **2** Edges that are **added** to a solution/tour
- Therefore: use of 2 tabu lists
 - 1 OutList stores the edges that are removed from a tour
 - 2 InList stores the eges that are added to a tour

Graphical illustration

Tabu lists: TSP example (2)

Artificial Intelligence Research Institute (IIIA-CSIC)

For transforming s into s' ...

- Remove edges $e_{k,l}$ and $e_{j,i}$ from s
- Add edges $e_{k,i}$ and $e_{l,j}$ to s

Is this move feasible according to the tabu lists?

This move is unfeasible (that is, s' is **tabu**), if and only if

- lacksquare $e_{k,i}$ or $e_{l,j}$ are in **OutList** or
- \bullet $e_{k,l}$ or $e_{j,i}$ are in **InList**

Tabu lists: a well known problem

Artificial Intelligence Research Institute (IIIA-CSIC)

Attention with the following issue

- By only storing features of solutions we might forbid (declare as tabu) so-far unvisited solutions (Example on the board!!)
- This is, however, only a problem if the forbidden unvisited solutions are very good

Posible solution to this problem

- Aspiration criteria: Define conditions for canceling the tabu status of a move
- **Example:** If the move is better than the best solution found so far

Tabu lists: TSP example

Artificial Intelligence Research Institute (IIIA-CSIC)

Update of the tabu lists

- Remember: tabu lists normally work in a FIFO manner
- TSP example:
 - 1 Drop the 2 edges that are longest in **OutList**
 - 2 Drop the 2 edges that are longest in InList
 - 3 Add edges $e_{k,l}$ and $e_{j,i}$ to **Outlist**
 - 4 Add edges $e_{k,i}$ and $e_{l,j}$ to **InList**

Pseudo code

```
s \leftarrow \mathsf{GenerateInitialSolution}()
InitializeTabuLists(TL_1, \ldots, TL_r)
while termination conditions not met do
\mathcal{N}_a(s) \leftarrow \{s' \in \mathcal{N}(s) \mid s' \text{ does not violate a tabu condition, or it satisfies at least one aspiration condition}\}
s' \leftarrow \mathsf{argmin}\{f(s'') \mid s'' \in \mathcal{N}_a(s)\}
UpdateTabuLists(TL_1, ..., TL_r, s, s')
s \leftarrow s'
end while
```

Tabu search: additional examples

Artificial Intelligence Research Institute (IIIA-CSIC)

On the board!

- Tabu search for the k-cardinality tree (KCT) problem
- Tabu search for job shop scheduling (JSS)

Tabu search: advanced topics (1)

Artificial Intelligence Research Institute (IIIA-CSIC)

Tabu list length

- Problem: Which is a good length of the tabu list?
 - 1 Short lists: the search process will focus on small areas of the search space (intensificación)
 - 2 Long lists: the search process is forced to explore larger areas of the search process (diversificación)

Cycling

- Related problem: the search process might enter into a cycle
- Definition of a cycle: the repetition of the same sequence of solutions over and over again

Tabu search: advanced topics (2)

Artificial Intelligence Research Institute (IIIA-CSIC)

Solutions to the afore-mentioned problems

- Simple option: try to find a good compromise (by tuning)
- **Robust tabu search:** periodically reinitialize the tabu list length from $[I_{min}, I_{max}]$
- Reactive tabu search:
 - 1 **Increase** tabu list length when there is evidence for the repetition of solutions
 - 2 Decrease tabu list length when there are many improvements

Tabu search: advanced topics (3)

Artificial Intelligence Research Institute (IIIA-CSIC)

Making use of long-term memory

- Tabu lists are generally regarded as short term memory
- Observation: the second-best feasible neighbor (instead of the best one) would sometimes be a better choice
- A way of taking profit from second-best neighbors:
 - 1 Keep a memory of the best second-best neighbors
 - 2 In situations in which the search process seems stuck, re-start the search from one of the second-best neighbors from the memory

Tabu search: continuous optimization

Artificial Intelligence Research Institute (IIIA-CSIC)

Discretization of the search space

- Best known approaches are based on a discretization of the search space
- Exists a version of reactive tabu search
- Enhanced continuous tabú search (on the board!!)

Questions?

Artificial Intelligence Research Institute (IIIA-CSIC)

Simulated Annealing (SA)

Artificial Intelligence Research Institute (IIIA-CSIC)

Essential information

- Commonly considered to be the oldest metaheuristic
- Origins in statistical mechanics (annealing process of glas and metal)
- Introduced by [Kirkpatrick et al., 1983] a and [Cerny, 1985] b
- Search process of SA produces a Markov chain

^aS. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *Science, 13 May 1983*, 220(4598):671–680, 1983

^bV. Cerny. A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. *Journal of Optimization Theory and Applications*, 45:41–51, 1985

Reminder: basic local search

Artificial Intelligence Research Institute (IIIA-CSIC)

Pseudo code: local search

 $s \leftarrow \text{GenerateInitialSolution()}$ while $\exists s' \in \mathcal{N}(s)$ such that f(s') < f(s) do $s \leftarrow \text{ChooseImprovingNeighbor}(\mathcal{N}(s))$

end while

Implementation of ChooseImprovingNeighbor $(\mathcal{N}(s))$

- **First improvement:** Scans the neighborhood an returns the first improving neighbor
- **Best improvement:** Returns the best neighbor of the neighborhood

SA: basic ideas

Artificial Intelligence Research Institute (IIIA-CSIC)

Basic ideas

- 1 Allow to accept solutions worse than the current one if necessary
- 2 Make the choice of the next solution probabilistic
- 3 The acceptance decision is probabilistic

Why are the first two ideas necessary?

Pseudo code

```
s \leftarrow \text{GenerateInitialSolution()}
T \leftarrow SetInitialTemperature()
while termination conditions not met do
   s' \leftarrow \mathsf{PickNeighborAtRandom}(\mathcal{N}(s))
  if (f(s') < f(s)) then
     s \leftarrow s'
  else
     Accept s' as new solution with probability \mathbf{p}(s' \mid T, s)
   end if
   AdaptTemperature(T)
end while
```

Artificial Intelligence Research Institute (IIIA-CSIC)

Initial solution

- **Generally:** randomly generated
- Also possible: use of a heuristic

Acceptance probability

$$\mathbf{p}(s'\mid T,s)=e^{-\frac{f(s')-f(s)}{T}}$$

where T is the so-called temperature parameter

SA: acceptance probability

Artificial Intelligence Research Institute (IIIA-CSIC)

Initial and final settings of T

- At the beginning of the search process: T should be high
 Goal: favoring the exploration of the search space
- At the end of the search process: T should be low Goal: find a local (possibly global) minimum

Adaptation of T: Cooling schedule

- Standard: Continuously decreasing
 - **Example:** geometric cooling, $T \leftarrow \alpha \cdot T$, where $\alpha \in (0,1)$
- More advanced: Re-heating schemes (or non-monotonic cooling)

Adaptation of T

Artificial Intelligence Research Institute (IIIA-CSIC)

Attention

- If the initial value of *T* is too high: waste of computation time due to an extended random search phase
- If the initial value of *T* is too low: pre-mature convergence to some basin of attraction
- If the final value of T is too high: algorithm lacks the intensification phase (no good solutions will be found)

SA: animation

Artificial Intelligence Research Institute (IIIA-CSIC)

Artificial Intelligence Research Institute (IIIA-CSIC)

Theorem

$$\exists \ r \in \mathbb{R}^+$$
 such that $\lim_{k \to \infty} \mathbf{p}(\text{global min. found after } k \text{ iters.}) = 1$ iff $\sum_{k \to \infty}^{\infty} e^{\left(\frac{r}{T_k}\right)} = \infty$

$$\sum_{k=1}^{\infty} e^{\left(\frac{r}{T_k}\right)} = \infty$$

Which cooling schedule applies?

For example the **logarithmic schedule**: $T_k \leftarrow \frac{r}{\log(k+c)}$ (where c is a constant)

Is this result useful?

For practice: no! Too slow

SA variant: threshold accepting (TA)

Artificial Intelligence Research Institute (IIIA-CSIC)

Idea

Instead of an acceptance probability use an explicit acceptance threshold

Pseudo code

```
s \leftarrow \text{GenerateInitialSolution()}
T \leftarrow \text{SetInitialThreshold()}
while termination conditions not met do
s' \leftarrow \text{PickNeighborAtRandom}(\mathcal{N}(s))
if (f(s') - f(s)) \leq T then
s \leftarrow s'
end if
\text{ReduceThreshold(}T\text{)}
```

EXample: TSP

Artificial Intelligence Research Institute (IIIA-CSIC)

TSP example: design decisions

- Neighborhood: 2-opt
- Adaptation of *T*: geometric cooling schedule

Other examples

On the board!!

SA for continuous optimization

Artificial Intelligence Research Institute (IIIA-CSIC)

Two options! On the board!

- 1 Discretization of the search space \rightarrow apply discrete SA
- 2 SA for continuous spaces

Questions?

Artificial Intelligence Research Institute (IIIA-CSIC)

Guided local search (GLS)

Artificial Intelligence Research Institute (IIIA-CSIC)

Essential information

- One of the most recent metaheuristic methods
- Introduced by [Voudouris, 1997]^a y [Voudouris and Tsang, 1999]^b.

^aC. Voudouris. *Guided Local Search for Combinatorial Optimization Problems.* PhD thesis, Department of Computer Science, University of Essex, 1997

^bC. Voudouris and E. Tsang. Guided Local Search. *European Journal of Operational Research*, 113(2):469–499, 1999

GLS: basic ideas

Artificial Intelligence Research Institute (IIIA-CSIC)

Basic ideas

- 1 Dynamically change the objective function depending on the search history
- 2 Changing the objective function means: changing the search landscape

Why are both ideas necessary?

Artificial Intelligence Research Institute (IIIA-CSIC)

Change of the objective function (based on search history)

- 1 First, define a set $\mathcal{I} = \{1,...,n\}$ of solution features
- 2 A function $\delta: \mathcal{I} \times \mathcal{S} \mapsto \{0,1\}$ indicates if a feature $i \in \mathcal{I}$ is present in a solution $s \in \mathcal{S}$
- 3 Second, introduce a penalty value $p_i \ge 0$ for each solution feature $i \in \mathcal{I}$
- 4 Third, add the penalty values to the objective function:

$$f'(s) \leftarrow f(s) + \lambda \cdot \sum_{i=1}^{n} p_i \cdot \delta(i, s)$$

where $\lambda>0$ is a parameter to adjust the strength of the penalty term

Guided local search (GLS)

Artificial Intelligence Research Institute (IIIA-CSIC)

Pseudo code

```
s \leftarrow \text{GenerateInitialSolution}()

\mathbf{p} \leftarrow (0, ..., 0) {initialization of penalties}

while termination conditions not met do

\hat{s} \leftarrow \text{LocalSearch}(s, f')

UpdatePenalityVector(\mathbf{p}, \hat{s})

s \leftarrow \hat{s}

end while
```

GLS: penality vector update

Artificial Intelligence Research Institute (IIIA-CSIC)

- **Generally:** each feature i has an associated cost c_i , $i = 1, \ldots, n$
- Punish all features $i \in \hat{s}$ that maximize the so-called utility function:

$$u(\hat{s},i)=\frac{c_i}{1+p_i}$$

Punishment: $p_i \leftarrow p_i + 1$

Design guidelines

- lacksquare Carefully tune the setting of λ
- Test different penalty update procedures. They largely determine the success of the algorithm

EB-GLS: a variant of GLS

Artificial Intelligence Research Institute (IIIA-CSIC)

Problem

- Not only **bad features** are punished, also good ones.
- **Possible solution:** do not punish the features of the best-so-far solution (s^{bsf})
- **GLS variant:** Elite biased GLS^a

^aShi, J., Zhang, Q., & Tsang, E. EB-GLS: an improved guided local search based on the big valley structure. *Memetic Computing*, 10(3), 333-350, 2018.

Main difference between EB-GLS and GLS: function $u(\hat{s}, i)$

- **Original:** $u(\hat{s}, i) = \frac{c_i}{1+p_i}$
- EB-GLS: $u(\hat{s}, i) = \frac{c_i \cdot \Delta(i, s^{\text{bsf}})}{1 + \rho_i}$, where $\Delta(i, s^{\text{bsf}}) = w > 1$ in case i is not present in s^{bsf} ; $\Delta(i, s^{\text{bsf}}) = 1$ otherwise.

GLS for the TSP

- Each edge $e \in E$ is a solution feature i_e
- The cost of an edge e is its distance d_e
- Effect: making often-used edges less desirable over time
- Local search: 2-opt neighborhood, best-improvement

Other examples: on the board!

- GLS for the quadratic assignment problem (QAP)
- GLS for continuous optimization

Questions?

Artificial Intelligence Research Institute (IIIA-CSIC)

