

InternPro Weekly Progress Update

Name	Email	Project Name	NDA/ Non- NDA	InternPro Start Date	ОРТ
Adharsh Prasad Natesan	anatesan@asu.edu	IT-Core Foundation Suriname	Non-NDA	2024-08-05	Yes

Progress

Include an itemized list of the tasks you completed this week.

#	Action Item/ Explanation	Total Time This Week (hours)	
1	Implementing Spiral Path Planning for Agricultural Rover Simulation	3	
2	Implementing and Visualizing Spiral Plowing in MATLAB Simulation	3	
3	Rectangular Spiral Path Planning for Agricultural Rover Simulation	3	
4	Implementing and Visualizing Rectangular Spiral Plowing	3	
5	Trade study of different leveling approaches	3	
6	Multi-Pass Terrain Leveling with Agricultural Rover	3	
7	Work plan for next week	1	
8	Report Writing	1	
	Total hours for the week:	20	

Verification Documentation:

Action Item 1: Implementing Spiral Path Planning for Agricultural Rover Simulation - 3 hour(s).

- For the previous week we used a sub optimal method for the leveling of the farm land task. Hence looked for an optimal path planning algorithm.
- Created a spiral path generation function using parametric equations, allowing the rover to cover the entire field in a continuous, inward-moving pattern.
- Utilized MATLAB's linspace function to generate a smooth, high-resolution spiral trajectory with 100 points per revolution.
- Implemented 10 spiral turns to ensure comprehensive coverage of the 5x5 meter simulated field.
- Applied scaling and offset factors to center the spiral path within the predefined field boundaries.

- Generated separate arrays for x and y coordinates of the spiral path, facilitating easy integration with the
 existing simulation framework.
- Incorporated logic to clip the generated path, ensuring the rover stays within the 5x5 grid boundaries throughout its trajectory.
- Interpolated the z-coordinates for the spiral path using the previously generated terrain data, allowing the rover to follow the contours of the simulated farmland.
- Visualized the planned spiral path using MATLAB's plot3 function, providing a clear representation of the rover's intended movement pattern.

Action Item 2: Implementing and Visualizing Spiral Plowing in MATLAB Simulation - 3 hour(s).

- Spiral Path Planning:
 - Implemented a spiral path planning algorithm that generates a continuous inward-moving trajectory, ensuring comprehensive coverage of the field.
 - Calculated path coordinates using parametric equations, adjusting for grid boundaries to keep the rover within the field limits.
- Dynamic Terrain Modification:
 - Introduced a plow_count matrix to track plowing frequency across the field, enabling progressive terrain modification.
 - Developed an algorithm that simulates real-time terrain modification as the rover moves, reducing terrain height towards a target level with each pass.
 - Implemented an exponential decay factor to mimic diminishing plowing effects over repeated passes, enhancing realism.
- Simulation Animation and Visualization:
 - Animated the rover's movement along the spiral path, updating its orientation based on local terrain gradients to simulate realistic navigation over uneven surfaces.
 - Updated the terrain visualization dynamically to reflect changes in elevation due to plowing, providing a visual indicator of plowing progress through colorbar updates.

Project Work Summary

- In this task, we focused on developing an efficient rectangular spiral path planning algorithm for our agricultural rover simulation in MATLAB.
- Defined parameters for a 5x5 meter grid and adjustable step size to control path density.
- Implemented a rectangular spiral generation algorithm that creates concentric rectangles moving inward from the field edges to the center.
- Utilized dynamic boundary management to progressively reduce the size of each rectangular loop.
- Generated separate arrays for x and y coordinates of the path, facilitating integration with the existing simulation framework.
- Incorporated logic to ensure the path stays within the defined field boundaries throughout its trajectory.
- Interpolated z-coordinates for the path using the previously generated terrain data, allowing the rover to follow the contours of the simulated farmland.

Action Item 4: Implementing and Visualizing Rectangular Spiral Plowing - 3 hour(s).

- Updated the rover animation to follow the new rectangular spiral path, adjusting its orientation based on local terrain gradients.
- Enhanced the terrain modification visualization to reflect real-time changes as the rover moves along the rectangular spiral.
- Implemented dynamic updating of the terrain surface plot to show progressive field flattening during plowing.
- Updated the colorbar to display the maximum plow count across the field, providing a visual indicator of

plowing progress.

- Integrated the new path visualization with existing terrain modeling and rover movement systems for a comprehensive simulation.
- Ensured smooth transitions between straight segments and corners of the rectangular spiral path in the animation.
- It is interesting to note how the colour map scale changed from 0.4 to 0.35 and eventually 0.3, suggesting that the rover is leveling the surface properly.

Action Item 5: Trade study of different leveling approaches – 3 hour(s).

Project Work Summary

- Pattern Characteristics Analysis
 - Documented the geometric differences between approaches:
 - Rectangular: Sharp 90-degree turns with uniform parallel lines
 - Circular: Smooth continuous curves with varying path density
- Field Coverage Evaluation
 - Examined edge and corner treatment effectiveness
 - Analyzed path overlap patterns and field utilization
 - Studied terrain modification uniformity
- Implementation Considerations
 - Compared path planning complexity between approaches
 - Assessed computational requirements for path generation
 - Evaluated control system demands for each pattern
- This comparative analysis provides valuable insights for optimizing agricultural rover operations, highlighting the tradeoffs between implementation simplicity, coverage efficiency, and operational effectiveness of different plowing patterns.
- I have also attached the Link for the trade study between these two approaches of leveling the farm land.

Action Item 6: Multi-Pass Terrain Leveling with Agricultural Rover - 3 hour(s).

- Path Planning Enhancement
 - Developed a bi-directional rectangular spiral algorithm
 - o Implemented path reversal functionality for double coverage
 - Maintained precise tracking of rover position from perimeter to center and back
- Terrain Modification System
 - Enhanced the plowing mechanism to support multiple passes over the same path
 - Implemented progressive terrain leveling with each pass
 - Tracked cumulative plowing effect through plow count matrix
- Visualization Improvements
 - Updated real-time visualization to show incremental terrain changes
 - Enhanced color mapping to reflect multiple plowing passes
 - Implemented dynamic elevation tracking across repeated coverage
- Performance Optimization
 - Calibrated plowing depth for optimal terrain leveling
 - Adjusted rover speed for consistent soil manipulation
 - Fine-tuned the step size for precise path following
- It is also note worthy that now the z axis maximum perturbations is near 0.18, which is half of what we got when single pass leveling was done.

Action Item 7: Work plan for next week - 1 hour(s).

Project Work Summary

- Algorithm Enhancement
 - Implement adaptive plowing depth based on terrain characteristics
 - Develop intelligent path adjustment to minimize overlap while maintaining coverage
 - Create a hybrid pattern that combines benefits of both rectangular and circular approaches
- Simulation Improvements
 - Add realistic soil physics modeling including:
 - Soil composition variations
- Rover Capabilities
 - Design obstacle avoidance system for real-world applications
 - Add dynamic speed control based on terrain difficulty
 - Implement energy consumption modeling
 - Develop multi-rover coordination algorithms
- · Validation and Testing
 - Create benchmark metrics for plowing quality
 - Design test scenarios with varying field conditions

Action Item 8: Report Writing - 1 hour(s).

- Created word document layout to write contents of the weekly progress.
- Created relevant subsections in the epicspro website and documented 20 hours of weekly progress.
- Collected relevant documents research papers, relevant links and company's objective from their portal.

Follow us on:

Twitter | LinkedIn