OUTLINE

- Sets
- Set Membership and Set Containment
- Set Operations
- Venn Diagrams
- Laws of Set Theory
- Proving in Set Theory
 - Venn Diagrams
 - Membership Table
 - Algebraic Method
 - Element arguments

BRIEF HISTORY

- Evolved during 19th and early 20th centuries
 - George Boole
 published a book in
 1854 on the algebra dealing with sets and logic
 - Georg Cantor defined a set in 1895

- Basic Concepts: Def'n of a set
 - A set is a collection of unordered, well-defined and distinct objects. The objects that belong to a given set are called elements.
 - Notation:
 - **sets**: uppercase letters
 - set groupings: brackets { ... }
 - Illustration:
 - ▲ A = { a, e, i, o, u }
 is the *same* as the set B = { u, i, o, a, e }
 - ◆ {1, 3, 4, 4, 7} can be rewritten as {1, 3, 4, 7}

Basic Concepts: Set membership

- x belongs to a set A: $x \in A$
- x is not an element of the set A: x ∉ A

Example:

Let $B = \{1, 2, \{3\}\}$. What are the elements of set B?

- a) the number 1?
- b) the number 2?
- c) the number 3?
- d) the set containing 3?

- Basic Concepts: Defining sets
 - Roster method
 - list down the elements of the set

Examples:

```
A = \{green, maroon\}

B = \{0, 2, 4, 6, 8, 10\}

C = \{0, 1, 2, 3, 4, 5, ...\}
```

- Rule method
 - describe the elements that belong to the set

Examples:

```
\mathbf{A} = the set of official colors of U.P
```

B = {
$$x \mid x = 2y \text{ and } 0 \le y \le 5$$
 }

 \mathbf{C} = the set of nonnegative integers or $\{x \mid x \in Z^{\oplus}\}$

- Basic Concepts: Defining sets
 - Remarks:
 - ◆ Rule method ⇒ more precise way to define a set.
 - Roster method ⇒ can lead to ambiguity esp. for sets with infinite number of elements.
 - Example:

Consider
$$Y = \{2, 4, 8, 16, ...\}$$

may be described as

$$\mathbf{Y} = \{ x \mid x = 2^n \text{ where n is a positive integer} \}.$$

may also be described by

$$Y = \{ x \mid x = (n^3 - 3n^2 + 8n)/3 \text{ where } n \in Z^+ \}$$

- Basic Concepts: Other terms/concepts
 - Universal set: U the totality of all elements under consideration.
 - Examples:
 - For set A = { a, e, i, o, u }
 U = set of all letters of the English alphabet.
 - For set B = {students enrolled in CMSC 56}
 U = set of all students in UPLB.

- Basic Concepts: Other terms/concepts
 - Cardinality of a set A: |A| the number of elements in the (finite) set A.

Example:

What is the cardinality of each of the ff. sets?

S =set of students enrolled in CMSC 56

B =vowels in the English alphabet

 $\mathbf{Z} = \{ x \mid x \text{ is an integer} \}$

 $A = \{ 0, 2, 4, 6, 8 \}$

- Basic Concepts: Other terms/concepts
 - Equal sets A = B
 - iff a) whenever $x \in A$ then $x \in B$; and
 - **b)** whenever $x \in B$ then $x \in A$.

In other words

$$(A = B) \leftrightarrow (x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)$$

Example:

Which of the ff. sets are equal?

A =
$$\{x \mid x^2 + 2x - 8 = 0\}$$

B = $\{2, -4\}$
C = $\{-4, 2\}$
D = $\{4, -2\}$

- Basic Concepts: Set containment
 - Set A is a subset of set B: A ⊆ B
 - iff every element of set A is also an element of set B.
 In other words,

$$(A \subseteq B) \leftrightarrow (\forall x)(x \in A \rightarrow x \in B)$$

- Set A is a **proper subset** of set B: **A** ⊂ **B**,
 - if and only if
 - A is a subset of B and
 - there is an element in set B that is not in set A.
 In other words,

$$(A \subset B) \leftrightarrow (\exists x)(x \in B \rightarrow x \notin A)$$

or $(A \subset B) \leftrightarrow (A \subseteq B) \land (A \neq B)$

- Basic Concepts: Set containment
 - Example:

Consider

```
A = \{ x \mid x \in Z \text{ and } x \le 10 \}
B = \{ x \mid x \in Z^+ \text{ and } x \le 10 \}
C = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}
```

- Remark:
 - Alternative definition for set equality:

$$(A = B) \leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

- Basic Concepts: Other terms/concepts
 - Theorems
 - A ⊆ A
 - $\bullet (A \subset B) \to (A \subseteq B)$
 - [$(A \subseteq B) \land (B \subseteq C)$] $\rightarrow (A \subseteq C)$
 - [(A \subset B) \wedge (B \subseteq C)] \rightarrow (A \subset C)
 - $\bullet [(A \subseteq B) \land (B \subset C)] \rightarrow (A \subset C)$
 - [(A \subset B) \wedge (B \subset C)] \rightarrow (A \subset C)

Example:

Consider the sets

$$A = \{1, 3, 4, 5\},\$$
 $B = \{1, 2, 3, 4, 5, 6\}$
 $C = \{1, 2, 3, 4, 5, 6\}$

- Basic Concepts: Other terms/concepts
 - Null or empty set: \varnothing or {} does not contain any element. Note that $|\varnothing| = 0$ and that $\varnothing \neq {\varnothing}$.
 - Example:

The set $A = \{ x \mid x^2 - 6x + 9 = 0 \text{ and } x < 0 \} \text{ is an empty set.}$

■ **Theorem**: For any universe U, if $A \subseteq U$ then $\varnothing \subseteq A$. And if $A \neq \varnothing$ then $\varnothing \subset A$.

- Basic Concepts: Other terms/concepts
 - The power set of a set A, denoted by P(A), is the set of all subsets of A.
 - Examples:

What is the power set of each of the following?

- 1. {a, b, c}
- 2. {Ø}

What is the cardinality of the power set of a set A? That is what is | P(A) | equal to?

Russell's Paradox

- History:
 - George Cantor's naïve set theory was inconsistent
 - definition of sets was unrestricted
 - ◆ Lord **Bertrand Russell** (1872-1970) and **Alfred Whitehead** (1861-1947)
 - developed a theory of types which avoided Russell's Paradox.
- Let R be the set of all sets that are not elements of themselves. That is, R = { S | S ∉ S } or if S is a set and S ∉ S, then S ∈ R. This set R does not exist.

Russell's Paradox

Another version:

A set is an ordinary set if it is not an element of itself. Otherwise, it is an extraordinary set. Now let R be the set of all ordinary sets, that is, $R = \{ S \mid S \not\in S \}.$

What kind of set if R, ordinary or extraordinary?

■ The Barber's paradox

The barber of a certain village shaves everyone who do not shave themselves.

Who shaves the barber?

Venn Diagrams

- visual representations of sets.
- developed by English mathematician, John Venn (1834-1923)
 - ◆ U ⇒ rectangle
 - other sets A, B ... ∈ U ⇒ closed polygons

Venn Diagrams

- visual representations of sets.
- developed by English mathematician, John Venn (1834-1923)
- may include elements or cardinality of the sets

Venn Diagrams

- visual representations of sets.
- developed by English mathematician, John Venn (1834-1923)
 - may include elements or cardinality of the sets

$$◆$$
 |**A**| = 15, |**B**| = 25, |**A** \cap **B**| = 10, **U** = 35

 $|(A \cup B)'| = ?$

- Venn Diagrams
 - Example:
 - Illustrate the following sets given that
 - U = set of all UPLB students.
 - A = set of students enrolled in CMSC 56
 - B = set of students enrolled in MATH 26

- Venn Diagrams
 - Example:
 - Illustrate the following sets given that
 - U = set of all UPLB students.
 - A = set of sophomores
 - B = set of juniors

- Venn Diagrams
 - **Example:**
 - Illustrate the following sets given that
 - U = set of all UPLB students.
 - A = set of female students
 - B = set of male students

Venn Diagrams and Arguments

- Example:
 - Check the validity of the following argument:
 - CMSC 56 students enjoy Programming.
 - My Friends are CMSC 56 students.
 - None of my class Mates enjoy programming.
 - Therefore my friends are not my classmates.

- OPERATIONS ON SETS
 - The **union** of sets A and B

$$A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$$

- OPERATIONS ON SETS
 - The **intersection** of sets A and B

$$A \cap B = \{ x \mid (x \in A) \land (x \in B) \}$$

- OPERATIONS ON SETS
 - The **symmetric difference** of two sets A and B

$$A \oplus B = \{ x \mid (x \in A) \lor (x \in B) \text{ and } x \notin (A \cap B) \}$$

- OPERATIONS ON SETS
 - The **relative complement** of set B w/ respect to set A

$$A - B = \{ x \mid (x \in A) \land (x \notin B) \}$$

- OPERATIONS ON SETS
 - The complement of a set A, denoted by A'

$$A' = U - A = \{ x \mid (x \in U) \land (x \in A) \}$$

• Examples:

- ◆ Define the sets A = { a, c, d, e}, B = { c, d, f, h} and U = { a, b, c, d, e, f, g, h, i }
- What are the elements of the following sets?
 - A ∪ B = {a, c, d, e, f, h}
 - A ∩ B = {c, d}
 - A B = {a, e}
 - B A= {f, h}

• Examples:

- ◆ Define the sets A = { a, c, d, e}, B = { c, d, f, h} and U = { a, b, c, d, e, f, g, h, i }
- What are the elements of the following sets?

```
A ⊕ B
= {a, e, f, h}
B'
= {a, b, e, g, i}
(A ∩ B)'
= ({c, d})'
= {a, b, e, f, g, h, i}
```

• Examples:

- ◆ Define the sets A = { a, c, d, e}, B = { c, d, f, h} and U = { a, b, c, d, e, f, g, h, i }
- What are the elements of the following sets?

```
    A∪B'
        = {a, c, d, e} ∪ {a, b, e, g, i}
        = {a, b, c, d, e, g, i}
    A∪Ø
        = {a, c, d, e}
        = A
```

OPERATIONS ON SETS

- Disjoint sets A and B
 - if and only if $\mathbf{A} \cap \mathbf{B} = \emptyset$.
- Examples:
 - Which of the following sets are disjoint?

$$A = \{ a, c, d, e \},$$

 $B = \{ c, d, f, h \}$
 $C = \{ a, e, g, i \}$

- Venn Diagrams and Set Operations
 - Shade the area corresponding to set considered
 - Example:
 - **♦ A** ∪ **B**

QUIZ (1/2 sheet)

Draw a Venn diagram to represent the following facts:

Some people are happy.

Some people are wealthy.

No wealthy person is happy.

All poets are happy people.

All politicians are wealthy.

- Then verify if the following conclusions are valid (state whether true or false):
 - **1)** No poet is wealthy.
 - 2) Politicians are happy people.
 - 3) No person can be both a politician and a poet.

Laws of Set Theory

- Double Negation
 - ◆ (A')' = A
- De Morgan's Laws

$$\bullet (A \cup B)' = A' \cap B'$$

$$\bullet$$
 (A \cap B)' = A' \cup B'

Commutative Laws

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative Laws

$$\bullet$$
 A \cup (B \cup C) = (A \cup B) \cup C

$$\bullet$$
 A \cap (B \cap C) = (A \cap B) \cap C

Laws of Set Theory

- Distributive Laws
 - \bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
 - \bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
- Idempotency Laws
 - $A \cup A = A$
 - $A \cap A = A$
- Identity Laws
 - $A \cup \emptyset = A$
 - $A \cap U = A$

Laws of Set Theory

- Inverse Laws
 - \bullet A \cup A' = U
 - $A \cap A' = \emptyset$
- Domination Laws
 - **♦** A ∪ U = U
 - $\bullet A \cap \emptyset = \emptyset$
- Absorption Laws
 - \bullet A \cup (A \cap B) = A
 - \bullet A \cap (A \cup B) = A

- Theorems. Let A, B \subseteq U
 - **1.** $A B = A \cap B'$
 - **2.** $A \oplus B = (A \cup B) (A \cap B)$
 - **3.** $(A \cap B) \subseteq A \subseteq (A \cup B)$
 - **4.** The ff statements are *equivalent* to each other:
 - **a)** A ⊆ B
 - **b)** $A \cup B = B$
 - c) $A \cap B = A$
 - **d)** $B' \subseteq A'$
 - **5.** If A , B \subseteq U then A and B are disjoint if and only if $A \cap B = A \oplus B$.

Methods of Proof

METHODS of PROOF

- Venn Diagram
 - Make Venn diagrams and shade the indicated sets.

Example: Show that $(A - B)' = A' \cup B$

- Membership Table
 - Similar to truth table
 - Columns correspond to sets:
 - \mathbf{T} (rue) $\Leftrightarrow x$ is in the set
 - \mathbf{F} (alse) $\Leftrightarrow x$ is not in the set
 - Two sets are equal if the contents of their corresponding columns are exactly the same.

Example: Show that $(A - B)' = A' \cup B$

Methods of Proof

METHODS of PROOF

- Algebraic Method
 - Like chain of equivalence method
 - Cite theorems and laws of set theory

Example: Show that $(A - B)' = A' \cup B$

Example: Show that $(A \oplus B) - A = B - A$

- Proof by Element Arguments
 - Use more formal definitions of set concepts and concepts of logic.

Example: Show that $(A - B)' = A' \cup B$

Example: Show that $[(A \subseteq B) \land (B \subseteq C)] \rightarrow (A \subseteq C)$