

dati

parliamo di ...

- perché ci interessano i dati?
- chi 'semina' dati?
- quanti dati?
- big data
- i nostri dati

l'importanza dei dati

«i dati sono il nuovo petrolio»

Clive Humby, data scientist e matematico inglese (2006)

- il *petrolio* ha permesso lo sviluppo socio-economico mondiale nel *XIX* e *XX* secolo
- le *connessioni*, le *tecnologie* ed i *dati* svolgono questo ruolo nel *XXI* secolo

Alberto Ferrari - Analisi dei Dati

dati e petrolio

- l'industria dei big data è un'industria estrattiva
 - il petrolio si ricava dalle profondità del suolo
 - il carbone si estrae dalle miniere
 - i dati personali vengono
 - estratti in forma grezza (es da internet)
 - poi vengono *raffinati* (aggregati per produrre informazione)

big data – una fra le tante definizioni

- raccolta di dati così estesa in termini di *volume*, *velocità* e *varietà* da richiedere *strumenti non convenzionali* per estrapolare, gestire e processare informazioni entro un tempo ragionevole
- aumentando la scala dei dati di cui si dispone, *si possono fare cose nuove* che non sono possibili con minori quantità dei dati

dato e informazione

- ogni *dato* preso singolarmente è spesso *privo di significato*
- l'organizzazione e la gestione di *enormi quantità di dati* suddivisi secondo un determinato criterio può fornire *importanti informazioni*
 - queste informazioni possono poi essere utilizzate in modo da dare benefici
 - *0* ...
- scopo dei big data:
 - analizzare enormi quantità di dati
 - estrapolare informazioni
 - in *tempi* ragionevoli
 - con *risorse* limitate

«siamo tutti pollicini digitali» Dino Pedreschi

Differenza con Pollicino

• ... Il giorno dopo, quando i genitori conducono i figli nella foresta con una scusa, Pollicino lascia cadere i sassolini dietro di sé; seguendo questa traccia riesce a riportare i fratelli a casa.

- siamo consapevoli dei dati che lasciamo lungo la strada?
- quali dati avete «lasciato lungo la strada» ieri?

5 v - le caratteristiche dei big data

- volume
- velocità
- varietà
- veridicità
- variabilità

volume

- ogni giorno, in moltissime attività della nostra vita quotidiana, generiamo dati
- le tecnologie tradizionali non sono in grado di gestire l'ingente massa di informazioni che vengono generate
- il volume di dati è in continua *crescita*
- è difficile identificare un valore limite al di sopra del quale si può parlare di Big Data

dove 'seminiamo' i nostri dati

- Facebook
 - testi, immagini, collegamenti ('amici') ...
- Google
 - ricerche, cronologia, maps, ...
- informazioni sulla nostra attività fisica raccolte dagli *smartwatch*
- gli spostamenti memorizzati dagli *smartphone*
- la musica che ascoltiamo su *Spotify*
- i film che vediamo su *Netflix*
- tessere
 - supermercati, librerie, ...
- acquisti
 - · carte di credito
- ...

conclave 2005 e 2013

Alberto Ferrari – Analisi dei Dati

$traffico\ telefonico$

Alberto Ferrari – Analisi dei Dati

https://oggiscienza.it/2021/03/15/intelligenza-artificiale-calcio/

Alberto Ferrari – Analisi dei Dati

dati: unità di misura

Nome	Simbolo	Multiplo	byte
Kilobyte	kB	10 ³	1.000
Megabyte	MB	10 ⁶	1.000.000
Gigabyte	GB	10 ⁹	1.000.000.000
Terabyte	TB	1012	1.000.000.000.000
Petabyte	PB	10 ¹⁵	1.000.000.000.000.000
Exabyte	EB	10 ¹⁸	1.000.000.000.000.000.000
Zettabyte	ZB	1021	1.000.000.000.000.000.000
Yottabyte	YB	1024	1.000.000.000.000.000.000.000

divina commedia

- *La Divina Commedia* di Dante Alighieri è composta da 671.447 caratteri
- 1 carattere = 1 byte
- $670 \text{ Kb} = 1 \text{ Divina Commedia} \approx 1 \text{ megabyte}$
- universo digitale
 - stima
 - attualmente **2.7** zettabyte 1 zettabyte equivale a un triliardo di byte
 - previsione
 - entro il 2025 *180 zettabyte*

origine dei dati - dati commerciali

- Google ha Peta Byte di dati
- Facebook ha miliardi di utenti attivi
- Amazon gestisce milioni di visite/giorno
- Transazioni bancarie/carte di credito

... numeri ...

2021 This Is What Happens In An Internet Minute

https://www.infodata.ilsole24ore.com/2022/01/02/quanti-dati-generati-minuto/

https://www.wired.it/internet/web/2019/02/14/dati-internet-minuto/

origine dei dati - dati scientifici

- dati raccolti e archiviati a velocità enormi
 - sensori remoti su satelliti
 - NASA EOSDIS genera più di un petabyte di dati ogni anno
 - telescopi che scrutano i cieli
 - simulazioni scientifiche
 - terabyte di dati generati in poche ore

dati - una stima di crescita

- i dati crescono in media del 30-40% annuo
- ogni 2,5 anni si *raddoppia* il volume
 - oggi X
 - fra 2,5 anni X·2
 - fra 5 anni X·4
 - fra 7,5 anni X·8
 - fra 10 anni X·16
 - ...
 - fra 20 anni X ·256

Global DataSphere quantità di dati creati, acquisiti e replicati in un dato anno in tutto il mondo

Alberto Ferrari – Analisi dei Dati

enormi quantità di dati

- nuovo *mantra*
 - raccogli tutti i dati che puoi quando e dove possibile
- aspettative
 - i dati raccolti avranno *valore* sia per lo scopo per cui sono stati raccolti sia per uno *scopo non previsto*

E-Commerce

Traffic Patterns

Social Networking: Twitter

Sensor Networks

Computational Simulations

open data

- dati *liberamente accessibili* a tutti, privi di brevetti o altre forme di controllo che ne limitino la riproduzione o l'utilizzo
- eventuali copyright si limitano all'obbligo di citazione della fonte o al rilascio delle modifiche con stessa tipologia di copyright

open data

https://www.data.gov/

ĐẠTA GOV

- The home of the U.S. Government's open data
- Here you will find data, tools, and resources to conduct research, develop web and mobile applications, design data visualizations, and more
- https://www.dati.gov.it/
 - Agenzia per l'Italia digitale
 - i dati aperti della pubblica amministrazione

qualità - quantità

- nei big data, la *quantità* è più importante della qualità
- l'abbondanza permette di tollerare un certo livello di imprecisione

- es. google translate
 - prende le informazioni di cui ha bisogno per le sue traduzioni da pagine web non filtrate, piene di errori ortografici
 - ma l'enorme quantità di dati a disposizione gli permette di essere più affidabile di tutti i suoi predecessori, che si basavano su dizionari corretti e redatti da esperti, ma con il limite di contenere un numero limitato di informazioni

New York 1964

- fiera dell'elettronica dimostrazione di un software di traduzione automatica dall'inglese al russo
- «lo spirito è forte ma la carne è debole»
- in russo il senso diventava «la vodka è forte ma la carne è marcia"

«La tentazione di Sant'Antonio» Salvador Dalí

fattori determinanti per lo sviluppo dei big data

- cloud computing
 - enormi quantità di dati memorizzabili in rete
 - servizi di elaborazione remota
- database più efficienti (NoSQL)
- machine learning verso deep learning
- disponibilità di tecnologie open source
 - Hadhoop
 - Spark

velocità

- i dati vengono prodotti e acquisiti sempre più *rapidamente*
 - dispositivi dotati di sensori capaci di raccogliere dati in *tempo reale*
 - la *sfida* è avere la capacità di *analizzarli in tempo reale* per poter prendere decisioni con la maggiore tempestività possibile

varietà

- i dati provengono da *fonti eterogenee*
- varie tipologie di dati
 - sensori
 - social network
 - open data
- dati strutturati o non strutturati
- *interni* o *esterni* all'organizzazione

"More isn't just more. More is different" Chris Anderson (Wired 2008)

veridicità

- i dati devono essere *affidabili*
- devono dire il vero
- la qualità e l'integrità delle informazioni rimane un pilastro imprescindibile per portare ad analisi utili e affidabili

"Bad data is worse than no data"

variabilità

- molti dati
 - in *diversi formati*
 - provenienti da *diversi contesti*
- la *mutevolezza* del loro significato è un aspetto da tenere in considerazione nel momento in cui i dati vengono interpretati

data science e big data

- scienza dei dati
 - studia metodi per estrarre *conoscenza* dai dati
 - opera con dati di qualunque natura
- data science non necessita sempre di big data
 - la costante crescita dei dati fa si che i big data siano un aspetto importante della data science

analisi dei big data - finalità

medicina

- prevedere la diffusione delle malattie
- contrastare possibili epidemie

• business

- analizzare comportamenti di acquisto dei consumatori
- monitorare feedback delle promozioni e offerte
- studiare le campagne di marketing

• ambiente

- studiare eventi metereologici
- Giappone, big data del meteo e super computer per previsioni migliori
 - https://tg24.sky.it/ambiente/2018/01/18/giappone-big-data-meteo

analisi dei big data - finalità

• sport

- definire strategie di gioco
- studiare strategie degli avversari
- valutazione performance
- https://innovaformazione.net/big-data-e-calcio/

• trasporti

• migliorare la gestione del traffico in tempo reale

• sicurezza

• prevenire attentati terroristici

big data

le varie professioni

data scientist

- gestisce i big data (dati grezzi)
- *trae informazioni* rilevanti per
 - strategie di business
 - strategie di marketing e di vendita
 - definizione di nuovi prodotti e servizi, ecc.

• profilo:

- conoscenza di *modelli matematico-statistici* e algoritmi di *machine learning*
- conoscenza dei *linguaggi di programmazione* (R, Python)
- competenze di business intelligence, di semantica, di ontologie per la gestione delle informazioni, di metodi e tecnologie per la gestione di progetti data-driven innovativi, di machine learning.
- tecniche di data mining
 - clustering
 - analisi della regressione....
- laurea avanzata (Master, PhD) in informatica

data engineer

- garantire la *disponibilità*, la qualità e la *fruibilità* dei dati a chi li utilizza
- gestire processi, individuare opportunità e rischi
- competenze informatiche e ingegneristiche per aggregare, analizzare e manipolare insiemi di big data
- creazione di algoritmi informatici, sviluppo di processi tecnici per migliorare l'accessibilità dei dati e la progettazione di report e strumenti per gli utenti finali
- competenza nella progettazione di *database*, padronanza di linguaggi di programmazione
- capacità di *comunicazione scritta e verbale*, capacità di lavorare sia in modo indipendente che in team

data analyst

- analizza e interpreta i dati per *trasformarli* in informazioni utili al processo decisionale
- il data scientist è il data analyst avanzato
- lavora con i team di ingegneri per ottenere i dati corretti
- eseguire il *data munging*
 - trasforma i dati grezzi in dati nel formato utile per l'analisi/interpretazione e per ricavare informazioni dai dati
- lavora su database strutturati
- buona conoscenza di programmi informatici (Excel, Access...)
- buone capacità di comunicazione e di presentazione

security engineer

- svolgono un ruolo di grande responsabilità: difesa rispetto a problemi informatici e possibili attacchi
- hacker buono: evita o risolve problemi di *sicurezza* sui dati
- definisce protocolli di *protezione* per le reti informatiche
- laurea in ingegneria, informatica e certificazioni di sicurezza industriale
- conoscenza tecnica dei linguaggi informatici e dei sistemi operativi, capacità di problem solving
- la capacità di lavorare in modo indipendente e rimanere costantemente aggiornati

database manager

- responsabilità del *funzionamento* e del miglioramento dei *database*
- diagnostica e riparazione di database danneggiati
- aggiornare i sistemi di gestione di basi di dati in base agli sviluppi tecnologici
- laurea in tecnologia dell'informazione
- buona conoscenza dei software per la **gestione dei database** (MySQL, Oracle)

data architect

- *progettano i sistemi informativi*, i flussi e i repository dei dati in base alle necessità dell'azienda
- conoscenza dei linguaggi orientati ai dati per organizzare e mantenere i dati in database
- competenze tecniche avanzate (SQL, XML
- · acume analitico e capacità di problem-solving
- laurea di primo livello (spesso laurea avanzata) in un campo legato all'informatica

big data problemi e opportunità

- Così big data e intelligenza artificiale stanno battendo il coronavirus in Cina
 - https://www.ilsole24ore.com/art/la-macchina-tech-xi-jinping-cosi-big-data-e-intelligenza-artificiale-stanno-battendo-coronavirus-cina-ADsL0XB
- Big data per i servizi pubblici: tutti i vantaggi e i rischi
 - https://www.agendadigitale.eu/cittadinanza-digitale/big-data-per-i-servizi-pubblici-tutti-i-vantaggi-e-i-rischi/
- Il compromesso tra dati e libertà
 - https://nova.ilsole24ore.com/frontiere/il-compresso-tra-dati-e-liberta/

materiale di consultazione

- Superquark Big Data (8 min)
 - https://www.youtube.com/watch?v=A2pUx5B_C4A
- Superquark Big data e pandemia (5 min)
 - https://www.youtube.com/watch?v=3WvaZoZhwjU
- come funzionano i filtri di snapchat (5 min) [generare automaticamente i sottotitoli in italiano]
 - https://www.youtube.com/watch?v=Pc2aJxnmzh0
- Progetti di analisi di big data
 - Guida ai prodotti più acquistati durante l'emergenza Covid
 - https://masterbigdata.it/project-files/2019-2020/panicBuying/
 - EVERYBODY'S CHANGING (How has music changed in the past few years?)
 - https://masterbigdata.it/sites/default/files/projects/2020-2021/musica/#progetto

Shoshana Zuboff – Il capitalismo della sorveglianza

Alberto Ferrari – Analisi dei Dati

cosa sono o cookies?

I cookie sono piccoli file di testo che i siti web salvano sul tuo computer o dispositivo quando li visiti. Servono per vari scopi, tra cui:

- 1. **Memorizzazione delle preferenze**: Ricordano le tue impostazioni, come la lingua o il layout della pagina.
- Tracciamento della sessione: Aiutano a mantenerti connesso durante la navigazione, ad esempio quando accedi a un account.
- Analisi e pubblicità: Raccolgono informazioni sulle tue abitudini di navigazione per offrire annunci personalizzati o migliorare l'esperienza utente.

I cookie possono essere "di sessione" (che si cancellano quando chiudi il browser) o "persistenti" (che rimangono finché non vengono eliminati). Puoi gestire le impostazioni dei cookie direttamente nel tuo browser.

Chi può consultare le informazioni presenti in un cookie?

Le informazioni contenute in un cookie possono essere consultate principalmente da tre parti:

- Il sito web che ha creato il cookie: Solo il sito che ha impostato il cookie può leggerne i dati.
 Questo consente al sito di ricordare le tue preferenze o le informazioni di accesso.
- Siti web di terze parti: Se un sito incorpora contenuti di terze parti (come annunci pubblicitari o plugin social), questi possono impostare i propri cookie e accedere a quelli già presenti. Questo è comune per il tracciamento pubblicitario.
- 3. **L'utente stesso**: Gli utenti possono visualizzare e gestire i cookie attraverso le impostazioni del proprio browser, che permettono di vedere quali cookie sono stati memorizzati e di eliminarli se necessario.

In generale, l'accesso ai dati contenuti in un cookie è limitato al dominio che lo ha creato, per motivi di sicurezza e privacy.

cookies e privacy

- https://www.garanteprivacy.it/faq/cookie
- https://www.wired.it/article/fingerprinting-cosa-e-tracciamento/

Alberto Ferrari - Analisi dei Dati

quali dati condividiamo?

- Facebook
 - impostazione privacy
- Instagram
- Twitter

• ...

