Churn Prediction in the Telco industry

Clarence San

Central Questions

What is the profile of our customers most likely to churn?

What should we look for to predict whether a customer is likely to churn or not?

Background and Context

Churn is particularly important for service-based businesses such as telco companies – knowing which accounts are likely to churn will allow companies to apply retention strategies effectively to maximize customer lifetime value.

This IBM dataset has information about customers and if they have churned. This project aims to predict churn given characteristics about the customer account.

Demographic Variables

6 Account

Info Variables

Service-related Variables 1

Churn Indicator

7043

Accounts

Exploratory Data Analysis

Process

Plotting distributions of numerical variables

Plotting counts of categorical variables

Churn Rates of Customers

Customers are on average 73% likely to churn

This provides a good baseline to evaluate model performance

General Pairplot

There are 3 numerical columns – we can estimate their distributions using kernel density estimation

¹ Data points and kde distributions are split by churn result

5

Facet monthlycharges and totalcharges by tenure

- Newer customers seem to be more likely to churn
- Customers with more expensive monthly plans are also likely to churn

KDE plots of numerical features

- Churn rates higher at lower tenures (as well as for customers on monthly plans)
- The rate drops markedly from the 5 month period
- Lower charges are associated with lower rates of churn

Demographic Breakdown

- Accounts with dependents tend to churn less
- There is little difference in churn between genders and individuals with partners

Services Breakdown

- Fiber optic subscriptions are more likely to churn
- Accounts with Internet-related services are less likely to churn

Account Breakdown

- Accounts without automated payments are more likely to churn
- There is a small increase in percentage churn for accounts with streaming services
- Monthly contracts are more likely to churn

Violin plots of Variables

We can see that fiber optic subscriptions are more expensive than DSL, which might contribute to higher churn rates

Correlations

Process

Indepth look into the relationships among variables

Retention Rate by Cohort

Notable associations to churn include age, fiber optic users, e-payments, and contracts.

¹ Pairwise correlations matrix across all variables

Importance Scores

Contract type, tenure and internet type have higher importance scores when trained on an initial model

Visualization of the Decision Boundaries in the Tree

Modelling Results

Process

CART ensembles (Gradient Boosting and Random Forest) were tuned and validated

Potential Follow ups

As an additional step, we might want to consider dropping variables that are not important to the model in predicting churn

(Step is executed in code)

Feature Importance of the best performing model

The overall model has an accuracy of 78%, against a baseline of 73%

Monthly contracts, total charges, and tenure are the most important to churn prediction

Tuned Random Forest parameters

{'colsample_bynode': 0.6, 'learning_rate': 1.05, 'reg_lambda': 0.14, 'subsample': 0.79, 'objective': 'binary:logistic', 'base_score': 0.5, 'booster': 'gbtree', 'colsample_bylevel': 1, 'colsample_bytree': 1, 'gamma': 0, 'importance_type': 'gain', 'max_depth': 6, 'min_child_weight': 1, 'missing': nan, 'monotone_constraints': '()', 'n_estimators': 75, 'num_parallel_tree': 100, 'reg_alpha': 0.14, 'scale_pos_weight': 1, 'tree_method': 'exact', 'validate_parameters': 1, 'verbosity': 0}

Tuned Random Forest model validation

0.84 ROC-AUC, 0.78 Accuracy, 0.48 Recall, 0.66 Precision, 0.55 F1

¹ Random Forest was selected over a Gradient Boosted approach due to overall performance and ability to generalize to unseen data

Conclusion

Important features: fiber optic, streaming service, tenure

Not so important: gender, seniority, dependents

Gaining an understanding of the characteristics of churners is important for any company's retention strategy. A churn prediction model is also able to provide actionable insights and outputs to target potential churners

Next Steps

Investigate additional features that can be used to improve model's predictive performance