Session 2: Homework Solution

1.CPU Execution Time = CPI * Clock Cycle * ----a. Number of instructions

c. d.	Fetch Cycle Program
a. b. c.	t Exa is equivalent to 2^8 2^20 10^15 10^18
a. b. c.	ck cycles Per Instruction is Total clock cycles per instruction for a program. Average number of clock cycles in a program. Frequency of the processor Average number of clock cycles per instruction for a program.
a. b. c.	ational latency (Tavg rotation) is defined as Time to position heads over cylinder containing target sector. Time waiting for first bit of target sector to pass under r/w head Time to read the bits in the target sector. Latent energy of rotation.
5. A p	rogram is running on a specific machine with 10,000,000 total Instruction count,
avera	ge CPI is 1.5 cycles/instruction with clock rate 200 MHz. Calculate the execution
b. c.	b. 0.03 sec 0.075 sec c. 0.5 sec d. 0.02 sec
	Clock Cycle = 1/frequency = 1/200 MHz = 1/(200*10 ⁶) Execution Time = CPI * No. of instructions * Clock Cycle = 1.5 * 10,000,000/200 * 10 ⁶ = 0.075 Sec
disk a.	is the smallest unit of information that can be read from or written to the Spindle Platter

- c. Sector
- d. Track
- 7. Number of tasks completed per unit time is
 - a. Throughput
 - b. Efficiency
 - c. Clock cycle
 - d. Execution time
- 8. Consider a disk with a sector size of 512 bytes, 4000 tracks per surface, 30 sectors per track, five double-sided platters. Calculate disk capacity
 - a. 500,000 K
 - b. 614,400 K
 - c. 682,000 K
 - d. 512,000 K

Key: Disk capacity = No. of platters * No. of sides per Platter * No. of tracks per surface *

No. of sectors per track * No. of bytes per sector

- 9. Which main memory type is used in Computer Systems?
 - a. SRAM
 - b. Flash memory
 - c. EEPROM
 - d. DRAM
- 10. Which is the fastest storage unit in a usual memory hierarchy?d None of the answers is correct
 - a. Register
 - b. Hard disk
 - c. Main memory
 - d. Pen Drive
- 11. Mapping between logical blocks and actual sectors is maintained by hardware/firmware device called
- - a. Disk manager
 - b. disk controller
 - c. Memory Buffers
 - d. logical controller

- 12. A platter in a Hard Disk is rotating at 12000 RPM(Revolutions Per Minute). What is the time for 1 revolution in mill seconds?
 - a. 4
 - b. 6
 - c. 4.5
 - d. 5

Kev: 12000 RPM means, in 60 seconds 12000 revolution.

Per second revolutions =12000/60 =200 rev

so time period for each revolution= 1/200 seconds = 0.005 Seconds.

There are 1000 millisecond in a second so time for one revolution =1000*0.005second = **5milli second**

- 13. The platter rotates at 9000RPM. What is the time for 1 revolution in microseconds
 - a. 6666.67
 - b. 6666.11
 - c. 6.66667
 - d. 0.0066667

Key: 9000 RPM means in 60 seconds 9000 revolution.

Per second revolutions=9000/60=150 rev.

so time period for each revolution= 1/150 seconds=0.0066667 Seconds.

There are 1000,000 microsecond in a second so time for one revolution

=1000.000*0.00666667second = **6666.67micro second**

- 14. What is the unit for AREAL density?
 - a. tracks/square inch
 - b. bits/inch
 - c. bits/square inch
 - d. tracks/inch

Key: The Areal density is computed per inch bits on a track and the radial track per inch product which is bits/square inch

- 15. Speedup by 5 is achieved for 90% of a program by making the computer run faster by
 - a. 9.26 times
 - b. 8.66 times
 - c. 4.98
 - d. 9.0

<u>Key:</u> using expression "s=1/((1-f)+(f/k))" and re-writing it as "s(1-f)+s(f/k)=1" solving for k by replacing s=5,f=0.9 the result is **9**.