The Log-Rank Conjecture for Linear Threshold Functions composed with AND

Nicholas Sieger and Aditya Krishnan

October 8, 2016

1 Notation and Definitions

We first set our notation for the relevant complexity measures. Consider an arbitrary boolean function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ and define CC(F) denote the communication complexity of F. For such an F, let M_F denote its communication matrix.

For each subset $S \subseteq [n]$ define the polynomial $\alpha_S : \{0,1\}^n \to \{0,1\}$ by $\alpha_S(x_1,\ldots,x_n) := \prod_{i \in S} x_i$ with $\alpha_{\mathcal{O}}(x) = 1$. An AND decision tree is then a binary decision tree where each node makes an α_S query for some $S \subseteq [n]$. Such an AND decision tree T decides a boolean function $f : \{0,1\}^n \to \{0,1\}$ if T agrees with f on all inputs $x \in \{0,1\}^n$. The AND decision tree complexity $\mathsf{DT}_{\wedge}(f)$ is the minimum depth of an AND decision tree which decides f.

Given a boolean function f, we will frequently write f as a multilinear polynomial. It is shown in [?] that any boolean function f can uniquely written as $f(x) = \sum_{S \subseteq [n]} \hat{\alpha}[S] \alpha_S(x)$ where $\hat{\alpha}[S]$ is the coefficient of $\alpha_S(x)$. We denote by mon(f) be number of nonzero $\hat{\alpha}[S]$ for a function f. The support of a function f is defined as $\sup(f) := f^{-1}(\{1\})$.

We will only consider a subclass of all boolean functions $f : \{0,1\}^n \to \{0,1\}$ which we now define. Let

$$f(x_1,\ldots,x_n) := \begin{cases} 1 & w_1w_1 + w_2x_2 + \cdots + w_nx_n \ge w_0 \\ 0 & \text{otherwise} \end{cases}$$

be a linear threshold function (LTF). We will assume without loss of generality that $w_0 \ge 0$. We form our communication function $F(x_1, \ldots, x_n, y_1, \ldots, y_n) := f(x_1 \land y_1, x_2 \land y_2, \ldots, x_n \land y_n)$.

Finally, there are several relevant results to state. It is shown in [?] that $rank(M_F) = mon(f)$ (Note this result holds for a general f, not just LTFs). In addition, it is easy to see that $CC(F) \le 2DT_{\wedge}(f)$. Thus, showing the following claim implies the Log-Rank Conjecture for our class of communication functions F.

Proposition 1.1. If f is an LTF, $DF_{\wedge}(f) \leq \log^{c}(\mathsf{mon}(f))$ for some $c \in \mathbb{R}^{+}$.

2 ????

References