EE 6222-2022-2023-51

3. (a)
$$p(e_i|x) = 1 - p(w_i|x)$$

(b) $p(e_i|x) = 1 - p(w_i|x)$

to $p(e_i|x) = 1 - p(w_i|x)$

to $p(e_i|x) = 1 - p(w_i|x)$
 $p(x) = p(w_i|x) = p(x_i|w_i) p(w_i)$
 $p(x) = p(x_i|x) = p(x_i|w_i) p(w_i)$

Since for all $w_i = p(x_i|w_i) p(w_i)$
 $p(x) = p(x_i|w_i) p(w_i)$