Homework Assignment 8

Matthew Tiger

November 12, 2016

Problem 7.2.2. If $D:[0,1)\to [0,1)$ is the doubling map $D(x)=2x \mod 1$ and $f:S^1\to S^1$ is the angle doubling map, $f(z)=z^2$, show that f is a factor of D.

Solution. Recall that a dynamical system $f: S^1 \to S^1$ is a factor of the dynamical system $D: [0,1) \to [0,1)$ if there exists a continuous, onto function $h: [0,1) \to S^1$ such that $h \circ D = f \circ h$.

Define $h:[0,1)\to S^1$ by $h(x)=e^{2\pi ix}$. Then it is easy to see that h is continuous. To show that it is onto, let $z\in S^1$ be given. Then $z=e^{it}$ for some $t\in[0,2\pi)$. Choose $x\in[0,1)$ such that $t=2\pi x$. Then it is clear that $h(x)=e^{2\pi ix}=e^{it}=z$ and h is onto.

Now, we see that

$$f \circ h(x) = f(e^{2\pi ix}) = e^{2\pi ix}$$

and

$$h \circ D(x) = \begin{cases} h(2x) & \text{if } x \in [0, 1/2) \\ h(2x - 1) & \text{if } x \in [1/2, 1) \end{cases}$$
$$= \begin{cases} e^{4\pi i x} & \text{if } x \in [0, 1/2) \\ e^{4\pi i x - 2\pi i} & \text{if } x \in [1/2, 1) \end{cases}.$$

However, $e^{4\pi ix-2\pi i}=e^{-2\pi i}e^{4\pi ix}=e^{4\pi ix}$ so in either case $h\circ D(x)=e^{4\pi ix}=f\circ h(x)$ and f is a factor of D.

Problem 7.2.3. i. If $g: S^1 \to S^1$ is defined by $g(z) = z^3$, show that g is the angle-tripling map

- ii. Find the periodic points of g and show they are dense in S^1 .
- iii. Let $F:[0,1)\to [0,1)$ be defined by $F(x)=3x\mod 1$. Show that g is a factor of F.

Solution. i. If $z \in S^1$, then $z = e^{i\theta}$ for some $\theta \in (-\pi, \pi]$. Note that if z = x + iy for $x, y \in \mathbb{R}$, then θ is the angle between the vector $\langle x, y \rangle$ and the real line measured counter-clockwise.

So, if $z = e^{i\theta}$, then

$$g(z) = \left(e^{i\theta}\right)^3 = e^{i3\theta}$$

and the angle between the vector $\langle x, y \rangle$ and the real line measured counter-clockwise has now tripled. Therefore, q is the angle-tripling map.

ii. For the map g, note that 0 is a fixed point and so it cannot be periodic. It is easy to see that if $g(z) = z^3$, then $g^n(z) = z^{3^n}$. Thus, for $z \neq 0$, we have that $g^n(z) = z$ if and only if $z^{3^n} = z$ or $z^{3^{n-1}} = 1$. Therefore, the period n points are the $(3^n - 1)$ -th roots of unity.

Having identified the periodic points, we see that the periodic points of g are dense in S^1 if for every $z \in S^1$ either z is a $(3^n - 1)$ -th root of unity for some n or z is arbitrarily close to some $(3^n - 1)$ -th root of unity, i.e. if for every $z \in S^1$ and every $\varepsilon > 0$, there exists some period n point x such that $|z - x| < \varepsilon$.

If $x \in S^1$ then $x = e^{i\theta}$ for some $-\pi < \theta \le \pi$. If x is a period n point, then $\left(e^{i\theta}\right)^{3n-1} = e^{2\pi i}$ implies that $x = e^{2k\pi i/3^n-1}$ for some $0 \le k < 3^n-1$. Note that the (3n-1)-th roots of unity are evenly spaced on the unity circle a distance $2\pi/(3^n-1)$ apart. Taking n arbitrarily large shows that this distance is arbitrarily small and the distance between any point on the unit circle will be arbitrarily close to a (3^n-1) -th root of unity.

iii. Recall that a dynamical system $g:S^1\to S^1$ is a factor of the dynamical system $F:[0,1)\to [0,1)$ if there exists a continuous, onto function $h:[0,1)\to S^1$ such that $h\circ F=g\circ h$.

Define $h:[0,1)\to S^1$ by $h(x)=e^{2\pi ix}$. As was shown earlier, this function is continuous and onto.

Now, we see that

$$g \circ h(x) = g(e^{2\pi ix}) = e^{6\pi ix}$$

and

$$h \circ F(x) = \begin{cases} h(3x) & \text{if } x \in [0, 1/3) \\ h(3x - 1) & \text{if } x \in [1/3, 2/3) \\ h(3x - 2) & \text{if } x \in [2/3, 1) \end{cases}$$
$$= \begin{cases} e^{6\pi i x} & \text{if } x \in [0, 1/3) \\ e^{6\pi i x - 2\pi i} & \text{if } x \in [1/3, 2/3) \\ e^{6\pi i x - 4\pi i} & \text{if } x \in [2/3, 1) \end{cases}$$

Note that $e^{2k\pi i}=1$ for all $k\in\mathbb{Z}$, so in either case $h\circ F(x)=e^{6\pi ix}=g\circ h(x)$ and g is a factor of F.

3

Problem 7.2.4.

 \square

Problem 7.3.2.

 \Box

Problem 7.3.4.

 \Box

Problem 7.3.5.

 \Box