Indian Ocean variability changes in PMIP4

Chris Brierley¹, Kaustubh Thirumalai², and Edward Grindrod³

¹Dept. Geography, University College London, London, United Kingdom

Correspondence: Chris Brierley (c.brierley@ucl.ac.uk)

Abstract, TEXT

Copyright statement. TEXT

1 Introduction

- Introduce Indian Ocean and its importance
- 5 Variability in the Indian Ocean
 - past climates in general, and PMIP specifically
 - past knowledge of variability
 - literature on paleoIOD
 - literature on IOBM (not much at all)
- 10 literature on Nino mode

²Dept. Geosciences, University of Arizona, Tucson, Arizona, USA

_	Model	piControl	historical	midHolocene	lgm	lig127k	1pctCO2	abrupt4xCO2
	ACCESS-ESM1-5	100	165	-	-	200	150	-
	AWI-ESM-1-1-LR	100	165	100	100	100	_	_
	BCC-CSM1-1	500	163	100	_	-	140	150
	CCSM4	1051	156	301	101	-	156	151
	CESM2	500	165	700	_	700	150	150
	CNRM-CM5	850	156	200	200	-	140	150
	CNRM-CM6-1	500	165	-	_	301	150	150
	COSMOS-ASO	400	-	-	600	-	_	-
	CSIRO-Mk3-6-0	500	156	100	-	-	140	150
	CSIRO-Mk3L-1-2	1000	150	500	-	-	140	-
	EC-Earth3-LR	201	-	201	-	-	_	-
	FGOALS-f3-L	561	165	200	-	500	160	160
	FGOALS-g2	700	115	680	100	-	244	258
	FGOALS-g3	500	-	500	-	500	-	-
	FGOALS-s2	501	-	100	-	-	140	150
	GISS-E2-1-G	851	165	100	-	100	51	151
t	GISS-E2-R	500	156	100	100	-	151	151
	HadGEM2-CC	240	145	35	-	-	-	-
	HadGEM2-ES	336	145	101	-	-	140	151
]	HadGEM3-GC31-LL	100	165	100	-	-	-	-
	INM-CM4-8	531	165	200	200	100	150	150
	IPSL-CM5A-LR	1000	156	500	200	-	140	260
	IPSL-CM6A-LR	1200	165	550	-	550	150	900
	KCM1-2-2	200	-	100	-	-	-	-
	MIROC-ES2L	500	165	100	100	100	150	150
	MIROC-ESM	630	156	100	100	-	140	150
	MPI-ESM-P	1156	156	100	100	-	140	150
	MPI-ESM1-2-LR	1000	165	500	100	300	165	165
	MRI-CGCM3	500	156	100	100	-	140	150
	MRI-ESM2-0	701	165	200	-	-	151	151
	NESM3	100	165	100	-	100	150	150
	NorESM1-F	200	-	200	-	200	-	-
	NorESM2-LM	391	65	100	-	100	30	380
	UofT-CCSM-4	100	-	100	100	-	-	-

Table 1. The number of years of data for iod timeseries mon in the CVDP archive

Figure 1. Comparison between the observed climate and the PMIP ensemble. The left hand side is taken from the 20th Century Reanalysis (?), with the ensemble mean of the preindustrial control simulations on the right. The rows present the annual mean sea surface temperatures (a,b), annual mean precipitation (c,d), IOD pattern computed by regressing the monthly SST anomalies against the DMI (e,f; sec. 2.3) and the rainfall anomalies associated with IOD variations (g,h).

Figure 2. Ensemble mean change in surface temperatures. The columns show the annual mean (a,d,g,j), DJF (b,e,h,k) and JJA (c,f,i,l). The rows show the ensemble mean difference from the piControl simulations for the midHolocene (a,b,c), lig127k (d,e,f), lgm (g,h,i) and abrupt4xCO2 simulations (j,k,l). Stippling indicates where the ensemble is not consistent in the direction of change.

- 2 Methods
- 2.1 Models
- 2.2 Experiments
- 2.3 Analysis and definitions

15

Figure 3. Ensemble mean change in precipitation. The columns show the annual mean (a,d,g,j), DJF (b,e,h,k) and JJA (c,f,i,l). The rows show the ensemble mean difference from the piControl simulations for the midHolocene (a,b,c), lig127k (d,e,f), lgm (g,h,i) and abrupt4xCO2 simulations (j,k,l). Stippling indicates where the ensemble is not consistent in the direction of change.

Author contributions. TEXT

Competing interests. TEXT

Figure 4. Amplitude changes in modes of Indian Ocean variability. (a) The amplitude of the Indian Ocean dipole is measured by standard deviation of the dipole mode index (DMI, sec. 2.3). (b) The amplitude of the Indian Ocean basin mode (IOBM) is measured by the standard deviation of the tropical Indian Ocean index (see sec. 2.3 for definition).

Disclaimer. TEXT

Acknowledgements. TEXT

Figure 5. Ensemble mean change in SST and rainfall patterns of the Indian Ocean dipole. Each row represents the ensemble mean difference from the piControl simulations a different experiment; with the midHolocene changes in SST (a) and rainfall (b), the lig127k changes in SST (c) and rainfall (d), the lgm changes in SST (e) and rainfall (f), and the abrupt4xCO2 changes in SST (g) and rainfall (h) patterns respectively. Stippling indicates where the ensemble is not consistent in the direction of change. The overlaid contours show the ensemble mean pattern in the piControl simulations, with dashed contours indicate negative numbers. As the models contributing to each experiment changes, so does the precise pattern of piControl patterns.

Figure 6. Response of Niño modes. (a) The amplitude of Pacific ENSO is measured by standard deviation of the Niño3.4 SST anomalies (sec. 2.3). (b) The amplitude of the Indian Ocean Niño-like mode is measured by the standard deviation of the eastern equatorial Indian Ocean SST anomalies (see sec. 2.3 for definition). (c) The changes in the correlation coefficient between the two Niño modes, as a function of changes in the amplitude of Pacific ENSO. (d) The changes in the correlation coefficient between the Indian Ocean dipole and the Indian Ocean Niño-like mode, as a function of changes in the amplitude of the Indian Ocean dipole.

Figure 7. Relationships between the amplitude changes in modes of Indian Ocean variability and the mean state. (a) The amplitude of the Indian Ocean basin mode does not respond to changes in the tropical Indian Ocean SST. (b) The amplitude of the Indian Ocean dipole mode does not exhibit a simple linear relationship with changes in the zonal gradient. (c) Amplitude changes of the IOBM are linearly related to changes in ENSO amplitude. (d) There is a weak indication at that ENSO amplitude becomes larger, its correlation with the IOD also strengthens.