Algorithm Theory, Tutorial 5

Johannes Kalmbach

University of Freiburg

johannes.kalmbach@gmail.com

January 2020

General Hints

- Contact tutor (johannes.kalmbach@gmail.com) for questions concerning corrections etc.
- Contact forum (daphne.informatik.uni-freiburg.de) for everything else
- Suggestion: Submit in groups of two (better for understandable algorithms)
- Submit readable solutions (LaTeX as pdf, CLEAN handwriting (+ good scan if necessary))
- Spend enough time on exercise sheets and writeup (you and I have to understand your submission).

Exercise 1 Matching & Vertex Cover in Bipartite Graphs

Let G = (V, E) be a graph and assume that $M^* \subseteq E$ is a maximum matching and that $S^* \subseteq V$ is a minimum vertex cover (i.e., M^* is a largest possible matching and S^* a smallest possible vertex cover). We have seen in the lecture that for every graph G, it holds that $|M^*| \leq |S^*|$ because the edges in M^* have to be covered by disjoint nodes in S^* . In this exercise, we assume that G is a *bipartite graph* and our goal is to show that in this case, it always holds that $|M^*| = |S^*|$.

- Recall that we can solve the maximum bipartite matching problem by reduction to maximum flow. Also recall that if we are given a maximum matching M^* (and thus a maximum flow of the corresponding flow network), we can find a minimum s-t cut by considering the residual graph. Describe how such a minimum cut looks like.
 - Hint: Consider the set of all nodes which can be reached from an unmatched node on the left side via an alternating path.
- ① Use the above description to show that any bipartite graph G has a vertex cover S^* of size $|M^*|$.
- **3** Show that the same thing is not true for general graphs by showing that for every $\varepsilon > 0$, there exists a graph G = (V, E) for which $|S^*| \ge (2 \varepsilon)|M^*|$.
 - Hint: First try to find any graph for which $|S^*| > |M^*|$.

Describe the min-cut

- Let $B = (U \cup V, E)$ be a bipartite graph with maximum matching M^*
- In the corresponding flow network there is a source node s which is connected to all nodes in U and a target node t to which all nodes in V are connected.
- For $u \in U$ and $v \in V$, there is an edge from u to v iff u and v are adjacent in B.

- Let f be the maximum flow that corresponds to M^* and R the residual graph w.r.t. f.
- We know from the lecture that (A^*, B^*) is a minimum cut where A^* is defined as the set of nodes which can be reached from s by a path in R on which each edge has a positive capacity.
- For an $u \in U$, the edge (s, u) has positive residual capacity iff u is not matched.

- As there are no edges in B directing from V to U, we know that all edges from U to V are forward edges and all edges from V to U are backward edges.
- If (u, v) for an $v \in V$ has positive residual capacity, there is no flow through (u, v) and we know $\{u, v\} \notin M^*$.
- If (v, u') for an $u' \in U$ has positive residual capacity, there is flow through (u', v) and we know $\{u', v\} \in M^*$. Hence, A^* consists of s and all nodes which can be reached from an unmatched node on the left side via an alternating path.

content...

1b |Maximal Matching| = |Min Vertex Cover|

- Define $S^* = (U \cap B^*) \cup (V \cap A^*)$. \square from before
- We need to show that S^* is a vertex cover and that $|S^*| = |M^*|$

S^* is a vertex cover:

- S^* covers all edges with left endpoint in B^* or right endpoint in A^* .
- Need to show that there is no edge in the graph with left endpoint in A^* and right endpoint in B^* .

- Assume $e = \{u, v\}$ with $e \in A^*$ and $v \in B^*$
- As $u \in A^*$, there is an alternating path to u.
- So if $e \notin M^*$, we could extend this path to v and therefore have $v \in A^*$, a contradiction.
- Otherwise, if $e \in M^*$, an alternating path reaching u must also contain v which implies that also $v \in A^*$, a contradiction.

$|S^*| = |M^*|$:

- We showed before that there is no edge between a node in $U \cap A^*$ and a node in $V \cap B^*$.
- As there is no edge directed from V to U this means that the edges going out of A^* are those from s to $U \cap B^*$ and from $V \cap A^*$ to t.
- These edges stand in a 1-1 correspondence to the nodes in S^*
- So the size of the minimum cut (A^*, B^*) equals $|S^*|$. As the size of a min-cut also equals the maximum flow which equals $|M^*|$, we obtain $|S^*| = |M^*|$.

Exercise 1 c

Show that the same thing is not true for general graphs by showing that for every $\varepsilon > 0$, there exists a graph G = (V, E) for which $|S^*| \ge (2 - \varepsilon)|M^*|$.

Hint: First try to find any graph for which $|S^*| > |M^*|$.

$$2 \ge (2-\epsilon) \cdot 1 \quad (\epsilon_{70})$$

Exercise 2 - Matching in Regular Graphs

The degree of a node in a graph is the number of its neighbors. A graph is called r-regular for an $r \in \mathbb{N}$ if all nodes have degree r.

- Show that any regular bipartite graph has a perfect matching.
- **3** Show that an *n*-regular graph with 2n nodes has a matching of size at least n/2.

Show that any regular bipartite graph has a perfect matching.

- We are going to use Hall's Theorem, let U, V be the two subsets of nodes that only have edges between them.
- Let $U' \subset U$.
- The graph is r-regular, so U' has r * |U'| "outgoing" edges.
- Since each node in N(U') has r "incoming" edges, so the r * |U'| edges going out of U'hit at least |U'| * r/r = |U'| different nodes in N(U').
- Thus $|N(U')| \ge |U'|$.
- Similarly $|N(V')| \ge |V'|$ for $V' \subset V$

• Similarly
$$|N(V')| \ge |V'|$$
 for $V' \subset V$
• This directly implies $|U| = |V|$
• Thus the graph has a bipartite matching according to Hall's Theorem

bipartite perfect example $|V| = 5$ $|V| = 5$

Exercise 2b

- Show that an *n*-regular graph with 2n nodes has a matching of size at least n/2.
- This graph has exactly edges
- The simple greedy approach works in this case:
- Pick any edge for the matching.
- Remove all edges that cannot be matched any more (those are at most ?....)
- Repeat this procedure as long as there are still edges left
- After n/2 steps we have removed at most \mathbb{N}^{2} . $\leq |E|$ edges, so we were able to create a matching of size at least n/2

Exercise 3

Cover all Edges

You are given an undirected graph G=(V,E), a capacity function $c:V\to\mathbb{N}$, and a subset $U\subseteq V$ of nodes. The goal is to cover every edge with the nodes in U, where every node $u\in U$ can cover up to c(u) of its incident edges.

Formally, we are interested in the existence of an assignment of the edges to incident nodes in U such that each node u gets assigned at most c(u) of its incident edges.

Devise an efficient algorithm to determine whether or not such an assignment exists for a given subset U and a given cost function c and state its runtime.

- Each node has a certain capacity
- Each unit of capacity can be used to cover one of the incident edges
- This kind of resource management problem can often be stated as max-flow:

Exercise 3, Graphically

Exercise 3, Formally

- Define a new Flow-Graph as $U' = \{s, t\} \dot{\cup} U \dot{\cup} E$, $E' = \{(s, u) : u \in U\} \cup \{(e, t) : e \in E\} \cup \{(u, e) : u, e \text{ incident in } G\}$
- Define Capacities as $c'(s, u) = c(u), c'(e, t)^* = 1, c'(u, e) = 1$
- The original problem is solvable if and only if the max s-t flow on this Graph has value |E|.
- Runtime using Ford-Fulkerson is ...

General H of
$$FF$$
: $O(|E| \cdot F)$
This casp: $FS |E| \Rightarrow O(|E|^2)$