Q2

Connector Numer	Name of Connector	function	
0	PS/2 port	legacy port used for mouse and keyboards	
1	USB type A (Female)	Universal Serial Bus (USB) port for connecting other devices to the computer, e.g. for data/power transfer	
2	hdmi	a digital display port to connect to a monitor to output video (and audio)	
3	VGA	analog display port to displaying video only (old)	
4	DVI	digital and analog display port for video	
5	SPDIF optical audio port	port for transfering digital audio between computer to another device without needing to convert to analog signal first	
6	Thunderbolt port	bi-directional port that can be used for audio, data (10 Gigabit/s), power, and video transfer	
7	SATA port	port (typically internal) for connecting storage devices to a computer	
8	RAM slots	slots for RAM sticks to be inserted. RAM is used for low latency data storage for compute tasks	
9	ethernet port	port used to connect ethernet cable for connecting the computer to a network.	
10	24pin power slot	internal power supply connector used to power components on the motherboard	
11	PCI-E expansion slots	slots for connecting additional components, typically peripheral cards like a graphics card or networking card	

Q3

M = 3000000

• Type A: 20% of instructions, 25ns

• Type B: 45% of instructions, 40ns

• Type C: 35% of instructions, 20ns

A)

Since

$$egin{aligned} I_6 &= \prod_{k=1}^6 i_k \ &= 4 \cdot 2 \cdot 3 \cdot 4 \cdot 3 \ &= 288 \end{aligned}$$

so one instruction at level 6 is equivalent to 288 at level 1, and the program will have $I_6M=864000000$ level 1 instructions.

B)

Average instruction time at level 1 is then the weighted sum of all instruction types and their time.

$$t_1 = 0.2(25) + 0.45(40) + 0.35(20) = 30$$

C)

Recall that $t_n = I_n t_1$, so

$$I_3 = 4 * 3 = 12$$

 $t_3 = 12 \cdot 30$
 $= 360 \text{ ns}$

D)

same idea as c)

$$I_6 = 288$$
 $t_6 = 288 * 30$
 $= 8640 \text{ ns}$

E)

since $T_{prog}=Mt_N$ with N=6 in this case

$$T_{prog} = 3000000 * 8640 \text{ ns}$$

= $2.592 \cdot 10^{10} \text{ ns}$
= 25.92 sec

F)

$$I_{6,new} = 4 \cdot 2 \cdot 3 \cdot 4 \cdot 2 = 192$$

Since everything else is the same, ratio $I_{6,new}/I_{6,old}=192/288$ which is 2/3. So new program can complete the same task in ~66% of the time

Q4

Assume M instructions at level n, since each instruction at level n is translated into S instructions at n-1 level, we have MS^5 instructions at level 1. In general, we have MS^{n-1} level 1 instructions .

If the translation was optimal, we would have MW^5 and MW^{n-1} instructions instead (level 6 and in general). Threfore the ratio is

$$\left(\frac{S}{W}\right)^5$$

and in general

$$\left(\frac{S}{W}\right)^{n-1}$$

for n levels.

Q5

Chip/Device	Component Class	Approximate Price
AMD Ryzen Threadripper PRO 5995WX	CPU	\$6499
Intel Xeon W-3175X Skylake X 28	CPU	\$2000
Intel 10PK OPTANE 800P SERIES	Storage	\$150
NVIDIA GEFORCE RTX 3090 Ti	GPU/PICE card	\$1990
Corsair CX Series CX450M 450 Watt	Power Supply	\$50
ASUS WS C422 SAGE/10G	(server) motherboard	\$700
AMD Radeon Pro WX 9100	GPU	\$2000
Intel Core i7 i7-7700K	CPU	\$350
WD 40TB My Cloud PR4100 Pro Series	NAS drive	\$2000
Intel Core i9-7980XE X-Series	CPU	\$1200
Cisco 32GB DDR4-2666-MHZ RDIMM PC4-21300 DUAL	RAM	\$400
NVIDIA QUADRO RTX 8000	GPU	\$6000
Seagate BarraCuda ST3000DM008 3TB	Hard drive	\$80
Kingston 16GB DDR4, 2133MHz DIMM - KVR21R15D4/16	RAM	\$50
AMD Phenom II X2 560	CPU	\$20
NVIDIA Tesla K80 24GB	GPU	\$100 (used)
Creative Sound Blaster Z Series ZXR	Sound Card/PCIE card	\$80


```
import pylab
import matplotlib.pyplot as plt
a = [pow(10, i) for i in range(10)]
fig = plt.figure()
ax = fig.add_subplot(111)
I = 15 * 3000
x = np.linspace(0,20,6)
y = I*2**(x/1.5)
y2 = I*2**(x/2)
line, = ax.plot(x,y,color='blue', lw=2,label="18
months", marker="o")
line, = ax.plot(x,y2,color='red', lw=2,label="2 years (24
months)",marker="o")
for i in range(1,6):
        ax.annotate( "{:.2E}".format(y[i]), (x[i], y[i]),
(0.85*x[i], 1.25*y[i]))
        ax.annotate( "{:.2E}".format(y2[i]), (x[i], y2[i]),
(0.9*x[i], 0.4*y2[i]))
```

```
ax.legend()
ax.set_yscale('log')
ax.set_xlabel('years')
ax.set_ylabel('number of transistors')
ax.set_title('Number of transistors in chip area=15A')
plt.savefig("moores_law.png", facecolor="white", dpi=1000)
pylab.show()
```

Q₆B

Let length at year 0 L_0 and length at year 24 L_{24} .

doubling every 2 years

$$n_{doubling} = \frac{24}{2}$$

$$egin{aligned} L_{24} &= rac{L_0}{\sqrt{2^{n_{doubling}}}} \ L_{24} &= rac{L_0}{\sqrt{2^{12}}} \ ratio &= rac{L_{24}}{L_0} = rac{1}{\sqrt{2^{12}}} \ &= 0.015625 \end{aligned}$$

doubling every 18 months

$$n_{doubling} = \frac{24}{1.5} = 16$$

$$egin{aligned} L_{24} &= rac{L_0}{\sqrt{2^{n_{doubling}}}} \ L_{24} &= rac{L_0}{\sqrt{2^{16}}} \ ratio &= rac{L_{24}}{L_0} = rac{1}{\sqrt{2^{16}}} \ &= 0.00390625 \end{aligned}$$