NOM: PRÉNOM:

Déterminer, dans chaque cas, une primitive F de la fonction f sur l'intervalle I :

	Fonction $f(x)$	I	Primitive $F(x)$
1)	$f(x) = 2x^3 - 2x^2 + 4x + 3$	\mathbb{R}	$F(x) = \frac{x^4}{2} - \frac{2x^3}{3} + 2x^2 + 3x$
2)	$f(x) = \frac{3}{x^2}$	ℝ*	$F(x) = -\frac{3}{x}$
3)	$f(x) = \frac{10x}{(x^2 + 4)^3}$	\mathbb{R}	$F(x) = -\frac{5}{2(x^2 + 4)^2}$
4)	$f(x) = e^{3x - 1}$	\mathbb{R}	$F(x) = \frac{e^{3x-1}}{3}$
5)	$f(x) = (2x+1)e^{x^2+x-3}$	\mathbb{R}	$F(x) = e^{x^2 + x - 3}$
6)	$f(x) = \frac{7 \ln x}{x}$	\mathbb{R}_+^*	$F(x) = \frac{7\log(x)^2}{2}$
7)	$f(x) = \frac{3}{1+x^2}$	\mathbb{R}	$F(x) = 3 \tan(x)$
8)	$f(x) = \cos(2x) + 5\sin(x)$	\mathbb{R}	$F(x) = \frac{\sin(2x)}{2} - 5\cos(x)$
9)	$f(x) = \frac{1}{6\sqrt{x}}$	\mathbb{R}_+^*	$F(x) = \frac{\sqrt{x}}{3}$
10)	$f(x) = \frac{10}{2x - 3}$	$\left]\frac{3}{2},+\infty\right[$	$F(x) = 5\log(2x - 3)$