Multi-path Partial Scintillator Fitter

Aksel Hallin, David Auty, Kalpana Singh, Jeff Tseng, Jie Hu ${\it University~of~Alberta}$

Abstract

Multi-path partial fitter

Keywords: Multi-path fitter, partial fitter, scintillator

1. Fitter ideas

2. Likelihood functions

Notations

time of flight: t_{tof} time residue: t_{res}

refraction index of water: n_w refraction index of scintillator: n_s

L: water level (z value of the water level in the AV coordinate)

vertex(trial) position: $\vec{X}_V = (X_0, Y_0, Z_0)$

trial time: t_0

PMT position: $\vec{X}_P = (X_P, Y_P, Z_P)$

fD: vertex depth, depth of vertex below the water level, $fD = L - Z_0$

fH: PMT height, height of PMT above the water level, $fH = Z_P - L$

 α : fractional factor of the transverse distance between water-vertex intersection

 \vec{I} : incident light vector, pointing from the vertex point to incident point in the water-scintillator interface

 \vec{R} : reflected light vector

 P_R : reflection probability, calculated by interpolating Fresnel equation

 \vec{T} : transmitted(or refracted) light vector

 \vec{S} : intersection vector for calculating \vec{R} , \vec{T}

Fresnel equation: n_t , θ_t , n_i , θ_t , and $\cos \theta_t = \sqrt{1 - \frac{n_i}{n_t} \sin^2 \theta_i}$

$$R_P = \left| \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_t \cos \theta_i + n_i \cos \theta_t} \right|^2$$

$$R_S = \left| \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \right|^2$$

Different cases are classified by the layouts of vertex and PMT positions.

- Vertex below water level, PMT below water level
- Vertex below water level, PMT above water level
- Vertex above water level, PMT below water level
- Vertex above water level, PMT above water level

2.1. Vertex below water level, PMT below water level

In this case we consider two light paths: direct light path and reflected light path.

$$\alpha = sD/(sD - fH),$$

 $\vec{S} = (1 - \alpha)\vec{X}_V + \alpha\vec{X}_P$, and then set $S_z = L$. As shown in figure, \vec{I} and \vec{R} can be calculated as:

$$\vec{R}$$
 can be calculated as:
$$\vec{I} = \vec{S} - \vec{X}_V, \, \vec{R} = \vec{X}_P - \vec{S}$$

For direct light path, $t_{tof,direct} = |\vec{X}_V - \vec{X}_P|/(c/n_w)$, $t_{res,direct} = t_{PMT} - t_{tof,direct} - t_0$

For reflected light path, $t_{tof,refl} = (|\vec{I}| + |\vec{R}|)/(c/n_w)$

The reflection probability P_R

The likelihood function is:

$$L = L_{Ch}(t_{tof,direct}) + P_R L_{Ch}(t_{tof,refl})$$
$$\frac{dL}{dx} = \frac{dL}{dt_{tof}} \frac{t_{tof}}{dx}$$
$$\frac{dL}{dt} = b$$

Figure 1: Layout of event when both vertex and PMT are below the water level.

Figure 2: Layout of the event when vertex is below the water level and PMT is above.

- 2.2. Vertex below water level, PMT above water level
- 2.3. Vertex above water level, PMT below water level

$$\alpha = sD/(sD - fH),$$

 $\alpha=sD/(sD-fH),$ $\vec{S}=(1-\alpha)\vec{X}_V+\alpha\vec{X}_P,$ and then set $S_z=L.$ As shown in figure, \vec{I} and

$$\vec{R}$$
 can be calculated as: $\vec{I} = \vec{S} - \vec{X}_V, \ \vec{T} = \vec{X}_P - \vec{S},$

Figure 3: Layout of the event when vertex is above the water level and PMT is below.

2.4. Vertex above water level, PMT babove water level

Figure 4: Layout of the event when both vertex and PMT are above the water level.

- 3. Monte Carlo Results
- 4. Conclusions

References

[1]