Machine Learning for Systems and Control

5SC28

Lecture 6

dr. ir. Maarten Schoukens & dr. ir. Roland Tóth

Control Systems Group

Department of Electrical Engineering

Eindhoven University of Technology

Academic Year: 2020-2021 (version 1.0)

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

Principle of Reinforcement Learning (Recap)

- Agent interacts with the system through States and Actions
- Receive Reward as a performance feedback

Principle of Reinforcement Learning (Recap)

- Agent interacts with the system through States and Actions
- Receive Reward as a performance feedback
- This lecture: approximate RL continuous states & actions

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

Important ingredients

Discounted Return:
$$G_k = \mathbb{E}_{\pi} \left\{ \sum_{ au=0}^{\infty} \gamma^{ au} r_{k+ au+1}
ight\}$$

Value Function:

$$V_{\pi}(x_k) = \mathbb{E}_{\pi} \left\{ \left. G_k \right| x_k \right\}$$

Q-Function:

$$Q_{\pi}(x_t, u_t) = \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$$

Expected discounted return given the system states and the action taken at time k for policy π

The Prediction Problem

Estimate the Value Function $V_{\pi}(x)$ for a given policy π .

New Estimate \leftarrow Old Estimate + Step Size \times [Target - Old Estimate]

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[G_k - V_{\pi}(x_k) \right]$$
 Incremental form of MC estimates

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[r_{k+1} + \gamma V_{\pi}(x_{k+1}) - V_{\pi}(x_k) \right]$$

Temporal Difference

Instead of waiting to see all obtain rewards G_k required for computing plug in the estimate $V_{\pi}(x_{k+1})$

The Prediction Problem

Estimate the Value Function $V_{\pi}(x)$ for a given policy π .

New Estimate \leftarrow Old Estimate + Step Size \times [Target - Old Estimate]

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[G_k - V_{\pi}(x_k) \right]$$
 Incremental form of MC estimates

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[r_{k+1} + \gamma V_{\pi}(x_{k+1}) - V_{\pi}(x_k) \right]$$

Temporal Difference

Fundamental update rule:

$$x_k \to \underbrace{\mu_{k+1}}_{\text{update traget}} = r_{k+1} + \gamma V_{\pi}(x_{k+1})$$

The Prediction Problem

What to do if

The state-space has many discrete elements $\operatorname{Card}(X) \approx 10^5$

- Tabular representations quickly run out of memory
- We can not wait till we explore all states
- Need for approximation / generalization capability

The state-space is continuous

- All points can not be visited (finite time) $X=\mathbb{R}^{n_{\mathrm{x}}}$
- How to handle functional representations of the value function, Q-function?

Approximation of The Value Function

Concept:

Approximation of The Value Function

Concept:

We need to mimic function behavior for observed input samples x_k and output samples μ_k

Lecture 2-4: Function Estimation

Stochastic Gradient Method (SGD)

Cost function:
$$VE(\theta) = \sum_{x} (V_{\pi}(x) - \hat{V}_{\pi}(x, \theta))^2$$

Observation:

$$x_k \to V_\pi(x_{k+1})$$

Differentiable function

Gradient search:
$$\theta_{k+1} = \theta_k - \frac{1}{2}\alpha\nabla_\theta\left[V_\pi(x_k) - \hat{V}_\pi(x_k,\theta_k)\right]^2$$

$$= \theta_k + \alpha\left[V_\pi(x_k) - \hat{V}_\pi(x_k,\theta_k)\right]\nabla_\theta\hat{V}_\pi(x_k,\theta_k)$$
 Step size Gradient

Stochastic Gradient Method for TD

Objective:

$$V_{\pi}(x_k) = \mathbb{E}_{\pi} \left\{ \left. G_k \right| x_k \right\}$$

Observation:

$$x_k \rightarrow \mu_{k+1} = r_{k+1} + \gamma V_{\pi}(x_{k+1}) \approx G_k$$
update target

Gradient search:

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \hat{V}_{\pi}(x_{k+1}, \theta_k) - \hat{V}_{\pi}(x_k, \theta_k) \right] \nabla_{\theta} \hat{V}_{\pi}(x_k, \theta_k)$$

Otherwise it can wander

Asymptotic convergence

if
$$\mathbb{E}_{\pi}\{\mu_{k+1} \mid x_k = x\} = V_{\pi}(x)$$

& $\alpha_k
ightarrow 0$ slow enough

Approximate Temporal Difference Learning

```
Input: the policy \pi to be evaluated
```

Parameters: step size $\alpha \in (0,1]$

Initialize θ arbitrarily (e.g., $\theta = 0$)

for each episode do

Initialize x_0

Repeat for each time step of the episode

Obtain u_k based on x_k using policy π

Take action u_k , observe r_{k+1} , x_{k+1}

$$\theta \leftarrow \theta + \alpha \left[r_{k+1} + \gamma \hat{V}_{\pi}(x_{k+1}, \theta) - \hat{V}_{\pi}(x_k, \theta) \right] \nabla_{\theta} \hat{V}_{\pi}(x_k, \theta)$$

$$k = k + 1$$

Until the states are terminal

end for

Similar algorithm for MC and DP (Bootstrapping) type of methods.

Linear parameterization Features (basis functions) $\hat{V}_\pi(x,\theta)=\theta^\top\Phi(x)=\sum_{i=1}^d\theta_i\phi_i(x)$

Linear parameterization Features (basis functions) $\hat{V}_{\pi}(x,\theta) = \theta^{\top} \Phi(x) = \sum_{i=1}^{d} \theta_{i} \phi_{i}(x) \qquad \nabla_{\theta} \hat{V}_{\pi}(x_{k},\theta_{k})$ SGD search: $\theta_{k+1} = \theta_{k} + \alpha \left[r_{k+1} + \gamma \hat{V}_{\pi}(x_{k+1},\theta_{k}) - \hat{V}_{\pi}(x_{k},\theta_{k}) \right] \Phi(x_{k})$ $= \theta_{k} + \alpha \left[r_{k+1} \Phi(x_{k}) - \Phi(x_{k}) (\Phi(x_{k}) - \gamma \Phi(x_{k+1}))^{\top} \theta_{k} \right]$

Linear parameterization

Features (basis functions)
$$\hat{V}_{\pi}(x,\theta)=\theta^{ op}\Phi(x)=\sum_{i=1}^d heta_i \hat{\phi}_i(x) \qquad \qquad \nabla_{\theta} \hat{V}_{\pi}(x_k,\theta_k)$$

SGD search:
$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \hat{V}_{\pi}(x_{k+1}, \theta_k) - \hat{V}_{\pi}(x_k, \theta_k) \right] \Phi(x_k)$$
$$= \theta_k + \alpha \left[r_{k+1} \Phi(x_k) - \Phi(x_k) (\Phi(x_k) - \gamma \Phi(x_{k+1}))^\top \theta_k \right]$$

Consequence:

Linear param. + quadratic cost = convex problem

Guaranteed convergence global opt. = local opt.

Convergence

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} \Phi(x_k) - \Phi(x_k) (\Phi(x_k) - \gamma \Phi(x_{k+1}))^{\top} \theta_k \right]$$

$$b = \mathbb{E} \{ r_{k+1} \Phi(x_k) \} \quad A = \mathbb{E} \{ \Phi(x_k) (\Phi(x_k) - \gamma \Phi(x_{k+1}))^{\top} \}$$

when converged:
$$\theta_k = \theta_k + \alpha \underbrace{[b - A\theta_k]}_{-0}$$

This can be also used as an update rule (LS-TD)

Convergence

$$\theta_k = \theta_k + \alpha \underbrace{\left[b - A\theta_k\right]}_{=0}$$

Fixed point:
$$\theta_{\mathrm{TD}} = A^{-1}b$$

$$\mathrm{VE}(\theta_{\mathrm{TD}}) \leq \frac{1}{1-\gamma} \min_{\theta} \mathrm{VE}(\theta)$$
 must be positive definite

Typically close to 1 \rightarrow Very loose upper bound

Construction based on fixed selection Polynomial features:

Number of features: $(n+1)^{n_x}$

Easily differentiable

Example:

$$\Phi(x) = (1 \quad x_1 \quad x_2 \quad x_1 x_2 \quad x_1^2 \quad x_2^2 \quad x_1 x_2^2 \quad x_1^2 x_2 \quad x_1^2 x_2^2)$$

Construction based on fixed selection

Fourier features:

$$c_i = (c_{i,1} \cdots c_{i,n_x})$$
$$c_{i,j} \in \{0, \dots, n\}$$

$$\phi_i(x) = \cos(\pi x^{\mathsf{T}} c_i)$$

nth -order Fourier basis

Easily differentiable

Construction based on fixed selection

Coarse coding

$$\phi_i(x) = \begin{cases} 1 & x \in \text{region } i \\ 0 & \text{else} \end{cases}$$

Tile coding

Similar to convolutional layer in ANN

Construction based on fixed selection

Kernel-based

$$\phi_i(x) = K(x, x_i)$$

Kernel function (differentiable)

GP-based generalization (non-fixed selection):

Store the samples (or only the relevant ones: support features)

Directly apply GP (with marginalized likelihood optimization for the hyper-parameters)

Construction based on ANN

Same concepts apply as in identification

 $\nabla_{\alpha}\hat{V}\left(\alpha, \theta_{\alpha}\right)$

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \hat{V}_{\pi}(x_{k+1}, \theta_k) - \hat{V}_{\pi}(x_k, \theta_k) \right] \nabla_{\theta} \hat{V}_{\pi}(x_k, \theta_k)$$

Use backpropagation

Function Approximation

Data distribution becomes important in function approximation algorithms

Function Approximation

Data distribution becomes important in function approximation algorithms

Function Approximation

Data distribution becomes important in function approximation algorithms

> it influences how the approximation errors are spread

Can be problematic for high-dimensional state spaces

Compensate for data-distribution by using weighted cost functions

$$VE(\theta) = \sum_{x \in X} w_x \left(V_{\pi}(x) - \hat{V}_{\pi}(x, \theta) \right)^2$$

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

The control problem

For a control objective, we want to estimate

Q-Function:

$$Q_{\pi}(x_k, u_k) = \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$$

OR

For a given policy π

Optimal Q-Function:
$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r \mid x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1})\right)$$

The control problem

For a control objective, we want to estimate

Q-Function:

$$Q_{\pi}(x_k, u_k) = \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$$

OR

For a given policy π

Optimal Q-Function:
$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r \mid x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1})\right)$$

TO FIND

Optimal policy:

$$\pi_*(x_k) = \arg\max_{u_k} Q_*(x_k, u_k)$$

Greedy in
$$Q_*(x_k,u_k)$$

Types of RL Control

By path to optimal solution

- Off-policy find Q_* , use it to compute π_*
- On-policy find Q_{π} , improve π , repeat

By level of interaction with the process

- Online learn by interacting with the process
- Offline data collected in advance (Monte-Carlo methods)

By model knowledge

- Model-free no p, only transition data (standard RL)
- Model-based p is known (Dynamic Programming)
- Model-learning estimate p from transition data

Q-Learning (off policy, online, model-free)

Take Bellman optimality equation at some state and action

$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1}) \right)$$

Turn into iterative update

$$Q(x_k, u_k) \leftarrow \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1}) \right)$$

Instead of a transition model, use the transition sample at each step

$$Q(x_k, u_k) \leftarrow r_{k+1} + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1})$$

Q-Learning (off policy, online, model-free)

Implemented with incremental update

$$Q(x_k,u_k) \leftarrow Q(x_k,u_k) + \alpha \left(r_{k+1} + \gamma \max_{u_{k+1}} Q(x_{k+1},u_{k+1}) - Q(x_k,u_k) \right)$$
 Learning rate
$$\alpha \in (0,1]$$
 Temporal Difference

How to use this over continuous spaces?

Approximation of The Q Function

Concept: $Q_{\pi}(x_k,u_k)\approx \hat{Q}_{\pi}(x_k,u_k,\theta)$ Approximate Q function

Policy computation:

$$\pi(x_k) = \arg\max_{u_k} \hat{Q}(x_k, u_k, \theta)$$
 (greedy policy)

Approximation of The Q Function

Parametrization of $\hat{Q}(x, u, \theta)$:

• Must be differentiable with simple computation of the gradient, like

$$\hat{Q}(x,u, heta) = \sum_{i=1}^d heta_i \phi_i(x,u)$$
 (linear parametrization)

Policy optimization should be simple

$$\pi(x) = \arg\max_{u} \sum_{i=1}^{d} \theta_{i} \phi_{i}(x, u)$$
 (cont. optimization)

Approximation of The Q Function

Parametrization of $\hat{Q}(x, u, \theta)$:

- Feature construction: same as for prediction
- Policy optimization: typically, action discretization is used:

Action space is gridded:

$$u_1,\ldots,u_M\in U$$

Policy computation:

$$\pi(x_k) = \arg \max_{u \in \{u_j\}_{j=1}^M} \hat{Q}(x_k, u, \theta)$$

(simple max operation)

Approximate Q-Learning

Based on SGD:

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \max_{u_{k+1}} \hat{Q}(x_{k+1}, u_{k+1}, \theta) - \hat{Q}(x_k, u_k, \theta) \right] \nabla_{\theta} \hat{Q}(x_k, u_k, \theta)$$

Learning rate

$$\alpha \in (0,1]$$

Temporal Difference

Approximate Q-Learning

```
Parameters: step size \alpha \in (0,1] and 0 < \epsilon < 1
                       \hat{Q}(x, u, \theta) arbitrarily (e.g., \theta = 0)
Initialize
for each episode do
        Initialize x_0
        Repeat for each time step of the episode
                  Obtain u_k based on x_k using policy \pi derived from Q
                 (e.g., \epsilon\text{-greedy}) common choice
                  Take action u_k, observe r_{k+1}, x_{k+1}
                 \theta_{k+1} = \theta_k + \alpha \left[ r_{k+1} + \gamma \max_u \hat{Q}(x_{k+1}, u, \theta) - \hat{Q}(x_k, u_k, \theta) \right] \nabla_{\theta} \hat{Q}(x_k, u_k, \theta)
                 k = k + 1
         Until the states are terminal
end for
```

Approximate Q-Learning

Properties

On-policy approximate methods: convergence can be achieved

• The promise of future reward must be kept, and the corresponding action is needed to be taken for convergence.

Off-policy approximate methods: no convergence guarantees

- Promise of future reward is made, but then another action might follow and the promise, including its error, is forgotten.
- Approximate Q-learning with ε–greedy policy can diverge, but usually works well in practice!

- State: $x = (\alpha \dot{\alpha})$ (angle and velocity)
- Input: u = voltage
- Reward: $r_{k+1} = \rho(x_k, u_k) = -x_k^{\top} \begin{bmatrix} 5 & 0 \\ 0 & 0.1 \end{bmatrix} x_k u_k^{\top} u_k$
- Discount: $\gamma = 0.98$

- Objective: stabilize top position (swing up)
- Insufficient actuation (needs to swing back & forth)

Features: Triangular membership functions: 41x21 equidistant grid

Input space: 5 actions, log-placed around 0

Results:

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

Deep Q Networks (DQN)

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \max_{u_{k+1}} \hat{Q}(x_{k+1}, u_{k+1}, \theta) - \hat{Q}(x_k, u_k, \theta) \right] \nabla_{\theta} \hat{Q}(x_k, u_k, \theta)$$

Learning rate

$$\alpha \in (0,1]$$

Temporal Difference

Deep Q Networks (DQN)

$$\theta_{k+1} = \theta_k + \alpha \left[r_{k+1} + \gamma \max_{u_{k+1}} \hat{Q}(x_{k+1}, u_{k+1}, \theta) - \hat{Q}(x_k, u_k, \theta) \right] \nabla_{\theta} \hat{Q}(x_k, u_k, \theta)$$

Non-stationary target

Challenge: Non-stationary target

The target is continuously changing with each iteration. In deep learning, the target variable does not change and hence the training is stable, which is just not true for RL.

Challenge: Correlated trajectories

Samples are received from a trajectory of a dynamical system, hence the data is strongly correlated over (short) timeframes.

Break the Correlation: Experience Replay

Idea: Introduce a memory that stores pervious [action - state

transitions - reward] values

Usage: Sample mini-batches from the memory to compute the

gradient at each optimization iteration

Result:

When replay *memory is large* \rightarrow experience replay is *close to sampling independent transitions* from an explorative policy.

This reduces the variance of the gradient, which is used to update θ .

Experience replay *stabilizes the training of DQN*, which benefits the algorithm in terms of computation.

Solve the Non-Stationarity: Target Network

Create a separate **Target Network**:

Same architecture as training network

frozen parameters

Transfer parameters every T step

Stabilizes Q-Network training

$$Y_k = r_{k+1} + \gamma \max_u Q_{\theta^*}(x_{k+1}, u)$$

Targets

$$VE(\theta) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - Q_{\theta}(x_i, u_i))^2$$
 Cost

$$Y_k = r_{k+1} + \gamma \max_u Q_{\theta^*}(x_{k+1}, u)$$

Targets

$$VE(\theta) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - Q_{\theta}(x_i, u_i))^2$$

Cost

Bias-Variance Decomposition

$$\mathbb{E}\{VE(\theta)\} = \|Q_{\theta} - TQ_{\theta}\|^{2} + \mathbb{E}\left\{ [Y_{1} - (TQ_{\theta})(x_{1}, u_{1})]^{2} \right\}$$

$$(TQ)(x_k, u_k) = r_{k+1} + \gamma \mathbb{E}\left\{ \left. \max_{u} Q(x_{k+1}, u) \right| x_k, u_k \right\}$$

Bellman operator (see previous lecture)

$$(TQ^*) = Q^*$$

Bellman operator applied on optimal Q function = optimal Q function

Without Target Network

Bias-Variance Decomposition

$$\mathbb{E}\{VE(\theta)\} = \|Q_{\theta} - TQ_{\theta}\|^{2} + \mathbb{E}\left\{ [Y_{1} - (TQ_{\theta})(x_{1}, u_{1})]^{2} \right\}$$

Mean Squared Bellman Error (MSBE)

Variance of Y_I

Both depend on θ!

Minimizing the cost function is different than minimizing the MSBE

Without Target Network

Bias-Variance Decomposition

$$\mathbb{E}\{VE(\theta)\} = \|Q_{\theta} - TQ_{\theta}\|^{2} + \mathbb{E}\left\{ [Y_{1} - (TQ_{\theta})(x_{1}, u_{1})]^{2} \right\}$$

What we actually want to minimize since for the optimal Q function it holds that:

$$(TQ^*) = Q^*$$

Mean Squared Bellman Error (MSBE)

Variance of Y_I

Both depend on θ!

Minimizing the cost function is different than minimizing the MSBE

With Target Network

Bias-Variance Decomposition

$$\mathbb{E}\{VE(\theta)\} = \|Q_{\theta} - TQ_{\theta'}\|^2 + \mathbb{E}\left\{ [Y_1 - (TQ_{\theta'})(x_1, u_1)]^2 \right\}$$

Mean Squared Bellman Error (MSBE)

Variance of Y_I

dependent on θ

independent from θ

Minimizing the cost function is close to solving

$$\operatorname{minimize}_{\theta} \|Q_{\theta} - TQ_{\theta'}\|^2$$

With Target Network

Bias-Variance Decomposition

$$\mathbb{E}\{VE(\theta)\} = \|Q_{\theta} - TQ_{\theta'}\|^2 + \mathbb{E}\left\{ [Y_1 - (TQ_{\theta'})(x_1, u_1)]^2 \right\}$$

Mean Squared Bellman Error (MSBE)

Variance of Y_I

dependent on θ

independent from θ

Minimizing the cost function is close to solving

$$\operatorname{minimize}_{\theta} \|Q_{\theta} - TQ_{\theta'}\|^2$$

By iteratively (but slowly) updating θ' we hope to converge to:

$$(TQ^*) = Q^*$$

Input: a family of deep Q-networks Q_{θ}

Parameters: stepsize α , exploration probability $\epsilon \in (0,1)$

Parameters: update freq. T_{target} , minibatch size n, replay memory \mathcal{M}

Initialize θ arbitrarily (e.g., $\theta = 0$)

Initialize the replay memory \mathcal{M} to be empty

for each episode do

Initialize x_0

Repeat for each time step of the episode

Obtain u_k based on x_k using policy π derived from \hat{Q} (e.g., ϵ -greedy)

Take action u_k , observe r_{k+1} , x_{k+1}

replay

Store transition $(x_k, a_k, r_{k+1}, x_{k+1})$ in \mathcal{M}

Sample random minibatch $(x_i, u_i, r_{i+1}, x_{i+1})_{i \in [n]}$ from \mathcal{M}

minibatch SGD

$$\theta_{k+1} = \theta_k + \alpha \frac{1}{n} \sum_{i=1}^n \left[r_{i+1} + \gamma \max_u \hat{Q}(x_{i+1}, u, \theta') - \hat{Q}(x_i, u_i, \theta_k) \right] \nabla_{\theta} \hat{Q}(x_i, u_i, \theta_k)$$

every T_{target} steps: $\theta' \leftarrow \theta_{k+1}$

target network update

$$k = k + 1$$

Until the states are terminal

end for

DQN Algorithm

Reinforcement Learning

Overview of RL

Approximate TD Learning for Prediction

Approximate TD Learning for Control

Deep Q-Networks

Perspectives

There are many alternative methods for approximate learning

- On-policy methods
- Policy gradient methods
- Actor-critic methods

Fundamental dilemma:

- Efficiency of DP: Models make it possible to plan and synthetize policy, otherwise we only rely on experience. Experiments are costly and risky.
- Efficiency of RL: Experiments allow to explore and improve exploitation on the long run. Models are inherently uncertain.
- How to have a working marriage of DP and RL?