





















# ADS AD VIDEO COSOUN





www.aduni.edu.pe



















## QUÍMICA

## CÁLCULOS EN QUÍMICA II SEMANA 18

www.aduni.edu.pe

## ADUNI



### I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

1. Interpretar las fórmulas químicas a nivel cualitativo y cuantitativo.

2. Determinar y diferenciar la fórmula química empírica y la fórmula química molecular.

**3. Determinar** la composición porcentual de un elemento que forma parte de un compuesto químico.



## II. INTRODUCCIÓN





El cobre fue uno de los primeros **metales** empleados por el hombre por encontrarse en estado nativo, actualmente la producción de **cobre** se obtiene de **minerales** en forma de sulfuros.

Calcosina (Cu<sub>2</sub>S) **159 t** 



Central metalúrgica



 $Cu_{(s)}$ 



¿masa?

De 159 t de calcosina puro (Cu<sub>2</sub>S) se puede producir como máximo 127 t de cobre (Cu).

En este tema aprenderemos a realizar este tipo de cálculos.

## III. INTERPRETACIÓN DE UNA FÓRMULA QUÍMICA





Relaciona la **fórmula química** con los elementos que contiene y brinda una información cualitativa y cuantitativa con los elementos que lo constituyen.

- 1) En forma cualitativa: nos muestra que elementos forman a una sustancia.
  - **EJEMPLO**
- Gas propano  $(C_3H_8)$



El propano (C<sub>3</sub>H<sub>8</sub>) es un compuesto binario

- **2) En forma cuantitativa:** podemos interpretar una fórmula **como partícula estructural** y **como masa**.
- A) Como partícula, representa una unidad fórmula, y en ella podemos contabilizar la cantidad de átomos que la constituyen.

**EJEMPLO** 

1 molécula  $C_3H_8$  Contiene  $\begin{cases} \bullet & 3 \text{ átomos de C} \\ \bullet & 8 \text{ átomos de H} \end{cases}$ 

**11** átomos totales ATOMICIDAD= 11

**B) Como masa**, representa un mol de sustancia. Los subíndices indican el número de moles de átomos de cada elemento.

#### **EJEMPLO**

Gas propano  $(C_3H_8)$ :

#### Dato:

Masa molar (g/mol): H=1; C=12

$$\overline{M}(C_3H_8) = 44 \ g/m \ ol$$

$$= 12 \ g/m \ ol$$

$$= 1 \ mol \ C_3H_8$$

$$= 3 \ mol \ átomos \ C \Leftrightarrow 3 \ mol \ C$$

$$= 8 \ mol \ átomos \ H \Leftrightarrow 8 \ mol \ H$$

$$= 8 \ mol \ h$$

$$= 1 \ g/m \ ol$$

La masa de **1mol**  $C_3H_8$  es 44 g = 36 g + 8 g





#### **EJEMPLO**

¿Cuántos gramos de oxígeno están contenidos en una muestra de caliza donde se hallan 15 mol de carbonato de calcio (CaCO<sub>3</sub>)?

PA(uma): C=12; O=16; C=40

## **RESOLUCIÓN**

$$\overline{M}(\mathbf{0}) = \mathbf{16} \ g/m \ ol$$
1 mol CaCO<sub>3</sub>  $\longrightarrow$  3 mol O <> 48 g

15 mol 
$$CaCO_3$$
 — m (O)

$$\Rightarrow m(O) = \frac{15x48 g}{1} = 720 g$$

#### **EJEMPLO**

Si en una muestra de dióxido de azufre  $(SO_2)$  hay 96 g de oxígeno, ¿cuántos átomos de azufre hay? PA(O)=16 uma

## **RESOLUCIÓN**

$$\begin{cases}
\bullet \quad 1 \text{ mol S} <> 6x10^{23} \text{ átomos S} \\
\bullet \quad 2 \text{ mol O} \quad <> 32 \text{ g O}
\end{cases}$$

 $\overline{M}(0) = 16 \ g/m \ ol$ 

**Entonces:** 

$$\Rightarrow (átomos S) = \frac{3x6x10^{23}}{1} = 18x10^{23} = 1,8x10^{24}$$





#### **EJEMPLO**

¿Cuántos gramos de hierro se puede extraer de una muestra de óxido férrico ( $Fe_2O_3$ ) cuya masa es 640 g. Masa molar (g/mol): O=16; Fe=56

## **RESOLUCIÓN**

Realizamos un esquema.

$$\overline{M}(\text{Fe}_2\text{O}_3) = 160 \ g/m \ ol$$
 $m(\text{Fe}) = ??$ 
 $\text{Fe}_2\text{O}_3$ 
 $160 \ g$ 
 $m(\text{Fe}) = ??$ 
 $1 \ mol \ \text{Fe}_2\text{O}_3$ 
 $2 \ mol \ O$ 

Óxido férrico: 640 g

**Entonces:** 

$$\Rightarrow$$
 m(Fe) =  $\frac{4x112}{1}$  = 448 g





### **EJEMPLO**

De 159 t de calcosina puro  $(Cu_2S)$  ¿Cuánta masa de cobre (Cu) se puede extraer como máximo? PA(uma): S = 32; Cu = 63,5

## **RESOLUCIÓN**

## Calcosina (Cu<sub>2</sub>S) **159 t**



## Central metalúrgica







¿masa?

## Hallamos el PF(Cu<sub>2</sub>S)

- $Cu \rightarrow 2x63,5 = 127 \text{ uma}$
- $S \to 1x32 = 32 \text{ uma}$
- $PF(Cu_2S) = 159 \text{ uma}$

## Interpretando la fórmula química de Cu<sub>2</sub>S

$$1 \text{mol } (Cu_2S) \xrightarrow{\text{Pesa}} 159 \times \frac{\text{Contiene}}{159 \text{ t}} 127 \text{ g de Cu}$$

$$159 \text{ t} \longrightarrow \text{m } (Cu)$$

$$\therefore m(Cu) = 127 t$$





## IV. COMPOSICIÓN PORCENTUAL O COMPOSICION CENTESIMAL (CC)

Representa el porcentaje en masa de cada elemento que forma parte de un compuesto químico. Es independiente de la masa analizada del compuesto.

Forma práctica:

$$CC(E) = \frac{masa\ del\ elemento\ (E)}{PM(compuesto)} x100\%$$

#### **EJEMPLO**

Halle la composición porcentual de cada uno de los elementos que pertenecen a la glucosa  $(C_6H_{12}O_6)$ .

## **RESOLUCIÓN**

| Elementos     | Masa de<br>átomos        | Masa total de los elementos |  |
|---------------|--------------------------|-----------------------------|--|
| Carbono (C)   | 6x12 uma                 | 72 uma                      |  |
| Hidrógeno (H) | 12 <i>x</i> 1 <i>uma</i> | 12 uma                      |  |
| Oxígeno ( O ) | 6x16 uma                 | 96 uma                      |  |

$$C_6H_{12}O_6 \Rightarrow PM(C_6H_{12}O_6) = 180 \ uma$$

Determinamos la composición porcentual de cada elemento químico.

• 
$$\%C = \frac{72 \text{ } uma}{180 \text{ } uma} \times 100\% = 40 \%$$

• 
$$\%H = \frac{12 \text{ } uma}{180 \text{ } uma} \times 100\% = 6,67 \%$$

• 
$$\%0 = \frac{96 \, uma}{180 \, uma} \times 100\% = 53,33 \%$$

La composición centesimal de cada elemento representa el porcentaje de 100 unidades.

## V. FÓRMULA EMPÍRICA Y MOLECULAR





## **FÓRMULA EMPÍRICA (FE)**

- Es la fórmula más simple de un compuesto.
- Indica la mínima proporción de los átomos que hay en un compuesto.
- Se determina a partir de los datos experimentales.

## **FÓRMULA MOLECULAR (FM)**

- Es la fórmula real de un compuesto químico.
- Indica la cantidad real de los átomos de cada elemento en una molécula.
- Es un múltiplo entero de la fórmula empírica.

Relación entre la FM y FE:

$$FM = k.FE$$

$$k = 1,2,3,...$$

| COMPUESTO COVALENTE | FM              | FE                | k          |
|---------------------|-----------------|-------------------|------------|
| Etileno             | $C_2H_4$        | CH <sub>2</sub>   | 2          |
| Propileno           | $C_3H_6$        | CH <sub>2</sub>   | ACADEMIA 3 |
| Glucosa             | $C_6H_{12}O_6$  | CH <sub>2</sub> O | 6          |
| Amoniaco            | NH <sub>3</sub> | $NH_3$            | 1          |

Tener en cuenta que un compuesto iónico solo tiene **fórmula empírica** y no **fórmula molecular**.

## REGLAS PRÁCTICAS PARA ESTABLECER LA FE A PARTIR DE LA COMPOSICIÓN PORCENTUAL

#### **EJEMPLO**

Un óxido contiene 53% en masa de oxígeno y 47% en masa de cloro. Determine la fórmula empírica del compuesto.

## **RESOLUCIÓN**

- 1. Tomar como muestra 100 g de compuesto (del  $Cl_xO_y$ ).
- 2. Con el % en masa hallamos la masa de cada elemento.

$$\mathbf{m_{Cl}} = \frac{47}{100} \times 100 \text{ g} = 47 \text{ g}$$
  
 $\mathbf{m_0} = \frac{53}{100} \times 100 \text{ g} = 53 \text{ g}$ 





#### 3. Hallar el número de moles

$$x=n_{\rm Cl}=rac{{
m m}}{{
m ar M}}=rac{47}{35,5}$$
 = 1,32 (menor)  $y=n_{
m O}=rac{{
m m}}{{
m ar M}}=rac{53}{16}$  = 3,31 (mayor)

4. Si el número de moles resultan decimales, los dividimos entre el menor de ellos. En este caso es 1,32

$$x=n_{\text{Cl}} = \frac{1,32}{1,32} = 1$$
  $y = n_0 = \frac{3,31}{1,32} = 2,5$ 

**Nota**: Si persiste el decimal y no se puede redondear, se procede al siguiente paso.

5. Multiplicamos por el mínimo entero que los convierta en números enteros

$$x = n_{\text{Cl}} = 1 \times \boxed{2} = 2$$
 $y = n_{\text{O}} = 2.5 \times \boxed{2} = 5$ 
Cl<sub>2</sub>O<sub>5</sub>
Fórmula empírica





### **EJEMPLO**

En 18,4 g de un compuesto formado por nitrógeno y oxígeno están contenidos 5,6 g del primer elemento. Si la masa molar del compuesto es 92 g/mol, determine la atomicidad del compuesto.



#### B) 8

#### **RESOLUCIÓN**



Determinando el número de moles de nitrógeno, (x) y de oxígeno, (y).

$$x = n_N = \frac{5.6}{14} = \mathbf{0.4}$$

$$y = n_O = \frac{12,8}{16} = \mathbf{0,8}$$

Como las moles obtenidas de nitrógeno y oxígeno no son enteros, se deben dividir entre el menor valor de ellos.

$$x = n_N = \frac{0.4}{0.4} = 1$$
  $y = n_O = \frac{0.8}{0.4} = 2$ 

$$FE:NO_2$$

$$FM: N_k O_{2k}$$

dato:

$$\overline{M}(FM) = 92 g/m ol$$

$$k(14) + 2k(16) = 92$$
  
 $k = 2$ 

Entonces

$$FM: N_2O_4$$

atomicidad= 2+4= 6



La halita es un mineral que contiene cloruro de sodio, NaCl. Si se tiene 1,17 kg de halita al 80% en masa de NaCl, ¿qué masa de sodio se podrá extraer como máximo?

Masas molares: Na=23; Cl=35,5 g/mol

A) 736 g

B) 184 g

C) 368 g

D) 92 g

## **RESOLUCIÓN**

Nos piden determinar la masa de sodio que se puede extraer como máximo.





Calculo de la masa de sodio:





halita



Sodio (Na)

- 1,17 kg de halita = 1170 g
- 80% en NaCl

$$m(NaCl) = 1170 g x 80 \% = 936 g$$

Del peso fórmula de la sal:

PF (NaCl) 
$$= (1x23 + 1x35,5) = (58,5)$$
 uma

$$m(Na) = 368 g$$











**Q**uímica





- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición







www.aduni.edu.pe





