Comunicaciones de Datos

Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste

Serie de Trabajos Prácticos Nº 1

Teoría de la Información y Codificación

1. Se lanzan dos dados. Especificar el conjunto de posibles resultados (mensajes), calcular la probabilidad de ocurrencia de cada mensaje y su cantidad de información.

Solución:

El conjunto de posibles resultados (mensajes):

E={11;12;13;14;15;16;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;37;38;39;41;42;43;44;45;46;47;48;49;50;51;52;53;54;55;56;57;58;59;61;62;63;64;65;66}

Los treinta y seis mensajes son equiprobales y la probabilidad de cada uno es 1/36 y su cantidad de información es:

$$I = log \ 2 \frac{1}{1/36} = 5.17$$
 bits

- 2. Dado un alfabeto compuesto por los símbolos del sistema hexadecimal, calcular:
- i) La probabilidad de ocurrencia de cada uno de los símbolos.
- ii) La cantidad de información obtenida al presentarse el símbolo F.
- iii) La cantidad de información de un mensaje compuesto por dos símbolos cualesquiera.

 Los símbolos son equiprobables, la probabilidad de ocurrencia de cada símbolo es:

$$P(s_i) = \frac{1}{16} = 1 \le i \le 16$$

ii) La cantidad de información obtenida al presentarse el símbolo F.

$$I(F) = log_2 \frac{1}{1/16} = 4 \text{ bits}; \ 1 \le i \le 16$$

iii) Suponiendo una palabra formada por los símbolos:

Suponiendo una palabra formada por los símbolos:
$$P(s_1s_2) = (1/16)^2$$

$$I(s_1s_2) = log_2 \frac{1}{(1/16)^2} = 8 bits$$

- 3. De una caja que contiene bolas de billar (*Las bolas rayadas están numeradas del 9 al 15 y las lisas del 1 al 7. La bola número 8 también es lisa*), se elige una al azar:
- a) Calcular la cantidad de información contenida en el mensaje si la bola extraída es:
 - i. Rayada.
 - ii. La bola número 7.
 - iii. Lisa.

Solución:

i) La probabilidad de una bola rayada es 6/15, la cantidad de información obtenida es:

$$I(bola\ rayada) = log_2 \frac{1}{(6/15)} = 1.32\ bits$$

ii) La probabilidad de la bola 7 es 1/15, la cantidad de información obtenida es:

$$I(bola 7) = log_2 \frac{1}{(1/15)} = 3.90 \ bits$$

iii) La probabilidad de una bola lisa es 8/15, la cantidad de información obtenida es:

$$I(bola\ lisa) = log_2 \frac{1}{(8/15)} = 0.91\ bits$$

4. Se tiene un alfabeto binario $S = \{0, 1\}$. Calcular la cantidad de información contenida en el mensaje 1011 sabiendo que $(1) = \frac{1}{3}$ y $(0) = \frac{2}{3}$.

La probabilidad de ocurrencia de la cadena 1011 es
$$P(1) \times P(0) \times P(1) \times P(1) = \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{2}{81}$$

La cantidad de información suministrada es:
$$I(1011) = log_2 \frac{1}{(2/81)} = 5.34 \ bits$$

5. Una fuente de memoria nula produce cinco símbolos pertenecientes al alfabeto $S = \{a, a, b, c\}$ b, c, d, e} de acuerdo a la siguiente ley de probabilidades $(a) = \frac{1}{4}$; $(b) = \frac{1}{2}$; $(c) = \frac{1}{16}$; (d) $=\frac{P(a)}{2}y(e)=\frac{1}{16}$. Calcular la entropía de la fuente.

Solución:

La entropía de la fuente es:

$$\begin{split} H(S) &= \sum_{i=1}^{5} P(s_i) \times I(s_i) \\ &= P(s_1) \times I(s_1) + P(s_2) \times I(s_2) + P(s_3) \times I(s_3) + P(s_4) \times I(s_4) + P(s_5) \times I(s_5) \\ &= \frac{1}{4} \log_2 \frac{1}{(1/4)} + \frac{1}{2} \log_2 \frac{1}{(1/2)} + \frac{1}{16} \log_2 \frac{1}{(1/16)} + \frac{1}{8} \log_2 \frac{1}{(1/8)} + \frac{1}{16} \log_2 \frac{1}{(1/16)} \\ &= \frac{1}{4} 2bits + \frac{1}{2} 1bits + \frac{1}{16} 4bits + \frac{1}{8} 3bits + \frac{1}{16} 4bits \\ &= \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{3}{8} + \frac{1}{4} = 15/8 = 0.90 \ bits \end{split}$$

- 6. Considerando una fuente que emite símbolos pertenecientes al alfabeto $S = \{s_1, s_2, s_3\}$ con probabilidades $(s_1) = 1/2$, $(s_2) = 1/4$ y $(s_3) = 1/4$.
- i) Calcular la entropía de la fuente.
- ii) Defina las extensiones de segundo y tercer orden de la fuente y calcular su entropía.

i) La entropía de la fuente S (fuente original) es:

$$H(S) = \sum_{i=1}^{3} P(s_i) \times I(s_i)$$

$$= P(s_1) \times I(s_1) + P(s_2) \times I(s_2) + P(s_3) \times I(s_3)$$

$$= \frac{1}{2} \log_2 \frac{1}{(1/2)} + \frac{1}{4} \log_2 \frac{1}{(1/4)} + \frac{1}{4} \log_2 \frac{1}{(1/4)}$$

$$= \frac{1}{2} 1 \text{bits} + \frac{1}{4} 2 \text{bits} + \frac{1}{4} 2 \text{bits}$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3/2 = 1.5 \text{ bits}$$

ii) Para definir la extensión de orden 2 de la fuente original, imaginamos a ésta emitiendo símbolos en grupos de a dos. Así, la fuente tendrá símbolos. Podemos ayudarnos con un diagrama de árbol, como se ve en la Fig. 1, para encontrar los 9 símbolos de esta nueva fuente. En la Tabla 1, podemos ver la secuencia correspondiente a los símbolos de y los nuevos símbolos definidos para la fuente con sus respectivas probabilidades

Fig. 1. Diagrama de árbol

Tabla 1. Secuencia correspondiente a los símbolos de S y nuevos símbolos definidos para S²

Secuencia correspondiente a los símbolos de S	S ₁ S ₁	s ₁ s ₂	s_1s_3	s ₂ s ₁	s ₂ s ₂	$s_2 s_3$	s ₃ s ₁	s ₃ s ₂	<i>s</i> ₃ <i>s</i> ₃
Símbolos de S ²	a_I	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
probabilidad $P(a_j)=P(s_i) \times P(s_k)$ $con \ 1 \le j \le 9;$ $1 \le i \le 3;$ $1 \le k \le 3;$	$\frac{1}{2}x\frac{1}{2} = \frac{1}{4}$	1 8	1 8	1 8	$\frac{1}{16}$	$\frac{1}{16}$	1 8	$\frac{1}{16}$	1/16

La extensión de orden 2 de la fuente original es:

$$S^2 = \{a_1; a_2; a_3; a_4; a_5; a_6; a_7; a_8; a_9; \}$$

y sus probabilidades

$$P = \{\frac{1}{4}; \frac{1}{8}; \frac{1}{8}; \frac{1}{8}; \frac{1}{16}; \frac{1$$

La entropía de la fuente S^2 es:

$$H(S^2) = 2 \times H(S) = 2 \times \frac{3}{2} bits = 3 bits$$

$$H(S^2) = \frac{1}{4}log2 \frac{1}{\frac{1}{4}} + \frac{1}{8}log2 \frac{1}{\frac{1}{8}} + \frac{1}{8}log2 \frac{1}{\frac{1}{8}} + \frac{1}{8}log2 \frac{1}{\frac{1}{8}} + \frac{1}{16}log2 \frac{1}{\frac{1}{16}} = 3 \ bits$$

iii) Para definir la extensión de orden 3 de la fuente original, imaginamos a ésta emitiendo símbolos en grupos de a dos. Así, la fuente tendrá símbolos. Podemos ayudarnos con un diagrama de árbol, como se ve en la Fig. 1, para encontrar los 9 símbolos de esta nueva fuente. En la Tabla 1, podemos ver la secuencia correspondiente a los símbolos de y los nuevos símbolos definidos para la fuente con sus respectivas probabilidades.

Secuencia correspondiente a los símbolos de <i>S</i>	$s_1s_1s_1$	$s_1 s_1 s_2$	$s_1s_1s_3$	s ₁ s ₂ s ₁	s ₁ s ₂ s ₂	s ₁ s ₂ s ₃	$s_1 s_3 s_1$	s ₁ s ₃ s ₂	S ₁ S ₃ S ₃
Símbolos de S ³	a_I	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9
probabilidad $P(a_j) = P(s_i)$ x $P(s_k)$ x $P(s_l)$ con $1 \le j \le 27$; $1 \le i \le 9$; $1 \le k \le 9$;	$\frac{\frac{1}{2}x\frac{1}{2}x\frac{1}{2}}{\frac{1}{8}}$	$\frac{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}}{\frac{1}{16}}$	$\frac{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}}{\frac{1}{16}}$	$\frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{2}}{\frac{1}{16}}$	$\frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{1}{32}} = \frac{1}{32}$	$\frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{1}{32}} = \frac{1}{32}$	$\frac{\frac{1}{2}x\frac{1}{4}x\frac{1}{2}}{\frac{1}{16}}$	$\frac{\frac{1}{2}x\frac{1}{4}x\frac{1}{4}}{\frac{1}{32}} = \frac{1}{32}$	$\frac{1}{2} \times \frac{1}{4} \times \frac{1}{32}$ $= \frac{1}{32}$
Secuencia correspondiente a los símbolos de <i>S</i>	s ₂ s ₁ s ₁	s ₂ s ₁ s ₂	<i>S</i> ₂ <i>S</i> ₁ <i>S</i> ₃	s ₂ s ₂ s ₁	S ₂ S ₂ S ₂	S ₂ S ₂ S ₃	s ₂ s ₃ s ₁	s ₂ s ₃ s ₂	S ₂ S ₃ S ₃
Símbolos de S ³	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a ₁₇	a_{18}
probabilidad $P(a_j) = P(s_i) \mathbf{x}$ $P(s_k) \mathbf{x} P(s_l)$ $\cot 1 \leq j \leq 27;$ $1 \leq i \leq 9;$ $1 \leq k \leq 9;$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{4} \\ = \frac{1}{32}$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{4} \\ = \frac{1}{32}$	$\frac{\frac{1}{4}x\frac{1}{4}x\frac{1}{2}}{\frac{1}{32}} = \frac{1}{32}$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$	$\frac{\frac{1}{4}x\frac{1}{4}x\frac{1}{4}}{\frac{1}{4}} = \frac{1}{64}$	$\frac{\frac{1}{4}x\frac{1}{4}x\frac{1}{2}}{=\frac{1}{32}}$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{64} \times \frac{1}{64}$
Secuencia correspondiente a los símbolos de S	<i>s</i> ₃ <i>s</i> ₁ <i>s</i> ₁	s ₃ s ₁ s ₂	s ₃ s ₁ s ₃	s ₃ s ₂ s ₁	s ₃ s ₂ s ₂	s ₃ s ₂ s ₃	s ₃ s ₃ s ₁	s ₃ s ₃ s ₂	\$3\$3\$3
Símbolos de S ³	a_{19}	a ₂₀	a ₂₁	a_{22}	a_{23}	a ₂₄	a ₂₅	a ₂₆	a ₂₇
probabilidad $P(a_j) = P(s_i) \mathbf{x}$ $P(s_k) \mathbf{x} P(s_l)$ $\cot 1 \leq j \leq 27;$ $1 \leq i \leq 9;$ $1 \leq k \leq 9;$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{32}$	$\frac{1}{4} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{32}$	$\frac{\frac{1}{4}x\frac{1}{4}x\frac{1}{2}}{=\frac{1}{32}}$	$\frac{1}{4}x\frac{1}{4}x\frac{1}{4}$ $=\frac{1}{64}$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$	$\frac{1}{4}x\frac{1}{4}x\frac{1}{2} = \frac{1}{32}$	$\frac{1}{4}x \frac{1}{4}x \frac{1}{4}$ $= \frac{1}{64}$	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}$

La extensión de orden 3 de la fuente original es:

 $S^{3} = \{a_{1}; a_{2}; a_{3}; a_{4}; a_{5}; a_{6}; a_{7}; a_{8}; a_{9}; a_{10}; a_{11}; a_{12}; a_{13}; a_{14}; a_{15}; a_{16}; a_{17}; a_{18}; a_{19}; a_{20}; a_{21}; a_{22}; a_{23}; a_{24}; a_{25}; a_{26}; a_{27}; \}$ y sus probabilidades

$$P = \{ \frac{1}{8}; \frac{1}{16}; \frac{1}{16}; \frac{1}{16}; \frac{1}{16}; \frac{1}{12}; \frac{1}{22}; \frac{1}{16}; \frac{1}{22}; \frac{1}{23}; \frac{1}{16}; \frac{1}{22}; \frac{1}{23}; \frac{1}{16}; \frac{1}{22}; \frac{1}{23}; \frac{1}{164}; \frac{1}{12}; \frac{1}{23}; \frac{1}{164}; \frac{1}{164}; \frac{1}{164}; \frac{1}{23}; \frac{1}{23}; \frac{1}{23}; \frac{1}{23}; \frac{1}{23}; \frac{1}{164}; \frac{1}{164}; \frac{1}{23}; \frac{1}{164}; \frac{1}{164}; \frac{1}{23}; \frac$$

La entropía de la fuente S^3 es:

$$H(S^3) = 3 \times H(S) = 3 \times \frac{3}{2} bits = 4.5 bits$$

7. Calcular la tasa de información de un sistema de transmisión donde:

$$(punto) = 1/3;$$

$$(raya) = 2/3;$$

$$(punto) = 0.25 s;$$

$$(raya) = 0.33 \text{ s.}$$

La entropía de la fuente es:

$$H(S) = \frac{1}{3} \log_2 \frac{1}{(1/3)} + \frac{2}{3} \log_2 \frac{1}{(2/3)} = 0.91 \text{ bits}$$

La duración media de los símbolos es:

$$\tau = \frac{1}{3} 0.25 + \frac{2}{3} 0.33 = 0.30 \text{ seg.}$$

La tasa de información resulta, entonces:

$$T = \frac{0.91 \ bits}{0.30 \ seg} = 3.03 \ bps$$

8. Se tiene una fuente de 32 símbolos equiprobables, cada uno compuesto por 5 bits. La duración de cada símbolo es de 1 ms. La información se transmite en bloques de 10 símbolos, separados por un pulso de sincronización de 5 ms cada uno. Calcular la tasa de información del sistema.

Solución: Decir que "la información se transmite en bloques de 10 símbolos, separados por un pulsos de sincronización" es equivalente a pensar en la extensión de orden 10 de la fuente original, es decir imaginar a la fuente emitiendo símbolos en grupos de a 10 más un símbolo de sincronización, como se puede ver en la Fig. 2.

Fig. 2. Información se transmitida en bloques de 20 símbolos, separados por dos pulsos de sincronización

Los 32 símbolos son equiprobables, por lo tanto la entropía de la fuente (original) es:

$$H(S) = log_2 \ 32 = 5 \ bits$$

Teniendo en cuenta que la cantidad de información de los pulsos de sincronización es igual a cero (puesto que su probabilidad es uno), la entropía total del bloque (o extensión de orden 10 de la fuente original) es:

$$H(bloque) = H(S^{10}) = 10 \times H(S) = 10 \times 5 \text{ bits} = 50 \text{ bits}$$

Si la duración promedio de los símbolos es:

$$\tau(s_i) = \sum_{i=1}^{32} p_i \times \tau_i = 1 \, ms$$

La duración promedio del bloque será:

$$\tau(bloque) = \tau(\sigma_i) = 10 \times 1 \, ms + 1 \times 5 \, ms = 15 \, ms$$

Por lo tanto, resulta:

$$T = \frac{H(bloque)}{\tau(bloque)} = \frac{H(S^{10})}{\tau(\sigma_i)} = \frac{50 \text{ bits}}{15 \text{ ms}} = 3.33 \text{ bits/ms} = 3333 \text{ bps}$$

- 9. Considerando la fuente de memoria nula $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$, con probabilidades:
- $(s_1) = 0.06$; $(s_2) = 0.4$; $(s_3) = 0.1$; $(s_4) = 0.1$; $P(s_5) = 0.3$ y $P(s_6) = 0.04$.
- i) Obtener un código compacto binario para la fuente dada utilizando el algoritmo de Huffman.
- ii) Calcular la longitud media del código obtenido.
- iii) Calcular la entropía de la fuente.
- iv) Calcular el rendimiento del código.
- v) Calcular la tasa de compresión del código compacto.

Secuencia de obtención de fuentes reducidas:

	S	S	1	s ₂		S 3		<i>S</i> ₄	
$\overline{s_2}$	0.4	<i>S</i> ₂	0.4	<i>S</i> ₂	0.4	<i>S</i> ₂	0.4	S5S3S4S1S6	0.6
S 5	0.3	S 5	0.3	S ₅	0.3	S_5	0.3	s_2	0.4
S 3	0.1	S 3	0.1	$S_4S_1S_6$	0.2	S3S4S1S6	0.3		
S_4	0.1	S_4	0.1	S 3	0.1				
s_1	0.06	S_1S_6	0.1						
<i>S</i> ₆	0.04								

Codificación regresiva:

	S		s_1	S 2	2	S 3		<i>S</i> ₄	
s_2	1	s_2	1	s_2	1	s_2	1	S5S3S4S1S6	0
S 5	00	S_5	00	S 5	00	S ₅	00	s_2	1
s_3	011	s_3	011	$S_4S_1S_6$	010	S3S4S1S6	01		
S_4	0100	S_4	0100	S 3	011				
s_1	01010	S_1S_6	0101						
S 6	01011								

El código compacto resultante es:

 $C = \{01010;1;011;0100;00;01011\}$

La longitud media del código resulta:

$$L = 0.06 \times 5 + 0.4 \times 1 + 0.1 \times 3 + 0.1 \times 4 + 0.3 \times 2 + 0.04 \times 5 = 2.2 \text{ bits}$$

La entropía de la fuente es:

$$H(S) = 0.06 \times 4.05 + 0.4 \times 1.32 + 0.1 \times 3.32 + 0.1 \times 3.32 + 0.3 \times 1.73 + 0.04 \times 4.64$$

= 2.13 bits

El rendimiento del código resulta, entonces:

$$\eta = \frac{2.13 \ bits}{2.2 \ bits} = 0.96$$

La tasa de compresión del código, resulta:

$$R_{max} = \frac{\log_2 6}{H(S)} = \frac{2.58 \ bits}{2.13 \ bits} = 1.21$$

10. Dada la fuente de memoria nula $S = \{s1, s2\}$, con (s1) = 1/4 y (s2) = 3/4 obtener un código compacto binario y calcular su rendimiento. Codificar las extensiones de segundo y tercer orden y obtener sus respectivos rendimientos. ¿Qué observa?

Para la fuente $S = \{s_1, s_2\}$ resulta el código compacto $C = \{0; 1\}$. La longitud media del código resulta L = 1. La entropía de la fuente es H(S) = 0.81.

El rendimiento del código resulta, entonces:

$$\eta = \frac{0.81 \, bits}{1 \, bit} = 0.81$$

Definimos la extensión de orden 2 de la fuentes original (recurrimos al diagrama de árbol), que resulta: $S^2 = \{a, b, c, d\}$ con probabilidades $P = \{\frac{1}{16}; \frac{3}{16}; \frac{9}{16}\}$

Secuencia correspondiente a los símbolos de S^2	s_1s_1	<i>s</i> ₁ <i>s</i> ₂	S ₂ S ₁	s ₂ s ₂
Símbolos de S ²	а	b	С	d
probabilidades	1/16	3 16	3 16	9 16

$$H(S^2) = 1.62 \ bits$$

Secuencia de obtención de fuentes reducidas:

	S		s_1		\mathfrak{s}_2
\overline{d}	9/16	d	9/16	d	9/16
b	3/16	ca	1/4	bca	7/16
c	3/16	b	3/16		
a	1/16				

Codificación regresiva:

	S	S	1	s_2	
\overline{d}	0	d	0	d	0
b	11	ca	10	bca	1
c	100	b	11		
a	101				

El código compacto resultante es:

$$C'' = \{101; 11; 100; 0\}$$

$$L = 1.68 \text{ bits}$$

$$\eta'' = \frac{1.62 \text{ bits}}{1.68 \text{ bit}} = 0.96$$

Definimos la extensión de orden 3 de la fuentes original (recurrimos al diagrama de árbol), que resulta: $S^3 = \{a, b, c, d, e, f, g, h\}$ con probabilidades

$$P = \left\{ \frac{1}{64}; \frac{3}{64}; \frac{3}{64}; \frac{9}{64}; \frac{3}{64}; \frac{9}{64}; \frac{9}{64}; \frac{27}{64} \right\}$$

Secuencia correspondiente a los símbolos de S^2	$s_1s_1s_1$	$s_1 s_1 s_2$	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₂	s ₂ s ₁ s ₁	s ₂ s ₁ s ₂	s ₂ s ₂ s ₁	s ₂ s ₂ s ₂
Símbolos de S ³	а	b	c	d	e	f	g	h
probabilidades	1 64	3 64	3 64	9 64	3 64	9 64	9 64	27 64

$$H(S^3) = 2.43 \ bits$$

Secuencia de obtención de fuentes reducidas:

	S		s_1		<i>S</i> ₂	S	3	S	54	S	5	<i>s</i> ₆	
h	0.42	h	0.42	h	0.42	h	0.42	h	0.42	h	0.42	ecbagfd	0.58
g	0.14	g	0.14	g	0.14	ecba	0.16	fd	0.28	ecbag	0.30	h	0.42
f	0.14	f	0.14	f	0.14	g	0.14	ecba	0.16	fd	0.28		
d	0.14	d	0.14	d	0.14	f	0.14	g	0.14				
e	0.05	ba	0.06	ec	0.1	d	0.14						
c	0.05	e	0.05	ba	0.06								
b	0.05	c	0.05										
а	0.01												

Codificación regresiva:

	S		s_1		s_2	S	3	S	4	S ₅		s ₆	
h	1	h	1	h	1	h	1	h	1	h	1	ecbagfd	0
g	001	g	001	g	001	ecba	000	fd	01	ecbag	00	h	1
f	010	f	010	f	010	g	001	ecba	000	fd	01		
d	011	d	011	d	011	f	010	g	001				
e	00000	ba	0001	ec	0000	d	011						
c	00001	e	00000	ba	0001								
b	00010	c	00001										
a	00011												

$$C^{\prime\prime\prime} = \{00011; 00010; 00001; 011; 00000; 010; 001; 1\}$$

$$L = 2.46 \text{ bits}$$

$$\eta^{\prime\prime\prime} = \frac{2.43 \text{ bits}}{2.46 \text{ bits}} = 0.98$$

Resumimos los resultados en una tabla:

Código	Rendimiento
C	$\eta = 0.81$
C''	$\eta^{\prime\prime}=0.81$
C'''	$\eta''' = 0.81$

Se puede observar que según se codifiquen extensiones de mayor orden, el rendimiento de código resultante se acerca a la unidad.

Bibliografía recomendada

- David Luis La Red Martínez. Presentaciones de Clases Teóricas. Comunicaciones de Datos, Facultad de Ciencias Exactas y Naturales y Agrimensura. Universidad Nacional del Nordeste.
- 2. N. Abramson. Teoría de la Información y la Codificación, 5ta Edición, Parainfo, Madrid, 1981