CS291K - Advanced Data Mining

Instructor: Xifeng Yan
Computer Science
University of California at Santa Barbara

TensorFlow

Lecturer: Honglei Liu Computer Science University of California at Santa Barbara

- ☐ The slides are adapted from:
 - ➤ "Large-Scale Distributed Systems for Training Neural Networks", Jeff Dean and Oriol Vinyals, NIPS 2015 tutorial
 - "Introduction to TensorFlow", Jon Gauthier (Stanford NLP Group), 12 November 2015
 - "TensorFlow: neural networks lab", Gianluca Corrado and Andrea Passerini

Outline

- ☐ History and Introduction
- □ Basics
- □ A complete example
- □ Demo
- □ Convolutional Neural Network

What is TensorFlow?

What is TensorFlow?

"TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms."

Growing Use of Deep Learning at Google

Across many products/areas:

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...

Two Generations

- ☐ 1st generation DistBelief (Dean et al., NIPS 2012)
 - Scalable, good for production, but not very flexible for research

Two Generations

- □ 1st generation DistBelief (Dean et al., NIPS 2012)
 - Scalable, good for production, but not very flexible for research
- □ 2nd generation TensorFlow
 - Scalable, good for production, but also flexible for variety of research uses
 - Portable across range of platforms
 - ➤ Open sourced single-machine TensorFlow on Nov. 9^{th,} 2015
 - Updates for distributed implementation (version 0.8) on April 13, 2016

TensorFlow: Expressing High-Level ML Computations

- □ Core in C++
- □ Different front ends for specifying/driving the computation
- □ Automatically runs models on range of platforms

Big idea

- □Express a numeric computation as a **graph**.
- □Graph nodes are **operations** which have any number of inputs and outputs
- □Graph edges are **tensors** which flow between nodes

Basics

$$h_i = \text{ReLU}(Wx + b)$$

$$h_i = \text{ReLU}(Wx + b)$$

Variables: nodes whose value can be used and modified by the computation.

parameters

$$h_i = \text{ReLU}(Wx + b)$$

Placeholders: nodes whose value is fed in at execution time.

inputs, outputs...

$$h_i = \text{ReLU}(Wx + b)$$

Mathematical operations:

MatMul: Multiply two matrix values.

Add: Add elementwise

ReLU: Rectified linear unit function.

Build a graph

- Create model weights, including initialization
 W ~ Uniform(-1, 1); b = 0
- Create input placeholder x m x 784 input matrix
- 3. Create computation graph

```
h_i = \text{ReLU}(Wx + b)
```


Run the graph

So far we have defined a **graph**.

We can deploy this graph with a **session**: a binding to a particular execution context (e.g. CPU, GPU)

Run the graph

sess.run(fetches, feeds)

Fetches: List of graph nodes. Return the outputs of these nodes.

Feeds: Dictionary mapping from placeholders to concrete values. Specifies the value of each placeholders given in the dictionary.

$$h_i = \text{ReLU}(Wx + b)$$

Basic flow

- Build a graph
- 2. Initialize a session
- 3. Fetch and feed data with Session.run

A complete example

CIFAR-10 dataset

☐ Colored images in 10 classes

- ☐ Each image is a 32x32x3 dimensional array
- ☐ Training: 50k, Testing: 10k

Neural Network

Input Hidden(ReLU) Output(Softmax)

☐ Use load_CIFAR10

```
from data_utils import load_CIFAR10
X_train, y_train, X_test, y_test = load_CIFAR10('./cifar-10-batches-py/')
X_train: (50000, 32, 32, 3) y_train: (50000,)
X_test: (10000, 32, 32, 3) y_test (10000,)
```

☐ Use load_CIFAR10

```
from data_utils import load_CIFAR10
X_train, y_train, X_test, y_test = load_CIFAR10('./cifar-10-batches-py/')

X_train: (50000, 32, 32, 3) y_train: (50000,)
X_test: (10000, 32, 32, 3) y_test (10000,)
```

□ Resample the dataset: train: 49k, validation: 1k, test: 1k

☐ Use load_CIFAR10

```
from data_utils import load_CIFAR10
X_train, y_train, X_test, y_test = load_CIFAR10('./cifar-10-batches-py/')

X_train: (50000, 32, 32, 3) y_train: (50000,)
X_test: (10000, 32, 32, 3) y_test (10000,)
```

- □ Resample the dataset: train: 49k, validation: 1k, test: 1k
- □ Zero-center data

```
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
```

☐ Use load_CIFAR10

```
from data_utils import load_CIFAR10
X_train, y_train, X_test, y_test = load_CIFAR10('./cifar-10-batches-py/')

X_train: (50000, 32, 32, 3) y_train: (50000,)
X_test: (10000, 32, 32, 3) y_test (10000,)
```

- □ Resample the dataset: train: 49k, validation: 1k, test: 1k
- □ Zero-center data

```
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
```

☐ Reshape images to row vectors

```
X_train = X_train.reshape(num_training, -1)
X_val = X_val.reshape(num_validation, -1)
X_test = X_test.reshape(num_test, -1)

training: (49000, 3072) (49000,)
validation: (1000, 3072) (1000,)
testing: (1000, 3072) (1000,)
```

Model

Model

□ Import TensorFlow

import tensorflow as tf

□ Import TensorFlow

```
import tensorflow as tf
```

☐ Define the placeholders

```
# Generate placeholders for the images and labels
images_placeholder = tf.placeholder(tf.float32, shape=(None,input_size),name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(None),name='labels')
```

□ Import TensorFlow

```
import tensorflow as tf
```

☐ Define the placeholders

```
# Generate placeholders for the images and labels
images_placeholder = tf.placeholder(tf.float32, shape=(None,input_size),name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(None),name='labels')
```

□ Import TensorFlow

```
import tensorflow as tf
```

□ Define the placeholders

```
# Generate placeholders for the images and labels
images_placeholder = tf.placeholder(tf.float32, shape=(None,input_size),name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(None),name='labels')
```

□ Import TensorFlow

```
import tensorflow as tf
```

☐ Define the placeholders

```
# Generate placeholders for the images and labels
images_placeholder = tf.placeholder(tf.float32, shape=(None,input_size),name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(None),name='labels')
```

□ Import TensorFlow

```
import tensorflow as tf
```

☐ Define the placeholders

```
# Generate placeholders for the images and labels
images_placeholder = tf.placeholder(tf.float32, shape=(None,input_size),name='images')
labels_placeholder = tf.placeholder(tf.int64, shape=(None),name='labels')
```

Implementation of the Model

□ Define the second layer

Implementation of the Model

□ Define the second layer

Data Mining

scores before normalization

Implementation of the Model

□ Define the second layer

□ Define the loss function

□ Define the training operation optimization method

```
# Create the gradient descent optimizer with the given learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
```

□ Define the training operation optimization method

```
# Create the gradient descent optimizer with the given learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
```

☐ Start a session

```
# An interactive session prevents garbage collection sess=tf.InteractiveSession(graph=graph)
```

□ Define the training operation optimization method

```
# Create the gradient descent optimizer with the given learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
```

☐ Start a session

```
# An interactive session prevents garbage collection
sess=tf.InteractiveSession(graph=graph)
```

□ Initialize the variables

```
# Run the Op to initialize the variables
init = tf.initialize_all_variables()
sess.run(init)
```

□ Define the training operation optimization method

```
# Create the gradient descent optimizer with the given learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
```

☐ Start a session

```
# An interactive session prevents garbage collection
sess=tf.InteractiveSession(graph=graph)
```

□ Initialize the variables

```
# Run the Op to initialize the variables
init = tf.initialize_all_variables()
sess.run(init)
```

☐ Get a batch of training samples (for each step)

```
# Pick an offset within the training data
offset = (step * batch_size) % (y_train.shape[0] - batch_size)
# Generate a minibatch.
batch_data = X_train[offset:(offset + batch_size), :]
batch labels = y train[offset:(offset + batch size)]
```

□ Run the training operation (for each step)

run the training operation with the given batch

Evaluation

□ Evaluate accuracy

Saving and restoring variables

□ Create a Saver

```
# Create a saver for writing training checkpoints
saver = tf.train.Saver()
```

□ Save current variables

```
# Save the variables to disk
saver.save(sess, os.path.join(log_dir,'checkpoint'), global_step=step+1)
```

□ Restore variables

```
# Restore variables from disk.
saver.restore(sess, os.path.join(log_dir,'checkpoint-1500'))
```

TensorBoard: Visualizing Learning

□ Read and visualize summary data

TensorBoard: Visualizing Learning

□ Collect summary data

```
# add summaries for logging
tf.scalar_summary('loss', loss)
```

□ Merge all the summary operations

```
# Build the summary operation based on
# the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
```

□ Define a summary writer

□ Run summary operations

```
# Update the events file.
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
```

Demo

Convolutional Neural Network

Convolutional Neural Network

- □ Images
 - > 50000x32x32x3
- □ 1st layer: convolutional layer
 - > 5x5 patch, 4 feature maps
- □ 2nd layer: max pooling layer
 - > 2x2 block
- □ 3rd layer: convolutional layer
 - > 5x5 patch, 6 feature maps
- □ 4th layer: max pooling layer
 - > 2x2 block
- □ 5th layer: fully connected layer


```
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

W_conv1 = tf.Variable(tf.truncated_normal(shape=[5, 5, 3, 4],stddev=le-4))
b_conv1 = tf.constant(0.1, [4])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
```


□ 1st layer: convolutional layer

```
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

W_conv1 = tf.Variable(tf.truncated_normal(shape=[5, 5, 3, 4],stddev=1e-4))
b_conv1 = tf.constant(0.1, [4])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
```

define the first layer

□ 1st layer: convolutional layer

```
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

W_conv1 = tf.Variable(tf.truncated_normal(shape=[5, 5, 3, 4],stddev=1e-4))
b conv1 = tf.constant(0.1, [4])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
```

batch_size x 32 x 32 x 4

□ 2nd layer: max pooling layer

□ 2nd layer: max pooling layer

□ 2nd layer: max pooling layer

batch_size x 16 x 16 x 4

Recommendation readings / videos

Udacity:

Deep Learning: https://www.udacity.com/course/ deep-learning--ud730

❖ Tutorial:

- https://www.tensorflow.org/
- ➤ TensorFlow WhitePaper: http:// download.tensorflow.org/paper/whitepaper2015.pdf
- Code: https://github.com/tensorflow

Questions?