PARIS EDIDEROT

Sur l'espace des termes et des machines

TRE M1 Informatique – Supervisé par Damiano Mazza Sambo Boris Eng

Le concept de calcul : machines

Une première approximation : la Machine de Turing [Turing 1936]

Le concept de calcul : machines

Une première approximation : la Machine de Turing [Turing 1936]

Le concept de calcul : machines

Une première approximation : la Machine de Turing [Turing 1936]

Modèle dynamique procédural

Le concept de calcul : termes

Un autre modèle majeur : λ -calcul [Church 1932]

Le concept de calcul : termes

Un autre modèle majeur : λ-calcul [Church 1932]

Abstrait	Concret/Syntaxique
$f: n \mapsto n+1$	$\lambda n.\lambda s.\lambda z.s$ (n s z)

Le concept de calcul : termes

Un autre modèle majeur : λ-calcul [Church 1932]

Abstrait	Concret/Syntaxique
$f: n \mapsto n+1$	$\lambda n.\lambda s.\lambda z.s$ (n s z)

Statique. $M, N := x \mid \lambda x. M \mid MN$

Le concept de calcul : termes

Un autre modèle majeur : λ-calcul [Church 1932]

Abstrait	Concret/Syntaxique
$f: n \mapsto n+1$	$\lambda n.\lambda s.\lambda z.s$ (n s z)

Statique. $M, N := x \mid \lambda x.M \mid MN$

Dynamique. $(\lambda x.M)N \longrightarrow_{\beta} M\{x := N\}$

Le concept de calcul : termes

Un autre modèle majeur : λ-calcul [Church 1932]

Abstrait	Concret/Syntaxique
$f: n \mapsto n+1$	$\lambda n.\lambda s.\lambda z.s$ (n s z)

Statique. $M, N := x \mid \lambda x.M \mid MN$

Dynamique. $(\lambda x.M)N \longrightarrow_{\beta} M\{x := N\}$

Modèle dynamique algébrique

Motivations

Motivations

Thèse de Church-Turing : même puissance. Efficacité différente?

• Thèse d'invariance : efficacité similaire.

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?
- Usage d'outils logiques :

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]
 - Une "bonne" mesure de l'espace

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]
 - Une "bonne" mesure de l'espace
- Correspondance dynamique/statique :

Motivations

- Thèse d'invariance : efficacité similaire.
 - Temps machines ≅ temps termes [Accattoli, Dal Lago]
 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]
 - Une "bonne" mesure de l'espace
- Correspondance dynamique/statique :
 - Une machine peut être simulée par des circuits [Cook-Levin]

Motivations

- Thèse d'invariance : efficacité similaire.

 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]
 - Une "bonne" mesure de l'espace
- Correspondance dynamique/statique :
 - Une machine peut être simulée par des circuits [Cook-Levin]
 - Et pour le λ-calcul?

Motivations

Thèse de Church-Turing : même puissance. Efficacité différente ?

- Thèse d'invariance : efficacité similaire.

 - Et pour l'espace?
- Usage d'outils logiques :
 - Usage de la géométrie de l'interaction [Schöpp]
 - Une "bonne" mesure de l'espace
- Correspondance dynamique/statique :
 - Une machine peut être simulée par des circuits [Cook-Levin]
 - Et pour le λ-calcul?

Rapprocher termes et machines.

des machines

des machines

Décision. Entrée binaire → état YES ou N0 (terminaison)

des machines

Décision. Entrée binaire → état YES ou N0 (terminaison)

des machines

Décision. Entrée binaire → état YES ou N0 (terminaison)

• Temps : nombre de déplacement du pointeur

des machines

Décision. Entrée binaire → état YES ou N0 (terminaison)

- Temps : nombre de déplacement du pointeur
- **Espace** : nombre de cases parcourues

des machines

Décision. Entrée binaire → état YES ou N0 (terminaison)

- Temps : nombre de déplacement du pointeur
- Espace : nombre de cases parcourues

Le modèle standard de complexité

raisonnable des termes

Encodage nécessaire dans les termes noté $\underline{0}$, $\underline{1}$, $\underline{w_1...w_n}$

raisonnable des termes

Encodage nécessaire dans les termes noté $\underline{0}$, $\underline{1}$, $\underline{w_1...w_n}$

Décision : $M \underline{w} \longrightarrow^* \underline{b}$

raisonnable des termes

Encodage nécessaire dans les termes noté $\underline{0}$, $\underline{1}$, $\underline{w_1...w_n}$

Décision : $M \underline{w} \longrightarrow^* \underline{b}$

Definition

Un modèle de coût raisonnable est une mesure de complexité avec

- écart **polynomial** en temps
- écart constant en espace

par rapport aux machines de Turing

raisonnable des termes

Encodage nécessaire dans les termes noté <u>O</u>, <u>1</u>, <u>w₁...w_n</u>

Décision : $M \underline{w} \longrightarrow^* \underline{b}$

Definition

Un modèle de coût raisonnable est une mesure de complexité avec

- écart **polynomial** en temps
- écart constant en espace

par rapport aux machines de Turing

• Temps : résolu par Accattoli et Dal Lago (réduction de tête)

raisonnable des termes

Encodage nécessaire dans les termes noté <u>O</u>, <u>1</u>, <u>w₁...w_n</u>

Décision : $M \underline{w} \longrightarrow^* \underline{b}$

Definition

Un modèle de coût raisonnable est une mesure de complexité avec

- écart **polynomial** en temps
- écart constant en espace

par rapport aux machines de Turing

- Temps : résolu par Accattoli et Dal Lago (réduction de tête)
- Espace : nous utilisons la géométrie de l'interaction

Solution pour l'espace des termes

λ-calcul (trop compliqué)

Solution pour l'espace des termes

 λ -calcul (trop compliqué) $\downarrow \\ \lambda$ -calcul fini (simple)

Solution pour l'espace des termes

Approximations du calcul

Un calcul fini

Une idée de la logique linéaire [Girard]

Definition

On peut approximer M par une construction (M, ..., M) [Mazza]

Un calcul fini

Une idée de la logique linéaire [Girard]

Definition

On peut approximer M par une construction (M, ..., M) [Mazza]

Lambda-calcul polyadique affine [Mazza].

$$t, u := x \mid \lambda a.t \mid tu \mid \langle t_1, ..., t_n \rangle \mid t[\langle x_1, ..., x_n \rangle := u]$$

Un calcul fini

Une idée de la logique linéaire [Girard]

Definition

On peut approximer M par une construction (M, ..., M) [Mazza]

Lambda-calcul polyadique affine [Mazza].

$$t, u := x \mid \lambda a.t \mid tu \mid (t_1, ..., t_n) \mid t[(x_1, ..., x_n) := u]$$

Approximation polyadique.

Un calcul fini

Une idée de la logique linéaire [Girard]

Definition

On peut approximer M par une construction (M, ..., M) [Mazza]

Lambda-calcul polyadique affine [Mazza].

$$t, u := x \mid \lambda a.t \mid tu \mid (t_1, ..., t_n) \mid t[(x_1, ..., x_n) := u]$$

Approximation polyadique.

- $\langle x_0, x_1, x_2 \rangle \sqsubset x$

On associe un type aux termes M: A pour forcer une cohérence subjective.

On associe un type aux termes M: A pour forcer une cohérence subjective.

• **Terminaison** : typage ⇔ terminaison

On associe un type aux termes M: A pour forcer une cohérence subjective.

- **Terminaison** : typage ⇔ terminaison
- Traçage d'occurrence : informations quantitatives

On associe un type aux termes M: A pour forcer une cohérence subjective.

- **Terminaison** : typage ⇔ terminaison
- Traçage d'occurrence : informations quantitatives

Terme	Occurrences	Туре
М	3	$\langle A_1, A_2, A_3 \rangle$

Système de type intersection non-idempotent

Propriétés quantitatives

On associe un type aux termes M: A pour forcer une cohérence subjective.

- **Terminaison** : typage ⇔ terminaison
- Traçage d'occurrence : informations quantitatives

Terme	Occurrences	Туре
М	3	$\langle A_1, A_2, A_3 \rangle$

• Traçage d'usage : un type par usage concret (polymorphisme)

$$x: \langle A \multimap B, A \rangle$$

Système de type intersection non-idempotent Exemple

Dérivation de type = preuve de typabilité

$$\begin{array}{c|c}
x:A \multimap B \vdash x:A \multimap B & x:A \vdash x:A \\
\hline
x:\langle A \multimap B, A \rangle \vdash xx:B \\
\hline
\vdash \lambda x.xx:\langle A \multimap B, A \rangle \multimap B
\end{array}$$

Système de type intersection non-idempotent Exemple

Dérivation de type = preuve de typabilité

$$\begin{array}{c|c}
x:A \multimap B \vdash x:A \multimap B & x:A \vdash x:A \\
\hline
x:\langle A \multimap B, A \rangle \vdash xx:B \\
\hline
\vdash \lambda x.xx:\langle A \multimap B, A \rangle \multimap B
\end{array}$$

Theorem

Ces arbres induisent des termes polyadiques affines [Mazza]

Système de type intersection non-idempotent Exemple

Dérivation de type = preuve de typabilité

$$\begin{array}{c|c}
x:A \multimap B \vdash x:A \multimap B & x:A \vdash x:A \\
\hline
x:\langle A \multimap B, A \rangle \vdash xx:B \\
\hline
\vdash \lambda x.xx:\langle A \multimap B, A \rangle \multimap B
\end{array}$$

Theorem

Ces arbres induisent des termes polyadiques affines [Mazza]

Terme polyadique affine induit : $\lambda a.(x_0x_1)[\langle x_0, x_1 \rangle := \langle a, a \rangle]$

Résultats

pour borner l'espace

Procédure sur les termes finis

pour borner l'espace

Procédure sur les termes finis

Évaluation ⊆ chemins du terme

pour borner l'espace

Procédure sur les termes finis

Évaluation ⊆ chemins du terme

 On parcourt statiquement le terme

pour borner l'espace

Procédure sur les termes finis

Évaluation ⊂ chemins du terme

- On parcourt statiquement le terme
- On se souvient des directions dans une pile

pour borner l'espace

Procédure sur les termes finis

Évaluation ⊂ chemins du terme

- On parcourt statiquement le terme
- On se souvient des directions dans une pile
- On a des informations sur le résultat de la réduction

pour le lambda-calcul

Theorem

Si l'on a

$$\frac{\vdots}{\delta}$$

$$\vdash M : String \multimap Bool$$

alors M s'exécute en espace $O(depth(\delta) + log|\delta|)$

pour le lambda-calcul

Theorem

Si l'on a

$$\frac{\vdots}{\delta}$$

$$\vdash M : String \multimap Bool$$

alors M s'exécute en espace $O(depth(\delta) + log|\delta|)$

Preuve. voir tableau.

pour le lambda-calcul

Theorem

Si l'on a

$$\vdots \\ \delta \\ \vdash M : String \multimap Bool$$

alors M s'exécute en espace $O(depth(\delta) + log|\delta|)$

Preuve. voir tableau.

• Espace de de $M = \text{profondeur de } \delta \longrightarrow \lambda \text{SPACE}(f)$

pour le lambda-calcul

Theorem

Si l'on a

$$\vdots \\ \delta$$

$$\vdash M : String \multimap Bool$$

alors M s'exécute en espace $O(depth(\delta) + log|\delta|)$

Preuve. voir tableau.

- Espace de de $M = \text{profondeur de } \delta \longrightarrow \lambda \text{SPACE}(f)$
- $\lambda \text{SPACE}(f) \subseteq \text{SPACE}(O(f))$: corollaire.

pour le lambda-calcul

Theorem

Si l'on a

$$\vdots \\ \delta \\ \vdash M : String \multimap Bool$$

alors M s'exécute en espace $O(depth(\delta) + log|\delta|)$

Preuve. voir tableau.

- Espace de de $M = \text{profondeur de } \delta \longrightarrow \lambda \text{SPACE}(f)$
- $\lambda \text{SPACE}(f) \subseteq \text{SPACE}(O(f))$: corollaire.
- SPACE(f) $\subseteq \lambda$ SPACE(O(f)): pas abordé.

Machines et circuits

• Borodin : DEPTH $(f) \subseteq SPACE(O(f))$

Machines et circuits

- Borodin : DEPTH $(f) \subseteq SPACE(O(f))$
- Cook-Levin : une machine induit une famille de circuits uniforme (générée efficacement par un programme)

Machines et circuits

- Borodin : DEPTH $(f) \subseteq SPACE(O(f))$
- Cook-Levin : une machine induit une famille de circuits uniforme (générée efficacement par un programme)

Theorem

La famille de termes polyadiques affines induites dans le théorème de borne spatiale est **DLOGTIME**-uniforme

Machines et circuits

- Borodin : DEPTH $(f) \subseteq SPACE(O(f))$
- Cook-Levin : une machine induit une famille de circuits uniforme (générée efficacement par un programme)

Theorem

La famille de termes polyadiques affines induites dans le théorème de borne spatiale est **DLOGTIME**-uniforme

$$\frac{\text{Machine de Turing}}{\text{Circuit booléen}} \cong \frac{\lambda \text{-calcul}}{\lambda \text{-calcul polyadique affine}}$$

 Création de la classe λSPACE(f) fondé sur la profondeur des types intersections

- Création de la classe λSPACE(f) fondé sur la profondeur des types intersections
- Reste à prouver $SPACE(f) \subseteq \lambda SPACE(O(f))$. Il faudrait coder une machine de Turing par un terme typé par une dérivation intersection de profondeur efficace [voir Accattoli, Dal Lago]

- Création de la classe λSPACE(f) fondé sur la profondeur des types intersections
- Reste à prouver $SPACE(f) \subseteq \lambda SPACE(O(f))$. Il faudrait coder une machine de Turing par un terme typé par une dérivation intersection de profondeur efficace [voir Accattoli, Dal Lago]
- Transfert de résultats et d'outils entre le λ -calcul et les machines [Mazza, Cook-Levin]

- Création de la classe λSPACE(f) fondé sur la profondeur des types intersections
- Reste à prouver $SPACE(f) \subseteq \lambda SPACE(O(f))$. Il faudrait coder une machine de Turing par un terme typé par une dérivation intersection de profondeur efficace [voir Accattoli, Dal Lago]
- Transfert de résultats et d'outils entre le λ-calcul et les machines [Mazza, Cook-Levin]
- Passage du mécanique à l'algébrique

- Création de la classe λSPACE(f) fondé sur la profondeur des types intersections
- Reste à prouver $SPACE(f) \subseteq \lambda SPACE(O(f))$. Il faudrait coder une machine de Turing par un terme typé par une dérivation intersection de profondeur efficace [voir Accattoli, Dal Lago]
- Transfert de résultats et d'outils entre le λ-calcul et les machines [Mazza, Cook-Levin]
- Passage du mécanique à l'algébrique

Uniformité

Il existe une machine qui génère des circuits

Un λ -terme est approximé par des termes affines