Context Sensitive Grammar (CSG) and Context Sensitive Language (CSL)

A Grammar G = (N, Σ, R, S) is a CSG if productions are of the form

$$\alpha A \delta \rightarrow \alpha \beta \delta$$

where A is in N, α , β and δ are in (N U Σ)*, $|\beta| \ge 1$ ie A replaced by β under the left context α and the right context δ .

In order to have ε in L(G) we are allowed to have the production S -> ε , but then S should not be in the body of any production.

A language is context sensitive (CSL) if L = L(G) for a CSG G.

A monotonic Grammar is a grammar where every production is of the form α -> β

 α containing at least one variable and $|\alpha| \le |\beta|$. S -> ϵ may be allowed but then S should not appear in the body of any production.

A CSG is obviously monotonic and conversely it can be proved that every monotonic Grammar is equivalent to a CSG. Hence the language generated by a monotonic Grammar is a CSL.

Example 1:
$$L = \{ a^n b^n c^n | n \ge 0 \}$$

Take the monotonic grammar G:

$$S -> \epsilon | S_1$$
 $S_1 -> a S_1 B C | a B C$ $C B -> B C$ $a B -> a b, b B -> b b, b C -> b c, c$ $C -> c c$

It can be proved that L =L(G). Thus L is a CSL since a monotonic Grammar has an equivalent CSG. One can see that

For a b c: S -> S₁ -> a B C -> a b C -> a b c

For $a^2 b^2 c^2 : S -> S_1 -> a S_1 B C$

-> a a B C B C

-> a a b C B C

-> a a b B C C

-> a a b b C C

-> a a b b c C

> a a b b c c

HW Generate a³ b³ c³ using only one production at one step.

Example 2 : $L = \{ w w \mid w \text{ is in } \{0, 1\}^* \}$

Take the monotonic Grammar G:

$$S \rightarrow \epsilon \mid S_1$$

$$S_1 -> F_0 M_0 \mid F_1 M_1$$

$$F_0 \rightarrow F_0 \cup A \mid F_0 \cup B, F_1 \rightarrow F_1 \cup A \mid$$

F₁ 1 B

1 -> 1 B

$$A M_0 \rightarrow M_0 0$$
, $B M_0 \rightarrow M_0 1$, $A M_1 \rightarrow M_1 0$, $B M_1 \rightarrow M_1 1$

$$F_0 \rightarrow 0$$
, $M_0 \rightarrow 0$, $F_1 \rightarrow 1$, $M_1 \rightarrow 1$

It can be proved that L = L(G). hence L is a CSL since a monotonic grammar is equivalent to a CSG. One can see that

For 11,
$$S \rightarrow S_1 \rightarrow F_1 M_1 \rightarrow 1 M_1 \rightarrow 11$$

For 1 0 1 0,
$$S \rightarrow S_1 \rightarrow F_1 M_1$$

$$-> F_1 0 A M_1$$

$$-> F_1 0 M_1 0$$

$$-> 10 M_1 0$$

For $101101:S \rightarrow S_1 \rightarrow F_1 M_1$

$$-> F_1 1 B M_1$$

$$-> F_1 1 M_1 1$$

$$-> F_1 0 A 1 M_1 1$$

$$-> F_1 0 1 A M_1 1$$

$$-> F_1 0 1 M_1 0 1$$

$$-> 101 M_101$$

HW: Generate the following strings using only one production at every step.

- i) 11011101
- ii) 10111011