

Authenticated Key-Exchange using Digital Signatures.

Applied Cryptography - Spring 2024

Simona Samardjiska

May 13, 2024

Institute for Computing and Information Sciences Radboud University

Summary

Last time:

- Introduction to Post-Quantum Cryptography
- Hash-Based Signatures

Today:

- Authenticated Key-Exchange using Digital Signatures
- Post-Quantum cryptography chalenges and families

Authenticated Key-Exchange

using Digital Signatures

Recall our everyday scenario

- · Alice and Bob have not agreed on a joint key yet, but they want to communicate securely
 - They want to exchange symmetric keys over the public channel, first
 - They use public key cryptography for this, so that Eve can't learn the key
 - Typically using (Merkle-)Diffie-Hellman key exchange

Recall the magic of (Merkle-)Diffie-Hellman key exchange

Public-key based establishment of a shared secret

Alice's client P, Q, G		Bob's server P, Q, G
, -,		<i>F</i> , Q , G
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$	A 11 A	•
$A \leftarrow G^a$	$\xrightarrow{Alice;A}$	$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
	← Bob; <i>B</i>	$B \leftarrow G^b$
$K_{A,B} \leftarrow B^a$		$K_{B,A} \leftarrow A^b$

Alice and Bob arrive at the same shared secret $K_{A,B} = K_{B,A}$

$$K_{A,B} = (B^a) = (G^b)^a = G^{b \cdot a} = G^{a \cdot b} = (G^a)^b = A^b = K_{B,A}$$

- Alice and Bob derive key(s) from secret: $K \leftarrow KDF(K_{A,B})$
- They use K further in their communication for encryption or message authentication
- Perfect Forward Secrecy (PFS)
 - Once the session keys are destroyed they can not be recovered even by the parties that created them

Man-in-the-middle attack on (Merkle-)Diffie-Hellman Key Exchange

Alice's client		Eve		Bob's server
P, Q, G		P,Q,G		P,Q,G
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$		$e \overset{\$}{\leftarrow} \mathbb{Z}_q$		$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
$A \leftarrow G^a$	$\xrightarrow{Alice;A}$	$E \leftarrow G^e$	$\xrightarrow{Alice; E}$	
			⟨Bob; <i>B</i>	$B \leftarrow G^b$
	⟨Bob; <i>E</i>			
$K_{A,B} \leftarrow E^a$		$K_{A,B} \leftarrow A^e$		
		$K_{B,A} \leftarrow B^e$		$K_{B,A} \leftarrow E^b$

- Alice and Bob both unknowingly share a secret with Eve,
- In subsequent exchange protected with shared secrets
 - Eve decrypts, can read plaintext, and re-encrypts
 - Eve may modify/delete messages and compute tags
- Problem: Alice and Bob can never be sure who sent the message
- Solution: Entity authentication/Identification
 - Alice must verify B really comes from Bob and vice versa

Let's try to fix it

- Alice has a long term signing key pair (pk_A, sk_A) and Bob has (pk_B, sk_B)
- Very important:
 - Their long term keys are already authenticated! (for ex. out of band. Alternatively, certificates can be sent together with the identities!)
 - Alice knows pk_B belongs to Bob and Bob knows pk_A belongs to Alice

The fix:

Alice's client		Bob's server
P, Q, G, pk_B, sk_A		P, Q, G, pk_A, sk_B
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$		
$A \leftarrow G^a$	$\xrightarrow{Alice; A}$	$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
$Vf_{pk_B}(\sigma_B)$	\leftarrow Bob; B ; σ_B	$B \leftarrow G^b$, $\sigma_B = \operatorname{Sign}_{\operatorname{sk}_B}(A, B)$
$\sigma_{A} = Sign_{sk_{A}}(B,A)$	$\xrightarrow{\sigma_A}$	$Vf_{pk_A}(\sigma_A)$
$K_{A,B} \leftarrow B^{a}$		$K_{B,A} \leftarrow A^b$

- "Authentication-only" Station-to-Station Protocol (Diffie et al. '92)
 - claimed mutual authentication!
- Flawed! Man-in-the-middle attacks possible!

Man-in-the-middle attack on the "Auth.-only" STS protocol – Attack 1

Alice's client		Eve		Bob's server
P, G, pk_B, pk_E, sk_A		P, G, pk_A, pk_B, sk_E		P, G, pk_A, pk_E, sk_B
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$				$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
$A \leftarrow G^a$	$\xrightarrow{Alice;\; A}$		$\xrightarrow{Alice;\; A}$	
				$B \leftarrow G^b$
$Vf_{pk_{E}}(\sigma_{E})$	\leftarrow Eve; B ; σ_E	$\sigma_E = Sign_{sk_E}(A, B)$	\leftarrow Bob; B ; σ_B	$\sigma_B = Sign_{sk_B}(A,B)$
$\sigma_{A} = Sign_{sk_{m{A}}}(B,A)$	$\xrightarrow{\sigma_A}$	-	$\xrightarrow{\sigma_A}$	$Vf_{pk_A}(\sigma_A)$
$K_{A,B} \leftarrow B^a$				$K_{B,A} \leftarrow A^b$

- Alice thinks she is talking to Eve,
- Bob thinks he is talking to Alice
- So, no mutual authentication!, but Eve does not know the key
- Identity misbinding attack
 - but Eve can trick Alice into saying things not intended for Bob, but for Eve
 - and then just relay them to Bob
 - Think of: I agree to buy your house for 1/2 million (Eve has a mansion, and Bob a shed)

Man-in-the-middle attack on the "Auth.-only" STS protocol - Attack 2

Alice's client		Eve		Bob's server
P, G, pk_B, pk_E, sk_A		P, G, pk_A, pk_B, sk_E		P, G, pk_A, pk_E, sk_B
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$				$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
$A \leftarrow G^a$	$\xrightarrow{Alice;\; A}$		$\xrightarrow{Eve;\; A}$	
				$B \leftarrow G^b$
$Vf_{pk_B}(\sigma_B)$	\leftarrow Bob; B ; σ_B		\leftarrow Bob; B ; σ_B	$\sigma_B = Sign_{sk_B}(A, B)$
$\sigma_{A} = Sign_{sk_{A}}(B,A)$	$\xrightarrow{\sigma_A}$	$\sigma_{\it E} = {\sf Sign}_{\sf sk_{\it E}}(B,A)$	$\xrightarrow{\sigma_E}$	$Vf_{pk_{E}}(\sigma_{E})$
$K_{A,B} \leftarrow B^{a}$				$K_{B,A} \leftarrow A^b$

- Alice thinks she is talking to Bob,
- Bob thinks he is talking to Eve
- So, no mutual authentication!, but Eve does not know the key
- Again, Identity misbinding attack
- but Bob thinks everything from Alice comes from Eve
- Similar effect as previously, but now Eve intercepts the initial message from Alice intended for Bob
- in Attack 1, Eve uses a legitimate initial message from Alice

A fixed protocol – ISO-9796

Alice's client		Bob's server
P, Q, G, pk_B, sk_A		P, Q, G, pk_{A}, sk_{B}
$a\stackrel{\$}{\sim} \mathbb{Z}_q, A\leftarrow G^a$ $Vf_{pk_B}(\sigma_B)$	$\xrightarrow{\text{Alice}; A} \xrightarrow{\text{Bob}; B; \sigma_B}$	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $B \leftarrow G^b, \ \sigma_B = Sign_{sk_B}(A, B, Alice)$
$\sigma_{A} = Sign_{sk_{A}}(B, A, Bob)$	$\xrightarrow{\sigma_A}$	$Vf_{pk_{A}}(\sigma_{A})$
$K_{A,B} \leftarrow B^a$		$K_{B,A} \leftarrow A^b$

- Proven secure [Canetti-Krawzyk '01]
- Include the identity of the receiver in the signature
- The identities of Alice and Bob are bound to the key $K_{A,B}$ and the previous attacks don't work
 - Eve can't just relay the message sent by Bob (Attack 2)
 - Bob; B; $Sign_{sk_B}(A, B, Eve)$ needs to be Bob; B; $Sign_{sk_B}(A, B, Alice)$
 - Where does Attack 1 fail?
- Does including the identity of the sender accomplish the same? (See homework :))

Issues with ISO-9796

- Proven secure but...
- **Neither initiator nor responder privacy protection**: both Alice and Bob need the identity of the peer before being able to proceed with the protocol
 - For ex, roaming users/browsers need initiator identity protection
 - Or NFC cards need responder identity protection
 - Can't be fixed for active attackers (as are Attacks 1 and 2), as the identity of the peer must be known before authentication (to be included in the signature)
- Non-repudiability: by signing the identity of the peer, one leaves a non-deniable proof of communication with that peer
- How to fix these issues?
 - Can we have identity protection for both peers, or even at least for one of them?
 - Major issue in many protocols today
 - What about TLS 1.2?

TLS 1.2 ephimeral version (TLS-DHE)

Alice's client		Bob's server
P, Q, G, sk_{A}		P, Q, G, sk_{B}
Ciphersuite negotiation		
$R_A \leftarrow \mathcal{R}$	supported suites; R_A	
	selected suites; R_B	$R_B \leftarrow \mathcal{R}$
Key exchange		_
$Vf_{pk_B}(\sigma_B)$	Bob (pk_B); σ_B , B	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, $B \leftarrow G^b$, $\sigma_B = \operatorname{Sign}_{\operatorname{sk}_B}$
$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q, A \leftarrow G^a, \ \sigma_A = \operatorname{Sign}_{sk_A}(A)$	Alice (pk _A); σ_A , A	$Vf_{pk_A}(\sigma_A)$
$K_{conf} \leftarrow B^a$,	$K_{conf} \leftarrow A^b$
$K_{A,B} \leftarrow (K_{conf}, R_A, R_B)$		$K_{B,A} \leftarrow KDF(K_{conf}, R_A, R_B)$
Authentication		
	$MAC_{K_{A},B}(finnish_{B})$	$finnish_B \leftarrow 1 transcript$
$finnish_B \leftarrow 0 transcript$	$\xrightarrow{MAC_{K_{A},B}(finnish_{A})}$	mmsng (Tjuanscript

TLS 1.2 ephimeral version (TLS-DHE)

- Misbinding not possible, why? (due to last phase)
- No identity protection, certificates sent in clear!
- Everybody can see the website you are browsing to
- Good thing no signing of peer identity

Disclaimer:

- Some messages on the previous slide are overly simplified. Be ware!
 - For instance, certificates are sent in separate messages
 - The server may or may not ask for the clients certificate, client authentication is optional.
 - Several other values and keys are generated (there is premaster key, master key and session key)
- You will here more on the complications and other issues with TLS 1.2 next time
 - No authentication of ciphersuite, TLS version etc.
- Now let's go back to the simplicity of the STS protocol

Recall the Auth.only STS protocol and Attack 2

Alice's client		Bob's server
P, Q, G, pk_B, sk_A		P, Q, G, pk_A, sk_B
$egin{aligned} & \overset{\$}{ ilde{\leftarrow}} \ \mathbb{Z}_q \ & A \leftarrow G^a \ & Vf_{pk_B}(\sigma_B) \ & \sigma_A = Sign_{sk_A}(B,A) \ & K_{A,B} \leftarrow B^a \end{aligned}$	$ \begin{array}{c} Alice; A \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$b \overset{\$}{\leftarrow} \mathbb{Z}_q$ $B \leftarrow G^b, \sigma_B = Sign_{sk_B}(A, B)$ $Vf_{pk_A}(\sigma_A)$ $K_{B,A} \leftarrow A^b$

Recall the Auth.only STS protocol and Attack 2

Alice's client		Eve		Bob's server
P, G, pk_B, pk_E, sk_A		P, G, pk_A, pk_B, sk_E		P, G, pk_A, pk_E, sk_B
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$				$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
$A \leftarrow G^a$	$\xrightarrow{\text{Alice; } A}$		$\xrightarrow{Eve;\; A}$	
				$B \leftarrow G^b$
$Vf_{pk_B}(\sigma_B)$	\leftarrow Bob; B ; σ_B		\leftarrow Bob; B ; σ_B	$\sigma_B = Sign_{sk_B}(A, B)$
$\sigma_{A} = Sign_{sk_{A}}(B,A)$	$\xrightarrow{\sigma_A}$	$\sigma_{\it E} = {\sf Sign}_{\sf sk_{\it E}}(B,A)$	$\xrightarrow{\sigma_E}$	$Vf_{pk_{E}}(\sigma_{E})$
$K_{A,B} \leftarrow B^{a}$				$K_{B,A} \leftarrow A^b$

- Recall that although no authentication is provided, Eve does not know the exchanged key $K_{A,B}$
- So why don't we use $K_{A,B}$ somehow to protect against the ID-misbinding?
- The full version of the STS protocol does exactly this

STS protocol (full version)

Alice's client		Bob's server
P,Q,G,pk_B,sk_A		P, Q, G, pk_{A}, sk_{B}
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$, $A \leftarrow G^a$	$\xrightarrow{Alice;A}$	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
•		$B \leftarrow G^b, K_{B,A} \leftarrow A^b$
	\leftarrow Bob; B; C_B	$\sigma_B = Sign_{sk_B}(A, B), \ C_B = Enc_{K_{A,B}}(\sigma_B)$
$\mathcal{K}_{A,B} \leftarrow B^a$, $\sigma_B = Dec_{\mathcal{K}_{A,B}}(\mathcal{C}_B)$		
$Vf_{pk_B}(\sigma_B)$, $\sigma_A = Sign_{sk_A}(B,A)$		
$C_A = Enc_{K_{A,B}}(\sigma_A)$	$\xrightarrow{\sigma_A}$	$\sigma_A = Dec_{m{K}_{\!A,B}}(\mathit{C}_{\!A}),Vf_{pk_A}(\sigma_A)$

- The encryption of the signatures protects the identities!
- Hence the identities don't have to be included in the signatures.
 - If public keys are not a priori authenticated, certificates can be included in the encrypted messages.
- However, this is not a good approach.... (encryption is not for authentication!)
 - Eve can register Alice's public key as her own and again perform an ID-missbinding attack
- Proof of knowledge of $K_{A,B}$ is not enough, it should be bound to the identity of the parties

SIGMA (SIGn and MAc) protocols [Hugo Krawczyk '03]

Alice's client		Bob's server
P, G, pk_B, sk_A		P, G, pk_A, sk_B
$a \overset{\$}{\leftarrow} \mathbb{Z}_q$, $A \leftarrow G^a$	$\xrightarrow{\text{Alice; } A}$	$b \overset{\$}{\leftarrow} \mathbb{Z}_q$
		$B \leftarrow G^b$, $K_{B,A} \leftarrow A^b$
		$K = KDF(K_{B,A}), t_B = MAC_K(Bob)$
$Vf_{pk_B}(\sigma_B),\ extstyle{\mathcal{K}_{A,B}} \leftarrow B^{a}$	$Bob; B; \sigma_B; t_B$	$\sigma_B = Sign_{sk_B}(A, B, \frac{Alice}{})$
$K = KDF(K_{A,B}), t_A = MAC_K(Alice)$		-
$\sigma_{A} = Sign_{sk_{A}}(B, A, \frac{Bob}{})$	$\xrightarrow{\sigma_A;\ t_A}$	$Vf_{pk_A}(\sigma_A)$

- We keep the signing as in the STS protocol, since it prevents MiM attacks
- But, remove the identities from the signature, to provide repudiability
- And Alice does not advertize her identity
 - This is basically STS, so misbinding possible!
- Solution?:
 - Alice and Bob MAC their own identity!
 - From the MAC, Alice can see that Bob's identity was not replaced by Eve's

SIGMA-I protocol (initiator identity protection)

Alice's client		Bob's server
P, G, pk_B, sk_A		P, G, pk_A, sk_B
$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \ A \leftarrow G^a$	$\stackrel{A}{-\!\!\!-\!\!\!\!-\!\!\!\!-}$	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \ B \leftarrow G^b, \ K_{B,A} \leftarrow A^b, \ K_M; K_E = KDF(K_{B,A}), \ t_B = MAC_{K_M}(Bob),$
$K_{A,B} \leftarrow B^a$, K_M ; $K_E = KDF(K_{A,B})$, signature and MAC verification of Bob's id	⟨B; C _B	$\sigma_B = \operatorname{Sign}_{sk_B}(A, B), \ C_B = \operatorname{Enc}_{K_E}(Bob, \sigma_B, t_B)$
$t_A = MAC_{K_M}(Alice), \ \sigma_A = \operatorname{Sign}_{sk_A}(B, A)$ $C_A = Enc_{K_E}(Alice, \sigma_A, t_A)$	$\xrightarrow{C_A}$	signature and MAC verification of Alice's id

^{*}For compactness, signature and MAC verification, decryption steps omitted (but are performed)

- No identities in clear ⇒ protection against passive attackers
- Alice can verify the identity of Bob before disclosing her own identity ⇒ identity protection of
 initiator against active attackers
- $\bullet \ \, \mathsf{Signing} \Rightarrow \mathsf{MiM} \,\, \mathsf{attacks} \,\, \mathsf{prevented}$
- MAC of own identity ⇒ identity misbinding attacks prevented
- Used in TLS 1.3 handshake

SIGMA-R protocol (responder identity protection)

A

Alice's client		Bob's server
P, G, pk_B, sk_A		P, G, pk_A, sk_B
$a \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \ A \leftarrow G^a$	$\stackrel{A}{-\!\!\!-\!\!\!\!-\!\!\!\!-}$	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \ B \leftarrow G^b$
$K_{A,B} \leftarrow B^a$, K_M ; $K_E = KDF(K_{A,B})$,	<u>→ B</u>	
$t_A = MAC_{K_M}(Alice), \ \sigma_A = Sign_{sk_A}(B,A)$		
$C_A = Enc_{K_E}(Alice, \sigma_A, t_A)$	$\xrightarrow{C_A}$	$K_{B,A} \leftarrow A^b, K_M'; K_E' = KDF(K_{B,A})$
		$t_B = MAC_{K'_M}(Bob), \ \sigma_B = \operatorname{Sign}_{\operatorname{sk}_B}(A, B)$
	<u>← C</u> B	$C_B = \mathit{Enc}_{K_E'}(Bob, \sigma_B, t_B)$

^{*}For compactness, signature and MAC verification, decryption steps omitted (but are performed)

- Bob can verify the identity of Bob before disclosing his own identity ⇒ identity protection of responder against active attackers
- Alice and Bob use different K_M ; K_E and K'_M ; K'_E to prevent **reflection attacks**
 - Hint: Protocol is completely symmetric!

SIGMA protocol in IKE (Internet Key Exchange) main mode

	Bob's server
	P, G, pk_A, sk_B
$\stackrel{A}{\longrightarrow}$	$b \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \ B \leftarrow G^b$
<u> </u>	
$\xrightarrow{C_A}$	$K_{B,A} \leftarrow A^b$, K_M' ; $K_E' = KDF(K_{B,A})$
	$t_B = MAC_{K'_M}(Bob), \ \sigma_B = Sign_{sk_B}(A, B, t_B)$
<u>← C</u> B	$C_B = Enc_{K'_{E}}(Bob, \sigma_B, \mathbf{t}_B)$
	$\xrightarrow{C_A}$

^{*}For compactness, signature and MAC verification, decryption steps omitted (but are performed)

- IKE is core AKE protocol of IPSec IP Security [RFC2401-12]
- above is IKE v1
- Aggressive mode exists without identity protection
- IKE v2 slight differences A, B not included inside of MAC, only identity

^{**}Difference from SIGMA-R in green

Conclussions and further considerations

SIGMA protocols are part of IKE and TLS 1.3

- provably secure
- fast
- robust
- minimize number of rounds
- simpler parameters
- identity protection

Protocols have other issues (for ex. TLS is not only the handshake):

- Ciphersuite negotiation?
- Side-channel protection?
- DOS protection?
- Formal analysis?
- Key derivation?
- Use of PKI?
- Post-quantum versions?

Summary

Today:

• Authenticated Key-Exchange using Digital Signatures

Next time:

• "Transport layer security (TLS)" Thom Wiggers, PQShield