1

- (1pt) Using the euclidean metric (L_2) , calculate the distance between (4,13) and (-8,5).
- (1pt) Using the manhattan metric (L_1) , calculate the distance between (7,5) and (4,-4).
- (1pt) Using the chebyshev metric (L_{∞}) , calculate the distance between (1,10) and (14,12).

2

Suppose you are given the following training set.

Example	Feature 1	Feature 2	Label
A	5	6	0
В	4	8	0
\mathbf{C}	1	0	1
D	8	9	0
${ m E}$	4	3	1

- (1pt) What class would 1-nearest-neighbor assign the test example (2,1)?
- (2pt) What class would 1-nearest-neighbor assign the test example (0,0)?
- (4pt) What class would 3-nearest-neighbor assign the test example (4,5)?

3

Suppose you are given the following examples.

Example	Feature 1	Feature 2
A	1	0
В	3	0
\mathbf{C}	5	0
D	7	0
\mathbf{E}	9	0
\mathbf{F}	1	4
\mathbf{G}	3	4
\mathbf{H}	5	4
I	7	4
J	9	4
K	11	0
${f L}$	13	0
\mathbf{M}	15	0
O	11	4
P	13	4
Q	15	4

- (1pt) Plot the above examples on a graph.
- (1pt) Suppose we initialize k-means-clustering (k=2) with the points I and J. Circle the clusters that the algorithm converges upon.