## Lexington High School

Permanent Building Committee Meeting

02/27/2025





#### **Building Floor Plan Review – confirm on 4/10** ■ Proposed Space Layouts ■ Location & Access to Central Office ☐ Elevator Count, Usage Control & Roof Access Confirm Future expansion GSF **Programming – confirm today** □ Confirm Blacher Seat Count ☐ Decide between 146M and 200M Track in Field House **Building Design – confirm today** ☐ Add/Reno Field House – Scope & Constructability ■ Mass Timber vs. Structural Steel **Plumbing Design – confirm today** Confirm Battery vs. Hardwired Plumbing Fixtures **HVAC Design – confirm on 5/8** ☐ Confirm Approach for Integrated Automation Systems Renewable Energy – confirm on 5/8 ■ Location of Energy Storage Battery ☐ Final EV Charging Stations Quantity



## **Building Floor Plan Review – confirm on 4/10** ■ Proposed Space Layouts ■ Location & Access to Central Office ☐ Elevator Count, Usage Control & Roof Access Confirm Future expansion GSF







**KEY PLAN** 













- Core Academic
  Science
  Teacher Planning & Small Group
  Admin, Guidance, ALPHA, METCO,
  Central Offices
  Auditorium / Drama
  Art & Music
  Media Center
  Vocation & Technology
  Physical Education
  Special Education
  Medical
  Kitchen, Restrooms, Custodial
  Commons
  Circulation
  Vertical Circulation
- Expansion

Rooftop Open Space



LEVEL 3









#### **Building Floor Plan Review / Travel Times**

#### **Existing Travel Time (Level 2 Building A to Level 2 Building J)**

- = **5.5 minutes** at an average adult walking speed
- **= 7 minutes** at a slower pace simulating an overcrowded condition between classes





#### **Proposed Building Travel Time (Level 1 C Wing to Level 4 B Wing)**

= 3.5 minutes at an average adult walking speed



#### **Building Floor Plan Review** / Location & Access to Central Office



#### Building Floor Plan Review / Elevators – count, usage, control & roof access

#### **Elevator Summary**

- Traction elevator
- 5,000lb capacity
- 200fpm
- Requires a small control room
- Cab sized for a stretcher  $(+/-5'-10"w \times 8'-8"l)$
- 3 total
  - 2 serving the school
    - o ELEV 1 is adjacent to the central stair and would directly serve B wing
    - o ELEV 2 is near the main entry and would serve A & C wings
  - 1 serving the Central Office
    - ELEV 3 would connect Levels 1 and 4 only but can be overridden by card access to stop at 2 & 3
- No roof access via elevator
- Current usage direction: Card access will be installed at all elevators. Overall access control TBD by School Department and DPF





Design Enrollment: 2,395 students

Upper Limit of Future Expansion\*: 3,000 students

Total Future Expansion Need: **605 students** 

Capacity of Central Office Conversion to Classrooms: 322 students (14 classrooms)

Remaining Expansion GFA Needed: 283 students (~13 classrooms)

<sup>\*</sup> Per SBC's PSR Preferred Concept Statement 11/12/2024



Option 1 – 53,760 GSF

- Adds (4) full Gen Ed Classroom bays per floor Total 16
- Adds (2) Science Labs and (1) Prep Room per floor Total 8/4
- Adds an egress stair at end of wing
- Allows space for exit from internal egress stair
- Includes internal zone for support space, toilets
- Additional Capacity: **552 students**
- Total Capacity at 85% Utilization:
   3,269 students (target + 269 or +9%)





Option 2 - 40,320 GSF

- Adds (4) full Gen Ed Classroom bays per floor Total: 16
- Adds (1) Science Lab and (1) Prep Room per floor Total: 4/4
- Adds an egress stair at end of wing
- Allows space for exit from internal egress stair
- Includes internal zone for support space, toilets
- Additional Capacity: **552 students**
- Total Capacity at 85% Utilization:3,177 students (target + 177 or +6%)





Potential Future Conversion to Dining for 200 Students (600/3 seatings)

Displaces 4 classroom bays or 92 students – may be offset in Wing B expansion options





## **Programming – confirm today** □ Confirm Blacher Seat Count ☐ Decide between 146M and 200M Track in Field House



#### Option 1

Bleachers off-center from competition court

All doors at side walls





#### Option 2

Bleachers centered on competition court

Main entry doors at end wall





#### **CONFIRM**

#### 1,068 Seats on 9 tiers

1'-5" from outer edge of sideline to edge of bleacher steps

#### 4'-0" sideline



#### 1,016 Seats on 8 tiers

3'-4" from outer edge of sideline to edge of bleacher steps

#### 4'-0" sideline





| Option C/D.1                  |
|-------------------------------|
| \$45,753,000/<br>\$43,470,000 |
| 48,000 GSF                    |
| 146m                          |
| 4                             |
| 55m                           |
| 2-3                           |
| 400                           |
| 1,200 sf                      |
| 3,500 sf                      |
|                               |



- 1. 3 courts possible if overlapping track
- 2. Increased PE Alt. size from 3,300 sf existing
- 3. Increased Weight room size from 679 sf existing
- 4. All new roof structure allows for goals, wrestling mats, batting cage, etc. to be hung from rafters



#### Decide Between 146M or 200M Track in Field House



#### **Field House Programming Meeting Takeaways:**

- 1. Safety is a major concern and should be considered as part of every decision
- 2. Providing space for programs that don't have sufficient space in the existing field house (i.e. trainers, weight room, cheer, etc.) is a priority
- 3. Flexibility of space to accommodate the number of different groups utilizing the field house is a priority
- 4. Strong preference for 146-meter track from athletics coaches and trainers. Track coaches still preferred a 200m track.
- 5. Unanimous preference for 146-meter track among athletic director, principal, PE coordinator, and recreation dept.
- 6. Track coach requested consideration of a banked track if 146-meter track is pursued.
- 7. A few individuals expressed a preference for Option B (trainers and AD) as it would compartmentalize uses in a way that would enhance safety, scheduling and monitoring.



#### Decide Between 146M or 200m Track in Field House

#### **CONFIRM**

#### 146m Track



- 3 courts possible if overlapping track
- Increased PE Alt. size from 3,300 sf existing
- Increased Weight room size from 679 sf existing
- All new roof structure allows for goals, wrestling mats, batting cage, etc. to be hung from rafters

#### Additional Program w/ 146m Track **Option:**

- Fitness Room 1,600 sf
- Locker Rooms (2) 900 sf
- Trainer's Room 1,000 sf
- Toilets 800 sf
- Storage 700 sf

#### 200m Track



- PE Alt. located within track footprint shows overlay of (2) regulation 42'x42' wrestling mats
- All new roof structure allows for goals, wrestling mats, batting cage, etc. to be hung from rafters







# **Building Design – confirm today** ☐ Add/Reno Field House – Scope & Constructability Mass Timber vs. Structural Steel



#### Field House Scope & Constructability / Option Summary



|              | Option A     | Option B        | Option C        | Option D        |  |
|--------------|--------------|-----------------|-----------------|-----------------|--|
| Project Cost | \$26,625,000 | \$42,625,000    | \$57,191,000    | \$54,338,000    |  |
| Footprint    | 34,400 GSF   | 48,000 GSF      | 48,000 GSF      | 48,000 GSF      |  |
| Approach     | Renovation   | Reno + Addition | Reno + Addition | Reno + Addition |  |
|              |              |                 |                 |                 |  |



Option A: Renovation Only (34,400 GFA)



- New slab on grade
- New exterior enclosure:
  - Brick veneer cavity wall
  - 8" Mineral Wool Insulation
  - AVB on existing concrete walls
  - Triple-pane clerestory glazing
  - New HM doors
  - Membrane roofing on 10" insulation
- New MEP systems
- New lighting and PA systems
- (2) new scoreboards
- Retractable bleachers for 400 seats
- Interior finishes: Resilient athletic flooring, rubber flooring at PE Alt and Weight Room, wall paint and wall pads



#### **Option A**/ Renovation Only

|                     | Option A     |
|---------------------|--------------|
| Project Cost        | \$26,625,000 |
| Footprint           | 34,400 GSF   |
| Track Size          | 146m         |
| Lane Count          | 3            |
| Straightaway Length | 55m*         |
| Multipurpose Courts | 2-3          |
| Bleacher Count      | 400 shown    |
| Weight Room         | 679 sf       |
| PE Alternative      | 3,300 sf     |
|                     |              |



#### **Additional Program:**

- Toilets
- Storage

- 1. Minimum safe run-out length to be determined. Drawing shows only 13' with 55m straight track\*
- 2. 4 lanes possible if using less than regulation radius.
- 3. 3 courts possible if overlapping track and portable long jump pit
- 4. PE Alt room does not accommodate (2) regulation 42'x42' wrestling mats
- 5. Existing roof structure does not allow for goals, wrestling mats, batting cage, etc. to be hung from rafters
- 6. Slight increase of storage and toilet space possible



- Option B: Renovation + Addition (48,000 GFA)
  - Renovate existing 34,400 GFA Field House
  - Add 13,600 GFA New Construction Addition on Grade with Flat Roof



- New slab on grade
- New exterior enclosure on existing Field House same as Option A.
- Addition to be steel framing with same exterior enclosure on 6" metal studs and sheathing.
- Expansion joint between Field House and School
- New MEP systems
- New lighting and PA systems
- (2) new scoreboards
- Retractable bleachers for 400 seats
- Interior finishes: Resilient athletic flooring, rubber flooring at PE Alt and Weight Room, wall paint and wall pads



#### **Option B** / Renovation + Addition

- Renovate existing 34,400 GFA Field House
- Add 13,600 GFA New Construction Addition on Grade with Flat Roof

|                     | Option B     |
|---------------------|--------------|
| Project Cost        | \$42,625,000 |
| Footprint           | 48,000 GSF   |
| Track Size          | 146m         |
| Lane Count          | 3            |
| Straightaway Length | 55m          |
| Multipurpose Courts | 2-3          |
| Bleacher Count      | 400          |
| Weight Room         | 1,600 sf     |
| PE Alternative      | 3,500 sf     |





- 2. 3 courts possible if overlapping track and portable long jump pit
- 3. Increased PE Alt. size from 3,300 sf existing
- 4. Increased Weight room size from 679 sf existing
- 5. Existing roof structure does not allow for goals, wrestling mats, batting cage, etc. to be hung from rafters



- Option C: Renovation + Addition (48,000 GFA)
  - Renovate <u>half</u> of existing 34,400 GFA Field House
  - Add 30,800 GFA New Construction Addition to Extend Domed Roof



- New slab on grade
- New exterior enclosure on existing Field House similar to Option A. Backup wall at expanded areas to be 8" CMU.
- New roof structure
- Existing dome structure requires temporary shoring
- Expansion joint between Field House and School
- See following slide for Structural assumptions





- Option D: Renovation + Addition (48,000 GFA)
  - Retain half of existing Field House foundations
  - Extend Building to enclose 48,000 GFA, similar to Option C, but with Flat Roof



- New slab on grade
- New exterior enclosure same as Option A, with 8" CMU backup at new walls
- New roof structure with 10' deep steel trusses spaced at 12' o.c.
- Existing dome structure requires temporary shoring
- Expansion joint between Field House and School
- See following slide for Structural assumptions



#### Option C.1 & D.1 / Renovation + Addition

- Retain half of existing Field House foundations
- Extend Building to enclose 48,000 GFA, Option D similar to Option C, but with Flat Roof

|                                       | Option C/D.1                  |
|---------------------------------------|-------------------------------|
| <b>Project Cost</b> Option C Option D | \$57,191,000/<br>\$54,338,000 |
| Footprint                             | 48,000 GSF                    |
| Track Size                            | 146m                          |
| Lane Count                            | 4                             |
| Straightaway Length                   | 55m                           |
| Multipurpose Courts                   | 2-3                           |
| Bleacher Count                        | 400                           |
| Weight Room                           | 1,200 sf                      |
| PE Alternative                        | 3,500 sf                      |



- 1. 3 courts possible if overlapping track
- 2. Increased PE Alt. size from 3,300 sf existing
- 3. Increased Weight room size from 679 sf existing
- 4. All new roof structure allows for goals, wrestling mats, batting cage, etc. to be hung from rafters



#### Option C.2 & D.2 / Renovation + Addition

- Retain half of existing Field House foundations
- Extend Building to enclose 48,000 GFA, Option D similar to Option C, but with Flat Roof

|                                       | Option C.2/D.2                |
|---------------------------------------|-------------------------------|
| <b>Project Cost</b> Option C Option D | \$57,191,000/<br>\$54,338,000 |
| Footprint                             | 48,000 GSF                    |
| Track Size                            | 200m                          |
| Lane Count                            | 4                             |
| Straightaway Length                   | 55m                           |
| Multipurpose Courts                   | 3-4                           |
| Bleacher Count                        | 400                           |
| Weight Room                           | None                          |
| PE Alternative                        | Area within track             |



- 1. PE Alt. located within track footprint shows overlay of (2) regulation 42'x42' wrestling mats
- 2. All new roof structure allows for goals, wrestling mats, batting cage, etc. to be hung from rafters



#### Mass Timber / Town Questions

#### Q1: Acoustics seem to be a big issue (i.e. noise transfer between spaces)

A: Mass timber floor assemblies: typically lower Noise Reduction Coefficient (NRC) rating vs. standard concrete floor on metal deck:

- o Gypcrete topping with an acoustical underlayment included at to match the NRC of a concrete on deck floor.
- o Gypcrete and underlayment already accounted for in the estimated project costs for mass timber.

#### **Q2:** Do the costs account for the amount of the newly exposed infrastructure and what that may mean in terms of needed mitigation (i.e. fireproofing, aesthetics). Are there savings or adds there?

A: Costs and visuals:

- The added costs for mass timber account for the fireproofing reduction savings.
- Exposed MEP infrastructure: assuming program spaces may still have a finish ceiling, while feature spaces and possibly hallways expose the mass timber structure.
- o Strategic use of ceiling clouds or finished enclosures for mechanical equipment to be considered, pending cost impacts

#### **Q3:** Can embodied carbon be presented in a measurable, easy to understand unit. Compared to 1 year of current school emissions for example?

A: A comparative impact may be provided.

- o Embodied carbon is measured in carbon dioxide equivalent (kgCO2eq) over a 30-year life cycle.
- o Operational carbon (school emissions) are annual. They may be accumulated over 30 years for the purpose of the comparison.



#### Mass Timber / Town Questions

#### **Q4:** What are the warranties, life cycle costs, and maintenance requirements?

A:

- Warranties vary by manufacturer but generally covers the structural integrity of the projects.
- o Life cycle costs: recent studies concluded that wood buildings are fully capable of having long lifespans. However, it is found that there is no relationship between structural material and average service life.
- o The durability and maintenance of mass timber will vary based on exposure. There are options for coatings that can be used for greater durability and longevity.

#### **Q5:** Are there any savings if finishes are not needed where mass timber would remain exposed?

A: See response to question #2 on the previous slide for exposed ceiling design approach

o Exposed mass timber assumes a \$15/sf savings, not including potential costs such as acoustic clouds or fabric panels.

#### **06:** What is the base cost of steel/concrete versus mass timber?

A:

- Steel and concrete structure: \$24,636,380, plus the \$2,186,389 spray and intumescent fireproofing totals to \$26,822,769.
- Mass timber structure incremental costs:

Option A – all mass timber: \$24,000,000 incremental costs.

Option B – Hybrid (steel columns): \$19,000,000
Option C – Gym/Dining/Media only: \$2,000,000



#### Mass Timber / Town Questions

#### Q: Where does the mass timber come from? What country? (i.e. tariffs)?

A: Mass Timber is mostly sourced in the U.S. and Canada. Both Eastern and Western forests of each country provide for mass timber.

- When considering embodied carbon, it would be best to source from the Eastern Forests, as the Western Forests Timber imposes higher transportation carbon emissions.
- o The potential tariffs on the Canadian wood, in addition to the already existing tariffs, will have costs impact.
- o Conversely, the higher demand on the sourced U.S. timber may trigger higher costs on US sourced timber.
- Steel and aluminum will also be subject to tariffs. Similar to wood, U.S. steel/aluminum production demand will increase, with the likeliness of costs potentially increase across the board due to limited production capacity.

#### Q: Provide a cost per SF for mass timber to help potentially deciding on where it could be used in specific spaces.

A:

- The cost for a full building mass timber structure is roughly \$54/sf.
- o The cost for more limited usage of mass timber beams over steel columns and bracing is roughly \$45/sf.



#### Other Wood or Wood-Look Finishes in Lieu of Mass Timber

















#### Mass Timber vs. Structural Steel

#### **CONFIRM**

#### **PSR Cost Estimate Considerations**

**Option A** (Mass timber used for the entire structure)

Est. Total Project Cost = \$24,000,000

**Option B** (Hybrid system – all mass timber except steel used for columns)

Est. Total Project Cost = \$19,000,000

**Option C** (Mass timber used at the Gymnasium, Dining Commons and Media Center only)

Est. Total Project Cost = \$2,000,000



Level 1



Level 1



Level 2



# Plumbing Design – confirm today Confirm Battery vs. Hardwired Plumbing Fixtures



#### **Confirm Battery vs. Hard Wired Plumbing Fixtures**



#### **Sensor Operated Fixtures**

- Hard-wired
- Battery powered









# **HVAC Design – confirm on 5/8** ☐ Confirm Approach for Integrated Automation Systems



#### **Integrated Automation Systems**

#### **Automation Systems**

- Building Management System (BMS)
- Renewable Energy Systems
- Lighting Control
- Security
- Fire Alarm
- Metering
- Smart Sensors (Halo)

#### **Integration Approach**

- BACnet/IP
- Division 25





Renewable Energy – confirm on 5/8

Location of Energy Storage BatteryFinal EV Charging Stations Quantity



#### **Location of Energy Storage Battery**

#### **List of Equipment**

- Utility Interconnection Switchgear
- Microgrid Switchboard
- Diesel Generator(s)
- Power Transformer(s)
- Battery Energy Storage System(s)





#### Final Electric Vehicle (EV) Charging Station Quantity – Evaluating Requirements and Net Zero Impact

#### **EV Charging Vehicles**

- Lexington Policy: 4% Installed, 50% Ready

- LEED / MA Building Code: 2% Installed, 10% Ready

- Total Parking Spots <sup>5</sup>: 500 Parking (New Program) / 469 Parking (Existing Program)

| Scaling <sup>1</sup> | EV<br>Parking<br>Spaces | EV<br>Chargers | Annual Energy<br>Usage <sup>2</sup> | Increase to<br>Building Energy<br>Usage | Additional Solar<br>Required <sup>3</sup> | EV + PV Cost<br>Increase <sup>4</sup> |
|----------------------|-------------------------|----------------|-------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------|
| 4%                   | 20                      | 10             | <b>26,730</b> kWh                   |                                         |                                           |                                       |
| 10%                  | 50                      | 25             | 66,825 kWh                          | + 2%                                    | + 3%                                      | \$ 629,571.43                         |
| 20%                  | 100                     | 50             | 133,650 kWh                         | + 4%                                    | + 6%                                      | \$ 1,259,142.86                       |
| 30%                  | 150                     | 75             | 200,475 kWh                         | +6%                                     | + 9%                                      | \$ 1,888,714.29                       |
| 40%                  | 200                     | 100            | 267,300 kWh                         | +8%                                     | + 12%                                     | \$ 2,518,285.71                       |
| <b>50</b> %          | 250                     | 125            | 334,125 kWh                         | + 10%                                   | +15%                                      | \$ 3,147,857.14                       |

#### Note:

- 1. The baseline 4% installation is already accounted for in the project budget and energy modeling assumptions.
- 2. Values are based on MA DOER data, assuming typical milage per day, EV charging behavior and diversity factors.
- 3. The additional PV is based on a Net Zero Site goal. Increased solar generation will be reflected into parking canopy arrays.
- 4. Cost estimates are scaled based on last round of pricing data.
- 5. Clarification needed on bylaw intent regarding "newly constructed parking spaces."



### Thank You!

