Railway Network Intelligence: An AI-Driven Approach to Network Analysis and Optimization

Umar Aslam

December 29, 2024

Abstract

This report presents a comprehensive analysis of an AI-powered railway network intelligence system. The system combines graph theory, machine learning, and real-time data analytics to monitor, analyze, and optimize railway network operations. We implement multiple ML models including Isolation Forest for anomaly detection, DB-SCAN for track clustering, and linear regression for delay prediction. The system provides real-time insights through an interactive dashboard, enabling efficient network management and predictive maintenance scheduling.

Contents

1	Intr	roduction		
2	Mathematical Models			
	2.1	Network Representation		
	2.2	Anomaly Detection		
		Track Clustering		
		Delay Prediction		
3	Implementation			
	3.1	Network Generation		
	3.2	Anomaly Detection Pipeline		
		Track Clustering Process		

4	Results and Analysis	5	
	4.1 Network Statistics	5	
	4.2 Anomaly Detection Performance	5	
	4.3 Clustering Results	6	
5	Visualization Dashboard	6	
	5.1 Components	6	
	5.2 Interactive Features	6	
6	Future Work		
7	Conclusion		
\mathbf{A}	Implementation Details		
	A 1 Code Structure	7	

1 Introduction

Railway networks are complex systems requiring continuous monitoring and optimization. This project implements an intelligent system that:

- Detects anomalous track behavior using unsupervised learning
- Clusters similar tracks based on operational characteristics
- Predicts future delays using time series analysis
- Visualizes network health through an interactive dashboard

2 Mathematical Models

2.1 Network Representation

The railway network is modeled as a graph G = (V, E) where:

- V represents the set of stations
- E represents the set of tracks connecting stations

Each edge $e_{ij} \in E$ has attributes:

$$e_{ij} = \{c_{ij}, s_{ij}, m_{ij}, \eta_{ij}, h_{ij}\}$$
(1)

where:

- c_{ij} is the capacity
- s_{ij} is the speed limit
- m_{ij} is the maintenance score
- η_{ij} is the energy efficiency
- h_{ij} is the historical delay vector

2.2 Anomaly Detection

We implement Isolation Forest for anomaly detection. For each track, we create a feature vector:

$$\mathbf{x}_{ij} = \left[c_{ij}, \bar{h}_{ij}, m_{ij}, \eta_{ij}\right]^T \tag{2}$$

The anomaly score is calculated as:

$$s(\mathbf{x}, n) = 2^{-\frac{E(h(\mathbf{x}))}{c(n)}} \tag{3}$$

where:

- $h(\mathbf{x})$ is the path length
- c(n) is the average path length
- \bullet *n* is the number of samples

2.3 Track Clustering

DBSCAN clustering is applied using normalized features:

$$\mathbf{f}_{ij} = \left[\frac{s_{ij}}{s_{max}}, m_{ij}, \eta_{ij}\right]^T \tag{4}$$

The clustering criteria are:

$$N_{\epsilon}(\mathbf{p}) = {\mathbf{q} \in D | \operatorname{dist}(\mathbf{p}, \mathbf{q}) \le \epsilon}$$
 (5)

2.4 Delay Prediction

Linear regression is used for delay prediction:

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b \tag{6}$$

where:

- **x** is the time point vector
- w are the learned weights
- \bullet b is the bias term

3 Implementation

3.1 Network Generation

The network is generated using the Watts-Strogatz model with parameters:

- N: number of nodes
- \bullet K: mean degree
- β : rewiring probability

Algorithm 1 Network Generation

- 1: Initialize Watts-Strogatz graph $G(N, K, \beta)$
- 2: for each edge (i, j) in G do
- 3: Assign capacity $c_{ij} \sim U(50, 100)$
- 4: Assign speed limit $s_{ij} \sim U(60, 300)$
- 5: Assign maintenance score $m_{ij} \sim U(0.6, 1.0)$
- 6: Generate historical delays h_{ij}
- 7: end for

3.2 Anomaly Detection Pipeline

The anomaly detection process involves:

- 1. Feature extraction from track attributes
- 2. Feature normalization using StandardScaler
- 3. Isolation Forest model fitting
- 4. Anomaly score calculation

Algorithm 2 Anomaly Detection

- 1: Extract features X
- 2: $\mathbf{X}_{norm} = \text{StandardScaler}(\mathbf{X})$
- 3: Initialize IsolationForest(contamination=0.1)
- 4: Fit model and predict anomalies
- 5: Return anomaly labels

3.3 Track Clustering Process

Track clustering follows these steps:

- 1. Feature normalization
- 2. DBSCAN clustering ($\epsilon = 0.3$, min_samples=2)
- 3. Cluster assignment

4 Results and Analysis

4.1 Network Statistics

Key metrics from the implementation:

- Average node degree: 3
- Network density: varies with size
- Clustering coefficient: approximately 0.3

4.2 Anomaly Detection Performance

The Isolation Forest model typically identifies:

- 10% of tracks as anomalous
- Focuses on tracks with unusual combinations of:
 - High delays with good maintenance
 - Low efficiency with high capacity
 - Inconsistent performance metrics

4.3 Clustering Results

DBSCAN typically identifies:

- 2-4 main track clusters
- Noise points (unique tracks)
- Clear separation between high-speed and freight tracks

5 Visualization Dashboard

5.1 Components

The dashboard consists of four main components:

- 1. Network Health Monitor
- 2. Track Classification Map
- 3. Performance Radar Chart
- 4. Delay Forecast Plot

5.2 Interactive Features

Key interactive elements include:

- Hover information for tracks and stations
- Real-time updates of metrics
- Color-coded status indicators
- Predictive analytics display

6 Future Work

Potential improvements include:

- Implementation of deep learning models
- Real-time data integration
- Advanced optimization algorithms
- Enhanced visualization features

7 Conclusion

This project demonstrates the effectiveness of combining machine learning with network analysis for railway system optimization. The implemented system provides valuable insights for network management and maintenance planning.

A Implementation Details

A.1 Code Structure

Key classes and methods:

RailwayNetworkSimulator
 _create_network()
 _generate_train_data()
 detect_anomalies()
 cluster_similar_tracks()
 predict_future_traffic()
 visualize_network()