Definição de derivada:			Equação da reta tangente:		
$\lim \int f(x_1+h)-f(x_1)$			$y - f(x_1) = m (x - x_1)$		
$\Delta x \rightarrow 0$ Δx					
Taxa de variação/velocidade mé	dia Aceleração		ln:	stante/razão	Aceleração Média
$\Delta y = f(x2) - f(x1)$	Velocidade		($\frac{dx}{dy} = f'(x)$	$\Delta s = f'(x2) - f'(x1)$
$\frac{1}{2}\Delta x = \frac{1}{x^2 - x^1}$		tempo		dy = f(x)	$\frac{1}{\Delta t} = \frac{1}{x^2 - x^1}$
Taxa de variação instantânea	Taxas relacionada:		5	Derivada implícita	
dv = dv. dt = f'(x)	$\frac{dv}{dt} = \frac{dv}{dh} \cdot \frac{dh}{dt}$			$y' = \frac{\Delta y}{\Delta x}$ - Em todo y acrescenta y'	

	Descrição	Função	Derivada
1	Constante	y=c	y'=0
2	X	y=x	y'=1
3	Constante/ função	y=c.u	y'=c.u'
4	Soma	y=u+v	y'=u'+v'
5	Produto	y=u.v	y'=u'.v+u.v'.
6	Quociente	$y = \frac{u}{v}$	$y' = \frac{u'.v - u.v'}{v^2}$
7	Potência exp racional	y=u ⁿ n≠0	y'=n. u ⁿ⁻¹ . u'
8	Exponencial base a	y=a ^u a>0 a≠1	$y'=a^u.lna.u'$
9	Exponencial base e	$y=e^u$	$y'=e^u.u'$
10	Logaritmo	$y=log_{a}^{e}$	$y'=\frac{u'}{u}\log_{a^e}$
11	Exponencial composta	$y=u^vu>0$	$y'=v.u^{v-1}.u'+u^{v}.\ln u.v'$
12	Ln	y=ln u	$y' = \frac{u'}{u}$
13		y=sen <i>u</i>	y'=cos u.u'
14		y=cos u	y'=-sen u.u'
15		y=tg u	$y'=sec^2 u.u'$
16		y=sec u	y'=secu.tgu.u'
17		y=cotg u	$y'=-cosec^2 u.u'$
18		y=cosec u	y'=-cosecu.cotgu.u'
19		y=arc sen u	$y' = \frac{u'}{\sqrt{1 - u^2}}$
20		y=arc cos u	$y' = \frac{-u'}{\sqrt{1 - u^2}}$
21		y=arc tg u	$y' = \frac{u'}{1+u^2}$
22		y=arc cotg u	$y'=\frac{-u'}{1+u^2}$
23		$y=arc \cos u u \ge 1$	$y' = \frac{u'}{\sqrt{1 - u^2}}$ $y' = \frac{-u'}{\sqrt{1 - u^2}}$ $y' = \frac{-u'}{1 + u^2}$ $y' = \frac{-u'}{1 + u^2}$ $y' = \frac{-u'}{ u \sqrt{u^2 - 1}}, u > 1$
24	Trigonométricas	$y=arc sec u u \ge 1$	$y = \frac{u'}{ u \sqrt{u^2-1}}, u > 1$
25		y=senh <i>u</i>	$y'=(cosh\ u).\ u'$
26		y=cosh u	y'=(senh u). u'
27		y=tgh <i>u</i>	$y'=(senh^2 u).u'$
28		y=cotgh <i>u</i>	$y'=(-cosech^2 u).u'$
29		y=sech <i>u</i>	$y'=(-sech\ u).\ (tgh\ u)u'$
30		y=cosech u	y'=(-cosech u).(cotgh u).u'
31		y=arc senh u	$y' = \frac{u^r}{\sqrt{u^2 + 1}}$
32		y=arg $\cosh u$	$y' = \frac{u'}{\sqrt{u^2 + 1}}$ $y' = \frac{u'}{\sqrt{u^2 - 1}}, u > 1$
33		y=arg tgh u	$y' = \frac{u'}{1 - u^2}, u < 1$
34		y=arg cotgh u	$y' = \frac{u'}{1 - u^2}, u > 1$
35		y=arg sech u	$y' = \frac{-u}{u\sqrt{1-u^2}}, 0 < u < 1$
36		y=arg scosech u	$y' = \frac{u'}{1 - u^2}, \mathbf{u} < 1$ $y' = \frac{u'}{1 - u^2}, \mathbf{u} > 1$ $y' = \frac{-u'}{u\sqrt{1 - u^2}}, 0 < u < 1$ $y' = \frac{u'}{ \mathbf{u} \sqrt{1 - u^2}}, \mathbf{u} \neq 0$
37	Composta/Cadeia	$y=[g(x)]^n$	$y = n \left[g(x) \right]^{n-1} \cdot g'(x)$ $y' = \frac{u'}{u \cdot \ln a}$
38	Logaritmo modular	$y = \log_a u $	$y' = \frac{u'}{u \ln a}$

Identidades Trigonométricas				
01	$sec^2x + cos^2x = 1$	06	sen 2x = 2 sen x cos x	
02	$1 + tg^2x = sec^2x$	07	$2 \operatorname{sen} x \cos y = \operatorname{sen} (x - y) + \operatorname{sen} (x + y)$	
03	$1 + cotg^2x = cosec^2x$	08	$2 \operatorname{sen} x \operatorname{sen} y = \cos(x - y) - \cos(x + y)$	
04	$sen^2x = \frac{1 - \cos 2x}{2}$	09	$2\cos x\cos y = \cos(x-y) + \cos(x+y)$	
	2			
05	$\cos^2 x = \frac{1 + \cos 2x}{2}$	10	$1 \pm sen = 1 \pm cos\left(\frac{\pi}{2} - x\right)$	
	$\frac{\cos x}{2}$		ν, ,	
	1		$\cot x = \frac{\cos x}{\cos x}$	
	$\sec x = \frac{1}{\cos x}$		$\cot g x = \frac{1}{\sin x}$	
	1 $ ext{tog} x = ext{sen } x$			
$\csc x = \frac{1}{\sec x}$			$tag x = \frac{1}{\cos x}$	

Regra de Potência		
$x^0 = 1$	$x^{-1} = \frac{1}{x}$	
$x^m * x^n = x^{m+n}$	$x^{-n} = \frac{1}{x^{+n}}$	
$\frac{x^m}{x^n} = x^{m-n}$	$\left(\frac{y}{x}\right)^{-n} = \left(\frac{x}{y}\right)^{+n}$	
$(x^m)^n = x^{m*n}$	$\left(\frac{-y}{x}\right)^{-n} = \left(\frac{-x}{y}\right)^{+n}$	
$\sqrt[n]{x^m} = x^{m/n}$		
$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$		

Fração
Divisão
$\frac{\frac{x}{y}}{\frac{x}{y}} = \frac{x}{y} * \frac{y}{x}$
Multiplicação
$\frac{x}{-} * \frac{x}{-} = \frac{x * x}{-}$
$y \cdot y = y * y$
Adição/Subtração = MMC
$\frac{x}{x} + \frac{x}{x} = \frac{(x * y) \pm (x * y)}{x}$
$\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$
Raiz
$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$

Máximo e mínimos
1-Derivar - f'(x)
2-Calcular - f'(x)=0 - raízes - ponto critico
3-Verificar Crescente e Decrescente f'(x)=0 raízes > e <
4-Maximos e Mínimos - Função Original - f(x) - raízes
E Donto do Infloyão f''/y)-0

