32-bit Floating-Point Multiplier Workflow

Input Breakdown:

- Inputs are 32-bit floating-point numbers: A[31:0] and B[31:0].
- Split the inputs into components:
 - Sign: A[31] and B[31].
 - Exponent: A[30:23] and B[30:23] (8-bit, biased by 127).
 - Mantissa: A[22:0] and B[22:0] (23 bits, add an implied leading 1).

Step 1: Sign Calculation:

Compute the result's sign using XOR: Signresult=A[31]

B[31]\text{Sign}_{\text{result}} = A[31] \oplus B[31]Signresult=A[31]
B[31]

Step 2: Exponent Addition:

- Add the exponents: Exponentsum=A[30:23]+B[30:23]\text{Exponent}_{\text{sum}} = A[30:23] + B[30:23]Exponentsum=A[30:23]+B[30:23]
- Subtract the bias (127) to get the adjusted exponent:
 Exponentresult=Exponentsum-127\text{Exponent}_{\text{result}} =
 \text{Exponent}_{\text{sum}} 127\text{Exponentresult=Exponentsum-127}

Step 3: Mantissa Multiplication:

- Add the implied leading 1 to each mantissa:
 MantissaA={1'b1,A[22:0]}, MantissaB={1'b1,B[22:0]}\text{Mantissa}_A = \{1'b1, A[22:0]\},
 \, \text{Mantissa}_B = \{1'b1, B[22:0]\}MantissaA={1'b1,A[22:0]}, MantissaB={1'b1,B[22:0]}
- Multiply the 24-bit mantissas to get a 48-bit intermediate product:
 Mantissaproduct=MantissaA×MantissaB\text{Mantissa}_{\text{product}} =
 \text{Mantissa}_A \times \text{Mantissa}_BMantissaproduct=MantissaA×MantissaB

Step 4: Normalization:

- If the most significant bit of the product is 0, shift left and decrement the exponent by 1.
- Keep the top 23 bits as the normalized mantissa.

Step 5: Rounding:

• Apply truncation (round toward zero) by taking the top 23 bits of the normalized mantissa.

Step 6: Output Assembly:

Combine the computed components to form the 32-bit result:
 Result={Signresult,Exponentresult,Mantissaresult[22:0]}\text{Result} =
 \{\text{Sign}_{\text{result}}, \text{Exponent}_{\text{result}},
 \text{Mantissa}_{\text{result}}[22:0]\}\Result={Signresult,Exponentresult,Mantissaresult[22:0]}