

Arm® Corstone™ SSE-310 with Cortex®-M85 and Ethos™-U55: Example Subsystem for MPS3

Application Note AN555

Non-Confidential Copyright © 2022 Arm Limited (or its affiliates). All rights reserved. **Issue 1** 107642 (DAI 0555)

Arm® Corstone™ SSE-310 with Cortex®-M85 and Ethos™-U55 : Example Subsystem for MPS3

Application Note AN555

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue	Date	Confidentiality	Change
1	12 Dec 2022	Non-Confidential	First Issue

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third-party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1 9NJ. (LES-PRE-20348)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this document, email **terms@arm.com**.

LICENCE GRANTS

THE END USER LICENCE AGREEMENT FOR THE ARM SYSTEM OR SUBSYSTEM FOR AN ARM FPGA PROTOTYPING BOARD ("THE LICENCE"), LES-PRE-21902 SP-Version: 3.0, DEFINES THE LICENCE GRANTS.

DELIVERABLES

Part A

Hardware Binaries:

Encrypted FPGA bitstream file containing the SSE-310 product and other Arm technology.

Software Binaries:

Motherboard Configuration Controller binary, including Arm® Keil® USB and SD card drivers, and Analog Devices FMC EEPROM reader.

Self-test binary.

Documentation:

Documentation, provided as PDF

Part B

Example Code:

Platform initialisation source code Platform specific libraries and source code Selftest example source code Arm source code portions of the Selftest software project

Pä	ar	t	C

None

Part D

None

Contents

1.	Introduction	8
1.1.	L. Purpose of this application note	
1.2.	Intended audience	8
1.3.	Conventions	8
1.4.	Additional Reading	10
1.5.	Feedback	10
1.6.	Terms and Abbreviations	12
1.7.	Subsystem Version Details	13
1.8.	Encryption key	13
1.9.	Additional required hardware	14
2.	Overview	16
2.1.	System Block Diagram	16
2.2.	SSE-310 Configuration	17
2.3.	SIE-300 components	20
2.4.	SIE-200 components	20
2.5.	XHB-500	20
2.6.	Memory protection	20
2.7.	Memory Map Overview	21
2.8.	Expansion System peripherals	26
2.9.	FPGA Utilization	31
3.	Programmer's model	32
3.1.	Instruction Tightly Coupled Memory (ITCM)	32
3.2.	FPGA SRAM	32
3.3.	Data Tightly Coupled Memory (DTCM)	32
3.4.	QSPI	33
3.5.	DDR4	34
3.6.	SIE-300 MPC	34
3.7.	AHB GPIO	35
3.8.	SPI	35
39	SBCon (1 ² C)	36

3.10.	. UART	38
3.11.	. Colour LCD parallel interface	39
3.12.	. Ethernet	41
3.13.	. USB	41
3.14.	. Real Time Clock	41
3.15.	. Audio I ² S	42
3.16.	. Audio Configuration	43
3.17.	. FPGA system control and I/O	44
3.18.	FPGA Serial Configuration Controller (SCC)	46
3.19.	. DMA	48
4.	Clock architecture	50
4.1.	Source clocks	
4.2.	Clocks generated within the FPGA	
4.3.	SSE-310 Clocks	
5.	Reset architecture	52
5.1.	FPGA Resets	52
6.	FPGA Secure Privilege Control	54
7.	Interrupts	58
7.1.	FPGA interrupt map	58
7.2.	UART interrupts	60
8	Shield Support	61
9.	QSPI Flash	63
10.	Debug Infrastructure	66
10.1.	. DAP-Lite2	66
10.2.	. Debug timestamp generator	66
10.3.	. TPIU-M	66
11.	ZIP Bundle Description	67
11.1.	. Overall Structure	67
11.2.	. Documentation	67
11.3.	. MPS3 Board Revision and Support	68

11.4.	Bundle Directory Tree/Structure	69
12.	Software and Debug	70
12.1.	Overview	70
12.2.	O Company of the comp	71
12.3.	Debug Support	73
12.4.	Establishing a Debug Session	
13.	Using AN555 on the MPS3 Board	81
13.1.	Pre-Requisites	
13.2.	Loading the Boardfiles	82
13.3.	UART Serial ports	83
13.4.	UART serial port settings	83
13.5.	MPS3 USB Serial Port Drivers	83
13.6.	MCC Memory mapping	82
13.7.	MCC Debug UART – Serial Port 0	85
13.8.	Memory Preload	89
14.	Other Software Applications	91

1. Introduction

1.1. Purpose of this application note

This document describes the features and functionality of AN555, which is an example FPGA implementation. AN555 is based on the Arm® Corstone™ SSE-310 Example Subsystem, which is extended to support FPGA and hardware peripherals.

1.2. Intended audience

This Application Note is written for experienced hardware, System-on-Chip (SoC) and software engineers who might or might not have experience with Arm products.

1.3. Conventions

The following subsections describe conventions used in Arm documents.

1.3.1. Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

1.3.2. Typographical conventions

Convention	Use	
italic	Introduces citations.	
bold	Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.	
monospace	Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.	
monospace bold	Denotes language keywords when used outside example code.	

Convention	Use
monospace underline	Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.
<and></and>	Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0, <rd>, <crn>, <crm>, <opcode_2></opcode_2></crm></crn></rd>
SMALL CAPITALS	Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.
Caution	This represents a recommendation which, if not followed, might lead to system failure or damage.
Warning	This represents a requirement for the system that, if not followed, might result in system failure or damage.
Danger	This represents a requirement for the system that, if not followed, will result in system failure or damage.
Note	This represents an important piece of information that needs your attention.
- Tip	This represents a useful tip that might make it easier, better or faster to perform a task.
Remember	This is a reminder of something important that relates to the information you are reading.

1.4. Additional Reading

This document contains information that is specific to this product. See the following documents for other relevant information:

Table 1-1: Arm publications

Document name	Document ID	Licensee only
Arm® MPS3 FPGA Prototyping Board Technical Reference Manual	100765	No
Arm® MPS3 FPGA Prototyping Board Getting Started Guide	107789	No
Arm® Corstone™ SSE-310 Example Subsystem Technical Reference Manual	102778	No
Arm® Ethos™-U55 NPU Technical Reference Manual	102420	No
Arm® CoreLink™ SIE-200 System IP for Embedded Technical Reference Manual	107080	No
Arm® CoreLink™ SIE-300 AXI5 System IP for Embedded Technical Reference Manual	101526	No
Arm® Cortex®-M System Design Kit Technical Reference Manual	DDI 0479	No
Arm® CoreLink™XHB-500 Bridge Technical Reference Manual	101375	No
Arm® Debug Interface Architecture Specification ADIv6.0.	IHI 0074	No
PrimeCell® Single Master DMA Controller (PL081) Technical Reference Manual	DDI 0218E	No

1.5. Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the product, create a ticket on **https://support.developer.arm.com**.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-feedback-survey.

1.5.1. Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

1.5.2. Feedback on content

If you have comments on content, send an email to **errata@arm.com** and give:

- The title Arm® Corstone™ SSE-310 with Cortex®-M85 and Ethos™-U55: Example Subsystem for MPS3 Application Note AN555.
- The number DAI 0555 Issue 1
- If viewing a PDF version of a document, the page number(s) to which your comments refer.
- If viewing online, the topic names to which your comments apply.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of the represented document when used with any other PDF reader.

1.5.3. Other information

Arm also welcomes general suggestions for additions and improvements

- Arm Documentation, https://developer.arm.com/documentation/
- Arm Technical Support Knowledge Articles, https://www.arm.com/support/technical-support
- Arm Support, https://www.arm.com/support
- Arm Glossary, https://developer.arm.com/documentation/aeg0014/g
- MCBQVGA-TS-Display-v12 Keil MCBSTM32F200 display board schematic https://www.keil.com/mcbstm32c/mcbstm32c-display-board-schematics.pdf

1.6. Terms and Abbreviations

AHB Advanced High-performance Bus

APB Advanced Peripheral Bus

AXI Advanced Extensible Interface

BRAM FPGA Block RAM

CMSDK Cortex-M System Design Kit
CPU Central Processing Unit

FPGA Field Programmable Gate Array

JTAG Joint Test Action Group

KB Kilobyte

LAR Long Address Range (preloading mechanism)

LUTs Lookup tables MB Megabyte

MCC Motherboard Configuration Controller

MPC Memory Protection Controller

MPS3 Microcontroller Prototyping System 3

MSC Manager Security Controller

NIC Network Interconnect

NVM Non-Volatile Memory

Pmod™ Peripheral module

PPC Peripheral Protection Controller

QSPI Quad SPI

RAM Random Access Memory

RAZ Read as Zero

ROM Read Only Memory
RTC Real Time Clock

SCC Serial Configuration Controller

SoC System-on-Chip

SPI Serial Peripheral Interface

SWD Serial Wire Debug

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial BusNVM Non-volatile Memory

WI Write Ignored W0 Write Zero

1.7. Subsystem Version Details

Table 1-2: IP Versions

Version	Descriptions
r0p0¹	Arm® Corstone™ SSE-310 Example Subsystem¹
r0p2 ²	Arm® Cortex®-M85 Processor ²
r2p0	Arm® Ethos™-U55 NPU
r1p1	Arm® Cortex®-M System Design Kit
r3p2	Arm® CoreLink™ SIE-200
r1p2	Arm® CoreLink™ SIE-300
rOp5	Arm® CoreLink™ PCK-600
rOp1	Arm® CoreLink™XHB-500
r2p1	Arm® CoreSight™ DAP-Lite2
rOp1	Arm® CoreSight™ TPIU-M
r1p2	Arm® CoreLink™ NIC-400 Network Interconnect

- 1. The Arm® Corstone™ SSE-310 Example Subsystem NIC400 configuration for the Main Interconnect has been changed from the default configuration which would be found in the released Example Subsystem.
- 2. The Arm® Cortex®-M85 Processor has been patched, this relates to an Errata. A Link to the Errata can be found in the Release Notes.txt.

1.8. Encryption key

Arm supplies the MPS3 prototyping board with a decryption key programmed into the FPGA. This key is needed to enable loading of prebuilt encrypted images.

The FPGA programming file that is supplied as part of the bundle is encrypted.

A battery supplies power to the key storage area of the FPGA. Any keys stored in the FPGA might be lost when battery power is lost. If this happens you must return the board to Arm for reprogramming of the key.

1.9. Additional required hardware

One or two 32 MB QSPI flash Pmod module are required to support the External QSPI memory (see QSPI) in this implementation. If this is not fitted, the an555_v2.txt file on the MPS3 SD card needs to be checked and potentially modified.

The following lines need to be set to FALSE or TRUE depending on the number of QSPI modules that are fitted to the Board.

FPGA_QSPI_PMOD0: TRUE	;QSPI Pmod™ board inserted on shield0 / pmod0
FPGA QSPI PMOD1: TRUE	;QSPI Pmod™ board inserted on shield0 / pmod1

These lines are used by the MCC on the MPS3 Board to enable or disable the QSPI controllers inside the design.

The table below shows the Pmod module required for this implementation:

Table 1-3: Additional Hardware

Description	Manufacturer	PN	Quantity
Pmod 32MB SF3 QSPI Flash Board	Digilent	410-340	2

The AN555 implementation supports 64MB External QSPI Flash memory, this is provided by 2 32MB Pmod QSPI Flash memory modules.

The Pmod module is not distributed as part of the orderable MPS3 board product.

1.9.1. Installing the Pmod's

If Pmod's are being used, they need to be installed on the Shield O headers as shown in the figure below:

Figure 1-1: MPS3 Pmod location and installed QSPI Pmod

Overview

This document outlines the implementation of Corstone SSE-310 Subsystem in FPGA for use on the MPS3 development board. It details the implementation and the configuration options that are used in the design.

2.1. System Block Diagram

The following high-level block diagram shows the full MPS3 FPGA system:

Figure 2-1: MPS3 FPGA System overview

Details of the QSPI controllers are provided in QSPI Flash

References to the FPGA subsystem is used for all components outside the Corstone SSE-310

2.2. SSE-310 Configuration

The following section details the configuration values of the SSE-310 that are used in the FPGA Subsystem. Please see Arm® Corstone™ SSE-310 Example Subsystem Technical Reference Manual for the details of each configuration.

Any values that are in **bold** in the table below have been changed from the default values defined in the SSE-310 example subsystem, due to FPGA system implementation requirements.

Table 2-1: SSE-310 Configuration

Configuration Define	SSE-310 Default Value
NUMCPU	0
PILEVEL	1
CPUOTYPE	4
NUMNPU	1
NPUOTYPE	1
DEBUGLEVEL	2
HASCSS	0
NUMVMBANK	2
HASCRYTO	0
NUMDMA	0
DMATYPE	0
SECEXT	1
BUSPROT_PRESENT	0
ECC_PRESENT	0
INITTCMEN	0 0b11
	1
INITPAHBEN	
LOCKDCAIC	0
CFGBIGEND	0
CFGMEMALIAS	0b10000
CPUO_RAR	1
CPU0_LOCKSTEP	0
CPU0_FLOPPARITY	0
CPU0_PACBTI	1
CPU0_INITNSVTOR_ADDR_INIT	0x0000000
CPU0_IRQLVL	3
CPU0EXPNUMIRQ	100

Configuration Define	SSE-310 Default Value
CPU0EXPIRQDIS	100'b0
CPU0_DBGLVL	2
CPU0_ITM_PRESENT	1
CPU0_ETM_PRESENT	1
CPU0_FPU_PRESENT	1
CPU0_MVE_CONFIG	2
CPU0_MPU_S	8
CPU0_MPU_NS	8
CPU0_SAUDISABLE	0
CPU0_NUM_SAU_CONFIG	8
CPU0_IDCACHEID	0
CPU0_INSTR_CACHE_SIZE	Ob01111
CPU0_DATA_CACHE_SIZE	Ob01111
CPU0_CFGITCMSZ	0b0110
CPU0_CFGDTCMSZ	0b0110
CPU0_ITGUBLKSZ	6
CPU0_DTGUBLKSZ	6
HASCPU0CPIF	1
CPU0MCUROMADDR	0xE00FE
CPU0MCUROMVALID	1
CPU0_PMC_PRESENT	0
HASCPUOIWIC	0
CPUOCPUIDRST	0
CPUO_CTI_PRESENT	1
CPU0_INITECCEN	0
CPU0_CFGPAHBZ	0b010
CPU0_LOCKPAHB	1
NPU0_NUM_MACS	256
NPUO_CUSTOM_DMA_PRESENT	0
NPUOPORSLRST	0
NPU0PORPLRST	1
NUM_AXI_SUBORDINATES_EXP_MI	2
NUM_AHB_SUBORDINATES_EXP_PIHL	1
NUM_AHB_SUBORDINATES_EXP_PILL	1
S_MID_WIDTH	5
TCM_ID_WIDTH	5

Configuration Define	SSE-310 Default Value
XS_ID_WIDTH	6
S_HMANAGER_WIDTH	5
VMADDRWIDTH	21
VMMPCBLKSIZE	10
PERIPHERAL_INTERCONNECT_ARBITRATION_SCHEME	"round"
XOM_USER_SIGNAL_PRESENT	0
NSMSCEXPRST	0xFFE0
MPCEXPDIS	0xFFF8
MSCEXPDIS	0xFFE0
BRGEXPDIS	0x5A5A
PERIPHPPCEXP3DIS	0x5A5A
PERIPHPPCEXP2DIS	0xF000
PERIPHPPCEXP1DIS	0xFE00
PERIPHPPCEXPODIS	0x1FF8
MAINPPCEXP3DIS	0x5A5A
MAINPPCEXP2DIS	0x5A5A
MAINPPCEXP1DIS	0xFFF0
MAINPPCEXPODIS	0x1E00
UARCH_CONFIG	2
PDCMQCHWIDTH	4
LOGIC_RETENTION_PRESENT	0
COLDRESET_MODE	0
SOCVAR	0x0
SOCREV	0x0
SOCPRTID	0x7E1
SOCIMPLID	0x43B
IMPLVAR	0x0
IMPLREV	0x0
IMPLPRTID	0x74E
IMPLID	0x43B
EXPLOGIC_PRESENT	1
PERFORM_CONFIGCHECK	1
socrates_config	u)
CDC_SIMMODEL	1
CFG_FILE_NAME	sse310_user_cfg1.yaml

2.3. SIE-300 components

The AN555 FPGA implementation uses the following SIE-300 components:

• AXI5 Memory Protection Controller (MPC).

2.4. SIE-200 components

The AN555 FPGA implementation uses the following SIE-200 components:

- Arm® TrustZone® AHB5 Peripheral Protection Controller (PPC)
- Arm® TrustZone® AHB5 Manager Security Controller (MSC)
- AHB5 bus matrix
- AHB5 to AHB5 synchronous bridge
- AHB5 to APB synchronous bridge
- Arm® TrustZone® APB4 Peripheral Protection Controller (PPC)
- AHB5 default subordinate

2.5. XHB-500

The AN555 FPGA implementation uses one XHB-500, which is configured in AHB to AXI mode.

2.6. Memory protection

The SIE-300 MPC, and SIE-200 PPC components can affect memory and I/O security management and must be configured as required for your application.

For more information, see:

- Arm® CoreLink™ SIE-200 System IP for Embedded Technical Reference Manual
- Arm® CoreLink™ SIE-300 AXI5 System IP for Embedded Technical Reference Manual

2.7. Memory Map Overview

The following figure shows the AN555 memory map and how it relates to the Armv8-M reference memory map. For information on the SSE-310 Subsystem peripherals, see the Arm® CorstoneTM SSE-310 Example Subsystem Technical Reference Manual.

Figure 2-2: Memory map

KEY
Secure Region (S)
Non-Secure Region (NS)

Figure 2-3: Low Latency Peripheral Memory map

	0x5800_0000	
	0x5700_3000	Reserved
	0x5700_2000	DDR4 Memory Protection Controller (MPC)
	0x5700_2000 0x5700_1000	QSPI Memory Protection Controller (MPC)
	0x5700_1000 0x5700_0000	SRAM Memory Protection Controller (MPC)
0x4180_3000	0x5180_3000	Reserved
0x4180_3000 0x4180_2000	0x5180_3000 0x5180_2000	PMOD1 QSPI Read/Write Controller
-	-	PMOD0 QSPI Read/Write Controller
0x4180_1000	0x5180_1000	Onboard QSPI Read/Write Controller
0x4180_0000	0x5180_0000	Reserved
0x4170_3000	0x5170_3000	Timing Adapter APB 2 – DDR4
0x4170_2000	0x5170_2000	Timing Adapter APB 1 - QSPI
0x4170_1000 0x4170_0000	0x5170_1000 0x5170_0000	Timing Adapter APB 0 – FPGA SRAM
		Reserved
0x4160_0000	0x5160_0000	USB
0x4150_0000	0x5150_0000	Ethernet
0x4140_0000	0x5140_0000	Reserved
0x4120_4000	0x5120_4000	DMA 3
0x4120_3000	0x5120_3000	DMA 2
0x4120_2000	0x5120_2000	DMA 1
0x4120_1000	0x5120_1000	DMA 0
0x4120_0000	0x5120_0000	Reserved
0x4110_4000	0x5110_4000	GPIO 3
0x4110_3000	0x5110_3000	GPIO 2
0x4110_2000	0x5110_2000	GPIO 1
0x4110_1000	0x5110_1000	GPIO 0
0x4110_0000	0x5110_0000	Reserved
0x4010_0000	0x5010_0000	SSE-310 Subsystem Peripherals
0x4000_0000	0x5000_0000	1
n-Secure Low Latency Peripheral Region	Secure Low Latency Peripheral Region	

Non-Peripheral Region Peripheral Region

Figure 2-4: High Latency Peripheral Memory map

0x5000_0000	0x6000_0000
0x4930_C000	0x5930_C000
0x4930_B000	0x5930_B000
0x4930_A000	0x5930_A000
0x4930_9000	0x5930_9000
0x4930_8000	0x5930_8000
0x4930_7000	0x5930_7000
0x4930_6000	0x5930_6000
0x4930_5000	0x5930_5000
0x4930_4000	0x5930_4000
0x4930_3000	0x5930_3000
0x4930_2000	0x5930_2000
0x4930_1000	0x5930_1000
0x4930_0000	0x5930_0000
0x4920_9000	0x5920_9000
0x4920_8000	0x5920_8000
0x4920_7000	0x5920_7000
0x4920_6000	0x5920_6000
0x4920_5000	0x5920_5000
0x4920_4000	0x5920_4000
0x4920_3000	0x5920_3000
0x4920_2000	0x5920_2000
0x4920_1000	0x5920_1000
0x4920_0000	0x5920_0000
0x4810_0000	0x5810_0000
0x4800_0000	0x5800_0000

Non-Secure High Latency Peripheral Region Secure High Latency Peripheral Region

2.7.1. SSE-310 FPGA memory map

The memory map implementation aligns with SSE-310 Subsystem host system memory map. The memory map is expanded to show the supported MPS3 peripherals in the Expansion Manager Regions and their mapping. For information on the SSE-310 Subsystem host system memory map, see Arm® Corstone[™] SSE-310 Example Subsystem Expansion Expa

Table 2-2: Memory map overview

ROW	Address		Size	Region	Description	Alias	IDAU Reg	ion Valu	es
ID	From	То		Name		with Row ID	Security	IDAU ID	NSC
1.	0x0000_0000	0x0000_7FFF	32KB	Code	ITCM ³	7			
2.	0x0000_8000	0x00FF_FFFF	15.968MB	Reserved	Reserved				
3.	0x0100_0000	0x011F_FFFF	2MB	Code	FPGA SRAM (2MB) ¹	9	NIC		
4.	0x0120_0000	0x09FF_FFFF	142MB	Reserved	Reserved		NS	0	0
5.	0x0A00_0000	0x0A00_7FFF	32KB	Code	ITCM Access Address	11			
6.	0x0A00_8000	0x0FFF_FFFF	95.968MB	Reserved	Reserved				
7.	0x1000_0000	0x1000_7FFF	32KB	Code	ITCM ³	1			
8.	0x1000_8000	0x10FF_FFFF	15.968MB	Reserved	Reserved				
9.	0x1100_0000	0x111F_FFFF	2MB	Code	FPGA SRAM (2MB) ¹	3	S	1	CODE
10.	0x1120_0000	0x19FF_FFFF	142MB	Reserved	Reserved		3	1	NSC
11.	0x1A00_0000	0x1A00_7FFF	32KB	Code	ITCM Access Address	5			
12.	0x1A00_8000	0x1FFF_FFFF	95.968MB	Reserved	Reserved				
13.	0x2000_0000	0x2000_7FFF	32KB	SRAM	DTCM (4 x banks of 8KB) ³	23	NS	2	0
14.	0x2000_8000	0x20FF_FFFF	15.968MB	Reserved	Reserved				
15.	0x2100_0000	0x213F_FFFF	4MB	SRAM	Internal SRAM Area (SSE-310 implements 2x2MB)	25	NS	2	0
16.	0x2140_0000	0x23FF_FFFF	44MB	Reserved	Reserved				
17.	0x2400_0000	0x2400_7FFF	32KB	SRAM	DTCM Access Address	27	NS	2	0
18.	0x2400_8000	0x27FF_FFFF	63.968MB	Reserved	Reserved				
19.	0x2800_0000	0x287F_FFFF	8MB	SRAM	QSPI (8MB) ¹	29	NS	2	0
20.	0x2880_0000	0x2A7F_FFFF	32MB	SRAM	QSPI PMOD0 (32MB) 14	30	NS	2	0
21.	0x2A80_0000	0x2C7F_FFFF	32MB	SRAM	QSPI PMOD1 (32MB) 14	31	NS	2	0
22.	0x2C80_0000	0x2FFF_FFFF	56MB	Reserved	Reserved				
23.	0x3000_0000	0x3000_7FFF	32KB	SRAM	DTCM (4 x banks of 8KB) ³	13	S	3	RAM NSC
24.	0x3000_8000	0x30FF_FFFF	15.968MB	Reserved	Reserved				
25.	0x3100_0000	0x313F_FFFF	4MB	SRAM	Internal SRAM Area (SSE-310 implements 2x2MB)	15	S	3	RAM NSC
26.	0x3140_0000	0x33FF_FFFF	44MB	Reserved	Reserved				

ROW Address ID From	Address		Size	Region Description		Alias	IDAU Region Values		
	From	То		Name		with Row ID	Security	IDAU ID	NSC
27.	0x3400_0000	0x3400_7FFF	32KB	SRAM	DTCM Access Address	17	S	3	RAM NSC
28.	0x3400_8000	0x37FF_FFFF	63.968MB	Reserved	Reserved				
29.	0x3800_0000	0x387F_FFFF	8MB	SRAM	QSPI (8MB) ¹	19	S	3	RAM NSC
30.	0x3880_0000	0x3A7F_FFFF	32MB	SRAM	QSPI PMOD0 (32MB) ^{1,4}	20	S	3	RAM NSC
31.	0x3A80_000	0x3C7F_FFFF	32MB	SRAM	QSPI PMOD1 (32MB) ^{1,4}	21	S	3	RAM NSC
32.	0x3C80_0000	0x3FFF_FFFF	56MB	Reserved	Reserved				
33.	0x4000_0000	0x47FF_FFFF	128MB	Peripheral	Non-Secure Low Latency Peripheral Region	35	NS	4	0
34.	0x4800_0000	0x4FFF_FFFF	128MB	Peripheral	Non-Secure High Latency Peripheral Region	36	NS	4	0
35.	0x5000_0000	0x57FF_FFFF	128MB	Peripheral	Secure Low Latency Peripheral Region	33	S	5	0
36.	0x5800_0000	0x5FFF_FFFF	128MB	Peripheral	Secure High Latency Peripheral Region	34	S	5	О
37.	0x6000_0000	0x6FFF_FFFF	256MB	External RAM	DDR4 ¹		NS	6	0
38.	0x7000_0000	0x7FFF_FFFF	256MB	External RAM	DDR4 ¹		S	7	0
39.	0x8000_0000	0x8FFF_FFFF	256MB	External RAM	DDR4 ¹		NS	8	0
40.	0x9000_0000	0x9FFF_FFFF	256MB	External RAM	DDR4 ¹		S	9	0
41.	0xA000_0000	0xAFFF_FFFF	256MB	External device	DDR4 ¹		NS	А	0
42.	0xB000_0000	OxBFFF_FFFF	256MB	External device	DDR4 ¹		S	В	0
43.	0xC000_0000	0xCFFF_FFFF	256MB	External device	DDR4 ¹		NS	С	0
44.	0xD000_0000	0xDFFF_FFFF	256MB	External device	DDR4 ¹		S	D	0
45.	0xE000_0000	0xE00F_FFFF	1MB	EPPB	External Private Peripheral Bus		Exempt		
46.	0xE010_0000	0xE01F_FFFF	1MB	Vendor_SYS	Reserved		NS	Е	0
47.	0xE020_0000	0xEFFF_FFFF	254MB	Vendor_SYS	Maps to HMSTEXPPILL Expansion Interface ²		NS	Е	0
48.	0xF000_0000	0xF01F_FFFF	2MB	Vendor_SYS	Reserved		S	F	0

ROW	Address		Size	Region	Description		IDAU Regi	on Valu	es
ID	From	То		Name		with Row ID	Security	IDAU ID	NSC
49.	0xF020_0000	0xFFFF_FFFF	254MB	Vendor_SYS	Maps to HMSTEXPPILL Expansion Interface ²		S	F	0

- ¹ Security Access is controlled by MPC.
- ² Accesses to these addresses results in an AHB5 error response.
- ³ For security settings, controls and features. See the Arm® Corstone™ SSE-310 Example Subsystem Technical Reference Manual.
- ⁴ Memory map region changes based on the presence or absence of QSPI memory blocks. See **QSPI** Flash for further details.

2.8. Expansion System peripherals

All FPGA peripherals are mapped to four areas of the memory map. The addresses and interfaces to access the four regions are:

Non-Secure Low Latency region:

- 0x4000_0000 0x47FF_FFFF
- Manager Peripheral Expansion Low Latency Interface (HMSTEXPPILL)

Non-Secure High Latency region:

- 0x4800 0000 0x4FFF FFFF
- Manager Peripheral Expansion High Latency Interface (HMSTEXPPIHL)

Secure Low Latency region:

- 0x5000 0000 0x57FF FFFF
- Manager Peripheral Expansion Low Latency Interface (HMSTEXPPILL)

Secure High Latency region:

- 0x5800 0000 0x5FFF FFFF
- Manager Peripheral Expansion High Latency Interface (HMSTEXPPIHL)

To support TrustZone for Armv8-M and allow software to map these peripherals to Secure or Non-Secure address space, all peripherals are mapped twice and either an APB PPC or an AHB PPC gates the access to these peripherals.

2.8.1. Manager Peripheral Expansion Low Latency Interface Memory Map (HMSTEXPPILL)

The following table shows the FPGA peripheral mapping to the Non-Secure and Secure Low Latency region.

Reserved regions respond with RAZ/WI when accessed.

Table 2-3: MSTEXPPILL Non-Secure Peripheral Map

ROW	Address		C:	5	Alias with	
ID	From	То	Size	Description	ROW ID	Port
1.	0x4000_0000	0x400F_FFFF		Subsystem peripherals	24.	
2.	0x4010_0000	0x410F_FFFF		Reserved	25.	
3.	0x4110_0000	0x4110_0FFF	4KB	GPIO 0	26.	
4.	0x4110_1000	0x4110_1FFF	4KB	GPIO 1	27.	ALID
5.	0x4110_2000	0x4110_2FFF	4KB	GPIO 2	28.	AHB
6.	0x4110_3000	0x4110_3FFF	4KB	GPIO 3	29.	
7.	0x4110_8000	0x411F_FFFF		Reserved	30.	
8.	0x4120_0000	0x4120_0FFF	4KB	DMA 0	31.	
9.	0x4120_1000	0x4120_1FFF	4KB	DMA 1	32.	ALID
10.	0x4120_2000	0x4120_2FFF	4KB	DMA 2	33.	AHB
11.	0x4120_3000	0x4120_3FFF	4KB	DMA 3	34.	
12.	0x4120_4000	0x413F_FFFF		Reserved	35.	
13.	0x4140_0000	0x414F_FFFF	1MB	Ethernet	36.	ALID
14.	0x4150_0000	0x415F_FFFF	1MB	USB	37.	AHB
15.	0x4160_0000	0x416F_FFFF		Reserved	38.	
16.	0x4170_0000	0x4170_0FFF	4KB	Timing Adapter APB 0 – FPGA SRAM	39.	
17.	0x4170_1000	0x4170_1FFF	4KB	Timing Adapter APB 1 - QSPI	40.	APB (Mem)
18.	0x4170_2000	0x4170_2FFF	4KB	Timing Adapter APB 2 – DDR4	41.	((*(E()))
19.	0x4170_4000	0x417F_FFFF		Reserved	42.	
20.	0x4180_0000	0x4180_0FFF	4KB	Onboard QSPI Read/Write Controller	43.	
21.	0x4180_1000	0x4180_1FFF	4KB	PMOD0 QSPI Read/Write Controller	44.	АНВ
22.	0x4180_2000	0x4180_2FFF	4KB	PMOD1 QSPI Read/Write Controller	45.	
23.	0x4180_3000	0x47FF_FFFF		Reserved	46.	

Table 2-4: MSTEXPPILL Secure Peripheral Map

	Addross	Address			Alias	
ROW ID	From	То	Size	Description	with ROW ID	Port
24.	0x5000_0000	0x500F_FFFF		Subsystem peripherals	1.	
25.	0x5010_0000	0x510F_FFFF		Reserved	2.	
26.	0x5110_0000	0x5110_0FFF	4KB	GPIO 0	3.	
27.	0x5110_1000	0x5110_1FFF	4KB	GPIO 1	4.	ALID
28.	0x5110_2000	0x5110_2FFF	4KB	GPIO 2	5.	AHB
29.	0x5110_3000	0x5110_3FFF	4KB	GPIO 3	6.	
30.	0x5110_8000	0x511F_FFFF		Reserved	7.	
31.	0x5120_0000	0x5120_0FFF	4KB	DMA 0	8.	
32.	0x5120_1000	0x5120_1FFF	4KB	DMA 1	9.	4115
33.	0x5120_2000	0x5120_2FFF	4KB	DMA 2	10.	AHB
34.	0x5120_3000	0x5120_3FFF	4KB	DMA 3	11.	
35.	0x5120_4000	0x513F_FFFF		Reserved	12.	
36.	0x5140_0000	0x514F_FFFF	1MB	Ethernet	13.	
37.	0x5150_0000	0x515F_FFFF	1MB	USB	14.	AHB
38.	0x5160_0000	0x516F_FFFF		Reserved	15.	
39.	0x5170_0000	0x5170_0FFF	4KB	Timing Adapter APB 0 – FPGA SRAM	16.	
40.	0x5170_1000	0x5170_1FFF	4KB	Timing Adapter APB 1 - QSPI	17.	APB (Mem)
41.	0x5170_2000	0x5170_2FFF	4KB	Timing Adapter APB 2 – DDR4	18.	(IVIEIII)
42.	0x5170_4000	0x517F_FFFF		Reserved	19.	
43.	0x5180_0000	0x5180_0FFF	4KB	Onboard QSPI Read/Write Controller	20.	
44.	0x5180_1000	0x5180_1FFF	4KB	PMOD0 QSPI Read/Write Controller	21.	AHB
45.	0x5180_2000	0x5180_2FFF	4KB	PMOD1 QSPI Read/Write Controller	22.	
46.	0x5180_3000	0x56FF_FFFF		Reserved	23.	
47.	0x5700_0000	0x5700_0FFF	4KB	SRAM Memory Protection Controller (MPC)		
48.	0x5700_1000	0x5700_1FFF	4KB	QSPI Memory Protection Controller (MPC)		APB (Mom)
49.	0x5700_2000	0x5700_2FFF	4KB	DDR4 Memory Protection Controller (MPC)		(Mem)
50.	0x5700_3000	0x57FF_FFFF		Reserved	23.	

2.8.2. Manager Peripheral Expansion High Latency Interface Memory Map (HMSTEXPPIHL)

The following table shows the FPGA peripheral mapping to the Non-Secure and Secure High Latency region.

Reserved regions respond with RAZ/WI when accessed.

Table 2-5: MSTEXPPIHL Non-Secure Peripheral Map

ROW	Address		Cina	Description	Alias with	Port
ID	From	То	Size	Description	ROW ID	Port
1.	0x4800_0000	0x480F_FFFF		Subsystem peripherals	26.	
2.	0x4810_0000	0x491F_FFFF		Reserved	27.	
3.	0x4920_0000	0x4920_0FFF	4KB	FPGA - SBCon I2C (Touch)	28.	
4.	0x4920_1000	0x4920_1FFF	4KB	FPGA - SBCon I2C (Audio Conf)	29.]
5.	0x4920_2000	0x4920_2FFF	4KB	FPGA - PL022 (SPI ADC)	30.	
6.	0x4920_3000	0x4920_3FFF	4KB	FPGA - PL022 (SPI Shield0)	31.	
7.	0x4920_4000	0x4920_4FFF	4KB	FPGA - PL022 (SPI Shield1)	32.	APB0
8.	0x4920_5000	0x4920_5FFF	4KB	SBCon (I2C - Shield0)	33.	
9.	0x4920_6000	0x4920_6FFF	4KB	SBCon (I2C - Shield1)	34.	
10.	0x4920_7000	0x4920_7FFF		Reserved	35.	
11.	0x4920_8000	0x4920_8FFF	4KB	FPGA - SBCon I2C (DDR4 EEPROM)	36.	
12.	0x4920_9000	0x492F_FFFF		Reserved	37.	
13.	0x4930_0000	0x4930_0FFF	4KB	FPGA - SCC registers	38.	
14.	0x4930_1000	0x4930_1FFF	4KB	FPGA - I2S (Audio)	39.	
15.	0x4930_2000	0x4930_2FFF	4KB	FPGA - IO (System Ctrl + I/O)	40.	
16.	0x4930_3000	0x4930_3FFF	4KB	UARTO-FPGA_UARTO	41.	
17.	0x4930_4000	0x4930_4FFF	4KB	UART1-FPGA_UART1	42.	
18.	0x4930_5000	0x4930_5FFF	4KB	UART2-FPGA_UART2	43.	APB1
19.	0x4930_6000	0x4930_6FFF	4KB	UART3 - UART Shield 0	44.	APBI
20.	0x4930_7000	0x4930_7FFF	4KB	UART4 - UART Shield 1	45.	
21.	0x4930_8000	0x4930_8FFF	4KB	UART5-FPGA_UART3	46.	
22.	0x4930_9000	0x4930_9FFF		Reserved	47.	
23.	0x4930_A000	0x4930_AFFF	4KB	CLCD Configuration register	48.]
24.	0x4930_B000	0x4930_BFFF	4KB	RTC	49.]
25.	0x4930_C000	0x4FFF_FFFF		Reserved	50.	

Table 2-6: MSTEXPPIHL Secure Peripheral Map

ROW	Address		Size	Description	Alias with	Port
ID	From	То	Size	Description	ROW ID	Port
26.	0x5800_0000	0x5810_1FFF		Subsystem peripherals	1.	
27.	0x5810_2000	0x591F_FFFF		Reserved	2.	
28.	0x5920_0000	0x5920_0FFF	4KB	FPGA - SBCon I2C (Touch)	3.	
29.	0x5920_1000	0x5920_1FFF	4KB	FPGA - SBCon I2C (Audio Conf)	4.	
30.	0x5920_2000	0x5920_2FFF	4KB	FPGA - PL022 (SPI ADC)	5.	
31.	0x5920_3000	0x5920_3FFF	4KB	FPGA - PL022 (SPI Shield0)	6.	
32.	0x5920_4000	0x5920_4FFF	4KB	FPGA - PL022 (SPI Shield1)	7.	APB0
33.	0x5920_5000	0x5920_5FFF	4KB	SBCon (I2C - Shield0)	8.	
34.	0x5920_6000	0x5920_6FFF	4KB	SBCon (I2C - Shield1)	9.	
35.	0x5920_7000	0x5920_7FFF		Reserved	10.	
36.	0x5920_8000	0x5920_8FFF	4KB	FPGA - SBCon I2C (DDR4 EEPROM)	11.	
37.	0x5920_9000	0x592F_FFFF		Reserved	12.	
38.	0x5930_0000	0x5930_0FFF	4KB	FPGA - SCC registers	13.	
39.	0x5930_1000	0x5930_1FFF	4KB	FPGA - I2S (Audio)	14.	
40.	0x5930_2000	0x5930_2FFF	4KB	FPGA - IO (System Ctrl + I/O)	15.	
41.	0x5930_3000	0x5930_3FFF	4KB	UARTO-FPGA_UARTO	16.	
42.	0x5930_4000	0x5930_4FFF	4KB	UART1-FPGA_UART1	17.	
43.	0x5930_5000	0x5930_5FFF	4KB	UART2 - FPGA_UART2	18.	APB1
44.	0x5930_6000	0x5930_6FFF	4KB	UART3 - UART Shield 0	19.	APBI
45.	0x5930_7000	0x5930_7FFF	4KB	UART4 - UART Shield 1	20.	
46.	0x5930_8000	0x5930_8FFF	4KB	UART5 - FPGA_UART3	21.	1
47.	0x5930_9000	0x5930_9FFF		Reserved	22.	
48.	0x5930_A000	0x5930_AFFF	4KB	CLCD Configuration register	23.	
49.	0x5930_B000	0x5930_BFFF	4KB	RTC	24.	
50.	0x5930_C000	0x5FFF_FFF		Reserved	25.	

2.9. FPGA Utilization

The AN555 FPGA example image is designed for the MPS3 board, which uses a Xilinx Kintex Ultrascale XCKU115 FPGA. The FPGA features up to 8MB BRAM (2160 Block RAM tiles) and up to 663,360 LUTs. The FPGA full part number is XCKU115-FLVB1760-1-C.

The following table shows the numbers of LUTs and BRAMs available in the FPGA, and the numbers used by the AN555 FPGA image.

Table 2-7: AN555 FPGA total utilization

Site Type	FPGA total	Used	Utilization %
LUTs	663,360	401,633	60.55%
Block RAM Tile	2160	1624	75.19%

These numbers relate to the full AN555 FPGA example image. The values cannot be used to infer IP size, or the relative sizes of different IP blocks, because the implementation and system design can significantly differ depending on the target technology.

3. Programmer's model

This programmer's model is supplemental to the CMSDK, SIE-200 and SIE-300 documentation which describes many of the included components in more detail. The connectivity of the system is shown in the **System Block Diagram**.

3.1. Instruction Tightly Coupled Memory (ITCM)

The ITCM is implemented with 32KB of FPGA SRAM connected to the SSE-310 TCM interconnect.

The Cortex-M85 processor inside the Subsystem accesses the ITCM with the following addresses. The base memory addresses are:

- Non-Secure Address Range: 0x0000_0000 - 0x0000_7FFF

- Secure Address Range: 0x1000 0000 - 0x1000 7FFF

Other Managers in the system access the ITCM with the following addresses. The base memory addresses are:

- Non-Secure Address Range: 0x0A00_0000 - 0x0A00_7FFF

- Secure Address Range: 0x1A00 0000 - 0x1A00 7FFF

3.2. FPGA SRAM

The code memory is implemented with 2MB of internal FPGA SRAM.

The base memory addresses are:

- Non-Secure Address Range: 0x0100_0000 - 0x011F_FFFF

- Secure Address Range: 0x1100_0000 - 0x111F_FFFF

3.3. Data Tightly Coupled Memory (DTCM)

The DTCM is implemented as 4 x 8KB of internal FPGA SRAM connected to the SSE-310 TCM interconnect.

The Cortex-M85 processor inside the Subsystem accesses the DTCM with the following addresses. The base memory addresses are:

- Non-Secure Address Range: 0x2000 0000 - 0x2000 7FFF

- Secure Address Range: 0x3000_0000 - 0x3000_7FFF

Other Managers in the system access the DTCM with the following addresses. The base memory addresses are:

Non-Secure Address Range: 0x2400_0000 - 0x2400_7FFF

- Secure Address Range: 0x3400_0000 - 0x3400_7FFF

3.4. **QSPI**

The AN555 FPGA implementation can provide access to a maximum of 72MB external QSPI Flash memory. This is divided into a single onboard Flash memory providing 8MB, and 2 optional blocks of QSPI Flash memory (PMOD0 and PMOD1) providing 32MB each. For further information see **QSPI Flash**.

Onboard QSPI can be accessed through a read-only interface directly. It can also be accessed indirectly through a read/write interface with the use of a software driver.

The base memory addresses for the QSPI Read only interface are:

Non-Secure Address Range: 0x2800_0000 - 0x287F_FFFF
 Secure Address Range: 0x3800_0000 - 0x387F_FFFF

The base memory addresses for the QSPI Read/Write interface are:

- Non-Secure Address Range: 0x4180_0000 - 0x4180_0FFF

- Secure Address Range: 0x5180 0000 - 0x5180 0FFF

PMOD0 memory is implemented using an external Pmod module and can be accessed through a read-only interface directly. It can also be accessed indirectly through a read/write interface with the use of a software driver.

The base memory addresses for the QSPI Read only interface are:

- Non-Secure Address Range: 0x2880 0000 - 0x2A7F FFFF

- Secure Address Range: 0x3880_0000 - 0x3A7F_FFFF

The base memory addresses for the QSPI Read/Write interface are:

- Non-Secure Address Range: 0x4180 1000 - 0x4180 1FFF

- Secure Address Range: 0x5180 1000 - 0x5180 1FFF

PMOD1 memory is implemented using an external Pmod module and can be accessed through a read-only interface directly. It can also be accessed indirectly through a read/write interface with the use of a software driver.

The base memory addresses for the QSPI Read only interface are:

- Non-Secure Address Range: 0x2A80 0000 - 0x2C7F FFFF

- Secure Address Range: 0x3A80_0000 - 0x3C7F_FFFF

The base memory addresses for the QSPI Read/Write interface are:

Non-Secure Address Range: 0x4180_2000 - 0x4180_2FFF
 Secure Address Range: 0x5180_2000 - 0x5180_2FFF

3.5. DDR4

The AN555 FPGA implementation provides access to 2GB of external DDR4 memory through the DDR4 controller. This is split into 8 x 256MB regions which are mapped as interleaved Non-Secure and Secure Regions.

The base addresses for the Non-Secure Address regions are:

-	Non-Secure Address Range 1	0x6000_0000 - 0x6FFF_FFF
-	Non-Secure Address Range 2	0x8000_0000 - 0x8FFF_FFFF
-	Non-Secure Address Range 3	0xA000_0000 - 0xAFFF_FFFF
-	Non-Secure Address Range 4	0xC000_0000 - 0xCFFF_FFFF

The base addresses for the Secure Address regions are:

-	Secure Address Range 1	0x7000_0000 - 0x7FFF_FFF
-	Secure Address Range 2	0x9000_0000 - 0x9FFF_FFFF
-	Secure Address Range 3	0xB000_0000 - 0xBFFF_FFFF
-	Secure Address Range 4	0xD000_0000 - 0xDFFF_FFF

3.6. SIE-300 MPC

There are three MPCs implemented in the AN555 FPGA model and these are configured with the following block sizes:

- SRAM MPC, 16KB block size.
- QSPI MPC, 256KB block size.
- DDR4 MPC, 1MB block size.

The Configuration interfaces of these modules are mapped to secure address ranges and can be accessed at the following addresses:

-	SRAM MPC address range	0x5700_0000 - 0x5700_0FFF
-	QSPI MPC address range	0x5700_1000 - 0x5700_1FFF
-	DDR4 MPC address range	0x5700_2000 - 0x5700_2FFF

3.7. AHB GPIO

The AN555 FPGA implementation uses four CMSDK AHB GPIO blocks, each providing 16 bits of I/O. The four modules are connected to the two Arduino compatible headers Shields 0 and 1 as follows:

Table 3-1: GPIO mapping

Shield	GPIO
SH0_IO [15:0]	GPIO0[15:0]
SH0_IO [17:16]	GPIO2[1:0]
SH1_IO [15:0]	GPIO1[15:0]
SH1_IO [17:16]	GPIO2[3:2]

The GPIO alternative function lines select whether peripherals or GPIOs are available on each pin.

For further information on the pin out on the MPS3 Shield and Pmod headers please refer to section 2.16 Arduino Shield and Pmod interfaces of the Arm® MPS3 FPGA Prototyping Board Technical Reference Manual.

3.8. SPI

The AN555 FPGA model implements three PL022 SPI modules:

- One general purpose SPI module (SPI ADC) communicates with an onboard ADC. The analog pins of the Shield headers connect to the input channels of the ADC. Chip Select is managed by FPGA system control module.
- Two general purpose SPI modules connect to the Shield headers and provide an SPI interface on each header. These are alternative functions on the GPIO ports. See **Shield Support** for mappings. Select is managed by FPGA system control module.

3.9. **SBCon** (I²C)

The AN555 FPGA model implements five SBCon serial modules which are mapped to the high latency peripheral region:

• One SBCon module for use by the Colour LCD touch interface.

The base memory addresses are:

- Non-Secure Address Range 0x4920_0000 - 0x4920_0FFF

- Secure Address Range 0x5920 0000 - 0x5920 0FFF

Two general purpose SBCon modules that connect to Shield 0 and Shield 1 and provide an I²C interface on each header. These are alt-functions on the GPIO ports. See Shield Support for mappings.

The base memory addresses for Shield 0 are:

- Non-Secure Address Range 0x4920 5000 - 0x4920 5FFF

- Secure Address Range 0x5920 5000 - 0x5920 5FFF

The base memory addresses for Shield 1 are:

- Non-Secure Address Range 0x4920 6000 - 0x4920 6FFF

- Secure Address Range 0x5920_6000 - 0x5920_6FFF

One SBCon module, used to read EEPROM from DDR4 SODIMM.

The base memory addresses are:

Non-Secure Address Range
 0x4920 8000 - 0x4920 8FFF

- Secure Address Range 0x5920 8000 - 0x5920 8FFF

 One SBCon is used for the audio configuration controller for details please see Audio Configuration.

The selftest software provided with AN555 includes example code for the colour LCD module control and audio interfaces.

The following table shows the two-wire SBCon registers in address offset order from the base memory address.

Table 3-2: SBCon registers

Offset	Register Name	Туре	Reset	Description
0x000	SB_CONTROL	RAZ/WI	0x0	Bits[31:2]: Reserved
		RW	0b00	Read and set serial control bits: Bit[1] is SDA Bit[0] is SCL
0x004	SB_CONTROLC	RAZ/WI	OxO	Bits[31:2]: Reserved
		WO	0b00	Clear serial control bits: Bit[1] is SDA Bit[0] is SCL

3.10. UART

The AN555 FPGA model implements six CMSDK UART's:

• UARTO-FPGA_UARTO

The base memory addresses are:

-	Non-Secure Address Range	0x4930_3000 - 0x4930_3FFF
-	Secure Address Range	0x5930_3000 - 0x5930_3FFF

• UART 1 - FPGA_UART1

The base memory addresses are:

-	Non-Secure Address Range	0x4930_4000 - 0x4930_4FFF
_	Secure Address Range	0x5930 4000 - 0x5930 4FFF

• UART 2 - FPGA_UART2

The base memory addresses are:

-	Non-Secure Address Range	0x4930_5000 - 0x4930_5FFF
-	Secure Address Range	0x5930 5000 - 0x5930 5FFF

• UART 3 - Shield 0

The base memory addresses are:

-	Non-Secure Address Range	0x4930_6000 - 0x4930_6FFF
-	Secure Address Range	0x5930_6000 - 0x5930_6FFF

• UART 4 - Shield 1

The base memory addresses are:

-	Non-Secure Address Range	0x4930_7000 - 0x4930_7FFF
_	Secure Address Range	0x5930 7000 - 0x5930 8FFF

• UART 5 - FPGA UART3

The base memory addresses are:

-	Non-Secure Address Range	0x4930_8000 - 0x4930_8FFF
-	Secure Address Range	0x5930_8000 - 0x5930_8FFF

UART's 3 and 4 are alternative functions on the GPIO ports. See **Shield Support** for mappings.

All UART's are driven from FPGA generated clock **PERIF_CLK**. For details of the clocks please see **Clocks generated within the FPGA**.

3.11. Colour LCD parallel interface

The colour LCD module has two interfaces:

- Parallel bus for sending image data to the LCD.
- I²C to transfer input data from the touch screen.

The colour LCD module is a custom peripheral that provides an interface to a STMicroelectronics STMPE811QTR Port Expander with Advanced Touch Screen Controller on the Keil MCBSTM32C display board. The schematic is listed in the reference section, see **Additional Reading**. The Keil display board contains an AM240320LG display panel and uses a Himax HX8347-D LCD controller.

The selftest software provided with the application note includes drivers and example code for both interfaces.

The base memory addresses of the colour LCD parallel interface are:

- Non-Secure Address Range 0x4930_A000 - 0x4930_AFFF

- Secure Address Range 0x5930_A000 - 0x5930_AFFF

The following table shows the memory map of the colour LCD registers in address offset order from the base memory address.

Table 3-3: LCD and data registers

Offset	Register Name	Туре	Reset	Description	
0x000	CHAR_COM	RW	0x0	Write command: A write to this address causes a write to the LCD command register. Read busy status: A read from this address causes a read from the LCD busy register.	
0x004	CHAR_DAT	RW	0x0	Write data RAM. A write to this address causes a write to the LCD data register. Read data RAM. A read from this address causes a read from the LCD data register.	
0x008	CHAR_RD	RAZ/WI	0x0	Bits[31:8]: Reserved.	
		RO	OxO	Bits[7:0]: Captured data from an earlier read command. These bits contain the data from the last request read. Valid only when CHAR_RAW[0] is set.	
0x00C	CHAR_RAW	RAZ/WI	0x0	Bits[31:1]: Reserved	
		RW	OxO	Bit[0]: Access complete status. 1 indicates Access Complete and data in CHAR_RD is valid. Write 0 to clear access complete flag.	
0x010	CHAR_MASK	RAZ/WI	OxO	Bits[31:1]: Reserved	
		WO	OxO	Bit[0]: Write interrupt mask. Write 0 to enable Access Complete to generate an interrupt.	

Offset	Register Name	Туре	Reset	Description
0x014	CHAR_STAT	RAZ/WI	0x0	Bits[31:1]: Reserved
		RO	0x0	Bit[0]: is the state of Access Complete ANDed with the CHAR_MASK.
0x04C	CHAR_MISC	RAZ/WI	OxO	Bits[31:7]: Reserved Bits[2]: Reserved
		RW	0b1 0b1 0b1 0b1 0b1	CLCD control lines: Bit[6]: CLCD_BL Bit[5]: CLCD_RD Bit[4]: CLCD_RS Bit[3]: CLCD_RESET Bit[1]: CLCD_WR Bit[0]: CLCD_CS

3.12. Ethernet

The AN555 FPGA design connects to a Microchip LAN9220 device through a static memory interface.

The base memory addresses of the Ethernet static memory interface are:

Non-Secure Address Range
 0x4140 0000 - 0x414F FFFF

- Secure Address Range 0x5140 0000 - 0x514F FFFF

The selftest software includes example code for an internal loopback operation.

3.13. USB

The AN555 FPGA design connects to a Hi-Speed USB controller (ISP1763) device through a static memory interface.

The base memory addresses of the USB static memory interface are:

- Non-Secure Address Range 0x4150_0000 - 0x415F_FFFF

Secure Address Range 0x5150 0000 - 0x515F FFFF

The selftest software includes example code for an internal loopback operation.

3.14. Real Time Clock

The AN555 FPGA design uses the PLO31 PrimeCell Real Time Clock Controller (RTC). A 1Hz counter in the RTC enables it to be used as a basic alarm function or long time-based counter.

The base memory addresses of the Real Time Clock controller are:

- Non-Secure Address Range 0x4930 B000 - 0x4930 BFFF

- Secure Address Range 0x5930 B000 - 0x5930 BFFF

3.15. Audio I²S

The I²S interface supports transfer of digital audio to and from the Audio codec. The base memory addresses of the I²S audio interface are:

- Non-Secure Address Range 0x4930_1000 - 0x4930_1FFF

- Secure Address Range 0x5930_1000 - 0x5930_1FFF

The following table shows the I²S audio registers in address offset order from the base memory address.

Table 3-4: Audio I2S register map

Offset	Register Name	Туре	Reset	Description
0x000	CONTROL	RAZ/WI	0x0	Bits[31:18], Bit[15], Bit[11], Bits[7:4]: Reserved.
		RW	0b0 0b0 0b10 0b10	Control lines: Bit[17]: Audio codec reset control (output pin) Bit[16]: FIFO reset Bits[14:12]: Rx Buffer IRQ Water Level Default 0b10, IRQ triggers when there is less than a two-word space available. Bits[10:8]: Tx Buffer IRQ Water Level Default 0b10, IRQ triggers when there is more than a two-word space available.
			0b0 0b0 0b0	Bit[3]: Rx Interrupt Enable Bit[2]: Rx Enable Bit[1]: Tx Interrupt Enable Bit[0]: Tx Enable
0x004	STATUS	RAZ/WI	OxO	Bits[31:6]: Reserved
		RO	ObO Ob1 ObO Ob1 ObO Ob1	Status Register Bit[5]: Rx Buffer Full Bit[4]: Rx Buffer Empty Bit[3]: Tx Buffer Full Bit[2]: Tx Buffer Empty Bit[1]: Rx Buffer Alert (Depends on Water level) Bit[0]: Tx Buffer Alert (Depends on Water level)
0x008	ERROR	RAZ/WI	0x0	Bits[31:2]: Reserved
		R/W1C	0b0 0b0	Error Status Register Bit[1]: Rx overrun. Set this bit to clear. Bit[0]: Tx overrun or underrun. Set this bit to clear.
0x00C	DIVIDE	RAZ/WI	0x0	Bits[31:10]: Reserved
		RW	0x20	Clock Divide Ratio Register (for left or right clock) Bits[9:0]: LRDIV (Left/Right).
0x010	TXBUF	W	OxO	Transmit Buffer FIFO Data Register. This is a write-only register. Bits[31:16]: Left channel
		W	0x0	Bits[15:0]: Right channel

Offset	Register Name	Туре	Reset	Description
0x014	RXBUF	RO	OxO	Receive Buffer FIFO Data Register. Bits[31:16]: Left channel
		RO	OxO	Bits[15:0]: Right channel
0x018- 0x2FF	RESERVED	RAZ/WI	OxO	Reserved
0x300	ITCR	RAZ/WI	OxO	Bits[31:1]: Reserved
		RW	ObO	Integration Test Control Register Bit[0]: ITCR
0x304	ITIP1	RAZ/WI	OxO	Bits[31:1]: Reserved
		RO	0b0	Integration Test Input Register 1 Bit[0]: SDIN
0x308	ITOP1	RAZ/WI	0x0	Bits[31:4]: Reserved
		RW	0b0 0b0 0b0 0b0	Integration Test Output Register 1 Bit[3]: IRQOUT Bit[2]: LRCK Bit[1]: SCLK Bit[0]: SDOUT

3.16. Audio Configuration

The AN555 FPGA model implements a simple SBCon interface based on I²C. It configures the Cirrus Logic Low Power Codec with Class D Speaker Driver, CS42L52 part on the MPS3 board.

The base memory addresses are:

- Non-Secure Address Range 0x4920_1000 - 0x4920_1FFF

- Secure Address Range 0x5920_1000 - 0x5920_1FFF

3.17. FPGA system control and I/O

The AN555 implements an FPGA system and I/O control block. The base memory addresses of the control block are:

- Non-Secure Address Range 0x4930_2000 - 0x4930_2FFF

- Secure Address Range 0x5930_2000 - 0x5930_2FFF

The following table shows the FPGA system and I/O control registers in address offset order from the base memory address.

Table 3-5: System control and I/O registers

Offset	Register Name	Туре	Reset	Description
0x000	LED0			LED connections
		RAZ/WI	OxO	Bits[31:10]: Reserved
		RW	OxO	Bits[9:0]: LED
0x004	M85DBGCTRL	RAZ/WI	0x0	Bits[31:4]: Reserved
		RW RW RW	Ob1 Ob1 Ob1 Ob1	Cortex-M85 control signals Bit[3]: SPNIDEN Bit[2]: SPIDEN Bit[1]: NIDEN Bit[0]: DBGEN
0x008	BUTTON	RAZ/WI	0x0	Bits[31:2]: Reserved
		R	2b0	Buttons Bits[1:0]: Buttons
0x00C	GPIOALT2 ¹			GPIO Alt Function 2 select:
		RAZ/WI	OxO	Bits[31:16]: Reserved
		RW	ObO	Bit[15]: PMOD1 IO2
		RW	0b0	Bit[14]: PMOD1 IO3
		RW	0b0	Bit[13]: PMOD0 SCK
		RW	ObO	Bit[12]: PMOD0 IO1
		RW	ObO	Bit[11]: PMOD0 IO0
		RW	0b0	Bit[10]: PMOD0 SS
		RW	0b0	Bit[9]: PMOD1 SCK
		RW	0b0	Bit[8]: PMOD0 IO3
		RW	0b0	Bit[7]: PMOD0 IO2
		RAZ/WI	OxO	Bits[6:4]: Reserved
		RW	0b0	Bit[3]: PMOD1 SS
		RAZ/WI	OxO	Bit[2]: Reserved
		RW	0b0	Bit[1]: PMOD1 IO0
		RW	0b0	Bit[0]: PMOD1 IO1
0x010	CLK1HZ	RW	0x0	Bits[31:0]: 1Hz up counter
0x014	CLK100HZ	RW	OxO	Bits[31:0]: 100Hz up counter

Offset	Register Name	Туре	Reset	Description
0x018	COUNTER	RW	0x0	Bits[31:0]: Cycle Up Counter - Increments when 32-bit prescale counter equals zero and automatically reloads.
0x01C	PRESCALE	RW	OxO Prescale Reload Value OxO Bits[31:0]: Reload value for prescale counter. Prescale Counter Value	
0x020	PSCNTR	RW	Prescale Counter Value OxO Bits[31:0]: Current value of the prescale counter. The prescale counter is reloaded with PRESCALE after reaching 0.	
0x024	RESERVED	RAZ/WI	0x0	Reserved
0x028	SWITCH	RAZ/WI	0x0	Switches Bits[31:8]: Reserved
		R	0x0	Bits[7:0]: Switches
0x04C	MISC	RAZ/WI	0x0	Bits[31:3]: Reserved
		RW RW RW	Ob1 Ob1 Ob1	Miscellaneous control bits Bit[2]:SHIELD1_SPI_nCS Bit[1]: SHIELD0_SPI_nCS Bit[0]: ADC_SPI_nCS

All counters are driven from FPGA generated clock **PERIF_CLK**. For details of the clocks please see **Clocks generated within the FPGA**.

¹ Further detail about the GPIOALT2 usage can be found in **Shield Support**.

3.18. FPGA Serial Configuration Controller (SCC)

The AN555 FPGA implements a communication channel between the MCC and the FPGA system through a Serial Configuration Controller (SCC) interface.

The Cortex-M85 Processor can access the SCC registers through the following memory mapped addresses:

- Non-Secure Address Range 0x4930 0000 - 0x4930 0FFF

- Secure Address Range 0x5930_0000 - 0x5930_0FFF

The following table shows the SCC registers in address offset order from the base memory address.

The read-addresses and write-addresses of the SCC interface do not use bits [1:0]. All address words are word-aligned.

Table 3-6: SCC registers

Offset	Register Name	Type	Reset	Description
0x000	CFG_REG0	RAZ/WI	0x0	Bits[31:2]: Reserved
		RW	1b1	Bit[1]: CPU_WAIT control bit. 1 - CPU held in wait state, 0 - CPU is released from wait state.
		RAZ/WI	0b0	Bit[0]: Reserved
0x004	CFG_REG1	RAZ/WI	0x0 Bits[31:2]: Reserved	
0x008	CFG_REG2 ¹	RAZ/WI	0x0	Bits[31:3]: Reserved
		RW	0x0	Bit[2]: PMOD1 Read / Write select signal Bit[1]: PMOD0 Read / Write select signal Bit[0]: QSPI Read / Write select signal Read = 0, Write = 1
0x00C	CFG_REG3	RAZ/WI	0x0 Bits[31:0]: Reserved	
0x010	CFG_REG4	RAZ/WI	0x0	Bits[31:4]: Reserved
		RW	0x0	Bits[3:0]: Board Revision [r]
0x014	CFG_REG5	RW	0x0	Bits[31:0]: ACLK Frequency in Hz
0x018	CFG_REG6	RAZ/WI	0x0	Bits[31:2]: Reserved
		R	OxO	Bit[1]: PMOD1 IN (defines if PMOD1 present) ¹ Bit[0]: PMOD0 IN (defines if PMOD0 present) ¹
0x01C - 0x09C	RESERVED	RAZ/WI	OxO	-
0x0A0	SYS_CFGDATA_RTN	R		Bits[31:0]: DATA R
0x0A4	SYS_CFGDATA_OUT	W		Bits[31:0]: DATA W

Offset	Register Name	Туре	Reset	Description
0x0A8	SYS_CFGCTRL	R	1b0	Bit[31]: Start (generates interrupt on write to this bit)
		RW	1b0	Bit[30]: RW access
		RAZ/WI	0x0	Bits[29:26]: Reserved
		RW	0x0	Bits[25:20]: Function value
		RAZ/WI	0x0	Bits[19:12]: Reserved
		RW	0x0	Bits[11:0]: Device (value of 0/1/2 for supported clocks)
0x0AC	SYS_CFGSTAT	RAZ/WI		Bits[31:2]: Reserved
		R		Bit[1]: Error Bit[0]: Complete
0x0B0 - 0xFF4	RESERVED	RAZ/WI		
0xFF8	SCC_AID	R	0x02	SCC AID register is read only Bits[31:24]: FPGA build number, (decimal)
		R	0x1	Bits[23:20]: MPS3 target board revision (A = 0, B = 1, C = 2)
		RAZ/WI	0x7	Bits[19:8]: Reserved
		R	0x8	Bits[7:0]: Number of SCC configuration register
0xFFC	SCC_ID	R	0x41	SCC ID register is read only Bits[31:24]: Implementer ID: 0x41 = Arm
		RAZ/WI	0x0	Bits[23:20]: Reserved
		R	0x5	Bits[19:16]: IP Architecture: 0x5 =AXI
		R	0x555	Bits[15:4]: Primary part number in Binary Coded Decimal, (BCD): 0x555
		RAZ/WI	0x1	Bits[3:0]: Reserved

¹ - Details of the Pmod configuration are provided in **QSPI Flash**.

3.19. DMA

The AN555 FPGA implements 4 single Manager DMA controllers (PL081). Each DMA is connected to a separate Subordinate interface of the subsystem through an MSC.

The following details the address mapping and access restrictions of each of the four DMA's that are implemented.

DMA0

The base memory addresses are:

- Non-Secure Address Range 0x4120_0000 - 0x4120_0FFF

- Secure Address Range 0x5120_0000 - 0x5120_0FFF

DMA0 is connected to the **HSLVEXPMI1** interface of the subsystem and therefore can access most of the memory mapped regions in the system, except for those that are private to the processor.

DMA1

The base memory addresses are:

- Non-Secure Address Range 0x4120_1000 - 0x4120_1FFF

- Secure Address Range 0x5120_1000 - 0x5120_1FFF

DMA1 is connected to the **HSLVEXPPILL** interface of the subsystem and therefore can access the following peripheral memory mapped regions except for regions which are private to the processor.

-	Non-Secure Address Range	0x4000_0000 - 0x47FF_FFF
-	Secure Address Range	0x5000_0000 - 0x57FF_FFFF
-	Non-Secure Address Range	0xE010_0000 - 0xEFFF_FFFF
-	Secure Address Range	0xF010_0000 - 0xFFFF_FFF

DMA2

The base memory addresses are:

-	Non-Secure Address Range	0x4120_2000-0x4120_2FFF
_	Secure Address Range	0x5120 2000 - 0x5120 2FFF

DMA2 is connected to the **HSLVEXPPIHL** interface of the subsystem and therefore can access the following peripheral memory mapped regions.

-	Non-Secure Address Range	0x4800_0000 - 0x4FFF_FFFF
-	Secure Address Range	0x5800 0000 - 0x5FFF FFFF

• DMA3

The base memory addresses are:

- Non-Secure Address Range 0x4120_3000-0x4120_3FFF

- Secure Address Range 0x5120_3000 - 0x5120_3FFF

DMA1 is connected to the **XSLVTCM** interface of the subsystem and therefore can only access the TCM's that are internal to the processor. These are access through the following addresses:

ITCM

-	Non-Secure Address Range	0x0A00_0000 - 0x0A00_7FFF

- Secure Address Range 0x1A00_0000 - 0x1A00_7FFF

DTCM

- Non-Secure Address Range 0x2000_0000 - 0x2000_7FFF

- Secure Address Range 0x3000_0000 - 0x3000_7FFF

For further information please refer to PrimeCell® Single Master DMA Controller (PLO81) Technical Reference Manual

4. Clock architecture

The following sections describe:

- Input clocks from the MPS3 board to the FPGA
- Clocks generated internally within the FPGA

4.1. Source clocks

The following table shows clocks generated on the MPS3 board which are input clocks to the FPGA:

Table 4-1: Source clocks

AN555 clock	Input pin	Frequency	Note
REFCLK24MHZ	OSCCLK[0]	24MHz	24MHz reference
ACLK	OSCCLK[1]	25MHz	Programmable oscillator
MCLK	OSCCLK[2]	30MHz	Programmable oscillator
GPUCLK	OSCCLK[3]	50MHz	Programmable oscillator
AUDCLK	OSCCLK[4]	24.576MHz	Programmable oscillator
HDLCDCLK	OSCCLK[5]	23.75MHz	Programmable oscillator
DBGCLK	CS_TCK	Variable	JTAG input. Frequency set by debugger
CFGCLK	CFG_CLK	Variable	SCC register clock. Frequency set by MCC
DDR4_REF_CLK	c0_sys_clk_p/n	100MHz	Differential input clock to DDR4 controller
SMBM_CLK	SMBM_CLK	24MHz	SMB clock. Frequency defined by MCC

The frequency of ACLK has been reduced to 25MHz from 32MHz as seen in other Applications Notes on MPS3

4.2. Clocks generated within the FPGA

The following table shows clocks generated within the FPGA from source clocks inputs from the MPS3 board.

Table 4-2: Clocks generated within FPGA

FPGA generated clock	MPS3 source clock	Frequency	Note
MAINCLK	OSCCLK[1]	25MHz	Clock source for SSE-310 and all non- APB peripherals in the design
FASTCLK	OSCCLK[1]	50MHz	Fast Clock source for SSE-310 required due to the clock structure of the SSE-310 which allows different CPU clock speeds
EXTCLK	OSCCLK[1]	30MHz	Used for QSPI Pmod controllers
PERIF_CLK	OSCCLK[3]	25MHz	Clock source for APB peripherals
AUDMCLK	AUDCLK	12.288MHz	-
AUDSCLK	AUDCLK	3.072MHz	-
SDMCLK	REFCLK24MHZ	24MHz	-
CLK32KHZ	REFCLK24MHZ	32kHz	-
CLK100HZ	REFCLK24MHZ	100Hz	-
CLK1HZ	REFCLK24MHZ	1Hz	-
CFGCLK	CFG_CLK	Set by MCC	SCC register clock from MCC

4.3. **SSE-310 Clocks**

The following table shows clocks within FPGA which are inputs to SSE-310 Subsystem.

Table 4-3: SSE-310 clocks

SSE-310 clock input	FPGA generated clock	Frequency	Note
SYSCLK	MAINCLK	25MHz	Main System clock
CPU0CLK	MAINCLK	25MHz	CPU clock
AONCLK	MAINCLK	25MHz	Always On clock
CNTCLK	MAINCLK	25MHz	Counter clock
SLOWCLK	CLK32KHZ	32KHz	Slow clock
SYSPLLCLK	FASTCLK	50MHz	Fast System clock

5. Reset architecture

5.1. FPGA Resets

The following tables list the top-level reset signals based on their direction to the FPGA.

Table 5-1: FPGA Input Resets List

Input Source Reset	Note	SSE-310 Example Design Destination Reset	Reset control
CB_nPOR Power-on Reset Reset signal to all FPGA		nPORESET	Embedded in MCC firmware
IOFPGA_NRST	Auxiliary reset signal Connected to Audio clock generator	Not connected	
CFG_nRST	SCC Register block Reset	Not connected	
CS_nTRST	JTAG Reset	nTRST	Debugger, please
CS_nSRST	Warm SSE-310 Subsystem reset	nSRST	refer to debugger user manual

Table 5-2: FPGA Subsystem Resets List

Output Source Reset	Note
MAIN_nRST	AHB Peripherals Reset
PERIPH_CLK_RSTn	APB Peripherals Reset

Figure 5-1: FPGA Resets

The following timing diagram shows a typical reset de-assertion sequence after power on.

Figure 5-2: Reset Timing

CPUWAIT is controlled by SCC CFG_REGO, see FPGA Serial Configuration Controller (SCC)

6. FPGA Secure Privilege Control

The SSE-310 Subsystem Secure Privilege and Non-Secure Privilege control block provides expansion security control signals to control the security gating units outside the Subsystem.

The following table lists the connectivity of the system security extension signals.

Table 6-1: Security expansion signals connectivity.

Component name	Components signal	Security expansion signal	
USER MSC	msc_irq	SMSCEXPSTATUS[4:0]	
	msc_irq_clear	SMSCEXPCLEAR[4:0]	
	cfg_nonsec	NSMSCEXP[4:0]	
APB PPC EXP 0	apb_ppc_irq	SPERIPHPPCEXPSTATUS[0]	
	apb_ppc_clear	SPERIPHPPCEXPCLEAR[0]	
	cfg_sec_resp	SECRESPCFG	
	cfg_non_sec	PERIPHNSPPCEXP0[15:0]	
	cfg_ap	PERIPHPPPCEXP0[15:0]	
APB PPC EXP 1	apb_ppc_irq	SPERIPHPPCEXPSTATUS[1]	
	apb_ppc_clear	SPERIPHPPCEXPCLEAR[1]	
	cfg_sec_resp	SECRESPCFG	
	cfg_non_sec	PERIPHNSPPCEXP1[15:0]	
	cfg_ap	PERIPHPPPCEXP1[15:0]	
APB PPC EXP 2	apb_ppc_irq	SPERIPHPPCEXPSTATUS[2]	
	apb_ppc_clear	SPERIPHPPCEXPCLEAR[2]	
	cfg_sec_resp	SECRESPCFG	
	cfg_non_sec	PERIPHNSPPCEXP2[15:0]	
	cfg_ap	PERIPHPPPCEXP2[15:0]	
AHB PPC EXP 0	ahb_ppc_irq	SMAINPPCEXPSTATUS[0]	
	ahb_ppc_clear	SMAINPPCEXPCLEAR[0]	
	cfg_sec_resp	SECRESPCFG	
	cfg_non_sec	MAINNSPPCEXP0[15:0]	
	cfg_ap	MAINPPPCEXP0[15:0]	

Component name	Components signal	Security expansion signal	
AHB PPC EXP 1	ahb_ppc_irq	SMAINPPCEXPSTATUS[1]	
	ahb_ppc_clear	SMAINPPCEXPCLEAR[1]	
	cfg_sec_resp	SECRESPCFG	
	cfg_non_sec	MAINNSPPCEXP1[15:0]	
	cfg_ap	MAINPPPCEXP1[15:0]	
MPC FPGA SRAM	secure_error_irq	SMPCEXPSTATUS[2]	

The following table lists the peripherals that are controlled by the SMSCEXP port.

Each MSC interface is controlled by SMSCEXPSTATUS[n] and SMSCEXPCLEAR[n].

Table 6-2: Peripheral mapping of AHB MSC EXP

AHB user MSC interface number < n >	Name
0	DMA 0
1	DMA 1
2	DMA 2
3	DMA 3
4	Memory Preload
15:3	Reserved

The following table lists the peripherals that are controlled by PERIPHERAL PPC EXP 0.

Each APB <n> interface is controlled by PERIPHNSPPCEXPO[n] and PERIPHPPPCEXPO[n].

Table 6-3: Peripheral mapping of APB PPC EXP 0

APB PPC EXP 0 interface number <n></n>	Name
0	Timing Adapter APB 0 – FPGA SRAM
1	Timing Adapter APB 1 - QSPI
2	Timing Adapter APB 2 – DDR4
15:3	Reserved

The following table lists the peripherals that are controlled by APB PPC EXP 1.

Each APB <n> interface is controlled by PERIPHNSPPCEXP1[n] and PERIPHPPPCEXP1[n].

Table 6-4: Peripheral mapping of APB PPC EXP 1

APB PPC EXP 1 interface number < n>	Name
0	FPGA - SBCon I2C (Touch)
1	FPGA - SBCon I2C (Audio Conf)
2	FPGA - PL022 (SPI ADC)
3	FPGA - PL022 (SPI Shield 0)
4	FPGA - PL022 (SPI Shield 1)
5	SBCon (I2C - Shield 0)
6	SBCon (I2C - Shield 1)
7	Reserved
8	FPGA - SBCon I2C (DDR4 EEPROM)
15:9	Reserved

The following table lists the peripherals that are controlled by APB PPC EXP 2.

Each APB <n> interface is controlled by PERIPHNSPPCEXP2[n] and PERIPHPPPCEXP2[n].

Table 6-5: Peripheral mapping of APB PPC EXP 2

APB PPC EXP 2 interface number <n></n>	Name
0	FPGA - SCC registers
1	FPGA - I2S (Audio)
2	FPGA - I/O (System Ctrl + I/O)
3	UARTO-FPGA_UARTO
4	UART1-FPGA_UART1
5	UART2-FPGA_UART2
6	UART3 - UART Shield 0
7	UART4 - UART Shield 1
8	UART5 - FPGA_UART3
9	Reserved
10	CLCD Configuration register
11	RTC
15:12	Reserved

The following table lists the peripherals that are controlled by AHB PPC EXP 0.

Each APB <n> interface is controlled by MAINNSPPCEXPO[n] and MAINPPPCEXPO[n].

Table 6-6: Peripheral mapping of AHB PPC EXP 0

AHB PPC EXP 0 interface number <n></n>	Name
0	GPIO 0
1	GPIO 1
2	GPIO 2
3	GPIO 3
7:4	Reserved
8	Ethernet and USB
12:9	Reserved
13	Onboard QSPI Read/Write Controller
14	PMOD0 QSPI Read/Write Controller
15	PMOD1 QSPI Read/Write Controller

The following table lists the peripherals that are controlled by AHB PPC EXP 1.

Each APB <n> interface is controlled by MAINNSPPCEXP1[n] and MAINPPPCEXP1[n].

Table 6-7: Peripheral mapping of AHB PPC EXP 1

AHB PPC EXP 1 interface number <n></n>	Name
0	DMA 0
1	DMA 1
2	DMA 2
3	DMA 3
15:4	Reserved

7. Interrupts

7.1. FPGA interrupt map

The following table shows how Interrupts in the FPGA Subsystem extend the SSE-310 Interrupt map by adding to the expansion area.

Table 7-1: SSE-310 expansion interrupt map.

Interrupt input	Interrupt source	
IRQ[0]	Non-Secure Watchdog reset Request	
IRQ[1]	Non-Secure Watchdog Interrupt	
IRQ[2]	SLOWCLK Timer	
IRQ[3]	Timer 0	
IRQ[4]	Timer 1	
IRQ[5]	Timer 2	
IRQ[6]	Reserved	
IRQ[7]	Reserved	
IRQ[8]	Reserved	
IRQ[9]	MPC Combined (Secure)	
IRQ[10]	PPC Combined (Secure)	
IRQ[11]	MSC Combined (Secure)	
IRQ[12]	Bridge Error Combined Interrupt (Secure)	
IRQ[13]	Reserved	
IRQ[14]	PPU Combined (Secure)	
IRQ[15]	Reserved	
IRQ[16]	NPU0	
IRQ[26:17]	Reserved	
IRQ[27]	TIMER 3 AON	
IRQ[28]	CPU0CTIIRQ0 (local CPU CTI only)	
IRQ[29]	CPU0CTIIRQ01 (local CPU CTI only)	
IRQ[31:30]	Reserved	
IRQ[32]	SYSCOUNTER	

Table 7-2: FPGA expansion interrupt map.

Interrupt input	Interrupt source
IRQ[33]	UART O Receive Interrupt
IRQ[34]	UART O Transmit Interrupt
IRQ[35]	UART 1 Receive Interrupt
IRQ[36]	UART 1 Transmit Interrupt
IRQ[37]	UART 2 Receive Interrupt
IRQ[38]	UART 2 Transmit Interrupt
IRQ[39]	UART 3 Receive Interrupt
IRQ[40]	UART 3 Transmit Interrupt
IRQ[41]	UART 4 Receive Interrupt
IRQ[42]	UART 4 Transmit Interrupt
IRQ[43]	UART 0 Combined Interrupt
IRQ[44]	UART 1 Combined Interrupt
IRQ[45]	UART 2 Combined Interrupt
IRQ[46]	UART 3 Combined Interrupt
IRQ[47]	UART 4 Combined Interrupt
IRQ[48]	UART Overflow (0, 1, 2, 3, 4 & 5)
IRQ[49]	Ethernet
IRQ[50]	Audio I ² S
IRQ[51]	Touch Screen
IRQ[52]	USB
IRQ[53]	SPIADC
IRQ[54]	SPI (Shield 0)
IRQ[55]	SPI (Shield 1)
IRQ[56]	Reserved
IRQ[57]	DMA 0 Error Interrupt
IRQ[58]	DMA 0 Terminal Count Interrupt
IRQ[59]	DMA 0 Combined Interrupt
IRQ[60]	DMA 1 Error Interrupt
IRQ[61]	DMA 1 Terminal Count Interrupt
IRQ[62]	DMA 1 Combined Interrupt
IRQ[63]	DMA 2 Error Interrupt
IRQ[64]	DMA 2 Terminal Count Interrupt
IRQ[65]	DMA 2 Combined Interrupt
IRQ[66]	DMA 3 Error Interrupt
IRQ[67]	DMA 3 Terminal Count Interrupt

Interrupt input	Interrupt source
IRQ[68]	DMA 3 Combined Interrupt
IRQ[69]	GPIO 0 Combined Interrupt
IRQ[70]	GPIO 1 Combined Interrupt
IRQ[71]	GPIO 2 Combined Interrupt
IRQ[87:72]	GPIO 3 Combined Interrupt
IRQ[103:88]	GPIO 0 individual interrupts
IRQ[119:104]	GPIO 1 individual interrupts
IRQ[123:120]	GPIO 2 individual interrupts
IRQ[124]	GPIO 3 individual interrupts
IRQ[125]	UART 5 Receive Interrupt
IRQ[126]	UART 5 Transmit Interrupt
IRQ[127]	UART 5 Combined Interrupt

7.2. UART interrupts

There are six CMSDK UART's in the system, and each UART has the following interrupt pins:

- TXINT
- RXINT
- TXOVRINT
- RXOVRINT
- UARTINT (combined interrupt)

The TXINT, RXINT and UARTINT interrupt signal of each UART drive a separate interrupt input of the Cortex-M85 processor.

In addition, the TXOVRINT and RXOVRINT interrupt signals of all six UART's, twelve signals in total, are logically OR'd together to drive IRQ[48].

8 Shield Support

This AN555 FPGA implementation supports external shield devices. To enable the Shield support, two SPI, two UART and two I²C interfaces plus secondary alternate function of Pmod QSPI, are multiplexed with GPIO over the Shield Headers.

Figure 8-1: Shield device expansion

Pmod 2 & 3 are not used in this design and are here only for reference purposes.

Multiplexing is controlled by the alternative function (ALTF1) output from the associated GPIO Register. A second alternative function (ALTF2) is multiplexed for certain pins of Shield O, and these are controlled through GPIOALT2 in the FPGAIO Registers at address offset 0x0C.

The following table shows the multiplexed output functions ALTF1 and ALTF2.

Table 8-1: Shield alternative function pinout

Shield pin	GPIO	ALTF1	ALTF2
SH0_IO0	GPI00_0	UART3 RXD - SH0_RXD	PMOD1 IO1
SH0_IO1	GPIO0_1	UART3 TXD - SH0_TXD	PMOD1 IO0
SH0_IO2	GPIO0_2	-	-
SH0_IO3	GPIO0_3	-	PMOD1SS
SH0_IO4	GPIO0_4	-	-
SH0_IO5	GPIO0_5	-	-
SH0_IO6	GPIO0_6	-	-

Shield pin	GPIO	ALTF1	ALTF2
SH0_IO7	GPIO0_7	-	PMOD0102
SH0_IO8	GPI00_8	-	PMOD0103
SH0_IO9	GPI00_9	-	PMOD1 SCK
SH0_IO10	GPIO0_10	SPI3 SS - SHO_nCS	PMOD0 SS
SH0_IO11	GPIO0_11	SPI3 MOSI - SH0_DO	PMOD0 IO0
SH0_IO12	GPIO0_12	SPI3 MISO - SHO_DI	PMOD0 IO1
SH0_IO13	GPIO0_13	SPI3 SCK - SH0_CLK	PMOD0 SCK
SH0_IO14	GPIO0_14	SBCON2 SDA - SH0_SDA	PMOD1IO3
SH0_IO15	GPIO0_15	SBCON2 SCL - SH0_SCL	PMOD1 IO2
SH1_IO0	GPIO1_0	UART4 RXD - SH1_RXD	-
SH1_IO1	GPIO1_1	UART4TXD - SH1_TXD	-
SH1_IO2	GPIO1_2	-	-
SH1_IO3	GPIO1_3	-	-
SH1_IO4	GPIO1_4	-	-
SH1_IO5	GPIO1_5	-	-
SH1_IO6	GPIO1_6	-	-
SH1_IO7	GPIO1_7	-	-
SH1_IO8	GPIO1_8	-	-
SH1_IO9	GPIO1_9	-	-
SH1_IO10	GPIO1_10	SPI4SS - SH1_nCS	-
SH1_IO11	GPIO1_11	SPI4 MOSI - SH1_DO	-
SH1_IO12	GPIO1_12	SPI4 MISO – SH1_DI	-
SH1_IO13	GPIO1_13	SPI4 SCK - SH1_CLK	-
SH1_IO14	GPIO1_14	SBCON3 SDA - SH1_SDA	-
SH1_IO15	GPIO1_15	SBCON3 SCL - SH1_SCL	-

During boot up, ALTF2 is automatically set for Pmod peripherals if Pmod's are enabled, this is to allow preloading of the QSPI Flash. Once CPUWAIT is released, the Shield pins will default to GPIO with both ALTF1 and ALTF2 disabled. Therefore, to use ALTF1/2, software will need to enable each alternate function individually.

9. QSPI Flash

This AN555 FPGA implementation supports 3 Quad Serial Peripheral Interface (QSPI) flash memories, 1 onboard Microchip SST26VF064B and 2 optional blocks of QSPI memory that are implemented using external QSPI flash Pmod modules (see **Additional required hardware** for further details).

All the memories are accessed over Xilinx AXI QSPI controller interfaces. The Onboard QSPI Flash provides 8MB of memory and PMOD0 and PMOD1 provide 32MB of memory each. The presence of the optional QSPI Flash in the design is controlled by the SCC CFG_REG6 further described in **Table 3-6**, these bits are set by the MCC at boot time, depending on the settings described in **Additional required hardware**.

Figure 9-1: QSPI block diagram

If one or both QSPI Flash memory Pmod modules is absent, the PMODx IN bit will be set to 0 and all transactions will be routed to an AXI default subordinate, which will respond with a bus fault error, this error needs to be handled by software using a fault handler. By default, both Pmod modules will be disabled.

When one or both QSPI Flash memory modules (Pmod's) are absent, the full system memory map shown in **Memory Map Overview** changes. The relevant memory map regions for all possible combinations of PMOD0 and PMOD1 are shown in the following tables:

The figures below show the changes to the memory mapping (see Memory Map Overview for the full mapping), depending on which of the QSPI Pmod modules are installed and enabled.

The first diagram (Figure 9-2: Memory map with no Pmod's present and with PMODO present) covers the situations when:

- No QSPI Pmod's are installed and enabled
- Only QSPI PMOD0 is installed and enabled.

Figure 9-2: Memory map with no Pmod's present and with PMOD0 present

			SCC CFG_REG6	[SCC CFG_REG6	
	PMOD Pr	resent	value		PMOD) Present	value	
	PMOD0 I PMOD1 I	-	Bits[1:0] = 0x00	PMOD0 IN = 1 PMOD1 IN = 0		-	Bits[1:0] = 0x01	
		Re	eserved				Reserved	
	180_3000	Re	eserved	0x5180_3000	Reserved			
	5180_2000	Reserved Onboard QSPI Read/Write Controller Reserved		0x5180_2000 - 0x5180_1000 - 0x5180_0000 -	_	PMOD0 QS	PI Read/Write Controller	
0x5180_1000					Onboard QSPI Read/Write Controller			
0x5	5180_0000				Reserved			
			\simeq		\simeq			
0.47	1190 2000	Reserved		0×4	0 4400 0000	Reserved		
0x4180_3000	1180_3000	Re	eserved		180_3000 180_2000	Reserved		
	1180_2000		eserved		4180_2000 4180_1000 4180_0000	PMOD0 QSPI Read/Write Controller		
			Read/Write Controller			Onboard QSPI Read/Write Controller		
0X4100_00	+100_0000	Re	eserved	0.410		Reserved		
			<u> </u>				<u> </u>	
Ox3	3C80_0000	Re	eserved	0x3	0x3C80_0000	Reserved		
	BA80_0000 —	Reserved Reserved Onboard QSPI Read Controller		0x3A80_0000 0x3880_0000 0x3800_0000		Reserved		
	3880_0000				PMOD0 QSPI Read Controller			
	3800_0000				Onboard QSPI Read Controller			
OAC		Re	eserved	0,0000_0000	Reserved			
			\simeq		ı			
0v2	2080 0000	0000 Reserved 0000 Reserved Onboard QSPI Read Controller		0x2C80_0000 0x2A80_0000 0x2880_0000 0x2800_0000	C80 0000	Reserved		
0x2C80_0000 0x2A80_0000 0x2880_0000						Reserved		
	-				PMOD0 QSPI Read Controller			
	2800_0000				Onboard QSPI Read Controller			
			eserved		_ [Reserved	
KEY								
	Secure Region (S) Non-Secure Region (NS)						NS)	

The second diagram (Figure 9-3: Memory map with PMOD1 present and with both PMOD0/1 present) shows the memory mapping when:

- Only QSPI PMOD1 is installed and enabled
- Both QSPI PMODO and QSPI PMOD1 are installed and enabled.

Figure 9-3: Memory map with PMOD1 present and with both PMOD0/1 present

		-		•			
	PMOD Present	SCC CFG_REG6 value	PMOE) Present	SCC CFG_REG6 value		
	PMOD0 IN = 0 PMOD1 IN = 1	Bits[1:0] = 0x10		00 IN = 1 01 IN = 1	Bits[1:0] = 0x11		
0x5	5180_2000	Reserved PI Read/Write Controller Reserved PI Read/Write Controller	0x5180_3000 0x5180_2000 0x5180_1000 0x5180_0000	PMOD0 QS	Reserved PI Read/Write Controller PI Read/Write Controller PI Read/Write Controller		
		Reserved Reserved		Reserved School Reserved			
0x4180_3000 0x4180_2000 0x4180_1000 0x4180_0000	PMOD1 QS 4180_2000 4180_1000	PI Read/Write Controller Reserved PI Read/Write Controller Reserved	0x4180_3000 0x4180_2000 0x4180_1000 0x4180_0000	PMOD0 QS	PI Read/Write Controller PI Read/Write Controller PI Read/Write Controller Reserved		
<u></u>		\simeq					
0x3	3A80_0000 3880_0000	Reserved QSPI Read Controller Reserved QSPI Read Controller Reserved	0x3C80_0000 0x3A80_0000 0x3880_0000 0x3800_0000	PMOD0	Reserved QSPI Read Controller QSPI Read Controller QSPI Read Controller Reserved		
		Reserved			Reserved		
0x2C80_00 0x2A80_00 0x2880_00 0x2800_00	2A80_0000 2880_0000 Onboard	PMOD1 QSPI Read Controller Reserved Onboard QSPI Read Controller		PMOD1 QSPI Read Controller PMOD0 QSPI Read Controller Onboard QSPI Read Controller Reserved			
KEY Secure Region (S) Non-Secure Region (NS)							

10. Debug Infrastructure

The render of the SSE-310 Subsystem used in this FPGA includes an example debug infrastructure that instances DAP-Lite2, a debug timestamp generator and TPIU-M.

The following subsections describe the example debug infrastructure.

10.1. DAP-Lite2

Arm® CoreSight™ DAP-Lite2 enables an off-chip debugger to connect to a target system using a low pin-count JTAG or Serial Wire interface. It is compliant with Arm® Debug Interface Architecture Specification ADIv6.0. DAP-Lite2 which supports AMBA AHB5 debug access interface.

10.2. Debug timestamp generator

The debug timestamp generator is implemented as a 64-bit binary up counter.

10.3. TPIU-M

The TPIU-M is a Trace Port Interface Unit (TPIU) that is designed for use in single-processor systems based on Arm Cortex-M processors.

The TPIU-M bridges between the on-chip trace data from the Embedded Trace Macrocell (ETM) and the Instrumentation Trace Macrocell (ITM), with separate IDs, to a data stream.

11. ZIP Bundle Description

11.1. Overall Structure

The accompanying .zip bundle contains:

- AN555 FPGA Document (this document).
- An example Keil® MDK Version 5.37 software project, that can be run on the Cortex-M85 to test supported board peripherals and interfaces.
- Boardfiles/ directory contains the directory structure and files to be loaded onto the MPS3 SD Card. This is required to configure the MPS3 board to load and run this implementation.

11.2. Documentation

AN555 FPGA Document is in the Docs / folder of the bundle.

11.3. MPS3 Board Revision and Support

11.3.1. Identifying the MPS3 Board Revision

The bundle supports MPS3 board revisions B and C. The board revision, if not known can be identified from the silk screen text, inside a marked box, on the board as shown in the diagram below:

Figure 11-1: MPS3 Board Revision Identifier

Board Part Number and Revision

In this example the part number is "HBI0309B". The last letter at the end of the part number denotes the board revision. The illustration shows a revision B board.

11.3.2. Bundle Support for Specific MPS3 Board Revisions

There are two subdirectories in the Boardfiles/MB/ directory that correspond to the two supported revisions:

- HBI0309B
- HBI0309C

The contents of each of these directories, within the provided bundle, are identical but the MCC only uses the contents from the directory name that matches the board part number and revision in use. See Identifying the MPS3 Board Revision for further details on how to identify the board part number and revision.

Only files modified within the directory name that align with the MPS3 board part number and revision are used by the MCC. Care must be taken to ensure the correct directory contents are modified if modifications are required.

11.4. Bundle Directory Tree/Structure

The directory structure of the bundle is shown below.

The directory structure of the Boardfiles which need to be loaded onto the sd card is shown below.

`-- Boardfiles

```
|-- MB
   `-- BRD LOG.TXT
   |-- HBI0309B
   | |-- AN555
       | `-- an555 v2.bit
           `-- an555 v2.txt
     | `-- images.txt
     `-- board.txt
       `-- mbb v220.ebf
  |-- HBI0309C
       |-- AN555
       | |-- an555_v2.bit
         |-- an555 v2.txt
         `-- images.txt
       |-- board.txt
       `-- mbb v220.ebf
|-- SOFTWARE
 `-- an555 st.axf
`-- config.txt
```

12. Software and Debug

12.1. Overview

It is strongly recommended to use Keil uVision 5.37, which is the minimum edition needed to support the processor in this implementation and is the version supported by AN555 FPGA implementation. Additionally the ARM::V2M_MPS3_SSE_310_BSP 1.1.0 (2022-09-30) Keil pack must be installed.

An example software project that can be built using Keil uVision 5.37 (targeting the Cortex-M85) which is provided as part of the bundle. The test software uses the UART1 to implement a menudriven software interface, controllable from a host terminal emulator. The test software, which executes on the Cortex-M85, offers the following tests:

- Audio
- Display
- Touchscreen
- LEDs/Switches/Buttons
- Ethernet
- USB
- UART
- Memory (FPGA SRAM, Internal SRAM and DDR4)
- Timers
- RTC
- QSPI
- QSPI PMOD0
- QSPI PMOD1

12.2. Building the Software

Requirements:

- The software directory from the supplied bundle SOFTWARE/selftest.
- Proficiency with Keil uVision 5.37.

Steps:

- 1. Open Keil uVision.
- 2. Select Project > Open Project..., navigate to the <install location > Software/selftest/directory in the bundle.
- 3. Select selftest_mpb.uvprojx and click Open

4. To rebuild the project, Project > Rebuild all target files.

5. Ensure you have the Build Output window viewable where you can observe verbose output as the project builds:

```
Build Output
compiling apuart.c...
compiling aprtc.c...
compiling qspi_flash_micron.c...
compiling ETH MPS3.c...
compiling qspi_test.c...
compiling apqspi.c...
compiling GLCD_MPS3.c...
compiling apmem.c...
compiling dma350_ch_drv.c...
compiling device_definition.c...
compiling system_SSE310MPS3.c...
compiling dma350_address_remap.c...
compiling syscounter_armv8-m_read_drv.c...
compiling dma350_drv.c...
compiling syscounter_armv8-m_cntrl_drv.c...
compiling systimer_armv8-m_drv.c..
compiling startup SSE310MPS3.c...
compiling systimer_armv8-m_timeout.c...
compiling dma350_lib.c...
linking...
Program Size: Code=36546 RO-data=313770 RW-data=204 ZI-data=51284
FromELF: creating hex file..
After Build - User command #1: move.bat
C:\Users\petcon01\OneDrive - ARM\Documents\install location\Software\selftest>call copy objects\an555_st.axf an555_st.axf
          1 file(s) copied.
After Build - User command #2: fromelf --bin --output=an555_st.bin .\objects\an555_st.axf
  .\Objects\an555 st.axf" - 0 Error(s), 0 Warning(s)
```

6. The project has now built and there is a newly built .axf file in the SOFTWARE/selftest/directory, titled an 555 st.axf.

12.3. Debug Support

This AN555 FPGA implementation is supported by Arm Development Studio version 2022.1. A platform configuration is achieved using the auto discovery feature of Arm Development Studio. Instructions for using this feature can be found in **Creating a Development Studio Debug Configuration**, which also gives locations of the debug connectors on the MPS3 board.

12.3.1. DSTREAM Debug Hardware

The Arm DSTREAM-PT Debug Probe is required for this AN555 FPGA implementation and all the instructions and guidance in this application note assume the use of the DSTREAM-PT debugger.

12.3.2. Debug Connectivity

The following table shows the supported connectivity between the supported MPS3 Board debug connectors and supported debug in the FPGA implementation.

Table 12-1: Debug Connectivity and Support

Debug Connector Type	P-JTAG Debug	SWD	4-bit Trace	16-bit Trace
Coresight 20-pin	Cortex-M85	Cortex-M85	Cortex-M85 ¹	-
Mictor 38	Cortex-M85	Cortex-M85	Cortex-M85	Cortex-M85

¹ When using the Coresight 20-pin connector, the DSTREAM-ST streaming trace must be selected as the Trace capture method, when Trace capture is required.

12.3.3. Creating a Development Studio Debug Configuration

The steps below show the procedure to create a debug configuration:

- 1. Ensure the DSTREAM debugger is:
 - a. Powered, and connected to the host running the Development Studio software.
 - b. Connected to the MPS3 using the Coresight 20-pin / Mictor 38 connector on the MPS3 as shown below:

Figure 12-1: MPS3 Board Debug Connector Locations

- 2. Open the Development Studio application on the host machine.
- 3. Press either Ctrl+N, or from the Menu select **File** > **New** > **Other**, to open the wizard to create a **Platform Configuration** as shown below.

4. Under the **Configuration Database** folder, choose **Platform Configuration** (which highlights when selected) and click **Next**.

5. Select Automatic/simple platform detection and click Next as shown below.

6. Select your connection type and connection address for your target debugger. The figure below shows the case for a DSTREAM debugger with a USB connection.

7. Ensure that the debugger is connected to the target (the MPS3 board in this case) and that the MCC has loaded the FPGA and the implementation has booted. Click **Next**.

8. Auto Discovery traverses the debug infrastructure to build a configuration for this target. The console should show something similar to the verbose output shown in the example below.

```
Console 🗵
[12/05/22 16:23:19] End of ROM table
 [12/05/22 16:23:19]
[12/05/22 16:23:20]
[12/05/22 16:23:20] --- --- [12/05/22 16:23:20] Acquiring device info for CSETM (0xE0041000):
                                Device supports timestamps
Device does not support context IDs
[12/05/22 16:23:20]
[12/05/22 16:23:20]
[12/05/22 16:23:20]
[12/05/22 16:23:20]
                                 Device supports cycle accurate trace
Device does not support data address trace
                                 Device does not support data value trace
[12/05/22 16:23:20]
[12/05/22 16:23:20]
                                 Device does not support trace range
[12/05/22 16:23:20]
[12/05/22 16:23:20]
                                 Version: 4.5
[12/05/22 16:23:20] Acquiring device info for CSCTI (0xE0042000):
[12/05/22 16:23:20]
[12/05/22 16:23:20]
                                 Number of supported triggers:
[12/05/22 16:23:20] Acquiring device info for CSTPIU (0xE0040000): [12/05/22 16:23:20] Supported Port Sizes: 1,2,4,8,12,16
[12/05/22 16:23:20]
[12/05/22 16:23:20]
                                 Clock prescaler enabled for parallel trace
[12/05/22 16:23:20] --- --- [12/05/22 16:23:20] Detecting topology ... (may take several seconds)
[12/05/22 16:23:20] --- ---
[12/05/22 16:23:20] Testing ATB topology:
[12/05/22 16:23:20] MASTER = CSITM (0XE0000000) (0) [12/05/22 16:23:20] MASTER = CSETM (0XE0041000) (0)
                                                                             SLAVE = CSTPIU (0xE0040000) (0)
SLAVE = CSTPIU (0xE0040000) (0)
[12/05/22 16:23:20]
[12/05/22 16:23:20] Testing core-source topology:
[12/05/22 16:23:20]
[12/05/22 16:23:20] Testing CTI topology:
[12/05/22 16:23:20]
[12/05/22 16:23:20] Asserting M-class topology using device base addresses:
                                                                            SLAVE = CSCTI (0xE0042000)
SLAVE = CSCTI (0xE0042000)
SLAVE = CSETM (0xE0041000)
[12/05/22 16:23:20] MASTER = Cortex-M85 (0xE000E000)
[12/05/22 16:23:20] MASTER = CSETM (0xE0041000)
[12/05/22 16:23:20] MASTER = Cortex-M85 (0xE000E000)
                                                                                                                          Trigger = 1
                                                                                                                           Trigger = 4
 [12/05/22 16:23:20] MASTER = CSCTI (0xE0042000)
                                                                              SLAVE = CSTPIU (0xE0040000)
                                                                                                                          Trigger = 3
[12/05/22 16:23:20]
 [12/05/22 16:23:20] Asserting missing topology using existing link information:
[12/05/22 16:23:20] ---
Debug server shutdown application
Debug server shut down attempted
[12/05/22 16:23:21] Autodetection Complete
[12/05/22 16:23:42] Creating database entry...
[12/05/22 16:23:42] Platform "Arm - AN555" built successfully
```

- 9. Select the target configuration database or create a new one depending on your requirements. In this example a new database **Example** has been created which is used.
- 10. Click **Finish** to complete the setup process.
- 11. The newly created debug configuration is now available for selection, similar to the example below:

12.4. Establishing a Debug Session

In this example we connect to the Cortex-M85.

Steps:

- 1. Ensure the Development Studio debugger is:
 - a. Powered, and connected to the host running the Development Studio software.
 - b. Connected to the MPS3 using the Coresight 20-pin / Mictor 38 port on the MPS3 as shown on **Figure 12-1: MPS3 Board Debug Connector Locations**
- 2. Open the Debug Configurations dialog box (by right-clicking on the newly created debug session in section Creating a Development Studio Debug Configuration (in the Debug Control Tab)) and ensure that Cortex-M85 target is selected under the Connection tab.
- 3. Click the **Debugger** tab, select **Connect only** under **Run control**.

An example dialog box is shown below. This example is pointing to the example made in the workspace.

4. Click Debug.

13. Using AN555 on the MPS3 Board

13.1. Pre-Requisites

Before attempting to use the board you must:

• Read the Arm® MPS3 FPGA Prototyping Board Technical Reference Manual. In particular, become familiar with the description of the configuration and boot flow.

You must be able to:

- Connect a PC to the MPS3 board using a USB connection (which is required to load files onto the MPS3 board SD card).
- Power the MPS3 board. The MPS3 board appears as a mapped drive named V2M-MPS3.
- Understand how to power up, reset and establish a serial terminal over the USB connection to a host PC.

The following picture shows the location of the debug connectors on the MPS3 board.

ARM CORTEX

Processor Technology

Processor Technology

ARM STM-5-2-1

ARM STM-5-

Figure 13-1: MPS3 Prototyping Board debug connector locations

13.2. Loading the Boardfiles

To load the Boardfiles onto the MPS3 board SD Card, follow the following steps.

- 1. Open the bundle ZIP file
- 2. Navigate into the Boardfiles / directory
- 3. Copy its contents into the root directory of the attached MPS3 drive (the MPS3 SD Card). The require content to be copied is:
 - MB/
 - SOFTWARE/
 - config.txt

It is recommended to delete any previous contents on the SD card in favour of these new contents. However, you might want to manually modify and merge the contents for certain configuration files.

The configuration files that can be modified can be found on the SD card here:

- config.txt
- MB/HBI0309{<boardrev>}/board.txt
- MB/HBI0309{<boardrev>}/AN555/images.txt

13.3. UART Serial ports

The AN555 FPGA supports four serial ports which are accessible through the MPS3 board Debug USB port:

- Serial Port 0 is connected to the MCC and outputs debug information about the status of the MCC.
- Serial Port 1 is connected to UART 0.
- Serial Port 2 is connected to UART 1.
- Serial Port 3 is connected to UART 2.

The logical > physical mapping of the serial ports on a host PC can be confusing due to the way the driver may allocate the port numbers. The serial port presented with the lowest number aligns to Serial Port O above.

13.4. UART serial port settings

All serial ports on the AN555 FPGA implementation use the following terminal/serial port settings:

Baud Rate: 115200 bps

New-Line: CR (Serial port 0) And LF (Serial Port 1,2 and 3 Only)

Data: 8 bits

Parity: none

Stop: 1 bit

Flow control: none

13.5. MPS3 USB Serial Port Drivers

For information on installing drivers to support USB serial port on MPS3:

https://community.arm.com/oss-platforms/w/docs/589/accessing-mps3-serial-ports-in-windows-10

13.6. MCC Memory mapping

The MCC on the MPS3 has visibility of certain areas of the system memory map. This is to enable preload of boot memory and data memories and configuring peripherals if needed.

The following table shows the memory map as viewed from the MCC. It also gives example addresses for each region for use in $an555_v2.txt$ and images.txt. Preloading can only target secure memory locations.

Table 13-1: MCC memory map

Address	Size	IOFPGA	Text file format example
0x1100_0000 - 0x111F_FFFF	2MB	FPGA SRAM	0x01_00_1100_0000
0x1A00_0000 - 0x1A00_7FFF	32KB	ITCM Access	0x01_00_1A00_0000
0x2400_0000 - 0x2400_7FFF	32KB	DTCM Access	0x01_00_3400_0000
0x3100_0000 - 0x313F_FFFF	4MB	Internal SRAM	0x01_00_3100_0000
0x5000_0000 - 0x57FF_FFFF	128 MB	Low Latency Peripherals	0x00_00_5000_0000 or 0x01_00_5000_0000
0x5800_0000 - 0x5FFF_FFFF	128 MB	High Latency Peripherals	0x00_00_5800_0000 or 0x01_00_5800_0000
0x7000_0000 - 0x7FFF_FFFF 0x9000_0000 - 0x9FFF_FFFF 0xB000_0000 - 0xBFFF_FFFF 0xD000_0000 - 0xDFFF_FFFF	2GB	DDR4	0x01_00_7000_0000 0x01_00_9000_0000 0x01_00_B000_0000 0x01_00_D000_0000

13.7. MCC Debug UART – Serial Port 0

The MPS3 board supports an MCC debug UART interface on serial port 0. This interface has the following functionality:

- Bi-directional CLI interface
- Verbose status output of MPS3 during the power on and boot stages
- Support to reboot the MCC using command-line syntax

13.7.1. MCC Debug UART - Verbose Output

It is possible to enter debug mode on the MCC UART. To do so

- 1. Change images.txt file TOTALIMAGES parameter to 0 and change config.txt UARTMODE from 2 to 1.
- 2. Reboot the board.
- 3. Once the initialization process is completed and you have received output on all four UART's press PBON to perform a software reset. An example output from the MCC UART can be seen below.

```
ARM V2M-MPS3 Firmware v2.2.0
Build Date: Oct 25 2022
Powering up system...
Switching on main power...
Configuring motherboard (rev A, var A)...
Reading Board File \MB\HBI0309A\AN555\an555 v2.txt
Configuring FPGA from file \MB\HBI0309A\AN555\an555 v2.bit
Address: 0x02840000
FPGA configuration complete.
OSCCLK0 : 25.000000MHz
OSCCLK1: 25.00000MHz
OSCCLK2: 30.00000MHz
OSCCLK3: 50.00000MHz
OSCCLK4: 24.576000MHz
OSCCLK5: 23.750000MHz
OSCCLK setup: PASSED
GTXCLK (100): PASSED
Writing SCC 0x010 with board revision A
Writing SCC 0x014 with ACLK 25000000 Hz
Setting QSPI PMODO FALSE & PMOD1 FALSE configuration
QSPI PMOD status: 0x0
Reading SCC 0xFF8 with 0x02100708
Reading SCC 0xFFC with 0x41055551
Long Address Range Version 1.0 Ports 2
PORTO AHB 0x0000 00000000 -1KB
```

```
PORT1 AHB 0x0000 00000000 -1KB
Releasing CB nRST
Initialise QSPI ON-BOARD
QSPI On-board Init: PASSED
Reading images file \MB\HBI0309A\AN555\images.txt
Image 0 LAR port 0 no offset added
Writing ELF file \SOFTWARE\an555 st.axf
Writing segment 0 to LAR address 0x0100 11000000
File \SOFTWARE\an555 st.axf written to memory address 0x0100 11000000
Image loaded from \SOFTWARE\an555 st.axf
Setting QSPI to XIP (QSPI) mode...
XIP Controller SCC Reg: 0x0
SMSC9220 was identified successfully.
MAC addrs test: PASSED
DDR SPD EEPROM detected...
UARTO: MCC, UART1: FPGA0
Clearing SCC CPUWAIT (0xffffffff80000000:0x00000000)
Enabling debug USB.
USB Serial Number = 500510
```

The verbose output above shows:

- The MCC booting
- The MCC reading the configuration files from the SD CARD
- The MCC configuring the FPGA with the target .bit file

If the MPS3 board does not boot correctly, refer to the log file LOG. TXT on the SD Card.

13.7.2. MCC Debug UART - Reboot Control

The command reboot on the terminal emulator console initiates MCC reboot.

DAI 0555

Issue 1

Board

13.7.3. The Preload Sequence

The preload sequence is:

- 1. MPS3 is powered up.
- 2. The PBON button on the MPS3 board is pressed.
- 3. The MCC configures the FPGA with the FPGA image, which is specified in the FPGA configuration file in MB/HBI0309 { <boardrev>} / AN555 / an555 v2.txt.
- 4. The FPGA power on reset is released.
- 5. The Cortex-M85 is held in wait state by driving CPUWAIT from the SCC CFG_REGO, which resets to high at boot up. The rest of the system is out of reset to allow preloading.
- 6. The MCC can then preload the target memories, using the specified images (if directed to do so in the images.txt file settings (see Preload Image Configuration (images.txt) for more details).
- 7. The MCC then clears the SCC CFG REGO which de-asserts the Cortex-M85 CPUWAIT.
- 8. The Cortex-M85 boots from the FPGA SRAM, booting into the code preloaded from the designated image file.

Figure 13-2: Preload reset sequence

13.7.4. Preload Image Configuration (images.txt)

Preload image configuration:

Images to be preloaded are selected/configured by modifying the following file on the SDCARD MB/HBI0309{<boardrev>}/AN555/images.txt.

For convenience, the file in the bundle has been templated with the syntax to load the FPGA SRAM, with the prebuilt selftest image, also supplied in the bundle. This can be observed below:

```
TITLE: Arm MPS3 FPGA prototyping board Images Configuration File

[IMAGES]

TOTALIMAGES: 1 ;Number of Images (Max: 32)

IMAGEOADDRESS: 0x01_00_1100_0000 ;Software image load address
IMAGEOUPDATE: RAM ;Image Update type
IMAGEOFILE: \SOFTWARE\an555_st.axf ;Software image filename SFN 8.3 format
```


A ";" preceding any text on the same line in the images.txt file denotes a comment and is ignored by the MPS3 MCC.

The images.txt can be modified by the user with the following restrictions:

- TOTALIMAGES Can have a value from O-32. Each additional image to be loaded must be described with an IMAGEXADDRESS, IMAGEXUPDATE and IMAGEXFILE entry and follow the syntax and format shown in the example above.
- IMAGEXADDRESS Will be the address that the image needs to be loaded to. The addresses for available preload regions in AN555 FPGA can be found in MCC Memory mapping, for QSPI preload addresses see Preloading QSPI Memories.
- IMAGEXUPDATE Informs the MCC how it should load the data. The options for this are:
 - o NONE | RAM | FORCEQSPI | FORCEQSPI PMOD0 | FORCEQSPI PMOD1

It is advised that any new entries use RAM except when targeting QSPI memories when FORCEQSPI / FORCEQSPI_PMOD0 / FORCEQSPI_PMOD1 should be used.

- o RAM Informs the MCC to load the specified file to the specified address.
- o FORCEQSPI* Informs the MCC to load QSPI memory using the required driver to the base address specified in an 555_v2.txt plus the offset specified by IMAGEXADDRESS
- IMAGEXFILE This is the location on the SD card of the software image to load and it must use the SFN 8.3 format for the filename.

The TOTALIMAGES defines how many of the entries are read by the MCC, no matter how many entries are present in the images.txt file. E.g., if the TOTALIMAGES parameter is set to 1, the MCC will only read in the file for "IMAGE0xxxx" and ignore "IMAGE1xxxx".

You can modify the file whilst the MCC/system is booted and running, the file is only read by the MCC during the boot up sequence.

To reboot the MCC after an image file configuration change, you must do one of the following:

- Press the PBRST button on the MPS3 board, followed by a pressing the **PBON** button to reboot the MCC.
- Issue a reboot command on the MCC console.

13.8. Memory Preload

13.8.1. Supported Memory Preload File Types

The MPS3 MCC supports preload of the following file types:

- AXF Object file, with an .axf filename extension.
- Binary Binary file, with a .bin filename extension.

13.8.2. Supported Memory Preload File Naming Format

The files that can be preloaded by the MCC must use the following file naming format:

- The MPS3 MCC uses the SFN (short filename) 8.3 format.
- The filename must have a maximum length of 8 characters.
- The filename must have a three-character extension (.axf or .bin).

13.8.3. Preloading QSPI Memories

To preload any of the QSPI memories a driver is used by the MCC. The driver automatically uses the QSPI read/write controller address specified in an 555 v2.txt.

Therefore, for the IMAGEXADDRESS in images.txt only the offset from the QSPI base address needs to be specified.

IMAGEXUPDATE also needs to use one of the QSPI specific options.

Below is an example images.txt entry for preloading to QSPI PMODO.

TITLE: Arm MPS3 FPGA prototyping board Images Configuration File

[IMAGES]

TOTALIMAGES: 1 ;Number of Images (Max: 32)

IMAGEOADDRESS: 0x00_00_0000 ;Software image load address
IMAGEOUPDATE: AUTOQSPI_PMOD0 ;Image Update type
IMAGEOFILE: \SOFTWARE\pmodcode.bin ;Software image filename SFN 8.3 format

14. Other Software Applications

The following Machine Learn (ML) Software is compatible with this FPGA image:

- https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ml-embedded-evaluation-kit/+/refs/heads/main/Readme.md.
- https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-core-platform/.