数值分析-实验3 曲线拟合的最小二乘法

计35 郑兆衡 2013011389

2016年4月11日

I. 实验目的

用最小二乘法求一个多项式, 使它与给定的数据相拟合。

II. 实验算法

根据教材的算法构造出了对应的线性方程组,利用高斯消元法实现。

III. 程序清单

- main.cpp main函数
- LeastSquareRegression.h, LeastSquareRegression.cpp 最小二乘 法的具体实现
- GaussEquation.h, GaussEquation.cpp 高斯消元法具体实现
- draw.m MATLAB绘图脚本

IV. 实验结果

<1> 最小二乘法所求得的多项式如下

$$y = p_1(x) = 2.0007x - 0.949464$$

$$y = p_2(x) = 0.001x^2 + 1.99907x - 0.950214$$

$$y = p_3(x) = 1.99911x^3 - 2.99767x^2 - 0.00004x + 0.549119$$

<2> 拟合函数和与实际值y的误差如下:

x	-1.0	-0.5	0.0	0.5	1.0	1.5	-2.0
$ y-p_n(x) $	1.49746	1.49750	1.50046	0.00257	1.49761	1.50164	1.50132

表 1: 线性函数拟合误差

x	-1.0	-0.5	0.0	0.5	1.0	1.5	-2.0
$ y-p_n(x) $	1.49871	1.49750	1.50121	0.00157	1.49686	1.50164	1.50007

表 2: 二次函数拟合误差

x	-1.0	-0.5	0.0	0.5	1.0	1.5	-2.0
$ y-p_n(x) $	0.00061	0.00183	0.00188	0.00157	0.00247	0.00231	0.00074

表 3: 三次函数拟合误差

<3> 散点图和曲线拟合图如下:

图 1: 线性拟合

图 2: 二次函数拟合

图 3: 三次函数拟合

V. 体会和展望

通过这次实现,我对最小二乘法的理论证明和具体的程序实现有了更深入的了解。学习并完成实验的过程对我的数值分析课程的学习

大有裨益。