

- Due tratti di filo paralleli di rame, di sezione $S = 3.0 \text{ mm}^2 \text{ e}$ lunghezza l = 1,20 m si trovano nel vuoto a una distanza d = 0,43 m. All'istante t_0 ai capi di uno dei due tratti di filo viene applicata una differenza di potenziale di 20 V. La resistività del rame vale $\rho_{Cu} = 1.7 \times 10^{-8} \,\Omega \cdot m$.
 - ▶ Calcola il modulo della forza magnetica che agisce sui due tratti di filo.

Dopo un intervallo di tempo Δt , anche al secondo filo viene applicata la stessa differenza di potenziale.

▶ Calcola il modulo della forza magnetica che agisce sui due tratti di filo.

[0 N; 4,8 N]

1) Se posso corrente solo in uno dei 2 fili, la

L= 1,20 m AV=201

d=0,43m

$$2^{\circ} CE49E DIOHM => R = P \frac{Q}{S}$$

$$1^{\circ} CE49E DIOHM => i = AV$$

$$i = \frac{AV \cdot S}{C \cdot L} = \frac{(20 \text{ V})(3,0 \times 10^{-6} \text{ m}^2)}{(1,7 \times 10^{-8} \text{ Q.m.})(1,20 \text{ m.})} = 2941,176...$$

$$F = (2 \times 10^{-7} \frac{N}{A^2}) \cdot \frac{(2841,176...A)^2}{0,43 \text{ m}} \cdot (1,20 \text{ m}) \simeq 4,8 \text{ N}$$

11 *** Tre fili rettilinei paralleli sono posti sui vertici di un triangolo equilatero di lato d = 35 cm, come mostrato nella figura, e sono attraversati dalle correnti i_1 , i_2 e i_3 . Le correnti hanno tutte intensità uguale a 2 A.

Determina modulo, direzione e verso della forza per unità di lunghezza che agisce sul filo 1 nel caso in cui le correnti i₁, i₂ e i₃ siano tutte uscenti dal foglio.

$$i_1 = i_2 = i_3 = 2A$$
 $d = 0,35m$
 $l = 1m$

$$F = Bil = (9,10T)(70\times10^{-3}A)(9,70M)$$

$$= 4,9\times10^{-3}N$$

In una regione occupata da un campo magnetico \vec{B} omogeneo di modulo 3×10^{-5} T, un conduttore rettilineo è attraversato da una corrente i_1 in direzione perpendicolare alle linee di campo di \vec{B} e risente di una forza di modulo 7×10^{-3} N. Un secondo conduttore, parallelo al primo e della stessa lunghezza, è attraversato da una corrente $i_2 = 8,7$ A e subisce una forza di intensità $4,9 \times 10^{-2}$ N.

▶ Calcola il valore di *i*₁.

$$F_1 = 7 \times 40^{-3} N$$

 $F_2 = 4,9 \times 40^{-2} N$

$$B = \frac{F_z}{i_z \ell} \Longrightarrow \frac{F_1}{i_z \ell} = \frac{F_z}{i_z \ell}$$

$$B = 3 \times 10^{-5} T$$

2 regnola 12 12

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{2} = 1, 24...A$$

$$\Rightarrow \frac{1}{2} = 1, 24...A$$