MATH 3110 - Fall 2018 PRACTICE 1

Exercise I:

Consider the following linear system

(E)
$$x_1 + 2x_2 - 4x_3 = 0$$
$$-2x_2 - 4x_2 + 8x_3 = 0$$
$$3x_1 + 6x_2 - 12x_3 = 0$$

- (a) Write the matrix equation corresponding to (E).
- (b) Let A be the coefficient matrix of (E). Write the solution of the equation $A\vec{x} = \vec{0}$ in parametric vector form. Describe it geometrically.
- (c) Let $\vec{b} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$. Is \vec{b} in the span of the columns of A? Justify your answer.

Exercise II:

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_3 \\ -2x_1 + x_2 - x_3 \\ 2x_2 + 6x_3 \end{bmatrix}$$

- (a) Let A be the standard matrix of T. Does the equation $A\vec{x} = \vec{b}$ have a solution for every $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ in \mathbb{R}^3 ? Justify your answer.
- (b) Is T onto \mathbb{R}^3 Justify your answer.
- (c) Is T one-to-one? Justify your answer.

Exercise III:

Let
$$A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 5 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$.

- (a) Compute AB by using the row-column rule.
- (b) Is A^TB^T defined? Justify your answer.

EXERCISE IV:

Find the inverse of the following matrices:
$$A = \begin{bmatrix} 1 & -3 \\ 4 & -9 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$

1