Lecture 3: Logistic Regression and Optimization

Areeb Gani, Michael Ilie, Vijay Shanmugam

Welcome!

ml.mbhs.edu

Outline

Topics

- Linear Regression Recap
- Turning Regression into Classification
- Sigmoid Function
- Logistic Regression
- Gradient Descent Contours

Deepnote!

Regression vs. Classification

Regression

- Predicting continuous values
- Example: predicting house prices, body weight, height
- Types of algorithms: linear regression, polynomial regression, exponential regression

Classification

- Predicting discrete label values
- Example: predicting if tumor is benign or malignant, if car is new or used, if dog is of a certain breed
- Types of algorithms: logistic regression, k-nearest neighbors, decision trees

Linear Regression Recap

- Predict values (m, b) in linear equation
 - We call this (W, b)
- Create cost function to tell us difference between our prediction and the real value
- Minimize the cost function using gradient descent
- Now we have the optimal (W, b) values and have fit our line to the data

Regression vs. Classification

Turning Regression into Classification

- To perform classification, we need probability values
- In our example, we need the probability that the tumor is malignant
- A probability is a value from [0, 1]
- How do we get such a value?

Sigmoid Function

• Range (input) \rightarrow (-inf, inf), Domain (output) \rightarrow [0, 1]

Logistic Regression

- Perform linear regression, then apply sigmoid function
- We call sigmoid function the "activation function"
- This gives us a probability → class label
- Generally, threshold is 0.5, but this level can be adjusted

Cost Function Graphs

Cost Function Graphs

Types of Gradient Descent

- Batch gradient descent (training on whole dataset)
- Stochastic gradient descent (training on individual entries)
- Mini-batch gradient descent (training on subsets of dataset)
 - Must define batch size parameter (size of each batch), e.g. in a dataset of 10000 rows we may have a batch size of 512

Gradient Descent with Momentum

- Minimize movement vertically, maximize movement horizontally
- Take exponential average of previous changes (derivatives), smoothing out our movement (concept of "momentum")
- Since we are moving up and down vertically, this smoothes out to minimal vertical movement, whereas horizontal movement remains high

RMSProp and Adam Optimization

RMSProp

- Adaptive learning rate, instead of having constant
- Ensures that we are not too slow (undershoot), and not too fast (overshoot)

Adam Optimization

Combination of Momentum and RMSProp (moves efficiently, adaptive learning rate)

Visual Comparisons

Visual Comparisons

Join Our Groups

- Sign up for Discord (https://discord.gg/3Z5YuPqt)
- Join Deepnote (https://deepnote.com/join-team?token=af3af0284bc8497)
- Fill out our form (<u>https://forms.gle/Fr31aFLWx8cHdtTY8</u>)
 - Join mailing list + Github organization