Tema 4: Recurrencias

Ing. Margot Edith Cuarán Jaramillo

Escuela de Ingeniería de Sistemas y Computación Universidad del Valle - Santiago de Cali, Colombia e-mail: mecuaran@eisc.univalle.edu.co
Agosto 2.006

Definición recursiva

Las funciones se pueden definir recursivamente. La forma más simple de definiciones recursivas de una función f sobre los números naturales especifica:

Regla básica El valor de f(0)

Regla de recursión

Cómo obtener f(n) a partir de f(n-1), $\forall n \geq 1$

Ejemplo 1: Factorial de n (n!)

Básica
$$f(0) = 0! = 1$$

Recursión $f(n) = n.(n-1)!$

Calcule f(5).

En general, un algoritmo recursivo se plantea él mismo un problema con la misma estructura del inicial, pero de tamaño menor.

```
int factorial(int num){
...if (num==0)
....return 1;
...else
....return num*factorial(num-1); }
```

Haga el proceso de ejecución de la función factorial, con n=5.

$$factorial(5) = \underbrace{5*factorial(4)}_{\Downarrow}$$

$$= 5*\underbrace{4*factorial(3)}_{\Downarrow}$$

$$= 5*4*\underbrace{3*factorial(2)}_{\Downarrow}$$

$$= 5*4*3*2*factorial(1)$$

$$= 5*4*3*2*1*factorial(0)$$

$$= 5*4*3*2*1*1$$

Tiempo de ejecución del algoritmo $T_A(n)$ (tiempo que se demora el algoritmo A, en el peor de los casos, para encontrar una solución a un problema de tamaño n).

$$T(num) = \left\{ T_k + T(num - 1), num > 0 \right\}$$

Solución

$$T(num) = T_k + T(num - 1)$$

 $= T_k + T_k + T(num - 2)$
 $= T_k + T_k + T_k + T(num - 3)$
 $= \dots$
 $= num * T_k + T(0)$
 $= T_k * (num + 1)$

Se puede concluir que T(num es O(num+1) $\Rightarrow T(\text{num}) \text{ es } O(\text{num})$

Ejemplo 2: Mezcla de dos listas ordenadas

$$A = \begin{bmatrix} 2 & 3 & 5 & 6 \end{bmatrix}$$

А	В	Fusión	Comparación
2,3,5,6	1,4		1 < 2
2,3,5,6	4	1	2 < 4
3,5,6	4	1,2	3 < 4
5,6	4	1,2,3	4 < 5
5,6		1,2,3,4	
		1,2,3,4,5,6	

Tiempo de ejecución del algoritmo $T_A(n)$ Dos listas ordenadas con m y n elementos se pueden mezclar en una lista ordenada realizando a lo sumo m+n-1 comparaciones [2].

Ejemplo 3: Ordenación por mezcla

Tiempo de ejecución del algoritmo $T_A(n)$

- n es el número de elementos de la listra. Por conveniencia, sea n potencia de 2 (2^m)
- Partición 1: 2 listas de 2^{m-1} elementos cada una. (Primer nivel del árbol)
- Partición 2: 4 listas de 2^{m-2} elementos cada una. (Segundo nivel del árbol)
- En general, 2^{k-1} listas de 2^{m-k+1} elementos cada una. (k-1 nivel del árbol)
- Al final, 2^m listas de un elemento cada una. (m nivel del árbol)

La mezcla combina pares de 2^m listas de un elemento en 2^{m-1} listas (nivel m-1). La mezcla de cada par requiere una comparación.

El número de comparaciones que requiere la ordenación por mezcla es a lo sumo:

$$NumComp = \sum_{k=1}^{m} 2^{k-1} (2^{m-k+1} - 1)$$

$$= \sum_{k=1}^{m} 2^m - \sum_{k=1}^{m} 2^{k-1}$$

$$= m2^m - (2^m - 1)$$

$$= n.log(n) - n + 1$$

Sea
$$m = log(n)$$
 y $n = 2^m$

El número de comparaciones que necesita el algoritmo de ordenación por mezcla es O(n.log(n))

Clase Práctica

- Algoritmo recursivo para hallar a^n , donde a es un número real distinto de cero yu n es un entero no negativo.
- Algoritmo recursivo para calcular el máximo común divisor de dos números no negativos a y b, a < b.
- Algoritmo recursivo de búsqueda lineal.
- Algoritmo recursivo para los números fibonacci.

Definición recursiva de conjuntos

Una definición recursiva de un conjunto S se compone de:

Cláusula básica que especifica un conjunto de elementos primitivos.

Cláusula recursiva que especifica cómo los elementos del conjunto se pueden construir desde elementos ya conocidos en el conjunto S; pudiendo ser subclausulas recursivas.

Cláusula exclusión implícita cualquier cosa que no se encuentra en el conjunto como resultado de la clausula base o la clausula recursiva.

Ejemplo 4: Definición rec. conjunto de enteros

Básica $7, 10 \in S$

Recursiva $Si \ r \in S \ entonces \ r + 7, \ r + 10 \in S$

Problema

Suponga, $(\forall n \geq 54)[n \in S]$.

Base: $54 = 2 \cdot 7 + 4 \cdot 10$

Hipótesis de inducción:

Asuma $n = r . 7 + s . 10 con n \ge 54$

Paso inducción: Dos casos.

Caso 1: r > 7.

Entonces $n + 1 = (r - 7) \cdot 7 + (s + 5) \cdot 10$

Caso 2: $r < 7 \Rightarrow r \cdot 7 < 42 \Rightarrow s > 2$

Entonces $n + 1 = (r + 3) \cdot 7 + (s - 2) \cdot 10$

Ejemplo 5: Backus Normal Form (BNF)

BNF es un ejemplo de la gramática de libre contexto útil para definiciones recursivas de conjuntos.

BNF para cadenas

 $\langle cadena \rangle := \lambda \mid \langle cadena \rangle \langle caracter \rangle$

BNF para identificadores

BNF para expresiones aritméticas

$$e_1 + e_2$$
, $e_1 - e_2$, $e_1 * e_2$, e_1/e_2 , $e_1 exp e_2$, (e_1)

Bibliografía

- 1. Villalobos Jorge. Diseño y manejo de estructura de datos en C. McGrawHill, 1.996. Pags.14–39
- 2. Rosen Kenneth. Matemática Discreta y sus aplicaciones. 5ta. Edición. McGrawHill, 2.004.