Пусть событие A может наступить при условии наступления событий $H_1, H_2, ..., H_n$, которые образуют полную группу.

Пусть событие A может наступить при условии наступления событий $H_1, H_2, ..., H_n$, которые образуют полную группу. События H_k , k=1,...,n называют гипотезами.

Пусть событие A может наступить при условии наступления событий $H_1, H_2, ..., H_n$, которые образуют полную группу. События H_k , k=1,...,n называют гипотезами. Пусть известны вероятности этих событий (априорные вероятности) $P(H_k)$, k=1,...,n и условные вероятности $P(A/H_k)$, k=1,...,n.

Пусть событие A может наступить при условии наступления событий $H_1, H_2, ..., H_n$, которые образуют полную группу. События H_k , k=1,...,n называют гипотезами. Пусть известны вероятности этих событий (априорные вероятности) $P(H_k)$, k=1,...,n и условные вероятности $P(A/H_k)$, k=1,...,n. Допустим, что произведено испытание, в результате которого событие A наступило.

Пусть событие A может наступить при условии наступления событий $H_1, H_2, ..., H_n$, которые образуют полную группу. События H_k , k=1,...,n называют гипотезами. Пусть известны вероятности этих событий (априорные вероятности) $P(H_k)$, k=1,...,n и условные вероятности $P(A/H_k)$, k=1,...,n. Допустим, что произведено испытание, в результате которого событие A наступило. Тогда апостериорная вероятность любого события H_k

$$P(H_k | A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{n} P(H_i)P(A|H_i)}.$$

Доказательство.

$$P(H_k \mid A) = \frac{P(H_k \cdot A)}{P(A)} = \frac{P(H_k)P(A \mid H_k)}{P(A)}.$$

Доказательство.

$$P(H_k \mid A) = \frac{P(H_k \cdot A)}{P(A)} = \frac{P(H_k)P(A \mid H_k)}{P(A)}.$$

По формуле полной вероятности $P(A) = \sum_{i=1}^n P(H_i) P(A \mid H_i)$

Доказательство.

$$P(H_k \mid A) = \frac{P(H_k \cdot A)}{P(A)} = \frac{P(H_k)P(A \mid H_k)}{P(A)}.$$

По формуле полной вероятности $P(A) = \sum_{i=1}^{n} P(H_i) P(A \mid H_i)$

⇒ формула Байеса.

Решение. Можно сделать два предположения:

1) деталь проверил первый контролер — событие H_1 ;

Решение. Можно сделать два предположения:

- 1) деталь проверил первый контролер событие H_1 ;
- 2) деталь проверил второй контролер событие H_2 .

Решение. Можно сделать два предположения:

- 1) деталь проверил первый контролер событие H_1 ;
- 2) деталь проверил второй контролер событие H_2 . Искомую вероятность того, что деталь проверил первый контролер, найдем по формуле:

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{P(H_1)P(A/H_1) + P(H_2)P(A/H_2)}.$$

$$P(H_1) = 0.6$$

- вероятность того, что деталь попадет к первому контролеру;

$$P(H_1) = 0.6$$

- вероятность того, что деталь попадет к первому контролеру;

$$P(H_2) = 0.4$$

- вероятность того, что деталь попадет ко второму контролеру;

$$P(H_1) = 0.6$$

- вероятность того, что деталь попадет к первому контролеру;

$$P(H_2) = 0.4$$

- вероятность того, что деталь попадет ко второму контролеру; $P(A | H_1) = 0.94$ - вероятность того, что годная деталь будет признана стандартной первым контролером;

$$P(H_1) = 0.6$$

- вероятность того, что деталь попадет к первому контролеру;

$$P(H_2) = 0.4$$

- вероятность того, что деталь попадет ко второму контролеру; $P(A|H_1) = 0.94$ - вероятность того, что годная деталь будет признана стандартной первым контролером; $P(A|H_2) = 0.98$ - вероятность того, что годная деталь будет признана стандартной вторым контролером.

$$P(H_1) = 0.6$$

- вероятность того, что деталь попадет к первому контролеру;

$$P(H_2) = 0.4$$

- вероятность того, что деталь попадет ко второму контролеру; $P(A|H_1) = 0.94$ - вероятность того, что годная деталь будет признана стандартной первым контролером; $P(A|H_2) = 0.98$ - вероятность того, что годная деталь будет признана стандартной вторым контролером. Тогда

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{P(H_1)P(A/H_1) + P(H_2)P(A/H_2)}$$
$$= \frac{0.6 \cdot 0.94}{0.6 \cdot 0.94 + 0.4 \cdot 0.98} \approx 0.59.$$

Схемой Бернулли (или последовательностью независимых одинаковых испытаний) называют эксперимент, удовлетворяющий условиям:

Схемой Бернулли (или последовательностью независимых одинаковых испытаний) называют эксперимент, удовлетворяющий условиям:

1) за основу берется эксперимент, имеющий 2 исхода. Это может быть, например, появление некоторого события B - один исход, и не появление этого события B – другой исход:

Схемой Бернулли (или последовательностью независимых одинаковых испытаний) называют эксперимент, удовлетворяющий условиям:

- 1) за основу берется эксперимент, имеющий 2 исхода. Это может быть, например, появление некоторого события B один исход, и не появление этого события B другой исход:
- 2) этот исходный эксперимент повторяется независимо n раз. «Независимо» т.е. исходы эксперимента при очередном повторении не зависят от исходов эксперимента на предыдущих шагах;

Схемой Бернулли (или последовательностью независимых одинаковых испытаний) называют эксперимент, удовлетворяющий условиям:

- 1) за основу берется эксперимент, имеющий 2 исхода. Это может быть, например, появление некоторого события B один исход, и не появление этого события B другой исход:
- 2) этот исходный эксперимент повторяется независимо n раз. «Независимо» т.е. исходы эксперимента при очередном повторении не зависят от исходов эксперимента на предыдущих шагах;
- 3) вероятности двух исходов при каждом повторении исходного эксперимента одни и те же.

Пусть в случайном испытании событие B появляется с вероятностью p и не появляется с вероятностью 1-p=q.

Пусть в случайном испытании событие B появляется с вероятностью p и не появляется с вероятностью 1-p=q. Проводится серия таких независимых испытаний.

Пусть в случайном испытании событие B появляется с вероятностью p и не появляется с вероятностью 1-p=q. Проводится серия таких независимых испытаний. Необходимо вычислить вероятность P(n,m) того, что при n испытаниях событие B осуществится ровно m раз и, следовательно, не осуществится ровно n-m раз.

Пусть в случайном испытании событие B появляется с вероятностью p и не появляется с вероятностью 1-p=q. Проводится серия таких независимых испытаний. Необходимо вычислить вероятность P(n,m) того, что при n испытаниях событие B осуществится ровно m раз и, следовательно, не осуществится ровно n-m раз.

Формула Бернулли

$$\left| P(n,m) = C_n^m p^m q^{n-m} \right| .$$

Пусть в случайном испытании событие B появляется с вероятностью p и не появляется с вероятностью 1-p=q. Проводится серия таких независимых испытаний. Необходимо вычислить вероятность P(n,m) того, что при n испытаниях событие B осуществится ровно m раз и, следовательно, не осуществится ровно n-m раз.

Формула Бернулли

$$P(n,m) = C_n^m p^m q^{n-m}$$

Доказательство. Вероятность события «в n независимых испытаниях событие B наступило m раз и не наступило n-m раз» равна p^mq^{n-m} ; число таких элементарных исходов совпадает с числом сочетаний из n элементов по m и равно C_n^m .

Решение. Вычислим сначала $P(\overline{A})$: событие \overline{A} осуществится, если частица или не будет зарегистрирована ни одним счетчиком — событие A_0 , или будет зарегистрирована только одним счетчиком — событие A_1 .

Решение. Вычислим сначала $P(\overline{A})$: событие \overline{A} осуществится, если частица или не будет зарегистрирована ни одним счетчиком — событие A_0 , или будет зарегистрирована только одним счетчиком — событие A_1 . Вероятности $P(A_0)$, $P(A_1)$ вычисляем по формуле Бернулли:

Решение. Вычислим сначала $P(\overline{A})$: событие \overline{A} осуществится, если частица или не будет зарегистрирована ни одним счетчиком — событие A_0 , или будет зарегистрирована только одним счетчиком — событие A_1 . Вероятности $P(A_0)$, $P(A_1)$ вычисляем по формуле Бернулли:

$$P(A_0) = C_6^0 p^0 q^6 = (0.2)^6, P(A_1) = C_6^1 p q^5 = 6 \cdot 0.8 \cdot (0.2)^5.$$

Решение. Вычислим сначала P(A): событие A осуществится, если частица или не будет зарегистрирована ни одним счетчиком — событие A_0 , или будет зарегистрирована только одним счетчиком — событие A_1 . Вероятности $P(A_0)$, $P(A_1)$ вычисляем по формуле Бернулли:

$$P(A_0) = C_6^0 p^0 q^6 = (0.2)^6$$
, $P(A_1) = C_6^1 p q^5 = 6 \cdot 0.8 \cdot (0.2)^5$. Тогда $P(\overline{A}) = C_6^0 p^0 q^6 + C_6^1 p q^5 = 0.2^6 + 6 \cdot 0.8 \cdot 0.2^5 = 0.2^6 (1 + 2.4) = 5 \cdot 0.2^5$.

Решение. Вычислим сначала $P(\overline{A})$: событие \overline{A} осуществится, если частица или не будет зарегистрирована ни одним счетчиком — событие A_0 , или будет зарегистрирована только одним счетчиком — событие A_1 . Вероятности $P(A_0)$, $P(A_1)$ вычисляем по формуле Бернулли:

$$Pig(A_0ig) = C_6^0 p^0 q^6 = ig(0.2ig)^6, \ Pig(A_1ig) = C_6^1 p q^5 = 6 \cdot 0.8 \cdot ig(0.2ig)^5.$$
 Тогда $Pig(\overline{A}ig) = C_6^0 p^0 q^6 + C_6^1 p q^5 = 0.2^6 + 6 \cdot 0.8 \cdot 0.2^5 = 0.2^6 (1 + 2.4) = 5 \cdot 0.2^5.$ Отсюда $Pig(Aig) = 1 - Pig(\overline{A}ig) = 1 - 5 \cdot 0.2^5 = 1 - 0.0016 = 0.9984.$

Замечание. События B_m при различных m в схеме Бернулли несовместны. Значит, вероятность успеха в n испытаниях не менее чем m_1 раз, но не более чем m_2 раз равна:

Замечание. События B_m при различных m в схеме Бернулли несовместны. Значит, вероятность успеха в n испытаниях не менее чем m_1 раз, но не более чем m_2 раз равна:

$$P(m_1 \le m \le m_2) = \sum_{k=m_1}^{m_2} C_n^k p^k q^{n-k}.$$

Если в схеме Бернулли проводится большое число испытаний (например, n > 1000), то пользоваться формулой Бернулли становится затруднительно.

Если в схеме Бернулли проводится большое число испытаний (например, n > 1000), то пользоваться формулой Бернулли становится затруднительно.

Формула Пуассона

- применяется тогда, когда наряду с **большим** числом испытаний n **мала** вероятность успеха в каждом отдельном испытании.

Если в схеме Бернулли проводится большое число испытаний (например, n > 1000), то пользоваться формулой Бернулли становится затруднительно.

Формула Пуассона

- применяется тогда, когда наряду с **большим** числом испытаний n **мала** вероятность успеха в каждом отдельном испытании.

Теорема Пуассона. Если число испытаний в схеме Бернулли n велико, вероятность успеха в одном испытании p_n мала, и мало число $\lambda = np_n$, тогда

Если в схеме Бернулли проводится большое число испытаний (например, n > 1000), то пользоваться формулой Бернулли становится затруднительно.

Формула Пуассона

- применяется тогда, когда наряду с **большим** числом испытаний *п* **мала** вероятность успеха в каждом отдельном испытании.

Теорема Пуассона. Если число испытаний в схеме Бернулли n велико, вероятность успеха в одном испытании p_n мала, и мало число $\lambda = np_n$, тогда

$$P(n,m) = C_n^m p^m q^{n-m} \xrightarrow[n \to \infty]{} \frac{\lambda^m}{m!} e^{-\lambda}, \quad m = 0,1,2...$$

$$P(n,m) = C_n^m p_n^m (1-p_n)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(1-\frac{\lambda}{n}\right)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(\frac{\lambda$$

$$P(n,m) = C_n^m p_n^m (1 - p_n)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n!}{m!(n-m)!} \cdot \frac{\lambda^m}{n^m} \cdot \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^m} =$$

$$P(n,m) = C_n^m p_n^m (1 - p_n)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n!}{m!(n-m)!} \cdot \frac{\lambda^m}{n^m} \cdot \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^m} =$$

$$= \frac{\lambda^m}{m!} \left[\frac{n(n-1)...(n-m+1)}{n^m} \right] \cdot \frac{(1-\frac{\lambda}{n})^n}{(1-\frac{\lambda}{n})^m}$$

$$P(n,m) = C_n^m p_n^m (1 - p_n)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(1 - \frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n!}{m!(n-m)!} \cdot \frac{\lambda^m}{n^m} \cdot \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^m} =$$

$$=\frac{\lambda^{\frac{m}{n}}}{m!}\left[\frac{n(n-1)...(n-m+1)}{n^{\frac{m}{n}}}\right]\cdot\frac{\overbrace{(1-\frac{\lambda}{n})^{n}}^{e^{-\lambda}}}{\underbrace{(1-\frac{\lambda}{n})^{m}}_{1}}\to\frac{\lambda^{\frac{m}{n}}}{m!}e^{-\lambda}\quad\text{при }n\to\infty,$$

$$P(n,m) = C_n^m p_n^m (1-p_n)^{n-m} = C_n^m \cdot \left(\frac{\lambda}{n}\right)^m \cdot \left(1-\frac{\lambda}{n}\right)^{n-m} =$$

$$= \frac{n!}{m!(n-m)!} \cdot \frac{\lambda^m}{n^m} \cdot \frac{\left(1-\frac{\lambda}{n}\right)^n}{\left(1-\frac{\lambda}{n}\right)^m} =$$

$$= \frac{\lambda^m}{m!} \left[\frac{n(n-1)...(n-m+1)}{n^m}\right] \cdot \frac{\left(1-\frac{\lambda}{n}\right)^n}{\left(1-\frac{\lambda}{n}\right)^m} \to \frac{\lambda^m}{m!} e^{-\lambda} \quad \text{при } n \to \infty,$$

т.к.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x \to e$$
 (второй замечательный предел)

Таким образом, при достаточно большом n (по сравнению с np) выполняется приближенное равенство

$$P(n,m) \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

Пример. По каналу связи передано 100 символов. Вероятность искажения одного символа помехами p=0.04. Найти вероятность того, что будет искажено 2 символа.

Пример. По каналу связи передано 100 символов. Вероятность искажения одного символа помехами p=0.04. Найти вероятность того, что будет искажено 2 символа. **Решение**. Требуется найти P(100,2). Применим формулу Пуассона, так как np=4 можно считать достаточно малой величиной.

$$P(100,2) \approx \frac{4^2}{2!}e^{-4} \approx 0.1465.$$

Пример. По каналу связи передано 100 символов. Вероятность искажения одного символа помехами p=0.04. Найти вероятность того, что будет искажено 2 символа. **Решение**. Требуется найти P(100,2). Применим формулу Пуассона, так как np=4 можно считать достаточно малой величиной.

$$P(100,2) \approx \frac{4^2}{2!}e^{-4} \approx 0.1465.$$

Вычисления по точной формуле дают P(100,2) = 0.1450.

Случайной величиной называется функция X, ставящая в соответствие каждому элементарному исходу $\omega \in \Omega$ число $X = X(\omega)$.

Случайной величиной называется функция X, ставящая в соответствие каждому элементарному исходу $\omega \in \Omega$ число $X = X(\omega)$.

Будем обозначать случайные величины прописными буквами X,Y,Z и т.д., а их возможные значения — соответствующими строчными буквами x, y, z.

Случайной величиной называется функция X, ставящая в соответствие каждому элементарному исходу $\omega \in \Omega$ число $X = X(\omega)$.

Будем обозначать случайные величины прописными буквами X,Y,Z и т.д., а их возможные значения — соответствующими строчными буквами x, y, z.

Например, если случайная величина X имеет три возможных значения, то они будут обозначены так: x_1, x_2, x_3 .

Случайной величиной называется функция X, ставящая в соответствие каждому элементарному исходу $\omega \in \Omega$ число $X = X(\omega)$.

Будем обозначать случайные величины прописными буквами X,Y,Z и т.д., а их возможные значения — соответствующими строчными буквами x, y, z.

Например, если случайная величина X имеет три возможных значения, то они будут обозначены так: x_1, x_2, x_3 .

Случайные величины используются для того, чтобы выразить числовые характеристики случайных событий.

Свойства функции распределения.

1. Значения функции распределения принадлежат отрезку [0,1]: $0 \le F(x) \le 1$.

Свойства функции распределения.

- 1. Значения функции распределения принадлежат отрезку [0,1]: $0 \le F(x) \le 1$.
- 2. F(x) есть неубывающая функция, т.е. если $x_1 < x_2$, то $F(x_1) \le F(x_2)$.

Свойства функции распределения.

- 1. Значения функции распределения принадлежат отрезку [0,1]: $0 \le F(x) \le 1$.
- 2. F(x) есть неубывающая функция, т.е. если $x_1 < x_2$, то $F(x_1) \le F(x_2)$.

Доказательство. Введем события $A_1 = \{X < x_1\}$, $A_2 = \{X < x_2\}$. Тогда $A_1 \subset A_2$, поэтому $P(A_1) \le P(A_2)$, значит $F(x_1) \le F(x_2)$.

$$\begin{array}{c|c} & & A_2 \\ \hline & A_1 & \\ & & X_1 & X_2 \end{array}$$

3. Вероятность того, что случайная величина примет значение из промежутка [a,b) равна

$$P(a \le X < b) = F(b) - F(a),$$

то есть приращению функции распределения на этом интервале.

3. Вероятность того, что случайная величина примет значение из промежутка [a,b) равна

$$P(a \le X < b) = F(b) - F(a),$$

то есть приращению функции распределения на этом интервале.

Доказательство. Так как событие

$$\{X < b\}$$

эквивалентно событию

$$\{X < a\} \bigcup \{a \le X < b\},\$$

TO

$$P(X < b) = P(X < a) + P(a \le X < b)$$
.

3. Вероятность того, что случайная величина примет значение из промежутка [a,b) равна

$$P(a \le X < b) = F(b) - F(a),$$

то есть приращению функции распределения на этом интервале.

Доказательство. Так как событие

$$\{X < b\}$$

эквивалентно событию

$$\{X < a\} \bigcup \{a \le X < b\},\$$

TO

$$P(X < b) = P(X < a) + P(a \le X < b)$$
.

Поэтому

$$P(a \le X < b) = P(X < b) - P(X < a) = F(b) - F(a)$$
.

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Так как неравенство $X < +\infty$ достоверно, то $P(X < +\infty) = 1$.

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Так как неравенство $X < +\infty$ достоверно, то $P(X < +\infty) = 1$. Пусть событие

$$Q_k = \{k - 1 \le X < k\}.$$

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Так как неравенство $X < +\infty$ достоверно, то $P(X < +\infty) = 1$. Пусть событие

$$Q_k = \{k - 1 \le X < k\}.$$

Так как событие $\{X<+\infty\}=\sum_{-\infty}^{+\infty}Q_{k}$, то по аксиоме счетной

аддитивности
$$P(X<+\infty)=\sum_{-\infty}^{+\infty}P(Q_k)$$
.

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Так как неравенство $X < +\infty$ достоверно, то $P(X < +\infty) = 1$. Пусть событие

$$Q_k = \{k - 1 \le X < k\}.$$

Так как событие $\{X<+\infty\}=\sum_{-\infty}^{+\infty}Q_{k}$, то по аксиоме счетной

аддитивности
$$P(X<+\infty)=\sum_{-\infty}^{+\infty}P(Q_k)$$
.

Следовательно, при $n \to \infty$

$$\sum_{k=1-n}^{n} P(Q_k) = \sum_{k=1-n}^{n} (F(k) - F(k-1)) = F(n) - F(-n) \to 1.$$

Доказательство. Существование и единственность пределов следует из монотонности и ограниченности F(x) Найдем значение пределов.

Так как неравенство $X < +\infty$ достоверно, то $P(X < +\infty) = 1$. Пусть событие

$$Q_k = \{k - 1 \le X < k\}.$$

Так как событие $\{X<+\infty\}=\sum_{-\infty}^{+\infty}Q_{k}$, то по аксиоме счетной

аддитивности
$$P(X<+\infty)=\sum_{-\infty}^{+\infty}P(Q_k)$$
.

Следовательно, при $n \to \infty$

$$\sum_{k=1-n}^{n} P(Q_k) = \sum_{k=1-n}^{n} (F(k) - F(k-1)) = F(n) - F(-n) \to 1.$$

Так как $0 \le F(x) \le 1$, то $F(-n) \to 0$, $F(+n) \to 1$.

Доказательство. Обозначим через A_n событие $\{x_n \le X < x\}$.

Доказательство. Обозначим через A_n событие $\{x_n \le X < x\}$.

По свойству непрерывности вероятности существует предел $\lim_{n\to\infty} P(A_n) = 0$.

Доказательство. Обозначим через A_n событие $\{x_n \le X < x\}$.

По свойству непрерывности вероятности существует предел $\lim_{n\to\infty} P(A_n) = 0$.

Ho
$$\lim_{n\to\infty} P(A_n) = \lim_{n\to\infty} [F(x) - F(x_n)] = F(x) - \lim_{n\to\infty} F(x_n) =$$

Доказательство. Обозначим через A_n событие $\{x_n \le X < x\}$.

По свойству непрерывности вероятности существует предел $\lim_{n\to\infty} P(A_n) = 0.$

Ho
$$\lim_{n\to\infty} P\big(A_n\big) = \lim_{n\to\infty} \big[F(x) - F(x_n)\big] = F(x) - \lim_{n\to\infty} F(x_n) =$$

= $F(x) - F(x-0) = 0$, значит $F(x-0) = F(x)$.

Случайная величина X называется дискретной, если существует конечная или счетная последовательность чисел $x_1, x_2, ...,$ такая, что

$$\sum_{k=1}^{\infty} P(X=x_k) = 1.$$

Случайная величина X называется **дискретной**, если существует конечная или счетная последовательность чисел $x_1, x_2, ...,$ такая, что

$$\sum_{k=1}^{\infty} P(X = x_k) = 1.$$

Дискретную случайную величину удобно задавать в виде таблицы или графика (полигона распределения):

Значения	x_1	x_2	x_3	
Вероятности	p_1	p_2	p_3	

Случайная величина X называется **дискретной**, если существует конечная или счетная последовательность чисел $x_1, x_2, ...,$ такая, что

$$\sum_{k=1}^{\infty} P(X=x_k) = 1.$$

Дискретную случайную величину удобно задавать в виде таблицы или графика (полигона распределения):

Значения	X_1	x_2	x_3	
Вероятности	p_1	p_2	p_3	

График функции распределения для дискретной случайной величины имеет ступенчатый вид:

\mathcal{X}_i	-1	2	3	5
p_i	0.1	0.3	0.4	0.2

Пусть производится серия из n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p.

Пусть производится серия из n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Обозначим X - число появлений события A в этих испытаниях.

Пусть производится серия из n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Обозначим X - число появлений события A в этих испытаниях. Тогда

$$P(X=k) = C_n^k p^k q^{n-k}$$

(формула Бернулли).

$$X \sim Bin(n, p)$$

Пусть производится серия из n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Обозначим X - число появлений события A в этих испытаниях. Тогда

$$P(X=k) = C_n^k p^k q^{n-k}$$

(формула Бернулли).

$$X \sim Bin(n,p)$$

Биномиальным называют распределение вероятностей, определяемое формулой Бернулли.

Пусть производится серия из n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Обозначим X - число появлений события A в этих испытаниях. Тогда

$$P(X=k) = C_n^k p^k q^{n-k}$$

(формула Бернулли).

$$X \sim Bin(n, p)$$

Биномиальным называют распределение вероятностей, определяемое формулой Бернулли. Закон назван «биномиальным» потому, что правую часть формулы можно рассматривать как общий член разложения бинома Ньютона:

$$(p+q)^n = C_n^n p^n + C_n^{n-1} p^{n-1} q + ... + C_n^0 q^n.$$

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5.

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5. При двух бросаниях монеты герб может появиться либо 2 раза, либо 1 раз, либо совсем не появиться.

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5. При двух бросаниях монеты герб может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы:

$$x_1 = 2$$
, $x_2 = 1$, $x_3 = 0$.

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5. При двух бросаниях монеты герб может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: $x_1 = 2$, $x_2 = 1$, $x_3 = 0$. По формуле Бернулли

$$P(2,2) = C_2^2 p^2 = (0.5)^2 = 0.25;$$

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5. При двух бросаниях монеты герб может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: $x_1 = 2$, $x_2 = 1$, $x_3 = 0$. По формуле Бернулли

$$P(2,2) = C_2^2 p^2 = (0.5)^2 = 0.25;$$

 $P(2,1) = C_2^1 p \ q = 2 \cdot 0.5 \cdot 0.5 = 0.5;$

Решение. Вероятность появления герба равна 0.5, вероятность же не появления герба равна также 0.5. При двух бросаниях монеты герб может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: $x_1 = 2$, $x_2 = 1$, $x_3 = 0$. По формуле Бернулли

$$P(2,2) = C_2^2 p^2 = (0.5)^2 = 0.25;$$

$$P(2,1) = C_2^1 p \ q = 2 \cdot 0.5 \cdot 0.5 = 0.5;$$

$$P(2,0) = C_2^0 p^0 q^2 = (0.5)^2 = 0.25.$$

Искомый ряд распределения:

X	0	1	2
P	0.25	0.5	0.25

Искомый ряд распределения:

X	0	1	2
P	0.25	0.5	0.25

График:

1. Каждое испытание имеет два исхода: успех и неуспех – взаимно несовместные и противоположные события.

- 1. Каждое испытание имеет два исхода: успех и неуспех взаимно несовместные и противоположные события.
- 2 Вероятность успеха p остается постоянной от испытания к испытанию.

- 1. Каждое испытание имеет два исхода: успех и неуспех взаимно несовместные и противоположные события.
- 2 Вероятность успеха p остается постоянной от испытания к испытанию.
- 3. Все *п* испытаний независимы. Вероятность наступления события в любом из испытаний не зависит от результатов других испытаний.

Распределение Бернулли

Если в схеме испытаний Бернулли число опытов n=1, соответствующее распределение носит название распределения Бернулли.

Распределение Бернулли

Если в схеме испытаний Бернулли число опытов n=1, соответствующее распределение носит название распределения Бернулли.

$$X=1$$
 с вероятностью p , либо

$$X=0$$
 с вероятностью $q=1-p$.

Распределением Пуассона называют распределение вероятностей, определяемое формулой:

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

где $\lambda > 0$ - параметр распределения, k=0,1,2,3,...

Распределением Пуассона называют распределение вероятностей, определяемое формулой:

$$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda},$$

где $\lambda > 0$ - параметр распределения, k=0,1,2,3,...

$$X \sim P(\lambda)$$
.

Распределением Пуассона называют распределение вероятностей, определяемое формулой:

$$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

где $\lambda > 0$ - параметр распределения, k=0,1,2,3,...

$$X \sim P(\lambda)$$
.

Распределение служит для моделирования редких событий.

Примеры: радиоактивный распад; поступление вызовов на АТС; прибытие самолетов в аэропорт; приход клиентов на обслуживание и т.п.

Примеры: радиоактивный распад; поступление вызовов на АТС; прибытие самолетов в аэропорт; приход клиентов на обслуживание и т.п.

Интенсивность потока λ - среднее число событий, которые появляются в единицу времени.

Примеры: радиоактивный распад; поступление вызовов на АТС; прибытие самолетов в аэропорт; приход клиентов на обслуживание и т.п.

Интенсивность потока λ - среднее число событий, которые появляются в единицу времени. Если $\lambda = const$ и вероятность появления κ событий за время длительности t определяется формулой Пуассона

$$p_{k} = \frac{\left(\lambda t\right)^{k}}{k!} e^{-\lambda t},$$

то поток событий называется простейшим.

Пример. Среднее число вызовов, поступающих на АТС в одну минуту, равно 2. Найти вероятность того, что за 5 мин. поступит 2 вызова. Поток вызовов предполагается простейшим.

Пример. Среднее число вызовов, поступающих на АТС в одну минуту, равно 2. Найти вероятность того, что за 5 мин. поступит 2 вызова. Поток вызовов предполагается простейшим.

Решение. По условию $\lambda = 2$, t = 5, $\kappa = 2$. По формуле

Пуассона
$$p_k = \frac{\left(\lambda t\right)^k}{k!}e^{-\lambda t}$$
 получим:

Пример. Среднее число вызовов, поступающих на АТС в одну минуту, равно 2. Найти вероятность того, что за 5 мин. поступит 2 вызова. Поток вызовов предполагается простейшим.

Решение. По условию $\lambda = 2$, t = 5, $\kappa = 2$. По формуле

Пуассона
$$p_k = \frac{\left(\lambda t\right)^k}{k!} e^{-\lambda t}$$
 получим:
$$p_2 = \frac{\left(2 \cdot 5\right)^2}{2!} e^{-10} \approx 0.00225.$$

Пусть производятся независимые испытания, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Испытания заканчиваются, как только появится событие A.

Пусть производятся независимые испытания, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Испытания заканчиваются, как только появится событие A.

Пусть X – число испытаний, которые нужно провести до первого появления события A: $X \in \{1,2,...\}$.

Пусть производятся независимые испытания, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Испытания заканчиваются, как только появится событие A.

Пусть X – число испытаний, которые нужно провести до первого появления события A: $X \in \{1, 2, ...\}$.

Вероятность события: «A в первых k-1 испытаниях не наступило, а в k –м испытании появилось» :

$$p_k = P(X = k) = pq^{k-1}, k = 1, 2, 3, \dots$$

- геометрическое распределение $X \sim Geom(p)$.

Пусть производятся независимые испытания, в каждом из которых событие A может появиться с вероятностью p или не появиться с вероятностью q=1-p. Испытания заканчиваются, как только появится событие A.

Пусть X – число испытаний, которые нужно провести до первого появления события A: $X \in \{1, 2, ...\}$.

Вероятность события: «A в первых k-1 испытаниях не наступило, а в k –м испытании появилось» :

$$p_k = P(X = k) = pq^{k-1}, k = 1, 2, 3, \dots$$

- геометрическое распределение $X \sim Geom(p)$.

Сумма $p, pq, pq^2, pq^3,...$ равна 1 (геометрическая прогрессия): $\sum_{k=1}^{\infty} pq^{k-1} = p \cdot \frac{1}{1-q} = \frac{p}{p} = 1.$

Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0.6. Найти вероятность того, что попадание произойдет при третьем выстреле.

Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p=0.6. Найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. По условию $p=0.6,\ q=0.4,\ k=3.$ Искомая вероятность $p_3=P(X=3)=0.6\cdot 0.4^{3-1}=0.096.$