

DG408, DG409

Single 8-Channel/Differential 4-Channel, CMOS Analog Multiplexers

August 1997

Features
- ON Resistance (25°C Max)
* Low Power Consumption (P_D) <11 mW
Fast Switching Action
- t _{TRANS}
- t _{ON/OFF(EN)}

- · Low Charge Injection
- Upgrade from DG508A/DG509A
- TTL, CMOS Compatible
- · Single or Split Supply Operation

Applications

- · Data Acquisition Systems
- Audio Switching Systems
- Automatic Testers
- Hi-Rel Systems
- · Sample and Hold Circuits
- · Communication Systems
- Analog Selector Switch

Description

The DG408 Single 8-Channel, and DG409 Differential 4-Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular DG508A and DG509A series devices. They each include an array of eight analog switches, a TTL/CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The DG408 and DG409 feature lower signal ON resistance (<100 Ω) and faster switch transition time (t_{TRANS} < 250ns) compared to the DG508A or DG509A. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG408 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. Power supplies may be single-ended from +5V to +34V, or split from

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ±5V analog input range.

Ordering Information

PART NUMBER		TEMP. RANGE (°C)	PACKAGE	PKG. NO.
DG408AK/883	(Note 2)	-55 to 125	16 Ld CERDIP	F16.3
DG408DJ		-40 to 85	16 Ld PDIP	E16.3
DG408DY		-40 to 85	16 Ld SOIC	M16.15
DG408EJ	(Note 1)	-40 to 85	16 Ld PDIP	E16.3
DG408EY	(Note 1)	-40 to 85	16 Ld SOIC	M16.15
DG409AK/883	(Note 2)	-55 to 125	16 Ld CERDIP	F16.3
DG409DJ		-40 to 85	16 Ld PDIP	E16.3
DG409DY		-40 to 85	16 Ld SOIC	M16.15
DG409EJ	(Note 1)	-40 to 85	16 Ld PDIP	E16.3
DG409EY	(Note 1)	-40 to 85	16 Ld SOIC	M16.15

NOTES:

- 1. Extended Processing Flow
- 2. Refer to military data sheet for complete specifications.

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
PDIP Package	100	N/A
SOIC Package	115	N/A
CERDIP Package	70	18
Maximum Junction Temperature (D Suffix)) . <i>.</i>	150°C
Maximum Storage Temperature Range (D	Suffix)65	OC to 125°C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

Operating Conditions

Operating Temperature (D Suffix). -40C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, V_{AL} = 0.8V, V_{AH} = 2.4V, Unless Otherwise Specified

		(NOTE 8) TEMP	D SUFFIX -40°C TO 85°C			
PARAMETER	TEST CONDITIONS		(NOTE 2) MIN	(NOTE 3) TYP	(NOTE 2) MAX	UNITS
DYNAMIC CHARACTERISTICS				·	·	
Transition Time, t _{TRANS}	(See Figure 25)	Full	-	160	250	ns
Break-Before-Make Interval, topen	(See Figure 27)	Room	10		•	ns
Enable Turn-ON Time, t _{ON(EN)}	(See Figure 26)	Room		115	150	ns
		Full	·	. .	225	ns
Enable Turn-OFF Time, toFF(EN)	(See Figure 26)	Full	-	105	150	ns
Charge Injection, Q	C _L = 10nF, V _S = 0V	Room		20		рC
OFF Isolation	$V_{EN} = 0V$, $R_L = 1k\Omega$, f = 100kHz (Note 6)	Room	•	-75	-	dB
Logic Input Capacitance, CIN	f = 1MHz	Room		8	-	pF
Source OFF Capacitance, C _{S(OFF)}	V _{EN} = 0V, V _S = 0V, f = 1MHz	Room		3	-	pF
Drain OFF Capacitance, C _{D(OFF)} DG408	V _{EN} = 0V, V _D = 0V, f = 1MHz	Room		26	-	pF
DG409	'	Room	-	14	-	pF
Drain ON Capacitance, C _{D(ON)} DG408	V _{EN} = 3V, V _D = 0V, f = 1MHz, V _A = 0V or 3V	Room	-	37		рF
DG409		Room	-	25	-	pF
ANALOG SWITCH			'	<u> </u>		
Analog Signal Range, VANALOG		Full	-15	-	15	٧
Drain-Source ON Resistance,	V _D = ±10V, I _S = -10mA	Room		40	100	Ω
r _{DS(ON)}	(Note 4)	Full	-	-	125	Ω
r _{DS(ON)} Matching Between Channels, Δr _{DS(ON)}	V _D = 10V, -10V (Note 5)	Room	-	-	15	Ω
Source OFF Leakage Current, IS(OFF)	V _{EN} = 0V, V _S = ±10V,	Room	-0.5		0.5	nA
	V _D = +10V	Full	-5		5	nA
Drain OFF Leakage Current, I _{D(OFF)} DG408	V _{EN} = 0V, V _D = ±10V, V _S = +10V	Room	-1	-	1	nA
		Full	-20	-	20	nA
DG409		Room	-1	-	1	nA
		Full	-10		10	nA

Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, V_{AL} = 0.8V, V_{AH} = 2.4V, Unless Otherwise Specified (Continued)

			D SUI	FFIX -40°C TO	85°C	
PARAMETER	TEST CONDITIONS	(NOTE 8) TEMP	(NOTE 2) MIN	(NOTE 3) TYP	(NOTE 2) MAX	UNITS
Drain ON Leakage Current, I _{D(ON)} DG408	V _S = V _D = ±10V Sequence Each Switch	Room	-1	-	1	nA
	ON	Full	-20		20	nA
DG409	1	Room	-1	-	1	nA
	ļ	Full	-10		10	nA
DIGITAL CONTROL				•		
Logic Input Current, Input Voltage High, I _{AH}	V _A = 2.4V, 15V	Full	-10		10	μА
Logic Input Current, Input Voltage Low, IAL	V _{EN} = 0V, 2.4V, V _A = 0V	Full	-10	-	10	μА
POWER SUPPLIES			•			
Positive Supply Current, I+	V _{EN} = 0V, V _A = 0V	Full	-	10	75	μА
Negative Supply Current, I-		Full	-75	1	-	μΑ
Positive Supply Current, I+	V _{EN} = 2.4V, V _A = 0V	Room Full		0.2	0.5 2	mA
Negative Supply Current, I-	1	Full	-500			μА

Electrical Specifications (Single Supply) Test Conditions: V+ = 12V, V- = 0V, V_{AL} = 0.8V, V_{AH} = 2.4V, Unless Otherwise Specified

			D SUFFIX -40°C TO 85°C			
PARAMETER	TEST CONDITION	(NOTE 8)	(NOTE 2) MIN	(NOTE 3) TYP	(NOTE 2) MAX	UNITS
DYNAMIC CHARACTERISTICS						
Switching Time of Multiplexer, trans	V _{S1} = 8V, V _{S8} = 0V, V _{IN} = 2.4V	Room	-	180	•	ns
Enable Turn-ON Time, TON(EN)	V _{INH} = 2.4V, V _{INL} = 0V,	Room	-	180	-	ns
Enable Turn-OFF Time, ToFF(EN)	V _{S1} = 5V	Room		120	-	ns
Charge Injection, Q	$C_L = 10nF$, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$	Room		5	-	рC
ANALOG SWITCH						
Analog Signal Range, VANALOG		Full	0		12	٧
Drain-Source ON-Resistance, DS(ON)	V _D = 3V, 10V, I _S = -1mA (Note 4)	Room	-	90	-	Ω

NOTES:

- 1. All leads soldered to PC Board.
- 2. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- 3. Typical values are for DESIGN AID ONLY, not guaranteed nor production tested.
- 4. Sequence each switch ON.
- 5. $\Delta r_{DS(ON)} = r_{DS(ON)} (Max) r_{DS(ON)} (Min)$.
- 6. Worst case isolation occurs on channel 4 due to proximity to the drain pin.
- 7. Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 8. Room = 25°C, Cold and Hot = as determined by the operating temperature suffix.

Pin Descriptions - (DG408)

PIN	SYMBOL	DESCRIPTION
1	A ₀	Logic Decode Input (Bit 0, LSB)
2	EN	Enable Input
3	V-	Negative Power Supply Terminal
4	S ₁	Source (Input) for Channel 1
5	S ₂	Source (Input) for Channel 2
6	S ₃	Source (input) for Channel 3
7	S ₄	Source (Input) for Channel 4
8	D	Drain (Output)
9	S ₈	Source (Input) for Channel 8
10	S ₇	Source (input) for Channel 7
11	S ₆	Source (Input) for Channel 6
12	S ₅	Source (Input) for Channel 5
13	V+	Positive Power Supply Terminal (Substrate)
14	GND	Ground Terminal (Logic Common)
15	A ₂	Logic Decode Input (Bit 2, MSB)
16	A ₁	Logic Decode Input (Bit 1)

Pin Descriptions - (DG409)

PIN	SYMBOL	DESCRIPTION		
1	Ao	Logic Decode Input (Bit 0, LSB)		
2	EN	Enable Input		
3	V-	Negative Power Supply Terminal		
4	S _{1A}	Source (input) for Channel 1a		
5	S _{2A}	Source (Input) for Channel 2a		
6	S _{3A}	Source (Input) for Channel 3a		
7	S _{4A}	Source (Input) for Channel 4a		
8	D _A	Drain a (Output a)		
9	DB	Drain b (Output b)		
10	S _{4B}	Source (Input) for Channel 4b		
11	S _{3B}	Source (Input) for Channel 3b		
12	S _{2B}	Source (Input) for Channel 2b		
13	S _{1B}	Source (Input) for Channel 1b		
14	V+	Positive Power Supply Terminal		
15	GND	Ground Terminal (Logic Common)		
16	A ₁	Logic Decode Input (Bit 1, MSB)		

TRUTH TABLE DG408

A ₂	A ₁	A ₀	EN	ON SWITCH
х	х	Х	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

TRUTH TABLE DG409

A ₁	Ao	EN	ON SWITCH
х	×	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

NOTES:

- 1. V_{AH} Logic "1" ≥2.4V.
- 2. V_{AL} Logic "0" ≤0.8V.

Test Circuits and Waveforms (Continued)

FIGURE 31. INSERTION LOSS

FIGURE 32. SOURCE/DRAIN CAPACITANCES

Typical Applications

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see Figure 33). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V-value. In this case the overvoltage signal actually becomes the power supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference $V_{\rm S}$ - (V-) doesn't exceed -44V. The addition of these diodes will reduce the analog signal range to 1V below V+ and 1V above V-, but it preserves the low channel resistance and low leakage characteristics.

Typical application information is for Design Aid Only, not guaranteed and not subject to production testing.

FIGURE 33. OVERVOLTAGE PROTECTION USING BLOCKING DIODES

Die Characteristics

DIE DIMENSIONS:

1800μm x 3320μm x 485μm ±25μm

METALLIZATION:

Type: SiAl

Thickness: 12kÅ ±1kÅ

PASSIVATION:

Type: Nitride

Thickness: 8kÅ ±1kÅ

WORST CASE CURRENT DENSITY:

9.1 x 10⁴ A/cm²

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:

1800μm x 3320μm x 485μm ±25μm

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ±1kÅ

PASSIVATION:

Type: Nitride

Thickness: 8kÅ ±1kÅ

WORST CASE CURRENT DENSITY:

9.1 x 10⁴ A/cm²

Metallization Mask Layout

