Билет 14

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 14: Внутренни	е точки и внутренность мн	ножества. Свойства	1
-----	---------------------	---------------------------	--------------------	---

Билет 14 СОДЕРЖАНИЕ

0.1. Билет 14: Внутренние точки и внутренность множества. Свойства.

Определение 0.1 (повтор).

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

Точка $a \in A$ называется внутренней если $\exists r > 0 \quad B_r(a) \subset A$.

Множество внутренних точек называется внутренностью множества, и обозначается $\operatorname{Int} A$.

Свойства.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

- 1. Int $A \subset A$
- 2. Int A объеденение всех открытых множеств содержащихся в A.

Доказательство.

Пусть
$$G = \bigcup_{\alpha \in I} U_{\alpha}$$
, где $U_{\alpha} \subset A$ - открытое.

 $G \subset \operatorname{Int} A$:

$$x \in G \implies \exists \alpha \in I \quad x \in U_{\alpha}$$

 $\implies \exists r > 0 \quad B_r(x) \subset U_{\alpha} \subset A$
 $\implies x \in \text{Int } A$

Int
$$A \subset G$$
: $x \in \text{Int } A \implies \exists r > 0 \quad B_r(x) \subset A$. $B_r(x)$ - открытое множество, значит $\exists \alpha \in I \quad U_\alpha = B_r(x) \implies x \in G$.

 $3. \, \operatorname{Int} A$ - откртое множество

Доказательство.

A - объединение открытых множеств, значит открыто.

4. Int $A = A \iff A$ - открыто

Доказательство.

Необходимость (\Longrightarrow): Int A открыто.

Достаточность (\iff): A открыто \implies все точки внутренние \implies $A=\operatorname{Int} A.$

- 5. $A \subset B \implies \operatorname{Int} A \subset \operatorname{Int} B$
- 6. $Int(A \cap B) = Int A \cap Int B$

Доказательство.

B сторону \subset :

$$\left. \begin{array}{l} A \cap B \subset A \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \\ A \cap B \subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} B \end{array} \right\} \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \cap \operatorname{Int} B$$

В сторону ⊃:

$$x \in \operatorname{Int} A \cap \operatorname{Int} B \implies \begin{cases} x \in \operatorname{Int} A \implies \exists r_1 : B_{r_1}(x) \subset A \\ x \in \operatorname{Int} B \implies \exists r_2 : B_{r_2}(x) \subset B \end{cases} \implies B_{\min\{r_1, r_2\}}(x) \subset A \cap B \implies x \in \operatorname{Int}(A \cap B)$$

1

Билет 14 COДЕРЖАНИЕ

7. Int Int A = Int A

Доказательство.

Заметим, что $\operatorname{Int} A$ - открытое по 3, дальше по 4 видно равенство.