Aprendizaje Automático vs Deep Learning

Inteligencia Artificial basada en Datos (Machine Learning)

Datos

2) Preprocesamiento

+ Representación

3) Entrenamiento

4) Modelo

Genera

IA, ML y DL

Inteligencia Artificial

Ontologías

Sistemas Expertos

Machine Learning

Máquinas de Vectores de Soporte

Árboles de Decisión

Deep Learning

Redes Neuronales Convolucionales

Redes Neuronales
Recurrentes y Transformers

1950

1980

2010

IA, ML y DL

Inteligencia Artificia

Claude Shannon

Ray Solomonoff

Machine Learning

Deep Learning

1980

2010

Machine Learning Tradicional vs Deep Learning

Ejemplo de Aprendizaje Automático Tradicional Detección de Peatones

Entrada

Características HOG (~10 años de inv.) Prog<u>ramadas</u>

Modelo simple (Reg. Logística)

Ejemplo de Redes Neuronales Detección de Peatones

Machine vs Deep Learning en dataset CUB-200-2011

Factores clave para desarrollo de Deep Learning

- 1. Crecimiento exponencial desde 2010 Teoría base existe hace décadas!
- 2. Aumento en cantidad y calidad de datos Imágenes, texto, audio, etc.
- 3. Nuevo hardware específico (GPU/TPU)

 Aumento de poder de cómputo 100-200x

¿Deep Learning > Machine Learning?

• DL > ML:

- Datos complejos (audio, video texto)
- o Gran volumen de datos
- Muchos datos (etiquetados)

ML > DL

- Datos tabulares
- Pocos recursos
- Pocos datos
- Mejor modelo: Gradient Boosting Tree

Problemas con Deep Learning

Modelos Interpretables (Caja blanca)

Modelos No Interpretables (Caja negra)

Fácil interpretar el modelo:

- Modelos más simples
- Más conocimiento experto
- Ej: Regresión lineal

Difícil interpretar el el modelo:

- Modelos más complicados
- Menos conocimiento experto
- Ej: Redes Neuronales