5.15 © Shel vise
$$4(x) = 2x^2 + 3$$
 or kontinuerly i. 1.

Gitt $\xi > 0$.

 $|4(x) - 4(1)| = |2x^2 + 3 - (2 \cdot 1^2 + 3)|$
 $= |2x^2 + 3 - 5|$
 $= |2x^2 - 2|$
 $= 2|x^2 - 1|$
 $= 2|h(h+2)^2 - 1|$
 $= 2|h(h+2)|$
 $= 2|h(h+2)|$
 $= 2|h(h+2)|$

Vely $\delta_1 = 1$, for $|h| < \delta_1$, six or $|h+2| < 3$
 $\delta_1 = 2$ $|h+2| < 9$
 $\delta_2 = \frac{\mathcal{E}}{6}$, for $|h| < \frac{\mathcal{E}}{6}$
 $\delta_2 = \frac{\mathcal{E}}{8}$

Vely $\delta_2 = \frac{\mathcal{E}}{6}$, for $|h| < \frac{\mathcal{E}}{6}$
 $\delta_3 = \frac{\mathcal{E}}{6}$

Vely $\delta_4 = \frac{\mathcal{E}}{6}$, for $|h| < \frac{\mathcal{E}}{6}$
 $\delta_5 = \frac{\mathcal{E}}{8}$

Vely $\delta_6 = \frac{\mathcal{E}}{6}$, for $|h| < \frac{\mathcal{E}}{6}$
 $\delta_7 = \frac{\mathcal{E}}{8}$

When it is not at $|f(x) - f(x)| < \mathcal{E}$.

Also, a f(x) hortinuerly i. 1.

51.5. e

Shal use at $f(x) = \frac{1}{x}$ or hortinuorlig i 1.

GH E70.

In face
$$h = x - 1$$

$$x = h + 1$$

$$= \left| \frac{1}{h + 1} - 1 \right|$$

$$= \left| \frac{1 - (h + 1)}{h + 1} \right|$$

$$= \left| \frac{-h}{h + 1} \right|$$

begrense | h+1|

begrense forst Velg $\delta_1 = 3$ for $|h| < \delta_1$ si vid |h+1| > 2 $\frac{|h|}{|h+1|} < \frac{|h|}{2}$ $|h| \le 3$ $\frac{|h|}{|h+1|} < \frac{|h|}{2}$

Th1 = 1x-1

• Velay
$$\delta_2 = 2\xi$$
 for $|h| < \delta_2$

$$\frac{161}{2} < \frac{2}{2} = \frac{2}{2}$$

- Velg $\xi = \min \{2\xi, 3\}$, de er for on her $\xi > 0$ eg $\times \xi D_{\xi}$, $|x-1| < \ell$ $|f(x) f(1)| < \xi, cg \text{ of ex kontinuely in } 1.$
- Velg $\delta_1 < \frac{1}{2}$, for $|h| < \delta_1$, $|g| > \frac{1}{2}$ $|h| > \frac{1}{2}$ $|h| = \frac{1}{2}$ gir $\frac{1}{2}$ $|h| = \frac{1}{2}$ gir $\frac{3}{2}$ $\frac{|h|}{h+1}$ < 2|h|
- · Velg 82 < 28, for 14/ < 82 er $2|h| < 2 \cdot \frac{\xi}{2} = \xi$
- · Velq & = min {8,, 82}. så helde alt.

SKJÆRINGSSETNINGEN)

5.2.1. Ante at $f: [a,b] \rightarrow \mathbb{R}$ er en <u>kontinurlig</u> funlisjon der f(c) og f(b) har mokalle forteger. Da finnes dit et hell $C \in (a, b)$ slik at f(c) = 0

5.2.1 9 Shal vine at $f(x) = 2x-3-ln \times her et nullphill pri [1,e]$

- f(x) er kontinuelig på [1,e] fordi det er en differense av tre kontinuelige funlisjoner som er definel på [1,e]

• $f(1) = 2.1 - 3 - \ln 1$ = -1 < 0• $f(e) = 2.e - 3 - \ln e$ = 2e - 4 > 0• $f(x) = 2.1 - 3 - \ln e$ = 2e - 4 > 0• $f(x) = 2.1 - 3 - \ln e$ = 2e - 4 > 0

5.2.3. a) Shet vine cet grafene til $g(x) = \ln x$ og $g(x) = x^2 - 2$ stijorer hverendre på interallet [1, 2]Se pi h(x) = g(x) - f(x)= $x^2 - 2 - \ln x$

$$\circ h(1) = |^2 - 2 - \ln 1 = -1 < 0$$

$$\circ h(2) = 2^2 - 2 - \ln 2 = 2 - \ln 2 > 0$$

 \forall slippings setu formes $c \in (1,2)$ s.a. h(c) = 0 = g(c) - f(c)

så grafene stycoer hverandre for x=C.