TD1 (UE TIW2 - Interoperabilité) : Data Exchange (Résumé et Avancées)

Exercice 1. Étant donné le schema mapping $\Sigma : E(x,y) \to \exists e, H(x,z) \land H(z,y)$ avec l'instance de source I = E(a,b).

— Est-ce que les J_i suivants sont des solutions/solutions universelles/solutions core? justifiez.

Q1.1 $J_1 = \{H(a,b), H(b,b)\}.$

Q1.2 $J_2 = \{H(a, a), H(a, b)\}.$

Q1.3 $J_3 = \{H(a, X), H(X, b)\}.$

Q1.4 $J_4 = \{H(a, X), H(X, b), H(a, Y), H(Y, b)\}.$

Q1.5 $J_5 = \{H(a, X), H(X, b), H(Y, Y)\}.$

Solution:

 $J_1 = \{H(a,b), H(b,b)\}$ est une solution (z = b).

 $J_2 = \{H(a, a), H(a, b)\}$ est une solution (z = a).

 $J_3 = \{H(a, X), H(X, b)\}$ est une solution (z = X).

 $J_4 = \{H(a, X), H(X, b), H(a, Y), H(Y, b)\}\$ est une solution (pour z = X et $H(a, X), H(X, b) \in J_4$).

 $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ est une solution (pour z = X et $H(a,X), H(X,b) \in J_4$).

Solution:

- J_1 est une solution. Néanmoins, elle n'est pas une solution universelle car pour chaque homomorphisme h nous avons h(a) = a. Donc, il existe aucun homomorphisme de J_1 à J_2 .
- J_2 est une solution. Néanmoins, elle n'est pas une solution universelle pour la même raison. Il est impossible de trouver un homomorphisme de J_2 à J_1 .
- J_3 est une solution universelle. Pour chaque solution J, il y a z tel que H(a,z) est dans dans J en préservant la constante a (et ainsi pour H(z,b)). Elle est aussi la solution universelle la plus petite possible (core).
- J_4 est une solution universelle pour la même raison pour laquelle J_3 est universelle. Par contre, elle est par une solution core (minimale).
- J_5 est une solution. Néanmoins, elle n'est pas une solution universelle à cause de l'atome H(Y,Y), qui impose une égalité entre les variables de H. Par exemple, on ne trouve pas un homomorphisme entre J_5 et J_3 .

Pour les autres exercises vu en séance, voir les slides du CM1.

Exercice 2. Considerez l'instance source I ci-dessous et les contraintes $\Sigma_{st} = \{m_1, m_2, m_3, m_4\}$ et $\Sigma_t = \{t_1, t_2\}$ tel que :

						I		
	NYS	E						
	name		symbol					
	Google GO		OG					
	Yahoo! YH		00					
	Public-Company					Public-Grant		
	nam	name				company	investigator	amount
	Apple Adobe		Cup			Apple	Mike B.	25,000
1			SJ			Adobe	Anne C.	50,000
	NSF	N <mark>SF-Gr</mark> antee				NSF-Grant		
	id	nam	e	symbo	ol	company	amount	
	23	Yaho	oo!	YHOO		23	18,000	
	25	Adol	be	ADBE		25	50,000	

— Indiquez si les instances suivantes sont des solutions/solutions universelles/solutions core.