BSM206 Mantiksal Devre Tasarımı

12. Hafta – Rasgele Erişim Belleği (RAM)

Dr. Öğr. Üyesi Onur ÇAKIRGÖZ onurcakirgoz@bartin.edu.tr

ANAHAT

- Giriş
- Rasgele Erişim Belleği (RAM Random Access Memory)
- İkili Depolama Hücresi
- RAM'in Mantiksal Yapısı
- Kesişen Kod Çözme (Coincident Decoding)
- SRAM DRAM Karşılaştırması
- Adres Çoklama (Address Multiplexing)

Giriş

- Bir bellek birimi, büyük miktarda ikili bilgi depolayabilen bir hücre topluluğudur.
- Dijital sistemlerde kullanılan iki tür bellek vardır:
 - Rasgele erişimli bellek (RAM)
 - Salt okunur bellek (ROM)
- RAM hem yazma hem de okuma işlemlerini gerçekleştirebilir.
 ROM sadece okuma işlemini gerçekleştirebilir. (!!!)
- ROM, programlanabilir bir mantık aygıtıdır (PLD programmable logic device). Yani, ROM bir PLD türüdür.
- Tipik bir PLD, yüzlerce ila binlerce dahili yolla birbirine bağlı yüzlerce ila milyonlarca kapıya sahip olabilir. (ROM'un haricinde başka PLD türleri de vardır.)

Rasgele Erişim Belleği (RAM – Random Access Memory)

- Bir bellek birimi (memory unit), çok sayıda depolama hücresi ve ilişkili devrelerin bir bileşimidir.
- İstenilen herhangi bir rastgele konumdan bilgi aktarımı için gereken süre her zaman aynıdır.
- Bir bellek birimi, ikili bilgileri Word (kelime) adı verilen bit gruplarında depolar.
- Bellek biriminin blok diyagramı aşağıda yer almaktadır:

RAM'in Mantıksal Yapısı (Hızlı Bir Bakış)

Rasgele Erişim Belleği (RAM – Random Access Memory)

- k adres hatları, mevcut birçok word arasından seçilen belirli Word'u belirtir.
- Dahili bir kod çözücü bu adresi kabul eder ve belirtilen word'u seçmek için gereken yolları açar.
- Entegre devre yongaları şeklinde üretilen ticari bellek birimlerinin çoğu iki kontrol girişine sahiptir:
 - Enable girişi: birimi seçer
 - Read/Write girişi: işlemi (okuma mı yazma mı) belirler.
- Rastgele erişimli bir bellekte, okunacak/yazılacak word'un konumundan (adresinden) bağımsız olarak erişim süresi her zaman aynıdır.
- RAM'ler iki türdür:
 - Statik RAM
 - Dinamik RAM

Rasgele Erişim Belleği (RAM – Random Access Memory) SRAM-DRAM Farkı

- Statik RAM (SRAM), temel olarak ikili bilgileri depolayan dahili <u>mandallardan</u> oluşur. Depolanan bilgiler, üniteye güç verildiği sürece geçerli kalır.
- Dinamik RAM (DRAM), ikili bilgileri elektrik yükü şeklinde tutar ve tutan devre kapasitördür. Kapasitörler MOS transistörleri ile yapılır.
- Dinamik RAM, Yenileme işlemi gerektirir.
- Dinamik RAM enerji tüketimini azaltır, tek bir chip'in içinde yüksek depolama kapasitesi sağlar.
- SRAM'ın kullanımı daha kolaydır ve daha kısa okuma ve yazma döngülerine sahiptir.

Bellek Kod Çözme (Memory Decoding)

- Bir bellek biriminde, input adresi tarafından belirtilen bellek kelimesini seçmek için kod çözme devrelerine ihtiyaç vardır.
- İleriki sayfalarda kod çözmenin detayları anlatılacaktır.

İkili Depolama Hücresi

- m kelime ve kelime başına n bitlik bir RAM'in dahili yapısı, m * n ikili depolama hücresinden ve tek tek kelimeleri seçmek için ilgili kod çözme devrelerinden oluşur.
- İkili depolama hücresi, bir bellek biriminin temel yapı taşıdır. Bir bit bilgiyi depolayan bir ikili hücrenin devresi aşağıda yer almaktadır: (Bu ikili bellek hücresi SRAM içindir.)

S	R	Q	Q'	
1	0	1	0	
0	0	1	0	(after $S = 1, R = 0$)
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$)
1	1	0	0	(forbidden)

(b) Function table

İkili Depolama Hücresi

- İkili hücrenin depolama kısmı, bir D mandalı oluşturmak için ilişkili kapılara sahip bir SR mandalı ile modellenmiştir.
- Aslında hücre, dört ila altı transistörlü bir elektronik devredir.
- Select girişi, hücrenin okuma veya yazma yapmasını sağlar.
 Okuma/yazma girişi ise hücrenin hangi işlemi yapacağını belirler. (1:okuma, 0: yazma)

RAM'in Mantiksal Yapısı

- Küçük bir RAM'in mantıksal yapısı yanda gösterilmek tedir:
- Bu RAM, her biri dört bitlik dört kelimeden oluşur ve toplam 16 ikili hücreye sahiptir.

RAM'in Mantiksal Yapısı

- Dört
 kelimelik bir
 hafıza iki
 adres
 satırına
 ihtiyaç
 duyar.
- İki adres girişi, dört kelimeden birini seçmek için 2 x 4 kod çözücüden geçer.

RAM'in Mantiksal Yapısı

- Okuma işlemi sırasında, seçilen kelimenin dört biti VEYA kapılarından çıkış terminallerine gider.
- Yazma işlemi sırasında, giriş hatlarında bulunan veriler, seçilen kelimenin dört ikili hücresine aktarılır. Seçilmeyen ikili hücreler devre dışı bırakılır ve önceki ikili değerleri değişmeden kalır.
- Kod çözücüye giden bellek seçme girişi 0 olduğunda, hiçbir kelime seçilmez ve okuma/yazma girişinin değerinden bağımsız olarak tüm hücrelerin içeriği değişmeden kalır.

Kesişen Kod Çözme (Coincident Decoding)

- k girişli ve 2^k çıkışlı bir kod çözücü, k girişli 2^k tane AND kapısı gerektirir.
- Toplam kapı sayısı ve kapı başına giriş sayısı, iki boyutlu bir seçim şemasında iki kod çözücü kullanılarak azaltılabilir.
- İki boyutlu kod çözmedeki temel fikir, bellek hücrelerini kareye mümkün olduğunca yakın bir dizide düzenlemektir.
- Bu konfigürasyonda, bir k-girişli kod çözücü yerine iki k/2girişli kod çözücü kullanılır.
- iki boyutlu bir matris konfigürasyonunda, kod çözücülerden biri satır seçimini, diğeri sütun seçimini gerçekleştirir.

Kesişen Kod Çözme (Coincident Decoding)

 1Kb-kelime hafızası için iki boyutlu seçim (kod çözme) modeli aşağıda gösterilmiştir. (Önemli Not: Adres hatlarının sayısı değişmiyor. Aşağıdaki konfigürasyonda adres hatlarının sayısı yine 10 dur. X ve Y aynı anda uygulanıyor.)

Kesişen Kod Çözme (Coincident Decoding)

- Tek bir 10x1024 lük kod çözücü kullanmak yerine iki adet 5x32 lik kod çözücü kullanıyoruz.
- Tek kod çözücüyle, her birinde 10 giriş bulunan 1024 AND kapısına ihtiyacımız var. İki kod çözücü kullanıldığında, her birinde 5 giriş bulunan toplam 64 AND kapısına ihtiyacımız var.
- Örn, 404 adresinin
 10-bitlik binary
 eşdeğeri 01100
 10100

SRAM – DRAM Karşılaştırması

- Sunumun başında modellenen SRAM ikili bellek hücresi tipik olarak altı transistör içerir.
- Daha yüksek yoğunluklu bellekler oluşturmak için bir hücredeki transistör sayısını azaltmak gerekir.
- DRAM hücresi, tek bir MOS transistörü ve bir kapasitör içerir.
- Kondansatörde depolanan yük zamanla boşalır ve bellek hücreleri, bellek yenilenerek periyodik olarak yeniden şarj edilmelidir.

SRAM – DRAM Karşılaştırması

- Basit hücre yapıları nedeniyle, DRAM'ler tipik olarak SRAM'lerin yoğunluğunun dört katına sahiptir. Bu, belirli bir çip boyutuna dört kat daha fazla bellek kapasitesinin yerleştirilmesine izin verir.
- DRAM depolamanın bit başına maliyeti, SRAM depolamanın maliyetinden üç ila dört kat daha azdır.
- Ayrıca, DRAM hücrelerinin daha düşük güç gereksinimi nedeniyle daha fazla maliyet tasarrufu sağlanır.
- Bu avantajlar, DRAM'i kişisel dijital bilgisayarlarda <u>büyük</u> bellekler için tercih edilen teknoloji haline getirmiştir.

6 Transistörlü SRAM Hücresi

DRAM Hücresi

Adres Çoklama (Address Multiplexing)

- Büyük kapasiteleri nedeniyle, DRAM'lerin adres kod çözme işlemleri iki boyutlu bir dizide düzenlenir ve daha büyük bellekler genellikle birden çok diziye sahiptir.
- IC paketindeki pin sayısını azaltmak için tasarımcılar adres çoğullamayı (çoklama) kullanır.
- İki boyutlu bir dizide adres, satır adresi ilk sırada ve sütun adresi ikinci sırada olacak şekilde <u>farklı zamanlarda</u> iki parça halinde uygulanır.
- Adresin her iki kısmı için aynı pin seti kullanıldığından paketin boyutu önemli ölçüde azalır.
- Adres çoğullamada, normal tasarıma kıyasla, IC paketindeki adres hatlarının sayısı azalmaktadır.

Adres Çoklama (Address Multiplexing)

 64K kelimelik bir bellekte adres çoğullama ve kod çözme konfigürasyonuna ilişkin diyagram yanda gösterilmektedir.

Adres Çoklama (Address Multiplexing)

- Bellek, 256 satır ve 256 sütun halinde düzenlenmiş iki boyutlu bir hücre dizisinden oluşur.
- Satır adresi tetikleme darbesi (RAS) sekiz bitlik satır register'ını etkinleştirir ve sütun adresi tetikleme darbesi (CAS) sekiz bitlik sütun register'ını etkinleştirir.
- 16 bitlik adres, RAS ve CAS kullanılarak <u>iki adımda</u> DRAM'a uygulanır.
- Adres çoklamanın dezavantajı nedir?