Linear Methods for Classification

```
library(caret)
library(glmnet)
library(MASS)
library(e1071) # For naive bayes
library(mlbench)
library(pROC)
library(AppliedPredictiveModeling)
```

We use the Pima Indians Diabetes Database for illustration. The data contain 768 observations and 9 variables. The outcome is a binary variable diabetes. We start from some simple visualization of the data.

The data is divided into two parts (training and test).

```
set.seed(1)
rowTrain <- createDataPartition(y = dat$diabetes,</pre>
```

```
p = 0.75,
list = FALSE)
```

Logistic regression

```
glm.fit <- glm(diabetes~.,</pre>
               data = dat,
               subset = rowTrain,
               family = binomial)
contrasts(dat$diabetes) # This is to see which value is classified as what
##
       pos
## neg
         0
## pos
We first consider the Bayes classifier (cutoff 0.5) and evaluate its performance on the test data.
test.pred.prob <- predict(glm.fit, newdata = dat[-rowTrain,],</pre>
                            type = "response")
test.pred <- rep("neg", length(test.pred.prob))</pre>
test.pred[test.pred.prob>0.5] <- "pos"</pre>
sensitivity(data = as.factor(test.pred),
            reference = dat$diabetes[-rowTrain]) # This gives sensitivity which depends on the cut off
## [1] 0.84
specificity(data = as.factor(test.pred),
            reference = dat$diabetes[-rowTrain])
## [1] 0.5970149
confusionMatrix(data = as.factor(test.pred),
                reference = dat$diabetes[-rowTrain])
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction neg pos
          neg 105 27
##
##
          pos 20 40
##
##
                  Accuracy : 0.7552
                     95% CI : (0.6881, 0.8143)
##
       No Information Rate: 0.651
##
##
       P-Value [Acc > NIR] : 0.001235
##
##
                      Kappa: 0.4479
    Mcnemar's Test P-Value: 0.381471
##
##
##
               Sensitivity: 0.8400
##
               Specificity: 0.5970
##
            Pos Pred Value: 0.7955
            Neg Pred Value: 0.6667
##
```

```
## Prevalence : 0.6510
## Detection Rate : 0.5469
## Detection Prevalence : 0.6875
## Balanced Accuracy : 0.7185
##
## 'Positive' Class : neg
##
```

Kappa gives the agreement between raters. Lies between -1 and 1. 0 means random agreement (independently giving rates), 1 is perfect agreement and -1 is completely in disagreement. We want kappa to be large.

We then plot the test ROC curve. You may (or may not) also consider to add a smoothed ROC curve.

```
roc.glm <- roc(dat$diabetes[-rowTrain], test.pred.prob)
plot(roc.glm, legacy.axes = TRUE, print.auc = TRUE)
plot(smooth(roc.glm), col = 4, add = TRUE)</pre>
```


We can also fit a logistic regression using caret. This is to compare the cross-valiation performance with other models, rather than tuning the model.

Regularized logistic regression can be fitted using glmnet'. We use thetrain' function to select the optimal tuning parameters.

Discriminant analysis

LDA

We use the function 1da in library MASS to conduct LDA.

Evaluate the test set performance using ROC.

```
lda.pred <- predict(lda.fit, newdata = dat[-rowTrain,])
head(lda.pred$posterior)</pre>
```


Using caret:

\mathbf{QDA}

```
## neg pos
## 2 0.986980464 0.013019536
## 4 0.993594734 0.006405266
## 6 0.945182664 0.054817336
```

```
## 8 0.001555342 0.998444658
## 10 0.919436486 0.080563514
## 11 0.820482469 0.179517531
```

Naive Bayes

GLM, Regularized GLM and LDA have relatively good performance.

```
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, LDA, QDA, NB
## Number of resamples: 50
## ROC
##
               Min.
                      1st Qu.
                                 Median
                                              Mean
                                                     3rd Qu.
                                                                   Max. NA's
## GLM
          0.7105263\ 0.8024906\ 0.8243421\ 0.8296935\ 0.8655583\ 0.9210526
## GLMNET 0.7230576 0.8047949 0.8266409 0.8316465 0.8629090 0.9236842
          0.7205514\ 0.8079481\ 0.8299964\ 0.8323343\ 0.8655583\ 0.9263158
## LDA
                                                                           0
          0.6917293 0.7733108 0.8046586 0.8086373 0.8434211 0.9263158
## QDA
                                                                           0
          0.7000000\ 0.7969595\ 0.8273471\ 0.8259125\ 0.8601974\ 0.9421053
## NB
##
## Sens
##
                      1st Qu.
                                                                 Max. NA's
               Min.
                                 Median
                                                     3rd Qu.
                                              Mean
## GLM
          0.7567568 0.8648649 0.8684211 0.8783215 0.8947368 1.000000
## GLMNET 0.7631579 0.8648649 0.8918919 0.8889758 0.9210526 1.000000
          0.7567568 0.8648649 0.8684211 0.8766856 0.8947368 1.000000
## QDA
          0.7027027 0.8108108 0.8421053 0.8414367 0.8684211 0.972973
## NB
          0.6756757 0.8213016 0.8648649 0.8553201 0.8918919 0.972973
##
## Spec
##
               Min.
                      1st Qu. Median
                                           Mean
                                                  3rd Qu. Max. NA's
## GLM
          0.3809524 0.5500000
                                0.55 0.5740476 0.6500000 0.80
## GLMNET 0.3809524 0.5000000
                                0.55 0.5482857 0.6000000 0.75
## LDA
         0.3809524 0.5125000 0.55 0.5690476 0.6500000 0.75
                                                                   0
## QDA
                                0.55 0.5434286 0.6000000 0.75
                                                                   0
          0.2500000 0.4821429
                                0.60 0.6120476 0.6916667 0.80
## NB
          0.3809524 0.5500000
                                                                   0
bwplot(res, metric = "ROC")
```


Now let's look at the test set performance.

```
lda.pred <- predict(model.lda, newdata = dat[-rowTrain,], type = "prob")[,2]</pre>
glm.pred <- predict(model.glm, newdata = dat[-rowTrain,], type = "prob")[,2]</pre>
glmn.pred <- predict(model.glmn, newdata = dat[-rowTrain,], type = "prob")[,2]</pre>
nb.pred <- predict(model.nb, newdata = dat[-rowTrain,], type = "prob")[,2]</pre>
qda.pred <- predict(model.qda, newdata = dat[-rowTrain,], type = "prob")[,2]</pre>
roc.lda <- roc(dat$diabetes[-rowTrain], lda.pred)</pre>
roc.glm <- roc(dat$diabetes[-rowTrain], glm.pred)</pre>
roc.glmn <- roc(dat$diabetes[-rowTrain], glmn.pred)</pre>
roc.nb <- roc(dat$diabetes[-rowTrain], nb.pred)</pre>
roc.qda <- roc(dat$diabetes[-rowTrain], qda.pred)</pre>
auc <- c(roc.glm$auc[1], roc.glmn$auc[1], roc.lda$auc[1],</pre>
         roc.qda$auc[1], roc.nb$auc[1])
plot(roc.glm, legacy.axes = TRUE)
plot(roc.glmn, col = 2, add = TRUE)
plot(roc.lda, col = 3, add = TRUE)
plot(roc.qda, col = 4, add = TRUE)
plot(roc.nb, col = 5, add = TRUE)
modelNames <- c("glm", "glmn", "lda", "qda", "nb")</pre>
legend("bottomright", legend = paste0(modelNames, ": ", round(auc,3)),
       col = 1:5, lwd = 2)
```

