GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Fundamentos de Fotónica	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo Semestre	171003	85

OBJETIVOS(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos necesarios para resolver problemas relacionados con la emisión, detección y control de la radiación electromagnética en el análisis y medición de diferentes parámetros físicos.

TEMAS Y SUBTEMAS

1. Fibras ópticas

- 1.1 Guías de onda de espejo plano.
- 1.2 Guías de onda de dieléctrico.
- 1.3 Guías de onda bidimensionales.
- 1.4 Acoplamiento óptico en Guías de onda.

2. Guías de onda ópticas

- 2.1 Fibras de índice graduado.
- 2.2 Atenuación y dispersión.

3. Resonadores ópticos

- 3.1 Resonadores de espejo plano.
- 3.2 Resonadores de espejos esféricos.

4. Óptica estadística

- 4.1 Propiedades estadísticas de la luz natural.
- 4.2 Transmisión de luz parcialmente coherente a través de sistemas ópticos.
- 4.3 Polarización parcial.

5. Óptica fotónica

- 5.1 El fotón.
- 5.2 Cadenas de fotones.
- 5.3 Estados quánticos de la luz.

6. Fotones y átomos

- 6.1 Átomos, Moléculas y Sólidos.
- 6.2 Luz termal.
- 6.3 Luminiscencia.

7. Amplificadores láser

- 7.1 El amplificador Láser.
- 7.2 Fuente de poder amplificadora.
- 7.3 Amplificador no-lineal y Ganancia de Saturación.
- 7.4 Amplificador de ruido.

8. Láseres

- 8.1 Teoría de Oscilación Láser.
- 8.2 Características de la salida láser.
- 8.3 Láseres pulsados.

9. Acústo-óptica

- 9.1 Interacción de la luz y el sonido.
- 9.2 Dispositivos acústo ópticos.
- 9.3 Medios anisotrópicos.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora. Así mismo se desarrollaran programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIORGRAFÍA

Libros Básicos:

- 1. Fundamentals of photonics, Bahaa E.A. Saleh, Malvin Carl Teich. John Wiley &Sons, Inc. 1991.
- 2. Optical bistability: Controlling light with light, H.M.Gibbs, Academic Press New York, 1985.
- 3. Photonic switching, T.K.Gustafson and P.W. Smith, Springer-Verlag, New York, 1988.
- 4. Lasers and Optical Engineering, P.K.Das, Springer-Verlag, New York, 1990.

Libros de Consulta:

- 1. Handbook of lasers, R.J.Pressley, Chmical Rubber Company, Cleveland, OH, 1975.
- 2. Fiber optics and Optoelectronics, P.K.Cheo. Prentice Hall, Englewood Cliffs, NJ, 1985.
- 3. Optical coherence theory, G.J.Troup, Methuen, London, 1967.

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Ciencias con especialidad en Física.

