Graph Mining SD212

3. Graph structure

Thomas Bonald

2018 - 2019

Motivation

How many clicks are needed to go from Platini to Plato on Wikipedia?

Only 3!

 $\mathsf{Platini} \to \mathsf{Naples} \to \mathsf{Ancient} \; \mathsf{Greek} \to \mathsf{Plato}$

And from Plato to Platini?

Only 3 as well!

 $\mathsf{Plato} \to \mathsf{Louvre} \to \mathsf{France} \to \mathsf{Platini}$

Motivation

► How many pages are accessible in *k* clicks from Plato on Wikipedia?

Using Wikipedia for Schools (4,591 pages):

# clicks	# nodes	proportion
1	76	1.6%
2	1505	32.8%
3	4527	98.6%
4	4584	99.8%

In 1 click, you already get some central nodes: Plato \rightarrow Latin, Italy, Arabic language, Iran, 19th century,...

Outline

- 1. Small-world property
- 2. Clustering coefficient
- 3. Watts-Strogatz graphs
- 4. Sparse matrices

The six degrees of separation

- Stated by Karinthy in 1929!
- Verified experimentally by Milgram in 1967

Source: Wikipedia

Emails

Dodds, Muhamad, Watts 2003

- ▶ 18 target people from all over the world
- ▶ 24,163 volunteers
- ► 384 successful chains Length of successful chains

Facebook

Bhagat, Burke, Diuk, Filiz, Edunov 2016

- ▶ Based on the 1.59 billion people active on Facebook
- ► Compute the average path length to any other people

The 3 and a half degrees of separation of Facebook

Erdös number

- Graph of co-authors of scientific papers
- ▶ Distance to Erdös (1913-1996)

The Bacon number

- Originated from an interview of Kevin Bacon by Premiere Magazine in 1994
- Graph of co-staring in movies

Results from YaGo database (44,586 actors)

The small-world property

- ▶ Is it universal?
- ► Example of a ring / a grid

The small-world property

- ► How does it emerge?
- Example of a random graph

Outline

- 1. Small-world property
- 2. Clustering coefficient
- 3. Watts-Strogatz graphs
- 4. Sparse matrices

Structure vs. randomness

- ► The small-world property can be explained by randomness
- ► Can real graphs be considered as purely **random**?

Clustering coefficient

Fraction of closed triangles

Local clustering coefficient

Proportion of my friends that are friends

Average local clustering coefficient

Some real graphs

Graph	<i>C</i>
Les Miserables	0.57
Openflights	0.25
Wikipedia for schools	0.28
Actor graph	0.79
Openstreet	0.001

Case of Erdös-Rényi graphs

Outline

- 1. Small-world property
- 2. Clustering coefficient
- 3. Watts-Strogatz graphs
- 4. Sparse matrices

Watts-Strogatz graphs

- 1. Start from a ring of n nodes where each node is connected to its d nearest neighbors (d even)
- 2. Modify each edge at random with probability p

Example

Small-world vs clustering structure

Source: Watts & Strogatz 1998

Outline

- 1. Small-world property
- 2. Clustering coefficient
- 3. Watts-Strogatz graphs
- 4. Sparse matrices

Adjacency matrix


```
[[0 1 0 0 0 0 0 0 1 1]
[1 0 0 0 0 0 1 0 1 1]
[0 0 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 1 0 1 0 0]
[0 0 0 0 0 1 0 1 0 0 0]
[0 1 0 1 1 0 0 0 0 0 0]
[0 1 1 1 1 0 0 0 0 0 0]
[1 1 0 0 0 0 0 0 0 0 0 1]
[1 1 0 0 0 0 0 0 0 0 0 1]
```

Compressed Sparse Row (CSR) format

```
[[0 1 0 0 0 0 0 0 0 1 1]

[1 0 0 0 0 1 0 1 1 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 1 0 1 1 0 0 0 0 0 0]

[0 1 1 1 1 1 0 0 0 0 0 0]

[1 1 0 0 0 0 0 0 0 0 0 1]

[1 1 0 0 0 0 0 0 0 0 1 0]
```

Pros and cons

Pros

- ► Efficient storage
- ► Fast row slicing
- ► Fast matrix-vector product

Cons

- ► Slow column slicing
- ► Slow modification (e.g., add an entry)

Some applications

- Neighbors / degrees
- ► Path lengths
- Breadth-first search (BFS)
- Clustering coefficient

Summary

- Most real graphs have both the small-world property and a high clustering coefficient
- Watts-Strogatz graphs have both properties (for properly chosen parameters)
- ➤ **Sparse matrices** are key to efficient computation of path lengths and clustering coefficients