Econometrics: Multiple Regression and Applications ECON4004: LAB 5

Duong Trinh

University of Glasgow

March 6, 2024

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ♦ ECON4004-LB01
 - Wednesday 10am -12 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357
- ♦ ECON4004-LB02
 - Wednesday 12-2 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357

Your Attendance & Lab Feedback

Plan for LAB 5

- ♦ Exercise: based on Stock & Watson, E15.1
- ♦ We will focus on "Time series Regression"

Time Series Data - What it looks like...

Time series data are data collected on the same observational unit at multiple time periods (t).

$$\{y_t\},\$$

 $t=1,\ldots,T$

Can be of any time frequency - daily, monthly, quarterly, annual, etc.¹

¹Typical resource: https://fred.stlouisfed.org/

[SN] Working with dates and times in STATA

 $\mathsf{Date}\ \mathsf{types}\ \mathsf{in}\ \mathsf{Stata}^2$

Date type	Format	<u>Unit</u>
Datetime	%tc	Milliseconds since 01jan1960 00:00:00.000
Daily date	%td	Days since 01jan1960
Weekly date	%tw	Weeks since 1960w1
Monthly date	%tm	Months since 1960m1
Quarterly date	%tq	Quarters since 1960q1

²See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

- . * Import Quarterly Data from Excel file
- . * first row considered as variable names
- . import excel "us_macro_quarterly.xlsx", sheet("Data") firstrow clear (5 vars, 252 obs)

. describe

Variable

Contains data

Observations: 252

Variables:

Storage

Display

name	type	format	label	Variable label	
freq	int	%td		freq	\neg
GDPC1	double	%10.0g		GDPC1	
JAPAN_IP	double	%10.0g		JAPAN_IP	
PCECTPI	double	%10.0g		PCECTPI	
CPIAUCSL	double	%10.0g		CPIAUCSL	

[SN] Creating dates and times in STATA

(I) Option 1: Building dates and times from components.³

Date type	Format	Pseudofunction	Function
Daily date	%td	td(day-month-year)	mdy(M, D, Y)
Weekly date	%tw	tw(year-week)	yw(Y, W)
Monthly date	%tm	tm(year-month)	ym(Y, M)
Quarterly date	%tq	tq(year-quarter)	yq(Y, Q)

³See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

```
. * Create a desired quarterly date, e.g. 1955q1
. display %tq tq(1955q1) //using pseudofunction tq(.)
1955q1
. display %tg yg(1955,1) //using function yg(.)
1955q1
. * Generate quarterly date variables, recursively starting from 1955q1
. * By default, tq(1960q1) is defined to be 0 in Stata.
. gen date1 = tq(1955q1) + _n-1
. gen date2 = yq(1955,1) + _n-1
. format %tg date1 date2 // express them in quarterly format, see Data Editor
. list if datel != date2 // check if both variables are identical
```

[SN] Creating dates and times in STATA

(II) Option 2: Converting dates and times from existing variables.⁴

	То							
From	Daily date	Weekly date	Monthly date	Quarterly date				
Daily date		wofd()	mofd()	qofd()				
Weekly date	dofw()		mofd(dofw())	qofd(dofw())				
Monthly date	dofm()	wofd(dofm())		qofd(dofm())				
Quarterly date	dofq()	wofd(dofq())	mofd(dofq())					

⁴See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

. * Generate quarterly date variable from existing "freq" var in dataset

. describe freq // note that "freq" is of daily date type (%td)

Variable Storage Display Value type format label Variable label

freq int %td.. freq

- . gen date3 = qofd(freq) // convert "freq" to quarterly date type
- . format %tq date3 // express it in quarterly format
- . br freq date1 date2 date3 // check results, new vars are identical

[SN] STATA command for Setting Data as Time Series

Once having the date variable in a *date format*, we need to declare our data as time series to use the time series operators in Stata.

```
*tsset datevar

//choose suitable 'datevar' in the dataset

. * Declare 'us_macro_quarterly' dataset to be time-series data
```

Time variable: date1, 1955q1 to 2017q4

Delta: 1 quarter

. tsset datel

[SN] STATA command for Visualizing Time Series Data

*[twoway] tsline varlist_of_inteterest

- . * Line graph of two Price Index series
- . twoway tsline PCECTPI CPIAUCSL // create a line graph using declared time-series data
- . twoway line PCECTPI CPIAUCSL date1, yline(0) // equivalent graph when using standard command with datevar

[SN] Subsetting tin/twithin in STATA

- tin ("times in", from a to b)
- twithin ("times within", between a and b, it excludes a and b).

[SN] Time-series operators in STATA

	Transforming a time-series y	
		Stata
	first $lag y_{t-1}$	L1.y
L operator	2-period $lag\ y_{t-2}$	L2.y
	3-period $lag y_{t-3}$	L3.y
	first difference $\Delta y_t = y_t - y_{t-1}$	D1.y
D operator	double difference $\Delta y_t - \Delta y_{t-1}$	D2.y
	triple difference $(\Delta y_t - \Delta y_{t-1}) - (\Delta y_{t-1} - \Delta y_{t-2})$	D3.y

The first difference of the logarithm of y_t is $\Delta \ln(y_t) = \ln(y_t) - \ln(y_{t-1})$

$$\Delta {
m ln}(y_t) pprox rac{{
m percentage \ change \ of \ time-series \ y \ between \ t \ and \ t-1}}{100}$$

(!) approximation is most accurate when the percentage change is small.

Autocorrelation and Autocovariance

The covariance between y_t and its j^{th} lag y_{t-j} is called the j^{th} autocovariance of the series y_t

$$j^{\text{th}}$$
 autocovariance $\equiv Cov(y_t, y_{t-j})$

The correlation between y_t and its j^{th} lag y_{t-j} is called the j^{th} autocorrelation coefficient, aka serial correlation coefficient

$$j^{ ext{th}}$$
 autocorrelation $\equiv
ho_j =
ho_{y_t, y_{t-j}} = rac{ ext{Cov}(y_t, y_{t-j})}{\sqrt{ ext{Var}(y_t) ext{Var}(y_{t-j})}} \in [-1, 1]$

 \rightarrow Measure how dependent y_t is on its past value y_{t-j} .

Autocorrelations of y as a function of its lags j is known as the *autocorrelation function*.

[SN] Tabulate and Graph Autocorrelations in STATA

Produce a table of the autocorrelations for a time series

```
*corrgram yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

Plot the autocorrelation function for a time series (correlogram) with pointwise confidence intervals

```
*ac yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

[SN] STATA command for Autoregression Model

The autoregressive model of order p - AR(p)

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \ldots + \beta_p y_{t-p} + \epsilon_t$$

To regress y_t against its own lagged values, run one of the followings

```
*regress yvar L1.yvar L2.yvar Lp.yvar [, robust]
```

```
*regress yvar L(1/p).yvar [, robust]
//'p' is the number of lags
```

[SN] Forecasting in STATA

Step1. Expanding the Dataset Before Forecasting

Given a set of time-series observations, STATA typically records the dates as running from the first until the last observation.

To forecast a date out-of-sample, these dates need to be in the data set, which requires expanding the dataset to include them.

```
*tsappend, add(k)
//add 'k' dates to the end of the sample
```

Step2. Point Forecasting Out-of-Sample

To create a series of predicted values both in-sample and out-of-sample, after the regress command

```
*predict yvar_hat [if]
//use 'if' condition to restrict the predicted values
```

Unit Root Test

- Testing for unit roots/stochastic trend is a crucial step in time series analysis. The presence of a unit root in a time series signifies that the series is non-stationary, which can lead to spurious regressions and other potentially serious consequences if no further transformation is made.
 - \diamond $H_0: y_t$ has a unit root $(y_t$ is non-stationary).
 - \diamond $H_1: y_t$ has no unit root $(y_t$ is stationary).
- The Dickey–Fuller test involves fitting the model

$$y_t = \beta_0 + \rho y_{t-1} + \delta t + u_t$$

and test H_0 : $\rho = 1$, or, equivalently, that y_t follows a unit root process.

 To control for serial correlation issue, the augmented Dickey–Fuller (ADF) test instead fits

$$\Delta y_t = \beta_0 + \delta y_{t-1} + \alpha t + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_k \Delta y_{t-k} + \epsilon_t$$

and test H_0 : $\delta = 0$.

Note: Possible restrictions: $\beta_0 = 0$ (without drift); $\alpha = 0$ (no trend term).

[SN] ADF Test for Unit Roots in STATA

Augmented Dickey-Fuller test using tsset data

* dfuller yvar

```
* dfuller yvar, trend
// include trend term
```

```
* dfuller yvar, lags(k) regress
// include 'k' lagged differences and display the regression table
```

Excercise: based on Stock & Watson, E15.1

Picture the Scenario

- Objective: Construct forecasting models for the rate of inflation.
- Dataset: us_macro_quaterly.xlsx.
 - contains quarterly data on several macroeconomic series for the US.
 - \diamond use the sample period 1963 : Q1-2017 : Q4 (where data before 1963 may be used, as necessary, as initial values for lags in regressions)
- Key variables: For each country in each year
 - PCEPI: the price index for personal consumption expenditures from the U.S. National Income and Product Accounts.

Questions

(a)

- i. Compute the inflation rate, $Infl = 400 \times [In(PCEPI_t) In(PCEPI_{t-1})]$. What are the units of Inf1?
- ii. Plot the values of Infl from 1963:Q1 through 2017:Q4. Based on the plot, do you think that Infl has a stochastic trend? Explain.

(b) Autocorrelations (»review)

- i. Compute the first four autocorrelations of $\Delta Infl$.
- ii. Plot the value of Δ *Infl* from 1963:Q1 through 2017:Q4. The plot should look choppy or jagged. Explain why this behaviour is consistent with the first autocorrelation that you computed in (i.).

Questions

(c) Autoregression Model (»review)

- i. Run an OLS regression of $\Delta Infl_t$ on $\Delta Infl_{t-1}$. Does knowing the change in inflation over the current quarter help predict the change in inflation over the next quarter? Explain.
- ii. Estimate an AR(2) model of $\Delta Infl_t$. Is the AR(2) model better than the AR(1) model? Explain.
- iii. Use the AR(2) model to predict the change in inflation from 2017:Q4 to 2018:Q1 that is, to predict the value of $\Delta Infl_{2018:Q1}$.

Questions

(d) ADF test (»review)

i. Use the ADF test for AR(p) regression

$$\Delta Y_t = \beta_0 + \delta Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \ldots + \gamma_p \Delta Y_{t-p+1} + u_t$$

using 2 lags of $\Delta Infl$ (so that p=3 in the above equation) to test for a stochastic trend in Infl.

ii. Is that ADF test based on the above regression preferred to the regression including a determinstic trend

$$\Delta Y_t = \beta_0 + \alpha t + \delta Y_{t-1} + \ldots + \gamma_p \Delta Y_{t-p+1} + u_t$$

for testing for a stochastic trend in *Infl*? Explain.

iii. Based on the ADF tests carried out, does the AR model for *Infl* contain a unit root?

(a-i) Compute the inflation rate Infl. What is its unit?

(»stata)

$$Infl = 400 \times [In(PCEPI_t) - In(PCEPI_{t-1})]$$

Infl is measured in percentage points at annual rate.

(a-ii) Plot values of Infl from 1963:Q1 through 2017:Q4. Do you think that Infl has a stochastic trend?

Inflation increased over the 20-year period 1960-1980, then declined for a decade and has been reasonably stable since then. It appears to have a stochastic trend. (»stata)

(b-i) Compute the first four autocorrelations of $\Delta Infl$.

```
*corrgram yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

- . * autocorrelation
- . //autocorrelations reported in column named AC
- . corrgram deltainfl if tin(1963q1,2017q4), lags(4)

LAG	AC	PAC	Q	Prob>Q		-1 0 1 [Partial autocor]
1	-0.2460	-0.2467	13.494	0.0002	4	4
2	-0.2035	-0.2843	22.772	0.0000	-	<u> </u>
3	0.1362	0.0047	26.946	0.0000	 	
4	-0.0850	-0.1142	28.579	0.0000]

The first four autocorrelations are (rounded to 2 decimal places): -0.25, -0.20, 0.14, and -0.08.

```
*ac yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

* plot of autocorrelations with 95% confidence bands (optional)
 ac deltainfl if tin(1963q1,2017q4), lags(4)

(b-ii) Plot values of Δ *Infl* from 1963:Q1 through 2017:Q4.

The change in inflation is slightly negatively serially correlated (the first autocorrelation is $\hat{\rho}_1 = -0.25$) so that values above the mean tend to be followed by values below the mean. (»stata)

(c-i) Run an OLS regression of $\Delta Infl_t$ on $\Delta Infl_{t-1}$.

Autoregressive model of order one - AR(1)

$$\Delta Infl_t = \beta_0 + \beta_1 \cdot \Delta Infl_{t-1} + \epsilon_t$$

(c-i) Run an OLS regression of $\Delta Infl_t$ on $\Delta Infl_{t-1}$.

```
*regress yvar L1.yvar [, robust]
```

```
. * AR(1) regression - OLS estimates
```

- . * L. takes the lag
- . //ldeltainfl = deltainfl[_n] deltainfl[_n-1]
- . regress deltainfl L1.deltainfl if tin(1963q1,2017q4), robust

```
Linear regression
```

```
Number of obs = 220

F(1, 218) = 13.03

Prob > F = 0.0004

R-squared = 0.6607

Root MSE = 1.4383
```

deltainfl	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
deltainfl L1.	2466842	.0683325	-3.61	0.000	3813611	1120074
_cons	.0073719	.0969709	0.08	0.939	1837485	.1984923

(c-i) Run an OLS regression of $\Delta Infl_t$ on $\Delta Infl_{t-1}$. Does knowing the change in inflation over the current quarter help predict the change in inflation over the next quarter?

Autoregressive model of order one - AR(1)

$$\Delta Infl_t = \beta_0 + \beta_1 \cdot \Delta Infl_{t-1} + \epsilon_t$$

OLS estimation results (»stata)

$$\widehat{\Delta Infl_t} = \underset{(se)}{0.007} - \underset{(0.096)}{0.247} \cdot \Delta Infl_{t-1}, \qquad R^2 = 0.061$$

♦ The coefficient on lagged inflation is statistically significant, so that lagged inflation helps predict current inflation. (c-ii) Estimate an AR(2) model of $\Delta Infl_t$. Is the AR(2) model better than the AR(1) model?

AR(2) model

$$\Delta Infl_t = \beta_0 + \beta_1 \cdot \Delta Infl_{t-1} + \beta_2 \cdot \Delta Infl_{t-2} + \epsilon_t$$

(c-ii) Estimate an AR(2) model of $\Delta Infl_t$. Is the AR(2) model better than the AR(1) model?

AR(2) model

$$\Delta Infl_t = \beta_0 + \beta_1 \cdot \Delta Infl_{t-1} + \beta_2 \cdot \Delta Infl_{t-2} + \epsilon_t$$

OLS estimation results (»stata)

$$\widehat{\Delta Infl}_t = \underset{(0.093)}{0.006} - \underset{(0.064)}{0.138} \cdot \Delta Infl_{t-1} - \underset{(0.076)}{0.284} \cdot \Delta Infl_{t-2}, \qquad \text{Adj-} R^2 = 0.128$$

- ♦ The estimated coefficient on $\Delta Infl_{t-2}$ is statistically significant, so the AR(2) model is preferred to the AR(1) model.
- Note also that adjusted R-squared increases from 0.061 in the AR(1) model to 0.128 in the AR(2) model, showing better goodness-of-fit.

(c-iii) Use the AR(2) model to predict change in inflation from 2017:Q4 to 2018:Q1 - that is, value of $\Delta Infl_{2018:Q1}$.

```
. * Forecasting 1 period ahead deltainflation
. * add the extra period2 (next quarter)
. tsappend, add(1)
. * estimate AR(2)
. quiet regress deltainfl L.deltainfl L2.deltainfl if tin(1963q1,2017q4), r
. * predict for next quarter
. predict deltainflhat
(option xb assumed: fitted values)
(4 missing values generated)
. list deltainflhat if tin(2017q4,2018q1)
       deltain~t
252.
        .1589877
```

. // the last observation is the predicted inflation change

253.

-.7205634

(c-iii) Use the AR(2) model to predict change in inflation from 2017:Q4 to 2018:Q1 - that is, value of $\Delta Infl_{2018:Q1}$.

The predicted change in inflation from 2017Q4 to 2018Q1 is -0.72 (a drop).(»stata)

(d-i) Use the ADF test for AR(p) regression using 2 lags of $\Delta Infl$ (so that p=3 in the above equation) to test for a stochastic trend in *Infl.*

$$\Delta \ln f|_{\bullet} = \beta_0 + \delta \ln f|_{\bullet=1} + \gamma_1 \Delta \ln f|_{\bullet=1} + \gamma_2 \Delta \ln f|_{\bullet=2} + \mu$$

 $\Delta Y_t = \beta_0 + \delta Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \ldots + \gamma_p \Delta Y_{t-p+1} + u_t$

$$\Delta Infl_t = \beta_0 + \delta Infl_{t-1} + \gamma_1 \Delta Infl_{t-1} + \gamma_2 \Delta Infl_{t-2} + u_t$$

* dfuller yvar, lags(k) regress // include 'k' lagged differences and display the regression table

. dfuller infl if tin(1963q1,2017q4), lags(2) regress

Augmented Dickey-Fuller test for unit root

Variable: infl Number of obs = 220

Number of lags = 2

H0: Random walk without drift, d = 0

Test statistic 1% 5% 10%

Z(t) -2.740 -3.470 -2.882 -2.572

MacKinnon approximate p-value for Z(t) = 0.0674.

D.infl	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
infl						
L1.	1057272	.0385888	-2.74	0.007	1817859	0296684
LD.	2543744	.0683361	-3.72	0.000	3890653	1196835
L2D.	2415464	.066275	-3.64	0.000	3721749	1109179
_cons	. 3591525	.1582484	2.27	0.024	.0472437	.6710613

(d-i) Use the ADF test for AR(p) regression using 2 lags of $\Delta Infl$ (so that p=3 in the above equation) to test for a stochastic trend in Infl.

The ADF t-statistic is -2.74. The 10% critical vale is -2.57 and the 5% critical value of -2.88; thus the unit root null hypothesis can be rejected at the 10% but not the 5% significance level.

(d-ii) Is that ADF test based on the above regression preferred to the regression including a deterministic trend for testing for a stochastic trend in *Infl*?

$$\Delta Y_t = \beta_0 + \alpha t + \delta Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \dots + \gamma_p \Delta Y_{t-p+1} + u_t$$

$$\Delta Infl_t = \beta_0 + \alpha t + \delta Infl_{t-1} + \gamma_1 \Delta Infl_{t-1} + \gamma_2 \Delta Infl_{t-2} + u_t$$

* dfuller yvar, lags(k) trend regress // include 'k' lagged differences and trend term

. * ADF on Infl with a deterministic trend

. dfuller infl if tin(1963q1,2017q4), lags(2) trend regress

Augmented Dickey-Fuller test for unit root

Variable: infl

Number of obs = 220 Number of lags = 2

H0: Random walk with or without drift

MacKinnon approximate p-value for Z(t) = 0.0525.

D.infl	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
infl						
L1.	1475798	.0435074	-3.39	0.001	2333354	0618242
LD.	2336542	.068611	-3.41	0.001	3688904	0984179
L2D.	2295046	.0660681	-3.47	0.001	3597287	0992806
_trend	0033129	.0016318	-2.03	0.044	0065293	0000964
_cons	.8616621	.2931807	2.94	0.004	.2837856	1.439539

^{. //} regress option to produce the regression results

^{. //} trend option to include the linear trend in AR(p) regression

(d-ii) Is that ADF test based on the above regression preferred to the regression including a determinstic trend for testing for a stochastic trend in *Infl*?

- Based on the t-statistic and the critical values, the results are similar to the previous regression.
- The coefficient on trend is quite close to zero so the inflation rate does not exhibit a linear trend. Thus, the specification that includes an intercept, but no time trend is appropriate.

(d-iii) Based on the ADF tests carried out, does the AR model for *Infl* contain a unit root?

$$\widehat{\Delta \underset{(se)}{Infl_t}} = .359 - .106 \underset{(.039)}{Infl_{t-1}} - .254 \underset{(.068)}{\Delta} \underset{Infl_{t-1}}{Infl_{t-1}} - .242 \underset{(.066)}{\Delta} \underset{Infl_{t-2}}{Infl_{t-2}}$$

From the results in (d-i), it is clear that inflation contains a unit root, thereby being highly persistent. The null hypothesis that $\delta=0$ or, equivalently, $\rho=1.0$ cannot be rejected at the 5% significance level.

Q(a-i,ii) ("back(a-i)) ("back(a-ii))

. * log() is the same as ln() in Stata

```
. gen logpce = log(PCECTPI)
. * using stata's first difference operator
. gen infl = 400*D.logpce
(1 missing value generated)
. * alternatively
. * gen infl = 400*(logpce[_n] - logpce[_n-1])
. * Plot 'infl' for defined time range
. twoway (tsline infl if tin(1963q1,2017q4), yline(0)), title(" U.S. Inflation Rate (%)") ///
                                                            ytitle("") xtitle("") ///
                                                            tlabel(#12. labsize(vsmall)) tmtick(##4)
```

Q(b-i,ii) (»back(b-ii))

. gen deltainfl = D.infl

```
(2 missing values generated)

.* Plot 'deltainfl' for defined time range
. twoway (tsline deltainfl if tin(1963q1,2017q4), yline(0)), title(" Change in U.S. Inflation Rate (%)") ///
ytitle("") xitle("") ///
tlabel(#12, labsize(ysmall)) tmtick(##4)
```

. * Create Delta Infl as first difference of inflation rate

Q(b-i)

```
*corrgram yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

- . * autocorrelation
- . //autocorrelations reported in column named AC
- . corrgram deltainfl if tin(1963q1,2017q4), lags(4)

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 1 [Partial autocor]
1	-0.2460	-0.2467	13.494	0.0002	4	4
2	-0.2035	-0.2843	22.772	0.0000	4	_
3	0.1362	0.0047	26.946	0.0000	-	
4	-0.0850	-0.1142	28.579	0.0000		

```
*ac yvar [, lags(p)]
// limit the number of computed autocorrelations to p
```

- . * plot of autocorrelations with 95% confidence bands (optional)
- . ac deltainfl if tin(1963q1,2017q4), lags(4)

Q(c-i) (»back(c-i))

*regress yvar L1.yvar [, robust]

```
. * AR(1) regression - OLS estimates
```

- . * L. takes the lag
- . //ldeltainfl = deltainfl[_n] deltainfl[_n-1]
- . regress deltainfl L1.deltainfl if tin(1963q1,2017q4), robust

Linear regression

```
Number of obs = 220
F(1, 218) = 13.03
Prob > F = 0.0004
R-squared = 0.0607
Root MSE = 1.4383
```

deltainfl	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
deltainfl L1.	2466842	.0683325	-3.61	0.000	3813611	1120074
_cons	.0073719	.0969709	0.08	0.939	1837485	.1984923

Q(c-ii) (»back(c-ii))

*regress yvar L1.yvar L2.yvar [, robust]

```
. * AR(2) regression
. regress deltainfl L1.deltainfl L2.deltainfl if tin(1963q1,2017q4), robust
Linear regression
                                                Number of obs
                                                                           220
                                                F(2, 217)
                                                                       13.98
                                                Prob > F
                                                                        0.0000
                                                R-squared
                                                                        0.1361
                                                Root MSE
                                                                        1.3826
                             Robust
   deltainfl
               Coefficient
                            std. err.
                                                P>|t|
                                                          [95% conf. interval]
                                           t
   deltainfl
         L1.
                -.3177357
                            .0644048
                                        -4.93
                                                0.000
                                                         -.4446747
                                                                     -.1907966
         L2.
                                        -3.73
                -.2844172
                            .0763383
                                                0.000
                                                         - 4348766
                                                                     -. 1339578
```

0.07

0.948

-.1777087

.18986

.0932463

.0060757

_cons

[.] display e(r2_a) // Adjusted R-squared .12810942

Q(c-iii-l)

```
. * Forecasting 1 period ahead deltainflation
. * add the extra period2 (next quarter)
. tsappend, add(1)
. * estimate AR(2)
. quiet regress deltainfl L.deltainfl L2.deltainfl if tin(1963q1,2017q4), r
. * predict for next quarter
. predict deltainflhat
(option xb assumed; fitted values)
(4 missing values generated)
. list deltainflhat if tin(2017q4,2018q1)
```

```
deltain~t
252. .1589877
253. -.7205634
```

. // the last observation is the predicted inflation change

```
Q(c-iii-II) (»back(c-iii))
```

Q(d-i) (»back(d-i))

. dfuller infl if tin(1963q1,2017q4), lags(2) regress

Augmented Dickey-Fuller test for unit root

Variable: infl Number of obs = 220
Number of lags = 2

H0: Random walk without drift, d = 0

Test critical value critical value 5% 10%

Z(t) -2.740 -3.470 -2.882 -2.572

MacKinnon approximate p-value for Z(t) = 0.0674.

	D.infl	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	infl						
	L1.	1057272	.0385888	-2.74	0.007	1817859	0296684
	LD.	2543744	.0683361	-3.72	0.000	3890653	1196835
	L2D.	2415464	.066275	-3.64	0.000	3721749	1109179
	_cons	. 3591525	.1582484	2.27	0.024	.0472437	.6710613

Q(d-ii) (»back(d-ii))

- . * ADF on Infl with a deterministic trend
- . dfuller infl if tin(1963q1,2017q4), lags(2) trend regress

Augmented Dickey-Fuller test for unit root

Variable: infl Number of obs = 220
Number of lags = 2

H0: Random walk with or without drift

Test critical value tstatistic 1% 5% 10%

Z(t) -3.392 -4.000 -3.434 -3.134

MacKinnon approximate p-value for Z(t) = 0.0525.

D.infl	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
infl						
L1.	1475798	.0435074	-3.39	0.001	2333354	0618242
LD.	2336542	.068611	-3.41	0.001	3688904	0984179
L2D.	2295046	.0660681	-3.47	0.001	3597287	0992806
_trend	0033129	.0016318	-2.03	0.044	0065293	0000964
_cons	.8616621	.2931807	2.94	0.004	.2837856	1.439539

- . // regress option to produce the regression results
- . // trend option to include the linear trend in AR(p) regression