Project 3 in Linear and Logistic Regression

El-Tayeb Bayomi, Nora Lüpkes

Lund University

May 27, 2020

Introduction

Purpose and expectations of this project

- COVID-19
- Implementing what we have learnt throughout the course.
- Train presenting your independent work.

Data structure

- obs_date, The date (in R date format).
- day_nbr, Consecutive day number.
- day_nbr_region, Consecutive day number within region.
- region The name of the region.
- population, The population size.
- new_cases, the number of new confirmed cases.

Raw data

NB/PO-models

Model:

```
\label{eq:cases} $$ \sim $(\text{day\_nbr\_region}) * (\text{day\_nbr}) * \text{obs\_date + region} $$ $$ population as offset variable $$
```

Family = negative binomial or poisson?

step()

Model:

	Df	BIC
none		110323
- day_nbr_region:day_nbr:obs_date	1	110567
- region	19	131846

step()

Model:

```
new_cases ~ (day_nbr_region) * (day_nbr) * obs_date + region
population as offset variable
Family = negative binomial
```

	Df	BIC
none		110323
- day_nbr_region:day_nbr:obs_ date	1	110567
- region	19	131846

1 - - 1 - - - -

Negative binomial predictions

Poisson predictions

Negative binomial - Deviance standarized residuals

Deviance standarized residuals - Stockholm

ROC

AUC

roc.test(mod_po.roc, mod_nb.roc)

AUC of Poisson	AUC of negative binomial
0.5932225	0.6014123

Fit a Gaussian curve

Code:

```
library(fitdistrplus)
FIT <- fitdist(fhm.data.og$new_cases, "norm")
class(FIT)
plot(FIT)</pre>
```

Empirical and theoretical dens.

Peak present?

⇒ Choose model family

Thank you!