2/6/2016

| $\sim$     |     | •   |   |    |
|------------|-----|-----|---|----|
| / <b>\</b> | 1 1 | 1   | _ | •  |
| \ <i>)</i> | 11  | - 1 | / | /ı |
| V          | ч   | . Т | _ | 4  |
| _          |     |     |   |    |

2/2 questions correct

Excellent!

| П | _  | ٠. | L |   |
|---|----|----|---|---|
| ĸ | ום | га | ĸ | 6 |

Next (/learn/approximation-algorithms-part-2/lecture/eAkFN/proof-of-weak-duality-theorem)



1.

If the primal is a maximization problem, any solution to the primal is a lower bound for the value of the dual.

True

Well done!

False



2.

If a linear program has a solution of finite value we say that it is *feasible*.

If a linear program has infinite value we say that it is *unbounded*.

If a linear program has no solution we say that it is *infeasible*.

Select all the correct statements.

If the primal is feasible then the dual is feasible

Well done!

Quiz 4 | Coursera 2/6/2016

| If the primal is unbounded the              | n the dual is unbounded          |  |  |  |
|---------------------------------------------|----------------------------------|--|--|--|
| Well done!                                  |                                  |  |  |  |
| If the dual is infeasible then the          | e primal is unbounded            |  |  |  |
| Well done!                                  |                                  |  |  |  |
| If the dual is unbounded then to infeasible | he primal is either unbounded or |  |  |  |
| Well done!                                  |                                  |  |  |  |
|                                             |                                  |  |  |  |

