Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 4: Back to Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Spectrum are very different for matrices vs. operators.

Definition 1.

For a matrix $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ is an **eigenvalue** of A, denoted $\lambda \in \text{eig}(A)$ if there exists some **eigenvector** $v_{\lambda} \in \mathbb{R}^{n}$ such that

$$Av_{\lambda} = \lambda v_{\lambda}$$

Alternative Representations:

- $\lambda \in eig(A)$ if $Ker(\lambda I A) \neq \{0\}$
- For matrices, $\lambda \in eig(A)$ if $det(\lambda I A) = 0$

Recall:

- $\det(A) = \prod \lambda_i(A)$
- trace $(A) = \sum \lambda_i(A)$

Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

[U,V]=eigs([1 2 3; 4 5 6; 7 8 9])

$$U = \begin{bmatrix} -.23 & -.78 & .41 \\ -.53 & -.09 & -.82 \\ -.82 & .61 & .41 \end{bmatrix}; \qquad V = \begin{bmatrix} 16.1 & 0 & 0 \\ 0 & -1.11 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which means:

$$\lambda_1(A) = 16.1, \quad \lambda_2(A) = -1.11, \quad \lambda_3(A) = 0,$$

$$v_1 = \begin{bmatrix} -.23 \\ -.53 \\ -.82 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -.78 \\ -.09 \\ .61 \end{bmatrix}, \quad v_3 = \begin{bmatrix} .41 \\ -.82 \\ .41 \end{bmatrix}$$

M. Peet Lecture 4: Eigenvalues

3 / 29

Characteristic Polynomials

Definition 2.

The **characteristic polynomial** of a matrix A is denoted

$$char A(\lambda) := \det(\lambda I - A)$$

Theorem 3.

 $\lambda \in eig(A)$ if and only if $char A(\lambda) = 0$

Proof.

- By definition, $\lambda \in \text{eig}(A)$ means that $\exists v \neq 0 \in \mathbb{R}^n$ such that $Av = \lambda I$.
- $(\lambda I A)v = 0$ for some $v \neq 0$ if and only if 0 is an eigenvalue of $\lambda I A$.
- If 0 is an eigenvalue of $\lambda I A$, then $\operatorname{char} A(\lambda) = \det(\lambda I - A) = \prod_{\gamma_i \in \operatorname{eig}(\lambda I - A)} \gamma_i = 0.$
- Likewise, if char $A(\lambda) = \det(\lambda I A) = 0$, then $\lambda I A$ has at least one zero eigenvalue.

Characteristic Polynomials

Eigenvectors are NOT unique

- ullet If v is an eigenvector, then so is αv
- If v_1 and v_2 are both eigenvectors for λ , so is $\alpha v_1 + \beta v_2$.

To avoid the problem of uniqueness, we use eigenspace

Definition 4.

For any $\lambda \in \text{eig}(A)$, there is a unique subspace, S_{λ} , called an **eigenspace**, such that $x \in S_{\lambda}$ if and only if

$$Ax = \lambda x$$
.

Theorem 5.

If $\bigcup_i \{S_i\} = \mathbb{R}^n$, then there exist eigenvectors v_i such that

$$V = [v_1, \cdots, v_n]$$
 is invertible.

Diagonalizability

Then

$$AV = [Av_1, \cdots, Av_n] = [\lambda_1 v_1, \cdots, \lambda_n v_n] = V\Lambda, \quad \text{where} \quad \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}.$$

If V is invertible, then

$$V^{-1}AV = \Lambda$$

Thus if the eigenspaces span the space, the matrix can be diagonalized via a *Similarity Transformation*.

- But when does this happen?
- Not all matrices can be diagonalized.

Example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 0, \qquad v_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \qquad \lambda_2 = 0, \qquad v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Jordan Form

Diagonalizibility is an important tool.

- · A change of bases
- In new basis, the operator/matrix multiplies coordinate by a simple factor.
- Can all operators be so simple?
 - NO

An alternative which applies to ALL matrices is the Jordan Form

Definition 6.

A Jordan Block has the form

$$\lambda I + N = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}$$

Almost Diagonal.

7 / 29

Jordan Form

$$N = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is called Nilpotent as

• $N^d = 0$ for some d > 0.

Example

M. Peet

Lecture 4: Eigenvalues

Jordan Form

 λ is the sole eigenvalue of $\lambda I + N$ with multiplicity n and eigenvectors

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

or a 1-Dimensional eigenspace $S_{\lambda} := \text{span } \{e_1\}.$

• Jordan blocks capture the part of a matrix which cannot be diagonalized.

Theorem 7.

For any $A \in \mathbb{C}^{n \times n}$, there exists an invertible T and Jordan Blocks J_i such that

$$TAT^{-1} = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_p \end{bmatrix}$$

ANY matrix is Jordan-Block Diagonalizable. Different Jordan Blocks may have the same eigenvalue.

Symmetric Matrices

Definition 8.

A Matrix, $A \in \mathbb{R}^{n \times n}$ $(A \in \mathbb{C}^{n \times n})$ is self-adjoint, denoted $A \in \mathbb{S}^n$ $(A \in \mathbb{H}^n)$ if $A = A^T$ $(A = A^*)$.

- Real self-adjoint matrices are called symmetric. (S)
- ullet Complex self-adjoint matrices are called Hermetian. (\mathbb{H})

Lemma 9.

Both Hermetian and Symmetric Matrices have real Eigenvalues.

Proof.

We show that is $A \in \mathbb{H}$ and $Av = \lambda v$, then $\lambda = \lambda^*$.

• If $Av = \lambda v$, then

$$\lambda v^* v = v^* A v = (A^* v)^* v = (A v)^* v = (\lambda v)^* v = \lambda^* v^* v$$

• Hence $\lambda = \lambda^*$, which means λ is real.

Unitary matrices are a special case of coordinate transformation.

Definition 10.

Two vectors, $x, y \in \mathbb{R}^n$ are

- orthogonal if $x^Ty = 0$
- orthonormal if they are orthogonal and ||x|| = ||y|| = 1

A basis, $\{v_i\}$ is an **orthonormal basis** if all v_i are orthonormal.

M. Peet Lecture 4: Eigenvalues 11

• A coordinate transformation to an orthonormal basis is a unitary operator.

The Gramm-Schmidt Procedure

Given a basis $\{v_1, \cdots, v_n\}$, we can construct an orthonormal basis

$$\begin{aligned} x_1 &= \frac{v_1}{\|v_1\|} \\ x_2 &= \frac{v_2 - (v_2^T x_1) x_1}{\|v_2 - (v_2^T x_1) x_1\|} \\ x_3 &= \frac{v_3 - (v_3^T x_2) x_2 - (v_3^T x_1) x_1}{\|v_3 - (v_3^T x_2) x_2 - (v_3^T x_1) x_1\|} \end{aligned}$$

- · Clearly, all vectors are of unit length
- To see orthogonality, note

$$x_2^T x_1 = \frac{v_2^T x_1 - (v_2^T x_1) x_1^T x_1}{\|v_2 - (v_2^T x_1) x_1\|} = \frac{v_2^T x_1 - v_2^T x_1}{\|(v_2 - v_2^T x_1) x_1\|} = \frac{0}{v_2 - \|(v_2^T x_1) x_1\|}$$

Definition 11.

A matrix U is **Unitary** if $U^*U = I$.

ullet The columns of U form an orthonormal basis

$$\begin{bmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_n^* \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1^* u_1 & u_1^* u_2 & \cdots & u_1^* u_n \\ u_2^* u_1 & u_2^* u_1 & & u_2^* u_n \\ \vdots & & \ddots & u_1^* u_n \\ u_n^* u_1 & & \cdots & u_n^* u_n \end{bmatrix} = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}$$

- $U^* = U^{-1}$
 - ightharpoonup The columns of U^* also form an orthonormal basis

Length Preservation: A basis change which preserves norms.

• If y = Ux, then

$$||u||^2 = x^*U^*Ux = x^*x = ||x||^2$$

• Why the $\|\cdot\|_2$ -norm?

M. Peet Lecture 4: Eigenvalues

13 / 29

Spectral Theorem

Symmetric matrices can be diagonalized via unitary matrices.

Theorem 12.

If $A \in \mathbb{H}$, then there exists a unitary matrix U and a real diagonal Λ such that

$$A = U\Lambda U^*$$

There is also a spectral theorem for operators.

• What is a diagonal operator?

Singular Value Decomposition

Theorem 13.

Let $A \in \mathbb{R}^{m,n}$ and $p = \min(m,n)$. There exist unitary matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that $A = U\Sigma V^T$, where

$$\Sigma_{i,j} = \begin{cases} 0 & i \neq j \\ \sigma_i > 0 & i = j \end{cases} \qquad \Sigma = \begin{bmatrix} \sigma_1 & & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ & & \sigma_p & 0 & \cdots & 0 \end{bmatrix}$$

Assume that $\sigma_1 > \sigma_2 > \cdots > \sigma_p$.

Singular Value Decomposition

Proof.

By Spectral Theorem,

$$A^T A = V \begin{bmatrix} \Lambda & \\ & 0 \end{bmatrix} V^T$$

where $\Lambda>0$ is diagonal and V is unitary. Let $\Sigma=\Lambda^{\frac{1}{2}}.$ Then

$$V^T A^T A V = \begin{bmatrix} \Sigma^2 & \\ & 0 \end{bmatrix}$$

Let
$$X = AV \begin{bmatrix} \Sigma^{-1} & \\ & I \end{bmatrix}$$
. Then

$$x^{T}X = \begin{bmatrix} \Sigma^{-1} & \\ & I \end{bmatrix}^{T} V^{T}AAV \begin{bmatrix} \Sigma^{-1} & \\ & I \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma^{-1} & \\ & I \end{bmatrix}^{T} \begin{bmatrix} \Sigma^{2} & \\ & 0 \end{bmatrix} \begin{bmatrix} \Sigma^{-1} & \\ & I \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}.$$

Singular Value Decomposition

Proof.

Thus if $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$, then

$$x_i^T x_j = \begin{cases} 1 & i = j, \ i = 1 \dots k < n \\ 0 & \text{otherwise} \end{cases}$$

Thus the first k columns are orthonormal and the rest are zero. Now define $U_1 = \begin{bmatrix} x_1 & \cdots & x_k \end{bmatrix}$ so that $X = \begin{bmatrix} U_1 & 0 \end{bmatrix}$. Now complete the basis as $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$, where $U_2 = \begin{bmatrix} v_{k+1} & \cdots & v_n \end{bmatrix}$ is a arbitrarily chosen set of orthonormal vectors. Then

$$X = AV \begin{bmatrix} \Sigma^{-1} \\ I \end{bmatrix} = \begin{bmatrix} U_1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} U_1 & 0 \end{bmatrix} \begin{bmatrix} \Sigma \\ I \end{bmatrix} V^T = \begin{bmatrix} U_1 & 0 \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$

$$= \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$

The Maximum Singular Value

The σ_i^2 are the eigenvalues of A^TA or AA^T .

Definition 14.

We denote the Maximum Singular Value of a Matrix, M, as

$$\bar{\sigma}(M) = \max_{i} \sigma_i(M)$$

The maximum singular value of a matrix is a matrix norm with many pleasing properties.

An induced norm

$$\bar{\sigma}(A) = \sup_{v} \frac{\|Av\|}{\|v\|} = \sup_{\|v\|=1} \|Av\|$$

Matrix Norms

The set of matrices is a normed space with a variety of norms.

• Induced Norm (from a vector norm)

$$||M||_{Xi} = \max_{v \in \mathbb{R}^n} \frac{||Mv||_X}{||v||_X}$$

Maximum Singular Value Norm is induced from the Euclidean norm $\|x\|_2 = \sqrt{x^T x}$

$$\bar{\sigma}(M) = ||M||_{2i} = \max_{v \in \mathbb{R}^n} \frac{||Mv||_2}{||v||_2}$$

 $ightharpoonup \|M\|_{1i}$ is the Maximum Column Sum Norm

$$||M||_{1i} = \max_{v \in \mathbb{R}^n} \frac{||Mv||_1}{||v||_1} = \max_j \sum_i |M_{i,j}|$$

 $ightharpoonup \|M\|_{\infty i}$ is the Maximum Column Sum Norm

$$\|M\|_{\infty i} = \max_{v \in \mathbb{R}^n} \frac{\|Mv\|_{\infty}}{\|v\|_{\infty}} = \max_i \sum_i |M_{i,j}|$$

Other Matrix Norms

Frobenius Norm

$$\|M\|_F = \|M\|_2 = \sqrt{\sum_i \sum_j |M_{i,j}|^2} = \sqrt{\mathrm{trace}(M^*M)} = \sqrt{\sum_i \sigma_i^2(M)}$$

Taxicab Norm

$$||M||_1 = \sum_i \sum_j |M_{i,j}|$$

Maximum Value Norm

$$||M||_{\infty} = \max_{i,j} |M_{i,j}|$$

p-norm

$$\|M\|_p = \sqrt[p]{\sum_i \sum_j |M_{i,j}|^p}$$

• Spectral Radius (False Norm)

$$\rho(M) = \max_{\lambda \in \mathsf{eig}(A)} |\lambda|$$

However, $\rho(M) \leq ||M||$ for any matrix norm.

M. Peet

Positive Matrices

Definition 15.

A symmetric matrix $P \in \mathbb{S}^n$ is **Positive Semidefinite**, denoted $P \geq 0$ if

$$x^T P x \ge 0 \qquad \text{ for all } x \in \mathbb{R}^n$$

Definition 16.

A symmetric matrix $P \in \mathbb{S}^n$ is **Positive Definite**, denoted P > 0 if

$$x^T P x > 0$$
 for all $x \neq 0$

- P is Negative Semidefinite if -P > 0
- P is **Negative Definite** if -P > 0
- A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.

Positive Matrices

Lemma 17.

 $P \in \mathbb{S}^n$ is positive definite if and only if all its eigenvalues are positive.

Proof.

 (\Rightarrow) To show sufficiency, use the spectral decomposition. For $x \neq 0$,

$$\boldsymbol{x}^T P \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{U}^T \boldsymbol{\Lambda} \boldsymbol{U} \boldsymbol{x} = \boldsymbol{v}^T \boldsymbol{\Lambda} \boldsymbol{v} = \sum_i \lambda_i v_i^2 > 0$$

(\Leftarrow) To show necessity, Suppose λ is an eigenvalue and $Px = \lambda x$ for $x \neq 0$, then

$$\lambda x^T x = x^T P x > 0$$

Hence

$$\lambda = \frac{x^T P x}{x^T x} > 0$$

Easy Proofs:

- A Positive Definite matrix is invertible.
- The inverse of a positive definite matrix is positive definite.

_

Positive Matrices

Easy Proofs:

• If P > 0, then $TPT^T \ge 0$ for any T. If T is invertible, then $TPT^T > 0$.

Lemma 18.

For any P>0, there exists a positive square root, $P^{\frac{1}{2}}>0$ such that $P=P^{\frac{1}{2}}P^{\frac{1}{2}}$.

Proof.

By the spectral decomposition $A = U\Lambda U^T$, where $\Lambda = \text{diag}(\lambda_1, \cdots, \lambda_n)$.

- Let $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n})$.
- Then $\Lambda^{\frac{1}{2}}>0$, $\Lambda=\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}$, and

$$\begin{split} A &= U\Lambda U^T \\ &= U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^T \\ &= U\Lambda^{\frac{1}{2}}U^TU\Lambda^{\frac{1}{2}}U^T \end{split}$$

• Thus $P=P^{\frac{1}{2}}P^{\frac{1}{2}}$, where $P^{\frac{1}{2}}=U\Lambda^{\frac{1}{2}}U^T>0$

The properties of positive matrices extend to positive operators.

What is an inequality? What does ≥ 0 mean?

- An inequality implies a partial ordering:
 - $x \ge y \text{ if } x y \ge 0$
- Any convex cone, C defines a partial ordering:
 - $x y \ge 0$ if $x y \in C$
- The ordering is only partial because $x \leq 0$ does not imply $x \geq 0$
 - $-x \notin C$ does not imply $x \in C$.
 - x may be indefinite.

Manipulations of Positive Matrices

Positivity will not change with coordinate transformations.

- P>0 if and only if $T^*PT>0$
- What about $T^{-1}PT$?

Theorem 19 (Schur Complement).

For any $S \in \mathbb{S}^n$, $Q \in \mathbb{S}^m$ and $R \in \mathbb{R}^{n \times m}$, the following are equivalent.

1.
$$\begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} > 0$$

2.
$$Q > 0$$
 and $M - RQ^{-1}R^T > 0$

Proof.

First, we show that 2) implies 1). Suppose that Q>0 and $M-RQ^{-1}R^T>0$.

$$\begin{bmatrix} M - RQ^{-1}R^T & 0\\ 0 & Q \end{bmatrix} > 0$$

Thus

$$\begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} = \begin{bmatrix} I & RQ^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} M - RQ^{-1}R^T & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} I & RQ^{-1} \\ 0 & I \end{bmatrix}^T > 0$$

Schur Complement

Proof.

We first show that 1) implies 2). Suppose that

$$\begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} > 0$$

Then for any $x \in \mathbb{R}^m$, $x \neq 0$,

$$\begin{bmatrix} 0 \\ x \end{bmatrix}^T \begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} \begin{bmatrix} 0 \\ x \end{bmatrix} = x^T Q x > 0.$$

Thus Q>0 and hence Q^{-1} exists. Now, since $\begin{bmatrix} M & R \\ R^T & Q \end{bmatrix}>0$,

$$\begin{bmatrix} I & -RQ^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} \begin{bmatrix} I & -RQ^{-1} \\ 0 & I \end{bmatrix}^T = \begin{bmatrix} M - RQ^{-1}R^T & 0 \\ 0 & Q \end{bmatrix} > 0$$

Therefore $M - RQ^{-1}R^T > 0$

A Final Concept

Projections and Perp Space

Definition 20.

The **Orthogonal Complement** (Perp) of a subspace, $S \subset X$, is denoted

$$S^{\perp} := \left\{ x \in \mathbb{R}^n \ : \ \langle x,y \rangle = x^T y = 0 \qquad \text{ for all } y \in S \right\}$$

- Properties $\bullet \dim(S^{\perp}) = n \dim(S)$
 - For any $x \in \mathbb{R}^n$,

$$x = x_S + x_{S^{\perp}}$$
 for $x_S \in S$ and $x_{S^{\perp}} \in S^{\perp}$

x_S and x_S are unique.

Definition 21.

The orthogonal projection operator P_S is defined by

$$x_S = Px$$

if $x_S \in S$ and $x - x_S \in S^{\perp}$.

M Peet Lecture 4: Positive Matrices

Projection and Perp space

 ${\cal P}$ is a projection if and only if

$$P^2 = P$$

A projection P is orthogonal if and only if $P = P^*$

• Need Px and (I-P)y orthogonal for all $x, y \in \mathbb{R}^n$.

Generalizes to any Hilbert space

Theorem 22.

For any $M \in \mathbb{R}^{n \times m}$, $[\operatorname{Im}(M)]^{\perp} = \operatorname{Ker}[M^T]$.

Proof.

We need to show $[\operatorname{Im}(M)]^{\perp} \subset \operatorname{Ker}[M^T]$ and $\operatorname{Ker}[M^T] \subset [\operatorname{Im}(M)]^{\perp}$.

- Suppose $x \in [\operatorname{Im}(M)]^{\perp}$. If $x^T y = 0$ for any $y \in \operatorname{Im}[M]$, then $x^T M z = 0$ for all z.
- Thus $z^T M^T x$ for all z. Let $z = M^T x$.
- Then $x^T M M^T x = ||M^T x||^2 = 0.$
- Thus $x \in \operatorname{Ker} \left[M^T \right]$, which implies $\left[\operatorname{Im}(M) \right]^{\perp} \subset \operatorname{Ker} \left[M^T \right]$.

M. Peet Lecture 4: Positive Matrices 28

Controllability

Proof.

We need to show $\operatorname{Ker} [M^T] \subset [\operatorname{Im}(M)]^{\perp}$.

• Suppose $x \in \operatorname{Ker} [M^T]$. Then

$$y^T M^T x = x^T M y = x^T z = 0$$

for any $z \in \text{Im}(M)$. Thus $x \in [\text{Im}(M)]^{\perp}$.

• This proves that $[\operatorname{Im}(M)]^{\perp} = \operatorname{Ker}[M^T]$.

