Interpretabilidad del Deep Learning

Explicabilidad genérica

Christian Oliva Moya

Contenido del curso

- Primera semana:
 - Introducción de conceptos
 - Explicabilidad genérica
 - SHAP
 - LIME
 - Coeficiente de Explicabilidad-Rendimiento

Repaso (I)

- Explicabilidad: Identificación de los atributos del conjunto de datos que tienen una mayor influencia en las predicciones de un modelo
- Responde a la pregunta:
 - ¿Por qué este dato de entrada genera esta respuesta en el modelo?
- Los algoritmos de explicabilidad definen una relevancia Rxi para cada atributo de entrada

Repaso (II)

Explicabilidad específica vs genérica

- Genérica: el algoritmo se puede aplicar a cualquier modelo
- Específica: el algoritmo es específico para un modelo particular (por ejemplo, específico para redes neuronales)

Algoritmos de explicabilidad genéricos

- Importancia por permutación ←Todos creemos que este es un algoritmo de selección de atributos cuando no es así
- Relevancia por Oclusión 1x1
- SHapley Additive exPlanations (SHAP)
- Local Interpretable Model-agnostic Explanations (LIME)

Todos estos algoritmos de explicabilidad son genéricos, es decir, se pueden utilizar para cualquier modelo de ML y DL

Importancia por Permutación

Importancia por permutación (I)

 Permutamos (barajamos) uno a uno los atributos del dataset y evaluamos el modelo M para ver cómo cambia el rendimiento

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

- M(X) es el rendimiento (accuracy, R2, etc) del modelo M sobre el dataset X
- X'i es el dataset resultante después de permutar el atributo i

Importancia por permutación (II)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

1. Calculamos el score base (accuracy):

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

acc = 0.85

Importancia por permutación (III)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Para cada atributo i, vamos permutando N=2 veces (i=1, n=1):

Attr1	Attr2	Attr3
21	12	13
11	22	23
51	32	33
31	42	43
41	52	53

acc = 0.85

 $acc_{11} = 0.84$

Importancia por permutación (IV)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Para cada atributo i, vamos permutando N=2 veces (i=1, n=2):

Attr1	Attr2	Attr3
11	12	13
41	22	23
21	32	33
51	42	43
31	52	53

$$acc_{11} = 0.84$$

 $acc_{12} = 0.83$

Importancia por permutación (V)

Aplicamos la fórmula para el atributo Attr1:

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

$$R_1 = 0.015$$

$$R_i = M(X) - \frac{1}{N} \sum_{i=1}^{N} M(X_i')$$

Importancia por permutación (VI)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Para cada atributo i, vamos permutando N=2 veces (i=2, n=1):

Attr1	Attr2	Attr3
11	32	13
21	42	23
31	12	33
41	52	43
51	22	53

acc = 0.85

 $acc_{21} = 0.41$

$$R_1 = 0.015$$

Importancia por permutación (VII)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Para cada atributo i, vamos permutando N=2 veces (i=2, n=2):

Attr1	Attr2	Attr3
11	22	13
21	52	23
31	42	33
41	12	43
51	32	53

$$acc_{21} = 0.41$$

$$acc_{22} = 0.39$$

$$R_1 = 0.015$$

Importancia por permutación (VIII)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Aplicamos la fórmula para el atributo Attr2:

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

$$R_1 = 0.015$$

$$R_2 = 0.45$$

Importancia por permutación (IX)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Para cada atributo i, vamos permutando N=2 veces (i=3, n=1):

Attr1	Attr2	Attr3
11	12	53
21	22	33
31	32	23
41	42	43
51	52	13

acc = 0.85

$$R_1 = 0.015$$

 $R_2 = 0.45$

Importancia por permutación (X)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

• Para cada atributo i, vamos permutando N=2 veces (i=3, n=2):

Attr1	Attr2	Attr3
11	12	53
21	22	33
31	32	13
41	42	43
51	52	23

acc = 0.85

 $acc_{31} = 0.84$

 $acc_{32} = 0.85$

$$R_1 = 0.015$$

 $R_2 = 0.45$

Importancia por permutación (XI)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Aplicamos la fórmula para el atributo Attr3:

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

$$R_1 = 0.015$$

$$R_2 = 0.45$$

$$R_3 = 0.005$$

Importancia por permutación (XII)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

Ya tenemos todas las relevancias:

$$R_1 = 0.015$$

$$R_2 = 0.45$$

$$R_3 = 0.005$$

- El atributo más relevante es Attr2 porque cuando se perturba afecta mucho al rendimiento del modelo.
- Los atributos Attr1 y Attr3 prácticamente no tienen impacto en el modelo

Importancia por permutación (XIII)

$$R_i = M(X) - \frac{1}{N} \sum_{j=1}^{N} M(X_i')$$

- La importancia por permutación es un algoritmo de explicabilidad...
 - Global, porque se aplica al dataset completo
 - Genérico, porque se puede aplicar a cualquier modelo
 - Sencillo, porque es bastante intuitiva la idea que hay detrás
 - Costoso, porque necesitamos ejecutar N veces por cada atributo

Importancia por permutación (XIV)

- Vamos a implementarlo a mano. Vamos al notebook!
 - Notebook 2.1 Explicabilidad Genérica

Relevancia por Oclusión

Relevancia por oclusión (I)

- Es una técnica de explicabilidad local utilizada en procesamiento de imágenes
- Se puede utilizar como técnica de explicabilidad tanto global como local para procesamiento de datos tabulares
- Consiste en anular una región del espacio de atributos de entrada

Relevancia por oclusión (II)

- Consiste en anular una región del espacio de atributos de entrada
- Relevancia por oclusión global para datos tabulares:

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión local para datos tabulares:

$$R_i(x) = f(x) - f(x_i')$$

Es una idea parecida a la importancia por permutación, donde en vez de permutar, se anulan atributos

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (III)

$$R_i(x) = f(x) - f(x_i')$$

Vamos primero con la explicabilidad global:

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

acc = 0.85

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (IV)

$$R_i(x) = f(x) - f(x_i')$$

Oclusión del atributo Attr1:

Attr1	Attr2	Attr3
0	12	13
0	22	23
0	32	33
0	42	43
0	52	53

 $acc_1 = 0.83$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (V)

$$R_i(x) = f(x) - f(x_i')$$

Aplicamos la fórmula al atributo Attr1:

Attr1	Attr2	Attr3
0	12	13
0	22	23
0	32	33
0	42	43
0	52	53

acc = 0.85

 $acc_1 = 0.83$

$$R_1 = 0.02$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (VI)

$$R_i(x) = f(x) - f(x_i')$$

Oclusión del atributo Attr2:

Attr1	Attr2	Attr3
11	0	13
21	0	23
31	0	33
41	0	43
51	0	53

acc = 0.85

 $acc_2 = 0.48$

$$R_1 = 0.02$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (VII)

$$R_i(x) = f(x) - f(x_i')$$

Aplicamos la fórmula al atributo Attr2:

Attr1	Attr2	Attr3
11	0	13
21	0	23
31	0	33
41	0	43
51	0	53

acc = 0.85

 $acc_2 = 0.48$

$$R_1 = 0.02$$

$$R_2 = 0.37$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (VIII)

$$R_i(x) = f(x) - f(x_i')$$

Oclusión del atributo Attr3:

Attr1	Attr2	Attr3
11	12	0
21	22	0
31	32	0
41	42	0
51	52	0

$$R_1 = 0.02$$

$$R_2 = 0.37$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (IX)

$$R_i(x) = f(x) - f(x_i')$$

Aplicamos la fórmula al atributo Attr3:

Attr1	Attr2	Attr3
11	12	0
21	22	0
31	32	0
41	42	0
51	52	0

acc = 0.85

 $acc_3 = 0.85$

$$R_1 = 0.02$$

$$R_2 = 0.37$$

 $R_3 = 0.0$

Relevancia por oclusión (X)

Ya tenemos todas las relevancias:

$$R_1 = 0.02$$

$$R_2 = 0.37$$

$$R_3 = 0.0$$

- El atributo más relevante es Attr2 porque cuando se anula afecta mucho al rendimiento del modelo.
- Los atributos Attr1 y Attr3 prácticamente no tienen impacto en el modelo

Da un resultado similar a la relevancia por permutación

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XI)

$$R_i(x) = f(x) - f(x_i')$$

Vamos ahora con la explicabilidad **local** para la instancia x₂:

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XII)

$$R_i(x) = f(x) - f(x_i')$$

Anulamos el atributo Attr1 en la instancia x₂:

Attr1	Attr2	Attr3
11	12	13
0	22	23
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$f(x_2'_1) = 0.705$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XIII)

$$R_i(x) = f(x) - f(x_i')$$

Aplicamos la fórmula:

Attr1	Attr2	Attr3
11	12	13
0	22	23
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$f(x_2'_1) = 0.705$$

$$R_1 = 0.005$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XIV)

$$R_i(x) = f(x) - f(x_i')$$

Anulamos el atributo Attr2 en la instancia x₂:

Attr1	Attr2	Attr3
11	12	13
21	0	23
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$f(x_2'_2) = 0.86$$

$$R_1 = 0.005$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XV)

$$R_i(x) = f(x) - f(x_i')$$

Aplicamos la fórmula:

Attr1	Attr2	Attr3
11	12	13
21	0	23
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$f(x_2'_2) = 0.86$$

$$R_1 = 0.005$$

$$R_2 = -0.15$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XVI)

$$R_i(x) = f(x) - f(x_i')$$

Anulamos el atributo Attr3 en la instancia x₂:

Attr1	Attr2	Attr3
11	12	13
21	22	0
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$R_1 = 0.005$$

$$R_2 = -0.15$$

$$R_i = M(X) - M(X_i')$$

Relevancia por oclusión (XVII)

 $R_i(x) = f(x) - f(x_i')$

Aplicamos la fórmula:

Attr1	Attr2	Attr3
11	12	13
21	22	0
31	32	33
41	42	43
51	52	53

$$f(x_2) = 0.71$$

$$f(x_2'_3) = 0.70$$

$$R_1 = 0.005$$

$$R_2 = -0.15$$

 $R_3 = 0.01$

Relevancia por oclusión (XVIII)

$$R_i(x) = f(x) - f(x_i')$$

Ya tenemos todas las relevancias para la instancia x₂:

$$R_1 = 0.005$$

$$R_2 = -0.15$$

$$R_3 = 0.01$$

¿Qué significa relevancia negativa o positiva?

Relevancia por oclusión (XIX)

$$R_i(x) = f(x) - f(x_i')$$

Ya tenemos todas las relevancias para la instancia x₂:

$$R_1 = 0.005$$

$$R_2 = -0.15$$

$$R_3 = 0.01$$

- ¿Qué significa relevancia negativa o positiva?
 - Relevancia positiva: Anular hace que la predicción baje
 - Relevancia negativa: Anular hace que la predicción suba

Relevancia por oclusión (XX)

- La relevancia por oclusión es un algoritmo de explicabilidad...
 - Híbrido, porque puede ser tanto global como local
 - Genérico, porque se puede aplicar a cualquier modelo
 - Sencillo, porque es bastante intuitiva la idea que hay detrás
 - Ligero, porque solamente itera una vez por atributo

Relevancia por oclusión (XXI)

- Vamos a implementarlo a mano. Vamos al notebook!
 - Notebook 2.1 Explicabilidad Genérica

SHAP

SHAP (I)

• El valor de Shapley en teoría de juegos para una característica i es:

$$\phi_i(x) = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} [f_{S \cup \{i\}}(x) - f_S(x)]$$

Esto no es viable, escala exponencialmente

El algoritmo SHapley Additive exPlanations (SHAP) se basa en esta idea
pero muestreando permutaciones aleatorias de atributos

SHAP (II)

- ¿En qué consiste la idea?
 - Introducir de forma aleatoria atributos uno a uno (imputando el resto)
 - Evaluar cómo afecta el haber introducido dicho atributo al resto
- Podemos basarnos en esta idea:

$$contribuci\'on_i = f_{S \cup \{i\}}(x) - f_S(x)$$

Esta ecuación sencilla nos gusta más

SHAP (III)

Vamos a probarlo con la instancia x₂: Primero calculamos un valor base: E[f(X)]

Attr1	Attr2	Attr3		Pred
11	12	13		0.81
21	22	23	$M \longrightarrow M$	0.71
31	32	33		0.24
41	42	43		0.93
51	52	53		0.37

SHAP (IV)

 Luego tenemos que ejecutar N=2 veces seleccionando aleatoriamente el orden de entrada de los atributos: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

base = 0.61

SHAP (V)

• Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
0	0	0
31	32	33
41	42	43
51	52	53

base = 0.61

SHAP (VI)

• Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
0	22	0
31	32	33
41	42	43
51	52	53

base = 0.61

 $f_{SU2}(x_2) = 0.70$

SHAP (VII)

Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
0	22	0
31	32	33
41	42	43
51	52	53

base = 0.61

M

 $f_{S \cup 2}(x_2) = 0.70$

$$C_2 = 0.09$$

SHAP (VIII)

Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
0	22	0
31	32	33
41	42	43
51	52	53

SHAP (IX)

• Imputamos todos los atributos y vamos en orden: PERM $_1$ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	0
31	32	33
41	42	43
51	52	53

base = 0.70

 $f_{SU1}(x_2) = 0.71$

$$C_2 = 0.09$$

SHAP (X)

• Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	0
31	32	33
41	42	43
51	52	53

base = 0.70

 $f_{SU1}(x_2) = 0.71$

$$C_2 = 0.09$$

 $C_1 = 0.01$

SHAP (XI)

Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	0
31	32	33
41	42	43
51	52	53

SHAP (XII)

Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	23
31	32	33
41	42	43
51	52	53

 $f_{S \cup 3}(x_2) = 0.71$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

SHAP (XIII)

• Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	23
31	32	33
41	42	43
51	52	53

M

$$f_{S \cup 3}(x_2) = 0.71$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

SHAP (XIV)

Imputamos todos los atributos y vamos en orden: PERM₁ = [2, 1, 3]

Attr1	Attr2	Attr3
11	12	13
11	22	23
31	32	33
41	42	43
51	52	53

$$f_{S \cup 3}(x_2) = 0.71$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

SHAP (XV)

Repetimos una vez más para llegar a N=2 veces: PERM₂ = [3, 1, 2]

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

base = 0.61

Volvemos al valor base inicial

$$C_2 = 0.09$$

$$C_1 = 0.01$$

 $C_3 = 0.0$

SHAP (XVI)

Attr1	Attr2	Attr3
11	12	13
0	0	0
31	32	33
41	42	43
51	52	53

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

SHAP (XVII)

Attr1	Attr2	Attr3
11	12	13
0	0	23
31	32	33
41	42	43
51	52	53

$$f_{S \cup 3}(x_2) = 0.61$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

SHAP (XVIII)

• Imputamos todos los atributos y vamos en orden: PERM₂ = [3, 1, 2]

Attr1	Attr2	Attr3
11	12	13
0	0	23
31	32	33
41	42	43
51	52	53

base = 0.61

M

 $f_{S \cup 3}(x_2) = 0.61$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

$$C_3 = 0.0$$

SHAP (XIX)

Attr1	Attr2	Attr3
11	12	13
0	0	23
31	32	33
41	42	43
51	52	53

SHAP (XX)

• Imputamos todos los atributos y vamos en orden: PERM₂ = [3, 1, 2]

Attr1	Attr2	Attr3
11	12	13
21	0	23
31	32	33
41	42	43
51	52	53

M

$$f_{SU1}(x_2) = 0.63$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

$$C_3 = 0.0$$

SHAP (XXI)

Attr1	Attr2	Attr3
11	12	13
21	0	23
31	32	33
41	42	43
51	52	53

$$f_{SU1}(x_2) = 0.63$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

$$C_3 = 0.0$$

SHAP (XXII)

Attr1	Attr2	Attr3
11	12	13
21	0	23
31	32	33
41	42	43
51	52	53

SHAP (XXIII)

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43
51	52	53

$$f_{SU2}(x_2) = 0.71$$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

$$C_3 = 0.0$$

 $C_3 = 0.0$

SHAP (XXIV)

51

• Imputamos todos los atributos y vamos en orden: PERM₂ = [3, 1, 2]

Attr1	Attr2	Attr3
11	12	13
21	22	23
31	32	33
41	42	43

52

53

base = 0.63

 $f_{SU2}(x_2) = 0.71$

$$C_2 = 0.09$$

$$C_1 = 0.01$$

 $C_1 = 0.02$

$$C_3 = 0.0$$

 $C_3 = 0.0$

SHAP (XXV)

Ya tenemos todos los valores de SHAP mediante permutaciones:

$$C_1 = 0.01$$

 $C_1 = 0.02$

$$C_2 = 0.09$$

 $C_2 = 0.08$

$$C_3 = 0.0$$

Promediamos:

$$C_1 = 0.015$$

$$C_2 = 0.085$$

$$C_3 = 0.0$$

• El atributo Attr2 vuelve a ser el más relevante

SHAP (XXV)

Ya

OJO! SHAP también puede dar relevancias negativas y positivas, que se interpretan igual que la relevancia por oclusión

Promediamos:

$$C_1 = 0.015$$

$$C_2 = 0.085$$

$$C_3 = 0.0$$

ones:

• El atributo Attr2 vuelve a ser el más relevante

SHAP (XXVI)

- SHAP es un algoritmo de explicabilidad...
 - Local, porque se aplica a instancias individuales del dataset
 - Genérico, porque se puede aplicar a cualquier modelo
 - Algo complicado, porque se basa en una idea compleja
 - Costoso, porque necesitamos ejecutar N veces por cada atributo

SHAP (XXVII)

- Vamos a implementarlo a mano. Vamos al notebook!
 - Notebook 2.1 Explicabilidad Genérica

LIME

LIME (I)

• Es un algoritmo local que consiste en:

Aproximar el comportamiento del modelo complejo con puntos cercanos a la instancia que se quiere explicar utilizando un modelo lineal

Es un algoritmo que estudia el comportamiento cercano de los vecinos

LIME (II)

- La idea consiste en lo siguiente:
 - 1. Generamos un dataset sintético X' alrededor de la instancia x
 - 2. Se calculan las predicciones del modelo complejo sobre X'
 - 3. Se asignan pesos a los puntos de X' según su cercanía a x
 - 4. Se entrena un modelo lineal con X' de forma ponderada según cercanía
 - 5. Los coeficientes (pesos) del modelo lineal son la relevancia Rx

LIME (III)

1. Generamos un dataset sintético X' con D puntos alrededor de la instancia x

Attr1	Attr2		Attr1	Attr2
11	12	1.75 - 1.50 -	21 ₁	221
21	22	Eg 100 -	212	222
31	32	0.75 - 0.50 -	21 ₃	223
41	42	0.25 0.00 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Attr1		
51	52		21 _D	22 _D

LIME (IV)

2. Se calculan las predicciones del modelo complejo sobre X'

Attr1	Attr2		Pred
211	221		P ₁
212	222		P ₂
213	22 ₃		P ₃
21 _D	22 _D		Po

LIME (V)

3. Se asignan pesos a los puntos de X' según su cercanía a x

Attr1	Attr2	
21 ₁	221	
21 ₂	22 ₂	
21 ₃	223	
21 _D	22 D	

Dist

Dist

Pred

 P_1

 P_2

 P_3

. . .

 P_D

W

LIME (VI)

4. Se entrena un modelo lineal con X' de forma ponderada según cercanía

Attr1	Attr2	Pred	W
211	221	P ₁	1/D ₁
21 ₂	222	P ₂	1/D ₂
21 ₃	223	P ₃	1/D ₃
21 _D	22 D	PD	1/ D □

No olvidemos entrenar con las ponderaciones. en SKLearn y Keras: *sample_weights*

LIME (VII)

5. Los coeficientes (pesos) del modelo lineal son la relevancia Rx

- El modelo lineal aprende cómo cambian las predicciones alrededor de x
- LIME, al contrario que SHAP, solamente mira el vecindario cercano a x

LIME (VIII)

- LIME es un algoritmo de explicabilidad...
 - Local, porque se aplica a instancias individuales del dataset
 - Genérico, porque se puede aplicar a cualquier modelo
 - Algo complicado, porque se basa en una idea compleja
 - Algo costoso, porque necesitamos entrenar un modelo adicional

LIME (IX)

- Vamos a implementarlo a mano. Vamos al notebook!
 - Notebook 2.1 Explicabilidad Genérica