

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:44:37 ; Search time 153 Seconds
 (without alignments)

11.723 Million cell updates/sec

Title: HOLLY-9

Sequence: 1 aaagg 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2002273 seqs, 358729299 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 200 summaries

Database :

- 1: geneseqp1980s;*
- 2: geneseqp1990s;*
- 3: geneseqp2000s;*
- 4: geneseqp2001s;*
- 5: geneseqp2002s;*
- 6: geneseqp2003as;*
- 7: geneseqp2003bs;*
- 8: geneseqp2004s;*

Pre. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result No.	Score	Query Match	Length	DB ID	Description
1	22	100.0	6	2 AAY42597	Aay42597 Human IgE
2	22	100.0	6	3 AAY85229	Aay85229 Human IgE
3	22	100.0	6	4 AAB2095	Aab2095 Hamster P
4	22	100.0	6	5 AAB15586	Aab15586 Hamster P
5	22	100.0	7	3 AAY69877	Aay69877 13C-Label
6	22	100.0	7	4 AAB73128	Aab73128 Radiolabe
7	22	100.0	7	6 ADA38160	Ada38160 Peptide C
8	22	100.0	8	2 AAW89379	Aaw89379 Beta-any1
9	22	100.0	8	4 AAB8293	Aab8293 Hamster P
10	22	100.0	8	5 ABG71017	Abg71017 Prion pro
11	22	100.0	8	5 ABB05165	Abb05165 Prion pro
12	22	100.0	8	5 AAE15584	Aae15584 Hamster P
13	22	100.0	8	5 AAE26268	Aae26268 Human amy
14	22	100.0	8	7 ADD24684	Add24684 Peptide a
15	22	100.0	8	8 ADJ4068	Adj4068 Human bet
16	22	100.0	8	9 AAW3905	Aaw3905 Specific
17	22	100.0	9	5 ABG65845	Abg65845 Peptide 1
18	22	100.0	10	4 AAG84197	Aag84197 Arabidops
19	22	100.0	10	4 AAG84188	Aag84188 Arabidops
20	22	100.0	10	4 AAG97948	Aag97948 Human com
21	22	100.0	10	4 AAG97912	Aag97912 Human com
22	22	100.0	10	4 AAG97945	Aag97945 Human com
23	22	100.0	10	4 AAG97947	Aag97947 Human com
24	22	100.0	10	4 AAG97946	Aag97946 Human com
25	22	100.0	10	5 ABG65858	Abg65858 Peptide 1

26	100.0	5 ABG65874	Peptide 1
27	100.0	6 ADA38149	Peptide a
28	100.0	6 ADA38151	Control P
29	100.0	6 AR031161	Prion (Pr
30	100.0	6 AAC31163	Prion a
31	100.0	7 ADC23466	Peptide a
32	100.0	7 ADC23468	Peptide a
33	100.0	7 ADD24690	Peptide a
34	100.0	7 ADD24689	Peptide a
35	100.0	2 AAW2038	Antigenic
36	100.0	2 AAV32561	Prion tar
37	100.0	4 AAB37466	Multivale
38	100.0	4 AAB71386	Staphyloc
39	100.0	6 ABU79022	Prion pro
40	100.0	7 ABW00156	Anti-PrP
41	100.0	7 ADE29207	Prion
42	100.0	8 ADH80963	Peptide r
43	100.0	8 ADH80962	Peptide r
44	100.0	8 ADL70328	Peptide a
45	100.0	8 ADL70310	Peptide a
46	100.0	8 ADL70316	Peptide a
47	100.0	8 ADL70325	Peptide a
48	100.0	8 ADL70313	Peptide a
49	100.0	8 ADL70319	Peptide a
50	100.0	8 ADL70322	Peptide a
51	100.0	8 AAY37744	Hard segm
52	100.0	13 ADG65555	B. subtil
53	100.0	13 ADG65553	B. subtil
54	100.0	13 ADG66552	B. subtil
55	100.0	13 ADG66556	B. subtil
56	100.0	13 ADG66554	B. subtil
57	100.0	13 AAO31195	Human bet
58	100.0	13 AAO62195	Human bet
59	100.0	13 ADC23477	Peptide a
60	100.0	13 ADC23476	Peptide a
61	100.0	14 AAW17679	Prion pro
62	100.0	14 AAW17680	Prion pro
63	100.0	14 AAW69167	Peptide f
64	100.0	14 AAW73143	M. tuberc
65	100.0	14 AAW7353	M. tuberc
66	100.0	14 AAU08208	Nycobacte
67	100.0	14 ABU79033	Prion pro
68	100.0	14 ABP74859	Proteine
69	100.0	14 ABP50083	Human pri
70	100.0	14 ABW00167	Prion (Pr
71	100.0	15 ABB09749	Peptide f
72	100.0	16 AAR04447	Human imm
73	100.0	16 AAR04483	Human imm
74	100.0	16 ABU54074	Human DNA
75	100.0	16 ABU54074	Human DNA
77	100.0	17 ABG47084	Human pep
78	100.0	17 ABG47084	Human pep
79	100.0	18 AAR07530	Novel sur
80	100.0	18 AAW23360	B-cell ep
81	100.0	18 AAW67021	Prion pro
82	100.0	18 AAW81054	Prion pro
83	100.0	18 ABB2279	Membrilla
84	100.0	18 ABP58082	Human pri
85	100.0	18 ABP58082	Human pri
86	100.0	19 AAB66316	M. charan
87	100.0	19 AAB66316	M. charan
88	100.0	19 AAB66316	M. charan
89	100.0	19 ABP62604	Hypotheti
90	100.0	19 ABP62604	Hypotheti
91	100.0	19 ABP58531	Human gen
92	100.0	19 AAR36792	Prion pro
93	100.0	20 AAW32319	Leishmani
94	100.0	20 AAB03085	N-terminal
95	100.0	20 AAB69493	Synthetic
96	100.0	20 AAB73061	Machado-J
97	100.0	20 AAE1262	Mycobacte
98	100.0	20 AAE13243	Mycobacte

99	22	100.0	20	5	AAE13242	Human pep	Aae13242 Human pep
100	22	100.0	20	7	AAE13235	Human lin	Add13235 Streptococcal protein
101	22	100.0	20	7	ADD93639		Add93639 Streptococcal protein
102	22	100.0	20	7	ADD93661		Add93661 Streptococcal protein
103	22	100.0	21	3	AAW53348	Nephila c	Aaw53348 Nephila c
104	22	100.0	21	3	AAW53072	N. clavip	Aaw53072 N. clavip
105	22	100.0	21	4	AAB63494	Synthetic	Aab63494 Synthetic
106	22	100.0	21	4	AAB47107	Human PrP	Aab47107 Human PrP
107	22	100.0	21	6	AAO16083	Mouse neu	Aao16083 Mouse neu
108	22	100.0	21	6	AAO16080	Human neu	Aao16080 Human neu
109	22	100.0	21	6	ABB82634	Human pri	Abb82634 Human pri
110	22	100.0	21	6	ABU79034	Prion pro	Abu79034 Prion pro
111	22	100.0	21	7	ADC59529	Prion pep	Adc59529 Prion pep
112	22	100.0	21	7	ADCS2086	Mouse pep	Adc52086 Mouse pep
113	22	100.0	21	7	ABW00168	Prion (PrP)	Abw00168 Prion (PrP)
114	22	100.0	21	8	ADJ78131	Human PrP	Adj78131 Human PrP
115	22	100.0	21	8	ADN06956	Human Pri	Adn06956 Human Pri
116	22	100.0	21	8	ADN06956	Human Pri	Adn06956 Human Pri
117	22	100.0	21	8	ADP44315	Chaperone	Adp44315 Chaperone
118	22	100.0	21	8	ADP44324	Chaperone	Adp44324 Chaperone
119	22	100.0	21	8	ADP44325	Chaperone	Adp44325 Chaperone
120	22	100.0	21	8	ADP44320	Chaperone	Adp44320 Chaperone
122	22	100.0	21	8	ADP44314	Chaperone	Adp44314 Chaperone
123	22	100.0	23	2	AAW76544	HIV-1 TAT	Aaw76544 HIV-1 TAT
124	22	100.0	23	2	AAW76550	HIV-1 TAT	Aaw76550 HIV-1 TAT
125	22	100.0	23	2	AAW76558	HIV-1 TAT	Aaw76558 HIV-1 TAT
126	22	100.0	23	2	AAW76552	HIV-1 TAT	Aaw76552 HIV-1 TAT
127	22	100.0	23	2	AAW76559	HIV-1 TAT	Aaw76559 HIV-1 TAT
128	22	100.0	23	3	AAB14995	Amino aci	Aab14995 Amino aci
129	22	100.0	23	4	AAM21563	Peptide #	Aam21563 Peptide #
130	22	100.0	23	4	AM37837	Peptide #	Am37837 Peptide #
131	22	100.0	23	4	ABB26833	Peptide #	Abb26833 Peptide #
132	22	100.0	23	4	AM77641	Peptide #	Am77641 Peptide #
133	22	100.0	23	4	AAE12273	Mycobacterium	Aae12273 Mycobacterium
134	22	100.0	23	4	AAM64905	Human bra	Aam64905 Human brain
135	22	100.0	23	4	AAB82099	Hamster P	Ab82099 Hamster P
136	22	100.0	23	4	ABG59290	Human liv	Abg59290 Human liver
137	22	100.0	23	5	ABG46673	Human pep	Abg46673 Human peptide
138	22	100.0	23	5	AAB15590	Human pep	Aab15590 Human peptide
139	22	100.0	25	3	AAV59101	N. clavip	Aav59101 N. clavip
140	22	100.0	26	2	AAW76547	HIV-1 TAT	Aaw76547 HIV-1 TAT
141	22	100.0	26	2	AAW76561	HIV-1 TAT	Aaw76561 HIV-1 TAT
142	22	100.0	26	2	AAW76545	HIV-1 TAT	Aaw76545 HIV-1 TAT
143	22	100.0	26	2	AAW76562	HIV-1 TAT	Aaw76562 HIV-1 TAT
144	22	100.0	27	3	AAV59110	N. clavip	Aav59110 N. clavip
145	22	100.0	27	3	AAV59118	N. clavip	Aav59118 N. clavip
146	22	100.0	27	3	AAV59122	N. clavip	Aav59122 N. clavip
147	22	100.0	27	3	AAV59114	N. clavip	Aav59114 N. clavip
148	22	100.0	27	3	AAV51199	Human SCA	Aav51199 Human SCA
149	22	100.0	27	3	AAB15000	Amino aci	Aab15000 Amino aci
150	22	100.0	27	4	AAB82102	Hamster P	Ab82102 Hamster P
151	22	100.0	27	4	AAE15593	Hamster P	Aae15593 Hamster P
152	22	100.0	27	8	ADO08765	Novel sur	Ado08765 Novel surface
153	22	100.0	28	2	AAR64328	HSV L/ST	Aar64328 HSV L/ST
154	22	100.0	28	3	AAV59113	N. clavip	Aav59113 N. clavip
155	22	100.0	28	3	AAV59106	N. clavip	Aav59106 N. clavip
156	22	100.0	28	3	AAV59103	N. clavip	Aav59103 N. clavip
157	22	100.0	28	5	ABB41711	Peptide #	Abb41711 Peptide #
158	22	100.0	28	5	AAM34950	Peptide #	Aam34950 Peptide #
159	22	100.0	28	5	AAM74833	Human bon	Aam74833 Human bone
160	22	100.0	29	2	AAM62031	Human bra	Aam62031 Human brain
161	22	100.0	29	3	AAB82101	Hamster P	Ab82101 Hamster P
162	22	100.0	29	3	ABG56114	Human liv	Abg56114 Human liver
163	22	100.0	29	4	ABG0669	Novel hum	Abg0669 Novel human
164	22	100.0	29	4	AAY59111	N. clavip	Aay59111 N. clavip
165	22	100.0	29	4	AAY59109	N. clavip	Aay59109 N. clavip
166	22	100.0	29	4	AAY59107	N. clavip	Aay59107 N. clavip
167	22	100.0	29	4	AAY59105	N. clavip	Aay59105 N. clavip
168	22	100.0	29	4	ABG56111	N. clavip	Abg56111 N. clavip
169	22	100.0	29	4	AAY59104	N. clavip	Aay59104 N. clavip
170	22	100.0	29	4	AAY59102	N. clavip	Aay59102 N. clavip
171	22	100.0	30	3	AAY59111	N. clavip	Aay59111 N. clavip

ALIGNMENTS

RESULT	1
AAV42597	standard; peptide; 6 AA.
ID	AAV42597
DE	Human IGE variant fragment.
XX	
AC	AAV42597;
XX	10-JAN-2000 (first entry)
DT	10-OCT-1999.
XX	
DE	Human IGE receptor-binding; binding determinant sequence; anti-IgE antibody; allergic disease.
XX	
KW	Immunoglobulin E; IgE; antagonist; Fc epsilon RI receptor; human; bds;
KW	receptor-binding; binding determinant sequence; anti-IgE antibody; allergic disease.
XX	
OS	Homo sapiens .
XX	
PN	US5965709-A.
XX	
PR	14-AUG-1991; 91US-00744768.
XX	
PR	07-JAN-1994; 94US-00178583.
XX	
PA	(GETH) GENENTECH INC.
XX	
PI	Jardieu PM, Presta LG;
XX	
DR	WPI; 1999-57941/49.
XX	
PT	Immunoglobulin E variants as peptide antagonists useful for raising and screening anti-immunoglobulin E (IgE) antibodies, in the isolation and purification of Fc epsilon RI receptor and in the treatment of allergic diseases.
XX	
CC	The invention provides immunoglobulin E (IgE) antagonists comprising one Example 1; Col 35-36; 37pp; English.
XX	

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:44:37 ; Search time 37 Seconds
(without alignments)
8.962 Million cell updates/sec

Title: HOLLY-9
Perfect score: 22
Sequence: 1 aaaaag 5

Scoring table: BL0SUM62
Gapext 10.0 , Gapext 0.5

Searched: 478139 seqs, 663318000 residues

Total number of hits satisfying chosen parameters: 478139

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 200 summaries
Database : Issued Patents AA.*

1: /cnr2_6/pododata/1/iaia/5A.COMB.pep:
2: /cnr2_6/pododata/1/iaia/5B.COMB.pep:
3: /cnr2_6/pododata/1/iaia/6A.COMB.pep:
4: /cnr2_6/pododata/1/iaia/6B.COMB.pep:
5: /cnr2_6/pododata/1/iaia/PCTUS.COMB.pep:
6: /cnr2_6/pododata/1/iaia/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	22	100.0	6	2 US-08-232-519D-31	Sequence 31, Appli
2	22	100.0	6	3 US-08-466-151-36	Sequence 36, Appli
3	22	100.0	6	3 US-09-128-451-3	Sequence 3, Appli
4	22	100.0	6	3 US-08-166-153B-36	Sequence 36, Appli
5	22	100.0	6	3 US-09-923-494-3	Sequence 3, Appli
6	22	100.0	6	4 US-09-802-096-36	Sequence 36, Appli
7	22	100.0	6	4 US-09-002-077-36	Sequence 33, Appli
8	22	100.0	7	2 US-08-442-461D-33	Sequence 17, Appli
9	22	100.0	8	2 US-08-612-785B-17	Sequence 1, Appli
10	22	100.0	8	3 US-09-128-450-1	Sequence 17, Appli
11	22	100.0	8	3 US-08-617-266C-17	Sequence 1, Appli
12	22	100.0	8	3 US-09-14-934-5	Sequence 5, Appli
13	22	100.0	8	4 US-09-367-572-4	Sequence 4, Appli
14	22	100.0	10	1 US-0-463-862-9	Sequence 9, Appli
15	22	100.0	10	2 US-08-45-887-9	Sequence 9, Appli
16	22	100.0	11	6 5178861-16	Patent No. 5178861
17	22	100.0	12	2 US-08-650-645-23	Sequence 23, Appli
18	22	100.0	12	3 US-09-14-934-5	Sequence 5, Appli
19	22	100.0	12	4 US-08-766-596A-23	Sequence 23, Appli
20	22	100.0	12	5 PCT-US96-10220-23	Sequence 3, Appli
21	22	100.0	14	1 US-08-55-823-3	Sequence 4, Appli
22	22	100.0	14	1 US-08-556-823-4	Sequence 34, Appli
23	22	100.0	14	1 US-08-766-596A-34	Sequence 101, Appli
24	22	100.0	14	1 US-09-073-009-101	Sequence 101, Appli
25	22	100.0	14	1 US-09-073-010-101	Sequence 2, Appli
26	22	100.0	16	2 US-08-308-494A-2	Sequence 33, Appli
27	22	100.0	18	1 US-08-240-712-33	Sequence 46, Appli

1	100.0	22	100.0	18	3 US-08-442-890-33	Sequence 33, Appli
2	100.0	22	100.0	18	3 US-09-053-617A-1	Sequence 1, Appli
3	100.0	22	100.0	19	1 US-08-556-588-1	Sequence 5, Appli
4	100.0	22	100.0	19	1 US-08-244-701B-3	Sequence 3, Appli
5	100.0	22	100.0	19	1 US-08-244-701B-5	Sequence 3, Appli
6	100.0	22	100.0	19	3 US-09-076-721-3	Sequence 5, Appli
7	100.0	22	100.0	21	1 US-08-425-069-5	Sequence 5, Appli
8	100.0	22	100.0	21	2 US-08-317-844B-5	Sequence 43, Appli
9	100.0	22	100.0	21	3 US-08-766-596A-35	Sequence 35, Appli
10	100.0	22	100.0	23	2 US-08-847-176-5	Sequence 5, Appli
11	100.0	22	100.0	23	2 US-08-847-176-12	Sequence 12, Appli
12	100.0	22	100.0	23	2 US-08-847-176-17	Sequence 17, Appli
13	100.0	22	100.0	23	2 US-08-847-176-18	Sequence 18, Appli
14	100.0	22	100.0	23	2 US-08-128-450-7	Sequence 7, Appli
15	100.0	22	100.0	23	3 US-08-556-978B-9	Sequence 7, Appli
16	100.0	22	100.0	23	3 US-09-923-494-7	Sequence 55, Appli
17	100.0	22	100.0	24	1 US-08-425-069-38	Sequence 38, Appli
18	100.0	22	100.0	25	1 US-08-317-844B-38	Sequence 6, Appli
19	100.0	22	100.0	25	2 US-08-847-176-8	Sequence 8, Appli
20	100.0	22	100.0	26	2 US-08-847-176-20	Sequence 20, Appli
21	100.0	22	100.0	26	2 US-08-947-176-20	Sequence 21, Appli
22	100.0	22	100.0	26	2 US-08-847-176-22	Sequence 22, Appli
23	100.0	22	100.0	27	1 US-08-425-069-47	Sequence 47, Appli
24	100.0	22	100.0	27	1 US-08-425-069-51	Sequence 51, Appli
25	100.0	22	100.0	27	1 US-08-425-069-51	Sequence 55, Appli
26	100.0	22	100.0	27	1 US-08-425-069-59	Sequence 59, Appli
27	100.0	22	100.0	27	2 US-08-317-844B-47	Sequence 55, Appli
28	100.0	22	100.0	27	2 US-08-317-844B-55	Sequence 59, Appli
29	100.0	22	100.0	27	2 US-09-128-450-10	Sequence 10, Appli
30	100.0	22	100.0	27	3 US-08-556-978B-9	Sequence 29, Appli
31	100.0	22	100.0	27	3 US-08-135-994-11	Sequence 11, Appli
32	100.0	22	100.0	27	3 US-09-823-494-10	Sequence 10, Appli
33	100.0	22	100.0	27	4 US-09-684-843A-11	Sequence 11, Appli
34	100.0	22	100.0	28	1 US-08-425-069-40	Sequence 40, Appli
35	100.0	22	100.0	28	1 US-08-425-069-43	Sequence 43, Appli
36	100.0	22	100.0	28	1 US-08-425-069-50	Sequence 50, Appli
37	100.0	22	100.0	28	2 US-08-458-568A-6	Sequence 6, Appli
38	100.0	22	100.0	28	2 US-08-317-844B-40	Sequence 43, Appli
39	100.0	22	100.0	28	2 US-08-317-844B-43	Sequence 50, Appli
40	100.0	22	100.0	28	2 US-08-317-844B-53	Sequence 53, Appli
41	100.0	22	100.0	28	3 US-08-556-978B-72	Sequence 58, Appli
42	100.0	22	100.0	29	1 US-08-244-701B-51	Sequence 51, Appli
43	100.0	22	100.0	29	2 US-08-799-925-6	Sequence 6, Appli
44	100.0	22	100.0	29	3 US-09-128-450-9	Sequence 9, Appli
45	100.0	22	100.0	29	3 US-09-923-494-9	Sequence 9, Appli
46	100.0	22	100.0	29	3 US-09-280-068-6	Sequence 60, Appli
47	100.0	22	100.0	29	3 US-09-076-721-51	Sequence 61, Appli
48	100.0	22	100.0	29	3 US-09-481-593-2	Sequence 62, Appli
49	100.0	22	100.0	30	1 US-08-425-069-41	Sequence 41, Appli
50	100.0	22	100.0	30	1 US-08-425-069-50	Sequence 48, Appli
51	100.0	22	100.0	30	1 US-08-317-844B-43	Sequence 53, Appli
52	100.0	22	100.0	30	1 US-08-556-978B-72	Sequence 58, Appli
53	100.0	22	100.0	30	1 US-08-244-701B-51	Sequence 51, Appli
54	100.0	22	100.0	30	2 US-08-799-925-6	Sequence 6, Appli
55	100.0	22	100.0	30	3 US-09-128-450-9	Sequence 9, Appli
56	100.0	22	100.0	30	3 US-09-923-494-9	Sequence 9, Appli
57	100.0	22	100.0	30	3 US-09-280-068-6	Sequence 60, Appli
58	100.0	22	100.0	30	3 US-08-425-069-60	Sequence 61, Appli
59	100.0	22	100.0	30	3 US-08-317-844B-41	Sequence 32, Appli
60	100.0	22	100.0	30	3 US-08-556-978B-32	Sequence 53, Appli
61	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
62	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
63	100.0	22	100.0	30	3 US-09-481-593-2	Sequence 62, Appli
64	100.0	22	100.0	30	3 US-08-425-069-41	Sequence 41, Appli
65	100.0	22	100.0	30	3 US-08-317-844B-41	Sequence 48, Appli
66	100.0	22	100.0	30	3 US-08-556-978B-32	Sequence 53, Appli
67	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
68	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
69	100.0	22	100.0	30	3 US-09-481-593-2	Sequence 62, Appli
70	100.0	22	100.0	30	3 US-08-425-069-41	Sequence 41, Appli
71	100.0	22	100.0	30	3 US-08-317-844B-41	Sequence 48, Appli
72	100.0	22	100.0	30	3 US-08-556-978B-32	Sequence 53, Appli
73	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
74	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
75	100.0	22	100.0	30	3 US-08-317-844B-43	Sequence 43, Appli
76	100.0	22	100.0	30	3 US-08-556-978B-72	Sequence 56, Appli
77	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 51, Appli
78	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 6, Appli
79	100.0	22	100.0	30	3 US-09-128-450-9	Sequence 9, Appli
80	100.0	22	100.0	30	3 US-09-923-494-9	Sequence 9, Appli
81	100.0	22	100.0	30	3 US-09-076-721-51	Sequence 60, Appli
82	100.0	22	100.0	30	3 US-08-425-069-60	Sequence 61, Appli
83	100.0	22	100.0	30	3 US-08-317-844B-41	Sequence 32, Appli
84	100.0	22	100.0	30	3 US-08-556-978B-32	Sequence 53, Appli
85	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
86	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
87	100.0	22	100.0	30	3 US-08-317-844B-43	Sequence 43, Appli
88	100.0	22	100.0	30	3 US-08-556-978B-72	Sequence 56, Appli
89	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 51, Appli
90	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 6, Appli
91	100.0	22	100.0	30	3 US-08-317-844B-43	Sequence 48, Appli
92	100.0	22	100.0	30	3 US-08-556-978B-72	Sequence 53, Appli
93	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
94	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
95	100.0	22	100.0	30	3 US-08-317-844B-41	Sequence 32, Appli
96	100.0	22	100.0	30	3 US-08-556-978B-32	Sequence 53, Appli
97	100.0	22	100.0	30	3 US-08-244-701B-51	Sequence 58, Appli
98	100.0	22	100.0	30	3 US-08-799-925-6	Sequence 61, Appli
99	100.0	22	100.0	30	3 US-08-317-844B-43	Sequence 46, Appli
100	100.0	22	100.0	30	3 US-08-556-978B-72	Sequence 53, Appli

Sequence 9, Appl
 Sequence 42949, 1
 Sequence 27558, 1
 Sequence 59884, 1
 Sequence 8, Appl
 Sequence 6591, 1
 Sequence 4915, 1
 Sequence 74, Appl
 Sequence 374, Appl
 Sequence 25, Appl
 Sequence 12, Appl
 Sequence 12, Appl
 Sequence 7280, 1
 Sequence 12508, 1
 Sequence 74, Appl
 Sequence 74, Appl
 Sequence 7030, 1
 Sequence 37480, 1
 Sequence 52697, 1
 Sequence 4468, 1
 Sequence 56856, 1
 Sequence 4670, 1
 Sequence 39316, 1
 Sequence 54553, 1
 Sequence 31112, 1
 Sequence 7256, 1
 Sequence 32, Appl
 Sequence 33, Appl

ALIGNMENTS

RESULT 1	US-08-212-539D-31
; Sequence 31, Application US/08232539D	
; PATENT NO. 5965709	
GENERAL INFORMATION:	
; APPLICANT:	Presta, Leonard G.
; ADDRESS:	Jardieu, Paula M.
; TITLE OF INVENTION:	IGE Antagonists
; NUMBER OF SEQUENCES:	60
CORRESPONDENCE ADDRESS:	
; ADDRESSEE:	Genentech, Inc.
; STREET:	1 DNA Way
; CITY:	South San Francisco
; STATE:	California
; COUNTRY:	USA
; ZIP:	94050
COMPUTER READABLE FORM:	
; MEDIUM TYPE:	3.5 inch, 1.44 Mb floppy disk
; COMPUTER:	IBM PC compatible
; OPERATING SYSTEM:	PC-DOS/MS-DOS
; SOFTWARE:	WinPatin (Genentech)
CURRENT APPLICATION DATA:	
; APPLICATION NUMBER:	US/08/232, 539D
; FILING DATE:	21-apr-1994
PRIOR APPLICATION DATA:	
; APPLICATION NUMBER:	08/178583
; FILING DATE:	07-jan-1994
PRIOR APPLICATION DATA:	
; APPLICATION NUMBER:	07/744768
; FILING DATE:	14-aug-1991
ATTORNEY/AGENT INFORMATION:	
; NAME:	Svoboda, Craig G.
; REGISTRATION/DOCKET NUMBER:	39, 044
TELECOMMUNICATION INFORMATION:	
; TELEPHONE:	650/225-1489
INFORMATION FOR SEQ ID NO:	
; LENGTH:	6 amino acids

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:44:37 ; Search time 188 Seconds
 (without alignments)
 15.303 Million cell updates/sec

Title: HOLLY-9
 Perfect score: 22
 Sequence: 1 aaaaag 5

Scoring table: BLOSUM62
 Gapop 10.0 , Gapext 0.5

Searched: 1825181 seqs, 575374646 residues

Total number of hits satisfying chosen parameters:
 Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 200 summaries

Database : UniProt_02:
 1: uniprot_sprot:
 2: uniprot_trembl:
 *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result No.	Query	Score	Match	Length	DB ID	Description
<hr/>						
1	22	100.0	15	1	UNO4_PTINPS	P81673 pinus pinas
2	22	100.0	16	2	Q9Z0J2	mus musculus
3	22	100.0	26	2	Q9PFD8	homo sapiens
4	22	100.0	30	2	Q9QV43	rattus sp.
5	22	100.0	33	2	Q6JUZ3	ovis aries
6	22	100.0	33	2	Q6TUZ6	ovis aries
7	22	100.0	33	2	AA081744	ovis arie
8	22	100.0	33	2	AA081747	ovis arie
9	22	100.0	34	2	Q9NIV1	equus caballus
10	22	100.0	37	2	Q9AXN1	armoracia r
11	22	100.0	38	2	Q939W1	aeromona s
12	22	100.0	39	2	Q90776	gallus gallus
13	22	100.0	40	2	P72435	streptomyce
14	22	100.0	43	2	Q7SEH1	sehni neurospora
15	22	100.0	44	2	Q61736	mus musculus
16	22	100.0	45	2	Q7RWY6	neurospora
17	22	100.0	45	2	Q7OTTS	anopheles g
18	22	100.0	51	2	Q7B303	paracoccus
19	22	100.0	47	2	Q7QKX7	giardia lamblia
20	22	100.0	51	2	Q6R517	brassica napus
21	22	100.0	51	2	Q6ZK6	oryza sativa
22	22	100.0	51	2	Q7NPK6	chromobacter
23	22	100.0	51	2	AAS0649	brassica
24	22	100.0	51	2	BAD16926	enterobacter
25	22	100.0	52	2	QBNQV4	corynebacter
26	22	100.0	52	2	CAF20017	corynebacter
27	22	100.0	52	2	Q8RF2	oryza sativa
28	22	100.0	53	2	Q8W083	oryza sativa
29	22	100.0	54	2	Q21846	caenorhabditis
30	22	100.0	54	2	Q84487	chlamydia t
31	22	100.0	54	2	Q92K7	rhizobium m

32	22	100.0	56	2	Q29163	sus scrofa
33	22	100.0	57	2	Q08060	zea mays (m)
34	22	100.0	57	2	Q43474	hordeum vulgare
35	22	100.0	57	2	Q9M7NJ	triticum aestivum
36	22	100.0	57	2	Q94K78	arrobacteris
37	22	100.0	57	2	Q8U712	agrobacteri
38	22	100.0	60	1	SERL_DROME	dirosphila
39	22	100.0	60	1	P21624	platophilus
40	22	100.0	60	1	URI_PLAFFE	gallus gallus
41	22	100.0	60	1	Q92057	gallus gallus
42	22	100.0	61	2	Q6H511	oryza sativa
43	22	100.0	61	2	Q87587	rhizobium l
44	22	100.0	62	2	P87087	candida dubia
45	22	100.0	62	2	Q6YS23	oryza sativa
46	22	100.0	62	2	Q7XV66	oryza sativa
47	22	100.0	63	2	BAC84747	oryza sativa
48	22	100.0	63	2	P87088	candida dubia
49	22	100.0	63	2	Q6Mny1	drosophila
50	22	100.0	63	2	Q6Klq4	oryza sativa
51	22	100.0	63	2	P31169	arrobacteris
52	22	100.0	63	2	AAR8219	drosofilis
53	22	100.0	63	2	Bad21555	oryza sativa
54	22	100.0	63	2	Bad22519	oryza sativa
55	22	100.0	64	2	Q6ETB2	oryza sativa
56	22	100.0	66	1	KIN2_ARATH	RL35_BRUME
57	22	100.0	66	1	Q6h9n7	yarrowia li
58	22	100.0	66	2	Q6Cbo8	Yarrowia li
59	22	100.0	66	2	Q94e92	oryza sativa
60	22	100.0	66	2	Q7VCP8	prochlorococcus
61	22	100.0	66	2	Aa161909	arrobacteris
62	22	100.0	66	2	Q6hb56	oryza sativa
63	22	100.0	66	2	AAM47844	arrobacteris
64	22	100.0	67	1	RL35_ARCTIS	Q6h9n7
65	22	100.0	67	1	RL35_ARHIME	Q92st2
66	22	100.0	67	2	Q7Y1Q7	zea mays (m)
67	22	100.0	67	2	Q7Y1S6	zea mays (m)
68	22	100.0	67	2	Q8GZ21	oryza sativa
69	22	100.0	68	2	Q6L587	oryza sativa
70	22	100.0	68	2	Q8h877	oryza sativa
71	22	100.0	68	2	AAT38020	oryza sativa
72	22	100.0	68	2	P40422	saccharomyces cerevisiae
73	22	100.0	70	1	RPCX_YEAST	Q754P6
74	22	100.0	70	2	Q754F6	ashbya gossypii
75	22	100.0	70	2	Q6xSR8	canis familiaris
76	22	100.0	70	2	Q6k598	oryza sativa
77	22	100.0	70	2	Aas56875	saccharomyces cerevisiae
78	22	100.0	70	2	AAS53397	ashbya gossypii
79	22	100.0	71	2	Q70L78	enterobacter
80	22	100.0	71	2	Q70L79	enterobacter
81	22	100.0	71	2	Q70LA1	enterobacter
82	22	100.0	71	2	QAD98976	enterobacter
83	22	100.0	71	2	CAD98971	enterobacter
84	22	100.0	71	2	CAD98972	enterobacter
85	22	100.0	71	2	CAD98973	enterobacter
86	22	100.0	71	2	CAD98980	enterobacter
87	22	100.0	71	2	CAD98981	enterobacter
88	22	100.0	71	2	CAD98982	enterobacter
89	22	100.0	71	2	CAD98983	enterobacter
90	22	100.0	71	2	CAD98987	enterobacter
91	22	100.0	71	2	CAD98980	enterobacter
92	22	100.0	71	2	CAD98975	enterobacter
93	22	100.0	71	2	CAD98977	enterobacter
94	22	100.0	71	2	CAD98978	enterobacter
95	22	100.0	71	2	CAD98979	enterobacter
96	22	100.0	71	2	CAD98980	enterobacter
97	22	100.0	71	2	CAD98981	enterobacter
98	22	100.0	71	2	CAD98982	enterobacter
99	22	100.0	71	2	CAD98983	enterobacter
100	22	100.0	71	2	CAD98983	enterobacter
101	22	100.0	71	2	CAD98984	enterobacter
102	22	100.0	71	2	CAD98985	enterobacter
103	22	100.0	71	2	CAD98986	enterobacter
104	22	100.0	71	2	CAD98987	enterobacter

105	2	CAD98988	enterobac	178	22	100.0	87	2	O6ZJQ5	oryza sativ		
106	22	100.0	71	2	CAD98989	enterobac	179	22	100.0	87	2	Q93VJ3
107	22	100.0	71	2	CAD98990	enterobac	180	22	100.0	87	2	BAC4116
108	22	100.0	71	2	CAD98991	enterobac	181	22	100.0	87	2	BAD3847
109	22	100.0	71	2	CAD98992	enterobac	182	22	100.0	87	2	BAD5241
110	22	100.0	71	2	CAD98993	enterobac	183	22	100.0	88	1	RS200 STRCO
111	22	100.0	71	2	CAD98994	enterobac	184	22	100.0	88	2	P91335
112	22	100.0	71	2	CAD98995	enterobac	185	22	100.0	88	2	Q7XV17
113	22	100.0	71	2	CAD98996	enterobac	186	22	100.0	88	2	Q7Y1S2
114	22	100.0	71	2	CAD98997	enterobac	187	22	100.0	88	2	Q7Y1S4
115	22	100.0	73	2	Q6ZKL9	oryza sativ	188	22	100.0	88	2	Q6HAD7
116	22	100.0	73	2	BAD08891	oryza sat	189	22	100.0	88	2	Q9LIX6
117	22	100.0	74	2	Q8HSU5	oryza sativ	190	22	100.0	88	2	Q82BZ4
118	22	100.0	74	2	Q94FB3	oryza sativ	191	22	100.0	88	2	Q92RU0
119	22	100.0	75	2	Q9VZY1	methanobact	192	22	100.0	89	2	Q9NQ1
120	22	100.0	75	2	Q8NQ71	homo sapien	193	22	100.0	89	2	Q84Z20
121	22	100.0	76	2	Q027310	methanobact	194	22	100.0	89	2	Q73SS2
122	22	100.0	76	2	Q6Z710	oryza sativ	195	22	100.0	89	2	Q6FB75
123	22	100.0	76	2	Q75KL3	oryza sativ	196	22	100.0	89	2	Q709T8
124	22	100.0	76	2	Q7XIW3	oryza sativ	197	22	100.0	89	2	AAS06551
125	22	100.0	76	2	Q8AXF0	oryza sativ	198	22	100.0	89	2	CAE54783
126	22	100.0	76	2	Q8LIP7	oryza sativ	199	22	100.0	90	2	Q7S7Q0
127	22	100.0	76	2	Q8SDB6	oryza sativ	200	22	100.0	90	2	Q8h4n9
128	22	100.0	76	2	BAD07961	oryza sat						
129	22	100.0	76	2	AAS98441	oryza sat						
130	22	100.0	77	2	Q8LRAS	oryza sativ						
131	22	100.0	77	2	Q9XKX4	oryza sativ						
132	22	100.0	77	2	Q7TVB8	oryza sativ						
133	22	100.0	77	2	Q7D4N3	mycobacteri						
134	22	100.0	77	2	Q9NSA4	human immun						
135	22	100.0	77	2	CAE55650	mycobacteri						
136	22	100.0	78	2	PUR9	CHRV7						
137	22	100.0	78	2	Q6BVS4	c_bifunction						
138	22	100.0	78	2	Q8LB9	debaromyce						
139	22	100.0	80	2	QBN160	oryza sativ						
140	22	100.0	80	2	Q67150	homo sapien						
141	22	100.0	80	2	Q9WW18	oryza sativ						
142	22	100.0	80	2	Q98ni1	pseudomonas						
143	22	100.0	80	2	AAT39211	rhiobium 1						
144	22	100.0	81	2	Q6IGY1	aat39211 oryza sat						
145	22	100.0	81	2	Q67196	Q66796						
146	22	100.0	81	2	Q84SW6	oryza sativ						
147	22	100.0	81	2	Q9M4Y6	oryza sativ						
148	22	100.0	81	2	Q9WSA1	oryza sativ						
149	22	100.0	82	2	P93427	Q93427						
150	22	100.0	82	2	Q67780	oryza sativ						
151	22	100.0	83	2	Q6K4B4	erwinia car						
152	22	100.0	83	2	Q6Z605	Q6Z605						
153	22	100.0	83	2	Q84pu8	oryza sativ						
154	22	100.0	83	2	Q6TV92	Q6TV92 bovine papu						
155	22	100.0	83	2	AA9R9477	AA9R9477 oryza sat						
156	22	100.0	83	2	BAD22255	Q6H724 bovine pa						
157	22	100.0	83	2	Q9TR9	Q9TR9 oryza sat						
158	22	100.0	84	2	YBIJ_ECOLI	Q9trn9 home sapien						
159	22	100.0	84	2	Q7XVA9	Q7XVA9 anophelis g						
160	22	100.0	84	2	Q64827	Q64827 human adeno						
161	22	100.0	84	2	Q8QS40	Q8QS40 chimpanzee						
162	22	100.0	85	1	MRKD_RAT	P20468 rattus norv						
163	22	100.0	85	1	Q6H724	Q6H724 oryza sativ						
164	22	100.0	85	2	Q8XWU6	Q6EN67 oryza sativ						
165	22	100.0	86	1	YBIJ_ECOLI	Q7Age3 escherichia						
166	22	100.0	86	2	Q7XVE5	P41038 escherichia						
167	22	100.0	86	2	Q6H751	Q6h751 oryza sativ						
168	22	100.0	86	2	Q9FTX8	Q6ftx8 oryza sativ						
169	22	100.0	86	2	Q6EN67	Q6en67 oryza sativ						
170	22	100.0	86	2	Q7AGC3	Q7age3 escherichia						
171	22	100.0	86	2	Q8G2Q4	Q8g2q4 escherichia						
172	22	100.0	86	2	Q8X7X2	Q8x7x2 escherichia						
173	22	100.0	86	2	Q8XFN7	Q8xfn7 salmonella						
174	22	100.0	86	2	Q8YF68	Q8Yf68 brucella me						
175	22	100.0	86	2	Q7COW3	Q7cqw3 salmonella						
176	22	100.0	87	2	Q6YX56	Q6yx56 oryza sativ						
177	22	100.0	87	2	Q623Q2	Q623Q2 oryza sativ						
				1	AAAAG 5	1 AAAAG 5						
				Db	7 AAAAG 11	7 AAAAG 11						
				Qy	RESULTS 2	RESULTS 2						
				ID	Q9Z0J2	Q9Z0J2						
				Best	Score 22;	Score 22;						
				Local	DB 1;	DB 1;						
				Mismatches	Length 15;	Length 15;						
				5;	100.0%;	100.0%;						
				Conservative	Pred. No.	Pred. No.						
				0;	7.6e-02;	7.6e-02;						
				Indels	0;	0;						
				Gaps	0;	0;						

(Created)

(Last sequence update)

(Last annotation update)

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:44:37 i Search time 39 Seconds
 (without alignments)
 12.335 Million cell updates/sec

Title: HOLLY-9
 Perfect score: 22
 Sequence: 1 aaaaag 5

Scoring table: BLOSSM62
 Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 200 summaries

Database : PIR 7.9:
 1: pir1:
 2: pir2:
 3: pir3:
 4: pir4:
 * indicates a hit

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
-	-	-	-	-	-
1	22	100.0	19	2 B41978	urotensin I precursor
2	22	100.0	35	2 A61375	basic fibroblast growth factor 9
3	22	100.0	54	2 E70187	hypothetical protein
4	22	100.0	54	2 C71570	hypothetical protein
5	22	100.0	54	2 T23665	hypothetical protein
6	22	100.0	57	2 T01654	glycereraldehyde-3-phosphate dehydrogenase
7	22	100.0	57	2 AG3105	conserved hypothetical protein
8	22	100.0	66	2 AB503	LSU ribosomal protein
9	22	100.0	66	2 S22529	cold-regulated protein
10	22	100.0	67	2 F97389	SOS ribosomal protein
11	22	100.0	67	2 AG2607	SOS ribosomal protein
12	22	100.0	70	2 S55932	DNA-directed RNA polymerase
13	22	100.0	74	2 T47211	cognitin
14	22	100.0	76	2 A69333	hypothetical protein
15	22	100.0	77	2 F70598	probable PE protein
16	22	100.0	86	2 AD0600	probable exported protein
17	22	100.0	86	2 B64817	yhjN protein precursor
18	22	100.0	86	2 B85589	hypothetical protein
19	22	100.0	86	2 H90738	hypothetical protein
20	22	100.0	86	2 AC3459	hypothetical protein
21	22	100.0	88	2 T34429	hypothetical protein
22	22	100.0	90	2 JN0492	9.7K sonatastatin I protein
23	22	100.0	92	1 RIGPS	ribosomal protein
24	22	100.0	92	1 B87456	hypothetical protein
25	22	100.0	93	2 C82650	hypothetical protein
26	22	100.0	97	2 T30458	hypothetical protein
27	22	100.0	98	2 B70568	probable PE protein
28	22	100.0	98	2 D755519	hypothetical protein
29	22	100.0	99	1 R6MXL2	ribosomal protein

103 2 H87407 176 22 100.0 151 2 E70615 151 2 100.0 153 2 T03463 155 2 100.0 155 2 T21364 155 2 100.0 157 2 T02034 157 2 100.0 157 2 T33892 157 2 100.0 157 2 C70882 157 2 100.0 157 2 T35329 158 2 H75028 158 2 100.0 158 2 S35787 162 2 PN0614 162 2 100.0 162 2 T45343 162 2 100.0 162 2 D71214 162 2 100.0 165 2 H75471 165 2 100.0 165 2 T17031 165 2 100.0 166 2 C70746 166 2 100.0 166 2 AD3624 166 2 100.0 166 2 A45119 166 2 100.0 167 2 T04903 167 2 100.0 167 2 A55438 168 2 T02036 168 2 S72171 168 2 G70587 169 2 H84191 170 2 F81038 172 2 100.0 172 2 T51122 173 2 T51169 174 2 T02859 174 2 F84338 175 2 S72204 176 2 100.0 176 2 A34630 176 2 100.0 176 2 AF0460 177 2 I49069 178 2 GB7307 178 2 E70069 178 2 T0694 178 2 E75340 178 2 B88537 179 2 G75514 179 2 T35750 180 2 C61600 180 2 T25598 180 2 S06616 180 2 D87605 180 2 G72783 180 2 DB3344 186 2 C82029 186 2 T35736 187 2 S49755 188 2 A34014 189 2 A4834 189 2 G69332 190 2 E70840 191 2 H81151 193 2 B87460 193 2 T36959 193 2 A70583 194 2 H70672 195 2 T28653 195 2 S24228 195 2 A22201 195 2 H95297 196 2 E83895 197 2 S26493 198 2 FB8264 198 2 C32998 199 2 T49450

104 2 H87407 177 22 100.0 151 2 E70615 153 2 100.0 155 2 T03463 155 2 100.0 157 2 T21364 155 2 100.0 157 2 T02034 157 2 100.0 157 2 T33892 157 2 100.0 157 2 C70882 158 2 H75028 158 2 100.0 158 2 S35787 162 2 PN0614 162 2 100.0 162 2 T45343 162 2 100.0 162 2 D71214 162 2 100.0 165 2 H75471 165 2 100.0 165 2 T17031 165 2 100.0 166 2 C70746 166 2 100.0 166 2 AD3624 166 2 100.0 166 2 A45119 166 2 100.0 167 2 T04903 167 2 100.0 167 2 A55438 168 2 T02036 168 2 S72171 168 2 G70587 169 2 H84191 170 2 F81038 172 2 100.0 172 2 T51122 173 2 T51169 174 2 T02859 174 2 F84338 175 2 S72204 176 2 100.0 176 2 A34630 176 2 100.0 176 2 AF0460 177 2 I49069 178 2 GB7307 178 2 E70069 178 2 T0694 178 2 E75340 178 2 B88537 179 2 G75514 179 2 T35750 180 2 C61600 180 2 T25598 180 2 S06616 180 2 D87605 180 2 G72783 180 2 DB3344 186 2 C82029 186 2 T35736 187 2 S49755 188 2 A34014 189 2 A4834 189 2 G69332 190 2 E70840 191 2 H81151 193 2 B87460 193 2 T36959 193 2 A70583 194 2 H70672 195 2 T28653 195 2 S24228 195 2 A22201 195 2 H95297 196 2 E83895 197 2 S26493 198 2 FB8264 198 2 C32998 199 2 T49450

ALIGNMENTS

RESULT 1
urotensin I precursor - European flounder (fragment)
C;Species: *Platichthys flesus* (European Flounder)
C;Date: 11-Feb-1993 #text_change 18-Jun-1993
C;Accession: B41978
R;Conlon, J.M.; Arnold-Reed, D.E.; Balment, R.J.
Peptides 11, 891-895, 1990
A;Title: Urotensin I and its N-terminal flanking peptide from the flounder, *Platichthys*
A;Reference number: A43978
A;Accession: B41978
A;Status: Preliminary
A;Molecule type: Protein
A;Residues: 1-19 <CON>

Query Match 100.0%; Score 22; DB 2; Length 19;
Best Local Similarity 100.0%; Pred. No. 97; Mismatches: 0; Indels 0; Gaps 0;

Qy 1 AAAAG 5
Db 1 AAAAG 5

RESULT 2
basic fibroblast growth factor - rat (fragment)
C;Species: *Rattus norvegicus* (Norway rat)
C;Date: 09-Sep-1994 #sequence_revision 09-Sep-1994
C;Accession: A61375
R;Powell, P.P.; Klagsbrun, M.
J. Cell. Physiol. 148, 202-210, 1991
A;Title: Three forms of rat basic fibroblast growth factor are made from a single mRNA
A;Reference number: A61375; PMID:91349212; PMID:1880150
A;Accession: A61375
A;Status: Preliminary; not compared with conceptual translation
A;Molecule type: mRNA
A;Residues: 1-35
C;Genetics:
A;Start codon: AGG
C;Keywords: alternative initiators

Query Match 100.0%; Score 22; DB 2; Length 35;

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:44:37 ; Search time 777 Seconds
 (without alignments)
 2.282 Million cell updates/sec

Title: HOLLY-9
 Perfect score: 22
 Sequence: 1 aaag 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1575965 seqs, 354694765 residues

Total number of hits satisfying chosen parameters: 1575965

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 200 summaries

Database : Published Applications AA:
 1: /cgmn2_6/_prodatal/2/_pubpaas/_US07_PUBCOMB.pep:*

2: /cgmn2_6/_prodatal/2/_pubpaas/_PCT_NEW_PUB.pep:*

3: /cgmn2_6/_prodatal/2/_pubpaas/_US06_PUB.pep:*

4: /cgmn2_6/_prodatal/2/_pubpaas/_US05_NEW_PUB.pep:*

5: /cgmn2_6/_prodatal/2/_pubpaas/_US07_NEW_PUB.pep:*

6: /cgmn2_6/_prodatal/2/_pubpaas/_FACT05_PUBCOMB.pep:*

7: /cgmn2_6/_prodatal/2/_pubpaas/_US08_NEW_PUB.pep:*

8: /cgmn2_6/_prodatal/2/_pubpaas/_US09_PUBCOMB.pep:*

9: /cgmn2_6/_prodatal/2/_pubpaas/_US09A_PUBCOMB.pep:*

10: /cgmn2_6/_prodatal/2/_pubpaas/_US095_PUBCOMB.pep:*

11: /cgmn2_6/_prodatal/2/_pubpaas/_US09C_PUBCOMB.pep:*

12: /cgmn2_6/_prodatal/2/_pubpaas/_US09_N_PUB.pep:*

13: /cgmn2_6/_prodatal/2/_pubpaas/_US10_PUBCOMB.pep:*

14: /cgmn2_6/_prodatal/2/_pubpaas/_US10B_PUBCOMB.pep:*

15: /cgmn2_6/_prodatal/2/_pubpaas/_US10C_PUBCOMB.pep:*

16: /cgmn2_6/_prodatal/2/_pubpaas/_US10_N_PUB.pep:*

17: /cgmn2_6/_prodatal/2/_pubpaas/_US11_NEW_PUB.pep:*

18: /cgmn2_6/_prodatal/2/_pubpaas/_US11_NEW_PUB.pep:*

19: /cgmn2_6/_prodatal/2/_pubpaas/_US60_NEW_PUB.pep:*

20: /cgmn2_6/_prodatal/2/_pubpaas/_US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	22	100.0	6 9	US-09-802-077-36	Sequence 36, Appl	Sequence 36, Appl
2	22	100.0	6 9	US-09-802-096-36	Sequence 36, Appl	Sequence 36, Appl
3	22	100.0	6 9	US-09-822-494-3	Sequence 3, Appl	Sequence 3, Appl
4	22	100.0	6 10	US-09-905-119-36	Sequence 36, Appl	Sequence 36, Appl
5	22	100.0	7 15	US-10-224-11A-23	Sequence 23, Appl	Sequence 23, Appl
6	22	100.0	7 9	US-09-823-494-1	Sequence 1, Appl	Sequence 1, Appl
7	22	100.0	8 9	US-09-972-475-17	Sequence 17, Appl	Sequence 17, Appl
8	22	100.0	8 9	US-09-996-357-4	Sequence 4, Appl	Sequence 4, Appl
9	22	100.0	9 15	US-10-433-729-17	Sequence 17, Appl	Sequence 17, Appl
10	22	100.0	9 8	US-08-822-739A-109	Sequence 109, Appl	Sequence 109, Appl
11	22	100.0	10 10	US-09-572-404B-4140	Sequence 3907, Appl	Sequence 3907, Appl
12	22	100.0	10 10	US-09-572-404B-4141	Sequence 4140, Appl	Sequence 4140, Appl
13	22	100.0	10 10	US-09-572-404B-4141	Sequence 4141, Appl	Sequence 4141, Appl

14 22 100.0 10 10 US-09-572-404B-4142
 15 22 100.0 10 10 US-09-572-404B-4143
 16 22 100.0 10 10 US-09-572-270A-828
 17 22 100.0 11 15 US-09-572-270A-837
 18 22 100.0 11 15 US-10-368-517-11
 19 22 100.0 11 15 US-10-368-517-12
 20 22 100.0 11 15 US-10-368-517-14
 21 22 100.0 11 15 US-10-368-517-15
 22 22 100.0 11 15 US-10-368-517-24
 23 22 100.0 11 15 US-10-368-517-25
 24 22 100.0 11 15 US-10-368-517-38
 25 22 100.0 11 15 US-10-368-517-39
 26 22 100.0 11 15 US-10-294-114A-10
 27 22 100.0 11 15 US-10-294-114A-12
 28 22 100.0 11 15 US-10-294-114A-13
 29 22 100.0 11 15 US-10-294-114A-13
 30 22 100.0 12 14 US-10-235-483-23
 31 22 100.0 12 14 US-10-235-483-23
 32 22 100.0 12 15 US-10-368-517-42
 33 22 100.0 12 16 US-10-685-105-9
 34 22 100.0 12 15 US-10-368-517-30
 35 22 100.0 13 15 US-10-368-517-31
 36 22 100.0 13 16 US-10-468-496-1044
 37 22 100.0 13 16 US-10-468-496-1045
 38 22 100.0 13 16 US-10-468-496-1046
 39 22 100.0 13 16 US-10-468-496-1047
 40 22 100.0 13 16 US-10-468-496-1048
 41 22 100.0 14 9 US-09-073-009-101
 42 22 100.0 14 9 US-09-793-006-101
 43 22 100.0 14 14 US-10-235-483-34
 44 22 100.0 14 15 US-10-394-980-142
 45 22 100.0 14 17 US-10-029-386-2797
 46 22 100.0 18 13 US-10-101-952-1
 47 22 100.0 18 13 US-10-101-952-1
 48 22 100.0 19 14 US-10-116-061-3
 49 22 100.0 19 14 US-10-116-061-3
 50 22 100.0 19 14 US-10-116-061-5
 51 22 100.0 20 9 US-09-313-333-47
 52 22 100.0 20 13 US-10-100-912-12
 53 22 100.0 20 13 US-10-044-703-47
 54 22 100.0 20 15 US-10-239-103-47
 55 22 100.0 20 16 US-10-240-430-3
 56 22 100.0 20 16 US-10-240-430-10
 57 22 100.0 20 16 US-10-240-430-11
 58 22 100.0 20 16 US-10-383-330-19
 59 22 100.0 20 16 US-10-383-930-41
 60 22 100.0 20 17 US-10-738-443-93
 61 22 100.0 21 9 US-09-808-037-25
 62 22 100.0 21 9 US-09-808-037-29
 63 22 100.0 21 14 US-10-162-889-25
 64 22 100.0 21 14 US-10-162-889-29
 65 22 100.0 21 14 US-10-235-483-35
 66 22 100.0 21 15 US-10-384-788-25
 67 22 100.0 21 15 US-10-384-788-29
 68 22 100.0 21 17 US-10-461-864-1
 69 22 100.0 21 17 US-10-138-143-94
 70 22 100.0 23 9 US-09-823-494-7
 71 22 100.0 23 9 US-09-864-761-42131
 72 22 100.0 23 9 US-09-813-333-58
 73 22 100.0 23 13 US-10-044-703-58
 74 22 100.0 23 15 US-10-239-103-58
 75 22 100.0 23 17 US-09-855-604-658
 76 22 100.0 23 17 US-10-357-322-11
 77 22 100.0 27 14 US-10-412-672-13
 78 22 100.0 27 15 US-10-412-672-11
 79 22 100.0 27 17 US-10-789-102-75
 80 22 100.0 29 9 US-09-823-494-9
 81 22 100.0 29 9 US-09-864-761-44850
 82 22 100.0 29 14 US-10-116-061-51
 83 22 100.0 30 15 US-10-412-672-13
 84 22 100.0 31 15 US-09-864-761-39166
 85 22 100.0 33 9 US-09-823-494-8
 86 22 100.0 33 9 US-09-823-494-17

87	22	100.0	9	US-09-823-494-23	Sequence 23, Appli
88	22	100.0	33	US-09-823-494-29	Sequence 29, Appli
89	22	100.0	33	US-10-235-493-37	Sequence 37, Appli
90	22	100.0	33	US-10-116-061-1	Sequence 1, Appli
91	22	100.0	33	US-10-116-061-2	Sequence 2, Appli
92	22	100.0	34	US-09-040-518-2	Sequence 2, Appli
93	22	100.0	34	US-10-14-760-8	Sequence 8, Appli
94	22	100.0	34	US-10-406-832-1	Sequence 1, Appli
95	22	100.0	34	US-10-380-927-25	Sequence 25, Appli
96	22	100.0	34	US-10-685-105-31	Sequence 7, Appli
97	22	100.0	35	US-09-746-491-62	Sequence 62, Appli
98	22	100.0	35	US-09-841-102A-126	Sequence 126, Appli
99	22	100.0	35	US-10-14-79-638-13	Sequence 13, Appli
100	22	100.0	36	US-09-864-761-42207	Sequence 42207, A
101	22	100.0	38	US-10-410-752-45	Sequence 45, Appli
102	22	100.0	38	US-10-437-963-140331	Sequence 140331, Appli
103	22	100.0	39	US-10-008-277B-01	Sequence 1, Appli
104	22	100.0	39	US-10-146-982A-1	Sequence 1, Appli
105	22	100.0	39	US-10-372-215	Sequence 215, Appli
106	22	100.0	39	US-10-677-074-215	Sequence 215, Appli
107	22	100.0	39	US-10-423-115-210173	Sequence 210173, Appli
108	22	100.0	39	US-10-425-115-339601	Sequence 339601, Appli
109	22	100.0	41	US-10-767-701-52044	Sequence 52044, A
110	22	100.0	43	US-10-177-031-331	Sequence 331, APP
111	22	100.0	46	US-10-767-701-63390	Sequence 61390, A
112	22	100.0	46	US-10-435-15-18739	Sequence 187139,
113	22	100.0	46	US-10-425-115-258403	Sequence 258403,
114	22	100.0	47	US-10-425-115-339018	Sequence 38038, A
115	22	100.0	47	US-10-479-638-43	Sequence 42226, A
116	22	100.0	48	US-09-864-761-48226	Sequence 124244, A
117	22	100.0	48	US-10-447-963-124244	Sequence 124244, A
118	22	100.0	48	US-10-437-963-191007	Sequence 191007,
119	22	100.0	48	US-10-437-963-191007	Sequence 191002,
120	22	100.0	48	US-10-437-963-200345	Sequence 200345, Appli
121	22	100.0	48	US-10-767-701-607640	Sequence 60570, A
122	22	100.0	49	US-10-124-593-183382	Sequence 188382,
123	22	100.0	49	US-10-445-115-289866	Sequence 289866,
124	22	100.0	50	US-09-817-665-18	Sequence 18, Appli
125	22	100.0	50	US-09-817-665-18	Sequence 18, Appli
126	22	100.0	50	US-09-864-408A-792	Sequence 72, Appli
127	22	100.0	50	US-10-215-862-18	Sequence 18, Appli
128	22	100.0	50	US-10-337-963-118333	Sequence 18333,
129	22	100.0	51	US-10-329-346-3316	Sequence 3416, A
130	22	100.0	51	US-09-864-761-40439	Sequence 40439, A
131	22	100.0	52	US-09-738-629-4956	Sequence 4956, AP
132	22	100.0	52	US-10-767-701-48937	Sequence 48937, A
133	22	100.0	52	US-10-125-115-249979	Sequence 240979,
134	22	100.0	52	US-10-325-115-293328	Sequence 298328,
135	22	100.0	53	US-09-864-761-35661	Sequence 35661, A
136	22	100.0	53	US-10-437-963-16573	Sequence 163573,
137	22	100.0	53	US-10-325-115-744	Sequence 296921,
138	22	100.0	53	US-10-325-115-296921	Sequence 185555,
139	22	100.0	54	US-10-125-115-185535	Sequence 208401,
140	22	100.0	54	US-10-125-115-204042	Sequence 219611,
141	22	100.0	55	US-10-425-115-219631	Sequence 194576,
142	22	100.0	55	US-10-296-115-744	Sequence 125535,
143	22	100.0	55	US-10-340-430-8	Sequence 8, Appli
144	22	100.0	55	US-10-667-701-37882	Sequence 37582, A
145	22	100.0	55	US-10-167-701-63031	Sequence 63031, A
146	22	100.0	56	US-10-124-519-15289	Sequence 155289,
147	22	100.0	56	US-10-337-963-113966	Sequence 113966,
148	22	100.0	56	US-10-437-963-194576	Sequence 194576,
149	22	100.0	57	US-10-437-963-15535	Sequence 125535,
150	22	100.0	57	US-10-167-701-59712	Sequence 59872, A
151	22	100.0	57	US-10-425-115-253395	Sequence 252395,
152	22	100.0	58	US-10-437-963-186338	Sequence 186338,
153	22	100.0	58	US-10-167-701-52167	Sequence 52167, A
154	22	100.0	59	US-09-864-408A-2440	Sequence 61925, A
155	22	100.0	59	US-10-437-963-117487	Sequence 117487,
156	22	100.0	59	US-10-437-963-139818	Sequence 139818,
157	22	100.0	59	US-10-437-963-166109	Sequence 166109,
158	22	100.0	59	US-10-437-963-166349	Sequence 166349,
159	22	100.0	59	US-10-437-963-166349	Sequence 166349,

ALIGNMENTS

RESULT 1
US-09-802-077-36
; Sequence 36, Application US/09802077
; GENERAL INFORMATION
; APPLICANT: Jardine, Paula N.
; ATTORNEY: Presta, Leonard G.
; PATENT NO.: US0010033842A1
; FILE REFERENCE: P071892C2US
; CURRENT FILING DATE: 2001-03-08
; PRIOR APPLICATION NUMBER: US 08/405,617
; PRIOR FILING DATE: 1995-03-15
; PRIOR APPLICATION NUMBER: US 08/185,899
; PRIOR FILING DATE: 1994-01-26
; PRIOR APPLICATION NUMBER: PCT/US92/06860
; PRIOR FILING DATE: 1992-08-14
; PRIOR APPLICATION NUMBER: US 07/879,495
; PRIOR FILING DATE: 1992-05-07
; PRIOR APPLICATION NUMBER: US 07/744,768
; PRIOR FILING DATE: 1991-08-14
; NUMBER OF SEQ ID NOS: 64
; SEQ ID NO: 36
; LENGTH: 6
; TYPE: PRT
; ORGANISM: Artificial sequence
; FEATURE:

99	17	10.0	6	ABR1014	Human can
100	17	10.0	6	ABR0471	Human can
101	17	10.0	6	ABR0879	Human can
102	17	10.0	6	ABR0964	Human can
103	17	10.0	6	ABR0479	Human can
104	17	10.0	6	ABR0509	Human can
105	17	10.0	6	ABR1312	Human can
106	17	10.0	6	ABR0104	Human can
107	17	10.0	6	ABR0725	Human can
108	17	10.0	6	ABR0119	Human can
109	17	10.0	6	ABR0874	Human can
110	17	10.0	6	ABR0091	Human can
111	17	10.0	6	ABR0489	Human can
112	17	10.0	6	ABR0103	Human can
113	17	10.0	6	ABR0275	Human can
114	17	10.0	6	ABR09704	Human can
115	17	10.0	6	ABR1125	Human can
116	17	10.0	6	ABR1311	Human can
117	17	10.0	6	ABR1316	Human can
118	17	10.0	6	ABR0282	Human can
119	17	10.0	6	ABR0693	Human can
120	17	10.0	6	ABR1068	Human can
121	17	10.0	6	ABR0284	Human can
122	17	10.0	6	ABR0903	Human can
123	17	10.0	6	ABR0100	Human can
124	17	10.0	6	ABR0271	Human can
125	17	10.0	6	ABR0320	Human can
126	17	10.0	6	ABR0721	Human can
127	17	10.0	6	ABR1019	Human can
128	17	10.0	6	ABR1100	Human can
129	17	10.0	6	ABR10291	Human can
130	17	10.0	6	ABR10317	Human can
131	17	10.0	7	ADD15106	Peptide s
132	17	10.0	7	ADD23764	Breast ca
133	17	10.0	7	ADK24039	Human 98P
134	17	10.0	7	ADK24048	Human 98P
135	17	10.0	7	ADK24982	Human 98P
136	17	10.0	7	ADK24993	Human 98P
137	17	10.0	7	ADK24057	Human 98P
138	17	10.0	7	ADK60412	Bola amph
139	17	10.0	7	AAR08092	Antifreeze
140	17	10.0	7	AAYE9933	Human cyc
141	17	10.0	7	ABG31566	Lysozyme
142	17	10.0	7	AauB2656	BP protei
143	17	10.0	7	AauB2657	BP protei
144	17	10.0	7	AEE1824	Androgen
145	17	10.0	7	ADD15091	Peptide s
146	17	10.0	7	ADD15103	Peptide s
147	17	10.0	7	ADD15200	Peptide s
148	17	10.0	7	ADD15035	Peptide s
149	17	10.0	7	ADD15109	Peptide s
150	17	10.0	7	ADM09044	Canine im
151	17	10.0	7	ADKL15579	Membrane
152	17	10.0	7	ADKL17319	Human OCT
153	17	10.0	7	AAR67199	Bovine I1
154	17	10.0	7	Aar66663	PP1c-inte
155	17	10.0	7	AAB29166	Peptide #
156	17	10.0	7	AAB129165	Peptide #
157	17	10.0	7	AAR81974	ORF encod
158	17	10.0	7	AAR97161	Conantoki
159	17	10.0	7	AAY05004	Tumour an
160	17	10.0	7	AAY99239	HAA class
161	17	10.0	7	AAB35589	Trojan an
162	17	10.0	7	ABU09119	Abu09119
163	17	10.0	7	ADC98276	CDR regio
164	17	10.0	7	ADP11998	Mycobacte
165	17	10.0	7	ADM65093	PP1c-inte
166	17	10.0	7	ADM31945	A-A-, beta
167	17	10.0	7	ADN4954	HLA bindi
168	17	10.0	7	ADD24026	HLV epito
169	17	10.0	7	AAP83237	Epstein-B
170	17	10.0	7	AAP832947	RastDbara
171	17	10.0	7	Aar12963	MastDbara

ALIGNMENTS

RESULT 1	
AE20126	AAE20126 standard; peptide; 6 AA.
X	AAE20126;
C	AAE20126;
X	18-JUN-2002 (first entry)
X	Human TRIP leucine zipper peptide #1.
X	Human; tumour necrosis factor; TNF; TNF receptor associated factor; TRAF; TRAF interacting protein; TRIL; cell activation; cell proliferation; cell death; therapy; cytostatic; leucine zipper.
X	Homo sapiens.
S	US6146605-B1.
N	X
N	X
N	X
N	X
N	X
D	12-FEB-2002.
F	31-MAR-1998;
F	98US-00052089.
X	X
R	01-APR-1997;
R	97US-0042293P.
R	07-APR-1997;
R	97US-0042147P.
X	X
A	(UYFQ) UNIV ROCKEFELLER.
A	
X	Lee SY, Choi Y;
X	W21, 2002-225005/28.
X	New tumor necrosis factor receptor associated factor interacting protein, useful for inhibiting NF-kappa B activation and for modulating signals responsible for cell activation, cell proliferation and cell death.
X	Example 2; Fig 2E; 37pp, English.
X	The present invention relates to a tumour necrosis factor (TNF) receptor associated factor (TNAF) interacting protein (mpBD), which interacts with the TNF receptor.

GenCore version 5.1.6
 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 08:02:06 ; Search time 21 Seconds
 (without alignments)
 15.790 Million cell updates/sec

Title: HOLLY-13

Perfect score: 17

Sequence: 1 xlaaa 5

Scoring table: BLOSUM62DX
 Gapop 10.0 , Gapext 0.5

Searched: 478139 seqs, 66318000 residues

Total number of hits satisfying chosen parameters: 478139

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 200 summaries

Database : Issued_Patents_AA:*

- 1: /cgn2_6/pctodata/1/iaa/5A_COMB.pep:*
- 2: /cgn2_6/pctodata/1/iaa/5B_COMB.pep:*
- 3: /cgn2_6/pctodata/1/iaa/6A_COMB.pep:*
- 4: /cgn2_6/pctodata/1/iaa/6B_COMB.pep:*
- 5: /cgn2_6/pctodata/1/iaa/PCTUS_COMB.pep:*
- 6: /cgn2_6/pctodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	2	17	100.0	6	3 US-09-330-970-24 Sequence 24, Appli
2	2	17	100.0	6	3 US-09-330-970-38 Sequence 38, Appli
3	3	17	100.0	7	4 US-09-335-224B-14 Sequence 34, Appli
4	4	17	100.0	8	2 US-08-232-53D-43 Sequence 43, Appli
5	5	17	100.0	8	2 US-08-464-022A-17 Sequence 17, Appli
6	6	17	100.0	8	3 US-08-466-151-25 Sequence 25, Appli
7	7	17	100.0	8	3 US-08-466-151-58 Sequence 58, Appli
8	8	17	100.0	8	3 US-08-466-163B-25 Sequence 25, Appli
9	9	17	100.0	8	3 US-08-466-163B-58 Sequence 58, Appli
10	10	17	100.0	8	4 US-09-043-8163-15 Sequence 15, Appli
11	11	17	100.0	8	4 US-09-802-096-25 Sequence 25, Appli
12	12	17	100.0	8	4 US-09-802-096-58 Sequence 58, Appli
13	13	17	100.0	8	4 US-09-802-077-25 Sequence 25, Appli
14	14	17	100.0	8	4 US-09-802-077-58 Sequence 25, Appli
15	15	17	100.0	9	1 US-09-480-54A-2 Sequence 2, Appli
16	16	17	100.0	9	1 US-08-250-847B-2 Sequence 2, Appli
17	17	17	100.0	9	2 US-08-433-94A-2 Sequence 2, Appli
18	18	17	100.0	9	3 US-08-396-385-12 Sequence 12, Appli
19	19	17	100.0	9	3 US-08-466-410A-2 Sequence 2, Appli
20	20	17	100.0	9	3 US-08-159-339A-151 Sequence 151, Appli
21	21	17	100.0	9	3 US-08-159-339A-164 Sequence 164, Appli
22	22	17	100.0	9	3 US-08-159-339A-165 Sequence 165, Appli
23	23	17	100.0	9	3 US-08-159-339A-166 Sequence 166, Appli
24	24	17	100.0	9	3 US-08-159-339A-167 Sequence 167, Appli
25	25	17	100.0	9	3 US-08-159-339A-168 Sequence 168, Appli
26	26	17	100.0	9	3 US-08-159-339A-169 Sequence 169, Appli
27	27	17	100.0	9	3 US-08-159-339A-170 Sequence 170, Appli

28	9	3	US-08-159-339A-171 Sequence 171, Appli
29	30	9	4 US-09-287-321-12 Sequence 9, Appli
31	31	9	5 PCT-US34-05066-2 Sequence 9, Appli
32	32	12	1 US-08-036-552B-164 Sequence 2, Appli
33	33	12	1 US-08-469-569-164 Sequence 164, Appli
34	34	12	1 US-08-249-222A-164 Sequence 164, Appli
35	35	12	1 US-08-469-526A-164 Sequence 164, Appli
36	36	12	1 US-08-413-490-61 Sequence 61, Appli
37	37	12	2 US-08-734-51A-164 Sequence 164, Appli
38	38	12	2 US-08-146-268-61 Sequence 61, Appli
39	39	12	3 US-09-146-269-61 Sequence 164, Appli
40	40	12	3 US-08-470-335-164 Sequence 61, Appli
41	41	12	3 US-08-735-021-164 Sequence 164, Appli
42	42	12	3 US-08-734-664A-164 Sequence 164, Appli
43	43	12	3 US-08-470-339-164 Sequence 164, Appli
44	44	12	4 US-08-467-002-164 Sequence 164, Appli
45	45	12	4 US-09-553-042-61 Sequence 61, Appli
46	46	12	5 PCT-US34-05083C-160 Sequence 160, Appli
47	47	12	5 PCT-US95-05846A-164 Sequence 164, Appli
48	48	12	5 Sequence 164, Appli
49	49	12	5 PCT-US35-1-037-61 Sequence 164, Appli
50	50	13	1 US-08-191-866D-18 Sequence 18, Appli
51	51	13	1 US-08-185-949B-18 Sequence 18, Appli
52	52	13	4 US-09-708-906-17 Sequence 17, Appli
53	53	13	4 US-09-708-906-19 Sequence 19, Appli
54	54	14	1 US-08-232-453A-10 Sequence 10, Appli
55	55	14	1 US-08-232-453A-26 Sequence 26, Appli
56	56	15	1 US-08-009-265-26 Sequence 28, Appli
57	57	15	1 US-08-294-334-7 Sequence 7, Appli
58	58	15	1 US-08-112-208C-23 Sequence 23, Appli
59	59	15	1 US-08-194-166-7 Sequence 25, Appli
60	60	15	1 US-08-248-819A-25 Sequence 23, Appli
61	61	15	1 US-08-337-646A-43 Sequence 23, Appli
62	62	15	2 US-08-856-331-23 Sequence 23, Appli
63	63	15	2 US-08-856-034-23 Sequence 23, Appli
64	64	15	3 US-08-227-326-43 Sequence 23, Appli
65	65	15	4 US-09-579-820A-23 Sequence 84, Appli
66	66	15	4 US-09-073-009-84 Sequence 85, Appli
67	67	15	4 US-09-073-010-84 Sequence 85, Appli
68	68	15	4 US-09-073-010-84 Sequence 85, Appli
69	69	15	4 US-09-073-010-85 Sequence 85, Appli
70	70	15	4 US-09-073-010-85 Sequence 7, Appli
71	71	16	3 US-08-935-040-11 Sequence 11, Appli
72	72	16	3 US-08-935-1-040-11 Sequence 57, Appli
73	73	16	4 US-09-252-636B-57 Sequence 14, Appli
74	74	17	2 US-09-115-209-14 Sequence 3, Appli
75	75	17	2 US-07-913-107-3 Sequence 3, Appli
76	76	17	1 US-08-459-201-3 Sequence 2, Appli
77	77	18	1 US-08-281-248-3 Sequence 2, Appli
78	78	18	1 US-08-644-149-2 Sequence 27, Appli
79	79	18	2 US-08-490-190-27 Sequence 27, Appli
80	80	17	2 US-08-188-379-58 Sequence 56, Appli
81	81	17	2 US-08-818-253-61 Sequence 61, Appli
82	82	17	2 US-08-181-253-61 Sequence 61, Appli
83	83	17	3 US-08-105-454-6 Sequence 6, Appli
84	84	17	3 US-08-818-252-56 Sequence 56, Appli
85	85	17	4 US-08-475-399A-27 Sequence 27, Appli
86	86	17	4 US-08-077-180B-27 Sequence 2, Appli
87	87	17	4 US-09-185-06121-2 Sequence 27, Appli
88	88	17	4 US-08-3745-27 Sequence 70, Appli
89	89	17	4 US-08-399-636-70 Sequence 14, Appli
90	90	17	4 US-08-864-149-6 Sequence 6, Appli
91	91	17	4 US-08-746-111-17 Sequence 17, Appli
92	92	17	4 US-07-946-180B-84 Sequence 84, Appli
93	93	17	2 US-08-185-949B-84 Sequence 2, Appli
94	94	17	2 US-09-236-423-1 Sequence 1, Appli
95	95	17	2 US-08-389-603-1 Sequence 1, Appli
96	96	17	2 US-07-841-59A-14 Sequence 14, Appli
97	97	17	2 US-08-2034-14 Sequence 14, Appli
98	98	17	2 US-08-160-576-7 Sequence 7, Appli
99	99	17	4 US-09-070-630-8 Sequence 8, Appli
100	100	17	4 US-07-941-651-6 Sequence 6, Appli

Sequence 13, App1									
17	100.0	US-08-029-402-5	Sequence 5, Appli	174	17	100.0	39	3	US-09-238-303-13
102	100.0	US-08-219-996-6	Sequence 6, Appli	175	17	100.0	39	3	US-09-315-3048-1457
103	25	US-08-914-741A-23	Sequence 23, Appli	176	17	100.0	39	4	US-09-104-3372-52
104	17	516933-42	Patent No. 516933	177	17	100.0	39	4	US-09-946-239-13
105	6	5248606-44	Patent No. 5248606	178	17	100.0	39	4	US-09-511-641C-1457
106	17	100.0	Sequence 7, Appli	179	17	100.0	39	4	US-09-350-641C-1457
107	17	US-08-029-402-7	Sequence 9, Appli	180	17	100.0	39	4	US-09-355-841A-1457
108	26	US-08-434-496-21	Sequence 21, Appli	181	17	100.0	40	1	US-08-279-058B-26
109	17	US-08-197-484-115	Sequence 115, Appli	182	17	100.0	40	1	US-08-279-058B-33
110	17	PCT-US92-07218-21	Sequence 21, Appli	183	17	100.0	40	3	US-09-154-083-16
111	26	PCT-US95-02121-115	Sequence 115, Appli	184	17	100.0	40	4	US-08-828-323-26
112	17	US-08-957-999-2	Sequence 2, Appli	185	17	100.0	40	4	US-08-828-323-33
113	17	US-08-967-999-3	Sequence 3, Appli	186	17	100.0	40	4	US-09-467-325-315
114	27	US-08-664-449-37	Sequence 37, Appli	187	17	100.0	40	4	US-0-012-542-315
115	17	US-09-022-727B-1029	Sequence 1029, Appli	188	17	100.0	40	4	US-10-115-123-315
116	17	US-09-315-304B-1029	Sequence 1029, Appli	189	17	100.0	41	4	US-08-469-260A-426
117	17	US-09-844-784-1029	Sequence 1029, Appli	190	17	100.0	41	4	US-08-488-446-426
118	17	US-09-515-967A-1029	Sequence 1029, Appli	191	17	100.0	41	4	US-08-457-3424-426
119	17	US-0-350-641C-1029	Sequence 1029, Appli	192	17	100.0	41	4	US-09-210-767-45235
120	17	US-09-500-841A-1029	Sequence 1029, Appli	193	17	100.0	41	4	US-08-424-550B-426
121	17	US-09-070-630-9	Sequence 9, Appli	194	17	100.0	42	1	US-08-664-449-39
122	17	US-09-288-719B-21	Sequence 21, Appli	195	17	100.0	42	4	US-10-06-422-29
123	17	US-08-039-402-19	Sequence 19, Appli	196	17	100.0	43	2	US-08-341-562-12
124	17	US-08-739-822-6	Sequence 6, Appli	197	17	100.0	43	2	US-08-345-942A-12
125	17	US-09-280-068-6	Sequence 6, Appli	198	17	100.0	43	3	US-08-488-212A-12
126	17	US-09-481-593-2	Sequence 2, Appli	199	17	100.0	43	3	US-08-488-202A-12
127	17	US-08-716-317-16	Sequence 16, Appli	200	17	100.0	43	3	US-08-483-211A-12
128	17	US-08-951-74-22	Sequence 22, Appli						Sequence 12, Appli
129	17	US-09-935-30	Sequence 30, Appli						Sequence 12, Appli
130	17	US-08-190-802A-232	Sequence 22, Appli						Sequence 12, Appli
131	31	US-08-477-316-232	Sequence 232, Appli						Sequence 12, Appli
132	17	US-08-473-089-232	Sequence 232, Appli						Sequence 12, Appli
133	17	US-08-487-072A-232	Sequence 232, Appli						Sequence 12, Appli
134	17	US-09-270-767-57895	Sequence 57895, Appli						Sequence 12, Appli
135	17	US-08-716-317-21	Sequence 6, Appli						Sequence 12, Appli
136	17	US-09-053-197A-68	Sequence 68, Appli						Sequence 12, Appli
137	17	US-09-058-767A-73	Sequence 73, Appli						Sequence 12, Appli
138	17	US-10-083-889-11	Sequence 11, Appli						Sequence 12, Appli
139	17	US-09-500-747-19	Sequence 19, Appli						Sequence 12, Appli
140	17	US-07-773-094-4	Sequence 4, Appli						Sequence 12, Appli
141	17	US-07-773-094-6	Sequence 6, Appli						Sequence 12, Appli
142	17	US-08-216-317-26	Sequence 26, Appli						Sequence 12, Appli
143	17	US-08-914-741A-3	Sequence 3, Appli						Sequence 12, Appli
144	17	US-09-334-811-11	Sequence 11, Appli						Sequence 12, Appli
145	17	US-09-500-747-14	Sequence 14, Appli						Sequence 12, Appli
146	17	US-08-560-727-1	Sequence 1, Appli						Sequence 12, Appli
147	17	US-09-838-975-3	Sequence 3, Appli						Sequence 12, Appli
148	17	US-09-092-219B-717	Sequence 717, Appli						Sequence 12, Appli
149	17	US-09-115-304B-717	Sequence 717, Appli						Sequence 12, Appli
150	17	US-09-321-399-3	Sequence 3, Appli						Sequence 12, Appli
151	35	US-09-043-816E-44	Sequence 44, Appli						Sequence 12, Appli
152	17	US-09-322-319-3	Sequence 3, Appli						Sequence 12, Appli
153	17	US-09-334-784-751	Sequence 751, Appli						Sequence 12, Appli
154	17	US-09-515-956A-717	Sequence 751, Appli						Sequence 12, Appli
155	17	US-09-515-956A-717	Sequence 751, Appli						Sequence 12, Appli
156	17	US-09-370-767-61709	Sequence 61709, Appli						Sequence 12, Appli
157	17	US-09-350-841A-217	Sequence 717, Appli						Sequence 12, Appli
158	17	US-09-382-219B-751	Sequence 751, Appli						Sequence 12, Appli
159	17	US-09-315-304B-751	Sequence 751, Appli						Sequence 12, Appli
160	17	US-09-334-784-751	Sequence 751, Appli						Sequence 12, Appli
161	17	US-09-515-956A-717	Sequence 751, Appli						Sequence 12, Appli
162	17	US-09-515-956A-751	Sequence 751, Appli						Sequence 12, Appli
163	17	US-09-350-841C-751	Sequence 751, Appli						Sequence 12, Appli
164	17	US-09-350-841A-751	Sequence 751, Appli						Sequence 12, Appli
165	17	US-09-334-784-751	Sequence 751, Appli						Sequence 12, Appli
166	17	US-08-451-412-11	Sequence 11, Appli						Sequence 12, Appli
167	17	US-08-451-412-40	Sequence 40, Appli						Sequence 12, Appli
168	17	US-08-511-412-56	Sequence 56, Appli						Sequence 12, Appli
169	17	US-08-662-227-36	Sequence 56, Appli						Sequence 12, Appli
170	17	US-08-460-516-5	Sequence 5, Appli						Sequence 12, Appli
171	17	US-09-017-941-36	Sequence 36, Appli						Sequence 12, Appli
172	17	US-09-925-442-36	Sequence 52, Appli						Sequence 12, Appli
173	17	US-08-350-260A-52	Sequence 52, Appli						Sequence 12, Appli

Result No.	Score	Query	Match	Length	DB ID	Description
1	17	GenCore version 5.1.6 (c) 1993 - 2004 Compugen Ltd.	100.0	6	US-09-211-424-23	Sequence 1512, App1
2	17	OM protein - protein search, using sw model	100.0	7	US-10-032-21B-14	Sequence 2643, App1
3	17	Run on: November 29, 2004, 08:05:22 ; Search time 139 Seconds (without alignments) 12.759 Million cell updates/sec	100.0	7	US-10-390-333B-14	Sequence 8, App1
4	17	Title: HOLLY-13	100.0	7	US-10-363-204-242	Sequence 1, App1
5	17	Perfect score: 17	100.0	8	US-09-302-077-25	Sequence 242, App1
6	17	Sequence: 1 xlaaa 5	100.0	8	US-09-002-077-58	Sequence 25, App1
7	17	Scoring table: BLOSUM62DX	100.0	8	US-09-802-096-25	Sequence 58, App1
8	17	Gapop 10.0 , Gapext 0.5	100.0	8	US-09-302-056-58	Sequence 2, App1
9	17	Searched: 1579365 seqs, 354694765 residues	100.0	8	US-09-325-179-25	Sequence 89, App1
10	17	Total number of hits satisfying chosen parameters: 1579565	100.0	11	US-10-044-708A-16	Sequence 16, App1
11	17	Minimum DB seq length: 0	100.0	11	US-10-327-598-76	Sequence 766, App1
12	17	Maximum DB seq length: 2000000000	100.0	12	US-08-736-019-164	Sequence 164, App1
13	17	Post-processing: Minimum Match 1.00%	100.0	12	US-10-302-971-61	Sequence 0, App1
14	17	Maximum Match 1.00%	100.0	13	US-09-780-000-85	Sequence 8, App1
15	17	Listing first 200 summaries	100.0	13	US-10-652-007-16	Sequence 16, App1
16	17	Minimum DB seq length: 0	100.0	13	US-10-334-006-7	Sequence 7, App1
17	17	Maximum DB seq length: 2000000000	100.0	14	US-10-334-006-9	Sequence 8, App1
18	17	Post-processing: Minimum Match 1.00%	100.0	14	US-10-334-006-9	Sequence 9, App1
19	17	Maximum Match 1.00%	100.0	15	US-09-073-009-84	Sequence 84, App1
20	17	Listing First 200 summaries	100.0	15	US-09-073-009-85	Sequence 95, App1
21	17	Total number of hits satisfying chosen parameters: 1579565	100.0	15	US-09-780-057-51	Sequence 1, App1
22	17	Minimum DB seq length: 0	100.0	15	US-10-793-006-84	Sequence 84, App1
23	17	Maximum DB seq length: 2000000000	100.0	15	US-09-793-020-85	Sequence 85, App1
24	17	Post-processing: Minimum Match 1.00%	100.0	15	US-10-277-693A-23	Sequence 23, App1
25	17	Maximum Match 1.00%	100.0	15	US-10-037-243-41	Sequence 41, App1
26	17	Listing First 200 summaries	100.0	15	US-10-239-313A-78	Sequence 78, App1
27	17	Total number of hits satisfying chosen parameters: 1579565	100.0	15	US-10-385-415-127	Sequence 127, App1
28	17	Minimum DB seq length: 0	100.0	15	US-10-385-415-129	Sequence 129, App1
29	17	Maximum DB seq length: 2000000000	100.0	15	US-09-252-656B-57	Sequence 57, App1
30	17	Post-processing: Minimum Match 1.00%	100.0	16	US-09-855-604-53	Sequence 593, App1
31	17	Maximum Match 1.00%	100.0	16	US-10-225-567A-1120	Sequence 1120, App1
32	17	Listing First 200 summaries	100.0	16	US-09-479-040-19	Sequence 19, App1
33	17	Total number of hits satisfying chosen parameters: 1579565	100.0	17	US-09-915-914B-22	Sequence 2037, App1
34	17	Minimum DB seq length: 0	100.0	17	US-10-201-394A-16	Sequence 16, App1
35	17	Maximum DB seq length: 2000000000	100.0	17	US-10-225-567A-2037	Sequence 16, App1
36	17	Post-processing: Minimum Match 1.00%	100.0	17	US-10-239-313A-78	Sequence 78, App1
37	17	Maximum Match 1.00%	100.0	17	US-10-385-415-127	Sequence 127, App1
38	17	Listing First 200 summaries	100.0	17	US-09-793-020-85	Sequence 85, App1
39	17	Total number of hits satisfying chosen parameters: 1579565	100.0	18	US-09-836-865-2	Sequence 2, App1
40	17	Minimum DB seq length: 0	100.0	18	US-09-554-000-56	Sequence 56, App1
41	17	Maximum DB seq length: 2000000000	100.0	18	US-10-281-478-148	Sequence 148, App1
42	17	Post-processing: Minimum Match 1.00%	100.0	19	US-10-028-445-3	Sequence 3, App1
43	17	Maximum Match 1.00%	100.0	19	US-10-225-567A-1519	Sequence 1519, App1
44	17	Listing First 200 summaries	100.0	19	US-09-836-865-6	Sequence 6, App1
45	17	Total number of hits satisfying chosen parameters: 1579565	100.0	20	US-09-813-333-46	Sequence 46, App1
46	17	Minimum DB seq length: 0	100.0	20	US-10-044-703-46	Sequence 46, App1
47	17	Maximum DB seq length: 2000000000	100.0	20	US-10-414-583-63	Sequence 21, App1
48	17	Post-processing: Minimum Match 1.00%	100.0	20	US-10-427-160A-16	Sequence 46, App1
49	17	Maximum Match 1.00%	100.0	21	US-09-813-333-37	Sequence 37, App1
50	17	Listing First 200 summaries	100.0	21	US-09-813-333-53	Sequence 53, App1
51	17	Total number of hits satisfying chosen parameters: 1579565	100.0	21	US-10-239-131-53	Sequence 53, App1
52	17	Minimum DB seq length: 0	100.0	21	US-10-044-703-37	Sequence 37, App1
53	17	Maximum DB seq length: 2000000000	100.0	21	US-10-044-703-53	Sequence 53, App1
54	17	Post-processing: Minimum Match 1.00%	100.0	21	US-10-010-160-68	Sequence 1, App1
55	17	Maximum Match 1.00%	100.0	21	US-10-239-103-17	Sequence 21, App1
56	17	Listing First 200 summaries	100.0	22	US-10-449-831A-57	Sequence 42, App1
57	17	Total number of hits satisfying chosen parameters: 1579565	100.0	22	US-10-449-831A-57	Sequence 54, App1
58	17	Minimum DB seq length: 0	100.0	22	US-10-449-831A-57	Sequence 57, App1
59	17	Maximum DB seq length: 2000000000	100.0	22	US-10-037-243-20	Sequence 21, App1
60	17	Post-processing: Minimum Match 1.00%	100.0	22	US-10-037-243-20	Sequence 78, App1
61	17	Maximum Match 1.00%	100.0	22	US-10-449-831A-82	Sequence 83, App1
62	17	Listing First 200 summaries	100.0	22	US-10-449-831A-84	Sequence 44, App1
63	17	Total number of hits satisfying chosen parameters: 1579565	100.0	22	US-10-449-831A-87	Sequence 87, App1
64	17	Minimum DB seq length: 0	100.0	22	US-09-814-122-3	Sequence 33, App1
65	17	Maximum DB seq length: 2000000000	100.0	22	US-09-814-122-3	Sequence 59, App1
66	17	Post-processing: Minimum Match 1.00%	100.0	23	US-09-915-914B-26	Sequence 26, App1
67	17	Maximum Match 1.00%	100.0	23	US-09-991-225-18	Sequence 18, App1
68	17	Listing First 200 summaries	100.0	23	US-09-991-225-37	Sequence 37, App1
69	17	Total number of hits satisfying chosen parameters: 1579565	100.0	23	US-09-814-122-3	Sequence 1, App1
70	17	Minimum DB seq length: 0	100.0	23	US-10-199-290-1	Sequence 1, App1
71	17	Maximum DB seq length: 2000000000	100.0	23	US-10-218-419-1	Sequence 1, App1
72	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-037-243-20	Sequence 21, App1
73	17	Maximum Match 1.00%	100.0	24	US-10-037-243-20	Sequence 21, App1
74	17	Listing First 200 summaries	100.0	24	US-10-390-585-4	Sequence 54, App1
75	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
76	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
77	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
78	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
79	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
80	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
81	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
82	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
83	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
84	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
85	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
86	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
87	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
88	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
89	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
90	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
91	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
92	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
93	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
94	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
95	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
96	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
97	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
98	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
99	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
100	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
101	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
102	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
103	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
104	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
105	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
106	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
107	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
108	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
109	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
110	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
111	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
112	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
113	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
114	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
115	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
116	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
117	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
118	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
119	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
120	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
121	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
122	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
123	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
124	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
125	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
126	17	Post-processing: Minimum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
127	17	Maximum Match 1.00%	100.0	24	US-10-449-831A-57	Sequence 57, App1
128	17	Listing First 200 summaries	100.0	24	US-10-449-831A-57	Sequence 57, App1
129	17	Total number of hits satisfying chosen parameters: 1579565	100.0	24	US-10-449-831A-57	Sequence 57, App1
130	17	Minimum DB seq length: 0	100.0	24	US-10-449-831A-57	Sequence 57, App1
131	17	Maximum DB seq length: 2000000000	100.0	24	US-10-449-831A-57	Sequence 57, App1
132	17	Post-processing: Minimum				

87	17	100.0	23	14	US-10-037-243-4	Sequence 4, Appli	Sequence 1327, App
88	17	100.0	23	14	US-10-039-445-18	Sequence 18, Appli	Sequence 751, App
69	17	100.0	23	14	US-10-039-405-18	Sequence 37, Appli	Sequence 162, App
90	17	100.0	23	15	US-10-049-831A-63	Sequence 63, Appli	Sequence 163, App
91	17	100.0	23	15	US-10-049-887-33	Sequence 33, Appli	Sequence 164, App
92	17	100.0	23	15	US-10-032-737-19	Sequence 19, Appli	Sequence 165, App
93	17	100.0	24	10	US-10-010-630-8	Sequence 8, Appli	Sequence 166, App
94	17	100.0	24	16	US-10-041-204-28	Sequence 28, Appli	Sequence 167, App
95	17	100.0	24	16	US-10-041-205-32	Sequence 32, Appli	Sequence 168, App
96	17	100.0	24	16	US-10-041-208-28	Sequence 28, Appli	Sequence 169, App
97	17	100.0	24	17	US-10-025-115-194012	Sequence 194012, Appli	Sequence 170, App
98	17	100.0	25	14	US-10-012-488-2	Sequence 2, Appli	Sequence 171, App
99	17	100.0	25	14	US-10-061-607A-22	Sequence 22, Appli	Sequence 172, App
100	17	100.0	25	15	US-10-054-884B-11139	Sequence 11139, A	Sequence 173, App
101	17	100.0	25	16	US-10-073-860-3	Sequence 3, Appli	Sequence 174, App
102	17	100.0	25	16	US-10-016-249-203	Sequence 203, App	Sequence 175, App
103	17	100.0	25	16	US-10-016-249-341	Sequence 341, App	Sequence 176, App
104	17	100.0	25	16	US-10-016-249-539	Sequence 539, App	Sequence 177, App
105	17	100.0	25	17	US-10-025-115-33358	Sequence 33358, Appli	Sequence 178, App
106	17	100.0	26	9	US-09-884-761-33915	Sequence 33915, A	Sequence 179, App
107	17	100.0	26	14	US-10-028-711-115	Sequence 115, Appli	Sequence 180, App
108	17	100.0	27	10	US-09-915-914B-15	Sequence 25, Appli	Sequence 181, App
109	17	100.0	27	14	US-10-044-549-11	Sequence 11, Appli	Sequence 182, App
110	17	100.0	27	15	US-10-052-839-14	Sequence 14, Appli	Sequence 183, App
111	17	100.0	27	15	US-10-069-711-52	Sequence 52, Appli	Sequence 184, App
112	17	100.0	27	15	US-10-069-711-54	Sequence 54, Appli	Sequence 185, App
113	17	100.0	27	15	US-10-069-711-55	Sequence 55, Appli	Sequence 186, App
114	17	100.0	27	15	US-10-032-737-20	Sequence 20, Appli	Sequence 187, App
115	17	100.0	27	16	US-10-084-109-65	Sequence 63, Appli	Sequence 188, App
116	17	100.0	27	16	US-10-084-109-66	Sequence 65, Appli	Sequence 189, App
117	17	100.0	27	16	US-10-084-109-66	Sequence 66, Appli	Sequence 190, App
118	17	100.0	28	10	US-09-070-630-9	Sequence 9, Appli	Sequence 191, App
119	17	100.0	28	14	US-10-051-641-1029	Sequence 1029, App	Sequence 192, App
120	17	100.0	28	14	US-10-036-155-23	Sequence 23, Appli	Sequence 193, App
121	17	100.0	29	14	US-10-020-604-14	Sequence 14, Appli	Sequence 194, App
122	17	100.0	29	14	US-10-020-604-48	Sequence 48, Appli	Sequence 195, App
123	17	100.0	30	10	US-09-912-93-30	Sequence 30, Appli	Sequence 196, App
124	17	100.0	30	10	US-09-937-941-319	Sequence 319, Appli	Sequence 197, App
125	17	100.0	30	14	US-10-021-174-21	Sequence 21, Appli	Sequence 198, App
126	17	100.0	30	14	US-10-168-365-30	Sequence 30, Appli	Sequence 199, App
127	17	100.0	32	14	US-10-023-171-73	Sequence 73, Appli	Sequence 200, App
128	17	100.0	32	14	US-10-037-243-10	Sequence 10, Appli	Sequence 201, App
129	17	100.0	33	14	US-10-091-244-19	Sequence 19, Appli	Sequence 202, App
130	17	100.0	33	14	US-10-072-809A-12	Sequence 12, Appli	Sequence 203, App
131	17	100.0	33	15	US-10-424-539-163806	Sequence 165806, Appli	Sequence 204, App
132	17	100.0	33	15	US-10-024-539-170485	Sequence 5, Appli	Sequence 205, App
133	17	100.0	33	15	US-10-032-410-5	Sequence 11, Appli	Sequence 206, App
134	17	100.0	33	16	US-10-751-380-11	Sequence 17, Appli	Sequence 207, App
135	17	100.0	33	16	US-10-080-172-10	Sequence 237016, Appli	Sequence 208, App
136	17	100.0	33	17	US-10-025-115-237036	Sequence 1294, Appli	Sequence 209, App
137	17	100.0	34	10	US-09-962-756-1294	Sequence 1294, Appli	Sequence 210, App
138	17	100.0	34	14	US-10-091-244-14	Sequence 14, Appli	Sequence 211, App
139	17	100.0	34	14	US-10-023-471-1294	Sequence 1294, Appli	Sequence 212, App
140	17	100.0	35	14	US-10-005-555-24	Sequence 24, Appli	Sequence 213, App
141	17	100.0	35	14	US-10-0305-555-28	Sequence 28, Appli	Sequence 214, App
142	17	100.0	35	14	US-10-031-641-717	Sequence 717, Appli	Sequence 215, App
143	17	100.0	34	16	US-10-037-963-122165	Sequence 123165, Appli	Sequence 216, App
144	17	100.0	34	17	US-10-425-115-265836	Sequence 265836, Appli	Sequence 217, App
145	17	100.0	35	10	US-09-764-891-3040	Sequence 9080, Appli	Sequence 218945, Appli
146	17	100.0	35	14	US-10-083-357-914	Sequence 914, Appli	Sequence 21895, Appli
147	17	100.0	35	14	US-10-023-471-1294	Sequence 24, Appli	Sequence 21896, Appli
148	17	100.0	35	14	US-10-0305-555-28	Sequence 28, Appli	Sequence 21897, Appli
149	17	100.0	35	14	US-10-031-641-717	Sequence 717, Appli	Sequence 21898, Appli
150	17	100.0	35	15	US-10-024-539-22808	Sequence 21898, Appli	Sequence 21899, Appli
151	17	100.0	35	16	US-10-427-963-122945	Sequence 21899, Appli	Sequence 21895, Appli
152	17	100.0	35	17	US-10-445-115-218804	Sequence 21895, Appli	Sequence 21895, Appli
153	17	100.0	36	9	US-09-864-761-1014	Sequence 1314, Appli	Sequence 21896, Appli
154	17	100.0	36	9	US-09-897-956-5	Sequence 1314, Appli	Sequence 21897, Appli
155	17	100.0	36	9	US-09-962-756-1225	Sequence 1314, Appli	Sequence 21898, Appli
156	17	100.0	36	10	US-09-962-756-1225	Sequence 1314, Appli	Sequence 21899, Appli
157	17	100.0	36	10	US-09-922-756-1228	Sequence 1314, Appli	Sequence 21895, Appli
158	17	100.0	36	10	US-09-922-756-1228	Sequence 1314, Appli	Sequence 21896, Appli
159	17	100.0	36	10	US-09-962-756-1314	Sequence 1314, Appli	Sequence 21897, Appli

ALIGNMENTS

RESULT 1
US-09-211-424-23
; Sequence 23, Application US/09211424A
; GENERAL INFORMATION:
; APPLICANT: Staunton et al.
; TITLE OF INVENTION: Leupaxin Materials and Methods
; PARENT NO.: US2010177231AA1
; FILE REFERENCE:
; CURRENT APPLICATION NUMBER: US/09/211-424A
; CURRENT FILING DATE: 1998-12-15
; NUMBER OF SEQ ID NOS: 38
; SEQ ID NO: 23
; LENGTH: 6
; TYPE: PRT
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Description of Artificial Sequence : modified human
; OTHER INFORMATION: sequence
US-09-211-424-23

Query Match 100.0%; Score 17; DB 9;
Best Local Similarity 80.0%; Pred. No. 1.4e+06;
Matches 4; Conservative 1; Mismatches 0; Indels 0;
Gaps 0;

Qy 1 XIAAA 5
Db :||| 1 NIAAA 5

Copyright (C) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: November 29, 2004, 07:59:16 ; Search time 16 Seconds
 (without alignments)
 30.068 Million cell updates/sec

Title: HOLLY-13
 Perfect score: 17
 Sequence: 1 xlaaa 5

Scoring table: BLOSUM62DX
 Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing First 200 summaries

Database : PIR79:*

1: PIR1:*

2: PIR2:*

3: PIR3:*

4: PIR4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	17	100.0	9	A33848	cell surface adhes
2	17	100.0	13	A38929	glutathione peroxi
3	17	100.0	22	I59594	monoamine oxidase
4	17	100.0	23	B37843	vrg 18 protein - B
5	17	100.0	26	A24735	glutathione transf
6	17	100.0	28	S21278	splicing regulator
7	17	100.0	29	C54037	aspartate transmi
8	17	100.0	30	I55427	glucuronidoglycanch
9	17	100.0	30	S13609	antifreeze Protein
10	17	100.0	33	FDF15G	antifreeze Protein
11	17	100.0	33	A05162	reversion inducing
12	17	100.0	33	PCT035	hypothetical prote
13	17	100.0	36	S73127	hypothetical prote
14	17	100.0	36	D82482	hypothetical prote
15	17	100.0	37	C84210	hypothetical prote
16	17	100.0	38	GB1904	hypothetical prote
17	17	100.0	40	FDF18G	hypothetical prote
18	17	100.0	40	A63677	phosphatase (RPC)
19	17	100.0	41	T16051	hypothetical prote
20	17	100.0	41	C87484	hypothetical prote
21	17	100.0	42	S29098	glutathione transf
22	17	100.0	43	S24180	histone H1.a, test
23	17	100.0	43	H81142	hypothetical prote
24	17	100.0	44	T03953	hypothetical prote
25	17	100.0	45	A05163	antifreeze Protein
26	17	100.0	45	T35464	hypothetical prote
27	17	100.0	46	A10624	recombinant prot
28	17	100.0	47	A56778	hypothetical prote
29	17	100.0	47	AB2489	somatotropin precu

S05562 48 2 bacteriochlorophyl

S05563 48 2 bacteriochlorophyl

S56664 48 2 photosystem II pro

S56232 48 2 basic helix-loop-h

S59075 48 2 hypothetical prote

S71313 49 2 glutathione C inhibitio

S00299 49 2 protein C inhibitor

T04338 50 2 probable regulator

LBRFB5 51 2 light-harvesting p

G90776 53 2 ribosomal protein

A91003 51 2 light-harvesting p

A26645 51 2 hypothetical prote

PC4101 52 2 iron-sulfur protein

A46292 54 2 zeaxanthin glucosy

G84072 57 2 hypothetical prote

F83624 59 2 ribosomal protein

B91180 60 2 probable PE protein

T37058 60 2 bacteriochlorophyl

A40856 60 2 hypothetical prote

A60092 60 2 organizer-specific

T34721 61 2 homeotic protein X

F83624 61 2 probable protorp

B96027 62 2 hypothetical prote

E82775 62 2 hypothetical prote

A12167 63 2 heavy metal bindin

I40237 64 2 conserved hypot

D95331 64 2 periplasmic mercur

A0984 64 2 hypothetical prote

AB2271 64 2 bacteriocin Blp1

S95853 65 2 hypothetical prote

S35024 65 2 conserved hypot

AB3381 65 2 heavy metal bindin

F84205 66 2 hypothetical prote

S10555 67 2 histone H1.4 - rab

AH0984 67 2 hypothetical prote

A11903 67 2 head-to-tail joini

JOBPL 68 2 probable head-to-t

B90901 68 2 hypothetical prote

T44154 68 2 head-to-tail joini

T36853 68 2 hypothetical prote

B82779 68 2 hypothetical prote

D49786 69 2 lactococcin A1 pre

B83632 69 2 hypothetical prote

T139786 70 2 H+ -transporting tw

I50439 71 2 vitellogenin III -

T08482 71 2 plasmid maintenanc

IWHWA3 72 1 H+ -transporting tw

T353B4 72 2 hypothetical prote

AE3444 72 2 leghemoglobin 1 -

AD2890 72 2 hypothetical prote

H90947 73 2 DNA polymerase III

B70542 73 2 transcription regu

B87584 76 2 hypothetical prote

S70178 76 2 hypothetical prote

T45345 76 2 hypothetical prote

T10809 76 2 DNA-directed DNA p

AH0740 76 2 somatotropin precu

PC1017 77 2

103	17	100.0	77	2	S61887	hypothetical protein - yeast	176	17	100.0	95	2	S31081
104	17	100.0	77	2	S41941	hypothetical protein - yeast	177	17	100.0	95	2	H86966
105	17	100.0	78	2	T0940	hypothetical protein - yeast	178	17	100.0	95	2	A70803
106	17	100.0	78	2	A71373	hypothetical protein - yeast	179	17	100.0	95	2	B45519
107	17	100.0	78	2	E97064	hypothetical protein - yeast	180	17	100.0	95	2	B45519
108	17	100.0	78	2	AE3271	hypothetical membrane protein - yeast	181	17	100.0	96	2	T17845
109	17	100.0	79	2	S61446	hypothetical membrane protein - yeast	182	17	100.0	96	2	T17845
110	17	100.0	79	2	AB3643	hypothetical membrane protein - yeast	183	17	100.0	96	2	T35372
111	17	100.0	79	2	AE3269	hypothetical membrane protein - yeast	184	17	100.0	96	2	T28127
112	17	100.0	79	2	A13344	protein translocase	185	17	100.0	97	2	AB1005
113	17	100.0	80	2	S34119	acclimation protein	186	17	100.0	97	2	S76406
114	17	100.0	81	2	LWVCA	H+-transporting ATP synthase chain	187	17	100.0	97	2	T28947
115	17	100.0	81	2	C31090	H+-transporting ATP synthase chain	188	17	100.0	97	2	F97780
116	17	100.0	81	2	AI1807	H+-transporting ATP synthase chain	189	17	100.0	98	2	F10511
117	17	100.0	81	2	G87400	H+-transporting ATP synthase chain	190	17	100.0	98	2	B70568
118	17	100.0	81	2	F75109	H+-transporting ATP synthase chain	191	17	100.0	98	2	F83404
119	17	100.0	81	2	S20031	H+-transporting ATP synthase chain	192	17	100.0	98	2	T28629
120	17	100.0	81	2	B70966	H+-transporting ATP synthase chain	193	17	100.0	98	2	D75519
121	17	100.0	81	2	T10220	H+-transporting ATP synthase chain	194	17	100.0	98	2	A12262
122	17	100.0	81	2	B95401	H+-transporting ATP synthase chain	195	17	100.0	99	1	S40865
123	17	100.0	82	2	S38961	H+-transporting ATP synthase chain	196	17	100.0	99	2	G86851
124	17	100.0	82	2	E70972	probable enoyl-coA palmitate acyl carrier protein	197	17	100.0	99	2	G91234
125	17	100.0	82	2	A47482	probable enoyl-coA palmitate acyl carrier protein	198	17	100.0	99	2	A70608
126	17	100.0	82	2	A97840	probable enoyl-coA palmitate acyl carrier protein	199	17	100.0	99	2	A70930
127	17	100.0	82	2	B95846	probable enoyl-coA palmitate acyl carrier protein	200	17	100.0	99	2	D70582
						ALIGNMENTS						
						RESULT 1						
						A43848	cell surface adhesin for heparan sulfate, 66K - <i>Staphylococcus aureus</i> (fragment)					
						C;Species: <i>Staphylococcus aureus</i>						
						C;Date: 10-Mar-1993 #sequence_revision 18-Nov-1994 #text_change 09-Jul-2004						
						C;Accession: A41848						
						R;Liang, O.D.; Ascencio, F.; Fransson, L.A.; Wadstrom, T.						
						A;Title: Binding of heparan sulfate to <i>Staphylococcus aureus</i> .						
						A;Reference number: A43848; PMID:92176005; PMID:1541563						
						A;Accession: A41848						
						A;Status: preliminary						
						A;Molecule type: protein						
						A;Residues: 1-9 <LIAs>						
						A;Cross-references: UNIPROT:Q9R5ML						
						A;Note: sequence extracted from NCBI backbone (NCBIP:85442)						
						Query Match Score 100.0% ; Best Local Similarity 100.0% ; Matches 4 ;	Length 2;	Pred. No. 2.8e+05; Conservative 1; Mismatches 0;	Indels 0;	Gaps 0;		
						Db	5	WTAAA	5			
						RESULT 2						
						A38929	glutathione peroxidase (EC 1.11.1.1) - sheep (fragment)					
						C;Species: <i>Ovis orientalis</i> aries, <i>Ovis ammon aries</i> (<i>domestic sheep</i>)						
						C;Date: 23-Mar-1995 #sequence_revision 23-Mar-1995 #text_change 09-Jul-2004						
						C;Accession: A38929						
						R;Gettins, P.; Dyal, D.; Crews, B.						
						A;Title: Selenium-dependent Glutathione Peroxidases from ovine and bovine erythrocytes						
						A;Reference number: S21712; PMID:92231574; PMID:1567207						
						A;Accession: A38929						
						A;Status: preliminary						
						A;Molecule type: protein						
						A;Residues: 1-13 <GETP>						
						A;Cross-references: UNIPROT:Q7M355						
						C;Superfamily: Glutathione Peroxidases						
						C;Keywords: oxidoreductase						

Result No.	Score	Query	Match Length	DB	ID	Description
<hr/>						
1	17	Q9r5M1	9	2	Q9r5M1	Q9r5M1 staphylococcal protein
2	17	Q94T19	10	2	Q94T19	Q94T19 zea mays (millet)
3	17	Q7M355	13	2	Q7M355	Q7M355 oris aries (cow)
4	17	Q9FY16	15	2	Q9FY16	Q9FY16 gossypium hirsutum
5	17	Q9JHM3	16	2	Q9JHM3	Q9JHM3 rattus norvegicus
6	17	Q7JMY3	17	2	Q7JMY3	Q7JMY3 leishmania
7	17	Q7YK33	19	2	Q7YK33	Q7YK33 chloroleucosin
8	17	Q9UCJ6	21	2	Q9UCJ6	Q9UCJ6 homo sapiens
9	17	Q64133	100	0	Q64133	Q64133 mus musculus
10	17	Q7L8R0	100	0	Q7L8R0	Q7L8R0 homo sapiens
11	17	CAA22266	100	0	CAA22266	CAA22266 homo sapiens
12	17	Q8MF13	100	0	Q8MF13	Q8MF13 crepidomanes
13	17	Q8ME15	100	0	Q8ME15	Q8ME15 sphaerococcidae
14	17	Q8MF17	100	0	Q8MF17	Q8MF17 hymenophyllaceae
15	17	Q8MF19	100	0	Q8MF19	Q8MF19 hymenophyllaceae
16	17	Q8MFU1	100	0	Q8MFU1	Q8MFU1 hymenophyllaceae
17	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 hymenophyllaceae
18	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 hymenophyllaceae
19	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 hymenophyllaceae
20	17	Q8MFU9	100	0	Q8MFU9	Q8MFU9 hymenophyllaceae
21	17	Q8MFK1	100	0	Q8MFK1	Q8MFK1 hymenophyllaceae
22	17	Q8MFK3	100	0	Q8MFK3	Q8MFK3 hymenophyllaceae
23	17	Q8MFK5	100	0	Q8MFK5	Q8MFK5 hymenophyllaceae
24	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 bordetellidae
25	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 streptomyces
26	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 fusarium
27	17	Q8MFU9	100	0	Q8MFU9	Q8MFU9 fusarium
28	17	Q8MFU1	100	0	Q8MFU1	Q8MFU1 fusarium
29	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 gibberella
30	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 fusarium
31	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 fusarium

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

§

Result No.	Score	Query	Match Length	DB	ID	Description
<hr/>						
1	17	Q9r5M1	9	2	Q9r5M1	Q9r5M1 staphylococcal protein
2	17	Q94T19	10	2	Q94T19	Q94T19 zea mays (millet)
3	17	Q7M355	13	2	Q7M355	Q7M355 oris aries (cow)
4	17	Q9FY16	15	2	Q9FY16	Q9FY16 gossypium hirsutum
5	17	Q9JHM3	16	2	Q9JHM3	Q9JHM3 rattus norvegicus
6	17	Q7JMY3	17	2	Q7JMY3	Q7JMY3 leishmania
7	17	Q7YK33	19	2	Q7YK33	Q7YK33 chloroleucosin
8	17	Q9UCJ6	21	2	Q9UCJ6	Q9UCJ6 homo sapiens
9	17	Q64133	100	0	Q64133	Q64133 mus musculus
10	17	Q7L8R0	100	0	Q7L8R0	Q7L8R0 homo sapiens
11	17	CAA22266	100	0	CAA22266	CAA22266 homo sapiens
12	17	Q8MF13	100	0	Q8MF13	Q8MF13 crepidomanes
13	17	Q8ME15	100	0	Q8ME15	Q8ME15 sphaerococcidae
14	17	Q8MF17	100	0	Q8MF17	Q8MF17 hymenophyllaceae
15	17	Q8MF19	100	0	Q8MF19	Q8MF19 hymenophyllaceae
16	17	Q8MFU1	100	0	Q8MFU1	Q8MFU1 hymenophyllaceae
17	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 hymenophyllaceae
18	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 hymenophyllaceae
19	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 hymenophyllaceae
20	17	Q8MFU9	100	0	Q8MFU9	Q8MFU9 hymenophyllaceae
21	17	Q8MFK1	100	0	Q8MFK1	Q8MFK1 hymenophyllaceae
22	17	Q8MFK3	100	0	Q8MFK3	Q8MFK3 hymenophyllaceae
23	17	Q8MFK5	100	0	Q8MFK5	Q8MFK5 hymenophyllaceae
24	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 bordetellidae
25	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 streptomyces
26	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 fusarium
27	17	Q8MFU9	100	0	Q8MFU9	Q8MFU9 fusarium
28	17	Q8MFU1	100	0	Q8MFU1	Q8MFU1 fusarium
29	17	Q8MFU3	100	0	Q8MFU3	Q8MFU3 gibberella
30	17	Q8MFU5	100	0	Q8MFU5	Q8MFU5 fusarium
31	17	Q8MFU7	100	0	Q8MFU7	Q8MFU7 fusarium

32	17	Q71KPS	100	0	Q71KPS	Q71KPS spirogyra m
33	17	Q79CC0	100	0	Q79CC0	Q79CC0 neisseria g
34	17	Q7VSE4	100	0	Q7VSE4	Q7VSE4 mycobacteri
35	17	Q6mx19	100	0	Q6mx19	Q6mx19 mycobacteri
36	17	Q9YRC9	100	0	Q9YRC9	Q9YRC9 ratmus sp.
37	17	AAB63319	100	0	AAB63319	AAB63319 neisseria
38	17	AAQ05912	100	0	AAQ05912	AAQ05912 spirogyra
39	17	CAE5539	100	0	CAE5539	CAE5539 mycobacte
40	17	Q85TP9	100	0	Q85TP9	Q85TP9 cyanobac
41	17	Q9JLQ6	100	0	Q9JLQ6	Q9JLQ6 ratus norv
42	17	AAF63713	100	0	AAF63713	AAF63713 homo sapi
43	17	Q9URB6	100	0	Q9URB6	Q9URB6 acremont
44	17	Q9BW23	100	0	Q9BW23	Q9BW23 homo sapien
45	17	Q6LB12	100	0	Q6LB12	Q6LB12 triticum ae
46	17	CAA31327	100	0	CAA31327	CAA31327 triticum
47	17	PB2372	100	0	PB2372	PB2372 diplopera
48	17	Q9FUG2	100	0	Q9FUG2	Q9FUG2 zeamays (s
49	17	Q8ORG7	100	0	Q8ORG7	Q8ORG7 newcasteld
50	17	Q96RA4	100	0	Q96RA4	Q96RA4 homo sapien
51	17	Q9MVP0	100	0	Q9MVP0	Q9MVP0 arabidopsis
52	17	Q9G254	100	0	Q9G254	Q9G254 polygonum c
53	17	Q9G255	100	0	Q9G255	Q9G255 polygonum c
54	17	Q9G256	100	0	Q9G256	Q9G256 polygonum c
55	17	Q9G257	100	0	Q9G257	Q9G257 polygonum c
56	17	Q9G258	100	0	Q9G258	Q9G258 polygonum s
57	17	Q9FE80	100	0	Q9FE80	Q9FE80 zealdiplo
58	17	Q9PE81	100	0	Q9PE81	Q9PE81 zeamays (s
59	17	Q9FE82	100	0	Q9FE82	Q9FE82 zeamays (s
60	17	Q9FUP8	100	0	Q9FUP8	Q9FUP8 zealuxuria
61	17	Q9FUP9	100	0	Q9FUP9	Q9FUP9 zealuxuria
62	17	Q9FUQ1	100	0	Q9FUQ1	Q9FUQ1 zeamays (s
63	17	Q9FUQ3	100	0	Q9FUQ3	Q9FUQ3 zeamays (s
64	17	Q9FUQ4	100	0	Q9FUQ4	Q9FUQ4 zeamays (s
65	17	Q9FUQ5	100	0	Q9FUQ5	Q9FUQ5 zeamays (m
66	17	Q72E50	100	0	Q72E50	Q72E50 desulfobivir
67	17	AAS94807	100	0	AAS94807	AAS94807 desulfovi
68	17	P04367	100	0	P04367	P04367 myoxocephal
69	17	ANP5_MYOAE	100	0	ANP5_MYOAE	ANP5_MYOAE
70	17	Q7Z2N7	100	0	Q7Z2N7	Q7Z2N7 homo sapien
71	17	Q6XQ03	100	0	Q6XQ03	Q6XQ03 pseudomonas
72	17	AAP49281	100	0	AAP49281	AAP49281 pseudomonas
73	17	PBTG_YACAA	100	0	PBTG_YACAA	PBTG_YACAA cyanidium c
74	17	PBTG_PORPU	100	0	PBTG_PORPU	PBTG_PORPU cyanidium c
75	17	Q7JMV4	100	0	Q7JMV4	Q7JMV4 anchophelles
76	17	Q9KMR8	100	0	Q9KMR8	Q9KMR8 vibrio chol
77	17	Q7B433	100	0	Q7B433	Q7B433 vibriochlor
78	17	Q9HWR1	100	0	Q9HWR1	Q9HWR1 halobacteri
79	17	Q8LID9	100	0	Q8LID9	Q8LID9 vibrio angu
80	17	Q9BA16	100	0	Q9BA16	Q9BA16 rhizobium l
81	17	Q7SH3	100	0	Q7SH3	Q7SH3 neurospora
82	17	Q7S150	100	0	Q7S150	Q7S150 neurospora
83	17	Q939W1	100	0	Q939W1	Q939W1 aeromonas s
84	17	Q9jhe4	100	0	Q9jhe4	Q9jhe4 neisseria m
85	17	Q8V1U8	100	0	Q8V1U8	Q8V1U8 mycobacteri
86	17	P20517	100	0	P20517	P20517 myoxocephal
87	17	ANP8_MYOAE	100	0	ANP8_MYOAE	ANP8_MYOAE
88	17	P944116	100	0	P944116	P944116 bacillus su
89	17	Q9tnz4	100	0	Q9tnz4	Q9tnz4 ratmus norv
90	17	Q6DL79	100	0	Q6DL79	Q6DL79 bacillus mo
91	17	Q6D9019	100	0	Q6D9019	Q6D9019 human herpe
92	17	Q9Df18	100	0	Q9Df18	Q9Df18 myoxocephal
93	17	Q9tnz5	100	0	Q9tnz5	Q9tnz5 ratmus norv
94	17	Q9A730	100	0	Q9A730	Q9A730 streptomyce
95	17	Q7x5B5	100	0	Q7x5B5	Q7x5B5 synechococc
96	17	Q7m056	100	0	Q7m056	Q7m056 mesocricetus
97	17	Q6D9019	100	0	Q6D9019	Q6D9019 human herpe
98	17	Q9Df18	100	0	Q9Df18	Q9Df18 myoxocephal
99	17	Q7LJQ2	100	0	Q7LJQ2	Q7LJQ2 fusarium cu
100	17	Q7LJTT0	100	0	Q7LJTT0	Q7LJTT0 fusarium cu
101	17	Q7LJUT5	100	0	Q7LJUT5	Q7LJUT5 fusarium lu
102	17	Q7LP62	100	0	Q7LP62	Q7LP62 gibberella
103	17	Q8NJE8	100	0	Q8NJE8	Q8NJE8 fusarium ce
104	17	Q9C1A7	100	0	Q9C1A7	Q9C1A7 fusarium ce

105	17	100.0	43	2	Q9CIB4	fusarium sp	178	17	100.0	51	2	Q8AWH5
106	17	100.0	43	2	Q6FAS2	equus cabal	179	17	100.0	51	2	Q9I821
107	17	100.0	43	2	Q5TN26	rattus norv	180	17	100.0	51	2	Q9PSE5
108	17	100.0	43	2	Q9LJ0	synchococc	181	17	100.0	51	2	Q9PSE6
109	17	100.0	43	2	Q9UZS3	neisseria m	182	17	100.0	51	2	Q9PSE7
110	17	100.0	43	2	Q8XW38	ristonnia s	183	17	100.0	52	2	Q6MF9
111	17	100.0	43	2	Q6EWA2	human calci	184	17	100.0	52	2	Q6ZA4
112	17	100.0	43	2	Q5562	rattus norv	185	17	100.0	52	2	Q98AH5
113	17	100.0	44	2	Q94577	zea mays (m	186	17	100.0	52	2	Q8xy7
114	17	100.0	44	2	Q9LJE4	synchococc	187	17	100.0	52	2	Q7m5j7
115	17	100.0	44	2	Q7UPL2	rhodopirell	188	17	100.0	52	2	Cae46080
116	17	100.0	44	2	Q8EZB8	leptospira	189	17	100.0	52	2	Bac95634
117	17	100.0	45	1	ANFB-MOSC	p04368 myoxcephal	190	17	100.0	53	2	Q28023
118	17	100.0	45	2	Q716R4	mycobacteri	191	17	100.0	53	2	Q28551
119	17	100.0	45	2	Q6X937	proteus mir	192	17	100.0	53	2	Q8RZF2
120	17	100.0	45	2	Q7B303	paracoccus	193	17	100.0	53	2	Q79F45
121	17	100.0	45	2	Q61BL2	gallus gallus	194	17	100.0	53	2	Q98EX6
122	17	100.0	45	2	AAQ12088	aqq12088 mycobacte	195	17	100.0	53	2	Q8VJ18
123	17	100.0	45	2	AAD10202	gallus ga	196	17	100.0	53	2	Q8X2S0
124	17	100.0	45	2	QAP76377	protoeus m	197	17	100.0	53	2	Q9EP65
125	17	100.0	46	2	Q9ZID2	mycoplasma	198	17	100.0	53	2	Q11370
126	17	100.0	46	2	Q7MWH0	porphyromon	199	17	100.0	54	2	Q853H8
127	17	100.0	46	2	Q8PUU7	brunellia su	200	17	100.0	54	2	Q9xCY9
128	17	100.0	46	2	Q8Z7T3	salmonella						
129	17	100.0	47	1	RECA_PSEST	Q7809 pseudomonas						
130	17	100.0	47	2	Q7QXV1	giardia lam						
131	17	100.0	47	2	Q41781	zea mays (m						
132	17	100.0	47	2	Q9X3F9	prochloroco						
133	17	100.0	47	2	QBYL45	anabaena sp						
134	17	100.0	47	2	Q90329	coronix co						
135	17	100.0	47	2	Q90774	CSMA_CHLUT						
136	17	100.0	48	1	RBL_FINPS	CSMA_PROAE						
137	17	100.0	48	1	Q15524	prosthecoch						
138	17	100.0	48	1	P91080	pinus pinas						
139	17	100.0	48	2	Q8WR24	anophelles g						
140	17	100.0	48	2	Q05461	zea mays (m						
141	17	100.0	48	2	Q02801	streptomyce						
142	17	100.0	48	2	Q46040	cellulomonas						
143	17	100.0	48	2	Q88JK5	pseudomonas						
144	17	100.0	48	2	Q8CKM0	yersinia pe						
145	17	100.0	48	2	Q8G2K2	brucella su						
146	17	100.0	48	2	Q9T8BS	tetradon n						
147	17	100.0	49	2	Q7S4A4	neurospora						
148	17	100.0	49	2	Q95SN2	drosophila						
149	17	100.0	49	2	Q7WVY8	xanthomonas						
150	17	100.0	49	2	Q92R21	rhizobium m						
151	17	100.0	49	2	Q8VJ10	mycobacteri						
152	17	100.0	49	2	Q8VUQ9	mycobacteri						
153	17	100.0	49	2	Q7M0B9	mus musculu						
154	17	100.0	50	1	LHB2-RHO SH	P02952 rhodobacter						
155	17	100.0	50	2	Q7PFV7	anopheles g						
156	17	100.0	50	2	Q04724	zea mays (m						
157	17	100.0	50	2	Q9SM32	triticum ae						
158	17	100.0	50	2	Q9L7F4	synchococc						
159	17	100.0	50	2	Q7VZM4	bordetella						
160	17	100.0	50	2	Q7WM35	bordetella						
161	17	100.0	50	2	Q8VKL5	mycobacteri						
162	17	100.0	50	2	Q71AA5	mamestra co						
163	17	100.0	50	2	AAQ11126	Q8QLC7						
164	17	100.0	50	1	RL39_PYRAE	Q8LCL2						
165	17	100.0	51	2	Q8TB12	Q8GVM9						
166	17	100.0	51	2	Q8QLC7	Q8LCL2						
167	17	100.0	51	2	Q8LCL2	Q94II9						
168	17	100.0	51	2	Q8LCL2	Q94II9						
169	17	100.0	51	2	Q9FP56	Q9fp56						
170	17	100.0	51	2	Q94LB1	Q94lb1						
171	17	100.0	51	2	Q9AJQ9	Q9ajq9						
172	17	100.0	51	2	Q7NYK6	Q7nyk6						
173	17	100.0	51	2	Q7W8H3	Q7w8h3						
174	17	100.0	51	2	Q8VXP0	mycobacteri						
175	17	100.0	51	2	Q8X2Z0	escherichia						
176	17	100.0	51	2	Q8YBX8	brucella me						
177	17	100.0	51	2	Q800J8	plecoglossu						

ALIGNMENTS

RESULT 1

Q9R5M1 PRELIMINARY; PRT; 9 AA.
ID Q9R5M1
AC [REDACTED]
DT 01-MAY-2000 (TREMBUREL 13, Created)
DT 01-JUN-2003 (TREMBUREL 13, Last sequence update)
RA Liang O.D.; Ascencio F.; Fransson L.A.; Wadstrom T.; ";

RA "Binding of heparan sulfate to Staphylococcus aureus. "

DB Infect. Immun. 60:989-906(1992).

DR PIR: A43848; A43848.

FT NON_TER 1 1

FT SQ SEQUENCE 9 AA; 990 MW; 2289DDD7337861B3 CRC64;

Query Match 100.0%; Score 17; DB 2; Length 9;
Best Local Similarity 80.0%; Pred. No. 1.8e+06;
Matches 4; Conservative 1; Mismatches 0; Indels 0; Gaps 0;

QY 1 XIAAA 5
Db 5 WLAAA 9

RESULT 2

Q94II9 PRELIMINARY; PRT; 10 AA.
ID Q94II9
AC [REDACTED]
DT 01-DEC-2001 (TREMBUREL 19, Created)
DT 01-DEC-2001 (TREMBUREL 19, Last sequence update)
DE Anthocyanin regulator Rsc protein (Fragment).
OS Zea mays (Maize).

OC Zukyota. Viridiplantae: Streptophyta; Magnoliophyta; Liliopsida; Poales; Tracheophyta;
OC PACCD clade; Andropogoneae; Zea.
OC NCBi_TaxID=4577; [1]

RN [REDACTED]