Last name	
First name	

LARSON—MATH 550—CLASSROOM WORKSHEET 28 The Sorting Example.

Concepts & Notation

- Sec. 5.1: Binomial coefficients, the Binomial Theorem, key formulas, the polynomial argument, Vandermonde's convolution.
- Sec. 5.2: the Sorting example.
- Sec. 5.3: Duplication formula, inversion, derangements.
- Sec. 5.4: Convolutions, generating functions.

Review

- 1. $\binom{n}{k}$ is the number of k-subsets of an n-set (for $n, k \in \mathbb{Z}^{\geq 0}$).
- 2. $\binom{n}{k} = \frac{n!}{k!(n-k)!} \ (0 \le m \le n, \ k, n \in \mathbb{Z}).$
- 3. We proved the symmetry identity $\binom{n}{k} = \binom{n}{n-k}$.
- 4. We proved the addition formula:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

5. The binomial coefficients $\binom{n}{k}$ $(n, k \in \mathbb{Z}^{\geq 0})$ can be generalized to $\binom{r}{k}$ $(r \in \mathbb{R}, k \in \mathbb{Z})$:

$$\binom{r}{k} = \frac{r^{\underline{k}}}{k!} \text{ (if } k \ge 0)$$

$$\binom{r}{k} = 0 \text{ (if } k < 0).$$

- 6. We proved the absorption identity $\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$ and the absorption identity variation $k\binom{r}{k} = r\binom{r-1}{k-1}$ and $(r-k)\binom{r}{k} = r\binom{r-1}{k}$.
- 7. (Negating the Upper index). We proved: $\binom{r}{k} = (-1)^k \binom{k-r-1}{k}$.

1. (Summing on the Upper Index) Prove (for $n, n \in \mathbb{Z}$):

$$\sum_{0 \le k \le n} \binom{k}{m} = \binom{n+1}{m+1}.$$

2. (The Sorting Problem) Simplify:

$$T = \sum_{k=0}^{n} k \binom{m-k-1}{m-n-1} / \binom{m}{n}.$$

Steps:

(a) Let

$$S = \sum_{k=0}^{n} k \binom{m-k-1}{m-n-1}.$$

- (b) Rewrite k as m (m k)
- (c) Use absorption to get:

$$S = mA - (m - n)B$$
, where:

$$A = \sum_{k=0}^{n} {m-k-1 \choose m-n-1}$$
, and $B = \sum_{k=0}^{n} {m-k \choose m-n}$.

(d) Sum on the Upper Index to get:

$$B = {m+1 \choose m-n+1}$$
, and $A = {m \choose m-n}$.

(e) Show:

$$S = \frac{n}{m-n+1} \cdot {m \choose n-m}$$
, and $T = \frac{n}{m-n+1}$.