Name _____

REAL ANALYSIS QUALIFYING EXAM

Spring 2000

(Saeki & Moore)

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- **1.** Suppose $f \in L^1(\mu)$. Prove that given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|\int_E f \, d\mu| < \varepsilon$ whenever $\mu(E) < \delta$.
- **2.** Let f be a measurable function on X and p > 0. Prove

$$\int_{x} |f|^{P} d\mu = p \int_{0}^{\infty} t^{p-1} \mu(\{|f| > t\}) dt.$$

3. Let g be a bounded measurable function on \mathbb{R} which has the property that for every measurable set E, $\lim_{n\to\infty}\int_E g(nx)dx=0$. Show that for every $f\in L^1(\mathbb{R})$

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)g(nx)d\mu = 0.$$

- **4.** Suppose $\{f_n\}$ is a sequence of measurable functions which has $f_n \to f$ a.e. and $||f_n||_1 \to ||f||_1 < \infty$. Prove that $f_n \to f$ in L^1 .
- **5.** Let v be another measure on (x, \mathcal{M}) with $v(x) < \infty$. Prove that the following two statements are equivalent.
 - (a) $A \in$, $\mu(A) = 0 \Rightarrow v(A) = 0$.
 - (b) $\forall \varepsilon > 0$ there exists $\delta > 0$ such that $v(b) < \varepsilon$ whenever $b \in \mathcal{M}$ and $\mu(b) < \delta$.
- **6.** Supose $a \subseteq \mathcal{M}$ is also a σ -algebra on x. Suppose $f \in L^1(x, \mathcal{M}, \mu)$.
 - (a) Prove that there exists a function $g \in L^1(x, a, \mu)$ such that $\int_E g \, d\mu = \int_E f \, du$ for all $E \in a$.
 - (b) Give an example to show that in (a) we may not necessarily have g = f.
- 7. Prove that an orthnormal set in a separable Hilbert space is at most countable.
- 8. Let T(x) be a trigonometric polynomial on $[-\pi, \pi]$. (Recall that this means T(x) is a finite linear combination of elements of the set $\{e^{inx}\}_{n\in\mu}$). Prove that

$$|T(0)| \le \log \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp|T(x)| dx.$$