Logica del I ordine

(Seconda e terza lezione)

Termine t libero per una variabile x in una f.b.f. \mathcal{A} se nessuna occorrenza libera di x in \mathcal{A} cade nel campo di azione di un quantificatore che quantifica una variabile di t.

Definizioni

Una f.b.f. ${\cal A}$ si dice chiusa se non ci sono variabili libere in ${\cal A}$

Siano $x_1, x_2, ..., x_n$ variabili libere di \mathcal{A} . Si dice chiusura universale di \mathcal{A} :

$$(\forall x_n)...(\forall x_2)(\forall x_1)\mathcal{A}$$

chiusura esistenziale di A:

$$(\exists x_n)...(\exists x_2)(\exists x_1)\mathcal{A}$$

$$\mathcal{A}_{1}^{2}(a,b) \vee (\forall x) \mathcal{A}_{2}^{2}(f_{1}^{2}(x,y), f_{2}^{2}(a,x))$$

$$\Rightarrow (\exists y) \sim \mathcal{A}_{1}^{2}(f_{1}^{2}(y, f_{2}^{2}(a,y)), b)$$

Chiusura universale

$$(\forall y)(\mathcal{A}_{1}^{2}(a,b) \vee (\forall x)\mathcal{A}_{2}^{2}(f_{1}^{2}(x,y), f_{2}^{2}(a,x)) \Rightarrow (\exists y) \sim \mathcal{A}_{1}^{2}(f_{1}^{2}(y, f_{2}^{2}(a,y)), b))$$

Chiusura esistenziale

$$(\exists y)(\mathcal{A}_{1}^{2}(a,b) \lor (\forall x)\mathcal{A}_{2}^{2}(f_{1}^{2}(x,y), f_{2}^{2}(a,x))$$

$$\Rightarrow (\exists y) \sim \mathcal{A}_{1}^{2}(f_{1}^{2}(y, f_{2}^{2}(a,y)), b))$$

Esempi

(1) Scrivere in forma di f.b.f. "Ognuno ama qualcuno e nessuno ama tutti oppure qualcuno ama tutti e qualcuno non ama nessuno".

Introduciamo la lettera predicativa A(x,y) che significa x ama y

$$((\forall x)(\exists y)A(x,y) \land \sim (\exists x)(\forall y)A(x,y)) \lor ((\exists x)(\forall y)A(x,y) \land (\exists x) \sim (\exists y)A(x,y))$$

(2) Attenzione al significato:

$$1.(\forall x)(\exists y)(\sim A(x,f(y)) \Rightarrow A(x,a))$$

$$2.(\forall x)((\exists y) \sim A(x, f(y)) \Rightarrow A(x, a))$$

Ad esempio se consideriamo variabili in ${\mathbb N}$

$$A(x,y)$$
 significa $x=y$

$$f(y)$$
 significa $y + 1$ (successive di y)

a = 0 la prima formula sta per

"Per ogni x esiste y tale che se x non è il successivo di y allora x=0"

mentre la seconda sta per "Per ogni x se esiste y tale che x non è il successivo di y allora x=0"

Semantica

Interpretazione: coppia J=(D,I) con D insieme non vuoto detto dominio, I assegnamento che associa:

- ad ogni costante un elemento di D, ovvero $I: \mathsf{Cost} \to D$
- ad ogni lettera funzionale con apice k un'operazione di arità k su D ovvero I : Funz $^k \to \{D^k \to D\}$
- ad ogni lettera predicativa con apice k una relazione di arità k su D ovvero I : $\operatorname{Pred}^k \to \mathcal{P}(D^k)$

Data una interpretazione una f.b.f senza variabili libere rappresenta una proposizione che è quindi vera oppure falsa. Se ci sono variabili libere si ottiene una relazione sul dominio che può essere soddisfatta per alcuni valori del dominio attribuiti alle variabili libere e non soddisfatta per altri.

Data una interpretazione, possiamo assegnare dei valori alle variabili che compaiono in D. Un assegnamento è allora una legge s: Var $\to D$. I termini possono quindi essere valutati e sono elementi di D. Sia s^* la legge che valuta i termini, $s^*: Ter \to D$, allora

•
$$s^*(c) = I(c)$$

$$\bullet \ s^*(x) = s(x)$$

•
$$s^*(f_i^n(t_1,...,t_n)) = I(f_i^n)(s^*(t_1),...,s^*(t_n))$$

Le formule atomiche sono relazioni tra elementi di D quindi possiamo dire che data una formula atomica, un assegnamento di variabili ci consente di dire se tale formula è soddisfatta oppure no.

Sia J=(D,I) una interpretazione, un assegnamento s soddisfa

- la f.b.f. atomica \mathcal{A} in $(t_1,...,t_n)$ sse $(s^*(t_1),...,s^*(t_n)) \in I(\mathcal{A}_i^n)$
- ullet una f.b.f del tipo $\sim \mathcal{B}$ sse non soddisfa \mathcal{B}
- ullet una f.b.f del tipo $\mathcal{B} \wedge \mathcal{C}$ sse soddisfa sia \mathcal{B} sia \mathcal{C}
- ullet una f.b.f del tipo $\mathcal{B} \vee \mathcal{C}$ sse soddisfa una almeno fra \mathcal{B} e \mathcal{C}
- ullet una f.b.f del tipo $\mathcal{B}\Rightarrow\mathcal{C}$ sse non soddisfa \mathcal{B} o soddisfa \mathcal{C}
- una f.b.f del tipo $\mathcal{B} \iff \mathcal{C}$ sse soddisfa sia \mathcal{B} sia \mathcal{C} o non soddisfa nè \mathcal{B} nè \mathcal{C}

- una f.b.f del tipo $(\forall x)\mathcal{B}$ sse ogni assegnamento s', che differisce da s al più per il valore assegnato ad x, soddisfa \mathcal{B}
- una f.b.f del tipo $(\exists x)\mathcal{B}$ sse c'è un assegnamento s', che differisce da s al più per il valore assegnato ad x, che soddisfa \mathcal{B}

$$(\forall x)(A_1^2(f_1^2(x,y),f_1^2(x,z)) \Rightarrow A_1^2(y,z))$$

(1) Consideriamo l'interpretazione $D=\mathbb{R},\ f_1^2$: prodotto, \mathcal{A}_1^2 uguaglianza

$$(\forall x)(\text{se } xy = xz \Rightarrow y = z)$$

La formula non è vera: basta prendere x=0 e $y \neq z$. È soddisfacibile (vedi pag. 11 e 12): basta prendere y=z (cosicchè il conseguente risulta vero), quindi non è falsa.

- (2) Se $D = \mathbb{R} \setminus \{0\}$ con le stesse assegnazioni la formula è vera. Infatti non può succedere che si abbia il conseguente vero, ovvero x = y e l'antecedente falso.
- (3) Se $D = \mathbb{R}^-$, f_1^2 : prodotto, \mathcal{A}_1^2 è "<" $(\forall x)(\text{se } xy < xz \Rightarrow y < z)$ la formula è falsa.
- (4) Se $D = \mathbb{R}$, f_1^2 : somma, \mathcal{A}_1^2 è "<" $(\forall x)$ (se $x + y < x + z \Rightarrow y < z)$ la formula è vera (confronta con il punto (2)).

Esempio

$$(\mathcal{A}_1^2(a,b) \wedge \mathcal{A}_2^2(f_1^2(x,y), f_1^2(x,z))) \Rightarrow$$
$$(\exists x)(\forall y)\mathcal{A}_3^2(x,y)$$

Interpretazione: $D=\mathbb{R}$, $f_1^2(x,y)$ è il prodotto di x e y, $\mathcal{A}_1^2(x,y)$: x divide y, $\mathcal{A}_2^2(x,y)$: x=y, $\mathcal{A}_3^2(x,y)$: x< y, a=2, b=3. Se 2 divide 3 e xy=xz allora esiste x tale che per ogni y, si ha x< y.

Si noti che la f.b.f. è vera perchè l'antecedente è falso.

Esempio

Consideriamo un linguaggio del primo ordine che contiene:

$$a, b, x, y, f_1^2, f_2^2, \mathcal{A}_1^2, \mathcal{A}_2^2$$

e la f.b.f.
 $(\mathcal{A}_1^2(a,b) \lor (\forall x) \mathcal{A}_2^2(f_1^2(x,y), f_2^2(a,x)))$
 $\Rightarrow (\exists y) \sim \mathcal{A}_1^2(f_1^2(y, f_2^2(a,y)), b)$

Consideriamo l'interpretazione: $D=\mathbb{N},~a=1,$ $b=2,~f_1^2$ è il prodotto, f_2^2 è la somma, \mathcal{A}_1^2 la relazione "<", \mathcal{A}_2^2 la relazione "=".

La f.b.f. si legge: "Se 1 è minore di 2 o per ogni numero naturale x si ha xy = 1 + x allora esiste un numero naturale y tale che $y(1+y) \not< 2$ ".

La formula xy=1+x non è vera nè falsa ma può essere soddisfatta da qualche assegnazione. Tuttavia l'OR è soddisfatto perchè 1<2 è vero. Il conseguente è vero quindi la f.b.f. è vera.

Riprendiamo l'esempio (2) a pagina 2. Nell'interpretazione data, la formula

 $1.(\forall x)(\exists y)(\sim A(x,f(y))\Rightarrow A(x,a))$ è vera, infatti o x=0 quindi il conseguente è vero oppure $x\neq 0$. In questo caso se prendiamo come y il numero che precede x abbiamo che l'antecendente risulta falso perchè non è vero che vale $x\neq y+1$. (Quindi per ogni x esiste y tale che l'implicazione sia vera in ogni caso).

La formula

 $2.(\forall x)((\exists y) \sim A(x, f(y)) \Rightarrow A(x, a))$ è falsa infatti se consideriamo x = 1 il conseguente è falso tuttavia l'antecendente è vero, perchè esiste un numero naturale y tale che x non sia il suo successivo.

Notazione: $(J,s) \models A$ significa che nell'interpretazione J, l'assegnamento s soddisfa A

J interpretazione, s assegnamento

$$v^{(J,s)}: \{f.b.f.\} \to \{0,1\}$$

• $v^{(J,s)}(A(t_1,...,t_n)) = 1 \text{ sse } (s^*(t_1),...,s^*(t_n)) \in I(A)$

•
$$v^{(J,s)}(\sim \mathcal{B}) = 1 - v^{(J,s)}(\mathcal{B})$$

•
$$v^{(J,s)}(\mathcal{B} \wedge \mathcal{C}) = \min\{v^{(J,s)}(\mathcal{B}), v^{(J,s)}(\mathcal{C})\}$$

•
$$v^{(J,s)}(\mathcal{B} \vee \mathcal{C}) = \max\{v^{(J,s)}(\mathcal{B}), v^{(J,s)}(\mathcal{C})\}$$

•
$$v^{(J,s)}(\mathcal{B} \Rightarrow \mathcal{C}) = \max\{(1-v^{(J,s)}(\mathcal{B}), v^{(J,s)}(\mathcal{C})\}$$

•
$$v^{(J,s)}(\mathcal{B} \iff \mathcal{C}) = \min\{\max\{(1 - v^{(J,s)}(\mathcal{A}), v^{(J,s)}(\mathcal{B})\}, \max\{v^{(J,s)}(\mathcal{A}), 1 - v^{(J,s)}(\mathcal{B})\}\}$$

•
$$v^{(J,s)}(\forall x\mathcal{B}) = \min\{v^{(J,s)}(\mathcal{B}[a/x])|a \in D\}$$

•
$$v^{(J,s)}(\exists x\mathcal{B}) = \max v^{(J,s)}(\mathcal{B}[a/x]) | \in D$$

dove $\mathcal{B}[a/x]$ indica la formula che si ottiene da \mathcal{B} sostituendo tutte le occorrenze libere di x in \mathcal{B} con a

L'assegnamento s soddisfa la f.b.f. \mathcal{A} , ovvero $(J,s) \models \mathcal{A}$, sse $v^{(J,s)}(\mathcal{A}) = 1$

Riprendiamo l'esempio (1) a pag.8. Con l'assegnamento s: y=z la f.b.f. $(\forall x)\mathcal{B}$ con \mathcal{B} data da $(\mathcal{A}_1^2(f_1^2(x,y),f_1^2(x,z))\Rightarrow \mathcal{A}_1^2(y,z))$ è tale che $v^{(J,s)}((\forall x)\mathcal{B})=1$. Non tutti gli assegnamenti forniscono però $v^{(J,s)}(\forall x\mathcal{B})=1$. Basta prendere $y\neq z$ e sostituire x con 0.

Def Data una interpretazione J:

 \mathcal{A} si dice soddisfacibile (in J) se c'è un assegnamento s che soddisfa \mathcal{A} ovvero $((J,s) \models \mathcal{A})$

 \mathcal{A} si dice vera (in J) e si scrive ($J \models \mathcal{A}$) se ogni assegnamento soddisfa \mathcal{A} . J è modello per \mathcal{A}

 \mathcal{A} si dice falsa (in J) se nessun assegnamento soddisfa \mathcal{A} . \mathcal{A} si dice insoddisfacibile in J.

In generale:

 ${\cal A}$ si dice soddisfacibile se ci sono una interpretazione J ed un assegnamento s che soddisfano ${\cal A}$

 \mathcal{A} si dice (logicamente) valida e si scrive $\models \mathcal{A}$ se \mathcal{A} è vera in ogni interpretazione

 ${\cal A}$ si dice (logicamente) contraddittoria se ${\cal A}$ falsa in ogni interpretazione

Oss Ogni esempio di tautologia è una f.b.f logicamente valida

Se A è una f.b.f. chiusa in una data interpretazione A sempre o vera o falsa (insoddisfacibile);

la chiusura universale di \mathcal{A} è vera sse \mathcal{A} è vera

la chiusura esistenziale di \mathcal{A} è soddisfacibile (e quindi vera) sse \mathcal{A} è soddisfacibile

Sia Γ un insieme di f.b.f. Un modello per Γ è un'interpretazione J che è modello di ogni formula in Γ .

 $\mathcal A$ è conseguenza semantica di Γ e si scrive $\Gamma \models \mathcal A$ se in ogni interpretazione ogni assegnamento che soddisfa tutte le formule di Γ soddisfa $\mathcal A$

Sia $\Gamma = \Delta \cup \{\mathcal{B}\}$. Si ha $\Gamma \models \mathcal{A}$ sse $\Delta \models \mathcal{B} \Rightarrow \mathcal{A}$ (deduzione semantica)

Se \mathcal{A} e le formule di Γ sono chiuse, allora $\Gamma \models \mathcal{A}$ se ogni modello di Γ è modello di \mathcal{A} .

 \mathcal{A} e \mathcal{B} si dicono (semanticamente) equivalenti e si scrive $\mathcal{A} \Longleftrightarrow \mathcal{B}$ sse $\{\mathcal{A}\} \models \mathcal{B}$ e $\{\mathcal{B}\} \models \mathcal{A}$,

 \mathcal{A} e \mathcal{B} sono equivalenti sse $\mathcal{A} \Longleftrightarrow \mathcal{B}$ è una f.b.f logicamente valida

Le f.b.f. $(\forall x)\mathcal{A}$ e $(\forall y)\mathcal{A}[y/x]$ sono equivalenti, se \mathcal{A} non ha occorrenze libere di y e x è libero per y in $(\forall)x\mathcal{A}$

Una f.b.f. ${\cal A}$ si dice in *forma normale prenessa* se

- ullet \mathcal{A} è priva di quantificatori, o
- \mathcal{A} è della forma $(Q_1x_1)(Q_2x_2)...(Q_nx_n)\mathcal{B}$ con \mathcal{B} priva di quantificatori. Si dice che $(Q_1x_1)...(Q_nx_n)$ è il prefisso e che \mathcal{B} è la matrice della formula \mathcal{A}

Ulteriori equivalenze fondamentali:

•
$$\sim (Qx)A \equiv (Q'x) \sim A$$

•
$$(Qx)A \wedge B \equiv (Qy)(A[y/x] \wedge B)$$
,

•
$$(Qx)A \vee B \equiv (Qy)(A[y/x] \vee B)$$
,

•
$$(Qx)A \Rightarrow B \equiv (Q'y)(A[y/x] \Rightarrow B)$$
,

•
$$\mathcal{B} \Rightarrow (Qx)\mathcal{A} \equiv (Qy)(\mathcal{B} \Rightarrow \mathcal{A}[y/x])$$
,

 ${\cal Q}$: quantificatore, ${\cal Q}'$: quantificatore diverso da ${\cal Q}$

y : variabile che non ha occorrenze libere in $\ensuremath{\mathcal{B}}$ e in $\ensuremath{\mathcal{A}}$

 $\mathcal{A}[y/x]$: formula ottenuta sostituendo in \mathcal{A} ogni occorrenza di x con y.

Una qualsiasi f.b.f. può essere sempre trasformata in modo algoritmico in una f.b.f. equivalente in forma prenessa.

Esercizio Si porti la formula $(\forall x) \mathcal{A}_1^2(x, f_1^2(x, y)) \Rightarrow \sim (\forall y) \mathcal{A}_1^2(y, x)$ in forma normale prenessa. $(\exists v) \left(\mathcal{A}_1^2(v, f_1^2(v, y)) \Rightarrow (\exists y) \sim \mathcal{A}_1^2(y, x)\right)$ $(\exists v)(\exists w)(\mathcal{A}_1^2(v, f_1^2(v, y)) \Rightarrow \sim \mathcal{A}_1^2(w, x))$

 \mathcal{A} in forma di Skolem: \mathcal{A} in forma normale prenessa e nel prefisso di \mathcal{A} non compaiono quantificatori esistenziali.

Se si hanno abbastanza costanti e lettere funzionali una qualsiasi f.b.f. \mathcal{A} puó essere trasformata in modo algoritmico in una f.b.f in forma di Skolem (indichiamo la forma di Skolem di \mathcal{A} con \mathcal{A}^S). In generale, la forma di Skolem \mathcal{A}^S NON è equivalente ad \mathcal{A}^S , tuttavia è soddisfacibile se e solo se \mathcal{A} è soddisfacibile.

Esempi.

1. Consideriamo la f.b.f. $(\forall x)\mathcal{A}(x)$ che afferma l'esistenza di un "elemento" che denotiamo ad esempio c per cui vale \mathcal{A} . Possiamo quindi eliminare il quantificatore esistenziale considerando $\mathcal{A}(c)$.

2. Consideriamo la f.b.f. $(\forall x)(\exists y)\mathcal{A}(x,y)$. Non possiamo procedere come prima introducendo una costante opportuna c. Consideriamo infatti l'interpretazione $D = \mathbb{N}$ e $\mathcal{A}(x, y)$ sia x < y. Sostituendo y con una costante c si afferma che ogni numero naturale x è minore di c che è assurdo. Il problema è che il quantificatore esistenziale è nel campo d'azione di un quantificatore universale. Bisogna allora sostituire y con una funzione che rappresenti la dipendenza di ciò di cui si predica da x (ovvero dalle variabili quantificate universalmente che precedono). Possiamo quindi scrivere ad esempio $(\forall x) \mathcal{A}(x, f(x))$, dove f(x) nell'interpretazione data sopra è, ad esempio, la funzione che fornisce il successivo di x.

Passi per trasformare \mathcal{A} in forma di Skolem (skolemizzazione di \mathcal{A}). Sia \mathcal{A} una qualsiasi f.b.f.

- 1) Sia \mathcal{A}' f.b.f in forma normale prenessa equivalente ad \mathcal{A}
- 2) Se non ci sono quantificatori universali che precedono un dato quantificatore esistenziale del prefisso di \mathcal{A}' , si introduce una costante che non compare nel prefisso e si cancella il quantificatore. Oppure
- 2') A partire dal primo quantificatore esistenziale del prefisso di \mathcal{A}' e finchè ci sono quantificatori esistenziali, cancellare il quantificatore esistenziale $(\exists x_j)$ e sostituire nella matrice ogni occorrenza libera di x_j con il termine $f_j(x_1, x_2, ..., x_{j-1})$ dove f_j una nuova lettera funzionale e $x_1, x_2, ..., x_{j-1}$ sono le variabili quantificate universalmente che precedevano $(\exists x_j)$ nel prefisso.

 $\mathbf{Oss}\ \mathcal{A}$ ed \mathcal{A}^S in generale non sono (semanticamente) equivalenti

Proposizione Una qualsiasi f.b.f. \mathcal{B} puó essere trasformata in una formula chiusa e in forma di Skolem \mathcal{B}' in modo che \mathcal{B}' sia soddisfacibile sse \mathcal{B} è soddisfacibile.

Infatti basta considerare la chiusura esistenziale di \mathcal{B} rispetto alle variabili libere e poi skolemizzare.

Esempio

Si porti la formula

$$(\forall x_2)(\exists x_1)\mathcal{A}_1^2(x_1,x_2) \Rightarrow (\exists x_1)(\forall x_2)\mathcal{A}_1^2(x_1,x_2)$$
 in forma di Skolem.

Sappiamo che in forma normale prenessa la formula si può scrivere come

$$(\exists t)(\forall s)(\exists x_1)(\forall x_2)\left(\mathcal{A}_1^2(s,t)\Rightarrow\mathcal{A}_1^2(x_1,x_2)\right)$$
 si ottiene quindi $(\forall s)(\forall x_2)\left(\mathcal{A}_1^2(s,c)\Rightarrow\mathcal{A}_1^2(f_1^1(s),x_2)\right)$

Risoluzione per la logica del I ordine. Nomenclatura:

- letterale: f.b.f. atomica o negazione di una f.b.f atomica
- clausola: disgiunzione (finita) di letterali; si rappresenta come insieme di letterali
- clausola vuota (indicata, come al solito, □)
 è la clausola che non contiene letterali

 Una f.b.f. chiusa in forma normale di Skolem si dice in forma a clausole se la sua matrice è scritta come congiunzione di clausole; la f.b.f. è denotata, trascurando il suo prefisso, come insieme di insiemi.

N.B. ogni formula chiusa in forma normale di Skolem ammette una formula equivalente in forma a clausole.

Unificazione

Def Si definisce *sostituzione* un insieme finito (eventualmente vuoto) $\sigma = \{t_1/x_1, t_2/x_2, ..., t_r/x_r\}$ dove le x_i sono variabili tali che $x_i \neq x_j$ per $i \neq j$ e t_i è un termine del linguaggio tale che $t_i \neq x_i$.

Def Sia E una stringa nel linguaggio dato, $E\sigma$ stringa ottenuta da E sostituendo tutte le occorrenze di x_i con t_i , i=1,2,...,r.

Esempio Siano:
$$\sigma = \{a/x, b/y, h(c)/z\}$$
 e $E = \mathcal{A}_1^2(f_1^2(x,y),z)$, allora $E\sigma = \mathcal{A}_1^2(f_1^2(a,b),h(c))$.

Def Date le sostituzioni $\sigma=\{t_1/x_1,t_2/x_2,...,t_r/x_r\}$, $\theta=\{u_1/y_1,u_2/y_2,...,u_h/y_h\}$, definiamo il prodotto $\sigma\cdot\theta$ come l'insieme $\{t_1\theta/x_1,...,t_r\theta/x_r,u_1/y_1,...,u_h/y_h\}$ in cui si cancellano

- u_j/y_j se $x_i = y_j$ per qualche i
- e $t_k \theta / x_k$ se $t_k \theta = x_k$.

Esempio

Siano
$$\sigma = \{a/x, f(b)/y, y/z\}, \ \theta = \{a/y, b/z\}.$$

Allora $\sigma \cdot \theta = \{a/x, f(b)/y, a/z\}.$

Osservazioni

- 1. Se ε denota la sostituzione vuota, allora per ogni sostituzione σ vale $\sigma \cdot \varepsilon = \varepsilon \cdot \sigma = \sigma$.
- 2. $E(\sigma_1 \cdot \sigma_2) = (E\sigma_1)\sigma_2$
- 3. vale la proprità associativa del prodotto di sostituzioni
- 4. non vale la p. commutativa: $\sigma_1 \cdot \sigma_2 \neq \sigma_2 \cdot \sigma_1$

Def Sia $X = \{E_1, E_2, ..., E_n\}$ un insieme di stringhe nel linguaggio dato. Si chiama *unificatore* di X una sostituzione σ tale che $E_1\sigma = E_2\sigma = ... = E_n\sigma$, se esiste. Se una tale σ non esiste l'insieme X si dice non unificabile.

Esempio

Sia $X=\{\mathcal{A}_1^2(x,a),\mathcal{A}_1^2(y,a)\}$. Può essere unificato da $\theta=\{b/x,b/y\}$ (infatti $\mathcal{A}_1^2(y,a)\theta=\mathcal{A}_1^2(b,a)=\mathcal{A}_1^2(y,a)\theta$) oppure da $\sigma=\{y/x\}$ infatti $\mathcal{A}_1^2(x,a)\sigma=\mathcal{A}_1^2(y,a)=\mathcal{A}_1^2(y,a)\sigma$. Notiamo che, posto $\rho=\{b/y\}$, si ha che $\theta=\sigma\cdot\rho$. NB È facile vedere che $\rho\cdot\sigma\neq\sigma\cdot\rho$. $X=\{f(x),f(g(x))\}$ non è unificabile.

Def Si dice che l'insieme $X = \{E_1, E_2, ..., E_n\}$ è unificabile mediante σ , σ unificatore più generale (most general unifier o, in breve, m.g.u.) se **per ogni** altro unificatore θ di X si ha $\theta = \sigma \rho$ per qualche sostituzione ρ .

Problema: come determinare un m.g.u di un insieme X di stringhe?

Caso
$$X = \{E_1, E_2\}$$

 $X_1 = E_1, X_2 = E_2, \sigma_0 = \varepsilon$

- 1. Percorrere da sinistra i caratteri di X_1 , X_2 fino a trovare due caratteri diversi.
- 2. Se i caratteri diversi sono una variabile x e la prima lettera di un termine t che non contenga x, si pone $\sigma = \{t/x\}$, $\sigma_{k+1} = \sigma_k \cdot \sigma$, $X_1 = X_1\sigma_{k+1}$, $X_2 = X_2\sigma_{k+1}$, e riprendere da 1.
- 3. Se si finisce di percorrere le due stringhe la sostituzione σ_{k+1} è un m.g.u. di X altrimenti, se due caratteri diversi non sono del tipo precedente, le stringhe non sono unificabili.

Teorema Ogni insieme di espressioni che sia unificabile ammette un m.g.u.

Osserviamo che m.g.u., se esiste, non è unico, ma lo è a meno di ridenominare le variabili. Nel caso dell'esempio precedente

$$X=\{\mathcal{A}_1^2(x,a),\mathcal{A}_1^2(y,a)\}$$
 si ha che $\sigma=\{y/x\}$ e $\sigma'=\{x/y\}$ sono entrambi m.g.u. per X .

Esempio

```
 X = \{ \mathcal{A}(f(x,h(v)),h(b)), \mathcal{A}(f(g(y),h(a)),t) \} = \{ E_1, E_2 \} = \{ X_1, X_2 \} \text{ (nelle notazioni precedenti)}  Passo 1. \sigma = \{ g(y)/x \}, \ \sigma_1 = \sigma,  \{ X_1\sigma_1, X_2\sigma_1 \} = \{ \mathcal{A}(f(g(y),h(v)),h(b)), \mathcal{A}(f(g(y),h(a)),t) \}  Passo 2. \sigma = \{ a/v \}, \ \sigma_2 = \sigma_1 \cdot \sigma = \{ g(y)/x,a/v \},  si ottiene \{ \mathcal{A}(f(g(y),h(av)),h(b)), \mathcal{A}(f(g(y),h(a)),t) \}  Passo 3. \sigma = \{ h(b)/t \},  \sigma_3 = \sigma_2 \cdot \sigma = \{ g(y)/x,a/v,h(b)/t \},  e quindi \{ \mathcal{A}(f(g(y),h(av)),h(b)), \mathcal{A}(f(g(y),h(a)),h(b)) \}.  Un m.g.u. per X \in \sigma_3.
```

Def Risolvente di due clausole C_1 , C_2 in un linguaggio del I ordine:

- effettuare su C_1 , C_2 due sostituzioni (eventualmente vuote) σ_1 , σ_2 tali che $C_1\sigma_1$, $C_2\sigma_2$ siano prive di variabili comuni
- $L_1, L_2, ..., L_r$ letterali di $C_1\sigma_1$ e $L_{r+1}, L_{r+2}, ..., L_{r+s}$ letterali di $C_2\sigma_2$ tali che l'insieme $X = \{L_1, L_2, ..., L_r, \neg L_{r+1}, \neg L_{r+2}, ..., \neg L_{r+s}\}$ sia unificabile (dove $\neg L_{r+i}$ è $\sim \mathcal{A}_{r+i}$ se L_{r+i} è una formula atomica \mathcal{A}_{r+i} , è \mathcal{A}_{r+i} se L_{r+i} è $\sim \mathcal{A}_{r+i}$). Sia σ un m.g.u. di X.
- $R = (C_1\sigma_1 \setminus \{L_1, L_2, ..., L_r\})\sigma \cup (C_2\sigma_2 \setminus \{L_{r+1}, L_{r+2}, ..., L_{r+s}\})\sigma$ è una risolvente di C_1 , C_2 .

Esempio

$$C_1 = \{ \mathcal{A}(x), \sim \mathcal{B}(y), \mathcal{C}(x, y), \mathcal{C}(f(z), f(z)) \}$$

$$C_2 = \{ \mathcal{D}(u), \sim \mathcal{C}(f(a), f(a)), \sim \mathcal{C}(u, u) \}$$

$$\sigma_1 = \sigma_2 = \varepsilon$$

$$X = \{\mathcal{C}(x,y), \mathcal{C}(f(z),f(z)), \mathcal{C}(f(a),f(a)), \mathcal{C}(u,u)\}$$
 è unificabile da $\sigma = \{f(z)/x, f(z)/y, a/z, f(a)/u\}$
$$R = \{\mathcal{A}(f(a)), \sim \mathcal{B}(f(a)), \mathcal{D}(f(a))\}$$

Si noti che è necessario ridenominare le variabili:

Esempio:
$$C_1 = \{A(x)\}, C_2 = \{ \sim A(f(x)) \}$$

$$\sigma_1 = \varepsilon$$
, $\sigma_2 = \{u/x\}$
Ottengo $X = \{\mathcal{A}(x), \sim \mathcal{A}(f(u))\}$
che è unificabile, basta usare $\sigma = \{f(u)/x\}$.

Proposizione Se R è risolvente di due clausole C_1 e C_2 , allora R è conseguenza semantica di C_1 e C_2 .

Def Sia Γ un insieme di clausole, si dice che la clausola C deriva per risoluzione da Γ e si scrive $\Gamma \vdash_R C$, se esiste una sequenza di clausole di cui l'ultima è C e che o stanno in Γ o sono ottenute come risolvente da clausole precedenti

Teorema Un insieme di clausole Γ è insoddisfacibile se e solo se $\Gamma \vdash_R \square$.

Come nel calcolo proposizionale, introduciamo $Ris(\Gamma) = \Gamma \cup \{C_{i,j} \text{ dove } C_{i,j} \text{ risolvente di } C_i, C_j \in \Gamma \}$

e poniamo

$$Ris^{0}(\Gamma) = \Gamma e Ris^{n+1}(\Gamma) = Ris(Ris^{n}(\Gamma)), \text{ per } n \geq 0.$$

$$Ris^*(\Gamma) = \cup_{n>0} Ris^n(\Gamma)$$

Abbiamo il seguente

Teorema Un insieme di clausole Γ è insoddisfacibile se e solo se $\square \in Ris^*(\Gamma)$.

Una formula chiusa \mathcal{A} , scritta in forma a clausole, è semanticamente deducibile da un insieme di formule chiuse in forma normale di Skolem Γ se e solo se $\Gamma \cup \{\sim \mathcal{A}\} \vdash_R \square$.

Valgono i fatti seguenti:

- la risoluzione agisce per refutazione e opera su f.b.f. chiuse in forma normale di Skolem e scritte in forma a clausole.
- è un sistema corretto ed completo per refutazione
- se $\Gamma \models \mathcal{A}$ non è detto che $\Gamma \vdash_R \mathcal{A}$

• non è decidibile se $\Gamma \models \mathcal{A}$, infatti dato un insieme Δ di f.b.f. non è detto che si riesca a determinare $\mathrm{Ris}^*(\Delta)$ in un numero finito di passi. Se si riesce e se si prova che $\Gamma \cup \{\mathcal{A}\} \vdash_R \square$ allora $\Gamma \models \mathcal{A}$ ma se non si riesce, in generale, non sappiamo dire nulla.