

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

Teoria liczb – II etap

Teoria

Reszty z dzielenia

Jeśli a jest dzielnikiem b, to piszemy $a \mid b$ (czytamy: a dzieli b). Zatem:

 $a \mid b$ wtedy i tylko wtedy, gdy istnieje liczba c taka, że b = ac.

Jeśli a nie jest dzielnikiem b, to piszemy $a \nmid b$ (czytamy: a nie dzieli b).

Załóżmy, że dane są liczby całkowite a i b, przy czym b>0. Mówimy, że liczba a daje iloraz q i resztę r przy dzieleniu przez b, jeśli

$$a = b \cdot q + r$$
 oraz $0 \leqslant r < b$.

Stwierdzenie 1. Jeśli a, b są dodatnie i $a \mid b$, to $a \leq b$.

Stwierdzenie 2. Jedyną liczbą podzielną przez wszystkie liczby naturalne jest 0.

Uwaga 1 (Sztuczka z przedstawianiem liczb w innej formie). Jak przedstawić inaczej liczbę o n takich samych cyfrach? Zauważmy, że $10^n - 1$ to liczba składająca się z n dziewiątek, więc zachodzi:

 $\underbrace{kkk\dots k}_{n \text{ cyfr } k} = \frac{10^n - 1}{9} \cdot k.$

Kongruencje

Załóżmy, że dana jest liczba całkowita dodatnia n. Mówimy, że dwie liczby całkowite a i b przystają modulo n wtedy i tylko wtedy, gdy liczby a i b dają takie same reszty przy dzieleniu przez n. Piszemy wówczas $a \equiv b \pmod{n}$. Inaczej mówiąc

$$a \equiv b \pmod{n}$$
 wtedy i tylko wtedy, gdy $n \mid a - b$.

Dodawanie, mnożenie i odejmowanie modulo n zachowuje się tak jak byśmy chcieli, czyli:

$$a \pmod{n} + b \pmod{n} \equiv_n (a+b) \pmod{n},$$

 $a \pmod{n} \cdot b \pmod{n} \equiv_n ab \pmod{n}.$

Dzielenie modulo n mamy ogólnie tylko wtedy gdy n jest liczbą pierwszą. Oczywiście dalej nie mamy dzielenia przez 0, czyli nie możemy dzielić przez liczby podzielne przez n.

Odwrotność liczby a modulo n to taka liczba b, że $ab \equiv_n 1$. Ta liczba b istnieje wtedy i tylko wtedy gdy $a \perp n$ i wtedy oznaczamy ją a^{-1} lub $\frac{1}{a}$.

Poreba Wielka, 13.01.2025

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

Liczby pierwsze

Definicja 1. Liczbę naturalną różną od jedynki, której jedynimi dzielnikami są 1 oraz ona sama, nazywamy liczbą pierwszą.

Każda liczba może być przedstawiona jako iloczyn liczb pierwszych (jednoznaczność tego rozkładu można udowodnić korzystając z następnych lematów). Liczb pierwszych jest nieskończenie wiele co udowodnić można rozważając $p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1$.

Lemat 1. Liczby pierwsze większe od 3 przystają do 1 lub 5 mod 6.

NWD

Definicja 2 (Największy Wspólny Dzielnik). Mówimy, że d = NWD(a, b) jeśli $d \mid a$ i $d \mid b$ (czyli jest wspólnym dzielnikiem) oraz dla każdego wspólnego dzielnika e liczb a i b, $e \mid d$ (czyli każdy wspólny dzielnik dzieli NWD).

NWD(a,b) jest najmniejszą dodatnią liczbą postaci ax+by dla $x,\ y$ całkowitych (inaczej mówiąc jest ich najmniejszą kombinacją liniową). Można udowodnić, że ta definicja daje nam to samo NWD, co definicja szkolna.

Definicja 3. Liczby naturalne a i b są względnie pierwsze, gdy NWD(a,b) = 1, co zapisujemy: $a \perp b$.

Lemaciki (oznaczenia: p jest liczbą pierwszą a n, a, b są liczbami całkowitymi):

- Jeśli $a \perp n$ i $n \mid ab$ to $n \mid b$.
- Jeśli $p \nmid a$ to $a \perp p$.
- Jeśli $p \mid ab$ to $p \mid a$ lub $p \mid b$.

Lemat 2. Jeśli dana jest permutacja σ_i liczb od 0 do n-1 oraz liczba p, która jest względnie pierwsza z n ($p \perp n$), to po przemnożeniu każdego elementu permutacji przez p ($\sigma'_i = p \cdot \sigma_i$) i wzięciu reszty z dzielenia przez n, otrzymujemy nową permutację liczb od 0 do n-1.

Dowód. Wystarczy pokazać, że każda z liczb, po przemnożeniu, trafia na inną. Jeśli byłoby inaczej, to znaczy, że jakieś dwie liczby $\sigma_i, \sigma_j < n$ takie, że:

$$p \cdot (\sigma_i - \sigma_j) \equiv 0 \pmod{n}$$

Skoro $p \perp n$, to $\sigma_i - \sigma_j \equiv 0 \pmod{n}$, czyli $\sigma_i = \sigma_j$.

Twierdzenie 1 (Algorytm Euklidesa). Możemy znaleźć NWD bez rozkładania liczb na czynniki pierwsze (w szczególności nawet nie trzeba wiedzieć czym jest liczba pierwsza) wielokrotnie wykorzystując zależności NWD(a,b) = NWD(a-kb,b). Można też, odwracając ten algorytm, uzyskać NWD jako kombinację liniową a i b.

Poreba Wielka, 13.01.2025

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

Ważne twierdzenia

Twierdzenie 2 (Małe twierdzenie Fermata). Dla dowolnej liczby naturalnej n oraz dowolnej liczby pierwszej p zachodzi

$$p \mid n^p - n$$
,

czyli w języku kongruencji

$$n^p \equiv n \pmod{p}$$
.

Dowód. Dzielimy koło na p części i rozważamy możliwe kolorowania n rożnymi kolorami. Wszystkich kolorowań jest n^p , takich które są jednokolorowe (wszystkie części koła są pomalowane jednym kolorem) jest n.

Pozostałe możemy pogrupować w zbiory po p - jeśli jakieś kolorowanie można uzyskać poprzez obrót innego to te dwa należą do tej samej grupy.

Pokażemy, że każda grupa ma dokładnie p kolorowań: załóżmy nie wprost, że po obrocie jakiegoś kolorowania o k fragmentów $(0 \le k < n)$, dostaliśmy takie samo kolorowanie. Ponieważ p jest pierwsze, to $p \perp k$, to żeby jakiś fragment wrócił do początkowej pozycji, musimy wykonać p obrotów, czyli każdy fragment koła ma ten sam kolor, czyli dostajemy sprzeczność.

Twierdzenie 3 (twierdzenie Willsona). p jest pierwsza wtedy i tylko wtedy, gdy

$$(p-1)! \equiv -1 \pmod{p}$$

Dowód. Rozważamy w Z_p równanie $x^2=1$. Liczby spełniające to równanie to takie, które same są swoją włąsną odwrotnością. Ma ono tylko dwa rozwiązania: x=1 i x=-1, przy czym $-1 \equiv p-1$. Z tego wynika, że wszystkie liczby z przedziału [2, p-1] mają swoją odwrotność w tym przediale. Możemy zatem każdą z nich sparować z jakąś inną liczbą z tego przediału, więc jeśli wymnożymy je wszystkie, to iloczyn będzie przystawał do 1: $(p-2)! \equiv 1 \pmod{p}$. Po pomnożeniu przez p-1 otrzymujemy tezę.

Twierdzenie 4 (Chińskie Twierdzenie o Resztach). Niech $m_1, m_2, ..., m_k$ będą parami względnie pierwsze i niech $a_1, a_2, ..., a_k$ będą liczbami całkowitymi. Wtedy układ kongruencji:

```
\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}
```

Jest równoważny z pewną kongruencją postaci $x \equiv A \pmod{m_1 m_2 ... m_k}$

Technika: Nieskończone schodzenie

Ta metoda polega na wzięciu (w wybranym przez siebie kontekście) rozwiązania najmniejszego i pokazaniu, że istnieje mniejsze.

Przykład 1. Znajdź wszystkie całkowite, dodatnie rozwiązania równania

$$x^3 + 2y^3 = 4z^3$$

Poręba Wielka, 13.01.2025

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

Rozwiązanie 1. Weźmy jedno z rozwiązań, dla którego suma x+y+z jest najmniejsza. Skoro:

$$2y^3 \equiv 0 \pmod{2},$$

$$4z^3 \equiv 0 \pmod{2},$$

to x również musi dzielić się przez 2.

Podstawmy do równania x' = x/2 i dzielimy przez 2, mamy:

$$4x'^3 + y^3 = 2z^3$$

Operację możemy powtórzyć jeszcze dwa razy, otrymując równanie tej samej postaci, co na początku.

Dostajemy sprzeczność, bo liczby x,y,z miały być najmniejsze, spełniające równaznie. Zatem nie ma ono rozwiązań.

Przykład 2. Znajdź wszystkie takie liczby całkowite nieujemne a, b, że $ab \mid a^n + b$, gdzie $n \in \mathbb{N}_{>1}$ jest stałe

Rozwiązanie 2. Zauważamy, że a i b mają ten sam zbiór dzielników, oraz że a=1 wtw. gdy b=1. Przyjmijmy więc, że a,b>1 i rozpatrzmy dwójkę o najmniejszej sumie. Niech $p \in \mathbb{P}$ będzie pewną liczbą pierwszą dzielącą a oraz b. Wtedy $p^2 \mid a^n + b$, z czego wprost wynika, że $p^2 \mid b$. Powtarzamy ten trik do momentu, gdy $p^n \mid b$. Niech $a=pa_1$ oraz $b=p^nb_1$. Wtedy

$$a_1b_1p^n \mid ab_1p^n \mid p^n(a_1^n + b_1) \implies a_1b_1 \mid a_1^n + b_1$$

Wobec minimalności a, b widzimy, że $a_1 = b_1 = 1$, z czego wprost wynika, że a = p oraz $b = p^n$. Podstawiając to do oryginalnej podzielności widzimy, że $p^{n+1} \mid 2p^n \implies p = 2$.

Wykładniki p-adyczne

- Rozkład na czynniki pierwsze to silny sposób żeby patrzeć na liczby. Pomagać nam w tym będą wykładniki p-adyczne. Jak p jest liczbą pierwszą to wykładnik p-adyczny z liczby n to po prostu liczba razy ile p pojawia się w rozkładzie n na czynniki pierwsze. Oznaczamy go $v_p(n)$.
- $p^{v_p(n)} \mid n$ ale już $p^{v_p(n)+1} \nmid n$.
- $\bullet \ a \mid b$ jest równoważne temu, że dla każdej liczby pierwszej $p, \, v_p(a) \leqslant v_p(b)$
- a=b jest równoważne temu, że dla każdej liczby pierwszej p, zachodzi $v_p(a)=v_p(b)$
- $v_p(ab) = v_p(a) + v_p(b)$
- $v_p(\frac{a}{b}) = v_p(a) v_p(b)$. W ten sposób możemy też z łatwością rozszerzyć definicję wykładników p-adycznych na liczby wymierne.
- Gdy $v_p(a) \neq v_p(b)$, to $v_p(a+b) = \min(v_p(a), v_p(b))$.

Prowadzacy: Jan Piotrowicz

Autor: Jan Piotrowicz

Na rozgrzewkę

- 1. Wykaż poniższe własności kongruencji.
 - Jeśli $a \equiv b \pmod{m}$, to $b \equiv a \pmod{m}$.
 - Jeśli $a \equiv b \pmod{m}$ oraz $b \equiv c \pmod{m}$, to $b \equiv a \pmod{m}$.
 - $a \equiv b \pmod{m}$ wtedy i tylko wtedy, gdy $ac \equiv bc \pmod{mc}$.
 - Jeśli $a \equiv b \pmod{m}$ oraz $c \equiv d \pmod{m}$, to $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- 2. Pokaż, że jeśli $p \nmid n$, to $n^{p-1} \equiv 1 \pmod{p}$.
- 3. Przedstaw $\underbrace{222\dots2}_{2024}\underbrace{444\dots4}_{2024}$ jako sumę dwóch wyrażeń (jak w sztuczce).

Zadania

- 1. Dla jakich naturalnych n ułamek $\frac{21n+4}{14n+3}$ jest nieskracalny?
- 2. Znaleźć ostatnią cyfrę liczby 2023^{2024²⁰²⁵}.
- 3. Udowodnij, że $F_n \perp F_{n+1}$ dla każdego naturalnego n, gdzie F_n to n-ta liczba Fibonacciego. To jest $F_0 = 0$, $F_1 = 1$ oraz dla n > 1 rekurencyjnie definiujemy $F_n = F_{n-1} + F_{n-2}$.
- 4. Czy istnieje 1000 kolejnych liczb naturalnych takich, że dokładnie 5 z nich jest liczbą pierwszą?
- 5. Czy liczba $4^6 + 4 \cdot 6^5 + 9^5$ jest złożona?
- 6. Znajdź zasady podzielności przez 11 oraz 101. Znajdź zasadę podzielności przez 7, wiedząc, że 7 | 1001.
- 7. Wybrano n+1 liczb że zbioru $\{1,\ 2,\ 3,\ \dots 2n\}$. Udowodnij, że pewne dwie z nich są względnie pierwsze.
- 8. Udowodnij, że istnieje nieskończenie wiele liczb pierwszych dających resztę 3 modulo 4. Czy ten sam dowód zadziała jeśli będziemy rozważali liczby pierwsze postaci 4k+1 dla naturalnych k?
- 9. Udowodnij, że dla \boldsymbol{n} naturalnego i \boldsymbol{k} nieparzystego

$$1 + 2 + 3 + \dots + n \mid 1^k + 2^k + 3^k + \dots + n^k$$

- 10. VII OM Dowieść, że równanie $2x^2 215y^2 = 1$ nie ma rozwiązań w liczbach całkowitych.
- 11. Udowodnij, że każda liczba całkowita n spełnia podzielność: 120 | n^5-5n^3+4n
- 12. Znajdź wszystkie takie liczby całkowite k,że dla każdej liczby naturalnej n, zachodzi $n\mid (n-1)^k+1$
- 13. Udowodnij, że istnieje nieskończenie wiele liczb pierwszych, które są postaci $\sqrt{24n+1}$ dla pewnej liczby naturalnej n.

Poręba Wielka, 13.01.2025

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

- 14. Czy istnieje nieskończony (niestały) ciąg arytmetyczny złożony wyłącznie z liczb pierwszych?
- 15. Trójkąt prostokątny ma przyprostokątne długości a,b i przeciwprostokątną długości c. Udowodnij, że jeśli a,b,c są liczbami całkowitymi, to co najmniej jedna z liczba,b musi być parzysta.
- 16. Znajdź liczbę dzielników liczby $16 \cdot 27 \cdot 49 \cdot 19$. Znajdź sumę dzielników tej liczby.
- 17. Udowodnij, że jeśli dla liczb naturalnych a,b,c,d,e zachodzi 9 | $a^3+b^3+c^3+d^3+e^3$, to 3 | abcde
- 18. Udowodnij, że dla dowolnych liczb naturalnych $a_1, a_2, ..., a_n$, które spełniają $NWD(a_1, a_2, ..., a_n) = 1$, istnieją takie liczby całkowite $k_1, k_2, ..., k_n$, że

$$k_1 a_1 + k_2 a_2 + \dots + k_n a_n = 1$$

- 19. Niech a będzie dowolną liczbą naturalną. Udowodnij, że wśród liczba, a+1, a+2, ..., a+9, istnieje jedna, która jest względnie pierwsza że wszystkimi pozostałymi.
- 20. Znając $v_p(a), v_p(b),$ oblicz $v_p(NWD(a,b))$ oraz $v_p(NWW(a,b)).$
- 21. Udowodnij:

$$\frac{NWW(a,b)NWW(b,c)NWW(c,a)}{NWW(a,b,c)^2} = \frac{NWD(a,b)NWD(b,c)NWD(c,a)}{NWD(a,b,c)^2}$$

- 22. Mamy takie liczby całkowite a, b, że liczba $\frac{a^2}{b} + \frac{b^2}{a}$ jest całkowita. Udowodnij że liczby $\frac{a^2}{b}$ i $\frac{b^2}{a}$ są całkowite.
- 23. Udowodnij, że dla naturalnych m i n

$$NWD(a^m - 1, a^n - 1) = a^{NWD(m, n)} - 1$$

- 24. Udowodnij, że dla każdej liczby naturalnej nliczba $2^{2^n}-1$ ma co najmniej nróżnych dzielników pierwszych
- 25. $II\ OM$ Dowieść, że jeśli n jest liczbą naturalną parzystą, to liczba 13^n+6 jest podzielna przez 7.
- 26. IV OM Dowieść, że liczba $2^{55} + 1$ jest podzielna przez 11.
- 27. Wyznacz resztę z dzielenia liczby $3^{81} + 7^{72}$ przez 11.
- 28. Udowodnij, że ostatnia cyfra liczby 7^{256} jest 1.
- 29. Udowodnij, że 7 | $2222^{5555} + 5555^{2222}$.
- 30. Znajdź dwie ostatnie cyfry liczby 2⁹⁹⁹.
- 31. Udowodnij, że $29 \mid 2^{5n+1} + 3^{n+3}$ dla dowolnej liczby naturalnej n.
- 32. $VI\ OM\ Znajdź$ ostatnią cyfrę liczby $53^{53}-33^{33}$.

Poręba Wielka, 13.01.2025

Autor: Jan Piotrowicz Prowadzący: Jan Piotrowicz

- 33. Pokaż, że liczba $1 \underbrace{000 \dots 0}_{2013} 1$ jest złożona.
- 34. Udowodnij, że $F_n \mid F_{nk}$ dla każdych naturalnych n oraz k.
- 35. Udowodnij, że różne liczby Fermata, czyli liczby postaci $G_n=2^{2^n}+1$, są względnie pierwsze.
- 36. Znajdź wzór na $v_p(n!)$
- 37. Liczby naturalne a, b spełniają warunek: Dla każdej liczby naturalnej n, zachodzi $a^n \mid b^{n+1}$. Udowodnij, że $a \mid b$.
- 38. Udowodnij, że dla każdej liczby naturalnej n, zachodzi podzielność $(n!)^{(n-1)!} \mid (n!)!$
- 39. (OM 75, etap 2) Niech p będzie liczbą pierwszą. Udowodnić, że liczba $p(p^2 \cdot \frac{p^{p-1}-1}{p-1})!$ jest podzielna przez $p! \cdot (p^2)! \cdot (p^3)! \cdot \ldots \cdot (p^p)!$.