

- 1. a) Escalar b) Vectorial c) Vectorial d) Escalar
- 2. a) $Dom F = \{(x, y) \in R^2/x^2 + y^2 \le 4\}$
 - b) $DomF = \{(x, y) \in R^2/2x + 3y < 8\}$
 - c) $Dom F = R^2$
 - d) $DomF = \{(x, y) \in R^2/y \neq x + 3\}$
- 3. $a.C_{-1} = \{(x,y) \in Dom(F)/x 3y = -1\}, C_0 = \{(x,y) \in Dom(F)/x 3y = 0\}, C_1 = \{(x,y) \in Dom(F)/x 3y = 1\}$
 - b. $C_{-1} = \left\{ (x, y) \in Dom(F) \middle/ \frac{2}{x y} = -1 \right\}, C_0 = \emptyset, C_{-1} = \left\{ (x, y) \in Dom(F) \middle/ \frac{2}{x y} = 1 \right\}$
 - c. $C_{-1} = \left\{ (x, y) \in Dom(F) \middle/ \frac{y}{x^2 1} = -1 \right\}, C_0 = \left\{ (x, y) \in Dom(F) \middle/ \frac{y}{x^2 1} = 0 \right\}$ $C_1 = \left\{ (x, y) \in Dom(F) \middle/ \frac{y}{x^2 1} = 1 \right\}$
 - $\text{d. } C_{-1} = \emptyset, \ C_0 = \left\{ (x,y) \in Dom(F) / \sqrt{25 x^2 y^2} = 0 \right\}, \ C_1 = \left\{ (x,y) \in Dom(F) / \sqrt{25 x^2 y^2} = 1 \right\}$
- 4. $C_1 = \left\{ (x, y) \in Dom(V) \middle/ \frac{4}{\sqrt{(x-2)^2 + (y+3)^2}} = 1 \right\}, C_4 = \left\{ (x, y) \in Dom(V) \middle/ \frac{4}{\sqrt{(x-2)^2 + (y+3)^2}} = 4 \right\}$

- 5. A) $y = x^2 + 3$, $x \in [0, 1]$
 - b) $x^2 + y^2 = 2$
 - c) $\frac{x^2}{4} + \frac{y^2}{9} = 1$, $y \ge 0$
 - $d)y = x, x \ge 0$
 - e) i. $x^2 + y^2 = 9$ ii. $x^2 + y^2 = 9$, $0 \le x \le 3$
- 6. a. $\overline{f}(t) = (t; t^2 3t)$ $t \in R$ b. $\overline{f}: \left[\frac{\pi}{2}; \frac{3\pi}{2}\right] \to R^2/\overline{f}(t) = (5\cos t; 5\sin t)$ c. $\overline{f}(t) = \left(\frac{1}{3}\cos t; \sin t\right)$ $t \in R$ d. $\overline{f}: [0,1] \to R/\overline{f}(t) = (t, t^3)$
 - e. $f: [-1; 1] \to R^2/f(t) = (t^2; t)$

f.
$$\bar{f}:[0;2\pi] \to R^2/\bar{f}(t) = (\cos(t) - 1; sen(t))$$
 g. $\bar{f}:[\pi;\frac{3\pi}{2}] \to R^2/\bar{f}(t) = (\sqrt{2}\cos(t);\sqrt{3}sen(t))$

h.
$$f: (-\sqrt{5}; \sqrt{5}) \to R^2/f(t) = (t; 2t)$$

- 7. No se encuentran en ningún instante t
- 8. Se encuentran en t =1

9. a.
$$x(t) = \cos(2t)$$
, $y(t) = \sin(2t) \cos \frac{\pi}{4} \le t \le \frac{9\pi}{4}$
b. $x(t) = \cos t$, $y(t) = \sin t \cos 0 \le t \le \frac{\pi}{2}$

10. a.
$$Dom F = R^2$$
 b. $Dom F = R^2 - \{(0,0)\}$ c. $Dom F = R^2$

11. ai.
$$z = x^2 + y^2$$
 (paraboloide circular)
ii. $z = x^2 + y^2$, $z \le 1$
b. $z = 1 - x - y$ (plano)
c. $x^2 + y^2 + z^2 = 1$ (esfera de radio 1 y centro (0.0)

c.
$$x^2 + y^2 + z^2 = 1$$
 (esfera de radio 1 y centro (0,0,0))

di.
$$x^2 + y^2 = 1$$
 (cilindro circular)
ii. $x^2 + y^2 = 1$, $0 \le x \le 1, -1 \le y \le 1, 1 \le z \le 2$
e. $z = (x - 1)^2 + 2y^2$ (paraboloide elíptico)

$$e.z = (x - 1)^2 + 2y^2$$
 (paraboloide ellptico)

12. a.
$$\bar{F}: R^2 \to R^3/\bar{F}(u,v) = (u;v;-2u+v+3)$$
 b. $\bar{F}: R^2 \to R^3/\bar{F}(u,v) = (u;v;u^2+v^2)$

c.
$$\bar{F}: R^2 \to R^3 / \bar{F}(u, v) = (u; v; \sqrt{u^2 + v^2})$$

d.
$$\bar{F}: R^2 \to R^3/\bar{F}(u, v) = (3\cos(u); 3\sin(u); v)$$

e.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (2\cos(u)\sin(v); 2\sin(u)\sin(v); 2\cos(v))$$

f.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (3\cos(u); 3\sin(u); v)$$

 $D = \left\{ (u,v) \in R^2/0 \le u \le \frac{\pi}{2}, v \ge 0 \right\}$