Abschlussprüfung 2017 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Name:				Vorna	ame:								
Klasse:			Platzziffer:						Punkte:				
	Aufgabe A 1								I	Nacht	tern	nin	
A 1.0	Die Intensität von Wassertiefe ab. bleibende Licht $f: y = 100 \cdot 0,913$	Eine Me htintensit	ssung h ät y	at erg Proz	eben, zent	dass nähe	sich i erungs	-	eteri			tiefe di	
A 1.1	Geben Sie an, um wie viel Prozent die Lichtintensität nach der Funktion f pro Me-												
A 1.2	ter Wassertiefe a		halla au	f Gan	Za gar	aunda a	t und s	voichne	an Si		lann	dan	1 P
A 1.2	Graphen der Fur				_			zerciiii	311 3 1	ie sou	iaiiii	dell	
	X	0	2,5	5		10	15	2	20	25	5	30	
	$100 \cdot 0,915^{x}$												
		100 - 80 - 60 - 40 - 20							· · · · · · · · · · · · · · · · · · ·				
		0	5	10	15	20	25	30 2					2 P
A 1.3	An einem andere bleibende Lichti an diesem See di	6 beträgt	urde zu	r gleic % gen	chen Z	Zeit in	n 18 M	Meter Ven Sie	Vass durc	ertief	e ei	ne ver-	1 P
			+	$\dashv \dashv$					-	++	-	+	1 P

Aufgabe A 2 Nachtermin

A 2.0 Das gleichschenklige Dreieck ABC mit der Basis [BC] ist die Grundfläche der Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Basis [BC] (siehe Zeichnung). Es gilt: $\overline{BC} = 12 \text{ cm}$; $\overline{AM} = 8 \text{ cm}$; $\overline{MS} = 11 \text{ cm}$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie die Länge der Strecke [AS] und das Maß $\,\phi\,$ des Winkels ASM.

Ergebnisse: $\overline{AS} = 13,60 \text{ cm}; \phi = 36,03^{\circ}$

Aufgabe A 2

Nachtermin

A 2.2 Die Strecke [PQ] mit $P \in [BS]$ und $Q \in [CS]$ ist parallel zur Strecke [BC].

Der Punkt D ist der Mittelpunkt der Strecke [PQ] mit $\overline{MD} = 4$ cm.

Zeichnen Sie die Strecke [PQ] in das Schrägbild zu A 2.0 ein und berechnen Sie deren Länge. [PQ] = 7,64 cm

2 P

A 2.3 Punkte R_n auf der Strecke [AS] mit $\overline{AR_n}(x) = x$ cm $(x < 13,60; x \in IR_0^+)$ bilden zusammen mit den Punkten P und Q Dreiecke PQR_n .

Zeichnen Sie das Dreieck PQR_1 für x = 9 in das Schrägbild zu A 2.0 ein und bestimmen Sie sodann durch Rechnung das Maß δ des Winkels SDR_1 .

Teilergebnis: $\overline{DR}_1 = 4,25 \text{ cm}$

3 P

A 2.4 Das Dreieck PQS ist die Grundfläche von Pyramiden $PQSR_n$.

Zeichnen Sie die Höhe h der Pyramide $PQSR_1$ mit dem Höhenfußpunkt F_1 in das Schrägbild zu A 2.0 ein. Ermitteln Sie sodann die Länge der Strecken $\left[R_nF_n\right]$ der Pyramiden $PQSR_n$ in Abhängigkeit von x.

2 P

Aufgabe A 3

Nachtermin

A 3.0 Die nebenstehende Skizze zeigt die gleichseitigen Dreiecke ABC und FGC mit den zugehörigen Höhen [CD] und [CE].

Es gilt:
$$F \in [AC]$$
; $G \in [BC]$; $[AB] \parallel [FG]$; $[CD] \cap [FG] = \{E\}$;

$$\overline{CE} = 2.3 \cdot \sqrt{3} \text{ cm}$$
; $\overline{DE} = 2 \cdot \overline{CE}$.

A 3.1 Berechnen Sie die Seitenlänge a des gleichseitigen Dreiecks ABC.

[Ergebnis: a = 13.8 cm]

2 P

A 3.2 Der Kreisbogen \widehat{PQ} mit dem Mittelpunkt C und dem Radius \overline{CD} schneidet die Seite [AC] im Punkt P und die Seite [BC] im Punkt Q.

Berechnen Sie den Flächeninhalt A der grau markierten Fläche, die durch die Strecken [PA], [AB], [BQ] und den Kreisbogen \widehat{PQ} begrenzt ist und ermitteln Sie sodann den prozentualen Anteil des Flächeninhalts A am Flächeninhalt des Dreiecks ABC.

Abschlussprüfung 2017 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

	Aufgabe B 1 Nachtermin							
B 1.0	Die Parabel p verläuft durch die Punkte $P(-9 44)$ und $Q(6 14)$. Sie hat eine							
	Gleichung der Form $y=0,4x^2+bx+c$ mit $G=IR\times IR$ und $b,c\in IR$. Die Gerade g hat die Gleichung $y=0,2x+0,5$ mit $G=IR\times IR$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma.							
B 1.1	Zeigen Sie durch Berechnung der Werte für b und c, dass die Parabel p die Gleichung $y=0,4x^2-0,8x+4,4$ hat.							
	Zeichnen Sie sodann die Gerade g sowie die Parabel p für $x \in [-3; 5]$ in ein Koordinatensystem ein.							
	Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 6$; $-1 \le y \le 11$	4 F						
B 1.2	Punkte B_n und D_n sind zusammen mit Punkten $A_n(x 0, 2x + 0, 5)$ auf der Gera-							
	den g und Punkten $C_n(x \mid 0.4x^2 - 0.8x + 4.4)$ auf der Parabel p die Eckpunkte							
	von Drachenvierecken $A_nB_nC_nD_n$ mit den Geraden A_nC_n als Symmetrieachse.							
	Es gilt: $\overrightarrow{A}_{n}\overrightarrow{B}_{n} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.							
	Zeichnen Sie das Drachenviereck $A_1B_1C_1D_1$ für $x=-2.5$ und das Drachenvier-							
	eck $A_2B_2C_2D_2$ für $x = 2,5$ in das Koordinatensystem zu B 1.1 ein.	2 F						
B 1.3	In allen Drachenvierecken $A_{_n}B_{_n}C_{_n}D_{_n}$ haben die Winkel $B_{_n}A_{_n}D_{_n}$ das gleiche Maß ϵ .							
	Berechnen Sie das Maß ε der Winkel $B_n A_n D_n$.	2 F						
B 1.4	Zeigen Sie rechnerisch, dass für den Flächeninhalt A der Drachenvierecke $A_n B_n C_n D_n$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt:							
	$A(x) = (0.8x^2 - 2x + 7.8) \text{ FE. } \left[\text{ Teilergebnis: } \overline{A_n C_n}(x) = (0.4x^2 - x + 3.9) \text{ LE} \right]$							
	Unter den Drachenvierecken $A_n B_n C_n D_n$ hat das Drachenviereck $A_0 B_0 C_0 D_0$ den							
	minimalen Flächeninhalt.							
	Berechnen Sie den Flächeninhalt des Drachenvierecks A ₀ B ₀ C ₀ D ₀ und den zuge-	4 F						
D 15	hörigen Wert für x. Begründen Sie, dass für $\overline{A_3C_3} = \overline{A_4C_4} = 6$ LE die Drachenvierecke Rauten sind.							
D 1.3	Ermitteln Sie die x-Werte der Punkte A_3 und A_4 .	3 F						
B 1.6	Zeigen Sie durch Rechnung, dass die Punkte B_n , C_n und D_n nicht gemeinsam auf einer Geraden liegen können.	2 F						

Abschlussprüfung 2017

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Aufgabe B 2

Nachtermin

B 2.0 Die nebenstehende Skizze zeigt den Plan eines Gartengrundstücks ABCD.

Es gilt:
$$\overline{AB} = 9.0 \text{ m}$$
; $\overline{BC} = 8.0 \text{ m}$; $\overline{AE} = 3.5 \text{ m}$
 $\angle BAD = 60^{\circ}$; $\angle CBA = 80^{\circ}$; $\angle DEA = 90^{\circ}$.

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

B 2.1 Zeichnen Sie das Viereck ABCD im Maßstab 1:100.

2 P

B 2.2 Die dreieckige Gartenfläche AED, die im Plan durch die Strecken [AE], [ED] und [DA] begrenzt ist, soll geschottert werden. Eine Metallschiene, im Plan durch [ED] gekennzeichnet, soll verhindern, dass sich der Schotter im ganzen Grundstück verteilt. Zum Nachbargrundstück wird entlang der im Plan durch [AD] gekennzeichneten Strecke ein Sichtschutz errichtet.

Berechnen Sie die Länge der Strecken [ED] und [AD].

Teilergebnis:
$$\overline{ED} = 6.1 \text{ m}$$

2 P

B 2.3 Die im Plan durch das Viereck EBCD dargestellte Fläche soll aus einem Rasenstück und einem Beet bestehen.

Bestimmen Sie rechnerisch die Länge der Strecke [EC] sowie den Flächeninhalt A_1 des Vierecks EBCD.

Ergebnis:
$$\overline{EC} = 8.9 \text{ m}$$
; Teilergebnis: $\angle BEC = 62.3^{\circ}$

4 P

B 2.4 Der Kreis mit dem Mittelpunkt E hat den Radius $r = \overline{ED}$ und schneidet die Strecke [BC] im Punkt F. Das Beet wird durch den Kreisbogen \widehat{FD} sowie durch die Strecken [DC] und [CF] begrenzt.

Zeichnen Sie den Kreisbogen FD in die Zeichnung zu B 2.1 ein.

1 P

B 2.5 Das Beet aus B 2.4 wird entlang des Kreisbogens FD und der Strecke [DC] mit einem Schneckenschutzzaun geschützt.

Berechnen Sie die benötigte Länge ℓ des Zauns.

[Teilergebnis:
$$\angle BEF = 37,4^{\circ}$$
]

5 P

B 2.6 Berechnen Sie den Flächeninhalt A2 des Beetes.

3 P