

Natural language processing

Welcome on board

Lecture 1

Rana Salama

INTRODUCTION TO STATISTICAL NLP

FALL 2020

Outline

- Course Introduction
- Course Information
- Deadlines

Course Introduction

What is NLP?

 Natural language processing (NLP) is the interdisciplinary field of computer science and linguistics

• **Goal:** Have computers *understand* natural language in order to perform useful tasks (human-machine communication or improving human-human communication)

What is NLP?

Natural Language

NLP

Processing

 \downarrow

- Natural language refers to the language used by humans to communicate with each other.
- -Human language is diverse and complex. 6500 Languages exist

- -Computers process natural language input (unstructured data) and produce useful information.
- -Programs that can recognize, analyze, and generate text
- -NLP refers to processing unstructured data text in free form (unstructured text).

unstructured data

Natural Language

Language = Words (Dictionary) and Rules (Grammar)

Dictionary: set of words defined in the language; open (dynamic)

Grammar: set of rules which describe what is allowable in a language

-Classical Grammars: meant for humans; mainly supported by examples; no (or almost no) formal description tools; cannot be programmed

A complete sentence must include a noun and a verb "the bird flew"

- **Explicit Grammar**: (CFG, Dependency Grammars, Link Grammars,...) formal description; can be programmed & tested on data (texts)

S-> NP VP
"I prefer a morning flight"

Layers of linguistic analysis

- Linguistic is the science of language.
- Its study include 6 basic levels (more or less explicitly present

in most theories):

- ☐ Phonetics and Phonology: sounds
- ☐ Morphology: word formation
- ☐ Syntax : structural relationships between words,
 - sentence formation
- ☐ Semantics : knowledge of meaning
- ☐ Pragmatic: connected sentences
- Each level has an input and output representation
- Output from one level is the input to the next (upper) level
- Sometimes levels might be skipped (merged) or split

- •An enormous amount of knowledge is now available in machine readable form as unstructured natural language text from different resources (heterogeneous data)
- •Going from the largely unstructured languages of the web to useful information
- Conversational agents are becoming an important form of human-computer communication
- •Much of human-human communication is now mediated by computers.
- Very cool stuff! And with lots of commercial interest.

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm.

- People have no trouble understanding language
 - Commonsense knowledge
 - Reasoning capacity
 - Experience
- However, Computers have
 - No commonsense knowledge
 - No reasoning capacity

Unless we teach them!

We need computers to:

- Classify text into categories
- Index and search large texts
- Automatic machine translation
- Speech understanding Understand phone conversations
- Information extraction Extract useful information from resumes
- Automatic summarization Condense 1 book into 1 page
- Question answering
- Knowledge acquisition
- Text generation / dialogs

NLP Everywhere

USER PERSPECTIVE

Auto-complete

Automatic Replies

News site's suggested articles

Auto-generated video captions

Hey Alexa,..

And more to come

NLP Applications

A CLOSER LOOK

Machine Translation

• **Goal**: Computers understand and translate between one language and another: e.g. Google Translate.

Machine Translation

大提升。我们的全部研究结果详情请参阅我们的论文

《Google's Neural Machine Translation System: Bridging the Gap between Human and Machine

Turn off instant translation

Questioning Answering

- Goal: building systems that automatically answer questions posed by humans in a natural language.
- IBM's Watson Jeopardy! (2011), DARPA who/what/where..., Ask Jeeves

Sentiment Analysis

Discovering people opinions, emotions and feelings about a product or service

Sentiment Analysis

- Wow, great place!
- Wow, 35 minutes to get a cup of coffee? Great job.
- Not great but works as expected.
- At first I hated it, but once the story hooked me, I found it difficult to put the book down

Information Extraction

• Goal: Extracting specific information from textual sources.

Dialogue Systems

- Goal: A computer system intended to converse with a human.
- Example: Amtrak's 'Julie' and Google Assistant

Summarization

• Goal: Summarizing very large amounts of text or speech: e.g. your email, the

news, voicemail

Example: https://www.agolo.com

What other NLP applications that you can think of?

Is NLP difficult?

What Makes NLP Difficult?

- The nature of languages → Language encode meaning. Language is learned intuitively
- Non-standard text
 - " we're soooo proud of u!"
- Idioms and metaphors
 - "dark horse" "cold feet" "lose face"
- Segmentation
 - "The New York-New Haven railroad"
- Named entities
 - "Let It Be sold millions"
- Ambiguity

Language Variation

Language is ambiguous

•Ambiguity involves multiple or alternative linguistic structures

 Ambiguity results from the existence of multiple possibilities for linguistic levels

 All 6 levels of linguistic knowledge require resolving ambiguity

-two, too, to -ice cream, I scream

Phonological Ambiguity

Morphological Ambiguity

Unlockable: [[un-lock]-able]

[un-[lock-able]]

Syntactic Ambiguity

The chicken is ready to eat

Lexical Ambiguity

Pass me the mouse

I made her duck

- I cooked waterfowl for her
- I cooked the waterfowl that belongs to her
- I created the ceramic duck she owns

- I caused her to quickly lower her head
- And more....

I made her duck for lunch

I made her duck with clay

I made her duck as the ball was about to hit her

Context really matters

Dealing with Ambiguity

- Tightly coupled interaction among processing levels; knowledge from other levels can help decide at ambiguous levels.
- Pipeline processing that ignores ambiguity as it occurs and hopes that other levels can eliminate incorrect structures.
- Probabilistic approaches based on making the most likely choices.
- Don't do anything, maybe it won't matter.
 - We'll leave when the duck is ready to eat.
 - The duck is ready to eat now.
 - Does the "duck" ambiguity matter with respect to whether we can leave?

Making Progress ...

The task is difficult! What tools do we need?

- Knowledge about language
- Knowledge about the world
- A way to combine knowledge sources

How we generally do this:

- probabilistic models built from language data
 - P("maison" → "house") high
 - P("noir" \rightarrow "moon") low

Luckily, rough text features can often do half the job.

Making Progress ...

NLP Models

State Machines

Finite state automata, transducers

Formal Rule Systems

Regular Grammars, Context Free Grammars

Logic

First order logic, predicate calculus

Probability Theory

- Associating probabilities with the previous machinery
- Crucial for capturing every kind of linguistic knowledge

Vector-space Models

An algebraic model for representing text documents (and any objects, in general) as vectors

NLP Algorithms

- State space search algorithms, such as dynamic programming
- Expectation-Maximization (EM)
- Machine learning algorithms, such as classifiers and sequence models, which play a significant role in many language processing tasks

Machine Learning

Machine learning based classifiers that are trained to make decisions based on (implicitly or explicitly modeled) features from context

Simple Classifiers:

- Naïve Bayes
- Logistic Regression
- Decision Trees
- Neural Networks

Sequence Models:

- Hidden Markov Models
- Maximum Entropy Markov Models
- Conditional Random Fields
- Recursive Neural Networks (RNNs, LSTMs)

Machines learn from data

NLP Approaches

Rule-based/Symbolic Approaches

Linguists write rules that are applied by the machines

Corpus-based/Statistical Approaches

- Machines learn the "rules" from training data
 - Annotated data supervised methods
 - Parallel Corpora: translated text collections
 - Treebanks: manually syntactically analyzed texts
 - Speech Corpora with transcripts
 - Unannotated data unsupervised methods
 - Semi-supervised methods

Performance Metrics

Methods to evaluate the performance of an NLP system

- Extrinsic Evaluation:
 - Incorporate NLP system into action
- Intrinsic Evaluation:
 - Automatic Evaluation
 - ✓ Does system agree with pre-judged examples?
 - Human Post-hoc Evaluation

Historical Notes

1940s - 1950s

- Automata, regular expressions, and Formal Language theory
- Information Theory and foundational research in speech recognition (digits).
- "MT is rather easy" (MIT, Georgetown)

1960s

- "MT is too hard." (ALPAC report)
- Cancelled all work on Machine Translation in the US.
- CL/NLP research starts (e.g. ACL)
- Transformational paradigm in linguistics (Chomsky)

Historical Notes

1970s

- "MT Winter" in US
- Parsing comes of age: CFGs, ATNs,...
- Speech understanding starts

1980s

- Use of probabilistic models in MT (IBM)
- New focus on model evaluation.
- Natural language generation

1990s

- The first search engine using indexing and Google's success
- More progress

Historical Notes

2000s

- Use of Neural models
- Multitask learning
- Sequence to sequence models
- Attention and pretrained language models

In summary

- Language to Knowledge
 - A lot more to do
- NLP is difficult
 - Ambiguous and various
 - Context really matters
- Machine and deep Learning
 - With enough data and some math computers can do it
 - The future looks exiting for NLP

Outline

- Course Introduction
- Course Information
- Deadlines

This Course

Key theory and methods for statistical NLP:

- Finite State Machines and Transducers
- N-gram language modeling
- Hidden Markov Models
- Discriminative classifiers
- Syntactic and Statistical Parsing
- Vector models of meaning
- Word Embedding
- Deep Learning Models

Practical, real-world applications

- Information extraction
- Spelling correction
- Sentiment analysis
- Machine Translation
- Summarization
- Dialogue Systems

Skills you will need

- Basic probability theory
- Simple linear algebra (vectors, matrices)
- Machine Learning Techniques
- Proficiency in Python programming

Logistics

Lectures: Tuesday 06:10PM - 08:40PM

Office Hours: Thursday 11:00AM-1:00PM or by appoitment

Contact: raref@gwu.edu

Syllabus: available on BB

Discussion: piazza.com/gwu/fall2020/csci39076907nlp

Text: Mainly from the Jurafsky and Martin 2nd edition and 3rd edition(available online)

Coursework and Grading

- Course Material
 - Course slides and recorded class videos will be available on BB shortly after a class ends
- Assignments
 - Will be posted and announced on Blackboard
 - 4 Programming Assignments and Reading Assignments (Book Chapters and Research Papers)
 - The first assignment will be released next week
 - You have 7 free grace days for the whole semester
- Midterm
 - 10/13
- No Final Exam but a Final Project

Grading

Final Project

- Groups
 - ✓ Start forming groups of maximum 4
- Project Topic
 - ✓ Try to think of a novel problem
- Project proposal (20%)
- Class presentation (20%)
- Final report or short paper (30%)
- System Implementation (30%)

Outline

- Course Introduction
- Course Information
- Deadlines

Questions??

Contributions to the course material & slides

Slides are sometimes adapted (with permission) from other great slide sets, namely from:

 Mona Diab, Chris Manning, Dan Jurafsky, Jason Eisner, Rada Mihalcea, Michael Collins, Alessandro Moschitti, Julia Hirschberg, Kathleen McKeown, Dragomir Radev.