ENGR 065 Electric Circuits

Lecture: Midterm Review

Today's Topics

- Review the Midterm concepts taught thus far
 - Major Topics
 - Variables:
 - Three Laws:
 - Circuit Analysis Techniques:
 - Basic Equations:
 - Basic Concepts:
- Go through sample problems as class exercise

Midterm Review

Variables:

- Voltage
- Current
- Resistance
- Power
- Energy

Three Laws:

- Ohm's Law
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)

Circuit Analysis Techniques:

- KCL and KVL
- Resistance combinations
- Node-voltage and mesh-current
- Source transformations
- Thévenin and Norton Theorem

Basic Equations and Concepts:

- Power and energy in resistors
- Passive sign convention
- Ideal circuit elements: passive/active
- Ideal independent sources: volt/current
- Dependent sources: (careful w/ units)
 - Voltage controlled (volt/current)
 - Current controlled (volt/current)
- Divider circuits:
 - Voltage/current
- Open circuits:
 - $R = \infty$, no loads, switch (off state)
- Short circuits:
 - R = 0 (V = 0), wires, switch (on state)
- Maximum power transfer
- Equivalent circuits
 - Series/parallel resistors
 - Series/parallel volt/current sources
 - Source transformations
 - Thévenin/Norton
- Superposition principle

- 1) The equivalent resistance seen by the terminals **a** and **b** is
 - Α. 4Ω
 - B. 6 Ω
 - C. 8 Ω
 - D. 16 Ω

- 2) The power associated with 10 Ω resistor is
 - A. 25 W
 - B. 25 W
 - C. 250 W
 - D. 250 W

- 3) The power associated with 10 V voltage source is
 - A. 50 W
 - B. 50 W
 - C. 25 W
 - D. 25 W

- 4) The current i_x is
 - A. 1 A
 - B. 1 A
 - C. 3 A
 - D. -3 A

- 5) The voltage v_x is
 - A. 5 V
 - B. 10 V
 - C. 15 V
 - D. 20 V

6) The node voltage equation at node 1 in the circuit to the right is

A.
$$\frac{v_1-193}{12} - 0.4v_{\Delta} + \frac{v_1-v_2}{5} = 0$$

B.
$$\frac{V_1 - 193}{4} + 0.4v_{\Delta} + \frac{V_1 - V_2}{5} = 0$$

C.
$$\frac{V_1 + 193}{12} - 0.4V_{\Delta} + \frac{V_1 - V_2}{5} = 0$$

D.
$$\frac{V_1 + 193}{4} + 0.4V_{\Delta} + \frac{V_1 - V_2}{5} = 0$$

- 7) The node voltage equation at node 2 in the circuit to the right is
 - A. $\frac{V_2 V_1}{5} + 0.5 + \frac{V_2 0.8 v_\theta V_3}{2} = 0$
 - B. $\frac{v_1 v_2}{5} 0.5 + \frac{v_2 0.8v_\theta + v_3}{2} = 0$
 - C. $\frac{v_2 v_1}{5} 0.5 + \frac{v_2 0.8v_\theta}{2} = 0$
 - D. $\frac{v_1 v_2}{5} + 0.5 + \frac{v_2 0.8v_\theta}{2} = 0$

8) The node voltage equation at node 3 in the circuit to the right is

A.
$$\frac{V_3}{7} + 0.5 + \frac{V_3 - 0.8v_\theta - V_2}{2} = 0$$

B.
$$\frac{V_3}{7} - 0.5 + \frac{V_3 - 0.8v_\theta - V_2}{2} = 0$$

C.
$$\frac{V_2}{7} - 0.5 + \frac{V_2 + 0.8v_\theta - V_2}{2} = 0$$

D.
$$\frac{V_3}{7} + 0.5 + \frac{V_3 + 0.8v_\theta - V_2}{2} = 0$$

- 9) The v_{θ} in the circuit to the right is equal to
 - A. $-V_1$
 - B. $-V_2$
 - C. $-V_3$
 - D. 0

- 10) The v_{Λ} in the circuit to the right is equal to
 - A. $\frac{V_2 + 0.8v_{\theta} V_2}{2}$
 - B. $V_2 0.8v_{\theta} V_3$
 - C. $\frac{V_2 0.8 v_{\theta}}{2}$
 - D. $V_2 + 0.8v_{\theta}$

- 11) The mesh-current equation of mesh a in the circuit to the right is
 - A. $11i_a 6i_b + 50 = 0$
 - B. $11i_a 5i_b 50 = 0$
 - C. $11i_a 6i_b + 60 = 0$
 - D. $11i_a 5i_b 60 = 0$

12) The mesh-current equation of mesh b in the circuit to the right is

- A. $-5i_a + 17i_b 2i_c = 0$
- B. $-2i_a 17i_b 5i_c = 0$
- C. $-5i_a + 10i_b 2i_c = 0$
- D. $-2i_a 10i_b 5i_c = 0$

13) The mesh-current equation of mesh c in the circuit to the right is

A.
$$6i_c - 2i_b - 50 = 0$$

B.
$$6i_c - 2i_b + 50 = 0$$

C.
$$4i_c - 2i_b - 50 = 0$$

D.
$$i_c = 3 A$$

14) The Thévenin equivalent resistance at the terminals a and b in the circuit below is

- Α. 10 Ω
- B. 20 Ω
- C. 40 Ω
- D. 80 Ω

- 15) The Thévenin equivalent voltage V_{Th} at the terminals a and b in the circuit below is
 - A. 3 V
 - B. -3 V
 - C. 4 V
 - D. -4 V

- 16) The maximum power transferred to the R_L is
 - A. 5 W
 - B. 10 W
 - C. 40 W
 - D. 200 W

Sample Free Response Questions

1) Using the source transformation to find the voltage v_0 in the circuit below

Sample Free Response Questions

2) Using the superposition principle method to find the voltage v_0 in the following circuit

Bonus Questions

Bonus question (10 pts/each)

In the circuit below, if it is only driven by the independent voltage source, $i_{\Delta} = 0.5$ A. If it is only driven by the independent current source, $i_{\Delta} = -0.1$ A. If the value of the voltage source is changed to 60 V and the value of the current source is changed to 8 A, and both sources are applied to the circuit, i_{Δ} is equal to

- A. 0.1 A
- B. 0.2 A
- C. 0.6 A
- D. 1.0 A

