Homework 1

21-759 Differential Geometry

Name: Shashank Singh¹

Due: Friday, September 13, 2013

I would be willing to present solutions to problems 1,3,4, and 5.

Problem 1

(i) As a subspace of \mathbb{R}^n , \mathcal{M}_{α} is second countable and Hausdorff.

Let $p \in \mathcal{M}_{\alpha}$. Since α is regular, without loss of generality, $(DF)_1 \neq 0$. By the Implicit Function Theorem, there exist open neighborhoods $U \subseteq \mathbb{R}^{n-1}$ and $V \subseteq \mathbb{R}$ of (p_2, \ldots, p_n) and p_1 , respectively, and a smooth function $g: U \to V$ such that $\{(q, g(q)): q \in U\} = (U \times V) \cap F^{-1}(\alpha)$. The function $\phi(x) := (x, g(x))$ on U is clearly a diffeomorphism. Therefore, (U, ϕ) is a coordinate chart for \mathcal{M}_{α} in the neighborhood $U \times V$ of p, so \mathcal{M}_{α} is a manifold (of dimension n-1).

(ii) As shown in part (i), M_{α} admits a differentiable structure of the form $\{(U_{\gamma}, \phi_{\gamma})\}$, where $\phi(x) = (x, g_{\gamma}(x))$ on U_{γ} . Thus, if $(U_{\gamma}, \phi_{\gamma})$ and $(U_{\beta}, \phi_{\beta})$ are charts with $W := \phi_{\gamma}(U_{\gamma}) \cap \phi_{\beta}(U_{\beta}) \neq \emptyset$, then, on W, $\phi_{\beta}^{-1}\phi_{\gamma} \equiv id_n$, the identity on \mathbb{R}^n , and hence

$$\det(D(\phi_{\beta}^{-1}\phi_{\gamma})) = \det(id_n) = 1 > 0,$$

so that \mathcal{M}_{α} is orientable.

Problem 2

If $p_1 = p_2$ and $v_1 \neq v_2$ then, since $T_{p_1}\mathcal{M}$ is homeomorphic to \mathbb{R}^n (which is Hausdorff), there are open sets $V_1, V_2 \subset T_{p_1}\mathcal{M}$ separating v_1 and v_2 , and so the open sets $\mathcal{M} \times V_1$ and $\mathcal{M} \times V_2$ separate (p_1, v_1) and (p_2, v_2) . If $p_1 \neq p_2$, then, since \mathcal{M} is Hausdorff, there are open sets $U_1, U_2 \subset \mathcal{M}$ separating p_1 and p_2 and, and so the open sets $U_1 \times T_{p_1}\mathcal{M}$ and $U_2 \times T_{p_2}\mathcal{M}$ separate (p_1, v_1) and (p_2, v_2) . Thus, $T\mathcal{M}$ is Hausdorff. Since \mathcal{M} and $T_p\mathcal{M}$ have a countable bases \mathcal{B} and \mathcal{B}_p , set $\{U \times V : U \in \mathcal{B}, V \in \mathcal{B}_p, p \in U\}$ is a countable base for $T\mathcal{M}$.

 $\forall p \in \mathcal{M}$, since $T_p\mathcal{M}$ is a vector space for which the vectors $\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}$ form a basis, there is a unique linear mapping $D_p: T_p\mathcal{M} \to \mathbb{R}^n$ such that, $\forall \in T_p\mathcal{M}, \ v = \sum_{i=1}^n D_i(v) \frac{\partial}{\partial x_i}$. Then, the function $(p, v) \mapsto (\phi^{-1}(p), D_p(v))$ is a diffeomorphism between \mathcal{M} and \mathbb{R}^{2d} .

We first compute

$$v\left[\left(\phi^{-1}\right)_{i}\right] = \sum_{j=1}^{n} a^{j} \frac{\partial}{\partial x_{j}} (\phi^{-1} \circ \phi)_{i} (\phi^{-1}(p)) = \sum_{j=1}^{n} a^{j} \frac{\partial}{\partial x_{j}} x_{i} (\phi^{-1}(p)) = \sum_{j=1}^{n} a^{j} \delta_{i}^{j} = a^{i}.$$

¹sss1@andrew.cmu.edu

We now compute this in an alternate manner:

$$v\left[\left(\phi^{-1}\right)_i\right] = \sum_{j=1}^n b^j \frac{\partial}{\partial y_j} (\phi^{-1} \circ \psi)_i (\psi^{-1}(p)).$$

The result can be summarized in matrix notation:

$$a = \left[D(\phi^{-1} \circ \psi) \right] \Big|_{\psi^{-1}(p)} b.$$

Problem 3

Since $x_i = (\phi^{-1})_i$, $df = \sum_{i=1}^n \alpha_i d(\phi^{-1})_i$, and so

$$\frac{\partial}{\partial x_j}[f] = \frac{\partial}{\partial x_j} \sum_{i=1}^n \alpha_i \left(\left(\phi^{-1} \right)_i \circ \phi \right) \left(\phi^{-1}(p) \right) = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial x_j} x_i \left(\phi^{-1}(p) \right) = \sum_{i=1}^n \alpha_i \delta_i^j = \alpha_j.$$

Also, since $y_i = (\psi^{-1})_i$,

$$\frac{\partial}{\partial x_j}[f] = \frac{\partial}{\partial x_j} \sum_{i=1}^n \beta_i \left(\left(\psi^{-1} \right)_i \circ \phi \right) \left(\phi^{-1}(p) \right) = \sum_{i=1}^n \beta_i \frac{\partial}{\partial x_j} \left(\psi^{-1} \circ \phi \right)_i \left(\phi^{-1}(p) \right).$$

The result can be summarized in matrix notation:

$$\alpha = \left[D(\psi^{-1} \circ \phi) \right] \Big|_{\phi^{-1}(p)} \beta.$$

Problem 4

Suppose that, for some $\alpha \in \mathbb{R}^n$, $df := \sum_{i=1}^n \alpha_i dx_i = 0$. Then,

$$0 = df\left(\sum_{j=1}^{n} \alpha_j \frac{\partial}{\partial x_j}\right) = \sum_{j=1}^{n} \alpha_j \frac{\partial}{\partial x_j} \sum_{i=1}^{n} \alpha_i x_i = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_j \alpha_i \delta_i^j = \sum_{i=1}^{n} \alpha_i^2,$$

and so $\alpha = 0$. Thus, dx_1, \ldots, dx_n are linearly independent. As the dual of an *n*-dimensional vector space, $T_p\mathcal{M}^*$ has dimension *n*, and so the *n* independent vectors dx_1, \ldots, dx_n span $T_p\mathcal{M}^*$.

Problem 5

Without loss of generality, we may assume that, for every chart $(U_{\alpha}, \phi_{\alpha})$ of \mathcal{M} , U_{α} is connected, since, otherwise, we may replace the chart by identical charts on the connected components of U_{α} . Let $p \in \mathcal{M}$, and let $(U_{\alpha}, \phi_{\alpha})$ be a chart at p. Since df = 0, for $v_i = \frac{\partial}{\partial x_i}$ and g the identity on \mathbb{R}

$$0 = df_p(v_i)[g] = v_i[g \circ f] = v_i[f] = \frac{\partial}{\partial x_i} (f \circ \phi_\alpha)(\phi_\alpha^{-1}(p)),$$

And so $[D(f \circ \phi_{\alpha})]\Big|_{\phi_{\alpha}^{-1}(p)} = 0$. By a theorem in multivariable calculus, since U_{α} is connected, $f \circ \phi_{\alpha} \equiv C_{\alpha}$ on U_{α} , for some constant $C_p \in \mathbb{R}$. Since ϕ is a surjection, it follows that $f \equiv C_p$ on $\phi(U)$.

Now let $U := \bigcup \{\phi_{\beta}(U_{\beta}) : C_{\beta} = C_{\alpha}\}$, and let $V := \bigcup \{\phi_{\beta}(U_{\beta}) : C_{\beta} \neq C_{\alpha}\}$. As unions of open sets, both U and V are open, and clearly $\mathcal{M} = U \cup V$ and $U \cap V = \emptyset$. Thus, since \mathcal{M} is connected and $U \neq \emptyset$, $V = \emptyset$, and so f is constant.

Problem 6

To show that DF is injective (so that F is an immersion), it suffices to show that

$$DF = \begin{bmatrix} 2x & y & z & 0 \\ -2y & x & 0 & z \\ 0 & 0 & x & y \end{bmatrix}$$

satisfies rank $(DF) \ge 2$, $\forall (x, y, z)$ with $x^2 + y^2 + z^2 = 1$. If x is non-zero, then the first and third columns are independent. If y is non-zero, then the first and fourth columns are independent. If x = y = 0, then $z = \pm 1$, and so the last two columns are independent. Thus, rank $(DF) \ge 2$.

We now show F is injective. If one of (x_1, y_1, z_1) is zero, then, checking several cases and using the fact that $([0], [0], [0]) \notin P^2$, one can verify that $(x_1, y_1, z_1) = (\pm x_2, \pm y_2, \pm z_2)$. If all values are nonzero, then

$$\frac{x_1}{x_2} = \frac{y_2}{y_1} = \frac{z_1}{z_2} = \frac{x_2}{x_1},$$

so that $x_1^2 = x_2^2$, and hence $x_1 \sim x_2$ (similarly, $y_1 \sim y_2$ and $z_1 \sim z_2$). It follows that F is injective, and thus F is a diffeomorphism (it follows from the above work that F^{-1} is differentiable).

Problem 7

(i) Suppose the orientation induced on \mathcal{M} by $\{(U_{\alpha}, \phi_{\alpha})\}$ is preserved by all $g \in G$. Let $\{(V_{\alpha}, \pi_{\alpha} \circ x_{\alpha})\}$ be the quotient differentiable structure on \mathcal{M}/G . Then, if $\pi_{\alpha}(x_{\alpha}(V_{\alpha})) \cap \pi_{\beta}(x_{\beta}(V_{\beta})) \neq \emptyset$, then, since $\pi_{\beta}^{-1}\pi_{\alpha} = \Phi_{g}$, for some $g \in G$, and Φ_{g} preserves orientation on \mathcal{M} ,

$$\operatorname{sign}(\det(D((\pi_{\beta} \circ x_{\beta})^{-1} \circ \pi_{\alpha} \circ x_{\alpha}))) = \operatorname{sign}(\det(D(x_{\beta}^{-1} \circ \Phi_{g} \circ x_{\alpha})))$$
$$= \operatorname{sign}(\det(D(x_{\beta}^{-1} \circ x_{\alpha}))) = 1,$$

and hence \mathcal{M}/G is orientable.

(ii) Let G be the group $(\{-1,1\},\cdot)$. As discussed in class, $G \times S^n \to S^n$ is a properly discontinuous action. Since S^n is orientable, fix an oriented differentiable structure $\{(U_\alpha,\phi_\alpha)\}$.

Since Φ_{-1} is the restriction of the antipodal mapping $x \mapsto -x$ on \mathbb{R}^{n+1} to S^n and ϕ_{α} and ϕ_{β} share orientation,

$$\det(D(\phi_{\beta}^{-1} \circ \Phi_{-1} \circ \phi_{\alpha})) = \det(-D(\phi_{\beta}^{-1} \circ \phi_{\alpha})) = (-1)^{n+1} \det(D\phi_{\beta}^{-1} \circ \phi_{\alpha})),$$

has sign $(-1)^{n+1}$. Thus, Φ_{-1} is orientation preserving if and only if n is odd, and so, by the result of part (i), $P^n = S^n/G$ is orientable if and only if n is odd.

Problem 8

Suppose $\exists \gamma_0 \in C^{\infty}([0,t_0),\mathcal{M})$ with $\gamma_0(0) = p$. Consider an increasing sequence $t_n \in [0,t_0)$ converging to t_0 . Since \mathcal{M} is compact and $\gamma_0 \in C^{\infty}$, the sequence $\gamma_0(t_n)$ has a limit $p \in \mathcal{M}$. Thus, the solution γ_0 can be extended to a solution $\gamma_1 \in C^{\infty}([0,t_0],\mathcal{M})$ (i.e., γ_0 is not right maximal).

Similarly, any solution on a left-open interval can be left-extended. It follows by an extension theorem from ODE that there is a solution for all $t \in \mathbb{R}$.