# EXPERIMENT NO:2 DATA PREPROCESSING AND VISUALIZATION USING PYTHON Reading the data:

| In [4]:  | <pre>import pandas as pd import numpy as np from pandas import read_csv</pre> |                            |                    |        |                            |                       |   |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------|----------------------------|--------------------|--------|----------------------------|-----------------------|---|--|--|--|--|--|--|
| In [10]: | df =                                                                          | pd.read_csv('tennisdata.cs | v')                |        |                            |                       |   |  |  |  |  |  |  |
| In [11]: | print                                                                         | (df)                       |                    |        |                            |                       |   |  |  |  |  |  |  |
|          |                                                                               | Player1                    | Player2            | Gender | Round                      | Result                | \ |  |  |  |  |  |  |
|          | 0                                                                             | Lukas Lacko                | Novak Djokovic     | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 1                                                                             | Leonardo Mayer             | Albert Montanes    | Male   | 1                          | 1                     |   |  |  |  |  |  |  |
|          | 1<br>2<br>3<br>4                                                              | Marcos Baghdatis           | Denis Istomin      | Male   | 1                          | 1<br>0<br>1<br>0<br>0 |   |  |  |  |  |  |  |
|          | 3                                                                             | Dmitry Tursunov            | Michael Russell    | Male   | 1                          | 1                     |   |  |  |  |  |  |  |
|          | 4                                                                             | Juan Monaco                | Ernests Gulbis     | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 5                                                                             | Santiago Giraldo           | Sam Querrey        | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 6                                                                             | Dudi Sela                  | Jarkko Nieminen    | Male   | 1<br>1<br>1<br>1<br>1<br>1 | 0                     |   |  |  |  |  |  |  |
|          | 7                                                                             | Fabio Fognini              | Alex Bogomolov Jr. | Male   | 1                          | 1                     |   |  |  |  |  |  |  |
|          | 8                                                                             | David Guez                 | Richard Gasquet    | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 9                                                                             | Nikolay Davydenko          | Lukasz Kubot       | Male   | 1                          | 1                     |   |  |  |  |  |  |  |
|          | 10                                                                            | Pablo Carreno Busta        | Julien Benneteau   | Male   | 1                          | 1<br>0<br>1           |   |  |  |  |  |  |  |
|          | 11                                                                            | Tommy Robredo              | Lukas Rosol        | Male   | 1                          |                       |   |  |  |  |  |  |  |
|          | 12                                                                            | Samuel Groth               | Vasek Pospisil     | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 13                                                                            | Nicolas Mahut              | Matthew Ebden      | Male   | 1                          | 0                     |   |  |  |  |  |  |  |
|          | 14                                                                            | Alejandro Falla            | Mikhail Kukushkin  | Male   | 1                          | 1                     |   |  |  |  |  |  |  |
|          | 15                                                                            | Ctaniclas Warminka         | Androv Golubov     | Mala   | - 1                        | - 1                   |   |  |  |  |  |  |  |

## Reading data using head function:

|   | Player1             | Player2            | Gender | Round | Result | FNL1 | FNL2 | FSP.1 | FSW.1 | SSP.1 |     | BPW.2 | NPA.2 | NPW.2 | TPW.2 | ST1.2 | ST2.2 | ST3.2 | ST4.2 | ST5.2 |
|---|---------------------|--------------------|--------|-------|--------|------|------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0 | Lukas<br>Lacko      | Novak<br>Djokovic  | Male   | 1     | 0      | 0.0  | 3    | 61    | 35    | 39    | *** | 8     | 8.0   | 9.0   | 101.0 | 6     | 7     | 6.0   | NaN   | NaN   |
| 1 | Leonardo<br>Mayer   | Albert<br>Montanes | Male   | 1     | 1      | 3.0  | 0    | 61    | 31    | 39    |     | 0     | NaN   | NaN   | 42.0  | 1     | 3     | 1.0   | NaN   | NaN   |
| 2 | Marcos<br>Baghdatis | Denis<br>Istomin   | Male   | 1     | 0      | 0.0  | 3    | 52    | 53    | 48    | *** | 13    | 12.0  | 16.0  | 126.0 | 6     | 7     | 6.0   | NaN   | NaN   |
| 3 | Dmitry<br>Tursunov  | Michael<br>Russell | Male   | 1     | 1      | 3.0  | 0    | 53    | 39    | 47    | *** | 7     | NaN   | NaN   | 79.0  | 2     | 2     | 3.0   | NaN   | NaN   |
| 4 | Juan<br>Monaco      | Ernests<br>Gulbis  | Male   | 1     | 0      | 1.0  | 3    | 76    | 63    | 24    | *** | 5     | 16.0  | 28.0  | 127.0 | 1     | 6     | 7.0   | 6.0   | NaN   |

#### Statistics of the data set:

| [14]: | Round         | Result     | FNL1       | FNL2       | FSP.1      | FSW.1      | SSP.1      | SSW.1      | ACE.1      | DBF.1      |     | BPW.2      | NPA.2      |
|-------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|------------|------------|
| cour  | nt 127.000000 | 127.000000 | 126.000000 | 127.000000 | 127.000000 | 127.000000 | 127.000000 | 127.000000 | 124.000000 | 126.000000 | -"  | 127.000000 | 108.000000 |
| mea   | n 1.944882    | 0.551181   | 1.595238   | 1.393701   | 61.118110  | 37.314961  | 38.881890  | 16.897638  | 6.895161   | 3.833333   |     | 6.070866   | 11.453704  |
| st    | d 1.274332    | 0.499343   | 1.089430   | 1.169435   | 7.817983   | 16.885563  | 7.817983   | 8.683897   | 7.403382   | 2.750273   |     | 4.445760   | 7.558352   |
| mi    | n 1.000000    | 0.000000   | 0.000000   | 0.000000   | 42.000000  | 8.000000   | 18.000000  | 1.000000   | 0.000000   | 0.000000   |     | 0.000000   | 0.000000   |
| 25    | % 1.000000    | 0.000000   | 1.000000   | 0.000000   | 56.000000  | 24.000000  | 34.000000  | 10.500000  | 2.000000   | 2.000000   | *** | 3.000000   | 6.000000   |
| 50    | 1.000000      | 1.000000   | 2.000000   | 1.000000   | 61.000000  | 35,000000  | 39.000000  | 15.000000  | 4.500000   | 3.000000   |     | 5.000000   | 10.000000  |
| 75    | % 2.000000    | 1.000000   | 2.000000   | 2.000000   | 66.000000  | 49.500000  | 44.000000  | 23.000000  | 9.000000   | 6.000000   |     | 8.000000   | 15.000000  |
| ma    | x 7.000000    | 1.000000   | 3.000000   | 3.000000   | 82.000000  | 109.000000 | 58.000000  | 43.000000  | 41.000000  | 13.000000  |     | 20.000000  | 37.000000  |

#### **Getting Datatypes of Dataset:**

```
In [16]: df.dtypes
Out[16]: Player1
                    object
        Player2
                    object
        Gender
                   object
         Round
                    int64
         Result
                     int64
         FNL1
                   float64
         FNL2
                     int64
         FSP.1
                     int64
         FSW.1
                     int64
         SSP.1
                    int64
        SSW.1
                    int64
         ACE.1
                 float64
        DBF.1
                 float64
        WNR.1
                    int64
        UFE.1
                    int64
         BPC.1
                    int64
         BPW.1
                    int64
         NPA.1
                   float64
         NPW.1
                  float64
         TPW.1
                    int64
         ST1.1
                    int64
         ST2.1
                     int64
         ST3.1
                  float64
         ST4.1
                   float64
        ST5.1
                   float64
        FSP.2
                    int64
        FSW.2
                    int64
```

# Cleaning of the data

## Finding out missing values and count them

| In [13]: | df.isnull | ().sum() |
|----------|-----------|----------|
| Out[13]: | Player1   | 0        |
|          | Player2   | 0        |
|          | Gender    | 0        |
|          | Round     | 0        |
|          | Result    | 0        |
|          | FNL1      | 1        |
|          | FNL2      | 0        |
|          | FSP.1     | 0        |
|          | FSW.1     | 0        |
|          | SSP.1     | 0        |
|          | SSW.1     | 0        |
|          | ACE.1     | 3        |
|          | DBF.1     | 1        |
|          | WNR.1     | 0        |
|          | UFE.1     | 0        |
|          | BPC.1     | 0        |
|          | BPW.1     | 0        |
|          | NPA.1     | 21       |
|          | NPW.1     | 21       |
|          | TPW.1     | 0        |
|          | ST1.1     | 0        |
|          | ST2.1     | 0        |

#### Converting categorical strings to numbers

```
cat_columns = ['Player1', 'Gender']
# df[cat_columns].apply(lambda x: x.cat.codes)
df.head()
```

|   | Player1             | Player2            | Gender | Round | Result | FNL1 | FNL2 | FSP.1 | FSW.1 | SSP.1 | <br>BPW.2 | NPA.2 | NPW.2 | TPW.2 | ST1.2 | ST2.2 | ST3.2 | ST4.2 | ST5.2 | UF |
|---|---------------------|--------------------|--------|-------|--------|------|------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| 0 | Lukas<br>Lacko      | Novak<br>Djokovic  | Male   | 1     | 0      | 0.0  | 3    | 61    | 35    | 39    | <br>8     | 8.0   | 9.0   | 101.0 | 6     | 7     | 6.0   | NaN   | NaN   |    |
| 1 | Leonardo<br>Mayer   | Albert<br>Montanes | Male   | 1     | 1      | 3.0  | 0    | 61    | 31    | 39    | <br>0     | NaN   | NaN   | 42.0  | 1     | 3     | 1.0   | NaN   | NaN   |    |
| 2 | Marcos<br>Baghdatis | Denis<br>Istomin   | Male   | 1     | 0      | 0.0  | 3    | 52    | 53    | 48    | <br>13    | 12.0  | 16.0  | 126.0 | 6     | 7     | 6.0   | NaN   | NaN   |    |
| 3 | Dmitry<br>Tursunov  | Michael<br>Russell | Male   | 1     | 1      | 3.0  | 0    | 53    | 39    | 47    | <br>7     | NaN   | NaN   | 79.0  | 2     | 2     | 3.0   | NaN   | NaN   |    |
| 4 | Juan<br>Monaco      | Ernests<br>Gulbis  | Male   | 1     | 0      | 1.0  | 3    | 76    | 63    | 24    | <br>5     | 16.0  | 28.0  | 127.0 | 1     | 6     | 7.0   | 6.0   | NaN   |    |

5 rows × 43 columns

1

# Replacing all the NaN values with mean value :

|   | Player1             | Player2            | Gender | Round | Result | FNL1     | FNL2 | FSP.1 | FSW.1 | SSP.1 | •••  | BPW.2 | NPA.2                    | NPW.2     | TPW.2 | ST1.2 | ST2.2 | ST3.2    | ST4.2    |
|---|---------------------|--------------------|--------|-------|--------|----------|------|-------|-------|-------|------|-------|--------------------------|-----------|-------|-------|-------|----------|----------|
| 0 | Lukas<br>Lacko      | Novak Djokovic     | Male   | 1     | 0      | 0.000000 | 3    | 61    | 35    | 39    | 9277 | 8     | 8.000000                 | 9.000000  | 101.0 | 6     | 7     | 6.000000 | 4.226415 |
| 1 | Leonardo<br>Mayer   | Albert Montanes    | Male   | 1     | 1      | 3.000000 | 0    | 61    | 31    | 39    | 8855 | 0     | 11.453704                | 14.669811 | 42.0  | 1     | 3     | 1.000000 | 4.226415 |
| 2 | Marcos<br>Baghdatis | Denis Istomin      | Male   | 1     | 0      | 0.000000 | 3    | 52    | 53    | 48    | 2277 | 13    | 12.000000                | 16.000000 | 126.0 | 6     | 7     | 6.000000 | 4.226415 |
| 3 | Dmitry<br>Tursunov  | Michael Russell    | Male   | 1     | 1      | 3.000000 | 0    | 53    | 39    | 47    | 8575 | 7     | 11. <mark>4</mark> 53704 | 14.669811 | 79.0  | 2     | 2     | 3.000000 | 4.226415 |
| 4 | Juan<br>Monaco      | Ernests Gulbis     | Male   | 1     | 0      | 1.000000 | 3    | 76    | 63    | 24    | 9577 | 5     | 16.000000                | 28.000000 | 127.0 | 1     | 6     | 7.000000 | 6.000000 |
| 5 | Santiago<br>Giraldo | Sam Querrey        | Male   | 1     | 0      | 1.000000 | 3    | 65    | 51    | 35    | 855  | 7     | 14.000000                | 17.000000 | 122.0 | 6     | 6     | 3.000000 | 7.000000 |
| 6 | Dudi Sela           | Jarkko<br>Nieminen | Male   | 1     | 0      | 2.000000 | 3    | 68    | 73    | 32    | 2277 | 17    | 25.000000                | 36.000000 | 173.0 | 3     | 7     | 6.000000 | 6.000000 |
| l |                     |                    |        |       |        |          |      |       |       |       |      |       |                          |           |       |       |       |          |          |

#### **Coorelation:**

```
import seaborn as sns
corr= df.corr()
sns.set_context("notebook", font_scale=1.0, rc={"lines.linewidth": 3})
plt.figure(figsize=(13,7))
a = sns.heatmap(corr, annot=True, fmt='.2f')
rotx = a.set_xticklabels(a.get_xticklabels(), rotation=90)
roty = a.set_yticklabels(a.get_yticklabels(), rotation=30)
```



#### **Finding Outliers:**

```
def find_outliers(x):
    q1=x.quantile(.25)
    q3=x.quantile(.75)
    iqr=q3-q1
    floor=q1-1.5*iqr
    ceiling=q3+1.5*iqr
    outliers_indices=list(x.index[(x<floor) | (x>ceiling)])
    outliers_values=list(x[outliers_indices])
```

```
Round_indices,Round_values = find_outliers(df['Round'])
print("Outliers for Round")
print(np.sort(Round_values))

Outliers for Round
[4 4 4 4 4 4 4 4 5 5 5 5 6 6 7]

return outliers_indices,outliers_values
```

```
In [34]: FNL2_indices,FNL2_values = find_outliers(df['FNL2'])
    print("Outliers for FNL2")
    print(np.sort(FNL2_values))

Outliers for FNL2
[]
```

#### **Visualization:**

1<u>.</u>

```
df['Round'].hist(color='green')
plt.title("Histogam For Round");
```



**EXPLANATION**: It is determined from above figure that round 1 and 2 has maximum players and 6 and 7 has very less number of players

```
2. df.Result.value_counts().nlargest(2).plot(kind='bar', figsize=(15,5))
plt.title("Result distribution ")
plt.ylabel('number of results')
plt.xlabel('FINL1 ');
```



<u>EXPLANATION</u>: It can be determined from the diagram that the number of successfull players is a more than the number of unsuccessful players.

3. df.Player1.value\_counts().nlargest(10).plot(kind='bar', figsize=(15,5))
plt.title("Player1 VS FNL1")
plt.ylabel('NUMBER OF PLAYERS')
plt.xlabel('FNL1');



<u>EXPLANATION</u>: The above diagram is for player1 vs FINL1 which determines the number of players played for different rounds in FINL1

4. data['Gender'].value\_counts().plot.pie(figsize=(6,6),autopct='%.2f') plt.title('Gender VS Round');



**EXPLANATION**: From above diagram we determine that no of female players in round1 are more than the no of male players

5. df.Round.hist(bins=5,color='green'); plt.title("Round Wise distribution") plt.ylabel('Round') plt.xlabel('Result')





**EXPLANATION**: From above diagram we can determine distribution of players across all 7 rounds.we see that players are decreasing gradually till last round

6. df['FNL2'].value\_counts().plot.pie(figsize=(6,6),autopct='%.2f') plt.title('Result CLASSIFICATION');



EXPLANATION: The Figure determines for Player2 and FINL2.From above diagram we determine the number of games won by player 2.