Hands-On Session 5

Code without Solution: hands-on-5.tar.gz

Code with Solution: hands-on-5-solution.tar.gz

Exercise 5

Part A

- Complete implementation of the hit and sensitive detector classes for the Drift chamber (<code>EDChamberHit</code>, <code>EDChamberSD</code>) to account the following information when a charged track passed through the detector
 - the chamber layer number
 - the time when a particle hits chamber
 - the hit global position (the position in the world volume frame)
- Hints
 - The code for the layer number is already implemented, add missing code for the other quantities
 - To check if the hits are correctly accounted, add printing of the added hit data in EDChamberHit::Print()

Part B

- Implement hit and sensitive detector classes for the EM calorimeter (EDEmCalorimeterHit, EDEmCalorimeterSD) to account the following information:
 - the layer number
 - the total energy deposit in the layer (= the accumulated deposit from all particles).
 - To check your implementation, add printing of the calorimeter hit collection at the end of each event (in EDEmCalorimeterSD::EndOfEvent()), see the similar code in EDChamberSD class
- Hints
 - See example B4/B4c how to account the energy deposit in a calorimeter
 - In difference from Chamber hits, the Calorimeter hits have to be created in EDEmCalorimeterSD::Initialize() and updated in EDEmCalorimeterSD::ProcessHits()

Part C

- Implement drawing Chamber hits:
 - Add and implement EDChamberHit::Draw() function.
 - * See B2TrackerHit class in basic/B2/B2a example

- Activate drawing hits in vis.mac macro
- Add menu in GUI using command line interface
 - Add a menu *View* in the toolbar¹
 - In this View menu, add two buttons for setting the viewPoint at theta/phi (0,0) and (90,0)
 - In this *View* menu, add a button for setting a viewPoint and ask for it (define a command without parameters)
- Explore visualization commands

¹on Apple computers, the menu bar is always at the top of the screen