

CARACTERIZACIÓN **DEADICIONES** CONTRACTUALES PARA PROCESOS DE CONTRATACIÓN **PÚBLICA EN INFRAESTRUCTURA**

WENDY BARREDA

JOSE RIVERA

HAROLD RODRÍGUEZ

El <u>objetivo</u> del proyecto fue predecir para cualquier contrato público nuevo, a partir de base de datos de SECOP I, si este tendrá adiciones, dado que, esto influye en un mayor gasto de recursos.

Se <u>creó una API</u> en la cual, ingresando los valores de las variables utilizadas, se pueda hacer el cálculo de la probabilidad. El usuario final de esta API es la dependencia encargada de analizar información de oferentes para un proyecto.

Entonces, la idea principal fue elegir un modelo supervisado que nos ayude a calcular con la probabilidad de que un nuevo contrato tenga adiciones.

Además, por medio de un tablero de visualización, se entrega al usuario gráficas dinámicas que faciliten su comprensión de la información.

DESCRIPCIÓN

CARACTERIZACIÓN DE ADICIONES CONTRACTUALES PARA PROCESOS DE CONTRATACIÓN PÚBLICA EN INFRAESTRUCTURA

JOSE RIVERA

WENDY BARREDA

HAROLD RODRÍGUEZ

ALCANCE

El estudio abordó información variables contenida en geográficas, económicas institucionales y su indicencia en la probabilidad de generar adiciones en la familia 9512: edificios Esctructuras y permanentes.

ARQUITECTURA

REQUERIMIENTOS

CRITERIO	DESCRIPCIÓN	CUMPLIMIENTO
Desempeño	Selección del modelo basado en Accuracy, Recall y AUC (AUC > 60%, métricas en escala 0-1).	✓
Interpretabilidad	Modelo que proporciona explicaciones claras (>= 80% entendible). Técnicas: Sondeos/Encuestas.	\Diamond
Funcional	Implementación de API para calcular probabilidad de adiciones con resultados precisos. Cumple/No cumple.	✓
Escalabilidad	Modelo eficiente en manejo de grandes volúmenes de datos. Pruebas con diferentes tamaños de datos, mantenimiento del rendimiento. Cumple/No cumple.	✓ ∧
Generación de reporte	Reporte con resultados y visualización de características descargable y comprensible visualmente. Cumple/No cumple.	
Seguridad	Políticas y procedimientos de seguridad documentados, implementados y seguidos correctamente. Evaluación de incidentes de seguridad. Errores < 10%.	\checkmark
Acceso a datos	Inclusión segura y completa de datos de Colombia Compra Eficiente de SECOP I. Cumple/No cumple.	✓ <u>∧</u>
Transformación de datos	Balanceo, generación de variables dummy y normalización correcta. Cumple/No cumple.	
Temporalidad	Tiempo de ejecución < 30 segundos por contrato.	
Mantenimiento	Sistema fácil de mantener y actualizar. Estructura de código fuente clara y documentada, actualización sin interrupciones. Evaluación cualitativa.	✓
Calidad	Garantía de calidad en los datos utilizados (>= 95% completos y sin errores). Análisis de completitud y consistencia.	/

ESQUEMA GENERAL DE SOLUCIÓN

PARTE 1: PREPROCESAMIENTO DE INFORMACIÓN

def get_region(depto): if depto in ["Sucre", "Magdalena", "La Guajira", "Córdoba", "Cesar", "Bolívar", "Atlántico", "San Andrés, Providencia return "Region_caribe" elif depto in ["quindio", "Antioquia", "Caldas", "Risaralda"]:

return "Region_eje_cafetero" elif depto in ["Cauca", "Choco", "Valle del Cauca", "Nariño"]:

Definir una función que agrupe los departamentos en regiones

return "Region pacifica"

elif depto in ["Cundinamarca", "Boyacá", "Santander", "Norte de Santander", "Huila", "Tolima", "Bogotá D.C."]:

return "Region_central"

elif depto in ["Casanare", "Caquetá", "Meta", "Arauca", "Vichada"]:
 return "Region_llanos"
elif depto in ["Guaviare", "Guanía", "Amazonas", "Putumayo", "Vaupés"]:

return "Region_amazonia"

return "Multiples departamentos"

Aplicar la función a la columna departamentos ejecucion del dataframe df2 y crear la nueva variable df3["region ejecucion"] = df3["departamentos ejecucion"].apply(get region)

PARTE 2: PRUEBA Y CALIBRACIÓN DE MODELOS

PARTE 3: DESPLIEGUE DE API

diciones nee	na probabilidad de lamer una adición	
CI /Micies	es/	
Parameters.		- Stry I
Name	Stategins	
Wodalkdad de costretación	Modeldad de contrateción	
Epo de contrato - mons serias serias (meno) X-Fadda serias (meno) (meno)	Mintaldad de comutación	
	Tipo de contraté	
	Tipo de contrato	
	An optional fields mask	
	X7sib	
Rosponnes		Passons contact typeapplication(son
Code Secretar		

PARTE 3.1: Creación deuna base de datos *PostgresSQL* en *AWS*.

PARTE 3.2: Escalabilidad de la API

PARTE 4: UNIÓN DE API CON REPORTE DE VISUALIZACIÓN

MODELO FINAL

