Laboratory Exercise 7

Clocks and Timers

Part I 3-digit BCD counter

Implement a 3-digit BCD counter. Display the contents of the counter on the 7-segment displays, HEX2-0. Derive a control signal, from the 50-MHz clock signal provided on the Altera DE2-115 board, to increment the contents of the counter at one-second intervals. Use the pushbutton switch KEY_0 to reset the counter to 0.

- 1. Create a new Quartus project which will be used to implement the desired circuit on the DE2-115 board.
- 2. Write a Verilog file that specifies the desired circuit.
- 3. Include the Verilog file in your project and compile the circuit.
- 4. Simulate the designed circuit to verify its functionality.
- 5. Assign the pins on the FPGA to connect to the 7-segment displays and the pushbutton switch, as indicated in the User Manual for the DE2-115 board.
- 6. Recompile the circuit and download it into the FPGA chip.
- 7. Verify that your circuit works correctly by observing the display.

Part II Real-time Clock

Design and implement a circuit on the DE2-115 board that acts as a time-of-day clock. It should display the hour (from 0 to 23) on the 7-segment displays HEX7-6, the minute (from 0 to 60) on HEX5-4 and the second (from 0 to 60) on HEX3-2. The button switch KEY0 can be used to reset the real-time clock and KEY1 to load the values of hour and minute preset by the SW_{15-0} .

Part III Reaction Timer

Design and implement on the DE2-115 board a reaction-timer circuit. The circuit is to operate as follows:

- 1. The circuit is reset by pressing the pushbutton switch KEY_0 .
- 2. After an elapsed time, the red light labeled $LEDR_0$ turns on and a four-digit BCD counter starts counting in intervals of milliseconds. The amount of time in seconds from when the circuit is reset until $LEDR_0$ is turned on is set by switches SW_{7-0} .
- 3. A person whose reflexes are being tested must press the pushbutton *KEY*₃ as quickly as possible to turn the LED off and freeze the counter in its present state. The count which shows the reaction time will be displayed on the 7-segment displays *HEX2-0*.

Part IV M-digit base-N Up/Down Counter

Implement a M-digit base-N up/down counter. Display the contents of the counter on the 7-segment displays, HEXM-1. Derive a control signal, from the 50-MHz clock signal provided on the DE2-115 board, to increment or to decrement the contents of the counter at one-second intervals. Use the button switch KEY0 to toggle the up/down behaviors of the counter, and KEY1 to reset the counter to 0.