

第五章 方程求根的数值解

/* Solutions of Nonlinear Equations */

A HUST

引入

Chapter 5 Solutions of equations in one varible

在科学与工程计算中经常需求解方程f(x)=0的根

- ① 当 $f(x)=a_nx^n+a_{n-1}x^{n-1}+.....a_1x+a_0$ 时 n=1,2,3,4时,可用求根公式求解 $n \geq 5$ 时,不能用公式表示方程的根
- ② 对于一般的非线性方程f(x)=0, x∈R , 只能求出其近似值, 我们探讨其数值解法——逐步逼近法.
- 1.初始近似根x₀

(Xk收敛于真解X*)

5.1 根的隔离和二分法

Chapter 5 Solutions of equations in one varible

为了确定初始近似根 x_0 , 必须知道 f(x)=0 的根的大致范围。若 f(x)=0 在 (a,b) 内有一个根,称(a,b) 为 f(x)=0 的有根区间;若 f(x)=0 在 (a,b) 只有一个根,称(a,b) 为 f(x)=0 的隔根区间。当(a,b) 为隔根区间时,可取 x_0 \in (a,b).

Def: 根的隔离——求f(x)=0的隔根区间的过程.

根的隔离的依据

Th5.1 设函数f(x)在[a,b]上连续,且有f(a)f(b)<0,则方程 f(x)=0 在[a,b]内至少有一个根。

注: ① [a,b]为有根区间

② 当 f(x) 满足Th5.1 的条件且在[a,b] 上单调时, f(x)在[a,b]内只有一根; 即 (a,b)为隔根区间.

PHUST

根的隔离的方法

Chapter 5 Solutions of equations in one varible

2

图象法:作出 y=f(x)的草图,由曲线y=f(x)与x轴的交点的大致位置来确定隔根区间。

例 隔根区间: (-1,0),(0,1),(1,2) 区间端点上函数值f(x) 异号

逐步搜索法

已知: [a,b]为 f(x)=0的有根区间, 且[a,b] 较大,

求一个缩小的有根区间

▶取步长h=(b-a)/n

- >从 $x_0 = a$ 出发以h 为步长向右搜索直至找到第一个点 $x_k = a + kh$ 满足 $f(a)f(x_k) \le 0$,则得缩小得有根区间 $[x_{k-1},x_k]$.
- ▶取初始近似根为X_{k-1}或X_k,其误差限为h.

Algorithm

Chapter 5 Solutions of equations in one varible

step 1: $x_0 = a$, h = (b-a)/n

step 2: If $(f(x_0)f(x_0+h) \le 0)$ 输出 (x_0,x_0+h) Else $x_0 = x_0 + h$, goto step 2

例 求方程f(x)=x3-x-1=0 的有根区间。

解: : f(0)=-1<0, $f(+\infty)>0$: $(0,+\infty)$ 为有根区间 从x=0 出发, 步长h=0.5向右计算,则

x 0 0.5 1.0 1.5 2.0 得缩小的有根区间为(1.0, 1.5) f(x) - -可取初始近似根X0=1.0或X0=1.5

小结:当 h很小时,得到很小的有根区间,

取 $X^* \in (X_0, X_0 + h)$, 从而可算得任意精度的近似根, 但h越小计算量越大,利用此法求近似根仍不十分理想。

HUST

5.1.2 二分法/* Bisection Method */ Chapter 5 Solutions or equations in one varible

思想:将有根区间 [a,b]逐次减半 (二分),使有根区间缩小直 到误差容许范围内,然后取区间中点为真根x* 的近似值。

设f(x)=0的有根区间为[a,b]且f(a)f(b)<0

(1) 取 $x_0 = (a+b)/2$

If $f(x_0)=0$, 则 x_0 为 f(x)=0的根;

else if $f(a)f(x_0)<0$,则[a,x₀]为有根区间; 记 $a_1=a$, $b_1=x_0=(a+b)/2$

else $f(x_0)f(b) < 0$,则 $[x_0,b]$ 为有根区间,记 $a_1 = x_0 = (a+b)/2$, $b_1 = b$

- ∴ 得缩小的有根区间[a₁,b₁]且b₁-a₁=(b-a)/2, [a,b]包含[a₁,b₁]
- (2) 将[a_1,b_1] 二等分,其中点 $x_1=(a_1+b_1)/2$,计算 $f(x_1)$,重复(1), 或 $f(x_1)=0$ 则 $x^*=x_1$,或得有根区间 $[a_2,b_2]$ 且 $b_2-a_2=(b_1-a_1)/2$.
- (3) 反复进行,则得到有根区间套

$$[a,b] \supset [a_1,b_1] \supset [a_2,b_2] \supset ... \supset [a_k,b_k]... \ni X^*$$

 $b_k - a_k = \frac{1}{2}(b_{k-1} - a_{k-1}) = ... = \frac{1}{2^k}(b-a)$

记 $[a_k,b_k]$ 的中点为 $x_k=(a_k+b_k)/2$ 并作为根的近似值,

从而有近似根序列: $X_0, X_1, X_2, \ldots, X_k, \ldots$

二分法是收敛的

将有限次二分的结果Xk 作为根的近似值, 其误差为多少呢?

从而误差估计式 $|x^*-x_k| \leq \frac{b-a}{2^{k+1}}$

BHUST

Chapter 5 Solutions of equations in one varible

$$|x^*-x_k| \le |b_{k+1} - a_{k+1}| = \frac{b-a}{2^{k+1}}$$

于是用二分法解f(x)=0,使误差不超过 ϵ 的终止准则:

- (1) 先验估计 $|x^*-x_k| \le \frac{b-a}{2^{k+1}} < \varepsilon \Rightarrow k > \frac{\ln(b-a) \ln \varepsilon}{\ln 2} 1$
- (2) 后验估计 b_{k+1} - a_{k+1} < ϵ

Algorithm

Step1. 输入a, b, ε, δ

Step2. X=(a+b)/2

Step3. if ($|f(x)| < \delta$ 或b-x< ϵ) 输出x stop else if (f(a)f(x) < 0) b=x else a=x

Step4. Goto Step2

MHUST

例题

Chapter 5 Solutions of equations in one varible

例 5.2 求方程 $f(x)=x^3-x-1$ 在区间(1,1.5)内的根,要求精确到小数点后的第二位,($\epsilon=10^{-2}/2$),用四位小数计算。

解: ① a=1,b=1.5 且f(a)<0, f(b)>0

精度要求为 ε =10⁻²/2=0.005 由误差估计式|x*-x_k|≤(b-a)/2^{k+1} 得0.5/2^{k+1}<0.005,从而 2^{k+1}>100,取k=6 即可。

2
$$x_0 = \frac{1}{2}(a+b) = 1.25$$
 $f(x_0) < 0$

∴
$$f(x_0)f(b)<0$$
 ∴ $\Rightarrow a_1=x_0=1.25$, $b_1=b=1.5$

新的有根区间 (a_1,b_1) 取 $x_1=\frac{1}{2}(a_1+b_1)=1.375$, $f(x_1)>0$ $f(a_1)f(x_1)<0$

 $\therefore a_2 = a_1 = 1.25$, $b_2 = x_1 = 1.375$ 从而得有根区间 (a_2, b_2) ,

BHUST

二分法分析

Chapter 5 Solutions of equations in one varible

- ① 简单;收敛性有保证;
- ② 对 f(x) 要求不高(只要连续即可)。

HW: 作业五#1

- ① 无法求复根及偶重根;
- 🢆 ② 收敛慢:线性收敛速度。

注:用二分法求根,最好先给出f(x)草图以确定根的大概位置。或用搜索程序,将[a,b]分为若干小区间,对每一个满足条件 $f(a_k)\cdot f(b_k) < 0$ 的区间调用二分法程序,可求[a,b]内的多个根。

思想:先给出f(x)=0的一个初始近似根x₀,再反复使用某一公式 校正这个初始根,使之逐步精确化,直到满足精度要求为止。

迭代初值 q(x)称为迭代函数。 | |x_{k+1}=g(x_k) k=0,1,2,... 迭代格式

如何构造迭代格式? ——不动点迭代法/* Fixed-Point Iteration */

f(x) 的根 g(x) 的不动点

从 x_0 出发, 计算 $x_1 = g(x_0)$, $x_2 = g(x_1)$, ..., $x_{k+1} = g(x_k)$, ... 若 $\{x_k\}_{k=0}^{\infty}$ 收敛,即存在 x^* 使得 $\lim_{k\to\infty} x_k = x^*$,且 g 连续,则

思 由 $\lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} g(x_k)$, 得 $x^* = g(x^*)$, 即 x^* 是 g 的不动点, 也就是f(x)=0的根。

迭代法的几何解释

Chapter 5 Solutions of equations in one varible

x=g(x) 的解即为曲线y=g(x) 与直线y=x 的交点p*

初始值 x_0 , 得y=g(x) 上点 $p_0(x_0,g(x_0))$

 $...p_1(x_1,g(x_1))$ $x_1=g(x_0)$ $...p_2(x_2,g(x_2))$ $x_2=g(x_1)$

... $p_{k+1}(x_{k+1},g(x_{k+1}))$ $x_{k+1}=g(x_k)$

当由 $X_{k+1} = g(X_k)$ 所决定 的点列 $X_1, X_2, ..., X_k, ...$ 收敛到 X^* . 则点 $p_1,p_2,.....p_k,.....$ 逐步逼近交点 p^* .

Oh yeah? Who tells you that the method is convergent?

What's the problem?

迭代法收敛性分析

Chapter 5 Solutions of equations in one varible

f(x)=0⇔x=g(x), 从而有迭代格x_{k+1}=g(x_k) k=0,1,2,....

Th5.3 设迭代函数 g(x) 在[a,b] 上具有连续的一阶导数,且当

- $(1) x \in [a,b]$ 时, $a \leq g(x) \leq b$;
- (2) 存在正数L<1, 对 x ∈ [a,b] 有|g'(x)| ≤L<1成立,

则 x=g(x) 在 [a,b] 上有唯一解 x^* ,且对任意的初始近似值 $x_0 \in [a,b]$ 迭代过程 $x_{k+1}=g(x_k)(k=0,1,2,....)$ 收敛且 $\lim_{k\to\infty} x_k=x^*$

证明: ① x*的存在性

作 h(x)=x-g(x),则h(x)在[a,b]上连续;

析 $h(a)=a-g(a) \le 0$, $h(b)=b-g(b)\ge 0$;

由连续函数性质,必有 $x^* \in [a,b]$ 使 $h(x^*)=0$ 即 $x^*=g(x^*)$ ✓ ② x^* 的唯一性

若 $x^{\triangle} \in [a,b]$,且 $x^{\triangle} = g(x^{\triangle})$,则 $x^* - x^{\triangle} = g(x^*) - g(x^{\triangle})$,那么 $x^* - x^{\triangle} = g'(\xi)(x^* - x^{\triangle})$, ξ 在 $x^* = \xi$ 0 且 ξ 0 是 ξ 0

SHUST

Chapter 5 Solutions of equations in one varible

③ 迭代过程的收敛性

 $x^*-x_{k+1}=g(x^*)-g(x_k)=g'(\xi)(x^*-x_k),$ 由条件(1)知 $x_k \in [a,b], 则\xi \in (a,b),$

说明

- ▶ Th中条件(1) 迭代序列{x₁} 均在[a,b] 内;
- ▶ 条件(2)保证x_k与x*间的距离随k增加而减少并最终趋于0。
- ▶ 对x³-x-1=0 的两种格式分析

$$g(x) = \sqrt[3]{x+1}$$
 $g(x) = x^3 - 1$ $[a,b] = [1,2]$

MHUST

Algorithm: Fixed-Point Iteration Chapter 5 Solutions of equations in one varible Find a solution to x = g(x) given an initial approximation x_0 . Input: initial approximation x_0 ; tolerance TOL; max. num. of iterations N_{max} . Output: approximate solution x or message of failure. Step 1 Set i = 1; Step 2 While ($i \le N_{max}$) do steps 3-6 Step 3 Set $x = g(x_0)$; /* compute x_i */ Step 4 If $|x - x_0| < TOL$ then Output (x); /* successful */ STOP; Step 5 Set $x = x_0$ | x = x

例5.3求方程 $x=e^{-x}$ 在 $x_0=0.5$ 附近的近似根,要求精确到小数后三位.

解: 此时f(x)= x-e-x=0 f(0.5)<0 f(0.6)>0

∴ [0.5,0.6] 为f(x)=0 的有根区间。

取g(x)=e^{-x}; 从而迭代格式 $x_{k+1}=e^{-x_k}$ $k=0,1,2,\cdots$ 判定收敛性:

当x∈[0.5,0.6], $|g'(x)|=|-e^{-x}|=e^{-x} \le e^{-0.5} \approx 0.607 < 1$

.. 迭代格式收敛

取 x_0 =0.5,精度要求ε= $10^{-3}/2$ =0.0005迭代, 结果见p129表

PHUST

HUST

in one	equation		
_	$x_k - x_{k-1}$	x_k	k
		0.5	0
	0.10653	0.60653	1
	- 0.06129	0.54524	2
	0.03446	0.57970	3
	- 0.01963	0.56007	4
	0.0110	0.57117	5
	- 0.00631	0.56486	. 6
	0.00358	0.56844	7
	- 0.00203	0.56641	8
	0.00115	0.56756	9
	- 0.00065	0.56691	10

10

局部收敛性

Chapter 5 Solutions of equations in one varible

Th5.3 的迭代收敛条件之一: $x \in [a,b]$, $|g'(x)| \le L < 1$ 在[a,b]较大时,其该条件不易满足,考虑局部收敛性——

Def: 若在 x^* 的某邻域 \triangle : $|x-x^*| \le \delta$,迭代过程对任意的初始值 $x_0 \in \triangle$ 均收敛,则称其具有局部收敛性。

Th5.5 设g(x)在x=g(x) 的根 x^* 邻近有连续的一阶导数,且 $|g'(x^*)|<1$,则迭代过程 $x_{k+1}=g(x_k)$ 具有局部收敛性。

MHUST

局部收敛性

Chapter 5 Solutions of equations in one varible

Th5.5 设g(x)在x=g(x) 的根 x^* 邻近有连续的一阶导数,且 $|g'(x^*)| < 1$,则迭代过程 $x_{k+1} = g(x_k)$ 具有局部收敛性.

分析: 在 \triangle :|x-x*|≤ δ 即[x*- δ , x*+ δ]应用Th5.3来证明.

证 ∵|g'(x*)|<1且g'(x) 在x*的邻近连续

∴ 存在充分小的邻域△: |x-x*|≤δ使

 $x \in \triangle$ 时, $|g'(x)| \le L < 1$ (L为常数)

而 $g(x)-g(x^*)=g'(\xi)(x-x^*)$

又 $x \in \triangle$ 时 $\xi \in \triangle$,有 $|g'(\xi)| \le L<1$.

 \therefore |g(x)-x*|=| g(x)-g(x*) |≤L|x-x*|<|x-x*|≤δ, pg(x) ∈ \triangle .

∴ q(x)在 x^* 的 δ 邻域△内满足Th5.3收敛条件(1)(2);

 $∴ X_{k+1} = g(X_k)$ 对任意 $X_0 ∈ \triangle$ 收敛,即具有局部收敛性。

例5.4 求x³-2x-5=0 在x₀=2 附近的实根。

解: 由 $x^3-2x-5=0$ 得 $x=\sqrt[3]{2x+5}$ \Rightarrow $q(x)=\sqrt[3]{2x+5}$ $\begin{cases} x_{k+1} = g(x_k) = \sqrt[3]{2x_k + 5} & g'(x) = \frac{2}{3}(2x + 5)^{-\frac{2}{3}} \\ x_0 = 2 & \end{cases}$

- ∵ g'(x₀)<1/6 且g'(x)在x₀=2邻近连续</p>
- ∴ 迭代格式X_{k+1}=g(X_k) 在X₀=2的邻域内具有局部收敛性

 $x_1 = \sqrt[3]{2x_0 + 5} = 2.0800838$ $x^*=2.0945514815$

 $x_2 = 2.0923507, x_3 = 2.0942170,$ 误差逐步减小,减小速度为6-k

 $x_4 = 2.0945006, \ x_5 = 2.0945438,$

 $x_c = 2.0945503$

注: 构造 $x = \frac{1}{2}(x^3 - 5)$ $g(x) = \frac{1}{2}(x^3 - 5)$ $g'(x) = \frac{3}{2}x^2$ g'(2) = 6 > 1如取 $x_0 = 2$,则 $x_1 = 1.5$, $x_2 = -0.125$, $x_3 = -2.500$,

 $x_4 = -10.312, x_5 = -551.2, \dots$ 是发散序列。

选代法在实时系统设计中的应用 Chapter 5 Solutions of equations in one varible

假定实时系统由N个实时任务构成集合 $\Gamma = \{t_1, t_2, ..., t_N\}$

 $\Gamma = \{t_i = \langle C_i, T_i, D_i, p_i \rangle \mid i=1, ..., N\}$

 $R_{i} \leq D_{i}, i=1, 2, ..., N$

$$R_{i} = C_{i} + \sum_{j \in \Gamma, p_{j} > p_{i}} \left[\frac{R_{i}}{T_{j}} \right] C_{j}$$

$$R_i^{(n+1)} = C_i + \sum_{j \in \Gamma, p_j > p_i} \left[\frac{R_i^{(n)}}{T_j} \right] C_j$$

取迭代初值 $R_{i}^{(0)} = 0$

如果 $R_i^{(n+1)} = R_i^{(n)}$ 表明迭代收敛, $R_i = R_i^{(n+1)}$

如果 $R_i^{(n+1)} > D_i$ 表明任务 t_i 是不可调度的.

5.3.1 迭代过程的收敛速度

Chapter 5 Solutions of equations in one varible

迭代格式 $X_{k+1} = g(x_k)$ 的收敛速度依赖于什么? $|x^*-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$

若|g'(x)| ≤L<1:

当 L≈0 时 收敛快,

当 L≈1 时 收敛慢,

而 L>1 时, 不收敛(发散)。

收敛速度用收敛阶来衡量:

Def5.2 迭代序列 $\{x_k\}$ 收敛于f(x)=0 的根 x^* $(x_k \to x^*)$,记第k 步迭代的误差为 $e_k = x_k - x^*(k=0,1,2,.....)$,若有某个实数 $p \ge 1$ 和非零常数C 使 $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$ $(k \ne 0)$ 则称 $\{x_k\}$ 是 p阶收敛的。

注: p的大小反映收敛速度的快慢,p越大,收敛越快 p=1 —— 线性收敛; p=2 —— 平方收敛 p>1 —— 超线性收敛

HUST

Chapter 5 Solutions of equations in one varible

Th5.6 对于迭代过程 $X_{k+1} = g(X_k)$,如果迭代函数g(x)在根 X^* 的邻近有连续二阶导数,且 $|g'(X^*)| < 1$

- (1) 当g'(x*) ≠0 时, 迭代过程线性收敛;
- (2) 当 $g'(x^*) = 0$ 而 $g''(x^*) \neq 0$ 时,迭代过程平方收敛.

分析: 用泰勒公式证

$$(1) \xrightarrow{e_{k+1}} \to g'(x^*) \qquad (2) \xrightarrow{e_{k+1}} \to \xrightarrow{g''(x^*)}$$

注: 推广的结论Th5.7

HW: 作业五 #2

注: 构造迭代函数的一般方法

 $x=x+\lambda(x)f(x)$, $g(x)=x+\lambda(x)f(x)$

由|g'(x)| ≤L<1 → 选λ(x)

MHUST

Review: $X_{k+1} = g(X_k)$

equations in one varible

Ths.3 设迭代函数 g(x) 在[a,b] 上具有连续的一阶导数,且当

- $(1) x \in [a,b]$ 时, $a \leq g(x) \leq b$;
- (2) 存在正数L<1, 对 x ∈ [a,b] 有[g'(x)] < L<1成立, 则 x=g(x)在[a,b]上有唯一解x*, 且对任意的初始近似值 $x_0 \in [a,b]$ 迭代过程 $x_{k+1} = g(x_k)(k=0,1,2,....)$ 收敛且 $\lim_{k \to \infty} x_k = x^*$

 $|x^*-x_k| \le \frac{|x_{k+1}-x_k|}{1-L}$ $|x^*-x_k| \le \frac{L^k}{1-L}|x_1-x_0|$ Th5.4 在 Th5.3的条件下,有误差估计式:

局部收敛性: 若对某邻域△: $|x-x^*| \le \delta$, 迭代过程对 $\forall x_0 \in \triangle$ 均收敛。 Th5.5 设g(x)在x=g(x)的根 x^* 邻近有连续的一阶导数,且 $|g'(x^*)|<1$, 则迭代过程 $X_{k+1} = g(X_k)$ 具有局部收敛性。

p阶收敛: 若有某个实数 p≥1和非零常数C 使 lim l e_{k+1} l =C (k ≠ 0)

HUST

5.3.2 迭代过程的加速

Chapter 5 Solutions of equations in one varible

收敛的迭代过程,若收敛速度太慢,需改进以加速收敛。 /* accelerating convergence */

迭代公式的加工: 对于迭代公式 $x_{k+1}=g(x_k)$ k=0,1,2,..... 若g'(x) 在求根范围内改变不大, 取g'(x) ≈ a 当|g'(x)| ≈|a|≤L<1

(1) x_k 为 x*的近似值,迭代一次得 $x_{k+1} = g(x_k)$

$$\therefore x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\xi)(x^* - x_k) \approx a(x^* - x_k)$$

$$\therefore \text{(1-a)} x * - x_{k+1} \approx -a x_k \ \Rightarrow \text{(1-a)} x * - x_{k+1} + a x_{k+1} \approx a x_{k+1} - a x_k$$

$$\therefore (1-a)(x^*-x_{k+1}) \approx a(x_{k+1}-x_k) \Rightarrow x^*-x_{k+1} \approx \frac{a}{1-a}(x_{k+1}-x_k)$$

(2) 将以上误差补偿给 x_{k+1} 得更精确的近似根 $x_{k+1} = x_{k+1} + \frac{a}{1-a}(x_{k+1} - x_k)$

例 用加速收敛的方法求 $x=e^{-x}$ 在x=0.5 附近的一个根,要求精度为 $\varepsilon=10^{-5}$

分析: 例5.3中,用简单迭代法迭代10次才达到精度10⁻³,那么用改进的公式迭代多少次满足精度要求10⁻⁵?

解: $g(x)=e^{-x}$ 且 $g'(x)=-e^{-x}$,在x=0.5 附近有: $g'(x)\approx -0.6$,

从而加速公式为
$$\begin{cases} x_{k+1}^{\prime} = e^{-x_k} \\ x_{k+1} = x_{k+1}^{\prime} - \frac{0.6}{1.6} (x_{k+1}^{\prime} - x_k) \end{cases}$$

取x₀ =0.5, 迭代结果为

k	0	1	2	3	4
\mathbf{x}_{k}	0.5	0.56658	0.56713	0.56714	0.56714
~ X _k		0.60653	0.56746	0.56715	0.56715

PHUST

Aitken 加速法

Chapter 5 Solutions of equations in one varible

注: 新的改进值(不含a 的信息,对两次迭代值加工)

MHUST

•

Chapter 5 Solutions of equations in one varible

例5.8 用Aitken 法解方程x3-x-1=0.

说明: 迭代格式 $X_{k+1}=X_k^3-1$ $(X_0=1.5)$ 是发散的

解:对 $x_{k+1}=x_k^3-1$ 利用Aitken 加速迭代公式

$$x^* \approx \overline{x_{k+1}} - \frac{(\overline{x_{k+1}} - x_{k+1})^2}{\overline{x_{k+1}} - 2x_{k+1} + x_k}$$
 $k = 0, 1, 2, ...$

 $\mathbf{p}_{X_0} = 1.5 进行迭代 , 结果见P135表$

HUST

			Chapter 5 Solutions of equations in one varible	
k	$ ilde{x}_k$	\overline{x}_k	x_k	
0			1.5	
1	2.37500	123965	1.41629	
2	1.84092	5.23888	1.35565	
3	1.49140	2.31728	1.32895	
4	1.34710	1.44435	1.32480	
5	132518	1.32714	1.32472	

发散的迭代公式被加速后有较好的收敛性。

Chapter 5 Solutions of equations in one varible
 下面给出Newton法的算法和步骤
 (1) 准备 取初始值 x_0 及精度 ϵ 和最大迭代次数N,置k=0
 (2) 迭代 if $(f'(x_0)=0)$ stop (失败) else $x_1=x_0-\frac{f(x_0)}{f'(x_0)}$ (3) 控制 if $(|f(x_1)|<\epsilon$ or $|x_1-x_0|<\epsilon$) stop $(x^*\approx x_1)$ else if (k=N) stop $(x^*\approx x_1)$ else (x_0) else (x_0) (x_0) else (x_0) 0 else (x_0) 1 else (x_0) 2 (x_0) 3 (x_0) 4 (x_0) 5 (x_0) 6 (x_0) 6 (x_0) 7 (x_0) 7 (x_0) 8 (x_0) 9 (x_0)

equations in one varible

例5.8 用 Newton法求方程f(x)=x4-2x-4的根,精确到0.01。

解 :
$$f'(x)=4x^3-2$$
,则Newton 迭代公式 为 $x_{k+1}=x_k-\frac{x_k^4-2x_k-4}{4x_k^3-2}$

$$f(1)=-5$$
, $f(2)=8$, 选取 $x_0=1.5$, $f'(1.5)=11.5$

(1)
$$f(1.5) = -1.9375, f'(1.5) = 11.5$$

(2)
$$f(x_1) = 0.412696$$
, $f'(x_1) = 16.57896$

$$x_1 = 1.5 - \frac{(-1.9375)}{11.5} = 1.668478$$

$$x_1 = 1.5 - \frac{(-1.9375)}{11.5} = 1.668478$$
 $x_2 = 1.668478 - \frac{0.412696}{16.57896} = 1.643585$

$$(3) f(x_2) = 0.010243, f'(x_2) = 15.75974$$

$$|x_3 - x_2| = 0.00065 < \varepsilon$$

$$|x_3 - x_2| = 0.010243, f'(x_2) = 15.75974$$
 $|x_3 - x_2| = 0.00065 < \varepsilon$
 $|x_3 - x_2| = 0.00065 < \varepsilon$

(4)
$$f(x_3) = 1.62 \times 10^{-6}$$
, $f'(x_3) = 15.7387$

$$x_4 = 1.642935 - \frac{1.62 \times 10^{-6}}{15.7387} = 1.64293519$$

BHUST

Newton法的收敛性

Chapter 5 Solutions of equations in one varible

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = g(x_k) \implies g(x) = x - \frac{f(x)}{f'(x)}$$

条件: 若 f(x)有单根x*, 且 f(x)在x*邻近具有连续二阶导数, 隐含: f(x*)=0, f'(x*)≠0

应用 Th5.5讨论其收敛性

$$g'(x^*) = \frac{f(x) \cdot f''(x)}{[f'(x)]^2} \Big|_{x=x^*} = 0$$
 由Th5.4 ,Newton 法是局部收敛的

$$g''(x) = \frac{[f'(x)f''(x) + f(x)f'''(x)] \cdot [f'(x)]^2 - f(x)f''(x)2f'(x)f''(x)]}{[f'(x)]^4}$$

$$g''(x^*) = \frac{f''(x^*)}{f'(x^*)}$$

例5.10 用Newton法求方程xex-1=0的根 ,取五位小数计算。

解:
$$f(x)=xe^{x}-1$$
, $f'(x)=e^{x}+xe^{x}$, Newton迭代公式 $x_{k+1}=x_{k}-\frac{x_{k}e^{x_{k}}-1}{e^{x_{k}}+x_{k}e^{x_{k}}}$

即
$$X_{k+1} = X_k - \frac{X_k - e^{-X_k}}{1 + X_k}$$
 , $\mathbf{p}_{X_0} = 0.5$ 迭代结果为

 k
 0
 1
 2
 3

 x_k
 0.5
 0.57102
 0.56716
 0.56714

Newton 法收敛速度快

例5.11 Newton法应用: $\sqrt{c} = ?$ 解 $x^2-c=0$, $f(x)=x^2-c$, f'(x)=2x

(*)式 含义: \sqrt{c} 的两个近似值 $\mathbf{x_k}$, $\frac{c}{\mathbf{x_k}}$ 的算术平均是更好的近似值

注: $x_{k+1} = \frac{1}{2} (x_k + \frac{c}{x_k})$ 对任意 $x_0 > 0$ 都为平方收敛

M HUST

牛顿法初值的选取(了解)

Chapter 5 Solutions of equations in one varible

- 牛顿法是一种局部收敛法,如果初值 x_0 选择不当,可能得不到收敛的迭代序列。
- 为使牛顿法收敛,必须满足:用迭代公式算出的 x_1 比 x_0 更靠近准确根 x^*
- 如果 $f'(x_0) = 0$,则不能运用牛顿迭代公式,如果 $f'(x_0)$ 非常小,也不能得到很快的收敛序列。

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} \longrightarrow x_{1} - x^{*} = (x_{0} - x^{*}) - \frac{f(x_{0})}{f'(x_{0})}$$

牛顿法初值的选取(续)

Chapter 5 Solutions of equations in one varible

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \longrightarrow x_1 - x^* = (x_0 - x^*) - \frac{f(x_0)}{f'(x_0)}$$

$$\frac{\varepsilon_1}{\varepsilon_0} = 1 - \frac{f(x_0)}{f'(x_0)(x_0 - x^*)} = 1 + \frac{f(x_0)}{f'(x_0)(x^* - x_0)}$$

$$= \frac{f(x_0) + f'(x_0)(x^* - x_0)}{f'(x_0)(x^* - x_0)}$$

$$f(x^*) = f(x_0) + f'(x_0)(x^* - x_0) + \frac{f''(\xi)}{2!}(x^* - x_0)^2 = 0$$

$$f(x_0) + f'(x_0)(x^* - x_0) = -\frac{f''(\xi)(x^* - x_0)^2}{2!}$$

$$\frac{\varepsilon_1}{\varepsilon_0} = -\frac{f''(\xi)(x^* - x_0)^2}{2f'(x_0)(x^* - x_0)} = -\frac{f''(\xi)(x^* - x_0)}{2f'(x_0)}$$

$$\frac{\mathcal{E}_1}{\mathcal{E}_0} = \frac{f''(\xi)(x^* - x_0)}{2f'(x_0)}$$
 Chapter 5 Solutions of equations in one varible
$$\frac{\mathcal{E}_1}{\mathcal{E}_0} = \frac{f''(\xi)(x^* - x_0)}{2f'(x_0)}$$

$$f(x^*) = f(x_0) + f'(\eta)(x^* - x_0) = 0 \longrightarrow x^* - x_0 = -\frac{f(x_0)}{f'(\eta)}$$

$$\text{如果 } f''(x) \text{ 和 } f''(x) \text{ 在 } x_0 \text{ 附近变化不大, } \text{ 并且}$$

$$f''(x_0) \neq 0, \text{ 则可近似的认为:}$$

$$f''(\xi) \approx f''(x_0) \qquad f'(\eta) \approx f'(x_0)$$

$$\frac{\mathcal{E}_1}{\mathcal{E}_0} = -\frac{f''(\xi)\left(-\frac{f(x_0)}{f'(\eta)}\right)}{2f'(x_0)} = \frac{f''(\xi) \cdot f(x_0)}{2f'(x_0) \cdot f'(\eta)} \approx \frac{f''(x_0) \cdot f(x_0)}{2[f'(x_0)]^2}$$

$$\frac{\varepsilon_1}{\varepsilon_0} \approx \frac{f''(x_0) \cdot f(x_0)}{2[f'(x_0)]^2}$$
 Chapter 5 Solutions of equations in one varible $\varepsilon_0 \approx 2[f'(x_0)]^2$ 为了满足 x_1 比 x_0 更靠近准确根 x^* ,必须有:
$$|\varepsilon_1| < |\varepsilon_0|$$
 即:
$$\left|\frac{\varepsilon_1}{\varepsilon_0}\right| < 1 \longrightarrow \left|\frac{f''(x_0) \cdot f(x_0)}{2[f'(x_0)]^2}\right| < 1$$
 从而:

THUST

 $f''(x_0) \neq 0$ 条件 2

$$\begin{cases} x_{k+1} = x_k - \lambda \, \frac{f(x_k)}{f'(x_k)} & \quad 0 < \lambda \leq 1 \\ |f(x_{k+1})| < |f(x_k)| & \quad \text{if } \hat{z} : \lambda = 1 \to \lambda = \frac{1}{2} \to \lambda = \frac{1}{2^2} \to \dots \end{cases}$$

注: λ=1 时就是Newton's Method 公式。

当λ=1代入效果不好时,将λ减半计算,逐步试探。

例
$$x^3$$
- x - 1 = 0 . $x_{k+1}=x_k-\lambda \frac{x_k^3-x_k-1}{3x_k^2-1}$
取 $x_0=0.6, t_1=17.9, \lambda=\frac{1}{32}$.

$$x_1 = \frac{1}{32} \overline{x_1} + \frac{31}{32} x_0 = 1.140625$$

BHUST

Algorithm: Newton's Descent Method equations in one varible

Chapter 5 Solutions of

Find a solution to f(x) = 0 given an initial approximation x_0 .

Input: initial approximation x_0 ; f(x) and f'(x); minimum step size of x_{min} ; tolerance TOL1 for x; tolerance TOL2 for λ ; maximum number of iterations N_{max} .

Output: approximate solution x or message of failure.

Step 1 Set k = 1;

Step 2 While ($k \le N_{max}$) do steps 3-10

Step 3 Set
$$\lambda = 1$$
;

Step 4 Set
$$x = x_0 - \lambda \frac{f(x_0)}{f'(x_0)}$$
; /* compute x_k */

Step 5 If $|x-x_0| < TOL1$ then Output (x); STOP; /* successful */

Step 6 If $|f(x)| < |f(x_0)|$ then $x_0 = x$; GOTO Step 10; /* update $x_0 */$

Step 7 Set $\lambda = \lambda / 2$; /* update λ to descend */

Step 8 If $\lambda > TOL2$ then GOTO Step 4; /* compute a better x_i */

Step 9 Set $x_0 = x_0 + x_{min}$; /* move forward anyway to avoid deadlock */ Step 10 Set k ++;

Step 11 Output (Method failed after N_{max} iterations); STOP. /* unsuccessful */

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 每一步迭代须计算 $f'(x_k)$

简化 Newton法

 $f'(x_k)$ 换为常数C, $x_{k+1}=x_k-\frac{f(x_k)}{C}$ ——推广的简化的Newton法 取C= $f'(x_0)$, $x_{k+1}=x_k-\frac{f(x_k)}{f(x_0)}$ ——简化的Newton法

取C=f'(
$$x_0$$
), $x_{k+1}=x_k-\frac{f(x_k)}{f'(x_0)}$ ——简化的Newton法

上述两种方法简化了迭代计算过程,但收敛速度受到影响。

由迭代函数g(x)=x-f(x)/c 得推广的简化Newton 法收敛

$$\Leftrightarrow \mid g'(x^*) \mid = \mid 1 - \frac{f'(x^*)}{C} \mid < 1 \Leftrightarrow 0 < \frac{f'(x^*)}{C} < 2$$

此时,推广的简化 Newton 法局部收敛且一般为线性收敛。

THUST

弦截法

Chapter 5 Solutions of equations in one varible

对 Newton法作另一种改进:

迭代函数:
$$g(x)=x-\frac{f(x)}{f(x)-f(x_0)}(x-x_0)$$

用弦 $\overline{P_0P_k}$ 的斜率代替 P_k 点的切线斜率 $f'(X_k)$, 弦为

$$y - f(x_k) = \frac{f(x_k) - f(x_0)}{x_k - x_0} (x - x_k)$$
其与x轴交点 $x_{k+1} = 0 - f(x_k) = \frac{f(x_k) - f(x_0)}{x_k - x_0} (x_{k+1} - x_k)$

$$\therefore x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_0)} (x_k - x_0)$$

$$\therefore X_{k+1} = X_k - \frac{f(X_k)}{f(X_k)}(X_k - X_0)$$

上述迭代法称为弦截法

迭代函数
$$g(x)=x-\frac{f(x)}{f(x)-f(x_0)}(x-x_0)$$

$$g'(x) = 1 - \left\{ \left[\frac{f'(x)(f(x) - f(x_0)) - f(x)f'(x)}{(f(x) - f(x_0))^2} \right] (x - x_0) + \frac{f(x)}{f(x) - f(x_0)} \right\}$$

$$= 1 - \left\{ \! \left[\frac{-f'(x)f(x_{_{\! 0}})}{(f(x) - f(x_{_{\! 0}}))^2} \right] \! (x - x_{_{\! 0}}) + \frac{f(x)}{f(x) - f(x_{_{\! 0}})} \right\}$$

$$\therefore g'(x^*) = 1 + \frac{f'(x^*)}{f(x_0)}(x^* - x_0) = 1 - \frac{f'(x^*)}{\frac{f(x^*) - f(x_0)}{x^* - x_0}}$$

当 x_0 靠近 x^* 时, $0 < |g'(x^*)| < 1$,弦截法线性收敛。

为提高弦截法的收敛速度,介绍另一类型的弦截法.

PHUST

快速弦截法

Chapter 5 Solutions of equations in one varible

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$\therefore f'(x_k) \approx f[x_{k-1}, x_k] = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

—— 快速弦截法

其几何意义: X_{k+1} 为弦 $P_{k-1}P_k$ 与X 轴的交点

收敛性 如果:f(x) 在根 x^* 的邻域 \triangle : $|x-x^*| \le \delta$ 内具有二阶连续导数 且对 $x \in \triangle$,有 $f'(x) \ne 0$,当 x_0 , $x_1 \in \triangle$ 且 \triangle 充分小时,快速弦截法按 阶 $p = \frac{1+\sqrt{5}}{2} \approx 1.618$ 收敛到根 x^* .

M HUST

```
Chapter 5 Solutions of equations in one varible x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})}(x_k - x_{k-1}) \quad \text{计算} x_{k+1} \text{ 时须用} x_k, \, x_{k+1} Algorithm: \text{step1: 选取} x_0, \, x_1 \, , \, \text{计算函数值} f_0 = f(x_0), \, f_1 = f(x_1); \text{step2: 迭代 } x_2 = x_1 - \frac{f_1}{f_1 - f_0}(x_1 - x_0) \text{step3: if } (|x_2 - x_1| < \varepsilon_1 \text{ or } |f(x_2)| < \varepsilon_2), \text{ then } x^* \approx x_2 \, , \text{ stop.} \text{else if } (\text{迭代次数} \leq N) \text{ then} \{ x_0 = x_1, x_1 = x_2, f_0 = f(x_0), f_1 = f(x_1); \text{goto step2} \} \text{else } \text{输出 "迭代过程不收敛"}, \text{ stop.}
```

```
Chapter 5 Solutions of
                                                      equations in one varible
  例 求方程f(x)=\sin x - (x/2)^2=0 的正根,要求用快速弦截法,
      \varepsilon_1 = \varepsilon_2 = 10^{-4}/2
  n x_0=1, x_1=2
                                           x_{n+1}-x_n f(x_n)
 2 x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0) = 1.86704 0.064316 +0.84981
                               1.93135
                                          0.002490 +0.003167
                                          -0.000091 -0.000120
                              1.93384
                              1.93375
                                          -0.000001
                                                       +0.000001
                              1.93375
 得 x* ≈x<sub>6</sub>= 1.93375
HUST
```

本章的问题是: 求解非线性方程 f(x)=0

二分法: $x_k = \frac{1}{2}(a_k + b_k) | x^* - x_k | \le \frac{1}{2^{k+1}}(b-a)$

特点--简便、易掌握、对f(x)的要求不高,但收敛较慢。

简单迭代法: $f(x)=0 \Leftrightarrow x=g(x)$

收敛要求: |g'(x)| ≤ L < 1

迭代格式: $X_{k+1} = g(X_k)$

停机准则: $|x_{k+1}-x_k|<\varepsilon$

大范围收敛与局部收敛性的理论 收敛的阶

加速迭代: Aitken加速

牛顿迭代法: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 二阶收敛 Newton法的改进

PHUST