Frühjahr 15 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $Q := \{z \in \mathbb{C} \mid \text{Re}(z) < 0 \text{ und } \text{Im}(z) > 0\}$ der offene zweite Quadrant der komplexen Zahlenebene. Bestimmen Sie mit Begründung alle Abbildungen $f:Q\to\mathbb{C}$, die Q biholomorph auf die offene Einheitskreisscheibe $\mathbb{E} := \{z \in \mathbb{C} \mid |z| < 1\}$ abbilden mit f(-1+i) = 0.

Lösungsvorschlag:

Sei $\mathbb{H}^+:=\{z\in\mathbb{C}: \mathrm{Im}(z)>0\}$ die offene obere Halbebene der Gaussschen Zahlenebene. Die Cayley-Transformation $C: \mathbb{H}^+ \to \mathbb{E}, z \mapsto \frac{z-i}{z+i}$ ist bekanntermaßen eine wohldefinierte, biholomorphe Abbildung. Wir werden zunächst zeigen, dass die Funktionen $f_a: Q \to \mathbb{E}$ mit $f(z) = aC(-\frac{z^2}{2})$, wobei $a \in \mathbb{C}$ mit |a| = 1 ist, biholomorph sind und $f_a(-1+i) = 0$ erfüllen. Wir zeigen dazu zunächst, dass die Funktionen $f_a: Q \to \mathbb{E}, z \mapsto aC(-\frac{z^2}{2})$ für $a \in \partial B_1(0)$ bijektiv und wohldefiniert sind. Dass es sich um holomorphe Funktionen handelt ist klar. Anschließend zeigen wir, dass für jede biholomorphe Funktion $g:Q\to\mathbb{E}$ mit g(-1+i)=0 ein $a \in \partial B_1(0)$ mit $g = f_a$ existiert.

Wohldefiniertheit: Sei $z \in Q$, dann ist in der Polardarstellung $z = re^{i\varphi}$ mit r > 0 und $\varphi \in (\frac{\pi}{2}, \pi)$, also ist $z^2 = r^2 e^{i2\varphi}$. Wegen $2\varphi \in (\pi, 2\pi)$ liegt z^2 in der unteren Halbebene, d. h. es gibt $x \in \mathbb{R}, y < 0$ mit $z^2 = x + iy$. Dann ist $-\frac{z^2}{2} = -\frac{1}{2}x - \frac{1}{2}iy \in \mathbb{H}^+$, weil $\operatorname{Im}(-\frac{z^2}{2}) = -\frac{y}{2} > 0$ ist. Es folgt $C(-\frac{z^2}{2}) \in \mathbb{E}$ aus den Eigenschaften der Cayley-Transformation und damit $|f_a(z)| = |a||C(-z^2)| < 1$ für alle $z \in Q$. Also ist $f_a: Q \to \mathbb{E}$ wohldefiniert.

Bijektivität: Wir definieren $\mathbb{H}^- := \{z \in \mathbb{C} : \operatorname{Im}(z) < 0\}$ und behaupten, dass $q: Q \ni$ $z\mapsto z^2\in\mathbb{H}^-$ bijektiv ist. Im vorherigen Punkt hatten wir bereits gesehen, dass diese Abbildung wohldefiniert ist. Seien $w, z \in Q$ mit $z^2 = w^2$, dann folgt $0 = z^2 - w^2 = (z - w)(z + w)$, also $z = \pm w$. Wäre z = -w so würde aus $z \in Q$ folgen, dass Re(z) < 0 ist und damit Re(w) = -Re(z) > 0, im Widerspruch zu $w \in Q$. Also muss z = w gelten und die Abbildung ist injektiv. Ist dagegen $z \in \mathbb{H}^-$, so können wir in Polardarstellung $z = re^{i\psi}$ mit $r>0, \psi\in(\pi,2\pi)$ schreiben. Dann ist $\sqrt{r}e^{i\frac{\psi}{2}}\in Q$, weil $\frac{\psi}{2}\in(\frac{\pi}{2},\pi)$ ist und es gilt $(\sqrt{r}e^{i\frac{\psi}{2}})^2 = re^{i\psi} = z$, also ist die Abbildung auch surjektiv und damit bijektiv.

Für $z_0 \in \mathbb{C} \setminus \{0\}$ sei p_{z_0} die Abbildung $z \mapsto z_0 z$. Diese ist bijektiv mit Inversem

 $p_{z_0}^{-1}=p_{z_0^{-1}}.$ Wir können nun $f_a=p_a\circ C\circ p_{-\frac{1}{2}}\circ q$ schreiben. Wir hatten bereits gesehen, dass diese Verkettungen wohldefiniert sind und, dass $q:Q\to \mathbb{H}^-,C:\mathbb{H}^+\to \mathbb{E}$ bijektiv sind. Die Abbildungen $p_{-\frac{1}{2}}: \mathbb{H}^- \to \mathbb{H}^+, p_a: \mathbb{E} \to \mathbb{E}$ sind ebenso bijektiv, wie sich sehr leicht einsehen lässt, wenn man zeigt, dass die Funktionen $p_{-\frac{1}{2}}: \mathbb{H}^- \to \mathbb{H}^+; p_{-2}: \mathbb{H}^+ \to \mathbb{H}^-; p_a, p_{a^{-1}}: \mathbb{E} \to \mathbb{E}$ wohldefiniert sind. Die Wohldefiniertheit der ersten beiden sieht man durch Betrachtung der Imaginärteile und die der letzten beiden durch Betrachtung der Beträge. Damit ist f_a als Verkettung von vier bijektiven Funktionen selbst bijektiv.

$$f_a(-1+i) = 0$$
: Es gilt $f_a(-1+i) = aC(-\frac{-2i}{2}) = aC(i) = a \cdot 0 = 0$ für alle $a \in \partial B_1(0)$.

Eindeutigkeit: Sei $g:Q\to\mathbb{E}$ biholomorph mit g(-1+i)=0, dann ist $h=g\circ f_1^{-1}:\mathbb{E}\to\mathbb{E}$ ebenso biholomorph und erfüllt h(0)=g(-1+i)=0. Aus der Charakterisierung von $\operatorname{Aut}(\mathbb{E})$ folgt, dass h eine Möbiustransformation von der Form $h(z)=\frac{\alpha z}{\overline{\alpha}}$ ist, wobei $|\alpha|=1$ ist. Das heißt es gilt $g(f_1^{-1}(z))=az$ für alle $z\in\mathbb{E}$, wobei $a=\frac{\alpha}{\overline{\alpha}}$ ist und $|a|=\frac{|\alpha|}{|\overline{\alpha}|}=\frac{1}{1}=1$ ist. Für alle $w\in Q$ ist $f_1(w)\in\mathbb{E}$ und daher $g(w)=h(f_1(w))=af_1(w)=f_a(w)$. Damit ist g von der Form f_a und alles ist gezeigt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$