

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

MAT 140 - Cálculo I 2016/I $1^{\underline{a}}$ Lista - Revisão

1. Determine o conjunto solução das seguintes equações:

(a)
$$|x^2 - 3| = 13$$

(b)
$$|x+3| = 2x - 5$$

(c)
$$|x|^2 - 5|x| + 6 = 0$$

(d)
$$|x+3| + |x-2| = 4$$

(e)
$$x^4 - 5x^2 + 4 = 0$$

(f)
$$x^3 - 6x^2 + 11x - 6 = 0$$

2. Determine o conjunto solução das seguintes inequações:

(a)
$$\frac{x}{3} - \frac{x+1}{2} < \frac{1-x}{4}$$

(b)
$$(x-1)(2x-3) \ge 0$$

(c)
$$(x-2)(-2x-4)(x-4) \le 0$$

(d)
$$\frac{3x}{x+1} + \frac{5}{2} \le \frac{7}{2x+2}$$

(e)
$$\frac{5}{2x} - \frac{1}{2} \ge \frac{7}{x}$$

(f)
$$-6 < x^2 - 5x < 6$$

(g)
$$(x^2 + 2x - 3)(3x^2 - 4x + 8) < 0$$

(h)
$$\frac{x-1}{x+2} > \frac{2x+1}{x+1}$$

(i)
$$\frac{1}{x-1} - \frac{1}{2x+1} > -3$$

(j)
$$|x^2 - 4| < 5$$

(k)
$$|x^2 - x| > 2$$

(l)
$$|x+2| - |x-3| > x$$

3. Dada a função $f(x) = 2x^2 - 3$, determine:

(a)
$$f(-5)$$

(b)
$$f(0)$$

(c)
$$f(\sqrt{3})$$

(d)
$$f(x_0)$$

(e)
$$x \in \mathbb{R}$$
 tal que $f(x) = -1$.

$$(f) \frac{f(1+h) - f(1)}{h}$$

(g) um esboço do gráfico de g(x) = |f(x)|.

4. Simplifique as expressões:

(a)
$$\frac{x^2 - 2x}{x^2 - x - 2}$$
(b)
$$\frac{(5+x)^2 - 25}{x}$$

(c)
$$\frac{x^3 - 8}{x^4 - 16}$$

(d)
$$\frac{x^2 - 3x}{x^2 - 9}$$

(e)
$$\frac{2x^2 + 11x - 21}{x^3 + 2x^2 + 4x} \cdot \frac{x^3 - 8}{x^2 + 5x - 14}$$

(f)
$$\frac{x^3+1}{x^2-x-2} \div \frac{x^2-x+1}{x^2-4x+4}$$

- 5. Simplifique a expressão $\frac{f(x_0+h)-f(x_0)}{h}, h \neq 0$, quando:
 - (a) $f(x) = x^2 + x$

(d) $f(x) = \sqrt{x+2}$

- (b) f(x) = 3x + 5
- (c) $f(x) = x^3$

- (e) $f(x) = \frac{1}{x}$
- 6. Dadas as funções f e g definidas por $f(x) = \sqrt{x^2 9}$ e $g(x) = \sqrt{2x x^2}$, determine:
 - (a) o domínio de f

(d) o domínio e a expressão que define $f \cdot g$

- (b) o domínio de g
- (c) o domínio de f + g e f g
- (e) o domínio e a expressão que define $\frac{f}{g}$
- 7. Determine, se possível, os valores das constantes $A, B \in C$ para que, para todo x real, sejam válidas as seguintes igualdades:
 - (a) $\frac{5x-2}{x^2-4} = \frac{A}{x-2} + \frac{B}{x+2}$

(c) $\frac{7x+14}{x^2+x-12} = \frac{A}{x-3} + \frac{B}{x+4}$

(b) $\frac{2x+1}{x^3+x} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$

- (d) $\frac{x^2+2}{x^3-1} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$
- 8. Dadas as funções reais $f \in g$, determine as compostas $f \circ g \in g \circ f$ e seus respectivos domínios:
 - (a) f(x) = 3x e q(x) = 3x + 2
 - (b) $f(x) = x + 2 e g(x) = 4x^2 1$
 - (c) $f(x) = \sqrt{x} e q(x) = 3x^2 + 2$
 - (d) $f(x) = x^2 2 e g(x) = \sqrt{x}$
 - (e) $f(x) = 3x^2 + 2$ e $g(x) = \sqrt{x-4}$
- 9. Dadas as funções

$$f(x) = \begin{cases} x^2 + 2 & se \quad x \le -1 \\ \frac{1}{x - 2} & se \quad -1 < x < 1 \quad & e \quad g(x) = 2 - 3x \\ 4 - x^2 & se \quad x \ge 1 \end{cases}$$

determine as leis que definem $f \circ g$ e $g \circ f$.

10. Considere as funções

$$f(x) = \begin{cases} -2x - 1 & se \ x \le 0 \\ x^2 - 3 & se \ 0 < x \le 3 \end{cases} \quad \text{e} \quad g(x) = \sqrt{1 - x}.$$

- (a) Faça um esboço do gráfico de f.
- (b) Determine o domínio de $g \circ f$.
- (c) Encontre $(g \circ f)(x)$.
- 11. Obtenha a expressão para a inversa de cada uma das funções abaixo:
 - (a) f(x) = 2x + 3
 - (b) $f(x) = \frac{1}{x}$
 - (c) $f(x) = \frac{1}{1-x}$

- (d) $f(x) = \frac{x}{x-1}$
- (e) $f(x) = x^2 3, x \ge 0$
- (f) $f(x) = \sqrt{x-4}$
- 12. Determine o domínio das seguintes funções reais:
 - (a) $f(x) = \sqrt{-bx}, b \in \mathbb{R}$
 - (b) $f(x) = \ln\left(\frac{x}{a}\right), a \in \mathbb{R}_+$
 - (c) $f(x) = \ln(1 + e^x)$
 - (d) $f(x) = \sqrt{3-x}$
 - (e) $f(x) = \sqrt{6 + x x^2}$
 - (f) $f(x) = \sqrt{\frac{x^2 1}{x 2}}$

- (g) $f(x) = \frac{x+1}{x^2-7}$
- (h) $f(x) = \frac{1}{x^2 6x + 5} + \frac{1}{x+4}$
- (i) $f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$
- (j) $f(x) = \sqrt{|2x 1| 4}$
- 13. Estude a variação de sinal (f(x) > 0, f(x) = 0 e f(x) < 0) das seguintes funções:
 - (a) f(x) = -3x + 9
 - (b) f(x) = 5x 3
 - (c) $f(x) = x^2 5x + 6$
 - (d) $f(x) = -x^2 + 4x$

- (e) $f(x) = \frac{x^2 3x 4}{x 2}$
- (f) $f(x) = (x^2 2x 3)(-x^2 3x + 4)$
- (g) $f(x) = \frac{x^2 5x + 6}{x^2 16}$
- 14. Dada a função f definida por $f(x) = \frac{x^2 + x 12}{x^3 + x^2 14x + 6}$, determine:
 - (a) o domínio de f;
 - (b) f(0);
 - (c) os valores de x que satisfazem f(x) = 0,
 - (d) a variação de sinal de f.

- 15. Determine a equação da reta que:
 - (a) passa por (-2,1) e tem coeficiente angular -3;
 - (b) passa pelos pontos (4, -2) e (-1, 3);
 - (c) passa por (2, -4) e é paralela ao eixo x;
 - (d) passa por (-1,3) e é paralela ao eixo y;
 - (e) passa por (3,-1) e é paralela à reta y-3=2x;
 - (f) passa por (1, -2) e é perpendicular à reta x + 2y = -5.
- 16. Encontre o ponto de interseção de cada um dos pares de retas:

(a)
$$x - y = -3 e 2x + 3y = 4$$

(c)
$$2x + 5y = 0$$
 e $3x - 2y = 0$

(b)
$$x + y = 5 e x - y = 1$$

(d)
$$3x - 2y = -14 e 2x + 3y = 8$$

17. Simplifique as expressões:

(a)
$$(1 + \cos x)(1 - \cos x)$$

(b)
$$\frac{1 + \cot^2 x}{\sec^2 x}$$
(c)
$$\frac{\cos x - 1}{\sec x - 1}$$

(c)
$$\frac{\cos x - 1}{\sec x - 1}$$

(d)
$$\frac{\sin^2 2x}{(1+\cos 2x)^2} + 1$$

(e)
$$\cos^2 2x - \sin^2 x$$

(f)
$$tgx - cssec x(1 - 2cs^2 x) sec x$$

18. Faça a divisão do polinômio p(x) pelo polinômio q(x), nos seguintes casos:

(a)
$$p(x) = x^2 - 4x + 4 e q(x) = x - 2$$

(b)
$$p(x) = 10x^2 - 43x + 40 e q(x) = 2x - 5$$

(c)
$$p(x) = 12x^3 - 19x^2 + 15x - 3 e q(x) = 3x^2 - x + 2$$

(d)
$$p(x) = 6x^4 - 10x^3 + 9x^2 + 9x - 5 e q(x) = 2x^2 - 4x + 5$$

- 19. Um retângulo tem perímetro de 20 metros. Expresse a área do retângulo como função do comprimento de um de seus lados.
- 20. Considere uma caixa retangular aberta de volume 2 m^3 cuja base seja quadrada. Expresse a área superficial desta caixa como uma função do comprimento de um de seus lados.
- 21. Verifique se as sentenças abaixo são verdadeiras (V) ou falsas (F). Justifique com propriedades ou contraexemplos.

(a) Se
$$x < y$$
, então $-5x < -5y$.

- (b) Se $x^2 \le 16$, então $x \le 4$.
- (c) Se $x^2 \le 16$, então $x \le -4$.
- (d) Se $x^2 \ge 16$, então $x \le -4$.
- (e) Se $x \neq 0$, $y \neq 0$ e x < y, então $\frac{1}{x} > \frac{1}{y}$.
- (f) Se x < y, então $x^2 < y^2$.
- (g) Se 0 < x < y, então $x^2 < y^2$.
- (h) Se x < 1, então $x^3 < x$.