$12n_{0296} (K12n_{0296})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 508219866971u^{31} - 100745166922u^{30} + \dots + 2157681620548b - 1727274605244, \\ &- 659556719114u^{31} + 420249241465u^{30} + \dots + 2157681620548a - 609787719508, \\ u^{32} - u^{31} + \dots + 12u - 4 \rangle \\ I_2^u &= \langle -au - u^2 + b - 1, \ -u^3a + 2u^2a + 3u^3 + 2a^2 + 2au + u^2 + 2a + 2u - 2, \ u^4 + 2u^2 + 2 \rangle \\ I_1^v &= \langle a, \ b + v, \ v^2 + v + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 5.08 \times 10^{11} u^{31} - 1.01 \times 10^{11} u^{30} + \dots + 2.16 \times 10^{12} b - 1.73 \times 10^{12}, \ -6.60 \times 10^{11} u^{31} + 4.20 \times 10^{11} u^{30} + \dots + 2.16 \times 10^{12} a - 6.10 \times 10^{11}, \ u^{32} - u^{31} + \dots + 12u - 4 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.305678u^{31} - 0.194769u^{30} + \dots + 0.947602u + 0.282612 \\ -0.235540u^{31} + 0.0466914u^{30} + \dots + 0.152492u + 0.800523 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.569624u^{31} - 0.540602u^{30} + \dots - 0.831433u + 0.738674 \\ -0.374580u^{31} + 0.0319571u^{30} + \dots + 0.411896u + 0.929033 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0263408u^{31} - 0.0396638u^{30} + \dots - 0.0912398u - 0.0158334 \\ 0.286928u^{31} - 0.815573u^{30} + \dots - 6.66152u + 2.51686 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.111217u^{31} - 0.545439u^{30} + \dots - 5.88693u + 3.81525 \\ -0.346449u^{31} + 0.596107u^{30} + \dots + 3.53802u - 0.422190 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.235232u^{31} - 1.14155u^{30} + \dots - 9.42495u + 4.23744 \\ -0.346449u^{31} + 0.596107u^{30} + \dots + 3.53802u - 0.422190 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{8} - 3u^{6} - 3u^{4} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{32} + 24u^{31} + \dots + 16u + 1$
c_2, c_6	$u^{32} - 2u^{31} + \dots + 6u + 1$
c_3	$u^{32} + 2u^{31} + \dots + 742u + 173$
c_4, c_8	$u^{32} - u^{31} + \dots + 20u - 4$
c_5, c_{10}	$u^{32} + u^{31} + \dots - 12u - 4$
c_7, c_{11}	$u^{32} + 3u^{31} + \dots + 43u - 13$
<i>C</i> 9	$u^{32} + 21u^{31} + \dots + 80u + 16$
c_{12}	$u^{32} + 53u^{31} + \dots + 1745u + 169$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} - 24y^{31} + \dots - 816y + 1$
c_2, c_6	$y^{32} + 24y^{31} + \dots + 16y + 1$
c_3	$y^{32} - 72y^{31} + \dots + 762852y + 29929$
c_4, c_8	$y^{32} - 51y^{31} + \dots - 112y + 16$
c_5, c_{10}	$y^{32} + 21y^{31} + \dots + 80y + 16$
c_7, c_{11}	$y^{32} - 53y^{31} + \dots - 1745y + 169$
c_9	$y^{32} - 15y^{31} + \dots + 256y + 256$
c_{12}	$y^{32} - 133y^{31} + \dots - 9350077y + 28561$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.01428		
a = -0.536855	-12.7729	-5.31340
b = 0.0938357		
u = -0.300579 + 0.918264I		
a = 0.391932 - 0.210423I	-0.55082 - 1.63457I	-3.27047 + 3.85284I
b = -0.161520 + 0.335427I		
u = -0.300579 - 0.918264I		
a = 0.391932 + 0.210423I	-0.55082 + 1.63457I	-3.27047 - 3.85284I
b = -0.161520 - 0.335427I		
u = 1.043470 + 0.101095I		
a = -0.26843 - 1.93217I	-17.2641 - 6.3638I	-7.47410 + 2.59633I
b = -0.57959 - 2.65577I		
u = 1.043470 - 0.101095I		
a = -0.26843 + 1.93217I	-17.2641 + 6.3638I	-7.47410 - 2.59633I
b = -0.57959 + 2.65577I		
u = 0.123488 + 1.046200I		
a = -0.560397 + 1.014520I	-3.34462 + 2.78018I	-9.66898 - 3.45316I
b = 0.578687 - 0.837647I		
u = 0.123488 - 1.046200I		
a = -0.560397 - 1.014520I	-3.34462 - 2.78018I	-9.66898 + 3.45316I
b = 0.578687 + 0.837647I		
u = -0.880708 + 0.236833I		
a = -0.59959 + 1.89659I	-5.35743 - 0.84578I	-8.20870 + 1.07921I
b = 0.17577 + 2.14910I		
u = -0.880708 - 0.236833I		
a = -0.59959 - 1.89659I	-5.35743 + 0.84578I	-8.20870 - 1.07921I
b = 0.17577 - 2.14910I		
u = 0.419631 + 1.045310I		
a = -1.39528 - 0.99960I	-2.17363 + 5.75346I	-5.15068 - 8.16213I
b = -0.207451 - 1.209000I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.419631 - 1.045310I		
a = -1.39528 + 0.99960I	-2.17363 - 5.75346I	-5.15068 + 8.16213I
b = -0.207451 + 1.209000I		
u = -0.011003 + 1.154310I		
a = 1.50102 - 0.43416I	-4.29088 - 1.34269I	-11.00178 + 0.73571I
b = 0.532426 + 0.445478I		
u = -0.011003 - 1.154310I		
a = 1.50102 + 0.43416I	-4.29088 + 1.34269I	-11.00178 - 0.73571I
b = 0.532426 - 0.445478I		
u = 0.429441 + 1.086430I		
a = -0.368309 - 1.007620I	-4.20427 + 3.60564I	-10.41579 - 4.53089I
b = 1.129540 - 0.239167I		
u = 0.429441 - 1.086430I		
a = -0.368309 + 1.007620I	-4.20427 - 3.60564I	-10.41579 + 4.53089I
b = 1.129540 + 0.239167I		
u = 0.300263 + 0.761792I		
a = 0.357934 + 0.706332I	-2.49558 - 0.98889I	-10.28745 - 0.57316I
b = 0.690935 + 1.189790I		
u = 0.300263 - 0.761792I		
a = 0.357934 - 0.706332I	-2.49558 + 0.98889I	-10.28745 + 0.57316I
b = 0.690935 - 1.189790I		
u = -0.384747 + 0.600251I		
a = 0.721932 + 0.539648I	0.25012 - 1.51862I	0.08529 + 4.58805I
b = -0.302394 + 0.210503I		
u = -0.384747 - 0.600251I		
a = 0.721932 - 0.539648I	0.25012 + 1.51862I	0.08529 - 4.58805I
b = -0.302394 - 0.210503I		
u = -0.613650 + 1.166290I		
a = 1.41978 - 0.58897I	-8.05657 - 4.56260I	-10.63691 + 3.18178I
b = 0.11410 - 2.43615I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.613650 - 1.166290I		
a = 1.41978 + 0.58897I	-8.05657 + 4.56260I	-10.63691 - 3.18178I
b = 0.11410 + 2.43615I		
u = -0.356156 + 1.331570I		
a = -1.82084 - 0.21954I	-10.24520 - 5.08725I	-11.32137 + 3.44892I
b = -0.07721 + 2.01088I		
u = -0.356156 - 1.331570I		
a = -1.82084 + 0.21954I	-10.24520 + 5.08725I	-11.32137 - 3.44892I
b = -0.07721 - 2.01088I		
u = 0.459215 + 0.354759I		
a = 0.80233 + 2.03995I	-0.25749 - 2.03582I	-0.07050 + 3.37549I
b = -0.151979 + 0.783354I		
u = 0.459215 - 0.354759I		
a = 0.80233 - 2.03995I	-0.25749 + 2.03582I	-0.07050 - 3.37549I
b = -0.151979 - 0.783354I		
u = -0.50730 + 1.33114I		
a = -0.533965 + 0.005339I	-16.9136 - 5.4099I	-8.22953 + 2.64698I
b = 0.0323333 - 0.1210510I		
u = -0.50730 - 1.33114I		
a = -0.533965 - 0.005339I	-16.9136 + 5.4099I	-8.22953 - 2.64698I
b = 0.0323333 + 0.1210510I		
u = 0.56860 + 1.30790I		
a = 1.95984 + 0.66591I	18.4866 + 12.1069I	-9.82586 - 5.57772I
b = -0.66128 + 2.62930I		
u = 0.56860 - 1.30790I		
a = 1.95984 - 0.66591I	18.4866 - 12.1069I	-9.82586 + 5.57772I
b = -0.66128 - 2.62930I		
u = 0.541663		
a = 0.857323	-1.42188	-6.40410
b = 0.704419		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.44634 + 1.39008I		
a = -1.268180 + 0.456140I	17.4567 - 1.0678I	-10.66447 + 0.I
b = -0.51150 - 2.59045I		
u = 0.44634 - 1.39008I		
a = -1.268180 - 0.456140I	17.4567 + 1.0678I	-10.66447 + 0.I
b = -0.51150 + 2.59045I		

II. $I_2^u = \langle -au - u^2 + b - 1, -u^3a + 3u^3 + \dots + 2a - 2, u^4 + 2u^2 + 2 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ au + u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3}a + u^{2}a - u^{2} + 3a - 2 \\ -u^{3}a + u^{2}a - au + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3}a - \frac{1}{2}u^{3} + au - u^{2} + a - 2 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3}a - \frac{1}{2}u^{3} + au - u^{2} + a - 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}a - \frac{1}{2}u^{3} + au - u^{2} + a - 2 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^3a + 4u^2a + 4u^3 4au 4u^2 + 4u 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	$(u^2 - u + 1)^4$
c_{3}, c_{6}	$(u^2+u+1)^4$
c_4, c_8	$(u^4 - 2u^2 + 2)^2$
c_5,c_{10}	$(u^4 + 2u^2 + 2)^2$
c_7, c_{12}	$(u+1)^8$
<i>c</i> ₉	$(u^2 - 2u + 2)^4$
c_{11}	$(u-1)^{8}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6	$(y^2+y+1)^4$
c_4, c_8	$(y^2 - 2y + 2)^4$
c_5, c_{10}	$(y^2 + 2y + 2)^4$
c_7, c_{11}, c_{12}	$(y-1)^8$
<i>c</i> 9	$(y^2+4)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455090 + 1.098680I		
a = 0.922841 - 0.931556I	-4.11234 + 1.63398I	-10.00000 - 0.53590I
b = 1.44346 + 1.58997I		
u = 0.455090 + 1.098680I		
a = -2.15482 - 1.48893I	-4.11234 + 5.69375I	-10.0000 - 7.46410I
b = 0.65522 - 2.04506I		
u = 0.455090 - 1.098680I		
a = 0.922841 + 0.931556I	-4.11234 - 1.63398I	-10.00000 + 0.53590I
b = 1.44346 - 1.58997I		
u = 0.455090 - 1.098680I		
a = -2.15482 + 1.48893I	-4.11234 - 5.69375I	-10.0000 + 7.46410I
b = 0.65522 + 2.04506I		
u = -0.455090 + 1.098680I		
a = 0.809210 + 0.068444I	-4.11234 - 1.63398I	-10.00000 + 0.53590I
b = -0.443461 - 0.142082I		
u = -0.455090 + 1.098680I		
a = 0.422767 - 0.488925I	-4.11234 - 5.69375I	-10.00000 + 7.46410I
b = 0.344777 - 0.313008I		
u = -0.455090 - 1.098680I		
a = 0.809210 - 0.068444I	-4.11234 + 1.63398I	-10.00000 - 0.53590I
b = -0.443461 + 0.142082I		
u = -0.455090 - 1.098680I		
a = 0.422767 + 0.488925I	-4.11234 + 5.69375I	-10.00000 - 7.46410I
b = 0.344777 + 0.313008I		

III.
$$I_1^v = \langle a, b+v, v^2+v+1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -v \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -v+1\\1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -v \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4v 8

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_6	$u^2 - u + 1$		
c_2	$u^2 + u + 1$		
c_4, c_5, c_8 c_9, c_{10}	u^2		
c_7	$(u-1)^2$		
c_{11}, c_{12}	$(u+1)^2$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_6	$y^2 + y + 1$		
c_4, c_5, c_8 c_9, c_{10}	y^2		
c_7, c_{11}, c_{12}	$(y-1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 0	-1.64493 + 2.02988I	-6.00000 - 3.46410I
b = 0.500000 - 0.866025I		
v = -0.500000 - 0.866025I		
a = 0	-1.64493 - 2.02988I	-6.00000 + 3.46410I
b = 0.500000 + 0.866025I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^5)(u^{32} + 24u^{31} + \dots + 16u + 1)$
c_2	$((u^2 - u + 1)^4)(u^2 + u + 1)(u^{32} - 2u^{31} + \dots + 6u + 1)$
c_3	$(u^{2} - u + 1)(u^{2} + u + 1)^{4}(u^{32} + 2u^{31} + \dots + 742u + 173)$
c_4, c_8	$u^{2}(u^{4} - 2u^{2} + 2)^{2}(u^{32} - u^{31} + \dots + 20u - 4)$
c_5, c_{10}	$u^{2}(u^{4} + 2u^{2} + 2)^{2}(u^{32} + u^{31} + \dots - 12u - 4)$
c_6	$(u^{2} - u + 1)(u^{2} + u + 1)^{4}(u^{32} - 2u^{31} + \dots + 6u + 1)$
c ₇	$((u-1)^2)(u+1)^8(u^{32}+3u^{31}+\cdots+43u-13)$
<i>c</i> 9	$u^{2}(u^{2} - 2u + 2)^{4}(u^{32} + 21u^{31} + \dots + 80u + 16)$
c_{11}	$((u-1)^8)(u+1)^2(u^{32}+3u^{31}+\cdots+43u-13)$
c_{12}	$((u+1)^{10})(u^{32}+53u^{31}+\cdots+1745u+169)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^5)(y^{32} - 24y^{31} + \dots - 816y + 1)$
c_{2}, c_{6}	$((y^2 + y + 1)^5)(y^{32} + 24y^{31} + \dots + 16y + 1)$
c_3	$((y^2 + y + 1)^5)(y^{32} - 72y^{31} + \dots + 762852y + 29929)$
c_4, c_8	$y^{2}(y^{2}-2y+2)^{4}(y^{32}-51y^{31}+\cdots-112y+16)$
c_5,c_{10}	$y^{2}(y^{2} + 2y + 2)^{4}(y^{32} + 21y^{31} + \dots + 80y + 16)$
c_7, c_{11}	$((y-1)^{10})(y^{32} - 53y^{31} + \dots - 1745y + 169)$
<i>c</i> 9	$y^{2}(y^{2}+4)^{4}(y^{32}-15y^{31}+\cdots+256y+256)$
c_{12}	$((y-1)^{10})(y^{32}-133y^{31}+\cdots-9350077y+28561)$