Descomposición en Valores Singulares Lección 06.2

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Justificación Descomposición en Valores Singulares

- DVS: Descomposición en Valores Singulares
- SVD: Singular Value Decomposition
- Conjunto de técnicas para tratar con sistemas de ecuaciones singulares o cercanos a singulares.
- DVS funciona donde la descomposición LU o la eliminación Gaussiana fallan
- DVS permite además diagnosticar cuál es el problema
- Aun con singularidades, DVS provee una solución
- AQUÍ: cómo usar DVS (en vez de cómo calcular DVS)

DVS parte de

$$A = UWV^T$$

con

- **A**: matriz $m \times n$
- **U**: matriz $m \times n$ de **columnas** ortogonales

$$\mathbf{U}^T\mathbf{U} = \mathbf{I}$$

- W: matriz diagonal con n valores singulares no negativos
- **V**: matriz cuadrada $n \times n$ de **columnas** y **filas** ortogonales

$$\mathbf{V}^T\mathbf{V} = \mathbf{I}$$
 $\mathbf{V}\mathbf{V}^T = \mathbf{I}$

Situaciones sobredeterminadas

Sistemas **sobredeterminados** tienen matrices $m \times n$ con m > n:

En este caso **U** tiene **todas** sus columnas ortogonales

Situaciones subdeterminadas

Sistemas **subdeterminados** tienen matrices $m \times n$ con m < n:

$$\underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} }_{\mathbf{A}} = \underbrace{ \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m1} & u_{m2} & \cdots & u_{mn} \end{bmatrix} }_{\mathbf{U}} \underbrace{ \begin{bmatrix} w_{1} & w_{2} \\ w_{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n} \end{bmatrix} \underbrace{ \begin{bmatrix} v_{11} & v_{21} & \cdots & v_{n1} \\ v_{12} & v_{22} & \cdots & v_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1n} & v_{2n} & \cdots & v_{nn} \end{bmatrix} }_{\mathbf{W}}$$

En este caso

- $w_j = 0$ para $j = m+1, \dots n$, y sus correspondientes columnas $\underline{\mathbf{u}}_{.j} = \underline{\mathbf{0}}$.
- Únicamente las primeras m columnas de ${\bf U}$ son ortogonales.

Unicidad de DVS

- DVS es una descomposición única excepto por
 - permutaciones de las columnas correspondientes de U, elementos de W y columnas de V (o filas de V^T)
 - rotaciones ortogonales entre columnas de ${\bf U}$ y ${\bf V}$ cuyos elementos correspondientes en ${\bf W}$ son idénticos (por ejemplo, multiplicando dichas columnas por -1)
- Resultados de DVS no necesariamente aparecen en orden canónico, así que se deben permutar las columnas de las matrices para que la diagonal de W tenga valores singulares en orden decreciente.

Mapeo lineal

• Sea el sistema

$\mathbf{A}\mathbf{x} = \mathbf{b}$

con una matriz $\bf A$ de tamaño $m \times n$, un vector $\underline{\bf x}$ de n dimensiones, y un vector $\underline{\bf b}$ de m dimensiones.

- La matriz A mapea o transforma linealmente el vector n-dimensional <u>x</u> a otro vector m-dimensional <u>b</u>, pues se realiza con <u>x</u> una combinación lineal de sus vectores columna
- La dimensión del espacio vectorial de las *imágenes* **b** puede ser menor, igual o mayor que la dimensión del espacio vectorial original que contiene a **x**, pero es igual a la dimensión del espacio que contiene a las columnas de **A**.

Espacio columna y rango

- Sistema $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ tiene solución siempre que $\underline{\mathbf{b}}$ se encuentre en el **espacio columna** o **alcance** de la matriz \mathbf{A} (ingl. *range*).
- El espacio columna o alcance es el espacio engendrado por las n columnas de A:

$$c_1\underline{\mathbf{a}}_{\cdot 1} + c_2\underline{\mathbf{a}}_{\cdot 2} + \dots + c_n\underline{\mathbf{a}}_{\cdot n} \in C(\mathbf{A}) \qquad \forall c_i \in \mathbb{R}$$

- El espacio columna $C(\mathbf{A})$ es un **subespacio** de \mathbb{R}^m , que corresponde al espacio de donde se toma cada columna de \mathbf{A}
- El número de columnas linealmente independientes, es decir, la dimensión del espacio columna C(A) se denomina rango de la matriz A (ingl. rank).
- Si $\mathbf{A} \neq \mathbf{0}$ entonces el rango estará entre 1 y mín(n, m)

Espacio nulo

El sistema

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{0}}$$

tiene la solución trivial $\mathbf{x} = \mathbf{0}$.

• Si $\underline{\mathbf{x}}_1 \neq \underline{\mathbf{0}}$ soluciona el sistema anterior, entonces $c\underline{\mathbf{x}}_1$ también lo hace, pues

$$\mathbf{A}(c\underline{\mathbf{x}}_1) = \\ c(\mathbf{A}\underline{\mathbf{x}}_1) = \\ c\mathbf{0} = \mathbf{0}$$

• Si también x₂ soluciona el sistema anterior entonces:

$$\mathbf{A}(c_1\underline{\mathbf{x}}_1 + c_2\underline{\mathbf{x}}_2) = c_1(\mathbf{A}\underline{\mathbf{x}}_1) + c_2(\mathbf{A}\underline{\mathbf{x}}_2) = c_1\underline{\mathbf{0}} + c_2\underline{\mathbf{0}} = \underline{\mathbf{0}} + \underline{\mathbf{0}} = \underline{\mathbf{0}}$$

 Por las dos propiedades anteriores el conjunto de todos los vectores <u>x</u> que satisfacen

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{0}}$$

constituyen un subespacio vectorial del espacio \mathbb{R}^n (que contiene a todos los $\underline{\mathbf{x}}$), y se denomina **espacio nulo** de \mathbf{A} .

- La dimensión del espacio nulo de A se denomina nulidad de A
- La nulidad puede tomar un valor desde cero hasta n.
- La suma del rango de A más su nulidad es igual a n (número de columnas de A)

Solución única

- Si **A** es cuadrada $n \times n$ y con rango n entonces **A** es no-singular e invertible; $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ tiene una única solución para cada $\underline{\mathbf{b}}$ y solo el $\underline{\mathbf{0}}$ se mapea a $\underline{\mathbf{0}}$ (dimensión del espacio nulo es cero).
- En este caso LU es el método de preferencia

Multiples o no soluciones

Si **A** tiene nulidad mayor que cero (rango menor que n) pueden pasar dos cosas:

- la mayoría de vectores **b** no producen solución
- algunos vectores <u>b</u> tienen como solución un subespacio completo

Relación entre DVS con los espacios de una matriz

La descomposición en valores singulares construye explícitamente

- base vectorial del espacio columna (columnas de U con valores singulares no nulos)
- base vectorial del espacio nulo (columnas de V con valores singulares correspondientes nulos)

DVS de matrices cuadradas

- Si A es cuadrada, entonces U, W y V también lo son.
- Puesto que las matrices son ortogonales o diagonales, el cálculo de la matriz inversa es directa:

$$\mathbf{A}^{-1} = \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \mathbf{U}^T$$

- Único problema posible $w_j = 0$ o ≈ 0
- Número de condición de la matriz **A** se define ahora como $\nu = \max_{j} (w_{j}) / \min_{i} (w_{i})$
- Si $\nu \to \infty$ entonces **A** es singular
- Si $u\gg 0$ y $1/
 u\approx \mathscr{E}$ entonces **A** es mal condicionada

Solución de sistema homogéneo

- ullet El sistema homogéneo es planteado como ${f A}{f \underline{x}}={f \underline{0}}$
- Cualquier combinación lineal de las columnas de $\underline{\mathbf{V}}$ con correspondiente valor singular $w_j = 0$ es solución a este sistema.

Para

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

• Si $\underline{\mathbf{b}}$ está en el alcance de \mathbf{A} (en su espacio columna) y la nulidad de \mathbf{A} no es cero, entonces sistema tiene infinitas soluciones, pues si $\underline{\mathbf{x}}_1$ es una solución, entonces si se suma con cualquier vector $\underline{\mathbf{n}}$ del espacio nulo:

$$\mathbf{A}(\underline{\mathbf{x}}_1 + \underline{\mathbf{n}}) = \mathbf{A}\underline{\mathbf{x}}_1 + \mathbf{A}\underline{\mathbf{n}}$$
$$= \underline{\mathbf{b}} + \underline{\mathbf{0}}$$
$$= \underline{\mathbf{b}}$$

• Usualmente se busca la solución de menor norma $\|\underline{\mathbf{x}}\|_2$, que se obtiene fácilmente de

$$\mathbf{\underline{x}} = \mathbf{A}^{-1}\mathbf{\underline{b}}$$

$$= \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \left(\mathbf{U}^T \mathbf{\underline{b}} \right)$$

donde para $w_j=0$ se sustituye en la matriz diagonal inversa $1/w_j \to 0$, anulando así todo aporte del espacio nulo.

Solución fuera del alcance de A

Para

$$Ax = b$$

Si **b** está fuera del alcance de **A**, entonces

$$\underline{\mathbf{x}} = \mathbf{A}^{-1}\underline{\mathbf{b}}$$

$$= \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \left(\mathbf{U}^T\underline{\mathbf{b}} \right)$$

con $1/w_i \to 0$ si $w_i = 0$ encuentra "una" solución que minimiza

$$r \equiv \|\mathbf{A}\underline{\mathbf{x}} - \underline{\mathbf{b}}\|$$

con r el resíduo de la solución.

Seudoinversa de A

El cálculo de la matriz inversa utilizando DVS:

$$\mathbf{A}^{-1} = \mathbf{V} \left[\operatorname{diag}(1/w_j) \right] \mathbf{U}^T$$

forzando $1/w_j \to 0$ si $w_j = 0$ se denomina la inversa de Moore-Penrose o la seudoinversa de **A**, y se denota con **A**⁺. En conclusión:

- Si todo $w_j \neq 0$, la solución $\underline{\mathbf{x}} = \mathbf{A}^+ \underline{\mathbf{b}}$ resuelve el sistema no singular.
- Si algunos $w_j = 0$, la solución $\underline{\mathbf{x}} = \mathbf{A}^+ \underline{\mathbf{b}}$ devuelve la "mejor" solución en el sentido de que retorna el vector $\underline{\mathbf{x}}$ más pequeño que resuelve el sistema, o aquel que produce el menor residuo si no existe solución.

Resumen

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica