Statement

BY Statement

CLASS Statement

CONDDIST Statement

EFFECT Statement

ESTIMATE Statement

ID Statement

MODEL Statement

OUTPUT Statement

PERFORMANCE

<u>Statement</u>

TEST Statement

WEIGHT Statement

▲ Details

Quantile Regression as an Optimization **Problem**

Optimization Algorithms

Confidence Interval

Covariance-Correlation

Linear Test

Estimating Probability Functions by Using the CONDDIST **Statement**

Leverage Point and **Outlier Detection**

INEST= Data Set

OUTEST= Data Set

Computational Resources

ODS Table Names

ODS Graphics

Examples

References

Vidooc

SAS/STAT User's Guide

This generic model is compatible with the following1 linear model:

$$y_i = \mathbf{x}_i' \boldsymbol{\beta}(\tau) + \epsilon_i(\tau) \text{ for } i = 1, \dots, n$$

where y_i is the response value, \mathbf{x}_i is the explanatory covariates vector, and $\epsilon_i(au) = y_i - Q_{Y|\mathbf{x}_i}(au)$ is an unknown error.

 $L_{
m 1}$ regression, also known as median regression, is a natural extension of the sample median when the response is conditioned on the covariates. In L_1 regression, the least absolute residuals estimate $\ddot{oldsymbol{eta}}_{LAR}$, referred to as the L_1 -norm estimate, is obtained as the solution of the following minimization problem:

$$\min_{oldsymbol{eta} \in \mathbf{R}^p} \sum_{i=1}^n |y_i - \mathbf{x}_i' oldsymbol{eta}|$$

More generally, for quantile regression Koenker and Bassett (1978) defined the auregression quantile, $0 < \tau < 1$, as any solution to the following minimization problem:

$$\min_{m{eta} \in \mathbf{R}^p} \left[\sum_{i \in \{i: y_i \geq \mathbf{x}_i'm{eta}\}} au |y_i - \mathbf{x}_i'm{eta}| + \sum_{i \in \{i: y_i < \mathbf{x}_i'm{eta}\}} (1- au) |y_i - \mathbf{x}_i'm{eta}|
ight]$$

The solution is denoted as $\hat{m{eta}}(au)$, and the L_1 -norm estimate corresponds to $\hat{m{eta}}(1/2)$. The τ regression quantile is an extension of the τ sample quantile $\hat{\xi}(\tau)$, which can be formulated as the solution of

$$\min_{oldsymbol{\xi} \in \mathbf{R}} \left[\sum_{i \in \{i: y_i \geq \xi\}} au |y_i - \xi| + \sum_{i \in \{i: y_i < \xi\}} (1 - au) |y_i - \xi|
ight]$$

If you specify weights $w_i, i=1,\ldots,n$, with the WEIGHT statement, weighted quantile regression is carried out by solving

$$\min_{oldsymbol{eta}_w \in \mathbf{R}^p} \left[\sum_{i \in \{i: y_i \geq \mathbf{x}_i' oldsymbol{eta}_w\}} w_i au | y_i - \mathbf{x}_i' oldsymbol{eta}_w| + \sum_{i \in \{i: y_i < \mathbf{x}_i' oldsymbol{eta}_w\}} w_i (1 - au) | y_i - \mathbf{x}_i' oldsymbol{eta}_w|
ight]$$

Waighted regression quantiles A... can be used for Lestimation (Knenker and Than

Privacy Statement Terms of Use Copyright © SAS Institute Inc. All Rights Reserved