Capstone Project 2 PREDICTING HOUSE PRICE

Who is the audience?

- Banks and Financial Investors
- Real estate company and marketplace

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY-SA

Data

- Kings County, Seattle, Washington
- House sold between May 2014 and May 2015
- 21613 observations and 19 features
- No missing data
- There were some outliers

Exploratory Data Analysis

These bar plot will show us what kind of house were most sold in Kings county, Washington.

Most of the houses sold are in price-range of 300,000 to 500,000 followed by 800,000.

Data Wrangling or Cleaning.

- Data must be cleaned and prepared for Machine Learning Model.
- There were outliers in the dataset, which was dropped or removed.

Finding Correlation with Price.

I used scatter plot to check the correlation of different variables against the price of the house.

Finding correlation with price.

I calculated the correlation coefficient for all the variables to find the best predictors of the house price.

Features	CORRCOEFF	
sqft_lot15	-0.107535	Weak negative
sqft_lot	-0.089069	Weak negative
waterfront	0.055702	Very Weak positive
condition	0.078840	Very Weak positive
view	0.218874	Weak positive
bedrooms	0.235083	Weak positive
floors	0.238493	Weak positive
sqft_basement	0.239227	Weak positive
bathrooms	0.360725	Strong positive
sqft_above	0.403418	Strong positive
sqft_living15	0.439548	Strong positive
sqft_living	0.524052	Strong positive
grade	0.546210	Strong positive

Data Story

These bar plot can shows us how the average price of the house is affected by some predictor variables.

Data Story Cont...

Data Story...

Inferential Statistics

- #H0: There is no significant correlation between number of bedroom and price.
- #Ha: There is a correlation between number of bedrooms and price.
- The p-value is less than level of significance 0.05, so we reject the null hypothesis. There is a correlation between number of bedrooms and price.
- I performed the hypothesis testing to check if the correlation between price and other features happened by chance.

Machine Learning

- Linear Regression
- Decision Tree Regressor
- Gradient Boosting Regressor
- Random Forest Regressor

Metrics

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R2_Score
- Mean Absolute Error (MAE)
- Mean Absolute Percent Error (MAPE)

Using Feature Selection and Compare Model's performance.

- Backward Elimination
- Univariate Elimination

Compare Different Regressor Models

Comparing different Regressor Models

Hyper-parameter Tuning and Comparing Tuned Model's Performance

- GridSearchCV
- RandomizedSearchCV

Conclusion

- ► The Gradient Boosting Regressor Model is better than random guess, and it is a better performing model compared to other 3 models.
- In future, we can build other models and compare the performance with this model.
- Using this model we can predict the house price.
- This information can be used as a good estimate.