Big Graph Analytics Engine

Yinglong Xia 6/23/2016

Introduction

Introduction

CEO/Rotating CEOs

Regional Organizations (Regions and Representative Offices)

Huawei headquarters in Shenzhen, Guangdong,

China

Native name 华为技术有限公司

Type Private

Industry Telecommunications equipment

Networking equipment

Founded 1987; 29 years ago

Founder Ren Zhengfei

Headquarters Shenzhen, Guangdong, China

Area served Worldwide

Products Mobile and fixed broadband

networks, consultancy and managed services, multimedia technology, smartphones, tablet computers, dongles

http://www.huawei.com/en/about-huawei/corporate-governance/corporate-governance

Recent Growth

Revenue

CNY Million	2015	2014	YoY	
Carrier Business	232,307	191,381	21.4%	
Enterprise Business	27,609 19,201 43		43.8%	
Consumer Business	129,128	74,688	72.9%	
Others	5,965	2,927	103.8%	
Total	395,009	288,197	37.1%	

36,910 million

Net Profits

CNY	Cash flow
215	from
,315	operating
nillion	activities

49

Collaboration

Graph Analytics for Smart Big Data

Graph in ONOS

Figure 2: Prototype 1 Architecture

Figure 3: Prototype 2 Architecture

HotSDN'2014

Topology Impact on Information Propagation

Explore the Variety in Graph Analytics

Challenges

- Very large scale graphs for analysis
 - 10B~1000B in terms of the number of vertices
 - a few hundreds of properties, static and dynamic
 - distributed communication introduces additional overhead
- Irregularity in graph data access
 - Low data locality results in high disk/communication IO overhead
 - Data access patterns are diverse among graph analysis algorithms
- Near real-time requirement
 - Incorporate with incremental graph updates
 - Approximate query & analysis should be considered
- Efficiency and productivity to balance

Graph Platform for Smart Big Data

Visualization Dynamic Graph Vis **Property Vis** Large Graph Vis Community Bayes Net Anomaly detection Ego Feature Analytics Matching Max Flow Centrality Label propagation Streaming Graph Graphical Model Hyper Graph Graph engines Basic Engine Incremental Update Data Structure Metadata Permission **Property** Management Management Management Management Control **GPU Server** Single Machine Cloud Infrastructure Cluster

Unified Graph Data Access Patterns

Iteration i

shard 1 (1, 2)			shard 2 (3,4)			
	dst	value	src	dst	value	
1	2	0.3	1	3	0.4	
	2	0.2	2	3	0.3	
4	1	1.4	3	4	0.8	
5	1	0.5	5	3	0.2	
6	2	0.6	6	-		
U	2	8.0		4	1.9	
erc	dst	value	erc	det	value	

0.3

0.2

1.4 0.5

0.3

1.4 0.5 0.6

src dst value

dst	value
3	0.4
3	0.3
4	0.8
3	0.2
4	1.9
	3 3 4 3

src 1	dst	value
'	3	0.4
3	3	0.3
	4	0.8
5	3	0.2
6	4	1.9

	dst	value
2	5	0.6
3		
	5 6	0.9 1.2
4	5	0.3
5		
	6	1.1

src dst value

shard 3 (5,6)

0.6 0.9 1.2

0.3 1.1

0.6

1.2

1.1

equivalent	

observation on PSW data access

patterns inspires highly efficient

representation

sharding

	1	2	3	4	5	6
1		0.3	0.4			
2			0.3		0.6	
3		0.2		0.8	0.9	1.2
4	1.4				0.3	
5	0.5	0.6	0.2			1.1
6		0.8		1.9		

1		0.3	0.4			
2			0.3	(0.6	
3		0.2	0.8	C).9	1.2
4	1.4			(0.3	
5	0.5	0.6	0.2			1.1
6		8.0	1.9			

1		0.3	0.4		
2			0.3	0.6	
3		0.2	0.8	0.9	1.2
4	1.4			0.3	
5	0.5	0.6	0.2		1.1

1.9

0.8

Construct Edge-set Flows

5 0.5 0.6 0.2

Preliminary Experiments - Preproc.

Create the data in our format

Graph Ingestion/Preprocessing Time

Preliminary Experiments - Comp.

Decent speedup achieved w/ or w/o loading time

PageRank w/o Loading Time

Input size (#vertices, #edges)

Preliminary Experiments

PageRank Total Time

Conclusion

- Many big data problems involve links among a lot of entities, naturally represented as a graph
- Property graph is highly expressive
- Industry is looking for graph/graphical model engines for complex network analysis, streaming graph, probabilistic graphical models, and RDF graph computing
- Efficiency is the key in many industry graph analysis systems,
 especially when the data volume is big
- Eventually, the graph engine should serve for Al Business systems

Thanks

Yinglong Xia

yinglong.xia.2010@ieee.org

