HW1 Econometrics 3

Matthew Aaron Looney
9/11/2017

The Model:

$$y_t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_t \tag{1}$$

where,

 ε_t is normally and independently distributed with $E[\varepsilon_t] = 0$, $E[\varepsilon_t^2] = \sigma_t^2$ and $\sigma_t^2 = \exp(\alpha_0 + \alpha_1 x_1)$.

The parameter values used are $\beta_0 = 10$, $\beta_1 = \beta_2 = 1$, $\alpha_0 = -2$, and $\alpha_1 = 0.25$.

The design matrix X is given in a csv file.

Problem 1

The following questions are based on Monte Carlo experimental data. Generate 100 samples of y, each of size 20, using the model given in equation 1 (above).

(a)

Estiamte the parameters using the least squares principle and provide their covariance matrix. Compare your results with the true parameters. What can you conclude?

Table 1: Summary Statistics: Problem 1, part (a) and (b)

Statistic	N	Mean	St. Dev.	Min	Max
beta_0_ols	100	9.590	9.716	-13.569	35.337
beta_1_ols	100	0.971	0.520	-0.481	2.243
$beta_2_ols$	100	1.050	0.386	0.344	1.896
var_b0_ols	100	70.313	35.817	17.030	193.850
var_b1_ols	100	0.203	0.103	0.049	0.559
var_b2_ols	100	0.145	0.074	0.035	0.399
se_b0_ols	100	8.139	2.029	4.127	13.923
se_b1_ols	100	0.437	0.109	0.222	0.748
se_b2_ols	100	0.369	0.092	0.187	0.632
$t_val_b0_ols$	100	1.262	1.271	-1.565	5.098
$t_val_b1_ols$	100	2.335	1.219	-0.644	5.307
$t_val_b2_ols$	100	3.038	1.401	0.665	7.349
BP_testStat_ols	100	6.292	4.894	0.061	20.898
$\overline{\text{GV}}_{\text{HET}}_{\text{Test_ols}}$	100	4.797	3.828	0.001	16.076

BP testStat ols = Breusch Pagan test against heteroskedasticity

 $GV ext{ HET Test ols} = General ext{ test for LM assumptions}$

Chi Squared Crit df:2 at alpha:0.05 = 5.99

The results displayed in table 1 (above) show the summary for the 100 sample experiments preformed on the data using OLS. The means of the 100 samples are reported for various statistics. The average t-values for

the beta paramaters show the constant is insignificant while β_1 and β_2 are significant. To better understand the distribution of the paramaters over the 100 experiments see density plots below.

(b)

Test for the presence of heteroskedasticity? What do you conclude?

I have run the Breusch Pagan (BP) test for heteroskedasticity for the 100 samples and averaged over the experiments. The BP test staistic is distributed as Chi-Squared with k-1 degrees of freedom, where k is the total number of papamaters in the model.

The null hypothesis of the Breusch-Pagan test is,

$$\sigma_i^2 = \sigma^2(\alpha_0 + \alpha' z_i)$$

where,

 $H_0: \alpha = 0$

 σ_i^2 is the error variance for the ith observation and α_0 and α are regression coefficients.

The test statistic for the Breusch-Pagan test is

$$bp = \frac{1}{v}(u - \bar{u}i)'Z(Z'Z)^{-1}Z'(u - \bar{u}i)$$

where $u = (e_1^2, e_2^2, ..., e_n^2)$, i is a nx1 vector of ones, and

$$v = \frac{1}{n} \sum_{i=1}^{n} \left(e_i^2 - \frac{e'e}{n} \right)^2$$

The result from any one of the 100 experiments may or may not indicate heteroskedasticity, however, when we average over the range of the 100 experiments we obtain a test statistic which would suggest, overall we have a heteroskedasticity problem.

This is a modified version of the Breusch-Pagan test, which is less sensitive to the assumption of normality than the original test (Greene 2012, 7th Ed.; p. 276).

(c)

Assuming multiplicative heteroskedasticity, estimate the parameters using GLS and provide their covariance matrix.

Table 2 (below) shows the summary of results obtained using Feasible generalized least squares (FGLS) to obtain an estimate of the variance-covariance structure. Once we have this structure ($\hat{\Omega}^{-1}$) in hand we can proceed with estimation of the Beta's and the correct variance-covariance.

When comparing the FGLS results with OLS we notice the average of the paramater estimates are similar enough to be considered the same, as we expect. However, we observe the variance-covariance of the FGLS is much smaller, indicating a much better job at recovering the nature of the error structure and addressing the heteroskedasticity problem embedded in the data. Since we have generated the data with known structure and paramaters we can verify the accuracy of our techniques ability to uncover the true paramaters. The FGLS technique does an excellent job at recovering both the beta's of our data and the alpha paramaters of our error structure. Using the FGLS technique we also notice all of our paramater estimates are significant at the 95% level, a change from the OLS procdure where only two of the three paramaters were significant.

To allow us to understand the distribution of the FGLS paramater estimates over the range of the 100 experiments, I provide density plot's (below).

Table 2: Summary Statistics: Problem 1, part (c)

Statistic N Mean St. Dev. Min Max beta_0_ols 100 9.590 9.716 -13.569 35.337 beta_1_ols 100 0.971 0.520 -0.481 2.243 beta_2_ols 100 1.050 0.386 0.344 1.896 var_b0_ols 100 70.313 35.817 17.030 193.850 var_b1_ols 100 0.203 0.103 0.049 0.559 var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748 se_b2_ols 100 0.369 0.092 0.187 0.632	
beta_1_ols 100 0.971 0.520 -0.481 2.243 beta_2_ols 100 1.050 0.386 0.344 1.896 var_b0_ols 100 70.313 35.817 17.030 193.856 var_b1_ols 100 0.203 0.103 0.049 0.559 var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	Statistic
beta_2_ols 100 1.050 0.386 0.344 1.896 var_b0_ols 100 70.313 35.817 17.030 193.850 var_b1_ols 100 0.203 0.103 0.049 0.559 var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	$beta_0_ols$
var_b0_ols 100 70.313 35.817 17.030 193.850 var_b1_ols 100 0.203 0.103 0.049 0.559 var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	beta_1_ols
var_b1_ols 100 0.203 0.103 0.049 0.559 var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	$beta_2_ols$
var_b2_ols 100 0.145 0.074 0.035 0.399 se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	var_b0_ols
se_b0_ols 100 8.139 2.029 4.127 13.923 se_b1_ols 100 0.437 0.109 0.222 0.748	var_b1_ols
se_b1_ols 100 0.437 0.109 0.222 0.748	var_b2_ols
	se_b0_ols
se_b2_ols 100 0.369 0.092 0.187 0.632	se_b1_ols
	se_b2_ols
$t_val_b0_ols$ 100 1.262 1.271 -1.565 5.098	$t_val_b0_ols$
$t_val_b1_ols$ 100 2.335 1.219 -0.644 5.307	$t_val_b1_ols$
t_val_b2_ols 100 3.038 1.401 0.665 7.349	$t_val_b2_ols$
beta_0_fgls 100 9.836 7.165 -6.479 29.558	$beta_0_fgls$
beta_1_fgls $100 0.965 0.385 -0.008 1.857$	$beta_1_fgls$
beta_2_fgls 100 1.044 0.369 0.022 1.865	$beta_2_fgls$
$alpha_0_fgls$ 100 -2.100 2.320 -7.556 3.861	$alpha_0_fgls$
alpha_1_fgls $100 0.192 0.113 -0.157 0.452$	$alpha_1_fgls$
var_b0_fgls 100 21.369 20.497 4.819 100.74	
var_b1_fgls 100 0.052 0.046 0.013 0.225	
var_b2_fgls 100 0.022 0.013 0.008 0.096	
se_b0_fgls 100 4.272 1.774 2.195 10.037	
se_b1_fgls 100 0.214 0.082 0.115 0.474	se_b1_fgls
se_b2_fgls 100 0.142 0.038 0.088 0.309	
$t_val_b0_fgls$ 100 2.573 2.236 -2.263 10.344	
$t_val_b1_fgls$ 100 4.911 2.391 -0.045 12.458	
t_val_b2_fgls 100 7.864 3.571 0.168 18.313	
var_b0_HCCM_0 100 73.048 62.861 8.697 357.686	
var_b1_HCCM_0 100 0.233 0.196 0.031 1.094	
var_b2_HCCM_0 100 0.085 0.049 0.024 0.280	$var_b2_HCCM_0$
var_b0_HCCM_3 100 126.622 115.448 12.261 645.598	
var_b1_HCCM_3 100 0.395 0.358 0.048 2.010	
var_b2_HCCM_3 100 0.164 0.123 0.038 0.704	var_b2_HCCM_3

(d)

Write a Matlab code to estimate the parameters using maximum likelihood method and provide their covariance matrix.

$$\ln L = -0.5n \log(2\pi) - 0.5 \sum_{\alpha} \left[\frac{(y - X'\beta)^2}{\sigma^2} \right]$$
 (2)

where,

$$\sigma^2 \simeq \exp(\alpha_0 + \alpha_1 x_1)$$

Table 3 (below) gives the summary statistics for the Maximum Likelihood Estimation method (MLE). Again we notice the MLE does a good job at uncovering the true parameters of our model. The MLE has the added benefit of obtaining all parameter estimates at one time, assuming the MLE assumptions are met.

When we compare the results obtained using the MLE procedure we notice all paramater estimates are similar, however, when we view the variance-covariance matrix we see that the FGLS seems to do a better job over the MLE procedure. This may be due to the optimization routine used for the MLE or the convergence tolerence, or both. More experimenting with the optimization variables could yield better results. At any rate the MLE estimation stratagy does a better job that OLS and just about as good a job as FGLS, in the current context.

To help us better understand the distribution of the MLE parameter estimates over the range of the 100 experiments, I provide density plot's (below).

Table 3: Summary Statistics: Problem 1, part (d)

Statistic	N	Mean	St. Dev.	Min	Max
$beta_0_mle$	100	9.294	7.485	-14.598	26.088
beta_1_mle	100	1.001	0.381	0.029	1.898
$beta_2_mle$	100	1.037	0.382	-0.214	1.880
$alpha_0_mle$	100	-2.742	2.681	-10.509	5.598
$alpha_1_mle$	100	0.271	0.129	-0.174	0.656
var_b0_mle	100	36.725	17.487	11.604	85.507
var_b1_mle	100	0.113	0.052	0.038	0.291
var_b2_mle	100	0.082	0.032	0.026	0.176
$var_alpha_0_mle$	100	5.661	2.746	1.795	14.500
$var_alpha_1_mle$	100	0.013	0.006	0.004	0.033
se_b0_mle	100	5.900	1.391	3.406	9.247
se_b1_mle	100	0.329	0.073	0.195	0.539
se_b2_mle	100	0.281	0.056	0.162	0.419
$se_alpha_0_mle$	100	2.317	0.544	1.340	3.808
$se_alpha_1_mle$	100	0.110	0.026	0.062	0.182
$t_val_b0_mle$	100	1.712	1.489	-2.522	6.053
$t_val_b1_mle$	100	3.212	1.464	0.113	7.151
$t_val_b2_mle$	100	3.770	1.468	-0.607	8.509
$t_val_alpha_0_mle$	100	-1.258	1.180	-4.173	1.470
$t_val_alpha_1_mle$	100	2.617	1.312	-0.958	5.546

Table 4: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
$beta_0_ols$	100	9.530	2.594	3.907	16.808
$beta_1_ols$	100	0.990	0.192	0.477	1.481
$beta_2_ols$	100	1.032	0.175	0.550	1.489
var_b0_ols	100	36.308	24.120	7.328	148.470
var_b1_ols	100	0.105	0.070	0.021	0.428
var_b2_ols	100	0.075	0.050	0.015	0.306
se_b0_ols	100	5.767	1.754	2.707	12.185
se_b1_ols	100	0.310	0.094	0.145	0.654
se_b2_ols	100	0.262	0.080	0.123	0.553
$t_val_b0_ols$	100	1.803	0.711	0.462	3.630
$t_val_b1_ols$	100	3.479	1.272	1.367	7.728
$t_val_b2_ols$	100	4.290	1.449	1.426	9.489
DW_Test	100	3.290	0.357	2.252	3.871
rho_fgls	100	0.755	0.159	0.257	0.971
$sigma2_fgls$	100	6.055	2.114	2.008	12.177
$beta_0_{fgls}$	100	8.951	21.059	-66.922	64.418
$beta_1_{fgls}$	100	0.987	1.097	-1.709	4.750
$beta_2_{fgls}$	100	1.057	0.339	-0.083	1.801
var_b0_fgls	100	8.444	12.104	1.360	81.390
var_b1_fgls	100	0.057	0.090	0.005	0.604
var_b2_fgls	100	0.106	0.177	0.004	1.188
se_b0_fgls	100	2.497	1.494	1.166	9.022
se_b1_fgls	100	0.197	0.135	0.068	0.777
se_b2_fgls	100	0.262	0.194	0.065	1.090
$t_val_b0_fgls$	100	4.674	6.749	-14.133	17.114
$t_val_b1_fgls$	100	6.831	5.535	-4.868	17.325
$t_val_b2_fgls$	100	5.880	3.585	-0.165	16.919
$var_b0_HCCM_0$	100	27.372	15.930	4.489	81.518
$var_b1_HCCM_0$	100	0.079	0.046	0.010	0.262
$var_b2_HCCM_0$	100	0.056	0.057	0.007	0.413
$var_b0_HCCM_3$	100	43.248	25.773	6.306	143.734
$var_b1_HCCM_3$	100	0.121	0.071	0.015	0.418
$var_b2_HCCM_3$	100	0.108	0.118	0.012	0.851

 ${\rm good}\ 1 = {\rm meats}$

good 2 = dairygood 3 = beans