

数据流分析(data-flow analysis)

- > 数据流分析
 - >一组用来获取程序执行路径上的数据流信息的技术
- >数据流分析应用
 - ▶到达-定值分析 (Reaching-Definition Analysis)
 - ▶活跃变量分析 (Live-Variable Analysis)
 - >可用表达式分析 (Available-Expression Analysis)
- ▶在每一种数据流分析应用中,都会把每个程序点和 一个数据流值关联起来

数据流分析模式

- > 语句的数据流模式
 - ► IN[s]: 语句s之前的数据流值
 - OUT[s]: 语句S之后的数据流值
 - >f: 语句s的传递函数(transfer function)
 - >一个赋值语句S之前和之后的数据流值的关系
 - ▶传递函数的两种风格
 - >信息沿执行路径前向传播(前向数据流问题)

$$OUT[s] = f_s(IN[s])$$

>信息沿执行路径逆向传播(逆向数据流问题)

$$IN[s] = f_s(OUT[s])$$

数据流分析模式

- > 语句的数据流模式
 - ► IN[s]: 语句s之前的数据流值
 - OUT[s]: 语句s之后的数据流值
 - >f: 语句s的传递函数(transfer function)
 - >一个赋值语句S之前和之后的数据流值的关系
 - >基本块中相邻两个语句之间的数据流值的关系
 - \triangleright 设基本块B由语句 s_1, s_2, \ldots, s_n 顺序组成,则

$$IN[s_{i+1}] = OUT[s_i]$$
 $i=1, 2, ..., n-1$

基本块上的数据流模式

- ► IN[B]: 紧靠基本块B之前的数据流值 OUT[B]: 紧随基本块B之后的数据流值
- \triangleright 设基本块B由语句 $s_1,s_2,...,s_n$ 顺序组成,则
 - $\triangleright IN[B] = IN[s_1]$
 - $\triangleright OUT[B] = OUT[s_n]$
- $ightharpoonup f_R$: 基本块B的传递函数
 - \triangleright 前向数据流问题: $OUT[B] = f_B(IN[B])$

$$f_B = f_{sn} \cdot \ldots \cdot f_{s2} \cdot f_{s1}$$

 \triangleright 逆向数据流问题: $IN[B] = f_B(OUT[B])$

$$f_B = f_{s1} \cdot f_{s2} \cdot \dots \cdot f_{sn}$$

$$OUT[B] = OUT[s_n]$$

$$= f_{sn}(IN[s_n])$$

$$= f_{sn}(OUT[s_{n-1}])$$

$$= f_{sn} \cdot f_{s(n-1)}(IN[s_{n-1}])$$

$$= f_{sn} \cdot f_{s(n-1)}(OUT[s_{n-2}])$$

$$.....$$

$$= f_{sn} \cdot f_{s(n-1)} \cdot ... \cdot f_{s2}(OUT[s_1])$$

$$= f_{sn} \cdot f_{s(n-1)} \cdot ... \cdot f_{s2} \cdot f_{s1}(IN[s_1])$$

$$= f_{sn} \cdot f_{s(n-1)} \cdot ... \cdot f_{s2} \cdot f_{s1}(IN[B])$$

到达定值分析

- ▶定值 (Definition)
 - > 变量x的定值是(可能)将一个值赋给x的语句
- ▶到达定值(Reaching Definition)
 - ▶如果存在一条从紧跟在定值d后面的点到达某一程序点p的路径,而且在此路径上d没有被"杀死"(如果在此路径上有对变量x的其它定值d',则称变量x被这个定值d'"杀死"了),则称定值d到达程序点p
 - ▶直观地讲,如果某个变量x的一个定值d到达点p,在点p 处使用的x的值可能就是由d最后赋予的

例:可以到达各基本块的入口处的定值

到达定值分析的主要用途

- >循环不变计算的检测
 - →如果循环中含有赋值x=y+z,而y和z所有可能的定值都在循环 外面(包括y或z是常数的特殊情况),那么y+z就是循环不变计算

到达定值分析的主要用途

- >循环不变计算的检测
- ▶常量合并
 - →如果对变量x的某次使用只有一个定值可以到达,并且该定值 把一个常量赋给x,那么可以简单地把x替换为该常量

到达定值分析的主要用途

- >循环不变计算的检测
- 户常量合并
- ▶判定变量x在p点上是否未经定值就被引用

"生成"与"杀死"定值

一 这里,"+" 代表一个 一般性的二元运算符

- ▶ 定值d: u = v + w
 - ▶该语句"生成"了一个对变量u的定值d,并"杀死" 了程序中其它对u的定值

到达定值的传递函数

 $\triangleright f_d$: 定值d: u = v + w的传递函数

 $> f_d(x) = gen_d \cup (x-kill_d)$ 生成-杀死形式

 $\triangleright gen_d$: 由语句d生成的定值的集合 $gen_d = \{d\}$

▶kill_d: 由语句d杀死的定值的集合(程序中所有其它对u的定值)

到达定值的传递函数

- $\triangleright f_d$: 定值d: u = v + w的传递函数
 - $\succ f_d(x) = gen_d \cup (x-kill_d)$
- $\triangleright f_R$: 基本块B的传递函数
 - $\triangleright f_B(x) = gen_B \cup (x-kill_B)$
 - $\succ kill_B = kill_1 \cup kill_2 \cup ... \cup kill_n$
 - ▶被基本块B中各个语句杀死的定值的集合
 - - >基本块中没有被块中各语句"杀死"的定值的集合

例:各基本块B的 gen_B 和 $kill_B$

到达定值的数据流方程

 $\triangleright IN[B]$: 到达流图中基本块B的入口处的定值的集合

OUT[B]: 到达流图中基本块B的出口处的定值的集合

> 方程

 $\gt OUT[ENRTY] = \Phi$

$$\nearrow OUT[B] = f_B(IN[B]) \quad (B \neq ENTRY)$$

$$\nearrow f_B(x) = gen_B \cup (x-kill_B)$$

$$OUT[B] = gen_B \cup (IN[B]-kill_B)$$

 $\triangleright IN[B] = \bigcup_{P \not\equiv B \text{ in } - \land \text{ fin}} OUT[P] \ (B \neq ENTRY)$

gen_B和kill_B的值可以直接从流图计算出来, 因此在方程中作为已知量

计算到达定值的迭代算法

- ▶输入:
 - \triangleright 流图G, 其中每个基本块B的 gen_R 和 $kill_R$ 都已计算出来
- ▶输出:
 - ► IN[B]和OUT[B]
- >方法:

```
OUT[ENTRY] = \Phi; for (除ENTRY之外的每个基本块B) OUT[B] = \Phi; while (某个OUT值发生了改变) for (除ENTRY之外的每个基本块B) { IN[B] = \bigcup_{P \not\in B} \bigcup_{P \in A} OUT[P]; OUT[B] = gen_B \cup (IN[B]-kill_B) }
```



```
gen_{B1} = \{ d_1, d_2, d_3 \}
kill_{B1} = \{ d_4, d_5, d_6, d_7 \}
gen_{B2} = \{ d_4, d_5 \}
kill_{B2} = \{ d_1, d_2, d_7 \}
gen_{B3} = \{ d_6 \}
kill_{B3} = \{ d_3 \}
gen_{B4} = \{ d_7 \}
kill_{B4} = \{ d_1, d_4 \}
```

```
OUT[ENTRY] = \Phi; for (除ENTRY之外的每个基本块B) OUT[B] = \Phi; while (某个OUT值发生了改变) for (除ENTRY之外的每个基本块B) { IN[B] = \bigcup_{P \neq B \mapsto - \cap \cap W} OUT[P]; OUT[B] = gen_B \cup (IN[B]-kill_B) }
```

gen置1, kill置0

迭代次数

	В	$OUT[B]^0$	$IN[B]^{1}$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$	$IN[B]^3$	$OUT[B]^3$
1	\boldsymbol{B}_1	000 0000	000 0000	111 0000	000 0000	111 0000	000 0000	111 0000
	\boldsymbol{B}_2	000 0000	111 0000	001 1100	111 0111	001 1110	111 0111	001 1110
	B_3	000 0000	001 1100	000 1110	001 1110	000 1110	001 1110	000 1110
	B_4	000 0000	001 1110	001 0111	001 1110	001 0111	001 1110	001 0111
	EXIT	000 0000	001 0111	001 0111	001 0111	001 0111	001 0111	001 0111

7:37

0 在第一位不出现

1 在 第三位出现

$gen_{B1} = \{ d_1, d_2, d_3 \}$
$kill_{B1} = \{ d_4, d_5, d_6, d_7 \}$
$gen_{B2} = \{ d_4, d_5 \}$
$kill_{B2} = \{ d_1, d_2, d_7 \}$
$gen_{B3}=\{d_6\}$
$kill_{B3} = \{ d_3 \}$
$gen_{B4} = \{ d_7 \}$
$kill_{B4} = \{ d_1, d_4 \}$

IN[B]	B_2	B_3	B_4
d_1	$\sqrt{}$	×	X
d_2	$\sqrt{}$	×	X
d_3	$\sqrt{}$	√	
d_4	×	√	V
d_5	√	√	V
d_6	1	√	
d_7		×	×

	В	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$	$IN[B]^3$	$OUT[B]^3$
1	\boldsymbol{B}_1	000 0000	000 0000	111 0000	000 0000	111 0000	000 0000	111 0000
	\boldsymbol{B}_2	000 0000	111 0000	001 1100	111 0111	001 1110	111 0111	001 1110
	B_3	000 0000	001 1100	000 1110	001 1110	000 1110	001 1110	000 1110
	B_4	000 0000	001 1110	001 0111	001 1110	001 0111	001 1110	001 0111
	EXIT	000 0000	001 0111	001 0111	001 0111	001 0111	001 0111	001 0111

引用-定值链 (Use-Definition Chains)

- ▶ 引用-定值链(简称ud链)是一个列表,对于变量的每一次引用,到达该引用的所有定值都在该列表中
 - ►如果块B中变量a的引用之前有a的定值, 那么只有a的最后一次定值会在该引用的 ud链中
 - ➤如果块B中变量a的引用之前没有a的定值, 那么a的这次引用的ud链就是IN[B]中a的 定值的集合

```
d: a = \cdots
\cdots = \cdots a \cdots
```

```
...
...
```

