Your First Machine Learning Project

Prerequisite: What is classification?

By
Dr. S Rao Chintalapudi(Subhash)
Professor & HoD,
Department of CSE (AI & ML),
CMR Technical Campus (Autonomous)
hod.aiml@cmrtc.ac.in

Classification of iris flowers

Problem Statement

Given Sepal, Petal lengths and widths predict the class of iris

Building a classification model

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Classification Techniques

- Base Classifiers
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Deep Learning
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Dataset Description

- Attribute Information:
 - 1. sepal length in cm
 - 2. sepal width in cm
 - 3. petal length in cm
 - 4. petal width in cm
 - 5. class:
 - -- Iris Setosa
 - -- Iris Versicolour
 - -- Iris Virginica
- 150 records 50 per class
- Dataset Link : <u>iris.csv</u>

What is a CSV file?

Import required packages

import numpy as np import pandas as pd

Load the iris dataset

```
import numpy as np
import pandas as pd
iris=pd.read_csv("D:\mlproject\iris.csv")
iris
```

View iris dataset

[14]	iris					
₽		sepal_length	sepal_width	petal_length	petal_width	class
	0	5.1	3.5	1.4	0.2	iris_setosa
	1	4.9	3.0	1.4	0.2	iris_setosa
	2	4.7	3.2	1.3	0.2	iris_setosa
	3	4.6	3.1	1.5	0.2	iris_setosa
	4	5.0	3.6	1.4	0.2	iris_setosa
	5	5.4	3.9	1.7	0.4	iris_setosa
	6	4.6	3.4	1.4	0.3	iris_setosa
	7	5.0	3.4	1.5	0.2	iris_setosa
	8	4.4	2.9	1.4	0.2	iris_setosa
	9	4.9	3.1	1.5	0.1	iris_setosa
	10	5.4	3.7	1.5	0.2	iris_setosa
	11	4.8	3.4	1.6	0.2	iris_setosa

Splitting the dataset

```
x=iris.drop(columns=['class'])
y=iris['class']
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.2)
```

Build the model

from sklearn import neighbors classifier=neighbors.KNeighborsClassifier()

Train the model

classifier.fit(x_train,y_train)

Make Predictions

predictions=classifier.predict(x_test)

Compute Accuracy

from sklearn.metrics import accuracy_score print(accuracy_score(y_test,predictions))

Output

```
from sklearn import neighbors
[50]
     classifier=neighbors.KNeighborsClassifier()
[51] classifier.fit(x_train,y_train)
    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                           metric params=None, n_jobs=None, n_neighbors=5, p=2,
                           weights='uniform')
[53] predictions=classifier.predict(x test)
     from sklearn.metrics import accuracy score
     print(accuracy_score(y_test,predictions))
    0.9666666666666667
```

Full code

```
from sklearn import datasets
iris=datasets.load_iris()
x=iris.data
y=iris.target
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.2)
from sklearn import tree
classifier=tree.DecisionTreeClassifier()
classifier.fit(x_train,y_train)
predictions=classifier.predict(x_test)
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test,predictions))
```

THAT'S IT ... YOU MADE IT...