EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Recap

•	When actions are durative, we need to them after (or during) planning.
•	The critical path in a POP is the path that
•	Shortening non-critical paths does/does not affect the makespan.
•	In the critical path method, we annotate each action with an time and a time. For actions on the critical path, these two are
•	We use two in this method.
•	The forward pass computes the times. We first the actions.
	Then START gets a value, while for every other action, the value is the of the [+] of its
•	The backward pass computes the times. We first the
	actions. Then END gets a value, while for every other action, the value is the of the [+] of its
•	In general, after planning is However it is often and produces solutions.
•	Resources are artifacts that
•	Resources can be or
•	When an action uses the first kind, it When an action uses the second kind, it
•	When planning with resources, we generally use What are the steps in the planning loop?

Today

- Nonclassical Planning: Actions with Durations and Resources
- Applications of planning

Online Planning for RTS resource collection

Online Planner Architecture

However, ...

 The above planner only creates the necessary resources to achieve the goal

- If there is currently one peasant, the planner will not create any additional peasants
 - No concurrency possible
 - Creating more peasants may decrease makespan
- A good planner must create a close-to-optimal number of renewable resources, e.g. peasants

Creating Renewable Resources

Find plans that satisfy intermediate goals

Sequential Planner

 Means-Ends Analysis (MEA) is used to find a sequential plan to achieve the goal

- MEA iteratively constructs a plan to satisfy each resource goal
 - Recursively finds a sub-plan which satisfies the preconditions of an action which produces the resource

Means-Ends Analysis

Heuristic Scheduler

- Reschedule actions from the sequential plan to allow concurrency and decrease makespan
- Each action is moved repeatedly to an earlier time, until its preconditions no longer hold
- Rescheduling can be done in quadratic time in the number of actions in the plan
 - Not optimal, but suitable for online planning

Main Loop

- Every few game ticks
 - Get current state
 - For each new subgoal of creating renewables
 - Create a plan that achieves the goal via creating the renewables subgoal
 - If it has a (scheduled) makespan less than the current plan, replace current plan
 - Start executing currently scheduled actions of new plan

Limitations

- Actions have constant durations and effects
 - Durations vary for actions such as collect-wood
 - Effects can change due to new technology
- Unable to infer object identity
 - May be necessary for some actions
- No spatial reasoning
 - Necessary for building placement
- Actions cannot be stopped
 - Necessary if goals or environment change

Application: Deep Space 1

(Active mission Oct 24 1998-Dec 18 2001)

 Mission manager selects goals for the next horizon (two days)

- Planner/Scheduler plans and schedules actions based on internal high level spacecraft model
 - Might require special services to e.g. determine location in space relative to "beacons"
 - Might create a sub-planning problem

- Execution module sends commands to flight systems
 - Translates (relatively) high level plan from planner to actions for flight control software
 - If there is a system failure, attempts recovery
 - Performs conditional execution of plan if needed
 - Manages time and resources

- Failure Diagnosis and Recovery
 - As commands executed, tracks status and compares to expected based on low level component models
 - Identifies when failures have occurred in components and notifies execution module
 - Also contains procedures for possibly fixing failures

Dealing with Uncertainty

- Can deal with uncertain events through
 - Model based plan repair
 - Replanning

Planner/Scheduler

Planner/Scheduler

- State space heuristic search
 - Heuristics involved detailed domain knowledge (not just relaxation/subplans)

Uses Domain Definition Language (very similar to PDDL)

Scenarios

- System was tested in flight using several scenarios. In most complex case, system had to operate autonomously for two days, in the presence of a simulated failure, align spacecraft with comet, and take pictures.
 - It worked!
 - With a couple of hiccups...

Hiccup 1

- Planner backtracked more than expected
 - Traced to different information in the autonomous nav system
 - Still produced valid plans, showed system robust to changes

Hiccup 2

- At some point, the plan required a thruster operation to commence. It did not.
 - Traced to a race condition between two EXEC threads, leading to resource deadlock
 - A critical section had not been identified
 - Glitch was not activated during thousands of simulations on the ground, but was activated the first time in space
 - Software bug!

Hiccup 3

- At some point, the link between RA and FSW broke leading to packet loss. This caused RA to estimate the wrong status of the spacecraft.
 - Fortunately, this quickly resolved itself, and resulted in no effect.

Lessons

 Overall, the experiment was deemed successful and showed that automated planning could be used to support human decision making in complex environments Application: Mars Exploration Rovers

Active mission:

Spirit: 1/2004-3/2011

Opportunity: 1/2004-6/2018

Planning in the MERs

- No on-board planner (power constraints, much more uncertain environment)
- Rather, a ground (JPL)-based tool, MAPGEN, was used collaboratively by a human mission planner and an automated planner to plan offline for the next sol's activity
 - Then uploaded to MER for execution
 - Done every day for ongoing mission

Mixed Initiative Planning

- Collaborative planning like this is called "mixed-initiative" planning
 - Sometimes the human has control, sometimes the automated system

Mixed Initiative Planning

MIP Loop

Automated Planner

- The planner in MAPGEN is an updated version of the DS1 planner
 - Updated to support MIP, supports different levels of autonomy
 - Handles temporal and resource constraints

 Updated version of this planner, M-SLICE, used for MSL

Summary of Part 2

- STRIPS planning
- POP
- Graphplan
- SATPlan
- Planning with time and resources
- Some examples of real-world planning systems