

Employee Turnover Analysis

Jovan Trajceski

Agenda

- 1. Exploratory Data Analysis
- 2. Modelling and Evaluation
- 3. Discussion
- 4. Conclusion

Exploratory Data Analysis

EDA – data overview


```
> str(data)
data.frame': 14999 obs. of 10 variables:
$ satisfaction_level
                      : num
                             0.38 0.8 0.11 (
 $ last_evaluation
                      : num 0.53 0.86 0.88
                      : int
$ number_project
$ average_montly_hours : int
$ time_spend_company : int 3 6 4
 $ Work_accident : int
 $ left
$ promotion_last_5years: int
 $ sales
                      : Factor w/ 10 levels
 $ salary
                      : Factor w/ 3 levels
```

```
□ 10 variables (features)□ No NaN values□ Turnover rate of 23.81%
```

□ 15,000 employees

```
> dim(data)
[1] 14999 10
```

```
> sum(is.na(data))
[1] 0
```

```
> attrition<-as.factor(data$left)
> summary(attrition)
      0      1
11428      3571
> perc_attrition_rate<-sum(data$left/length(data$left))*100
> print(perc_attrition_rate)
[1] 23.80825
```

EDA – transformation

- Metrics for the employee population that left the company:
- ☐ Lower Satisfaction level, Higher # of Projects, and Higher # of Hours
- data.frame(table1) Category satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident promotion_last_5years 0.6668096 0.7154734 3.786664 199.0602 3.380032 0.17500875 0.026251313 0.4400980 0.7181126 3.855503 207.4192 3.876505 0.04732568 0.005320638

str(data2)

```
14999 obs. of
                                                                                                              19 variables:
                                                                                     satisfaction level
                                                                                                              0.38 0.8 0.11 0.72 0.37 0
                                                                                     last_evaluation
                                                                                                               0.53 0.86 0.88 0.87 0.52 0
                                                                                     number_project
                                                                                     average_montly_hours : num
                                                                                    $ time_spend_company
Created dummy variables for:
                                                                                    $ Work_accident
                                                                                      left
                                                                                    $ promotion_last_5years: num
□ Departments, and,
                                                                                    $ sales.hr
                                                                                                               0000000000
                                                                                    $ sales.IT
                                                                                                              0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
■ Salary
                                                                                     sales.management
                                                                                                               0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
                                                                                                               00000000000...
                                                                                     sales.marketing
                                                                                     sales.product_mng
                                                                                                               0 0 0 0 0 0 0 0 0 0
                                                                                                               0 0 0 0 0 0 0 0 0 0
                                                                                    $ sales.RandD
                                                                                     sales.sales
                                                                                     sales.support
                                                                                                               0000000000
                                                                                     sales.technical
                                                                                     salary.low
                                                                                    $ salary.medium
                                                                                                              01100000000...
```

EDA – correlation map

Positive correlation:

- ☐ Hours and Projects (0.42)
- ☐ Hours and Evaluation (0.34)
- ☐ Projects and Evaluation (0.35)

Negative correlation:

☐ Left and Satisfaction (-0.39)

EDA – Distribution

Satisfaction:

- ☐ Low spike
- ☐ High spike

Evaluation:

- □ Bimodal
 - < 0.6
 - >0.8

Monthly hours:

- □ Bimodal
 - <150
 - >250

EDA – variables and turnover

- ☐ Employees with low/avg salary leave
- ☐ Almost no one left with high salary
- ☐ All employees with 7 projects left
- ☐ Increase in turnover as project count increases
- ☐ Sales, technical, and support department have highest turnover
- Management has lowest turnover

EDA – Turnover Density

Turnover & Hours

Turnover & Satisfaction

- ☐ Employees with low and high evaluation leave
- ☐ Employees with 0.6-0.8 stay
- ☐ Employees with hours<150 (underworked) and hours>250 (overworked) leave
- ☐ Employees who had 150-250 hours stay
- ☐ Employees with low satisfaction <0.2 and 0.3-0.5 leave
- ☐ Employees with high satisfaction (over 0.75) leave more than stay

EDA – Number of Projects

Projects & Hours

Projects & Evaluation

- ☐ Employees that stayed had 200 average hours, regardless of projects number
- ☐ Employees that left had increased hours as projects increased in count
- ☐ Employees that left with high project count had better evaluation (0.9)
- ☐ Employees that stayed had consistent evaluation (0.7) even when project count increased

EDA – Clusters

- **Overworked:** Good workers (0.8-1), not satisfied (<0.2)
- 2. 3. **Low Performers**: Poor workers(<0.6), not satisfied (0.3-0.5)
 - Found new jobs: Good workers (0.8-1), satisfied (0.7-1)

Modelling and Evaluation

Handle skewed data

Use random sampling to reduce problem of skewed data

Data transformation

Logistic regression & decision tree based on 4 datasets

1 ta

Unbalanced

target variable: stay 76% / left 24% prediction maybe biased

2

Upscaling

repetitive sampling minority no loss of information possible overfitting because of repetition

3

Downscaling

decrease observations of majority loss of information because of deletion

Combine upscaling and downscaling

upscaling minority downscaling majority

Data structure and transformation

dataset	∆ left	∆ stay
both scaling	+4042	-3592
downscaling	0	-7857
upscaling	+7857	0
unbalanced	0	0

```
Call:
glm(formula = left \sim ., family = binomial(link = "logit"), data = train2)
Deviance Residuals:
                  Median
                               30
    Min
                                       Max
-3.1155 -0.8023 -0.1286
                           0.8532
                                    2.6986
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
                     -0.8354700 0.1417253 -5.895 3.75e-09 ***
(Intercept)
satisfaction level
                     -4.4710581
                                0.0831603 -53.764 < 2e-16 ***
last_evaluation
                      1.2074695 0.1339403
                                            9.015 < 2e-16 ***
number_project
                     -0.4112927  0.0188218  -21.852  < 2e-16 ***
average_montly_hours
                     0.0043704 0.0004637
                                             9.424 < 2e-16 ***
time_spend_company
                      0.4720184 0.0157744 29.923 < 2e-16 ***
Work accident
                     -1.5171569 0.0660595 -22.967 < 2e-16 ***
promotion_last_5years -1.6378044 0.1929152 -8.490 < 2e-16 ***
saleshr
                      0.1829799 0.1080691
                                            1.693
                                                     0.0904 .
salesIT
                     -0.1976384 0.0992580 -1.991
                                                     0.0465 *
salesmanaaement
                     -0.6045804 0.1257290
                                            -4.809 1.52e-06 ***
salesmarketina
                     -0.0262874 0.1061853
                                            -0.248
                                                     0.8045
salesproduct_mng
                     -0.1625303 0.1047838 -1.551
                                                    0.1209
salesRandD
                     -0.4999757   0.1126530   -4.438   9.07e-06 ***
salessales
                     -0.1324757 0.0836440
                                            -1.584
                                                    0.1132
salessupport
                      0.0095572 0.0893444
                                             0.107
                                                     0.9148
salestechnical
                      0.0488175 0.0868779
                                             0.562
                                                    0.5742
salarvlow
                      1.9356937 0.0929182
                                            20.832 < 2e-16 ***
salarymedium
                      1.4620357 0.0935297 15.632 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 25346 on 18283 degrees of freedom
Residual deviance: 18907 on 18265 degrees of freedom
AIC: 18945
Number of Fisher Scoring iterations: 5
```

Logistic regression

<u>Upscaling Example</u>

Data Structure total: 22856

left: 11428 (50%)

stay: 11428 (50%) train/test = 4:1

Package & Function

ROSE package ovun.sample()

Classification threshold probability: 0.5

Coefficients by descending order

satisfaction level low salary promotion in last 5 years work accident medium salary last evaluation

Decision Tree

- · Complete 3 scenarios,
- Select the most appropriate scenario

Under-Sampling

Combined

Over-Sampling

Pre-Pruning

Base

Post-Pruning

CP Plot

Tree Without Pruning

Why we need pruning?

Over-Sampling Post-Pruning

satisfaction_level	time_spend_company	last_evaluation	number_project
3918.83508	3342.14371	2483.91322	2046.43165
average_montly_hours	salary	sales	promotion_last_5years
1950.82373	70.21370	44.21282	13.39175

Under-Sampling Pre-Pruning

Both-Sampling Post-Pruning

satisfaction_level	time_spend_company	last_evaluation	number_project
2491.88129	2138.28538	1587.84219	1273.81460
average_montly_hours	salary	promotion_last_5years	sales
1187.82363	34.76908	34.60430	10.02167

Model Evaluation: Decision Tree

◆ ROC and AUC for Decision Tree Models

We choose Decision Tree Over Sampling Post

Decision Tree Over Sampling Post: Confusion Matrix Test vs Train

train data

test data	
-----------	--

actual predict	left	stay
left	8851	215
stay	330	8888

actual predict	left	stay
left	2154	39
stay	93	2286

Accuracy Rate Test vs Train

Model Evaluation: Logistic

♦ ROC and AUC for Logistic Models

We choose **Logistic Over Sampling**

 predict
 1509
 793

 Stay
 363
 1907

 train data
 left
 stay

 predict
 stay

3021

test data

Stay

7674

Problem of plain accuracy

Why unbalanced dataset has highest accuracy rate?

- When the dataset is imbalanced, plain accuracy as metrics is unreliable
- In this scenario, majority of target variables are "stay"

Best Model Selection

Logistic Over Sampling

VS

Decision Tree Over Sampling Post

Discussion

Significance and Variable Importance

0.468 0.639980

11.751 < 2e-16 ***

1.8938792 0.1202924 15.744 < 2e-16 ***

0.1211372

Coefficients:

salestechnical

salarvlow

salarymedium

Estimate Std. Error z value Pr(>|z|) (Intercept) -1.0790735 0.1807179 -5.971 2.36e-09 *** -4.3548582 0.1023754 -42.538 < 2e-16 *** satisfaction level last_evaluation 1.0391039 0.1640957 6.332 2.42e-10 *** number_project average_montly_hours 0.0048783 0.0005744 8.493 < 2e-16 *** time_spend_company 0.5158183 0.0199218 25.892 < 2e-16 *** Work accident -1.5741703 0.0850502 -18.509 < 2e-16 *** promotion_last_5years -1.2608875 0.2289697 -5.507 3.65e-08 *** saleshr 0.2103128 0.1356101 1.551 0.120934 salesIT -0.913 0.361009 -0.1129359 0.1236374 -0.7738073 0.1632937 -4.739 2.15e-06 *** salesmanagement salesmarketing -0.2040456 0.1347283 -1.514 0.129900 -0.0880587 0.1297237 -0.679 0.497253 salesproduct_mna salesRandD -0.5161202 0.1421686 -3.630 0.000283 *** salessales -0.0198721 0.1038984 -0.191 0.848318 salessupport -0.0073203 0.1107439 -0.066 0.947298

0.0504218 0.1078021

1.4235010

	Satisfaction	Last_evalua	Time_spend
	_level	tion	_company
Over_Post	3873	3311	2410

Satisfaction Level

- Berties, etc.(2019):
 - People with greater work autonomy exhibit critical-thinking skills and lower propensity to leave

•Therefore, having lower work autonomy leads to low job satisfaction that can contribute to further employee turnover

Recommendations

- Prioritise employee well-being
 - Motivating employees towards achieving a fitness milestone
 - Encouraging employees to disconnect when they showcase early signs of burnout

Time_Spend_Company (Tenure)

 HR professionals associate high employee tenure with employee's job and organizational satisfaction (Ng & Feldman, 2013)

Recommendations

- □ Celebrate Milestones
 - E.g. Organizations should reward/recognize employees who have stayed with the company for certain years (5 years, 10 years, etc.)
- ☐ Celebrate positive experiences
 - ☐ Enable front line management to conduct pulse-check with their team

Last Evaluation (Job Performance)

- Performance directly affects the employee's motivation and intent to search for other jobs (Jackofsky, 1986)
 - High-performance employees leave if they are not challenged

Recommendations

- Align Task to Employee's Skillset and provide Market Based Salary
 - Knowing employee's skills and behavioural styles
 - For example, a creative thinker is probably a good fit for pitching ideas to clients.
 - However, they might struggle if they are given a more ruleintensive or detail-oriented task

Reference

- Lévy-Garboua, L. et al., 2007. Job satisfaction and quits. Labour Economics Volume 14, Issue 2, April 2007, Pag es 251-268.
- D'Ambrosio, Conchita. et al., 2018. Unfairness at work: Well-being and quits. Labour Economics Volume 51, April 2018, Pages 307-316.
- Freeman, R.B., 1978. Job Satisfaction as an Economic Variable. American economic association 68, 135 141. Available at: https://www.nber.org/system/files/working_papers/w0225/w0225.pdf
- Martin, T., Price, J., Mueller, C.(1981). Job performance and turnover. [J]. Journal of Applied Psychology, 66, 116 -119

