Matière: Mathématiques	Niveau: TS2	Date: 21/01/2025	Durée : 4 heures					
Correction Devoir n° 2 Du 1 ^{er} Semestre								

Exercice 1 : 4 points [Déjà corrigé en classe]

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par :

$$\begin{cases} u_1 = \frac{1}{3}, \\ (\forall n \in \mathbb{N}^*), \ u_{n+1} = \frac{2u_n}{1 + (n+2)u_n}. \end{cases}$$

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par : $v_n=\frac{1}{u_n}-n$.

- 1 Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$ est géométrique.
- 2 a Déterminer v_n et u_n en fonction de n.
 - **b** Calculer en fonction de n la somme : $S_n = v_1 + v_2 + \cdots + v_n$.

1,5 pt

1 pt

1,5 pt

Correction Exercice 1 : 4 points [Déjà corrigé en classe]

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par :

$$\begin{cases} u_1 = \frac{1}{3}, \\ (\forall n \in \mathbb{N}^*), \ u_{n+1} = \frac{2u_n}{1 + (n+2)u_n}. \end{cases}$$

Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite numérique définie par : $v_n=\frac{1}{u_n}-n$.

$$\textbf{1} \quad \text{Montrons que la suite } (v_n)_{n \in \mathbb{N}^*} \text{ est géométrique.}$$

$$(v_n) \text{ est une suite géométrique ssi } \frac{v_{n+1}}{v_n} = q \in \mathbb{R}^* \setminus \{1\}$$
 In fact :

1,5 pt

$$\frac{v_{n+1}}{v_n} = \frac{\frac{1}{u_{n+1}} - (n+1)}{\frac{1}{u_n} - n}$$

$$= \frac{\frac{1}{\frac{2u_n}{1+(n+2)u_n}} - (n+1)}{\frac{1-nu_n}{u_n}}$$

$$= \frac{\frac{1+(n+2)u_n}{2u_n} - (n+1)}{\frac{1-nu_n}{u_n}}$$

$$= \frac{\frac{1+(n+2)u_n-(n+1)2u_n}{2u_n}}{\frac{1-nu_n}{u_n}}$$

$$= \frac{\frac{1+nu_n+2u_n-n2u_n-2u_n}{2u_n}}{\frac{1-nu_n}{u_n}}$$

$$= \frac{1+nu_n+2u_n-n2u_n-2u_n}{2(1-nu_n)}$$

$$= \frac{1-nu_n}{2(1-nu_n)}$$

$$= \frac{1}{2}$$

Donc v_n est une suite gémétrique de raison $\frac{1}{2}$ et de premier terme: $v_1 = \frac{1}{u_1} - 1 = \frac{1}{\frac{1}{2}} - 1 = 3 - 1 = 2$

2 a Déterminons
$$v_n$$
 et u_n en fonction de n .
 (v_n) est une suite géométrique donc $v_n = v_p \times q^{n-p}$

Ainsi:
$$v_n = 2 \times \left(\frac{1}{2}\right)^{n-1}$$

$$v_n = 2 \times \left(\frac{1}{2}\right)^{n-1}$$

On a
$$v_n = \frac{1}{u_n} - n$$
 donc $u_n = \frac{1}{v_n + n}$

Ainsi:
$$u_n = \frac{1}{2 \times (\frac{1}{2})^{n-1} + n}$$

b Calculer en fonction de
$$n$$
 la somme : $S_n = v_1 + v_2 + \cdots + v_n$.

Calculer en fonction de
$$n$$
 la somme : $S_n = v_1 + v_2 + \cdots + v_n$.

$$S_n = v_1 + v_2 + \dots + v_n = v_1 \times \frac{1 - \left(\frac{1}{2}\right)^{n-1+1}}{1 - \frac{1}{2}}$$
$$= 2 \times \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}}$$

$$= 4 \times \left[1 - \left(\frac{1}{2}\right)^n\right]$$

$$S_n = 4 \times \left[1 - \left(\frac{1}{2}\right)^n\right]$$

Exercice 2 (BAC 2022): 4 points [Déjà corrigé en classe par moi-même]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Soit le nombre complexe a défini par

$$a = \sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}.$$

2/10

1 pt

1,5 pt

1 Montrer que $a^2 = -2\sqrt{3} - 2i$, puis en déduire le module de a.

0.5 + 0.5 pt

2 Écrire a^2 sous forme trigonométrique puis vérifier qu'une des mesures de l'argument de a est $\frac{19\pi}{12}$.

0,5 + 0,5 pt

3 En déduire les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$, puis de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

1 pt

4 Représenter sur le même graphique les points images de a, -a et a^2 .

1 pt

Correction Exercice 2 (BAC 2022): 4 points [Déjà corrigé en classe par moi-même]

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. Soit le nombre complexe a défini par

$$a = \sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}.$$

 $1 Montrons que <math>a^2 = -2\sqrt{3} - 2i.$

0,5

On a

$$a^{2} = \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}\right)^{2}$$

$$= \left(\sqrt{2 - \sqrt{3}}\right)^{2} - 2i\sqrt{2 - \sqrt{3}}\sqrt{2 + \sqrt{3}} + \left(i\sqrt{2 + \sqrt{3}}\right)^{2}$$

$$= \left(2 - \sqrt{3}\right) - 2i\sqrt{\left(2 - \sqrt{3}\right)\left(2 + \sqrt{3}\right)} - \left(2 + \sqrt{3}\right)$$

$$= \left(2 - \sqrt{3}\right) - \left(2 + \sqrt{3}\right) - 2i\sqrt{2^{2} - \sqrt{3}^{2}}$$

$$= 2 - \sqrt{3} - 2 - \sqrt{3} - 2i\sqrt{4 - 3}$$

$$= -\sqrt{3} - \sqrt{3} - 2i\sqrt{1}$$

$$= -2\sqrt{3} - 2i$$

Donc $\underline{a^2 = -2\sqrt{3} - 2i}$ cqfd

Déduisons-en le module de a

0,5

On a
$$a^2 = -2\sqrt{3} - 2i$$
 donc $|a^2| = \sqrt{(-2\sqrt{3})^2 + (-2)^2} \implies |a^2| = 4$
 $|a^2| = 4 \implies |a^2| = |a|^2 = 2^2 \implies |a| = 2$

Donc |a| = 2

0,5

$$\begin{aligned} a^2 &= -2\sqrt{3} - 2i \\ &= 4\left(\frac{-\sqrt{3}}{2} - i\frac{1}{2}\right) \\ &= 4\left[\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right] \\ \text{Donc } a^2 &= 4\left[\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right] \end{aligned}$$

2 Écrivons a^2 sous forme trigonométrique

Vérifions qu'une des mesures de l'argument de a est $\frac{19\pi}{12}$.

0,5

On a

$$\arg(a^2) = \frac{7\pi}{6}[2\pi]$$

$$2\arg(a) = \frac{7\pi}{6}[2\pi]$$

$$\arg(a) = \frac{7\pi}{12}[\pi]$$

$$\arg(a) = \frac{7\pi}{12}[\pi] \Leftrightarrow \arg(a) = \frac{7\pi}{12} + k\pi$$
Si $k = 1$ on $a : \arg(a) = \frac{19\pi}{12}$

3 Déduison-en les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$

On a :
$$\arg(a) = \frac{19\pi}{12}$$
 donc
$$\begin{cases} \cos\left(\frac{19\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{19\pi}{12}\right) = -\frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

Or
$$\frac{19\pi}{12} = \frac{7\pi + 12\pi}{12} = \frac{7\pi}{12} + \pi$$

$$\operatorname{donc} \begin{cases} \cos\left(\frac{19\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{19\pi}{12}\right) = -\frac{\sqrt{2+\sqrt{3}}}{2} \end{cases} \implies \begin{cases} \cos\left(\frac{7\pi}{12} + \pi\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{7\pi}{12} + \pi\right) = -\frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

$$\begin{cases} -\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \\ -\sin\left(\frac{7\pi}{12}\right) = -\frac{\sqrt{2+\sqrt{3}}}{2} \end{cases} \implies \begin{cases} \cos\left(\frac{7\pi}{12}\right) = -\frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

$$\begin{cases} \cos\left(\frac{7\pi}{12}\right) = -\frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

Puis les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Or
$$\frac{7\pi}{12} = \frac{6\pi + \pi}{12} = \frac{\pi}{12} + \frac{\pi}{2}$$

$$\operatorname{donc} \begin{cases} \cos\left(\frac{7\pi}{12}\right) = -\frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases} \implies \begin{cases} \cos\left(\frac{\pi}{12} + \frac{\pi}{2}\right) = -\frac{\sqrt{2-\sqrt{3}}}{2} \\ \sin\left(\frac{\pi}{12} + \frac{\pi}{2}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

$$\begin{cases} -\sin\left(\frac{\pi}{12}\right) = -\frac{\sqrt{2-\sqrt{3}}}{2} \\ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases} \implies \begin{cases} \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \\ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \end{cases}$$

0,5 pt

0,5 pt

$$\begin{cases} \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2} \\ \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} \end{cases}$$

0,5 pt

4 Représentons sur le même graphique les points images de a, -a et a^2 .

1 pt

NB ici $z_1 = -a$ et $b = a^2$

Exercice 3 : 2,25 points [Exercice 1 du devoir N1 déjà corrigé par moimême]

1 Calculer les limites suivantes :

 $(0.5pt \times 2+0.25pt)$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x}; \quad \lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2}; \quad \lim_{x \to 1} \frac{\sqrt{x + 3} - \sqrt{5 - x}}{\sqrt{2x + 7} - \sqrt{10 - x}}.$$

2 Donner les primitives des fonctions f et g respectivement sur \mathbb{R} et $\mathbb{R} \setminus \{1; 2\}$.

 $(2 \times 0.5 \text{ pt})$

$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3;$$
 $g(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}.$

Correction 3: 2,25 pts [Exercice 1 du devoir N1 déjà corrigé par moi-même]

1 Calculons les limites suivantes :

 $(0.5pt \times 2+0.25pt)$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\sin x}{\sin 2x \left(\sqrt{1 + \sin x} + 1\right)}$$
$$= \lim_{x \to 0} \frac{\frac{\sin x}{x}}{\frac{2\sin 2x}{2x}} \times \frac{1}{\left(\sqrt{1 + \sin x} + 1\right)}$$
$$= \frac{1}{2} \times \frac{1}{2}$$
$$= \frac{1}{4}$$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} = \frac{1}{4}$$
 0,5 points

$$\lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} = \lim_{x \to 0} \frac{\cos x - 1}{x^2(x+1)}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{x^2} \times \frac{1}{x+1}$$

$$= -\frac{1}{2} \times 1$$

$$= -\frac{1}{2}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} = -\frac{1}{2}$$
 0,5 points

$$\lim_{x \to 1} \frac{\sqrt{x+3} - \sqrt{5-x}}{\sqrt{2x+7} - \sqrt{10-x}} = \lim_{x \to 0} \frac{\left(\sqrt{x+3} - \sqrt{5-x}\right)\left(\sqrt{x+3} + \sqrt{5-x}\right)\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{\left(\sqrt{2x+7} - \sqrt{10-x}\right)\left(\sqrt{2x+7} + \sqrt{10-x}\right)\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{\left[x+3 - (5-x)\right]\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{\left[2x+7 - (10-x)\right]\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{2(-1+x)\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3(x-1)\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{2(x-1)\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3(x-1)\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \lim_{x \to 1} \frac{2\left(\sqrt{2x+7} + \sqrt{10-x}\right)}{3\left(\sqrt{x+3} + \sqrt{5-x}\right)}$$

$$= \frac{2}{3} \times \frac{6}{4}$$

$$\lim_{x \to 1} \frac{\sqrt{x+3} - \sqrt{5-x}}{\sqrt{2x+7} - \sqrt{10-x}} = 1$$
 0,25 points

2 Donnons les primitives des fonctions f et g respectivement sur \mathbb{R} et $\mathbb{R} \setminus \{1; 2\}$. (2 × 0,5 pt)

$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3$$
$$F(x) = \frac{1}{8}(3x^2 - 2x + 3)^4 + k$$

$$F(x) = \frac{1}{8}(3x^2 - 2x + 3)^4 + k$$
 0,25 points

$$g(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}.$$

$$G(x) = \frac{1}{3(x^3 - 3x + 2)} + k$$
 0,5 points

Problème: 9,75 points [Exercice d'application déjà corrigé par moi-même]

Soit f la fonction définie par :

$$f(x) = \begin{cases} 2x\sqrt{1 - x^2} & \text{si } x > 0\\ -x + \sqrt{x^2 - 2x} & \text{si } x \le 0 \end{cases}$$

- 1 Déterminer D_f , les limites aux bornes et préciser la branche infinie. (0,5pt \times 3)
- 2 Étudier la dérivabilité de f en 0 et 1 interpréter géométriquement les résultats obtenus. (0,5pt \times 3+0,5pt \times 3)
- 3 Calculer f'(x) là où f est définie, puis dresser le tableau de variation de f. (0,5pt \times 2+0,5pt \times 2 + 0,5pt)
- 4 Tracer la courbe de f. (0,75pt)
- **5** Soit *h* la restriction de *f* à l'intervalle $]-\infty;0]$.

Montrer que h admet une bijection réciproque h^{-1} dont on précisera l'ensemble de définition, l'ensemble de dérivabilité et le tableau de variation. (0,5pt)

b Sans utiliser l'expression de $h^{-1}(x)$, calculer $(h^{-1})'(2)$. (0,5pt)

c Déterminer explicitement h^{-1} . (0,5pt)

d Tracer la courbe de h^{-1} dans le même repère que celle de f. (0,5pt)

Problème: 9,75 pts [Exercice d'application déjà corrigé par moi-même]

Soit f la fonction définie par :

$$f(x) = \begin{cases} 2x\sqrt{1-x^2} & \text{si } x > 0\\ -x + \sqrt{x^2 - 2x} & \text{si } x \le 0 \end{cases}$$

1 Déterminer D_f , les limites aux bornes et préciser la branche infinie.

 $(0.5pt \times 3)$

Posons
$$f(x) = \begin{cases} f_1(x) & \text{si } x > 0, \\ f_2(x) & \text{si } x \le 0. \end{cases}$$

• $f_1 \exists \sin 1 - x^2 \ge 0 \text{ et } x > 0.$

Posnos $1 - x^2 = 0$ et x = 0.

$$1 - x^2 = 0$$
 et $x = 0 \implies x = -1$ ou $x = 1$ et $x = 0$

									Dir.
x	$-\infty$	-	-1		0		1	+	$-\infty$
$1 - x^2$		_	0	+	/	+	0	-	
x		_		_	0	+		+ "	

$$Df_1 =]0;1]$$

• $f_2 \exists \operatorname{ssi} x^2 - 2x \ge 0 \text{ et } x \le 0.$

Posnos $x^2 - 2x = 0$ et x = 0.

$$x^2 - 2x = 0$$
 et $x = 0 \implies x = 0$ ou $x = 2$ et $x = 0$

x	$-\infty$		0		2		$+\infty$
$x^2 - x$		+	0	_	0	+	
x		_	0	+		+	

$$Df_2 = [-\infty; 0]$$

$$Df = Df_1 \cup Df_2$$

$$Df =]0;1] \cup [-\infty;0]$$

$$Df = [-\infty; 1]$$
 (0,5pt)

Les limites aux bornes de Df

les bornes de Df sont : $-\infty$ et 1

En
$$-\infty$$
: $f(x) = f_2(x) = -x + \sqrt{x^2 - 2x}$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x + \sqrt{x^2 - 2x} = +\infty \text{ triviale } !!!$$

$$\lim_{x\to-\infty}f(x)=+\infty \text{ (0,5pt)}$$

$$\underline{\text{En } 1}: f(x) = f_1(x) = 2x\sqrt{1 - x^2}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} 2x\sqrt{1 - x^2} = 0$$

$$\lim_{x \to 1} f(x) = 0 \quad \text{(0.5pt)}$$

Asymptote et branches infinies

Comme
$$\lim_{x \to -\infty} f(x) = +\infty$$
 cherchons $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{-x + \sqrt{x^2 - 2x}}{x}$$

$$= \lim_{x \to -\infty} \frac{x\left(-x - \sqrt{1 - \frac{2}{x}}\right)}{x}$$

$$= \lim_{x \to -\infty} -1 - \sqrt{1 - \frac{2}{x}}$$

$$= -2$$

Donc
$$\lim_{x \to -\infty} \frac{f(x)}{x} = -2$$

Cherhcons
$$\left[\lim_{x\to-\infty} f(x) + 2x\right]$$

$$\left[\lim_{x \to -\infty} f(x) + 2x\right] = \lim_{x \to -\infty} -x + \sqrt{x^2 - 2x} + 2x$$

$$= \lim_{x \to -\infty} x + \sqrt{x^2 - 2x}$$

$$= \lim_{x \to -\infty} \frac{x^2 - (x^2 - 2x)}{x - \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to -\infty} \frac{2x}{x - \sqrt{x^2 - 2x}}$$

$$= \lim_{x \to -\infty} \frac{2x}{x \left(1 + \sqrt{1 - \frac{2}{x}}\right)}$$

$$= \lim_{x \to -\infty} \frac{2}{\left(1 + \sqrt{1 - \frac{2}{x}}\right)}$$

$$= 1$$

D'où y = -2x + 1 est A.O à (Cf) en $+\infty$

2 La dérivabilité de f en 0 et en 1

$$\underline{\operatorname{En} \, 0^{-}} : f(x) = f_{2}(x) = -x + \sqrt{x^{2} - 2x}$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{-x + \sqrt{x^{2} - 2x}}{x}$$

$$= \lim_{x \to 0^{-}} \frac{\sqrt{x^{2} - 2x} - x}{x}$$

$$= \lim_{x \to 0^{-}} \frac{x^{2} - 2x - x^{2}}{x(\sqrt{x^{2} - 2x} + x)}$$

$$= \lim_{x \to 0^{-}} \frac{-2}{\sqrt{x^{2} - 2x} + x}$$

Supposons que $\sqrt{x^2 - 2x} + x < 0$

$$\sqrt{x^2 - 2x} < -x \implies \begin{cases} x^2 - 2x \ge 0 \\ -x \ge 0 \\ x^2 - 2x < x^2 \end{cases} \implies \begin{cases} x^2 - 2x \ge 0 \\ -x \ge 0 \\ x > 0 \end{cases}$$

Posons
$$\begin{cases} x^2 - 2x = 0 \\ -x = 0 \\ x = 0 \end{cases} \implies \begin{cases} x = 0, x = 2 \\ x = 0 \\ x = 0 \end{cases}$$

x	$-\infty$	0		2	$+\infty$
x^2-2x	+	- 0	_	0 +	
-x	+	- 0	_	_	
x	_	- 0	+	+	

Donc $x \in \emptyset$

Donc il n'existe pas de x pour lequel $\sqrt{x^2 - 2x} + x$ est négatif.

$$\lim_{x \to 0^{-}} \frac{-2}{\sqrt{x^2 - 2x} + x} = \frac{-2}{0^{+}}$$

D'où
$$\lim_{x\to 0^-} \frac{f(x)-f(0)}{x} = -\infty \quad (0.5pt)$$

$$\frac{\operatorname{En} 0^{+}}{\lim_{x \to 0^{+}}} : f(x) = f_{1}(x) = 2x\sqrt{1 - x^{2}}$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{2x\sqrt{1 - x^{2}}}{x}$$

$$= \lim_{x \to 0^{+}} 2\sqrt{1 - x^{2}}$$

$$= 2$$

D'où
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}=2$$
 (0,5pt)

$$\frac{\operatorname{En} 1^{+}}{\lim_{x \to 1^{-}}} : f(x) = f_{1}(x) = 2x\sqrt{1 - x^{2}}$$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{2x\sqrt{1 - x^{2}}}{x - 1}$$

$$= \lim_{x \to 1^{-}} \frac{2x(1 - x^{2})}{(x - 1)\sqrt{1 - x^{2}}}$$

$$= \lim_{x \to 1^{-}} \frac{-2x(x - 1)(x + 1)}{(x - 1)\sqrt{1 - x^{2}}}$$

$$= \lim_{x \to 1^{-}} \frac{-2x(x + 1)}{\sqrt{1 - x^{2}}}$$

$$= \lim_{x \to 1^{-}} \frac{-4}{0^{+}}$$

D'où
$$\lim_{x\to 1^-} \frac{f(x)-f(1)}{x} = -\infty$$
 (0.5pt)

Interprétation:

 $\lim_{x\to 0^-}\frac{f(x)-f(0)}{x}=-\infty \text{ donc } f \text{ n'est pas dérivable en } 0 \text{ mais } C_f \text{ admet une demi-tangent à gauche de } 0$ au point A(0,0) orientée ver le haut.

 $\lim_{\substack{x\to 0^+\\y=2x.}}\frac{f(x)-f(0)}{x}=2 \text{ donc } f \text{ est d\'erivable en } 0^+ \text{ et } C_f \text{ admet une demi-tangent \`a gauche de } 0^+ \text{ d'\'equation } f = 0$

