Optimització d'un SAT Solver

Pràctica 1

Arnau Sangrà Rocamora

8 de març de 2015

A. ENUNCIAT PRÀCTICA

Consisteix en construir un SAT solver i avaluar-lo sobre el conjunt d'instàncies que s'adjunten. No partirem de zero sinó que s'haurà de modificar el SAT solver que adjuntem per tal que sigui més eficient. Els dos aspectes on actuarem seran: millorar l'heurística de decisió i millorar la velocitat de propagació. Un cop modificat, s'haurà d'avaluar i comparar amb el SAT solver PicoSAT.

A part del codi font, es demana una taula, on per cada instància aparegui:

- Si és satisfactible o no. - Temps total, nombre total de decisions i nombre de propagacions per segon del vostre SAT solver i de PicoSAT.

La data límit d'entrega és el diumenge 8 de març 2015 a les 23:59. Adjuntem també un arxiu "resum.txt" on apareixen els resultats obtinguts, sobre les instàncies de la pràctica, d'un SAT solver molt bàsic. L'arxiu mostra el temps que s'ha trigat en resoldre cada instància en un ordinador de la FIB, compilant amb l'opció -O3. Per tal d'aprovar la primera pràctica, considerem imprescindible obtenir temps similars als que hi apareixen. Evidentment, és factible (i recomanable) millorar aquests resultats per obtenir millor nota.

B. Versió per defecte

El programa en la seva versió per defecte, tal i com ens ve donat, és molt simple i naïve, i en conseqüència, els temps d'execució dels diferents jocs de proves proporcionats són força elevats.

En concret, el seu sistema de propagació es basa en la comprovació de totes les clàusules per cada propagació. Així doncs, aquest serà un dels principals punts sobre els quals s'intentarà optimitzar el programa per tal de millorar-ne el rendiment ja que moltes de les comprovacions són prescindibles.

Respecte a l'heurístic utilitzat per el programa en la versió per defecte per tal de d'escollir quin literal s'ha de propagar quan s'ha de prendre una decisió, és realment simple. El seu funcionament és merament per ordre creixent, i establint primer com a cert el valor de la variable.

C. VALIDACIÓ DE LES ASSIGNACIONS

Per tal de millorar l'estratègia de propagació que utilitza el SAT Solver, s'ha optat per mirar de reduir al màxim possible el nombre de clàusules que aquest ha de comprovar cada cop que es valida una assignació a una variable.

Aixi doncs, en l'ultima versió implementada, cada cop que s'assigna un literal, ja sigui per decisió o propagació, el SAT Solver ja no comprova que totes les clàusules de la CNF són certes, sinó que només comprova aquelles clàusules on apareix el literal negat respecte el que s'ha assignat.

Aquesta estratègia és possible gràcies a que durant la lectura de les clàusules, a la funció readClauses(), s'omplen dues estructures de dades addicionals anomenades clausesOnPositive i clausesOnNegative de mida igual al nombre de variables les quals contenen per cada una respectivament el numero que identifica les clàusules on apareix un cada literal separats segons si estan negats o no. Amb aquesta estratègia, s'aconsegueix reduir de forma dràstica el nombre de comprovacions necessàries per tal de detectar possibles insatisfactibilitats a cada assignació.

D. HEURÍSTIC IMPLEMENTAT

Seguint amb l'objectiu de millorar el rendiment del SAT Solver, l'altra focus és l'heurístic utilitzat a l'hora de decidir quina variable assignar quan s'han realitzat totes les propagacions possibles resultants de les clàusules unitàries detectades. Si bé en la versió proposada l'heurístic consistia en anar seleccionant les variables a assignar per ordre ascendent i començant sempre per una assignació positiva, clarament es veu que aquest no ofereix bons resultats i no utilitza cap tipus d'informació sobre les variables ni l'execució del SAT Solver.

Així doncs, el nou heurístic implementat pretén aprofitar informació tal com és el nombre d'aparicions d'una variable en el total de clàusules així com també el nombre de vegades que l'assignació de les diferents variable genera una clàusula insatisfactible.

Més concretament, l'heurístic està basat en un vector de mida igual al nombre de variables anomenat score el qual conté una *puntuació* que anirà canviant dinàmicament al llarg de l'execució del programa.

La puntuació de cada variable primerament s'inicia amb el nombre d'aparicions en el total de clàusules, intentant afavorir a l'inici de l'execució que les decisions es realitzin primer respecte les variables que apareixen en més clàusules i per tant són més restrictives.

L'score també és veu alterat cada cop que es detecta una clàusula insatisfactible, incrementant en una unitat la puntuació de l'última variable que s'ha decidit i ha generat les conseqüents propagacions. D'aquesta forma es pretén afavorir la presa de decisions sobre les variables que tenen tendència a forçar més instatisfactibilitats.

No obstant, per tal d'evitar però que els increments de l'score en les variables produïts amb molta anterioritat, cada un cert nombre d'insatisfaccions detectades, es redueixen tots els *scores* per una constant intentant incrementar el dinamisme de l'heurístic.

E. TAULES

Instància	Decisions	Prop./segon	Texec.	Decisions pS	Prop. pS	Texec. pS
vars-100-1	1	0	0,000064	329	1,189,857	0.007
vars-100-2	47	292769	0.003969	373	1,316,142	0.007
vars-100-3	1212	3886810	0.008128	577	2,092,142	0.007
vars-100-4	1160	3391270	0.009137	694	2,174,250	0.008
vars-100-5	313	1755590	0.004873	278	1,348,800	0.005
vars-100-6	928	3469620	0.007012	666	2,695,666	0.006
vars-100-7	326	1735630	0.004838	168	845,400	0.005
vars-100-8	408	1869960	0.005798	39	$154,\!666$	0.003
vars-100-9	743	2945880	0.006984	428	1,947,166	0.003
vars-100-10	1023	3518300	0.00743	601	1,980,875	0.008

Taula 1 – Resultats jocs de proves amb 100 variables

Instància	Decisions	Prop./segon	Texec.	Decisions pS	Prop. pS	Texec. pS
vars-150-1	4636	5452770	0.030183	893	3,202,888	0.009
vars-150-2	6609	5949130	0.039492	3190	3,737,633	0.030
vars-150-3	6223	6012700	0.036921	1563	$4,\!154,\!153$	0.013
vars-150-4	7896	6083940	0.045201	1646	4,015,428	0.014
vars-150-5	14502	6051140	0.082427	3002	3,969,384	0.026
vars-150-6	1813	4157920	0.015008	270	1,531,400	0.005
vars-150-7	7698	5815770	0.045097	2445	$4,\!375,\!700$	0.020
vars-150-8	65	241675	0.006186	821	3,202,250	0.008
vars-150-9	21207	6666080	0.115017	1263	$369,\!541$	0.12
vars-150-10	11354	6074080	0.065744	3145	4,335,807	0.026

 $\bf Taula~2$ – Resultats jocs de proves amb 150 variables

Instància	Decisions	Prop./segon	Texec.	Decisions pS	Prop. pS	Texec. pS
vars-200-1	123248	6770670	0.767291	15518	$4,\!261,\!198$	0.156
vars-200-2	5672	5446250	0.043227	4558	$4,\!673,\!857$	0.042
vars-200-3	94762	6575660	0.604821	18580	4,134,848	0.191
vars-200-4	35458	6403410	0.230923	7299	4,659,560	0.066
vars-200-5	58489	6597170	0.368593	11554	4,170,610	0.118
vars-200-6	83337	6744580	0.523748	25253	$3,\!953,\!875$	0.274
vars-200-7	259962	6897430	1.56998	26315	3,910,893	0.291
vars-200-8	6115	5055230	0.050933	9299	4,309,215	0.088
vars-200-9	37733	6337920	0.252819	8293	4,347,089	0.078
vars-200-10	109922	6700080	0.687189	18609	3,910,330	0.206

 ${\bf Taula~3}$ – Resultats jocs de proves amb 200 variables

Instància	Decisions	Prop./segon	Texec.	Decisions pS	Prop. pS	Texec. pS
vars-250-1	591613	6607450	4.30471	80183	$3,\!193,\!658$	1.243
vars-250-2	1133120	6663650	8.08544	123065	2,764,120	2.158
vars-250-3	353552	6617510	2.57711	55647	$3,\!546,\!539$	0.788
vars-250-4	389373	6632910	2.86677	24905	4,096,952	0.293
vars-250-5	762397	6794550	5.46722	104613	3,150,130	1.662
vars-250-6	2788005	6733610	19.0892	136808	2,835,445	2.411
vars-250-7	75634	6591320	0.566293	56870	$3,\!473,\!237$	0.818
vars-250-8	1119582	6770540	7.86107	92288	3,139,624	1.444
vars-250-9	281075	6756000	1.98245	32426	3,857,285	0.407
vars-250-10	95804	6582780	0.723461	50074	3,830,646	0.643

Figura 1 – Resultats jocs de proves amb 250 variables

Instància	Decisions	Prop./segon	Texec.	Decisions pS	Prop. pS	Texec. pS
vars-300-1	222922	6600290	1.8518	668948	1,720,925	21.600
vars-300-2	11869674	6645570	95.3288	647130	1,764,633	20.682
vars-300-3	4437486	6575140	35.6269	354511	2,152,673	9.245
vars-300-4	6459396	6647390	53.1182	479041	8,504,662	13.175
vars-300-5	5200357	6659610	42.162	580334	1,865,856	17.460
vars-300-6	4497411	6607160	36.7816	294491	2,465,648	6.802
vars-300-7	1228910	6642400	10.4335	113743	3,109,734	2.090
vars-300-8	18165391	6648830	141.366	558417	1,870,512	16.787
vars-300-9	1986407	6555800	1.98245	218985	2,489,743	5.001
vars-300-10	1464484	6671920	15.9706	261765	710,242	5.660

Figura 2 – Resultats jocs de proves amb 300 variables

Els resultats s'han obtingut un ordinador amb un processador Intel Core i7-3720QM quad-core amb una freqüència de 2.6 GHz (3.6 GHz en mode TurboBoost) i 16 GB de memòria RAM.

F. Possibles millores

El SAT Solver resultant d'aplicar les millores en les comprovacions de les restriccions i en l'heurístic aconsegueix uns resultats força millors en comparació amb la versió per defecte. No obstant, encara es podrien implementar algunes millores per tal d'intentar aconseguir rebaixar encara més els temps d'execució per exemple intentant afinar més el paràmetre segons el qual, al cap d'un determinat nombre de insatisfactibilitats es redueixen els score o també el propi valor segons el qual s'anivellen les puntuacions, que en el cas actual, equival a reduir a la meitat. Una altra possible millora a implementar en futures versions podria ser distingir les puntuacions de les variables segons assignacions positives i negatives.

Tot i aquestes possibles millores, en cap cas seria possible aconseguir igualar els resultats obtinguts mitjançant el picoSAT, ja que aquest utilitza tècniques molt més avançades com per exemple l'aprenentatge per tal de guanyar eficiència.

Referències

[1] A. Oliveras and E. Rodríguez-Carbonell. From dpll to cdcl sat solvers. Logic and Algebra in Computer Science, Fall 2009. URL http://www.cs.upc.edu/~oliveras/LAI/cdcl.pdf.