MATH 6320 Homework 7

Joel Sleeba

November 3, 2024

1. not finished

Solution:

- 2. **Solution:** Since $r \in D_8$, has order 4, if $\phi : D_8 \to D_8$ is any automorphism, then $\phi(r)$ must also have the same order. Hence the possible $\phi(r)$ are $r, r^{-1} \in D_8$. Similarly since |s| = 2, $\phi(s)$ also must have order 2, which gives $\phi(s) \in \{s, r^2, sr, sr^2, sr^3\}$. But since $\phi(r) \in \{r, r^3\}$, if $\phi(s) = r^2$, $\phi(D_8) = \langle r \rangle$, and ϕ will not be an automorphism. Hence $\phi(s) \in \{s, sr, sr^2, sr^3\}$. Since s, r generate D_8 , and each of them have 4 and 2 possible options, by the counting argument, $\operatorname{Aut}(D_8)$ can have at most 8 elements.
- 3. not finished

Solution: Since $D_8 \leq D_{16}$, we see that $\phi: D_{16} \to \operatorname{Aut}(D_8): g \to \phi_g$, where $\phi_g: h \to ghg^{-1}$ is a well defined map. Since

$$\phi_g \phi_{g'}(h) = \phi_g (g'h(g')^{-1})$$

$$= gg'h(g')^{-1}g^{-1}$$

$$= (gg')h(gg')^{-1}$$

$$= \phi_{gg'}(h)$$

we see that ϕ is a group homomorphism. Moreover, we know that $\operatorname{Ker}(\phi) = C_{D_{16}}(D_8) = \langle r \rangle = \{r, e\}$. Hence by the first isomorphism theorem, we see that $\phi(D_{16}) = \frac{D_{16}}{\langle r^4 \rangle} \cong D_8$. Moreover,

4. not finished

Solution: From what we proved in the class, we know that if $H \leq G$, then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$. Hence in the question, we know that $N_{S_p}(P)/C_{S_p}(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P)$.

Since P is a cyclic group of order p, $P \cong \mathbb{Z}/p\mathbb{Z}$ and hence the number of automorphisms of P are precisely p-1.

Also $C_{S_p}(P) = P$. To show this, we first notice that every non-identity element in P must be a p-cycle. If p = 2, $P = S_p$ and we've noting to prove. Hence assume p > 2, then without loss of generality, assume $(1 \ 2 \dots p) \in P$. Then $(1 \ 2)(1 \ 2 \dots p) = (2 \ 3 \dots p) \neq (1 \ 3 \ 4 \dots p) = (1 \ 2 \dots p)(1 \ 2)$.

5. Solution: Let $(1,k) \in C_K(H)$. Then for any $(h,1) \in G$,

$$(h,k) = (h\varphi(1)(1),k) = (h,1)(1,k) = (1,k)(h,1) = (1\varphi(k)(h),k)$$

forces $\varphi(k)(h) = h$. Since this is true for all $h \in H$, we see that $\varphi(k)$ is the trivial automorphism of H. Hence $k \in \text{Ker}(\varphi)$.

Conversely, if $k \in \text{Ker}(\phi)$, then $\phi(k)(h) = h$ for all $h \in H$. Then for any $(h, 1) \in H$ (identified as a subgroup of G)

$$(h,1)(1,k) = (h\varphi(1)(1),k) = (h,k) = (\phi(k)(h),k) = (1,k)(h,1)$$

shows that $(1, k) \in C_K(H)$. Hence $C_K(H) = \text{Ker}(\varphi)$.

6. not finished

Solution: We know that $Hol(H) = H \rtimes_{\phi} Aut(H)$, where $\phi : Aut(H) \to Aut(H)$ is the identity map.

(a) We notice that $H = Z_2 \times Z_2 \cong V_4$, the Klein 4 group. Therefore, let $H = V_4 = \{1, a, b, c\}$. Since we know that any two of a, b, c generate the group V_4 we see that any permutation of a, b, c will be a group automorphism. Hence we see that $\operatorname{Aut}(H) \cong S_3$. Hence we see that $\operatorname{Hol}(Z_2 \times Z_2) \cong H \rtimes K$, where $H = Z_2 \times Z_2$ and $K \cong S_3$. Also, $|H \rtimes K| = |H \times K| = |H| \times |K| = 4 \times 6 = 24$

(b)

7. not finished

Solution: We know that since $75 = 3 \times 5^2$, the fundamental theorem for Abelian groups immediately gives two groups $Z_3 \times Z_{5^2} \cong Z_{75}$ and $Z_3 \times Z_5 \times Z_5$.