## b) Amendments to the Claims

A detailed listing of the pending claims is provided which replaces all earlier versions.

- 1. 8. (Cancelled).
- 9. (Currently Amended) An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organi c compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

$$\begin{array}{c} Y_1 \\ Y_2 \\ \end{array} \qquad \qquad X_1 \\ \begin{array}{c} R_1 \\ R_2 \\ \end{array} \qquad \qquad X_2 \\ \begin{array}{c} R_5 \\ R_6 \\ \end{array} \qquad \qquad \\ R_7 \\ \begin{array}{c} R_8 \\ R_9 \\ \end{array} \qquad \qquad \\ \end{array} \qquad \begin{bmatrix} 1 \\ \end{bmatrix}$$

(wherein  $X_1$  or  $X_2$  represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which  $X_1$  or  $X_2$  may be identical with or different from each other, and also  $X_1$  or  $X_2$  may be directly bonded with each other;

 $X_3$  represents a group selected from the group consisting of substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which  $X_3$  may be identical with or different from  $X_1$  or  $X_2$  and in which the substituent is selected from the group consisting of alkyl, benzyl, phenethyl, aralkyl, alkoxy, phenoxy, 4-butylphenoxy, benzyloxy, phenyl, alkylphenyl, chlorophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, heterocyclic, halogen, cyano, and nitro;

 $Y_1$  and  $Y_2$  represent groups respectively from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a

substituted unsubstituted arylene group or a divalent heterocyclic group, in which  $Y_1$  and  $Y_2$   $Y_2$  may be identical with or different from each other;

 $\mathbf{Y}_1 \text{ and } \mathbf{Y}_2 \text{ , or } \mathbf{X}_1, \mathbf{Y}_1 \text{ and } \mathbf{Y}_2 \text{ may be bonded with each other to form}$  a ring;

 $R_1$  to  $R_8$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which  $R_1$  to  $R_8$  may be identical with or different from each other; and

m+n denotes an integer number of 4 to 10 when all of  $R_1$  to R8  $\underline{R}_8$  are hydrogen atoms, and  $X_1$  and  $\frac{1}{2}$   $\underline{X}_2$  are directly bonded with each other, and  $\frac{1}{2}$   $\underline{X}_3$  is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [2]:

$$\begin{array}{c|c}
Ar_2 & & & \\
Ar_3 & & & \\
& & & \\
R_a & & \\
\end{array}$$
[2]

(wherein  $Ar_1$  to  $Ar_3$  represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which  $Ar_1$  to  $Ar_3$  may be identical with or different from each other, or one of them may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and  $R_9$  to  $Rn \ \underline{R}_{11}$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group, and a cyano group.)

10. (Currently Amended) An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

5

(wherein  $X_1$  or  $X_2$  represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which  $X_1$  or  $X_2$  may be identical with or different from each other, and also  $X_1$  or  $X_2$  may be directly bonded with each other:

 $X_3$  represents a group selected from the group consisting of substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which  $X_3$  may be identical with or different from  $X_1$  or  $X_2$  and in which the substituent is selected from the group consisting of alkyl, benzyl, phenethyl, aralkyl, alkoxy, phenoxy, 4-butylphenoxy, benzyloxy, phenyl, alkylphenyl, chlorophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, heterocyclic, halogen, cyano, and nitro;

 $Y_1$  and  $Y_2$  represent groups respectively from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a

substituted unsubstituted arylene group or a divalent heterocyclic group, in which  $Y_1$  and  $Y_2$   $Y_2$  may be identical with or different from each other;

 $\mathbf{Y_1} \text{ and } \mathbf{Y_2} \text{, or } \mathbf{X_1}, \mathbf{Y_1} \text{ and } \mathbf{Y_2} \text{may be bonded with each other to form}$  a ring;

 $R_1$  to  $R_8$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which  $R_1$  to  $R_8$  may be identical with or different from each other; and

m + n denotes an integer number of 4 to 10 when all of  $R_1$  to  $\frac{R8}{8}$   $R_2$  are hydrogen atoms, and  $X_1$  and  $\frac{X2}{2}$   $X_2$  are directly bonded with each other, and  $\frac{X3}{2}$   $X_3$  is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [3]:

$$Ar_{6} = \begin{bmatrix} Ar_{4} \\ Ar_{7} \\ Ar_{12} \end{bmatrix}$$

(wherein  $Ar_4$  to  $Ar_7$  represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which  $Ar_4$  to  $Ar_7$  may be identical with or different from each other; and  $R_{12}$  and  $R_{13}$ 

represent groups selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group and aralkyl group, a substituted amino group, and a cyano group.)

11. (Currently Amended) An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

 $\label{eq:constraint} (wherein $X_1$ or $X_2$ represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, anylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or$ 

unsubstituted arylene group or a divalent heterocyclic group, in which  $X_1$  or  $X_2$  may be identical with or different from each other, and also  $X_1$  or  $X_2$  may be directly bonded with each other;

 $X_3$  represents a group selected from the group consisting of substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which  $X_3$  may be identical with or different from  $X_1$  or  $X_2$  and in which the substituent is selected from the group consisting of alkyl, benzyl, phenethyl, aralkyl, alkoxy, phenoxy, 4-butylphenoxy, benzyloxy, phenyl, alkylphenyl, chlorophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, heterocyclic, halogen, cyano, and nitro;

 $Y_1$  and  $Y_2$  represent groups respectively from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a substituted unsubstituted arylene group or a divalent heterocyclic group, in which  $Y_1$  and  $Y_2$   $Y_2$ , may be identical with or different from each other;

 $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  , or  $\mathbf{X}_1, \mathbf{Y}_1$  and  $\mathbf{Y}_2$  may be bonded with each other to form

 $R_1$  to  $R_8$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl

a ring;

group, aralkyl group, and aryl group, in which  $R_1$  to  $R_8$  may be identical with or different from each other; and

m+n denotes an integer number of 4 to 10 when all of  $R_1$  to R8  $R_8$  are hydrogen atoms, and  $X_1$  and X2  $X_2$  are directly bonded with each other, and X3  $X_2$  is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [4]:

$$\begin{array}{c}
Ar_{8} \\
Ar_{10} \\
Ar_{12}
\end{array}$$
[4]

(wherein  $Ar_8$  to  $Ar_{12}$  represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which  $Ar_8$  to  $_{2442} \underline{Ar}_{12}$ , may be identical with or different from each other; and  $R_{14}$  represents a group selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a substituted amino group, and a cyano group.)

12. (Currently Amended) An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

$$\begin{array}{c} Y_1 \\ Y_2 \end{array} N - X_1 - \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} - \begin{array}{c} R_2 \\ R_4 \end{array} - \begin{array}{c} R_5 \\ R_7 \end{array} - \begin{array}{c} R_6 \\ R_8 \end{array} - \begin{array}{c} R_6 \end{array} - \begin{array}{c} R_1 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_4 \end{array} - \begin{array}{c} R_2 \\ R_7 \end{array} - \begin{array}{c} R_6 \\ R_8 \end{array} - \begin{array}{c} R_1 \\ R_8 \end{array} - \begin{array}{c} R_1 \\ R_9 \end{array} - \begin{array}{c} R_1 \\ R_1 \\ R_2 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_1 \\ R_2 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_2 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \\ R_3 \end{array} - \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3$$

(wherein  $X_1$  or  $X_2$  represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which  $X_1$  or  $X_2$  may be identical with or different from each other, and also  $X_1$  or  $X_2$  may be directly bonded with each other;

 $X_3$  represents a group selected from the group consisting of substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group,

in which  $X_3$  may be identical with or different from  $X_1$  or  $X_2$  and in which the substituent is selected from the group consisting of alkyl, benzyl, phenethyl, aralkyl, alkoxy, phenoxy, 4-butylphenoxy, benzyloxy, phenyl, alkylphenyl, chlorophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, heterocyclic, halogen, cyano, and nitro;

 $Y_1$  and  $Y_2$  represent groups respectively from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a substituted unsubstituted arylene group or a divalent heterocyclic group, in which  $Y_1$  and  $Y_2$ .  $Y_2$  may be identical with or different from each other;

 $\boldsymbol{Y}_1$  and  $\boldsymbol{Y}_2$  , or  $\boldsymbol{X}_1,\,\boldsymbol{Y}_1$  and  $\boldsymbol{Y}_2$  may be bonded with each other to form

 $R_1$  to  $R_8$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which  $R_1$  to  $R_8$  may be identical with or different from each other; and

a ring;

m + n denotes an integer number of 4 to 10 when all of  $R_1$  to  $R_2$   $R_3$ .

are hydrogen atoms, and  $X_1$  and  $X_2$   $X_2$ . are directly bonded with each other, and  $X_3$   $X_3$  is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions,

wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [5]:

(wherein  $Ar_{13}$  to  $Ar_{16}$  represent groups respectively selected from the group consisting of a substituted or unsubstituted aryl group and heterocyclic group, in which  $Ar_{13}$  to  $Ar_{16}$  may be identical with or different from each other, or at most three of  $Ar_{13}$  to  $Ar_{16}$  may be a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aralkyl group; and  $R_{15}$  to  $R_{16}$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group, a substituted amino group, and a cyano group.)

13. (Currently Amended) An organic luminescence device comprising at least a pair of electrodes including an anode and a cathode and one or a plurality of layers containing an organic compound sandwiched between the pair of electrodes, wherein at least one of the layers containing the organic compound contains at least one of compounds represented by the following general formula [1]:

$$Y_2$$
 $X_3$ 
 $X_3$ 
 $X_4$ 
 $X_4$ 
 $X_4$ 
 $X_4$ 
 $X_4$ 
 $X_5$ 
 $X_6$ 
 $X_8$ 
 $X_8$ 

(wherein  $X_1$  or  $X_2$  represent divalent groups respectively selected from the group consisting of a substituted or unsubstituted alkylene group, aralkylene group, arylene group and heterocyclic group; and an alkylene group, an aralkylene group, an alkenylene group, an amino group, a silyl group, a carbonyl group, an ether group and a thioether group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group, in which  $X_1$  or  $X_2$  may be identical with or different from each other, and also  $X_1$  or  $X_2$  may be directly bonded with each other:

 $X_3$  represents a group selected from the group consisting of substituted or unsubstituted alkyl group, aralkyl group, aryl group, and heterocyclic group, in which  $X_3$  may be identical with or different from  $X_1$  or  $X_2$  and in which the substituent is selected from the group consisting of alkyl, benzyl, phenethyl, aralkyl, alkoxy, phenoxy, 4-

butylphenoxy, benzyloxy, phenyl, alkylphenyl, chlorophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, heterocyclic, halogen, cyano, and nitro;

 $Y_1$  and  $Y_2$  represent groups respectively from the group consisting of a substituted or unsubstituted alkyl group, aralkyl group, aryl group and heterocyclic group; a substituted or unsubstituted alkylene group, aralkylene group, alkenylene group, amino group, and silyl group, each of which has a coupling group including a substituted or unsubstituted arylene group or a divalent heterocyclic group; and an unsubstituted carbonyl group, ether group, and thioether group, each of which has a coupling group including a substituted unsubstituted arylene group or a divalent heterocyclic group, in which  $Y_1$  and  $Y_2$   $Y_2$ , may be identical with or different from each other;

 $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  , or  $\mathbf{X}_1$ ,  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  may be bonded with each other to form

 $R_1$  to  $R_8$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, and a substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which  $R_1$  to  $R_8$  may be identical with or different from each other; and

a ring;

m + n denotes an integer number of 4 to 10 when all of  $R_1$  to  $R8 R_8$  are hydrogen atoms, and  $X_1$  and  $X2 X_2$  are directly bonded with each other, and  $X3 X_2$  is a hydrogen atom, or denotes an integer number of 1 to 10 under the other conditions, wherein the layer containing the compound represented by the general formula [1] contains at least one of the compounds represented by the following general formula [6]:



(wherein  $R_{19}$  and  $R_{20}$  represent groups respectively selected from the group consisting of a hydrogen atom, and substituted or unsubstituted alkyl group, aralkyl group, and aryl group, in which the  $R_{19}$  groups or the  $R_{20}$  groups bonded with different fluorene groups may be identical with or different from each other, and  $R_{19}$  and  $R_{20}$  bonded with the same fluorene group may be identical with or different from each other; and

 $R_{24}$  to  $R_{24}$  represent groups respectively selected from the group consisting of a hydrogen atom, a halogen group, substituted or unsubstituted alkyl group, aralkyl group, and alkoxy group, a substituted silyl group, and a cyano group; and p is an integer number of 2 to 10.)

14. (Previously Presented) An organic luminescence device according to Claim 9, wherein the layer containing the compound represented by the general formula [1] is provided as a luminescent layer.

- (Previously Presented) An organic luminescence device according to Claim 10, wherein the layer containing the compound represented by the general formula
   is provided as a luminescent layer.
- 16. (Previously Presented) An organic luminescence device according to Claim 11, wherein the layer containing the compound represented by the general formula[1] is provided as a luminescent layer.
- 17. (Previously Presented) An organic luminescence device according to Claim 12, wherein the layer containing the compound represented by the general formula[1] is provided as a luminescent layer.
- 18. (Previously Presented) An organic luminescence device according to Claim 13, wherein the layer containing the compound represented by the general formula [1] is provided as a luminescent layer.