Programozás Alapjai gyakorló ZH

1. feladatsor

Szoftverfejlesztés Tanszék 2023, Ősz

Általános információk

A programot C nyelven kell megírni, és a Bíró webes felületén keresztül lehet benyújtani. Egy C program kiterjesztése c. A Bíró a fájl nevében található első pont utáni részt tekinti kiterjesztésnek.

Kiértékelés

A programot a *Bíró* fogja kiértékelni. Feltöltés után a *Bíró* a programot a gcc fordítóval és a -02 -static -o feladat feladat.c paraméterezéssel lefordítja, majd a programot különböző tesztesetekre futtatja. Minden helyes teszteset 1 pontot ér. A teszteset akkor helyes, ha a program futása nem tartott tovább 5 másodpercnél, a futása hiba nélkül (0 hibakóddal) fejeződött be és az adott inputhoz tartozó kimenet **minden egyes karaktere** megegyezik az előre eltárolt referencia megoldással.

A Bíró által a riport.txt-ben visszaadott lehetséges hibakódok:

Futási hiba: 6	Memória- vagy időkorlát túllépés.
Futási hiba: 8	Lebegőpontos hiba, például nullával való osztás.
Futási hiba: 11	Memória-hozzáférési probléma, pl. tömb-túlindexelés, null pointer használat.

Minden programra vonatkozó követelmények

A program bemenő adatait a be.txt nevű fájlból kell beolvasni, az eredményt pedig a ki.txt nevű fájlba kell írni akkor is, ha ez nincs külön megemlítve a feladat leírásában. A be.txt állomány csak olvasásra, a ki.txt állomány pedig csak írásra nyitható meg, más megnyitási mód esetén a Bíró nem engedélyezi a hozzáférést. Más fájl megnyitását a Bíró szintén nem engedélyezi.

A program bemenet/kimenet leírásokban a "sor" egy olyan karaktersorozatot jelöl, amelyben pontosan egy sorvége jel (' \n ') található, és az az utolsó karakter. Tehát minden sort sorvége jel zár! Elképzelhető olyan output, amelyben nincs sorvége jel, de akkor a feladat kiírásának egyértelműen jeleznie kell, hogy a sorvége jel hiányzik!

A hibakód nélküli befejezést a main függvény végén végrehajtott return 0; utasítás biztosíthatja.

1. feladat: Számrendszerek közötti átváltás (22 pont)

A feladat adott számrendszerbeli számok átváltása másik számrendszerbe. Bemenetként adott az átváltandó szám számrendszerének alapja, melyik számrendszerbe kell átváltani, továbbá maga a szám. Figyeljünk oda, hogy csak akkor váltható át a megadott szám, ha az valóban a hozzá tartózó számrendszerben van ábrázolva, és ha a számrendszerek alapjai 2 és 36 közöttiek! A negatív számokkal nem kell foglalkozni. A szám értéke a $[0,2^{31})$ tartományba esik.

Bemenet

A bemenetben három érték szerepel. Az első érték egy egész szám, mely az átváltandó szám számrendszerének alapja. A második érték szintén egy egész szám, mely az a számrendszer, amelybe át kell váltani a számot, és a harmadik érték maga az átváltandó nemnegatív egész szám az adott számrendszerben. A szám megadásánál a nem decimális karaktereket az angol ábécé 26 nagybetűje helyettesíti ('A' == $10, \ldots, 'Z' == 35$). Mindhárom érték szóközzel van elválasztva egymástól, és a sor végén soremelés található. A számrendszerek alapjai $2 \le alap \le 36$ között lehetnek adottak. Ha ettől eltérő számrendszer van adva, akkor azt hibaként kell kezelni. Feltételezhető, hogy amennyiben a bemenetet nem hibaként kezeljük le, úgy az átváltandó szám a $[0, 2^{31})$ tartományba esik.

Kimenet

A kimenet az eredményt tartalmazza, vagyis az átváltott számot, esetleg a HIBA szót, ha valami miatt nem lehet átváltani a számot (pl. olyan számot adtunk meg, ami nem az első oszlopban megadott számrendszerben van ábrázolva, vagy ha valamelyik számrendszer nem 2 és 36 között van). A nem decimális karaktereket az angol ábécé 26 nagybetűje helyettesíti ('A' == 10, ..., 'Z' == 35). Az eredményt egy sorvége-karakter zárja!

Példák

1. példa

Input

10 16 255

Output

FF

2. példa

Input

3 10 Z

Output

HIBA

Segédanyag

Andrew S. Tannenbaum: Számítógépes architektúrák

Fried Ervin: Oszthatóság és számrendszerek