Morgan L. Ford fordm2@rpi.edu

¹Rensselaer Polytechnic Institute, Troy, NY, United States,

Abstract

23.5 million Americans live in food deserts[1]. Many Americans also live with diet related health conditions. This poster will examine a potential relationship between access to grocery stores and access to healthy foods at grocery stores, the differences between urban and non-urban food deserts, the relationship between population demographics and food deserts, and the relationship between food deserts and the prevalence or mortality rates of diet-related health conditions. I hypothesis that food deserts are less likely to have a variety of healthy foods in their limited food sources compared to areas that are not food deserts. I also hypothesize that food desert communities are more likely to be at risk for diet related health issues than than areas that are not food deserts.

Introduction

According to the USDA, a food desert is defined as an area that has either:

- A poverty rate >= 20%
- A median family income <= 80% of the median family income (urban areas)
- A median family income <= 80% of statewide median family income (nonurban areas)

and at least 500 people or 33% live further than:

- Urban: 1 miles from nearest large grocery store
- Rural: 10 miles from nearest large grocery store Diet related health conditions include:
- Type 2 Diabetes
- Heart Disease
- Obesity
- Breast, Colon, and Uterine Cancers

The Data

- 1. Food Environment Atlas
 - County level data about types of accessible food
- 2. Food Access Research Atlas
 - Census tract level data about access to food
- 3. US Health Map
 - Variety of data about health conditions

EDA

Demographics SVM

A support vector machine model was model to A knn model was created with 72.3% accuracy to classify if a county that was a food desert or not, classify food deserts based on length of life. Another using the variable that flagged if a tract that flagged knn model was created with 94.15% accuracy to at low access for 1 mile for urban areas and 10 classify food deserts based on quality of life. The miles for non-urban areas, and the following respective confusion matrices are below. demographic variables about population income and ethnicity.

$$K(x, x') = exp(-\frac{||x - x'||^2}{2(0.203)^2})$$

It performed with 74.55% accuracy confusion matrix is below.

Access Linear Regression

A linear regression model was created to examine feature importance and to examine the difference between urban and non-urban areas. The urban linear model is likely overfit due to the lack of data. The non-urban linear model performs with residual standard error of **0.3614** and multiple R-squared of 0.04345. This model may also be overfit, but does perform with relatively low error.

Coefficient (per thousand, 2016)	Urban Estimate	Non-Urban Estimate
Grocery Stores	-15.8089	0.13203
Super-centers and Club Stores	-45.6754	3.03135
Convenience Stores	6.9483	0.10744
Specialty Stores	NA	0.27167
SNAP Authorized Stores	NA	-0.17213
WIC Authorized Stores	NA	0.13954
Fast Food Restaurants	NA	-0.02529
Food Service Restaurants	NA	-0.02453

Access Random Forest

A random forest classifier was made with 50 trees and 3 variables tried at each split to see if it was possible to correctly classify a county as having 33% or more food desert tracts based on the food environment. It performed with 97.3% accuracy.

Fig. 6. The plots for the random forest model to classify a county having food deserts.

The most important factors for accuracy: the number of grocery stores, food service restaurants, and convenience stores.

Models

Quality of Life KNN

Health Random Forest

A random forest classifier was made with 50 trees and 3 variables tried at each split to see if it was possible to correctly classify a county as having 33% or more food desert tracts based on the prevalence of obesity and diabetes as well as the mortality rates of cardiovascular disease, breast, colon, and uterine cancers. It performed with 94.1% accuracy.

The most important factors for accuracy: colon cancer mortality rate and cardiovascular disease mortality rate.

Conclusion

t-test alone, my hypothesis is disproven. However, from the models that I have generated, I find there to be a significant link between food deserts, food access, quality of life, and diet-related health conditions.

Note:

When creating urban and non-urban linear models, a county was counted as urban if the percent of urban census tracts in the county was higher than 50%.

When classifying entire counties as food deserts, a county would be classified as a food desert if 33% or more of the census tracts in the county were food deserts.

Sources:

https://www.ers.usda.gov/webdocs/publications/45014/30940_err140.pdf

http://www.ers.usda.gov/Publications/AP/AP036/

https://www.ers.usda.gov/data-products/food-environment-atlas/

https://www.ers.usda.gov/data-products/food-access-research-atlas/ https://www.cdc.gov/chronicdisease/resources/publications/factsheets/nutrition.htm