ĐỀ KIỂM TRA CUỐI KỲ II

BẢNG ĐÁP ÁN

1. A	2. B	3. D	4. C	5. C	6. A	7. C	8. A	9. B	10. D
11. B	12. D	13. B	14. C	15. A	16. C	17. C	18. B	19. C	20. A
21. D	22. B	23. A	24. A	25. B	26. B	27. B	28. C	29. A	30. D

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1:

Phân tích câu hỏi:

Lý thuyết biến thiên enthalpy.

Lời giải: Chọn A

Phản ứng thu nhiệt có $\Delta_{r}H > 0$.

Phản ứng có $\Delta_r H < 0$ xảy ra thuận lợi hơn.

Giá trị $\Delta_r H > 0$ phụ thuộc vào bản chất của chất trong phản ứng.

Câu 2:

Phân tích câu hỏi:

Lý thuyết phản ứng tỏa nhiệt, phản ứng thu nhiệt.

Phản ứng tỏa nhiệt có $\Delta_r H < 0$.

Phản ứng thu nhiệt có $\Delta_r H > 0$.

Lời giải: Chọn B

Phản ứng (1) là phản ứng tỏa nhiệt.

Phản ứng (2) là phản ứng thu nhiệt.

Câu 3:

Phân tích câu hỏi:

Lý thuyết phản ứng tỏa nhiệt, phản ứng thu nhiệt.

Lời giải: Chọn D

Phản ứng tỏa nhiệt có $\Delta_{\rm r} H < 0\,$ xảy ra thuận lợi hơn phản ứng thu nhiệt $\Delta_{\rm r} H > 0.$

Câu 4:

Phân tích câu hỏi:

Khái niệm về tốc độ phản ứng hóa học.

Lời giải: Chọn C

Tốc đô phản ứng hóa học là sư biến đổi nồng đô chất tham gia theo thời gian.

Câu 5:

Phân tích câu hỏi:

Lý thuyết về phản ứng bậc 1 trong tốc độ phản ứng hóa học.

Lời giải: Chon C

Phản ứng bậc 1 có vận tốc không phu thuộc vào nhiệt đô.

Câu 6:

Phân tích câu hỏi:

Lý thuyết về hằng số tốc độ phản ứng.

Lời giải: Chọn A

Hằng số tốc đô phản ứng (k) tăng khi nhiệt đô của phản ứng tăng.

Câu 7:

Phân tích câu hỏi:

Phương pháo điều chế khí chlorine.

Lời giải: Chọn C

Trong phòng thí nghiệm, người ta điều chế khí chlorine bằng cách cho acid HCl đặc nóng tác dụng với các muối: KMnO₄, K₂MnO₄, MnO₇

Câu 8:

Phân tích câu hỏi:

Lý thuyết về các hydrogen halide.

Lời giải: Chon A

Theo chiều từ fluorine đến iodine, các hydrogen halide có tính acid và tính khử mạnh dần.

Câu 9:

Phân tích câu hỏi:

Sự biến đổi các đặc điểm của các nguyên tố halogen.

Lời giải: Chọn B

Theo chiều từ fluorine đến iodine: nhiệt độ nóng chảy và nhiệt độ sôi tăng, màu sắc đậm dần, bán kính nguyên tử tăng và độ âm điện giảm dần.

Câu 10:

Phân tích câu hỏi:

HOCMAI.VN| 2

Phản ứng có giá trị $\Delta_r H_{298}^0$ càng nhỏ thì phản ứng xảy ra càng thuận lợi.

Lời giải: Chon D

Phản ứng (1) xảy ra thuận lợi hơn phản ứng (2).

Câu 11:

Phân tích câu hỏi:

Lý thuyết về giá trị $\Delta_r H_{298}^0$.

Lời giải: Chọn B

Các đáp án đúng: (1), (2), (3).

Các đáp án sai: (4), (5).

(4): Giá trị $\Delta_r H_{298}^0$ không phụ thuộc nhiệt độ.

(5): Giá trị $\Delta_r H_{298}^0$ sẽ đổi dấu khi phản ứng đổi chiều.

Câu 12:

Phân tích câu hỏi:

Phân tích giá trị $\Delta_r H_{298}^0$ của phản ứng. Nếu $\Delta_r H_{298}^0 > 0$ thì chiều phản ứng này xảy ra không thuận lợi.

Lời giải: Chọn D

Phản ứng P (s, đỏ) \longrightarrow P(s, trắng) có $\Delta_r H_{298}^o = 17.6 \text{ kJ} > 0$. Do đó sự chuyển hóa từ P đỏ sang P trắng là không dễ dàng. Vì vậy P đỏ bề hơn P trắng.

Câu 13:

Phân tích câu hỏi:

Sự ảnh hưởng của nồng độ vào tốc độ phản ứng.

Tốc độ phản ứng tăng khi nồng độ các chất tham gia phản ứng tăng.

Lời giải: Chọn B

Phản ứng (1) có nồng độ ${\rm CuSO_4}$ thấp hơn phản ứng (2), do đó tốc độ phản ứng (1) sẽ chậm hơn tốc độ phản ứng (2).

Câu 14:

Phân tích câu hỏi:

Sự ảnh hưởng của nồng độ vào tốc độ phản ứng.

Tốc độ phản ứng tăng khi nồng độ các chất tham gia phản ứng tăng.

Lời giải: Chọn C

Người ta dùng không khí nén để tăng nồng độ oxygen trong phản ứng, làm tăng tốc độ phản ứng dễ dàng hơn.

Câu 15:

Phân tích câu hỏi:

Phân tích sự ảnh hưởng của các yếu tố đến tốc độ phản ứng hóa học.

Lời giải: Chon A

Nhiên liệu cháy ở tầng khí quyển trên cao chậm hơn khi cháy ở mặt đất vì ở trên cao nồng độ oxygen sẽ loãng hơn, làm tốc độ cháy chậm hơn.

Câu 16:

Phân tích câu hỏi:

Tính số oxi hóa của HCl. Nếu sau phản ứng, H hoặc Cl có số oxi hóa giảm thì HCl là chất oxi hóa.

Lời giải: Chọn C

(1)
$$4HCl+PbO_2 \rightarrow PbCl_2 + Cl_2 + 2H_2O \rightarrow HCl$$
 có tính khử.

(2)
$$2\overset{+1}{\text{HCl}} + \text{Mg} \rightarrow \text{MgCl}_2 + \overset{0}{\text{H2}} \rightarrow \text{HCl c\'o t\'nh oxi h\'oa.}$$

(3)
$$14HCl + K_2Cr_2O_7 \rightarrow 2KCl + 2CrCl_3 + 3Cl_2 + 7H_2O \rightarrow HCl$$
 có tính khử.

(4)
$$2 \overset{+1}{HCl} + Cr \rightarrow CrCl_2 + \overset{0}{H_2} \rightarrow HCl \text{ c\'o t\'nh oxi h\'oa.}$$

Câu 17:

Phân tích câu hỏi:

Cho các chất phản ứng với nhau để tìm chất thỏa mãn theo điều kiện phản ứng của đề bài.

Lời giải: Chọn C

Câu 18:

Phân tích câu hỏi:

Lý thuyết tổng hợp nguyên tố nhóm Halogen.

Lời giải: Chọn B

- (a) đúng vì các halogen đều có 7 electron ở lớp ngoài cùng (ns²np⁵).
- (c), (e) sai vì fluorine có độ âm điện lớn nhất nên chỉ có tính oxi hóa và chỉ có số oxi hóa −1 trong hợp chất.
- (b), (d) sai vì chlorine, bromine, iodine ngoài tính oxi hóa còn có tính khử. Ngoài số oxi hóa −1 còn có số oxi hóa +1,+3,+5,+7.

HOCMAI.VN| 4

(f) đúng vì từ fluorine đến iodine đô âm điện giảm dần, tính oxi hóa giảm dần.

Câu 19:

Phân tích câu hỏi:

Bài toán tính biến thiên enthalpy chuẩn của phản ứng theo năng lượng enthalpy tạo thành chuẩn.

$$\Delta_{\rm r} H_{208}^{\rm o} = \Delta_{\rm f} H_{208}^{\rm o}({\rm SO}_2) + \Delta_{\rm f} H_{208}^{\rm o}({\rm H}_2{\rm O}) - \Delta_{\rm f} H_{208}^{\rm o}({\rm H}_2{\rm S}).$$

Lời giải: Chon

$$\Delta_{r}H_{298}^{o} = \Delta_{f}H_{298}^{o}(SO_{2}) + \Delta_{f}H_{298}^{o}(H_{2}O) - \Delta_{f}H_{298}^{o}(H_{2}S)$$

$$= -296,83 + (-285,83) - (-20,63)$$

$$= -562,03 \text{ (kJ/mol)}.$$

Câu 20:

Phân tích câu hỏi:

Bài toán tính biến thiên enthalpy chuẩn của phản ứng từ năng lương liên kết

$$\Delta_r H_{208}^0 = \sum E_a(cd) - \sum E_a(sp) = E_a(N_2 H_4) - E_a(N_2) - 2.E_a(H_2).$$

Xác định năng lượng liên kết của các chất có mặt trong phản ứng rồi áp dụng công thức trên.

Chú ý: Năng lương liên kết mỗi chất bằng tổng năng lương các liên kết có trong chất đó.

Lời giải: Chọn

$$E_a(N_2H_4) = E_a(N-N) + 4.E_a(N-H) = 163 + 4.391 = 1727$$
 (kJ/mol).

$$E_a(N_2) = E_a(N \equiv N) = 945 \text{ (kJ/mol)}.$$

$$E_a(H_2) = E_a(H-H) = 432 \text{ (kJ/mol)}.$$

$$\rightarrow \Delta_r H_{298}^0 = E_2(N_2 H_4) - E_2(N_2) - 2.E_2(H_2) = 1727 - 945 - 2.432 = -82 \text{ (kJ/mol)}.$$

Câu 21:

Phân tích câu hỏi:

Bài toán tốc đô phản ứng phu thuộc áp suất.

Lời giải: Chọn D

Áp suất của hệ tăng lên 2 lần thì tốc độ phản ứng thuận tăng lên bằng: $2^2.2 = 8$ lần.

Câu 22:

Phân tích câu hỏi:

Bài toán tốc độ phản ứng phụ thuộc nồng độ mol.

Lời giải: Chọn B

Đặt
$$v = k.(P_{I_2})^a.(P_{H_2})^b$$

Vì P và
$$C_M$$
 tỉ lệ thuận với nhau \rightarrow v = k. $\left\lceil I_2 \right\rceil^a$. $\left\lceil H_2 \right\rceil^b$

Ta có nếu tăng nồng độ $\rm\,I_2\,$ lên 3 lần, giữ nguyên nồng độ $\rm\,H_2\,$ thì vận tốc tăng lên gấp 3

$$\rightarrow \frac{v'}{v} = \frac{k.(3.[I_2])^a.[H_2]^b}{k.[I_2]^a.[H_2]^b} = 3 \rightarrow 3^a = 3 \rightarrow a = 1$$

Ta có nếu tăng nồng độ $\rm\,H_2\,l$ ên 2 lần và giữ nguyên nồng độ $\rm\,I_2\,$ thì vận tốc tăng gấp đôi

$$\rightarrow \frac{\mathbf{v'}}{\mathbf{v}} = \frac{\mathbf{k} \cdot \left[\mathbf{I}_{2}\right]^{a} \cdot \left(2 \cdot \left[\mathbf{H}_{2}\right]\right)^{b}}{\mathbf{k} \cdot \left[\mathbf{I}_{2}\right]^{a} \cdot \left[\mathbf{H}_{2}\right]^{b}} = 2 \rightarrow 2^{b} = 2 \rightarrow b = 1$$

$$V$$
ây $v = k. [I_2]^1. [H_2]^1$.

Câu 23:

Phân tích câu hỏi:

Bài toán xét chất dư, chất hết.

Lời giải: Chon

$$n_{Cl_2} = \frac{13,44}{22.4} = 0,6 \text{ mol}; n_{KCl} = \frac{37,25}{74.5} = 0,5 \text{ mol}$$

Phương trình hóa học:

$$3\text{Cl}_2 + 6\text{KOH} \rightarrow \text{KClO}_3 + 5\text{KCl} + 3\text{H}_2\text{O}$$

0.6 0.5 mo

Xét tỉ lệ: $\frac{0.6}{3} > \frac{0.5}{5} \rightarrow \text{Cl}_2$ dư, KOH phản ứng hết

→ Tính số mol KOH theo KCl.

Theo phương trình: $n_{KOH} = \frac{6}{5} n_{KCl} = \frac{6}{5} .0, 5 = 0,6 \text{ mol}$

$$\rightarrow C_{M_{KOH}} = \frac{0.6}{2.5} = 0.24M.$$

Câu 24:

Phân tích câu hỏi:

Viết phương trình phản ứng và tính số mol khí chlorine thu được theo phương trình.

Lời giải: Chon A

$$\begin{split} n_{\text{KMnO}_4} &= \frac{3,95}{158} = 0,025 \text{ (mol)} \\ &2 \text{KMnO}_4 + 16 \text{HCl} \to 5 \text{Cl}_2 \uparrow + 2 \text{MnCl}_2 + 2 \text{KCl} + 8 \text{H}_2 \text{O} \\ &0,025 & \to 0,0625 \end{split} \qquad \text{mol} \\ &\to V_{\text{Cl}_2} = 0,0625.22,4 = 1,4 \text{ (lít)}. \end{split}$$

Câu 25:

Phân tích câu hỏi:

Bài toán biện luận kim loại theo hóa trị. Hóa trị của kim loại n = 1,2,3.

Lời giải: Chon

$$M + \frac{n}{2}Cl_2 \rightarrow MCl_n$$

$$\frac{10.8}{M} \qquad \frac{53.4}{M+35.5n} \quad mol$$
Do đó: $\frac{10.8}{M} = \frac{53.4}{M+35.5n} \rightarrow M = 9n$

Ta có bảng sau:

n	1	2	3
M	9 (Loại)	18 (Loại)	27 (Al)

Vậy M là Al (nhôm).

Câu 26:

Phân tích câu hỏi:

Gọi số mol của chlorine và oxygen là x, y mol.

Áp dụng các định luật bảo toàn khối lượng và bảo toàn electron để lập hệ 2 phương trình 2 ẩn. Giải hệ và xác định được số mol của từng chất.

Lời giải: Chọn

$$n_x = 0.35 \text{ mol}$$

Gọi số mol của Cl₂ và O₂ trong hỗn hợp khí X lần lượt là x, y mol.

$$\rightarrow x + y = 0.35(*)$$

Bảo toàn khối lượng: $m_X + m_Y = m_Z \Leftrightarrow 71x + 32y = 30,1 - 11,1 = 19(**)$

Từ (*) và (**) suy ra: x = 0.2; y = 0.15

Gọi số mol của Mg, Al trong hỗn hợp Y lần lượt là a, b mol.

$$\rightarrow 24a + 27b = 11,1(1)$$

Bảo toàn electron: $2n_{Mg} + 3n_{Al} = 2n_{Cl_2} + 4n_{O_2}$

$$\Leftrightarrow$$
 2a + 3b = 1(2)

Từ (1) và (2) suy ra: a = 0.35; b = 0.1

$$\rightarrow$$
 %m_{Al} = $\frac{0.1.27}{11.1}$.100% = 24,32%.

Câu 27:

Phân tích câu hỏi:

Gọi halogen cần tìm và số mol.

Dựa vào lượng muối thu được để thu được biểu thức về khối lượng halogen.

Lời giải: Chọn B

Gọi số mol của halogen X2 là a mol

Xét phản ứng của X₂ với Mg:

Phương trình hóa học:

$$X_2 + Mg \rightarrow MgX_2$$

$$a \rightarrow a \mod$$

Ta có:
$$m_{mu\delta i} = m_{MgX_2} = a.(24 + 2M_X) = 19 \text{ gam} \rightarrow a = \frac{19}{24 + 2M_X}(1)$$

Xét phản ứng của X₂ với Al:

Phương trình hóa học: $3X_2 + 2AI \rightarrow 2AIX_3$

a
$$\rightarrow \frac{2a}{3}$$
 mol

Ta có:
$$m_{mu\delta i} = m_{AIX_3} = \frac{2a}{3} \cdot (27 + 3M_X) = 17,8gam \rightarrow a = \frac{17,8.3}{2(27 + 3M_X)}(2)$$

Từ (1) và (2) suy ra:
$$\frac{19}{24 + 2M_X} = \frac{17,8.3}{2(27 + 3M_X)} \rightarrow M_X = 35,5(C1)$$

Vậy X là Cl (chlor).

Câu 28:

Phân tích câu hỏi:

Bài toán tính nhiệt lượng $\Delta_r H_{208}^o$ tỏa ra đốt cháy 140 gam CO.

Áp dụng công thức tính biến thiên enthalpy của phản ứng xét cho 1 mol chất dựa vào enthalpy tạo thành của các chất rồi suy ra biến thiên enthalpy cho lượng chất đề bài yêu cầu.

Chú ý: Enthalpy tạo thành chuẩn của các đơn chất bền bằng 0.

Lời giải: Chon C

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

Xét phản ứng với 1 mol CO:

$$\Delta_{\rm r} H_{298}^{\rm o} = \Delta_{\rm f} H_{298}^{\rm o}({\rm CO}_2) - \Delta_{\rm f} H_{298}^{\rm o}({\rm CO}) = (-94,05) - (-26,42) = -67,63 \text{ (Kcal/mol)}$$

Vây xét phản ứng với 140 gam CO, tương ứng với 5 mol CO:

$$\Delta_{\rm r} {\rm H}_{298}^{\rm o} = 5.(-67,63) = -338,15 \text{ (Kcal/mol)}.$$

Câu 29:

Phân tích câu hỏi:

Goi số mol mỗi kim loại. Tìm các biểu thức theo từng lương chất khác nhau.

Sử dụng phương pháp toán học để giải các phương trình thu được.

Lời giải: Chon C

Gọi số mol của Al, Fe, Cu trong 6,62 gam X lần lượt là x, y, z mol.

$$\rightarrow$$
 27x + 56y + 64z = 6,62(*)

Phương trình hóa học:

$$\rightarrow$$
 n_{H₂} = 1,5x + y = $\frac{1,568}{22.4}$ = 0,07(mol) \rightarrow 1,5x + y = 0,07(**)

Gọi số mol của Al, Fe, Cu trong 0,12 mol X lần lượt là kx, ky, kz mol.

$$\rightarrow kx + ky + kz = 0.12(***)$$

Khi cho X tác dụng với chlorine dư, phương trình hóa học là

$$2Al + 3Cl_2 \xrightarrow{t^{\circ}} 2AlCl_3$$

kx

kx mol

$$2\text{Fe} + 3\text{Cl}_2 \xrightarrow{\mathfrak{t}^{\circ}} 2\text{FeCl}_3$$

ky

ky mol

$$Cu + Cl_2 \xrightarrow{t^{\circ}} CuCl_2$$

kz.

kz mol

$$\rightarrow$$
 m_Y = 133,5kx + 162,5ky + 135kz = 17,27(****)

Từ (***) và (****) ta có:
$$\frac{x+y+z}{133,5x+162,5y+135z} = \frac{0,12}{17,27} \rightarrow 1,25x-2,23y+1,07z = 0 \left(*****\right)$$

$$\rightarrow$$
 Trong 6,62 gam X: $m_{Al} = 0,02.27 = 0,54$ gam; $m_{Fe} = 0,04.56 = 2,24$ gam; $m_{Cu} = 3,84$ gam

Do đó:
$$\%$$
m_{Al} = $\frac{0.54}{6.62}$.100% = 8,16%.

Câu 30:

Phân tích câu hỏi:

Bài toán áp dụng phương pháp bảo toàn khối lượng.

Tóm tắt bài toán để nhận thấy rõ sự chênh lệch lượng chất trong mỗi hỗn hợp thu được.

Lời giải: Chọn

$$n_{O_2} = \frac{17,472}{22.4} = 0,78 \text{ mol}; n_{K_2CO_3} = 0,5.0,36 = 0,18 \text{ mol}$$

Bảo toàn khối lượng: $m_X = m_{O_2} + m_Y$

$$\rightarrow$$
 m_v = 83,68 - 32.0,78 = 58,72 gam

Xét phản ứng Y với K₂CO₃:

Goi số mol của KCl trong Y là a mol

Phương trình hóa học:

$$CaCl_2 + K_2CO_3 \rightarrow CaCO_3 \downarrow +2KCl$$

 $0.18 \leftarrow 0.18 \rightarrow 0.36 \text{ mol}$

 \rightarrow Dung dịch T chứa (a+0,36) mol KCl.

Ta có:
$$m_{KCl(Y)} = m_Y - m_{CaCl_1(Y)} = 58,72 - 0,18 \times 111 = 38,74 \text{ gam}$$

$$\rightarrow$$
 n_{KCl(Y)} = a = 0,52 mol

$$\rightarrow n_{KCI(T)} = a + 0.36 = 0.88 \text{ mol}$$

$$\rightarrow$$
 m_{KCl(T)} = 65,56 gam

Mặt khác, lượng KCl trong dung dịch T nhiều gấp 22/3 lần lượng KCl có trong X

$$\rightarrow$$
 m_{KCl_(X)} = $\frac{3}{22}$ m_{KCl_(T)} = $\frac{3}{22}$ × 65,56 = 8,94 gam

Do đó, lượng KCl sinh ra ở phản ứng nhiệt phân là:

$$m_{KCl} = m_{KCl_{(Y)}} - m_{KCl_{(X)}} = 38,74 - 8,94 = 29,8 \text{ gam}$$

$$\rightarrow$$
 n_{KCl} = 0,4 mol

Phương trình hóa học:

$$2KClO_3 \xrightarrow{\iota^{\circ}} 2KCl + 3O_2$$

$$0.4 \qquad \leftarrow 0.4 \qquad mol$$

Do đó:
$$m_{KCIO_3} = 0,4.122,5 = 49 \text{ gam}$$

$$\rightarrow \%$$
m_{KCIO_{3(X)}} = $\frac{48}{83.68}$.100% = 58,56%.