Binary Classification with Logistic

TM Quest

Regression

Overview

What Will we Learn in This Module?

- Logistic Regression
 - What is binary classification?
 - How to train a logistic regression model?
 - What is the difference between predicting classes and predicting probabilities?
- Evaluating the Model
 - How to evaluate a logistic regression model?
 - What is accuracy score?
- Bonus: What is an Estimator in Scikit-Learn?

Binary Classification & Logistic Regression

What is Binary Classification?

- The target values y are one of two categories.
- The categories are often encoded as 0 and 1.

Example

- Given internet browsing data as the features, predict the sex (male/female) of the user.
- Given historical stock data as the features, should you sell or keep your stock?
- Given data about a tumor as features, decide if it is malignant or benign.

Logistic Regression in the Feature Space

Logistic Regression Idea

In logistic regression one tries to find a separating function p(x) such that:

- $p(x_0) \le 0.5$, then x_0 should belong to category 0.
- $p(x_0) > 0.5$, then x_0 should belong to category 1.

The function p(x) is (for a single feature) on the form

$$p(x) = \frac{1}{1 + e^{-(ax+b)}},$$

where training the model finds the best choices for a and b.

Logistic Regression Example

Example

Say that we have a single feature (size of tumor) and we want to predict whether the tumor is malignant or benign. If we find out (by training) that a = 2 and b = -5 then we can solve

$$p(x) = \frac{1}{1 + e^{2x-5}} \le 0.5$$

and get $x \le 2.5$. Hence if x (the size of the tumor) is less than 2.5, then we predict that the tumor is benign. If x > 2.5, then the tumor is malignant.

Takeaway

Training a logistic regression model finds the parameters a and b so that we can predict which category an observation is in.

Relationship with Linear Regression

From a mathematical standpoint, the logistic regression function p(x) is just linear regression $\mathbf{a} \cdot \mathbf{x} + b$ composed with the *sigmoid function*

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

Estimators & Predictors

Estimators & Predictors

Accuracy Score

Accuracy Score

Definition

The accuracy score of a binary classifier is given by

Number of Correctly Classified Observations
Total Observations

Example

If your model manages to guess 10 of 15 observations correctly, we get that the accuracy score is

$$\frac{10}{15} \approx 0.667 = 66.7\%.$$