I. Définition

Définition

Une fonction du second degré est une fonction du type :

$$f(x) = ax^2 + bx + c$$

Où a, b et c sont des nombres quelconques, avec $a \neq 0$.

Activite 1

Parmi les fonctions suivantes, désigner par une croix celles qui représentent une fonction du second degré. Pour celles-cis donner les valeurs de a, b et c.

Fonction	R	a	b	c
f(x) = 2x + 5				
$f(x) = 2x^2 + 3x$	×	2	3	0
$f(x) = x^2 - x - 1$	×	1	-1	-1
$f(x) = 2x^3 - 3x + 1$				
$f(x) = 3x^2 + 3$	×	3	0	3
$f(x) = -x^2 + x - 8$	×	-1	1	-8

II. Courbe représentative et variations

Activite 2

A l'aide de votre calculatrice étudiez les fonctions suivantes :

$$f(x) = 2x^2 + 3x$$

•
$$h(x) = 3x^2 + 3$$

•
$$g(x) = x^2 - x - 1$$

•
$$i(x) = -x^2 + x - 8$$

Pour chaque fonction:

- 1 Selon la situation, déterminez son minimum ou son maximum.
- 2 Dressez son tableau de variations.
- 3 Quel lien pouvez vous faire entre les coefficients (a, b et c) et les variations observées ?

Propriétés

- La courbe représentative d'une fonction du second degré est une parabole.
- Le sens de la parabole dépend du signe de a
 - \rightarrow Si a > 0 alors la parabole a un minimum (tête en bas).
 - \rightarrow Si a < 0 alors la parabole a un maximum (tête en haut).
- Le sommet de la courbe (minimum ou maximum) est le point de coordonnées $(\frac{-b}{2a}; f(\frac{-b}{2a}).$

Cas où a est positif

Cas où a est négatif

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
f(x)		$f(\frac{-b}{2a})$	

Exemple

On considère les fonctions f et g, telles que :

- $f(x) = x^2 2x 2$ avec $-1 \le x \le 3$
- $g(x) = -2x^2 + 6x$ avec $-0, 5 \le x \le 3, 5$

Fonction f:

Fonction g:

$ \begin{array}{c cc} x & -0.5 & 1.5 \\ \hline & 4.5 \\ \hline & g(x) & \end{array} $	
	3.5
-3.5	-3.5

