

专注于商业智能BI和大数据的垂直社区平台

数理统计的基本概念(三)

Allen

www.hellobi.com

课程目录

- 样本均值和样本方差的性质
- •卡方分布
- t分布
- •F分布
- 小结

样本均值和样本方差的性质

• 设母体X的分布函数F(x) 具有二阶矩,即 $EX = \mu < +\infty$, $DX = \sigma^2 < +\infty$,若 $X_1, X_2, ..., X_n$ 是取自这一母体的一个样本

• 样本均值 \overline{X} 的数学期望: $E\overline{X} = \mu$

• 样本均值 \overline{X} 的方差: $D\overline{X} = \frac{\sigma^2}{n}$

样本均值和样本方差的性质

- 若母体X的原点矩 $v_k = EX^k$ 和中心矩 $\mu_k = E(X v_1)^k, k = 1,2,3,4$ 都存在 ,若 $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ 是样本方差
- 样本方差 S^2 的数学期望 : $ES^2 = \frac{n-1}{n} \mu_2$
- 样本方差 S^2 的方差: $DS^2 = \frac{\mu_4 \mu_2^2}{n} \frac{2(\mu_4 2\mu_2^2)}{n^2} + \frac{\mu_4 3\mu_2^2}{n^3}$

卡方分布

• 定义:设 $X_1, X_2, ..., X_n$ 是来自总体N(0,1) 的一个简单样本,则称统计量 $Y = X_1^2 + X_2^2 + ... + X_n^2$ 为服从自由度为n的 χ^2 分布,记为 $Y \sim \chi^2(n)$

The Chisq Density Distribution

卡方分布分位数

• 定义:若给定 α ,0 < α < 1,存在 $\chi_{\alpha}^{2}(n)$ 使 $P\{\chi^{2} > \chi_{\alpha}^{2}(n)\} = \alpha$,则称点 $\chi_{\alpha}^{2}(n)$ 是 χ^{2} 分布的 α 分位点 ,上图是 $\chi_{\alpha}^{2}(n)$ 的 $\chi_{\alpha}^{2}(n)$ 分布上的 $\chi_{\alpha}^{2}(n)$

卡方分布性质

• 可加性:若 $X_1 \sim \chi^2(m)$, $X_2 \sim \chi^2(n)$, 二者相互独立 , 则 $X_1 + X_2 \sim \chi^2(m+n)$

• 期望:若 $X \sim \chi^2(n)$, 则 E(X) = n

• 方差:若 $X \sim \chi^2(n)$, 则 D(X) = 2n

t分布

• 定义:若 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X,Y 相互独立 , 则称随机变量 $T = \frac{X}{\sqrt{Y/n}}$ 是服从自由度为n的t分布 , 记作 $T \sim t(n)$

The T Density Distribution

t分布分位数

• 定义:若给定 α , $0 < \alpha < 1$,存在 $t_{\alpha}(n)$ 使 $P\{T > t_{\alpha}(n)\} = \alpha$,则称点 $t_{\alpha}(n)$ 是t分布 的 α 分位点 ,上图是 n = 1, $\alpha = 0.1$ 的t分布上的 α 分位点 $t_{\alpha}(n)$

F分布

• 定义:若 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 且 X,Y 相互独立 , 则称随机变量 $F = \frac{X/n}{Y/m}$ 是服从自由度为(n,m)的F分布,称n为第一自由度,m为第二自由度记作 $F \sim F(n,m)$

The F Density Distribution

F分布分位数

• 定义:若给定 α , $0 < \alpha < 1$,存在 $F_{\alpha}(n,m)$ 使 $P\{F > F_{\alpha}(n,m)\} = \alpha$,则称点 $F_{\alpha}(n,m)$ 是F分布的 α 分位点

F分布性质

•
$$F_{1-\alpha}(n,m) = \frac{1}{F_{\alpha}(m,n)}$$

• $\mathcal{L} X \sim t(n)$, $\mathcal{L} X^2 \sim F(1,n)$

小结

- 样本均值和样本方差的性质
- 卡方分布
- t分布
- •F分布
- 小结

