Group Theory

Yeheli Fomberg

1 Groups

1.1 definition

Let A be a non-empty set and * a binary operation on A. Under the following axioms

•
$$\forall (z, y, z) \in A^3 : (x * y) * z = x * (y * z)$$

$$\bullet \ \exists e \in A : \forall a \in A : a * e = e * a = a$$

•
$$\forall a \in A : \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$$

We shall call (A,*) a group. Groups can also be described in "Cayley tables":

There is only one way to complete this table. Consider the axioms.

1.2 Isomorphisms of Groups

Let G_1, G_2 be groups and let $\phi: G_1 \to G_2$ be a function such that $\forall x, y \in G_1$

$$\phi(x) * \phi(y) = \phi(x * y)$$

Table of number of groups up to isomorphisms

Order	Number
1	1
2	1
3	1
4	2
5	1
6	2
7	1
8	5
9	2

2 Greatest Common Divisor

Let (A, *) be a group and suppose $a, b \in A$. We'll denote d = gcd(a, b) if:

- *d* > 0
- d|b and d|a
- c|b and $c|a \rightarrow c|d$

Let $a, b \in \mathbb{Z} \setminus \{0\}$ then d = gcd(a, b) exists and is unique and exist n, m such that d = ma + nb Consider the following set

$$A = \{ ma + nb | m, n \in \mathbb{Z} \land ma + nb > 0 \}$$

The set isn't empty since $a^2 + b^2 \in A$ and so vy the well ordering theorem has a first element which we'll pronounce d.

- d > 0 by definition
- Without loss of generality suppose b = qd + r and $r \neq 0$.

$$b = q(ma + nb) + r$$
$$r = (-qm)a + (1 - qn)b$$

 $r \neq 0 \Rightarrow r \in A$ but r < d which is a contradiciton!

• c|b and $c|a \to c$ divides all linear combinations of $a, b \to c|d$

NOTE: if gcd(x,y)=1 then we say a and b are coprimes. That's equivalent to saying $\exists m,n\in Z\setminus\{0\}:$ ma+nb=1

2.1 Fundamental theorem of arithmetic

Every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. We'll prove this by induction.

For n=2 we know that $2=p_1$. Let $p_1*...*p_m=2$. Since 2 is the smallest prime number we know that our factorization was unique.

For n>2 if n is prime then we finished. If $n=n_1n_2$ we know that $1< n_1, n_2 < n$ and so by the induction $n_1=p*_1*\ldots*_p n$ and $n_2=p_1^*,\ldots,p_m^*$ then we know that $n=(p_1*\ldots*_p n)(p_1^**\ldots*_p p_m^*)$ like we wanted. Suppose $n=p_1*\ldots*_p n=q_1*\ldots*_p n=q_1*\ldots*_p q_m$ We know $p_1|q_1*\ldots*_p n=q_1$ for some j then we can rearrange the elements such that $p_2*\ldots*_p n=q_2*\ldots*_p q_m$ and so on to show that the factorization is unique every time.

$\mathbf{2.2} \quad \mathbb{Z}_n^*$

Prove that \mathbb{Z}_n^* which is the set of all coprimes to n from the set [n] coupled with multiplication under modular arithmetic is a group.

3 More About Groups

We'll denote the order of a group G - it's size - as |G|, and suppose $g \in G$ and $g^n = e$ we'll call n the order of g and denote O(g) = n. If that's never the case we'll denote $|G| = \infty$ and $O(g) = \infty$

3.1 Abelian Groups

A group (A, *) is abelian if

$$\forall (x,y) \in A^2 : xy = yx$$

The Cayley table for an abelian group is symmetric.

3.2 The Symmetric Group

The symmetric group is denoted as $S(X_n)$ or S_n and is defined on the set $X = \{1, 2, ..., n\}$ by being the set of all bijections $\sigma: X \to X$ with the operation of function composition.

3.3 Practise

3.3.1 If G is of finite order every element of G also has finite order

Let |G| = n and let $g \in G$ consider the elements g, g^2, \dots, g^{n+1} from the pigeonhole principle we know

$$\exists i \neq j : g^i = g^j \Rightarrow g^{i-j} = e$$

And thus O(g) is finite.

4 Subgroups

Let G be a groups and $H \subseteq G$ then $H \neq \emptyset$ is a subgroup if and only if

- $\bullet \ \forall (x,y) \in H^2: xy \in H$
- \bullet $e \in H$
- $\bullet \ x \in H \Rightarrow x^{-1} \in H$

One condition is not necessary. Think which. If the G is a finite group then two conditions are not necessary. Think why.

4.1 Cyclic Groups

G is a cyclic groups if G has a generator x such that for some $n \in \mathbb{N}$

$$G = \langle x \rangle = \{g : g = x^k \land k \in \mathbb{Z}\}$$

If the group is of finite order n every subgroup is of order k|n. Prove by contradiction. A group generated from a set S is

$$G = \langle S \rangle = \bigcap_{S \subseteq H_a} H_a$$

Where H_a are all the subgroups that contain S. Let $S = \{a, b\}$ then the group will contain all possible products from a, b and their inverses.

5 Lagrange's theorem