Лабораторная работа №6

Имитационное моделирование

Волгин Иван Алексеевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	15

Список иллюстраций

3.1	Переменные окружения	6
3.2	Начальное значение в верхнем блоке интегрирования	7
3.3	Начальное значение в нижнем блоке интегрирования	7
3.4	Конечное время моделирования	8
3.5	Готовая модель хищник-жертва	8
3.6	Динамика изменения численности хищников и жертв модели	9
3.7	Фазовый портрет модели	9
3.8	Параметры блока Modelica	10
3.9	Код реализации модели на языке Modelica	11
3.10	Модель хищник-жертва с использованием блока Modelica	11
3.11	Динамика изменения численности хищников и жертв модели	12
3.12	Фазовый портрет модели	12
3.13	Код реализации модели в OpenModelica	13
3.14	Динамика изменения численности хищников и жертв модели	13
3.15	Фазовый портрет модели	14

1 Цель работы

Изучить модель хищник-жертва и реализовать ее в Scilab и OpenModelica.

2 Задание

- 1. Реализовать модель хсоѕ
- 2. Релизовать модель с помощью блока Modelica в хосѕ
- 3. Реализовать модель в OpenModelica

3 Выполнение лабораторной работы

1. Для реализации модели в xcos беру блоки CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f, CSCOPXY, а также задаю переменные окружения a, b, c, d. (рис. 3.1).

Рис. 3.1: Переменные окружения

Далее задаю параметры блоков интегрирования x(0) = 2 (рис. 3.2), y(0) = 1 (рис. 3.3)

*	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	2
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 3.2: Начальное значение в верхнем блоке интегрирования

Рис. 3.3: Начальное значение в нижнем блоке интегрирования

После этого нужно было задать конечное время интегрирования в параметрах моделирования (рис. 3.4) и затем можно было приступать к построению модели. Готовую модель можно увидеть на (рис. 3.5)

Рис. 3.4: Конечное время моделирования

Рис. 3.5: Готовая модель хищник-жертва

Далее запускаем компиляцию модели и получаем результаты в виде динамики изменения численности хищников и жертв модели (рис. 3.6) и фазового портрета модели (рис. 3.7)

Рис. 3.6: Динамика изменения численности хищников и жертв модели

Рис. 3.7: Фазовый портрет модели

2. Приступаю к выполнению второго задания - построения модел хищникжертва с помощью блока Modelica в хсоз. Для этого я переделал модель из прошлого задания, удалив все блоки кроме MUX, CSCOPE, CLOCK_с и CSCOPXY и добавив блоки MOdelica и 4 блока констант для переменных окружения. Далее настроил параметры блока Modelica (рис. 3.8) и написал код реализации модели на языке Modelica (рис. 3.9)

Рис. 3.8: Параметры блока Modelica

Рис. 3.9: Код реализации модели на языке Modelica

Далее соединил все все блоки и получил готовую модель хищник-жертва (рис. 3.10)

Рис. 3.10: Модель хищник-жертва с использованием блока Modelica

После этого я запустил компиляцию модели и получил результаты полностью

совпадающие с результатами первой модели (рис. 3.11) (рис. 3.12)

Рис. 3.11: Динамика изменения численности хищников и жертв модели

Рис. 3.12: Фазовый портрет модели

3. Третьим заданием была реализация модели хищник-жертва в OpenModelica. Я написал код реализации модели (рис. 3.13) и после его компиляции получил результаты совпадающие с результатми двух предыдущих заданий (рис. 3.14) (рис. 3.15)

```
parameter Real a = 2;
    parameter Real b = 1;
 4
 5
    parameter Real c = 0.3;
    parameter Real d = 1;
 6
 7
 8
    parameter Real x0 = 2;
 9
    parameter Real y0 = 1;
10
    Real x(start=x0);
11
12
    Real y(start=y0);
13
14
    equation
15
16
    der(x) = a*x - b*x*y
17
    der(y) = c*x*y
18
19
    end predvict;
```

Рис. 3.13: Код реализации модели в OpenModelica

Рис. 3.14: Динамика изменения численности хищников и жертв модели

Рис. 3.15: Фазовый портрет модели

4 Выводы

В ходе выполнения лабораторной работы я изучил и реализовал тремя разными способами модель хищник-жертва.