

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
31. Dezember 2003 (31.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/001418 A2

(51) Internationale Patentklassifikation⁷: **G01N 33/569**

(21) Internationales Aktenzeichen: **PCT/DE2003/002096**

(22) Internationales Anmeldedatum:
24. Juni 2003 (24.06.2003)

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

(30) Angaben zur Priorität:
102 28 133.5 24. Juni 2002 (24.06.2002) DE
103 07 793.6 24. Februar 2003 (24.02.2003) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **PROFOS AG [DE/DE]; Josef-Engert-Str. 9, 93053 Regensburg (DE).**

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **SCHÜTZ, Michael [DE/DE]; Jakob-Schmid-Str. 13, 93138 Kareth-Lappersdorf (DE). MEYER, Roman [DE/DE]; Rosenstr. 6, 92287 Schmidmühlen (DE). GRALLERT, Holger [DE/DE]; Mitterweg 2A, 93080 Pentling (DE). MILLER, Stefan [DE/DE]; Holzgartenstr. 51, 93053 Regensburg (DE).**

(74) Anwälte: **BETTENHAUSEN, Berthold usw.; Dehmel & Bettenhausen, Herzogspitalstr. 11, 80331 München (DE).**

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— *ohne internationales Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A2

WO 2004/001418

(54) Title: METHOD FOR IDENTIFYING AND EXTRACTING ENDOTOXIN

(54) Bezeichnung: VERFAHREN ZUM NACHWEIS UND ZUR ENTFERNUNG VON ENDOTOXIN

(57) Abstract: The invention relates to a method for identifying endotoxins in and eliminating them from a sample.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis und zur Abreicherung von Endotoxinen aus einer Probe.

Verfahren zum Nachweis und zur Entfernung von Endotoxin

Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis und zur Abreicherung von
5 Endotoxinen aus einer Probe.

Endotoxin (ET) bezeichnet eine Familie von Lipopolysacchariden, die zusammen mit Proteinen und Phospholipiden die äußere Zellwand Gram-negativer Bakterien bilden. Endotoxine kommen ausschließlich in dieser Bakteriengruppe vor und spielen eine wichtige Rolle in der Organisation,
10 Stabilität und Barrierefunktion der äußeren Membran. Zahlreiche Bakteriophagen nutzen Endotoxin bzw. allgemein Lipopolysaccharid zur spezifischen Erkennung ihrer Wirtsbakterien.

Alle Endotoxinvarianten bestehen aus einem Heteropolysaccharid, das kovalent an Lipid A, gebunden ist (Holst, O., 1999, Chemical structure of the core region of lipopolysaccharides. In:
15 Endotoxin in health and disease (Brade, H., Morrison, D.C., Opal, S., Vogel, S. eds.), Marcel Dekker Inc. New York)). Lipid A verankert Endotoxin in der äußeren Bakterienmembran. Das Heteropolysaccharid, das aus einem Herzoligosaccharid und dem O-Antigen besteht, zeigt in die umgebende Lösung und bestimmt die serologische Identität des Bakteriums. Das O-Antigen besteht aus repetitiven Oligosaccharideinheiten, deren Zusammensetzung stammspezifisch ist
20 (siehe hierzu Holst et al., supra). Charakteristische Bausteine des Herzoligosaccharids sind 2-Keto-3-desoxyoctonsäure (KDO) und L-Glycero-D-manno-heptose (Hep).

Der konservativste Teil von Endotoxin verschiedener Gattungen ist das Lipid A. Ähnlich konserviert wie Lipid A ist die innere Herzregion, die äußere Herzregion weist bereits eine
25 höhere Variation auf. Die innere Herzregion, KDO und Lipid A selbst tragen mehrere Phosphatgruppen als Substituenten und sind so für die negative Ladung von Endotoxin verantwortlich. Darüber hinaus können die Phosphatgruppen am Lipid A und der Herzregion variabel mit Arabinose, Ethanolamin und Phosphat substituiert sein. Einzelne Saccharidbausteine des O-Antigens sind acetyliert, sialyliert oder glycosyliert. Das O-Antigen variiert außerdem
30 bezüglich der Anzahl repetitiver Einheiten, weshalb die Endotoxin-Population jedes Bakteriums eine gewisse Heterogenität aufweist (Palva E.T., Makela P.H., Lipopolysaccharide heterogeneity in *Salmonella typhimurium* analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eur J Biochem. 1980;107(1):137-43; Goldman R.C., Leive L., Heterogeneity of antigenic-side-chain length in lipopolysaccharide from *Escherichia coli* 0111 and *Salmonella*
35 *typhimurium* LT2., Eur J Biochem. 1980;107(1):145-53).

Endotoxine sind Biomoleküle, die ohne entsprechende Vorsichtsmaßnahmen in praktisch allen wässrigen Lösungen vorzufinden sind. Endotoxine können bei Mensch und Tier zu Sepsis, einer starken Fehlreaktion des Immunsystems führen. Daher sind z.B. bei der Herstellung von Pharmaproteinen Verunreinigungen mit Endotoxin exakt nachzuweisen und in der Folge 5 komplett zu entfernen. Endotoxin stellt ein Problem bei gentechnisch hergestellten Arzneimitteln, Gentherapeutika oder Substanzen dar, die in Mensch oder Tier (z.B. Tiermedizinische Behandlung oder bei Tierversuchen) injiziert werden. Doch nicht nur bei medizinischen, sondern auch bei Forschungsanwendungen, wie bei Transfektionsexperimenten von Säugerzellen kann eine Hemmung bzw. ein Senken der Transfektionseffizienz durch 10 Endotoxin beobachtet werden.

Um Proteine im Rahmen von klinischen Studien einsetzen zu können, verlangen die europäische und die amerikanische Pharmacopeia, dass die Proteine bestimmte Grenzwerte an Endotoxinbelastung unterschreiten (z.B. Immunserum Globulin 0,91 EU/ml, dies entspricht 15 5 EU/kg Körpergewicht & Stunde (Dosis = EU/kg * h); EU = Endotoxin Unit; FDA (Food and Drug Administration): Guideline on Validation of LAL as End Product). Falls ein Medikament bzw. darin enthaltene Proteine eine zu hohe Endotoxinbelastung aufweisen, kann dies bis zum Tod des Probanden führen. Die fehlgeleitete Immunabwehr schädigt durch eine Überreaktion den Patienten. Dies kann zu Gewebeentzündungen, Blutdruckabfall, Herzrasen, Thrombose, 20 Schock etc. führen. Bereits eine länger anhaltende Endotoxin-Exposition in Picogramm-Mengen kann zu chronischen Nebenwirkungen wie z.B. Immunschwächen, septischen Symptomen etc. führen. Im Rahmen der Substanzherstellung wird daher, insbesondere bei Prozessen unter „Good Manufacturing Practice“ (GMP) Bedingungen, versucht, Endotoxin soweit wie möglich abzureichern. Allerdings ist die Endotoxin-Entfernung bei Proteinen, Polysacchariden und DNA 25 problematisch. Gerade bei Proteinen gibt es große Probleme durch deren intrinsische Eigenschaften wie Ladungszustand oder Hydrophobizität, die eine Endotoxinentfernung nahezu verhindern bzw. zu großen Produktverlusten bei der Entfernungsprozedur führen können.

Derzeit sind nur drei Verfahren zum Endotoxin-Nachweis in biologischen Lösungen 30 beschrieben, wobei nur die beiden ersten Verfahren von der FDA zugelassen sind. 1. „Rabbit Pyrogen Testing“: Ein Verfahren, bei dem einem lebenden Kaninchen eine Endotoxin-Lösung injiziert und damit eine Immunreaktion ausgelöst wird. Diese Endotoxin-verursachte Immunantwort wird über die Entwicklung von Fieber nachgewiesen. 2. Deutlich besser standardisierbar ist der „Limulus Amoebocyte Lysate (LAL)“ – Test, der derzeit am häufigsten 35 verwendete Test (BioWhittaker, Inc., Charles River, Inc., Associates of Cape Cod, Inc., alle

USA). Bei diesem Verfahren wird die Verklumpung des Blutes des Pfeilschwanzkrebses (*Limulus polyphemus*) nach Endotoxin-Kontakt gemessen. 3. Eine weitere Möglichkeit ist der Einsatz eines speziellen Zellkultursystems (Sterogene Inc., USA), mit dem die Aktivierung von Monozyten über die Entstehung bestimmter Zytokine verfolgt wird.

5

Die beiden erstgenannten Verfahren sind jedoch sehr teuer (vgl. Konkurrenzvergleich Endotoxin-Nachweis) und durch den großen Bedarf an Versuchstieren bzw. an Blut des sehr seltenen Pfeilschwanzkrebses nicht zuletzt aus Tierschutzgründen bedenklich. Der LAL-Test kann zwar auch miniaturisiert und automatisiert werden, hat aber aufgrund geringer Stabilität der Komponenten massive Nachteile in der Anwendung. Eine einmal geöffnete LAL-Lösung muß direkt weiterverarbeitet und aufgebraucht werden, da die Komponenten innerhalb weniger Stunden aggregieren. Für alle Testverfahren ist geschultes Personal nötig und die Verfahren sind sehr störanfällig, weil z.B. das Immunsystem von Kaninchen auf die gleiche Endotoxindosis durchaus unterschiedlich reagieren kann. Das Zellkultur-Verfahren der Firma Sterogene ist, wie alle Zellkulturverfahren, ebenfalls sehr aufwändig und weist Probleme bei der Standardisierung auf.

Insgesamt kann festgestellt werden, dass es kein einfach handhabbares kostengünstiges Verfahren zum Endotoxin-nachweis gibt und die derzeit eingesetzten Methoden eine Reihe von Nachteilen aufweisen. Es besteht daher der Bedarf für ein Verfahren, das diese Nachteile umgeht.

Zur Endotoxinabreicherung aus biologischen Lösungen allgemein gibt es eine Reihe von Verfahren. Insbesondere bei Proteinen gibt es allerdings bislang keine allgemein anwendbaren Standardverfahren. Die jeweils verwendeten Verfahren sind angepasst an die spezifischen Eigenschaften des jeweiligen Proteins und auf den entsprechenden Produktionsprozess des Proteins. Es gibt verschiedene Möglichkeiten zur Endotoxinabreicherung, wobei jedes dieser Verfahren spezifische Vor- und Nachteile aufweist.

30 Die Ultrafiltration (Petsch, D. & Anspach, F.B., 2000, J. Biotechnol. 76, 97-119 und Referenzen darin) wird für Endotoxin-Abreicherungen aus Wasser und Lösungen mit niedermolekularen Bestandteilen wie Salze, Zucker und Antibiotika verwendet, ist jedoch nicht für hochmolekulare Proteine oder DNA geeignet.

35 Die 2-Phasen-Extraktion (z.B. WO 0166718, Merck) soll wasserlösliche Proteine und DNA von

Endotoxin trennen, bedingt jedoch Detergenzreste im gereinigten Produkt. Das Verfahren ist außerdem durch mehrmaliges Wiederholen der Reinigungsprozedur zeitaufwendig.

Ebenfalls wird für die Endotoxinabreicherung aus DNA und basischen Proteinen ein

5 Anionenaustauscher (DEAE)-Verfahren verwendet (z.B. US 5990301, Qiagen; WO 9414837, Enzon), das jedoch eine niedrige Ionenstärke (<50 mM NaCl) voraussetzt und zu einer Protein Co-Adsorption bei sauren Proteinen führt.

Ein weiteres Verfahren zur Endotoxinabreicherung aus DNA und Proteinen (z.B. BSA,

10 Myoglobin, gamma-Globulin, Cytochrom C) ist die Affinitäts-Adsorption (z. B. Polymyxin B, Histamine, Histidin, Polylysin) z.B. GB 2192633 (Hammersmith Hospital), die jedoch im Fall von Polymyxin B toxisch ist und bei niedrigen Ionenstärken zur Co-Adsorption von Proteinen führen kann.

15 Weiterhin wird die Immun-Affinitäts-Chromatographie eingesetzt, wobei die Spezifität für bestimmte Endotoxine nur über teure Antikörper (US 5179018, Centocor; WO 0008463, Bioserv) gegen Herz-Oligosaccharid erreicht werden kann.

Ferner wird das S3delta-Peptid (WO 0127289) des Faktors C (eines Bestandteils des LAL-Tests) 20 (WO 9915676 beide: National University of Singapur) bei Proteinen (z.B. BSA, Chymotrypsinogen) verwendet, wobei jedoch dieses Verfahren eine geringe Effizienz bei hohen Ionenstärken besitzt und die hohen Herstellkosten (Produktion in Insekten-Zellkultur) hinzukommen.

25 In der Anwendung in der pharmazeutischen Industrie befinden sich für Proteinlösungen, angepasst an die Eigenschaften der Zielproteine im wesentlichen drei Verfahren:

- Anionenaustauscherchromatographie
- Reversed-Phase Chromatographie; Diese hat den Nachteil, dass sie nicht für alle Proteine gleichermaßen geeignet, - insbesondere bei hydrophoben Proteinen problematisch ist.

30 Darüberhinaus ist dieses Verfahren sehr zeitintensiv.

- RemTox (Fa. Millipore): Dieses Verfahren hat den Nachteil, das neben einer sehr langen Inkubationsdauer, der unspezifische Bindungsanteil hoch ist, und die Proteinwiederfindung oftmals nicht ausreichend ist.

35 Eine grobe Endotoxin-Abreicherung von Proteinen auf einen Wert bis zu 10 EU/ml ist mit den

bestehenden Verfahren in vielen Fällen möglich. Die verbleibende Konzentration an Endotoxin wirkt jedoch immer noch toxisch. Eine weitere Abreicherung (=Feinreinigung) ist daher geboten bzw. abhängig von der Dosis des Proteins in der medizinischen Anwendung, von der Europäischen Pharmacopeia (z.B. 5 EU/kg Körpergewicht und Stunde in intravenösen Anwendungen) und der FDA verbindlich vorgeschrieben. Allerdings ist diese Feinreinigung mit vorhandenen Methoden oft nicht zufriedenstellend gewährleistet. Die marktgängigen Verfahren weisen hier erhebliche Nachteile auf und sind bei bestimmten Proteinen oft nicht, oder nur unter erheblichen Verlusten des Zielproteins, anwendbar.

10 Daher liegt der Erfindung die Aufgabe zu Grunde, ein Verfahren bereitzustellen, das Endotoxine in Proben nachweisen kann. Der Erfindung liegt ferner die Aufgabe zu Grunde, ein Verfahren bereitzustellen, mit dem Endotoxine aus wässrigen Lösungen entfernt werden können.

Die Aufgaben werden durch den in den Patentansprüchen definierten Gegenstand gelöst.

15 Die nachfolgenden Figuren erläutern die Erfindung.

Fig. 1 zeigt eine schematische Übersicht der chemischen Struktur von Endotoxin aus E. coli O111:B4. Hep = L-Glycero-D-manno-heptose; Gal = Galactose; Glc = Glucose; KDO = 2-Keto-20 3-desoxyoctonsäure; NGa = N-Acetyl-galactosamin; NGc = N-Acetylglucosamin.

Figur 2 zeigt die Ergebnisse von Versuchen mit Chromatographiesäulen, die über Sulfhydrylreste immobilisiertes NStrepS3Cp12 tragen. (A) Endotoxinentfernung aus Proteinlösungen: Rinderserumalbumin (BSA), Carbonanhydrase (CA) und Lysozym (Lys) wurden 1 h auf der Säule inkubiert und anschließend mit Puffer eluiert. Die Endotoxinkonzentration vor und nach der Säule wurden mit dem LAL-Test gemessen und daraus die prozentuale Abnahme berechnet. (B) Proteinwiederfindung: Die Proteinkonzentrationen der Ausgangslösungen und der Fraktionen nach der Säule wurden durch Absorptionsmessung bei 280 nm bestimmt und daraus die prozentuale Proteinwiederfindung ermittelt.

30 Figur 3 zeigt die Endotoxinentfernung aus einer Lysozymlösung über Chromatographiesäulen mit „ungerichtet“ (1) und „gerichtet“ (2) immobilisiertem p12. In beiden Fällen wurde an NHS-aktivierten Säulen p12 S3C gebunden. Die „ungerichtete“ Immobilisierung erfolgte über primäre Aminoreste von p12S3C, die durch Reaktion mit den NHS-Gruppen kovalente Verbindungen mit der Trägersubstanz eingehen. Eine „gerichtete“ Verknüpfung von p12S3C über ein

N-terminales Cystein wird durch Diaminoethan und SIA (N-succinimidyl-iodoacetat) erreicht.
(A) prozentuale Endotoxinentfernung. (B) Proteinwiederfinung.

Figur 4 zeigt die Ergebnisse von Versuchen mit biotinyliertem p12, das über Streptavidin an
5 magnetische Beads gebunden wurde. (A) Die Endotoxinabreicherung aus Puffer (20 mM Hepes,
150 mM NaCl, pH 7.5) und Proteinlösungen wurde mittels LAL-Test bestimmt. (B) Für die
Proteinlösungen wurde die Proteinwiederfindung durch Absorptionsmessungen ermittelt. Die
Abtrennung der Beads von der Lösung erfolgte mit Hilfe eines Magnetseparators. BSA: Rinder-
Serumalbumin. CA: Carbonanhydrase. Lys: Lysozym.

10

Figur 5 zeigt die Ergebnisse der Endotoxinentfernung mit p12, das über Biotin-Streptavidin
Wechselwirkungen auf Agarose-Beads immobilisiert wurde. Die Abtrennung des
immobilisierten p12 erfolgte durch Zentrifugation. Die Endotoxinentfernung aus Puffer (20 mM
Tris, 150 mM NaCl, pH 8.0) und BSA-Lösungen wurde anhand der Endotoxinkonzentrationen
15 von Ausgangslösung und Überstand bestimmt.

Figur 6 zeigt Ergebnisse von Oberflächen-Plasmon-Resonanz Messungen. (A) Resonanzkurven,
die als Antwort auf Injektion von verschiedenen (je in µg/ml: 100; 25; 6,25; 4; 1,56; 0,4) p12-
Konzentrationen (—) gemessen wurden. Die Bindung erfolgt an Endotoxin von E. coli D21f1,
20 das auf einem hydrophoben HPA-Chip immobilisiert wurde. Die Injektion von p12 und EDTA
(5 mM) wird durch Balken über den Kurven markiert. Puffer: 20 mM Tris, 150 mM NaCl, pH
8.0. (B) Gleichgewichtsresonanzwerte für die Bindung von p12 an immobilisiertes Endotoxin
wurden etwa 600 s nach Beginn der p12 Injektion gemessen und gegen die dazugehörigen p12-
Konzentrationen aufgetragen. Die durchgezogene Linie zeigt einen Fit der Langmuirsche
25 Adsorptionsisotherme ($RU = RU_{max} * [p12] / ([p12] + K_d)$) an die Daten. (C) Bindung von E. coli an
biotinyliertes p12, das auf Streptavidin-Chips immobilisiert wurde. E. coli D21e8 (—), dessen
innerere Herz-Region vollständig ist, bindet p12. Dagegen bindet E. coli D21f2 (----), der eine stark
verkürzte Herz-Region besitzt, bindet nicht an p12. Die Messungen wurden in PBS
durchgeführt.

30

Figur 7 zeigt schematisch die Struktur der Endotoxin-Herzregion verschiedener E.coli-Mutanten.

Figur 8 zeigt schematisch das Ergebnis einer Endotoxin-Abreicherung mittels
Chromatographiesäulen-Durchflussverfahren. E bedeutet Äquilibrierungspuffer (20 mM Hepes,
35 150 mM NaCl, 0.1 mM CaCl₂, pH 7.5), A bedeutet Waschpuffer A (20 mM Hepes, 150 mM

NaCl, 0.1 mM CaCl₂, pH 7.5), B bedeutet Elutionspuffer B (20 mM Hepes, 150 mM NaCl, 2 mM EDTA, pH 7.5), C bedeutet Regenerationspuffer C (20 mM Hepes, 150 mM NaCl, 2 mM EDTA, 0.005 % NaDOC, pH 7.5), S bedeutet Konzentration von Protein und Endotoxin in der Ausgangslösung. BSA bedeutet Rinderserumalbumin. EU bedeutet Endotoxin Units (Endotoxin 5 Einheiten). Nach Injektion (I) von 4 ml der Ausgangslösung (S) wurde mit 15 ml Waschpuffer nachgespült und der Durchlauf fraktioniert (je 2.5 ml während des Auftrags, je 2 ml während des Waschens). Anschliessend wurde die Säule mit den Puffern B und C regeneriert und der Auslauf ebenfalls in Fraktionen (je 2 ml) gesammelt. Wie in der Figur ersichtlich, war das BSA in den ersten 3-5 Fraktionen nach der Injektion zu finden. Der Gehalt an Endotoxin in diesen 10 Fraktionen war um den Faktor 100 niedriger als in der Ausgangslösung. Das an die Säule gebundene Endotoxin wurde dann mit den Puffern B und C von der Säule gewaschen.

Figur 9 zeigt schematisch die Ergebnisse der Endotoxin Entfernung aus gering verunreinigter Pufferlösung (5 EU/ml) im Durchflussverfahren. p12 wurde ungerichtet auf NHS-aktivierter 15 Sepharose 4 FastFlow (Amersham Biosciences, Uppsala, Schweden) immobilisiert (8 mg p12/ 1 ml Sepharose) und 3 Säulen mit je 2 ml Säulenvolumen gegossen. Das Experiment wurde parallel auf 3 Säulen durchgeführt. Vor dem Auftrag der Probe wurde jeweils 1 ml Äquilibrierungspuffer (20 mM Hepes, 150 mM NaCl, 0.1 mM CaCl₂, pH 7.5) gesammelt, danach die Probe (S: Endotoxin aus E. coli O55:B5 in Äquilibrierungspuffer, 4.6 EU/ml) 20 injiziert (I) und Fraktionen von 5 ml und 2 ml gesammelt. Die Regeneration der Säule erfolgte durch Zugabe von 4 ml Regenerationspuffer (B: 20 mM Hepes, 150 mM NaCl, 2 mM EDTA, 0.005 % NaDOC, pH 7.5). Die Endotoxin Konzentration wurde mittels LAL-Test bestimmt (kinetisch chromogener LAL-Test, Charles River Inc.). Die Endotoxin Verunreinigungen 25 konnten in allen drei Experimenten vollständig entfernt werden, d.h. die Endotoxin Konzentration im Durchlauf lag unter der Nachweisgrenze (<0.005 EU/ml).

Der Begriff "Endotoxinabreicherung" wie hier verwendet bedeutet vollständige oder teilweise Entfernung von Endotoxin aus Probenmaterial.

30 Der Begriff "Endotoxin" wie hier verwendet bezeichnet bakterielles Lipopolysaccharid, das Bestandteil der äusseren Membran gram-negativer Bakterien ist.

Der Begriff "Bakteriophagenschwanzprotein" wie hier verwendet bezeichnet solche Proteine, die 35 in Bakteriophagen vorkommen und Bestandteile von Zellmembranen binden können. Üblicherweise sind diese Proteine im Bakteriophagenschwanz lokalisiert, können jedoch auch

auf dem Bakteriophagenkopf oder bei Bakteriophagen ohne Schwanz auf der normalen Bakterienhülle lokalisiert sein. Die von dem Bakteriophagenschwanzprotein gebundenen Zellbestandteile erkennen insbesondere Endotoxine.

- 5 Der Begriff "unspezifische Immobilisierung" oder "ungerichtete Immobilisierung" wie hier verwendet bedeutet, dass die Kopplung eines Proteins an eine Matrix über Proteinreste (z.B. primäre Amine) erfolgt, die über die gesamte Proteinoberfläche verteilt sind. Die Auswahl der für die Kopplung des einzelnen Proteinmoleküls verwendeten Gruppe ist zufällig.
- 10 Der Begriff "gerichtete Immobilisierung" wie hier verwendet bedeutet, dass die Kopplung über Aminosäurereste oder andere Reste (z.B. Glykosylierungen des Proteins) erfolgt, deren Position im Protein (z. B. N- oder C-terminal) bekannt ist. Die Auswahl dieser Gruppen für die Kopplung erfolgt durch die Auswahl geeigneter Reaktionspartner/Linker, die bevorzugt mit diesen Resten reagieren (z.B. Kopplung von Sulfhydrylresten an Iodoacetatreste; Iodoacetat reagiert tausendmal schneller mit Sulfhydrylresten als mit Aminoresten).
- 15

Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis von Endotoxin, umfassend die Schritte:

- 20 a) Inkubieren einer Probe mit einem Bakteriophagenschwanzprotein,
b) Nachweis von an Bakteriophagenschwanzproteine gebundenes Endotoxin.

Vorzugsweise betrifft die Erfindung ein Verfahren, bei dem der Nachweis mittels spektroskopischer Verfahren, z.B. Fluoreszenzemission, Fluoreszenzpolarisation, Absorption oder Circulardichroismus, oder mittels Kapazitätsmessung, z.B. elektrische Signale, oder indirekt mittels Kompetitionsnachweis durchgeführt wird.

Gegebenenfalls wird nach Schritt a) und vor Schritt b) ein zusätzlicher Schritt a') Abtrennung von Bakteriophagenschwanzprotein-Endotoxin-Komplex von der Probe eingeführt.

30 Die vorliegende Erfindung betrifft ferner ein Verfahren zur Entfernung von Endotoxin aus einer Probe, umfassend die Schritte:

- 35 a) Inkubation oder in Kontakt bringen einer Probe mit Bakteriophagenschwanzproteinen, die unspezifisch oder gerichtet, an einem festen Träger immobilisiert sind,

b) Trennen des Bakteriophagenschwanzprotein-Endotoxin-Komplexes von der Probe.

Vorzugsweise wird vor der Inkubation die Ionenzusammensetzung der zweiwertigen Ionen z.B.

5 Ca^{2+} , Mg^{2+} und/oder der pH-Wert eingestellt, um eine optimale Endotoxin-Bakteriophagenschwanzprotein-Bindung zu erhalten. Ferner bevorzugt wird bei oder nach der Inkubation eine „Demaskierung“ des gebundenen Endotoxins durch Zugabe von Detergentien und/oder Salzen, z.B. Tween, Triton, NaCl oder Ammoniumsulfat, oder anderer Substanzen, z.B. Chitosan, Zucker oder Lipide, die ein Ablösen der Endotoxine von z.B. Proteinen oder
10 Nukleinsäuren beschleunigen.

Das Bakteriophagenschwanzprotein kann ein natürlicherweise vorkommendes oder ein

molekularbiologisch oder biochemisch modifiziertes sein. Das Bakteriophagenschwanzprotein

kann aus verschiedenen Gründen gentechnisch und/oder biochemisch modifiziert sein. Für die

15 erfindungsgemäßen Verfahren können jedoch nicht nur die natürlicherweise vorkommenden Bakteriophagenschwanzproteine verwendet werden, sondern auch deren Varianten. Varianten bedeutet im Sinne der vorliegenden Erfindung, dass die Bakteriophagenschwanzproteine eine veränderte Aminosäuresequenz aufweisen. Diese können durch Screening der natürlich auftretenden Varianten, oder durch Zufalls-Mutagenese oder gezielte Mutagenese, aber auch
20 durch chemische Modifikation erhalten werden. Die für die erfindungsgemäßen Verfahren verwendeten Bakteriophagenschwanzproteine können durch eine gezielte oder zufällige Mutagenese in ihrer Spezifität bzw. ihren Bindungseigenschaften an Trägerstrukturen angepaßt werden. Diese Bindung an die Träger kann fest, z.B. kovalent oder über eine spezifische oder unspezifische Biotinylierung erfolgen, aber auch reversibel z.B. über eine reduzierbare
25 Disulfidbrücke erfolgen. Ferner kann durch eine Modifikation die Stabilität erhöht werden. Durch die molekularbiologische oder chemische Mutagenese werden Mutationen eingeführt, die Aminosäureadditionen, -deletionen, -substitutionen oder chemische Modifikationen sein können. Diese Mutationen können eine Veränderung der Aminosäuresequenz in der Bindungsregion der Bakteriophagenschwanzproteine bewirken, mit dem Ziel, Spezifität und Bindungsaffinität an
30 Testbedürfnisse anzupassen, z.B. die Bindung der Endotoxine an die Bakteriophagenschwanzproteine zu erhöhen oder irreversibel zu machen, um den Nachweis oder die Abreicherung zu verbessern. Darüber hinaus kann eine gentechnische oder biochemische Modifikation der Phagenproteine durchgeführt werden, mit dem Ziel, die gegebenenfalls vorhandene enzymatische Aktivität auszuschalten, um dadurch die Bindung zu verbessern oder
35 irreversibel zu machen. Weiterhin kann eine gentechnische oder chemische Modifikation der

Phagenproteine durchgeführt werden, um die vorhandenen physikalischen Eigenschaften des Proteins wie Löslichkeit Thermostabilität usw. im Sinne des erfindungsgemäßen Verfahrens anzupassen.

5 Arbeiten zur Aufklärung der dreidimensionalen Struktur von T4 p12 hatten gezeigt, dass bei erhöhter Temperatur proteolytische Fragmente von 33 kDa und 45 kDa erzeugt werden können, die N- und C-terminal (33 kDa) bzw. nur N-terminal (45 kDa) verkürzt sind. Im Gegensatz zu dem 33kDa Fragment ist das 45kDa Fragment noch in der Lage an Bakterien zu binden. Demzufolge ist der C-Terminus an der Zellbindung beteiligt.

10

Die Modifikation kann ferner insbesondere den Zweck haben, einen direkten Nachweis z.B. mittels Messung der Tryptophanfluoreszenz zu ermöglichen. Beispielsweise besitzt P12 fünf Tryptophan-Reste. Das Fluoresenzspektrum des nativen Proteins deutet darauf hin, dass diese Reste weitestgehend lösungsmittel-unzugänglich sind. Aus einer Vielzahl von wissenschaftlichen Arbeiten ist bekannt, dass fast immer aromatische Aminosäuren an der Bindung von Zuckerresten, wie sie auch in Endotoxin vorkommen, beteiligt sind. Die Bindung der Zuckerreste an Proteine kann durch einen Quench der Tryptophanfluoreszenz, bzw. gegebenenfalls auch zusätzlich durch eine Veränderung des Fluoreszenzmaximums verfolgt werden. Eigene Arbeiten lassen vermuten, dass die ungünstige Verteilung der Fluorophore des natürlichen p12 eine Ausnutzung der Fluoreszenz-Eigenschaften von p12 zur Bindungsmessung verhindert. Die Fluoreszeineigenschaften von p12 werden durch die fünf Tryptophanreste dominiert, deren Fluoreszenz durch die Zugabe von Endotoxin nicht messbar verändert wird. Diese Daten lassen erwarten, dass eher Tyrosinreste als Tryptophanreste an der Bindung beteiligt sind, deren Signaländerung vor dem hohen Tryptophan-Hintergrund nicht sichtbar gemacht werden kann. Auf der Basis der Proteolyseergebnisse kommen sechs Tyrosine am C-Terminus von p12 für den Endotoxin-Nachweiskit in Frage, die entsprechend „sichtbar“ gemacht werden können. Durch einen selektiven molekularbiologischen Austausch der fünf Tryptophan-Reste gegen Tyrosine werden in einem ersten Schritt die spektroskopischen Eigenschaften so gezielt verändert, dass die Endotoxin-Bindung per Fluoreszenzsignaländerung eines einzelnen Tryptophanrestes messbar ist. Anschließend wird durch einen gezielten Austausch von jeweils einem der sechs Tyrosine im C-terminalen Bereich gegen einen Tryptophanrest die Intensität des messbaren Signals signifikant erhöht, um für die Entwicklung eines Endotoxin-Nachweiskits attraktive Signalunterschiede zu erhalten.

35 Welche Bakteriophagenschwanzproteine verwendet werden, hängt davon ab, welche Endotoxine

nachgewiesen oder abgereinigt werden sollen. Bereits jetzt steht eine große Zahl bekannter Bakteriophagen für einen Großteil der bisher beschriebenen Bakterien zur Verfügung und kann für die erfindungsgemäßen Verfahren verwendet werden. Die Phagen und die entsprechenden Wirtsbakterien sind u.a. bei folgenden Stammssammlungen erhältlich: ATCC (USA), DSMZ
5 (Deutschland), UKNCC (Großbritannien), NCCB (Niederlande) und MAFF (Japan).

Vorzugsweise stammen die Bakteriophagenschwanzproteine für die erfindungsgemäßen Verfahren von Bakteriophagen, deren Wirtsbakterien medizinisch oder biotechnologisch relevante Bedeutung haben, wie z.B. E. coli, das bei der Produktion rekombinanter Proteine oder
10 von Nukleinsäuren für die Gentherapie verwendet wird. Besonders bevorzugt sind Bakteriophagenschwanzproteine, die stark konservierte Bereiche von Endotoxin binden, wie z.B. die Herzregion oder Lipid A. Insbesondere bevorzugt sind p12 und p12-ähnliche Bakteriophagenschwanzproteine. Bei einer Kombination von Endotoxin-Verunreinigungen aus verschiedenen Wirtsbakterien kann eine Kombination der entsprechenden Endotoxin-
15 erkennenden Bakteriophagenschwanzproteine eingesetzt werden.

Der Nachweis oder die Abreicherung von Endotoxin in oder aus einer Probe erfolgt über die Bindung von Endotoxin an die Bakteriophagenschwanzproteine. Diese Bindung kann z.B. durch direkte Messung mittels spektroskopischer Verfahren, z.B. über Fluoreszenzemission,
20 Fluoreszenzpolarisation, Absorption oder Circulardichroismus nachgewiesen werden. Darüber hinaus kann die Bindung durch elektrische Signale, z.B. eine Kapazitätsmessung sichtbar gemacht werden. Weiterhin kann die Bindung von Endotoxin an die Bakteriophagenschwanzproteine auch indirekt über Verdrängungsexperimente nachgewiesen werden.
25

Für den erfindungsgemäßen Nachweis können die Bakteriophagenschwanzproteine bei Bedarf einer Abtrennung der Bakteriophagenschwanzprotein-Endotoxin-Komplexe von der Probe auf geeigneten Trägerstrukturen, z.B. Magnetpartikeln, Agarosepartikeln, Mikrotiterplatten, Filtermaterialien oder Durchflußzellkammern, gekoppelt werden (indirekter Nachweis). Die
30 Trägerstrukturen können z.B. aus Polystyrol, Polypropylen, Polycarbonat, PMMA, Celluloseacetat, Nitrozellulose, Glas, Silizium oder Agarose bestehen. Die Kopplung kann z.B. durch Adsorption oder kovalente Bindung erreicht werden.

Für das erfindungsgemäße Abreicherungsverfahren sind die Bakteriophagenschwanzproteine an
35 feste Träger gekoppelt. Die festen Träger können Materialien für Chromatographiesäulen (z.B.

Sepharosematerialien), Filtrationsmedien, Glaspartikel, Magnetpartikel, Zentrifugations- oder Sedimentationsmaterialien (z.B. Agarosepartikel) sein.

Wichtig hierbei ist eine funktionelle Kopplung, d.h. Bakteriophagenschwanzproteine verfügen 5 trotz Bindung an das Trägermaterial über für Endotoxin zugängliche Strukturen. Die Kopplung der Bakteriophagenschwanzproteine kann unspezifisch, oder aber bevorzugt gerichtet, über z.B. eine selektive Biotinylierung, oder gekoppelt über einen Spacer oder Linker erfolgen.

Dazu können die Bakteriophagenschwanzproteine mit niedermolekularen Substanzen z.B. Biotin 10 verknüpft sein, um über diese niedermolekularen Substanzen an Polypeptide z. B. Streptavidin zu binden, die ihrerseits auf dem Träger immobilisiert wurden. Statt Biotin kann ferner der sogenannte Strep-Tag (Skerra, A. & Schmidt, T. G. M. Biomolecular Engineering 16 (1999), 79- 15 86) verwendet werden, der eine kurze Aminosäuresequenz ist und an Streptavidin bindet. Ferner kann der His-Tag verwendet werden, der über zweiwertige Ionen (Zink oder Nickel) oder einen für ihn spezifischen Antikörper (Qiagen GmbH, Hilden) an ein Trägermaterial binden kann. Der Strep-Tag sowie der His-Tag wird vorzugsweise über DNA-Rekombinationstechnologie an die 20 rekombinant hergestellten Bakteriophagenproteine gebunden. Diese Kopplung kann gerichtet, z.B. am N- oder C-Terminus oder ungerichtet erfolgen. Die gerichtete Kopplung erfolgt über eine geeignete, reaktive natürlicherweise bei Phagenproteinen nicht häufig oberflächenexponierte Aminosäure wie Cystein, das an geeigneter Stelle gezielt eingeführt 25 wurde. Da Phagenschwanzproteine im Cytoplasma synthetisiert werden, ist nicht mit Disulfidbrücken zu rechnen. Vorzugsweise kann auch über andere Aminosäuren direkt, oder wie auch bei Cystein über einen „Spacer“ oder „CrossLinker“ (Monofunktionell oder bifunktionell) indirekt gekoppelt werden.

Bei der Cysteinkopplung sind alle bifunktionellen Crosslinker mit NH- und SH-reaktiven 25 Gruppen, mit und ohne Zwischenspacer, z.B. 11-Maleimidoundecanoic acid sulfo-NHS oder Succinimidyl-4-[N-maleimidomethyl]-cyclohexane-1-carboxy-[6-amido]caproate möglich. Sofern keine Spacer vorhanden sind, können 8-12 C-Atom-Spacer mit endständiger NH-Gruppe eingefügt werden. Vorzugsweise erfolgt die Cysteinkopplung über eine spezifische 30 Biotinylierung des Cysteins durch z.B. EZ-Link-PEO-Maleimide activated Biotin (Pierce).

Zweiwertige Ionen, wie z.B. Ca^{2+} oder Mg^{2+} sind für eine Bindung von Endotoxinen an 35 Phagenproteine wie p12 wichtig. Durch Zugabe von geeigneten Chelatoren, wie z.B. EDTA oder EGTA, kann diese Bindung jedoch gelöst werden. Bevorzugt für die Bindung sind Ca^{2+} -

Konzentrationen im Bereich von etwa 0,1 μM bis etwa 100 mM, besonders bevorzugt im Bereich von etwa 0,1 μM bis etwa 10 mM, insbesondere bevorzugt im Bereich von etwa 0,1 μM bis etwa 1 mM und ferner insbesondere bevorzugt im Bereich von etwa 10 μM bis 1 mM.

Erniedrigt man die Konzentration zweiseitiger Ionen durch Zugabe von 1 mM EDTA unter 100 nM, so wird die Bindung von Endotoxin an p12 gelöst. Mg²⁺-Konzentrationen über 10 mM verschlechtern die Bindung von Endotoxin an p12, was sich in einer Erhöhung der Dissoziationskonstante bemerkbar macht. Ohne Zugabe von Mg²⁺ ergibt sich ein K_d-Wert von 50 nM und in einem Puffer mit 10 mM Mg²⁺ wurde ein K_d-Wert von 1 μM gemessen. Zink zeigte eine noch stärker hemmende Wirkung. 1 mM Zn erhöht den K_d-Wert auf 10 μM . Eine Einstellung der Konzentration zweiseitiger oder anderer Ionen (z.B.: Cu²⁺, Al³⁺, Zn²⁺, Fe²⁺, Ca²⁺, Ba²⁺, Mg²⁺, Cd²⁺) auf einen für die Bindung optimalen Bereich kann durch Substanzen, wie HEDTA, NTA bzw. allgemein Chelatoren/Puffer (ADA: N-[2-Acetamido]-2-iminodiacetic acid; 5-AMP: Adenosin-5'-Monophosphat; ADP: Adenosin-5'-Diphosphat; ATP: Adenosin-5'-Triphosphat; Bapta: 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; Citrat: Citronensäure; EDTA: Ethylenediamintetraacetic acid; EGTA: Ethyleneglycol-bis(β -aminoethyl Ether) N,N,N',N'-Tetraacetic acid; HEDTA: N-hydroxyethylethylenediaminetriacetic acid; NTA: Nitritotriacetic acid; SO₄²⁻: Sulfat) erfolgen, die als Puffer für zweiseitige Ionen benutzt werden können.

Die erfindungsgemäßen Verfahren können daher ferner Waschschrifte umfassen. Je nachdem, ob ein direkter oder indirekter Nachweis oder die Abreicherung eine Abtrennung von Probe und Bakteriophagenschwanzprotein nötig macht, können Waschschrifte eingebaut werden. Da Ca²⁺ oder andere Metallionen (z.B. Mg²⁺) essentiell für die Bindung sind, kann die Bindung von Endotoxin an z.B. p12 durch geeignete Waschschrifte gelöst werden. Je nach Ziel, ob Endotoxin auf dem Bakteriophagenschwanzprotein, z.B. p12 gebunden bleiben soll, wird mit EDTA-freiem Puffer gewaschen, wenn die Bindung gelöst werden soll mit EDTA-haltigem Puffer, wobei die EDTA-Konzentrationen im Bereich von mindestens 0,05 mM bis mehr als 10 mM, vorzugsweise im Bereich von 2 mM bis 5 mM liegt.

Die Abtrennung erfolgt nach Inkubation der Probe mit dem entsprechenden mit Bakteriophagenschwanzproteinen gekoppelten Trägermaterial für etwa 5-60 min oder etwa 30-180 min oder bei Bedarf auch über Nacht. Dazu wird die Probe z.B. aus der Chromatographiesäule eluiert, oder filtriert, oder die entsprechenden Partikel abzentrifugiert oder absedimentiert, bzw. durch Anlegen eines Magnetfeldes magnetisch separiert. Die Abtrennung in dem hier beschriebenen Batch-Verfahren, d.h. mit Vorinkubation von Probe und mit den

entsprechenden Bakteriophagenschwanzproteinen gekoppelten Trägermaterialen, kann insbesondere bei sehr niedrigen Endotoxinkonzentrationen sinnvoll sein.

Die Abreicherung von Endotoxinen über Chromatographiesäulen kann aber auch im reinen
5 Durchflussverfahren erfolgen. Die Probe kann dazu auf die Säule aufgetragen werden, die ein Trägermaterial mit daran gekoppelten Bakteriophagenschwanzproteinen enthält. Die Flussrate ist abhängig von Volumen und Geometrie der Säule. Die Flussrate ist ferner abhängig von Volumen und Endotoxingehalt der Probe, um durch eine möglichst lange Kontaktzeit zwischen Säule und
10 Endotoxin auch bei niedrigen Endotoxinkonzentrationen eine effiziente Abreicherung zu erzielen. Die Kontaktzeit ist dabei die Zeit, die die Probe vom Auftragen auf die Säule bis zum Herausfließen benötigt.

Der Abtrennschritt kann z.B. im Abreicherungsverfahren zur Regenerierung der Bakteriophagenschwanzproteine benutzt werden, die an den festen Träger gekoppelt sind.
15 Dadurch kann der feste Träger, z.B. eine Matrix in einer Chromatographiesäule wiederverwendet werden. Die Regenerierung erfolgt durch Entfernen des gebundenen Endotoxins durch einen geeigneten Regenerierungspuffer enthaltend EDTA oder einen entsprechenden Chelator. Bei EDTA wird eine Konzentration von größer 2 mM EDTA bevorzugt, insbesondere größer 10 mM EDTA.

20 Da ionische Wechselwirkungen grundsätzlich immer durch Veränderungen der Ionenstärke beeinflussbar sind, können auch Erhöhungen oder Erniedrigungen anderer Salze in Lösung, wie z.B. NaCl oder KCl, die Bindung von Endotoxin an die Bakteriophagenschwanzproteine beeinflussen.

25 Um die Bindung im Nachweisverfahren direkt oder indirekt sichtbar zu machen, kann auch das Protein molekularbiologisch oder biochemisch verändert werden, um die Messung zu ermöglichen, bzw. zu verbessern. Um eine Bindung von Endotoxin z.B. an p12 direkt sichtbar zu machen, kann ein molekularbiologischer Austausch von Tyrosinresten gegen Tryptophan
30 durchgeführt werden. Für eine Reduktion des Signalhintergrundes kann es dabei nötig sein, die ursprünglich enthaltenen Tryptophane gegen Tyrosine auszutauschen. Um auch in proteinhaltigen Lösungen messen zu können, kann p12 nach Tryptophan-Einführung zusätzlich chemisch modifiziert werden. Dabei werden Tryptophanreste durch Koshland-Reagenz (2-Hydroxy-5-nitrobenzylbromid) hinsichtlich ihrer spektrokopischen Eigenschaften verändert. Bei
35 Verdrängungsexperimenten kann markiertes, z.B. fluoreszenzmarkiertes Endotoxin (z.B. Sigma)

durch in der Probe befindliches Endotoxin z.B. von p12 verdrängt und die Konzentration von freiem fluoreszierendem Endotoxin bestimmt werden.

Mit dem erfindungsgemäßen Verfahren kann Endotoxin aus und in allen wässrigen Lösungen 5 nachgewiesen und entfernt werden. Diese Lösungen können: Proteine, Plasmid-DNA, genomische DNA, RNA, Protein-Nukleinsäurekomplexe wie z.B. Phagen oder Viren, Saccharide, Impfstoffe, Arzneimittel, Dialysepuffer (Medizin), Salze oder andere durch Endotoxin-Bindung verunreinigte Substanzen enthalten.

10 Ein weiterer Aspekt der Erfindung sind Bakteriophagenproteine, an die sogenannte Tags, z.B. der Strep- oder der His-Tag, vorzugsweise an den N- oder C-Terminus des Proteins, besonders bevorzugt an den C-Terminus, gekoppelt sind. Bevorzugt ist die Kopplung oder Verknüpfung der Tags mit den Bakteriophagenproteinen über DNA-Rekombinationstechnologie. Herstellung 15 der Nukleinsäure, umfassend die Sequenz des Bakteriophagenproteins und des Tags und die Herstellung des Expressionsprodukts sind Stand der Technik und brauchen hier nicht gesondert 20 erläutert zu werden. Ein weiterer Aspekt der Erfindung ist die Nukleinsäuresequenz, die ein Bakteriophagenprotein zusammen mit dem Strep- oder His-Tag codiert. Ein besonders bevorzugtes mit dem Strep- oder His-Tag modifiziertes Bakteriophagenprotein ist das p12-Protein vom Phagen T4, jedoch sind alle anderen Bakteriophagenproteine die an der Erkennung und Bindung von Bakterien beteiligt oder dafür verantwortlich sind ebenfalls bevorzugt.

Ein weiterer Aspekt der Erfindung sind Bakteriophagenproteine, mit einem Tag, der ein 25 oberflächenexponiertes Cystein zur spezifischen, gerichteten Biotinylierung aufweist, z.B. die Tags gemäß SEQ ID NO:5, 6 und 7. Ein Beispiel für ein p12 mit Tag ist die in SEQ ID NO:8 aufgeführte Aminosäuresequenz. Bevorzugt ist ein p12 mit einem Tag, insbesondere mit einem Tag mit einem oberflächenexponierten Cystein, insbesondere ein p12 mit dem Tag gemäß SEQ 30 ID NO: 6 und 7. Diese gerichtete Biotinylierung kann zusätzlich durch einen geeigneten Spacer oder Linker vermittelt werden. Ferner betrifft die vorliegende Erfindung die Aminosäuren mit einer Sequenz gemäß SEQ ID NO:5, 6 und 7. Ferner betrifft die vorliegende Erfindung die Nukleinsäuren, codierend die Aminosäuresequenz gemäß SEQ ID NO:5, 6 und 7.

Die erfindungsgemäßen Verfahren bieten gegenüber den Nachweis- und Reinigungsverfahren für und von Endotoxin Vorteile in der Performance entsprechender Anwendungen. Ferner ist die Herstellung von Antikörper gegen LPS-Herzoligosaccharide sehr schwierig, was entsprechende 35 Verfahren auf Antikörper-Basis sehr teuer werden lässt.

Die folgenden Beispiele erläutern die Erfindung und sind nicht als einschränkend aufzufassen. Sofern nicht anders angegeben, wurden molekularbiologische Standardmethoden verwendet, wie z.B. von Sambrook et al., 1989, Molecular cloning: A Laboratory Manual 2. Auflage, Cold 5 Spring Harbor Laboratory Press, Cold Spring Harbor, New York, beschrieben.

1. Glasgefäße, Plastikgefäße und Puffer

Für die Endotoxinentfernung wurden alle Glasgefäße durch Ausbacken bei 200°C (4h) 10 entpyrogenisiert und ausschließlich pyrogenfreie Plastikmaterialien (z.B. Pipettenspitzen, Mikrotiterplatten) verwendet. Andere, nicht hitzebeständige Geräte oder Gefäße, wurden entweder mit 3% Wasserstoffperoxid behandelt oder mit 1% Natriumdeoxoycholat gewaschen. Anschließend wurde sie mit endotoxinfreiem Wasser gespült. Die Puffer wurden aus weitgehend 15 endotoxinfreien Puffersubstanzen (Sigma) hergestellt und mit endotoxinfreiem Wasser angesetzt. Salze, wie z.B. NaCl, die auf 200°C erhitzt werden können, wurden ausgebacken (200°C, 4h). Für chromatographische Reinigungen verwendete Puffer wurden entgast und filtriert.

2. Endotoxinnachweis mittels LAL-Test

Endotoxin-Kontrollnachweise wurden mit einem chromogenen LAL-Test (Limulus-Amebocyte- 20 Lysate Test, Charles-River Endosafe, Charleston, USA) entsprechend den Angaben des Herstellers durchgeführt. Zur Konzentrationsbestimmung wurden Endotoxin-Standards (Charles-River Endosafe, Charleston, USA) im Bereich von 0.005-50, bzw. 0.02-50 EU/ml eingesetzt. Die Absorptionsmessung bei 405 nm erfolgte in einem temperierbaren Mikrotiterplatten-Reader 25 (Genios, Tecan GmbH).

3. Western-Blot zum p12-Nachweis

Der Nachweis von p12 im Überstand von mit Beads behandelten Proben bzw. in den Fraktionen 30 der Affinitätschromatographie erfolgte durch Western Blots. Zum Teil wurden die Proteine vorher durch NaDOC/TCA-Fällung (Natriumdeoxycholat/Tetrachloracetat) aufkonzentriert. Die Proben wurden dazu auf 12%-igen SDS Gelen elektrophoretisch aufgetrennt und auf PVDF Membranen (Immobilon, Millipore) übertragen. Die Membranen wurden mit PBS 30 min gewaschen, mit 5% Milchpulver blockiert (1 h) und anschließend mit polyklonalem anti-p12 35 Antikörper inkubiert (1h, Verdünnung: 1: 1000). Nach Inkubation mit einem, mit alkalischer

Phosphatase konjugierter Sekundärantikörper (Ziege-anti-Kaninchen IgG) erfolgte die Entwicklung der Proben mit BCIP/NBT (5-Brom-4-chloroindolylphosphat/Nitroblau-Tetrazoliumsalz).

5 4. Endotoxin-Reinigung

Die Reinigung von Endotoxin wurde nach der Vorschrift von Galanos, C., Lüderitz, O. & Westphal, O. 1969, Europ. J. Biochem. 9, 245-249 durchgeführt.

10 Beispiel 5: Spezifische Kopplung von p12 an immobilisierte Jodoacetylreste:

Um eine gerichtete Bindung von p12 an die Oberfläche zu erreichen wurde die Aminosäure Serin an Position 3 des Strep-Tags gemäß SEQ ID NO:5 durch Cystein wie in Beispiel 12 ersetzt und das Protein über Jodoacetylreste, die bevorzugt freie Sulfhydrylreste binden, 15 immobilisiert. Das resultierende p12 wurde p12S3C genannt.

Es wurde ein 1 ml Sulfolink Coupling Gel (Pierce) gegossen, mit 6 ml 1% Natriumdeoxycholat gewaschen und mit 6 ml Kopplungspuffer (50 mM Tris, 150 mM NaCl, 5 mM EDTA, pH 8.5) equilibriert. Anschließend wurden 1 ml p12S3C (=N-StrepS3Cp12) (1-1.5 mg/ml in 20 Kopplungspuffer) injiziert, die Säule 15 min leicht geschüttelt, weitere 30 min ohne Schütteln bei Raumtemperatur inkubiert, und nochmals 1 ml p12S3C injiziert und die Inkubationsschritte wiederholt. Diese Kopplung von p12S3C wurde insgesamt 4 mal wiederholt, und anschließend die Säule mit 6 ml Kopplungspuffer gewaschen. Die Durchläufe wurden gesammelt und die jeweilige p12S3C Konzentration durch Absorptionsmessung bei 280 nm bestimmt. Es wurden 25 2.2-2.8 mg p12S3C pro ml Gel gebunden. Anschließend wurden überzählige Jodoacetylreste durch Inkubation (45 min) mit 1 ml Cystein (50 mM in 50 mM Tris, 5 mM EDTA, pH 8.5) blockiert. Nach Waschen der Säule mit 16 ml 1M NaCl und 16 ml 20 mM Hepes, 150 mM NaCl pH 7.5 war die Säule fertig zum Gebrauch.

30 Die Fähigkeit dieses Gels Endotoxin aus Proteinlösungen zu entfernen, wurde mit BSA (2-4 mg/ml), Carbon Anhydrase (1-2 mg/ml) und Lysozym (3-4 mg/ml) getestet. BSA und Lysozym Lösungen wurden mit Endotoxin von E. coli O55:B5 (Charles-River Endosafe, Charleston, USA) oder E. coli HMS 174 gespickt (100-1000 EU/ml), während die Carbon Anhydrase nicht mit zusätzlichem Endotoxin versetzt wurde. Es wurden jeweils 0.5 ml Proteinlösung auf die 35 Säule gegeben, 1 Stunde bei Raumtemperatur inkubiert und anschließend die Säule mit Puffer

gewaschen. Die Proteine wurden fraktionsweise gesammelt und der Endotoxingehalt vor und nach der Säule mittels eines chromogenen LAL-Tests (Charles-River Endosafe, Charleston, USA) bestimmt. Außerdem wurde die Proteinwiederfindung durch Absorptionsmessungen bei 280 nm ermittelt. Die Endotoxine konnten aus allen 3 Proteinlösungen fast vollständig (93-99%) entfernt werden, wie in Fig. 2A gezeigt. Außerdem konnten die Proteine weitgehend von der Säule eluiert werden (80-99%, Fig. 2B). Die Säule wurde abschließend mit 5 mM EDTA, 20 mM Hepes, 150 mM NaCl, pH 7.5 regeneriert. Um Verunreinigungen der Proteinfraktionen nach dem Lauf über die Säule durch sich ablösendes p12 auszuschließen, wurden die Fraktionen mittels der Western Blot Technik auf p12 untersucht. Es konnte kein p12 in den Fraktionen 10 nachgewiesen werden.

Beispiel 6: Unspezifische Kopplung von p12 an NHS-aktiviertes Trägermaterial:

N-hydroxysuccinimid (NHS) wird aus Verbindungen durch primäre Aminreste verdrängt und deshalb zum Koppeln von Proteinen an Oberflächen benutzt. NHS-aktivierte Sepharose Säulen (HiTrap NHS-activated HP, 1 ml, Amersham-Pharmacia-Biotech) wurden zunächst mit 6 ml eiskalter 1 mM Salzsäure gewaschen. Anschließend wurden bei Raumtemperatur 10-15 ml p12S3C (1.0-3.5 mg/ml) in 0.2 M NaHCO₃, 0.5 M NaCl, pH 8.3 zirkulär über die Säule gepumpt (Flussrate 0.8 ml/min). Nach 60 min wurde der Durchlauf fraktionsweise gesammelt und die 15 Säule mit 6 ml Puffer gewaschen. Aus diesen Fraktionen wurde das NHS durch Entsalzen der Lösung über HiTrap-Desalting Säulchen (5 ml, Amersham-Pharmacia-Biotech) abgetrennt und anschließend die p12-Menge durch Absorptionsmessung bei 280 nm bestimmt. 20-25 mg 20 p12S3C wurden an die Säule gebunden. Die Säule wurde nach der Kopplung entsprechend den Herstellerangaben wiederholt mit jeweils 6 ml Blockierungspuffer (0.5 M Ethanolamin, 0.5 M 25 NaCl, pH 8.3) und Waschpuffer (0.1 M Acetat, 0.5 M NaCl, pH 4.0) gespült. Anschließend wurde die Säule mit 6 ml Gebrauchspuffer (20 mM Hepes, 150 mM NaCl, pH 7.5 oder 20 mM Tris, 150 mM NaCl, pH 8.5) equilibriert.

Die Endotoxinentfernung über diese Säule wurde mit Lysozymlösungen (3-4 mg/ml in 20 mM 30 Hepes, 150 mM NaCl, pH 7.5 oder 20 mM Tris, 150 mM NaCl, pH 8.5) getestet. Die Lysozymlösungen wurden mit Endotoxin von E. coli HMS 174 gespickt (~500 EU/ml). Es wurden 0.5 ml Proteinlösung auf die Säule gegeben, 1 Stunde bei Raumtemperatur inkubiert und anschließend die Säule mit Puffer gewaschen. Das Lysozym wurden fraktionsweise gesammelt und der Endotoxingehalt vor und nach der Säule mittels eines chromogenen LAL-Tests (Charles- 35 River Endosafe, Charleston, USA) bestimmt. Außerdem wurde die Proteinwiederfindung durch

Absorptionsmessungen bei 280 nm ermittelt. Die Endotoxine wurden zu 85-90% aus der Lösung entfernt, wie in Fig. 3A gezeigt und 85-90% des Lysozyms konnten durch Waschen mit Gebrauchspuffer wieder von der Säule eluiert werden (Fig. 3B). Die Säule wurde anschließend mit 6 ml 5 mM EDTA, 20 mM Hepes, 150 mM NaCl, pH 7.5 und 6 ml 1 M NaCl gewaschen.

5 Um Verunreinigungen der Proteinfraktionen nach dem Lauf über die Säule durch sich ablösendes p12 auszuschließen, wurden die Fraktionen mittels der Western Blot Technik auf p12 untersucht. Es konnte kein p12 in den Fraktionen nachgewiesen werden.

Beispiel 7: Gerichtete Kopplung von p12 an über Diaminoethan und N-Succinimidyl-iodoacetat

10 (SIA) als Spacer an NHS-aktiviertes Trägermaterial-Säule.

Um eine gerichtete Bindung an das Chromatographie Trägermaterial zu erreichen wurde ein bifunktioneller Linker an NHS-aktivierte Oberfläche gebunden, der eine Kopplung von p12S3C über dessen freies Cystein und Jodoacetylreste des bifunktionalen Linkers ermöglicht.

15 NHS-aktivierte Sepharose Säulen (HiTrap NHS-activated HP, 1 ml, Amersham-Pharmacia-Biotech) wurden zunächst mit 6 ml eiskalter 1 mM Salzsäure gewaschen, danach 1 ml Ethylen diamin (10 mg/ml in 0.2 M NaHCO₃, 0.5 M NaCl, pH 8.3) injiziert und die Säule 30 min bei Raumtemperatur inkubiert. Nach Blockieren überzähliger NHS-Gruppen mit Ethanolamin (0.5 M Ethanolamin, 0.5 M NaCl, pH 8.3) und Waschen (0.1 M Acetat, 0.5 M NaCl, pH 4.0) der Säule wurde die Säule mit 6 ml Boratpuffer (50 mM Natriumborat, 150 mM NaCl, 5 mM EDTA, pH 8.3) equilibriert. Anschließend wurde 30 min lang 10 ml N-Succinimidyl-iodoacetat (SIA, Pierce, 200 µl SIA-Stammlösung in 10 ml Boratpuffer; SIA-Stammlösung: 1.4 mg SIA in 1 ml DMSO) zirkulär über die Säule gespült. Die Säule wurde danach mit 6 ml Boratpuffer gewaschen und 1 Stunde lang p12S3C (1 mg/ml, 50 ml in Boratpuffer) über die Säule gespült. Überschüssige Iodoacetylreste wurden mit 1 ml Cysteinlösung (5 mM Cystein in Boratpuffer, 15 min bei Raumtemperatur inkubieren) abgesättigt, bevor die Säule mit den Gebrauchspuffern (20 mM Hepes, 150 mM NaCl, pH 7.5 oder 50 mM Tris, 150 mM NaCl, pH 8.5) equilibriert wurden. Die Kopplungsreaktionen mit SIA wurden im Dunkeln durchgeführt.

20

25

30 Die Endotoxinentfernung über diese Säule wurde mit Lysozymlösungen (3-4 mg/ml in 20 mM Hepes, 150 mM NaCl, pH 7.5 oder 20 mM Tris, 150 mM NaCl, pH 8.5) getestet. Die Lysozymlösungen wurden mit Endotoxin von E. coli HMS 174 gespickt (~500 EU/ml). Es wurde 0.5 ml Proteinlösung auf die Säule gegeben, 1 Stunde bei Raumtemperatur inkubiert und anschließend die Säule mit Puffer gewaschen. Das Lysozym wurde fraktionsweise gesammelt

35

und der Endotoxingehalt vor und nach der Säule mittels eines chromogenen LAL-Tests (Charles-River[®] Endosafe, Charleston, USA) bestimmt. Außerdem wurde die Proteinwiederfindung durch Absorptionsmessungen bei 280 nm ermittelt. Die Endotoxine wurden zu 90% aus der Lösung entfernt, wie in Fig. 3A gezeigt und 75-85% des Lysozyms konnten durch Waschen mit 5 Gebrauchspuffer wieder von der Säule eluiert werden (Fig. 3B). Die Säule wurde anschließend mit 6 ml 5 mM EDTA, 20 mM Hepes, 150 mM NaCl, pH 7.5 und 6 ml 1 M NaCl gewaschen. Um Verunreinigungen der Proteinfraktionen nach dem Lauf über die Säule durch sich ablösendes p12 auszuschließen, wurden die Fraktionen mittels der Western Blot Technik auf p12 untersucht. Es konnte kein p12 in den Fraktionen nachgewiesen werden.

10

Beispiel 8: Entfernung von Endotoxin aus einer BSA-Lösung im Durchflussverfahren

Hi-Trap-NHS aktivierte Sepharose (Amersham Biosciences, Uppsala, Schweden) wurde nach Vorschrift des Herstellers unspezifisch über primäre Aminogruppen mit p12 gekoppelt. Dabei 15 wurden 8 mg p12/ml Gelmaterial kovalent immobilisiert. Die so erhaltene 1 ml Chromatographiesäule wurde mit einer Flussrate von 1 ml/min mit 10 ml Puffer A (20 mM HEPES pH 7.5, 150 mM NaCl, 0.1 mM CaCl₂) äquilibriert. Im Anschluß wurden 4 ml einer BSA Lösung (11.5mg BSA (Carl Roth GmbH, Deutschland) / ml Puffer A) aufgetragen (Injektion: I) und der Durchlauf (E) in 2,5 ml Fraktionen gesammelt. Die Säule wurde 20 anschließend mit 15 ml Puffer A gewaschen und das an die Säule gebundene Endotoxin wurde mit 7 ml Puffer B (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA) eluiert. Bei Waschen und Elution wurden jeweils 2 ml Fraktionen gesammelt. Nach jedem Experiment wurde die Säule mit 20 ml Puffer C (20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 0.1 % Natriumdesoxycholat) regeneriert. Die Endotoxin-Konzentration wurde durch einen 25 chromogenen Limulus Amebocyte Lysate (LAL) Test (Charles-River Endosafe, Charleston, USA), nach Vorschrift des Herstellers bestimmt. Die Bestimmung der Proteinkonzentration erfolgte durch Messung der UV-Absorption. Die Endotoxin-Entfernungseffizienz betrug zwischen 95-99% und der Proteinverlust betrug etwa 6-10 %.

30 Beispiel 9: Entfernung geringer Endotoxinmengen aus Puffer mittels unspezifisch gekoppeltem
p12.

20 ml NHS-aktivierte Sepharose 4 FastFlow (Amersham Biosciences) wurden zunächst mit eiskalter Salzsäure gewaschen und anschließend mit 292 mg p12 (7 mg/ml in 25 mM Citrat pH 35 7.0) 4 Stunden unter schütteln bei Raumtemperatur inkubiert. Anschließend wurde die Sepharose

mit 7 x 80 ml 5 mM Citrat pH 2.0 gewaschen und jeweils 1 ml der Waschfraktionen gegen 5 mM Citrat pH 2.0 dialysiert. Diese Dialysate wurden benutzt, um das überschüssige p12 in den Waschfraktionen mittels Absorptionsmessung bei 280 nm zu quantifizieren. Es wurde eine Beladungsdichte von 8.7 mg p12 pro 1ml Sepharose bestimmt. Nicht abreagierte NHS-Reste 5 wurden durch 12 h Inkubation der Sepharose mit 1M Tris pH 8.0 abgesättigt. Mit diesem Säulenmaterial wurden Säulen mit 2 ml Volumen gegossen und diese bei 4°C in 20% Ethanol bis zum Gebrauch gelagert.

In 3 Parallelversuchen wurde jeweils 4 ml Endotoxin Lösung (S) auf eine Säule aufgetragen 10 (siehe Fig. 9). Die Endotoxin Lösung bestand aus Endotoxin von *E. coli* O55:B5 (Charles-River Endosafe, Charleston, USA) in Equilibrationspuffer (20 mM Hepes, 150 mM NaCl, 0.1 mM CaCl₂, pH 7.5). Die Endotoxin Konzentration dieser Lösung lag bei 4.6 EU/ml.

Die Säulen wurde zunächst mit 12 ml Regenerationspuffer (20 mM Hepes, 150 mM NaCl, 2 mM EDTA, pH 7.5) und anschließend mit 12 ml Equilibrationspuffer gespült. Anschließend wurde 15 nochmals Equilibrationspuffer auf die Säule gegeben und 1ml fraktioniert.

Die Endotoxin Lösung wurden auf die Säulen aufgetragen (I) und Fraktionen von 5 ml und 2 ml gesammelt. Anschließend wurde die Säule mit 4 ml Regenerationspuffer (B) regeneriert. In den 20 Durchlauffraktionen konnte kein Endotoxin detektiert werden, d.h. die Endotoxin Verunreinigungen konnten in allen drei Experimenten vollständig entfernt werden.

Beispiel 10: unspezifische Kopplung von biotinyliertem p12 an magnetische Streptavidin-Beads.

25 p12 (3 mg/ml in PBS, 0.05% Tween20) wurde mit Sulfo-NHS-LC-LC-Biotin (Pierce), im Verhältnis 1:10 bis 1:20 eine Stunde bei RT inkubiert und anschließend gegen Puffer (z.B. PBS oder 20 mM Hepes, 150 mM NaCl, 5 mM EDTA, pH 7.5) dialysiert. NHS-aktiviertes Biotin bindet dabei an primäre Aminoreste von p12. Anschließend wurden zu 1ml Streptavidin Beads (MagPrep Streptavidin Beads, Merck) 50 µl biotinyliertes p12 (1 mg/ml) gegeben, 2h bei 30 Raumtemperatur geschüttelt und anschließend überschüssiges p12 durch viermaliges Waschen mit 1.5 ml 20 mM Tris, 10 mM EDTA, pH 7.5 entfernt.

Die Endotoxinentfernung wurde mit Puffer (20 mM Hepes, 150 mM NaCl, pH 7.5) und Proteinlösungen (0.1 mg/ml BSA, 0.1 mg/ml Lysozym, 0.1 mg/ml Carbon Anhydrase in 20 mM Hepes, 150 mM NaCl, pH 7.5) getestet. Der Puffer sowie die BSA- und Lysozym-Lösung wurde

mit 5 EU/ml (Endotoxin aus *E. coli* O55:B5, Charles-River Endosafe, Charleston, USA) gespickt. Die Carbon Anhydrase Lösung enthielt etwa 1 EU/ml. Zu 200 µl Puffer bzw. Proteinlösung wurden 25 µl magnetische Beads mit immobilisiertem p12 gegeben, durch auf- und abpipettieren vermischt und 30 min bei Raumtemperatur inkubiert. Die Beads wurden mit Hilfe eines Magneten aus der Lösung entfernt, der Überstand abpipettiert. Der Endotoxingehalt von unbehandelten Proben und mit Beads inkubierten Proben wurde anschließend mit dem LAL-Test bestimmt und die Proteinwiederfindung durch Absorptionsmessung bei 280 nm bestimmt. Aus Puffer ließ sich das Endotoxin praktisch vollständig entfernen (99.9 % Endotoxinentfernung, Fig. 4A) und auch aus den Proteinlösung wurde das Endotoxin um 70-92% (Fig. 4B) abgereichert. Die Proteinwiederfindung lag zwischen 57% und 99% (BSA: 87 %, Carbon Anhydrase: 99%, Lysozym: 57 %; Fig. 4B).

Beispiel 11: unspezifische Kopplung von biotinyliertem p12 an immobilisiertes Streptavidin.

15 P12 (3 mg/ml in PBS, 0.05% Tween20) wurde mit Sulfo-NHS-LC-LC-Biotin (Pierce), im Verhältnis 1:10 bis 1:20 eine Stunde bei RT inkubiert und anschließend gegen Puffer (z.B. PBS oder 20 mM Hepes, 150 mM NaCl 5 mM EDTA, pH 7.5) dialysiert. NHS-aktiviertes Biotin bindet dabei an primäre Aminoreste von p12. Das biotinylierte p12 wird anschließend 1 h bei Raumtemperatur mit Streptavidin beladenen Chromatographiematerial (ImmunoPure 20 immobilized Streptavidin: 6% quervernetzte Agarose Beads) inkubiert und überschüssiges p12 durch Waschen mit PBS entfernt.

Die Endotoxinentfernung wurde mit Puffer (20 mM Tris, 150 mM NaCl, pH 8.0) und BSA (0.5 mg/ml in 20 mM Tris, 150 mM NaCl, pH 8.0) getestet. Je 1 ml Puffer bzw. BSA-Lösung wurden 25 mit 10 EU/ml gespickt, 50 µl p12-Agarose zugegeben, 1 Stunde bei Raumtemperatur geschüttelt. Die p12-Agarose wurde anschließend abzentrifugiert und die Endotoxin- und Proteinkonzentration im Überstand gemessen. Aus dem Puffer konnten 99% und aus der BSA-Lösung 86 % Endotoxin entfernt werden (Fig. 5). BSA konnte zu 90 % wiedergefunden werden.

30 Beispiel 12: Untersuchungen über die p12-Endotoxin Bindung mittels Oberflächen-Plasmon-Resonanz-Messungen

Die Bindung von p12 an Endotoxin oder an Bakterien, über die Lipopolysaccharide in der äußereren Zellmembran, wurde mittels Oberflächen-Plasmon-Resonanz Messungen untersucht 35 (Biacore J). Um die Dissoziationskonstante (K_d) zu ermittelt, wurde Endotoxin von *E. coli*

O55:B5 (Sigma) auf einem hydrophoben HPA-Chip entsprechend der Anleitung des Herstellers immobilisiert und p12 in verschiedenen Konzentrationen injiziert (Fig. 6A). Die Bindung wird in relativen „Response Units“ (RU) gemessen die Gleichgewichtswerte gegen die dazugehörigen p12-Konzentrationen aufgetragen (Fig. 6B). Durch anpassen der Langmuirschen Adsorptionsisotherme ($RU = (RU_{max} * [p12]) / ([p12] + K_d)$) an diese Daten wurde der K_d -Wert ermittelt (Tabelle 1). Für die Messungen wurden endotoxinfreie Puffer verwendet. Für pH-Werte zwischen 6 und 10 wurden K_d -Werte im Bereich von 10^{-7} bis 10^{-9} M ermittelt (Tabelle 1). Die Bindung wurde durch Injektion von 1mM oder 5 mM EDTA wieder aufgehoben und der Chip regeneriert.

10

15

pH	Kd
6,00	3,09E-07
7,50	6,85E-08
8,00	5,86E-08
8,50	7,86E-08
9,00	3,29E-08
10,00	1,55E-07

20 Tabelle 1: Dissoziationskonstanten von Endotoxin an p12 in Abhängigkeit von dem pH-Wert der Lösung.

Um die Bindung von Bakterien an p12 zu untersuchen, wurde biotinyliertes p12 auf Streptavidin-Chips immobilisiert und verschiedene E. coli Stämme injiziert. Die Bakterien 25 wurden für die Messungen in PBS aufgenommen. Es wurden E. coli Stämme verwendet, die Lipopolysaccharide mit unterschiedlichen Polysaccharid-Anteilen besitzen. Der Polysaccharidteil besteht aus einer „Herz“-Region, die mit dem Lipid A verknüpft ist und dem sogenannten O-Antigen. Das O-Antigen variiert sehr stark zwischen verschiedenen Bakterienarten und auch Bakterienstämmen, während die „Herz“-Region stark konserviert ist. 30 Stämme, die die „Herz“-Region und O-Antigen (z.B. E. coli), sowie Stämme die eine vollständige „Herz“-Region (E. coli D21) besitzen wurden von p12 gebunden, während Stämme mit einem stark verkürzten „Herz“-Region (z.B. E. coli D21f2) nicht mehr von p12 erkannt wurden (Fig. 6C). Die Bindung konnte durch EDTA (5 mM) wieder gelöst und der Chip regeneriert werden.

35

Beispiel 13: rekombinante p12-Konstrukte

1. Konstruktion von p12 mit N-terminalem Strep-Tag (N-Strep-p12): Mittels PCR wurde an das 5'-Ende des T4p12-Gens die Nukleotidsequenz für den Strep-Tag (US patent 5,506,121) eingeführt. Hierfür wurde für das 5'-Ende des p12-Gens ein Primer konstruiert (5'-GAA GGA ACT AGT CAT ATG GCT AGC TGG AGC CAC CCG CAG TTC GAA AAA GGC GCC AGT AAT AAT ACA TAT CAA CAC GTT-3' (SEQ ID NO:1), der die Nukleotidsequenz des Strep-Tags an seinem 5'-Ende beinhaltet (kursiv in der Sequenz) und eine Restriktionsschnittstelle (*NdeI*, unterstrichen in der Sequenz) derart besitzt, dass das Gen im richtigen Leseraster in das Expressionsplasmid eingesetzt werden kann. Für das 3'-Ende des p12-Gens wurde ein Primer konstruiert, der hinter dem p12-Gen eine *BamH I* Restriktionsschnittstelle (kursiv in der Sequenz) einführt (5'-ACG CGC AAA GCT TGT CGA CGG ATC CTA TCA TTC TTT TAC CTT AAT TAT GTA GTT-3'), (SEQ ID NO:2). Die PCR wurde mit 40 Cyclen (1 min 95°C, 1 min 45°C und 1 min 72°C) durchgeführt. Der PCR-Ansatz wurde mit den Restriktionsendonukleasen *NdeI* und *BamHI* geschnitten und das gewünschte Fragment nach Größenfraktionierung über ein Agarosegel und Elution aus dem Gel in die *NdeI* und *BamHI* site des Expressionsplasmids pET21a eingesetzt. Die Sequenz des N-Strep-p12-Gens wurde über DNA-Sequenzierung auf seine Richtigkeit hin überprüft. Die weiteren Schritte zum Plasmid pNS-T4p12p57 wurden wie von Burda, M.R. & Miller, S. (Eur J Biochem. 1999 265 (2), 771-778) für T4p12p57 beschrieben durchgeführt. Das Plasmid pNS-T4p12p57 wurde dann in den Expressionsstamm BL21 (DE3) transformiert.
2. Einfügen eines N-terminalen Cysteinrests in N-Strep-p12 (N-Strep-S3C-p12 und N-Strep-S14C-p12): Die Einfügung eines N-terminalen Cysteinrestes wurde wie unter 1. beschrieben durchgeführt, wobei dafür zwei neue Primer für das 5'-Ende konstruiert wurden. Für das N-Strep-S3C-p12 wurde der Primer 5'-GAA GGA ACT AGT CAT ATG GCT TGT TGG AGC CAC CCG CAG TTC GAA AAA GGC GCC AGT AAT AAT ACA TAT CAA CAC GTT-3' (SEQ ID NO:3), für das N-Strep-S14C-p12 wurde der Primer 5'-GAA GGA ACT AGT CAT ATG GCT AGC TGG AGC CAC CCG CAG TTC GAA AAA GGC GCC TGT AAT AAT ACA TAT CAA CAC GTT-3' (SEQ ID NO:4) verwendet.

3. Reinigung von N-Strep-p12 Protein: Der *E. coli* Stamm BL21(DE3) mit dem Plasmid pNS-T4p12p57 wurde in 2 l Schüttelkulturen (LB-Medium mit Ampicillin 100 µg/ml) bis zu einer OD600 von 0.5-0.7 bei 37°C gezogen und die Expression des N-Strep-p12-Proteins wurde durch Zugabe von 1mM IPTG (Isopropyl-β-thio-galactopyranoside) induziert. Nach Inkubation

bei 37°C für 4h wurden die Zellen abgeerntet. Geerntete Zellen aus 10 l Kultur wurden in 50 ml Natriumphosphat, 20 mM pH 7.2, 2 mM MgSO₄, 0.1 M NaCl aufgenommen, durch dreimalige French-Press-Behandlung (20.000 psi) aufgebrochen und anschließend 30 min bei 15.000 rpm (SS34) abzentrifugiert. Nach zweimaligem Waschen im gleichen Puffer wurde das N-Strep-p12

5 Protein aus dem Pellet das Pellet 3x mit durch Rühren für 30 min in 40 mM TrisHCl pH 8.0, 10 mM EDTA extrahiert, der Ansatz für 30 min bei 15.000 rpm (SS34) zentrifugiert und das abgelöste NS-p12 im Überstand bei 4°C gelagert. Die Extraktion wurde zweimal wiederholt. und die vereinigten Überstände wurden auf eine Streptactin-Affinitätsäule (15 ml), äquilibriert mit Puffer „W“ (100 mM TrisHCl pH 8, 1 mM EDTA, 150 mM NaCl), aufgetragen (IBA GmbH,

10 Göttingen). Nach Waschen mit 5 Säulenvolumina Puffer „W“ wurde mit 3 Volumina Puffer „W“ mit 2.5 mM Desthiobiotin in Puffer „W“ eluiert. Nach mehrmaliger Dialyse gegen Puffer „W“ und Aufkonzentration wurde über SDS-PAGE und UV-Spektroskopie (Burda et.al. 1999) die Konzentration und Reinheit von N-Strep-T4p12 ermittelt. Aus 10 Liter Kultur wurden so ca. 100 mg N-Strep-T4p12 gereinigt.

15

Name	Sequenz des Tag	
Nstrep-p12	MASWSHPQFEKGAS	SEQ ID NO: 5
Nstrep-p12-S3C	MACWSHPQFEKGAS	SEQ ID NO: 6
Nstrep-p12-S14C	MASWSHPQFEKGAC	SEQ ID NO: 7

Patentansprüche

1. Verfahren zum Nachweis von Endotoxin, umfassend die Schritte:

5

- a) Inkubieren einer Probe mit einem Bakteriophagenschwanzprotein,
- b) Nachweis von an Bakteriophagenschwanzproteine gebundenes Endotoxin.

2. Verfahren nach Anspruch 1, gegebenenfalls ferner umfassend nach Schritt a) und vor

10 Schritt b) den zusätzlichen Schritt

- a') Abtrennung der Bakteriophagenschwanzprotein-Endotoxin-Komplexe von der Probe.

3. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Nachweis mittels

15 spektroskopischer Verfahren durchgeführt wird.

4. Verfahren zur Entfernung von Endotoxin aus einer Probe, umfassend die Schritte:

- a) Inkubation oder in Kontakt bringen einer Probe mit Bakteriophagenschwanzproteinen, die unspezifisch oder gerichtet, an einem festen Träger immobilisiert sind,
- b) Trennen des Bakteriophagenschwanzprotein-Endotoxin-Komplexes von der Probe.

5. Verfahren nach Anspruch 4, wobei die Schritte a) und b) in einem Chromatographiesäulen-Durchflussverfahren durchgeführt werden.

6. Verfahren nach Anspruch 4, wobei der feste Träger Filtrationsmedien, Glaspartikel, Magnetpartikel, Zentrifugations-, Sedimentationsmaterialien oder Füllmaterialien für Chromatographiesäulen sind.

30 7. Verfahren nach Anspruch 4 bis 6, wobei die Bakteriophagenschwanzproteine über Kopplungsgruppen an dem festen Träger immobilisiert sind.

8. Verfahren nach Anspruch 7, wobei die Kopplungsgruppe ein Lektin, Rezeptor oder

35 Anticalin ist.

9. "Verfahren nach Anspruch 7, wobei die Kopplungsgruppe ein Streptavidin oder Avidin ist und die Bakteriophagenschwanzproteine mit Biotin oder einem Strep-Tag gekoppelt sind.
- 5 10. Verfahren nach Anspruch 4 bis 6, wobei die Bakteriophagenschwanzproteine kovalent über chemische Bindungen an dem festen Träger immobilisiert sind.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bakteriophagenschwanzprotein einen Strep-Tag oder einen His-Tag aufweist.
10
12. Verfahren nach Anspruch 11, wobei der Tag eine Aminosäuresequenz gemäß SEQ ID NO. 5, 6 oder 7 aufweist.
13. Verfahren nach Anspruch 11 oder 12, wobei als Bakteriophagenschwanzprotein das p12-Protein des Phagen T4 verwendet wird.
15
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Ca^{2+} -Konzentration in der Inkubation 0,1 μM bis 10 mM und die Mg^{2+} -Konzentration 0,1 μM bis 10 mM beträgt.
- 20 15. Verfahren nach einem der Ansprüche 1 bis 3, wobei markiertes Endotoxin aus der Bindung mit einem Bakteriophagenschwanzprotein verdrängt wird und das markierte Endotoxin anschließend nachgewiesen wird.

25

FIG. 1

FIG. 2

A

B

FIG. 3

FIG. 4

A

B

FIG. 5

FIG. 6

FIG. 7

Endotoxin-Struktur	<i>E. coli</i> Stamm	pI2-Bindung
KDO-LipidA KDO KDO	D21f2	-
Hep-Hep-KDO-LipidA Hep KDO KDO	D21f1	+
Glc-Hep-Hep-KDO-LipidA Hep KDO KDO	D21e8	+
Glc-Hep-Hep-KDO-LipidA Gal Hep KDO KDO	D21e7	+
GlcN-Glc-Glc-Glc-Hep-Hep-KDO-LipidA Gal Hep KDO KDO	D21	+

pH	K _d
6,0	3,09 E-07
7,5	6,85 E-08
8,0	5,86 E-08
8,5	7,86 E-08
9,0	3,29 E-08
10,0	1,55 E-07

Fig. 8

FIG. 9

SEQUENCE LISTING

<110> PROFOS AG

<120> Verfahren zum Nachweis und zur Entfernung von Endotoxin

<130> PRO-008 PCT

<140> unknown

<141> 2003-06-24

<150> 102 28 133.5

<151> 2002-06-24

<150> 103 07 793.6

<151> 2003-02-24

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 78

<212> DNA

<213> künstlich hergestellte Sequenz

<400> 1

gaaggaacta gtcatatggc tagctggagc caccgcagt tcgaaaaagg cgccagtaat
aatacatatc aacacgtt

60

78

<210> 2

<211> 54

<212> DNA

<213> künstlich hergestellte Sequenz

<400> 2

acgcgcaaag cttgtcgacg gatcctatca ttcttttacc ttaattatgt agtt

54

<210> 3

<211> 78

<212> DNA

<213> künstlich hergestellte Sequenz

<400> 3

gaaggaacta gtcatatggc ttgttgagc caccgcagt tcgaaaaagg cgccagtaat
aatacatatc aacacgtt

60

78

<210> 4

<211> 78

<212> DNA

<213> künstlich hergestellte Sequenz

<400> 4

gaaggaacta gtcatatggc tagctggagc caccgcagt tcgaaaaagg cgccgtaat
aatacatatc aacacgtt

60

78

<210> 5
<211> 19
<212> PRT
<213> künstlich hergestellte Sequenz

<400> 5
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
1 5 10 15

Thr Tyr Gln

<210> 6
<211> 19
<212> PRT
<213> künstlich hergestellte Sequenz

<400> 6
Met Ala Cys Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
1 5 10 15

Thr Tyr Gln

<210> 7
<211> 19
<212> PRT
<213> künstlich hergestellte Sequenz

<400> 7
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Cys Asn Asn
1 5 10 15

Thr Tyr Gln

<210> 8
<211> 539
<212> PRT
<213> künstlich hergestellte Sequenz

<400> 8
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
1 5 10 15

Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val Lys Phe Asp Pro
20 25 30

Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val Gln Ala Ala Ile
35 40 45

Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro Asp Ala Ser Ser
50 55 60

Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Gln Glu Val Ile Asp
65 70 75 80

Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr Leu Ala Thr Arg
85 90 95

Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly Leu Thr Arg Tyr
100 105 110

Ser Thr Asp Asp Glu Ala Ile Ala Gly Val Asn Asn Glu Ser Ser Ile
115 120 125

Thr Pro Ala Lys Phe Thr Val Ala Leu Asn Asn Val Phe Glu Thr Arg
130 135 140

Val Ser Thr Glu Ser Ser Asn Gly Val Ile Lys Ile Ser Ser Leu Pro
145 150 155 160

Gln Ala Leu Ala Gly Ala Asp Asp Thr Thr Ala Met Thr Pro Leu Lys
165 170 175

Thr Gln Gln Leu Ala Val Lys Leu Ile Ala Gln Ile Ala Pro Ser Lys
180 185 190

Asn Ala Ala Thr Glu Ser Glu Gln Gly Val Ile Gln Leu Ala Thr Val
195 200 205

Ala Gln Ala Arg Gln Gly Thr Leu Arg Glu Gly Tyr Ala Ile Ser Pro
210 215 220

Tyr Thr Phe Met Asn Ser Thr Ala Thr Glu Glu Tyr Lys Gly Val Ile
225 230 235 240

Lys Leu Gly Thr Gln Ser Glu Val Asn Ser Asn Asn Ala Ser Val Ala
245 250 255

Val Thr Gly Ala Thr Leu Asn Gly Arg Gly Ser Thr Thr Ser Met Arg
260 265 270

Gly Val Val Lys Leu Thr Thr Ala Gly Ser Gln Ser Gly Gly Asp
275 280 285

Ala Ser Ser Ala Leu Ala Trp Asn Ala Asp Val Ile His Gln Arg Gly
290 295 300

Gly Gln Thr Ile Asn Gly Thr Leu Arg Ile Asn Asn Thr Leu Thr Ile
305 310 315 320

Ala Ser Gly Gly Ala Asn Ile Thr Gly Thr Val Asn Met Thr Gly Gly
325 330 335

Tyr Ile Gln Gly Lys Arg Val Val Thr Gln Asn Glu Ile Asp Arg Thr
340 345 350

Ile Pro Val Gly Ala Ile Met Met Trp Ala Ala Asp Ser Leu Pro Ser
355 360 365

Asp Ala Trp Arg Phe Cys His Gly Gly Thr Val Ser Ala Ser Asp Cys
370 375 380

Pro Leu Tyr Ala Ser Arg Ile Gly Thr Arg Tyr Gly Gly Ser Ser Ser
385 390 395 400

Asn Pro Gly Leu Pro Asp Met Arg Gly Leu Phe Val Arg Gly Ser Gly
405 410 415

Arg Gly Ser His Leu Thr Asn Pro Asn Val Asn Gly Asn Asp Gln Phe
420 425 430

Gly Lys Pro Arg Leu Gly Val Gly Cys Thr Gly Gly Tyr Val Gly Glu

435

440

445

Val Gln Lys Gln Gln Met Ser Tyr His Lys His Ala Gly Gly Phe Gly
450 455 460

Glu Tyr Asp Asp Ser Gly Ala Phe Gly Asn Thr Arg Arg Ser Asn Phe
465 470 475 480

Val Gly Thr Arg Lys Gly Leu Asp Trp Asp Asn Arg Ser Tyr Phe Thr
485 490 495

Asn Asp Gly Tyr Glu Ile Asp Pro Ala Ser Gln Arg Asn Ser Arg Tyr
500 505 510

Thr Leu Asn Arg Pro Glu Leu Ile Gly Asn Glu Thr Arg Pro Trp Asn
515 520 525

Ile Ser Leu Asn Tyr Ile Ile Lys Val Lys Glu
530 535

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
31. Dezember 2003 (31.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/001418 A3

(51) Internationale Patentklassifikation²: G01N 33/569,
33/92

(21) Internationales Aktenzeichen: PCT/DE2003/002096

(22) Internationales Anmeldedatum:
24. Juni 2003 (24.06.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 28 133.5 24. Juni 2002 (24.06.2002) DE
103 07 793.6 24. Februar 2003 (24.02.2003) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): PROFOS AG [DE/DE]; Josef-Engert-Str. 9, 93053 Regensburg (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): SCHÜTZ, Michael [DE/DE]; Jakob-Schmid-Str. 13, 93138 Kareth-Lappersdorf (DE). MEYER, Roman [DE/DE]; Rosenstr. 6, 92287 Schmidmühlen (DE). GRALLERT, Holger [DE/DE]; Mitterweg 2A, 93080 Pentling (DE). MILLER, Stefan [DE/DE]; Holzgartenstr. 51, 93053 Regensburg (DE).

(74) Anwälte: BETTENHAUSEN, Berthold usw.; Dehmel & Bettenhausen, Herzogspitalstr. 11, 80331 München (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR IDENTIFYING AND EXTRACTING ENDOTOXIN

(54) Bezeichnung: VERFAHREN ZUM NACHWEIS UND ZUR ENTFERNUNG VON ENDOTOXIN

A Endotoxin-Struktur	B <i>E. coli</i> Stamm	C p12-Bindung
KDO-LipidA KDO KDO	D21f2	-
Hep-Hep-KDO-LipidA Hep KDO KDO	D21f1	+
Glc-Hep-Hep-KDO-LipidA Hep KDO KDO	D21e8	+
Glc-Hep-Hep-KDO-LipidA Gal Hep KDO KDO	D21e7	+
GlcN-Glc-Glc-Glc-Hep-Hep-KDO-LipidA Gal Hep KDO KDO	D21	+

(57) Abstract: The invention relates to a method for identifying endotoxins and for eliminating said endotoxins from a sample, with the aid of bacteriophage tail proteins.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis und zur Abreicherung von Endotoxinen aus einer Probe, mit Hilfe von bacteriophagenschwanzproteine.

pH	K _a
6,0	3,09 E-07
7,5	6,85 E-08
8,0	5,86 E-08
8,5	7,86 E-08
9,0	3,29 E-08
10,0	1,55 E-07

A Endotoxin Structure

B *E. coli* Strain

C p12 Bond

WO 2004/001418 A3

RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,
PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CR, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

— vor Ablauf der für Änderungen der Ansprüche geltenden
Frist; Veröffentlichung wird wiederholt, falls Änderungen
eintreffen

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts:

8. Juli 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 03/02096

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01N33/569 G01N33/92

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, MEDLINE, EMBASE, BIOSIS, FSTA, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 03/000888 A (FRICK SIBYLLE ;GRASSL RENATE (DE); MEYER ROMAN (DE); MILLER STEFAN) 3 January 2003 (2003-01-03) the whole document page 13, line 18 -page 16, line 7 claims 10-13,16 --- -/-/	4,6-13

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

22 April 2004

Date of mailing of the international search report

06/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel: (+31-70) 340-2040, Tx. 31 651 epo nl
 Fax: (+31-70) 340-3016

Authorized officer

Tuynman, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 03/02096

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NESPER JUTTA ET AL: "Characterization of <i>Vibrio cholerae</i> O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis" JOURNAL OF BACTERIOLOGY, vol. 182, no. 18, September 2000 (2000-09), pages 5097-5104, XP002277663 ISSN: 0021-9193 abstract page 5098, right-hand column, paragraph 5 page 5099, left-hand column, paragraph 1 -----	1
A	RUDOLPH ALAN S ET AL: "Comparative study of the accurate measurement of endotoxin in liposome encapsulated hemoglobin" PROCEEDINGS OF THE 11TH CONGRESS OF THE INTERNATIONAL SOCIETY FOR ARTIFICIAL CELLS, BLOOD SUBSTITUTES AND IMMobilization BIOTECHNOLOGY, (ISABI); BOSTON, MA, USA JUL 24-27 1994, vol. 22, no. 5, 24 July 1994 (1994-07-24), page A153 XP008030016 Artif Cells Blood Substitutes Immobilization Biotechnol; Artificial Cells, Blood Substitutes, and Immobilization Biotechnology Nov 1994 Marcel Dekker Inc, New York, NY, USA the whole document -----	2-15
A	SUN W ET AL: "USE OF BIOLUMINESCENT SALMONELLA FOR ASSESSING THE EFFICIENCY OF CONSTRUCTED PHAGE-BASED BIOSORBENT" JOURNAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY, BASINGSTOKE, GB, vol. 25, no. 5, November 2000 (2000-11), pages 273-275, XP008016601 ISSN: 1367-5435 abstract -----	1-3
		1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 03/02096

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 03000888	A 03-01-2003	DE	10129815 A1	09-01-2003
		CA	2450572 A1	03-01-2003
		WO	03000888 A2	03-01-2003
		EP	1399551 A2	24-03-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 03/02096

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G01N33/569 G01N33/92

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G01N

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, MEDLINE, EMBASE, BIOSIS, FSTA, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
E	WO 03/000888 A (FRICK SIBYLLE ;GRASSL RENATE (DE); MEYER ROMAN (DE); MILLER STEFAN) 3. Januar 2003 (2003-01-03) das ganze Dokument Seite 13, Zeile 18 -Seite 16, Zeile 7 Ansprüche 10-13,16 ----	4,6-13

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *8* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
22. April 2004	06/05/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Belehnsteter Tuyman, A

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 03/02096

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Beir. Anspruch Nr.
X	<p>NESPER JUTTA ET AL: "Characterization of <i>Vibrio cholerae</i> O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis" <i>JOURNAL OF BACTERIOLOGY</i>, Bd. 182, Nr. 18, September 2000 (2000-09), Seiten 5097-5104, XP002277663 ISSN: 0021-9193 Zusammenfassung Seite 5098, rechte Spalte, Absatz 5 Seite 5099, linke Spalte, Absatz 1</p>	1
A	---	2-15
A	<p>RUDOLPH ALAN S ET AL: "Comparative study of the accurate measurement of endotoxin in liposome encapsulated hemoglobin" <i>PROCEEDINGS OF THE 11TH CONGRESS OF THE INTERNATIONAL SOCIETY FOR ARTIFICIAL CELLS, BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY</i>, (ISABI); BOSTON, MA, USA JUL 24-27 1994, Bd. 22, Nr. 5, 24. Juli 1994 (1994-07-24), Seite A153 XP008030016 Artif Cells Blood Substitutes Immobilization Biotechnol;Artificial Cells, Blood Substitutes, and Immobilization Biotechnology Nov 1994 Marcel Dekker Inc, New York, NY, USA das ganze Dokument</p>	1-3
A	<p>SUN W ET AL: "USE OF BIOLUMINESCENT <i>SALMONELLA</i> FOR ASSESSING THE EFFICIENCY OF CONSTRUCTED PHAGE-BASED BIOSORBENT" <i>JOURNAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY</i>, BASINGSTOKE, GB, Bd. 25, Nr. 5, November 2000 (2000-11), Seiten 273-275, XP008016601 ISSN: 1367-5435 Zusammenfassung</p>	1-15

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/DE 03/02096

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 03000888	A 03-01-2003	DE	10129815 A1	09-01-2003
		CA	2450572 A1	03-01-2003
		WO	03000888 A2	03-01-2003
		EP	1399551 A2	24-03-2004

**VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM
GEBIET DES PATENTWESENS**

PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT
(Artikel 36 und Regel 70 PCT)

04 OCT 2004

WIPO PCT

Aktenzeichen des Anmelders oder Anwalts PRO-008 PCT	WEITERES VORGEHEN siehe Mitteilung über die Übersendung des Internationalen vorläufigen Prüfungsberichts (Formblatt PCT/IPEA/416)	
Internationales Aktenzeichen PCT/DE 03/02096	Internationales Anmelde datum (Tag/Monat/Jahr) 24.06.2003	Prioritätsdatum (Tag/Monat/Jahr) 24.06.2002
Internationale Patentklassifikation (IPK) oder nationale Klassifikation und IPK G01N33/569		
Anmelder PROFOS AG et al.		

<p>1. Dieser internationale vorläufige Prüfungsbericht wurde von der mit der internationalen vorläufigen Prüfung beauftragten Behörde erstellt und wird dem Anmelder gemäß Artikel 36 übermittelt.</p> <p>2. Dieser BERICHT umfasst insgesamt 5 Blätter einschließlich dieses Deckblatts.</p> <p><input type="checkbox"/> Außerdem liegen dem Bericht ANLAGEN bei; dabei handelt es sich um Blätter mit Beschreibungen, Ansprüchen und/oder Zeichnungen, die geändert wurden und diesem Bericht zugrunde liegen, und/oder Blätter mit vor dieser Behörde vorgenommenen Berichtigungen (siehe Regel 70.16 und Abschnitt 607 der Verwaltungsrichtlinien zum PCT).</p> <p>Diese Anlagen umfassen insgesamt Blätter.</p>
<p>3. Dieser Bericht enthält Angaben zu folgenden Punkten:</p> <ul style="list-style-type: none"> I <input checked="" type="checkbox"/> Grundlage des Bescheids II <input type="checkbox"/> Priorität III <input type="checkbox"/> Keine Erstellung eines Gutachtens über Neuheit, erfinderische Tätigkeit und gewerbliche Anwendbarkeit IV <input type="checkbox"/> Mangelnde Einheitlichkeit der Erfindung V <input checked="" type="checkbox"/> Begründete Feststellung nach Regel 66.2 a)ii) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung VI <input type="checkbox"/> Bestimmte angeführte Unterlagen VII <input type="checkbox"/> Bestimmte Mängel der Internationalen Anmeldung VIII <input type="checkbox"/> Bestimmte Bemerkungen zur internationalen Anmeldung

Datum der Einreichung des Antrags 13.01.2004	Datum der Fertigstellung dieses Berichts 01.10.2004
Name und Postanschrift der mit der Internationalen Prüfung beauftragten Behörde Europäisches Patentamt - P.B. 5818 Patentaan 2 NL-2280 HV Rijswijk - Pays Bas Tel. +31 70 340 - 2040 Tx: 31 651 epo nl Fax: +31 70 340 - 3016	Bevollmächtigter Bediensteter Tuynman, A Tel. +31 70 340-3741

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/DE 03/02096

I. Grundlage des Berichts

1. Hinsichtlich der **Bestandteile** der internationalen Anmeldung (*Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten (Regeln 70.16 und 70.17)*):

Beschreibung, Seiten

1-25 in der ursprünglich eingereichten Fassung

Sequenzen, Seiten

26-29 in der ursprünglich eingereichten Fassung

Ansprüche, Nr.

1-15 in der ursprünglich eingereichten Fassung

Zeichnungen, Blätter

1/9-9/9 in der ursprünglich eingereichten Fassung

2. Hinsichtlich der **Sprache**: Alle vorstehend genannten Bestandteile standen der Behörde in der Sprache, in der die internationale Anmeldung eingereicht worden ist, zur Verfügung oder wurden in dieser eingereicht, sofern unter diesem Punkt nichts anderes angegeben ist.

Die Bestandteile standen der Behörde in der Sprache: zur Verfügung bzw. wurden in dieser Sprache eingereicht; dabei handelt es sich um:

- die Sprache der Übersetzung, die für die Zwecke der internationalen Recherche eingereicht worden ist (nach Regel 23.1(b)).
- die Veröffentlichungssprache der internationalen Anmeldung (nach Regel 48.3(b)).
- die Sprache der Übersetzung, die für die Zwecke der internationalen vorläufigen Prüfung eingereicht worden ist (nach Regel 55.2 und/oder 55.3).

3. Hinsichtlich der in der internationalen Anmeldung offenbarten **Nucleotid- und/oder Aminosäuresequenz** ist die internationale vorläufige Prüfung auf der Grundlage des Sequenzprotokolls durchgeführt worden, das:

- in der internationalen Anmeldung in schriftlicher Form enthalten ist.
- zusammen mit der internationalen Anmeldung in computerlesbarer Form eingereicht worden ist.
- bei der Behörde nachträglich in schriftlicher Form eingereicht worden ist.
- bei der Behörde nachträglich in computerlesbarer Form eingereicht worden ist.
- Die Erklärung, daß das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den Offenbarungsgehalt der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.
- Die Erklärung, daß die in computerlesbarer Form erfassten Informationen dem schriftlichen Sequenzprotokoll entsprechen, wurde vorgelegt.

4. Aufgrund der Änderungen sind folgende Unterlagen fortgefallen:

- Beschreibung, Seiten:

**INTERNATIONALER VORLÄUFIGER
PRÜFUNGSBERICHT**

Internationales Aktenzeichen PCT/DE 03/02096

Ansprüche, Nr.:
 Zeichnungen, Blatt:

5. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)).

(Auf Ersatzblätter, die solche Änderungen enthalten, ist unter Punkt 1 hinzuweisen; sie sind diesem Bericht beizufügen.)

6. Etwaige zusätzliche Bemerkungen:

V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

1. Feststellung
Neuheit (N) Ja: Ansprüche 1-15
Nein: Ansprüche
Erfinderische Tätigkeit (IS) Ja: Ansprüche 1-15
Nein: Ansprüche
Gewerbliche Anwendbarkeit (IA) Ja: Ansprüche: 1-15
Nein: Ansprüche:

2. Unterlagen und Erklärungen:

siehe Beiblatt

Zu Punkt V

Begründete Feststellung hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung

Es wird auf die folgenden Dokumente verwiesen:

D1: RUDOLPH ALAN S ET AL: PROCEEDINGS OF THE 11TH CONGRESS OF THE INTERNATIONAL SOCIETY FOR ARTIFICIAL CELLS, BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY, (ISABI); BOSTON, MA, USA JUL 24-27 1994, Bd. 22, Nr. 5, 24. Juli 1994 (1994-07-24), Seite A153 Artif Cells Blood Substitutes Immobilization Biotechnol; Artificial Cells, Blood Substitutes, and Immobilization Biotechnology Nov 1994 Marcel Dekker Inc, New York, NY, USA

D2: NESPER JUTTA ET AL: JOURNAL OF BACTERIOLOGY, Bd. 182, Nr. 18, September 2000 (2000-09), Seiten 5097-5104.

1 Das Dokument D1 wird als nächstliegender Stand der Technik gegenüber dem Gegenstand der Ansprüche 1-15 angesehen. Es offenbart ein Verfahren zum Nachweis und zur Quantifizierung von Endotoxin mittels eines LAL (Limulus Amoebozyt Lysat) Tests.
Der Gegenstand der Ansprüche 1-15 unterscheidet sich daher von dem bekannten Test dadurch, daß Endotoxin mittels seiner Bindung an Bakteriophagenschwanzproteinen nachgewiesen oder aus einer Probe entfernt wird.

Der Gegenstand der Ansprüche 1-15 ist somit neu (Artikel 33(2) PCT).

2 Die mit der vorliegenden Erfindung zu lösende Aufgabe kann somit darin gesehen werden, ein alternatives Verfahren zum Nachweis oder zur Entfernung von Endotoxin vorzusehen.

Die in den Ansprüchen 1-15 der vorliegenden Anmeldung für diese Aufgabe vorgeschlagene Lösung beruht aus den folgenden Gründen auf einer erfinderischen Tätigkeit (Artikel 33(3) PCT):

Die Verwendung von Bakteriophagenschwanzproteinen zum Nachweis oder zur Entfernung von Endotoxin wurde noch nicht im Stand der Technik offenbart oder

suggeriert.

Obwohl D2 ein Verfahren offenbart in dem die Bindung von Bakteriophagenschwanzproteinen an Endotoxin verwendet wird, gibt D2 dennoch nicht genügend Ansporn diese Technik in einem Verfahren zum Nachweis oder zur Entfernung von Endotoxin zu verwenden. Mit D2 wird eine ganz andere Absicht verfolgt, nämlich die Untersuchung der Kapazität von Endotoxin um Bakteriophagen zu neutralisieren.

- 3 Die Ansprüche 1-15 sind gewerblich anwendbar im Sinne des Artikels 33(4) PCT.
- 4 Der Begriff "Bakteriophagenschwanzprotein" wurde in der Beschreibung der vorliegenden Anmeldung definiert als Proteine, die in Bakteriophagen vorkommen und Bestandteile von Zellmembranen binden können.
Es wird außerdem erwähnt, daß diese Proteine üblicherweise im Bakteriophagenschwanz lokalisiert sind, aber daß sie jedoch auch auf dem Bakteriophagenkopf oder bei Bakteriophagen ohne Schwanz auf der normalen Bakterienhülle lokalisiert sein können.

Diese Bedeutung geht nicht klar aus dem Wortlaut der Ansprüche allein hervor.

Deswegen erfüllen die Ansprüche 1-15 nicht die Erfordernisse des Artikels 6 PCT.

5 Bestimmte angeführte Unterlagen

Bestimmte veröffentlichte Unterlagen

Anmelde Nr. Patent Nr.	Veröffentlichungsdatum (Tag/Monat/Jahr)	Anmeldedatum (Tag/Monat/Jahr)	Prioritätsdatum (zu Recht beansprucht) (Tag/Monat/Jahr)
WO 03000888	03/01/2003	24/06/2002	24/06/2001

Dieses Dokument kann in der Regionalen Phase als relevant für die Neuheit der Ansprüche verwendet werden.

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference PRO-008 PCT	FOR FURTHER ACTION See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)	
International application No. PCT/DE2003/002096	International filing date (day/month/year) 24 June 2003 (24.06.2003)	Priority date (day/month/year) 24 June 2002 (24.06.2002)
International Patent Classification (IPC) or national classification and IPC G01N 33/569, 33/92		
Applicant PROFOS AG		

<p>1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.</p> <p>2. This REPORT consists of a total of <u>5</u> sheets, including this cover sheet.</p> <p><input type="checkbox"/> This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).</p> <p>These annexes consist of a total of _____ sheets.</p>
<p>3. This report contains indications relating to the following items:</p> <ul style="list-style-type: none"> I <input checked="" type="checkbox"/> Basis of the report II <input type="checkbox"/> Priority III <input type="checkbox"/> Non-establishment of opinion with regard to novelty, inventive step and industrial applicability IV <input type="checkbox"/> Lack of unity of invention V <input checked="" type="checkbox"/> Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement VI <input type="checkbox"/> Certain documents cited VII <input type="checkbox"/> Certain defects in the international application VIII <input type="checkbox"/> Certain observations on the international application

Date of submission of the demand 13 January 2004 (13.01.2004)	Date of completion of this report 01 October 2004 (01.10.2004)
Name and mailing address of the IPEA/BP	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/DE2003/002096

I. Basis of the report

1. With regard to the elements of the international application:*

 the international application as originally filed the description:

pages 1-25, as originally filed

pages , filed with the demand

pages , filed with the letter of _____

 the claims:

pages 1-15, as originally filed

pages , as amended (together with any statement under Article 19

pages , filed with the demand

pages , filed with the letter of _____

 the drawings:

pages 1/9-9/9, as originally filed

pages , filed with the demand

pages , filed with the letter of _____

 the sequence listing part of the description:

pages 26-29, as originally filed

pages , filed with the demand

pages , filed with the letter of _____

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.
These elements were available or furnished to this Authority in the following language _____ which is: the language of a translation furnished for the purposes of international search (under Rule 23.1(b)). the language of publication of the international application (under Rule 48.3(b)). the language of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

 contained in the international application in written form. filed together with the international application in computer readable form. furnished subsequently to this Authority in written form. furnished subsequently to this Authority in computer readable form. The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished. The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.4. The amendments have resulted in the cancellation of: the description, pages _____ the claims, Nos. _____ the drawings, sheets/fig _____5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**

* Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16 and 70.17).

** Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/DE 03/02096

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Claims	1-15	YES
	Claims		NO
Inventive step (IS)	Claims	1-15	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-15	YES
	Claims		NO

2. Citations and explanations

Reference is made to the following documents:

D1: RUDOLPH ALAN S ET AL: PROCEEDINGS OF THE 11TH CONGRESS OF THE INTERNATIONAL SOCIETY FOR ARTIFICIAL CELLS, BLOOD SUBSTITUTES AND IMMOBILIZATION BIOTECHNOLOGY, (ISABI); BOSTON, MA, USA, JUL 24-27 1994, Vol. 22, No. 5, 24 July 1994 (1994-07-24), page A153 Artif Cells Blood Substitutes Immobilization Biotechnol; Artificial Cells, Blood Substitutes, and Immobilization Biotechnology Nov 1994 Marcel Dekker Inc, New York, NY, USA

D2: NESPER JUTTA ET AL: JOURNAL OF BACTERIOLOGY, Vol. 182, No. 18, September 2000 (2000-09), pages 5097-5104

1 Document D1, which is considered the prior art closest to the subject matter of claims 1-15, discloses a method for detecting and quantifying endotoxin using an LAL (limulus amoebocyte lysate) test.

The subject matter of claims 1-15 differs therefore from the known test in that endotoxin is detected or removed from a sample by means of its binding to

bacteriophage tail proteins.

The subject matter of claims 1-15 is therefore novel (PCT Article 33(2)).

2 The problem addressed by the present invention can therefore be considered that of providing an alternative method for the detection or removal of endotoxin.

The solution to this problem proposed in claims 1-15 of the present application involves an inventive step for the following reasons (PCT Article 33(3)):

The use of bacteriophage tail proteins to detect or remove endotoxin is not disclosed or suggested in the prior art.

Although D2 discloses a method in which the binding of bacteriophage tail proteins to endotoxin is used, D2 does not give sufficient prompting to use this technique in a method for the detection or removal of endotoxin. The intention of D2 is quite different, namely the examination of the capacity of endotoxin to neutralise bacteriophages.

3 Claims 1-15 are industrially applicable (PCT Article 33(4)).

4 The term "bacteriophage tail protein" is defined in the description of the present application as proteins which occur in bacteriophages and can bind constituents of cell membranes.

It is also mentioned that these proteins are usually localised in the bacteriophage tail, but that they can also be localised on the head of the bacteriophage or, in bacteriophages without a tail,

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.
PCT/DE 03/02096

on the normal shell of the bacteria.

This meaning is not clear from the wording of the claims.

Claims 1-15 do not therefore meet the requirements of PCT Article 6.

5 Certain documents cited

Certain published documents

Filing number	Publication date	Filing date	Priority date
WO 03000888	03/01/2003	24/06/2002	24/06/2001

In the regional phase, this document could be relevant to the novelty of the claims.