# 数字逻辑第五章



信息科学与工程学院计算机系 杨永全 yangyq@ouc.edu.cn

### 同步时序线路的设计

#### 组合线路设计方法



#### 时序线路设计方法



# 引例

- 题目:用与非门和JK触发器设计一个同步时序线路,检测输入为连续的110
- 一、确定输入、输出, 建立原始状态表



# 原始状态表

• 设初始状态为a



#### 原始状态表

| S | 0 | 1 |
|---|---|---|
| a | b | С |
| b | d | е |
| С | f | g |
| d | d | е |
| е | f | g |
| f | d | е |
| g | f | g |

# 化简,建立最简状态表

| S   | 0              | 1   |                     |
|-----|----------------|-----|---------------------|
| a   | b,0            | c,0 |                     |
| b — | <del>d,0</del> | e,0 | $q_1$               |
| C   | f,0            | g,0 |                     |
| d / | d,0            | e,0 |                     |
| e   | 1,0            | g,0 | $\rightarrow$ $q_2$ |
| f / | d,0            | e,0 |                     |
| g   | f,1            | g,0 |                     |

| S X   | 0                 | 1                 |
|-------|-------------------|-------------------|
| a     | q <sub>1</sub> ,0 | q <sub>2</sub> ,0 |
| $q_1$ | q <sub>1</sub> ,0 | q <sub>2</sub> ,0 |
| $q_2$ | q <sub>1</sub> ,0 | g,0               |
| g     | q <sub>1</sub> ,1 | g,0               |

# 化简,建立最简状态表

#### • 得到最终的最简状态表



| S                     | 0                 | 1                 |
|-----------------------|-------------------|-------------------|
| S <sub>1</sub>        | s <sub>1</sub> ,0 | s <sub>2</sub> ,0 |
| $S_2$                 | s <sub>1</sub> ,0 | s <sub>3</sub> ,0 |
| <b>S</b> <sub>3</sub> | s <sub>1</sub> ,1 | s <sub>3</sub> ,0 |

# 状态编码

• 三个状态,需要? 位编码

最终得到状态表

|       | $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|-------|
| $Y_2$ | 0     | 1     | 1     |
| $Y_1$ | 0     | 0     | 1     |

| S  | 0    | 1    |
|----|------|------|
| 00 | 00,0 | 10,0 |
| 10 | 00,0 | 11,0 |
| 11 | 00,1 | 11,0 |

# 确定输出及控制函数

根据右侧的状态激励表,可以得到 状态转移表,最终得到控制及输出 函数真值表 激励表 (JK触发器)

| X | <b>y</b> <sub>2</sub> | y <sub>1</sub> | y <sub>2</sub> n+ | ·1 y <sub>1</sub> n+1 | J <sub>2</sub> K <sub>2</sub> | J <sub>1</sub> K <sub>1</sub> | Z |
|---|-----------------------|----------------|-------------------|-----------------------|-------------------------------|-------------------------------|---|
| 0 | 0                     | 0              | 0                 | 0                     | Ф0                            | 0Ф                            | 0 |
| 0 | 1                     | 0              | 0                 | 0                     | Ф1                            | Ф0                            | 0 |
| 0 | 1                     | 1              | 0                 | 0                     | Ф1                            | Ф1                            | 1 |
| 1 | 0                     | 0              | 1                 | 0                     | 1Ф                            | Ф0                            | 0 |
| 1 | 1                     | 0              | 1                 | 1                     | Ф0                            | 1Ф                            | 0 |
| 1 | 1                     | 1              | 1                 | 1                     | Ф0                            | Ф0                            | 0 |
| 0 | 0                     | 1              | Ф                 | Ф                     | ФФ                            | ФФ                            | Ф |
| 1 | 0                     | 1              | Ф                 | Ф                     | ФФ                            | ФФ                            | Ф |

| Q | Qn+1 | JK  |
|---|------|-----|
| 0 | 0    | 0 Ф |
| 0 | 1    | 1 Ф |
| 1 | 0    | Ф 1 |
| 1 | 1    | Ф 0 |
|   |      |     |
|   |      |     |

### 确定输出及控制函数

根据控制及输出函数真值表,得到 JK、Z和输入之间的关系:

$$-z = \sum(3) + \sum \Phi(1,5)$$

$$-$$
 J1= $\sum$ (6)+ $\sum$ \Phi(1,3,5,7)

- 
$$K1 = \sum(3) + \sum \Phi(0,1,2,4,5,6)$$

$$-$$
 J2= $\sum$ (4)+ $\sum$ \Phi(1,2,3,5,6,7)

- 
$$K2 = \sum (2,3) + \sum \Phi(0,1,4,5)$$

#### 使用卡诺图化简



$$z = \overline{x} y_1$$

# 通过化简确定输入输出函数



| y <sub>2</sub> ; | y <sub>1</sub> 00 | 10 | 11 | 10 |
|------------------|-------------------|----|----|----|
| 0                |                   | Ф  | 3  |    |
| 1                | Ф                 | Ф  |    | Ф  |

$$J_1 = x y_2$$

$$K_1 = \overline{x}$$





$$J_2 = x$$

$$K_2 = \overline{x}$$

# 画逻辑电路图



# 时序线路设计步骤总结



• 例1:建立逢五进一可逆二进制同步计数器



• 例1: 建立逢五进一可逆二进制同步计数器

| S | 0   | 1   |
|---|-----|-----|
| а | b,0 | e,0 |
| b | c,0 | a,1 |
| С | d,0 | b,0 |
| d | e,0 | c,0 |
| е | a,1 | d,0 |

• 例2:同步二进制串行加法器



#### • 例2:同步二进制串行加法器



| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 10  | 11  |
|-------------------------------|-----|-----|-----|-----|
| а                             | a,0 | a,1 | a,1 | b,0 |
| b                             | a,1 | b,0 | b,0 | b,1 |

• 例3:引爆条件'1111'



• 例3:引爆条件'1111'

| S | 0   | 1   | S | 0   | 1   |
|---|-----|-----|---|-----|-----|
| a | a,0 | b,0 | a | a,0 | b,0 |
| b | Ф,Ф | c,0 | b | a,0 | c,0 |
| С | Ф,Ф | d,0 | С | a,0 | d,0 |
| d | Ф,Ф | Ф,1 | d | a,0 | Ф,1 |

考虑输入为0恢复初始状态

- 一、化简原理: 找出等价状态并将它们合并
- 等价状态: 1、必要条件: 在同样的输入作用下, 有相同的输出
  - 2、同样的输入条件下,相应的次态彼此等价
- 等价次态: 1、对应的次态相同
  - 2、次态为两个现态本身或交错
  - 3、两个次态为状态对封闭链中的一对
  - 4、两个次态的某一后续状态对可以合并

等价状态具有可传递性: AB等价, AC等价 = >BC等价, 则A、B、C为等价类

- 等价类: 彼此等价的状态的集合
- 最大等价类:一个等价类不包含在任何其他等价类中

化简原始状态表 = >寻找最大等价类

#### • 例1



#### • 例2

| S | 0   | 1   |
|---|-----|-----|
| a | e,0 | d,0 |
| b | a,1 | f,O |
| С | c,0 | a,1 |
| d | b,0 | a,0 |
| е | d,1 | c,0 |
| f | c,0 | d,1 |
| g | h,1 | g,1 |
| h | c,1 | b,1 |



$$q_1=(a, d)$$
  
 $q_2=(b, e) q_3=(c, f)$   
 $q_4=(g) q_5=(h)$ 

k次划分法: 先找出输出相同的状态集合,为一次划分,再找第二次输入下输出也相同的集合,依此类推,直到k+1次不能再划分,找到最大等价类集合。

#### • 等价次态:

- a) 对应的次态相同
- b) 次态为两个现态本身或交错
- c) 两个次态为状态对封闭链中的一对
- d) 两个次态的某一后续状态对可以合并

| S X | 0   | 1   |
|-----|-----|-----|
| a   | c,0 | b,1 |
| b   | f,O | a,1 |
| С   | d,0 | g,0 |
| d   | d,1 | e,0 |
| е   | c,0 | e,1 |
| f   | d,0 | g,0 |
| g   | c,1 | d,0 |

• 1、一次划分

$$- q_1 = \{ a_{21}, b_{21}, e_{21} \}$$

$$- q_2 = \{ c_{33}, f_{33} \}$$

$$- q_3 = \{ d_{31}, g_{23} \}$$

• 2、二次划分(把一次划分中下标不同的分出来)

$$- q_1 = \{ a_{21}, b_{21}, e_{21} \}$$

$$- q_2 = \{ c_{33}, f_{33} \} = \{ c_{34}, f_{34} \}$$

$$- q_3 = \{ d_{31} \}$$

$$- q_4 = \{ g_{23} \}$$

• 3、所有下标都相同,划分结束。

| S X | 0   | 1   |
|-----|-----|-----|
| a   | e,0 | d,0 |
| b   | a,1 | f,0 |
| С   | f,0 | a,1 |
| d   | b,0 | a,0 |
| е   | d,1 | c,0 |
| f   | c,0 | d,1 |
| g   | h,1 | g,1 |
| h   | c,1 | b,1 |

• 1、一次划分

$$- q_1 = \{ a_{21}, d_{21} \}$$

$$- q_2 = \{ b_{13}, e_{13} \}$$

$$- q_3 = \{ c_{31}, f_{31} \}$$

$$- q_4 = \{ g_{44}, h_{32} \}$$

• 2、二次划分

$$- q_1 = \{ a_{21}, d_{21} \}$$

$$- q_2 = \{ b_{13}, e_{13} \}$$

$$- q_3 = \{ c_{31}, f_{31} \}$$

$$- q_4 = \{ g_{54} \}$$

$$- q_5 = \{ h_{32} \}$$

• 3、划分结束

- 隐含表法: 是一种直角三角形表格, 表中每一个小格表示一个状态对的等价或 不等价关系。
- 第一步: 做隐含表, 然后顺序比较。

| X <sub>1</sub> X <sub>2</sub><br>S | 00  | 01  | 11  | 10  | b | X        |          | 1  |    |        |
|------------------------------------|-----|-----|-----|-----|---|----------|----------|----|----|--------|
| a                                  | d,0 | d,0 | f,O | a,0 | С | X        | af       |    | 1  |        |
| b                                  | c,1 | d,0 | e,1 | f,0 | d | bd<br>af | X        | X  |    |        |
| С                                  | c,1 | d,0 | e,1 | a,0 | е | Х        | df       | df | X  |        |
| d                                  | d,0 | b,0 | a,0 | f,O | f | √        | af<br>X  | X  | bd | •      |
| е                                  | c,1 | f,0 | e,1 | a,0 | ' | dg       |          |    | bg |        |
| f                                  | d,0 | d,0 | a,0 | f,0 | g | af       | X        | X  | af | )      |
| g                                  | g,0 | g,0 | a,0 | a,0 | h | X        | bc<br>af | bc | X  | k<br>c |
| h                                  | b,1 | d,0 | e,1 | a,0 |   | а        | b        | С  | d  | •      |
|                                    |     |     |     |     |   |          |          |    |    |        |

| X        |          |    |          |          |          |   |
|----------|----------|----|----------|----------|----------|---|
| X        | af       |    |          |          |          |   |
| bd<br>af | X        | X  |          |          |          |   |
| X        | df<br>af | df | X        |          |          |   |
| √        | Χ        | Χ  | bd       | X        |          |   |
| dg<br>af | X        | X  | bg<br>af | X        | dg<br>af |   |
| X        | bc<br>af | bc | X        | bc<br>df | X        | X |
| а        | b        | С  | d        | е        | f        | g |

• 第二步:关连比较。继续检查填有隐含条件的那些方格。若检查发现所填的隐含条件肯定不能满足,就在该方格内打 "×"

| X <sub>1</sub> X <sub>2</sub><br>S | 00  | 01  | 11  | 10  | b | X        |          |    |          |          |          |   |
|------------------------------------|-----|-----|-----|-----|---|----------|----------|----|----------|----------|----------|---|
| a                                  | d,0 | d,0 | f,0 | a,0 | С | X        | af       |    |          |          |          |   |
| b                                  | c,1 | d,0 | e,1 | f,O | d | bd<br>af | X        | X  |          |          |          |   |
| С                                  | c,1 | d,0 | e,1 | a,0 |   | X        | df       | df | X        |          |          |   |
| d                                  | d,0 | b,0 | a,0 | f,0 | e |          | af       |    |          |          | ]        |   |
| е                                  | c,1 | f,0 | e,1 | a,0 | f | <b>√</b> | X        | X  | bd       | X        |          | ] |
| f                                  | d,0 | d,0 | a,0 | f,0 | g | dg<br>af | X        | X  | bg<br>af | X        | dg<br>af |   |
| g                                  | g,0 | g,0 | a,0 | a,0 | h | X        | bc<br>af | bc | X        | bc<br>df | X        | X |
| h                                  | b,1 | d,0 | e,1 | a,0 |   | a        | b        | С  | d        | е        | f        | g |

• 第三步: 寻找最大等价类 未打 "×"的方格, 都代表一个等价状态对 由此得到全部等价对:

#### 部最大等价类:

[a, f]、[b, c, h]、 [d]、[e]、[g]

• 第四步 状态合并,得最简状态表



#### • 隐含表法总结

- 1、构作隐含表①等价√②不等价×③条件
- 2、顺序比较追踪,找出所有等价状态
- 3、形成最大等价类集合
- 4、构成最简状态表

### 状态编码

• 确定需要几位二进制码

k = [log<sub>2</sub>N] 向上取整

- 次佳编码法:
  - 1)次态相同,现态相邻
  - 2)现态相同,次态相邻
  - 3)输出相同,现态相邻

优先顺序1>2>3

### 状态编码

• 例:为下列最简状态表进行编码

| S | 0   | 1   |
|---|-----|-----|
| a | c,0 | d,0 |
| b | c,0 | a,0 |
| С | b,0 | d,0 |
| d | a,1 | b,1 |

- log<sub>2</sub>4=2 所以需两位二进制码
  - 1)次态相同,现态相邻 ab 相邻, ac 相邻
  - 2)现态相同,次态相邻cd, ca, bd, ab 相邻
  - 3)输出相同,现态相邻 abc 相邻

例1:用JK触发器及与非门设计一个同步二进制串行加法器

•一、确定输入输出,建立原始状态表



| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 10  | 11  |
|-------------------------------|-----|-----|-----|-----|
| а                             | a,0 | a,1 | a,1 | b,0 |
| b                             | a,1 | b,0 | b,0 | b,1 |

- 二、化简略
- 三、状态编码 a=0 b=1

| x <sub>1</sub> x <sub>2</sub> | 00  | 01  | 10  | 11  |
|-------------------------------|-----|-----|-----|-----|
| a                             | 0,0 | 0,1 | 0,1 | 1,0 |
| b                             | 0,1 | 1,0 | 1,0 | 1,1 |

• 四、列控制、输出函数表达式

| Q Qn+1 | J | K |
|--------|---|---|
| 0 0    | 0 | Ф |
| 0 1    | 1 | Φ |
| 1 0    | Ф | 1 |
| 1 1    | Ф | 0 |

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | у | y <sup>n+1</sup> | J | K | Z |
|-----------------------|-----------------------|---|------------------|---|---|---|
| 0                     | 0                     | 0 | 0                | 0 | Ф | 0 |
| 0                     | 0                     | 1 | 0                | Ф | 1 | 1 |
| 0                     | 1                     | 0 | 0                | 0 | Ф | 1 |
| 0                     | 1                     | 1 | 1                | Ф | 0 | 0 |
| 1                     | 0                     | 0 | 0                | 0 | Ф | 1 |
| 1                     | 0                     | 1 | 1                | Ф | 0 | 0 |
| 1                     | 1                     | 0 | 1                | 1 | Ф | 0 |
| 1                     | 1                     | 1 | 1                | Ф | 0 | 1 |

• 四、列控制、输出函数表达式

$$z = x_1 \overline{x_2} y + \overline{x_1} x_2 \overline{y} + x_1 \overline{x_2} \overline{y} + x_1 x_2 y$$

$$J = x_1 y$$

$$K = \overline{x_1} \overline{y}$$

| <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | у | y <sup>n+1</sup> | J | K | Z |
|-----------------------|-----------------------|---|------------------|---|---|---|
| 0                     | 0                     | 0 | 0                | 0 | Ф | 0 |
| 0                     | 0                     | 1 | 0                | Ф | 1 | 1 |
| 0                     | 1                     | 0 | 0                | 0 | Ф | 1 |
| 0                     | 1                     | 1 | 1                | Ф | 0 | 0 |
| 1                     | 0                     | 0 | 0                | 0 | Ф | 1 |
| 1                     | 0                     | 1 | 1                | Ф | 0 | 0 |
| 1                     | 1                     | 0 | 1                | 1 | Ф | 0 |
| 1                     | 1                     | 1 | 1                | Ф | 0 | 1 |

例2用与非门,与或非门及JK触发器,设计串行8421码检测器。

•一、确定输入输出,建立原始状态表



#### • 一、确定输入输出,建立原始状态表



| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| e | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 二、状态表化简(K次划分法)

$$q_1 = (a, b, c, d, e, f, g, h, l, r)$$
  
 $q_2 = (i, j, k, m, n, p)$ 

#### 更新下标:

$$q_1 = (a_{11}, b_{11}, c_{11}, d_{11}, f_{12}, g_{22}, h_{12}, l_{11}, r_{11})$$
  
 $q_2 = (p)$ 

#### 第二次划分:

$$q_1 = (a_{11}, b_{11}, c_{11}, d_{11}, l_{11}, r_{11})$$

$$q_2 = (e_{22}, g_{22})$$

$$q_3 = (f_{12}, h_{12})$$

$$q_4 = (p)$$

| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| е | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 更新下标

$$q_1 = (a_{11}, b_{11}, c_{32}, d_{32}, l_{11}, r_{11})$$

$$q_2 = (e_{44}, g_{44})$$

$$q_3 = (f_{14}, h_{14})$$

$$q_4 = (p)$$

#### 第三次划分:

$$q_{1} = (a_{11}, b_{11}, l_{11}, r_{11})$$

$$q_{2} = (c_{32}, d_{32},)$$

$$q_{3} = (e_{44}, g_{44})$$

$$q_{4} = (f_{14}, h_{14})$$

$$q_{5} = (p)$$

| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| е | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 更新下标

$$q_{1} = (a_{11}, b_{22}, l_{11}, r_{11})$$

$$q_{2} = (c_{43}, d_{43}, )$$

$$q_{3} = (e_{55}, g_{55})$$

$$q_{4} = (f_{15}, h_{15})$$

$$q_{5} = (p)$$

#### 第四次划分:

$$q_{1} = (a_{11}, l_{11}, r_{11})$$

$$q_{2} = (b_{22})$$

$$q_{3} = (c_{43}, d_{43}, )$$

$$q_{4} = (e_{55}, g_{55})$$

$$q_{5} = (f_{15}, h_{15})$$

$$q_{6} = (p)$$

| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| е | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 更新下标

$$q_{1} = (a_{12}, l_{11}, r_{11})$$

$$q_{2} = (b_{33})$$

$$q_{3} = (c_{43}, d_{43}, )$$

$$q_{4} = (e_{55}, g_{55})$$

$$q_{5} = (f_{15}, h_{15})$$

$$q_{6} = (p)$$

#### 第五次划分:

$$q_{1} = (a_{12})$$

$$q_{2} = (b_{33})$$

$$q_{3} = (c_{43}, d_{43}, )$$

$$q_{4} = (e_{55}, g_{55})$$

$$q_{5} = (f_{15}, h_{15})$$

$$q_{6} = (p)$$

$$q_{7} = (l_{11}, r_{11})$$

| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| e | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 更新下标

$$q_{1} = (a_{12})$$

$$q_{2} = (b_{33})$$

$$q_{3} = (c_{54}, d_{54},)$$

$$q_{4} = (e_{66}, g_{66})$$

$$q_{5} = (f_{16}, h_{16})$$

$$q_{6} = (p)$$

$$q_{7} = (l_{11}, r_{11})$$

得到最终结果。

| S | 0   | 1    |
|---|-----|------|
| a | a,0 | b,0  |
| b | d,0 | c,0  |
| С | f,0 | e,0  |
| d | h,0 | g,0  |
| е | j,0 | i,0  |
| f | 1,0 | k,0  |
| g | n,0 | m,0  |
| h | r,0 | p ,0 |
| i | a,0 | a,1  |
| j | a,0 | a,1  |
| k | a,0 | a,1  |
| I | a,0 | a,0  |
| m | a,0 | a,1  |
| n | a,0 | a,1  |
| р | a,0 | a,1  |
| r | a,0 | a,0  |

#### • 更新下标

$$q_{1} = (a_{12})$$

$$q_{2} = (b_{33})$$

$$q_{3} = (c_{54}, d_{54},)$$

$$q_{4} = (e_{66}, g_{66})$$

$$q_{5} = (f_{16}, h_{16})$$

$$q_{6} = (p)$$

$$q_{7} = (l_{11}, r_{11})$$

得到最简状态表。

| S X                   | 0                 | 1                 |
|-----------------------|-------------------|-------------------|
| <b>q</b> <sub>1</sub> | q <sub>1</sub> ,0 | q <sub>2</sub> ,0 |
| $q_2$                 | q <sub>3</sub> ,0 | q <sub>3</sub> ,0 |
| $q_3$                 | q <sub>5</sub> ,0 | q <sub>4</sub> ,0 |
| $q_4$                 | q <sub>6</sub> ,0 | q <sub>6</sub> ,0 |
| <b>q</b> <sub>5</sub> | q <sub>7</sub> ,0 | q <sub>6</sub> ,0 |
| $q_6$                 | $q_{1},0$         | q <sub>1</sub> ,1 |
| $q_7$                 | $q_{1},0$         | $q_{1},0$         |

• 后续步骤不再赘述。