MTL100 - Calculus Tutorial 4

Department of Mathematics Indian Institute of Technology Delhi

Question 1. Examine if the limits as $(x, y) \rightarrow (0, 0)$ exist?

(a)
$$\begin{cases} \frac{x^3 + y^3}{x^2 - y^2} & x \neq y \\ 0 & x = y. \end{cases}$$

(b)
$$xy\left(\frac{x^2-y^2}{x^2+y^2}\right)$$
, $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$

(c)
$$\begin{cases} x \sin \frac{1}{x} + y \sin \frac{1}{y} & xy \neq 0 \\ 0 & xy = 0. \end{cases}$$

(d)
$$\frac{\sin(xy)}{x^2+y^2}$$
, $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

Let us recall the following definition:

Definition

Let Ω be a open set in \mathbb{R}^2 , $(a,b) \in \Omega$ and let f be a real valued function defined on Ω except possibly at (a,b). Then we say that $\lim_{(x,y)\to(a,b)} f(x,y) = L$, if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$\sqrt{(x-a)^2+(y-b)^2}<\delta \implies |f(x,y)-L|<\epsilon.$$

If $\lim_{(x,y)\to(a,b)} f(x,y)$ has different values along two different paths then the limit does not exist. (Why?)

Question 1 (a). Examine if the limit as $(x, y) \rightarrow (0, 0)$ exist?

$$\begin{cases} \frac{x^3 + y^3}{x^2 - y^2} & x \neq y \\ 0 & x = y. \end{cases}$$

Solution:

• Let
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 - y^2} & x \neq y \\ 0 & x = y. \end{cases}$$

• Then along the curves y = mx; $m \neq 1$, compute

$$f(x, mx) = \frac{x^3 + m^3 x^3}{x^2 - m^2 x^2} = \frac{x^3 (1 + m^3)}{x^2 (1 - m^2)} = \frac{x (1 + m^3)}{(1 - m^2)}.$$

• Therefore, the limit along this path is

$$\lim_{x\to 0} f(x, mx) = \lim_{x\to 0} \frac{x(1+m^3)}{(1-m^2)} = 0.$$

1 (a) Contd..

• Now, take another path y = x(x+1) and compute

$$f(x,x(x+1)) = \frac{x^3 + x^3(1+x)^3}{x^2 - x^2(1+x)^2} = \frac{x^3(1+(1+x)^3)}{x^2(1-(1+x)^2)}$$
$$= \frac{(1+(1+x)^3)}{-x-2}.$$

Then

$$\lim_{x \to 0} f(x, x(1+x)) = \lim_{x \to 0} \frac{(1+(1+x)^3)}{-x-2} = -1.$$

• We get two different paths y = mx and y = x(1+x) such that limits are different. Hence at (0,0) limit of the function does not exist.

Question 1 (b). Examine if the limit as $(x, y) \rightarrow (0, 0)$ exist?

$$xy\left(\frac{x^2-y^2}{x^2+y^2}\right).$$

Solution:

- Let $f(x,y) = xy\left(\frac{x^2 y^2}{x^2 + y^2}\right)$.
 - Take the path y=x. Clearly, $\lim_{x\to 0}f(x,x)=\lim_{x\to 0}x^2\left(\frac{x^2-x^2}{x^2+x^2}\right)=0$.
- Hence if the limit of this function at (0,0) exists then it should be 0.
- Now we will prove the limit to be 0 with the help of definition.

1 (b) Contd..

We have

$$\left| xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right) - 0 \right| = |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right| \le |x||y|,$$

$$\operatorname{as} \left| \frac{x^2 - y^2}{x^2 + y^2} \right| \le 1.$$

• Now |x|, $|y| \le \sqrt{x^2 + y^2}$ implies

$$\left| xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right) - 0 \right| \le \sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}.$$

• Let $\epsilon > 0$. Choosing $\delta = \sqrt{\epsilon}$,

$$\sqrt{x^2 + y^2} < \delta \implies \left| xy \left(\frac{x^2 - y^2}{x^2 + y^2} \right) - 0 \right| < \epsilon.$$

• Hence, $\lim_{(x,y)\to(0,0)} xy\left(\frac{x^2-y^2}{x^2+y^2}\right) = 0.$

Question 1 (c). Examine if the limit as $(x, y) \rightarrow (0, 0)$ exist?

$$\begin{cases} x \sin \frac{1}{x} + y \sin \frac{1}{y} & xy \neq 0 \\ 0 & xy = 0. \end{cases}$$

Solution:

We have

$$\left| x \sin \frac{1}{y} + y \sin \frac{1}{x} - 0 \right| \le |x| + |y| \le 2\sqrt{x^2 + y^2}.$$

- Let $\epsilon > 0$ be arbitrary and $\delta = \frac{\epsilon}{2}$.
- Clearly,

$$\sqrt{x^2 + y^2} < \delta \implies \left| x \sin \frac{1}{y} + y \sin \frac{1}{x} \right| < 2 \cdot \frac{\epsilon}{2} = \epsilon.$$

• Hence, the limit of given function at (0,0) is 0.

Question 1 (d). Examine if the limit as $(x, y) \rightarrow (0, 0)$ exist?

$$\frac{\sin(xy)}{x^2+y^2}.$$

Solution:

- Let $f(x,y) = \frac{\sin(xy)}{x^2 + y^2}$ and take the path y = mx; $m \in \mathbb{R}$.
- Along this path we have,

$$f(x, mx) = \frac{\sin mx^2}{x^2 + mx^2} = \frac{\sin mx^2}{x^2(1 + m^2)}.$$

• Therefore, the limit along this path is

$$\lim_{x \to 0} \frac{\sin mx^2}{x^2(1+m^2)} = \lim_{x \to 0} \frac{\sin mx^2}{mx^2} \cdot \frac{m}{1+m^2} = \frac{m}{1+m^2}.$$

- Note that the limit depends on the parameter *m*.
- So, the limit of the given function at (0,0) does not exist.

Question 2

Examine the continuity of the following functions.

(a)
$$\begin{cases} \frac{xy^3}{x^2 + y^6} & (x, y) \neq (0, 0) \\ 0 & \text{otherwise.} \end{cases}$$

(b)
$$\begin{cases} x^2 + y^2 & x^2 + y^2 \le 1 \\ 0 & \text{otherwise.} \end{cases}$$

(c)
$$\begin{cases} \frac{\sin^2(x-y)}{|x|+|y|} & (x,y) \neq (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

(d)
$$\begin{cases} \frac{x^2y^2}{x^2y^2 + (x - y)^2} & (x, y) \neq (0, 0) \\ 0 & \text{otherwise.} \end{cases}$$

First recall the following definition:

Continuity of a function of two variables

Let f be a real valued function defined in a ball around (a, b). Then f is said to be continuous at a point (a, b) if

- 1) f(a, b) exists.
- 2) $\lim_{(x,y)\to(a,b)} f(x,y)$ exists and
- 3) $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$.

Question 2 (a). Examine the continuity of the following function

$$\begin{cases} \frac{xy^3}{x^2 + y^6} & (x, y) \neq (0, 0) \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

- First let us examine the continuity of the given function for all points $(x, y) \neq (0, 0)$.
- It is known that the multi-variable polynomials are continuous at every point. Further, As $x^2 + y^6 \neq 0$ for every $(x,y) \neq (0,0)$, we have that $\frac{xy^3}{x^2 + y^6}$ is continuous at all $(x,y) \neq (0,0)$.

Remark: Note that the existence of $\lim_{(x,y)\to(a,b)} f(x,y)$ implies that along all possible paths approaching (a,b), the limit exists and its value is same along all paths and equal to its functional value.

2 (a) Contd.

- Now let us examine the continuity of the given function at (x, y) = (0, 0).
- Consider approaching the point (0,0) through the path $x = my^3$. Then

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{y\to 0} f(my^3, y)$$
$$= \lim_{y\to 0} \frac{my^6}{m^2y^6 + y^6} = \frac{m}{m^2 + 1}.$$

- For different values of m, we get different limits.
- Therefore, limit of f at (0,0) does not exist and hence f is not continuous at (0,0).

Question 2 (b). Examine the continuity of the following function

$$\begin{cases} x^2 + y^2 & x^2 + y^2 \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Solution:

- Note that for all the points (a, b) satisfying $a^2 + b^2 < 1$ (i.e. inside the unit disc), $f(x, y) = x^2 + y^2$ is a polynomial in two variables and so is continuous.
- Note that for all the points (a, b) satisfying $a^2 + b^2 > 1$ (i.e. outside the unit disc), $f(x, y) = x^2 + y^2$ is a constant function and hence continuous.
- Now let us examine the continuity of the function at the points (a, b) with $a^2 + b^2 = 1$.

2 (b) Contd.

- There exists some $\phi \in [0, 2\pi)$ such that $a = \cos \phi$ and $b = \sin \phi$.
- Take the path $x = r \cos \theta$ and $y = r \sin \theta$, where $\theta \in [0, 2\pi)$ and r < 1.

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(r,\theta)\to(1^-,\phi)} f(r\cos\theta, r\sin\theta)$$
$$= \lim_{r\to 1^-} r^2 = 1.$$

• Now take the path $x = r \cos \theta$ and $y = r \sin \theta$, where $\theta \in [0, 2\pi)$ and r > 1.

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(r,\theta)\to(1^+,\phi)} f(r\cos\theta,r\sin\theta) = 0.$$

• Therefore, the limit doesn't exist. Hence f is not continuous at points (a,b) when $a^2 + b^2 = 1$.

Question 2 (c). Examine the continuity of the following function

$$\begin{cases} \frac{\sin^2(x-y)}{|x|+|y|} & (x,y) \neq (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

- Clearly, the function is continuous at all $(x, y) \neq (0, 0) \in \mathbb{R}^2$.
- Now to check its continuity at (0,0), fix any real number $\epsilon > 0$. Then

$$|f(x,y) - f(0,0)| = \left| \frac{\sin^2(x-y)}{|x| + |y|} - 0 \right|$$

$$\leq \frac{|x-y|^2}{|x| + |y|} \quad (\because |\sin z| \leq |z|)$$

$$\leq |x| + |y| \quad (\because |x-y| \leq |x| + |y|)$$

$$\leq 2\sqrt{x^2 + y^2} < \epsilon.$$

2 (c) Contd.

- Hence $|f(x,y)-f(0,0)|<\epsilon$ whenever $\sqrt{x^2+y^2}<\delta$, where $\delta=\frac{\epsilon}{2}$.
- So by the definition of limit,

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0).$$

• Hence the function is continuous at every $(x, y) \in \mathbb{R}^2$.

Question 2 (d). Examine the continuity of the following function.

$$\begin{cases} \frac{x^2y^2}{x^2y^2 + (x - y)^2} & (x, y) \neq (0, 0) \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

- As multi-variable polynomial functions are continuous, f is clearly continuous at every $(x, y) \in \mathbb{R}^2$ except (0, 0).
- Consider the limit approaching to (0,0) along two different paths.
- First along the straight line y = x,

$$\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^2y^2+(x-y)^2}=\lim_{x\to 0}\frac{x^4}{x^4}=1.$$

2 (d) Contd.

• Now along the straight line y = 2x,

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2} = \lim_{x\to 0} \frac{4x^4}{4x^4 + x^2} = 0.$$

- Since we get different limits along different paths, the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist at (0,0).
- Hence the function is continuous at all $(x, y) \in \mathbb{R}^2$ except (0, 0).

Question 3

Discuss the differentiability of the following functions at (0,0).

(a)
$$f(x,y) = \begin{cases} x \sin \frac{1}{x} + y \sin \frac{1}{y} & \text{if } xy \neq 0\\ 0 & \text{if } xy = 0. \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } x^2 + y^2 \neq 0\\ 0 & \text{if } x = y = 0. \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^6 - 2y^4}{x^2 + y^2} & \text{if } x^2 + y^2 \neq 0\\ 0 & \text{if } x = y = 0. \end{cases}$$

Theorem

- Let Ω be an open subset of \mathbb{R}^2 .
- Let $f(x,y): \Omega \to \mathbb{R}$ be a function and $(a,b) \in \Omega$.
- The partial derivative of f with respect to x is defined as

$$f_{x}(a,b) = \lim_{h\to 0} \frac{f(a+h,b)-f(a,b)}{h}.$$

The partial derivative of f with respect to y is defined as

$$f_y(a,b) = \lim_{k\to 0} \frac{f(a,b+k)-f(a,b)}{k}.$$

• Set $\Delta f = f(a + h, b + k) - f(a, b)$ and $df = hf_x(a, b) + kf_y(a, b)$.

Then f is differentiable at (a, b) if and only if

$$\lim_{\rho \to 0} \frac{\Delta f - df}{\rho} = 0, \text{ where } \rho = \sqrt{h^2 + k^2}.$$

Question 3 (a)

Discuss the differentiability of the following function at (0,0):

$$f(x,y) = \begin{cases} x \sin \frac{1}{x} + y \sin \frac{1}{y} & \text{if } xy \neq 0\\ 0 & \text{if } xy = 0. \end{cases}$$

Solution:

• The partial derivative of f with respect to x is

$$f_{x}(0,0) = \lim_{h\to 0} \frac{f(0+h,0)-f(0,0)}{h} = \lim_{h\to 0} \frac{0-0}{h} = 0.$$

The partial derivative of f with respect to y is

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0.$$

• Note that $\Delta f = f(0+h,0+k) - f(0,0) = f(h,k) = h \sin \frac{1}{h} + k \sin \frac{1}{k}$ and $df = hf_x(0,0) + kf_y(0,0) = 0$.

3 (a) Contd..

• Therefore,

$$\lim_{\rho \to 0} \frac{\Delta f - df}{\rho} = \lim_{(h,k) \to (0,0)} \frac{h \sin \frac{1}{h} + k \sin \frac{1}{k}}{\sqrt{h^2 + k^2}}.$$

- Along the path k = h, the above limit reduces to $\lim_{h \to 0} \sqrt{2} \sin \frac{1}{h}$.
- Since $\lim_{h\to 0} \sqrt{2} \sin\frac{1}{h}$ does not exist (see Tutorial 3), $\lim_{\rho\to 0} \frac{\Delta f df}{\rho}$ does not exist.
- Hence, f is not differentiable at (0,0).

Question 3 (b)

Discuss the differentiability of the following functions at (0,0):

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } x^2 + y^2 \neq 0\\ 0 & \text{if } x = y = 0. \end{cases}$$

Solution:

The partial derivative of f with respect to x is

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

The partial derivative of f with respect to y is

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0.$$

• Here, $\Delta f = f(0+h,0+k) - f(0,0) = \frac{hk}{\sqrt{h^2 + k^2}} - 0 = \frac{hk}{\sqrt{h^2 + k^2}}$ and $df = hf_x(0,0) + kf_y(0,0) = 0$.

3 (b) Contd..

• Therefore,

$$\lim_{\rho \to 0} \frac{\Delta f - df}{\rho} = \lim_{(h,k) \to (0,0)} \frac{hk}{\sqrt{h^2 + k^2} \sqrt{h^2 + k^2}}.$$

- Along the path k = h, the above limit reduces to $\lim_{h \to 0} \frac{h^2}{2h^2} = \frac{1}{2}$.
- Along the path k=2h, the above limit reduces to $\lim_{h\to 0}\frac{2h^2}{5h^2}=\frac{2}{5}$.
- Thus,

$$\lim_{\rho \to 0} \frac{\Delta f - df}{\rho} \text{ does not exist.}$$

• Hence, f is not differentiable at (0,0).

Question 3 (c)

Discuss the differentiability of the following functions at (0,0):

$$f(x,y) = \begin{cases} \frac{x^6 - 2y^4}{x^2 + y^2} & \text{if } x^2 + y^2 \neq 0\\ 0 & \text{if } x = y = 0. \end{cases}$$

Solution:

The partial derivative of f with respect to x is

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^{6}}{h^{3}} = 0.$$

The partial derivative of f with respect to y is

$$f_{y}(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{-2k^{4}}{k^{3}} = 0.$$

• Here, $\Delta f = f(0+h,0+k) - f(0,0) = \frac{h^6 - 2k^4}{h^2 + k^2} - 0 = \frac{h^6 - 2k^4}{h^2 + k^2}$ and $df = hf_x(0,0) + kf_v(0,0) = 0$.

3 (c) Contd..

Therefore,

$$\frac{\Delta f - df}{\rho} = \frac{h^6 - 2k^4}{(h^2 + k^2)\sqrt{h^2 + k^2}} = \frac{h^6 - 2k^4}{(h^2 + k^2)^{\frac{3}{2}}}.$$

• Put $h = r \cos \theta$, $k = r \sin \theta$ such that $\cos \theta \neq 0$, $\sin \theta \neq 0$ we get

$$\lim_{\rho \to 0} \frac{\Delta f - df}{\rho} = \lim_{r \to 0} \frac{r^6 \cos^6 \theta - 2r^4 \sin^4 \theta}{r^3} = 0.$$

• Hence, f is differentiable at (0,0).

Question 4

Let $f(x,y) = \frac{y}{|y|} \sqrt{x^2 + y^2}$, $y \neq 0$ and f(x,0) = 0. Show that f has all directional derivatives at (0,0) but it is not differentiable at (0,0).

Solution:

- Let $\hat{p} = (p_1, p_2)$ be any unit vector.
- Then, by the definition, the directional derivative in the direction \hat{p} at (0,0) is

$$D_{\hat{p}}f(0,0) = \lim_{s \to 0} \frac{f(0 + sp_1, 0 + sp_2) - f(0,0)}{s}$$
$$= \lim_{s \to 0} \frac{f(sp_1, sp_2) - f(0,0)}{s}.$$

• For $p_2 = 0$, we have $f(sp_1, sp_2) = f(0, 0) = 0$ and consequently $D_{\hat{\theta}}f(0, 0) = 0$.

4 Contd...

- Assume $p_2 \neq 0$.
- Then we get

$$D_{\hat{p}}f(0,0) = \lim_{s \to 0} \frac{sp_2\sqrt{s^2p_1^2 + s^2p_2^2} - 0}{|sp_2|s}$$

$$= \frac{p_2\sqrt{p_1^2 + p_2^2}}{|p_2|}$$

$$= \frac{p_2}{|p_2|}.$$

• Therefore, f has all directional derivatives at (0,0).

4 Contd..

Note that,

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

and

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{1-0}{k} = 1.$$

4 Contd..

Now

$$\begin{split} \lim_{\rho \to 0} \frac{\Delta f - df}{\rho} &= \lim_{\rho \to 0} \frac{\frac{k}{|k|} \sqrt{h^2 + k^2} - 0 - 0h - 1k}{\rho} \\ &= \lim_{(h,k) \to (0,0)} \frac{\frac{k}{|k|} \sqrt{h^2 + k^2} - k}{\sqrt{h^2 + k^2}}. \end{split}$$

- Along h = k the above limit is $\lim_{k \to 0} \frac{(\sqrt{2-1})k}{|k|}$, which does not exist.
- Therefore, f is not differentiable at (0,0).

Question 5

Let f(x,y) = ||x| - |y|| - |x| - |y|. Is f continuous at (0,0)? Which directional derivatives of f exist at (0,0)? Is f differentiable at (0,0)? Give reasons.

We have

$$|f(x,y) - 0| = |||x| - |y|| - |x| - |y||$$

$$\leq ||x| - |y|| + |x| + |y|$$

$$\leq 2(|x| + |y|)$$

$$\leq 4\sqrt{x^2 + y^2}.$$

5 Contd..

• Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{4}.$ Then

$$\sqrt{x^2 + y^2} < \delta \implies |f(x, y) - 0| < \epsilon.$$

• Therefore,

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 0.$$

• Hence f is continuous at (0,0).

5 Contd...

- Let $\hat{p} = (p_1, p_2)$ be a unit vector.
- We have

$$\frac{f(hp_1, hp_2) - f(0, 0)}{h} = \frac{||hp_1| - |hp_2|| - |hp_1| - |hp_2| - 0}{h}$$
$$= \frac{|h|}{h} (||p_1| - |p_2|| - |p_1| - |p_2|).$$

• Note that for any non-zero real number a,

$$\lim_{h \to 0^+} \frac{a|h|}{h} = a \neq -a = \lim_{h \to 0^-} \frac{a|h|}{h}.$$

5 Contd...

Therefore,

$$\begin{split} &\lim_{h\to 0} \frac{f(hp_1,hp_2)-f(0,0)}{h} \text{ exists} \\ &\Leftrightarrow \lim_{h\to 0} \frac{|h|}{h} (||p_1|-|p_2||-|p_1|-|p_2|) \text{ exists}} \\ &\Leftrightarrow ||p_1|-|p_2||-|p_1|-|p_2|=0 \\ &\Leftrightarrow |p_1|+|p_2|=||p_1|-|p_2|| \\ &\Leftrightarrow \text{ either } |p_1|+|p_2|=|p_1|-|p_2| \text{ or } |p_1|+|p_2|=-|p_1|+|p_2| \\ &\Leftrightarrow \text{ either } |p_2|=0 \text{ or } |p_1|=0. \end{split}$$

• So, the directional derivatives exist only in the direction of (1,0), (-1,0), (0,1) and (0,-1).

5 Contd..

• The partial derivative of f with respect to x is

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

• The partial derivative of f with respect to y is

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0.$$

• Here, $\Delta f = f(0+h,0+k) - f(0,0) = ||h| - |k|| - |h| - |k|$ and $df = hf_x(0,0) + kf_y(0,0) = 0$.

5 Contd..

Therefore,

$$\frac{\Delta f - df}{\rho} = \frac{||h| - |k|| - |h| - |k|}{\sqrt{h^2 + k^2}}.$$

- Along h=k, $\frac{\Delta f-df}{\rho} \to -\sqrt{2}$ as $h \to 0$.
- Hence, f is not differentiable at (0,0).

Question 6

Let $f(x,y) = \frac{1}{2} \ln(x^2 + y^2) + \tan^{-1}(\frac{y}{x})$, P = (1,3). Find the direction in which f(x,y) is increasing the fastest at P. Find the derivative of f(x,y) in this direction.

Solution:

- We have, $f_x(x,y) = \frac{x-y}{x^2+y^2}$ and $f_y(x,y) = \frac{x+y}{x^2+y^2}$.
- $\nabla f(x,y)\big|_{(1,3)} = (f_x(1,3), f_y(1,3)) = \left(-\frac{1}{5}, \frac{2}{5}\right).$
- f(x,y) is increasing the fastest at P=(1,3) in the direction of the gradient, $\frac{\nabla f(1,3)}{\|\nabla f(1,3)\|}=\left(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$.
- The derivative at P=(1,3) in the direction $\left(-\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$ is

$$\frac{\nabla f(1,3)}{\|\nabla f(1,3)\|} \cdot \nabla f(x,y)\big|_{(1,3)} = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \cdot \left(-\frac{1}{5}, \frac{2}{5}\right) = \frac{1}{\sqrt{5}}.$$

Question 7

A heat-seeking bug is a bug that always moves in the direction of the greatest increase in heat. Discuss the behavior of a heat seeking bug placed at a point (2,1) on a metal plate heated so that the temperature at (x,y) is given by $T(x,y)=50y^2e^{-\frac{1}{5}(x^2+y^2)}$.

Solution:

- Since the direction of greatest increase of temperature is in the direction of gradient. We first compute the gradient of temperature function T.
- We have

$$T_x(x,y) = 50y^2 e^{\frac{-(x^2+y^2)}{5}} \left(\frac{-2x}{5}\right)$$

$$\implies T_x(x,y) = -20xy^2 e^{\frac{-(x^2+y^2)}{5}}$$

$$\implies T_x(2,1) = -\frac{40}{e}.$$

7 Contd..

Now

$$T_y(x,y) = 50 \left(2ye^{\frac{-(x^2+y^2)}{5}} - \frac{2y^3}{5}e^{\frac{-(x^2+y^2)}{5}} \right)$$

 $\implies T_y(2,1) = \frac{80}{e}.$

- $\nabla T(x,y)|_{(2,1)} = (T_x(2,1), T_y(2,1)) = \left(-\frac{40}{e}, \frac{80}{e}\right).$
- So the direction of the heat seeking bug is

$$\frac{\nabla T(2,1)}{\|\nabla T(2,1)\|} = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right).$$

Question 8

Suppose the gradient vector of the linear function z = f(x, y) is $\nabla z = (5, -12)$. If f(9, 15) = 17, what is the value of f(11, 11)?

Solution:

- Let the linear function be z = f(x, y) = ax + by + c.
- We are given that $\nabla z = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = (5, -12).$
- Hence, $a = \frac{\partial z}{\partial x} = 5$ and $b = \frac{\partial z}{\partial y} = -12$.
- Since f(9, 15) = 17, we have that

$$17 = f(9, 15) = 5(9) - 12(15) + c$$

and so c = 152.

• Thus $f(11,11) = 5 \times 11 - 12 \times 11 + 152 = 75$.

Question 9

Suppose f(8,3) = 24 and $f_x(8,3) = -3.4$, $f_y(8,3) = 4.2$. Estimate the values f(9,3), f(8,5) and f(9,5). Explain how you got your estimates.

Solution: To estimate f(x, y), we use linear approximation. So let us first recall:

Linear approximation

Let Ω be an open subset of \mathbb{R}^2 and $(a,b) \in \Omega$. Let $f:\Omega \to \mathbb{R}$ be a function which is differentiable at (a,b). Then the standard linear approximation of f(x,y) at (a,b) is the function

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

9 Contd...

• Here (a, b) = (8, 3). Therefore,

$$f(9,3) \approx f(8,3) + f_x(8,3)(9-8) + f_y(8,3)(3-3)$$

= 24 - 3.4 + 0
= 20.6

$$f(8,5) \approx f(8,3) + f_x(8,3)(8-8) + f_y(8,3)(5-3)$$

= 24 + 0 + 8.4
= 32.4

and

$$f(9,5) \approx f(8,3) + f_x(8,3)(9-8) + f_y(8,3)(5-3)$$

= 24 - 3.4 + 8.4
= 29.

Question 10

Find the quadratic Taylor's polynomial approximation of $e^{-x^2-2y^2}$ near (0,0).

Taylor's polynomial approximation

Theorem

Let R be an open rectangular region centered at a point (a,b). Suppose f(x,y) and its partial derivatives upto order n+1 are continuous throughout R. Then, for all $(c,d) \in R$,

$$f(c,d) = f(a,b) + \frac{1}{1!} \left((c-a) \frac{\partial}{\partial x} + (d-b) \frac{\partial}{\partial y} \right)^{1} f \Big|_{(a,b)} + \cdots$$

$$+ \frac{1}{n!} \left((c-a) \frac{\partial}{\partial x} + (d-b) \frac{\partial}{\partial y} \right)^{n} f \Big|_{(a,b)} +$$

$$\frac{1}{(n+1)!} \left((c-a) \frac{\partial}{\partial x} + (d-b) \frac{\partial}{\partial y} \right)^{n+1} f \Big|_{(u,v)},$$

where (u, v) is a point on the line segment joining (a, b) and (c, d).

10 Contd...

Solution:

ullet The quadratic Taylor's polynomial approximation of f near (0,0) is

$$f(x,y) = f(0,0) + xf_x(0,0) + yf_y(0,0) + \frac{x^2}{2}f_{xx}(0,0) + xyf_{xy}(0,0) + \frac{y^2}{2}f_{yy}(0,0).$$

- Note that $f_x(x,y) = e^{-x^2-2y^2}(-2x)$, $f_y(x,y) = e^{-x^2-2y^2}(-4y)$, $f_{xx}(x,y) = e^{-x^2-2y^2}(-2+4x^2)$, $f_{xy}(x,y) = e^{-x^2-2y^2}(8xy)$ and $f_{yy}(x,y) = e^{-x^2-2y^2}(-4+16y^2)$.
- Therefore, we have $f_x(0,0) = 0$, $f_y(0,0) = 0$, $f_{xx}(0,0) = -2$, $f_{xy}(0,0) = 0$ and $f_{yy}(0,0) = -4$.
- Hence, the quadratic Taylor's polynomial approximation of f near (0,0) is

$$f(x,y) = 1 - x^2 - 2y^2.$$