Recap - Lecture 1 Review - Bayesian networks Observation & intervention Causal Bayesian networks Structural causal models

CSC2541: Introduction to Causality Lecture 2 - Causal Models

Instructor: Rahul G. Krishnan

TA & slides: Vahid Balazadeh-Meresht

September 19, 2022

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Outline

Recap - Lecture 1

Review - Bayesian networks
Bayesian factorization
D-separation
Markov properties

Observation & intervention

Causal Bayesian networks
Independent mechanisms
Formal definition
An example
Flow of causation and association

Structural causal models
Data generating processes
Observational and interventional distributions

Lecture 1 Recap

- ▶ What is Causal Inference: It is the study of statistical methods to identify the effect of interventions.
- ▶ Fundamental Problem Of Causal Inference: We never observe both potential outcomes $(Y_1(u), Y_0(u))$ simultaneously.
- ► Estimands of interest:
 - 1. Individual Treatment Effect (ITE): What is the effect of an intervention on this individual: $ITE(u) := Y_1(u) Y_0(u)$.
 - 2. Average Treatment Effect (ATE): What is the effect of an intervention on a population: ATE := $\mathbb{E}_{u \sim P(u)} [Y_1(u) Y_0(u)]$.
 - 3. Conditional Average Treatement Effect: What is the effect of an intervention on a group summarized by covariates that can be conditioned on: $\mathbb{E}[Y_1|X] \mathbb{E}[Y_0|X]$.

Lecture 1 Recap

Problem: The fundamental problem of causal inference makes it challenging to find these estimands without access to an oracle.

Strategy:

- 1. Write down the estimate of interest,
- 2. Make assumptions about the behavior of random variables in the problem,
- 3. Assumptions enable us to write down causal effects using quantities we can estimate from data.

We'll see this strategy arise time and again in this class.

Lecture 1 Recap

Assumptions we covered:

- 1. SUTVA: $Y_{0,1}(u_1) \perp \!\!\!\perp Y_{0,1}(u_k) \forall k \neq 1$
- 2. Consistency: Factual matches the observed outcome
- 3. Ignorability/Exchangeability: Potential outcomes are independent given treatment
- 4. Conditional Ignorability/Exchangeability: Potential outcomes are independent given treatment conditional on covariates [adjustment set]
- 5. Positivity/Overlap: The non-parameteric estimator for ATE requires us to have a positive probability of being assigned treatment or control for each configuration of patient

Positivity Unconfoundedness tradeoff: Including more variables means we're likely to have a valid adjustment set. Comes at the cost of satisfying overlap due to high-dimensionality

Bayesian factorization D-separation Markov properties

Modeling the joint distribution

$$P(x_1, x_2, \dots, x_n)$$
 needs 2^n-1 parameters to store for binary x_i chain rule: $P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_{i-1}, \dots, x_1)$

Modeling the joint distribution

 $P(x_1, x_2, \ldots, x_n)$ needs $2^n - 1$ parameters to store for binary x_i

chain rule:
$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | pa_i)$$

 pa_i : a minimal subset of $\{x_1, \ldots, x_{i-1}\}$ that $P(x_i|x_{i-1}, \ldots, x_1) = P(x_i|pa_i)$

Modeling the joint distribution

 $P(x_1, x_2, \dots, x_n)$ needs $2^n - 1$ parameters to store for binary x_i

chain rule:
$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | pa_i)$$

 pa_i : a minimal subset of $\{x_1, \ldots, x_{i-1}\}$ that $P(x_i|x_{i-1}, \ldots, x_1) = P(x_i|pa_i)$

$$P(x_1,x_2,x_3,x_4) = P(x_1)P(x_2|x_1)P(x_3|x_2,x_1)P(x_4|x_3,x_2,x_1)$$
 (Bayesian network factorization = compact representations)

Modeling the joint distribution

 $P(x_1, x_2, \ldots, x_n)$ needs $2^n - 1$ parameters to store for binary x_i

chain rule:
$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | pa_i)$$

 pa_i : a minimal subset of $\{x_1, \ldots, x_{i-1}\}$ that $P(x_i|x_{i-1}, \ldots, x_1) = P(x_i|pa_i)$

$$P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_3, x_2)$$
(Bayesian network factorization = compact representations)
Needs $2^0 + 2^1 + 2^1 + 2^2 = 9$ parameters $< 2^4 - 1 = 15$

Bayesian factorization D-separation Markov properties

Graphical models of probabilities

Graphical models of probabilities

- Directed Acyclic Graph (DAG) \mathcal{G} (Bayesian network)

Graphical models of probabilities

- Directed Acyclic Graph (DAG) $\mathcal G$ (Bayesian network)
- P is Markov compatible with $\mathcal G$ if our joint distribution admits a factorization compatible with the graph.

Graphical models of probabilities

- Directed Acyclic Graph (DAG) ${\mathcal G}$ (Bayesian network)
- P is Markov compatible with $\mathcal G$ if our joint distribution admits a factorization compatible with the graph.
- \mathcal{G} describes the conditional independence (CI) structure of distribution P

Conditional Independencies (CI)

What are they?

- Describe structure among the random variables: e.g. what edges do not exist.
- ▶ Provide insight into how information flows within the graph.

Why should we care about CI?

- ▶ We can use this to reduce the storage complexity of joint distribution.
- ▶ Identifying what we should *adjust for* to extract causal effects.

Bayesian factorizatio D-separation Markov properties

Conditional independence in DAGs

Question

What are the conditional independencies among random variables in a given graph \mathcal{G} ?

Conditional independence in DAGs

Question

What are the conditional independencies among random variables in a given graph \mathcal{G} ?

We first consider the building blocks of DAGs

Conditional independence - Chain and v-structure

$$P(x_1, x_3|x_2)$$

$$= \frac{P(x_1, x_2, x_3)}{P(x_2)}$$

$$= \frac{P(x_1)P(x_2|x_1)P(x_3|x_2)}{P(x_2)}$$

$$= P(x_1|x_2)P(x_3|x_2) \text{ (Bayes rule)}$$

$$X_1 \perp \!\!\! \perp X_3 | X_2$$

Conditional independence - Chain and v-structure

$$P(x_1, x_3|x_2)$$

$$= \frac{P(x_1, x_2, x_3)}{P(x_2)}$$

$$= \frac{P(x_1)P(x_2|x_1)P(x_3|x_2)}{P(x_2)}$$

$$= P(x_1|x_2)P(x_3|x_2) \text{ (Bayes rule)}$$

$$X_1 \perp \!\!\! \perp X_3 | X_2$$

$$P(x_1, x_2) = \sum_{x_3} P(x_1, x_2, x_3)$$

$$= \sum_{x_3} P(x_1) P(x_2) P(x_3 | x_1, x_2)$$

$$= P(x_1) P(x_2) \sum_{x_3} P(x_3 | x_1, x_2)$$

$$= P(x_1) P(x_2)$$

$$X_1 \perp \!\!\! \perp X_3$$

Conditional independence - Analyzing paths in a graph

Conditional independence - Unblocked paths

Conditional independence - Blocked paths

D-separation

Blocked path

Given a DAG \mathcal{G} , a (undirected) path between nodes X and Y is blocked by a set Z iff

▶ There is a **chain** $U \to W \to V$ or a **fork** $U \leftarrow W \to V$ on the path, where $W \in Z$, or

D-separation

Blocked path

Given a DAG \mathcal{G} , a (undirected) path between nodes X and Y is blocked by a set Z iff

- ▶ There is a **chain** $U \to W \to V$ or a **fork** $U \leftarrow W \to V$ on the path, where $W \in Z$, or
- ▶ There is a **collider** $U \to W \leftarrow V$ on the path, where $W \notin Z$ and $Desc(W) \notin Z$

D-separation

Blocked path

Given a DAG \mathcal{G} , a (undirected) path between nodes X and Y is blocked by a set Z iff

- ▶ There is a **chain** $U \to W \to V$ or a **fork** $U \leftarrow W \to V$ on the path, where $W \in Z$, or
- ▶ There is a **collider** $U \to W \leftarrow V$ on the path, where $W \notin Z$ and $Desc(W) \notin Z$

D-separation $(X \perp \!\!\!\perp_{\mathcal{G}} Y|Z)$

Given a DAG \mathcal{G} , two sets of nodes X and Y are d-separated by a set Z iff all the paths between nodes of X and Y are blocked by Z

Bayesian factorization
D-separation
Markov properties

Global and local Markov properties

Idea

Given \mathcal{G} , we can use the Bayes Ball algorithm (Shachter, 1998) to find the conditional independencies in a graph.

Bayesian factorization
D-separation
Markov properties

Global and local Markov properties

Idea

Given \mathcal{G} , we can use the Bayes Ball algorithm (Shachter, 1998) to find the conditional independencies in a graph.

Global Markov property

A distribution P satisfies the global Markov property w.r.t. a DAG \mathcal{G} if $X \perp \!\!\! \perp_{\mathcal{G}} Y|Z \Longrightarrow X \perp \!\!\! \perp Y|Z$ for all disjoint sets of nodes X, Y, Z.

Global and local Markov properties

Idea

Given \mathcal{G} , we can use the Bayes Ball algorithm (Shachter, 1998) to find the conditional independencies in a graph.

Global Markov property

A distribution P satisfies the global Markov property w.r.t. a DAG \mathcal{G} if $X \perp \!\!\! \perp_{\mathcal{G}} Y | Z \Longrightarrow X \perp \!\!\! \perp Y | Z$ for all disjoint sets of nodes X, Y, Z.

Local Markov property

A distribution P satisfies the local Markov property w.r.t. a DAG $\mathcal G$ if each variable is independent of its nondescendants (in $\mathcal G$) conditioned on its parents.

Global and local Markov properties

Idea

Given \mathcal{G} , we can use the Bayes Ball algorithm (Shachter, 1998) to find the conditional independencies in a graph.

Theorem - Equivalence of Markov properties

Given a distribution P and a DAG \mathcal{G} , if P has a density function, then the followings are equivalent

- 1. P is Markov compatible w.r.t. \mathcal{G}
- 2. P satisfies the global Markov property w.r.t. \mathcal{G}
- 3. P satisfies the local Markov property w.r.t. \mathcal{G}

In Markov Random Fields, these properties are shown by the Hammersley-Clifford Theorem.

Bayesian factorization D-separation Markov properties

Observational equivalence

Question

Markov properties relate graphical separation to conditional independencies. Is it possible to have multiple graphs with the same CI structure?

Question

Markov properties relate graphical separation to conditional independencies. Is it possible to have multiple graphs with the same CI structure?

Markov equivalence of graphs

Let $\mathcal{M}(\mathcal{G}) := \{P; P \text{ is Markov compatible with } \mathcal{G}\}$. Then, \mathcal{G}_1 and \mathcal{G}_2 are called Markov equivalent if $\mathcal{M}(\mathcal{G}_1) = \mathcal{M}(\mathcal{G}_2)$.

Question

Markov properties relate graphical separation to conditional independencies. Is it possible to have multiple graphs with the same CI structure?

Markov equivalence of graphs

Let $\mathcal{M}(\mathcal{G}) := \{P; P \text{ is Markov compatible with } \mathcal{G}\}$. Then, \mathcal{G}_1 and \mathcal{G}_2 are called Markov equivalent if $\mathcal{M}(\mathcal{G}_1) = \mathcal{M}(\mathcal{G}_2)$.

Theorem - Observational equivalence

Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent iff they have the same skeleton and sets of v-structures

Theorem - Observational equivalence

Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent iff they have the same skeleton and sets of v-structures

Theorem - Observational equivalence

Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent iff they have the same skeleton and sets of v-structures

 $P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2,x_3)$

Theorem - Observational equivalence

Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent iff they have the same skeleton and sets of v-structures

$$P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2,x_3)$$

$$P(x_2)P(x_1|x_2)P(x_3|x_1)P(x_4|x_2,x_3)$$

All these DAGs are observationally valid - They capture the same CI structure

 X_1

 X_4

 X_3

Observational equivalence

Theorem - Observational equivalence

Two DAGs \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent iff they have the same skeleton and sets of v-structures

All these DAGs are observationally valid - They capture the same CI structure

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Bayesian factorization D-separation Markov properties

Questions?

Question

Any questions on Bayesian Networks?

Stone size S, treatment T, and recovery rate R. Each item shows P(R=1|S=s,T=t), i.e., # recovered / #total with T=t,S=s

	Small stone $(S = s)$	Large stone $(S = l)$
T = a Open surgery	81/87	192/263
T=b Percutaneous nephrolithotomy	234/270	55/80

Stone size S, treatment T, and recovery rate R. Each item shows P(R=1|S=s,T=t), i.e., # recovered / #total with T=t,S=s

	Small stone $(S = s)$	Large stone $(S = l)$
T = a Open surgery	81/87	192/263
T = b Percutaneous nephrolithotomy	234/270	55/80

Question

Observing a patient with open surgery treatment, what can we infer about their stone size?

Stone size S, treatment T, and recovery rate R. Each item shows P(R=1|S=s,T=t), i.e., # recovered / #total with T=t,S=s

	Small stone $(S = s)$	Large stone $(S = l)$
T = a Open surgery	81/87	192/263
T=b Percutaneous nephrolithotomy	234/270	55/80

Question

Observing a patient with open surgery treatment, what can we infer about their stone size?

$$P(S=\text{ small}|\,T=a) = \frac{P(S=\text{ small},\,T=a)}{P(T=a)} = \frac{87/700}{(87+263)/700} \approx 0.25$$

Stone size S, treatment T, and recovery rate R. Each item shows P(R=1|S=s,T=t), i.e., # recovered / #total with T=t,S=s

	Small stone $(S = s)$	Large stone $(S = l)$
T = a Open surgery	81/87	192/263
T=b Percutaneous nephrolithotomy	234/270	55/80

Question

Now, assume we *intervene* on all patients with open surgery treatment. What can we infer about their stone size?

Stone size S, treatment T, and recovery rate R. Each item shows P(R=1|S=s,T=t), i.e., # recovered / #total with T=t,S=s

	Small stone $(S = s)$	Large stone $(S = l)$
T = a Open surgery	81/87	192/263
T=b Percutaneous nephrolithotomy	234/270	55/80

Question

Now, assume we *intervene* on all patients with open surgery treatment. What can we infer about their stone size?

Intuitively, we expect that changes to treatment assignment has no effect on the stone size

$$P(S = \text{small}) \frac{\text{do}(T = a)}{\text{ontervention}} = P(S = \text{small}) = \frac{87 + 270}{700} = 0.51$$

- ▶ P(S|T = a): We see (observe) T = a and infer the stone size
- ▶ P(S|do(T=a)): We do (intervene) T=a and infer the stone size
- ▶ Generally, $P(Y|do(X=x)) \neq P(Y|X=x)$. In the kidney stone data: $P(S=\text{small}|do(T=a)) = P(S=\text{small}) \neq P(S=\text{small}|T=a)$

- ightharpoonup P(S|T=a): We see (observe) T=a and infer the stone size
- ▶ P(S|do(T=a)): We do (intervene) T=a and infer the stone size
- ▶ Generally, $P(Y|do(X=x)) \neq P(Y|X=x)$. In the kidney stone data: $P(S=\text{small}|do(T=a)) = P(S=\text{small}) \neq P(S=\text{small}|T=a)$ What about P(R=1|do(T=a)) and P(R=1|do(T=b))?

- ightharpoonup P(S|T=a): We see (observe) T=a and infer the stone size
- ▶ P(S|do(T=a)): We do (intervene) T=a and infer the stone size
- ▶ Generally, $P(Y|do(X=x)) \neq P(Y|X=x)$. In the kidney stone data: $P(S=\text{small}|do(T=a)) = P(S=\text{small}) \neq P(S=\text{small}|T=a)$

What about
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$\begin{array}{c|ccccc} P(R=1|do(T=a)) & & S=s & S=l \\ & = P(R_a=1) & (\text{Potential outcome}) & & T=a & 81/87 & 192/263 \\ & = \mathbb{E}[R_a] & & T=b & 234/270 & 55/80 \end{array}$$

- ightharpoonup P(S|T=a): We see (observe) T=a and infer the stone size
- ▶ P(S|do(T=a)): We do (intervene) T=a and infer the stone size
- ▶ Generally, $P(Y|do(X=x)) \neq P(Y|X=x)$. In the kidney stone data:

$$P(S = \text{small}|do(T = a)) = P(S = \text{small}) \neq P(S = \text{small}|T = a)$$

What about P(R = 1|do(T = a)) and P(R = 1|do(T = b))?

- ightharpoonup P(S|T=a): We see (observe) T=a and infer the stone size
- ▶ P(S|do(T=a)): We do (intervene) T=a and infer the stone size
- ▶ Generally, $P(Y|do(X=x)) \neq P(Y|X=x)$. In the kidney stone data:

$$P(S = \text{small} | do(T = a)) = P(S = \text{small}) \neq P(S = \text{small} | T = a)$$

What about P(R = 1|do(T = a)) and P(R = 1|do(T = b))?

ightharpoonup Using the potential outcome framework (G-formula), we saw that treatment a is, on average, a better choice

$$P(R = 1|do(T = a)) > P(R = 1|do(T = b))$$

▶ Using the potential outcome framework (G-formula), we saw that treatment *a* is, on average, a better choice

$$P(R = 1 | do(T = a)) > P(R = 1 | do(T = b))$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

▶ Using the potential outcome framework (G-formula), we saw that treatment *a* is, on average, a better choice

$$P(R = 1|do(T = a)) > P(R = 1|do(T = b))$$

▶ Can we use the same G-formula for the following data?

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

▶ Since the data is the same, using the same formula will choose treatment *a* again. But, we saw in lecture 1 that treatment *b* is better in this case. Why?

▶ Using the potential outcome framework (G-formula), we saw that treatment *a* is, on average, a better choice

$$P(R = 1|do(T = a)) > P(R = 1|do(T = b))$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

- ▶ Since the data is the same, using the same formula will choose treatment *a* again. But, we saw in lecture 1 that treatment *b* is better in this case. Why?
- Conditional ignorability does not hold BP is not a valid adjustment set

$$R_a, R_b \perp \!\!\! \perp T \mid BP$$
 while $R_a, R_b \perp \!\!\! \perp T \mid S$

ightharpoonup Using the potential outcome framework (G-formula), we saw that treatment a is, on average, a better choice

$$P(R = 1|do(T = a)) > P(R = 1|do(T = b))$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

- ▶ Since the data is the same, using the same formula will choose treatment *a* again. But, we saw in lecture 1 that treatment *b* is better in this case. Why?
- Conditional ignorability does not hold BP is not a valid adjustment set $R_a, R_b \perp \!\!\! \perp T|BP$ while $R_a, R_b \perp \!\!\! \perp T|S$
- ▶ It's not always easy to decide what to include in the adjustment set

ightharpoonup Using the potential outcome framework (G-formula), we saw that treatment a is, on average, a better choice

$$P(R = 1|do(T = a)) > P(R = 1|do(T = b))$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

- ▶ Since the data is the same, using the same formula will choose treatment *a* again. But, we saw in lecture 1 that treatment *b* is better in this case. Why?
- Conditional ignorability does not hold BP is not a valid adjustment set $R_a, R_b \not\perp \!\!\! \perp T|BP \text{ while } R_a, R_b \perp \!\!\! \perp T|S$
- ▶ It's not always easy to decide what to include in the adjustment set
- ▶ Bayesian networks are a visual tool to better understand adjustment sets to model causal effects

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Bayesian networks as data generating processes (DGPs)

Bayesian networks model the conditional independence structure of distribution

Bayesian networks model the conditional independence structure of distribution

Bayesian networks model the conditional independence structure of distribution

All three graphs are plausible based on data (observationally equivalent)

We are interested in the "real" graph, i.e., the one that describes the real/physical data generating process (Causal order)

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Questions?

Question

Any questions on Observations v.s. Interventions?

Assume the nature generates the data with ordering (T, BP, R)

Assume the nature generates the data with ordering (T, BP, R)

1. Generate the treatment policy for each patient: P(T)

Assume the nature generates the data with ordering (T, BP, R)

- 1. Generate the treatment policy for each patient: P(T)
- 2. Generate the blood pressure based on the treatment policy: P(BP|T)

Assume the nature generates the data with ordering (T, BP, R)

- 1. Generate the treatment policy for each patient: P(T)
- 2. Generate the blood pressure based on the treatment policy: P(BP|T)
- 3. Generate the recovery rate based on the policy and blood pressure: P(R|T,BP)

Assume the nature generates the data with ordering (T, BP, R)

- 1. Generate the treatment policy for each patient: P(T)
- 2. Generate the blood pressure based on the treatment policy: P(BP|T)
- 3. Generate the recovery rate based on the policy and blood pressure: P(R|T,BP)

For each node X_i in the data generating Bayesian network, $P(x_i|pa_i)$ is called the *mechanism* that generates X_i

How to characterize these "causal" mechanisms?

Independent mechanisms
Formal definition
An example
Flow of causation and association

Characterizing causal mechanisms

Suppose we know the joint distribution P(A, T) of altitude of cities A and their average temperature T. Which one is the cause?

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Independent mechanisms
Formal definition
An example
Flow of causation and association

Characterizing causal mechanisms

Case 1: Suppose the causal DGP is $T \to A$ with mechanisms P(T) and $P(A \,|\, T)$

Case 1: Suppose the causal DGP is $T \to A$ with mechanisms P(T) and P(A|T)

Case 1: Suppose the causal DGP is $T \to A$ with mechanisms P(T) and P(A|T)

Intervention on T does **not** affect the value of A but **both** mechanisms P(T) and P(A|T) change.

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Independent mechanisms
Formal definition
An example
Flow of causation and association

Characterizing causal mechanisms

Case 2: Suppose the causal DGP is $A \to T$ with mechanisms P(A) and P(T|A)

Case 2: Suppose the causal DGP is $A \to T$ with mechanisms P(A) and P(T|A)

Case 2: Suppose the causal DGP is $A \to T$ with mechanisms P(A) and P(T|A)

Intervention on A does affect the value of T. Also, only one mechanism changes (P(A)).

Case 2: Suppose the causal DGP is $A \to T$ with mechanisms P(A) and P(T|A)

Intervention on A does affect the value of T. Also, only **one** mechanism changes (P(A)).

A is the cause since intervention in A changes T.

Case 2: Suppose the causal DGP is $A \to T$ with mechanisms P(A) and P(T|A)

Intervention on A does affect the value of T. Also, only **one** mechanism changes (P(A)).

A is the cause since intervention in A changes T. Moreover, interventions can only change **one** mechanism in the causal DGP $A \to T$.

Independent mechanisms
Formal definition
An example
Flow of causation and association

Modularity assumption

Modularity assumption (Independent mechanisms / Autonomy)

A (data generating) Bayesian network has modular mechanisms if intervention on a node X_i only changes the mechanism $P(x_i|pa_i)$

Modularity assumption

Modularity assumption (Independent mechanisms / Autonomy)

A (data generating) Bayesian network has modular mechanisms if intervention on a node X_i only changes the mechanism $P(x_i|pa_i)$

We define a **causal** Bayesian network as a Markov compatible DAG (w.r.t. data distribution) that has modular mechanisms

Modularity assumption

Modularity assumption (Independent mechanisms / Autonomy)

A (data generating) Bayesian network has modular mechanisms if intervention on a node X_i only changes the mechanism $P(x_i|pa_i)$

We define a **causal** Bayesian network as a Markov compatible DAG (w.r.t. data distribution) that has modular mechanisms

Modularity assumption

Modularity assumption (Independent mechanisms / Autonomy)

A (data generating) Bayesian network has modular mechanisms if intervention on a node X_i only changes the mechanism $P(x_i|pa_i)$

We define a **causal** Bayesian network as a Markov compatible DAG (w.r.t. data distribution) that has modular mechanisms

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z).

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z). A DAG $\mathcal G$ is **causal Bayesian network compatible with P** iff for every $Z \subseteq X$ and z we have:

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z). A DAG $\mathcal G$ is **causal Bayesian network compatible with P** iff for every $Z\subseteq X$ and z we have:

1. P(x|do(Z=z)) is Markov compatible with \mathcal{G}

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z). A DAG $\mathcal G$ is **causal Bayesian network compatible with P** iff for every $Z\subseteq X$ and z we have:

- 1. P(x|do(Z=z)) is Markov compatible with \mathcal{G}
- 2. $P(x_i|do(Z=z))=1$ for every $X_i \in Z$

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z). A DAG $\mathcal G$ is **causal Bayesian network compatible with P** iff for every $Z\subseteq X$ and z we have:

- 1. P(x|do(Z=z)) is Markov compatible with \mathcal{G}
- 2. $P(x_i|do(Z=z)) = 1$ for every $X_i \in Z$
- 3. $P(x_i|pa_i, do(Z=z)) = P(x_i|pa_i)$ for every $X_i \notin Z$

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and P(x|do(Z=z)) denote the distribution of X after intervention on a subset Z (i.e., setting Z to a constant z). A DAG \mathcal{G} is causal Bayesian network **compatible with P** iff for every $Z \subseteq X$ and z we have:

1. P(x|do(Z=z)) is Markov compatible with \mathcal{G}

Modularity assumption

- 2. $P(x_i|do(Z=z))=1$ for every $X_i\in Z$ 3. $P(x_i|pa_i,do(Z=z))=P(x_i|pa_i)$ for every $X_i\not\in Z$

Bayesian network factorization

$$P(x_1, x_2, \cdots, x_n) = \prod_i P(x_i | pa_i)$$

Truncated factorization

$$P(x_1, x_2, \cdots, x_n | do(Z = z))$$

Truncated factorization

$$P(x_1, x_2, \dots, x_n | do(Z = z))$$

$$= \prod_i P(x_i | pa_i, do(Z = z))$$

Markov compatibility (property 1)

Truncated factorization

$$\begin{split} &P(x_1,x_2,\cdots,x_n|do(Z=z))\\ &=\prod_i P(x_i|pa_i,do(Z=z)) & \text{Markov compatibility (property 1)}\\ &=\prod_{x_i\in Z} P(x_i|pa_i,do(Z=z))\prod_{x_i\not\in Z} P(x_i|pa_i,do(Z=z)) \end{split}$$

Truncated factorization

$$\begin{split} &P(x_1,x_2,\cdots,x_n|do(Z=z))\\ &=\prod_i P(x_i|pa_i,do(Z=z)) & \text{Markov compatibility (property 1)}\\ &=\prod_{x_i\in Z} P(x_i|pa_i,do(Z=z))\prod_{x_i\not\in Z} P(x_i|pa_i,do(Z=z))\\ &=1\cdot\prod_{x_i\not\in Z} P(x_i|pa_i,do(Z=z)) & \text{Modularity (property 2)} \end{split}$$

Truncated factorization

$$\begin{split} &P(x_1,x_2,\cdots,x_n|do(Z=z))\\ &=\prod_i P(x_i|pa_i,do(Z=z)) & \text{Markov compatibility (property 1)}\\ &=\prod_i P(x_i|pa_i,do(Z=z)) \prod_{x_i\not\in Z} P(x_i|pa_i,do(Z=z))\\ &=1\cdot\prod_{x_i\not\in Z} P(x_i|pa_i,do(Z=z)) & \text{Modularity (property 2)}\\ &=\prod_{x_i\not\in Z} P(x_i|pa_i) & \text{Modularity (property 3)} \end{split}$$

All of these assumes x consistent with z, otherwise it will be zero

E.g.,
$$P(X_1 = 1, X_2 = 2|do(X_1 = 0)) = 0$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

Assuming the causal graph as

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

Assuming the causal graph as

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$P(R=1|do(T=\textcolor{red}{a})) = \sum_{t,x} P(R=1,\,T=t,BP=x|do(T=\textcolor{red}{a})) \quad \text{marginalization}$$

234/270

Normal BP | High/low BP T = a 81/87 192/263

Assuming the causal graph as

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

55/80

$$P(R=1|do(T=a)) = \sum_{t,x} P(R=1,T=t,BP=x|do(T=a))$$
 marginalization
$$= \sum_{x} P(R=1,T=a,BP=x|do(T=a))$$
 $T=b$ is inconsistent.

Assuming the causal graph as

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$P(R = 1|do(T = \mathbf{a})) = \sum_{t,x} P(R = 1, T = t, BP = x|do(T = \mathbf{a}))$$
 marginalization
$$= \sum_{x} P(R = 1, T = \mathbf{a}, BP = x|do(T = \mathbf{a}))$$

T = b is inconsistent

$$= \sum P(BP = x|T = \mathbf{a})P(R = 1|BP = x, T = \mathbf{a})$$

truncated factorization

Assuming the causal graph as

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$\begin{split} P(R=1|do(T=\mathbf{a})) &= \sum_{t,x} P(R=1,\,T=t,BP=x|do(T=\mathbf{a})) \quad \text{marginalization} \\ &= \sum_{x} P(R=1,\,T=\mathbf{a},BP=x|do(T=\mathbf{a})) \\ &\quad T=b \text{ is inconsistent} \\ &= \sum_{x} P(BP=x|T=\mathbf{a})P(R=1|BP=x,\,T=\mathbf{a}) \\ &\quad \text{truncated factorization} \\ &= P(R=1|T=\mathbf{a}) = \frac{81+192}{87+263} = 0.78 \end{split}$$

Assuming the causal graph as

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$\begin{split} P(R=1|\textit{do}(T=\textbf{\textit{b}})) &= \sum_{t,x} P(R=1,\,T=t,BP=x|\textit{do}(T=\textbf{\textit{b}})) \quad \text{marginalization} \\ &= \sum_{x} P(R=1,\,T=\textbf{\textit{b}},BP=x|\textit{do}(T=\textbf{\textit{b}})) \\ &\quad T=a \text{ is inconsistent} \\ &= \sum_{x} P(BP=x|T=\textbf{\textit{b}})P(R=1|BP=x,\,T=\textbf{\textit{b}}) \\ &\quad \text{truncated factorization} \\ &= P(R=1|T=\textbf{\textit{b}}) = \frac{234+55}{270+80} \approx 0.826 \end{split}$$

	Normal BP	High/low BP
T = a	81/87	192/263
T = b	234/270	55/80

Assuming the causal graph as

What is
$$P(R = 1|do(T = a))$$
 and $P(R = 1|do(T = b))$?

$$\begin{split} P(R=1|\textit{do}(\textit{T}=\textbf{\textit{b}})) &= \sum_{t,x} P(R=1,\textit{T}=t,\textit{BP}=x|\textit{do}(\textit{T}=\textbf{\textit{b}})) \quad \text{marginalization} \\ &= \sum_{x} P(R=1,\textit{T}=\textbf{\textit{b}},\textit{BP}=x|\textit{do}(\textit{T}=\textbf{\textit{b}})) \\ &\quad T=a \text{ is inconsistent} \\ &= \sum_{x} P(\textit{BP}=x|\textit{T}=\textbf{\textit{b}}) P(R=1|\textit{BP}=x,\textit{T}=\textbf{\textit{b}}) \end{split}$$

truncated factorization

$$= P(R = 1 | T = b) = \frac{234 + 55}{270 + 80} \approx 0.826$$

Here, treatment b is better (and association is causation)

Independent mechanisms
Formal definition
An example
Flow of causation and association

Unobserved variables can change everything!

What if, in the previous dataset, the stone size had also influenced both T and R but we didn't observe it?

What to do in the presence of unobserved variable? \rightarrow Lecture 3

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z^\prime

$$P(X|\mathit{do}(Z=z)) \neq P(X|\mathit{do}(Z=z'))$$

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z'

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

 \blacktriangleright A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z, z'

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

 \blacktriangleright A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Proof by induction: $(x_i \text{ is a root node})$ $P(x_i|do(Z=z)) = P(x_i|\emptyset, do(Z=z))$ $= P(x_i) \qquad \text{(Modularity)}$ $= P(x_i|do(Z=z'))$

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z^\prime

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

 \blacktriangleright A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Proof by induction: $(x_i \text{ is a child node})$

$$P(x_i|do(Z=z)) = \sum_{pai} P(x_i, pa_i|do(Z=z))$$

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z'

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

 \blacktriangleright A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Proof by induction: $(x_i \text{ is a child node})$

$$\begin{split} P(x_{i}|do(Z=z)) &= \sum_{pa_{i}} P(x_{i}, pa_{i}|do(Z=z)) \\ &= \sum_{pa_{i}} P(x_{i}|pa_{i}, do(Z=z)) P(pa_{i}|do(Z=z)) \end{split}$$

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z^\prime

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

ightharpoonup A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Proof by induction:
$$(x_i \text{ is a child node})$$

$$P(x_i|do(Z=z)) = \sum_{pa_i} P(x_i, pa_i|do(Z=z))$$

$$= \sum_{pa_i} P(x_i|pa_i, do(Z=z)) P(pa_i|do(Z=z))$$

$$= \sum_{pa_i} \underbrace{P(x_i|pa_i, do(Z=z'))}_{\text{Modularity}} \underbrace{P(pa_i|do(Z=z'))}_{\text{Induction step}}$$

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if at least for two z,z'

$$P(X|do(Z=z)) \neq P(X|do(Z=z'))$$

 \blacktriangleright A node Z (in the compatible causal graph) has no causal effect on its non-descendents

Proof by induction:
$$(x_i \text{ is a child node})$$

$$P(x_i|do(Z=z)) = \sum_{pa_i} P(x_i, pa_i|do(Z=z))$$

$$= \sum_{pa_i} P(x_i|pa_i, do(Z=z)) P(pa_i|do(Z=z))$$

$$= \sum_{pa_i} \underbrace{P(x_i|pa_i, do(Z=z'))}_{\text{Modularity}} \underbrace{P(pa_i|do(Z=z'))}_{\text{Induction step}}$$

$$= P(x_i|do(Z=z'))$$

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

A node can only influence its descendents in a causal graph \mathcal{G} ,

1. If X is a child of Z in \mathcal{G} : direct cause

 X_5

2. If X is a descendent (and not a child) of Z: indirect cause

Remember d-separation

- Unblocked paths between X_2 and X_5 are (potential) dependencies between X_2 and X_5

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

- Unblocked paths between X_2 and X_5 are (potential) dependencies between X_2 and X_5
- Intervention on X_2 only changes the mechanism $P(X_2|Pa_2) = P(X_2|X_1)$

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

- Unblocked paths between X_2 and X_5 are (potential) dependencies between X_2 and X_5
- Intervention on X_2 only changes the mechanism $P(X_2|Pa_2) = P(X_2|X_1)$
- Removing incoming edges to intervened node X_2 : mutilated (or interventional) graph $\mathcal{G}_{\overline{X_2}}$

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

- Unblocked paths between X_2 and X_5 are (potential) dependencies between X_2 and X_5
- Intervention on X_2 only changes the mechanism $P(X_2|Pa_2) = P(X_2|X_1)$
- Removing incoming edges to intervened node X_2 : mutilated (or interventional) graph $\mathcal{G}_{\overline{X_2}}$
- Every unblocked path from X_2 to X_5 in $\mathcal{G}_{\overline{X_2}}$ is a causal path (directed paths)

A node can only influence its descendents in a causal graph \mathcal{G} ,

- 1. If X is a child of Z in \mathcal{G} : direct cause
- 2. If X is a descendent (and not a child) of Z: indirect cause

- Unblocked paths between X_2 and X_5 are (potential) dependencies between X_2 and X_5
- Intervention on X_2 only changes the mechanism $P(X_2|Pa_2) = P(X_2|X_1)$
- Removing incoming edges to intervened node X_2 : mutilated (or interventional) graph $\mathcal{G}_{\overline{X_2}}$
- Every unblocked path from X_2 to X_5 in $\mathcal{G}_{\overline{X_2}}$ is a causal path (directed paths)
- Other unblocked paths in the original graph are backdoor paths

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Independent mechanisms
Formal definition
An example
Flow of causation and association

Questions?

Question

Any questions on Causal Bayesian Networks?

▶ We assumed the data is being generated using (independent) mechanisms $P(x_i|pa_i)$.

▶ We assumed the data is being generated using (independent) mechanisms $P(x_i|pa_i)$. E.g., P(T), P(BP|T), P(R|T,BP) in the kidney data

▶ We assumed the data is being generated using (independent) mechanisms $P(x_i|pa_i)$. E.g., P(T), P(BP|T), P(R|T,BP) in the kidney data

$$R \sim P(R|T=t, BP=x)$$

 $R = f_{x,t}(U)$ where $U \sim \mathtt{Unif}[0,1]$ and $f_{x,t}(u) = P^{-1}(u|T=t, BP=x)$

▶ We assumed the data is being generated using (independent) mechanisms $P(x_i|pa_i)$. E.g., P(T), P(BP|T), P(R|T,BP) in the kidney data

$$R \sim P(R|T=t,BP=x)$$

$$R = f_{x,t}(U) \text{ where } U \sim \mathtt{Unif}[0,1] \text{ and } f_{x,t}(u) = P^{-1}(u|T=t,BP=x)$$

- Any causal mechanism $P(x_i|pa_i)$ can be written as a deterministic function f_i of its direct causes pa_i and some exogenous noise U_i
- \blacktriangleright We call f_i the law (process) that generates X_i

Structural causal models - A mathematical framework to define causal effects

Structural causal model (SCM)

A structural causal model is a tuple $\mathcal{M} = (X, U, F, P_U)$ of

- 1. Endogenous set of variables X, (observed variables)
- 2. Exogenous set of noises U, (unobserved noise)
- 3. Set of functions F, (data generating rules/processes)
- 4. Product distribution P_U over variables in U, i.e., $P_U(u_1, \ldots, u_d) = \prod_{i=1}^d P_U(u_i)$ (noises are independent)

such that for any variable $X_i \in X$, we have an assignment

$$X_i := f_i(PA_i, U_i)$$
 But not $f_i(PA_i, U_i) := X_i$

for some $PA_i \subseteq X \setminus \{X_i\}$, $U_i \in U$, and $f_i \in F$. We call the elements of PA_i direct causes of X_i .

SCMs induce causal graphs

▶ For each SCM \mathcal{M} , we can construct a (unique) graph \mathcal{G} by drawing edges from each direct cause in PA_i to X_i

$$X_1 := f_1(U_1)$$
 $X_2 := f_2(X_1, U_2)$
 $X_3 := f_3(X_2, U_3)$
 $X_4 := f_4(X_1, X_3, U_4)$
 U_1, \ldots, U_4 are jointly independent

 \triangleright We assume \mathcal{G} is acyclic (no feedback loop in assignments)

$$X_1 := f_1(X_2, U_1)$$

 $X_2 := f_2(X_1, U_2)$

Generating "observational" distribution with SCMs

How to generate data from an SCM?

- 1. Consider a topological order of endogenous variables X_1, \ldots, X_d (since the assignments are acyclic)
- 2. Sample from exogenous noises $u_1, \ldots, u_d \sim P_U$
- 3. Generate samples x_1, \ldots, x_d by assignments $x_i = f_i(pa_i, u_i)$

Each X_i can be written as a unique function of noises $(U_k)_{k \in An_i}$ that belong to ancestors of X_i , i.e.,

$$X_i = g_i((U_k)_{k \in An_i})$$

Generating "observational" distribution with SCMs

How to generate data from an SCM?

- 1. Consider a topological order of endogenous variables X_1, \ldots, X_d (since the assignments are acyclic)
- 2. Sample from exogenous noises $u_1, \ldots, u_d \sim P_U$
- 3. Generate samples x_1, \ldots, x_d by assignments $x_i = f_i(pa_i, u_i)$

Each X_i can be written as a unique function of noises $(U_k)_{k \in An_i}$ that belong to ancestors of X_i , i.e.,

$$X_i = g_i((U_k)_{k \in An_i})$$

Observational distribution

An SCM \mathcal{M} induces a unique distribution over endogenous variables X_1, \ldots, X_d , which we call the observational distribution of \mathcal{M} and denote it by $P_X^{\mathcal{M}}$, or simply P.

Generating "interventional" distribution with SCMs

Remember the independent mechanisms assumption: intervention on a variable X_i can only change the mechanism $P(x_i|pa_i)$

We can use SCMs to formally define interventions

Interventional distribution

Consider an SCM \mathcal{M} . An intervention on a variable X_i (or multiple variables) is replacing the assignment $X_i := f_i(PA_i, U_i)$ with a new assignment

$$X_i := \hat{f}(\overline{PA}_i, \hat{U}_i)$$

We call the induced distribution of the new SCM an interventional distribution and denote it by $P_X^{\mathcal{M}}\left(\cdot|do\left(X_i:=\hat{f}(\overline{PA}_i,\hat{U}_i)\right)\right)$.

If $\hat{f}(\overline{PA}_i, \hat{U}_i)$ is a constant value c, we simply write it as $P(\cdot|do(X_i = c))$.

▶ Soft interventions: $\overline{PA}_i = PA_i$, i.e., only the mechanism changes but direct causes remain active

$$X_1 := \mathcal{N}(0, 1)$$

 $X_2 := \mathcal{N}(0, 1)$
 $X_3 := X_1 + X_2 + \mathcal{N}(0, 1)$

before intervention

▶ Soft interventions: $\overline{PA}_i = PA_i$, i.e., only the mechanism changes but direct causes remain active

after intervention on X_3

$$egin{aligned} X_1 &:= \mathcal{N}(0,1) \ X_2 &:= \mathcal{N}(0,1) \ X_3 &:= X_1^2 + X_2^2 + \mathtt{Unif}(0,1) \end{aligned}$$

▶ Hard intervention: $\overline{PA}_i \neq PA_i$

$$X_1 := \mathcal{N}(0, 1)$$

 $X_2 := \mathcal{N}(0, 1)$
 $X_3 := X_1 + X_2 + \mathcal{N}(0, 1)$

before intervention

▶ Hard intervention: $\overline{PA}_i \neq PA_i$

$$X_1 := \mathcal{N}(0, 1)$$

 $X_2 := \mathcal{N}(0, 1)$
 $X_3 := 2X_1 + \mathcal{N}(0, 1)$

after intervention on X_3

▶ Hard intervention: $\overline{PA}_i \neq PA_i$

 $X_3 := \mathbf{c}$

$$X_1 := \mathcal{N}(0, 1)$$

$$X_2 := \mathcal{N}(0, 1)$$

after intervention on X_3

Atomic intervention is a type of hard intervention, where $X_i := c$ for some constant value $c \to \text{mutilated graph } \mathcal{G}_{\overline{X_3}}$

▶ Hard intervention: $\overline{PA}_i \neq PA_i$

after intervention on
$$X_3$$

$$X_1 := \mathcal{N}(0, 1)$$
$$X_2 := \mathcal{N}(0, 1)$$
$$X_3 := c$$

- Atomic intervention is a type of hard intervention, where $X_i := c$ for some constant value $c \to \text{mutilated graph } \mathcal{G}_{\overline{X_3}}$
- ▶ We previously defined causal Bayesian networks only using atomic interventions (see slide 25). SCMs give us more flexibility in defining interventions
- ▶ The causal graph corresponding to an SCM \mathcal{M} is a causal Bayesian network compatible with $P^{\mathcal{M}}$

Consider the following SCM:

$$\begin{split} X_1 &:= U_{X_1} \\ Y &:= X_1 + U_Y \\ X_2 &:= Y + U_{X_2} \\ U_{X_1}, \, U_Y \sim \mathcal{N}(0, 1) \\ U_{X_2} \sim \mathcal{N}(0, \mathbf{0.1}) \end{split}$$

Consider the following SCM:

$$X_1 := U_{X_1}$$

$$Y := X_1 + U_Y$$

$$X_2 := Y + U_{X_2}$$

$$U_{X_1}, U_Y \sim \mathcal{N}(0, 1)$$

 $U_{X_2} \sim \mathcal{N}(0, \mathbf{0.1})$

Observational distribution for X_2 and Y

Consider the following SCM:

$$\begin{split} X_1 &:= U_{X_1} \\ Y &:= X_1 + U_Y \\ X_2 &:= Y + U_{X_2} \\ \\ U_{X_1}, U_Y &\sim \mathcal{N}(0, 1) \\ U_{X_2} &\sim \mathcal{N}(0, \mathbf{0.1}) \end{split}$$

We train two linear models to predict Y:

1.
$$\hat{Y}_1 = \theta_1 X_1 : \mathbb{E} \left[\| \hat{Y}_1 - Y \|_2^2 \right] \approx 1$$

2.
$$\hat{Y}_2 = \theta_2 X_2$$
: $\mathbb{E} \left[\| \hat{Y}_2 - Y \|_2^2 \right] \approx \mathbf{0.1}$

Observational distribution for X_2 and Y

Now, we intervene on X_2 :

$$X_1 := U_{X_1}$$

 $Y := X_1 + U_Y$
 $X_2 := U_{X_2}$

$$U_{X_1}, U_Y \sim \mathcal{N}(0, 1)$$

 $U_{X_2} \sim \mathcal{N}(0, 1)$

Now, we intervene on X_2 :

$$X_1 := U_{X_1}$$

$$Y := X_1 + U_Y$$

$$X_2 := U_{X_2}$$

$$U_{X_1}, U_Y \sim \mathcal{N}(0, 1)$$

 $U_{X_2} \sim \mathcal{N}(0, 1)$

 X_2 is not a good predictor for Y anymore (independent of Y)

Interventional distribution for X_2 and Y

Recap - Lecture 1
Review - Bayesian networks
Observation & intervention
Causal Bayesian networks
Structural causal models

Data generating processes
Observational and interventional distributions

Questions?

Question

Any questions on Structural Causal Models?