В.Н. Жилич, В. В. Поступаев

Определение удельного заряда электрона.

Методическое пособие для Атомного Практикума.

Новосибирск, 2022

2022

УДК 517.52 ББК 22.161.3 А345

Рецензенты: проф. О. *И. Мешков*

???? Жилич В.Н., Поступаев В.В.

Определение удельного заряда электрона. ; Новосиб. гос. ун-т. – Новосибирск : ИПЦ НГУ, 2022. – 280 с.

ISBN 978-5-4437-xxxx-x

Методическое пособие для измерения удельного заряда электрона в двух экспериментальных подхода с использованием различной аппаратуры.

Предназначено для студентов физического и естественнонаучного факультетов НГУ.

УДК 517.52 ББК 22.161.3

© Новосибирский государственный университет, 2022

ISBN 978-5-4437-0452-4

© Жилич В.Н., Поступаев В.В., 2022

Определение удельного заряда электрона.

Введение

Удельный заряд электрона e/m представляет интерес для исследователей во всём мире уже более 100 лет. Именно работы 1897 г. известного английского физика Томсона¹, который измерял удельного заряда q/m катодно-лучевых частиц («корпускул», как он их назвал) по отклонению катодных лучей в электрическом и магнитном полях [2], считаются открытием электрона. Хотя следует отметить, что в действительности «открытие» электрона тянулось более полстолетия, в нем принимало участие много ученых и изобретателей². И в сегодняшнее время электрон является самой «востребованной» частицей, особенно в области атомной физики. Эксперименты по измерению его заряда, массы и их различных комбинаций продолжаются по сей день. Величина удельного заряда e/m относится к фундаментальным физическим константам, определяющим общую картину физического мира. В текущее время удельный заряд электрона является одной из наиболее точно измеренных физических констант (относительная ошибка около 3e-10).

В данной работе предложены два метода измерения удельного заряда. Они демонстрируют разные методические подходы к проведению эксперимента. В первой части работы используется метод магнитной фокусировки (восходит к экспериментам Томпсона). Отношение e/m измеряется косвенным, не вполне очевидным способом и требует достаточно хорошего понимания динамики движения в частиц в полях сложной конфигурации.

Во второй части представляется редкая возможность непосредственного визуального наблюдения за траекторией электронов. Измеряемая величина e/m проявляется весьма наглядно, а не скрыта внутри сложной цепочки рассуждений и вычислений. Для измерения нужной величины, в принципе, достаточно начальных знаний. При этом влияние различных факторов на движение заряженных частиц можно проверять непосредственно, в ходе измерений.

Для студентов физического факультета рекомендуется выполнять обе части работы, для студентов смежных специальностей достаточно выполнить одну из двух.

 $^{^{1}}$ Томсон Джозеф Джон, английский физик. В 1897 г. измерил e/m и массу электрона (прямое открытие электрона, Нобелевская премия по физике 1906 г.).

² По формальному хронологическому признаку первооткрывателем электрона следовало бы считать немецкого физика Эмиля Вихерта, который обнародовал свои работы за 3 месяца до первого заявления Томсона о корпускулах. Эта работа осталась малоизвестной и первооткрывателем обычно считается Томсон.

Часть 1. Определение удельного заряда электрона методом магнитной фокусировки.

Оборудование: осциллографическая трубка, помещенная в соленоид, источник питания соленоида, амперметр, линейка, транспортир

Цель работы: изучение характера движения заряженных частиц в однородном магнитном поле и определение удельного заряда электрона методом магнитной фокусировки.

Движение заряженных частиц в электромагнитном поле.

Принципиальная схема электронно-лучевой трубки (ЭЛТ) показана на рис.1. На движущуюся заряженную частицу действуют две силы: сила Кулона (со стороны электрического поля) и сила Лоренца (со стороны магнитного поля). Электрические поля формируются непосредственно в трубке: продольное - на участке 2-5, и поперечное - на участках 6-7. Магнитное поле будет задаваться внешним соленоидом, соосным с этой трубкой.

Рис. 1. Типичная конструкция однолучевой осциллографической ЭЛТ с электростатическими фокусирующей и отклоняющей системами: 1 — нить накала; 2 — катод; 3 — модулятор; 4 и 5 — первый и второй аноды; 6 — пластины горизонтального отклонения; 7 — пластины вертикального отклонения; 8 — колба ЭЛТ; 9 — люминофорный экран. Электродная система пушки приведена условно и в увеличенном масштабе, часть элементов не показаны. Конструкции различных ЭЛЧ трубок можно найти по ссылке [6], движение заряженных частиц в сложных ЭМ-полях рассматривается в книгах [2,3].

Уравнение движения данной частицы в электромагнитном поле имеет вид(при записи в системе СГС)

$$\frac{d\stackrel{\rightarrow}{p}}{dt} = q\stackrel{\rightarrow}{E} + \frac{q}{c} \left[\stackrel{\rightarrow}{v} \times \stackrel{\rightarrow}{B} \right], \tag{1}$$

здесь P, v, q – импульс, скорость и заряд частицы соответственно; c – скорость света; E и B – электрическое и магнитное поля. Рассмотрим простейший случай – движение заряженной частицы (электрона с зарядом e) в однородном магнитном поле (простые случаи движения рассматриваются в книге [1], движение в сложных полях в работах [2, 3]). Считаем, что электрическое поле отсутствует (E = 0) и вектор начальной скорости частицы произвольным образом ориентирован относительно вектора B.

Разложим вектор начальной скорости на две составляющие — параллельную магнитному полю $v_{||} = v \cdot \cos \alpha$ и перпендикулярную ему $v = v \cdot \sin \alpha$ (рис. 2).

В процессе движения величина v остается постоянной, поскольку сила Лоренца не имеет составляющей вдоль магнитного поля. Сила Лоренца лежит в плоскости, перпендикулярной магнитному полю, и равна по модулю (в системе СГС)

$$F = \frac{e}{c} v_{\perp} B. \tag{2}$$

Эта сила перпендикулярна к v_{\perp} , а потому только искривляет траекторию частицы, не меняя величины скорости по модулю (т. е. полная кинетическая энергия частицы остается постоянной). Поскольку в случае однородного магнитного поля сила постоянна по величине, то проекцией траектории частицы на плоскость, перпендикулярной магнитному полю, будет окружность. Силу Лоренца можно в таком случае рассматривать как центростремительную силу:

$$\frac{mv_{\perp}^2}{R} = \frac{e}{c}v_{\perp}B. \tag{3}$$

Отсюда нетрудно найти радиус кривизны траектории или, точнее говоря, радиус окружности R, а также период обращения T и круговую частоту ω :

$$R = mv_{\perp}c/eB, \tag{4}$$

$$T = 2\pi mc/eB, (5)$$

$$\omega = \frac{eB}{mc}. ag{6}$$

Окружность, по которой движется частица под действием поперечного магнитного поля, принято называть *парморовской окружностью*, а величину R – *парморовским радиусом* I . Частоту ω называют *циклотронной, или парморовской частотой* (иногда для этой величины используются специальные обозначения ω_{H} либо $\omega_{B_{J}}$. Отметим здесь важную особенность формул (4)-(6): циклотронная частота не зависит от энергии нерелятивистской частицы, а ларморовский радиус растёт линейно с поперечным импульсом.

¹ Джозеф Лармор, английский физик-теоретик и математик, изучал движение частиц в магнитных полях, заложил основы теории диамагнетизма и парамагнетизма (прецессия Лармора).

Сложение равномерного движения вдоль силовой линии поля с равномерным вращением в перпендикулярной плоскости приводит в результате к движению частицы по винтовой линии. Шаг винтовой линии λ равен расстоянию, на которое перемещается частица в направлении поля за время одного оборота по окружности:

$$\lambda = v_{\parallel} T = \frac{2\pi \, mcv_{\parallel}}{eB}.\tag{7}$$

Поскольку частота вращения частицы ω не зависит от величины поперечной скорости частицы, однородное магнитное поле обладает фокусирующим действием как по отношению к пучкам заряженных частиц, лежащим в плоскости, перпендикулярной направлению поля (см. лаб. работу 4.1), так и по отношению к пучкам, образующим малый угол с направлением поля.

Особенности движения электрона в магнитном поле позволяют определить отношение e/m.

Рис. 2. Движение частицы в однородном магнитном поле

Определение е/т для электрона методом магнитной фокусировки.

В данной работе используется электронно-лучевая трубка осциллографа, помещенная внутри соленоида, создающего магнитное поле, направленное вдоль оси трубки. Электроны, эмитируемые раскалённым катодом трубки, ускоряются вдоль её оси приложенным напряжением U до энергии

$$E = \frac{mv_{\parallel}^2}{2} = |eU| \tag{8}$$

и приобретают скорость

$$v_{\parallel} = \sqrt{2eU/m}.$$
 (9)

Заметим, что, поскольку в области ускорения и формирования электронного пучка магнитное поле параллельно электрическому (т. е. $v_{\perp} \approx 0$), то при начальном ускорении электронов до энергии, соответствующей приложенному напряжению, магнитное поле не оказывает никакого влияния на движение частиц.

При отсутствии магнитного поля электронный пучок разворачивается на экране осциллографа в линию под действием электрического поля внутри пластин горизонтального отклонения, на которые подано переменное напряжение пилообразной формы (симметрично относительно нуля). Проходя отклоняющие пластины в различные моменты времени, электроны приобретают поперечную скорость v_{\perp} , модуль которой изменяется от нулевой до некоторой скорости $v_{\perp max}$. При этом на экране осциллографа появляется линия, длина которой определяется выражением

$$b_0 = \frac{2v_{\perp \text{max}}}{v_{\parallel}} \cdot L, \tag{10}$$

где L – расстояние от отклоняющих пластин до экрана.

Для простоты рассмотрения можно считать, что имеется точечный источник пучка электронов, у всех электронов есть одинаковая продольная скорость (вдоль магнитного поля) v_{II} и есть небольшой разброс горизонтальной (поперечной) составляющей v_{\perp} в пределах от 0 до $v_{\perp \text{max}}$.

Электроны, испускаемые источником с разными поперечными скоростями, через период T из соотношения (5) совершат один оборот по ларморовской спирали и соберутся в точку. Поскольку продольная скорость у них одинакова, это произойдет на расстоянии $v_{\rm II}T$ (далее снова на всех $nv_{\rm II}T$). Зная это расстояние, можно определить удельный заряд электрона.

Проследим, как будет трансформироваться линия на экране при появлении магнитного поля, направление которого совпадает с осью трубки осциллографа (рис. 3). По мере увеличения магнитного поля уменьшается радиус R (формула (4)) и шаг спирали λ (формула (7)), по которой электроны движутся в магнитном поле до экрана. При одном и том же магнитном поле электроны с разными скоростями $v_{\perp max}$ будут двигаться по винтовым линиям, оси которых вертикально смещены от начала линии на экране на радиус окружности R, пропорциональный поперечной скорости v_{\perp} : $R \sim v_{\perp}$. При этом частота вращения ω одинакова для всех электронов, так как не зависит от их скорости (формула (6)).

На рис. 4 точками приведены проекции траекторий электронов, имеющих $v_{\perp} = v_{\perp max}$ для некоторых значений магнитного поля. Угол поворота φ , набираемый электронами за время движения до экрана,

$$\varphi = \frac{2\pi L}{\lambda} = \frac{eB}{mc} \frac{L}{v_{\text{II}}}.$$
(11)

Рис. 3. Траектории электронов в трубке осциллографа при наличии и отсутствии магнитного поля

При этом угол поворота остается одинаковый для всех электронов с различными скоростями v_{\perp} . Следовательно, линия, высвечиваемая на экране осциллографа, сохранится, повернувшись на угол $\psi = \varphi/2$. То что линия на экране останется прямой можно понять по рис. 4. Из простых геометрических соображений (построение в верхней части рисунка) видно, что для любого радиуса каждая точка пересечения винтовой линии с экраном соответствует условию $\psi = \varphi/2$. Используя выражения (9) и (11), нетрудно связать угол поворота линии ψ с величиной магнитного поля и ускоряющего напряжения U:

$$\psi = \frac{1}{2} \sqrt{\frac{e}{m}} \frac{B \cdot L}{\sqrt{2U} \cdot c} \tag{12}$$

или

$$\frac{e}{m} = 8 \cdot \psi^2 \frac{U \cdot c^2}{B^2 \cdot L^2}.$$
 (13)

Отсюда легко определить отношение e/m, добившись изменением магнитного поля B хорошо измеряемого угла поворота $\psi=\pi/4$, $\pi/2$ или π , когда происходит фокусировка электронов в точку. Таким образом, измеряя угол поворота линии на экране осциллографа для заданной величины магнитного поля, можно определить удельный заряд электрона по наклону зависимости $\psi(B)$.

Puc.~4. Изображение светящейся полосы на экране осциллографа для некоторых значений магнитного поля в соленоиде (при $B = B_{\phi o \kappa}$ происходит первая фокусировка электронов в точку). Светлыми кружками изображены проекции траекторий электронов на экран, имеющих $\mathbf{v}_{\perp} = \mathbf{v}_{\perp max}$, темными – наблюдаемые светящиеся точки на экране осциллографа

Кроме этого, из уравнений (4), (10), (11) следует, что длина линии на экране осциллографа $b(\varphi)$ изменяется следующим образом:

$$b(\varphi) = b_0 \frac{|\sin \varphi|}{\varphi}.$$
 (14)

Кривая, по которой двигаются концы отрезков, называется кохлеоидой. Очевидно, что при $\varphi = 2\pi k$, где k — целое число, происходит фокусировка электронов в точку. Первая фокусировка электронов происходит при величине магнитного поля, для которого электрон за время движения до экрана успеет описать полный круг в перпендикулярной магнитному полю плоскости. Эта величина определяется следующим равенством:

$$B_{\phi o \kappa} = 2\pi \frac{m v_{\parallel} c}{e L}. \tag{15}$$

Необходимо обсудить еще один момент, касающийся пролета электронов между отклоняющими пластинами, где движение происходит тоже в скрещенных полях. Рассмотренная выше картина будет справедлива, если угол $\alpha = v_{\perp}/v_{\parallel}$, получаемый в отклоняющих пластинах, не зависит от величины магнитного поля. Условием, когда можно пренебречь влиянием магнитного поля на движение в отклоняющих пластинах, является малость фазы φ , набираемой при прохождении пластин, длина

которых для данной трубки равна l=3 см. Поскольку величина фазы, равная 2π , набирается на длине, равной шагу спирали λ , то отмеченное выше условие можно записать в виде

$$\varphi = 2\pi l / \lambda << 1$$

или

$$l << \lambda/2\pi = mv_{\parallel}c/eB. \tag{16}$$

Расстояние до экрана L = 23 см, т. е. в точке первой фокусировки $\lambda = 23$ см, и условие (16) принимает вид l = 3 << 4 см, что, очевидно, не выполняется. Это значит, что наши формулы не вполне точны, и присутствие некоторой систематической ошибки неизбежно.

Кроме того, необходимо отметить, что все выше приведенные формулы написаны в системе СГС. В системе СИ, использующей практические единицы (такие, как ампер, вольт), выражения несколько изменятся. В частности, в системе СГС векторы H и B имеют одинаковую размерность и для вакуума совпадают (B = H), а в системе СИ они не только не равны, но и имеют разную размерность ($B = \mu_0 H$, где $\mu_0 = 4\pi \cdot 10^{-7} \approx 1,256 \cdot 10^{-6}$ [Гн/м]). Поэтому при вычислениях нужно соблюдать известную осторожность и чётко представлять, какая система единиц используется. Например, используемая для определения удельного заряда формула (13) в системе СИ будет следующей:

$$\frac{e}{m} = 8 \psi^2 \frac{U}{B^2 L^2}.\tag{17}$$

Подробнее о различиях в электрических единицах СГС и СИ см. [4, 5].

Порядок выполнения работы.

Экспериментальная установка.

Для изучения движения частиц в магнитном поле соленоида используется простая установка, Основным элементом установки является электронно-лучевая трубка (ЭЛТ) марки 8ЛО4И с электростатической отклоняющей системой, которая помещена внутрь соленоида. Эта электронно-лучевая трубка использует источники питания и генератор горизонтальной развёртки от осциллографа С1-49, собственная электронно-лучевая трубка которого отключена. Устройство и принципы работы многочисленных электронно-лучевых трубок более подробно рассмотрены в работах [3,6].

Соленоид создаёт постоянное магнитное поле, направленное вдоль оси ЭЛТ. Для питания соленоида используется стандартный источник с регулируемым выходным напряжением, что позволяет
изменять ток в соленоиде от нуля до требуемой величины. Величина тока в цепи соленоида измеряется при помощи миллиамперметра.

При включении питания осциллографа C1-49 на экране ЭЛТ должна появиться прямая линия, формируемая генератором развёртки осциллографа. После прогрева осциллографа и ЭЛТ, в течение

которого может происходить дрейф положения линии развёртки по экрану, нужно совместить линию развёртки с осью транспортира. Далее, при включении магнитного поля в соленоиде и постепенном его увеличении, эта линия начинает наклоняться по отношению к горизонту и уменьшается в длине (рис. 5). Для измерения длины линии развёртки и угла наклона по отношению к горизонту применяются линейка и транспортир. Рекомендуется перед началом измерений переключателем частоты развёртки осциллографа подобрать оптимальную форму и длину линии развёртки.

Фотография рабочей установки приведена на рис. 6.

Магнитное поле соленоида

Соленоид, используемый при выполнении лабораторной работы 4.3, имеет конечную длину, что необходимо учитывать при обработке экспериментальных результатов. Магнитное поле B_0 бесконечно длинного соленоида задаётся известным выражением (обратите внимание, что используется смешанная система единиц СГС (гаусс) и СИ(ампер)):

$$B_0$$
 [гаусс] =0,4 πn [витков/см] I [ампер], (18)

где n — плотность намотки соленоида, I — протекающий ток.

Рис. 5. Фотография экрана ЭЛТ. Слева: без магнитного поля, справа: магнитное поле включено

Рис. 6. Фотография установки, использующейся в лабораторной работе

Поле на оси соленоида конечного размера определяется выражением

$$B(z) = \frac{1}{2} B_0 \left[\frac{h_1}{b - a} \ln \frac{b + \sqrt{b^2 + h_1^2}}{a + \sqrt{a^2 + h_1^2}} + \frac{h_2}{b - a} \ln \frac{b + \sqrt{b^2 + h_2^2}}{a + \sqrt{a^2 + h_2^2}} \right], \tag{19}$$

где h_1 , h_2 — расстояние от точки на оси с координатой z до одного и другого края соленоида; a и b — внутренний и внешний радиусы соленоида соответственно (рис. 7); B_0 — поле бесконечного соленоида.

Формулу (11) можно переписать в дифференциальной форме для случая магнитного поля, изменяющегося по продольной координате z:

$$d\varphi = \frac{eB(z)}{mcv_{\parallel}}dz. {20}$$

Полный угол поворота будет тогда определяться интегралом выражения (20) по длине траектории частицы от z_1 до z_2 :

$$\varphi = \frac{e}{mcv_{\parallel}} \int_{z_1}^{z_2} B(z) dz = \frac{e}{mc} \frac{L}{v_{\parallel}} B_{eff}, \qquad (21)$$

где $B_{\rm eff}$ – среднее значение поля B вдоль электронной траектории:

$$B_{\text{eff}} = \int_{z_1}^{z_2} \frac{B(z)dz}{z_2 - z_1} \,. \tag{22}$$

Для значений параметров, используемых в работе (h=34 см, b=6.5 см, a=5 см, n=150 витков/см), среднее значение магнитного поля по всей длине соленоида равно $B_{\rm eff}\approx 0.84B_0$. Для расчёта движения электрона внутри ЭЛТ нужно рассчитывать среднее поле по траектории его движения, поэтому для длины дрейфовой траектории 23 см среднее поле имеет величину $B_{\rm eff}\approx 0.89B_0$ (именно это значение нужно использовать при обработке результатов измерений). Следует отметить, что формула для расчёта B(z) в реальном соленоиде, приведённая выше, справедлива только в параксиальной области, т. е. при условии r<< a, где r- расстояние электрона от оси.

Puc. 7. «Толстый» соленоид конечного размера и распределение магнитного поля вдоль его оси $(h=34~{\rm cm},\,b=6,5~{\rm cm},\,a=5~{\rm cm},\,n=150~{\rm витков/cm})$. По горизонтальной оси: координата, нормированная на длину соленоида, центр соленоида принят за начало отсчёта (т.е. соленоид занимает область от -0,5 до +0,5 в этой шкале). По вертикальной оси: отношение магнитного поля к полю бесконечно длинного соленоида.

Задание

1. Собрать и проверить схему по рис. 8.

- 2. Включить осциллограф C1-49 и дать ему прогреться в течение 10 мин до прекращения дрейфа линии развёртки по высоте.
- 3. При выключенном магнитном поле добиться чёткой развёртки луча по какой-либо из координат.
- 4. Изменяя магнитное поле в соленоиде, получить положение линии с хорошо измеряемым значением ψ. Если в работе используется источник Б5-47, то выставить максимальное значение срабатывания защиты (на шкале регулировки рабочего тока), а величину тока в цепи соленоида изменять, варьируя напряжение (при этом запрещается устанавливать выходное напряжение точно 0,0 В!). Величина тока при этом отсчитывается по амперметру. Если в работе используется источник ТЕС-4, то обе ручки регулировки напряжения выставить на максимум, ток установить ручкой «Грубо» на 0 (или ≈ 0,07), затем ручкой точной настройки увеличивать ток от 0.
- 5. Произвести измерения угла поворота линии развёртки ψ и её длины b от величины тока в соленоиде в диапазоне до 250 мА. При этом должно быть не менее 10 измеренных точек в том диапазоне изменения тока соленоида, при котором возможно надёжное определение угла поворота.
- 6. Построить зависимость $\psi = f(B)$ по измеренным результатам.
- 7. Определить величину e/m и ее погрешность по зависимости $\psi = f(B)$. Использовать значение длины дрейфового промежутка L=23 см и величину ускоряющего напряжения U=2.5 кВ.
- 8. Построить зависимость b = f(B) по измеренным результатам, сравнить с теоретической кривой, рассчитанной для измеренной в п. 6 зависимости $\psi = f(B)$. Полученные результаты объяснить.
- Обработку данных можно проводить в стандартных программах Excel, Origin или использовать шаблон на Mathcad, который находится на лабораторных компьютерах (файл Labwork_4_3_em.mcd).

Рис. 8. Схема установки: 1 – источник питания соленоида; 2 – амперметр; 3 – соленоид; 4 – электронно-лучевая трубка; 5 – корпус осциллографа C1-49

Рис. 9. Образец представления данных работы.

Контрольные вопросы

При сдаче работы необходимо предъявить преподавателю данные с линиями подгонки и результатами измерения зависимостей угла поворота и длины линии развёртки от магнитного поля. Ответы на вопросы, требующие получения численных результатов, предоставить в письменном виде. Отчёт о выполненной работе аккуратно оформить в соответствии с требованиями Атомного практикума.

- 1. Укажите способы определения удельного заряда электрона?
- 2. Какие силы действуют на частицу в магнитном поле? Направление силы.
- 3. Как изменяется полная кинетическая энергия частицы при движении в магнитном поле?
- 4. Расскажите об устройстве электронно-лучевой трубки и о принципе её работы.
- 5. Зачем в ЭЛТ поддерживается высокий вакуум? Назовите несколько причин.
- 6. Объясните устройство электронного прожектора (электронной пушки) и принципы фокусировки электронного пучка.
- 7. Почему в осциллографических ЭЛТ применяется отклонение электрическим полем, а в телевизионных и компьютерных ЭЛТ магнитным?
- 8. Почему ускоряющее напряжение в ЭЛТ может достигать десятков киловольт?

- 9. Оцените величину тока электронного луча, используя любые доступные соображения. Почему ток электронного луча ЭЛТ в телевизорах обычно намного выше, чем в осциллографах?
- 10. Почему в сверхбыстродействующих осциллографах, предназначенных для регистрации однократных процессов, ток электронного луча и ускоряющее напряжение много выше, чем в обычных?
- 11. Объясните движение заряженных частиц в обсуждаемой геометрии.
- 12. Покажите, что в условиях обсуждаемого эксперимента изменение полной энергии электронов изза действия горизонтальной развёртки действительно невелико.
- 13. Оцените влияние магнитного поля Земли на точность полученных результатов. Каким образом можно минимизировать погрешность измерений (меняя постановку эксперимента и обработку)?
- 14. Чем вызвано отклонение измеренной зависимости $\psi = f(B)$ от прямой линии?
- 15. Объясните процедуру обработки результатов измерений и полученные результаты, сравните с табличным значением.
- 16. Дополнительный вопрос. Длина линии на экране тоже зависит от угла ψ . Можно ли ее использовать для измерения e/m?

Часть 2. Определение удельного заряда электрона по отклонению электронов в магнитном поле.

Оборудование: тонкая лучевая трубка, помещенная в магнитное поле, пара катушек Гельмгольца, источники питания постояного тока 300 В для анода, 30 В для накала катода, 20 В (до 5 А) для катушек Гельмгольца, 1-2 измерителя тока и напряжения (если шкалы источников не дают нужной точности).

Цель работы: измерение удельного заряда электрона по соотношению скорости электронов, величине магнитного поля и радиуса заворота.

Технические параметры трубки.

Заполняющий газ: неон

Давление газа: 1,3 x 10⁻⁵ бар

Напряжение накала: 4-12 В пост. тока

Ток накала: 300 - 450 мА

Напряжение анода: 200 - 300 В

Ток анода: < 0,3 мA

Диаметр траектории пучка: 20 - 120 мм

Шаг делений: 20 мм

Диаметр трубки: 160 мм

Общая высота: 260 мм

Основание: 115x115x35мм³

Вес: ок. 800г

Рис 10. Тонкая лучевая трубка, используемая в данной работе.

Рис. 11: Электрические подключения от тонкой лучевой трубки к источникам питания пост. тока.

Рис. 12 Электрическое подключения пары катушек Γ ельмгольца.

Инструкции по безопасности

- 1. Термокатодные трубки являются тонкостенными высокоразреженными стеклянными трубками. Обращайтесь с ними осторожно, поскольку есть риск раздавливания.
- 2. Не подвергайте трубку механическим воздействиям. Слишком высокое напряжение, ток или превышение температуры катода может привести к разрушению трубки
- 3. В рабочем состоянии на клеммах трубки может быть высокое напряжение и прикасаться к ним опасно.
- 4. Замена проводов должна осуществляться только при выключенном электропитании.

Основные формулы.

Электрон с зарядом e , двигающийся со скоростью v в направлении, перпендикулярном однородному магнитному полю B , испытывает силу Лоренца в направлении, перпендикулярном как скорости, так и магнитному полю (далее формулы даны в системе СИ)

$$F = e \cdot v \cdot B \tag{1}$$

Это порождает центростремительную силу, воздействующую на электрон на круговой траектории с радиусом г r , где

$$F = m \frac{v^2}{r} \tag{2},$$

где m — это масса электрона. Таким образом, при движении по окружности выполняется соотношение

$$e\,\dot{B} = m\frac{v}{r} \tag{3}.$$

Скорость V зависит от ускоряющего напряжения электронной пушки как

$$v = \sqrt{2 \frac{e}{m} U} \tag{4}.$$

Следовательно, удельный заряд электрона можно определить по следующей формуле:

$$\frac{e}{m} = \frac{2U}{(r \cdot B)^2} \tag{5}$$

Если мы измерим радиусы орбит для различных ускоряющих напряжений U и различных магнитных полей B , то, согласно уравнению (5), измеренные значения могут быть представлены на графике с осями $(rB)^2$ и 2U в виде прямой линии, проходящей через исходную точку с наклоном e/m .

Магнитное поле, созданное в паре катушек Гельмгольца, определяется током I_H , проходящему через одновитковую катушку $B = k \cdot I_H$. Коэффициент пропорциональности k может быть определена из радиуса катушки R = 147,5 мм и числа витков N = 124 в катушке. В нашем случае

$$k = (0.8)^{\frac{3}{2}} \mu_0 \frac{N}{R} = 0.756e-3 \left[\frac{Tn}{A} \right]$$
 (6).

Таким образом, все параметры для определения удельного заряда известны.

Рис. 13. Фотография работающей установки.

Измерение удельного заряда электрона.

Регулировка электронного пучка

- 1. Включать трубку желательно в затемненной комнате. Для данной лампы яркость электронного луча не очень большая (при выбранном безопасном токе накала).
- 2. Включите напряжение накала. Это напряжение 11В зафиксировано на источнике во избежание возможного повреждения катода.
- 3. Подождите около 1 минуты для стабилизации температуры накала.
- 4. Увеличивайте напряжение анода до 200 В (электронный пучок изначально горизонтален и виден как слабый синеватый луч).

Рис. 14. Установка в неправильной конфигурации.

- 5. Включите ток I_H , проходящий через катушки Гельмгольца, и убедитесь, что электронный пучок изогнут вверх.
- 6. Продолжайте увеличивать ток, проходящий сквозь катушки. Добейтесь, чтобы электронный пучок образовал замкнутый круг. При необходимости, поправьте ориентацию лампы, чтобы траектория стала круговой, а не спиральной.
- 7. Выберите ток, проходящий через катушки, таким образом, чтобы радиус круговой траектории был, к примеру, 5 см. Диаметр пучка фиксируется совмещением высшей точки орбиты с реперными метками в трубке. Запишите заданное значение тока. Убедитесь, что источник питания катушек измеряет именно ток, а не напряжение.
- 8. Уменьшите напряжение анода шагом по 50 B от 299 до 99 B. В каждом случае, устанавливайте ток катушки I_H таким образом, чтобы радиус оставался постоянным. Запишите данные значения.
- 9. Запишите другие серии измеренных значений для радиусов 4, 3 и 2 см.
- 10. Для оценки ошибки одного измерения выполните серию (8-10) измерений тока для радиуса 3 см при одинаковых условиях, каждый раз заново подстраивая радиус и меняя положение точки наблюдения (глаза). Из этих данных определите статистическую ошибку одного измерения.
- 11. Для дальнейшей оценки нанесите замеренные значения в график 2U относительно $(rB)^2$ (см. Рис. 15). Наклон линии через исходную точку соответствует e/m. Обработку данных можно проводить в стандартных программах Excel или Origin.

12. Для оценки систематики произведите подгонку всех точек прямой типа $y=a\cdot x$ и $y=a\cdot x+b$. Сравните результаты. Прокомментируйте их.

Puc.15. График r^2B^2 относительно 2U(B) для замеренных значений (черный: r=5 см, красный: r=4 см, зеленый: r=3 см).

- 13. Сделайте раздельную обработку для 4 групп данных (для каждого радиуса отдельно, $y=a\cdot x+b$). Сравните 4 измерения, найдите среднее, дисперсию и ошибку среднего.
- 14. Оцените статистическую точность вашего измерения и систематическую ошибку.
- 15. Сравните результаты измерений с табличным значением.

Контрольные вопросы

При сдаче работы нужно предъявить преподавателю данные с линиями подгонки и результаты измерения. Отчёт о выполненной работе должен быть аккуратно оформлен в соответствии с требованиями Атомного практикума.

- 1. Из каких соображений выбирается вакуум в приборе? Приведите численные оценки.
- 2. Как работают катушки Гельмгольца. Как можно измерить магнитное поле?
- 3. Как вы думаете, что в чем причина неправильной работы установки на Рис. 14.
- 4. Представьте, что вы сделали измерения при одном только при одном U и одном r. Можно ли определить e/m. Как можно оценить ошибку вашего результата?
- 5. Что такое метод наименьших квадратов и критерий χ-квадрат? Как оценить ошибку измерения по методу наименьших квадратов?
- 6. Проанализировать возможные источники ошибок измерения e/m?
- 7. Как вы думаете, почему в данном эксперименте для измерения радиуса траектории не используется простая линейка?
- 8. Почему данной работе используются катушки Гельмгольца? Чем они примечательны?
- 9. Влияет ли ЭМ поле Земли на результаты измерения?
- 10. Как вы думаете, чем определяется выбор рабочего газ в трубке, в нашем случае неона?

Библиографический список

- 1. **Ландау Л. Д., Лифшиц Е. М.** Теория поля. М.: Наука, 1985. §§20-22 движение частиц в электромагнитных полях.
- 2. **Сивухин Д. В.** Электричество. М.: Наука, 1983. §§86-90 движение частиц в электромагнитных полях. Определение удельного заряда частицы (параболы Томпсона). Измерение элементарного заряда методом масляных капель.
- 3. **Арцимович Л. А., Лукьянов С. Ю.** Движение заряженных частиц в электрических и магнитных полях. М.: Наука, 1978. §§7-17 движение частиц в комбинированных полях. Фокусировка с помощью короткой катушки. Основные принципы масс-спектроскопии.
- 4. **Парселл Э.** Электричество и магнетизм. Берклеевский курс физики. М.: Наука, 1983. Приложение: О построении электрических единиц в системе СИ.

- 5. **Портис А.** Физическая лаборатория. Берклеевский курс физики. М.: Наука, 1978. С. 2–40. Работы 1.1-1.3. Системы электрических единиц. Движение электронов в электромагнитных полях.
- 6. **Пароль Н. В., Бернштейн А. С.** Осциллографические электронно-лучевые трубки: Справочник. М.: Радио и связь, 1990. С.3–22. Принципы работы осциллографических электронно-лучевых трубок, особенности их конструкций,

Учебное издание

Жилич Виктор Николаевич, Поступаев Владимир Валерьевич

Определение удельного заряда электрона.

Учебно-методическое пособие.

Редактор *И. О. Фамилия* Оригинал-макет *И. О. Фамилия* Обложка *Е. В. Неклюдовой*

Подписано в печать ??.??.2022 г. Формат $60 \times 84 \times 1/16$. Уч.-изд. л. 1. Усл. печ. л. 0,93. Тираж 100 экз. Заказ \mathbb{N}° хх Издательско-полиграфический центр НГУ 630090, Новосибирск, ул. Пирогова, 2.