Decentralised location verification system

Conor Taylor

B.A.(Mod.) Computer Science Final Year Project, April 2016 Supervisor: Stephen Barrett

Design and evaluate a decentralised system that allows participants to prove their location.

Design and evaluate a decentralised system that allows participants to prove their location.

► Is is possible?

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- ▶ Is it resilient to attack?

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- Is it resilient to attack?
- Does it satisfy my goals?

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- Is it resilient to attack?
- Does it satisfy my goals?

Goals:

Privacy protecting.

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- Is it resilient to attack?
- Does it satisfy my goals?

Goals:

- Privacy protecting.
- ▶ False location claims must be detectable.

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- Is it resilient to attack?
- Does it satisfy my goals?

Goals:

- Privacy protecting.
- ▶ False location claims must be detectable.
- Cannot rely on any centralised resources.

Design and evaluate a decentralised system that allows participants to prove their location.

- Is is possible?
- Is it resilient to attack?
- Does it satisfy my goals?

Goals:

- Privacy protecting.
- False location claims must be detectable.
- Cannot rely on any centralised resources.
- Capable of running on mobile devices.

There are no known existing decentralised location proof systems.

There are no known existing decentralised location proof systems.

There are existing *distributed* location proof systems, with different interesting approaches.

HP Laboratories.

Background University of Waterloo

University of Waterloo.

University of Waterloo

University of Waterloo

University of Waterloo

Who, When. and Where?

Who, When, and Where? University of Alabama.

Issues

A decentralised location proof system needs a way of:

- Creating, storing, and providing access to location proofs.
- Detecting fake location proofs.
- Allowing users full control over their own privacy.

Issues

A decentralised location proof system needs a way of:

- Creating, storing, and providing access to location proofs.
- Detecting fake location proofs.
- Allowing users full control over their own privacy.

Without any central resource to store data or manage the system.

Background Blockchain

A blockchain is a decentralised, tamper-proof, append-only ledger.

Background Blockchain

A blockchain is a decentralised, tamper-proof, append-only ledger.

Allows transaction records to be stored publicly and permenantly, without use of a central authority.

Blockchain

Blockchain

Background Blockchain

Decentralised, tamper-proof method of storing location proofs.

3 distinct entities:

- ▶ Mobile node
- ► Miner node M
- ▶ Verifier node

Mobile node

Mobile node

Mobile nodes

Mobile nodes

Mobile nodes

Miner nodes

Problem

A system that allows participants to verify a users claimed location.

Goals:

- Privacy protecting.
- False location claims must be detectable.
- Cannot rely on any centralised resources.
- Capable of running on mobile devices.

Design Identities

Used to **anonymously** identify a node in a transaction.

Every node generates a new identity for each transaction, making it untrackable.

Balancing goals:

- ▶ False location claims must be detectable.
- Privacy protecting.

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Duplication

Identity duplication unavoidable in a scalable decentralised system.

Identities: Duplication

Identity duplication unavoidable in a scalable decentralised system.

ID	Contents
ffa0	
ffa1	
ffa2	T_{A4}
ffa3	
ffa4	T _{B87}

Identities: Duplication

Identity duplication unavoidable in a scalable decentralised system.

ID	Contents
ffa0	
ffa1	
ffa2	T_{A4} , T_{C102}
ffa3	
ffa4	T _{B87}

Design Transactions

Transactions are created when two mobile nodes physically meet.

▶ Ad-hoc bluetooth connection between the nodes.

Design Transactions

Node A will create the following transaction after meeting node B:

$$T_{An} = K_A(ts_A|loc_A|ID_{An}|ID_{Bm}|KP_{Bm})$$

Design Transactions

Node A will create the following transaction after meeting node B:

$$T_{An} = K_A(ts_A|loc_A|ID_{An}|ID_{Bm}|KP_{Bm})$$

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a tree of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a tree of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Problem

A system that allows participants to verify a users claimed location.

Goals:

- Privacy protecting.
- False location claims must be detectable.
- Cannot rely on any centralised resources.
- Capable of running on mobile devices.

Transactions: Key Packets

Key Packets provide a Verifier with a means of examining a mobile node's transactions.

Two main properties:

- Allow a Verifier to build a graph of a mobile node's activity.
- Allow a mobile node to preserve control its own privacy.

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

$$\emptyset \leftarrow L_0 \mid T_0 \leftarrow L_1 \mid T_1 \leftarrow L_2 \mid T_2 \mid$$

Two Key Lists: KL_{AT} and KL_{AL} .

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Two Key Lists: KL_{AT} and KL_{AL} .

Transactions: Key Packets - Privacy

Published transactions split into two parts: Link and Transaction

Two Key Lists: KL_{AT} and KL_{AL} .

Design Transactions

Node A will create the following transaction after meeting node B:

$$T_{An} = \frac{K_A(ts_A|loc_A|ID_{An}|ID_{Bm}|KP_{Bm})}{}$$

Design Transactions

Node A will create the following transaction after meeting node B:

$$T_{An} = \frac{KL_{AT}[n](ts_A|loc_A|ID_{An}|ID_{Bm}|KP_{Bm})}{t}$$

Design Transactions

Node A will create the following transaction after meeting node B:

$$T_{An} = KL_{AT}[n](ts_A|loc_A|ID_{An}|ID_{Bm}|KP_{Bm})$$

Node A will then publish the following to the blockchain:

$$P_{An} = ID_{An} | KL_{AL}[n] (ID_{An-1} | ts_A) | T_{An}$$

Design Verification

Mobile node needs to provide Verifier node with:

- ▶ ID of most recent transaction.
- ▶ Key Packet for *n* most recent transactions.
- ▶ Nonce list for *n* most recent IDs.
- Public key.

Problem

A system that allows participants to verify a users claimed location.

Goals:

- Privacy protecting.
- False location claims must be detectable.
- Cannot rely on any centralised resources.
- Capable of running on mobile devices.

Case-based evaluation.

Case-based evaluation.

Two kinds of case-based evaluation:

- ► Desirable properties.
- Threats.

Desirable properties

OTIT defines 8 desirable properties of a location proof system:

- Chronological.
- Order-preserving.
- Verifiable.
- ► Tamper evident.

- Privacy preserved.
- Selective in-sequence privacy.
- Privacy protected chronology.
- Convenience and derivablilty.

Threats

A number of papers have gathered threats to evaluate their models against:

- Dishonest users.
- Malicious intruders.
- Curious users.
- Malicious applications.
- False timestamping.
- ▶ Implication.
- Proof switching.
- Relay attack.

- Eavesdroppers.
- Wormhole attacks.
- False presence.
- False assertion.
- Denial of presence.
- Denial of witness's presence.
- Privacy violation.
- Weak identities.
- Sybil attack.

Threats - Weak identities

I assume that private keys and nonce lists are never shared.

Threats - Sybil attack

No way of determining if two distinct location proof chains were created by two distinct mobile nodes.

Threats - Sybil attack

No way of determining if two distinct location proof chains were created by two distinct mobile nodes.

No provable decentralised solution to the Sybil attack (yet).

Threats - Sybil attack

No way of determining if two distinct location proof chains were created by two distinct mobile nodes.

No provable decentralised solution to the Sybil attack (yet).

Mitigations:

- Introduce identity creation penalty.
- ▶ Web of trust.
- Secret verification techniques.

Developed a privacy-protecting, decentralised location proof system.

Developed a privacy-protecting, decentralised location proof system.

Completed a case-based evaluation.

Developed a privacy-protecting, decentralised location proof system.

Completed a case-based evaluation.

Currently vulnerable to extremely targeted Sybil attacks.

Developed a privacy-protecting, decentralised location proof system.

Completed a case-based evaluation.

Currently vulnerable to extremely targeted Sybil attacks.

Resilient against every other known attack.

Developed a privacy-protecting, decentralised location proof system.

Completed a case-based evaluation.

Currently vulnerable to extremely targeted Sybil attacks.

Resilient against every other known attack.

Sybil attack can be heavily mitigated against.

Developed a privacy-protecting, decentralised location proof system.

Completed a case-based evaluation.

Currently vulnerable to extremely targeted Sybil attacks.

Resilient against every other known attack.

- Sybil attack can be heavily mitigated against.
- Decentralised solution to Sybil attack may be found in future.

Future work

Further study into advanced Verification techniques.

Future work

Further study into advanced Verification techniques.

Investigate the impact that witholding certain private transactions has on verifiability.

Future work

Further study into advanced Verification techniques.

Investigate the impact that witholding certain private transactions has on verifiability.

Build it!