CS-Club, осенний семестр 2014, курс алгоритмов. Orthogonal Range Query 2D implementation with fractional cascading

Ivanov A.K.

20 декабря 2014 г.

1 Постановка задачи

Реализовать структуру данных, содержащую мн-во точек на плоскости и поддерживающую запрос:

"выдай все точки из прямоугольника: (x_0, y_0, w, h) " протестировать корректность.

протестировать скорость в сравнении с наивным алгоритмом.

2 Реализация

```
Интерфейс:
```

```
public interface ORQ2D {
   P[] query(int x0, int y0, int w, int h);
}

Ochobhыe методы:
// ''points '' should be a set
public FractionalCascadingORQ2D(P[] points)
// recursive tree generator
XNode generate(P[] points_x, int l, int r, P[] points_y)

//O(log(n)) - total time on each query
List <P> addLeft(XNode n, int ptr)
List <P> addRight(XNode n, int ptr)

//O(log(n) + k) - total time on each query
List <P> collectFromTheLeft(XNode n)
List <P> collectFromTheRight(XNode n)
```

3 Тестирование

- 1. Генерируем $N=2^i*10$ равномерно распределенных по плоскости точек со значениями координат в $[0\dots 10^6]$.
- 2. Генерируем 200 случайных запросов вида $(x_0, y_0, w+1, h+1)$ где каждое значение из диапазона $[0...10^6]$.
- 3. Усредняем время работы каждого алгоритма.

4 Результаты тестирования

n/algo	FC	Naive
81920	$0.45~\mathrm{ms}$	$0.59~\mathrm{ms}$
655360	$4.22~\mathrm{ms}$	12.38 ms
1310720	12.83 ms	20.39 ms
5242880	57.20 ms	$96.78~\mathrm{ms}$

Версия с $w, h \in [1 \dots 30]$

n/algo	FC	Naive
327680	$0.03~\mathrm{ms}$	$1.58~\mathrm{ms}$
655360	$0.03~\mathrm{ms}$	$4.5~\mathrm{ms}$
1310720	$0.03~\mathrm{ms}$	10.38 ms

Версия с $w \in [1...1000000]$ и $h \in [1...10]$

n/algo	FC	Naive	Binary
163840	$0.01~\mathrm{ms}$	$1.1 \mathrm{ms}$	$0.44~\mathrm{ms}$
327680	$0.02~\mathrm{ms}$	2.9 ms	$0.96~\mathrm{ms}$
655360	$0.02~\mathrm{ms}$	$6.6~\mathrm{ms}$	$2.54 \mathrm{\ ms}$