

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

ZeroWire G2 Receiver

MODEL NUMBER: WR-P42-11

FCC ID: UEZ-WR-P42-11

REPORT NUMBER: 14U19063-E2, Revision C

ISSUE DATE: MARCH 25, 2015

Prepared for

NDS SURGICAL IMAGING, LLC 5750 HELLYER AVENUE SAN JOSE, CA 95138, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

Revision History

Rev.	Issue Date	Revisions	Revised By
	02/26/2015	Initial Issue	M. Heckrotte
A	03/05/2015	Editorial update Section 5	S. Aguilar
В	03/25/2015	Restated power density results as radiated power	M. Heckrotte
С	03/30/2015	Corrected the FCC ID number to FCC ID: UEZ- WR-P42-11	S. Kuwatani

TABLE OF CONTENTS

1.	ATT	TESTATION OF TEST RESULTS	3
2.	TES	ST METHODOLOGY	5
3.	FAC	ACILITIES AND ACCREDITATION	5
4.	CAL	ALIBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	
4	<i>4.2.</i>	MEASUREMENT UNCERTAINTY	5
5.	FQI	QUIPMENT UNDER TEST	6
	· 5. 1.	DESCRIPTION OF EUT	
į	5.2.	CONDUCTED OUTPUT POWER	
į	5.3.	WORST-CASE CONFIGURATION AND MODE	6
į	5. <i>4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	7
į	5.5.	SOFTWARE AND FIRMWARE	7
į	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT	11
7.		PPLICABLE LIMITS AND TEST RESULTS	
_	7.1. 7.2.	RADIATED POWER	
	7.3.	PEAK CONDUCTED OUTPUT POWER	
	7.4.	FREQUENCY STABILITY	
	7.5.	SPURIOUS EMISSIONS	
•	7.5.	5.1. Spurious Emissions 30MHz TO 1 GHz	23
	7.5.3 7.5.3	·	
	7.5. 7.5.	•	
		5.5. Spurious Emissions 40 TO 200 GHz	
7	7.6.	AC POWER LINE CONDUCTED EMISSIONS	34
8.	GRO	ROUP INSTALLATION	41
9.	RFI	EXPOSURE	42
10.	. 3	SETUP PHOTOS	44
	1	1. ATTESTATION OF TEST RESULTS	
CC	MPA	ANY NAME: NDS SURGICAL IMAGING, LLC 5750 HELLYER AVENUE SAN JOSE, CA 94138, U.S.A. Page 3 of 49	

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

EUT DESCRIPTION: ZeroWire G2 Receiver

MODEL: WR-P42-11

SERIAL NUMBER: ENG10006, ENG10007, RX107

DATE TESTED: NOV. 19th, 2014 to JAN.28th, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

DATE: MARCH 25, 2015

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

MICHAEL HECKROTTE PRINICIPAL ENGINEER UL Verification Services Inc.

MH

STEVE AGUILAR
LAB ENGINEER
UL Verification Services Inc.

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC KDB 200443 D02 RF Detection Method V01, FCC KDB 200443 Millimeter Wave Test Procedure.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
☐ Chamber A	☐ Chamber D
☐ Chamber B	☐ Chamber E
☐ Chamber C	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB
Radiated Disturbance, 1 to 6 GHz	±3.86 dB
Radiated Disturbance, 6 to 18 GHz	±4.23 dB
Radiated Disturbance, 18 to 26 GHz	±5.30 dB
Radiated Disturbance, 26 to 40 GHz	±3.23 dB
Radiated Disturbance, 4 GHz above	±3.50dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The WR-P42-11 is a Generation 2 Wireless HD sink operating in the 57-64 GHz band for Wireless Video Audio Network (WVAN). The EUT receives High Definition Audio/Video from a WirelessHD source (UEZ-WT-P42-13).

The EUT receives High Definition Audio/Video data on a single High Rate (HRP) channel at either 60.48 GHz or 62.64 GHz. The integral HRP receive antenna is an adaptive beam-steering array with a maximum gain of 22 dBi.

The EUT transmits and receives control and management signals on one of three Low Rate (LRP) channels per HRP channel. LRP channels range from 60.321375 to 60.638625 GHz (for HRP at 60.48 GHz) or from 62.481375 to 62.798625 GHz (for HRP at 62.64 GHz). The integral LRP transmit/receive antenna is a scanning beam-steering array with a maximum gain of 16 dBi for each polarization.

The LRP modulation is BPSK. The HRP modulation can be either QPSK or 16-QAM. Three system data rates are implemented: QPSK at 0.952 Gb/s (Quarter Rate), QPSK at 1.904 Gb/s (Half Rate) and 16-QAM at 3.807 Gb/s (Full Rate).

5.2. CONDUCTED OUTPUT POWER

The antenna is integral thus radiated measurements are made. The EIRP was measured at the worst-case condition, thus the EIRP measurement conditions correspond to the maximum EUT antenna gain. Therefore the maximum antenna gain is used to calculate the Peak Output Power.

The highest peak conducted output power is 1.02 mW (0.10 dBm).

5.3. WORST-CASE CONFIGURATION AND MODE

The 1080p video mode was determined to be the worst case mode for emissions.

DESCRIPTION OF AVAILABLE ANTENNAS 5.4.

The radio utilizes an integral phased-array antenna, with a maximum gain of 16 dBi.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Gemtek Version 1.3.01

The test utility software used during testing was SBAM2 NB 2011.11.28.0 and RS232.exe version 11-13-2014

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number				
HD Digital Media Player	GFEN	EXT-HD-DSMP	AB1403770171				
DC Power Adepter	GFEN	3A-401WP12					
HD Monitor	NDSSI	Radiance G2 HB	ENG0722				
HD Monitor Power		MW155RA2400F					
supply	SL Power Elec.	02	B36-07029				
Interface Board	SiBeam	Cyclops	-				
Interface Board	SiBeam	Cyclops	-				
Laptop	Dell	E6330	3819856385				
			CN-01XRN1-48661-				
Laptop Power supply	Dell	1XRN1	398-CS HT-A01				

I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	No. of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	DC	2	Barrel	Unshielded	3	Ferrite on DC cord			
2	AC	1	AC,3P	Unshielded	1.8	N/A			
3	DC	1	Barrel	Unshielded	2.4	N/A			
4	DVI	1	DVI	Shielded	2	N/A			
5	DC	1	Barrel	Unshielded	1.5	N/A			
6	DVI	1	HDMI-to-DVI	Shielded	1.8	N/A			

TEST SETUP

Laptop using USB to Mini-USB was used to set EUT into an operational mode and was not used as part of the test.

The SiBeam Cyclops interface board was used to directly interface the RF module in order to set the EUT in the proper modes for RF Tests.

SETUP DIAGRAM FOR TESTS

SETUP DIAGRAM FOR TESTS

Test Equipment List						
Description	Manufacturer	Model	S/N	Cal Due		
N9030A PXA Signal Analyzer	Agilent	N9030A	MY52350427	9/13/2015		
Analog Signal Generator, 40 GHz	Agilent	E8257D	MY48050681	9/26/2015		
Down Converter, 67 GHz	Agilent	MT-463	12020	CNR		
mmWave Source 50 - 75 GHz	OML	S15MS-AG	80708-4	CNR		
Mixer Diplexer for HP	OML	DPL.313B	N02429	CNR		
Harmonic Mixer, 50 GHz	Agilent	M1970U-002	MY5139	11/1/2015		
Harmonic Mixer, 75 GHz	Agilent	11970V	2521A01183	2/5/2015		
Harmonic Mixer, 110 GHz	Agilent	11970W	2521A01314	2/13/2015		
Harmonic Mixer, 90 to 140 GHz	OML	M08HWA	F90519-2	6/17/2015		
Harmonic Mixer, 140 to 220 GHz	OML	M05HWA	G90519-1	6/17/2015		
Single Average Power Meter	Agilent	N1913A	MY53100006	5/1/2015		
Waveguide Power Sensor	Agilent	V8486A	MY52300008	5/6/2015		
Harmonic Mixer, 50-80 GHz	Keysight	M1970V-002	MY51390830	6/18/2015		
Low Pass Filter	Spacek	LPF 5-60-8-15	14L21	CNR		
Low Noise Amplifier, 40-50 GHz	Spacek	SL4510-33-4W	14J05	9/4/2015		
Low Pass Filter	Spacek	LPF-5-50-8-22	14L20	CNR		
Spectrum Analyzer	Agilent	8564E	3943A01643	8/6/2015		
Horn Antenna, 18 to 26.5GHz	ARA	MWH-1826/B	1049	12/17/2015		
PreAmplifier, 1-26.5GHz	Agilent	8449B	3008A04710	3/23/2015		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	924343	9/3/2015		
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	1029	7/15/2015		
Oscilloscope 1GHz 4 Ch DSO	Agilent	DSO9104A	MY51420139	6/11/2015		
Low Pass Filter, 10MHz	Solar Electronics	6623-10	136101	3/26/2015		
Low Noise Amplifier	VIVAtech	VTLN-018-FB	51	CNR		
Waveguide switch	mi-Wave	530V/387	1332	CNR		
MM-Wave Isolator	Millitech	FBI-15-RSES0	1734	CNR		
50-75GHZ RF Detector	Millitech	DET-15-RPFWI	41	CNR		
Spectrum Analyzer, 44 GHz	Agilent	N9030A	MY51380911	2/12/2015		
Antenna, Horn, 18 GHz	ETS Lindgren	3117	29310	3/20/2015		
Antenna, Biconolog, 30MHz-1 GHz*	Sunol Sciences	JB1	A051314-2	1/28/215		
RF PreAmplifier, 1-18GHz *	Miteq	AFS42-00101800-25-S-42	T742	1/20/2015		
Preamp, 1000MHz*	Sonoma	310N	185623	6/7/2015		
Spectrum Analyzer, 44 GHz	Agilent	N9030A	MY53311010	5/17/2015		
Antenna, Horn, 18 GHz	ETS Lindgren	3117	164318	4/14/2015		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB3	A051314-2	4/27/2015		
RF PreAmplifier, 1-18GHz	Mitea	AFS42-00101800-25-S-42	1818464	6/5/2015		
Preamp, 1000MHz	Sonoma	310N	325188	6/5/2015		
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESCI 7	100935	9/16/2015		
LISN, 30 MHz	FCC	50/250-25-2	114	1/17/2015		
Chamber, Environmental	Cincinnati Sub Zero	ZPHS-8-3.5-SCT/WC	ZP131613	4/10/2015		
Power supply AC	Elgar-Ametek	CW2501M	1307A03505	CNR		
DMM	Fluke	87V	23310087	3/21/2015		
Radiated Software	UL	UL EMC	Ver 9.5, July 2	il		
Conducted Software	UL	UL EMC	Ver 9.5, May 1			

^{*}Used before due date.

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

APPLICABLE RULE

§15.255 (e) (1) For the purposes of this paragraph (e)(1), emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g. for frequency hopping devices).

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The spectrum analyzer and external mixer are set up to measure the radiated output of the transmitter.

RESULTS

Channel	Frequency	6 dB Bandwidth
	(GHz)	(MHz)
Low	60.32	87.80
Mid	60.64	90.40
High	62.79	91.40

6dB BANDWIDTH

6dB BANDWIDTH

7.2. RADIATED POWER

LIMIT

§15.255 (b) (1) (i) Within the 57-64 GHz band, the average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm.

TEST PROCEDURE

§15.255 (b) (6) KDB 200443 D02 RF Detection Method V01

Measurements are made at a distance greater than or equal to the far field boundary distance.

The measured power level is converted to EIRP using the Friis equation:

$$EIRP = P_T * G_T = (P_R / G_R) * (4 * Pi * D / \lambda)^2$$

where:

G_R is the gain of the receive measurement antenna

D is the measurement distance

 λ is the wavelength

FAR FIELD BOUNDARY CALCULATIONS

The far-field boundary is given in FCC KDB Publication 200443 as:

$$R_{far field} = (2 * L^2) / \lambda$$

where:

L = Largest Antenna Dimension, including the reflector, in meters

 λ = wavelength in meters

Frequency L		Lambda	R (Far Field)
(GHz)	(m)	(m)	(m)
60.48	0.020	0.0050	0.16
62.64	0.020	0.0048	0.17

Low Channel

PEAK RADIATED POWER

Frequency	Measurement Distance	Measured Peak Voltage	Raw Measured Power	Corrd Power	Rx Antenna Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
60.32	1.50	6.30	-32.77	-32.47	23.00
EIRP	EIRP Limit	Margin			
(10)		(15)			
(dBm)	(dBm)	(dB)			
16.1	43.0	-26.9			

AVERAGE RADIATED POWER

Frequency	Measurement Distance	Measured Average Voltage	Measured Power	Corrd Measured Power	Rx Antenna Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
60.32	1.50	0.90	-37.34	-37.04	23.00
EIRP	EIRP Limit	Margin			
(dBm)	(dBm)	(dB)			
11.5	40.0	-28.5			

Mid Channel

PEAK RADIATED POWER

Frequency	Measurement Distance	Measured Peak Voltage	Raw Measured Power	Corrd Power	Rx Antenna Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
60.64	1.50	6.35	-33.16	-32.86	23.00
EIRP	EIRP Limit	Margin			
(dBm)	(dBm)	(dB)			
15.8	43.0	-27.2			

AVERAGE RADIATED POWER

AVENAGE NADIA	ILD I OWER				
Frequency	Measurement	Measured	Measured	Corrd Measured	Rx Antenna
	Distance	Average Voltage	Power	Power	Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
60.64	1.50	0.88	-38.02	-37.72	23.00
EIRP	EIRP	Margin			
	Limit				
(dBm)	(dBm)	(dB)			
10.9	40.0	-29.1			

High Channel

PEAK RADIATED POWER

Frequency	Measurement Distance	Measured Peak Voltage	Raw Measured Power	Corrd Power	Rx Antenna Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
62.79	1.50	6.35	-33.16	-32.86	23.00
EIRP	EIRP Limit	Margin			
(dBm)	(dBm)	(dB)			
(dBill)	, ,	(ub)			
16.1	43.0	-26.9			

AVERAGE RADIATED POWER

Frequency	Measurement Measured Distance Average Voltage		Measured Power	Corrd Measured Power	Rx Antenna Gain
(GHz)	(m)	(mV)	(dBm)	(dBm)	(dBi)
62.79	1.50	0.88	-38.02	-37.72	23.00
EIRP	EIRP Limit	Margin			
(dBm)	(dBm)	(dB)			
11.2	40.0	-28.8			

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

7.3. PEAK CONDUCTED OUTPUT POWER

LIMIT

§15.255 (e) Except as specified paragraph (e)(1) of this section, the peak transmitter conducted output power shall not exceed 500 mW. Depending on the gain of the antenna, it may be necessary to operate the intentional radiator using a lower peak transmitter output power in order to comply with the EIRP limits specified in paragraph (b) of this section.

§15.255 (e) (1) Transmitters with an emission bandwidth of less than 100 MHz must limit their peak transmitter conducted output power to the product of 500 mW times their emission bandwidth divided by 100 MHz. For the purposes of this paragraph, emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

PROCEDURE

The maximum EUT antenna gain is subtracted from the Peak EIRP.

PEAK OUTPUT POWER

CHANNEL-LOW

_`	OTIVITALE LOV												
ı	Frequency	EIRP	EUT	Output	Output	6 dB	Output						
			Antenna	Power	Power	Bandwidth	Power						
			Gain				Limit						
	(GHz)	(dBm)	(dBi)	(dBm)	(mW)	(MHz)	(mW)						
	60.32	16.1	16.00	0.10	1.02	87.8	439						

CHANNEL-MID

Frequency	EIRP	EUT	Output	Output	6 dB	Output
		Antenna	Power	Power	Bandwidth	Power
		Gain				Limit
(GHz)	(dBm)	(dBi)	(dBm)	(mW)	(MHz)	(mW)
60.64	15.8	16.00	-0.20	0.95	90.4	452

CHANNEL-HIGH

017/11/12211011												
Frequency	EIRP	EUT	Output	Output	6 dB	Output						
		Antenna	Power	Power	Bandwidth	Power						
		Gain				Limit						
(GHz)	(dBm)	(dBi)	(dBm)	(mW)	(MHz)	(mW)						
62.79	16.1	16.00	0.10	1.02	91.4	457						

7.4. FREQUENCY STABILITY

LIMIT

§15.255 (f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range - 20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

TEST PROCEDURE

The radio module is placed in an environmental chamber, with power furnished by an adjustable source.

RESULTS

Reference Condition	s: 120VAC @ 20°C		Mid LRP 60.63
Power Supply	Environment	Frequency	Delta
(VAC)	Temperature (°C)	(MHz)	(kHz)
120.00	50	60641.4855000	2130.000
120.00	40	60641.5755000	2220.000
120.00	30	60640.6755000	1320.000
120.00	20	60639.3555000	Reference
120.00	10	60638.3155000	-1040.000
120.00	0	60638.5155000	-840.000
120.00	-10	60639.0050000	-350.500
120.00	-20	60638.0050000	-1350.500
102.00	20	60639.3855000	30.000
138.00	20	60639.7955000	440.000

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

7.5. SPURIOUS EMISSIONS

LIMITS

§15.255 (c) (1) The power density of any emissions outside the 57–64 GHz band shall consist solely of spurious emissions.

§15.255 (c) (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

§15.255 (c) (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm^2 at a distance of 3 meters.

§15.255 (c) (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

§15.255 (d) Only spurious emissions and transmissions related to a publicly accessible coordination channel, whose purpose is to coordinate operation between diverse transmitters with a view towards reducing the probability of interference throughout the 57–64 GHz band, are permitted in the 57–57.05 GHz band.

Note to paragraph (d): The 57–57.05 GHz is reserved exclusively for a publicly-accessible coordination channel. The development of standards for this channel shall be performed pursuant to authorizations issued under part 5 of this chapter.

PROCEDURE FOR 30 MHz TO 40 GHz

ANSI C 63.10-2009

PROCEDURE FOR 40 TO 200 GHz

KDB200443 millimeter wave test procedure.

External harmonic mixers are utilized. The EIRP is measured, then the power density at a 3 meter distance is calculated.

7.5.1. Spurious Emissions 30MHz TO 1 GHz

TX SPURIOUS EMISSION 30 TO 1000 MHz (HORIZONTAL PLOT)

TX SPURIOUS EMISSION 30 TO 1000 MHz (VERTICAL PLOT)

TX SPURIOUS EMISSION 30MHz-1GHz

Trace Markers

Marker	Frequency	Meter	Det	AF T122	Amp/Cbl (dB)	Corrected	Class B QPk	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	Limit	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)	(dBuV/m)				
7	65.5725	59.01	PK	7.9	-31.7	35.21	40	-4.79	0-360	100	V
8	76.8775	58.61	PK	7.9	-31.6	34.91	40	-5.09	0-360	100	V
9	148.4475	50.76	PK	12.7	-31.3	32.16	43.52	-11.36	0-360	100	V
1	594	53.34	PK	18.5	-30	41.84	46.02	-4.18	0-360	100	Н
2	676.5	48.29	PK	19.9	-29.9	38.29	46.02	-7.73	0-360	201	Н
3	742.6	58.59	PK	20.7	-29.5	49.79	46.02	3.77	0-360	201	Н
4	808.5	49.75	PK	21.6	-29.3	42.05	46.02	-3.97	0-360	201	Н
5	891	50.28	PK	22.5	-28.6	44.18	46.02	-1.84	0-360	401	Н
6	973.5	47.7	PK	23.1	-27.8	43	53.97	-10.97	0-360	100	Н
10	445.5	45.86	PK	16.8	-30.2	32.46	46.02	-13.56	0-360	100	V
11	594	50.28	PK	18.5	-30	38.78	46.02	-7.24	0-360	301	V
12	742.3	57.48	PK	20.6	-29.6	48.48	46.02	2.46	0-360	301	V
13	808.5	46.62	PK	21.6	-29.3	38.92	46.02	-7.1	0-360	301	V
14	957	43.63	PK	23	-28	38.63	46.02	-7.39	0-360	201	V
15	973.5	44.5	PK	23.1	-27.8	39.8	53.97	-14.17	0-360	201	V

PK - Peak detector

Radiated Emissions

Marker	Frequency (MHz)	Meter Reading	Det	AF T122 (dB/m)	Amp/Cbl (dB)	Corrected Reading	Class B QPk Limit	Margin (dB)	Azimuth (Degs)	Height (cm)	Pol.
		(dBuV)				(dBuV/m)	(dBuV/m)				
7	63.85	55.96	QP	7.8	-31.7	32.06	40	-7.94	228	100	٧
8	75.77	56.61	QP	8	-31.7	32.91	40	-7.09	167	161	٧
1	593.99	40.65	QP	18.5	-30	29.15	46.02	-16.87	273	277	Н
3	742.85	50.47	QP	20.7	-29.5	41.67	46.02	-4.35	50	308	Н
4	807.93	28.1	QP	21.6	-29.3	20.4	46.02	-25.62	76	221	Н
5	890.99	50	QP	22.5	-28.6	43.9	46.02	-2.12	116	232	Н
12	742.66	51.24	QP	20.7	-29.5	42.44	46.02	-3.58	352	164	V

QP - Quasi-Peak detector

7.5.2. Spurious Emissions 1 TO 18 GHz

TX SPURIOUS EMISSION 1-18 GHz (HORIZONTAL PLOT)

TX SPURIOUS EMISSION 1-18 GHz (VERTICAL PLOT)

TX SPURIOUS EMISSION 1-18 GHz

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Corrected Reading dBuV/m	Avg Limit (dBuV/m)	Av(CISP R)Margin (dB)	Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	1.039	56.79	PK	28.2	-35.9	49.09	54	=	74	-24.91	0-360	201	Н
9	1.039	56.75	PK	28.2	-35.9	49.05	54	-	74	-24.95	0-360	201	V
10	1.402	59.29	PK	28.4	-35.5	52.19	54	-	74	-21.81	0-360	201	V
2	1.485	61.86	PK	28	-35.6	54.26	54	1	74	-19.74	0-360	201	Н
11	1.485	62.68	PK	28	-35.6	55.08	54	1	74	-18.92	0-360	201	V
3	2.079	56.22	PK	31.4	-35	52.62	54	ı	74	-21.38	0-360	201	Н
12	2.227	58.56	PK	31.5	-35	55.06	54	-	74	-18.94	0-360	201	V
4	2.228	58.69	PK	31.5	-35	55.19	54	-	74	-18.81	0-360	201	Н
13	3.415	53.66	PK	32.9	-34.2	52.36	54	-	74	-21.64	0-360	201	V
14	3.564	56.48	PK	32.8	-34.1	55.18	54	-	74	-18.82	0-360	201	V
5	3.712	56.29	PK	32.9	-33.9	55.29	54	-	74	-18.71	0-360	201	Н
15	3.712	52.34	PK	32.9	-33.9	51.34	54	-	74	-22.66	0-360	101	V
16	4.454	52.59	PK	33.6	-33.6	52.59	54	-	74	-21.41	0-360	201	V
6	5.049	50.81	PK	34.2	-33.5	51.51	54	-	74	-22.49	0-360	98	Н
7	5.197	54.5	PK	34.4	-33.6	55.3	54	-	74	-18.7	0-360	201	Н
8	5.94	51.35	PK	35.1	-33.3	53.15	54	-	74	-20.85	0-360	201	Н
17	5.941	51.87	PK	35.1	-33.3	53.67	54	-	74	-20.33	0-360	201	V
18	12.096	37.56	PK	38.8	-27.4	48.96	54	-	74	-25.04	0-360	101	V

PK - Peak detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Corrected Reading dBuV/m	Class B Avg Limit (dBuV/m)	Av(CISP R)Margin (dB)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1.485	66.66	PK	28	-35.6	59.06	-	-	74	-14.94	244	244	Н
1.485	57.4	Avg	28	-35.6	49.8	54	-4.2	-	_	244	244	Н
1.485	68.27	PK	28	-35.6	60.67	-	-	74	-13.33	232	184	V
1.485	58.67	Avg	28	-35.6	51.07	54	-2.93	-	-	232	184	V
2.227	62.64	PK	31.5	-35	59.14	-	1	74	-14.86	263	202	Н
2.228	46.91	Avg	31.5	-35	43.41	54	-10.59	-	-	263	202	Н
2.277	46.81	PK	31.6	-34.8	43.61	-	-	74	-30.39	124	342	V
2.277	33	Avg	31.6	-34.8	29.8	54	-24.2	-	-	124	342	V
3.564	60.36	PK	32.8	-34.1	59.06	-	-	74	-14.94	213	305	V
3.564	43.44	Avg	32.8	-34.1	42.14	54	-11.86	-	_	213	305	V
3.712	57.89	PK	32.9	-33.9	56.89	-	-	74	-17.11	223	206	Н
3.712	39.88	Avg	32.9	-33.9	38.88	54	-15.12	-	-	223	206	Н
5.197	55.83	PK	34.4	-33.6	56.63	-	-	74	-17.37	191	378	Н
5.198	40.4	Avg	34.4	-33.6	41.2	54	-12.8	-	-	191	378	Н
12.096	39.91	PK	38.8	-27.4	51.31	-	-	74	-22.69	72	106	V
12.096	26.38	Avg	38.8	-27.4	37.78	54	-16.22	-	-	72	106	V

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

7.5.3. Spurious Emissions 18 to 26 GHz

TX SPURIOUS EMISSION 18 TO 26 GHz (HORIZONTAL AND VERTICAL PLOT)

TX SPURIOUS EMISSION 18 TO 26 GHz

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T89 (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	19.732	41.37	PK	32.7	-23.9	-9.5	40.66	54	-13.33	74	-33.33
2	23.009	42.2	PK	33.6	-23.3	-9.5	43	54	-11	74	-31
3	25.027	43.73	PK	34	-22.9	-9.5	45.33	54	-8.66	74	-28.66
4	19.719	40.53	PK	32.7	-23.9	-9.5	39.83	54	-14.16	74	-34.16
5	23.016	41.13	PK	33.6	-23.4	-9.5	41.83	54	-12.16	74	-32.16
6	25.514	44.9	PK	34.1	-23	-9.5	46.5	54	-7.5	74	-27.5

PK - Peak detector

7.5.4. Spurious Emissions 26 TO 40 GHz

TX SPURIOUS EMISSION 26 TO 40 GHz (HORIZONTAL AND VERTICAL PLOT)

TX SPURIOUS EMISSION 26 TO 40 GHz

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T90 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	26.07	43.9	PK	35.6	-33	-9.5	37	54	-17	74	-37
2	33.64	47.23	PK	36.9	-36.8	-9.5	37.83	54	-16.16	74	-36.16
3	39.28	47.7	PK	38.4	-36.1	-9.5	40.5	54	-13.5	74	-33.5
4	26.07	44.67	PK	35.6	-33.1	-9.5	37.66	54	-16.33	74	-36.33
5	33.64	47.07	PK	36.9	-36.8	-9.5	37.66	54	-16.33	74	-36.33
6	39.29	47.57	PK	38.4	-35.8	-9.5	40.66	54	-13.33	74	-33.33

PK - Peak detector

7.5.5. Spurious Emissions 40 TO 200 GHz

PEAK MEASUREMENT

Note: The peak density is less than the average limit

CH2

Frequency	Measurement	Peak	Rx Antenna	EIRP
	Distance	Power	Gain	
(GHz)	(m)	(dBm)	(dBi)	(dBm)
48.309	1.500	-56.58	48.00	-34.9
EIRP	Specification	Power	Power	Limit
	Distance	Density	Density	
(W)	(m)	(W/m^2)	(pW/cm^2)	(pW/cm^2)
3.21E-07	3.0	2.84E-09	0.28	90

СНЗ

Frequency	Measurement	Peak	Rx Antenna	EIRP
	Distance	Power	Gain	
(GHz)	(m)	(dBm)	(dBi)	(dBm)
50.111	1.500	-70.39	23.00	-23.4
EIRP	Specification	Power	Power	Limit
	Distance	Density	Density	
(W)	(m)	(W/m^2)	(pW/cm^2)	(pW/cm^2)
(**)	(111)	(**************************************	(51176111 =)	(611,6111 =)

No other spurious or harmonic emissions to 200 GHz detected above the noise floor.

DATE: MARCH 25, 2015

7.6. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

§15.207

Frequency range	Limit	s (dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Notes:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases linearly with the logarithm of the frequency in the range $0.15 \, \text{MHz}$ to $0.50 \, \text{MHz}$.

TEST PROCEDURE

ANSI C63.10-2009

ADAPTERS TESTED

DESIGNATION	MANUFACTURER	MODEL NUMBER
Adapter 1	Bridge Power	MW172KB2400B02
Adapter 2	GlobTek, Inc.	GTM91120-3024-T3A

RESULTS-Adapter 1

6 WORST EMISSIONS

Line-L1 .15 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
1	.1995	50.19	PK	.9	0	51.09	63.6	-12.51	-	-
2	.1995	39.45	Av	.9	0	40.35	-	-	53.6	-13.25
3	.402	46.04	PK	.4	0	46.44	57.8	-11.36	-	-
4	.402	44.32	Av	.4	0	44.72	-	-	47.8	-3.08
5	3.264	48.33	PK	.2	.1	48.63	56	-7.37	-	-
6	3.264	45.06	Av	.2	.1	45.36	-	-	46	64

Line-L2 .15 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
7	.1995	49.79	PK	1	0	50.79	63.6	-12.81	-	-
8	.1995	36.38	Av	1	0	37.38	-	-	53.6	-16.22
9	.3975	45.4	PK	.4	0	45.8	57.9	-12.1	-	-
10	.3975	43.65	Av	.4	0	44.05	-	-	47.9	-3.85
11	3.2595	47.22	PK	.2	.1	47.52	56	-8.48	-	-
12	3.2595	43.18	Av	.2	.1	43.48	-	-	46	-2.52

LINE 1 RESULTS-Adapter 1

LINE 2 RESULTS-Adapter 1

47173 BENICIA STREET, FREMONT, CA 94538, USA FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

RESULTS-Adapter 2

6 WORST EMISSIONS

Line-L1 .15 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
1	.15	49.78	PK	1.4	0	51.18	66	-14.82	-	-
2	.15	23.65	Av	1.4	0	25.05	-	-	56	-30.95
3	.186	47.52	PK	1	0	48.52	64.2	-15.68	-	-
4	.186	29.55	Av	1	0	30.55	-	-	54.2	-23.65
5	4.668	38.87	PK	.2	.1	39.17	56	-16.83	-	-
6	4.668	25.43	Av	.2	.1	25.73	-	-	46	-20.27

Line-L2 .15 - 30MHz

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)
7	.15	48.99	PK	1.5	0	50.49	66	-15.51	=	-
8	.15	23.63	Av	1.5	0	25.13	-	-	56	-30.87
9	.186	47.47	PK	1.1	0	48.57	64.2	-15.63	-	-
10	.186	31.24	Av	1.1	0	32.34	-	-	54.2	-21.86
11	4.614	38.05	PK	.2	.1	38.35	56	-17.65	-	-
12	4.614	25.44	Av	.2	.1	25.74	-	-	46	-20.26

PK - Peak detector Av - average detection

LINE 1 RESULTS-Adapter 2

LINE 2 RESULTS- Adapter 2

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

8. GROUP INSTALLATION

LIMIT

§15.255 (h) Any transmitter that has received the necessary FCC equipment authorization under the rules of this chapter may be mounted in a group installation for simultaneous operation with one or more other transmitter(s) that have received the necessary FCC equipment authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking inputs that permit beam-forming arrays to be realized.

RESULTS

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

9. RF EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500-100,000			1.0	30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

REPORT NO: 14U19063-E2C FCC ID: UEZ-WR-P42-11

CALCULATIONS

EIRP is converted to Power Density using the equation:

$$P_D = EIRP / (4 * Pi * D_S^2)$$

where:

 P_D = power density in W/m^2 EIRP = Equivalent Isotropic Radiated Power in W D_S = separation distance in m

Power density in units of W/m^2 is converted to units of mW/cm^2 by dividing by 10.

RESULTS

Average	Average	Separation	Power	FCC
EIRP	EIRP	Distance	Density	Limit
(dBm)	(W)	(cm)	(mW/cm^2)	(mW/cm^2)