Input

The features of your current input:

- Feature 1
- Feature 2
- Feature 3
- •

Output

Al's Decisions:

Decision 1 95%

Decision 2 95%

Decision 3 55%

Performance

Overall performance of the Al:

Accuracy: 85%

Error rate: 15%

Dataset

The current decisions, and their percentage in the training dataset where the Al learns from

Feature attribute

How important is each feature to the result:

Feature shape

Feature interaction

Similar example

A **similar example** as your input is like:

- Feature 1
- Feature 2
- Feature 3
- Feature 4
- Feature 5
- Feature 6
- Prediction:

Counterfactual example

If one of your input features had changed to the following value, your predicted outcome would have increased by 20%:

- Feature 1 changed to some value
- Feature 2 changed to some value
- Feature 3 changed to some value
- Feature 4 changed to some value
- Feature 5 changed to some value
- Feature 6 changed to some value
- •

Typical example

A *typical example* of the same prediction as yours (prediction value) is like:

- Feature 1
- Feature 2
- Feature 3
- Feature 4
- Feature 5
- Feature 6

Rule

If **feature 1** ≤ some value, and **feature 2** > some value, Then the prediction **is some value**

If house area is some value, and distance to school, parks < some value,

Then the prediction is another value

Decision tree

Decision flow

