ОТЧЕТ

ПЕРВОЕ ЗАДАНИЕ

Часть I Установление распределения Максвелла

40-ой шаг

660-ой шаг

В модели 216 частиц с dt=0.001 с изначально случайно распределенными скоростями. Распределение начинает устанавливаться уже на ~ 300 шаге, но окончательно вписывается в теоретически построенное распределение на ~ 650 шаге.

Теоретическая кривая соответствует распределению Максвелла по модулю скорости соответствующему установившейся температуре $T \approx 1$, но с подобранным масштабирующим коэффициентом (по вертикали).

Часть II

Время динамической памяти

Hевязки при ratio = 2

 $Heвязки\ npu\ ratio = 5$

Система с 216 частицами и $dt_0 = 0.001$ были инициализированы при помощи кода с семинара. При трех параметрах ratio = 2, 5, 10 было оценено время выхода невязки v на плато: 35, 34 и 33 временных интервала соответсвенно. Так как динамическое время памяти является пределом "значений выхода невязки v на плато можно сделать вывод, что время динамической памяти

Также можем убедиться, что это правда распределение Максвелла, линеаризовав график N(v) и построив зависимость $ln(\frac{N}{v^2})(v^2)$:

системы ≈ 30 временным интервалам $t_{dm} = 2.9 \pm 0.5$.

Линеаризация Максвелла

Часть III

Уравнение состояния

1 Зависимость давления и сжимаемости системы от плотности

Зависимость давления от плотности Зависимость сжимаемости от плотности Измерения проводились в системе с 216 частицами с поддерживаемой термостатом тепературой T=2.0. Полученные значения неплохо согласуются с табличными. Сжимаемость была посчитана по формуле:

$$\beta = -\frac{1}{V}\frac{dV}{dp} = \frac{1}{\rho}\frac{d\rho}{dp}$$

2 Отношение давлений

$$\frac{P_k}{P_k - P_{vir}}$$
 от плотности

Из графика видно, что P_k/P убывает с ростом плотности.

3 Формула поправки давления

Точками на графике обозначена разность давлений с обрезкой и без обрезки,

а кривой - теоретическая зависимость поправки от r_cut

Измерения проводились в системе с 216 частицами при T=2.0~b~dt=0.001. Давление без обрезки $P_0=1.387$. В районе двойки-единицы, думаю, точки уходят вверх (вопреки зависимости), потому что частицы без сопротивления приближаются в зону других частиц, где на них начинает действовать значительная сила, разгоняя, но при отдалении уже не притягивая. Поэтому кинетический вклад в давление растет, а вириальная составляющая уменьшается. Начиная

Часть IV

Оценка ошибки усреднения

Измерения получены для 216 частиц с $\mathrm{dt}=0.001$ в 100000 шагов. Методом блочных средних для полной энергии системы было получено:

График метода блочных средних

График метода блочных средних с шагом в 500

График метода блочных средних с 1000000 точек

То есть выходит на плато примерно при размере блоков равном 4000. Таким образом $\sigma^2(E) \approx 30$, в то время как полная энергия E=740. Большая относительная ошибка объяснима маленьким количеством частиц и достаточно большой температурой.