

HAIR Based Sensing and Actuation

Mahdi M. Sadeghi, <u>Becky (R. L.) Peterson</u>, and Khalil Najafi

Electrical Engineering and Computer Science (EECS) Dept.
University of Michigan

The 2nd Multifunctional Materials for Defense Workshop August 1, 2012 Arlington, VA

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 AUG 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	ERED 2 to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
HAIR Based Sensi	ng and Actuation			5b. GRANT NUN	ИBER	
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER			
		5e. TASK NUMBER				
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE igan,Electrical Engi Arbor,MI,48109	` '	iter Science	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
Grantees'/Contrac Microsystems Held		FOSR Program on I 2012 in Arlington, V	Mechanics of Mu VA. Sponsored by	ltifunctional		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC				19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 32	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Biomimetic HAIR-Based Sensing and Actuation

- Our focus: new sensor/actuators to meet constraints (SWaP + cost + performance) for micro air vehicles for ARL's MAST program, where COTS are unsuitable
- Example: Air flow sensor for wind gust state estimation for stable MAV control
- MAST air flow sensor requirements
 - Low power, stand-alone, robust
 - Measure gusting air flow in range of 0.1 to 10+ meters/sec
 - Fast sensor response for dynamic flight control: > 30 Hz, ideally 100 Hz
 - Determine gust direction: minimum resolution is four in-plane quadrant directions

macro-quadrotor

Biomimetic Sensing

High-performance, <u>Actuation and Integrated</u> sensing <u>Research</u> (HAIR)

Key biomimetic components

- 1. Material
- 2. 3-D Process
- 3. Hydraulics / fluidics
- 4. Functionalization
- 5. Circuit Integration
- 6. Array

Electrostatic Micro-hydraulics

- <u>Key concept:</u> combine electrostatics & micro-hydraulics for large-force, largedeflection, low-power actuation and low-power, high-dynamic range sensing
- Structural features
 - 1. Two connected chambers on opposite sides of a wafer, capped with membranes
 - 2. Capacitive metal electrodes allow electrostatic actuation or sensing
 - 3. Encapsulated incompressible liquid dielectric constant > 1 (i.e., air) increases capacitance thus improving electrostatic coupling

Sensing & Actuation through Micro-Hydraulics

Actuation Mode

Amplified deflection or force Electrostatic actuation

- Electrostatic actuation
- Hydraulic amplification of force or deflection

Sense Mode

- External pressure applied (via touch, air flow, etc.)
- Hydraulic amplification of force or deflection
- Electrostatic Sensing

Micro-Hydraulic Fabrication Process

- Recess on both sides
 - Definition of capacitance gap
 - Shape formation of the liquid
- Electrode on one/both side(s)
 - Actuation and/or sensing
- 3. CytopTM layer and channel formation
 - Hydrophobic layer repels the silicone oil
 - Liquid will be contained in all the CytopTM-free areas

4. Through-wafer etching

 $Cytop^{\mathsf{TM}}\ frame$

Cytop[™]-free area filled with oil

Sadeghi, Kim and Najafi, Digest MEMS 2010, pp. 15-18

4) Thru-wafer etching

5) liquid dispensing

Micro-Hydraulic Fabrication Process

- 5. Liquid dispensing
 - Liquid weight and surface tension on the back side are at equilibrium
 - → double-sided process
- 6. Parylene coating
- 7. Second electrode deposition

Wafer level process for bubble-free liquid encapsulation

Airflow Sensor using Micro-Hydraulics

- Micro-hydraulics: converts ∆P into capacitance change
- Arrays:
 offer sensing of flow
 directionality

1-2mm

Air Flow

Integration of Boss

- Self-aligned silicon boss acts as platform for attaching hairs
 - · Boss is placed after liquid dispensing
 - After Parylene encapsulation, cilia is attached over boss

1st Generation Device, Experimental Results

- Average sensitivity* = 333 fF/(m/s)
- Extrapolated minimum detectable air flow: 3 mm/s assuming 1fF Δ C detection
- Full scale range : 10 m/s
- But slow time response

Sadeghi, Peterson and Najafi, Digest IEDM 2011, pp. 29.4.1-4

^{*} Tests on multiple samples of the same size yielded sensitivities of 230 to 440 fF/ms⁻¹, with an average of 333 fF/ms⁻¹ over 10 m/s range (based on 5 samples)

Reducing sensor response time

- Could reduce viscosity of fluid, but integration challenges
- Sloped wall design sufficiently reduces response time by ~1,000x

FEM to optimize perforated membrane

- Trade off between area (i.e. capacitance and therefore sensitivity) and fluidic resistance (i.e. time response)
- Optimize Parylene thickness for symmetric rise/fall response → 2µm

Greatest capacitance contribution comes from edge where gap is narrow → put hole in membrane

Charge density

Potential

Using perforations at periphery speeds up fluid flow but only slightly reduces capacitance

Hair placement and sensor array for directionality

Optimize hair/boss location

- Hair location to maximize membrane deflection → 56% of radius
- Boss size to maximize deflection \rightarrow 50µm

Directional Sensing

Four cells / two pairs, each responsible for one direction

2nd Generation Hydraulic Fabrication

Wind Tunnel and Air gun Tests

- Linear sensor output with sensitivity of 3.9 fF/(m/s) air flow
- Full scale range: > 15 m/s
- Resolution: ~ 2 cm/s, when in single-ended mode (noise = 80 aF)
- Response bandwidth ~ 30 Hz

Air Flow Sensor Integration & Performance Summary

CDC chip

Range*	0 – 15 m.s ⁻¹	
Sensitivity	3.9 fF/(m/s)	
Resolution*	~2.0 cm.s ⁻¹	
Response time	~30 ms	
Supply	3.3 -5 V	
Power	3.5 mW	
Weight**	1.2-1.5 g	
Output	I ² C	

^{*} When read in single ended mode. Resolution in 2 channel mode is

Sensor is elevated to avoid flow blockage

sensor

Air Flow Sensor Integration on Flyers

Collaboration with Prof. Sean Humbert, UMD

Wind gust detection with hydraulic HAIR directional air-flow sensors:

- ✓ Sensor is integrated with flyer mote
- ✓ Data transfer established
- ✓ Closed loop control of vehicle forthcoming

Preliminary Results on Directional Sensing

- For dynamic flight control, need flow directionality
- Redesign cilia + two sensor pairs for in-plane flow vector determination
- Each pair is differentially measured by AD7746 CDC
- Resolution is reduced due to ~100x higher noise level: noise increases from 80aF (single-ended mode) to 10fF (dual channel mode)
- Circuit improvement are ongoing

Trade off between full-scale range and min. detection

^{*} One of the finest commercially available MFS, Converted data from DS

**** Published at the Army Science Conference 2010 by Sadeghi, Peterson & Najafi

^{**} The paper states min det. for water flow, not air. 5cm/s is based on our calculation

^{***} Minimum detection limits for data points that are not stated clearly are extracted from measurement graph data points, or assumed to be 0.01 of full-scale range.

Alternate Hair-Sensing Schemes

Chang Liu, et al. JMEMS 2007

G.J.M. Krijnen, et al. MEMS '09

very narrow gap

- <u>Existing approaches:</u> Exposed piezoresistive beam or capacitive gap
- Liquid encapsulation encloses the capacitive gap, offering robustness and improved dynamic range/resolution, and enables new applications such as sensing in liquid or harsh ambient environments

Single Capacitive Flow Sensor vs. Micro-Hydraulic

High dynamic range, but viscous fluid flow reduces bandwidth

Small single gap

Electrostatic Micro-hydraulic Actuation (EMA)

- Integrated electrostatic actuation, wafer-level process
- Array of individually actuated cells; addressability
- Hydraulic amplification for large-force/large-deflection actuation

Experimental Results: Deflection vs. Voltage

- Applied voltage 0-200V
- Bubble height is measured with profilometer; volume change confirmed by LEXT confocal microscopy
- Non-uniform deflection and asymmetric bulging due to edge pull-in

Optical images of one cell with D=2.2mm at 0, 100, 150 and 200V

Experimental Results: Force, Power, Frequency

Deflection vs Voltage

- Force > 12mN
- Deflection > 40 μm
- Power max 24 µW per cell per cycle
- Frequency: DC to 10 Hz (straight wall design)

Deflection vs. Frequency

Actuation for Locomotion

- Phase deflection of multiple membranes creates 'stride'; maximize deflection by offcenter positioning of the cilia on membrane
- The device can carry ~5x its own weight, almost 2.5 gram

2 Hz actuation

Hairs holding the coin

Conclusions

- Novel wafer-level liquid encapsulation for HAIR-like sensing and actuation based on micro-hydraulic, electrostatic architecture
 - → new design element in MEMS
- Air flow sensors with record dynamic range and suitable response time for control loop insertion for MAST MAVs (work ongoing)
- High-force/high-deflection micro-hydraulic actuators
- Ongoing and future work on interface circuits, tactile sensing, air foil control, and other hair functionalization

Acknowledgments

 This project is funded by the Micro Autonomous Systems and Technology (MAST) Program of the Army Research Lab under Award Number W911NF-08-2-0004.

- Dr. Will Nothwang, ARL Lead for Microelectronics Center of MAST
- Lurie Nanofabrication Facility, a member of the National Nanotechnology Infrastructure Network, supported in part by NSF

 Undergraduate researchers Bing Zhang and Michael T. Chaney

Integration of Bulk Piezoelectric Materials

Ethem Erkan Aktakka, Rebecca L. Peterson, Khalil Najafi

Aktakka, et al., Transducers'09, IEDM'10, PowerMEMS'11, HiltonHead'12

- Characterized bonding & lapping process
- Wide range thickness control (5-100µm)
- Wafer-level thickness uniformity (±0.5µm)
- Conserved piezoelectricity & polarization
- Post-CMOS compatible process

Die-level bonding

Precision Dicing

Laser Machining

Wet-Etch Patterning

Cantilever Actuators

Diaphragm Actuators

Micro Energy Harvesters

Center for Wireless In Funded by DARPA HI-MEMS & DARPA PASCAL

Self-Supplied Inertial Piezoelectric Energy Harvester with Power Management IC

Ethem Erkan Aktakka, Rebecca L. Peterson, Khalil Najafi

Goal: Self-contained vibration energy harvester for industrial applications or vehicle instrumentation

Results:

- > High power density (205 μW at 1.5 g vibration)
 - Large bandwidth (14 Hz)
 - Low frequency operation (155 Hz)
- > Autonomous charging of an ultra-cap (0 V to 1.85 V)
- ➤ No requirement for a pre-charged battery/capacitor

IEDM'10, ISSCC'11, Transducers'11

Funded by DARPA HI-MEMS

A Vibration Harvesting System and Electronics for Bridge Health Monitoring Applications

James McCullagh, Tzeno Galchev, R. L. Peterson, and Khalil Najafi

Goal: Harvest low-acceleration, low-frequency, non-periodic vibration energy from bridge to power wireless sensor network for structural health monitoring

Results:

- 5th Generation Parametric Frequency Increased Generator (PFIG) built
- Achieved record low threshold acceleration of 35mg (1g = 9.8m/s²)
- Increased avg. power to 131 µW at 11 Hz
- Testing PFIG + circuit on bridge to generate DC output voltage

Galchev, et al., J. Micromech.
Microeng. 21, 1, 2011; Two papers at
Transducers 2011; PowerMEMS 2010

PFIG architecture and installation on suspension bridge

PFIG output voltage 1

PFIG output voltage 2

Storage Capacitor, (discharged manually)

ensing & Sys

Funded by NIST TIP

HAIR Based Sensing and Actuation

Mahdi M. Sadeghi, <u>Becky (R. L.) Peterson</u>, and Khalil Najafi

Electrical Engineering and Computer Science (EECS) Dept.
University of Michigan

The 2nd Multifunctional Materials for Defense Workshop August 1, 2012 Arlington, VA