

SWP-EZ系列单相可编程智能电力仪表

SWPBUS 协议通讯手册

昌晖自动化系统有限公司 CHARM GDAITH AUTOSYSTEM CO., LTD.

(VER:20120917)

一、概述

1、通讯口设置

通讯方式 异步串行通讯接口,如 RS-485, RS-232, RS-422等 波特率 300~9600bps (可由设定仪表二级参数自由更改,设定仪表二级参数 BT)

2、字节数据格式

- . 一位起始位
- . 八位数据位
- . 一位停止位
- . 无校验

	1	*	*	*	*	*	*	*	*	1
j	起始位					居位			,	停止位

3、通讯数据传输格式

1)、SWP 系列仪表参数地址格式:

地址:双字节(16进制,以高字节在前,低字节在后)

例: SWP 显示控制仪 Ⅱ型

仪表参数 AH1 的起始地址=15₁₆=30_{ASCII}+30_{ASCII}+31_{ASCII}+35_{ASCII},格式如下:

30	30	31	35
高字节高4位	高字节低 4 位	低字节高4位	低字节低4位

2)、SWP 系列仪表参数数据格式:

数据按地址传输,仪表数据传输格式分为以下四种(十六进制):

a、1字节(定点数) = 字节高 4 位 ASCII 码 + 字节低 4 位 ASCII 码

XXXX	XXXX
高 4 位	低 4 位

例: 仪表参数 AH1 的数据=5010=3216=33ASCII+32ASCII,格式如下:

Γ	イロロ ロブダスル 自一ラロ10ーラム16ー、	· 33ASCII · 32ASCII, TII 2CAH I		
	33	32		
	高 4 位	低 4 位		

b、2 字节(定点数) = 低字节高 4 位 ASCII 码 + 低字节低 4 位 ASCII 码 + 高字节高 4 位 ASCII 码 + 高字节低 4 位 ASCII

 XXXX
 XXXX
 XXXX
 XXXXX

 低字节高 4 位
 低字节低 4 位
 高字节高 4 位
 高字节低 4 位

例: 仪表参数 AL1 的数据=500₁₀=1F4₁₆=30_{ASCII}+31_{ASCII}+46_{ASCII}+34_{ASCII},格式如下:

				1 0
	46	34	30	31
化	£字节高 4 位 化	氏字节低 4 位	高字节高 4 位	高字节低 4 位

- c、3字节(定点数) = 低字节高 4 位 ASCII 码 + 低字节低 4 位 ASCII 码
 - + 高字节高 4 位 ASCII 码 + 高字节低 4 位 ASCII 码
 - + 小数点高 4 位 ASCII 码 + 小数点低 4 位 ASCII 码

XXXX	XXXX XXXX		XXXX	XXXX	XXXX
任字节高 4 位	併字 昔任 4 位	高字节高 4 位	高字节任 4 位	小数占高4位	小数占低4位

例: 仪表实时测量值(PV)的数据=50.0,小数点在第一位(从右至左)。 实际定点数= $500_{10} \times 10^{-1}$

整数部份=500₁₀=1F4₁₆=30_{ASCII}+31_{ASCII}+46_{ASCII}+34_{ASCII}

小数部份=1₁₀=01₁₆=30_{ASCII}+31_{ASCII} 格式如下:

 18. 0								
46	34	30	31	30	31			

低字节高 4 位 低字节低 4 位 高字节高 4 位 高字节低 4 位 小数点高 4 位 小数点低 4 位 小数点定义如下:

$$00$$
— 10^0 01 — 10^{-1} 02 — 10^{-2} 03 — 10^{-3}

d、4字节(浮点数)

"浮点数"类型为 4 个字节,使用的格式为 IEEE-754 标准(32位),一个浮点数由三部分组成:

- 1 位符号 (S)
- 8位指数位(E)

23 位尾数 (M),加上默认的小数点前的一位,共有 24 位。

符号位是最高位,尾数为最低的位,内存中按字节存贮如下:

地址 +0 +1 +2 +3 内容: MMMM MMMM MMMM E MMM MMMM S EEE EEEE

其中 S: 符号位, 1=负, 0=正

E: 指数 (在两个字节中), 偏移为 127

M: 23 位尾数,最高位"1"

换算代码:
$$S*2^(E-127)*\left(1+\frac{M}{2^{23}}\right)$$

例如: 12.5 的十六进制为 0X00004841

其中: 指数为 0x82(0x41 左移 1 位), 尾数为 0x480000, 数值计算如下,

(1+0x480000/0x800000) *2^(0x82-127)) = 1.5625 * 8 = 12.5

4、仪表通讯帧格式

							_
	@	DE	帧命令	帧数据	CRC	CR	
	说明:						
	@	 - 通讯命令	起始符				
	DE	 - 仪表设备	号(双字节	5,参见仪表	長操作手册 🛚	中之参数"I	DE")
1	帧命令	 - 操作命令	(双字节)				
1	帧数据	 - 各种操作	命令所对应	立的数据(+	长度视不同	仪表型号而	不同)
	CRC	 - 校验字节	「(除@外 (CRC 字节之	前其它几个	字节的异或	対 值
		即 DE(A	ASII)与帧	类型 ASCII 和	帧数据 ASC	n的异或值))
		CRC = D	E _{ASCII} ⊕ 帧	命令 ASCII⊕	帧数据 ASC	П	

CR — 结束符

5、SWP 系列仪表通讯命令集

代码	说明	代码	说明
RD	读仪表动态数据	Rb	读仪表第十二路动态数据(多路表)
R0	读仪表第一路动态数据(多路表)	Rc	读仪表第十三路动态数据(多路表)
R1	读仪表第二路动态数据(多路表)	Rd	读仪表第十四路动态数据(多路表)
R2	读仪表第三路动态数据(多路表)	Re	读仪表第十五路动态数据(多路表)
R3	读仪表第四路动态数据(多路表)	Rf	读仪表第十六路动态数据(多路表)
R4	读仪表第五路动态数据(多路表)	RE	读仪表内部参数资料
R5	读仪表第六路动态数据(多路表)	RR	读仪表内部参数全部资料
R6	读仪表第七路动态数据(多路表)	СО	手动/自动控制

R7	读仪表第八路动态数据(多路表)	W1	单字节写仪表内部参数资料
R8	读仪表第九路动态数据(多路表)	W2	双字节写仪表内部参数数据
R9	读仪表第十路动态数据(多路表)	W4	四字节写仪表内部参数数据
Ra	读仪表第十一路动态数据(多路表)		

6、读仪表动态数据(实时测量值)帧

★ 错误返回码"**":如 PC 机向仪表传输出的命令或 CRC 校验错误,则仪表命令回送时返回一个 错误返回码 "**"— 2AH 2AH (ASCII 码)。

例: 当前 1 号仪表—设备号 DE=1(SWP 显示控制仪 II 型)实时测量值 PV= 50.0_{10} ,内部参数未修改,AL1 报警(上限)无动作,AL2 报警(下限)动作。

欲读仪表实时测量值,方法如下:

30 ⊕31 ⊕ 52⊕44 =17 (转为 ASCII 码则为 31、37)

仪表设备号 命令 校验码

30 ⊕ 31⊕52⊕ 44⊕30⊕30⊕30⊕32⊕46⊕34⊕30⊕31⊕30⊕31⊕30⊕30 ⊕30⊕31=66 (转为 ASCII 码则为 36,36)

- ★仪表回送数据为一次回送动态数据表格中的所有数据。参见"仪表动态数据格式"
- ★保留字节: 生产厂家保留字节, 可略过不管
- ★上例中,测量值数据=1F4₁₆=500₁₀
- ★实际测量值 (PV) = $500 \times$ 小数点= $500 \times 10^{-1} = 50.0$ (如小数点为 2,则乘以 10^{-2} ,以此类推)

7、读多路巡检仪单路动态数据(实时测量值)帧

★各路读取命令不同,这里 R0 表示读第一路动态数据。

帧数据依次为

内部参数修改标志 第一路实时测量值 小数点位置

D0=1 内部参数修改标志有效,

D1=0,第一报警有效,

D2=0,第二报警有效。

8、读仪表内部参数数据帧

注:长度为数据字节长度代码,如单字节为1,双字节为2,四字节为4。

例: 2 号仪表(SWP 显示控制仪 II 型)当前第二报警设定值 AL2=500,欲读仪表 AL1 设定值,方法如下: 查表得 AL2 的地址=13₁₆=30_{ASCII}+30_{ASCII}+31_{ASCII}+33_{ASCII}

30 ⊕ 32⊕52⊕45⊕30⊕30⊕31⊕33⊕30⊕32=15 (转为 ASCII 码则为 31,35)

- ★ 仪表内部参数数据: 仪表内部设定参数值
- ★ 参数地址: 仪表内部参数的地址,参见"参数地址表"

9、读仪表内部参数全部数据帧

- ★读仪表内部参数全部数据帧:一次性将仪表内部所有参数的设定值全部读取。
- ★仪表将按内部参数的排列顺序一次全部回送的所在的数据。(仪表内部参数排列顺序参见"仪表内部参数地址表"

例:读取3号仪表(SWP显示控制仪Ⅱ型)所有内部参数设定值,方法如下:

30⊕33⊕52⊕52=3(转为 ASCII 码则为 30,33)

仪表设备号 命令

数据

校验码

- ★命令中"xx"为内部参数设定值(实际见仪表当前设定值)
- ★命令中"yy""zz"为校验值(实际见仪表数据校验值)

10、单字节写仪表内部参数数据帧

发送命令帧—— @ DE W1 参数地址 数据 CRC CR

查表得 K1 的地址=34₁₆~37₁₆=30_{ASCII}+30_{ASCII}+33_{ASCII}+34_{ASCII}~30_{ASCII}+30_{ASCII}+33_{ASCII}+37_{ASCII}
30 ⊕ 36⊕ 57⊕ 34 ⊕30⊕30⊕33⊕34⊕30⊕37⊕43⊕38⊕36⊕36⊕36⊕36=1E

(转为 ASCII 码则为 31,45)

二、通讯流程

例: PC 机欲从 RS-485 总路线挂接的仪表中读取 1 号单显仪表的 AL1 设定(当前设定值为 1598)。 通讯流程如下:

PC 机

上例中,AL1 设定值 = 063E₁₆= 1598

三、仪表通讯接线

1、1、PC 机(RS-232) 与仪表(RS-485) 通讯接线(加装 SWP 公司 RS-232/RS-485 转换接头)

- T/R(A)、T/R(B)接至SWP仪表的T/R(A)、T/R(B)端。
- 将通讯转换接头插入 PC 机的 9 针串行通讯口。
- SWP 通讯转换接头为选件。
- SWP 公司 RS232/RS485 转换接头 RTS 置高, DTR 置低。详情见"RS232/RS485 转换器使用说明"。
- 2、仪表与 PC 机 9 针 RS-232 接口接线方法:

3、仪表与 PC 机 25 针 RS-232 接口接线方法:

四、部份标准 ASCII 代码表

字符	ASCII 码						
0	30	CR	0D	J	4A	T	54
1	31	A	41	K	4B	U	55
2	32	В	42	L	4C	V	56
3	33	С	43	M	4D	W	57
4	34	D	44	N	4E	X	58
5	35	Е	45	О	4F	Y	59
6	36	F	46	P	50	Z	5A
7	37	G	47	Q	51	@	40
8	38	Н	48	R	52	#	23
9	39	I	49	S	53		

五、SWP 智能化仪表参数地址表

- **★**仪表参数地址如下。视仪表型号不同,无以下所述之地址功能时,同时地址也为空。
- ★采用"读仪表内部参数全部数据帧"的命令时,将按上表所列顺序一次传输所有数据。
- ★仪表 DE 设定范围 = 0~250。
- ★仪表 BT 设定代码如下:

代 码	0	1	2	3	4	5
波特率 (bps)	300	600	1200	2400	4800	9600

1. SWP-EZ 系列单相可编程智能电力仪表动态参数动态参数地址表

编号	参数名称	地址 (16 进制)	数据格式	状态	备注
1	参数修改标志	0000	单字节定点数	只读	
2	仪表类型	0001	单字节定点数	只读	
3	第一通道值	0002	三字节定点数	只读	
4	报警状态	0005	单字节定点数	只读	Bit0: 第一报警下限 Bit1: 第二报警下限 Bit4: 第一报警上限 Bit5: 第二报警上限
5	电流测量值	0006	四字节浮点数	只读	
6	电压测量值	000A	四字节浮点数	只读	
7	频率测量值	000E	四字节浮点数	只读	
8	功率因素测量值	0012	四字节浮点数	只读	
9	有功功率测量值	0016	四字节浮点数	只读	
10	无功功率测量值	001A	四字节浮点数	只读	
11	视在功率测量值	001E	四字节浮点数	只读	

2. 仪表内部参数地址表

编号	参数名称	参数符 号	地址 (16 进 制)	数据格式	状态	数值范围
1	设定参数禁锁	CLK	0000	单字节定点数	读/写	0-250
2	设备号	DE	0001	单字节定点数	读/写	1-200
3	通讯波特率	BT	0002	单字节定点数	读/写	0-5
4	内部参数	保留	0003	单字节定点数	只读	
5	第一报警方式	ALM1	0004	单字节定点数	读/写	0-14
6	第二报警方式	ALM2	0005	单字节定点数	读/写	0-14
7	报警延迟	ALMT	0006	单字节定点数	读/写	0-100
8	PV 显示	DISP	0007	单字节定点数	读/写	0-6
9	电流变比	CT	0008	双字节定点数	读/写	0-9999
10	电压变比	PT	000A	双字节定点数	读/写	0-9999
11	内部参数	保留	000C	双字节定点数	只读	
12	内部参数	保留	000E	双字节定点数	只读	
13	第一报警值	AL1	0010	四字节浮点数	读/写	全量程
14	第二报警值	AL2	0014	四字节浮点数	读/写	全量程
15	第一报警回差值	AH1	0018	四字节浮点数	读/写	全量程
16	第二报警回差值	AH2	001C	四字节浮点数	读/写	全量程
17	电流单位	IUNI	0020	单字节定点数	读/写	0-2
18	电流滤波系数	IFIL	0021	单字节定点数	读/写	0-99
19	电流零点迁移	IPB1	0022	四字节浮点数	读/写	全量程
20	电流放大比例	IKK1	0026	双字节定点数	读/写	0-9999
21	内部参数	保留	0028	双字节定点数	只读	
22	第一变送输出方式	1OUT	002A	单字节定点数	读/写	0-6
23	第二变送输出方式	2OUT	002B	单字节定点数	读/写	0-6
24	内部参数	保留	002C	单字节定点数	只读	
25	频率滤波系数	FFIL	002D	单字节定点数	读/写	0-99
26	内部参数	保留	002E	单字节定点数	只读	
27	功率因素滤波系数	CFIL	002F	单字节定点数	读/写	0-99
28	电压单位	UUNI	0030	单字节定点数	读/写	0-2
29	电压滤波系数	UFIL	0031	单字节定点数	读/写	0-99
30	电压零点迁移	UPB1	0032	四字节浮点数	读/写	全量程
31	电压放大比例	UKK1	0036	双字节定点数	读/写	0-9999
32	内部参数	保留	0038	四字节浮点数	只读	
33	内部参数	保留	003C	四字节浮点数	只读	
34	有功功率单位	PUNI	0040	单字节定点数	读/写	0-2
35	有功功率滤波系数	PFIL	0041	单字节定点数	读/写	0-99
36	有功功率零点迁移	PPB1	0042	四字节浮点数	读/写	全量程
37	有功功率放大比例	PKK1	0046	双字节定点数	读/写	0-9999
38	第一变送输出量程下限	10UL	0048	四字节浮点数	读/写	全量程
39	第一变送输出量程上限	1OUH	004C	四字节浮点数	读/写	全量程
40	无功功率单位	QUNI	0050	单字节定点数	读/写	0-2
41	无功功率滤波系数	QFIL	0051	单字节定点数	读/写	0-99
42	无功功率零点迁移	QPB1	0052	四字节浮点数	读/写	全量程
43	无功功率放大比例	QKK1	0056	双字节定点数	读/写	0-9999

44	第二变送输出量程下限	2OUL	0058	四字节浮点数	读/写	全量程
45	第二变送输出量程上限	2OUH	005C	四字节浮点数	读/写	全量程
46	视在功率单位	SUNI	0060	单字节定点数	读/写	0-2
47	视在功率滤波系数	SFIL	0061	单字节定点数	读/写	0-99
48	视在功率零点迁移	SPB1	0062	四字节浮点数	读/写	全量程
49	视在功率放大比例	SKK1	0066	双字节定点数	读/写	0-9999
50	第一变送输出零点迁移	1PB3	0068	双字节定点数	读/写	0-1000
51	第一变送输出放大比例	1KK3	006A	双字节定点数	读/写	0-1999
52	内部参数	保留	006C	双字节定点数	只读	
53	内部参数	保留	006E	双字节定点数	只读	