# Electrical and Electronic Measurements:

# Sources of Error

1

#### Errors in Electrical Measurements

- Systematic error ⇒ every times you measure e.g. loading or insertion of the measurement instrument
- Meter error ⇒ scaling (inaccurate marking), pointer bending, friction, no calibration
- Random error ⇒ temperature effect, noises (unwanted signals)
- Reading error  $\Rightarrow$  parallax, read a wrong scale
- Recording error ⇒ for many measured values

### Background

- Electric charge,  $e^- = 1.6 \times 10^{-19}$  Coulombs
- Current, I = dq/dt Coulomb/sec = Amps
- Voltage, the difference in electrical potential between two points (Joules/Coulomb)
- Power, P = IV Watts
- Energy, E = Pt Units (kW·hr)
- Ohm's Law, V = IR

3

# Background (Cont'd)

• Kirchhoff's Current Law (KCL)

$$I_1 - I_2 - I_3 = 0$$



A *loop* is any closed path in a circuit, in which no node is encountered more than once.

Kirchhoff's Voltage Law (KVL)

$$-V_1 + I_1R_1 + V_2 + I_2R_2 = 0$$



A *mesh* is a loop that has no other loops inside of it.

A *supermesh* occurs when a current source is contained between two 4 essential meshes.



• Thévenin's Theorem





Open circuit to find  $V_{th}$ 

Norton's Theorem Short circuit to find I<sub>N</sub>



Background (Cont'd)

#### Example

No Load  $\Rightarrow$  Equivalent Source

$$V_1$$
 $R_1$ 
 $R_2$ 
 $R_2$ 
 $R_2$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_2$ 
 $R_4$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_7$ 
 $R_9$ 
 $R_9$ 

No Source ⇒ Equivalent Load

$$\begin{array}{c|c} P_{eq} & P_{$$

# Background (Cont'd)

• Ideal Voltage Source Vs. Ideal Current Source



• Superposition Theorem (for linear resistive network containing several sources)

Voltage source  $\rightarrow$   $\Rightarrow$  Short Circuit  $\stackrel{0 \ V}{\longrightarrow}$  Current source  $\Rightarrow$  Open Circuit  $\stackrel{0 \ V}{\longrightarrow}$  Vector summation of the individual voltage or current caused by each separate source



# Background (Cont'd)

• The Maximum Power Transfer Theorem



If  $V_s$  and  $R_s$  are fixed, when  $I_L \uparrow$  then  $V_L \downarrow$ Maximum power is at  $R_L = R_s$ Therefore  $V_L = V_s/2$  and  $I_L = V_s/2R_L$ 

$$P_L = (I_L)^2 R_L = (V_s / 2R_L)^2 R_L = V_s^2 / 4R_L$$

9

#### **Ammeter Loading**

For current measurement, open circuit to put an ammeter.

 $I_A = V/(R+R_A)$ 

While this impact is inevitable, it can be minimized through good meter design.

Loading error, 
$$I_A - I = V/(R+R_A) - V/R$$

$$= \frac{VR - V(R+R_A)}{R(R+R_A)}$$

$$= \frac{-VR_A}{R(R+R_A)}$$
% Loading Error =  $(I_A - I)/I \times 100\%$ 

% Loading Error = 
$$(I_A - I)/I \times 100\%$$
  
=  $-R_A \times 100\%$   
 $R+R_A$ 

It means if  $R_A \uparrow$  then error  $\uparrow$ 

11

# Ammeter Loading (Cont'd)

The ideal ammeter has zero internal resistance, so as to drop as little voltage as possible as electrons flow through it.

#### Example

without the ammeter,





One ingenious way to reduce the impact that a currentmeasuring device has on a circuit is to use the circuit wire as part of the ammeter movement itself.

All current-carrying wires produce a magnetic field, the strength of which is in direct proportion to the strength of the current.



By building an instrument that measures the strength of that magnetic field, a no-contact ammeter can be produced.

Such a meter is able to measure the current through a conductor without even having to make physical contact with the circuit, much less break continuity or insert additional resistance.



15

### Ammeter Loading (Cont'd)

More modern designs of clamp-on ammeters utilize a small magnetic field detector device called a Hall-effect sensor to accurately determine field strength.



Some clamp-on meters contain electronic amplifier circuitry to generate a small voltage proportional to the current in the wire between the jaws, that small voltage connected to a voltmeter for convenient readout by a technician.



17

#### Voltmeter Loading

For voltage measurement, voltmeter is placed in parallel with the circuit element.



### Voltmeter Loading (Cont'd)

$$\begin{split} I_{th} &= V_{th} / \left( \, R_{th} + R_{V} \, \right) \\ V_{V} &= I_{th} R_{V} = V_{th} R_{V} / \left( \, R_{th} + R_{V} \right) \\ Error &= V_{V} - V_{th} \\ &= \left[ \frac{R_{V}}{R_{th} + R_{V}} - 1 \right] V_{th} \\ \% \; Error &= (V_{V} - V_{th}) / V_{th} \times 100\% \\ &= \frac{-R_{th}}{R_{th} + R_{V}} \times 100\% \end{split}$$

It means if  $R_V \uparrow$  then error  $\downarrow$ 

19

# Voltmeter Loading (Cont'd)

The ideal voltmeter has infinite resistance, so that it draws no current from the circuit under test.

#### Example

without the voltmeter,





#### Voltmeter Sensitivity

- Voltmeters with electromechanical movements are typically given ratings in "ohms per volt" of range to designate the amount of circuit impact created by the current draw of the movement.
- Digital voltmeters, on the other hand, often exhibit a constant resistance across their test leads regardless of range setting, and as such are usually rated simply in ohms of input resistance, rather than "ohms per volt" sensitivity.
- Since most digital voltmeter have 50 times more impedance than analog voltmeters, digital meters are more accurate when measuring voltage.

### Voltmeter Sensitivity (Cont'd)

Ex On the 1000 volt scale, the total resistance is 1 MΩ (999.5 kΩ + 500Ω), giving 1,000,000 Ω per 1,000 volts of range, or 1 kΩ/V (1,000 ohms per volt).



23

24

# Voltmeter Sensitivity (Cont'd)

This ohms-per-volt "sensitivity" rating remains constant for any ranges of this meter:

100-V range,  $100k\Omega/100V = 1 k\Omega/V$  sensitivity

10-V range,  $10k\Omega/10V = 1 k\Omega/V$  sensitivity

1-V range,  $1k\Omega/1V$  = 1 kΩ/V sensitivity



#### Voltmeter Sensitivity (Cont'd)

- "Ohms per volt" is the mathematical reciprocal of "volts per ohm," which is defined by Ohm's Law.
- The ohms-per-volt rating of any meter is determined by a single factor: the full-scale current of the movement, in this case 1 mA.



25

# Voltmeter Sensitivity (Cont'd)

- To minimize the loading of a voltmeter on any circuit, the designer must seek to minimize the current draw of its movement.
- To electronically boost the current sent to the movement, so that very little current needs to be drawn from the circuit under test, an electronic amplifier is used.



# **Ohmmeter Loading**

Using a circuit within the instrument (self-powered)



27

#### **Analog Ammeters & Voltmeters**

- The users have to read the meter manual to find the basic accuracy specifications.
- Moving-coil-based analog meters are characterized by their full-scale deflection (f.s.d.) and effective resistance of the meters (few  $\Omega$   $k\Omega$ )
- Typical meters produce a f.s.d. current of 50 μA - 1 mA (this is not the ranges of the meters)



#### Percentage of FSD

- The accuracy of analog ammeters and voltmeters are quoted as a percentage of the full-scale deflection of pointer on the linear scale for all reading on the selected range.
- e.g. an ammeter having accuracy  $\pm 2\%$  f.s.d. within the range 0-10 A, Relative error  $\Rightarrow \pm 2\%$  of 10 A Absolute error  $\Rightarrow \pm 0.2$  A



• When a measured value is close to full scale, or at least above 2/3 of full scale, the published accuracy is meaningful. 29

#### Percentage of Midscale

- Moving-coil-based ohmmeters is characterized by their midscale deflection of the pointer on nonlinear scale.
- What figure lies exactly between infinity and zero?
- e.g. ± 3% of midscale Relative error  $\Rightarrow \pm 3\%$  of 9 k $\Omega$ Absolute error  $\Rightarrow \pm 0.27 \text{ k}\Omega$



# Percentage of DMM Reading

- In the case of digital instruments, the accuracy is generally quoted as ± the percentage of the reading ± 1 digit.
- e.g. ± 0.5% Reading ± 1 Digit when you read a voltage 1.2 V with a digit of 0.01 V (depending on the range selected)

error =  $\pm$  0.5% of 1.2 V  $\pm$  0.01 V =  $\pm$  0.016 V  $\Rightarrow$  absolute error =  $\pm$  1.3% of reading  $\Rightarrow$  relative error

31

#### **Potential Meter**

- Before the moving coil meter, potentiometer was used in measuring the voltage in a circuit
- Calculated from a fraction of a known voltage (on resistive slide wire)
- Based on voltage divider (linearly)
- By means of a galvanometer (no deflection or null-balance)





#### Calibration of Potentiometer



- The end of a uniform resistance wire is at x<sub>1</sub>
- The sliding contact or wiper is then adjusted to x<sub>2</sub>
- The standard electrochemical cell whose E.M.F. is known (e.g. 1.0183 volts for Weston cell)

33

# Calibration of Potentiometer (Cont'd)

 Adjust supply voltage V<sub>s</sub> until the galvanometer shows zero or detect null (voltage on R<sub>2</sub> equals to the standard cell voltage or no current flows through the galvanometer)

• 
$$x_2/x_1 V_s = V_{std\_cell}$$
 $V_s = x_1/x_2 V_{std\_cell}$ 
unknown mass

#### Calibration of Potentiometer (Cont'd)

- An extremely simple type of null detector, instead of the galvanometer, is a set of audio headphones, the speakers within acting as a kind of meter movement.
- When a DC voltage is initially applied to a speaker, the resulting current through it will move the speaker cone and produce an audible "click."
- Another "click" sound will be heard when the DC source is disconnected.
- The technician would repeatedly press and release the pushbutton switch, listening for silence to indicate that the circuit was "balanced".



35

#### Calibration of Potentiometer (Cont'd)

- The headphone's sensitivity may be greatly increased by connecting it to a device called a transformer.
- A step-down transformer converts low-current pulses, created by closing and opening the pushbutton switch while connected to a small voltage source, into highercurrent pulses to more efficiently drive the speaker cones inside the headphones (N<sub>D</sub>/N<sub>S</sub> = I<sub>S</sub>/I<sub>D</sub>).



# Measuring of Potentiometer



- Slide the wiper (change x<sub>3</sub>) until the galvanometer shows zero again
- $V_{unknown} = x_3/x_1 V_s$ =  $x_3/x_2 V_{std\_cell}$

37

#### Rheostat

• Variable resistor with two terminals







#### Loading of a Potentiometer (Cont'd)

$$\begin{split} V_{th} &= I \; (R_{th} + R_L) \\ (x/p) V_s &= I \; [ \; (x/p)(1-x/p)R_p + R_L \; ] \\ &I = \underbrace{ \; \; (x/p) V_s }_{ \; (x/p)(1-x/p)R_p + R_L } \\ V_L &= IR_L = \underbrace{ \; \; (x/p) V_s R_L }_{ \; \; (x/p)(1-x/p)R_p + R_L } \\ &= \underbrace{ \; \; \; (x/p) V_s }_{ \; \; (R_p/R_L)(x/p)(1-x/p) + 1 } \end{split}$$

It means the relationship between V<sub>L</sub> and x is nonlinear!

# Loading of a Potentiometer (Cont'd)

Error,  

$$V_{th} - V_{L} = (x/p)V_{s} \left[ 1 - \frac{1}{(R_{p}/R_{L})(x/p)(1 - x/p) + 1} \right]$$

$$= (x/p)V_{s} \left[ \frac{(R_{p}/R_{L})(x/p)(1 - x/p)}{(R_{p}/R_{L})(x/p)(1 - x/p) + 1} \right]$$

$$\begin{split} &\text{If } R_L >> R_p \text{ then } R_p/R_L \approx 0 \\ &\text{Error} \approx (x/p) V_s(R_p/R_L)(x/p)(1-x/p) \\ &\approx V_s(R_p/R_L)[(x/p)^2-(x/p)^3] \quad , \; R_L \uparrow \text{ error } \downarrow \\ &\text{\% Error} \approx (R_p/R_L)[(x/p)-(x/p)^2] \times 100\% \end{split}$$

#### Loading of a Potentiometer (Cont'd)

Let d(Error)/dx = 
$$V_s(R_p/R_L)[2x/p^2 - 3x^2/p^3] = 0$$
  
We get  $2x/p^2 = 3x^2/p^3$   
 $x/p = 2/3$  for the maximum

Therefore,

the max error = 
$$V_s(R_p/R_L)[(2/3)^2 - (2/3)^3]$$
  
  $\approx 0.148 \ V_s(R_p/R_L)$ 

and the max % error  $\approx$  22.2 (R<sub>p</sub>/R<sub>L</sub>) %

43

#### References

 https://www.allaboutcircuits.com/textbook/ direct-current/chpt-8/voltmeter-impactmeasured-circuit/