

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE	DE LA	ASIGNATURA	
--------	-------	-------------------	--

Análisis de algoritmos

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS	
Cuarto	025041	85	

OBJETTVO(S) GENERAL(ES)DE LA ASIGNATURA

Proveer al estudiante las herramientas matemáticas para el análisis de la eficiencia espacial y temporal de algoritmos. También conocerá las estrategias más comunes de diseño y análisis de algunos algoritmos representativos de las Ciencias de la Computación. Finalmente conocerá los alcances y las limitaciones prácticas de algunos algoritmos.

TEMAS Y SUBTEMAS

- 1. Introducción al análisis de algoritmos.
 - 1.1.Planteamiento general.
 - 1.2.Algoritmo y eficiencia.
 - 1.3. Problemas generales.
 - 1.4.Notación para la eficiencia de los algoritmos.1.5.Reglas teórico prácticas para el cálculo de la eficiencia.
 - 1.6.Análisis de los algoritmos elementales.
 - 1.7. Análisis de recurrencias asintóticas.
- Estrategia Divide y Vencerás.
 Características.
 - 2.2.Cálculo de la eficiencia.
 - 2.3.Esquema general.
 - 2.4.Caso de estudio.
- 3. Estrategia de programación dinámica.
 - 3.1.Características.
 - 3.2.Cálculo de la eficiencia.
 - 3.3.Esquema general.
 - 3.4.Caso de estudio.
- 4. Algoritmos voraces (greedy).
 - 4.1.Características.
 - 4.2.Cálculo de la eficiencia.
 - 4.3.Esquema general.

4.4.Caso de estudio.

- 5.Rastreo inverso (Backtracking).
 - 5.1.Características.
 5.2.Cálculo de la eficiencia.
 - 5.3.Esquema general.
 - 5.4.Caso de estudio.
- 6. Probabilísticos.
 - 6.1.Características.
 - 6.2.Cálculo de la eficiencia.

- 6.3. Esquema general.
- 6.4.Caso de estudio.
- 7. Teoría de la complejidad y problemas NP-completos.
 - 7.1. Clasificación de problemas: clases P y NP.
 - 7.2.Reducciones simples.
 - 7.3. Taxonomía de problemas NP-completos.
 - 7.4. Problemas NP-duros.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora portátil y el proyector. Asimismo, se desarrollarán programas de cómputo sobre los temas y problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Fundamentals of Algorithmics. Gilles Brassard and Paul Bratley. Prentice Hall. 1996.
- Introduction to Algorithms. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. The MIT Press, third edition, 2009.

Consulta:

- Computers and Intractability. Garey, Michael R.; Johnson, David S.; Freeman. Worth Publishers. 1979.
- 2. The Art of Computer Programming: Sorting and Searching. Knuth, Donald E. Addison-Wesley, 3a ed. 1997.
- The design and analysis of computer algorithms. Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D. Addison-Wesley. 1974.

PERFIL PROFESIONAL DEL DOCENTE

INGENIERIA EN COMPUTACION

Profesionista con estudios de licenciatura, maestría o doctorado con especialidad en el área de computación.

M.C. ENRIQUE ALEJANDRO LÓPEZ LÓPEZ
JEFATURA DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

> VICE-RECTORIA ACADÉMICA