TD n°1

Exercice 1 : champ électrique et force électrostatique dans un atome Un noyau d'uranium possède une charge électrique positive égale à q = 92e.

a) Donnez la direction, le sens et le module du champ électrique dû au noyau à la distance d = 1 Å de celui-ci. (1 Å = 10⁻¹⁰ m, et la dimension d'un noyau étant de l'ordre de 10⁻¹⁴ m, ce dernier peut être considéré comme ponctuelle)

Données : $e = 1,6.10^{-19} \text{ C}$; $\epsilon_0 = 1/(36\pi 10^9) \text{ C.V}^{-1} \cdot \text{m}^{-1}$

b) En déduire le sens, la direction et le module de la force qui s'exerce sur un électron à cette distance d = 1 Å.

Exercice 2 : Expérience de Millikan

On place horizontalement deux plaques d'un condensateur distantes de d = 6 cm entre lesquels existe une différence de potentiel U = 300 V. Après avoir projeté des gouttelettes d'huile ionisées (de charges négatives) entre

les deux plaques, une gouttelette sphérique de rayon $r = 10^{-2}$ mm reste en équilibre.

- a) Calculez la norme du vecteur du champ électrique en un point entre les deux plaques.
- b) Exprimez la force électrique exercée sur la gouttelette d'huile, en notant q la charge électrique.
- c) Calculez le poids de la gouttelette. (On donne : la masse volumique de l'huile $\rho = 0.8$ g.cm⁻³ ; l'accélération de la pesanteur g = 10 m.s⁻²)
- d) Déterminez le nombre n de charges élémentaires contenues dans la gouttelette.

Exercice 3:

Trois particules chargées électriquement sont disposées aux sommets d'un triangle équilatéral dont la longueur d'un côté est ℓ . Deux de ces particules ont une charge +q alors que la troisième a une charge -q.

Déterminez l'expression de la norme du vecteur résultant de la somme des forces électrostatiques exercées sur une des particules de charge +q par les deux autres.

Exercice 4:

Soit un disque de rayon R portant sur une de ses faces une densité surfacique de charge ρ . Démontrez l'expression du potentiel en son centre.

Exercice 5:

Soit une boule (sphère pleine) de rayon R portant une densité surfacique de charge σ . Démontrez l'expression du potentiel en son centre.