Randomised Algorithms Winter term 2022/2023, Exercise Sheet No. 3

Authors:

Ben Ayad, Mohamed Ayoub Kamzon, Noureddine

November 6, 2022

Exercise 1.

- (a) Comparisons between 15 and 8:
 - Pivot is 7: Decision will be postponed.
 - Pivot is 15: They will be compared.
 - Pivot is 10: They will be imediately separated and hence never be compared.
- (b) The probability of 8 and 15 being compared: $\frac{2}{|\{Numbers\ in\ the\ input\ between\ 8\ and\ 15\}|} = \frac{2}{|\{8,11,19,10,15\}|} = \frac{2}{5}$

Exercise 2.

- (a) Based on the lecture notes, for a letter x of size n, we would have: $\mathbb{P}[\{A_t \text{ failing}\}] \leq (1-\frac{4}{n})^{\frac{t}{2}}$
- (b) Hey, well well well
- (c) The probability of A failing for an input of size n is the same of the probability of failing in the first case (when the probability is at least $\frac{1}{2} + \frac{1}{\sqrt{n}}$) for an input size of n^2 . Hence, using (b), $L \in BPP$.

Exercise 3.

(a) We start from Top to Bottom, we assign 1 to the root, and follow these two startegies to assign the levels below until we reach the leaves:

If the parent is \vee :

- First child: 0
- Second child: Parent Value

If the parent is \wedge :

- First child: 1
- Second child: Parent Value
- (b) The following figures captures the algorithm:

Figure 1: graph-incscape

Exercise 4.

We have for $i, j \in \{1, ..., n\}$:

$$\min_{i} M_{i,j} \le M_{i,j} \le \max_{j} M_{i,j}$$

Hence, for $i \in \{1, ..., n\}$, and as the RHS is independent of j:

$$\max_{j} \min_{i} M_{i,j} \le \max_{j} M_{i,j}$$

Notice that the LHS is a constant (independent of both i and j), and the past inequality is verified $\forall i$. We finally get:

$$\max_{j} \min_{i} M_{i,j} \le \min_{i} \max_{j} M_{i,j}$$