Intervalles de $\mathbb R$

Définition. – Soient a et b deux nombres réels tels que a < b. L'intervalle [a; b] est l'ensemble des réels tels que $a \le x \le b$. On définit de même les intervalles [a; b[,]a; b] et]a; b[.

Intervalles	Ensemble des réels <i>x</i> tels que	Représentation graphique
[a; b]	$a \le x \le b$	
[a; b[
]a; b]		
]a; b[

Définition. – Soit a un nombre réel. L'intervalle $[a; +\infty[$ est l'ensemble des réels tels que $x \ge a$. On définit de la même façon les intervalles $]a; +\infty[$, $]-\infty; a[$ et $]-\infty; a[$.

Intervalles	Ensemble des réels <i>x</i> tels que	Représentation graphique
$[a; +\infty[$	$x \ge a$	
$]a;+\infty[$		
$]-\infty$; a]		
$]-\infty$; $a[$		

Exemples. – Représenter (sur quatre graphiques différents) les intervalles $[0; 5]$, $]-2; 4[$, $[-3; -1[$ et $]-1; 8]$.						
Compléter à l'aide des symboles \in et \notin :						
	o ∈ [0; 5]	5 € [0; 5]	2 € [0; 5]	7 € [0; 5]		
	-2 ∉] - 2; 4[4 <u></u> €] − 2; 4[1∈] − 2; 4[-3 <mark>∉</mark>] - 2; 4[
	_3 ∈ [_3· _1[_1 ⊄ [_3· _1[0 ¢ [-3: -1[_2 ⊆ [_3· _1[

2

-1∉] - 1; 8]

 $-4\notin]-1;8]$

8**∈**] − 1; 8]

Exemples. – Représenter (sur quatre graphiques différents) les intervalles [10; $+\infty$ [,] - 1; $+\infty$ [,] $-\infty$; -5] et] $-\infty$; 2[.

Compléter à l'aide des symboles \in et \notin :

5**∈**] − 1; 8]

$10 \in [10; +\infty[$	$12 \in [10; +\infty[$	2 ∉ [10; +∞[
$-1\cancel{\epsilon}]-1;+\infty[$	3∈] − 1; +∞[-3 <mark>∉</mark>] − 1; +∞[
-5∈] - ∞; -5]	$-3\notin]-\infty;-5]$	-10 ∈] - ∞; -5]
2 d] _ ∞:2[-16l - x:2l	2 d] – ∞: 2[