マルチメディア信号解析

出席確認のため、

チャットに出席した旨書いて下さい!!

- ・量子化レベル変更
- カラーからモノクロへの変換
- コントラスト調整
- 閾値処理
- •反転
- ・画像サイズ変更
- •回転
- -ノイズ除去
- ・エッジ検出

・フーリエ変換 etc. 点処理

局所処理

大局処理

- ・量子化レベル変更
- •カラーからモノクロへの変換 $f_{out}(y,x) = 0.299 f_{in}^{R}(y,x) + 0.587 f_{in}^{G}(y,x) + 0.114 f_{in}^{B}(y,x)$

入力画像

出力画像

- ・コントラスト調整
- 閾値処理
 - → ヒストグラムの利用?

ヒストグラム

8ビット画像の場合、0~255

各画素の濃度値の情報

ある濃度値をもった画素がいくつあるか(割合)

空間的情報(位置)は失われる

ヒストグラム

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

$$f_{out}(y,x) = \frac{f_{in}(y,x) - \min}{\max - \min} \times 255$$

$$f_{out}(y,x) = \frac{f_{in}(y,x) - \min}{\max - \min} \times 255$$

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7×7 neighborhood about each pixel.

$$f_{out}(y,x) = \frac{f_{in}(y,x) - \min}{\max - \min} \times 255$$

出力画像

幾何変換

Figure 3.45 Basic set of 2D geometric image transformations.

I: Identity matrix

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$
$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[\begin{array}{c c}I&t\end{array}\right]_{2\times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c} R & t\end{array}\right]_{2\times 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles	\Diamond
affine	$\begin{bmatrix} A \end{bmatrix}_{2\times 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

幾何変換

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a * \cos \theta & -a * \sin \theta & tx \\ a * \sin \theta & a * \cos \theta & ty \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$(a = 1.0, \theta = 30^{\circ}, tx = 10, ty = -60)$$

幾何変換

$$\begin{pmatrix} a * \cos \theta & -a * \sin \theta & tx \\ a * \sin \theta & a * \cos \theta & ty \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$(a = 1.0, \theta = 30^{\circ}, tx = 10, ty = -60)$$

- -ノイズ除去
- -エッジ検出

局所処理

(空間フィルタリング)

入力画像

出力画像

局所処理(近傍処理)

n×n画素近傍を用いての処理

カーネル

f_{in}^{V}	V(y,x)		_	
	f(y-1,x-1)	f(y-1,x)	f(y-1,x+1)	И
				14
	f(y,x-1)	<i>f</i> (y,x)	f(y,x+1)	И
	f(y+1,x-1)	f(y+1,x)	f(y+1,x+1)	

w(0,-1) $w(0,0)$ $w(0,1)$ $w(1,-1)$ $w(1,0)$ $w(1,1)$			
w(1,-1) $w(1,0)$ $w(1,1)$	w(0,-1)	w(0,0)	w(0,1)
	w(1,-1)	w(1,0)	w(1,1)

$$f_{out}(x, y) = \frac{\sum_{t=-1}^{1} \sum_{s=-1}^{1} w(t, s) f_{in}(y+t, x+s)}{\sum_{t=-1}^{1} \sum_{s=-1}^{1} w(t, s)}$$

局所処理(近傍処理):例

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

局所処理(近傍処理):例

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
×	2	4	2
	1	2	1

図 2・22 局所処理における画像外周部での 取扱い (外周部の画素*について は正しい値を計算できない)

局所処理(近傍処理):例

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.40

(a) Image of the North Pole of the moon.

(b) Laplacianfiltered image. (c) Laplacian image scaled for display purposes. (d) Image enhanced by using Eq. (3.7-5). (Original image courtesy of NASA.)

エッジ検出

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

a b

FIGURE 3.38

(a) A simple image. (b) 1-D horizontal gray-level profile along the center of the image and including the isolated noise point. (c) Simplified profile (the points are joined by dashed lines to simplify interpretation).

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

・フーリエ変換

大局処理

 f_{in}

入力画像

出力画像

演習課題

※C言語もしくはpythonで実装すること

- コントラストの悪い適当な画像(スマートフォンの撮影画像など) を読み込み、ヒストグラムに基づきコントラストを上げた画像を 作成し、保存するプログラムを作成せよ。複数の画像、複数の 手法で試すこと。
- 適当な画像を読み込み、幾何変換し、保存するプログラムを 作成せよ。背景は白や黒の画素値で補完してよい。
- 適当な画像を読み込み、局所処理をして保存するプログラムを 作成せよ。処理はなんでもよい。
- プログラムの説明(該当するソースコードと共に)、各処理の 実行結果、工夫点、感想などをレポートにまとめよ。
- レポート(PDF形式)とソースコードをCLEから提出して下さい。
- 提出期限:5月5日(火)

出席確認のため、

チャットに出席した旨書いて下さい!!

