Practice 3: Random Variables' Simulation

1. Let U be the uniform distribution on [0,1] and $p \in]0,1[$, set

$$X = \begin{cases} 1 & if \ U$$

- i. Check that X is following a Bernoulli distribution with parameter p.
- ii. Use the latter to write an R-function that generates Bernoulli random numbers, call your function Bernoulli(n,p) where n and p denotes respectively the number of desired random numbers and the parameter of the Bernoulli distribution.
- iii. Write an R-function SLLN(N,p) that for a given $N \in \mathbb{N}$ and $p \in]0,1[$ generates N Bernoulli numbers $\{Bernoulli_i(p): i=1,\cdots,N\}$ and that compute for each $k=1,\cdots,N$ the summation

$$\frac{1}{k} \sum_{i=1}^{k} Bernoulli_i.$$

Plots the summations vector against 1:N. Comment on.

- 2. Write your own generator of Binomial numbers, Binomial(N,n,p) where N is the desired number of Binomial numbers and (n,p) are the parameters of the Binomial distribution.
- 3. Let U be the uniform distribution on [0,1] and $p_1, \dots, p_n \in]0,1[$ for a given $n \in \mathbb{N}$, set

$$X = \begin{cases} 1 & if \ U < p_1 \\ 2 & if \ p_1 \le U < p_1 + p_2 \\ 3 & if \ p_1 + p_2 \le U < p_1 + p_2 + p_3 \\ \vdots & \vdots \\ n & if \ p_1 + \dots + p_{n-1} \le U < 1 \end{cases}$$

i. Check that X is distributed as

$$\begin{array}{c|c}
X & \mathbb{P}_X \\
\hline
1 & p_1 \\
\vdots & \vdots \\
n & p_n
\end{array}$$

ii. Use the latter to write an R-function that generates random numbers following (3i), call your function DiscreteGenerator(N,p) where N is is the desired number of random numbers and $p = (p_1, \dots, p_n)$.

- 4. Let U be the uniform distribution on [0,1] and let F be a given CDF function that is increasing. Set $X = F^{-1}(U)$.
 - i. Check that $X \sim dF$.
 - ii. Deduce an algorithm to generate random numbers following dF.
 - iii. Write an R-function that generates Exponential numbers, call it Exponential (N, λ) where N is the desired number of random numbers and $\lambda > 0$ is the parameter of the Exponential distribution.
 - iv. Check that the sum of n independent random variables following the same exponential distribution $\mathcal{E}(\lambda)$ is following a gamma distribution $\Gamma(n, \lambda)$.
 - v. Deduce and write an R-function that generates Gamma numbers, name it $Gamma(N,n,\lambda)$ where N is the desired number of random numbers and (n,λ) are parameters of the Gamma distribution.