Table 1: Performance Comparison of SRecsys: Standard Training vs. CPFT. This table contrasts the performance of various sequential recommendation models, where 'SR' denotes models trained via standard methods, and 'SR_{CPFT}' signifies models fine-tuned with our proposed loss combined with Cross-Entropy (CE) loss. The highest performance results are highlighted in bold. Improvements exceeding 7%, 5%, and 3% are denoted in red, orange, and blue, respectively. "*" denotes that the improvements are significant at the level of 0.01 with paired t-test. R@10_{Avg-Improv}=4.391%,N@10_{Avg-Improv}=4.460%,R@50_{Avg-Improv}=5.501%, and N@50_{Avg-Improv}=5.183%

															-					
	Scientific				Pantry				Instruments				Arts				Office			
	R@10	N@10	R@50	N@50	R@10	N@10	R@50	N@50	R@10	N@10	R@50	N@50	R@10	N@10	R@50	N@50	R@10	N@10	R@50	N@50
SASRec	0.1048	0.0536	0.2056	0.0756	0.0499	0.0221	0.1367	0.0408	0.1166	0.0691	0.2124	0.0898	0.1117	0.0621	0.2038	0.0821	0.1177	0.0757	0.1811	0.0895
$SASRec_{CPFT}$	0.1131*	0.0551*	0.2198*	0.0809*	0.0525*	0.0232*	0.1454*	0.0422*	0.1231*	0.0704*	0.2269*	0.0929*	0.1158*	0.0663*	0.2131*	0.0861*	0.1192	0.0774*	0.1831*	0.0928
S ³ -Rec\$	0.0713	0.0419	0.1631	0.0601	0.0428	0.0195	0.1107	0.0397	0.1013	0.0446	0.1845	0.0783	0.0829	0.0485	0.1866	0.0680	0.1024	0.0750	0.1588	0.0861
S ³ -Rec _{CPFT}	0.0724*	0.0434*	0.1702*	0.0623*	0.0441*	0.0203*	0.1143	0.0426*	0.1131*	0.458	0.1901*	0.0812	0.0899*	0.0461	0.1932*	0.0673	0.1049*	0.0745	0.1641*	0.0860
FDSA	0.0859	0.0583	0.1636	0.0750	0.0379	0.0206	0.1113	0.0363	0.1085	0.0817	0.1925	0.0998	0.1008	0.0723	0.1783	0.0892	0.1123	0.0875	0.1661	0.0992
$FDSA_{CPFT}$	0.0903*	0.0599*	0.1727*	0.0798*	0.0413*	0.0224*	0.1251*	0.0401*	0.1113*	0.0831*	0.1987*	0.1031	0.1041	0.0732*	0.1841*	0.0921*	0.1141	0.0881	0.1693*	0.1013*
UnisRec	0.1275	0.0654	0.2413	0.0901	0.0746	0.0331	0.1886	0.0571	0.1299	0.0729	0.2431	0.0975	0.1168	0.0653	0.2218	0.0881	0.1190	0.0755	0.1933	0.0917
UnisReccept	0.1313*	0.0711*	0.2538*	0.0934*	0.0779	0.0342*	0.1917*	0.0599*	0.1354*	0.0774*	0.2501*	0.1010*	0.1194	0.0693*	0.2309*	0.0921*	0.1252*	0.0794*	0.2007*	0.0959*