1. Q — Use the **Euclidean Algorithm** to find integers a and b such that 70a + 182b = 28. Are the integers c and d such that 70c + 182d = 30?

A —

Original Pair	Division Expression	GCD
(182, 70)	$182 = 2 \cdot 70 + 42$	(70, 42)
(70, 42)	$70 = 1 \cdot 42 + 28$	(42, 28)
(42, 28)	$42 = 1 \cdot 28 + 14$	(28, 14)
(28, 14)	$28 = 2 \cdot 14 + 0$	14

Substituting the GCD (14) into the penultimate Division Expression:

$$14 = 42 - (1)(28)$$

$$= 42 - (1)(70 - (1)(42))$$

$$= (-1)(70) + (2)(42)$$

$$= (-1)(70) + (2)(182 - (2)(70))$$

$$= (-1)(70) + (2)(182) - (4)(70)$$

$$= (2)(182) - (5)(70)$$

$$\therefore 28 = (4)(182) - (10)(70)$$

Since 30 does not appear in the remainders in the table above, it is **not** possible to attain 70c + 182d = 30 with integers, c and d.