Permit Number 9739

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant Name (3)	Emission Rates (5)	
No. (1)			lbs/hour	TPY (4)
	DC/ Baghouse #1 (Sander 1)	PM	1.30	5.70
E1		PM ₁₀	0.26	1.14
		PM _{2.5}	0.13	0.57
		VOC	0.02	0.06
	DC/Baghouse #2 (Sander 2)	PM	1.03	4.51
E2		PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.04
	DC/Baghouse #3 (Sander 3)	PM	1.03	4.51
E3		PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.04
E4	DC/Baghouse #4 (Sander 4)	PM	1.03	4.51
		PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.04
E5	DC/Baghouse #5 (Sander 5)	PM	1.03	4.51
		PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.04

E6	DC/Baghouse #6 (Sander 6)	PM	1.03	4.51
	Jo, Zagiloaco no (Sallaci o)	PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.03
F7	Cuparian Direct Fined Bailer			
E7	Superior Direct-Fired Boiler	PM	0.36	1.52
		PM ₁₀	0.36	1.52
		PM _{2.5}	0.36	1.52
		VOC	0.24	1.07
		СО	3.70	16.39
		NO _X	4.40	19.83
		SO ₂	2.56	0.44
E8	EPCON Incinerator/Boiler #1	PM	0.11	0.49
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		VOC	0.52	2.26
		СО	2.00	8.76
		NO _X	3.30	14.46
		SO ₂	0.01	0.04
E9	Hirt Incinerator/Boiler #2	PM	0.11	0.49
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		VOC	0.52	2.26
		СО	2.00	8.76
		NO _x	2.50	10.95
		SO ₂	0.01	0.04

E10	Hirt Incinerator/Boiler #3	PM	0.11	0.49
E10	This incinerator/doller #3			
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		VOC	0.20	0.87
		СО	2.00	8.76
		NO _X	5.00	21.90
		SO ₂	0.01	0.04
E11	Hurst Boiler	PM	7.10	31.10
		PM ₄₀	7.10	31.10
		PM _{2.5}	7.10	31.10
		VOC	0.78	3.43
		со	10.77	47.17
		NOx	6.20	27.16
		SO ₂	0.47	2.05
E12	RTO East	PM	0.23	0.45
		PM ₁₀	0.23	0.45
		PM _{2.5}	0.23	0.45
		VOC	9.23	13.22
		СО	2.49	4.71
		NO _X	3.06	6.01
		SO ₂	0.05	0.09
E13	RTO West	PM	0.23	1.01
		PM ₁₀	0.23	1.01
		PM _{2.5}	0.23	1.01
		VOC	6.74	20.41

		СО	2.49	10.9
		NO _X	2.45	10.75
		SO ₂	0.05	0.2
E14	DC/Baghouse #7 (Sander 7)	PM	1.03	4.51
		PM ₁₀	0.21	0.90
		PM _{2.5}	0.10	0.45
		VOC	0.01	0.04
E15	Sander Dust Silo	PM	0.25	1.10
		PM ₄₀	0.05	0.22
		PM _{2.5}	0.03	0.11
		voc	0.01	0.01
E21 - E26	Press Hoods 1 - 6	voc	1.48	6.47
MELMIX	Melamine Additive Mixing	Voc	0.47	0.83
E31	Phenolic Checkstand (Vent)	VOC	0.31	0.31
V5	Gasoline Tank	Gasoline	13.11	0.35
V7	Isopropanol Tank	VOC	2.50	0.11
MWW1	Melamine Wash Water Tank No. 1	VOC	0.05	0.02
MWWTRK	Melamine Wash Water Truck Loading	VOC	0.07	0.05
PPUMPFUG	Phenolic Pump and Piping Fugitives (6)	VOC	0.26	0.26
MELFUG	Melamine Pump and Piping Fugitives (6)	VOC	0.14	0.60
V1-V4	Phenolic Resin Tanks	VOC	6.59	0.21
PWW1-PWW2	Phenolic Wash Water Tanks	VOC	0.05	0.01
PWWTRK	Phenolic Wash Water Truck Loading	VOC	0.03	0.01

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

NO_x - total oxides of nitrogen

⁽²⁾ Specific point source name.(3) VOC - volatile organi

⁽³⁾ VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$ PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (5) Allowable emission rates include planned maintenance, startup, and shutdown activities.
- (6) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

