Rocky Exdended 1094goo aq

1.A. Suppose A: a set (1,25,3) and B:s a set

D: {n| n ∈ T}. Then A-B= binite

B. Suppose A = {n| n ∈ T}, and B= {x | x | x ∈ T},

Thin A-B: 1 carbody inherize heave it

is a set of all inliques val han beg

C. lappase A = {n| n ∈ TR}, and B= [0,1]

Then A-B: AH real manbers — [0,1]

= [0,1], That is amendably inhable.

I am going to use proof by example
2. ABB= (AUB)-(ANB) = (A-B) U(B-A)
Let A: {1, 2, 3, 4, 5} and B: {1, 6, 3}
(AUB): {1,2,3,4,5} (ANB) = {1,2,33
$(A03) - (A03) = A \oplus 3.$
{1,2,3,45} - {1,2,3} = {4,5}
(A-13) = {4.5} (B-A) = {Q}, or empty set
$(A-13) - (13-A) = A\theta 13$
$\{4,5\}$ - $\{0\}$ = $\{4,5\}$
3. A. AUB: A 1. It B. s an empty cet, B: {0}
Hen AU{P} = A
2. Et BEA then AUB=A
Scheet
15. ANB = A
1. It A CB then AND:A
C. A-B=A
1. C+ B= {Q}, then A-13-A
D. ANB = BUA, This is always true for
any gira sett.

3. C. A-B = B-A. Phis is not possible
becase A-B is a subset of A that
is not in B. This cannot be equal
to the regularit set of B-A. They are
opposity,
Mar Mar
and the state of t

4. A. Not a one-to-one known. $f(0,1)=1$ and $f(1,0)=1$. Therefore, not hijection
and file to - one reneties. F(0,1)=1
and ((,0) = 1. Hentore, not hijection
B. Bijuhan Phis is because x3 is one to
one and only
one and only.
-3 de y calve
-3 of is perfected
44
(. f(n,h) = 2m-n Not one -10-are, heelere not bijuhar, f(-1,0) = [-2] and f(0,2)=[-2]
nut birelan fl-10)-[2)
and +(0, 1)=-1

S. A a = N + 24+3
N F(h) feelers of f(h) 0 4 2 (h+2) 1 4 32
0 4 2 ² (h+2)
1 9 32
0 9
3 25 52
[a(n)=(n+2)2)
B. a. = an + tan + 2n-9
n/fln/

7. A. Combible, IF ACIS than (A) < 1131
7. A. Cernhible, IF ACIS than (A) < (13) this (A) is cernhible
Russell
13. mountable. Suppose A is set of all integers distable by S. 141:00 or
meanlible. Suppose B is a set of
Tokyes dorable by 7. Then A-13
18 still encoulable. Unearthle - Unearthe Set : Encoulable let
C. Carrleble, (3.5) = 2, only 2 elements in set
1). A-13 mendelse sets mines ain complé
sek use always uneartible 00-4
= 00
B. A famile set that is person label.
Still contable. IAI. 11 = contable.
angu.