Lab 1 Report

309551064 張凱翔

1. Introduction

用兩層 hidden layer 來做兩種點分類問題:Linear 和 XOR, 並使用 numpy 實做 backpropagation 來更新 weight。Model 的架構如下圖表示。

2. Experiment setups:

A. Sigmoid functions

使用 lab1 spec 上提供的 sigmoid function

B. Neural network

Input: 2 dimension

Hidden Layer: 10 dimension, 2 layer

Output: 1 dimension Loss Function: MSE loss Learning Rate: 0.1 Epochs: 5000

C. Backpropagation

X-> W1-> z1-> a1-> W2-> z2-> a2-> W3-> z3-> a3==y

上面是 forwarding pass 的順序,backpropagation 則是從最後一層往前計算。 從最後一層的 weight 開始更新,使用 chain rule 來更加快速的計算 gradient。我的作法 是以 neuron 為單位計算這個 neuron 所有 weight 的 gradient,再將所有 neuron 的 gradient concatenate 起來,最後將原始的 weight 減去 gradient * LR。

下圖是第二層 weight 的更新方式:

```
# net[1]
C_W1 = np.zeros((len(net[1]), 1))
C_z1 = np.zeros((1, 1))
for i in range(len(net[2])):
    z2_a1 = np.array([net[2][i]]).reshape(1, 1)
    al_z1 = np.array((derivative_sigmoid(outputs[1]).reshape(-1)[i]]).reshape(1, 1)
    z1_W1 = outputs[0].T
    C_z1 = np.concatenate((C_z1, al_z1 @ z2_a1 @ a2_z2 @ C_a2), axis=1)
    C_W1 = np.concatenate((C_W1, z1_W1 @ al_z1 @ z2_a1 @ a2_z2.T @ C_a2.T), axis=1)

C_W1 = C_W1[:, 1:]
C_z1 = C_z1[:, 1:]
```

update_net[1] -= LR * C_W1

3. Results of your testing:

A. Screenshot and comparison figure Linear:

XOR:

AON.				
epoch	4971	loss	:	0.00029151665411196464
epoch	4972	loss		0.00029139752523972735
epoch	4973	loss		0.0002912784837854105
epoch	4974	loss		0.0002911595296573643
epoch	4975	loss		0.00029104066276406087
epoch	4976	loss		0.0002909218830140973
epoch	4977	loss		0.0002908031903161966
epoch	4978	loss		0.0002906845845791977
epoch	4979	loss		0.00029056606571207133
epoch	4980	loss		0.00029044763362391255
epoch		loss		0.0002903292882239307
epoch	4982	loss		0.000290211029421465
epoch	4983	loss		0.00029009285712597966
epoch		loss		0.0002899747712470496
epoch		loss		0.00028985677169438825
epoch		loss		0.0002897388583778176
epoch		loss		0.0002896210312072875
epoch	4988	loss		0.00028950329009287164
epoch		loss		0.0002893856349447613
epoch		loss		0.00028926806567326546
epoch		loss		0.0002891505821888248
epoch	4992	loss		0.00028903318440199493
epoch	4993	loss		0.00028891587222345
epoch	4994	loss		0.000288798645563985
epoch		loss		0.00028868150433452287
epoch		loss		0.0002885644484460957
epoch	4997	loss		0.00028844747780986627
epoch	4998	loss		0.00028833059233710455
epoch	4999	loss		0.00028821379193921446
epoch	5000	loss	:	0.00028809707652770704

B. Show the accuracy of your prediction

Linear: Accuracy 1.0 XOR: Accuracy 1.0

C. Learning curve (loss, epoch curve) Linear:

XOR:

D. anything you want to present 一開始將 prediction 對 loss 的式子寫錯,導致 model train 不起來

Linear:

XOR:

4. Discussion:

A. Try different learning rates

I replace the **1e-1** learning rate with **1e-4** and the result is shown below. Linear:

可以看到如果將 learning rate 從 1e-1 改成 1e-4 後準確度變得很不好,雖然 loss 有在持續下降,但下降的幅度並不大,因此在同樣 epoch 的情況下並不能像 1e-1 達到很好的訓練效果。

但是將 epoch 的數量加大後, 便能達到不錯的訓練效果。

B. Try different numbers of hidden units I replace the **10** hidden units with **100** and the result is shown below. Linear:

加大 hidden neuron 的數量並不能保證能有較好或是較快收斂,以 XOR 為例加大 hidden neuron 的數量反而使結果變得不好。因此 hidden neuron 的數量對於 model 的準確率也 是很重要的變因之一,要根據想要解決問題的難易度來進行調整,而不是越多越好。

C. Try without activation functions

```
epoch 1 loss: nan
epoch 2 loss: nan
epoch 3 loss: nan
epoch 4 loss: nan
epoch 5 loss: nan
epoch 6 loss: nan
epoch 7 loss: nan
epoch 8 loss: nan
epoch 9 loss: nan
```

試著將 activation function 拿掉,會造成 overflow 的問題。因為缺少了 activation function 將輸出壓縮在0與1之間,造成梯度爆炸,loss變為 nan

D. Anything you want to share

從這兩個 case 的 learning curve 來看,XOR 的 case 是比較難 train 的。我認為是因為XOR 的 case 缺乏一個直觀的界線,不像 linear 的 case,兩個 class 有一個很明顯的界線,因此所需要的訓練時間是較長的。

在這次的作業中並沒有實做 bias 但還是可以將 model 訓練的很好,我認為是因為這次的 task 是相對簡單的,因此有沒有加 bias 並沒有太大的區別,可能還會因此增加訓練的時間,但相信在一些困難的 task 上,加上 bias 會對 model 的訓練有很大的影響。

5. Extra

A. Implement different optimizers

None

B. Implement different activation functions

I replace the sigmoid function with **LeakReLU** and the code is shown below.

```
def ReLU(x):
    return np.where(x < 0, 0.07 * x, x)

def derivative_ReLU(x):
    return np.where(x < 0, 0.07, 1)</pre>
```

Linear:

```
epoch 4972 loss : 0.06286475213856725
epoch 4973 loss : 0.06238659492504293
epoch 4974 loss : 0.06263795876427639
epoch 4975 loss : 0.06263795876427639
epoch 4976 loss : 0.06239668543236106
epoch 4977 loss : 0.0632333580232574
epoch 4978 loss : 0.06322333580232574
epoch 4978 loss : 0.06279945817831221
epoch 4980 loss : 0.06279945817831221
epoch 4981 loss : 0.06224248452517396
epoch 4982 loss : 0.06256684063234977
epoch 4984 loss : 0.06256684063234977
epoch 4984 loss : 0.0625639751258828
epoch 4985 loss : 0.06274197049983324
epoch 4986 loss : 0.06274197049983324
epoch 4987 loss : 0.062383375528923
epoch 4987 loss : 0.062383146918094254
epoch 4988 loss : 0.06253079189565974
epoch 4989 loss : 0.06253079189565974
epoch 4990 loss : 0.0633685419194663
epoch 4991 loss : 0.06231093401485985
epoch 4991 loss : 0.06231093401485985
epoch 4992 loss : 0.06231093401485985
epoch 4994 loss : 0.0623755133439482
epoch 4994 loss : 0.062338631017545464
epoch 4998 loss : 0.063386833631017545464
epoch 4998 loss : 0.063386833631017545464
epoch 4998 loss : 0.06338683363107545464
epoch 4998 loss : 0.062338631017545464
epoch 4999 loss : 0.062338631017545464
epoch 4999 loss : 0.062386836861796
epoch 5000 loss : 0.06366248617932357
```


Accuracy 0.92

XOR:

```
Ground truth
                                                Predict result
  00000000e+00
                      1.0
                                           1.0
  72431514e-17
1.00000000e+00
                      0.8
                                           0.8
  44863027e-17
  00000000e+00
4.08006962e-17
1.00000000e+00
6.89726054e-17
                      0.4
                                           0.4
1.00000000e+00
7.18869408e-17
                      0.2
                                           0.2
-8.16013923e-17
  00000000e+00
  24344979e-16
                      0.0
                                           0.0
1.00000000e+00
                                                 0.25
                                                     0.50
  37945211e-16
  00000000e+00
                        Accuracy
  55431223e-16
  00000000e+00
  43773882e-16
```


C. Implement convolutional layers **None**