Theorem (Existence and Uniqueness): Consider $\dot{u} = f(u)$ with $u(0) = u_0$. Assume $u \in \mathbb{R}^2$ and $f \in C^1$. Then there exists a unique solution to the ODE on some interval around t = 0.

Equilibrium: If $\dot{u} = f(u) = 0$ at u_* , then u_* is an equilibrium.

- If $f'(u_*) < 0$, then u_* is stable
- If $f'(u_*) > 0$, then u_* is unstable

Phase diagrams:

- 1. Plot f
- 2. Zeros of f are equilibrium points
- 3. If f changes from positive to negative at the equilibrium, it is stable
- 4. If f changes from negative to positive at the equilibrium, it is unstable
- 5. Otherwise, it is a saddle

Implicit Function Theorem: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^k $(k \ge 1)$ function. Assume $f(x_*, y_*) = 0$.

Then:

- 1. If $f_x(x_*, y_*) \neq 0$, then $\exists ! g : B_{\varepsilon}(y_*) \to \mathbb{R}$ with $x_* = g(y_*)$ and $g \in C^k$ such that f(x,y) = $0 \iff x = g(y) \text{ for } (x,y) \in B_{\varepsilon}(x_*) \times B_{\varepsilon}(y_*)$
- 2. If $f_y(x_*, u) \neq 0$, then $\exists ! h : B_{\varepsilon}(x_*) \to \mathbb{R}$ with $y_* = h(x_*)$ and $h \in C^k$ such that f(x,y) = $0 \iff y = g(x) \text{ for } (x, y) \in B_{\varepsilon}(x_*) \times B_{\varepsilon}(y_*)$

Example: Find all zeros of $f(x,y) = y + y^2 e^x + (\sin x)^2 - (\sin x)^2 + (\sin$ xy near (0,0).

- 1. Check conditions:
 - $f \in C^{\infty}$
 - f(0,0) = 0
 - $f_x(0,0) = (0)^2(1) + 2(0)(1) (0) = 0$
 - $f_n(0,0) = 1 + 2(0)(1) (0) \neq 0$
- 2. Apply IFT to get f(x,y) = 0 iff x = g(y) with q(0) = 0
- 3. Taylor expand f:

Hyperbolic Equilibrium: If $f(u_*, \mu_*) = 0$ and $f_u(u_*, \mu_*) \neq 0$, we say (u_*, μ_*) is hyperbolic

Catelogue of bifurcations: 0.1

Saddle-node: $\dot{u} = \mu - u^2$

$$\begin{cases} f(u_*, \mu_*) = 0 \\ f_u(u_*, \mu_*) = 0 \\ f_{\mu}(u_*, \mu_*) \neq 0 \\ f_{uu}(u_*, \mu_*) \neq 0 \end{cases}$$

Transcritical: $\dot{u} = u(u - \mu)$.

$$\begin{cases} f(0,\mu) = 0 \\ f_u(0,0) = 0 \\ f_{u\mu}(0,0) \neq 0 \\ f_{uu}(0,0) \neq 0 \end{cases}$$

Pitchfork: $\dot{u} = \mu u - u^3$

$$\begin{cases} f(-u, \mu) = -f(u, \mu) \\ f_u(0, 0) = 0 \\ f_{u\mu}(0, 0) \neq 0 \\ f_{uuu}(0, 0) \neq 0 \end{cases}$$

Which has two forms:

0.2Multidimensional Systems

 $g(x) = g(0) + xg'(0) + O(x^2) = xg'(0) + O(x^2) = O(x)$ For $\dot{u} = f(u)$ with $u \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^n$, we have two different methods for solving:

> 1. Find the eigenvalues of the Jacobian $Df(u_i)$ to determine stability for each equilibrium u_i

2. Plot nullclines and examine what the gradient does at each region of the phase plane. Notice the gradient ∇h is always perpendicular to the null-

cline and pointing in the firection of increasing h.

Nullcline: $\{(x,y):\dot{x}=0\}$ or $\{(x,y):\dot{y}=0\}$. Where the nullclines intersect are the equilibrium points.

1 Practice Problems

- 1. Consider the system $\dot{x} = x(r-2-x)$
 - (a) Determine all fixed points

$$x = 0 \text{ and } x = r - 2.$$

- (b) Classify the stability as a function of r f(x) = x(r-2-x). f'(x) = r-2-2x so f'(0) = r-2 and f'(r-2) = -r+2. Thus, x = 0 is stable for r < 2 and x = r-2 is stable for r > 2.
- (c) Sketch all qualitatively different phase portraits

(d) Sketch the bifurcation diagram and identify the type of bifurcation

Transcritical

2. Make a phase portrait and classify all equilibria of the following system

$$\begin{cases} \dot{x} = x(3-x) - 2xy \\ \dot{y} = y(2-y) - xy \end{cases}$$

We have Jacobian,

$$J(x,y) = \begin{pmatrix} 3 - 2x - 2y & -2x \\ -y & 2 - 2y - x \end{pmatrix}$$

and nullclines

$$\{(x,y): \dot{x}=0\} = \{(0,y)\} \cup \{(3,y)\} \cup \{(x,\frac{3-x}{2})\}$$
$$\{(x,y): \dot{y}=0\} = \{(x,0)\} \cup \{(x,2)\} \cup \{(2-y,y)\}$$

which give us equilibria at (0,0), (3,0), (0,2), (3,2), and (1,1).

Hence, we know stabilities:

$$J(0,0) = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \implies \text{repeller}$$

$$J(3,0) = \begin{pmatrix} -3 & -6 \\ 0 & -3 \end{pmatrix} \implies \text{attractor}$$

$$J(0,2) = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix} \implies \text{attractor}$$

$$J(3,2) = \begin{pmatrix} -7 & -6 \\ -2 & -5 \end{pmatrix} \implies \text{attractor}$$

$$J(1,1) = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix} \implies \text{saddle}$$

- **3.** Which of the following functions can we apply IFT at (x, y) = (0, 0) and what does IFT give us?
 - (a) $y^2 + x^2 + e^x 1 = 0$
 - f(0,0) = 0
 - $f_x(0,0) = 1 \neq 0$
 - $f_y(0,0) = 0$

Hence we can apply IFT to get $g \in C^{\infty}$ with $f(x,y) = 0 \iff x = g(y)$ around (0,0).

- (b) $ye^x = 0$
 - f(0,0) = 0
 - $f_x(0,0) = 0$
 - $f_y(0,0) = 1 \neq 0$

so we can apply IFT to get $f(x,y) = 0 \iff y = g(x)$.

- (c) $\sin x + \sin y = 0$
 - f(0,0) = 0
 - $f_x(0,0) = 1$
 - $f_y(0,0) = 1$

so we can apply IFT in either variable.

Further, $\nabla f = (1,1)$ so we look something like

