

Туре		name	properties	common uses	burning	
		Ту	Types of plastic			
PET	£	polyethylene terephthalate	clear, tough, solvent resistant, barrier to gas and moisture, softens at 80°	Soft drink, water bottles, salad domes, bisquit trays, food containers	yellow flame little smoke	
HDPE	②	high-density polyethylene	Hard to semi-flexible, resistant to chemicals and moisture, waxy surface, softens at 75°	Shopping bags, freezer bags, milk bottles, juice bottles, iceacream containers, shampoo, crates	difficult to ignite smells like candle	
PVC	♪	polyvinyl chloride	Strong, tough, can be clear and solvent, softens at 60°	Cosmetic containers, electrical condult, plumbing pipes, blister packs, roof sheeting, garden hose	yellow flame green spurts	
LDPE	4	low-density polyethylene	Soft, flexible, waxy surface, scratches easily, softens at 70°	Cling wrap, garbage bags, squeeze bottles, refuse bags, mulch film	difficult to ignite smells like candle	
PP	٩	polypropylene	Hard but still flexible, waxy surface, translu- cent, withstands solvents, softens at 140°	Bottles, icecream tubes, straws, flower- pots, dishes, garden furniture, food containers	blue yellow tipped flame	
PS	<u></u>	polystyrene	Clear, glassy, opaque, semi tough, softens at 95°	CD cases, plastic cutlery, imitation glass, foamed meat trays, brittle toys,	dense smoke	
OTHER	Ĉ	all other plastics	Properties depend on the type of plastic	automotive, electronics, packaging	all other plastics	

burning Type name properties common uses

Plastic Class	Specific Gravity	Percentage production*	Products and typical origin
Low-density polyethylene (LDPE LLDPE)	0.91-0.93	21%	Plastic bags, six-pack rings, bottles, netting, drinking straws
High-density polyethylene (HDPE)	0.94	17%	Milk and juice jugs
Polypropylene (PP)	0.85-0.83	24%	Rope, bottle caps, netting
Polystyrene (PS)	1.05	6%	Plastic utensils, food containers
Foamed Polystyrene			Floats, bait boxes, foam cups
Nylon (PA)		<3%	Netting and traps
Polyethylene terephthalate (PET)	1.37	7%	Plastic beverage bottles
Polyvinyl chloride (PVC)	1.38	19%	Plastic film, bottles, cups
Cellulose Acetate (CA)			Cigarette filters

^{*} Fraction of the global plastics production in 2007

Properties depend on

the type of plastic

all other

plastics

Almost every sample of ocean water collected by a Spanish team contained at least a few small pieces of plastic. On this map, the dots show the average concentration of plastic in hundreds of locations. Red dots mark highest concentrations. The gray areas denote gyres, where plastics accumulate.

CÓZAR ET AL/PNAS 2014

The location and standardized (a) microplastic count and (b) microplastic mass of all surface trawl data used in this analysis, on a log10 scale. Standardization is done with respect to year of study, geographic location, and wind speed. The spatial term includes a discontinuity at the Americas to allow for differences between the Caribbean Sea and tropical Pacific Ocean. Compare to figure S1 for the raw, un-standardized data.(van Sebille et al., 2015)

Locations and plastic concentrations of the sites sampled. The white area shows the extension of the polar ice cap in August 2013, and green curves represent the North Atlantic Subtropical Ocean Gyres and the Global Thermohaline Circulation poleward branch. (Andres Cózar)

Microplastics in the oceans Degradation: Plastics :::::-c- Microplastics (< 1-5 mm) Microplastic in oceanic gyres Sea surface: Floating microplastics Accumulate POPs SHEETE H Spread invasive species Microplastics Fishing nets and from wastewater nautical activities Leach toxic additives and stormwater 6 to Phyto- and zooplankton Scriking of DESTRICT incoroglastica Water column: Microplastics ingested by (ex: Polyviny) organisms and entering in the food chain Ocean floor: Microplastics burial in sediments Remobilisation by bioturbation and bacteria ("Plastic debris in the ocean: the characterization of marine plastics and their environmenta impacts, situation analysis report", 2015) SANDY BEACH - DELTA TIDAL ZONES: LAND SUBLITTORAL HEMI- TO PELACIC

PASSENGER TRANSPORT

FREIGHT TRANSPORT

HOUSEHOLD ACTIVITIES

COMMERCIAL ACTIVITIES

ACTIVITY AT SEA

General description of the modelling of activities, losses and releases of primary microplastic (IUCN)

Global releases of microplastics to the world oceans (IUCN)

Secondary microplastic These tiny plastic fragments broke off of larger items that had washed into the ocean. GIORA PROSKUROWSKI/SEA EDUCATION ASSOCIATION

The different categories of microplastics found in the Arctic Ocean. (Andres Cózar)

This image shows zooplankton that has swallowed polystyrene (PS) beads.

The beads glow green.

MATTHEW COLE/UNIVERSITY OF EXETER

Plankton and microplastics.

(Anna Deniaud / Tara

Expeditions Foundation)

Plastic Contaminates Table Salt in China

Supermarket products have tiny plastic particles, probably from ocean pollution attached to sea salt

By Sarah Everts, Chemical & Engineering News on October 29, 2015

3

Microplastic Pollution in Table Salts from China

Dongqi Yang, Huahong Shi, *, Lan Li, Jiana Li, Khalida Jabeen, and Prabhu Kolandhasamy

[†]State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China

Supporting Information

Credit: @iStock.com

ADVERTISEMENT | REPORT AD

LATEST NEWS

Supermarket products have tiny plastic particles, probably from ocean pollution attached to sea salt(Yang et al., 2015; Sarah Everts, 2017)

[‡]Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China

The three R's of the environment

Turn your plastic waste into new things

Thank you for listening

Q&A