

Nombre del proyecto

Integrantes:

- Fabio García
- Juan Carlos Lugo
- Ignacio Pérez
- Jean Neira
- Lorena Mendez
- Nathalie Huiza

Análisis del Caso

Presentación de la patología:

La enfermedad del Parkinson es un trastorno neurodegenerativo crónico que afecta a los ganglios basales

+ pérd dopa

Se debe a la pérdida de neuronas dopaminérgicas en la sustancia negra.

Provoca bradicinesia, rigidez, temblores y alteraciones en la marcha.

Análisis del Caso

Necesidades Funcionales del caso

Dificultad para iniciar y mantener la marcha por episodios de freezing of gait (FOG).

Rigidez muscular y bradicinesia que limitan la movilidad.

Alteraciones del equilibrio y alto riesgo de caídas.

Conserva funciones cognitivas adecuadas, lo que permite el uso de ayudas tecnológicas.

Necesita estimulación sensorial externa (vibratoria o visual) para recuperar el movimiento.

Análisis del Caso

Necesidad funcional e impacto en la vida del usuario

Necesidad de mantener una marcha fluida y segura, reduciendo episodios de freezing of gait (FOG).

El bloqueo al caminar limita actividades básicas como desplazarse, asearse o salir de casa.

Aumenta el riesgo de caídas, la dependencia de terceros y el aislamiento social.

Abordar esta necesidad mejora su autonomía, confianza al moverse y calidad de vida diaria.

Estado del Arte

Patente	Tipo de dispositivo	Funcionamiento principal	Tipo de estimulación	Innovación funcional	Relación con la necesidad
WO2020261225A1(Charco Neurotech Ltd, 2020)	Dispositivo ponible vibrotáctil colocado en el pecho.	Emite vibraciones rítmicas focalizadas que sirven como estímulo externo o "cueing" para facilitar el inicio y la continuidad de la marcha.	Táctil (vibratoria).	Cueing pasivo y discreto , no requiere atención consciente del usuario.	Mejora la fluidez motora y reduce episodios de freezing mientras el paciente realiza actividades cotidianas.
NL2031061(Cue2Walk International B.V., 2023)	Dispositivo con sensores inerciales y unidad de control inteligente.	Detecta irregularidades en la marcha mediante múltiples algoritmos y activa el estímulo solo cuando hay coincidencia entre ellos.	Variable (visual, auditivo o táctil).	Alta precisión algorítmica; reduce falsas alarmas y adapta la respuesta al paciente.	Detecta y corrige bloqueos de marcha de manera más eficiente, ayudando a mantener un ritmo estable.
US10251611B2(Medtronic Inc., 2019)	Sistema portátil con sensores de movimiento y proyector visual.	Detecta freezing en tiempo real y proyecta una línea láser en el suelo como guía visual para reiniciar el paso.	Visual.	Activación automática del estímulo visual mediante sensores; mejora la respuesta inmediata del paciente.	Proporciona una referencia visual clara que permite al paciente recuperar el control motor y reducir caídas.

Figura 1. Wearable device.

Figura 2. Sensor Cue2Walk.

Figura 3. Colocación de sensores y fuente de luz en un dispositivo portátil para detección de irregularidades de la marcha en pacientes con Parkinson

Tabla 1. Patentes no invasivas para mejorar la marcha en Parkinson [1] [2] [3].

Estado del Arte

1. Walkasins (RxFunction) — prótesis sensorial / wearable para apoyo de balance

Número de patente: US20240082004A1

Características funcionales: Detección de FoG,

Configuración de intensidad y frecuencia, Monitoreo continuo de la marcha, registro de datos clínicos, seguridad y ergonomía.

2. U-Step / LaserCane (In-Step Mobility) — bastón/andador con ayuda visual (láser)

Número de patente: US9155675B2

Características funcionales: Láser integrado, Soporte y estabilidad,

Ajustable y ergonómico, Fácil de usar, Portátil y ligero.

<u>Metodología VDI</u>

- 1. Propuesta a desarrollar:
- Nuestra propuesta consiste en un sistema wearable compuesto por una plantilla inteligente con sensores de presión(FSR). que se encarga de detectar patrones de movimiento anormales como el freezing of gait en pacientes que padecen Parkinson, y un cinturón diseñado para emitir estímulos vibrotáctiles en tiempo real con el objetivo de mitigar los ya mencionados, episodios de freezing of gait -

2. Lista de Requerimientos

Categoría principal	Subcategoría	Must Have	Should Have
	Funciones principales y subordinadas	Detección del freezing mediante sensores de presión plantar. Activación automática del sistema vibratorio al detectar freezing.	Registro del historial de episodios de
	Flujos de energía	Batería recargable integrada (en plantilla y faja).	Sistema de gestión inteligente de energía con modo ahorro.
Función	Flujos de material	Material flexible, resistente y cómodo para uso prolongado.	Materiales biocompatibles y lavables.
	Flujos de información	Comunicación inalámbrica (BLE) entre plantilla y faja vibratoria.	Envío de datos a una app móvil o PC para monitoreo médico.
	Definición de interfaces	Conexión clara entre sensores → microcontrolador → motor vibrador.	Interfaz de usuario (app o software) para calibración personalizada.
	Geometría	Plantilla adaptable a calzado estándar y faja ajustable al abdomen.	Diseño modular y personalizable segúr talla.
	Mecánica	Integración firme de sensores sin comprometer la comodidad.	Capa ergonómica o amortiguación adicional.
	Eléctrica / Electrónica	Microcontrolador con ADC y BLE. Conexión estable entre módulos.	Carga inalámbrica o conector magnético
	Software	Algoritmo en tiempo real para detección de freezing.	Actualizaciones OTA y app cor visualización de datos.
Diseño / Estructura	Seguridad	Aislamiento eléctrico, límites seguros de vibración y materiales no conductivos.	Alertas de batería baja o fallas de sistema.
	Regulación	Cumplimiento de normas básicas de bioseguridad.	Preparación para certificaciones médicas (ISO, CE).
	Ergonomía	Plantilla delgada y flexible, faja ligera y cómoda.	Ajuste del nivel de vibración segúr preferencia del usuario.
	Diseño industrial	Estética discreta y portable.	Colores y texturas personalizables.

Categoría principal	Subcategoría	Must Have	Should Have
	Compra	Componentes electrónicos comerciales disponibles.	Componentes modulares para fácil reemplazo.
	Fabricación	Ensamblaje básico de sensores, PCB y carcasa.	Producción en serie mediante moldeado.
Realización / Producción	Control de calidad	Prueba funcional de sensores, vibrador y batería.	Calibración automatizada previa a entrega.
Realización / Producción	Ensamblaje	Ensamblaje manual de prototipo funcional.	Ensamblaje semi-automatizado en etapas posteriores.
	Despliegue de software	Firmware estable en el microcontrolador.	Actualización de firmware mediante app móvil.
	Mantenimiento	Batería recargable y reemplazable.	Detección automática de fallos en sensores.
	Uso	Activación automática del sistema vibratorio al detectar freezing.	Modos configurables: entrenamiento, continuo o médico.
Uso	Reciclaje	Componentes electrónicos recuperables.	Sistema de reuso o reciclaje de plantillas.
	Transporte	Diseño ligero y portátil (≤300 g).	Estuche de transporte con carga integrada.
	Planificación		Plan de escalamiento hacia validación clínica.
Organización	Sostenibilidad		Fabricación ecológica o bajo impacto ambiental.
	Aceptación social	Diseño discreto que no estigmatice al usuario.	Personalización estética o de color.
	Mercado	Enfocado en pacientes con Parkinson y FoG.	Extensión a rehabilitación motora y otras patologías.

Función global: Detectar episodios de *freezing on Gait* y generar estímulos vibrotáctiles (cueing) para ayudar a la reanudación de la marcha.

Esquema de subfunciones:

Matriz morfológica

			40
Opción 1	Opción 2	Opción 3	Opción 4
EMG superficial	IMU (acc + gyro)	Sensores de presión en la plantilla	Acelerómetro de 3 ejes
Arduino/ESP32	MCU con ML embebido (TFLite)	Smartphone (App)	MCU low-power (Cortex-M) + umbral
Módulos bluetooth	RF low-latency (2.4 GHz)	Cableado	Bluetooth estándar
Varios vibrator coins distribuidos	LRA (linear resonant actuator)	Parche háptico	Coin vibrator
Cinturón/cintura	Tobillo	Esternón/pecho	Muñeca/pulsera
Energía asistida (USB)	Coin cell reemplazable	Batería central (Cableado)	Batería Li-ion recargable
App + vibración programable	Botón + LED local	App + botón	App smartphone + ajustes
	EMG superficial Arduino/ESP32 Módulos bluetooth Varios vibrator coins distribuidos Cinturón/cintura Energía asistida (USB) App + vibración	EMG superficial IMU (acc + gyro) Arduino/ESP32 MCU con ML embebido (TFLite) Módulos bluetooth RF low-latency (2.4 GHz) Varios vibrator coins distribuidos Cinturón/cintura Energía asistida (USB) App + vibración IMU (acc + gyro) CINU (acc + gyro) LRA (linear resonant actuator) Coin cell reemplazable App + vibración Botón + LED	EMG superficial IMU (acc + gyro) Arduino/ESP32 MCU con ML embebido (TFLite) Módulos bluetooth RF low-latency (2.4 GHz) Varios vibrator coins distribuidos Cinturón/cintura Energía asistida (USB) App + vibración IMU (acc + gyro) Sensores de presión en la plantilla Cableado Cableado Parche háptico Esternón/pecho Esternón/pecho Batería central (Cableado) App + botón

Posibles combinaciones

	Elemento	Concepto A(EMG + ML embebido, pulsera LRA)	Concepto B(Presión + Arduino, cinturón)	Concepto C(IMU + ML embebido, tobillo)	Concepto D(Aceleróme tro + Arduino, esternón)	Concepto E(EMG + presión + Arduino/ESP32, multi-modular)
<u>S</u>	Detección	EMG superficial	Sensores de presión en plantilla	IMU (acelerómetro + giroscopio)	Acelerómetro 3 ejes	EMG superficial + sensores de presión
	Procesamiento	MCU con ML embebido (TensorFlow Lite)	Arduino / ESP32	MCU con ML embebido (TensorFlow Lite)	Arduino / ESP32	Arduino / ESP32 con ML ligero o algoritmo simple
	Comunicación	BLE estándar	Módulo BLE Arduino / ESP32	BLE estándar	Módulo BLE Arduino / ESP32	Módulo BLE Arduino / ESP32
	Actuación	LRA (Linear Resonant Actuator)	Coin vibrators (array)	Coin vibrator	Parche háptico (array)	Múltiples coin vibrators (muñeca + tobillo)
	Ubicación	Muñeca	Cinturón	Tobillo	Esternón	Muñeca + tobillo
	Alimentación	Batería Li-ion recargable	Batería LiPo 3.7 V (500–1000 mAh)	Batería Li-ion recargable	Batería Li-ion recargable	Baterías Li-ion recargables (una por módulo)
	Interfaz	App + ajustes	Botón + LED	App	App + botón	App + LED

Tabla de evaluación

Concepto	Eficacia	Latencia	Consumo	Portabilidad	Costo	Uso	Confort	Total
A	3	3	1	3	1	3	3	17
В	3	3	3	2	3	3	3	20
С	3	3	2	2	2	2	2	16
D	2	3	2	2	2	2	1	14
E	4	2	1	1	1	2	2	13

A partir de la tabla de evaluación podemos observar que el concepto ganador resulta ser el B, por lo que trabajaremos con este concepto en adelante

Se presentará 2 bocetos desarrollados basados en el concepto de solución encontrado.

Bordo 1 Boceto n°1 microcontrolador 100 » baterias ventro boton ce pantalla parada de emergencia. sensor de LCD presion "FSR" - coin vibrators. cinturon > boton de inicio plantilla

Lista de despiece/ Boceto n°1

Parte	Pieza	Material	Breve descripción
Detector	ESP32	-	*Sistema encargado de la
	FSR	-	detección del FoG
	Plantilla	TPU/ biopolímero	ubicado en el pie y de mandar una señal vía
	Recubrimiento	Látex/biopolímero/PLA	bluetooth al actuador al
	circuito		detectar estos episodios.
Actuador	Pantalla LDC	-	
	Cinturón	Tela neopreno/ flexible	*Sistema encargado de brindar el cueing
	Coin vibrator	Œ	vibrotáctil al paciente
	Batería	1-	al recibir una señal del detector, el cual tiene
	ESP32	-	su propia interfaz de
	Caja que	PLA	configuración de
	almacena		parámetros del cueing: intensidad/frecuencia.
	componentes		
	Botones de	i.e.	
	inicio/parada		

Boceto n°2

Lista de despiece/ Boceto n° 2

Parte	Pieza	Material	Breve descripción
Detector	ESP32	-	*Sistema encargado de
	FSR	-	la detección del FoG ubicado en el pie y de
	Plantilla	Plantilla TPU/ biopolímero	
	Recubrimiento	Látex/biopolímero/PLA	bluetooth al actuador al
	circuito		detectar estos episodios.
Actuador	Pantalla LDC	-	*0:
	Cinturón	Tela neopreno/ flexible	*Sistema encargado de brindar el cueing
	Coin vibrator	-	vibrotáctil al paciente al
	Batería	-	recibir una señal del detector, el cual tiene su
	ESP32	-	propia interfaz de
	Caja que	PLA	configuración de parámetros del cueing:
	guarda		intensidad/frecuencia.
	componentes		
	Botones de	-	
	inicio/parada		

Conclusiones/siguientes pasos

Conclusiones:

- El prototipo aborda el *freezing of gait* con **cueing vibrotáctil no invasivo**, mejorando la autonomía del paciente.
- Los sensores de presión (FSR) y el procesamiento con ESP32 BLE permiten detección automática y adaptativa.
- Se prioriza bajo costo, portabilidad y confort, cumpliendo los objetivos técnicos del proyecto.
- El índice de anomalía relativa (IAR) ofrece una detección precisa y personalizable.

Referencias

- [1] Charco Neurotech Ltd., *Wearable device*, WO2020261225A1, World Intellectual Property Organization, 2020. [En línea]. Disponible en: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020261225A1
- [2] Cue2Walk International B.V., *Multiple algorithms for controlling a cueing device*, NL2031061, Netherlands Patent Office, 2023. [En línea]. Disponible en: https://patentscope.wipo.int/search/en/detail.jsf?docId=NL2031061
- [3] Medtronic Inc., *Freezing of gait cue apparatus*, US10251611B2, United States Patent and Trademark Office, 2019. [En línea]. Disponible en: https://patents.google.com/patent/US10251611B2/en
- [4] RxFunction, Inc., "Clinical Research Healthcare Professionals," [En línea]. Disponible en: https://rxfunction.com/healthcare-professionals/clinical-research/.
- [5] UStep, "LaserCane," [En línea]. Disponible en: https://www.ustep.com/product/lasercane/.