Feuille d'exercices 2 Mathématiques discrètes

Logique

- Exercice 1 (Ex falso quodlibet). Montrer que, dans toute pièce non vide, il existe au moins une personne telle que si elle boit, alors tout le monde dans la pièce boit.
- Exercice 2 (Montrer une proposition logique : la table de vérité). Vérifier que, pour n'importe quelles propositions A et B, soit l'implication $A \implies B$ est vraie, soit $B \implies A$ est vraie.
- Exercice 3 (Raisonnement par équivalences successives). Montrer que

$$\sqrt{1 + \frac{1}{\sqrt{\frac{2}{\sqrt{2}} + 2}}} = \sqrt{1 + \frac{1}{\sqrt{\sqrt{2} + 2}}}.$$

- Exercice 4 (Raisonnement par analyse-synthèse). Résoudre, lorsque cela a un sens, l'équation de la variable réelle : $x = \sqrt{1-3x}$.
- Exercice 5 (Raisonnement par l'absurde). Montrer que $\sqrt{2}$ n'est pas un nombre rationnel. Montrer de même que $\sqrt{3}$ n'est pas un nombre rationnel, ni $\sqrt[3]{2}$.
- Exercice 6 (Démonstration non constructive). Montrer, sans en exhiber nécessairement, qu'il existe deux nombres irrationnels x,y > 0 tels que x^y soit un nombre rationnel.

Polynômes

- **Exercice** 7 (Le nombre d'or φ).
 - 1. Montrer qu'il existe un nombre φ de sorte que si $\varphi = \frac{a}{b}$ où a,b sont deux longueurs strictement positives, alors $\frac{a+b}{a} = \frac{a}{b}$ et que $\varphi = \frac{1+\sqrt{5}}{2}$.

INDICATION Se ramener à une équation ne faisant intervenir que la quantité φ puis à une équation du second degré en φ .

2. Montrer que $\varphi \in [1,5;2]$.

- **3**. À quoi est-égal le nombre $\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}$ défini comme la limite (dont on admet qu'elle existe) de la suite $u_0=1,\ u_{n+1}=\sqrt{1+u_n}$ $\forall n\in\mathbb{N}$?
- Exercice 8 (À la conquête des trinômes). Soit x un réel, a,b,c, trois réels et on considère le trinôme $P(x) = ax^2 + bx + c$. On note $\Delta = b^2 4ac$.
 - 1. À quelle condition P est-il du second degré? À quel moment cette hypothèse apparaît-elle dans le théorème fondamental? On fait cette hypothèse dès à présent.
 - 2. Dans le cas où $\Delta > 0$ et a > 0, comparer les deux racines distinctes de P. On dit parfois que les deux racines d'un trinôme sont conjuguées, à cause du changement de signe devant $\pm \sqrt{\Delta}$.
 - **3**. Étudier le cas c = 0.
 - **4**. Étudier le cas b = 0.
 - **5**. Étudier le cas a = b = c.
 - **6**. Étudier le cas b = c = -a.
 - 7. En observant une symétrie sur une parabole quelconque, donner les coordonnées de son sommet en fonction de a,b,c. Retrouver cette valeur en admettant que l'unique extremum de P est au point d'annulation de sa dérivée (théorème du point stationnaire).
- Exercice 9 (Relations de Viète du second degré). Exprimer la somme et le produit des racines d'un trinôme du second degré de discriminant positif en fonction des coefficients de ce trinôme. Application : trouver une solution particulière dans \mathbb{R}^2 du système : $\begin{cases} x+y=1\\ xy=-1 \end{cases}$.
- Exercice 10 (Équation du troisième degré). On considère $P(x) = x^3 x^2 + x 1$. Déterminer les racines réelles de P.
- **** Exercice 11 (Équation bicarrée). Résoudre dans \mathbb{R} l'équation : $x^4 3x^2 + 2 = 0$.

Suites et sommes

Exercice 12 (Le symbole sigma). On introduit un symbole pour noter de façon plus compacte les sommes numériques. Étant donnée une suite finie de nombres réels $u_1,...,u_n$, on note la somme $S = u_1 + ... + u_n$ de la façon suivante :

$$S = \sum_{k=1}^{n} u_k.$$

Le symbole k est un indice, dit muet, car on aurait pu choisir n'importe quel autre symbole, et il n'existe pas en dehors de la somme :

$$S = \sum_{k=1}^{n} u_k = \sum_{i=1}^{n} u_i.$$

Par défaut, c'est un entier qui varie entre la valeur indiquée en dessous de la somme (et on l'affecte alors par le signe =), ici 1, et la valeur indiquée au-dessus de la somme, ici n. On dit que l'on somme pour k = 1,2,...,n ou k variant de 1 à n. À chaque étape, on ajoute u_k à la valeur précédente, la somme vide étant par convention égale à 0. L'ordre dans lequel les $k \in [1,n]$ sont pris n'a pas d'importance, car l'addition est une opération commutative (a + b = b + a).

- 1. Que vaut $\sum_{k=1}^{3} k$? Que vaut $\sum_{k=0}^{3} k$?
- **2**. Que vaut $\sum_{k=1}^{3} k^2$? Que vaut $\sum_{k=0}^{3} k^2$?
- **3**. Que vaut $\sum_{k=1}^{4} 2^k$? Que vaut $\sum_{k=0}^{4} 2^k$?
- **4.** Que vaut $\sum_{k=1}^{3} 1$? Que vaut $\sum_{k=0}^{3} 1$?
- 5. Soient u et v deux suites réelles. Soit n un entier naturel. Que dire de l'identité $\sum_{k=1}^{n} u_k + v_k = \sum_{k=1}^{n} u_k + \sum_{k=1}^{n} v_k$? Corriger si besoin.
 - $\sum_{k=1}^{n} u_k + \sum_{k=1}^{n} v_k$? Corriger si besoin.
- **6**. Que dire de l'identité $\sum_{k=1}^{n} u_k = \sum_{k=1}^{p} u_k + \sum_{k=p}^{n} u_k$? Corriger si besoin.
- 7. Montrer que pour tout réel t, $\sum_{k=0}^{n} t u_k = t \sum_{k=0}^{n} u_k$.
- Exercice 13 (Somme des premiers entiers). On souhaite démontrer que pour tout entier naturel $n, 1+2+3+...+n=\sum_{k=1}^{n}k=S=\frac{n(n+1)}{2}$.
 - 1. Ecrire 2S = S + S de sorte que le premier terme ordonne les termes par ordre croissant, et le second terme, à aligner en dessous, par ordre décroissant.
 - 2. Qu'observe-t-on pour deux nombres l'un au-dessus de l'autre?
 - 3. Combien cette somme a-t-elle de termes?
 - 4. Conclure.
- Exercice 14 (La factorielle). Étant donné n un entier naturel, on définit la factorielle de n comme l'entier naturel $n! := 1 \times 2 \times 3 \times ...(n-1) \times n$, autrement dit, $n! = \prod_{k=1}^{n} k$ où le symbole Π note comme le symbole Σ un produit au lieu d'une somme. On pose, par convention, 0! = 1.
 - 1. Que valent 1!, 2!, 3!, 4!, 5!, 6!?
 - **2**. Montrer que pour tout $n \in \mathbb{N}^*$, $n! = n \times (n-1)!$.
 - 3. Exprimer $\prod_{k=1}^{n} k^2$ en fonction de n!.
 - 4. Que dire de l'identité : (nm)! = n!m! où n,m sont des entiers naturels?
 - **5**. Comparer 2^{n-1} , n! et n^n .
 - **6**. On cherche à démontrer la formule : $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour tous entiers naturels $k \leq n$.

- (b) Vérifier la formule pour k = 1 et n quelconque.
- (c) (Difficile) Montrer par récurrence sur n, en utilisant la formule de Pascal, la formule des coefficients binomiaux en fonction de la factorielle.
- (d) En déduire que pour tous $k,n\in\mathbb{N},\,k\leqslant n,\,\frac{n!}{k!(n-k)!}$ est un entier.
- (e) Retrouver la formule de symétrie des coefficients binomiaux.
- (f) Donner une formule pour $\binom{2n}{n}$, $n \in \mathbb{N}$.

Combinatoire

- Exercice 15 (Question de vocabulaire). Sachant que, contrairement aux vermilingues, les oryctéropes ne sont pas des xénarthres, étant donné trois oryctéropes et quatre vermilingues, combien peut-on former de groupes de deux couples oryctérope-xénarthre pour danser à quatre?
- Exercice 16 (Compter les listes). Combien y a-t-il de manières de mettre trois Télétubbies à la queue leu-leu?
- \leftarrow Exercice 17 (Formule du crible de Poincaré). Soient A,B deux ensembles finis.
 - **1**. Montrer à l'aide d'un diagramme que $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) \operatorname{card}(A \cap B)$.
 - **2**. Que se passe-t-il lorsque A et B sont disjoints?
 - 3. Comparer $\operatorname{card}(A \cup B)$ et $\operatorname{card}(A) + \operatorname{card}(B)$ en toute généralité.
 - 4. Vérifier que cette formule est vraie si A = B.
 - 5. Combien y a-t-il d'entiers naturels inférieurs à 20 qui soient pairs ou multiples de 3?
- Exercice 18 (Preuve par dénombrement de la formule de Pascal). Après avoir rappelé la définition du coefficient binomial $\binom{n}{k}$, $k \leq n$, $k,n \in \mathbb{N}$, démontrer la formule de Pascal sans calcul, en utilisant la formule de l'exercice précédent.

INDICATION Si l'on isole un élément x d'un sac de boules, alors on peut considérer les parties à k boules ne contenant pas la boule x et les parties à k boules dont on sait qu'elles la contiennent.

Probabilités

- Exercice 19 (Poker). On joue au poker avec un jeu de 52 cartes. Une main est toujours constituée de 5 cartes.
 - 1. Quelle chance a-t-on d'obtenir un carré?
 - 2. Quelle chance a-t-on d'obtenir un full?
 - **3**. Quelle chance a-t-on d'obtenir une double paire?
 - 4. Quelle chance a-t-on d'obtenir un brelan?
 - 5. Quelle chance a-t-on d'obtenir une paire?
 - **6**. Quelle chance a-t-on d'obtenir une quinte flush?
 - 7. Quelle chance a-t-on d'obtenir une quinte flush royale?

- **8**. Quelle chance a-t-on d'obtenir une suite?
- **9**. Quelle chance a-t-on d'obtenir une couleur?
- 10. Quelle chance a-t-on d'obtenir au moins un as?
- 11. Quelle chance a-t-on d'obtenir au moins un trèfle?
- **12**. Quelle chance a-t-on d'obtenir au moins une figure?
- 13. Quelle chance a-t-on d'obtenir un as et une figure?
- 14. Quelle chance a-t-on d'obtenir un as et un trèfle?
- 15. Quelle chance a-t-on d'obtenir un as ou une figure?
- 16. Quelle chance a-t-on d'obtenir un as ou un trèfle?
- Exercice 20 (La formule de Bayès). Un test de détection d'une maladie rare est positif à 99 % lorsqu'un individu est atteint de cette maladie, et il est positif à 0,1 % lorsqu'il n'est pas atteint. Supposons que 0,01 % de la population soit atteint de cette maladie. Sachant être positif au test de détection, calculer la probabilité que l'on soit atteint par la maladie.

Informatique avec Python

- Exercice 21 (Programmation fonctionnelle). Écrire un programme qui, à partir de la saisie d'un rayon et d'une hauteur, calcule le volume d'un cône droit.
- Exercice 22 (Une fonction booléenne). Écrire une fonction qui affiche « PAIR » si un entier donné est pair est « IMPAIR » sinon.
- Exercice 23 (Boucle itérative fixe). Écrire une fonction qui calcule la somme des premiers entiers jusqu'à un entier donné.
- Exercice 24 (Boucle itérative conditionnelle). Écrire un programme qui calcule la plus grande puissance de 2 divisant un entier donné.
- Exercice 25 (Approximation numérique). Écrire un programme qui approxime la valeur de la constante mathématique e en fonction de n assez grand en utilisant la formule $e \approx \sum_{i=0}^{n} \frac{1}{i!}$.

Vers l'analyse : les inégalités

- Exercice 26 (Positions relatives de paraboles). Comparer les positions relatives des paraboles $\mathcal{P}, \mathcal{P}'$ d'équation $y = 3x^2 + 6x + 1$ et $y = 2x^2 7x 2$.
- Exercice 27 (Inégalité arithmético-géométrique). Montrer que, pour tous réels a,b positifs, $\sqrt{ab} \leqslant \frac{a+b}{2}$.

Exercice 28 (Inégalité de Bernoulli (par le calcul)). Montrer que, pour tout entier $n \ge 1$ et pour tout réel x > 0, $(1+x)^n \ge 1 + nx$.