Integrated Advanced Microwave Sounding Unit-A (AMSU-A)
Performance Verification Report
Antenna Drive Subsystem
METSAT AMSU-A2 (PN: 1331200-2, SN: 109)

GENCORP AEROJET

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)
Performance Verification Report
Antenna Drive Subsystem
METSAT AMSU-A2 (PN: 1331200-2, SN: 109)

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

·			
	·		

AMSU-A VERIFICATION TEST REPORT

TEST ITEM:

METSAT AMSU- A2 ANTENNA DRIVE

SUBSYSTEM

PART OF P/N: 1331200-2 SERIAL NUMBER: 109

LEVEL OF ASSEMBLY:

SUBASSEMBLY AND COMPLETE INSTRUMENT

ASSEMBLY

TYPE HARDWARE:

FLIGHT

PROCEDURE NO:

AE-26002/2E

TEST COMPLETION DATE: 6 JUNE 1999

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	SUMMARY
3.0	TEST CONFIGURATION - SUBASSEMBLIES
4.0	TEST CONFIGURATION - SUBSYSTEM
5.0	TEST RESULTS
5.1	DRIVE AND COMPENSATOR ASSEMBLIES
5.2	CIRCUIT CARD ASSEMBLIES (CCAs)
5.3	SIGNAL PROCESSOR
5.4	TRANSISTOR ASSEMBLY
5.5	ANTENNA DRIVE SUBSYSTEM TESTS
5.5.1	SCAN MOTION AND JITTER
5.5.2	28V BUS PEAK CURRENT AND RISE TIME
5.5.3	RESOLVER READING AND POSITION ERROR
5.5.4	GAIN AND PHASE MARGIN
5.5.5	OPERATIONAL GAIN MARGIN
5.0	CONCLUSION
7.0	TEST DATA

1.0 INTRODUCTION

The antenna drive subsystem test was performed on the METSAT AMSU-A2 S/N 109 (P/N 1331200-2) instrument. The objective of the test was to demonstrate compliance with applicable paragraphs of AMSU-A specification S-480-80 when tested using AE-26002/2E. Tests were conducted at both the subassembly and subsystem (instrument) level.

2.0 SUMMARY

The performance verification tests include 1) scan motion and jitter, 2) pulse load bus peak current and risetime, 3) resolver reading and position error, 4) gain and phase margin and 5) operational gain margin.

Subassembly tests are performed on the drive assembly, compensator assembly, circuit card assemblies (CCAs), signal processor and the transistor assembly. The transistor assembly was tested during the W3 cable assembly (1356946-1) test. Refer to Figure 1 for test flow.

Antenna Subsystem and Subsystem Component Test Flow Figure 1.

The antenna drive subsystem satisfactorily passed all tests to verify the performance requirements. There were no failures in any of the antenna drive components during subsystem testing. There were several anomalies during subassembly testing. Refer to paragraph 5.0 for a discussion of test results.

3.0 TEST CONFIGURATION – SUBASSEMBLIES

Subassemblies are tested using a variety of test fixtures as required to perform the necessary tests.

Drive Assembly – Prior to complete buildup of this assembly, a starting torque test is performed on the rotating part of the assembly. The test is performed at temperatures of 23, 4, and -10 °C. The tests performed on the completed assembly are 1) motor commutation, 2) resolver operation and no-load speed, 3) temperature sensor resistance and output voltage and 4) random vibration. Motor commutation and resolver operation and no-load speed are repeated after vibration.

Compensator Assembly — The tests performed on this assembly are 1) motor commutation, 2) temperature sensor resistance and output voltage and 3) random vibration. Motor commutation is repeated after vibration.

CCAs – All CCAs are tested prior to being incorporated into the signal processor. They are tested to verify functionality and the derived performance requirements.

Signal Processor – Part of the signal processor test is associated with the antenna drive subsystem. The test includes all applicable CCAs installed in the signal processor card cage, the STE with the associated cabling to the signal processor, and a test motor and inertia wheel to simulate the antenna drive motor and reflector load. This test demonstrates that all signal processor scan drive circuitry is functioning as a subsystem prior to assembly into the instrument. During the tests, qualitative reflector position for the various scan modes is verified by visually observing an index mark on the inertia wheel.

Transistor Assembly – The W3 cable is first tested on the CKT 1000 (continuity and hipot tester). The transistor assembly is then mated with the W3 cable, and tested using a special test fixture. The test assures that the transistors saturate when turned on, and that they turn off.

4.0 TEST CONFIGURATION – SUBSYSTEM

The antenna drive subsystem tests are performed after all of the scan drive subassemblies are assembled into the instrument, and the subsystem is tested in accordance with AE-26002/2 during system integration. At the beginning of system integration testing, the instrument is first proven electrically safe by ground isolation and power distribution checks. The instrument is supplied with 28 Vdc from the STE, and the DC-DC converter is installed to supply the other required voltages to the CCAs.

The tests performed to verify performance are 1) scan motion and jitter, 2) pulse load bus peak current and risetime, 3) resolver reading and position error, 4) gain and phase margin and 5) operational gain margin. In order to verify scan motion and jitter, it is necessary to obtain real time measurement of the drive assembly shaft position. This is done by using a continuous rotation potentiometer (pot) mechanically coupled to the drive assembly shaft, and connecting a source of dc voltage across the pot. The voltage at the pot wiper then gives a voltage analog of shaft position for each revolution of the shaft.

Prior to the performance verification tests, there are five operations performed. These are described as follows:

- 1. An EPROM is programmed with the reflector position commands (14-bit digital words) which are calculated from the nadir position obtained on the antenna range. This PROM is one of the components on the memory board in the signal processor, and it is under microprocessor control for positioning the reflector. Reprogramming may be necessary if the measured reflector positions are not within the specified limits. (See 5.5.3).
- 2. After obtaining the PROM, the instrument is powered, and scan motion is qualitatively checked to conform to the pattern as shown in Appendix B1.
- 3. The motor (drive and compensator) current limits are set with select at test (SAT) resistors.
- 4. The individual steps in the scan are tailored for risetime, overshoot and jitter with SAT resistors which are part of circuits in the rate loop.
- 5. The mechanical resonant frequencies of the drive assembly and reflector are identified. They are then nullified by selecting the appropriate frequencies for three notch filters.

The antenna drive subsystem subassemblies designated for use in the METSAT AMSUA2 S/N 109 instrument are shown in Table 1.

CCAs	S/N
Resolver Data Isolator	F24
Interface Converter	F24
Motor Driver 3-Hall Sensor	F07
Motor Driver 3-Hall Sensor	F08
R/D Converter/Oscilator	F12

OTHER	S/N
Antenna Drive Assembly	F08
Compensator Assembly	F09
Signal Processor	F05
Transistor Assembly (W3 Cable)	NONE

Table 1. A2 109 Subassembly S/N

5.0 TEST RESULTS

The test results for the subassemblies are first presented in paragraphs 5.1 through 5.4. The subsystem test results are presented in 5.5.

5.1 DRIVE AND COMPENSATOR ASSEMBLIES

When the F08 drive assembly was vibrated, it was found to have natural frequencies about 13 % lower than the average tested drive assembly (TAR 005089). Investigation revealed no anomaly and the TAR was closed.

Also on the drive assembly, a clicking noise was heard when the motor commutation was run (TAR 002684). Excessive slack in one wire in a wire bundle caused the wire to contact the rotating assembly. A spot tie was removed, the slack was taken out and the tie was redone.

When the temperature sensor output voltage on the compensator assembly was measured, it was found to be out of limits (TAR 002750). Troubleshooting revealed a miswiring. After rework, the output voltage was within limits.

5.2 CCAs

₹

There were no test anomalies or failures during testing of the CCAs for this instrument. The test data sheets (TDSs) for the CCAs are presented in Appendicies A1 trhrough A4.

5.3 SIGNAL PROCESSOR

There were no test anomalies or failures during the scan drive part of the testing of the signal processor for this instrument.

5.4 TRANSISTOR ASSEMBLY

There were no test anomalies or failures during testing of the transistor assembly for this instrument.

5.5 ANTENNA SUBSYSTEM

There were no test anomalies or failures during testing of the antenna drive subsystem for this instrument. A discussion of test results is given in paragraphs 5.5.1 through 5.5.5.

5.5.1 SCAN MOTION AND JITTER

In this test, the antenna position is measured in a series of five full scans. The measurement was made with the continuous rotation test pot temporarily affixed to the motor shaft. A Dynamic Signal Analyzer (DSA) is connected to the pot wiper to record the antenna position. Five scans were captured and stored on the AMSU-A2 Test Data File disc. One representative pattern is presented in Appendix B1.

Each 3.33 degree scene step was expanded in order to verify risetime, overshoot and jitter. The risetime limit is 42 ms, the jitter limits are ±5 % and the overshoot limit is 4 % above the upper jitter limit. The expanded waveforms were plotted and are presented in Appendicies B2 through B30. All of the scene steps meet the step response requirements.

Slew periods to the cold and warm calibration stations were measured and met requirements. A time of 0.21 s is allowed for the 35 degree slew to cold cal, and 0.4 s for the 96.67 degree slew to warm cal. Calibration station jitter is less than the ±5 % maximum allowed. Expanded waveforms were plotted and are presented in Appendicies B31 and B32. The waveforms are also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix B33.

5.5.2 PULSE LOAD BUS PEAK CURRENT AND RISE TIME

The peak current must be less than 2 A at any beam position along the scan, and it was measured to be 1.997 A. The current risetime while transitioning from one beam position to the next, and the risetime at the start and stop of the slew to warm cal position must be greater than 70 μ s. One 3.33° step was selected, and the risetime is 2.344 ms. For the slew to warm cal, the times are 3.906 ms and 1.953 ms for start and stop respectively.

The full scan pulse load bus current waveform is presented in Appendix C1, and the TDS is presented in Appendix C2. The waveform is also stored on the AMSU-A2 Test Data File disc.

5.5.3 RESOLVER READING AND POSITION ERROR

Reflector positions are obtained by using the STE, which displays the resolver readings to be compared with the position commands. Two readings are taken, one at the start of integration (LOOK 1), and the other halfway into the integration period (LOOK 2). The limits on the difference between the reported position (actual) and the command are ± 10 counts for LOOK 1 and ± 5 counts for LOOK 2. A table of reflector position commands and the reported position obtained from the STE computer printout is shown in Table 2, together with the differences between actual and command.

		Act	tual	Differ	ence*			Act	ual	Differ	ence*
BP	Command	Look I	Look 2	Look l	Look 2	BP	Command	Look I	Look 2	Look I	Look 2
1	5595	5954	5954	-I	-1	19	3225	3226	3224	1	-1
2	5803	5807	5804	4	1	20	3073	3073	3073	0	0
3	5651	5655	5652	4	1	21	2921	2923	2920	2	-I
4	5500	5504	5501	4	1	22	2770	2771	2770	1	0
5	5348	5352	5349	4	l	23	2618	2619	2618	I	0
6	5196	5200	5197	4	1	24	2466	2467	2466	1	0
7	5045	5048	5046	3	1	25	2315	2317	2315	2	0
8	4893	4896	4894	3	1	26	2163	2163	2163	0	0
9	4741	4746	4742	5	1	27	2010	2013	2011	3	1
10	4590	4594	4591	4	1	28	1860	1861	1860	1	0
11	4438	4441	4440	3	2	29	1708	1708	1708	0	0
12	4286	4289	4287	3	1	30	1556	1558	1556	2	0
13	4135	4137	4135	2	0	WC	11948	11948	11949	0	1
14	3983	3984	3983	1	0	CCI	16347	16346	16347	-1	0
15	3830	3833	3831	3	l	CC2	38	40	40	2	2
16	3680	3682	3680	2	0	CC3	115	117	117	2	2
17	3528	3529	3528	i	0	CC4	266	268	268	2	2
18	3376	3378	3375	3	-1						

BP = Beam position

*Actual - Command

Table 2. Reflector (Beam) Position Commands and Measurements

5.5.4 GAIN AND PHASE MARGIN

The gain and phase margin test is performed on the position control loop of the antenna drive subsystem. Three separate open loop gain and phase plots (measured with the loop closed) are obtained. The DSA is used to make the plots using the swept sine mode. Gain margin is measured at the -180° phase crossover frequency, and phase margin is measured at the 0 dB gain crossover frequency. The margins on each of the three plots are above the minimum specification requirement of 12 dB and 25 degrees for the gain and phase respectively. The plots are presented in Appendices D1 through D3, and the TDS is presented in Appendix D4. The plots are also stored on the AMSU-A2 Test Data File disc.

5.5.5 OPERATIONAL GAIN MARGIN

The operational gain margin test is also done three times. This test consists of increasing the gain inside the rate loop until oscillation occurs. The gain increase is calculated and the frequency of oscillation is measured from the spectrum plot using the DSA. An increase in gain greater than 9 dB is required, and the frequency of oscillation is just recorded.

To increase the gain, a 50 k Ω pot is connected in series with the R58 feedback resistor on amplifier AR8 on the R/D Converter/Oscillator CCA. The resistance of the test pot is slowly added to the feedback resistor while observing the reflector for oscillations. The reflector begins to produce an audible sound as gain is increased to the point of oscillation. Table 3 shows the added resistance values and the calculated gain margin.

Resistance (kΩ)	Gain Margin (dB)
38.58	9.3
41.20	9.7
42.88	9.9

Table 3. Pot Resistance and Operational Gain Margin

The first mode mechanical resonance of the shaft and reflector is about 228 Hz as shown in the power spectrum. The spectrum was plotted and is presented in Appendix E1, and the TDS is presented in Appendix E2. The spectrum plot is also stored on the AMSU-A2 Test Data File disc.

6.0 CONCLUSION

Based on the test results, it can be concluded that the METSAT AMSU-A2 S/N 109 antenna drive subsystem meets the AMSU-A specification requirements.

7.0 TEST DATA

Test data for the CCAs and the antenna drive subsystem is presented in the appendices as outlined in the Appendix Index on the following page.

APPENDIX INDEX

Appendix A1	Resolver Data Isolator CCA TDS
Appendix A2	Interface Converter CCA TDS
Appendix A3	Motor Driver 3-Hall Sensor CCA TDS
Appendix A4	R/D Converter/ Oscillator CCA TDS
Appendix B1	Full Scan Step Response
Appendix B2 thru B30	Single Step Responses
Appendix B31	Cold Calibration Step Response
Appendix B32	Warm Calibration Step Response
Appendix B33	Scan Motion and Jitter TDS
Appendix C1	Peak Pulse Load Bus Current Waveform
Appendix C2	Pulse Load Bus Current TDS
Appendix D1 thru D3	Gain and Phase Margin Plots
Appendix D4	Gain and Phase Margin TDS
Appendix E1	Operational Gain Margin Power Spectrum
Appendix E2	Operational Gain Margin TDS

TEST DATA SHEET B-6 (Sheet 1 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Date: S/N:

4114197 F-24

1334972-1 6.6.7.1 <u>Supply Voltages</u>

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	5.01	± 0.25	P
+5 V (U)	5.00	± 0.25	8

6.6.7.2 Supply Currents

Steps 1 and 2:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	53.38	100 max	1
+5 V (U)	335.00	400 max	1 8
	14-16-9		

Steps 3 and 4:

٠ ₋	**			7
ſ	Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
Ì	+5 V (I)	83.60	150 max	P
Ì	+5 V (U)	11.06	30 max	P

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	
API 1 - AP Bit 1	<u> </u>
API 2 - AP Bit 2	l l
API 3 - AP Bit 3	<u> </u>
API 4 - AP Bit 4	1
API 5 - AP Bit 5	1 1
API 6 - AP Bit 6	2
API 7 - AP Bit 7	1
API 8 - AP Bit 8	P
API 9 - AP Bit 9	P
API 10 - AP Bit 10	ρ
API 11 - AP Bit 11	P
API 12 - AP Bit 12	P
API 13 - AP Bit 13	9

6.6.7.4 Converter Busy Pulse

	Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
North Newscar	= <u>-3</u> -≥ 15:0	14.75	± 3.0	P

TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

	Comments:	μE			
·					
	-	Λ	. 1 1	; ,	
	Conducted by: Verified by: Approved by:	Test Engineer Quality Control Inspendent	$\frac{4/14/2}{Date}$ Color $\frac{26}{26}$ $\frac{4-16}{Date}$ Date		
Actual States of the state of t		,		**************************************	Al

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: CCA S/N: F24

85197

1331697-1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	5.00	+5V± 0.05	P
+15V (I)	15.01	+15V±0.15	P
-15V (I)	-14.98	-15V± 0.15	P
+5V (I)	5.02	+5V± 0.05	P

6.13.7.2 Supply Currents

Step 1 (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	86.55	· 70 - 110	1 P
+5V (I)	3.38	1.5 - 5.5	ρ
+15V (I)	17.76	15 - 23	f
-15V (I)	20.46	18 - 26	1 6

Step 2 (CP and API High):

Cumple	Measured Value (mA)	Limits (mA)	Pass/Fail
Supply	Measured Value (IIIA)		1 433/1 411
+5V (U)	>6.58	40 - 70	<u> </u>
+5V (I)	23.96	18 - 30	P
+15V (I)	17.76	15 - 23	P
-15V (I)	20 46	18 - 26	P

6.13.7.3 Amplifier Offsets

Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
AR1	-0.07	0.0 ±0.15	P
AR2	-0.20	0.0 ±2.0	P

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

		9-10-97	\$ \$ 0.000	
:		26	1 ± 0.000	
A chief Desiries (ADD	Command Position (CP)	AR1 Output	Test Result	l
Actual Position (API) MSB LSB	MSB LSB	Voltage Required (Vdc)		Pass/
	000000000000000000000000000000000000000	0.00000 - 0.00000	1-0.000081	Passi
000000000000000000000000000000000000000	0000000000000	-0.00061	- 0.0cc 729	
	0000000000000	-0.00122 7	-0.cc1355	t
0000000000010 0000000000011	000000000000000000000000000000000000000	-0.00122	-0.001932	1 F
000000000011	0000000000000	-0.00245	-0.00260	
000000000100	000000000000000000000000000000000000000	-0.00243 ≯	- 0. cc5135	
		-0.00490 *	-0.clc175	
0000000010000	00000000000000	-0.01958 *	-0.020260	
0000000100000	0000000000000	-0.01938 1 -0.03917 1	-0.040419	
00000001000000	0000000000000			·
00000010000000	. 0000000000000	-0.07834 *	-0.080145	
00000100000000	0000000000000	-0.15667 ≯	-0.16138	
00001000000000	0000000000000	-0.31334 *	-0.32270	
0001000000000	0000000000000	-0.62669 🛧	-0.64541	
00100000000000	0000000000000	-1.25338 *	-1.2969	
0100000000000	I AAAAAAAAAAAAAAAA			
10000000000000	00000000000000000000000000000000000000	-2.50675 * -5.01350 * unifumned 9-10-97	-2.5817 -5.1633 ± 0.000 ± 0.000	60
10000000000000	00000000000000	-5.01350 *	-5.1633	60
10000000000000	00000000000000	-5.01350 * Wyfumae 9-10-97 ARI Output	10.000 ± 0.000 ± 0.000 ± 0.000	60 30
100000000000000000 Folerance on output vol	00000000000000000000000000000000000000	-5.01350 * Wyfumne 9-10-97 AR1 Output* Voltage Required (Vac)	10.000 1 d.000	60 30
1000000000000000 Folerance on output vol Actual Position (API)	00000000000000000000000000000000000000	-5.01350 * 477 fumme 9-10-97 AR1 Output Voltage Required (Vdc) 0.00000	-5.1633 ± 0.000 ± 0.000 ± 0.000 Test Result (Vdc) -0.000c 7	60 30
100000000000000 Folerance on output vol Actual Position (API) MSB LSB	00000000000000000000000000000000000000	-5.01350 * Wyfumne 9-10-97 AR1 Output* Voltage Required (Vac)	-5.1633 ± 0.000 ± 0.000 ± 0.000 (Vdc) -0.000c 7 0.000541	60 30
1000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * -5.01350 * -5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 Test Result (Vdc) -0.000c 7 0.000541 0.00113c	60 30
10000000000000000 Folerance on output vol Actual Position (API) MSB LSB 000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	Test Result (Vdc) -0.0007 0.0007 0.0007 0.000741 0.001744	60 30
10000000000000000 Folerance on output vol Actual Position (API) MSB LSB 0000000000000000000 00000000000000	00000000000000000000000000000000000000	-5.01350 * 4	Test Result (Vdc) -0.000c7 0.000c7 0.000c7 0.000c7 0.001794 0.002440	Pass/I
10000000000000000 Folerance on output vol Actual Position (API) MSB LSB 000000000000000000 000000000000000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 *	Test Result (Vdc) -0.000c7 0.000c7 0.000c7 0.000c7 0.000c7 0.000c7	Pass/F P P
10000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 0000000000000000 0000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 -0.00007 0.00007 0.001794 0.001794 0.004969 0.016036	Pass/1
10000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 00000000000000 00000000000000 00000000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 -0.0007 0.00541 0.001794 0.002440 0.004969 0.01036 0.020110	Pass/I
10000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 000000000000000 0000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 -0.00007 0.000541 0.001744 0.002440 0.004969 0.01036 0.020110 0.040231	Pass/1
100000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 000000000000000 000000000000000 0000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vdc) 0.00000 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 1 0.000 7 0.000 7 0.00541 0.01180 0.01794 0.02440 0.092440 0.09469 0.01036 0.0100 0.040281 0.080596	Pass/I
1000000000000000 Folerance on output vol Actual Position (API) MSB LSB 000000000000000 00000000000000 00000	00000000000000000000000000000000000000	-5.01350 * Online AR1 Output Voltage Required (Vac) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 ± 0.000 1 0.000 7 0.000 7 0.00541 0.01180 0.01794 0.092440 0.094969 0.01036 0.01036 0.01036 0.01036 0.01036 0.01036 0.01036 0.01036 0.01036	Pass/I
100000000000000000 Folerance on output vol Actual Position (API) MSB LSB 000000000000000 000000000000000 0000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (V4c) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 -0.0007 0.00541 0.01130 0.01794 0.002440 0.004969 0.01036 0.02010 0.040281 0.040281 0.080590 c.16131 0.32269	Pass/1
1000000000000000000 Tolerance on output vol Actual Position (API) MSB LSB 0000000000000000 000000000000000 0000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Voc) 0.00000 0.00061 0.00122 0.00184 0.00245 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 1 0.0007 0.000541 0.001794 0.002440 0.002440 0.004969 0.01000 0.040281 0.080596 0.16131 0.32269 0.64551	Pass/I
10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * AR1 Output Voltage Required (Vac) 0.00000 0.00122 0.00184 0.00245 0.00490 * 0.00979 * 0.01958 * 0.03917 * 0.07834 * 0.15667 * 0.31334 *	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 Test Result (Vdc) -0.000c 7 0.000541 0.001794 0.001794 0.002440 0.004969 0.01036 0.020110 0.040281 0.040281 0.080590 c.16131 0.32269 0.64551 1.2908	Pass/1
10000000000000000000000000000000000000	00000000000000000000000000000000000000	-5.01350 * One of the second	-5.1633 ± 0.000 ± 0.000 ± 0.000 1 0.000 1 0.0007 0.000541 0.001794 0.002440 0.002440 0.004969 0.01000 0.040281 0.080596 0.16131 0.32269 0.64551	Pass/F

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.5 Strobe Funct	ion			
Step 1: Strobe Low		P	ass/Fail .	
No E11 Change with Input CP Char	nges	-		
Step 2: Strobe High		Pa	- <u>-</u> <u></u>	
E11 Change with Input CP Chan			P	
6.13.7.6 Amplifier Gai	i <u>n</u>			
E11	Measured Value (Vdc) 0.31269	Limits (Vde	Pass/Fail	•
E10	3.5530		<u> </u>	. •
E10 Voltage E11 Voltage	11.0	10.7 - 11.3	H.OPP Diag	
6.13.7.7 Ground Isolatic	<u>on</u>			
Pin 91 to Pin 7	Measured Value (M Ω)	Limits (M Ω) Pas	s/Fail	
DC Resistance	larger than 1704 of	>20		
Comments: No NG				
Conducted by:	Dernie Lund et Engineer	8/5/97 Date	•	
Verified by:	Author (190) ality Control Inspector	007 10 '97 Date		
Approved by:	when Thomas	10/14/97 Date		

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N:

FØ8

Date:

4/21/97

1331694-4 6.4.3.2 <u>Input Signal Offset</u>

Step No.	Test Results	Limits
4	1.05 mV	0.0 ±1 mVdc
6	1.35 mV	0.0 ±1 mVdc
8	1.12 MV	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
· 13	E7-E8 (R25)	3.16k
	E9-E10 (R52)	4.48K
	E11-E12 (R33)	2.30 K
	E13-E14 (R53)	4.24K
	E15-E16 (R42)	3.16K
	E17-E18 (R54)	4.52K

Step No.	Resistors	Selected Trim Resistors
14	R25	RNC5573161FS
	R52	RNC55T4531FS
	R33	RNC 55 T 280 IFS
	R53	RNG55 J4221 FS
	R42	RNC5533161FS
	R54	RNC 55 J 4531 FS

Step No.	E Point	Test Results	Limits	Pass/Fail
19	E19	+0.04 mV	0.0 ±1 mVdc	P
· · · }	E20	+0.11 mV	0.0 ±1 mVdc	٩
İ	E21	10.13 mV	0.0 ±1 mVdc	P

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
2	+ 5.00V	+5V±0.05Vdc	P
	49.1 mA	70mAdc max	P
	+15.07 V	+15V±0.15Vdc	P
	1.5 MA	3.0mAdc max	P
	-14.98V -15V±0.15Vdc		P
	18-6 mA	25mAdc max	P
	28.03V	+28V±0.5Vdc	P
	S. G NA	8mAdc max	P
3	287 mN	400mVdc max	P
4	43.0 mA	50mAdc max	P
5	47.7 nA	50mAdc max	ſ

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
3	269mV	400mVdc max	8
4	36,6MA	50mAdc max	f
5	39. 8mA	50mAdc max	7

6.4.3.4 Current Limit Test

Step No.	\ Test Results	Limits	Pass/Fail
2	440 mx	350-500mAdc	P

Comments:	
	NE .
·	
Conducted by:	Vest Engineer Date Date
Verified by:	Quality Control Inspector Date
Approved by:	11/54/91

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N: F Ø 1

Date: 4/21/12

6.4.3.2 <u>Input Signal Offset</u>

Step No.	Test Results	Limits
4	0.93 mV	0.0 ±1 mVdc
6	0. 92 mV	0.0 ±1 mVdc
8	0.94mJ	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	3.16K
	E9-E10 (R52)	4.25 K
	E11-E12 (R33)	3.16k
	E13-E14 (R53)	4.30 K
	E15-E16 (R42)	3,40 K
	E17-E18 (R54)	4.75 K

Step No.	Resistors	Selected Trim Resistors
14	R25	RNCSSJ3161FS
	s R52	RNC5554221FS
	R33	RNC55J3161FS
	R53	RNC 5554221FS
	R42	RNC 555340) FS
	R54	RNC 55 T 4751 FS

Step No.	E Point	Test Results	Limits	Pass/Fail
19	E19	-0.02 mV	0.0 ±1 mVdc	P
'´ }	E20	10.02 mV	0.0 ±1 mVdc	P
ŀ	E21	- 0.02hV	0.0 ±1 mVdc	

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
2	5.001	+5V±0.05Vdc	ρ
-	52.5 mA	70mAdc max	P
	+15.07V	+15V±0.15Vdc	P
	1.5mA	3.0mAdc max	P
	-14 98 V	-15V±0.15Vdc	8
	13.7 MA	25mAdc max	P
	28.04V	+28V±0.5Vdc	P
	5.6 NA	8mAdc max	ρ
3	235 m V	400mVdc max	<u> </u>
4	42.6mA	50m.Adc max	P
5	47.63A	50mAdc max	P

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
3	299 hV	400mVdc max	P
4	37.1mA	50mAdc max	L P
5	39.7 NA	50mAdc max	P

6.4.3.4 Current Limit Test

Step No.	Test Results	Limits	Pass/Fail
2	440 MA	350-500mAdc	P

Comments:	NONE		 <u> </u>		1
•			 	• •	
		٠, ٠			

Conducted by:

(Test Engineer

4/21/97

Verified by:

Judy Merres

04/28/97

Approved by:

14/59/

A3

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date 8/26/97 CCA S/N F/2 1337739-2 6.5.7.1 UUT Pre-Test

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06	0-1	
-15	-0.28	-1 - 0	P
+5 ,	0.06	0-1	P

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.02	± 0.50	P
-15V (I)	-15.01	± 0.50	<u> </u>
+5V (I)	5.03	±0.25	P

Step 6:

Supply Currents (UUT Installed)

Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
+15	27.02	26.96	20-40	P
-15	-36.27	- 35.99	-3050	P
+5	55.84	55 78	30-70	P

6.5.7.2 Supply Voltages (UUT Installed)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.01	± 0.50	P
-15V (I)	-14.97	± 0.50	ρ
+5V (I)	5.02	±0.25	P

6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

Parameter	Measured Value	Limits	Pass/Fail
Frequency	1617 HZ	1550-1650 Hz	Ρ
Duty Cycle	51.4%	45-55 %	ίρ
Output Voltage	7.86V	7.6-8.4 Vrms	P

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.4 R-D Converter Operation

Step 1:

Bit Number/	CW	CCW
Test Fixture Label	Pass/Fail	Pass/Fail
API 0/1		<u> </u>
API 1/2		
API 2/3		
API 3/4	<u> </u>	
API 4/5	P	
API 5/6		ļ
API 6/7		<u> </u>
API 7/8		
API 8/9		
API 9/10		
API 10/11		
API 11/12		P
API 12/13		
API 13/14	/	D
Converter Busy		<u> </u>

Step 2:

			Calculated Value (Vdc) *	Pass/Fail
RS	Measured Value	Calculated Value (Vdc) *	1	1 435/1 4
	11200001100	CCA -1 Assy	CCA -2 Assy	
(E10)	(Vdc)	1/4	(+) 1.740	
CW Rotation**	1.627V	(+) <i>V //r</i>	1700	P
CCW Potation**	- 1.757V	(-) N/ /	1./70	<u> </u>

* Signal level function of test and calibration gain resistors. Record calculated value and measured value. Measured value shall be within ±10 percent of calculated value. The equation is as follows:

shall be within ±10 percent of calculated values
$$V = \pm 0.155 \left(\frac{R20}{R17} \right) \pm 10\%$$
 $V = \pm 0.155 \left(\frac{R20}{R17} \right) \pm 10\%$
 $V = \pm 0.155 \left(\frac{S9k}{S \cdot 11k} \right)$

8-25-91

6.5.7.5 Amplifier Gain

PES-RS	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
PES = +0.300 Vdc	1 091 V	1.00 to1.30	P
PES = +0.300 Vdc	1.164V	1.00 to 1.30	<u> </u>

6.5.7.6 <u>Direction Control Signal</u>

DIR CNTRL	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
CW Detation	5.00cV	4.5 to 5.5	Ρ
CW Rotation	0.12.57	0.0 to 0.4	P
CCW Rotation	0.1674		

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.7 <u>No</u>	tch Filter Frequency Response	•		
Frequency	Measured Value (Hz)	Calculated Value (Hz) * CCA -1 Assy	Calculated Value (Hz) * CCA -2 Assy	Pass/Fail
AR3 Notch	N/A	N/A	MA	N/A
AR4 Notch	1.	1		
15537 . 1				
* Notch frequence and measured va		of values determined by test a	and calibration resistors. Rec	cord calculated
Comments:	VE		·	
	·	·:		
Conducted by:	Test Engineer 2005	8/26/97 Date	. •	
Verified by:	Quality Control Inspector			
Approved by:	DCMC	. 1/-19-97 Date	-	

			-

TEST DATA SHEET 7 (SHEET 1 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Test Setup Verified: Signature Shop Order No. 727181

Step No.	Description	Requirement	Test Result	Pass/Fa
7		Stepping Slewing <8 sec period per Figure 25	< 8 Sec period	P
9	Scene 1-2 3.33° step	<42 msec rise time per Figure 26	< 38.67msec	ρ
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	41.73% 40%	P
10	Scene 2-3 3.33° step	<42 msec rise time per Figure 26	239.84 msec	ρ
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	6 2.00 % 6 0.097•	P
11	Scene 3-4 3.33° step	<42 msec rise time per Figure 26	¿ 38.28 msec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	4 2.00 % 4 0.05%	P
12	Scene 4-5 3.33° step	<42 msec rise time per Figure 26	4 39.84 msa	ρ
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	4 1.87% 4 0.20%	ρ
13	Scene 5-6 3.33° step	<42 msec rise time per Figure 26	< 40. 23 mca	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	2 2.167° 6 07°	P
14	Scene 6-7 3.33° step	<42 msec rise time per Figure 26	L 38.28 mise	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 2.16% < 0%	P
15	Scene 7-8 3.33° step	<42 msec rise time per Figure 26	L 37.5 msee	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	2 2.00% 2 0.52%	ρ
16	Scene 8-9 3.33° step	<42 msec rise time per Figure 26	L 39.84 ms ac	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	2.00% 20.20%	P

TEST DATA SHEET 7 (SHEET 2 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fa
17	Scene 9-10 3.33° step	<42 msec rise time per Figure 26	L 38.28 msac	P.
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 1.81 70 < 090	P
18	Scene 10-11 3.33° step	<42 msec rise time per Figure 26	L37.5msee	P
	•	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 1.62% < 0.42%	ρ
19	Scene 11-12 3.33° step	<42 msec rise time per Figure 26	L 38.67msec	ρ
	•	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	41.42% 41.90%	P
20	Scene 12-13 3.33° step	<42 msec rise time per Figure 26	L3906 MSPR	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	41.08% 42.58%	P
21	Scene 13-14 3.33° step	<42 msec rise time per Figure 26	< 35.55ms=c	P
	,	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	41.62% 41.36%	P
22	Scene 14-15 3.33° step	<42 msec rise time per Figure 26	∠ 38.28msm	P
	-	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	139 - 19670	1
23	Scene 15-16 3.33° step	<42 msec rise time per Figure 26	137.89 msac	P
	r	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	41.8770	P
24	Scene 16-17 3.33° step	<42 msec rise time per Figure 26	137.5msec	P
	· •	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 2.03% < 0.6870	P

TEST DATA SHEET 7 (SHEET 3 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fail
25	Scene 17-18 3.33° step	<42 msec rise time per Figure 26	L 36.33 msec	r
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	4 1.8270m	P
26	Scene 18-19 3.33° step	<42 msec rise time per Figure 26	L36.72 ms.o	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	£ 1.21% £ 2.85%	P
27	Scene 19-20 3.33° step	<42 msec rise time per Figure 26	L36.72 msec	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 2.30% < 1.63%	P
28	Scene 20-21 3.33° step	<42 msec rise time per Figure 26	139.06 msoc	ρ.
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 1.76% < 2.04%	P
29	Scene 21-22 3.33° step	<42 msec rise time per Figure 26	L 33.98 msac	P
	-	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	८ ०.88% ८ १.77%	P
30	Scene 22-23 3.33° step	<42 msec rise time per Figure 26	L 34.77 msac	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 1.42% < 1.50%	P
31	Scene 23-24 3.33° step	<42 msec rise time per Figure 26	L36.72 msec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	4 1.52% 4 1.50%	P
32	Scene 24-25 3.33° step	<42 msec rise time per Figure 26	L37.89msoc	P
	٢	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	(2.09% 21.90%	P

TEST DATA SHEET 7 (SHEET 4 OF 4) 3.4.5.5: METSAT Scan Motion and Jitter Test

Step No.	Description	Requirement	Test Result	Pass/Fail
33 Scene 25-26 3.33° step		<42 msec rise time per Figure 26	<34.37 msec	ρ
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	(1.65 M- (2.1870	ρ.
34	Scene 26-27 3.33° step	<42 msec rise time per Figure 26	L36.33 msec	P
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	4 1.42%	ρ
35	Scene 27-28 3.33° step	<42 msec rise time per Figure 26	437.11 msec	ρ
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	< 1.69% c	P
36	Scene 28-29 3.33° step	<42 msec rise time per Figure 26	L36.72 msx	ρ
		< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	ر 2.25% د 2.45%	P
37	Scene 29-30 3.33° step	<42 msec rise time per Figure 26	∠ 38.28 msec	P
	·	< ±5% jitter per Figure 26 < +4% overshoot for 19 msec	(1.6970	P
38	Scene 30- Cold Cal	<0.21 sec slew time per Figure 29	0. 108° Lo.20	e f
	35.0° slew	< ±5% jitter per Figure 30	£+0.108°	P
39	Cold Cal - Warm Cal	<0.40 sec slew time per Figure 31	0.1340,040	. 1
	96.67° slew	< ±5% jitter per Figure 32	<u>4</u> 0.134°	P

Unit: 133/200-2-1T	Test Engineer: au hunting
Serial No.:	Quality Assurance:
Date: $6-15-99$	Customer Representative:
	6-17-99

TEST DATA SHEET 8 3.4.5.6: METSAT Pulse Load Bus Current

		•	7	71
Test Setup Verified:		VII	RYA	Nu
Test Setup Verified:	1	۲۲	ign	ature

Shop Order No. 727181

3.4.5.6: 28V Bus Peak Current and Rise Time Test

Step No.	Requirement	Test Result	Pass/Fail
4	< 2 A peak any place in the scan	1.997A	P
5	> 70 µsec rise time, 3.33° step	2,344 msee	P
6	> 70 µsec rise time, start of WC slew	3.806 misc	P
6	> 70 µsec rise time, end of WC slew	1.953 me	P

Pass = P Fail = F

Unit: /3	3/20	00-2-	1T
Serial No.:_	109		

Test Engineer:

Quality Assurance

TEST DATA SHEET 9 3.4.5.8: METSAT Gain/Phase Margin Test

Test Setup Verified: Kay TWATUM Signature	Shop Order No

3.4.5.8 Step 12: Gain/Phase Margin Test

Requirement		Pass/Fail	
	1	15.283 dB	P
12 dB minimum	2	15.249 dB	P
	3	15.344 dB	P
	1	66.91 deg.	P
25 degrees minimum	2	66.8 deg	P
	3	67.01 deg	P

Unit: 133/200-2-17	Test Engineer: Ray History
Serial No.: 10 9	Quality Assurance: (1A)
Date: 6-16-99	Customer Representative: 6-17-99

					•
			•		
		•			

TEST DATA SHEET 10
3.4.5.9: METSAT Operational Gain Margin Test

Test Setup Verified: Signature

Shop Order No. 727181

3.4.5.9: Operation Gain Margin Test

Step No.	Requirement		Test Result	Pass/Fail
***************************************	R58 Resistance (Kohms)		26.1K	
11		1	52.47K	
	Test Pot Resistance (Kohms)	2	52.43K	\square P
		3	52.5916	
12 Oscillation Freq	Oscillation Frequency (Hz)	1	78.52 Hz	
		2	18.52 Hz	ρ
		3	78.52 Hz	'
16	Gain Margin, 9 dB minimum	1	9.14dB	
		2	9.14 d B	P
		3	9.1643	

Pass = P Fail = F

Unit: 133/200-2-17
Serial No.: 10 9

Test Engineer:_

Quality Assurance:

27 17 199

Date: 6-16-99

FORMS

National Aeronautics and Space Administration Report Documentation Page						
1. Report No.	. Government Accession N	Э,	3. Recipient's Catalog N	О.		
Title and Subtitle	5	5. Report Date				
Integrated Advanced Mic		22 July 19				
(AMSU-A), Performance	Į6	Performing Organization	on Code			
7 Author/o			3. Performing Organization	on Report No		
7. Author(s)	ſ	11528	on Report No.			
C. Haapala		ļ	10. Work Unit No.			
Performing Organization Name and	Address					
Aerojet		Ī	11. Contract or Grant No.			
1100 W. Ho			NAS 5	5-32314		
Azusa, CA			13. Type of Report and P	eriod Covered		
NASA	1655	-	Final			
Goddard S	pace Flight Center	ĺ	14. Sponsoring Agency (Jode		
Greenbelt,	Maryland 20771					
15. Supplementary Notes						
16. ABSTRACT (Maximum 200 words) This is the Performance \	Verification Report	antenna Driv	ve Subassembly.	METSAT		
This is the Performance Verification Report, Antenna Drive Subassembly, METSAT AMSU-A2 (P/N 1331200-2, S/N 109), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).						
17. Key Words (Suggested by Author)	18. Distribution Statement					
EOS	Unclassified Unlimited					
Microwave Sys		Ondiassilieu Uli	mineo.			
19. Security Classif. (of this report)	20. Security Classif. (of	l his page)	21. No. of pages	22. Price		
Unclassified	Unclassified					

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's <u>Catalog No.</u>. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization</u> <u>Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. Type of Report and Period Covered. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. <u>Abstract.</u> The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of <u>STAR</u>) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Selfexplanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
Public reporting burden fothis collection of informathering andmaintaining thedata needed, and collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 2220	mation is esting and reducing this part of the completing and part of the complete c	natedo average 1 hour per respo d'evlewing thecollection informatic burdento Washington Headquar to the Office of Management and	nse Including on. Send co ers Services Budget, Pap	the timmen Oirect	imefor reviewing Instruct its regardingthis burdene orate for Information Op rk Reduction Project (07	ionssearching existing data sources estimate or any other aspect of this rerationend Reports, 1215 Jefferso 04-0188). Washington, DC 20503.
1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATE					ES COVERED	
4. TITLE AND SUBTITLE				5. FUNDING NUMBERS		
Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report				NAS 5-32314		
6. AUTHOR(S) C. Haapala						
7. PERFORMING ORGANIZATION Aerojet	I NAME(S)	AND ADDRESS(ES)			PERFORMING ORCEPORT NUMBER	
1100 W. Holly				11528		
Azusa, CA 917					22 July 199	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA				10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
Goddard Space Flight Center Greenbelt, Maryland 20771						
11. SUPPLEMENTARY NOTES	-					
12a. DISTRIBUTION/AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE		
			į			
13. ABSTRACT (Maximum 200 words)						
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			ъ.	^	n de a a a constel	METCAT AMOU
This is the Performance A2 (P/N 1331200-2, S/N	Verifica 109), f	ition Report, Anteni or the Integrated A	na Driv Ivance	e S d M	iubassembly, Iicrowave Sou	METSAT AMSU- unding Unit-A
A2 (P/N 1331200-2, S/N 109), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).						
14. SUBJECT TERMS						15. NUMBER OF PAGES
EOS						
Microwave System						16. PRICE CODE
47 SECUDITY OF ACCIDINATION	10 0001	RITY CLASSIFICATION	10 SECTION	PIT~	CLASSIFICATION	20. LIMITATION OF
17. SECURITY CLASSIFICATION OF REPORT	OF TH	IIS PAGE	OF A	BSTR	ACT	ABSTRACT SAR
Unclassified	•	Jnclas sified	U) I I C	lassified	SAR

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date. Full publication date including day, month, andyear, if available (e.g.,1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program Element
 WU
 Work Unit Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. <u>Performing Organization Report Number</u>. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. Sponsoring/MonitoringAgency Reports Number. (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement Denotes public</u> availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.
NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price code**N**(T/S only).

Block 17 - 19. <u>Security Classifications</u>. <u>Self-explanatory</u>. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

DOCUMENT APPROVAL SHEET

Porformance Varification Depart			DOCUMENT NO.	•	
Performance Verification Report Antenna Drive Subassembly, METSAT AMSU-A2 (P/N 1331210-2, S/N: 109)			Report 11528		
Antenna Drive Subassembly, ME15	PAT AMSU-AZ (P/N	1331210-2, S/N: 109)	22 July 1999		
INPUT FROM:	CDRL:	SPECIFICATION ENGINEER:		DATE	
C. Haapala	208	N/A		5/112	
·					
CHECKED BY:	DATE	JOB NUMBER:		DATE	
N/A					
		N/A			
APPROVED SIGNATURES			DEPT. NO.	DATE	
Product Team Leader (A. Nieto) Systems Engineer (R. Platt) Design Assurance (E. Lorenz) Quality Assurance (R. Taylor) PMO/Technical (P. Patel) Released: Configuration Management (J. C.	Phot Ith Dwoon for RM Toylun Grabodh		8341 8341 7831 8341 8361	7/27/99 7/27/99 7/27/99 7/27/99 7/27/99 8/2/99	
By my signature, I certify the above document ha requirements related to my area of responsibility. (Data Center) FINAL	s been reviewed by me ar	nd concurs with the technical			
Please return this sheet and the reproducible	master to Jim Kirk (Bldg.	1/Dept. 8631), ext. 2081.			