Bioinformatics CS300 Chap 2 Computational Manipulation of DNA

Spring 2021
Oliver BONHAM-CARTER

Genes and Alleles

• **Gene**: A distinct sequence of nucleotides forming a piece of a chromosome. In biology, a gene is a sequence of nucleotides in DNA or RNA that codes for a molecule (a *protein*) that has a function. During gene expression, the DNA is first copied into RNA which is then transcribed into protein.

• **Allele**: One of two or more *alternative* forms of a gene that arise by mutation and are found at the same place on a chromosome.

Genes Versus Alleles

Alleles: B and b (two alternative forms of gene)

Genes: BB, Bb, BB and bb

HOMOZYGOUS

A cell is said to be homozygous for a particular gene when identical alleles of the gene are present on both homologous chromosomes. The cell or organism in question is called a homozygote.

HETEROZYGOUS

A diploid organism is heterozygous at a gene locus when its cells contain two different alleles (one wild-type allele and one mutant allele) of a gene. The cell or organism is called a heterozygote.

Genes And Alleles

Mendelian Genetics

- Mendelian genetics
- Breeding experiments with Pisum sativum plants.
- Crossing large pees (SS genes) with small pees (ss genes), over several generations
- First generation: individuals exhibiting only one of the two traits (large and small)
- Inbred generations showed distributions of ¾ large pees (SS, Ss, sS), ¼ small pees (ss)
- S dominant trait, s recessive trait

Eggs

(5)

Punnett square

Pees and flowers show similar trends of genetics

pistil

Bb

1/2 B

1/2 b

- Cystic Fibrosis Transmembrane conductance:
 CFTR
- Gene product (protein) is bad regulator;
 - Fails to move water after displacing chloride ions in epithelial (thin tissue) cells
- Water follows chloride ions by osmosis.

• What if water regulation were not possible in the cells and organs? How much of your body is made up of water??

Cystic Fibrosis

make the body prone to infections

and can even block the airways.

 Inherited medical condition of the secretory glands (producers of mucous and sweat)

Cystic Fibrosis: Symptoms

- Restricted flow in airways from mucous build-ups.
- Suffocation

A Build-Up of Anything is Bad

• If garbage collection crews stop removing waste, then *things* quickly get messy.

 Clubbed fingers: occurs in heart and lung diseases that reduce the amount of oxygen in the blood

- Short videos of membrane transport proteins: https://www.youtube.com/watch?v=EuLVCYrurok
- Mechanism and Treatment https://www.youtube.com/watch?v=6lbP1ASGv9w

 Gene codes for four different proteins: only one working type to move chloride ions and enable water displacement,

Healthy H_20 Cystic Fibrosis Na Na+ CI

Mucous build-up

Cystic Fibrosis: Inheritance

ALLEGHENY COLLEGE

- Autosomal recessive type condition: one faulty gene is inherited from both parents (together) in order for the offspring to get this condition
- Modeled via Mendelian Genetics
- Impossible to know that someone is sure to get a condition.

Open Reading Frames

- An open reading frame (ORF) is the part of a reading frame that has the ability to be translated into protein.
- An ORF is a continuous stretch of codons that begins with a **start** codon (usually AUG) and ends at a **stop** codon (usually UAA, UAG or UGA).

Cite:

https://www.genome.gov/genetics-glossary/Open-Reading-Frame

- Pam Can See The Man and Dog
- Frame shift by one letter!

Reading by triplets

- P amC anS eeT heM ana ndD og
- Frame shift by two letters!
- Pa mCa nSe eTh eMa nan dDo g
- Frame shift by three letters
- Pam Can See The Man and Dog

Notice how the code changes depending on where you start reading? (That is a *frameshift*.)

Open Reading Frames: DNA Example

Note: RF means reading frame, where you start reading the words.

Original: CAATGGCGAATCGACGTGTATAAA

RF1 - 5' - CAA TGG CGA ATC GAC GTG TAT AAA - 3'

RF2 - 5' - C AAT GGC GAA TCG ACG TGT ATA AA - 3'

RF 3 - 5' - CA ATG GCG AAT CGA CGT GTA TAA A - 3'

3' - CAA TGG CGA ATC GAC GTG TAT AAA - 5' - RF 4

3' - C AAT GGC GAA TCG ACG TGT ATA AA - 5' - RF 5

3' - CA ATG GCG AAT CGA CGT GTA TAA A - 5' - RF 6

- Original:
 CAATGGCGAATCGACGTGTATAA
 A
- Translate is a tool which allows the translation of a nucleotide (DNA/RNA) sequence to a protein sequence.
 - https://web.expasy.org/translate/

5'3' Frame 1 QWRIDVYK
5'3' Frame 2 NGESTCI
5'3' Frame 3 MANRRV-
-3'5' Frame 1 FIHVDSPL
3'5' Frame 2 LYTSIRH
3'5' Frame 3 YTRRFAI

Sequence is Carrier?

- How do we determine if a sequence carries the Cystic Fibrosis allele?
- Get DNA sample and translate into protein. Then compare product protein sequence to that of a "working protein"
- Is there a difference (structure or function) between of the protein sequences?

- DNA triplets called codons, translate into amino acids
- T's from DNA are read as U's as RNA after transcription

Standard genetic code

1st	2nd base								3rd
base		Т		С		A		G	
т	TTT	(Phe/F) Phenylalanine	TCT	(Ser/S) Serine	TAT	(Tyr/Y) Tyrosine	TGT	(Cys/C) Cysteine	T
	TTC		TCC		TAC		TGC		С
	TTA	(Leu/L) Leucine	TCA		TAA ^[B]	Stop (Ochre)	TGA ^[B]	Stop (Opal)	A
	TTG		TCG		TAG ^[B]	Stop (Amber)	TGG	(Trp/W) Tryptophan	G
С	CTT		CCT	(Pro/P) Proline	CAT	(His/H) Histidine	CGT	(Arg/R) Arginine	T
	CTC		CCC		CAC		CGC		С
	CTA		CCA		CAA	(Gln/Q) Glutamine	CGA		A
	CTG		CCG		CAG		CGG		G
A	ATT	(Ile/I) Isoleucine	ACT	(Thr/T) Threonine	AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	T
	ATC		ACC		AAC		AGC		С
	ATA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	A
	ATG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G
G	GTT	(Val/V) Valine	GCT	(Ala/A) Alanine	GAT	(Asp/D) Aspartic acid	GGT	(Gly/G) Glycine	T
	GTC		GCC		GAC		GGC		С
	GTA		GCA		GAA	(Glu/E) Glutamic acid	GGA		A
	GTG		GCG		GAG		GGG		G

Translating DNA to find defects in the protein

Remember: DNA Must Be In 5' to 3' Direction for Protein Translation

- Unlabeled strands of DNA are assumed to be in the 5' to 3', (left to right) direction.
- What are the steps to place a sequence into a format for translation simulation with bioinformatics tools?

- Input:
 - DNA sequence: AGCAT
 - Strands:
 - template (used to make mRNA), 3' -> 5'
 - non-template (the compliment of this strand that looks like mRNA), 5' -> 3'
- Output:
 - Template strand in 3' -> 5' orientation ready for transcription

- Input: template strand in the 3' → 5' orientation
- Output: mRNA strand in the 5' → 3' orientation
 - Traverse the string from left to right
 - add complementary base to the output string
 - (note T is now U)

DNA Seq = 3' - ATGCGT - 5'

mRNA Seq = 5' - AUGCGC - 3'

- Input: non-template strand in the 5' → 3' orientation
- Output: mRNA strand in the 5' → 3' orientation
 - Traverse the string from left to right
 - Replace all the T's with U's

DNA Seq = 5' - ATGCGT - 3'

mRNA Seq = 5' - AUGCGC - 3'

- Input: mRNA strand in the 5' → 3' orientation
- Output: amino acid sequence
 - Traverse the string codon by codon
 - Add one amino acid to protein, corresponding to the protein sequence.

WAIT! Why is the 5' to 3' direction so important?! Remember the carbon atoms on DNA?