

Machine Learning

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
(g = sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 \overline{x_1} x_2)$$

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}^{2} + \theta_{4}x_{2}^{2} + \theta_{5}\overline{x_{1}}x_{2})$$

$$g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{1}^{2} + \theta_{4}x_{1}^{2}x_{2}^{2} + \theta_{3}x_{1}^{2}x_{2} + \theta_{4}x_{1}^{2}x_{2}^{2} + \theta_{5}x_{1}^{2}x_{2}^{3} + \theta_{6}x_{1}^{3}x_{2} + \dots)$$

Addressing overfitting:

```
x_1= size of house x_2= no. of bedrooms x_3= no. of floors x_4= age of house x_5= average income in neighborhood x_6= kitchen size x_{100}
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
- → Manually select which features to keep.
- —> Model selection algorithm (later in course).
- 2. Regularization.
- \rightarrow Keep all the features, but reduce magnitude/values of parameters $\theta_{\it i}$
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Machine Learning

Regularization

Cost function

Intuition

 $\theta_0 + \theta_1 x + \theta_2 x^2$ $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^2 + \theta_5 x^3 + \theta_5 x^$

Suppose we penalize and make θ_3 , θ_4 really small.

pose we penalize and make
$$\theta_3$$
, θ_4 really small.
$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log \Theta_3^2 + \log \Theta_4^2$$

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting <

7 20

Housing:

- Features: x_1, x_2, \dots, x_{100}
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda^{\frac{2}{2}} \right]$$

Regularization.

Size of house

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\lambda}_{j=1}^{m} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

Machine Learning

Regularization

Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left(\sum_{j=1}^{n} \theta_j^2 \right) \right]$$

$$\min_{\substack{\theta \\ \uparrow}} \frac{J(\theta)}{}$$

Gradient descent

$$\bigcirc$$
, \bigcirc , \bigcirc , \bigcirc ,

Repeat {

$$\Rightarrow \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \Theta_{j} \right]$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

$$\underline{\theta_j} := \underbrace{\theta_j(1 - \alpha \frac{\lambda}{m})}_{i=1} - \underbrace{\alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}}_{j}$$

$$\left|-\frac{\lambda}{m}\right|$$

Normal equation

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \leftarrow y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\Rightarrow \min_{\theta} J(\theta)$$

$$\Rightarrow 0 = (X^T X + \lambda) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\exists S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Non-invertibility (optional/advanced).

Suppose
$$m \le n$$
, (#examples) (#features)

$$\theta = \underbrace{(X^T X)^{-1} X^T y}_{\text{Non-invertible / singular}} \qquad \underbrace{\text{pinu}}_{\text{R}}$$

If
$$\frac{\lambda > 0}{\theta} = \left(X^T X + \lambda \begin{bmatrix} 0 & 1 & 1 & 1 \\ & 1 & & \\ & & \ddots & 1 \end{bmatrix} \right)^{-1} X^T y$$

Machine Learning

Regularization

Regularized logistic regression

Regularized logistic regression.

Cost function:

$$\Rightarrow J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \mathcal{O}_{j}^{2} \qquad \boxed{\mathcal{O}_{i}, \mathcal{O}_{i}, \dots, \mathcal{O}_{n}}$$

Gradient descent

Repeat {

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (\underline{h_{\theta}(x^{(i)})} - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} O_{j} \right]$$

$$\left(j = \mathbf{x}, \underline{1, 2, 3, \dots, n} \right)$$

$$\frac{\lambda}{\lambda O_{j}} J(O)$$

$$h_{\Theta}(\mathbf{x}) = \frac{1}{1 + e^{-O^{T}}} \mathbf{x}$$

Advanced optimization

Ivanced optimization

function [jVal, gradient] = costFunction (theta) theta(1)

jVal = [code to compute
$$J(\theta)$$
];

 $jVal = [code to compute <math>J(\underline{\theta})];$

$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right) \right] + \left[\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \right]$$
This part (1) = [so do to compute $\frac{\partial}{\partial x^{i}} I(\theta)$]:

 \longrightarrow gradient (1) = [code to compute $\frac{\partial}{\partial \theta_0} J(\theta)$];

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \longleftarrow$$

 \rightarrow gradient (2) = [code to compute $\frac{\partial}{\partial \theta_1} J(\theta)$];

$$\left(\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)} - \frac{\lambda}{m} \theta_1 \right)$$

 $\left(\left\lfloor \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} \right) - \frac{\lambda}{m} \theta_{1} \iff$ $\Rightarrow \text{ gradient (3)} = \left[\text{code to compute } \left\lceil \frac{\partial}{\partial \theta_{2}} J(\theta) \right\rceil \right];$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)} - \frac{\lambda}{m} \theta_2$$

gradient (n+1) = [code to compute $\frac{\partial}{\partial \theta_n} J(\theta)$];