Q1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

- 1. Data type of columns in a table
- 1. data type of customer Table....example...and so on

)	Field name	Туре
]	customer_id	STRING
)	customer_unique_id	STRING
)	customer_zip_code_prefix	INTEGER
)	customer_city	STRING
)	customer_state	STRING

2. Time period for which the data is given

 $\textcolor{red}{\textbf{select max}} (\texttt{order_purchase_timestamp}) \textcolor{red}{\textbf{as maximum_timeperiod}}, \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \textcolor{red}{\textbf{as minimum_t}} \\ \textcolor{red}{\textbf{imeperiod}}, \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \textcolor{red}{\textbf{as minimum_t}} \\ \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \\ \textcolor{red}{\textbf{as minimum_t}} (\texttt{order_purchase_timestamp}) \textcolor{red}{\textbf{as minimum_t}} \\ \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \\ \textcolor{red}{\textbf{as minimum_t}} \\ \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \\ \textcolor{red}{\textbf{as minimum_t}} \\ \textcolor{red}{\textbf{min}} (\texttt{order_purchase_timestamp}) \\ \textcolor{red}{\textbf{min}} ($

from `target_case.orders`

JOB IN	FORMATION	RESULTS	JSON	EXECUTIO	N DETAIL
Row	maximum_timep	eriod //	minimum_tim	neperiod	11
1	2018-10-17 17:30	D:18 UTC	2016-09-04 2	1:15:19 UTC	

3 Cities and States of customers ordered during the given period

```
select c.customer_state,c.customer_city

from `target_case.customers` c
join `target_case.orders` o
on c.customer_id=o.customer_id
```

where order_purchase_timestamp between "2016-09-04 21:15:19 UTC" and "2018-10-17 17:30:18 UTC"

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETA
Row	customer_state	ſı.	customer_city	1
1	AL		maceio	
2	SE		aracaju	
3	SE		aracaju	
4	AL		maceio	
5	PI		teresina	
6	AL		pau d'arco	
7	RN		natal	

Q2. In-depth Exploration:

1.(a)Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario?

```
with M as
(select order_id,extract(year from order_purchase_timestamp) as years
from target_case.orders)

select years,count(order_id) as no_of_orders_given
from M
```


- → From the above we can find the growth of e-commers as the no of orders growth....
- 1.(b)Can we see some seasonality with peaks at specific months?

```
with M as
(select order_id,
extract(year from order_purchase_timestamp) as years,
extract(month from order_purchase_timestamp) as months
from target_case.orders),

M1 as(select years,months,count(order_id) as no_of_orders_given
from M
group by years,months
order by years,months)

select *
from M1;
```

JOB INFORMATION		RESULTS	JSON	I
Row	years //	months	no_of_orders_giv	
1	2016	9	4	
2	2016	10	324	
3	2016	12	1	
4	2017	1	800	
5	2017	2	1780	
6	2017	3	2682	
7	2017	4	2404	
8	2017	5	3700	
9	2017	6	3245	
10	2017	7	4026	
11	2017	8	4331	
12	2017	9	4285	
13	2017	10	4631	
14	2017	11	7544	
15	2017	12	5672	_

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
with A as (select order_id, extract(Time from order_purchase_timestamp) as times from target_case.orders),

A1 as (select times, case when times between '06:00:00' and '12:00:00' then "Morning" when times between '12:00:00' and '17:00:00' then "Afternoon" when times between '17:00:00' and '22:00:00' then "Evening" else "Night" end as time_phase from A)

select time_phase,count(times) as no_of_orders from A1 group by time_phase;
```

JOB INFORMATION		RESULTS	JSON	I
Row /	time_phase	li.	no_of_orders	
1	Morning		22240	
2	Night		14678	
3	Evening		30311	
4	Afternoon		32212	

 \rightarrow Insights::Thus conclution is at Afternoon Brazil customer buy more.... Which is 32.3%(aprox)

Total =99441 no of orders

- →Thus need to have more no of employees at this hour...
- → Need to make back up ready at this time ... back up as team to handle small technical issue.
- → Need to have storage back up if needed...

Q3. Evolution of E-commerce orders in the Brazil region:

1.Get month on month orders by states

```
with A as
(select
c.customer_state,o.customer_id,
extract(year from order_purchase_timestamp) as years,
extract(month from order_purchase_timestamp) as month
from target_case.orders o
join target_case.customers c
on o.customer_id=c.customer_id)

select customer_state,years,month,count(customer_id) as no_of_orders
from A
group by customer_state,years,month
order by customer_state,years,month
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXECUTI
Row	customer_state	/1	years //	month //	no_of_orders
1	AC		2017	1	2
2	AC		2017	2	3
3	AC		2017	3	2
4	AC		2017	4	5
5	AC		2017	5	8
6	AC		2017	6	4
7	AC		2017	7	5
8	AC		2017	8	4
9	AC		2017	9	5
10	AC		2017	10	6
11	AC		2017	11	5
12	AC		2017	12	5
13	AC		2018	1	6
			0040	^	^

2.Distribution of customers across the states in Brazil select customer_state,count(customer_id) as sign_in_cust

from target_case.customers group by customer_state Query results

JOB IN	FORMATION	RESULTS	JSON	EXE
low	customer_state	<i>[i</i>	sign_in_cust	
1	RN	,,	485	
2	CE		1336	
3	RS		5466	
4	SC		3637	
5	SP		41746	
6	MG		11635	
7	ВА		3380	
8	RJ		12852	
9	GO		2020	
10	MA		747	
11	PE		1652	
12	PB		536	
13	ES		2033	
1/	DR		50/15	

- Q4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1.Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table

```
with A as (select p.payment_value,
extract(year from order_purchase_timestamp) as years,
extract(month from order_purchase_timestamp) as months
from `target_case.payments` p
join `target_case.orders` o
on p.order_id=o.order_id)

select years,sum(payment_value) as yearly_sum_
from A
where
(months between 1 and 8) and(years=2017 or years=2018)
group by years
order by years
```

JOB IN	IFORMATION	RESULTS
Row	years //	yearly_sum_
1	2017	3669022.11
2	2018	8694733.83

#insightes

- →yearly sum Difference=yearly sum(2018)-yearly sum(2017)=5025711.72
- →% increase =(5025711.72/8694733.83)*100=**57.8**%(approx....)
- 2.Mean & Sum of price and freight value by customer state

```
select c.customer_state,avg(price) avg_of_price,
avg(freight_value) avg_of_freight,
sum(price) sum_of_price,
sum(freight_value) sum_of_freight
from `target_case.order_items` oi
join `target_case.orders` o
on oi.order_id=o.order_id
```

```
join `target_case.customers` c
on o.customer_id=c.customer_id
group by c.customer_state
order by c.customer_state
```


JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH
Row	customer_state	ĺ,	avg_of_price	avg_of_freight	sum_of_price	sum_of_freight
1	AC		173.727717	40.0733695	15982.9499	3686.74999
2	AL		180.889211	35.8436711	80314.81	15914.5899
3	AM		135.495999	33.2053939	22356.8400	5478.88999
4	AP		164.320731	34.0060975	13474.2999	2788.50000
5	BA		134.601208	26.3639589	511349.990	100156.679
6	CE		153.758261	32.7142016	227254.709	48351.5899
7	DF		125.770548	21.0413549	302603.939	50625.4999
8	ES		121.913701	22.0587765	275037.309	49764.5999
9	GO		126.271731	22.7668152	294591.949	53114.9799
10	MA		145.204150	38.2570024	119648.219	31523.7700
11	MG		120.748574	20.6301668	1585308.02	270853.460
12	MS		142.628376	23.3748840	116812.639	19144.0300

Q5. Analysis on sales, freight and delivery time

```
Calculate days between purchasing, delivering and estimated delivery
-- Calculate days between purchasing, delivering
with A as
(select
extract(date from order_purchase_timestamp) as purchasing,
extract(date from order_delivered_carrier_date) as delivering,
extract(date from order_estimated_delivery_date) as estimated_delivery
from `target_case.orders`
)
```

 ${\color{red} \textbf{select purchasing,delivering,date_diff(delivering,purchasing,day) \ day_bet_pur_del \ from \ A}$

Row	purchasing	delivering	day_bet_pur_del
1	2017-02-04	2017-03-03	27
2	2018-07-11	2018-07-31	20
3	2018-03-22	2018-04-05	14
4	2018-01-19	2018-02-03	15
5	2016-10-07	2016-10-30	23
6	2016-10-05	2016-11-07	33
7	2016-10-07	2016-10-26	19
8	2016-10-05	2016-11-14	40
9	2018-03-22	2018-04-06	15
10	2017-11-24	2018-01-04	41
11	2018-05-18	2018-06-06	19
40	0040 00 00	0040 00 00	

--days between estimated_delivery and delivering

```
with A as (select extract(date from order_purchase_timestamp ) as purchasing, extract(date from order_delivered_carrier_date ) as delivering, extract(date from order_estimated_delivery_date) as estimated_delivery from `target_case.orders`
)
```

 ${\color{red} \textbf{select delivering,estimated_delivery,date_diff} (estimated_delivery,delivering,day) \ day_bet_del_est_delfrom \ A}$

11	delivering	estimated_delive	day_bet_del_est_
1	2018-07-31	2018-08-01	1
2	2017-12-18	2018-01-29	42
3	2018-06-14	2018-07-24	40
4	2018-08-13	2018-08-17	4
5	2017-05-20	2017-06-27	38
6	2018-03-09	2018-04-19	41
7	2018-01-04	2017-12-20	-15
8	2018-08-06	2018-08-09	3
9	2018-08-06	2018-08-09	3
10	2018-05-18	2018-06-25	38
11	2018-07-04	2018-08-20	47

note that here + value of day_bet_del_est_del means deliver before estimated_delivery and -ve means it take extra days

#Insights...late delivery 336 and deliver before time 97185

Thus late_delivery is 0.345%....

#recomendation... which can we be consider good...but can be improved with few more employees...

- Find time_to_delivery & diff_estimated_delivery. Formula for the same given below
- -- time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- -- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date select

date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery ,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time_to_delivery from `target_case.orders`

order by order_estimated_delivery_date ;

JOB IN	IFORMATION	RESULTS	JS	103
Row	diff_estimated_c	time_to_delivery	11	
101	28		26	
102	28		25	
103	33		18	
104	31		20	
105	45		7	
106	42		12	
107	28		26	
108	31		23	
109	44		7	
110	12		40	
111	43		10	

- Group data by state, take mean of freight value, time to delivery, diff estimated delivery

```
with diff as (select order_id, customer_id, order_estimated_delivery_date,order_delivered_customer_date,order_purchase_timestamp, date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time_to_delivery from `target_case.orders`
)

select c.customer_state,avg(freight_value) as freight_value,avg(time_to_delivery) as time_to_delivery,avg(diff_estimated_delivery) as diff_estimated_delivery

from `target_case.customers` c
    join diff d
    on d.customer_id=c.customer_id
    join `target_case.order_items` oi
    on d.order_id=oi.order_id
```

JOB IN	IFORMATION RESULTS	JSON	EXECUTION DET	AILS EXECUTIO
Row	customer_state	freight_value	time_to_delivery	diff_estimated_c
1	MT	28.1662843	17.5081967	13.6393442
2	MA	38.2570024	21.2037500	9.10999999
3	AL	35.8436711	23.9929742	7.97658079
4	SP	15.1472753	8.25960855	10.2655943
5	MG	20.6301668	11.5155221	12.3971510
6	PE	32.9178626	17.7920962	12.5521191
7	RJ	20.9609239	14.6893821	11.1444931
8	DF	21.0413549	12.5014861	11.2747346
9	RS	21.7358043	14.7082993	13.2030001
10	SE	36.6531688	20.9786666	9.16533333
11	PR	20.5316515	11.4807930	12.5338998

-- Sort the data to get the following:

```
-- Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5
with diff as (select
order_id,
customer_id, order_estimated_delivery_date,order_delivered_customer_date,order_purchase_timestamp,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time_to_delivery
from target_case.orders
)
A1 as(select c.customer_state,avg(freight_value) as freight_value,avg(time_to_delivery) as time_to_delivery,avg(
diff_estimated_delivery) as diff_estimated_delivery
   from `target_case.customers` c
   join diff d
   on d.customer_id=c.customer_id
   join `target_case.order_items` oi
   on d.order_id=oi.order_id
   group by c.customer_state)
# lowest 5 state with freight value
select customer_state,freight_value
order by A1.freight_value limit 5;
```

JOB INFORMATION		RESULTS	JSON
Row	customer_state	6	freight_value
1	SP		15.1472753
2	PR		20.5316515
3	MG		20.6301668
4	RJ		20.9609239
5	DF		21.0413549

#highest 5 state with freight value

select customer_state,freight_value from A1 order by A1.freight_value desc limit 5;

Query results

JOB IN	IFORMATION	RESULTS	JSON
low /	customer_state	(1	freight_value
1	RR		42.9844230
2	PB		42.7238039
3	RO		41.0697122
4	AC		40.0733695
5	PI		39.1479704

-- Top 5 states with highest/lowest average time to delivery

```
with diff as (select
order_id,
customer_id, order_estimated_delivery_date,order_delivered_customer_date,order_purchase_timestamp,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time_to_delivery
from target_case.orders
)
A1 as(select c.customer_state,avg(freight_value) as freight_value,avg(time_to_delivery) as time_to_delivery,avg(
diff_estimated_delivery) as diff_estimated_delivery
   from `target_case.customers` c
   join diff d
   on d.customer_id=c.customer_id
   join `target_case.order_items` oi
   on d.order_id=oi.order_id
   group by c.customer_state)
-- Top 5 states with lowest average time to delivery
select customer_state,time_to_delivery
from A1
order by A1.time_to_delivery
```

limit 5;

JOB INFORMATION		RESULTS	JSON
Row	customer_state	h	time_to_delivery
1	SP		8.25960855
2	PR		11.4807930
3	MG		11.5155221
4	DF		12.5014861
5	SC		14.5209858

--Top 5 state with highest average time to delivery select customer_state,time_to_delivery from A1 order by A1.time_to_delivery desc limit 5;

JOB IN	IFORMATION	RESULTS	JSON
Row	customer_state	//	time_to_delivery
1	RR		27.8260869
2	AP		27.7530864
3	AM		25.9631901
4	AL		23.9929742
5	PA		23.3017077

-- Top 5 states where delivery is really fast/ not so fast compared to estimated date\

```
with diff as (select
order_id,
customer_id, order_estimated_delivery_date,order_delivered_customer_date,order_purchase_timestamp,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as diff_estimated_delivery
,date_diff(order_delivered_customer_date,order_purchase_timestamp, day) as time_to_delivery
from target_case.orders
)
A1 as(select c.customer_state,avg(freight_value) as freight_value,avg(time_to_delivery) as time_to_delivery,avg(
diff_estimated_delivery) as diff_estimated_delivery
   from target_case.customers c
   join diff d
   on d.customer_id=c.customer_id
   join target_case.order_items oi
   on d.order_id=oi.order_id
    group by c.customer_state)
--Top 5 states where delivery is really not so fast compared to estimated date
select customer_state,diff_estimated_delivery
from A1
order by A1.diff_estimated_delivery
limit 5;
```

JOB IN	NFORMATION	RESULTS	JSON
Row	customer_state	/1	diff_estimated_c
1	AL		7.97658079
2	MA		9.10999999
3	SE		9.16533333
4	ES		9.76853932
5	BA		10.1194678

--Top 5 states where delivery is really fast compared to estimated date select customer_state, diff_estimated_delivery from A1 order by A1.diff_estimated_delivery desc limit 5;

JOB INFORMATION		RESULTS	JSON	E
Row	customer_state	ĺ,	diff_estimated_c	
1	AC		20.0109890	
2	RO		19.0805860	
3	AM		18.9754601	
4	AP		17.4444444	
5	RR		17.4347826	

Q6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
with A as(select p.payment_type,o.order_id,extract(month from order_purchase_timestamp) as months, extract(year from order_purchase_timestamp) as years from `target_case.payments` p join `target_case.orders` o on p.order_id=o.order_id)

select payment_type,years,months,count(order_id) count_of_order from A group by payment_type,years,months order by payment_type,years,months;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECU
Row	payment_type	le	years //	months //	count_of_order
1	UPI		2016	months 0	63
2	UPI		2017	1	197
3	UPI		2017	2	398
4	UPI		2017	3	590
5	UPI		2017	4	496
6	UPI		2017	5	772
7	UPI		2017	6	707
8	UPI		2017	7	845

Results per pag

#insights...In 2016 ,2017,2018 orders given by (credit-card) are more then any otherand followed by upi...

as upi order is 19784 and credit card order is 76795...thus upi order is just 25.76% of credit card

- Recommendations... 1.Thus we can give offer to upi ...to increase orders by upi...like 5% off using paytm etc...to attract youngsters with no credit card......
 - 2. Count of orders based on the no. of payment installments

select payment_installments,COUNT(order_id) as count_of_orders from `target_case.payments` group by payment_installments

JOB INFORMATION		RESULTS	
Row	payment_installr	count_of_orders	
1	0	2	
2	1	52546	
3	2	12413	
4	3	10461	
5	4	7098	
6	5	5239	
7	6	3920	
8	7	1626	

#insights...select *from A where count_of_orders>10000;

JOB IN	FORMATION	RESULT	S JSON
Row	payment_installments	3	count_of_orders
1		1	52546
2		2	12413
3		3	10461

→ Thus payment installments mostly used are 1,2,3

Some more insights ...

select review_score,count(order_id) as count_order from `target_case.order_reviews` group by review_score

JOB IN	IFORMATION	RESULTS
Row	review_score	count_order
1	1	11424
2	2	3151
3	3	8179
4	4	19142
5	5	57328

Total count order=99224 thus review score 1,2 which is worst are 11.51% and 3.17%

Which need to improve by decreasing rating 1 and 2

→Another problem is noo of comments

According to data we have

select count(*) as total_no,count(review_comment_title) actual_commented,count(*)count(review_comment_title) as not_comments
from `target_case.order_reviews`

JOB IN	FORMATION	RESULTS	JSON
Row	total_no	actual_comment	not_comments
1	99224	11549	87675

RECOMADATIONS:: Need to send special email to user how buy product but did not give review or comments ... "SO THAT WE CAN IMPROVE OUR SERVICE".......