Lecture Note 4

Dr. Jeff Chak-Fu WONG

Department of Mathematics
Chinese University of Hong Kong

jwong@math.cuhk.edu.hk

MATH1020 General Mathematics ONE-TO-ONE FUNCTIONS AND INVERSE FUNCTIONS

What will you learn?

- One—to—one Functions
- Inverse Functions

Definition 1 A function is one—to—one if any two different inputs in the domain correspond to two different outputs in the range. That is, if x_1 and x_2 are two different inputs of a function f, then f is one—to—one if $f(x_1) \neq f(x_2)$.

(a) One—to—one function: Each x in the domain has one and only one image in the range. No y in the range is the image of more than one x.

(b) Not a one—to—one function y_1 is the image of both x_1 and x_2 .

(c) Not a function x_1 has two images, y_1 and y_2 .

Figure 1:

Theorem 1 Horizontal—line Test If every horizontal line intersects the graph of a function f in at most one point, then f is one—to—one.

Figure 2: Horizontal—line Test.

Exercises 1 For each function, use its graph to determine whether the function is one—to—one.

(a)
$$f(x) = x^2$$
 (b) $g(x) = x^3$.

A horizontal line intersects the graph twice; *f* is not one-to-one

(a)
$$f(x) = x^2$$

Every horizontal line intersects the graph exactly once; g is one-to-one

(b)
$$g(x) = x^3$$

Figure 3:

Theorem 2

- 1. A function that increasing \nearrow on an interval I is one—to—one function on I.
- 2. A function that is decreasing \searrow on an interval I is a one—to—one function on I.

Definition 2 Suppose f one—to—one function. Then, to each x in the domain of f, there is exactly one y in the range (because f is one—to—one). The correspondence from the range of f back to the domain of f is called the **inverse function of** f. We use the symbol f^{-1} to denote the inverse of f.

Figure 4:

Two facts are now apparent about a one-to-one function f and its inverse f^{-1} :

Domain of
$$f = \text{Range of } f^{-1}$$
 Range of $f = \text{Domain of } f^{-1}$

Figure 4 illustrates the relationship between f and f^{-1} .

- If we start with x, apply f and then apply f^{-1} , we get x back again.
- If we start with x, apply f^{-1} , and then apply f, we get the number x back again.
- To put it simply, what f does, f^{-1} undoes, and vice versa.

Exercises 2 Verify Inverse Function

(a) Verify the inverse of $g(x) = x^5$ is $g^{-1}(x) = \sqrt[5]{x}$.

(b) Verify the inverse of f(x) = 3x + 5 is $f^{-1} = \frac{1}{3}(x - 5)$.

Exercises 3 Verify Inverse Function

Verify that the inverse of $f(x) = \frac{1}{x-1}$ is $f^{-1}(x) = \frac{1}{x} + 1$.

For what values of x is $f^{-1}(f(x)) = x$?

For what values of f is $f(f^{-1}(x)) = x$?

Suppose that (a, b) is a point on the graph of a one—to—one function f defined by y = f(x). Then b = f(a). This means that $a = f^{-1}(b)$, so (b, a) is a point on the graph of the inverse function f^{-1} . The relationship between on the point (a, b) on f and the point (b, a) on f is shown in Figure 5.

Figure 5:

The line segment containing (a, b) and (b, a) is perpendicular to the line y = x and is bisected by the line y = x. (Do you see why?) It follows that the point (b, a) on f^{-1} is the reflection about the line y = x of the point (b, a) on f.

Theorem 3 The graph of a function f and the graph of its inverse f^{-1} are symmetric with respect to the line y=x.

Figure 6:

Figure 6 illustrates the application of Theorem 3. Notice that, once the graph of f is known, the graph of f^{-1} may be obtained by reflecting the graph of f about the line y = x.

Procedure for Finding the Inverse of a One-to-One Function

STEP 1:In y = f(x), interchange the variables x and y to obtain

$$x = f(y)$$
.

This equation defines the inverse function f^{-1} implicitly.

STEP 2: If possible, solve the implicit equation for y in terms of x to obtain the explicit form of f^{-1} :

$$y = f^{-1}(x).$$

STEP 3: Check the result by showing that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Exercises 4 Finding the Inverse Function

The function

$$f(x) = \frac{2x+1}{x-1} \qquad x \neq 1$$

is one-to-one. Find its inverse and check the result.

Exercises 5 Find the Range of a Function

Find the domain and the range of

$$f(x) = \frac{2x+1}{x-1}.$$

Exercises 6 Finding the Inverse of a Domain-restricted Function

Find the inverse of $y = f(x) = x^2$ if $x \ge 0$.