CIENCIA DE LOS MATERIALES

ENSAYO DE FLEXIÓN

(Ing. Careglio)

- Clasificación mediante el efecto que producen
 - Tracción
 - Compresión
 - Flexión
 - Torsión
 - Corte
- Tensión
 - Tensión: Esfuerzo referida al área sobre la cual actúa.

$$\sigma = \frac{P_{N}}{A}$$

$$au = rac{P_{\scriptscriptstyle T}}{A}$$

Flexión

• Fuerzas transversales actuantes sobre una pieza producen esfuerzos de compresión sobre una parte de lasección transversal y de tracción sobre la restante.

- Estructuras y máquinas en servicio
 - Flexión puede combinarse con corte. En vigas para: $h \ge l_0/10$

- Ensayo de flexión
 - Finalidad:
 - Determinación resistencia estática a la flexión.
 - Determinar E
 - Ensayo de flexión menos empleado que el de tracción
 - Valores de resistencia del ensayo de tracción pueden ser aplicados en los que interviene flexión.
 - En ciertos casos conveniente obtener datos para cálculos directamente del ensayo de flexión

Viga

- Carga perpendiculares a su eje longitudinal, actuando sobre plano de simetría
- Carga provoca deformación
- Diagrama de fuerzas de corte

• Muestra como varía el corte. Para una sección: suma de todas las fuerzas transversales actuantes a la izquierda de ella (o a la derecha cambiada de

signo).

Diagrama de momento flector

- Muestra como varía el momento flector.
- Es posible obtenerlo a partir del diagrama anterior.
- Momento flector "M": suma de los momentos de todas las fuerzas que actúan a la izquierda (o a la derecha).

- Flexión práctica
- Flexión pura
 - Tercio medio con esfuerzos de corte nulos.

Distribución de los esfuerzos en las secciones transversales

Debido a la flexión

- Fibras inferiores sufren un alargamiento => Tracción
- Fibras superiores sufren un acortamiento => Compresión
- Eje neutro
 - Determinado por los puntos de la sección transversal con tensiones nulas.
 - Generalmente coincidente con el eje medio de la sección.

Teoría de flexión

- Sección plana sometida a momento flector permanece plana
- Sufre una rotación alrededor de su eje neutro

Distribución de los esfuerzos en las secciones transversales

- Considerando un tramo de viga de longitud unitaria
 - Fibra genérica experimenta deformación ε_ν
 - Dentro zona de proporcional se cumple ley de Hooke

$$\sigma_{\mathbf{y}} = E \, \varepsilon_{\mathbf{y}}$$

Condiciones de equilibrio

$$P_T - P_C = 0$$

$$R_A - P + R_B = 0$$

$$R_A x - P_T d = 0$$
siendo:

$$P_C d = P_T d$$

Distribución de los esfuerzos en las secciones transversales

Material

- Con igual comportamiento bajo ambos esfuerzos => Resultantes equidistan del eje neutro.
- Con distinto comportamiento bajo ambos esfuerzos => Eje neutro se desplaza hacia la zona más resistente.
- Pasada proporcionalidad y considerando que secciones transversales se mantienen planas
 - Deformaciones => Variación lineal
 - Tensiones => Se
 curvar en los extremos
 (fibras con deformación
 plástica sufren
 menores incrementos
 de tensiones para
 iguales aumentos de
 las deformaciones).

- Se efectúa determinando:
 - Momento fibras interiores respecto al eje neutro (en una sección) que se opone al momento de las cargas exteriores.
 - S (área sección transversal rectangular)

ds

y (distancia al eje neutro)

 $\overline{\sigma_{\mathbf{v}}}$ (producida por dp)

$$\Rightarrow dp = \sigma_v ds$$

$$dM = dp \ y = \sigma_v ds y$$

$$\sigma_{v}/\sigma_{e} = y/e :: \sigma_{v} = (y \sigma_{e}/e)$$

$$\Rightarrow dM = (\sigma_e/e) y^2 ds$$

$$=> M_{\rm int} = \int_{-e}^{e} \frac{\sigma_e}{e} y^2 ds$$

$$M_{\rm int} = \frac{\sigma_e}{e} \int_{-e}^{e} y^2 ds$$

donde:

$$J_x = \int_{-e}^{e} y^2 ds$$

$$M_{\rm int} = \frac{\sigma_e}{e} J_x$$

para que el sistema se encuentre en equilibrio:

$$M_{INT} = M_f$$

$$\Rightarrow M_f = (\sigma_e/e)*Jx$$

$$=> \sigma_e = e M_f / Jx \tag{1}$$

donde:

$$W_x = J_x / e$$

Módulo resistente

Por lo tanto:

$$\sigma_e = M_f/Wx$$

Fórmula de Navier

(2)

(flexión pura con variación lineal de tensiones y deformaciones)

Utilizando (1) se puede calcular en cualquier otro punto de la sección el valor de la tensión:

$$\sigma_e = e M_f / Jx \tag{1}$$

$$=> \sigma_{y}=y M_{f}/Jx$$
 (3)

Esta expresión confirma lo visto en el diagrama:

$$\sigma_y = 0$$
 para $y = 0$
 $\sigma_v = \sigma_e$ para $y = e$

- Nota
 - Convención sobre signo del momento flector
 Positivo cuando la viga se flexione hacia abajo (es decir cuando esfuerzos de tracción se encuentren debajo del eje neutro).

Cálculo de la resistencia a la flexión Momento de inercia en sección rectangular

Jx = momento de inercia con respecto al eje x

Jy = momento de inercia con respecto al eje y

Jp = momento de inercia polar respecto a un polo o eje de giro

$$Jx = \frac{bh^3}{12}$$

$$Jy = \frac{b^3h}{12}$$

$$Jp = Jx + Jy = \frac{bh}{12} (h^2 + b^2)$$

Momento de inercia en sección circular

Jx = momento de inercia con respecto al eje x

Jy = momento de inercia con respecto al eje y

Jp = momento de inercia polar respecto a un polo o eje de giro

$$Jp = \frac{\pi D^4}{32}$$

$$Jp = Jx + Jy$$
$$= 2Jx$$

$$\Rightarrow Jx = \frac{Jp}{2}$$
$$= \frac{\pi D^4}{64}$$

Cálculo de la resistencia a la flexión Cálculo del módulo de elasticidad

- Material sometido a carga creciente por lo que el eje neutro se va flexionando
 - Flecha: distancia vertical entre la posición inicial e instantánea del eje neutro (en el lugar de mayor flexión).
- Es posible calcular el módulo de elasticidad
 - Medir en el periodo elástico flechas y sus cargas (no menos de 5)
 - Tomando promedio se puede calcular E
- Para una viga simplemente apoyada
 - Con una carga concentrada en su sección media

$$f = \frac{1P l_0^3}{48 E J x} : E = \frac{1P_{PROM} l_0^3}{48 f_{PROM} J x}$$
(4)

Con cargas concentradas actuantes a los tercios de la luz

$$f = \frac{23 P l_0^3}{648 E Jx}$$

Cálculo de la resistencia a la flexión Cálculo del módulo de elasticidad

Aclaración:

Las cargas se indican en el cuadrante del registrador de esfuerzos y las flechas mediante un flexímetro fijado a la viga de flexión.

Probetas

- Sección de las probetas (según el material a ensayar)
 - Circular o rectangular
- La luz entre apoyos
 - No ser reducida (para que el corte no influyan en los resultados)
 - Cuando es grande (en sección rectangular) existe peligro de que la probeta sufra flexión lateral.
 - Se recomienda:

$$l_o \ge 12d_o$$
$$l_o \ge 12h$$

- En cuanto a la forma de obtención, las probetas pueden ser :
 - Fundidas con la pieza.
 - Fundidas separadamente de la pieza.
- En cuanto al mecanizado, las probetas (no deben tener sopladuras ni rebabas que perturben el ensayo) pueden ser:
 - Sin mecanizar o en bruto
 - Mecanizadas o trabajadas

Probetas

- Norma IRAM 510 (ensayo de flexión para fundiciones de hierro), designa a las probetas con letras:
 - Diámetros para probetas en bruto o trabajadas:

TIPO	d _o (mm)	(mm)	I _t (mm)
А	22 ± 1,5	300	375
В	$30 \pm 2,5$	450	525
С	50 ± 2,5	600	675

Para obtención de las trabajadas podrán utilizarse piezas cuyo diámetro no exceda de:

A: 26 mm

B: 34 mm C: 56 mm

- Diámetros se medirán tomando dos direcciones ortogonales y calculando el promedio, con una precisión de 0,1mm.
- Carga se aplica en forma gradual y uniforme, de modo que la rotura se produzca en un tiempo de:

A: t > 15 seg

B: t > 30 seg

C: t > 45 seg

Determinaciones a realizar en el ensayo

- Conviene especificar:
 - Antes del ensayo
 - a) Norma a consultar
 - b) Accesorios de la máquina de ensayo y escala de cargas
 - c) Material
 - d) Dimensiones d₀, l₀, l₁, y croquis de la misma
 - Durante el ensayo
 - a) En período elástico P_i y f_i (5 valores), P_{MÁX}, f_{MÁX}
 - b) Tipo de fractura con croquis

Determinaciones a realizar en el ensayo

Después del ensayo

$$E = \frac{1 P_{PROM} l_0^3}{48 f_{PROM} Jx}$$

$$\sigma_{EF} = \frac{M_{MAX}}{Wx} = \frac{\frac{P_{MAX} l_0}{4}}{\frac{\pi d_0^3}{32}} = 2,5465 \frac{P_{MAX} l_0}{d_0^3}$$

• Como datos complementarios la norma DIN 50110 define:

Factor de flexión = σ_{EF}/σ_{ET} (1,8 - 2,2)

Rigidez de flexión = σ_{EF} / f_{MAX} (6 - 9)

- a) Ensayo con viga simplemente apoyada y carga concentrada
 - El *E* de (4) no coincide con el calculado en ensayo de tracción (deducción no tiene en cuenta el corte),
 - *E* deducido por flexión menor que el obtenido por tracción,
 - La diferencia depende de la luz entre apoyos y dimensiones de la probeta.

$$E = \frac{1P_{PROM} l_0^3}{48 f_{PROM} Jx} \tag{4}$$

- b) En (3) se supuso que cada fibra
 - trabaja independientemente
 - tensión proporcional a su distancia al eje neutro
 - no influenciada por deformaciones de fibras adyacentes

$$\sigma_{\rm y} = y M_f / Jx$$
 (3)

- El fenómeno es más complejo:
 - cada fibra sufre una tensión proporcional a su distancia al eje neutro y una deformación, $\varepsilon = \sigma/E$
 - esta deformación implica contracción transversal, $\varepsilon_q = \varepsilon/\eta$,
 - y como la fibra situada debajo de la considerada sufre una tensión menor (porque lo es su distancia al eje neutro) su contracción transversal también será menor,
 - y como está intimamente ligada a la fibra superior considerada, impedirá la libre deformación de ésta.
 - Como deformaciones y tensiones están relacionadas, la tensión de la fibra considerada también será alterada.

- En este fenómeno influye la forma de la probeta
 - En la Fig. A las fibra del nivel 2-2 sufren más que en la Fig. B la influencia de las fibras 1-1
 - Esta influencia hace que las flechas y resistencias obtenidas por cálculo no sean iguales a las experimentales.

• c) En ensayo de flexión para conocer la tensión máxima de rotura distinguir:

Materiales dúctiles

- Fibras con mayores tensiones (más alejadas del eje neutro) habrán pasado el límite de proporcionalidad,
- aunque el diagrama de deformaciones sea rectilíneo, el de las tensiones no;
- de ahí que en la rotura no se verifican las hipótesis usadas en (1),
- por lo tanto valores obtenidos de ensayo flexión no coinciden con los de ensayo de tracción.

Materiales frágiles

- rotura sin grandes deformaciones,
- valen las hipótesis usadas en (1),
 hasta alcanzar la rotura.

$$\sigma_e = e M_f / Jx \tag{1}$$

- d) Rozamiento de la probeta con apoyos puede afectar el resultado
 - Al deformarse se debe deslizar libremente sobre los apoyos,
 - si hay rozamiento se introducen fuerzas no previstas en el cálculo.

