Convolutional Networks

Notes based on CS231n, Stanford University, and EECS 498-007 / 598-005, University of Michigan

$$s = f(x, W) = Wx$$
 $h = ReLU(Wx)$

Original space

Feature transformed space

$$s = W_2 \max(0, W_1 x)$$

Input image (2, 2)

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

56 231 24 2 Input (4, 1)

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

and the input (a 3072-dimensional dot product)

the result of taking a dot

product between a row of W

3x32x32 image: preserve spatial structure

3x32x32 image 32 height 32 width

3 depth / channels

Filters always extend the full depth of the input volume

3x5x5 filter

3x32x32 image

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

3x32x32 image

Stacking Convolutions

Q: What happens if we stack two convolution layers?

(Recall $y=W_2W_1x$ is a linear classifier)

A: We get another convolution!

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28 Second hidden layer: N x 10 x 26 x 26

Stacking Convolutions

Q: What happens if we stack two convolution layers?

(Recall $y=W_2W_1x$ is a linear classifier)

A: We get another convolution!

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28 Second hidden layer: N x 10 x 26 x 26

What do convolutional filters learn?

Previously:

Linear classifier: One template per class

Input: N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

What do convolutional filters learn?

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28 Previously:

MLP: Bank of whole-image templates

What do convolutional filters learn?

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28 First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

Input: N x 3 x 7 x 7

/

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Input: 7x7

Filter: 3x3

Output: 5x5

In general:

Input: W

Filter: K

Output: W - K + 1

Problem: Feature

maps "shrink"

with each layer!

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general:

Input: W

Filter: K

Problem: Feature

maps "shrink"

with each layer!

Output: W - K + 1

Solution: padding

Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K make output have

same size as input!

Padding: P

Output: W - K + 1 + 2P

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1 + L * (K-1)

Be careful – "receptive field in the input" vs "receptive field in the previous layer"

Hopefully clear from context

Receptive Fields

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L*(K-1)

Solution: Downsample inside the network

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

Strided Convolution

Input: 7x7

Filter: 3x3

Stride: 2

Strided Convolution

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: [(W - K + 2P) / S] + 1

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: ?

10 5x5 filters with stride 1, pad 2

$$(32-5+2*2)/1+1 = 32$$
 spatially, so

10 x 32 x 32

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: [(W - K + 2P) / S] + 1

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

1x1 CONV with 32 filters

(each filter has size 1x1x64, and performs a 64-dimensional dot product)

Stacking 1x1 conv layers gives MLP operating on each input position

Lin et al, "Network in Network", ICLR 2014

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- Kernel size: K_H x K_W

- Number filters: C_{out}

- Padding: P

- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

$$-H' = [(H - K + 2P) / S] + 1$$

$$-W' = [(W - K + 2P) / S] + 1$$

Common settings:

 $K_H = K_W$ (Small square filters)

$$P = (K - 1) / 2$$
 ("Same" padding)

$$C_{in}$$
, C_{out} = 32, 64, 128, 256 (powers of 2)

$$K = 3$$
, $P = 1$, $S = 1$ (3x3 conv)

$$K = 5$$
, $P = 2$, $S = 1$ (5x5 conv)

$$K = 1, P = 0, S = 1 (1x1 conv)$$

$$K = 3, P = 1, S = 2$$
 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Other types of convolution

So far: 2D Convolution

Weights: C_{out} x C_{in} x K x K

C_{in}-dim vector at each point in the volume

3D Convolution

Input: C_{in} x H x W x D

Weights: C_{out} x C_{in} x K x K x K

Tensorflow Keras Convolutional Layers

Conv2D

```
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), groups=1, activation=None, use_bias=True
)
```

filters	Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
kernel_size	An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides	An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding	one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.

Tensorflow Keras Convolutional Layers

Conv2D

```
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), groups=1, activation=None, use_bias=True
)
```

Conv1D

```
tf.keras.layers.Conv1D(
    filters, kernel_size, strides=1, padding='valid', data_format='channels_last',
    dilation_rate=1, groups=1, activation=None, use_bias=True,
)
```

Conv3D

```
tf.keras.layers.Conv3D(
    filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1, 1), groups=1, activation=None, use_bias=True
)
```

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

Single depth slice

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

$$-H' = [(H - K) / S] + 1$$

$$-W' = [(W - K)/S] + 1$$

Learnable parameters: None!

Common settings:

max,
$$K = 2$$
, $S = 2$

max,
$$K = 3$$
, $S = 2$ (AlexNet)

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5 to train on MNIST

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
Conv (Cout=50, K=5, P=2, S=1)		50 x 20 x 5 x 5
MaxPool(K=2, S=2)		
Linear (2450 -> 500)		2450 x 500
Linear (500 -> 10)		

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)		50 x 20 x 5 x 5
MaxPool(K=2, S=2)		
Linear (500 -> 10)		500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
Linear (500 -> 10)		500 × 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Linear (500 -> 10)		500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
		2450 x 500
	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
Linear (500 -> 10)		500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (Cout=50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Problem: Deep Networks very hard to train!

Components of a Full-Connected Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Improves optimization

We can normalize a batch of activations like this:

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!


```
tf.keras.layers.BatchNormalization(
    axis=-1,
    momentum=0.99,
    epsilon=0.001,
    center=True,
    scale=True,
    beta_initializer="zeros",
    gamma_initializer="ones",
    moving_mean_initializer="zeros",
    moving_variance_initializer="ones")
```

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Summary: Components of a Full-Connected Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{\hat{x}_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Full-Connected Network

Problem: What is the right way to combine all these components?

Next:

CNN Architectures