Name: Naman Thaker

Roll no: 20BCE529

Subject: Data Mining

Division D

import numpy as np
import math
import pandas as pd
dataSet=pd.read_csv('./Automobile_insurance_fraud.csv')
dataSet

₽	mon	ths_as_customer	age	policy_number	policy_bind_date	policy_state	policy_
	0	328	48	521585	17-10-2014	ОН	250/
	1	228	42	342868	27-06-2006	IN	250/
	2	134	29	687698	06-09-2000	ОН	100/
	3	256	41	227811	25-05-1990	IL	250/
	4	228	44	367455	06-06-2014	IL	500/1
!	995	3	38	941851	16-07-1991	ОН	500/1
,	996	285	41	186934	05-01-2014	IL	100/
,	997	130	34	918516	17-02-2003	ОН	250/
!	998	458	62	533940	18-11-2011	IL	500/1
,	999	456	60	556080	11-11-1996	ОН	250/
1	000 rows	× 40 columns					
4	1						•

dataSet['incident_severity'].replace({'Minor Damage': 0, 'Major Damage': 1})

- 0 1
- 1 0
- 2 0
- 3 1
- 4 0

```
995
     996
            1
     997
     998
            1
     999
     Name: incident_severity, Length: 1000, dtype: object
def Display(mat, typ):
    for i in range(len(mat)):
        for j in range(len(mat)):
            if i >= j:
                if typ=='f':
                    print('{:.2f}'.format(mat[i][j]), end=' ')
                else:
                    print(int(mat[i][j]), end=' ')
        print()
    print()
    print()
    print()
def Dissimilarity(data):
    data=np.array(data)
    matrix=np.zeros((data.shape[0], data.shape[0]))
    # print('OK')
    p=data.shape[1]
    for i in range(len(data)):
        for j in range(len(data)):
            m=0
            for k in range(len(data[0])):
                if data[i][k]==data[j][k]:
            matrix[i][j]=(p-m)/p
            matrix[j][i]=matrix[i][j]
    return matrix
mat = Dissimilarity(dataSet)
# ans=input('Do you want to get dissimilarity between any 2 particular data records?[Y/N]:
# if ans=='Y':
#
      one=int(input('Enter 1st data entry: '))
#
      two=int(input('Enter 2nd data entry: '))
      print('{:.2f}'.format(mat[one-1][two-1]))
def BinaryDissimilarity(data, attributeName):
    data=data[attributeName]
    matrix=np.zeros((data.shape[0], data.shape[0]))
    for i in range(len(data)):
        for j in range(len(data)):
            if i >= j:
                if data[i]==data[j]:
```

```
matrix[i][j]=0
                else:
                    matrix[i][j]=1
                matrix[j][i]=matrix[i][j]
    return matrix
mat Indian=BinaryDissimilarity(dataSet, 'incident severity')
# Display(mat_Indian, 'i')
def NominalDissimilarity(data, attributeName):
    data=data[attributeName]
    matrix=np.zeros((data.shape[0], data.shape[0]))
    for i in range(len(data)):
        for j in range(i, len(data)):
            if data[i]==data[j]:
                matrix[i][j]=0
            else:
                matrix[i][j]=1
            matrix[j][i]=matrix[i][j]
    return matrix
mat_Team=NominalDissimilarity(dataSet, 'policy_state')
# Display(mat, 'i')
def NumericDissimilarity(data, attributeName):
    data=data[attributeName]
    matrix=np.zeros((data.shape[0], data.shape[0]))
    for i in range(data.shape[0]):
        for j in range(data.shape[0]):
            if i >= j:
                matrix[i][j] = abs(data[i]-data[j])/(max(data)-min(data))
                matrix[j][i] = matrix[i][j]
    return matrix
mat_FinalPrice=NumericDissimilarity(dataSet, 'total_claim_amount')
# Display(mat, 'f')
dissimilarity matrix = [mat Indian, mat Team, mat FinalPrice]
# dissimilarity_matrix[1][6][4]
np.shape(dissimilarity_matrix)
     (3, 1000, 1000)
def TotalDissimilarity(data, dissimilarity_matrix):
    data=np.array(data)
    matrix=np.zeros((data.shape[0], data.shape[0]))
    for i in range(3):
        for j in range(1000):
```

```
n=0
            d=0
            for k in range(100):
                dell=1
                n+=dell*dissimilarity_matrix[i][j][k]
                d+=dell
            matrix[i][j]=n/d
    return matrix
mat=TotalDissimilarity(dataSet, dissimilarity_matrix)
Display(mat, 'f')
# Python program to compute distance matrix
# import important libraries
import numpy as np
from scipy.spatial import distance_matrix
a = np.array([dataSet['total_claim_amount'], dataSet['injury_claim'],dataSet['property_cla
# Create the matrices
 * x = np.array([[1,2],[2,1],[2,2]]) 
y = \text{np.array}([[5,0],[1,2],[2,0]])
a.shape
b = np.array([dataSet['policy_annual_premium'], dataSet['policy_deductable'],dataSet['capi
b.shape
b
#Display the matrices
print("matrix x:\n", a)
print("matrix y:\n", b)
 # compute the distance matrix
dist_mat = distance_matrix(a, b, p=2)
# # display distance matrix
print("Distance Matrix:\n", dist mat)
     matrix x:
      [[71610 5070 34650 ... 67500 46980 5060]
               780 7700 ...
                              7500 5220
                                            4601
      [ 6510
      [13020
               780 3850 ... 7500 5220
                                            9201
      [52080 3510 23100 ... 52500 36540
     matrix y:
      [[ 1406.91 1197.22 1413.14 ... 1383.49 1356.92
                                                            766.19]
      [ 1000.
                 2000.
                          2000.
                                        500.
                                                 2000.
                                                          1000.
                                                                 1
      [53300.
                    0.
                         35100.
                                  ... 35100.
                                                             0.
                                                    0.
                    0.
                                                                 11
           0.
                             0.
                                          0.
                                                    0.
                                                             0.
     Distance Matrix:
      [[1830056.3824205 1833362.60363301 1487504.63138775 2804987.25957891]
      [ 249112.24712005 252186.479019
                                         1051600.51930379 1413141.85282299]
```

```
[ 247143.99635962 249957.7182245 1055355.80488288 1409850.68177449]
```

Performing regression

Logistic Regression Kind of technique need to resolve this problem

▼ EDA Process

data.describe()

	months_as_customer	age	policy_number	policy_deductable	policy_annı
count	1000.000000	1000.000000	1000.000000	1000.000000	
mean	203.954000	38.948000	546238.648000	1136.000000	
std	115.113174	9.140287	257063.005276	611.864673	
min	0.000000	19.000000	100804.000000	500.000000	
25%	115.750000	32.000000	335980.250000	500.000000	
50%	199.500000	38.000000	533135.000000	1000.000000	
75%	276.250000	44.000000	759099.750000	2000.000000	
max	479.000000	64.000000	999435.000000	2000.000000	
4					>

▼ Checking null value in dataset

data.isnull().sum()

months_as_customer	0
age	0
policy_number	0
<pre>policy_bind_date</pre>	0
policy_state	0
policy_csl	0
<pre>policy_deductable</pre>	0
<pre>policy_annual_premium</pre>	0
umbrella_limit	0
insured_zip	0
insured_sex	0
<pre>insured_education_level</pre>	0
insured_occupation	0
insured_hobbies	0
<pre>insured_relationship</pre>	0
capital-gains	0

```
capital-loss
                                   0
incident_date
                                   0
incident type
                                   0
                                   0
collision_type
incident_severity
                                   0
authorities_contacted
                                   0
incident_state
                                   0
incident city
                                   0
incident_location
                                   0
incident_hour_of_the_day
                                   0
number_of_vehicles_involved
                                   0
property_damage
                                   0
bodily_injuries
                                   0
witnesses
                                   0
police_report_available
                                   0
total_claim_amount
                                   0
injury_claim
                                   0
property_claim
                                   0
vehicle_claim
                                   0
auto make
                                   0
auto_model
                                   0
                                   0
auto_year
fraud_reported
                                   0
_c39
                                1000
dtype: int64
```

Oservation: 1) we have 1000 number of data and _c39 contains all if the data as null so need to drop that column

▼ Dropping _c39

```
data.drop('_c39',
   axis='columns', inplace=True)

_c39 column has been dropped

import seaborn as sns
alpha = sns.countplot(x="police_report_available",data=data)
print(data["police_report_available"].value_counts())
```

```
? 343
NO 343
YES 314
Name: police_report_available, dtype: int64
```

Observation: we can change? with nan and then with mean or median. But if will encode it it will be considered as 0

```
data['police_report_available'] = data['police_report_available'].replace(['?'],np.nan)
data['police report available']
     0
            YES
     1
            NaN
     2
             NO
     3
             NO
     4
             NO
     995
            NaN
     996
            NaN
     997
            YES
     998
            YES
     999
            NaN
     Name: police_report_available, Length: 1000, dtype: object
```

data.isnull().sum()

```
months_as_customer
                                  0
age
                                  0
policy_number
                                  0
policy_bind_date
                                  0
policy_state
                                  0
policy csl
                                  0
policy_deductable
                                  0
policy_annual_premium
                                  0
umbrella limit
                                  0
insured zip
                                  0
insured sex
                                  0
                                  0
insured education level
insured_occupation
                                  0
insured hobbies
                                  0
                                  0
insured relationship
                                  0
capital-gains
capital-loss
                                  0
                                  0
incident_date
incident_type
                                  0
                                  0
collision type
incident severity
                                  0
authorities_contacted
                                  0
incident_state
                                  0
incident_city
                                  0
incident location
                                  0
incident_hour_of_the_day
                                  0
```

```
number_of_vehicles_involved
property_damage
                                 0
bodily injuries
witnesses
                                 0
police_report_available
                               343
total_claim_amount
                                 0
injury_claim
                                 0
property_claim
vehicle claim
auto_make
                                 0
auto_model
                                 0
auto_year
fraud_reported
dtype: int64
```

Handling null values of police_report_available

```
#1. Function to replace NAN values with mode value this both rows are categorical,
#not numeric based with datatype of float or int

def impute_nan_most_frequent_category(data,ColName):
    # .mode()[0] - gives first category name
    most_frequent_category=data[ColName].mode()[0]

# replace nan values with most occured category
    #data[ColName + "_Imputed"] = data[ColName]
    #data[ColName + "_Imputed"].fillna(most_frequent_category,inplace=True)

data[ColName] = data[ColName]
    data[ColName].fillna(most_frequent_category,inplace=True)

#2. Call function to impute most occured category
for Columns in ['police_report_available']:
    impute_nan_most_frequent_category(data,Columns)

# Display imputed result

data[['police_report_available']].head(10)
```

police_report_available

#Rechecking null values in dataset
data.isnull().sum()

months_as_customer	0
age	0
policy_number	0
<pre>policy_bind_date</pre>	0
policy_state	0
policy_csl	0
policy_deductable	0
policy_annual_premium	0
umbrella_limit	0
insured_zip	0
insured_sex	0
<pre>insured_education_level</pre>	0
<pre>insured_occupation</pre>	0
insured_hobbies	0
<pre>insured_relationship</pre>	0
capital-gains	0
capital-loss	0
<pre>incident_date</pre>	0
<pre>incident_type</pre>	0
collision_type	0
incident_severity	0
authorities_contacted	0
<pre>incident_state</pre>	0
<pre>incident_city</pre>	0
<pre>incident_location</pre>	0
<pre>incident_hour_of_the_day</pre>	0
<pre>number_of_vehicles_involved</pre>	0
property_damage	0
bodily_injuries	0
witnesses	0
police_report_available	0
total_claim_amount	0
injury_claim	0
<pre>property_claim</pre>	0
vehicle_claim	0
auto_make	0
auto_model	0
auto_year	0
fraud_reported	0
dtype: int64	

Observation _c39 is dropped and ? is replaced with NaN and handling of NAN

→ Data Cleaning

data.skew()

 ${\tt months_as_customer}$

0.362177

age	0.478988
policy_number	0.038991
<pre>policy_deductable</pre>	0.477887
<pre>policy_annual_premium</pre>	0.004402
umbrella_limit	1.806712
insured_zip	0.816554
capital-gains	0.478850
capital-loss	-0.391472
incident_hour_of_the_day	-0.035584
<pre>number_of_vehicles_involved</pre>	0.502664
bodily_injuries	0.014777
witnesses	0.019636
total_claim_amount	-0.594582
injury_claim	0.264811
property_claim	0.378169
vehicle_claim	-0.621098
auto_year	-0.048289
dtype: float64	

There contains a skewness

```
#checking for outliers
data.iloc[:,:].boxplot(figsize=[20,8])
plt.show()
```


There also contains an outlier in ubrella_limit

Encoding

```
from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder()

for i in data.columns:
    if data[i].dtypes == "object":
        data[i]=enc.fit_transform(data[i].values.reshape(-1,1))
```

data

	months_as_customer	age	policy_number	<pre>policy_bind_date</pre>	<pre>policy_state</pre>	policy_
0	328	48	521585	532.0	2.0	
1	228	42	342868	821.0	1.0	
2	134	29	687698	186.0	2.0	
3	256	41	227811	766.0	0.0	
4	228	44	367455	181.0	0.0	
995	3	38	941851	487.0	2.0	
996	285	41	186934	129.0	0.0	
997	130	34	918516	509.0	2.0	
998	458	62	533940	573.0	0.0	
999	456	60	556080	359.0	2.0	
1000	rows × 39 columns					

Corelation of feature variable with the target variable

```
corr_matrix_hmap=data.corr()
plt.figure(figsize=(22,20))
sns.heatmap(corr_matrix_hmap,annot=True,linewidths=0.1,fmt="0.2f")
plt.show()
```


corr_matrix_hmap["fraud_reported"].sort_values(ascending=False)

fraud_reported	1.000000
vehicle_claim	0.170049
total_claim_amount	0.163651
property_claim	0.137835
collision_type	0.110130
injury_claim	0.090975
policy_bind_date	0.060642
umbrella_limit	0.058622
number_of_vehicles_involved	0.051839
witnesses	0.049497
bodily_injuries	0.033877
insured_sex	0.030873
policy_state	0.029432
insured_relationship	0.021043
months_as_customer	0.020544
insured_zip	0.019368
policy_deductable	0.014817
age	0.012143
<pre>insured_education_level</pre>	0.008808
auto_year	0.007928
<pre>incident_hour_of_the_day</pre>	0.004316
insured_occupation	0.001564
auto_model	0.000720
<pre>incident_location</pre>	-0.008832
policy_annual_premium	-0.014480
capital-loss	-0.014863
capital-gains	-0.019173
auto_make	-0.027519
<pre>police_report_available</pre>	-0.027768
policy_number	-0.029443
property_damage	-0.030497
policy_csl	-0.037190
incident_city	-0.040403
authorities_contacted	-0.045802
insured_hobbies	-0.046838
incident_date	-0.047726
incident_type	-0.050376
incident_state	-0.051407
incident_severity	-0.405988
Name: fraud_reported, dtype:	float64

Most highly corelated variavle is : vehicle_claim

Least is: incident_severity

plt.figure(figsize=(20,5))

```
data.corr()['fraud_reported'].sort_values(ascending=False).drop(['fraud_reported']).plot(k
plt.xlabel('Feature',fontsize=14)
plt.ylabel('Column with Target Name',fontsize=14)
plt.title('correlation',fontsize=18)
plt.show()
```


Maximun corelated: vehcile_claim

Minimum corelated:insured_occupation and auto_model and auto_year also somewhat

Negativel corelated: incident_severity

Outliers

```
#checking for outliers
data.iloc[:,:].boxplot(figsize=[20,8])
plt.subplots_adjust(bottom=0.25)
plt.show()
```

Removing Outliers


```
from scipy.stats import zscore
z= np.abs(zscore(data))
Z
     array([[1.07813958, 0.99083647, 0.09595307, ..., 1.64574255, 0.1834404 ,
             1.74601919],
            [0.2089946, 0.33407345, 0.79152739, ..., 0.65747047, 0.31549088,
             1.74601919],
            [0.60800168, 1.08891308, 0.55056594, ..., 0.95970204, 0.31549088,
             0.57273139],
            [0.64276748, 0.54161057, 1.44891961, ..., 0.02857005, 1.5139238]
             0.57273139],
            [2.20802805, 2.52328351, 0.04786687, ..., 1.28637088, 1.18130295,
             0.57273139],
            [2.19064515, 2.3043625 , 0.03830297, ..., 0.65747047, 0.31549088,
             0.57273139]])
threshold = 3
print(np.where(z<3))</pre>
     (array([ 0, 0, 0, ..., 999, 999, 999], dtype=int64), array([ 0, 1, 2, ..., 36,
#removing outliers
data_new = data[(z<3).all(axis=1)]</pre>
data.shape
     (1000, 39)
#After removing outliers
data_new.shape
```

(980, 39)

data=data_new

data

	months_as_customer	age	policy_number	<pre>policy_bind_date</pre>	policy_state	policy_
0	328	48	521585	532.0	2.0	
1	228	42	342868	821.0	1.0	
2	134	29	687698	186.0	2.0	
3	256	41	227811	766.0	0.0	
4	228	44	367455	181.0	0.0	
995	3	38	941851	487.0	2.0	
996	285	41	186934	129.0	0.0	
997	130	34	918516	509.0	2.0	
998	458	62	533940	573.0	0.0	
999	456	60	556080	359.0	2.0	
980 ro	ws × 39 columns					
4						•

Outliers are been handled

Seperating Independent Variables and Target Variables

```
# x= independent variable
x = data.iloc[:,0:-1]
x.head()
```

months_as_customer age policy_number policy_bind_date policy_state policy_cs

```
#y = target variable = fraud_reported
y = data.iloc[:,-1]
y.head()
     0
          1.0
     1
          1.0
     2
          0.0
     3
          1.0
          0.0
     Name: fraud_reported, dtype: float64
x.shape
     (980, 38)
y.shape
     (980,)
```

Rechecking skewness after removing outliers

x.skew()

```
months_as_customer
                               0.362608
age
                               0.475385
policy_number
                               0.036283
policy_bind_date
                               0.006386
policy_state
                              -0.038157
policy_csl
                               0.098248
policy_deductable
                               0.476090
policy annual premium
                               0.035964
umbrella limit
                               1.801424
insured zip
                               0.837283
insured_sex
                               0.139324
insured_education_level
                               0.006286
insured occupation
                              -0.055360
insured hobbies
                              -0.061488
insured relationship
                               0.078339
capital-gains
                               0.466619
capital-loss
                              -0.376884
incident date
                               0.002604
incident_type
                               0.090563
collision_type
                              -0.194015
incident_severity
                               0.277726
authorities_contacted
                              -0.114044
incident_state
                              -0.149255
incident city
                               0.043882
incident_location
                              -0.003369
incident_hour_of_the_day
                              -0.039280
number_of_vehicles_involved
                               0.509725
property_damage
                               0.101196
bodily injuries
                               0.003757
```

witnesses	0.026211
<pre>police_report_available</pre>	0.796221
total_claim_amount	-0.593593
injury_claim	0.271759
property_claim	0.361356
vehicle_claim	-0.620936
auto_make	-0.028739
auto_model	-0.073462
auto_year	-0.054522
dtype: float64	

x.dtypes

months_as_customer	int64
age	int64
policy_number	int64
<pre>policy_bind_date</pre>	float64
policy_state	float64
policy_csl	float64
<pre>policy_deductable</pre>	int64
policy_annual_premium	float64
umbrella_limit	int64
insured_zip	int64
insured_sex	float64
<pre>insured_education_level</pre>	float64
<pre>insured_occupation</pre>	float64
insured_hobbies	float64
insured_relationship	float64
capital-gains	int64
capital-loss	int64
<pre>incident_date</pre>	float64
incident_type	float64
collision_type	float64
incident_severity	float64
authorities_contacted	float64
<pre>incident_state</pre>	float64
<pre>incident_city</pre>	float64
<pre>incident_location</pre>	float64
incident_hour_of_the_day	int64
number_of_vehicles_involved	int64
property_damage	float64
bodily_injuries	int64
witnesses	int64
police_report_available	float64
total_claim_amount	int64
injury_claim	int64
property_claim	int64
vehicle_claim	int64
auto_make	float64
auto_model	float64
auto_year	int64
dtype: object	

→ Handling Skewness

```
from sklearn.preprocessing import power transform
z = power transform(x[0:])
data new= pd.DataFrame(z,columns=x.columns)
x = data new
#after removing skewness
x.skew()
     months as customer
                                    -0.133972
                                    -0.002183
     age
     policy_number
                                    -0.161791
     policy_bind_date
                                    -0.293677
     policy_state
                                    -0.150765
     policy csl
                                    -0.096814
     policy_deductable
                                     0.022179
     policy_annual_premium
                                    -0.007258
     umbrella limit
                                    -7.932397
     insured zip
                                     0.000000
     insured sex
                                     0.139324
     insured education level
                                    -0.187642
     insured_occupation
                                    -0.238129
     insured_hobbies
                                    -0.248575
     insured relationship
                                    -0.160168
     capital-gains
                                     0.031294
     capital-loss
                                     0.088750
     incident_date
                                    -0.264010
     incident_type
                                    -0.095572
     collision type
                                    -0.204055
     incident severity
                                    -0.079569
     authorities_contacted
                                    -0.223816
     incident state
                                    -0.256064
     incident_city
                                    -0.181833
     incident_location
                                    -0.288690
     incident hour of the day
                                    -0.258027
     number_of_vehicles_involved
                                     0.372833
     property damage
                                    -0.093063
     bodily injuries
                                    -0.133824
     witnesses
                                    -0.151669
     police report available
                                     0.796221
     total claim amount
                                    -0.508540
     injury_claim
                                    -0.416732
     property claim
                                    -0.357397
     vehicle_claim
                                    -0.521805
     auto make
                                    -0.229846
     auto model
                                    -0.276099
                                    -0.013973
     auto_year
     dtype: float64
# #one can drop umbrella limit
# x.drop('umbrella limit',
    axis='columns')
```

#one can drop umbrella limit

Visualizations

data.columns

import seaborn as sns
alpha = sns.countplot(x="fraud_reported",data=data)
print(data["fraud_reported"].value_counts())

0.0 740 1.0 240

Name: fraud_reported, dtype: int64

fraud_reported which is out target variable contains 2 values, 0 and 1

x.columns

```
'authorities_contacted', 'incident_state', 'incident_city',
                                      'incident_location', 'incident_hour_of_the_day',
                                      'number_of_vehicles_involved', 'property_damage', 'bodily_injuries',
                                      'witnesses', 'police_report_available', 'total_claim_amount',
                                      'injury_claim', 'property_claim', 'vehicle_claim', 'auto_make',
                                      'auto_model', 'auto_year'],
                                  dtype='object')
\label{eq:df_visual} \mbox{ df\_visual= } x \mbox{ [['months\_as\_customer', 'age', 'policy\_number', 'policy\_bind\_date', 'polic
                       'policy_state', 'policy_csl', 'policy_deductable',
                      'policy_annual_premium', 'insured_zip', 'insured_sex',
                      'insured_education_level', 'insured_occupation', 'insured_hobbies',
                      'insured_relationship', 'capital-gains', 'capital-loss',
                      'incident_date', 'incident_type', 'collision_type', 'incident_severity',
                      'authorities_contacted', 'incident_state', 'incident_city',
                      'incident_location', 'incident_hour_of_the_day',
                      'number_of_vehicles_involved', 'property_damage', 'bodily_injuries',
                      'witnesses', 'police_report_available', 'total_claim_amount',
                      'injury_claim', 'property_claim', 'vehicle_claim', 'auto_make',
                       'auto_model', 'auto_year']].copy()
```

import seaborn as sns
sns.distplot(df_visual['vehicle_claim'],kde=True)

it contains overfitting

```
# import seaborn as sns
# sns.distplot(df_visual['umbrella_limit'],kde=True)
```

It don't contains overfitting

Scaling

x.describe()

	months_as_customer	age	policy_number	<pre>policy_bind_date</pre>	policy_sta
count	9.800000e+02	9.800000e+02	9.800000e+02	9.800000e+02	9.800000e-
mean	-8.791154e-17	-2.356392e-16	-3.743746e-16	1.340198e-16	-1.518060e
std	1.000511e+00	1.000511e+00	1.000511e+00	1.000511e+00	1.000511e-
min	-2.411559e+00	-2.858572e+00	-1.934451e+00	-2.169553e+00	-1.265764e-
25%	-6.921974e-01	-7.252830e-01	-7.735994e-01	-7.993862e-01	-1.265764e-
50%	7.107941e-02	3.204583e-05	2.358119e-02	9.725113e-02	5.900219e
75%	6.834392e-01	6.510520e-01	8.405397e-01	8.631367e-01	1.141477e-
max	2.034478e+00	2.261323e+00	1.633618e+00	1.545052e+00	1.141477e-
8 rows × 37 columns					
4					•

```
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')
x=mms.fit_transform(x)
Х
     array([[0.77734391, 0.75409801, 0.53557702, ..., 0.80977259, 0.04489444,
             0.43657897],
            [0.60966749, 0.64175994, 0.33363663, ..., 0.67536561, 0.39386981,
             0.58692128],
            [0.42638858, 0.33644422, 0.70661621, ..., 0.37906556, 0.82810234,
             0.58692128],
            [0.41773978, 0.46641077, 0.92660097, ..., 0.87453491, 0.57327901,
             0.04745782],
            [0.97067268, 0.97260724, 0.5487646, ..., 0.11101935, 0.18895892,
             0.14315387],
            [0.9678556, 0.9443819, 0.57219064, ..., 0.67536561, 0.39386981,
             0.58692128]])
```

Model Training

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.33,random_state = 42)
```

```
x_train.shape
     (656, 37)
y_train.shape
     (656,)
x_test.shape
     (324, 37)
y_test.shape
     (324,)
y_train
     177
            0.0
     130
            0.0
     646
            0.0
     407
            0.0
     902
            0.0
     109
            1.0
     278
            1.0
     878
            1.0
     445
            1.0
     105
            0.0
     Name: fraud_reported, Length: 656, dtype: float64
from sklearn.linear_model import LogisticRegression
lm = LogisticRegression()
lm.fit(x_train,y_train)
     LogisticRegression()
lm.score(x_train,y_train)
     0.8109756097560976
```

→ Prediction

```
#predict the values
pred=lm.predict(x_test)
```

```
print("Predicted Allitation", pred)
print("Actual Allitation",y test)
   0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
    0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0.
    0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0.
    0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0.
    0. 1. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
    0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
    0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1.
    0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
    0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0.
    0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0.]
   Actual Allitation 804
   450
        0.0
   144
        0.0
   710
        1.0
   68
        0.0
        . . .
   589
        0.0
   950
        0.0
   535
        1.0
   925
        0.0
   361
        1.0
   Name: fraud reported, Length: 324, dtype: float64
```

print('Accuracy Score:',accuracy_score(y_test,pred))

Accuracy Score: 0.75

Finding Best Random State

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
maxAccu=0
maxRS=0
for i in range(1,200):
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.33,random_state = i)
    LR = LogisticRegression()
    LR.fit(x_train,y_train)
    predrf = LR.predict(x_test)
    acc =accuracy_score(y_test,predrf)
    if acc > maxAccu:
        maxAccu = acc
        maxRS = i

print("Best score is: ",maxAccu,"on Random_state",maxRS)

    Best score is: 0.8209876543209876 on Random_state 58
```

▼ Tain-Test Model as per Best Ransom state

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.33,random_state = 58)
LR = LogisticRegression()
LR.fit(x_train,y_train)
predrf = LR.predict(x_test)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
print('Accuracy Score:', accuracy_score(y_test,predrf))
print('Confusion Matrix:', confusion_matrix(y_test,predrf))
print('Classification Report:', classification_report(y_test,predrf))
     Accuracy Score: 0.8209876543209876
     Confusion Matrix: [[232 17]
      [ 41 34]]
     Classification Report:
                                         precision
                                                       recall f1-score
                                                                          support
              0.0
                                  0.93
                                            0.89
                                                       249
                        0.85
              1.0
                        0.67
                                  0.45
                                            0.54
                                                        75
                                            0.82
                                                       324
         accuracy
                        0.76
                                  0.69
                                            0.71
                                                       324
        macro avg
     weighted avg
                                  0.82
                                            0.81
                                                       324
                        0.81
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(x_train,y_train)
preddt = dt.predict(x_test)
print('Accuracy Score:', accuracy_score(y_test,preddt))
print('Confusion Matrix:', confusion matrix(y test,preddt))
print('Classification Report:', classification_report(y_test,preddt))
     Accuracy Score: 0.7716049382716049
     Confusion Matrix: [[207 42]
      [ 32 43]]
     Classification Report:
                                          precision
                                                       recall f1-score
                                                                          support
              0.0
                        0.87
                                  0.83
                                            0.85
                                                       249
                        0.51
              1.0
                                  0.57
                                            0.54
                                                        75
                                            0.77
                                                       324
         accuracy
        macro avg
                        0.69
                                  0.70
                                            0.69
                                                       324
                        0.78
                                  0.77
                                            0.78
                                                       324
     weighted avg
```

from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()

```
rfc.fit(x_train,y_train)
predrfc = rfc.predict(x test)
print('Accuracy Score:', accuracy_score(y_test,predrfc))
print('Confusion Matrix:', confusion_matrix(y_test,predrfc))
print('Classification Report:', classification_report(y_test,predrfc))
     Accuracy Score: 0.7932098765432098
     Confusion Matrix: [[236 13]
      [ 54 21]]
     Classification Report:
                                                        recall f1-score
                                           precision
                                                                            support
              0.0
                        0.81
                                  0.95
                                             0.88
                                                        249
              1.0
                        0.62
                                  0.28
                                             0.39
                                                         75
         accuracy
                                             0.79
                                                        324
                                             0.63
                                                        324
                        0.72
                                  0.61
        macro avg
     weighted avg
                        0.77
                                  0.79
                                             0.76
                                                        324
from sklearn import svm
svm = svm.SVC()
svm.fit(x_train,y_train)
predsvm = svm.predict(x_test)
print('Accuracy Score:', accuracy_score(y_test,predsvm))
print('Confusion Matrix:', confusion_matrix(y_test,predsvm))
print('Classification Report:', classification_report(y_test,predsvm))
     Accuracy Score: 0.7746913580246914
     Confusion Matrix: [[246
      <sup>[</sup> 70
             5]]
     Classification Report:
                                           precision
                                                        recall f1-score
                                                                            support
              0.0
                        0.78
                                  0.99
                                             0.87
                                                        249
              1.0
                        0.62
                                  0.07
                                             0.12
                                                         75
                                             0.77
                                                        324
         accuracy
                        0.70
                                  0.53
                                             0.50
                                                        324
        macro avg
                                             0.70
     weighted avg
                        0.74
                                  0.77
                                                        324
pred_train = LR.predict(x_train)
pred test =LR.predict(x test)
Train_accuracy = accuracy_score(y_train,pred_train)
Test_accuracy = accuracy_score(y_test,pred_test)
maxAccu=0
maxRS=0
from sklearn.model_selection import cross_val_score
for j in range(2,16):
    cv_score=cross_val_score(LR,x,y,cv=j)
    cv mean = cv score.mean()
    if cv mean > maxAccu:
```

maxAccu = cv_mean
maxRS = j

print(f"At cross fold {j} cv score is {cv_mean} and accuracy score training is {Train_

print("\n")

At cross fold 2 cv score is 0.7775510204081633 and accuracy score training is 0.79115 At cross fold 3 cv score is 0.7693914435626598 and accuracy score training is 0.7911! At cross fold 4 cv score is 0.7744897959183674 and accuracy score training is 0.7911! At cross fold 5 cv score is 0.7795918367346939 and accuracy score training is 0.79115 At cross fold 6 cv score is 0.7734550351638486 and accuracy score training is 0.7911! At cross fold 7 cv score is 0.7734693877551021 and accuracy score training is 0.7911! At cross fold 8 cv score is 0.7724160335865654 and accuracy score training is 0.79115 At cross fold 9 cv score is 0.7744553932117643 and accuracy score training is 0.79115 At cross fold 10 cv score is 0.7775510204081633 and accuracy score training is 0.7911 At cross fold 11 cv score is 0.7806491885143572 and accuracy score training is 0.7911 At cross fold 12 cv score is 0.773461808692161 and accuracy score training is 0.7911! At cross fold 13 cv score is 0.7795411605937923 and accuracy score training is 0.7911 At cross fold 14 cv score is 0.7775510204081633 and accuracy score training is 0.7911 At cross fold 15 cv score is 0.7765034965034966 and accuracy score training is 0.7911

```
from sklearn.model_selection import cross_val_score
cv score=cross val score(LR,x,y,cv=j)
cv mean = cv score.mean()
print("Cross validation score for Logistic Regression",cv_mean)
     Cross validation score for Logistic Regression 0.7765034965034966
from sklearn.model_selection import cross_val_score
cv_score=cross_val_score(dt,x,y,cv=j)
cv_mean = cv_score.mean()
print("Cross validation score for Decision Tree",cv mean)
     Cross validation score for Decision Tree 0.8032478632478633
from sklearn.model_selection import cross_val_score
cv_score=cross_val_score(rfc,x,y,cv=j)
cv_mean = cv_score.mean()
print("Cross validation score for Random Forest Classifier",cv_mean)
     Cross validation score for Random Forest Classifier 0.7633255633255634
from sklearn.model_selection import cross_val_score
cv_score=cross_val_score(svm,x,y,cv=j)
cv_mean = cv_score.mean()
print("Cross validation score for Support Vector Machhine",cv_mean)
     Cross validation score for Support Vector Machhine 0.7479564879564883
```

- ▼ Lesser the diffrence between Accuracy and cross validation, Best the model
- ▼ Decision Tree shows max accuracy

%Accuracyscore = accuracy - crossvalidation

→ Regularization

To mitigate the problem of overfitting and underfitting Regularization Methods are used: Lasso, Ridge or ElasticNet .

```
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings('ignore')
```

```
from sklearn.linear model import ElasticNet
from sklearn.model selection import GridSearchCV
parameters = {'alpha':[.0001,.001,.01,.1,1,10],'random_state':list(range(0,10))}
EN=ElasticNet()
clf=GridSearchCV(EN,parameters)
clf.fit(x_train,y_train)
print(clf.best_params_)
     {'alpha': 0.01, 'random_state': 0}
EN = ElasticNet(alpha=0.01, random_state=0)
EN.fit(x_train,y_train)
EN.score(x_train,y_train)
pred_EN=EN.predict(x_test)
lss= accuracy_score(y_test,pred_test)
lss
     0.8209876543209876
#cross_validation_mean = cv_mean
#cross_validation_score= cv_score
cross_validation_score = cross_val_score(EN,x,y,cv=5)
cross_validation_mean = cross_validation_score.mean()
cross_validation_mean
     0.17065039633155782
```

▼ Ensemble Technique

```
from sklearn.model selection import GridSearchCV
parameters = {'max_depth':np.arange(2,15),'criterion':["gini","entrophy"]}
rf = DecisionTreeClassifier()
clf=GridSearchCV(rf,parameters,cv=5)
clf.fit(x_train,y_train)
print(clf.best params )
     {'criterion': 'gini', 'max_depth': 5}
rf=DecisionTreeClassifier(criterion="gini",max_depth=5)
rf.fit(x_train,y_train)
rf.score(x_train,y_train)
pred_decision=rf.predict(x_test)
rfs = accuracy_score(y_test,pred_decision)
```

```
print('Accuracy Score:',rfs*100)

rfscore=cross_val_score(rf,x,y,cv=5)
rfc=rfscore.mean()

print("Cross Validation Score:",rfc*100)

#print(clf.best_params_)

Accuracy Score: 84.25925925925
Cross Validation Score: 82.14285714285714
```

Saving Model

```
import pickle
filename = "insurance.pkl"
pickle.dump(rf,open(filename,"wb"))
```

Conclusion

```
loaded_model=pickle.load(open('insurance.pkl','rb'))
result=loaded_model.score(x_test,y_test)
print(result)

0.8425925925925926
```

conclusion = pd.DataFrame([loaded_model.predict(x_test)[:],pred_decision[:]],index=["Predict conclusion"]

```
0
                   1
                         2
                              3
                                        5
                                             6
                                                  7
                                                       8
                                                            9
                                                                      314
                                                                           315
                                                                                 316
                                                                                       317
                                                                                             318
 Predicted 0.0
                  0.0
                                           1.0
                                                                      0.0
                                                                            0.0
                       0.0
                            1.0
                                 0.0 0.0
                                                0.0
                                                     1.0
                                                          0.0
                                                                                  0.0
                                                                                       0.0
                                                                                             0.0
 Original
            0.0
                  0.0 0.0
                            1.0
                                0.0
                                      0.0
                                           1.0 0.0
                                                     1.0
                                                                      0.0
                                                                            0.0
                                                                                  0.0
                                                                                       0.0
                                                                                             0.0
2 rows × 324 columns
```