MATH221 Mathematics for Computer Science

Outline Solutions to Tutorial Sheet Week 10

Autumn 2017

1.
$$\binom{8}{5} = \frac{8!}{5! \times 3!} = 56.$$

2.

(i)
$$\binom{10}{2} = \frac{10!}{8! \times 2!} = 45$$
 chords.

(ii)
$$\binom{10}{3} = \frac{10!}{7! \times 3!} = 120$$
 triangles.

(i)
$$\binom{10}{2} = \frac{10!}{8! \times 2!} = 45$$
 chords.
(ii) $\binom{10}{3} = \frac{10!}{7! \times 3!} = 120$ triangles.
(iii) $\binom{10}{6} = \frac{10!}{4! \times 6!} = 210$ hexagons.

Recall that if |A| = n, then A has 2^n subsets. To be proper and nonempty we exclude A and \emptyset ; Solve $2^n - 2 > 100$; n > 7.

Recall $\sum_{k=0}^{n} {n \choose k} = 2^n$; We want ${8 \choose 1} + {8 \choose 2} + \ldots + {8 \choose 8}$, which equals $2^8 - 1 = 255$.

Apply the Binomial Theorem with x=-1, y=5, n=13 to show that $\sum_{r=0}^{13} (-1)^r \binom{13}{r} 5^{13-r}=$ 5. $(5+(-1))^{1}3.$

 $A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$ $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$ $(A \times B) \times B = \{((1, a), a), ((1, a), b), ((1, b), a), ((1, b), b), ((2, a), a), ((2, a), b), ((2, b), a), ((2, b), b)\}$

7. The elements $(x, x + 1) \in R$ for all $x \in \mathbb{R}$. Furthermore, $(2, 6), (2, 11), (3, 7), (3, 12) \in R$.

Since $x^2 + y^2 = 4$ is the equation of the circle of radius 2, and centered at the origin, dom R = ran R = [-2, 2].

Since $x \equiv x \pmod{p}$, $(x,x) \in R$, for each $x \in \mathbb{Z}$. Hence R is reflexive. For each pair $(x,y) \in R$, x-y is divisible by p. This yields, y-x is also divisible by p, and hence $(y,x) \in R$. Therefore, R is symmetric. Let $(x, y), (y, z) \in R$. Then there exists integers m and n such that

$$x - y = mp$$
 and $y - z = np$.

By adding the above two equations gives,

$$x - z = (m + n)p$$
 or equivalently $x \equiv z \pmod{p}$.

This proves that R is transitive.