Equivariance in Deep Learning

$$g \cdot f(x) = f(g \cdot x)$$

Classification is Translation-Invariant

class:
$$L^2(\mathbb{Z}^2, \mathbb{R}^3) \to \{1, \dots, n\}$$

$$ightarrow$$
 Cat

Cat

Segmentation is Translation-Equivariant

 $\text{mask}: L^2(\mathbb{Z}^2, \mathbb{R}^3) \to L^2(\mathbb{Z}^2, \{0, 1\})$

Definition: Let X and Y be spaces admitting an action of a group G. Then $f: X \to Y$ is G-equivariant if $f(g \cdot x) = g \cdot f(x)$ for all x.

If G acts trivially on Y, then f is G-invariant.

3D Classification is SO(3)-Invariant

class:
$$L^{2}(S^{2}, \mathbb{R}^{3}) \to \{1, \dots, n\}$$

Parameter Estimation is Permutation-Invariant

Draw $X_i \sim \mathcal{P}_{\theta}$. Learn

$$\{X_1,\ldots,X_n\}\to f(\theta)$$

Outlier Detection is Permutation-Equivariant

A permutation-invariant construction

Let X be a set of k elements. Let $\phi: X \to \mathbb{C}^n$ and $\rho: \mathbb{C}^n \to \mathbb{C}^m$. Then

$$x\mapsto \rho(\sum_{x\in X}\phi(x))$$

is invariant under the action of S_k on X.

Figure 2. Architecture of deep sets

It's universal

Theorem: Every permutation-invariant function can be approximated arbitrarily well using such a ρ and ϕ .

Theorem: All symmetric polynomials of x_1, \ldots, x_k are polynomials of the homogeneous symmetric monomials $x_1^p + \cdots x_k^p$ for $0 \le p \le k$.

Example: $\max(x_1,\ldots,x_n) \approx \sqrt[p]{x_1^p + \cdots + x_n^p}$ for p large.

Equivariant Layers

$$f(\mathbf{x}) = \sigma(\lambda \mathbf{I} \mathbf{x} + \gamma (\mathbf{1}^{\mathbf{T}} \mathbf{x}) \mathbf{1})$$

$$f(\mathbf{x}) = \sigma(\lambda \mathbf{I} \mathbf{x} + \gamma \max(\mathbf{x}) \mathbf{1})$$

S2 CNN

SO(3)-convolutions

Let $\psi, f \in L^2(S^2, \mathbb{C})$. The SO(3) convolution of ψ and f is a function in $L^2(SO(3), \mathbb{C})$ given by

$$[\psi \star f](R) = \langle L_R \psi, f \rangle = \int_{S^2} \sum_{k=1}^K \psi_k(R^{-1}x) f_k(x) dx$$

SO(3)-convolutions

The inverse SO(3) Fourier transform is defined as:

$$f(R) = \sum_{l=0}^{b} (2l+1) \sum_{m=-l}^{l} \sum_{n=-l}^{l} \hat{f}_{mn}^{l} D_{mn}^{l}(R),$$

$$\widehat{\psi\star f}=\hat{f}\cdot\hat{\psi}^{\dagger}$$

SO(3)-convolutions

G-convolutions

Let X be a G-space, and let $f, g \to \mathbb{C}$ be functions. The **convolution** of f and g is a function on G defined by

$$f*g(R) = \int_X f(R^{-1} \cdot x)g(x)dx.$$

G-convolutions

Theorem (Kondor-Trivedi): If a neural network connecting layers of the form $L^2(X_i, \mathbb{C}^{n_i})$ for a series of G-spaces X_i is G-equivariant, then it is a composition G-convolutions on the X_i and nonlinearities applied to the \mathbb{C}^{n_i} .

Questions

- What does this mean for permutation-equivariance? Schur representations?
- What does this mean for graph convolutions?
- Point clouds?!

References

- Spherical CNNs, Cohen et al.
 - SO(3)-equivariant convolutions
- Deep Sets, Zaheer et al.
 - Permutation invariant functions
- On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, Kondor and Trivedi
 - Convolutions between functions on G-spaces