Grupos e Corpos

Prof. Lucas Calixto

Aula 10 - Fecho algébrico, Corpos de fatoração

Fecho algébrico

Seja uma extensão $\mathbb{F}\subset\mathbb{E}$

Até agora estudamos problemas do tipo: quando $\alpha \in \mathbb{E}$ é algébrico em \mathbb{F} ?

dado
$$\alpha \in \mathbb{E}$$
 queremos achar $f(x) \in \mathbb{F}[x]$ com $f(\alpha) = 0$

Trocando o problema: quando $f(x) \in \mathbb{F}[x]$ tem raiz em \mathbb{E} ?

dado
$$f(x) \in \mathbb{F}[x]$$
 queremos achar $\alpha \in \mathbb{E}$ com $f(\alpha) = 0$

O conjunto $\{\alpha \in \mathbb{E} \mid \alpha \text{ \'e alg\'ebrico sobre } \mathbb{F} \}$ \'e o fecho alg\'ebrico de \mathbb{E} sobre \mathbb{F}

Teorema: O fecho algébrico de \mathbb{E} sobre \mathbb{F} é subcorpo de \mathbb{E}

Prova: Sejam $\alpha, \beta \in \mathbb{E}$ algébricos sobre \mathbb{F}

 $\mathbb{F}(\alpha,\beta)=\mathbb{F}(\alpha)(\beta)$ é extensão finita de $\mathbb{F},$ pois $\mathbb{F}\subset\mathbb{F}(\alpha)\subset\mathbb{F}(\alpha,\beta)$ são extensões finitas $\Rightarrow\mathbb{F}\subset\mathbb{F}(\alpha,\beta)$ é extensão algébrica

Logo, $\alpha \pm \beta$, $\alpha\beta$ e α/β , por serem elementos de $\mathbb{F}(\alpha,\beta)$, são todos algébricos sobre \mathbb{F}

 $\mathbb F$ é dito algebricamente fechado se todas as raízes de polis em $\mathbb F[x]$ vivem em $\mathbb F$

Nesse caso, se $f(x) \in \mathbb{F}[x]$ e $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ são as raízes de f(x), então

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n) \text{ em } \mathbb{F}[x]$$

Corolário: Se \mathbb{F} é algebricamente fechado e $\mathbb{F} \subset \mathbb{E}$ é extensão algébrica, então $\mathbb{E} = \mathbb{F}$

Temos agora 2 resultados super famosos

Teorema: Todo corpo admite uma única extensão \mathbb{E} para a qual todas as raízes de polinomios em $\mathbb{F}[x]$ vivem em \mathbb{E}

Teorema fundamental da álgebra (TFA): \mathbb{C} é algebricamente fechado

Prova: Vamos provar no próximo capítulo

Note: Gauss provou TFA em sua tese de doutorado

Corpos de fatoração

Se $p(x) \in \mathbb{F}[x]$ é não constante $\Rightarrow \exists$ extensão $\mathbb{F} \subset \mathbb{E}$ para a qual p(x) tem raiz em \mathbb{E}

Vamos achar a menor extensão $\mathbb E$ para a qual p(x) tem todas as raízes em $\mathbb E$

Note: se \mathbb{E} é tal extensão e $\alpha_1, \ldots, \alpha_n \in \mathbb{E}$ são as raízes de p(x), então é claro que $\mathbb{E} = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$ e que

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_n) \text{ em } \mathbb{E}[x]$$

Tal corpo \mathbb{E} é chamado de corpo de fatoração de p(x)

Nesse caso, dizemos também que p(x) se fatora em fatores lineares em $\mathbb{E}[x]$

Exemplo:
$$p(x) = x^4 + 2x^2 - 8 \in \mathbb{Q}[x] \Rightarrow p(x) = (x^2 - 2)(x^2 + 4)$$

Logo, as raízes de p(x) são $\pm\sqrt{2},\pm2i$. Todas vivem em $\mathbb{Q}(\sqrt{2},i)$ que é o corpo de decomposição de p(x)

Exemplo: $p(x) = x^3 - 3 \in \mathbb{Q}[x]$ tem raiz em $\mathbb{Q}(\sqrt[3]{3})$, mas esse não é o corpo de decomposição de p(x), pois as outras raízes são complexas e obviamente não vivem em $\mathbb{Q}(\sqrt[3]{3})$

Note: para achar o corpo de fatoração de poli redutível $p(x) \in \mathbb{F}[x]$, digamos $p(x) = p_1(x)p_2(x)$ com $p_1(x)$ e p(2) irredutíveis, basta acharmos primeiro corpo de fatoração \mathbb{E}_1 de $p_1(x) \in \mathbb{F}[x]$. Dai,

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_k) p_2(x) \text{ em } \mathbb{E}_1[x]$$

Agora achamos o corpo de fatoração \mathbb{E}_2 de $p_2(x) \in \mathbb{E}_1[x]$, dai $\mathbb{F} \subset \mathbb{E}_1 \subset \mathbb{E}_2$ e \mathbb{E}_2 é corpo de fatoração de p(x)

Teorema: Todo $p(x) \in \mathbb{F}[x]$ não constante admite corpo de fatoração \mathbb{E}

Prova: Indução em $\operatorname{gr}(p(x))$. $\operatorname{gr}(p(x))=1\Rightarrow \mathbb{E}=\mathbb{F}$

Suponha $\operatorname{gr}(p(x)) = n$ e que o resultado valha para todo poli de grau < n

Sabemos que existe $\mathbb{K}\supset\mathbb{F}$ para o qual p(x) tem raiz α em $\mathbb{K}.$ Logo

$$p(x) = (x - \alpha)q(x) \text{ em } \mathbb{K}[x]$$

Como $\operatorname{gr}(q(x)) < n$, este admite corpo de fatoração $\mathbb{E} \ (q(x) \in \mathbb{K}[x] \Rightarrow \mathbb{K} \subset \mathbb{E})$

Logo, \mathbb{E} é corpo de fatoração de p(x)

Vamos ver que o corpo de fatoração de um poli em $\mathbb{F}[x]$ é único, em um certo sentido

Lema: Seja $\phi: \mathbb{E} \to \mathbb{F}$ um isomorfismo. Seja $\mathbb{E} \subset \mathbb{K}$ uma extensão e $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{K} , com poli minimal $m_{\alpha}(x) = e_0 + e_1 x + \dots + e_n x^n \in \mathbb{E}[x]$. Seja $\mathbb{F} \subset \mathbb{L}$ uma extensão onde o poli $m_{\alpha}^{\phi}(x) = \phi(e_0) + \phi(e_1)x + \dots + \dots + \phi(e_n)x^n \in \mathbb{F}[x]$ tenha raiz $\beta \in \mathbb{L}$. Então ϕ se extende a um único iso $\bar{\phi}: \mathbb{E}(\alpha) \to \mathbb{F}(\beta)$ tal que $\bar{\phi}|_{\mathbb{E}} = \phi$ e $\bar{\phi}(\alpha) = \beta$.

Prova: Lembre que $\mathbb{E}(\alpha)$ é \mathbb{E} -espaço vetorial com base $\{1, \alpha, \dots, \alpha^{n-1}\}$

Afirmação: o iso $\bar{\phi}: \mathbb{E}(\alpha) \to \mathbb{F}(\beta)$ será a a transformação linear

$$\bar{\phi}(e_0 + e_1\alpha + \dots + e_n\alpha^{n-1}) = \phi(e_0) + \phi(e_1)\beta + \dots + \phi(e_{n-1})\beta^{n-1}$$

Vamos ver que $\bar{\phi}$ é composição de isos

Verifiquem que $\phi: \mathbb{E}[x] \to \mathbb{F}[x], f(x) \mapsto f^{\phi}(x)$ é um iso de aneis. Lembrem:

- $\mathbb{E}(\alpha) \cong \mathbb{E}[x]/\langle m_{\alpha}(x) \rangle$ e que $\mathbb{F}(\beta) \cong \mathbb{F}[x]/\langle m_{\alpha}^{\phi}(x) \rangle$ (note que $m_{\alpha}^{\phi}(x) = m_{\beta}(x)$)
- Tais isos são induzidos pelos homomorfismos de avaliação

$$\sigma : \mathbb{E}[x]/\langle m_{\alpha}(x)\rangle \to \mathbb{E}(\alpha), \quad \sigma(f(x) + \langle m_{\alpha}(x)\rangle) = f(\alpha)$$

$$\tau : \mathbb{F}[x]/\langle m_{\alpha}^{\phi}(x)\rangle \to \mathbb{F}(\beta), \quad \tau(g(x) + \langle m_{\alpha}^{\phi}(x)\rangle) = g(\beta)$$

• Como $\phi : \mathbb{E}[x] \to \mathbb{F}[x]$ é iso, e $\phi(m_{\alpha}(x)) = m_{\alpha}^{\phi}(x)$, então

$$\psi : \mathbb{E}[x]/\langle m_{\alpha}(x)\rangle \to \mathbb{F}[x]/\langle m_{\alpha}^{\phi}(x)\rangle, \quad f(x) + \langle m_{\alpha}(x)\rangle \mapsto f^{\phi}(x) + \langle m_{\alpha}^{\phi}(x)\rangle$$

é iso também

Combinando tudo, temos o diagrama comutativo

Logo, $\bar{\phi} = \tau \psi \sigma^{-1}$ pois

$$f(\alpha) \mapsto f(x) + \langle m_{\alpha}(x) \rangle \mapsto f^{\phi}(x) + \langle m_{\alpha}^{\phi}(x) \rangle \mapsto f^{\phi}(\beta)$$

Finalmente, se $\varphi: \mathbb{E}(\alpha) \to \mathbb{F}(\beta)$ é iso tal que $\varphi|_{\mathbb{E}} = \phi$ e $\varphi(\alpha) = \beta$, então segue de álgebra linear que $\varphi = \bar{\phi}$

Teorema: Seja $\phi : \mathbb{E} \to \mathbb{F}$ um isomorfismo, $p(x) \in \mathbb{E}[x]$ um poli não constante, e $p^{\phi}(x) \in \mathbb{F}[x]$. Se $\mathbb{K} \supset \mathbb{E}$ e $\mathbb{L} \supset \mathbb{F}$ são os corpos de fatoração de p(x) e $p^{\phi}(x)$, então ϕ se extende a um único iso $\bar{\phi} : \mathbb{K} \to \mathbb{L}$.

Prova: Indução sobre gr(p(x)) = n

Podemos assumir que p(x) é irredutível

Se $\operatorname{gr}(p(x)) = 1 \Rightarrow \mathbb{K} = \mathbb{E}$ e não temos o que provar

Suponha que o resultado valha para todo poli de gra
u< n

Tome $\alpha \in \mathbb{K}$ raiz de p(x) e $\beta \in \mathbb{L}$ raiz de $p^{\phi}(x)$

Note que $\mathbb{E} \subset \mathbb{E}(\alpha) \subset \mathbb{K}$ e $\mathbb{F} \subset \mathbb{F}(\beta) \subset \mathbb{L}$

lema \Rightarrow existe único iso $\bar{\phi}: \mathbb{E}(\alpha) \to \mathbb{F}(\beta)$ estendendo ϕ tal que $\bar{\phi}(\alpha) = \beta$

$$p(x)=(x-\alpha)f(x)\in\mathbb{E}(\alpha)[x]\Rightarrow p^{\phi}(x)=(x-\beta)f^{\phi}(x)\in\mathbb{F}(\beta)[x].$$
 Note:

- \mathbb{K} também é corpo de fatoração de f(x) sobre $\mathbb{E}(\alpha)$
- L também é corpo de fatoração de $f^{\phi}(x)$ sobre $\mathbb{F}(\beta)$

$$\operatorname{gr}(f(x)) < n \Rightarrow$$
 existe único iso $\psi : \mathbb{K} \to \mathbb{L}$ extendendo $\bar{\phi}$ (e portanto ϕ)

Agora temos a unicidade de corpos de fatoração

Corolário Todo poli $p(x) \in \mathbb{F}[x]$ admite corpo de fatoração, o qual é único a menos de isomorfismo que deixa fixo os elementos de \mathbb{F}

Prova: Sejam \mathbb{K} e \mathbb{L} dois corpos de fatoração de p(x)

Então, estamos na situação do ultimo teorema com $\phi = \mathrm{id} : \mathbb{F} \to \mathbb{F}$, e portanto existe único iso $\bar{\phi} : \mathbb{K} \to \mathbb{L}$ tal que $\bar{\phi}|_{\mathbb{F}} = \mathrm{id}$ (ou seja, que fixa os elementos de \mathbb{F})

Corpos finitos

Já conhecemos corpos com ordem p, os \mathbb{Z}_p

Já sabemos construir alguns exemplos de corpos de ordem potência de \boldsymbol{p}

Exemplo:
$$\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$$
 tem ordem $2^2=4$

Vamos ver que para cada primo p e $n \in \mathbb{N}$ existe um único corpo de ordem p^n , os chamados corpos de Galois

Lembre que $\operatorname{car} \mathbb{F} = p$ se $p\alpha = 0 \ \forall \alpha \in \mathbb{F}$, ou equivalentemente, $\operatorname{car} \mathbb{F} = |1|$ em $(\mathbb{F}, +)$

Suponha $|F| = n = p_1 \cdots p_k$ (fatoração de n em primos com repetições permitidas). Então $n1 = (p_11) \cdots (p_k1) = 0 \Rightarrow p_i1 = 0$ para algum $i \Rightarrow \operatorname{car} \mathbb{F} = p_i$. Logo, temos

Proposição: Se $|F| < \infty$, então car $\mathbb{F} = p$ com p primo

Proposição: Se car $\mathbb{F} = p$, então $|F| = p^n$ para algum $n \in \mathbb{N}$

Prova: Segue do fato que $(\mathbb{F}, +)$ é um p-grupo

Obs: para todo corpo \mathbb{F} , temos que $\phi: \mathbb{Z} \to \mathbb{F}, \ \phi(n) = n$ é homomorfismo

Se car $\mathbb{F}=p$, então ker $\phi=p\mathbb{Z}$ e portanto $\mathbb{Z}_p\cong\mathbb{Z}/p\mathbb{Z}\cong\operatorname{im}\phi=\langle 1\rangle_+\leq (\mathbb{F},+)$

Se $|\mathbb{F}|<\infty$, então $\mathbb{Z}_p\subset\mathbb{F}$ é extensão finita, digamos $[\mathbb{F}:\mathbb{Z}_p]=n$ com base α_1,\ldots,α_n . Então

$$\mathbb{F} = \{a_1 \alpha_1 + \dots + a_n \alpha_n \mid a_i \in \mathbb{Z}_p\} \Rightarrow |\mathbb{F}| = p^n$$

Lema (Freshman's dream \cong sonho de calouro) Seja p um primo e D um domínio integral com car D=p, então

$$(a+b)^{p^n} = a^{p^n} + b^{p^n}$$

Prova: Exercício

Um poli $f(x) \in \mathbb{F}[x]$ é dito separável se todas as suas raízes são distintas. Nesse caso todos os fatores lineáres

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$$

no corpo de decomposição de f(x) aparecem com multiplicidade 1

Uma extensão $\mathbb{F} \subset \mathbb{E}$ é separável se todo $\alpha \in \mathbb{E}$ é raiz de um poli separável de $\mathbb{F}[x]$

Exemplo: $p(x) = x^2 + 2 \in \mathbb{Q}[x]$ é separável, já que $p(x) = (x - \sqrt{2})(x + \sqrt{2})$ em $\mathbb{Q}(\sqrt{2})[x]$. Por outro lado, $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})$ é extensão separável de \mathbb{Q} . De fato, seja $\alpha = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ com $b \neq 0$ (caso contrário não tem o que provar). Se $\bar{\alpha} = a - b\sqrt{2}$, então α é raiz de

$$p(x) = (x - \alpha)(x - \bar{\alpha}) \in \mathbb{Q}[x]$$
 (verifique)

Um método para verificar se um poli $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}[x]$ é separável faz uso de sua derivada (formal)

$$f'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} \in \mathbb{F}[x]$$

Lema: $f(x) \in \mathbb{F}[x]$ é separável $\Leftrightarrow mdc(f(x), f'(x)) = 1$

Prova: (\Rightarrow): se $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$, então

$$f'(x) = (x - \alpha_2) \cdots (x - \alpha_n) + (x - \alpha_1)(x - \alpha_3) \cdots (x - \alpha_n) + (x - \alpha_1)(x - \alpha_3) \cdots (x - \alpha_{n-1})$$

$$\Rightarrow mdc(f(x), f'(x)) = 1$$

 $(\Leftarrow): f(x)$ não separável $\Rightarrow f(x) = (x - \alpha)^k g(x)$ para k > 1. Logo,

$$f'(x) = k(x - \alpha)^{k-1}g(x) + (x - \alpha)^k g'(x) \Rightarrow mdc(f(x), f'(x)) \neq 1$$

Lema: Sejam p primo, $n \in \mathbb{N}$ e $f(x) = x^{p^n} - x \in \mathbb{Z}_p[x]$. Então o corpo de fatoração \mathbb{F} de f(x) (sobre \mathbb{Z}_p) tem ordem p^n

Prova: Sabemos que f(x) tem p^n raízes (a principio, pode ter repetições). Sejam elas $R=\{\alpha_1,\dots,\alpha_k\}$

Então
$$\mathbb{Z}_p \subset \mathbb{F} = \mathbb{Z}_p(\alpha_1, \dots, \alpha_k) \Rightarrow [\mathbb{F} : \mathbb{Z}_p] = \ell < \infty \Rightarrow |\mathbb{F}| = p^{\ell} \Rightarrow \operatorname{car} \mathbb{F} = p$$

$$f'(x) = p^n x^{p^n - 1} - 1 = -1 \Rightarrow mdc(f(x), f'(x)) = 1 \Rightarrow f(x) \text{ \'e separável } \Rightarrow k = p^n$$

Afirmamos que R é um subcorpo de \mathbb{F} , e portanto $\mathbb{F} = R$ (sendo \mathbb{F} o corpo de decomposição de f(x)). Se $\alpha, \beta \in R$, então $\alpha^{p^n} = \alpha$ e $\beta^{p^n} = \alpha$. Assim

•
$$f(\alpha - \beta) = (\alpha - \beta)^{p^n} - (\alpha - \beta) = \alpha^{p^n} + (-1)^{p^n} \beta^{p^n} - \alpha + \beta = (-1)^{p^n} \beta + \beta = 0$$

 $\Rightarrow \alpha - \beta \in R \Rightarrow (R, +) \text{ é subgrupo de } (\mathbb{F}, +)$

•
$$f(1) = 1^{p^n} - 1 = 0 \Rightarrow 1 \in R$$

•
$$f(\alpha\beta) = (\alpha\beta)^{p^n} - \alpha\beta = \alpha^{p^n}\beta^{p^n} - \alpha\beta = 0 \Rightarrow \alpha\beta \in R$$

•
$$f(\alpha^{-1}) = (\alpha^{-1})^{p^n} - \alpha^{-1} = (\alpha^{p^n})^{-1} - \alpha^{-1} = \alpha^{-1} - \alpha^{-1} = 0 \Rightarrow \alpha^{-1} \in R$$

Teorema: Se $|\mathbb{F}| = p^n$, então \mathbb{F} é corpo de fatoração de $f(x) = x^{p^n} - x \in \mathbb{Z}_p[x]$

Prova: Nesse caso, sabemos que car F=p, e obs do slide $11\Rightarrow \mathbb{Z}_p\subset \mathbb{F}$ é extensão finita com $[\mathbb{F}:\mathbb{Z}_p]=n$

Seja
$$\alpha \in \mathbb{F}$$
. Se $\alpha = 0 \Rightarrow f(\alpha) = 0$

Se $\alpha \neq 0 \Rightarrow \alpha \in (\mathbb{F}^*, \cdot)$ (grupo multiplicativo) e portanto $\alpha^{p^n-1} = 1$ (elemento identidade desse grupo). Ou seja, $\alpha^{p^n} - \alpha = 0 \Rightarrow f(\alpha) = 0$

Logo, todos os p^n elementos de $\mathbb F$ são raízes de $f(x)\Rightarrow f(x)$ se fatora em $\mathbb F$

Como
$$|\mathbb{F}|=p^n=|\text{raízes de }f(x)|\Rightarrow \mathbb{F}$$
é corpo de fatoração de $f(x)$

O único corpo de ordem p^n chamado de corpo de Galois de ordem p^n e é denotado por $GF(p^n)$

Teorema: Se $\mathbb{F} \subset GF(p^n)$, então $\mathbb{F} = GF(p^m)$ para algum m que divide n. Reciprocamente, para cada m que divide n temos que $GF(p^m) \subset GL(p^n)$

Prova:
$$\mathbb{F} \subset GF(p^n) \Rightarrow |F| = p^m$$
, pois $(F, +) \leq (GF(p^n), +)$

Então, $\mathbb{Z}_p = \langle 1 \rangle_+ \subset \mathbb{F} \subset GF(p^n)$ e portanto

$$n = [GF(p^n) : \mathbb{Z}_p] = [GF(p^n) : \mathbb{F}][\mathbb{F} : \mathbb{Z}_p] = [GF(p^n) : \mathbb{F}]m \Rightarrow m \mid n$$

Reciprocamente,

$$m \mid n \Rightarrow x^{p^m} - x \mid x^{p^n} - x \text{ em } \mathbb{Z}_p[x]$$
 (detalhem)

Logo, $GF(p^n)$ contem todas as raízes de $x^{p^m}-x\Rightarrow GF(p^n)$ contem um corpo de decomposição de $x^{p^m}-x$

Teorema anterior \Rightarrow tal corpo é isomorfo a $GF(p^m)$, e sendo assim podemos pensar que $GF(p^m) \subset GF(p^n)$

Exercício: Todo poli $f(x) \in \mathbb{F}[x]$ pode ser considerado como uma função $f(x) : \mathbb{F} \to \mathbb{F}, \ f(x)(a) = f(a)$. É verdade que f(x) = 0 em $\mathbb{F}[x]$ se e só se a função f(x) é identicamente nula (isto é, f(a) = 0 para todo $a \in \mathbb{F}$)?

Exemplo: O reticulado de subcorpos de $GF(p^{24})$ é o seguinte

O grupo \mathbb{F}^*

Denotamos o grupo multiplicativo $(\mathbb{F} \setminus \{0\}, \cdot)$ por \mathbb{F}^*

Teorema: Se $G \leq \mathbb{F}^*$ e $|G| < \infty$, então G é cíclico

Prova: Se |G| = n, então pelo TGA, temos

$$G \cong \mathbb{Z}_{p_1^{\epsilon_1}} \times \cdots \times \mathbb{Z}_{p_k^{\epsilon_k}},$$

onde $n = p_1^{\epsilon_1} \cdots p_k^{\epsilon_k}$

Afirmamos que $g=(e_1,\ldots,e_k)$ gera G $(e_j$ é o gerador de $\mathbb{Z}_{p_j^{\epsilon_j}})$. De fato, seja m=|g|, então

$$m = mmc(|e_1|, \dots, |e_k|) = mmc(p_1^{\epsilon_1}, \dots, p_k^{\epsilon_k})$$

$$\alpha=(a_1,\dots,a_k)=(e_1^{a_1},\dots,e_k^{a_k})\in G$$
 (na notação geral de grupos). Assim,

$$\begin{aligned} |\alpha| &= mmc\left(|e_1^{a_1}|, \dots, |e_k^{a_k}|\right) = mmc\left(\frac{|e_1|}{mdc(|e_1|, a_1)}, \dots, \frac{|e_k|}{mdc(|e_k|, a_k)}\right) \\ &= mmc\left(\frac{p_1^{\epsilon_1}}{mdc(p_1^{\epsilon_1}, a_1)}, \dots, \frac{p_k^{\epsilon_k}}{mdc(p_{\iota}^{\epsilon_k}, a_k)}\right) \text{ que divide } m = mmc(p_1^{\epsilon_1}, \dots, p_k^{\epsilon_k}) \end{aligned}$$

Logo, $\alpha^m=1 \Rightarrow$ todo elemento de G é raiz de $x^m-1 \Rightarrow n=|G| \leq m$

Mas,
$$m = |g| \le |G| = n \Rightarrow m = n \Rightarrow G = \langle g \rangle$$

Corolário: Se $|\mathbb{F}| < \infty$, então \mathbb{F}^* é cíclico

Corolário: Sejam $\mathbb E$ e $\mathbb F$ corpos finitos tais que $\mathbb F\subset\mathbb E$ é extensão. Então $\mathbb E$ é extensão simples de $\mathbb F$

Prova: $\exists \ \alpha \in \mathbb{E}^* \text{ tal que } \mathbb{E}^* = \langle \alpha \rangle. \text{ Como } \langle \alpha \rangle \subset \mathbb{F}(\alpha) \Rightarrow \mathbb{E} \subset \mathbb{F}(\alpha) \Rightarrow \mathbb{E} = \mathbb{F}(\alpha)$

Exemplo: $\mathbb{Z}_2/\langle x^4+x+1\rangle$ é corpo com 2^4 elementos. Logo, se α é raiz de x^4+x+1 visto como elemento de $\mathbb{Z}_2/\langle x^4+x+1\rangle[x]$, temos que

$$GF(2^4) \cong \mathbb{Z}_2/\langle x^4 + x + 1 \rangle = \{a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \mid a_i \in \mathbb{Z}_2\}$$

Como $GF(2^4) = \mathbb{Z}_2(\alpha)$, temos que $GF(2^4)^* = \langle \alpha \rangle$

Note:
$$|\alpha| = |GF(2^4)^*| = |GF(2^4) \setminus \{0\}| = 16 - 1 = 15$$

$$1 + \alpha + \alpha^4 = 0 \Rightarrow \alpha^4 = 1 + \alpha \Rightarrow \alpha^5 = \alpha + \alpha^2 \Rightarrow \cdots$$
 (complete)

Lista de exercícios

Cap 21: 3, 16, 18, 21

 $\textbf{Cap 22:}\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 8,\ 12,\ 13,\ 16,\ 17,\ 18,\ 19,\ 20,\ 21,\ 22$