8. Komplexe Wegintegrale

Im Folgenden sei $I = [a, b] \subseteq \mathbb{R}$ (a < b) und $\varphi, \psi : I \to \mathbb{C}$ Funktionen.

Definition

- (1) Ist φ auf I stetig, so setze: $\int_a^b \varphi(t)dt := \int_a^b \operatorname{Re} \varphi(t)dt + i \int_a^b \operatorname{Im} \varphi(t)dt; \quad \int_b^a \varphi(t)dt := -\int_a^b \varphi(t)dt; \quad \int_a^a \varphi(t)dt := 0$
- (2) φ heißt auf I differenzierbar (db) $\Leftrightarrow \operatorname{Re} \varphi$, $\operatorname{Im} \varphi$ sind auf I differenzierbar. In diesem Fall: $\varphi' := (\operatorname{Re} \varphi)' + i(\operatorname{Im} \varphi)'$
- (3) φ heißt auf I stetig differenzierbar $\Leftrightarrow \operatorname{Re} \varphi$, $\operatorname{Im} \varphi$ sind auf I stetig differenzierbar.

Satz 8.1

Sei $D \subseteq \mathbb{C}$ offen, $f \in H(D)$, $\varphi(I) \subseteq D$ und φ auf I differenzierbar. Dann ist $f \circ \varphi : I \to \mathbb{C}$ differenzierbar auf I und $(f \circ \varphi)'(t) = f'(\varphi(t))\varphi'(t) \, \forall t \in I$.

Beweis

Übung!

Satz 8.2

- (1) Sei φ stetig auf I und $\Phi: I \to \mathbb{C}$ definiert durch $\Phi(s) := \int_a^s \varphi(t) dt$. Dann ist Φ stetig differenzierbar auf I und $\Phi' = \varphi$ auf I
- (2) Sei φ auf I stetig differenzierbar $\Rightarrow \int_a^b \varphi'(t)dt = \varphi(b) \varphi(a)$

Beweis

Übung!

Definition

Sei $\gamma : [a, b] \to \mathbb{C}$ ein Weg (also γ stetig).

- (1) $\operatorname{Tr}(\gamma) := \gamma([a, b])$ Träger von γ
- (2) γ heißt **geschlossen** : $\Leftrightarrow \gamma(a) = \gamma(b)$
- (3) γ heißt **glatt** : $\Leftrightarrow \gamma$ ist auf [a, b] stetig differenzierbar.

Definition

Sei $n \in \mathbb{N}, a_1, \ldots, a_{n+1} \in \mathbb{R}, a_1 < a_2 < \cdots < a_{n+1} \text{ und } \gamma_i := [a_i, a_{i+1}] \to \mathbb{C}$ seien Wege (j = 1, ..., n) mit $\gamma_j(a_{j+1}) = \gamma_{j+1}(a_{j+1})$ (j = 1, ..., n-1).

Definiere $\gamma: [a_1, a_{n+1}] \to \mathbb{C}$ durch $\gamma(t) := \gamma_j(t)$, falls $t \in [a_j, a_{j+1}]$.

Dann ist γ ein Weg und man schreibt: $\gamma = \gamma_1 \oplus \gamma_2 \oplus \cdots \oplus \gamma_n$

 γ heißt stückweise glatt : $\Leftrightarrow \gamma_1, \ldots, \gamma_n$ sind glatt.

Bemerkungen:

- (1) Sei $\gamma: [a,b] \to \mathbb{C}$ ein Weg. γ ist stückweise glatt $\Leftrightarrow \exists a_1,\ldots,a_{n+1} \in [a,b]: a=a_1 < a_2 <$ $\cdots < a_{n+1} = b \text{ und } \gamma_{|[a_i, a_{i+1}]} \text{ ist glatt } (j = 1, \dots, n)$
- (2) stückweise glatte Wege sind rektifizierbar.
- (3) glatt \Rightarrow stückweise glatt

Beispiel

$$\gamma_1(t) := t \ (t \in [0,1]), \ \gamma_2(t) := 1 + i(t-1) \ (t \in [1,2]).$$
 $\gamma := \gamma_1 \oplus \gamma_2, \ \gamma_1, \gamma_2 \text{ sind glatt}, \ \gamma_1'(t) = 1 \neq \gamma_2'(1) = i \Rightarrow \gamma \text{ in 1 nicht differenziebar.}$

Wie in \mathbb{R} zeigt man: Ist $\phi:[a,b]\to\mathbb{C}$ stetig, so gilt: $|\int_a^b \phi(t)dt| \leq \int_a^b |\phi(t)|dt$.

Für den Rest des Paragraphen sei $\gamma:[a,b]\to\mathbb{C}$ stets ein Weg (also stetig).

Definition

$$\gamma^-:[a,b]\to\mathbb{C}, \gamma^-(t):=\gamma(b+a-t); \gamma^-$$
heißt der zu γ inverse Weg. Klar: $\mathrm{Tr}(\gamma)=\mathrm{Tr}(\gamma^-)$

Definition Ist γ glatt, so setze $L(\gamma) := \int_a^b |\gamma'(t)| dt$.

Ist $\gamma = \gamma_1 \oplus \cdots \oplus \gamma_n$ stückweise glatt (mit $\gamma_1, \ldots, \gamma_n$ glatt), so setze:

 $L(\gamma) := L(\gamma_1) + \cdots + L(\gamma_n)$

 $L(\gamma)$ heißt **Weglänge** von γ .

Beispiele:

(1) Seien
$$z_1, z_2 \in \mathbb{C}, \gamma(t) := z_1 + t(z_2 - z_1)(t \in [0, 1]), \gamma$$
 ist glatt.

$$\gamma'(t) = z_2 - z_1. \implies L(\gamma) = \int_0^1 |z_2 - z_1| dt = |z_2 - z_1|$$

(2) Sei
$$z_0 \in \mathbb{C}, r > 0$$
 und $\gamma(t) := z_0 + re^{it} (t \in [0, 2\pi])$

$$\gamma$$
 ist glatt, $\gamma'(t) = rie^{it}$, $|\gamma'(t)| = r \Longrightarrow L(\gamma) = \int_{0}^{2\pi} rdt = 2\pi r$.

Definition

Sei $[\alpha, \beta] \subseteq \mathbb{R}$ und $h: [\alpha, \beta] \to [a, b]$ stetig differenzierbar, bijektiv und $h(\alpha) = a, h(\beta) = b$. Ist γ stückweise glatt, so setze $\Gamma := \gamma \circ h$, also $\Gamma(s) = \gamma(h(s))(s \in [\alpha, \beta])$.

Dann ist Γ ein stückweise glatter Weg mit $\text{Tr}(\Gamma) = \text{Tr}(\gamma)$.

h heißt eine Parametertransformation. Man schreibt $\Gamma \sim \gamma$.

Definition

Sei
$$f \in C(\text{Tr}(\gamma));$$

Ist
$$\gamma$$
 glatt, so setze $\int_{\gamma} f(z)dz := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$

Ist $\gamma = \gamma_1 \oplus \cdots \oplus \gamma_n$ stückweise glatt mit $\gamma_1, \ldots, \gamma_n$ glatt, so setze $\int_{\gamma} f(z)dz := \sum_{i=1}^n \int_{\gamma_i} f(z)dz$. $\int f(z)dz$ heisst ein (komplexes) Wegintegral (von f
 längs $\gamma)$

Beispiel

 $\gamma(t) := 3e^{it} (t \in [0, 2\pi])$

(1)
$$f(z) = \overline{z}, \int_{\gamma} \overline{z} dz = \int_{0}^{2\pi} 3e^{-it} i 3e^{it} dt = 18\pi i.$$

(2)
$$f(z) = z^2, \int_{\gamma} z^2 dz = \int_{0}^{2\pi} 9e^{2it}i3e^{it}dt = 0.$$

Wie in der Analysis zeigt man:

Satz 8.3

 γ sei stückweise glatt, $f, g: \text{Tr}(\gamma) \to \mathbb{C}$ seien stetig, $\alpha, \beta \in \mathbb{C}$ und Γ sei ein stückweise glatter

(1)
$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

(2)
$$\int_{\Gamma} f(z)dz = \int_{\gamma} f(z)dz$$
 (und $L(\Gamma) = L(\gamma)$)

(3)
$$\int_{\gamma^{-}} f(z)dz = -\int_{\gamma} f(z)dz$$

Satz 8.4

 γ und f seien wie in 8.3. f_n sei eine Folge in $C(\text{Tr}(\gamma))$ und es sei $M := \max_{z \in \text{Tr}(\gamma)} |f(z)|$.

$$(1) | \int_{\gamma} f(z)dz | \le ML(\gamma)$$

(2) Konvergiert die Folge (f_n) auf $Tr(\gamma)$ gleichmaessig gegen f, so gilt:

$$\int\limits_{\gamma} f_n(z)dz \to \int\limits_{\gamma} f(z)dz (n\to\infty)$$
 (also: $\lim_{n\to\infty} \int\limits_{\gamma} f_n(z)dz = \int\limits_{\gamma} (\lim_{n\to\infty} f_n(z))dz$)

(2)
$$M_n := \max_{z \in \text{Tr}(\gamma)} |f_n(z) - f(z)|$$
. Vorraussetzung $\Longrightarrow M_n \to 0 (n \to \infty)$.

$$\left| \int_{\gamma} f_n(z) dz - \int_{\gamma} f(z) dz \right| = \left| \int_{\gamma} (f_n(z) - f(z)) dz \right| \stackrel{\text{(1)}}{\leq} M_n L(\gamma).$$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{C}$, D offen und $f \in C(D)$. f besitzt auf D eine **Stammfunktion** (SF) : $\iff \exists F \in H(D) : F' = f$ auf D.

Satz 8.5

Sei $\emptyset \neq D \subseteq \mathbb{C}$, D offen und $f \in C(D)$ besitze auf D die Stammfunktion F und γ sei ein stückweiser glatter Weg mit $\text{Tr}(\gamma) \subseteq D$. Dann:

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

Beweis

O.B.d.A:
$$\gamma$$
 glatt. $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt = \int_{a}^{b} (F \circ \gamma)'(t)dt \stackrel{8.2}{=} (F \circ \gamma)(b) - (F \circ \gamma)(a)$.

Folgerung 8.6

D, f und γ seien wie in 8.5. Ist γ geschlossen $\Longrightarrow \int_{\gamma} f(z)dz = 0$.

Beispiel 8.7

Sei $z_0 \in \mathbb{C}$, r > 0. $\gamma(t) = z_0 + re^{it} (t \in [0, 2\pi])$; γ ist geschlossen. Für $k \in \mathbb{Z}$ sei $f_k(z) := (z - z_0)^k \ (z \in \mathbb{C} \setminus \{z_0\})$

- (1) Sei $k \neq -1$. f_k hat auf $\mathbb{C} \setminus \{z_0\}$ die Stammfunktion $z \mapsto \frac{1}{k+1}(z-z_0)^{k+1}$. $8.6 \Longrightarrow \int_{\gamma} (z-z_0)^k dz = 0$
- (2) Sei k = -1: $\int_{\gamma} \frac{dz}{z z_0} = \int_{0}^{2\pi} \frac{1}{re^{it}} i r e^{it} dt = 2\pi i$.

Also:

$$\frac{1}{2\pi i} \int\limits_{\gamma} \frac{dz}{z - z_0} = 1$$

Wegen 8.6: Die Funktion $z \mapsto \frac{1}{z-z_0}$ hat auf $\mathbb{C}\setminus\{z_0\}$ keine Stammfunktion! Aber: im Falle $z_0 = 0$ hat die Funktion $z \mapsto \frac{1}{z}$ die Stammfunktion Logz auf \mathbb{C}_- .

Satz 8.8

Sei $[a_j,b_j]\subseteq\mathbb{R}$ und $\gamma_j:[a_j,b_j]\to\mathbb{C}$ glatte Wege mit $\gamma_j(b_j)=\gamma_{j+1}(a_{j+1})\ (j=1,\ldots,n)$ Dann exisitert ein stückweise glatter Weg γ mit: $\mathrm{Tr}(\gamma)=\bigcup\limits_{j=1}^n\mathrm{Tr}(\gamma_j), L(\gamma)=L(\gamma_1)+\cdots+L(\gamma_n)$ und $\int\limits_{\gamma}f(z)dz=\int\limits_{\gamma_1}f(z)dz+\cdots+\int\limits_{\gamma_n}f(z)dz\ \forall f\in C(\mathrm{Tr}(\gamma))$

Beweis

mit 8.3(2).

Beispiel

$$\gamma_1(t) = t, (t \in [0, 1]); \gamma_2(t) = 1 + it, t \in [0, 1]$$

 $\tilde{\gamma}_2(t) := 1 + i(t - 1), t \in [1, 2]. \text{ Dann: } \tilde{\gamma}_2 \sim \gamma_2; \gamma := \gamma_1 \oplus \tilde{\gamma}_2 : [0, 2] \to \mathbb{C}.$

Satz 8.9

Sei
$$(K_n)$$
 eine Folge kompakter Mengen in $\mathbb C$ mit: $K_n \neq \emptyset$ $(\forall n \in \mathbb N), K_1 \supseteq K_2 \supseteq K_3 \supseteq \dots$ und $d(K_n) := \max_{z,w \in K_n} |z - w| \to 0 \ (n \to \infty)$. Dann:

$$\bigcap_{n\in\mathbb{N}}K_n\neq\emptyset.$$

Beweis

Wähle in jedem
$$K_n$$
 ein z_n . Für $n,k \in \mathbb{N}: z_n, z_{n+k} \in K_n$
Dann: $|z_n - z_{n+k}| \le d(K_n) \implies (z_n)$ ist eine Cauchy-Folge $\implies \exists z_0 \in \mathbb{C}: z_n \to z_0$.

Sei
$$N \in \mathbb{N}$$
. $z_n \in K_N \forall n \geq N$. K_N abgeschlossen $\Longrightarrow z_0 \in K_N$.