ANALISI DEL COVID-19

ONLINE

in Italia con gli Open Data

Speaker:

Vincenzo Lavorini, Data Scientist Researcher

30 marzo - 18.30

Hosted by

In partnership with

Disclaimer

Non è uno studio epidemiologico!

Obiettivo dello studio

- Valutare approccio da non esperti in epidemiologia
- "tutti i modelli sono sbagliati, ma qualcuno di essi è utile"
- Iterazioni:
 - Ideiamo modello
 - Valutiamo
 - Miglioriamo
- Obiettivo: stimare numero di casi totali e fine dell'ondata

Open Data

https://github.com/pcm-dpc/COVID-19

Totale casi, Giorno dopo giorno

Ipotesi

- In fase iniziale, crescita esponenziale del numero totale di casi
- A regime, nessun nuovo caso (plateau)

- Dobbiamo unirle:
 - Curva liscia, no punti singolari

Funzione sigmoide

- Scelta forzatamente semplice
- Definita da tre parametri :

plateau

Funzione sigmoide

Coolto formatamenta accordina

 $y = \frac{plateau}{\frac{-x - flesso}{pendenza}}$ $1 + e^{\frac{-x - flesso}{pendenza}}$

Se non raggiungiamo il punto di flesso :

- La crescita rimane esponenziale
- → non possiamo predire il plateau

Fitting: ottimizzazione parametri

- Quali valori dare ai parametri della curva per descrivere i dati ?
- Operazione di Supervised Machine Learning
- Funzione da minimizzare :
 - Somma dei quadrati dei residui (L2)

Cerchiamo punto di flesso

Per trovarlo analizziamo il n. tot di casi giorno per giorno:

- Adattiamo curva esponenziale ai dati al giorno G-3
- Se i tre giorni rimanenti cadono al di sotto dell'esponenziale :
 - → Abbiamo passato il flesso!

Situazione al 12 Marzo

Situazione al 13 Marzo

Situazione al 13 Marzo

Dati dicponibili al 12/2

Inoltre:

Lockdown zone rosse del 7 Marzo Periodo medio incubazione COVID-19 : 5 giorni

...flesso raggiunto ! (FALSO)

Previsione (errata)

Totale casi attesi in data 9-4-2020: tra 41000 e 56000 98% del totale in data 1-4-2020

Previsione (errata)

Programmazione probabilistica

Metodi basati su **Statistica Bayesiana** e **Markov Chain Monte Carlo (MCMC)**

Statistica Classica (Frequentista)

Presuppone N->00

Statistica Bayesiana

considera anche N piccoli

Programmazione probabilistica

Metodi basati su **Statistica Bayesiana** e **Markov Chain Monte Carlo (MCMC)**

Statistica Classica (Frequentista)

Presuppone N->00

Statistica Bayesiana

In generale, no soluzioni analitiche Quindi: **MCMC**

Confronto: fit lineare 2 punti

Consideriamo (4, 2) ed (8, 3). Adattiamo funzione lineare (y=a+b*x), e valutiamo la funzione ad x=40

Confronto: fit lineare 3 punti

Fit bayesiano al 13 Marzo

Vedi notebook

Con dati di ieri (29 Marzo)

Nuovo modello: Gompertz

Conclusioni

- Si possono analizzare dati senza avere conoscenza specifica della materia.
 - Non fidarsi troppo delle proprie posizioni
 - Non sostituirsi ad esperti in materia

Backup: SIR

https://www.lewuathe.com/covid-19-dynamics-with-sir-model.html