109-2 VLSI Testing PA1 Report

Chien-Kai Ma

March 2021

1 What I've done in this PA

In this PA, I have:

- trace the source code
- ullet fill up the holes in sim.cpp and faultsim.cpp
- \bullet run $golden_atpg$ to validate my answers
- run several cases to fill up the table below.

1.1 Problems I tackled

I faced $Segmentation\ Fault$ while trying to update $simulated_fault_list$ in the $fault_sim_a_vector$ function in $faultsim_cpp$. I found a lot of null pointers and strange fptrs in $simulated_fault_list$. After printing out $simulated_fault_list$ and num_of_fault , I revised my code by iterating with num_of_fault instead of $num_of_faults_in_parallel$.

1.2 My discoveries

Observing the table below, we see that C1355 has a relatively low fault coverage with 63 test vectors, while C6288 yields the best fault coverage with only 42 test vectors, despite of the larger circuit size. Therefore, it is important to choose a good set of test vectors if we want better fault coverage.

2 The Table

circuit	number	number	number	number	number	fault
number	of test	of gates	of total	of de-	of unde-	coverage
	vector		faults	tected	tected	
				faults	faults	
C499	66	554	2390	2263	127	94.69%
C1355	63	554	2726	1702	1024	62.44%
C6288	42	4800	17376	17109	267	98.46%
C7552	289	5679	19456	19144	312	98.40%