DATA WRANGLING PROJECT REPORT December 2022

TABLE OF CONTENTS

Table of Contents

1.	Project Overview	3
2.	Introduction	3
	[OB]	
	[OB]	
5.	Articles	11
5.	Articles	11

A. Project Overview

"Which Property Types can be a main focus for a Holder to recover before it is deemed as unclaimed?"

We picked the topic Unclaimed Property because it will always be a big business problem for financial and accounting institutes as they are the ones who deal with a huge volume of unclaimed property. Analysis of the information received from the two states (California & Massachusetts) and answers derived from this project will be of use to financial institutions, like banks, holding enormous funds for individuals and businesses. This can be used to help them audit these funds and report them to the state complying with the State's Unclaimed Property Law.

B. Introduction

What is an unclaimed property?

Unclaimed property is a personal asset separated from its original owner for several reasons [1]. It has had no activity or contact with the original owner for more than a year due to the individual's change of address or the fact it is there, is unknown to him/her.

In simple words, if a business, government office, or any other source owes an individual or business money that they do not collect for a certain period due to relocation or absence of knowledge it is called Unclaimed property [2]

Some examples of unclaimed property may include – uncashed checks, savings or checking account deposits, pay checks, traveler's checks, money orders, tax refunds, and refund stocks or dividends.

Business Context

After formatting and cleaning the data, we identified 4 banks in each dataset that were estimated to have many unclaimed properties (1)

C. Data Wrangling Process

These steps for the data wrangling process are covered in more detail in the following paragraphs.

1. Data Discovery

Using the Unclaimed Property datasets from two states (for example unclaimed property data from the State of Massachusetts and the State of California), we have answered the questions of how we can derive the analysis for ease of unclaimed property recovery for holders. To collect the unclaimed property information from the State of Massachusetts, we will be using the Public Records law and to obtain the information and from the State of California, we have the data updated on their website for Unclaimed property information.

State	Source				
California	Download Unclaimed Property Records (ca.gov)				
Massachusetts	Public Records Request Mass.gov				

The variables in the data set are as follows:

- Property ID
- Property Type
- Date Reported
- Owner Name
- Co-Owner
- Address
- City

- State
- Zip
- Reported By Holder

Challenges faced

We received 2 .txt files from the Massachusetts public record. Both text files were huge (1.7 million rows), so we were only able to use 1 of them. We converted the Massachusetts text file into a .csv file in python so that we can view all the columns in a tableau format. For the California unclaimed dataset, we received 3 csv files (3 million rows). We merged the 3 csv files using python then proceeded into the data profiling step to see the quality of both our datasets.

2. Data Formatting

The data we received from the State of Massachusetts Unclaimed Property was in the form of multiple .txt files and from the State of California Unclaimed Property was received in multiple .csv files format.

- To read and understand the data in a table, the data for the state of MA was converted into and saved as a csv file through the following code. These two files with all the same columns were once again read on the jupyter notebook and merged to continue with further data wrangling. Whereas the data for CA was received as .csv files and the three files were read on jupyter notebook with the encoding as latin1 and were merged as they all had similar columns (2)(3)
 - The data received from both the states is in a structured format and as each record represents a single unclaimed property transaction for a single owner from a particular holder, the data follows a Fine granularity and all the records in the datasets are homogeneous.
 - To check which columns to pick from both the datasets, a function column was run which displayed all the column names in the output and helped us choose the right columns for us to proceed with further data wrangling and analysis. (4)(5)
 - For the MA State File, a subset was created by selecting the columns 'PropertyID', ' ReportYear', 'NameLast', 'NameFirst', 'NameMiddle', 'Address1', 'Address2', 'City', ' ZipCode', ' PropertyTypeCodeDescription', ' HolderName', ' RemittedCash', OriginalSecurityCashAmount', OriginalShares', RemainingShares', RemainingSecuritiesCash', which can be useful to get a desired output for the Massachusetts Unclaimed Property. Likewise, for the CA State File, a subset was created 'PROPERTY ID', by selecting the columns 'PROPERTY TYPE', 'DATE_REPORTED','OWNER_NAME','ADDRESS','OWNER_CITY','OWNER_ZIP','CURRENT_ CASH BALANCE', 'HOLDER NAME', which can be useful to get a desired output for the California Unclaimed Property. (6)(7)
 - The formatting step to apply filters to our datasets based on the holder with the selected banks and subset it to make a clear agenda for our analysis. The banks selected and filtered to create a subset from the MA dataset were JP Morgan Chase Bank, Bank of America, Wells Fargo, Citibank and the same was applied in our code to filter holder names. Likewise, the banks selected and filtered to create a subset from the MA dataset

- were JP Morgan Chase Bank, Bank of America, Wells Fargo, Bank of New York Mellon Corporate Trust and the same was applied in our code to filter holder names. (8)(9)
- A new column ADDRESS was inserted by merging the separated address1 and address2 columns in the MA dataset whereas in the CA dataset, the separated columns named OWNER_STREET_1, OWNER_STREET_2, OWNER_STREET_3 were merged to obtain the ADDRESS column (10)(11)
- In the MA dataset, the Owner names were split into First name, Last name and Middle name which were merged in an order to form the Owner Name. Also, the Unclaimed Amount was split into different columns – RemittedCash, OriginalSecurityCashAmount, OriginalShares, RemainingShares, RemainingSecuritiesCash which were numeric, and these were merged by adding up to a single value under Unclaimed Money. (12)(13)
- The last formatting step applied for both the datasets MA and CA were that they were sort based on the Property ID in ascending order (14)(15)

3. Data Profiling before Preprocessing

For California and Mass, we created separate data frames in Python and profiled them using pandas before cleaning them. Both datasets were analyzed and summarized information in the data profiling report.

Information Quality of the data

Huge amount of Input data (1.7 M rows for MA, 2.9 M for CA) Amount of Root condition: Computerizing and Duplicate records existed in MA data data analysing dataset after creating subset with required columns. Root condition: Distributed computing Some columns were irrelevant / unwanted. Duplicate Poor Root condition: Changing records relevancy data consumer's needs Data Quality Inconsistent bank 14% of MA and 21% of CA datasets names and zip codes Root condition: have missing values. Inconsistent Missing Root condition: Operational data Distributed computing production problems data values

1. Amount of data: The MA and CA datasets received from the sources were huge datasets. We chose to use only one CSV file for MA as the tools (Python) we used were accepting only that. We chose to use 3 CSV files for CA. The final files used 3M rows for CA and 1.7 M rows for MA. The root condition for this problem was computerizing and data analyzing as large volumes of data made it difficult to access information in a reasonable amount of time.

- 2. Poor relevancy: Some columns in the MA and CA dataset were irrelevant to keep in the dataset. So, we had to subset them based on our business questions and context. Before data preprocessing, we had 28 columns in CA dataset and 27 columns for MA dataset. After Data preprocessing, we had 10 columns in CA dataset and 9 columns for MA dataset. The root conditions of this problem are changing data consumer's needs as consumer needs change all the time and once it changes the data becomes irrelevant. (16)(17)
- 3. **Missing values:** We found out that 14% of MA and 21% of CA datasets had missing values. The root condition of incomplete data is **operational data production problems**. This is because Null/NAN values can arise from operational problems.
- 4. Inconsistent data: The data had inconsistent bank names and zip codes. Information with different values may have been generated from multiple sources or created by inconsistent updating of multiple copies leading to inconsistent formats or values. Thus, distributed computing may have been the root condition to cause inconsistent representation (data quality pattern).
- Duplicate records: The MA dataset has duplicate records. The root condition of duplicate records is distributed computing. In distributed computing, we could have a lot of different resources, which means that we have many records that could potentially be repeated.

Data Validation Rules

- 1. Precheck Zipcode In the datasets there were issues with zip code: some were invalid, and some had more and less than 5 numbers. We must set a business rule for the zip code verification. The data collector must precheck the number of zip code and if it is invalid or not when collecting data. This reduces the number of inconsistent data in the dataset.
- 2. Data Type Check The Unclaimed Money must be a number with the data type set as float. This can be set as a system validation check. For example, when the amount under unclaimed money is being entered it cannot be '\$400' or 'four hundred dollars', it can just be 400 or 400.00. This check makes sure that we do not have inconsistencies within the amount entered under unclaimed money.
- 3. Subset creation: The type of validation rule for subset creation is Business. It is decided that the columns Property_ID, Property_Type, Year_Reported or Date_Reported, Owner_Name, Address, City, Zip, Holder_Name, Unclaimed_Money from the MA dataset were relevant for us. This solves the problem of poor relevancy and root condition changing data consumer's needs.
- 4. Check owner name and address: The type of validation rule to check for missing values in owner name and addresses is a system check. Since the name and address field cannot

be blank the Null/NAN values need to be masked. This solves the problem of incomplete data and root condition is operational data production problems.

4. Data Cleaning

The raw data received from both, the State of Massachusetts and the State of California had redundant, inessential, and bad data. To remove these inconsistencies, the data had to undergo through the cleansing stage by implementing certain cleaning steps or functions which helped improve the data quality and made it possible to read the data and understand the information.

The following data transformation steps were necessary to overcome the challenges faced to understand the data and its profile separately for both Massachusetts Unclaimed Property and California Unclaimed Property.

Steps followed to clean data received for MA Unclaimed Property:

- Size of data: As the data we received was huge i.e., more than 1.5 million rows and 26 columns.
 As the holder column had the information for the entity's holding the unclaimed property, we
 made a choice to go ahead with the banks which had more repetitions as the holder for multiple
 properties
- So, we chose the 4 banks or holders for each dataset which had reported the greatest number of unclaimed properties as this would direct and make our purpose clear for analysis.
- Poor relevancy: As a few columns were found irrelevant to be included in the output, a subset was created with relevant columns after removal of redundant columns (18).
- Missing data The dataset had multiple null values and NaN columns which were cleaned during data wrangling process. To handle these missing and null values, they were replaced with blanks for columns Last name, first name and Middle name and were merged (19)
- Likewise, the null values from columns Address1, Address2 were replaced with blanks and were merged (20)
- The above step was applied to get rid of the missing values majorly from the Owner Names and Addresses.
- A function was run to check if there are any missing values in the dataset within other columns and we found out that City and Zip code columns had missing values, and these were handled by filling the respective column's fields with 'No City' and 'No Zip code' (21)
- Inconsistent data: We found the data in Zipcode to be inconsistent. The formats that were available were: 21276589, 2127 6589, 2127 | 6589, 2127, 6589. All these inconsistent values were corrected by stripping out the special characters between them and limiting the number of characters which had to be included in a zip code using the following code (22).
- The bank names under the Holder Names were inconsistent across the dataset such as BANK OF AMERICA NORTH CAROLINA, BANK OF AMERICA-MASSACHUSETTS, BANK OF AMERICA CORPORATION, BANK OF AMERICA FLORIDA, BANK OF AMERICA TEXAS. BANK OF AMERICA PRE-PAID CARD, BANK OF AMERICA HOME LOANS, Bank of America N.A. F/K/A FIA Card Services NA. We have standardized all the Holder names into common and simpler terms, like Bank of America, Citibank and likewise for other banks with the code below (23).
- Duplicates: To get rid of the duplicate records from the dataset, we had created a new column which had combined data from the remaining columns. We used this new column to check for

duplicates and drop the duplicate records/rows from the complete dataset and to achieve this we had used the code shown below (24)

5. Data Profiling after preprocessing

How did we address it?

We have addressed all the issues spotted in the profiling report generated before cleaning the data and generated a profiling report after all the cleaning process to verify if the data is clean and perfect to use for analysis. The report included the summary, visualization of data, and the range of unclaimed property values. We reduced the column range by filtering only the required columns. For the missing values we have marked them as 'No Value' since we cannot substitute values for the unclaimed property data. We have Removed all the duplicate rows from the

datasets. As per the data profiling report, after preprocessing our dataset is ready to process and analyze it. (25).

6. Data Analysis

We have created a dashboard with the number of properties, ranking by property types, heatmap across regions and time-graph for unclaimed properties.

Below is the data analysis for CA Dataset:

California Dashboard:(26)

Number of Unclaimed Property

While looking at the unclaimed property types across CA dataset --> we have identified 102 property types, 0.3 million number of reported unclaimed properties and \$ 1.4 B of the total amount across unclaimed properties.

Ranking by banks

For CA dataset, the listing of unclaimed properties across banks provided Bank of America with the highest amount of unclaimed money of \$0.8 B, followed by Wells Fargo with \$0.4 B, then JP Morgan Chase with \$0.17 B and followed by Bank of New York Mellon Corporation with \$ 1.6 M.

Ranking by Unclaimed Property

For CA dataset, unclaimed property consists of the top 5 property types of namely cashier's checks, checking accounts (demand deposits), time deposits (certificate of deposit accounts), customer overpayments, mutual funds, and others.

Unclaimed Property Reported over the Years

For CA dataset, the unclaimed property has increased over the years from 1975-2021. We see a drop in unclaimed money to \$48.6 M in the year 2007, thereafter, increasing at a CAGR of $^{\sim}9\%$ to touch \$160 M in 2021.

Number of Property Types across Banks

For CA dataset, the number of property types across banks is split into cashier's checks, checking accounts, checking accounts (with demand deposits), mature CD, and savings accounts.

MA Dashboard:(27)

Number of Unclaimed Property

While looking at the unclaimed property types across MA dataset --> we have identified 35 property types, 60K number of reported unclaimed properties and \$ 17M of the total amount across unclaimed properties.

Ranking by the banks

For MA dataset, the listing of unclaimed properties across banks shows Bank of America with the highest amount of unclaimed money of \$12 M, followed by Wells Fargo with \$2M, then Citibank and JP Morgan Chase each with value less than \$2 M.

Ranking by Unclaimed Property

For MA dataset, unclaimed property consists of top 5 property types namely checking accounts, savings accounts, cashier's checks, mature CDs, and accounts receivables.

Number of Property Types across Banks

For MA dataset, the number of property types across banks is split into cashier's checks, checking accounts, Any other outstanding check, mature CD, and savings accounts.

D. What we could have done

- Looked at other unclaimed property holders like insurance companies and see the number of property types they have.
- Enrich the datasets by adding another dataset that contains the address of holders.

Conclusion

We have concluded that the banks should focus on checking and saving accounts checking accounts, savings accounts, cashier's checks, mature CDs, and accounts receivables because they have the highest amount of unclaimed property.

E. Methodology & Tools

In this project, we used the below software and programming language.

- **Python**: Much of the data wrangling process was performed on Python. We ran specific codes on Python to transform and clean the data for better understanding.
- **Microsoft Excel**: Excel was used to filter out 'banks' from the list of financial institutions and standardize the bank names.
 - For example, Bank of America NA was modified to Bank of America
- **Tableau**: After the data was cleaned, formatted, and profiled, the final datasets were exported to Tableau to create a visual dashboard for the top 3 banks identified in both MA and CA datasets namely, Bank of America, JP Morgan Chase & Wells Fargo.
 - Using the variables property type, unclaimed property value, bank name, year we created multiple graphs for a visual representation of the final datasets.

F. Articles

- a. Unclaimed property is reported to the state, and it is responsible for contacting the owner. Most Laws regarding unclaimed properties are set up by the Supreme court and most states choose to adopt these laws. The Revised Uniform Unclaimed law (RUUPA) was introduced in 2016 to include new digital property types to be considered as Unclaimed property. The aim of this law being set is to make state authority increase there to search for unclaimed property owners. In May 2022 it was reported by NBC news that Massachusetts has about \$3.4 billion in unclaimed money. The Massachusetts treasury is responsible for handling unclaimed money. California is the state with the most unclaimed property rate in the United States with over \$9 billion in Unclaimed property.
- b. Most individuals in the public are not aware of what Unclaimed property is and that is one of the reasons there is an increase in the unclaimed property rate. In the article "Why Unclaimed property risk management is on the menu in 2022" the author explains how It is especially important for people to understand how unclaimed property is and what are the laws centered around it. Some businesses do not even claim their properties because they want to avoid being taxed by the government. Unclaimed properties are the liability

- for businesses which can cause auditing issues if it is not stated. The state needs to create awareness about unclaimed property.
- c. All 54 states in the United States have information on their website on how individuals and businesses can claim their Unclaimed property. Some websites like the National Association of State Treasurers help people find unclaimed property. Being aware of laws surrounding unclaimed property is essential for analysis because now we know that some unclaimed property law differs by state. Knowing the several types of Unclaimed properties will give us a brief understanding of the type of data we are dealing with. Reading the various articles, we have better knowledge and understanding of how to approach our project.

Some related data has been gathered on examples of how property can become "unclaimed":

- a. Life insurance policy: Over a decade ago, some insurers, including MetLife, Prudential, and John Hancock, went public and converted their companies into a stock form of ownership. As a result, this turned their policyholders into stockholders. At that time, they were supposed to pay out a certain amount to their customers. But despite their efforts to locate and notify all policyholders, they still have not been able to track down thousands of them.
- b. Tax refund: The IRS claimed that it was holding on to over \$1 billion in tax refunds for folks who failed to file their 2009 tax returns. Even if someone did not earn money in a particular year, the person may still be owed a refund due to certain tax credits and rebates.
- c. Savings Bonds: Millions of savings bonds now worth billions of dollars have stopped earning interest but have not been redeemed. It is easy to toss aside and forget about, or lose, paper savings bonds, especially if they were received as a gift as a child. Since most bonds stop earning interest after 30 years, it gets overlooked to be cashed in.
- d. Beneficiary of a pension with a company that went bankrupt: If someone once worked for a firm that went out of business and did not receive a pension that was earned under their plan, then the person may have retirement funds waiting to be retrieved.
- e. Forgotten money: It can include unclaimed property left in safe deposit boxes, uncashed payroll checks, bank account monies, utility deposits or life insurance proceeds that have been forgotten about.

• Sources:

- 1. https://unclaimed.org/what-is-unclaimed-property/
- 2. https://www.forbes.com/sites/forbesfinancecouncil/2022/04/06/unclaimed-property-in-a-digital-world/?sh=50e3540e10e6
- 3. https://www.nbcboston.com/investigations/consumer/mass-has-3-4b-in-unclaimed-money-and-these-people-want-to-help-give-it-back/2722208/
- 4. https://www.collibra.com/us/en/blog/the-7-most-common-data-quality-issues
- 5. https://www.techtarget.com/searchdatamanagement/feature/Data-quality-for-big-data-Why-its-a-must-and-how-to-improve-it
- 6. https://www.forbes.com/sites/forbesfinancecouncil/2022/04/06/unclaimed-property-in-a-digital-world/?sh=50e3540e10e6
- 7. https://taxexecutive.org/why-unclaimed-property-risk-management-is-on-the-menu-in-2022/

- 8. https://ucpi.sco.ca.gov/
- 9. How to find unclaimed money from the IRS and others (winknews.com)
- 10. <u>Unclaimed Money from the Government | USAGov</u>
- 11. Massachusetts Unclaimed Funds (unclaimed-funds.org)
- 12. <u>Unclaimed Insurance Policies Over \$350 million in California | UnclaimedMoney.org</u>
- **13.** *6 tips for finding unclaimed money (onemilitary.net)*
- 14. Americans owed billions in unclaimed money | wqad.com
- 15. <u>Shouldn't Regulators Be Accountable for Returning Rs82,000 Crore of Unclaimed Money to Savers?</u>
 | NewsClick

Appendix

(1)

State of California

<u>Banks</u> Bank of America JP Morgan Chase Wells Fargo Bank of New York Mellon Corporate Trust

Unclaimed Properties

Passbooks Mature Bond Principal Interest (Bond Coupons) **Principal Payments** Paying Agent Account

State of Massachusetts

Banks

Bank of America JP Morgan Chase Wells Fargo CITI Bank

Unclaimed Properties

Mature CD or Save Cert Other Safekeeping Unidentified Deposit Checking Accounts

(2)

```
In [2]: #Importing the Datasets for Massachusetts Unclaimed Porperty
          MA2 = pd.read_csv (r'/Users/jonathangabriel/Documents/Data Wrangling Project/Datasets/MA2.txt')
          MA2.to_csv (r'/Users/jonathangabriel/Documents/Data Wrangling Project/Datasets/Massl.csv', index=None)
          MA3 = pd.read_csv (r'/Users/jonathangabriel/Documents/Data Wrangling Project/Datasets/MA3.txt')
MA3.to_csv (r'/Users/jonathangabriel/Documents/Data Wrangling Project/Datasets/Mass2.csv', index=None)
In [3]: #Reading the file to be saved as a csv file.
          ab1 = pd.read_csv('Massl.csv', low_memory = False )
ab2 = pd.read_csv('Massl.csv', low_memory = False )
In [4]: #Merge the datasets
          result = [ab1, ab2]
          df_MA = pd.concat(result)
```

(3)

```
In [2]: #Import Datasets
                 df1 = pd.read_csv('CAl.csv', encoding='latin1', low_memory = False)
df2 = pd.read_csv('CA2.csv', encoding='latin1', low_memory = False)
df3 = pd.read_csv('CA3.csv', encoding='latin1', low_memory = False)
In [3]: #Merge the datasets
                 result = [df1, df2, df3]
df_CA = pd.concat(result)
```

(4)

```
In [159]: df_MA.columns
dtype='object')
(5)
In [6]: df CA.columns
Out[6]: Index(['PROPERTY_ID', 'PROPERTY_TYPE', 'CASH_REPORTED', 'SHARES_REPORTED', 'NAME_OF_SECURITIES_REPORTED', 'DATE_REPORTED', 'NO_OF_OWNERS', 'OWNER_NAME', 'OWNER_STREET_1', 'OWNER_STREET_2', 'OWNER_STREET_3', 'OWNER_CITT', 'OWNER_STATE', 'OWNER_ZIP', 'OWNER_COUNTRY_CODE', 'CURRENT_CASH_BALANCE', 'NUMBER_OF_PENDING_CLAIMS', 'NUMBER_OF_PAID_CLAIMS', 'DATE_OF_LAST_CONTACT', 'HOLDER_NAME', 'HOLDER_STREET_1', 'HOLDER_STREET_2', 'HOLDER_STREET_3', 'HOLDER_CITY', 'HOLDER_STATE', 'HOLDER_ZIP', 'CUSIP'], 'dtype='Object')
                   dtype='object')
(6)
  In [160]: #Selecting certain useful columns.
               (7)
 df CA subset
(8)
 In [164]: #Filtering out chosen bank names
              df_MA = df_MA[df_MA[' HolderName'].str.contains("JP MORGAN CHASE BANK|BANK OF AMERICA|WELLS FARGO|CITIBANK")]
              df MA
 Out[164]: st NameFirst NameMiddle
                                              Address1 Address2
                                                                             City ZipCode PropertyTypeCodeDescription HolderName RemittedCash OriginalSecurityCashAi
                                                                                                Accounts Receivable Credit
                                                                                                                           CITIBANK.
             CZ MARYNIA
                                      E TROWBRIDGE
                                                             NaN
                                                                      CAMBRIDGE
                                                                                     02138
                                                                                                                                               3.48
                                              ST APT 8
                                      M 56 EASTLAND
                                                                                                Accounts Receivable Credit
                                                                                                                           CITIBANK.
             IN
                     APRIL
                                                             NaN JAMAICA PLAIN
                                                                                    02130
                                                                                                                                               0.66
                                                                                                               Balances
(9)
              #Subset with only JPMORGAN CHASE BANK, BANK OF AMERICA, WELLS FARGO, BANK OF NEW YORK MELLON CORPORATE TRUST

df_CA_Banksubset = df_CA_subset[df_CA_subset['HOLDER_NAME'].str.contains

("JPMORGAN CHASE BANK|BANK OF AMERICA|WELLS FARGO|BANK OF NEW YORK MELLON CORPORATE TRUST")]
              df_CA_Banksubset
  Out[131:
                                                                                                                                      UNCLAIMED
MONEY
                       PROPERTY_ID
                                        PROPERTY_TYPE DATE_REPORTED
                                                                              OWNER_NAME
                                                                                                 ADDRESS
                                                                                                                    CITY ZIPCODE
                                                                                                                                                         HOLDER NAME
                                                                 1989-02-05
                                                                                               No ADDRESS
                                                                                                                  No City
                                                                                                                                                             PASSBOOK
ACCOUNTS
                                           56 : Checking
accounts, dmnd
depsit
                                                                                                                           No
Zipcode
                                                                                                                                                     WELLS FARGO BANK
                              341109
                                                                 1976-05-07 MOORE MABEL No ADDRESS
                                                                                                                                           500.00
                                                                                                                  No City
```

```
In [170]: #Replacing null values from columns Address1, Address1 and merging them together.
df_MA[' Address1'] = df_MA[' Address1'].fillna('')
df_MA[' Address2'] = df_MA[' Address2'].fillna('')
df_MA.insert(loc = 3, column = 'Address', value = df_MA[' Address1'] + " " + df_MA[' Address2'].map(str))
del df_MA[' Address1']
del df_MA[' Address2']
```

(11)

(12)

(13)

Out [172]: PropertyID ReportYear Owner_Name Address City Zipcode PropertyTypeCodeDescription HolderName Unclaimed_Money

O 26212501 2020 MARYNIA E E ST APT 8 CAMBRIDGE 02138 Accounts Receivable Credit Balances City Balances

O 26212501 2020 MARYNIA E E ST APT 8 CAMBRIDGE 02138 Accounts Receivable Credit Balances

(14)

In [189]: #Sorting the data based on Property ID.
df_MASS = df_MA.sort_values(by=['PROPERTY_ID'])
df_MASS = df_MA.reset_index(drop=True)
df_MASS

Out[189]: PROPERTY_ID YEAR_REPORTED OWNER_NAME PROPERTY_TYPE HOLDER_NAME UNCLAIMED_MONEY **ADDRESS** CITY ZIP CO TEF TUFF JP MORGAN 25361511 NA 39 DODGE BEVERLY 01915 Underlying shares 26.000 CHASE BANK 11 ROYCE RD JP MORGAN GREGORY P.P. 25361512 2019 ALLSTON 02134 2.000 1 Underlying shares APT 32 CHASE BANK

(15)

	PROPERTY_ID	PROPERTY_TYPE	DATE_REPORTED	OWNER_NAME	ADDRESS	CITY	ZIPCODE	MONEY	HOLDER_NAME
942745	7242	AC51: Bank of America Passbooks	1989-02-05	WILLIAMS AILEEN G	1237 FRANCIS ST APT 15	LOGMONT	80501	1495.81	BANK OF AMERICA
470151	8473	AC51: Bank of America Passbooks	1989-02-05	SIU FRANCIS	948 GUERRERO	SAN FRANCISCO	94110	590.67	BANK OF AMERICA

(16)

Dataset statistics

Number of variables	28
Number of observations	2987149
Missing cells	17641896
Missing cells (%)	21.1%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	638.1 MiB
Average record size in memory	224.0 B

(17)

Dataset statistics

```
Number of variables
                                                      27
Number of observations
                                                       1763565
                                                       6864482
Missing cells
Missing cells (%)
                                                       14.4%
Duplicate rows
                                                      0
Duplicate rows (%)
                                                      0.0%
Total size in memory
                                                       363.3 MiB
                                                      216.0 B
Average record size in memory
```

(18)

```
In [83]: #Replacing null values from columns Last name, First name and Middle name and merging them together.
               df_MA[' NameLast'] = df_MA[' NameLast'].fillna('')
df_MA[' NameFirst'] = df_MA[' NameFirst'].fillna('')
df_MA[' NameMiddle'] = df_MA[' NameMiddle'].fillna('')
               df_MA.insert(loc = 2, column = 'Owner_Name', value = df_MA[' NameFirst'] + " " + df_MA[' NameMiddle'] + " " + df_MA[' NameMiddle']
               del df_MA[' NameLast']
del df_MA[' NameFirst']
del df_MA[' NameMiddle']
   Out[84]:
                         PropertyID ReportYear Owner_Name
                                                                      Address1 Address2
                                                                                                        City ZipCode PropertyTypeCodeDescription HolderName RemittedCash C
                                                                                                                            Accounts Receivable Credit
Balances
                                                                                                                                                        CITIBANK.
                      0 26212501
                                            2020 MARYNIA E E TROWBRIDGE
                                                                                                CAMBRIDGE
                                                                                                                 02138
                                                                                                                                                                              3.48
                                                     APRIL M M 56 EASTLAND
                                                                                                                            Accounts Receivable Credit
                                                                                                                                                         CITIBANK.
                      1 28212502
                                                                                             JAMAICA PLAIN
                                            2020
                                                                                      NaN
                                                                                                                02130
                                                                                                                                                                              0.66
                                                                                                                            Accounts Receivable Credit
                                                                                                                                                         CITIBANK,
                      2 26212503
                                            2020
                                                     KEVIN C C 43 BOLAS RD
                                                                                      NaN
                                                                                                  DUXBURY
                                                                                                                 02332
                                                                                                                                                                              0.88
                                                                                                                                            Balances
                                                                             13
(20)
    In [87]: #Replacing null values from columns Address1, Address1 and merging them together.
df_MA[' Address1'] = df_MA[' Address1'].fillna('')
df_MA[' Address2'] = df_MA[' Address2'].fillna('')
                 df_MA.insert(loc = 3, column = 'Address', value = df_MA[' Address1'] + " " + df_MA[' Address2'].map(str))
                 del df_MA[' Address1']
del df_MA[' Address2']
(21)
 In [174]: for x in df_MA.columns:
                     missing_val= df_MA[x].isnull().sum()
                     if missing_val>0:
                          print("{} has {} missing value(s)".format(x,missing_val))
                           print("{} has NO missing value!".format(x))
                PROPERTY ID has NO missing value!
                YEAR_REPORTED has NO missing value!
                OWNER_NAME has NO missing value!
                ADDRESS has NO missing value!
               CITY has 557 missing value(s)
ZIP has 1447 missing value(s)
                PROPERTY_TYPE has NO missing value!
               HOLDER_NAME has NO missing value!
UNCLAIMED_MONEY has NO missing value!
 In [175]: #Filling Missing values for No Cities and No Zip
df_MA.CITY = df_MA.CITY.fillna('No City')
df_MA.ZIP = df_MA.ZIP.fillna('No ZIP')
```

(22)

```
In [82]: #Cleaning and giving the zipcode a proper format.
           df_MA['Zip'] = df_MA['ZipCode'].str.replace('|-','')
df_MA['Zip'] = df_MA['Zip'].str.slice(stop=5)
            /var/folders/6_/g91ywzxj5hb6v1n3ckbxczlr0000gn/T/ipykernel_65355/3371020668.py:3: FutureWarning: The default value of regex wil
           1 change from True to False in a future version.
    df_MA['Zip'] = df_MA[' ZipCode'].str.replace(' |-','')
Out[82]:
                    PropertyID ReportYear
                                             NameLast NameFirst NameMiddle
                                                                                    Address1 Address2
                                                                                                                   City ZipCode PropertyTypeCodeDescription Hold
                                                                                          52
                                                                                                                                      Accounts Receivable Credit
                                                                            E TROWBRIDGE
STAPT 8
                 0 26212501
                                     2020 MACKIEWICZ MARYNIA
                                                                                                            CAMBRIDGE
                                                                                                                           02138
                                                                               56 EASTLAND
                                                                                                                                      Accounts Receivable Credit
                                                                                                                                                               CI
                 1 26212502
                                               MACKIN
                                                            APRIL
                                                                                                   NaN
                                                                                                         JAMAICA PLAIN
                                                                                                                           02130
                                     2020
                                                                                                                                                     Balances
                                                                                                                                      Accounts Receivable Credit
                 2 26212503
                                               MACKIN
                                                            KEVIN
                                                                            C 43 BOLAS RD
                                                                                                   NaN
                                                                                                              DUXBURY
                                                                                                                           02332
                                                                                                                                      Accounts Receivable Credit
                                                                                                   NaN NEWBURYPORT
                 3 26212504
                                     2020
                                               MACKIN
                                                           SCOTT
                                                                                  PROSPECT
                                                                                                                           01950
                                                                                                                                                     Balances
                                                                                                                                      Accounts Receivable Credit
                 4 26212505
                                     2020 MACKINNON
                                                            BRIAN
                                                                             J 7 STRONG ST
                                                                                                 APT 2 NEWBURYPORT
                                                                                                                           01950
                                                                                                                                      Accounts Receivable Credit Cl
            548090 26214873
                                     2020
                                               MISNER
                                                            BETH
                                                                                               APT 313
                                                                                                             FRANKLIN
                                                                                                                           02038
                                                                                         RD
                                                                                                                                                     Balances
```

(23)

```
In [85]: #Standardizing bank names.
                            #Standard:zing bank names.

df_MA.loc[df_MA[' HolderName'].str.contains("BANK OF AMERICA"), ' HolderName']="BANK OF AMERICA"

df_MA.loc[df_MA[' HolderName'].str.contains("JP MORGAN CHASE"), ' HolderName']="JP MORGAN CHASE BANK"

df_MA.loc[df_MA[' HolderName'].str.contains("WELLS FARGO"), ' HolderName']="WELLS FARGO BANK"

df_MA.loc[df_MA[' HolderName'].str.contains("CITIBANK"), ' HolderName']="CITIBANK"
```

Ιn	[86]	:	df_l

	_										
[86]:		PropertyID	ReportYear	Owner_Name	Address1	Address2	City	ZIpCode	PropertyTypeCodeDescription	HolderName	RemittedCash
	0	26212501	2020	MARYNIA E E	52 TROWBRIDGE STAPT 8	NaN	CAMBRIDGE	02138	Accounts Receivable Credit Balances	CITIBANK	3.48
	1	26212502	2020	APRIL M M	56 EASTLAND RD	NaN	JAMAICA PLAIN	02130	Accounts Receivable Credit Balances	CITIBANK	0.66
	2	26212503	2020	KEVIN C C	43 BOLAS RD	NaN	DUXBURY	02332	Accounts Receivable Credit Balances	CITIBANK	0.88
	3	26212504	2020	SCOTT	PROSPECT ST	NaN	NEWBURYPORT	01950	Accounts Receivable Credit Balances	CITIBANK	91.56
	4	26212505	2020	BRIAN J J	7 STRONG ST	APT 2	NEWBURYPORT	01950	Accounts Receivable Credit Balances	CITIBANK	30.45
	548090	26214873	2020	BETH J J	4 FORGE HILL RD	APT 313	FRANKLIN	02038	Accounts Receivable Credit Balances	CITIBANK	150.89

(24)

In [178]: df_MA.insert(loc = 9, column = 'for_duplicates', value = df_MA['PROPERTY_ID'].map(str) + df_MA['YEAR_REPORTED'].map(str) + df_MA['(WNER_NAME'] + df_MA['ADDRESS'] + df_MA['CITY'] + df_MA['ZIP'].map(str) + df_MA['PROPERTY_TYPE'] + df_MA['HOLDER_NAME'] + df_MA['HOLDER df_MA

for_duplicate	UNCLAIMED_MONEY	HOLDER_NAME	PROPERTY_TYPE	ZIP	CITY	ADDRESS	OWNER_NAME	YEAR_REPORTED	PROPERTY_ID	
262125012020MARYNIA E E52 TROWBRIDGE S APT 8 .	3.48	CITIBANK	Accounts Receivable Credit Balances	02138	CAMBRIDGE	TROWBRIDGE ST APT 8	MARYNIA E E	2020	26212501	o
262125022020APRIL N M56 EASTLAND RI JAMAICA PL.	0.66	CITIBANK	Accounts Receivable Credit Balances	02130	JAMAICA PLAIN	56 EASTLAND RD	APRIL M M	2020	26212502	1
262125032020KEVIN (C43 BOLAS RI DUXBURY02332A.	0.88	CITIBANK	Accounts Receivable Credit Balances	02332	DUXBURY	43 BOLAS RD	KEVIN C C	2020	26212503	2
262125042020SCOT 13 PROSPECT S' NEWBURYPORTO,	91.56	CITIBANK	Accounts Receivable Credit Balances	01950	NEWBURYPORT	13 PROSPECT ST	SCOTT	2020	26212504	3
262125052020BRIAN J7 STRONG ST AP 2NEWBURYP	30.45	CITIBANK	Accounts Receivable Credit Balances	01950	NEWBURYPORT	7 STRONG ST APT 2	BRIAN J J	2020	26212505	4
	***		***							

In [179]: df_MA = df_MA.drop_duplicates(subset=['for_duplicates']) df_MA

In [180]: #Dropping Duplicates from the dataframe
df_MA = df_MA.drop(['for_duplicates'], axis=1)

CA Dataset:

MA Dataset:

Dataset statistics	
Number of variables	10
Number of observations	396058
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	30.2 MiB
Average record size in memory	80.0 B

Dataset statistics	
Number of variables	9
Number of observations	61854
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	4.2 MiB
Average record size in memory	72.0 B

(26)

(27)

