

Resolution No.: AC/II (24-25).2.RUS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Bachelor of Science (B.Sc.) Physics

Program Code: RUSPHY

(As per the guidelines of NEP 2020 Academic Year 2025-26)

Graduate Attributes (GA)

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelor's Program in Science also encourages students to reflect on the broader purpose of their education.

A stu	dent completing Bachelor's Degree in Physics Program will be able to:
GA No.	Description
	Demonstrate in depth understanding in the relevant science discipline. Recall,
GA1	explain, extrapolate and organize conceptual scientific knowledge for execution
	and application and also to evaluate its relevance.
	Critically evaluate, analyse and comprehend a scientific problem. Think
GA2	creatively, experiment and generate a solution independently, check and
	validate it and modify if necessary.
	Access, evaluate, understand and compare digital information from various
GA3	sources and apply it for scientific knowledge acquisition as well as scientific data
	analysis and presentation.
	Articulate scientific ideas, put forth a hypothesis, design and execute testing
GA4	tools and draw relevant inferences. Communicate the research. work in
	appropriate scientific language.
	Demonstrate initiative, competence and tenacity at the workplace. Successfully
GA5	plan and execute tasks independently as well as with team members. Effectively
	communicate and present complex information accurately and appropriately to
	different groups.
	Use an objective, unbiased and non-manipulative approach.in collection and
GA6	interpretation of scientific data and avoid plagiarism and violation of Intellectual
	Property Rights. Appreciate and be sensitive to environmental and sustainability
00	issues and understand its scientific significance and global relevance.
	Translate academic research into innovation and creatively design scientific
GA7	solutions to problems. Exemplify project plans, use management skills and lead
	a team for planning and execution of a task.
	Understand cross disciplinary relevance of scientific developments and relearn
GA8	and reskill so as to adapt to technological advancements.

PROGRAM OUTCOMES

A stu	ident completing Bachelor's Degree in Physics Program will be able to:			
PO No.	Description			
	To demonstrate procedural knowledge related to different areas of study in			
PO1	Physics including Quantum Mechanics, Nuclear Physics, Electronics, Classical			
	mechanics, Material Science, Microprocessor.			
	To demonstrate comprehensive, quantitative and conceptual understanding of			
PO2	the core areas of Physics and keeping update with current developments in the			
	academic field of Physics			
	To demonstrate the ability to use analytical skills in Physics and its related areas			
PO3	of technology to solve a wide range of problems including open ended problems			
	associated with Physics.			
	Utilize contemporary experimental apparatus and analysis tools to acquire,			
PO4	analyse and interpret scientific data in the extents of Physics with reference to			
	Research.			
	Plan and execute Physics-related experiments or investigations, analyse and			
PO5	interpret data collected using appropriate methods, and report accurately the			
	findings relating to relevant theories of Physics.			
	Develop skills in areas related to specialization in the subfields of physics-			
PO6	Microprocessor, Microcontroller, VHDL, ARM7 and Python.			
	Demonstrate communication skills, to present complex information in a concise			
P07	manner and develop personal skills such as the ability to work both			
	independently and in a group.			

PROGRAM OUTLINE

Year	Semester	Course Code	Course Title	Credits
		RUSMJPHYO301	Mathematical Methods in	3
			Physics (DSC-I)	
		RUSMJPHYPO301	Practical Based on	1
			Mathematical Methods in	
2025-26	V		Physics (DSC- I)	
		RUSMJPHYO302	Solid State Physics (DSC- II)	3
		RUSMJPHYPO302	Practical Based on Solid State	1
			Physics (DSC- II)	
		RUSMJPHYO303	Atomic and Molecular Physics	3
			(DSC- III)	
		RUSMJPHYPO303	Practical Based on Atomic and	1
			Molecular Physics (DSC- III)	
		RUSMJPHYO304 A	Nanotechnology (DSE A)	3
		RUSMJPHYPO304 A	Practical Based on	1
			Nanotechnology (DSE A)	
		RUSMJPHYO304 B	Special Theory of Relativity (DSC	3
			B)	
		RUSMJPHYPO304 B	Practical Based on Special	1
			Theory of Relativity (DSE B)	
	•	RUSMIPHYO305	Electronic Instrumentation (Minor)	1
	50	RUSMIPHYPO305	Practical Based on Electronic	1
			Instrumentation (Minor)	
	J.Co.	RUSVSCPHYPO306	Analog Electronics (VSC)	2
		RUSFPO307	FP/CC	2
00			Total Credits	22
Year	Semester	Course Code	Course Title	Credits
	RUSMJPHYE31		Classical Mechanics (DSC-I)	3
R		RUSMJPHYPE311	Practical Based on Classical	1
			Mechanics (DSC-I)	
		RUSMJPHYE312	Electronics (DSC-II)	3

		RUSMJPHYPE312	Practical Based on Electronics	1
2025-26	VI		(DSC-II)	
		RUSMJPHYE313	Nuclear Physics (DSC-III)	3
		RUSMJPHYPE313	Practical Based on Nuclear	1
			Physics (DSC-III)	
		RUSMJPHYE314 A	Electrodynamics (DSE A)	3
		RUSMJPHYPE314 A	Practical Based on	
			Electrodynamics (DSE A)	
		RUSMJPHYE314 B	Elements of Material Science	3
			(DSE B)	
		RUSMJPHYPE314 B	Practical Based on Elements of	1
			Material Science (DSE B)	
		RUSMIPHYE315	C++ Programming (Minor)	1
		RUSMIPHYPE315	Practical Based on C++	1
			Programming (Minor)	
		RUSOIT316	ОЈТ	4
			Total Credits	22

Course Code: RUSMJPHY0301

Course Title: Mathematical and Statistical Physics (SEM-V)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understand the scope of statistical concept for solving the equation of thermal
	mechanics.
CO2	Comprehend the basic concepts of mathematics & its applications in physical
	sciences
CO3	Demonstrate the thermodynamic relations.
CO4	Understand the concepts of MB, BE and FD distribution. Comparison of
	distribution.
CO5	Understand the concepts by solving the numerical.

CO-PO Mapping

RUSMJPHYO301 Mathematical and Statistical Physics (SEM-V)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	2	2	1	2	1	1	0	1
CO2	3	2	2	2	1	1	1	2
CO3	3	3	1	2	2	1	0	2
CO4	2	2	1	3	2	1	0	2
CO5	2	2	2	3	2	2	1	3

Detailed Syllabus

RUSMJPHYO301: Mathematical and Statistical Physics (DSC-I) (SEM-V)

Units	Title	Credits - 03
I	Differential Equations	15 Lectures
	Second-order non-homogeneous linear differential	
	equations with constant coefficients: the method of	110,0
	successive integrations and the method of	
	undetermined coefficients. Forced vibrations and	
	resonance. The Laplace transform and its use in the	
	solution of differential equations	
	Fourier series: Introduction, Fourier cosine and sine	
	series, Change of interval, Fourier Integral, Complex	
	form of the Fourier series	
	Fourier transforms: Introduction, Formal development	
	of the complex Fourier transform, Cosine and Sine	
	transforms, The transforms of derivatives (with proof)	
II	Statistical & Thermal Physics	15 Lectures
	Description of a system: Why statistical approach,	
	Particle-states, System-states, Microstates and	
	Macrostates of a system, Equilibrium and Fluctuations,	
	Irreversibility, The equi-probability postulate, Statistical	
	ensemble, Number of states accessible to a system,	
~?	Phase space, Reversible processes.	
	Thermal and Adiabatic Interactions: Thermal	
	interaction, Canonical distribution, Energy fluctuations,	
7.0.	Entropy of a system in a heat bath, Helmholtz free	
	energy, Adiabatic interaction and enthalpy, General	
	interaction and the first law of thermodynamics,	
	Infinitesimal general interaction, Gibbs free energy,	
	Phase transitions.	
III	Statistical Mechanics and Quantum Statistics	15 Lectures

Statistical Mechanics: Phase space, The probability of	
a distribution, The most probable distribution, Maxwell-	
Boltzmann statistics, Molecular speeds.	
Quantum Statistics: Bose-Einstein statistics, Black-	
body radiation, The Rayleigh-Jeans formula, The	
Planck radiation formula, Fermi-Dirac statistics,	
Comparison of results, Transition between states.	

Course Code: RUSMJPHY PO301	Practical based on Mathematical and Statistical Physics: DSC- I	Credits/Hours
1	To study the thermal Diffusivity of given material brass	
2	To study thermal conductivity of specific material by Lee's Method	1 credit /30 hrs
3	To study and verify Stefan's law of radiation.	
4	To study the p-n junction diode as a temperature sensor.	
5	To study thermistor characteristics	

Main References:

- 1. Mathematical Methods in the Physical Sciences by Mary L. Boas (MB)
- 2. Introduction to Mathematical Physics by Charlie Harper (CH)
- 3. Statistical & Thermal Physics by S. Lokanathan & R. S Gambhir (LG)
- 4. Perspectives of Modern Physics by Arthur Beiser (AB)

Modality of Assessment - RUSMJPHYO301 (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit – I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	01111
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	J
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit – III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPO301)

C) Semester End Examination - 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Options	Marks
1	Laboratory work	20
2	Journal and Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYO302

Course Title: Solid State Physics (SEM-V)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Get a brief idea about crystalline and amorphous substances, about
	lattice, unit cell, miller indices, reciprocal lattice, and concept of Brillouin
	zones and diffraction of x-rays by different crystalline materials.
CO2	Gain knowledge of lattice vibrations the basics of the optical and acoustic
	phonons in crystals.
CO3	Understand about different types of magnetism like diamagnetism and
	Para magnetism. Quantum mechanical formulation of magnetism and
	application of Langevin diamagnetic equation.
CO4	Carry out the experiments based on the theory that they have learned to
	measure carrier lifetime, magnetic susceptibility, and dielectric constant.
	They will also employ to four probe methods to determine electrical
	conductivity and the Hall setup to determine the hall coefficient of
	semiconductor.
CO5	Demonstrate cautious problem-solving skills in all above areas.

CO-PO Mapping

RUSMJPHYO302: Solid State Physics (SEM-V)

CO\PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	1	0	1
CO2	2	2	2	2	1	1	1	2
CO3	3	3	1	2	2	1	0	2
CO4	2	2	1	3	2	1	0	2
CO5	2	3	2	3	2	2	1	3

<u>Detailed Syllabus</u> RUSMJPHYO302: Solid State Physics (DSC-II) (SEM-V)

Units	Solid State Physics	Credits - 03
I	Electrical properties of metals	15 Lectures
	Electrical properties of metals: Classical free electron	
	theory of metals, drawbacks of classical theory, Relaxation	20
	time, Collision time and mean free path, Quantum theory	, 00
	of free electrons, Fermi-Dirac statistics and electronic	
	distribution in solids, Density of energy states and Fermi	
	energy, Heat capacity of the electron gas, Mean energy of	
	electron gas at 0 K.	
	Band theory of solids, The Kronig-Penney model (Omit eq.	
	6.184 to 6.188), Brillouin zones, Number of wave functions	
	in a band, Motion of electrons in a one-dimensional	
	periodic potential, Distinction between metals, insulators	
	and intrinsic semiconductors	
II	Crystal Physics	15 Lectures
	Crystal Systems, Crystal Symmetry, Bravais space	
	lattices, Metallic crystal structures, Relation between the	
	density of crystal material and lattice constant in a cubic	
	lattice, Directions, Planes, Miller Indices, Important planes	
	in simple cubic structure, separation between lattice planes	
	in a cubic crystal, Reciprocal Lattice, X-ray Diffraction.	
III	Conduction in Semiconductors and Magnetism	15 Lectures
20	Electrons and Holes in an Intrinsic Semiconductor,	
	Conductivity, Carrier concentrations in an intrinsic	
	semiconductor, Donor and Acceptor impurities, Charge	
	densities in a semiconductor, Fermi level in extrinsic	
~	semiconductors, Diffusion, Carrier lifetime, The continuity	
	equation, Hall Effect Magnetic Properties of matter:	
	Diamagnetism and Paramagnetism, The origin of	
	permanent magnetic dipoles, Diamagnetism and Larmor	
	precession, the static paramagnetic susceptibility.	

Main References:

- 1. Solid State Physics by S. O. Pillai, New Age International. 6th Ed. (SOP).
- Electronic Devices and Circuits by Millman, Halkias & Satyabrata Jit. (3rd Ed.) Tata McGraw Hill. (MH)
- 3. Solid State Physics by A. J. Dekker, Prentice Hall (D)

Additional References:

- 1. Introduction to Solid State Physics by Charles Kittel, 7th edition John Wiley & sons.
- 2. Fundamentals of Solid State Physics by J. Richard Christman, John Wiley & sons.
- Solid State Physics Structure and properties of Materials by M.A. Wahab, Narosa Publications 1999.
- 4. Elementary Solid State Physics by M. Ali Omar, Addison Wesley (LPE).
- 5. Solid State Physics—An Introduction to Principles of Materials Science by H. Ibach and H. Luth, 3rd edition, Springer International Edition (2004)

0		
Course Code: RUSMJPHY	Practical based on DSC-II	Credits/
PO302		Hours
4	To determine Hall coefficient and carrier density of a	
1	semiconductor materials by Hall effect.	
2	To measure dielectric constant, Curie temperature and	
2	verification of Curie-Weiss law for ferroelectric materials	
2	To study Hysteresis loop and magnetization curve of	1 credit
3	ferromagnetic material (B-H Curve)	/30 hrs
	To determine the resistivity and energy band gap of given	
4	specimen semiconductor using Four Probe method.	
	To determine the resistivity and Hall coefficient of given	
5	semiconductor by Van der Pauw (VDP) method.	

Modality of Assessment - RUSMJPHYO302 (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Class Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	OTILE 1
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	311K 11
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit - III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	31 III
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPO302)

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal and Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYO303

Course Title: Atomic and Molecular Physics (SEM-V)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understand the energy level by spin of an electron and its energy level diagram.
CO2	Understand spin of an electron and its experimental proof with exclusive principle.
CO3	Understand the magnetic effect on the atom and their consequences using quantum and classical theories.
CO4	Understand the RAMAN effect on Molecular spectra and its consequences on various energy levels.
CO5	It enhances the knowledge of advanced physics, quantum and classical aspects for the further studies.

CO-PO Mapping

RUSMJPHYO303: Atomic and Molecular Physics (SEM-V)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	1	0	1
CO2	2	2	2	2	1	1	1	2
CO3	3	3	1	2	2	1	0	2
CO4	2	2	1	3	2	1	0	2
CO5	2	3	2	3	2	2	1	3

Detailed Syllabus

RUSMJPHYO303: Atomic and Molecular Physics (DSC-III) (SEM-V)

Unit/s	Title	Credits - 03		
	Spin of Electron			
	Electron Spin: The Stern-Gerlach experiment, Pauli's Exclusion	.0,		
ı	Principle, Symmetric and Antisymmetric wave functions.			
•	Spin orbit coupling, Hund's Rule, Total angular momentum, Vector	15 Lectures		
	atom model, L-S and j-j coupling. Origin of spectral lines, Selection			
	rules.			
	Effects of Magnetic Field			
	Effect of Magnetic field on atoms, Zeeman effect, Earlier discoveries			
	and developments, Experimental arrangement, The normal Zeeman			
II	effect and its explanation (Classical and Quantum)	15 Lectures		
	The Lande g factor, Anomalous Zeeman effect; Paschen-Back			
	effect, Paschen-Back effect of principal series doublet, Selection			
	rules for Paschen-Back effect.			
	Molecular Spectra and Raman Effect			
	Molecular Spectra (Diatomic Molecules): Rotational energy levels,			
	Rotational spectra, Vibrational energy levels, Vibrational-Rotational			
	spectra. Electronic Spectra of Diatomic molecules: The Born-			
III	Oppenheimer approximation, Intensity of vibrational-electronic	15 Lectures		
	spectra: The Franck-Condon principle.	15 Lectures		
	Raman Effect: Quantum Theory of Raman Effect, Classical theory of			
	Raman Effect, Experimental Setup of Raman Effect, Applications of			
A	Raman Spectroscopy.			

Main References:

- 1. Introduction to Quantum mechanics by P. T Mathews (PTM)
- 2. Perspectives of Modern Physics by Arthur Beiser (AB)
- 3. Introduction to Atomic & Nuclear Physics by Henry Semat& J. R Albright (5th Ed) (HSA); Introduction to Atomic Spectra by H. E White (HEW)
- 4. Fundamentals of Molecular Spectroscopy by C. N Banwell& E. M McCash (BM)

Course Code:		
RUSMJPHYPO	Practical based on Atomic and Molecular Physics	Credits/Hours
303	(DSC-III)	
1	To Study the effect of magnetic field using Zeeman	
	Effect	
2	To study the double diffraction	.0,
3	To study the characteristics of a given sample using	1 credit /30
	FTIR Spectroscopic technique.	hrs
4	To study of e/m by Thompson method	0),
5	To study the energy band-gap of Germanium diode.	
6	To study Mutual Inductance by Ballistic Galvanometer.	

Modality of Assessment - RUSMJPHY0303 (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	OTILE 1
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	OTILE II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit - III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	OTHE III
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPO303):

C) Semester End Examination- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal and Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYO304 A

Course Title: Nanotechnology (SEM-V)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	To Distinguish crystal structure and its properties
CO2	Differentiate between the different spectroscopy techniques
CO3	Demonstrating the analysis of the raw data
CO4	Compare and study of different properties of Nano materials.
CO5	Demonstrate quantitative problem-solving skills in all the topics covered

CO-PO Mapping

RUSMJPHYO304 A: Nanotechnology (SEM-V)

						~		
CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	2	1	1
CO2	3	2	2	2	1	2	1	1
CO3	2	3	3	2	2	3	2	2
CO4	3	2	2	3	1	2	2	1
CO5	3	3	2	3	3	2	2	2

<u>Detailed Syllabus</u> RUSMJPHYO304 A: Nanotechnology (SEM-V)

Units	Title	Credits - 03
I	Introduction to Nanotechnology	15 Lectures
	Introduction to Quantum Mechanics & Crystal structure De-	
	Broglie hypothesis, Uncertainty Principle, Schrödinger	40)
	Equation, Operator, Particle in a 1D box, Particle in a 3D box	. ~0/
	(qualitative), Crystal structure, Crystal orientation, Crystal	1103
	planes, Bravais lattice, Miller Indices, Atomic Packing	
	Density, crystal symmetry, ZnS, Diamond and NaCl crystal	
	structure, Melting point, Coordination number, Atomic	
	Bonding.	
II	Analysis Techniques	15 Lectures
	Optical spectroscopy: Optical absorption spectroscopy,	
	photoluminescence, FTIR, Raman spectroscopy, Electron	
	spectroscopy: XPS, Ultraviolet photo spectroscopy,	
	Rutherford back scattering spectroscopy(RBS), Secondary	
	ion mass spectroscopy (SIMS).	
III	Properties of Nanomaterial and Nanolithography	15 Lectures
	Introduction, Mechanical properties, Structural properties,	
	Melting of nanoparticles, Electric conductivity, Optical	
	Properties, Magnetic Properties.	
	Introduction, Lithography using photon, Lithography using	
	particle beams, Scanning probe lithography, Soft lithography.	

Main References:

- 1. Nanotechnology, Principles & Practices by Sulabha Kulkarni (SK)
- 2. Introduction to Nanotechnology by C. P. Poole, Jr. and F. J. Owens
- 3. Instrumental Methods of Analysis by H. H. Willard, I.I. Merit & J. A. Dean
- 4. X-ray structure Determination by G. H. Stout and I. H. Jensen
- 5. Fundamentals Of Molecular Spectroscopy by C. Banwell and McCash
- 6. Nanomaterials by A.K. Bandyopadhyay

Course		
Code:	Practical based on Nanotechnology : DSE - I	Credits/Hours
RUSMJPH		
YPO304 A		
1	To determine the grain size of nanomaterials (powder) using	
	Image J software.	1 credit / 30
2	To study Characteristics of nanomaterial (powder) using XRD	Hrs
	techniques.	116,0
3	To study Characteristics of nanomaterial (powder) using UV	
	techniques.	, 70,
4	To study Characteristics of nanomaterial (powder) using FTIR	
	techniques.	
5	To study Characteristics of nanomaterial (powder) using	
	RAMAN techniques	

Modality of Assessment - RUSMJPHYO304 A (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of two hours.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	Offic 1
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	Cilic II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit - III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPO304 A)

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal and Viva voce	05
	TOTAL	25

.....

Course Code: RUSMJPHYO304 B

Course Title: Special Theory of Relativity (SEM-V)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understand the Lorentz transformation equation.
CO2	Study the concepts of Michelson- Morley experiment, Doppler s effect.
CO3	Understand the Geometric Representation of Space-Time
CO4	Understand the relativistic Mechanics.
CO5	Understand the relativistic Dynamics.

CO-PO Mapping

RUSMJPHYO304 B: Special Theory of Relativity (SEM-V)

						_		
CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	2	1	1
CO2	3	3	2	2	1	2	1	1
CO3	3	3	2	3	1	2	2	1
CO4	3	3	2	3	2	3	2	2
CO5	3	3	2	3	2	3	2	2

<u>Detailed Syllabus</u> RUSMJPHYO304 B: Special Theory of Relativity (SEM-V)

Units	Title	Credits - 03
I	Special Theory of Relativity & Relativistic Kinematics	15 Lectures
	Experimental background of special theory of relativity and	
	relativistic kinematics: Galilean transformations, Newtonian	40,
	relativity, attempts to locate absolute frame: Michelson-	
	Morley experiment, attempts to preserve the concept of a	1103
	preferred ether frame: Lorentz Fitzgerald contraction,	
	Postulates of the special theory of relativity.	
	Relativistic Kinematics: Simultaneity, Derivation of Lorentz	
	transformation equations, Some consequences of the	
	Lorentz transformation equations: length contraction, time	
	dilation and meson experiment.	
II	Relativistic Kinematics	15 Lectures
	Relativistic Kinematics (continued): The relativistic addition of	
	velocities and acceleration transformation equations,	
	Aberration and Doppler Effect in relativity, The common	
	sense of special relativity.	
	The Geometric Representation of Space-Time: Space-Time	
	Diagrams, Simultaneity, Length contraction and Time	
	dilation, The time order and space separation of events, The	
	twin paradox .	
III	Relativistic Dynamics	15 Lectures
	Relativistic Dynamics: Mechanics and Relativity, the need to	
	redefine momentum, Relativistic momentum, Alternative	
	views of mass in relativity, The relativistic force law and the	
	dynamics of a single particle, The equivalence of mass and	
0,0,	energy, The transformation properties of momentum, energy	
	and mass.	

Course Code: RUSMJPH YPO304B	Practical based on DSE- II	Credits/Hours
1	To determine wavelength of given source by Michelson's interferometer.	1Credit / 30
2	To determine the frequency of sound wave by Kundt's tube	Hrs
3	To determine the width of LASER beam	. (0,9)
4	To determine the wavelength of LASER beam	

Main References:

- 1. Introduction to Special Relativity by Robert Resnick (Wiley Student Edition)
- 2. Special theory of Relativity by A. P. French

Modality of Assessment - RUSMJPHYO304B (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit – I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	Offit – I
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	- Office II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit – III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	J
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPO304B)

- C) External Examination (Semester End)- 25 Marks
 Semester End Practical Examination:
 - 1. Duration The duration for these examinations shall be of **two hours**.
 - 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal and Viva	05
	TOTAL	25

Overall Examination and Marks Distribution Pattern:

								7		RU	SMJF	PHY							
	RU	SMJF	РН	RU	ISMJP	ΗY	RU	SMJF	PHY	C	304	A/	RI	USMIP	ΉY	RU	SVSC	CPH	T. (.)
Course	Y	O301			O301			O301		RU	SMJF	PHY		O305	;	Y	PO30	06	Total
						•		0		()304	В							
	I	Е	Т	I	E	T		Е	Т	I	Е	Т	I	Е	Т	ı	Е	Т	
Theory	30	45	75	30	45	75	30	45	75	30	45	75	20	30	50		50	50	400

Course	RUSMJ PHYPO301	RUSMJPHY PO302	RUSMJPHY PO303	RUSMJPHYP O304 A/ RUSMJPHYP O304 B	RUSVSCPHY PO306	Total
Practical	25	25	25	25	50	150

[Grand Total N	larks: 550]

Resolution No.: AC/II (24-25).2.RUS10

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Bachelor of Science (B.Sc.) Physics

Program Code: RUSPHY

(As per the guidelines of NEP 2020 Academic Year 2025-26)

Course Code: RUSMJPHYE311

Course Title: Classical Mechanics (SEM-VI)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understanding the modification of Newton's second law by using the concepts
601	of gravitation.
CO2	Study the anharmonic motion of particles and framing the relation for the same.
CO3	Implement formulation of mechanical problem in Lagrange's equations and
003	concept of constraints.
CO4	Explore Application of D'Alembert's principle and Lagrange's equations to
CO4	Physical configurations.

CO-PO Mapping

RUSMJPHYE311: Classical Mechanics (SEM-VI)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	2	1	1
CO2	3	3	2	2	1	2	1	1
CO3	3	3	2	3	2	3	2	1
CO4	3	3	2	3	2	3	2	1
CO5	3	3	2	3	2	3	2	1

<u>Detailed Syllabus</u> RUSMJPHYE311: Classical Mechanics (SEM -VI)

Units	Title	Credits - 03
I	Motion under a Central Force	15 Lectures
	Motion under a central force, central force inversely	
	proportional to the square of the distance, Elliptical	76
	orbits. The Kepler's problem. Hyperbolic Orbits: The	(00)
	Rutherford problem – Scattering cross section.	11103
	Moving origin of co-ordinates, Rotating co-ordinate	$\sim O_{II}$
	systems, Laws of motion on the rotating earth,	
	Foucault pendulum, Larmor's theorem (with proof),	
II	Lagrangian Mechanics	15 Lectures
	Lagrange's equations: D'Alembert's principle,	
	generalized coordinates, Lagrange's equations using	
	D'Alembert's principle, Examples, Systems subject to	
	constraints, Examples of systems subject to	
	constraints, Constants of motion and ignorable	
	coordinates.	
III	Non-Linear Mechanics	15 Lectures
	Non-linear mechanics: Qualitative approach to chaos,	
	The anharmonic oscillator, Numerical solution of	
	Duffing's equation, Transition to chaos: Bifurcations	
	and strange attractors, Aspects of chaotic behaviour.	

Course		
Code:		
RUSMJ	Practical based on DSC- I	Credits/Hours
PHYP		
E311		
4	To determine of acceleration due to gravity 'g' by Kater's	
1	Pendulum	46
2	To determine cardinal points by using Goniometer	110,00
3	To determine modulus of rigidity (η) and young's modulus (Y)	
3	by flat Spiral Spring.	1 credit / 30
4	To determine surface tension of mercury using Quinke's	hours
4	Method.	
5	To determine acceleration due to gravity 'g' by bar pendulum.	
6	To determine velocity of liquid and adiabatic compressibility	
0	using Ultrasonic Interferometer.	

Main References:

- 1. Mechanics by Keith R. Symon (KRS)
- Classical Mechanics by A Modern Perspective by V. D Barger & M. S Olsson
 (BO)
- 3. Classical Mechanics by Herbert Goldstein (G)

Additional References:

- 1. An Introduction to Mechanics by Daniel Kleppner& Robert Kolenkow
- 2. Chaotic Dynamics An Introduction by Baker and Gollup

Modality of Assessment – RUSMJPHYE311 (SEM-VI)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Class Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit – I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit – III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	Clift III
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPE311):

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYE312

Course Title: Electronics (SEM-VI)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understand the basic electronic components FET, MOSFET, SCR and
COI	their applications.
CO2	Understand the selection and requirement of components based on Op-
CO2	Amp component and its characteristics for various applications.
CO3	Understand the theory and applied aspects of DC power supply,
CO3	Multivibrator OP-Amp and IC 555 Timer.
CO4	Understand the circuit assembling of various devices.
CO5	Understand Logic families- flip-flops and counters.
CO6	Understand Electronic communication techniques of modulations.

CO-PO Mapping

RUSMJPHYE312: Electronics (SEM-VI)

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	2	1	2	1	1
CO2	3	3	2	2	2	2	1	1
CO3	3	3	2	3	2	3	2	1
CO4	2	3	2	3	2	3	2	1
CO5	3	3	2	3	2	3	2	1
CO6	3	3	2	3	2	3	2	1

<u>Detailed Syllabus</u> RUSMJPHYE312: Electronics (SEM-VI)

Units	Title	Credits - 03
I	Transistors	15 Lectures
	Field Effect Transistors: JFET: Basic ideas, Drain Curve, the	
	trans-conductance curve, biasing in the ohmic region and the	40)
	active region, Trans-conductance, JFET common source	. 00
	amplifier, JFET as an analog switch, multiplexer, voltage	1103
	controlled resistor, Current sourcing.	
	MOSFET: Depletion and enhancement mode, MOSFET	
	operation and characteristics, digital switching.	
	Thyristors: SCR – Working, Equivalent circuit, important terms,	
	I-V Characteristics, SCR as a switch, half wave rectifier and full	
	wave rectifier.	
II	Operational Amplifier and 555 Timer	15 Lectures
	Differential Amplifier using transistor: The Differential Amplifier,	
	DC and AC analysis of a differential amplifier, Input	
	characteristic-effect of input bias, Off-set current and input offset	
	voltage on output, common mode gain, CMRR.	
	Transistor Multivibrators: Astable, Monostable and Bistable	
	Multivibrators,	
	Op Amp Applications: Log amplifier, Instrumentation	
	amplifiers, Voltage controlled current sources (grounded	
	load), First order Active filters, Astable using OP AMP,	
	square wave and triangular wave generator using OPAMP,	
~	Wein-bridge oscillator using OP AMP.	
	555 Timer: Block diagram, Triggered linear ramp	
	generator.	
HI	Logic families	15 Lectures
	Logic families: Standard TTL NAND, TTL NOR, Open	
	collector gates, Three state TTL devices, MOS inverters,	
	CMOS NAND and NOR gates, CMOS characteristics.	
	Applications of JK flip flop: Types of registers, 4-bit shift	
	register (serial in-serial out), Asynchronous counters, 4-bit	
	<u>.</u>	

up-down counter, MOD-3, MOD-5, Decade counter, Shift
counter.
Electronic communication techniques: Radio
broadcasting, Transmission and reception, Modulation,
Amplitude modulation, Modulation factor, Analysis of
amplitude modulated wave, Side band frequencies in AM
wave, Transistor amplitude modulator, Power in AM wave,
Limitations of AM, Frequency modulation. (Qualitative).

Main References:

- 1. Electronic Principles by A. P. Malvino and D.J. Bates (7th Ed.) (TMH).
- 2. Principles of Electronics by V.K. Mehta and Rohit Mehta. S. Chand Publications. (11th Ed.).
- 3. Functional Electronics by K.V. Ramanan (TMH).
- 4. Digital Principles and Applications by Malvino and Leach (4th Ed) (TMH).
- 5. Integrated Electronics by Millman & Halkias Mc Graw Hill International.

Additional References:

Electronic Devices and Circuits by S. Salivahanan, N. Suresh Kumar and A. Vallavaraj. (2nd Ed.) (Tata McGraw Hill)

Course Code RUSMJPHYP E312	RUSMJPHYP Practical based on DSC- II					
1.	To study the Schmitt trigger using IC 741 OpAmp	1 credit/				
2.	To study the IC-555 timer as a Astable Multivibrator	30 hours				
3.	To study the IC-555 timer as ramp generator	-				
4.	To study FET characteristics					
5.	To study UJT as relaxation oscillator					
6.	To study SCR characteristics					
7.	To study SCR Half wave rectifier					
8.	To study Photodiode/Phototransistor characteristics					

Modality of Assessment – RUSMJPHYE312 (SEM-VI)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	Offic 1
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	Offic – II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit - III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	Orine - III
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPE312):

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of two hours.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal / Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYE313

Course Title: Nuclear Physics (SEM - VI)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Distinguish Gamow theory of alpha decay and derive Geiger- Nuttal law.
CO2	Compare the performances of different accelerators.
CO3	Evaluate each term involved in Weizsacker 's semi empirical mass formula and derive the equation of it.
CO4	Distinguish of discovery of basic elementary particle.
CO5	Understand the basics of Meson theory of nuclear force.
CO6	Understand the different elementary particle and their conservation laws.
CO7	Demonstrate quantitative problem-solving skills in all the topics covered.

CO-PO Mapping

RUSMJPHYE313: Nuclear Physics (SEM-VI)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	1	2	1	2	1	1
CO2	3	2	2	2	1	2	1	1
CO3	3	3	2	3	2	2	1	1
CO4	3	2	1	2	1	2	1	1
CO5	430	3	2	3	2	3	1	1
CO6	3	3	2	3	2	3	1	1
CO7	3	3	3	3	3	3	3	1

Detailed Syllabus

RUSMJPHYE313: Nuclear Physics (SEM-VI)

Unit/s	Title	Credits - 03
I	Radioactive Decays and Nuclear Models	15 Lectures
	Alpha Decay, Beta Decay, Gamma decay: Introduction, Internal	
	conversion, nuclear isomerism, Mossbauer effect	.0,
	Nuclear Models: Liquid drop model, Weizsacker's semi-empirical	
	mass formula, Mass parabolas - Prediction of stability against beta	
	decay for members of an isobaric family, Stability limits against	
	spontaneous fission. Shell model (Qualitative), Magic numbers in the)
	nucleus.	
II	Particle Accelerators & Energy Generation	15 Lectures
	Particle Accelerators: Van de Graff Generator, Cyclotron,	
	Synchrotron, Betatron and Idea of Large Hadron Collider.	
	Nuclear energy: Introduction, Asymmetric fission - Mass yield,	
	Emission of delayed neutrons, nuclear release in fission, Nature of	
	fission fragments, Energy released in the fission of U235, Fission of	
	lighter nuclei, Neutron cycle in a thermal nuclear reactor (Four Factor	
	Formula), Nuclear reactors, Natural fusion, Possibility of controlled	
	fusion.	
III	Meson theory & Elementary particles	15 Lectures
	Meson theory of Nuclear Force- A qualitative discussion	
	Elementary particles: Introduction, Classification of elementary	
	particles, Particle interactions, Conservation laws(linear & angular	
	momentum ,energy, charge, baryon number & lepton	
	number),particles and anti-particles(Electrons and positrons,	
	Protons and anti-protons, Neutrons and anti- neutrons, Neutrinos	
	and anti-neutrinos), Photons, Mesons, Quark model(Qualitative).	

Main References:

- 1. AB: Concepts of Modern Physics by Arthur Beiser, Shobhit Mahajan, S Rai Choudhury (6th Ed.) (TMH).
- 2. P: Nuclear Physics by S.B. Patel (Wiley Eastern Ltd.).
- 3. K: Nuclear Physics by Irving Kaplan (2nd Ed.) (Addison Wesley).
- 4. G: Nuclear Physics by S. N. Ghoshal (S. Chand & Co.)
- 5. T: Nuclear Physics by D. C. Tayal (Himalayan Publishing House) 5th Ed.

Additional References:

- 1. Modern Physics by Kenneth Krane (2nd Ed.) John Wiley & Sons.
- 2. Atomic & Nuclear Physics by N Subrahmanyam, Brij Lal. (Revised by Jivan Seshan.) S. Chand.
- 3. Atomic & Nuclear Physics by A B Gupta & Dipak Ghosh Books & Allied (P) Ltd.
- Introduction to Elementary Particles by David Griffiths, Second Revised Edition,
 Wiley-VCH

Course Code: RUSMJP HYPE313	Practical based on DSC- III	Credits/ Hours
1	Characteristics of a radioactive material using Geiger Muller counter	
	and measurement of dead time.	1 credit /
2	Verification of Inverse Square Law for Gamma Rays.	30 Hrs
3	Linear and Mass attenuation coefficient using Gamma Source.	
4	To study Beta Particle Range and Maximum Energy.	
5	Tutorials on Unit-I	
6	Tutorials on Unit-II	
7	Tutorials on Unit-III	

<u>Modality of Assessment – RUSMJPHYE313 (SEM-VI)</u>

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
7	Internal Class Test	20
2	Class Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit -/I
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit – III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	
	TOTAL	45	1/3

Practical Examination Pattern (RUSMJPHYPE313):

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYE314 A

Course Title: Electrodynamics (SEM-VI)

Academic Year: 2025-26

Course Outcomes:

Course Outcome	Description
CO1	Understand the basic mathematical concepts of vector calculus and its applications of them in Electrodynamics
CO2	Understand the basic laws of electrodynamics and be able to perform calculations in the problems related to Physical situations.
СОЗ	Understand the penetration of electric and magnetic field in dielectric material and its practical applications
CO4	Acquired conceptual understanding of the Maxwell's laws and its quantitative interpretations.

CO-PO Mapping

RUSMJPHYE314 A - Electrodynamics (SEM-VI)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	2	3	1	1	1	1
CO2	3	3	2	3	2	2	1	1
CO3	3	2	2	2	1	2	1	1
CO4	3	3	2	3	2	2	1	1

<u>Detailed Syllabus</u> RUSMJPHYE314 A: Electrodynamics (SEM-VI)

Units	Title	Credits - 03
I	Electrostatics	15 Lectures
	Electric Field lines, Flux and Gauss' law, The divergence of	
	E, Applications of Gauss' law, The curl of E. Introduction to	40,
	potential, Comments on potential, Poisson's equation and	. ~0/
	Laplace's equation, The potential of a localized charge	1100
	distribution, Review of Conductors & Faraday's Cage	
	First Uniqueness theorem (Without proof), The classic image	
	problem- Infinite conducting plane.	
	Greiner— chapter 2- Green's theorems, Green's function, Ex	
	2.1 (Image charge problems)	
II	Polarisation & Magnetostatics	15 Lectures
	Dielectrics, Induced Dipoles, Alignment of polar molecules,	
	Polarization, Bound charges and their physical	
	interpretation, Gauss' law in presence of dielectrics, A	
	deceptive parallel, Susceptibility, Permittivity, Dielectric	
	constant, Energy in dielectric systems.	
	Straight-line currents, The Divergence and Curl of B,	
	Applications of Ampere's law in the case of a long straight	
	wire and a long solenoid, Comparison of Magneto-statics	
	and Electrostatics.	
III	Magnetism & Varying Fields	15 Lectures
	Magnetization, Bound currents and their physical	
~??	interpretation, Ampere's law in magnetized materials, A	
	deceptive parallel, Magnetic susceptibility and permeability.	
	Energy in magnetic fields, Electrodynamics before Maxwell,	
0,0,	Maxwell's correction to Ampere's law, Maxwell's equations,	
	Magnetic charge, Maxwell's equations in matter, Boundary	
	conditions.	

Main References:

- Introduction to Electrodynamics by David Griffith (3rd edition)-Prentice Hall of India (DG)
- 2. Introduction to Electrodynamics by A. Z. Capria and P. V. Panat.

- 3. Electricity and Magnetism by Navina Wadhwani
- 4. Classical Electrodynamics by J D Jackson.

Course Code: RUSMJ PHYP31 4 A	Practical based on DSE- I	Credits/Hour
1	To Study Simple Dipole (λ /2) antenna.	0),
2	To study the Polar graph/ radiation pattern of an Antenna using software.	1 credit/ 30
3	To study SWR Measurement of waves using Antenna kit.	Hrs
4	Amplitude Modulation.	
5	Frequency Modulation.	

Modality of Assessment - RUSMJPHYE314 A (SEM-VI)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of two hours.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit - I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	Offic 1
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	Ont - II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit - III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	Orat - III
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPE314 A):

C) External Examination (Semester End)- 25 Marks

Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal / Viva voce	05
	TOTAL	25

Course Code: RUSMJPHYE314 B

Course Title: Elements of Material Science (SEM-VI)

Academic Year: 2025-26

Course Outcomes:

Course	Description
Outcome	
CO1	Describe types of materials, their properties and identify types of defects.
CO2	Explain functional properties of ceramic bulk materials.
CO3	Differentiate between special Nanomaterials CNT's, porous silicon & Aerogels.
CO4	Formulate the different parameters from XRD, SEM, TEM, etc.
CO5	Explore the application of Nanomaterials in different fields.

CO-PO Mapping

RUSMJPHYE314 B – Elements of Material Science (SEM-VI)

CO \ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	2	2	1	1	1
CO2	3	3	2	2	2	2	1	1
CO3	3	3	3	3	2	2	1	1
CO4	3	3	3	3	2	2	1	2
CO5	3	3	3	3	3	2	2	2

<u>Detailed Syllabus</u> RUSMJPHYE314 B – Elements of Material Science (<u>SEM-VI</u>)

Units	Title	Credits - 03						
I	Materials and their properties	15 Lectures						
	Materials and their properties: Types of materials:							
	Conductors, Semiconductors and Insulators, Materials	40						
	properties: Mechanical, Electrical and thermal, Impurities in	, 00						
	solids. Defects in solids: Point, Line, Surface and Volume.	1103						
	Deformation, Electromagnetic behaviour of ceramics -							
	Electric properties: dielectrics, semiconductors, piezoelectric,							
	Magnetic Properties: Magnetic Ceramics, hard and soft							
	ferrites.							
II	Characterization techniques	15 Lectures						
	i) XRD, Small angle X - ray scattering (SAXS), Low energy							
	electron diffraction (LEED)							
	ii) Electron Microscopy: SEM, EDAX, TEM, Environmental							
	TEM							
	iii) SPM, AFM, STM							
	iv) Nano magnetic techniques: Super conducting quantum							
	interface device measurement (SQUID), Magneto resistance							
	measurement technique.							
III	Nanomaterials and its applications	15 Lectures						
	i) Some Special Nanomaterial							
	Introduction, Carbon nanotubes (CNTs), Porous Silicon,							
	Aerogels, Zeolites, Ordered Porous Materials Using							
	Micelles as Templates.							
	ii) Applications of nanomaterial							
	Introduction, Electronics, Energy, Automobiles, Sports and							
0,0,	Toys, Textiles, Cosmetics, Domestics Appliances,							
	Biotechnology and Medical Field, Space and Defense,							
V	Nanotechnology and Environment.							

Main References:

- 1. Materials Science and Engineering by V. Raghavan (5th Edition) (VR)
- 2. Nanotechnology, Principles & Practices by Sulabha Kulkarni (SK)

- 3. Elements of Materials Science and Engineering by L. H. Van Vlack (6th Edition)
- 4. Elements of X-Ray diffraction by B. D. Cullity.
- 5. X ray Structure Determination by G.H. Stout and I.H. Jensen
- 6. Fundamentals of Molecular Spectroscopy by C. Banwell and E. McCash
- 7. Nanomaterial by A.K. Bandyopadhyay

Course Code:	Practical based on DSE II	Credits/Hours
RUSMJPHYP		11000
E314B		
1	Characterization study of nanomaterial (Powder) using XRD	1 credit / 30
	techniques.	Hrs
2	To study average grain size using Image J software.	
3	Characterization study of nanomaterial (Powder) using UV	
	techniques.	
4	Characterization study of nanomaterial (Powder) using FTIR	
	techniques.	
5	Characterization study of nanomaterial (Powder) using	
	RAMAN techniques.	

Modality of Assessment – RUSMJPHYE314 B (SEM-V)

Theory Examination Pattern:

A) Internal Assessment – 40% of 75 Marks = 30 Marks

Sr. No.	Evaluation Type	Marks
1	Internal Class Test	20
2	Test/ Project / Assignment / Presentation	10
	Total	30

B) External Examination (Semester End) - 60% of 75 Marks = 45 Marks Semester End Theory Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q. 1 (A)	Any 2 out of 4 (Theory based)	10	Unit – I
Q.1 (B)	Any 1 out of 2 (Numerical)	05	Offic – I
Q. 2 (A)	Any 2 out of 4 (Theory based)	10	Unit – II
Q. 2 (B)	Any 1 out of 2 (Numerical)	05	Offic = II
Q. 3 (A)	Any 2 out of 4 (Theory based)	10	Unit – III
Q. 3 (B)	Any 1 out of 2 (Numerical)	05	One - m
	TOTAL	45	

Practical Examination Pattern (RUSMJPHYPE314 B)

C) External Examination (Semester End)- 25 Marks
Semester End Practical Examination:

- 1. Duration The duration for these examinations shall be of **two hours**.
- 2. Practical question paper pattern:

Paper Pattern:

Question	Option	Marks
1	Laboratory work	20
2	Journal/ Viva voce	05
	TOTAL	25

Overall Examination and Marks Distribution Pattern:

										RUS	SMJP	HYE							
Course	RUS	311	HYE	RUS	312	HYE	RUSMJPHYE 313		314 A/ RUSMJPHYE 314 B		JPHYE RUSMIPHYP315		P315	RUSOIT316		Total			
	Ι	Е	Т	I	Е	Т	I	E	Т	I	Е	Т	I	Е	Т	-	Е	Т	
Theory	30	45	75	30	45	75	30	45	75	30	45	75	20	30	50	50	50	100	450

				RUSMJPHYPE
Course	RUSMJPHYPE	RUSMJPHYPE	RUSMJPHYPE	314 A/
	311	312	313	RUSMJPHYPE
				314 B
Practical	25	25	25	25 100

7.

[Grand Total Marks: 550]