Semaine 9 - Intégration de fonctions continues

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Une convergence de norme

1 Notons $I_n = \left(\int_a^b f(t)^n \, \mathrm{d}t\right)^{\frac{1}{n}}$. On a tout d'abord que $\forall x \in [a,b], \ \frac{f(x)}{M} \le 1$. Ainsi, $\int_a^b \left(\frac{f(t)}{M}\right)^n \, \mathrm{d}t \le b-a$, et donc $\frac{1}{M}I_n \le (b-a)^{\frac{1}{n}}$. Donc $I_n \le M+\epsilon$ pour n assez grand. D'un autre côté M est atteint car f est continue sur [a,b] (intervalle borné et fermé). Il existe donc un intervalle $I_{x_0,\eta} = [x_0 - \frac{\eta}{2}, x_0 + \frac{\eta}{2}]$ tel que si $x \in I_{a,\eta}, \ f(x) \ge M - \frac{\epsilon}{2}$. $\int_a^b f(t)^n \, \mathrm{d}t \ge \int_{a-\frac{\eta}{2}}^{a+\frac{\eta}{2}} f(t)^n \, \mathrm{d}t \ge \eta (M-\frac{\epsilon}{2})^n$ (si x_0 atteint sur [a,b], le raisonnement est le même aux bords, il faut seulement modifier $I_{x_0,\eta}$. Donc $I_n \ge \eta^{\frac{1}{n}} (M-\frac{\epsilon}{2})$ et ce quelque soit $n \in \mathbb{N}$. Donc pour n assez grand n0 est plus grand que n0 est n1. Donc pour n2 assez grand n3 est plus grand que n4 est donc n5.

Remarque: l'ensemble des fonctions à valeurs réelles pour lesquelles l'intégrales $\int |f|^p$ est définie est appelé fonctions $L^p(\mathbb{R})$ (la définition est volontairement assez informelle, il faudrait des outils de théorie de la mesure pour définir de manière rigoureuse ces fonctions). Sur les espaces $L^p(\mathbb{R})$ une norme est donnée par $||f||_p = (\int |f|^p)^{\frac{1}{p}}$ (seule l'inégalité triangulaire est vraiment dure à démontrer et fait appel à l'inégalité de Hölder). On appelle souvent $L^{\infty}(\mathbb{R})$ l'espace des fonctions bornées (dans un sens légèrement différent de celui que vous connaissez) et cet espace peut aussi être muni d'une norme appelée la norme infinie, $||f||_{\infty} = \sup |f|$ (encore une fois ce n'est pas vraiment une borne supérieure mais une borne supérieure essentielle, il se trouve que toutes les subtilités précisées ici n'entrainent pas de modifications par rapport à ce que vous connaissez si on se restreint aux fonctions continues). Cet exercice montre que la norme infinie peut effectivement se voir comme la norme limite des normes des différents L^p . Ces espaces vectoriels possèdent de nombreuses propriétés et constitue un objet d'étude privilégié de l'analyse fonctionnelle.

2 Inégalité et intégrale

Il s'agit d'écrire $f(x) = \int_a^x f'(t) dt$. De cette manière, $|f(x)|^2 \le \left(\int_a^x |f'(t)|^2 dt\right)(t-a) \le \left(\int_a^b |f'(t)|^2 dt\right)(t-a)$ par l'inégalité de Cauchy-Schwarz. Il s'agit ensuite d'intégrer des deux côtés de l'inégalité en notant que $\int_a^b t - a dt = \frac{(b-a)^2}{2}$.

3 Module et cas d'égalité

On pose $I=\int_a^b f(t)\,\mathrm{d}t=|I|e^{i\alpha}$ avec $\alpha\in\mathbb{R}$. On pose également ϕ une fonction de [a,b] dans \mathbb{R} telle que $f(t)=|f(t)|e^{i\phi(t)}$. $I=|I|e^{i\alpha}=\int_a^b|f(t)|\,\mathrm{d}te^{i\alpha}=\int_a^b|f(t)|e^{i\alpha}\,\mathrm{d}t$. Mais aussi $I=\int_a^b|f(t)|e^{i\phi(t)}\,\mathrm{d}t$. On obtient en faisant la différence, $\int_a^b|f(t)|(1-e^{i(\phi(t)-\alpha)})\,\mathrm{d}t=0$. En passant à la partie réelle et en remarquant que $|f(\cdot)|$ et $1-\cos(\phi(\cdot)-\alpha)$ sont deux fonctions positives on obtient que f=0 ou $\phi(\cdot)=\alpha$. Ainsi dans tous les cas il existe $\alpha\in\mathbb{R},\ \forall t\in[a,b],\ f(t)=|f(t)|e^{i\alpha}$.

4 Inégalité de Young

1 La forme de la seconde intégrale invite au changement de variable u=f(t). Ce changement de variable est valable car la fonction f est une bijection continûment dérivable. Ainsi on obtient $\int_0^x uf'(u) \, \mathrm{d}u$. En effet $\mathrm{d}uf'(u) = \mathrm{d}t$. Une intégration par partie permet d'écrire $\int_0^x uf'(u) \, \mathrm{d}u = xf(x) - \int_0^x f(t) \, \mathrm{d}t$. On obtient donc l'égalité voulue.

2 Supposons que $b \ge f(a)$ (l'autre cas ce traite exactement de la même manière en considérant f^{-1} plutôt que f).

$$\int_{0}^{a} f(t) dt + \int_{0}^{b} f(t) dt = \int_{0}^{a} f(t) dt + \int_{0}^{f(a)} f(t) dt + \int_{f(a)}^{b} f(t) dt$$

$$= af(a) + \int_{f(a)}^{b} f(t) dt$$

$$= ab + \int_{f(a)}^{b} f^{-1}(t) dt - a(b - f(a))$$

$$= \int_{f(a)}^{b} f^{-1}(t) - a dt$$

$$\geq 0$$

car f^{-1} est strictement croissante et $f^{-1}(f(a)) = a$. On a égalité si et seulement si f(a) = b.

5 Suite et intégrale (1)

1
$$J_{n+2} + J_n = \int_{0}^{\frac{\pi}{4}} (1 + \tan(x)^2) \tan(x)^n dx = \frac{1}{n+1} \int_{0}^{\frac{\pi}{4}} (\tan(.)^{n+1})'(x) dx = \frac{1}{n+1}.$$

 $\mathbf{2} \quad J_0 = \frac{\pi}{4}, \ J_1 = \int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos(x)} \mathrm{d}\mathbf{x} = -\ln(\cos(\frac{\pi}{4})) = \frac{1}{2}\ln(2). \text{ On a donc les formules suivantes selon la parité de } n:$

•
$$J_{2n} = (-1)^n \left(\sum_{k=1}^n \frac{(-1)^k}{2k-1} + \frac{\pi}{4} \right)$$

•
$$J_{2n+1} = (-1)^n \left(\frac{1}{2} \sum_{k=1}^n \frac{(-1)^k}{k} + \frac{1}{2} \ln(2) \right)$$

6 Suite et intégrale (2)

 $\mathbf{1} \quad K_0 = \frac{\pi}{4} \text{ et } K_1 = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)} \mathrm{d}x. \text{ En utilisant les règles de Bioche qui sont rappelées à la fin de cet exercice, on trouve que le changement de variable en sinus est adapté ici. On obtient, <math>K_1 = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)} \mathrm{d}x = \int_0^{\frac{\sqrt{2}}{2}} \frac{1}{1-x^2} \mathrm{d}x = \frac{1}{2} \left(\int_0^{\frac{\sqrt{2}}{2}} \frac{1}{1+x} + \frac{1}{1-x} \mathrm{d}x \right).$ En intégrant, on trouve, $K_1 = \ln\left(\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}}\right) = \ln(1+\sqrt{2}).$

2 On a,

$$K_{n+2} = \int_0^{\frac{\pi}{4}} \frac{1}{\cos(x)^2} \frac{1}{\cos(x)^n} dx$$

$$= \int_0^{\frac{\pi}{4}} \tan(x)' \frac{1}{\cos(x)^n} dx$$

$$= 2^{\frac{n}{2}} - n \int_0^{\frac{\pi}{4}} \tan(x) \sin(x) \frac{1}{\cos(x)^{n+1}} dx$$

$$= 2^{\frac{n}{2}} - n \int_0^{\frac{\pi}{4}} \frac{1 - \cos(x)^2}{\cos(x)^{n+2}} dx$$

$$= 2^{\frac{n}{2}} - n K_{n+2} + n K_n$$

$$= \frac{2^{\frac{n}{2}}}{n+1} + \frac{n}{n+1} K_n$$
(1)

. Ainsi on a entièrement déterminé la suite $(K_n)_{n\in\mathbb{N}}$.

Remarque : on rappelle ici les règles de Bioche qui sont très utiles pour calculer des intégrales de fonctions trigonométriques. On pose $f(x) = g(\cos(x), \sin(x), \tan(x))$ et F(x) = f(x) dx. Si :

- F(x) = F(-x) alors on effectue le changement de variable $x \mapsto \cos(x)$
- $F(x) = F(\pi x)$ alors on effectue le changement de variable $x \mapsto \sin(x)$
- $F(x) = F(\pi + x)$ alors on effectue le changement de variable $x \mapsto \tan(x)$

7 Suite et intégrale (3)

1 $L_{n+1} = \int_1^e \log(x)^{n+1} dx = [x \log(x)^{n+1}]_1^e - (n+1)L_n = e - (n+1)L_n$. De plus, $L_0 = e - 1$. On détermine donc de manière unique la suite $(L_n)_{n \in \mathbb{N}}$.

2 Le changement de variable $u = \log(x)$ permet d'écrire $L_n = \int_0^1 u^n e^{-nu} du \leq \int_0^1 u^n du \longrightarrow 0$. Donc $e - (n+1)L_n \longrightarrow 0$. D'où $L_n \sim \frac{e}{n}$.

8 Condition suffisante et point fixe

1 Il suffit de remarquer que $\int_0^1 (f(t) - t) dt$. Posons g(t) = f(t) - t. $g(0) = f(0) \ge 0$ et $g(1) = f(1) - 1 \le 0$. Donc par le théorème des valeurs intermédiaires il existe $t \in [0, 1]$, g(t) = t. Donc f(t) = t et f admet un point fixe

9 Inégalité et maximum

 $\mathbf{1} \quad \text{Notons } \alpha = \frac{c-a}{b-a}. \text{ On remarque que } 1-\alpha = \frac{b-c}{b-a}. \text{ Donc } \alpha \frac{1}{c-a} \int_a^c f(t) \, \mathrm{d}t + (1-\alpha) \frac{1}{b-c} \int_c^b f(t) \, \mathrm{d}t = \frac{1}{b-a} \left(\int_a^c f(t) \, \mathrm{d}t + \int_b^c f(t) \, \mathrm{d}t \right) + \int_b^c f(t) \, \mathrm{d}t = \frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t. \text{ On note } M = \max \left(\frac{1}{c-a} \int_a^c f(t) \, \mathrm{d}t, \frac{1}{b-c} \int_c^b f(t) \, \mathrm{d}t \right). \text{ On a } \alpha \frac{1}{c-a} \int_a^c f(t) \, \mathrm{d}t + (1-\alpha) \frac{1}{b-c} \int_c^b f(t) \, \mathrm{d}t \leq \alpha M + (1-\alpha) M \leq M. \text{ Ainsi, } \frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t \leq M.$

2 L'interprétation géométrique est la suivante. Il s'agit de remarquer que $\frac{1}{b-a} \int_a^b f(t) dt$ est la moyenne de f sur [a,b]. L'inégalité précédente assure que la moyenne sur [a,b] est plus petite que le maximum entre la moyenne sur [a,c] et celle sur [c,b].

10 Annulation et intégration (1)

1 Si il existe $(x_0, x_1) \in [0, \pi]^2$ tels que $f(x_0)f(x_1) \leq 0$ alors par le théorème des valeurs intermédiaires (f est continue) f admet un point d'annulation. Il s'agit de remarquer que $x \mapsto \sin(x)$ est positive sur $[0, \pi]$. Supposons donc que f est positive (le cas négatif se traite de la même manière). Alors l'intégrale $\int_0^\pi \sin(t)f(t) \, dt \geq 0$ et l'inégalité est une égalité si et seulement si f = 0. Ainsi f admet un point d'annulation.

1 Supposons que f ne s'annule pas sur $I_1 = [0, a[$ et sur $I_2 =]a, \pi]$ alors f est de signe constant sur chacun de ces intervalles. En effet sinon le théorème des valeurs intermédiaires permet de conclure. Supposons que f est positive sur I_1 et I_2 (le cas négatif se traite de la même façon) alors f est positive sur $[0, \pi]$ et comme pour la question précédente cela implique que f = 0 et donc f possède deux points d'annulation.

Supposons désormais que f change de signe en a. Par exemple f négative sur I_1 et positive sur I_2 . On a donc $x \mapsto f(x)\sin(x-a)$ qui est positive sur $[0,\pi]$ et donc $\int_0^\pi f(t)\sin(t-a)\,\mathrm{d}t \geq 0$. Mais $\sin(t-a)=\sin(a)\cos(t)-\cos(a)\sin(t)$ et donc $\int_0^\pi f(t)\sin(t-a)\,\mathrm{d}t = 0$ ce qui n'est possible que si f=0. Dans tous les cas f possède deux points d'annulation.

11 Annulation et intégration (2)

1 On montre que pour tout polynôme $P = \sum_{k=0}^{n} a_k X^k$ (avec $(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$) de degré inférieur ou égal à n, $\int_a^b f(t)P(t) dt = \sum_{k=0}^{n} a_k \int_a^b f(t)t^k dt = 0$. On raisonne par l'absurde en considérant une fonction qui vérifie l'hypothèse

précédente et qui possède moins de n-1 points d'annulation. Posons P comme proposé dans l'indication. Il convient de remarquer que $x\mapsto f(x)P(x)$ est de signe constant. Mais puisque le nombre de points de changement de signe est plus petit que le nombre de points d'annulation on obtient que $\int_a^b f(t)P(t)\,\mathrm{d}t=0$. Cela n'est possible que si $x\mapsto f(x)P(x)$ est la fonction nulle. Ainsi f admet une infinité non dénombrable de points d'annulation donc c'est absurde.

Remarque: en analyse numérique on cherche souvent des polynômes qui ressemblent le plus possible à une fonction f. Pour définir la "ressemblance" on utilise les différentes normes sur les espaces de fonctions à notre disposition (voir exercice 1 pour une explication à ce sujet). Parmi les normes populaires on trouve $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$. Par exemple pour la norme $\|\cdot\|_2$ on cherche le minimum $\|f-P\|_2$ sur l'espace des polynômes de degré n (f est fixée). Ce polynôme existe et est unique (pour $\|\cdot\|_{\infty}$ on a seulement l'existence). On le note $P_{n,2}(f)$ et $h_{n,2} = f - P_{n,2}$. Alors on peut montrer que $f - P_{n,2}$ vérifie l'hypothèse de l'énoncé. En somme toute interpolation polynômiale pour la norme $\|\cdot\|_2$ (c'est le nom donné à $P_{n,2}(f)$) oscille au moins n+1 fois. Ce résultat d'oscillation reste vrai pour la norme infinie mais la preuve est beaucoup plus compliquée (théorème d'équioscillation de Tchebychev).

Remarque : à la suite de cet exercice on peut se demander ce qu'il advient si on change $k \in [0, n]$ en \mathbb{N} . Dans ce cas, on montre que f = 0. Il faut cependant déployer des outils d'analyse de Fourier et d'analyse complexe pour conclure correctement.

12 Formule de la moyenne

1 On commence par supposer que $\int_a^b g(t) dt = 1$. Soit x_0 tel que $f(x_0) = \min f$ et x_1 tel que $f(x_1) = \max f$ (possible car f est continue sur un intervalle fermé borné). Il convient de remarque que

$$f(x_0) = \int_a^b f(x_0)g(t) dt \le \int_a^b f(t)g(t) dt \int_a^b f(x_1)g(t) dt \le f(x_1).$$

Donc si on pose $g(x) = f(x) - \int_a^b f(t)g(t) \, dt$, $g(x_0) \le 0 \le g(x_1)$. Il existe donc c dans [a,b] tel que g(c) = 0, c'est-à-dire $\int_a^b f(t)g(t) \, dt = f(c)$ ce qui conclut le cas $\int_a^b g(t) \, dt = 1$. Dans le cas général on se ramène au particulier en considérant $\tilde{g} = \frac{g}{\int_a^b g(t) \, dt}$.

2 A FAIRE