#### **Echtzeitbetriebssysteme**

#### Oliver Jack

Ernst-Abbe-Hochschule Jena Fachbereich Elektrotechnik und Informationstechnik

Sommersemester 2025



# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- Struktur zyklischer Schedules
- **4** Job Slicing
- **5** Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- 5 Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

#### Lernziele

- Kenntnis periodischer Taskmodelle
- Kenntnis von Offline-Planungsverfahren für periodische Prozesse

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- 5 Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

### Task-Arten im periodischen Modell

#### Periodisch

periodische Aktivierung der Jobs einer Task, i. a. als Tupel  $J_i(t_{\phi,i},t_{p,i},t_{e,i},t_{d,i})$  notiert mit folgender Parameterbedeutung:

| Parameter           |                | Anmerkungen             |  |  |
|---------------------|----------------|-------------------------|--|--|
| Phase               | $t_{\phi}$     | default: 0              |  |  |
| Periode             | t <sub>p</sub> |                         |  |  |
| Ausführungszeit     | t <sub>e</sub> | (pro Aktivierung)       |  |  |
| (relative) Deadline | t <sub>d</sub> | default: t <sub>p</sub> |  |  |

Da meist  $t_{\phi,i} = 0$  und  $t_{d,i} = t_{p,i}$ , wird deren Angabe häufig fortgelassen.

### Task-Arten im periodischen Modell

#### aperiodisch

nicht-periodische Aktivierung der Jobs einer Task; die Zwischenankunftszeit zweier Jobs ist nicht nach unten beschränkt

#### sporadisch

nicht-periodische Aktivierung der Jobs einer Task; maximale Ankunftsrate der Jobs ist beschränkt

### **Auslastung**

• Ermittlung für Task i:

$$u_i = \frac{t_{e,i}}{t_{p,i}}$$

• Gesamtauslastung *u* eines periodischen Tasksets mit *n* Tasks:

$$u = \sum_{i=1}^{n} u_i$$

ullet bei 1 Prozessor u < 1 nötig, sonst Überlast

#### Brauchbarkeit und Optimalität

Zur Wiederholung

#### **Definition**

Ein Plan (Schedule) einer Menge Jobs heißt brauchbar, wenn jeder Job aus dieser Menge vor seiner individuellen Deadline komplettiert ist.

#### **Definition**

Ein Schedulingalgorithmus heißt optimal, wenn der Algorithmus zu einer gegebenen Menge an Jobs einen brauchbaren Schedule erzeugt, sofern dieser existiert.

Das heißt, ein nicht-optimaler Algorithmus ist nicht immer in der Lage, einen brauchbaren Schedule zu erzeugen, obwohl dieser existiert.

## **Prinzip**

- Grundidee: Ermittlung des Schedule Offline, zur Laufzeit des Systems wird der Schedule nur Position für Position abgearbeitet
- Periodisches Taskmodell nötig (sonst unendlicher Schedule, nicht speicherbar)
- Ermittlung des Schedule Offline, d. h. komplexe Algorithmen nutzbar (hier: Netzwerkflüsse)
- Konstante Anzahl periodischer Echtzeit-Tasks  $T_i(t_{\phi,i},t_{p,i},t_{e,i},t_{d,i})$ , 1 Prozessor

## **Prinzip**

 Schedule einer Menge aus n Tasks besteht aus aneinandergereihten Segmenten der Länge

$$H = \mathsf{kgV}(t_{p,i}) \ i = 1, 2, \ldots, n$$

- H wird Hyperperiode genannt
- Tasks ohne Deadline konsumieren bei Bedarf verbleibende Zeit

#### **Beispiel**

• 4 periodische unabhängige Tasks  $T_i(t_{p,i}, t_{e,i})$  $T_1(4,1), T_2(5,1.8), T_3(20,1), T_4(20,2).$ 

$$u = \frac{1}{4} + \frac{1.8}{5} + \frac{1}{20} + \frac{2}{20} = 0.76, \ H = 20$$

Brauchbarer Schedule



- Intervalle, in denen keine periodische Echtzeit-Task abgearbeitet wird (z.B. [3.8, 4] oder [5, 6]) können nutzbar für aperiodische Jobs
- Aperiodische Jobs beim Eintreffen in Warteschlange (FIFO bzw. priorisiert) eingeordnet



### Datenstruktur zur Beschreibung des Schedule

• Tabelle über eine Hyperperiode mit Einträgen

$$(t_k, T(t_k)) k = 0, 1, \ldots, n-1$$

 $t_k$  Schedulingzeitpunkte  $T(t_k)$  assoziierte Tasks, bzw. "I" für idle

Beispiel:

$$(0, T_1)(1, T_3)(2, T_2)(3.8, I)(4, T_1)(5, I)(6, T_4) \cdots (19.8, I)$$

# Implementierung eines zeitgesteuerten Schedulers (Cyclic Executive)

Voraussetzungen: Schedule als Tabelle abgelegt; freier Timer

```
aktueller Tabelleneintrag k = 0
Timer konfigurieren, dass Interrupt zu to ausgelöst wird
while(1) {
    Timerinterrupt bestätigen
    sichere Kontext des abgearbeiteten aperiodischen Jobs (falls nötig)
    aktuelle Task T := T[k]
    nächster Tabelleneintrag k = + + k mod(N)
    Timer auf nächsten Taskstart konfigurieren
    if (T ==' I')
         aperiodischen Job ausführen (falls vorhanden)
    else
         T ausführen
    sleep
```

ungünstig: Aktivierung des Schedulers nach jedem Job (hoher Overhead; besonders bei sehr kurzen Jobs)

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- Struktur zyklischer Schedules
- 4 Job Slicing
- 5 Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

# Überlegungen

- günstig, die Hyperperiode (Länge H) in gleichlange Frames zu strukturieren
- Verringerung der Anzahl der Aktivierungen des Schedulers: nur noch am Anfang jedes Frames (timer-gesteuert)
- Vereinfachung: Timer besitzt konstante Periode (keine Reprogrammierung mehr nötig)
- innerhalb des Frames werden Jobs einfach nacheinander aufgerufen
- minimiert Anzahl vorzeitiger Beendigungen aperiodischer Tasks



### Überlegungen zur Framegröße

keine vorzeitige Beendigung (preemption) an Framegrenze, d. h.
 Framegröße f mindestens so groß wie größte Ausführungszeit eines Jobs

$$f \ge \max(t_{e,i}) \ \forall i : 1 \le i \le n$$
 (1)

• Framegröße f ganzzahliger Teiler der Hyperperiode H, sonst Schedule u. U. sehr lang (kgV(f, H)).

$$f \mid H$$
 (2)

- Framegröße f so klein, dass zwischen  $t_\phi$  und  $t_d$  jedes Jobs mindestens ein kompletter Frame liegt
- erleichtert Scheduler die Entscheidung, ob jeder Job seine Deadline einhält; Platzierung des Jobs in diesem Frame garantiert Einhaltung aller Zeitbedingungen, d. h. erleichtertes Scheduling.
- Ein Prozess werde in einem Frame k der Größe f zu  $t_{\phi}$  bereit (mit  $t \leq t_{\phi} \leq t + f$ ), besitze eine relative Deadline von  $t_d$  und eine (relative) Periode von  $t_p$



• Damit wenigstens ein Frame zwischen  $t_{\phi}$  und  $t_{d}$  liegt, muss gelten:

$$t + 2f \leq t_{\phi} + t_{d}$$
$$2f - (t_{\phi} - t) \leq t_{d}$$

• Wenn  $t_{\phi} \neq t$ , dann gilt für den Abstand von Grenze des Frames k und  $t_{\phi}$  (also  $t_{\phi} - t$ ):

$$2f - ggt(t_{p,i}, f) \le t_{d,i} \ \forall i : 1 \le i \le n$$
 (3)

• Falls  $t_{\phi}=t$ , so muss die Framegröße f nur größer als die Deadline  $t_d$  sein. Dies gilt stets, wenn Gleichung 3 erfüllt ist.

- Die Gleichungen 1, 2 und 3 werden frame size constraints genannt.
- Ihre Einhaltung gestattet die Verwendung leistungsfähiger
   Schedulingverfahren und einer verbesserten Cyclic Executive.

### **Beispiel**

• 3 periodische Tasks  $T_i$  mit

| i | $t_{p,i}$ | $t_{d,i}$ | t <sub>e,i</sub> |
|---|-----------|-----------|------------------|
| 1 | 15        | 14        | 1                |
| 2 | 20        | 26        | 2                |
| 3 | 22        | 22        | 3                |

- H = kgV(15, 20, 22) = 660
  - **1**  $f \ge 3$
  - ②  $f \in \{2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, \ldots\}$
  - **3**  $f \le 6$
- $\bullet \Rightarrow f \in \{3, 4, 5, 6\}$

### **Eine bessere Cyclic Executive**

#### Prinzip:

- zyklische Aktivierung an Framegrenze durch Timer
- Schedule besteht aus k Frames (1 Hyperperiode) mit entsprechenden Jobs (jeweils unterschiedliche Anzahl und Länge)
- Hintereinanderausführung aller Jobs des Frames ohne zwischenzeitliche Aktivierung des Schedulers
- Vorteil: geringere Aufrufruffrequenz der Cyclic Executive als in Variante 1 (Overhead geringer)
- etwaiges überlaufen eines Jobs an einer Framegrenze muss detektiert und behandelt werden

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- **5** Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung



#### **Beispiel**

- $T_1(4,1)T_2(5,2,7)T_3(20,5)$
- H = 20, aber 1.)  $f \ge 5$  und 3.)  $f \le 4$ . Was tun?
- Idee: Partitionierung langer Tasks in Subtasks, um Kriterium 1 leichter erfüllen zu können.
- Nachteil: mehr Kontextwechsel nötig, da dekomponierte Task vorzeitige Beendigungen benötigt
- Dekomposition von  $T_3(20,5)$  in  $T_{3,1}(20,1)$ ,  $T_{3,2}(20,3)$  und  $T_{3,3}(20,1)$ ; damit:
  - **1**  $f \ge 3$
  - **2**  $f \in \{2, 4, 5, 10, 20\}$
  - **3**  $f \le 4$
- $\bullet \Rightarrow f = 4$



#### Struktur eines Schedule mit Jobslicing



# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- 2 Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- 5 Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

#### Flüsse in Netzwerken

- Eingabe ist Problembeschreibung in Form eines gerichteten Graphen G = (V, E); V: Knotenmenge, E: Kantenmenge
- jeweils ein Knoten für Quelle Q und Senke S
- ullet jede Kante  $e \in E$  besitzt eine Kapazität c(e) und einen aktuellen Fluss arphi(e)

Netzwerk (noch ohne Fluss)



### Flüsse in Netzwerken (Forts.)

- für alle Knoten außer Q und S muss die Summe der Zuflüsse gleich der Summe der Abflüsse sein ("Kirchhoff-Regel")
- Gesucht ist der maximale Durchfluss zwischen Quelle und Senke unter Beachtung der Kantenkapazität
- es existieren schnelle Lösungsalgorithmen mit polynomialem Aufwand
- (u.a.) für viele Scheduling-Probleme nutzbar

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- 5 Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

#### Algorithmus von Ford und Fulkerson

Benötigt zu einem Netzwerk G=(V,E) und einem Fluss darin einen "Restgraphen"  $RG=(V,E_{\varphi})$  mit der gleichen Knotenmenge und den Kanten:

- $\forall e \in E$  mit  $\varphi(e) < c(e)$  gibt es eine Kante e in  $E_{\varphi}$  mit  $c_{\varphi}(e) = c(e) \varphi(e)$
- $\forall e \in E \text{ mit } \varphi(e) > 0 \text{ gibt es eine umgekehrte Kante } e' \text{ in } E_{\varphi} \text{ mit } \varphi(e') = \varphi(e)$

#### **Beispiel**

Fluss in Netzwerk, Kantenbewertung:  $(c(e), \varphi(e))$ 



# Beispiel (Forts.)

#### Zugehöriger Restgraph



### **Algorithmus**

- **1** START, initialer Fluss  $\varphi = 0$ .
- Markiere Q.
- Markiere weitere Knoten nach folgender Regel: "Wenn x markiert ist, und es gibt im RG eine Kante e = (x, y), dann markiere y, wenn dieser noch unmarkiert ist."
- S markiert? nein: Maximaler Fluss erreicht; END.
- **3** Erhöhung des aktuellen Flusses durch Adaption des RG: Kanten, die auf dem Weg von Q nach S liegen, seien  $e_i$ . Ermittle  $\delta = \min(c_{\varphi}(e_i))$ . Adaption des Flusses entlang des neuen Weges:
  - wenn  $e_i \in E$ , dann  $\varphi(e_i) := \varphi(e_i) + \delta$
  - wenn  $rev(e_i) \in E$ , dann  $\varphi(e_i) := \varphi(e_i) \delta$
- O Aufhebung aller Markierungen, GOTO 2.

#### **Beispiel**





## Beispiel (Forts.)





## Beispiel (Forts.)





#### Beispiel (Forts.)



Kein Weg mehr, d. h. maximaler Fluss.  $\varphi = 5$ .

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- **5** Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

#### Scheduling-Problems als Fluss im Netzwerk

- Annahmen: Preemption immer möglich, Tasks unabhängig, alle möglichen Framegrößen f ermittelt
- Idee: beginnend bei Maximum alle f testen
- Für jeden Job und jedes Frame einen Knoten, zusätzlich Quelle und Senke
- ullet Von der Quelle zu jedem Job  $J_i$  eine Kante mit Kapazität  $t_{e,i}$
- Von jedem Frame zur Senke eine Kante mit Kapazität f (Framegröße)

## Scheduling-Problems als Fluss im Netzwerk (Forts.)

- Von Job zu Frame eine Kante gdw. Job in Frame abgearbeitet werden kann (Timingconstraints!), Kapazität = Maximum aus Ausgangs- und Zielknoten
  - $\rightarrow$  Ein Job  $J_i$  kann nur in den Frames geplant werden, deren Startzeit größer oder gleich  $t_{\phi,i}$  ist und die nicht später enden als  $t_{d,i}$ !
- Ermittlung des maximalen Flusses von Jobs zu Frames mittels geeignetem Algorithmus
- Ist der maximale Fluss durch den Graphen größer als  $\sum_i t_{e,i}$ , dann repräsentiert der Graph einen brauchbaren Schedule.

#### **Beispiel**

- 2 periodische Tasks:  $T_1(4,3)$  und  $T_2(6,1.5)$
- H = 12, f = 4, d. h. 3 Frames in Hyperperiode:  $f_1[0,4)$ ,  $f_2[4,8)$ ,  $f_3[8,12)$
- $T_1 \rightarrow J_{1,1}(0,4,3), J_{1,2}(4,8,3), J_{1,3}(8,12,3)$
- $T2 \rightarrow !J_{2.1}(0,6,1.5), J_{2.2}(6,12,1.5)$

#### Beispiel: zugehöriges Netzwerk



- Wie leicht ermittelbar, ist  $\varphi = 11 < \sum_i t_{e,i} = 12$ .
- Ein Schedule ist damit für f=4 nicht möglich.

## Verbesserung: Jobslicing

Verkleinerung des Frames auf f = 2; damit erhält man

- 6 Frames:  $f_1[0,2)$ ,  $f_2[2,4)$ ,  $f_3[4,6)$ ,  $f_4[6,8)$ ,  $f_5[8,10)$ ,  $f_6[10,12)$
- Dekomposition der Jobs von T<sub>1</sub>:

|   |     |                  | <u>-</u>         |                    |  |
|---|-----|------------------|------------------|--------------------|--|
|   | alt | $J_{1,1}(0,4,3)$ | $J_{1,2}(4,8,3)$ | $J_{1,3}(8,12,3)$  |  |
|   | neu | $J_{111}(0,4,2)$ | $J_{121}(4,8,2)$ | $J_{131}(8,12,2)$  |  |
| ſ |     | $J_{112}(2,4,1)$ | $J_{122}(6,8,1)$ | $J_{132}(10,12,1)$ |  |

•  $J_{2,1}$  und  $J_{2,2}$  bleiben unverändert

# **Zugehöriges Netzwerk mit gültigem Fluss für** Framegröße f=2



## Zugehöriger Schedule (optimal)



## Bemerkungen

- Die Frage, ob Online- oder Offline-Scheduling geeigneter für Echtzeitsysteme ist, wird in der Fachwelt kontrovers diskutiert und ist nicht einfach zu beantworten.
- Für Online-Scheduling sprechen einerseits:
  - Offline Verfahren sind inhärent inflexibel (komplette Neuberechnung nötig bei Modifikationen an der Taskmenge).
  - Es existieren Online-Verfahren mit sehr geringem Schedulingoverhead (Rate-momtonic Scheduling, Deadline-monotonic Scheduling).
- Andererseits sind Online-Verfahren wie RMS und DMS nicht generell optimal, das bedeutet, es gibt Taskmengen, die per Offline-Verfahren planbar sind, per Online-Verfahren jedoch nicht geplant werden können.

# Lerneinheit 7. Zeitgesteuertes Scheduling im Detail: Offline-Verfahren

- Lernziele dieser Lerneinheit
- Periodisches Taskmodell
- 3 Struktur zyklischer Schedules
- 4 Job Slicing
- **5** Graphentheorie: Flüsse in Netzwerken
- 6 Algorithmus von Ford und Fulkerson (1956)
- Formulierung des Scheduling-Problems als Fluss im Netzwerk
- 8 Zusammenfassung

## Zusammenfassung

- Das periodische Taskmodell beinhaltet periodische, aperiodische und sporadische Tasks.
- Offline-Planungsverfahren können aufwendige Algorithmen zur Optimierung nutzen.
- Scheduling-Probleme für periodische Tasks können als Flussproblem in Netzwerken interpretiert werden und die einschlägigen Optimierungsverfahren können zur Lösung genutzt werden.