

درس: التطبيقات درس رقم

I. عمومیات:

<u>.A</u> تطبيق:

1. نشاط:

 $F = \{11,12,13,14,15\}$ و $E = \{1,2,3,4\}$ نعتبر المجموعتين:

نعتبر العلاقة f (أو g) التي تربط عناصر المجموعة E بعناصر المجموعة f كما يلي:

أ ـ حالة 1: f تطبيق:

1. ماذا تلاحظ؟

2. مفردات:

- العلاقة f تسمى تطبيق من \mathbf{E} إلى \mathbf{F} ونرمز له ب: f أو g أو h
- المجموعة ${f E}$ تسمى مجموعة الانطلاق. المجموعة ${f F}$ تسمى مجموعة الوصول.
- عنصر x من E يرمز له ب: و يسمى سابق. عنصر من F يرمز له ب: g و يسمى صورة.
 - f(x) = y التطبیق f یربط y ب x بربط و التطبیق . التطبیق
 - نلخص ما سبق ب:

$$f: E \rightarrow F$$

 $x \mapsto f(x) = y$

3. تعریف:

E مجموعتان غیر فارغتین.

کل علاقة f تربط کل عنصر x من f بعنصر وحید y من f تسمی تطبیقا من f إلى f نحو f نحو f علاقة و تربط کل عنصر f نحو f نحو f الى f نحو f نحو

و نكتب:

$$f: E \to F$$

 $x \mapsto f(x) = y$

4. ملحوظة:

- کل دالة عددیة هي تطبیق من مجموعة تعریفها نحو R.
 - . \mathbf{F} على تطبيق $\mathbf{F}:\mathbf{E}
 ightarrow \mathbf{f}:\mathbf{E}$ هو دالة من
 - $\cdot \mathbf{E}$ نقول أن $\mathbf{F} = \mathbf{E}$ اذا كان

$$E=E' \land F=F'$$
 $\forall x \in E: f(x)=g(x)$ $g: E' \to F'$ $f: E \to F$ $f: E$

5. تمرین:

• تمرين 1: نعتبر التطبيق التالي.

درس: التطبيقات درس رق

 $f: \mathbb{Z} \to \mathbb{N}$

$$\mathbf{n} \mapsto \mathbf{f}(\mathbf{n}) = |\mathbf{n}|$$

- حدد صور 0 و 2- و 3. ثم حدد سوابق 1 و 0 و 3.
- عديح $f(n) = f(n') \Rightarrow n = n'$ صحيح ?
 - تمرین2: نعتبر التطبیق التالی.

 $\mathbf{f}: \mathbb{N}^2 \to \mathbb{N}$

$$(n,m)\mapsto f((n,m))=n\times m$$

- **.3** حدد صور (1,0) و (2,-3) و (-6,1). ثم حدد سوابق 1 و 6 و 0.
- $f\left(\left(n,m\right)\right)=f\left(\left(n',m'\right)\right)$ و $\left(n,m'\right)$ من n=m' من m=m' من m=m' من m=m' من m=m' من m=m'

 $f: \mathbb{R} \to \mathbb{R}$

مثال 3:

هل التطبيقين التاليين متساويين ؟

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto g(x) = x^2 - 1$$

$$x \mapsto f(x) = \frac{x^4 - 1}{x^2 + 1}$$

الصورة المباشرة لجزء \mathbf{A} من مجموعة الانطلاق: $\mathbf{\underline{B}}$

1 ونشاط: نعتبر التطبيق التالي.

المجموعة B حيث عناصرها هي صور لعناصر A.

2 مفردات:

- . $\mathbf{B} = \mathbf{f}(\mathbf{A})$ المجموعة: $\mathbf{B} = \{12,13\}$ تسمى الصورة المباشرة للجزء \mathbf{A} من مجموعة الانطلاق \mathbf{E} و نرمز لها ب
 - $f(A) = \{f(x)/x \in A\}$ و نكتب:
- $C = f^{-1}(B)$ تسمى الصورة العكسية للجزء B من مجموعة الوصول B و نرمز لها ب: $C = \{2,3,4,5,6\}$ و نكتب: $(B) = \{x \in E/f(x) \in B\}$

3_ تعاریف:

ا تعریف 1:

($A \subset E$ اأي $A \cdot F$ الى $A \cdot F$ الى f

 $\mathbf{B} = \mathbf{f}(\mathbf{A})$ عناصر \mathbf{A} تكون مجموعة \mathbf{B} (و هي جزء من \mathbf{F}) تسمى الصورة المباشرة للجزء \mathbf{A} . ويرمز لها:

$$f(A) = \{f(x)/x \in A\} \subset F$$
 : و منه

 $y \in f(A) \Leftrightarrow \exists x \in A : y = f(x)$ إذن:

f:

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: التطبيقات

تعریف 2:

 $\mathbf{B} \subset \mathbf{F}$ نطبيق من \mathbf{E} إلى $\mathbf{B} \cdot \mathbf{F}$ جزء من \mathbf{F} (أي $\mathbf{B} \subset \mathbf{F}$).

 ${f C}={f f}^{-1}({f B})$ سوابق عناصر ${f B}$ تكون مجموعة ${f C}$ (وهي جزء من ${f E}$) تسمى الصورة العكسية للجزء ${f B}$. ويرمز لها:

. $f^{-1}(B) = \{x \in E/f(x) \in B\} \subset E$ و منه:

 $x \in f^{-1}(B) \Leftrightarrow f(x) \in B$ إذن:

4 تمارین:

تمرین 1:

نعتبر التطبيق التالى:

تمرین 2:

نعتبر التطبيق التالى:

. $f((2,7)) \circ f((2,1))$

 $X=(a,b)\mapsto f(X)=f((a,b))=a$

 $f: \mathbb{N} \to \mathbb{N}$

 $n \mapsto f(n) = 2n$

. $f^{-1}(\{4,6,12\})$ و $f(\{0,1,2,5\})$. L

 $f^{-1}(\{0,2,4,\cdots,2n,\cdots\}) = f^{-1}(2\mathbb{N})$ و $f(\mathbb{N})$

3. هل الاستلزام التالي صحيح ؟ n = n' $\Rightarrow n = n'$. هل الاستلزام التالي صحيح ؟ . $\forall n, n' \in \mathbb{N} : f(n) = f(n') \Rightarrow n = n'$

 $f((a,b)) = f((a',b')) \Rightarrow (a,b) = (a',b')$

2. أكتب بالإدراك $f^{-1}(\{2\})$ (أي مجموعة سوابق 2)

 $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

(a',b') و ذلك لكل (a,b) و ذلك اكل

5_ خاصیات:

 \mathbf{F} و \mathbf{B} جزآن من مجموعة \mathbf{C} . \mathbf{E} و \mathbf{C} جزآن من مجموعة \mathbf{E} تطبيق من \mathbf{E}

 $A \subset B \Rightarrow f(A) \subset f(B)$

 $.f(A \cup B) = f(A) \cup f(B) - \frac{1}{2}$

 $f(A \cap B) \subset f(A) \cap f(B) - \varphi$

 $C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$ 3

 $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D) - \int_{-1}^{1} \underline{A}$

 $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D) - =$

6 برهان:

 $A \subset B \Rightarrow f(A) \subset f(B)$: نبين أن

 $f(A) \subset f(B)$ و نبين $A \subset B$. لدينا

 $y_A = f(x_A)$: ليكن $y_A \in f(A)$ اذن يوجد x_A من $y_A \in f(A)$

. $y_A \in f(A) \Leftrightarrow \exists x_A \in A / y_A = f(x_A) (1)$: ومنه

 $(A \subset B)$ يُذَن $\exists x_A \in B/y_A = f(x_A)$ (لأن $\exists x_A \in B/y_A = f(x_A)$

. $f(x_A) \in f(B)$: و بالتالى

ذلاصة: f(A)⊂f(B)

2. نبین أن :

درس: التطبيقات درس رق

 $f(A \cup B) = f(A) \cup f(B) \quad -1$

.
$$f(A \cup B) \subset f(A) \cup f(B)$$
 : نبین أن \subset •

$$y = f(x)$$
 دن يوجد $x \in A \cup B$ ديث $f(A \cup B)$ ليكن $y = f(x)$

$$x \in A \cup B \Rightarrow x \in A$$
 be $x \in B$

$$\Rightarrow f(x) \in f(A) \ \ f(x) \in f(B)$$

$$\Rightarrow$$
 y = f(x) \in f(A) \cup f(B)

.
$$f(A \cup B) \subset f(A) \cup f(B)$$
 : 1 خلاصة

.
$$f(A) \cup f(B) \subset f(A \cup B)$$
 : نبین أن

. 1 حسب الخاصية
$$A \subset A \cup B \Rightarrow f(A) \subset f(A \cup B)$$
 دينا

$$. B \subset A \cup B \Rightarrow f(B) \subset f(A \cup B)$$

.
$$f(A) \cup f(B) \subset f(A \cup B)$$
 ومنه:

.
$$f(A) \cup f(B) \subset f(A \cup B)$$
 : 2 خلاصة

$$.f(A \cup B) = f(A) \cup f(B)$$
 غلاصة:

$$. f(A \cap B) \subset f(A) \cap f(B) - -$$

.
$$y = f(x)$$
 حيث $x \in A \cap B$ اِذن يوجد $f(A \cap B)$ من $y : U$

$$x \in A \cap B \Rightarrow x \in A$$
 g $x \in B$: g

$$\Rightarrow f(x) \in f(A) \ni f(x) \in f(B)$$

$$\Rightarrow$$
 y = f(x) \in f(A) \cap f(B)

.
$$f(A \cap B) \subset f(A) \cap f(B)$$
 : 1 خلاصة

.
$$C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$$
: نبين أن

$$x \in f^{-1}(C) \Rightarrow f(x) \in C$$

$$\Rightarrow f(x) \in D$$

$$\Rightarrow x \in f^{-1}(D)$$

.
$$f^{-1}(C) \subset f^{-1}(D)$$
 : ومنه

<u>4.</u> نبين أن :

.
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D) - f^{-1}(D)$$

.
$$f^{-1}(C \cap D) \subset f^{-1}(C) \cap f^{-1}(D)$$
 • نبين

.
$$f^{-1}(A\cap B)\subset f^{-1}(A)\cap f^{-1}(B)$$
 : $\{A\cap B\subset A\Rightarrow f^{-1}(A\cap B)\subset f^{-1}(A) \ A\cap B\subset B\Rightarrow f^{-1}(A\cap B)\subset f^{-1}(B) \}$. Let

.
$$f^{\text{--1}}(C) \cap f^{\text{--1}}(D) \subset f^{\text{--1}}(C \cap D)$$
 : نبین •

.
$$f^{-1}(C) \cap f^{-1}(D)$$
 يكن x من

$$x \in f^{-1}(C) \cap f^{-1}(D) \Rightarrow x \in f^{-1}(C) \ \ \text{if} \ \ x \in f^{-1}(D)$$

درس: التطبيقات

$$\Rightarrow f(x) \in C \ni f(x) \in D$$

$$\Rightarrow f(x) \in C \cap D$$

$$\Rightarrow x \in f^{-1}(C \cap D)$$

.
$$f^{-1}(C) \cap f^{-1}(D) \subset f^{-1}(C \cap D)$$
 : ومنه

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
 : خلاصة

.
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
 : ب - نبین

$$f^{-1}(C) \cup f^{-1}(D) \subset f^{-1}(C \cup D)$$
: نبین •

.
$$f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$$
 : i $\{A \subset A \cup B \Rightarrow f^{-1}(A) \subset f^{-1}(A \cup B) :$ $\{B \subset A \cup B \Rightarrow f^{-1}(B) \subset f^{-1}(A \cup B) :$

 $f^{\text{--1}}(C \cup D) \subset f^{\text{--1}}(C) \cup f^{\text{--1}}(D)$: نبین

.
$$f^{-1}(C \cup D)$$
 من x ليكن

$$x \in f^{-1}(C \cup D) \Rightarrow f(x) \in C \cup D$$

$$\Rightarrow f(x) \in C \quad \mathfrak{f}(x) \in D$$

$$f(x) \in C : 1$$

$$f^{-1}(C) \subset f^{-1}(C) \cup f^{-1}(D)$$
 و نعلم أن $x \in f^{-1}(C)$: إذن

$$f(x) \in C : 21$$

.
$$f^{-1}(D) \subset f^{-1}(C) \cup f^{-1}(D)$$
 : و نعلم أن $x \in f^{-1}(C)$: إذن

$$x\in f^{-1}\left(C\right)\cup f^{-1}\left(D\right)$$
: في كلتا الحالتين

.
$$f^{-1}(C \cup D) \subset f^{-1}(C) \cup f^{-1}(D)$$
 و منه:

خلاصة: مكن الاستدلال بالتكافؤات المتتالية) .
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
 خلاصة

<u>C</u>. قصور دالة - تمديد دالة:

1 نشاط:نعتبر التطبيقين التاليين:

$$g: [0,+\infty[\to \mathbb{R} \\ x \mapsto f(x) = -4x]^{9} f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = |x| - 5x$$

1. ما هي العلاقات التي تربط التطبيق g بالتطبيق f?

العلاقات هي:

- . $[0,+\infty] \subset \mathbb{R}$
- $\forall x \in [0,+\infty[,g(x)=f(x)]$

التطبيق g يكتفي أو يقتصر على إعطاء صور x من $]\infty + \infty$]. ولهذا التطبيق g يسمى قصور التطبيق f على $]\infty + \infty$]. . B على إعطاء صور $A \subset B$ من $A \subset B$ يسمى تمديدا للتطبيق $A \subset B$ على B

درس: التطبيقات درس رق

3 تعریف 1: (قصور)

- f تطبيق من E نحو F.
 - ا كل تطبيق و حيث:
- $A \subset E$ مجموعة انطلاقه هي A حيث $A \subset B$
 - $\forall x \in A : g(x) = f(x) -2$
 - g يسمى قصور للتطبيق f على A.

إذن:

$$g: A (A \subset E) \rightarrow F$$

 $x \mapsto g(x) = f(x)$

4 تعریف 2 : (تمدید)

 ${f E}$ تطبيق مجموعة انطلاقه ${f E}$. كل تطبيق ${f h}$ مجموعة انطلاقه عند ${f E}$

- $E \subset B -1$
- $\forall x \in E, h(x) = f(x) -2$
- h يسم تمديد للتطبيق f على h

$$\begin{cases} x \in E, h(x) = f(x) \\ x \in B \setminus E, h(x) = h(x) \end{cases}$$

5 ملحوظة: تمديد ليس بوحيد.

6 تمرين:

تمرين 1:

نعتبر التطبيقين التاليين:

$$g: [0, +\infty[\to \mathbb{R}]$$
 $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) = -4x$ $x \mapsto f(x) = |x| - 5x$

 $[0,+\infty]$ على g قصور التطبيق f على g

تمرین 2:

نعتبر التطبيق التالي.

$$f: [-1, +\infty[\to \mathbb{R}]$$

 $x \mapsto f(x) = 2x^3$

- يث و مديد التطبيق g هو تمديد التطبيق g على \mathbb{R} حيث \mathbb{R}
- 2. هل التطبيق g هو تمديد للتطبيق f على ℝ حيث؟

 $g: \mathbb{R} \to \mathbb{R}$

$$x \mapsto g(x) = -2x^4 + 2x^3 |x+1|$$

II. التطبيق التبايني – الشمولي –التطبيق التقابلي – التقابل العكسي: <u>• A</u> التطبيق التبايني:

1. نشاط: نعتبر التطبيقين التاليين.

درس: التطبيقات درس رق

تمرین 3:

نعتبر التطبيق التالى:

 $x \mapsto f(x) = x^2 - 2x$

1. هل التطبيق f شمولى؟

 $f: \mathbb{R} \to \mathbb{R}$

2. تعریف:

f تطبيق من E نحو F.

 \mathbf{E} يسمى تطبيق تبايني (أو تباين) إذا وفقط إذا كان كل عنصر \mathbf{y} من \mathbf{F} له سابقا واحد على الأكثر من \mathbf{E}

أو أيضا : $f \Leftrightarrow (\forall x, x' \in E : f(x) = f(x') \Rightarrow x = x')$: أو أيضا

3_ تمرین:

 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ التطبیق f تباینی ؟

$$(x,y)\mapsto f\left((x,y)\right)=(x,0)$$
 نعتبر التطبيق التالي:

<u>B</u> التطبيق الشمولي:

1. تعریف:

f تطبيق من E نحو F.

 \mathbf{E} يسمى تطبيق شمولي إذا وفقط إذا كان كل عنصر \mathbf{y} من \mathbf{F} يقبل سابقا واحدا على الأقل من

أو أيضا: $f \Leftrightarrow (\forall y \in F, \exists x \in E : y = f(x))$ شمولي

2 ملحوظة

نعتبر التطبيق التالي:

 $(x,y)\mapsto f((x,y))=(x,0)$

التطبيق f شمولى؟

 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$

تمرین 2:

شمولی $f \Leftrightarrow f(E) = F$

3 تمارین:

تمرین 1:

نعتبر التطبيق التالي :

 $f: \mathbb{R} \to \mathbb{R}$

 $x \mapsto f(x) = 3|x|$

هل التطبيق f شمولي؟

ر. هن التصبيق و التمانية عبد عالم من (أثناء الم

 \mathbf{g} فصور التطبيق \mathbf{g} على \mathbf{g} شمولي؟

 $g: [0,+\infty[\to \mathbb{R}$ $x \mapsto g(x) = 3x|x+1|-3x^2$

التطبيق التقابلي – التطبيق العكسي:

<u>1.</u> تعریف:

f تطبیق من E نحو F.

. E من \mathbf{x} من \mathbf{f} له سابقا وحيدا \mathbf{x} من \mathbf{f} من \mathbf{f}

. تقابلي $f \Leftrightarrow (\forall y \in F, \exists ! x \in E : y = f(x))$

• التطبيق g من f(x) = y الذي يربط كل عنصر y من g بالعنصر الوحيد x من g حيث g يسمى التطبيق العكسي ل g ؛ g و يرمز له ب: $g = f^{-1}$.

درس: التطبيقات

التطبيق العكسى f^{-1} يكتب على الشكل التالى:

$$y$$
 بدل من x يدل من x و ذلك باستعمال المتغير $x\mapsto f^{-1}:F\to E$ و ذلك باستعمال المتغير $y\mapsto f^{-1}(y)=x$

$$x = f(x)$$
 $\Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in F \end{cases}$: $x \in E$ $\Rightarrow \begin{cases} f^{-1}(y) = x \\ y \in F \end{cases}$ $\Rightarrow \begin{cases} f^{-1}(y) = x \\ y \in F \end{cases}$

.F كي نبرهن على أن f تقابلي نبين أن المعادلة $x \in E : f(x) = y$ لها على حل وحيد مهما يكن y من f

التطبيق f تقابلي؟

3 تمارين:

تمرین 2: نعتبر التطبيق التالى:

عتبر التطبيق التالي :
$$\mathbf{f}: \mathbb{R} o \mathbb{R}$$

$$x \mapsto f(x) = x^2 - 2x$$
 $x \mapsto f(x) = 3x - 2$

التطبيق f تقابلي؟

 f^{-1} حدد تقابله العكسى f^{-1} .

III. مركب التطبيقات:

1. تعریف:

 $g:F \rightarrow G$ و $f:E \rightarrow F$ و g تطبیقان حیث $f:E \rightarrow F$

التطبيق $\mathbf{E} \to \mathbf{G}$ المعرف ب: $\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$ الكل من \mathbf{g} و يسمى مركب التطبيقين \mathbf{g} و في هذا الترتيب.

 $f: \mathbb{R} \to \mathbb{R}$

يرمز له ب: gof . إذن:

$$h = g \circ f : E \to G$$

 $x \mapsto h(x) = g \circ f(x) = g(f(x))$

2. ملحوظة:

- مركب تطبيقان ليس بتبادلي دائما.
- $(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h$ مر کب التطبیقات هو تجمعي:
 - f^{-1} تقابل و تقابله العكسى هو f

$$\mathbf{f} \circ \mathbf{f}^{-1} = \mathbf{Id}_{\mathbf{F}} : \boldsymbol{\varphi}^{\dagger} \ \forall \mathbf{x} \in \mathbf{F} : \mathbf{f} \circ \mathbf{f}^{-1} (\mathbf{x}) = \mathbf{x} - \mathbf{1}$$

$$\mathbf{f}^{-1} \circ \mathbf{f} = \mathbf{Id}_{\mathbf{E}} \ \varphi^{\dagger} \ \forall \mathbf{x} \in \mathbf{E} : \mathbf{f}^{-1} \circ \mathbf{f}(\mathbf{x}) = \mathbf{x} - 2$$

توضيح للملاحظة الأخيرة:

$$E \xrightarrow{f} F \xrightarrow{f^{-1}} E$$

$$x \mapsto f(x) = y \mapsto f^{-1}(y) = f^{-1}(f(x)) = x$$

$$\downarrow f^{-1} \circ f$$

$$\downarrow Luuu:$$

$$F \xrightarrow{f^{-1}} E \xrightarrow{f} F$$

$$y \mapsto f^{-1}(y) = x \mapsto f(x) = f(f^{-1}(y)) = y$$

تمرین 3:

نعتبر التطبيق التالى:

$$f: [2,+\infty[\to [0,+\infty[$$

$$x \mapsto f(x) = \sqrt{2x-4}$$

I. هل التطبيق f تقابلي؟

 \mathbf{f}^{-1} إذا كان الجواب بنعم ، حدد تقابله العكسى \mathbf{f}^{-1} .

 $\mathbf{f}^{-1} \circ \mathbf{f} = \mathbf{Id}_{\mathbf{E}}$ أي $\forall \mathbf{x} \in \mathbf{E} : \mathbf{f}^{-1}(\mathbf{f}(\mathbf{x})) = \mathbf{x}$

 $\mathbf{f} \circ \mathbf{f}^{-1} = \mathbf{Id}_{\mathbf{F}}$ أي $\forall \mathbf{x} \in \mathbf{F} : \mathbf{f} \circ \mathbf{f}^{-1}(\mathbf{x}) = \mathbf{x}$

درس: التطبيقات

$$f(x) = \frac{2x}{x^2 + 1}$$
 و $f(x) = 4x^3 - 2x$ و $g: \mathbb{R} \to \mathbb{R}$ و $f: \mathbb{R} \to \mathbb{R}$ عدد $g \circ f$

تمرین 2:

$$f: \left[\sqrt{2}, +\infty\right[\to \left[\sqrt{2}, +\infty\right[$$

 $x \mapsto f(x) = (\sqrt{2} - \sqrt{x})^2$ المعرفة ب: $(\sqrt{2} - \sqrt{x})^2$

 $\left[\sqrt{2},+\infty\right]$ بين أن f تقابل في f

 f^{-1} ثم استنتج الدالة العكسية f^2 .