2007~2018 年高考真题汇编"椭圆"

1.【2011 文·4】椭圆 $\frac{x^2}{16} + \frac{y^2}{8} = 1$ 的离心率为()

A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{3}$ D. $\frac{\sqrt{2}}{2}$

2.【2012 理·4 文·4】设 F_1 、 F_2 是椭圆E: $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ (a > b > 0)

的左、右焦点, P 为直线 $x = \frac{3a}{2}$ 上一点, $\Delta F_2 P F_1$ 是底角为 30° 的等腰三角形,则 E 的离心率为(

A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{3}{4}$ D. $\frac{4}{5}$

3.【2018 文 I·4】已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{4} = 1$ 的一个焦点为(2,0), 则C的离心率为

A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{2\sqrt{2}}{3}$

4.【2010 文·5】中心在远点,焦点在x轴上的双曲线的一条渐近 线经过点(4.2),则它的离心率为

(A) $\sqrt{6}$ (B) $\sqrt{5}$ (C) $\frac{\sqrt{6}}{2}$

5.【2013 文 II·5】设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦 点分别为 F_1, F_2 , $P \in C$ 上的点, $PF_2 \perp F_1F_2$, $\angle PF_1F_2 = 30^\circ$, 则 C 的离心率为(

A. $\frac{\sqrt{3}}{6}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{\sqrt{3}}{3}$

6.【2015 文 $I \cdot 5$ 】已知椭圆 E 的中心为坐标原点,离心率为 $\frac{1}{2}$, E 的右焦点与抛物线 $C: y^2=8x$, 的焦点重合, A,B 是 C 的准线 与 E 的两个交点,则|AB|=(

C. 9

7.【2016 文 $I \cdot 5$ 】直线 l 经过椭圆的一个顶点和一个焦点,若椭 圆中心到l的距离为其短轴长的 $\frac{1}{4}$,则该椭圆的离心率为

B. $\frac{1}{2}$ C. $\frac{2}{3}$

8.【2013 理 I ·10】已知椭圆 E: $\frac{x^2}{a^2} + \frac{y^2}{L^2} = 1$ (a > b > 0)的右焦点 为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标 为(1, -1),则E的方程为(

A. $\frac{x^2}{45} + \frac{y^2}{36} = 1$ B. $\frac{x^2}{36} + \frac{y^2}{27} = 1$

C. $\frac{x^2}{27} + \frac{y^2}{18} = 1$ D. $\frac{x^2}{18} + \frac{y^2}{9} = 1$

9. 【2017 理Ⅲ· 10 文Ⅲ· 11】已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0)的左、右顶点分别为 A_1 , A_2 , 且以线段 A_1A_2 为直径的圆与 直线 bx - ay + 2ab = 0 相切,则 C 的离心率为

A. $\frac{\sqrt{6}}{3}$ B. $\frac{\sqrt{3}}{3}$ C. $\frac{\sqrt{2}}{3}$ D. $\frac{1}{3}$

10【2016 理 $III \cdot$ 11 文 $III \cdot$ 12】已知 O 为坐标原点,F 是椭圆 C:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点, A, B分别为 C的左, 右顶点.P

为C上一点,且 $PF \perp x$ 轴.过点A的直线l与线段PF交于点M, 与v轴交于点E.若直线BM经过OE的中点,则C的离心率为

(B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$

11. 【2018 文 II·11】已知 F_1 , F_2 是椭圆C的两个焦点,P是C上 的一点, 若 $PF_1 \perp PF_2$, 且 $\angle PF_2F_1 = 60^\circ$,则 C 的离心率为

A. $1 - \frac{\sqrt{3}}{2}$ B. $2 - \sqrt{3}$ C. $\frac{\sqrt{3} - 1}{2}$ D. $\sqrt{3} - 1$

12.【2017 文 I ·12】设 $A \times B$ 是椭圆 $C: \frac{x^2}{3} + \frac{y^2}{m} = 1$ 长轴的两个 端点, 若 C 上存在点 M 满足 $\angle AMB=120^{\circ}$, 则 m 的取值范围

A. $(0,1] \cup [9,+\infty)$

B. $(0, \sqrt{3}] \cup [9, +\infty)$

C. $(0,1] \cup [4,+\infty)$

D. $(0, \sqrt{3}] \cup [4, +\infty)$

13.【2011 理·14】在平面直角坐标系xOy中,椭圆C的中心为 原点,焦点 F_1, F_2 在x轴上,离心率为 $\frac{\sqrt{2}}{2}$.过 F_1 的直线L交C于 A,B 两点,且 $\triangle ABF_2$ 的周长为 16,那么 C 的方程为 $\frac{x^2}{16} + \frac{y^2}{8} = 1$.

14.【2015 理 I·14】一个圆经过椭圆 $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 的三个顶点, 且圆心在 x 轴的正半轴上,则该圆的标准方程为 $(x-\frac{3}{2})^2+y^2=\frac{25}{4}$.

15.【2008 文·15】过椭圆 $\frac{x^2}{5} + \frac{y^2}{4} = 1$ 的右焦点作一条斜率为 2 的直线与椭圆交于 A, B 两点, O 为坐标原点,则 $\triangle OAB$ 的面

16【2007 理·19】在平面直角坐标系 xOy 中,经过点 $(0,\sqrt{2})$ 且 斜率为k的直线l与椭圆 $\frac{x^2}{2} + y^2 = 1$ 有两个不同的交点 $P \cap Q$.

(1) 求k的取值范围;

(2) 设椭圆与x轴正半轴、y轴正半轴的交点分别为A, B, 是否存在常数 k , 使得向量 $\overrightarrow{OP} + \overrightarrow{OQ}$ 与 \overrightarrow{AB} 共线? 如果存在, 求k值;如果不存在,请说明理由.

解: (1) 由已知条件,直线l的方程为 $y = kx + \sqrt{2}$,

代入椭圆方程得 $\frac{x^2}{2} + (kx + \sqrt{2})^2 = 1$.

整理得 $\left(\frac{1}{2} + k^2\right) x^2 + 2\sqrt{2}kx + 1 = 0$

直线l与椭圆有两个不同的交点P和Q等价于

即 k 的取值范围为 $\left(-\infty, -\frac{\sqrt{2}}{2}\right) \cup \left(\frac{\sqrt{2}}{2}, +\infty\right)$.

由方程①, $x_1 + x_2 = -\frac{4\sqrt{2k}}{1+2k^2}$.

 $\nabla y_1 + y_2 = k(x_1 + x_2) + 2\sqrt{2}$.

 $\overrightarrow{m} A(\sqrt{2},0), B(0,1), \overrightarrow{AB} = (-\sqrt{2},1).$

所以 $\overrightarrow{OP} + \overrightarrow{OQ}$ 与 \overrightarrow{AB} 共线等价于 $x_1 + x_2 = -\sqrt{2}(y_1 + y_2)$,

将②③代入上式,解得 $_{k} = \frac{\sqrt{2}}{2}$.

由(1)知
$$k < -\frac{\sqrt{2}}{2}$$
或 $k > \frac{\sqrt{2}}{2}$,故没有符合题意的常数 k

17.【2008 理·20】在直角坐标系 xOy 中,椭圆 C_1 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左、右焦点分别为 F_1 , F_2 . F_2 也是抛物线 C_2 : $y^2 = 4x$ 的焦点,点 M 为 C_1 与 C_2 在第一象限的交点,且 | MF_2 | $= \frac{5}{3}$.

(1) 求 C_1 的方程;

(2) 平面上的点 N满足 $\overrightarrow{MN} = \overrightarrow{MF_1} + \overrightarrow{MF_2}$,直线 $l/\!\!/ MN$,且与 C_1 交于 A,B 两点,若 $\overrightarrow{OA} \bullet \overrightarrow{OB} = 0$,求直线 l 的方程.

解: (1) 由 C_2 : $y^2 = 4x$ 知 F_2 (1,0)

设 $M(x_1, y_1)$, M在 C_2 上, 因为 $|MF_2| = \frac{5}{3}$,

所以
$$x_1 + 1 = \frac{5}{3}$$
, 得 $x_1 = \frac{2}{3}$, $y_1 = \frac{2\sqrt{6}}{3}$. M 在 C_1 上,

且椭圆 C_1 的半焦距 c=1,于是 $\left\{\frac{4}{9a^2} + \frac{8}{3b^2} = 1, \text{ 消去 } b^2 \text{ 并整理得} \right\}$

$$9a^4 - 37a^2 + 4 = 0$$
, 解得 $a = 2$ ($a = \frac{1}{3}$ 不合题意, 舍去).

故椭圆 C_1 的方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$.

(2) 由 $\overline{MF_1} + \overline{MF_2} = \overline{MN}$ 知四边形 MF_1NF_2 是平行四边形,其中心为坐标原点 O ,因为 l // MN ,所以 l 与 OM 的斜率相同,故 l 的斜率 $k = \frac{2\sqrt{6}}{2} \div \frac{2}{2} = \sqrt{6}$.设 l 的方程为 $y = \sqrt{6}(x-m)$.

由
$$\begin{cases} 3x^2 + 4y^2 = 12, \\ y = \sqrt{6}(x-m), \end{cases}$$
 消去 y 得 $9x^2 - 16mx + 8m^2 - 4 = 0.$

设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, $x_1 + x_2 = \frac{16m}{9}$, $x_1 x_2 = \frac{8m^2 - 4}{9}$.

因为 $\overrightarrow{OA} \perp \overrightarrow{OB}$,所以 $x_1x_2 + y_1y_2 = 0$.

$$x_1 x_2 + y_1 y_2 = x_1 x_2 + 6(x_1 - m)(x_2 - m)$$

$$= 7x_1 x_2 - 6m(x_1 + x_2) + 6m^2$$

$$= 7 \cdot \frac{8m^2 - 4}{9} - 6m \cdot \frac{16m}{9} + 6m^2 = \frac{1}{9}(14m^2 - 28) = 0.$$

所以 $m = \pm \sqrt{2}$. 此时 $\Delta = (16m)^2 - 4 \times 9(8m^2 - 4) > 0$,

故所求直线 l 的方程为 $y = \sqrt{6x - 2\sqrt{3}}$, 或 $y = \sqrt{6x + 2\sqrt{3}}$.

18.【2009 理·20 文·20】已知椭圆 C 的中心为直角坐标系 xOy 的原点,焦点在 s 轴上,它的一个顶点到两个焦点的距离分别是 7 和 1

- (1) 求椭圆 C 的方程:
- (2) 若 P 为椭圆 C 上的动点,M 为过 P 且垂直于 x 轴的直线上的点, $\frac{|OP|}{|OM|}$ = λ ,求点 M 的轨迹方程,并说明轨迹是什么曲线.

解:(1)设椭圆长半轴长及半焦距分别为 a, c, 由已知得

$$\begin{cases} a-c=1 \\ a+c=7 \end{cases}$$
, 解得 $a=4, c=3$,

所以椭圆 C 的标准方程为 $\frac{x^2}{16} + \frac{y^2}{7} = 1$

(2) 设M(x,y), 其中 $x \in [-4,4]$ 。由己知 $\frac{|OP|^2}{|OM|^2} = \lambda^2$ 及点P

在椭圆 C 上可得 $\frac{9x^2 + 112}{16(x^2 + y^2)} = \lambda^2$ 。

整理得 $(16\lambda^2 - 9)x^2 + 16\lambda^2y^2 = 112$, 其中 $x \in [-4, 4]$ 。

(i)
$$\lambda = \frac{3}{4}$$
 时。化简得 $9y^2 = 112$

所以点M 的轨迹方程为 $y=\pm \frac{4\sqrt{7}}{3}(-4 \le x \le 4)$,轨迹是两条平行于x轴的线段。

(ii)
$$\lambda \neq \frac{3}{4}$$
时,方程变形为 $\frac{x^2}{16\lambda^2 - 9} + \frac{y^2}{16\lambda^2} = 1$,其中

 $x \in [-4, 4]$

当 $0<\lambda<\frac{3}{4}$ 时,点M的轨迹为中心在原点、实轴在y轴上的双曲线满足 $-4\leq x\leq 4$ 的部分。

当 $\frac{3}{4}$ < λ <1时,点M 的轨迹为中心在原点、长轴在x轴上的椭圆满足 $-4 \le x \le 4$ 的部分;

当 $\lambda \geq 1$ 时,点M的轨迹为中心在原点、长轴在x轴上的椭圆。

- 19.【2010 文·20】设 F_1 , F_2 分别是椭圆 E: $x^2 + \frac{y^2}{b^2} = 1$ (0 < b
- < 1)的左、右焦点,过 F_1 的直线 l 与 E 相交于 A、B 两点, 且 $\left|AF_2\right|$, $\left|AB\right|$, $\left|BF_2\right|$ 成等差数列.
- (1) 求|*AB*|
- (2) 若直线 l 的斜率为 1, 求 b 的值.

解: (1) 由椭圆定义知 | AF₂ | + | AB | + | BF₂ | = 4

$$\mathbb{Z} 2 |AB| = |AF_2| + |BF_2|, \# |AB| = \frac{4}{3}$$

(2) L 的方程式为 y=x+c,其中 $c = \sqrt{1-b^2}$

设 $A(x_1, y_1), B(x_1, y_1), MA, B$ 两点坐标满足方程组

$$\begin{cases} y = x + c \\ x^2 + \frac{y^2}{b^2} = 1 \end{cases}$$
 化简得 $(1+b^2)x^2 + 2cx + 1 - 2b^2 = 0$.

则
$$x_1 + x_2 = \frac{-2c}{1+b^2}$$
, $x_1x_2 = \frac{1-2b^2}{1+b^2}$.

因为直线 AB 的斜率为 1,所以 $|AB| = \sqrt{2} |x_2 - x_1|$

即
$$\frac{4}{3} = \sqrt{2} |x_2 - x_1|$$
.则

$$\frac{8}{9} = (x_1 + x_2)^2 - 4x_1x_2 = \frac{4(1 - b^2)}{(1 + b^2)^2} - \frac{4(1 - 2b^2)}{1 + b^2} = \frac{8b^4}{1 + b^2}$$

解得
$$b = \frac{\sqrt{2}}{2}$$
.

20.【2010 理·20】设 F_1, F_2 分别是椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$

的左、右焦点,过 F_1 斜率为1的直线 ℓ 与E相交于A,B两点,且 $|AF_2|$,|AB|, $|BF_2|$ 成等差数列.

- (1) 求E的离心率;
- (2) 设点 P(0,-1) 满足 |PA| = |PB|, 求 E 的方程

解: (1) 由椭圆定义知 $|AF_2| + |BF_2| + |AB| = 4a$,

又
$$2|AB| = |AF_2| + |BF_2|$$
,得 $|AB| = \frac{4}{3}a$

l的方程为 y = x + c, 其中 $c = \sqrt{a^2 - b^2}$ 。

设 $A(x_1,y_1)$, $B(x_2,y_2)$, 则A、B两点坐标满足方程组

$$\begin{cases} y = x + c \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \end{cases}, \quad \text{Kift in } \left(a^2 + b^2\right) x^2 + 2a^2cx + a^2\left(c^2 - b^2\right) = 0$$

则
$$x_1 + x_2 = \frac{-2a^2c}{a^2 + b^2}, x_1x_2 = \frac{a^2(c^2 - b^2)}{a^2 + b^2}$$

因为直线 AB 斜率为 1,

所以
$$|AB| = \sqrt{2}|x_2 - x_1| = \sqrt{2[(x_1 + x_2)^2 - 4x_1x_2]}$$

得
$$\frac{4}{3}a = \frac{4ab^2}{a^2 + b^2}$$
,故 $a^2 = 2b^2$

所以 E 的离心率
$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \frac{\sqrt{2}}{2}$$

(2) 设 AB 的中点为 $N(x_0, y_0)$, 由 (1) 知

$$x_0 = \frac{x_1 + x_2}{2} = \frac{-a^2 c}{a^2 + b^2} = -\frac{2}{3}c$$
, $y_0 = x_0 + c = \frac{c}{3}$.

由
$$|PA| = |PB|$$
,得 $k_{PN} = -1$,即 $\frac{y_0 + 1}{x_0} = -1$

得 c = 3, 从而 $a = 3\sqrt{2}, b = 3$

故椭圆 E 的方程为 $\frac{x^2}{18} + \frac{y^2}{9} = 1$

21. 【2013 理 I ·20 文 I ·21 】已知圆 M: $(x+1)^2+y^2=1$,圆 N: $(x-1)^2+y^2=9$,动圆 P 与圆 M 外切并且与圆 N 内切,圆心 P 的轨迹为曲线 C.

(1)求 C 的方程;

(2) 是与圆 P,圆 M 都相切的一条直线,l 与曲线 C 交于 A,B 两点,当圆 P 的半径最长时,求|AB|.

\mathbf{m} : (1) : \mathbf{B} 月圆 \mathbf{M} 外切且与圆 \mathbf{N} 内切,

 $|PM| + |PN| = (R + r_1) + (r_2 - R) = r_1 + r_2 = 4$

由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为 $\sqrt{3}$ 的椭圆(左顶点除外),其方程为

$$\frac{x^2}{4} + \frac{y^2}{3} = 1(x \neq -2).$$

(2) 对于曲线C上任意一点P(x, y),

 \pm \mp |PM|-|PN|=2R-2 ≤2, ∴R≤2,

当且仅当圆P的圆心为(2,0)时,R=2.

∴ 当圆P的半径最长时,其方程为 $(x-2)^2 + y^2 = 4$,[来源:学&科& MZ&X&X&K]

当l的倾斜角为 90° 时,则l与y轴重合,可得 $|AB|=2\sqrt{3}$

当l的倾斜角不为 90^0 时,由 $r_1 \neq R$ 知l不平行x轴,设l与x轴的

交点为Q,则
$$\frac{|QP|}{|QM|} = \frac{R}{r_1}$$
,可求得Q(-4,0), :设 $l: y = k(x+4)$,

由 l 于圆M相切得 $\frac{|3k|}{\sqrt{1+k^2}} = 1$,解得 $k = \pm \frac{\sqrt{2}}{4}$.

当
$$k = \frac{\sqrt{2}}{4}$$
 时,将 $y = \frac{\sqrt{2}}{4}x + \sqrt{2}$ 代入 $\frac{x^2}{4} + \frac{y^2}{3} = 1(x \neq -2)$ 并整

理得 $7x^2 + 8x - 8 = 0$,解得 $x_{1,2} = \frac{-4 \pm 6\sqrt{2}}{7}$, ...

$$|AB| = \sqrt{1 + k^2} |x_1 - x_2| = \frac{18}{7}.$$

当 $k = -\frac{\sqrt{2}}{4}$ 时,由图形的对称性可知 $|AB| = \frac{18}{7}$,

综上, $|AB| = \frac{18}{7}$ 或 $|AB| = 2\sqrt{3}$.

22. 【 2013 理 II·20 】 平面直角坐标系 xOy 中,过椭圆 $M: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 右焦点 F 的直线 $x + y - \sqrt{3} = 0$ 交 M 于 A, B 两点,P 为 AB 的中点,且 OP 的斜率为 $\frac{1}{2}$.

(1) 求*M*的方程:

(2) C,D 为 M 上的两点,若四边形 ACBD 的对角线 $CD \perp AB$,求四边形 ACBD 面积的最大值.

解: (1) 设 $A(x_1, y_1)$, $B(x_2, y_2)$, $P(x_0, y_0)$,

则
$$\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$$
, $\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1$, $\frac{y_2 - y_1}{x_2 - x_1} = -1$,

由此可得
$$\frac{b^2(x_2+x_1)}{a^2(y_2+y_1)} = -\frac{y_2-y_1}{x_2-x_1} = 1.$$

因为
$$x_1+x_2=2x_0$$
, $y_1+y_2=2y_0$, $\frac{y_0}{x_0}=\frac{1}{2}$, 所以 $a^2=2b^2$.

又由题意知,M的右焦点为($\sqrt{3}$, 0), 故 $a^2-b^2=3$.

因此
$$a^2=6$$
, $b^2=3$. 所以 M 的方程为 $\frac{x^2}{6} + \frac{y^2}{3} = 1$.

因此
$$|AB| = \frac{4\sqrt{6}}{3}$$
.

由题意可设直线 *CD* 的方程为 $y = x + n \ (-\frac{5\sqrt{3}}{3} < n < \sqrt{3})$,

设 $C(x_3, y_3)$, $D(x_4, y_4)$.

由
$$\begin{cases} y = x + n, \\ \frac{x^2}{6} + \frac{y^2}{3} = 1 \end{cases}$$
 得 $3x^2 + 4nx + 2n^2 - 6 = 0.$

于是 $x_{3,4} = \frac{-2n \pm \sqrt{2(9-n^2)}}{3}$.因为直线 *CD* 的斜率为 1,所以

 $|CD| = \sqrt{2} |x_4 - x_3| = \frac{4}{3} \sqrt{9 - n^2}$.由已知,四边形 *ACBD* 的面积

 $S = \frac{1}{2} |CD| \cdot |AB| = \frac{8\sqrt{6}}{9} \sqrt{9 - n^2}$. 当 n = 0 时,S 取得最大值,最大

值为 $\frac{8\sqrt{6}}{3}$.所以四边形 ACBD 面积的最大值为 $\frac{8\sqrt{6}}{3}$.

- 23. 【 2014 理 II·20 文 II·20 】设 F_1 , F_2 分别是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左右焦点, $M \in C$ 上一点且 MF_2 与x 轴垂直,直线 MF_1 与C的另一个交点为N.
- (1) 若直线 MN 的斜率为 $\frac{3}{4}$, 求 C 的离心率;
- (2) 若直线 MN 在 y 轴上的截距为 2,且 $|MN| = 5|F_1N|$,求 a, b.

解: (1) 由题意得:
$$F_1(-c,0)$$
, $M(c,\frac{b^2}{a})$, $::MN$ 的斜率为 $\frac{3}{4}$,

$$\frac{b^2}{a}$$
 : $\frac{a}{2c} = \frac{3}{4}$, 又 $a^2 = b^2 + c^2$, 解得 $e = \frac{c}{a} = \frac{1}{2}$ 或 -2 (舍), 故直线 MN 的斜率为 $\frac{3}{4}$ 时, C 的离心率为 $\frac{1}{2}$.

- (2) 由题意知,点M在第一象限, $F_1(-c,0)$, $M(c,\frac{b^2}{a})$,
- ∴直线 *MN* 的斜率为: $\frac{b^2}{2ac}$, 则 *MN*: $y = \frac{b^2}{2ac}x + 2$;
- $: F_1(-c,0)$ 在直线 MN 上, $: 0 = \frac{b^2}{2ac} \times (-c) + 2$,

得 $b^2 = 4a$ …①,

$$\therefore |MN| = 5|F_1N|, \therefore |MF_1| = 4|F_1N|, \coprod \overrightarrow{MF_1} = (-2c, -\frac{b^2}{a}),$$

$$\therefore \overline{F_1 N} = \left(-\frac{c}{2}, -\frac{b^2}{4a}\right), \quad \therefore N\left(-\frac{3c}{2}, -\frac{b^2}{4a}\right),$$

又
$$:N(-\frac{3c}{2},-\frac{b^2}{4a})$$
在椭圆 C 上,

$$\therefore \frac{9c^2}{\frac{4}{a^2}} + \frac{b^4}{16a^2} = 1 \cdots 2,$$

联立①、②解得: a = 7, $b = 2\sqrt{7}$

24.【2014 理 I·20】已知点 A (0,-2), 椭圆 E:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
 的离心率为 $\frac{\sqrt{3}}{2}$, F 是椭圆的焦点,直

线
$$AF$$
 的斜率为 $\frac{2\sqrt{3}}{3}$, O 为坐标原点.

(1)求 E 的方程; (2)设过点 A 的直线 l 与 E 相交于 P, Q 两点,当 ΔOPQ 的面积最大时,求 l 的方程.

解:(1) 设
$$F(c,0)$$
, 由条件知 $\frac{2}{c} = \frac{2\sqrt{3}}{3}$, 得 $c = \sqrt{3}$, 又 $\frac{c}{a} = \frac{\sqrt{3}}{2}$,

所以 a=2 ,
$$b^2 = a^2 - c^2 = 1$$
 ,故 E 的方程 $\frac{x^2}{4} + y^2 = 1$.

(2) 依题意当 $l \perp x$ 轴不合题意,故设直线 l: y = kx - 2,设 $P(x_1, y_1), Q(x_2, y_2)$

将
$$y = kx - 2$$
 代入 $\frac{x^2}{4} + y^2 = 1$,

得
$$(1+4k^2)x^2-16kx+12=0$$

当
$$\Delta = 16(4k^2 - 3) > 0$$
,即 $k^2 > \frac{3}{4}$ 时, $x_{1,2} = \frac{8k \pm 2\sqrt{4k^2 - 3}}{1 + 4k^2}$

从而
$$|PQ| = \sqrt{k^2 + 1} |x_1 - x_2| = \frac{4\sqrt{k^2 + 1} \cdot \sqrt{4k^2 - 3}}{1 + 4k^2}$$

又点 O 到直线 PQ 的距离 $d = \frac{2}{\sqrt{k^2 + 1}}$,

所以 Δ OPQ 的面积
$$S_{\Delta OPQ} = \frac{1}{2} d |PQ| = \frac{4\sqrt{4k^2 - 3}}{1 + 4k^2}$$
,

设
$$\sqrt{4k^2 - 3} = t$$
 ,则 $t > 0$, $S_{\Delta OPQ} = \frac{4t}{t^2 + 4} = \frac{4}{t + \frac{4}{t}} \le 1$,

当且仅当 t=2 , $k=\pm \frac{\sqrt{7}}{2}$ 等号成立, 且满足 $\Delta > 0$,

所以当 Δ OPQ 的面积最大时,l 的方程为: $y = \frac{\sqrt{7}}{2}x - 2$ 或 $y = -\frac{\sqrt{7}}{2}x - 2$.

- 25.【2015 理 II · 20】已知椭圆 C: $9x^2 + y^2 = m^2 (m > 0)$,直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A,B,线段 AB 的中点为 M.
 - (1) 证明: 直线 OM 的斜率与 l 的斜率的乘积为定值;
 - (2) 若 l 过点 $(\frac{m}{3}, m)$,延长线段 OM 与 C 交于点 P,四边形 OAPB 能否平行四边形?若能,求此时 l 的斜率;若不能,说明理由.

解: (1) 设直线 $l: y = kx + b(k \neq 0, b \neq 0)$,

 $A(x_1, y_1), B(x_2, y_2), M(x_M, y_M)$, 将 y = kx + b 代 入 $9x^2 + y^2 = m^2$ 得 $(k^2 + 9)x^2 + 2kbx + b^2 - m^2 = 0$,

于是直线 OM 的斜率 $k_{OM} = \frac{y_M}{x_M} = -\frac{9}{k}$,即 $k_{OM} \cdot k = -9$,

所以直线OM的斜率与l的斜率的乘积为定值.

- (2) 四边形 OAPB 能为平行四边形,因为直线 l 过点 $(\frac{m}{3}, m)$, 所以 l 不过原点且与 C 有两个交点的充要条件是 $k > 0, k \neq 3$,
- 由 (1) 得 *OM* 的方程为 $y = -\frac{9}{k}x$.

设点
$$P$$
 的横坐标为 x_P ,由
$$\begin{cases} y = -\frac{9}{k}x\\ 9x^2 + y^2 = m^2 \end{cases}$$

得
$$x_P^2 = \frac{k^2 m^2}{9k^2 + 81}$$
,即 $x_P = \frac{\pm km}{3\sqrt{k^2 + 9}}$,

将点 $(\frac{m}{3}, m)$ 的坐标代入l的方程得 $b = \frac{m(3-k)}{3}$,

因此
$$x_M = \frac{k(k-3)m}{3(k^2+9)}$$
.

四边形 OAPB 为平行四边形当且仅当线段 AB 与线段 OP 互相平分,即 $x_P = 2x_M$,于是 $\frac{\pm km}{3\sqrt{k^2+9}} = 2 \times \frac{k(k-3)m}{3(k^2+9)}$,解得 $k_1 = 4 - \sqrt{7}$, $k_2 = 4 + \sqrt{7}$,因为 $k_i > 0$, $k_i \neq 3$,i = 1, 2 ,

所以当l的斜率为 $4-\sqrt{7}$ 或 $4+\sqrt{7}$ 时,四边形OAPB为平行四边形.

- 26.【2015 文 II · 20】已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离 心率为 $\frac{\sqrt{2}}{2}$, 点 (2, $\sqrt{2}$) 在 C 上.
 - (1) 求 C 的方程;
 - (2) 直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A、B,线段 AB 的中点为 M,证明:直线 OM 的斜率与直线 l 的斜率的乘积为定值.

解: (1) 由题意有
$$\frac{\sqrt{a^2-b^2}}{a} = \frac{\sqrt{2}}{2}, \frac{4}{a^2} + \frac{2}{b^2} = 1$$
,

解得
$$a^2 = 8, b^2 = 4$$
. 所以 C 的方程为 $\frac{x^2}{8} + \frac{y^2}{4} = 1$.

(2) 设直线 $l: y = kx + b(k \neq 0, b \neq 0)$,

$$A(x_1, y_1), B(x_2, y_2), M(x_M, y_M)$$

将
$$y = kx + b$$
 代入 $\frac{x^2}{8} + \frac{y^2}{4} = 1$ 得

$$(2k^2+1)x^2+4kbx+2b^2-8=0$$

故
$$x_M = \frac{x_1 + x_2}{2} = \frac{-2kb}{2k^2 + 1}, y_M = kx_M + b = \frac{b}{2k^2 + 1}$$

于是直线
$$OM$$
 的斜率 $k_{OM} = \frac{y_M}{x_M} = -\frac{1}{2k}$,

即 $k_{OM} \cdot k = -\frac{1}{2}$,所以直线 OM 的斜率与直线 l 的斜率的乘积为定值.

- 27.【2016 理 $I \cdot 20$ 】设圆 $x^2 + y^2 + 2x 15 = 0$ 的圆心为 A,直线 l 过点 B(1,0) 且与 x 轴不重合, l 交圆 A 于 C , D 两点,过 B 作 AC 的平行线交 AD 于点 E .
- (1) 证明|EA| + |EB| 为定值,并写出点 E 的轨迹方程;
- (2) 设点 E 的轨迹为曲线 C_1 ,直线 l 交 C_1 于 M , N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P , Q 两点,求四边形 MPNQ 面积的取值范围.

解: (1) 圆 A 整理为 $(x+1)^2 + y^2 = 16$, A 坐标(-1,0), 如图,

- ∴ BE//AC, $\emptyset \angle C = \angle EBD$, $\oplus AC = AD$, $\emptyset \angle D = \angle C$,
- ∴ $\angle EBD = \angle D$, $\bigcup EB = ED$,
- $\therefore AE + EB = AE + ED = AD = 4 > |AB|$

根据椭圆定义为一个椭圆, 方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, $(y \neq 0)$;

(2)
$$C_1: \frac{x^2}{4} + \frac{y^2}{3} = 1$$
; 设 $l: x = my + 1$, 因为 $PQ \perp l$,

设
$$PQ: y = -m(x-1)$$
, $M(x_1, y_1), N(x_2, y_2)$,

由
$$\begin{cases} x = my + 1 \\ \frac{x^2}{4} + \frac{y^2}{3} = 1 \end{cases}$$
 可得 $(3m^2 + 4)y^2 + 6my - 9 = 0$,则

$$y_1 + y_2 = \frac{-6m}{3m^2 + 4}, y_1y_2 = \frac{-9}{3m^2 + 4},$$

$$|MN| = \sqrt{1 + m^2} |y_1 - y_2| = \sqrt{1 + m^2} \sqrt{(y_1 + y_2)^2 - 4y_1y_2}$$
$$= \sqrt{1 + m^2} \frac{\sqrt{36m^2 + 36(3m^2 + 4)}}{3m^2 + 4} = \frac{12(m^2 + 1)}{3m^2 + 4}$$

圆心
$$A$$
 到 PQ 距离 $d = \frac{|-m(-1-1)|}{\sqrt{1+m^2}} = \frac{|2m|}{\sqrt{1+m^2}}$,

所以
$$|PQ| = 2\sqrt{|AQ|^2 - d^2} = 2\sqrt{16 - \frac{4m^2}{1 + m^2}} = \frac{4\sqrt{3m^2 + 4}}{\sqrt{1 + m^2}}$$
,

$$\therefore S_{MPNQ} = \frac{1}{2} |MN| \cdot |PQ| = \frac{1}{2} \cdot \frac{12(m^2 + 1)}{3m^2 + 4} \cdot \frac{4\sqrt{3m^2 + 4}}{\sqrt{1 + m^2}}$$

$$= \frac{24\sqrt{m^2 + 1}}{\sqrt{3m^2 + 4}} = 24\sqrt{\frac{1}{3 + \frac{1}{m^2 + 1}}} \in \left[12, 8\sqrt{3}\right)$$

即四边形 MPNQ 面积的取值范围为[12,8 $\sqrt{3}$).

- 28. 【2016 文 II · 21】已知 A 是椭圆 E: $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左顶点,斜率为 k (k>0)的直线交 E 于 A, M 两点,点 N 在 E 上,MA \bot NA.
 - (I) 当|AM|=|AN|时,求 $\triangle AMN$ 的面积;
 - (II) 当 2|AM| = |AN|时,证明: $\sqrt{3} < k < 2$.

解:(I)设 $M(x_1, y_1)$,则由题意知 $y_1 > 0$.

由已知及椭圆的对称性知,直线 AM 的倾斜角为 $\frac{\pi}{4}$

又 A(-2,0), 因此直线 AM 的方程为 y = x + 2.

将
$$x = y - 2$$
 代入 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 得 $7y^2 - 12y = 0$,

解得
$$y = 0$$
 或 $y = \frac{12}{7}$,所以 $y_1 = \frac{12}{7}$.

因此 Δ*AMN* 的面积
$$S_{\Delta AMN} = 2 \times \frac{1}{2} \times \frac{12}{7} \times \frac{12}{7} = \frac{144}{49}$$
.

(II) 将直线 AM 的方程 y = k(x+2)(k>0) 代入 $\frac{x^2}{4} + \frac{y^2}{3} = 1$

得
$$(3+4k^2)x^2+16k^2x+16k^2-12=0$$
.

曲
$$x_1 \cdot (-2) = \frac{16k^2 - 12}{3 + 4k^2}$$
 得 $x_1 = \frac{2(3 - 4k^2)}{3 + 4k^2}$,

故|
$$AM = \sqrt{1+k^2} |x_1+2| = \frac{12\sqrt{1+k^2}}{3+4k^2}$$
.

由题设,直线 AN 的方程为 $y = -\frac{1}{h}(x+2)$,故同理可得

$$|AN| = \frac{12k\sqrt{1+k^2}}{4+3k^2}$$
.

由
$$2 \mid AM \mid = \mid AN \mid$$
 得 $\frac{2}{3+4k^2} = \frac{k}{4+3k^2}$,

设
$$f(t) = 4t^3 - 6t^2 + 3t - 8$$
, 则 $k \in f(t)$ 的零点,

$$f'(t) = 12t^2 - 12t + 3 = 3(2t - 1)^2 \ge 0$$
,所以 $f(t)$ 在 $(0, +\infty)$ 单调递增,

又
$$f(\sqrt{3}) = 15\sqrt{3} - 26 < 0$$
, $f(2) = 6 > 0$, 因此 $f(t)$ 在 $(0, +\infty)$ 有唯一的零点,且零点 k 在 $(\sqrt{3}, 2)$ 内,所以 $\sqrt{3} < k < 2$.

- 29. 【2016 理 II · 20 】已知椭圆 $E: \frac{x^2}{t} + \frac{y^2}{3} = 1$ 的焦点在x 轴上,A 是 E 的左顶点,斜率为 k (k>0)的直线交 E 于 A ,M 两点,点 N 在 E 上,MA \bot NA .
 - (I) 当 *t*=4, |*AM*|=|*AN*|时, 求△*AMN* 的面积;
 - (II) 当 2|AM|=|AN|时,求k的取值范围

解: (1)当
$$t = 4$$
 时,椭圆 E 的方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, A 点坐标为

(-2, 0), 则直线 AM 的方程为 y = k(x+2). 联立

$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{3} = 1 \\ y = k(x+2) \end{cases}$$
 并整理得, $(3+4k^2)x^2 + 16k^2x + 16k^2 - 12 = 0$,

解得
$$x = -2$$
 或 $x = -\frac{8k^2 - 6}{3 + 4k^2}$,

$$\text{Fig.} |AM| = \sqrt{1 + k^2} \left| -\frac{8k^2 - 6}{3 + 4k^2} + 2 \right| = \sqrt{1 + k^2} \cdot \frac{12}{3 + 4k^2} ,$$

因为 $AM \perp AN$, 所以

$$|AN| = \sqrt{1 + \left(-\frac{1}{k}\right)^2} \cdot \frac{12}{3 + 4 \cdot \left(1 - \frac{1}{k}\right)^2} = \sqrt{1 + k^2} \cdot \frac{12}{3|k| + \frac{4}{|k|}},$$

因为|AM| = |AN|, k > 0,

所以
$$\sqrt{1+k^2} \cdot \frac{12}{3+4k^2} = \sqrt{1+k^2} \cdot \frac{12}{3k+\frac{4}{k}}$$
, 整理得

 $(k-1)(4k^2-k+4)=0$, 因为 $4k^2-k+4=0$ 无实根, 所以 k=1.

所以
$$\triangle AMN$$
 的面积为 $\frac{1}{2}|AM|^2 = \frac{1}{2}\left(\sqrt{1+1} \cdot \frac{12}{3+4}\right)^2 = \frac{144}{49}$.

(2)直线 AM 的方程为
$$y = k(x + \sqrt{t})$$
, 联立
$$\begin{cases} \frac{x^2}{t} + \frac{y^2}{3} = 1\\ y = k(x + \sqrt{t}) \end{cases}$$
 并整

理得, $(3+tk^2)x^2+2t\sqrt{t}k^2x+t^2k^2-3t=0$,

解得
$$x = -\sqrt{t}$$
 或 $x = -\frac{t\sqrt{t}k^2 - 3\sqrt{t}}{3 + tk^2}$,

$$\text{PF} \text{ is } |AM| = \sqrt{1 + k^2} \left| -\frac{t\sqrt{t}k^2 - 3\sqrt{t}}{3 + tk^2} + \sqrt{t} \right| = \sqrt{1 + k^2} \cdot \frac{6\sqrt{t}}{3 + tk^2},$$

所以
$$|AN| = \sqrt{1+k^2} \cdot \frac{6\sqrt{t}}{3k+\frac{t}{k}}$$
, 因为 $2|AM| = |AN|$,

$$\text{PST VL} \ 2 \cdot \sqrt{1 + k^2} \cdot \frac{6\sqrt{t}}{3 + tk^2} = \sqrt{1 + k^2} \cdot \frac{6\sqrt{t}}{3k + \frac{t}{k}} \ ,$$

整理得
$$t = \frac{6k^2 - 3k}{k^3 - 2}$$
.

因为椭圆 E 的焦点在 x 轴,所以 t > 3,即 $\frac{6k^2 - 3k}{k^3 - 2} > 3$

整理得
$$\frac{(k^2+1)(k-2)}{k^3-2}$$
<0,解得 $\sqrt[3]{2}$ < k <2.

- 30.【2017 理 II·20 文 II·20】设 O 为坐标原点,动点 M 在椭圆 C: $\frac{x^2}{2} + y^2 = 1$ 上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 $\overline{NP} = \sqrt{2} \, \overline{NM} \; .$
- (1) 求点P的轨迹方程;
- (2) 设点 Q 在直线 x = -3 上,且 $\overrightarrow{OP} \cdot \overrightarrow{PQ} = 1$. 证明: 过点 P 且垂直于 OQ 的直线 I 过 C 的左焦点 F.

解: (1) 相关点法求轨迹:设 $M(x_0,y_0)$, $N(x_0,0)$,P(x,y),

则:
$$\overrightarrow{NP} = (x - x_0, y)$$
, $\overrightarrow{NM} = (0, y_0)$. $\overrightarrow{NP} = \sqrt{2} \overrightarrow{NM}$,

所以:
$$(x-x_0, y) = \sqrt{2}(0, y_0)$$
, 则: $x = x_0, y = \sqrt{2}y_0$.

又
$$M(x_0, y_0)$$
在椭圆C上,所以: $\frac{{x_0}^2}{2} + {y_0}^2 = 1$,

所以: $x^2 + y^2 = 2$.

(2)
$$\& P(x_1, y_1), Q(-3, y_2), F(-1, 0),$$

则
$$\overrightarrow{OP} = (x_1, y_1)$$
, $\overrightarrow{OQ} = (-3, y_2)$, $\overrightarrow{PQ} = (-3 - x_1, y_2 - y_1)$, $\overrightarrow{PF} = (-1 - x_1, -y_1)$. $\mathbb{Z} \overrightarrow{OP} \cdot \overrightarrow{PQ} = 1$,

所以:
$$(x_1, y_1) \cdot (-3 - x_1, y_2 - y_1) = -3x_1 - x_1^2 + y_1y_2 - y_1^2 = 1$$
.

又
$$P(x_1, y_1)$$
在 $x^2 + y^2 = 2$ 上,所以: $3x_1 - y_1y_2 = -3$.

$$\nabla \overrightarrow{PF} \cdot \overrightarrow{OQ} = (-1 - x_1, -y_1) \cdot (-3, y_2) = 3 + 3x_1 - y_1y_2 = 0.$$

所以: $\overrightarrow{PF} \perp \overrightarrow{OQ}$, 即过P垂直于OQ的直线l过椭圆C的左焦点F。

31. 【2017理 I·20】

已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0), 四点 P_1 (1,1), P_2 (0,1),

$$P_3$$
 (-1, $\frac{\sqrt{3}}{2}$), P_4 (1, $\frac{\sqrt{3}}{2}$) 中恰有三点在椭圆 C 上.

- (1) 求 C 的方程:
- (2)设直线 l 不经过 P_2 点且与 C 相交于 A, B 两点.若直线 P_2A 与直线 P_2B 的斜率的和为-1,证明: l 过定点.
- **解**: (1) 根据椭圆对称性,必过 *P*₃ 、 *P*₄ , 又 *P*₄ 横坐标为 1, 椭圆必不过 *P*₁ , 所以过 *P*₂ , *P*₃ , *P*₄ 三点,将

$$P_2(0,1), P_3\left(-1, \frac{\sqrt{3}}{2}\right)$$
代入椭圆方程得:
$$\begin{cases} \frac{1}{b^2} = 1\\ \frac{1}{a^2} + \frac{3}{b^2} = 1 \end{cases}$$

解得 $a^2 = 4$, $b^2 = 1$

- ∴椭圆 C 的方程为: $\frac{x^2}{4} + y^2 = 1$.
- (2) ① 当斜率不存在时,

设
$$l: x = m$$
, $A(m, y_A)$, $B(m, -y_A)$,

$$k_{P_2A} + k_{P_2B} = \frac{y_A - 1}{m} + \frac{-y_A - 1}{m} = \frac{-2}{m} = -1$$
, $\# m = 2$,

此时1过椭圆右顶点,不存在两个交点,故不满足.

② 当斜率存在时,设 $l: y = kx + b(b \neq 1)$

$$A(x_1, y_1), B(x_2, y_2), 联立$$
 $\begin{cases} y = kx + b \\ x^2 + 4y^2 - 4 = 0 \end{cases}$, 整理得

$$(1+4k^2)x^2+8kbx+4b^2-4=0$$
,

$$x_1 + x_2 = \frac{-8kb}{1 + 4k^2}$$
, $x_1 \cdot x_2 = \frac{4b^2 - 4}{1 + 4k^2}$, [1]

$$k_{P_2A} + k_{P_2B} = \frac{y_1 - 1}{x_1} + \frac{y_2 - 1}{x_2} = \frac{x_2(kx_1 + b) - x_2 + x_1(kx_2 + b) - x_1}{x_1 x_2}$$

$$=\frac{\frac{8kb^{2}-8k-8kb^{2}+8kb}{1+4k^{2}}}{\frac{4b^{2}-4}{1+4k^{2}}}=\frac{8k(b-1)}{4(b+1)(b-1)}=-1, \quad \forall b \neq 1,$$

⇒ b = -2k - 1, 此时 $\Delta = -64k$,

存在 k 使得 $\Delta > 0$ 成立. ∴直线 l 的方程为 y = kx - 2k - 1,

所以l过定点(2,-1).

【2018 理 I·19】

设椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 的右焦点为F,过F的直线l与C交于A, B两点,点M的坐标为(2,0).

- (1) 当 l 与 x 轴垂直时,求直线 AM 的方程;
- (2) 设 O 为坐标原点,证明: $\angle OMA = \angle OMB$.

解: (1) 由已知得F(1,0), l的方程为x=1.

由已知可得,点 A 的坐标为 $(1, \frac{\sqrt{2}}{2})$ 或 $(1, -\frac{\sqrt{2}}{2})$.

所以 AM 的方程为 $y = -\frac{\sqrt{2}}{2}x + \sqrt{2}$ 或 $y = \frac{\sqrt{2}}{2}x - \sqrt{2}$.

......5 分

(2) 方法一

当l与x轴垂直时,由(1)知 $\angle OMA = \angle OMB$, …6 分 当l与x轴不垂直时,设直线l的方程: y = k(x-1) , $A(x_1, y_1)$, $B(x_2, y_2)$, … … 7 分

把
$$y = k(x-1)$$
 代入 $\frac{x^2}{2} + y^2 = 1$

得
$$(2k^2+1)x^2-4k^2x+2k^2-2=0$$
,

所以
$$x_1 + x_2 = \frac{4k^2}{2k^2 + 1}$$
, $x_1 x_2 = \frac{2k^2 - 2}{2k^2 + 1}$,8 分

直线 MA, MB 的斜率和

因为
$$2x_1x_2 - 3(x_1 + x_2) + 4 = \frac{4k^2 - 4}{2k^2 + 1} - \frac{12k^2}{2k^2 + 1} + 4$$
,
$$= \frac{4k^2 - 4 - 12k^2 + 8k^2 + 4}{2k^2 + 1} = 0 \quad \dots \quad 11 \ \text{分}$$

即 $k_{MA} + k_{MB} = 0$, 故 MA, MB 的倾斜角互补, 所以 $\angle OMA = \angle OMB$,

综上所述 $\angle OMA = \angle OMB$12 分

(2) 方法二

当l与x轴重合时, $\angle OMA = \angle OMB = 0^0$, ……6 分 当l与x轴不重合时,设直线l的方程: x = my + 1, $A(x_1, y_1)$, $B(x_2, y_2)$, ……7 分

【2018 理III·20 文III·20】已知斜率为 k 的直线 l 与椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 交于 A , B 两点,线段 AB 的中点为 M(1, m)(m > 0) .

综上所述 $\angle OMA = \angle OMB$. ······12 分

(1) 证明: $k < -\frac{1}{2}$;

(2) 设 F 为 C 的 右 焦 点 , P 为 C 上 一 点 , 且 $\overrightarrow{FP} + \overrightarrow{FA} + \overrightarrow{FB} = \mathbf{0}$. 证明: $|\overrightarrow{FA}|$, $|\overrightarrow{FP}|$, $|\overrightarrow{FB}|$ 成等差数列,并求该数列的公差.

解: (1) 设
$$A(x_1, y_1), B(x_2, y_2)$$
 ,则 $\frac{x_1^2}{4} + \frac{y_1^2}{3} = 1, \frac{x_2^2}{4} + \frac{y_2^2}{3} = 1$.
两式相减,得 $\frac{(x_1 - x_2)(x_1 + x_2)}{4} + \frac{(y_1 - y_2)(y_1 + y_2)}{3} = 0$,
即 $\frac{x_1 + x_2}{4} + \frac{y_1 + y_2}{3} \cdot \frac{y_1 - y_2}{x_1 - x_2} = 0$,
又 $\frac{y_1 - y_2}{x_1 - x_2} = k$,得 $\frac{x_1 + x_2}{4} + \frac{y_1 + y_2}{3} \cdot k = 0$.
由题设知 $\frac{x_1 + x_2}{2} = 1, \frac{y_1 + y_2}{2} = m$,于是 $k = -\frac{3}{4m}$.①
由题设得 $0 < m < \frac{3}{2}$,故 $k < -\frac{1}{2}$.

(2) 由题意得 F(1,0) ,设 $P(x_3,y_3)$,则 $(x_3-1,y_3)+(x_1-1,y_1)+(x_2-1,y_2)=(0,0)$. 由 (1) 及题设得 $x_3=3-(x_1+x_2)=1,y_3=-(y_1+y_2)=-2m<0$. 又点 P 在 C 上,所以 $m=\frac{3}{4}$,从而 $P(1,-\frac{3}{2})$, $|\overrightarrow{FP}|=\frac{3}{2}$. 于是 $|\overrightarrow{FA}|=\sqrt{(x_1-1)^2+y_1^2}=\sqrt{(x_1-1)^2+3(1-\frac{x_1^2}{4})}=2-\frac{x_1}{2}$. 同理 $|\overrightarrow{FB}|=2-\frac{x_2}{2}$. 所以 $|\overrightarrow{FA}|+|\overrightarrow{FB}|=4-\frac{1}{2}(x_1+x_2)=3$. 故 $2|\overrightarrow{FP}|=|\overrightarrow{FA}|+|\overrightarrow{FB}|$,即 $|\overrightarrow{FA}|,|\overrightarrow{FP}|,|\overrightarrow{FB}|$ 成等差数列设该数列的公差为 d ,则 $2|d=||\overrightarrow{FB}|-|\overrightarrow{FA}|=\frac{1}{2}|x_1-x_2|=\frac{1}{2}\sqrt{(x_1+x_2)^2-4x_1x_2}$.② 将 $m=\frac{3}{4}$ 代入①得 k=-1 . 所以 l 的方程为 $y=-x+\frac{7}{4}$,代入 C 的方程,并整理得

所以 l 的方程为 $y = -x + \frac{7}{4}$,代入 C 的方程,并整理得 $7x^2 - 14x + \frac{1}{4} = 0$. 故 $x_1 + x_2 = 2$, $x_1x_2 = \frac{1}{28}$,代入②解得 $|d| = \frac{3\sqrt{21}}{28}$.

所以该数列的公差为 $\frac{3\sqrt{21}}{28}$ 或 $-\frac{3\sqrt{21}}{28}$.