Дослідження можливості застосування нейтронно-активаційного аналізу для пошуку корисних копалин в глибинах океану

Бакалаврська робота Студента 4 року навчання Гапонова Валентина Вікторовича

Науковий керівник Кандидат фіз.-мат. наук, доцент кф. Ядерної фзики **Єрмоленко Руслан Вікторович**

План

- Постановка задачі
- Архітектура коду моделі
- Геометрія Моделі та захисту детектора
- Хімічний та ізотопний склад досліджуваних речови
- Перевірка коректності побудованої моделі
- Результати
- Висновки
- Додаткові слайди

Постановка задачі

- Створити геометрію моделі нейтронно-активаційного аналізу для проведення підводного дослідження
- Зробити перевірку коректності (провести валідацію) на спектрі $C_4H_8Cl_2S$ (Гірчичного газу)
- Оцінити мінімальну детектовану масу досліджуваного елементу

Архітектура коду моделі

- QGSP_BERT фізична модель
- G4MTTunManager основний контролер
- GeometryFabric створення геометричних, та розміщення геометричних фігур у канвасі
- Utils налаштування моделі, константи, алгоритми для обробки спектрів

Геометрія моделі та захисту детектора

1- нейтронний генератор з тритієвою мішенню, 2 — детектор в захисті, 3 — досліджуваний об'єм.

0 – повітря, 1 – Al (2 см), 2 - ^{10}B (5 см), 3 – Pb (1 см)

Геометрія моделі та захисту детектора

- У моделюванні використовувався HPGe (high purity germanium) детектор
- Розміри детектора співпадають з детектором N21879A ORTEC AMETEK [60.6 x 56.7 мм]
- $^{72}_{32}Ge$ основний ізотоп, з нього складеться чутливий об'єм детектора

- 1 Зовнішній контур Al 2cм
- 2 ${}^{10}B$ 5 см поглинач теплових нейтронів
- 3 Внутрішній контур Pb 1 см
- Всередині захист заповнений поітрям

Хімічний та ізотопний склад досліджуваних речовин

Назва	Хімічна склад	Ізотопний склад
Гірчичний газ	$C_4H_8Cl_2S$	$C^{12}, H^1, Cl^{35}, S^{22}$
Ютенбогардтит	Ag_3AuS_2	Ag^{108} , Au^{197} , S^{32}
Халькопірит	$CuFeS_2$	Cu^{64}, Fe^{56}, S^{22}
Збіднений уран	U	99.27% U^{238} , $0.7\%U^{235}$, $0.005\%U^{234}$

Перевірка коректності побудованої моделі

HPGe MustardGas

Запропонована модель, та модель з проекту SABAT знаходяться у схожих умовах, тому щоб валідувати модель був набраний спектр гірчичного газу

Таблиця піків гірчичного газу, по яким проводилась валідація

E_{γ} , MeB	ΔE , MeB	$I = I_{\gamma}/I_b$	ΔI	Елемент
0.79	0.008	12	3	Cl
1.165	0.004	20	4	Cl
1.95	0.003	22	4	Cl
4.44	0.003	22	4	С
7.41	0.003	23	4	Cl
7.78	0.003	23	4	Cl
8.58	0.003	22	4	Cl

Спектр гірчичного газу, при опроміненні нейтронами 14.1 МеВ

Результати

HPGe Ag3AuS2

Результати

Ізотоп	E_{γ} , MeB	ΔE_{γ} , MeB	$I=I_{\gamma}/I_{b}$	ΔI	I/I_H	$I/m imes 10^{-12}$ г $^{-1}$ н $^{-1}$
198Au	0.749	0.008	10.6	2.6	0.113	4.49
32S	2.96	0.01	43.04	4.48	0.46	8.72
33S	4.734	0.013	1.46	0.13	0.015	2.9
107Ag	6.257	0.017	22.37	1.83	0.24	3.02

Висновки

- Створена модель нейтронно-активаційного аналізу
- Оптимізація коду моделі пришвидшення розрахунків у 16разів
- Перевірка коректності створеної моделі (валідація)
- Змодельовані спектри: $C_4H_8Cl_2S$, $CuFeS_2$, збідненого урану та проаналізований спектр для Ag_3AuS_2 . (ютенбогардит)
- Змодельовані спектри за різних енергій нейтронів
- Оцінена мінімально необхідна маса елементу в речовині для можливості детектування

Дякую за увагу

Рис. 4.9: Червоним - представлений спектр для ^{238}U . Синім - фону