

Universidade Federal do Maranhão Programa de Pós-Graduação em Engenharia de Eletricidade Defesa de Dissertação de Mestra<u>do</u>

Classificação da Camada Lipídica do Filme Lacrimal usando Índices de Diversidade Filogenética e a Função K de Ripley como Descritores de Textura

Luana Batista da Cruz

Orientador: Prof. Dr. Anselmo Cardoso de Paiva Coorientador: Prof. Dr. Aristófanes Côrrea Silva

Roteiro

- Introdução
- Fundamentação Teórica
- Materiais e Método
- Resultados e Discussão
- Conclusão

Síndrome do Olho Seco

- Ressecamento da camada lipídica do filme lacrimal.
- Causa:
 - Desconforto;
 - Danos na superfície ocular;
 - Irritação nos olhos;
 - Queimação.

• Prevalência varia de 5 a 50% da população.

Diagnóstico

- Baseado em imagens do filme lacrimal
 - Interferômetro Doane e Tearscope Plus;
 - Leitura e interpretação difíceis;
 - Sujeito a erros de interpretação.
- Subjetivo

Objetivo

- Auxílio ao diagnóstico da Síndrome do Olho Seco a partir da classificação dos padrões de interferência da camada lipídica em imagens do filme lacrimal.
- Técnicas utilizadas
 - Descritores de textura
 - Índices de diversidade filogenética;
 - Função K de Ripley.

Instrumentos

• Tearscope Plus

• Interferômetro Doane

Análise de Textura

- Índices de Diversidade Filogenética
 - Distância entre pares de espécies;
 - Topologia;
 - Caminho mínimo.

- Função K de Ripley
 - Círculos;
 - Anéis.

- Árvores filogenéticas
 - Descrevem as relações evolutivas entre as espécies.

Processamento de Imagens

• Adaptação dos termos usados na biologia e utilizados neste trabalho.

Biologia	Método Proposto
Comunidade	Região de interesse da imagem de inter-
	ferometria
Espécies	Número máximo de valores de níveis de
	cinza na região
Indivíduos	Quantidade de pixels de uma determi-
	nada espécie
Distância filogenética	Número de arestas entre duas espécies

• Representação genérica da árvore filogenética

· Distância entre Pares de Espécies

• Entropia quadrática intensiva:

$$I = \left[\sum d_{i,j}\right]/s^2$$

• Entropia quadrática extensiva:

$$E = \sum d_{i,j}$$

• Distinção taxonômica média entre duas espécies:

$$DTM = \left[\sum_{i < j} \sum_{i < j} d_{i,j} \right] / \left[s(s-1)/2 \right]$$

• Distinção taxonômica média de todas as espécies:

$$DTT = \sum_{i} \left[\left(\sum_{i \neq j} d_{i,j} \right) (s-1) \right]$$

• Índice de diversidade pura:

$$IDP = \sum d_{i\,min}$$

Topologia

• Soma básica de pesos:

$$Q = \sum Q_i$$
$$Q_i = I/I_i$$
$$I = \sum I_i$$

• Soma dos pesos normalizados:

$$W = \sum W_i$$
$$W_i = Q_i/Q_{min}$$

· Caminho Mínimo

• Medida quantitativa da diversidade filogenética:

$$PD_{NODE} = \sum n_i$$

• Diversidade filogenética incluindo ramos de base:

$$PD_{ROOT} = \sum n_{iROOT}$$

• Diversidade filogenética média:

$$AvPD = PD_{NODE/s}$$

• Calcula uma relação do total de indivíduos de uma determinada espécie distribuída em uma região de estudo.

$$R(d,i) = \sqrt{\frac{Ak(i,j)}{N}}, i \neq j$$

Classificadores

Bayes Net

• Representa um conjunto de variáveis e suas dependências condicionais.

Naive Bayes

• Teorema de Bayes com uma suposição de independência entre os preditores.

Random Forest

• Constrói um classificador estável e forte, melhor que a árvore média criada.

Support Vector Machine

• Encontra hiperplanos ideais para as classes linearmente separáveis e não separáveis.

Métricas de Desempenho

- Acurácia;
- Desvio padrão;
- F-Measure;
- Curva ROC;
- Kappa.

Índice Kappa (K)	Qualidade
K < 0.2	Ruim
$0.2 \le K < 0.4$	Razoável
$0.4 \le K < 0.6$	Bom
$0.6 \le K < 0.8$	Muito Bom
$K \ge 0.8$	Excelente

Base de imagens

· Interferômetro Doane

- VOPTICAL_GCU
 - 106 imagens: 11 franjas fortes, 25 coalescentes de franjas fortes, 30 franjas finas, 26 coalescentes de franjas finas e 14 detritos.

Base de imagens

Tearscope Plus

- VOPTICAL_I1 e VOPTICAL_IS
 - 105 imagens: 29 malhas abertas, 29 malhas fechadas, 25 de ondas e 22 de franja de cor.
 - 406 imagens: 159 malhas abertas, 117 malhas fechadas, 90 ondas e 40 franja de cor.

Base de imagens

Tearscope Plus

- VOPTICAL_I1-v2
 - 128 imagens: 29 malhas abertas, 29 malhas fechadas, 25 ondas, 23 amorfas e 22 franja de cor.

Método Proposto

Segmentação

· Interferômetro Doane

Segmentação

Tearscope Plus

Extração de Características

- Espaços de cores: L*a*b*, RGB, YCbCr e Cores Oponentes;
- 6 quantizações (256, 128, 64, 32, 16 e 8);
- LBP padrão;
- 6 raios (círculos/anéis).

- Número de características
 - 9072
 - 3024 (6 raios x (256 + 128 + 64 + 32 + 16 + 8 quantizações)) para cada canal de cada espaço de cor.

Extração de Características

- Índices de Diversidade Filogenética
 - Foi aplicado em escala de cinza.

- Número de características
 - 10
 - 5 Distância entre Pares de espécies;
 - 3 Caminho mínimo;
 - 2 Topologia.

Seleção de Características

Greedy Stepwise

• Reduzir a dimensionalidade e aumentar a eficiência dos classificadores.

Aplicado

- Função de Ripley;
- Função K de Ripley com os Índices de Diversidade Filogenética.

Reconhecimento de Padrões

Classificadores

• Bayes Net (BN), Naive Bayes (NB), Support Vector Machine (SVM) e Random Forest (RF).

Métricas de validação

• Acurácia (AC), Desvio Padrão (DP), curva ROC, Kappa e F-Measure (FM).

Validação Cruzada

- 10 folds;
- 5 execuções aleatórias.

Experimentos Realizados

- Função K de Ripley
 - Círculos e Anéis.
 - > Aplicada nas imagens capturadas com o Tearscope Plus e Interferômetro Doane.

Índices de Diversidade Filogenética

- Distância entre Pares de Espécies;
- Caminho mínimo;
- Topologia.
- ➤ Aplicada nas imagens capturadas com Interferômetro Doane.

- Abordagem em círculos
 - Tearscope Plus
 - Base VOPTICAL_I1

	EC	AC(%)	DP (%)	ROC	Kappa	\mathbf{FM}	VS
	CO	96,00	0,79	0,99	0,94	0,95	136
Z	\mathbf{YCbCr}	$99,\!23$	0,79	0,99	0,98	0,99	92
$\mathbf{B}\mathbf{N}$	RGB	89,52	0,67	0,98	0,85	0,89	90
	$L^*a^*b^*$	$90,\!85$	1,59	0,98	0,87	0,90	104
NB	CO	96,02	0,79	0,99	0,94	0,96	136
	YCbCr	99,04	0,67	0,98	0,98	0,99	92
	RGB	89,14	1,44	0,98	0,85	0,89	90
	$L^*a^*b^*$	$90,\!28$	1,83	0,98	0,86	0,90	104
	CO	89,52	2,02	0,92	0,85	0,89	136
\mathbf{M}	YCbCr	94,09	$2,\!55$	0,96	0,92	0,94	92
\mathbf{SVM}	RGB	89,90	1,08	0,93	0,86	0,89	90
	$L^*a^*b^*$	88,57	0,95	0,92	0,84	0,88	104
	CO	90,66	1,04	0,98	0,87	0,90	136
ſΞį	YCbCr	91,61	2,17	0,99	0,88	0,91	92
\mathbf{RF}	RGB	85,71	1,16	0,96	0,80	0,85	90
	$L^*a^*b^*$	87,04	1,27	0,98	0,82	0,86	104

- Abordagem em anéis
 - Tearscope Plus
 - Base VOPTICAL_I1

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	$\overline{ m VS}$
	CO	93,71	1,44	0,99	0,91	0,93	130
Z	YCbCr	93,33	1,16	0,99	0,91	0,93	125
$\mathbf{B}\mathbf{N}$	RGB	93,71	1,97	0,99	0,91	0,93	104
	L*a*b*	91,04	2,08	0,98	0,88	0,90	100
	CO	$94,\!28$	0,67	0,99	0,92	0,94	130
В	YCbCr	92,95	1,27	0,99	0,90	0,92	125
NB	RGB	93,71	1,97	0,99	0,91	0,93	104
	$L^*a^*b^*$	90,66	1,83	0,98	0,87	0,90	100
	CO	91,42	2,85	0,94	0,88	0,91	130
\mathbf{SVM}	YCbCr	90,09	2,19	0,93	0,86	0,90	125
\mathbf{S}	RGB	89,33	1,24	0,92	0,85	0,89	104
	$L^*a^*b^*$	90,09	1,44	0,93	0,86	0,89	100
	CO	91,61	1,24	0,98	0,88	0,91	130
ſΞij	YCbCr	91,23	1,04	0,98	0,88	0,91	125
\mathbf{RF}	RGB	90,66	0,79	0,97	0,87	0,90	104
	L*a*b*	87,23	1,08	0,97	0,82	0,86	100

- Abordagem em círculos
 - Tearscope Plus
 - Base VOPTICAL_I1-v2

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	$\overline{\mathbf{V}}$ S
	CO	89,68	0,65	0,98	0,87	0,89	114
Z	YCbCr	91,87	1,18	0,99	0,89	0,91	84
$\mathbf{B}\mathbf{N}$	RGB	89,21	1,15	0,98	0,86	0,89	79
	L*a*b*	$86,\!87$	2,23	0,98	0,83	0,86	119
	CO	90,00	0,65	0,98	0,87	0,89	114
В	YCbCr	$91,\!56$	$0,\!65$	0,99	0,89	0,91	84
NB	RGB	88,75	1,30	0,98	0,85	0,88	79
	L*a*b*	$86,\!56$	1,50	0,98	0,83	0,86	119
	CO	86,40	1,18	0,91	0,82	0,86	114
SVM	YCbCr	84,68	1,18	0,90	0,80	0,84	84
\mathbf{S}	RGB	$86,\!56$	1,69	0,91	0,83	0,86	79
	L*a*b*	87,50	1,83	0,92	0,84	0,87	119
	CO	86,71	0,95	0,98	0,83	0,86	114
بتا	YCbCr	90,93	1,41	0,98	0,88	0,90	84
\mathbf{RF}	RGB	85,15	1,10	0,97	0,81	0,85	79
	L*a*b*	85,31	1,28	0,97	0,81	0,84	119

- Abordagem em anéis
 - Tearscope Plus
 - Base VOPTICAL_I1-v2

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	$\overline{\mathbf{V}}$ S
	CO	90,93	1,62	0,99	0,88	0,90	102
$\mathbf{B}\mathbf{N}$	YCbCr	93,12	$0,\!34$	0,99	0,91	0,93	89
B	RGB	$91,\!40$	0,78	0,98	0,89	0,91	97
	L*a*b*	$89,\!53$	1,52	0,98	0,86	0,89	103
	CO	90,93	1,96	0,98	0,88	0,90	102
NB	YCbCr	93,12	0,34	0,99	0,90	0,93	89
	RGB	90,93	1,04	0,98	0,88	0,90	97
	L*a*b*	88,75	1,52	0,98	0,85	0,88	103
	CO	90,62	1,23	0,94	0,88	0,90	102
M	YCbCr	87,65	1,69	0,92	0,84	0,87	89
\mathbf{SVM}	RGB	86,87	1,39	0,91	0,83	0,86	97
	L*a*b*	84,53	1,94	0,90	0,80	0,84	103
	CO	91,40	1,99	0,99	0,89	0,91	102
بعا	YCbCr	90,15	2,44	0,99	0,87	0,90	89
\mathbf{RF}	RGB	89,06	$0,\!55$	0,97	0,86	0,88	97
	L*a*b*	88,43	0,85	0,98	0,85	0,88	103

- Abordagem em círculos
 - Tearscope Plus
 - Base VOPTICAL_Is

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	$\overline{\mathbf{V}}$ S
	CO	79,16	0,44	0,92	0,70	0,79	176
Z	${\rm YCbCr}$	75,96	1,05	0,92	$0,\!65$	0,76	140
$\mathbf{B}\mathbf{N}$	RGB	$75,\!36$	0,52	0,91	$0,\!65$	0,75	120
	$L^*a^*b^*$	75,12	0,93	0,91	0,64	0,75	143
	CO	78,91	0,80	0,92	0,69	0,78	176
B	${\rm YCbCr}$	75,76	1,09	0,91	$0,\!65$	0,75	140
NB	RGB	$75,\!61$	0,69	0,91	0,65	0,75	120
	$L^*a^*b^*$	$74,\!58$	0,63	0,91	0,63	0,74	143
	CO	80,88	0,80	0,86	0,72	0,80	176
\mathbf{SVM}	${\rm YCbCr}$	81,52	0,49	0,87	0,73	0,81	140
\mathbf{S}	RGB	81,28	$0,\!95$	0,86	0,73	0,81	120
	$L^*a^*b^*$	80,49	0,40	0,86	0,72	0,80	143
	CO	78,76	0,70	0,93	0,68	0,77	176
\mathbf{RF}	${\rm YCbCr}$	$78,\!37$	$0,\!58$	0,94	0,68	0,77	140
\mathbf{R}	RGB	79,16	0,61	0,93	0,69	0,78	120
	$L^*a^*b^*$	76,40	0,44	0,92	0,65	0,74	143

- Abordagem em anéis
 - Tearscope Plus
 - Base VOPTICAL_Is

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	VS
	CO	80,78	0,87	0,93	0,72	0,80	188
Z	YCbCr	$81,\!57$	1,05	0,94	0,73	0,81	176
$\mathbf{B}\mathbf{N}$	RGB	$78,\!52$	0,66	0,93	0,69	0,78	148
	L*a*b*	77,98	1,16	0,94	0,68	0,78	169
NB	CO	81,23	0,82	0,93	0,73	0,81	188
	YCbCr	81,03	1,00	0,94	0,73	0,81	176
	RGB	$78,\!42$	$0,\!37$	0,93	0,69	0,78	148
	L*a*b*	77,93	1,10	0,93	0,68	0,78	169
	CO	82,75	0,87	0,87	0,75	0,82	188
\mathbf{SVM}	YCbCr	83,39	0,70	0,88	0,76	0,83	176
\mathbf{S}	RGB	80,78	1,47	0,86	0,72	0,80	148
	L*a*b*	$78,\!57$	$0,\!17$	0,84	0,69	0,77	169
	CO	77,19	1,32	0,94	0,66	0,76	188
\mathbf{RF}	YCbCr	79,06	$0,\!42$	0,95	0,69	0,77	176
R	RGB	$78,\!22$	1,53	0,93	0,68	0,76	148
	L*a*b*	77,73	0,66	0,94	0,67	0,76	169

- Abordagem em círculos
 - Interferômetro Doane
 - Base VOPTICAL_GCU

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	VS
	CO	94,40	0,84	0,99	0,93	0,95	115
Z	YCbCr	95,28	0,94	0,99	0,93	0,95	106
$\mathbf{B}\mathbf{N}$	RGB	91,13	1,43	0,98	0,88	0,90	99
	L*a*b*	93,96	1,43	0,99	0,92	0,94	106
	CO	94,15	0,78	0,99	0,92	0,94	115
В	YCbCr	94,71	1,07	0,99	0,93	0,94	106
NB	RGB	$90,\!56$	0,94	0,98	0,88	0,90	99
	L*a*b*	94,15	0,78	0,99	0,92	0,94	106
	CO	87,92	1,55	0,92	0,84	0,86	115
\mathbf{SVM}	YCbCr	85,28	2,17	0,90	0,80	0,85	106
\mathbf{S}	RGB	83,58	2,63	0,89	0,78	0,82	99
	L*a*b*	89,05	1,07	0,92	0,85	0,88	106
	CO	89,62	0,10	0,98	0,86	0,86	115
ſΞij	YCbCr	89,62	0,66	0,98	0,86	0,88	106
\mathbf{RF}	RGB	85,84	1,76	0,97	0,81	0,84	99
	L*a*b*	85,84	1,15	0,98	0,81	0,84	106

- Abordagem em anéis
 - Interferômetro Doane
 - Base VOPTICAL_GCU

	EC	AC (%)	$\mathrm{DP}(\%)$	ROC	Kappa	\mathbf{FM}	$\overline{\mathbf{V}}$ S
	CO	95,09	1,81	0,99	0,93	0,95	129
Z	YCbCr	94,52	1,03	0,99	0,92	0,94	146
$\mathbf{B}\mathbf{N}$	RGB	$92,\!26$	1,03	0,98	0,90	0,92	101
	L*a*b*	93,96	1,07	0,99	0,92	0,94	133
	CO	94,90	1,57	0,99	0,93	0,94	129
NB	YCbCr	94,33	1,33	0,99	0,92	0,94	146
	RGB	91,69	1,23	0,98	0,89	0,91	101
	$L^*a^*b^*$	$92,\!45$	0,66	0,99	0,90	0,92	133
	CO	82,64	1,95	0,88	0,77	0,80	129
M	YCbCr	$90,\!56$	1,15	0,93	0,87	0,90	146
\mathbf{SVM}	RGB	91,32	0,78	0,94	0,88	0,90	101
	$L^*a^*b^*$	92,07	1,26	0,94	0,89	0,92	133
	CO	83,39	2,06	0,98	0,78	0,80	129
\mathbf{RF}	YCbCr	87,54	$0,\!42$	0,99	0,83	$0,\!85$	146
R	RGB	88,11	$0,\!51$	0,97	0,84	$0,\!85$	101
	L*a*b*	87,73	1,15	0,98	0,83	0,86	133

- · Interferômetro Doane
 - Base VOPTICAL_GCU

	Índices baseados	AC(%)	DP(%)	ROC	Kappa	FM
	em:	AC(70)	D1 (70)	100	парра	LIVI
	Caminho mínimo	97,34	0,42	0,98	0,96	0,97
	Distância entre pares	94.33	1,15	0.98	0,92	0.94
$_{\rm BN}$	de espécies	34,55	1,10	0,90	0,92	0,94
	Topologia	95,84	0,51	0,97	0,94	0,95
	Todos os índices	94,90	0,51	0,99	0,93	0,94
	Caminho mínimo	97,34	0,42	0,97	0,96	0,97
	Distância entre pares	94,90	0,84	0,98	0,93	0,94
NB	de espécies		0,04	0,30	0,55	0,54
I	Topologia	95,84	0,51	0,97	0,94	0,95
	Todos os índices	94,90	0,51	0,99	0,93	0,94
	Caminho mínimo	93,20	0,42	0,95	0,91	0,93
Ţ	Distância entre pares	94,71	1,57	0,96	0.93	0,94
N	de espécies	34,11	1,57		0,55	0,54
SVN	Topologia	$95,\!66$	0,84	0,94	0,94	0,95
	Todos os índices	$93,\!58$	1,68	0,96	0,91	0,93
	Caminho mínimo	96,79	0,84	0,99	0,95	0,96
	Distância entre pares	94,71	1,26	0,99	0,93	0,94
\mathbf{RF}	de espécies	34,11	1,20	0,99	0,93	0,34
	Topologia	95,84	0,51	0,99	0,94	0,95
	Todos os índices	97,36	0,78	0,99	0,96	0,97

Função K de Ripley e Índices de Diversidade F.

- Círculos (K de Ripley)
 - Interferômetro Doane
 - Base VOPTICAL_GCU

	EC	$\mathrm{AC}(\%)$	$\mathrm{DP}(\%)$	ROC	Kappa	\mathbf{FM}	\mathbf{SC}
	CO + Cinza	98,11	0,10	0,99	0,97	0,98	81
BN	YCbCr + Cinza	97,73	0,51	0,99	0,97	0,97	88
B	RGB + Cinza	$98,\!49$	0,51	0,99	0,98	0,98	54
	L*a*b* + Cinza	96,60	0,51	0,99	0,95	0,96	69
	CO + Cinza	$97,\!54$	0,51	0,99	0,96	0,97	81
NB	YCbCr + Cinza	$97,\!54$	0,84	0,99	0,96	0,97	88
	RGB + Cinza	$98,\!30$	$0,\!42$	0,99	0,97	0,98	54
	L*a*b* + Cinza	96,98	1,03	0,99	0,96	0,97	69
	CO + Cinza	92,83	1,71	0,95	0,90	0,92	81
\mathbf{SVM}	YCbCr + Cinza	$94,\!52$	1,23	0,96	0,92	0,94	88
\mathbf{S}	RGB + Cinza	95,09	0,78	0,96	0,93	0,95	54
	L*a*b* + Cinza	$97,\!54$	0,84	0,98	0,96	0,97	69
	CO + Cinza	98,11	0,66	0,99	0,97	0,98	81
ſΞų	YCbCr + Cinza	$98,\!49$	0,51	0,99	0,98	0,98	88
\mathbf{RF}	RGB + Cinza	99,81	$0,\!42$	0,99	0,99	0,99	54
	L*a*b* + Cinza	98,67	0,51	0,99	0,98	0,98	69

Função K de Ripley e Índices de Diversidade F.

- Anéis (K de Ripley)
 - Interferômetro Doane
 - Base VOPTICAL_GCU

	EC	AC(%)	DP(%)	ROC	Kappa	\mathbf{FM}	$\overline{\mathbf{SC}}$
	CO + Cinza	99,05	0,10	0,99	0,98	0,99	89
Z	YCbCr + Cinza	97,73	$0,\!51$	0,97	0,97	0,99	111
$\mathbf{B}\mathbf{N}$	RGB + Cinza	98,30	0,78	0,99	0,97	0,98	85
	L*a*b* + Cinza	$97,\!54$	$0,\!51$	0,99	0,96	0,97	89
	CO + Cinza	99,05	0,04	0,99	0,98	0,99	89
В	YCbCr + Cinza	97,73	0,516	0,99	0,97	0,97	111
NB	RGB + Cinza	98,49	1,07	0,99	0,98	0,98	85
	L*a*b* + Cinza	97,73	0,84	0,99	0,97	0,97	89
	CO + Cinza	94,33	1,49	0,96	0,92	0,94	89
M	YCbCr + Cinza	96,79	0,51	0,98	0,95	0,96	111
SVM	RGB + Cinza	$93,\!58$	0,78	0,95	0,91	0,93	85
	L*a*b* + Cinza	96,22	0,94	0,97	0,95	0,96	89
	CO + Cinza	$99,\!43$	$0,\!51$	0,99	0,99	0,99	89
ſΞij	YCbCr + Cinza	98,49	0,51	0,99	0,98	0,98	111
\mathbf{RF}	RGB + Cinza	97,92	0,78	0,99	0,97	0,97	85
	L*a*b* + Cinza	97,92	0,42	0,99	0,97	0,97	89

Resumo dos Resultados

- Tearscope Plus
- Interferômetro Doane

Resumo dos Resultados

- Índices de Diversidade Filogenética
 - Interferômetro Doane

Resumo dos Resultados

- Função K de Ripley e Índices de Diversidade Filogenética
 - Interferômetro Doane

Comparação com outros trabalhos

-		m, , /)			
	Trabalho	Técnica(s)	Base	Amostra	Acurácia
	(REMESEIRO et al., 2018)	Matriz de coocorrência no espaço de cor $L*a*b*$	VOPTICAL_I1	105	96%
	(REMESEIRO et al., 2014)	Filtros Butterworth, Gabor, transformada discreta de Wavelet, campos aleatórios de Markov e coocorrência, seleção de características CFS, consistência e INTERACT	VOPTICAL_I1	105	97,14%
	(MÉNDES et al., 2013)	Matriz de coocorrência, seleção de características CFS e método TOPSIS	VOPTICAL_I1	105	95%
	(REMESEIRO et al., 2012)	Matriz de coocorrência em espaços de cores	VOPTICAL_I1	105	$96,\!19\%$
en Lina	(REMESEIRO et al., 2011)	Filtros $Butterworth$, $Gabor$, transformada discreta de $Wavelet$, campos aleatórios de $Markov$ e coocorrência	VOPTICAL_I1	105	96,19%
3	(RAMOS et al., 2011)	Banco de filtros passa banda	VOPTICAL_I1	105	$91,\!43\%$
rearscope	(REMESEIRO et al., 2016)	Matriz de coocorrência, seleção de características CFS	VOPTICAL_I1-v2	128	96,09%
	(REMESEIRO et al., 2014)	Filtros Butterworth, Gabor, transformada discreta de Wavelet, campos aleatórios de Markov e coocorrência, seleção de características CFS, consistência e INTERACT	VOPTICAL_Is	406	93,84%
	(CALVO et al., 2010)	Banco rotacionalmente invariante de filtros passa banda	PRIVADA	91	86,41%
			VOPTICAL_I1	105	99,23%
	Método Proposto	Função K de Ripley	$VOPTICAL_I1-v2$	128	$93{,}12\%$
			VOPTICAL_LS	406	83,39%

Comparação com outros trabalhos

	5	
	'n	ı
	61	y
	C	3
	Ò	۱
- (
•		
	C	١
	7	
	-	۰
	۰	ď
	a	1
	2	2
	c	
	2	
	2	Š
•	C	7
	•	
	7	,
	a	J
۲	-	
	ŧ	
	7	₹
	d	2
	č	
	Ξ	

4 \	Trabalho	Técnica(s)	Base	Amostra	Acurácia
ane	(REMESEIRO et al., 2015)	Processamento de sinais, modelo e estatístico	VOPTICAL_GCU	106	93,40%
nterterometro Doan	(VILLAVERDE et al., 2014)	Processamento de sinais, modelo e estatístico e seleção de características CFS, consistência e INTERACT	VOPTICAL_GCU	106	91,51%
eroi		Função K de Ripley	VOPTICAL_GCU	106	$95,\!28\%$
erte	Método Proposto	Índices de Diversidade Filogenéticos	VOPTICAL_GCU	106	$97,\!36\%$
Int		Função K de Ripley e Índices de Div. Filog.	VOPTICAL_GCU	106	99,81%

Conclusão

- Altas taxas de incidência da síndrome do olho seco em todo o mundo.
- Foi proposto um método para classificação das categorias da camada lipídica em imagens do filme lacrimal.
 - Índices de diversidade filogenética e função K de Ripley.
- Resultados promissores.

Trabalhos Futuros

- Realizar experimentos com os índices de diversidade filogenética nas imagens das bases capturadas com o Tearscope Plus;
- Investigar a aplicabilidade de novos índices de diversidade;
- Usar variações do LBP, como os algoritmos de LBP circular e CLBP;
- Avaliar outras técnicas de estatística espacial e testar outro seletor de características;
- Aplicar outras sub-regiões e em outros espaços de cores;
- Realizar testes com outras técnicas de aprendizado de máquina, como abordagens de aprendizagem profunda, ou outros classificadores;
- Aplicar o método proposto para a caracterização de textura de anormalidades de outros tipos de imagens.

Produções Científicas

Local	Artigo	Qualis	Status
Simpósio	CRUZ, L. B.; ARAÚJO, J. D.; SOUSA, J. A.; AL-MEIDA, J. D.; JÚNIOR, G. B.; SILVA, A. C.; PAIVA, A. C. Classificação do Filme Lacrimal usando a Função K de Ripley como Descritor de Textura. Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS_CSBC), v. 18, n. 1/2018, 2018.	B4	PU
Simpósio	CRUZ, L. B.; ARAÚJO, J. D. L.; SOUZA, J. C.; SOUSA, J. A.; ALMEIDA, J. D. S.; JUNIOR, G. B.; SILVA, A. C.; PAIVA, A. C. Tear Film Classification Using Phylogenetic Diversity Indexes as Texture Descriptor. In: 2018 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2018. p. 00853-00858.	A2	PU
Periódico	. , , , ,	A2	SU

Obrigada!

