Sinais de Tempo contínuo (Parte I)

Professor

Jorge Leonid Aching Samatelo jlasam001@gmail.com

Índice

- ☐ Introdução
- **☐** Sinais Elementares
- ☐ Classificação dos sinais contínuos
- ☐ Transformações da variável independente
- ☐ Bibliografia

1

Introdução

Introdução

Notação

 \square Os sinais de tempo contínuo são definidos para todo instante do tempo, sendo escritos normalmente em função de t.

☐ Exemplo de sinal de tempo contínuo.

$$x(t) = \begin{cases} e^{-t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Sinais Elementares

Pulso Unitário

☐ Função Matemática

 \triangleright Tem largura τ e amplitude $1/\tau$

$$p_{\tau}(t) = \begin{cases} 1/\tau & 0 < t < \tau \\ 0 & caso \ contrario \end{cases}$$

☐ Propriedades

> Tem área é unitária.

$$\int_{-\infty}^{+\infty} p_{\tau}(t)dt = 1$$

Sinais Elementares

7

Sinais Elementares

Pulso Porta Unitário

☐ Função Matemática

 \triangleright Tem largura τ e amplitude 1.

$$ret\left(\frac{t}{\tau}\right) = \begin{cases} 1 & -\tau/2 < t < \tau/2 \\ 0 & caso\ contrario \end{cases}$$

■ Propriedades

 \triangleright Tem área é unitária se $\tau = 1$

$$\int_{-\infty}^{+\infty} ret(t)dt = 1$$

Pulso Triangular Unitário

☐ Função Matemática

 \triangleright Tem base τ e amplitude 1.

$$\Delta(t) = \begin{cases} 1 - 2 \left| \frac{t}{\tau} \right| & -\tau / 2 < t < \tau / 2 \\ 0 & caso \ contrario \end{cases}$$

■ Propriedades

Tem área unitária se $\tau = 2$

$$\int_{-\infty}^{+\infty} \Delta(t) dt = 1$$

Impulso Unitário

- Função Matemática
 - Denominado também como: Função Delta de Dirac.
 - ➤ Idealismo matemático para um evento instantâneo.
 - ➤ O impulso unitário denotada por (t) foi definida por Dirac como

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ +\infty & t = 0 \end{cases}$$

- ☐ Principal Propriedade
 - > Tem área unitária.

$$\int_{-\infty}^{+\infty} \delta(t) dt = 1$$

1 1

Sinais Elementares

Impulso Unitário

- ☐ Interpretação geométrica
 - ➤ O impulso unitário pode ser definido como um caso limite do pulso retangular unitário

$$\delta(t) = \lim_{\tau \to 0} p_{\tau}(t) = \begin{cases} 0 & t \neq 0 \\ +\infty & t = 0 \end{cases}$$

11

Sinais Elementares

Impulso Unitário

☐ Propriedades

> Translação

$$x(t)\delta(t-t_o) = x(t_o)\delta(t-t_o)$$

Impulso Unitário

- ☐ Propriedades
 - Propriedade da Filtragem

$$\int_{-\infty}^{+\infty} x(t)\delta(t-t_o)dt = x(t_o)$$

Sinais Elementares

Impulso Unitário

- ☐ Maior informação
 - https://jkogler.wordpress.com/2008/06/14/delta-de-dirac-ou-impulso-unitario/

Sinais Elementares

Degrau Unitário

- ☐ Função Matemática
 - Denominado também como: Função de Heaviside.

$$u(t-t_0) = \begin{cases} 1 & t-t_0 \ge 0 \\ 0 & t-t_0 < 0 \end{cases}$$

Sinais Elementares

Degrau Unitário

☐ Relação entre o Pulso Unitário e o Degrau Unitário

$$p_{\tau}(t) = \begin{cases} 1/\tau & 0 < t < \tau \\ 0 & caso \ contrario \end{cases}$$

$$= \frac{1}{\tau}(u(t) - u(t - \tau))$$

☐ Demonstração

Sinais Elementares

Degrau Unitário

- Relação entre o pulso Porta Unitário e o Degrau Unitário $ret\left(\frac{t}{\tau}\right) = \begin{cases} 1 & -\tau/2 < t < \tau/2 \\ 0 & caso contrario \\ = u(t + \tau/2) u(t \tau/2) \end{cases}$
- ☐ Demonstração

17

18

Degrau Unitário

Relação entre o Impulso Unitário e o Degrau Unitário

$$\delta(t) = \lim_{\tau \to 0} p_{\tau}(t)$$

Sinais Elementares

Degrau Unitário

☐ Relação entre o Impulso Unitário e o Degrau Unitário

$$\delta(t) = \lim_{\tau \to 0} p_{\tau}(t)$$

$$= \lim_{\tau \to 0} \frac{u(t) - u(t - \tau)}{\tau}$$

$$= \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(t) dt$$

21

Sinais Elementares

Rampa Unitária

☐ Função Matemática

$$r(t-t_0) = \begin{cases} t - t_0 & t - t_0 \ge 0 \\ 0 & t - t_0 < 0 \end{cases}$$

$$r(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Rampa Unitária

☐ Relação entre a função Rampa Unitária e o Degrau Unitário

$$r(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases} = t \underbrace{\left(\begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} \right)}_{=u(t)} = tu(t)$$

Sinais Elementares

☐ Demonstração

Rampa Unitária

Relação entre o Degrau Unitário e a Rampa Unitária

Sinais Elementares

Diferenciação e Integração

Sinais Elementares

Sign (Sinal)

☐ Função Matemática

$$sgn(t) = \begin{cases} -1 & t < 0 \\ 1 & t > 0 \end{cases}$$

☐ Propriedades

$$sgn(t) = -sgn(-t)$$

Sinal asimetrico (impar)

Simetria em relação ao origem

Sinais Elementares

Sign (Sinal)

Relação entre a função Sign e o Degrau Unitário

$$sgn(t) = \begin{cases} -1 & t < 0 \\ 1 & t > 0 \end{cases} = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases} + \begin{cases} -1 & t < 0 \\ 0 & t > 0 \end{cases} = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases} - \begin{cases} 1 & -t > 0 \\ 0 & -t < 0 \end{cases}$$
$$= u(t) - u(-t)$$

☐ Demonstração

Exemplo

 \square Representar a $x_1(t)$ e $x_2(t)$ como uma soma de sinais degrau.

28

Sinais Elementares

Solução

 \square Caso 1. Representando a $x_1(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_1(t)$ a multiplicação de uma reta com uma função pulso.

$$x_A(t) = t/2$$

$$x_{R}(t) = u(t) - u(t-2)$$

$$x_1(t) = x_A(t)x_B(t)$$

= $(t/2)(u(t) - u(t-2))$

Sinais Elementares

Solução

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

 $x_2(t) = x_A(t) + x_B(t) + x_C(t) + x_D(t)$

Sinais Elementares

Solução

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

Solução

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

Sinais Elementares

Solução

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

Sinais Elementares

Solução

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

Sinais Elementares

Solução

32

 \square Caso 2. Representando a $x_2(t)$ como uma soma de sinais degrau.

 \triangleright Podemos ver que, $x_2(t)$ é a soma de um conjunto de pulsos.

$$x_2(t) = x_A(t) + x_B(t) + x_C(t) + x_D(t)$$

$$= (u(t+1) - u(t)) + 3(u(t) - u(t-1)) + 2(u(t-1) - u(t-2)) + (u(t-2) - u(t-3))$$

$$= u(t+1) + 2u(t) - u(t-1) - u(t-2) - u(t-3)$$

Sinal Sinusoidal

☐ Função Matemática

36

Sinais Elementares

Sinal Sinusoidal

☐ Função Matemática

- ☐ *Amplitude*
 - > é uma valor de pico de um sinal sinusoidal, indicando o máximo e mínimo valor que pode assumir em amplitude a senoide.

Sinais Elementares

Sinal Sinusoidal

☐ Função Matemática

- ☐ Frequência Angular, Período e a Frequência
 - > Podemos representar os sinais sinusoidais (seno e conseno) como uma coordenada (ponto) de um circulo de radio unidade.

$$x(t) = \cos(wt) = \cos(\theta)$$

$$v(t) = \sin(wt) = \sin(\theta)$$

Sinal Sinusoidal

- ☐ Função Matemática $x(t) = A\cos(wt + \theta)$ Frequência angular
- ☐ Frequência Angular, Período e a Frequência
 - \triangleright A medida que o ponto $(x,y)=(cos(\theta),sen(\theta))$ percorre o circulo unidade as componentes sinusoidais oscilam.

Sinais Elementares

39

Sinal Sinusoidal

Sinais Elementares Sinal Sinusoidal $x(t) = A\cos(wt + \theta)$ Amplitude Frequência angular (rad/sg) Frequência Angular, Período e a Frequência Frequência Angular (rad/sg) Frequência Angular (rad/sg) Frequência Angular (rad/sg)

Sinais Elementares

Sinal Sinusoidal

 $x(t) = A\cos(wt + \phi)$ Amplitude

Frequência angular

fase

- ☐ Fase
 - Se para t=0 a amplitude é diferente de zero, dizemos que o sinal tem uma fase inicial.

Fase (rad)

Descreve a posição do sinal sinusoidal em relação ao tempo zero.

48

Sinais Elementares

Sinal Sinusoidal

Função Matemática $x(t) = A\cos(wt + \phi)$ Amplitude Frequência angular (rad/sg) fase

- ☐ Fase
 - ➤ Se para *t*=0 a amplitude é diferente de zero, dizemos que o sinal tem uma fase inicial.

Sinal Sinusoidal

Exemplo

- ☐ Para os seguintes sinais sinusoidais determinar:
 - Frequência angular (w).
 - ➤ Frequência (f).
 - \triangleright Período (T).
 - \triangleright angulo de fase inicial (ϕ).
- a)

 $x_1(t) = 10\sin\left(20000\pi t + \frac{\pi}{3}\right)$

Sinais Elementares

b)

$$x_2(t) = 15\sin(8000\pi t - \frac{\pi}{6})$$

Sinal Sinusoidal

Solução

□ a)

 $x_1(t) = 10\sin\left(20000\pi t + \frac{\pi}{2}\right)$ Frequência angular Amplitude fase (rad/sg) $w = 20000\pi(\frac{rad}{seg})$ A = 10Período (sg) Frequência (Hertz) $w = 2\pi f$ =100u sg 20000π w Um ponto sobre o circulo Um ponto sobre o circulo unidade da 10000 voltas por unidade demora 100u sg. em sg. efetuar uma volta completa.

Sinais Elementares

Sinal Sinusoidal

Solução

Sinais Elementares

Sinal Exponencial

☐ Função Matemática

$$x(t) = \alpha^t$$

- ☐ Casos
 - Caso 1: α é real
 - x(t) é uma exponencial real.
 - \triangleright Caso 2: α é puramente imaginario
 - x(t) é uma exponencial complexa periódica.
 - > Caso 3: α é um número complexo
 - x(t) é uma mistura dos casos 1 e 2.

Sinais Elementares

52

Sinal Exponencial: Caso 1 $x(t) = \alpha^t$; $\alpha \in L$

Sinal Exponencial: Caso 2
$$x(t) = \alpha^t$$
; $\alpha \in \Box \land ||\alpha|| = 1$

Sinais Elementares

Sinal Exponencial: Caso 3 $x(t) = \alpha^t$; $\alpha \in \square$

$$x(t) = \alpha^{t} = (e^{\sigma + jw_{\sigma}})^{t} = e^{\sigma t} \cdot e^{jw_{\sigma}t}$$
$$= e^{\sigma t} \cdot cos(w_{0}t) + j \cdot e^{\sigma t} \cdot sen(w_{0}t)$$

Sinais Elementares

Sinal Exponencial

Exemplo

☐ Para o seguinte sinal exponencial complexa pura

$$x(t) = 20e^{j(80\pi t + \frac{2\pi}{5})}$$

- ☐ Determinar para cada uma de suas componentes:
 - Frequência angular (w).
 - Frequência (f).
 - \triangleright Período (T).
 - \triangleright angulo de fase inicial (ϕ) .

Sinais Elementares

Sinal Exponencial

Solução

55

Operando: $x(t) = 20e^{j(80\pi t + \frac{2\pi}{5})}$ $= 20(\cos(80\pi t + \frac{2\pi}{5}) + j\sin(80\pi t + \frac{2\pi}{5}))$ $= 20\cos(80\pi t + \frac{2\pi}{5}) + j20\sin(80\pi t + \frac{2\pi}{5})$ Amplitude Frequência angular fase $A = 20 \qquad w = 80\pi(\frac{rad}{seg}) \qquad \phi = \frac{2\pi}{5}$ Período (sg)
Frequência (Hertz) $w = \frac{2\pi}{T}$ $T = \frac{2\pi}{w} = \frac{2\pi}{80\pi} = 0,025 \text{ sg}$ $f = \frac{w}{2\pi} = \frac{80\pi}{2\pi} = 40 \text{ Hz}$ Solução

☐ Operando:

$$x(t) = 20e^{j(80\pi t + \frac{2\pi}{5})}$$

$$= 20(\cos(80\pi t + \frac{2\pi}{5}) + j\sin(80\pi t + \frac{2\pi}{5}))$$

$$= 20\cos(80\pi t + \frac{2\pi}{5}) + j20\sin(80\pi t + \frac{2\pi}{5})$$
Amplitude Frequência angular fase
$$A = 20 \qquad w = 80\pi(\frac{rad}{seg}) \qquad \phi = \frac{2\pi}{5}$$
Período (sg)
Frequência (Hertz)
$$w = \frac{2\pi}{T}$$

$$T = \frac{2\pi}{w} = \frac{2\pi}{80\pi} = 0,025 \text{ sg}$$

$$f = \frac{w}{2\pi} = \frac{80\pi}{2\pi} = 40 \text{ Hz}$$
60

Bibliografia

HAYKIN, S. e VAN VEEN, B. Sinais e sistemas. Porto Alegre: Bookman, 2001. (19).

Indicação das seções do livro a ler em relação aos temas abordados na apresentação.

- > Sinais Elementares (1.6).
- Classificação dos sinais contínuos (1.4).
- > Transformações da variável independente (1.5).

Bibliografia