DS 593: Privacy in Practice

Systems for Privacy Cont'd

News?

https://blog.cloudflare.com/password-reuse-rampant-half-user-logins-compromised/

Last time

How do we use these building blocks in real systems?

Today

• How do we use these building blocks for privacy online?

WiFi Security

- Wireless communications need encryption to have a meaningful notion of access
 - Goal: need to be on the network to see other traffic on the network
- No real protections against other people on the network or whoever is running the network
 - At least without using other tools

Public Key Infrastructure (PKI)

A core challenge of cryptography is sharing keys

 We learned how public key cryptography helps by using both a sharable public key and a secret private key

 Problem: How do we associate a real world identity with a public key?

Public Key Infrastructure (PKI)

 A PKI is a system that handles the credential management necessary for robust public key cryptography

- It provides a mapping of keys to identities by leveraging some trusted authority
 - Finding a suitable trusted authority is the key challenge

Public Key Infrastructure (PKI)

Certificates

A certificate is the main output of a PKI

- No fixed format but generally it consists of:
 - Your identity
 - Your Public Key
 - A digital signature by a trusted authority

Network Security

OSI Model TCP/IP Stack

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network Access

Transport Layer Security (TLS)

Replaced the Secure Sockets Layer (SSL) protocol

Secures HTTP connections – HTTPS

One of the primary deployments of cryptography

• Ensures information is only shared between client and server

Chain of Trust

TLS leverages a PKI to provide robust authenticity to its certificates

- Certain trusted real world entities are designated as Root Certificate Authorities (CAs)
 - I.E. DigiCert, Verisign, Lets Encrypt
- These Root CAs sign the certificates of intermediate CAs who then sign the certificates of servers or end-users

Chain of Trust

HOW TLS WORKS?

1. Handshake protocol 😩

- Negotiate TLS protocol version
- Select cryptographic algorithms: cipher suites
- Authenticate by asymmetric cryptography
- Establish a secret key for symmetric encryption

2. Record protocol

- Transmit the encrypted messages
- Decrypt incoming messages with the secret key
- Verify that the messages are not modified

Symmetric bulk encryption

TLS Security Considerations

- You have to know about the Root CAs somehow
 - Certificate Pinning
- Only protects application layer data
 - Doesn't hide IP address, URLs, or other metadata

Other Network Security Protocols

- Many other protocols that protect other aspects of the network
 - IPSec
 - DNSSec
 - DoH

Virtual Private Networks (VPN)

- The internet is large public system with many intermediaries
 - Can we pretend it is actually just a small closed network of only the computers I care about or trust?
- Problem: how to hide my browsing from intermediaries between me and the "private network?"
 - Proxying
 - Tunneling

Web Proxy

Tunneling

A way to build a secure connection to a particular server

 You encapsulate your actual network packet in a packet that is sent to the desired server

 A VPN sets up a secure tunnel to a VPN server which then acts as a proxy to forward your packets to the internet

 Depending on the location of the VPN server, this can allow for bypassing censorship or geolocation restrictions

VPN Considerations

Primarily hides your data from ISP

- The VPN server needs to be trusted
 - Learns your IP, your browsing data, etc
 - Could log all this
- VPN Servers are often publicly known and easy to identify
- Important to make sure all traffic goes through the VPN

The onion router (Tor)

- Goal is to provide a strong guarantee of hiding your browsing data in a robust and decentralized way
 - Mitigating limitations of VPNs
- Tor does this by adding multiple layers of encapsulation to ensure no single entity learns everything about your browsing

Other aspects of Tor

- Tor alone cannot bypass censorship as the relays can be blocked
 - Tor Bridges are a way to get around this
- Tor additionally has what are called hidden services, which can only be accessed within the Tor network

TOR Network

.....: Set up connection

: Onion Service meets client

: Relay

Tor considerations

- Possibility of leakage if multiple relays on your circuit are compromised
 - How to avoid this?
- Need to make sure you are using secure application layer protocols as well (ex: HTTPS)
- Crucial to keep your Tor and non-Tor logins separate

End to End Encryption (E2EE)

 So far we have focused on how to protect information as it passes through a network

- However, the end server may be able to see all of this
 - HTTPS only has data encrypted to and from the server
- E2EE is when the server only stores encrypted user data, encrypted under a key that the server does not know

Fig. 1a: Encryption in transit Service provider encrypted encrypted unencrypted Fig. 1b: End-to-end encryption Service provider encrypted encrypted encrypted Fig. 1c: End-to-end encryption (no service provider) encrypted encrypted encrypted

BOB

Servers

ALICE

The Signal Protocol

- A protocol for E2EE messaging
 - Also an open-source app
- Messages are only readable by the users in a chat through their device specific keys
 - Lose access to device -> loss access to messages
- Many other platforms such as Whatsapp, Messenger, use an implementation of the protocol as well
- Provides forward and post-compromise security
 - The Double Ratchet regularly changes the public keys and per-message symmetric keys used

Next Time

Defining Surveillance