Inhaltsverzeichnis

1	Einleitung					
2	Quantenfeldtheorie und Standardmodell 2.1 Das Standardmodell der Teilchenphysik	3 3 4				
3	QCD × dark QCD 3.1 Die Standardmodell QCD					
4	Schleifen	7				
5	5.3 Experimentelle Daten und kritische Hyperfläche	9 10 12 13 13				
6	6.1 Stabilitätsbedingungen	14 14 14 15 16				
7	7.1 UV-Verhalten bei α^{*4}	18 19 19 20 22				
1 1	teratur	1/1				

1 Einleitung

Die Entdeckung des Higgs-Bosons im Jahr 2012 [3] und die erstmalige Beobachtung von Gravitationswellen im Jahr 2016 [4] sind weitere Bestätigung zweier fundamentaler Theorien der heutigen Physik, des *Standardmodells der Teilchenphysik (SM)* und der *allgemeinen Relativitätstheorie (ART)*, die es vermögen, Phänomene auf Größenordnungen der Quantenphysik beziehungsweise der Kosmologie mit großer Genauigkeit zu beschreiben und zu erklären. Obwohl das SM durch die Entdeckung des Higgs in sich geschlossen ist, gibt es Hinweise sowohl von experimenteller als auch von theoretischer Seite, dass dieses Theoriegebäude nicht endgültig sein kann.

Kosmologische Experimente zeigen, dass es eine Art der Materie, dunke Materie (DM), mit einer Energiedichte von $\Omega_{\rm DM}\approx 0,2$ in Einheiten der kritischen Massendichte im Universum geben muss [1], die eine schwache Ankopplung an die SM-Materie haben muss, jedoch gravitativ wechselwirkt. Im Rahmen von Λ CDM-Theorien wird eine kalte, d.h. nichtrelativistische, DM vorhergesagt, sodass Teilchentheorien mit schweren, schwach ans SM gekoppelten Elementarteilchen naheliegend sind. Y. Bai und P. Schwaller schlagen dagegen vor, die DM Masse analog zur Masse der bekannten baryonischen Materie zu erzeugen. Die Masse der normalen Materie, d.h. der Protonen und Neutronen, wird im wesentlichen durch Quark und Gluon Wechselwirkungen der Quantenchromodynamik (QCD) erzeugt. Eine analoge Dynamik, genannt dark QCD (dQCD), zusammen mit einem Mechanismus, der die Baryogenese in den dunklen Sektor erweitert, kann damit eine alternative Erklärung für DM sein. [6]

Von theoretischer Seite aus sind SM und ART völlig disjunkt, in dem Sinne, dass das SM keine gravitativen Wechselwirkungen enthält und die ART eine klassische, d.h. nicht quantisierte, Theorie ist. Um die in der ART auftretenden Singulatritäten konsistent beschreiben zu können, ist eine umfassendere Theorie der Gravitation auf quantenphysikalischen Skalen nötig [8]. Da es sich in beiden Fällen um eine Feldtheorie handelt, ist es naheliegend, die Wirkung der ART analog zum SM über den Pfadintegralformalismus nach Feynman zu quantisieren [9]. Praktisch führt dieses Vorgehen jedoch zu nichtrenormierbaren Theorien [10], die in der Regel unendlich viele Renormierungskonstanten erfordern um auf allen Energieskalen gültig zu sein und die deshalb häufig als unphysikalisch oder ungeeignet als fundamentale Theorie gelten. Durch ein asymptotic safety (AS) Szenario ist es jedoch möglich, die Theorie bis auf eine endliche Zahl von Parametern zu bestimmen, sodass AS als Erweiterung der üblichen Forderung nach Renormierbarkeit verstanden werden kann [10] [14]. Hierbei wird die Energieskalenabhängigkeit der Kopplungskonstanten einer Theorie mit Hilfe von Renormierungsgruppen (RG) untersucht; wenn die Kopplungskonstanen auf bestimmten Hyperfläche im Phasenraum der Kopplungskonstanten liegen ist das Energieskalenverhalten bis auf den Freiheitsgrad der Dimension dieser Hyperfläche bestimmt.

¹Sog. WIMPs, weakly interacting massive particles

2 Quantenfeldtheorie und Standardmodell

In einer *Quantenfeldtheorie* (*QFT*) werden physikalische Entitäten als Anregungszustände von Quantenfeldern verstanden. Ein Schlüssel zu den experimentell zugänglichen Wirkungsquerschnitten ist die Berechnung von *Korrelatorfunktionen* oder *n-Punkt Funktionen*

$$\left\langle \mathbf{T} \; \phi^{r_1}(x_1) \dots \phi^{r_N}(x_N) \right\rangle = \frac{\int \mathcal{D}\phi \; \phi^{r_1}(x_1) \dots \phi^{r_N}(x_N) e^{iS[\phi]}}{\int \mathcal{D}\phi \; e^{iS[\phi]}} \tag{1}$$

im Pfadintegralformalismus von Feynman [13]. Die Information über die möglichen physikalischen Prozesse der Quantenfelder ϕ ist dabei in dem Wirkungsfunktional S bzw. der Lagrangedichte $\mathcal L$ enhalten, welche in einer d-Dimensionalen Raumzeit über

$$S[\phi] = \int d^d x \, \mathcal{L}(\phi, \partial \phi, t) \tag{2}$$

verknüpft sind [13]. Die möglicherweise verschiedenartigen Felder ϕ^{r_i} können dabei in verschiedene Räume abbilden und somit Teilcheneigenschaften, insbesondere Transformationseigenschaften unter Eichsymmetrien, darstellen.

2.1 Das Standardmodell der Teilchenphysik

Das SM ist eine QFT nach dem Prinzip, invariant unter bestimmten Symmetrietransformationen zu sein. Die Dynamik wird dabei durch die Eichgruppe $SU(3) \times SU(2) \times U(1)$ in der Lagrangedichte repräsentiert, sowie der Angabe, unter welcher Darstellung der Eichgruppe die Felder transformieren. Neben den postulierten Feldern der Quarks, Leptonen und des Higgs wird so die Existenz von Eichfeldern und Wechselwirkungen mit den übrigen Feldern gefordert, welche keine Singletts der entsprechenden Eichgruppe sind.

Im SM kennt man bisher sechs Quark-Flavour, up (u), down (d), charm (c), strange (s), top (t), und bottom (b), die als Dirac-Fermionen in der Lagrangedichte auftauchen. Ebenfalls als Dirac-Fermionen werden die geladenen Leptonen, das Elektron (e^-), das Myon (μ^-) und das Tauon (τ^-) eingeführt. Die drei Neutrinos v_e , v_μ und v_τ kommen dagegen ausschließlich als linkshändige Weyl-Spinoren vor, sodass sie im SM masselos sein müssen. Das einzige skalare Feld des SM ist das Higgs-Feld (ϕ), welches im Higgsmechanismus für die Brechung der Symmetriegruppe verantwortlich ist.

Als eine der fundamentalen Kräfte des SM beschreibt die *Quantenchromodynamik* (*QCD*) die Wechselwirkungen zwischen Quarks, den Bausteinen der Hadronen, und den Gluonen, den Eichfeldern der QCD. Die mathematische Beschreibung erfolgt durch Dar-

stellungen der SU(3), bei der einem Quark ψ^f mit Flavour f ein Colour-Triplett $\psi = \left(\psi_1^f, \psi_2^f, \psi_3^f\right)^{\rm T}$ zugeordnet wird. Außerdem folgt die Existenz von acht masselosen Gluonen, die mit Quarks und untereinander wechselwirken [7]. Eine genauere mathematische Beschreibung folgt in Abschnitt ??. Charakteristisch für die QCD des SM ist die in Abbildung ?? dargestellte Energieabhängigkeit der QCD Kopplungskonstanten. Der Landau-Pol bei $\Lambda_{\rm QCD}$ ist dabei für die hadronische Bindung bei niedrigen Energien verantwortlich und somit insbesondere für die baryonische Massendichte $\Omega_{\rm B}$ im Universum, während es bei hohen Energien gerade zum AF kommt.

Die Symmetriegruppe $SU(2) \times U(1)$ beschreibt die Elektroschwache Wechselwirkung. In ihr werden die Wechselwirkungen zwischen linkshändigen Isospin-Dupletts

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} v_e \\ b_L \end{pmatrix} \begin{pmatrix} v_\mu \\ e_{\scriptscriptstyle T} \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu_{\scriptscriptstyle T} \end{pmatrix} \begin{pmatrix} v_\tau \\ \tau_{\scriptscriptstyle T} \end{pmatrix}$$
 (3)

über insgesamt vier Eichbosonen beschrieben. Durch den Higgsmechanismus wird die Symmetriegruppe zu einer U(1) gebrochen, welche als Elektromagnetismus identifiziert werden kann. Als Eichbosonen der gebrochenen Symmetrie entstehen die massiven Bosonen W^+ , W^- und Z sowie das masselose Photon.

Im Higg-Sektor gibt es neben einem Potenzial $V[\phi]$ sogenannte Yukawa-Kopplungen der Form $Y_{ij}Q_L^i\phi q_R^j$ zwischen einem Isospin-Duplett Q_L^i , dem Higgsfeld ϕ und einem rechtshändigen Fermion q_R^j , mit der Kopplungsstärke Y_{ij} . Im Higgsmechanismus wird das Potenzial $V[\phi]$ minimiert und die $SU(2)\times U(1)$ Symmetrie unterhalb einer charakteristischen Energieskala gebrochen, was die Massenerzeugung der Teilchen und das Flavour-Mixing der Quarks zur Folge hat. [?]

Da in dieser Arbeit wird eine Standardmodellerweiterung im QCD-Sektor untersucht werden soll, werden der Elektroschwache Sektor sowie der Higgs-Sektor nicht weiter Betrachtet. Die einzige Außnahme ist Abschnitt 5.4, in dem die β -Funktionen des Standardmodells vorgestellt werden.

2.2 Effektive Quantenwirkung und Gell-Mann-Low Gleichung

Um das Hochenergieverhalten von Wechselwirkungen zu untersuchen, ist es sinnvoll die $Quantenwirkung \Gamma$ einzuführen. Dazu werden nun die wichtigsten Punkte der Berechnung von Korrelationsfunktionen mit Hilfe von erzeugenden Funktionalen gezeigt².

Der Einfachheit halber wird nun nur ein komplexes Fermionfeld ψ und ein komplexes Skalarfeld ϕ betrachtet. Wegen der linearen Eigenschaften von (1) ist die Erweiterung

²Für das Vorgehen beim reellen, skalaren Feld vgl. [17], für die Erweiterung mit Fermionen vgl. [13].

auf mehrere Felder trivial. Lorentz- und Eichinvarianz der Lagrangedichte erfordern direkt die Einführung der Felder $\overline{\psi}$ und ϕ^{*3} . Das *erzeugende Funktional* wird definiert als

$$Z[J] := \int \mathscr{D}\Psi \ e^{iS[\Psi] + i \int d^d x (J \cdot \Psi)} \quad , \tag{4}$$

dabei wurden die Ströme η , $\overline{\eta}$, ζ und ζ^* und die Schreibweise $J = (\eta, \overline{\eta}, \zeta, \zeta^*)^T$ und $\Psi = (\overline{\psi}, \psi, \phi^*, \phi)^T$ eingeführt. Eine Reihenentwicklung kann durch

$$Z[J] = \sum_{\alpha} \frac{\mathrm{i}^{|\alpha|}}{\alpha!} \int \mathrm{d}x_1 \dots \mathrm{d}x_{|\alpha|} Z^{\alpha}(x_1, \dots, x_{|\alpha|}) J^{\alpha}(x)$$
 (5)

definiert werden, mit einem vierer Multiindex $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ und der Schreibweise

$$J^{\alpha} = \eta(x_1) \dots \eta(x_{\alpha_1}) \overline{\eta}(x_{\alpha_1+1}) \dots \overline{\eta}(x_{\alpha_1+\alpha_2}) \zeta(x_{\alpha_1+\alpha_2+1}) \dots \zeta(x_{\alpha_1+\alpha_2+\alpha_3}) \zeta^*(x_{\alpha_1+\alpha_2+\alpha_3+1}) \dots \zeta^*(x_{|\alpha|})$$

$$\tag{6}$$

Die Funktionen Z^{α} können über die Funktionalableitung

$$Z^{\alpha}(y_1, \dots, y_{|\alpha|}) \stackrel{(5)}{=} \left[\frac{\partial}{\mathrm{i}^{|\alpha|} \partial J^{\alpha}(y)} \right]_{I=0} Z[J] \stackrel{(4)}{=} \int \mathscr{D}\Psi \ \Psi^{\alpha}(y) e^{\mathrm{i}S[\Psi]} \stackrel{(1)}{=} \left\langle \mathbf{T} \Psi^{\alpha}(y) \right\rangle$$
 (7)

als n-Punkt Funktionen verstanden werden. Zur Vereinfachung wurde dabei Ψ^{α} analog zu (6) definiert und Z[0]=0 gesetzt.

Mit der Definition des Funktionals $W[J] := \ln Z[J]$ und einer Reihenentwicklung wie in (5) erhät man Funktionen W^{α} , die die Cluster-Eigenschaft erfüllen [17]. Sind A und B Ströme mit disjunkten Trägern⁴ und $y_1 \in \operatorname{supp} A$, $y_2 \in \operatorname{supp} B$, dann müssen $W^{\alpha}(\dots, y_1, \dots, y_2, \dots) \stackrel{||y_1 - y_2|| \to \infty}{\longrightarrow} 0$. Aufgund dieser Eigenschaft ist W[J] das erzeugende Funktional ver

³Cite

⁴Dabei können A und B eine Zerlegung eines Stroms $J_i = A + B$ oder zwei verschiedene, z.B $A = \eta$, $B = \phi$ sein.

3 QCD × dark QCD

Das Verhalten der QCD-Kopplungskonstanten ist im Standardmodell allein nicht im Stande ein asymptotic safety Szenario zu entwickeln, wie in Abschnitt 5.4 gezeigt wird. Durch die Erweiterung der QCD um eine weitere Eichgruppe, die dark QCD, ergeben sich qualitativ völlig neue Möglichkeiten im Hochenergieverhalten der Kopplungskonstanten.

3.1 Die Standardmodell QCD

Im Standardmodell wird die QCD durch die Symmetriegruppe $SU(N_c)$ dargestellt, unter der sich die Quarks in der *fundamentalen Darstellung* und die Gluonen in der *adjungierten Darstellung* transformieren. Im SM gibt es $N_{\rm Flavour} = 6$ verschiedene Quarkflavour und $N_{\rm Colour} = N_{\rm c} = 3$ Colours, da die QCD Flavour-Blind ist, d.h. da die Wechselwirkung unabhängig von der Flavour-Quantenzahl ist, ist die Erweiterung auf $N_{\rm c}$ Colour und $n_{\rm fc}$ Flavour jedoch trivial. Die Lagrangedichte kann als

$$\mathcal{L}_{QCD} = \sum_{f} \bar{q}_{a}^{f} \left(i \gamma^{\mu} \partial_{\mu} \delta_{ab} - g \gamma^{\mu} t_{ab}^{C} \mathcal{A}_{\mu}^{C} - m_{f} \delta_{ab} \right) q_{b}^{f} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu}$$

$$\tag{8}$$

geschrieben werden [2]. Dabei stellt q_b^f ein Quarkfeld mit Colour $b \in \{1,2,\ldots,N_{\rm C}\}$ und Flavour $f \in \{1,2,\ldots,N_{\rm Flavour}\}$ und mit der Masse m_f dar. Man nennt $q=(q_1,q_2,\ldots,q_{N_{\rm C}})^{\rm T}$ ein Colour-Multiplett⁵ unter der fundamentalen Darstellung, wenn es unter Anwendung der $SU(N_{\rm C})$ gemäß

$$q(x) \longrightarrow \underbrace{U(x)}_{\in \mathbb{C}^{N_c \times N_c}} q(x) \quad , \quad \bar{q}(x) \longrightarrow \bar{q}(x)U(x)^{\dagger}$$
 (9)

transformiert. Die Gluonfelder \mathcal{A}_{μ}^{C} mit $C \in \{1,2,\ldots,N_{\mathrm{c}}^{2}-1\}$ und Erzeugern $t^{C} \in \mathbb{C}^{N_{\mathrm{c}} \times N_{\mathrm{c}}}$ transformieren dagegen in der adjungierten Darstellung [15]

$$t_{ab}^{C} \mathcal{A}_{\mu}^{C}(x) \longrightarrow U(x) t_{ab}^{C} \mathcal{A}_{\mu}^{C}(x) U(x)^{\dagger} - \mathrm{i}(\partial_{\mu} U(x)) U(x)^{\dagger} \quad . \tag{10}$$

Die Dynamik und Propagation der Gluonen wird dabei durch den Feldstärketensor vermittelt.

$$F_{\mu\nu}^{A} = \partial_{\mu}\mathcal{A}_{\nu}^{A} - \partial_{\nu}\mathcal{A}_{\mu}^{A} - g f_{ABC}\mathcal{A}_{\mu}^{B}\mathcal{A}_{\nu}^{C} \quad , \quad [t^{A}, t^{B}] = i f_{ABC}t^{C} \quad . \tag{11}$$

Versucht man die QCD im Feynmanformalismus zu quantisieren, werden außerdem Eichfixierung und Faddeev-Popov-de-Witt Ghosts benötigt [15], diese können jedoch nach der Modellbildung hinzugefügt werden, sodass sie hier nicht auftauchen.

 $^{^{5}}$ Der Flavour-Index f wird ab jetzt weggelassen.

3.2 Dark QCD

In [6] wird die dQCD eingeführt, um die DM Massendichte Ω_{DM} im Universum zu erklären. Dazu wird das Niederenergieverhalten der neu eingeführten Kopplungskonstanten g_{dQCD} auf die Confinement Scale Λ_{dQCD} untersucht, die analog zur QCD Confinement Scale Λ_{QCD} die Größenordnung der Baryonmasse bestimmt. Die Theorie ist aber, ebenfalls analog zur QCD, auch bis zu beliebig hohen Energieskalen anwendbar.

Aufgrund[5]

4 Schleifen

5 Untersuchung einer β -Funktion

An Gleichung $\ref{eq:section}$ erkennt man, dass die β -Funktion einer QFT eine Seite eines Systems N gekoppelter, gewöhnlicher, nichtlinearer Differentialgleichungen der Form

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} g_k(\mu) = P_k^{M_L}(g_1, \dots, g_N) =: \beta_k(g_1, \dots, g_N), \quad k = 1, \dots, N$$
 (12)

ist. Dabei stellt jedes P_k ein Polynom maximal M_L -ten Grades in den Kopplungskonstanten dar. Der Grad des Polynoms hängt nur von der Ordnung der Störungstheorie ab, im Bild von Feynmangraphen entspricht dies der maximalen Anszahl L von Quantenschleifen, die in der Berechnung berücksichtigt werden. Hier ist es naheliegend, das DGL-System als Problem im \mathbb{R}^N zu betrachtet. Mit $g:=(g_1,\ldots,g_N)^T$ und $\beta:=(\beta_1,\ldots,\beta_N)^T$ lässt sich (12) auch als

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} g(\mu) = \beta(g) \tag{13}$$

schreiben. Dann heißt \mathbb{R}^N auch der Phasenraum der β -Funktion.

Definition 5.1. Eine *Trajektorie im Phasenraum* ist eine Funktion $g:(0,\infty)\to\mathbb{R}^N$, die die Gleichung (13) löst.

Ein *Fixpunkt der β-Funktion* ist ein Punkt $g^* \in \mathbb{R}^N$, für den $\beta(g^*) = 0$ gilt.

Eine physikalisch sinnvolle QFT sollte für beliebige Energieskalen, insbesondere für beliebig hohe Energieskalen, Vorhersagen machen können, sofern sie nicht von Beginn an als effektive Theorie angesetzt ist. Für die Kopplungskonstanten heißt das, dass für $\mu \to \infty$ die Grenzwerte $g(\mu) \to g^*$ und $\beta(g(\mu)) \to 0$ erreicht werden müssen um ein stabiles Hochenergieverhalten zu gewährleisten. Demnach sind gerade die Fixpunkte der β -Funktion die möglichen Grenzwerte der Kopplungskonstanten.

Im Laufe der Untersuchung der β -Funktion haben sich die folgenden Bezeichnungen entwickelt.

Gaußscher Fixpunkt: Ist der Punkt $g^* = 0$ ein Fixpunkt der β-Funktion, so spricht man von einem Gaußschen Fixpunkt.

Banks-Zaks Fixpunkt: Ein Fixpunkt $g^* \neq 0$, der physikalsich sinnvoll und perturbativ ist, heißt Banks-Zaks oder Caswell-Banks-Zaks Fixpunkt.

Landau Pol: Besitzt die Lösung des Problems (13) mit Anfangswert $g(\mu_0) = g_0$ eine Polstelle $\mu_{Pol} < \infty$, sodass $g(\mu) \stackrel{\mu \to \mu_{Pol}}{\longrightarrow} \infty$, dann spricht man von einem Landau-Pol.

5.1 Vereinfachung des mathematischen Problems

Die Berechnung einer Trajetkorie als Lösung zum Anfangswertproblem (13) mit Anfangswert $g(\mu_0) = g_0$ ist in der Regel analytisch nicht möglich. Durch einige einfache Schritte lässt sich das Problem jedoch zunächst in die einfacher zuhandhabende Form eines autonomen DGL-Systems überführen und sich das Verhalten in der Nähe eines Fixpunktes bestimmen.

In [10] schlägt S. Weinberg die Einführung der dimensionslosen Kopplungskonstanten

$$\bar{g}_i(\mu) := \mu^{-d_i} g_i(\mu) \tag{14}$$

vor, wobei d_i die Massendimension der Kopplungskonstanten g_i ist. Bei der Untersuchung der QCD×dQCD- β -Funktion wird klar, dass die Erweiterung

$$\alpha_i(\mu) := \mathcal{N} \left(\bar{g}_i(\mu) \right)^n \tag{15}$$

den Grad M_L der β -Funktion verringern kann und somit das Problem weiter vereinfacht (vgl. [6], [12]). Dabei dient $\mathcal N$ als Normierungskonstante, die insbesondere von dimensionslosen Größen wie Teilchenzahlen oder Größen der Symmetriegruppe abhängen kann.

Beispiel 5.2. Für ein eindimensionales Problem

$$\mu \frac{d}{d\mu} g(\mu) = X g(\mu)^3 + Y g(\mu)^5$$
 (16)

und für den einfachen Fall [g] = 0 definiere

$$\alpha(\mu) := \mathcal{N} g(\mu)^2 \quad \Rightarrow \quad \frac{\mathrm{d}g}{\mathrm{d}\mu} g = \frac{1}{2\mathcal{N}} \frac{\mathrm{d}\alpha}{\mathrm{d}\mu} \quad .$$
 (17)

Man erhält so eine einfachere Differentialgleichung mit den Koeffizienten $\tilde{X}=2X\mathcal{N}^{-1}$ und $\tilde{Y}=2Y\mathcal{N}^{-2}$,

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \alpha(\mu) = \tilde{X} \alpha(\mu)^2 + \tilde{Y} \alpha(\mu)^3 \quad . \tag{18}$$

Naheliegend wird wieder $\alpha = (\alpha_1, ..., \alpha_N)^T$ und $\beta(\alpha) = \beta(g \circ \alpha)$ geschrieben.

Der physikalisch sinnvolle Wertebereich für die Energieskala μ ist $(0,\infty)$. Mit der Renormierungsgruppenzeit (RG-Zeit) t, definiert als

$$t(\mu) := \ln\left(\frac{\mu}{\Lambda}\right) \Leftrightarrow \mu(t) = e^t$$
 , (19)

gibt es eine Bijektion $(0,\infty) \xrightarrow{t} (-\infty,\infty)$, die es erlaubt die Kopplungskonstante als

$$\tilde{\alpha}(t) := \alpha(e^t) = \alpha(\mu) \tag{20}$$

zu schreiben. Der Parameter Λ ist beliebig und hat keine physikalische Bedeutung, er wird später lediglich die Extrapolation der Fixpunkte übersichtlicher gestalten. Es folgt

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \alpha(\mu) = \mu \underbrace{\frac{\mathrm{d}t}{\mathrm{d}\mu}}_{=\mu^{-1}} \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\alpha}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\alpha}(t) \quad . \tag{21}$$

Damit ist Gleichung (13) äquivalent zu dem autonomen Differentialgleichungssystem

$$\frac{\mathrm{d}}{\mathrm{d}t}\alpha(t) = \beta(\alpha) \quad , \tag{22}$$

wobei $\tilde{\alpha}$ wieder zu α umbenannt wurde.

5.2 Verhalten in einer Umgebung eines Fixpunktes

Um das Verhalten der Kopplungskonstanten $\alpha(t)$ in der Nähe eines Fixpunktes zu untersuchen wird die Stabilitätsmatrix wie folgt eingeführt.

Definition 5.3. Sei α^* ein Fixpunkt der β -Funktion im \mathbb{R}^N und sei β in α^* zweimal stetig differenzierbar. Die Matrix

$$\frac{\partial \beta}{\partial \alpha} := \left(\frac{\partial \beta_i}{\partial \alpha_j}\right)_{1 \le i, j \le N} \tag{23}$$

heißt *Stabilitätsmatrix der \beta-Funktion* [10]. Außgewertet am Punkt α^* ist die Schreibweise $\frac{\partial \beta}{\partial \alpha}\Big|_{\alpha^*}$ oder kurz $\frac{\partial \beta}{\partial \alpha}\Big|_{\ast}$.

Ein Fixpunkt α^* heißt *hyperbolisch*, wenn alle Eigenwerte von $\frac{\partial \beta}{\partial \alpha}\Big|_*$ einen von Null verschiedenen Realteil besitzen [16].

Der Zusammenhang zu der Stabilität des Fixpunktes ist folgendermaßen zu erkennen.

In der Nähe eines hyperbolischen Fixpunktes α^* kann Gleichung (22) durch ihre Linearisierung beschrieben werden. Da bei einem hyperbolischen Fixpunkt die Eigenvektoren $\{e_i\}$ der Stabilitätsmatrix eine Basis sind, kann $(\alpha(t) - \alpha^*)$ in Eigenvektoren zerlegt werden,

$$\frac{\mathrm{d}}{\mathrm{d}t}\alpha(t) \simeq \frac{\partial\beta}{\partial\alpha}\Big|_{*} \left(\alpha(t) - \alpha^{*}\right) = \frac{\partial\beta}{\partial\alpha}\Big|_{*} \sum_{i=1}^{N} K_{i}(t)e_{i} \quad . \tag{24}$$

Für die Koeffizienten $\{K_i\}$ in der Basis der Eigenvektoren ergibts sich das entkoppelte DGL-System

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i=1}^{N} K_i(t) e_i + \alpha^* \right) = \frac{\partial \beta}{\partial \alpha} \Big|_{*} \sum_{i=1}^{N} K_i(t) e_i$$
(25)

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}K_i(t) = K_i(t)\lambda_i \tag{26}$$

$$\Rightarrow K_i(t) = e^{\lambda_i t} K_i(0) \quad , \tag{27}$$

wobei λ_i der Eigenwert zu e_i ist. Damit kann das Verhalten der Kopplungskonstante durch

$$\alpha(t) = \sum_{i=1}^{N} e^{\lambda_i t} K_i(0) e_i + \alpha^*$$
(28)

beschrieben werden. Dieses Ergebnis ist unter anderem in [14], [10] und [12] zu sehen. Aus Gleichung (28) wird dann klar, dass der Untervektorraum, der durch die Eigenvektoren $\{e_i\}$ mit $\Re \epsilon \lambda_i < 0$ die Punkte in der Fixpunktumgebung enthält, die für $t \to \infty$ in den Fixpunkt hineinlaufen, entsprechend enthält der Untervektorraum mit Eigenvektoren zu $\Re \epsilon \lambda_i > 0$ alle Punkte, die den Fixpunkt für $t \to -\infty$ erreichen beziehungsweise aus ihm herauslaufen. Alle weiteren Punkte der Fixpunktumgebung liegen auf Trajektorien, die den Fixpunkt nicht enthalten.

Ein Eigenvektor mit positivem Eigenwert wird oft auch als IR-attraktiv, mit einem negativen Eigenwert als IR-repulsiv bezeichnet [14]. Da in dieser Arbeit jedoch das UV-Verhalten von Interesse ist, werden die folgenden Bezeichnungen verwendet.

- 1. Ein Fixpunkt heißt attraktiver (UV-)Fixpunkt, wenn $\Re \lambda_i < 0 \forall i$.
- 2. Ein Fixpunkt heißt *repulsiver* (*UV-*)*Fixpunkt*, wenn $\Re \lambda_i > 0 \forall i$.
- 3. Falls ein Fixpunkt weder attraktiv noch repulsiv ist, d.h. wenn es sowohl Trajektorien gibt die in ihn hinein-, als auch welche die hinauslaufen, wird er *Sattelpunkt* genannt.

Definition 5.4. Die Menge der in den Fixpunkt hineinlaufenden Kurven heißt *kritische* $(UV-)Hyperfläche\ M_{\rm C}$ (critical manifold) des Fixpunktes.

Bei allgemeinen Betrachtungen (vgl. [14]) wird der nicht-hyperbolische Fall $\lambda_i=0$ oft als unwichtiger Sonderfall nicht weiter betrachtet, bei der Untersuchung einer konkreten β -Funktion kommt dieser Sonderfall aber auf natürliche Weise schnell zu stande, sobald ein Fixpunkt einen Wert $\alpha_i^*=0$ besitzt. In diesem Fall ist es schwierig allgemeine Aussagen zu treffen, für ein 2-dimensionales Problem wie in Abschnitt 6 lassen sich jedoch einige

Aussagen treffen, die Teilweise auch auf höherdimensionale Probleme verallgemeinert werden können.

5.3 Experimentelle Daten und kritische Hyperfläche

Während die β -Funktion als DGL-System aus dem erzeugenden Funktional und somit letztlich aus der postulierten Lagrangedichte hervorgeht, ist die Bestimmung der Trajektorie⁶, die den Kopplungskonstanten "unserer Welt" entspricht eine rein experimentelle Aufgabe.

Um das UV-Verhalten einer β -Funktion mit den bisher gemessenen Werten für die Kopplungskonstanten im SM vergleichen zu können, ist es notwendig die kritische Hyperfläche eines Fixpunktes auch in einem Bereich zu kennen, der zu groß für eine Taylorentwicklung geringer Ordnung ist. Das auffinden der kritischen Hyperfläche ist insbesondere für höherdimensionale Probleme analytisch kaum möglich und daher eine numerische Aufgabe. Für ein System aus zwei Kopplungskonstanten wird in 6 ein Verfahren vorgestellt. Stehen nun n Messwerte an der selben Renormierungsskala μ_0 zur Verfügung und gibt es einen Punkt $\alpha_0 \in M_c$ der diese enthält, dann sind alle Kopplungskonstanten $\alpha(\mu)$ bis auf $(\dim(M_c) - n)$ freie Parameter festgelegt und laufen in den Fixpunkt hinein. Existiert so ein $\alpha_0 \in M_c$ nicht, kommt der untersuchte Fixpunkt für ein asymptotic safety Szenario nicht in Frage.

 $^{^6}$ Genauer muss nur ein Punkt $\alpha(t_0)$ als Anfangswert des DGL-Systems bekannt sein.

⁷Für *n* ≥ dim($M_{\rm C}$) also eindeutig.

5.4 Laufende Kopplungen im Standardmodell

Die Eichkopplungen der Starken, Schwachen und Elektromagnetischen Wechselwirkung [2]

- 5.4.1 QED
- 5.4.2 QCD

6 β -Funktion im \mathbb{R}^2

Um 2-dimensionale autonome DGL-Systeme zu veranschaulichen eignet sich das Bild des Kopplungskonstanten-Flusses. Dabei "fließt" ein Anfangswert $\alpha(t_0)$ mit Geschwindigkeit und Richtung $\dot{\alpha}(t) = \beta(\alpha(t))$ entlang einer Trajektorie durch den Phasenraum. Der Satz von Picard-Lindelöf stellt dabei sicher, dass sich zwei Trajektorien nicht schneiden. Ein Flussdiagramm wie in Abbildung ?? zeigt das Verhalten von $\alpha(t)$ indem das Geschwindigkeitsfeld β durch Pfeile im Phasenraum dargestellt wird.

6.1 Stabilitätsbedingungen

Für ein System mit zwei Kopplungskonstanten vereinfacht sich die Untersuchung erheblich, da der Phasenraum der \mathbb{R}^2 ist und, wie in Abschnitt 4 gezeigt wurde, die Stabilitätsmatrix allgemein die Form

$$\frac{\partial \beta}{\partial \alpha} = \begin{pmatrix} \sum_{i=2,j=0}^{i} i \alpha_1^{i-1} \alpha_2^j X_{ij}^1 & \sum_{i=2,j=1}^{i} j \alpha_1^i \alpha_2^{j-1} X_{ij}^1 \\ \sum_{i=1,j=2}^{i} i \alpha_1^{i-1} \alpha_2^j X_{ij}^2 & \sum_{i=0,j=2}^{i} j \alpha_1^i \alpha_2^{j-1} X_{ij}^2 \end{pmatrix}$$
(29)

annimmt. Eigenwerte von $\frac{\partial \beta}{\partial \alpha}$ können explizit als

$$\lambda_{+/-} = \frac{1}{2} \operatorname{Sp} \frac{\partial \beta}{\partial \alpha} \pm \sqrt{\left(\frac{\operatorname{Sp} \frac{\partial \beta}{\partial \alpha}}{2}\right)^2 - \operatorname{Det} \frac{\partial \beta}{\partial \alpha}}$$
 (30)

angegeben werden.

6.1.1 hyperbolischer Fixpunkt

Sind $\operatorname{Sp} \frac{\partial \beta}{\partial \alpha}$ und $\operatorname{Det} \frac{\partial \beta}{\partial \alpha}$ nicht Null, lässt sich das Vorzeichen der Eigenwerte leicht Nachrechnen, das Ergebnis ist in Tabelle 1 zu sehen.

$\operatorname{Sp} \frac{\partial \beta}{\partial \alpha}$	$\mathrm{Det} \frac{\partial \beta}{\partial \alpha}$	$\Re e \lambda_+$	$\Re e \lambda$	UV-Verhalten
> 0	> 0	> 0	> 0	repulsiv
< 0	> 0	< 0	< 0	attraktiv
_	< 0	> 0	< 0	Sattelpunkt

Tabelle 1: Das UV-Verhalten hyperbolischer Fixpunkte für Sp $\frac{\partial \beta}{\partial \alpha} \neq 0$ und Det $\frac{\partial \beta}{\partial \alpha} \neq 0$.

Da man in der Reihenentwicklung der β -Funktion davon ausgeht, dass höhere Ordnungen vernachlässigbar klein werden, kann man davon ausgehen, dass hyperbolische Fixpunkte der Ordnung n auch für höhere Ordnungen hyperbolisch bleiben. Falls ein vollständig wechselwirkender Fixpunkt ($\alpha_1^* \neq 0, \alpha_2^* \neq 0$) in Ordnung n entweder $\operatorname{Sp} \frac{\partial \beta}{\partial \alpha}\Big|_* = 0$ oder $\operatorname{Det} \frac{\partial \beta}{\partial \alpha}\Big|_* = 0$ ergibt, kann man davon ausgehen, dass sich die Koeffizienten X_{ij}^k zufällig aufheben und der Fixpunkt in höherer Ordnung wieder hyperbolisch wird. Vollständig wechselwirkende nicht-hyperbolische Fixpunkte können also als Folge einer zu groben Berechnung der β -Funktion verstanden werden. Es ist nicht klar, ob der Eigenvektor e_i zum Eigenwert $\lambda_i = 0$ eine UV-attraktiven oder repulsiven Richtung entspricht, da sich dies jedoch direkt auf die Dimension der kritischen Hyperfläche auswirkt ist die Untersuchung solcher Fixpunkte nur bedingt sinnvoll.

6.1.2 nicht-hyperbolischer Fixpunkt

Ein teilweise wechselwirkender Fixpunkt, o.E. $\alpha^* = (\alpha_1^*, 0)$, führt zu der Stabilitätsmatrix

$$\frac{\partial \beta}{\partial \alpha}\Big|_{*} = \begin{pmatrix} \sum_{i=2}^{i} i(\alpha_{1}^{*})^{i-1} X_{i0}^{1} & \sum_{i=2}^{i} (\alpha_{1}^{*})^{i} X_{i1}^{1} \\ 0 & 0 \end{pmatrix} . \tag{31}$$

Es folgt $e_1 = (1,0)^T$ zu $\lambda_1 = \sum_{i=2} i(\alpha_1^*)^{i-1} X_{i0}^1$ und $e_2 \propto (-(\sum_{i=2} (\alpha_1^*)^i X_{i1}^1)/(\sum_{i=2} i(\alpha_1^*)^{i-1} X_{i0}^1), 1)^T$ zu $\lambda_2 = 0$. Da in β_2 die Variable α_2 in jedem Monom mindestens zur zweiten Potenz auftaucht, ist dies für beliebig hohe Ordnung zu erwarten, sodass hier ein alternatives Kriterium für das UV-Verhalten des Fixpunktes gefunden werden muss.

Zunächst wird (24) um die zweite Ordnung der Taylorentwicklung ergänzt,

$$\beta_{i}(\alpha) \simeq \sum_{m=1}^{2} \frac{\partial \beta_{i}}{\partial \alpha_{m}} \bigg|_{*} \left(\alpha_{m} - \alpha_{m}^{*} \right) + \frac{1}{2} \sum_{m,n=1}^{2} \left(\alpha_{m} - \alpha_{m}^{*} \right) \frac{\partial^{2} \beta_{i}}{\partial \alpha_{m} \partial \alpha_{n}} \bigg|_{*} \left(\alpha_{n} - \alpha_{n}^{*} \right) \quad , \tag{32}$$

oder in in vektorieller Schreibweise in der Basis der Eigenvektoren

$$\frac{\mathrm{d}}{\mathrm{d}t}(K_1e_1 + K_2e_2) \simeq \frac{\partial\beta}{\partial\alpha}\bigg|_{\star} (K_1e_1 + K_2e_2) + (K_1e_1 + K_2e_2) \cdot \left(\nabla\frac{\partial\beta}{\partial\alpha}\right)\bigg|_{\star} (K_1e_1 + K_2e_2) \quad . \tag{33}$$

Sei nun wieder $\lambda_2 = 0$ und $\lambda_1 \neq 0$. Die DGL für K_1 kann in erster Ordnung gelöst werden, auf M_c gilt wieder

•
$$\lambda_1 < 0 \Rightarrow K(t) \stackrel{t \to \infty}{\longrightarrow} 0$$

⁸An Gleichung (31) sieht man, dass beide Eigenwerte reell sind.

• $\lambda_1 > 0 \Rightarrow K(t) \equiv 0$.

Wegen $\frac{\partial \beta}{\partial a}\Big|_{*}e_{2}=0$ verschwindet die erste Ordnung in der DGL für $K_{2}(t)$, es bleibt die entkoppelte DGL

$$\frac{\mathrm{d}}{\mathrm{d}t}K_2(t)e_2 = K_2(t)^2 e_2 \cdot \left(\left[\frac{\partial}{\partial \alpha_1} \frac{\partial \beta}{\partial \alpha} \right]_* e_2 / / \left[\frac{\partial}{\partial \alpha_2} \frac{\partial \beta}{\partial \alpha} \right]_* e_2 \right) \quad . \tag{34}$$

6.2 Fixpunktextrapolation

Ein besonderer Vorteil einer Erweiterung $G \to G_1 \times G_2$ ist die Möglichkeit einen UV-Fixpunkt eindeutig extrapolieren zu können, da die kritische Hyperfläche die Dimension $\dim(\alpha^*)=0$, $\dim(\mathrm{Trajektorie})=1$ oder $\dim(\mathrm{Phasenraum})=2$ hat. Im ersten Fall, $\dim M_{\mathrm{C}}=0$ besteht sie nur aus dem Fixpunkt selbst, dieser Fall ist also eher als eine mathematische, triviale Lösung zu betrachten, die keine physikalische Bedeutung im Sinne laufender Kopplungskonstanten hat. Im Fall $\dim M_{\mathrm{C}}=2$ besteht sie aus dem gesamten Phasenraum. Weil in diesem Fall jede Trajektorie in den Fixpunkt hineinläuft kann keine Vorhersage für die Größen der Kopplungskonstanten gemacht werden, dafür ist aber das UV-Verhalten von dem Startwert $(\alpha_1(t_0),\alpha_2(t_0))$ unabhängig. Der für die Extrapolation interessanteste Fall ist also $\dim M_{\mathrm{C}}=1$, da die UV-Hyperfläche dann aus zwei Trajektorien $s^{+/-}:(0,\infty)\to\mathbb{R}^2$ besteht und deshalb eindeutige Wertepaare $(\alpha_1(t),\alpha_2(t))$ vorhersagt. Wenn eine Kopplungskonstante (o.E.) $\alpha_1(t_0)$ bei einer Renormierungsskala t_0 bekannt ist, und unter der Annahme, dass der Fixpunkt für $t\to\infty$ erreicht wird, ist somit auch $\alpha_2(t_0)$ sowie das gesamte Verhalten beider Kopplungskonstanten bekannt.

Für die Extrapolation werden außerdem die folgende Beobachtungen ausgenutzt.

- 1. Eine Trajektorie, welche in einen Sattelpunkt hineinläuft, ist gleichzeitig eine Separatrix, d.h. sie Teilt den Phasenrau in Gebiete mit qualitativ unterschiedlichem Verhalten für $t \to \infty$.
- Ein Sattelpunkt und ein attraktiver Fixpunkt sind mit einer Trajektorie verbunden, ebenso ist ein Sattelpunkt mit einem repulsiven Fixpunkt mit einer Separatrix verbunden, sofern die Fixpunkte existieren und in der N\u00e4he des Sattelpunktes liegen.

Da das gesuchte M_c folglich immer eine Separatrix ist, kann wie folgt verfahren werden. Zunächst werden zwei Gebiete L und R definiert, die zu qualitativ verschiedenen Trajektorien führen. Beispielsweise lassen sich oft Abschätzungen der Art finden: Wenn es ein

⁹Jeweils eine in, eine entgegen der Richtung des attraktiven Eigenvektors.

 t_1 gibt mit

$$\alpha_{j}(t_{1}) > \max \left\{ \alpha_{j}^{*i} \middle| \text{ alle Fixpunkte } \alpha^{*i} \right\}$$
, (35)

dann kann der gewünschte Fixpunkt nicht mehr für $t > t_1$ erreicht werden. Am Fixpunkt wird eine Orthonormalbasis $\{f_1, f_2\}$ gewählt¹⁰ und der Phasenraum in Ebenen mit Abstand ϵ eingeteilt, die nullte Ebene geht dabei durch den Fixpunkt. Rekursiv werden dann

$$s_n^{L/R} = s_{n-1}^{L/R} + \epsilon f_1 + d^{L/R} \delta f_2 \tag{36}$$

definiert. Für festes δ wird $d^{L/R}$ so eingestelle, dass die Trajektorie mit Anfangswert s_n^L in den Bereich L hineinläuft, analog für R. Mit $s_0^L := \alpha - \delta/2f_2$ und $s_0^R := \alpha + \delta/2f_2$ ergibt sich so ein Schlauch $\left(s_n^L, s_n^R\right)_{n=0,1,\dots}$ der Breite δ , der die Separatrix beinhaltet.

 $^{^{10}}$ Der Einfachheit halber kann die Basis aus Eigenvektoren oder die $\alpha_{1,2}$ -Achsen gewählt werden, sofern dies zu keinen numerischen Schwierigkeiten führt.

7 UV-Fixpunkte der $SU_{QCD} \times SU_{dQCD}$

Die allgemeinste Form der β-Funktion auf 2-loop Ordnung wurde von D.R.T. Jones berechnet [11]. Die β-Funktion hat die Form

$$\beta(g) = \begin{pmatrix} X_1^g g_1^3 + Y_1^g g_1^5 + Z_1^g g_1^3 g_2^2 \\ X_2^g g_2^3 + Y_2^g g_2^5 + Z_2^g g_2^3 g_1^2 \end{pmatrix} . \tag{37}$$

Für die Darstellungen R_1 , R_2 , S_1 und S_2 der Fermionen bzw. Skalare sind die Koeffizienten von β_1 gegeben durch

$$X_1^g = (16\pi^2)^{-1} \left[\frac{2}{3} T(R_1) d(R_2) + \frac{1}{3} T(S_1) d(S_2) - \frac{11}{3} C_2(G_1) \right]$$
(38)

$$Y_1^g = (16\pi^2)^{-2} \left[\left(\frac{10}{3} C_2(G_1) + 2C_2(R_1) \right) T(R_1) d(R_2) \right]$$
(39)

$$+\left(\frac{2}{3}C_2(G_1) + 4C_2(S_1)\right)T(S_1)d(S_2) - \frac{34}{3}C_2(G_1)^2$$
(40)

$$Z_1^g = (16\pi^2)^{-2} \left[2C_2(R_2)d(R_2)T(R_1) + 4C_2(S_2)d(S_2)T(S_1) \right]$$
 (41)

Die Berechnung ist dabei für chirale Fermionen geschehen, was einen zusätzlichen Faktor von 2 in $d(R_1)$ und $d(R_2)$ bewirkt, wenn man sonst Dirac-Fermionen betrachtet. Außerdem wurde bei der Berechnung dieselben Darstellungen R_1 und R_2 bzw. S_1 und S_2 bezüglich G_1 und G_2 für alle Fermionen bzw. Skalare angenommen. Wenn Teilchen des QCD-, dQCD- und joint-Sektors verschiedene Darstellungen besitzen, müssen $d(R_1)$, $d(R_2)$, $d(S_1)$ und $d(S_2)$ angepasst werden. Am einfachsten und anschaulichsten geschiet dies über das Zeichnen von Feynmandiagrammen und abzählen der möglichen Teilchen, die im entsprechenden Diagramm erlaubt sind.

Die ermittelten Koeffizienten stimmen mit denen in [6] überein. Mit $N_{f_c} := n_{f_c} + N_d n_{f_j}$, $N_{s_c} := n_{s_c} + N_d n_{s_j}$, $N_{f_d} := n_{f_d} + N_c n_{f_j}$ und $N_{s_d} := n_{s_d} + N_c n_{f_j}$ lassen sie sich schreiben als

$$X_1^g = (16\pi^2)^{-1} \left[\frac{2}{3} N_{f_c} + \frac{1}{6} N_{s_c} - \frac{11}{3} N_c \right]$$
 (42)

$$Y_1^g = (16\pi^2)^{-2} \left[\left(\frac{13}{3} N_{\rm c} - \frac{1}{N_{\rm c}} \right) N_{\rm f_c} + \left(\frac{4}{3} N_{\rm c} - \frac{1}{N_{\rm c}} \right) N_{\rm S_c} - \frac{34}{3} N_{\rm c}^2 \right]$$
(43)

$$Z_1^g = (16\pi^2)^{-2} \left[(N_d^2 - 1)(n_{f_i} + n_{s_i}) \right]$$
 (44)

Da beide Kopplungskonstanten in einer 4-dimensionalen Raumzeit die Massendimension $[g_1]=[g_2]=0$ besitzen, werden die neuen Kopplungskonstanten $\alpha_i:=\frac{g_i^2}{4\pi}$ eingeführt. Mit

 $X_i := 8\pi X_i^g$, $Y_i := 32\pi^2 Y_i^g$ und $Z_i := 32\pi^2 Z_i^g$ folgt

$$\beta(g) = \begin{pmatrix} X_1 \alpha_1^2 + Y_1 \alpha_1^3 + Z_1 \alpha_1^2 \alpha_2 \\ X_2 \alpha_2^2 + Y_2 \alpha_2^3 + Z_2 \alpha_1 \alpha_2^2 \end{pmatrix}$$
(45)

und als Nullstellen findet man

- den Gaußschen Fixpunkt $\alpha^{*1} = (0,0)$,
- den teilweise wechselwirkenden Fixpunkt $\alpha^{*2} = \left(0, -\frac{X_2}{Y_2}\right)$, falls $Y_2 \neq 0$,
- den teilweise wechselwirkenden Fixpunkt $\alpha^{*3} = \left(-\frac{X_1}{Y_1}, 0\right)$, falls $Y_1 \neq 0$,
- den vollständig wechselwirkenden Fixpunkt $\alpha^{*4} = \left(\frac{Z_1X_2 X_1Y_2}{Y_1Y_2 Z_1Z_2}, \frac{X_1Z_2 Y_1X_2}{Y_1Y_2 Z_1Z_2}\right)$.

An den Fixpunkten gilt außerdem

$$\operatorname{Sp} \frac{\partial \beta}{\partial \alpha}\Big|_{*} = (\alpha_{1}^{*})^{2} Y_{1} + (\alpha_{2}^{*})^{2} Y_{2} \quad \text{sowie} \quad \operatorname{Det} \frac{\partial \beta}{\partial \alpha}\Big|_{*} = (\alpha_{1}^{*} \alpha_{2}^{*})^{2} (Y_{1} Y_{2} - Z_{1} Z_{2}) \quad . \tag{46}$$

7.1 UV-Verhalten bei α^{*4}

7.1.1 attraktiver Fixpunkt

Für komplett UV-attraktives Verhalten muss die Bedingung

$$\alpha_1^* > 0 \quad \land \quad \alpha_2^* > 0 \quad \land \quad \text{Det} \frac{\partial \beta}{\partial \alpha} \Big|_* > 0 \quad \land \quad \text{Sp} \frac{\partial \beta}{\partial \alpha} \Big|_* < 0$$
 (47)

erfüllt sein. Es folgt

- $Y_1 > 0 \land Y_2 > 0 \Rightarrow f zu (47)$
- $Y_1 < 0 \land Y_2 < 0 \Rightarrow X_1 > 0 \lor X_2 > 0$
- Y_1 und Y_2 haben verschiedene Vorzeichen $\Rightarrow Z_1$ und Z_2 haben verschiedene Vorzeichen, d.h. genau ein Z_i ist negativ.

Ohne Skalare, d.h. für $N_{s_c} = N_{s_d} = n_{s_j} = 0$ ist dies nicht möglich ¹¹:

 $[\]overline{\ ^{11}}$ Hier nur für die Koeffizienten X_1 , Y_1 und Z_1 gezeigt, für $1 \leftrightarrow 2$ müssen nur $c \leftrightarrow d$ getauscht werden.

- 1. $Z_1 < 0$ ist nicht möglich (vgl. (44)),
- 2. Für $X_1 > 0 \land Y_1 < 0$ müsste

$$X_1 > 0 \stackrel{(42)}{\Rightarrow} N_{f_c} > \frac{11}{2} N_c \quad \land \quad Y_1 < 0 \stackrel{(43)}{\Rightarrow} N_{f_c} < \frac{34}{13 - \frac{3}{N^2}} N_c$$
 (48)

$$\Rightarrow \frac{11}{2} < \frac{34}{13 - \frac{3}{N_c^2}}$$
 (49)

Das Einführen von Skalaren begünstigt $X_1 > 0$, erfordert aber $N_c = 1$ oder $N_d = 1$. Da die SU(1) die Multiplikation mit Eins ist, ist dieser Fall uninteressant.

- 1. $Z_1 < 0$ ist auch mit Skalaren nicht möglich,
- 2. Aus $X_1 > 0 \land Y_1 < 0$ mit Skalaren folgt

$$N_{f_{c}} > \frac{11}{2} N_{c} - \frac{1}{4} N_{s_{c}} \quad \land \quad N_{f_{c}} < \left[\frac{34}{3} N_{c}^{2} - \left(\frac{4}{3} N_{c} - \frac{1}{N_{c}} \right) N_{s_{c}} \right] \left(\frac{13}{3} N_{c} - \frac{1}{N_{c}} \right)^{-1}$$
 (50)

$$\Rightarrow \left[\left(\frac{4}{3} N_{\rm c} - \frac{1}{N_{\rm c}} \right) - \frac{1}{4} \left(\frac{13}{3} N_{\rm c} - \frac{1}{N_{\rm c}} \right) \right] N_{\rm S_c} < \frac{34}{3} N_{\rm c}^2 - \frac{11}{2} N_{\rm c} \left(\frac{13}{3} N_{\rm c} - \frac{1}{N_{\rm c}} \right)$$
 (51)

Für $N_{\rm c}=1$ folgt die untere Grenze $N_{\rm s_c}\geq 14$, für $N_{\rm c}\geq 2$ die obere Grenze $N_{\rm s_c}\lesssim -200$.

7.1.2 Sattelpunkt

Am Sattelpunkt muss gelten

$$\alpha_1^* > 0 \quad \land \quad \alpha_2^* > 0 \quad \land \quad \text{Det} \frac{\partial \beta}{\partial \alpha} \Big|_{*} < 0 \quad .$$
 (52)

In Koeffizienten ausgedrückt bedeutet das

$$Z_1 X_2 < X_1 Y_2 \quad \land \quad Z_2 X_1 < X_2 Y_1 \quad \land \quad Z_1 Z_2 > Y_1 Y_2 \quad ,$$
 (53)

auch hier ist eine Fallunerscheidung nötig, zunächst wieder ohne Skalare.

1. $Y_1 > 0 \land Y_2 > 0$:

a) $X_1 > 0 \land X_2 > 0$: Aus (53) folgt

$$Z_1 < \frac{X_1}{X_2} Y_2 \quad \land \quad Z_2 < \frac{X_2}{X_1} Y_1 \quad \land \quad Z_1 Z_2 > Y_1 Y_2$$
 (54)

was jedoch nicht gleichzeitig möglich ist.

b) $X_1 < 0 \land X_2 < 0$: Man erhält obere Begrenzungen für die Anzahl der joint-Fermionen

$$n_{f_c} + N_d n_{f_i} < N_c \quad \land \quad c \leftrightarrow d \tag{55}$$

$$\Rightarrow n_{f_j}^2 + \frac{n_{f_c}}{N_c} + \frac{11}{2} \frac{n_{f_c}}{N_c} < \left(\frac{11}{2}\right)^2 \quad \land \quad c \leftrightarrow d \quad . \tag{56}$$

Es gibt also eine allgemeine Obergrenze von $n_{\rm f_j}<\frac{11}{2}$. Das Einführen von weiteren Fermionen verschiebt die Grenze weiter nach unten, für $N_{\rm c}=3$ und $n_{\rm f_c}=6$ folgt $n_{\rm f_j}\leq 4$. Die einzigen Lösungen, die Gleichzeitig zu sinnvollen Fixpunkten führen sind

$$N_{\rm c} = 3$$
 $N_{\rm d} = 2$ $n_{\rm f_c} = 6$ $0 \le n_{\rm f_d} \le 2$ $n_{\rm f_i} = 1$, (57)

weitere Lösungen gibt es nur für $n_{\rm f_c}$ < 6 oder $N_{\rm c}$ > 4.

c) $X_1 < 0 \land X_2 > 0$: Dann müsst

$$\underbrace{Z_1 X_2}_{>0} < \underbrace{X_1 Y_2}_{<0} \quad f \quad , \tag{58}$$

dieser Fall kommt für physikalische Fixpunkte also nicht in Frage.

- 2. $Y_1 > 0 \land Y_2 < 0$:
 - a) $X_2 > 0$: Wie schon gezeigt ist $Y_2 < 0 \land X_2 > 0$ nicht möglich.
 - b) $X_1 > 0 \land X_2 < 0$: Es kommt direkt zum Widerspruch,

$$\underbrace{Z_2 X_1}_{>0} < \underbrace{X_2 Y_1}_{<0} \quad f \quad . \tag{59}$$

c) $X_1 < 0 \land X_2 < 0$: Auch hier erhält man eine Begrenzung für $n_{\mathrm{f_i}}$

$$n_{\rm f_c} + N_{\rm d} n_{\rm f_j} < \frac{34}{13 - \frac{3}{N^2}} N_{\rm c} \quad \land \quad n_{\rm f_d} + N_{\rm c} n_{\rm f_j} < \frac{11}{2} N_{\rm d}$$
 (60)

$$\Rightarrow n_{\rm f_j} < \sqrt{\frac{11}{2} \frac{34}{13 - \frac{3}{N_c^2}}} \lesssim 3.9 \quad . \tag{61}$$

Gleichzeitige Lösungen zu (53) mit $N_{\rm c}$ = 3 und $n_{\rm f_c} \ge$ 6 gibt es nicht.

- 3. $Y_1 < 0 \land Y_2 < 0$:
 - a) Ein $X_i > 0$: Wieder ist $Y_i < 0 \land X_i > 0$ nicht möglich.
 - b) $X_1 < 0 \land X_2 < 0$: Hier folgt

$$n_{f_c} + N_d n_{f_j} < \frac{34}{13 - \frac{3}{N_c^2}} \quad \land \quad c \leftrightarrow d$$
 (62)

$$\Rightarrow n_{\rm f_j} < \frac{34}{\sqrt{\left(13 - \frac{1}{N_c^2}\right)\left(13 - \frac{1}{N_c^2}\right)}} \lesssim 2,7 \quad . \tag{63}$$

Auch hier gibt es keine Lösungen, die nah am SM sind.

Die Flussdiagramme für die drei Standardmodell-artigen Sattelpunkte sind in den Abbildungen ??, ?? und ?? zu sehen.

7.2 UV-Verhalten bei α^{*3}

Damit der An (46) erkennt man direkt $\operatorname{Det} \frac{\partial \beta}{\partial a}\Big|_{*} = 0$

Zeichenerklärung

- "o.E." für ohne Einschränkung.
- "≃" für asymptotisch gleich. Beispiel 7.1.

$$f(x) \simeq f(x_0) + f'(x_0)(x - x_0) \tag{64}$$

Für eine Linearisierung von f in der Umgebung von x_0 . Für $|(x-x_0)| \to 0$ gilt $|f(x) - (f(x_0) + f'(x_0)(x-x_0))| \to 0$ hinreichend schnell.

- "∝" für proportional.
- "[]" für die Massendimension in natürlichen Einheiten.
- " $\langle \phi \rangle$ " für den Vakuumerwartungswert eines Feldes ϕ unter einer angegebenen Wirkung.
- "dim" für die Dimension eines Vektorraums oder einer Mannigfaltigkeit.
- "supp" für den Träger einer Funktion.
- "diag $(a_1, a_2,...)$ " für eine Diagonalmatrix mit Einträgen $a_1, a_2,...$
- "T" für das zeitgeordnete Produkt.
- "e" für die Exponentialfunktion, insb. auch Matrix- und Operatorexponentiale.
- " $\mathscr{D}\phi$ " für das Pfadintegralmaß von Feldern ϕ .
- Ein n-Multiindex α ist ein \mathbb{N}_0^n Vektor. Die Summe Σ_{α} läuft alle möglichen Multiindices $\alpha \in \mathbb{N}_0^n$. Der Betrag eines Multiindex $\alpha = (\alpha_1, \dots, \alpha_n)$ ist $|\alpha| = \alpha_1 + \dots + \alpha_n$, die Fakultät $\alpha! = \alpha_1! \dots \alpha_n!$.

Literatur

- [1] Dark matter. K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.
- [2] Quantum chomodynamics. K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.
- [3] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys. Lett.*, B716:1–29, 2012.
- [4] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. *Phys. Rev. Lett.*, 116(6):061102, 2016.
- [5] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. 2015.
- [6] Y. Bai and P. Schwaller. Scale of dark qcd. Phys. Rev. D, 89:063522, Mar 2014.
- [7] R. K. Ellis, W. J. Stirling, and B. R. Webber. *QCD and Collider Physics*. Cambridge University Press, 1996. Cambridge Books Online.
- [8] S.W. Hawking and W. Israel. *General Relativity; an Einstein Centenary Survey*. Cambridge University Press, 1979.
- [9] S.W. Hawking and W. Israel. *General Relativity; an Einstein Centenary Survey*. Cambridge University Press, 1979.
- [10] S.W. Hawking and W. Israel. *General Relativity; an Einstein Centenary Survey*. Cambridge University Press, 1979.
- [11] D. R. T. Jones. Two-loop β function for a $G_1 \times G_2$ gauge theory. *Phys. Rev. D*, 25:581–582, Jan 1982.
- [12] D. F. Litim and F. Sannino. Asymptotic safety guaranteed. arxive, Jun 2014.
- [13] M.D. Schwartz. *Quantum Field Theory and the Standard Model*. Quantum Field Theory and the Standard Model. Cambridge University Press, 2014.
- [14] S. Weinberg. Critical phenomena for field theorists. 1976.
- [15] Steven Weinberg. *The Quantum Theory of Fields*, volume 2. Cambridge University Press, 1996. Cambridge Books Online.

- [16] E. Zeidler. Springer-handbuch der mathematik iv. 2013.
- [17] J. Zinn-Justin. *Quantum Field Theory and Critical Phenomena*. International series of monographs on physics. Clarendon Press, 1993.