Pinhole model

世界坐标系与图像坐标系转化

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) **t**: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

a: 横坐标比例变化 (a * 横坐标)

b: 纵坐标比例变化

a,b: focal length in pixel dimensions

u0,v0: cords of principal point

yc: skew

yc: y 错切, 目标纵坐标=原纵坐标 + yc * 原横坐标

u0 v0 : 图像坐标系原点

自由度为5

$$[R t] = R ty$$

 Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$

R: 代表旋转,例子: Rx(a), 固定 x 轴,在 yz 平面逆时针转 a 度顺时针则在 cos, sin 前加负号

t: tx, ty, tz 三维平移

R 自由度为 4

T 自由度为 2 Rt 自由度为 6 $X = [x, y, z, 1]^T$

Color Space

RGB: 三维矩阵, R, G, B组合代表颜色

HSV: 三维矩阵, H (决定颜色, hue), S (饱和度, saturation), V(灰度, value)

YUV (YCbCr): 三维矩阵, Y (灰度), U, V 决定颜色

Conversions between different colour spaces

$$egin{aligned} X_{max} &:= \max(R,G,B) =: V \ X_{min} &:= \min(R,G,B) \ C &:= X_{max} - X_{min} & Y = 0.299R + 0.587G + 0.114B \ C_{r} &= R - Y \ C_{b} &= B - Y \end{aligned} \ egin{aligned} := \left\{ egin{aligned} 0, & \text{if } C = 0 & C_{r} = R - Y \ C_{b} &= B - Y \end{aligned}
ight. \ C_{r} &= R - Y \ C_{b} &= B - Y \end{aligned}
ight. \ C_{b} &= B - Y \end{aligned} \ egin{aligned} := \left\{ egin{aligned} 0 \circ \cdot \left(2 + rac{B - R}{C}\right), & \text{if } V = G \ 60^{\circ} \cdot \left(4 + rac{R - G}{C}\right), & \text{if } V = B \end{aligned}
ight. \ V &= 0.877 * (B - Y) \end{cases} \ S_{V} := \left\{ egin{aligned} 0, & \text{if } V = 0 \ rac{C}{V}, & \text{otherwise} \end{aligned}
ight. \end{aligned}
ight.$$

Histogram and Application

直方图: 展示图片中每种灰度的比例

Histogram modification 用处:图片增强,增强对比度
Histogram equalization 用处:增强局部对比度,均衡灰度
Histogram matching 用处:模仿(变成)其他图片的直方图

Wrapping 二维坐标变换矩阵

homography matrix H 图形变换矩阵

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

Rotation

Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

Affine Transform

Rotation+Scaling+Sheer+Translation

Projective Transform

https://blog.csdn.net/newkelt/article/details/51752283

插值法 interpolation

用于平移旋转后点不在整像素点的情况

方法: 邻近插值, 双线性插值

邻近插值

把最近的像素点的值赋给目标

双线性插值

从目标图像来考虑

$$f(x,y) \approx \frac{f(Q_{11})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y_2-y) + \frac{f(Q_{21})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y_2-y)$$

$$+\frac{f(Q_{12})}{(x_2-x_1)(y_2-y_1)}(x_2-x)(y-y_1)+\frac{f(Q_{22})}{(x_2-x_1)(y_2-y_1)}(x-x_1)(y-y_1).$$

f 意为求对应坐标的灰度,xy 是小数 流程:

- 1. 遍历目标图像的像素
- 2. 通过当前目标图像的像素逆推回原图该像素的坐标
- 3. 如果是整数,直接赋值,若小数,则双线性插值,此时 xy 为小数,Q11,Q12,Q21,Q22 为原图中这个小数坐标周围四个点
- 4. 根据公式算出当前目标图像的像素的灰度

Filter

Correlation(协相关) 与 convolution(卷积)区别 卷积转 filter180 度而协相关不转,若 filter 中心对称则两者一样 Filter 种类

Average filter: $\frac{1}{9}$, $\frac{1}$

Median filter: 对 9 个数排序取中位数作为输出

高斯 filter: 中心对称的二维高斯矩阵

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

x,y 为 filter 矩阵的位置

sigma 为标准差,越大图越模糊,高斯矩阵所有数都接近,类似 average filter Bilateral filter: 去除噪点,变模糊,但保留边缘

空间距离:指的是当前点与中心点的欧式距离。空间域高斯函数其数学形式为:

$$e^{-\frac{(x_i-x_c)^2+(y_i-y_c)^2}{2\sigma^2}}$$

其中(xi,yi)为当前点位置,(xc,yc)为中心点的位置,sigma为空间域标准差。

灰度距离:指的是当前点灰度与中心点灰度的差的绝对值。值域高斯函数其数学形式为:

$$e^{-\frac{(gray(x_i,y_i)-gray(x_c,y_c))^2}{2\sigma^2}}$$

其中gray(xi,yi)为当前点灰度值,gray(xc,yc)为中心点灰度值,sigma为值域标准差。

$$w(i, j, k, l) = \exp\left(-\frac{(i - k)^2 + (j - l)^2}{2\sigma_d^2} - \frac{\|\mathbf{f}(i, j) - \mathbf{f}(k, l)\|^2}{2\sigma_r^2}\right)$$

Exp(空间距离+灰度距离)

Sigmar 是值域标准差, sigmas 是空间域标准差

Edge Detection

梯度, x 方向与 y 方向, 分别对对应方向的灰度值求差就是梯度梯度的模, (x 方向梯度^2 + y 方向梯度^2)^0.5 不同的边缘检测算子

Finite Difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel: $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

下标 x, y 表示对 x, y 方向求梯度

缺陷:有噪声就分不清边缘 解决手段:先高斯滤波后求边缘

Canny 算法

- 1. Compute x and y gradient images
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

先高斯滤波去噪,再算出梯度的模的图像与梯度方向 非极大值抑制,检测每个像素及其8个相邻像素,若中间点像素灰度最大,再检测对应方向 的灰度(不一定落再像素上,必要时插值法)

Dtmp1 与 dtmp2 为插值所得灰度,若中心的灰度比他们还大,则置为 1,其他为 0 设置两个阈值,把线分为弱边,中间与强边,弱边置零,强边置 1,中间的与强边连则当作强边,不连的为弱边

Laplacian of Gaussian

基于二阶导数的边缘检测算法,先高斯滤波去噪,再有拉普拉斯算子由于卷积性质,可将高斯与拉普拉斯先做卷积得到 LoG,此时只做一次卷积即可高斯拉普拉斯核的公式

$$LoG(x,y) = -rac{1}{\pi\sigma^4}[1-rac{x^2+y^2}{2\sigma^2}]e^{-rac{x^2+y^2}{2\sigma^2}}$$

卷积完得出的灰度图即为边缘检测结果

Line fitting

把分开的线段组成完整的线

经典基础方法: 最小二乘法

Basic line fitting: Least Squares

- Given data: (x1, y1), ..., (xn, yn), and
- Line model: $y_i = mx_i + b$
- Find p=(m, b) to minimize

$$e = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

• So

$$e = \sum_{i=1}^{n} \left\{ y_i - \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right\}^2 = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}^2 = \|\mathbf{y} - \mathbf{A}p\|^2$$
$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}p)^T \mathbf{y} + (\mathbf{A}p)^T (\mathbf{A}p)$$
$$\frac{de}{dp} = 2\mathbf{A}^T \mathbf{A}p - 2\mathbf{A}^T \mathbf{y} = 0$$

$$\therefore p = (\mathbf{A}^T \mathbf{A})^1 \mathbf{A}^T \mathbf{y}$$

54

Modified from S. Lazebnik

最小二乘法缺点: 对异常值特别敏感

改进方法 m 估计: 迭代加权最小二乘估计回归系数, 根据回归残差的大小确定各点的权 wi, 以达到稳健的目的, 偏差大的(离群点)权值小, 偏差小的权值大。

RANSAC 拟合直线

N -样本点个数 K -求解模型需要最少的点的个数

- 1. 随机采样 K 个点
- 2. 对该 K个点拟合模型
- 3. 计算其它点到拟合模型的距离 小于一定阈值,当作内点,统计内点个数
- 4. 重复M 次,选择内点数最多的模型
- 5. 利用所有的内点重新估计模型(制选)?视觉IMAX

拟合直线时 k = 2, 画出一条直线, 在截距正负 sigma (人定的) 内的点归为内点, 然后再

重新随机选两个点··· 重复 m (人定的) 次,内点个数最多的为当前最好的模型

霍夫变换

若三点共圆,则 r 能被唯一确定且三个圆只交于一个点,那么唯一交点 A 坐标(a,b,r)为笛卡尔坐标系中,三点共圆的圆的方程参数,圆心坐标与半径

feature point

哈里斯角

- 1. 遍历每个像素, 计算 x 方向梯度与 y 方向梯度 lx, ly
- 2. 算 lx^2, ly^2, lx*ly
- 3. 定义每个像素的哈里斯矩阵

4. 对于哈里斯矩阵算角响应值 R

Measure of corner response: (Cornerness)

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.01 - 0.1)

5. 判断像素是否是角与非极大值抑制

- R depends only on eigenvalues of M
- *R* is large for a corner
- R is negative with large magnitude for an edge
- •|R| is small for a flat region

d 为阈值,大于 d 则为角,d 是手动设的 用 3*3 或 5*5 的滑动窗口遍历图像非极大值抑制,若中心点不是最大的,那么就把它从角点 中去掉

6. 把角点标记

Sift (Scale Invariant Feature Transform)

Advantages of SIFT

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Overall Procedure at a High Level

1. Scale-space extrema detection

Search over multiple scales and image locations.

2. Keypoint localization

Fit a model to determine location and scale. Select keypoints based on a measure of stability.

3. Orientation assignment

Compute best orientation(s) for each keypoint region.

4. Keypoint description

Use local image gradients at selected scale and rotation to describe each keypoint region.

SIFT算法的特点有:

- 1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
- 2. 独特性 (Distinctiveness) 好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
- 3. 多量性,即使少数的几个物体也可以生大量的SIFT特征向量;
- 4. 高速性, 经优化的SIFT匹配算法甚至可以达到实时的要求;
- 5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

应用

SIFT算法可以解决的问题:

- 1. 目标的旋转、缩放、平移 (RST)
- 2. 图像仿射/投影变换 (视点viewpoint)
- 3. 光照影响 (illumination)
- 4. 目标遮挡 (occlusion)
- 5. 杂物场景 (clutter)
- 6. 噪声

实现尺度不变性:

构建高斯金字塔, 把所有尺度下的特征都学习一次高斯差分(高斯金字塔的细节)

SIFT 算法建议,在某一尺度上对特征点的检测,可以通过对两个相邻高斯尺度空间的图像相减,得到一个 DoG (Difference of Gaussians)的响应值图像 D(x,y,o) (图像特征)。然后,仿照 LoG 方法,通过对响应值图像 D(x,y,o)进行非最大值抑制(局部极大搜索,正最大和负最大),在位置空间和尺度空间中定位特征点。

Segmentation

基于直方图的 ohlander 算法

直方图用于分割则关注峰值, 先人为规定有 k 类, 然后循环 k 次, 每次看直方图的最大峰值, 然后把最大峰值周围的一片归为一类, 再把这一类从直方图中删去, 循环

例子:有4个明显峰值,k设为4

k-means 用干分割图像

- 1. 人为规定 k 类
- 2. 随机选 k 个点, 坐标位置随机选出
- 3. 计算各点到这 k 个点的距离, 距离哪个点近 (k 个点中), 则分到那一类
- 4. 用分好类的点算中点,把这些中点当作新的分类点
- 5. 回到步骤 2. 直到算法收敛

Kmeans 优点缺点

Pros:

- Finds cluster centers that minimize variance (good representation of data)
- Simple to implement, widespread applications.

Cons:

- All clusters have spherical distribution (same to all directions or isotropic)
- Hard membership/assignment (i.e. 1 or o membership)
- Prone to local minima
- Need to choose K
- Can be very slow: each iteration is O(KN) for N-dimensional points

Mean-shift 均值漂移

假设在一个多维空间中有很多数据点需要进行聚类,Mean Shift的过程如下:

- 1、在未被标记的数据点中随机选择一个点作为中心center;
- 2、找出离center距离在bandwidth之内的所有点,记做集合M,认为这些点属于簇c。同时,把这些求内点属于这个类的概率加1,这个参数将用于最后步骤的分类
- 3、以center为中心点,计算从center开始到集合M中每个元素的向量,将这些向量相加,得到向量shift。
- 4、center = center+shift。即center沿着shift的方向移动,移动距离是||shift||。
- 5、重复步骤2、3、4,直到shift的大小很小(就是迭代到收敛),记住此时的center。注意,这个迭代过程中遇到的点都应该归类到簇c。
- 6、如果收敛时当前簇c的center与其它已经存在的簇c2中心的距离小于阈值,那么把c2和c合并。否则,把c作为新的聚类,增加1类。
- 6、重复1、2、3、4、5直到所有的点都被标记访问。
- 7、分类:根据每个类,对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。

简单的说, mean shift就是沿着密度上升的方向寻找同属一个簇的数据点。

效果

Eigenface

Eigenface 算法

N*M 矩阵(人脸图像)

x1…xm 为 n 维向量(人脸图像的每列)

1. 求所有 m 个 n 维向量的平均向量

$$\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$$

2. 归一化, 让均值为新的 0 点

$$\Phi_i = x_i - \bar{x}$$

$$A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$$
 (NxM matrix)

计算协方差矩阵 $C = AA^T/M$

- 4. 奇异值分解, 计算出 C 的特征值与特征向量, 其中特征向量为特征脸
- 5. 选定 k, k<<N, N-k 表示要降的维度数,选前 k 个最大的特征值对应的特征向量组成一张图,该图就是降维后模糊但保留特征的特征脸图如何确定 k
 - Choose *K* using the following criterion:

$$\frac{\sum_{i=1}^{K} \boldsymbol{\lambda}_{i}}{\sum_{i=1}^{N} \boldsymbol{\lambda}_{i}} > Threshold \text{ (e.g., 0.9 or 0.95)}$$

0.9 与 0.95 代表保留的信息量

特征脸算法缺点:

对于背景与变化(例:两脸重叠)变化敏感

Global appearance method: not robust to misalignment, background variation

Fisher face

基于 LDA(Linear Discriminant Analysis,线性判别分析)

大部分与 pca 一样,区别在于,PCA 以保留最多信息为前提,既选取一个主元,让其他维度到主元距离尽可能小

LDA 选取一个主元,让其他类到主元上的投影能完全被分开

3D vision

相机定标(calibration):求内参外参矩阵,内外参合一的矩阵可以将三维世界点投影到二维中,calibration matrix 3*4 矩阵

Two-view Homography: 相机不同角度拍摄同一物体, 这两张照片遵循某种投影变换可以互相转换, homography 3*3 矩阵

对极几何 (epipolar geometry): 两视角相机看同一个三维世界点, fundamental 矩阵 (相机未定标) 或 essential 矩阵 (相机已经定标) 均为 3*3 矩阵

1. 对于求 essential 矩阵, 已知两相机内参矩阵 k1,k2,对应点 x1,x2 (K2^-1 @ x2).T @ E @ (k1 @ x1) = 0

2. 对于求 fundamental 矩阵, 已知 x1,x2

x2.T @ F @ x1 = 0

Stereo Vision (立体视觉) (生成物体到 baseline 的深度图,可能可以区分出不同物体): 1. 两图片点的对应问题 2. 重构问题

光流(optical flow):表示物体运动的速度,是三维运动场在二维的投影,可用于<mark>检测相机运动,物体形状,物体分割</mark>

DLT 算法:

求相机定标的 DLT

- 1. 找出六个及以上的点对,世界坐标 X 与图像坐标 x
- 2. 求 Tnorm, Snorm

$$\mathbf{T}_{\text{norm}} = \begin{bmatrix} w+h & 0 & w/2 \\ 0 & w+h & h/2 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \quad \mathbf{S}_{\text{norm}} = \begin{bmatrix} \mathbf{V} \operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \lambda_3^{-1}) \mathbf{V}^{-1} & -\mathbf{V} \operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \lambda_3^{-1}) \mathbf{V}^{-1} \boldsymbol{\mu}_{\mathbf{X}_i} \\ 0 & 1 \end{bmatrix} \quad \mathbf{V} \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3) \mathbf{V}^{-1} = \operatorname{eig} \left(\sum_i \left(\mathbf{X}_{i, \text{nonhom}} - \boldsymbol{\mu}_{\mathbf{X}_i} \right) \left(\mathbf{X}_{i, \text{nonhom}} - \boldsymbol{\mu}_{\mathbf{X}_i} \right)^T \right)$$

3.

$$\widetilde{\mathbf{X}}_i = \mathbf{T}_{\text{norm}} \mathbf{X}_i, \widetilde{\mathbf{X}}_i = \mathbf{S}_{\text{norm}} \mathbf{X}_i$$

4. 构造 2n*12 的 A 矩阵, n 为点对个数,每个点对按以下构建两行, A 矩阵为这些行摞起来

$$\begin{bmatrix} 0 & 0 & 0 & 0 & -w_iX_1 & -w_iX_2 & -w_iX_3 & -w_i & y_iX_1 & y_iX_2 & y_iX_3 & y_i \\ w_iX_1 & w_iX_2 & w_iX_3 & w_i & 0 & 0 & 0 & 0 & -x_iX_1 & -x_iX_2 & -x_iX_3 & -x_i \end{bmatrix}$$

- 5. 对 A 做奇异值分解 U * sigma * V.T = A, p 为 V 的最后一列
- 6. 将 p reshape 成 3*4 矩阵, 最终答案为 Tnorm ^ -1 @ p @ Snorm

分解相机定标矩阵得到 k (内参矩阵), R (旋转矩阵), t (相机原点, 平移)

- 1. 先求相机中心 c: 将 p (相机定标矩阵) 奇异值分解, p= U * sigma * V.T, c 为 V 矩阵最后一列
- 2. P=[M|-Mc], M矩阵为p的前三列, 为 3*3矩阵, 对 M 做 RQ 分解得 k矩阵与 R矩阵

求 homography 的 DLT:

- 1. 找出 4 个及以上的点对, 两张图片的对应点
- 2. 求 Tnorm

$$T_{\text{norm}} = \begin{bmatrix} w+h & 0 & w/2 \\ 0 & w+h & h/2 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

3. 把两个图片的点分别标准化

$$\widetilde{\mathbf{x}}_{i} = \mathbf{T}_{norm} \mathbf{x}_{i}, \widetilde{\mathbf{x}}_{i}' = \mathbf{T}_{norm}' \mathbf{x}_{i}'$$

4. 构造 2n*9 的 A 矩阵, n 为点对个数,每个点对按以下构建两行, A 矩阵为这些行摞起来

$$\begin{bmatrix} 0 & 0 & 0 & -x_i & -y_i & -1 & y_i'x_i & y_i'y_i & y_i' \\ x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \end{bmatrix}$$

- 5. 对 A 做奇异值分解 U * sigma * Vt = A, h 为 V 的最后一列
- 6. 将 h reshape 成 3*3 矩阵, 最终答案为 Tnorm ^ -1 @ h @ Tnorm

求 fundamental/essential 矩阵的 dlt, 8 点算法:

- 1. 找出8个及以上的点对,两张图片(可能是不同相机拍的)的对应点
- 2. 求 Tnorm1 (T_{norm}), Tnorm2 (T'_{norm})

$$Tnorm = \begin{bmatrix} 2/w & 0 & -1 \\ 0 & 2/h & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

3. 把两个图片的点分别标准化

$$\widetilde{\mathbf{x}}_{i} = \mathbf{T}_{norm} \mathbf{x}_{i}, \widetilde{\mathbf{x}}_{i}' = \mathbf{T}_{norm}' \mathbf{x}_{i}'$$

4. 构造 n*9 的 A 矩阵, n 为点对个数, A 矩阵如下

$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix}$$

- 5. 对 A.T @ A 做特征值分解, f 为最小的特征值对应的特征向量
- 6. 把 f reshape 成 3*3 矩阵 F1, 对 F1 做奇异值分解, F1 = U @ sigma @ V.T
- 7. 将 sigma (3*3 的对角矩阵) 最后一行全置为 0, 得到新的 sigma1
- 8. Fundamental 矩阵 F=Tnorm2.T @ (U @ sigma1 @ V.T) @ Tnorm1

用 RANSAC 去除离群点用于求 fundamental 矩阵:

Loop:

选8个最小样本点对

计算 F 矩阵

确定内点 (inliers, 要用的点)

Until 选择的内点占样本的比例大于 95%或重复了太多次循环 用所有的这些内点计算 F 矩阵,这样很精确

分解 essential 矩阵

已知:

$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Z} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{E} = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{V}^T$$

可求出 tx 与 R

tx = U @ Z @ U.T, R = U @ W @ V.T 或 U @ W.T @ V.T

三角测距(Triangulation 通过图像上的点对算出真实的点的位置 X)dlt 算法:

- 1. 已知 两相机的定标矩阵p, p',照片上的对应点, x, x'
- 2. 构建矩阵 A 如下

$$\mathbf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \qquad \mathbf{x'} = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{p}_1^T \\ \mathbf{p}_2^T \\ \mathbf{p}_3^T \end{bmatrix} \qquad \mathbf{P'} = \begin{bmatrix} \mathbf{p}_1'^T \\ \mathbf{p}_2'^T \\ \mathbf{p}_3'^T \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} u\mathbf{p}_3^T - \mathbf{p}_1^T \\ v\mathbf{p}_3^T - \mathbf{p}_2^T \\ u'\mathbf{p}_3'^T - \mathbf{p}_1'^T \\ v'\mathbf{p}_3'^T - \mathbf{p}_2'^T \end{bmatrix}$$

- 3. 对 A 奇异值分解, A = U @ sigma @ V.T
- 4. V的最后一列为答案 X, 3d 位置

Stereo Vision 基本算法:

- 1. Image Acquisition(图像采集):用一个特别相机坐标(平行的两个位置)获取一个事物的两张图
- 2. Cameral modelling (相机建模):知道两个相机的内参,知道两相机之间的关系(外参,旋转,平移)
- 3. Feature Extraction (特征提取)
- 4. Image Matching (图像匹配)

5. Depth Interpolation (深度插值)

Disparity Computation (视差计算)

Z 代表点 PL 到 baseline 的距离,d 是 uL-uR, f 是焦距,B 是 baseline 长度 Z = f * B / (uL-uR)

两图像对应问题(Matching correlation windows,窗口对应,判断这两张图片的两个地方是不是在实际坐标中的同个地方)

因为用了对极几何以及两相机是平行摆放的,所以对应的两个地方必在同一条直线上,且该直线平行于图片坐标系的 x 坐标

窗口用中心像素点来表示,窗口大小自定(尝试不同大小,选最好的),可能回影响结果 SSD error 计算,两窗口中的所有像素差的平方和,选 ssd error 最小的就是对应点。

光流计算:

Time =
$$t$$

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

灰度恒等方程:

Divide by dt and denote:

$$u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$

$$I_x u + I_y v = -I_t$$

lx, ly, lt 为对 l 求的偏导,在计算机视觉里可为差值,u, v 是未知数,(u,v) 表示运动光流,一个方程两未知数,无法求解。

Lucas - Kanade optical flow algorithm (LK 光流算法): (对噪声不敏感)

假设在两临近的窗口中,运动(u,v)不变,窗口均为5*5

Using a 5 x 5 image patch, gives us 25 equations

$$I_x(\boldsymbol{p}_1)u + I_y(\boldsymbol{p}_1)v = -I_t(\boldsymbol{p}_1)$$

 $I_x(\boldsymbol{p}_2)u + I_y(\boldsymbol{p}_2)v = -I_t(\boldsymbol{p}_2)$

:

$$I_x(\mathbf{p}_{25})u + I_y(\mathbf{p}_{25})v = -I_t(\mathbf{p}_{25})$$

$$A\vec{\mathbf{u}} = \mathbf{b}$$

s, Kanade, 1981

解方程如下 x 向量:

Goal: Minimize $\|A\vec{\mathbf{u}} - b\|^2$

Equivalent to Solving:

$$A^{\top}A \qquad \hat{x} \qquad A^{\top}b$$

$$\begin{bmatrix} \sum\limits_{p\in P}I_{x}I_{x} & \sum\limits_{p\in P}I_{x}I_{y} \\ \sum\limits_{p\in P}I_{y}I_{x} & \sum\limits_{p\in P}I_{y}I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum\limits_{p\in P}I_{x}I_{t} \\ \sum\limits_{p\in P}I_{y}I_{t} \end{bmatrix}$$

where the summation is over each pixel p in patch P

$$x = (A^{\top}A)^{-1}A^{\top}b$$

A.T @ A 类似哈里斯角点检测里的窗口

Horn - Schunck Optical Flow Algorithm:

Regularisation: use a global smoothness term

 $E_s = \iint_D (u_x^2 + u_y^2) + (v_x^2 + v_y^2) dx dy$ $E_c = \iint_D (I_x u + I_y v + I_t)^2 dx dy$ Smoothness error:

Error in brightness constancy equation

> $E_c + \lambda E_s$ Minimize:

Solve by calculus of variations

不用窗口,利用全局信息,求出平滑误差与灰度恒等误差,使 Ec + lamda*Es 最小,可求出 运动 (u,v)

3d 重建(shape from x)

- 1. Shape from shading (阴影)
- 2. Shape from specular highlights (高光)
- 3. Shape from texture (纹理)

Lambertian reflection (兰伯特反射)

ance

$$\hat{I}(x,y) = R(p,q) = \hat{n} \cdot \hat{l} = \frac{1 + p_s p + q_s q}{\sqrt{1 + p^2 + q^2} \sqrt{1 + p_s^2 + q_s^2}}$$

(p,q,-1) – surface normal $(p_s,q_s,-1)$ – light source direction

P,q 代表法线, ps, qs 代表光源线

Neural network

Activation function: sigmoid (映射到 0 到 1 之间), ReLU (映射到 0, max), tanh (映射到 -1 到 1 之间)

$$S\left(x
ight)=rac{1}{1+e^{-x}}$$
 sigmoid 导数 = s(x)(1-s(x))

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

图像 2 分类与多分类, 例子均为 28*28 图像

 $\frac{2}{9}$ 2 分类,把图像变成 1*784 向量 x,w 是 784 个像素的权重,为 784*1 的向量,b 是 bias 结果=x@w + b

多分类,还是 x 向量,w 是每个像素每个感知机的权重,为 784*10 矩阵,b 是每个感知机的 bias,10 维向量结果=x@w + b

$$a(\mathbf{x})_i = b_i^{(1)} + \mathbf{w}_i^{\mathrm{T}(1)} \begin{bmatrix} x_1 \\ \dots \\ x_d \end{bmatrix}$$

$$= W_{i1}x_1 + \cdots + W_{id}x_d + b_i$$

神经元的输出:

权重*输入的连求和加 bias

多分类问题输出,softmax 函数,每个数是每个分类的概率,加起来和为 1 梯度下降,学习率:

$$\boldsymbol{\theta}_1 = \boldsymbol{\theta}_0 - \boldsymbol{\gamma} \cdot \nabla f(\boldsymbol{\theta}_0)$$

CNN 识别 (recognition) 与检测 (detection) 的区别:

识别只是分类任务,输出是什么东西的概率,检测是输出每个 boundingbox 是什么类的概

率,且输出 boundingbox 的中心与这个 boundingbox 有多大

反向传播例子

