ISOTROPIC UPDATE & REVIEW

Rich Ormiston, Andrew Matas

FINALTIME-SHIFTED RUN

DATA / DQ

- Analyzed full O2 run (cleaned frames)
- Is time shift
- 192s segments, 1/32 Hz bins
- Removed CATI veto from CBC veto definer file
- Notch list, Job File, Supercut
- Links to standard plots: a0, a2thirds, a3

RESULTS

*Results include 1.06 bias factor

Spectral Index $ lpha $	Y/10e-8	σ/I0e-8	SNR
O	1.40	1.00	1.40
2/3	1.03	0.76	1.36
3	-0.03	0.13	-0.23

SENSITIVITY OF 01 + 02

- Hubble scaling: $\sigma_{O2} \to \sigma_{O2}/h_0^2 = 2.16 \times 10^{-8}$
- Since $\sigma_{O1} = 5.9 \times 10^{-8}$ then, $\sigma_{O1+O2} = \left(\sigma_{O1}^{-2} + \sigma_{O2}^{-2}\right)^{-1/2} = 2.03 \times 10^{-8}$
- Improvement = $\sigma_{O1}/\sigma_{O1+O2} = 2.91$
- Compare to C00 data which saw an improvement of ~2.40
 [aLOG 339644]

FOLLOWING UP ON ODDITIES

BIMODAL SIGMA DISTRIBUTION

Systematic jump in sigma around July caused by earthquakes near Hanford, WA

DIP IN POINT ESTIMATE

- Ran post-processing on days 70-90. Found SNR of -2.7
- Removing lines with |SNR|
 2 results in an SNR of about -2
- Dip could just be a statistical fluctuation

O2 ZERO-LAG RUN

DATA / DQ

- Analyzed full O2 run (cleaned frames)
- NOTIME SHIFT!
- 192s segments, 1/32 Hz bins
- Removed CATI veto from CBC veto definer file
- Notch list, Job File, Supercut
- Links to standard plots: a0, a2thirds, a3

ZERO-LAG RESULTS

*Results include 1.06 bias factor

Spectral Index $ lpha $	Y/10e-8	σ /10e-8	SNR
O	1.03	1.00	1.03
2/3	0.93	0.76	1.22
3	0.16	0.13	1.25

ZERO-LAG QUICK POINTS

- Consistent with expectations from time-shifted run
- K.S. test of 0.92
- Bimodal sigma distribution
- Point estimate looks good dip in time-shifted run is probably inconsequential

TIME-SHIFT VS. ZERO-LAG I

TIME-SHIFT VS. ZERO-LAG 2

* Results include 1.06 bias factor * ZL="Zero Lag, "TS="Time Shifted"

Spectral Index $ lpha $	Y/10e-8 (ZL/TS)	σ/I0e-8 (ZL/TS)	SNR (ZL/TS)
O	1.03 / 1.40	1.00 / 1.00	1.03 / 1.40
2/3	0.93 / 1.03	0.76 / 0.76	1.22 / 1.36
3	0.16 / -0.03	0.13 / 0.13	1.25 / -0.23

COMPUTE_STATS2 CODE REVIEW

ROUGH BREAKDOWN

- Initialize narrow-band point estimate and sigma matrices (sigma and Y for each detector pair)
- Compute the narrowband statistics, handle notched bins, and add the statistics of each detector pair to the point estimate and sigma matrices
- Combine the narrowband results over detectors
- Apply notching, Hubble factor and bias
- Compute broadband statistics

EQUATIONS USED

Narrowband sigma and Y for each detector pair

$$\sigma_{\hat{Y}_{\alpha},I}(f) = \frac{1}{\sqrt{S_{\alpha,I}(f)\Delta f}}$$

$$\sigma_{\hat{Y}_{\alpha},I} = \left(\sum_{f} \sigma_{\hat{Y}_{\alpha},I}^{-2}(f)\right)^{-1/2}$$

$$\hat{Y}_{\alpha,I}(f) = \frac{2}{\sigma_{\hat{Y}_{\alpha},I}^2} Re \left[\frac{p_I(f)}{S_{\alpha,I}(f)} \right]$$

Final broadband statistics

 $\hat{Y}_{\alpha} = \frac{\sum_{f} \hat{Y}_{\alpha}(f) \sigma_{\hat{Y}_{\alpha}}^{-2}(f)}{\sum_{f'} \sigma_{\hat{Y}_{\alpha}}^{-2}(f')}$ $\sigma_{\hat{Y}_{\alpha}} = \left(\sum_{f} \sigma_{\hat{Y}_{\alpha}}^{-2}(f)\right)^{-1/2}$

Sum over frequencies

Sum over
detectors

$$\hat{Y}_{\alpha}(f) = \frac{\sum_{I} \hat{Y}_{\alpha,I}(f) \sigma_{\hat{Y}_{\alpha},I}^{-2}(f)}{\sum_{I} \sigma_{\hat{Y}_{\alpha},I}^{-2}(f)}$$

$$\sigma_{\hat{Y}_{\alpha}}(f) = \left(\sum_{I} \sigma_{\hat{Y}_{\alpha},I}^{-2}(f)\right)^{-1/2}$$

S(f) - sensitivity integrand

p(f) - running point estimate integrand

THANKS!