Методы оптимизации Лекция 6: Субдифференциал, его свойства и способы вычисления

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

19 октября 2020 г.

На прошлой лекции

Непрерывность выпуклых функций

На прошлой лекции

- Непрерывность выпуклых функций
- ▶ Производная по направлению

На прошлой лекции

- Непрерывность выпуклых функций
- ▶ Производная по направлению
- ightharpoonup L-гладкость выпуклых функций

▶ Субградиент

- Субградиент
- Субдифференциал

- Субградиент
- Субдифференциал
- Свойства

- Субградиент
- Субдифференциал
- Свойства
- Способы вычисления

▶ На прошлой лекции показали Липшицевость выпуклой функции f в любой точки из $\operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$

- На прошлой лекции показали Липшицевость выпуклой функции f в любой точки из $\operatorname{int} (\operatorname{dom} (f))$
- Что можно сказать про количество точек, в которых она может быть недифференцируема?

- ightharpoonup На прошлой лекции показали Липшицевость выпуклой функции f в любой точки из $\operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$
- Что можно сказать про количество точек, в которых она может быть недифференцируема?

Теорема (Радемахер)

Пусть задано открытое множество и Липшицева функция на нём. Тогда она дифференцируема почти всюду, то есть мера Лебега точек, в которых она недифференцируема, равна нулю¹.

 $^{^{1}}$ Доказательство

- На прошлой лекции показали Липшицевость выпуклой функции f в любой точки из $\operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$
- Что можно сказать про количество точек, в которых она может быть недифференцируема?

Теорема (Радемахер)

Пусть задано открытое множество и Липшицева функция на нём. Тогда она дифференцируема почти всюду, то есть мера Лебега точек, в которых она недифференцируема, равна нулю¹.

Типичные источники недифференцируемых выпуклых функций

- Операция взятия максимума
- В частности, использование модуля
- ▶ И норм $\|\cdot\|_1$ и $\|\cdot\|_\infty$

¹Доказательство

Определение субградиента

Вектор ${f g}$ называется cyбrрадиентом функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субградиента

Вектор ${f g}$ называется *субградиентом* функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субдифференциала

Множество всех субградиентов функции f в точке $\mathbf x$ называется субдифференциалом функции f в точке $\mathbf x$ и обозначается $\partial f(\mathbf x) = \{\mathbf g \mid f(\mathbf y) \geq f(\mathbf x) + \langle \mathbf g, \mathbf y - \mathbf x \rangle,$ для всех $\mathbf y \in \mathrm{dom}\,(f)\}.$

Определение субградиента

Вектор ${f g}$ называется *субградиентом* функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субдифференциала

Множество всех субградиентов функции f в точке $\mathbf x$ называется субдифференциалом функции f в точке $\mathbf x$ и обозначается $\partial f(\mathbf x) = \{\mathbf g \mid f(\mathbf y) \geq f(\mathbf x) + \langle \mathbf g, \mathbf y - \mathbf x \rangle,$ для всех $\mathbf y \in \mathrm{dom}\,(f)\}.$

Замечания

Определение субградиента

Вектор ${f g}$ называется *субградиентом* функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субдифференциала

Множество всех субградиентов функции f в точке $\mathbf x$ называется субдифференциалом функции f в точке $\mathbf x$ и обозначается $\partial f(\mathbf x) = \{\mathbf g \mid f(\mathbf y) \geq f(\mathbf x) + \langle \mathbf g, \mathbf y - \mathbf x \rangle,$ для всех $\mathbf y \in \mathrm{dom}\,(f)\}.$

Замечания

lacktriangle В определении не требуется выпуклость функции f

Определение субградиента

Вектор ${f g}$ называется *субградиентом* функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субдифференциала

Множество всех субградиентов функции f в точке $\mathbf x$ называется субдифференциалом функции f в точке $\mathbf x$ и обозначается $\partial f(\mathbf x) = \{\mathbf g \mid f(\mathbf y) \geq f(\mathbf x) + \langle \mathbf g, \mathbf y - \mathbf x \rangle,$ для всех $\mathbf y \in \mathrm{dom}\,(f)\}.$

Замечания

- lacktriangle В определении не требуется выпуклость функции f
- ▶ Геометрически субградиент вектор нормали гиперплоскости, которая касается графика f и ограничивает её снизу

Определение субградиента

Вектор ${f g}$ называется *субградиентом* функции f в точке ${f x}$ если $f({f y}) \geq f({f x}) + \langle {f g}, {f y} - {f x} \rangle$ для всех точек ${f y} \in {
m dom}\,(f).$

Определение субдифференциала

Множество всех субградиентов функции f в точке $\mathbf x$ называется субдифференциалом функции f в точке $\mathbf x$ и обозначается $\partial f(\mathbf x) = \{\mathbf g \mid f(\mathbf y) \geq f(\mathbf x) + \langle \mathbf g, \mathbf y - \mathbf x \rangle,$ для всех $\mathbf y \in \mathrm{dom}\,(f)\}.$

Замечания

- lacktriangle В определении не требуется выпуклость функции f
- Геометрически субградиент вектор нормали гиперплоскости, которая касается графика f и ограничивает её снизу
- Вопросы непустоты субдифференциала и его вид для дифференцируемых выпуклых функций предстоит обсудить...

1.
$$f(x) = |x|$$

1. f(x) = |x|• Рассмотрим $\partial f(0)$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y-0)$ для всех y

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y 0)$ для всех y
 - ▶ Если y>0, получим $y\geq ay$ и $a\leq 1$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y 0)$ для всех y
 - lacktriangle Если y>0, получим $y\geq ay$ и $a\leq 1$
 - lacktriangle Если y<0, получим $-y\geq ay$ и $a\geq -1$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y 0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - lacktriangle Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ightharpoonup В итоге ответом будет $\partial f(0) = [-1,1]$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y 0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - ▶ Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ▶ В итоге ответом будет $\partial f(0) = [-1,1]$
- 2. Индикаторная функция множества

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y 0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - ► Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ▶ В итоге ответом будет $\partial f(0) = [-1,1]$
- 2. Индикаторная функция множества

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

Рассмотрим произвольную точку $\mathbf{x} \in \mathcal{X}$, тогда $\mathbf{z} \in \partial \delta_{\mathcal{X}}(\mathbf{x})$ iff $\delta_{\mathcal{X}}(\mathbf{y}) \geq \delta_{\mathcal{X}}(\mathbf{x}) + \langle \mathbf{z}, \mathbf{y} - \mathbf{x} \rangle$ для всех $\mathbf{y} \in \mathcal{X}$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y-0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - ► Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ▶ В итоге ответом будет $\partial f(0) = [-1,1]$
- 2. Индикаторная функция множества

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

- Рассмотрим произвольную точку $\mathbf{x} \in \mathcal{X}$, тогда $\mathbf{z} \in \partial \delta_{\mathcal{X}}(\mathbf{x})$ iff $\delta_{\mathcal{X}}(\mathbf{y}) \geq \delta_{\mathcal{X}}(\mathbf{x}) + \langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle$ для всех $\mathbf{y} \in \mathcal{X}$
- ▶ Что значит $\langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle \leq 0$ для всех $\mathbf{y} \in \mathcal{X}$

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y-0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - ► Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ▶ В итоге ответом будет $\partial f(0) = [-1,1]$
- 2. Индикаторная функция множества

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

- Рассмотрим произвольную точку $\mathbf{x} \in \mathcal{X}$, тогда $\mathbf{z} \in \partial \delta_{\mathcal{X}}(\mathbf{x})$ iff $\delta_{\mathcal{X}}(\mathbf{y}) \geq \delta_{\mathcal{X}}(\mathbf{x}) + \langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle$ для всех $\mathbf{y} \in \mathcal{X}$
- ▶ Что значит $\langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle \leq 0$ для всех $\mathbf{y} \in \mathcal{X}$
- $\mathcal{N}_{\mathcal{X}}(\mathbf{x}) = \{\mathbf{z} \mid \langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle \leq 0$ для всех $\mathbf{y} \in \mathcal{X}\}$ нормальный конус к множеству \mathcal{X} в точке \mathbf{x}

- 1. f(x) = |x|
 - ▶ Рассмотрим $\partial f(0)$
 - ▶ По определению $|y| \ge |0| + a(y-0)$ для всех y
 - ▶ Если y > 0, получим $y \ge ay$ и $a \le 1$
 - ► Если y < 0, получим $-y \ge ay$ и $a \ge -1$
 - ▶ В итоге ответом будет $\partial f(0) = [-1,1]$
- 2. Индикаторная функция множества

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

- Рассмотрим произвольную точку $\mathbf{x} \in \mathcal{X}$, тогда $\mathbf{z} \in \partial \delta_{\mathcal{X}}(\mathbf{x})$ iff $\delta_{\mathcal{X}}(\mathbf{y}) \geq \delta_{\mathcal{X}}(\mathbf{x}) + \langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle$ для всех $\mathbf{y} \in \mathcal{X}$
- ▶ Что значит $\langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle \leq 0$ для всех $\mathbf{y} \in \mathcal{X}$
- ▶ $\mathcal{N}_{\mathcal{X}}(\mathbf{x}) = \{\mathbf{z} \mid \langle \mathbf{z}, \mathbf{y} \mathbf{x} \rangle \leq 0$ для всех $\mathbf{y} \in \mathcal{X}\}$ нормальный конус к множеству \mathcal{X} в точке \mathbf{x}
- Это конус, он выпуклый и замкнутый (проверьте почему!)

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

Доказательство

ightharpoonup Для произвольного \mathbf{x} субдифференциал $\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathrm{dom}(f)} \{ \mathbf{g} \mid \langle \mathbf{y} - \mathbf{x}, \mathbf{g} \rangle \leq f(\mathbf{y}) - f(\mathbf{x}) \}$

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

- ightarrow Для произвольного \mathbf{x} субдифференциал $\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathrm{dom}(f)} \{ \mathbf{g} \mid \langle \mathbf{y} \mathbf{x}, \mathbf{g} \rangle \leq f(\mathbf{y}) f(\mathbf{x}) \}$
- Множества, которые пересекаются, полупространства

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

- ightarrow Для произвольного \mathbf{x} субдифференциал $\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathrm{dom}(f)} \{ \mathbf{g} \mid \langle \mathbf{y} \mathbf{x}, \mathbf{g} \rangle \leq f(\mathbf{y}) f(\mathbf{x}) \}$
- Множества, которые пересекаются, полупространства
- Они выпуклы и замкнуты

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

- ightarrow Для произвольного \mathbf{x} субдифференциал $\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathrm{dom}(f)} \{ \mathbf{g} \mid \langle \mathbf{y} \mathbf{x}, \mathbf{g} \rangle \leq f(\mathbf{y}) f(\mathbf{x}) \}$
- Множества, которые пересекаются, полупространства
- Они выпуклы и замкнуты
- Значит их пересечение также выпукло и замкнуто

Теорема о выпуклости и замкнутости

Субдифференциал является выпуклым и замкнутым множеством.

Доказательство

- ightarrow Для произвольного \mathbf{x} субдифференциал $\partial f(\mathbf{x}) = \bigcap_{\mathbf{y} \in \mathrm{dom}(f)} \{ \mathbf{g} \mid \langle \mathbf{y} \mathbf{x}, \mathbf{g} \rangle \leq f(\mathbf{y}) f(\mathbf{x}) \}$
- Множества, которые пересекаются, полупространства
- Они выпуклы и замкнуты
- Значит их пересечение также выпукло и замкнуто

Замечания

- Субдифференциал может быть пустым множеством
- Обозначим точки, в которых субдифференциал непустое множество $\mathrm{dom}\,(\partial f)$

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

Доказательство

▶ Возьмём произвольные $\mathbf{x}, \mathbf{y} \in \mathrm{dom}\,(f)$ и $\alpha \in [0,1]$

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

- lacktriangle Возьмём произвольные $\mathbf{x},\mathbf{y}\in\mathrm{dom}\,(f)$ и $lpha\in[0,1]$
- ▶ Рассмотрим $\mathbf{z}_{\alpha} = \alpha \mathbf{y} + (1 \alpha) \mathbf{x} \in \mathrm{dom}\,(f)$ в силу выпуклости области определения

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

- lacktriangle Возьмём произвольные $\mathbf{x},\mathbf{y}\in\mathrm{dom}\,(f)$ и $lpha\in[0,1]$
- ▶ Рассмотрим $\mathbf{z}_{\alpha} = \alpha \mathbf{y} + (1 \alpha) \mathbf{x} \in \text{dom}\,(f)$ в силу выпуклости области определения
- lacktriangle Значит $\mathbf{g} \in \partial f(\mathbf{z}_{lpha})$ существует

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

- lacktriangle Возьмём произвольные $\mathbf{x},\mathbf{y}\in\mathrm{dom}\,(f)$ и $lpha\in[0,1]$
- ▶ Рассмотрим $\mathbf{z}_{\alpha}=\alpha\mathbf{y}+(1-\alpha)\mathbf{x}\in\mathrm{dom}\,(f)$ в силу выпуклости области определения
- lacktriangleright Значит $\mathbf{g} \in \partial f(\mathbf{z}_{lpha})$ существует
- Запишем два неравенства

$$f(\mathbf{y}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) + (1 - \alpha)\langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{x} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) - \alpha \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot (1 - \alpha)$$

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

Доказательство

- lacktriangle Возьмём произвольные $\mathbf{x},\mathbf{y}\in\mathrm{dom}\,(f)$ и $lpha\in[0,1]$
- ▶ Рассмотрим $\mathbf{z}_{\alpha}=\alpha\mathbf{y}+(1-\alpha)\mathbf{x}\in\mathrm{dom}\,(f)$ в силу выпуклости области определения
- lacktriangleright Значит $\mathbf{g} \in \partial f(\mathbf{z}_{lpha})$ существует
- Запишем два неравенства

$$f(\mathbf{y}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) + (1 - \alpha)\langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot \alpha$$

$$f(\mathbf{x}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{x} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) - \alpha \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot (1 - \alpha)$$

lacktriangle Сложим их и получим, что $f(\mathbf{z}_{lpha}) \leq lpha f(\mathbf{y}) + (1-lpha)f(\mathbf{x})$

Теорема

Если у функции f выпуклая область определения и в каждой точке из $\mathrm{dom}\,(f)$ субдифференциал непуст, тогда f выпукла.

- ▶ Возьмём произвольные $\mathbf{x}, \mathbf{y} \in \mathrm{dom}\,(f)$ и $\alpha \in [0,1]$
- ▶ Рассмотрим $\mathbf{z}_{\alpha} = \alpha \mathbf{y} + (1 \alpha) \mathbf{x} \in \text{dom}(f)$ в силу выпуклости области определения
- ▶ Значит $\mathbf{g} \in \partial f(\mathbf{z}_{\alpha})$ существует
- Запишем два неравенства

$$f(\mathbf{y}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) + (1 - \alpha) \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot \alpha$$
$$f(\mathbf{x}) \ge f(\mathbf{z}_{\alpha}) + \langle \mathbf{g}, \mathbf{x} - \mathbf{z}_{\alpha} \rangle = f(\mathbf{z}_{\alpha}) - \alpha \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \mid \cdot (1 - \alpha)$$

- ▶ Сложим их и получим, что $f(\mathbf{z}_{\alpha}) \leq \alpha f(\mathbf{y}) + (1 \alpha) f(\mathbf{x})$
- ightharpoonup Это выполнено для любых ${f x}, {f y}$ из выпуклой области определения, значит f выпукла

► Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла

- ► Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- ▶ Обратное утверждение неверно!

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

Теорема о существовании

Пусть f выпуклая функция и $\hat{\mathbf{x}}\in\mathrm{int}\,(\mathrm{dom}\,(f)).$ Тогда $\partial f(\hat{\mathbf{x}})
eq\varnothing$ и ограниченное множество.

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

Теорема о существовании

Пусть f выпуклая функция и $\hat{\mathbf{x}}\in\mathrm{int}\,(\mathrm{dom}\,(f)).$ Тогда $\partial f(\hat{\mathbf{x}})\neq\varnothing$ и ограниченное множество.

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

Теорема о существовании

Пусть f выпуклая функция и $\hat{\mathbf{x}} \in \mathrm{int}\,(\mathrm{dom}\,(f)).$ Тогда $\partial f(\hat{\mathbf{x}}) \neq \varnothing$ и ограниченное множество.

Доказательство

▶ Рассмотрим точку $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}})) \in \partial \mathrm{epi} f$

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

Теорема о существовании

Пусть f выпуклая функция и $\hat{\mathbf{x}} \in \mathrm{int}\,(\mathrm{dom}\,(f)).$ Тогда $\partial f(\hat{\mathbf{x}}) \neq \varnothing$ и ограниченное множество.

- ▶ Рассмотрим точку $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}})) \in \partial \mathrm{epi} f$
- ightharpoonup еріf выпуклое множество в силу выпуклости f

- Если субдифференциал не пуст в любой точки выпуклой области определения, то функция выпукла
- Обратное утверждение неверно!
- ▶ Пример $f(x) = -\sqrt{x}, x \ge 0$
- ▶ При x=0 субдифференциал пустое множество (покажите это!), хотя функция выпукла.

Теорема о существовании

Пусть f выпуклая функция и $\hat{\mathbf{x}} \in \mathrm{int}\,(\mathrm{dom}\,(f))$. Тогда $\partial f(\hat{\mathbf{x}}) \neq \varnothing$ и ограниченное множество.

- ▶ Рассмотрим точку $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}})) \in \partial \mathrm{epi} f$
- ightharpoonup ерif выпуклое множество в силу выпуклости f
- ▶ Значит через $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}))$ можно провести опорную гиперплоскость

▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle - \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle - \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \mathrm{epi} f$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha > 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{ері} f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \mathrm{epi} f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \mathrm{epi} f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{epi}f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$
 - ▶ Так как $\hat{\mathbf{x}} \in \operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$ то f Липшицева в этой точке, то есть найдётся $\varepsilon>0$ и L>0 что для всех $\mathbf{x} \in B_2(\varepsilon,\hat{\mathbf{x}}) \subset \operatorname{dom}\left(f\right)$ выполнено $|f(\mathbf{x}) f(\hat{\mathbf{x}})| \leq L\|\mathbf{x} \hat{\mathbf{x}}\|_2$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{epi}f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$
 - Так как $\hat{\mathbf{x}} \in \operatorname{int} (\operatorname{dom} (f))$ то f Липшицева в этой точке, то есть найдётся $\varepsilon > 0$ и L > 0 что для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}}) \subset \operatorname{dom} (f)$ выполнено $|f(\mathbf{x}) f(\hat{\mathbf{x}})| \leq L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - ▶ $(\mathbf{x}, f(\mathbf{x})) \in \mathrm{epi} f$ для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}})$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{epi}f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \ge \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$
 - Так как $\hat{\mathbf{x}} \in \operatorname{int} (\operatorname{dom} (f))$ то f Липшицева в этой точке, то есть найдётся $\varepsilon > 0$ и L > 0 что для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}}) \subset \operatorname{dom} (f)$ выполнено $|f(\mathbf{x}) f(\hat{\mathbf{x}})| \leq L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - ▶ $(\mathbf{x}, f(\mathbf{x})) \in \mathrm{epi} f$ для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}})$
 - ▶ Подставим эту точку в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}} \rangle \leq \alpha (f(\mathbf{x}) f(\hat{\mathbf{x}})) \leq \alpha L \|\mathbf{x} \hat{\mathbf{x}}\|_2$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{epi} f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \ge \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$
 - Так как $\hat{\mathbf{x}} \in \operatorname{int} (\operatorname{dom} (f))$ то f Липшицева в этой точке, то есть найдётся $\varepsilon > 0$ и L > 0 что для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}}) \subset \operatorname{dom} (f)$ выполнено $|f(\mathbf{x}) f(\hat{\mathbf{x}})| \le L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - ullet $(\mathbf{x}, f(\mathbf{x})) \in \mathrm{epi} f$ для всех $\mathbf{x} \in B_2(arepsilon, \hat{\mathbf{x}})$
 - ▶ Подставим эту точку в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}} \rangle \leq \alpha (f(\mathbf{x}) f(\hat{\mathbf{x}})) \leq \alpha L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - lacktriangle Возьмём ${f d}$ такой что $\|{f d}\|_2=1$ и $\langle {f p},{f d}\rangle=\|{f p}\|_2$, и представим ${f x}\in B_2(arepsilon,\hat{f x})$ в виде $\hat{f x}+arepsilon{f d}$

- ▶ То есть $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \geq \langle \mathbf{p}, \mathbf{x} \rangle \alpha t$ для всех $(\mathbf{x}, t) \in \mathrm{epi} f$
- ▶ Покажем, что $\alpha \ge 0$
 - ▶ Точка $(\hat{\mathbf{x}}, f(\hat{\mathbf{x}}) + 1) \in \text{epi} f$
 - ▶ Подставим её в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha f(\hat{\mathbf{x}}) \ge \langle \mathbf{p}, \hat{\mathbf{x}} \rangle \alpha (f(\hat{\mathbf{x}}) + 1)$
 - ▶ Получаем $\alpha \ge 0$
- ▶ Покажем, что $\alpha > 0$
 - Так как $\hat{\mathbf{x}} \in \operatorname{int} (\operatorname{dom} (f))$ то f Липшицева в этой точке, то есть найдётся $\varepsilon > 0$ и L > 0 что для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}}) \subset \operatorname{dom} (f)$ выполнено $|f(\mathbf{x}) f(\hat{\mathbf{x}})| \le L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - ▶ $(\mathbf{x}, f(\mathbf{x})) \in \mathrm{epi} f$ для всех $\mathbf{x} \in B_2(\varepsilon, \hat{\mathbf{x}})$
 - ▶ Подставим эту точку в неравенство для опорной гиперплоскости: $\langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}} \rangle \leq \alpha (f(\mathbf{x}) f(\hat{\mathbf{x}})) \leq \alpha L \|\mathbf{x} \hat{\mathbf{x}}\|_2$
 - lacktriangle Возьмём ${f d}$ такой что $\|{f d}\|_2=1$ и $\langle {f p},{f d} \rangle=\|{f p}\|_2$, и представим ${f x}\in B_2(arepsilon,\hat{f x})$ в виде $\hat{f x}+arepsilon{f d}$
 - ▶ Тогда $\varepsilon \|\mathbf{p}\|_2 \le \alpha L \varepsilon \|\mathbf{d}\|_2$ и если $\alpha = 0$, то и $\mathbf{p} = 0$, что противоречит существованию опорной гиперплоскости

ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} - \hat{\mathbf{x}}
angle$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$
- ▶ Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$
- ▶ Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$
- lacktriangle Покажем ограниченность. Пусть $\mathbf{g}\in\partial f(\hat{\mathbf{x}})$, значит $f(\mathbf{x})\geq f(\hat{\mathbf{x}})+\langle\mathbf{g},\mathbf{x}-\hat{\mathbf{x}}
 angle$ для всех $\mathbf{x}\in\mathrm{dom}\,(f)$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$
- ▶ Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$
- ▶ Покажем ограниченность. Пусть $\mathbf{g} \in \partial f(\hat{\mathbf{x}})$, значит $f(\mathbf{x}) \geq f(\hat{\mathbf{x}}) + \langle \mathbf{g}, \mathbf{x} \hat{\mathbf{x}} \rangle$ для всех $\mathbf{x} \in \text{dom}\,(f)$
- lacktriangle Возьмём $\mathbf{x}=\hat{\mathbf{x}}+arepsilon\mathbf{d}$, где \mathbf{d} такой что $\|\mathbf{d}\|_2=1$ и $\langle\mathbf{g},\mathbf{d}
 angle=\|\mathbf{g}\|_2$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}} \rangle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$
- ▶ Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$
- lacktriangle Покажем ограниченность. Пусть $\mathbf{g}\in\partial f(\hat{\mathbf{x}})$, значит $f(\mathbf{x})\geq f(\hat{\mathbf{x}})+\langle\mathbf{g},\mathbf{x}-\hat{\mathbf{x}}
 angle$ для всех $\mathbf{x}\in\mathrm{dom}\,(f)$
- lacktriangle Возьмём $\mathbf{x}=\hat{\mathbf{x}}+arepsilon\mathbf{d}$, где \mathbf{d} такой что $\|\mathbf{d}\|_2=1$ и $\langle\mathbf{g},\mathbf{d}
 angle=\|\mathbf{g}\|_2$
- ▶ Тогда $\varepsilon \|\mathbf{g}\|_2 \le f(\mathbf{x}) f(\hat{\mathbf{x}}) \le L \|\mathbf{x} \hat{\mathbf{x}}\|_2 = L\varepsilon$

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- ▶ Поделив обе части на α , получим, что субградиент $\mathbf{g} = \mathbf{p}/\alpha$ в точке $\hat{\mathbf{x}}$
- Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$
- lacktriangle Покажем ограниченность. Пусть $\mathbf{g}\in\partial f(\hat{\mathbf{x}})$, значит $f(\mathbf{x})\geq f(\hat{\mathbf{x}})+\langle\mathbf{g},\mathbf{x}-\hat{\mathbf{x}}
 angle$ для всех $\mathbf{x}\in\mathrm{dom}\,(f)$
- lacktriangle Возьмём $\mathbf{x}=\hat{\mathbf{x}}+arepsilon\mathbf{d}$, где \mathbf{d} такой что $\|\mathbf{d}\|_2=1$ и $\langle\mathbf{g},\mathbf{d}
 angle=\|\mathbf{g}\|_2$
- ▶ Тогда $\varepsilon \|\mathbf{g}\|_2 \le f(\mathbf{x}) f(\hat{\mathbf{x}}) \le L \|\mathbf{x} \hat{\mathbf{x}}\|_2 = L\varepsilon$
- ▶ Значит $\mathbf{g} \in B_2(L,0)$, то есть субдифференциал является ограниченным множеством

- ightharpoonup Возьмём $t=f(\mathbf{x})$ в неравенстве для опорной гиперплоскости и получим $lpha f(\mathbf{x}) \geq lpha f(\hat{\mathbf{x}}) + \langle \mathbf{p}, \mathbf{x} \hat{\mathbf{x}}
 angle$
- lacktriangle Поделив обе части на lpha, получим, что субградиент ${f g}={f p}/lpha$ в точке $\hat{f x}$
- ▶ Значит $\partial f(\hat{\mathbf{x}}) \neq \emptyset$
- lacktriangle Покажем ограниченность. Пусть $\mathbf{g}\in\partial f(\hat{\mathbf{x}})$, значит $f(\mathbf{x})\geq f(\hat{\mathbf{x}})+\langle\mathbf{g},\mathbf{x}-\hat{\mathbf{x}}
 angle$ для всех $\mathbf{x}\in\mathrm{dom}\,(f)$
- lacktriangle Возьмём $\mathbf{x}=\hat{\mathbf{x}}+arepsilon\mathbf{d}$, где \mathbf{d} такой что $\|\mathbf{d}\|_2=1$ и $\langle\mathbf{g},\mathbf{d}
 angle=\|\mathbf{g}\|_2$
- ▶ Тогда $\varepsilon \|\mathbf{g}\|_2 \le f(\mathbf{x}) f(\hat{\mathbf{x}}) \le L \|\mathbf{x} \hat{\mathbf{x}}\|_2 = L\varepsilon$
- ▶ Значит $\mathbf{g} \in B_2(L,0)$, то есть субдифференциал является ограниченным множеством

Замечание

Теорему существования можно обобщить с внутренности на относительную внутренность области определения f.

Теорема

Пусть f выпуклая функция. Тогда для любой точки $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d} \rangle$

Теорема

Пусть f выпуклая функция. Тогда для любой точки $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d} \rangle$

Теорема

Пусть f выпуклая функция. Тогда для любой точки $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d} \rangle$

Доказательство

▶ Пусть $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$, тогда по определению субдифференциала верна следующая цепочка неравенств для некоторого $\mathbf{g} \in \partial f(\mathbf{x})$

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{1}{\alpha} (f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})) \ge \langle \mathbf{g}, \mathbf{d} \rangle$$

Теорема

Пусть f выпуклая функция. Тогда для любой точки $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d} \rangle$

Доказательство

lacktriangle Пусть $\mathbf{x}\in\mathrm{int}\,(\mathrm{dom}\,(f))$, тогда по определению субдифференциала верна следующая цепочка неравенств для некоторого $\mathbf{g}\in\partial f(\mathbf{x})$

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{\alpha \to +0} \frac{1}{\alpha} (f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})) \ge \langle \mathbf{g}, \mathbf{d} \rangle$$

▶ Поскольку это выполнено для произвольного $\mathbf{g} \in \partial f(\mathbf{x})$, то $f'(\mathbf{x}, \mathbf{d}) \geq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$

▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$

- lacktriangle Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- ▶ Пусть $\hat{\mathbf{g}} \in \partial h(\mathbf{d})$, тогда для любого \mathbf{v} и $\alpha \geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

- lacktriangledown Покажем, что $f'(\mathbf{x},\mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d}
 angle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- ▶ Пусть $\hat{\mathbf{g}} \in \partial h(\mathbf{d})$, тогда для любого \mathbf{v} и $\alpha \geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

▶ Тогда $\alpha(f'(\mathbf{x},\mathbf{v}) - \langle \hat{\mathbf{g}},\mathbf{v} \rangle) \geq f'(\mathbf{x},\mathbf{d}) - \langle \hat{\mathbf{g}},\mathbf{d} \rangle$

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- ▶ Пусть $\hat{\mathbf{g}} \in \partial h(\mathbf{d})$, тогда для любого \mathbf{v} и $\alpha \geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

- ▶ Тогда $\alpha(f'(\mathbf{x}, \mathbf{v}) \langle \hat{\mathbf{g}}, \mathbf{v} \rangle) \ge f'(\mathbf{x}, \mathbf{d}) \langle \hat{\mathbf{g}}, \mathbf{d} \rangle$
- ▶ Так как это выполнено для любого $\alpha>0$, то выражение слева неотрицательно. Иначе для достаточно большого α неравенство бы нарушалось. В итоге $f'(\mathbf{x},\mathbf{v}) \geq \langle \hat{\mathbf{g}},\mathbf{v} \rangle$

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- ▶ Пусть $\hat{\mathbf{g}} \in \partial h(\mathbf{d})$, тогда для любого \mathbf{v} и $\alpha \geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

- ▶ Тогда $\alpha(f'(\mathbf{x}, \mathbf{v}) \langle \hat{\mathbf{g}}, \mathbf{v} \rangle) \ge f'(\mathbf{x}, \mathbf{d}) \langle \hat{\mathbf{g}}, \mathbf{d} \rangle$
- ▶ Так как это выполнено для любого $\alpha>0$, то выражение слева неотрицательно. Иначе для достаточно большого α неравенство бы нарушалось. В итоге $f'(\mathbf{x},\mathbf{v}) \geq \langle \hat{\mathbf{g}},\mathbf{v} \rangle$
- ▶ Используем утверждение с прошлой лекции (слайд 15):

$$f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x}, \mathbf{y} - \mathbf{x}) \ge f(\mathbf{x}) + \langle \hat{\mathbf{g}}, \mathbf{y} - \mathbf{x} \rangle$$

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- ▶ Пусть $\hat{\mathbf{g}} \in \partial h(\mathbf{d})$, тогда для любого \mathbf{v} и $\alpha \geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

- ▶ Тогда $\alpha(f'(\mathbf{x}, \mathbf{v}) \langle \hat{\mathbf{g}}, \mathbf{v} \rangle) \geq f'(\mathbf{x}, \mathbf{d}) \langle \hat{\mathbf{g}}, \mathbf{d} \rangle$
- ▶ Так как это выполнено для любого $\alpha>0$, то выражение слева неотрицательно. Иначе для достаточно большого α неравенство бы нарушалось. В итоге $f'(\mathbf{x},\mathbf{v}) \geq \langle \hat{\mathbf{g}},\mathbf{v} \rangle$
- Используем утверждение с прошлой лекции (слайд 15):

$$f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x}, \mathbf{y} - \mathbf{x}) \ge f(\mathbf{x}) + \langle \hat{\mathbf{g}}, \mathbf{y} - \mathbf{x} \rangle$$

▶ Значит $\hat{\mathbf{g}} \in \partial f(\mathbf{x})$

- ▶ Покажем, что $f'(\mathbf{x}, \mathbf{d}) \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g}, \mathbf{d} \rangle$
- ▶ Рассмотрим функцию $h(\mathbf{w}) = f'(\mathbf{x}, \mathbf{w})$
- ightharpoonup Эта функция выпукла и определена на \mathbb{R}^n (см. прошлую лекцию)
- lacktriangle Значит в любой точке $\mathbf{d} \in \mathbb{R}^n$ субдифференциал не пуст
- lacktriangle Пусть $\hat{f g}\in\partial h({f d})$, тогда для любого ${f v}$ и $lpha\geq 0$

$$\alpha f'(\mathbf{x}, \mathbf{v}) = f'(\mathbf{x}, \alpha \mathbf{v}) = h(\alpha \mathbf{v}) \ge h(\mathbf{d}) + \langle \hat{\mathbf{g}}, \alpha \mathbf{v} - \mathbf{d} \rangle$$

- ▶ Тогда $\alpha(f'(\mathbf{x}, \mathbf{v}) \langle \hat{\mathbf{g}}, \mathbf{v} \rangle) \ge f'(\mathbf{x}, \mathbf{d}) \langle \hat{\mathbf{g}}, \mathbf{d} \rangle$
- ▶ Так как это выполнено для любого $\alpha>0$, то выражение слева неотрицательно. Иначе для достаточно большого α неравенство бы нарушалось. В итоге $f'(\mathbf{x},\mathbf{v}) \geq \langle \hat{\mathbf{g}},\mathbf{v} \rangle$
- ▶ Используем утверждение с прошлой лекции (слайд 15):

$$f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x}, \mathbf{y} - \mathbf{x}) \ge f(\mathbf{x}) + \langle \hat{\mathbf{g}}, \mathbf{y} - \mathbf{x} \rangle$$

- ▶ Значит $\hat{\mathbf{g}} \in \partial f(\mathbf{x})$
- ▶ При $\alpha=0$ получим $f'(\mathbf{x},\mathbf{d}) \leq \langle \hat{\mathbf{g}},\mathbf{d} \rangle \leq \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{g},\mathbf{d} \rangle$

Определение

Пусть $\mathcal X$ некоторое непустое множество. Тогда опорной функцией для этого множества называется функция

$$\sigma_{\mathcal{X}}(\mathbf{y}) = \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Определение

Пусть $\mathcal X$ некоторое непустое множество. Тогда опорной функцией для этого множества называется функция

$$\sigma_{\mathcal{X}}(\mathbf{y}) = \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Свойства

Определение

Пусть ${\mathcal X}$ некоторое непустое множество. Тогда опорной функцией для этого множества называется функция

$$\sigma_{\mathcal{X}}(\mathbf{y}) = \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Свойства

▶ Опорная функция *любого* множества \mathcal{X} является выпуклой и замкнутой (почему?)

Определение

Пусть \mathcal{X} некоторое непустое множество. Тогда опорной функцией для этого множества называется функция

$$\sigma_{\mathcal{X}}(\mathbf{y}) = \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{y}, \mathbf{x} \rangle.$$

Свойства

• Опорная функция *любого* множества \mathcal{X} является выпуклой и замкнутой (почему?)

Замечание

Предыдущая теорема может быть сформулирована в виде

$$f'(\mathbf{x}, \mathbf{d}) = \sigma_{\partial f(\mathbf{x})}(\mathbf{d})$$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

Доказательство

1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$
 - ▶ Предположим, что $\mathcal{A} \neq \mathcal{B}$, то есть найдётся $\mathbf{y} \in \mathcal{A}$ такой что $\mathbf{y} \not\in \mathcal{B}$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$
 - ▶ Предположим, что $\mathcal{A} \neq \mathcal{B}$, то есть найдётся $\mathbf{y} \in \mathcal{A}$ такой что $\mathbf{y} \notin \mathcal{B}$
 - ▶ Так как $\mathcal B$ выпуклое замкнутое множество и $\mathbf y \not\in \mathcal B$, то они строго отделимы (лекция 2, слайд 20)

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$
 - ▶ Предположим, что $\mathcal{A} \neq \mathcal{B}$, то есть найдётся $\mathbf{y} \in \mathcal{A}$ такой что $\mathbf{y} \notin \mathcal{B}$
 - ▶ Так как \mathcal{B} выпуклое замкнутое множество и $\mathbf{y} \notin \mathcal{B}$, то они строго отделимы (лекция 2, слайд 20)
 - ightharpoonup Значит существует $\mathbf{p} \neq 0$ и lpha > 0 такие то $\langle \mathbf{p}, \mathbf{x} \rangle \leq lpha < \langle \mathbf{p}, \mathbf{y}
 angle$ для всех $\mathbf{x} \in \mathcal{B}$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$
 - ▶ Предположим, что $\mathcal{A} \neq \mathcal{B}$, то есть найдётся $\mathbf{y} \in \mathcal{A}$ такой что $\mathbf{y} \not\in \mathcal{B}$
 - ▶ Так как \mathcal{B} выпуклое замкнутое множество и $\mathbf{y} \notin \mathcal{B}$, то они строго отделимы (лекция 2, слайд 20)
 - ightharpoonup Значит существует $\mathbf{p} \neq 0$ и lpha > 0 такие то $\langle \mathbf{p}, \mathbf{x} \rangle \leq lpha < \langle \mathbf{p}, \mathbf{y}
 angle$ для всех $\mathbf{x} \in \mathcal{B}$
 - ▶ Возьмём максимум от обеих частей по $\mathbf{x} \in \mathcal{B}$, тогда $\sigma_{\mathcal{B}}(\mathbf{p}) \leq \alpha < \langle \mathbf{p}, \mathbf{y} \rangle \leq \sigma_{\mathcal{A}}(\mathbf{p})$

Теорема

Пусть $\mathcal A$ и $\mathcal B$ выпуклые замкнутые множества. Тогда $\mathcal A=\mathcal B$ iff $\sigma_{\mathcal A}=\sigma_{\mathcal B}.$

- 1. Пусть $\mathcal{A}=\mathcal{B}$, тогда очевидно $\sigma_{\mathcal{A}}=\sigma_{\mathcal{B}}$ так как максимум берётся по одному и тому же множеству
- 2. Пусть $\sigma_{\mathcal{A}} = \sigma_{\mathcal{B}}$
 - ▶ Предположим, что $\mathcal{A} \neq \mathcal{B}$, то есть найдётся $\mathbf{y} \in \mathcal{A}$ такой что $\mathbf{y} \notin \mathcal{B}$
 - ▶ Так как \mathcal{B} выпуклое замкнутое множество и $\mathbf{y} \notin \mathcal{B}$, то они строго отделимы (лекция 2, слайд 20)
 - ightharpoonup Значит существует $\mathbf{p} \neq 0$ и $\alpha > 0$ такие то $\langle \mathbf{p}, \mathbf{x} \rangle \leq \alpha < \langle \mathbf{p}, \mathbf{y} \rangle$ для всех $\mathbf{x} \in \mathcal{B}$
 - ▶ Возьмём максимум от обеих частей по $\mathbf{x} \in \mathcal{B}$, тогда $\sigma_{\mathcal{B}}(\mathbf{p}) \leq \alpha < \langle \mathbf{p}, \mathbf{y} \rangle \leq \sigma_{\mathcal{A}}(\mathbf{p})$
 - Получили противоречие с тем, что $\sigma_A = \sigma_B$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

Доказательство

▶ Пусть $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и f дифференцируема в \mathbf{x} , тогда для любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \langle f'(\mathbf{x}),\mathbf{d}\rangle$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

- ▶ Пусть $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и f дифференцируема в \mathbf{x} , тогда для любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \langle f'(\mathbf{x}),\mathbf{d}\rangle$
- ▶ Пусть $\mathbf{g} \in \partial f(\mathbf{x}) \neq \varnothing$ так как $\mathbf{x} \in \mathrm{int}\left(\mathrm{dom}\left(f\right)\right)$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

- ▶ Пусть $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ и f дифференцируема в \mathbf{x} , тогда для любого направления \mathbf{d} выполнено $f'(\mathbf{x},\mathbf{d}) = \langle f'(\mathbf{x}),\mathbf{d}\rangle$
- ▶ Пусть $\mathbf{g} \in \partial f(\mathbf{x}) \neq \varnothing$ так как $\mathbf{x} \in \mathrm{int} \left(\mathrm{dom} \left(f\right)\right)$
- Используем связь между производной по направлению и субдифференциалом:

$$\langle f'(\mathbf{x}), \mathbf{d} \rangle = f'(\mathbf{x}, \mathbf{d}) = \max_{\hat{\mathbf{g}} \in \partial f(\mathbf{x})} \langle \hat{\mathbf{g}}, \mathbf{d} \rangle \ge \langle \mathbf{g}, \mathbf{d} \rangle$$

Теорема

Пусть f выпуклая функция и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$. Если f дифференцируема в \mathbf{x} , то $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$. Если f имеет единственный субградиент в \mathbf{x} , то она дифференцируема в \mathbf{x} и $\partial f(\mathbf{x}) = \{f'(\mathbf{x})\}$

Доказательство

- ▶ Пусть $\mathbf{x} \in \operatorname{int} \left(\operatorname{dom} \left(f\right)\right)$ и f дифференцируема в \mathbf{x} , тогда для любого направления \mathbf{d} выполнено $f'(\mathbf{x}, \mathbf{d}) = \langle f'(\mathbf{x}), \mathbf{d} \rangle$
- ▶ Пусть $\mathbf{g} \in \partial f(\mathbf{x}) \neq \varnothing$ так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$
- Используем связь между производной по направлению и субдифференциалом:

$$\langle f'(\mathbf{x}), \mathbf{d} \rangle = f'(\mathbf{x}, \mathbf{d}) = \max_{\hat{\mathbf{g}} \in \partial f(\mathbf{x})} \langle \hat{\mathbf{g}}, \mathbf{d} \rangle \ge \langle \mathbf{g}, \mathbf{d} \rangle$$

▶ Тогда $\langle \mathbf{g} - f'(\mathbf{x}), \mathbf{d} \rangle \le 0$ и, взяв максимум по \mathbf{d} таким что $\|\mathbf{d}\|_2 \le 1$, получим $\|\mathbf{g} - f'(\mathbf{x})\|_2 \le 0$, значит $\mathbf{g} = f'(\mathbf{x})$.

Если в точке субдифференциал состоит из одного элемента \mathbf{g} ...

▶ Пусть $\mathcal{U}_{\alpha}=\mathbf{x}+\alpha\mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле

Если в точке субдифференциал состоит из одного элемента ${f g}$...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$

Если в точке субдифференциал состоит из одного элемента ${f g}_{...}$

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$

Если в точке субдифференциал состоит из одного элемента \mathbf{g} ...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$

Если в точке субдифференциал состоит из одного элемента ${f g}$...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- ▶ Значит при $\alpha \to +0$ существует предел $\varphi(\alpha, \mathbf{s}) \to 0$

Если в точке субдифференциал состоит из одного элемента ${f g}$...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- ightharpoonup Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- lacktriangle Также $arphi(lpha,\mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$

Если в точке субдифференциал состоит из одного элемента \mathbf{g} ...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- lacktriangle Также $arphi(lpha,\mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$
- lacktriangle Значит сходимость при lpha o +0 равномерна по ${f s}$, то есть для любого arepsilon>0 найдётся $0<\hat{lpha}\leq ar{lpha}$ такое что $0\leq arphi(lpha,{f s})\leq arepsilon$ для $0\leq lpha\leq \hat{lpha}$ и всех ${f s}\in \mathcal{B}_2(1)$

Если в точке субдифференциал состоит из одного элемента ${f g}$...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- ▶ Также $\varphi(\alpha, \mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$
- lacktriangle Значит сходимость при lpha o +0 равномерна по ${f s}$, то есть для любого arepsilon>0 найдётся $0<\hat{lpha}\leq ar{lpha}$ такое что $0\leq arphi(lpha,{f s})\leq arepsilon$ для $0\leq lpha\leq \hat{lpha}$ и всех ${f s}\in \mathcal{B}_2(1)$
- ▶ Выберем $\mathbf{s} \in \mathcal{B}_2(1)$ такой что $\|\mathbf{s}\|_2 \leq \hat{\alpha}^2$

Если в точке субдифференциал состоит из одного элемента ${f g}$...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- ightharpoonup Также $arphi(lpha,\mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$
- lacktriangle Значит сходимость при lpha o +0 равномерна по ${f s}$, то есть для любого arepsilon>0 найдётся $0<\hat{lpha}\leq ar{lpha}$ такое что $0\leq arphi(lpha,{f s})\leq arepsilon$ для $0\leq lpha\leq \hat{lpha}$ и всех ${f s}\in \mathcal{B}_2(1)$
- lacktriangle Выберем $\mathbf{s} \in \mathcal{B}_2(1)$ такой что $\|\mathbf{s}\|_2 \leq \hat{lpha}^2$
- ▶ Обозначим $\beta = \|\mathbf{s}\|_2/\hat{\alpha}$ и $0 \leq \beta \leq \hat{\alpha}$

Если в точке субдифференциал состоит из одного элемента \mathbf{g} ...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- lacktriang Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- lacktriangle Также $arphi(lpha,\mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$
- lacktriangle Значит сходимость при lpha o +0 равномерна по ${f s}$, то есть для любого arepsilon>0 найдётся $0<\hat{lpha}\leq ar{lpha}$ такое что $0\leq arphi(lpha,{f s})\leq arepsilon$ для $0\leq lpha\leq \hat{lpha}$ и всех ${f s}\in \mathcal{B}_2(1)$
- ▶ Выберем $\mathbf{s} \in \mathcal{B}_2(1)$ такой что $\|\mathbf{s}\|_2 \leq \hat{\alpha}^2$
- ▶ Обозначим $\beta = \|\mathbf{s}\|_2/\hat{\alpha}$ и $0 \le \beta \le \hat{\alpha}$
- ▶ Также пусть $\mathbf{h} = \hat{\alpha} \frac{\mathbf{s}}{\|\mathbf{s}\|_2}$ и $\|\mathbf{h}\|_2 = \hat{\alpha} \leq 1$

Если в точке субдифференциал состоит из одного элемента \mathbf{g} ...

- ▶ Пусть $\mathcal{U}_{\alpha} = \mathbf{x} + \alpha \mathcal{B}_2(1)$, где $\mathcal{B}_2(1)$ единичный шар в евклидовой норме с центром в нуле
- ▶ Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то найдётся $0 < \bar{\alpha} \le 1$ что $\mathcal{U}_{\bar{\alpha}} \subset \mathrm{int}\,(\mathrm{dom}\,(f))$
- Рассмотрим функцию $\varphi(\alpha, \mathbf{s}) = \frac{f(\mathbf{x} + \alpha \mathbf{s}) f(\mathbf{x})}{\alpha} \langle \mathbf{g}, \mathbf{s} \rangle$ для $\mathbf{s} \in \mathcal{B}_2(1)$ и $0 < \alpha \leq \bar{\alpha}$
- ightharpoonup Так как ${f g}$ единственный элемент $\partial f({f x})$, то $f'({f x},{f s})=\langle {f g},{f s}
 angle$
- lacktriangle Значит при lpha o +0 существует предел $arphi(lpha,\mathbf{s}) o 0$
- ▶ Также $\varphi(\alpha, \mathbf{s})$ непрерывна по \mathbf{s} на компакте $\mathcal{B}_2(1)$
- lacktriangle Значит сходимость при lpha o +0 равномерна по ${f s}$, то есть для любого arepsilon>0 найдётся $0<\hat{lpha}\leq ar{lpha}$ такое что $0\leq arphi(lpha,{f s})\leq arepsilon$ для $0\leq lpha\leq \hat{lpha}$ и всех ${f s}\in \mathcal{B}_2(1)$
- ▶ Выберем $\mathbf{s} \in \mathcal{B}_2(1)$ такой что $\|\mathbf{s}\|_2 \leq \hat{\alpha}^2$
- ▶ Обозначим $\beta = \|\mathbf{s}\|_2/\hat{\alpha}$ и $0 \le \beta \le \hat{\alpha}$
- ▶ Также пусть $\mathbf{h} = \hat{\alpha} \frac{\mathbf{s}}{\|\mathbf{s}\|_2}$ и $\|\mathbf{h}\|_2 = \hat{\alpha} \leq 1$
- ▶ Тогда $0 \le \varphi(\beta, \mathbf{h}) \le \varepsilon$

▶ Подставим значения β , **h**:

$$\varphi(\beta, \mathbf{h}) = \frac{1}{\beta} (f(\mathbf{x} + \beta \mathbf{h}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle$$

▶ Подставим значения β , **h**:

$$\varphi(\beta, \mathbf{h}) = \frac{1}{\beta} (f(\mathbf{x} + \beta \mathbf{h}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{g} \rangle$$

▶ Значит $\frac{1}{\|\mathbf{s}\|_2}(f(\mathbf{x}+\mathbf{s})-f(\mathbf{x})-\langle\mathbf{g},\mathbf{s}\rangle)\leq \frac{\varepsilon}{\hat{\alpha}}$

▶ Подставим значения β , \mathbf{h} :

$$\varphi(\beta, \mathbf{h}) = \frac{1}{\beta} (f(\mathbf{x} + \beta \mathbf{h}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{h} \rangle = \frac{\hat{\alpha}}{\|\mathbf{s}\|_2} (f(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})) - \langle \mathbf{g}, \mathbf{g} \rangle$$

- ▶ Значит $\frac{1}{\|\mathbf{s}\|_2}(f(\mathbf{x}+\mathbf{s})-f(\mathbf{x})-\langle\mathbf{g},\mathbf{s}\rangle)\leq \frac{\varepsilon}{\hat{\alpha}}$
- Получаем, что существует предел

$$\lim_{\mathbf{s}\to 0} \frac{f(\mathbf{x}+\mathbf{s}) - f(\mathbf{x}) - \langle \mathbf{g}, \mathbf{s} \rangle}{\|\mathbf{s}\|_2} = 0$$

и функция f дифференцируема в ${f x}$

Умножение на число

- Умножение на число
- Сложение

- Умножение на число
- Сложение
- Взятие максимума

- ▶ Умножение на число
- Сложение
- Взятие максимума

Упражнение

Докажите, что $\partial(\alpha f)(\mathbf{x}) = \alpha \partial f(\mathbf{x})$

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int}\left(\operatorname{dom}\left(f_1\right)\right) \cap \operatorname{int}\left(\operatorname{dom}\left(f_2\right)\right)$. Тогда выполнено следующее равенство $\partial(f_1+f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f_1)) \cap \operatorname{int} (\operatorname{dom} (f_2))$. Тогда выполнено следующее равенство $\partial (f_1 + f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f_1)) \cap \operatorname{int} (\operatorname{dom} (f_2))$. Тогда выполнено следующее равенство $\partial (f_1 + f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

Доказательство

lacktriangle Обозначим $f \equiv f_1 + f_2$

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} \left(\operatorname{dom} \left(f_1\right)\right) \cap \operatorname{int} \left(\operatorname{dom} \left(f_2\right)\right)$. Тогда выполнено следующее равенство $\partial (f_1+f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

- lacktriangle Обозначим $f \equiv f_1 + f_2$
- lacktriangle Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x},\mathbf{d})$

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f_1)) \cap \operatorname{int} (\operatorname{dom} (f_2))$. Тогда выполнено следующее равенство $\partial (f_1 + f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

- lacktriangle Обозначим $f\equiv f_1+f_2$
- lacktriangle Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x},\mathbf{d})$
- Тогда в силу аддитивности производной по направлению $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x}, \mathbf{d}) = f'_1(\mathbf{x}, \mathbf{d}) + f'_2(\mathbf{x}, \mathbf{d}) = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x})} \langle \mathbf{g}_1, \mathbf{d} \rangle + \max_{\mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_2, \mathbf{d} \rangle = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x}), \mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_1 + \mathbf{g}_2, \mathbf{d} \rangle = \sigma_{\partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})}(\mathbf{d})$

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f_1)) \cap \operatorname{int} (\operatorname{dom} (f_2))$. Тогда выполнено следующее равенство $\partial (f_1 + f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

- lacktriangle Обозначим $f \equiv f_1 + f_2$
- lacktriangle Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x},\mathbf{d})$
- Тогда в силу аддитивности производной по направлению $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x}, \mathbf{d}) = f'_1(\mathbf{x}, \mathbf{d}) + f'_2(\mathbf{x}, \mathbf{d}) = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x})} \langle \mathbf{g}_1, \mathbf{d} \rangle + \max_{\mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_2, \mathbf{d} \rangle = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x}), \mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_1 + \mathbf{g}_2, \mathbf{d} \rangle = \sigma_{\partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})}(\mathbf{d})$
- ▶ Так как $\partial f_1(\mathbf{x})$ и $\partial f_2(\mathbf{x})$ выпуклые компакты, то и их сумма аналогично (почему?)

Теорема

Пусть f_1 и f_2 выпуклые функции и $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f_1)) \cap \operatorname{int} (\operatorname{dom} (f_2))$. Тогда выполнено следующее равенство $\partial (f_1 + f_2)(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})$.

- lacktriangle Обозначим $f\equiv f_1+f_2$
- lacktriangle Так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x},\mathbf{d})$
- Тогда в силу аддитивности производной по направлению $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = f'(\mathbf{x}, \mathbf{d}) = f'_1(\mathbf{x}, \mathbf{d}) + f'_2(\mathbf{x}, \mathbf{d}) = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x})} \langle \mathbf{g}_1, \mathbf{d} \rangle + \max_{\mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_2, \mathbf{d} \rangle = \max_{\mathbf{g}_1 \in \partial f_1(\mathbf{x}), \mathbf{g}_2 \in \partial f_2(\mathbf{x})} \langle \mathbf{g}_1 + \mathbf{g}_2, \mathbf{d} \rangle = \sigma_{\partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x})}(\mathbf{d})$
- Так как $\partial f_1(\mathbf{x})$ и $\partial f_2(\mathbf{x})$ выпуклые компакты, то и их сумма аналогично (почему?)
- Если равны опорные функции, то совпадают и множества

Теорема

Пусть $f(\mathbf{x}) = \max_{i=1,\dots,k} f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для $\mathbf{x} \in \bigcap_{i=1}^k \operatorname{int}\left(\operatorname{dom}\left(f_i\right)\right)$ выполнено $f'(\mathbf{x},\mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x},\mathbf{d}),$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Теорема

Пусть $f(\mathbf{x}) = \max_{i=1,\dots,k} f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для $\mathbf{x} \in \bigcap_{i=1}^k \mathrm{int} \left(\mathrm{dom}\,(f_i)\right)$ выполнено

$$f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Теорема

Пусть $f(\mathbf{x}) = \max_{i=1,\dots,k} f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для $\mathbf{x} \in \bigcap_{i=1}^k \operatorname{int} \left(\operatorname{dom} \left(f_i \right) \right)$ выполнено $f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Доказательство

ightharpoonup Из существования производной по направлению $f_i'(\mathbf{x},\mathbf{d})$ следует, что $\lim_{t\to+0}f_i(\mathbf{x}+t\mathbf{d})=f_i(\mathbf{x})$

Теорема

Пусть $f(\mathbf{x}) = \max_{i=1,\dots,k} f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для $\mathbf{x} \in \bigcap_{i=1}^k \operatorname{int} \left(\operatorname{dom} \left(f_i \right) \right)$ выполнено $f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

- ightharpoonup Из существования производной по направлению $f_i'(\mathbf{x},\mathbf{d})$ следует, что $\lim_{t\to+0}f_i(\mathbf{x}+t\mathbf{d})=f_i(\mathbf{x})$
- lacktriangle Значит найдётся arepsilon>0 что для всех $t\in(0,arepsilon]$ выполнено $f_i(\mathbf{x}+t\mathbf{d})>f_j(\mathbf{x}+t\mathbf{d})$ для всех $i\in\mathcal{I}(\mathbf{x})$ и $j
 ot\in\mathcal{I}(\mathbf{x})$

Теорема

Пусть $f(\mathbf{x})=\max_{i=1,\dots,k}f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для

$$\mathbf{x} \in \bigcap_{i=1}^{n} \operatorname{int} \left(\operatorname{dom} \left(f_{i}
ight)
ight)$$
 выполнено

$$f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

- ightharpoonup Из существования производной по направлению $f_i'(\mathbf{x},\mathbf{d})$ следует, что $\lim_{t\to+0}f_i(\mathbf{x}+t\mathbf{d})=f_i(\mathbf{x})$
- lacktriangle Значит найдётся arepsilon>0 что для всех $t\in(0,arepsilon]$ выполнено $f_i(\mathbf{x}+t\mathbf{d})>f_j(\mathbf{x}+t\mathbf{d})$ для всех $i\in\mathcal{I}(\mathbf{x})$ и $j
 ot\in\mathcal{I}(\mathbf{x})$
- ▶ Поэтому для всех $t \in (0, \varepsilon]$ выполнено $f(\mathbf{x}) = \max_{i=1,...,k} f_i(\mathbf{x}) = \max_{i \in \mathcal{I}(\mathbf{x})} f_i(\mathbf{x})$

Теорема

Пусть $f(\mathbf{x})=\max_{i=1,\dots,k}f_i(\mathbf{x})$, где f_i такие функции, что для них существует производная по направлению \mathbf{d} . Тогда для

$$\mathbf{x} \in \bigcap_{i=1}^{n} \operatorname{int} \left(\operatorname{dom} \left(f_{i}
ight)
ight)$$
 выполнено

$$f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

- lacktriangle Из существования производной по направлению $f_i'(\mathbf{x},\mathbf{d})$ следует, что $\lim_{t\to+0}f_i(\mathbf{x}+t\mathbf{d})=f_i(\mathbf{x})$
- lacktriangle Значит найдётся arepsilon>0 что для всех $t\in(0,arepsilon]$ выполнено $f_i(\mathbf{x}+t\mathbf{d})>f_j(\mathbf{x}+t\mathbf{d})$ для всех $i\in\mathcal{I}(\mathbf{x})$ и $j
 ot\in\mathcal{I}(\mathbf{x})$
- ▶ Поэтому для всех $t \in (0, \varepsilon]$ выполнено $f(\mathbf{x}) = \max_{i=1,...,k} f_i(\mathbf{x}) = \max_{i \in \mathcal{I}(\mathbf{x})} f_i(\mathbf{x})$

▶ Рассмотрим отношение для всех $t \in (0, \varepsilon]$

Рассмотрим отношение для всех
$$t \in (0, \varepsilon]$$

$$\frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t} = \frac{\max_{i \in \mathcal{I}(\mathbf{x})} f_i(\mathbf{x}) - f(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} \frac{f_i(\mathbf{x} + t\mathbf{d}) - f_i(\mathbf{x})}{t}$$

▶ Рассмотрим отношение для всех $t \in (0, \varepsilon]$

$$\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t} = \frac{\max_{i \in \mathcal{I}(\mathbf{x})} f_i(\mathbf{x}) - f(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} \frac{f_i(\mathbf{x}+t\mathbf{d}) - f_i(\mathbf{x})}{t}$$

▶ Тогда производная по направлению

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{t \to +0} \max_{i \in \mathcal{I}(\mathbf{x})} \frac{f_i(\mathbf{x} + t\mathbf{d}) - f_i(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} \lim_{t \to +0} \frac{f_i(\mathbf{x} + t\mathbf{d}) - f_i(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d})$$

▶ Рассмотрим отношение для всех $t \in (0, \varepsilon]$

$$\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t} = \frac{\max_{i \in \mathcal{I}(\mathbf{x})} f_i(\mathbf{x}) - f(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} \frac{f_i(\mathbf{x}+t\mathbf{d}) - f_i(\mathbf{x})}{t}$$

▶ Тогда производная по направлению

$$f'(\mathbf{x}, \mathbf{d}) = \lim_{t \to +0} \max_{i \in \mathcal{I}(\mathbf{x})} \frac{f_i(\mathbf{x} + t\mathbf{d}) - f_i(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} \lim_{t \to +0} \frac{f_i(\mathbf{x} + t\mathbf{d}) - f_i(\mathbf{x})}{t} = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d})$$

Следствие

Пусть
$$f(\mathbf{x}) = \max_{i=1,\dots,k} f_i(\mathbf{x})$$
 и f_i выпуклые. Тогда для

$$\mathbf{x} \in \bigcap_{i=1}^k \operatorname{int} \left(\operatorname{dom} \left(f_i \right) \right)$$
 выполнено

$$f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d}),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Теорема

Пусть
$$f_1,\ldots,f_m$$
 выпуклые функции и $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x}).$

Пусть
$$\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int} \left(\operatorname{dom} \left(f_{i} \right) \right)$$
. Тогда

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{I}(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Теорема

Пусть
$$f_1,\ldots,f_m$$
 выпуклые функции и $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x}).$

Пусть
$$\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int} (\operatorname{dom} (f_i))$$
. Тогда

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{I}(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Теорема

Пусть
$$f_1,\ldots,f_m$$
 выпуклые функции и $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x}).$

Пусть
$$\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int} (\operatorname{dom} (f_i))$$
. Тогда

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{I}(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

Доказательство

lacktriangledown f выпуклая функция как максимум выпуклых функций

Теорема

Пусть
$$f_1,\ldots,f_m$$
 выпуклые функции и $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x}).$

Пусть
$$\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int} (\operatorname{dom} (f_i))$$
. Тогда

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{I}(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

- ightharpoonup f выпуклая функция как максимум выпуклых функций
- ▶ По следствию из предыдущей теоремы для любого направления \mathbf{d} : $f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d})$

Теорема

Пусть f_1,\ldots,f_m выпуклые функции и $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x}).$

Пусть $\mathbf{x} \in \bigcap_{i=1}^{m} \operatorname{int} \left(\operatorname{dom}\left(f_{i}\right)\right)$. Тогда

$$\partial f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{I}(\mathbf{x})} \partial f_i(\mathbf{x})\right),$$

где
$$\mathcal{I}(\mathbf{x}) = \{i \mid f_i(\mathbf{x}) = f(\mathbf{x})\}.$$

- ightharpoonup f выпуклая функция как максимум выпуклых функций
- ▶ По следствию из предыдущей теоремы для любого направления \mathbf{d} : $f'(\mathbf{x}, \mathbf{d}) = \max_{i \in \mathcal{I}(\mathbf{x})} f'_i(\mathbf{x}, \mathbf{d})$
- ▶ Без ограничения общности будем считать, что $\mathcal{I}(\mathbf{x}) = \{1,2,\dots,k\}$ для некоторого $k \in \{1,\dots,m\}$

lacktriangle По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x}, \mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle$

- ightharpoonup По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x},\mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i,\mathbf{d} \rangle$
- Воспользуемся равенством $\max\{y_1,\dots,y_k\} = \max_{\pmb{\lambda}\in\Delta_k}\sum_{i=1}^k y_i\lambda_i$, его легко проверить из геометрических соображений

- lacktriangle По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x}, \mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle$
- Воспользуемся равенством $\max\{y_1,\dots,y_k\} = \max_{\pmb{\lambda}\in\Delta_k}\sum_{i=1}^k y_i \lambda_i$, его легко проверить из геометрических соображений

▶ Тогда
$$f'(\mathbf{x}, \mathbf{d}) = \max_{\lambda \in \Delta_k} \left\{ \sum_{i=1}^k \lambda_i \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle \right\} = \max_{\lambda \in \Delta_k, \ \mathbf{g}_i \in \partial f_i(\mathbf{x})} \left\langle \sum_{i=1}^k \lambda_i \mathbf{g}_i, \mathbf{d} \right\rangle = \max_{\mathbf{g} \in \text{conv}\left(\bigcup_{i=1}^k \partial f_i(\mathbf{x})\right)} \langle \mathbf{g}, \mathbf{d} \rangle$$

- lacktriangle По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x}, \mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle$
- Воспользуемся равенством $\max\{y_1,\dots,y_k\} = \max_{\pmb{\lambda}\in\Delta_k}\sum_{i=1}^k y_i\lambda_i$, его легко проверить из геометрических соображений

▶ Тогда
$$f'(\mathbf{x}, \mathbf{d}) = \max_{\lambda \in \Delta_k} \left\{ \sum_{i=1}^k \lambda_i \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle \right\} = \max_{\lambda \in \Delta_k, \ \mathbf{g}_i \in \partial f_i(\mathbf{x})} \left\langle \sum_{i=1}^k \lambda_i \mathbf{g}_i, \mathbf{d} \right\rangle = \max_{\mathbf{g} \in \text{conv}\left(\bigcup_{i=1}^k \partial f_i(\mathbf{x})\right)} \langle \mathbf{g}, \mathbf{d} \rangle$$

ightharpoonup Выразим результат через опорную функцию $f'(\mathbf{x}, \mathbf{d}) = \sigma_{\mathcal{A}}(\mathbf{d})$, где $\mathcal{A} = \operatorname{conv}\left(\cup_{i=1}^k \partial f_i(\mathbf{x})\right)$

- ightharpoonup По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x},\mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i,\mathbf{d} \rangle$
- Воспользуемся равенством $\max\{y_1,\dots,y_k\} = \max_{\pmb{\lambda}\in\Delta_k}\sum_{i=1}^k y_i\lambda_i$, его легко проверить из геометрических соображений

▶ Тогда
$$f'(\mathbf{x}, \mathbf{d}) = \max_{\lambda \in \Delta_k} \left\{ \sum_{i=1}^k \lambda_i \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle \right\} = \max_{\lambda \in \Delta_k, \ \mathbf{g}_i \in \partial f_i(\mathbf{x})} \left\langle \sum_{i=1}^k \lambda_i \mathbf{g}_i, \mathbf{d} \right\rangle = \max_{\mathbf{g} \in \text{conv}\left(\bigcup_{i=1}^k \partial f_i(\mathbf{x})\right)} \langle \mathbf{g}, \mathbf{d} \rangle$$

- ▶ Выразим результат через опорную функцию $f'(\mathbf{x}, \mathbf{d}) = \sigma_{\mathcal{A}}(\mathbf{d})$, где $\mathcal{A} = \operatorname{conv}\left(\cup_{i=1}^k \partial f_i(\mathbf{x})\right)$
- ightharpoonup С другой стороны $f'(\mathbf{x},\mathbf{d})$ связана с $\partial f(\mathbf{x})$ в точках $\mathbf{x}\in \mathrm{int}\,(\mathrm{dom}\,(f))$ как $f'(\mathbf{x},\mathbf{d})=\sigma_{\partial f(\mathbf{x})}(\mathbf{d})$

- lacktriangle По формуле для связи производной по направлению и субдифференциала имеем $f'(\mathbf{x},\mathbf{d}) = \max_{i=1,\dots,k} \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i,\mathbf{d} \rangle$
- Воспользуемся равенством $\max\{y_1,\dots,y_k\} = \max_{\pmb{\lambda}\in\Delta_k}\sum_{i=1}^k y_i\lambda_i$, его легко проверить из геометрических соображений

▶ Тогда
$$f'(\mathbf{x}, \mathbf{d}) = \max_{\lambda \in \Delta_k} \left\{ \sum_{i=1}^k \lambda_i \max_{\mathbf{g}_i \in \partial f_i(\mathbf{x})} \langle \mathbf{g}_i, \mathbf{d} \rangle \right\} = \max_{\lambda \in \Delta_k, \ \mathbf{g}_i \in \partial f_i(\mathbf{x})} \left\langle \sum_{i=1}^k \lambda_i \mathbf{g}_i, \mathbf{d} \right\rangle = \max_{\mathbf{g} \in \text{conv}\left(\bigcup_{i=1}^k \partial f_i(\mathbf{x})\right)} \langle \mathbf{g}, \mathbf{d} \rangle$$

- ightharpoonup Выразим результат через опорную функцию $f'(\mathbf{x}, \mathbf{d}) = \sigma_{\mathcal{A}}(\mathbf{d})$, где $\mathcal{A} = \operatorname{conv}\left(\cup_{i=1}^k \partial f_i(\mathbf{x}) \right)$
- ightharpoonup С другой стороны $f'(\mathbf{x}, \mathbf{d})$ связана с $\partial f(\mathbf{x})$ в точках $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$ как $f'(\mathbf{x}, \mathbf{d}) = \sigma_{\partial f(\mathbf{x})}(\mathbf{d})$
- ▶ Таким образом, $\sigma_{\partial f(\mathbf{x})}(\mathbf{d}) = \sigma_{\mathcal{A}}(\mathbf{d})$, где $\mathcal{A} = \operatorname{conv}\left(\cup_{i=1}^k \partial f_i(\mathbf{x})\right)$

▶ Множество $\partial f(\mathbf{x})$ выпукло, замкнуто и так как $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, то ограничено и непусто

- ▶ Множество $\partial f(\mathbf{x})$ выпукло, замкнуто и так как $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$, то ограничено и непусто
- lacktriangle Для $\partial f_i(\mathbf{x})$ выполнена компактность и непустота

- ▶ Множество $\partial f(\mathbf{x})$ выпукло, замкнуто и так как $\mathbf{x} \in \operatorname{int} (\operatorname{dom} (f))$, то ограничено и непусто
- lacktriangle Для $\partial f_i(\mathbf{x})$ выполнена компактность и непустота
- Значит для объединения выполнены те же свойства

- ▶ Множество $\partial f(\mathbf{x})$ выпукло, замкнуто и так как $\mathbf{x} \in \operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$, то ограничено и непусто
- lacktriangle Для $\partial f_i(\mathbf{x})$ выполнена компактность и непустота
- Значит для объединения выполнены те же свойства
- lacktriangle Тогда ${\mathcal A}$ также выпукло и замкнуто

- ▶ Множество $\partial f(\mathbf{x})$ выпукло, замкнуто и так как $\mathbf{x} \in \operatorname{int}\left(\operatorname{dom}\left(f\right)\right)$, то ограничено и непусто
- lacktriangle Для $\partial f_i(\mathbf{x})$ выполнена компактность и непустота
- Значит для объединения выполнены те же свойства
- lacktriangle Тогда ${\mathcal A}$ также выпукло и замкнуто
- В итоге, из теоремы о связи равенства опорных функций и совпадения множеств следует, что $\mathcal{A} = \partial f(\mathbf{x})$

Условный субдифференциал

Определение

Множество $\{\mathbf{a} \mid f(\mathbf{x}) - f(\mathbf{x}_0) \geq \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle, \ \forall \mathbf{x} \in \mathcal{X} \}$ называется субдифференциалом f в \mathbf{x}_0 на множестве \mathcal{X} и обозначается $\partial_{\mathcal{X}} f(\mathbf{x}_0)$.

Условный субдифференциал

Определение

Множество $\{\mathbf{a} \mid f(\mathbf{x}) - f(\mathbf{x}_0) \geq \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle, \ \forall \mathbf{x} \in \mathcal{X} \}$ называется субдифференциалом f в \mathbf{x}_0 на множестве \mathcal{X} и обозначается $\partial_{\mathcal{X}} f(\mathbf{x}_0)$.

От безусловного субдифференциала к условному

Если f выпуклая функция, то рассмотрим функцию $g(\mathbf{x}) = f(\mathbf{x}) + \delta(\mathbf{x} \mid \mathcal{X})$, которая тоже выпуклая. Тогда

$$\partial g(\mathbf{x}_0) = \partial_{\mathcal{X}} f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \partial \delta(\mathbf{x}_0 \mid \mathcal{X}).$$

Условный субдифференциал

Определение

Множество $\{\mathbf{a} \mid f(\mathbf{x}) - f(\mathbf{x}_0) \geq \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle, \ \forall \mathbf{x} \in \mathcal{X} \}$ называется субдифференциалом f в \mathbf{x}_0 на множестве \mathcal{X} и обозначается $\partial_{\mathcal{X}} f(\mathbf{x}_0)$.

От безусловного субдифференциала к условному

Если f выпуклая функция, то рассмотрим функцию $g(\mathbf{x}) = f(\mathbf{x}) + \delta(\mathbf{x} \mid \mathcal{X})$, которая тоже выпуклая. Тогда

$$\partial g(\mathbf{x}_0) = \partial_{\mathcal{X}} f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \partial \delta(\mathbf{x}_0 \mid \mathcal{X}).$$

Тогда
$$\partial_{\mathcal{X}} f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \mathcal{N}(\mathbf{x}_0 \mid \mathcal{X})$$

▶ Субградиент и субдифференциал

- ▶ Субградиент и субдифференциал
- ▶ Субдифференциал и производная по направлению

- ▶ Субградиент и субдифференциал
- ▶ Субдифференциал и производная по направлению
- Опорная функция

- ▶ Субградиент и субдифференциал
- ▶ Субдифференциал и производная по направлению
- Опорная функция
- Способы вычисления субдифференциалов