1. Introduction

- course goals and topics
- mathematical optimization
- rough plan

Course goals and topics

Prerequisites

Requirements: One of the following courses

- CPSC 302 (Numerical Computation for Algebraic Problems)
- CPSC 303 (Numerical Approximation and Discretization)
- MATH 307 (Applied Linear Algebra)

In practice

- (very) comfortable with linear algebra
- multivariate calculus
- comfortable programming eg, Julia (recommended), Python, or Matlab (nor recommended)

Book (some reading and homework assignments)

• Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with Matlab, by Amir Beck

Course goals and topics

Goals

- recognize and formulate the main optimization problem classes
- understand the strengths and weaknesses of standard algorithms
- hands-on experience with useful software

Emphasis

- formulating problems
- algorithms
- case studies
- mathematical software

Grades and homework policy

Grades

• 6 homework assignments	30%
• 1 midterm exam	30%
• final exam	40%

Homework policy

- welcome to work together (indicate collaborators)
- hand in your own assignments
- typeset assignments only (no handwritten submissions accepted)
- 3 late days total yours to budget (weekend $\equiv 1$ weekday)

Resources

Website

- Main site: https://friedlander.io/19T2-406
- Piazza: for discussions and solutions piazza.com/ubc.ca/winterterm22020/cpsc406/home

Office Hours

• TBD. Keep an eye on the webpage.

Mathematical optimization

Mathematical optimization

$$\label{eq:subject_to} \underset{x}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad x \in \mathcal{C} \subseteq \mathbb{R}^n,$$

- $x = (x_1, \dots, x_n)$ is vector of optimization variables
- $f: \mathbf{R}^n \to \mathbf{R}$ is the objective (or cost) function
- C is a constraint (feasible) set, eg,

$$\mathcal{C} = \{ x \in \mathbf{R}^n \mid c_i(x) \le b_i, \ i = 1, \dots, m \}$$

where $c_i \in \mathbf{R}^n \to \mathbf{R}$ are constraint functions

Optimal solution x^* has the **smallest** value of f among all vectors $x \in \mathcal{C}$, eg,

$$f(x^*) \le f(x)$$
 for all x such that $c_i(x) \le b_i$

Problems don't necessarily appear this way. We may need to apply a transformation to reduce them to a standard form.

Illustrative examples

$$\underset{x}{\operatorname{minimize}} \quad f(x)$$

minimize cost of flow subject to network capacity

flow conservation

Varieties of optimization problems

- continuous vs discrete
- unconstrained vs constrained
- global vs local
- stochastic vs deterministic

Our domain is in blue.

Solving optimization problems

General optimization problems (no structure)

- difficult to solve
- most methods involve some compromise, eg, long computation time vs finding exact/correct solution
- not usually clear which methods work best

Ideally recognize the type/class of problem – some are "easy"

- least-squares
- linear programs
- convex problems

Structure is often hidden

- network flows
- dynamic programs

Linear least squares

$$\mathop{\rm minimize}_x \ \|Ax-b\|_2 \qquad \text{with} \qquad A \ \text{and} \ m\text{-by-}n \ \text{matrix}$$

Formulation

Data:
$$A = [a_1 \ a_2 \ \cdots a_n], \ a_i \in \mathbb{R}^m$$

 $b = (b_1 \ b_2 \ \cdots b_m), \ b \in \mathbb{R}^m$

Model 1:
$$b \approx a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Model 2: $b \approx Ax + \epsilon$, where ϵ is "noise"

Solution

• $x^* = (A^T A)^{-1} A^T b$

rarely this easy!

- reliable and efficient algorithms and software direct and indirect solvers
- standard techniques to increase flexibility eg, incorporate prior information
- · easy to recognize

Different fitting criteria

$$\underset{x}{\mathsf{minimize}} \ \|Ax - b\|$$

least-squares approximation:

$$||r||_2^2 = r_1^2 + \dots + r_m^2$$

closed form solution x^* solves $A^T\!Ax = A^T\!b$

one-norm approximation:

$$||r||_1 = |r_1| + \cdots + |r_m|$$

deadzone approximation:

$$||r|| = \sum_{i=1}^{m} \max\{|r_i| - \alpha, 0\}$$

Linear Programming (LP)

Formulation

- equality and inequality constraints
- both objective and constraint functions are linear

Solving LPs

- generally no analytic solution exists
- robust and efficient algorithms and software (eg, simplex method)

Using LPs

- arises in unexpected places
- many problems can be turned into LPs

Example: Scheduling

Objective: schedule weekly night-shifts for nurse staff at minimum cost

Constraint:

- 1. every nurse must work 5 straight nights
- 2. on night $j = 1, \dots, 7$, d_j nurses are required

Variables: not obvious! First attempt:

- y_j nurses work on night j
- minimize $\sum_{j} y_{j}$ subject to $y_{j} \geq d_{j}, \ j = 1, \ldots, 7$

Second attempt: Let x_j be no. of nurses **starting** their 5 day shift on day j:

minimize
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$
 subject to
$$x_1 + x_4 + x_5 + x_6 + x_7 \ge d_1$$

$$x_1 + x_2 + x_5 + x_6 + x_7 \ge d_2$$

$$x_1 + x_2 + x_3 + x_6 + x_7 \ge d_3$$

$$x_1 + x_2 + x_3 + x_4 + x_7 \ge d_4$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge d_5$$

$$x_2 + x_3 + x_4 + x_5 + x_6 \ge d_6$$

$$x_3 + x_4 + x_5 + x_6 + x_7 \ge d_7$$

$$x_1, \dots, x_7 \ge 0$$

- note the constraint structure. This is almost always true of practical LPs
- ullet we may want to restrict x_j to be integer. This is a much harder problem!

Almost linear data with a few outliers

Idea 1: Solve least squares

$$\underset{x}{\mathsf{minimize}} \quad \sum_{i=1}^{n} (a_i x - b_i)^2$$

Plot f(a) = ax (black line)

Terrible!

Idea 2: Solve with different error term

$$\underset{x}{\mathsf{minimize}} \quad \sum_{i=1}^{n} |a_i x - b_i|$$

Plot f(a) = ax (red line)

So much better!

In higher dimensions,

$$\underset{x}{\operatorname{minimize}} \quad \|Ax - b\|_1 = \sum_{i=1}^m |a_i^T x - b_i|$$

LP reformulation.

$$\begin{array}{ll} \underset{x,v}{\text{minimize}} & \sum_{i=1}^m v_i \\ \text{subject to} & -v_i \leq a_i^T x - b_i \leq v_i, \ i = 1, \dots, m \end{array}$$

Rough plan

The (rough) plan

- (~ 3 weeks) Advanced linear algebra, simple optimization problems
- (~ 3 weeks) Convex optimization, important methods

Midterm (good luck!)

- (~ 3 weeks) Applications, extensions
- (~ 3 weeks) Linear programming, duality

Final (good luck!)

Any questions?