

Instituto Federal de Educação, Ciência e Tecnologia do Ceará

Nome: Emanoel Silva de Sousa Professor: Ricardo Duarte Taveira

Disciplina: Sistemas Operacionais de Rede – Telemática S4

Laboratório - Configurar endereços IPv6 em dispositivos de rede

Topologia

Tabela de endereçamento

Dispositivo	Interface	Endereço IPv6	Comprimento do Prefixo	Gateway Padrão
R1	G0/0/0	2001:db8:acad:a::1	64	N/D
	G0/0/1	2001:db8:acad:1::1	64	N/D
S1	VLAN 1	2001:db8:acad:1::b	64	N/D
PC-A	NIC	2001:db8:acad:1::3	64	fe80::1
РС-В	NIC	2001:db8:acad:a::3	64	fe80::1

Objetivos

Parte 1: Configurar a Topologia e Definir as Configurações Básicas de Roteadores e Switches

Parte 2: Configurar Endereços IPv6 Manualmente

Parte 3: Verificar a Conectividade de Ponta a Ponta

Histórico/Cenário

Neste laboratório, você configurará hosts e interfaces de dispositivos com endereços IPv6. Você emitirá comandos **show** para visualizar endereços unicast IPv6. Você também verificará a conectividade de ponta a ponta usando os comandos **ping** e **traceroute**.

Nota: Os roteadores usados nos laboratórios práticos do CCNA são o Cisco 4221 com o Cisco IOS XE Release 16.9.4 (imagem universalk9). Os comutadores usados nos laboratórios são o Cisco Catalyst 2960s com Cisco IOS Release 15.2 (2) (imagem lanbasek9). Outros roteadores, switches e versões do Cisco IOS podem ser usados. De acordo com o modelo e a versão do Cisco IOS, os comandos disponíveis e a saída produzida poderão variar em relação ao que é mostrado nos laboratórios. Consulte a Tabela de resumo de interfaces dos roteadores no final do laboratório para saber quais são os identificadores de interface corretos.

Nota: Verifique se os roteadores e comutadores foram apagados e se não há configurações de inicialização. Se tiver dúvidas, fale com o instrutor.

Nota: O modelo padrão do 2960 Switch Database Manager (SDM) não suporta IPv6. Pode ser necessário emitir o comando **sdm prefer dual-ipv4-and-ipv6 default** para ativar o endereçamento IPv6 antes de aplicar um endereço IPv6 ao VLAN 1 SVI.

Nota: O modelo de polarização padrão usado pelo Switch Database Manager (SDM) não fornece recursos de endereço IPv6. Verifique se o SDM está usando o modelo dual-ipv4-and-ipv6 ou o modelo de roteamento lanbase. O novo modelo será usado após a reinicialização.

```
S1# show sdm prefer
```

Siga estas etapas para atribuir o modelo dual-ipv4-and-ipv6 como padrão SDM:

```
S1# configure terminal
S1(config)# sdm prefer dual-ipv4-and-ipv6 default
S1(config)# end
S1# reload
```

Recursos necessários

- 1 roteador (Cisco 4221 com imagem universal do Cisco IOS XE Release 16.9.4 ou comparável)
- 1 Switch (Cisco 2960 com imagem lanbasek9 do Cisco IOS Release 15.2 (2) ou comparável)
- 2 PCs (Windows com programa de emulação terminal, como o Tera Term)
- Cabos de console para configurar os dispositivos Cisco IOS por meio das portas de console
- Cabos ethernet conforme mostrado na topologia

Nota: As interfaces Gigabit Ethernet nos roteadores Cisco 4221 são de detecção automática e um cabo direto Ethernet pode ser usado entre o roteador e o PC-B. Se estiver usando outro roteador Cisco modelo, pode ser necessário usar um cabo cruzado Ethernet.

Instruções

Parte 1: Cabear a rede e definir configurações básicas de roteador e switch

Depois de conectar a rede, inicializar e recarregar o roteador e o switch, conclua o seguinte:

Etapa 1: Configurar o roteador.

Atribua o nome do host e configure as configurações básicas do dispositivo.

Etapa 2: Configure o switch.

Atribua o nome do host e configure as configurações básicas do dispositivo.

Parte 2: Configurar endereços IPv6 manualmente

Etapa 1: Atribua endereços IPv6 às interfaces Ethernet do R1.

a. Atribua os endereços IPv6 unicast globais, listados na Tabela de Endereçamento, às duas interfaces Ethernet do R1.

```
R1(config)# interface g0/0/0
R1(config-if)# ipv6 address 2001:db8:acad:a::1/64
```

R1(config-if)# no shutdown R1(config-if)# interface g0/0/1 R1(config-if)# ipv6 address 2001:db8:acad:1::1/64 R1(config-if)# no shutdown R1(config-if)# end

Nota: O endereço local do link (fe80: :) exibido é baseado no endereçamento EUI-64, que usa automaticamente o endereço MAC (Media Access Control) da interface para criar um endereço local local do link IPv6 de 128 bits.

b. Para que o endereço local do link corresponda ao endereço unicast global na interface, insira manualmente os endereços locais do link em cada uma das interfaces Ethernet em R1.

R1# show ipv6 interface brief
Em0/0 [administratively down/down]
unassigned
GigabitEthernet0/0/0 [up/up]
FE80::D68C:B5FF:FECE:A0C0
2001:db8:acad:a::1
GigabitEthernet0/0/1 [up/up]
FE80::D68C:B5FF:FECE:A0C1
2001:db8:acad:1::1
<output omitted>

Nota: Cada interface do roteador pertence a uma rede separada. Os pacotes com um endereço de link local nunca deixam a rede local; portanto, você pode usar o mesmo endereço de link local nas duas interfaces.

c. Use um comando de sua escolha para verificar se o endereço de link local foi alterado para fe80::1.

R1# show ipv6 interface g0/0/0
GigabitEthernet0/0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::1
No Virtual link-local address(es):
Global unicast address(es):
2001:db8:ACAD:a::1, subnet is 2001:db8:acad:a::/64
Joined group address(es):
FF02::1
FF02::1:FF00:1
MTU is 1500 bytes
<output omitted>

Quais dois grupos multicast foram atribuídos à interface G0/0/0?

O grupo multicast de todos os nós (FF02::1) e o grupo multicast de nós solicitados (ff 02::1: ff 00:1).

Etapa 1: Ative o roteamento IPv6 em R1.

a. Em um prompt de comando do PC-B, digite o comando **ipconfig** para examinar as informações de endereço IPv6 atribuídas à interface do PC.

Um endereço IPv6 unicast foi atribuído à placa de interface de rede (NIC) do PC-B?

Não foi atribuído.

b. Ative o roteamento IPv6 no R1 usando o comando IPv6 unicast-routing.

```
R1 # configure terminal
R1(config)# ipv6 unicast-routing
R1(config)# exit
```

a. Use um comando para verificar se o novo grupo de multicast está atribuído à interface G0/0/0. Observe que o grupo multicast de todos os roteadores (ff02::2) agora aparece para a interface G0/0/0.

Nota: Isso permitirá que os PCs obtenham automaticamente o endereço IP e as informações padrão do gateway usando a Configuração automática de endereços sem estado (SLAAC).

```
R1# show ipv6 interface g0/0/0
GigabitEthernet0/0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::1
No Virtual link-local address(es):
Global unicast address(es):
2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64 [EUI]
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF00:1
MTU is 1500 bytes
<partial output omitted>
```

Hosts use stateless autoconfig for addresses.

a. Agora que R1 faz parte do grupo de difusão seletiva de todos os roteadores FF02::2, emita novamente o comando **ipconfig** no PC-B e examine as informações de endereço IPv6.

Por que PC-B recebeu o prefixo de roteamento global e a ID de sub-rede que você configurou em R1?

No roteador R1, todas as interfaces IPv6 agora fazem parte do grupo multicast de todos os roteadores, FF02::2. Isso permite enviar mensagens de anúncio de roteador (RA) com o endereço de rede global e informações de identificação de sub-rede para todos os nós na LAN.

R1 também enviou o endereço link-local, fe 80::1, como o Gateway Padrão. Os computadores receberão seus endereços IPv6 e gateway padrão via SLAAC, desde que o comprimento do prefixo anunciado seja de 64 bits.

Etapa 2: Atribua endereços IPv6 à interface de gerenciamento (SVI) em S1.

a. Atribua o endereço IPv6 para S1. Além disso, atribua um endereço de link local para esta interface.

```
S1(config)# interface vlan 1
S1(config-if)# ipv6 address 2001:db8:acad:1::b/64
S1(config-if)# ipv6 address fe80::b link-local
S1(config-if)# end
```

Etapa 1: Atribua endereços IPv6 estáticos aos computadores.

- a. Abra a janela Propriedades Ethernet em para cada PC e atribua endereçamento IPv6.
- b. Verifique se ambos os PCs têm as informações de endereço IPv6 corretas. Cada PC deve ter dois endereços IPv6 globais: um estático e um SLACC

Parte 2: Verificar a Conectividade de Ponta a Ponta

No PC-A, execute ping fe80::1. Este é o endereço local do link atribuído a G0/0/1 no R1.

De PC-A, faça ping na interface de gerenciamento de S1.

Use o comando tracert no PC-A para verificar se você possui conectividade de ponta a ponta com o PC-B.

De PC-B, faça ping em PC-A.

No PC-B, execute ping no endereço local do link para G0/0/0 no R1.

Nota: Se a conectividade ponto a ponto não estiver estabelecida, solucione o problema de suas atribuições de endereços IPv6 para verificar se você inseriu os endereços corretamente em todos os dispositivos.

Perguntas para reflexão

1. Por que o mesmo endereço local de link, fe80::1, pode ser atribuído às duas interfaces Ethernet no R1?

Os pacotes de link local nunca saem da rede local.

O mesmo endereço de link local pode ser usado em uma interface associada a uma rede local diferente.

2. Qual é a ID da sub-rede do endereço IPv6 unicast 2001:db8:acad::aaaa:1234/64?

iD 0 (zero) ou ID 0000 (zero).

O quarto hexteto é o ID de sub-rede de um endereço IPv6 com o prefixo /64. No exemplo, o quarto hexteto contém todos os zeros e a regra IPv6 (Omitting All 0 Segment) está usando os doispontos duplos para representar o ID da sub-rede e os dois primeiros hextetos do ID da interface.

É por isso que a sub-rede do endereço unicast global de 2001:acad:: aaaa:1234/64 é 2001:db8:acad::/64

Tabela de resumo das interfaces dos roteadores

Modelo do roteador	Interface Ethernet 1	Interface Ethernet 2	Interface serial 1	Interface serial 2
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
4221	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
4300	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)

Nota: Para descobrir como o roteador está configurado, consulte as interfaces para identificar o tipo de roteador e quantas interfaces o roteador possui. Não há como listar efetivamente todas as combinações de configurações

para cada classe de roteador. Esta tabela inclui identificadores para as combinações possíveis de Ethernet e Interfaces seriais no dispositivo. Esse tabela não inclui nenhum outro tipo de interface, embora um roteador específico possa conter algum. Um exemplo disso poderia ser uma interface ISDN BRI. O string entre parênteses é a abreviatura legal que pode ser usada em comandos do Cisco IOS para representar a interface.