Reg. No.	R	A	2	0	1	1	0	0	4	0	1	10	D	C	
												1		-	1

B.Tech. DEGREE EXAMINATION, DECEMBER 2022

Fifth Semester

18ECC203J - MICROPROCESSOR, MICROCONTROLLER AND INTERFACING TECHNIQUES (For the candidates admitted from the academic year 2020-2021 to 2021-2022) Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

 Part - B should be answered in answer booklet.
- (ii)

	- 01								
me	2	½ Ho	urs			Max.	Ma	rks:	75
			PART – A (25	× 1 = 25 I	Marks)	Marks	BL	со	РО
			Answer AI	LL Questio	ons				
	1.	The	BIU contains FIFO register	of size	bytes.	1	1	1	2
		(A)	4	(B)					
		(C)	8	(D)					
	2.	Wha	at is the range of 10 addressi	ng in 8086	5?	1	1	1	2
		(A)	256 bytes (00 _H to FF _H)	(B)	4kB(000 _H to FFF _H)				
		(C)	64 kB(0000 _H to FFFF _H)	(D)	1MB(00000 _H to FFFFF _H)				
	3.	Whi	ich signal is used to demultip	olex addre	ss and data?	1	2	1	2
			ALE		MN / \overline{MX}				
		(C)	M/\overline{IO}		\overline{RD}				
	4.	Who	en $\overline{s}_2 = 0$, $\overline{s}_1 = 0$ and $\overline{s}_0 = 1$	the proces	ssor is in state.	1	2	1	2
			Halt		Code access				
			Read I/0 port		Real memory				
	5.			when the re	egister values are $CS = 5000$ and	1	2	1	2
			=1020.						
			06020		05000				
		(C)	51020	(D)	01020				
	6.	The	8086 instruction used to per	form 2's c	complement is	1	1	2	2
		(A)	AND	(B)	OR				
		(C)	NOT	(D)	NEG				
	7.		instruction stores	the conter	nt of a register on to the stack.	1	1	2	2
		(A)	MOV		PUSH				
			POP		XCHG				
	8.		instruction affects	all condi	tion code flags except the carry	. 1	1	2	2
	0.	flag.	mstruction affects	an condi	tion code mags except the carry				-
		-	ADD	(B)	SUB				
		- 3							
		(0)	ADC	(D)	INC				

T

9.	Typ	e 1 interrupt is reserved for					- 4	2
	(A)	Zero interrupt		Single step interrupt				
		NMI	(D)	Single byte instruction				
10.	The	POP instruction will		SP value by	1	1	2	2
	(A)	Increment, 1		Increment, 2				
	(C)	Decrement, 1	(D)	Decrement, 2				
11.	Cal	culate the control word register f	orma	t for 8255 when PORT A is input	1	2	3	2
	and	PORT B is output in mode '0'. I	PORT	C is not used.				
	(A)	80 H	(B)	90 H				
	(C)	AOH	(D)	ВОН				
12.	Wh	ich device facilitates the generati	on of	accurate time delay?	1	I	3	2
		8253		8255				
	(C)	8251		8237				
13.		stores all the interrupt re	eques	ts inorder to serve them in 8259A	1	1	3	2
	pro	grammable interrupt controller.						
	(A)	Interrupt Request Register (IRR)	(B)	In-Service Register (ISR)				
	(C)	Interrupt Mask Register (IMR)	(D)	Priority resolver				
14.		ansmit buffer" of 8251 is a			1	1	3	2
		PIPO		PISO				
	(C)	SIPO	(D)	SISO				
15.		select counter 1 in 8253 the SC ₁			1	1	3	2
		00	(B)					
	(C)	10	(D)	11				
16.	Improvement	register have to be us	ed to	address a data stored in a 16 bits	1	1	4	2
		ress location.	m	6. 1				
		Accumulator		Stack pointer				
	(C)	Instruction pointer	(D)	DPTR				
17.	МО	$V A, @ R_1$ will			1	1	4	2
	(A)	Copy R_1 to accumulator	(B)	Copy accumulator to R_l				
	(C)	Copy the content of memory	(D)	Copy the accumulator content				
		where address is in R_1 to the		to memory pointed by R_l				
		accumulator						
8. 1	MOY	A,@A+DPTR uses			1	2	4	2
(A)	Immediate addressing mode	(B)	Direct addressing mode				
		Indirect addressing mode	(D)	Indexed addressing mode				
9.		instruction is an example f	or di	rect addressing mode.	1	2	4	2
	4)	$\overline{\text{MOV}}$ A, @ R_0		$MOVA, R_2$				
((To the same	MOV A, 70 H	(D)	MOV A, #06H				
11	w/ 1	TAME I AND IN THE	1					

20.		of internal RAM are b	oit add	lressable memory.	1	1-	4	2
	(A)	32 bits		64 bits				
	(C)	128 bits		16 bits				
21.	The s	standard frequency of the crysta	l for s	erial communication is	1	1	5	2
	(A)	11.0592 MHz		11.0592 KHz				
	(C)	11.0952 MHz	(D)	11.0952 kHz				
22.		al port interrupt is generated if _		bits are set	1	1	5	2
	(A)	T_1, R_1	(B)	IE, TF_0				
	(C)	TF_0, TF_1	(D)	IE, TF_1				
23.	To c	configure all pins in a parallel pent to the port.	ort of	8051 as input pinsmust	1	2	5	2
	(A)	00H	(B)	55H				
	(C)	AAH		FFH				
24.	Whi	ich interrupt has highest priority	in 80	512	1	1	5	2
		TF ₀		TF ₁				
		INT_0		INT ₁				
			(2)					
25		alternate function of PORT 2 is			1	1	5	2
		Multiplexed address/data	(B)	Higher byte of address				
	(C)	Control signals	(D)) Lower byte of address				
		$PART - B (5 \times 10)$ Answer ALL			Marks	BL	со	PO
26. a	a. Wi	th neat diagram explain the arch	itectu	re of 8085 microprocessor.	10	2	1	2
		(OR)					
1			f mir	nimum mode system using 8086 agram and block diagram.	10	3	1	2
27.		ith suitable examples, explain a ntrol how instructions in 8086 m		e addressing modes for sequential occessor.	10	3	2	2
		(OR)					
				ng 'n' numbers in ascending order	10	4	2	2
28.	and		. Sele	and two chips of 16 K × 8 EPROM oct the starting address of EPROM 00000H.		4	3	3
		(OR	()					
t	Ex	plain the architecture of 8257 (I	DMA)	with neat diagram.	10		3	3 3

29, a. Explain the interrupts in 8051 with the registers used to control the 10 3 4 2 interrupts. Draw and explain the register bit formats.

(OR) b. Write an ALP program to store the result of the equation $Y = 3x^2 + 4x + 5$ in an array for x = 1 through 5.

uare 10 4 5 3

10

30. a. Write an assembly level program (ALP) for 8051, to generate a square wave with an ON time of 3 ms and OFF time of 7 ms on port 3 pin 4. Assume an XTAL of 11.0592 MHz.

(OR)

b. Explain with necessary diagram to interface 8051 microcontroller with an ADC.

* * * * *