作业 1

化工过程模拟及软件应用 化工数值计算部分 重庆理工大学 化学化工学院

作业内容要求包括:

- (1) 问题描述 (2) 求解思路 (3) MWORKS 程序 (4) 结果讨论
- 1. 某公司销售某设备的价格方案如下:如果顾客只买一台设备,则一台的基本价格为\$150。如果顾客购买两台以上设备,则第二台价格为\$120。第三台以后,每台\$110。

用 MWORKS 程序计算出购买 1-10 台设备所需的费用。运行程序,计算出购买 10 台设备的总价格。生成分别购买 1-10 台设备所需价格的图。

提示: 需要写一个循环

2. 化工反应工程课本 P52 页 2.1 题的数据,反应物 A 在体积为 4 升的容器中进行水解反应,反应物浓度随时间变化的数据如下表所示

反应时间/h	1	2	3	4	5	6	7	8	9
C _A /(mol/L)	0.9	0.61	0.42	0.28	0.17	0.12	0.08	0.045	0.03

- (1) 用线性插值和样条曲线两种方法分别求出时间为 1.5, 2.4, 3.5, 4.6, 5.5, 6.4, 7.5, 8.7 的 A 的浓度。并做出插值前和插值后的散点数据图,并给出结果分析,比较线性插值和样条曲线插值的不同
- (2)分别用 excel 和 mworks 两种软件,求出该反应的动力学方程式。提示: mworks 需要用到曲线拟合函数,可以用 fit,也可以用 lsqcurvefit。反应动力学方程式: $r=\frac{-dC_A}{dt}=kC_A$,需要先推导 CA 和 t 的关系式,再进行曲线拟合,求出关系式中的参数。
- 3. 将条件为 2.03MPa, 477K 的 2.83 m^3 的 NH₃ 气体压缩到 0.142 m^3 ,若压缩后温度为 448.6K,用普遍化关系式计算其压力为多少? (来源: 化工热力学课后题 2-4)

提示:需要用到二维插值函数编写 mworks 程序。不建议用循环,因为需要查表的量太大,建议一步步来试差。

理想气体状态方程: Pv=RT (单位摩尔体积 v: m3/mo1,单位大家去对应化工热力学的课本) 理想气体的假定:分子本身没有体积,分子间的作用力为 0

真实气体: Pv=ZRT, Z压缩因子

Z=Z0+w*Z1

w:偏心因子,可以查表查到。NH3的偏心因子 w=0.2526 (分子是不是对称)

Z0 和 Z1 也可以通过查表得到,根据对比压力 Pr 和对比温度 Tr 来查得(二维表格)

对比压力: Pr=P/Pc, Tr=T/Tc

临界压力 Pc, 临界温度 Tc 都可以通过查表得到(Pc=1.128*10^7Pa, Tc=405.65K)

临界的压力 Pc, 临界温度 Tc 的物理意义

已知状态 1: P1=2.03MPa, T1=477K, V1=2.83m3,

已知: Pc=1.128*10⁷Pa, Tc=405.65K, w=0.2526

已知: V2=0.142m3, T2=448.6K

待求: P2

先求状态 1 下面的 Z, 进而把 v1 求得—》n—》v2=V2/n—>试差得到状态 2 下面的 Z—》P2 Pr1=P1/Pc, Tr1=T1/Tc, 通过 interp2 在表中插值, 得到在状态 1 下面的 Z0 和 Z1—》

Z=Z0+w*Z1--》v1=ZRT1/P1-->n=V1/v1-->v2=V2/n, T2, 求 P2

令 P2=RT/v2 (或令 Z=1--》P2) --》P2r=P2/Pc, Tr2=T2/Tc--interp2 查表得到 Z0 和 Z1--》Z=Z0+w*Z1--》P2=ZRT2/v2 与上一个 P2 比较(与上一个 Z 值比较)--》如果两者差值《=你要求的精度--》计算结束;

如果两者差值》精度要求,P2r=, Tr2=, -->interp2 查表得到 Z0 和 Z1--》 Z=Z0+w*Z1--》P2=ZRT2/v2 与上一个 P2 比较(与上一个 Z 值比较)直到满足要求。

4. 化工反应工程课本 P55 页 2.20 题: 在铂催化剂上, 乙烯深度氧化的动力学方程可表示为

$$r = \frac{k \, p_A p_B}{(1 + K_B p_B)^2} \label{eq:rate}$$

p_A、p_B分别为乙烯及氧的分压。在 473K 等温下的实验数据如下表

序号	p _A *10 ³ , MPa	p _B *10 ³ , MPa	r *10 ⁴ , mol/g.min
1	8.99	3.23	0.672
2	14.22	3.00	1.072
3	8.86	4.08	0.598
4	8.32	2.03	0.713
5	4.37	0.89	0.610
6	7.75	1.74	0.834
7	7.75	1.82	0.828
8	6.17	1.73	0.656
9	6.13	1.73	0.694
10	6.98	1.56	0.791
11	2.87	1.06	0.418

用曲线拟合函数 lsqcurvefit 求出动力学方程的 k 和 K_B ,并画出拟合前和拟合后各点速度 r 的散点图

提示: p_A 和 p_B 需要写到一个矩阵里面,作为一个输入数据