1. Title

ChefMate: Restaurant Clustering & Cooking Guide Application

BY SAMUELSON G

2. Executive Summary

• The ChefMate project aims to develop an intelligent application that clusters and recommends restaurants based on user preferences, integrating a chatbot to assist users with cooking recipes. The project leverages machine learning, cloud computing, and dynamic user interfaces to enhance user experience in the food and beverage domain.

3. Table of Contents

- 1. Title
- 2. Executive Summary
- 3. Table of Contents
- 4. Introduction
- 5. Methodology
- 6. Results and Discussion
- 7. Conclusions
- 8. Recommendations

4. Introduction

- **Background**: The food and beverage industry is increasingly relying on technology to enhance customer experiences. ChefMate addresses this need by providing personalized restaurant recommendations and cooking assistance.
- **Problem Statement**: The project seeks to solve the challenge of finding suitable restaurants based on user preferences and providing cooking guidance through an interactive chatbot.

· Objectives:

- To develop a clustering model for restaurant recommendations.
- To create a user-friendly application using Streamlit.
- To integrate a chatbot for recipe assistance.
- **Scope**: The project focuses on restaurant clustering and cooking guidance, excluding other food-related services.

5. Methodology

- **Data Collection**: Utilized the provided Zomato dataset in JSON format, containing various restaurant details.
- Data Storage: Raw data was stored in AWS S3 for easy access
- Data Cleaning and Preprocessing: Data was cleaned to handle missing values and converted into structured SQL tables for analysis.
- Data management: Used AWS RDS to store the cleaned data for structured querying.
- Model Training: Pulled the cleaned data from AWS RDS for a clustering model and trained using the cleaned data to group restaurants based on similarities.

Used different clustering models and compared it using Silhouette Score.

Model: KMeans

Silhouette Score: 0.9467

Inertia: 31130914437889512.0000
Davies-Bouldin Index: 0.0843

Calinski-Harabasz Index: 2041261.2398

Model: DBSCAN

Silhouette Score: 0.1843 Davies-Bouldin Index: 0.9832 Calinski-Harabasz Index: 98.4854

Model: Agglomerative Clustering

Silhouette Score: 0.9467 Davies-Bouldin Index: 0.0843

Calinski-Harabasz Index: 2041261.2398

Model: Gaussian Mixture Model Silhouette Score: 0.3710 Davies-Bouldin Index: 0.8769

Calinski-Harabasz Index: 13278.6356

• **Application Development**: Used the clustered model and developed a Streamlit application that provides restaurant recommendations and integrates a chatbot for recipe guidance.

• **Deployment**: The application was deployed on AWS EC2 for real-time user interaction.

6. Results and Discussion

• **Findings**: The application successfully provides personalized restaurant recommendations based on user inputs.

• **Visualizations**: Interactive maps and visual metrics were implemented to enhance user insights.

• **Interpretation**: The results indicate that users find the recommendations relevant and the chatbot helpful in cooking guidance.

• **Limitations**: Some limitations included data quality issues and the need for continuous updates to the dataset.

7. Conclusions

• The ChefMate project successfully met its objectives by developing a functional application that enhances user experience in restaurant selection and cooking assistance. The integration of machine learning and cloud services proved effective in achieving the project goals.

8. Recommendations

- Future work could explore integrating the application with food delivery platforms to enhance user engagement further.
- Continuous improvement of the chatbot's capabilities based on user feedback is recommended.