## Electrical conductivity of plasma

BY YOUJUN HU

Institute of Plasmas, Chinese Acadamy of Sciences

Email: yjhu@ipp.cas.cn

#### Abstract

This note considers the calculation of the electrical conductivity of non-relativistic plasmas. The results indicate that the electrical conductivity  $\sigma$  is a function of  $T_e$  and  $Z_i$ , where  $T_e$  is the temperature of electrons and  $Z_i$  is the charge number of ions. The dependence of  $\sigma$  on  $T_e$  is given analytically by  $\sigma \propto T_e^{3/2}$  while the dependence on  $Z_i$  has to be calculated numerically. The numerical results indicates that, as expected,  $\sigma$  decreases with the increasing of  $Z_i$ . The analytic results indicates that  $\sigma$  is independent of the number density of electrons  $n_e$ .

### 1 Equation for electrons distribution function

The steady state of the electrons distribution is determined by the balance of the collision term with the electrical field term:

$$C(f_e, f_e) + C(f_e, f_i) = \frac{q_e \mathbf{E}}{m_e} \cdot \nabla_v f_e, \tag{1}$$

where  $\nabla_v$  denotes the gradient operator in velocity space. We use perturbation theory to solve Eq. (1) for  $f_e$ . The electrical field is treated as a perturbation. Expanding  $f_e$  as

$$f_e = f_{e0} + f_{e1} + f_{e2} + \dots (2)$$

and using this in Eq. (1), the zeroth order equation is written as

$$C(f_{e0}, f_{e0}) + C(f_{e0}, f_i) = 0.$$
 (3)

The first order equation of Eq. (1) is written as

$$C(f_{e1}, f_{e0}) + C(f_{e0}, f_{e1}) + C(f_{e1}, f_i) = \frac{q_e \mathbf{E}}{m_e} \cdot \nabla_v f_{e0}.$$
 (4)

The zeroth order equation gives that  $f_{e0} = f_{em}$ , where  $f_{em}$  is a Maxwellian distribution with temperature  $T_e$  and density  $n_e$ . Using this in the first order equation (4) gives

$$C(f_{e1}, f_{em}) + C(f_{em}, f_{e1}) + C(f_{e1}, f_i) = \frac{q_e \mathbf{E}}{m_e} \cdot \nabla_v f_{em}.$$
 (5)

The right-hand side of Eq. (5) is written as

$$\frac{q_e \mathbf{E}}{m_e} \cdot \nabla_v f_{em} = \frac{q_e \mathbf{E}}{m_e} \cdot \left( -\frac{\mathbf{v}}{v_{ta}^2} \right) f_{em} \\
= -\frac{q_e E}{m_e v_{te}} \frac{v_{\parallel}}{v_{te}} f_{em}, \tag{6}$$

where  $v_{\parallel}$  is the velocity parallel to the electric field. Using Eq. (6), equation (5) is written as

$$C(f_{e1}, f_{em}) + C(f_{em}, f_{e1}) + C(f_{e1}, f_i) = -\frac{q_e E}{m_e v_{te}} \frac{v_{\parallel}}{v_{te}} f_{em}.$$
 (7)

It can be proved that the solution to the above equation,  $f_{e1}$ , consists of only the first Legendre harmonics (The proof is given in another note). Thus we write

$$f_{e1} = f_{em}(v)\chi(v)\cos\theta,\tag{8}$$

2 Section 2

then Eq. (7) is written as

$$\frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \frac{\partial \chi}{\partial v} \right) - \frac{m_e v}{T_e} D_{cvv}^{e/e} \frac{\partial \chi}{\partial v} - \frac{2 D_{c\theta\theta}^{e/e} + \Gamma^{e/e} Z_i / v}{v^2} \chi + \frac{C (f_{em}, f_{em} \chi \cos \theta)}{f_{em} \cos \theta} + \frac{q_e E}{m_e v_{te}} \frac{v}{v_{te}} = 0,$$
(9)

which is the equation (98) in Karney's 1986 paper[1]. (The detailed derivation of this equation is given in another note.).

### Relaxation method of calculating steady state solution

Equation (9) can be further written

$$D_{cvv}^{e/e} \frac{\partial^{2} \chi}{\partial v^{2}} + \left[ \frac{1}{v^{2}} \frac{\partial}{\partial v} \left( v^{2} D_{cvv}^{e/e} \right) - \frac{m_{e} v}{T_{e}} D_{cvv}^{e/e} \right] \frac{\partial \chi}{\partial v} - \frac{2 D_{c\theta\theta}^{e/e} + \Gamma^{e/e} Z_{i} / v}{v^{2}} \chi$$

$$+ \frac{C \left( f_{em}, f_{em} \chi(v) \cos \theta \right)}{f_{em} \cos \theta} + \frac{q_{e} E}{m_{e} v_{te}} \frac{v}{v_{te}} = 0$$

$$(10)$$

A method of finding a solution to this time-independent problem is the relaxation method, in which we consider a time-dependent problem and calculate the steady solution. We consider the following time dependent problem:

$$\frac{\partial \chi}{\partial t} = a \frac{\partial^2 \chi}{\partial v^2} + b \frac{\partial \chi}{\partial v} + c \chi + \frac{C(f_{em}, f_{em} \chi(v) \cos \theta)}{f_{em} \cos \theta} + \frac{q_e E}{m_e v_{te}} \frac{v}{v_{te}}, \tag{11}$$

where

$$a = D_{cvv}^{e/e}, (12)$$

$$a = D_{cvv}^{e/e},$$

$$b = \frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) - \frac{m_e v}{T_e} D_{cvv}^{e/e},$$

$$(12)$$

and

$$c = -\frac{2D_{c\theta\theta}^{e/e}}{v^2} - \frac{\Gamma^{e/e}Z_i}{v^3}.$$
 (14)

The Fokker-Planck coefficients are given by

$$D_{cvv}^{e/e} = \frac{4\pi\Gamma^{e/e}}{3n_e} \left( \int_0^v \frac{(v')^4}{v^3} f_{em}(v') dv' + \int_v^\infty v' f_{em}(v') dv' \right), \tag{15}$$

$$D_{c\theta\theta}^{e/e} = \frac{4\pi\Gamma^{e/e}}{3n_e} \left[ \int_0^v \frac{v'^2}{2v^3} (3v^2 - (v')^2) f_{em}(v') dv' + \int_v^\infty v' f_{em}(v') dv' \right], \tag{16}$$

$$\frac{C(f_{em}, f_{em}\chi(v)\cos\theta)}{f_{em}\cos\theta} = \frac{4\pi\Gamma^{e/e}}{n_e} \left[ f_{em}\chi(v) + \int_0^v \frac{v'^2}{v_{te}^2} \left( \frac{v'^3}{5v_{te}^2v^2} - \frac{v'}{3v^2} \right) f_{em}(v')\chi(v')dv' + \int_v^\infty \frac{v'^2}{v_{te}^2} \left( \frac{v^3}{5v_{te}^2v'^2} - \frac{v}{3v'^2} \right) f_{em}(v')\chi(v')dv' \right].$$
(17)

$$\begin{split} \frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) &= \frac{4\pi \Gamma^{e/e}}{3n_e} \frac{1}{v^2} \frac{\partial}{\partial v} \bigg[ \left( \frac{1}{v} \int_0^v (v')^4 f_{em}(v') dv' + v^2 \int_v^\infty v' f_{em}(v') dv' \right) \bigg] \\ &= \frac{4\pi \Gamma^{e/e}}{3n_e} \bigg[ -\frac{1}{v^4} \int_0^v (v')^4 f_{em}(v') dv' + \frac{2}{v} \int_v^\infty v' f_{em}(v') dv' \bigg] \end{split}$$

where

$$\Gamma^{e/e} = \frac{n_e e^4 \ln \Lambda^{e/e}}{4\pi \varepsilon_0^2 m_e^2}.$$
(18)

Normalization 3

#### 3 Normalization

Define normalized quantities  $\overline{f} \equiv f/f_0$ ,  $\overline{v} \equiv v/v_0$ , and  $\tau \equiv t/t_0$  where

$$f_0 = \frac{n_e}{v_{te}^3}, \ v_0 = v_{te}, \ t_0 = \frac{v_{te}^3}{\Gamma^{e/e}}.$$
 (19)

Then coefficients used in Eq. (11) can be written

$$D_{cvv}^{e/e} = \frac{4\pi\Gamma^{e/e}}{3n_e} f_0 v_0^2 \left( \int_0^{\overline{v}} \frac{(\overline{v}')^4}{\overline{v}^3} \overline{f}_{em} d\,\overline{v}' + \int_{\overline{v}}^{\infty} \overline{v}' \overline{f}_{em} (\overline{v}') d\,\overline{v}' \right)$$

$$= \frac{4\pi}{3} \frac{v_{te}^2}{t_0} \left( \int_0^{\overline{v}} \frac{(\overline{v}')^4}{\overline{v}^3} \overline{f}_{em} d\,\overline{v}' + \int_{\overline{v}}^{\infty} \overline{v}' \overline{f}_{em} (\overline{v}') d\,\overline{v}' \right)$$
(20)

$$D_{c\theta\theta}^{e/e} = \frac{4\pi\Gamma^{e/e}}{3n_e} \left[ \int_0^v \frac{v'^2}{2v^3} (3v^2 - (v')^2) f_{em}(v') dv' + \int_v^\infty v' f_{em}(v') dv' \right]$$

$$= \frac{4\pi v_{te}^2}{3 t_0} \left[ \int_0^{\overline{v}} \frac{\overline{v}'^2}{2\overline{v}^3} (3\overline{v}^2 - (\overline{v}')^2) \overline{f}_{em}(\overline{v}') d\overline{v}' + \int_{\overline{v}}^\infty \overline{v}' f_{em}(\overline{v}') d\overline{v}' \right]$$
(21)

Note the dimension of  $D_{cvv}^{e/e}$  and  $D_{c\theta\theta}^{e/e}$  is  $D_0 = v_{te}^2/t_0$ .

$$\frac{C(f_{em}, f_{em}\chi(v)\cos\theta)}{f_{em}\cos\theta} = \frac{4\pi\Gamma^{e/e}}{n_e} \left[ f_{em}\chi(v) + \int_0^v \frac{v'^2}{v_{te}^2} \left( \frac{v'^3}{5v_{te}^2v^2} - \frac{v'}{3v^2} \right) f_{em}(v')\chi(v')dv' \right] 
+ \int_v^\infty \frac{v'^2}{v_{te}^2} \left( \frac{v^3}{5v_{te}^2v'^2} - \frac{v}{3v'^2} \right) f_{em}(v')\chi(v')dv' \right] 
= \frac{4\pi}{t_0} \left[ \overline{f}_{em}\chi(v) + \int_0^{\overline{v}} \overline{v'^2} \left( \frac{\overline{v'^3}}{5\overline{v^2}} - \frac{\overline{v'}}{3\overline{v'}^2} \right) \overline{f}_{em}(\overline{v'})\chi(\overline{v'})d\overline{v'} \right] 
+ \int_v^\infty \overline{v'^2} \left( \frac{\overline{v'^3}}{5\overline{v'^2}} - \frac{\overline{v}}{3\overline{v'^2}} \right) \overline{f}_{em}(\overline{v'})\chi(\overline{v'})d\overline{v'} \right]$$
(22)

$$\frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) = \frac{4\pi}{3} \frac{v_{te}}{t_0} \left[ -\frac{1}{\overline{v}^4} \int_0^{\overline{v}} (\overline{v}')^4 \overline{f}_{em}(\overline{v}') d\overline{v}' + \frac{2}{\overline{v}} \int_{\overline{v}}^{\infty} \overline{v}' \overline{f}_{em}(\overline{v}') d\overline{v}' \right]$$
(23)

The normalized form of Eq. (11) is

$$\frac{\partial \chi}{\partial \tau} = \frac{t_0}{v_{te}^2} a \frac{\partial^2 \chi}{\partial \overline{v}^2} + \frac{t_0}{v_{te}} b \frac{\partial \chi}{\partial \overline{v}} + t_0 c \chi + t_0 \frac{C(f_{em}, f_{em} \chi(v) \cos \theta)}{f_{em} \cos \theta} + \beta \overline{v}$$
(24)

where

$$a = D_{cvv}^{e/e}, \tag{25}$$

$$a = D_{cvv}^{e/e},$$

$$b = \frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) - \frac{v}{v_{te}^2} D_{cvv}^{e/e},$$
(25)

$$c = -\frac{2D_{c\theta\theta}^{e/e}}{v^2} - \frac{\Gamma^{e/e}Z_i}{v^3},\tag{27}$$

and a dimensionless parameter  $\beta$ 

$$\beta \equiv \frac{t_0 q_e E}{m_e v_{te}}.\tag{28}$$

Define normalized coefficients

$$\overline{a} \equiv \frac{t_0}{v_{te}^2} a = \frac{t_0}{v_{te}^2} D_{cvv}^{e/e}$$

$$\overline{b} \equiv \frac{t_0}{v_{te}} b = \frac{t_0}{v_{te}} \frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) - \overline{v} \, \overline{a}$$

$$(30)$$

$$\overline{b} \equiv \frac{t_0}{v_{te}} b = \frac{t_0}{v_{te}} \frac{1}{v^2} \frac{\partial}{\partial v} \left( v^2 D_{cvv}^{e/e} \right) - \overline{v} \ \overline{a}$$
(30)

$$\overline{c} \equiv t_0 c = -\frac{2}{\overline{v}^2} \left( \frac{t_0}{v_{te}^2} D_{c\theta\theta}^{e/e} \right) - \frac{Z_i}{\overline{v}^3} \tag{31}$$

4 Section 6

then Eq. (24) is written as

$$\frac{\partial \chi}{\partial \tau} = \overline{a} \frac{\partial^2 \chi}{\partial \overline{v}^2} + \overline{b} \frac{\partial \chi}{\partial \overline{v}} + \overline{c}\chi + t_0 \frac{C(f_{em}, f_{em}\chi(v)\cos\theta)}{f_{em}\cos\theta} + \beta \overline{v}.$$
(32)

#### 4 Numerical scheme

The first order derivative is written as,

$$\left[\frac{\partial \chi}{\partial v}\right]_{i}^{n} = \frac{\chi_{i+1}^{n} - \chi_{i-1}^{n}}{2\Delta v} \tag{33}$$

The second order derivative is written as

$$\left[\frac{\partial^2 \chi}{\partial v^2}\right]_i^n = \frac{\chi_{i+1}^n - 2\chi_i^n + \chi_{i-1}^n}{\Delta v^2} \tag{34}$$

Time derivative:

$$\left[\frac{\partial \chi}{\partial t}\right]_{i}^{n} = \frac{\chi_{i}^{n+1} - \chi_{i}^{n}}{\Delta t} \tag{35}$$

Using implicit scheme for the first three terms (differential terms) on the right-hand of Eq. (32), we obtain

$$\frac{\chi_{i}^{n+1} - \chi_{i}^{n}}{\Delta \bar{t}} = \bar{a}_{i} \frac{\chi_{i+1}^{n+1} - 2\chi_{i}^{n+1} + \chi_{i-1}^{n+1}}{\Delta \bar{v}^{2}} + \bar{b}_{i} \frac{\chi_{i+1}^{n+1} - \chi_{i-1}^{n+1}}{2\Delta \bar{v}} + \bar{c}_{i} \chi_{i}^{n+1} + t_{0} \left[ \frac{C(f_{em}, f_{em} \chi(v) \cos \theta)}{f_{em} \cos \theta} \right]_{i}^{n} + \beta \bar{v}_{i},$$

which can be arranged to the form

$$\left(-\frac{\overline{a}_{i}\Delta t}{\Delta \overline{v}^{2}} + \frac{\overline{b}_{i}\Delta t}{2\Delta \overline{v}}\right) \chi_{i-1}^{n+1} + \left(1 + \frac{2\overline{a}_{i}\Delta \overline{t}}{\Delta \overline{v}^{2}} - \overline{c}_{i}\Delta \overline{t}\right) \chi_{i}^{n+1} + \left(-\frac{\overline{a}_{i}\Delta t}{\Delta \overline{v}^{2}} - \frac{\overline{b}_{i}\Delta t}{2\Delta \overline{v}}\right) \chi_{i+1}^{n+1}$$

$$= \chi_{i} + \Delta \overline{t} \left\{ t_{0} \left[ \frac{C(f_{em}, f_{em}\chi(v)\cos\theta)}{f_{em}\cos\theta} \right]_{i}^{n} + \beta \overline{v}_{i} \right\}, \tag{36}$$

## 5 Boundary conditions

The computational domain is  $0 < v < v_{\text{max}}$  and the boundary conditions are set to be

$$\chi(v=0) = 0 \tag{37}$$

$$\frac{\partial^2 \chi}{\partial v^2}|_{v=v_{\text{max}}} = 0 \tag{38}$$

## 6 Electrical Conductivity

Electrical conductivity is defined as the ratio of the steady state electrical current density to the applied electrical field:

$$\sigma \equiv \frac{J}{E}$$

$$= \frac{q_e \int v \cos\theta f_e(\mathbf{v}) d\mathbf{v}}{E}.$$
(39)

where  $f_e$  is the electron distribution function determined by Eq. (1). As discussed above, in the perturbation method of calculating  $f_e$ ,  $f_e$  is expanded as  $f_e = f_{e0} + f_{e1} + f_{e2} + \dots$  We consider only the linear approximation, in which only terms up to the first order are included, i.e.,  $f_e \approx f_{e0} + f_{e1}$ . As discussed above,  $f_{e0}$  is a Maxwellian distribution, which is isotropic, thus, does not contribute to the current. Using this, Eq. (39) is written as

$$\sigma \approx \frac{q_e \int v \cos\theta f_{e1}(\mathbf{v}) d\mathbf{v}}{E}$$

$$= \frac{q_e 2\pi \int_0^{\pi} \sin\theta d\theta \int_0^{\infty} v^2 [v \cos\theta f_{e1}] dv}{E}.$$
(40)

The first order distribution function is  $f_{e1}(\mathbf{v}) = f_{em}(\mathbf{v})\chi(\mathbf{v})\cos\theta$ . Using this, Eq. (40) is written as

$$\sigma = \frac{q_e 2\pi \int_0^{\pi} \sin\theta d\theta \int_0^{\infty} v^3 f_{em}(v) \chi(v) \cos^2\theta dv}{E}$$

$$= \frac{4\pi q_e}{3E} \int_0^{\infty} v^3 f_{em}(v) \chi(v) dv$$

$$= \frac{4\pi q_e}{3E} \frac{n_e}{v_{te}^3} v_{te}^4 \int_0^{\infty} \overline{v}^3 \overline{f}_{em}(\overline{v}) \chi(\overline{v}) d\overline{v}$$

$$= \frac{4\pi q_e}{3E} n_e v_{te} \int_0^{\infty} \overline{v}^3 \overline{f}_{em}(\overline{v}) \chi(\overline{v}) d\overline{v}$$

Define

$$\sigma_0 = \frac{n_e q_e^2 t_0}{m_e} = \frac{n_e q_e^2}{m_e} \frac{v_{te}^3}{\frac{n_e e^4 \ln \Lambda^{e/e}}{4\pi \varepsilon_e^2 m^2}} = \frac{4\pi \varepsilon_0^2}{e^2 \ln \Lambda^{e/e} \sqrt{m_e}} T_e^{3/2}$$
(41)

Then the normalized electrical conductivity can be written

$$\overline{\sigma} \equiv \frac{\sigma}{\sigma_0} = \frac{4\pi}{3} \int_0^\infty \overline{v}^3 \overline{f}_{em}(\overline{v}) \frac{\chi(\overline{v})}{\beta} d\overline{v}$$
(42)

Note that both  $\chi(\overline{v})/\beta$  and  $\overline{f}_{em}(\overline{v})$  are independent of  $T_e$ . All the dependence of  $\sigma$  on  $T_e$  is contained in  $\sigma_0$ , which is proportional to  $T_e^{3/2}$  if the weak dependence of the Coulomb logarithm on  $T_e$  is ignored. Thus the electric conductivity scales with  $T_e$  approximately as  $\sigma \propto T_e^{3/2}$ . Also note that all the terms in Eqs. (41) and (42) are independent of the electron number density  $n_e$  (the weak dependence of the Coulomb logarithm on  $n_e$  is ignored), which indicates that  $\sigma$  is independent of  $n_e$ . Also not that  $\chi(\overline{v})/\beta$  only depends on  $Z_i$ . The dependence of  $Z_i$  has to be solved numerically. The results are given in the next section.

## 7 Numerical results of dependence of $\sigma$ on $Z_i$

Table (1) gives the electrical conductivity for various values of ion  $Z_i$ . These results agree with the results in Karney1986 paper. Here  $Z_i$  is defined as

$$Z_i = -\frac{q_i}{q_e} \frac{\ln \Lambda^{e/i}}{\ln \Lambda^{e/e}} \tag{43}$$

| $Z_i$             | 1     | 2     | 5     | 10    |
|-------------------|-------|-------|-------|-------|
| $\sigma/\sigma_0$ | 7.421 | 4.375 | 2.077 | 1.132 |

**Table 1.** The electrical conductivity for various values of  $Z_i$ . Numerical parameters: grid number N=5000,  $v_{\rm max}=15v_{te}$ ,  $\Delta t=1000t_0$ . The iteration process usually converges after about 50 steps (The absolute change in  $\chi_1$  per step was less than  $10^{-10}$ ). The iteration process converges faster for bigger values of  $Z_i$ .

For typical plasmas in the EAST tokamak, we have  $T_e = 1 \text{keV}$  and  $Z_i = 2$ . Using these parameters, Eqs. (41) and (42), and the data in Table 1, we obtain the conductivity of the plasmas  $\sigma = 2.38 \times 10^7 S/m$ , which is comparable to the conductivity of iron  $(1.00 \times 10^7 S/m)$ , Aluminium  $(3.5 \times 10^7 S/m)$ , and copper  $(5.96 \times 10^7 S/m)$  (data from en.wikipedia.org).

Figure (1) gives the steady profile of  $\chi(v)$  and the perturbed distribution function  $f_{e1}(v)$ . These results are obtained using  $\Delta t = 10t_0$ , and advancing in time for  $300\Delta t$ . The perturbed distribution function had arrived at steady state.

6 Section 8



Figure 1. Steady profile of  $\chi(v)$  and the perturbed distribution function  $f_1(v)$  for parameter  $Z_i = 2$ . Here is for the case of negative electrical field.

## 8 Analytic expression of Spitzer Function

The analytic expression of Spitzer function was given in Ref.[2].

$$f_{em} = \frac{n_e}{v_e^3 \pi^{3/2}} \exp(-\frac{v^2}{v_e^2})$$

Note here  $v_e \equiv \sqrt{2T_e/m_e}$ , differs from  $v_{te}$  defined above by a factor  $\sqrt{2}$ .

$$C_e(f_1) = \nu_{e0} \frac{v}{v_e} \cos\theta f_{em}$$

where  $C_e(f_1) \equiv C(f_1, f_{em}) + C(f_{em}, f_1) + C(f_1, f_i)$ .

$$\nu_{e0} = \frac{4\pi n_e e^4 \ln \Lambda}{m_e^2 v_e^3}$$

The solution is written as

$$f_1 = -D\left(\frac{v}{v_e}\right)\cos\theta f_{em}$$

where

$$\begin{split} D(x) &= x(d_1x + d_2x^2 + d_3x^3 + d_4x^4) \\ d_1 &= (4.397 - 2.32\overline{Z} - 0.283\overline{Z}^2) / G(\overline{Z}) \\ d_2 &= (0.793\overline{Z}^2 + 8.053\overline{Z} - 4.627) / G(\overline{Z}) \\ d_3 &= (0.0467\overline{Z}^3 + 0.108\overline{Z}^2 - 4.136\overline{Z} + 2.006) / G(\overline{Z}) \\ d_4 &= (-0.011\overline{Z}^2 + 0.716\overline{Z} - 0.304) / G(\overline{Z}) \end{split}$$

where  $G(\overline{Z}) = \overline{Z}(1 + 0.292\overline{Z})(1 + 1.16\overline{Z} + 0.16\overline{Z}^2)$ . It follows that

$$\overline{Z}D(x) = \begin{cases} x^2(0.60 + 1.41x - 0.66x^2 + 0.134x^3) & \text{For } \overline{Z} = 1\\ 2x^2(-0.11 + 1.17x - 0.44x^2 + 0.086x^3) & \text{For } \overline{Z} = 2 \end{cases}$$

Fig. 2 compares the numerical solution with the above analytic solution.



Figure 2. Comparison of the numerical solution with the analytic solution for  $Z_i = 1$ .

### Bibliography

- [1] Charles F. F. Karney. Fokker-planck and quasilinear codes. Comp. Phys. Rep., 4:183–244, 1986.
- [2] S. P. Hirshman. Classical collisional theory of beam-driven plasma currents. *Physics of Fluids*, 23(6):1238–1243, 1980.

# 9 Manuscript: expression for $H(\chi)$ and $I(\chi)$

$$\begin{split} H(\chi) &\equiv \frac{C(f_{em}\chi \cos\theta,\,f_{em})}{f_{em}\cos\theta} = \frac{1}{v^2}\frac{\partial}{\partial v}\bigg(v^2D_{cvv}^{a/b}\frac{\partial\chi}{\partial v}\bigg) - \frac{m_{\,ev}}{T_e}D_{cvv}^{a/b}\frac{\partial\chi}{\partial v} - 2D_{c\theta\theta}^{a/b}\frac{1}{v^2}\chi \\ I(\chi) &\equiv \frac{C(f_{em},\,f_{em}\chi(v)\cos\theta)}{f_{em}\cos\theta} \\ &= \frac{4\pi\Gamma^{e/e}}{n_e}\bigg[f_{em}\chi(v) + \int_0^v \frac{{v'}^2}{v_{te}^2}\bigg(\frac{{v'}^3}{5v_{te}^2v^2} - \frac{{v'}}{3v^2}\bigg)f_{em}(v')\chi(v')dv' \\ &+ \int_v^\infty \frac{{v'}^2}{v_{te}^2}\bigg(\frac{v^3}{5v_{te}^2{v'}^2} - \frac{v}{3v'^2}\bigg)f_{em}(v')\chi(v')dv'\bigg] \end{split}$$

Normalized  $\overline{H}(\chi) \equiv t_0 H(\chi)$  and  $\overline{I}(\chi) = t_0 I(\chi)$ ,

$$\begin{split} \overline{H}(\chi) &= t_0 \frac{1}{v^2} \frac{\partial}{\partial v} \bigg( v^2 D_{cvv}^{a/b} \frac{\partial \chi}{\partial v} \bigg) - t_0 \frac{m_e v}{T_e} D_{cvv}^{a/b} \frac{\partial \chi}{\partial v} - 2 t_0 D_{c\theta\theta}^{a/b} \frac{1}{v^2} \chi \\ \\ \overline{I}(\chi) &= \frac{4 \pi \Gamma^{e/e}}{n_e} t_0 \bigg[ f_{em} \chi(v) + \int_0^v \frac{v'^2}{v_{te}^2} \bigg( \frac{v'^3}{5 v_{te}^2 v^2} - \frac{v'}{3 v^2} \bigg) f_{em}(v') \chi(v') dv' \\ &+ \int_v^\infty \frac{v'^2}{v_{te}^2} \bigg( \frac{v^3}{5 v_{te}^2 v'^2} - \frac{v}{3 v'^2} \bigg) f_{em}(v') \chi(v') dv' \bigg] \end{split}$$

 $\bar{I}(\chi)$  is the quantity actually calculated in the code.

We know collision operator  $C(f_a, f_b)$  conserves momentum, i.e.,

$$\int [m_a C(f_a, f_b) + m_b C(f_b, f_a)] \boldsymbol{v} d^3 \boldsymbol{v}$$

We want to directly prove numerically that

$$\int [C(\chi f_{em}\cos\theta, f_{em}) + C(f_{em}, \chi f_{em}\cos\theta)] v d^3v = 0$$

The left hand of the above equation

$$\int [H(\chi) + I(\chi)] \boldsymbol{v} f_{em} \cos\theta d^{3} \boldsymbol{v}$$

$$= \int [H(\chi) + I(\chi)] \boldsymbol{v} f_{em} \cos\theta v^{2} d\mu dv d\varphi$$

$$\boldsymbol{v} = v \hat{v}(\theta, \varphi) \tag{44}$$

$$\int_{0}^{2\pi} \hat{v}(\theta, \phi) d\phi = \hat{z} \cos\theta 2\pi$$

$$\int_{0}^{\pi} \cos\theta \sin\theta \cos\theta 2\pi d\theta = 2\pi \int_{-1}^{1} \mu^{2} d\mu = \frac{4\pi}{3}$$

$$\int_{0}^{\infty} [H(\chi) + I(\chi)] f_{em} v^{3} dv = 0$$
(46)