Naive Set Theory (ZFC)

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikugroup • zaikugroup.com • September 18, 2020

Session Agenda

- 1. Frequent Mathematical Jargons
- 2. Basic Set Theoretic Concepts
- 3. Natural Numbers and Integers
- 4. Maps Between Sets
- 5. Cardinality of Sets (definition of finite and infinite sets)
- 6. Countable and Uncountable Sets
- 7. Measure Theory Hack (without mentioning sigma-algebras)
- 8. Study Material Comments
- 9. Session Q&As

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikugroup • zaikugroup.com • September 18, 2020

Frequent Mathematical Jargons

- 1. Axiom
- 2. Theorem
- 3. Proposition
- 4. Lemma
- 5. Corollary
- 6. Conjecture
- 7. Proof
- 8. Definitions

Naive Set Theory 101

Definition (1.0)

A set is a collection of distinct objects called elements of the set.

- Let $X = \{a, b, c, d\}$ and $Y = \{a, b, c, d, a\}$. If you give Y to mathematicians they will assume you mean X!
- ▶ If X is a set and ψ is an element of X, we write $\psi \in X$ or else we write $\psi \notin X$ to indicate that ψ is not an element of X. So for example, if $X = \{2, 10, 1, 6\}$ then $6 \in X$ but $11 \notin X$.
- ▶ Warning (Russel Paradox): Let S be the set of all sets which are not elements of themselves or more formally $S = \{A \mid A \notin A\}$. Is S an element of itself i.e. $S \in S$?

Popular version: Consider the barber who shaves all people who don't shave themselves. Who shaves the barber?

Definition (1.1)

The ZFC axiomatic system guarantees the existence of a set called the empty set that has no elements and denoted \emptyset .

- ightharpoonup It can be proved that \emptyset is unique i.e. there is only one empty set!
- ightharpoonup \emptyset is so ubiquitous that modern mathematics built on set theory would not function properly without it!

Definition (1.2)

Let X be a non-empty set. We say a set A is a subset of X and write $A \subseteq X$ if only if $\psi \in A \implies \psi \in X$. We write $A \nsubseteq X$ otherwise.

▶ It's obvious that $X \subseteq X$. But is $\emptyset \subseteq X$ true?

Proposition (1.0)

Let X, Y, Z be sets. If $X \subseteq Y$ and $Y \subseteq Z$ then $X \subseteq Z$.

Proof: Well if $X \subseteq Y$ then $\forall \psi \in X$, $\psi \in Y$. But then since $Y \subseteq Z$ it follows $\psi \in Z$. Hence $X \subseteq Z$.

Definition (1.3)

If X and Y are sets, then we say X = Y if only if $X \subseteq Y$ and $Y \subseteq X$ holds. We write $X \neq Y$ if the two sets are not equal.

Let $X = \{\psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6\}$ and $Y = \{\psi_6, \psi_1, \psi_3, \psi_4, \psi_2, \psi_5\}$. Assuming only the definitions that we have gone through so far, is X = Y?

Definition (1.4)

If A is a subset of X then we say A is a proper subset of X if $A \neq X$ i.e. if not all elements of X are in A.

▶ If $X = \{\psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6\}$, then $A = \{\psi_1, \psi_3, \psi_6, \psi_4\}$ is of course a proper subset of X.

Natural Numbers and Integers

Definition (1.5)

The set of natural numbers is very often defined in textbooks as $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \ldots\}.$

In mathematics it's generally optional whether to consider 0 as a natural number! To use 0 with the natural numbers, mathematicians extend the set $\mathbb N$ by creating another set denoted $\mathbb N_0 = \{0,1,2,3,4,5,6,7,\ldots\}$. $\mathbb N$ is a proper subset of $\mathbb N_0$ right?

Definition (1.6)

 $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ is the set of all integers.

 $ightharpoonup \mathbb{N}_0$ is of course a proper subset of \mathbb{Z} .

Definition (1.7)

Let X and Y and be sets. The intersection of X with Y is defined as $X \cap Y = \{\psi \mid \psi \in X \text{ and } \psi \in Y\}.$

Definition (1.8)

Let X and Y and be sets. The union of X with Y is defined as $X \cup Y = \{ \psi \mid \psi \in X \text{ or } \psi \in Y \}.$

▶ Please note that X ∪ Y may also contain elements that are in both sets!

Proposition (1.1)

Let X, Y, Z be sets. Then the following properties hold:

- 1. $X \cap X = X$ and $X \cap \emptyset = \emptyset$
- 2. $X \cap Y = Y \cap X$ i.e. \cap is commutative
- 3. $(X \cap Y) \cap Z = X \cap (Y \cap Z)$ i.e. \cap associative
- 4. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ i.e. \cap is distributive
- 5. $X \cup X = X$ and $X \cup \emptyset = X$
- 6. $X \cup Y = Y \cup X$ i.e. \cup is commutative
- 7. $(X \cup Y) \cup Z = X \cup (Y \cup Z)$ i.e. \cup is associative
- 8. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

Proof: Homework for you!

Definition (1.9)

Sets *X* and *Y* are said to be disjoint if $X \cap Y = \emptyset$.

Definition (2.0)

Let A be a subset of X. The complement of A in X is $A^{c} = \{ \psi \in X \mid \psi \notin A \}$ i.e. the set of all elements of X that are not in A.

Proposition (1.2)

Let X, Y, Z be sets such that $X \subseteq Z$ and $Y \subseteq Z$. Then the following is true:

- 1. $(X \cup Y)^c = X^c \cap Y^c$
- 2. $(X \cap Y)^c = X^c \cup Y^c$

Proof:

1. Let $\psi \in (X \cup Y)^c$ i.e. $\psi \in Z$ such that $\psi \notin X \cup Y$. Hence, $\psi \notin X$ and $\psi \notin Y \implies \psi \in X^c$ and $\psi \in Y^c \implies \psi \in X^c \cap Y^c \implies (X \cup Y)^c \subseteq X^c \cap Y^c$.

Will leave the remaining parts of the proof for you!

Maps Between Sets

Definition (2.1)

Let X and Y be sets. A map (or function) from X to Y written $f: X \to Y$ is a prescription that associates an element of X with an element of Y.

- ► The set of all covered elements of X under the map f is called the domain of f and we'll denote it as D_f.
- For each $\psi \in D_f$ we write $f(\psi)$ to denote the corresponding element in Y.
- ▶ The image of f is defined as $Im_f = \{f(\psi) \mid \psi \in D_f \}$.

Example of Map

Special Maps

Definition (2.2)

Let *X* and *Y* be sets. A map $f: X \rightarrow Y$ is called:

- **1. Surjective** if $Im_f = Y$ i.e. $\forall \phi \in Y$ there exists a $\psi \in X$ such that $\phi = f(\psi)$.
- 2. Injective if for all ψ_1 , $\psi_2 \in D_f$, $f(\psi_1) = f(\psi_2)$ if only if $\psi_1 = \psi_2$.
- 3. **Bijective** if it's both surjective and injective i.e. f is one-to-one which implies that $D_f = X$ and $Im_f = Y$.

Definition (2.3)

The set X is (set)-isomorphic to Y ($X \simeq Y$) if there is a bijection between the two sets i.e. if there is at least a bijective map $f: X \to Y$.

▶ Obviously, if $X \simeq Y$ and $Y \simeq Z$ then $X \simeq Z$.

Cardinality of Sets

Definition (2.4)

A non-empty set X is finite if there exists a natural number $k \geq 1$ such that $X \simeq \mathbb{N}_k = \{1, ...k\}$. We call such k the cardinality of X and write |X| = k.

▶ We can prove that for all k_1 , $k_2 \in \mathbb{N}$, $\mathbb{N}_{k1} \simeq \mathbb{N}_{k2}$ if only if $k_1 = k_2$.

Definition (2.5)

A set *X* is infinite if it contains a proper subset Λ such that $\Lambda \simeq X$.

- Let $\mathbb{N}_0 = \{0, 1, 2, 3, 4...\}$. It's obvious that $\mathbb{N} = \{1, 2, 3, 4...\}$ is a proper subset of \mathbb{N}_0 . Is it true that $\mathbb{N} \simeq \mathbb{N}_0$?!
- ▶ \mathbb{N} is a proper subset of the integers set \mathbb{Z} . But is $\mathbb{N} \simeq \mathbb{Z}$?!

▶ The above map $f : \mathbb{N}_0 \to \mathbb{N}$ defined as f(n) = n + 1 is clearly a bijection and so $\mathbb{N}_0 \simeq \mathbb{N}$!

Can you define a map f with the pattern above?

Countable and Uncountable Sets

Definition (2.6)

A set X is countably infinite if $X \simeq \mathbb{N}$. Else if X is infinite and not isomorphic to \mathbb{N} , we say X is uncountably infinite or just uncountable.

- ▶ By definition it's obvious that both \mathbb{N} and \mathbb{Z} are countably infinite.
- ightharpoonup What about the sets $\mathbb Q$ and $\mathbb R$?

Definition (2.7)

If X is countably infinite then its cardinality is defined as $|X| = \aleph_0$ (read as aleph-null).

- ▶ The cardinality of \mathbb{R} is called continuum and denoted \mathfrak{c} .
- ► Continuum Hypothesis (open problem): Is there a set \mathbb{S} with cardinality between \aleph_0 and \mathfrak{c} ?

Power Sets

Definition (2.8)

Let X be a non-empty set. The power set of X denoted $\mathcal{P}(X)$ is defined as the set of all subsets of X i.e. $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

- ▶ It's obvious that both X and \emptyset are in $\mathcal{P}(X)$ right?
- Let $X = \{\psi_1, \psi_2, \psi_3\}$. Then we get $\mathcal{P}(X) = \{\{\psi_1\}, \{\psi_2\}, \{\psi_3\}, \{\psi_1, \psi_2\}, \{\psi_1, \psi_3\}, \{\psi_2, \psi_3\}, \{\psi_1, \psi_2, \psi_3\}, \emptyset\}.$
- Let now $X = \{h, t\}$ where we call the element h 'heads' and t tails! So then $\mathcal{P}(X) = \{\{h\}, \{t\}, \{h, t\}, \emptyset\}$.
- ▶ If X is finite i.e. $X \simeq \mathbb{N}_k$ for some k then $|\mathcal{P}(X)| = 2^k$.
- ▶ Interestingly, it can be proved that $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|!$

Measure Hack (without mentioning sigma-algebras)

Definition (2.9)

Let Ω be a non-empty set. We'll define a measure on Ω as a map $\mu: \mathcal{P}(\Omega) \to \mathbb{R}$ satisfying the following axioms:

- 1. $\mu(\mathbb{E}) \geq 0$ for all $\mathbb{E} \in D_{\mu}$, where D_{μ} is the domain of μ
- 2. For all $\mathbb{E} \in D_{\mu}$, $\mathbb{E}^{c} \in D_{\mu}$
- 3. For all \mathbb{E}_1 , $\mathbb{E}_2 \in D_\mu$ such that $\mathbb{E}_1 \cap \mathbb{E}_2 = \emptyset$, $\mu(\mathbb{E}_1 \cup \mathbb{E}_2) = \mu(\mathbb{E}_1) + \mu(\mathbb{E}_2)$
- 4. $\Omega \in \mathcal{D}_{\mu}$ and $\mu(\Omega) = 1$
- We can actually generalise axiom 3 to include an arbitrary countable number of disjoint subsets $\mathbb{E}_1, \mathbb{E}_2, \dots \mathbb{E}_n$ i.e. $\mathbb{E}_1 \cap \mathbb{E}_2 \cap \dots \cap \mathbb{E}_n = \emptyset$ so that $\mu(\mathbb{E}_1 \cup \mathbb{E}_2 \cup \dots \cup \mathbb{E}_n) = \sum_{i=1}^n \mu(\mathbb{E}_i) = \mu(\mathbb{E}_1) + \mu(\mathbb{E}_2) + \dots + \mu(\mathbb{E}_n)$
- ightharpoonup Can you recognise what this abstract map μ might be?

Proposition (1.3)

If μ satisfies the axioms above, then the following is true:

- 1. $\emptyset \in D_{\mu}$ and $\mu(\emptyset) = 0$
- 2. $\mu(\mathbb{E}) \leq 1$ for all $\mathbb{E} \in D_{\mu}$

Proof:

- 1. Axioms 2 and 4 imply $\Omega^c = \emptyset \in D_\mu$. To prove $\mu(\emptyset) = 0$, just notice that $1 = \mu(\Omega \cup \Omega^c) = \mu(\Omega) + \mu(\Omega^c) = \mu(\Omega) + \mu(\emptyset) = 1 + \mu(\emptyset)$ and so $\mu(\emptyset) = 0$.
- 2. Since \mathbb{E} is a subset of Ω then $\mathbb{E} \cup \mathbb{E}^c = \Omega$. Now, because $\mathbb{E} \cap \mathbb{E}^c = \emptyset$, we have that $\mathbf{1} = \mu(\Omega) = \mu(\mathbb{E} \cup \mathbb{E}^c) = \mu(\mathbb{E}) + \mu(\mathbb{E}^c)$ which implies $\mu(\mathbb{E}) = \mathbf{1} \mu(\mathbb{E}^c) \implies \mu(\mathbb{E}) \leq \mathbf{1}$
- ▶ Proving 2 implies that $\mu(\mathbb{E})$ can only take values between 0 and 1! Can you now see what μ might be??!
- The pair (Ω, D_{μ}) is an example of a measurable space and the triple (Ω, D_{μ}, μ) is an example of measure space!

 \mathbf{BY}

A.N. KOLMOGOROV

Second English Edition

TRANSLATION EDITED BY NATHAN MORRISON

WITH AN ADDED BIBLIOGRPAHY BY A.T. BHARUCHA-REID

UNIVERSITY OF OREGON

CHELSEA PUBLISHING COMPANY NEW YOURK

Probability Measure Challenge

Let $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ for some natural number n be a discrete sample space of your choice. Can you build a probability measure μ on Ω ?

Important Missing Concepts

Some important set-theoretic stuff that were deliberately left out but that are important include:

- 1. Cartesian product
- 2. Composition of maps
- 3. Equivalence classes
- 4. Indexing sets

However, we'll have the opportunity to introduce them as we go along at the right time!

26

Where should you focus?

4 **Sets** (pages 81 - 109) 6 **Functions** (pages 157 - 189)

What else could be helpful?

2 **Logic** (pages 9 - 36)

"All mathematics courses are difficult. It takes hard work and patience to learn mathematics. Rote memorization does not work." Harris Kwong