ALGEBRA RELACIONAL

1.- Lenguaje relacional: Algebra Relacional.

Un Lenguaje Relacional es aquél que cubre tres aspectos :

- La Definición de los Datos (DDL- Data Definition Language), tambien llamado Esquema Relacional.
- La Manipulación de los Datos (DML), constituido por instrucciones basadas en el Algebra Relacional
- El Control y Seguridad de los datos.

2. ALGEBRA RELACIONAL: DEFINICION.

El álgebra relacional es un sistema cerrado de operaciones definidas sobre tablas. Es decir, tanto los operandos como los resultados son tablas.

Esto permite construir fórmulas o expresiones combinando unas operaciones con otras, de manera que los resultados de unas sean operando de otras.

Con más precisión:

Dado un conjunto de dominios, $D=(\ D_1,\ D_2,\ \dots,\ D_n\)$, sea R el conjunto de todas las tablas posibles que se puedan construir sobre D. El álgebra relacional es un sistema formado por R y unos operadores cuyos operandos y resultados también pertenecen a R.

3. OPERADORES DEL ALGEBRA RELACIONAL.

Sean R y S dos tablas de Grado "m" y "n", donde R tiene "x" tuplas y S tiene "y" tuplas

3.1. Proyección $P(A_1, A_2, ..., A_k)$ R

Proyección de la tabla R sobre los atributos A_1 , A_2 , ..., A_k con $k \le n$.

El resultado es una tabla que se forma extrayendo de la relación R los atributos o columnas A_1 , A_2 , , A_k , y eliminando luego las tuplas que resulten repetidas, si las hay.

3.2. Selección S(Condición) R

Selección de la tabla R de acuerdo con la <Condición>.

El resultado es una tabla que se forma extrayendo de la tabla R todas las tuplas que cumplan la Condición expresada. Esta Condición se construye con operandos que pueden ser constantes, o atributos de R, ligados entre sí por los operadores definidos sobre los respectivos dominios.

Vamos a suponer que son operadores aritméticos (+, -, *, /, **), de comparación (<, =, > >=, < =, <), y lógicos (AND, OR, NOT, ...).

3.3. Producto Cartesiano $(R \times S)$.

El resultado incluye a todas las tuplas posibles que se obtienen concatenando cada una de las tuplas de R con todas y cada una de S. Para que se pueda hacer el producto cartesiano se debe cumplir:

- R y S pueden ser tablas cualesquiera.
- El Número máximo de Tuplas será x por y.

3.4. Yunción o JOIN.

Yunción de R y S sobre las columnas "i" de R y "j" de S ($\mathbf{R} * \mathbf{S} (\mathbf{i} = \mathbf{j})$).

Sean dos relaciones R y S que tienen algunos atributos comunes. La yunción es el resultado de:

- Concatenar todas las tuplas de R y S. (es decir, hallar el producto cartesiano de R x S).
- Seleccionar de entre estas tuplas concatenadas las que tengan iguales valores en sus columnas "i" y "j"
- Suprimir una de las dos columnas ("i" o "j")

Un caso especial de yunción es la yunción natural. Se aplica cuando las relaciones R y S tienen un solo atributo o columna en común (y que en la mayoria de los casos, coincide con clave principal y/o clave foránea, de las relaciones R y S). En este caso, la notación es R * S.

La yunción es asociativa y conmutativa.

3.5. Unión $(R \cup S)$

El resultado es una tabla que incluye a todas las tuplas de R más todas las de S, y ninguna más. Si hubiera alguna repetida en R y S, sólo figurará una vez en el resultado. Para que se pueda hacer la unión se debe cumplir:

- R y S deben ser tablas del mismo grado (m = n).
- El Número máximo de Tuplas será x + y.

3.6. Diferencia (R - S)

El resultado es una tabla que incluye a todas las tuplas de R que no están en S. Para que se pueda hacer la diferencia se debe cumplir:

- R y S deben ser tablas del mismo grado (m = n).
- El Número máximo de tuplas será x .

3.7. Intersección $(R \cap S)$.

El resultado es una tabla que incluye a todas las tuplas de R que también están en S. Para que se pueda hacer la diferencia se debe cumplir:

- R y S deben ser tablas del mismo grado (m = n).
- El Número máximo de Tuplas será x .

3.8. *División* (*R* / *S*)

Sean R y S tablas de grado (m +n) y (n), respectivamente. Supongamos que S no está vacía.

Se define la División entre R y S, como el conjunto de todas las tuplas de grado m tales que, al concatenarlas con todas las tuplas de S, producen todas las tuplas contenidas en R (y posiblemente algunas más).

Es decir, se incluyen en (R / S) las partes izquierdas X de todas las tuplas de R tales que al hallar $((R / S) \times S)$ se obtengan tuplas < X, Y> que están contenidas en R.

O sea, <X> se incluye en (R / S) si y sólo si <X> x S \subseteq R (el signo \subseteq significa «contenido en », el contenido puede ser igual).

Se utiliza para obtener las partes "X" de las tuplas de R que concatenan en sus partes "Y" con todas las tuplas de S.

R2	Α	В	C	D
	a a b e	b	c e e c e d	d f f
	e	d	e	f
	a	b	d	e

S2	С	D
	c e	d f

R2/S2	A	В
	a e	b d