IC - Atividade 02

Nome: Jonathan Cândido da Silva Rodrigues

1) Regressão linear com uma variável

Foi implementado o algorítimo em python, para regressão linear o algorítimo possui dois métodos de execução, com o limite de iterações ou utilizando um erro aceitável (diferença entre o último custo é o atual) para a convergência do gradiente descendente.

1.1) Plotando os dados

1.2) Gradiente descendente

Utilizando o método de convergir a partir de uma diferença de erro setado como 0.00001, foram necessários 1750 iterações chegando ao erro médio quadrático de 4.47973 testando com uma diferença de erro menor o aumento do número de iterações não justifica o custo computacional.

Erro Quadrático Médio: 4.47973 h(x) = -3.72204 + 1.17558 * x

2) Regressão linear com múltiplas variáveis

Foi implementado o algorítimo em python, para regressão linear com múltiplas variáveis o algorítimo possui dois métodos de execução, com o limite de iterações ou utilizando um erro aceitável (diferença entre o último custo é o atual) para a convergência do gradiente descendente.

2.1) Gradiente descendente

Foi utilizado diversas taxas de aprendizado para tentar entender melhor como esta taxa afeta no decaimento do custo, foi utilizado 1000 iterações como limite em todos os testes.

 $h(x_1,x_2) = 340412.65957 + 109447.79647 * X_1 -6578.35485*X_2$ Erro Quadrático Médio = 2,043280050*10⁹

 $h(x_1,x_2)$ = 340397.96354 + 108742.65878 * X_1 -5873.23244 * X_2 Erro Quadrático Médio = 2,043500887 *10⁹

 $h(x_1,x_2)$ = 215244.33041 + 61294.32429 * X_1 + 19984.00503 * X_2 Erro Quadrático Médio = 1,0689542975 * 10⁹

 $h(x_1,x_2) = 323540.80085 + 93493.31659 * X_1 + 8431.93217 * X_2$

Foram utilizadas 4 taxas de aprendizados diferentes para se observar, é possível concluir que todos convergem, porém, quando a taxa de aprendizado é maior a convergência acontece mais rapidamente, entretanto para os valores de aprendizado 0.001 é 0.003 é possível perceber que seria necessário mais do que 1000 iterações para convergir.

2.3) Veja que agora não é possível traçar o ajuste linear como no exercício anterior. Por quê?

Não é possível traçar o ajuste linear, pois a função é $h(x0,x1) = \Theta0*X0 + \Theta1*X1 + \Theta2*X2$, ou seja, o resultado está relacionado a duas variáveis distintas, tornando-se um plano de solução e não mais uma reta assim não se tornando possível plotar em um gráfico 2D.

3) Equação Normal

 $h(x_1,x_2) = 89597.90954 + 139.21067 * x_1 - -8738.01911 * x_2$ Erro Quadrático Médio = 2,043280050*10⁹

Ao compararmos os resultados do modelo iterativo com os resultados da abordagem exata, podemos concluir que o Erro Quadrático Médio foi muito próximo entre às duas abordagens, ou seja, o modelo da regressão linear se aproximou da abordagem analítica da equação normal.