Dafny, 2005, How Do Hospitals Respond to Price Changes?

Wonjun Choi

August 31, 2022

Wonjun Choi August 31, 2022 1/1

Dafny, 2005, AER

- How do hospitals respond to price changes?
 - ((Understanding supply function in hospital market))
 - ((Do they differ by ownership type?))
- Understand the behavior of hospitals related to profit.
 - ((Their profit-seeking behaviors differ by Ownership types/Financial status, etc))
- Exploits exogenous price change due to the policy change in 1988.
 - Fundamental problem of demand/supply estimation?
- In a nutshell,

Hospital Behavior = $\alpha \cdot \text{Price Change } + X'\beta + u$

Wonjun Choi August 31, 2022 2 / 17

Dafny, 2005, AER

<Simplified Table Here >

Finding here

Wonjun Choi August 31, 2022 3

Prospective Payment System (PPS)

• Under PPS, implemented in 1984, Hospitals receive a pre-determined fixed amount of money for a given DRG from Medicare:

$$P_{hd} = P_h \cdot (1 + IME_h) \cdot (1 + DSH_h) \cdot DRG \text{ weight}_d$$

```
((Most of the variation of P_{hd} comes from DRG weight.))
((DRG weighted is recalibrated annually by a central authority (HCFA) reflecting average cost change))
```

- 1% increase in average case weight is associated with an additional 930 million in annual Medicare payments to hospitals.
- Incentive to 'upcoding' ('Nominal')
- P_{hd} is low relative to actual costs \Rightarrow Reduce admission of d ('Real')

Wonjun Choi August 31, 2022 4 / J

How DRG looks like

473 DRG codes in 1987

Example:

Code	Code Description			
82	Traumatic stupor and coma > 1 hour with MCC			
83	Traumatic stupor and coma > 1 hour with CC			
84	Traumatic stupor and coma > 1 hour w/o CC/MCC			
85	Traumatic stupor and coma < 1 hour with MCC			
86	Traumatic stupor and coma < 1 hour with MCC			
87	Traumatic stupor and coma < 1 hour w/o CC/MCC			

https://www.aapc.com/codes/drg-codes-range/2/40

Table: DRG code 082-087 in 2022

```
((Explain DRG weight: top-code has a greater weight))
((Explain upcoding))
```

Wonjun Choi August 31, 2022

Policy Change in 1988

No more "age 69 and below / 70 and above"

Example:

DRG code	Desc. in 1987	Desc. in 1988
96	Bronchitis and asthma age $>$ 69 and/or CC	B&A age > 17 with CC
97	B&A age 18-69 w/o CC	B&A age $> 17 \text{ w/o CC}$
DRG code	weight in 1987	weight in 1988
96	0.8446	0.9894
97	0.7091	0.7151

Wonjun Choi August 31, 2022

Policy Change in 1988

Consider assigning DRG code 69 and 70:

$$\Rightarrow \begin{cases} \mathsf{DRG}\ 96: \ \mathsf{more}\ \mathsf{risky}\ (\because\ \mathsf{proportion}\ \mathsf{of}\ 70+/\mathsf{CC}\ \uparrow) \\ \mathsf{DRG}\ 97: \ \mathsf{less}(?)\ \mathsf{risky}\ (\mathsf{why?}\ \mathsf{maybe}\ \mathsf{upcoding/recalibration?}) \end{cases}$$

Wonjun Choi August 31, 2022 7/

Two Questions

```
((For whatever reason))
As a result of the policy reform,
```

```
\begin{cases} \mathsf{DRG} \; \mathsf{weights} \; \mathsf{of} \; \mathsf{top} \; \mathsf{codes} \; \uparrow \\ \mathsf{DRG} \; \mathsf{weights} \; \mathsf{of} \; \mathsf{bottom} \; \mathsf{codes} \; \downarrow \end{cases} \Rightarrow \mathsf{Spread} \; \Uparrow
```

In response,

- 1. did hospitals increase their upcoding practices?
- 2. did hospitals change their intensity of care/admission volumes?

Wonjun Choi August 31, 2022

8 / 17

Data

- 1985-1991 ((3 years before and after the policy change))
- 20-percent Medicare Provider Analysis and Review (Med-PAR)
 - Patient demographics, DRG code, length of stay, number of surgeries, hospital identification number.
- DRG weights
- Medicare Cost Reports
 - Hospital financial data
- Annual Survey of Hospitals by the American Hospital Association
 - Hospital characteristics.

Wonjun Choi August 31, 2022 9 / 17

TABLE 2—DESCRIPTIVE STATISTICS

	DRG pair-year			Hospital-year		
Unit of observation	N	Mean	SD	N	Mean	SD
Price (DRG weight)	650	1.12	0.62	36651	1.27	(0.19)
Admissions per cell	650	10624	(15013)	36651	373	(389)
Nominal responses						
Fraction(young) in top code	650	0.66	(0.14)			
Fraction(old) in top code	650	0.85	(0.15)			
Real responses						
Mean cost (\$)	650	9489	(6230)	36169	12272	(5692)
Mean LOS (days)	650	9.37	(3.32)	36651	8.81	(2.21)
Mean surgeries	650	1.15	(0.69)	35897	1.21	(0.55)
Mean ICU days	650	0.51	(0.65)	28226	0.81	(0.59)
Death rate	650	0.06	(0.06)	34992	0.06	(0.02)
Mean admissions	650	31806	(25822)	36651	778	(538)
Instruments			` ′			`
Δ spread	650	0.20	(0.16)			
Δ spread · post	650	0.12	(0.16)			
$\Delta \ln(\text{Laspeyres price})$	650	0.03	(0.06)			
$\Delta \ln(\text{Laspeyres price}) \cdot \text{post}$	650	0.01	(0.05)			
Share CC			. /	36651	0.09	(0.03)
Share CC · post				36651	0.05	(0.05)

Wonjun Choi August 31, 2022

Nominal Response (Upcoding)

```
spread_{pt} = DRG weight in top code_{pt} -DRG weight in bottom code_{pt} fraction_{pt} = \alpha + \sigma pair_p + \delta year_t + \psi \Delta spread_{p.88-87} \cdot post + \epsilon_{pt}
```

- p: pair of codes, 95 pairs
- t: 1988-1991
- fraction_{pt}: the fraction of the top-coded in each pair p
- Estimate for each young (69-) and old (70+) group

Wonjun Choi August 31, 2022 11 / 17

Nominal Response (Upcoding)

Table 3—Effect of Policy Change on Upcoding (N = 650)

	Fraction(young) mean = 0.66	Fraction(old) mean = 0.85
Δ spread ₈₈₋₈₇ · post	0.077*** (0.016)	0.108*** (0.015)
Fraction(young) $_{87}$ · post	(0.010)	0.731*** (0.020)

Figure: Estimation results of nominal responses

* For detailed results, refer to Table 3 & 4 of the paper.

Wonjun Choi August 31, 2022 12 / 17

Real Response

$$\begin{array}{lll} L_{138/139,1988} & = & \frac{p_{138,88} \cdot N_{138,87} + p_{139,88} \cdot N_{139,87}}{N_{138,87} + N_{139,87}} \\ \ln(\textit{price})_{\textit{pt}} & = & \alpha + \sigma \textit{pair}_{\textit{p}} + \delta_{\textit{y}} \textit{ear}_{\textit{t}} + \kappa_{1} \Delta \ln(\textit{L})_{\textit{p},88,87} \cdot \textit{post} \\ & + \zeta \textit{pair}_{\textit{p}} \cdot \textit{year} + \epsilon_{\textit{pt}} \\ \ln(\textit{hospital})_{\textit{pt}} & = & \alpha + \sigma \textit{pair}_{\textit{p}} + \delta_{\textit{y}} \textit{ear}_{\textit{t}} + \kappa_{2} \Delta \ln(\textit{L})_{\textit{p},88,87} \cdot \textit{post} \\ & + \zeta \textit{pair}_{\textit{p}} \cdot \textit{year} + \epsilon_{\textit{pt}} \end{array}$$

- $L_{p.88}$: Laspeyres price to correct composition change
- κ_2/κ_1 : price \to outcome where price is instrumented by $\Delta \ln L$

Wonjun Choi August 31, 2022 13 / 17

Real Response

Table 5—Real Responses to Changes in DRG Prices (N=650)

	Dependent variable						
	In(cost) mean = \$9,489	ln(LOS) mean = 9.37	ln(surgeries) mean = 1.15	ln(ICU days) mean = 0.51	ln(death rate) mean = 0.06	ln(volume) mean = 31,806	
Reduced form							
Δ ln(Laspeyres price) · post	-0.207	0.073	0.009	-0.642	-0.381	0.245	
	(0.133)	(0.146)	(0.158)	(0.380)	(0.352)	(0.272)	
IV estimate							
In(price)	-0.223	0.079	0.009	-0.694	-0.412	0.265	
*	(0.147)	(0.157)	(0.171)	(0.425)	(0.383)	(0.285)	

Wonjun Choi August 31, 2022 14

Discussion

- What is the impact of upcoding on the economy?
- Then how do hospitals seek profit without changing their medical practice?

Wonjun Choi August 31, 2022

15 / 17

Conclusion

The study found, by using the exogenous price shock, ...

 Hospitals do "upcoding" more for the DRG pairs that have a higher spread.

• Hospitals do not seem to change their medical practice just for cost.

Wonjun Choi August 31, 2022

16 / 17

References

Dafny, 2005, How do hospitals respond to price changes, American Economics Review

Wonjun Choi August 31, 2022 17 / 17