算特的基本运算.					
$\left[\frac{\partial}{\partial x}, f(x)\right] \Psi = \frac{\partial}{\partial x} \left(f(x) \psi \right) - f(x)$	(3 this)				
$= \frac{\partial f}{\partial x} \psi + f \cdot \frac{\partial v}{\partial x}$,				
$=\frac{9^{\times}}{2}$ $\frac{4^{\times}}{4}$	- † <u>9x</u>				
$= \frac{\partial f}{\partial x} \psi$					
$\Rightarrow \left[\frac{\partial x}{\partial x}, \int (x) dx\right] = \frac{\partial x}{\partial x}$					
特例 [☆, x] = 專作	栈.				
特例 $\begin{bmatrix} \frac{1}{2x}, x \end{bmatrix} = 1$ $\begin{bmatrix} \frac{1}{2x}, f(x) \end{bmatrix} = \frac{\frac{1}{2x}(f(x))}{\frac{1}{2x}} + \frac{\frac{1}{2x}(f(x))}{\frac{1}{2x}(f(x))}$					
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	导数.				
×. 运算规则.					
[A, B+c] = [A,B]+[A,C]					
[A,BC] = B[A,C] + [A,					
[AB,C] = A[B,C] +[A	J. C] B.				
→. 填精的逆					
A 41 = φ					
=> A - 4 = 4 3					
	運管				
$A A^{-1} = I$					
★ 算符程置					
$\int \Psi^* \left(\widetilde{o} \varphi \right) d\vec{x} = \int \varphi o \Psi^* d\vec{x}$					
$(\Psi, \tilde{O} \varphi) = (\varphi^*, o \Psi^*) = ($	O*\(\psi, \(\psi\)				
e.g. $\int \varphi \frac{\partial}{\partial x} \psi^* dx = \int \varphi d\psi^*$	= 4 1/4 = 3	l _x γ dx			
	本郷を みの				
	$= -\int_{-\infty}^{\infty} \Psi^{x} \frac{\partial}{\partial x} \Psi dx$	•			
$ta. \frac{\partial}{\partial x} = -\frac{\partial}{\partial x}$					
9 x 9 X					

定义, 厄密 关•枢. 0+ = (õ)*	($\widehat{\mathcal{O}}^* = \widehat{\mathcal{O}}^*$)		
	4. 0×4) = (04,4)		
。是Herrit 算符.(Y1,0	φ)=(04,φ) => 0+=0	7	
证明. Px ⁺ = Px, 即;			
$\int_{x} = > -\frac{1}{x} \frac{\partial}{\partial x}$	$\widehat{p}_{x} = i \hbar \frac{\partial}{\partial x}$ $(\widetilde{p}_{x})^{*} = -i \hbar \frac{\partial}{\partial x} = p_{x}^{-1} =$	Px.	