Mathématiques : Devoir maison n° 1

Thomas Diot, Jim Garnier, Jules Charlier, Pierre Gallois ${\bf 1E1}$

Problème 1 - Logique de Lukasiewicz

1)

Soient P, Q, R trois assertions.

a) Commutativité du "et" :

P	Q	$P \wedge Q$	$Q \wedge P$
V	V	V	V
V	F	\mathbf{F}	F
l V	I	I	I
F F	V	\mathbf{F}	F
F	F	\mathbf{F}	F
F	I	\mathbf{F}	F
I	V	I	I
I	F	\mathbf{F}	F
I	I	I	I

On observe bien que les colonnes $P \wedge Q$ et $Q \wedge P$ sont identiques, donc ces deux assertions sont équivalentes.

b) Associativité du "et" :

P	Q	R	$P \wedge Q$	$Q \wedge R$	$(P \wedge Q) \wedge R$	$P \wedge (Q \wedge R)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	V	I	V	I	I	I
V	F	V	F	F	\mathbf{F}	\mathbf{F}
V V V V V	F	F	F	F	F	F
V	F	I	F	F	F	F
V	I	V	I	I	I	I
V	I	F	I	F	\mathbf{F}	F
	I	I	I	I	I	I
F	V	V	F	V	F	F
F	V	F	F	F	F	F
F	V	Ι	F	I	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F
F	F	I	F	F	F	F
F	I	V	F	I	F	F
F	I	F	F	F	F	F
F	I	I	F	I	F	F
I	V	V	I	V	I	I
I	V	F	I	F	F	F
I	V	I	I	I	I	I
I	F	V	F	F	F	F
I	F	F	F	F	\mathbf{F}	F
I	F	I	F	F	F	F
I	I	V	I	I	I	I
I	I	F	I	F	F	F
I	I	I	I	I	I	I

On observe bien que les colonnes $(P \wedge Q) \wedge R$ et $P \wedge (Q \wedge R)$ sont identiques, donc ces deux assertions

sont équivalentes.

c) Lois de Morgan:

P	Q	$P \lor Q$	$\neg P$	$\neg Q$	$\neg (P \lor Q)$	$(\neg P) \wedge (\neg Q)$
V	V	V	F	F	F	F
V	F	V	F	V	F	\mathbf{F}
V	I	V	F	I	F	\mathbf{F}
F	V	V	V	F	F	\mathbf{F}
F	F	F	V	V	V	V
F	Ι	I	V	I	I	I
I	V	V	I	F	F	\mathbf{F}
I	F	I	I	V	I	I
I	I	I	I	I	I	I

Les deux dernières colonnes sont identiques, donc $\neg(P \lor Q) \iff (\neg P) \land (\neg Q)$.

P	Q	$P \wedge Q$	$\neg P$	$\neg Q$	$\neg (P \land Q)$	$(\neg P) \lor (\neg Q)$
V	V	V	F	F	F	F
V	F	F	F	V	V	V
V	I	I	F	I	I	I
F	V	F	V	F	V	V
F	F	F	V	V	V	V
F	I	F	V	I	V	V
I	V	I	I	F	I	I
I	F	F	I	V	V	V
I	I	I	I	I	I	I

Les deux dernières colonnes sont identiques, donc $\neg(P \land Q) \iff (\neg P) \lor (\neg Q)$. On a bien montré que les lois de Morgan restent vérifiées dans \mathcal{L}_3 .

d) On a:

$$\begin{array}{ccc} P \vee Q & \Longleftrightarrow & \neg(\neg P \wedge \neg Q) \\ & \Longleftrightarrow & \neg(\neg Q \wedge \neg P) \\ & \Longleftrightarrow & Q \vee P \end{array}$$

On a ensuite :

$$\begin{split} (P \lor Q) \lor R &\iff \neg (\neg (P \lor Q) \land \neg R) \\ &\iff \neg ((\neg P \land \neg Q) \land \neg R) \\ &\iff \neg (\neg P \land (\neg Q \land \neg R)) \\ &\iff P \lor (Q \lor R) \end{split}$$

L'associativité et la commutativité sont donc aussi vérifiées pour la disjonction.

2)

Soient P, Q, R trois assertions.

	P	Q	$\neg P$	$P \Rightarrow Q$	$(\neg P) \lor Q$
	V	V	F	V	V
	V	F	F	F	\mathbf{F}
	V	I	F	I	I
-)	F	V	V	V	V
a)	F	F	V	V	V
	F	I	V	V	V
	Ι	V	I	V	V
	Ι	F	I	I	I
	I	I	I	V	I

Les deux dernières colonnes ne sont pas identiques, donc les assertions $(P \Rightarrow Q)$ et $((\neg P) \lor Q)$ ne sont pas équivalentes dans \mathcal{L}_3 .

	P	Q	$\neg P$	$\neg Q$	$P \Rightarrow Q$	$(\neg Q) \Rightarrow (\neg P)$
	V	V	F	F	V	V
	V	F	\mathbf{F}	V	F	F
	V	I	F	I	I	I
b)	F	V	V	F	V	V
b)	F	F	V	V	V	V
	F	I	V	I	V	V
	I	V	I	F	V	V
	I	F	I	V	I	I
	I	I	I	I	V	V

Les deux dernières colonnes sont identiques, donc on a $(P \Rightarrow Q) \iff ((\neg Q) \Rightarrow (\neg P))$. La méthode de démonstration par contraposition est donc toujours valable dans \mathcal{L}_3 .

	P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$P \Rightarrow R$
	V	V	V	V	V	V	V
	V	V	F	V		\mathbf{F}	F
	V	V	Ι	V	F I	I	I
	V	\mathbf{F}	V	F	V	\mathbf{F}	V
	V	\mathbf{F}	F	F	V	\mathbf{F}	F
	V	\mathbf{F}	Ι	F	V	\mathbf{F}	I
	V	Ι	V	I	V I	I	V
	V	Ι	F	I	I	I	F
	V	Ι	Ι	I	V	I	I
	F	V	V	V	V	V	V
	F	V	F	V	F	\mathbf{F}	V
	F	V	Ι	V	F I V	I	V
۵)	\mathbf{F}	F	V	V	V	V	V
c)	F	\mathbf{F}	F	V V V	V	V	V
	F	F	Ι		V	V	V
	F	Ι	V	V V V	V I	V	V
	F	Ι	F	V	I	I	V
	F	Ι	Ι	V	V	V	V
	I	V	V	V V	V	V	V I
	I	V	F	V	F I	F I	I
	I	V	Ι	V	I	I	V
	I	F	V	I	V	I	V
	I	F	F	I	V	I	V I
	I	F	I	I	V	I	V
	I	Ι	V	V	V	V	V
	I	Ι	F	V	I	I	I
	I	Ι	I	V	V	V	V

3)

Soient P,Q deux assertions.

	P	Q	$\neg P$	$P \vee (\neg P)$
	V	V	F	V
	V	F	F	V
	V	I	F	V
۵)	F F	V	F F V	V
a)	F	F	V	V
	F	I V	V	V
	Ι	V	I	I
	Ι	F	I	I
	Ι	I	I	I

On observe trois cas où l'assertion $P \vee (\neg P)$ a la valeur de vérité "I". Ce n'est donc pas une tautologie dans \mathcal{L}_3 .

	P	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
	V	V	V	V	V
	V	F	F	F	V
	V	I	I	I	V
h)	F	V	V	F	V
b)	F	F	V	F	V
	F	Ι	V	F	V
	Ι	V	V	I	V
	Ι	F	I	I	I
	I	I	V	I	V

On observe un cas où la valeur de vérité de $(P \land (P \Rightarrow Q)) \Rightarrow Q$ est "I". Le principe d'inférence ne vaut donc plus dans \mathcal{L}_3 .

	P	Q	$P \Rightarrow Q$	$\neg P$	$(\neg P) \Rightarrow Q$	$(P \Rightarrow Q) \land ((\neg P) \Rightarrow Q)$	$((P \Rightarrow Q) \land ((\neg P) \Rightarrow Q)) \Rightarrow Q$
	V	V	V	F	V	V	V
	V	F	F	\mathbf{F}	V	${ m F}$	V
	V	I	I	\mathbf{F}	V	I	V
-)	F	V	V	V	V	V	V
c)	F	F	V	V	\mathbf{F}	${f F}$	V
	F	Ι	V	V	I	I	V
	Ι	V	V	I	V	V	V
	Ι	F	I	I	I	I	I
	Ι	I	V	I	V	V	I

Dans deux cas l'assertion $((P \Rightarrow Q) \land ((\neg P) \Rightarrow Q)) \Rightarrow Q$ prend la valeur de vérité "I". Ce n'est donc pas une tautologie dans \mathcal{L}_3 .

Problème 2 - Triangles magiques

Partie A - Questions Préliminaires

On cherche à encadrer la somme S = a + b + c quand a, b et c sont des entiers distincts entre 1 et 9. Sans perte de généralité, supposons que a < b < c: c'est possible, car les trois entiers sont distincts et peuvent être intervertis si l'ordre n'est pas respecté.

Borne inférieure pour S: On remarque que $6 \le S$, en prenant S = 1 + 2 + 3. Prouvons que cette valeur est minimale. Pour minimiser S, on doit choisir a = 1, sinon S' = (a - 1) + b + c serait plus petite. Par le même raisonnement, on doit choisir b = 2 et c = 3, car a, b, c sont distincts. Donc 6 est bien la plus petite valeur que peut prendre S.

Borne supérieure pour S : On raisonne de la même manière. Afin de maximiser S, on doit choisir c = 9, $\overline{\text{sinon } S' = a + b + (c + 1)} > S$. Comme b < c, il s'ensuit qu'on a nécessairement b = 8 et enfin a = 7.

Ainsi la valeur maximale que peut prendre S est S = 7 + 8 + 9 = 24.

Conclusion: $6 \le S \le 24$.

Partie B - Les triangles magiques

1)

Le triangle suivant est 20-magique :

2)

a) Comme $S = n_1 + n_2 + n_3 + n_4 = n_4 + n_5 + n_6 + n_7 = n_7 + n_8 + n_9 + n_1$, on somme les trois valeurs pour trouver :

$$3S = (n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9) + (n_1 + n_4 + n_7)$$

Comme les nombres n_1, \ldots, n_9 sont les nombres de 1 à 9 dans le désordre, leur somme vaut $1+2+\cdots+9=45$. De plus, n_1, n_4 et n_7 sont les nombres aux sommets du triangle. Donc $n_1+n_4+n_7=T$. On trouve donc enfin :

$$3S = 45 + T \tag{1}$$

b) Avec la partie A, on sait que T, étant la somme de trois entiers entre 1 et 9, a l'encadrement $6 \le T \le 24$. Donc $\frac{6+45}{3} \le S \le \frac{24+45}{3}$, ce qui donne $17 \le S \le 23$.

c) Les couples (S, T) possibles sont :

\mathbf{S}	T
17	6
18	9
19	12
20	15
21	18
22	21
23	24
19 20 21 22	12 15 18 21

Où les valeurs de T sont calculées avec (1) en fonction de celles de S

3)

Comme le triangle recherché est 17-magique, alors T=6. Donc T=1+2+3 et les nombres sur les sommets doivent être 1, 2 et 3. On trouve donc le triangle 17-magique suivant :

5

4)

On prouve d'abord le lemme suivant, qui sera utile dans le reste du sujet.

Lemme. Si un triangle est S-magique et que le nombre n = S - T est compris entre 1 et 9, alors n est sur l'un des sommets du triangle.

Proof. On se place dans les conditions de l'énoncé. Prouvons par l'absurde que n est sur le triangle, en supposant qu'il se trouve sur l'un des côtés mais pas sur les sommets. Notons a, b les extrémités du côté sur lequel se trouve n et x le dernier nombre de ce côté.

Par hypothèse, a+b+x+n=S. Donc a+b+x=T car n=S-T. Comme a et b sont fixés, x doit être égal au nombre qui se trouve sur le 3e sommet du triangle. C'est une contradition, car tous les nombres d'un triangle S-magique sont distincts. Donc n est sur un sommet du triangle.

Ainsi, si un triangle 18-magique existe, alors 9 doit se trouver sur l'un des sommets du triangle. Mais comme T=9, la somme des deux autres nombres sur les sommets du triangle doit valoir 0, ce qui est impossible. Donc il n'existe pas de triangle 18-magique.

5)

- a) Par le lemme ci-dessus, comme 19-12=S-T=7, 7 doit se trouver sur l'un des sommets du triangle.
- b) Le triangle suivant est 19-magique:

6)

Remplaçons chaque $n_i, i \in [1, 9]$ par $n_i' = 10 - n_i$. Cette transformation est valide : les entiers n_i' sont toujours compris entre 1 et 9, et restent distincts. Si la somme des nombres d'un côté vaut S, la somme des n_i' de ce côté est 40-S. Donc, si un triangle est S-magique, alors il existe un triangle (40-S)-magique.

7)

On a prouvé qu'il existe des triangles 20, 17 et 19-magiques. D'après 6), il existe donc des triangles 23 et 21-magiques. On a aussi prouvé qu'il n'existe pas de triangle 18-magique. Reste enfin le cas S=22.

Par la contraposée de 6), s'il n'existe pas de triangle 40-22=18-magique, alors il n'existe pas de triangle 22-magique. Comme il n'existe pas de triangle 18-magique, il n'existe pas de triangle 22-magique. " On résume donc les valeurs de S pour lesquelles il existe un triangle S-magique dans le tableau suivant :

S	T	Existe
<17	<6	Non
17	6	Oui
18	9	Non
19	12	Oui
20	15	Oui
21	18	Oui
22	21	Non
23	24	Oui
>23	>24	Non

Sources

- \bullet Le site de l'APMEP pour les images de triangles complétés, afin de ne pas avoir à les faire avec LATEX
- https://www.overleaf.com/latex/templates/template-for-rapid-homework-typesetting/rycccpxphchn pour le template du devoir

Les tables de vérité de ce devoir maison ont été générées grâce à un programme de notre création disponible ici. (https://github.com/DArtagnant/automatic-latex-truth-table-builder) Celui est capable de générer les tables de vérité en LATEX de toute assertion dans \mathcal{L}_2 ou \mathcal{L}_3 .

