Feature selection and dimensional reduction

Feature selection

How would we know which feature to be selected, combined, or removed?

Feature selection

Large Dataset

- Huge amount of

features are collected

- Not all are

important

Ex: Removing / Filtering

Note: Removing carefully.

When should data be removed?

Feature selection

```
Removing features

- feature with std = 0 or variance = 0

ex. Remove 'Age' if

All students in the dataset

are in the same age / same
```

year

When should data be combined?

Feature selection

When should data be transformed or replaced?

Dimension reduction

How would we visualize the data?

Is the data perfect or noisy?

Dimension of data

- certain calculations used in analysis become much more difficult to define and calculate effectively
- distances between samples are harder to compare since all samples are far away from each other
- the difficulty of dealing with high dimensional data and as referred to as the curse of dimensionality

the number of dimensions increases,
the number of regions increases exponentially and
the data becomes increasingly sparse

Dimensional reduction

Dimensional Reduction Techniques

- Principle Component Analysis (PCA)
- Finding new mapping on to principle (significant) space (domain)
 - Eigen-based Technique

Dimensional reduction

Principle Component Analysis (PCA)

- Old representation

X-Y Coordinate

feature 1 – 2 Coordinate

- New PCA Coordinate

PC1 – PC2 Coordinate

PC1 = Eigen_Vector with max

PC2 = Eigen_Vector with 2nd

weighted sum of old coordinate

Dimensional reduction

SVD Dot_product (Singular Value (Input, **Decomposition**) **Sorted** Selected Standardized data k-Eigenvectors) k-Eigen values •Zero mean **Eigen values Eigen values** Unit variance Corresponding • Covariance Matrix k-Eigen vectors **Eigen vectors** PCA.fit() **Eigen vectors**

PCA: #1: Standardized data

Feature Coordinate

Standardized data

- •Zero mean
 •Unit variance
- Covariance Matrix

transformation of the data onto

- mean subtraction

mean = 0

- unit scale

mean=0 and

variance=1

	а	b
1	9	39
2	15	56
3	25	93
4	14	61
5	10	50
6	18	75
7	0	32
8	16	85
9	5	42
10	19	70

PCA: #1: Standardized data

Feature Coordinate

Standardized data

- •Zero mean
 •Unit variance
- Covariance Matrix

transformation of the data onto

- mean subtraction

mean = 0

- unit scale

mean=0 and

variance=1

	Н	M	Hn	Mn
1	9	39		
2	15	56		
3	25	93		
4	14	61		
5	10	50		
6	18	75		
7	0	32		
8	16	85		
9	5	42		
10	19	70		
sum	131	603		
u	13.1	60.3		
std	7.279	20.29		

#2: Covariance matrix

Feature Coordinate

Standardized data

•Zero mean
•Unit variance

• Covariance Matrix

	Н	M	Hn	Mn	Hn.Hn	Mn.Mn	Hn.Mn
1	9	39					
2	15	56					
3	25	93					
4	14	61					
5	10	50					
6	18	75					
7	0	32					
8	16	85					
9	5	42					
10	19	70					
sum	131	603					
u	13.1	60.3					
std	7.279	20.29					

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

$$cov(HH) = \frac{1}{N} \sum_{i=1}^{N} (H_i - \overline{H})(H_i - \overline{H})$$
$$cov(HM) = \frac{1}{N} \sum_{i=1}^{N} (H_i - \overline{H})(M_i - \overline{M})$$

#3: Eigen-calculation

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

Form the matrix $A - \lambda I$:

eigenvalue(C), eigenvector(C)

$$A - \lambda I = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{pmatrix}$$

PCA new coordinate

SVD (Singular Value Decomposition)

Eigen values

Eigen vectors

$$\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$$

$$\mathbf{A} \cdot \mathbf{v} - \lambda \cdot \mathbf{v} = 0$$
$$\mathbf{A} \cdot \mathbf{v} - \lambda \cdot \mathbf{I} \cdot \mathbf{v} = 0$$
$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \mathbf{v} = 0$$

Calculate $det(A - \lambda I)$:

$$\det(A - \lambda I) = (1 - \lambda) \begin{vmatrix} -5 - \lambda & 3 \\ -6 & 4 - \lambda \end{vmatrix} - (-3) \begin{vmatrix} 3 & 3 \\ 6 & 4 - \lambda \end{vmatrix} + 3 \begin{vmatrix} 3 & -5 - \lambda \\ 6 & -6 \end{vmatrix}
= (1 - \lambda) ((-5 - \lambda)(4 - \lambda) - (3)(-6)) + 3(3(4 - \lambda) - 3 \times 6) + 3(3 \times (-6) - (-5 - \lambda)6)
= (1 - \lambda)(-20 + 5\lambda - 4\lambda + \lambda^2 + 18) + 3(12 - 3\lambda - 18) + 3(-18 + 30 + 6\lambda)
= (1 - \lambda)(-2 + \lambda + \lambda^2) + 3(-6 - 3\lambda) + 3(12 + 6\lambda)
= (-2 + \lambda + \lambda^2 + 2\lambda - \lambda^2 - \lambda^3 - 18 - 9\lambda + 36 + 18\lambda)
= 16 + 12\lambda - \lambda^3.$$

To find solutions to $det(A - \lambda I) = 0$ i.e., to solve

$$\lambda^3 - 12\lambda - 16 = 0.$$

#3: Eigen-calculation

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

eigenvalue(C), eigenvector(C)

To find solutions to $det(A - \lambda I) = 0$ i.e., to solve

$$\lambda^3 - 12\lambda - 16 = 0.$$

eigenvalues of A are $\lambda = 4, -2$. ($\lambda = -2$ is a repeated root

#3: Eigen-calculation $c = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

To find solutions to $det(A - \lambda I) = 0$ i.e., to solve

eigenvalue(C), eigenvector(C)

$$\lambda^3 - 12\lambda - 16 = 0.$$

eigenvalues of A are $\lambda = 4, -2$. ($\lambda = -2$ is a repeated root

PCA new coordinate

SVD (Singular Value Decomposition)

Eigen values

Eigen vectors

Case 1:
$$\lambda = 4$$

$$\left(A - \lambda I \vdots \mathbf{0}\right)$$

$$\begin{array}{rcl} x_1 - 1/2x_3 & = & 0 \\ x_2 - 1/2x_3 & = & 0 \end{array}$$

$$\mathbf{x} = \begin{pmatrix} x_1 = \frac{x_3}{2} \\ x_2 = \frac{x_3}{2} \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

#3: Eigen-calculation

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

eigenvalue(C), eigenvector(C)

To find solutions to $det(A - \lambda I) = 0$ i.e., to solve

$$\lambda^3 - 12\lambda - 16 = 0.$$

eigenvalues of A are $\lambda = 4, -2$. ($\lambda = -2$ is a repeated root

Case 2:
$$\lambda = -2$$

$$\begin{pmatrix} 3 & -3 & 3 & 0 \\ 3 & -3 & 3 & 0 \\ 6 & -6 & 6 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array} \qquad \begin{array}{c} R1 \rightarrow 1/3 \times R3 \\ \longrightarrow \end{array} \qquad \begin{pmatrix} 1 & -1 & 1 & 0 \\ 3 & -3 & 3 & 0 \\ 6 & -6 & 6 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

$$\begin{pmatrix} A - \lambda I : \mathbf{0} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R2 \rightarrow R2 - 3 \times R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \qquad \begin{array}{c} R1 \\ R2 \rightarrow R2 - 3 \times R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R2 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R3 - 6 \times R1 \\ \longrightarrow \end{array} \qquad \begin{array}{c} R1 \\ R3 \rightarrow R1 - 6 \times$$

$$x_{1} + x_{2} - x_{3} = 0,$$

$$\mathbf{x} = \begin{pmatrix} x_{1} = x_{3} - x_{2} \\ x_{2} \\ x_{3} \end{pmatrix} = x_{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \quad \text{for any } x_{2}, x_{3} \in \mathbb{R} \setminus \{0\}$$

PCA new coordinate

SVD
(Singular Value Decomposition)

Eigen values

Eigen vectors

#3: Eigen-decomposition

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

eigenvalue(C), eigenvector(C)

Sorted eigen_values

Organize PCA dominant dimension

Sorted

Eigen values

Eigen vectors

```
eig_vals, eig_vecs = np.linalg.eig(C)
print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)
```

Eigenvectors

[[-0.94738969 -0.32008244] [0.32008244 -0.94738969]]

Eigenvalues

5.66607808 377.32003303]

[377.32003303, 5.66607808]

Corresponding eigen_vectors of sorted eigen_values

[[-0.32008244, -0.94738969], [-0.94738969, 0.32008244]]

Eigenvalues and eigenvectors of C
is learned (fitted) from data (H,M)
cannot be controlled
sometimes resulted in unsolvable eigenvalue

#3: Eigen-calculation

Organize PCA dominant dimension

Sorted

Eigen values

Eigen vectors

Through SVD (Singular Value Decomposition)

singular

vectors

$$C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}$$

V: $eigenvalue(C^TC)$, $eigenvector(C^TC)$

U: $eigenvalue(CC^T)$, $eigenvector(CC^T)$

 $m\begin{bmatrix} n \\ m \end{bmatrix} = m\begin{bmatrix} m \\ m \end{bmatrix} m\begin{bmatrix} n \\ n \end{bmatrix}$

Singular

values

eigenvalue = diagonal (D)
eigenvector = column vector (U)

vectors

#3: Eigen-calculation

Organize PCA dominant dimension

Sorted

Eigen values

Eigen vectors

Through SVD (Singular Value Decomposition)

```
C = \begin{bmatrix} cov(HH) & cov(HM) \\ cov(MH) & cov(MM) \end{bmatrix}
```

 $eigenvalue(C^TC)$, $eigenvector(C^TC)$

eigenvalue = diagonal (D)

eigenvector = column vector (U)

```
u,s,v = np.linalg.svd(C)
print('\nEigenvalues \n%s\n' %s)
print('Eigenvectors_u \n%s\n' %u)
print('Eigenvectors_v \n%s\n' %v)
```

```
Eigenvalues [377.32003303 5.66607808]
```

```
Eigenvectors_u
[[-0.32008244 -0.94738969]
[-0.94738969 0.32008244]]
```

```
Eigenvectors_v
[[-0.32008244 -0.94738969]
[-0.94738969 0.32008244]]
```

#4: Selecting and transforming to principle component

Through SVD (Singular Value Decomposition)


```
K = 1
u,s,v = np.linalg.svd(C)
print('\nEigenvalues \n%s\n' %s)
print('Eigenvectors_u \n%s\n' %u)
print('Eigenvectors v \n%s\n' %v)
Eigenvalues
[377.32003303
                5.66607808]
Eigenvectors_u
[[-0.32008244 -0.94738969]
[-0.94738969 0.32008244]]
Eigenvectors v
[[-0.32008244 -0.94738969]
 [-0.94738969 0.32008244]]
```

PCA(i) = X (i) • [Eigen vector (pca i)]

10x1 10x2 2x1

	н	М
1	9	39
2	15	56
3	25	93
4	14	61
5	10	50
6	18	75
7	0	32
8	16	85
9	5	42
10	19	70

pca1 [[-0.32008244] [-0.94738969]]

#4: Selecting and transforming to principle component

Through SVD (Singular Value Decomposition)

X-Y coordinate

Transformed on to pca1

Organizing Data

How would we arrange data for the model?

Is the data in correct format?

Numpy array vs list

- Numpy Array
 - Numpy data structures perform better in:
 - Size less space
 - Performance faster speed
 - Functionality
 - optimize for math functions

Lists

Every new element

-> additional 8 bytes

for the reference to new object.

-> The integer object itself

consumes 28 bytes.

☐ How can we convert from Pandas dataframe to numpy array

```
import pandas as pd
import numpy as np
```

```
      a
      b
      c

      0
      21
      72
      67.1

      1
      23
      78
      69.5

      2
      32
      74
      56.6

      3
      52
      54
      76.2
```

```
df.shape

(4, 3)

df.dtypes

age int64
height int64
weight int64
dtype: object
```

☐ From Pandas dataframe to numpy array

	а	b	С
0	21	72	67.1
1	23	78	69.5
2	32	74	56.6
3	52	54	76.2

df.values() vs df.to_numpy()????

☐ From Pandas dataframe to numpy array

abc0217267.11237869.52327456.63525476.2

df.values() vs df.to_numpy()????

☐ From Pandas dataframe to numpy array

	a	b	С
0	21	72	67.1
1	23	78	69.5
2	32	74	56.6
3	52	54	76.2

df.transpose() vs df.values.transpose()????

☐ From Pandas dataframe to numpy array

abc0217267.11237869.52327456.63525476.2

df.transpose() vs df.values.transpose()????

☐ From Pandas dataframe to numpy array

	a	b	С
0	21	72	67.1
1	23	78	69.5
2	32	74	56.6
3	52	54	76.2

df.values.transpose() vs df.values.reshape()????

☐ From Pandas dataframe to numpy array

a b c 0 21 72 67.1 1 23 78 69.5 2 32 74 56.6 3 52 54 76.2

df.values.transpose() vs df.values.reshape()????

☐ From Pandas dataframe to numpy array

abc0217267.11237869.52327456.63525476.2

df.values.transpose() vs df.values.reshape()????

☐ Reshape 2D to 3D ????

df.values.reshape(1,3,4) vs df.values.reshape(3,4,1)

	а	b	С
0	21	72	67.1
1	23	78	69.5
2	32	74	56.6
3	52	54	76.2

☐ Reshape 2D to 3D ????

abc0217267.11237869.52327456.63525476.2

df.values.reshape(1,3,4) vs df.values.reshape(3,4,1)

☐ Time-series split

abc0217267.11237869.52327456.63525476.2

	а	b	С
0	21	72	67.1
1	23	78	69.5
1	23	78	69.5
2	32	74	56.6
2	32	74	56.6
3	52	54	76.2

.shape = ???

Activity: Data Preparation

☐ Time-series split

No	uts	Time Diff	х	У	Z	Туре А	Туре В
1	2019-01-17 09:14:17+07:00		2.729	-3.035	8.684	1	1
2	2019-01-17 09:14:38+07:00		2.586	-2.633	500	1	1
3	2019-01-17 09:15:02+07:00		1.67	-2.117	8.512	0	0
4	2019-01-17 09:15:26+07:00			-9.788	2.519	0	1
5	2019-01-17 09:15:48+07:00		0.241		3.03	1	0
6	2019-01-17 09:16:08+07:00		1.78		3.114	1	0
7	2019-01-17 09:16:59+07:00		1.823		4.414	0	0
8	2019-01-17 09:17:23+07:00		0.103	-8.909	5.472	0	0
9	2019-01-17 09:17:44+07:00		2.046	-2.218	8.572	0	1
10	2019-01-17 09:18:05+07:00		2.28	-2.421	8.761	0	1

- 1. Clean / Combine Data
- 2. Calculate Time diff
 What would be a problem?
- 3. What would be the shape for
 Time-series split with
 Time step = 3 / Time stride = 2?
 (#sample, #time_step, #Feature)