G.T.D. 1

Prof. MSc Jeferson José Gomes

GTD 1

GERAÇÃO HIDRELÉTRICA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES POTÊNCIA GERADA E ENERGIA PRODUZIDA

As principais variáveis de uma central hidrelétrica que atuam diretamente na potência elétrica possível de ser gerada são a altura de queda d'água e a vazão da água passando pelas turbinas. A análise energética de um aproveitamento hidrelétrico permite verificar que a energia útil será relacionada praticamente apenas com a energia potencial disponível e que a potência elétrica possível de ser obtida é dada por:

 $P = \eta_{TOT}.g.Q.H$

onde:

η_{TOT} – rendimento total do conjunto g – aceleração da gravidade (m/s²)

Q – vazão (m³/s)

H – queda bruta (m)

P – potência elétrica (kW)

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES POTÊNCIA GERADA E ENERGIA PRODUZIDA

O rendimento total η_{TOT} pode ser dado por $\eta_{TOT} = \eta_H.\eta_T.\eta_g$ sendo η_H rendimento do sistema hidráulico, η_T rendimento da turbina e η_g rendimento do gerador.

A energia produzida por essa central, durante um ano, é dada por: E = P.FCU.8.760 horas em que:

P é a potência máxima fornecida durante o ano (que pode confundir-se com a potência instalada),

FCU é o Fator de Capacidade da Usina, ou seja, a relação entre a potência média no ano e a potência máxima (de pico). 8.760 é o número de horas no ano

CÁLCULO DA VELOCIDADE ESPECÍFICA DOS DIVERSOS TIPOS DE TURBINAS

Câmpus Ponta Grossa

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Quando se escolhe uma turbina para uma dada instalação, as grandezas conhecidas são a descarga Q (vazão), a queda (H_{Top}) e o número de rotações por minuto (n).

Com esses elementos, e o arbitramento estimativo preliminar dos valores de rendimento η_T e η_H , calcula-se o valor da potência Pmec através da

Seguinte fórmula: $Pmec = 9.8.\eta_T.\eta_HQ.H_{Top}[kW]$ $n = \frac{60f}{n}$

Levando Pm à expressão (rigorosa), vem:

$$n_s = \frac{n\sqrt{Pmec(CV)}}{Htop\sqrt[4]{Htop}}$$
 Fornece o valor da velocidade específica

1CV = 736Watts

 η_T e η_H = rendimentos da Turbina e do circuito hidráulico Pmec = potência mecânica no eixo da Turbina n = velocidade nominal (RPM), Pmec (CV)

 $p = n^{o}$ de pares de polos

$$n_p = \frac{n\sqrt{Q}}{\sqrt[4]{Htop^3}}$$

 $n_p = Função$ característica (se relaciona com a rotação nominal sem necessidade de hipóteses quanto ao rendimento.

Fórmulas empíricas para obtenção de ns, nos quais aparece apenas o valor da queda Htop (ou H_d).

$$=\frac{2300}{\sqrt{H_{TOL}}}$$

 $n_s = \frac{2300}{\sqrt{H_{TOP}}}$ Francis - empírica

$$n_s = \frac{3100}{\sqrt{H_{TOP}}}$$
 Kaplan - empírica

$$n_s = \frac{2600}{\sqrt{H_{TOP}}}$$
 Hélice - empírica

$$n_s = \sqrt{ro} \frac{510}{\sqrt{Htop}}$$
 Pelton - empírica ro= número de injetores

Obs1: Estas fórmulas servem

Obs2: Quando houver uma estimativa das perdas na adução (tomada d'água e conduto forçado) deve-se utilizar sempre a altura de queda dita "Altura Disponível - H_d".

$$H_{d} = H_{Top} - H_{p}$$

$$H_{p} = \Delta H_{TA} + \Delta H_{CA}$$

$$n_s = 10^3 \cdot N \cdot \frac{Q^{1/2}}{V^{3/4}}$$

N - rotação da turbina rps

Q – vazão

Y - trabalho específico

H_p=Altura equivalente de perdas hidráulicas $\Delta \dot{H}_{TA}$ = perda hidráulica na tomada d'água (m) ∆H_{CA}= perda hidráulica no conduto forçado (m)

Tipos de turbinas e suas velocidades específicas

MODO DE OPERAR	VELOCIDADE ESPECÍFICA	TIPO DE TURBINA	ALTURA DISPONÍVEL DO			
OLEKAK	(RPM)	TORDINA	APROVEITAMENTO			
A	Até 18 rpm	Pelton 1 injetor	Até 800 m			
A	18 a 25 rpm	Pelton 1 injetor	400 a 800 m			
A	26 a 35 rpm	Pelton 1 injetor	100 a 400 m			
A	26 a 35 rpm	Pelton 2 injetores	400 a 800 m			
A	36 a 50 rpm	Pelton 2 injetores	100 a 400 m			
A	51 a 72 rpm	Pelton 4 injetores	100 a 400 m			
R	55 a 70 rpm	Francis Lentíssima	200 a 400 m			
R	70 a 120 rpm	Francis Lenta	100 a 200 m			
R	120 a 200 rpm	Francis Média	50 a 100 m			
R	200 a 300 rpm	Francis Veloz	25 a 50 m			
R	300 a 450 rpm	Francis Ultraveloz	15 a 25 m			
R	400 a 500 rpm	Hélice Veloz	Até 15 m			
R	270 a 500 rpm	Kaplan Lenta	15 a 50 m			
R	500 a 800 rpm	Kaplan Veloz	05 a 15 m			
R	800 a 1100 rpm	Kaplan Velocíssima	Até 05 m			

A – turbina de ação

R – turbina de reação

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produzida

As **perdas de carga** em tubos e acessórios podem ser calculadas com alguns métodos:

Hazen-Willians¹: é um método empírico muito utilizado, que apresenta resultados razoáveis para tubos com diâmetros de 50 mm a 3000 mm, velocidades inferiores a 3,0 m/s e escoamento com água. O sucesso de sua utilização depende, dentre outros fatores, da correta avaliação do coeficiente "C".

¹ Relação empírica desenvolvida no início do século XX e ainda bastante utilizada. Atualmente, com as facilidades de uso de planilhas computacionais, calculadoras científicas, e outros, a formulação dada por Darcy-Weisbach para cálculo de perda de carga é uma opção mais apropriada.

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produziada Perdas - Método de Hazen-Willians

$$H_{pc} = 10,643.Q^{1,85}.C^{-1,85}.D^{-4,87}.L$$

Onde:

- Q vazão [m³/s]
- H_{pc} perda de carga na tubulação forçada [m]
- C coeficiente de Hazen-Willians
- D diâmetro interno da tubulação [m]
- L comprimento da tubulação reta [m]

O coeficiente de Hazen-Willians também pode ser representado por λ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produzida Perdas de carga – método Hazen-Willian

Coeficientes de Hazen-Williams	
Tipo de Material das Tubulações.	С
Túneis em rocha sem revestimento	44
Aço corrugado	60
Ferro fundido com 30 a 40 anos de uso	80
Ferro fundido com 20 a 30 anos de uso. Aço soldado sem uso. Aço com juntas em uso.	90
Aço rebitado com 15 a 20 anos de uso	95
Ferro fundido com 15 a 20 anos de uso. Alvenaria de tijolos bem executada.	100
Aço soldado novo. Ferro fundido com 10 anos	110
Aço soldado. Ferro fundido com 10 anos de uso.	115
Concreto com acabamento comun. Ferro fundido com 5 anos de uso.	120
Aço galvanizado.	125
Ferro fundido novo. Concreto com argamassa. Aço com juntas novo. Aço soldado revestido.	130
Vidro. Plástico. Cimento. Cobre, latão, bronze.	142
Fonte: Souza Fuchs e Santos Centrais Hidro e Termelétricas - 1983	

Câmpus Ponta Grossa

UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Coeficientes de Hazen-Williams [Fonte: KSB, 2001]

Potência Gerada e Energia Produzida

Perdas de carga método Hazen-Willian

TIPO DE TUBO	IDADE/ANOS	DIÂMETRO (mm)	С	
		Até - 100	118	
	NOVO	100 - 200	120	
	NOVO	200 - 400	125	
		400 - 600	130	
		Até - 100	107	
	1.0000000	100 - 200	110	
	10 ANOS	200 - 400	113	
FERRO		400 - 600	115	
FUNDIDO PICHADO		Até - 100	89	
170111100		100 - 200	93	
	20 ANOS	200 - 400	95	
		400 - 600	100	
		Até - 100	65	
	7270.000	100 - 200	75	
	30 ANOS	200 - 400	80	
		400 - 600	85	
		Até - 100	120	
FERRO FUNDIDO	NOVO OU	100 - 200	130	
CIMENTO AMIANTO	USADO	200 - 400	135	
		400 - 600	140	
AÇO REVESTIDO	NOVO OU	500 - 1000	135	
INTERNAMENTE	USADO	> 1000	140	
2.00.00		Até 50	125	
PVC	NOVO OU USADO	50 - 100	135	
	757775	100 - 300	140	
TUBO DE CONCRETO ARM.	NOVO OU	Até 600	= fe. f. cime	
PROTENDIDO CENTRIFUG.	USADO	> 600	= aço revest	
AÇO S/ REVESTIMENTO	NOVO	= Ferro fundido no	vo pichado	
SOLDADO	USADO	Ferro fundido usado pichado		
AÇO S/ REVESTIMENTO	NOVO	= Ferro fundido com 10 anos		
REBITADO	USADO	no mín. = Ferro f. com 20 anos		

MATERIAL	C
Aço corrugado (chapa ondulada)	060
Aço com juntas "Look-Bar" novas	130
Aço galvanizado novo e em uso	125
Aço rebitado novo	110
Aço rebitado em uso	085
Aço soldado novo	120
Aço soldado em uso	090
Aço soldado com revestimento esp. novo e em uso	130
Chumbo	130
Cimento amianto	140
Cobre	130
Concreto bem acabado	130
Concreto acabamento comum	120
Ferro fundido novo	130
Ferro fundido em uso	090
Ferro fundido revestido de cimento	130
Grés cerâmico vidrado (Manilha)	110
Latão	130
Madeira em aduelas	120
Tijolos condutos bem executados	100
Vidro	140
Plástico	140

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produzida

Perdas – Método Darcy-Weisbach:

Válida para fluidos incompressíveis. Tem a seguinte forma para cálculos de perdas em trechos retos de tubos.

$$H_{pc} = f.\frac{L}{D}\frac{V^2}{2g}$$

Onde:

- f coeficiente de atrito, que vem do diagrama de Moody-Rouse
- H_{oc} perda de carga na tubulação [m]
- D diâmetro interno da tubulação [m]
- L comprimento da tubulação [m]
- V velocidade média [m/s]

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produzida P.de carga – método do comprimento equivalente

Tem como objetivo relacionar perdas de carga localizadas a perdas de tubo reto. Espera-se definir, por exemplo, que comprimento de tubo reto teria a mesma perda de carga que uma válvula (ou outro acessório) de mesmo diâmetro. A este comprimento chama-se "comprimento equivalente" (Lequivalente). Ex: um registro de gaveta aberto de 1" tem perda de carga equivalente a 0,2 m de tubo reto de 1" (ver tabela).

Câmpus Ponta Grossa

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES P.de carga – método do comprimento equivalente Comprimentos equivalentes [Fonte: KSB, 2001]

Comprimentos equivalentes a perdas localizadas. (Expressos em metros de canalização retilínea)*

			The State Control		0.50395.1205		Charles and the		ALC: NO.	Secondaria III		- 5 10 10 10 10				ZARRA CERTAS	15.			
		COTOVELO 90° RAIO LONGO	COTOVELO 90* RAIO MÉDIO	COTOVELO 90° RAIO CURTO	COTOVELO 45°	CURVA 90" R/D-11/2	CURVA 90° R/D-1	CURVA 45"	ENTRADA	ENTRADA DE BORDA	REGISTRO DE GAVETA ABERTO	REGISTRO DE CLOBO ABERTO	REGISTRO DE ANGULO ABERTO	PASSAGEM DIRETA	TÉ SAÍDA DE LADO	TÉ SAÍDA BILATERAL	VÁLVULA DE PÉ E CRIVO	SAÍDA DA CANALIZAÇÃO	VÁLVULA DE RETENÇÃO TIPO LEVE	VÁLVULA DE RETENÇÃO
DIÂM	ETRO																			
[,	En	Fi	D				_	-	-	A	H		□	₽	₩	A	7	delb	苗
mm	pol.	7	4	A		N	7	\sim							*	+		-11-	4LIP	D
13	1/2	0,3	0,4	0,5	0,2	0,2	0,3	0,2	0,2	0,4	0,1	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	1,6
19	3/4	0,4	0,6	0,7	0,3	0,3	0,4	0,2	0,3	0,5	0,1	6,7	3,6	0,4	1,4	1,4	5,6	0,5	1,6	2,4
25	1	0,5	0,7	0,8	0,4	0,3	0,5	0,2	0,3	0,7	0,2	8,2	4,6	0,5	1,7	1,7	7,3	0,7	2,1	3,2
32	1 1/4	0,7	0,9	1,1	0,5	0,4	0,6	0,3	0,4	0,9	0,2	11,3	5,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0
38	1 1/2	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	6,7	0,9	2,8	2,8	11,6	1,0	3,2	4,8
50	2	1,1	1,4	1,7	0,8	0,6	0,9	0,4	0,7	1,5	0,4	17,4	8,5	1,1	3,5	3,5	14,0	1,5	4,2	6,4
63	2 1/2	1,3	1,7	2,0	0,9	0,8	1,0	0,5	0,9	1,9	0,4	21,0	10,0	1,3	4,3	4,3	17,0	1,9	5,2	8,1
75	3	1,6	2,1	2,5	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,6	5,2	5,2	20,0	2,2	6,3	9,7
100	4	2,1	2,8	3,4	1,3	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	6,7	23,0	3,2	6,4	12,9
125	5	2,7	3,7	4,2	1,9	1,6	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	16,1
150	6	3,4	4,3	4,9	2,3	1,9	2,5	1,1	2,5	5,0	1,1	51,0	26,0	3,4	10,0	10,0	39,0	5,0	12,5	19,3
200	8	4,3	5,5	6,4	3,0	2,4	3,3	1,5	3,5	6,0	1,4	67,0	34,0	4,3	13,0	13,0	52,0	6,0	16,0	25,0
250	10	5,5	6,7	7,9	3,8	3,0	4,1	1,8	4,5	7,5	1,7	85,0	43,0	5,5	16,0	16,0	65,0	7,5	20,0	32,0
300	12	6,1	7,9	9,5	4,6	3,6	4,8	2,2	5,5	9,0	2,1	102,0	51,0	6,1	19,0	19,0	78,0	9,0	24,0	38,0
350	14	7,3	9,5	10,5	5,3	4,4	5,4	2,5	6,2	11,0	2,4	120,0	60,0	7,3	22,0	22,0	90,0	11,0	28,0	45,0

^{*} Os valores indicados para registros de globo, aplicam-se também às torneiras, válvulas para chuveiros e válvulas de descarga

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANA

ESQUEMAS, PRINCIPAIS TIPOS E CONFIGURAÇÕES

Potência Gerada e Energia Produzida P.de carga – método do comprimento equivalente Isto assume que uma tubulação que possui ao longo de sua extensão uma série de singularidades (perdas localizadas) é equivalente a uma tubulação reta de comprimento maior (sem singularidades). Com base neste conceito o que se faz é adicionar ao comprimento de tubo reto "reto" (L_{reto}) da tubulação os comprimentos equivalentes (L_{equivalente}) dos acessórios. Nas fórmulas de Hazen-Williams e de Darcy Weisbach o termo "L" corresponde a tubo reto, então o que se faz neste caso é considerar: L = L_{reto} + L_{equivalente}

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

$$Hp = 10,643. \left(\frac{Q}{\lambda}\right)^{1,85}.D^{-4,87}.L \text{ Perda na tubulação}$$

Fórmulas

$$Y = g.H_{Top}$$
 Trabalho específico bruto [J/kg]

$$Y_d = g.H_d$$
 Trabalho específico disponível [J/kg]

$$H_d = H_{Top} - H_p$$
 Altura Líquida

$$P_b = \rho.Q.Y$$
 Potência Bruta [W] $\rho = densidade_da_água = 1000[kg/m^3]$

$$P_d = \rho . Q. Y_d$$
 Potência Disponível[W] $P_d = 9.81. Q. H_d[kW]$

$$P_d = 13,33.Q.H_d[cv]$$

$$P_{eixo} = \eta_{turb} . P_d$$
 Potência no eixo[kW]

$$P_{el} = \eta_{ger}.P_{eixo}$$
 Potência elétrica [kW]

$$\eta_{a \text{dim} iss \tilde{a}o} = \frac{H_d}{H_{Top}} \text{ Rendimento da admiss \tilde{a}o [\%]}$$

$$\eta_{total} = \eta_{admiss \tilde{a}o} . \eta_{turb} . \eta_{eixo} = \frac{P_{el}}{P_b} \text{ Rendimento total [\%]}$$

$$\eta_{total} = \eta_{admiss\~ao} . \eta_{turb} . \eta_{eixo} = \frac{H}{1}$$

Exemplo

Em um aproveitamento hidrelétrico, o nível de montante encontra-se na cota de 890 m e o de jusante na de 750 m. Sabendo-se que a vazão é de 60 m³/s, o comprimento equivalente do encanamento de adução de 4,5 m de diâmetro é de 1.000 m; o rendimento total da turbina, 0,92; e do alternador, 0,94, determine:

- a) a queda e os trabalhos específicos bruto e disponível;
- b) as potências bruta e disponível, no eixo e elétrica;
- c) os rendimentos do sistema de admissão e total do aproveitamento.

Assumir adução com encanamento de aço soldado, com $\lambda = 115$.

Resolução

Dados montante 890 m e jusante na de 750 m. λ = 115.

$$Q = 60 \text{ m}^3/\text{s}, D = 4.5 \text{ m}, L = 1.000 \text{ m}; \eta_T = 0.92; \eta_g = 0.94$$

a queda e os trabalhos específicos bruto e disponível

A queda bruta
$$H = 890 - 750 = 140 \text{ m}$$

Trabalho específico

Bruto:
$$Y = g \times H = 9.81 \times 140 = 1.373.4 J/kg$$

Disponível:
$$Y_d = g \times Hd =$$

Hp = 10,643×
$$\left(\frac{Q}{\lambda}\right)^{1,85}$$
 D^{-4,87}×L =
= 10,643× $\left(\frac{60}{115}\right)^{1,85}$ 4,5^{-4,87}×1000 = 2,1

Disponível: $Y_d = g \times Hd = g \times (140-2,1) = 1.352,8 \text{ J/kg}$

resolução

as potências bruta e disponível, no eixo e elétrica

Potência Bruta:

Potência disponível: $P_d = \rho Q Y_d = 81.168 \text{ kW}$

$$P_b = \rho QY = \frac{1.000 \text{ kg}}{\text{m}^3} \times 60 \text{ m}^3/\text{s} \times 1.373,4 \text{ J/k g} = 82.404 \text{ kW}$$

Potência no eixo: Pot $_{eixo}$ = $P_{disponível} \times \eta_{Turb}$ = $P_{disp} \times 0.92$ = 74.675 kW

Potência elétrica: $P_{el} = Pot_{eixo} \times \eta_{geração} = Pot_{eixo} \times 0,94 = 70.195 \text{ kW}$

os rendimentos

Do sistema de admissão: $\eta_{admissão} = 137,9 / 140 = 0,985$

Do sistema total:

$$\eta_{\text{total}} = 0.985 \times 0.92 \times 0.94 = \frac{\text{Pot. elétrica}}{\text{Pot. bruta}} = \frac{70.195}{82.404} = 0.852$$

Exercícios

- As turbinas da hidrelétrica de São Simão, no Rio Paranaíba, possuem as seguintes características:
- Queda nominal: 72 m (Queda Disponível)
- Vazão nominal: 420 m³/s
- Potência nominal = 370 491 cv
- Pares de pólos : 38
- a) Calcular o rendimento do conjunto (turbina+circuito hidráulico) da usina
 (%) e a rotação nominal das máquinas.
- b) Calcular a velocidade específica das turbinas (rpm) utilizando a fórmula mais rigorosa e comparar com o resultado da fórmula empírica.
- c) Analisando as fórmulas empíricas para a rotação específica e considerando o resultado do item anterior, determinar o tipo de turbina utilizada em São Simão.
- d) Calcular a potência elétrica de cada máquina de São Simão a partir da vazão e da altura de queda adotando um rendimento de 95% para o gerador e o rendimento mecânico calculado no ítem a). Assuma a aceleração da gravidade de 9,81 m/s².

2. Um parque gerador trabalha com turbinas kaplan. Sabe-se que a velocidade angular nominal das turbinas é de 67rpm, e a altura topográfica do aproveitamento é de 19,2 m. A partir da equação empírica adequada, determine a velocidade específica dessa família de turbinas e, com a ajuda da tabela, determine dentre as turbinas kaplan disponíveis, qual a subclasse que foi empregada no referido aproveitamento.

MODO DE	VELOCIDADE	TIPO DE	ALTURA			
OPERAR	ESPECÍFICA	TURBINA	DISPONÍVEL DO			
	(RPM)		APROVEITAMENTO			
A	Até 18 rpm	Pelton 1 injetor	Até 800 m			
A	18 a 25 rpm	Pelton 1 injetor	400 a 800 m			
A	26 a 35 rpm	Pelton 1 injetor	100 a 400 m			
A	26 a 35 rpm	Pelton 2 injetores	400 a 800 m			
A	36 a 50 rpm	Pelton 2 injetores	100 a 400 m			
A	51 a 72 rpm	Pelton 4 injetores	100 a 400 m			
R	55 a 70 rpm	Francis Lentíssima	200 a 400 m			
R	70 a 120 rpm	Francis Lenta	100 a 200 m			
R	120 a 200 rpm	Francis Média	50 a 100 m			
R	200 a 300 rpm	Francis Veloz	25 a 50 m			
R	300 a 450 rpm	Francis Ultraveloz	15 a 25 m			
R	400 a 500 rpm	Hélice Veloz	Até 15 m			
R	270 a 500 rpm	Kaplan Lenta	15 a 50 m			
R	500 a 800 rpm	Kaplan Veloz	05 a 15 m			
R	800 a 1100 rpm	Kaplan Velocíssima	Até 05 m			

3. O gerador de uma turbina de um parque gerador é síncrono e trabalha com uma corrente de 155A na tensão de 4160Volts e um fator de potência de 85%. Sabe-se que a velocidade angular nominal desse gerador é de 600 RPM, que a turbina adotada é uma Francis de eixo horizontal e que a altura topográfica do aproveitamento é de 85 metros. Determine a vazão firme dessa turbina.

Com base na tabela dada, qual o tipo de turbinas Francis utilizada? Dados:

```
\eta_C = 89\%
 (rendimento na canalização / conduto forçado)

\eta_G = 95\%
 (rendimento do gerador elétrico)
```

$$\eta_T = 90\%$$
 (rendimento da turbina)

Considere as perdas na tomada d'água nulas $\Delta HTA = 0$