

THE UNIVERSITY OF TEXAS AT AUSTIN

CS383C Numerical Analysis

Homework 03

Edited by \LaTeX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

COURSE COORDINATOR

Robert A. van de Geijn

UNIQUE NUMBER
53180

RELEASE DATE **Sep. 18 2014**

DUE DATE

May. 25 2014

TIME SPENT

10 hours

October 10, 2014

Exercise 2. Show that if H is a reflector, then

2.1 HH = I

Since H is a reflector, we have

$$H = I - 2uu^H \tag{1}$$

where u is unit vector $(||u||_2^2 = 1)$.

$$HH = (I - 2uu^{H})(I - 2uu^{H})$$

$$= I \cdot I - 2uu^{H} - 2uu^{H} + 4(uu^{H})(uu^{H})$$

$$= I - 4uu^{H} + 4||u||_{2}^{2}uu^{H}$$

$$= I - 4uu^{H} + 4uu^{H}$$

$$= I$$
(2)

Lemma 1. For arbitrary vector $a \in \mathbb{C}^n$, $b \in \mathbb{C}^n$, $c \in \mathbb{C}^n$, $ab^Hc = (b^Hc)a$.

Proof.

$$ab^{H}c = \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n-1} \end{pmatrix} b^{H}c = \begin{pmatrix} a_{0}b^{H} \\ a_{1}b^{H} \\ \vdots \\ a_{n-1}b^{H} \end{pmatrix} c = \begin{pmatrix} a_{0}b^{H}c \\ a_{1}b^{H}c \\ \vdots \\ a_{n-1}b^{H}c \end{pmatrix} = \begin{pmatrix} (b^{H}c)a_{0} \\ (b^{H}c)a_{1} \\ \vdots \\ (b^{H}c)a_{n-1} \end{pmatrix} = (b^{H}c) \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n-1} \end{pmatrix}$$

$$= (b^{H}c)a_{0}$$

$$= (b^{H}c)a \qquad (4)$$

Lemma 2. $(uu^H)(uu^H) = ||u||_2^2 uu^H$

Proof.

$$(uu^{H})(uu^{H}) = (uu^{H}u)u^{H}$$

$$= ((u^{H}u)u)u^{H}$$

$$= (||u||_{2}^{2}u)u^{H}$$

$$= ||u||_{2}^{2}uu^{H}$$
(5)

2.2 $H = H^H$

$$H^{H} = (I - 2uu^{H})^{H}$$

$$= I^{H} - (2uu^{H})^{H}$$

$$= I - 2(u^{H})^{H}u^{H}$$

$$= I - 2uu^{H}$$

$$= H$$
(6)

2.3 $HH^{H} = I$

In terms of (6), multiply both sides with H and then reuse conclusion in (2)

$$H^H H = H H = I \tag{7}$$

Exercise 4. Show that if $x \in \mathbb{R}^n$, $v = x \mp ||x||_2 e_0$ and $\tau = v^T v/2$, then $(I - \frac{1}{\tau}vv^T)x = \pm ||x||_2 e_0$

We start from the reflector $I - \frac{1}{\tau}vv^T$ on x,

$$(I - \frac{1}{\tau}vv^{T})x$$

$$= \left(I - \frac{2vv^{T}}{v^{T}v}\right)x$$

$$= \left(I - \frac{2(x + ||x||_{2}e_{0})(x + ||x||_{2}e_{0})^{T}}{(x + ||x||_{2}e_{0})^{T}}\right)x$$

$$= \left(I - \frac{2(x + ||x||_{2}e_{0})^{T}(x + ||x||_{2}e_{0})^{T}}{2||x||_{2}^{2} + e_{0}x^{T}} + ||x||_{2}^{2}e_{0}e_{0}^{T}}\right)x$$

$$= \left(I - \frac{xx^{T} + ||x||_{2}(xe_{0}^{T} + e_{0}x^{T}) + ||x||_{2}^{2}e_{0}e_{0}^{T}}{2||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}\right)x$$

$$= \left(I - \frac{xx^{T} + ||x||_{2}(xe_{0}^{T} + e_{0}x^{T}) + ||x||_{2}^{2}e_{0}e_{0}^{T}}{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}\right)x$$

$$= \frac{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x - xx^{T} + ||x||_{2}e_{0}^{T}x}{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}$$

$$= \frac{||x||_{2}^{2}x + ||x||_{2}e_{0}^{T}x - xx^{T}x + ||x||_{2}(xe_{0}^{T} + e_{0}x^{T})x - ||x||_{2}^{2}e_{0}e_{0}^{T}x}{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}$$

$$= \frac{(||x||_{2}^{2}x - xx^{T}x) + (+||x||_{2}e_{0}^{T}x + ||x||_{2}e_{0}^{T}x + ||x||_{2}e_{0}x^{T}x - ||x||_{2}^{2}e_{0}e_{0}^{T}x}{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}$$

$$= \frac{\pm ||x||_{2}e_{0}x^{T}x - ||x||_{2}e_{0}e_{0}^{T}x}{||x||_{2}^{2} + ||x||_{2}e_{0}^{T}x}$$

$$= \frac{\pm e_{0}x^{T}x - ||x||_{2}e_{0}e_{0}^{T}x}{||x||_{2} + e_{0}^{T}x}$$

$$= \frac{\pm ||x||_{2}e_{0} - ||x||_{2}(e_{0}^{T}x)e_{0}}{||x||_{2} + e_{0}^{T}x}$$

$$= \frac{\pm ||x||_{2}e_{0} - ||x||_{2}(e_{0}^{T}x)e_{0}}{||x||_{2} + e_{0}^{T}x}$$

$$= \frac{\pm (||x||_{2} - (e_{0}^{T}x))||x||_{2}e_{0}}{||x||_{2} + e_{0}^{T}x}$$

$$= \pm ||x||_{2}e_{0}$$

Note that above derivation frequently makes use of the above lemma 1 in real case.

Exercise 5. Complex

It is easy to show that the conclusion in (8) can extend to complex space. That is,

$$(I - \frac{1}{\tau}vv^H)x = \oplus ||x||_2 e_0 \tag{9}$$

where $x \in \mathbb{C}^n$, $v = x \oplus ||x||_2 e_0$ and $\tau = v^H v/2$. Let

$$v = \left(\frac{1}{u_2}\right), \ x = \left(\frac{\chi}{x_2}\right), \ e = \left(\frac{1}{0}\right)$$
 (10)

Then have

$$\left(I - \frac{1}{\tau} \left(\frac{1}{u_2}\right) \left(\frac{1}{u_2}\right)^H\right) \cdot \left(\frac{\chi}{x_2}\right) = \left(\frac{\rho}{0}\right) \tag{11}$$

where $\tau = v^H v/2 = (1 + u_2^H u_2)/2$ and $\rho = \oplus ||x||_2$.

Lemma 3. If $x \in \mathbb{C}^n$, $v = x \oplus ||x||_2 e_0$ and $\tau = v^H v/2$, then $(I - \frac{1}{\tau}vv^H)x = \oplus ||x||_2 e_0$.

Proof. We start from the reflector $I - \frac{1}{\tau}vv^H$ on x,

$$(I - \frac{1}{\tau}vv^{H})x$$

$$= \left(I - \frac{2vv^{H}}{v^{H}v}\right)x$$

$$= \left(I - \frac{2(x \oplus ||x||_{2}e_{0})(x \oplus ||x||_{2}e_{0})^{H}}{(x \oplus ||x||_{2}e_{0})^{H}}(x \oplus ||x||_{2}e_{0})^{H}}\right)x$$

$$= \left(I - 2\frac{xx^{H} \oplus ||x||_{2}(xe_{0}^{H} + e_{0}x^{H}) + ||x||_{2}^{2}e_{0}e_{0}^{H}}{2||x||_{2}^{2} \oplus 2||x||_{2}e_{0}^{H}x}\right)x$$

$$= \left(I - \frac{xx^{H} \oplus ||x||_{2}(xe_{0}^{H} + e_{0}x^{H}) + ||x||_{2}^{2}e_{0}e_{0}^{H}}{2||x||_{2}^{2} \oplus ||x||_{2}^{2}e_{0}e_{0}^{H}}\right)x$$

$$= \frac{||x||_{2}^{2} \oplus ||x||_{2}e_{0}^{H}x - xx^{H} \oplus ||x||_{2}(xe_{0}^{H} + e_{0}x^{H}) - ||x||_{2}^{2}e_{0}e_{0}^{H}x}{||x||_{2}^{2} \oplus ||x||_{2}^{2}e_{0}^{H}x}$$

$$= \frac{||x||_{2}^{2}x \oplus ||x||_{2}e_{0}^{H}x - xx^{H}x \oplus ||x||_{2}(xe_{0}^{H} + e_{0}x^{H})x - ||x||_{2}^{2}e_{0}e_{0}^{H}x}{||x||_{2}^{2} \oplus ||x||_{2}^{2}e_{0}^{H}x \oplus ||x||_{2}^{2}e_{0}^{H}x + ||x||_{2}^{2}e_{0}e_{0}^{H}x}$$

$$= \frac{(||x||_{2}^{2}x - xx^{H}x) + (\oplus ||x||_{2}e_{0}^{H}xx \oplus ||x||_{2}xe_{0}^{H}x) \oplus ||x||_{2}e_{0}x^{H}x - ||x||_{2}^{2}e_{0}e_{0}^{H}x}}{||x||_{2}^{2} \oplus ||x||_{2}^{2}e_{0}^{H}x}$$

$$= \frac{\oplus ||x||_{2}e_{0}x^{H}x - ||x||_{2}e_{0}e_{0}^{H}x}{||x||_{2}^{2}e_{0}^{H}x}}{||x||_{2} \oplus e_{0}^{H}x}$$

$$= \frac{\oplus ||x||_{2}^{2}e_{0} - ||x||_{2}(e_{0}^{H}x)e_{0}}{||x||_{2} \oplus e_{0}^{H}x}}$$

$$= \frac{\oplus ||x||_{2}^{2}e_{0} - ||x||_{2}(e_{0}^{H}x)e_{0}}{||x||_{2} \oplus e_{0}^{H}x}$$

$$= \frac{\oplus (||x||_{2} - (e_{0}^{H}x))||x||_{2}e_{0}}{||x||_{2} \oplus e_{0}^{H}x}$$

$$= \frac{\oplus (||x||_{2} - (e_{0}^{H}x))||x||_{2}e_{0}}{||x||_{2} \oplus e_{0}^{H}x}$$

$$= \frac{\oplus (||x||_{2} - (e_{0}^{H}x))||x||_{2}e_{0}}{||x||_{2} \oplus e_{0}^{H}x}$$

$$= \frac{\oplus (||x||_{2} \oplus e_{0}^{H}x)}{||x||_{2} \oplus e_{$$

(12)

Exercise 6. Matrix Equivalence

We start from right hand side

$$RHS = I - \frac{1}{\tau_1} \begin{pmatrix} 0 \\ 1 \\ u_2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ u_2 \end{pmatrix}^H$$

$$= \left(I - \frac{1}{\tau_1} \begin{pmatrix} 0 & 0 \\ 0 & \left(\frac{1}{u_2} \right) \left(\frac{1}{u_2} \right)^H \\ 0 & \left(\frac{1}{\tau_1} \left(\frac{1}{u_2} \right) \left(\frac{1}{u_2} \right)^H \right) \right)$$

$$= \left(I - \left(\frac{0}{0} & 0 \\ 0 & \left(\frac{1}{\tau_1} \left(\frac{1}{u_2} \right) \left(\frac{1}{u_2} \right)^H \right) \right)$$

$$= LHS$$

$$= LHS$$

$$(13)$$

Exercise 11. Expensive Algorithm

As indicated by **Theorem 10** in the note, we have cost of the algorithm in Figure 6 for $A \in \mathbb{C}^{m \times n}$

$$C_{FormQ}(m,n) = 2mn^2 - \frac{2}{3}n^3 \tag{14}$$

For m = n, the cost can be simplified as

$$C_{FormQ}(A) = \frac{4}{3}n^3 = \mathcal{O}(n^3) \tag{15}$$

However, if we accumulate Q by using n householder transformation with

$$Q = (\dots((IH_0)H_1)\dots H_{n-1})$$
(16)

Then the cost we have is at least

$$C_{accumulation}(A) = n^3 \cdot (n-1) = \mathcal{O}(n^4)$$
(17)

where n^3 comes from each one matrix multiplication, and n-1 comes from the total number of householder matrix H_i (i = 0, 1, 2, ..., n-1).

Comparing formula (15) and (17), it is obvious that the accumulation method is much more expensive than algorithm in Figure 6.