- ▶ If h_n is very large, $p_n(\mathbf{x})$ is the superposition of n broad functions, and is a smooth "out-of-focus" estimate of $p(\mathbf{x})$.
- ▶ If h_n is very small, $p_n(\mathbf{x})$ is the superposition of n sharp pulses centered at the samples, and is a "noisy" estimate of $p(\mathbf{x})$.
- As h_n approaches zero, $\delta_n(\mathbf{x} \mathbf{x_i})$ approaches a Dirac delta function centered at $\mathbf{x_i}$, and $p_n(\mathbf{x})$ is a superposition of delta functions.

Figure: Parzen window density estimates based on the same set of five samples using the window functions in the previous figure.