

STP12PF06 STF12PF06

P-CHANNEL 60V - 0.18 Ω - 12A TO-220/TO-220FP STripFETTM II POWER MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP12PF06	60 V	< 0.20 Ω	12 A
STF12PF06	60 V	< 0.20 Ω	12 A

- TYPICAL $R_{DS}(on) = 0.18 \Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- LOW GATE CHARGE
- APPLICATION ORIENTED CHARACTERIZATION

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility

APPLICATIONS

- MOTOR CONTROL
- DC-DC & DC-AC CONVERTERS

Figure 1:Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

PART NUMBER	MARKING	PACKAGE	PACKAGING
STP12PF06	P12PF06	TO-220	TUBE
STF12PF06	F12PF06	TO-220FP	TUBE

Table 3: ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Val	ue	Unit
		STP20PF06	STF20PF06	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60)	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60)	V
V _{GS}	Gate- source Voltage	± 2	20	V
I _D	Drain Current (continuous) at T _C = 25°C	12	8	Α
I _D	Drain Current (continuous) at T _C = 100°C	8.4	5.6	Α
I _{DM} (•)	Drain Current (pulsed)	48	32	Α
P _{tot}	Total Dissipation at T _C = 25°C	60	225	W
	Derating Factor	0.4	0.17	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	6		V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	200		mJ
T _{stg}	Storage Temperature	-55 to 175		°C
Tj	Operating Junction Temperature	-55 (0	1113	

^(•) Pulse width limited by safe operating area. NOTE:For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed.

March 2005 Rev. 2.0 1/10

⁽¹⁾ $I_{SD} \le 12A$, $di/dt \le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$ (2) Starting $T_j = 25$ °C, $I_D = 12A$, $V_{DD} = 25V$

STP12PF06 STF12PF06

Table 4: THERMAL DATA

			TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case	Max	2.5	5.35	°C/W
Rthj-amb T _I	Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose	Max	62.5 300		°C/W

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Table 5: OFF

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

Table 6: ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2	3.4	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	V _{GS} = 10 V I _D = 10 A		0.18	0.20	Ω

Table 7: DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (2)	Forward Transconductance	V _{DS} = 15 V I _D = 6 A	2.5	6		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V f = 1 MHz V_{GS} = 0$		850 230 75		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

Table 8: SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{aligned} V_{DD} &= 30 \text{ V} & I_D &= 6 \text{ A} \\ R_G &= 4.7 \ \Omega & V_{GS} &= 10 \text{ V} \\ \text{(Resistive Load, Figure 19)} \end{aligned}$		20 40		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48 V I _D = 12 A V _{GS} = 10 V		16 4 6	21	nC nC nC

Table 9: SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time Fall Time	$\begin{array}{cccc} V_{DD} = 30 \text{ V} & I_D = 6 \text{ A} \\ R_G = 4.7\Omega, & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 19)} \end{array}$		40 10		ns ns

Table 10: SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
I _{SD}	Source-drain Current Source-drain Current (pulsed)				10 40	A A
V _{SD} (2)	Forward On Voltage	I _{SD} = 12 A V _{GS} = 0			2.5	V
t _{rr} Q _{rr} IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} = 12 \text{ A} & \text{di/dt} = 100 \text{A/} \mu \text{s} \\ V_{DD} = 30 \text{ V} & T_j = 150 ^{\circ} \text{C} \\ \text{(see test circuit, Figure 21)} \end{split}$		100 260 5.2		ns nC A

⁽¹⁾ Pulse width limited by safe operating area.

Figure 3: Safe Operating Area for TO-220

Figure 4: Safe Operating Area for TO-220FP

57

⁽²⁾ Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

Figure 5: Thermal Impedance

Figure 7: Output Characteristics

Figure 9: Transconductance

Figure 6: Thermal Impedance for TO-220FP

Figure 8: Transfer Characteristics

Figure 10: Static Drain-source On Resistance

Figure 11: Gate Charge vs Gate-source Voltage

Figure 13: Normalized Gate Threshold Voltage vs Temperature

Figure 15: Source-drain Diode Forward Characteristics

Figure 12: Capacitance Variations

Figure 14: Normalized on Resistance vs Temperature

Figure 16: Normalized Breakdown Voltage Temperature

57

Figure 17: Unclamped Inductive Load Test Circuit

Figure 19: Switching Times Test Circuits For Resistive Load

Figure 21: Test Circuit For Inductive Load Switching And Diode Recovery Times

Figure 18: Unclamped Inductive Waveform

Figure 20: Gate Charge test Circuit

STP12PF06 STF12PF06

TO-220 MECHANICAL DATA

DIM.		mm.			inch.	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.
Α	4.4		4.6	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.40		2.70	0.094		0.106
H2	10		10.40	0.393		0.409
L2		16.40			0.645	
L3		28.90			1.137	
L4	13		14	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
DIA	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

STP12PF06 STF12PF06

Table 11:Revision History

Date	Revision	Description of Changes
March 2005	1.0	FIRST ISSUE
March 2005	2.0	MINOR REVISION

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America. www.st.com