METODY NUMERYCZNE

ZADANIE 8

Artur Guniewicz

8. Znaleźć wartości funkcji

$$f(x) = \frac{1}{1 + 5x^2} \tag{7}$$

w punktach -1, $-1 + \frac{1}{32}$, $-1 + \frac{2}{32}$, ..., $1 - \frac{1}{32}$, 1, a następnie skonstruować wielomian interpolacyjny Lagrange'a oparty na tych węzłach i wartościach funkcji (7) w tych węzłach. Narysować wykres wielomianu interpolacyjnego.

Metoda: metoda Lagrange'a

Współczynniki wielomianu interpolacyjnego można obliczyć w czasie O(n²) dzięki metodzie Lagrange'a. W tym celu należy skonstruować układ równań ze wzorów:

$$\begin{pmatrix} \varphi_0(x_0) & 0 & 0 & \dots & 0 \\ 0 & \varphi_1(x_1) & 0 & \dots & 0 \\ 0 & 0 & \varphi_2(x_2) & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

$$a_0 = \frac{y_0}{\varphi_0(x_0)}$$

$$a_1 = \frac{y_1}{\varphi_1(x_1)}$$
...
$$y_n$$

 $a_n = \frac{y_n}{\varphi_n(x_n)}$

Dla danego punktu x wartość wielomianu interpolacyjnego można obliczyć ze wzoru:

$$W(x) = a_0 * \varphi_0(x) + a_1 * \varphi_1(x) + \dots + a_n * \varphi_n(x)) = a_0 * (x - x_1) * (x - x_2) * \dots * (x - x_n) + \dots + a_n * (x - x_0) * (x - x_1) * \dots * (x - x_{n-1})$$

Kod programu:

```
include <iostream>
include <stdlib.h>
 include <fstream>
using namespace std;
#define Vector array<long double, 65>
long double calcFunction(long double x);
long double base(const <u>Vector</u> &x, int i, long double y);
void calcLagrange(const Vector &x, const Vector &y, Vector &a);
long double calculate(const \underline{\text{Vector}} &x, const \underline{\text{Vector}} &a, long double y);
void writeToFile(const Vector &x, const Vector &y, const char *f);
int main()
   Vector x;
   Vector y;
  Vector a;
       y[i] = calcFunction(j);
       i++;
```

```
calcLagrange(x, y, a);
   ofstream file;
   file.open("Zadanie8 poly.txt");
       file << i << " << calculate(x, a, i) << endl;
   file.close();
long double calcFunction(long double x)
  long double temp = 5 * x * x + 1.0;
  return (1.0 / temp);
long double base (const \underline{\text{Vector}} &x, int i, long double y)
  long double base = 1;
  for (int j = 0; j < x.size(); j++)</pre>
       if (j == i)
           base *= (y - x[j]);
```

```
return base;
void calcLagrange(const Vector &x, const Vector &y, Vector &a)
        a[i] = y[i] / base(x, i, x[i]);
long double calculate (const \underline{\text{Vector}} &x, const \underline{\text{Vector}} &a, long double \underline{y})
   long double result = 0;
        result += a[i] * base(x, i, y);
   return result;
void writeToFile(const \underline{Vector} &x, const \underline{Vector} &y, const \underline{char} *f)
   ofstream file;
  file.open(f);
        file << x[i] << " << y[i] << endl;
```

Kompilacja:

g++ Zadanie8.cpp -o Zadanie8 && ./Zadanie8

Wyniki:

fragment pliku "Zadanie8_function.txt":

-1	0.166667
-0.96875	0.175673
-0.9375	0.185373
-0.90625	0.195831
-0.875	0.20712
-0.84375	0.219319
-0.8125	0.232516
-0.78125	0.246806
-0.75	0.262295
-0.71875	0.279095
-0.6875	0.297329
-0.65625	0.317126
-0.625	0.338624
-0.59375	0.361965
-0.5625	0.387292
-0.53125	0.414743
-0.5	0.444444
-0.46875	0.476501
-0.4375	0.510978
-0.40625	0.547887
-0.375	0.587156
-0.34375	0.628607
-0.3125	0.671916
-0.28125	0.716585
-0.25	0.761905
-0.21875	0.806935
-0.1875	0.850498
-0.15625	0.89121

fragment pliku "Zadanie8_poly.txt":

-1	0.166667
-0.99	-3.51497
-0.98	-0.883208
-0.97	0.132659
-0.96	0.260362
-0.95	0.214928
-0.94	0.187622
-0.93	0.184751
-0.92	0.189471
-0.91	0.19429
-0.9	0.198177
-0.89	0.201704
-0.88	0.205277
-0.87	0.208998
-0.86	0.212847
-0.85	0.2168
-0.84	0.220849
-0.83	0.224998
-0.82	0.229253
-0.81	0.233618
-0.8	0.238095
-0.79	0.242689
-0.78	0.247402
-0.77	0.252239
-0.76	0.257202
-0.75	0.262295
-0.74	0.267523
-0.73	0.272889

Wykres:

uruchomienie z terminalu: gnuplot --persist

skrypt do tworzenia wykresu:

```
gnuplot> set title "Wykres wielomianu interpolacyjnego i rzeczywistego" gnuplot> set xlabel "x" gnuplot> set ylabel "y" gnuplot> set xrange [-1:1] gnuplot> plot 'Zadanie8_poly.txt' with lines title 'Wielomian interpolacyjny', 'Zadanie8_function.txt' title 'Wielomian rzeczywisty' with points pointtype 6
```

```
G N U P L O T
Version 5.2 patchlevel 2 last modified 2017-11-01

Copyright (C) 1986-1993, 1998, 2004, 2007-2017
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info
faq, bugs, etc: type "help FAQ"
immediate help: type "help FAQ"
immediate help: type "help" (plot window: hit 'h')

Terminal type is now 'qt'
gnuplot> set title "Wykres wielomianu interpolacyjnego i rzeczywistego"
gnuplot> set title "Wykres wielomianu interpolacyjnego i rzeczywistego"
gnuplot> set xlabel "x"
gnuplot> set ylabel "y"
gnuplot> set ylabel "y"
gnuplot> plot 'Zadanie8_poly.txt' with lines title 'Wielomian interpolacyjny' , 'Zadanie8_function.txt' title 'Wielomian rzeczywisty' with points pointtype 6
gnuplot> [
```


X