MINI PROJECT

PROBLEM STATEMENT: Ehich model is suitable for insurance dataset

```
In [1]: #importing packages
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

Data Collection

Read the data

```
In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\insurance.csv")
df
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31,920	0	no	northeast	2205,98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

Data cleaning and preprocessing

```
In [3]: df.head()
```

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [4]: df.tail()

Out[4]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

Column Non-Null Count Dtype ---------0 age 1338 non-null int64 1 1338 non-null object sex 2 bmi 1338 non-null float64 3 children 1338 non-null int64 4 1338 non-null smoker object 5 region 1338 non-null object 6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3)

memory usage: 73.3+ KB

In [7]: df.shape
Out[7]: (1338, 7)

In [8]: df.describe()

Out[8]:

	age	bmi	children	charges	
count	1338.000000	1338.000000	1338.000000	1338.000000	
mean	39.207025	30.663397	1.094918	13270.422265	
std	14.049960	6.098187	1.205493	12110.011237	
min	18.000000	15.960000	0.000000	1121.873900	
25%	27.000000	26.296250	0.000000	4740.287150	
50%	39.000000	30.400000	1.000000	9382.033000	
75%	51.000000	34.693750	2.000000	16639.912515	
max	64.000000	53.130000	5.000000	63770.428010	

Data Visualization

```
In [11]: sns.boxplot(df)
```



```
In [12]: smoker={"smoker":{"yes":0,"no":1}}
df=df.replace(smoker)
df
```

Out[12]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	0	southwest	16884.92400
1	18	male	33.770	1	1	southeast	1725.55230
2	28	male	33.000	3	1	southeast	4449.46200
3	33	male	22.705	0	1	northwest	21984.47061
4	32	male	28.880	0	1	northwest	3866.85520
1333	50	male	30.970	3	1	northwest	10600.54830
1334	18	female	31.920	0	1	northeast	2205.98080
1335	18	female	36.850	0	1	southeast	1629.83350
1336	21	female	25.800	0	1	southwest	2007.94500
1337	61	female	29.070	0	0	northwest	29141.36030

1338 rows × 7 columns

```
In [13]: sex={"sex":{"male":0,"female":1}}
df=df.replace(sex)
df
```

Out[13]:

age	sex	bmi	children	smoker	region	charges
19	1	27.900	0	0	southwest	16884.92400
18	0	33.770	1	1	southeast	1725.55230
28	0	33.000	3	1	southeast	4449.46200
33	0	22.705	0	1	northwest	21984.47061
32	0	28.880	0	1	northwest	3866.85520
50	0	30.970	3	1	northwest	10600.54830
18	1	31.920	0	1	northeast	2205.98080
18	1	36.850	0	1	southeast	1629.83350
21	1	25.800	0	1	southwest	2007.94500
61	1	29.070	0	0	northwest	29141.36030
	19 18 28 33 32 50 18 18 21	19 1 18 0 28 0 33 0 32 0 50 0 18 1 18 1 21 1	19	19 1 27.900 0 18 0 33.770 1 28 0 33.000 3 33 0 22.705 0 32 0 28.880 0 50 0 30.970 3 18 1 31.920 0 18 1 36.850 0 21 1 25.800 0	19 1 27.900 0 0 18 0 33.770 1 1 28 0 33.000 3 1 33 0 22.705 0 1 32 0 28.880 0 1 50 0 30.970 3 1 18 1 31.920 0 1 18 1 36.850 0 1 21 1 25.800 0 1	19 1 27.900 0 0 southwest 18 0 33.770 1 1 southeast 28 0 33.000 3 1 southeast 33 0 22.705 0 1 northwest 32 0 28.880 0 1 northwest 50 0 30.970 3 1 northwest 18 1 31.920 0 1 northeast 18 1 36.850 0 1 southeast 21 1 25.800 0 1 southwest

1338 rows × 7 columns

```
In [14]: df['region'].value_counts()
```

```
Out[14]: region
```

southeast 364 southwest 325 northwest 325 northeast 324

Name: count, dtype: int64

```
In [15]: insured=df[['smoker','sex','bmi','children','age']]
    plt.figure(figsize=(5,5))
    sns.heatmap(insured.corr(),annot=True)
```

Out[15]: <Axes: >

Feature Scalling:To split the data into test and train data

```
In [23]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

-0.009515626704726055

Logistic Regression

```
In [24]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

In [25]: sns.pairplot(df)

Out[25]: <seaborn.axisgrid.PairGrid at 0x20216e33150>


```
In [26]: Insuranced=df[['age','bmi']]
  plt.figure(figsize=(4,4))
  sns.heatmap(Insuranced.corr(),annot=True)
```

```
Out[26]: <Axes: >
```



```
In [28]: x = df.iloc[:,:-1].values
y = df.iloc[:,1].values

In [29]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2)

In [30]: ml = LogisticRegression()
```

```
In [31]: x=np.array(df['smoker']).reshape(-1,1)
    x=np.array(df['age']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=1)
    from sklearn.linear_model import LogisticRegression
    lr=LogisticRegression(max_iter=10000)
```

```
In [32]: lr.fit(x_train,y_train)
```

```
Out[32]: LogisticRegression
LogisticRegression(max_iter=10000)
```

```
In [33]: score=lr.score(x_test,y_test)
print(score)
```

0.48059701492537316

```
In [35]: sns.scatterplot(data=df,x='region',y='charges')
```

Out[35]: <Axes: xlabel='region', ylabel='charges'>

Desion tree

```
In [36]: from sklearn.tree import DecisionTreeClassifier
    clf=DecisionTreeClassifier()
    clf.fit(x_train,y_train)
```

Out[36]:

```
    DecisionTreeClassifier

DecisionTreeClassifier()
```

```
In [37]: convert={'sex':{'female':0,'male':1}}
df=df.replace(convert)
df
```

Out[37]:

		age	sex	bmi	children	smoker	region	charges
	0	19	1	27.900	0	0	southwest	16884.92400
	1	18	0	33.770	1	1	southeast	1725.55230
	2	28	0	33.000	3	1	southeast	4449.46200
	3	33	0	22.705	0	1	northwest	21984.47061
	4	32	0	28.880	0	1	northwest	3866.85520
133	33	50	0	30.970	3	1	northwest	10600.54830
133	34	18	1	31.920	0	1	northeast	2205.98080
133	35	18	1	36.850	0	1	southeast	1629.83350
133	36	21	1	25.800	0	1	southwest	2007.94500
133	37	61	1	29.070	0	0	northwest	29141.36030

1338 rows × 7 columns

```
In [38]: X=['age','sex']
y=['yes','no']
all_inputs=df[X]
all_classes=df['smoker']
```

```
In [39]: X_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.7)
```

```
In [40]: | clf=DecisionTreeClassifier(random_state=0)
```

```
In [41]: clf.fit(X_train,y_train)
```

```
In [44]: score=clf.score(X_train,y_train)
    print(score)
```

0.85785536159601

Random Forest

```
In [47]: import matplotlib.pyplot as plt,seaborn as sns
    from sklearn.model_selection import train_test_split
In [48]: x=df.drop('smoker',axis=1)
```

y=df['smoker']

```
In [49]: convert={'sex':{'female':0,'male':1}}
df=df.replace(convert)
df
```

Out[49]:

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	0	southwest	16884.92400
1	18	0	33.770	1	1	southeast	1725.55230
2	28	0	33.000	3	1	southeast	4449.46200
3	33	0	22.705	0	1	northwest	21984.47061
4	32	0	28.880	0	1	northwest	3866.85520
1333	50	0	30.970	3	1	northwest	10600.54830
1334	18	1	31.920	0	1	northeast	2205.98080
1335	18	1	36.850	0	1	southeast	1629.83350
1336	21	1	25.800	0	1	southwest	2007.94500
1337	61	1	29.070	0	0	northwest	29141.36030

1338 rows × 7 columns

```
In [50]: from sklearn.ensemble import RandomForestClassifier
    rfc=RandomForestClassifier()
    rfc.fit(X_train,y_train)
```

Out[50]:

▼ RandomForestClassifier

RandomForestClassifier()

```
In [51]: score=rfc.score(x_test,y_test)
print(score)
```

0.7342582710779082

```
In [53]: from sklearn.model_selection import GridSearchCV
    grid_search=GridSearchCV(estimator=rfc,param_grid=params,cv=2,scoring="accuracy")
    grid_search.fit(X_train,y_train)
```

```
Out[53]: GridSearchCV

• estimator: RandomForestClassifier

• RandomForestClassifier
```

```
In [55]: grid_search.best_score_
```

Out[55]: 0.8453855721393035

```
In [56]: rf_best=grid_search.best_estimator_
```

```
In [58]: from sklearn.tree import plot_tree
        from sklearn.tree import DecisionTreeClassifier
        plt.figure(figsize=(80,40))
        plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled=True)
                                             sex <= 0.5
                                            gini = 0.275
                                           samples = 261
                                         value = [66, 335]
                                             class = No
                                                                 age <= 38.5
                       age <= 30.5
                       gini = 0.296
                                                                  gini = 0.25
                      samples = 127
                                                                samples = 134
                    value = [38, 172]
                                                               value = [28, 163]
                        class = No
                                                                  class = No
            gini = 0.372
                                  gini = 0.235
                                                       gini = 0.174
                                                                            gini = 0.328
            samples = 49
                                 samples = 78
                                                      samples = 74
                                                                           samples = 60
          value = [21, 64]
                               value = [17, 108]
                                                     value = [10, 94]
                                                                          value = [18, 69]
             class = No
                                   class = No
                                                        class = No
                                                                             class = No
In [59]: rf best.feature importances
Out[59]: array([0.8925801, 0.1074199])
In [61]: imp df=pd.DataFrame({"varname":X train.columns,"Imp":rf best.feature importances })
        imp_df.sort_values(by="Imp",ascending=False)
Out[61]:
           varname
                     Imp
               age 0.89258
               sex 0.10742
```

Conclusion: The above implemented models "Decision Tree" is high accuracy score. So it is the best model

```
In [ ]:
```