Math 557 Sep 15

Completing Theories

Key Concepts

• We previously defined the term model \mathcal{A} . It holds that for any atomic sentence σ ,

$$\mathcal{A} \models \sigma \iff T \vdash \sigma$$

• Trying to extend this to arbitrary sentence via induction, the negation case looks like

$$\mathcal{A} \models \neg \sigma \iff \mathcal{A} \not\models \sigma \stackrel{\text{ind hyp}}{\iff} T \not\models \sigma$$

We would like to show that this is equivalent to $T \vdash \neg \sigma$.

- One direction follows from T being consistent, but for the other direction, T may not be strong enough to prove this.
- We therefore need to extend T to a complete theory.

Problems

Exercise 0.1.

Verify that indeed for all atomic sentences σ ,

$$\mathcal{A} \models \sigma \iff T \vdash \sigma$$

Exercise 0.2.

Recall that a theory T is maximally consistent if it is consistent but does not have any consistent proper extensions. T is called deductively closed if the deductive closure of T,

$$T^{\vdash} = \{\sigma : T \vdash \sigma\}$$

is equal to T.

- Show that a maximally consistent theory is complete and deductively closed.
- Show that if T is complete, then T^{\vdash} is maximally consistent.

Exercise 0.3.

Is every consistent, deductively closed theory complete?

Exercise 0.4

Show that the union of an increasing sequence of consistent theories is consistent.

Exercise 0.5.

Extend Lindebaum's theorem on the existence of maximally consistent extension from countable to arbitrary languages.

Exercise 0.6.

Fix a language \mathcal{L} . Let X be the set of all maximally consistent \mathcal{L} -theories. For an \mathcal{L} -sentence σ , let

$$\langle \sigma \rangle = \{ T \in X \colon \sigma \in T \}$$

Show that

$$\begin{array}{ll} \bullet & \langle \sigma \wedge \tau \rangle = \langle \sigma \rangle \cap \langle \tau \rangle \\ \bullet & \langle \neg \sigma \rangle = X \smallsetminus \langle \sigma \rangle \end{array}$$

•
$$\langle \neg \sigma \rangle = X \setminus \langle \sigma \rangle$$

Exercise 0.7.

Continuing the previous exercise, let \mathcal{O} be the topology generated by the sets $\langle \sigma \rangle$. Show that

- each $\langle \sigma \rangle$ is clopen,
- the $\langle \sigma \rangle$ form a basis for \mathcal{O} ,
- \mathcal{O} is Hausdorff.