CS F364 Design & Analysis of Algorithms

COMPLEXITY – OPTIMIZATION PROBLEMS

Approximation Algorithms

- Absolute Error and Absolute Approximation
- Example and Counter-example

APPROXIMATION ALGORITHMS

- Given an optimization problem π , an algorithm A is said to be an approximation algorithm if it finds a feasible solution for any input instance
 - i.e. for any x in I_{π} A(x) is in F_{π} (x)
- Given an optimization problem π , for any input instance x and for any feasible solution y, **the absolute error** of y is defined as:
 - $D(x,y) = |m^*(x) m(x,y)|$
- Given an optimization problem π , an algorithm A is said to be an absolute approximation algorithm if there exists a constant k such that
 - i.e. for any x in I_{π} D(x, A(x)) <= k

(Planar) Graph Coloring — Planar Graphs

- Euler's Theorem on Planar Graphs:
 - The smallest degree must be at most 5.
- Algorithm GC6P(G)
 - Find a vertex u with degree at most 5 // bound to exist
 - Remove u (and incident edges) to get G'
 - GC6P(G') // G' is planar
 - Choose a color for u that is different from all its neighbors.
- O Approximation Algorithm GCP(G) // G = (V,E)
 - If E is empty, then each vertex gets the same color
 - Else if G is bipartite color it with 2 colors.
 - Else GC6P(G)

APPROXIMATION ALGORITHMS

- GCP is an absolute approximation algorithm because
 - For any planar graph G, the absolute error
 - $D(G, GC6P(G)) \le 6 3 = 3$
- Is it possible to get an absolute approximation algorithm for all NP-complete optimization problems?

Non-Existence of Absolute Approximation Algorithms

• Theorem:

 Unless P=NP, no polynomial-time absolute approximation algorithm exists for 0,1 KNAPSACK

• Proof:

- Given set of n items with profits p1,p2,...pn, and weights w1,w2,...wn and a bound B,
 - o assume that there is an absolute approximation algorithm with error bound k
- Create a new instance by multiplying all profits by k+1
 - o The optimal solution will be preserved (Why?)
 - o But the measure of any feasible solution will be a multiple of k+1
 - And the only feasible solution with absolute error bounded by k is the optimal solution.
- This is a contradiction (unless P=NP).