

BAUELEMENTE UND SCHALTUNGEN II

ES1: Bipolartransistor-Grundschaltungen

Studien- und Vorbereitungsaufgaben

Autor: Richard Grünert

29.4.2020

1 Vorbereitungsaufgaben

1.1 Funktion des Bipolartransistors

Die Funktion des Bipolartransistors basiert auf beiden Ladungsträger-bzw. Halbleiterdotierungsarten. Je nach Transistortyp haben die drei Halbleitergebiete des Bipolartransistors die Dotierfolge NPN oder PNP, die einzelnen Regionen heißen Basis (B), Kollektor (C) und Emitter, welche unterschiedlich dotiert sind.

Funktion am Beispiel des NPN-Transistors: Ist die von außen anliegende Spannung $U_{\rm BE}=0$ V, sind alle pn-Übergänge in Sperrrichtung und es fließt kein Strom durch den Transistor. Bei einer Spannung von etwa $U_{\rm BE}=0.7$ V gerät der Basis-Emitter-Übergang in Durchlassrichtung. Löcher aus dem p-Gebiet (Basis) diffundieren in das n-Gebiet (Emitter)

(vgl. Diode) und rekombinieren mit den dort befindlichen Leitungselektronen. Umgekehrt diffudieren die Elektronen des Emitters benfalls in die Basis.

Legt man eine zusätzliche Spannung an die Kollektor-Emitter-Strecke, so ist das elektrische Feld der Raumladungszone des Basis-Kollektorübergangs so gerichtet, dass sich die Elektronen des Emitters in Richtung Kollektor bewegen (Drift). Außerdem rekombinieren diese nicht in der Basis, da die Basisweite sehr gering ist. Es fließt ein Elektronenstrom zwischen Kollektor und Emitter, der durch einen deutlich geringeren Basisstrom gesteuert wird.

Ein mathematisches Modell zur Beschreibung des statischen Verhaltens des Bipolartransistors bietet das *Ebers-Moll-Modell*:

Knotengleichung am Emitter:

$$I_E = I_{ED} - A_I \cdot I_{CD}$$

$$I_E = I_{ES} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right) - A_I \cdot I_{CS} \cdot \left(e^{\frac{U_{BC}}{U_T}} - 1\right)$$

Knotengleichung am Kollektor:

$$I_C = I_{CD} - A_N \cdot I_{CD}$$

$$I_C = I_{CS} \cdot \left(e^{\frac{U_{BC}}{U_T}} - 1 \right) - A_N \cdot I_{ES} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1 \right)$$

Basis:

$$I_B = I_E - I_C$$

$$I_B = (1 - A_N) \cdot I_{ES} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right) - (1 - A_I) \cdot I_{CS} \cdot \left(e^{\frac{U_{BC}}{U_T}} - 1\right)$$

Im Normalbetrieb (Basis-Emitter-Übergang in Durchlass-, Basis-Kollektor-Übergang in Sperrrichtung) können die inversen Anteile des Modells vernachlässigt werden und es vereinfacht sich zu:

$$I_E = I_{ED}$$

$$I_C = A_N \cdot I_E$$

$$I_B = \frac{1 - A_N}{A_N} \cdot I_C$$

1.2 Vierquadrantenkennlinienfeld

1.2.1 I: Ausgangskennlinienfeld

Quadrant I stellt die Abhängigkeit des Kollektorstroms I_C von der Kollektor-Emitter-Spannung U_{CE} dar. Da diese zusätzlich vom Basisstrom I_B abhängig ist, können einzelne Kennlinien nur für ausgewählte Werte von I_B angegeben werden, es ergibt sich das Ausgangskennlinienfeld. Das Kennlinienfeld beginnt bei fortlaufender Kollektorspannung mit dem Transistor im Sättigungsbetrieb, da die Basis-Emitter-Spannung > 0 V und die Basis-Kollektor-Spannung ebenfalls > 0 V ($U_{BC} = U_{BE} - U_{CE}$) ist. Beide

pn-Übergänge sind in Durchlassrichtung gepolt, wodurch der Kollektorstrom mit kleiner werdender Kollektor-Emitter-Spannung U_{CE} abnimmt. Dies ist nicht der Normalbetriebsfall, weshalb die statische Stromverstärkung B_N in diesem Bereich nicht gilt. Den Bereich ab etwa $U_{CE}=0.6\,\mathrm{V}$ bezeichnet man als aktiven Vorwärtsbetrieb.

1.2.2 II: Stromsteuerkennlinie

Quadrant II zeigt den Zusammenhang zwischen Eingangsstrom I_B und Ausgangsstrom I_C . Das Verhalten ist bis auf die Bereiche sehr großer und sehr niedriger Ströme annäherungsweise linear. Der statische Verstärkungsfaktor B_N (Gleichstromverstärkungsfaktor) kann daher als

$$B_N = \frac{I_C}{B_N}$$

ausgedrückt werden (gilt nur für einen statisch eingestellten Arbeitspunkt).

1.2.3 III: Eingangskennlinienfeld

Im Quadranten III kann durch Verfolgen der Eingangsgrößen Basis-Spannung U_{BE} und -Strom I_B das Diodenverhalten des Basis-Emitter-pn-Übergangs erkannt werden.

1.2.4 IV: Rückwirkungskennlinienfeld

Quadrant IV stellt die Rückwirkung der Kollektor-Emitter-Spannung auf die Basis-Emitter-Spannung dar, meist beschränkt man sich jedoch auf die Quadranten I, II und III.

1.3 Vierpolersatzschaltbild

Das Vierpolersatzschaltbild dient zur Kleinsignalbeschreibung des Bipolartransistors. Die Kapaziäten im physikalischen Ersatzschaltbild führen

zu einer Frequenzabhängigkeit der Vierpolparameter.

Abbildung 1: Hybridparametermodell

$$h_{11} := \frac{u_1}{i_1}|_{u_2=0}$$

$$h_{12} := \frac{u_1}{u_2}|_{i_1=0}$$

$$h_{21} := \frac{i_2}{i_1}|_{u_2=0}$$

$$h_{22} := \frac{i_2}{u_2}|_{i_1=0}$$

Abbildung 2: Kleinsignalersatzschaltbild des Bipolartransistors

Steilheit/Übertragungsleitwert:

$$g_m = \frac{\mathrm{d}I_C}{\mathrm{d}U_{BE}} = \frac{I_{C,A}}{U_T}$$

Eingangswiderstand:

$$r_{\pi} = \frac{\mathrm{d}U_{BE}}{\mathrm{d}I_{B}} = \frac{\beta_{N}}{g_{m}} = \frac{\beta_{N} \cdot U_{T}}{I_{C.A}}$$

Ausgangswiderstand (U_{AN} : Early-Spannung):

$$r_0 = \frac{\mathrm{d}U_{CE}}{\mathrm{d}I_C} = \frac{U_{AN} + U_{CE,A}}{I_{C,A}}$$

Rückwärtssteilheit:

$$\frac{\mathrm{d}I_B}{\mathrm{d}U_{CE}} \approx 0$$

 C_{BC} : Sperrschichtkapazität (dominiert im normalen Verstärkerbetrieb)

 C_{BE} : Diffusionskapaziät

Hybridparameter:

$$h_{11} := \frac{u_1}{i_1}|_{u_2=0}$$

$$h_{11} = \frac{r_{\pi} \cdot \frac{1}{j\omega(C_{BE} + C_{BC})}}{r_{\pi} + \frac{1}{j\omega(C_{BE} + C_{BC})}} = \frac{r_{\pi}}{j\omega r_{\pi}(C_{BE} + C_{BC}) + 1}$$

$$h_{11} = r_{\pi} \cdot \frac{1}{1 + j\omega r_{\pi}(C_{BE} + C_{BC})}$$

$$h_{12} := \frac{u_1}{u_2}|_{i_1 = 0}$$

$$i_1 = 0 \rightarrow i_B = 0 \rightarrow \beta_N \cdot i_B = 0 \rightarrow u_2 = 0$$

$$h_{12} = 0$$

$$h_{21} := \frac{i_2}{i_1}|_{u_2=0}$$

$$i_1 = \frac{u_{BE}}{r_{\pi}//(\frac{1}{j\omega(C_{BC}+C_{BE})})}$$

$$i_2 = i_c = g_m \cdot u_{BE} = \frac{\beta_N}{r_{\pi}} \cdot u_{BE}$$

$$\frac{1}{h_{21}} = \frac{\frac{u_{BE}}{r_{\pi} \cdot \frac{1}{j\omega(C_{BC}+C_{BE})}}}{\frac{\beta_N}{r_{\pi}} \cdot u_{BE}} = \frac{\frac{1}{j\omega(C_{BC}+C_{BE})}}{r_{\pi} + \frac{1}{j\omega(C_{BC}+C_{BE})}}}{\frac{\beta_N}{r_{\pi}} \cdot u_{BE}} = \frac{1}{r_{\pi} \cdot j\omega(C_{BC}+C_{BE})}$$

$$= \frac{1}{\beta_N \cdot \frac{1}{r_{\pi} \cdot j\omega(C_{BC}+C_{BE}) + 1}}$$

$$h_{21} = \beta_N \cdot \frac{1}{1 + j\omega r_\pi (C_{BC} + C_{BE})}$$

$$(\omega \to 0 \to h_{21} = \beta_N)$$

$$h_{22} := \frac{i_2}{u_2}|_{i_1=0}$$

$$\frac{1}{h_{22}} = r_0 / / \left(\frac{1}{j\omega C_{BC}} + (r_\pi / / \frac{1}{j\omega C_{BE}}) \right)$$

$$= r_0 / / \left(\frac{1}{j\omega C_{BC}} + \frac{1}{\frac{1}{r_\pi} + j\omega C_{BE}} \right)$$

$$= \frac{r_0 \cdot \left(\frac{1}{j\omega C_{BC}} + \frac{1}{\frac{1}{r_\pi} + j\omega C_{BE}} \right)}{r_0 + \left(\frac{1}{j\omega C_{BC}} + \frac{1}{\frac{1}{r_\pi} + j\omega C_{BE}} \right)}$$

$$\frac{1}{h_{22}} = \frac{r_0}{1 + \frac{r_0}{\left(\frac{1}{j\omega C_{BC}} + \frac{1}{r_{\pi} + j\omega C_{BE}}\right)}}$$

y-Parameter:

$$y_{11} = \frac{1}{h_{11}}$$

$$y_{12} = \frac{-h_{12}}{h_{11}}$$

$$y_{21} = \frac{h_{21}}{h_{11}}$$

$$y_{22} = \frac{\det H}{h_{11}}$$

1.4 Transistorgrundschaltungen

Die drei Grundschaltungen des Transistors werden nach dem der Ausgangsund Eingangsspannung gemeinsamen Potential benannt. Demnach existieren Emitter-, Kollektor- und Basisschaltung. Zum Entfernen der Gleichanteile des Ein- und Ausgangssignals werden Kondensatoren vor die Eingänge geschaltet, welche so dimensioniert sind, dass sie für die Wechselanteile der Signale einen Kurzschluss darstellen.

Bei der Arbeitspunkeinstellung werden die Kondensatoren entfernt und die Widerstände im gewünschten Arbeitspunkt (I_C, U_{CE}) ermittelt.

1.4.1 Emitterschaltung

Abbildung 3: Emitterschaltung

Mithilfe der Stromgegenkopplung durch den Widerstand R_4 lässt sich der Arbeitspunkt gegenüber Änderungen der Stromverstärkung stabilisieren, er verringert jedoch die Verstärkung und erhöht den Eingangsund Ausgangswiderstand. Man kann einen Kondensator (C_3) parallel schalten, um die negative Auswirkung des Widerstands für Wechselsignale zu unterdrücken. Allgemein besitzt die Emitterschaltung eine hohe Spannungsverstärkung sowie einen hohen Ein- und Ausgangswiderstand.

1.4.2 Kollektorschaltung (Emitterfolger)

Abbildung 4: Kollektorschaltung

Das Ausgangsspannungssignal der Kollektorschaltung folgt etwa dem Eingangssignal $(-0.7\,\mathrm{V})$, die Spannungsverstärkung ist 1, der Ausgangsstrom ist jedoch deutlich höher als der Eingangsstrom. Der Eingangswiderstand der Schaltung ist daher sehr hoch, der Ausgangswiderstand ist umgekehrt proportional der Steilheit des Transistors, also in der Regel sehr gering, weshalb sich die Schaltung gut als Impedanzwandler eignet.

Die Arbeitspunkteinstellung ist analog der Arbeitspunkteinstellung bei der Emitterschaltung. Zusätzlich kann, wie bei der Emitterschaltung, ein Kollektorwiderstand eingeführt werden, welcher dann über einen, ebenfalls zusätzlichen, vom Kollektor an Masse geführten Kondensator wechselspannungsmäßig kurzgeschlossen wird.

$$R_{ein} \approx r_{\pi} (1 + g_m \cdot R_3)$$
$$R_{aus} \approx \frac{1}{g_m}$$

1.4.3 Basisschaltung

Abbildung 5: Basisschaltung

Die Basisschaltung kennzeichnet sich durch einen sehr geringen Eingangswiderstand, einen hohen Ausgangswiderstand sowie eine hohe Spannungsverstärkung. Auch hier geschieht die Arbeitspunkteinstellung über das 4-Widerstandsnetzwerk aus R_2, R_1, R_3 und R_4 . Der Kondensator C_2 schließt im Kleinsignalersatzschaltbild die Widerstände R_1 und R_2 kurz und bringt die Transistorbasis auf Massepotential.

$$R_{ein} pprox rac{1}{g_m}$$

$$R_{aus} \approx r_0$$

1.5 Dimensionierung einer Emitterstufe

Die Spannung über dem Emitterwiderstand U_{R_4} wird gewählt

$$U_{R_4} = 1 \,\mathrm{V}$$

Damit ergibt sich die Spannung U' am Basisspannungsteiler zu

$$U' = 1 V + 0.7 V = 1.7 V$$

Der Querstrom durch den Spannungsteiler wird so hoch gewählt, dass dieser bezüglich des Basisstroms als unbelastet angesehen werden kann.

$$I_{R_1} = 8 \cdot I_B$$

Der Basisstrom

$$I_B = \frac{I_C}{\beta} = \frac{4.5 \,\mathrm{mA}}{158} = 27.22 \,\mathrm{\mu A}$$

führt zu den Widerstandswerten des Basisspannungsteilers

$$R_2 = \frac{U'}{8 \cdot I_B} = \frac{1.7 \,\text{V}}{8 \cdot 27.22 \,\text{\mu A}} = 7.87 \,\text{k}\Omega$$

$$R_1 = \frac{U_s - U'}{9 \cdot I_B} = \frac{10.3 \text{ V}}{244.98 \,\mu\text{A}} = 42.2 \,\text{k}\Omega$$

Die verbleibenden Widerstände sind

$$R_4 = \frac{U_{R_4}}{I_{C,A}} = \frac{1 \text{ V}}{4.3 \text{ mA}} = 232 \,\Omega$$

$$R_3 = \frac{U_s - U_{R_4} - U_{CE,A}}{I_{C,A}} = \frac{5 \text{ V}}{4.3 \text{ mA}} = 1.15 \text{ k}\Omega$$

Die Widerstandswerte wurden so gerundet, dass sie jeweils in eine E-Reihe passen.

Der Kondensator parallel zu R_3 kann so gewählt werden, dass seine Reaktanz X_C bei der niedrigsten Signalfrequenz gleich $1/10 R_3$ ist.

1.6 Temperaturabhängigkeiten

Temperaturänderungen stellen für den Transistor als Halbleiterbauelement eine externe Energiezufuhr und damit eine Störung des thermodynamischen Gleichgewichts dar. Die Ladungsträgerdichten der einzelnen Bereiche erhöhen sich, die Weiten der Raumladungszonen verringern sich und der Transistor wird insgesamt leitfähiger. Dadurch erhöht sich auch der Stromverstärkungsfaktor β , was z.B. den Arbeitspunkt, der bei der Schaltungsdimensionierung angenommen wurde, verschieben kann. Da dieser zusätzlich fertigungsbedingt abweichen kann, strebt man einen Arbeitspunkt an, der möglichst unabhängig von der Stromverstärkung ist. Dies wird z.B. durch die Arbeitspunkteinstellung mit einem 4-Widerstandsnetzwerk mit Stromgegenkopplung oder die Einstellung des Emitterstroms durch eine Stromquelle erreicht.

1.7 Bestimmung der Grundschaltungsparameter

Die Parameter werden nach dem physikalischen Ersatzschaltbild des Bipolartransistors ohne parasitäre Kapazitäten bestimmt. Bei der Kleinsignalanalyse werden alle Kapazitäten sowie Spannungsquellen als Kurzschlüsse behandelt.

1.7.1 Emitterschaltung

Abbildung 6: Kleinsignalersatzschaltbild der Emitterschaltung (Abb. 3)

Abbildung 7: ESB Abb. 6, Transistor durch phys. ESB ersetzt

Eingangswiderstand:

$$r_e = \frac{U_e}{I_e}|_{U_a=0} = R_1//R_2//r_{\pi}$$

Ausgangswiderstand:

$$r_a = \frac{U_a}{I_a}|_{U_e=0} = r_0//R_3$$

Spannungsverstärkung:

$$V_u = \frac{U_a}{U_e}$$

$$U_2 = g_m \cdot u_{BE} \cdot (r_0//R_3) = g_m \cdot U_1 \cdot (r_0//R_3)$$

$$V_u = g_m \cdot (r_0//R_3)$$

Stromverstärkung:

1.7.2 Kollektorschaltung

Abbildung 8: Kleinsignalersatzschaltbild der Kollektorschaltung (Abb. 4)

Abbildung 9: ESB Abb. 8, Transistor durch phys. ESB ersetzt

1.7.3 Basisschaltung

Abbildung 10: Kleinsignalersatzschaltbild der Basisschaltung (Abb. 5)

Abbildung 11: ESB Abb. 10, Transistor durch phys. ESB ersetzt

1.8

Bootstrapping ist eine Art der positiven Rückkopplung