

ECEN 404 Demo
Team 61: Driver Drowsiness
Detection

Dakota Mouton, Ali Imran, Coady Lewis Sponsor: John Lusher

TA: Max Lesser

Project Diagram

EEG

- Filter out unwanted frequencies.
- Take in brain waves in microvolts and amplify them to volts.
- Send data to MCU

MCU

- Receive incoming signals from EEG
- Send data to computer running ML algorithm

Dakota

Simulator

- Collect data
- Muse 2 EEG device

Signal Processor

- Perform live analysis of signals
- Process raw EEG signals

ML Algorithm

- Input processed EEG signals
- Output fatigue state of user

Team 2: Coady and Ali

Project Photos: Model Classification

Project Photos: EEG

Long Session Output (Ali)

Long Session Output (Coady)

Accuracies (Long Sessions)

Total: 93.6%

Fully Awake: 92.3%

Fully Drowsy: 95%

False Positive: 7.7%

False Negative: 5%

Software System Results

- Full Awake/Full Drowsy Test (2 Subjects)
 - https://youtu.be/pWFG5qb1vY0
- Response to Stimulus Example
 - https://youtu.be/Y3JlhLka4Ks

Signal Analysis Design

- EEG signals can be erratic.
- To get usable features, the final implementation pulls bandlimited power from 6 bands and calculates 15 comparative ratios for each electrode. The operation was performed with an FFT on window sizes of 5 seconds.
- Windows must be adjacent to keep sequential structure.
- Live analysis script feeds processed values to ML in real time.

Signal Analysis Design

- Doubling the number of bands from 403 gave repeatable testing accuracy improvements of 9-10%.
- Increasing the number of bands increases the amount of information, but we are limited by the feasible amount of training data.

- Randomized data augmentation was tried, but it didn't give good results, as time dependency was lost.
- The offset method was settled on, but overuse yields overfitting.

Signal Analysis Design

 This is how offsetting the windows generates many times more data points without losing the sequential structure. Overlap is used for the non-sequential case.

ML Model Design

Naive Bayes | Kernel SVM | Neural Network

Kernel SVM

Recurrent Neural Network (RNN)

- time dependencies

Recurrent Convolutional Neural Network (RCNN)

both time and spatial dependencies

Recurrency

Recurrency

Recurrency

Electrodes (4)	TP9	fO	f1	f2	 f13	f14
les (4)	AF7	f0	f1	f2	 f13	f14
Electrodes	AF8	fO	f1	f2	 f13	f14
	TP10	fO	f1	f2	 f13	f14

Electrodes (4)	TP9	fO	f1	f2	 f13	f14
	AF7	fO	f1	f2	 f13	f14
	AF8	fO	f1	f2	 f13	f14
	TP10	fO	f1	f2	 f13	f14

	TP9	f0	f1	f2	 f13	f14
les (4)	AF7	f0	f1	f2	 f13	f14
Electrodes	AF8	f0	f1	f2	 f13	f14
	TP10	f0	f1	f2	 f13	f14

Electrodes (4)	TP9	fO	f1	f2	 f13	f14
les (4)	AF7	fO	f1	f2	 f13	f14
Electrod	AF8	fO	f1	f2	 f13	f14
	TP10	fO	f1	f2	 f13	f14

	TP9	fO	f1	f2	 f13	f14
les (4)	AF7	fO	f1	f2	 f13	f14
Electrodes (4)	AF8	fO	f1	f2	 f13	f14
	TP10	fO	f1	f2	 f13	f14

Hardware System Results

Specification:	Details:	Results:
Input Voltage = 148 mV - 812 mV amplified up to 1.25 V	Max voltage rating desired is 1.25 V from the amplifier IC.	Pass*; Input = 200 mV (differential), Output = 1.24 V
Circuit Vcc Regulated to +- 5V	Take 6V input and hold at +- 5V for powering circuit	Pass; Vcc+ = 5V, Vcc- = -5V
EEG Filtering Below 8 Hz	Reducing noise for signal processing by removing spikes in frequency band	Pass
EEG Filtering Above 32 Hz	Reducing noise for signal processing by removing spikes in frequency band	Pass
EEG Filtering at 60 Hz	Reducing powerline interference and large spike at 60 Hz	Pass

^{*}The ADC output goes close to zero whenever a frequency outside our range is put through the system.

EEG System Simulation

8 Hz HPF

32 Hz LPF

Instrumentation Amp Gain: 5.94 V/V

EEG System Cost

2 Electrode EEG

Category	Part Number	Item Name	Location to Co	ost per Part	Quantity	Total Cost
Instrumention Amp	AD8221BRZ-R7CT-ND	AD8221BRZ-R7 Instrumentation Amp	https://www	\$10.90	1	\$10.90
Single Op Amp	ADA4610-1ARJZ-R7	ADA4610-1ARJZ-R7 single op amp	https://ww	\$2.81	5	\$14.05
ADC	LTC2473CMS#PBF-ND	LTC2473CMS#PBF-ND ADC	https://ww	\$4.55	1	\$4.55
			Totals:	\$18.26	7	\$29.50
Capacitors	399-7848-1-ND-Cut Tape	: C0603C105K9PAC7867 (1uf)	https://www	\$0.10	6	\$0.60
	1276-2897-1-ND - Cut Ta	CL21A106KPFNNWE (10uf)	https://ww	\$0.22	2	\$0.44
	1276-1176-1-ND - Cut Ta	CL05B224KO5NNNC (220nf)	https://ww	\$0.10	4	\$0.40
	478-1114-1-ND - Cut Tap	0402YC103KAT2A (10nf)	https://ww	\$0.10	1	\$0.10
	1276-1043-1-ND	CLO5A104KA5NNNC (0.1uF)	https://www	\$0.10	7	\$0.70
	1276-1134-1-ND	CL10B225KP8NNNC (2.2uF)	https://ww	\$0.12	2	\$0.24
Resistors	RNCP0805FTD1K00CT-N	RNCP0805FTD1K00 (1k)	https://ww	\$0.10	2	\$0.20
	RNCP0805FTD2K00CT-NI	RNCP0805FTD2K00 (2k)	https://ww	\$0.10	5	\$0.50
	RNCP0805FTD15K0CT-NI	RNCP0805FTD15K0 (15k)	https://www	\$0.10	1	\$0.10
	YAG5090CT-ND	RT1206BRD075KL (5k)	https://ww	\$0.65	2	\$1.30
	A130442CT-ND	CRGP0603F150K (150k)	https://www	\$0.17	1	\$0.17
	RMCF0805FT13K0CT-N	I RMCF0805FT13K0 (13k)	https://w	\$0.10	1	\$0.10
	CRT1206-FZ-1002ELF	652-CRT1206FZ1002ELF (10k)	https://w	\$0.30	1	\$0.30
			totals:	\$2.26	35	\$5.15
Buck boost converte	r 5V Step-Up/Step-Down V	Buck boost converter	https://ww	\$14.95	1	\$14.95
Dry Electrodes	FRI-2140-1E	Package of 15 Disposable/Reusable Dry	https://www	\$34.95	1	\$34.95
Alkaline Batteries		Amazon Basics AA 1.5 Volt Performance	https://ww	\$5.49	1	\$5.49
Battery Holder for 4	Batteries	LAMPVPATH (Pack of 2) 4 AA Battery Hold	https://ww	\$5.99	1	\$5.99
2 Output Pin Termina 732-2028-ND		6.91103E+11	https://ww	\$0.71	1	\$0.71
Power 3 Input termin 732-2027-ND		6.91102E+11	https://www	\$0.71	2	\$1.42
		0.787 0.0304 8 10	totals:	\$62.80	7	\$63.51
Grand Total:	\$98.16					

Challenges for Future (Hardware)

- Reducing footprint of pcb to fit on a hat or wearable accessory for the driver.
- Shielding input electrodes from electrical interference in the surrounding environment.
- Upscaling the circuitry the use more electrodes for more accurate measurements.

Challenges for Future (Software)

Sample Labeling Methods

Individual rather than batch sample labeling

Data Volume and Subject Count

- Build a more robust and generalized model
- Will allow for more bands from signal processing

Simulation Realism

Vehicle NVH