

滑轮

日期: 姓名: Date:_____ Time:_____ Name:____

初露锋芒

学习目标

&

重难点

- 1. 知道定滑轮的定义,掌握定滑轮的特点
- 2. 知道动滑轮的定义,掌握动滑轮的特点
- 3. 理解定滑动,动滑轮的区别,掌握各自的应用
- 1. 定滑轮的特点及其应用
- 2. 动滑轮的特点及其应用

根深蒂固

一、滑轮

1、滑轮:周边有_____,能绕着轴_____的小轮,叫做滑轮。本质上是一种变形的____。

二、定滑轮

理想的定滑轮: F____G(不计轮轴间摩擦)

绳子自由端移动距离 S_F (或速度 V_F)_____重物移动的距离 S_G (或速度 V_G)

2、定滑轮特点: 不_____, 但能______的方向。

三、动滑轮

理想的动滑轮: F= G(不计轴间摩擦和动滑轮重力)

 $F = (G_{5} + G_{1})(只忽略轮轴间的摩擦则拉力);$

绳子自由端移动距离 S_F (或 V_F) = 倍的重物移动的距离 S_G (或 V_G)

2、动滑轮特点:能 ,但不省距离,也不能 。

枝繁叶茂

一、定滑轮

知识点一: 定滑轮定义

【例1】(多选)下图所示各滑轮中属于定滑轮的是 ()

【例 2】是非题,判断下列说法是"对"还是"错"。

- (1) 旗杆顶上装有滑轮,升旗时可以省力 ()
- (2) 滑轮是变形的杠杆, 所以使用滑轮不一定省力 ()

知识点二: 定滑轮特点

【例 3】使用定滑轮提升重物, 当分别在 A 方向、B 方向和 C 方向拉重物时 ()

- A. A 方向拉力最小
- B. B 方向拉力最小
- C. C 方向拉力最小
- D. 三个方向拉力都一样

【例4】不考虑滑轮与轻绳之间的摩擦,米袋总重为800N,而绳上吊着的静止的"绅士"重500N,则地面对米袋的支持力为 ()

- A. 500N B. 250N
- C. 300N
- D. 800N

知识点三: 定滑轮特点应用

【例 5】在如图所示的装置中,某人将重为 300 牛的货物匀速提升 2 米,所用时间为 10 秒。

求: (1) 手对绳的拉力 F;

(2) 货物移动的速度是多少?

【例5】如图所示小海同学"研究定滑轮和动滑轮特点"的实验装置。他按图示提起钩码时注意保持测力 计匀速移动,分别测得一组数据如下表所示:

	钩码重	钩码升高	测力计示	测力计移
	G/N	高度 h/m	数 F/N	动距离 S/m
甲	0.98	0.2	0.98	0.2
乙	0.98	0.2	1.02	0.2
丙	0.98	0.2	0.55	0.4

- (1) 比较测力计示数的大小,可知:使用动滑轮的好处是。
- (2) 比较测力计拉力的方向,可知:使用定滑轮的好处是。
- (3) 把钩码升高相同的高度,比较乙和丙拉力端移动的距离,可知:使用动滑轮。

知识点三: 动滑轮特点应用

【例7】某同学研究动滑轮的使用特点,他每次都匀速提起钩码,研究过程如图所示,请仔细观察图中的操作和测量结果(不计滑轮的重力),然后归纳得出初步结论。

- (1) 比较 A、B 两图可知: ______。
- (2) 比较 B、C 两图可知: 。

随堂检测

- 1、旗杆顶上的滑轮,其作用叙述正确的是 ()
 - A. 省力杠杆,可改变力作用方向

B. 费力杠杆,可改变力作用方向

- C. 等臂杠杆,可改变力作用方向
- D. 以上说法都正确

- B. G为9N,弹簧秤读数为10N
- C. G为10N,弹簧秤读数为5N
- D. G为9N,弹簧秤读数为5N

3、如图所示,在竖直向上大小为10N的力 F的作用下,重物 A 沿竖直方向匀速上升。已知重物 A 上升速度为 0.2m/s,不计滑轮重、绳重及绳与滑轮间的摩擦,则物体的重力大小和滑轮上升的速度分别为 ()

- A. 20N; 0.4m/s
- B. 20N; 0.1m/s
- C. 5N; 0.4m/s
- D. 5N; 0.1m/s

4、如图所示,当右端挂5N 的物体 A 时,物体 B 在平面桌上恰好能向右做匀速直线运动,若现在要使物体 B 向左做匀速直线运动,则应对物体 B 施加的力为 ()

A. 水平向左, 5N

B. 水平向右,5N

C. 水平向左, 10N

D. 水平向右, 10N

5、不计滑轮重, G_1 =100 牛, G_2 =500 牛,若弹簧秤的读数为 F_1 ,物体 G_2 对地面的压力为 F_2 ,则(

A. F₁=200 牛

B. F₂=300 牛

C. F₁=400 牛

D. F₂=200 牛

6、甲物重5N,乙物重3N,甲、乙均保持静止状态,不计弹簧测力计自重。则甲受到的合力和弹簧测力计的示数分别是 ()

A. 0: 3N

B. 0; 5N

C. 2N; 5N

D. 2N; 3N

7、如图所示,用 F=100N 的力拉着木块匀速前进,则木块与支持面间的摩擦力为 N。

8、如图所示, 当物体所受重力等于 120N, 物体对地面的压力为零时, 拉力 F 应等于 N (不计绳重与摩 擦)。

9、用如图的滑轮匀速提升重物,若物体重 G=200N,滑轮重不计,则滑轮挂钩承受的拉力是 N,拉绳的 力 F 为 N; 若滑轮重为 20N,则挂钩承受的拉力是 N,拉绳的力 F 为 N。

- 10、如图所示,物重 G=30N,绳的一端拴在地面,拉力 F 使滑轮匀速上升。
- (1) 若滑轮重不计,滑轮向上移动 20cm,则拉力 F= N,物体上升 cm。
- (2) 若滑轮重为 2N,使物体上升 20cm,则拉力 F= N,滑轮向上移动 cm。

11、利用定滑轮提起重物,沿着如图所示方向的 F_1 、 F_2 、 F_3 来施力拉绳子时拉力大小的关系是 F_1 F_2 F_3 (以上两空选填 "="或 "≠"), 这是因为 F_1 、 F_2 、 F_3 的力臂_____(选填"相等"或"不等")。

12、小明同学按照如图所示装置对动滑轮特点进行了探究,记录的数据如下表:通过分析数据。她觉得与"使 用动滑轮能省一半的力"的结论偏差较大。你一定也做过这样的实验,回想你的实验经历,回答下列问题:该 实验中出现这样结果的主要原因是______和____和 ____。在该实验时还应注意

实验次数	物重 G/N	弹簧测力计的示数 F/N
1	1.0	0.7
2	1.5	1.0
3	2.0	1.3

13、某个小组同学研究动滑轮的使用特点,他们先用弹簧测力计缓慢提起钩码,如图(a)所示,再分别用重力不同的动滑轮甲、乙、丙($G_{\mathfrak{p}}$ > $G_{\mathbb{Z}}$ > $G_{\mathbb{R}}$)缓慢提起相同钩码,如图(b)、(c)、(d)所示。请仔细观察图中的操作和弹簧测力计的示数,然后归纳得出结论。

(1) 比较图(a)	与(b)或(a)与(c)或	(a) 片(d) 西图可得。	
(I) 比較图(a)	与(b)蚁(a)与(c)蚁	(a) 与 (d) 网图 U 侍:	

(2)	比较图(b)与(c)与(d)三图可得:	0
-----	---------------------	---

14、如图所示,绳及滑轮重不计,滑轮转动时的摩擦不计。物体 A 重 800N、B 重 100N,B 在运动时受地面的摩擦力是 f_B =20N。当拉力 F=200N 时,物体 A 以 3m/s 的速度沿水平面匀速运动。求:

- (1) 物体 B 运动的速度;
- (2) 物体 A 所受的摩擦力 fA。

15、某小组同学研究"使用动滑轮匀速提起物体时,所用竖直向上拉力 F 的大小与哪些因素有关"。他按图所示方式用两个重力不同的滑轮连行实验,并将相应的滑轮重 G_{π} 、物体重 G_{η} 和拉力 F 的大小记录在表一、二中。为了进一步研究,他们计算了每次实验中物体所受重力的变化量 ΔG_{η} 与所用拉力的变化量 ΔF ,并将结果记录在表一、二的后两列中。

	B4/P14/41 -								
	表一: G #=2牛					表二	L: G 滑=	4牛	
实验	G _物	F	ΔG 物	ΔF	实验	G _物	F	ΔG _物	ΔF
序号	(牛)	(牛)	(牛)	(牛)	序号	(牛)	(牛)	(牛)	(牛)
1	1	1.5	0	0	6	2	3.0	0	0
2	2	2.0	1	0.5	7	4	4.0	2	1.0
3	4	3.0	3	1.5	8	6	5.0	4	2.0
4	6	4.0	5	2.5	9	8	6.0	6	3.0
5	8	5.0	7	3.5	10	10	7.0	8	4.0

(1) 分析比较表一或表二中F与 G_{20} 的数据及相关条件,可得出的初步结论是:使用动滑轮匀速提起物体,

(2) 分析比较实验序号	_的数据及相关条件,	可得出的初步结论是:	使用动滑轮匀速提
起物体,当 G 物相等时, G 液越大, F 越大。			

(3)根据表一、二	中前三列的数据及条件,	请判断:	按图所示方式使用动滑轮匀速提起物体,	若要省力,	需
满足的条件是	o				

(4)进一步分析比较表一、二中 ΔF 与 ΔG 物的数据及相关条件,可发现其满足的数学关系式为 由此可得出的初步结论是:使用功滑轮匀速提起物体,成正比。

瓜熟蒂落

1、如图所示,用三个滑轮分别拉同一个物体,沿同一水平面做匀速直线运动,所用的拉力分别是 F_1 、 F_2 、 F_3 , 比较它们的大小应是 ()

2、工人们为了搬运一个笨重的机器进入厂房,他们设计了如图所示的四种方案(机器下方的小圆表示并排放 置的圆形钢管的横截面)。其中最省力的方案是

3、两个滑轮完全相同,其重力均为20N。分别用图所示的两种方式,将重400N的物体以相同的速度匀速提升, 不计摩擦和绳重,则下列判断正确的是 (

- A. F₁大于 F₂
- B. $F_1=F_2$
- C. F₁小于 F₂
- $D. F_1$ 和 F_2 大小无法确定

4、如图所示,把重20N的物体匀速向上拉起,弹簧测力计的示数为12N,若不计摩擦,则拉力F和动滑轮的 重力分别是 ()

- A. 10N, 4N
- B. 12N, 24N
- C. 12N, 4N
- D. 24N, 12N

11、如图所示,某人用滑轮先后以甲、乙两种不同的方式来匀速提升重物。如果该人的体重为800N、手臂所能发挥的最大拉力为1000N,滑轮重和摩擦均忽略不计,则:以图甲方式最多可提升重为_____N的物体;而以图乙方式最多可提升重为_____N的物体。

12、在探究动滑轮使用特点:

由图(b)(c)可得:______。

13、为了探究滑轮在不同工作情况时的使用特点,某小组同学利用不同的滑轮将重为10牛的物体匀速提起,滑轮的工作情况和实验数据如下表所示。

会が良口	1	2	2		_		_	0	0
头粒片亏	1	2	3	4	5	6	/	8	9
		定滑轮		_			动滑轮		
滑轮工作									
				$ \Theta $	$ \Theta $	$ \Psi $	$ \Psi $	Ψ	Ψ
111.00									
滑轮重力	1	1	1	1	,	,	,	2	3
(牛)	1	1	1	1	2	3	3	3	3
拉力(牛)	10	10	10	5.5	6.0	6.5	7.2		8.0
	(牛)	滑轮工作 情况 滑轮重力 (牛)	定滑轮 滑轮工作情况 情况 1 (牛)	定滑轮 滑轮工作情况 1 1 1 滑轮重力(牛) 1 1 1	定滑轮 清轮工作情况 情况 月轮重力(牛) 1 1 1 1 1 1 1 1	定滑轮 清轮工作情况 情况 月轮重力(牛) 1 1 1 1 2	定滑轮 清轮工作情况 清轮重力(牛) 1 1 1 1 1 1 1 1 1 2 3	定滑轮 动滑轮 滑轮工作情况 1 1 1 1 2 3 3 (牛) 1 1 1 1 2 3 3	定滑轮 动滑轮 滑轮工作情况 1 1 1 1 2 3 3 3 3

(1) 分析比较实验序号	_可得出的初步结论是:	使用定滑轮匀速提升重物时,	不改变力的大小,
可以改变用力方向。			

(2)	分析比较实验序号4、	5和6可得出的初步结论是:	

(3)分析比较实验序号6、7和9可以得到的结论是: 。

能力提升

1、如图所示,装置处于静止状态,如果物体的重力为 G_1 和 G_2 ,在不计滑轮重及绳子摩擦的情况下, G_1 : G_2 为

()

- A. 1:2 B. 1:1
- C. 2:1
- D. 3:1

2、如图所示,滑轮重、摩擦不计,物体 A 的重力为4N,物体 B 的重力为2N,当物体 A、B 处于平衡状态时,

弹簧测力计 C、D 的读数分别为 N 和 N。

- 3、如图所示,动滑轮重为0.5N,物体 G 重3.5N,当 OA=2OB 时,为使轻质杠杆 AB 保持水平平衡,在 A 端 施加的最小力为(不计摩擦) ()
 - A. 0.5N B. 1N
- C. 2N
- D. 4N

- 4、如图,质量分别为 m_1 、 m_2 、 m_3 (m_1 > m_2) 的物体通过轻绳和弹簧连接起来,三个物体均处于静止状态。不 计弹簧自重、绳重和摩擦,关于此装置的说法错误的是 ()
 - A. 绳子对 m₂的拉力大小为 m₂g
 - B. 绳子对 m₁的拉力大小为 m₁g
 - C. 弹簧中拉力大小为 (m_1-m_2) g
 - D. 地面对 m_3 的支持力大小为($m_2+m_3-m_1$)g

