1. Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$$

The set $\mathcal{B} = \{v_1, v_2, v_3\}$ is a basis of some subspace V of \mathbb{R}^4 .

- a) Find an orthogonal basis $\mathcal{D} = \{w_1, w_2, w_3\}$ of the subspace V.
- b) Compute the vector $\operatorname{proj}_{V} \mathbf{u}$, the orthogonal projection of \mathbf{u} on V.

$$\sqrt{-\sqrt{2}-(1)(2)+(0)(1)+(-1)(-1)+0}$$

a.) Use Gram-Smit:
$$\angle \omega_1, \omega_1 > = 3$$

 $\omega_1 = V_1$ $\Rightarrow \angle \omega_1, V_2 > = (1)(2) + 0 + 1 + 0 = 3$
 $\omega_2 = V_2 - \frac{\angle \omega_1, V_2 >}{\angle \omega_1, \omega_1 >} \omega_1 = V_2 - |\omega_1| = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \omega_2$

$$W_{3} = V_{3} - \frac{2w_{1}, v_{3}}{2w_{1}, w_{1}} = \frac{2w_{2}, v_{3}}{2w_{2}, w_{2}} = V_{3} - 2w_{1} + w_{2} = \begin{bmatrix} \frac{2}{2} \\ -\frac{1}{3} \end{bmatrix} - \begin{bmatrix} \frac{2}{2} \\ -\frac{1}{3} \end{bmatrix} - \begin{bmatrix} \frac{2}{2} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{1} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{1} \\ 0 \end{bmatrix}$$

$$W_{1}, v_{3} = 2 + 0 + 1 + 3 = 6$$

$$W_{2}, v_{3} = 2 - 2 + 0 - 3 = -3$$

$$W_{2}, v_{3} = 2 - 2 + 0 - 3 = -3$$

$$W_{3} = \frac{2w_{1}}{2}, v_{3} = \frac{2w_{1}}{2} + \frac{2w_{2}}{2} + \frac{2w_{1}}{3} + \frac{2w_{2}}{3} + \frac{2w_{1}}{3} + \frac{2w_{1}}{3} + \frac{2w_{2}}{3} + \frac{2w_{1}}{3} + \frac{2w_{1}}{3} + \frac{2w_{2}}{3} + \frac{2w_{1}}{3} + \frac{2w_{1$$

