实验十五 非平衡电桥测量铂电阻的温度系数 实验报告

钱思天 1600011388 No.8 2017 年 12 月 12 日

1 实验数据与处理

1.1 平衡电桥测量结果

表 1: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega$) 测量结果

测量	值 各待测项						
		$R_0(\Omega)$	$R'_0(\Omega)$	$\Delta n(格)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S
$R_x \& \frac{R_1}{R_2}$							
R_{x1}	500/500	47.9	47.8	4.0	47.9	0.1	1.9×10^{3}
	50/500	3600	3575	4.0	360.0	25	5.8×10^{2}
R_{x2}	500/500	360.0	361.0	4.0	360.0	1.0	1.4×10^{3}
	500/500(交换)	360.0	361.0	4.0	360.0	1.0	1.4×10^{3}
R_{x3}	500/500	4059	4005	4.0	4059.0	54	3.0×10^{2}

表 2:	R_{σ^2}	不同测量条件测量结果	

$\chi = \frac{1}{1} $							
测量值 各待测项 各测量条件	$R_0(\Omega)$	$R_0'(\Omega)$	$\Delta n($ 格 $)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S	
$E = 4.0V \& R_h = 0\Omega \& R_1/R_2 = 500/500$	360.0	361.0	4.0	360.0	1.0	1.4×10^3	
$E = 2.0V \& R_h = 0\Omega \& R_1/R_2 = 500/500$	360.0	362.0	4.0	360.0	2.0	7.2×10^2	
$E = 4.0V \& R_h = 0\Omega \& R_1/R_2 = 500/5000$	3600	3650	4.0	360.0	50.0	2.9×10^2	
$ E = 4.0V \& R_h = 3.0k\Omega \& R_1/R_2 = 500/500 $	360	340	5.5	360.0	10.0	2.0×10^2	

关于灵敏度 S 的计算,利用公式

$$S = \frac{\Delta n}{\Delta R_x / R_x} = \frac{\Delta n}{\Delta R_0 / R_0}$$

可计算出各 S 的实测值,已附于数据表内。 至于 S 的理论值,根据公式

$$S = \frac{S_G E}{R_1 + R_2 + R_3 + R_4 + (R_g + R_h)(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2})}$$

将 $S_G^{-1}=1.3 imes 10^{-6} (A/格)$ 及 $R_g=47\Omega$ 代入,得下二表:

表 3: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega$)S 理论值计算结果

R_x	R_{x1}	R_{x2}			R_{x3}
R_1/R_2	500/500	50/500	500/500	500/500(交换)	500/500
S	1.8×10^{3}	6.2×10^{2}	1.6×10^3	1.6×10^{3}	3.2×10^2

表 4: R_{x2} 不同测量条件 S 计算结果

R_x	条件	S
R_{x2}	E=2.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	8.0×10^2
	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/5000$	3.2×10^2
	E=4.0V & $R_h = 3(k\Omega)$ & $R_1/R_2 = 500/500$	2.2×10^2

下计算交换桥臂法测得的 R_{x2} 及其不确定度 σ_{x2} : 利用公式

$$R = \sqrt{R_{01} \cdot R_{02}}$$

$$\sigma = \sqrt{\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 + \left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 + (\delta R)^2}$$

$$\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 = \frac{R_{02}}{4R_{01}} \cdot \left(\frac{0.1\% \times R_{01}}{\sqrt{3}}\right)^2 = 0.011$$

$$\left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 = \frac{R_{01}}{4R_{02}} \cdot \left(\frac{0.1\% \times R_{02}}{\sqrt{3}}\right)^2 = 0.011$$

$$(\delta R_x)^2 = \left(\frac{0.2R_x}{S}\right)^2 = 0.0026$$

得

$$R_{x2} = \sqrt{R_{01} \cdot R_{02}} = 360.0(\Omega)$$

$$\sigma_{x2} = \sqrt{(\frac{\partial R}{\partial R_{01}})^2 \sigma_{R_{01}}^2 + (\frac{\partial R}{\partial R_{02}})^2 \sigma_{R_{02}}^2 + (\delta R)^2} = 0.2(\Omega)$$

$$R_{x2} \pm \sigma_{x2} = (360.0 \pm 0.2)\Omega$$

1.2 其余电阻测量不确定度

其余电阻均未采用交换桥臂法。因此,其不确定度公式如下:

$$\sigma = \sqrt{(\delta R)^2 + (\frac{\partial R}{\partial R_1})^2 \sigma_{R_1}^2 + (\frac{\partial R}{\partial R_2})^2 \sigma_{R_2}^2 + (\frac{\partial R}{\partial R_0})^2 \sigma_{R_0}^2}$$

又:

$$(\delta R)^2 = (\frac{0.2R}{S})^2$$
$$(\frac{\partial R}{\partial R_1})^2 \sigma_{R_1}^2 = (\frac{R_0}{R_2})^2 \frac{(0.1\%R_1)^2}{3}$$
$$(\frac{\partial R}{\partial R_0})^2 \sigma_{R_0}^2 = (\frac{R_1}{R_2})^2 \frac{(0.1\%R_0)^2}{3}$$
$$(\frac{\partial R}{\partial R_2})^2 \sigma_{R_2}^2 = (\frac{R_1R_0}{R_2^2})^2 \frac{(0.1\%R_2)^2}{3}$$

得计算结果对应表如下:

2 思考题 4

表 5: 各测量电阻在给定条件下的不确定度计算值对应表

	- 11 013	至也是古术人外门下的下列之次行并且的三次	
值 各项 实验	R_x	条件	$\sigma(\Omega)$
	R_{x1}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	0.05
实验 I	R_{x2}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 50/500$	0.4
	R_{x3}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	5
		E=2.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	0.4
实验 II	R_{x2}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/5000$	0.4
		E=4.0V & $R_h = 3(k\Omega)$ & $R_1/R_2 = 500/500$	0.5

1.3 S 的计算值

表 6: S 的理论计算与实际计算值表

值各项				
实验	R_x	条件	S _{理论}	S实际
	R_{x1}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	1.8×10^3	1.9×10^3
		E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 50/500$	6.2×10^2	5.8×10^2
实验 I	R_{x2}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	1.6×10^3	1.4×10^3
		E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	1.6×10^3	1.4×10^3
	R_{x3}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	3.2×10^2	3.0×10^2
实验 II(略		E=2.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/500$	8.0×10^2	7.2×10^2
I 中相同条	R_{x2}	E=4.0V & $R_h = 0(\Omega)$ & $R_1/R_2 = 500/5000$	3.2×10^2	2.9×10^2
件)		E=4.0V & $R_h = 3(k\Omega)$ & $R_1/R_2 = 500/500$	2.2×10^2	2.0×10^2

2 思考题

2.1 引起非线性误差因素及实验措施

因素 大致可分为以下几点:

 ${f 1}$ 桥臂电阻称不上远大于铂电阻及二桥臂电阻不相等,这就导致了在铂电阻阻值改变的过程中, U_{out} 不线性输出。

3 分析与讨论 5

- 2 电桥部分存在的接触电阻,导线内阻等电阻,可能会影响到实验。
- 3 电流的因素,要保证稳定性。
- **4** 温度范围还需要在铂电阻随温度线性变化区间内,才能保证线性输出。

措施 针对这些因素,可分别采取如下措施:

- 1 使用高精度的大内阻标准电阻,完成测量。
- 2 采用三线式接法,并注意导线的选取。
- ${f 3}$ 采用稳流源,用万用表检测电流,并利用万用表电压档极高内阻特性,用万用表做电压表测量 U_{out} 。
 - 4 实验中选取水的冰点到沸点,端点稳定,且位于线性变化区域内。

2.2 截距问题

原因 我认为,一来由于温度计的测量精度问题,使得初温的读数存在偏移,同时, R_0 也可能无法与零点电阻完全相等,从而导致截距不为零。

影响 我认为,对实验结果无影响。本实验中,我们更多的考虑斜率,利用斜率进行计算。当然,如果截距偏离较大,可能零点电阻未能匹配,从而使实验结果不准确的可能性也是存在的。

3 分析与讨论

3.1 比较理论值与实测值

现象 从数据来看,本次实验所得的实测数据,即便考虑不确定度,也仍然不能使理论值落在区间内。且实测值较理论值更小。

4 收获与感想 6

分析 我认为,原因是实验中,由于热敏电阻的改变,我们所采用的线性近似不再准确,即由于电阻增大,流经铂电阻的电流小于 $\frac{I_0}{2}$,使得 U_{out} 测量值较小,故而计算时得到的温度系数数值会偏小。

4 收获与感想

从前,我知道平衡电桥十分巧妙。

今天,我又感受到了非平衡电桥的神奇。

通过今天的实验,我感受到了不同类型物理量相互转化的思想,从温度计到传感器,无不体现着这一思想的精妙之处。

而且,我也在老师的讲解中,对热力学量的测量精度有了大概的了解, 也产生了一定的兴趣。

最重要的是,在本次的实验中,我感受到了,在平衡附近的线性近似的实际应用。这一在题目中常常涉及的方法,终于在单摆之外见到了另一个实际的例子。

在今后的实验课程中,我也会提高自己的实验能力,多想多思考,也去了解一些感觉很普通的事物的不普通的应用。