МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 4

"Исследование работы БЭВМ"

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант №15682

Выполнил: Студент группы Р3118 Шипунов Илья Михайлович Преподаватель: Перминов Илья Валентинович

Задание и основные этапы выполнения

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

213: +	- 0200	-	221:	0700	22F:	XXXX	69A:	04F3
214:	EE1B	ĺ	222:	6E0D	230:	FA18	69B:	0078
215:	AE17		223:	EE0C			1	
216:	0740		224:	AE09	68F:	AC01	1	
217:	0C00		225:	0740	690:	F203	1	
218:	D68F		226:	0C00	691:	7E08	1	
219:	0800		227:	D68F	692:	F004	1	
21A:	0740		228:	0800	693:	F803	1	
21B:	4E14		229:	0700	694:	4C01	1	
21C:	EE13		22A:	6E05	695:	6E05	1	
21D:	AE11		22B:	EE04	696:	CE01	1	
21E:	0C00		22C:	0100	697:	AE02	1	
21F:	D68F		22D:	ZZZZ	698:	EC01	1	
220:	0800		22E:	YYYY	699:	0A00	1	

1. Программа.

213	0200	CLA	Очистка аккумулятора. АС = 0.
214	EE1B	ST E1B	Загрузить содержимое аккумулятора в ячейку 230. REZ = 0.
215	AE17	LD E17	Загрузить содержимое ячейки 22D в аккумулятор. AC = Z.
216	0740	DEC	Уменьшить содержимое аккумулятора на единицу. АС = АС – 1.
217	0C00	PUSH	Записать содержимое аккумулятора в SP. AC -> -(SP).
218	D68F	CALL 68F	Вызвать подпрограмму по адресу 68F.
219	0800	POP	Извлечь верхнее значение SP. (SP)+ -> AC.
21A	0740	DEC	Уменьшить содержимое аккумулятора на единицу. АС = АС – 1.
21B	4E14	ADD E14	Прибавить значение ячейки 230 к аккумулятору. AC = AC + REZ.
21C	EE13	ST E13	Записать содержимое аккумулятора в ячейку 230. REZ = AC.
21D	AE11	LD E11	Загрузить значение ячейки 22F в аккумулятор. АС = X.
21E	0C00	PUSH	Записать содержимое аккумулятора в SP. AC -> -(SP).
21F	D68F	CALL 68F	Вызвать подпрограмму по адресу 68F.
220	0800	POP	Извлечь верхнее значение SP. (SP)+ -> AC.
221	0700	INC	Увеличить содержимое аккумулятора на единицу. AC = AC + 1.
222	6E0D	SUB E0D	Вычесть содержимое ячейки 230 из аккумулятора. AC = AC – REZ.
223	EE0C	ST E0C	Записать содержимое аккумулятора в ячейку 230. REZ = AC.
224	AE09	LD E09	Загрузить содержимое ячейки 22Е в аккумулятор. АС = Ү.
225	0740	DEC	Уменьшить содержимое аккумулятора на единицу. АС = АС – 1.
226	0C00	PUSH	Записать содержимое аккумулятора в SP. AC -> -(SP).
227	D68F	CALL 68F	Вызвать подпрограмму по адресу 68F.
228	0800	POP	Извлечь верхнее значение SP. (SP)+ -> AC.
229	0700	INC	Увеличить содержимое аккумулятора на единицу. AC = AC + 1.
22A	6E05	SUB E05	Вычесть из аккумулятора содержимое ячейки 230. AC = AC – REZ.
22B	EE04	ST E04	Записать содержимое аккумулятора в ячейку 230. REZ = AC.
22C	0100	HLT	Останова.
22D	ZZZZ	Z	Данные.
22E	YYYY	Y	Данные.
22F	XXXX	X	Данные.
230	FA18	REZ	Ячейка для хранения промежуточных расчётов и результата.

68F	AC01	LD C01	Загрузить в аккумулятор значение, переданное через SP. AC = SP.
690	F203	BMI 03	Если значение N == 1, перейти к выполнению инструкции в ячейке 694.
691	7E08	CMP E08	Установить флаги по результату AC – S.
692	F004	BEQ 04	Если значение Z == 1, перейти к выполнению инструкции в ячейке 697.
693	F803	BLT 03	Если $(N + V)\%2 == 1$, перейти к выполнению инструкции в ячейке 697.
694	4C01	ADD C01	Добавить к аккумулятору значение, переданное через SP. AC = AC + SP.
695	6E05	SUB E05	Вычесть значение в ячейке 69В из содержимого аккумулятора. АС = АС – К.
696	CE01	JUMP E01	Перейти к инструкции в ячейке 698.
697	AE02	LD E02	Загрузить содержимое ячейки 69A в аккумулятор. AC = S.
698	EC01	ST C01	Загрузить в SP значение из AC. SP = AC.
699	0A00	RET	Вернуться к выполнению основной программы по адресу возврата.
69A	04F3	S	Данные.
69B	0078	K	Данные.

2. Описание программы.

2.1 Описание основной части программы.

Программа поочередно обрабатывает данные, находящиеся по адресу 22D - 22F, а после записывает конечный результат в ячейку 230.

Работа программы сводится к выполнению следующего выражения:

REZ = (Y - 1)' - X' + (Z - 1)' - 1, где Y', X', Z' – модифицированные значения, полученные в результате выполнения подпрограммы, на переданных в неё аргументах, включающих Y, X, Z.

2.2 Описание подпрограммы.

Работа подпрограммы основана на получении одного аргумента через стек, а после последовательной многократной проверки аргумента на выполнение следующих условий с получением определенного возвращаемого значения:

- 1. Проверка, если переданный аргумент < 0, вернуть значение 2P-K (Здесь и далее, P- переданный аргумент).
- 2. Проверка, если переданный аргумент удовлетворяет следующему неравенству: $0 \le P \le S$, вернуть значение S.

Иначе вернуть значение 2Р – К.

В результате имеем следующую совокупность систем:

$$\begin{cases} y = 2x - a, \\ x < 0; \end{cases}$$

$$\begin{cases} y = b, \\ 0 \le x \le b; \end{cases}$$

$$\begin{cases} y = 2x - a, \\ x > b; \end{cases}$$

Которая имеет подобный график (без учёта ОДЗ; a = 0, b = 5):

Расположение в памяти БЭВМ программы, исходных данных и результатов:

22D, 22E, 22F, 69A, 69B – исходные данные.

230 – результат.

213 – 22С – инструкции основной программы.

68F – 699 – инструкции подпрограммы.

Адреса первой и последней выполняемой инструкции программы.

213 – адрес первой инструкции.

22С – адрес последней инструкции.

Область представления для исходных данных:

Z, Y, X, S, K – знаковые 16-ти разрядные числа.

Область представления для результата:

REZ – знаковое 16-ти разрядное число.

Нахождение области допустимых значений для исходных данных и результата:

Запишем выражение, значение которого вычисляет программа:

$$REZ = Y' - X' + Z' - 1.$$

REZ
$$\epsilon[-2^{15}; 2^{15}-1] \Rightarrow Y'-X'+Z'-1 \epsilon[-2^{15}; 2^{15}-1];$$

$$Y' - X' + Z' \epsilon [-2^{15} + 1; 2^{15}] => Y', X', Z' \epsilon [-\frac{2^{15} + 1}{3}; \frac{2^{15}}{3}];$$

Для каждого из Y', X', Z' возможен один из следующих вариантов:

(1) = S => S, P
$$\epsilon$$
 [0; $\frac{2^{15}}{2}$];

Такое значение для правого края промежутка взято из рассуждений о том, что при всех модифицированных значениях параметров = S, обязательно* возникает ситуация, при которой две переменные будут иметь один знак и одна противоположный, из-за чего получается следующее выражение $S_1 + S_2 - S_3$.

*Так как значение S возможно только при условии, что P ϵ [0; $\frac{2^{15}}{2}$];

(2) =
$$2P - K \Rightarrow 2P - K \in \left[-\frac{2^{15}+1}{3}; \frac{2^{15}}{3} \right];$$

Такие значения для краёв промежутка взяты из рассуждений о том, что в отличии от случая (1) здесь уже нельзя точно предсказать, какого знака будет модифицированное значение, из-за чего необходимо ограничить значение выражения для всех возможных случаев. Наиболее "проблемными" являются следующие: 3(2P - K) при всех 2P - K > 0 $\| < 0$, из чего и исходит необходимость подобных ограничений.

(3) Комбинированный случай.

Предыдущие рассуждения исходили из допущения, что одновременно в итоговом выражении все модифицированные значения будут принимать значения S или 2P – K. Но необходимо также рассмотреть ситуацию, при которой возникают всевозможных их комбинации.

Достаточно рассмотреть две наиболее "проблемные":

$$2(2P - K) + S$$
, при $(2P - K > 0$ и $S > 0) || (2P - K < 0$ и $S < 0)$

Из приведенного примера исходит необходимость в дополнительном ограничении на значение S. => S ϵ $\left[0; \frac{2^{15}}{3}\right]$ если необходимо, чтобы значение S обязательно появилось в итоговом выражении и S ϵ $\left[-\frac{2^{15}+1}{3}; \frac{2^{15}}{3}\right]$, если присутствие допустимо, но не необходимо.

Из вышеописанных рассуждений исходит:

Итоговое ОД3:

REZ
$$\epsilon$$
[-2¹⁵; 2¹⁵ - 1],
S ϵ [-2¹⁵; $\frac{2^{15}}{3}$],
K ϵ [$\frac{2^{15}}{6}$; $\frac{2^{15-1}}{6}$],
Y, Z ϵ [- $\frac{2^{15+1}}{12}$ + 1; $\frac{2^{15}}{12}$];
X ϵ [- $\frac{2^{15}+1}{12}$; $\frac{2^{15}}{12}$];

Если же значения S и K постоянны и равны 1267 и 120 соответственно =>

ОДЗ будет исходить из всё тех же приведенных рассуждений и будет равен:

REZ
$$\epsilon[-2^{15}; 2^{15} - 1],$$

Y, Z $\epsilon[-\frac{2^{15}+1}{6} + 61; \frac{2^{15}}{6} + 61];$
 $X \epsilon[-\frac{2^{15}+1}{6} + 60; \frac{2^{15}}{6} + 60];$

=> итоговая совокупность будет выглядеть следующим образом:

$$\begin{cases} y = 2x - 120, \\ -5401 \le x < 0; \end{cases}$$

$$\begin{cases} y = 1267, \\ 0 \le x \le 1267; \end{cases}$$

$$\begin{cases} y = 2x - 120, \\ 1267 < x \le 5401; \end{cases}$$

И график выглядит следующим образом:

3. Трассировка

Данные: Y, Z = 5522, X = -5401;

Выполняемая команда		Содержимое регистров процессора после выполнения команды.									Ячейка, содержимое которой изменилось после выполнения команды.	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZV C	Адрес	Новый код	
213	0200	214	0200	213	0200	000	0213	0000	0100			
214	EE1B	215	EE1B	230	0000	000	001B	0000	0100	230	0000	
215	AE17	216	AE17	22D	1592	000	0017	1592	0100			
216	0740	217	0740	216	0740	000	0216	1591	0000	7FF	1591	
217	0C00	218	0C00	7FF	1591	7FF	0217	1591	0001			
218	D68F	68F	D68F	7FE	0219	7FE	D68F	1591	0001			
68F	AC01	690	AC01	7FF	1591	7FE	0001	1591	0001			
690	F203	691	F203	690	F203	7FE	0690	1591	0001			
691	7E08	692	7E08	69A	04F3	7FE	0008	1591	0001			
692	F004	693	F004	692	F004	7FE	0692	1591	0001			
693	F803	694	F803	693	F803	7FE	0693	1591	0001			
694	4C01	695	4C01	7FF	1591	7FE	0001	2B22	0000			
695	6E05	696	6E05	69B	0078	7FE	0005	2AAA	0001			
696	CE01	698	CE01	696	0698	7FE	0001	2AAA	0001			
698	EC01	699	EC01	7FF	2AAA	7FE	0001	2AAA	0001	7FF	2AAA	
699	0A00	219	0A00	7FE	0219	7FF	0699	2AAA	0001			
219	0800	21A	0800	7FF	2AAA	000	0219	2AAA	0001			
21A	0740	21B	0740	21A	0740	000	021A	2AA9	0001			
21B	4E14	21C	4E14	230	0000	000	0014	2AA9	0000			
21C	EE13	21D	EE13	230	2AA9	000	0013	2AA9	0000	230	2AA9	
21D	AE11	21E	AE11	22F	EAE7	000	0011	EAE7	1000			
21E	0C00	21F	0C00	7FF	EAE7	7FF	021E	EAE7	1000	7FF	EAE7	
21F	D68F	68F	D68F	7FE	0220	7FE	D68F	EAE7	1000	7FE	0220	
68F	AC01	690	AC01	7FF	EAE7	7FE	0001	EAE7	1000			
690	F203	694	F203	690	F203	7FE	0003	EAE7	1000			
694	4C01	695	4C01	7FF	EAE7	7FE	0001	D5CE	1001			
695	6E05	696	6E05	69B	0078	7FE	0005	D556	1001			
696	CE01	698	CE01	696	0698	7FE	0001	D556	1001			
698	EC01	699	EC01	7FF	D556	7FE	0001	D556	1001	7FF	D556	
699	0A00	220	0A00	7FE	0220	7FF	0699	D556	1001			
220	0800	221	0800	7FF	D556	000	0220	D556	1001			
221	0700	222	0700	221	0700	000	0221	D557	1000			

222	6E0D	223	6E0D	230	2AA9	000	000D	AAAE	1001		
223	EE0C	224	EE0C	230	AAAE	000	000C	AAAE	1001	230	AAAE
224	AE09	225	AE09	22E	1592	000	0009	1592	0001		
225	0740	226	0740	225	0740	000	0225	1591	0001		
226	0C00	227	0C00	7FF	1591	7FF	0226	1591	0001	7FF	1591
227	D68F	68F	D68F	7FE	0228	7FE	D68F	1591	0001	7FE	0228
68F	AC01	690	AC01	7FF	1591	7FE	0001	1591	0001		
690	F203	691	F203	690	F203	7FE	0690	1591	0001		
691	7E08	692	7E08	69A	04F3	7FE	0008	1591	0001		
692	F004	693	F004	692	F004	7FE	0692	1591	0001		
693	F803	694	F803	693	F803	7FE	0693	1591	0001		
694	4C01	695	4C01	7FF	1591	7FE	0001	2B22	0000		
695	6E05	696	6E05	69B	0078	7FE	0005	2AAA	0001		
696	CE01	698	CE01	696	0698	7FE	0001	2AAA	0001		
698	EC01	699	EC01	7FF	2AAA	7FE	0001	2AAA	0001	7FF	2AAA
699	0A00	228	0A00	7FE	0228	7FF	0699	2AAA	0001		
228	0800	229	0800	7FF	2AAA	000	0228	2AAA	0001		
229	0700	22A	0700	229	0700	000	0229	2AAB	0000		
22A	6E05	22B	6E05	230	AAAE	000	0005	7FFD	0000		
22B	EE04	22C	EE04	230	7FFD	000	0004	7FFD	0000	230	7FFD
22C	0100	22D	0100	22C	0100	000	022C	7FFD	0000		

4. Вывод

В ходе выполнения лабораторной работы я изучил принцип работы со стеком в БЭВМ, ознакомился с возможностями использования подпрограмм, их преимуществами, недостатками и особенностями отдельных реализаций.