Csoportok

Eseményvezérelt alkalmazások

IP-18bEVALKEG | 12

Eseményvezérelt alkalmazások IP-18bEVALKEG | 91

Eseményvezérelt alkalmazások

IP-18bEVALKEG | 92

1. ZH - P 8:00-10:00 - A csoport

Kategória:VizsgafeladatokElérhető:2022. 10. 07. 8:20

Pótolható határidő:

Végső határidő:2022. 10. 07. 8:45Kiírta:Erdei Zsófia

Leírás:

1. ZH - péntek 8:00-10:00 idősáv - A csoport

Előzetes tudnivalók

Használható segédanyagok:

- Haskell könyvtárak dokumentációja,
- Hoogle,
- a tárgy honlapja, és a
- Haskell szintaxis összefoglaló.

Más segítőeszköz nem használható.

Ha bármilyen kérdés, észrevétel felmerül, azt a gyakorlatvezetőnek kell jelezni, **nem** a diáktársaknak!

A feladatsor megoldására 20 perc áll rendelkezésre (+ 2 perc feltöltésre)

A feladatok tetszőleges sorrendben megoldhatóak. A pontozás szabályai a következők:

- Minden teszten átmenő megoldás ér teljes pontszámot.
- Funkcionálisan hibás (valamelyik teszteseten megbukó) megoldás nem ér pontot.
- Fordítási hibás vagy hiányzó megoldás esetén a teljes megoldás 0 pontos.

Ha hiányos/hibás részek lennének a feltöltött megoldásban, azok kommentben szerepeljenek.

Tekintve, hogy a tesztesetek, bár odafigyelés mellett íródnak, nem fedik le minden esetben a függvény teljes működését, határozottan javasolt még külön próbálgatni a megoldásokat beadás előtt!

Az elméleti kérdésekre adott választ a forráskódban kell elhelyezni, kommentben. Minden függvénynek meg kell adni a típusszignatúráját is. A függvények elvárt neve és típusa meg van adva. Zarthelyi1 néven kell deklarálni a modult. A .hs fájlt .zip -be tömörítve kell beadni.

Elméleti kérdések (1 pont / kérdés)

1. Miért nem fordul az alábbi kód?

```
f :: a -> a
f x = 2 * x
```

2. Adj példát egy függvény infix és prefix használatára!

Gyakorlati feladatok

Vektorok (1 pont)

Reprezentáljuk a 3-dimenziós térben vektorokat rendezett párokkal! A tuple első komponense legyen az egyik irányban a hossz, a második a második irányban a hossz, a harmadik a harmadik irányban a hossz. (A hosszok jelen esetben egész számok.) Készíts függvényt, amely kap két darab vektort, és megadja a két vektor skaláris szorzatát! Két vektor skaláris szorzatát úgy kapjuk meg, hogy koordinátánként a hosszukat összeszorozzuk, és a szorzatok összegét vesszük.

2024. 02. 07. 22:38

```
scalar :: (Int, Int, Int) -> (Int, Int, Int) -> Int

scalar (57, -7, 74) (-25,52, 45) == 1541

scalar (-68, 41, -99) (-90,18, 16) == 5274

scalar (76, -69, -78) (-64,-96, 81) == -4558

scalar (-24, 51, 24) (82,57, 83) == 2931

scalar (-7, -15, 34) (-67,44, 73) == 2291

scalar (91, -14, 83) (7,-48, -16) == -19

scalar (96, 31, -86) (28,-29, -3) == 2047
```

Szép számok (2 pont)

Adjuk meg azon pozitív x számokat csökkenő sorrendben, amelyek 1000-nél nem nagyobbak, ötös maradékuk 3, háromszorosuk hetes maradéka 2!

```
numbers :: [Int]
numbers == [983,948,913,878,843,808,773,738,703,668,633,598,563,528,493,458,423,38
```

Logikai függvény - A (1 pont)

Adjuk meg azt a függvényt, amely az alábbi logikai táblázat alapján 3 logikai értékből megad egy logikai értéket! Használjunk mintaillesztést!

Α	В	С	logicalFunctionA(A, B, C)
lgaz	lgaz	lgaz	lgaz
lgaz	lgaz	Hamis	Hamis
lgaz	Hamis	lgaz	lgaz
lgaz	Hamis	Hamis	lgaz
Hamis	lgaz	lgaz	Hamis
Hamis	lgaz	Hamis	lgaz
Hamis	Hamis	lgaz	lgaz
Hamis	Hamis	Hamis	Hamis

```
logicalFunctionA :: Bool -> Bool -> Bool -> Bool
logicalFunctionA True False False == True
logicalFunctionA False False False
```

2 / 2 2024. 02. 07. 22:38