THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1020 Exercise 10

Produced by Jeff Chak-Fu WONG

Exercise 1 A ball is thrown with an initial speed of 30 miles per hour in a direction that makes an angle of 60° with the positive x-axis.

- Express the velocity vector \mathbf{v} in terms of \mathbf{i} and \mathbf{j} .
- What is the initial speed in the horizontal direction?
- What is the initial speed in the vertical direction?

Solution:

• The magnitude of \mathbf{v} is $||\mathbf{v}|| = 30$ miles per hour, and the angle between the direction of \mathbf{v} and \mathbf{i} , the positive x-axis, is $\alpha = 60^{\circ}$. We have

$$\mathbf{v} = ||\mathbf{v}||(\cos\alpha\mathbf{i} + \sin\alpha\mathbf{j})$$

$$= 30(\cos 60^{\circ}\mathbf{i} + \sin 60^{\circ}\mathbf{j})$$

$$= 30\left(\frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}\right)$$

$$= \frac{30}{2}\mathbf{i} + \frac{30\sqrt{3}}{2}\mathbf{j}.$$

- The initial speed of the ball in the horizontal directions is the horizontal component of \mathbf{v} , $\frac{30}{2} = 15$ miles per hour.
- The initial speed in the vertical direction is the vertical component of $\mathbf{v}, \frac{30\sqrt{3}}{2} \approx 25.9808$ miles per hour. See Figure 1.

Figure 1:

Exercise 2 A box of supplies (in yellow) that weighs 1000 pounds is suspended by two cables attached to the ceiling, as shown in Figure 2, where $\alpha = 30^{\circ}$ and $\beta = 45^{\circ}$. What are the tensions in the two cables?

Figure 2:

Solution:

We draw a force diagram using the vectors shown in Figure 3.

Figure 3:

Let
$$\beta = 45^{\circ}$$
, $\alpha = 30^{\circ}$, and $\gamma = 180^{\circ} - \beta = 180^{\circ} - 45^{\circ} = 135^{\circ}$.

The tensions in the cables are the magnitudes $||\mathbf{F_1}||$ and $||\mathbf{F_1}||$ of he force vectors $\mathbf{F_1}$ and $\mathbf{F_2}$. The magnitude of the force vector $\mathbf{F_3}$ equals 1000 pounds, the weight of the positive use Equation (8). Remember that α is the angle between the vector and the positive x-axis. We have

$$\mathbf{F_1} = ||\mathbf{F_1}||(\cos 135^{\circ}\mathbf{i} + \sin 135^{\circ}\mathbf{j}) = ||\mathbf{F_1}||\left(\frac{-\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}\right) = -\frac{\sqrt{2}}{2}||\mathbf{F_1}||\mathbf{i} + \frac{\sqrt{2}}{2}||\mathbf{F_1}||\mathbf{j};$$

$$\mathbf{F_2} = ||\mathbf{F_1}||(\cos 30^{\circ}\mathbf{i} + \sin 30^{\circ}\mathbf{j}) = ||\mathbf{F_2}||\left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right) = \frac{\sqrt{3}}{2}||\mathbf{F_2}||\mathbf{i} + \frac{1}{2}||\mathbf{F_2}||\mathbf{j};$$

$$\mathbf{F_3} = -1000\mathbf{j}.$$

For static equilibrium, the sum of the force vectors must equal zero. We have

$$\mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} = -\frac{\sqrt{2}}{2}||\mathbf{F_1}||\mathbf{i} + \frac{\sqrt{2}}{2}||\mathbf{F_1}||\mathbf{j} + \frac{\sqrt{3}}{2}||\mathbf{F_2}||\mathbf{i} + \frac{1}{2}||\mathbf{F_2}||\mathbf{j} - 1000\mathbf{j}$$

= $\mathbf{0}$.

The i component and j will each equal zero. This results in the two equations

i:
$$-\frac{\sqrt{2}}{2}||\mathbf{F_1}|| + \frac{\sqrt{3}}{2}||\mathbf{F_2}|| = 0$$
 (9)
j:
$$\frac{\sqrt{2}}{2}||\mathbf{F_1}|| + \frac{1}{2}||\mathbf{F_2}|| - 1000 = 0$$
 (10)

We solve Equation (9) for $||\mathbf{F_2}||$ and obtain

$$||\mathbf{F_2}|| = \frac{\sqrt{2}}{\sqrt{3}}||\mathbf{F_1}|| \tag{11}$$

Substituting into Equation (10) and solving for $||\mathbf{F_1}||$, we obtain

$$\frac{\sqrt{2}}{2}||\mathbf{F_1}|| + \frac{1}{2}||\mathbf{F_2}|| + \frac{\sqrt{2}}{2} - 1000 = 0$$

$$\left(\frac{\sqrt{2}}{2} + \frac{1}{2}\frac{\sqrt{2}}{\sqrt{3}}\right)||\mathbf{F_1}|| - 1000 = 0$$

$$\frac{\sqrt{2}}{2}\left(1 + \frac{\sqrt{2}}{\sqrt{3}}\right)||\mathbf{F_1}|| - 1000 = 0$$

$$||\mathbf{F_1}|| = \frac{1000}{\left(\frac{\sqrt{2}}{2}\left(1 + \frac{\sqrt{2}}{\sqrt{3}}\right)\right)} \approx 778.5391 \text{ pounds.}$$

Substituting this value into Equation (11) yields $||\mathbf{F_2}||$.

$$||\mathbf{F_2}|| = \frac{\sqrt{2}}{\sqrt{3}}||\mathbf{F_1}|| = \frac{\sqrt{2}}{\sqrt{3}}(778.5391) \approx 635.6745 \text{ pounds.}$$

The left cable has tension of approximately 778.5 pounds and the right cable has tension of approximately 635.7 pounds.