COSC 3340

Examination 3 Wednesday, April 9, 2008, 1 – 2:30 pm Open Book and Notes

	that the following la $= \{ 0^{k} 1^{j} 2^{i} i > j > k \ge 0 $		t contextfree:				
\hat{l} L State of	Fruct a pda \mathbb{P} for the final $0^{i}1^{3i} \mid i \geq 0$ whom which side you we markers on the stack	ere $L = L_f(\mathbb{P})$ (a vrite the top of the	cceptance by fi		<u>-0000</u>		
3. Consti	Fuct a pda \mathbb{P} that according $L = L(G)$ where G $N = \{S,A\}$, and		with T = {<,>,[,]},			
State o Note: You <u>m</u>	on which side you w	rite the top of t "cfg → pda" given i	he stack, left: _ in class. Get G into	or right [·		
Here, 5. Constr	ruct a grammar for I $= (\{p,q\}, \{a,b\}, \{Z,X\}, \{0,a,Z\}) = \{(p,X,Z), \{0,a,Z\}\} = \{(q,e)\}$ the top of the stack ruct a Turing machin $= \{0^k 1^j 2^i i>j>k\geq 0$ be first in words what ts: 1: 20	$\delta(p, \varepsilon, Z)$ $\delta(p, b, X)$ is on the left. the for the language.	$p = \{(p, \varepsilon)\}$ of $p = \{(q, X)\}$ of age in Question	$\delta(p,a,X) = \{(p,a,X) $	XX)} Z)}.	i gle	
	2				_	- at	
					10	est	
test 8	test	()	Test 8			8	

Name: Alex Metry L= {0 k | 2 2 | 2 > 0 > K > 0 } assume LisefL = Hen 3 G(N,T,P,S) in CNF s.b./ L=L(G) assure t= no. ofwirds, assure award Z = 02t 12t+1 22t+2 / 121>2t by pumping Lemma Z=UVWXY where IVXI>1 & UVWXYY & L(6) 12 for allizo Case 11. V&X areall O's => for i=2 noof zero can be equil no of 1 € L(6), &L 100 cose 22 V&x are all is -> for i'= 2 (LG), &L cose 32 VEXare all i's => for i'=0 ELG, &L casely. No 2's in vorx => for i'=2 ELG), &L because No of 1's can be equal to no. of 2's cose 5: No 1s in Vorx => for i'=2 EL(G), &L Cose 6: No O's in Vorx => for i=0 EL(6), & L becase No of \$'s decrease to be equal No of zeros cose 7: at less one 0, me 1, pre 2 in vorx for it >1 the pattern will change IRL zous can follow 25 which is not acceptable by L here is contradiction in each case He language Lis not Content free

$$(p,\epsilon) \in \delta(p,\epsilon,z)$$

$$[p,z,p] \rightarrow \epsilon \qquad \rightarrow 0$$

$$(q,x) \in \delta(p,b,x)$$

$$[p,x,p] \rightarrow b [q,x,p] \qquad \rightarrow 0$$

$$[p,x,p] \rightarrow b [q,x,p] \qquad \rightarrow 0$$

$$[p,x,q] \rightarrow b [q,x,q] \qquad \rightarrow 0$$

$$(q,\epsilon) \in \delta(q,a,z)$$

$$(q,\epsilon) \in \delta(q,a,z)$$

$$(q,z) \in \delta(q,b,z)$$

$$(p,z) \in \delta(q,b,z)$$

$$[q,z,q] \rightarrow b [p,z,p] \qquad \rightarrow 0$$

$$[q,z,p] \rightarrow b [p,z,p] \qquad \rightarrow 0$$

$$[q,z,q] \rightarrow b [p,z,q] \qquad \rightarrow 0$$

first I'll construct a pda lat accepts by exptystack the charge it to one that accepts by find state

L= \{0\; 3\; 1\; 10}

L= \{0\; 3\; 1\; 10}

The topofthe stack ison the left) {(q, zzzz)} {(q, E)} # [, = ({0,1}, {9,9,9,1,{2',2,2},8,9',9,2) {(q,, E)} Zo 7. 8(9,, €)(lind state

