Predicting Mortgage Defaults

Can we succeed where banks failed?

Lanza G., Gallo S., Florea R., Cialdea G.

Statistical Learning and Large Data 1&2 Academic year 2024/25

Outline

- Dataset description
- Research questions
- Data manipulation
- Analysing models
- Solving the unbalanced dataset problem
- Conclusions

Research question

- Can we predict insolvency status with a few relevant features?
- How should we handle a **highly skewed** class distribution? Solvent customers outnumbered defaulted ones **100:1**
- In a nutshell, can we succeed where banks failed?

Dataset

Data are collected by Freddie Mac (a federal agency), which securitizes mortgages for US commercial banks.

Snapshot: 14 features and 80k instances

We did some preliminary manipulation: for instance, get dummies from "Applicant race" or get mid values for 'bands' variables (ex. Applicant age '65-74' becomes 69.5).

Features

- credit_score
- total_units
- loan_amount
- interest_rate
- loan_term
- loan_to_value_ratio
- income
- applicant_race
- applicant_sex
- . . .
- DEFAULTED

The most predictive feature: CScore

CScore measures an individual's creditworthiness, as assessed by banks based on their historical reliability in repaying borrowed money

How much collinearity?

1.00

0.75

0.50

- 0.25

- 0.00

- -0.25

- -0.50

-0.75

-1.00

PCA

Clustering – K means

Clustering – K means

Clustering – dendrogram

Linkage function: average

Sub-sample: 1000

Clustering – dendrogram

Linkage function: ward, compact

Sub-sample: 1000

Logistic PCA

Confusion Matri [[16565 0] [214 0]] Classification				
	precision	recall	f1-score	support
0 1	0.99 0.00	1.00 0.00	0.99 0.00	16565 214
accuracy macro avg weighted avg	0.49 0.97	0.50 0.99	0.99 0.50 0.98	16779 16779 16779

Confusion Matr [[9684 6881] [64 150]] Classification	Report:		£1	
	precision	recall	f1-score	support
0	0.00	0.50	0.74	16565
0	0.99	0.58	0.74	16565
1	0.02	0.70	0.04	214
accuracy			0.59	16779
macro avg	0.51	0.64	0.39	16779
weighted avg	0.98	0.59	0.73	16779

Logistic PCA - 2

```
credit_score total_units occupancy_type debt_to_income_ratio loan_amount interest_rate loan_purpose loan_term
```

loan_to_value_ratio income applicant_sex applicant_age 1 2 3 4 5 6

Now, let's take a closer look inside the logistic classifier.

Among all features, the debt-to-income ratio most strongly indicates the likelihood of loan default.

```
[[-0.16363239 -0.04573444 0.1220353 0.31075724 0.05898812 0.18942094 0.19113466 0.27526974 0.30016855 -0.2518229 0.08009453 -0.15974871 0.00868074 -0.00174289 0.07159245 0.00964971 -0.10770837 0.09741807]]
```


RIDGE-logistic regression

RIDGE

LASSO-logistic regression

LASSO

LASSO-undersampling

Linear Discriminant Analysis

Obviously, very poor results:

```
Confusion Matrix:
[[16553 0]
[ 226 0]]
```

But...

Linear Discriminant Analysis - undersampling

We are able to extract some information with undersampling:

Confusion Matrix: [[140 64] [77 147]]

	precision	recall	f1-score
0	0.65	0.69	0.67
1	0.70	0.66	0.68

Quadratic Discriminant Analysis

We can do something similar for QDA:

Without undersampling

```
Confusion Matrix:
[[16553 0]
[ 226 0]]
```

With undersampling

```
Confusion Matrix:
[[ 96 108]
[ 48 176]]
```


Decision tree

Decision Trees generate simple rules for making prediction.

However, the best AUC-PR is 0.2...

Feature selection with Decision Tree

Notice that LASSO, Ridge and Decision Trees seem to agree on the most relevant features

Interestingly, Logistic Regression and Decision Trees with just the first 4 features perform as good as with all features

NN - Logistic

Let's use an autoencoder model for dimensionality reduction, followed by training a logistic regression classifier on the reduced feature space.

NN – Logistic 2

Confusion Matr [[7281 9284] [56 158]] Classification	Report:	11	£1	
	precision	recall	f1-score	support
Θ	0.99	0.44	0.61	16565
1	0.02	0.74	0.03	214
			0.44	16770
accuracy			0.44	16779
macro avg	0.50	0.59	0.32	16779
weighted avg	0.98	0.44	0.60	16779

NN – Logistic 3

Confusion Matr [[14955 9897 [92 225] Classification]			
	precision	recall	f1-score	support
0	0.99	0.60	0.75	24852
1	0.02	0.71	0.04	317
accuracy			0.60	25169
macro avg	0.51	0.66	0.40	25169
weighted avg	0.98	0.60	0.74	25169

NN – Logistic 4

Confusion Matrix: [[14308 10544] [167 150]] Classification Report:						
	precision	recall	f1-score	support		
0 1	0.99 0.01	0.58 0.47	0.73 0.03	24852 317		
accuracy macro avg weighted avg	0.50 0.98	0.52 0.57	0.57 0.38 0.72	25169 25169 25169		

Undersampling

We experimented with several undersampling methods

The key takeaway is that improvements in recall for the 1s are offset by a dip in recall for the 0s due to information loss

NearMiss2 works like clockwork for the 1s, but has very low specificity

Random Forest with NearMiss2 undersampling

Our silver bullet: Cluster Centroids

Undersampling with Cluster Centroids yields promising results (Random Forest as classifier):

- AUC=0.99
- AUC-PR=0.99
- For 0s of 86% on the majority class

References: ZHOU (2024), HUANG (2024)

SMOTE

As proposed in CHAWLA (2002), we perform a mix of under- and oversampling

Regarding size, the majority class is shrunk to 500% the minority class
The latter is then oversampled until classes are perfectly balanced

Conclusions

- Only a handful of features proved to be informative: CScore, interest rate, loan-to-value ratio and loan amount
- Undersampling generally achieves high recall for defaulted individuals but low specificity
- Nonetheless, undersampling done with Cluster Centroids proved to be outstanding in every measure

