Fonctions usuelles

Définition. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **paire** si et seulement si pour tout réel x, f(-x) = f(x)

Propriété. La courbe d'une fonction paire a une symétrie axiale par rapport à l'axe des ordonnées.

Définition. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **impaire** si et seulement si pour tout réel x, f(-x) = -f(x)

Propriété. La courbe d'une fonction impaire a une symétrie centrale par rapport à l'origine du repère.

Notations. $\mathbb{R}^* =] - \infty; 0[\cup]0; \infty[$

$$\mathbb{R}_{+} = [0; \infty[$$

$$\mathbb{R}_{-}=]-\infty;0]$$

Définition. La fonction

cube est:

Définition. La fonction carrée est :

$$f: \mathbb{R} \to \mathbb{R}$$
$$\chi \mapsto \chi^2$$

Propriété. La fonction carrée est paire. Propriété. La fonction carrée est positive sur R. Propriété. La fonction

carrée est décroissante sur R₁ et croissante sur R₁

Propriété. La fonction cube est croissante sur R

 $f: \underset{x \mapsto x^3}{\mathbb{R}} \to \mathbb{R}$

Définition. La fonction inverse est:

 $x \mapsto x^2$

$$f \colon \mathbb{R}^* \to \mathbb{R}$$
$$x \mapsto \frac{1}{x}$$

Propriété. La fonction inverse est impaire. **Propriété**. La fonction est décroissante sur \mathbb{R}_{-}^{*} et sur \mathbb{R}_{+}^{*}

$$f \colon \frac{[0; +\infty[\to \mathbb{R}]}{x \mapsto \sqrt{x}}$$

Propriété. La fonction racine carrée est croissante

Propriété. La fonction racine carrée est positive sur \mathbb{R}_+

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto ax + b$$

où a et b sont constants **Propriété**. Si a > 0: f est croissante sur $\mathbb R$

Propriété. Si
$$a > 0$$
:Propriété. Si $a < 0$: f est croissante sur \mathbb{R} f décroissante sur \mathbb{R} $f \le 0$ sur $] - \infty; -\frac{b}{a}]$ $f \ge 0$ sur $] - \infty; -\frac{b}{a}]$ $f \ge 0$ sur $[-\frac{b}{a}; +\infty[$ $f \le 0$ sur $[-\frac{b}{a}; +\infty[$

Définition. La fonction identité est de la forme :

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

Propriété. La fonction identité est impaire.

Propriété. La fonction identité est croissante $\operatorname{sur} \mathbb{R}$

