

Description

The VST12N069 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =120V, I_D =90A $R_{DS(ON)}$ =6.9m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =7.4m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST12N069-T2	VST12N069	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	120	V
Gate-Source Voltage	Vgs	±12	V
Drain Current-Continuous	I _D	90	А
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	63.7	Α
Pulsed Drain Current	I _{DM}	360	Α
Maximum Power Dissipation	P _D	160	W
Derating factor		1.1	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	250	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	ReJC	0.94	°C/W
---	------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	120		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.8	1	1.5	V
Dunin Course On Chata Benintana	-	V _{GS} =10V, I _D =45A	-	6.9	8.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =45A	-	7.4	9	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =45A	40	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	.,,,	-	8990	-	PF
Output Capacitance	Coss	$V_{DS}=50V, V_{GS}=0V,$	-	420	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	70	-	PF
Switching Characteristics (Note 4)	<u>.</u>					
Turn-on Delay Time	t _{d(on)}		-	18	-	nS
Turn-on Rise Time	t _r	V_{DD} =60 V , I_D =45 A	-	80	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	\/ F0\/ 4FA	-	140		nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =45A, V_{GS} =10V	-	18.7		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	10.4		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =90A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	90	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	60		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	140		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

160 120 80 40 0 0 25 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance