

4322217.56

RF report for Wireless multiroom speaker Models BM5B/37, BM5B/17, BM5C/37, BM5C/17, BM5W/37, BM5W/17

Guangzhou, date of issue: 2015-07-31

Author Jazz Liang

By order of Gibson Innovations Limited at Hong Kong, China

Author: Jazz Liang

Pages: 85 pages

Reviewed: Tim Yan

Annex: Nil

- Page 2 of 85 -

4322217.56

CONTENTS

		page
1	Conclusion	5
2	Summary	6
2.1	Applied standards	6
2.2	Reference standards	6
2.3	Overview of results	6
3	General Information	7
3.1	Model description	7
4	Test information	12
4.1	Test configuration	12
4.2	Modulation configuration	12
4.3	Special accessories of the EUT	12
4.4	Assistant equipment used on the test	13
4.5	Test laboratory	13
4.6	Environmental conditions	13
4.7	Measurement Uncertainty	14
5	Maximum Peak Output Power	15
5.1	Test equipment	15
5.2	Block diagram of test setup	
5.3	Test Procedure	
5.4	Limits	
5.5	Test results	
5.6	Original test data	16
6	20 dB Bandwidth	21
6.1	Test equipment	21
6.2	Block diagram of test setup	
6.3	Test Procedure	21
6.4	Limits	21
6.5	Test results	22
6.6	Original test data	22
7	Carrier Frequency Separation	
7.1	Test equipment	27
7.2	Block diagram of test setup	
7.3	Test Procedure	27
7.4	Limits	27

	- Page 3 of 85 -	4322217.56
7.5	Test results	27
7.6	test data	28
8	Number of Hopping Channel	30
8.1	Test equipment	
8.2	Block diagram of test setup	
8.3	Test Procedure	
8.4	Limits	
8.5	Test results	
8.6	Original test data	
9	Dwell time	32
9.1	Test equipment	
9.2	Block diagram of test setup	
9.3	Test Procedure	
9.4	Limits	
9.5	Test results	
10	BAND EDGES REQUIREMENT& Conducted Spurious Emissions	37
10.1	Test equipment	
10.2	Block diagram of test setup	
10.2	Test Procedure	
10.4	Requirement and limit	
10.5	Test results	
10.5.1	Band edge	
10.5.2	Conducted spurious emissions	
11	Radiated Emission	49
11.1	Test equipment	
11.2	Block diagram of test setup	
11.3	Limits	
11.3.1	FCC 15.205 restricted frequency band	
11.3.2	FCC 15.209 limit	
11.4	Harmonic and other spurious emissions	
11.5	Radiated Emissions which fall in the restricted bands	
12	Power Line Conducted Emissions	64
12.1	Test equipment	
12.2	Block diagram of test setup	
12.3	Limits	
12.4	Test results	
13	Antenna requirement	67

	- Page 4 of 85 -	4322217.56
13.1	Limits	67
13.2	Test results	67
14	Pseudorandom Frequency Hopping Sequence	68
14.1.1	Standard requirement	68
14.1.2	Other requirements Frequency Hopping Spread Spectrum System	69
15	Test setup and arrangement	71
16	Photos of FUT	75

- Page 5 of 85 -

4322217.56

1 CONCLUSION

The device under test (DUT) as mentioned in this report complies with the stated requirements of the FCC Part 15, Subpart C.

FCC ID: 2AANU-BM5

This report is based on the product operating at Bluetooth mode.

The test results in this report belong to model BM5B/37, and the results are also representative for other models.

The conclusion and results stated in this test report are based on a non-recurrent examination of sample(s) provided by the applicant.

- Page 6 of 85 -

4322217.56

2 SUMMARY

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

2.1 Applied standards

Standard	Year	Title
FCC part 15,	2014	Federal Communications Commission (FCC) – Radio
Subpart C	2014	Frequency Devices

2.2 Reference standards

Standard	Year	Title
ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices

2.3 Overview of results

Test Item	Standard	Result
Maximum Book Output Bower	FCC Part 15: 15.247(b)(1)	PASS
Maximum Peak Output Power	ANSI C63.10: 2013	PASS
20 dB Bandwidth	FCC Part 15: 15.215	PASS
20 db Baridwidti	ANSI C63.10: 2013	PASS
Carrior Eroquoney Sonaration	FCC Part 15: 15.247(a)(1)	PASS
Carrier Frequency Separation	ANSI C63.10: 2013	PASS
Number of Henning Channel	FCC Part 15: 15.247(a)(1)(iii)	DASS
Number of Hopping Channel	ANSI C63.10: 2013	PASS
Dwell Time	FCC Part 15: 15.247(a)(1)(iii)	DASS
Dwell Time	ANSI C63.10: 2013	PASS
	FCC Part 15: 15.247(d)	
Radiated Emission	FCC Part 15: 15.209	PASS
	ANSI C63.10: 2013	
Band Edge Equipment &	FCC Part 15: 15.247(d)	PASS
Conducted Spurious Emissions	ANSI C63.10: 2013	PASS
Power Line Conducted Emission	FCC Part 15: 15.207	PASS
Fower Line Conducted Emission	ANSI C63.10: 2013	FASS
Antenna requirement	FCC Part 15: 15.203	PASS

- Page 7 of 85 -

4322217.56

3 GENERAL INFORMATION

3.1 Model description

The apparatus as supplied for the test is Wireless multiroom speaker, model BM5B/37 intended for residential use, the product contains electronic control circuitry.

According to customer's declaration,

1, the characteristics of Bluetooth module are:

Operating Frequency 2402 MHz – 2480 MHz		2 MHz – 2480 MHz	
Operating Temperature Range	0 − 35 ℃		
Antenna Assembly	Туре	Internal, PCB antenna	
7 (Herma 7 (35embly	Gain	Maximum 2,12 dBi	
Modulation Type	FHSS: GFSK, (π/4)DQPSK, 8DPSK		
Adaptivity	Adaptive		
Version	V2.1+EDR		

- Page 8 of 85 -

4322217.56

For FHSS channels are:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33	2435	60	2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	1	1
26	2428	53	2455	1	1

- Page 9 of 85 -

4322217.56

2, the characteristics of IEEE 802.11b/g/n HT20 module are:

Operating Frequency	IEEE 802.11b/g: 2412 MHz – 2472 MHz			
Operating Frequency	IEEE 802.11n HT20: 2412 MHz – 2472 MHz			
Operating Temperature Range	0 – 35 ℃			
	Type Internal, assembly antenna		embly antenna	
Antenna Assembly	Gain	Mains (o	ne)	Max. 3,75 dBi
	Gairi	Mains (tv	wo)	Max. 3,75 dBi
Remark:				
There is only one antenna active at any	There is only one antenna active at any moment in time after detecting the larger power			
(Operating mode 1, Single antenna).				
	IEEE 802.11b: DSSS (CCK, QPSK, BPSK)			
Modulation Type	IEEE 802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM)			
Modulation Type	IEEE 802.11n HT20: OFDM (BPSK, QPSK, 16QAM,			
	64QAM)			
Adaptivity	Adaptive			
, waparity	q			32

For IEEE 802.11b, 802.11g and 802.11n20, the 13 channels are:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	1	/

According to the declaration from the applicant, the circuit, PCB layout, electrical parts and outlook of the products are identical to all models

Hence, model BM5B/37 was chosen for full testing, and the corresponding data is representative of other models as well.

The provided ports are AC mains, Aux in, USB port (for software upgrade only exclude the software of Bluetooth and IEEE 802.11b/g/n module) and enclosure.

- Page 10 of 85 -

4322217.56

Figure 1 Model BM5B/37

The operating modes are On (Aux in, Bluetooth mode and IEEE 802.11b/g/n HT20 mode) and OFF mode.

4322217.56

1.1 **Product Information**

Equipment under test	Wireless multiroom speaker
Trade mark	PHILIPS
Tested Type	BM5B/37
Rating	5,0 Vdc, 2 A

Represented type(s)	BM5B/17, BM5C/37, BM5C/17, BM5W/37, BM5W/17
Rating	5,0 Vdc, 2 A

AC/DC Adapter AS100-050-AA200	
Trade mark	PHILIPS
Rating	Input: 100-120 Vac, 50-60 Hz, 0,5 A Output: 5.0 Vdc, 2.0 A

1.2 **Customer Information**

Applicant/ Manufacturer	Gibson Innovations Limited			
Contact person	Wenke			
Telephone	+86 755 8300 8803			
Telefax	1			
Address	5/F6F., Philips Electronics Building, 5 Science Park East Avenue, Hong Kong Science Park, New Territories, Hong Kong			

Factory	Zhang Shan City LI TAI Electronic industrial Co., Ltd.			
Contact person	Yuki Cai			
Telephone	+86 760 2380 8322			
Telefax	+86 760 2380 8800			
Address	No.3 Industrial district, Wu guishan, Cheng gui Road, Zhangshan city, Guangdong, China			

4 TEST INFORMATION

4.1 Test configuration

The Bluetooth module of the EUT was connected to a special test jig provided by manufacturer which has a USB connector to link with PC, and the PC will run a special test software "RDA_BT_Tester" supplied by manufacturer to control the EUT work in test mode as below table.

Mode	Channel	Frequency (MHz)	
Hopping on Tx Mode	CH0 to CH78	2402 to 2480	
	CH0	2402	
GFSK hopping off Tx Mode	CH39	2441	
	CH78	2480	
	CH0	2402	
Л/4 QPSK hopping off Tx Mode	CH39	2441	
	CH78	2480	
	CH0	2402	
8-DPSK hopping off Tx Mode	CH39	2441	
	CH78	2480	

4.2 Modulation configuration

Modulation	Packet	Packet Type	Packet Size
	DH1	4	24
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
(π/4)DQPSK	2DH3	26	367
	2DH5	30	379
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

4.3 Special accessories of the EUT

No.

4.4 Assistant equipment used on the test

Description	Manufacturer	Model	Other
HP Pro 3330 Small (PC)		A6T13PA#AB2 AC line: 1,5 m, unshielded	
LCD Color Display	HP	GV537A	AC line: 1,5 m, unshielded VGA line: 1,5 m, Shielded
Keyboard	HP	KB-0316	Signal line: 1,5 m, unshielded
Mouse	HP	M-SBF96	Signal line: 1,5 m, unshielded

Note: the equipment only used to configure the engineering mode in the report and not during the test

4.5 Test laboratory

Location	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Address Building A3, No.3 Qiyun Road, Science City, Guang Hi-Tech Industrial Development Zone, Guangzhou, China	
Date	2015-07-04 to 2015-07-20
Supervised by	Jazz Liang

4.6 Environmental conditions

Tests have been performed in a controlled laboratory environment, where the environmental conditions are maintained within the applicable ranges.

Ambient temperature	15 °C – 25 °C
Relative Humidity air	30% - 60%

- Page 14 of 85 -

4322217.56

4.7 Measurement Uncertainty

Test Item	Uncertainty
Occupied Channel Bandwidth	±1%
RF Output power, conducted	±0,6dB
Power Spectral Density, Conducted	±1,2dB
Unwanted Emissions, Conducted	±0,6dB
Temperature	±0,2℃
Humidity	±1%
DC and Low frequency voltage	±0,5%
Time	±1%
Duty Cycle	±1%
Uncertainty for Radiation Emission test	3,14 dB (Polarize: V)
(30MHz-1GHz)	3,16 dB (Polarize: H)
Uncertainty for Radiation Emission test	2,08dB(Polarize: V)
(1GHz to 25GHz)	2,56dB (Polarize: H)

Remark:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

- Page 15 of 85 -

4322217.56

5 MAXIMUM PEAK OUTPUT POWER

5.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

5.2 Block diagram of test setup

5.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 5.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;
- (4) Measure the maximum output power of EUT by spectrum analyzer with PK detector and RBW=2 MHz (above 6 dB bandwidth of measured signal), VBW= 3 MHz;

Note: The atteuator loss was inputted into spectrum analyzer as amplitude offset.

5.4 Limits

For frequency hopping systems operating in the 2400 – 2483,5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 – 5850 MHz band: 1 watt.

- Page 16 of 85 -

4322217.56

5.5 Test results

Mode	Frequency (MHz)	Results (dBm)	Limit (dBm)	Margin (dB)	Conclusion	
	2402	-9.87	30	-39.87	PASS	
GFSK	2441	-9.27	30	-39.27	PASS	
	2480	-8.44	30	-38.44	PASS	
	2402	-10.02	30	-40.02	PASS	
Л/4 QPSK	2441	-9.37	30	-39.37	PASS	
	2480	-8.48	30	-38.48	PASS	
	2402	-9.92	30	-39.92	PASS	
8-DPSK	2441	-9.30	30	-39.30	PASS	
	2480	-8.45	30	-38.45	PASS	
Remark:						
Margin = Results – Limits.						

5.6 Original test data

GFSK CH0

Date: 16 JUL.2015 14:07:53

- Page 17 of 85 -

4322217.56

GFSK CH39

Date: 16 JUL.2015 14:08:41

GFSK CH79

Date:16.JUL.2015 14:09:07

- Page 18 of 85 -

4322217.56

Л/4 QPSK CH0

Date:16.JUL.2015 14:11:15

Л/4 QPSK CH39

Date:16.JUL.2015 14:10:24

- Page 19 of 85 -

4322217.56

Л/4 QPSK CH79

Date:16.JUL.2015 14:09:47

8-DPSK CH0

Date:16.JUL.2015 14:11:52

- Page 20 of 85 -

4322217.56

8-DPSK CH39

Date:16.JUL.2015 14:12:19

8-DPSK CH79

Date:16.JUL.2015 14:12:47

- Page 21 of 85 -

4322217.56

6 20 DB BANDWIDTH

6.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

6.2 Block diagram of test setup

6.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 5.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;
- (4) The bandwidth of the fundamental frequency was measured by spetrum analyzer with 30 kHz RBW and 100 KHz VBW. The 20 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB.

6.4 Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through § 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within frequency band designated in the rule section under which the equipment is operated.

- Page 22 of 85 -

4322217.56

6.5 Test results

Mode	Frequency (MHz)	Results (MHz)	Limit (MHz)	Margin (MHz)	Conclusion
	2402	1.0283	2400 -2483,5	1	PASS
GFSK	2441	1.0233	2401 -2483,5	1	PASS
	2480	1.0233	2402 -2483,5	1	PASS
	2402	1.0183	2403 -2483,5	/	PASS
Л/4 QPSK	2441	1.0233	2404 -2483,5	/	PASS
	2480	1.0233	2405 -2483,5	/	PASS
8-DPSK	2402	1.0233	2406 -2483,5	/	PASS
	2441	1.0233	2407 -2483,5	/	PASS
	2480	1.0233	2408 -2483,5	1	PASS

6.6 Original test data

GFSK Mode

2402

Date:15.JUL.2015 16:35:18

- Page 23 of 85 -

4322217.56

2441

Date: 15 JUL 2015 16:42:56

2480

Date: 15 JUL.2015 16:43:56

- Page 24 of 85 -

4322217.56

Л/4 QPSK mode

2402

Date: 15 JUL.2015 17:02:57

2441

Date: 15 JUL.2015 17:05:04

- Page 25 of 85 -

4322217.56

2480

Date: 15 JUL.2015 17:07:20

8-DPSK mode

2402

Date: 15 JUL.2015 17:00:36

- Page 26 of 85 -

4322217.56

2441

Date: 15 JUL.2015 16:58:55

2480

Date: 15 JUL.2015 16:57:23

- Page 27 of 85 -

4322217.56

7 CARRIER FREQUENCY SEPARATION

7.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

7.2 Block diagram of test setup

7.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 7.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;

7.4 Limits

Frequency hopping systems shall have hopping channel frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 – 2483,5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.5 Test results

Mode	Channel separation (MHz)	20 dB Bandwidth(MHz)	Limit (MHz) 2/3 of 20 dB Bandwidth	Conclusion
GFSK	1,0042	1.0283	0.6855	PASS

Note1: The limit is two-thirds of the 20dB bandwidth 8DPSK (3DH5) mode due to the transmission power is less than 0.125 W shown on section 5.5 of this report.

Note2: For $\Pi/4$ QPSK, 8-DPSK in modulation type, and based exploratory test, there is no significant difference of GFSK test result, except output power, Test were performed GFSK only.

- Page 28 of 85 -

4322217.56

7.6 test data

GFSK

Date:15.JUL.2015 17:28:18

Date: 15 JUL 2015 17:31:15

- Page 29 of 85 -

4322217.56

Date: 15 JUL 2015 17:32:13

- Page 30 of 85 -

4322217.56

8 NUMBER OF HOPPING CHANNEL

8.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

8.2 Block diagram of test setup

8.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 8.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;
- (4) The carrier frequency was measured by spetrum analyzer with 100 kHz RBW and 300 KHz VBW.

8.4 Limits

Frequency hopping systems in the 2400 – 2483,5 MHz band shall used at least 15 channels.

8.5 Test results

Mode	Number of hopping channel	Limit	Conclusion
GFSK	79	>15	PASS

Note: For Π/4 QPSK, 8-DPSK in modulation type, and based exploratory test, there is no significant difference of GFSK test result, except output power, Test were performed GFSK only.

- Page 31 of 85 -

4322217.56

8.6 Original test data

GFSK

Date: 16 JUL.2015 13:40:47

- Page 32 of 85 -

4322217.56

9 DWELL TIME

9.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

9.2 Block diagram of test setup

9.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 9.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;

9.4 Limits

The average time of occupancy on any channel shall not be greater than 0,4 seconds within a period of 0,4 seconds multiplied by the number of hopping channels employed.

DEKRA

For channel 0:2.402GHz

EUT Mode (worst case)	Results	Limit
()	The accumulated Dwell time(ms)	
3DH1	372.9	
3DH3	379.2	≤ 400 ms
3DH5	389.7	

Remark:

The accumulated Dwell time =

the total points of the much higher level * Sweep time (31.6 s)/ Sweep points (30000)

Test figure (3DH1 for representative, total points of the much higher level=354):

- Page 34 of 85 -

4322217.56

Test figure (3DH3 for representative, total points of the much higher level=360):

Test figure (3DH5 for representative, total points of the much higher level=370):

- Page 35 of 85 -

4322217.56

For channel 78:2.480GHz

EUT Mode (worst case)	Results	Limit
()	The accumulated Dwell time(ms)	
3DH1	385.5	
3DH3	331.8	≤ 400 ms
3DH5	337.1	

Remark:

The accumulated Dwell time =

the total points of the much higher level * Sweep time (31.6 s)/ Sweep points (30000)

Test figure (3DH5 for representative, total points of the much higher level=366):

- Page 36 of 85 -

4322217.56

Test figure (3DH3 for representative, total points of the much higher level=315):

Test figure (3DH5 for representative, total points of the much higher level=320):

- Page 37 of 85 -

4322217.56

10 BAND EDGES REQUIREMENT& CONDUCTED SPURIOUS EMISSIONS

10.1 Test equipment

Ite	m Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Spectrum analyzer	R&S	FSV	SN101012	2014/09/11	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2014/11/26	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2014/11/26	1 Year

10.2 Block diagram of test setup

10.3 Test Procedure

- (1) Configure EUT and Assistant system according to 4.1 and 8.2;
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable;
- (3) Configure EUT working in test mode as state in 4.1;
- (4) The carrier frequency was measured by spetrum analyzer with 100 kHz RBW and 300 KHz VBW.

10.4 Requirement and limit

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

- Page 38 of 85 -

4322217.56

10.5 Test results 10.5.1 Band edge GFSK 2402

Date:16.JUL.2015 15:12:39

Date:16.JUL.2015 15:13:04

- Page 39 of 85 -

4322217.56

Л/4 QPSK 2402

Date: 16.JUL.2015 15:07:37

Date:16.JUL.2015 15:08:19

- Page 40 of 85 -

4322217.56

8-DPSK 2402

Date:16.JUL.2015 15:15:03

Date: 16 JUL 2015 15:15:33

- Page 41 of 85 -

4322217.56

GFSK 2480

Date: 16.JUL.2015 15:03:06

Date: 16 JUL 2015 15:03:43

- Page 42 of 85 -

4322217.56

Л/4 QPSK 2480

Date: 16 JUL 2015 15:09:14

Date:16.JUL.2015 15:09:48

- Page 43 of 85 -

4322217.56

8-DPSK 2480

Date: 16.JUL.2015 15:16:07

Date:16.JUL.2015 15:16:33

Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20dB Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20dB.

DEKRA

10.5.2 Conducted spurious emissions

For $\Pi/4$ QPSK, 8-DPSK in modulation type, and based exploratory test, there is no significant difference of GFSK test result, except output power, Test were performed GFSK only.

GFSK 2402

Date: 16 JUL 2015 14:32:53

Date:16.JUL.2015 14:40:12

- Page 45 of 85 -

4322217.56

Date: 16 JUL.2015 14:34:06

GFSK 2441

Date:16.JUL.2015 14:36:10

- Page 46 of 85 -

4322217.56

Date: 16 JUL.2015 14:43:25

Date: 16.JUL.2015 14:35:04

- Page 47 of 85 -

4322217.56

GFSK 2480

Date:16.JUL.2015 14:36:38

Date: 16 JUL 2015 14:45:40

- Page 48 of 85 -

4322217.56

Date: 16 JUL 2015 14:35:37

- Page 49 of 85 -

4322217.56

11 RADIATED EMISSION

11.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	EMI Receiver	R&S	ESU8	100316	2014/11/26	1 Year
2	Spectrum Analyzer	R&S	FSU	1166.1660.26	2014/11/26	1 Year
3	Loop Antenna	TESEQ	HLA6120	20129	2014/11/26	1 Year
4	Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	2014/11/26	1 Year
5	Double Ridged Horn Antenna	R&S	HF907	100276	2014/11/26	1 Year
6	Horn Antenna	EMCO	3116	00060095	2014/11/26	1 Year
7	Pre-Amplifier	R&S	SCU-01	10049	2014/11/26	1 Year
8	Pre-Amplifier	A.H.	PAM0-0118	360	2014/11/26	1 Year
9	Pre-Amplifier	A.H.	PAM-1840VH	562	2014/11/26	1 Year
10	RF Cable	R&S	R01	10403	2014/11/26	1 Year
11	RF Cable	R&S	R02	10512	2014/11/26	1 Year
12	Notch filter	EM electronics corp	BRM50701	S/N-037	2014/11/26	1 Year

11.2 Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

11.3 Limits

11.3.1 FCC 15.205 restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

11.3.2 FCC 15.209 limit

Frequency			Field Strength Limit	
(MHz)	(m)	uV/m	dB(uV)/m	
30 – 88	3	100	40,0	
88 – 216	3	150	43,5	
216 – 960	3	200	46,0	
960 – 1000	3	500	54,0	
Above 1000	3	74,0 dB(uV) 54,0 dB(uV/n	n) for Peak n) for Average	

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20 dB below the fundamental emissions, or comply with 15.209 limits.

Note1: For $\Pi/4$ QPSK, 8-DPSK in modulation type, and based exploratory test, there is no significant difference of GFSK test result, except output power. Compliance test in continuous transmitting mode with GFSK as the worst case was found. Hence, the test (Harmonic and other spurious emissions) was performed GFSK only.

- Page 52 of 85 -

4322217.56

Note2: In order to protect the instrument, the notch filter (stop band from 2400MHz to 2500MHz) is used in the test (Harmonic and other spurious emissions above 1G).

11.4 Harmonic and other spurious emissions

Test Result

Below 1G:

2402MHz

Horizontal:

Trace	Frequency(MHz)	Level (dBµV/m)	Margin(dB)
QP	425.26	41.21	-4.79
QP	430.08	41.41	-4.59
QP	625.21	42.21	-3.79
QP	634.01	41.15	-4.85
QP	901.25	41.25	-4.75
QP	970.76	44.13	-9.86

- Page 53 of 85 -

4322217.56

Vertical:

Trace	Frequency(MHz)	Level (dBµV/m)	Margin(dB)
QP	190.25	27.21	-16.29
QP	350.18	38.01	-7.99
QP	454.64	41.41	-4.59
QP	504.01	39.25	-6.75
QP	541.95	39.75	-6.25
QP	970.76	44.23	-9.77

- Page 54 of 85 -

4322217.56

2441MHz Horizontal:

	EDIT PEAK LIST (Final Measurement Results)				
Tra	ce1:				
Tra	ce2:				
Tra	ce3:				
	TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT dB	
1	Quasi Peak	405.52 MHz	42.90	-3.09	
1	Quasi Peak	430.08 MHz	40.40	-5.59	
1	Quasi Peak	577.52 MHz	38.30	-7.69	
1	Quasi Peak	356.36 MHz	36.63	-9.36	
1	Quasi Peak	331.76 MHz	33.88	-12.11	
1	Quasi Peak	892.04 MHz	33.69	-12.30	

- Page 55 of 85 -

4322217.56

Vertical:

EDIT	PEAK LIST (Final	Measurement Resul	ts)		
Trace1:	Trace1:				
Trace2:					
Trace3:					
TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT dB		
1 Quasi Peak	405.52 MHz	41.86	-4.13		
1 Quasi Peak	430.08 MHz	41.70	-4.29		
1 Quasi Peak	749.56 MHz	40.85	-5.14		
1 Quasi Peak	380.92 MHz	37.99	-8.00		
1 Quasi Peak	454.68 MHz	37.63	-8.36		
1 Quasi Peak	307.2 MHz	36.88	-9.11		

- Page 56 of 85 -

4322217.56

2480MHz Horizontal:

	EDIT PEAK LIST (Final Measurement Results)				
Tra	Trace1:				
Tra	ce2:				
Tra	Trace3:				
	TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT dB	
1	Quasi Peak	405.52 MHz	42.89	-3.10	
1	Quasi Peak	430.08 MHz	40.32	-5.67	
1	Quasi Peak	577.52 MHz	37.71	-8.28	
1	Quasi Peak	356.36 MHz	36.88	-9.11	
1	Quasi Peak	380.92 MHz	35.22	-10.77	
1	Quasi Peak	331.8 MHz	32.99	-13.00	

- Page 57 of 85 -

4322217.56

Vertical:

	EDIT PEAK LIST (Final Measurement Results)				
Tra	Trace1:				
Tra	ce2:				
Trace3:					
	TRACE	FREQUENCY	LEVEL dBµV/m	DELTA LIMIT dB	
1	Quasi Peak	405.52 MHz	41.51	-4.48	
1	Quasi Peak	430.08 MHz	41.12	-4.87	
1	Quasi Peak	749.56 MHz	39.45	-6.54	
1	Quasi Peak	651.24 MHz	39.01	-6.98	
1	Quasi Peak	380.92 MHz	37.06	-8.93	
1	Quasi Peak	307.2 MHz	36.66	-9.33	

- Page 58 of 85 -

4322217.56

Above 1G GFSK 2402MHz

Vertical:

Horizontal

- Page 59 of 85 -

4322217.56

GFSK 2441MHz

Vertical:

Horizontal

- Page 60 of 85 -

4322217.56

GFSK 2480MHz

Vertical:

Horizontal

- Page 61 of 85 -

4322217.56

11.5 Radiated Emissions which fall in the restricted bands

Test Result

GFSK

2402MHz

2480MHz

- Page 62 of 85 -

4322217.56

Л/4 QPSK 2402MHz

Date: 23 JUL 2015 16:01:11

2480MHz

Date: 23 JUL.2015 16:09:49

- Page 63 of 85 -

4322217.56

8-DPSK 2402MHz

Date: 23 JUL 2015 16:03:05

2480MHz

Date: 23 JUL 2015 16:10:17

12 POWER LINE CONDUCTED EMISSIONS

12.1 Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	EMI Receiver	R&S	ESU8	100316	2014/11/26	1 Year
2	LISN 1	R&S	ENV216	101109	2014/11/26	1 Year
3	LISN 1	R&S	ESH2-Z5	100309	2014/11/26	1 Year
4	Pulse Limiter	R&S	ESH3-Z2	101242	2014/11/26	1 Year

12.2 Block diagram of test setup

12.3 Limits

Frequ	iency [MHz]	Limit - QP [dB(μV)]	Limit - AV [dB(μV)]
0,15	- 0,50	66 to 56 *	56 to 46 *
0,50	- 5	56	46
5	- 30	60	50

Note 1: * Limits decreasing linearly with the logarithm of the frequency

Note 2: The lower limit shall apply at the transition frequencies.

Note 3: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Compliance test in continuous transmitting mode with GFSK (DH5) as the worst case was found.

- Page 65 of 85 -

4322217.56

12.4 Test results

Live:

Trace	Frequency(MHz)	Level (dBµV/m)	Margin(dB)
QP	0.153	38.21	-27.70
QP	0.206	35.46	-28.94
QP	0.325	28.51	-32.49
QP	0.456	21.25	-36.00
QP	0.501	21.45	-34.55
QP	19.542	27.63	-32.37

No other significant emissions were measured at the frequency range of interest employing both the QP and AV detectors.

Neutral:

Trace	Frequency(MHz)	Level (dBµV/m)	Margin(dB)
QP	0.150	38.65	-27.35
QP	0.315	29.46	-31.83
QP	0.465	22.51	-34.49
QP	0.579	18.25	-37.75
QP	1.636	17.45	-38.55
QP	19.623	25.93	-34.07

No other significant emissions were measured at the frequency range of interest employing both the QP and AV detectors.

- Page 67 of 85 -

13 ANTENNA REQUIREMENT

13.1 Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that funished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

13.2 Test results

The antenna used for this product is built-in PCB trace antenna, and no antenna other than that funished by the responsible part shall be used, the maximum peak gain of the transmit antenna is only 2,12 dBi.

- Page 68 of 85 -

4322217.56

14 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE

14.1.1 Standard requirement

15.247(a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- Page 69 of 85 -

4322217.56

14.1.2 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement:

47 CFR Part 15**C Section 15.247 (a)(1), (h) requirement:**

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift

- Page 70 of 85 -

4322217.56

frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

- Page 71 of 85 -

4322217.56

15 TEST SETUP AND ARRANGEMENT

The photograph shows the tested device.

Figure 2 Conducted measurement Test setup

- Page 72 of 85 -

4322217.56

Figure 3 Conducted Emission test setup

- Page 73 of 85 -

Figure 4 Radiated emission test setup (below 1 GHz)

- Page 74 of 85 -

Figure 5 Radiated emission test setup (above 1 GHz)

- Page 75 of 85 -

4322217.56

16 PHOTOS OF EUT

Internal Photos:

- Page 76 of 85 -

- Page 77 of 85 -

- Page 78 of 85 -

- Page 79 of 85 -

- Page 80 of 85 -

Wi-Fi module

- Page 81 of 85 -

Wi-Fi module

- Page 82 of 85 -

Bluetooth module

- Page 83 of 85 -

- Page 84 of 85 -

- Page 85 of 85 -

Wi-Fi antenna