Theorie der Programmierung Wintersemester 2006/07

Übungsblatt 4

Aufgabe 1

Ergänzen Sie die Ausdrücke aus Aufgabe 1 und 3 von Übungsblatt 3 so durch Typen, dass wohlgetypte Ausdrücke in \mathcal{L}_2^t entstehen. Geben Sie die Typherleitungen für *exists* (Aufgabe 3 b.) und *iter* (Aufgabe 1 e.) an.

Aufgabe 2

Beweisen Sie Satz 2 der Vorlesung, d.h. zeigen Sie, dass für jede Typumgebung Γ und jeden Ausdruck e in \mathcal{L}_2^t höchstens ein Typ τ mit $\Gamma \triangleright e :: \tau$ existiert.

Aufgabe 3

Führen Sie die (in der Vorlesung schon angedeutete) induktive Definition der Funktion $type: TEnv \hookrightarrow Type$ zu Ende. Implementieren Sie die Funktion in einer Programmiersprache Ihrer Wahl. (Hinweis: Für eine einfache und gut lesbare Implementierung eignen sich funktionale Sprachen wie SML oder O'Caml. Versuchen Sie aber nicht, type als Funktionsnamen zu wählen.)

Aufgabe 4

Denken Sie sich Typregeln für den folgenden syntaktischen Zucker aus

- **a.** $e_1 \&\& e_2$
- **b.** $e_1 \| e_2$
- **c.** let $id(id_1:\tau_1) \dots (id_n:\tau_n):\tau=e_1$ in e_2
- d. let rec $id : \tau = e_1$ in e_2
- **e.** let rec $id(id_1 : \tau_1) \dots (id_n : \tau_n) : \tau = e_1$ in e_2

und zeigen Sie, dass es sich um abgeleitete Regeln handelt.