## AŞAĞIDAKİ SORULARA VERDİĞİNİZ YANITLARDA ÇÖZÜMÜNÜZÜN HER ADIMINI AÇIK BİR ŞEKİLDE GÖSTERMELİ, TÜRETMENİZ GEREKEN <u>YENİ BİR DENKLEM</u> VARSA BU DENKLEMİ NASIL TÜRETTİĞİNİZİ AÇIKLAMALISINIZ. AKSİ TAKDİRDE ÇÖZÜMDEN PUAN ALAMAZSINIZ.

## Sorular

1) [16p] Aşağıdaki tabloda bir genomik sekansın (L sekansı) içerisinde geçen trimer'lerin (3-tuple) frekansları verilmiştir. Söz konusu sekansın eş dağılım (identical distribution) özelliğini sağladığı ve herhangi bir bazın değerinin kendisinden önceki iki bazın değerlerine bağımlı olduğu (dependent) bilinmektedir.

|                                     | Α     | С     | G     | Т     | L <sub>T</sub> |
|-------------------------------------|-------|-------|-------|-------|----------------|
| AA                                  | 0,027 | 0,019 | 0,021 | 0,022 |                |
| AC                                  | 0,020 | 0,013 | 0,015 | 0,014 |                |
| AG                                  | 0,022 | 0,014 | 0,018 | 0,020 |                |
| AT                                  | 0,023 | 0,015 | 0,018 | 0,018 |                |
| CA                                  | 0,018 | 0,013 | 0,015 | 0,016 |                |
| CC                                  | 0,012 | 0,009 | 0,016 | 0,011 |                |
| CG                                  | 0,015 | 0,010 | 0,013 | 0,013 |                |
| СТ                                  | 0,015 | 0,010 | 0,012 | 0,012 |                |
| GA                                  | 0,022 | 0,015 | 0,018 | 0,018 |                |
| GC                                  | 0,015 | 0,010 | 0,012 | 0,012 |                |
| GG                                  | 0,019 | 0,013 | 0,014 | 0,014 |                |
| GT                                  | 0,019 | 0,012 | 0,016 | 0,015 |                |
| TA                                  | 0,022 | 0,015 | 0,019 | 0,019 |                |
| TC                                  | 0,015 | 0,011 | 0,012 | 0,013 |                |
| TG                                  | 0,018 | 0,012 | 0,015 | 0,016 |                |
| TT                                  | 0,018 | 0,013 | 0,015 | 0,014 |                |
| L <sub>T-2</sub> , L <sub>T-1</sub> |       |       | •     | •     |                |

T sembolü bir baz pozisyonunu göstermek üzere, tablodaki bir satırla sütunun kesişimi  $P(L_{T-2}=i,\,L_{T-1}=j,\,L_{T}=k),\,i,j,k\in\{A,C,G,T\}$  bileşke olasılığı</u>nı vermektedir. Buna göre aşağıdaki soruları cevaplayınız:

a) 
$$[8p] P(L_T = A) = ? P(L_T = C) = ? P(L_T = G) = ? P(L_T = T) = ?$$

b) [8p] Bayes teoremini kullanarak şu iki olasılığı hesaplayınız: 
$$P(L_T=C\mid L_{T-2}=T,\, L_{T-1}=G)=? \qquad P(L_T=A\mid L_{T-2}=A,\, L_{T-1}=T)=?$$

- 2) [10p] Merkezi limit teoremini şekil çizerek kısa/öz biçimde açıklayınız.
- 3) [15p] Bir X canlısının genomundaki baz dağılımının bağımsız ve eş dağılım (independent and identical distribution-iid) özelliğini sağladığını varsayalım. Bu canlının genomundaki herhangi bir baz pozisyonu için baz görülme olasılıkları P(A) = 0.35, P(C) = 0.20, P(G) = 0.25, P(T) = 0.20 şeklinde olsun. Buna göre, bu canlının genomundan rasgele seçilen 100bp uzunluklu bir sekansın içinde tam olarak 23 tane A, 32 tane C, 30 tane G ve 15 tane T bulunma olasılığını hesaplayınız (Sonucu verecek denklemi yazmanız da yeterlidir).

- **4)** [20p] X dağılımının [a, b] sayı aralığından tekdüze (uniform) seçilen sayılardan oluştuğunu kabul edelim. Buna göre,
- a) X dağılımının beklentisinin (a+b)/2 olduğunu [5p],
- b) X dağılımının varyansının yaklaşık olarak (b-a)²/12 olduğunu [15p] ispatlayınız.

İpucu: [a, b] kapalı aralığındaki sayıların her birini  $X_i = a+k$ ,  $0 \le k \le b-a$  eşitliğine uygun ayrık sayılar olarak düşünebilirsiniz.

- **5)** [24p] İlk soruda trimer frekans tablosu verilen sekansın bu sefer bağımsız ve eş dağılım (independent and identical distribution-iid) özelliğini sağladığını varsayalım. Herhangi bir baz pozisyonu için bazların görülme olasılıklarının da eşit olduğunu kabul edelim (P(A)=P(C)=P(G)=P(T)=0,25). Sekansımız 1000bp uzunluklu olsun. Buna göre aşağıdaki tabloda verilen 4 dimer için;
- (i) Dimer'in frekans bilgisi üzerinden gözlem sayısını (gözlem) [8p],
- (ii) Dimer'in iid modele göre gözlemlenmesi beklenen sayısı (beklenti) [4p],
- (iii) Gözlem ve beklenti değerleri üzerinden X²/c değerini [12p] hesaplayınız.

|    | Gözlem sayısı | Beklenti | X <sup>2</sup> /c |
|----|---------------|----------|-------------------|
| AA |               |          |                   |
| AC |               |          |                   |
| AG |               |          |                   |
| AT |               |          |                   |

**6)** [15p] Bu soru genom derleme (genome assembly) ile ilgilidir. Aşağıdaki şekilde üç klondan oluşan bir contig görülmektedir. 2 numaralı klonun sağ ucu ve 3 numaralı klonun sol ucu, 1 numaralı klonun L- $2\Omega$  alanına girmektedir (bu alanın daha ilerisine geçmemektedir). Aynı zamanda 2 numaralı klonun soluna ve 3 numaralı klonun da sağına başka hiçbir klon eklenememektedir. 3 klondan oluşan bu yapıya "üçlük" diyelim.



Buna göre, Poisson kestirimini kullanarak parametreleri aşağıda verilen deney ortamında,

- (i) Herhangi bir contig'in bir üçlük olma olasılığını [12p],
- (ii) N adet klondan kaç tane üçlük çıkmasının beklendiğini [3p] hesaplayınız.

## Parametreler:

G = 30.000.000

N = 100.000

L = 1.000

 $\Omega = 100$ 

G: genomun uzunluğu, N: toplam klon sayısı, L: ortalama klon uzunluğu,

Ω: contig oluşması için minimum örtüşme miktarı