ST5215 Advanced Statistical Theory, Lecture 5

HUANG Dongming

National University of Singapore

25 Aug 2020

Review

Last time

- Properties of conditional expectation
- Conditional distribution
- Statistical models

Today

- Exponential families
- Statistics

Recap: Independence

Definition

Let (Ω, \mathcal{E}, P) be a probability space.

• (Independent events) The events in a subset $C \subset \mathcal{E}$ are said to be independent iff for any positive n and distinct events $A_1, \ldots, A_n \in C$,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n). \tag{1}$$

- (Independent collections) Collections $C_i \subset \mathcal{E}$, $i \in \mathcal{I}$ are independent iff events in a collection of the form $\{A_i \in C_i : i \in \mathcal{I}\}$ are independent.
- (Independent random variables): random variables X_1, \ldots, X_n are said to be independent iff $\sigma(X_1), \ldots, \sigma(X_n)$ are independent.

Example: $C_1 = \{A_1, A_2\}$, $C_2 = \{A_3, A_4\}$. Then C_1 and C_2 are independent iff 1). A_1 and A_3 are independent, 2). A_1 and A_4 are independent, 3). A_2 and A_3 are independent, 4). A_2 and A_4 are independent.

Recap: Conditional expectation

Definition

- Let X be an integrable random variable on (Ω, \mathcal{F}, P) .
- Let \mathcal{A} be a sub- σ -field of \mathcal{F} .

The *conditional expectation* of X given A, denoted by $\mathbb{E}(X \mid A)$, is a random variable satisfying the following two conditions:

- **①** $\mathbb{E}(X \mid \mathcal{A})$ is measurable from (Ω, \mathcal{A}) to $(\mathcal{R}, \mathcal{B})$
- 2 $\int_C \mathbb{E}(X \mid A) dP = \int_C X dP$ for any $C \in A$

Such $\mathbb{E}(X \mid A)$ exists and is unique.

Definition (Conditional expectation in L^2 sense)

Let (Ω, \mathcal{F}, P) be a probability space.

- **1** Define $L^2(\Omega, \mathcal{F}, P)$ to be the collection of all Borel functions f on (Ω, \mathcal{F}) such that $\int f^2 dP < \infty$. (Inner product $\langle X, Y \rangle := \mathbb{E}(XY)$ makes it a *Hilbert space*)
- **2** Let \mathcal{G} be a sub- σ -field of \mathcal{F} . For any r.v. $X \in L^2(\Omega, \mathcal{F}, P)$, the conditional expectation of X given \mathcal{G} , denoted by $\mathbb{E}(X \mid \mathcal{G})$, is defined as the orthogonal projection of X onto the closed subspace $L^2(\Omega, \mathcal{G}, P)$.
 - Orthogonal projection: $\langle X \mathbb{E}(X \mid \mathcal{G}), Z \rangle = 0$ for all $Z \in L^2(\Omega, \mathcal{G}, P)$
 - One can prove that $\mathbb{E}(X \mid \mathcal{G}) = \underset{f \in L^2(\Omega, \mathcal{G}, P)}{arg \ min} \mathbb{E}(X f)^2$
 - For any $B \in \mathcal{G}$, let $Z = I_B$

$$\int_{B} X \, dP = \int_{B} \mathbb{E}(X \mid \mathcal{G}) \, dP, \tag{2}$$

so this definition is the same as the one defined before (of course, only when $\mathbb{E}X^2<\infty$)

Recap: Existence of conditional distributions

Theorem

Suppose

- ullet X is a random n-vector on a probability space (Ω, \mathcal{F}, P) , and
- Y is measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) .

Then there exists a function $P_{X|Y}(B \mid y)$ on $\mathcal{B}^n \times \Lambda$ such that

- **1** $P_{X|Y}(\cdot \mid y)$ is a probability measure on $(\mathcal{R}^n, \mathcal{B}^n)$ for any fixed $y \in \Lambda$,
- $P_{X|Y}(B \mid y) = P[X \in B \mid Y = y] \text{ a.s. } P_Y \text{ for any fixed } B \in \mathcal{B}^n.$

Remark.

- By definition, for any $B \in \mathcal{B}^n$, $P[X \in B \mid Y]$ is a random variable on $(\Omega, \sigma(Y))$ and can be represented as h(Y).
- This theorem ensures that for almost every fixed $y \in \Lambda$, we can find a probability measure $P_{X|Y}(\cdot \mid y)$ such that the equation $P_{X|Y}(B \mid y) = h(y)$ holds.

Recap: Statistical models

 A statistical model is a set of assumptions on the population P, and is often expressed as

$$P \in \mathcal{P} = \{Q : Q \text{ satisfies some conditions}\}$$
 (3)

- A parametric model refers to the assumption that the population P is in a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, where $\Theta \subset \mathcal{R}^d$
- A parametric family $\{P_{\theta}: \theta \in \Theta\}$ is said to be *identifiable* if and only if $\theta_1 \neq \theta_2$ and $\theta_1, \theta_2 \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$
- Let \mathcal{P} be a family of populations and ν a σ -finite measure on (Ω, \mathcal{F}) . If $P \ll \nu$ for all $P \in \mathcal{P}$, then we say \mathcal{P} is dominated by ν . In this case, \mathcal{P} can be identified by the family of densities $\{\frac{\mathrm{d}P}{\mathrm{d}\nu}: P \in \mathcal{P}\}$.

Exercise

- Suppose $P_{\theta}(X > x) = \exp(-x/\theta)$, for $\theta > 0, x > 0$. Show that $\{P_{\theta}\}$ is dominated.
- Suppose P_{θ} is a point mass at θ , i.e., $P_{\theta}(X=\theta)=1$, for any $\theta\in\mathcal{R}$. Show that $\{P_{\theta}\}$ cannot be dominated. (Hint: Suppose it is dominated by ν . Find an uncountable set A s.t. $\nu(A)$ is finite. Then "exhaust" the measure of A by choosing a countable set.)

H.D. (NUS) ST5215, Lecture 5 25 Aug 2020 8 / 34

Exponential families

Definition

A parametric family $\{P_{\theta}: \theta \in \Theta\}$ dominated by a σ -finite measure ν on (Ω, \mathcal{E}) is called an *exponential family* iff

$$f_{\theta}(\omega) = \frac{\mathrm{d}P_{\theta}}{\mathrm{d}\nu}(\omega) = \exp\left\{ [\eta(\theta)]^{\top} T(\omega) - \xi(\theta) \right\} h(\omega), \qquad \omega \in \Omega, \quad (4)$$

where T is a random p-vector, η is a function from Θ to \mathbb{R}^p , h is a nonnegative Borel function on (Ω, \mathcal{E}) , and

$$\xi(\theta) = \log \left\{ \int_{\Omega} \exp\{ [\eta(\theta)]^{\top} T(\omega) \} h(\omega) \, d\nu(\omega) \right\}. \tag{5}$$

- T and h are functions of ω only
- ξ and η are functions of θ only

Exponential families (Cont.)

The representation of an exponential family is not unique:

- Let D be a $p \times p$ nonsingular matrix. Transforming $\tilde{\eta} = D\eta(\theta)$ and $\tilde{T} = D^{-\top}T$ gives another representation for the same family
- Another measure that dominates the family also changes the representation:

Define $\lambda(A) = \int_A h \, d\nu$ for any $A \in \mathcal{F}$, then we can represent the same exponential family with densities w.r.t. λ

$$\frac{dP_{\theta}}{d\lambda}(\omega) = \exp\left\{ [\eta(\theta)]^{\tau} T(\omega) - \xi(\theta) \right\}$$

The canonical form

Reparametrize the family by $\eta = \eta(\theta)$, so that

$$f_{\eta}(\omega) = \exp\{\eta^{\top} T(\omega) - \zeta(\eta)\} h(\omega)$$
 (6)

where $\zeta(\eta) = \log \left\{ \int_{\Omega} \exp\{\eta^{\top} T(\omega)\} h(\omega) \ d\nu(\omega) \right\}.$

- This is the canonical form for the family (still not unique)
- η is called the *natural parameter*
- The natural parameter space: $\Xi = \{\eta(\theta) : \theta \in \Theta\} \subset \mathcal{R}^p$
- An exponential family in its canonical form is called a natural exponential family
- Full rank: if ≡ contains an open set

Example: Binomial distribution

The Binomial distributions $\{\operatorname{Binom}(\theta, n) : \theta \in (0, 1)\}$ is an exponential family. Here the density of $\operatorname{Binom}(\theta, n)$ w.r.t. the counting measure is

$$f_{\theta}(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - \theta}$$

$$= \exp\left\{x \log \frac{\theta}{1 - \theta} + n \log(1 - \theta)\right\} \binom{n}{x}, \quad x \in \Omega = \{0, 1, \dots, n\}$$

- \bullet T(x) = x
- $\eta(\theta) = \log \frac{\theta}{1-\theta}$
- $\xi(\theta) = -n \log(1-\theta)$
- $h(x) = \binom{n}{x}$
- $\Theta = (0,1)$

Example: Binomial distribution (Canonical form)

We can turn it into its canonical form. Let $\eta = \log \frac{\theta}{1-\theta}$. The density becomes

$$f_{\eta}(x) = \exp\{\eta x - n \log(1 + e^{\eta})\} \binom{n}{x}, \qquad \forall x \in \Omega = \{0, 1, \dots, n\}. \quad (7)$$

The parameter space is $\Xi = \mathcal{R}$.

Example: Exponential distribution

The exponential distributions $\{E(a,\theta):\theta>0\}$ for a fixed $a\in\mathcal{R}$ is an exponential family. Here the density of $E(a,\theta)$ is

$$f_{\theta}(x) = \theta^{-1} \exp\{-(x-a)/\theta\}, \quad \text{for } x > a.$$
 (8)

• We can rewrite it as

$$f_{\theta}(x) = \exp\{-x/\theta + a/\theta - \log \theta\} I_{(a,\infty)}(x)$$
 (9)

- \bullet T(x) = x
- $\eta(\theta) = -1/\theta$
- $\xi(\theta) = -a/\theta + \log \theta$
- $\bullet \ h(x) = I_{(a,\infty)}(x).$
- Note: if a is not fixed, then it is not an exponential family
- To turn it into a natural family, reparametrize $\eta=-1/\theta$ and $\Xi=(-\infty,0)$; it is of full rank

Example: Normal distribution

The normal family $\left\{N\left(\mu,\sigma^2\right):\mu\in\mathcal{R},\sigma>0\right\}$ is an exponential family. Here $N\left(\mu,\sigma^2\right)$ has Lebesgue density

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

• We rewrite the density as

$$\frac{1}{\sqrt{2\pi}} \exp\left\{\frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 - \frac{\mu^2}{2\sigma^2} - \log\sigma\right\}$$

- $T(x) = (x, -x^2), \eta(\theta) = (\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2})$
- $\bullet \ \theta = \left(\mu, \sigma^2\right)$
- $\xi(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma$
- $h(x) = 1/\sqrt{2\pi}$
- To turn it into a natural family, reparametrize $\eta = (\eta_1, \eta_2) = (\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2})$ and $\Xi = \mathcal{R} \times (0, \infty)$; it is of full rank

Example: Normal distribution (Cont.)

A subfamily $\left\{ N\left(\mu,\mu^2\right):\mu\in\mathcal{R},\mu\neq0\right\}$ is also an exponential family

- $\bullet \ \eta = \left(\frac{1}{\mu}, \frac{1}{2\mu^2}\right)$
- $\Xi = \{(x, y) : y = 2x^2, x \in \mathcal{R}, y > 0\}$.
- It is not of full rank

Properties

Exercise: show the following result. Suppose $X_i \sim f_i$ independently and each f_i is in an exponential family, then the joint distribution of X_1, \ldots, X_n is again in an exponential family.

Properties (Cont.)

- For an exponential family P_{θ} , there is a nonzero measure λ such that $\frac{\mathrm{d}P_{\theta}}{\mathrm{d}\lambda}(\omega) > 0$ for all ω (λ -a.e.) and θ .
- Use this property to show that some families of distributions are not exponential families.

Example (Uniform distribution)

Let $U(0,\theta)$ denote the uniform distribution on $(0,\theta)$. Let $\mathcal{P}=\{U(0,\theta):\theta\in\mathcal{R}_+\}$. Show that this family is not an exponential family.

- $\Omega = \mathcal{R}$
- If this is an exponential family, then $\frac{\mathrm{d}P_{\theta}}{\mathrm{d}\lambda}(\omega) > 0$ for all θ , all $\omega \in \mathcal{R}$ for some measure λ
- For any t > 0, there is a $\theta < t$ such that $P_{\theta}([t, \infty)) = 0$
- Then $\lambda([t,\infty))=0$ for any t>0, and further $\lambda((0,\infty))=0$
- Also, for any $\theta > 0$, $P_{\theta}((-\infty, 0]) = 0$, which implies $\lambda((-\infty, 0]) = 0$
- Then $\lambda(\mathcal{R}) = 0$

Properties of natural exponential families

Let $\mathcal P$ be a natural exponential family with PDF

$$f_{\eta}(x) = \exp\{\eta^{\top} T(x) - \zeta(\eta)\} h(x)$$
(10)

• Let T=(Y,U) and $\eta=(\vartheta,\varphi)$, where Y and ϑ have the same dimension. Then Y has the PDF

$$f_{\eta}(y) = \exp\{\vartheta^{\top} y - \zeta(\eta)\}$$
 (11)

20 / 34

w.r.t. a σ -finite measure depending on φ . In particular, T has a p.d.f. in a natural exponential family.

• Furthermore, the conditional distribution of Y given U=u has the p.d.f. (w.r.t. a σ -finite measure depending on u)

$$f_{\vartheta,u}(y) = \exp\left\{\vartheta^{\tau}y - \zeta_u(\vartheta)\right\}$$

which is in a natural exponential family indexed by ϑ

• If η_0 is an interior point of the natural parameter space, then the MGF $\psi_{\eta_0}(t)$ of T(X) (with $P=P_{\eta_0}$) is finite in a neighborhood of t=0 and is given by

$$\psi_{\eta_0}(t) = \exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\}. \tag{12}$$

• Furthermore, if f is a Borel function satisfying $\int |f| dP_{\eta_0} < \infty$ then the function

$$\int f(\omega) \exp\left\{\eta^{\tau} T(\omega)\right\} h(\omega) d\nu(\omega)$$

is infinitely often differentiable in a neighborhood of η_0 , and the derivatives may be computed by differentiation under the integral sign.

Example (MGF of binomial distribution)

Recall that

• the canonical form of $\mathsf{Binom}(n,e^\eta/(1+e^\eta))$ is given by

$$f_{\eta}(x) = \exp\{\eta x - n \log(1 + e^{\eta})\} \binom{n}{x}, \qquad \forall x \in \Omega = \{0, 1, \dots, n\}$$
(13)

- $\zeta(\eta) = n \log(1 + e^{\eta})$
- \bullet T(x) = x

$$egin{align} \psi_{\eta_0}(t) &= \exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\} = \exp\{n\log(1 + e^{\eta_0 + t}) - n\log(1 + e^{\eta_0})\} \ &= \left(\frac{1 + e^{\eta_0}e^t}{1 + e^{\eta_0}}\right)^n = (1 - \theta + \theta e^t)^n \end{split}$$

since $\theta = e^{\eta}/(1 + e^{\eta})$.

22 / 34

Statistics

A **statistic** T(X) is a measurable function of sample X.

- T(X) only depends on X
- ullet T is a known function: T(X) is a known value whenever X is known.
- Trivial statistics: X itself, any constant
- Nontrivial statistic: T(X) is simpler than that of X but contains some information about X. For instance, X may be a random n -vector and T(X) may be a random p-vector with $1 \le p \le n$
- Some examples are:
 - sample mean: $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$
 - sample variance: $S^2 = \frac{1}{n-1} \sum_i (X_i \bar{x})^2$
 - order statistics, $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
 - sample median: middle value of ordered statistics
 - ► sample minimum: X₍₁₎
 - sample maximum: $X_{(n)}$

Example: Sample mean and sample variance

Let X_1, \ldots, X_n be i.i.d. sample from P and $X = (X_1, \ldots, X_n)$.

- Sample mean: $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$
- Sample variance: $S^2 = \frac{1}{n-1} \sum_i (X_i \bar{x})^2$

Moments

ullet Assume that P has a finite mean denoted by μ . Then

$$E\bar{X} = \mu$$

- ▶ If P is in a parametric family $\{P_{\theta}: \theta \in \Theta\}$, then $E\bar{X} = \int x dP_{\theta} = \mu(\theta)$ for some function $\mu(\cdot)$. Even if the form of μ is known, $\mu(\theta)$ may still be unknown when θ is unknown.
- Assume now that P has a finite variance denoted by σ^2 . Then

$$Var(\bar{X}) = \sigma^2/n$$
.

▶ If P is in a parametric family, $Var(\bar{X})$ equals $\sigma^2(\theta)/n$ for some function $\sigma^2(\cdot)$.

Example: Sample mean and sample variance (Cont.)

Distributions

- If P is in a parametric family, we can often find the distribution of \bar{X} .
 - if P is $N(\mu, \sigma^2)$ then \bar{X} is $N(\mu, \sigma^2/n)$;
 - if P is the exponential distribution $E(0,\theta)$, $n\bar{X}$ has the gamma distribution $\Gamma(n,\theta)$
- ullet Usually hard to find the exact form of the distribution of $ar{X}$ if P is not in a parametric family
 - one can use the *Central Limit Theorem* to approximate the distribution of \bar{X} by $N\left(\mu,\sigma^2/n\right)$ where μ and σ^2 are the mean and variance of P (assumed to be finite)

Tutorial

lacksquare Suppose f and g are independent and identically distributed. Show that

$$E(f \mid f + g) = (f + g)/2$$
, a.s. (14)

- ② Suppose F(x) is a continuous CDF of P, where P is a probability measure on $(\mathcal{R}, \mathcal{B})$. Show that $\int F(x) dP(x) = 1/2$
- **3** Suppose ν is a σ -finite measure on (Ω, \mathcal{F}) , f is a nonnegative measurable function and $\alpha > 0$. Show that

$$\int f^{\alpha} d\nu = \alpha \int_{0}^{\infty} t^{\alpha - 1} \nu(f > t) dt$$
 (15)

- **4** Suppose ν and ϕ are finite measures on (Ω, \mathcal{F}) . Show that there exist two measures ϕ_c and ϕ_s such that

 - 2 $\phi_c \ll \nu$, and
 - **3** there exists $N \in \mathcal{F}$ such that $\phi_s(N) = \nu(N^c) = 0$. (Note that in this case, we denote $\phi_s \perp \nu$ and say that ϕ_s and ν are singular with each other.)

(Hint: make use of $\frac{d\phi}{d(\phi+\nu)}$ by Radon-Nikodym theorem)

Ex 1

Suppose f and g are independent and identically distributed. Show that

$$E(f \mid f + g) = (f + g)/2$$
, a.s. (16)

Proof:

• Define a mapping $\phi(x,y)=(x,x+y)$. It is easy to show $(f,g)\stackrel{d}{=}(g,f)$ (here $\stackrel{d}{=}$ means that the two sides have the same distribution), and thus $\phi(f,g)\stackrel{d}{=}\phi(g,f)$. That is

$$(f, f+g) \stackrel{d}{=} (g, f+g) \tag{17}$$

ullet We then have for any Borel function h on \mathcal{R} ,

$$\int f h(f+g) dP = \int g h(f+g) dP, \qquad (18)$$

and thus for any $A \in \sigma(f+g)$

$$\int_{A} f \, \mathrm{d}P = \int_{A} g \, \mathrm{d}P. \tag{19}$$

H.D. (NUS)

Ex 1 (Cont.)

• Therefore, any $A \in \sigma(f + g)$

$$\int_{A} E(f \mid f + g) dP = \int_{A} E(g \mid f + g) dP, \qquad (20)$$

which implies that $E(f \mid f + g) = E(g \mid f + g)$ a.s.

- But $E(f \mid f + g) + E(g \mid f + g) = E(f + g \mid f + g) = f + g$.
- So $E(f \mid f + g) = (f + g)/2$ a.s.

Ex 2

Suppose F(x) is a continuous CDF of P, where P is a probability measure on $(\mathcal{R}, \mathcal{B})$. Show that $\int F(x) \, \mathrm{d}P(x) = 1/2$

Proof: Suppose P is the probability of r.v. X, i.e. $F(x) = P(X \le x)$.

We need a useful result:

Lemma

Let X be a random variable having a continuous c.d.f. F. Then Y = F(X) has the uniform distribution Unif (0,1).

Here Unif (0,1) is defined as the probability on $\mathbb R$ with Lebesgue p.d.f. $I_{(0,1)}$, whose CDF is $F(x) = x \cdot I_{(0,1)}(x) + I[1,\infty)(x)$ and is continuous

Using the lemma and change of variable:

$$\int F(x) dP(x) = \int Y dP_Y = \int_0^1 y dy = 1/2$$
 (21)

Ex 2 (Cont.)

Proof of Lemma:

- Define the inverse of F by $F^{-1}(t) = \inf\{x : F(x) > t\}$
- One can show that $F(x) < t \Leftrightarrow F^{-1}(t) > x$
- For any $y \in (0,1)$,

$$P(Y < y) = P(F(X) < y)$$

$$= P(F^{-1}(y) > X)$$

$$= \lim_{n} P(X \le F^{-1}(y) - 1/n)$$

$$= \lim_{n} F(F^{-1}(y) - 1/n)$$

$$= F(F^{-1}(y)) = y$$

- ▶ The 3rd equality is due to continuity of *P*
- ▶ The 5th equality is due to the continuity of *F*
- ▶ The 6th equality is due to the definition of F^{-1} and the continuity of F

H.D. (NUS) ST5215, Lecture 5 25 Aug 2020 30 / 34

Ex 3

Suppose ν is a σ -finite measure on (Ω, \mathcal{F}) , f is a nonnegative measurable function and $\alpha > 0$. Show that

$$\int f^{\alpha} d\nu = \alpha \int_{0}^{\infty} t^{\alpha - 1} \nu(f > t) dt$$
 (22)

Proof:

• For any $x \in \mathcal{R}_+$, we have

$$x^{\alpha} = \int_{(0,\infty)} \alpha t^{\alpha-1} I_{t < x} \, \mathrm{d}m(t) \tag{23}$$

31 / 34

- Apply Fubini's theorem to the bivariate function $\alpha t^{\alpha-1}I_{t< f(\omega)}$ of (ω,t) w.r.t. $\nu\times m$.
- See also page 13 of Lecture 2.

H.D. (NUS) ST5215, Lecture 5 25 Aug 2020

Ex 4

Suppose ν and ϕ are finite measures on (Ω, \mathcal{F}) . Show that there exist two measures ϕ_c and ϕ_s such that

- 2 $\phi_c \ll \nu$, and
- 3 there exists $N \in \mathcal{F}$ such that $\phi_s(N) = \nu(N^c) = 0$.

Proof:

- ullet Note that $\phi\ll (\phi+
 u)$, so Radon-Nikodym derivative $\frac{\mathrm{d}\phi}{\mathrm{d}(\phi+
 u)}$ exists.
- For any $A \in \mathcal{F}$, we have $0 \leqslant \int_A \frac{d\phi}{d(\phi+\nu)} d(\phi+\nu) = \phi(A) \leqslant \phi(A) + \nu(A) = \int_A 1 d(\phi+\nu)$, which implies that $0 \le \frac{d\phi}{d(\phi+\nu)} \le 1$ a.e.
- Let $N = \{\omega \in \Omega : \frac{\mathrm{d}\phi}{\mathrm{d}(\phi + \nu)}(\omega) < 1\}$, $\phi_c(A) = \phi(A \cap N)$, and $\phi_s(A) = \phi(A \cap N^c)$. Then $\phi = \phi_c + \phi_s$.

Ex 4 (Cont.)

To show that $\phi_c \ll \nu$:

For any $A \in \mathcal{F}$ such that $\nu(A) = 0$, it holds that

$$\int_{A\cap N} \left[1 - \frac{d\phi}{d(\phi + \nu)} \right] d(\phi + \nu)$$

$$= (\phi + \nu) (A \cap N) - \phi (A \cap N)$$

$$= \nu (A \cap N) = 0.$$

- ullet But $[1-rac{\mathrm{d}\phi}{\mathrm{d}(\phi+
 u)}](\omega)>0$ for any $\omega\in \mathit{N}$
- So $(\phi + \nu)(A \cap N) = 0$
- Thus, $\phi_c(A) = 0$.

Ex 4 (Cont.)

To show $\nu(N^c) = 0$:

$$\phi(N^c) = \int_{N^c} \frac{d\phi}{d(\phi + \nu)} d(\phi + \nu)$$
$$= \int_{N^c} 1 d(\phi + \nu)$$
$$= \phi(N^c) + \nu(N^c),$$

which implies that $\nu(N^c) = 0$ because $\phi(N^c)$ is a finite number. **Remark.** The result of this exercise can be generalized to σ -finite measures, and is known as *Lebesgue decomposition*.