Second degré

I. La forme canonique du trinôme

1. Le trinôme du second degré

Définition 1.

On appelle $trinôme\ du\ second\ degr\'e$, le polynôme P défini sur $\mathbb R$ à coefficients réels pouvant s'écrire sous la forme :

$$P(x) =$$
 avec $a \neq 0$

Exemples. Les trois polynômes suivants sont des polynômes de degré 2 :

$$P_1(x) =$$
 , $P_2(x) =$, $P_3(x) =$.

2. Un exemple de forme canonique

La forme canonique est une forme à partir de laquelle on peut savoir si le trinôme peut se factoriser ou non. Cette forme est obtenue à partir d'une « astuce » qui consiste à rajouter un terme puis à l'ôter de façon à obtenir le début d'un *carré parfait*.

Exemple. Soit $P_1(x) = x^2 + 2x - 8$.

Les deux premiers termes sont $x^2 + 2x$ qui est le début de $(x+1)^2 = x^2 + 2x + 1$. On ajoute 1 puis on le soustrait, ce qui donne :

$$P_1(x) = x^2 + 2x - 8$$

$$=$$

$$=$$
forme canonique
$$=$$

$$=$$

Remarque. Cette méthode astucieuse peut montrer ses limites si $a \neq 1$.

3. Forme canonique du trinôme

Définition 2.

Toute fonction polynôme P de degré 2, de forme développée, définie sur $\mathbb R$ par $P(x)=ax^2+bx+c$ avec $a\neq 0$, peut s'écrire sous la forme :

$$P(x) = a(x - \alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = P(\alpha) = \frac{4ac - b^2}{4a}$.

Cette écriture est *la forme canonique* de la fonction polynôme.

Démonstration.

Soit un trinôme du second degré : $P(x) = ax^2 + bx + c$. On factorise par $a \neq 0$.

$$P(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(x^{2} + 2 \times \frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right]$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}$$

Exercice 1.3. Déterminer la forme canonique de $P(x) = 3x^2 - 6x + 7$.

II. Racine d'un polynôme de degré 2

1. Notion de racine

Définition 3.

Les racines d'un polynôme de degré 2, si elles existent sont les solutions dans $\mathbb R$ de l'équation :

$$ax^2 + bx + c = 0$$
 avec $a \neq 0$

Remarque. Les racines du polynôme de degré 2 sont parfois appelées « zéros » du trinôme.

Définition 4.

On pose $\Delta = b^2 - 4ac$ appelé discriminant associé au polynôme de degré 2, $P(x) = ax^2 + bx + c$ avec $a \neq 0$. L'équation $ax^2 + bx + c = 0$ devient en utilisant la forme canonique : $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = 0$.

Remarque. Le nombre de racines du trinôme dépend du signe de Δ ce qui explique le nom de discriminant.

2. Si le discriminant est strictement positif

Comme le discriminant Δ est strictement positif, la forme canonique se factorise en :

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) = 0.$$

On obtient alors deux solutions:

$$x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} = 0$$
 et $x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} = 0$.

Soit en appelant x_1 et x_2 ces deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Exercice 2.3. Résoudre dans \mathbb{R} l'équation $2x^2 + 3x - 14 = 0$.

3. Si le discriminant est nul

Si $\Delta = 0$, la forme canonique devient :

$$a\left(x + \frac{b}{2a}\right)^2 = 0.$$

Comme $a \neq 0$ on a alors une unique solution :

$$x_0 = -\frac{b}{2a}$$

Exercice 3.3. Résoudre dans \mathbb{R} l'équation $3x^2 - 18x + 27 = 0$.

4. Si le discriminant est strictement négatif

Comme le discriminant $\Delta < 0$, la forme canonique ne se factorise pas. Il n'y a donc aucune solution à l'équation du second degré.

Exercice 4.3. Résoudre dans \mathbb{R} l'équation $2x^2 + 5x + 4 = 0$.

5. Résumé

Théorème 1.

1. Si $\Delta > 0$, alors l'équation $ax^2 + bx + c = 0$ a deux solutions réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

2. Si $\Delta = 0$, alors l'équation $ax^2 + bx + c = 0$ admet une solution unique réelle

$$x_0 = -\frac{b}{2a}$$

3. Si $\Delta < 0$, alors l'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.

III. Factorisation, somme et produit des racines

1. Factorisation du trinôme de degré 2

1. Si $\Delta > 0$, nous avons vu que le trinôme se factorise en $a\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)$, en remplaçant les racines par x_1 et x_2 , il vient alors :

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

- 2. De même si le discriminant est nul, nous avons vu que le trinôme se factorise en $a\left(x+\frac{b}{2a}\right)^2$. En remplaçant par la racine x_0 , nous avons alors $a(x-x_0)^2$.
- 3. Enfin si $\Delta < 0$, le trinôme n'a pas de racine réelle et donc ne peut être factorisé dans \mathbb{R} .

Factoriser, si possible, :

- 1. $P_1(x) = 2x^2 + 3x 14$.
- **2.** $P_2(x) = 3x^2 18x + 27$

2. Somme et produit de racines

Théorème 2.

Si un trinôme $P(x) = ax^2 + bx + c$ admet deux racines, alors la somme S et le produit P des racines sont égales à :

$$S = -\frac{b}{a} \text{ et } P = \frac{c}{a}$$

3. Application

Parfois, certaines équations admettent des solutions très simples que l'on appellent « racines évidentes ». Lorsque l'on connaît une telle solution, le produit des racines permet alors de trouver la seconde.

Exercice 6.3. Résoudre l'équation $2x^2 - 5x + 3 = 0$ en cherchant au préalable une racine simple.

IV. Signe du trinôme et inéquation du second degré

Soit P un polynôme de second degré, définie sur \mathbb{R} par $P(x) = ax^2 + bx + c$, avec $a \neq 0$.

1. Si le discriminant est strictement positif

Théorème 3.

Si $\Delta > 0$, alors f(x) s'annule en x_1 et x_2 et est du signe de a sur $]-\infty$; $x_1] \cup [x_2; +\infty[$ où x_1 et x_2 sont les racines de P en supposant $x_1 < x_2$.

x	$-\infty$		x_1		x_2		$+\infty$
		signe de a	0	signe de -a	0	signe de a	

Exercice 7.3. Établir le tableau de signes de $P_1(x) = 3x^2 + 7x + 6$.

2. Si le discriminant est nul

Théorème 4. Si $\Delta = 0$, le trinôme se factorise en $P(x) = a(x - x_0)^2$. Comme $(x - x_0)^2$ est un carré, il est soit nul soit positif. Donc le trinôme est soit nul soit du signe de a.

x	$-\infty$		x_0		$+\infty$
		signe de a	0	signe de a	

Exercice 8.3. Établir le tableau de signes de $P_2(x) = 100x^2 - 20x + 1$.

3. Si le discriminant est strictement négatif

Théorème 5.

Si $\Delta < 0$, le trinôme ne se factorise pas et est de signe constant. Il est du signe de a:

x	$-\infty$		$+\infty$
$ \begin{array}{c} \text{signe} \\ \text{de } P(x) \end{array} $		signe de a	

Exercice 9.3. Établir le tableau de signes de $P_3(x) = -6x^2 + x - 7$.

V. Représentation de la fonction trinôme

1. Sens de variation

Soit P un polynôme de degré 2 telle que, pour tout réel x, $P(x) = ax^2 + bx + c$, avec $a \neq 0$. On pose $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Théorème 6.

- 1. Si a>0 la fonction P est strictement décroissante sur l'intervalle $\left]-\infty;-\frac{b}{2a}\right]$ et strictement croissante sur l'intervalle $\left[-\frac{b}{2a};+\infty\right[$. Dans ce cas, P admet un minimum égal à β atteint en α .
- 2. Si a<0 la fonction P est strictement croissante sur l'intervalle $\left]-\infty;-\frac{b}{2a}\right]$ et strictement $d\'{e}croissante$ sur l'intervalle $\left[-\frac{b}{2a};+\infty\right[$. Dans ce cas, P admet un maximum égal à β atteint en α .

2. À retenir

3. Sommet et parabole

Théorème 7.

Soit P un polynôme de degré 2. Sa représentation graphique est une parabole $\mathscr P$ dont les caractéristiques dépendent du signe du coefficient a et du signe du discriminant Δ . Les coordonnées du sommet S de la parabole sont :

$$S\left(-\frac{b}{2a}\,;\,-\frac{\Delta}{4a}\right)$$

VI. Équation paramétrique

Définition 5.

On appelle équation paramétrique de paramètre m, une équation d'inconnue x dont on se propose de déterminer le nombre de solutions, leur signe, etc. suivant les valeurs du paramètre m.

Exercice 10.3. Déterminer le nombre de solutions de l'équation paramétrique suivante selon les valeurs de m, puis montrer que toutes les courbes passent par un point dont on donnera les coordonnées.

$$(m-1)x^2 - 2mx + m + 3 = 0$$
 (E_m).