Siliciclastic sedimentary rocks

Conglomerates, sandstones, and shales

Sandstones

- 20-25 % of all sedimentary rocks
- Silicate grains ranging 1/16 2 mm
 - Framework fraction
- Cement and very fine size material (< 0.03 mm)
 - Matrix

Framework mineralogy - Quartz

- Dominant mineral in most sandstones
- Can survive multiple recycling
- Single grains
- Composite grains
- Optical properties
 - Used to distinguish between different source rocks

Volcanic Quartz grain

Single grain, undulatory extinction (metamorphic source and igneous)

Composite grain (high-grade metamorphic)

Framework mineralogy - Feldspars

- 10-20% of the framework grains
 - Alkali feldspars
 - Plagioclase feldspars
- Optical properties
 - Twinning
- Staining techniques
 - Help identify untwinned Kfeldspars
- Less stable than quartz
 - Chemical weathering
 - Mechanical weathering (cleavage)

Microcline

Stained sanidine

Altered plagioclase

Framework mineralogy – Rock fragments

- 15-20% of the average framework (highly variable)
- Volcanic rocks (abundant)
- Slate, schist, quartzite
- Shale (less abundant)
- Detrital carbonates (also less common)
- Reliable indicators of source rock types

Metamorphic rock fragment

Shale fragment

Chert

Carbonate rock fragments

Framework mineralogy – Acc. Mx

- 1-2 % and less
 - Micas
 - Heavy minerals
 - Zircon, rutile, pyroxene, etc.
 - Useful indicators of source rocks

Magnetite Magnetite

Chlorite

Framework mineralogy – other detrital components

- Fossil fragments, ooids and peloids intraclasts
 - Skeletal phosphate
- Detrital glauconite
- Disseminated organic matter

Trilobite and crinoid fragments

Glauconite

Organic matter

Conodont elements

Mineral cements

- Cementing material
 - Silicate cement (quartz)
 - Overgrowths
 - Carbonate cement (calcite, dolomite)
 - Iron oxide minerals (hematite)
 - Gypsum
 - Clay minerals (chlorite)
 - Zeolites

Gypsum cement

Hematite cemented sandstone

Quartz overgrowth

Calcite cement

Matrix minerals

- Grains < 0.03 mm filling interstitial spaces
 - Micas, Quartz, feldspars, clay minerals

Interstitial clay minerals

Primary (detrital) clay matrix

Chemical composition

- Parent rock composition
- Chemical changes (weathering and diagenesis)
 - SiO₂ and Al₂O₃ enrichment
 - Resistance to weathering
 - Depletion in Fe, Mg, Ca, Na, K
 - Dissolved constituents in rivers
 - Function of the mineralogy of the framework grains and type of matrix (presence or absence of clay mx)

Classifications of sandstones

- Framework mineralogy
 - Relative abundance of matrix
- Over 50 different classifications!!
- Triangular diagrams (QFR or QFL plots)

QFL plot and percent matrix

Sandstone maturity

- Compositional maturity
 - Relative abundance of stable and unstable minerals
- Textural maturity
 - Relative abundance of matrix
 - Degree of rounding and sorting
- Reflect weathering processes in the source area, the degree of sediment transport and reworking
 - May be affected by diagenetic processes

Quartz arenites

- > 90% siliceous grains
- White or light gray
- Well lithified
 - Silica or carbonate cement
 - But some are porous and friable
- Stable cratonic environments
 - Eolian, beach, shelf
- Interbedded with shallow-water carbonates
- Mature to supermature
- Crossbeds are common
 - Ripples moderately common
- Fossils are rare
 - Trace fossils can be locally abundant
- First-cycle = intense weathering, long transport, intensive reworking in the "surf" zone
- Most are polycyclic
- Quartz arenites are common rocks

Potsdam sandstone

Cairnside Formation (St. Lawrence Lowlands)

Feldspathic arenites - Arkoses

- < 90% quartz
- More feldspar than unstable rock fragments
- Minor amounts of other Mx
- Commonly submature to immature (
- No characteristic structure
- May contain fossils
- Cratonic and stable shelf settings
- Most are derived from granitic-type
- Cold arid climates
- Or high-relief and rapid erosion
- Do not survive recycling well

Colorado Front Range

Carboniferous (Pennsylvanian age)

Feldspar-rich sandstone : arkose Proximal to source

Old Red sandstone

Iron-oxide cement

Scotland

Silurian – Devonian. Erosion of a mountain belt, transport and deposition in the tropics south of the Equator in a semi-arid climate

Lithic arenites

- High content of unstable rock fragments
- Many are poorly sorted
- Substantial amount of matrix
 - Immature to submature (lithic wackes)
- Small fluvial units
- Extensive marine turbidite units
- Often derived from high-relief source areas
 - Alluvial fans
 - Marine foreland basins

Examples

Penn. Pottsville Frm (central Appalachians)

Miss. Pocono Frm (central Appalachians)

Other sandstones

- Hybrid rocks...
 - Glauconitic sandstones
 - Phosphatic sandstones
 - Calcarenaceous sandstones

Conglomerates and breccias

- At least 30% of gravel-size (> 2mm) particles
 - Breccias = angular fragments
- Closely related to sandstones
 - Similar structures (e.g. tabular and trough cross-beds, graded bedding)

Matrix and cement of conglomerates

- Matrix is common
 - Sand- or mud-size grains
 - Quartz, feldspars, rock fragments
 - Heavy minerals
 - Clay minerals
- Cement
 - Quartz, calcite, hematite, clay, ...

Classification

- Epiclastic conglomerates
 - Extraformational
 - Intraformational (involves reworking of weakly consolidated sedimentary beds)
- Clast-supported conglomerates
- Matrix-supported conglomerates
 - Diamictites
- Further subdivision
 - Clast stability
 - Clast lithology

Type, composition, origin

- Quartzose (Oligomict) conglomerates
 - Derived from rocks containing quartzite beds, or quartz veins, or chert beds
 - Common but tend to occur as thin layers in sandstone units
 - Most appear to be fluvial in origin (braided streams)
 - Also littoral (beach) environment
- Polymict and petromict conglomerates
 - Various lithologies; petromict contain metastable clasts
 - May reach great thicknesses (thousands of meters)
 - Rapid erosion of highlands
 - Fluid-flow and sediment gravity-flow processes
- Intraformational conglomerates
 - Clasts from within the depositional basin
 - Deformation structures, fragments of deformed sediments (e.g. mud and lime clasts)
 - Sediment rip-ups by tidal currents, storms, etc.

Clast lithology and fabric support

Breccias

Breccias

- Volcanic breccia
 - Pyroclastic (explosive eruptions; deposited by air-falls or pyroclastic flows)
 - Autobreccia (breakup of partially solidified lava)
 - Hyaloclastic (shattering of hot, coherent magma into fragments owing to contact with water or snow)
- Cataclastic breccia
 - Landslide or slump breccia
 - Tectonic breccia (breakage of rock due to tectonic movements)
 - Collapse breccia (e.g. in karst environments)
- Solution breccia (remaining insoluble fragments)
- Meteorite impact breccia

Shales (mudrocks)

- Fine-grained siliciclastic rocks (>50% grains 62 microns)
- Abundant in sedimentary successions (50%)
- Composed of clay minerals, quartz and feldspars (detrital)
 - Carbonates, sulfides, iron oxides, heavy minerals, and organic carbon

Chemical composition

- Tend to contain less SiO₂ than do sandstones
- Al₂O₃ (clay minerals, feldspars) is more abundant
- Fe is from hematite, goethite, and biotite
- K₂O, MgO, and Na are mainly related to clay minerals
- Ca is from plagioclase and carbonates

Classification of shales

- Commonly based on:
 - Silt vs. clay content
 - hardness/induration
 - Presence/absence of fissile lamination
- Few are based on the mineral composition

Classification of shales

Table 5.7 Classification of shales and siltstone (>50% grains <0.062 mm)

	Percentage clay-size constituents	0–32	33–65	66–100
	Field adjective	Gritty	Loamy	Fat or slick
NONINDURATED	· Beds >10 mm	Bedded silt	Bedded mud	Bedded claymud
	Laminae <10 mm	Laminated silt	Laminated mud	Laminated claymud
INDURATED	Beds >10 mm	Bedded siltstone	Mudstone	Claystone
	Laminae <10 mm	Laminated siltstone	Mudshale	Clayshale

Origin and occurrence

- Marine environments (below the storm wave base)
- Also in lakes..., lagoons, tidal-flats...
- Most abundant type of sed. rock
- Interbedded with sandstones or limestones
 - Units = few mm to several meters
 - Laterally extensive (marine)