Day 9: Taxonomy in R

Ambu Vijayan

Bioinformatician

BioLit, Thiruvananthapuram

PCA

```
library(readr)

df <- read.csv("taxonomy_data.csv")

library(fixr)

df <- fix.data(df)

df$Phylum <- as.factor(df$Phylum)</pre>
```

Scatter Plot & Correlations

checking the correlation between independent variables

library(psych)

```
pairs.panels(df, gap = 0, bg = c("red", "yellow", "blue")[df$Phylum], pch=21)
```

Lower triangles provide scatter plots and upper triangles provide correlation values.

Principal Component Analysis

```
df.pca <- prcomp(df[,-1], center = TRUE,scale. = TRUE)

PCA <- df.pca

Summary_of_PCA <- summary(df.pca)</pre>
```

Standard deviation, Proportion of Variance and Cumulative Proportion

Summary_of_PCA

The first 5 principal components explain the variability around 94% and its captures the majority of the variability.

Proportion of Variance that first principal component explains 43% variance. Second component explains 22% variance. Third component explains 13% variance and so on.

```
df.pca.var <- df.pca$sdev ^ 2
propve <- df.pca.var / sum(df.pca.var)</pre>
```

Orthogonality

```
pairs.panels(df.pca$x, gap=0, bg = c("red", "yellow", "blue")[df.pca$Phylum],
pch=21)
```

Now the correlation coefficients are zero, so we can get rid of multicollinearity issues.

Bi-Plot

```
library(ggbiplot)
g = ggbiplot(df.pca, obs.scale = 3, var.scale = 1, groups = df$Phylum, labels =
row.names(data), circle = TRUE, circle.prob = 0.69, ellipse = FALSE)
g <- g + scale_color_discrete(name = '')</pre>
g <- g + theme(legend.direction = 'horizontal', legend.position = 'top')</pre>
Bi_Plot <- g
Bi Plot
```

PC1 explains about 38% and PC2 explained about 27.5% of variability.

Arrows are closer to each other indicates the high correlation.

```
ggsave("ggbiplot_Alternanthera_micro.tiff", dpi=500, height=8, width=10,
units="in")
```

Correlation matrix

```
com <- cor(df[,-1])
com</pre>
```

Higher values show positive correlation and Lower values show negetive correlation.

Computing eigen values and eigen vectors

```
df.pca.eigen <- eigen(cor(df[,-1]))
eigen values

df.pca.eigen$values

eigen vectors

df.pca.eigen$vectors</pre>
```

A scree plot is used to access components or factors which explains the most of variability in the data. It represents values in descending order.

Plot for the variance explained for each principal component

```
plot(propve, xlab = "principal component", ylab = "Proportion of Variance Explained", ylim = c(0, 1), type = "b", main = "Scree Plot")
```

Plot for the cumulative proportion of variance explained

```
plot(cumsum(propve), xlab = "Principal Component", ylab = "Cumulative Proportion of Variance Explained", ylim = c(0, 1), type = "b")
```

Plot for the First 10 Principal Components against Eigen Value and Percentage of explained variances.

```
library(factoextra)

fviz_eig(df.pca, addlabels = TRUE, xlab = "Principal Component")

fviz_eig(df.pca, choice = "eigenvalue", addlabels = TRUE, xlab = "Principal Component")
```

```
res.eig <- df.pca.eigen$values
res.eig <- round((df.pca.eigen$values),2)
res.eig <- data.frame(t(res.eig))
rownames(res.eig) <- ("Eigen_Values")</pre>
```

result <- df.pca\$rotation</pre>

colnames(res.eig) <- (colnames(result))</pre>

```
comp.pca <- Summary_of_PCA$importance

comp.pca <- data.frame(comp.pca)

rownames(comp.pca) <- c('Standard deviation', 'Percentage of Variance',
'Cumulative Percentage')</pre>
```

```
comp.sd <- comp.pca[1,]

comp.pv <- comp.pca[2,]*100

comp.cp <- comp.pca[3,]*100

comp.pca <- rbind(comp.sd,comp.pv,comp.cp)

result <- round((df.pca$rotation),2)

result <- rbind(result,res.eig,comp.pca)</pre>
```

write.csv(result, "Alter_micro_result.csv", row.names = TRUE)

```
library(ggplot2)
library(readr)
library(dplyr)
library(dendextend)
df <- read.csv("taxonomy_data.csv")</pre>
df.group <- split(df[,2:7], df$Phylum)</pre>
df.means <- sapply(df.group, function(x) { apply(x, 2, mean)}, simplify =
'data.frame')
df.means.t <- t(df.means)</pre>
Mean_Data <- df.means.t</pre>
```

Means of Data

```
Mean_Data

d <- dist(df.means.t, method = "euclidean")

Calculated_Distance <- d

hc1 <- hclust(d, method = "average")

Cluster_Data <- hc1</pre>
```

Distance Calculation

Calculated_Distance

```
plot(hc1, cex = 0.6, hang = -1)

par(mar=c(2,2,6,2))

plot(hc1, cex = 0.6)

rect.hclust(hc1, k = 5, border = 2:5)

abline(h = 15, col = 'red')
```

Performing ANOVA

```
APA.aov <- anova(lm(APA \sim Phylum, data = df))
```

Summary of ANOVA

Summary_of_Anova_for_APA <- summary(APA.aov)</pre>

Summary_of_Anova_for_KLA <- summary(KLA.aov)</pre>

Summary_of_Anova_for_APA

Summary_of_Anova_for_KLA

Plotting the Graph for ANOVA

```
par(mar=c(2, 2, 2, 2))

plot(Anova_for_APA)

mtext("APA", side = 3, line = 1)

plot(Anova_for_KLA)

mtext("KLA", side = 3, line = 1)
```

ANOVA using another package for confirmation

```
aov_APA <- aov(APA ~ Phylum, data = df)
aov_KLA <- aov(KLA ~ Phylum, data = df)
Summary_of_Anova_for_APA <- summary(aov_APA)
Summary_of_Anova_for_KLA <- summary(aov_KLA)
Summary_of_Anova_for_APA
Summary_of_Anova_for_KLA</pre>
```

Plotting Density

```
library(ggplot2)
ggplot(df, aes(APA)) +
geom_density(aes(APA, fill = Phylum), position = 'identity', alpha = 0.5) +
labs(x = 'APA', y = 'Density') + scale_fill_discrete(name = 'Phylum') +
ggtitle("Density plot of APA")
ggplot(df, aes(KLA)) +
geom_density(aes(KLA, fill = Phylum), position = 'identity', alpha = 0.5) +
labs(x = 'KLA', y = 'Density') + scale_fill_discrete(name = 'Phylum') +
ggtitle("Density plot of KLA")
```

Calculating MEAN values individually

```
means_APA <- round(tapply(df$APA, df$Phylum, mean), digits=2)
means_KLA <- round(tapply(df$KLA, df$Phylum, mean), digits=2)
Mean_Value_for_APA <- means_APA
Mean_Value_for_KLA <- means_KLA
Mean_Value_for_APA
Mean_Value_for_KLA</pre>
```

Combined MEAN

```
df.group <- split(df[,2:7], df$Phylum)

df.means <- sapply(df.group, function(x) { apply(x, 2, mean) }, simplify =
'data.frame')

df.means.t <- t(df.means)

Combined_Mean <- df.means.t

Combined_Mean</pre>
```

Post hoc testing

```
Tuckey_aov_APA <- TukeyHSD(aov_APA, conf.level=.95)</pre>
```

Tuckey_aov_KLA <- TukeyHSD(aov_KLA, conf.level=.95)</pre>

Tuckey_for_APA <- Tuckey_aov_APA</pre>

Tuckey_for_KLA <- Tuckey_aov_KLA</pre>

Tuckey_for_APA

Tuckey_for_KLA

Plotting 95% Confidence level for Tuckey

```
par(mar=c(2, 15, 4, 2))

plot(Tuckey_aov_APA, las = 2, cex.axis=0.6)

mtext("number of Pores", side = 3, line = 1)

plot(Tuckey_aov_KLA, las = 2, cex.axis=0.6)

mtext("KLA", side = 3, line = 1)
```