Real Analysis

Problem Set 2

May 13, 2021

- Assume that \mathbb{N} does not contain 0.
- Denote $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
- I. Let $S \subseteq N$ with the following properties:
 - $2^k \in S \ \forall \ k \in \mathbb{N}$.
 - If $k \in S$ and $k \ge 2$ then $k 1 \in S$.

Prove that $S = \mathbb{N}$.

- 2. Let *S* be an ordered set with ordering <. Show that *S* has the *lub* property iff *S* has the *glb* property. **Hint:** For $E \subseteq S$ bounded below, consider $F \coloneqq \{y \in S : y \le x \ \forall \ x \in E\}$.
- 3. Find (with proof) the infimum and supremum (state clearly if does not exist) of $S := \{\frac{1}{a} + \frac{1}{b} : a, b \in \mathbb{N}\}$.
- 4. Let $S \subseteq \mathbb{R}$ be non-empty and bounded below by 0. Let $T := \{x^2 : x \in S\}$. Show that inf $T = (\inf S)^2$.
- 5. Let $A, B \subseteq \mathbb{R}$ which are nonempty. Prove or disprove the following statements and salvage if possible:
 - (a) Let $D := \{a b : a \in A, b \in B\}$. Then $\sup D = \sup A \sup B$ and $\inf D = \inf A \inf B$.
 - (b) Let $P := \{ab : a \in A, b \in B\}$. Then sup $D = (\sup A) \cdot (\sup B)$ and inf $D = (\inf A) \cdot (\inf B)$.
 - (c) Let $S := \{a + b : a \in A, b \in B\}$. Then sup $D = \sup A + \sup B$ and inf $D = \inf A + \inf B$.
 - (d) If $A \subseteq B$ then $\sup A \le \sup B$ and $\inf A \ge \sup B$.
 - (e) If $A \subseteq B$ (strict containment) then either $\sup A < \sup B$ or $\inf A > B$ or both.
 - (f) If $A \subseteq B$ (strict containment) then $\sup A < \sup B$ and $\inf A > B$.
- 6. (*Important*) Fix b > 1. Take rationals to have positive denominators.
 - (a) Let $m, n, p, q \in \mathbb{Z}$ such that q, n > 0 and $r := \frac{p}{q} = \frac{m}{n}$. Show that $(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$. So define $b^r := (b^m)^{\frac{1}{n}}$.
 - (b) Let $u, v \in \mathbb{Q}$. Show that $b^{u+v} = b^u \cdot b^v$.
 - (c) Consider the set $\mathcal{B}(x) := \{b^t : t \in \mathbb{Q}, t \le x\}$. Prove that if $u \in \mathbb{Q}$ then sup $(\mathcal{B}(u)) = u$. So define $b^x := \sup (\mathcal{B}(x))$.
 - (d) Let $u, v \in \mathbb{R}$. Show that $b^{u+v} = b^u \cdot b^v$.
- 7. Let $\mathbb{K} := \left\{ a + b\sqrt{2} : a, b \in \mathbb{Q} \right\}$. Prove the following $\forall x, y \in \mathbb{K}$:

- (a) $x + y \in \mathbb{K}$.
- (b) $x \cdot y \in \mathbb{K}$.
- (c) $x \neq 0 \implies \frac{1}{x} \in \mathbb{K}$.

So \mathbb{K} is a subfield of \mathbb{Q} lying between \mathbb{Q} and \mathbb{R} , that is, $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$.

Show that $\mathbb{M} := \left\{ a + b\sqrt[3]{2} : a, b \in \mathbb{Q} \right\}$ does not satisfy at least one of the properties (a)-(c).

- 8. (*Important*) Let $|\cdot|: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ be as defined in class. Note that this can be extended to $|\cdot|: \mathbb{R} \to \mathbb{R}_{\geq 0}$, with the same definition. Prove the following $\forall x, y \in \mathbb{R}$.
 - (a) $|x| = 0 \iff x = 0$
 - (b) $|xy| = |x| \cdot |y|$
 - (c) $|x + y| \le |x| + |y|$
- 9. Let $x, y, z \in \mathbb{R}$ such that $x \leq z$. Prove the following.
 - (a) $|x+y| = |x| + |y| \iff xy \ge 0$.
 - (b) $|x y| + |y z| = |x z| \iff x \le y \le z$.
- 10. For any $x, y \in \mathbb{R}$ and any $\varepsilon > 0$, there exists $\delta > 0$ such that $|x' x| < \delta$ and $|y' y| < \delta$ imply $|(x' + y') (x + y)| < \varepsilon$. Prove this statement.
- II. Let $n \in \mathbb{N}$. Prove the following.
 - (a) If $a, b \in K$, where K is a field, then $a^n b^n = (a b) \left(\sum_{i=0}^n a^i b^{n-1-i} \right)$.
 - (b) If a > b are reals then $a^n b^n < na^{n-1}(a b)$.
- 12. Let $a, b \in \mathbb{R}$. Show that $|a| \le b \iff -b \le a \le b$.
- 13. (You may use anything you know about limits) Let $a, b \in \mathbb{R}^+$. Show that $\lim_{n \to \infty} (a^n + b^n)^{\frac{1}{n}} = \max\{a, b\}$.
- 14. *(Optional)* Let p > 0 be an integer prime. For an integer $n \neq 0$ define $v_p(n)$ to be the largest $k \in \mathbb{Z}$ such that $p^k \mid n$. In other words $v_p(n)$ is the unique integer k such that $p^k \mid n$ but $p^{k+1} \nmid n$. If n = 0 then we define $v_p(0) = \infty$. Show that $v_p(mn) = v_p(m) + v_p(n) \forall m, n \in \mathbb{Z}$.