

Course Overview

These slides adapted from materials provided by the textbook

Overview

- Course theme
- Five realities

Course Theme:

Abstraction Is Good But Don't Forget Reality

- Most CS and CE courses emphasize abstraction
 - Abstract data types
 - Asymptotic analysis
- These abstractions have limits
 - Especially in the presence of bugs
 - Need to understand details of underlying implementations

Useful outcomes

- Become more effective programmers
 - Able to find and eliminate bugs efficiently
 - Able to understand and tune for program performance
- Prepare for later "systems" classes in CS & ECE
 - Compilers, Operating Systems, Networks, Computer
 Architecture, Embedded Systems, Storage Systems, etc.

Great Reality #1: int is not Integers, float is not Reals

- **■** Example 1: Is $x^2 \ge 0$?
 - Float's: Yes!

- Int's:
 - 40000 * 40000 ⇒ 160000000
 - 50000 * 50000 ⇒ ??
- **Example 2:** Is (x + y) + z = x + (y + z)?
 - Unsigned & Signed Int's: Yes!
 - Float's:
 - $(1e20 + -1e20) + 3.14 \Rightarrow 3.14$
 - $1e20 + (-1e20 + 3.14) \Rightarrow ??$

Computer Arithmetic

Does not generate random values

Arithmetic operations have important mathematical properties

Cannot assume all "usual" mathematical properties

- Due to finiteness of representations
- Integer operations satisfy "ring" properties
 - Commutativity, associativity, distributivity
- Floating point operations satisfy "ordering" properties
 - Monotonicity, values of signs

Observation

- Need to understand which abstractions apply in which contexts
- Important issues for compiler writers and serious application programmers

Great Reality #2: You've Got to Know Assembly

- Chances are, you'll never write programs in assembly
 - Compilers are much better & more patient than you are
- But: Understanding assembly is key to machine-level execution model
 - Behavior of programs in presence of bugs
 - High-level language models break down
 - Tuning program performance
 - Understand optimizations done / not done by the compiler
 - Understanding sources of program inefficiency
 - Implementing system software
 - Compiler has machine code as target
 - Operating systems must manage process state
 - Creating / fighting malware

Great Reality #3: Memory Matters Random Access Memory Is an Unphysical Abstraction

Memory is not unbounded

- It must be allocated and managed
- Many applications are memory dominated

Memory referencing bugs especially pernicious

Effects are distant in both time and space

Memory performance is not uniform

- Cache and virtual memory effects can greatly affect program performance
- Adapting program to characteristics of memory system can lead to major speed improvements

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

```
fun (0) ⇒ 3.14

fun (1) ⇒ 3.14

fun (2) ⇒ 3.1399998664856

fun (3) ⇒ 2.00000061035156

fun (4) ⇒ 3.14

fun (6) ⇒ Segmentation fault
```

Result is system specific

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun (0) ⇒ 3.14

fun (1) ⇒ 3.14

fun (2) ⇒ 3.1399998664856

fun (3) ⇒ 2.00000061035156

fun (4) ⇒ 3.14

fun (6) ⇒ Segmentation fault
```

Explanation:

Memory Referencing Errors

C and C++ do not provide any memory protection

- Out of bounds array references
- Invalid pointer values
- Abuses of malloc/free

Can lead to nasty bugs

- Whether or not bug has any effect depends on system and compiler
- Action at a distance
 - Corrupted object logically unrelated to one being accessed
 - Effect of bug may be first observed long after it is generated

How can I deal with this?

- Program in Java, Ruby, Python, ML, ...
- Understand what possible interactions may occur
- Use or develop tools to detect referencing errors (e.g. Valgrind)

Great Reality #4: There's more to performance than asymptotic complexity

- Constant factors matter too!
- And even exact op count does not predict performance
 - Easily see 10:1 performance range depending on how code written
 - Must optimize at multiple levels: algorithm, data representations, procedures, and loops
- Must understand system to optimize performance
 - How programs compiled and executed
 - How to measure program performance and identify bottlenecks
 - How to improve performance without destroying code modularity and generality

Memory System Performance Example

4.3ms

2.0 GHz Intel Core i7 Haswell

81.8ms

- Hierarchical memory organization
- Performance depends on access patterns
 - Including how step through multi-dimensional array

Why The Performance Differs

Great Reality #5: Computers do more than execute programs

- They need to get data in and out
 - I/O system critical to program reliability and performance
- They communicate with each other over networks
 - Many system-level issues arise in presence of network
 - Concurrent operations by autonomous processes
 - Coping with unreliable media
 - Cross platform compatibility
 - Complex performance issues

Welcome and Enjoy!