Aula 09 - Exercício prático Árvore Vermelho Preto

Aluno: Gian Franco Joel Condori Luna

October 30, 2024

Exercices

1 (0,8) Insira aleatoriamente 100.000 elementos em uma árvore Vermelho e Preto.

- a) Calcule o tempo de inserção dos 100.000 elementos em cada estrutura de dados.
- b) Calcule o tempo de busca do elemento de valor 50 em cada estrutura de dados. Mesmo se não existir esse elemento, reporte o tempo que levou para procurá-lo.
- c) Calcule o tempo de busca do elemento de valor 50.000 em cada estrutura de dados. Mesmo se não existir esse elemento, reporte o tempo que levou para procurá-lo.
- d) Compare com os tempos de inserção e busca dos exercícios anteriores. Discuta sobre qual é a melhor estrutura de dados.

Solução:

(O código está no arquivo python)

	Tempo inserção	Tempo pesquisa	Tempo pesquisa
	100.000 elemen-	o elemento 50	o elemento
	tos		50.000
Vetor dados	0.003188 s	$0.005875 \mathrm{\ s}$	0.007157 s
aleatórios			
Vetor ordenado	$0.072296 \mathrm{\ s}$	0.000016 s	0.000011 s
+ busca binária			
Árvore binária	1.185774 s	$0.000015 \mathrm{\ s}$	0.000009 s
Árvore AVL	2.764374 s	0.000013 s	0.000007 s
Árvore	0.669266 s	0.000067 s	0.000079 s
vermelho-preto			

Discussão:

- Melhor Estrutura para Inserção: Para inserções rápidas, o vetor de dados aleatórios é o mais eficiente, mas isso pode ser enganoso se precisarmos manter os dados ordenados.
- Melhor Estrutura para Busca: O vetor ordenado com busca binária oferece o melhor desempenho em busca, mas isso exige uma ordenação prévia que pode ser custosa.
- Melhor em Geral: A árvore vermelho-preto parece ser a mais equilibrada, com um bom desempenho em ambas as operações. Ela é especialmente útil quando o número de inserções e buscas é alto e precisamos de uma estrutura de dados balanceada.

2 (0,2) Calcule a altura da subárvore esquerda e direita da árvore binária e AVL do exercício anterior.

Solução:

	Altura subarvore es-	Altura subarvore dire-
	querda	ita
Árvore Binária	41	32
AVL	18	18
Vermelho-preto	19	19

A árvore vermelha-preta tem um nível a mais que a árvore AVL. Também podemos ver que está equilibrado.

Fontes Consultadas

• https://chatgpt.com/