Üzleti Elemzések Módszertana

2. Előadás: Osztályozás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

Bevezetés

Osztályozás

Bevezetés

Osztályozás

A determinisztikus szemléletmód

A hagyományos szoftverfeilesztési folyamatmodell eljárása:

- Az adott jelenség megfigyelése és adatok rögzítése
- A megfigyelésekre olyan szabályok kidolgozása, amelyek jól leírják azt
- A létrejött szabályrendszer kiértékelése
- Rendszer fejlesztése a hibák alapján
- Iteráció

A gépi tanulás szemléletmód

A gépi tanulás szemléletének folyamatmodellje:

- Adott jelenség megfigyelése és adatok rögzítése
- Gépi tanulási modell tanítása az adatokon a szakterületi tudás segítségével
- Modell kiértékelése
- Hibák elemzése és kiértékelése
- Iteráció

Tanítás automatizálása adatalapúan

Az gépi tanuló modellek tanítása és kiértékelése hosszú távon egy iteratív folyamat már létező keretrendszerekkel, mint az MLOps. Ennek számos területen vannak előnyei:

- Adaptáció az új adatokhoz
- Javuló modell teljesítmény
- Hibák és problémák azonosítása
- Új technológiai fejlődés integrálása
- Skálázhatóság és rugalmasság
- Szakterületi következtetések az elemzések által

Bevezetés

Osztályozás

Osztályozás

Osztályozás

Az osztályozás a felügyelt gépi tanulás egyik alapvető feladata, amelynek célja, hogy megtanuljon egy modellt vagy szabályrendszert egy adott bemeneti adat alapján annak besorolására előre meghatározott kategóriákba vagy csoportokba.

Five Kingdom system classification

Modellalapú osztályozás

Az osztályozó modell feladata, hogy a tanító adathalmaza alapján olyan szabályrendszert hozzon létre, ami képes elszeparálni egymástól az egyedeket.

Amennyiben érkezik egy új adatpont, a modell a saját szabályrendszere segítségével már képes lesz becslést adni annak osztályára vonatkozóan.

Modellalapú osztályozás

Döntési határ

Olyan határérték, amelyet a modell állít be az adatpontok különböző osztályokba való besorolásához.

A határ lehet egy vonal, egy sík vagy akár egy sokdimenziós felület, attól függően, hogy milyen típusú osztályozó modellt használunk és milyen a bemeneti adatok dimenzionalitása.

Bináris osztályozás

A modell két lehetséges osztály közül valamelyikbe sorolja be az egyedeket. Minden egyedhez csakis 1 osztály tartozhat.

Multiosztályos osztályozás

Több, mint két lehetséges kategória létezik, amibe az egyedek besorolhatók, ezek közül az egyikbe fog sorolódni az egyed. Minden egyedhez legalább és legfeljebb 1 osztály tartozik.

Az osztályozás fajtái

Bevezetés

Multicímkés osztályozás

Minden mintaegyedhez több bináris vagy multicímkés címkekategóriából tartozhat osztály.

Az osztályozás fajtái

Multioutput osztályozás

A multicímkés osztályozás generalizált változata. Egy egyedhez egy multicímkés halmazból több elem is tartozhat.

Példa

A következő kis adathalmaz három sakkjátszmának rögzítette az eredményét. Minden meccs esetén rögzítésre kerültek a következő rekordok:

Rangok különbsége	Fehér nyert
200	0
-200	1
300	0