

博客园 首页 新随笔 联系 订阅 管理

从零开始写一个发送h264的rtsp服务器(下)

转自: http://blog.csdn.net/jychen105/article/details/47012099

一、H264是如何通过rtsp发送的

简单来说, H264就是通过打包到rtp协议的数据部分发送出去的。

H264打包成rtp数据包有三种方式

• 单一封包模式

术到极致,几近于道!

- 组合封包模式
- 分片模式

要想弄明白这三种打包方式,必须先弄清楚h264的组成结构,或者叫组成单元。

二、H264结构单元

H264数据流最基本的结构单元叫nalu单元。

H264的nalu单元组成:

[start code] + [nalu header] + [nalu paload]

- start code: 可以为 001 或者 0001 ,也就是点3个字节或者4个字节
- nalu header: 占一个字节

• nalu paload: 长度不定

每一帧画面拥有一个或多个nalu单元,每个nalu单元以start code进行分离

nalu header

nalu header占一个字节,它又分了三个部分:F,NRI,TYPE

7 6-5 4-0 F NRI TYPE

• F: 一般为0

• NRI:指示nalu单元的重要性,不同编码器编出来的H264数据不同

• TYPE: nalu类型

TYPE类型:

类型	定义
0	未定义
1-23	NAL单元
24	STAP-A 单一时间组合包
25	STAP-B 单一时间组合包
26	MTAP-16多个时间组合包
27	MTAP-24 多个时间组合包
28	FU-A 分片
29	FU-B 分片
30-31	未定义

特别注意的是7这SPS,8为PPS,发送SDP协议包时需进行base64编码25,26,27,29这四种类型基本不会出现

三、H264的RTP打包

前面说过有三种打包方式:单一封包模式,组合封包模式,分片模式

打包原则

单一封包模式: nalu单元长度小于MTU长度(通常是1500, live555定义的是2400)用此种方式封包

组合封包模式: nalu单元实在太小,多个nalu长度和都小于MTU长度

分片模式: nalu单元长度大于MTU长度

以上封包模式是按nalu长度来分的,同时也完全符合nalu单元中TYPE类型来分。

TYPE1-23 单一封包, 24组合封包, 28分片封包

打包细则

单一封包:

[RTP header] + [nalu header] + [nalu payload]

组合封包:

```
[RTP header]+[STAP-A头(1字节,低5位为24)] +
[第1个nalu长度(2字节)] + [第1个nalu header] + [第1个nalu payload]+
[第2个nalu长度(2字节)] + [第2个nalu header] + [第2个nalu payload]+
```

```
[第N个nalu长度(2字节)] + [第N个nalu header] + [第N个nalu payload]
```

分片模式封包:

此时要切分成多个RTP包

```
[RTP header]+[FU Indicator(1字节)]+[FU header(1字节)]+[部分nalu payload]
```

FU Indicator

```
7 6-5 4-0
F NRI TYPE
```

F, NRI为nalu中的F, NRI

TYPE: 固定为28

FU header

```
7 6 5 4-0
S E R TYPE
```

S:开始标志(start)

E:结束标志(end)

R:保留(reserve)

TYPE: nalu中的TYPE

标志	s	E	R
分片开始	1	0	0
分片中间	0	0	0
分片结束	0	1	0

RTP包头的填充

```
typedef struct
  /* byte 0 */
   unsigned char csrc len:4; /* CC expect 0 */
   unsigned char extension:1; /* X expect 1, see RTP_OP below */
   unsigned char padding:1; /* P expect 0 */
   unsigned char version:2; /* V expect 2 */
   /* byte 1 */
   unsigned char payload:7; /* PT RTP_PAYLOAD_RTSP */
   unsigned char marker:1; /* M expect 1 */
   /* byte 2,3 */
   unsigned short seq_no; /*sequence number*/
   /* byte 4-7 */
   unsigned long timestamp; /*time stamp*/
   /* byte 8-11 */
   unsigned long ssrc;
                           /* stream number is used here. */
} RTPHeader;/*12 bytes*/
```

各项值填充:

符号	位数	定义	数值
V	2bit	版本号	2

符号	位数	定义	数值
Р	1bit	填充位	0
Х	1bit	扩展位	0
cc	4bit	CSRC数目	0
М	1bit	标志位	单一封包为1; 分片封包最后一个包为1, 其余为0;
PT	7bit	载荷类型	96(h264为96)
SeqNum	16bit	序列号	每发一个包加1
Timestamp	32bit	时间戳	单一封包 +采样率,h264为3600;分片封包第一个加采样率,后续不变
SSRC	32bit	同步源标识	任意指定,标准是一个MD5算法值,未明
CSRC	0bit	贡献源列表	CC为0,所以此项没有

组合模式的M跟Timestamp未调查清楚,但是可以讨巧,打包的时候不采用组合模式,采用单一模式。

版权声明:本文为博主原创文章,转载请注明出处 http://blog.csdn.net/jychen105/article/details/47012099

标签: rtsp

«上一篇:从零开始写一个发送h264的rtsp服务器(上)

» 下一篇: centos7安装debuginfo

posted @ 2018-03-19 17:28 明明是悟空 阅读(3006) 评论(1) 编辑 收藏 举报

刷新评论 刷新页面 返回顶部

0

导反对

0

心推荐

■ 登录后才能查看或发表评论,立即 登录 或者 逛逛 博客园首页

编辑推荐:

·理解ASP.NET Core - 模型绑定&验证

- · [翻译].NET 6 中的 dotnet monitor
- ·.NET Core 如何配置 TLS Cipher (套件)?
- 记一次 .NET 某智能服装智造系统 内存泄漏分析
- ·大学毕业三年的一些经历与思考

最新新闻:

- 泡泡玛特越来越"重" 潮玩需要新故事 (2021-12-09 12:11)
- · "1.5个"村里人眼里的"张同学"(2021-12-09 12:00)
- "塌房" or过气,都是玲娜贝儿的结局(2021-12-09 11:50)
- · 苹果出事了, 十年来最严重的一次! (2021-12-09 11:35)
- · B面宁德时代:超级工程背后的造富运动(2021-12-09 11:20)
- » 更多新闻...

公告

昵称: 明明是悟空 园龄: 9年7个月 粉丝: 203 关注: 4 +加关注

<		20	21年12	2月		>
日	_	=	Ξ	四	五	<u>``</u>
28	29	30	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1
2	3	4	5	6	7	8

搜索	
	找找看
	谷歌搜索

我的标签

Linux(135)

web开发(84)
java(63)
c/c++(59)
android(46)
Linux内核(38)
chromium(29)
webrtc(26)
H264(17)
数据库(17)
更多
随笔档案
2020年5月(2)
2020年4月(4)
2019年12月(1)
2019年6月(1)
2019年5月(3)
2019年4月(1)
2019年1月(1)
2018年12月(4)
2018年11月(2)
2018年10月(3)
2018年9月(1)

2018年7月(9)
2018年6月(2)
2018年5月(8)
更多
阅读排行榜
1. java写入文件的几种方法分享(94317
2. 如何在java程序中调用linux命令或者 II脚本(68602)

- 者she
- 3. 1080P、720P、4CIF、CIF所需要的理论 带宽(68040)
- 4. linux mysql 操作命令(66225)
- 5. Connection reset by peer的常见原因及 解决办法(55079)

评论排行榜

- 1. 总结一下数据库的 一对多、多对一、一 对一、多对多 关系(5)
- 2. 比较StringBuffer字符串内容是否相等?(3)
- 3. 二进制的计算 (计算机为什么采用补码存 储数据)(3)
- 4. 传指针和传指针引用的区别/指针和引用 的区别 (本质)(2)
- 5. C++中引用(&)的用法和应用实例(2)

推荐排行榜

- 1. 线程安全的单例模式(6)
- 2. java写入文件的几种方法分享(5)

- 3. JAVA 的wait(), notify()与synchronized 同步机制(5)
- 4. jsp放在web-inf下的注意事项(5)
- 5. 表现层(jsp)、持久层(类(ldao)、业务层 (逻辑层、service层)、模型(javabean)、控制层(action)(5)

最新评论

1. Re:关于socket——SO_SNDBUF and S O_RECVBUF

"SO_"前缀是指"套接字选项",所以是的,这些是每个套接字缓冲区的设置。通常有系统范围内的默认值和最大值。SO_RCVBUF更容易理解:它是内核分配的缓冲区的大小,用来保存从网络上到达的数据和拥...

--成熟里的秋天

2. Re:sk_buff封装和解封装网络数据包的过程详解

学习了

--咖啡猫二世

3. Re:netfilter的钩子——数据包在内核态 得捕获、修改和转发

打扰了,请问您的代码是基于哪一版本的li nux内核呀

--RiverGone

4. Re:总结一下数据库的 一对多、多对一、 一对一、多对多 关系

通俗易懂,学习了,谢谢大佬们啊

--别说我太单纯

5. Re:总结一下数据库的 一对多、多对一、 一对一、多对多 关系

Mark.2021.5.17

--别说我太单纯