Semaine du 27 Janvier - Planche nº 1

Exercice no 1:

(Question de cours) : Énoncer et démontrer la caractérisation séquentielle de la limite.

Exercice nº 2:

(Continuité) : Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction croissante telle que l'application $x \mapsto \frac{f(x)}{x}$ soit décroissante. Montrer que f est continue.

Exercice no 3:

(Dérivabilité) : (Règle de L'Hôpital) : Soient f et g des fonctions dérivables sur un intervalle [a,b]

- 1. Montrer qu'il existe $c \in]a, b[$ tel que (f(b) f(a))g'(c) = (g(b) g(a))f'(c).
- 2. On suppose de plus que g' ne s'annule pas sur]a,b[. Montrer que si $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R}$, alors $\lim_{x\to a^+} \frac{f(x)-f(a)}{g(x)-g(a)} = \ell$.
- 3. En déduire la valeur de $\lim_{x\to 0^+} \frac{\cos(x) + x\sin(x) 1}{e^x x 1}$.

Semaine du 27 Janvier - Planche nº 2

Exercice no 1:

(Question de cours) : Énoncer et démontrer le théorème des bornes atteintes.

Exercice nº 2:

(Continuité) : Soit $f: \mathbb{R} \to \mathbb{Z}$ une fonction continue. Montrer que f est constante.

Exercice no 3:

(Dérivabilité) : Soit b un réel et f une fonction numérique dérivable sur]-b,b[telle que :

$$\forall x \in]-b, b[, f'(x) = \exp(-xf(x))$$

- 1. Vérifer que f admet en b une limite à gauche ℓ réelle ou infinie.
- 2. Montrer que si on suppose ℓ réelle, alors f se prolonge sur]-b,b] en une fonction de classe \mathcal{C}^1 .
- 3. En raisonnant par l'absurde à l'aide de l'inégalité des accroissements finis, montrer qu'effectivement ℓ est un réel.
- 4. On étend la même situation au cas $b = +\infty$. Montrer que $\lim_{x \to +\infty} f(x) \in \mathbb{R}$. Indication : On pourra introduire la fonction $x \mapsto f(x) + \exp(-x)$

Semaine du 27 Janvier - Planche nº 3

Exercice no 1:

(Question de cours) : Énoncer et démontrer l'égalité et l'inégalité des accroissements finis.

Exercice nº 2:

(Continuité) : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue qui tend vers $+\infty$ en $\pm \infty$. Montrer que f possède un minimum.

Exercice no 3:

(Dérivabilité) : Soit $f = \mathbb{R}^+ \to \mathbb{R}^+$ de classe C^2 sur \mathbb{R}^+ . On suppose que f'' est bornée et qu'il existe $\alpha > 0$ tel que :

$$\forall x \in \mathbb{R}^+, \alpha f(x) \le f''(x)$$

- 1. Montrer que f est décroissante sur \mathbb{R}^+ .
- 2. Montrer que f' et f ont une limite nulle en $+\infty$.