EE 527: Machine Learning Laboratory

Assignment 2

Due date: 23 Jan 2023

- 1. Generate **N** points in an interval [a, b]. Evaluate the normalized frequency distribution of these points. Make m bins for constructing the distribution.
 - Let a = -100 and b = 100.
 - Experiment with **N** = 100, 1000 & 10000.
 - Choose the value of **m** appropriately.

Plot the normalized frequency distribution.

2. With **N** = 5000 and **m** = 400, construct a normalized frequency distribution (**Q1**). Treat this distribution as a weighted dataset $\{(x_i, p_i); i = 1, 2, ... m\}$, where $\sum_{i=1}^m p_i = 1$.

Evaluate the weighted AM, GM, HM, median and mode.

- 3. Write a general code that takes any weighted dataset $\{(x_i, \omega_i); i = 1, 2, ... n\}$ as input and provides the weighted AM, GM, HM, median and mode. In this particular case, $\omega_i \geq 0$ and $\sum_{i=1}^n \omega_i \neq 1$.
- 4. Generation of Points
 - a. Randomly generate \mathbf{n} =1000 2D points $S_e = \{x_1, x_2, \dots x_n\}$ inside an a 2D ellipse of axes r_x = 150, r_y = 100 and centered at $x_c = (-10, 20)$. The axes of the ellipse are aligned with the co-ordinate system axes.

b. Randomly generate \mathbf{n} =1000 points $S_{hs} = \{x_1, x_2, \dots x_n\}$ inside a 10-Dimensional hypersphere of radius r = 100, centered at $x_c = (-1, 2 - 1, 0, 0, 0, 3, 4, 9, 0)$.

c. Randomly generate $\mathbf{n} = 1000$ 2D points $S_{eo} = \{x_1, x_2, ... x_n\}$ inside an oriented 2D ellipse of axes $r_x = 150$, $r_y = 100$ and centered at $x_c = (-10,20)$. The major axis makes an angle of $\theta = \frac{\pi}{3}$ with the horizontal axis \hat{X} .

5. Covariance Matrix Computation

Compute the 2x2 Covariance Matrix ${\bf C}$ using the points in S_{eo} . Plot the Eigen Vectors (\hat{e}_1,\hat{e}_2) of ${\bf C}$ and the axes of the oriented ellipse, all originating from the center x_c . The lengths of (\hat{e}_1,\hat{e}_2) should be respectively set to $(k\sqrt{\lambda_1},k\sqrt{\lambda_2})$. Change the value of ${\bf n}$ and report observations. Try plotting with ${\bf k}=3,4,5$.

