Step 1: Load the data set, Check if any missing vaues and split it into train & test sets.

```
In [1]: import pandas as pd
        df = pd.read_csv("Churn-Modelling.csv")
        print(df.shape)
        print(df.head())
        pd.isnull(df).sum()
        (10000, 7)
           CreditScore
                        Age
                             Tenure
                                        Balance HasCrCard
                                                               Salary
                                                                       Exited
                   619
                                   2
                                                            101348.88
                         42
                                           0.00
                                                         1
                                                                             1
        1
                   608
                         41
                                   1
                                                                            0
                                       83807.86
                                                         0 112542.58
        2
                   502
                         42
                                   8 159660.80
                                                         1 113931.57
                                                                            1
                   699
                          39
        3
                                   1
                                           0.00
                                                         0 93826.63
                                                                            0
                   850
                         43
                                   2 125510.82
                                                           79084.10
                                                                            0
Out[1]: CreditScore
                       0
        Age
                       0
        Tenure
                       0
        Balance
                       0
        HasCrCard
        Salary
                       0
                        0
        Exited
        dtype: int64
In [2]: x = df.drop("Exited", axis=1)
        y = df["Exited"]
        print(x.head())
        print(y.head())
           CreditScore
                             Tenure
                                        Balance HasCrCard
                        Age
                                                               Salary
        0
                                                         1 101348.88
                   619
                         42
                                   2
                                           0.00
        1
                   608
                         41
                                   1
                                       83807.86
                                                           112542.58
        2
                                   8 159660.80
                                                         1 113931.57
                   502
                         42
        3
                   699
                          39
                                   1
                                           0.00
                                                         0
                                                           93826.63
        4
                   850
                         43
                                   2 125510.82
                                                         1
                                                             79084.10
        0
             1
        1
             0
        2
             1
        3
             0
        Name: Exited, dtype: int64
In [3]: from sklearn.model_selection import train_test_split
        x train, x test, y train, y test = train test split(x, y, test size = 0.33)
        print(x_train.shape, y_train.shape)
        print(x_test.shape, y_test.shape)
        (6700, 6) (6700,)
        (3300, 6) (3300,)
```

Step 2: Build the model

sklearn.linear_model.LogisticRegression class can be used to cleate model object

fit() method can be used to train the model

predict() method can be used to predict the outputs for unseen data

Step 3: Test the model performance

we can import various metrics(confusion_matrix, accuracy_score, recall_score, precision_score, f1_score) from sklearn.metrics

```
In [10]: from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, pr
y_pred = model.predict(x_test)
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred))
print("F1-Score:", f1_score(y_test, y_pred))
```

```
Confuusion Matrix:
```

[[2587 59] [616 38]]

Accuracy: 0.7954545454545454 Recall: 0.0581039755351682 Precision: 0.3917525773195876 F1-Score: 0.10119840213049268

```
In [8]: cm = confusion_matrix(y_test, y_pred)
tn = cm[0, 0]
tp = cm[1, 1]
fp = cm[0, 1]
fn = cm[1, 0]

print("Accuracy: ", (tn + tp)/(tn + tp + fp + fn))
print("Sensitivity: ", tp / (tp + fn))
print("Specificity: ", tn / (tn + fp))
print("Precision: ", tp / (tp + fp))
```