При фиксированном парамтере r характеристики дуального кода Хэмминга: $n=2^r-1, k=r, d=2^{r-1}$

Для двоичного кода граница Хэмминга имеет вид $2^k \leq \frac{2^n}{\sum\limits_{i=0}^t C_n^i}$, где $t = floor(\frac{d-1}{2})$, что можно преобразовать в $\sum\limits_{i=0}^t C_n^i \leq 2^{n-k}$

Граница Варшамова-Гильберта же для двоичного кода имеет вид: $\sum_{i=0}^{d-2} C_{n-1}^i < 2^{n-k}$

Так как анлитически эти неравенства решать слишком трудоёмко, то будем решать их численным перебором для разумных (n,k)

- In [1]: import scipy.special as sc
 import matplotlib.pyplot as plt
 from tqdm import tqdm_notebook as tqdm
- In [2]: def get_dual_params(r):
 n = (2 ** r) 1
 k = r
 d = 2 ** (r 1)
 return n, k, d
- In [3]: **def** comb(n, k): return sc.comb(n, k, exact=True) def get_hamming_border(n, k): t = 0 $cur_sum = comb(n, t)$ **while** cur sum + comb(n, t + 1) \leq 2 ** (n - k): $cur_sum += comb(n, t + 1)$ t += 1**return** t * 2 + 2 def get_hilbert_border(n, k): **if** (n == k): return 1 prev_prev_d = 0 cur_sum = comb(n - 1, prev_prev_d) while $cur_sum + comb(n - 1, prev_prev_d + 1) < 2 ** (n - k):$ $cur_sum += comb(n - 1, prev_prev_d + 1)$ prev prev d += 1 return prev_prev_d + 2
- In [8]: for r in tqdm(rs):
 n, k, d = get_dual_params(r)
 hamming = get_hamming_border(n, k)
 hilbert = get_hilbert_border(n, k)
 ds.append(d)
 hammings.append(hamming)
 hilberts.append(hilbert)
- In [9]: plt.figure(figsize=(16,9))
 plt.grid(linestyle='--')
 plt.semilogy(rs, ds, linestyle='-',marker='.',color='g', label='Минимальное расстояние')
 plt.semilogy(rs, hammings, linestyle='-',marker='.',color='r', label='Граница Хэмминга')
 plt.semilogy(rs, hilberts, linestyle='-',marker='.',color='b', label='Граниица Варшамова-Гильберта')
 plt.xlabel('Параметр r')
 plt.ylabel('Значение минимального расстояния')
 plt.legend()
 plt.show()

Из графиков видно, что с увелечением r(что эквивалентно увеличению длины) минимальное расстояние удаляется от границы Хэмминга и приближается к границе Варшамова-Гильберта