Multiple Linear Regression - Exercise

You are given a real estate dataset.

Real estate is one of those examples that every regression course goes through as it is extremely easy to understand and there is a (almost always) certain causal relationship to be found.

The data is located in the file: 'real estate price size year.csv'.

You are expected to create a multiple linear regression (similar to the one in the lecture), using the new data.

In this exercise, the dependent variable is 'price', while the independent variables are 'size' and 'year'.

Good luck!

Import the relevant libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn
seaborn.set()
```

Load the data

```
In [2]: data = pd.read_csv('real_estate_price_size_year.csv')
```

In [3]: data

Out[3]:

	price	size	year
0	234314.144	643.09	2015
1	228581.528	656.22	2009
2	281626.336	487.29	2018
3	401255.608	1504.75	2015
4	458674.256	1275.46	2009
95	252460.400	549.80	2009
96	310522.592	1037.44	2009
97	383635.568	1504.75	2006
98	225145.248	648.29	2015
99	274922.856	705.29	2006

100 rows × 3 columns

In [4]: data.head()

Out[4]:

	price	size	year
0	234314.144	643.09	2015
1	228581.528	656.22	2009
2	281626.336	487.29	2018
3	401255.608	1504.75	2015
4	458674.256	1275.46	2009

```
In [5]: data.describe()
```

Out[5]:

	price	size	year
count	100.000000	100.000000	100.000000
mean	292289.470160	853.024200	2012.600000
std	77051.727525	297.941951	4.729021
min	154282.128000	479.750000	2006.000000
25%	234280.148000	643.330000	2009.000000
50%	280590.716000	696.405000	2015.000000
75%	335723.696000	1029.322500	2018.000000
max	500681.128000	1842.510000	2018.000000

Create the regression

Declare the dependent and the independent variables

```
In [7]: y = data['price']
x1 = data[['size', 'year']]
```

Regression

```
In [8]: x = sm.add_constant(x1)
results = sm.OLS(y,x).fit()
```

In [9]: results.summary()

Out[9]:

OLS Regression Results

Dep. Variable: R-squared: 0.776 price Model: OLS Adj. R-squared: 0.772 Method: Least Squares F-statistic: 168.5 **Date:** Wed, 25 Aug 2021 Prob (F-statistic): 2.77e-32 Time: 22:06:01 Log-Likelihood: -1191.7 No. Observations: 100 AIC: 2389. **Df Residuals:** 97 BIC: 2397. Df Model: 2 **Covariance Type:** nonrobust coef std err P>|t| [0.025 0.975] t **const** -5.772e+06 1.58e+06 -3.647 0.000 -8.91e+06 -2.63e+06 227.7009 12.474 18.254 0.000 202.943 252.458 size 2916.7853 785.896 3.711 0.000 1357.000 4476.571 year **Omnibus:** 10.083 **Durbin-Watson:** 2.250 Prob(Omnibus): 0.006 Jarque-Bera (JB): 3.678

Skew: 0.095 **Prob(JB):** 0.159

Kurtosis: 2.080 **Cond. No.** 9.41e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.41e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In []: