TRABAJO FIN DE GRADO

Editor de escenas en realidad virtual

Alumno: Miguel Hidalgo Pérez

Tutor: Dr. Jesús M. González Barahona

Curso Académico: 2020-2021

ÍNDICE

- Objetivos
- Introducción
- Tecnologías usadas
- Proyecto
- Demo
- Conclusiones
- Preguntas

OBJETIVOS

Crear un editor de escenas 3D en realidad virtual que ejecuta en un navegador web.

- Funcionar en múltiples dispositivos.
- La escena será editable dentro de ella misma.
- Creación de escenas mediante menús y eventos.
- Exportar escenas.

EDITORES ESCENAS 3D TRADICIONALES

Blender Unity

REALIDAD VIRTUAL

Sector en crecimiento

REALIDAD VIRTUAL

☐ ¿Editores en Realidad virtual?

TECNOLOGÍAS USADAS

Framework web para construir experiencias de realidad virtual en el navegador.

three.js

Biblioteca 3D basada en WebGL. API para crear escenas, sombras, materiales, texturas, etc.

Transpilador y empaquetador de módulos.

Lenguaje utilizado para dotar de funcionalidad a páginas web, inicialmente pensado para animaciones e interacciones cliente.

Lenguaje de marcado para construir páginas web. Incluye nuevas funcionalidades respecto HTML4. (WebXR)

Herramienta de control de versiones para gestionar el proyecto.

Funcionalidad

- Componentes basados en A-Frame.
- API para controlar figuras, menús y escena.
- Materiales, físicas, luces y sombras.
- Multiselección.
- Exportar e importar.

Resultado

Escena HTML

```
<a-scene physics="driver: ammo;">
  <!-- Camera. -->
  <a-entity id="rig" position="0 1.6 5.2">
    <!-- Mouse camera-->
    <a-entity id="camera-mouse" camera look-controls wasd-controls
              cursor="rayOrigin: mouse"
              raycaster="object: .selectable-superhands [gui-interactable]"
              super-hands="colliderEvent: raycaster-intersection;
                              colliderEventProperty: els;
                              colliderEndEvent: raycaster-intersection-cleared;
                              colliderEndEventProperty: clearedEls;"
    ></a-entity>
  </a-entity>
  <a-entity id="background-scene" environment="preset: default; groundColor: #445; grid: cross"></a-entity>
  a-scene>
```


Código Componentes Escena

```
const lightScene = new LightScene( props: {
const floor = new Plane( plane: {
   id: clonePodiumId,
        src: textures.WOODEN,
```

```
const initialFigures: Array<Figure> = [
    new Cylinder( cyl: {
    new Sphere ( sphere: {
    new Box (box: {
```


Componentes Figuras

Modelo y Herencia

```
ass Figure {
     this.htmlRef.setAttribute( qualifiedName: 'color', color);
 setMaterial?(material: any) {
         const materialAttr: string = propsInLine(material);
         this.color !== 'white' && this.setColor('white');
         this.htmlRef.setAttribute( qualifiedName: 'material', materialAttr);
 setOpacity?(percent: number) {
```

```
class Cylinder extends Figure {
   radius: number;
   height: number;

   constructor(cyl: Cylinder) {
      const {height, radius} = cyl;
      cyl.primitive = 'a-cylinder';
      super(cyl);
      this.height = height;
      this.radius = radius;
   }
}
```

Comportamiento

```
xport function registerSelectableFigureScene() {
  const selectableFigureSceneComponent = {
          let cachedProps: any;
          this.el.addEventListener('click', function (evt) {
              showFigureMenu(figSelected);
          const opacityReduction = 0.2;
              cachedProps = cloneProperties(figSelected);
              const opacityHover = figOpacity - opacityReduction;
              figSelected.setAttribute('opacity', opacityHover.toString());
```


Componentes Interfaces

Componentes Menú

```
export class EditMenuFigure {
   private entityRef: HTMLElement:
       this.createMenuContainer():
       addControlCloseMenu(this.entityRef, fig);
       addControlEditColor(this.entityRef, fig);
       addControlEditOpacity(this.entityRef, fig);
       addControlEditWireframe(this.entityRef, fig);
       addControlEditMaterial(this.entityRef, fig);
       addControlEditShadow(this.entityRef, fig);
       addControlCloneFigure(this.entityRef, fig);
       addControlPhysicsFigure(this.entityRef, fig);
       addControlDeleteFigure(this.entityRef, fig);
```

Lógica Componente

```
export function addControlEditOpacity(parentMenu: HTMLElement, figure: Figure) {
   const label = createLabel( text: 'Opacity', props: {
   parentMenu.appendChild(label);
   const opacityControl = createSlider( props: {
   const customAction = 'slideOpacity' + new Date().getTime();
   opacityControl.setAttribute( qualifiedName: 'onclick', customAction);
   window[customAction] = function (event, percent) {
       event.stopPropagation();
   parentMenu.appendChild(opacityControl);
```

Componente Visual

```
export function createSlider(props?): HTMLElement {
   const editControl = document.createElement( lagName: 'a-gui-slider');

   // Style properties
   const defaultProps = {
      width: '2.5',
      height: '0.25',
      percent: '0.99',
      margin: '0 0 0.05 0',
      opacity: '0.8',
      //'slider-bar-height': '0.01',
      'handle-outer-radius': '0.1',
      'handle-inner-radius': '0.07',
      'background-color': '#50687d'
   };

   setHtmlTags(editControl, defaultProps);
   setHtmlTags(editControl, props);
   return editControl;
}
```


Múltiples dispositivos

Puede ser visualizado en cualquier navegador, ya sea escritorio, móvil o dispositivos de realidad virtual.

FASES DEL PROYECTO

Toma de requisitos

Estudio de la librería A-Frame y desarrollo de una demo con interacciones.

Edición de Figuras

Estudio de propiedades de A-Frame y librerías de interfaces para los menús.

Fin desarrollo del proyecto

Inicio de la memoria del proyecto y una web con demos.

Desplazado y Clonado de figuras

Replicado de los elementos HTML en otra parte de la escena que pueden ser arrastrados.

Multiselección y extras

Multiselección de figuras y otras operaciones de escena como exportar o editar la luz.

FASES DEL PROYECTO

CONCLUSIONES

Se ha alcanzado el objetivo de crear una aplicación que permite construir escenas en realidad virtual para navegadores en múltiples dispositivos:

- Funcionalidad básica editores 3D.
- Componentes y Api para creación de figuras e interfaces usuario.
- Escena editable en tiempo real.
- Líneas futuras. Inspirarse en más funcionalidades de editores, como detectar colisiones, moldear figuras, inventario de modelos 3D...

DEMO

https://hpmiguel.github.io/aframe-editor-scene/

iGracias!

¿Preguntas?

Podéis encontrarme en:

- E-mail: hpmiguel@hotmail.com
- ☐ GitHub: https://github.com/hpmiguel

