Week 3

Character Theory

3.1 Characters

10/9: • Today, we talk about **characters**, arguably the most important idea in rep theory.

- \bullet As per usual, we begin by letting G a finite group.
 - We've been discussing finite dimensional representations of G over \mathbb{C} .
 - We've also already talked about irreps, and we know that it's enough to understand those because every rep is a sum of them.
- Goal of characters: Understand the irreps V_1, \ldots, V_k of G.
 - Recall the surprising fact about k: It is the number of conjugacy classes of G!
 - We haven't yet proven this, but we will soon!
 - Game plan: Use characters to relate irreps to something that is counted by conjugacy classes.
- Let $V = \mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_n$ be a G-rep.
 - Then there exists a homomorphism $\rho: g \mapsto A_g \in GL_n(\mathbb{C})$.
- Motivating question: What doesn't change when we change the basis of V?
 - To isolate the "essence" of the A_g , we want to construct a function $f: GL_n(\mathbb{C}) \to \mathbb{C}$ such that $f(XAX^{-1}) = f(A)$.
- Ideas.
 - 1. The determinant is a great example of such a function, but it's kind of boring because this rank 1 representation doesn't characterize your product representation.
 - 2. Trace is the main example of such a function.
- Indeed, you can also take $tr(A^k)$ for any k.
 - Traces of powers are ubiquitous in physics and math because they contain the same information
 as the coefficients of the characteristic polynomial. In particular, we can express the determinant
 in terms of them.
- In fact, we could also take any coefficient of the characteristic polynomial, but others would get complicated.
 - Any characteristic polynomial coefficient can be expressed in terms of traces; this will be an exercise in PSet 3; it's not hard.

- So what do we have at this point?
 - We can associate to ρ a function $\chi_{\rho}: G \to \mathbb{C}$ defined by $\chi_{\rho}(g) = \operatorname{tr}(A_g) = \operatorname{tr}(\rho(g))$.
 - This function is invariant under isomorphism.
 - If we know tr(A), we know $tr(A^2)$ since $A_g^2 = A_{g^2}$. Thus, if we know all traces, we know all power traces.
 - Something about the following??

$$\sum \lambda_i \lambda_j = \frac{\operatorname{tr}(A)^2 - \operatorname{tr}(A^2)}{2}$$

- We form a ring of polynomials??
 - **E**quivalently, χ_{ρ} has a representation as a polynomial with coefficients in \mathbb{C} ??
- If V is a G-rep, $\chi_V: G \to \mathbb{C}$ will be our notation for its character.
- Properties.
 - 1. $\chi_V(xgx^{-1}) = \chi_V(g)$ for any $x, g \in G$.
 - Implication: γ_V is a class function.
 - Let $\mathbb{C}[G]$ be the vector space of all functions from $G \to \mathbb{C}$. Its dim = |G|.
 - Inside this space, there is the subspace $\mathbb{C}_{\text{cl}}[G]$ of functions $f: G \to \mathbb{C}$ such that $f(xgx^{-1}) = f(g)$ for all $x, g \in G$. These are functions from the sets of conjugacy classes, isomorphic to functions that are constant on conjugacy classes. dim $\mathbb{C}_{\text{cl}}[G]$ is the number of conjugacy classes.
 - Thus, for every V a G-rep, we get a vector $\chi_V \in \mathbb{C}_{cl}[G]$. These class functions form a basis of the space; each χ_V for V an irrep forms a linearly independent vector; the set is an *orthogonal* basis. This is the reason for the original theorem holding true!
 - 2. $\chi_{V_1 \oplus V_2} = \chi_{V_1} + \chi_{V_2}$.
 - Proof: It's basically tautological (not actually, but it's easy). Let $g \in G$. Compute $\chi_{V_1 \oplus V_2}(g)$. We can compute a basis e_1, \ldots, e_{n+m} where the first n vectors form a basis of V_1 , and the next m vectors are a basis of V_2 . This gives us a block matrix from which we show that the trace of the matrix is the sum of traces.

$$\chi_{V_1 \oplus V_2}(g) = \operatorname{tr} \begin{bmatrix} \rho_{V_1}(g) & 0 \\ 0 & \rho_{V_2}(g) \end{bmatrix} = \operatorname{tr} \rho_{V_1}(g) + \operatorname{tr} \rho_{V_2}(g) = \chi_{V_1}(g) + \chi_{V_2}(g)$$

- Corollary:

$$\chi_{V_1^{n_1} \oplus \cdots \oplus V_k^{n_k}} = n_1 \chi_{V_1} + \cdots + n_k \chi_{V_k}$$

- We now pause for a fact that will be instrumental in proving the next property, which is a bit more involved.
 - He will explain two ways to prove it; we can also just prove it on our own.
- Fact: A a matrix such that $A^n = 1$. Then A is diagonalizable or "semi-simple."
 - We can prove this with Jordan normal form.
 - It's a slightly surprising statement.
 - Obviously eigenvalues are roots of unity, but still needs some work.
 - This proof is left as an exercise.
- We now resume the list of properties.
 - 3. $\chi_V(g)$ is a sum of roots of unity.

- Proof: We know that $g^{|G|} = e$. Thus, $A_g^{|G|} = 1$. It follows by the fact above that A_g is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$, each of which satisfies $\lambda_i^{|G|} = 1$.
 - Note: Eigenvalues can repeat in the list $\lambda_1, \ldots, \lambda_n$, i.e., we are not asserting n distinct eigenvalues here.
- Therefore, since each λ_i is, individually, a root of unity, we have that $\chi_V(g) = \operatorname{tr} A_g = \lambda_1 + \cdots + \lambda_n$, as desired.
- 4. $\chi_{V^*} = \bar{\chi}_V$.
 - This property begins to address how characters behave under other operations.
 - Naturally, this is something specific for complex numbers, because the idea of "conjugates" doesn't exist everywhere.
 - Proof: Recall that $\rho_{V^*}(q) = (\rho_V(q)^{-1})^T$.
 - If we know that $\rho_V(G) \sim \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then we know that $\rho_V^{-1}(g)^T \sim \operatorname{diag}(\lambda_1^{-1}, \dots, \lambda_n^{-1})$.
 - Thus, $\chi_{V^*}(g) = \lambda_1^{-1} + \dots + \lambda_n^{-1}$.
 - But since we're in the complex plane, $|\lambda_i| = 1$ (equiv. $\lambda_i \bar{\lambda}_i = 1$), so $\lambda_i^{-1} = 1/\lambda_i = \bar{\lambda}_i$.
 - This means that $\chi_{V^*}(g) = \bar{\lambda}_1 + \cdots + \bar{\lambda}_n = \overline{\lambda_1 + \cdots + \lambda_n}$.
 - Note: Every representation we have is unitary in certain bases, but unitary representations
 are not covered in this course.
- 5. $\chi_{V_1 \otimes V_2} = \chi_{V_1} \cdot \chi_{V_2}$.
 - Proof: We can use a basis or not use a basis.
 - Let's use a basis for now.
 - Let $g \in G$ be arbitrary. Then there exist bases e_1, \ldots, e_n of V_1 and f_1, \ldots, f_m of V_2 such that $\rho_{V_1}(g)$ and $\rho_{V_2}(g)$ are diagonal.
 - It follows that $\rho_{V_1}(g)e_i = \lambda_i e_i \ (i = 1, ..., n)$ and $\rho_{V_2}(g)f_i = \mu_i f_i \ (i = 1, ..., m)$.
 - $V_1 \otimes V_2$ thus has basis $e_i \otimes f_i$.
 - But then it follows that $\rho_{V_1 \otimes V_2}(g)e_i \otimes f_j = (\lambda_i e_i) \otimes (\mu_j f_j) = \lambda_i \mu_j (e_i \otimes f_j)$.
 - Thus,

$$\operatorname{tr}(\rho_{V_1 \otimes V_2}(g)) = \sum_{i,j=1}^{n,m} \lambda_i \mu_j = (\lambda_1 + \dots + \lambda_n)(\mu_1 + \dots + \mu_m) = \operatorname{tr}(\rho_{V_1}(g)) \cdot \operatorname{tr}(\rho_{V_2}(g))$$

- Alternate approach.
 - If we don't want to think of eigenvalues, think of tensor product of matrices, the Kronecker product.
 - We get trace is the product of traces once again! Write this out.
- Class function: A function on a group G that is constant on the conjugacy classes of G.
- Examples.
 - 1. Let A be an abelian group.
 - Then $\chi: A \to \mathbb{C}^{\times}$.
 - Implication: Character of a character is $\chi_{\chi} = \chi$.
 - This is horribly repetitive but true.
 - 2. $G = S_3$.
 - The conjugacy classes of this group are $\{e\}$, $\{(12), (13), (23)\}$, and $\{(123), (132)\}$.
 - We construct a **character table** to define all characters.
 - Computing the characters for the trivial representation.
 - We know that ρ sends each g to the matrix (1), which has trace 1.
 - Computing the characters for the sign representation.

	e	(12) (13) (23)	(123) (132)
Trivial	1	1	1
Alternating	1	-1	1
Standard	2	0	-1

Table 3.1: Character table for S_3 .

- \blacksquare e and (123) have sign 1 and thus get sent to the matrix (1).
- (12) has sign -1 and thus gets sent to the matrix (-1).
- Computing the characters for the standard representation.
 - We can compute these traces via a thought experiment.
 - Visualize a triangle in a plane.
 - The 2×2 identity matrix (the standard representation of $e \in G$) acts on it by doing nothing, and has trace 2.
 - In *some* basis, our matrix fixes one vector and inverts another, so matrix is

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

and character is 0.

■ Last one is rotation by $2\pi/3$, so

$$\begin{pmatrix} \cos(2\pi/3) & \sin(2\pi/3) \\ -\sin(2\pi/3) & \cos(2\pi/3) \end{pmatrix}$$

so character is $-1 = 2 \cdot -1/2 = 2 \cdot \cos(2\pi/3)$.

- If V is the standard representation, we can also compute the characters of $V^{\otimes 2}$ for instance. Indeed, by the product rule of characters, they will be the squares of the standard representation's characters, i.e., (4,0,1).
- Similarly, since the permutational representation is the direct sum of the standard and trivial representations, we can add their characters to get its characters (3, 1, 0).
- 3. A very general and very pretty example. Let $G \subset X$ a finite set.
 - Assign the permutational representation.
 - Let $X = \{x_1, \ldots, x_n\}$. Think of these elements as the basis of a vector space; in particular, consider $V = \mathbb{C}e_{x_1} \oplus \cdots \oplus \mathbb{C}e_{x_n}$. Recall that $g(a_1e_{x_1} + \cdots + a_ne_{x_n}) = a_1e_{gx_1} + \cdots + a_ne_{gx_n}$. The fact that this is a representation follows immediately from the properties of the group action
 - Computing the character χ_V of this V: Look at g and write its matrix. In particular, the trace is the number of unmoved/fixed elements, sometimes denoted Fix(g).
 - This gives us another way of computing V_{perm} from above!
- Character table: A table that lists the conjugacy classes across the top, the irreps down the left side, and at each point within it, the value of an irrep's character over that conjugacy class.
 - The character table is a very nice matrix with very nice properties.
 - It is almost orthogonal; not exactly, but very close.
 - Rows aren't orthogonal, but columns are (take direct products)!
 - It is full rank, though.
- The midterm: Take the character table and do fun things with it.

3.2 Office Hours

- 10/10: Problem 1b:
 - Canonically self-dual: $V \cong V^*$ canonically.
 - Mathematical methods of quantum mechanics: First few paragraphs of picture.
 - We should have everything we need to do most of the problem set at this point; maybe not all of 5, but maybe yes, too.
 - Problem 3:
 - There is some problem where it decomposes into trivial plus standard, but we still have to prove that standard is irreducible in this case!
 - If you have any vector, you can produce out of this vector something else.
 - If we take any vector and the group acts on it, we'll get a basis. If you hit a vector in the invariant subspace, it will just stay there; if you hit it and it goes everywhere, you get a basis.
 - Now think about a vector when you permute its coordinates.
 - Tomorrow in class, we will learn a quick way to do this problem.
 - Problem 5:
 - For some problem, we need to use the fact that $A^n = 1$ proves that A = I in some sense.
 - This is a hard problem!
 - Show that eigenvalues sum to 1; we know that the eigenvalues are roots of unity! Thus, they have to both be 1!
 - When the problem in group theory is harder, that's when you need to go to rep theory.

3.3 Characters are Orthonormal

- 10/11: Announcement: Zoom OH today.
 - Recap: The big picture.
 - Representations.
 - We have representations, which are vector spaces on which a group acts.
 - With these representations, we can do a bunch of operations we've discussed: \oplus , \otimes , V^* , Λ^n , S^n .
 - We'll focus on the first 3 for now, though.
 - Class functions.
 - We also have class functions: Functions $f: G \to \mathbb{C}$ such that for all $g, x \in G$, $f(gxg^{-1}) = f(x)$.
 - The space of class functions forms a ring, since you can add, multiply, and take the complex conjugate of these functions.
 - \blacksquare Moreover, this ring is a vector space and it has dimension equal to the number of conjugacy classes of G.
 - The big idea: These two things (representations and class functions) are closely related!
 - There is a map, called a *character*, that pairs a representation to a class function.
 - Indeed, $V \to \chi_V$.
 - Under this map, operations of representations become operations of functions:

$$\oplus \mapsto + \qquad \otimes \mapsto \cdot \qquad V^* \mapsto \bar{f}$$

■ Additionally, V_1, \ldots, V_s become $\chi_{V_1}, \ldots, \chi_{V_s}$.

- Theorem we will prove over the next couple of lectures: Irreps become *linearly independent* class functions, and all irreps form a basis of the space of class functions.
 - This theorem is huge! It is our main takeaway for now.
 - For the first part of the course, this is the main thing that we should remember.
- How do we prove that multiple vectors are linearly independent?
 - A strong condition would be to introduce an inner product and prove that the pairwise inner product of the vectors is zero.
- Orthonormal basis: A basis for which $\langle e_i, e_j \rangle = \delta_{ij}$.
- Let's begin carrying out this plan by defining an inner product on $\mathbb{C}[G]$. Indeed, let f_1, f_2 be two functions on G and take

$$\langle f_1, f_2 \rangle := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

- Motivation for this definition.
 - Recall the **Hermitian inner product** on \mathbb{C}^n .
 - We are essentially mapping f_1, f_2 to $(f_1(g_1), \ldots, f_1(g_{|G|})), (f_2(g_1), \ldots, f_2(g_{|G|})) \in \mathbb{C}^{|G|}$ and taking the Hermitian inner product there.
 - Thus, we can see that all properties hold for both the Hermitian inner product on \mathbb{C}^n and the one defined above on $\mathbb{C}[G]$.
 - In other words, this kind of construction should inherit its status as a linear, positive definite bilinear form from the Hermitian inner product.
 - Note: The Hermitian product above is **G-invariant**.
 - This means that the functions on G from $G \to \mathbb{C}$ in $\mathbb{C}[G]$ form a representation of G.
 - In particular, if $\varphi : G \to \mathbb{C}$, then $g = \rho(g)$ moves it as follows: $g \cdot \varphi = \varphi^g$ where $\varphi^g(h) := \varphi(g^{-1}h)$. Thus, we have an action of G on every φ !
 - Such representations are isomorphic for finite groups??
 - If we have $\langle f_1, f_2 \rangle$, we can ask if

$$\langle f_1, f_2 \rangle \stackrel{?}{=} \langle f_1^g, f_2^g \rangle$$

- Left as an exercise that this *is* true!
- Hermitian inner product (on \mathbb{C}^n): The inner product defined as follows for all $z, w \in \mathbb{C}^n$. Denoted by \langle , \rangle . Given by

$$\langle z, w \rangle = \sum_{i=1}^{n} z_i \bar{w}_i$$

- This inner product gives a complex number $\langle v, w \rangle \in \mathbb{C}$ with the following properties.
 - 1. $\langle a_1v_1 + a_2v_2, w \rangle = a_1\langle v_1, w \rangle + a_2\langle v_2, w \rangle$.
 - 2. $\langle v, b_1 w_1 + b_2 w_2 \rangle = \bar{b}_1 \langle v, w_1 \rangle + \bar{b}_2 \langle v, w_2 \rangle$.
 - 3. $\langle v, v \rangle \geq 0$, and $\langle v, v \rangle = 0$ implies that v = 0
- Thus, if $v = (z_1, ..., z_n)$ and $w = (w_1, ..., w_n)$, then

$$\langle v, w \rangle = \sum z_i \bar{w}_i$$
 $\langle v, v \rangle = \sum |z_i|^2$

• We now begin tackling today's main theorem: If V_1, V_2 are irreps, then

$$\langle \chi_{V_1}, \chi_{V_2} \rangle = \begin{cases} 0 & V_1 \ncong V_2 \\ 1 & V_1 \cong V_2 \end{cases}$$

- We will prove this theorem in stages.
- The general outline of our approach is to deduce the equality step by step through the transitive property. Some of the equalities we'll eventually end up needing are easier to discuss on their own first, though, so we begin with some lemmas.
- First off, recall the **space of invariants** from PSet 2.
- Space of invariants (of a representation V): The vector space defined as follows. Denoted by V^G .

 Given by

$$V^G = \{ v \in V \mid gv = v \ \forall \ g \in G \}$$

• Lemma 1: Let G be a finite group, let $\rho: G \to GL(V)$ be a finite-dimensional representation of it, and let p be defined as above. Then $p \in \text{Hom}_G(V, V)$.

Proof. We can view p as an element of Hom(V,V). This combined with the fact that for every $h \in G$,

$$p(hv) = \frac{1}{|G|} \sum_{g \in G} (gh)v = \frac{1}{|G|} \sum_{gh \in G} (gh)v = \frac{1}{|G|} h \sum_{g \in G} gv = h(pv)$$

implies that $p \in \text{Hom}_G(V, V)$. In more formal notation,

$$\begin{split} [p \circ \rho_{V}(h)](v) &= \frac{1}{|G|} \sum_{g \in G} [\rho_{V}(g) \circ \rho_{V}(h)](v) \\ &= \frac{1}{|G|} \sum_{g \in G} [\rho_{V}(gh)](v) \\ &= \frac{1}{|G|} \sum_{gh \in G} [\rho_{V}(gh)](v) \\ &= \frac{1}{|G|} \sum_{hg \in G} [\rho_{V}(hg)](v) \\ &= \frac{1}{|G|} \sum_{g \in G} [\rho_{V}(hg)](v) \\ &= [\rho_{V}(h)] \left(\frac{1}{|G|} \sum_{g \in G} [\rho_{V}(g)](v) \right) \\ &= [\rho_{V}(h) \circ p](v) \end{split}$$

- Why do we need this result?? What does it do for the rest of the proof?
- Lemma 2: Let G be a finite group, and let $\rho: G \to GL(V)$ be a finite-dimensional representation of it. Then the map p, defined as follows, is a projector from $V \to V^G$.

$$p = \frac{1}{|G|} \sum_{g \in G} g = \frac{1}{|G|} \sum_{g \in G} \rho_V(g)$$

Proof. To prove that p is a projector, it will suffice to show that $p^2 = p$. To prove that p projects onto V^G , it will suffice to show that $Im(p) = V^G$. Let's begin.

To show that $p^2 = p$, we have

$$p^{2} = \left(\frac{1}{|G|} \sum_{g \in G} g\right)^{2} = \frac{1}{|G|^{2}} \sum_{g_{1}, g_{2} \in G} g_{1}g_{2} = \frac{|G|}{|G|^{2}} \sum_{g \in G} g = p$$

Note that since G is not abelian (i.e., $g_1g_2 \neq g_2g_1$ in all cases), the square of $\sum g$ is as above and cannot be reduced to a smaller sum with a 2 coefficient or something like that. Additionally, note that $\sum_{g_1,g_2\in G}g_1g_2=|G|\sum g$ since for each $g_i,g_i(g_1+\cdots+g_{|G|})=g_1+\cdots+g_{|G|}$.

To show that $\operatorname{Im}(p) = V^G$, we will use a bidirectional inclusion proof. To confirm that $\operatorname{Im}(p) \subset V^G$, we have for any $h \in G$ that

$$h\left(\frac{1}{|G|}\sum_{g\in G}gv\right) = \frac{1}{|G|}\sum_{hg\in G}hgv = \frac{1}{|G|}\sum_{g\in G}gv$$

from which it follows that

$$p(v) = \frac{1}{|G|} \sum gv \in V^G$$

as desired. To confirm that $V^G \subset \operatorname{Im}(p)$, let $v \in V^G$. Then gv = v. It follows that

$$v = \frac{1}{|G|} \sum_{g \in G} v = \frac{1}{|G|} \sum_{g \in G} gv = p(v) \in \text{Im}(p)$$

as desired. \Box

- You differentiated the first and second parts of the above proof by saying, "this is the algebraic way to prove it; we can also prove it nonalgebraically." Does this mean that $p^2 = p$ somehow *implies* $\text{Im}(p) = V^G$ here, or do we still need to prove that "nonalgebraically," as in Fulton and Harris (2004)??
- Consequence of Lemma 2: There's a very easy way to construct invariant factors.
- We now prove one final lemma using what we have learned about p.
- Lemma 3: Let G be a finite group, and let $\rho: G \to GL(V)$ be a finite-dimensional representation of it. Then $\dim V^G = (1/|G|) \sum_{g \in G} \chi_V(g)$.

Proof. Define p as above. Then

$$\dim V^{G} = \dim(\operatorname{Im}(p))$$
 Lemma 2
$$= \operatorname{tr}(p)$$
 PSet 1, Q5c
$$= \operatorname{tr}\left(\frac{1}{|G|} \sum_{g \in G} \rho_{V}(g)\right)$$

$$= \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\rho_{V}(g))$$

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{V}(g)$$

as desired. \Box

- We can now prove the main result.
- \bullet Theorem: If V, W are irreps, then

$$\langle \chi_V, \chi_W \rangle = \begin{cases} 0 & V \ncong W \\ 1 & V \cong W \end{cases}$$

Proof. We will work towards a formula for the inner product, using various results that we've proven up until now. Let's begin.

$$\langle \chi_{V}, \chi_{W} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \cdot \overline{\chi_{W}(g)}$$
 Definition
$$= \frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \cdot \chi_{W^{*}}(g)$$
 Property 4
$$= \frac{1}{|G|} \sum_{g \in G} \chi_{V \otimes W^{*}}(g)$$
 Property 5
$$= \dim[(V \otimes W^{*})^{G}]$$
 Lemma 3
$$= \dim[[\operatorname{Hom}_{F}(V, W)]^{G})$$
 Lecture 2.1
$$= \dim[\operatorname{Hom}_{G}(V, W)]$$
 PSet 2, Q4b
$$= \begin{cases} \dim(\operatorname{span}(I)) & V \cong W \\ \dim(\operatorname{span}(0)) & V \ncong W \end{cases}$$
 Schur's Lemma
$$= \begin{cases} 0 & V \ncong W \\ 1 & V \cong W \end{cases}$$

- In the above proof, Rudenko first surveys the following special case. Why??
 - Then if V is irreducible and trivial, we have

$$\frac{1}{|G|} \sum_{g \in G} \chi_V(g) = 0$$

which happens iff

$$\langle \chi_V, \chi_{\rm triv} \rangle = 0$$

whereas

$$\langle \chi_{\rm triv}, \chi_{\rm triv} \rangle = 1$$

This proves the theorem in a special case, but how do we go from here to all representations? We're very close!

- Corollary: The number of irreps is less than or equal to the number of conjugacy classes.
 - We'll leave it to next time to prove that equality holds.
- Whenever we have a sec, we should try to form a mental picture the whole class function thing.
- Consequence of the theorem: We get an orthogonality relation.
 - If χ_1, χ_2 are characters if irreps, then

$$\sum_{g \in G} \chi_1(g) \overline{\chi_2(g)} = \begin{cases} 0 & \chi_1 \neq \chi_2 \\ |G| & \chi_1 = \chi_2 \end{cases}$$

- This is related to the character table and IChem!!! Example:
 - Recall Table 3.1, the character table for S_3 .
 - \blacksquare Between the trivial and alternating representations, we have

$$(1)(1) + (1)(-1) + (1)(-1) + (1)(-1) + (1)(1) + (1)(1) = 0$$

as expected. Note that we have a term for each element in S_3 , so some products get repeated multiple times.

■ For the standard representation, we have

$$(2)(2) + (0)(0) + (0)(0) + (0)(0) + (-1)(-1) + (-1)(-1) = 6 = |S_3|$$

as expected.

- \bullet Theorem: Characters are equal iff their representations are isomorphic.
- Next time.
 - Prove the theorem.
 - Consequences.
 - Implications for the character table.