

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER	CANDIDATE NUMBER		
CHEMISTRY		062	20/31

Paper 3 (Extended)

October/November 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
Total				

This document consists of 15 printed pages and 1 blank page.

1 The table gives the composition of three particles.

particle	number of protons	number of electrons	number of neutrons		
Α	15	15	16		
В	15	18	16		
С	15	15	17		

(a) Wh	at is the evidence in the table for each of the following?	
(i)	Particle A is an atom.	
(ii)	They are all particles of the same element.	[1]
		[1]
(iii)	Particle B is a negative ion.	
		[2]
(iv)	Particles A and C are isotopes.	[-]
		[2]
(b) (i)	What is the electronic structure of particle A ?	
		[1]
(ii)	What is the valency of the element?	
(iii)	Is the element a metal or a non-metal? Give a reason for your choice.	[1]
		[1]
		[Total: 9]

2	About 4 tin.	000 years ago the Bronze Age started in Britain. Bronze is an alloy of copper and
	(a) (i)	Suggest a reason why a bronze axe was better than a copper axe. [1]
	(ii)	Brass is another copper alloy. Name the other metal in brass.
		[1]
	(b) The	e diagram below shows the arrangement of particles in a pure metal.
	(i)	What is the name given to a regular arrangement of particles in a crystalline solid?
		[1]
	(ii)	Draw a diagram which shows the arrangement of particles in an alloy.
		[2]
	(iii)	Explain the term <i>malleable</i> .
		[1]
	(iv)	Why are metals malleable?
		[2]

(c)	The	common	ore	of	tin	is	tin(IV)	oxide	and	an	ore	of	copper	is	malachite,
	CuC	O ₃ .Cu(OH)) ₂ .												

(i)	Write a word equation for the reduction of tin(IV) oxide by carbon.	
		[1]
(ii)	Malachite is heated to form copper oxide and two other chemicals. Name these chemicals.	

......[2]

(iii) Copper oxide is reduced to copper which is then refined by electrolysis. Label the diagram of the apparatus which could be used to refine copper.

(iv) Give **one** use of copper, other than making alloys.

[Total: 15]

[3]

3 The diagram shows a cell. This is a device which produces electrical energy. The reaction in a cell is a redox reaction and involves electron transfer.

A cell will change energy into electrical energy. [1]

- (ii) Draw an arrow on the diagram to show the direction of the electron flow. [1]
- (iii) In the left hand beaker, the colour changes from brown to colourless. Complete the equation for the reaction.

$$Br_2 + \dots \rightarrow \dots$$
 [2]

(iv) Is the change in (iii) oxidation or reduction? Give a reason for your choice.

	[41]

(v) Complete the following description of the reaction in the right hand beaker.

$$Fe^{2+}$$
 changes into [1]

(vi) When a solution of bromine is replaced by a solution of chlorine, the voltage increases. When a solution of bromine is replaced by a solution of iodine, the voltage decreases.

Suggest an explanation for this difference.

 	 [1]

[Total: 7]

Ammor	nia is	an important industrial ch	emical.				
(a) (i)	Giv	ve the electron structure of	f an atom	of nitroge	en.		
(ii)		e this electronic structure, mula of ammonia is NH ₃ n		an the val	ency of ni	trogen, to	explain why t
(b) Am	nmor	nia is made by the Haber F	Process.				
N_2	(g) +	$+3H_2(g) \rightleftharpoons 2NH_3(g)$ for	ward reac	tion is exc	othermic		
-		2 -					
Th	е ре	rcentage of ammonia in th	e equilibr	ium mixtu	re varies v	with condi	itions.
		pressure / atmospheres	100	200	300	400	
		% ammonia at 300 °C	45	65	72	78	
		% ammonia at 500 °C	9	18	25	31	
			000 1		450.00		
In	e co	nditions actually used are	200 atmo	spheres,	450°C an	d an iron	catalyst.
(i)	Th	e original catalyst was pla	tinum. Su	agest a re	eason why	it was ch	anged to iron
()		5 · · · · · · · · · · · · · · · · · · ·		55	,		3
(ii)		plain why the highest presuilibrium mixture.	ssure give	es the hig	hest perce	entage of	ammonia in t
	••••						
(iii)	Wł	nat happens to the unreac	ted nitrog	en and hy	drogen?		
	-						

(iv)	State one advantage and one disadvantage of using a lower temperature.	E
	advantage	
	[1]	
	disadvantage	
	[1]	
	[Total: 9]	

- **5** Monomers polymerise to form polymers or macromolecules.
 - (a) (i) Explain the term polymerise.

....

(ii) There are two types of polymerisation - addition and condensation. What is the difference between them?

(b) An important monomer is chloroethene which has the structural formula shown below.

It is made by the following method.

$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$
 dichloroethane

This is heated to make chloroethene.

$$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$

(i) Ethene is made by cracking alkanes. Complete the equation for cracking dodecane.

$$C_{12}H_{26} \rightarrow \dots + 2C_2H_4$$
 [1]

Another method of making dichloroethane is from ethane.

$$C_2H_6 + 2Cl_2 \rightarrow C_2H_4Cl_2 + 2HCl$$

(ii) Suggest a reason why the method using ethene is preferred.

(iii) Describe an industrial method of making chlorine.

(iv) Draw the structural formula of poly(chloroethene).

Include three monomer units.

[2]

[Total: 9]

6 The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds.

element	Li	Ве	В	С	N	0	F	Ne
number of outer electrons	1	2	3	4	5	6	7	8
oxidation state	+1	+2	+3	+4	-3	-2	-1	0

(a) (i)	What does it mean when the only oxidation state of an element is zero?
(ii)	Explain why some elements have positive oxidation states but others have negative
	ones. [2]
(iii)	Select two elements in the table which exist as diatomic molecules of the type X ₂ . [1]
(b) Be	ryllium hydroxide, a white solid, is an amphoteric hydroxide.
(i)	Name another metal which has an amphoteric hydroxide.
(ii)	Suggest what you would observe when an excess of aqueous sodium hydroxide is added gradually to aqueous beryllium sulfate.
	[2]
(c) (i)	Give the formulae of lithium fluoride and nitrogen fluoride.
	lithium fluoride
	nitrogen fluoride[2]

(ii)	Predict two differences in their properties.	
(iii)	Explain why these two fluorides have different properties.	[4]
		[2]
	[Total:	13]

7 The diagram shows part of the carbon cycle. This includes some of the processes which determine the percentage of carbon dioxide in the atmosphere.

Carbon dioxide is one greenhouse gas. Name another one.
[1]
Explain the term <i>respiration</i> and how this process increases the percentage of carbon dioxide in the atmosphere.
[3]
Explain why the combustion of waste crop material should not alter the percentage of carbon dioxide in the atmosphere.
[2]
In 1960 the percentage of carbon dioxide in the atmosphere was 0.032% and in 2008 it was 0.038%. Suggest an explanation for this increase.
[2]
[Total: 8]

8	Soluble sal	ts can b	he made	using a	hase and	an acid
U	COIUDIC Sai	lo carri	oc maac	using a	base and	an acid.

(a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate.

Step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.
Step 2
Step 3
Step 4
[4]

(b) 6.0 g of cobalt(II) carbonate was added to 40 cm³ of hydrochloric acid, concentration 2.0 mol/dm³. Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess.

$$\begin{aligned} \mathsf{CoCO_3} \ + 2\mathsf{HC}l \ \to \ \mathsf{CoC}l_2 \ + \ \mathsf{CO_2} \ + \ \mathsf{H_2O} \\ \\ \mathsf{CoC}l_2 \ + \ \mathsf{6H_2O} \ \to \ \mathsf{CoC}l_2.\mathsf{6H_2O} \end{aligned}$$

Maximum yield

Number of moles of HCl used =	
Number of moles of $CoCl_2$ formed =	
Number of moles of $CoCl_2$.6H ₂ O formed =	
Mass of one mole of $CoCl_2$.6H ₂ O = 238 g	
Maximum yield of $CoCl_2.6H_2O = \dots g$	[4]
To show that cobalt(II) carbonate is in excess	
Number of moles of HCl used = (use value from above)	
Mass of one mole of $CoCO_3$ = 119 g	
Number of moles of CoCO ₃ in 6.0 g of cobalt(II) carbonate =	[1]
Explain why cobalt(II) carbonate is in excess	
	[1]
[Total:	: 101

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium 2	Neon Neon 40 Ar	Argon 18	8 X	Krypton 36	131 Xe Xenon Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrendur 103
	II/		19 Fluorine 9 35.5 C1	Chlorine 17	8 Q	ø.		At		173 Yb Ytterbium 70	Nobelium
			16 Oxygen 8	Sulfur 16	79 Se	Selenium 34	128 Te Tellurium			169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31	Phosphorus 15	75 As	Arsenic 33	122 Sb Antimony 51			167 Er Erbium 68	E min
	>		Carbon 6 Carbon 8 S	_	73 Ge	Ε	Sn In 50	207 Pb Lead		165 Ho Holmium	Es n Einsteinium 99
	=		11 B Boron 5 27 A1	Aluminium 13	o G	Gallium 31	115 In Indium	204 T 1 Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
					65 Zn	Zinc 30	112 Cd Cadmium 48			159 Tb Terbium 65	BK Berkelium 97
					⁶⁴ C	Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group					26 26	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
Gre					_{စ္}	Cobalt 27	TO3 Rhodium 45	192 I.r Iridium		Sm Samarium 62	
		Hydrogen			₅₆	Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
					55 N	/anganese	Tc Tc	186 Re Rhenium		Neodymium 60	238 U Uranium 92
					C	Chromium 24	96 Mo Molybdenum 7	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51	Ē	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
					48	Ę	91 Zr Zirconium 40	178 # Hafnium			nic mass bol nic) number
					گو د	Scandium 21	89 ×	139 La Lanthanum *	227 Ac Actinium 89	series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Mg	Magnesium 12	⁶ 0	Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	« X
	_		7 Li Lithium 3 23 Na	Sodium 11	® ×	Potassium 19	Rb Rubidium	133 Cae sium	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.