Prof. Dr. Edson Melo de Souza souzaem@unig.pro.br

Definição de Estatística

A estatística é um conjunto de técnicas que permite, de forma sistemática, organizar, descrever, analisar e interpretar dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento.

Estatística Descritiva

Probabilidade

Inferência Estatística

Estatística Descritiva É a etapa inicial da análise utilizada para descrever e resumir os dados.

Probabilidade

A teoria de probabilidades nos permite descrever os fenômenos aleatórios, ou seja, aqueles em que está presente a incerteza.

. . . .

Inferência Estatística E o estudo de técnicas que possibilitam a extrapolação, a um grande conjunto de dados, das informações e conclusões obtidas a partir da amostra.

Etapas da Análise Estatística

População

Técnicas de amostragem

Amostra

Análise descritiva

Conclusões sobre as características da população

Inferência estatística

Informações contidas nos dados

População e Amostra

Onde se Aplica Amostragem

- Pesquisas de mercado.
- Pesquisas de opinião.
- Avaliação do processo de produção.
- Ou seja, praticamente em todo experimento.

Tipos de Amostragem

Aleatória Estratificada Sistemática Conveniência Conglomerados

Amostragem Aleatória

Cada elemento da população tem a mesma chance de ser escolhido.

Amostragem Estratificada

Classificar a população em, ao menos dois estratos e extrair uma amostra de cada um.

Amostragem Sistemática

Escolher elementos utilizando determinada ordem (k).

Amostragem por Conglomerados

Dividir em seções a área populacional, selecionar aleatoriamente algumas dessas seções e tomar todos os elementos das mesmas.

Amostragem por Conveniência

É obtida a partir da "vontade" ou "escolha" do pesquisador.

Exemplo de Amostragem

As pesquisas eleitorais procuram, com base nos resultados de um levantamento aplicado a uma amostra da população, prever o resultado da eleição.

Ou seja, <mark>não serão</mark> entrevistados "todos os eleitores", mas apenas uma parte deles (amostra).

Pesquisa Eleitoral

Metodologia

Amostra: 1.008 entrevistados

Aleatório: 56 cidades *

Local: Estado de São Paulo

Período: 23 a 26/jun/2018

Confiança: 95%

Margem de erro: 3 p p (pontos percentuais)

* Não foi divulgado o método de seleçã

Para descontrair!!!!!

Resumão sobre Amostras

Amostra casual simples Probabilística Amostra sistemática Amostra estratificada Amostra por conglomerado Não-probabilistica Amostra por cotas Amostra sistemática Amostra por conveniência

As amostras podem ser divididas em:

Probabilísticas e

Não-probabilísticas.

Estatística Descritiva

O que fazer com as

observações que coletamos?

Estatística Descritiva

Resumo dos Dados =

Estatística Descritiva

É uma verdade?

Definindo...

Variável é qualquer característica associada a uma população.

Tipos de Variáveis

Variáveis Quantitativas

São representadas por meio de números resultantes de uma contagem ou mensuração. Elas podem ser de dois tipos:

Variáveis discretas: os valores representam um conjunto finito ou enumerável de números, e que resultam de uma contagem, por exemplo: Número de filhos (0,1,2,...), número de bactérias por amostra, número de copos de cerveja tomados por dia.

Variáveis contínuas: os valores pertencem a um intervalo de números reais e representam uma mensuração como por exemplo altura ou peso de uma pessoa. Nesses casos números fracionais fazem sentido. Exemplo: tempo (relógio) e pressão arterial.

Variáveis Qualitativas

Representam uma qualidade (ou atributo) de um indivíduo pesquisado, são definidas por várias categorias. São características que não possuem valores quantitativos. Essas variáveis podem ser de dois tipos:

Variável nominal: quando não existe nenhuma ordenação nas possíveis representações. Exemplos: gênero, cor dos olhos, cor do cabelo, fumante ou não fumante.

Variável ordinal: quando apresentam **uma ordem** nos seus resultados. Exemplos: escolaridade (1, 2, 3 graus), mês de observação (janeiro, fevereiro, ..., dezembro.)

Vamos Pensar....

Suponha que você é um pesquisador e está interessado em estudar aspectos socioeconômicos dos atletas de um time de futebol. Foram coletados dados do departamento pessoal do clube e a seguinte tabela foi construída:

Val	lore	25
V	/a	/alore

Estado civil solteiro, casado, separado, ...

Grau de instrução Ensino fundamental, médio, superior

Número de filhos 0,1,2,3,4...

Salário 1000,32 ; 5439,99

Idade 14, 20, 34, ...

Classe social alta, média, baixa

Classificar cada uma delas quanto ao tipo e suas divisões. (5 minutos)

Resposta

Estado civil Qualitativa nominal Grau de instrução \Rightarrow Qualitativa ordinal Número de filhos Quantitativa discreta Quantitativa Salário contínua \Rightarrow Idade Quantitativa discreta \Rightarrow Classe social Qualitativa ordinal

Observação 1: Uma variável quantitativa pode ser coletada de forma qualitativa. A variável idade se avaliada por anos completos é quantitativa (contínua), mas se for avaliada por meio de faixas etárias (0 a 5 anos, 6 a 18 anos) é qualitativa (ordinal). Isso tudo vai ser determinado pela maneira que você coletar os dados.

Observação 2: Nem sempre que uma variável for representada por números significa que ela é quantitativa. O número da casa, número de identidade são exemplos dessa situação.

Medidas de Resumo

Quantitativas

Medidas Quantitativas

Medidas de Posição: Média, Moda, Mediana, Percentis, Quartis.

Medidas de Dispersão: Amplitude, Intervalo-Interquartil, Variância, Desvio Padrão, Coeficiente de Variação.

Medidas de Posição

Média (Me) é o cálculo da soma de todos os valores de um conjunto de dados dividido pelo número de elementos deste conjunto.

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Exemplo de Média

$$(1) \quad \bar{x} = \frac{2+5+3+7+8}{5}$$

$$(2) \quad \bar{x} = \frac{25}{5}$$

(3)
$$\bar{x} = 5$$

Observação Importante!!!!

A média é sensível aos valores da amostra, sendo indicada para situações em que os dados são distribuídos de forma uniforme, ou seja, valores sem grandes discrepâncias.

Exemplo de Média "sensível"

Em um restaurante trabalham 10 pessoas. A soma dos salários deles é de R\$ 12.500,00, ou seja, a média salarial é de R\$ 1.250,00 (12.500/10 = 1250). Se o jogador Messi, que ganha R\$ 580.000,00 por mês fosse trabalhar lá, a média salarial seria de quanto? (Agora são 11 funcionários)

média = R\$ 53.863,63 (Quero trabalhar nesse lugar urgentemente)

Isso é totalmente incompatível com a ideia de encontrarmos uma média para os valores, pois um valor discrepante elevou a média absurdamente, não traduzindo a realidade do local.

Outro exemplo...

Em um grupo de pessoas com idades de 28, 30, 35 e 40 a média das idades deste grupo é 33,25 anos. Se uma pessoa de 46 anos entrar no grupo, o que acontece com a média das idades das pessoas?

Resposta: A média aumentará, pois 28+30+35+40+46 = 179/5 = 35,8 anos que é maior que 33,25 anos (35,8 > 33,25).

Apesar de ocorrer o aumento na média das idades, ainda assim é um valor aceitável.

Ufa, por hoje acabou!!!!

Na próxima aula estudaremos

Moda, Mediana, Percentis, Quartis

Boa semana para vocês!

Referências

BUSSAB, W. O.; MORETTIN, P. A. Estatística Básica, 8ª Edição, 1ª Tiragem. São Paulo, Editora Saraiva, 2013.

DA CUNHA, Sônia Baptista; CARVAJAL, Santiago Ramírez. **Estatística Básica - A Arte de Trabalhar com Dados**. Elsevier Brasil, 2009.

DE BRUM PIANA, Clause Fátima; DE ALMEIDA MACHADO, Amauri; SELAU, Lisiane Priscila Roldão. Estatística básica. 2009.

MAGALHÃES, Marcos Nascimento; DE LIMA, Antônio Carlos Pedroso. **Noções de probabilidade e estatística**. Editora da Universidade de São Paulo, 2002.

MOORE, David S.; NOTZ, William I.; FLIGNER, Michael A. **A estatística básica e sua prática**. Livros Técnicos e Científicos, 2000.