Comments on HW 11.

2: Consider the metric space $(\mathbb{R}, |\cdot|)$ with the Euclidean topology. Give, with brief proof, an example to show a countably infinite intersection of open sets can be a closed set.

One solution is to look at

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}.$$

The intervals are open, but the singleton set, as the complement of an open set, is closed.

3: Consider $(\mathbb{R},|\cdot|)$ with the Euclidean topology, and X=(0,1] the topological space with the topology induced by $(\mathbb{R},|\cdot|)$. Give an example of a set $A\subsetneq X\subseteq \mathbb{R}$ that is open in the induced topology on X, but not in \mathbb{R} . Give an example of a set $B\subsetneq X\subseteq \mathbb{R}$ that is closed in the induced topology on X, but not in \mathbb{R} . Justify briefly.

Let $A=(\frac{1}{2},1]$. Then $A=X\cap(\frac{1}{2},2)$ and since $(\frac{1}{2},2)$ is an open set in \mathbb{R} , A is open in X. However, A is not open as a subset of \mathbb{R} , since $1\in A$, but no open ball $B(1,r)\subset\mathbb{R}$ is contained in A.

Let $B=(0,\frac{1}{2}].$ Then $B=X\cap[-\frac{1}{2},\frac{1}{2}]$ and since the closed interval is a closed subset of \mathbb{R} , B is a closed subset of X. However, the half-closed interval is not closed as a subset of \mathbb{R} .

4: Problem 58 (2) and (3).

My one comment is to note that under the given map, the pre-image of

$$1 = .(p-1)...(p-1)\cdots = \sum_{i=1}^{\infty} \left(\frac{p-1}{p}\right)^{i}$$

is ± 1 . Thus, the map is not 1-1 on \mathbb{Q}_p .