2022全國智慧製造大數據分析競賽決賽 團隊測驗報告

報名序號:111011 (格式:111XXX)

團隊名稱:Urban2.0

註1:請用本PowerPoint 文件撰寫團隊測驗報告,請轉成PDF檔案繳交。

註2:依據競賽須知第八條,第5項規定:

決賽簡報之書面及口頭報告、服裝,均不得使用學校系所標誌、提及學校系所、教授姓名及任何可供辨識參賽者身分的資料,違者取消參賽資格,或由主辦單位及評審會議決定處理方式

註3:請於11/19(六) 12:41前繳交團隊測驗報告及測驗結果, 至主辦單位指定網站。

【提醒】

11/19(六)請繳交兩種檔案:

- 1. 簡報檔, 檔名命名規則如下, 使用英文命名:
 - ProjectA: 報名序號 projectA report.pdf, 例如:111999 projectA report.pdf
 - ProjectB:報名序號_projectB_report.pdf, 例如:111999_projectB_report.pdf
- 2. <u>決賽測驗結果檔</u>, 檔名命名規則如下, 使用英文命名:
 - ProjectA:報名序號_projectA_ans.csv, 例如:111999_projectA_ans.csv
 - ProjectB:報名序號_projectB_ans.csv, 例如:111999_projectB_ans.csv

一、資料前處理(說明資料前處理過程)

Overview

資料清洗與合併

- 合併layer-wise sg以及spike資訊
- 降低feature精度
 - Disk-efficient
 - RAM-efficient
- 修正時間資訊錯誤標記
 - 檢查時間是否為單調遞增
 - 修正train1 spike layer11的時間資訊
- 删除train2 spike layer17多餘的資訊

資料檢查

- 原始資料無資料缺失問題 (i.e., missing values)
- 同把智慧刀把的切削行為可被大略分為兩組 (train2僅一組)

```
Check if sg and spike information are sliced into two groups (like train1 26 / 20)... (Directly check groups' boundary (min/max) and #layers per group (count).)
```

[1 rows x 46 columns]			
	min	max	count
n_samples 284001 416001	UL		L.L
284001	27	46	20
416001	1	26	26

● 同一層資訊可以再切分為更細的行為單元

```
Check sg["e"].diff().sort_values() to help DA slicing...

Layer 1: -12.33 -12.29 -12.25 -12.21 -12.18 -11.66 -11.63 -11.56 -11.51 -11.37

-7.68 -7.48 -7.28 -7.1 -7.07 -7.02 -6.99 -6.96 -6.95 -6.93

-4.92 -4.81 -4.63 -4.61 -4.57 -4.56 -4.53 -4.52 -4.5 -4.49
```

Data Augmentation - Fine-Grained Slicing

- 將更層資訊切分出更細緻的切削行為單元
 - 手動記錄sg中特徵E差值的負數極值時間點位並在本機驗證切分結果

特徵工程

- 分兩種層次建立特徵
 - 以Layer為單位 Coarse-grained
 - 以Chunk為單位 Fine-grained
- 特徵分類 (共1584項特徵)
 - 簡單統計量
 - 平均值、標準差、分位數等
 - 數值趨勢
 - 建立簡易線性回歸模型
 - 數值變化量
 - 變化率、差值等

二、演算法和模型介紹(介紹方法細節)

Overview

Layer-Level Normal Modeling

- 特徵轉換與特徵選取
 - QuantileTransformer
 - VarianceThreshold(threhold=0.09)
 - SelectKBest(f_regression, k=100)
- 模型選擇
 - 輕量級RandomForestRegressor(n_estimators=50)
- Cross-Validation
 - KFold(n_splits=10) with 20 random seeds

Chunk-Level Augmented Modeling

- 特徵轉換與特徵選取
 - QuantileTransformer
 - VarianceThreshold(threhold=0.085)
 - SelectKBest(f_regression, k=25)
- 模型選擇
 - HistGradientBoostingRegressor(max_leaf_nodes=8, min_samples_leaf=15)
- Cross-Validation
 - ShuffleGroupKFold(n_splits=10) with 20 random seeds

Chunk-Aware Separate Modeling

- 特徵轉換與特徵選取
 - QuantileTransformer
 - VarianceThreshold(threhold=0.085)
 - SelectKBest(f_regression, k=100)
- 模型選擇
 - 輕量級RandomForestRegressor(n_estimators=50)
- Cross-Validation
 - KFold(n_splits=10) with 20 random seeds
 - 每個chunk需分開建模

Chunk-Aware Separate Modeling (cont.)

Ensemble and Post-Processing

- Ensemble Inter-pool equally-weighted blending
 - 三個model pool各自將預測值取平均
- Post-Processing
 - 修正頭端及尾端急遽磨耗的預測值

三、執行環境/套裝選擇/執行方式

執行環境與套件選擇

- 使用tf_keras環境
 - 實驗設置均用.yaml 控制與調整
- 套件選擇
 - 主要使用pandas、numpy、scikit-learn、PyYAML、joblib等

執行方式

Data Preparation

- python -m data_preparation.clean_and_merge --dataset <dataset>
- python -m data_preparation.check_data --dataset <dataset>
- python -m data_preparation.run_da_slicing --dataset <dataset>
 --neg-peak-thres <neg int>
- python -m data_preparation.run_fe --dataset <dataset> --data-type
 normal
- python -m data_preparation.run_fe --dataset <dataset> --data-type aug
- python -m data_preparation.mix_train

執行方式 (cont.)

Model Training

- Layer-Level Normal Modeling
 - python -m tools.train_eval --dataset <dataset> --data-type normal --mix-aug False --model-name rf --exp-id <n>
- Chunk-Level Augmented Modeling
 - python -m tools.train_eval --dataset <dataset> --data-type aug --mix-aug True--model-name hgb --exp-id <n>
- Chunk-Aware Separate Modeling
 - python -m tools.train_eval_chunk --dataset <dataset> --data-type aug --mix-aug
 False --model-name rf --exp-id <n>

執行方式 (cont.)

Inference

○ python -m tools.infer --dataset test --exp-id <要使用的model之exp_id>

四、補充說明(或自行定義項目)

CV Reliability Study

• 頭段及尾段急遽磨耗為最具挑戰性的加工層

