

(2) Seja es cominher mx = y-1 que parsam en (0,1), e mER. $\lim_{(x,y)\to(0,1)} \frac{x^3 \cdot mx - x(mx)^3}{x^4 + (mx)^4} = \lim_{(x,y)\to(0,1)} \frac{mx^4 - m^3x^4}{x^4 + m^4x^4}$ $= \lim_{(x,y)\to(0,0)} \frac{(m-m^3)x^4}{(1+m^4)x^4} = \frac{m-m^3}{1+m^4}.$ Se m=0, limite m-m3
1+ma=0/4 Se m=2, limite $\frac{m-m^2}{1+m^2} = \frac{2-8}{1+16} = \frac{-6}{17}$:. lim <u>x ?y-1)-x(y-1)3</u> não existe (x,y-5(0,1) X+(y-1)4 Brownands ptor criticar no $f(x,y) = x^2 - y^2$ interior: $(f_{x} = 2x = 0)$ $f_{y} = -2y = 0$ $f_{y} = -2y = 0$ $f_{y} = 0$ disco 1-x2-y2 20, entate accita-se to pto (0,0) Procurando pros críticos na fronteira:

) max/min f(xiy) = x²-y²

S.a x²+y²=1

Pale Méterle de Lagrange temes
$$L(x,y,\Lambda) = f(x,y) - \Lambda g(x,y)$$

$$f(x,y,\Lambda) = \chi^2 - \chi^2 - \Lambda(\chi^2 + \chi^2 - 1)$$

$$\frac{\partial L}{\partial \chi} = 2\chi - \Lambda(2\chi) = 0 \qquad = 0 \qquad (2\chi(1-\chi) = 0 \qquad (2\chi(1+\chi) = 0$$

De eq(1):
$$2x(1-\lambda)=0$$
 $x = 0$
 $x^2 + y^2 = 1 = 0$
 $x = 1$
 $x = 0$
 $x = 1$
 $x = 0$
 $x = 1$

Ptos Críticos Encontrados

	(X'1/2)	f(x,y)	
interior,		0	
Zi. C	(0,1)	-1	l maximes
frentiera.	(1,0)	l,	-} -} minimer
V	(-1,0)	1	7 11/1/1/1000

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas

144.	= 15.15
	=3.4.12
	= 3.12.4

	Disciplina:
Curso:	Professor:
Aluno;	
Turma:	Data: / /
(5)	
a) v(t)= 124 x3 t/2	>+67 F
2	
()	
L= 144+(12+2)+36+2	dt = (44+ 144+ 36+2) dt
70	2
^	
L= (36 (4+4+++2) d+	$= 6(1+2)^2 dt = 6(1+2) dt$
)	30
	, , 3
L=6 (+2) dt = 6/12 +2	$=6(1+2)=6\cdot 5=15$
2	10 (2) 2
b) i ;	k _ w
JUST F = BX BU	2/22 = 02 + 00 + 02 =0
12× 40	7.462
1	
8° F = 12× L+ 25 +	(z+ez) L 2 conservative
Veu usar TFIL DI	colular (F. 2r.
	0 6.
1x=12x= 1= 12xdx=	$= 12x^2 = 6x^2 + g(y, z)$
3	2
	0
Iu= a(21,2) = 21 = 00 0	8(2) = (2) = 32 + N(3)
19 000,00	0.00 100 E. a
$-b f = 6x^2 + 3x^2 + 8$	(3)
341	<i>O</i> ,

$$f_z = h'(z) = z + e^z = hh(z) = z^2 + e^z + C$$

 $f_z = h'(z) = z + e^z + c^z + c^z$

TFILS

© como o prisma é sólido fechado, então porso usar teor. Divergente:

$$\iint_{S} F \cdot dS = \iiint_{S} div F \cdot dV$$

$$= \iiint_{S} \left(\frac{ln u}{u} + \frac{1}{2x} - \frac{2x}{2} + \frac{2x}{2} \right) dq dz dx$$

$\frac{2y(1,1) = -F_3 = -(\frac{5}{3} - 2)}{F_4}$	$= -\frac{5-2}{3-2} = -\frac{3}{3} = -\frac{3}{3}$
2° juite de ruselver. $F = e^{x^2 + y^2 + 3^2 - 3} - xy^3 = 5$	
$F_{x} = 2x(e^{x^{2}+y^{2}+3^{2}-3}) - y^{3}z^{5}$ $F_{y} = 2y(e^{x^{2}+y^{2}+3^{2}-3}) - 3xy^{2}z^{5}$	$F_{x}(1,1) = 2 \cdot 1 \cdot e^{0} - 3 \cdot 1 \cdot = -1$ $F_{y}(1,1) = 2 \cdot 1 \cdot e^{0} - 3 \cdot 1 \cdot = -1$
	Fz(1,1) = 2.1.e°-5.1.1.4=-3
$\frac{2y(9,1)}{2} = -\frac{Fx}{Fy} = -\frac{1}{1} = 1$	
$\frac{\partial y(1,1) = -F_3 = -(-3) = -3}{F_3} = \frac{-1}{-1}$	