Network of Nuclear Process in Astrophysics

Y.S. Chen

China Institute of Atomic Energy, Beijing, China Presentation at group meeting, Wendushuicheng, August 12-13, 2010.

- 1. Introduction
- 2. Theory of capture reaction
- 3. Theory of β-decay
- 4. Network equation and nuclear data base
- 5. Our task

Introduction

Why nuclear astrophysics?

Nuclear scientists have tools that enable studies of the cosmos that are impossible with any telescope!

We can use accelerators to recreate – and - measure the nuclear reactions that power the stars & create elements of our life and world.

Thermonuclear Reaction Rates

Goal: make simulation accurately represent working of stars

Repeat to improve models

Relevant nuclei of each frontier region

Theory of Capture Reaction

Useful Theory for Cross Section

ANC method

Spectroscopic factor

Transition Amplitude for $B + p \rightarrow A + \gamma$

$$T = \langle \Phi_A(\xi_B, \xi_p, r) | O(r) | \Phi_B(\xi_B) \varphi_p(\xi_p) \psi^{(+)}(r) \rangle$$

$$r \equiv r_{Bp}^{\varpi} \qquad \text{relative between B and p}$$

integrate over ξ

$$T = \langle I_{Bp}^{A}(\overset{\varpi}{r}) | \overset{\mathcal{O}}{O}(\overset{\varpi}{r}) | \psi^{(+)}(\overset{\mathcal{O}}{r}) \rangle$$

the overlap integral

$$I_{Bp}^{A}(\stackrel{\mathbf{v}}{r}) = \langle \Phi_{B}(\xi_{B})\varphi_{p}(\xi_{p}) | \Phi_{A}(\xi_{B}, \xi_{p}, \stackrel{\mathbf{v}}{r}) \rangle$$

For peripheral reaction (p,γ)

$$I_{\lambda_f j_f I}(r) = C_{\lambda_f j_f I} W_{\eta, \lambda_f + 1/2}(2\kappa r) / r \qquad (r \ge R_N)$$

$$C_{\lambda_f j_f I}$$
 is the ANC

$$W_{\eta,\lambda_f+1/2}(2\kappa r)$$
 is the Whittaker function,

$$\kappa = \sqrt{2\mu E_B} / \eta$$
 for bound state

The Asymptotic Normalization Constant (ANC):

the amplitude of

the tail of the overlap integral

For peripheral transfer reaction: B(d,n)A

two virtual captures:

$$B + p \rightarrow A$$
$$n + p \rightarrow d$$

two ANC's: C_{Bp}^{A} and C_{np}^{d}

$$\frac{d\sigma}{d\Omega} = \sum \frac{(C_{Bpl_{A}j_{A}}^{A})^{2}(C_{npl_{d}j_{d}}^{d})^{2}}{b_{Bpl_{A}j_{A}}^{2}b_{npl_{d}j_{d}}^{2}} \sigma_{l_{A}j_{A}l_{d}j_{d}}^{DWBA}$$

$$(C_{np}^d)^2 = 0.76 \text{ fm}^{-1}$$
 known value
 $(C_{Bp}^A)^2$ can be obtained from $(\frac{d\sigma}{d\Omega})_{\text{exp}}$

For non-peripheral reaction (n,γ)

Standard approach (Spectroscopic factor)

$$I_{Bpl_Aj_A}^A(r) = (S_{l_Aj_A})^{1/2} R_{n_Al_Aj_A}(r)$$

$$I_{npl_d j_d}^d(r) = (S_{l_d j_d})^{1/2} R_{n_d l_d j_d}(r)$$

$$\frac{d\sigma}{d\Omega} = \sum S_{Bpl_A j_A} S_{npl_d j_d} \sigma_{l_A j_A l_d j_d}^{DWBA}$$

Spectroscopic factor S is very sensitive to single particle parameters in DW. But ANC is not so sensitive.

β-Decay Theory

β-decay theory for deformed heavy nuclei

$$\hat{H} = \hat{H}_0 - \frac{1}{2} \chi \sum_{\mu} \hat{Q}^{\dagger}_{\mu} \hat{Q}_{\mu} - G_M \hat{P}^{\dagger} \hat{P} - G_Q \sum_{\mu} \hat{P}^{\dagger}_{\mu} \hat{P}_{\mu}.$$

$$+2\chi_{ph}\sum_{\mu}\beta_{1\mu}^{-}(-1)^{\mu}\beta_{1-\mu}^{+}-2\chi_{pp}\sum_{\mu}\Gamma_{1\mu}^{-}(-1)^{\mu}\Gamma_{1-\mu}^{+}$$

GT-forces

particle-hole

particle-particle

$$\beta_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle b_{\pi}^{+} b_{\nu}$$

$$\beta_{1\mu}^{+} = (-)^{\mu} (\beta_{1-\mu}^{-})^{\dagger}$$

$$\Gamma_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle b_{\pi}^{+} b_{\bar{\nu}}^{+}$$

$$\Gamma_{1\mu}^{+} = (-)^{\mu} (\Gamma_{1-\mu}^{-})^{\dagger}$$

$$|\Psi_{IM}^{\sigma}\rangle = \sum_{K\kappa} f_{IK\kappa}^{\sigma} \, \hat{P}_{MK}^{I} \, |\Phi_{\kappa}\rangle$$

Gamow-Teller transitions between the excited states

Z.C. Gao et al., Phys. Rev. C74, 054303 (2006)

• The Projected Shell Model has been applied to calculate the GT transitions for heavy, deformed nuclei

• The testing calculation of the e-capture $^{164}\text{Ho}(Z=67) \rightarrow ^{164}\text{Dy}(Z=66)$ is in a good agreement with data.

Network equation and nuclear data base

The reaction network --- a set of differential equations

$$\frac{dY_{i}}{dt} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{j,k}^{i} \rho N_{A} < \sigma V >_{jk,i} Y_{j} Y_{k}
+ \sum_{j,k,l} N_{j,k,l}^{i} \rho^{2} N_{A}^{2} < \sigma V >_{jkl,i} Y_{j} Y_{k} Y_{l}$$

$$Y_i = n_i /
ho N_A$$
 The nuclear abundance

N_A Avagadro constant number

P The density

n_i The number density of species 'i'

N_i Positive or negative numbers to specify how many particles of species i are created or destroyed in the reaction

The set of differential equations ruling BBN

$$\frac{\dot{R}}{R} = H = \sqrt{\frac{8\pi G_N \rho}{3}}$$

$$\frac{n_B}{n_B} = -3H$$

$$\stackrel{\bullet}{\rho} = -3H(\rho + p)$$

$$\rho = \rho_B + \rho_{\gamma} + \rho_e + \rho_{\nu}$$

$$\frac{dY_{i}}{dt} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{j,k}^{i} \rho_{B} N_{A} < \sigma V >_{jk,i} Y_{j} Y_{k}$$

$$+ \sum_{j,k,l} N_{j,k,l}^{i} \rho_{B}^{2} N_{A}^{2} < \sigma V >_{jkl,i} Y_{j} Y_{k} Y_{l}$$

$$n_{B} \sum_{i} Z_{i} X_{i} = n_{e^{-}} - n_{e^{+}} \equiv L(\frac{m_{e}}{T}, \phi_{e})$$

$$\left(\frac{\partial}{\partial t} - H \middle| p \middle| \frac{\partial}{\partial |p|}\right) f_{\nu_{\alpha}}(|p|, t) = I_{\nu_{\alpha}}[f_{\nu_{e}}, f_{\overline{\nu_{e}}}, f_{\nu_{x}}, f_{\overline{\nu_{x}}}, f_{e^{-}}, f_{e^{+}}]$$

Reaction chain $^{8}\text{Li}(n,\gamma)^{9}\text{Li}(\alpha,n)^{12}\text{B}(\beta)^{12}\text{C}$

Reaction flux

Flux (mole/g) Time: 1E+05(sec) $\sim 10^{-1}$: $\sim 10^{-8}$: $\sim 10^{-8}$: $\sim 10^{-8}$: $\sim 10^{-4}$:

BBN calculation

(侯素青)

The effect of $^{8}\text{Li}(n,\gamma)^{9}\text{Li}(\alpha,n)^{12}\text{B}(\beta)^{12}\text{C}$

Our tasks

本项目以核物理实验及天文观测为主,理论同实验密切结合;

以国内大型科学工程的实验设备为基础,并利用国际先进实验设备。

理论紧密结合实验,着重为本项目的实验数据提升科学意义,为进一步实验提供建议。

理论在同核物理实验和天文观测的比较中和需求中发展。

重视核天体物理理论和计算方法的新发展。

网络方程数据库建立和更新 BBN rp-process r-process

发展核天体物理理论
Explosive events:
Big Bang (light nuclei)
x-ray burst (rp-nuclei, proton rich)
Supernova (r-nuclei, neutron rich)

发展核理论 Spectroscopic Factor β-decay

Thank you