

Regular expressions and languages Chapter - 2: Regular languages and finite automata

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Regular Expression	1
2.	Symbols in Regular Expressions	2
3.	Regular Expression Operators	3
4.	Examples of Regular Expressions	4
5.	Language of a Regular Expression	. 5
6.	Regular Expressions and Finite Automata	6
7.	Closure Properties of Regular Languages	7
8.	Applications of Regular Expressions	8

What is a Regular Expression?

Definition:

A Regular Expression (RE) is a formal way to describe a set of strings (a language) using pattern-matching rules.

Purpose:

To specify regular languages, which are the simplest class in the Chomsky hierarchy.

Basic Symbols in Regular Expressions

Symbol	Meaning
а	The character 'a'
ε	The empty string
Ø	Empty language (no string)

Parul® University

Regular Expression Operators

Operator	Syntax	Description
Union	$R_1 + R_2$	Either R₁ or R₂ (alternation)
Concatenation	R₁R₂	R₁ followed by R₂
Kleene Star	R*	Zero or more repetitions of R
Plus	R ⁺	One or more repetitions of R
Optional	R?	Zero or one occurrence of R

Examples of Regular Expressions

- $a^* \rightarrow \{\epsilon, a, aa, aaa, ...\}$
- $(a + b)^* \rightarrow All strings over \{a, b\}$
- $a(b + c)^* \rightarrow Starts$ with 'a', followed by any combo of b and c
- 1(0 + 1)* → Binary strings starting with 1

Language of a Regular Expression

Definition:

If R is a regular expression, then L(R) is the language denoted by R — the set of all strings it matches.

Example:

$$R = (ab)^*$$

 \rightarrow L(R) = { ϵ , ab, abab, ababab, ...}

Regular Expressions and Finite Automata

Every regular expression corresponds to a Finite Automaton, and vice versa.

- RE → FA (Construction possible)
- FA → RE (Using state elimination method)

Implication:

REs and FAs recognize the same class of languages: Regular Languages

Closure Properties of Regular Languages

Operation	Explanation	
Union	L₁ ∪ L₂ is regular	
Concatenation	L₁L₂ is regular	
Kleene Star	L* is regular	
Complementation	If L is regular, so is its complement	
Intersection	L₁ ∩ L₂ is regular	
Difference	L ₁ - L ₂ is regular	

Applications of Regular Expressions

- Text editors (search and replace)
- Lexical analyzers (tokenization in compilers)
- Pattern matching in programming (e.g., Python, JavaScript, grep)
- Validation (email, password formats)

https://paruluniversity.ac.in/

