Digital System Design

Design of Ripple Counters

Alfonso Fernandez

Academia de Sistemas Digitales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Contents

Introduction

Design of Ripple Counters

Design of BCD Ripple Counters

Design of Binary Ripple Counters

Contents

Introduction

Design of Ripple Counters

Design of BCD Ripple Counters

Design of Binary Ripple Counters

α Transitions

β Transitions

β Transitions in Positive Edge Triggered Flip-Flops

Algorithm

- From the State Diagram, obtain the State Table and Transtion Table.
- Identify the flip-flop '**Z**' that can be clocked by the output of flip-flop '**Y**'. To do that, check if α transitions (or β transitions) in flip-flop **Y** cover all α and β transitions in flip-flop **Z**.
- Modify the transitions of flip-flop **Z** according to the following: for each flip-flop **Z** transition different from α transition (or β transition, respectively) change any '0' and '1' transitions in flip-flop **Z** with dont care transition ('X').
- Construct the Karnaugh maps using the Transition Table.
- Select the flip-flop to be used in the design.
- Using the Karnaugh maps derive the optimum input equations for the selected flip-flops.

Contents

Introduction

Design of Ripple Counters

Design of BCD Ripple Counters

Design of Binary Ripple Counters

State Diagram

State Table and Transition Table

	Present State			Next State			Transitions												
\overline{A}	B	C	\overline{D}	A_{+}	B_{+}	C_{+}	D_{+}	I_A	I_B	I_C	I_D	I_A'	I_B'	I_C'	I_D'	$I_A^{\prime\prime}$	$I_B^{\prime\prime}$	I_C''	$I_D^{\prime\prime}$
0	0	0	0	0	0	0	1	0	0	0	α	X	Χ	0	α	X	Χ	0	α
0	0	0	1	0	0	1	1	0	0	α	1	X	Χ	α	1	X	Χ	α	1
0	0	1	1	0	1	0	1	0	α	β	1	X	α	β	1	0	α	β	1
0	1	0	1	0	1	1	1	0	1	α	1	X	Χ	α	1	X	Χ	α	1
0	1	1	1	1	0	0	0	α	β	β	β	α	β	β	β	α	β	β	β
1	0	0	0	1	0	0	1	1	0	0	α	X	Χ	0	α	X	Χ	0	α
1	0	0	1	1	0	1	1	1	0	α	1	X	Χ	α	1	X	Χ	α	1
1	0	1	1	1	1	0	1	1	α	β	1	X	α	β	1	1	α	β	1
1	1	0	1	1	1	1	1	1	1	α	1	X	Χ	α	1	X	Χ	α	1
1	1	1	1	0	0	0	0	β	eta	β	β	β							

Karnaugh Maps for $\{I_A',I_B',I_C',I_D'\}$

$$J_A = 1$$
$$K_A = 1$$

$$J_B = 1$$
$$K_B = 1$$

$$J_C = D$$
$$K_C = 1$$

$$J_D = 1$$
$$K_D = BC$$

Circuit Diagram

Karnaugh Maps for $\{I_A'',I_B'',I_C'',I_D''\}$

$$J_A = B$$
$$K_A = B$$

$$J_B = 1$$
$$K_B = 1$$

$$J_C = D$$
$$K_C = 1$$

$$J_D = 1$$
$$K_D = BC$$

Circuit Diagram

Contents

Introduction

Design of Ripple Counters

Design of BCD Ripple Counters

Design of Binary Ripple Counters

State diagram

State Table and Transition Table

	Present State				Next State					Trans	sition	S				
A	B	C	\overline{D}	\overline{A}_{-}	B_{+}	C_{+}	D_{+}		I_A	I_B	I_C	I_D	I_A'	I_B'	I_C'	I_D'
0	0	0	0	0	0	0	1		0	0	0	α	Χ	Χ	Χ	α
0	0	0	1	0	0	1	0		0	0	α	β	0	Χ	α	β
0	0	1	0	0	0	1	1		0	0	1	α	Χ	Χ	Χ	α
0	0	1	1	0	1	0	0		0	α	β	eta	0	α	eta	β
0	1	0	0	0	1	0	1		0	1	0	α	Χ	Χ	Χ	α
0	1	0	1	0	1	1	0		0	1	α	eta	0	Χ	α	β
0	1	1	0	0	1	1	1		0	1	1	α	Χ	Χ	Χ	α
0	1	1	1	1	0	0	0		α	β	β	β	α	β	β	β
1	0	0	0	1	0	0	1		1	0	0	α	Χ	Χ	Χ	α
1	0	0	1	0	0	0	0		β	0	0	β	β	Χ	0	β

Design with JK Flip-Flops

$$J_A = BC$$
$$K_A = 1$$

$$J_B = 1$$
$$K_B = 1$$

$$J_C = \overline{A}$$

$$K_C = 1$$

$$J_D = 1$$
$$K_D = 1$$

Circuit Diagram

State diagram (Down Counter)

State Table and Transition Table

	Present State				Next State					Trans	sition	S				
\overline{A}	B	C	\overline{D}	\overline{A}	$+$ B_{+}	C_{+}	D_{+}		I_A	I_B	I_C	I_D	I_A'	I_B'	I_C'	I_D'
0	0	0	0	1	0	0	1		α	0	0	α	α	Χ	0	α
0	0	0	1	0	0	0	0		0	0	0	β	Χ	Χ	Χ	β
0	0	1	0	0	0	0	1		0	0	β	α	0	Χ	β	α
0	0	1	1	0	0	1	0		0	0	1	β	Χ	Χ	Χ	β
0	1	0	0	0	0	1	1		0	β	α	α	0	β	α	α
0	1	0	1	0	1	0	0		0	1	0	β	Χ	Χ	Χ	β
0	1	1	0	0	1	0	1		0	1	β	α	0	Χ	β	α
0	1	1	1	0	1	1	0		0	1	1	β	Χ	Χ	Χ	β
1	0	0	0	0	1	1	1		β	α	α	α	β	α	α	α
1	0	0	1	1	0	0	0		1	0	0	β	Χ	Χ	Χ	β

Design with JK Flip-Flops

$$J_A = \overline{B} \, \overline{C}$$
$$K_A = 1$$

$$J_B = 1$$
$$K_B = 1$$

$$J_C = A + B$$
$$K_C = 1$$

$$J_D = 1$$
$$K_D = 1$$

Circuit Diagram

Contents

Introduction

Design of Ripple Counters

Design of BCD Ripple Counters

 $Design\ of\ Binary\ Ripple\ Counters$

State diagram

State Table and Transition Table

Present State				Next State				ansiti	ons				
\overline{A}	B	\overline{C}	$\overline{A_+}$	B_{+}	C_{+}		I_A	I_B	I_C	I	$\stackrel{\prime}{A}$	I_B'	I_C'
0	0	0	0	0	1		0	0	α	>	<	Χ	α
0	0	1	0	1	0		0	α	β	>	<	α	β
0	1	0	0	1	1		0	1	α	>	<	Χ	α
0	1	1	1	0	0		α	β	β	(γ	β	β
1	0	0	1	0	1		1	0	α	>	<	Χ	α
1	0	1	1	1	0		1	α	β	>	<	α	β
1	1	0	1	1	1		1	1	α	>	<	Χ	α
1	1	1	0	0	0		β	β	β	ļ	3	β	β

Design with T Flip-Flops

$$T_A = 1$$

$$T_B = 1$$

$$T_C = 1$$

Circuit Diagram

State diagram (Down Counter)

State Table and Transition Table

	Present State			Next State				ansiti	ons			
\overline{A}	B	\overline{C}	$\overline{A_+}$	B_{+}	C_{+}		$\overline{I_A}$	I_B	I_C	I_A'	I_B'	I_C'
0	0	0	1	1	1		α	α	α	α	α	α
0	0	1	0	0	0		0	0	β	Χ	Χ	β
0	1	0	0	0	1		0	β	α	Χ	β	α
0	1	1	0	1	0		0	1	β	Χ	Χ	β
1	0	0	0	1	1		β	α	α	β	α	α
1	0	1	1	0	0		1	0	β	Χ	Χ	β
1	1	0	1	0	1		1	eta	α	Χ	β	α
1	1	1	1	1	0		1	1	β	Χ	Χ	β

Design with T Flip-Flops

$$T_A = 1$$

$$T_B = 1$$

$$T_C = 1$$

Circuit Diagram

