Сергей Злобин

Классификация космических объектов (Kaggle PLAsTiCC Astronomical Classification)

Leaderboard

1	_	Kyle Boone	94	0.68503	104	2d
2	^ 2	Mike & Silogram	Q .	0.69933	176	1d
3	▼ 1	Major Tom		0.70016	366	1d
4	▼ 1	AhmetErdem	<u> </u>	0.70423	233	1d
5	_	SKZ Lost in Translation		0.75229	343	2d
6	^ 2	Stefan Stefanov	9	0.80173	28	1d
7	▲ 3	hklee		0.80836	63	7d
8	▼ 1	rapids.ai	RAPOS	0.80905	133	1d
9	▼ 3	Three Musketeers	<u></u>	0.81312	313	1d
10	4 3	J&J	3	0.81901	246	1d
11	▼ 2	SimonChen		0.82247	131	1d
12	▼ 1	Go Spartans!		0.82652	148	1d
13	▼ 1	Day meets Night		0.82691	164	1d
14	▲ 6	Belinda Trotta	&	0.84070	105	2d

Команда

Mithrillion (Питер, Австралия)

Blonde (Таня, Ирландия)

Sergey Zlobin (Россия)

Немного о задаче

LSST = Large Synoptic Survey Telescope (Чили)

20-40 терабайт в сутки!

Данные

+метаданные:

- У Класс объекта (один из 14)
- Расстояние до объекта
- Координаты на небе
- Флаг DDF (Deep Drilling Fields)
- MWEBV: "вымирание" света

Non-DDF (Wide-Fast-Deep)

Метрика соревнования

weighted log-loss metric (N=15)

$$L = -\frac{\sum_{j=1}^{M} w_j \cdot \sum_{i=1}^{N} \frac{1}{N_j} \tau_{i,j} \ln(P_{ij})}{\sum_{j=1}^{M} w_j}$$

where $\tau_{i,j} = 1$ if the *i*th object comes from the *j*th class and 0 otherwise, and N_j is the number of objects in any given class j, and w_j are individual weights per class which reflect relative contribution to the overall metric

Веса w не опубликованы, но фактически из $\{1, 2\}$.

Выборки

- Обучающая выборка ~8.000 объектов
- Тестовая выборка ~3.500.000 объектов (19 Gb)

Подсчёт признаков и обучение модулей запускались на 24 CPU или с GPU

Распределение классов

Среди классов:

- Сверхновые звёзды
- Переменные звёзды
- Микролинзирование
- ???

Зануление неподходящих классов дает улучшение ~0.006 на LB

Модели

- Light GBM
- 2) Multilayer perceptron (4 скрытых слоя) -> в конце отказались

5-fold & 10-fold

Лучший score одной Light GBM модели: 0.815

Конечная модель: 0.812 (blend двух Light GBM моделей)

Первое место: 0.670

Признаки

Признаки можно считать по каждому из 6 каналов и агрегированные.

- Стандартные (min, max, median, mean, std, skew)
- Библиотечные (Cesium, Feets)
- Подгонка (fitting) кривой (признаки параметры и ошибка аппроксимации)
- Специальные астрономические (magnitude=звёздная величина)

Отбор признаков: LGBM Importance, eli5 (Permutation Importance) + CV

Конечная модель: 81 признак

Domain Knowledge!

Фича от Grzegorz Sionkowski:

Расстояние между надежно детектированными сигналами

Абсолютная звёздная величина (magnitude):

-2.5 * math.log10(flux) – distmod distmod в метаданных: Distance modulus (Модуль расстояния) (яркость обратно пропорциональна квадрату расстояния)

Астрономические цвета

Разность магнитуд между некоторыми каналами (например, между зеленым и красным)

Типы сверхновых

Curve Fitting

- Гауссовское распределение оценивает ширину пика
- Кусочно-линейная функция для log(flux) оценивает наклон
- Bazin et al.:

$$f(t) = A \frac{e^{-(t-t_0)/\tau_{fall}}}{1 + e^{(t-t_0)/\tau_{rise}}} + B$$

Пробовали другие кривые, в том числе с двумя пиками – не помогло.

Класс 99

Формула от Oliver:

```
preds_99 = np.ones(preds.shape[0])
for i in range(preds.shape[1]):
        preds_99 *= (1 - preds[:, i])
preds_99 = 0.18 * preds_99 / np.mean(preds_99)
```

Класс 99

Формула от Scirpus:

(0.5 + 0.5 * mymedian + 0.25 * mymean - 0.5 * mymax ** 3) / 2

Класс 99

Победитель (Kyle Boone):

weighted average of the predictions for classes 42, 52, 62 and 95 (сверхновые)

LB 0.726 -> 0.670

Аугментация

Меняем сигналы с помощью известной ошибки измерения:

 $N_{SETS} = 10$, потом 30

Борьба с переобучением

В какой-то момент застряли на LB 0.85.

Аугментация

Увеличили количество обучающей выборки с x10 до x30, но сделав процент DDF объектов таким же, как в тестовой выборке (около 1% вместо 10%).

Параметры Light GBM:

- Уменьшили max_depth (7 -> 4)
- Уменьшили num_leaves (7 -> 4)
- Уменьшили max_bin (255 -> 32)

CV чуть хуже, но LB намного лучше!

Что не получилось

- Автоэнкодер не улучшил результат
- Не зашли другие виды параметрических кривых
- Не получилось воспользоваться гауссовскими процессами (для аугментации)
- Не смогли придумать как лучше оценивать класс 99 (в частности, пробовали PU классификацию)

Что сделали правильно

- Объединились в команду!
- Читали статьи на тему соревнования.
- Задавали вопросы на форуме Kaggle и в ODS. Нам отвечали!
- Много чего попробовали.
- Не сдаваться до конца: сильно улучшились за последние 3 дня и даже в последний день!

Победитель (Kyle Boone)

- Аугментация х40 обучающей выборки, ухудшая хорошие кривые, чтобы стало похоже на тестовую выборку.
- Гауссовские процессы (GP) для предсказания кривых.
- Около 200 признаков на сырых и предсказанных после GP данных.
- Одна LGBM модель на 5 фолдах

Спасибо за внимание!