基于BP神经网络的多时间尺度风电功率预测研究

张晋铭

June 7, 2025

Abstract

风电功率的准确预测对电网调度和风能利用至关重要。本文构建了基于BP神经网络的多时间尺度风电功率预测模型,采用Adam优化器、早停机制和Xavier权重初始化等技术改进训练过程。实验结果显示:15分钟预测的CR准确度为78.38%,RMSE为0.0701;1小时预测的CR准确度为65.48%,RMSE为0.1114;4小时预测的CR准确度为48.27%,RMSE为0.1873。相比标准SGD,Adam优化器将训练效率提升了70.3%,预测精度提升约6%。Xavier初始化改善了梯度传播问题,早停机制避免了过拟合现象,使模型能在较少轮次内收敛。本文建立的多时间尺度预测框架可满足风电场不同调度需求。完整代码已开源:https://github.com/Jinming00/EE。

关键词: BP神经网络、风电功率预测、Adam优化器、多时间尺度、早停机制

Contents

引言		3
1.1	研究背景	3
1.2	研究目标与贡献	3
相关	工作	3
数据	集与预处理	4
3.1	数据集描述	4
3.2	数据预处理	4
	3.2.1 异常值处理	4
	3.2.2 时间窗口数据集构建	4
	3.2.3 数据集分割	5
方法	·与模型	5
4.1	BP神经网络架构	5
	4.1.1 网络初始化	5
	4.1.2 前向传播过程	6
	4.1.3 反向传播和参数更新	6
4.2	Adam优化器实现	7
4.3	训练过程和早停机制	8
实验	设置与模型训练	9
5.1	模型参数配置	9
5.2	训练执行过程	9
实验	结果与分析 (1)	10
6.1		10
-		$\frac{12}{12}$
6.3	Annual Company of the	13
结论	· ·与未来工作	14
课程	建议	14
	1.1 1.2 相数3.1 3.2 方4.1 4.2 实 5.1 实 6.1 6.3 给	1.2 研究目标与贡献 相关工作 数据集与预处理 3.1 数据集描述 3.2 数据预处理 3.2.1 异常值处理 3.2.2 时间窗口数据集构建 3.2.3 数据集分割 方法与模型 4.1 BP神经网络架构 4.1.1 网络初始化 4.1.2 前向传播过程 4.1.3 反向传播和参数更新 4.2 Adam优化器实现 4.3 训练过程和早停机制 实验设置与模型训练 5.1 模型参数配置 5.2 训练执行过程 实验结果与分析 6.1 多时间尺度预测结果 6.2 Adam优化器与SGD对比 6.3 训练过程分析

1 引言

1.1 研究背景

风力发电在全球能源转型中地位重要,但其间歇性和随机性给电网运行带来挑战。准确的功率预测是解决这一问题的关键,既能优化调度又能提高风能利用率,降低运行成本。

目前的风电预测方法主要分为物理模型和统计模型两类。物理模型依靠数值天气预报和风机特性曲线,物理意义明确,但难以准确描述复杂的边界层流动和地形效应;统计模型通过历史数据建立数学关系,在处理非线性和长期依赖方面有限。

BP神经网络是经典的前馈网络,具备强大的非线性拟合能力,在时间序列预测中应用广泛。其通过误差反向传播调整权重,能处理复杂的非线性映射,为风电功率预测提供了有效涂径。

1.2 研究目标与贡献

本研究的主要目标是构建基于BP神经网络的多时间尺度风电功率预测模型,通过技术改进提升预测性能和训练效率。主要贡献包括:

- 1. **多时间尺度预测**:实现15分钟、1小时和4小时三种时间尺度的功率预测,适应不同调度需求
- 2. Adam优化算法: 相比传统SGD, 提升收敛速度和预测精度
- 3. 早停机制: 避免过拟合, 提高模型泛化能力
- 4. Xavier权重初始化: 改善梯度传播, 增强训练稳定性

2 相关工作

BP神经网络自1986年Rumelhart等人提出以来,在机器学习和时间序列预测中应用广泛 [1]。 风电功率预测领域的研究主要集中在网络结构优化、算法改进和特征工程等方面。

传统BP神经网络训练多采用标准梯度下降法,但存在收敛慢、易陷入局部最优等问题。 为此,研究者提出了多种改进优化算法。其中,Adam优化器 [2]结合了自适应学习率和动量 方法的优点,在深度学习中表现出色,为BP神经网络改进提供了新思路。

在风电功率预测应用中,时间尺度选择对预测精度和实用性影响显著。短期预测(15分钟至1小时)主要用于实时调度和功率平衡,中期预测(1小时至4小时)更多应用于机组启停计划和备用容量安排。多时间尺度预测模型能够更好满足实际需求。

3 数据集与预处理

3.1 数据集描述

本研究使用的数据集包含某风电场的实际功率数据,已完成标准化处理。数据集的基本统计信息如表1所示:

Table 1: 数据集基本统计信息

数据集	样本数量	功率值范围	均值	标准差
训练集	7,000	[-0.0094, 1.0000]		0.249
测试集	3,000	[-0.0093, 0.9446]		0.253

3.2 数据预处理

3.2.1 异常值处理

数据预处理首先需要处理异常值、特别是物理上不合理的负功率值:

Listing 1: 异常值处理代码

```
# 数据加载
1
2
   train_data = pd.read_excel('../data/train.xlsx')
   test_data = pd.read_excel('../data/test.xlsx')
4
   # 提取功率数据 (第一列是实际功率 - 已归一化)
   train_power = train_data.iloc[:, 0].values
6
   test_power = test_data.iloc[:, 0].values
8
   # 检查并清理训练数据中的负值
9
10
   negative_count_train = np.sum(train_power < 0)</pre>
   if negative_count_train > 0:
11
       print(f"发现训练数据中有 {negative_count_train} 个负值,将它们转换为零。")
12
       train_power = np.maximum(train_power, 0)
13
14
   # 检查并清理测试数据中的负值
15
   negative_count_test = np.sum(test_power < 0)</pre>
16
17
   if negative_count_test > 0:
18
       print(f"发现测试数据中有 {negative_count_test} 个负值,将它们转换为零。")
       test_power = np.maximum(test_power, 0)
19
```

3.2.2 时间窗口数据集构建

为了构建适用于不同预测时长的训练数据集,设计了滑动窗口方法:

Listing 2: 时间窗口数据集构建

```
def create_dataset_for_horizon(data, input_size=96, predict_horizon=1, step=1):
1
2
       X, y = [], []
3
       for i in range(0, len(data) - input_size - predict_horizon, step):
4
           X.append(data[i:i+input_size])
           y.append(data[i+input_size+predict_horizon-1])
6
       return np.array(X), np.array(y).reshape(-1, 1)
   # 为个不同时长创建训练数据3
9
   input_size = 96
11
   step = 1
   X_train_15min, y_train_15min = create_dataset_for_horizon(train_power_scaled, input_size, 1,
12
       → step)
```

输入窗口大小设置为96个时间点,对应24小时的历史数据。预测时长分别设置为1、4、16个时间点,对应15分钟、1小时和4小时的预测任务。步长默认为1以获得更多的数据对。

3.2.3 数据集分割

采用顺序分割方法,将数据按照时间顺序划分为训练集和验证集:

Listing 3: 数据集分割

```
def split_train_val(X, y, train_ratio=0.8):
1
       ""按照顺序分割数据,前用于训练,后用于验证80%20%"""
2
      train_size = int(len(X) * train_ratio)
      X_train = X[:train_size]
4
      y_train = y[:train_size]
5
      X_val = X[train_size:]
      y_val = y[train_size:]
7
      return X_train, y_train, X_val, y_val
   # 为每个预测时长分割数据
10
11
   X_train_15min_split, y_train_15min_split, X_val_15min, y_val_15min = split_train_val(
      \hookrightarrow X_train_15min, y_train_15min)
   X_train_1hour_split, y_train_1hour_split, X_val_1hour, y_val_1hour = split_train_val(
12
       \rightarrow X_train_1hour, y_train_1hour)
   13
      \hookrightarrow X_train_4hour, y_train_4hour)
```

训练集与验证集按8:2的比例进行划分,确保模型能够在独立的验证集上评估性能。

4 方法与模型

4.1 BP神经网络架构

本研究采用三层BP神经网络结构,包括输入层、隐藏层和输出层。网络采用全连接方式,激活函数选择Sigmoid函数。

4.1.1 网络初始化

Listing 4: BP神经网络初始化

```
class BPNeuralNetwork:
2
       def __init__(self, input_size, hidden_size, output_size=1, learning_rate=0.01, use_adam=
           → True):
           """神经网络初始化
4
           input_size: 输入层节点数
           hidden_size: 隐藏层节点数
6
           output_size: 输出层节点数
           learning_rate: 学习率
           use_adam: 是否使用优化器Adam
9
10
11
           self.input_size = input_size
           self.hidden_size = hidden_size
12
           self.output_size = output_size
           self.learning_rate = learning_rate
14
15
           self.use_adam = use_adam
```

```
# 权重初始化Xavier
17
            self.W1 = np.random.normal(0, np.sqrt(2.0/(input_size + hidden_size)),
18
                                        (input_size, hidden_size))
19
20
            self.b1 = np.zeros((1, hidden_size))
            self.W2 = np.random.normal(0, np.sqrt(2.0/(hidden_size + output_size)),
21
                                        (hidden_size, output_size))
22
            self.b2 = np.zeros((1, output_size))
23
24
            # 优化器参数Adam
25
26
            if self.use_adam:
                self.beta1 = 0.9
27
28
                self.beta2 = 0.999
                self.epsilon = 1e-8
29
                self.t = 0 # 时间步
30
31
                # 一阶动量
32
                self.m_W1 = np.zeros_like(self.W1)
33
                self.m_b1 = np.zeros_like(self.b1)
34
                self.m_W2 = np.zeros_like(self.W2)
35
36
                self.m_b2 = np.zeros_like(self.b2)
37
                # 二阶动量
38
                self.v_W1 = np.zeros_like(self.W1)
39
                self.v_b1 = np.zeros_like(self.b1)
40
                self.v_W2 = np.zeros_like(self.W2)
41
                self.v_b2 = np.zeros_like(self.b2)
42
```

网络采用Xavier初始化方法,有效改善了梯度传播问题。权重初始化遵循正态分布,标准 差根据输入和输出维度动态调整。

4.1.2 前向传播过程

Listing 5: 前向传播实现

```
def sigmoid(self, x):
1
        """Sigmoid"
2
        return 1.0 / (1.0 + np.exp(-x))
3
4
   def sigmoid_derivative(self, x):
5
        """其导数"""
       return x * (1.0 - x)
7
8
   def forward(self, X):
10
       # 输入层到隐藏层
11
       self.z1 = np.dot(X, self.W1) + self.b1
12
       self.a1 = self.sigmoid(self.z1)
13
14
       # 隐藏层到输出层
15
       self.z2 = np.dot(self.a1, self.W2) + self.b2
16
       self.a2 = self.sigmoid(self.z2)
17
18
       return self.a2
19
```

前向传播过程包括两个线性变换和两个非线性激活,通过Sigmoid函数引入非线性特性。

4.1.3 反向传播和参数更新

Listing 6: 反向传播实现

```
def backward(self, X, y, output):
    """反向传播和参数更新

    X: 输入数据
    y: 真实标签
    output: 网络输出
    """
    m = X.shape[0] # 批次大小
```

```
9
        # 计算输出层误差
10
        output_error = output - y
11
        output_delta = output_error * self.sigmoid_derivative(output)
12
13
        # 计算隐藏层误差
14
        hidden_error = output_delta.dot(self.W2.T)
15
        hidden_delta = hidden_error * self.sigmoid_derivative(self.a1)
16
17
18
        dW2 = np.dot(self.a1.T, output_delta) / m
19
        db2 = np.sum(output_delta, axis=0, keepdims=True) / m
20
        dW1 = np.dot(X.T, hidden_delta) / m
21
22
        db1 = np.sum(hidden_delta, axis=0, keepdims=True) / m
23
        # 参数更新 (Adam vs SGD)
24
        if self.use_adam:
25
           self._adam_update(dW1, db1, dW2, db2)
26
27
        else:
28
            self._sgd_update(dW1, db1, dW2, db2)
29
        # 计算损失 (MSE)
30
        mse = np.mean(np.sum(np.square(output_error), axis=1))
31
32
        return mse
```

反向传播算法通过链式法则计算各层的梯度、并根据选择的优化器进行参数更新。

4.2 Adam优化器实现

Adam优化器结合了自适应学习率和动量方法的优点,能够有效提升训练效率:

Listing 7: Adam优化器实现

```
def _adam_update(self, dW1, db1, dW2, db2):
1
        """优化器参数更新Adam"""
2
        self.t += 1
3
4
        # 更新一阶动量梯度的指数移动平均 ()
        self.m_W2 = self.beta1 * self.m_W2 + (1 - self.beta1) * dW2
6
        self.m_b2 = self.beta1 * self.m_b2 + (1 - self.beta1) * db2
7
        self.m_W1 = self.beta1 * self.m_W1 + (1 - self.beta1) * dW1
        self.m_b1 = self.beta1 * self.m_b1 + (1 - self.beta1) * db1
9
10
        # 更新二阶动量梯度平方的指数移动平均 ()
11
12
        self.v_W2 = self.beta2 * self.v_W2 + (1 - self.beta2) * (dW2 ** 2)
        self.v_b2 = self.beta2 * self.v_b2 + (1 - self.beta2) * (db2 ** 2)
13
        self.v_W1 = self.beta2 * self.v_W1 + (1 - self.beta2) * (dW1 ** 2)
14
        self.v_b1 = self.beta2 * self.v_b1 + (1 - self.beta2) * (db1 ** 2)
15
16
        # 偏置校正
17
        m_W2_hat = self.m_W2 / (1 - self.beta1 ** self.t)
18
        m_b2_hat = self.m_b2 / (1 - self.beta1 ** self.t)
m_W1_hat = self.m_W1 / (1 - self.beta1 ** self.t)
19
20
        m_b1_hat = self.m_b1 / (1 - self.beta1 ** self.t)
21
22
        v_W2_hat = self.v_W2 / (1 - self.beta2 ** self.t)
23
        v_b2_hat = self.v_b2 / (1 - self.beta2 ** self.t)
24
        v_W1_hat = self.v_W1 / (1 - self.beta2 ** self.t)
25
        v_b1_hat = self.v_b1 / (1 - self.beta2 ** self.t)
26
27
        # 更新规则Adam: \theta = \theta - \alpha * m / \sqrt{(v + ε)}
28
29
        self.W2 += self.learning_rate * m_W2_hat / (np.sqrt(v_W2_hat) + self.epsilon)
        self.b2 += self.learning_rate * m_b2_hat / (np.sqrt(v_b2_hat) + self.epsilon)
30
31
        self.W1 += self.learning_rate * m_W1_hat / (np.sqrt(v_W1_hat) + self.epsilon)
        self.b1 += self.learning_rate * m_b1_hat / (np.sqrt(v_b1_hat) + self.epsilon)
32
33
    def _sgd_update(self, dW1, db1, dW2, db2):
34
        """标准梯度下降参数更新""
35
        self.W2 += self.learning_rate * dW2
36
        self.b2 += self.learning_rate * db2
37
        self.W1 += self.learning_rate * dW1
38
        self.b1 += self.learning_rate * db1
```

Adam优化器通过维护梯度的一阶和二阶动量,实现自适应学习率调整,显著提升了收敛速度和稳定性。

Adam优化器的主要优势包括:

- 1. 自适应学习率:根据梯度的历史信息动态调整学习率,避免了手动调参的复杂性
- 2. 动量机制: 通过一阶和二阶动量的结合, 有效克服了局部最优和震荡问题
- 3. 快速收敛: 在相同条件下, 训练时间减少96.6%, 大幅提升了训练效率
- 4. 稳定性好: 偏置校正机制确保了训练初期的稳定性

4.3 训练过程和早停机制

Listing 8: 训练过程实现

```
def train(self, X_train, y_train, X_val=None, y_val=None, epochs=100,
1
              batch_size=32, early_stopping=True, patience=50, min_delta=1e-6):
3
 4
        X_train, y_train: 训练数据
5
       X_val, y_val: 验证数据
epochs: 最大训练轮次
 6
        batch_size: 批次大小
8
        early_stopping: 是否启用早停
9
        patience: 早停耐心值
10
11
        min_delta: 性能改善最小阈值
12
13
14
        train_losses = []
        val_losses = []
15
16
        val_cr_scores = []
        n_samples = X_train.shape[0]
17
18
        # 早停相关变量
19
20
        best_cr_score = -np.inf
        patience_counter = 0
21
        best_weights = None
22
23
24
        for epoch in range(epochs):
            # 数据打乱
            indices = np.random.permutation(n_samples)
26
27
            X_shuffled = X_train[indices]
            y_shuffled = y_train[indices]
28
29
30
            epoch_loss = 0
            # 批次训练
31
32
            for i in range(0, n_samples, batch_size):
                end = min(i + batch_size, n_samples)
33
                X_batch = X_shuffled[i:end]
34
                y_batch = y_shuffled[i:end]
35
36
                # 前向传播
37
                output = self.forward(X_batch)
                # 反向传播
39
40
                batch_loss = self.backward(X_batch, y_batch, output)
                epoch_loss += batch_loss * (end - i) / n_samples
41
42
43
            train_losses.append(epoch_loss)
44
            # 验证集评估
45
            if X_val is not None and y_val is not None:
                val_output = self.forward(X_val)
47
48
                val_loss = np.mean(np.square(val_output - y_val))
49
                val_losses.append(val_loss)
50
                # 计算指标CR
                val_cr_score = self.calculate_CR(y_val, val_output)
52
53
                val_cr_scores.append(val_cr_score)
```

```
# 早停检查
55
                if early_stopping:
56
                    if val_cr_score > best_cr_score + min_delta:
57
58
                        best_cr_score = val_cr_score
59
                        patience_counter = 0
                        # 保存最佳权重
60
61
                        best_weights =
                             'W1': self.W1.copy(), 'b1': self.b1.copy(),
62
                             'W2': self.W2.copy(), 'b2': self.b2.copy()
63
                        }
64
                    else:
65
66
                        patience_counter += 1
67
                    if patience_counter >= patience:
68
                        print(f"早停触发,在第 {epoch+1} 轮停止训练")
69
                         # 恢复最佳权重
70
71
                        if best_weights is not None:
                            self.W1 = best_weights['W1']
72
                            self.b1 = best_weights['b1']
73
74
                             self.W2 = best_weights['W2']
                            self.b2 = best_weights['b2']
75
76
                        break
77
            if (epoch + 1) % 100 == 0:
78
                print(f"Epoch {epoch+1}/{epochs}, Loss: {epoch_loss:.6f}")
79
80
       return train_losses, val_losses, val_cr_scores
81
```

早停机制通过监控验证集上的CR指标,在性能不再改善时及时停止训练,有效防止过拟合并提升训练效率。

5 实验设置与模型训练

5.1 模型参数配置

针对三个不同的预测时长,设置了相应的模型参数:

Listing 9: 模型参数配置

```
# 设置共享模型参数
1
2
   max_epochs = 10000
3
   # 为三个不同的预测模型设置不同的参数
4
   hidden_size_15min = 16
6
   batch_size_15min = 64
8
   learning_rate_15min = 0.01
9
10
   hidden_size_1hour = 64
   batch_size_1hour = 64
11
   learning_rate_1hour = 0.01
12
   hidden_size_4hour = 128
14
   batch_size_4hour = 128
15
16
   learning_rate_4hour = 0.005
17
   # 早停参数
18
   patience = 50
19
   min_delta = 0.0005
20
```

参数设置基于实验调优,考虑了不同预测时长的复杂度差异。较长的预测时长采用更大的隐藏层规模和批次大小,以增强模型的表达能力。

5.2 训练执行过程

Listing 10: 模型训练执行

```
print("\训练分钟预测模型n15...")
   model_15min = BPNeuralNetwork(input_size, hidden_size_15min, 1, learning_rate_15min, use_adam=
2
       → True)
   train_losses_15min, val_losses_15min, val_cr_scores_15min = model_15min.train(
       X_{train_15min_split}, y_{train_15min_split},
4
5
       X_val_15min, y_val_15min,
       max_epochs, batch_size_15min, shuffle=True,
       early_stopping=True, patience=patience, min_delta=min_delta
7
8
   print("\训练小时预测模型n1...")
10
   model_1hour = BPNeuralNetwork(input_size, hidden_size_1hour, 1, learning_rate_1hour, use_adam=
       → True)
12
   train_losses_1hour, val_losses_1hour, val_cr_scores_1hour = model_1hour.train(
13
       X_train_1hour_split, y_train_1hour_split,
       X_{val_1hour}, y_{val_1hour},
14
15
       max_epochs, batch_size_1hour, shuffle=True,
16
       early_stopping=True, patience=patience, min_delta=min_delta
17
   print("\训练小时预测模型n4...")
19
   model_4hour = BPNeuralNetwork(input_size, hidden_size_4hour, 1, learning_rate_4hour, use_adam=
20
       → True)
21
   train_losses_4hour, val_losses_4hour, val_cr_scores_4hour = model_4hour.train(
22
       X_train_4hour_split, y_train_4hour_split,
       X_{val_4hour}, y_{val_4hour},
23
       max_epochs, batch_size_4hour, shuffle=True,
24
25
       early_stopping=True, patience=patience, min_delta=min_delta
26
```

三个模型分别针对不同的预测时长进行训练,均采用相同的训练策略但使用不同的超参数配置。

6 实验结果与分析

6.1 多时间尺度预测结果

本研究实现了15分钟、1小时和4小时三个时间尺度的风电功率预测。图1展示了三个不同时间尺度的预测结果与真实值对比:

Figure 1: 多时间尺度预测结果对比

从图中可以看出:

- 15分钟预测结果最接近真实值, 能够较好地捕捉功率波动特征
- 1小时预测结果整体趋势准确, 但在急剧变化点处存在一定偏差
- 4小时预测结果能捕捉主要趋势, 但精细波动的预测能力有限

表2总结了三个时间尺度的详细性能指标:

Table 2: 多时间尺度预测性能对比

预测时长	RMSE	相关系数	CR准确度(%)
15分钟	0.0701	0.9640	78.38 65.48 48.27
1小时	0.1114	0.9046	
4小时	0.1873	0.7071	

结果分析:

1. **准确度随时间递减**:预测时长增加,CR准确度明显下降,从15分钟的78.38%降至4小时的48.27%,降幅达30.11个百分点

- 2. **误差随时间增大**: RMSE随时间尺度增长, 15分钟为0.0701, 1小时增至0.1114, 4小时 达0.1873
- 3. **相关性逐步减弱**: 相关系数从15分钟的0.9640降至4小时的0.7071, 长期预测的线性相 关性明显减弱

这符合时间序列预测的一般规律: 预测时长越短, 精度越高。15分钟预测在所有指标上均表现最优。

下图直观展示了三种预测时长的性能指标对比:

Figure 2: 评估指标对比

6.2 Adam优化器与SGD对比

以15分钟预测模型为例,在相同实验环境下对比了Adam优化器和标准SGD的性能:

Table 3: Adam vs SGD优化器对比

优化器类型	训练轮次	停止原因	训练时间(秒)	RMSE	相关系数	CR准确度(%)
Adam SGD	$456 \\ 10,000$	早停触发 达到最大轮次	5.57 165.33	0.0701 0.0773	$0.9640 \\ 0.9531$	78.38 73.86

Figure 3: Adam与SGD训练过程对比

对比分析显示:

- 1. **收敛效率**: Adam优化器在456轮即达到最优性能并触发早停,而SGD即使训练10,000轮 仍未能触发早停
- 2. **训练效率**: Adam的训练时间(5.57秒)相比SGD(165.33秒)减少96.6%
- 3. **预测精度**: Adam的RMSE(0.0701)比SGD(0.0773)降低9.3%, CR准确度提升4.52个百分点

SGD模型在达到最大训练轮次时仍未触发早停条件,表明其在训练后期收敛极其缓慢,模型性能改善微乎其微。

6.3 训练过程分析

图4展示了三个模型的训练损失曲线:

Figure 4: 三个模型的训练损失曲线

从训练曲线可以观察到:

• 15分钟模型收敛效果较好,损失曲线较为平滑。而1小时和4小时模型训练曲线较为波动,原则上可调小学习率来平滑收敛过程,但是实验发现降低学习率会进一步导致预

测准确率的下降(在训练集轻松达到过拟合)。个人觉得其波动大的主要原因还是训练数据质量不佳,波动过大,而且简单的bp网络对于4小时跨度的建模能力不够,模型表达能力欠佳

7 结论与未来工作

本研究构建了基于BP神经网络的多时间尺度风电功率预测模型,通过Adam优化器、早停机制和Xavier初始化等技术改进,实现了15分钟、1小时和4小时三种预测时长。实验结果显示: 15分钟CR准确度78.38%(RMSE=0.0701)、1小时65.48%(RMSE=0.1114)、4小时48.27%(RMSE=0.1873),准确度随时间递减符合预测规律。Adam优化器相比SGD训练效率提升96.6%,预测精度提升9.3%,在456轮触发早停而SGD即使10000轮也未收敛。未来研究可从超参数自动优化(网格搜索、optuna)、正则化技术(Dropout、BatchNorm、L1/L2)、不确定性量化(添加置信度、预测区间而非确定值)等方向进一步提升预测精度和实用性。

8 课程建议

建议可以结合一些最新的AI论文来讲解一些最新的模型架构。然后个人觉得个人作业可以放到期中后,这样期末压力更小,然后也可呀更快熟悉题目,也更好想出一些idea来放到大作业中

References

- [1] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
- [2] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations.
- [3] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256).
- [4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
- [5] Prechelt, L. (1998). Early stopping-but when?. In Neural Networks: Tricks of the trade (pp. 55-69). Springer.