Decision Trees

eg. coin flip from fair con (p=1/2) is

$$-\log_2 z = 1 \text{ bit}$$

eq. certain event (p=1)

Want to define I so that:

$$I(q) \ge 0$$

$$I(1) = 0$$

- Two indep events ω prob $P_1 + P_2$ $I(both events) = I(P_1 \cdot P_2) = I(P_1) + I(P_2)$
- . I(p) should be continuous

Together:
$$I(p^2) = 2I(p)$$

$$I(p^n) = nI(p) \longrightarrow -\log_b(p)$$

$$b = 2 \text{ for "bits"}$$

```
eg. coin flip gives - log 1/2 = 1
e.g. brased win, heads with p=.99 gives -log_.99=0.0145 bits
                                 P=.01 -log_.01=6.643 bts
Entropy -> expected in Germation of a set of events
      events V, --- VJ
      79 -- 19 2dag
     infamation I(b') --- I(b2)
   Entropy = P, I(P,) + P, I(P,) + --- + P, I(P,)
             = \sum_{i} P_{i} T(P_{i}) = -\sum_{i} P_{i} \log_{2}(P_{i}) =: H(P_{i} - P_{J})
     So if heads tails
               ICb) ICI-b)
      H(P, 1-P) = P I(P) + (1-P) I(1-P)
                = -p log 2p - (1-p) log 2(1-p)
                \#(5,5) = -\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = \frac{1}{2}\cdot 1 + \frac{1}{2}\cdot 1 = 1
     7. = 9 \quad 7.
                 H(99,01) = . - . = .08 bits
     PP. = 9 Fr
```

prune CART "minimal cost complexity pruning" Each subtree is assigned a cost C [# leaves in subtree]

 $cost(subtree) = \frac{1}{n}$

0.01

Cost (subtree) = $\frac{1}{100}$ [7+2+6] + $\frac{1}{100} \cdot 3$ $=\frac{15}{100}+\frac{3}{100}=\frac{18}{100}$

Why lid I choose C=0.01? adding one leaf $\cong 1\%$ error decrease Should I add one more leaf that reduces error by .005%?

Regression Trees

How much will the customer spend at an online store?

In regression, want to minimize

Z (f(xi) - yi)

R

What if I does not depend on X;?

f is average of yis, f= \frac{1}{n} \frac{7}{2}yi

In every leaf of regression tree, choose f in the leaf to be the average of the yis

 $\frac{\sum_{i \text{ where}} \left(f^{\text{left}} - y_i \right)^2}{\text{i where}} + \sum_{i \text{ where}} \left(f^{\text{right}} - y_i \right)^2}$ $\frac{X_i < S}{\text{of yis}} \quad \frac{X_i \ge S}{\text{right}} \quad \text{of yis on}$ The right minimile S

Nearest	reighbus	- Can	pe 9	one	vell
	•	- Can	ba	dly	
	+ interpretable + accuracy			•	
	- con be v	nizlead ing	if b	ne wa	ion g
- like	real estate con boation ***	nps 59Ft 3000	bdims	<u> </u>	% 324 F
	***	7600		2	\$310 K
	> } *11*	3200	5	3	⁴ 3301
XNN -	find k "rearest i	eighbors" an	id tak	20	
	- majaity - average	vote (clas (regression)) V.t.)		
What	distance metric t	s use be	Comp	arisan?)²

What distance metric to use for comparison?

What distance metric to use for comparison?

Soo if not in some nhbd

(soft, -soft_2)^2 + Chedran, -bdrm_2)^2

+ Chath (bath, -bath_2)^2

Can also do "weighted" knn lot of work lately on learning distances for knn

`