Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear

GABARITO da AP1 - Segundo Semestre de 2016 Professores: Márcia Fampa & Mauro Rincon

(3.0)1. Em cada item abaixo, determinar se os vetores dados geram \mathbb{R}^3 , justificando a resposta.

$$(1.5)$$
a. $v_1 = (1, 1, 1), v_2 = (2, 2, 1), v_3 = (3, 0, 0).$

$$(1.5)$$
b. $v_1 = (3, 1, 4), v_2 = (2, -3, 5), v_3 = (7, -5, 14), v_4 = (4, 5, 3).$

Solução:

(a) Sim, pois formando a matriz cujas colunas são os vetores dados e reduzindo-a a forma escalonada, temos:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -3 \\ 0 & -1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Como o posto da matriz é 3 e a dimensão de \mathbb{R}^3 também é, os vetores geram o \mathbb{R}^3 .

(b) Não, pois formando a matriz cujas colunas são os vetores dados e reduzindo-a a forma escalonada, temos:

$$\begin{pmatrix} 3 & 2 & 7 & 4 \\ 1 & -3 & -5 & 5 \\ 4 & 5 & 14 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -5 & 5 \\ 3 & 2 & 7 & 4 \\ 4 & 5 & 14 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -5 & 5 \\ 4 & 5 & 14 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -5 & 5 \\ 0 & 11 & 22 & -11 \\ 0 & 17 & 34 & -17 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -5 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -5 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Como o posto da matriz é 2 e a dimensão de \mathbb{R}^3 é 3, os vetores não geram o \mathbb{R}^3 .

(3.0)2. .

(1.5)a. Sejam V=M(n,n) o conjunto de matrizes quadradas de ordem n, B uma matriz fixa de V e $S=\{A\in M(n,n)|AB=0\}$, isto é, S é o conjunto das matrizes que, multiplicadas por B, têm como resultado a matriz nula. Verifique se S é ou não um subspaço vetorial de M(n,n).

Solução:

Sejam $A_1\in S,\,A_2\in S,\,C=A_1+A_2$ e $D=\alpha A_1,$ onde $\alpha\in I\!\!R.$

Como $CB = (A_1 + A_2)B = A_1B + A_2B = 0 + 0 = 0$, então $C \in S$.

Como $DB = \alpha A_1 B = \alpha 0 = 0$, então $D \in S$.

Logo, S é subspaço vetorial de M(n, n).

(1.5)b. Considere a reta $S = \{(x, x+3) | x \in \mathbb{R}\}$. Verifique se a reta é um subspaço vetorial de \mathbb{R}^2 .

Solução:

Como $(0,3) \in S$, $(1,4) \in S$ e $(0,3) + (1,4) = (1,7) \notin S$, então S não é um subspaço vetorial.

(2.0)3. Seja $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$, dois vetores em \mathbb{R}^3 . Determinar o valor de k para que o vetor u = (-1, k, -7) seja combinação linear de v_1 e v_2 .

Solução:

Devemos ter $u = av_1 + bv_2$, para $a, b \in \mathbb{R}$, ou

$$(-1, k, -7) = a(1, -3, 2) + b(2, 4, -1)$$

De onde vem o sistema

$$\begin{cases} a + 2b = -1 \\ -3a + 4b = k \\ 2a - b = -7 \end{cases}$$

o qual tem solução apenas se k=13, já que das linhas 1 e 3, obtemos a=-3 e b=1.

(2.0)4. Determinar uma base e a dimensão do espaço de soluções do sistema homogêneo

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ x + 2y - 2z + 2t = 0 \\ 2x + 4y - 2z + 3t = 0 \end{cases}$$

Solução: Fazendo $linha_2 := linha_2 - linha_1$, $linha_3 := linha_3 - 2linha_1$ e, posteriormente, $linha_3 := linha_3 - 3linha_2$ temos o seguinte sistema equivalente

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ 2z - t = 0 \\ 0 = 0 \end{cases}$$

Do qual, obtemos da segunda linha t=2ze , substituindo a igualdade na primeira linha, x=-2y-2z. Logo, o conjunto-solução do sistema é:

$$S = \{(x, y, z, t) | t = 2z, x = -2y - 2z\},\$$

que é um subspaço vetorial de \mathbb{R}^4 . Tendo em vista serem duas as variáveis livres $(y \in z)$, conclui-se que dimS=2. Logo, qualquer subconjunto de S com dois vetores LI, forma uma base de S. Façamos (1) y=1 e z=0, (2) y=0 e z=1, para obter os vetores $v_1=(-2,1,0,0)$ e $v_2=(-2,0,1,2)$. O conjunto $\{v_1,v_2\}$ é uma base de S.