	Started on	Wednesday, 4 June 2025, 11:24 AM		
	State	Finished		
Co	mpleted on	Wednesday, 4 June 2025, 11:43 AM		
	Time taken	19 mins 12 secs		
	Marks	21.00/30.00		
	Grade	70.00 out of 100.00		
_	•			
Question '				
Complete				
Mark 1.00	out of 1.00			
\	data atm. ata	allows insertion and deletion from both ends?		
vvriich	uala structure	allows insertion and deletion from both ends:		
О a.	Priority Que	ie		
	O b. Stack			
	Queue			
d.	Deque			
	-			
Question	2			
Complete				
Mark 0.00	out of 1.00			
Which	technique is u	sed to prevent exploding gradients in RNNs?		
О а.	Batch norma	lization		
b.	Dropout			
О с.	Weight deca			
d.	Gradient clip	ping		
Question 3	5			
Complete				
Mark 0.00 d	out of 1.00			
What d	OBS PCA (Princ	cipal Component Analysis) aim to achieve?		
vviiat a	OCS I CA (I IIII	cipal component Analysis, and to achieve:		
a.	Normalize fe	patures		
) b.	Train decisio			
O c.		riance in lower dimensions		
O d.	Increase dim	ensionality		

- b. Limited model capacity
- o. Difficulty in training deep models
- d. Increased computation time

Question 8
Complete
Mark 0.00 out of 1.00
Which algorithm is used to find strongly connected components in a directed graph?
a. Prim's Algorithm
○ b. Kosaraju's Algorithm
c. Kruskal's Algorithm
Od. Bellman-Ford Algorithm
Question 9
Complete
Mark 1.00 out of 1.00
What is the role of the 'learning rate' in gradient descent?
a. Controls model complexity
b. Determines output layer depth
c. Regularizes feature importance
 d. Determines step size during optimization
Question 10
Question 10 Complete
Complete
Complete
Complete Mark 1.00 out of 1.00
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML?
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training Question 11 Complete Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs?
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training Question 11 Complete Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Regularize output probabilities
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training Question 11 Complete Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs?
Complete Mark 1.00 out of 1.00 What is the primary objective of feature scaling in ML? a. Eliminate irrelevant features b. Reduce memory usage c. Improve model interpretability d. Ensure features contribute equally during training Question 11 Complete Mark 0.00 out of 1.00 What is the primary use of the ELBO (Evidence Lower Bound) in VAEs? a. Regularize output probabilities b. Estimate weight gradients

/25, 11:52	AM Quiz-CS-AI: Attempt review
Question 1	12
Complete	
Mark 1.00 c	out of 1.00
What is	the best-case time complexity for inserting in a heap?
a.	O(1)
O b.	O(n log n)
O c.	O(log n)
O d.	0-
Question 1 Complete	n 3
Mark 0.00 c	out of 1.00
In a rela	ational database, which normal form eliminates transitive dependencies?
○ a.	1NF
O b.	3NF
c.	2NF
O d.	BCNF
Question 1	
Complete	
Mark 1.00 c	out of 1.00
What is	the primary function of the attention mechanism in Transformers?
О а.	Reduce gradient vanishing
O b.	Pooling feature maps
O c.	Increase depth of networks
d.	Capture long-range dependencies
Question 1 Complete	15
Mark 1.00 c	out of 1.00
IVIAIR 1.00 C	
In the c	ontext of Operating Systems, what is a "race condition"?
	When processes terminate unexpectedly
b.	When multiple processes attempt to modify the same data concurrently

c. When the CPU switches tasks too quicklyd. When a process is stuck in an infinite loop

Question 16				
Complete				
Mark 1.00 out of 1.00				
What does the Big-O notation O(n log n) represent in divide and conquer algorithms?				
 a. Average-case performance 				
○ b. Linear performance				
C. Logarithmic performance				
○ d. Sub-linear performance				
Question 17				
Complete				
Mark 1.00 out of 1.00				
What is backpropagation used for in neural networks?				
a. Initializing weights				
 b. Computing loss 				
c. Updating weights via gradients				
 d. Performing forward pass 				
Question 18				
Complete				
Mark 1.00 out of 1.00				
What is the purpose of a softmax layer in a neural network?				
 a. Convert logits into probabilities 				
b. Prevent overfitting				
c. Normalize gradients				
○ d. Introduce sparsity				
Question 19				
Complete				
Mark 1.00 out of 1.00				
What is the main advantage of using dropout in neural networks?				
This is the main durantage of using dropout in heard networks:				
a. Prevent overfitting				
a. Prevent overfittingb. Faster training				

Question 20					
Complete					
Mark 1.00 out of 1.00					
Which Al concept is best associated with "exploration vs exploitation"? a. Supervised Learning b. Unsupervised Learning c. Reinforcement Learning					
d. Self-supervised Learning					
○ u. Sen-supervised Learning					
Question 21 Complete Mark 1.00 out of 1.00					
Which type of neural network is primarily used for sequence modeling?					
a. Autoencoder					
○ b. GAN					
○ c. CNN					
Question 22					
Question ZZ					
Complete					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems?					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error Question 23 Complete Mark 1.00 out of 1.00					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error Question 23 Complete Mark 1.00 out of 1.00 What is the time complexity of searching for an element in a balanced Binary Search Tree (BST)?					
Complete Mark 1.00 out of 1.00 Which of the following loss functions is most commonly used in classification problems? a. Hinge Loss b. Cross-Entropy c. L1 Loss d. Mean Squared Error Question 23 Complete Mark 1.00 out of 1.00 What is the time complexity of searching for an element in a balanced Binary Search Tree (BST)? a. O(1)					

Question 24					
Complete					
Mark 1.00 out of 1.00					
Which of the following sorting algorithms has the best worst-case time complexity?					
a. Merge Sort					
○ b. Insertion Sort					
○ c. Heap Sort					
Od. Quick Sort					
Question 25					
Complete					
Mark 1.00 out of 1.00					
What does the Bellman Equation define in Reinforcement Learning?					
a. The reward function					
 b. The value of a state under a policy 					
c. The optimal policy					
○ d. The action set					
Question 26					
Complete					
Mark 1.00 out of 1.00					
Which activation function can cause the vanishing gradient problem?					
a. Sigmoid					
○ b. ReLU					
○ c. Softmax					
○ d. Tanh					
Question 27					
Complete					
Mark 0.00 out of 1.00					
Which scheduling algorithm may lead to starvation in OS?					
a. Shortest Job First					
b. Priority Scheduling					

4/25, 11:52 AM	Quiz-CS-AI: Attempt review	
Question 28		
Complete		
Mark 1.00 out of 1.00		
Which of the following is a non-parametric model?		
a. K-Nearest Neighbors		
○ b. Naive Bayes		
c. Linear Regression		
od. Logistic Regression		
Question 29		
Complete		
Mark 0.00 out of 1.00		
In graph theory, what is the minimum number of colors needed f	or a graph with chromatic number k?	
○ b. log₂(k)		
 ○ c. k ○ d. k² 		
U. K		
Question 30		
Complete		
Mark 0.00 out of 1.00		
Which of the following problems is undecidable?		
a. Sorting a list		
b. Finding the shortest path		
c. Graph Coloring		
od. Halting Problem		