Code : 20**SC01T**

I / II Semester Diploma Examination, May/June-2024

ENGINEERING MATHEMATICS

Time: 3 Hours

Max. Marks: 100

Instructions: (i) Answer one full question from each section

(ii) One full question carries 20 marks

SECTION-1

1) a) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 then find $A + A^{T}$

4

OR If A = $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}$ then find A + B

b) Find the Inverse of matrix $A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$

6

OR Find characteristic equation and its roots for the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$

c) Using crammer's rule solve the system of Equation

$$4x - 3y = 5$$
 and $3x + y = 7$ 5

OR Solve for x $\begin{vmatrix} if & \begin{vmatrix} 1 & 2 & 1 \\ 3 & -1 & x \\ 2 & 3 & 2 \end{vmatrix} = 0$

d) If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$
 then find $(AB)^T$

5

OR If $A = \begin{bmatrix} 2 & 1 \\ 4 & 0 \end{bmatrix}$ Verify A (AdjA) = |A|I Where I is identity Matrix

SECTION-II

2) a) Find slope and y-intercept of the line 2x + 5y - 3 = 0

4

- OR Write standard form of equation of straight line
 - i) general form ii) point -slope form.
- b) Find the equation of the straight line passing through the points (2, -3) and (1,0)

6

- OR Find the equation of straight line whose x-intercept is 3 and y-intercept is 4.
- c) Find the Angle between the lines

$$3x + y + 5 = 0$$
 and $2x + 4y - 7 = 0$

5

- OR Find the equation of straight line passing through (1,3) and slope 2
- d) Find the equation of straight line passing through (3,2)

and parallel to the line
$$5x + 2y - 3 = 0$$

5

OR Show that the lines 3x - 2y + 2 = 0and 2x + 3y + 7 = 0 are perpendicular

SECTION-III

3) a) Convert (i) 120° into radian measure

and (ii) $\frac{11\pi}{3}$ radian into degree

4

OR Find the value cos75° using compound angle.

- 3) b) Prove that $\sin 3A = 3\sin A 4\sin^3 A$
 - OR If A + B = $\frac{\pi}{4}$ prove that (1 + tanA) (1 + tanB) = 2

5

6

5

5

6

c) Find the value of sin 600° cos 330° - cos 120° sin 150° using ratios of allied angles.

OR Simplify
$$\frac{\cos(360^{\circ}-A)\tan(360^{\circ}+A)}{\cot(270^{\circ}-A)\sin(90^{\circ}+A)}$$

- d) Show that $\cos 20 \cos 40 \cos 80 = \frac{1}{8}$
 - OR If $tanA = \frac{1}{2}$ and $tanB = \frac{1}{3}$ Find the value tan(A + B)

SECTION-IV

4) a) If
$$y = x^3 + 5\log x - 2e^x + \sin x$$
 find $\frac{dy}{dx}$

OR Differentiate x² sinx w.r.t x

b) Find the derivative of
$$\frac{1+x}{1-x}$$
 w.r.t x

OR If $y = \tan^{-1} x$ Prove that $(1 + x^2) \frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$

c) The distance travelled by a particle in t second is given by

$$S=2t^3-t^2+5t-3$$

find the velocity and acceleration when t = 1 second.

OR Find the maximum and minimum value of the function

$$2x^3 - 21x^2 + 36x + 50$$

4) d) The equation of tangent to the curve
$$y = 2x^2 + x - 1$$
 at (1,1) 5

OR If $y = \log x$ then prove that $x \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

5) a) Integrate
$$e^{x} + \frac{1}{x} + \cos x + x^{3}$$
 w.r.t x

OR Evaluate $\int x (1 + x^{2}) dx$

OR Evaluate
$$\int x (1 + x^2) dx$$

OR

OR Evaluate
$$\int sin^4x cosx dx$$

c) Find the volume of the solid generated by revolving
the curve
$$y^2=x^2$$
 about x-axis between $x=1$ and $x=2$

OR Evaluate
$$\int x e^x dx$$

d) Evaluate
$$\int_0^1 (x^2 + 1) dx$$

OR Show that
$$\int_0^{\frac{\pi}{2}} \sin^3 x dx = \frac{2}{3}$$