Fonctions usuelles Corrigé

DARVOUX Théo

Septembre 2023

Exercices.

Exercice 3.1 $[\Diamond \Diamond \Diamond]$

Résoudre $2\ln\left(\frac{x+3}{2}\right) = \ln(x) + \ln(3)$, sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$.

On a:

$$2\ln\left(\frac{x+3}{2}\right) = \ln(x) + \ln(3)$$

$$\iff \ln\left(\left(\frac{x+3}{2}\right)^2\right) = \ln(3x)$$

$$\iff \frac{(x+3)^2}{4} = 3x$$

$$\iff x^2 - 6x + 9 = 0$$

$$\iff x = 3$$

Ainsi, 3 est l'unique solution.

Résoudre l'équation $\operatorname{ch}(x)=2$. Que dire des solutions ? Soit $x\in\mathbb{R}$.

On a:

$$\frac{e^x + e^{-x}}{2} = 2$$

$$\iff e^x + e^{-x} = 4$$

$$\iff e^{2x} - 4e^x + 1 = 0$$

$$\iff e^x = 2 \pm \sqrt{3}$$

$$\iff x = \ln(2 \pm \sqrt{3})$$

Ainsi, $\ln(2-\sqrt{3})$ et $\ln(2+\sqrt{3})$ sont les uniques solutions dans \mathbb{R} . On remarque que :

$$\ln(2+\sqrt{3}) = -\ln\left(\frac{1}{2+\sqrt{3}}\right) = -\ln\left(2-\sqrt{3}\right)$$

Les solutions sont opposées.

Exercice 3.3 $[\Diamond \Diamond \Diamond]$

Résoudre sur \mathbb{R}_+^* l'équation $x^{\sqrt{x}} = \sqrt{x}^x$.

Soit $x \in \mathbb{R}_+^*$.

On a:

$$x^{\sqrt{x}} = \sqrt{x}^{x}$$

$$\iff e^{\sqrt{x} \ln x} = e^{x \ln(\sqrt{x})}$$

$$\iff \sqrt{x} \ln(x) = \frac{x}{2} \ln(x)$$

$$\iff \ln(x)(\sqrt{x} - \frac{x}{2}) = 0$$

$$\iff \ln(x) = 0 \text{ ou } \sqrt{x} = \frac{x}{2}$$

$$\iff x = 1 \text{ ou } \sqrt{x} = 2$$

$$\iff x = 1 \text{ ou } x = 4$$

Les uniques solutions sont donc 1 et 4.

Exercice 3.4 $[\blacklozenge \lozenge \lozenge]$ Trigonométrie hyperbolique.

- 1. Montrer que pour tous réels a et b, on a
- (a) $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$.
- (b) $\operatorname{sh}(a+b) = \operatorname{sh}(a)\operatorname{ch}(b) + \operatorname{ch}(a)\operatorname{sh}(b)$.
- (c) Trouver une identité pour th(a + b).
- 2. Pour x réel, on pose $t = \operatorname{th}\left(\frac{x}{2}\right)$. Montrer que

(a)
$$ch(x) = \frac{1+t^2}{1-t^2}$$
 (b) $sh(x) = \frac{2t}{1-t^2}$ (c) $th x = \frac{2t}{1+t^2}$

1.

(a)

$$ch(a) ch(b) + sh(a) sh(b) = \frac{e^{a+b} + e^{-a-b}}{2} = ch(a+b)$$

(b)

$$sh(a) ch(b) + ch(a) sh(b) = \frac{e^{a+b} - e^{a-b}}{2} = sh(a+b)$$

(c)

$$th(a+b) = \frac{sh(a) ch(b) + ch(a) sh(b)}{ch(a) ch(b) + sh(a) sh(b)}$$

On divise en haut et en bas par ch(a) ch(b).

$$\operatorname{th}(a+b) = \frac{\frac{\operatorname{sh}(a)}{\operatorname{ch}(a)} + \frac{\operatorname{sh}(b)}{\operatorname{ch}(b)}}{1 + \frac{\operatorname{sh}(a)}{\operatorname{ch}(a)} \cdot \frac{\operatorname{sh}(b)}{\operatorname{ch}(b)}} = \frac{\operatorname{th}(a) + \operatorname{th}(b)}{1 + \operatorname{th}(a) \operatorname{th}(b)}$$

2. (a)

$$\frac{1+t^2}{1-t^2} = \frac{1+\operatorname{th}^2(\frac{x}{2})}{1-\operatorname{th}^2(\frac{x}{2})} = \frac{\operatorname{ch}^2(\frac{x}{2}) + \operatorname{sh}^2(\frac{x}{2})}{\operatorname{ch}^2(\frac{x}{2}) - \operatorname{sh}^2(\frac{x}{2})}$$
$$= \operatorname{ch}^2\left(\frac{x}{2} + \frac{x}{2}\right) = \operatorname{ch}(x)$$

(b)

$$\frac{2t}{1-t^2} = \frac{2\operatorname{th}(\frac{x}{2})}{1-\operatorname{th}^2(\frac{x}{2})} = \frac{2\operatorname{sh}(\frac{x}{2})\operatorname{ch}(\frac{x}{2})}{\operatorname{ch}^2(\frac{x}{2})-\operatorname{sh}^2(\frac{x}{2})}$$
$$= \operatorname{sh}\left(\frac{x}{2} + \frac{x}{2}\right) = \operatorname{sh}(x)$$

(c)

$$\frac{2t}{1+t^2} = \frac{2\operatorname{th}(\frac{x}{2})}{1+\operatorname{th}^2(\frac{x}{2})} = \frac{2\operatorname{sh}(\frac{x}{2})\operatorname{ch}(\frac{x}{2})}{\operatorname{ch}^2(\frac{x}{2})+\operatorname{sh}^2(\frac{x}{2})}$$
$$= \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \operatorname{th}(x)$$

Exercice 3.5 $[\Diamond \Diamond \Diamond]$

Sans calculatrice, comparer π^e et e^{π} .

Soit $f: x \mapsto \frac{x}{\ln(x)}$. f est dérivable sur \mathbb{R}_+^* , de dérivée :

$$f': \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{\ln(x) - 1}{\ln^2(x)} \end{cases}$$

Un magnifique tableau de variations :

x	0	$1 \qquad \qquad e$	$+\infty$
f'(x)	_	- 0	+
f	$+\infty$ $-\infty$	$+\infty$ e	$+\infty$

On en conclut que :

$$\frac{\pi}{\ln(\pi)} > e$$

$$\iff \pi > e \ln(\pi)$$

$$\iff e^{\pi} > e^{e \ln \pi}$$

$$\iff e^{\pi} > \pi^{e}$$

Donc $e^{\pi} > \pi^e$.

Exercice 3.6 $[\blacklozenge \blacklozenge \blacklozenge]$

1. Étudier les variations de $f: x \mapsto \sqrt[3]{x} - \sqrt[3]{x+1}$. 2. Des deux nombres $\sqrt[3]{2} + \sqrt[3]{4}$ et $\sqrt[3]{24}$, lequel est le plus grand ?

1. f est définie, continue et dérivable sur \mathbb{R}_+ de dérivée :

$$f': \begin{cases} \mathbb{R}_+ \to \mathbb{R} \\ x \mapsto \frac{1}{3} \left(\frac{1}{x^{2/3}} - \frac{1}{(x+1)^{2/3}} \right) \end{cases}$$

On a:

x	$0 + \infty$
f'(x)	+
f	-1 — 0

2.

$$\sqrt[3]{2} + \sqrt[3]{4} - \sqrt[3]{24}
= \sqrt[3]{2} + \sqrt[3]{4} - 2\sqrt[3]{3}
= (\sqrt[3]{2} - \sqrt[3]{3}) - (\sqrt[3]{3} - \sqrt[3]{4})$$

Or f est croissante sur \mathbb{R}_+ , ainsi : $\sqrt[3]{3} - \sqrt[3]{4} > \sqrt[3]{2} - \sqrt[3]{3}$. On en conclut que $\sqrt[3]{24} > \sqrt[3]{2} + \sqrt[3]{4}$.

Exercice 3.7 $[\Diamond \Diamond \Diamond]$

1. Soit α un réel et x > -1. Comparer $(1+x)^{\alpha}$ et $1+\alpha x$ (on discutera selon les valeurs de α).

2. Soit $\alpha \in [0,1]$ et $n \in \mathbb{N}^*$. Montrer que

$$\prod_{k=1}^{n} \left(1 + \frac{\alpha}{k} \right) \ge (n+1)^{\alpha}$$

1. Posons $f: x \mapsto (1+x)^{\alpha} - 1 - \alpha x$. f est définie, continue et dérivable sur $]-1, +\infty[$ de dérivée :

$$g: \begin{cases}]-1, +\infty[\to \mathbb{R} \\ x \mapsto \alpha((1+x)^{\alpha-1} - 1) \end{cases}$$

Alors:

 \odot Si $\alpha \in]0,1[$:

x	-1		0		$+\infty$
f'(x)		+	0	_	
f	$\alpha - 1$		→ 0 <u> </u>		$-\infty$

 \odot Si $\alpha \in]1, +\infty[$:

x	-1		0		$+\infty$
f'(x)		_	0	+	
f	$\left \frac{\alpha - 1}{\alpha - 1} \right $		→ 0 <i>─</i>		$\rightarrow +\infty$

 \odot Si $\alpha \in]-\infty,0[$:

x	-1		0		$+\infty$
f'(x)		_	0	+	
f	$+\infty$		→ 0 <i>—</i>		\rightarrow $+\infty$

Ainsi, $(1+x)^{\alpha} > 1 + \alpha x$ lorsque $\alpha \notin [0,1]$.

2. D'après l'inégalité précédente, on a :

$$\prod_{k=1}^{n} \left(1 + \frac{\alpha}{k} \right) \ge \prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^{\alpha} = \prod_{k=1}^{n} \frac{(k+1)^{\alpha}}{k^{\alpha}} = (n+1)^{\alpha}$$

Exercice 3.8 $[\diamondsuit \lozenge \lozenge]$

Résoudre les équations suivantes sur
$$\mathbb{R}$$
.

a) $\sin 2x = \frac{\sqrt{2}}{2}$ b) $\sin^2 x = \frac{3}{2} \cos x$ c) $\cos x + \sin x = 1$

a)

$$\sin 2x = \frac{\sqrt{2}}{2} \iff \begin{cases} 2x \equiv \frac{\pi}{4}[2\pi] \\ 2x \equiv \frac{3\pi}{4}[2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv \frac{\pi}{8}[\pi] \\ x \equiv \frac{3\pi}{8}[\pi] \end{cases}$$

$$\iff x \in \left\{ \frac{\pi}{8} + k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{3\pi}{8} + k\pi, k \in \mathbb{Z} \right\}$$
b)

$$\sin^2 x = \frac{3}{2} \cos x \iff 2 \sin^2 x - 3 \cos x = 0$$

$$\iff -2 \cos^2 x - 3 \cos x + 2 = 0$$

$$\iff \cos x = -2 \text{ ou } \cos x = \frac{1}{2}$$

$$\iff \left\{ \frac{x}{3} = \frac{\pi}{3}[2\pi] \\ x = -\frac{\pi}{3}[2\pi] \right\}$$

$$\iff x \in \left\{ \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\}$$
c)

$$\cos(-\frac{\pi}{4} + x) = \cos(-\frac{\pi}{4}) \cos x - \sin(-\frac{\pi}{4}) \sin x = \frac{\sqrt{2}}{2} (\cos(x) + \sin(x))$$
Done

$$\cos x + \sin x = 1 \iff \sqrt{2} \cos(-\frac{\pi}{4} + x) = 1$$

$$\iff \cos(x - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$\iff \begin{cases} x - \frac{\pi}{4} = \frac{\pi}{4}[2\pi] \\ x - \frac{\pi}{4} = -\frac{\pi}{4}[2\pi] \end{cases}$$

$$\iff \begin{cases} x = \frac{2\pi}{4}[2\pi] \\ x = 0[2\pi] \end{cases}$$

$$\iff x \in \{2k\pi, k \in \mathbb{Z}\} \cup \left\{ \frac{2\pi}{4} + 2k\pi, k \in \mathbb{Z} \right\}$$

Exercice 3.9 $[\Diamond \Diamond \Diamond]$

Soit x un réel. Démontrer que :

$$\forall n \in \mathbb{N} \mid \sin(nx)| \le n|\sin x|.$$

Notons \mathcal{P}_n cette proposition. Montrons que \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$. *Initialisation*.

On a: $|\sin(0x)| \le 0 |\sin x| \iff 0 \le 0$.

Ainsi, \mathcal{P}_0 est vraie.

Hérédité.

Soit $n \in \mathbb{N}$ tel que \mathcal{P}_n soit vraie. Montrons \mathcal{P}_{n+1} .

On a:

$$|\sin(nx+x)| = |\sin(nx)\cos(x) + \sin(x)\cos(nx)|$$

$$\leq |\sin(nx)\cos(x)| + |\sin(x)\cos(nx)|$$

$$\leq |\sin(nx)||\cos(x)| + |\sin(x)||\cos(nx)|$$

$$\leq |\sin(nx)| + |\sin(x)|$$

$$\leq n|\sin(x)| + |\sin(x)|$$
(HR)
$$\leq (n+1)|\sin(x)|$$

C'est exactement \mathcal{P}_{n+1} .

Conclusion.

Par le principe de récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \sqrt{2 + \sqrt{2 + \dots \sqrt{2}}}$$
 (*n* fois le symbole $\sqrt{\cdot}$)

- 1. Montrer que $\forall n \in \mathbb{N}^* \ u_n = 2\cos(\frac{\pi}{2^{n+1}})$.
- 2. En déduire $\lim u_n$
- 1. Notons \mathcal{P}_n cette proposition. Montrons que \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$. *Initialisation*.

On a: $2\cos(\frac{\pi}{4}) = 2\frac{\sqrt{2}}{2} = \sqrt{2}$.

Ainsi, \mathcal{P}_1 est vérifiée.

Hérédité.

Soit $n \in \mathbb{N}^*$ tel que \mathcal{P}_n soit vraie. Montrons \mathcal{P}_{n+1} .

On a:

$$u_n = 2\cos\left(\frac{\pi}{2^{n+1}}\right)$$

$$\iff \sqrt{2+u_n} = \sqrt{2+2\cos\left(\frac{\pi}{2^{n+1}}\right)}$$

$$\iff u_{n+1} = \sqrt{2(1+\cos(\frac{\pi}{2^{n+1}}))}$$

Or $cos(2\theta) = cos^2(\theta) - sin^2(\theta) = 2cos^2(\theta) - 1$

Ainsi, $1 + \cos(\frac{\pi}{2^{n+1}}) = 2\cos^2\frac{\pi}{2^{n+2}}$

Alors:

$$u_{n+1} = \sqrt{4\cos^2(\frac{\pi}{2^{n+2}})} = 2\cos(\frac{\pi}{2^{n+2}})$$

 \mathcal{P}_{n+1} est donc vraie.

Conclusion.

Par le principe de récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}^*$.

2.

$$\lim u_n = \lim_{n \to +\infty} 2\cos(\frac{\pi}{2^{n+1}}) = 2\cos(0) = 2$$

Exercice 3.11 $[\blacklozenge \blacklozenge \blacklozenge]$

Calculer $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$.

On a:

$$\sin\frac{\pi}{7}\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7} = \frac{1}{2}\sin\frac{2\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}$$
$$= \frac{1}{4}\sin\frac{4\pi}{7}\cos\frac{4\pi}{7}$$
$$= \frac{1}{8}\sin\frac{8\pi}{7}$$

Donc:

$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = \frac{1}{8} \frac{\sin \frac{8\pi}{7}}{\sin \frac{\pi}{7}}$$
$$= -\frac{\sin \frac{\pi}{7}}{\sin \frac{\pi}{7}} \frac{1}{8}$$
$$= -\frac{1}{8}$$

Exercice 3.12 $[\Diamond \Diamond \Diamond]$

Calculer $\tan \frac{\pi}{8}$.

On a:

$$\tan\frac{\pi}{4} = \tan\frac{2\pi}{8}$$
$$= \frac{2\tan\frac{\pi}{8}}{1 - \tan^2\frac{\pi}{8}}$$

Donc:

$$2\tan\frac{\pi}{8} = 1 - \tan^2\frac{\pi}{8}$$

$$\iff \tan^2\frac{\pi}{8} + 2\tan\frac{\pi}{8} - 1 = 0$$

$$\iff \tan\frac{\pi}{8} = -1 + \sqrt{2}$$

Ainsi, $\tan \frac{\pi}{8} = \sqrt{2} - 1$.

Montrer que $\forall x \in \mathbb{R}_+ \ x - \frac{x^3}{3} \le \arctan(x) \le x$. Soit $x \in \mathbb{R}_+$.

 \odot Montrons que $\arctan(x) \le x$.

Posons $f: x \mapsto \arctan x - x$. f est dérivable sur \mathbb{R}_+^* de dérivée :

$$f': \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto -\frac{x^2}{x^2+1} \end{cases}$$

On a:

x	$0 + \infty$
f'(x)	_
f	$0 \longrightarrow -\infty$

Donc $\arctan(x) \leq x$.

⊚ Montrons que $x - \frac{x^3}{3} \le \arctan(x)$. Posons $f :\mapsto x - \frac{x^3}{3} - \arctan(x)$. f est dérivable sur \mathbb{R}_+ de dérivée :

$$f': \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto -\frac{x^4}{x^2 + 1} \end{cases}$$

On a:

x	0 +∞
f'(x)	_
f	$0 \longrightarrow -\infty$

Donc $x - \frac{x^3}{3} \le \arctan(x)$.

Ainsi, $\forall x \in \mathbb{R}_+ \ x - \frac{x^3}{3} \le \arctan(x) \le x$.

Montrer que

$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}.$$

On a:

$$\tan\left(\arctan\frac{1}{2} + \arctan\frac{1}{3}\right) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}} = \frac{5}{6} \cdot \frac{6}{5} = 1$$

En appliquant arctan, on obtient bien que $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$.

Soit l'équation

$$\arcsin(x) + \arcsin\left(\frac{x}{2}\right) = \frac{\pi}{4}.$$

- 1. Justifier que l'équation admet une unique solution sur [-1,1].
- 2. Donner une expression de cette solution.
- 1. arctan est strictement croissante sur \mathbb{R} et prend ses valeurs dans] $-\frac{\pi}{2}, \frac{\pi}{2}$ [donc l'équation admet une unique solution sur \mathbb{R} .
- 2. Soit $x \in [-1, 1]$ On a :

$$\arcsin(x) + \arcsin(\frac{x}{2}) = \frac{\pi}{4}$$

$$\iff \tan(\arcsin(x) + \arcsin(\frac{x}{2})) = 1$$

$$\iff \frac{3x}{2} \cdot \frac{2}{2 - x^2} = 1$$

$$\iff 2x^2 + 6x - 4 = 0$$

$$\iff x = -\frac{3}{2} + \frac{\sqrt{17}}{2}$$

L'unique solution est donc $\frac{\sqrt{17}}{2} - \frac{3}{2}$.