数字编码典型应用 ——三位轴位编码器

有三个同心圆环被分成8 个扇区(扇区越多,位置就 能表示得越准确)。每个圆 环的每个扇区分为能够反射 光東或不能反射光東两种, 当圆环随着轴转动时,处于 红外线(IR)发射器下部的扇区 分别接收红外线发射器所产 生的3条光束。当扇区反射光 東时表示1,当扇区不反射光 束时表示o。红外线探测器检 测是否存在反射光束, 然后 产生相应的3位编码。红外线 发射器 / 探测器处于固定位 置, 当轴逆时针360。旋转时, 8个扇区在3条光束下移动。 每一条光束被扇区的表面反 射或吸收,产生表示轴位编 码器位置的二进制数。

在图(a)中,这些扇区直接以二进制格式排列, 所以探测器输出从000到001,再到010,再到011, 等等。当光束处于反射扇区上部时,输出为1;当 光束处于非反射扇区上部时,输出为0。如果从一 个扇区到另一个扇区的转换瞬间,一条光束稍微 先于其他光束被反射或吸收,就会产生一个错误 的输出

格雷码用来消除二 进制所固有的这类出错 问题。如图(b)所示,格 雷码保证了在两个相邻 的扇区中,只有一个位 会发生改变。这就意味 着即使光束没有精确对 准,也绝对不会发生转 移瞬间中的错误。例如, 再一次考虑, 当光束位 于111扇区,准备进入下 一个101扇区会发生什 么情况。无论光束是否 对准, 在转移瞬间只有 两个可能的输出111和 101。在其他扇区的转 移瞬间中,也会产生相 同的结果

增量式编码器SCH50IF

二—十进制码 (Binary Coded Decimal,简称BCD)

- 用四位二进制代码对十进制数的各个数码进行编码。
- BCD码至少为四位。因为四位二进制码共有16个不同的代码,要从16个代码中选出10个表示十进制数符,则共有

 $A_{16}^{10} = \frac{16!}{(16-10)!} \approx 2.9 \times 10^{10}$

余3码的优点:在 用余3码作十进制 加法运算的时候, 若2数之和是 (10)₁₀,正好等于 二进制数的 16(10000),于是 便从高位自动产 生进位信号。

偏权厂

有权码

常用BCD码编码表

无权码

十进制数	8421	2421	631 – 1	余3码	*	5中取2码	左移码
0	0000	0000	0011	0011	0010	00011	00000
1	0001	0001	0010	0100	0110	00101	10000
2	0010	0010	0101	0101	0111	00110	11000
3	0011	0011	0111	0110	0101	01001	11100
4	0100	0100	0110	0111	0100	01010	11110
5	0101	1011	1001	1000	1100	01100	11111
6	0110	1100	1000	1001	1101	10001	01111
7	0111	1101	1010	1010	1111	10010	00111
8	1000	1110	1101	1011	1110	10100	00011
9	1001	1111	1100	1100	1010	11000	00001

BCD码加/减运算

由于BCD码与十进制数之间存在直接的对应关系,因此有时利用BCD码来完成十进制数的运算,不同BCD码的运算规则各不相同。

8421 BCD码的加/减运算

例如

十进制数相加: 6+5=11

8**4**21 BCD 码相加: 0110+0101=1011

9+9=18 1001+1001=10010

产生错误的原因是十进制数相加的进位原则是"逢十进一",而上述 BCD 码相加采用了二进制数相加时的进位原则,四位二进制数是"逢十六进一",两者相差 6。因此,按二进制数运算规则得到的 BCD 码运算结果需要修正。

8421 BCD 码加法运算的修正方法是:

当和数大于9(1001)或产生进位时,需对和数本位加6(0110)修正,反之,当和数小于或等于9时,无需修正。

例1 用8421 BCD 码求 6+5 和 9+9。

例2 试用 8421 BCD 码求 983 +819

	1001	1000	0011	
+	1000	0001	1001	
	10001	1001	1100	
+	0110	0000	0110	
	10111	1010	0010	
+		0110		
	11000	0000	0010	

个位和百位需修正

十位需修正

注意: 若由于修 正而产生进位时, 无需作第二次修 正。即每一十进 制位最多只能修 正一次。

1位BCD码加法器方框图

8421BCD码进行减法运算

当 BCD 码向高位借位时,按二进制规则是"借一当十六",而十进制数相减的借位原则是"借一当土",所以发生借位时需要修正。修正方法是,当相减过程中出现向高位 BCD 码借位时,本位 BCD 码必需"减 6 修正"。

例	试用 8 4 21 BCD <u>码完成</u> 255-98	
	0010 0101 0101	
		
	1 1011 1101	- 个位、 <u>十位均</u> 向高位借位
	 0110 0110	个位、十位减6修正
	1 0101 0111	
	1 0101 0111	

思考题: 余3码的加法运算规则?

进行加法运算的规则是: 当两个余三码数相加不 产生进位时,则应该从 结果中减去0011;产生 进位时则一方面将进位 信号送给高位余三码, 另一方面本位还要执行 加上0011的修正操作。

字符编码 就是要显示某些文字所需要的编码

ASCII 码: American Standard Information Interchange(美国信息交换标准码)

读作 "aske

键盘及信号变换

计算机键盘具有一个专用微处理器,一直扫描键盘电路以检测何时按键被按下或者释放。由计算机软件产生的独特扫描编码表示该特殊的按键。该扫描编码随后被变换为字母数字编码(ASCH),以备计算机使用。

部分字符的ASCII码

字符	ASCII 码	字符	ASCII 码	字符	ASCII 码
空	0100000	4	0110100	K	1001011
	0101110	5	0110101	L	1001100
(0101000	6	0110110	M	1001101
+	0101011	7	0110111	N	1001110
\$	0100100	8	0111000	0	1001111
*	0101010	9	0111001	P	1010000
)	0101001	A	1000001	Q	1010001
· -	0101101	В	1000010	R	1010010
1	0101111	C	1000011	S	1010011
,	0101100	D	1000100	Т	1010100
,	0100111	E	1000101	U	1010101
=	0111101	F	1000110	V	1010110
0	0110000	G	1000111	w	1010111
1	0110001	Н	1001000	X	1011000
2	0110010	I	1001001	Y	1011001
3	0110011	J	1001010	Z	1011010

思考题:

汉字是如何编码的?

可靠性编码

产生误码的几种形式

正确代码		1001	说 明			
	a	0001	单向 1→0			
 	b	1101	单向 0→1			
	С	0000	单向双错			
码	d	1111	单向双错			
	e	0101	双向错误			

奇偶校验码

:	信息码	奇校验码	偶校验码
0	0000	10000	00000
1	0001	00001	10001
2	0010	00010	10010
3	0011	10011	00011
4	0100	00100	10100
5	0101	10101	00101
6	0110	10110	00110
7	0111	00111	10111
8	1000	01000	11000
9	1001	11001	01001

74180 (奇偶校验器)

功能:用来校验某一组 传输的数据有否错误的 组合逻辑电路。

1Berger码信息传递系统

Berger码也是一种可分离码。设信息码I中含有的1的个数为是k,与k等值的二进制数的反码即为校验码。校验码的位数c由 $\log_2(i+1)$ 决定,其中i为信息码I的位数。

例: 试构成0101000的Berger码。

由于I= 0101000,i=7,从而校验位的位数 c=Log₂(7+1)=3 ,且因k=2,故校验码C=101,由此得I的Berger码为0101000101。

Berger码可以检测各种单向多错,且是各种可分离码中需要校验位最少的一种编码方法。如图所示当传输的代码发生错误时,比较器的两个输入将不相同,从而给出错误指示E。在该系统中,仅增加了两个校验码发生器和一个比较器。

药片分装自动控制系统

如何转换?

设显示单元最大显示数为50,且这里的BCD码为8421BCD码。则有真值表:

8421BCD 码						自	然二	进制	一码				
b ₈₀	b ₄₀	b ₂₀	b ₁₀	b ₈	b ₄	\mathbf{b}_2	b_1	a ₅	a ₄	a ₃	\mathbf{a}_2	a_1	\mathbf{a}_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0	1	0	0	1
0	0	0	1	0	0	0	0	0	0	1	0	1	0
0	1	0	1	0	0	0	0	1	1	0	0	1	0

习题课

习题1

试用异或门作为一个模块实现一个4位二进制原码到反码的转换电路。

习题2

试用题1中的反码转换器及4位全加器作为模块构成4位二进制原码到补码的转换电路。

习题2(续)

习题3

试用全加器及题2中的补码转换器作为模块构成4位补码运算电路。

习题3(续)

习题4

试在题3的基础上加入溢出判别电路构成更为 完善的补码运算电路。

思考:本设计正确?

x₃x₂x₁x₀和y₃y₂y₁y₀应是有符号数,在求其补码时,符号位是不变的;但在进行加法运算时需代入。

