MC1558 MC1458 MC1458C

DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

. . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- **Short-Circuit Protection**
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption

1/2 MC1458,0

No Latch Up

(DUAL MC1741)

DUAL OPERATIONAL AMPLIFIER

MONOLITHIC SILICON INTEGRATED CIRCUIT

G SUFFIX METAL PACKAGE CASE 601 TO-99

L SUFFIX CERAMIC PACKAGE CASE 632 TO-116

P1 SUFFIX PLASTIC PACKAGE **CASE 626** MC1458,C (only)

FREQUENCY SHIFT 0.1 µF OUTPUT

P2 SUFFIX PLASTIC PACKAGE **CASE 605** MC1458,C (only)

0.01 uF

PIN CONNECTIONS												
Schematic	А	В	С	D	Ε	F	G	н	1	J	K	ᄀ
G & P1 Packages	1		-	2	3	4	5	6	_	-	7	8
L & P2 Packages	2	3	4	5	6	7	8	9	10	11	12	14

≨100 k

0.01 μF

1/2 MC1458.0

≨110 k

1/2 MC1458.C

0.01 µF 未

100 k

OR EQUIV

1270 Hz

1070 Hz

10 k

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Symbol	MC1558	MC1458,C	Unit		
Power Supply Voltage	V ⁺	+22	+18	Vdc		
	· v-	-22	-18			
Differential Input Signal	V _{in}	±	30	Volts		
Common-Mode Input Swing 2	CMVin	1	±15			
Output Short Circuit Duration	t _S	Conti				
Power Dissipation (Package Limitation)	PD					
Metal Can	1	6	680			
Derate above T _A = +25°C] 4	4.6			
Plastic Dual In-Line Packages		6	625			
Derate above T _A = +25°C		5	5.0	mW/°C		
Ceramic Dual In-Line Package		1 7	mw/°c			
Derate above T _A = +25°C	1		mW/ ^o C			
Operating Temperature Range	TA	-55 to +125	0 to +75	°c		
Storage Temperature Range	T _{stq}	-65 to +150	-65 to +150	°c		

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25 °C unless otherwise noted)

		MC1558		MC1458			MC1458C				
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Ib										μAdc
T _A = +25°C		-	0.2	0.5	-	0.2	0.5	-	0.2	0.7	
TA = Tlow to Thigh(3)			_	1.5	-		0.8			1.0	
Input Offset Current	liol									ı	μAdc
T _A = +25°C			0.03	0.2	-	0.03	0.2	-	0.03	0.3	
T _A = T _{low} to T _{high}		<u> </u>	-	0.5		***	0.3			0.4	
Input Offset Voltage (R _S \leq 10 k Ω) $T_A = +25^{\circ}C$	ivial							1			mVdc
TA = Tlow to Thigh	1	_	1.0	5.0 6.0	_	2.0	6.0 7.5	_	2.0	10	1
Differential Input Impedance (Open-Loop, f = 20 Hz)				0.0	<u> </u>		7.5	-		12	
Parallel Input Resistance		0.3	1.0	_				l			l
Parallel Input Capacitance	R _p C _p		6.0	_	0.3	1.0 6.0	_	_	1.0 6.0	_	Megohm
Common-Mode Input Impedance (f = 20 Hz)			200	<u> </u>	+=	200		-		_	pF
	Z _(in)			<u> </u>	ļ				200		Megohms
Common-Mode Input Voltage Swing	CMV _{in}	±12	±13	_	±12	±13		±11	±13	_	V _{pk}
Equivalent Input Noise Voltage	e _n							1			nV/(Hz)½
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)			45		<u> </u>	45	_	-	45		
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	70	90		70	90	-	60	90	_	dB
Open-Loop Voltage Gain	AVOL				l						V/V
$T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$ $\{V_o = \pm 10 \text{ V, R}_L = 2.0 \text{ k ohms}\}$		50,000	200,000	l .	20,000	100,000	-	_	_	_	
$T_A = +25^{\circ}C$		25,000			15,000	-	_	1			
$T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$ $(V_o = \pm 10 \text{ V}, R_L = 10 \text{ k ohms})$		_	_	_	_	_	-	15,000	100,000	_	
					 						
Power Bandwidth	PBW		14	-	-	14	-		14	-	kHz
(A _V = 1, R _L = 2.0 k ohms, THD≤5%, V _O = 20 V p·p)					ļ			ļ		ļ	
Unity Gain Crossover Frequency (open-loop)	fc		1,1			1.1		-	1.1		MHz
Phase Margin (open-loop, unity gain)			65			65	-	_	65	_	degrees
Gain Margin			11			11	-	-	11		dB
Slew Rate (Unity Gain)	dV _{out} /dt	_	0.8		-	0.8	-	_	0.8	-	V/µs
Output Impedance (f = 20 Hz)	Z _{out}	-	75	-	-	75	_	_	75		ohms
Short-Circuit Output Current	^I sc		20		-	20	-	-	. 20	-	mAdc
Output Voltage Swing (R _L = 10 k ohms)	V _o	±12	±14	-	±12	±14	-	±11	±14	-	Vpk
$R_L = 2 \text{ k ohms} (T_A = T_{low} \text{ to } t_{high})$	ŀ	±10	±13	- '	±10	±13	-	±9.0	±13	-	
Average Temperature Coefficient of Input Offset Voltage	lτcv _{io} l	_	15	_	-	15	_		15		μV/°C
(R _S = 50 ohms, T _A = T _{low} to T _{high})											i .
Power Supply Sensitivity			14 14 1								µV/V
V = constant, R _s ≤ 10 k ohms	S+	12.0	30	150	- 1	30	150	_	30	_	
V ⁺ = constant, R _s ≤ 10 k ohms	S-		30	150	-	30	150	_	30	-	
Power Supply Current	In ⁺	T-	2.3	5.0	T -	2.3	5.6	-	2.3	8.0	mAdc
	1 _D -	·	2.3	5.0	_	2.3	5.6	-	2.3	8.0	
DC Quiescent Power Dissipation	PD				t						mW
$(V_0 = 0)$	1	l _ l	70	150	_	70	170	_	70	240	

3T_{low}: 0°C for MC1458,C -55°C for MC1558 Thigh: +75°C for MC1458,C +125°C for MC1458,C

 $[\]bigcirc$ For supply voltages of less than ± 15 V, the maximum differential input voltage is equal to $\pm (V^* + |V^-|)$. \bigcirc For supply voltages of less than ± 15 V, the maximum input voltage is equal to the supply voltage $(+V^*, -|V^-|)$.

TYPICAL CHARACTERISTICS (continued)

(V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 10 – HIGH-IMPEDANCE, HIGH-GAIN INVERTING AMPLIFIER

MCC1558 MCC1458

Advance Information

DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER CHIP

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

The MCC1558 and MCC1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MCC1558	MCC1458	Unit
Power Supply Voltage	V ⁺	+22	+18	Vdc
	V ⁻	-22	-18	
Differential Input Signal	V _{in}	±	Volts	
Common-Mode Input Swing	CMVin	±	Volts	
Output Short Circuit Duration	ts	Conti		
Operating Temperature Range	TA	-55 to	°C	
Junction Temperature Range	TJ	-65 to	°C	

FIGURE 2 - OFFSET ADJUST

This is advance information on a new introduction and specifications are subject to change without notice.

ELECTRICAL CHARACTERISTICS (V+ = +15 Vdc, V $^-$ = -15 Vdc, TA = +25°C unless otherwise noted)

			MCC1558					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	1 _P		0.2	0.5	-	0.2	0.5	μAdc
Input Offset Current	lio		0 03	0.2		0.03	0.2	μAdc
Input Offset Voltage (R _S ≤ 10 k ohms)	IViol		1.0	5.0	-	2.0	6.0	mVdc
Differential Input Impedance (Open-Loop, f = 20 Hz) Parallel Input Resistance	R _D	_	1.0			1.0		Megohm
Parallel Input Capacitance	Cn		6.0	_	_	6.0		pF
Common-Mode Input Impedance (f = 20 Hz)	Z _(in)	-	200			200		Megohms
Common-Mode Input Voltage Swing	CMVin		±13	-		±13		Vpk
Common-Mode Rejection Ratio (f = 100 Hz)	CM _{rej}	-	90	-		90	-	dB
Open-Loop Voltage Gain (Vo = ±10 V, RL = 2.0 k ohms)	AVOL	50,000	200,000		20,000	100,000	-	V/V
Power Bandwidth $(A_V = 1, R_L = 2.0 \text{ k ohms}, THD \le 5\%, V_O = 20 \text{ Vp-p})$	P _{BW}	nada.	14	-	-	14		kHz
Unity Gain Crossover Frequency (open-loop)		-	1.1	-	-	1.1		MHz
Phase Margin (open-loop, unity gain)			65			65	-	degrees
Gain Margin		-	11	·	-	11	-	dB
Slew Rate (Unity Gain)	dV _{out} /dt		0.8	-	-	0.8	_	V/µs
Output Impedance (f = 20 Hz)	Zout	-	75	-	-	75	-	ohms
Short-Circuit Output Current	¹ sc		20			20	-	mAdc
Output Voltage Swing (R _L = 10 k ohms)	V _o	±12	±14		±12	±14		Vpk
Power Supply Sensitivity $V^- = constant$, $R_S \le 10 k$ ohms $V^+ = constant$, $R_S \le 10 k$ ohms	s+ s-		30 30	150 150	-	30 30	150 150	μV/V
Power Supply Current	1 _D +		2.3 2.3	5.0 5.0	-	2.3 2.3	5.6 5.6	mAdc
DC Quiescent Power Dissipation (V _O = 0)	PD	-	70	150		70	170	mW

See current MC1558/MC1458 data sheet for additional information.

MCC1558/MCC1458 BONDING DIAGRAM

All dimensions are nominal and in mils (10^{-3}) inches). Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0

PACKAGING AND HANDLING

The MCC1558/MCC1458 dual operational amplifiers are now available as a single monolithic die or encapsulated in a variety of hermetic and plastic packages. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercised when removing the dice from the shipping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.