

COMPARAÇÃO DE DESEMPENHO DOS CLASSIFICADORES NAIVE BAYES, KNN E C4.5 PARA UM CONJUNTO DE DADOS DE IMAGENS DE GESTOS DE LINGUAS DE SINAIS.

Discente: João Felipe Moreira de Souza

Orientador: Prof. Me. Diego Saqui

Coorientador: Prof. Esp. Frank Castilio Pinheiro de Alencar



## Introdução LIBRAS

- → Língua Brasileira de Sinais (LIBRAS) é a lingua de sinais usada por surdos nos centros urbanos brasileiros;
- → Lei 10.436 reconheceu a Língua Brasileira de Sinais (LIBRAS) como língua oficial dos surdos (BRASIL, 2002);
- → Poucas pessoas que conhecem, faltam intérpretes e pessoal qualificado;
- → Tecnologias aplicadas a comunicação entre surdos e ouvintes;



# Introdução

## **Tecnologias assistivas**



→ Foi desenvolvido pela ProDeaf Tecnologias Assistivas;

→ Patrocinado pelo Grupo Bradesco Seguros;

→ Disponível para Android e IOS.



→ Nasceu como projeto de faculdade;

Mais de 2 milhões de downloads;

→ Eleito um dos melhores aplicativos sociais do mundo pela ONU, em 2012.

Figura 1: ProDeaf

Figura 2: Hand Talk



# Introdução Visão Computacional

- → Segundo Ballard e Brown (1982), a visão computacional é uma área interdisciplinar que trata da forma como os computadores podem interpretar informações a partir de imagens ou vídeos digitais.
- → O seu propósito é tomar decisões a partir dessas informações sobre o ambiente e cenas por meio de imagens (SHAPIRO; STOCKMAN, 2001).
- → É uma área que cresce em ritmo acelerado, devido a sua importância em compreender o mundo que obersavamos em imagens.



## Introdução

#### Reconhecimento de Padrões

→ Reconhecimento de Padrões (RP) é uma disciplina científica onde o principal objetivo é a classificação de objetos, além de também abranger a tarefa de agrupamento (THEODORIDIS; KOUTROUMBAS, 2008).



**Figura 3**: Estrutura de sistemas de Reconhecimento de Padrões (adaptado de Theodoridis e Koutroumbas (2008)).



## **Objetivos**

## **Geral e Específicos**

#### → Geral

→ Avaliar o desempenho dos algoritmos Naive Bayes, KNN e C4.5 (Árvores de Decisão) para classificação de gestos de Línguas de Sinais baseado em características obtidas por técnicas de VC.

#### → Especificos:

- → Auxiliar no desenvolvimento de um método para melhorar o reconhecimento da mão;
- → Desenvolver um aplicativo utilizando os algoritmos de classificação explorados para a análise de dados de gestos de LIBRAS representados por características obtidas por VC;
- → Escrever e publicar artigos com base no estudo realizado.



#### Aprendizado de Máquina

→ O Aprendizado de Máquina (AM) oferece métodos para automatizar, adaptar tarefas e representações, traduzir sinais em símbolos, etc.

→ A capacidade de raciocinar e aprender são as duas principais competências associadas a sistemas que utilizam AM.

→ No estudo do AM existem dois tipos clássicos de aprendizado.



## Aprendizado de Máquina

## Aprendizado Supervisionado



# Aprendizado não supervisionado





#### **Naive Bayes**

→ Classificador probabilístico utilizando a Teoria de Bayes;

→ Hipótese de independência condicional entre os atributos.





### **Naive Bayes**

$$H_{ML} = {\underset{c \in H}{argmax}} P(D|h)$$

- $\rightarrow$   $H_{ML}$   $\Longrightarrow$  Hipótese de Máxima Verossimilhança
- → Dados históricos, passados e rotulados
- → Estabelecer uma equação de probabilidade
- → Classificar novos dados

| Instâncias | Classe | A1 | A2 | А3 | A4 |
|------------|--------|----|----|----|----|
| 1          | 1      | 0  | 1  | 1  | 1  |
| 2          | 1      | 0  | 1  | 1  | 1  |
| 3          | 0      | 1  | 0  | 0  | 0  |
| 4          | 1      | 0  | 1  | 1  | 1  |
| 5          | 1      | 0  | 1  | 1  | 1  |
| 6          | 0      | 0  | 0  | 0  | 1  |
| 7          | 0      | 1  | 1  | 0  | 0  |
| 8          | 1      | 0  | 1  | 1  | 1  |
| 9          | 0      | 1  | 0  | 0  | 0  |
| 10         | 0      | 1  | 1  | 0  | 0  |



- → O algoritmo *K-Nearest Neighbors* (KNN), também conhecido como K-Vizinhos mais próximos.
- → É um dos algoritmos de classificação mais simples de ser compreendido.

→ Utiliza a distância euclidiana para estabelecer a proximidade dos objetos.



#### **KNN**



$$d_E(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$



- → Árvores, são estruturas de dados formadas por um agrupamento de elementos que armazenam informações.
- → O C4.5 é um dos algoritmos mais utilizados na literature, por ter mostrado ótimos resultados em problemas de classificação, e tem como objetivo gerar um classificador na forma de uma árvore de decisão.

→ Utiliza a Entropia, uma medida definida na teoria da informação.



Árvore de decisão - C4.5





#### Ferramentas utilizadas

- → Python;
- → OpenCV;
- → Pandas;

→ Scikit-Learn.



## Projeto de Classificação





| 4  | Α   | В   | С    | D    | E       | F           | G     | Н    | 1    | J       | K           | L   | М   | N   | 0   | Р   | Q   | R   | S      |
|----|-----|-----|------|------|---------|-------------|-------|------|------|---------|-------------|-----|-----|-----|-----|-----|-----|-----|--------|
| 1  | CX  | CY  | XMIN | YMIN | RAIOMIN | AREACIRCMIN | DEDOS | XMAX | YMAX | RAIOMAX | AREACIRCMAX | HU0 | HU1 | HU2 | HU3 | HU4 | HU5 | HU6 | Classe |
| 2  | 95  | 112 | 104  | 113  | 85      | 8222.5      | 1     | 87   | 91   | 29      | 8222.5      | 0   | 1   | 2   | 3   | 6   | -7  | 6   | Α      |
| 3  | 94  | 113 | 111  | 115  | 85      | 8361.5      | 0     | 86   | 92   | 29      | 8361.5      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 4  | 94  | 113 | 106  | 116  | 85      | 8265.5      | 0     | 86   | 92   | 29      | 8265.5      | 0   | 1   | 2   | 3   | 6   | 4   | 6   | Α      |
| 5  | 95  | 113 | 105  | 116  | 86      | 8303.5      | 0     | 87   | 93   | 30      | 8303.5      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 6  | 96  | 113 | 108  | 117  | 85      | 8242.0      | 0     | 88   | 94   | 30      | 8242.0      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 7  | 97  | 113 | 106  | 115  | 84      | 8165.5      | 0     | 90   | 95   | 30      | 8165.5      | 0   | 1   | 2   | 3   | 6   | -5  | 6   | Α      |
| 8  | 98  | 115 | 107  | 117  | 86      | 8216.0      | 0     | 91   | 95   | 29      | 8216.0      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 9  | 99  | 113 | 108  | 116  | 83      | 8201.0      | 1     | 93   | 96   | 29      | 8201.0      | 0   | 1   | 2   | 3   | 6   | 4   | 6   | Α      |
| 10 | 100 | 113 | 109  | 115  | 83      | 8222.5      | 0     | 93   | 98   | 29      | 8222.5      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 11 | 102 | 117 | 113  | 118  | 84      | 8149.5      | 1     | 94   | 99   | 29      | 8149.5      | 0   | 1   | 2   | 3   | 8   | -4  | 6   | Α      |
| 12 | 102 | 116 | 114  | 119  | 83      | 8269.5      | 0     | 95   | 99   | 29      | 8269.5      | 0   | 1   | 2   | 3   | 6   | 4   | 6   | Α      |
| 13 | 103 | 117 | 116  | 119  | 83      | 7988.5      | 0     | 96   | 101  | 29      | 7988.5      | 0   | 1   | 2   | 3   | 8   | -4  | 6   | Α      |
| 14 | 104 | 116 | 115  | 119  | 83      | 8131.0      | 0     | 97   | 102  | 29      | 8131.0      | 0   | 1   | 2   | 3   | 7   | 5   | 6   | Α      |
| 15 | 105 | 118 | 113  | 120  | 84      | 7914.5      | 0     | 98   | 102  | 29      | 7914.5      | 0   | 1   | 2   | 3   | 8   | -4  | 6   | Α      |
| 16 | 106 | 116 | 114  | 118  | 81      | 7973.0      | 1     | 99   | 103  | 29      | 7973.0      | 0   | 1   | 2   | 3   | 7   | -5  | 6   | Α      |
| 17 | 107 | 116 | 117  | 119  | 82      | 8009.0      | 0     | 101  | 102  | 29      | 8009.0      | 0   | 1   | 2   | 3   | 7   | 5   | 6   | Α      |
| 18 | 109 | 117 | 116  | 118  | 81      | 7777.5      | 0     | 101  | 104  | 29      | 7777.5      | 0   | 1   | 2   | 3   | -7  | -4  | 6   | Α      |
| 19 | 110 | 119 | 124  | 120  | 82      | 7852.0      | 0     | 102  | 104  | 29      | 7852.0      | 0   | 1   | 2   | 3   | -7  | -4  | 6   | Α      |
| 20 | 110 | 117 | 117  | 119  | 81      | 7894.0      | 0     | 103  | 104  | 29      | 7894.0      | 0   | 1   | 2   | 3   | 7   | 6   | 6   | Α      |
| 21 | 110 | 118 | 121  | 122  | 81      | 7887.0      | 0     | 104  | 104  | 29      | 7887.0      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
| 22 | 111 | 117 | 119  | 120  | 81      | 7944.0      | 0     | 104  | 105  | 29      | 7944.0      | 0   | 1   | 2   | 3   | 7   | 6   | 6   | Α      |
| 23 | 112 | 119 | 123  | 121  | 82      | 7940.0      | 0     | 105  | 105  | 29      | 7940.0      | 0   | 1   | 2   | 3   | 7   | -5  | 6   | Α      |
| 24 | 112 | 120 | 118  | 120  | 80      | 7797.0      | 0     | 105  | 106  | 29      | 7797.0      | 0   | 1   | 2   | 3   | -8  | -4  | 6   | Α      |
| 25 | 111 | 119 | 123  | 122  | 82      | 8056.5      | 0     | 105  | 106  | 29      | 8056.5      | 0   | 1   | 2   | 3   | 7   | 6   | 6   | Α      |
| 26 | 112 | 119 | 123  | 122  | 82      | 7830.0      | 0     | 105  | 106  | 29      | 7830.0      | 0   | 1   | 2   | 3   | -7  | -4  | 6   | Α      |
| 27 | 112 | 120 | 123  | 122  | 82      | 7994.5      | 0     | 105  | 106  | 29      | 7994.5      | 0   | 1   | 2   | 3   | -7  | -4  | 6   | Α      |
| 28 | 112 | 119 | 121  | 122  | 84      | 8153.0      | 1     | 104  | 105  | 29      | 8153.0      | 0   | 1   | 2   | 3   | -7  | -4  | 6   | Α      |
| 29 | 112 | 118 | 123  | 122  | 82      | 8138.5      | 0     | 105  | 103  | 30      | 8138.5      | 0   | 1   | 2   | 3   | 7   | -4  | 6   | Α      |
| 30 | 111 | 118 | 120  | 122  | 83      | 8212.0      | 1     | 104  | 102  | 30      | 8212.0      | 0   | 1   | 2   | 3   | 6   | -5  | 6   | Α      |
| 31 | 110 | 117 | 122  | 122  | 82      | 8162.5      | 0     | 104  | 101  | 31      | 8162.5      | 0   | 1   | 2   | 3   | 6   | 5   | 6   | Α      |
|    |     |     |      |      |         |             | -     |      |      |         |             | -   | -   | -   | -   | -   | -   | 17  |        |



## **Design do Aplicativo**





## **Design do Aplicativo**





## Avaliação do Classificador

→ Para avaliação do algoritmo foi utilizada a técnica de validação cruzada e a técnica de holdout.

| Iteração 1 | Teste  | Treino Treino |        | Treino | Treino |  |
|------------|--------|---------------|--------|--------|--------|--|
|            |        |               |        |        |        |  |
| Iteração 2 | Treino | Teste         | Treino | Treino | Treino |  |
|            |        |               |        |        |        |  |
| Iteração 3 | Treino | Treino        | Teste  | Treino | Treino |  |
|            |        |               |        |        |        |  |
| Iteração 4 | Treino | Treino        | Treino | Teste  | Treino |  |
|            |        |               |        |        |        |  |
| Iteração 5 | Treino | Treino        | Treino | Treino | Teste  |  |

20



# Avaliação e Resultados

| Classificadores | Acurácia |
|-----------------|----------|
| KNN (K=5)       | 89.05%   |
| C4.5            | 90.05%   |
| Naive Bayes     | 52.68%   |

Holdout - 20% dos dados para teste





# Avaliação e Resultados

| Classificadores | Acurácia |
|-----------------|----------|
| KNN (K=5)       | 90.18%   |
| C4.5            | 91.13%   |
| Naive Bayes     | 52.33%   |

| P-VALUES   |          |           |  |  |  |  |  |
|------------|----------|-----------|--|--|--|--|--|
| KNN X C4.5 | KNN X NB | C4.5 X NB |  |  |  |  |  |
| 0.033      | 0.0      | 0.0       |  |  |  |  |  |



# Avaliação e Resultados

#### Variação de Folds para a Validação Cruzada





## Conclusão

→ Conclui-se que o algoritmo C4.5, quando comparado estatisticamente com os classificadores KNN e NB, é o mais eficiente para a base de dados utilizada.



# Obrigado!