#### **MATEMATIKA**

#### EMELT SZINTŰ ÍRÁSBELI VIZSGA

2019. október 15. 8:00

Időtartam: 240 perc

| Pótlapok száma |  |  |  |  |  |  |  |  |
|----------------|--|--|--|--|--|--|--|--|
| Tisztázati     |  |  |  |  |  |  |  |  |
| Piszkozati     |  |  |  |  |  |  |  |  |

#### EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 2 / 24 2019. október 15.

#### Fontos tudnivalók

- 1. A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie.
- 2. A feladatok megoldási sorrendje tetszőleges.
- 3. A II. részben kitűzött öt feladat közül csak négyet kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a kitűzött sorrend szerinti legutolsó feladatra nem kap pontot.



- 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár!
- 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek!
- 7. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül a következő műveletek elvégzésére fogadható el: összeadás, kivonás,

szorzás, osztás, hatványozás, gyökvonás, n!,  $\binom{n}{k}$  kiszámítása, a függvénytáblázatban fel-

lelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.

- 8. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasságtétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de az alkalmazhatóságát röviden indokolnia kell. Egyéb tétel(ek)re való hivatkozás csak akkor fogadható el teljes értékűnek, ha az állítást minden feltételével együtt pontosan mondja ki (bizonyítás nélkül), és az adott problémában az alkalmazhatóságát indokolja.
- 9. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje!
- 10. A dolgozatot tollal írja, de az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- 11. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén **egyértelműen jelölje**, hogy melyiket tartja érvényesnek!
- 12. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

1911 írásbeli vizsga 3 / 24 2019. október 15.

I.

- 1. Egy fafajta törzsének keresztmetszetét vizsgáljuk egy adott magasságban. Ez a keresztmetszet a fa 5 és 20 éves kora közötti növekedése során (jó közelítéssel) mindvégig kör alakúnak tekinthető. A kör átmérőjét a d: [5; 20] → R, d(x) = -0,25x² + 20x + 40 függvény adja meg, ahol x a fa években mért életkorát, d(x) pedig az átmérő milliméterben mért hosszát jelöli.
  - a) Hány cm a törzs keresztmetszetének átmérője akkor, amikor a fa éppen 10 éves?
  - **b)** Hány dm²-rel nő a fatörzs keresztmetszetének területe a 11. évben? Válaszát egy tizedesjegyre kerekítve adja meg!
  - c) Hány éves a fa akkor, amikor a törzs keresztmetszetének kerülete éppen 1 méter?

| a)  | 2 pont  |  |
|-----|---------|--|
| b)  | 4 pont  |  |
| c)  | 5 pont  |  |
| Ö.: | 11 pont |  |

| Matematika  | Azonosító |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |

1911 írásbeli vizsga 5 / 24 2019. október 15.

- 2. Oldja meg az alábbi két egyenlőtlenséget a valós számok halmazán!
  - $\mathbf{a)} \quad \cos x \ge \frac{1}{2}$

**b)** 
$$\sqrt{\frac{x}{5}-4} < 20$$

c) Hány olyan egész szám van, amelyik gyöke az alábbi egyenlőtlenségnek?

$$\log_{0.5}(2x+100) \ge -8$$

| a)         | 3 pont  |  |
|------------|---------|--|
| <b>b</b> ) | 4 pont  |  |
| c)         | 7 pont  |  |
| Ö.:        | 14 pont |  |

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 7 / 24 2019. október 15.

- **3.** A p, q, r pozitív számok összege 180. Tudjuk továbbá, hogy p:q=7:8 és r:p=5:3.
  - a) Határozza meg ezeket a számokat!

A *H* halmaz az első 90 pozitív egész szám halmaza. *H*-ból véletlenszerűen kiválasztunk két különböző számot.

**b)** Határozza meg annak a valószínűségét, hogy a két kiválasztott szám egy derékszögű háromszög (fokban mért) valamelyik két szöge!

| a)  | 6 pont  |  |
|-----|---------|--|
| b)  | 7 pont  |  |
| Ö.: | 13 pont |  |

1911 írásbeli vizsga 8 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 9 / 24 2019. október 15.

**4. a)** Az ábrán a harmadfokú *f* függvény grafikonjának egy részlete látható. A függvény értelmezési tartományában megjelöltünk öt helyet.

Mindegyik esetben döntse el, hogy az adott helyen az f első, illetve második deriváltjának előjele pozitív (P) vagy negatív (N)! Válaszát írja a megadott táblázat megfelelő cellájába! (Tudjuk, hogy  $f'(x_4) = 0$ .)



| hely       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
|------------|-------|-------|-------|-------|-------|
| f'előjele  | P     |       |       | 0     |       |
| f" előjele |       |       |       |       |       |

**b)** Adott az  $y = -\frac{1}{4}(x-2)^2 + 8$  egyenletű parabola.

Határozza meg a k valós paraméter értékét úgy, hogy a 4x - y = k egyenletű egyenes érintse a parabolát, és határozza meg az érintési pont koordinátáit is!

| a)  | 4 pont  |  |
|-----|---------|--|
| b)  | 9 pont  |  |
| Ö.: | 13 pont |  |

1911 írásbeli vizsga 10 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |

1911 írásbeli vizsga 11 / 24 2019. október 15.

#### II.

## Az 5-9. feladatok közül tetszése szerint választott négyet kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe!

**5.** a) Döntse el, hogy igaz-e a következő állítás! Válaszát indokolja!

Ha egy háromszög két magassága egyenlő hosszúságú, akkor a háromszög egyenlő szárú.

Egy háromszögben a szokásos jelölésekkel a = 3,  $b = \sqrt{27}$  és  $\beta = 2\alpha$ .

b) Számítsa ki a háromszög szögeit!

Az egységnyi oldalú, szabályos *ABC* háromszögbe olyan *PQRS* téglalapot írunk, melynek *PQ* oldala az *AB* oldalra illeszkedik, *R* a *BC* oldal pontja, *S* pedig a *CA* oldalé.

c) Határozza meg a PQRS téglalap területének maximális értékét!

| a)  | 4 pont  |  |
|-----|---------|--|
| b)  | 5 pont  |  |
| c)  | 7 pont  |  |
| Ö.: | 16 pont |  |

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 13 / 24 2019. október 15.

### Az 5-9. feladatok közül tetszése szerint választott négyet kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe!

- **6.** Legyen az *U* alaphalmaz a legalább 4 pontú egyszerű gráfok halmaza. Az *F* halmaz az *U* elemei közül pontosan azokat tartalmazza, amelyek fagráfok, a *G* halmaz pontosan azokat, amelyek összefüggő gráfok, a *H* halmaz pedig pontosan azokat, amelyek 6 pontú gráfok.
  - **a)** Az alábbi ábrán satírozással jelölje meg, és halmazműveletekkel is adja meg az *U*-nak azt a részhalmazát, amelyik üres halmaz!
  - **b)** A megadott Venn-diagram minden egyes további részébe rajzoljon pontosan egy lehetséges gráfot!



Egy telephely K, L, M, N, O, P, Q épületei közül az éjszakai első ellenőrzés során ötöt ellenőriz a biztonsági őr.

c) Hányféleképpen tervezheti meg az útvonalát, ha a *K* és *L* épületeket mindenképpen ellenőrzi? (Két útvonal különböző, ha a két út során más épületeket, vagy ugyanazokat az épületeket, de más sorrendben ellenőriz a biztonsági őr.)

Megrajzoltuk az *ABCDE* konvex ötszög oldalait és átlóit, majd a megrajzolt szakaszok mindegyikét vagy kékre, vagy zöldre színeztük. A színezés befejezése után észrevettük, hogy nincs olyan háromszög, amelynek csúcsai az *A*, *B*, *C*, *D*, *E* pontok közül valók, és mindhárom oldala azonos színű.

d) Igazolja (például indirekt módszerrel), hogy nincs olyan csúcsa az ötszögnek, amelyből legalább három azonos színű szakasz indul ki!

1911 írásbeli vizsga 14 / 24 2019. október 15.

| a)         | 2 pont  |  |
|------------|---------|--|
| <b>b</b> ) | 5 pont  |  |
| c)         | 4 pont  |  |
| d)         | 5 pont  |  |
| Ö.:        | 16 pont |  |

1911 írásbeli vizsga 15 / 24 2019. október 15.

# Az 5-9. feladatok közül tetszése szerint választott négyet kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe!

- 7. a) Igazolja, hogy nincs olyan 2-nél nagyobb n egész szám, melyre  $\binom{n}{1}$ ,  $\binom{n}{2}$  és  $\binom{n}{3}$  (ebben a sorrendben) egy mértani sorozat egymást követő tagjai!
  - **b)** Határozza meg azokat az 5-nél nagyobb n egész számokat, melyekre  $\binom{n}{4}$ ,  $\binom{n}{5}$  és  $\binom{n}{6}$  (ebben a sorrendben) egy számtani sorozat egymást követő tagjai!

| a)         | 7 pont  |  |
|------------|---------|--|
| <b>b</b> ) | 9 pont  |  |
| Ö.:        | 16 pont |  |

|             | _         |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 17 / 24 2019. október 15.

## Az 5-9. feladatok közül tetszése szerint választott négyet kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe!

**8.** Egy kétszemélyes társasjátékot olyan négyzet alakú táblán játszanak, amelyet fehér és szürke mezőkre osztottak fel az ábra szerint.

Ha a táblát egy olyan koordináta-rendszerbe helyezzük, amelyben a négyzet csúcsainak koordinátái (1; 1), (-1; 1), (-1; -1), illetve (1; -1), akkor ebben a koordináta-rendszerben az a jelű ív egyenlete:  $y = (1-x)^3, 0 \le x \le 1$ . A tábla középpontosan és tengelyesen is szimmetrikus.



a) Írja fel a másik három (az ábrán b, c, illetve d jelű) ív egyenletét is!

A társasjáték gyártója a 2 dm oldalú tábla fehér színű részének bevonásához egy speciális anyagot használ. Ebből 1 kg mennyiség 12 m² terület bevonásához elegendő.

**b)** Számítsa ki, hogy 4000 darab tábla elkészítéséhez hány kg speciális anyag szükséges!

A kétszemélyes társasjátékban minden játszma csak valamelyik játékos győzelmével végződhet, döntetlen nincs. Minden játszmában 1 pontot kap a győztes, a vesztes pedig 0 pontot.

Anna és Bori nagyon szereti ezt a társasjátékot, sok játszmát lejátszottak már. Ha egymás ellen játszanak, akkor Anna 0,4 valószínűséggel, Bori pedig 0,6 valószínűséggel nyer meg egy játszmát. Egyik alkalommal megállapodnak, hogy addig játszanak újabb játszmákat, amíg valamelyikük először éri el a 10 pontot (és így megnyeri a játékot).

c) Mennyi annak a valószínűsége, hogy Bori legfeljebb 12 játszma után megnyeri a játékot? (Kezdéskor mindkettőjüknek 0 pontja van.)

| a)  | 4 pont  |  |
|-----|---------|--|
| b)  | 5 pont  |  |
| c)  | 7 pont  |  |
| Ö.: | 16 pont |  |

1911 írásbeli vizsga 18 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 19 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

### Az 5-9. feladatok közül tetszése szerint választott négyet kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe!

- 9. Egy középiskolában a tizedikesek évfolyamdolgozatot írtak matematikából. A dolgozatban maximálisan 100 pontot lehetett elérni. Az évfolyamra járó 80 tanuló közül a dolgozat megírásakor néhányan hiányoztak. A dolgozatokban elért pontszámok átlagát először úgy számították ki, hogy a hiányzó tanulók eredményét 0 pontosként vették figyelembe. Rövid időn belül észrevették, hogy ez a számítási mód hibás. A hibát kijavították, így a hiányzók figyelembe vétele nélkül kapott átlag 4,2 ponttal magasabbnak adódott, mint az első (hibás) számítás utáni átlag. Egy héttel később az első megírás alkalmával hiányzó tanulók pótolták a dolgozatot; az ő átlageredményük 64 pont lett (a pótdolgozatban is maximálisan 100 pontot lehetett elérni). A teljes tizedik évfolyam matematika-évfolyamdolgozatainak átlageredménye így 67 pontos lett.
  - a) Hány tanuló hiányzott a dolgozat első megírásakor? Hány pont volt azoknak a tanulóknak a helyesen számolt átlageredménye, akik az első alkalommal megírták a dolgozatot?

Az évfolyamdolgozat egyik feladatában öt feleletválasztós kérdésben kellett négy-négy válaszlehetőség közül az egyetlen helyeset kiválasztani. Amikor Domonkos elolvasta a kérdéseket, akkor látta, hogy az első két kérdésre biztosan tudja a helyes választ (ezeket be is jelöli majd). A harmadik és a negyedik kérdésnél egy-egy válaszlehetőségről, az ötödik kérdésnél pedig két válaszlehetőségről tudta biztosan, hogy azok rosszak. Ezért úgy döntött, hogy az utolsó három kérdésnél tippelni fog: véletlenszerűen választ azon válaszlehetőségek közül, amelyekről nem tudja biztosan, hogy rosszak.

b) Határozza meg Domonkos helyes válaszai számának várható értékét!

| a)  | 9 pont  |  |
|-----|---------|--|
| b)  | 7 pont  |  |
| Ö.: | 16 pont |  |

1911 írásbeli vizsga 20 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |

1911 írásbeli vizsga 21 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |  |

1911 írásbeli vizsga 22 / 24 2019. október 15.

| Matematika  | Azonosító |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|
| emelt szint | jel:      |  |  |  |  |  |  |  |

| ···· |      |      |      |      |      |      |      |      |      |      |      |      | <br>         |      |      |         |
|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------|------|------|---------|
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      | <br> | <br><br>     | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      | <br><u> </u> |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      | <br> |      | <br> | <br>†·····   | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> | ļ       |
|      | <br> |      | <br> | <br> | <br> | <br>ļ        | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      | <br> |      | <br> |      |      | <br> | <br> | <br> |      |      | <br> | <br> | <br>         |      |      |         |
|      | <br> | <br>ļ        | <br> | <br> | ļ       |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      | <br><u> </u> |      |      | <u></u> |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      | <br>Ī        |      |      |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br><u> </u> | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      | <br>ļ        |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      | <br> | <br>ļ        | <br> | <br> |         |
|      |      |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |

1911 írásbeli vizsga 23 / 24 2019. október 15.

|                                  | a feladat sor- | pontszám                 |       |            |       |
|----------------------------------|----------------|--------------------------|-------|------------|-------|
|                                  | száma          | maximális                | elért | maximális  | elért |
| I. rész                          | 1.             | 11                       |       |            |       |
|                                  | 2.             | 14                       |       | <b>5</b> 1 |       |
|                                  | 3.             | 13                       |       | 51         |       |
|                                  | 4.             | 13                       |       |            |       |
| II. rész                         |                | 16                       |       |            |       |
|                                  |                | 16                       |       | 64         |       |
|                                  |                | 16                       |       | 04         |       |
|                                  |                | 16                       |       |            |       |
|                                  |                | ← nem választott feladat |       |            |       |
| Az írásbeli vizsgarész pontszáma |                |                          |       | 115        |       |

| dátum | javító tanár |
|-------|--------------|

|          |       | pontszáma <b>egész</b><br><b>számra</b> kerekítve |  |
|----------|-------|---------------------------------------------------|--|
|          | elért | programba<br>beírt                                |  |
| I. rész  |       |                                                   |  |
| II. rész |       |                                                   |  |

| dátum        | dátum  |  |  |
|--------------|--------|--|--|
|              |        |  |  |
| javító tanár | jegyző |  |  |