

Production of Sulphur by Oxidation and Reduction of H2S

Basani Sharath Chandra, Ashika Verma, Madishetti Maniteja National Institute of Technology, Warangal

Background & Description:

Sulfur has the chemical formula S and an atomic weight of 32.07. It exists as rhombic crystals, m.p. 112.8°C and as monoclinic crystals, m.p. 119°C and it boils at 444.6°C. The specific gravity at 18°C of the rhombic form is 2.07 and of the monoclinic form is 1.96. The liquid has a specific gravity of 1.803. It is insoluble in water, but soluble in organic solvents and liquid ammonia.

Sulfur exists in the following forms: rock, lump, molten, ground powder and sublimed powder.

Some end uses of elemental Sulfur are:

- 85 to 90% for sulfuric acid manufacture
- Rest for production of:
- SO₂, SO₃, CS₂, and P₂S₅; rubber vulcanization agents; gunpowder, sulfur dyes; putties, sulfur concrete; paper.

Process Description:

H₂S and Air are burned in the furnace along with Water and SO₂. Reaction 1 takes place in the first reactor; the product SO₂ oxidizes H₂S by reaction 2 in a two stage catalytic reactor with intercooling and condensing. Sulfur as the final product is obtained.

Chemical reactions:

$$2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$$
 $\Delta H^o = -247.89$ Kcal ---->reaction 1 $4H_2S + 2SO_2 \rightarrow S_6 + 4H_2O$ $\Delta H^o = -42.24$ Kcal ---->reaction 2

Flowsheet:

Results:

Results						
Object	H2S	Oxygen	Products	502	Water	
Temperature	300	300	25	300	300	С
Pressure	1.01325	1.01325	1.01325	1.01325	1.01325	bar
Mass Flow	1000	1500	14.2164	2500	1500	kg/h
Molar Flow	29.342	46.8768	0.445903	39.0236	83.2627	kmol/h
Volumetric Flow	1379.91	2204.55	10.9086	1835.22	3915.72	m3/h
Molar Enthalpy (Mixture)	9959.8	8385.45	3.35579E-08	12242.8	9516.55	kJ/kmol
Molar Entropy (Mixture)	23.5158	19.8417	0.938129	28.7963	22.5376	kJ/[kmol.K]
Molar Fraction (Mixture) / Sulfur	0	0	0.986988	0	0	