Problem Set 2 Solution

March 18, 2020

Question 1

a.

b. Predicate Logic: $\forall k, n \in \mathbb{Z}^+, \ \forall p \in \mathbb{N}, \ Prime(p) \land p^k < n < p^k + p \Rightarrow gcd(p^k, n) = 1$

Let $k, n \in \mathbb{Z}^+$, and $p \in \mathbb{N}$. Assume Prime(p), and $p^k < n < p^k + p$.

Then, p^k can either be divided by 1 or p by fact 3.

Since, $p^k < n < p^k + p$, n cannot be written in multiples of p.

Then, it follows from the definition of divisibility that $p \nmid n$.

Since $p \nmid n$, but $1 \mid p^k$ and $1 \mid n$, $gcd(p^k, n) = 1$.

c. Predicate Logic: $\forall m \in \mathbb{Z}, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N} \ n > n_0 \land gcd(n, n+m) = 1$

Since there are infinitely many primes by fact 4, let Prime(n) and n > m.

Since Prime(n), by fact 3, n can either be divided by 1 or n.

Since $n \mid n$, but $n \nmid m$, $n \nmid (n+m)$, and n can't be chosen as the greatest common divisor of n and n+m.

Since $gcd(n, n+m) \neq n$ but $1 \mid n$ and $1 \mid (n+m), gcd(n, n+m) = 1$.

Then, it follows from above that the statement $\forall m \in \mathbb{Z}, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}$ $n > n_0 \land gcd(n, n + m) = 1$ is true.

d. **Definition of Primary Gap:** Let $a \in \mathbb{N}$. We say that a is a prime gap when there exists a prime p such that p + a is also prime, and none of the numbers between p and p + a (exclusive) are prime.

Case 1 (a > 2):

Let $a, p \in \mathbb{Z}^+$. Assume PrimaryGap(a), Primary(p), and a > 2.

Then, $2 \nmid p$ and $2 \nmid p + a$.

Then,

$$2 \mid (p+a) - a \tag{1}$$

$$2 \mid a$$
 (2)

by fact 1.

Then it follows from above that in case a > 2, primary gap is divisible by 2.

Case 2 $(a \le 2)$:

Let $a, p \in \mathbb{Z}^+$. Assume PrimaryGap(a), Primary(p), and $a \leq 2$.

Then, only two primary numbers in \mathbb{Z}^+ exist - 1 and 2.

Then,

$$a = 2 - 1 \tag{1}$$

$$a = 1 \tag{2}$$

Then, it follows from above that in case $a \leq 2$, the value of primary gap is 1.

Question 2

a. Let $n \in \mathbb{N}$, and $x \in \mathbb{R}$.

Because we know $\forall x \in \mathbb{R}, \ 0 \le x - \lfloor x \rfloor < 1$ from fact 1, we can conclude $\lfloor x \rfloor \le x < 1 + \lfloor x \rfloor$.

Then,

$$|nx| - n|x| \le nx - n|x| \tag{1}$$

$$\leq n(x - \lfloor x \rfloor) \tag{2}$$

by using the above.

Then,

$$\lfloor nx \rfloor - n\lfloor x \rfloor \le n(x - \lfloor x \rfloor) \tag{3}$$

$$< n$$
 (4)

$$< k$$
 (5)

by using fact 1 and choosing k = n.

Then, it follows that the statement the statement $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, x \in \mathbb{R}, \lfloor nx \rfloor - n \lfloor x \rfloor \leq k$ is true.

b. Negation of statement: $\forall k \in \mathbb{N}, \ \exists m \in \mathbb{N}, \ \exists x \in \mathbb{R}, \ \lfloor nx \rfloor - n \lfloor x \rfloor > k$

Let x = 0.5 and n = 2(k+1).

Then,

$$\lfloor nx \rfloor - n\lfloor x \rfloor = \lfloor \frac{2(k+1)}{2} \rfloor - n\lfloor 0.5 \rfloor \tag{1}$$

$$= k + 1 - 0 \tag{2}$$

$$= k + 1 \tag{3}$$

$$> k$$
 (4)

Then it follows that the statement $\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \lfloor nx \rfloor - n \lfloor x \rfloor \leq k$ is false.

c. Proof of $0 \le \epsilon < 1$:

Let $y \in \mathbb{R}^{\geq 0}$, and $n \in \mathbb{Z}$. Assume n > y, and assume $y = (n + \epsilon)^2 - n^2$.

Then,

$$y + n^2 = (n + \epsilon)^2 \tag{1}$$

$$\pm\sqrt{y+n^2} - n = \epsilon \tag{2}$$

$$\sqrt{y+n^2} - n = \epsilon \tag{3}$$

(4)

by assuming ϵ is in $\mathbb{R}^{\geq 0}$.

Then,

$$\sqrt{n^2} - n \le \epsilon \tag{5}$$

by using inequality $y \geq 0$.

Then,

$$\sqrt{n^2} - n \le \epsilon \tag{6}$$

$$n - n \le \epsilon \tag{7}$$

$$0 \le \epsilon \tag{8}$$

And for $\epsilon < 1$, let $y \in \mathbb{R}^{\geq 0}$, and $n \in \mathbb{Z}$. Assume n > y, and assume $y = (n + \epsilon)^2 - n^2$.

$$y + n = (\epsilon + n)^2 \tag{9}$$

$$y + n = (\epsilon + n)^{2}$$

$$\pm \sqrt{y + n^{2}} - n = \epsilon$$
(10)

$$\sqrt{y+n^2} - n = \epsilon \tag{11}$$

(12)

by assuming ϵ is in $\mathbb{R}^{\geq 0}$.

Then,

$$\sqrt{y+n^2} - n = \epsilon \tag{13}$$

$$\frac{(\sqrt{y-n^2})^2 - n^2}{\sqrt{y+n^2} + n} = \epsilon \tag{14}$$

by using hint 2 $(x - y = \frac{x^2 - y^2}{x + y})$.

Then,

$$\frac{(\sqrt{y-n^2})^2 - n^2}{\sqrt{y+n^2} + n} = \epsilon \tag{15}$$

$$\frac{y}{\sqrt{y+n^2}+n} = \epsilon \tag{16}$$

$$\frac{y}{\sqrt{y+y^2}+y} > \epsilon \tag{17}$$

by using assumption n > y.

Then,

$$\frac{y}{\sqrt{y+y^2}+y} > \epsilon \tag{18}$$

$$\frac{y}{\sqrt{y^2} + y} > \epsilon \tag{19}$$

$$\frac{y}{y+y} > \epsilon \tag{20}$$

$$\frac{y}{2y} > \epsilon \tag{21}$$

$$\frac{y}{y} > \epsilon \tag{22}$$

$$1 > \epsilon \tag{23}$$

Then, it follows from above that the statement $\forall y \in \mathbb{R}^{\geq 0}$, $\forall n \in \mathbb{Z}^+$, $n > y \Rightarrow (\exists \epsilon \in \mathbb{R}^{\geq 0}, \ 0 \leq \epsilon < 1 \land y = (n+\epsilon)^2 - n^2)$ is true given n > y and $y = (n+\epsilon)^2 - n^2$.

Proof of $y = (n + \epsilon)^2 - n^2$:

Let $y \in \mathbb{R}^{\geq 0}$, and $n \in \mathbb{Z}$. Assume n > y, and assume $0 \leq \epsilon < 1$.

Then,

$$(n+\epsilon)^2 = n^2 + 2n\epsilon + \epsilon^2 \tag{1}$$

$$(n+\epsilon)^2 - n^2 = 2n\epsilon + \epsilon^2 \tag{2}$$

$$(n+\epsilon)^2 - n^2 = 2n(\sqrt{y+n^2} - n) + (\sqrt{y+n^2} - n)^2 \tag{3}$$

by assuming $\epsilon = \sqrt{y + n^2} - n$ (since $0 \le \sqrt{y + n^2} - n < 1$).

Then,

$$(n+\epsilon)^2 - n^2 = 2n(\sqrt{y+n^2} - n) + (\sqrt{y+n^2} - n)^2 \tag{4}$$

$$= 2(\sqrt{y+n^2} - n)(2n + \sqrt{y+n^2} - n) \tag{5}$$

$$= (\sqrt{y+n^2} - n)(\sqrt{y+n^2} + n) \tag{6}$$

$$= (\sqrt{y+n^2})^2 - n^2 \tag{7}$$

$$= y \tag{8}$$

Then, it follows from above that the statement $\forall y \in \mathbb{R}^{\geq 0}, \forall n \in \mathbb{Z}^+, n > 0$ $y \Rightarrow (\exists \epsilon \in \mathbb{R}^{\geq 0}, \ 0 \leq \epsilon < 1 \land y = (n+\epsilon)^2 - n^2)$ is true given n > y and $0 \le \epsilon < 1$.

d. Predicate Logic: $\exists f : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}, f(x) = x^2 - (|x|)^2 \wedge Onto(f)$

Definition of Onto: $f: \mathbb{R} \to \mathbb{R}$ is **onto** when its codomain \mathbb{R} only contains values that could possibly be output by f (and no impossible values).

Let
$$f(x) = x^2 - (\lfloor x \rfloor)^2$$
.

Then,

$$(x^2 - \lfloor x \rfloor^2) \ge (x - \lfloor x \rfloor)(x + \lfloor x \rfloor) \tag{1}$$

$$\geq (x - \lfloor x \rfloor) \cdot 0$$
 (2)

$$\geq 0$$
 (3)

$$\geq 0 \tag{3}$$

by fact 1 (i.e. $\forall x \in \mathbb{R}, \ 0 \le x + \lfloor x \rfloor < 1$).

Since f has lower bound of 0, and covers all of its codomain, f is onto.

Question 3

a. Predicate Logic: $\forall f : \mathbb{R} \to \mathbb{R}, f(x) = f(-x) \land -f(-x) = f(x) \Leftrightarrow f = 0$

Part 1: Proving in \Rightarrow direction

Let $f: \mathbb{R} \to \mathbb{R}$. Assume $f(x) = f(-x) \land -f(-x) = f(x)$.

Then,

$$f(-x) - f(-x) = 2f(x)$$
 (1)

$$0 = 2f(x) \tag{2}$$

by adding f(x) = f(-x) and -f(-x) = f(x) together.

Then,

$$0 = f(x) \tag{3}$$

Then it follows that the statement $\forall f : \mathbb{R} \to \mathbb{R}, f(x) = f(-x) \land -f(-x) = f(x) \Rightarrow f = 0$ is true.

Part 2: Proving in \Leftarrow direction

Let $f: \mathbb{R} \to \mathbb{R}$. Assume f(x) = 0.

Then,

$$-f(-x) = -(-0) (1)$$

$$=0 (2)$$

$$= f(x) \tag{3}$$

It follows from above that f(x) = 0 is an odd function.

Also,

$$f(-x) = (-0) \tag{4}$$

$$=0 (5)$$

$$= f(x) \tag{6}$$

It follows from above that f(x) = 0 is an odd function.

Because we know f(x)=0 is both even and odd, we can conclude that the statement $\forall f: \mathbb{R} \to \mathbb{R}, \ f=0 \Rightarrow f(x)=f(-x) \land -f(-x)=f(x)$ is true.

b. Predicate Logic: $\forall f: \mathbb{R} \to \mathbb{R}, \exists f_1, f_2: \mathbb{R} \to \mathbb{R}, -f_1(x) = f_1(x) \land f_2(-x) = f_2(fx) \land f(x) = f_1(x) + f_2(x)$

Negation: $\exists f : \mathbb{R} \to \mathbb{R}, \ \forall f_1, f_2 : \mathbb{R} \to \mathbb{R}, \ -f_1(-x) \neq f_1(x) \lor f_2(x) \neq f_2(x) \lor f(x) \neq f_1(x) + f_2(x)$

Let f be an even function. Assume $Even(f_1)$ and $Odd(f_2)$.

Then,

$$f(-x) = (f_1(-x) + f_2(-x)) \tag{1}$$

$$= f_1(x) - f_2(x) (2)$$

$$\neq f(x)$$
 (3)

Then, it follows from negation of the statement that every function cannot be written as a sum of an even function and an odd function.

c. **Predicate Logic:** $\forall f : \mathbb{R} \to \mathbb{R}, \ \exists f_1, f_2 : \mathbb{R} \to \mathbb{R}, \ Even(f_1) \land Odd(f_2) \land f(x) = f_1(x) + f_2(x).$

Negation: $\exists f : \mathbb{R} \to \mathbb{R}, \forall f_1, f_2 : \mathbb{R} \to \mathbb{R}, \neg Even(f_1) \lor \neg Odd(f_2) \lor f(x) \neq f_1(x)f_2(x)$

Let f be an even function. Assume $Even(f_1)$ and $Odd(f_2)$.

Then,

$$f(-x) = f_1(-x)f_2(-x)$$
 (1)

$$= -f_1(x)f_2(x) \tag{2}$$

$$\neq f(x)$$
 (3)

Then, it follows from negation of the statement that every function cannot be written as a product of an even function and an odd function.