Analisi comparativa tra Stepwise e PCA per l'identificazione delle variabili chiave nella Perdita di Peso.

Descrizione dei dati

I dati raccolti sono relativi a un campione composto da 2.076 individui affetti da obesità, con un set di 562 variabili registrate che forniscono un quadro dettagliato delle caratteristiche fisiologiche e cliniche dei pazienti.

Alcune caratteristiche dei pazienti

Data cleaning

Gestione dei

missing

Eliminazione delle variabili con più del 25% di missing

Step 5

Imputazione dei missing

Variabile outcome

Perdita di peso maggiore del 5%

peso iniziale—peso finale peso iniziale

STEPWISE: Procedura

Step 2

Creazione del modello nullo

Step 4

Indiviuazione del criterio di selezionamento: BIC

Step 6

Risultati

Step 1

Divisione del dataset in train e test set

Step 3

Creazione del modello completo

Step 5

Selezione delle variabili con il metodo "both"

STEPWISE: Risultati modello logit

La Stepwise ha selezionato sei variabili statisticamente significative per la variabile outcome:

- ffm_kg è la massa magra
- fm_kg è la massa grassa
- creatin è la quantità di creatina nell'organismo
- peso è la misurazione della massa corporea iniziale
- ALT è il livello di *Alanina Aminotransferasi*, enzima coinvolto nel metabolismo degli aminoacidi, nell'organismo
- linfociti_val è il numero di linfociti nel sangue

Variabili	Coefficienti	p-value
Intercetta	-1.502425	0.000365
Intercetta	-1.002420	0.000303
ffm_kg	-0.124656	0.000751
creatin	-1.165971	6.97e-06
peso	0.184978	5.16e-07
$\mathrm{fm}_{-}\mathrm{kg}$	-0.207866	3.80e-08
ALT	0.011652	0.003537
linfociti_val	-0.236776	0.003970

Modello logit con le variabili selezionate attraverso la stepwise

Odds-Ratio

Intercetta	ffm_kg	creatin	peso	$\mathrm{fm}_{-}\mathrm{kg}$	ALT	$linfociti_val$

 $0.2225898 \ \ 0.8828001 \ \ 0.3116199 \ \ 1.2031918 \ \ 0.8123159 \ \ 1.0117199 \ \ 0.7891679$

PCA: Procedura

Scores e Loadings

Vogliamo trasformare le variabili originarie $X=(X_1,X_2,\ldots,X_{55})^t$ in $Z=(Z_1,Z_2,\ldots,Z_{55})^t$ vettore delle componenti principali. La trasformazione è di tipo lineare,

$$Z_j = \phi_{1j}X_1 + \phi_{2j}X_2 + \ldots + \phi_{55j}X_{55}$$

viene detta j-esima componente principale. I coefficienti

$$\phi_j = (\phi_{1j}, \phi_{2j}, \dots, \phi_{55j})^{\mathsf{t}}$$

sono detti *loadings* della *j*-esima componente.

Z_1	Z_2	Z_3		Z_{54}	Z_{55}
-2.0895	-3.8574	0.2484	•••	-0.2321	-0.1503
-3.0588	-2.0520	0.1935		-0.2764	0.0285
-3.0664	-1.2639	-1.0674	•••	-0.3289	-0.0689
-0.6524	-2.1123	1.8394	• • •	0.0234	-0.0401
-0.6606	1.0846	-0.4657		0.0541	-0.0063

Table 1: Head Scores

	ϕ_1	ϕ_2	ϕ_3		ϕ_{54}	ϕ_{55}
eta	0.1123	0.0057	0.0850	• • •	0.0055	$3.27e^{-3}$
qualific.	-0.0622	0.0623	-0.0038	• • •	-0.0015	$-1.09e^{-4}$
$job_cat.$	0.0312	-0.0315	0.0304	• • •	-0.0006	$7.72e{-5}$
peso	-0.2739	-0.2098	0.1058	•••	-0.7546	$-2.09e^{-1}$
altezza	-0.2544	0.1054	0.1284		0.3149	$1.04e^{-1}$

Table 2: Head loadings

PCA: Procedura

Screeplot

PCA: Procedura

Selezione delle variabili

$nome_variaibli$	contributo	
ffm_kg	9.9245	
$harris_benedict$	9.3557	
$massa_musc_kg$	8.7405	
$acqua_intra$	7.7263	
peso	7.5038	
altezza	6.4722	
$circ_vita$	5.6762	
$acqua_extra$	5.6262	

Table 1: Prima PC

$nome_variaibli$	contributo	
$\overline{fm_kg}$	12.0971	
BMI	11.3285	
$circ_fian$	10.6542	
fm_perc	9.6027	
ffm_perc	9.5669	
$massa_musc_perc$	9.0990	
$rapporto_vita_alt$	8.0043	
$circ_vita$	4.5583	
peso	4.4020	

Table 2: Seconda PC

Correlation Plot

Tra le variabili selezionate precedentemente prendiamo in considerazione, per il modello logit, solo quelle con un coefficiente di correlazione minore di 0.7

PCA: Risultati modello logit

Le variabili statisticamente significative sono:

- peso è la misurazione della massa corporea iniziale
- altezza è la misurazione in cm del paziente
- fm_perc è la percentuale di massa grassa
- neutrofili_val è il numero di neutrofili nel sangue
- linfociti_val è il numero di linfociti nel sangue
- emo_gli è il numero di emoglobina glicata, che rispecchia la concentrazione di glucosio nel sangue
- creatin è la quantità di creatina nell'organismo
- ALT è il livello di Alanina Aminotransferasi, enzima coinvolto nel metabolismo degli aminoacidi, nell'organismo

Variabili	Coefficienti	p-value
Intercetta	8.4270369	0.002042
peso	0.0331009	1.99e - 05
$massa_musc_kg$	-0.0059752	0.673689
altezza	-0.0218800	0.099493
circ_fian	-0.0097784	0.207162
$\mathrm{fm_perc}$	-0.1101780	2.46e - 11
$rapporto_vita_alt$	-0.1279250	0.914099
$neutrofili_val$	0.1290235	0.019015
$linfociti_val$	-0.2416237	0.008235
$monociti_val$	0.2123979	0.613060
piastr	-0.0015421	0.225802
$\operatorname{col_tot}$	0.0019673	0.267876
$\mathrm{emo}_{-}\mathrm{gli}$	-0.0098490	0.040209
creatin	-1.0703689	0.000129
eta	0.0003013	0.959900
emo	-0.0911338	0.101173
ALT	0.0124475	0.009169
$_{ m gammaGT}$	0.0005946	0.714021
vol_glob	-0.0059690	0.444436
trigl	0.0012361	0.246335
${ m freq_card}$	0.0037099	0.495461

Modello logit con le variabili selezionate attraverso la PCA

Confronto dei modelli: Bontà di adattamento

Si parte col confronto dei Pseudo-R^2. Essi aiutano a selezionare il modello che meglio si adatta ai dati, valutando quello che spiega in modo più efficace le variazioni nella variabile target.

Questa differenza nei Pseudo-R^2 ci invita a considerare ulteriori analisi. Si valuta in questo caso la bontà di adattamento tenendo conto del principio di parsimonia

Pseudo- R^2	Stepwise	PCA
Efron	0.1891388	0.1725211
McFadden	0.1408172	0.1335146
Nagelkerke	0.2348536	0.2237523
Cox-Snell	0.1748825	0.1666160

Confronto dei Pseudo- \mathbb{R}^2

	Stepwise	PCA
AIC	1507.064	1547.754
BIC	1643.196	1655.886

Confronto dei criteri di validazione

Confronto dei modelli: Validazione

	Stepwise	PCA
Q W	0.054	0.510
Cutoff	0.354	0.518
Accuracy	0.667	0.704
Sensitivity	0.765	0.493
Specificity	0.593	0.863
AUC	0.730	0.710
Test error	0.333	0.296

Confronto delle misure di accuratezza

Conclusioni

- Dopo un'adeguata pulizia dei dati abbiamo confrontato, quindi, due tecniche per la selezione delle variabili significative per la perdita di peso di almeno un 5%.
- La stepwise ha selezionato solo 6 variabili, tutte numeriche continue.
- Tramite l'analisi delle componenti principali, invece, sono state selezionate più variabili, ma non tutte sono statisticamente significative per l'outcome.
- Dal confronto tra i modelli, la Stepwise risulta essere più performante sia in termini di adattabilità ai dati utilizzati per l'addestramento, sia out-sample.
- È importante precisare che la Stepwise è una tecnica tradizionale creata proprio per questo scopo, mentre la PCA è utilizzata principalmente per comprimere le informazioni in meno variabili perdendo, però, parte delle informazioni.