Künstliche Intelligenz kapieren und programmieren

Teil 8: Anwendung von KI

Michael Weigend Universität Münster

mw@creative-informatics.de www.creative-informatics.de 2024

Materialien bei GitHub:

https://github.com/mweigend/ki-workshop

Tag 2

Zeit	Thema	Inhalte	
9.00	Perzeptron	Neuron, Aktivierungsfunktion, Daten visualisieren mit Matplotlib, Rosenblatt-Perzeptron für logische Operationen	
11.00	Aus Fehlern lernen	Error-Backpropagation, einfaches künstliches neuronales Netz (KNN) mit verborgenen Knoten	
12.30	Mittagspause		
13.30	Ziffern erkennen	NumPy, KNN mit Array-Operationen, das Ziffern erkennen kann	
15.00	Anwendung von KI	Verkehrsschilder erkennen, Gesichter erfassen, Experimente mit OpenCV, Schlussrunde	
16.00	Ende		

Symbolische und subsymbolische KI

Symbolische KI

Arbeitsweise der KI ist durch Regeln bestimmt und für den Menschen nachvollziehbar

- Chatbot
- Spielgegner
- Lernender Entscheidungsbaum
- Lernender Suchroboter

Subsymbolische KI

Arbeitsweise der KI ist **nicht** durch Regeln bestimmt und für den Menschen **nicht nachvollziehbar**

Neuronales Netz

Reale Systeme sind eine Mischung mehrerer Techniken

Verkehrszeichen erkennen

Aussehen in Straßenverkehrsordnung festgelegt, Nummer: VZ-274-55

Aussehen der Verkehrszeichen in der Realität

Traffic Sign Recognition (TSR) im Auto

1. Schritt: Verkehrszeichen erfassen (Traffic Sign Detection)

Bildausschnitte, die Verkehrszeichen enthalten (ROI)

Training eines KNN mit etikettierten Bildern von Verkehrsszenen

German Traffic Sign Detection Benchmark (GTSDB), 900 Bilder

2. Schritt: Verkehrszeichen erkennen

German Traffic Sign Recognition Benchmark (GTSRB), 50000 Bilder

German Traffic Sign Recognition Benchmark (GTSRB)

50000 Bilder, 40 unterschiedliche Verkehrszeichen

Projekt: Gesichter erfassen

Ziel:

- Auf einem Foto die Anzahl der Gesichter ermitteln
- Gesichter einrahmen
- Gesichter unkenntlich machen (Übung)

Vorbereitung

Projektordner enthält:

- Bilddatei: astronauten.png
- XML-Datei zum Klassifizieren: haarcascade_frontalface_default.xml
- Programmdatei: gesichter.py

Nach der Installation von opencv-python findet man Klassifiziererdateien in folgendem Ordner:

... \Python311\Lib\site-packages\cv2\data

Haar-Kaskaden-Klassifizierer zum Erfassen von Augen, Lächeln, Gesicht von der Seite, ...

• haarcascade_eye.xml	11.05.2023 10:19	Microsoft Edge HT	334 KI
• haarcascade_eye_tree_eyeglasses.xml	11.05.2023 10:19	Microsoft Edge HT	588 KI
thaarcascade_frontalcatface.xml	11.05.2023 10:19	Microsoft Edge HT	402 KI
thaarcascade_frontalcatface_extended	11.05.2023 10:19	Microsoft Edge HT	374 KI
thaarcascade_frontalface_alt.xml	11.05.2023 10:19	Microsoft Edge HT	661 K
the arcascade_frontalface_alt_tree.xml	11.05.2023 10:19	Microsoft Edge HT	2.627 K
thaarcascade_frontalface_alt2.xml	11.05.2023 10:19	Microsoft Edge HT	528 KI
thaarcascade_frontalface_default.xml	11.05.2023 10:19	Microsoft Edge HT	909 KI
thaarcascade_fullbody.xml	11.05.2023 10:19	Microsoft Edge HT	466 KI
thaarcascade_lefteye_2splits.xml	11.05.2023 10:19	Microsoft Edge HT	191 K
thaarcascade_license_plate_rus_16stag	11.05.2023 10:19	Microsoft Edge HT	47 KI
thaarcascade_lowerbody.xml	11.05.2023 10:19	Microsoft Edge HT	387 KI
thaarcascade_profileface.xml	11.05.2023 10:19	Microsoft Edge HT	810 KI
thaarcascade_righteye_2splits.xml	11.05.2023 10:19	Microsoft Edge HT	192 KI
thaarcascade_russian_plate_number.xml	11.05.2023 10:19	Microsoft Edge HT	74 KI
thaarcascade_smile.xml	11.05.2023 10:19	Microsoft Edge HT	185 KI
• haarcascade_upperbody.xml	11.05.2023 10:19	Microsoft Edge HT	768 KI

Haar-Kaskaden

Beispiele für Haar-Features (benannt nach Alfred Haar)

Algorithmus von Paul Viola und Michael Jones (2001)
Grundidee: Bilder haben typische Hell-Dunkelbereiche (Haar –Features). Kamerabild wird auf Haar-Features untersucht.

Programmierung

NumPy-Array mit den Pixeln des Bildes

Graustufenbild

Klassifiziererobjekt

Liste von Tupeln (x, y, Breite, Höhe)

Erstes Rechteck einzeichnen

```
import cv2
FOTO = 'astronauten.png'
XMLDATEI = 'haarcascade frontalface default.xml'
bild = cv2.imread(FOTO)
grau = cv2.cvtColor(bild, cv2.COLOR BGR2GRAY)
klassifizierer = cv2.CascadeClassifier(XMLDATEI)
rechtecke = klassifizierer.detectMultiScale(grau,
                              scaleFactor=1.05,
                              minNeighbors=5)
n = len(rechtecke)
print('Ich habe', n, 'Gesichter gefunden.')
x, y, w, h = rechtecke[0]
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 255), 2)
cv2.imshow('Foto mit dem ersten erkannten Gesicht', bild)
cv2.waitKey(0)
                               # warte bis Taste gedrückt
cv2.destroyAllWindows()
                              # Schließe das Viewer-Fenster
```

Übung 8.1

Aufgabe 1

Testen Sie das Starterprojekt.

Aufgabe 2

Erweitern Sie das Starterprojekt. Fügen Sie einige print () - Anweisungen ein, die die Arbeitsweise des Programms verständlich machen (z.B. Ausgabe des Numpy-Arrays, der das Foto darstellt).

Aufgabe 3

Wandeln Sie das Programm ab, sodass auf dem Bild alle Gesichter durch ein graues Rechteck unkenntlich gemacht werden.

Hinweis: Wenn Sie beim Aufruf der Funktion cv2.rectangle() als Liniendicke (letztes Argument) -1 angeben, wird ein gefülltes Rechteck gezeichnet.

Schlussrunde