1) Dada la siguiente metaER encuentre una ER básica equivalente

2) Dada la siguiente ER básica encuentre una metaER equivalente

rtartarta+
$$(d+e+f+g)(d+e+f+g+\epsilon)(d+e+f+g+\epsilon)23(23)*$$

(rta){4}|[d-g]{1,3}(23)+

3) Dado el siguiente fragmento de programa en ANSI C, arme una tabla para los errores de compilación con las columnas: Nro de línea, descripción del error.

```
1 const int k = 7; int t = 2;
2 t %= 2;
3 int i = 0
4 for(;i<10;i++)
5     k = i+t;</pre>
```

Nro de Línea	Error
3	Después de sentencias no se puede volver a hacer declaraciones
3	Falta ; al final
5	Se requiere un valor-L modificable para la asignación

4) Marque con una cruz si los siguientes constructos ANSI C tiene errores semánticos, errores sintácticos, o no tiene error de compilación. Asuma que las funciones estándar están disponibles.

	Errores Semánticos	Errores Sintácticos	Sin Error
{int i=5; void *p = &i i = *p + 3;}	х		
{int i=7; do printf("%d\n", i); while i;}		x	
<pre>{int scanf=0; printf("%d\n", scanf+2);}</pre>			х
{int a=2,i=3; while (i) {a += 3█}}		x	

5) Convierta el AFN-ε dado por la siguiente tabla de transición a un AFD

TT	a	b	3
0-	{0,1}	{3}	{1}
1+	{1}	-	-
2	-	{1}	-
3	{4}	{3}	{2}
4	{2,4}	{3}	{1}

Solución

Clausura- $\epsilon(\{0\}) = \{0,1\}$
Hacia $(\{0,1\},a) = \{0,1\}$
Clausura- $\epsilon(\{0,1\}) = \{0,1\}$
Hacia $(\{0,1\},b) = \{3\}$
Clausura- $\varepsilon(\{3\}) = \{2,3\}$
Hacia($\{2,3\}$,a) = $\{4\}$
Clausura- $\epsilon(\{4\}) = \{1,4\}$
Hacia $(\{2,3\},b) = \{1,3\}$
Clausura- $\varepsilon(\{1.3\}) = \{1.2.3\}$

TT	a	b
{0,1}±	{0,1}	{2,3}
{2,3}	{1,4}	{1,2,3}
{1,4}+	{1,2,4}	{2,3}
{1,2,3}+	{1,4}	{1,2,3}
{1,2,4}+	{1,2,4}	{1,2,3}
-		

TT	a	b
0±	0	1
1	2	3
2+	4	1
3+	2	3
4+	4	3

$Hacia(\{1,4\},a) = \{1,2,4\}$
Clausura- $\varepsilon(\{1,2,4\}) = \{1,2,4\}$
Hacia($\{1,4\},b$) = $\{3\}$
Hacia($\{1,2,3\},a$) = $\{1,4\}$
Clausura- $\epsilon(\{1,4\}) = \{1,4\}$
Hacia($\{1,2,3\},b$) = $\{1,3\}$
Hacia($\{1,2,4\},a$) = $\{1,2,4\}$
Hacia($\{1,2,4\},b$) = $\{1,3\}$

6) Obtenga la tabla de transición del AFD mínimo equivalente al AFD de la siguiente tabla

TT	a	b
0-	1	4
1+	4	6
2+	3	6
3	6	2
4	6	1
5	1	3
6+	6	4

Solución

Nota: la primer solución sería "la tradicional" pero que es incorrecta (si bien se considera correcta a efectos del parcial) ya que no elimina inalcanzables que no se detectan con el modo simple que comentamos en clase. De casualidad el resultado termina siendo el mismo

TT	a	b
0-	1	4
1+	4	6
2+	3	6
3	6	2
4	6	1
5	1	3
6+	6	4

TT	a	b	
0-	1	4	
3	6	2	C0
4	6	1	
1+	4	6	
2+	3	6	C1
6+	6	4	

TT b a 0-C1 C0C1 C1 C0C1 C1 C1 1+ C02+ C0C1 C1 C1 C0 6+

por inalcanzable.

Separamos por finales y no Tabla Inicial. Elimino estado 5 finales para armar las clases

Dejamos solo un estado por

Separo los estados 3 y 4 en una nueva clase. Lo mismo para el estado 6

b

TT	a	b	
0-	C1	C2	C0
3	C3	C1	C2
4	C3	C1	C2
1+	C2	C3	C1
2+	C2	C3	C1
6+	C3	C2	C3

TT	a	b
0-	1	3
3	6	1
1+	3	6
6+	6	3

0-	1	2
2	3	1
1+	2	3
3+	3	2

TT

clase

Lo mismo pero usando los nros de clase

Solución correcta

No se puede dividir más

TT	a	b
0-	1	4
1+	4	6
2 +	3	6
3	6	2
4	6	1
5	1	3
6+	6	4

TT	a	b	
0-	1	4	CO
4	6	1	C0
1+	4	6	C1
6+	6	4	C1

Separamos por finales y no finales para armar las clases

TT	a	b	
0-	C1	C0	CO
4	C1	C1	C0
1+	C0	C1	C1
6+	C1	C0	C1

Notar que tengo que separar 0 de 4 y 1 de 6, o sea que eliminando los inalcanzables ya es mínimo

Tabla Inicial. Elimino estados 2, 3 y 5 por inalcanzables.

TT	a	b
0-	1	4
1+	4	6
4	6	1
6+	6	4

Dejamos solo los estados alcanzables.

7) Obtenga el complemento de la intersección de los siguientes AFD

TT1	a	b	c
0-	-	1	0
1+	1	-	1

TT2	a	b	c
2-	2	3	2
3+	3	2	2

Solución

TT	a	b	c
(0,2)-	-	(1,3)	(0,2)
(1,3)+	(1,3)	-	(1,2)
(1,2)	(1,2)	-	(1,2)

Aplicando algoritmo de intersección

TT	a	b	c
0-	3	1	0
1+	1	3	2
2	2	3	2
3	3	3	3

Completando estados

TT	a	b	c
0-	-	1	0
1+	1	-	2
2	2	-	2

Renombrando

TT	a	b	c
0±	3	1	0
1	1	3	2
2+	2	3	2
3+	3	3	3

Complement ado

8) Obtenga la ER correspondiente a la siguiente tabla de transición

TT	a	b
0-	2	1
1	0	2
2	-	3
3+	3	-

Solución

Las ecuaciones:

```
0 = a2 + b1
```

$$1 = a0 + b2$$

$$2 = b3$$

$$3 = a3 + \epsilon$$

Por tanto:

$$3 = a^*$$

$$2 = ba*$$

$$1 = a0 + bba*$$

$$0 = aba* + b(a0 + bba*)$$

$$0 = ba0 + aba* + bbba*$$

$$\theta = (ba)*(a+bb)ba*$$