Multiagent Systems

James R. Wright University of Alberta

Deep Learning & Reinforcement Learning Summer School 2019

Mo' Agents, Mo' Problems

Nobody ever says "maybe I should solve my problem with multiagent systems!"

Multiagent systems aren't solutions. They are problems.

But they are problems that are important to solve.

Single Agent Systems

- 1. An agent interacts with an environment by taking an action
- 2. Agent's action and environment's previous state determine:
 - Agent's reward
 - Environment's next state

Multiagent Systems

Multiagent Systems

- 1. Multiple autonomous agents
- 2. With distinct goals / priorities / rewards

Multiagent Systems are Widespread

- Games (Poker, Go, Shogi, StarCraft)
- Auctions (ad auctions, spectrum auctions)
- Online platforms (sharing economy, crowdsourcing)
- Cooperative interaction (language, advice, decision support)
- Resource allocation (packet routing, server allocation)
- Kidney exchange
- Urban planning

Multiagent Systems are Nonstationary

- Every agent is part of every other agent's environment
- Each agent may try to game the others (special kind of nonstationarity)
 - Environment changes in anticipation of agent's actions

Multiagent Objectives are Often Unclear

In a single-agent system:

$$\max_{\pi} \mathbb{E} \left[R^{(1)} + \gamma R^{(2)} + \dots + \gamma^{T-1} R^{(T)} \mid p \right]$$

Maximize total reward over all the agents:

$$\max_{\pi_1,...,\pi_n} \mathbb{E} \left[\sum_{1 \le i \le n} R_i^{(1)} + \gamma R_i^{(2)} + ... + \gamma^{T-1} R_i^{(T)} \middle| p \right]$$

Multiagent Objectives

Agent Design: Maximize individual agent's reward:

$$\max_{\pi_i} \mathbb{E} \left[R_i^{(1)} + \gamma R_i^{(2)} + \dots + \gamma^{T-1} R_i^{(T)} \mid p, \pi_1, \dots, \pi_{i-1}, \pi_{i+1}, \dots, \pi_n \right]$$

Mechanism Design: Maximize total reward by optimizing the environment

$$\max_{p} \mathbb{E} \left[\sum_{1 \le i \le n} R_i^{(1)} + \gamma R_i^{(2)} + \dots + \gamma^{T-1} R_i^{(T)} \middle| \pi_1, \dots, \pi_n \right]$$

Both of these depend on the (other) agents' policies!

In This Talk

- 1. Multiagent systems are important and hard
- 2. Game theory: Multiagent mathematics
- 3. Thinking realistically about multiagent systems
- 4. Predicting human behaviour in normal-form games

(Noncooperative) Game Theory

Game theory is the mathematical study of interaction between multiple rational, self-interested agents.

- 1. Rational: Each agent maximizes their expected utility
- 2. Self-interested: Agents pursue only their own preferences
 - Not the same as "agents are psychopaths"! Their preferences may include the well-being of other agents.
 - Rather, the agents are autonomous: they decide on their own priorities independently.

Fun Game: Prisoner's Dilemma

	Cooperate	Defect
Cooperate	-1,-1	-5,0
Defect	0,-5	-3,-3

Two suspects are being questioned separately by the police.

- If they both remain silent (cooperate -- i.e., with each other), then they will both be sentenced to
 1 year on a lesser charge
- If they both implicate each other (defect), then they will both receive a reduced sentence of 3 years
- If one defects and the other cooperates, the defector is given immunity (0 years) and the cooperator serves a full sentence of 5 years.

Play the game with someone near you. Then find a new partner and play again. Play 3 times in total, against someone new each time.

Normal-Form Games

The Prisoner's Dilemma is an example of a normal-form game.

Agents make a single decision **simultaneously**, and then receive a payoff depending on the **profile** of actions.

There are n players: $N = \{1, 2, ..., n\}$, indexed by i.

Each player i has a set A_i of available actions.

A tuple $a \in A = A_1 \times ... \times A_n$ giving an action a_i for each player i is an an action profile.

Each player i has a utility function $u_i:A\to\mathbb{R}$ (their preferences)

Maximize Individual Agent's Rewards: Best Response

In game theory, a rational agent is one that maximizes their expected utility given their beliefs π_{-i} about the other agents' policies:

$$a_i^* \in \arg\max_{a_i} \mathbb{E}[u_i(a_i, a_{-i}) \mid \pi_{-i}]$$

A shorter way to say this: a_i^* is a **best response**:

$$a_i^* \in BR_i(\pi_{-i})$$

 $\pi_j \in \Delta(A_j)$ is a distribution over j's actions π_{-i} is a tuple of beliefs about every agent other than i

Nash Equilibrium

Where do the beliefs π_{-i} come from?

Standard game theoretic solution concept:

- 1. Every agent is perfectly rational
- 2. Therefore every agent is best responding to the actual policies of the other agents
- 3. Therefore $\pi_i(a_i) > 0 \implies a_i \in BR_i(\pi_{-i})$ for all i

Any profile π^* of policies that satisfies (3) is a Nash equilibrium.

Nash Equilibrium Predictions

Every agent is **perfectly rational**, therefore Every agent **best responds** to every other agent simultaneously (Otherwise they're behaving irrationally!)

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

Neatheaguillibrium:

- 1. (Ballet, Ballet): Neither agent gains by deviating (choosing Soccer)
- 2. (Soccer, Soccer): Neither agent gains by deviating (choosing Ballet)

3.
$$\left(\left[\frac{2}{3}:Ballet,\frac{1}{3}:Soccer\right],\left[\frac{1}{3}:Ballet,\frac{2}{3}:Soccer\right]\right)$$

Maximize Total Reward?

Mechanism Design: Maximize total reward by optimizing the environment

$$\max_{p} \mathbb{E} \left[\sum_{1 \le i \le n} R_i^{(1)} + \gamma R_i^{(2)} + \dots + \gamma^{T-1} R_i^{(T)} \middle| \pi_1, \dots, \pi_n \right]$$

- Utility values between agents cannot necessarily be added!
- Agent i with utility u_i and agent j with utility $u_j(a) = 10u_i(a)$ will behave in exactly the same way:

$$\underset{a}{\operatorname{arg max}} \mathbb{E}[10u_i(a)] = \underset{a}{\operatorname{arg max}} \mathbb{E}[u_i(a)]$$

• So how should we reason about mechanism design?

Pareto Optimality

- 1. A profile of utilities $(x_1, ..., x_n)$ Pareto dominates another profile $(y_1, ..., y_n)$ if:
 - $x_i \ge y_i$ for every $i \in N$, and
 - There exists an $i \in N$ such that $x_i > y_i$.
 - Every agent is at least as happy with x as with y, and at least one agent strictly prefers x to y.
- 2. An outcome $(x_1, ..., x_n)$ is **Pareto optimal** if it is not Pareto dominated by any other outcome.
 - Any outcome that is better for one agent must be worse for another

Individually Rational Behaviour is not Always Globally Optimal The only equilibrium

Individual optimization can lead to the worst-possible global outcome.

Fun Game: Traveller's Dilemma

- If they pick the same number x, then they both get \$x payoff
- If they pick different numbers:
 - Player who picked lower number gets lower number, plus bonus of \$2
 - Player who picked higher number gets lower number, minus penalty of \$2
- Play against the person next to you! Each write down a number, reveal simultaneously.

Traveller's Dilemna

Traveller's Dilemma has a unique Nash equilibrium

Individual optimization can lead to the nearly worst-possible individual outcome.

Nash Equilibrium vs. Humans

- Nash equilibrium often makes counterintuitive predictions.
 - In Traveller's Dilemma: The vast majority of human players choose 97–100. The Nash equilibrium is 2.
- Modifications to a game that don't change Nash equilibrium predictions at all can cause large changes in how human subjects play the game [Goeree & Holt 2001].
 - In Traveller's Dilemma: When the penalty is large, people play much closer to Nash equilibrium.
 - But the size of the penalty does not change the equilibrium!
- Clearly Nash equilibrium does not capture the whole story (for humans)

Multiple Nash Equilibria

Multiple equilibria are a problem even in perfectly cooperative games

Nash equilibria:

- 1. (Left, Left): Neither agent gains by deviating (choosing Right)
- 2. (Right, Right): Neither agent gains by deviating (choosing Left)

3.
$$\left(\left[\frac{1}{2}: Left, \frac{1}{2}: Right\right], \left[\frac{1}{3}: Left, \frac{2}{3}: Right\right]\right)$$

Best Response is Expensive

$$a_i^* \in BR_i(\pi_{-i})$$

- All of the previous problems arise in very simple games
- ullet But in many settings you can't even reliably compute BR_i
 - Poker, Go, Chess

What's Going Wrong Here?

- 1. We can't do what game theory prescribes, and neither can the other players
 - Finding a Nash equilibrium is computationally hard [Chen et al., 2009]
- 2. Nash equilibrium is about what satisfies certain **conditions**, not how you get there
 - Hence multiple, unordered equilibria
- 3. Unrestricted individual optimization can cause even small misalignments in interests to snowball

Thinking About the Problem

Three ways of viewing a multiagent problem:

- 1. Normative
- 2. Descriptive
- 3. Positive

Normative Modelling

- Start from axioms (assumptions) and derive consequences:
 - Every agent maximizes expected utility
 - Every agent has accurate beliefs
- Game theory problems come from:
 - Violation of these assumptions
 - Focus on consequences rather than process

Descriptive Modelling

Construct a model of how agents actually behave

Need a descriptive model of other players to evaluate algorithm performance:

$$\max_{\pi_i} \mathbb{E} \left[R_i^{(1)} + \gamma R_i^{(2)} + \dots + \gamma^{T-1} R_i^{(T)} \mid p, \pi_1, \dots, \pi_{i-1}, \pi_{i+1}, \dots, \pi_n \right]$$

$$\max_{p} \mathbb{E} \left[\sum_{1 \leq i \leq n} R_i^{(1)} + \gamma R_i^{(2)} + \ldots + \gamma^{T-1} R_i^{(T)} \middle| \pi_1, \ldots, \pi_n \right]$$

Understanding human behavior can give insight into bounded rationality

Positive Modelling

Given a descriptive model of behaviour and environment, figure out how to achieve a goal

- 1. **Agent Design:** Design an agent that will achieve its individual goals:
 - Maximum-value bundle of goods, winning a game
- 2. **Mechanism Design:** Design an environment for agents such that the agents' **collective actions** will achieve a goal:
 - Markets, online platforms, auctions, Internet protocols

Thinking About the Problem

Three ways of viewing a multiagent problem:

- 1. Normative
- 2. Descriptive
- 3. Positive

Predicting Human Behaviour In Normal-Form Games

Predicting human behaviour is a prediction problem

Features: Description of the setting (i.e., the game)

Labels: Actions taken by agents

- Machine learning is really good at prediction problems
- Why not take a direct machine learning approach?

Normal-Form Games

Column player's actions

Normal-Form Games

Column player's actions Rock Paper Scissors Rock 0, 0 2, -2 -1, 1 Row player's actions Paper 0, 0 1, -1 -1, 1 Action count -2, 2 0, 0 1, -1

Learning Problem

Given a dataset of games, each with observed action counts:

... learn a model that predicts players' distribution over actions

Deep Learning for Human Strategic Behavior

[Hartford, Wright, Leyton-Brown: NeurlPS 2016]

Deep Learning for Human Strategic Behaviour

[Hartford, Wright, Leyton-Brown: NeurlPS 2016]

Interpreting the Deep Model

[Smith, Hartford, Leyton-Brown, Wright: in progress]

Activation maximization: Synthesize games (via optimization) that maximally activate a **particular unit**

- These games will exemplify the structure that unit detects
- Can add the discovered features to our cognitive models

Relevance propagation: [Bach et al, 2015]

- Images: Which pixels were most relevant?
- Games: Which outcomes were most influential?

Final Thoughts

- Our lives are increasingly part of novel multiagent systems
 - It is imperative that we understand their properties so we can design them properly
- This is a wide-open research area
 - We don't even have a coherent notion of optimal behaviour yet
- Game theory helps us reason precisely about multiagent interactions, but it isn't enough
- Need real-world descriptive models and a theory of how to use them

Thanks!