Office Hours!

Instructor:

Peter M. Garfield, garfield@math.ucsb.edu

Office Hours:

Mondays 1–2PM Not Today! Tuesdays 10:30-11:30AM Thursdays 1–2PM or by appointment

Office:

South Hall 6510

© 2017 Daryl Cooper, Peter M. Garfield

Have you used OnLine Math Lab (there is a link on Gauchospace)?

A Yes

B No

C What is it?

D Prefer not to say

Today: Start Chapter 7 (Logs)

Applications:

- Chemistry: alkalinity and acidity, pH scale
- Finance: compound interest (get rich slow)
- Geology: Richter scale for earthquakes (did you feel the earth move too?)
- Archeology: radio carbon dating (how old is that bone?)
- Astronomy: stellar magnitude (brightness of stars)
- Sound: decibels (what did you say?, the music is too loud)
- Math: solving equations with exponents (includes all of the above)

Today: Start Chapter 7 (Logs)

Main Idea of Chapter 7:

 $\log(x)$ is how many tens you multiply to get x

Conclusion:

Before we do logs we should be really good at powers of 10.

Powers of Ten

1 meter ≈ 3 feet

1 centimeter = 0.01 meters = 10^{-2} meters $\approx 1/2$ inch

1 kilometer = 1,000 meters = 10^3 meters $\approx 1/2$ mile

Approximate distance (in meters), to nearest power of 10

10^7 meters	Size of Earth
10^9 meters	Distance to moon
10^{14} meters	Size of our solar system
10^{16} meters	One light-year
10^{21} meters	Size of the Milky Way galaxy
10^{27} meters	Size of the universe (about 93 billion light-years)
10^{80}	number of protons in the observable universe?
10^{100}	1 googol
10^{1000} meters	???

$$10^4 = 10 \times 10 \times 10 \times 10 = 10,000$$

= 4 lots of 10 multiplied together
= 1 followed by 4 zeroes

$$10^{x} = \underbrace{10 \times 10 \times \dots \times 10}_{x \text{ lots of } 10} = 1 \underbrace{00000 \dots 0}_{x \text{ zeros}}$$
$$= 1 \text{ followed by } x \text{ zeroes}$$

Ex:
$$10^2 \times 10^3 = (10 \times 10) \times (10 \times 10 \times 10)$$

= $10^{2+3} = 10^5$.

$$10^x \times 10^y = 10^{x+y}$$
 First Law of Exponents

Why? We can work it out!

Exponential Basics (cont'd)

```
10^x \times 10^y = 10^{x+y} First Law of Exponents
```

Exponentiation

Why? We can work it out:

```
(x lots of 10 multiplied together) \times (y lots of 10 multiplied together) = (x + y) lots of 10 multiplied together
```

For now x and y are positive whole numbers.

More Exponentiation

$$(10^{2})^{3} = (10 \times 10)^{3}$$

$$= (10 \times 10) \times (10 \times 10) \times (10 \times 10)$$

$$= 10^{6}$$

$$(10^a)^b = 10^{ab}$$

 $(10^a)^b = 10^{ab}$ Fourth Law of Exponents

Why? We can work it out:

$$10^a = \underbrace{10 \times 10 \times \dots \times 10}_{a \text{ times}}$$

$$(10^{a})^{b} = \underbrace{(10 \times \dots \times 10) \times \dots \times (10 \times \dots \times 10)}_{b \text{ times}}$$
$$= 10^{ab}$$

Just count the zeros!

What is 10^0 ?= 1 But why? We can work it out:

$$10^{0} \times 10^{1} = 10^{0+1}$$
 so
$$10^{0} \times 10 = 10$$
 and therefore
$$10^{0} = 10/10 = 1$$

Summary: we used the first law of exponents to figure out what 10^0 must be.

There is a second explanation in the book!

What is
$$10^{-2}$$
?= $1/100 = 0.01$ But why? We can work it out:

$$10^{-2} \times 10^2 = 10^{-2+2} = 10^0 = 1$$

therefore $10^{-2} = \frac{1}{10^2}$ and $10^{-a} = \frac{1}{10^a}$

There is a second explanation in the book

The Five Laws of Exponents

(1)
$$10^a \times 10^b = 10^{a+b}$$

$$(2) 10^0 = 1$$

(3)
$$10^{-a} = 1/10^a$$

$$(4) (10^a)^b = 10^{ab}$$

(5)
$$10^a/10^b = 10^{a-b}$$

1. What is $10^3 \times 10^4$?

$$A = 10$$
 D

 $A = 10^{12}$ $B = 10^7$ $C = 10^{34}$ $D = 10^0$ $E = 10^{-7}$

2. Find $10^3/10^4$

 $A = 10^7$ $B = 10^1$ $C = 10^{-4}$ $D = 10^{-1}$ $E = 10^{-7}$

3. Find $(10^3)^4$.

$$A - 10^7$$
 B-

The Five Laws of Exponents

(1)
$$10^a \times 10^b = 10^{a+b}$$

$$(2) 10^0 = 1$$

(3)
$$10^{-a} = 1/10^a$$

$$(4) (10^a)^b = 10^{ab}$$

(5)
$$10^a/10^b = 10^{a-b}$$

4. What is $(10^2 \times 10^3)^4$?

$$A = 10^8$$
 $B = 10^9$ $C = 10^{12}$ $D = 10^{20}$ $E = 10^{24}$ D

5. What is $(10^2 \times 10^6)/(10^2 \times 10^3)$?

$$A = 10^2$$
 $B = 10^3$ $C = 10^{-1}$ $D = 10^7$ $E = 10^6$

6. What is
$$(10^2/10^5)^{-2}$$
?

$$A = 10^{-6}$$
 $B = 10^{-5}$ $C = 10^{6}$ $D = 10^{4}$ $E = 10^{5}$

Non-Integer Powers

We can work them out!

7. What is $10^{0.5} = 10^{1/2}$? Answer: $10^{0.5} = \sqrt{10} \approx 3.16288$

Exponentiation 000000000

- 8. What is $10^{0.1} = 10^{1/10}$? Answer: $10^{0.1} = \sqrt[10]{10} \approx 1.258926$
- 9. Similarly: $10^{0.01} = \sqrt[100]{10} \approx 1.02329$ $10^{0.001} = \sqrt[1000]{10} \approx 1.00231$
- **10.** What is $10^{0.27}$? Answer:

$$10^{0.27} = 10^{27/100} = \sqrt[100]{10^{27}} = (\sqrt[100]{10})^{27} \approx 1.862$$

Logarithms

Moving to Logarithms

log(y) is how may tens you multiply together to get y

$$10^{\log(y)} = y$$

```
\log(10) = ?1 because 10^1 = 10

\log(100) = ? = 2 because 10^2 = 100

\log(1000) = ? = 3 because 10^3 = 1000

\log(100,000) =

A = 2 B = 3 C = 4 D = 5 E = 6 D
```

Still moving to Logarithms

log(y) is how may tens you multiply together to get y

$$10^{\log(y)} = y$$

$$\log(0.1) = ?-1$$
 because $10^{-1} = 1/10 = 0.1$
 $\log(0.01) = ? = -2$ because $10^{-2} = 1/100 = 0.01$
 $\log(10^x) = ? = x$ duh?

How confused are you?

A=not at all B=a bit C=a lot D=totes confused

Next Time: How To Find Logs

- (1) Use a calculator: efficient but not good for learning
- (2) Use the graph on page 290 of textbook / handout (see GS)
- (3) Use table of logarithms on page 289 of textbook / handout (GS)

Our goal: use (2) and (3) to understand:

logs, functions and inverse functions.

Our main use of logs: solving certain kinds of equation. Mistakes will follow unless you <u>practice</u> finding logs the old fashioned way.

log is the inverse function of antilog antilog is another name for the 10-to-the-power function: antilog(y) = 10^y .