

Кантонистова Е.О.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - средняя ошибка по всем возможным наборам данных — смещение.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - средняя ошибка по всем возможным наборам данных — смещение.

Смещение показывает, насколько в среднем модель эхорошо предсказывает целевую переменную:

- √ маленькое смещение хорошее предсказание
- Убольшое смещение плохое предсказание

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных — разброс.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных — разброс.

Большой разброс означает, что ошибка очень чувствительна к изменению обучающей выборки, т.е.:

√ большой разброс – сильно переобученная модель

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение (с док-вом): ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

- Bias(a(x)) средняя ошибка по всем возможным наборам данных смещение.
- Var(a(x)) дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных разброс.
- σ^2 неустранимая ошибка шум.

СМЕЩЕНИЕ И РАЗБРОС

BIAS-VARIANCE TRADEOFF underfitting overfitting zone zone generalization error bias variance capacity optimal capacity

БУТСТРЭП

Дана выборка X.

Бутстрэп: равномерно возьмем из выборки X l объектов с возвращением (т.е. в новой выборке будут повторяющиеся объекты). Получим выборку X_1 .

ullet Повторяем процедуру N раз, получаем выборки $X_1,\dots,X_N.$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

С помощью бутстрэпа мы получили выборки X_1, \dots, X_N .

- Обучим по каждой из них модель получим базовые алгоритмы $b_1(x), \dots, b_N(x)$.
- Построим новую функцию регрессии:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

- Модель переобучена?
- Модель плохо предсказывает целевую переменную?
- В самих данных много неточностей (шумов)

ъ СМЕЩЕНИЕ И РАЗБРОС У БЭГГИНГА

Бэггинг:
$$a_N(x) = \frac{1}{N} \sum_{n=1}^N b_n(x) = \frac{1}{N} \sum_{n=1}^N \widetilde{\mu}(X)(x)$$

(здесь $\tilde{\mu}(X) = \mu(\tilde{X})$ – алгоритм, обученный на подвыборке \tilde{X})

Утверждение (с док-вом):

- 1) **Бэггинг не ухудшает смещенность модели**, т.е. смещение $a_N(x)$ равно смещению одного базового алгоритма.
- 2) Если базовые алгоритмы некоррелированы, то **дисперсия бэггинга** $a_N(x)$ в **N раз меньше дисперсии отдельных базовых алгоритмов**.

© СЛУЧАЙНЫЙ ЛЕС (RANDOM FOREST)

- Возьмем в качестве базовых алгоритмов для бэггинга **решающие деревья**, т.е. каждое случайное дерево $b_i(x)$ построено по своей подвыборке X_i .
- В каждой вершине дерева будем искать *разбиение не по* всем признакам, а по подмножеству признаков.
- Дерево строится до тех пор, пока в листе не окажется n_{min} объектов.

RANDOM FOREST

Алгоритм 3.1. Random Forest

- 1: для $n = 1, \ldots, N$
- 2: Сгенерировать выборку X_n с помощью бутстрэпа
- 3: Построить решающее дерево $b_n(x)$ по выборке \tilde{X}_n :
 - ullet дерево строится, пока в каждом листе не окажется не более n_{\min} объектов
 - при каждом разбиении сначала выбирается m случайных признаков из p, и оптимальное разделение ищется только среди них
- 4: Вернуть композицию $a_N(x) = \frac{1}{N} \sum_{n=1}^N b_n(x)$

RANDOM FOREST — ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- Если p количество признаков, то при классификации обычно берут $m=[\sqrt{p}]$, а при регрессии $m=[\frac{p}{3}]$ признаков
- При классификации обычно дерево строится, пока в листе не окажется $n_{min}=1$ объект, а при регрессии $n_{min}=5$

OUT-OF-BAG ОШИБКА

 $Err_{oob} = -$

$$b=1 \qquad b=2 \qquad \cdots \qquad b=B$$
Bootstrap
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Fit inbag model
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
OOB error
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Err_{oob} = $\frac{\operatorname{Err}_1 + \cdots + \operatorname{Err}_B}{B} = \frac{1}{B} \sum_{b=1}^{B} \operatorname{Err}_b$

OUT-OF-BAG ОШИБКА

- Каждое дерево в случайном лесе обучается по некоторому подмножеству объектов
- Значит, для каждого объекта есть деревья, которые на этом объекте не обучались.

Out-of-bag ошибка:

$$OOB = \sum_{i=1}^{l} L(y_i, \frac{\sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)}{\sum_{n=1}^{N} [x_i \notin X_n]})$$

Утверждение. При $N \to \infty~00B$ оценка стремится к leaveone-out оценке.

OOB-SCORE

По графику out-of-bag ошибки можно, например, подбирать количество деревьев в случайном лесе

КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

Калибровка вероятностей - приведение ответов алгоритма к значениям, близким к вероятностям объектов принадлежать конкретному классу.

Зачем это нужно?

- Вероятности гораздо проще интерпретировать
- Вероятности могут дать дополнительную информацию о результатах работы алгоритма

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

ПРИМЕР ИЗ SKLEARN

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

•
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot a(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

•
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot a(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

• Находим α и β , минимизируя логистическую функцию потерь (то есть обучаем логистическую регрессию):

$$-\sum_{v_i=-1}\log(1-\pi(x;\alpha;\beta))-\sum_{v_i=+1}\log(\pi(x;\alpha;\beta))\to\min_{\alpha,\beta}$$