

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月22日

出 願 番 号 Application Number:

特願2003-361982

[ST. 10/C]:

114

[JP2003-361982]

出 願 人

Applicant(s): HOYA株式会社

ホーヤ マグネティクス シンガポール プライベートリミ

テッド

特許庁長官 Commissioner, Japan Patent Office 2004年 3月 5日

今井原

【書類名】

特許願

【整理番号】

03P21036

【あて先】

特許庁長官殿

【国際特許分類】

G11B 5/725

G11B 5/84

【発明者】

【住所又は居所】

東京都新宿区中落合2丁目7番5号 HOYA株式会社内

【氏名】

下川 貢一

【発明者】

【住所又は居所】

シンガポール共和国 638552 リンク2 ツアス#3 ホーヤ マグネティクス シンガポール プライベートリミテッド

内

【氏名】

石山 雅史

【特許出願人】

【識別番号】

000113263

【住所又は居所】

東京都新宿区中落合2丁目7番5号

【氏名又は名称】

HOYA株式会社

【特許出願人】

【識別番号】

501259732

【住所又は居所】

シンガポール共和国 638552 リンク2 ツアス#3

【氏名又は名称】

ホーヤ マグネティクス シンガポール プライベートリミテッ

ド

【代理人】

【識別番号】

100113343

【弁理士】

【氏名又は名称】

大塚 武史

【先の出願に基づく優先権主張】

【出願番号】

特願2003-96820

【出願日】

平成15年 3月31日

【手数料の表示】

【予納台帳番号】

154299

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】 【物件名】 図面 1 要約書 1

【書類名】特許請求の範囲

【請求項1】

基板上に磁性層と保護層と潤滑層を成膜する磁気ディスクの製造方法であって、化学式 【化 1 】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化2】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤 α を分子量分画して、重量平均分子量(Mw)が3000~7000、分子量分散度を1.2以下とした潤滑剤 a を作製し、 化学式

【化3】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤 β を分子量分画して、重量平均分子量(Mw)が 2 0 0 0 \sim 5 0 0 0 、分子量分散度を 1. 2以下とした潤滑剤 b を作製し、

前記潤滑剤 a と潤滑剤 b とを混合した潤滑剤 c を作製し、

前記潤滑剤cを前記保護層上に成膜して前記潤滑層を形成することを特徴とする磁気ディスクの製造方法。

【請求項2】

請求項1に記載の磁気ディスクの製造方法であって、前記分子量分画は超臨界抽出法で行なうことを特徴とする磁気ディスクの製造方法。

【請求項3】

請求項1又は2に記載の磁気ディスクの製造方法であって、前記潤滑剤cは、

前記潤滑剤aをフッ素系溶剤に分散させた組成物Aを得、

前記潤滑剤bをフッ素系溶剤に分散させた組成物Bを得て、

前記組成物Aと組成物Bを混合し、その混合した組成物から前記潤滑剤cを抽出して作製することを特徴とする磁気ディスクの製造方法。

【請求項4】

請求項1乃至3の何れか1項に記載の磁気ディスクの製造方法であって、前記潤滑層を成膜した後に、前記磁気ディスクを50℃~150℃の雰囲気に曝すことにより、前記潤滑剤cを保護層上に付着させることを特徴とする磁気ディスクの製造方法。

【請求項5】

請求項1乃至4の何れか1項に記載の磁気ディスクの製造方法であって、前記保護層は、 プラズマCVD法により成膜された保護層であることを特徴とする磁気ディスクの製造方 法。

【請求項6】

請求項1乃至5の何れか1項に記載のロードアンロード方式磁気ディスク装置用の磁気ディスクの製造方法。

【請求項7】

請求項1乃至6の何れか1項に記載の磁気ディスクの製造方法であって、前記潤滑剤αとしてソルベイソレクシス社製フォンブリンゼットテトラオール(商品名)を選択し、前記潤滑剤βとしてソルベイソレクシス社製フォンブリンゼットドール(商品名)を選択することを特徴とする磁気ディスクの製造方法。

【請求項8】

基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式 【化4】

$HO-CH_2-CH-CH_2-O-CH_2-CF_2(-O-C_2F_4)p-(O-CF_2)q-O-*$

OH

*-CF₂-CH₂-O-CH₂-CH-CH₂-OH

ÓН

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化5】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤 α を精製し、重量平均分子量(Mw)が 3 0 0 0 \sim 7 0 0 0、分子量分散度を 1. 2以下とした潤滑剤 α と、化学式

【化6】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤 β を精製し、重量平均分子量(Mw)が 2000-5000、分子量分散度を 1.2以下とした潤滑剤 bと、

を含有する潤滑剤 c が、前記保護層上に成膜されてなることを特徴とする磁気ディスク。 【請求項 9 】

基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式 【化7】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-*

ÓН

*-CF₂-CH₂-O-CH₂-CH-CH₂-OH

ÓН

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化8】

$HO-CH_2-CF_2(-O-C_2F_4)m-(O-CF_2)n-OCF_2-CH_2-OH$

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤が前記保護層上に成膜されてなり、

且つ、前記潤滑層は、飛行時間型二次イオン質量分析法によって検出される-COOH原子団を含有することを特徴とする磁気ディスク。

【請求項10】

基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式

出証特2004-3017060

【化9】

[式中のp、qは自然数である。]

で示される化合物、及び、化学式【化10】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH [式中のm、n は自然数である。]

で示される化合物、並びに、飛行時間型二次イオン質量分析法によって検出される-COOH原子団を分子構造中に有する化合物を含有することを特徴とする磁気ディスク。

【請求項11】

前記保護層は、炭素系保護層であることを特徴とする請求項8乃至10の何れかに記載の磁気ディスク。

【書類名】明細書

【発明の名称】磁気ディスクの製造方法及び磁気ディスク

【技術分野】

[0001]

本発明はハードディスクドライブなどの磁気ディスク装置に搭載する磁気ディスクの製造方法及び磁気ディスクに関する。

【背景技術】

[0002]

ハードディスクドライブ(HDD)等の磁気ディスク装置においては、停止時には磁気ディスク面の内周領域に設けられた接触摺動用領域(CSS領域)に磁気ヘッドを接触させておき、起動時には磁気ヘッドをCSS領域でディスク面と接触摺動させながら浮上させた後、CSS領域の外側に設けられた記録再生用のディスク領域面で記録再生を行なう、CSS(Contact Startand Stop)方式が採用されてきた。終了動作時には、記録再生用領域からCSS領域に磁気ヘッドを退避させた後に、CSS領域でディスク面と接触摺動させながら着地させ、停止させる。CSS方式において接触摺動の発生する起動動作及び終了動作をCSS動作と呼称する。

このようなCSS方式用磁気ディスクにおいては、ディスク面上にCSS領域と記録再生領域の両方を設ける必要がある。また、磁気ヘッドと磁気ディスクの接触時に両者が吸着してしまわないように、磁気ディスク面上に一定の表面粗さを備える凸凹形状を設ける必要がある。

CSS動作時に起る磁気ヘッドと磁気ディスクとの接触摺動によるダメージを緩和するために、例えば、特開昭 6 2 - 6 6 4 1 7 号公報(特許文献 1)などにより、 $HOCH_2 - CF_2O - (C_2F_4O)_p - (CF_2O)_q - CH_2OHO$ 構造をもつパーフロロアルキルポリエーテルの潤滑剤を塗布した磁気記録媒体などが知られている。

また、同様にCSS耐久性の高い磁気記録媒体として、特開平9-282642号公報 (特許文献2) や、特開平10-143838号公報 (特許文献3) が知られている。

[0003]

【特許文献1】特開昭62-66417号公報

【特許文献2】特開平9-282642号公報

【特許文献3】特開平10-143838号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

最近、CSS方式に代わってLUL(Load Unload:ロードアンロード)方式の磁気ディスク装置が導入されつつある。LUL方式では、停止時には、磁気ヘッドを磁気ディスクの外に位置するランプと呼ばれる傾斜台に退避させておき、起動時には磁気ディスクが回転開始した後に、磁気ヘッドをランプから磁気ディスク上に滑動させてから記録再生を行なう。この一連の動作はLUL動作と呼ばれる。LUL方式はCSS方式に比べて磁気ディスク面上の記録再生用領域を広く確保できるので高情報容量化にとって好ましい。また、磁気ディスク面上にはCSSのための凸凹形状を設ける必要が無いので、磁気ディスク面を極めて平滑化でき、このため磁気ヘッド浮上量を一段と低下させることができるので、記録信号の高S/N比化を図ることができ好適である。

LUL方式の導入に伴う、磁気ヘッド浮上量の非連続的な一段の低下により、10nm以下の極狭な浮上量においても、磁気ディスクが安定して動作することが求められるようになってきた。しかしながら、このような極狭浮上量で磁気ディスク面上に磁気ヘッドを浮上飛行させると、フライスティクション障害やヘッド腐食障害などが頻発するという問題が発生した。

[0005]

フライスティクション障害とは、磁気ヘッドが浮上飛行時に浮上姿勢や浮上量に変調を きたす障害であり、不規則な再生出力変動を伴う。場合によっては浮上飛行中に磁気ディ スクと磁気ヘッドが接触し、ヘッドクラッシュ障害を起こして磁気ディスクを破壊する事がある。

腐食障害とは、磁気ヘッドの素子部が腐食して記録再生に支障をきたす障害であり、場合によっては記録再生が不可能となったり、腐食素子が膨大して、浮上飛行中に磁気ディスク表面にダメージを与えることがある。

また、最近では磁気ディスク装置の応答速度を敏速化するために、磁気ディスクの回転速度を高めることが行なわれている。モバイル用途に好適な小径の2.5インチ型磁気ディスク装置の回転数は従来4200rpm程度であったが、最近では、5400rpm以上の高速で回転させることで応答特性を高めることが行なわれている。

このような高速で磁気ディスクを回転させると、回転に伴う遠心力により潤滑層が移動 (マイグレーション)して、磁気ディスク面内で潤滑層膜厚が不均一となる現象が顕在化 してきた。

[0006]

ディスク外周側で潤滑層膜厚が肥厚すると、LUL動作時に磁気ヘッドがディスク外周側から進入してくるときに、フライスティクション障害やヘッドクラッシュ障害が発生し易くなり、また内周側で潤滑層膜厚が減少すると、潤滑性能の低下により、ヘッドクラッシュ障害が発生しやすくなる。

従来用いられて来た、前記特許文献1、特許文献2及び特許文献3等に記載の潤滑技術は、主としてCSS動作の改善を主眼として開発されたものであって、LUL方式用磁気ディスクに用いると前記障害発生頻度が高く、最早、最近の磁気ディスク求められる信頼性を満足することが困難となっていた。このため、LUL方式用磁気ディスクの高容量化、高S/N化、高応答性の阻害要因となっていた。

本発明は、このような事情のもとで、例えば10nm以下の極狭浮上量においてもフライスティクション障害や腐食障害などが防止でき、例えば5400 r p m以上の高速回転においても、マイグレーションを抑制し得る付着性の高い潤滑層を備えた磁気ディスク、特にLUL(ロードアンロード)方式用に好適な磁気ディスクを提供することを目的とするものである。

【課題を解決するための手段】

[0007]

本発明者は以下の発明により、前記課題が解決できることを発見し、本発明を完成させた。

本発明は以下の構成を有する。

(構成1)基板上に磁性層と保護層と潤滑層を成膜する磁気ディスクの製造方法であって 、化学式

【化1】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化2】

$HO-CH_2-CF_2(-O-C_2F_4)$ m- $(O-CF_2)$ n- OCF_2-CH_2-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤αを分子量分画して、重量平均分子量(Mw)が3000~7000、分子量分散度を1.2以下とした潤滑剤αを作製し、 化学式 【化3】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH [式中のm、n は自然数である。]

で示される化合物を含有する潤滑剤βを分子量分画して、重量平均分子量(Mw)が2000~5000、分子量分散度を1.2以下とした潤滑剤bを作製し、前記潤滑剤aと潤滑剤bとを混合した潤滑剤cを作製し、前記潤滑剤cを前記保護層上に成膜して前記潤滑層を形成することを特徴とする磁気ディスクの製造方法。

(構成2)構成1に記載の磁気ディスクの製造方法であって、前記分子量分画は超臨界抽出法で行なうことを特徴とする磁気ディスクの製造方法。

(構成3)構成1又は2に記載の磁気ディスクの製造方法であって、前記潤滑剤 c は、前記潤滑剤 a をフッ素系溶剤に分散させた組成物 A を得、前記潤滑剤 b をフッ素系溶剤に分散させた組成物 B を混合し、その混合した組成物から前記潤滑剤 c を抽出して作製することを特徴とする磁気ディスクの製造方法。

[0008]

(構成 4)構成 1 乃至 3 の何れか 1 項に記載の磁気ディスクの製造方法であって、前記潤滑層を成膜した後に、前記磁気ディスクを 50 \mathbb{C} \sim 150 \mathbb{C} の雰囲気に曝すことにより、前記潤滑剤 c を保護層上に付着させることを特徴とする磁気ディスクの製造方法。

(構成5)構成1乃至4の何れか1項に記載の磁気ディスクの製造方法であって、前記保護層は、プラズマCVD法により成膜された保護層であることを特徴とする磁気ディスクの製造方法。

(構成6)構成1乃至5の何れか1項に記載のロードアンロード方式磁気ディスク装置用の磁気ディスクの製造方法。

(構成 7) 構成 1 乃至 6 の何れか 1 項に記載の磁気ディスクの製造方法であって、前記潤滑剤 α としてソルベイソレクシス社製フォンブリンゼットテトラオール(商品名)を選択し、前記潤滑剤 β としてソルベイソレクシス社製フォンブリンゼットドール(商品名)を選択することを特徴とする磁気ディスクの製造方法。

(構成8) 基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式

【化4】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化5】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤αを精製し、重量平均分子量(Mw)が3000~7000、分子量分散度を1.2以下とした潤滑剤αと、 化学式 【化6】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH [式中の m、n は自然数である。]

で示される化合物を含有する潤滑剤 β を精製し、重量平均分子量(Mw)が2000~50000、分子量分散度を1.2以下とした潤滑剤bと、を含有する潤滑剤cが、前記保護層上に成膜されてなることを特徴とする磁気ディスク。

[0009]

(構成9)基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式

【化7】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物、及び、化学式 【化8】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物を含有する潤滑剤が前記保護層上に成膜されてなり、且つ、前記潤滑層は、飛行時間型二次イオン質量分析法によって検出される-COOH原子団を含有することを特徴とする磁気ディスク。

(構成10)基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、化学式

【化9】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物、及び、化学式

【化10】

$HO-CH_2-CF_2(-O-C_2F_4)$ m- $(O-CF_2)$ n- OCF_2-CH_2-OH

[式中のm、nは自然数である。]

で示される化合物、並びに、飛行時間型二次イオン質量分析法によって検出される-CO OH原子団を分子構造中に有する化合物を含有することを特徴とする磁気ディスク。

(構成11) 前記保護層は、炭素系保護層であることを特徴とする構成8乃至10の何れかに記載の磁気ディスク。

[0010]

本発明者らは、前記目的を達成するために、最近の磁気ディスクで顕著化してきた、前述の障害について研究を行ったところ、以下のメカニズムが発生した結果であろうという知見を得た。

磁気ヘッドの浮上量が10nm以下の極狭浮上量となると、磁気ヘッドは浮上飛行中に空気分子を介して磁気ディスク面上の潤滑層に断熱圧縮及び断熱膨張を繰り返し作用させるようになり、潤滑層は繰り返し加熱冷却を受けやすくなることを発見した。このため潤滑層を構成する潤滑剤の低分子化が促進され易くなっていることを発見した。

潤滑剤が低分子化すると流動性が高まり保護層との付着が低下する。流動度の高まった 潤滑剤は、極狭な位置関係にある磁気ヘッドに移着堆積し、浮上姿勢が不安定となりフラ イスティクション障害を発生させるものと考察された。

特に、最近導入されてきたNPAB(負圧)スライダーを備える磁気ヘッドは、磁気ヘッド 下面に発生する強い負圧により潤滑剤を吸引し易いので、移着堆積現象を促進していると 考えられる。

移着した潤滑剤はフッ酸等の酸を生成する場合があり、磁気ヘッドの素子部を腐食させる場合がある。特に、磁気抵抗効果型素子を搭載するヘッドは腐食され易い。

$[0\ 0\ 1\ 1]$

本発明者らは、LUL方式が、これら障害の発生を促進していることを発見した。LUL方式の場合ではCSS方式の場合と異なり、磁気ヘッドは磁気ディスク面上を接触摺動することが無いので、一度磁気ヘッドに移着堆積した潤滑剤が磁気ディスク側へ転写除去され難いことが判った。従来のCSS方式の場合にあっては、磁気ヘッドに移着した潤滑剤は磁気ディスクのCSS領域と接触摺動することによりクリーニングされ易いので、これら障害が顕在化していたかったものと考察される。

本発明者らは、これらの研究成果に基づき前述の目的に照らして研究を進め、無数の潤滑剤を試行錯誤の上で検討を続けた結果、本発明を完成するに至った。

ソルベイソレクシス社製のフォンブリンゼットテトラオール(商品名)は、アルコール変性されたパーフルオロポリエーテル系の潤滑剤に属し、モノオール化合物、ジオール化合物、トリオール化合物、テトラオール化合物などの様々な末端基構造を備えるアルコール変性パーフルオロポリエーテル化合物を含有していると考えられる。なお、ソルベイソレクシス社は上記フォンブリンゼットテトラオールに、化学式

【化11】

HO-CH₂-CH-CH₂-O-CH₂-CF₂(-O-C₂F₄)p-(O-CF₂)q-O-* OH *-CF₂-CH₂-O-CH₂-CH-CH₂-OH OH

[式中のp、qは自然数である。]

で示される化合物(以下、パーフルオロテトラオール化合物と称する)を含有している旨明らかにしているが、本発明者が分析したところではその他に少なくとも、化学式

【化12】

HO-CH₂-CF₂(-O-C₂F₄)m-(O-CF₂)n-OCF₂-CH₂-OH

[式中のm、nは自然数である。]

で示される化合物(以下、パーフルオロジオール化合物と称する)を含有している事が判明した。

$[0\ 0\ 1\ 2]$

すなわち、NMR(Nuclear Magnetic Resonance:核磁気共鳴)法やTOF-SIMS(Time Of F light Secondary Ion MassSpectrometer:飛行時間型二次イオン質量分析装置)法を用いて上記フォンブリンゼットテトラオールを分析したところ、前記パーフルオロテトラオール化合物が主成分として含有されているものの、別の主成分として前記パーフルオロジオール化合物が10 モル%~30 モル%含有されていることが分かった。その他の化合物の含有量は検出限界程度の不純物成分として含有されていると考えられる。

ソルベイソレクシス社製のフォンブリンゼットドール(商品名)も同様にアルコール変

性されたパーフルオロポリエーテル系の潤滑剤に属し、ソルベイソレクシス社は前記パーフルオロジオール化合物が含有されている旨明らかにしている。本発明者も同様に分析したところ、前記パーフルオロジオール化合物が主成分として含有されていることが分かった。その他の化合物の含有量は検出限界程度の不純物成分として含有されていると考えられる。

アルコール変性パーフルオロポリエーテル系潤滑剤においては、アルコール変性の程度、即ち、パーフルオロポリエーテル主鎖の末端基に結合する水酸基の数の違いによって、 潤滑剤分子の潤滑性能や付着力が異なる。

従って、モノオール化合物、ジオール化合物、トリオール化合物、テトラオール化合物など様々なアルコール変性化合物の含有状態や生成状態などにより潤滑剤の特性は大きく変動してしまう。

[0013]

本発明においては、前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物を主成分として含有する潤滑剤 α を分子量分画することにより所定の分子量分布に精製した潤滑剤(潤滑剤 α と呼称する)を作製し、また、前記パーフルオロジオール化合物を主成分として含有する潤滑剤 α を分子量分画することにより所定の分子量分布に精製した潤滑剤(潤滑剤 α と呼称する)を作製し、この潤滑剤 α と潤滑剤 α と遅れることで、上記課題を解決することができる。

なお、潤滑剤 α において前記パーフルオロジオール化合物の含有量は 10 モル% ~ 30 モル% とすることが好ましい。

本発明により上記課題が解決できるメカニズムは必ずしも明らかではないが、分画することにより、潤滑剤 α や潤滑剤 β に含有されているアルコール変性パーフルオロポリエーテル化合物の含有状態が制御されているものと考えられる。

潤滑剤 a については分画によって分子量分布が、重量平均分子量(Mw) 3000~7000であって、かつ重量平均分子量(Mw)/数平均分子量(Mn)比で示される分子量分散度が1.2以下となるように分画されたとき、例えば前記パーフルオロジオール化合物の含有比率については減少していると考えられる。

[0014]

潤滑剤 b については分画によって分子量分布が、重量平均分子量(Mw) 2 0 0 0 0 \sim 5 0 0 0 であって、かつ重量平均分子量(Mw)/数平均分子量(M n)比で示される分子量分散度を 1. 2 以下となるように分画されたとき、例えば前記パーフルオロジオール化合物の含有比率については上昇していると考えられる。

この分画された両潤滑剤を混合すること(潤滑剤 c)で、課題解決に好ましい各々の化合物の含有状態、即ち、前記パーフルオロテトラオール化合物と前記パーフルオロジオール化合物との含有状態(含有比や混合生成物の状態など)が実現できるものと考えられる

本発明においては潤滑剤αとして、例えばソルベイソレクシス社製のフォンブリンゼットテトラオール(商品名)を好ましく挙げることができる。また、潤滑剤βとしては、例えばソルベイソレクシス社製のフォンブリンゼットドール(商品名)を好ましく挙げることができる。日本においては双方ともにソルベイソレクシス株式会社から販売されている

[0015]

本発明によれば、基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物を含有する潤滑剤が前記保護層上に成膜されてなり、且つ、前記潤滑層は、飛行時間型二次イオン質量分析法(TOF-SIMS法)によって検出される-COOH原子団を含有する磁気ディスクについても提供される。

本発明者は更に研究を進めたところ、本発明の作用は、潤滑層中に含有される-COOH原子団及び/又は-CF2COOH原子団に関係があることを知見した。すなわち、後

出証特2004-3017060

述する実施例の磁気ディスクの潤滑層を前述のTOF-SIMS法に基づいて詳細に調査したところ、潤滑層中に-COOH原子団と-CF2 COOH原子団が存在していることを見い出した。潤滑層を形成する潤滑剤に含まれる前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物はともに-COOH原子団或いは-CF2 COOH原子団を含有していない。従って、本発明の作用は、成膜された潤滑層中に-COOH原子団及び/又は-CF2 COOH原子団を含有せしめることにより得られたものであると考察される。本発明の実施例においては、保護層を炭素系保護層とし、またプラズマCVD法により成膜された水素化炭素保護層(アモルファス炭素保護層)としたことにより、その上に成膜された潤滑層の一部をカルボキシル基変性せしめたものと考察される。炭素系保護層、特にアモルファス炭素系保護層は後述の通り、アルコール変性パーフルオロポリエーテル化合物との親和性が高いことと関連するものと考えられる。

[0016]

なお、TOF-SIMS法により、潤滑層中に含有される $-COOH原子団及び-CF_2COOH原子団をそれぞれ検出することが可能であるが、<math>-COOH原子団を検出する場合、-CF_2COOH原子団も同時に検出できるため、<math>-COOH原子団の検出カウント数には-CF_2COOH原子団の検出カウント数が含まれる。$

また本発明によれば、基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、前記潤滑層は、前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物、並びに、飛行時間型二次イオン質量分析法(TOF-SIMS法)によって検出される-COOH原子団を分子構造中に有する化合物を含有する磁気ディスクについても提供される

本発明者の得られた知見によれば、成膜された潤滑層中に-COOH原子団及び/又は $-CF_2COOH$ 原子団を含有せしめることが本発明の作用を得る上で好適であるが、TOF-SIMS法によって検出される-COOH原子団を分子構造中に有する化合物を潤滑層に含有させることも好適である。この場合、潤滑層は、前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物、並びに、-COOH原子団を分子構造中に有する化合物を含有する。TOF-SIMS法によって検出される-COOH原子団を分子構造中に有する化合物としては、例えば主鎖或いは側鎖の末端がカルボキシル基変性されたパーフルオロポリエーテル系化合物が好ましく挙げられる。このような潤滑層は、例えば、前記パーフルオロテトラオール化合物及び前記パーフルオロジオール化合物、並びに、-COOH原子団を分子構造中に有する化合物を含有する潤滑剤を前記保護層上に成膜することによって得られる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 7]$

本発明において、潤滑剤 c を作製するにあたっては、潤滑剤 a と潤滑剤 b との混合割合を重量比で1:2~2:1となるように混合することが好ましい。混合割合がこの範囲においては、潤滑剤 c に含有されるアルコール変性パーフルオロポリエーテル化合物が、課題解決に特に好ましい含有状態になっていると考えられる。

本発明において、分子量分画する方法に特に制限を設ける必要は無いが、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法による分子量分画や、超臨界抽出法による分子量分画などを用いることができる。中でも、潤滑剤 α や潤滑剤 β の分画に際しては超臨界抽出法を用いることが好適である。超臨界抽出法により分画すると、潤滑剤を高度に精製することができるからである。具体的には、超臨界状態の二酸化炭素を溶離媒体として用いた超臨界抽出法が好適である。クロマトグラフィーによって分子量分画することが好ましい。リテンションタイムに基づいて分子量分画することもできる。

このとき、二酸化炭素の圧力は80~350kgf/cm²、温度は35 \mathbb{C} ~300 \mathbb{C} の範囲に調整すると好ましい二酸化炭素の超臨界状態を出現させることができる。このような範囲内で調整すると、分子量や末端基などのわずかな構造的相違による溶解度差を利用して精密な末端基分別することができる。

[0018]

クロマトグラフィーを行なう場合にあっては、潤滑剤を含有する超臨界状態の二酸化炭素を流し、カラムから溶出した画分中の潤滑剤をモニタリングすることで行なうことができる。モニタリングは例えば、フーリエ変換型赤外分光光度計(FTIR)や、紫外線吸収などにより行なうことができる。モニタリングしながら、リテンションタイムに基づいて画分を得ることで、好適な分子量分布に分画することができる。

また、前記潤滑剤 c を作製するにあたっては、潤滑剤 a と潤滑剤 b を直接混合してもよいが、均一な混合状態を得るためには、別々のフッ素系溶剤に分散させた組成物を作成し、この組成物どうしを混合させて攪拌し、エバポレーターを用いて抽出して、潤滑剤 c を得ることが好ましい。このように抽出することで高度に均一な混合状態を得ることができる。

フッ素系溶剤としては、三井デュポンフロロケミカル社製商品名バートレルXFを好ましく用いることができる。

本発明においては、混合されてなる潤滑剤 c を保護層上に付着させるために、成膜後に磁気ディスクを 5 0 ℃~ 1 5 0 ℃の雰囲気に曝すとよい。この範囲内であれば、潤滑剤 a 及び潤滑剤 b の分解温度よりも低いので、潤滑剤 c の低分子化を避けられる。

本発明にあっては、潤滑層の膜厚は5Å~15Åとするのがよい。5Å未満では、潤滑層としての潤滑性能が低下する場合ある。また15Å以上であるとフライスティクション障害が発生する場合があり、またLUL耐久性が低下する場合がある。

なお、本発明においては、潤滑層の成膜後に磁気ディスクを前記温度領域の雰囲気に曝す加熱処理を行うことにより、潤滑層中の一COOH原子団及び/又は一CF2 COOH原子団の生成を促進する作用が得られる。炭素系保護層、特にアモルファス炭素系保護層は後述の通り、アルコール変性パーフルオロポリエーテル化合物との親和性が高い。従って、炭素系保護層上に本発明による潤滑層を成膜し、このような加熱処理を行うことによって、潤滑層中に適度に一COOH原子団及び/又は一CF2 COOH原子団を生成させることが可能である。

$[0\ 0\ 1\ 9\]$

本発明における保護層としては、炭素系保護層を用いることができる。特にアモルファス炭素保護層が好ましい。このような保護層は、アルコール変性パーフルオロポリエーテル化合物との親和性が高く、適度な付着力を得ることができる。付着力を調節するためには、炭素保護層を水素化炭素及び/又は窒素化炭素として、水素及び/又は窒素の含有量を調節することにより制御することが可能である。

水素の含有量は水素前方散乱法(HFS)で測定したときに 3-20 at %とするのが好ましい。窒素の含有量は X 線光電子分光分析法(XPS)で測定したときに、 4-12 at %とするのが好ましい。

本発明において炭素系保護層を用いる場合は、プラズマCVD法により成膜されたアモルファス炭素保護層とすることが好ましい。特にプラズマCVD法で成膜したアモルファスの水素化炭素保護層とすることが好適である。プラズマCVD法でこのような炭素系保護層を成膜するにあたっては、低級飽和炭化水素、具体的にはアセチレンなどの炭素数10以下の直鎖低級飽和炭化水素のガスを用いると良い。

以下、実施例により更に具体的に説明する。

[0020]

(実施例1)

図1は、本発明の1実施形態になる磁気ディスク10である。

磁気ディスク10は、ディスク基板1上に順次、下地層2、磁性層3、保護層4、潤滑層5が順次成膜されてなる。潤滑層5は、本発明になる潤滑剤(潤滑剤cと呼称する)が成膜されている。以下詳細に説明する。

(潤滑剤の作製)

潤滑剤の作製方法について説明する。

まず、前記パーフルオロテトラオール化合物と前記パーフルオロジオール化合物を含有する潤滑剤としてソルベイソレクシス社製のフォンブリンゼットテトラオール(商品名)

を選定して準備し(以下、潤滑剤αと呼称する)、超臨界流体送液装置、温度調整装置、 圧力調整装置、FTIR、紫外線可視分光検出器から構成される超臨界流体応用装置に圧力カ ラムを取り付け、移動相を二酸化炭素の溶離媒体とする分子量分画によって超臨界抽出に よる潤滑剤の分子量分画を行なった。分画によって得られた潤滑剤を潤滑剤αと呼称する

次に、前記パーフルオロジオール化合物を含有する潤滑剤としてソルベイソレクシス社製のフォンブリンゼットドール(商品名)を選定して準備し(以下、潤滑剤βと呼称する)、同様に超臨界抽出による潤滑剤の分子量分画を行なった。分画によって得られた潤滑剤を潤滑剤 b と呼称する。超臨界抽出法の詳細については前述した通りである。

[0021]

得られた潤滑剤 a、潤滑剤 b について、ゲルパーミエーションクロマトグラフィー(GPC)法により、それぞれ分子量の異なるポリメチルメタクリレートを標準物質として分子量分布を測定したところ、潤滑剤 a の分子量分布は、重量平均分子量(Mw)で3000~7000、分子量分散度で1.05~1.2の分子量分布であった。また、潤滑剤 b の分子量分布は、重量平均分子量(Mw)で2000~5000、分子量分散度で1.05~1.2の分子量分布であった。なお、分子量分散度は、重量平均分子量(Mw)/数平均分子量(Mn)比で示される指標である。

以上のように分画された潤滑剤aを、フッ素系溶剤である三井デュポンフロロケミカル 社製バートレルXF(商品名)に分散させた組成物(組成物A)を作製した。

また同様に分画された潤滑剤 b を別の三井デュポンフロロケミカル社製バートレルXF(商品名)に分散させた組成物(組成物B)を作製した。

この組成物Aと組成物Bを混合して、よく攪拌して混合組成物を作製した。なお、混合するときに、潤滑剤 a と潤滑剤 b の混合割合が重量比で1:1と成るように混合した。

この混合組成物からエバポレーターを用いて、三井デュポンフロロケミカル社製バートレル X F (商品名)を除去し、潤滑剤を抽出した(以下、潤滑剤 c と呼称する)。

なお、以上の潤滑剤の作製は、クリーンルーム内で行なうことにより、潤滑剤 c の純度を高めている。用いたクリーンルームの清浄度クラスは日本工業規格(JIS)B9920規定の清浄度クラス6よりも清浄な雰囲気である。

[0022]

(磁気ディスクの製造)

アルミノシリケートガラスからなる2.5インチ型化学強化ガラスディスク(外径65mm、内径20mm、ディスク厚0.635mm)を準備し、ディスク基板1とした。

このディスク基板上に、DCマグネトロンスパッタリング法により順次、下地層2、磁性層3を成膜した。

下地層2は、AIRu合金薄膜からなる第1の下地層上に、CrW合金薄膜からなる第2の下地層が形成されるように成膜した。磁性層3は、CoCrPtB合金薄膜からなるように成膜した。

次に、プラズマCVD法により、アモルファスのダイヤモンドライク炭素からなる保護層4(膜厚60Å)を成膜した。成膜に当たっては、低級直鎖炭化水素ガスを用いた。

この保護層4を水素前方散乱法(HFS)により分析したところ、水素が15at%含有される水素化炭素保護層であることが分かった。

次に、先に作製した潤滑剤 c をディップ法で塗布することにより潤滑層 5 を成膜した。成膜後に、磁気ディスク 1 0 をオーブンを用いて 1 0 0 ℃で加熱することにより、潤滑剤 c を保護層 4 上に付着させた。加熱時間は 1 時間である。潤滑層 5 の膜厚をフーリエ変換型赤外分光光度計(F T I R)で測定したところ 1 0 Åであった。

[0023]

(磁気ディスクの評価)

得られた磁気ディスク10のLUL(ロードアンロード)耐久性を調査するために、LUL耐久性試験を行なった。

LUL方式のHDD (ハードディスクドライブ) (5400rpm回転型)を準備し、

出証特2004-3017060

浮上量が10nmの磁気ヘッドと磁気ディスク10を搭載した。磁気ヘッドのスライダーはNPABスライダーであり、再生素子は磁気抵抗効果型素子(GMR素子)を搭載している。シールド部はFeNi系パーマロイ合金である。このLUL方式HDDに連続LUL動作を繰り返させて、故障が発生するまでに磁気ディスク10が耐久したLUL回数を計測した。

結果、本実施例の磁気ディスク10は、障害無く80万回のLUL動作に耐久した。通常のHDDの使用環境下ではLUL回数が40万回を超えるには概ね10年程度の使用が必要と言われているので、本発明になる磁気ディスク10は高い信頼性を備えていると言える。

試験を行なった全てのHDDでフライスティクション障害は発生しなかった。

LUL耐久性試験後の磁気ヘッドの表面を光学顕微鏡及び電子顕微鏡で詳細に調査したが、傷や腐食現象は観察されなかった。また、磁気ヘッドへの潤滑剤の移着も観察されなかった。

[0024]

(実施例2、実施例3)

実施例2では、組成物Aと組成物Bの混合割合を変えることにより、潤滑剤aと潤滑剤bの混合割合が重量比で1:2と成るように混合した。

また、実施例3では、組成物Aと組成物Bの混合比率を変えることにより、潤滑剤aと潤滑剤bの混合割合が重量比で2:1と成るように混合した。この点以外は、実施例1と同様である。

実施例1と同様にLUL耐久性試験を行なったところ、実施例2及び実施例3ともに実施例1と同様の優れた結果が得られた。

なお、上記実施例 1 乃至実施例 3 の各磁気ディスクについて、潤滑層をTOF-SIMS法に基づいて詳細に分析した結果、何れの実施例の磁気ディスクにおいても、潤滑層中に $-COOH原子団と-CF_2COOH原子団を含有していることが判った。これらの原子団は、前記パーフルオロテトラオール化合物、前記パーフルオロジオール化合物はともに含有していない原子団であり、また、前記潤滑剤 <math>\alpha$ や潤滑剤 β 、潤滑剤 α 、潤滑剤 α や潤滑剤 α には含有されていなかった。従って、保護層上に潤滑剤 α が成膜された後、潤滑層中に生成した原子団であると考えられる。

また、潤滑層をFTIRでも分析したところ、赤外吸収スペクトルにおける 1730 ± 10 c m⁻¹ の波数帯域に吸収帯が現れた。

[0025]

なお、スパッタリング法で成膜した水素化炭素保護層上に実施例1と同様の潤滑層5を成膜し、潤滑層5の成膜後には加熱処理を行わない磁気ディスクを製造し、潤滑層をTOF-SIMS法で分析したところ、一COOH原子団と一CF2COOH原子団の検出量はTOF-SIMS法の検出限界程度であった。この磁気ディスクについてLUL耐久性試験を行ったところ、LUL回数は40万回を超えることができ、フライスティクション障害も確認されなかった。しかし、一部の磁気ヘッドに潤滑剤の移着が観察された。このことから、潤滑層中に一COOH原子団及び/又は一CF2COOH原子団を生成せしめた実施例1の磁気ディスクの方がより信頼性が高いと言える。

[0026]

(比較例1、比較例2)

比較例 1 では、潤滑剤 α をそのまま分画することなく保護層 4 上に成膜した。また、比較例 2 では、潤滑剤 β をそのまま分画することなく保護層 4 上に成膜した。

実施例1と同様にLUL耐久性試験を行なったところ、比較例1ではLUL回数が40万回で故障した。また、試験したHDDの内、50%のHDDでフライスティクション障害が発生した。比較例2では、LUL回数が20万回で故障した。また、試験したHDDの内、90%のHDDでフライスティクション障害が発生した。

試験後に比較例1及び2のHDDから磁気ヘッドを取り出して調査したところ、磁気ヘッドのNPABポケット部やABS面に潤滑剤の移着が確認された。

[0027]

(比較例3)

比較例 3 では、潤滑剤 α と潤滑剤 β を重量比で 1:1 となるように混合した潤滑剤を作製し、保護層上に成膜した。

実施例1と同様にLUL耐久性試験を行なったところ、比較例3ではLUL回数が40万回で故障した。また、試験したHDDの内、70%のHDDでフライスティクション障害が発生した。試験後にHDDから磁気ヘッドを取り出して調査したところ、磁気ヘッドのNPABポケット部やABS面に潤滑剤の移着が確認された。

なお、上記比較例2の磁気ディスクを選び、その潤滑層をTOF-SIMS法に基づいて詳細に分析した結果、潤滑層中に-COOH原子団と-CF2COOH原子団は全く検出されなかった。このことから、潤滑層中に-COOH原子団及び/又は-CF2COOH原子団を生成せしめた実施例の磁気ディスクの方が信頼性が高いと言える。

[0028]

(発明の効果)

本発明によれば、潤滑剤 α (例えばソルベイソレクシス社製商品名フォンブリンゼットテトラオール)を分子量分画して、重量平均分子量(Mw)を $3000\sim7000$ とし、分子量分散度を 1.2以下とした潤滑剤 α を作製し、潤滑剤 β (例えばソルベイソレクシス社製商品名フォンブリンゼットドール)を分子量分画して、重量平均分子量(Mw)を $2000\sim5000$ とし、分子量分散度を 1.2以下とした潤滑剤 α を作製し、前記潤滑剤 α と潤滑剤 α と潤滑剤 α と潤滑剤 α を 用いて潤滑層を形成しているので、フライスティクション障害や腐食障害を防止でき、特に α して α に α できる。

また、潤滑層は、TOF-SIMS法によって検出される-COOH原子団を含有することにより、LUL耐久性に特に優れた非常に信頼性の高い磁気ディスクが得られる。

【図面の簡単な説明】

[0029]

【図1】本発明の磁気ディスクの一実施形態の模式的断面図である。

【符号の説明】

[0030]

- 10 磁気ディスク
- 1 ディスク基板
- 2 下地層
- 3 磁性層
- 4 保護層
- 5 潤滑層

【書類名】図面【図1】

【書類名】要約書

【要約】

【課題】10nm以下の極狭浮上量においてもフライスティクション障害や腐食障害などが防止でき、5400rpm以上の高速回転においても、マイグレーションを抑制し得る付着性の高い潤滑層を備えた磁気ディスクの製造方法を提供する。

【解決手段】基板上に磁性層と保護層と潤滑層を備える磁気ディスクであって、潤滑層は、重量平均分子量(Mw)が3000~6000であって、分子量分散度が1.2以下としたソルベイソレクシス社製商品名フォンブリンゼットテトラオール潤滑剤(潤滑剤a)と、重量平均分子量(Mw)が2000~5000であって、前記分子量分散度が1.2以下としたソルベイソレクシス社製商品名フォンブリンゼットドール潤滑剤(潤滑剤b)とを含有する潤滑剤cが前記保護層上に成膜される。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-361982

受付番号 50301752096

書類名特許願

担当官 塩野 実 2 1 5 1

作成日 平成16年 1月16日

<認定情報・付加情報>

【提出日】 平成15年10月22日

出願人履歴情報

識別番号

[000113263]

1. 変更年月日

2002年12月10日

[変更理由]

名称変更

住 所

東京都新宿区中落合2丁目7番5号

氏 名 HOYA株式会社

特願2003-361982

出願人履歴情報

識別番号

[501259732]

1. 変更年月日

2001年 6月28日

[変更理由]

新規登録

住 所氏 名

シンガポール共和国 638552 リンク2 ツアス#3 ホーヤ マグネティクス シンガポール プライベートリミテ

ッド