Análisis de audio

: MPEG Audio

Complete name : AnalisisTextos.mp3

: 219 KiB File size Duration : 7 s 12 ms Overall bit rate mode : Constant Overall bit rate : 256 kb/s Writing library : LAME

Audio

General

Format

: MPEG Audio Format Format version : Version 1 Format profile : Layer 3 : 7 s 12 ms Duration Bit rate mode : Constant Bit rate : 256 kb/s Sampling rate
Frame rate : 1 channel : 48.0 kHz

: 41.667 FPS (1152 SPF)

Compression mode : Lossy

Stream size : 219 KiB (100%) / 219 KiB (100%) / 219 KiB (100%) / 219 KiB (100%)

Writing library

Podemos ver que el audio tiene:

- Un formato MP3
- Una tasa de bits de 256 kb/s. Que se traduce en una tasa de bits alta.
- Tiene un canal
- Tiene una frecuencia de muestreo alta.

Aplicamos el comando para modificar el audio:

\$ffmpeg-i/mnt/c/Users/olive/OneDrive/Desktop/AnalisisTextos.mp3-ar 16000-ac 1 /mnt/c/Users/olive/OneDrive/Desktop/AnalisisTextos_16khz_mono.wav

General Complete name : AnalisisTextos 16khz mono.wav : Wave Format Format settings : PcmWaveformat File size : 220 KiB Duration : 7 s 32 ms Overall bit rate mode Overall bit rate : 256 kb/s Writing application : Lavf60.16.100 Audio : PCM Format Format settings : Little / Signed Codec ID : 1 Duration : 7 s 32 ms Bit rate mode : Constant Bit rate : 256 kb/s Channel(s) : 1 channel Sampling rate : 16.0 kHz Bit depth : 16 bits Stream size : 220 KiB (100%) / 220 KiB (100%)

Ahora, podemos observar que:

- El formato se ha trasformado a WAVE.
- La tasa de bits sigue siendo la misma.
- Sigue teniendo un canal.
- Ahora tiene una frecuencia de muestreo más baja (16 kHz).

Análisis en Python

Introducción

En este trabajo se realizó un análisis básico del archivo de audio "AnalisisTextos_16khz_mono.wav" utilizando Python. Se exploraron distintas transformaciones sobre la señal, incluyendo el cambio de velocidad y la reducción de calidad, y se visualizaron los resultados mediante gráficas y espectrogramas.

Información básica del audio:

- Frecuencia de muestreo: 16000 Hz- Cantidad de muestras: 112512

- Duración aproximada: 7.03 segundos

El audio fue cargado correctamente y reproducido para su inspección auditiva inicial.

Forma de onda del audio original

Se graficó la señal del audio sin modificaciones para observar su comportamiento temporal.

Audio acelerado (velocidad x2)

Se duplicó la velocidad del audio, aumentando la frecuencia de muestreo a 32000 Hz. Esto resulta en un audio más rápido y agudo.

Audio ralentizado (velocidad x0.5)

Se redujo la velocidad del audio a la mitad, disminuyendo la frecuencia de muestreo a 8000 Hz. El resultado es un audio más lento y grave.

Reducción de calidad (pérdida de bits)

Para simular una baja calidad de audio, se redujo la resolución de bits al convertir la señal original a enteros de 8 bits (int8), lo que genera distorsiones y pérdida de fidelidad (casi total).

Conclusión

Este ejercicio permitió comprender cómo la manipulación de parámetros básicos como la velocidad de muestreo o la resolución afecta la calidad y percepción de un archivo de audio. Además, se exploraron herramientas visuales como espectrogramas para representar la energía en el dominio frecuencia-tiempo.