

Bolton Robotics Pybricks Quick Reference

			Robot Move	ment
Action		How Much?	Python Code	Parameters
Drive Straight	+distance	Distance	r.robot.straight(distance)	distance: Distance to travel (mm), robot runs at default speed example - r.robot.straight(100) - Goes straight forward 100 mm
Drive Straight or Curved	+speed -turn +speed +turn -speed +turn -turn	Time	r.robot.drive(speed,turn_rate) wait(time) r.robot.stop()	speed: Speed of the robot (mm/s) turn_rate: Turn rate of the robot (deg/s) 0 = Straight time: How long to drive (mSec) Drives the robot at set speed either straight or while turning r.robot.drive(200, 20) - Drive robot slowly forward while turning gently to right
Curve	+radius +radius +degrees -radius -radius -radius +degrees	Distance	r.robot.arc(radius, degrees)	radius: Radius of the circle (mm) distance: Distance to drive along the circle (mm) Drives center of wheels over specified radius circle for degrees of arc r.robot.arc(50, 180) - drives robot halfway around tight circle
Tank Turn	Fangle +angle	Angle	r.robot.turn(angle)	angle: Angle of the turn (deg) r.robot.turn(-90) - Make robot spin 90 degrees to the left
			Attachment N	Motors
Side		How Much?	Python Code	Parameters
Left		Time	r.lam.run_time(speed,time)	speed: Speed of the motor (deg/s) time: Duration of motor running (mSec) r.lam.run_time(1000, 500) - runs lam (left attachment motor) clockwise fast for 0.5 seconds
Left		Angle	r.lam.run_angle(speed,angle)	speed: Speed of the motor (deg/s) angle: Angle by which the motor should rotate (deg) r.ram.run_angle(500, 45) - runs ram (right attachment motor) clockwise at half speed for 45 degrees
Left		Target Angle	r.lam.run_target(speed,target_angle)	speed: Speed of the motor (deg/s) target_angle: Angle in degrees that the motor should rotate to, angle is zero when marks on motor hub and body are aligned. Motor angles can be reset by program, see "Motors with rotation sensors" r.lam.run_target(200, -60) - runs lam to 60 degrees counter-clockwise from reference mark on motor
Left		Stall	r.lam.run_until_stalled(speed,duty_limit=stall_power)	speed: Speed of the motor (deg/s) stall_power: What percent power to is considered a stall (0 - 100) r.ram.run_until_stalled(1000, duty_limit=100) - runs ram clockwise until it pushes hard on something
Right			For right attachment motor replace "lam" above with "ram"	
		Maximums	Medium motors = 1100, Large motors = 1050	Direction - Normally positive is clockwise rotation unless switched in robot.py near line 14
			Other Comm	nands
Action			Python Code	Parameters
ACTION				time: How long to pause the program (mSec)
	rogram		wait(time)	wait(500) - keeps program from going to next instruction (waiting) for 500 milliseconds = 0.5 seconds
Pause the Pr			wait(time) print("your_message")	wait(500) - keeps program from going to next instruction (waiting) for 500 milliseconds = 0.5

Setting Tire Diameter and Axle Track

To set values for your robot first measure TIRE_DIAMETER in millimeters. Second find your AXLE_TRACK by measuring space between the very center of the wheels in millimeters. Now enter these values in robot.py, you'll find these constants around program line 100. A Spike bot will be about TIRE_DIAMETER = 56 and AXLE_TRACK = 82, yours may be different if you use different wheels or spacing of the motors on your bot. The exact procedure for setting your robot's values is found in pybricks help menu, search on "robotics and drive bases", then look about half way down the section for the heading "Measuring and validating the robot dimensions". If you follow this procedure your robot will drive as far and turn as much as you tell it.

