

Output loop equation Ver-icre-Ver-iere =0 $\int_{B} But, \quad i_{\varepsilon} = \frac{1+\beta}{\beta} i_{\varepsilon}$ Vu-ice-VCE-(148)iche=0 VCC-VCE -ic Rc+(1+B)RE =0 VCE =0 = ic = [RC+(1+R)RE] ic=0 = VCC=VCE -Vcc. · Vce i=BlB =) i= B(V+n-YBE)
(Ren+(IFF) Re) substitute i' in eq (1). VCC - V = i (RC+ (1+B) RE)

(c). from ((a) & (b))
is = VIN-VBE Rent (IAB) RC
in = VAN - VBE
Rent (1+B) RC
- Carlon Marie V College St. 202 Ac. 20
Vm = 10 (10) 10 (10)
Vm = REVCC . 3 10 (to) 10 (hg) 60
Men = 106 N (ON) 1.660009 N
Re Re (10)(50)
RHR = (10)(50) KA
Ken = 16 10 10.133333 Km
18 - M - VBE 196 - 0.7
18- VM - VBE 196-0.7 KAL+ (HB) RC 5/6+(1+100)(0.4)
0.9666667
41.2333333
41.233333
18 = 0.0234438165 mA
tc= Btc = tc= 239938165 mb
V9 0.026
LU = 18 0053498162 K T
3
√n = 1.10903444 EV
Sagar —

(oop oquation) - Vo-icke -ioR1 - Voe tieke = VR VO-VB - VOC - ielle + Re) + iBR, Vo-VB-VBC = (HP) iB (RC+RE) + iBR, VA-VB - VBE (HB) (RC+RE) + RI Variable - Ver -iele = VB Va-VB-VCE = iE (RC+RE) (-, le= 1+B)(c) Ve-Vo-Vce = (1+B) (Re+Re) ic => Vo= Vce / VB= -Vcc substitute in éq D. D. is = 2 vcc - VBE (HP) (RC+Re)+R, 2 VCE - VCE = (14B), (ROARE) to -3 to so vee avec

cc

= [RC+ [HB) AZ] to emet (v, i RB+(1+B)RE = P(B) i= (RB+(HP) RE) Substite & m ead - (RO+(1+B)RE) (RC+(1+B)RE) V = 2VCC short circuit - PC voltages, C1. open circuit - C2 pe analysts

ja -

ev= Wo Yo Re PARC (RE TH + 1+9m TO + RE + RE) € - 15.2926209 K.D. VA = 0-397608142 KJ m= ic/ = 6.5391013 m ex. 2 - 251.50 3904 max 15.2421925 - 13530:39633 15:2926209+38.4615386+1+3646.15386+ 12.5751952-55) -19218.1941 3918.48321 DV = -4.90449826

ya kcl atrodial (jwcga) Jw (ga (Vgs - Vas) = 9m Vgs + Vas

Cut off frequency (fg) -)
(A) = 1 - 3
w(G, + Cn) =)
f- = = = = = = = = = = = = = = = = = = =