74HC245; 74HCT245

Octal bus tranceiver; 3-state
Rev. 03 — 31 January 2005

Product data sheet

General description 1.

The 74HC245; 74HCT245 is a high-speed Si-gate CMOS device and is pin compatible with Low-Power Schottky TTL (LSTTL).

The 74HC245; 74HCT245 is an octal transceiver featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The 74HC245; 74HCT245 features an output enable input (OE) for easy cascading and a send/receive input (DIR) for direction control. OE controls the outputs so that the buses are effectively isolated.

The 74HC245; 74HCT245 is similar to the 74HC640; 74HCT640 but has true (non-inverting) outputs.

Features 2.

- Octal bidirectional bus interface
- Non-inverting 3-state outputs
- Multiple package options
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

Quick reference data 3.

Table 1: Quick reference data GND = 0 V; $T_{amb} = 25 \,^{\circ}$ C; $t_f = t_f = 6 \, \text{ns}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Туре 74Н0	C245					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	$C_L = 15 \text{ pF};$ $V_{CC} = 5 \text{ V}$	-	7	•	ns
CI	input capacitance		120	3.5	-	pF
C _{I/O}	input/output capacitance		120	10	:C#5"	pF
C _{PD}	power dissipation capacitance per transceiver	$V_I = GND$ to V_{CC}	<u>[1]</u> -	30	-	pF
Туре 74Н0	CT245					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	$C_L = 15 \text{ pF};$ $V_{CC} = 5 \text{ V}$	£7);	10	: T	ns

Table 1: Quick reference data ... continued GND = 0 V; $T_{amb} = 25 \,^{\circ}\text{C}$; $t_{r} = t_{f} = 6 \, \text{ns}$.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Cı	input capacitance			20	3.5	(4)	pF
C _{I/O}	input/output capacitance			(- 3)	10	2-2	pF
C _{PD}	power dissipation capacitance per transceiver	$V_I = GND$ to $V_{CC} - 1.5 V$	[1]	- 0	30	0 = 0	рF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in ∞W):

 $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i \cdot N + \sum (C_L \cdot V_{CC}^2 \cdot f_o)$ where:

f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \cdot V_{CC}^2 \cdot f_0) = \text{sum of outputs.}$

4. Ordering information

Table 2: Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC245N	-40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1				
74HC245D	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1				
74HC245PW	-40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1				
74HC245DB	-40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1				
74HC245BQ	-40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body 2.5 \cdot 4.5 \cdot 0.85 mm	SOT764-1				
74HCT245N	-40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1				
74HCT245D	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1				
74HCT245PW	-40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1				
74HCT245DB	-40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1				
74HCT245BQ	-40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body $2.5 \cdot 4.5 \cdot 0.85$ mm	SOT764-1				

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3: Pin description

1001001	i iii docomption	
Symbol	Pin	Description
DIR	1	direction control
A0	2	data input/output
A1	3	data input/output
A2	4	data input/output
A3	5	data input/output
A4	6	data input/output
A5	7	data input/output
A6	8	data input/output
A7	9	data input/output
GND	10	ground (0 V)
B7	11	data input/output
B6	12	data input/output
B5	13	data input/output
B4	14	data input/output
B3	15	data input/output
B2	16	data input/output

9397 750 14502

Table 3: Pin description ... continued

Symbol	Pin	Description	
B1	17	data input/output	
B0	18	data input/output	
ŌĒ	19	output enable input (active LOW)	
V _{CC}	20	supply voltage	

7. Functional description

7.1 Function table

Table 4: Function table [1]

Input		Input/output		
OE	DIR	An	Bn	
L	L	A = B	input	
L	Н	input	B = A	
Н	Χ	Z	Z	

^[1] H = HIGH voltage level;

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input diode current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	ā	±20	mΑ
I _{OK}	output diode current	$V_O < -0.5 \text{ V or}$ $V_O > V_{CC} + 0.5 \text{ V}$	8	±20	mA
lo	output source or sink current	$V_{\rm O}$ = -0.5 V to $V_{\rm CC}$ + 0.5 V	2	±35	mA
Icc, I _{GND}	V _{CC} or GND current		-	±70	mΑ
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[1]		
	DIP20 package		-	750	mW
	SO20, SSOP20, TSSOP20 and DHVQFN20 packages			500	mW

^[1] For DIP20 packages: above 70 °C, P_{tot} derates linearly with 12 mW/K. For SO20 packages: above 70 °C, P_{tot} derates linearly with 8 mW/K. For SSOP20 and TSSOP20 packages: above 60 °C, P_{tot} derates linearly with 5.5 mW/K. For DHVQFN20 packages: above 60 °C, P_{tot} derates linearly with 4.5 mW/K.

9397 750 14502

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

9. Recommended operating conditions

Table 6: Recommended operating conditions

recommended ope	rating conditions				
Parameter	Conditions	Min	Тур	Max	Unit
IC245					
supply voltage		2.0	5.0	6.0	V
input voltage		0	5 3 6	V_{CC}	V
output voltage		0	8 = 0	V _{CC}	V
input rise and fall	V _{CC} = 2.0 V	-	6 4 0	1000	ns
times	V _{CC} = 4.5 V	-	6.0	500	ns
	V _{CC} = 6.0 V	 (: = 3	400	ns
ambient temperatur	е	-40	178	+125	°C
ICT245					
supply voltage		4.5	5.0	5.5	٧
input voltage		0	90	V _{CC}	V
output voltage		0	6 .2 77	V_{CC}	٧
input rise and fall times	V _{CC} = 4.5 V	121	6.0	500	ns
ambient temperatur	е	-40	140	+125	°C
	Parameter IC245 supply voltage input voltage output voltage input rise and fall times ambient temperatur ICT245 supply voltage input voltage output voltage input rise and fall times	supply voltage input voltage output voltage input rise and fall times $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ ambient temperature ICT245 supply voltage input voltage output voltage input rise and fall $V_{CC} = 4.5 \text{ V}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter Conditions Min Typ IC245 supply voltage 2.0 5.0 input voltage 0 - input rise and fall times V _{CC} = 2.0 V - - input rise and fall times V _{CC} = 4.5 V - - ICT245 supply voltage 4.5 5.0 input voltage 0 - input rise and fall times V _{CC} = 4.5 V - 6.0	Parameter Conditions Min Typ Max IC245 supply voltage 2.0 5.0 6.0 input voltage 0 - V _{CC} output voltage 0 - V _{CC} input rise and fall times V _{CC} = 2.0 V - - 1000 V _{CC} = 4.5 V - 6.0 500 V _{CC} = 6.0 V - - 400 ambient temperature -40 - +125 ICT245 supply voltage 4.5 5.0 5.5 input voltage 0 - V _{CC} output voltage 0 - V _{CC} input rise and fall times V _{CC} = 4.5 V - 6.0 500

10. Static characteristics

Table 7: Static characteristics type 74HC245

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	(1 4)	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	•	0.8	0.5	V
		V _{CC} = 4.5 V	•	2.1	1.35	V
		V _{CC} = 6.0 V		2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \text{A}; V_{CC} = 2.0 \text{V}$	1.9	2.0		V
		$I_{O} = -20 \text{A}; V_{CC} = 4.5 \text{V}$	4.4	4.5	•	V
		I _O = -20 ∞A; V _{CC} = 6.0 V	5.9	6.0	•	V
		$I_{\rm O}$ = -6.0 mA; $V_{\rm CC}$ = 4.5 V	3.98	4.32	55151	V
		$I_{\rm O}$ = -7.8 mA; $V_{\rm CC}$ = 6.0 V	5.48	5.81	-	V

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I _O = 20 ∝A; V _{CC} = 2.0 V	180	0	0.1	V
		I _O = 20 ∝A; V _{CC} = 4.5 V	1-10	0	0.1	V
		I _O = 20 ∝A; V _{CC} = 6.0 V		0	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	(*)	0.15	0.26	٧
		$I_{\rm O}$ = 7.8 mA; $V_{\rm CC}$ = 6.0 V	15)	0.16	0.26	V
LI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	æu	(TA)	±0.1	αA
oz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$. 3 .0.	(74)	±0.5	αA
cc	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$ A; $V_{CC} = 6.0 \text{ V}$	<u> </u>	(29)	8.0	αA
C _I	input capacitance		7 - 3	3.5	241	рF
C _{I/O}	input/output capacitance		-10	10		pF
Γ _{amb} = -40) °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	:=:	3 0 3	٧
	100	V _{CC} = 4.5 V	3.15	198		V
		V _{CC} = 6.0 V	4.2	(%)	1971	V
/ _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	(5.0)	(%)	0.5	V
		V _{CC} = 4.5 V	-	8	1.35	V
		V _{CC} = 6.0 V	1211	(<u>2</u> 2)	1.8	V
/ _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \text{A}; V_{CC} = 2.0 \text{V}$	1.9	(- 6)	-	V
		$I_{O} = -20 \text{A}; V_{CC} = 4.5 \text{V}$	4.4	1.00	2 4 2	V
		$I_{O} = -20 \text{A}; \ V_{CC} = 6.0 \text{V}$	5.9	-:		V
		$I_{\rm O}$ = -6.0 mA; $V_{\rm CC}$ = 4.5 V	3.84	(#)	5 - 5	V
		$I_{\rm O}$ = -7.8 mA; $V_{\rm CC}$ = 6.0 V	5.34	100	5 - 3	V
/ _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I _O = 20 ∞A; V _{CC} = 2.0 V	e t u.	(7 1)	0.1	V
		$I_{O} = 20 \text{A; } V_{CC} = 4.5 \text{V}$	((1)	-8	0.1	V
		I _O = 20 ∞A; V _{CC} = 6.0 V	- 60	-	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	12//	(1 20	0.33	V
		$I_{\rm O}$ = 7.8 mA; $V_{\rm CC}$ = 6.0 V	20	(4 8)	0.33	V
LI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	7-8	(- 0)	±1.0	σA
oz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	1		±5.0	αA
cc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	=:	:=::	80	αA
Γ _{amb} = -40) °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	•	•	V
		V _{CC} = 4.5 V	3.15	(2 7)	(4 8)	V
		V _{CC} = 6.0 V	4.2	(20		V

9397 750 14502

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Table 7: Static characteristics type 74HC245 ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	120	5 2 8	0.5	V
		V _{CC} = 4.5 V	140	5-0	1.35	V
		V _{CC} = 6.0 V	.=0) - 0	1.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$) - 0		
		I _O = -20 ∞A; V _{CC} = 2.0 V	1.9	: = 3	·	V
		$I_{O} = -20 \text{A}; V_{CC} = 4.5 \text{V}$	4.4	123	(-	V
		$I_{O} = -20 \text{A}; V_{CC} = 6.0 \text{V}$	5.9	200	: 	V
		$I_{\rm O}$ = -6.0 mA; $V_{\rm CC}$ = 4.5 V	3.7	8 7 4)	178	V
		$I_{\rm O}$ = -7.8 mA; $V_{\rm CC}$ = 6.0 V	5.2	- (6)	•	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}		(<u>*</u> 27)		
		$I_{O} = 20 \text{A}; V_{CC} = 2.0 \text{V}$	140	(4)	0.1	V
		I _O = 20 ∝A; V _{CC} = 4.5 V	148	5 2 6	0.1	V
		I _O = 20 ∞A; V _{CC} = 6.0 V	140	5 4 70	0.1	V
		I_{O} = 6.0 mA; V_{CC} = 4.5 V	-) -);	0.4	V
		I_{O} = 7.8 mA; V_{CC} = 6.0 V	. # 0/	770	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	: = 3(±1.0	œΑ
loz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$.53	153	±10.0	∞A
lcc	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$ A; $V_{CC} = 6.0 \text{ V}$	- (8)	***	160	∝A

Table 8: Static characteristics type 74HCT245

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	(=)	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	·=0	1.2	0.8	٧
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$				
		I _O = −20 ∞A	4.4	4.5	-	V
		$I_{O} = -6 \text{ mA}$	3.98	4.32	5 7 \$	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$				
		I _O = 20 ∞A	27	0	0.1	V
		$I_{O} = 6.0 \text{ mA}$	47	0.15	0.26	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	27	5 2 5	±0.1	αA
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A		(E)	±0.5	∝A
I _{cc}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	•	173	8.0	«A

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Δl _{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 2.1 \text{ V}$; other inputs at $V_I = V_{CC}$ or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$				
	An or Bn inputs		190	40	144	αA
	OE input		:=3	150	540	«A
	DIR input		1511	90	324	«A
Cı	input capacitance		. 	3.5	273	pF
C _{I/O}	input/output capacitance			10	- 6	pF
$T_{amb} = -4$	0 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	(27)	20122 2022	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	140	141	8.0	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		I _O = −20 ∞A	4.4		-	V
		I _O = -6 mA	3.84	-	(=)	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
	\$ 5%	I _O = 20 ∞A	*	17.0	0.1	V
		$I_{O} = 6.0 \text{ mA}$	(50)	870	0.33	٧
lu	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	5//	1 5 0	±1.0	σA
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A	-	8	±5.0	∞A
lcc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	t=0.	()	80	αA
Δl _{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 2.1$ V; other inputs at $V_I = V_{CC}$ or GND; $V_{CC} = 4.5$ V to 5.5 V; $I_O = 0$ A				
	An or Bn inputs		-	8	180	κA
	OE input		1211	6 4 9	675	αA
	DIR input		27	4	405	αA
$T_{amb} = -4$	0 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	(4)	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V		(-)	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		I _O = −20 ∞A	4.4	: - -::	5-2	V
		I _O = -6 mA	3.7	192		V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
1574551	ā <u>5</u> 0	I _O = 20 ∞A	27//	774)	0.1	V
		I _O = 6.0 mA	(6)		0.4	V
I _{LI}	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	1200	920	±1.0	œΑ
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND per input pin; other inputs at V_{CC} or GND; $I_O = 0$ A	2	(2)	±10	αA

9397 750 14502

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$		(2)	160	∞A
Δl _{CC}	additional quiescent supply current per input pin	$V_I = V_{CC} - 2.1 \text{ V}$; other inputs at $V_I = V_{CC}$ or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$				
	An or Bn inputs	A 50	(5))	8744	196	φA
	OE input		-	90	735	∝A
	DIR input		-		441	φA

11. Dynamic characteristics

Table 9: Dynamic characteristics type 74HC245

GND = 0 V; test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	V _{CC} = 2.0 V	150	25	90	ns
		V _{CC} = 4.5 V	159	9	18	ns
		V_{CC} = 5.0 V; C_L = 15 pF	·*	7	·	ns
		V _{CC} = 6.0 V	-	7	15	ns
t _{PZH} , t _{PZL}	3-state output enable time OE to	see Figure 6				
	An or OE to Bn	V _{CC} = 2.0 V	-	30	150	ns
		V _{CC} = 4.5 V	120	11	30	ns
		V _{CC} = 6.0 V	(#C	9	26	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to An or \overline{OE} to Bn	see Figure 6				
		V _{CC} = 2.0 V	•	41	150	ns
		V _{CC} = 4.5 V		15	30	ns
		V _{CC} = 6.0 V	1.50	12	26	ns
t _{THL} , t _{TLH}	output transition time	see Figure 5				
		V _{CC} = 2.0 V	-	14	60	ns
		V _{CC} = 4.5 V	*	5	12	ns
		V _{CC} = 6.0 V	140	4	10	ns
C _{PD}	power dissipation capacitance per transceiver	V_I = GND to V_{CC}	[1] -	30	r <u>i</u>	pF
T _{amb} = -40	°C to +85 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	V _{CC} = 2.0 V	: - //	() - (115	ns
		V _{CC} = 4.5 V	159	1675	23	ns
		V _{CC} = 6.0 V) = 33	15	20	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PZH} , t _{PZL}	3-state output enable time OE to	see Figure 6				
	An or OE to Bn	V _{CC} = 2.0 V	1-1	-	190	ns
		V _{CC} = 4.5 V	•	•	38	ns
		V _{CC} = 6.0 V	-0	-	33	ns
t _{PHZ} , t _{PLZ}	3-state output disable time $\overline{\text{OE}}$ to	see Figure 6				
	An or OE to Bn	V _{CC} = 2.0 V	:=3	11.00	190	ns
		V _{CC} = 4.5 V	1 7 19	1.5	38	ns
		V _{CC} = 6.0 V	670.4	1.5	33	ns
t _{THL} , t _{TLH}	output transition time	see Figure 5				
		V _{CC} = 2.0 V	029	72	75	ns
		V _{CC} = 4.5 V	=	per .	15	ns
		V _{CC} = 6.0 V	-	14	13	ns
T _{amb} = -40	°C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	see Figure 5				
		V _{CC} = 2.0 V	i ⊕ ((1)	135	ns
		V _{CC} = 4.5 V	: - 7	(1 -1)	27	ns
		V _{CC} = 6.0 V	:=3	10.00	23	ns
t _{PZH} , t _{PZL}	3-state output enable time OE to	see Figure 6				
	An or OE to Bn	V _{CC} = 2.0 V	8 0	•	225	ns
		V _{CC} = 4.5 V	*	•	45	ns
		V _{CC} = 6.0 V	-	Yel	38	ns
t _{PHZ} , t _{PLZ}	3-state output disable time OE to	see Figure 6				
	An or OE to Bn	V _{CC} = 2.0 V	1#11	5-6	225	ns
		V _{CC} = 4.5 V	1-1	-	45	ns
		V _{CC} = 6.0 V	-0	-	38	ns
THL, tTLH	output transition time	see Figure 5				
		V _{CC} = 2.0 V	:=3	10.00	90	ns
		V _{CC} = 4.5 V	: = 2	-	18	ns
		V _{CC} = 6.0 V	:=:::		15	ns

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in αW):

 $P_D = C_{PD} + V_{CC}^2 + f_i + N + \sum (C_L + V_{CC}^2 + f_o) \text{ where:}$

fi = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \cdot V_{CC}^2 \cdot f_o) = \text{sum of outputs.}$

GND = 0 V; test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn	see Figure 5				
	to An	V _{CC} = 4.5 V	(50)	12	22	ns
		V_{CC} = 5.0 V; C_L = 15 pF	*	10	<u>.</u>	ns
t _{PZH} , t _{PZL}	3-state output enable time $\overline{\text{OE}}$ to An or $\overline{\text{OE}}$ to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>	-	16	30	ns
t_{PHZ} , t_{PLZ}	3-state output disable time $\overline{\text{OE}}$ to An or $\overline{\text{OE}}$ to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>	-	16	30	ns
t _{THL} , t _{TLH}	output transition time	V _{CC} = 4.5 V; see Figure 5	(•)	5	12	ns
C _{PD}	power dissipation capacitance per transceiver	V_I = GND to V_{CC} - 1.5 V	[1] -	30	-	pF
T _{amb} = -40	°C to +85 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	V _{CC} = 4.5 V; see <u>Figure 5</u>	•		28	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to An or \overline{OE} to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>	(=)	841	38	ns
t_{PHZ} , t_{PLZ}	3-state output disable time $\overline{\text{OE}}$ to An or $\overline{\text{OE}}$ to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>) -);	10.00	38	ns
t _{THL} , t _{TLH}	output transition time	V _{CC} = 4.5 V; see Figure 5	(=)	(1 -1)	15	ns
T _{amb} = -40	°C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay An to Bn or Bn to An	V _{CC} = 4.5 V; see <u>Figure 5</u>	(=)	M S 4	33	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to An or \overline{OE} to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>	2	W a l	45	ns
t_{PHZ} , t_{PLZ}	3-state output disable time $\overline{\text{OE}}$ to An or $\overline{\text{OE}}$ to Bn	V _{CC} = 4.5 V; see <u>Figure 6</u>	(= 0.	8=	45	ns
t _{THL} , t _{TLH}	output transition time	V _{CC} = 4.5 V; see Figure 5	-	n=	18	ns

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in αW):

 $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i \cdot N + \sum (C_L \cdot V_{CC}^2 \cdot f_o)$ where:

f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \cdot V_{CC}^2 \cdot f_0) = \text{sum of outputs.}$

12. Waveforms

Table 11: Measurement points

Туре	Input	Output	
	V _M	V _M	
74HC245	0.5V _{CC}	0.5V _{CC}	
74HCT245	1.3 V	1.3 V	

Test data is given in Table 12.

Definitions test circuit:

R_T = Termination resistance should be equal to output impedance Z₀ of the pulse generator.

C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistor.

Fig 7. Load circuitry for switching times

Table 12: Test data

Туре	Input		Test						
	VI	t _r , t _f	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}				
74HC245	Vcc	6 ns	open	GND	Vcc				
74HCT245	3 V	6 ns	open	GND	V _{CC}				

13. Package outline

DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D (1)	E (1)	е	e ₁	Ĺ	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	LOOUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT146-1		MS-001	SC-603		99-12-27 03-02-13

Fig 8. Package outline SOT146-1 (DIP20)

9397 750 14502

S Koninklijke Philips Electronics N.V. 2005. All rights reserved

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z (1)	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	IOOUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013			-99-12-27 03-02-19

Fig 9. Package outline SOT163-1 (SO20)

9397 750 14502

Koninklijke Philips Electronics N.V. 2005. All rights reserved.

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

UNIT	A max.	Α1	A ₂	A 3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION		REFER	ENCES	EUROPEAN	IOOUE DATE
	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT339-1		MO-150			99-12-27 03-02-19

Fig 10. Package outline SOT339-1 (SSOP20)

9397 750 14502

S Koninklijke Philips Electronics N.V. 2005. All rights reserved

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D (1)	E (2)	e	HE	L	Lp	Q	٧	w	у	Z (1)	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	80

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION		REFER	ENCES	EUROPEAN	IOOUE DATE
	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT360-1		MO-153			99-12-27 03-02-19

Fig 11. Package outline SOT360-1 (TSSOP20)

9397 750 14502

S Koninklijke Philips Electronics N.V. 2005. All rights reserved

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 12. Package outline SOT764-1 (DHVQFN20)

9397 750 14502

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

14. Revision history

Table 13: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC_HCT245_3	20050131	Product data sheet	25	9397 750 14502	74HC_HCT245_CNV_2
Modifications:		mat of this data sheet is tion standard of Philips			v presentation and
		4 "Ordering information are modified to include			and Section 13 "Package
74HC_HCT245_CNV_2	19930930	Product specification	1 4	-	É

Level	Data sheet status [1]	Product status [2] [3]	Definition
1	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Ш	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74HC245; 74HCT245

Octal bus tranceiver; 3-state

19. Contents

1	General description
2	Features
3	Quick reference data
4	Ordering information
5	Functional diagram
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description
7.1	Function table
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics
12	Waveforms
13	Package outline
14	Revision history
15	Data sheet status 21
16	Definitions
17	Disclaimers
18	Contact information 21

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 31 January 2005 Document number: 9397 750 14502

