Mathematical Induction

Use induction to prove that $n! > 2^n$ for all positive integers $n \ge 4$.

Let P(n) denote the proposition that $n! > 2^n$, where n is a positive integer $n \ge 4$.

BASIS STEP: P(4) is true since $4! = 24 > 2^4 = 16$.

INDUCTIVE STEP: Let us assume P(n), that is $n! > 2^n$ is true for an arbitrary positive integer $n \ge 4$. This is our inductive hypothesis.

We have to show that P(n+1), $(n+1)! > 2^{n+1}$ is also true assuming the inductive hypothesis P(n).

Proof:

$$(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n$$
 using the inductive hypothesis.

$$(n+1)\cdot 2^n > 2\cdot 2^n = 2^{n+1}$$
, when $n \ge 4$.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $n! > 2^n$ for all positive integers $n \ge 4$.