Theorem 10.7.5 If $\{f_n\}$ is a sequence of measurable, non-negative functions on a measurable set A, and $\lim_{n\to\infty} f_n(x) = f(x)$ almost everywhere, then

$$\int_{\Lambda} f d\lambda \leqslant \liminf_{n \to \infty} \int_{\Lambda} f_n d\lambda$$

Proof: Let $A_1 \cup A_2$ be a partition of A where A_1, A_2 are disjoint, measurable sets such that $A_1 = \{x : \lim_{n \to \infty} f_n(x) \to f(x), x \in A\}$ and $\lambda(A_2) = 0$. By Theorem 10.7.4, $\int_A f_n d\lambda = \int_{A_1} f_n d\lambda + \int_{A_2} f_n d\lambda = \int_{A_1} f_n d\lambda + 0$, and similarly for f.

For all $k \in \mathbb{N}$, let $\psi_k(x) = \inf\{f_n(x) : n > k\}$, then $\psi_k(x) \leqslant \psi_{k+1}(x)$ and, because $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in A_1$, $\lim_{k \to \infty} \psi_k(x) = f(x)$ for all $x \in A_1$. Thus $\int_{A_1} \psi_k d\lambda \leqslant \int_{A_1} f_n d\lambda$ for all n > k, and therefore $\int_{A_1} \psi_k d\lambda \leqslant \inf \int_{A_1} f_n d\lambda$ for all n > k. As $f(x) = \lim_{k \to \infty} \psi_k(x)$ on A_1 , $\int_{A_1} f d\lambda = \lim_{k \to \infty} \int_{A_1} \psi_k d\lambda \leqslant \liminf_{n \to \infty} \int_{A_1} f_n d\lambda$. Hence $\int_A f d\lambda \leqslant \liminf_{n \to \infty} \int_{A_1} f_n d\lambda$.

 $\liminf_{n \to \infty} \int_A f_n d\lambda$