Class 6. 평가 vs 예측

질문!

그런데 과연 당해 OPS가 좋았던 선수는 다음 시즌 OPS도 좋을까?

비싼 돈 주고 영입했는데 OPS가 확 나빠진다면??

"선수들의 지난해 OPS와 올해 OPS 간의 상관관계"를 살펴보자

타자들의 지난해 OPS와 올해 OPS 간의 상관관계

х	Υ
2010년 TOR 승률	2010년 TOR 득실점비율
2010년 CIN 승률	2010년 CIN 득실점비율
2010년 NYN 승률	2010년 NYN 득실점비율
2010년 WAS 승률	2010년 WAS 득실점비율
2015년 TOR 승률	2015년 TOR 득실점비율
2015년 CIN 승률	2015년 CIN 득실점비율
2015년 NYN 승률	2015년 NYN 득실점비율
2015년 WAS 승률	2015년 WAS 득실점비율

X	у
2010년 추신수 OPS	2011년 추신수 OPS
2011년 추신수 OPS	2012년 추신수 OPS
2012년 추신수 OPS	2013년 추신수 OPS
2013년 추신수 OPS	2014년 추신수 OPS
•••	•••
2010년 트라웃 OPS	2011년 트라웃 OPS
2011년 트라웃 OPS	2012년 트라웃 OPS
2012년 트라웃 OPS	2013년 트라웃 OPS
2013년 트라웃 OPS	2014년 트라웃 OPS
•••	

SQL 만으로 이렇게 조회하는 것은 매우 어렵다 파이썬으로 가지고 와서 이러한 형태가 되도록 처리를 해줘야 함

지난해 OPS와 올해 OPS 간의 상관관계

ex5.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
        SELECT
            playerID, yearID, CAST((H + BB + HBP) AS REAL)/(AB + BB + HBP + SF) + CAST(((H - "2B" - "3B" - HR) +
2*"2B" + 3*"3B" + 4*HR) AS REAL)/AB AS OPS
        FROM batting
        WHERE yearID >= 1990 and AB > 250
        ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
        if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between OPS over two consecutive seasons')
plt.xlabel('OPS1')
plt.ylabel('OPS2')
plt.grid(True)
plt.savefig('ex5_img.png')
correlation_coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```


다소 강한 상관관계

특정해에 OPS가 좋았던 선수는 다음 해에도 OPS가 좋을 가능성이 있다

OPS보다 좀 더 다음 해 성적을 예측하기 좋은 스탯은 무엇일까?

ex6.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
        SELECT
            playerID, yearID, CAST(H AS REAL)/AB AS AVG
        FROM batting
        WHERE yearID >= 1990 and AB > 250
        ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from_records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
        if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between AVG over two consecutive seasons')
plt.xlabel('AVG%1')
plt.ylabel('AVG%2')
plt.grid(True)
plt.savefig('ex6_img.png')
correlation_coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```

타율

상관계수: 0.4431415430371724

다소 강한 상관관계

타율은 다음 시즌의 성적을 예측하는데 있어서 OPS보다 신뢰도가 떨어진다

OPS보다 좀 더 다음 해 성적을 예측하기 좋은 스탯은 무엇일까?

ex7.py

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager, rc
from scipy import stats
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
        SELECT
            playerID, yearID, CAST(HR AS REAL)/CAST((AB + BB + HBP + SH + SF) AS REAL) AS HRpercentage
        FROM batting
        WHERE yearID >= 1990 and AB > 250
        ORDER BY playerID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from_records(data=result, columns=cols)
before = []
after = []
for i in range(len(df)-1):
    if df.iloc[i+1, 0] == df.iloc[i, 0]:
        if df.iloc[i+1, 1] == df.iloc[i, 1] + 1:
            before.append(df.iloc[i, 2])
            after.append(df.iloc[i+1, 2])
plt.scatter(before, after, c='b')
plt.title('Correlation between HR% over two consecutive seasons')
plt.xlabel('HR%1')
plt.ylabel('HR%2')
plt.grid(True)
plt.savefig('ex7_img.png')
correlation_coefficient = stats.pearsonr(before, after)
print("상관계수:", correlation_coefficient[0])
```

타석당 홈런 비율(HR%)

이번 시즌에 홈런을 잘 친 타자는 다음 시즌에도 홈런을 잘 칠 확률이 높다 (HR% > OPS > AVG)

OPS보다는 HR%가 다음 해 성적을 예측하는데 더 신뢰할 만하다

대표적인 예) 올해 KBO의 박병호 선수, 타율은 2할2푼대로 매우 저조하지만, 그래도 20개의 홈런을 때렸음

총 정리

OPS와 같이 성적을 평가하기에 좋은 스탯이 있고

HR%와 같이 내년 성적을 예측하기에 좋은 스탯이 있다

과제#6

HR%과 같이 연속된 시즌간 상관관계가 강한 스탯을 찾아보라.

코드와 실행 결과 캡쳐 화면을 word로 정리해서 kyohoonsim@gmail.com 으로 보내주세요~!

문서 제목 양식:

KUSF데이터분석_과제6_이름.docx

ex) KUSF데이터분석_과제6_심교훈.docx

이제 절반 왔습니다:D 수고하셨습니다

LV 5

LV 4

LV 3

LV 2

이번 강의를 통해 LV1이 LV6이 되길 기대하지 않음 LV1이 LV2만 되도 성공적! LV2는 LV3이 되야 함

LV 1

추천 도서

머니볼에서 지나치게 세이버메트릭스를 강조했던 것을 비평

야구선수 분석 및 예측 시스템인 PECOTA를 개발한 세이버메트리션 네이트 실버의 책

선거 예측 웹사이트인 FiveThirtyEight도 개발 https://fivethirtyeight.com/

"강의 듣기와 반복 읽기의 허상"

고영성, 신영준의 <완벽한 공부법>, Chapter 3 기억 중 소챕터 제목

Fig. 9. Long-term *in situ* EDA recordings. Continuous skin conductance measurements were recorded for seven days in a natural home environment. Daily EDA waveforms displayed are normalized.

MIT 미디어랩 연구 결과(2010)

"수업을 들을 때나 TV를 볼 때 뇌의 교감신경계는 그다지 활성 화되지 않는다. 심지어 잠자는 시간보다도!"

과제하고 퀴즈 풀고 복습할 때 우리의 뇌는 활동한다는 점!

야구 주요 스탯 공식 정리

- 1. 타수 = 타석수 볼넷 몸에맞는공 희생번트 희생플라이 타격방해 주루방해
- 2. 타율 = 안타/타수
- 3. 장타율 = (1루타 + 2*2루타 + 3*3루타 + 4*홈런)/타수
- 4. 순수장타율 = (1*2루타 + 2*2루타 + 3*홈런)/타수
- 5. 출루율 = (안타 + 볼넷 + 몸에맞는공)/(타수 + 볼넷 + 몸에맞는공 + 희생플라이)
- 6. OPS = 장타율 + 출루율
- 7. BABIP = (안타 홈런)/(타수 삼진 홈런 희생플라이)
- 8. K%, BB%, HR% K% (타석당 삼진 비율) = 삼진 / 타석 BB% (타석당 볼넷 비율) = 볼넷 / 타석 HR% (타석당 홈런 비율) = 홈런 / 타석

야구 주요 스탯 공식 정리

9. FIP = (13*홈런 + 3*(볼넷 + 몸에맞는공) - 2*탈삼진)/이닝 + FIP상수

*FIP 상수는 리그마다 매년 다름, https://www.fangraphs.com/guts.aspx?type=cn

10. WHIP = (피안타 + 볼넷)/이닝

11. wOBA(2013 팬그래프버전)

- = (0.69*고의사구제외한볼넷 + 0.72*몸에맞는공 + 0.89*1루타 + 1.27*2루타 + 1.62*3루타 + 2.10*홈런) /(타수 + 고의사구제외한볼넷 + 희생플라이 + 몸에맞는공)
- 12. wOBA(2021 스탯티즈 버전)
- = (0.72*고의사구제외한볼넷 + 0.75*몸에맞는공 + 0.9*1루타 + 0.92*실책출루 + 1.24*2루타 + 1.56*3루타 + 1.95*홈런) /(타석수 -고의4구)
- 13. K/9, BB/9, HR/9 K/9 (9이닝당 삼진) = 삼진 / 이닝 * 9 BB/9 (9이닝당 볼넷) = 볼넷 / 이닝 * 9 HR/9 (9이닝당 피홈런) = 홈런 / 이닝 * 9
- 14. K/BB (볼삼비) = 삼진 / 볼넷