# **CG3207 Lab 3**

Neil Banerjee

neil@nus.edu.sg

### **Lab 3 Overview**

- Implement signed, unsigned division into Mcycle (sim only)
- Incorporate Mcycle into processor; implement MUL, DIV
- Enhance Mcycle

### Task 1: Mcycle Divider [13]

- Download design files from wiki
- Complete Mcycle.v and test\_Mcycle.v
- Incorporate both signed and unsigned division
- Simulate using a good testbench; hardware implementation not needed for this task
  - Make sure to use the correct top module
- Assumptions:
  - Divisor is never 0
  - -5/2 => Quotient -2, Remainder -1; or Quotient -3, Remainder 1

## **Suggested Test Cases**

| Multiplication |                    | Division       |                    |
|----------------|--------------------|----------------|--------------------|
|                | 32-bit             |                | 32-bit             |
| 1111 x 1111    | FFFFFFF x FFFFFFF  | 0000 / 1111    | FFFFFFF / FFFFFFF  |
| 0000 x 1111    | 00000001 x FFFFFFF | 1111 / 1111    | FFFFFFF / 0000001  |
| 1111 x 0000    | FFFFFFF x 00000001 | 1111 / 0001    | 00000001 / FFFFFFF |
| 1000 x 0111    | 00000000 x FFFFFFF | 1111 / 0111    | 00000000 / FFFFFFF |
| 0111 x 1000    |                    | 1000 / 0111    |                    |
| 0000 x 0000    |                    | 0111 / 1000    |                    |
| 0001 x 1111    |                    | 0111 / 0010    |                    |
| 0001 x 0111    |                    | 1001010 / 1000 |                    |

### Task 2: Incorporate Mcycle into CPU [7]

#### **ARM**

- Implement MUL and DIV
- ARMv3 does not include DIV
  - Use MLA instruction format
  - Stop the simulation at any MLA instruction, modify the register manually, and then continue
- Assume DIV is unsigned division
- MUL can set Z and N flags not required.
- Long multiplication instructions SMULL, UMULL etc. not required.

#### **RISC-V**

- Implement mul, divu
  - 32-bit versions sufficient
  - divu is part of the Multiply extension no need to bodge things together
- div (signed), mulh variants, rem not required
  - Not much effort required (except mulhsu)

### Task 2: Incorporate Mcycle into CPU [7]

- Destination register contains quotient; discard remainder
- ARM and RISC-V MUL are 32-bit; no diff b/w signed and unsigned
- Modify the Control Unit to generate Start, MCycleOp signals
- !Busy can be used as PC WE; stall PC until mul/div complete
- Make appropriate datapath connections
- Write assembly program to demonstrate functions

## Mcycle unit



## Mcycle in CPU (ARM shown, RV similar)



### Task 3: Enhancement to Mcycle [5]

- Improve the performance of the given signed multiplier
- Suggestions:
  - Reduce number of cycles by increasing hardware use
  - Use a single adder for multiply/divide; maybe even use the ALU
  - Implement Booth's algorithm
  - DO NOT implement a single-cycle multiplier using \* operator defeats purpose of this lab

### **Expectations**

- Fully understand Mcycle, including provided code (if not modified)
- Fully understand multiplication algorithm used, enhancements (if applicable)
- Be able to explain algorithm by handwriting the process
- Know modifications done to CPU from Lab 2 onwards
- Be able to explain advantages and tradeoffs for your design decisions, algorithm choices