TEMA SEMINARUL 1

1. Gosifi numarul minim și maxim de pași pentru algoritmul lui Euclid.

Tie a, b & Z+, a > b.

Sumarul minim de pari este atins atunci cand a ji b sunt consecutive em sirul lui Fibonacci.

 $\phi = \frac{1+\sqrt{5}}{2}$ (proportia de aux)

ust. minim de pasi = O(bgo b)

Daca a ji b sunt prime intre ele, atunci este atins sumarel maxim de pasi ji anume O(loge b).

2. Grati cel mai mare divizor comun al lui 12345 ni 5432! folorind algoritmul lui Euclid extins pentru a determina coeficientii Bizout.

X54321 = (1,0) ×12345=(0,1)

 $\chi_{4941} = \chi_{5432} - 4 \cdot \chi_{12345} = (1,0) - 4(0,1) = (1,-4)$ $\chi_{2463} = \chi_{12345} - 2 \chi_{4941} = (0,1) - 2(1,-4) = (-2,9)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{45} = \chi_{4941} - 2 \chi_{2463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{463} = \chi_{463} + \chi_{463} = (1,-4) - 2(-2,9) = (5,-22)$ $\chi_{463} = \chi_{463} + \chi_{463} = (1,-4) - 2(-2,9) =$

K3 = x2463 - 164 x15 = (-2,9) - 164 (5,-22) = (-822, 3617)

3. Garite inversel modular at lui 7 modulo 11.

$$\frac{11}{4} \frac{7}{4} \qquad \chi_4 = \chi_{11} - 1 \cdot \chi_7 = (1,0) - (0,1) = (1,-1)$$

$$\frac{7}{4}$$
 $\frac{1}{4}$ $\chi_3 = \chi_7 - 1\chi_4 = (0,1) - (1,-1) = (-1,2)$

$$\frac{4}{3}\frac{3}{1}$$
 $\chi_1 = \chi_4 - 1 \cdot \chi_3 = (1, -1) - (-1, 2) = (2, -3)$

$$1 = 2 \cdot 11 - 3 \cdot 7 \mid (\text{mod } 11) = > 1 = -3 \cdot 7 \mid (\text{mod } 11)$$