ME 352A

LAB MANUAL-3

EPICYCLIC GEAR TRAIN EXPERIMENT

INTRODUCTION:

Any combination of gear wheels by means of which motion is transmitted from one shaft to another shaft is called a gear train. In case of epicyclic gear trains, the axes of the shafts on which the gears are mounted may move relative to a fixed axis.

STEPS:

- 1. Tighten the bolt to adjust the loads to zero mark.
- 2. Switch on the apparatus.
- 3. Note various reading by setting initial speed (200)by turning the knob.
- 4. Tighten further the load to decrease gearbox speed to 180 and note all reading.
- 5. Produce table and plot various reading (ammeter, voltmeter, various torques) with gearbox speed.
- 6. Repeat process for subsequent lower speed.

Observation table

S.	RPM	RPM	Amm	Voltme	Load	Holding	Load	Load	Input	Output	Verificat
No	N_0	N _M	eter	ter (V)	S ₁ (N)	Torque	S ₂ (N)	S ₃ (N)	Torque	Torque	ion
			(A)			T _h			T _i	T _o	
	200										
	180										
	160										
	140										
	120										
	100										

- 1. Verify the torque relationship as $\ T_i + T_0 + T_h = 0$.
- 2. Develop correlation between speed and torque.

Formulae:

$$T_i = T_0 \times \frac{N_0}{N_M}$$

$$T_0 = (S_2 - S_3) \times R_P$$

$$T_h = S_1 \times R_{HD}$$

 $R_p = \text{Effective radius of pulley (0.125 m)}$

 R_{HD} =Effective radius of holding drum (0.185 m)

Note: In case of fluctuation in reading, take the average value.