Structures mathématiques HAI507I - Calcul formel et scientifique

Bruno Grenet

Université de Montpellier - Faculté des Sciences

1. Les entiers modulaires

2. Anneaux, corps et groupe

Calcul dans \mathbb{R} , \mathbb{Q} ou \mathbb{Z}

Opérations de base

- \mathbb{Z} : 3 + 4 = 7; 6 × (-4) = -24; 3 8 = -5
- $\mathbb{Q}: \frac{2}{3} + \frac{4}{5} = \frac{22}{15}; \frac{7}{4} \times \frac{5}{6} = \frac{35}{24}; \frac{2}{5} / \frac{11}{9} = \frac{18}{55}$
- $\mathbb{R}: 2,35+(-3,567)=-1,217;6,43\times 12,2=78,446;\pi/e=1,15572...$

Pourquoi pas de division dans \mathbb{Z} ?

On ne parle pas de division euclidienne (pour l'instant)

Loi interne

- ▶ Une opération est *interne* si le résultat reste dans le même ensemble que l'entrée
 - $ightharpoonup \mathbb{Z}:+,-,\times$ sont internes, mais / ne l'est pas
 - $ightharpoonup \mathbb{Q}, \mathbb{R}: +, -, \times, / \text{ sont internes}$

Opérations et inverses

Naturellement, + va avec - et \times avec /: pourquoi?

Opération inverse

- $ightharpoonup c = a + b \Leftrightarrow a = c b$
- $ightharpoonup c = a \times b \Leftrightarrow a = c/b \text{ (si } b \neq 0)$
- ightarrow est l'opération inverse de +, et / l'opération inverse de imes

Élément inverse

- L'inverse de a pour l'addition est l'unique élément b tel que a + b = 0
 - Noté -a; 0 est le neutre pour l'addition $\rightarrow a + 0 = a$
 - On dit plutôt opposé
- L'inverse de a pour la multiplication est l'unique élément b tel que $a \times b = 1$
 - Noté a^{-1} ; 1 est le neutre pour la multiplication : $a \times 1 = a$
 - On dit simplement inverse

Calculs modulo n

Division euclidienne dans $\mathbb Z$

- Division de *a* par *b* : quotient *q* et reste *r* tels que
 - ightharpoonup a = bq + r
 - $ightharpoonup 0 \le r < b$
- ▶ Attention au cas de $a < 0 \rightarrow$ on veut $r \ge 0$ quand même
- Remarque : écriture unique

Réduction modulo n

- La réduction modulo n de $a \in \mathbb{Z}$ est le reste dans la division euclidienne de a par n
- Notation: $a \mod n \longrightarrow \pi \% \wedge$

Opérations modulo n

- L'addition modulo n de a et b est (a + b) mod n
- L'opposé modulo n de a est (-a) mod n
- ► La multiplication *modulo* n de a et b est $(a \times b)$ mod n

L'ensemble $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble $\{0,\ldots,n-1\}$ muni des opérations modulo n

N=10 $Z_{10}Z = \{0, ..., 9\}$ 7+S=2 -7=3

Remarque : on note les opérations sans le « mod n »

$$I_{24}I$$
 $23+5=4$ $10\times5=2$

Inverse et division dans $\mathbb{Z}/n\mathbb{Z}$

Inverse de a dans $\mathbb{Z}/n\mathbb{Z}$: $b \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \times b = 1$

$$\mathbb{Z}_{10}\mathbb{Z}: 3^{-1} = ?7 \quad \text{an } 3 \times 7 = 1$$

$$5^{-1} = ? \times$$

$$\mathbb{Z}_{10}\mathbb{Z}: 1^{-1} = 1 \quad 2^{-1} = 6 \quad 3^{-1} = 4 \quad 4^{-1} = 3 \quad 5^{-1} = 9$$

$$6^{-1} = 2 \quad 7^{-1} = 8 \quad 8^{-1} = 7 \quad 9^{-1} = 5 \quad 6^{-1} = 10$$

Algorithme d'Euclide étendu

EuclideEtendu(a, b)

- $a = a \times 1 + b \times 0$ $0 \left(\log a \log b \right)$
- 1. Si b = 0: renvoyer (a, 1, 0)
- 2. $(q, r) \leftarrow \text{DivisionEuclidienne}(a, b)$
- 3. $(d, u_1, v_1) \leftarrow \text{EuclideEtendu}(b, r)$
- 4. Renvoyer $(d, v_1, u_1 qv_1)$

d= 0,6+0,0

Propriété

- ightharpoonup EuclideEtendu(a, b) renvoie (d, u, v) tels que
 - ightharpoonup d = PGCD(a, b)
 - ightharpoonup d = au + bv (coefficients de Bézout)

Conséquence

- Si PGCD(a, n) = 1, il existe u, v tels que $au + nv = 1 \rightarrow a \times u \mod n = 1$
- ► Si a a un inverse modulo n, alors PGCD(a, n) = 1

 $a \in \mathbb{Z}/n\mathbb{Z}$ est inversible si et seulement si PGCD(a, n) = 1

$\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/p\mathbb{Z}$

Cas *p* premier

Si p est premier, PGCD(a, p) = 1 pour tout $a \neq 0$ $\mathcal{Z}_{p\mathbb{Z}}$

- ► Tous les éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$ sont inversibles
- ▶ On peut calculer dans $\mathbb{Z}/p\mathbb{Z}$ « comme dans \mathbb{Q} »

Cas *n* non premier

Si k divise n, PGCD(k, n) = k

- ightharpoonup Certains éléments non nuls de $\mathbb{Z}/n\mathbb{Z}$ ne sont pas inversibles
- ▶ On ne peut calculer dans $\mathbb{Z}/n\mathbb{Z}$ que « comme dans \mathbb{Z} »

1. Les entiers modulaires

2. Anneaux, corps et groupes

Opérations et leurs inverses

Opérations et inverses possibles

- $ightharpoonup \mathbb{Z}$: addition, multiplication, opposé, inverse
- Q : addition, multiplication, opposé, inverse
- $ightharpoonup \mathbb{R}$: addition, multiplication, opposé, inverse
- $ightharpoonup \mathbb{Z}/n\mathbb{Z}$: addition, multiplication, opposé, inverse (n non premier)
- $ightharpoonup \mathbb{Z}/p\mathbb{Z}$: addition, multiplication, opposé, inverse (p premier)

Définitions

- Un anneau est un ensemble A dans lequel
 - on dispose des deux opérations internes addition & multiplication
 - tout élément possède un opposé
 - ▶ plus quelques conditions à respecter : $a \times (b + c) = a \times b + a \times c$, ...
- Un corps est un ensemble *K* dans lequel
 - on dispose des deux opérations internes addition & multiplication
 - tout élément possède un opposé
 - ► tout élément non nul possède un inverse + élément rentre de l'addit m
 - plus les mêmes quelques conditions

Exemples d'anneaux et de corps

Anneaux

Z

PlnZ (n non grania)

R[x]

A[x] su A et un arreau

Mn (IR): matrices n lignes n colonnes à coeff. dans IR

TIn (A) on A so un anneau

Fets de IR dans IR

Corps

ZIZZ ~ > ZIRZ (P Premia)

K a

Q

IR(X): fractions rationalls

K(X) on K of un corps

12/1

Retour à $\mathbb{Z}/n\mathbb{Z}$, *n* non premier

Remarque

Si a, b sont inversibles dans $\mathbb{Z}/n\mathbb{Z}$, alors $a \times b$ aussi

$$(a \times b)^{-1} = a^{-1} \times b^{-1}$$

Conséquence

Soit $(\mathbb{Z}/n\mathbb{Z})^{\times}$ l'ensemble des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$

- ightharpoonup imes est une opération interne de $(\mathbb{Z}/n\mathbb{Z})^{\times}$
- ightharpoonup imes est une opération inversible dans $(\mathbb{Z}/n\mathbb{Z})^{ imes}$
- + n'est pas interne!

$$\left(\mathbb{Z}_{10\mathbb{Z}}\right)^{x} = \left\{1, 3, 7, 3\right\}$$

Groupe multiplicatif

Définition

Un groupe multiplicatif est un ensemble G dans lequel

- on dispose d'une opération interne : multiplication
- tout élément possède un inverse

Remarques

- ▶ 0 ne peut pas être dans un groupe multiplicatif
- Définition similaire de groupe additif

Exemples de groupes multiplicatifs

GLn(K): matrices investibles som K

RSA

- Méthode de *chiffrement à clef publique*
 - ▶ Une clef *publique* pour chiffrer, connue de tout le monde
 - ▶ Une clef *privée* pour déchiffrer, connue uniquement de son propriétaire
- ► Version présentée ici non sûre, mais idée principale

Principe

- Génération des clefs :
 - On choisit deux premiers p, q aléatoires

 - On calcule $N = p \times q$ et $\varphi(N) = (p-1) \times (q-1)$ On choisit $e \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^{\times}$, aléatoire $\to clef$ publique (e, N)
 - ▶ On calcule $d = e^{-1} \in \mathbb{Z}/\varphi(N)\mathbb{Z} \to clef$ privée e^{-1}
- ► Chiffrement d'un message clair $m \in \mathbb{Z}/N\mathbb{Z}$: $c \leftarrow m^e (= m \times m \times \cdots \times m)$
- Déchiffrement d'un message chiffré $c: \tilde{m} \leftarrow c^d$

Remarque

► Travail avec deux « $\mathbb{Z}/n\mathbb{Z}$ » : n = N et $n = \varphi(N)$

Justification de RSA

Pourquoi ça marche?

- $\tilde{m} = c^d = (m^e)^d = m^{e \times d} = m^{1+k\varphi(N)} = m \times (m^{\varphi(N)})^k = m \times 1 = m$ $\text{Admis : pour tout } m \in \mathbb{Z}/N\mathbb{Z}, m^{\varphi(N)} = 1$
- Avec la clef publique : il suffit de calculer m^d dans $\mathbb{Z}/N\mathbb{Z} \to \text{exponentiation rapide}$
- ▶ Avec la clef privée : il suffit de calculer $m^e \rightarrow \text{idem}$

Pourquoi c'est sûr?

- lacksquare Un attaquant connaît d, N et c et cherche m tel que $m^d=c$ dans $\mathbb{Z}/N\mathbb{Z}$
- ▶ Hypothèse (non démentie) : étant donné *d*, *N*, *c*, difficile de calculer *m*
- Exemples d'approches pour l'attaquant :
 - Trouver directement m: tester tous les m possibles?
 - Factoriser N, calculer $\varphi(N)$ et inverser d dans $\mathbb{Z}/\varphi(N)\mathbb{Z} \to e$
 - Calculer directement $\varphi(N)$ sans factoriser

Conclusion

Groupes, anneaux, corps

- ► Groupe multiplicatif : multiplication interne, inverse pour tous les éléments
- Anneau : addition et multiplication internes, opposé pour tous les éléments
- ➤ Corps : addition et multiplication internes, opposé pour tous les éléments, inverse pour tous les éléments non nuls

Remarque

- Corps : anneau tel que tout élément non nul est inversible
- ightharpoonup Corps privé de $0 \rightarrow$ groupe multiplicatif

$\mathbb{Z}/n\mathbb{Z}$

- ► Anneau pour tout *n*; corps si *n* est premier
- ▶ Inversibles de $\mathbb{Z}/n\mathbb{Z}$: $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est un groupe multiplicatif