

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Features

1-Inch 14Mp CMOS Digital Image Sensor

AR1411HS Data Sheet

For the latest data sheet, refer to Aptina's Web site: www.aptina.com

Features

- 2.86µm pixel size with Aptina DR-PixTM technology
- 1/80 sec frame readout time, 1-inch optical size, 14M pixel imager
- 60 fps continuous readout in full resolution mode
- Multiple operation modes including: HD60_3:2 at 60fps, HD120_16:9 at 120fps, Hi-Speed at 400fps, and Super Hi-Speed at 1200fps
- Low noise, low power consumption high speed differential serial video output (HiSPITM)
- External master clock frequency 29.16 MHz

Applications and Scope

- AR1411HS is an imager with 1-inch optical format, 14M pixel resolution, and 1/80 sec frame readout speed in still mode for digital camera applications.
- The operation modes of the AR1411HS are highly specified for customer's requirements. Although many combinations of operation settings are possible by various register settings, only the imager operational modes specified in this document are guaranteed.

General Description

The AR1411HS is a CMOS image sensor with a full resolution high speed capable sensor in various readout operation modes for digital camera applications.

Ordering Information

Table 1: Available Part Number

Part Number	Description
AR1411HSSC10SHAA0E	124CLCC, 10.3deg CRA

Table 2: Key Performance Parameters

Paramete	er	Value			
Optical fo	ormat	15.8mm diagonal (3:2)			
		13.5mm x 8.8mm			
Pixel size		2.86mm x 2.86mm with DR-Pix $^{\mathrm{TM}}$			
Entire ar	ay format	3984 (H) x 2712 (V)			
Primary r	nodes	Full resolution: 4620 x 3048 at 1/80			
		HD60_3:2: 4620 x 2048 at 60fps			
		HD120_16:9: 4620 x 2048 at 120fps			
		Hi-Speed: 4620 x 586 at 400fps			
		Super Hi-Speed: 4620 x 170 at 1200fps			
Chief ray	angle	10.3 degree			
Color filt	er array	RGB Bayer pattern			
Shutter t	ype	Electronic rolling shutter (ERS)			
Master c	lock	29.16MHz			
Control i	nterface	2-wire serial (Max 400kHz)			
Outputs		Data: 24 lanes (700Mbps/lane)			
		Clock: 6 lanes (350MHz DDR)			
ADC reso	lution	13-bit, on-chip ADC (12bit output)			
Analog g	ain	1x, 2x, 4x, and 8x			
Responsi	vity	20.5ke-/lux*sec			
Dynamic	range	79dB			
SNRMAX		40dB			
Supply	VDD	1.7-1.9V, typ. 1.8V			
voltage _{VAA}		2.9-3.1V, typ. 3.0V			
VAA1.8		1.7-1.9V, typ. 1.8V			
VAA_PIX		2.9-3.1V, typ. 3.0V			
	VDD_HiSPi	0.35-0.45V, typ. 0.4V			
	VDD_PLL	2.7-2.9V, typ. 2.8V			
Package		124pin CLCC			
		23.6mm x 22mm x 2.6mm			

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Table of Contents

Table of Contents

Features	
Applications and Scope	1
General Description	1
Ordering Information	1
Functional Overview and Operation Modes	7
Signal Descriptions	8
Pin Assignment	88
Signal Descriptions	11
Power Supplies and Ground	
Absolute Ratings	
Bias/Analog Test Signals	
Digital Signals	
HiSPi Output Equivalent Circuit	
Power Consumption Estimate	
External Pulse Timing	
RESET_B.	
TRIGGER	
PHY_STABLE.	
Power Up and Down Sequences	
Power Up Sequence	
Power Down Sequence	
Standby	
Synchronization Codes and Blanking Codes	
Filler Codes	
Bit Order	
HiSPi TM Video Interface (I/F)	
Basic Features	
Transmitter PHY Structure	
AC Specifications	
DC Specifications	
DLL Timing Adjustment	
Protocol Layer	
Protocol Fundamentals	
Pixel Readout	
Pixel Array Configuration	
Pixel Array Center Offset	
Light Block Edge	
Readout Mode Control	
Mode Control	
Mode Transition	
Mode Change Sequence (Example: EVF -> Full Resolution -> EVF)	33
Mode Change Sequence (Example: EVF -> Hi-Speed -> EVF)	
Mode Change Example - From EVF Mode to Full Resolution Mode	
Mode Change Example - From an EVF Mode to Full Resolution Mode via Pre-Flash A Mode	
Consecutive Full Resolution Mode	
Seamless Frame Rate / Integration Time Change	
Power Save	
Full Resolution HD120_16:9_SLV, HD60_3:2_SLVMode	
Full Res + Column FPN Readout Mode	
Shortened REF Readout Mode	
Nesting Scan	41

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Table of Contents

Nesting Scan	41
Video Modes	42
HD60_16:9_LP Mode	
HD60_3:2 Mode	
EVF Mode	
Pre-Flash A Mode	
Pre-Flash B Mode	
Hi-Speed Mode	
Super Hi-Speed Mode	
OB Without PD and OB Black Row Readout Order	49
Sync Code	
Resync Code	
Pixel Sensitivity Control	
Integration Time Control	
Pixel Performance	
Mechanical Specification	
Package	
Revision History	

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor List of Figures

List of Figures

Figure 1:	Pin Assignment (Top View)	.9
Figure 2:	Typical Pin Connection	10
Figure 3:	HiSPi Output Equivalent Circuit	13
Figure 4:	External Pulse Timing	14
Figure 5:	TRIGGER Control in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode	16
Figure 6:	TRIGGER Timing Recommendation in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode	
Figure 7:	TRIGGER Timing and Internal HD in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode	
Figure 8:	TRIGGER Control in Video Mode	
Figure 9:	TRIGGER Timing and Internal HD in Video Mode	17
Figure 10:	Power Up Sequence	
Figure 11:	Power Down Sequence	
Figure 12:	Blanking Code and Synchronization Code in a PHY (Case Data_0/2/4/6)	
Figure 13:	Sync Code Format with Extra Filler Codes	21
Figure 14:	Sync Code Detection on PHY with 'b011111 Word	22
Figure 15:	Sync Code Detection on PHY with 'b100000 Word	22
Figure 16:	24-Lane HiSPi TM Output	
Figure 17:	AC Parameters	
Figure 18:	DC Parameters Transceiver	
Figure 19:	Block Diagram of DLL Timing Adjustment	27
Figure 20:	Delaying the clock_lane with Respect to data_lane	 27
Figure 21:	Delaying the data_lane with Respect to clock_lane	 28
Figure 22:	Frame Structure for HiSPi TM Transmission	 29
Figure 23:	Pixel Array Configuration	
Figure 24:	Chip Center in X	31
Figure 25:	Light Block Edge From Die Center	31
Figure 26:	State Control	
Figure 27:	Mode Change Sequence from EVF to Full Resolution to EVF	3 <u>2</u>
Figure 28:	Mode Change Sequence from EVF to Hi-Speed to EVF	
Figure 29:	Mode Change Sequence and Internal Operation, from EVF to Full Resolution	
Figure 30:	Mode Change Sequence and Internal Operation, from EVF to Full Resolution via Pre-Flash A	35
Figure 31:	Consecutive Full Resolution Mode	
Figure 32:	Seamless Frame Rate / Integration Time Change	37
Figure 33:	Power Save in HD60_3:2, HD120_16:9_LP, EVF, Pre-Flash A and Pre-Flash B Modes	
Figure 34:	Power Save in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode	
Figure 35:	Full Resolution Mode - Column FPN Readout Mode Frame Timing	
Figure 36:	Full Resolution Mode - Shortened REF Readout Mode Frame Timing Option B	ა 40
Figure 37:	HD_120_16:9_SLV Mode Frame Timing	40
Figure 38:	HD_60_3:2_SLV Mode Frame Timing	
Figure 39:	Full Resolution/HD60_3:2_SLV/HD120_3:2_SLV Mode Vertical Readout	
Figure 40:	HD60_16:9_LP Mode Frame Timing	
Figure 41:	HD60_3:2 Mode Frame Timing	
Figure 42:	EVF Mode Frame Timing	
Figure 43:	EVF Mode Vertical Read Out	
Figure 44:	Pre-Flash A Mode Frame Timing	
Figure 45:		
Figure 46:	Pre-Flash A Mode Vertical Read Out	
Figure 47:	Pre-Flash A Mode Vertical Read Out	44
	Pre-Flash B Mode frame timing	44 45
Figure 42.	Pre-Flash B Mode frame timing	44 45 45
	Pre-Flash B Mode frame timing	44 45 45 46
Figure 49:	Pre-Flash B Mode frame timing	44 45 45 46 47
Figure 49: Figure 50:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out	44 45 46 47 47
Figure 49: Figure 50: Figure 51:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out Super Hi-Speed Mode Frame Timing	44 45 46 47 47
Figure 49: Figure 50: Figure 51: Figure 52:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out Super Hi-Speed Mode Frame Timing Super Hi-Speed Mode Vertical Read Out	44 45 46 47 47 48
Figure 49: Figure 50: Figure 51: Figure 52: Figure 53:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out Super Hi-Speed Mode Frame Timing Super Hi-Speed Mode Vertical Read Out Ref Rows Read Out	44 45 46 47 47 48 48
Figure 48: Figure 49: Figure 50: Figure 51: Figure 52: Figure 53: Figure 54: Figure 55:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out Super Hi-Speed Mode Frame Timing Super Hi-Speed Mode Vertical Read Out Ref Rows Read Out Sync Code Structure in a PHY	44 45 46 47 47 48 49 49
Figure 49: Figure 50: Figure 51: Figure 52: Figure 53:	Pre-Flash B Mode frame timing. Pre-Flash B Mode Vertical Read Out Pre-Flash A Mode Horizontal Read Out. Hi-Speed Mode Frame Timing Hi-Speed Mode Vertical Read Out Super Hi-Speed Mode Frame Timing Super Hi-Speed Mode Vertical Read Out Ref Rows Read Out	44 45 46 47 47 48 49 49

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor List of Figures

Figure 57:	Quantum Efficiency	53
Figure 58:	Relative Spectral Response	54
Figure 59:	Package Schematic	56

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor List of Tables

List of Tables

Table 1:	Available Part Number	1
Table 2:	Key Performance Parameters	1
Table 3:	Operation Mode Definitions (EXTCLK = 29.16 MHz)	7
Table 4:	Package Pin List	8
Table 5:	Capacitance and Resistor Values	
Table 6:	Power Supplies and Ground	11
Table 7:	Absolute Maximum Ratings	11
Table 8:	Absolute Minimum and Maximum Temperature Ratings (°C)	11
Table 9:	Bias/Analog Test Signals	12
Table 10:	Digital Signals	12
Table 11:	Power Consumption Average 1 frame (Reference)	14
Table 12:	Power Consumption Max 1 Frame (Reference)	14
Table 13:	External Pulse Definition	15
Table 14:	Signal I/O Status During RESET_B	15
Table 15:	Minimum External TRIGGER High Duration	15
Table 16:	Power-up Sequence Timing Parameters	18
Table 17:	Power Down Sequence Timing Parameters	19
Table 18:	Actual Binary Sync Code (Word 4)	20
Table 19:	Binary Representation of Filler Codes	21
Table 20:	Filler Code Control Register Setting	21
Table 21:	Bit Order Control Register Setting	22
Table 22:	HiSPi™ Format	23
Table 23:	HiSPi™ Basic AC Specifications	
Table 24:	AR1411HS HiSPi™ DC Performance	26
Table 25:	DLL Timing Adjuster Control Register Setting	28
Table 26:	Sync Code	49
Table 27:	Minimum/Maximum Integration Time	52
Table 28:	Electrical Shutter Control Register Setting	52
Table 29:	Chief Ray Angle	55

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Functional Overview and Operation Modes

Functional Overview and Operation Modes

The AR1411HS is a 14-megapixel image sensor designed using Aptina's latest 2.86 m pixel technology. Aptina's Dual Conversion Gain DR-Pix $^{\rm TM}$ pixel technology, which enables the pixel level selection of the high/low sensitivity control, is implemented in the sensor.

This document describes the sub-resolution schemes, which enable the special video modes, that is, HD120_16:9_SLV mode, HD60_3:2_SLV mode, HD60_16:9_LP mode, HD60_3:2 mode, Pre-Flash A mode, Pre-Flash B mode, EVF mode, Hi-Speed mode, and Super Hi-Speed mode, as shown in Table 3. The operation timings are designed based on an external clock at 29.16 MHz.

Another feature of the AR1411HS is context mode change by a macro control register, which enables the very quick mode change from video mode to still image capture mode, minimizing shutter lag.

Table 1: Operation Mode Definitions (EXTCLK = 29.16 MHz)

	Sub Res		Image Area Size		Frame Cycle	Row Cycle (mclks)		Frame Cycle (rows)		Frame Rate	
Operating Mode	Н	V	Н	٧	(mclks)	Total	Effect.	Total	Effect.	w/ VB	w/o VB
Full Resolution	Full	Full	4620	3084	972972	234	198	4158	3084	59.94	80.81
HD_120_16:9_SLV	Full	Full	4620	2052	486486	234	198	2079	2052	119.88	-
HD_60_3:2_SLV	Full	Full	4620	3084	972972	234	198	4158	3084	59.94	-
HD_60_16:9_LP	Full	Full	4620	2604	972972	364	198	2673	2604	59.94	-
HD_60_3:2	Full	Full	4620	3084	972972	308	198	3159	3084	59.94	-
Hi-Speed	Full	Skip 2/5	4620	1645	145080	234	198	620	586	401.99	-
Super Hi-Speed	Full	Skip 1/5	4620	850	47736	234	198	204	170	1221.72	-
Pre-flash A	Skip 1/3	Skip 1/15	4620	3084	486486	462	66	1053	204	119.88	618.79
Pre-flash B	Skip 1/3	Skip 1/45	4620	3084	486486	462	66	1053	68	119.88	1856.38
EVF	Full	Skip 2/3	4620	3084	972972	364	198	2673	2056	59.94	-

Signal Descriptions

Pin Assignment

Table 4 below shows the pin names and the pin assignment in a package. Figure 2 on page 4 shows the pin connections.

Table 2: Package Pin List

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
1	VDD_HiSPi	43	ATEST_BOT	85	DATA6_N
2	DATA1_N	44	VRS_HI	86	DATA4_P
3	DATA1_P	45	VRST_LO	87	DATA4_N
4	DATA3_N	46	VTX_LO2	88	D_CLK0_P
5	DATA3_P	47	VTX_LO1	89	D_CLK0_N
6	D_CLK1_N	48	VDCG_LO	90	DATA2_P
7	D_CLK1_P	49	VDCG_HI2	91	DATA2_N
8	DATA5_N	50	VDCG_HI1	92	DATA0_P
9	DATA5_P	51	VAA_PIX_BOOSTER	93	DATA0_N
10	DATA7_N	52	ATEST_TOP	94	Vdd_HiSPi
11	DATA7_P	53	VREF1_TOP	95	DGND
12	DATA9_N	54	VREF2_TOP	96	VDD
13	DATA9_P	55	VAA1.8	97	VDD
14	DATA11_N	56	VAA_PIX	98	DGND
15	DATA11_P	57	AGND	99	VDD
16	D_CLK3_N	58	VAA	100	VAA
17	D_CLK3_P	59	AGND	101	Agnd
18	DATA13_N	60	DGND	102	VAA_PIX
19	DATA13_P	61	VDD	103	Sclk
20	DATA15_N	62	DGND	104	Sdata
21	DATA15_P	63	VDD_HiSPi	105	DGND
22	DATA17_N	64	DATA22_P	106	PHY_STABLE
23	DATA17_P	65	DATA22_N	107	TEST
24	DATA19_N	66	DATA20_P	108	TRIGGER
25	DATA19_P	67	DATA20_N	109	VDD_PLL
26	D_CLK5_N	68	D_CLK4_P	110	VDD
27	D_CLK5_P	69	D_CLK4_N	111	EXTCLK2
28	DATA21_N	70	DATA18_P	112	EXTCLK
29	DATA21_P	71	DATA18_N	113	DGND
30	DATA23_N	72	DATA16_P	114	RESET_B
31	DATA23_P	73	DATA16_N	115	RESYNC_CODE_VALID
32	VDD_HiSPi	74	DATA14_P	116	DSPARE1
33	DGND	75	DATA14_N	117	VAA_PIX
34	VDD	76	DATA12_P	118	AGND
35	DGND	77	DATA12_N	119	VAA
36	AGND	78	D_CLK2_P	120	VDD
37	VAA	79	D_CLK2_N	121	DGND
38	AGND	80	DATA10_P	122	VDD
39	VAA_PIX	81	DATA10_N	123	VDD

Table 2: Package Pin List (continued)

Pin Number	Pin Name	Pin Number	Pin Name	Pin Number	Pin Name
40	VAA1.8	82	DATA8_P	124	DGND
41	VREF2_BOT	83	DATA8_N		
42	VREF1_BOT	84	DATA6_P		

Figure 1: Pin Assignment (Top View)

Figure 2: Typical Pin Connection

Table 3: Capacitance and Resistor Values

	Values		Values		Values
C1	0.1μF(ceramic) +10μF	C2	0.1μF(ceramic) +10μF	C3	0.1μF(ceramic) +10μF
C4	0.1μF(ceramic) +10μF	C5	0.1μF(ceramic) +10μF	C6	0.1μF(ceramic)
C7	0.1μF(ceramic)	C8	0.1μF(ceramic)	C9	0.1μF(ceramic)
C10	0.1μF(ceramic)	C11	0.1μF(ceramic)	C12	0.1μF(ceramic)
C13	0.1μF(ceramic)	R1	1.5kΩ		

Signal Descriptions

Power Supplies and Ground

Table 4: Power Supplies and Ground

		DC Value (V)			Ripple	
Name	Description	Min	Тур	Max	(mV)	Comments
VDD	Digital power supply	1.7	1.8	1.9	-	
VAA	Analog power supply	2.9	3.0	3.1	10	Must be separated from VAA_PIX
VAA1.8	Analog power supply (1.8V)	1.7	1.8	1.9	10	
VAA_PIX	Pixel power supply	2.9	3.0	3.1	10	
Vdd_HiSPi	HiSPi power supply	0.35	0.4	0.45	-	
VDD_PLL	PLL power supply	2.7	2.8	2.9	-	
DGND	Digital ground		-		-	
AGND	Analog ground		-		-	

Absolute Ratings

Table 5: Absolute Maximum Ratings

Name	Definition	Absolute Max Value
Supply		(V)
VDD	Digital power supply	2.85
VAA	Analog power supply	4.8
VAA_PIX, VAA_PIX_BOOSTER	Pixel power supply	4.8
VDD_HiSPi	HiSPi power supply	0.675
VDD_PLL	PLL power supply	4.35
Current		(mA)
I _{Supply}	Maximum supply to power input	300
I _{GND}	Maximum negative supply to GND	-100

Note: ISUPPLY and IGND are defined by input to each pin.

Table 6: Absolute Minimum and Maximum Temperature Ratings (°C)

Symbol	Definition	Min	Max
t _{OP}	Operating temperature	-10	70
t _{PE}	Performing temperature	-10	60
t _{ST}	Storage temperature	-30	80

Note: All temperature is defined by chip surface.

Bias/Analog Test Signals

Table 7: Bias/Analog Test Signals

Name	Туре	Description
VRS_HI	Decoupling	External noise decoupling. Internal analog voltage.
VRST_LO1	Decoupling	External noise decoupling. Internal analog voltage.
VTX_LO1	Decoupling	External noise decoupling. Internal analog voltage.
VTX_LO2	Decoupling	External noise decoupling. Internal analog voltage.
VDCG_HI1	Decoupling	External noise decoupling. Internal analog voltage.
VDCG_HI2	Decoupling	External noise decoupling. Internal analog voltage.
VDCG_LO	Decoupling	External noise decoupling. Internal analog voltage.
ATEST_TOP	Test	Reserved for test. Tied to DGND.
ATEST_BOT	Test	Reserved for test. Tied to DGND.
VREF1_TOP	Test	Reserved for test. Must be opened.
VREF1_BOT	Test	Reserved for test. Must be opened.
VREF2_TOP	Test	Reserved for test. Must be opened.
VREF2_BOT	Test	Reserved for test. Must be opened.

Digital Signals

Voltage levels for digital input are:

LOW: -0.3V to 0.3V

HIGH: (VDD - 0.3V)to (VDD + 0.3V)

Table 8: Digital Signals

Name	I/O Type	Description	Input Capacitance (Typical)
DATA[23:0]_P	0	Differential data of channel [23:0], HiSPi, positive	-
DATA[23:0]_N	0	Differential data of channel [23:0], HiSPi, negative	-
D_CLK[5:0]_P	0	Differential clock[5:0], DDR, HiSPi, positive	-
D_CLK[5:0]_N	0	Differential clock[5:0], DDR, HiSPi, negative	-
EXTCLK	I	External clock input. Typical 29.16 MHz.	2.6 pF
RESET_B	I	Hard reset. Low active.	6 pF
Sclk	I	Serial I/F clock.	6 pF
Sdata	I/O	Serial I/F data input/output	6 pF
TRIGGER	I	Trigger input for starting exposure or starting readout in Full Resolution mode. Also controls operation start timing in video modes.	7.9 pF
PHY_STABLE	0	Output signal that indicates the status of HiSPi PHY.	
TEST	I	Reserved for test. Must be tied to DGND.	
DSPARE1	I	Reserved for test. Must be tied to DGND	

HiSPi Output Equivalent Circuit

HiSPi Output signal DATA_P, DATA_N, D_CLK, D_CLK_N are composed as the equivalent circuit below.

Figure 3: HiSPi Output Equivalent Circuit

Power Consumption Estimate

Table 9: Power Consumption Average 1 frame (Reference)

	Power Consumption (mW)								
Name (mW)	Wait TRIGGER	Full Res	HD60_16: 9_SLV	HD60_3:2 _SLV	EVF	Pre Flash A	Pre Flash B	Hi-Speed	Super Hi- Speed
Total power	413	1354	855	1195	858	873	873	1249	1249

Table 10: Power Consumption Max 1 Frame (Reference)

		Power Consumption (mW)							
Name (mW)	Wait TRIGGER	Full Res	HD60_16: 9_SLV	HD60_3:2 _SLV	EVF	Pre Flash A	Pre Flash B	Hi-Speed	Super Hi- Speed
VDD	368.6	448.7	399.6	382.7	379.9	313.5	312.8	430.4	429.2
VAA	206.8	861.9	861.9	599.4	599.1	692.2	692.0	876.2	876.7
VAA1.8	0.3	1.0	0.5	0.4	0.4	0.3	0.3	0.6	0.6
VAA_PIX	46.0	247.0	199.4	115.9	115.5	116.3	116.3	181.2	181.3
VDD_HiSPi	24.1	24.6	19.5	16.5	16.4	6.2	6.2	24.3	24.3
VDD_PLL	25.0	25.1	25.0	25.1	25.1	25.1	25.0	25.2	25.2
Total power	670.8	1608.3	1505.9	1140.0	1136.5	1153.6	1152.5	1537.9	1537.2

External Pulse Timing

Figure 4: External Pulse Timing

Table 11: External Pulse Definition

Name	Description	Min	Тур	Max	Unit
EXTCLK	External clock		29.16	29.19	MHz
Duty	EXTCLK clock duty	45	50	55	%
Jitter	EXTCLK clock jitter	_	_	1	%
Width	TRIGGER width	Se	e Integration Time	e Control	
TR	Rise time	_	_	5	ns
TF	Fall time	-	_	5	ns

RESET_B

RESET_B is a control pulse for asynchronous hard reset. At the power-up period, RESET_B must be set at LOW, then must be set HIGH after the VDD power supply voltages are settled. The minimum RESET_B assert time is 30 EXTCLK cycles.

Table 12: Signal I/O Status During RESET_B

Name	Status
DATA[23:0]_P	High-Z
DATA[23:0]_N	High-Z
D_CLK[5:0]_P	High-Z
D_CLK[5:0]_N	High-Z
Sdata	Input state
PHY_STABLE	High-Z

TRIGGER

Table 13: Minimum External TRIGGER High Duration

Mode	Full Resolution (Power Save)	Full Resolution (No Power Save)	Video Mode
Minimum TRIGGER High Duration	3 rows	4 rows	10 clk
Minimum TRIGGER Low Duration	5 rows	4 rows	_

Figure 5: TRIGGER Control in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode

TRIGGER high and low durations are strongly recommended to be set to the multiples of a row time. When a TRIGGER edge overlaps with an internal HD timing, it can cause fluctuation of integration or frame readout timing. Toggling TRIGGER at timings of multiples of the row duration provides an identical margin between TRIGGER toggling to the internal HD, which avoids generating the fluctuation.

Figure 6: TRIGGER Timing Recommendation in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode

Figure 7: TRIGGER Timing and Internal HD in Full Resolution HD60_3:2_SLV, HD120_16:9_SLV Mode

Figure 8: TRIGGER Control in Video Mode

Figure 9: TRIGGER Timing and Internal HD in Video Mode

PHY_STABLE

When PHY_STABLE is HIGH, the HiSPi PHY transmitter output is stable. When the PHY_STABLE output is LOW, the sensor is in power save mode and the differential data output is invalid.

Power Up and Down Sequences

Power Up Sequence

Figure 10: Power Up Sequence

The power must be settled up more than 90% before the next power up.

Table 14: Power-up Sequence Timing Parameters

Parameter	Min	Max
tpu1	0 ms ¹	_
tpu2	0 ms ¹	_
tpu3	0 ms ¹	
tpu4	0 ms ¹	_
tpu5	0.5 ms	ı
tpu6	0.5 ms	1
tpu7	1 ms	_
tpu8	0.5 ms	ı
tpu9	1.1 ms	1

Note: 1. Simultaneous power up is available; however, to avoid extra current, waiting for voltage of the previous power supply in the sequence to settle up is preferred.

Power Down Sequence

Figure 11: Power Down Sequence

Table 15: Power Down Sequence Timing Parameters

Parameter	Min	Max
tpd1	0.5ms	-
tpd2	0.5ms	_
tpd3	0.5ms	_
tpd4	0ms ¹	_
tpd5	0ms ¹	_
tpd6	0ms ¹	_
tpd7	0ms ¹	_
tpd8	0ms ¹	_

Note: 1. Simultaneous power shut down is available; however, to avoid extra current, wait for the voltage of the previous power supply in the sequence to settle down.

Standby

Standby status needs to be released following RESET_B release. Change of output digital resolution (10-bit or 12-bit) must be done before Standby release.

Synchronization Codes and Blanking Codes

Figure 12: Blanking Code and Synchronization Code in a PHY (Case Data_0/2/4/6)

data_0	Blanking code	Blanking code	Blanking code	Sync_word_1	Pixel data
data_2	Blanking code	Blanking code	Blanking code	Sync word 2	Pixel data
data_4	Blanking code	Blanking code	Blanking code	Sync_word_3	Pixel data
data 6	Blanking code	Blanking code	Blanking code	Sync_word_4	Pixel data

Ì	Sync_word_1	Sync_word_2	Sync_word_3	Sync_word_4
	All 1s	All 0s	All 0s	1 0 V 0 V 0 V V 000

V = 1 SYNC-B during frame blanking

V = 0 SYNC-A during active (pixel data) period

Blanking code	Blanking Code	Blanking Code	Blanking Code
10000	01111	10000	01111

Table 18 illustrates the basic format of sync code. The code is transmitted from left to right on the line. This order is not affected by MSB first or LSB first selection.

Each "Word" has the same depth as the active image pixels. All 1 and all 0 values are unique to the sync code. The data from an active pixel will not be transmitted with these values. Table 19 on page 15 describes the sync code Word 4 for each word size preceding Active Data - SYNC (A) or Blanking Data- SYNC (B).

Table 16: Actual Binary Sync Code (Word 4)
SYNC(A) for Active Data and SYNC(B) for Blanking Data

Word Size	SYNC (A) Sync Code: Active Data	SYNC (B) Sync Code: Blanking Data
12-bit	`b1000 0000 0000	`b1010 1011 0000

Notes

- 1. Sync code Word 1 (All 1s) is always transmitted on lane 0.
- 2. Sync code Word 2 (All 0s) is always transmitted on lane 2.
- 3. Sync code Word 3 (All 0s) is always transmitted on lane4.
- 4. Sync code Word 4 (10V0V0VV00...) is always transmitted on lane 6.

The format of the code allows the receiver to correct a single bit error in Word4 or a detection of 2 bit errors.

The protocol layer does not indicate the end of the active image data and the beginning of the horizontal blanking words in a transmitted line. The receiver must be configured to the length of the active pixel data.

Filler Codes

The synchronization code is four words. An optional filler code of "1" may be added after the sync code. When filler codes are enabled, the receiver must window the received image to eliminate the first 4 data words (columns per PHYs). In other words, if the interface is configured with 6 PHYs, the first 24 words (total columns) of a line will be filler data.

Change of filler code setting from a default value must be completed during the wait_trigger state after RESET_B release.

Table 17: Binary Representation of Filler Codes

Data Word Size	Filler Code
12- bit	'b0000 0000 0001

Figure 13: Sync Code Format with Extra Filler Codes

data_0	Blanking code	Blanking code	Blanking code	Sync_word_1	0001	Pixeldata
data <u>2</u>	Blanking code	Blanking code	Blanking code	Sync word 2	0001	Pixeldata
data <u>4</u>	Blanking code	Blanking code	Blanking code	Sync_word_3	0001	Pixeldata
data 6	Blanking code	Blanking code	Blanking code	Sync word 4	0001	Pixeldata

Table 18: Filler Code Control Register Setting

Name	Bit	Default	
vert_left_bar_en	0	0	0: Filler is not embedded
			1: Filler is embedded

Bit Order

Pixel data may be transmitted MSB first or LSB first; it is a programmable option in the sensor. The Sync Codes, Filler Codes, and Blanking Codes are always transmitted MSB first

Change of bit order setting must be completed during the wait_trigger state after RESET_B release.

Figure 14: Sync Code Detection on PHY with 'b011...111 Word

23 consecutive 1s detected on lane 0

Figure 15: Sync Code Detection on PHY with 'b100...000 Word

Table 19: Bit Order Control Register Setting

Name	Bit	Default	
output_msb_first	0	1	0: LSB first 1: MSB first

HiSPi™ Video Interface (I/F)

HiSPiTM (High Speed Serial Pixel) is Aptina's original simple logical layer protocol with low power consumption and high speed interface, which is scalable to accommodate increasing sensor resolutions and high frame rates for advanced digital still cameras (DSC), digital video cameras (DVC), and digital single-lens reflex (DSLR) camera applications.

The interface calls for serial pixel data transmitter on multiple serial lanes. The number of data lanes will be determined by the desired frame rate, bit depth, maximum data rate, and sensor resolution for a particular design.

The HiSPiTM interface enables high bandwidth data transfer for both video and still images. It consists of both data and clock signaling that can be scaled to the required data transfer for an application.

The HiSPiTM interface specification defines the physical layer covering the transmission medium, electrical parameters, signaling and timing relationship between the clock lane and data lanes, the logical protocol layer covering data formats, and synchronization.

The HiSPiTM interface building block is a unidirectional differential serial interface with four data lanes and one double data rate (DDR) clock lane. The interface is scalable with multiple instantiations of this block. One clock for every four serial data lanes is provided for phase alignment across multiple lanes.

The AR1411HS video output I/F is designed based on AR1411HS's HiSPiTM.

Basic Features

Following are the features of HiSPiTM in the AR140.

- · A low voltage, low power consumption driver
- 12-bit/10-bit compression mode switchable
- Data rate of 700 Mbps(12-bit)/583Mbps(10-bit) and 350 MHz DDR clock at 29.16 MHz EXTCLK
- 24 data lanes plus 6 clock lanes
- · Embedded sync codes
- Each lane outputs individual pixel signals
- · Output common voltage: 0.2V typical

Table 20: HiSPi™ Format

Parameter	Specification	Comments
Image data interface HiSPi™		700 Mbps (bit rate 12 x Master clock) 583 Mbps (bit rate 10 x Master clock)
	Data rate compression mode	Data rate 12-bit/10-bit compression mode switchable

Transmitter PHY Structure

The 24 data output lanes are laid out in the 6 physical blocks. One block corresponds to one PHY and each block consists of 4 data lanes and one clock lane. The output data is synchronized to a DDR clock in the same block. Latching data by the clock in the corresponding block is required to receiver.

Pixel data rate from each lane is identical to the EXTCLK frequency.

Figure 16: 24-Lane HiSPi™ Output

AC Specifications

The external master clock and output digital format of the AR1411HS are specified at EXTCLK and 12-bit pixel resolution, respectively. Therefore, the typical data clock frequency and data rate per lane are also specified at 12x EXTCLK (DDR) and EXTCLK x 24 bps/Hz, respectively.

Figure 17: AC Parameters

Table 21: HiSPi™ Basic AC Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Data rate	1/t _{DICLK}	280		700	Mbps	12-bit output
Clock period	t _{CLK}	2.86		7.14	ns	
Data period	t _{DICLK}	1.43		3.57	ns	
Data Eye width	t _{PW}	_		0.6	UI	
Clock jitter	t _{CLKJITTER}	_	_	100	ps	
Rise time	t _R	150 ps	230 ps	0.25UI		
Fall time	t _F	150 ps	230 ps	0.25UI		
Clock duty	D _{CLK}	45		55	%	
Clock to data skew	t _{DCHSKEW}	-0.1		0.1	UI	
Data to data skew in any two PHY	t _{CHSKEW2PHY}	_	_	2.1	UI	
Complementary skew in differential pair	t _{CMPSKEW}	-100	_	100	ps	

Notes: 1. 1 UI is defined as the normalized mean time between one edge and the following edge of the clock.

2. Measured by probe card.

DC Specifications

Measurement Method

The measurements for CLOCK and all the data channels were observed with DATA using the single-ended scope probe in differential and common-mode. DATA was set to the square wave in the HiSPiTM test pattern generator.

Figure 18: DC Parameters Transceiver

Table 22: AR1411HS HiSPi™ DC Performance

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
Vdd_HiSPi	HiSPi™ power supply	0.35	0.4	0.45	V	
Vod	Input differential voltage	360*VDD_HiSPi	500*VDD_HiSP i	550*VDD_HiSPi	mV	$Rin = 100\Omega$
VcM	Input common mode range	450*VDD_HiSPi	500*VDD_HiSP i	640*VDD_HiSPi	mV	$Rin = 100\Omega$
Rin	Termination resistor	_	100	_	Ω	
Output impedance	Output impedance	35	50	70	Ω	

DLL Timing Adjustment

Within the PHY there is a DLL connected to the clock lane and each data lane, which acts as a control master for the output delay buffers. Once the DLL has gained phase lock, each lane can be delayed in 1/8 unit interval (UI) steps. This additional delay allows the user to increase the setup or hold time at the receiver circuits and can be used to compensate for skew introduced in PCB design.

The DLL operation is guaranteed only at a specified data rate of 700 Mbps. The integrity of the serial data cannot be guaranteed if the DLL settings are changed while the PHYs are streaming.

Changing DLL settings in wait_trigger is recommended. If the DLL timing adjustment is not required, the data and clock lane delay settings should be set to a default code of 0x000 to reduce jitter and skew.

Figure 19: Block Diagram of DLL Timing Adjustment

Figure 20: Delaying the clock lane with Respect to data lane

Figure 21: Delaying the data_lane with Respect to clock_lane

Table 23: DLL Timing Adjuster Control Register Setting

Name	Bit	Default	
del_data_lane0	2:0	0	Delay control for data lane #0
del_data_lane1	2:0	0	Delay control for data lane #1
del_data_lane2	2:0	0	Delay control for data lane #2
del_data_lane3	2:0	0	Delay control for data lane #3
del_data_lane4	2:0	0	Delay control for data lane #4
del_data_lane5	2:0	0	Delay control for data lane #5
del_data_lane6	2:0	0	Delay control for data lane #6
del_data_lane7	2:0	0	Delay control for data lane #7
del_data_lane8	2:0	0	Delay control for data lane #8
del_data_lane9	2:0	0	Delay control for data lane #9
del_data_lane10	2:0	0	Delay control for data lane #10
del_data_lane11	2:0	0	Delay control for data lane #11
del_data_lane12	2:0	0	Delay control for data lane #12
del_data_lane13	2:0	0	Delay control for data lane #13
del_data_lane14	2:0	0	Delay control for data lane #14
del_data_lane15	2:0	0	Delay control for data lane #15
del_data_lane16	2:0	0	Delay control for data lane #16
del_data_lane17	2:0	0	Delay control for data lane #17
del_data_lane18	2:0	0	Delay control for data lane #18
del_data_lane19	2:0	0	Delay control for data lane #19
del_data_lane20	2:0	0	Delay control for data lane #20
del_data_lane21	2:0	0	Delay control for data lane #21
del_data_lane22	2:0	0	Delay control for data lane #22
del_data_lane23	2:0	0	Delay control for data lane #23
del_clock_phy0	2:0	0	Delay control clock for HiSPi™ #0
del_clock_phy1	2:0	0	Delay control clock for HiSPi™ #1
del_clock_phy2	2:0	0	Delay control clock for HiSPi™ #2
del_clock_phy3	2:0	0	Delay control clock for HiSPi™ #3
del_clock_phy4	2:0	0	Delay control clock for HiSPi™ #4
del_clock_phy5	2:0	0	Delay control clock for HiSPi™ #5

Protocol Layer

The protocol layer is positioned between the output data path of the sensor and the physical layer. The main functions of the protocol layer are generating sync codes, formatting pixel data, inserting horizontal/vertical blanking codes, and distributing pixel data over defined data lanes.

Protocol Fundamentals

Figure 22 illustrates the structure of a frame including sync code, active image, horizontal blanking, and vertical blanking, showing how data of a frame is transmitted across the HiSPi link.

Figure 22: Frame Structure for HiSPi™ Transmission

Sync	Vertical Blanking	
Sync code	Pixel data	Horizontal Blanking
Sync	Vertical Blanking	

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Pixel Readout

Pixel Readout

Pixel Array Configuration

Figure 23: Pixel Array Configuration

Pixel Array Center Offset

A typical offset of the effective pixel array center is: $X=-105.680 \mu m$, $Y=-75.070 \mu m$

Figure 24: Chip Center in X

Light Block Edge

The light block edge follows Figure 25 when coordinates are defined with respect to Die Center (0,0) in μm .

Figure 25: Light Block Edge From Die Center

Edge Upper Left Planar Corner: (-8599.105, 7844.105)

Edge Blue Upper Left Red Corner: (-8593.42, 7837.905)

Upper Left Blue Corner (notched): (-8589.105, 7834.105)

Readout Mode Control

Mode Control

Mode Transition

The AR1411HS has a unique feature that enables a very short shutter release lag in Full Resolution image capturing.

- During a video mode, when the user changes the register 'next_mode', the AR1411HS immediately stops reading and gets into the Wait Trigger state
- During Full Resolution Mode, when the user changes the register 'next_mode', the AR1411HS goes to Wait Trigger after readout of the current frame.
- When a rising edge of the TRIGGER pulse is detected, the AR1411HS starts the light integration when Full Resolution Mode is chosen.
- When a rising edge of the TRIGGER pulse is detected, the AR1411HS starts readout the captured image when a video mode is chosen.
- Setting up a new mode requires the time for internal ROM readout (200μs at EXTCLK=29.16 MHz) and the time for optional registers writing

Note: During the internal ROM readout, the communication of the two-wire serial I/F is gated, and the image sensor is neglecting any input from the serial I/F.

• TRIGGER is edge-sensitive.

Figure 26: State Control

Note: Full Resolution mode reads out only once without changing Next_mode register. The other modes keep reading continuously until changing Next_mode register.

Mode Change Sequence (Example: EVF -> Full Resolution -> EVF)

Figure 27: Mode Change Sequence from EVF to Full Resolution to EVF

Notes: 1. $T_{mc} \ge 200 \ \mu s$ at EXTCLK = 29.16 MHz (during this period, additional register read/write must be prohibited)

T_{rw} ≥ 0 s
 (Trw can be 0 s when additional register write is not needed)

Mode Change Sequence (Example: EVF -> Hi-Speed -> EVF)

Figure 28: Mode Change Sequence from EVF to Hi-Speed to EVF

Notes: 1. $T_{mc} \ge 200 \mu s$ at EXTCLK = 29.16MHz (during this period, additional register read/write must be prohibited)

T_{rw} ≥ 0 s
 (Trw can be 0 s when additional register write is not needed)

Mode Change Example - From EVF Mode to Full Resolution Mode

Figure 29: Mode Change Sequence and Internal Operation, from EVF to Full Resolution

Mode Change Example - From an EVF Mode to Full Resolution Mode via Pre-Flash A Mode

Figure 30: Mode Change Sequence and Internal Operation, from EVF to Full Resolution via Pre-Flash A

Consecutive Full Resolution Mode

Features

- Supports the consecutive full resolution imaging at the maximum frame rate (60 fps with full resolution) as long as the integration time is shorter than the frame period
- Exposure time can be changed in an individual frame
- No bad frames appear in any integration time changes
- Simple control by TRIGGER input only
- No limitations on the number of consecutive frames

TRIGGER Control for Consecutive Full Resolution Imaging

- The command to change operation mode to a full resolution image capturing is sent and the video mode is stopped at the current row end, the sensor is getting into the 'waiting TRIGGER' status.
- Integration (Shutter scan) starts when TRIGGER rising edge is detected. Internal HD will also be restarted with a latency of 13-14 clocks following the TRIGGER rise. Then the image data readout starts when TRIGGER falling edge is detected and latched by the internal HD pulse (See Section TRIGGER).
- Once Read scan starts, the sensor gets into the waiting state to latch the next TRIGGER rise.
- Until the read scan is completed, the next TRIGGER falling edge (read start) cannot be accepted.

Figure 31: Consecutive Full Resolution Mode

Seamless Frame Rate / Integration Time Change

Features

- The video frame rate varies among 120 fps, 60 fps, and 30 fps as a special feature.
- Seamless frame rate change available
- This operation is suitable for the video modes where the AR1411HS is operating as a master device.
- No extra offset time is required when the frame rate changes. Therefore, when the frame rate is changed as such 120 fps -> 60 fps -> 120 fps, Vertical Sync timing will be back to the original timing of the previous 120 fps operation.

Control

- Both 'Coarse_integration_time' and 'Frame_length_lines' registers are updated within a frame for seamless frame rate change
- If 'Coarse_integration_time' is set larger than 'Frame line length', the integration time is clipped at the same value of 'Frame line length'.
- A new frame rate or new integration time will be reflected from the second frame counting from the frame when the registers are initially set.

Figure 32: Seamless Frame Rate / Integration Time Change

Power Save

HiSPi™ CLK/DATA lanes can be powered down during H-blanking inHD60_3:2, HD120_16:9_LP, EVF, Pre-Flash A and Pre-Flash B modes when power save mode is enabled. HiSPi clock is kept for at least 22 EXTCLK after Line Valid turning-off, and activated 5 EXTCLK earlier than Line Valid turning ON. Horizontal blanking in Full Resolution, Hi-Speed, and Super Hi-Speed modes is too short for the power save control sequence so that selecting power save control does not affect any operation in these modes.

HiSPiTM CLK/DATA lanes are powered down during long integration when power save mode is enabled in Full Resolution mode. This feature is only valid in Full Resolution mode.

Figure 33: Power Save in HD60 3:2, HD120 16:9 LP, EVF, Pre-Flash A and Pre-Flash B Modes

1. Tpd ≥ 2 EXTCLK duration

2. Tpu ≥ 2 EXTCLK duration

3. Tlp ≥ 8 EXTCLK duration

Figure 34: Power Save in Full Resolution HD60 3:2 SLV, HD120 16:9 SLV Mode

1. Tpd \geq 2 EXTCLK duration Notes:

2. Tpu ≥ 2 EXTCLK duration

Power save capability is selectable by register. See "Power Save" on page 32. Power Note: save is not applicable when TRIGGER is asserted HIGH while the previous frame is

read out. In this case, the frame is operated without power saving.

Full Resolution HD120_16:9_SLV, HD60_3:2_SLVMode

Full Resolution Mode has two operating timings. Column FPN Readout Mode and Short-ened REF Readout Mode. These are selected by setting the register. In both modes, image data follows the Resync code. The Resync code period can be changed by registers (row time basis).

For 59.94 fps, the sensor should detect the external TRIGGER every 4158 rows. Internal frame operation ends at the 4157th row and the sensor gets into the Wait Trigger state at the 4158th row, so that the external TRIGGER can be latched at the every 4158th row.

The difference between the two operating modes described below is the duration of REF rows. The Resync Code duration can be set via the register in a range from 0 to 156 rows.

When the Power Save function is in use in either mode, HiSPi output goes into the unknown or GND state during wait trigger status.

HD120_16:9_SLV mode and HD60_3:2_SLV mode are similar in operation as Full Resolution mode.

They are suitable for video capture but external trigger can control each frame timing.

Full Res + Column FPN Readout Mode

Read out REF rows as many as possible to average column FPN data. Drawback is increase of delay time from TRIGGER fall edge to start of the Active readout.

Figure 35: Full Resolution Mode - Column FPN Readout Mode Frame Timing

Shortened REF Readout Mode

With minimized number of REF rows, delay from TRIGGER fall edge to start of the Active readout can be shortened. In addition, power can be reduce by saving power during the increased V-blanking time.

Figure 36: Full Resolution Mode - Shortened REF Readout Mode Frame Timing Option B

Figure 37: HD_120_16:9_SLV Mode Frame Timing

HD_120_16:9_SLV (Apply external TRIGGER every 2079 rows)

Figure 38: HD_60_3:2_SLV Mode Frame Timing

HD_60_3:2_SLV (Apply external TRIGGER every 4158 rows)

1 frame =	4158	4158 rows		16.683 msec		59.940 FPS	
	VB-FRONT	REF	OB	Active	VB-END	wait trigger	
(rows)	6	4	4	3084	1060	until next Trigger	
	SYNC(B)	SYNC(B) SYNC(A)			SYNC(B)	SYNC(B)	
1/clk= 1/(2*EXTCLK) = 58.32 MHz 1 row = 234 clks 4.012 usec							
	SYNC(A)	Pixel Data	Blank		(during REF/C	B/Active rows)	
(clks)	1	198	35				
	SYNC(B)	Blank			(during VB-FRONT/VB-END/wait trigger)		
(clks)	1	23	33				

Nesting Scan

To match the 1/80 sec frame readout time requirement, a unique row addressing feature called "Nesting Scan" is introduced in the AR1411HS.

Nesting Scan

In the Nesting Scan scheme, the two adjacent rows of the same color are read out then two adjacent rows in another color plane follow. When referring to row address sequence, the operation is as shown as:

Row #0, #2, #1, #3,..., '2n', 2(n+1)', '2n+1', '2(n+1)+1', ...

By using this scheme, a faster pixel readout performance is realized. On the other hand, the Nesting Scan image output requires a special signal decoding with a backend processor.

Figure 39: Full Resolution/HD60 3:2 SLV/HD120 3:2 SLV Mode Vertical Readout

Video Modes

AR1411HS has 7 video modes:

- HD60_16:9_LP
- HD60_3:2
- EVF
- · Pre-Flash A
- · Pre-Flash B
- Hi-speed
- · Super high-speed.

HD60_16:9_LP, HD60_3:2, EVF modes operate at 59.94 frames/sec.

Pre-Flash A, Pre-Flash B modes operate at 119.8 frames/sec.

Hi-Speed and Super high-speed modes operate at 401.9 frames/sec and 1221.7 frames/sec.

VB-END for 20 rows was implemented in all video modes.

HD60_16:9_LP Mode

Figure 40: HD60 16:9 LP Mode Frame Timing

HD60 3:2 Mode

Figure 41: HD60 3:2 Mode Frame Timing

EVF Mode

Figure 42: EVF Mode Frame Timing

Figure 43: EVF Mode Vertical Read Out

Pre-Flash A Mode

Figure 44: Pre-Flash A Mode Frame Timing

Figure 45: Pre-Flash A Mode Vertical Read Out

Pre-Flash B Mode

Figure 46: Pre-Flash B Mode frame timing

Figure 47: Pre-Flash B Mode Vertical Read Out

Figure 48: Pre-Flash A Mode Horizontal Read Out

Hi-Speed Mode

order

In Hi-Speed Mode, take care it needs to ignore last 2 red rows to keep image size.

Hi-Speed Mode Frame Timing Figure 49:

Figure 50: **Hi-Speed Mode Vertical Read Out**

Super Hi-Speed Mode

Figure 51: Super Hi-Speed Mode Frame Timing

Figure 52: Super Hi-Speed Mode Vertical Read Out

OB Without PD and OB Black Row Readout Order

All Ref rows (OB without PD rows) are read out regardless of operation modes as follows.

Figure 53: Ref Rows Read Out

Sync Code

In 12-bit mode, the sync code is identical to that of MT9J007CF. When 10-bit data compression mode is chosen, sync code is also reduced to 10-bit as shown in Table 26.

Table 24: Sync Code

		Word1	Word2	Word3	Word4
12-bit	SYNC Active	1111 1111 1111	0000 0000 0000	0000 0000 0000	1000 0000 0000
	SYNC Blanking	1111 1111 1111	0000 0000 0000	0000 0000 0000	1010 1011 0000
10-bit	SYNC Active	11 1111 1111	00 0000 0000	00 0000 0000	10 0000 0000
	SYNC Blanking	11 1111 1111	00 0000 0000	00 0000 0000	10 1010 1100

Figure 54: Sync Code Structure in a PHY

Resync Code

When Resync Code output mode is chosen, Resync Code is asserted according to the operating mode.

· In video modes

During the first frame after the TRIGGER (usually a bad frame)

• In Full Res mode

During a part of VB-front duration (variable, default value is 2672) after latch timing of the TRIGGER fall + 1row

During the Resync code duration, the HiSPi data lanes output a 0xAAA(12bit mode) and 0x2AA(10bit mode) value continuously, namely 101010...1010

Figure 55: Resync Code: Video Mode

Figure 56: Resync Code: Full Resolution Mode

(EQ 1)

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Readout Mode Control

Pixel Sensitivity Control

Integration Time Control

The integration time in video mode is programmed by the electronic shutter control value in the register. Exposure time is set by

 $min(coarse_integration_time or frame_length_lines - 3) \times row time (of current operating mode) + t_{OFFSET}$

Table 25: Minimum/Maximum Integration Time

Mode	Minimum Trigger Width	Minimum Coarse_integration_time Register Value	Maximum Coarse_integration_time Register Value	t _{offset} (μ s)
Full resolution	3 rows	_	-	_
Full resolution with power save	4 rows	_	-	_
HD60_16:9_SLV	1 clk	5	frame_length_lines- 3	~0.2
HD60_3:2_SLV	1 clk	5	frame_length_lines- 3	~0.2
EVF	1 clk	5	frame_length_lines- 3	~0.2
Pre-Flash A	1 clk	5	frame_length_lines- 3	~0.2
Pre-Flash B	1 clk	5	frame_length_lines- 3	~0.2
Hi-Speed	1 clk	5	frame_length_lines- 3	~0.2
Super Hi-Speed	1 clk	5	frame_length_lines- 3	~0.2

On the other hand, integration time in Full resolution mode is determined by a pulse width of the external TRIGGER input.

Table 26: Electrical Shutter Control Register Setting

Name	Bit	Default	
Coarse_integration_time	15:0	0x03E7	The exposure time; the time between when the rolling shutter resets a row and that row is read out, in rows.
Frame_length_lines	15:0	0x0A71	The number of lines per a frame including all output data such as the dark rows, vertical blanks etc.

Pixel Performance

Figure 57: Quantum Efficiency

Figure 58: Relative Spectral Response

Table 27: Chief Ray Angle

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Mechanical Specification

Mechanical Specification

Package

The image sensor chip is assembled in 124-pin ceramic lead-free chip carrier (CLCC) package as shown in Figure 59.

Figure 59: Package Schematic

AR1411HS: 1-Inch 14Mp CMOS Digital Image Sensor Revision History

Revision History	
Rev. A	
•	Initial release

10 Eunos Road 8 13-40, Singapore Post Center, Singapore 408600 prodmktg@aptina.com www.aptina.com Aptina, Aptina Imaging, the Aptina logo, DR-Pix, and HiSPi are the property of Aptina Imaging Corporation All other trademarks are the property of their respective owners.

Preliminary: This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.