1 Derivações de L

1.1 Notação

Der(L) a álgebra das derivações de L $U \oplus V$ Soma direta de espaços vetoriais ou de álgebras de Lie

1.2 Pares compatíveis

Sejam K e I álgebras de Lie. Diremos que K age sobre I se existe um homomorfismo de álgebras de Lie $\psi: K \to Der(I)$. Neste caso, denotaremos a ação de K sobre I por

$$[a,k] := \psi(k)(a), k \in K, a \in I.$$

Definição 1. Sejam K e I álgebras de Lie tal que K age sobre I. Um elemento $d_K + d_I \in Der(K)$ é dito par compatível se $d_I([a,k]) = [d_I(a),k] + [a,d_K(k)]$ para todo $a \in I$ e $k \in K$.

Proposição 1. Sejam K e I álgebras de Lie tal que K age sobre I. O conjunto

$$Comp(K, I) = \{d_K + d_I \in Der(K) \oplus Der(I) \mid d_I([a, k]) = [d_I(a), k] + [a, d_K(k)], para \ todo \ a \in I, k \in K\}.$$

dos pares compatíveis é uma subálgebra de $Der(K) \oplus Der(I)$

Prova: Sejam $d_K + d_I$, $e_K + e_I \in Comp(K, I)$, $a \in I$ e $k \in K$. Como o produto em L é linear é imediato verificar que Comp(K, I) é um subespaço de $Der(K) \oplus Der(I)$. Além disso,

$$[d_I, e_I][a, k] = (d_I e_I - e_I d_I)[a, k]$$

$$= d_I([e_I(a), k] + [a, e_K(k)]) - e_I([d_I(a), k] + [a, d_K(k)])$$

$$= [d_I e_I(a), k] + [e_I(a), d_K(a)] + [d_I(a), e_K(k)] + [a, d_K.e_K(k)]$$

$$- [e_I d_I(a), k] - [d_I(a), e_K(k)] - [e_I(a), d_K(k)] - [a, e_K.d_K(k)]$$

$$= [[d_I, e_I](a), k] - [a, [d_K, e_K](k)].$$

Segue que $[d_K + d)i, e_K + e_I] \in Comp(K, I)$ e, portanto, Comp(K, I) é uma subálgebra de $Der(K) \oplus Der(I)$.

Se I é abeliana podemos calcular os pares compatíveis como um anulador de uma ação de $Der(K) \oplus Der(I)$ sobre Hom(K, Der(I)). Para isso, sejam $d_K + d_I \in Der(K) \oplus Der(I)$, $T \in Hom(K, Der(I))$, $k \in K$ e defina a aplicação $\psi_I : \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \to \mathfrak{gl}(Hom(K, Der(I)))$ por

$$\psi_I(d_K + d_I)T(k) = d_I(T(k)) - T(d_K(k)) - T(k)(d_I). \tag{1}$$

A aplicação $\Psi_I(d_K+d_I)$ é linear pois é uma combinação linear de composições de aplicações lineares. Isso também é suficiente para garantir que ela pertence a Hom(K, Der(I)) pois I é abeliana.

Para verificar que ψ_I é homomorfismo de álgebras de Lie considere $e_K + e_I \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$, então

```
 \begin{aligned} [\psi_I(d_K + d_I), \psi_I(e_K + e_I)] T(k) &= (\psi_I(d_K + d_I)\psi_I(e_K + e_I) - \psi_I(e_K + e_I)\psi_I(d_K + d_I)) T(k) \\ &= \psi_I(d_K + d_I)(e_I(T(k)) - T(e_K(k)) - T(k)(e_I) \\ &- \psi_I(e_K + e_I)(d_I(T(k)) - T(d_K(k)) - T(k)(d_I) \\ &= d_I.e_I(T(k)) - d_I(T(e_K(k))) - d_I(T(k)(e_I)) \\ &- e_I.d_I(T(k)) + e_I(T(d_K(k))) + e_I(T(k)(d_I)) \\ &- e_I(T(d_K(k))) + T(e_Kd_K(k)) + T(d_K(k))(e_I) \\ &+ d_I(T(e_K(k))) - T(d_Ke_K(k)) - T(e_K(k))(d_I) \\ &- e_I(T(k)(d_I)) + T(e_K(k))(d_I) + T(k)(e_Id_I) \\ &+ d_I(T(k)(e_I)) - T(d_K(k))(e_I) - T(k)(d_Ie_I) \\ &= [d_I, e_I](T(k)) - T([d_K, e_K])(k) - T(k)([d_I, e_I]) \\ &= \psi_I([d_K, e_K] + [d_I, e_I])T(k) \\ &= \psi_I([d_K + d_I, e_K + e_I])T(k). \end{aligned}
```

Teorema 1. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana. Considere a restrição de ψ_I definida em (1) para $Der(K) \oplus Der(I)$. Se $T \in Hom(K, Der(I))$ é dada por T(k)(a) = [a,k] então $Comp(K,I) = Ann_{Der(K) \oplus Der(I)}(T)$.

Prova: Sejam $a \in I$ e $k \in K$ quaisquer. Se $d_K + d_I \in Comp(K, I) \subset Der(K) \oplus Der(I)$ então $d_I[a, k] = [d_I(a), k] + [a, d_K(k)]$. Essa igualdade é equivalente à $\psi_I|_{Der(K) \oplus Der(I)}(d_K + d_I)(T) = 0$, que é a definição de $Ann_{Der(K) \oplus Der(I)}(T)$.

1.3 Definição de ϕ

Sejam L uma álgebra de Lie e I um ideal de L. Defina por $A = \{f \in \mathfrak{gl}(L) \mid f(I) \subset I\}$ a subálgebra de $\mathfrak{gl}(L)$ das aplicações que mantém I invariante. Seja K = L/I e denote por $\bar{k} = k + I$, $k \in L$. Se $f \in A$ então:

- a aplicação $f_K: K \to K$ dada por $f_K(\bar{k}) = f(k) + I, k \in L$, é um elemento bem definido de $\mathfrak{gl}(K)$;
- a restrição de $f_I: I \to I$ de f ao ideal I é um elemento de $\mathfrak{gl}(I)$.

Logo, podemos a aplicação $\Phi: A \to \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ por

$$\Phi(f) = f_K + f_I. \tag{2}$$

Proposição 2. Sejam K uma álgebra de Lie e I um ideal de L. Suponha que K = L/I e $A = \{f \in \mathfrak{gl}(L) \mid f(I) \subset I\}$. Então a aplicação de Φ definida em (2) é um homomorfismo de álgebras de Lie.

Prova: Seja $f, g \in A$. Então

$$\begin{split} [\Phi([f,g]) &= \Phi(fg - gf) \\ &= (fg)_K + (fg)_I - (gf)_K - (gf)_I \\ &= f_K g_K + f_I g_I - g_K f_K - g_I f_I \\ &= [f_K, g_K] + [f_I, g_I] \\ &= [f_K + f_I, g_K + g_I] \\ &= [\Phi(f), \Phi(g)]. \end{split}$$

Proposição 3. Sejam K uma álgebra de Lie e I um ideal de L invarinate por Der(L). Suponha que K = L/I e Φ é a apicação definida (2). Defina $\phi = \Phi|_{Der(L)}$ a restrição de Φ a Der(L). Então $\phi: Der(L) \to Der(K) \oplus Der(I)$ é um homomorfismo de álgebras de Lie.

Prova: Devido ao resultado obtido na proposição 2, basta provarmos que se $d \in Der(L)$ então $d_K + d_I \in Der(K) \oplus Der(I)$. Sejam $k, h \in L$ então $d_K([\bar{k}, \bar{h}]) = d([k, h]) + I = [d(k), h] + [k, d(h)] + I = [d_K(\bar{k}), \bar{h}] + [\bar{k}, d_K(\bar{h})]$. Se $a, b \in I$ então $d_I([a, b]) = d([a, b]) = [d(a), b] + [a, d(b)] = [d_I(a), b] + [a, d_I(b)]$.

Seja L uma álgebra de Lie e I ideal de L. A representação adjunta de L é definida por $ad_L: L \to Der(L)$ tal que $ad_L(x)(y) = [y,x]$. Suponha I é um ideal abeliano e defina K = L/I. Então podemos induzir uma representação $ad_K: K \to Der(I)$ por $ad_K(\bar{k})(a) = [a,k]$, para todo $k \in L$ e $a \in I$. Assim, se I é abeliano então K age sobre I.

Teorema 2. Sejam L uma álgebra de Lie e I um ideal abeliano de L. Suponha que K age sobre I pela representação $ad_K: K \to Der(I)$. Seja $\phi: Der(L) \to Der(K) \oplus Der(I)$ dada por $\phi(d) = d_K + d_I$, conforme definida na proposição 3. Então $Im(\phi) \leq Comp(K, I)$.

Prova: Se $d_K + d_I \in Im(\phi)$ então existe $d \in D$ tal que $\phi(d) = d_K + d_I$. Seja $k \in L$ tal que $k + I = \bar{k}$ e $a \in I$, $d_I[a, \bar{k}] = d_I[a, k] = d[a, k] = [d(a), k] + [a, d(k)] = [d_I(a), \bar{k}] + [a, d_K(\bar{k})]$.

1.4 Extensões usando cohomologia

Definição 2. Sejam K e I álgebras de Lie com I abeliana tal que K age sobre I. Defina

$$\begin{array}{lll} C^2(K,I) &=& \{\theta: K \times K \to I, \text{ bilinear e anti-simétrica}\}, \\ Z^2(K,I) &=& \{\theta \in C^2(K,I) \text{ tal que } \theta(k,[h,l]) + \theta(h,[l,k]) + \theta(l,[k,h]) \\ &=& [\theta(h,l),k] + [\theta(l,k),h] + [\theta(k,h),l],h,k,l \in K\}, \\ B^2(K,I) &=& \{\theta \in C^2(K,I) \text{ tal que} \\ && \theta(k,h) = \nu([h,k]) + [\nu(h),k] - [\nu(k),h],\nu: K \to I \text{ linear }\}, \\ Z^1(K,I) &=& \{\nu \in Hom(K,I) \text{ tal que } \nu([k,h]) = [\nu(k),h] - [\nu(h),k]\}. \end{array}$$

Se K age sobre I, podemos definir uma extensão de K usando elementos de $Z^2(K, I)$. Seja $\theta \in Z^2(K, I)$ e defina $L_{\theta} = K \oplus I$ a algebra de Lie com a seguinte colchete

$$[k+a, h+b] = [k, h]_K + \theta(k, h) + [a, h] - [b, k].$$
(3)

 L_{θ} é bem definida em $H^2(K,I)$. Sejam $\theta \in Z^2(K,I)$ e $\eta \in B^2(K,I)$ tal que $\eta(k,h) = \nu([h,k]) + [\nu(h),k] - [\nu(k),h]$. Cada elemento de L_{θ} pode ser escrito unicamente como $k+a,k \in K, a \in I$. Então $\sigma: L_{\theta} \to L_{\theta+\eta}$ por $\sigma(x+a) = x + (\nu(x)+a)$ é um isomorfismo entre as álgebras de Lie.

Afirmação 1. Sejam L uma álgebra de Lie e I um ideal tais que K = L/I age sobre I. Então existe $\theta \in Z^2(K, I)$ tal que $L \cong L_{\theta}$.

Prova: Considere a seguinte sequência exata

$$0 \to I \stackrel{i}{\to} L \stackrel{\pi}{\to} H \to 0$$

e escolha uma transversal $\epsilon: K \to L$ tal que $\pi(\epsilon(k)) = k, k \in K$. Defina a aplicação $\theta: K \to I$ por

$$\theta(k,h) = [\epsilon(k), \epsilon(h)]_L - \epsilon([k,h]_K). \tag{4}$$

- $\theta \in Z^2(K, I)$. Primeiro observe que $\pi(\theta(k, h)) = \pi([\epsilon(k), \epsilon(h)]_L \epsilon([k, h]_K)) = 0$, ou seja, $\theta(k, h) \in I$. Além disso, $\theta(k, k) = 0$ e pela identidade de Jacobi em K e L temos $\theta(k, [h, l]) + \theta(h, [l, k]) + \theta(l, [k, h]) = 0$;
- O tipo de isomorfismo de θ independe da escolha de ϵ . Sejam $\theta_1, \theta_2 \in Z^2(K, I)$ definidas por meio das transversais $\epsilon_1, \epsilon_2 : K \to L$, respectivamente. Então, podemos escrever $\epsilon_1(k) = \epsilon_2(k) + \lambda(k), k \in K$ com $\lambda \in Hom(K, I)$. Da igualdade $\epsilon_1([k, h]_K) = \epsilon_2([k, h]_K) + \lambda([k, h]_K)$ obtemos: $(\theta_1 \theta_2)(k, h) = [\epsilon_1(k), \epsilon_1(h)]_L \epsilon_1([k, h]_K) ([\epsilon_2(k), \epsilon_2(h)]_L = \lambda([k, h]_K) [\lambda(k), h] + [\lambda(h), k]$. Logo, $\theta_1 \theta_1 \in B^2(K, I)$;
- $L \cong L_{\theta}$. Todo elemento de $x \in L$ pode ser escrito de forma única como $x = \epsilon(k) + y$, pois $\epsilon : K \to L$ é injetora. Então $\zeta : L \to L_{\theta}$ definida por $\zeta(x) = k + y$ é um isomorfismo.

Afirmação 2. Sejam L uma álgebra de Lie e I um ideal tais que K = L/I age sobre I. Sejam $\theta, \eta \in H^2(K, I)$ e $\{e_1, \dots, e_s\}$ base de I. Escreva $\theta(x, y) = \sum_{i=1}^s \theta_i(x, y).e_i$ e $\eta(x, y) = \sum_{i=1}^s \eta_i(x, y).e_i$. Suponha que os isomorfismos lineares $\sigma: L_\theta \to L_\eta$ fixem I. Então $L_\theta \cong L_\eta$ se e somente se existe $\delta \in Aut(K)$ tal que $\delta.\eta_i$ e θ_i geram o mesmo subespaço de $H^2(K, \mathbb{F})$.

Prova: Seja $\sigma: L_{\theta} \to L_{\eta}$ um isomorfismo de álgebras de Lie. Como espaço vetorial escreva $L_{\theta} = K \oplus I = L_{\eta}$. Seja $\{x_1, \dots, x_n\}$ uma base de K.

Análogo aos caso das derivações, dado um automorfismo $\sigma: L_{\theta} \to L_{\eta}$ podemos escrever $\sigma(k+a) = \sigma_K(k) + \varphi_{\sigma}(k) + \sigma_I(a)$, com $\sigma_K \in Aut(K)$, $\varphi \in Hom(K,I)$ e $\sigma_I \in Aut(I)$.

- $\delta.\theta$ é a ação de Aut(K) em $Z^2(K,I)$.

Desenvolvendo a equação

$$[\sigma(x_i + e_r), \sigma(x_i + e_s)] = \sigma([x_i + e_r, x_i + e_s]), 1 \le i, j, \le n1 \le r, t \le s,$$

obtemos:

$$\begin{split} [\sigma(x_{i} + e_{r}), \sigma(x_{j} + e_{s})] &= [\sigma_{K}(x_{i}) + \varphi_{\sigma}(x_{i}) + \sigma_{I}(e_{r}), \sigma_{K}(x_{j}) + \varphi_{\sigma}(x_{j}) + \sigma_{I}(e_{t})] \\ &= [\sigma_{K}(x_{i}), \sigma_{K}(x_{j})]_{K} + \eta(\sigma_{K}(x_{i}), \sigma_{K}(x_{j})) \\ &+ [\varphi_{\sigma}(x_{i}) + \sigma_{I}(e_{r}), \sigma_{K}(x_{j})] - [\varphi_{\sigma}(x_{j}) + \sigma_{I}(e_{t}), \sigma_{K}(x_{i})] \\ &= [\sigma_{K}(x_{i}), \sigma_{K}(x_{j})]_{K} + \eta(\sigma_{K}(x_{i}), \sigma_{K}(x_{j})) \\ &+ [\varphi_{\sigma}(x_{i}), \sigma_{K}(x_{j})] - [\varphi_{\sigma}(x_{j}), \sigma_{K}(x_{i})] + [\sigma_{I}(e_{r}), \sigma_{K}(x_{j})] - [\sigma_{I}(e_{t}), \sigma_{K}(x_{i})] \end{split}$$

$$\begin{array}{ll} \sigma([x_i+e_r,x_j+e_s]) &=& \sigma([x_i,x_j]_K+\theta(x_i,x_j)+[e_r,x_j]-[e_s,x_t])\\ &=& \sigma_K([x_i,x_j]_K)+\varphi_\sigma([x_i,x_j])+\sigma(\theta(x_i,x_j))\\ &+& \sigma_I([e_r,x_j])-\sigma_I([e_t,x_i]) \text{ pares compative is de automorfismos!!!}\\ &=& \sigma_K([x_i,x_j]_K)+\varphi_\sigma([x_i,x_j])+\sigma(\theta(x_i,x_j))\\ &+& [\sigma_I(e_r),\sigma_K(x_j)]-[\sigma_I(e_t),\sigma_K(x_i)] \end{array}$$

Segue que

$$\eta(\sigma_K(x_i), \sigma_K(x_j)) = \sigma(\theta(x_i, x_j)) + \varphi_{\sigma}([x_i, x_j]) + [\varphi_{\sigma}(x_i), \sigma_K(x_j)] - [\varphi_{\sigma}(x_j), \sigma_K(x_i)].$$

Se $\sigma(e_k) = \sum_{m=1}^s \alpha_{km}.e_k$ então $\eta_p(\sigma_K(x_i), \sigma_K(x_j)) = \sum_{k=1}^s \alpha_{kp}\theta_k(x_i, x_j) + B^2(K, I)$, para $i \leq p \leq s$.

Suponha que $\delta \eta_i$ e θ_i geram o mesmo espaço em $Z^2(K,I)$ módulo $B^2(K,I)$. Então existem funções lineares $f_l: K \to \mathbb{F}$ e α_{lh} tais que $\delta \cdot \eta_l(x_i, x_j) = \sum_{k=1}^s \alpha_{lk} \theta_k(x_i, x_j) + f_l([x_i, x_j]) + [f_l(x_i), x_j] - []$

1.5 Ação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ em $C^2(K,I)$

Se K age sobre I podemos definir uma ação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ em $C^2(K,I)$. Dados $d_K + d_I \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$, $\theta \in Z^2(K,I)$ e $h,k \in K$, defina a aplicação $\psi_K : \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \to \mathfrak{gl}(C^2(K,I))$ por

$$\psi_K(d_K + d_I)\theta(h, k) = d_I(\theta(h, k)) - \theta(d_K(k), h) - \theta(k, d_K(h)). \tag{5}$$

A prova que ψ_K define uma representação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ é semelhante a de ψ_I .

Afirmação 3. Os espaços $Z^2(K,I)$ e $B^2(K,I)$ são invariantes pela ação de Comp(K,I) segundo a representação ψ_K .

```
Prova: Sejam k, h, l \in K e \theta \in Z^2(K, I). Então,
     \psi_K(d_K + d_I)(\theta)(k, [h, l]) + \psi_K(d_K + d_I)(\theta)(h, [l, k]) + \psi_K(d_K + d_I)(\theta)(l, [k, h])
     = d_I(\theta(k, [h, l])) - \theta(d_K(k), [h, l]) - \theta(k, d_K([h, l]))
     +d_I(\theta(h,[l,k])) - \theta(d_K(h),[l,k]) - \theta(h,d_K([l,k]))
     +d_I(\theta(l,[k,h])) - \theta(d_K(l),[k,h]) - \theta(l,d_K([k,h]))
     = d_I(\theta(k, [h, l]) + \theta(h, [l, k]) + \theta(l, [k, h]))
     -(\theta(d_K(k),[h,l]) + \theta(d_K(h),[l,k]) + \theta(d_K(l),[k,h]))
     -(\theta(k, d_K([h, l]) + \theta(h, d_K([l, k]) + \theta(l, d_K([k, h])))
     = d_I([\theta(h, l), k] + [\theta(l, k), h] + [\theta(k, h), l])
     -\theta(d_K(k), [h, l]) - \theta(d_K(h), [l, k]) - \theta(d_K(l), [k, h])
     -\theta(k, [d_K(h), l]) - \theta(k, [h, d_K(l)]) - \theta(h, [d_K(l), k]) - \theta(h, [l, d_K(k)]) - \theta(l, [d_K(k), h]) - \theta(l, [d_K(k), h])
\theta(l, [k, d_K(h)])
     = [d_I(\theta(h,l)), k] + [\theta(h,l), d_K(k)] + [d_I(\theta(l,k)), h] + [\theta(l,k), d_K(h)] + [d_I(\theta(k,h)), l] + [\theta(k,h), d_K(l)]
     -\theta(d_K(k), [h, l]) - \theta(h, [l, d_K(k)]) - \theta(l, [d_K(k), h])
     -\theta(d_K(h), [l, k]) - \theta(k, [d_K(h), l]) - \theta(l, [k, d_K(h)])
     -\theta(d_K(l), [k, h]) - \theta(k, [h, d_K(l)]) - \theta(h, [d_K(l), k])
     = [d_I(\theta(h,l)), k] + [\theta(h,l), d_K(k)] + [d_I(\theta(l,k)), h] + [\theta(l,k), d_K(h)] + [d_I(\theta(k,h)), l] + [\theta(k,h), d_K(l)]
     -[\theta(h,l), d_K(k)] - [\theta(l, d_K(k)), h] - [\theta(d_K(k), h), l]
     -[\theta(d_K(h), l), k] - [\theta(l, k), d_K(h)] - [\theta(k, d_K(h)), l]
     -[\theta(h, d_K(l)), k] - [\theta(d_K(l), k), h] - [\theta(k, h), d_K(l)]
     = [d_I(\theta(h, l)) - \theta(d_K(h), l) - \theta(h, d_K(l)), k] + [d_I(\theta(l, k)) - \theta(l, d_K(k)) - \theta(d_K(l), k), h]
     +[d_I(\theta(k,h)) - \theta(d_K(k),h) - \theta(k,d_K(h)),l]
     = [\psi_K(d_K + d_I)\theta(h, l), k] + [\psi_K(d_K + d_I)\theta(l, k), h] + [\psi_K(d_K + d_I)\theta(k, h), l].
     Então \psi_K(d_K + d_I)\theta \in Z^2(K, I).
```

```
 \begin{split} &-\nu([d_K(k),h]) + [\nu(d_K(k)),h] + [d_K(k),\nu(h)] - \nu([k,d_K(h)] + [\nu(k),d_K(h)] + [k,\nu(d_K(h))] \\ &= d_I(\nu[k,h]) - [d_I(\nu(k)),h] - [\nu(k),d_K(h)] - [d_K(k),\nu(h)] - [k,d_I(\nu(h))] \\ &-\nu([d_K(k),h]) + [\nu(d_K(k)),h] + [d_K(k),\nu(h)] - \nu([k,d_K(h)] + [\nu(k),d_K(h)] + [k,\nu(d_K(h))] \\ &= d_I(\nu[k,h]) - \nu([d_K(k),h]) - \nu([k,d_K(h)] \\ &- [d_I(\nu(k)),h] + [\nu(d_K(k)),h] - [k,d_I(\nu(h))] + [k,\nu(d_K(h))] \\ &= (d_I.\nu - \nu.d_K)([k,h] - [(d_I.\nu - \nu.d_K)(k),h] - [k,(d_I.\nu - \nu.d_K)(h)]. \\ &\text{Como} \ (d_I.\nu - \nu.d_K) : K \to I \ \text{\'e} \ \text{linear ent\~ao} \ \psi_K(d_K + d_I)\theta \in B^2(K,I). \end{split}
```

Definição 3. Sejam K e I álgebras de Lie tais que K age sobre I. Seja $\theta \in Z^2(K,I)$ tal que $L = L_{\theta}$ e considere a ação de Comp(K,I) sobre $Z^2(K,I)$ segundo a representação ψ_K . Defina os pares induzidos de $Der(K) \oplus Der(I)$ por:

$$Indu(K, I, \theta) = Ann_{Comp(K,I)}(\theta + B^{2}(K, I)).$$

1.6 Derivações de L_{θ}

Uma observação para coerência das notações utilizadas para d_I e d_K . Se $d \in L_\theta$ então d_I é obtida pela restrição de d à I. Já a função $d_K : K \to K$ é definida como a componente em K de $d(k), k \in K$, que é corresponde a função d_K definida em L/I.

Lema 1. Seja $d \in L_{\theta} = K \oplus I$ e $k + a \in L_{\theta}$. Então $d(k + a) = d_K(k) + \varphi_d(k) + d_I(a)$, com $d_K \in Der(K)$, $d_I \in Der(I)$ e $\varphi_d \in Z^1(K, I)$.

Prova: d_K e d_I foram definidas no inicio do texto. φ_d pode ser definida como $\varphi_d(k) = d(k) - d_K(k)$. Logo,

$$\begin{array}{lll} \varphi_d([k,h]_K) & = & d([k,h]_K) - d_K([k,h]_K) \\ & = & [d(k),h]_K + [k,d(h)]_K - [d_K(k),h]_K - [k,d_K(h)]_K \\ & = & [\varphi_d(k),h]_K + [k,\varphi_d(h)] \end{array}$$

Teorema 3. Seja K uma álgebra de Lie, I um K-módulo e $\theta \in Z^2(K,I)$. Seja $L_{\theta} = K \oplus I$ e considere I como ideal de L_{θ} . Assuma que I \acute{e} invariante por Der(L). Seja $\phi : Der(L) \to Der(K) \oplus Der(I)$ dada por $\phi(d) = d_K + d_I$. Então:

- 1. $Im(\phi) = Indu(K, I, \theta)$
- 2. $ker(\phi) \cong Z^1(K,I)$

Prova: 1) Seja $d_K + d_I \in Indu(K, I, \theta)$ então $(d_K + d_I)\theta = 0 \mod B^2(K, I)$. Logo, existe $\nu: K \to I$ linear tal que

$$\theta(d_K(k), h) + \theta(k, d_K(h)) + [\nu(k), h] + [k, \nu(h)] = d_I(\theta(k, h)) + \nu([k, h]).$$

Defina a seguinte aplicação linear $(d_K+d_I)^*: L_\theta \to L_\theta$ por $(d_K+d_I)^*(k+a) = d_K(k)+d_I(a)+\nu(k)$. É imediato que $\phi((d_K+d_I)^*) = d_K+d_I$. Falta verificar que $(d_K+d_I)^* \in Der(L_\theta=L)$.

$$(d_K + d_I)^*([k + a, h + b]) = (d_K + d_I)^*([k, h]_K + \theta(k, h) + [a, h] - [b, k])$$

$$= d_K([k, h]_K) + d_I(\theta(k, h)) + d_I([a, h]) - d_I([b, k]) + \nu([k, h])$$

$$= d_K([k, h]_K) + d_I(\theta(k, h)) + \nu([k, h])$$

$$+ [d_I(a), h]) + [a, d_K(h)] - [d_I(b), k] - [b, d_K(k)]$$

```
\begin{split} &[(d_K + d_I)^*(k + a), h + b] + [k + a, (d_K + d_I)^*(h + b)]) \\ &= (d_K + d_I)^*([k, h]_K + \theta(k, h) + [a, h] - [b, k]) \\ &= [d_K(k) + d_I(a) + \nu(k), h + b] + [k + a, d_K(h) + d_I(b) + \nu(h)] \\ &= [d_k(k), h]_K + \theta(d_K(k), h) + [d_I(a) + \nu(k), h] - [b, d_K(k)] \\ &+ [k, d_K(h)]_K + \theta(k, d_K(h)) + [a, d_K(h)] - [d_I(b) + \nu(h), k] \\ &= d_K([k, h]_K) + \theta(d_K(k), h) + \theta(k, d_K(h)) + [\nu(k), h] + [k, \nu(h)] \\ &+ [d_I(a), h]) + [a, d_K(h)] - [d_I(b), k] - [b, d_K(k)] \end{split}
```

Agora, seja $(d_K + d_I) \in Im(\phi)$. Então existe $d \in Der(L_\theta)$ tal que $\phi(d) = (d_K + d_I)$. Para cada $k + a \in L_\theta$ escreva $d(k + a) = d_K(k) + \varphi_d(k) + d_I(a)$. Como d é uma derivação, temos d[k + a, h + b] = [d(k) + a, h + b] = [k + a, d(h) + b]. Expandindo os dois lados temos:

$$\begin{aligned} [d(k+a),h+b] + [k+a,d(h)+b] &= [d_K(k)+\varphi_d(k)+d_I(a),h+b] + [k+a,d_K(h)+\varphi_d(h)+d_I(b)] \\ &= [d_K(k),h]_K + \theta(d_K(k),h) + [d_I(a)+\varphi_d(k),h] - [b,d_K(k)] \\ &+ [k,d_K(h)] + \theta(k,d_K(h)) + [a,d_K(h)] - [d_I(h)+\varphi_d(h),k] \\ &= d_K([k,h]_K) + \theta(d_K(k),h) + \theta(k,d_k(h)) \\ &+ [d_I(a),h] - [b,d_k(k)] + [a,d_K(h)] - [d_I(b),k] + [\varphi_d(k),b] - [\varphi_d(h),k] \end{aligned}$$

$$d([k+a,h+b]) = d([k,h]_K + \theta(k,h) + [a,h] - [b,k])$$

= $d_K([k,h]_K) + d_I(\theta(k,h)) + d_I([a,h]) - d_I([b,k]) + \varphi_d([k,h])$

Como $Im(\phi) \subseteq Comp(K, I)$ então $\phi(d) = (d_K + d_I) \in Indu(K, I, \theta)$.

2) Se $d \in Der(L_{\theta})$ então a aplicação apresentada no lema 1 nos fornece $d(k+a) = d_K(k) + \varphi_d(k) + d_I(a)$. Para $d \in ker(\phi)$ temos $d(k+a) = \varphi_d(k)$. Defina $\sigma : ker(\phi) \to (Z^1(K,I), +)$ por $\sigma(d) = \varphi_d$. É imediato que σ é um homomorfismo injetor. Para verificar a sobrejetividade, considere $\varphi \in Z^1(K,I)$. φ satisfaz $\varphi([k,h]) = [\varphi(k),h] + [k,\varphi(h)]$. Defina a aplicação linear $d_{\varphi}(k+a) = \varphi(k)$. Temos,

 $d_{\varphi}([k+a,h+k]) = \varphi([k,h]) = [\varphi(k),h] + [k,\varphi(h)] = [d_{\varphi}(k+a),h+b] + [k+a,d_{\varphi}(h+b)].$ Assim, d_{φ} é uma derivação de L_{θ} , $d_{\varphi} \in ker(\phi)$ e $\sigma(d_{\varphi}) = \varphi$.

7