Physics 129: Particle Physics Lecture 21: Weak Interactions (II): Quark Charged Current Interactions

Nov 5, 2020

- Suggested Reading:
 - ► Thomson Chapter 11
 - ► Griffiths 10.1-10.5
- Reminder: Quiz #3 next week

Our Weak Interaction Roadmap

- Unlike strong and EM, weak interactions don't conserve parity
 - Vertex selects left-handed state for of particles (and right handed state for anti-particles)
 - Subject of the last lecture; will review today
- W^{\pm} coupling to leptons respect flavor familes (e, μ, τ) but coupling to quarks do not
 - Coupling not diagonal in quark flavor: Need to change basis
 - Main topic for today
 - Introduction of this change in basis gives new phenomenology, including mixing and CP violation
 - Will be discussed next week
- W^{\pm} has charge, so it couples to photon
 - Cannot write down a weak theory independent of QED
 - lacktriangle Unified electroweak theory includes Z^0 as well as W^\pm and γ
 - Topic for the week of Nov 17
- Need mechanism to give W^\pm and Z^0 mass
 - ► This is the Higgs mechanism
 - Discuss this after Thanksgiving

Reminder: Charged Current Weak Interactions with Parity Violation

ullet Wu et al showed that polarized Co^{60} decays had angular distribution

$$I(\theta) = 1 + \alpha \left(\frac{\sigma \cdot p}{E}\right)$$
$$= 1 + \alpha \frac{v}{c} \cos \theta$$

with later experiments verifying that $\alpha = -1$

- ► This violates parity conservation
- · Parity violation is maximal
 - lacktriangledown u are always left handed and $\overline{
 u}$ are always right handed

Putting parity violation into the Feynman rules

- ullet W^\pm is charged: fermion vertex must conserve charge
- Lepton number must also be conserved
- Examples:
 - $VW^+ \rightarrow e^+ \nu_e$
 - $\qquad \qquad W^- \to \mu^- \overline{\nu}_\mu$

Coupling factor at vertex:

$$\frac{-ig_W}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}\left(1-\gamma^5\right)$$

- $\sqrt{2}$ an historical artifact
- $\frac{1}{2} \left(1 \gamma^5 \right)$ makes the interaction left-handed You will prove this on next week's homework

Helicity for particles with mass

- The factor $\frac{1}{2}\left(1-\gamma^5\right)$ forces massless particle fermions to always have their spin anti-aligned with their direction of motion and massless antiparticle fermions to always have their spins aligned with the direction of motion
- For massive fermions, it's a bit more complicated
 - Dirac spinors have 4-components
 - \blacktriangleright The components with the "wrong" alignment have factors of v/c relative to those of "right" alignment
 - So, unless particles ultra-relativistic both polarizations exist, although not wit the same rate
 - This is why Wu saw an intensity

$$I(\theta) = 1 - \frac{v}{c}\cos\theta$$

rather than $1 - \cos \theta$

- This is an extremely important fact
 - Let's see how it works for pion decay

Helicity and Pion Decay

- Spin 0 pion decays to two spin $\frac{1}{2}$ fermions
 - ► Total spin must be 0: antisymmetric spin sate
- Neutrino is left handed and anti-neutrino is right handed
 - ► This forces charged lepton to be in "wrong" alignment
 - ightharpoonup Only possible due to components proportional to v/c
 - ightharpoonup More massive leptons have lower v and will be favored in the decay
 - ► This is called "helicity suppression"

Next two pages go through this in greater detail

Pion Decay (I) $\pi^-(q) \to \mu^-(p) + \overline{\nu}_{\mu}(k)$

$$\pi^+$$
 J_{W^+}
 J_{W^+}

- $ullet u \overline{d}$ annihilation into virtual W^+
- Depends on π^+ wave function at origin
 - Need phenomenological parameter that characterizes unknown wave function
- Write matrix element

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} J_{\pi}^{\mu} \overline{u}(p) \gamma_{\mu} (1 - \gamma_5) v(k)$$

where $J^{\mu}_{\pi}=f(q^2)q^{\mu}$ since q^{μ} is the only available 4-vector

- But $q^2=m_\pi^2$ so $J_\pi=f_\pi q^\mu$. f_π has units of mass (matrix element must be dimensionless)
- After spinor calculation, result for decay width:

$$\Gamma = \frac{G_F^2}{8\pi} f_\pi^2 m_\pi m_\mu^2 \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2$$

This came from:

$$\begin{split} |\mathcal{M}|^2 &\sim & G_F^2 m_\mu^2 \left(m_\pi^2 - m_\mu^2\right) f_\pi^2 \end{split}$$
 Phase Space
$$&\sim & \frac{|p|}{8\pi m_\pi^2} \end{split}$$

 We'll examine what this means on the next page

Pion Decay (II)

From previous page

$$\Gamma = \frac{G_F^2}{8\pi} f_\pi^2 m_\pi m_\mu^2 \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2$$

- ullet Result for electron same with $m_{\mu}
 ightarrow m_e$
- Thus

$$\frac{\Gamma_e}{\Gamma_{\mu}} = \frac{m_e^2}{m_{\mu}^2} \left(\frac{m_{\pi}^2 - m_e^2}{m_{\pi}^2 - m_{\mu}^2} \right)^2$$

 Since $m_e=0.51$ MeV, $m_\mu=105.65 \ {\rm MeV} \ {\rm and}$ $m_{pi+}=139.57 \ {\rm MeV}$

$$\frac{\Gamma_e}{\Gamma_\mu} \sim 1.2 \times 10^{-4}$$

This agrees with measurements

 As promised, result demonstrates helicity suppression

- Spin 0 pion, right-handed antineutrino forces μ^- to be right-handed
- $\bullet \;\; {\rm But} \; \mu^- \; {\rm wants} \; {\rm to} \; {\rm be} \; {\rm left\text{-}handed}$
 - rh component $\sim (v/c)^2 \sim m_\mu$
- The less relativistic the decay product is, the larger the decay rate

Charged Kaon Decays

- K^{\pm} mass larger than π^{\pm}
- More options for decay

Leptonic

Same calculation as for π^\pm Helicity suppression make decay rate to muons larger that to electrons

$$BR(K^- \to \mu^- \overline{\nu}_\mu) = (63.56 \pm 0.11) \times 10^{-2}$$

 $BR(K^- \to e^- \overline{\nu}_e) = (1.582 \pm 0.007) \times 10^{-5}$

Semi-Leptonic

3-body decay: No helicity suppression

$$BR(K^- \to \pi^0 \mu^- \overline{\nu}_\mu) = (3.352 \pm 0.033) \%$$

 $BR(K^- \to \pi^0 e^- \overline{\nu}_e) = (5.07 \pm 0.04) \%$

More phase space for decay to \boldsymbol{e}

<u>Hadronic</u> (several diagrams possible, including:)

$$BR(K^- \to \pi^- \pi^0) = (20.67 \pm 0.08) \%$$

 $BR(K^- \to \pi^- \pi^0 \pi^0) = (1.760 \pm 0.023) \%$
 $BR(K^- \to \pi^- \pi^- \pi^+) = (5.583 \pm 0.024) \%$

Some Observations

- \bullet Leptonic decays of μ and τ demonstrate that G_F the same for all lepton species
 - ightharpoonup See discussion of au decay in Tuesday's lecture
- Leptonic decay of charged pion and kaon tell us nothing about G_F since f_π and f_K (which depend on wf at origin) are unknown
- ullet If we want to ask whether G_F is the same for hadronic currents as leptonic ones, we need to look at semileptonic decays
 - ▶ Analog of β -decay
- But, well have to make sure that we are not affected by stong interaction corrections!

(V-A) and the Hadronic Current

- ullet At low q^2 we measure WI using hadrons and not quarks
- Need to worrry about whether binding of quarks in hadron affects the coupling

$$1 - \gamma^5 \to C_V - C_A \gamma^5$$

Experimentally, for the neutron

$$C_V = 1.00 \pm 0.003; \quad C_A = 1.26 \pm 0.02$$

- Vector coupling unaffected: protected by charge conservation (CVC)
- Axial vector coupling modified (PCAC)
- ullet Experimental implication: for precision tests of hadronic weak interactions, study decays that can only occur through C_V term
 - ► This means decays between states of the same parity
 - Best option is "superallowed" β-decay with $0^+ \to 0^+$ transition
 - In addition to no axial vector component, such transitions cannot occur via γ decay

Is G_F Really Universal?

Muon decay rate is

$$\Gamma = \frac{G_F^2 m_\mu^5}{192\pi^3}$$

in approximation where m_e ignored

- Same formula holds for nuclear β -decay
- A good choice of decay: $O^{14} o N^{14*} \; e^+ \nu_e \; (0^+ o 0^+)$
- Correcting for available phase space we find

$$G_{\mu} = 1.166 \times 10^{-5}$$

 $G_{\beta} = 1.136 \times 10^{-5}$

Close but not the same!

· What's going on?

Extend Our Study to More Hadron Decays

• Compare the following:

	Decay	Quark Level Decay
014:	$p \to ne^+\nu_e$	$u \to de^+ \nu_e$
	$\pi^- \to \pi^0 e^- \overline{\nu}_e$	$d \to u e^- \overline{\nu}_e$
	$K^- \to \pi^0 e^- \overline{\nu}_e$	$s \to u e^- \overline{\nu}_e$
	$\mu^+ \to \overline{\nu}_{\mu} e^+ \nu_e$	

- After correcting for phase space factors, G_F obtained from p and π^- agree with each other, but are slightly less than obtained from μ .
- ullet G_F obtained from K^- decay seems to be much smaller
- Either G_F is not universal, or something else is going on!

An Explanation: Choice of weak eigenstates

- Suppose strong and weak eigenstates of quarks not the same
- Weak coupling:

- Here d' is an admixture of down-type quarks
- Normalization of w.f. for quarks means if $d'=\alpha d+\beta s$, then $\sqrt{\alpha^2+\beta^2}=1$
- \bullet Can force this normalization by writing α and β in terms of an angle

$$d' = d\cos\theta_C + s\sin\theta_c$$

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_C \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

The Cabbibo Angle

Using

$$d' = d\cos\theta_C + s\sin\theta_c$$

we predict

$$p \& \pi \text{ decay} \propto G_F^2 \cos^2 \theta_C$$
 $K \text{ decay} \propto G_F^2 \sin^2 \theta_C$
 $\mu \text{ decay} \propto G_F^2$

Using experimental measurements, find

$$\cos \theta_c = 0.97420 \pm 0.00021$$

 $\sin \theta_c = 0.2243 \pm 0.0005$

 However, in addition to the d' there is an orthoginal down-type combination

$$s' = s\cos\theta_c - d\sin\theta_c$$

Does it iteract weakly?

A New Quark (Discussion from the Early 1970's)

- It's odd to have one charge 2/3 quark and two charge -1/3 quarks
- ullet Suppose there is a heavy 4 th quark
- We could then have two families of quarks. In strong basis:

$$\begin{pmatrix} u \\ d \end{pmatrix}, \quad \begin{pmatrix} c \\ s \end{pmatrix}$$

Call this new quark "charm"

Then, the weak basis is

$$\begin{pmatrix} u & c \\ d' = d\cos\theta_C + s\sin\theta_c \end{pmatrix}, \quad \begin{pmatrix} c & c \\ s' = s\cos\theta_c - d\sin\theta_c \end{pmatrix}$$

- ullet There is a good argument for this charm quark in addition to G_F
 - lacktriangle This is the reason people were so excited when the J/ψ was seen in 1974

The GIM Mechanism (I)

- \bullet Glashow, Iliopoulous, Maiani (GIM) proposed existence of this 4^{th} quark (charm)
- ullet Charm couples to the s' in same way u couples to the d'
- Reason for introducing charm: to explain why flavor changing neutral currents (FCNC) are highly suppressed
- Two examples of FCNC suppression:
 - 1. $BR(K_L^0 \to \mu^+\mu^-) = 6.84 \times 10^{-9}$
 - 2. $BR(K^+ \to \pi^+ \nu \nu)/BR(K^+ \to \pi^0 \mu \nu) < 10^{-7}$
- Why are these decay rates so small?
- It turns out that there is also a Z that couples to $f\overline{f}$ pairs, but it does not change flavor (same as $\gamma)$
- \bullet If only vector boson was the $W^\pm,$ would require two bosons to be exchanged
 - ► Need second order charged weak interactions, but even this would give a bigger rate than seen unless there is a cancellation

The GIM Mechanism (II)

• Consider the "box" diagram

- $ightharpoonup \mathcal{M}$ term with u quark $\propto \cos \theta_C \sin \theta_C$
- $ightharpoonup \mathcal{M}$ term c quark $\propto -\cos\theta_C\sin\theta_C$
- ightharpoonup Same final state, so we add \mathcal{M} 's
- ► Terms cancel in limit where we ignore quark masses

This Cancellation is Not a Accident!

Matrix relating strong basis to weak basis is unitary

$$d_i' = \sum_j U_{ij} d_j$$

Therefore is we sum over down-type quark pairs

$$\sum_{i} \overline{d}'_{i} d'_{i} = \sum_{ijk} \overline{d}_{j} U^{\dagger}_{ji} U_{ik} d_{k}$$
$$= \sum_{j} \overline{d}_{j} d_{j}$$

- If an interaction is diagonal in the weak basis, it stays diagonal in the strong basis
- Independent of basis, there are no $d \longleftrightarrow s$ transitions

No flavor changing neutral current weak interactions (up to terms that depend on the quark masses)

Some Questions and Answers about the GIM Mechanism

- Why is mixing in the down sector?
 - This is convention.
 - Charged current interactions always involve an up-type and a down-type quark
 - ► Can always define basis to move all mixing into either up or down sector
- Why is there no Cabbibo angle in the lepton sector?
 - Actually, there is!
 - Before people observed neutrino oscillations, they thought ν's were massless.
 - If all ν were massless, or had same mass, then free to redefine flavor basis to remove the mixing

We now need to define mixing angles for neutrinos as well as quarks

More Than Two Generations

- Generalize to N families of quark (N=3 as far as we know)
- U is a unitary $N \times N$ matrix and d_i' is an N-column vector

$$d_i' = \sum_{j=1}^N U_{ij} d_j$$

U is called the CKM matrix

- How many independent parameters do we need to describe U?
 - ightharpoonup N imes N matrix: N^2 elements
 - ▶ But each quark has an unphysical phase: can remove 2N-1 phases (leaving one for the overall phase of U)
 - ▶ So, U has $N^2 (2N 1)$ independent elements
- \bullet However, an orthogonal $N\times N$ matrix has $\frac{1}{2}N(N-1)$ real parameters
 - ▶ So U has $\frac{1}{2}N(N-1)$ real parameters
 - $ightharpoonup N^2 (2N-1) \frac{1}{2}N(N-1)$ imaginary phases $\left(= \frac{1}{2}(N-1)(N-2) \right)$
- N=2 1 real parameter, 0 imaginary
- N=3 3 real parameters, 1 imaginary
- Three generations requires an imaginary phase: CP Violation inherent

The CKM Matrix

Write hadronic current

$$J^{\mu} = -\frac{g}{\sqrt{2}} \left(\overline{u} \ \overline{c} \ \overline{t} \right) \gamma_{\mu} \frac{(1 - \gamma_{5})}{2} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- ullet V_{CKM} gives mixing between strong (mass) and (charged) weak basis
- · Often write as

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Wolfenstein parameterization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Here λ is the $\approx \sin \theta_C$.

Best Fit for CKM Matrix from PDG

From previous page

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• Impose Unitary and use all experimental measurements

$$\lambda = 0.22453 \pm 0.00044 \qquad \qquad A = 0.836 \pm 0.015$$

$$\rho = 0.122^{+0.018}_{-0.17} \qquad \qquad \eta = 0.355^{+0.12}_{-0.11}$$

• Result for the magnitudes of the elements is:

```
\left(\begin{array}{ccc} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359 \pm 0.00011 & 0.04214 \pm 0.00076 \\ 0.00896 \pm 00024 & 0.04133 \pm 0.00074 & 0.999105 \pm 000032 \end{array}\right)
```

• We'll talk about this more next week