教师签名	批改日期
	教师签名

深圳大学实验报告

课程名称:_	大学	<u>物理实验(</u>	<u>)</u>		
实验名称:_	表面引	长力系数的测	测定		_
学 院:_	数	学与统计学	院		
指导教师 <u>:</u>		記燕翔、李 穎	<u> </u>		
报告人:	王曦	组号:	20		_
学号2021	192010	K验地点	致原	楼 208	
实验时间:_	年	10	月	27	日
提交时间:	2022	年11月03	日		

1

一、实验目的

- 1. 学习和掌握硅单晶电阻应变传感器的原理.
- 2. 学习拉伸法测量液体表面张力系数.

二、实验原理

1. 液体的表面张力

表面张力 f 的方向沿液体表面,且恒与分界线垂直,大小与分界线的长度 L 成正比,即 $f=\alpha L$ (1),其中

 α 称为液体表面张力系数,单位为 N/m.

热力学对表面张力系数的定义:表面张力系数 α 是在温度 \mathbf{T} 下和压力 \mathbf{P} 不变的情况下吉布斯自由能 \mathbf{G}

对面积 S 的偏导数,即 $lpha=\left(rac{\partial G}{\partial S}
ight)_{TP}$ (2).

2. 吊环拉脱法则测液体的表面张力

$$f=lpha\pi(D_1+D_2)\Rightarrowlpha=rac{f}{\pi(D_1+D_2)}$$

因液体的直径与金属环内外径相同,则

吊环内外径用卡尺测量.

金属环悬挂在力敏传感器上,将其浸入液体.缓慢向上提升金属环时,金属环会拉起一个与液体相连的水柱.因表面张力作用,力传感器的拉力逐渐达到最大值 F(超过此值水柱破裂).

设重力 G,表面张力 f,拉力 F 和 F'.

拉断前 F=G+f,拉断时 F'=G,则 f=F-F'.

力传感器输出电压值,需测出电压与拉力的关系 F=U/B.

拉断前
$$F=G+f\Rightarrow U_1$$
 ,拉断时 $F'=G\Rightarrow U_2$,则 $f=F-F'=rac{U_1-U_2}{B}$,代入(1)即得

$$lpha = rac{f}{\pi(D_1 + D_2)} = rac{U_1 - U_2}{B\pi(D_1 + D_2)}$$
 (3),该式即测量表面张力系数的公式,只需测出内外直径 D1,外环

直径 D2,拉断前电压 U1,拉断后电压 U2,即可算出表面张力系数 α.

三、实验仪器:

FD-NST- I 型液体表面张力系数测定仪

受力量程:0-0.098 g

四、实验内容:

4.1 步骤

- 4.1.1 吊环应严格处理干净.可 NaOH 溶液洗净油污或杂质后,用清洁水冲洗干净.
- 4.1.2 必须使吊环保持竖直,以免测量结果引入较大误差.
- 4.1.3 实验之前,仪器须开机预热 15 分钟.
- 4.1.4 在旋转升降合时,尽量不要使液体产生波动.
- 4.1.5 实验室不宜风力较大、实验过程中不要使平台摇动以免吊环摆动致使所测系数不准确.
- 4.1.6 实验过程中切勿触碰挂钩使状态改变,导致实际的力敏传感系数改变而使结果不准确.
- 4.1.7 若液体为纯净水,在使用过程中防止灰尘和油污以及其它杂质污染.特别注意手指不要接触被测液体.
- 4.1.8 调节升降合拉起水柱时动作必须轻缓,应注意液膜必须充分地被拉伸开,不能使其过早地破裂,致测量失败或测量不准.
- 4.1.9 使用力敏传感器时用力不大于 0.098N.过大的拉力传感器容易损坏.
- 4.1.10 实验结束后须将吊环用清洁纸擦干并包好,放入干燥缸内.

五、数据记录:

组号: ___20___; 姓名___王曦___

5.1 测定硅压阻力敏传感器的灵敏度

$$D1 = 3.310 \text{ cm}$$
 $D2 = 3.496 \text{ cm}$ 水温 = 25 °C

砝码质	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
量(g)								
电压读	1.0	1.9	2.8	3.5	4.3	4.9	5.6	6.3
数(mV)								
电压读	0.8	1.7	3.0	3.6	4.3	4.5	5.3	6.3
数(mV)								

5.2 测定水的表面张力系数

U1(mV)	18.4	18.6	18.8	18.9	18.8	18.9	19.4	19.1
U2(mV)	15.1	15.3	15.4	15.4	15.6	15.7	15.8	15.9

六、数据处理

6.1 用作图法求硅压阻力敏传感器的灵敏度 B.

砝码质	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
量(g)								
电压读	1.0	1.9	2.8	3.5	4.3	4.9	5.6	6.3
数(mV)								
电压读	0.8	1.7	3.0	3.6	4.3	4.5	5.3	6.3
数(mV)								
平均电	0.90	1.80	2.90	3.55	4.30	4.70	5.45	6.30
压(mV)								

以计算砝码质量为 0.5 g 时的平均电压为例:

$$\overline{U_1} = \frac{U_{11} + U_{12}}{2} = \frac{1.0 + 0.8}{2} \; \mathrm{mV} = 0.90 \; \mathrm{mV}$$

拟合得直线斜率为 1.481,

故硅压阻力敏传感器的灵敏度 $B=rac{\Delta U}{\Delta F}=rac{\Delta U}{\Delta mg}=rac{k}{g}=0.151~\mathrm{V/N}.$

6.2 计算表面张力系数.

U1(mV)	18.4	18.6	18.8	18.9	18.8	18.9	19.4	19.1
U2(mV)	15.1	15.3	15.4	15.4	15.6	15.7	15.8	15.9
a (N/m)	0.10226	0.10226	0.10536	0.10846	0.09916	0.09916	0.11156	0.09916

以第一组数据为例:

$$\begin{split} \alpha_1 &= \frac{f}{\pi(D_1 + D_2)} = \frac{U_1 - U_2}{B\pi(D_1 + D_2)} \\ &= \frac{(18.4 - 15.1) \times 10^{-3}}{0.151 \times 3.14 \times (3.310 + 3.496) \times 10^{-2}} \; \text{N/m} = 0.10226 \; \text{N/m} \end{split}$$

实验测得水的表面张力系数

$$\begin{split} \alpha &= \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8}{8} \\ &= \frac{0.10226 + 0.10226 + 0.10536 + 0.10846 + 0.09916 + 0.09916 + 0.11156 + 0.09916}{8} \text{ N/m} \\ &= 0.1034225 \text{ N/m} \end{split}$$

水温为 25°C时水的表面张力系数的理论值为 0.07197 N/m,

相对误差
$$\frac{0.1034225-0.07197}{0.07197}\times 100\%=43.7\%.$$

七、结果陈述:

实验测得硅压阻力敏传感器的灵敏度为 0.151 V/N, 水温为 25 °C时水的表面张力系数 为 0.1034225 N/m, 与理论值的相对误差为 43.7 %,可能是由于水中有杂质.

八、实验总结与思考题

- 8.1 本实验中的误差来源?
- ①放置砝码、吊环拉脱瞬间仪器晃动,导致所测的电压值偏大.
- ②吊环与水面不平行,合力方向不竖直,导致水面下降过程中水膜不同时破裂,实际作用于吊环的水膜长度 只是吊环周长的一部分.
- ③测定电压值不连续,需一定时间反应.若在水膜即将破裂时水面下降过快,传感器未显示实际的最大电压 值时吊环已脱离水面.
- 8.2 简述液体表面张力系数 α 的影响因素.
- ①液体温度,一般地,在一定范围内,温度越高,液体的表面张力系数越小.
- ②溶质,若含有无机盐,则表面张力系数比水大;若含有有机物,表面张力比水小.

③液体中的杂质.		
指导教师批阅意见:		

成绩评定:

预习 (20分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印 象	总分