

Bases de données Normalisation

Xavier Tannier
xavier.tannier@sorbonne-universite.fr

Dépendance fonctionnelle

Dépendance fonctionnelle

- Si $X = (A_i, A_{i+1}, ...)$ et $Y = (A_j, A_{j+1}, ...)$ sont des ensembles d'attributs
- Il existe une dépendance fonctionnelle $X \to Y$ si et seulement si une valeur de X « détermine pleinement » la valeur de Y
- En d'autres termes :
 - $-X \rightarrow Y$ si chaque valeur de X est associée avec exactement une valeur dans Y
 - $-\;$ Deux n-uplets partageant les mêmes valeurs de X auront les mêmes valeurs de Y
 - Si les valeurs des attributs de X sont connues, alors on peut connaître les valeurs des attributs de Y en regardant un n-uplet contenant ces valeurs de X.
 - Y est une fonction de X

_	POLYTECH"
_	STEEL BAR

Bases de données Normalisation

Xavier Tannier

3

Dépendance fonctionnelle

- Si $X=(A_i,A_{i+1},\dots)$ et $Y=\left(A_j,A_{j+1},\dots\right)$ sont des ensembles d'attributs
- Il existe une dépendance fonctionnelle X → Y si et seulement si une valeur de X « détermine pleinement » la valeur de Y

Série	Saison	Épisode	Titre	Créateur	Pays de diffusion	Chaîne	Date 1 ^{ère} diffusion
Weeds	1	5					

(Série) → (Créateur)

(Série, Pays de diffusion) → (Chaîne)

(Série, Saison, Épisode) → (Titre)

(Série, Saison, Épisode, Pays) \rightarrow (Date 1^{ère} diffusion)

•	۲Q	LY	TE	CH.	

Bases de données Normalisation

er Tannier 4

Dépendance fonctionnelle

- Si $X = (A_i, A_{i+1}, \dots)$ et $Y = (A_j, A_{j+1}, \dots)$ sont des ensembles d'attributs
- Il existe une dépendance fonctionnelle $X \to Y$ si et seulement si une valeur de X « détermine pleinement » la valeur de Y

Série	Saison	Épisode	Titre	Créateur	Pays de diffusion	Chaîne	Date 1 ^{ère} diffusion
Weeds	1	5					

(Créateur) → (Série) : non car un créateur peut créer plusieurs séries (Série) → (Pays de diffusion) : non car une série peut être diffusée dans plusieurs pays

2.1	POLYTECH'

Bases de données

avier Tannier

Dépendance fonctionnelle

- Dépendances fonctionnelles = relations entre les objets dans le
- Une approche complémentaire de la définition du diagramme de classes UML
- Une DF n'est pas « vraie » ou « fausse », elle est ou pas adaptée au problème
- Le schéma de la base doit être cohérent avec la définition des DF

Décomposition d'une relation

Normalisation

Bases de données Normalisation

Propriétés des DF

- Propriétés des dépendances fonctionnelles :
 - Réflexivité : si B est un sous-ensemble de A, alors A \rightarrow B
 - Augmentation : si A → B alors $\{A,C\}$ → $\{B,C\}$
 - − Transitivité : si A \rightarrow B et B \rightarrow C alors A \rightarrow C
 - − Décomposition : si A \rightarrow {B,C} alors A \rightarrow B et A \rightarrow C
 - Union : si A → B et A → C alors A → {B,C}
 - − Pseudo-transitivité : si A → B et {B,C} → D alors {A,C} → D
 - − Composition : si A \rightarrow B et C \rightarrow D alors {A,C} \rightarrow {B,D}

U	POLYTECH.	

Bases de données Normalisation

Xavier Tannier

Axiomes

d'Armstrong

7

Dépendance fonctionnelle

- Les DF sont transitives
 - $\ \ \mathsf{Si} \ \mathsf{X} \to \mathsf{Y} \ \mathsf{et} \ \mathsf{Y} \to \mathsf{Z} \ \mathsf{alors} \ \mathsf{X} \to \mathsf{Z}$
- Fermeture transitive : déduction de toutes les DF implicites par application de la transitivité

£ 1	POLYTECH'

Bases de données Sormalisation

Xavier Tannier

Dépendance fonctionnelle

- Les DF sont transitives
 - $\ \ \mathsf{Si} \ \mathsf{X} \to \mathsf{Y} \ \mathsf{et} \ \mathsf{Y} \to \mathsf{Z} \ \mathsf{alors} \ \mathsf{X} \to \mathsf{Z}$
- Fermeture transitive : déduction de toutes les DF implicites par application de la transitivité

	١.	'n	÷	٧1	n	w
_	,,,				۰	

Bases de données Normalisation

Dépendance fonctionnelle

- Les DF sont transitives
 - $\ \ \mathsf{Si} \ \mathsf{X} \to \mathsf{Y} \ \mathsf{et} \ \mathsf{Y} \to \mathsf{Z} \ \mathsf{alors} \ \mathsf{X} \to \mathsf{Z}$
- Fermeture transitive : déduction de toutes les DF implicites par application de la transitivité

Dépendance fonctionnelle

• Couverture minimale : un sous-ensemble minimal de DF permettant de déduire toutes les autres par transitivité

Couverture minimale

- Pour trouver la couverture minimale (version courte)
 - On fait la fermeture transitive, puis
 - 1. On décompose les DF (que des attributs uniques à droite)
 - 2. On vérifie que les DF sont élémentaires, c'est-à-dire que la partie de droite dépend **entièrement** de la partie de gauche
 - 3. On cherche à supprimer toutes les DF que l'on peut obtenir à partir des autres, en utilisant les propriétés des DF

DEGLATERH,	Bases de données Normalisation	Xavier Tannier

Couverture minimale

• Exemple : $\{A,B\} \rightarrow C$ $C \rightarrow A$

 $C \rightarrow A$ $\{B,C\} \rightarrow D$ $\{A,C,D\} \rightarrow B$ $D \rightarrow \{E,G\}$

 $\begin{cases}
B,E\} \to C \\
\{C,G\} \to \{B,D\} \\
\{C,E\} \to \{A,G\}
\end{cases}$

DESTATE SH.

Bases de données Normalisation

13

Xavier Tannier

Couverture minimale

1. Décomposition pour avoir un seul attribut à droite

POLYTECH'

Bases de données Normalisation

14

Couverture minimale

2. Suppression des attributs en surnombre à gauche

DEGETTERN.

Bases de données Normalisation

1

Couverture minimale

3. Suppression des DF redondantes

$$\begin{split} \{A,B\} &\rightarrow C \\ C &\rightarrow A \\ \{B,C\} &\rightarrow D \\ \hline \{C,D\} &\rightarrow B \\ D &\rightarrow E \\ D &\rightarrow G \\ \{B,E\} &\rightarrow C \\ \{C,G\} &\rightarrow B \\ \hline \{C,G\} &\rightarrow D \\ \hline \{C,E\} &\rightarrow A \\ \{C,E\} &\rightarrow G \end{split}$$

വ	POLYTEON'
\sim	SCHOOL SERVICE

Bases de données Normalisation

16

Xavier Tannier

Couverture minimale

3. Suppression des DF redondantes

POLYTECH.

Bases de données Normalisation

17

Couverture minimale

3. Suppression des DF redondantes

D POLYTECH.

Bases de données Normalisation

Couverture minimale 3. Suppression des DF redondantes $\begin{aligned} \{A,B\} &\to C \\ C &\to A \\ \{B,C\} &\to D \end{aligned}$ ${A,B} \rightarrow C$ $C \rightarrow A$ ${B,C} \rightarrow D$ * {C,E} → {A,E} augmentation $D \rightarrow E$ $D \rightarrow G$ $D \rightarrow E$ $D \mathop{\rightarrow} G$ $\begin{cases} B,E \} \to C \\ \{C,G \} \to B \end{cases}$ $C,E \} \to G$ $\{B,E\} \to C$ $\{C,E\} \rightarrow A$ $\{C,G\} \rightarrow B$ décomposition $\{C,E\} \rightarrow G$ D LOTALERH. Bases de données Normalisation Xavier Tannier 19 Couverture minimale 4. Résultat : $\{A,B\} \to C$ $C \rightarrow A$ $\{B,C\} \rightarrow D$ $D \to E$ $D \to G$ $\{B,E\} \rightarrow C$ $\{C,G\} \rightarrow B$ $\{C,E\} \rightarrow G$ Bases de données % Normalisation POLYTECH 20 **Décomposition**

Anomalies de structure

Client	Adresse Client	TypeProduit Acheté	Référence Produit	Quantité	Date
J. Dupont	Paris	Livre	LYF526	1	2016-01-20
J. Dupont	Paris	Feuilles	FA459F	10	2016-02-12
P. Durand	Lyon	Téléphone	Asu153	1	2016-01-20
T. Martin	Marseille	Feuilles	FA459F	5	2016-01-27
J. Dupont	Paris	Livre	LDE901	1	2016-03-03
P. Durand	Lyon	Livre	LTY314	2	2016-01-20
L. Dubois	Marseille	Carnet	CDSF93	3	2016-03-03

DEGLYTERH,	Bases de données Normalisation	Xavier Tannier	22

Anomalies de structure

- Anomalies de mise à jour
 - Mettre à jour l'adresse de J. Dupont ?
 - \rightarrow Informations redondantes
 - → Risque d'incohérences

Client	Adresse Client	TypeProduit Acheté	Référence Produit	Quantité	Date
J. Dupont	Paris	Livre	LYF526	1	2016-01-20
J. Dupont	Paris	Feuilles	FA459F	10	2016-02-12
P. Durand	Lyon	Téléphone	Asu153	1	2016-01-20
T. Martin	Marseille	Feuilles	FA459F	5	2016-01-27
J. Dupont	Paris	Livre	LDE901	1	2016-03-03
P. Durand	Lyon	Livre	LTY314	2	2016-01-20
L. Dubois	Marseille	Carnet	CDSF93	3	2016-03-03

O POLYTECH	Bases de données	Yaviar Tanniar	23

Anomalies de structure

- · Anomalies d'insertion
 - Insérer un nouveau client qui n'a encore rien acheté ?
 - $\rightarrow \text{Informations } \frac{}{\text{manquantes}}$
 - → Clés incomplètes

Client	Adresse Client	TypeProduit Acheté	Référence Produit	Quantité	Date
J. Dupont	Paris	Livre	LYF526	1	2016-01-20
J. Dupont	Paris	Feuilles	FA459F	10	2016-02-12
P. Durand	Lyon	Téléphone	Asu153	1	2016-01-20
T. Martin	Marseille	Feuilles	FA459F	5	2016-01-27
J. Dupont	Paris	Livre	LDE901	1	2016-03-03
P. Durand	Lyon	Livre	LTY314	2	2016-01-20
L. Dubois	Marseille	Carnet	CDSF93	3	2016-03-03
I. Thomas	Toulouse	NULL	NULL	NULL	NULL

PGLYTECH'	Bases de données Normalisation	Xavier Tannier	24

Anomalies de structure

- Anomalies de suppression
 - Suppression des données du 2016-01-20 ?
 - $\rightarrow \textbf{Perte} \ \text{d'informations (Client P. Durand)}$

Client	Adresse Client	TypeProduit Acheté	Référence Produit	Quantité	Date
J. Dupont	Paris	Livre	LYF526	1	2016-01-20
J. Dupont	Paris	Feuilles	FA459F	10	2016-02-12
P. Durand	Lyon	Téléphone	Asu153	1	2016-01-20
T. Martin	Marseille	Feuilles	FA459F	5	2016-01-27
J. Dupont	Paris	Livre	LDE901	1	2016-03-03
P. Durand	Lyon	Livre	LTY314	2	2016-01-20
L. Dubois	Marseille	Carnet	CDSF93	3	2016-03-03

Bases de données Normalisation	Xavier Tannier	25
---------------------------------	----------------	----

Décomposition

- Si R = (X, Y, Z) où X, Y, Z sont des ensembles d'attributs
- Si $X \to Y$ alors on peut décomposer R en $R_1(X,Y)$ et $R_2(X,Z)$

POLYTECH'	Bases de données Normalisation	Xavier Tannier	26

Décomposition

\rightarrow Décomposition

Client	TypeProduit Acheté	Référence Produit	Quantité	Date
J. Dupont	Livre	LYF526	1	2016-01-20
J. Dupont	Feuilles	FA459F	10	2016-02-12
P. Durand	Téléphone	Asu153	1	2016-01-20
T. Martin	Feuilles	FA459F	5	2016-01-27
J. Dupont	Livre	LDE901	1	2016-03-03
P. Durand	Livre	LTY314	2	2016-01-20
I Dubois	Carnet	CDSE93	3	2016-03-03

0	POLYTECH'	Bases de données Normalisation	Xavier Tannier	27

Décomposition

- La décomposition :
 - Préserve les informations
 - Préserve les dépendances fonctionnelles

Bases de données & Normalisation	Xavier Tannier	33

Formes normales	
Normalisation	
Obtention d'une forme normale = transformation d'un ensemble de relations comportant des anomalies en un autre ensemble de	
relations : — Contenant les mêmes informations	
Contenant les memes informations Possédant les propriétés recherchées	
Un cadre permettant de :	
 Vérifier une structure (à l'issue du processus de modélisation) Corriger une structure défaillante 	
Complémentaire de la modélisation UML puis relationnelle	
Bases de données Xavier Tannier 35	
Première forme normale : 1FN	
 Une relation est en première forme normale (1FN) si : Tous ses attributs sont atomiques 	
Nom prénom Adresse complète	
Nom Prénom Numéro Rue Ville	
OK	

D LOTALEDH,

Bases de données Normalisation

Deuxième forme normale : 2FN

- Une relation est en deuxième forme normale (2FN) si :
 - Elle est en 1FN
 - Aucun attribut non-clé n'est dépendant que d'une partie d'une clé

D POLYTECH

Bases de données Normalisation

37

Xavier Tannier

Troisième forme normale : 3FN

- Une relation est en troisième forme normale (3FN) si :
 - Elle est en 2FN
 - Aucun attribut non-clé n'est dépendant d'un autre attribut non-clé

DEGETTECH.

Bases de données Normalisation er Tannier

Forme normale de Boyce-Codd: BCNF

- Une relation est en forme normale de Boyce-Codd si :
 - Elle est en 3FN
 - Aucun attribut clé n'est dépendant d'un attribut non-clé

DEGETTERN.

Bases de données

Xavier Tannier

13

