Sales Prediction using Python

Data Collection

Importing pandas library for accessing the data

import pandas as pd

 $a=pd.read_csv('https://docs.google.com/spreadsheets/d/11tF6SH9oeHXPVfJRICUfX6NwlxS9D_eKfrbNPCoof0M/export?format=csv&gid=0')$

Data Organization

a.head(3)

	TV	Radio	Newspaper	Sales	
0	230.1	37.8	69.2	22.1	ılı
1	44.5	39.3	45.1	10.4	
2	17 2	45 9	69.3	93	

a.tail(3)

	TV	Radio	Newspaper	Sales	
197	177.0	9.3	6.4	12.8	ılı
198	283.6	42.0	66.2	25.5	
199	232.1	8.6	8.7	13.4	

Getting the data's info/summary

a.info()

a.describe()

	TV	Radio	Newspaper	Sales	\blacksquare
count	200.000000	200.000000	200.000000	200.000000	ıl.
mean	147.042500	23.264000	30.554000	14.022500	
std	85.854236	14.846809	21.778621	5.217457	
min	0.700000	0.000000	0.300000	1.600000	
25%	74.375000	9.975000	12.750000	10.375000	
50%	149.750000	22.900000	25.750000	12.900000	
75%	218.825000	36.525000	45.100000	17.400000	
max	296.400000	49.600000	114.000000	27.000000	

Data Cleaning

Checking for null values

a.isnull().sum()

```
TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64
```

Checking for duplicates

```
a.duplicated()
```

```
0
       False
       False
1
2
       False
3
       False
4
       False
195
       False
196
       False
       False
198
       False
199
       False
Length: 200, dtype: bool
```

Exploratory Data Analysis

```
#importing libraries for EDA
import seaborn as sns
import matplotlib.pyplot as plt
```

sns.scatterplot(data=a,x='TV',y='Newspaper')

<Axes: xlabel='TV', ylabel='Newspaper'>

Data Preparation - removing outliers

```
a[(a['TV']>50) & (a['Newspaper']>100)]
```

	TV	Radio	Newspaper	Sales	
16	67.8	36.6	114.0	12.5	ıl.
101	296.4	36.3	100.9	23.8	

a=a.drop(index=16)

```
i=[]
for x in range(0,len(a)):
    i.append(x)
a.index=i
a1=sns.scatterplot(data=a,x='TV',y='Newspaper')
print(a1)
```


 $\label{thm:checking} \mbox{$\#$ Checking the relationship between TV and Sales} \\ \mbox{$sns.scatterplot}(x='TV',y='Sales',data=a) \\ \mbox{$\#$ Checking the relationship between TV and Sales} \\ \mbox{$\#$ Checking the relationship between TV and S$

The above graph shows, as the TV values increases, Sales also increases linearly

sns.displot(x=a['Sales'])

<seaborn.axisgrid.FacetGrid at 0x7b67a1a15810>

The distribution plot of sales, shows that, between 10 and 12, the values are higher

sns.pairplot(data=a)

Pie chart is plotted to show how the 3 media platforms are distributed

```
a_1=a['TV'].mean().round()
a_2=a['Radio'].mean().round()
a_3=a['Newspaper'].mean().round()
print(a_1,a_2,a_3)
T=a_1+a_2+a_3
print(T) # T for total
A=(a_1/T)*100
B=(a_2/T)*100
C=(a_3/T)*100
print(A,B,C) # individuals
plt.pie(x=[A,B,C],labels=['TV','Radio','Newspaper'])
```

```
147.0 23.0 30.0 200.0 73.5 11.5 15.0 ((<matplotlib.patches.Wedge at 0x7b67a0d64100>, <matplotlib.patches.Wedge at 0x7b67a0d64100>, <matplotlib.patches.Wedge at 0x7b67a0d0dcf0>, <matplotlib.patches.Wedge at 0x7b67a0d64700>], [Text(-0.7403138014243597, 0.8135941712061451, 'TV'), Text(0.2902604572813063, -1.0610131323121534, 'Radio'), Text(0.9801072373902886, -0.4993894304199647, 'Newspaper')])
```


From the above piechart, we can infer that the sales value of TV is the highest

Data Preparation

Due to the absence of text values, no dummy data is created

Dividing the data into input and output

```
x=a.drop(columns=['Sales']) # input column
y=a['Sales'] # output column
```

Standardising the data

```
# importing module for data standardisation
from sklearn.preprocessing import StandardScaler
```

```
s=StandardScaler()
```

```
# standardising the input column
x=pd.DataFrame(data=s.fit_transform(x),columns=x.columns) # x the inpt column has standardised values now.
```

Predictive Modelling

Since, the data is composed of continous variables, 2 algorithms are used for building the model - Linear Regression and K Nearest Regression

```
# importing module for model building and training
from sklearn.model_selection import train_test_split
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2) # 80% data is to train the model and remaining 20% for testing
```

(1) Using Linear Regression

```
from sklearn.linear_model import LinearRegression
```

11=LinearRegression() # defining a model

11.fit(x_train,y_train)

```
▼ LinearRegression
LinearRegression()
```

```
# checking the accuracy of the model
11.score(x_test,y_test)
    0.8447907914936302
(2) K Nearest Regression
from sklearn.neighbors import KNeighborsRegressor
k=KNeighborsRegressor(n_neighbors=2) # defining the model
k.fit(x_train,y_train) # training the model
              KNeighborsRegressor
     KNeighborsRegressor(n_neighbors=2)
k.score(x_test,y_test)
     0.9414069683489297
k_b=KNeighborsRegressor(n_neighbors=5) # checking b changing the number of neighbors
k_b.fit(x_train,y_train) # training the model
k_b.score(x_test,y_test)
     0.9507449402043913
Finding R2 score for choosing the better algorithm
# r2_score is imported
from sklearn.metrics import r2_score
y_pred=l1.predict(x_test) # for Linear Regression
print('R2 score of Linear Regression:',r2_score(y_test,y_pred))
y1_pred=k.predict(x_test) # for K Nearest Regression
print('R2 score of K Nearest Regression:',r2_score(y_test,y1_pred))
     R2 score of Linear Regression: 0.8447907914936302
     R2 score of K Nearest Regression: 0.9414069683489297
```

By comparing (1) and (2), K Nearest Regression with R2 score of 94 is found to be the suitable algorithm for the sales prediction.

So, K Nearest Regression algorithm is chosen to build the model for sales prediction