EXAM 2

Math 221 - 09 - Calculus I 3/26/2009

Name: Key

When you are finished please sign the following:

Signature:	
Digitature.	By signing my name I pledge that I have not broken the Student Academic Honesty Code at any point during this examination.

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 6 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

Part B. Problems solving. (70% of the total points) You need to show your work!!

 $3x^3 + xy = 15$

- **2.** (10 points)
 - a. (5 pts) Find $\frac{dy}{dx}$ by implicit differentiation:

$$\frac{d}{dx}(3x^{3} + xy) = \frac{d}{dx} 15$$

$$9x^{2} + x \frac{dy}{dx} + y = 0$$

$$\frac{dy}{dx} = \frac{-y - 9x^{2}}{x}$$
I point

b. (5 pts) Using the result from above find y''. Simplify!

Using the result from above find y". Simplify!

Use the quotient rule:

$$y'' = x \left[-\frac{dy}{dx} - 18x \right] - \left[-y - 9x^{2} \right] (1)$$

$$= x \left[-\left(-\frac{y - 9x^{2}}{x} \right) - 18x \right] + \left[y + 9x^{2} \right]$$

$$= -\left(-y - 9x^{2} \right) - 18x^{2} + y + 9x^{2}$$

$$= y + 9x^{2} - 18x^{2} + 9x^{2} + y$$

$$= \frac{2y}{x^{2}}$$
| point

3. (15 points) You are watching a rocket launch exactly 2 km. away. As the rocket climbs in altitude you begin tilt your head upwards in order to see it. If the rocket were to move vertically upwards at a rate of 10 km/s, how fast is the angle at which you tilt your head changing when the rocket is 9 km above the launching station? (Note: Your picture should be something nice! Do not worry about meaningless things such as your height and the height of the rocket, etc.)

$$\frac{\text{given}: \frac{dy}{dt} = 10 \,\text{km/s}}{\frac{d\theta}{dt}} = \frac{10 \,\text{km/s}}{\frac{d\theta}{dt}}$$
when $y = 9 \,\text{km}$.

$$\frac{1 \text{knam}}{\text{dt}} : \frac{\text{dt}}{\text{dt}}$$
 when $y = 9 \text{ km}$.

Equation:
$$\tan \theta = \frac{y}{2}$$
 } 2 points

Differentiation
$$\frac{d}{dt}(\tan \theta) = \frac{d}{dt}(\frac{y}{2})$$

$$Sec^{2}\theta \frac{d\theta}{dt} = \frac{1}{2} \frac{dy}{dt}$$

$$d\theta = \frac{1}{2} \frac{dy}{dt}$$

$$\frac{d\theta}{dt} = \frac{1}{2\sec^2\theta} \frac{dy}{dt}$$

$$\frac{d\theta}{dt} = \frac{\cos^2\theta}{2} \frac{dy}{dt}$$

Substitution: when
$$y=9$$
 we have this picture:
so $\cos 0 = \frac{2}{\sqrt{z^2+9^2}} = \frac{2}{\sqrt{85}}$

so
$$\cos \theta = \frac{2}{\sqrt{z^2 + 9^2}} = \frac{2}{\sqrt{85}}$$

hence
$$\frac{d\theta}{d+} = \frac{\left(\frac{2}{\sqrt{85}}\right)^2}{2} (10) = \frac{4}{85} 10 = \frac{20}{85}$$

Solution:
$$\frac{d\theta}{dt} = \frac{4}{17} \frac{\text{rad}}{\text{s}}$$

4. (15 points) Evaluate the limit, if it exists. You must show your work by using appropriate limit laws/methods .

a.
$$(5 pts)$$
 $\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + x - 2} = \lim_{x \to \infty} \frac{(x^2 - 1)}{(x^2 + x - 2)} \frac{(\frac{1}{x^2})}{(\frac{1}{x^2})}$
 $= \lim_{x \to \infty} \frac{x^2 - \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{x}{x^2} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{1 - \frac{1}$

b.
$$(5 pts)$$
 $\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x + 2)(x - 1)} = \lim_{x \to 1} \frac{(x + 1)}{(x + 2)} = \boxed{\frac{2}{3}}$

c.
$$(5 pts)$$
 $\lim_{x\to 0} \frac{x^2-1}{x^2+x-2} = \frac{0-1}{0+0-2} = \boxed{\frac{1}{2}}$

this function is continuous everywhere except when $x = 1 \frac{\sigma R}{s} = -2$, neither of which is x = 0! So the result follows.

5. (20 points) Let
$$f(x) = \frac{x^2}{x^2 + 4}$$
. Find **a.** (2 pts) domain,

a. (2 pts) domain,

R, this is because f is a rational function which is continuous

everywhere except. when
$$x^2+4=0$$
 which there are

no such x in the real numbers that

solve this hence the clamain is all real numbers

 $y-intercept$: $f(o) = \frac{o}{o+4} = 0$ so the point (0,0)

y-intercept:
$$f(0) = \frac{0}{0+4} = 0$$
 so the point (0,0)

$$\frac{X - intercept(s)}{x^2 + y}$$
: $f(x) = 0 = \frac{x^2}{x^2 + y} = 0$ \Leftrightarrow $x^2 = 0 \Leftrightarrow x = 0$
So the point (0,0)

$$f(-x) = \frac{(-x)^2}{(-x)^2 + 4} = \frac{x^2}{x^2 + 4} = f(x)$$
 EVEN

d. (5 pts) intervals of increase and decrease,

$$f'(x) = \frac{(x^2+4)2x - x^2(2x)}{(x^2+4)^2} = \frac{2x^3+8x-2x^3}{(x^2+4)^2} = \frac{8x}{(x^2+4)^2}$$

so
$$f'(x) = 0$$
 when $8x = 0$ and $f'(x)$ is always defined so so $x = 0$

intrvals:
$$(-\infty, 0)$$
 $\frac{1}{3}$ $\frac{1}$

local minimum at
$$f(0) = 0$$

so at the point $(0,0)$

f. (5 pts) intervals of concavity and points of inflection,

$$f''(x) = \frac{(x^2 + 4)^2 8 - 8x (2(x^2 + 4)2x)}{((x^2 + 4)^2)^2} = \frac{8(x^2 + 4)[(x^2 + 4) - 4x^2]}{(x^2 + 4)^2}$$
$$= \frac{8(x^2 + 4)[(x^2 + 4)^2]}{(x^2 + 4)^2}$$
$$= \frac{8(x^2 + 4)[(x^2 + 4)^2]}{(x^2 + 4)^2}$$

so that
$$f''(x) = 0$$
 when $8(x^2 + 4) = 0$
so $-3x^2 + 4 = 0$ (anly factor with roots)
 $3x^2 = 4$
 $x^2 = 4/3$
 $x = \pm \sqrt{4/3}$

intervals:
$$(0, -\sqrt{4/3})$$
 $\{-\sqrt{4/3}, -\sqrt{4/3}\}$ $\{-\sqrt{4/3}, +\sqrt{4/3}\}$ $\{+\sqrt{4/3}, \sqrt{4/3}\}$ $\{-\sqrt{4/3}, \sqrt{4/3}$

Notice: there will be a horizontal asymptote at
$$y = 1$$
because $\lim_{x\to\infty} f(x) = 1$
and $\lim_{x\to-\infty} f(x) = 1$

PICK ONE OF THE FOLLOWING:

Please indicate which one you do NOT want me to grade by putting an X through it, otherwise I will grade the first one worked on:

6. (10 points)

a. (10 pts) Find the point on the line y = 2x + 1 that is closest to the origin.

Suppose (x_1y) is a point on the line y=2x+1. If D is the distance from (x_1y) to the origin (0,0) then:

 $D = \sqrt{(x-0)^2 + (y-0)^2}$ (distance formula) $f(x) = D^2 = (x-0)^2 + (y-0)^2$ $= x^2 + (2x+1)^2 = x^2 + 4x^2 + 4x + 1$ $= 5x^2 + 4x + 1$

f'(x) = 10 x + 4 $f'(x) = 0 = 10x + 4 \implies x = -\frac{4}{10} = -\frac{2}{5}$

Check we have a minimum:

A closed box with a square base must have a volume of 8 ft³. Find the **b.** (10 pts) dimensions of the box that will minimize the amount of material used. (Note: only the base is assumed to be square!)

we are given the volume: 8 = x24 we want to minimize surface area:

$$A = 2x^{2} + 4xy$$
50 using the given volume we see $y = \frac{8}{x^{2}}$ so
$$A(x) = 2x^{2} + 4x(\frac{8}{x^{2}}) = 2x^{2} + \frac{32}{x}$$
(since length

So
$$A'(x) = 4x - \frac{32}{x^3} = \frac{4x^3 - 32}{x^2}$$

Check we have a minimum:

A'(x) = 0 when
$$4x^3 - 32 = 0$$

 $4x^3 = 32$
 $x^3 = 8$
 $x = 3\sqrt{8}$
 $x = 2$

, so indeed x=2 corresponds to the minimum of A(x) so y=8/y=2the dimensions are 2ft x 2ft x 2ft. (a cube)