Discrete Mathematics Graphs

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2014

License

© 2001-2014 T. Uvar. A. Yavımlı, E. Harmancı

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Under the following terms:

- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- and indicate if changes were made.

 NonCommercial You may not use the material for commercial purposes.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 105

Topics

Graphs

Introduction Connectivity Traversable Graphs Planar Graphs

Graph Problems

Graph Coloring Shortest Path Searching Graphs

Graphs

Definition

graph: G = (V, E)

- V: node (or vertex) set
- E ⊂ V × V: edge set
- if e = (v₁, v₂) ∈ E:
 - ▶ v₁ and v₂ are endnodes of e
 - e is incident to v₁ and v₂
 - v₁ and v₂ are adjacent
- ▶ node with no incident edge: isolated node

.

Graph Example

Example

Directed Graphs

Definition

directed graph (or digraph): D = (V, A)

- V: node set
- A ⊆ V × V: arc set
- if a = (v₁, v₂) ∈ A:
 - v₁: origin node of a
 - ▶ v₂: terminating node of a

Directed Graph Example

Example

7/105

Weighted Graphs

- in a weighted graph, labels are assigned to edges:
- weight, length, cost, delay, probability, ...

Multigraphs

- ▶ parallel edges: edges between the same pair of nodes
- ▶ loop: an edge starting and ending in the same node
- ▶ plain graph: a graph without any loops or parallel edges
- multigraph: a graph which is not plain

Multigraph Example

Example

10 / 10

Subgraph

Definition

G' = (V', E') is a subgraph of G = (V, E):

- $V' \subseteq V$, and
- ▶ $E' \subseteq E$, and
- $\blacktriangleright \ \forall (v_1,v_2) \in E' \ v_1,v_2 \in V'$

Representation

- ▶ incidence matrix
 - rows represent nodes, columns represent edges
 - cell: 1 if the edge is incident to the node, 0 otherwise
- ▶ adjacency matrix
 - rows and columns represent nodes
 - cell: 1 if the nodes are adjacent, 0 otherwise
 - ▶ in a multigraph, the cells can represent
 - the number of edges between the nodes
 - in a weighted graph, the cells can represent the labels assigned to the edges

.

.

Incidence Matrix Example

Example

	e ₁ 1 1 0 0 0	e_2	e_3	e_4	e_5	e_6	e_7	e_8
V ₁	1	1	1	0	1	0	0	0
V_2	1	0	0	1	0	0	0	0
V3	0	0	1	1	0	0	1	1
V_4	0	0	0	0	1	1	0	1
V5	0	1	0	0	0	1	1	0

13/105

Adjacency Matrix Example

Example

	v_1	V_2	V3	v_4	V_5
v ₁	0	1	1	1	1
V_2	1	0	1	0	0
V3	1	1	0	1	1
V_4	1	0	1	0	1
V ₅	1	0	1	1	0

14 / 106

Adjacency Matrix Example

Example

	а		с	(
а	0	0	0	-
a b	2	1	1	(
с	0	0	0	(
d	0	1	1	(

Degree

Definition

degree: number of edges incident to the node

Theorem

let di be the degree of node vi:

$$|E| = \frac{\sum_i d_i}{2}$$

Degree Example

Example (plain graph)

Degree Example

Example (multigraph)

 $d_a = 6$ $d_b = 3$ $d_c = 2$ $d_d = 2$ $d_e = 5$ $d_f = 2$ Total = 20

|E| = 10

8 / 105

Degree in Directed Graphs

- two types of degree
 - ▶ in-degree: d_vⁱ
 - ► out-degree: d_v°
- ▶ node with in-degree 0: source
- ▶ node with out-degree 0: sink
- $\blacktriangleright \sum_{v \in V} d_v^i = \sum_{v \in V} d_v^o = |A|$

Degree

Theorem

In an undirected graph, there is an even number of nodes which have an odd degree.

Proof.

▶ t_i: number of nodes of degree i

 $2|E| = \sum_{i} d_{i} = 1t_{1} + 2t_{2} + 3t_{3} + 4t_{4} + 5t_{5} + ...$

 $2|E| - 2t_2 - 4t_4 - \cdots = t_1 + t_3 + t_5 + \cdots + 2t_3 + 4t_5 + \cdots$

 $2|E| - 2t_2 - 4t_4 - \cdots - 2t_3 - 4t_5 - \cdots = t_1 + t_3 + t_5 + \cdots$

lacktriangle since the left-hand side is even, the right-hand side is also even

Isomorphism

Definition

G = (V, E) and $G^* = (V^*, E^*)$ are isomorphic:

- $\blacktriangleright \ \exists f: V \rightarrow V^{\star} \ (u,v) \in E \Rightarrow (f(u),f(v)) \in E^{\star}$
- ▶ f is bijective
- \blacktriangleright ${\it G}$ and ${\it G}^{\star}$ can be drawn the same way

Isomorphism Example

Example

 $\blacktriangleright \ f = (a \mapsto d, b \mapsto e, c \mapsto b, d \mapsto c, e \mapsto a)$

22 / 105

Isomorphism Example

Example (Petersen graph)

$$f = (a \mapsto q, b \mapsto v, c \mapsto u, d \mapsto y, e \mapsto r, f \mapsto w, g \mapsto x, h \mapsto t, i \mapsto z, j \mapsto s)$$

Homeomorphism

Definition

G = (V, E) and $G^* = (V^*, E^*)$ are homeomorphic:

 G and G* are isomorphic except that some edges in E* are divided with additional nodes

23 / 105

Definition

regular graph: all nodes have the same degree

ightharpoonup n-regular: all nodes have degree n

26 / 109

Regular Graph Examples

Example

Definition

27 / 105

$$G = (V, E)$$
 is completely connected:

Completely Connected Graphs

 $\blacktriangleright \ \forall v_1,v_2 \in V \ (v_1,v_2) \in E$

- there is an edge between every pair of nodes
 - $ightharpoonup K_n$: the completely connected graph with n nodes

Completely Connected Graph Examples

Example (K_4)

Example (K_5)

Bipartite Graphs

Definition

G = (V, E) is bipartite:

- $\blacktriangleright \ \forall (v_1,v_2) \in \textit{E} \ v_1 \in \textit{V}_1 \land v_2 \in \textit{V}_2$
- ▶ $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$
- ▶ complete bipartite: $\forall v_1 \in V_1 \ \forall v_2 \in V_2 \ (v_1, v_2) \in E$
- $\blacktriangleright \ \, \textit{K}_{\textit{m},\textit{n}} \text{: } \, |\textit{V}_{1}| = \textit{m}, \, |\textit{V}_{2}| = \textit{n}$

30 / 105

Complete Bipartite Graph Examples

Example $(K_{2,3})$

Walk

Definition

walk: a sequence of nodes and edges from a starting node (v_n) to an ending node (v_n)

$$v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \xrightarrow{e_3} v_3 \longrightarrow \cdots \longrightarrow v_{n-1} \xrightarrow{e_n} v_n$$

where $e_i = (v_{i-1}, v_i)$

- no need to write the edges
- ▶ length: number of edges in the walk
- ▶ if $v_0 \neq v_n$ open, if $v_0 = v_n$ closed

Walk Example

Example

 $c \xrightarrow{(c,b)} b \xrightarrow{(b,a)} a \xrightarrow{(a,d)} d$ $\xrightarrow{(a,b)} b f \xrightarrow{(f,a)} a$ $c \xrightarrow{(a,b)} b$ $c \xrightarrow{b} b \xrightarrow{a} d \xrightarrow{e} e$

$$\rightarrow f \rightarrow a \rightarrow b$$

length: 7

Trail

Definition

trail: a walk where edges are not repeated

- circuit: closed trail
- ▶ spanning trail: a trail that covers all the edges in the graph

34 / 10

Trail Example

Example

 $c \xrightarrow{(c,b)} b \xrightarrow{(b,a)} a \xrightarrow{(a,e)} e$ $c \xrightarrow{(e,d)} d \xrightarrow{(d,a)} a \xrightarrow{(a,f)} f$ $c \to a \to e \to d \to a \to f$

Path

Definition

path: a walk where nodes are not repeated

- ► cycle: closed path
- $\,\blacktriangleright\,$ spanning path: a path that visits all the nodes in the graph

Connectivity

Definition

connected graph:

there is a path between every pair of nodes

 a disconnected graph can be divided into connected components

38 / 105

Connected Components Example

Example

- ► graph is disconnected: no path between a and c
- ► connected components: a, d, e b, c

39/105

Distance

Definition

distance between nodes v_i and v_i :

the length of the shortest path between v_i and v_j

▶ diameter: the largest distance in the graph

Distance Example

Example

- ▶ distance between a and e: 2
- ▶ diameter: 3

Cut-Points

▶ the graph G - v is obtained by deleting the node v and all its incident edges from the graph G

Definition

- v is a cut-point for G:
- G is connected but G v is not

2/105

Cut-Point Example

G

G - d

Directed Walks

- ▶ same as in undirected graphs
- ignoring the directions on the arcs: semi-walk, semi-trail, semi-path

43 / 105

41/105

44.130

Connectivity Matrix

- ▶ let A be the adjacency matrix of an undirected graph G = (V, E)
- \triangleright A_{ii}^k : number of walks of length k between nodes i and j
- A_{ij}: number of walks of length k between nodes i and j
 the distance between two nodes is at most |V| 1
- connectivity matrix:
- $C = A^1 + A^2 + A^3 + \cdots + A^{|V|-1}$
- if all elements of C are non-zero, then G is connected

.

Warshall's Algorithm

- it is easier to find whether there is a walk between two nodes rather than finding the number of walks
- ▶ for each node:
 - from all nodes which can reach the chosen node (the rows that contain 1 in the chosen column)
 - to the nodes which can be reached from the chosen node (the columns that contain 1 in the chosen row)

49/105

Warshall's Algorithm Example

Traversable Graphs

Traversable Graphs

- ► a node with an odd degree must be either the starting node or the ending node of the trail
- all nodes except the starting node and the ending node must have even degrees

Traversable Graph Example

Example

- ▶ degrees of a, b and c are even
- ▶ degrees of d and e are odd
- a spanning trail can be formed starting from node d and ending at node e (or vice versa): d → b → a → c → e → d → c → b → e

58 / 105

Bridges of Königsberg

> all node have odd degrees: not traversable

Euler Graphs

Definition

Euler graph: a graph that contains a closed spanning trail

▶ G is an Euler graph ⇔ all nodes in G have even degrees

59/105

Euler Graph Examples

Example (Euler graph)

Example (not an Euler graph)

61/105

Hamilton Graphs

Definition

Hamilton graph: a graph that contains a closed spanning path

62 / 105

Hamilton Graph Examples

Example (Hamilton graph)

Example (not a Hamilton graph)

Planar Graphs

Definition

- G is planar:
- $\ensuremath{\mathcal{G}}$ can be drawn on a plane without intersecting its edges
 - $\,\blacktriangleright\,$ a map of G: a planar drawing of G

63 / 105

Planar Graph Example

Example (K_4)

Regions

- ► a map divides the plane into regions
- degree of a region: length of the closed trail that surrounds the region

Theorem

let d_{r_i} be the degree of region r_i :

$$|E| = \frac{\sum_i d_{r_i}}{2}$$

66 / 105

Region Example

Example

- $d_{r_1} = 3 \text{ (abda)}$ $d_{r_2} = 3 \text{ (bcdb)}$
- $d_{r_3} = 5$ (cdefec) $d_{r_4} = 4$ (abcea)
- $d_{rs} = 3 \text{ (adea)}$
- $\sum_{r} d_r = 18$ |E| = 9

Euler's Formula

Theorem (Euler's Formula)

let G = (V, E) be a planar, connected graph, and let R be the set of regions in a map of G:

$$|V| - |E| + |R| = 2$$

Euler's Formula Example

Example

|V| = 6, |E| = 9, |R| = 5

Planar Graph Theorems

Theorem

let G = (V, E) be a connected, planar graph where |V| > 3: |E| < 3|V| - 6

Proof.

- ▶ sum of region degrees: 2|E|
- ▶ degree of a region is at least 3 $\Rightarrow 2|E| \ge 3|R| \Rightarrow |R| \le \frac{2}{3}|E|$
- |V| |E| + |R| = 2 $\Rightarrow |V| - |E| + \frac{2}{3}|E| \ge 2 \Rightarrow |V| - \frac{1}{3}|E| \ge 2$

 \Rightarrow 3|V| - |E| \geq 6 \Rightarrow |E| \leq 3|V| - 6

Planar Graph Theorems

Theorem

let G = (V, E) be a connected, planar graph where |V| > 3: $\exists v \in V \ d_v \leq 5$

Proof.

- let ∀v ∈ V d_v > 6 $\Rightarrow 2|E| > 6|V|$
 - $\Rightarrow |E| > 3|V|$
 - $\Rightarrow |E| > 3|V| 6$

Nonplanar Graphs

Theorem

Ks is not planar.

Proof.

- |V| = 5
- $|V| 6 = 3 \cdot 5 6 = 9$
- |E| < 9 should hold</p>
- but |E| = 10

72 / 105

Nonplanar Graphs

Theorem

K_{3,3} is not planar.

Proof.

- |V| = 6, |E| = 9
- ▶ if planar then |R| = 5
- ▶ degree of a region is at least 4
- $\Rightarrow \sum_{r \in R} d_r \ge 20$ ► |E| > 10 should hold
- but |E| = 9

Kuratowski's Theorem

Theorem

G contains a subgraph homeomorphic to K5 or K3,3.

G is not planar.

Platonic Solids

- regular polyhedron: a 3-dimensional solid where the faces are identical regular polygons
- > the projection of a regular polyhedron onto the plane is a planar graph
 - every corner is a node

 - · every side is an edge · every face is a region

Platonic Solids

Example (cube)

Platonic Solids

- v: number of corners (nodes)
- ▶ e: number of sides (edges)
- r: number of faces (regions)
- n: number of faces meeting at a corner (node degree)
- m: number of sides of a face (region degree)
- ▶ m, n > 3
- ▶ 2e = n · v
- ▶ 2e = m · r

Platonic Solids

▶ from Fuler's formula:

$$2=v-e+r=\frac{2e}{n}-e+\frac{2e}{m}=e\Big(\frac{2m-mn+2n}{mn}\Big)>0$$

▶ e, m, n > 0:

$$2m-mn+2n>0\Rightarrow mn-2m-2n<0$$

$$\Rightarrow mn - 2m - 2n + 4 < 4 \Rightarrow (m - 2)(n - 2) < 4$$

- ▶ the values that satisfy this inequation:
 - 1. m = 3, n = 32. m = 4, n = 3
 - 3. m = 3, n = 4
 - 4. m = 5, n = 3
 - 5. m = 3, n = 5

Tetrahedron m = 3, n = 3

m = 4, n = 3

Graph Coloring

Definition

proper coloring of G = (V, E): $f : V \to C$ where C is a set of colors

- $\forall (v_i, v_j) \in E \ f(v_i) \neq f(v_j)$
- ▶ minimizing |C|

Graph Coloring Example

Example

- ▶ a company produces chemical compounds
- > some compounds cannot be stored together
- ▶ such compounds must be placed in separate storage areas
- > store the compounds using the least number of storage areas

Graph Coloring

Example

- ▶ every compound is a node
- ▶ two compounds that cannot be stored together are adjacent

-- ---

105

Graph Coloring Example

Example

Graph Coloring Example

Example

88 / 105

Graph Coloring Example

Example

Graph Coloring Example

Example

90 / 105

Chromatic Number

Definition

chromatic number of G: $\chi(G)$ minimum number of colors needed to color G

- ▶ finding χ(G) is a very difficult problem
- $\lambda(K_n) = n$

Chromatic Number Example

Example (Herschel graph)

► chromatic number: 2

-- ---

89/105

Graph Coloring Example

Example (Sudoku)

5	3			7				
6			1	9	5			
	9	8					6	
8			Г	6				3
4	П		8	Г	3		П	1
7			Г	2				6
П	6		Г	Г		2	8	Г
П			4	1	9			5
П				8			7	9

- ▶ every cell is a node
- cells of the same row are adjacent
- cells of the same column are adjacent
- cells of the same 3 × 3 block are adjacent
- revery number is a color
- problem: properly color a graph that is partially colored

/ 105

Region Coloring

> coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)

The regions in a map can be colored using four colors.

94 / 105

Shortest Path

 finding the shortest paths from a starting node to all other nodes: Dijkstra's algorithm

Dijkstra's Algorithm Example

Example (initialization)

starting node: c

a	$(\infty, -)$
b	$(\infty, -)$
С	(0, -)
f	$(\infty, -)$
g	$(\infty, -)$
h	$(\infty, -)$

Dijkstra's Algorithm Example

Example (from node c - base distance=0)

- c → f : 6, 6 < ∞</p>
- $ightharpoonup c
 ightharpoonup h: 11, 11 < \infty$

- $\begin{array}{c|c} \mathbf{a} & (\infty, -) \\ \mathbf{b} & (\infty, -) \\ \hline \mathbf{c} & (0, -) \\ \hline \mathbf{f} & (6, cf) \\ \hline \mathbf{g} & (\infty, -) \\ \mathbf{h} & (11, ch) \end{array}$
- ▶ closest node: f

Dijkstra's Algorithm Example

Example (from node f - base distance=6)

a	(17, cfa)	
b	$(\infty, -)$	$\overline{}$
С	(0, -)	
f	(6, cf)	
g	(15, cfg)	$\overline{}$
h	(10, cfh)	$\overline{}$

► closest node: h

98 / 105

Dijkstra's Algorithm Example

Example (from node h - base distance=10)

►
$$h \rightarrow a: 10 + 11, 21 \nleq 17$$

► $h \rightarrow g: 10 + 4, 14 < 15$

	8,-	
а	(17, cfa)	
b	$(\infty, -)$	
С	(0, -)	V
f	(6, cf)	\vee
g	(14, cfhg)	
h	(10, cfh)	\vee

► closest node: g

Dijkstra's Algorithm Example

Example (from node g - base distance=14)

g → a: 14 + 17, 31

 17

а	(17, cfa)	
b	$(\infty, -)$	
С	(0, -)	
f	(6, cf)	
g	(14, cfhg)	
h	(10, cfh)	

closest node: a

9/105

Dijkstra's Algorithm Example

Example (from node a - base distance=17)

- ▶ $a \to b : 17 + 5.22 < \infty$ a (17, cfa)
- b (22, cfab) c (0, -) f (6, cf) (14, cfhg) (10, cfh)
- ▶ last node: b

Searching Graphs

- searching nodes of graph G = (V, E) starting from node v₁
- depth-first
- breadth-first

102 / 105

Depth-First Search

- 1. $v \leftarrow v_1, T = \emptyset, D = \{v_1\}$
- 2. find smallest i in $2 \le i \le |V|$ such that $(v, v_i) \in E$ and $v_i \notin D$
 - ▶ if no such i exists: go to step 3 if found: T = T ∪ {(v, v_i)}, D = D ∪ {v_i}, v ← v_i
- go to step 2
- 3. if $v = v_1$ then the result is T
- 4. if $v \neq v_1$ then $v \leftarrow backtrack(v)$, go to step 2

Breadth-First Search

- 1. $T = \emptyset$, $D = \{v_1\}$, $Q = (v_1)$
- 2. if Q is empty: the result is T
- 3. if Q not empty: $v \leftarrow front(Q)$, $Q \leftarrow Q v$
- for $2 \le i \le |V|$ check the edges $(v, v_i) \in E$: • if $v_i \notin D : Q = Q + v_i$, $T = T \cup \{(v, v_i)\}, D = D \cup \{v_i\}$
 - ▶ go to step 3

103 / 105

References

Required Reading: Grimaldi

- ► Chapter 11: An Introduction to Graph Theory
- ► Chapter 7: Relations: The Second Time Around
 - ▶ 7.2. Computer Recognition: Zero-One Matrices and Directed Graphs
- ▶ Chapter 13: Optimization and Matching
 - ▶ 13.1. Dijkstra's Shortest Path Algorithm