Topología Algebraica Primer Cuatrimestre - 2019

Examen Final

Guido Arnone

Índice general

l.	Prel	iminares
	1.1.	La categoría de ordinales finitos
	1.2.	Conjuntos Simpliciales
	1.3.	Realización Geométrica

Parte 1

Preliminares

1.1. La categoría de ordinales finitos

Definición 1.1.1. Se define la **categoría** Δ **de ordinales finitos** como la categoría que tiene por objetos a los conjuntos ordenados

$$[\![n]\!] := \{0 < 1 < \cdots < n\}$$

para cada $n \in \mathbb{N}_0$, y cuyas flechas son las funciones $f : [n] \to [m]$ que resultan morfismos de posets. Definimos además, para cada $[n] \in \Delta$ e $i \in [n]_0$,

los mapas de cocaras,

$$\begin{split} \boldsymbol{d}^i: \llbracket \boldsymbol{n} - \boldsymbol{1} \rrbracket &\to \llbracket \boldsymbol{n} \rrbracket \\ j &\mapsto \begin{cases} j & \text{si } j < i \\ j + 1 & \text{si } j \geq i \end{cases} \end{split}$$

y

los mapas de codegeneraciones,

$$\begin{split} s^i : \llbracket n{+}1 \rrbracket \to \llbracket n \rrbracket \\ j \mapsto \begin{cases} j & \text{si } j \leq i \\ j{-}1 & \text{si } j > i \end{cases} \end{split}$$

Proposición 1.1.1. Los mapas de cocaras y codegeneraciones satisfacen las siguientes *identidades cosimpliciales*,

$$\begin{cases} d^{j}d^{i} = d^{i}d^{j-1} & \text{si } i < j \\ s^{j}d^{i} = d^{i}s^{j-1} & \text{si } i < j \\ s^{j}d^{j} = s^{j}d^{j+1} = 1 & \text{si } i < j \\ s^{j}d^{i} = d^{i-1}s^{j} & \text{si } i > j+1 \\ s^{j}s^{i} = s^{i}s^{j+1} & \text{si } i \leq j \end{cases}$$

Proposición 1.1.2. Toda flecha $[n] \xrightarrow{f} [m]$ en Δ se puede escribir como una composición de mapas de cocaras y codegeneraciones.

•

Observación 1.1.1. En vista de las dos proposiciones anteriores, usando los mapas de cocaras y codegeneraciones y las identidades cosimpliciales se puede dar «una presentación de Δ en términos de generadores y relaciones». A grandes rasgos, esto nos permitirá definir los objetos relacionados a Δ únicamente a partir de los mapas de cocaras y codegeneraciones.

1.2. Conjuntos Simpliciales

Ahora sí, pasamos a definir los conjuntos simpliciales:

Definición 1.2.1. Un **conjunto simplcial** es un funtor $X : \Delta^{op} \to \mathsf{Set}$. Concretamente, éste consiste de

- (i) una sucesión X_0, X_1, X_2, \dots de conjuntos, y
- (ii) para cada $n \in \mathbb{N}_0$ e $i \in [n]_0$, funciones $d_i : X_n \to X_{n-1}$ y $s_i : X_n \to X_{n+1}$ llamadas mapas de caras y degeneraciones respectivamente, que satisfacen las siguientes *identidades simpliciales*:

$$\begin{cases} d_i d_j = d_{j-1} d_i & \text{si } i < j \\ d_i s_j = s_{j-1} d_i & \text{si } i < j \\ d_j s_j = d_{j+1} s_j = 1 & \text{si } i < j \\ d_i s_j = s_j d_{i-1} & \text{si } i > j+1 \\ s_i s_j = s_{j+1} s_i & \text{si } i \leq j \end{cases}$$

Ejemplo 1.2.1 (el n-símplex estándar). Para cada $n \in \mathbb{N}_0$ tenemos un conjunto simplicial dado por el funtor $\Delta(-, [\![n]\!])$. Conrectamente, para cada $j \ge 0$ definimos los conjuntos

$$\Delta_{\mathfrak{m}}^{\mathfrak{n}} := \Delta(\llbracket \mathfrak{m} \rrbracket, \llbracket \mathfrak{n} \rrbracket) = \{ f : \llbracket \mathfrak{m} \rrbracket \to \llbracket \mathfrak{n} \rrbracket : \text{ f es morfismo de posets } \}$$

y los mapas de caras y degeneraciones están dados por

$$(\mathtt{d}^{\mathtt{i}})^*: \mathsf{f} \in \Delta([\![\mathtt{m}]\!], [\![\mathtt{n}]\!]) \mapsto \mathsf{f} \mathtt{d}^{\mathtt{i}} \in \Delta([\![\mathtt{m}-1]\!], [\![\mathtt{n}]\!])$$

y

$$(s^{i})^{*}:f\in \Delta([\![m]\!],[\![n]\!])\mapsto fs^{i}\in \Delta([\![m+1]\!],[\![n]\!]).$$

Llamamos a este conjunto simplicial el **n-símplex estándar** y lo notamos Δ^n .

Una vez más interpretando a [n] como el n-símplex combinatorio ordenado, su conjunto simplicial asociado consiste de «todas las formas posibles de incluir o colapsar un m-símplex estándar en [n]».

Extendiendo esta interpretación tenemos el siguiente ejemplo,

Ejemplo 1.2.2 (complejos simpliciales ordenados). Sea K un complejo simplicial equipado con una relación de orden total para sus vértices $V = \{v_i\}_{i \in I}$. Notamos a cada n-símplex como una n-upla $[v_{i_0}, \ldots, v_{i_n}]$ con $v_k < v_{k+1}$ para cada k.

Asociaremos a K un conjunto simplicial, agregando como en el caso de Δ^n la noción de *símlpices degenerados*. Concretamente, para cada $n \in \mathbb{N}_0$ definimos

$$K_n:=\left\{[\nu_{i_0},\ldots,\nu_{i_n}]:\,\nu_{i_k}\leq\nu_{i_{k+1}}\text{ para cada }k,y\,\{\nu_{i_k}\}_{k=0}^n\in K\,\right\}.$$

En otras palabras, el conjunto K_n consiste de n-uplas ordenadas de vértices que forman un símplex de K, pero permitiendo repetición. Definimos a su vez los mapas de caras y degeneraciones como

$$d_k[\nu_{i_0}, \dots, \nu_{i_n}] := [\nu_{i_0}, \dots, \widehat{\nu_{i_k}}, \dots, \nu_{i_n}] \quad y \quad s_k[\nu_{i_0}, \dots, \nu_{i_n}] := [\nu_{i_0}, \dots, \nu_{i_k}, \nu_{i_k}, \dots, \nu_{i_n}].$$

Definición 1.2.2. Dado un n-simplex estándar (como complejo simplicial), su **borde** es el complejo $\partial \Delta^n$ dado por la unión de sus caras maximalesy su k-ésimo **cuerno** es el subcomplejo Λ^n_k de $\partial \Delta^n$ que se obtiene quitando la k-ésima cara maximal de Δ^n , para cierto $0 \le k \le n$. Decimos que Λ^n_k es un cuerno *interno* si 0 < k < n, y *externo* en caso contrario.

Ahora sí, veamos un primer ejemplo topológico:

Ejemplo 1.2.3. Sea X un espacio topológico. Para cada $n \in \mathbb{N}_0$ definimos el conjunto

$$\mathcal{S}(X)_n := \mathsf{Top}(|\Delta^n|, X)$$

de todos los n-simplices singulares de X, y las aplicaciones

$$d_i: \mathcal{S}(X)_n \to \mathcal{S}(X)_{n-1}, \quad s_i: \mathcal{S}(X)_n \to \mathcal{S}(X)_{n+1}$$

que envían un n-símplex singular a la restricción $d_i\sigma$ a su i-ésima cara y al (n+1)-simplex singular $s_i\sigma$ que corresponde a colapsar $|\Delta^{n+1}|$ a $|\Delta^n|$ a través de $|s^i|$ y luego componer con σ .

Estos conforman el conjunto simplicial S(X) que se conoce como el **conjunto singular** de X.

Definición 1.2.3. Dado un conjunto simplicial *X*, definimos su **complejo de Moore** como el complejo de cadenas

$$\cdots \to \mathbb{Z} X_2 \xrightarrow{\eth} \mathbb{Z} X_1 \xrightarrow{\eth} \mathbb{Z} X_0,$$

con $\mathbb{Z}X_n$ el grupo abeliano libre generado por el conjunto X_n y

$$\partial = \sum_{i=1}^{n} (-1)^{i} d_{i}$$

para cada $n \ge 0$.

Observación 1.2.1. La homología singular de un espacio topológico X coincide con la homología del complejo de Moore de su conjunto singular.

Ejemplo 1.2.4 (nervio de una categoría). Sea $\mathscr C$ una categoría localmente pequeña. Definimos el **nervio** de $\mathscr C$ como el conjunto simplicial dado por los conjuntos

$$\begin{split} N(\mathscr{C})_n &= hom(\textbf{n},\mathscr{C}) = \{(f_1,\ldots,f_k) : f_i \in mor\,\mathscr{C}, \text{ cod } f_i = dom\,f_{i+1}\} \\ &= \{x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n\} \end{split}$$

de n-uplas de morfismos componibles junto con los mapas

$$d_i(f_1,...,f_n) = (f_1,...,f_{i-1}, f_i \circ f_{i+1},...,f_n)$$

y

$$s_i(f_1,...,f_n) = (f_1,...,f_i,1,f_{i+1},...,f_n),$$

para cada $0 \le i \le n$.

En particular, si $\mathscr{C} = BG$ es el grupoide asociado a un grupo G, entonces su nervio consiste de n-uplas de elementos de G y los mapas de caras y degeneraciones están dados por

$$d_i(g_1, \ldots, g_n) = (g_1, \ldots, g_{i-1}, g_i g_{i+1}, \ldots, g_n), \quad s_i(g_1, \ldots, g_n) = (g_1, \ldots, g_i, 1, g_{i+1}, \ldots, g_n).$$

Definición 1.2.4. Dados dos complejos simpliciales $X,Y:\Delta^{op}\to Set$, un **morfismo de conjuntos simpliciales** de X a Y es una transformación natural $f:X\to Y$. Concretamente, esto consiste en dar una familia de funciones $f_n:X_n\to Y_n$ tales que, para cada $0\le i\le n$, los siguientes diagramas conmutan

Es decir, un morfismo de conjuntos simpliciales consiste de una colección de aplicaciones que sea compatible con los mapas de caras y degeneraciones.

Observación 1.2.2. Los conjuntos simpliciales junto con los morfismos antes definidos forman una categoría¹, que notaremos sSet.

Observación 1.2.3. Un morfismo $f: K \to L$ de complejos simlpiciales ordenados induce a su vez un morfismo de conjuntos simpliciales dado por $f_n[\nu_{i_1}, \ldots, \nu_{i_n}] := [f(\nu_{i_1}), \ldots, f(\nu_{i_n})]$ para cada n-símplex $[\nu_{i_1}, \ldots, \nu_{i_n}]$ (posiblemente degenerado) de K.

De forma similar, una función continua $f: X \to Y$ induce un morfismo $f_*: \mathcal{S}(X) \to \mathcal{S}(Y)$ entre conjuntos singulares vía la postcomposición. De hecho,

Definición 1.2.5. El **funtor singular** S: Top \to sSet asigna a cada espacio su conjunto singular, y a cada función continua $f: X \to Y$ el morfismo simplicial $f_*: S(X) \to S(Y)$ dado por $(f_*)_n(\sigma) = f \circ \sigma$ para cada $\sigma: |\Delta^n| \to X$.

Observación 1.2.4. Si X es un conjunto simplicial, el conjunto X_n está determinado por los morfismos de conjuntos simpliciales de Δ^n a X.

Concretamente, por el lema de Yoneda tenemos una biyección natural

$$hom_{sSet}(\Delta^n, X) \simeq X_n$$

que a cada elemento $x \in X_n$ le asigna un morfismo de conjuntos simpliciales $\iota_x : \Delta^n \to X$ que satisface $\iota_x(1_{\lceil n \rceil}) = x$.

Esto se corresponde con la intuición que proveen los ejemplos anteriores, en los que los n-símplices de un conjunto simplicial son alguna «manifestación» de el n-símplex estándar: como la cara de un m-símplex de dimensión mayor, como un m-símplex de dimensión menor que represente un colapso del mismo, o como el n-símplex singular de un espacio topológico.

Definición 1.2.6. Sea X un conjunto simplicial. Un \mathfrak{n} -simplex $x \in X_{\mathfrak{n}}$ se dice **degenerado** si existe $y \in X_{\mathfrak{n}-1}$ tal que $s_{\mathfrak{i}}(y) = x$ para algún $\mathfrak{i} \in [\![\mathfrak{n}]\!]_0$. En caso contrario, decimos que x es **no degenerado**.

 $^{^{1}}$ Esta es precisamente la categoría de prehaces de Δ^{op} .

1.3. Realización Geométrica

Durante la materia vimos como a partir de un complejo simplicial K podemos construir un espacio topológico |K|, la realización geométrica de K. Siguiendo esta idea, queremos extender esta noción al contexto de los conjuntos simpliciales.

Definición 1.3.1 (realización geométrica, primera definición). Sea X un conjunto simplicial. Dotando a cada conjunto X_n de la topología discreta, definimos la **realización geométrica** de X como el espacio

$$|X| = \left(\prod_{n \geq 0} X_n \times |\Delta^n|\right) / \sim$$

donde identificamos a los puntos $(x, |d^i|(p)) \sim (d_i(x), p)$ y $(x, |s^i|(p)) \sim (s_i(x), p)$.

Esto formaliza la intuición anterior: para cada $x \in X_n$ construimos una copia del n-símplex estándar y los pegamos en función de si son caras o colapsos unos de otros.

Además, como veremos en breve esta asignación es funtorial, teniéndose así un análogo a la realización geométrica para complejos simpliciales.

Proposición 1.3.1. La realización geométrica del n-símplex estándar $\Delta^n : \Delta^{op} \to \mathsf{Set}$ es homeomorfa a la realización geométrica del n-símplex estándar como complejo simplicial.

Demostración. Para evitar ambiguedades, en toda la demostración notaremos $|\Delta^n|$ exclusivamente para referirnos a la realización geométrica del n-símplex como complejo simplicial. Por otro lado, notaremos $|\Delta(-,n)|$.

Para cada $k \in \mathbb{N}_0$ tenemos una aplicación

$$(f, x) \in \Delta(k, n) \times |\Delta^k| \to |f|(x) \in |\Delta^n|,$$

que resulta continua pues cada espacio $\Delta(k, n)$ es discreto.

Ésta familia de funciones induce un morfismo en el coproducto que pasa al cociente por las identificaciones de la realización geométrica, pues si g es un mapa de cocara o codegeneración, entonces

$$r(g^*(f), x) = |fg|(x) = r(f, |g|(x)).$$

Se tiene entonces una función continua $r : [(f,x)] \in |\Delta(-,n)| \to |f|(x) \in |\Delta^n|$.

Por otro lado, podemos considerar la inclusión $\mathfrak{i}: |\Delta^{\mathfrak{n}}| \to |\Delta(-,\mathfrak{n})|$ dada por la composición

$$|\Delta^{\mathfrak{n}}| \xrightarrow{\cong} \{\mathrm{id}\} \times |\Delta^{\mathfrak{n}}| \hookrightarrow |\Delta(-,\mathfrak{n})|,$$

que satisface ri = 1 pues

$$ri(x) = [(id, x)] = |id|(x) = x$$

para todo $x \in |\Delta^n|$. En particular sabemos que i es inyectiva. Por lo tanto, para terminar basta ver que i es sobreyectiva, en cuyo caso es un homeomorfismo con inversa f.

Equivalentemente, resta ver que todo elemento [(f,x)] está relacionado con un punto de la forma (id,y) para cierto $y \in |\Delta^n|$. En efecto, sea $(f,x) \in |\Delta(-,n)|$ con $f : [\![k]\!] \to [\![n]\!]$ un morfismo de posets $y \in |\Delta^k|$. Sabemos entonces que existen mapas de cocara o codegeneración f_1,\ldots,f_n tales que $f = f_1\cdots f_n$. En consecuencia es

$$[(f,x)] = [(f_1 \cdots f_n, x)] = [(f_n^* \circ \cdots \circ f_1^*(id), x)]$$

= [(id, |f_1 \cdots f_n|(x))] = [(id, |f|(x))],

lo que concluye la demostración.

Definición 1.3.2. Sea X un conjunto simplicial. Su **categoría de símplices** es la categoría coma $\Delta \downarrow X$, donde $\Delta : \Delta \to \mathsf{Set}^{\Delta^{\mathrm{op}}}$ es el embedding de Yoneda de $\Delta y X : \Delta \to \mathsf{Set}^{\Delta^{\mathrm{op}}}$ es el funtor que vale constantemente X. Concretamente, los objetos de $\Delta \downarrow X$ son *símplices* de X, entendidos como morfismos simpliciales $\Delta^n \to X$, y las flechas son morfismos $\theta : \llbracket n \rrbracket \to \llbracket m \rrbracket$ de posets tales que el diagrama

conmuta, donde θ_* es la postcomposición por θ .

Teorema 1.3.1. Si X es un conjunto simplicial, entonces

$$|X| \simeq \underset{\substack{\Delta^n \to X \\ \text{en } \Delta \mid X}}{\operatorname{colim}} |\Delta^n|.$$

Demostración. Observemos que si Z es un espacio topológico arbitrario, una función continua $g:|X|\to Z$ se corresponde univocamente con una función continua $\tilde g:\coprod_{n\geq 0} X_n\times |\Delta^n|\to Z$ que sea compatible con la relación que identifica caras y colapsos.

A su vez, usando la propiedad universal del coproducto y el hecho de que cada espacio X_n tiene la topología discreta, esto equivale a dar funciones

$$\lambda_x : |\Delta^n| \to Z$$

para cada $x \in X_n$ y $n \ge 0$, que satisfagan las condiciones de compatibilidad de antes: esto es, que para cada morfismo de posets 2 θ : $[n] \to [m]$ se tenga $\lambda_{X(\theta)(x)} = \lambda_x \circ |\theta| = |\theta_*|(\lambda_x)$.

Recordemos ahora que, por el lema de Yoneda, tenemos que

$$hom(\Delta^n,\Delta^m) \simeq \Delta(n,m) = \{\theta : \llbracket n \rrbracket \to \llbracket m \rrbracket : \ \theta \text{ es morfismo de posets} \}$$

y

$$hom(\Delta^n, X) \simeq X_n$$

para cada $n, m \geq 0$. Por lo tanto, cada elemento $x \in X_n$ se corresponde a un único morfismo simplicial $\sigma_x : \Delta^n \to X$, y toda flecha $\Delta^n \to \Delta^m$ es la poscomposición por cierto morfismo de posets $\theta : [n] \to [m]$.

En éstos terminos, la información anterior se puede describir como un morfismo $\lambda_{\sigma}: |\Delta^n| \to Z$ para cada símplex $\sigma: \Delta^n \to X$, de forma que para todo morfismo de posets $\theta: [n] \to [m]$ y símplices $\sigma: \Delta^n \to X, \tau: \Delta^m \to X$ tales que $\sigma = \tau \, \theta_*$ se tenga que $\lambda_{\sigma} = \lambda_{\tau} |\theta_*|$.

²Si bien la condición original era sobre los mapas de caras y degeneración, que son imagen por X de los mapas de cocaras y codegeneración en Δ . Al clausurar la relación de equivalencia se tiene una condición equivalente reemplazando éstos por cualquier función $X(\theta)$ con θ un morfismo en Δ .

Es decir, dar un morfismo $g:|X|\to Z$ es equivalente a dar un cocono sobre Z para el funtor $F:\Delta\downarrow X\to \mathsf{Top}$ que envía $(\sigma:\Delta^n\to X)\xrightarrow{\theta_*}(\tau:\Delta^m\to X)$ a $|\Delta^n|\xrightarrow{|\theta_*|}|\Delta^m|$.

Por otro lado, tenemos un cocono sobre X dado por las funciones

$$\iota_{\sigma} : p \in |\Delta^{n}| \to [(x,p)] \in |X|,$$

para cada $\sigma:\Delta^n\to X$ que está en correspondencia con $x\in X_n$. Por las observaciones anteriores, sabemos que $(\lambda_\sigma)_{\sigma\in\Delta\downarrow X}$ se factoriza por $(\iota_\sigma)_{\sigma\in\Delta\downarrow X}$ a través de g ya que es

$$\lambda_{\sigma}(p) = g([(x,p)]) = g(\iota_{\sigma}(x,p))$$

para todo $\sigma:\Delta^n\to X$ y $p\in |\Delta^n|$. Pero como notamos anteriormente, de existir una función continua $|X|\to Z$ está determinada por lo que vale en la imagen de cada morfismo ι_σ . Hemos visto entonces que todo cono sobre $F:\Delta\downarrow X\to T$ op se factoriza a través de $(\iota_\sigma)_\sigma$ de forma única, y esto es precisamente que

$$|X| \simeq \underset{\substack{\Delta^n \to X \\ \text{en } \Delta \downarrow X}}{\operatorname{colim}} |\Delta^n|.$$

Proposición 1.3.2. Se tiene un funtor

$$|\cdot|$$
: sSet \rightarrow Top

que asigna a cada conjunto simplicial X su realización geométrica, y a cada morfismo simplicial $f: X \to Y$ una flecha $|f|: |X| \to |Y|$ inducida por cada función $f_n \times 1: X_n \times |\Delta^n| \to Y_n \times |\Delta^n|$.

Demostración. En primer lugar, notemos que las aplicaciones $\{f_n \times 1\}_{n \geq 1}$ inducen una función continua

$$\coprod_{n\geq 0} X_n \times |\Delta^n| \xrightarrow{\widetilde{f}} \coprod_{n\geq 0} Y_n \times |\Delta^n|$$

$$\uparrow \qquad \qquad \uparrow$$

$$X_n \times |\Delta^n| \xrightarrow{f_n \times 1} Y_n \times |\Delta^n|$$

entre los coproductos. Como f es un morfismo simplicial, si $\theta: [\![m]\!] \to [\![m]\!]$ es un morfismo de posets entonces el diagrama

$$\begin{array}{ccc} X_n \times |\Delta^n| & \xrightarrow{X\theta} & X_m \times |\Delta^n| \\ & & \downarrow^{f_m \times 1} & & \downarrow^{f_m \times 1} \\ Y_n \times |\Delta^n| & \xrightarrow{Y\theta} & Y_m \times |\Delta^n| \end{array}$$

conmuta. Por lo tanto, se tiene que

$$\widetilde{f}(X\theta(x),p) = (f_mX\theta(x),p) = (Y\theta f_n(x),p)$$

y

$$\widetilde{f}(x, |\theta|(p)) = (f_n(x), |\theta|(p)),$$

lo que nos dice que \widetilde{f} manda puntos relacionados en puntos relacionados. En consecuencia, está bien definida la función continua $|f|:|X|\to |Y|$ que envía [(x,p)] a $[(f_n(x),p)]$ si $x\in X_n$, y de esta caracterización se deduce la funtorialidad de $|\cdot|$.

Bibliografía

- [1] P. Goerss y J. Jardine, Simplicial Homotopy Theory. Birkhäuser, 2010.
- [2] G. Friedman. An elementary introduction to simplicial sets, arXiv:0809.4221v5 [at], 2016.