

Operating Systems CS2006

Lecture 1

Introduction

23rd January 2023

Myself

Dr. Rana Asif Rehman Associate Professor

Email: r.asif@lhr.nu.edu.pk

Phone: (042) 111-128 -128 Ext: 455

Office: 1st floor, Library Building,

FAST School of Computing, FAST-NUCES, Lahore.

Books and Resources

Operating System Concepts 10th Edition by Silberschatz, Galvin and Gagne

Google Classroom

□ Please join the Operating Systems (**Section 4B**) class by using the following code:

eioop4p

Course outline

- Introduction
- Processes, Inter-process communication,
- Threads
- Synchronization, Semaphores,
- Deadlocks
- CPU Scheduling
- Memory management
- File-system management
-

Class Rules & Regulations

Quizzes

- All quizzes will be Announced
- Quizzes will have more weightage as compared to Assignments

Assignments

- In case of copied, all remaining assignment will be marked Zero
- Avoid late submission, No assignment will be entertained after deadline
- Don't send me assignments by using email, submit them on Google Class
- Assignments Viva will also be conducted (during semester)

Attendance

- □ Don't mark Proxy of your friend (If he/she is your real friend ☺)
 - ▶ In case of proxy, **5** Absents will be marked to that student
- In case of emergency, get permission personally or send an email prior to the class
- Attend all classes regularly, no attendance issue will be entertained in the end of semester

Are you ready !!!! Lets Begin

Operating Systems

- How is RAM managed?
- How do you find something on disk?
- How do you know where to load it in RAM?
- How do you keep track of all running programs?
- Answer
 - This is what the operating system does

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Two Goals of Operating Systems

- Manage hardware resources
 - System operates smoothly, efficiently, reliably and securely
- Present abstract system model to programmer
 - Simple and convenient access to and control of resources

Manager/Coordinator of Resources

- Coordinates who gets what
 - "who": running programs
 - "what": resources
 - "when": scheduling time
 - "where": organizing space
 - "whether": limits, rights
- Goal: smooth system operation
 - efficiency, reliability, security

Resource multiplexing

- OS multiplexes resources in two ways:
- In time
 - Time multiplexing involves different programs taking turns in using the resource.
 - Example:
 - CPU scheduling
 - printer sharing
- In space
 - Space multiplexing involves different program getting part of the resource possibly at the same time
 - Example:
 - memory is divided into several running programs

What If No Operating System?

User Program

Bare Hardware

- All we have is bare hardware
- You want to run a program
 - How do you load it?
 - How do you run it?
 - What happens when it completes?
- Need at least some minimal OS to do these functions

Early Systems

- No Operating systems,
- your Data and your Programs
 - X = X + 1;
- As

• Load	Register1, x
 Load Direct 	Register2, 1
• Add	Register3, Register2, Register1
• Store	Register3, x

- Time slots allocated to scientists
- Enter programs using binary switches

Early Systems

• Problem:

- computer remains idle while programmer sets things up
- Poor utilization of huge investment

• Solution:

Hire a specialized person to do setup

• Problem:

• Faster than programmer, but still a lot slower than the machine

• Solution:

• Build a batch monitor

The Monitor

Early batch system

- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output

Simple Batch System

- The user submits a job (written on a card or tape) to a computer operator
- The computer operator place a batch of several jobs on a input device
- A special program, the monitor, manages the execution of each program in the batch
- Resident monitor is in the main memory and available for execution

Why study operating systems?

- Point of describing change isn't "Look how stupid batch processing is" it was right for tradeoffs of the time, but not anymore
- Point is: have to change with changing technology
- Situation today is much like it was in the late 60's
- OS's today are enormous, complex things
 - 100k's of lines (or >1M lines)
 - Windows NT is 20M lines
 - Windows 2000 and Windows XP are about 40M lines.
- Key aspect of this course, understand OS's so we can simplify them!

The Operating System controls the machine

User

Application

Operating System

Hardware

A better picture

Many applications

One
Operating
System
One Hardware

Operating System in Action

- OS is a program, just like any other program
- When you turn power on, bootstrap program is loaded from ROM
- Bootstrap program
 - Examine/check machine configuration
 - # CPUs
 - How much memory
 - # and type of HW devices
 - Build configuration structure describing the HW
 - Locates and Loads the OS
 - The control transfers to the OS

Operating System in Action

Operating System:

- Initialize kernel data structures
- Initialize state of HW devices
- Creates a number of processes to start operation

What is a Computer System?

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Device Controllers

- I/O devices generally consists of two parts:
 - An Electronic component: Device Controller
 - A Mechanical component: The device itself
- Each device controller is in charge of a specific device
- It maintains
 - Some local storage buffer
 - A set of special purpose register
- Accepts command from the Operating System
- For example to read data from the device.

Device Controllers

- A Device controller might accept a command:
 - Read
 - □ Sector 11,206
- The device controller would:
 - Determine the current position of the head
 - Move the head to the required location
 - Accept data bit by bit
 - Store in a local buffer
 - Perform checksum on the data
- Controllers contain small embedded programs to carry out all this work.

1.28

Device Drivers

- Who would initiate the controller
- Who would determine read/write
- Who would tell the sector number
- A part of operating system called Device Driver
- Software or Hardware?
 - Software that talks to a controller
 - Gives it command
 - Accept Responses
- Same for all controllers?
- Different software for different type of controllers
- Each controller manufacturer has to supply a driver for each operating system it supports

Device Status Table

- One entry per I/O device
- Keeps record of
 - Device's type
 - Address
 - State
 - Not functioning
 - Idle
 - Busy
- If the device is busy, the new request is saved in a queue

Device Status Table

References

- Operating System Concepts 8/9th Ed Chapter 1
- Modern Operating Systems 3rd Ed Chapter 1
- Operating Systems 6th Ed Chapter 2
 - By William Stalling
- http://en.wikipedia.org/wiki/Time-sharing
- http://en.wikipedia.org/wiki/Operating_system
- http://en.wikipedia.org/wiki/Distributed_computing

End

