

Kaj določa način "plavanja"?

- Upor, ki ga čuti "plavalec":
 - zaradi vztrajnosti tekočine, ki jo odriva pred seboj

 $\propto \rho R^2 v^2$

 zaradi viskoznosti tekočine, (vlečenje slojev tekočine, ki se prilepijo na površino)

 $\propto \eta R v$

Katera sila je pomembnejša?

ho - gostota tekočine

 η - koef. viskoznosti

Kaj določa način "plavanja"?

• Odloča razmerje obeh sil (Reynoldsovo število *Re*):

$$\frac{\text{upor zaradi vztrajnosti tekočine}}{\text{upor zaradi viskoznosti tekočine}} \propto \frac{\rho R^2 v^2}{\eta R v} = \frac{\rho R v}{\eta} = Re$$

Re	prevladuje	upor	tok
> 1000	vztrajnost	$\propto v^2$	vrtinčenje, turbulenten
< 1	viskoznost	\propto V	brez vrtincev, laminaren

- V: V katerem režimu plavamo ljudje in v katerem bakterije?
- V: Na kolikšni poti se bakterija ustavi, ko se preneha poganjati?
- Molekule in bakterije ne poznajo vztrajnosti!
 - → Način plavanja mora biti drugačen

ho - gostota tekočine

 η - koef. viskoznosti

Substance	η (Pa.s)
Air	10^{-5}
Water	10^{-3}
Ethyl alcohol	1.2×10 ⁻³
Mercury	1.5×10 ⁻³
Ethylene glycol	20×10 ⁻³
Olive oil	0.1
100% Glycerol	1.5
Honey	10
Corn syrup	100
Bitumen	10^{8}
Molten glass	10^{12}

Kaj določa način "plavanja"?

koruzni sirup

voda

Kaj poganja gibanje molekul?

Brownovo gibanje / difuzija

• Difuzija je posledica trkov med molekulami/delci s termično kinetično energijo ($\sim k_B T$)

https://youtu.be/R5t-oA796to

https://youtu.be/6VdMp46ZIL8

 Entropija poganja sistem v smeri večjega števila možnih stanj (mešanje)

Kako hitra je difuzija?

Brownovo gibanje:

D ... koeficient difuzije

t ... čas

n ... število dimenzij prostora: 1,2,3

- V: Koliko časa potrebuje molekula kisika za difuzijo preko celice ali organizma? ($D = 2 \times 10^{-9} \text{ m}^2/\text{s}$)
- Difuzija je na dolge razdalje zelo počasna!

$$\langle x \rangle = 0$$

$$\langle x^2 \rangle = 2nDt$$

Kaj določa hitrost difuzije?

- Hitrost difuzije (difuzijski koeficient *D*) je odvisna od
 - termične energije delcev
 - velikosti in oblike delcev
 - viskoznosti tekočine

$$D \propto \frac{k_B T}{\eta R}$$

- Bistvena je efektivna velikost delcev skupaj s hidratacijskim plaščem ("hidrodinamski radij")
- Za kroglaste molekule: $R \propto V^{1/3} \propto M^{1/3}$
 - → D se z M spreminja počasi! $D \propto M^{-1/3}$

Difuzija majhnih molekul

• Viskoznost je makroskopski parameter, zato ni primeren za opis gibanja molekul, primerljivih z velikostjo molekul topila ($m_1 < 100 \text{ Da}$)!

 Tako majhni delci iščejo prazen prostor, ki se naključno pojavi med molekulami topila ("wait-and-hop")

Kako lahko *izmerimo* hitrost difuzije molekul oz. delcev v raztopini ali celici?

Korelacijske spektroskopije

- Sipanje svetlobe:
 - PCS = Photon Correlation Spectroscopy oz.
 - DLS = Dynamic Light Scattering
- Fluorescenca:
 FCS = Fluorescence Correlation Spectroscopy
- Meritev D temelji na analizi trajanja fluktuacij intenzitete detektirane svetlobe
- Jakost sipanja je odvisna od kota in ∝ R⁶
 → Previdno pri interpretaciji porazdelitev velikosti v zmesi različnih delcev!

Časovni potek intenzitete ("time trace")

Log(časovni zamik τ)

Fluorescence Recovery After Photobleaching - FRAP

"Obnavljanje fluorescence po fotobledenju"

Kako lahko različno gibljivost delcev (molekul) izkoristimo v laboratoriju?

Centrifuga

Ločevanje delcev po gostoti:

- V disperziji nenabitih delcev tekmujeta urejevalna sila (težnost) in termično gibanje
 - → stabilnost disperzije določa teža delcev
- Posedanje lahkih delcev v centrifugi pospešimo s "povečanjem njihove teže", sorazmerno s kvadratom frekvence vrtenja (ω^2)
- Hitrost posedanja $\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m}{\eta R}$

(m' - masa delca, zmanjšana za vzgon)

Elektroforeza

- Nabite delce lahko ločujemo tudi z električnim poljem - E
- Hitrost potovanja odvisna od gibljivosti delcev μ

$$\mu \propto \frac{\mathrm{naboj}}{\mathrm{upor}} \propto \frac{Ze_0}{\eta R}$$

• Izvedbe: gelska, kapilarna, 2D ef., izoelektrično fokusiranje ...

 Ze_0 - naboj delcev

Meritev ζ -potenciala

- ζ-potencial ∞ efektivni naboj delca
- izmerimo elektroforetsko mobilnost μ , tj. hitrost (v) v danem električnem polju (E), iz nje nato izračunamo ζ

$$\mu = \frac{v}{E} \quad \longrightarrow \quad \zeta \propto \mu$$

 merjenje hitrosti z "laserskim radarjem" (Dopplerjev pojav)

https://en.wikipedia.org/wiki/Zeta_potentia

