Fintech Use Case: Real-Time Transaction Fraud Detection

Fintech Use Case: Real-Time Transaction Fraud Detection

Why This Use Case?

In the Fintech industry, fraud detection is critical to preventing financial losses and ensuring customer trust. A real-time fraud detection system can analyze transactions as they happen, leveraging machine learning and stream processing to identify suspicious activities and prevent fraudulent transactions before they occur.

1. Functional Architecture

This architecture outlines the high-level business and functional requirements for the fraud detection system.

Actors

- Customer: Initiates transactions via banking apps, ATMs, or online portals.
- Banking System: Processes and routes transactions.
- **Fraud Detection Engine**: Analyzes transaction data in real-time.
- **Risk Analyst Team**: Reviews flagged transactions for fraud.
- Security System: Blocks fraudulent transactions and alerts customers.

Key Functional Components

1. Transaction Source (Data Ingestion)

- Captures transaction data from multiple sources (mobile banking, credit/debit card swipes, wire transfers).
- Real-time ingestion using Kafka or AWS Kinesis.

2. Stream Processing Engine

- Consumes transactions in real-time.
- o Enriches transactions with historical customer spending behavior.
- o Applies rule-based and ML-based fraud detection models.

3. Fraud Detection & Scoring

- o Assigns a fraud risk score based on predefined rules and ML models.
- o Uses real-time data (location, transaction amount, device fingerprinting).
- Flags suspicious transactions for review.

4. Alert & Notification System

- o Sends real-time alerts to customers for high-risk transactions.
- Notifies risk analysts for further investigation.
- o Auto-blocks transactions if the risk score exceeds a threshold.

5. Data Storage & Historical Analysis

- Stores transactions for historical fraud analysis.
- o Feeds into ML models for continuous improvement.

6. Dashboard & Reporting

- o Provides a real-time view of fraudulent transactions.
- Allows security teams to analyze trends.

2. Technical Architecture

This section details the technology stack and workflow of the real-time fraud detection system.

Technology Stack

- **Data Ingestion**: Apache Kafka / AWS Kinesis
- **Stream Processing**: Apache Flink / Spark Streaming
- Machine Learning & AI: Databricks MLflow / TensorFlow / PyTorch
- Database (OLTP & NoSQL): MongoDB / Amazon DynamoDB / PostgreSQL
- Data Lake (Storage & Batch Processing): AWS S3 / Delta Lake / Apache Hudi
- Analytics & Visualization: Tableau / Power BI / Grafana
- Security & Authentication: OAuth2, JWT, IAM (Identity Access Management)
- Alerting & Notifications: Twilio / AWS SNS / Firebase Cloud Messaging

End-to-End Workflow

1. Transaction Ingestion

- o Transactions from multiple channels (ATM, mobile app, POS, online banking) are streamed into **Kafka topics**.
- Kafka partitions transactions based on customer IDs.

2. Stream Processing & Feature Engineering

- o Flink/Spark Streaming processes incoming transactions.
- Transactions are enriched with historical spending patterns, device ID, and IP geolocation.
- o Extracted features are passed to the fraud detection model.

3. Fraud Detection & Risk Scoring

- o A **Hybrid ML+Rule-Based Model** assigns a fraud risk score (0-100).
- o **High-risk transactions (score >80%) are flagged** and sent for review.

4. Real-Time Decision Making

- \circ If the **score** > 90%, auto-block transaction and notify the customer.
- o If the **score is between 80-90%**, escalate to a risk analyst.
- \circ If < 80%, transaction is processed normally.

5. Storage & Analytics

- o Real-time data is written to MongoDB for quick access.
- Historical data is stored in AWS S3/Delta Lake for analytics.
- o A BI Dashboard (Tableau/Power BI) visualizes fraud trends.

6. Notification & Customer Alert

- o High-risk transactions trigger SMS/email notifications via Twilio/SNS.
- o Customers can verify transactions through a **self-service app**.

3. Security & Compliance Considerations

- PCI-DSS Compliance: Ensures secure storage of cardholder data.
- End-to-End Encryption: TLS 1.3 for data in transit, AES-256 for data at rest.
- **Anomaly Detection**: Uses AI/ML for proactive fraud detection.
- Access Control: OAuth2-based authentication for internal and external users.

Benefits of This Architecture

- **⊘ Real-Time Fraud Detection**: Prevents fraud before transactions are completed.
- **Scalable & Resilient**: Kafka and Flink enable high throughput with low latency.
- ✓ **AI-Powered Insights**: ML models continuously improve fraud detection accuracy.
- **Regulatory Compliance**: Secure, auditable, and compliant with financial regulations.