

SEQUENCE LISTING

<110> Osteryoung, Katherine W.
Vitha, Stanislav
Koksharova, Olga A.
Gao, Hongo

<120> Plastid Division and Related Genes and Proteins, and Methods of Use

<130> MSU-08153

<140> 10/600,070
<141> 2003-06-20

<160> 208

<170> PatentIn version 3.3

<210> 1
<211> 2406
<212> DNA
<213> Arabidopsis thaliana

<400> 1
atggaagctc ttagtcacgt cggcatttgt ctctcccat tccaattatg ccgattacca 60
ccggcgacga caaagctccg acgttagccac aacacctcta caactatctg ctccgccagc
aaatgggccg accgtcttct ctccgacttc aattcacct ccgattcctc ctccctcc 120
ttcgccaccg ccaccaccac cgccactctc gtctctctgc caccatctat tgatcgtccc 180
gaacgccacg tccccatccc cattgatttc taccaggtat taggagctca aacacatttc
ttaaccgatg gaatcagaag agcattcgaa gctagggttt cgaaaccgccc gcaattcggt 240
ttcagcgacg acgcttaat cagccggaga cagattctc aagctgcttg cgaaactctg
tctaattcctc ggtctagaag agagtacaat gaaggtcttc ttgatgatga agaagctaca 300
gtcatcactg atgttccttg ggataagggtt cctgggctc tctgtgtatt gcaagaagggt
ggtgagactg agatagttct tcgggttgtt gaggctctgc ttaaggagag gttgcctaag 360
tcgtttaagc aagatgttgtt tttagttatg ggcgttgctt ttctcgatgt ctcgagggat
gctatggcat tggatccacc tgattttatt actggatgtt agtttgttga ggaagctttg 420
aagctttac aggaggaagg agcaagtagc cttgcaccgg atttacgtgc acaaattgtat
gagactttgg aagagatcac tccgcgttat gtcttgagc tacttggtt accgcttggt 480
gatgattacg ctgcgaaaag actaaatggt ttaagcggtg tgcggaatat tttgtggct 540
gttggaggag gtggagcatc agctcttgtt gggggttga cccgtgagaa gtttatgaat 600
gaggcgttt tacgaatgac agctgctgag caggttgatc tttttgttagc taccccaagc 660
1020

aatattccag cagagtcatt tgaagttac gaagttcac ttgctttgt ggctcaagct	1080
tttattggta agaagccaca cctttacag gatgctgata agcaattcca gcaacttcag	1140
caggctaagg taatggctat ggagattcct gcgcgttgt atgatacacg gaataattgg	1200
gagatagact tcggtctaga aaggggactc tgtgcactgc ttataggcaa agttgatgaa	1260
tgcctatgt gtgtggctt agacagttag gattcacaat ataggaatcc agctatttg	1320
gagttgttt tggagaattc aaatcgat gacaatgatg atctccctgg actatgaaa	1380
ttgttgaaa cctgggtggc aggggttgc tttccttagt tcagagacac caaagataaa	1440
aaatttaaac tcggggacta ctatgatgat cctatggtt tgagttactt ggaaagagt	1500
gaggtatcc agggttctcc tttagctgct gctgcaacta tggcaaggat tggagccgag	1560
catgtgaaag ctatgttat gcaggcactg cagaaagttt ttccttccccttatacagat	1620
agaaactcgg ctgaacccaa ggatgtgcaa gagacagtgt ttagttaga tcctgttggt	1680
aacaatgtag gccgtgatgg tgagcctggt gtcttattt cagaagctgt aagaccctct	1740
gaaaactttt aaactaatga ttatgcaatt cgagctgggg totcagagag tagcgttgat	1800
gaaactactg ttgaaatgtc cgttgctgat atgttaaagg aggcaagtgt gaagatccta	1860
gctgctggtg tggcaattgg actgattca ctgttcagcc agaagtattt tctaaaagc	1920
agctcatctt ttcaacgcaa ggatatggtt tcttctatgg aatctgatgt cgctaccata	1980
gggtcagtca gagctgacga ttcagaagca cttccagaa tggatgctag gactgcagag	2040
aatatagtat ccaagtggca gaagattaag tctctggctt ttgggcctga tcaccgcata	2100
gaaatgttac cagaggtttt ggatggcga atgctgaaga tttggactga cagagcagct	2160
gaaactgcgc agcttgggtt ggttatgtat tatacactgt tgaaaactatc tggtgacagt	2220
gtgacagtct cagcagatgg aacccgtgct ctgggtggaa caactctggaa ggagtctgct	2280
tgtctatctg atttgggtca tccagaaaaac aatgctactg atgtcagaac ctacacaaca	2340
agatacgaag ttttctggtc caagtcaggg tggaaaatca ctgaaggctc tgttcttgca	2400
tcataa	2406

<210> 2
 <211> 801
 <212> PRT
 <213> Arabidopsis thaliana

<400> 2

Met Glu Ala Leu Ser His Val Gly Ile Gly Leu Ser Pro Phe Gln Leu
1 5 10 15

Cys Arg Leu Pro Pro Ala Thr Thr Lys Leu Arg Arg Ser His Asn Thr
20 25 30

Ser Thr Thr Ile Cys Ser Ala Ser Lys Trp Ala Asp Arg Leu Leu Ser
35 40 45

Asp Phe Asn Phe Thr Ser Asp Ser Ser Ser Ser Phe Ala Thr Ala
50 55 60

Thr Thr Thr Ala Thr Leu Val Ser Leu Pro Pro Ser Ile Asp Arg Pro
65 70 75 80

Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu Gly Ala
85 90 95

Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu Ala Arg
100 105 110

Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu Ile Ser
115 120 125

Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn Pro Arg
130 135 140

Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu Ala Thr
145 150 155 160

Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu Cys Val
165 170 175

Leu Gln Glu Gly Gly Glu Thr Glu Ile Val Leu Arg Val Gly Glu Ala
180 185 190

Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val Val Leu
195 200 205

Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met Ala Leu
210 215 220

Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu Ala Leu
225 230 235 240

Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp Leu Arg
245 250 255

Ala Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Tyr Val Leu
260 265 270

Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys Arg Leu
275 280 285

Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly Gly Gly
290 295 300

Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe Met Asn
305 310 315 320

Glu Ala Phe Leu Arg Met Thr Ala Ala Glu Gln Val Asp Leu Phe Val
325 330 335

Ala Thr Pro Ser Asn Ile Pro Ala Glu Ser Phe Glu Val Tyr Glu Val
340 345 350

Ala Leu Ala Leu Val Ala Gln Ala Phe Ile Gly Lys Lys Pro His Leu
355 360 365

Leu Gln Asp Ala Asp Lys Gln Phe Gln Gln Leu Gln Gln Ala Lys Val
370 375 380

Met Ala Met Glu Ile Pro Ala Met Leu Tyr Asp Thr Arg Asn Asn Trp
385 390 395 400

Glu Ile Asp Phe Gly Leu Glu Arg Gly Leu Cys Ala Leu Leu Ile Gly
405 410 415

Lys Val Asp Glu Cys Arg Met Trp Leu Gly Leu Asp Ser Glu Asp Ser
420 425 430

Gln Tyr Arg Asn Pro Ala Ile Val Glu Phe Val Leu Glu Asn Ser Asn
435 440 445

Arg Asp Asp Asn Asp Asp Leu Pro Gly Leu Cys Lys Leu Leu Glu Thr
450 455 460

Trp Leu Ala Gly Val Val Phe Pro Arg Phe Arg Asp Thr Lys Asp Lys
465 470 475 480

Lys Phe Lys Leu Gly Asp Tyr Tyr Asp Asp Pro Met Val Leu Ser Tyr
485 490 495

Leu Glu Arg Val Glu Val Val Gln Gly Ser Pro Leu Ala Ala Ala Ala
500 505 510

Thr Met Ala Arg Ile Gly Ala Glu His Val Lys Ala Ser Ala Met Gln
515 520 525

Ala Leu Gln Lys Val Phe Pro Ser Arg Tyr Thr Asp Arg Asn Ser Ala
530 535 540

Glu Pro Lys Asp Val Gln Glu Thr Val Phe Ser Val Asp Pro Val Gly
545 550 555 560

Asn Asn Val Gly Arg Asp Gly Glu Pro Gly Val Phe Ile Ala Glu Ala
565 570 575

Val Arg Pro Ser Glu Asn Phe Glu Thr Asn Asp Tyr Ala Ile Arg Ala
580 585 590

Gly Val Ser Glu Ser Ser Val Asp Glu Thr Thr Val Glu Met Ser Val
595 600 605

Ala Asp Met Leu Lys Glu Ala Ser Val Lys Ile Leu Ala Ala Gly Val
610 615 620

Ala Ile Gly Leu Ile Ser Leu Phe Ser Gln Lys Tyr Phe Leu Lys Ser
625 630 635 640

Ser Ser Ser Phe Gln Arg Lys Asp Met Val Ser Ser Met Glu Ser Asp
645 650 655

Val Ala Thr Ile Gly Ser Val Arg Ala Asp Asp Ser Glu Ala Leu Pro
660 665 670

Arg Met Asp Ala Arg Thr Ala Glu Asn Ile Val Ser Lys Trp Gln Lys
675 680 685

Ile Lys Ser Leu Ala Phe Gly Pro Asp His Arg Ile Glu Met Leu Pro
690 695 700

Glu Val Leu Asp Gly Arg Met Leu Lys Ile Trp Thr Asp Arg Ala Ala
705 710 715 720

Glu Thr Ala Gln Leu Gly Leu Val Tyr Asp Tyr Thr Leu Leu Lys Leu
725 730 735

Ser Val Asp Ser Val Thr Val Ser Ala Asp Gly Thr Arg Ala Leu Val
740 745 750

Glu Ala Thr Leu Glu Glu Ser Ala Cys Leu Ser Asp Leu Val His Pro
755 760 765

Glu Asn Asn Ala Thr Asp Val Arg Thr Tyr Thr Arg Tyr Glu Val
770 775 780

Phe Trp Ser Lys Ser Gly Trp Lys Ile Thr Glu Gly Ser Val Leu Ala
785 790 795 800

Ser

<210> 3
<211> 3667
<212> DNA
<213> Arabidopsis thaliana

<400> 3
tgttctgcat taaggagaat acaattataa gcaatttgc ttgatttcaa caagattttg 60
cttggctata ggattcattt gctctgtttg cttttacatt tacatgtcat aatagtttcg 120
aattttacac atttcagttt gatgttaaga aaagagaggg aattgtatggg gttttgtggg 180
tttaaaactt aaagttagtca agaattaagt cattggttt ctgttgctct atatgtgtaa 240
aatgaaggca actccaacgg ttcttaggtg gaatagatta ttttagacgt ttaacatcat 300
aaagtccgtg gcgactgtaa catcatagat tgtttttat tttttcagt agctggtgat 360
gttttttgat ttaacttata ctactcaaaa tcaaaattcc ataaacccta gacgaccaaa 420
cagtctcttc aatatgtaaa acagaacaaa gttttgttag tagcctaaaa agacactccc 480
atggaagctc tgagtcacgt cggcattggt ctctccccat tccaattatg ccgattacca 540
ccggcgacga caaagctccg acgttagccac aacacctcta caactatctg ctccgccagc 600

aaatgggccg accgtcttct ctccgacttc aattcacct ccgattcctc ctccctcc	660
tgcgccaccg ccaccaccac cgccactctc gtctctctgc caccatctat tgatcgccc	720
gaacgccacg tccccatccc cattgatttc taccaggtat taggagctca aacacatttc	780
ttaaccgatg gaatcagaag agcattcgaa gctagggttt cgaaaccgccc gcaattcggt	840
tgcagcgacg acgcttaat cagccggaga cagattctc aagctgcttg cgaaactctg	900
tctaattcctc ggtctagaag agagtacaat gaaggtcttc ttgatgatga agaagctaca	960
gtcatcaactg atgttccttg ggataaggta atttcgattt cggaaaataata aagttcttc	1020
gttttaattt catgaattgg ataaaggaag gaacttttat ctagtgaagg ttccctggggc	1080
tctctgtgta ttgcaagaag gtggtgagac tgagatagtt ctgcgggttg gtgaggctct	1140
gcttaaggag aggtgccta agtcgtttaa gcaagatgtg gtttagtta tggcgcttgc	1200
gtttctcgat gtctcgaggg atgctatggc attggatcca cctgattta ttactgggtt	1260
tgagttgtt gaggaagctt tgaagctttt acaggtagtt tgacttgctt tggtaatttg	1320
acgagcgttg gcttataag aactttcttg atttgatact ttgttattga gtcttgtgta	1380
ggaggaagga gcaagtagcc ttgcaccgga tttacgtgca caaattgtat agactttggaa	1440
agagatcaact ccgcgttatg tcttggagct acttggctta ccgcgttggtg atgattacgc	1500
tgcgaaaaga ctaaatggtt taagcggtgt gcggaaatatt ttgtggtctg ttggaggagg	1560
tggagcatca gctcttggttt ggggtttgac ccgtgagaag tttatgaatg aggcgaaaa	1620
acgaatgaca gctgctgagc aggtatacag tttagatacc ttttttaat ttcttagca	1680
tgatataact ttaggttct catttaatg tatgttgtgt gtaggttga tcttttgta	1740
gctaccccaa gcaatattcc agcagagtca tttgaagttt acgaagttgc acttgctt	1800
gtggctcaag cttttattgg taagaagcca cacctttac aggtgctga taagcaattc	1860
cagcaacttc agcaggctaa ggtaatggct atggagattc ctgcgtatgt gtatgataca	1920
cggaataatt gggagataga cttcggtcta gaaaggggac tctgtgcact gcttataggc	1980
aaagttgatg aatgccgtat gtgggtggc ttagacagtg aggattcaca atataggaat	2040
ccagctattt gggagttgt tttggagaat tcaaattcgat atgacaatga tgatccct	2100
ggactatgca aattgttggaa aacctgggttgc gcaagggttg tctttcttag gttcagagac	2160
accaaagata aaaaattaa actcgccccac tactatgtatc atcctatgggt tttgagttac	2220
ttggaaagag tggaggttgt tcagggttct ctttagctg ctgctgcaac tatggcaagg	2280
attggagccg agcatgtgaa agctagtgtct atgcaggcac tgcagaaagt tttccctcc	2340

cgctatacag atagaaaactc ggctgaaccc aaggatgtgc aagagacagt gtttagtgta	2400
gatcctgttg gtaacaatgt aggccgtgat ggtgaggcctg gtgtctttat tgcagaagct	2460
gtaagaccct ctgaaaacct tgaaaactaat gattatgcaa ttcgagctgg ggtctcagag	2520
agtagcgttg atgaaaactac tggtaaatg tccgttgctg atatgttaaa ggaggcaagt	2580
gtgaagatcc tagctgctgg tgtggcaatt ggactgattt cactgttcag ccagaagtat	2640
tttcttaaaa gcagctcatc ttttcaacgc aaggatatgg tttcttctat ggaatctgat	2700
gtcgctacca taggtatgat taaatgatgc aattttcata tatctgcatt gctaaaaata	2760
tgcttggttt gtgagctaag aacatagttc ccacttaata catgtcccaa aagttgtacc	2820
aagattaaca agttgctgag taaatttcac taattatgct gcttgaattt tttgatcaaa	2880
ctgttagacag aaatgtaaat ttcaactctca acatttctgt tttagaataac gtaggattag	2940
agattgcctt agtgtggctt tgtccaactt ttctttcctt gatTTTTTC tttcgattt	3000
agggtcagtc agagctgacg attcagaagc acttcccaga atggatgcta ggactgcaga	3060
gaatatagta tccaaagtggc agaagattaa gtctctggct ttggggcctg atcaccgcat	3120
agaaatgtta ccagaggtga gggataaat ctacaattca atcaattgtg tgaaaactgt	3180
tggacatgat tatagtctgg tgccttgaaa gattctgtta ttataggtt ttggatgggc	3240
gaatgctgaa gatttggact gacagagcag ctgaaactgc gcagcttggg ttggTTTATG	3300
attatacact gttgaaacta tctgttgaca gtgtgacagt ctcagcagat ggaaccggcgt	3360
ctctgggtgga agcaactctg gaggagtctg cttgtctatc tgatttggtt catccagaaa	3420
acaatgctac tcatgtcaga acctacacaa caagatacga agttttctgg tccaaagttag	3480
ggtgaaaaat cactgaaggc tctgttcttg catcataata tactcatatg tagcatgtct	3540
gagcttgcga gattctcttt gttctgtaaa ttctctctct aagtttagtgt ttataatga	3600
acacaaaaaaa attaacgttc ttggcacacc ctttccttg atctaaacta taacataagg	3660
gctacaa	3667

<210> 4
 <211> 2469
 <212> DNA
 <213> Synechococcus PCC7942

<400> 4	
cttggccact aaaggctaag catcgccatt ctttagatta aagcagtctg tcggcggcgc	60
tgtgccggtt aacaccagtc tgtcgctgac agcggtgcct ttctggggct tgcctgtggg	120
gcgagtaacc gatcgctggg ataagagttg gtgcttctgg ctctcaagaa tagggTTTC	180

cgtcgctat	tcccgatcac	atccccctgt	gtctgctacg	gagataacgc	cgatcactca	240
acagaattgg	taagttgacg	gtcaagttgg	gatgatgaag	tcggctcaag	ctggcgatcc	300
ggatctggtg	ggtgttctgt	gcgtattcct	ctcgattact	accgaattct	ctgtgttggc	360
gtgcaagcct	cggcagacaa	acttgccgaa	agctaccgcg	atcgccctcaa	ccaatcgccc	420
tcccatgagt	tttcagagct	ggcattgcag	gcgcggcggc	aactcctcga	agcagcgatt	480
gctgagctga	gtgatcccga	acagcgcgat	cgctacgatc	gccgcttttt	tcagggcggt	540
ctggaagcga	ttgaaccaag	cctagaactc	gaagactggc	agcgaattgg	agccctgctg	600
atcctgctgg	aattggggga	atacgatcgc	gtttcgcaac	tggctgagga	actcctgcca	660
gactacgacg	cgagcgcaga	agtacgcgat	cagttcgcgc	gggggtgatat	cgccttggcg	720
atcgcaactat	cccagcaatc	cctcggtcga	aatgcccgtc	agcagggtct	gtacgaacag	780
gccgcccagc	actttggccg	cagccagtct	gccctagccg	atcatcagcg	cttcctgaa	840
ctgagtcgaa	ccctgcacca	agaacaagga	cagctacggc	cctatcgcat	tttggagcgg	900
ttggcccagc	ccttgactgc	cgatagcgat	cgccagcagg	gtttgctgtt	gttgcaggcg	960
atgttggacg	accggcaggg	cattgaaggc	cctggggatg	atggctcggg	gctgaccctt	1020
gataactttt	tgtatgtttct	ccagcaaatt	cgccggctatc	tgaccctggc	tgaacagcag	1080
ttgctgtttg	aatcggaagc	gcgtcgccccc	tcgcccggctg	cgagcttttt	tgcctgctac	1140
accctgattg	cgcggggctt	ttgcgatcac	caaccctcgt	tgtatccatcg	cgccagctt	1200
ctcttgcatg	aactcaagag	ccgcatggat	gtgcacatcg	aacaggcgat	cgcctgccta	1260
ttgctcggac	agcccgaaga	agctgaggcg	ctactcgtcc	agagccaaga	tgagggaaacc	1320
ctcagccaaa	tccgtccct	agcccaaggg	gaagccctga	tcgtcggtt	gtgccgattc	1380
acggaaacct	ggctagcgac	caaggtattt	ccggatttcc	gacacctcaa	ggaaaggact	1440
gcgcgcgtgc	agccctactt	tgacgacccc	gatgtccaga	cctatctgga	tgcgatcgt	1500
gagttgccgt	ccgatttgat	gccaacgccc	ctaccgttg	agccgcttga	ggtgcgatcg	1560
tcgttgcgg	ccaaggaact	gccgacccca	gcaacgcctg	gtgttagctcc	accccctcgc	1620
cgcgcgtgcc	gcgatcgctc	cgaacgtcct	gctcgacacgg	ccaaacgctt	gcccttggcc	1680
tggattggtt	tgggggttgt	ggtggttctc	ggcggtggaa	caggggtttg	ggcttggcga	1740
tcgcgttcca	attccacccc	gccgaccccg	ccccccgtgg	ttcaaacgct	gcctgaggcg	1800
gtacctgccc	tttcgccccgc	gccagttaco	gttgcctcgt	atcgggctca	ggctgaaact	1860
gtgttgcaaa	actgggttggc	cgctaaagct	gcagccttgg	ggcctcaata	cgatcgcgat	1920

cgcttagcga	cggtgctgac	cggtgaggtt	ctgcagactt	ggcagggttt	ttctagccag	1980
caggccaaca	cccagctcac	atcacagttc	gatcacaagt	taaccgtcga	ctcagttcag	2040
ctcagtgacg	gtgatcaacg	agcagtagtc	caagccaagg	tgcgtgaagt	tgagcaggtc	2100
tatcgaggcg	accagctgct	cgaaacgcgc	cgagattgg	gcttgggtat	ccgctaccag	2160
ctcggtcg	agaacaacat	ctggaaaatt	gcttcgatta	gtttgggtcg	ctaggaattc	2220
gcaagggtg	aacccctgc	ggtctttct	gtagatcccc	tagagcgatc	gcagaatgtt	2280
cagcgattcc	tggatgtcg	cttggcatt	caagagtcaa	tcaaaaatgt	ggcgcacctt	2340
gccctcttg	tcgatcacat	aagtgacgcg	acccggaatc	acaaacaggg	ttttgggcac	2400
gccataggtt	tgacggaggc	gatcgctgc	atcgctcagc	agttggaagg	gcaagttgt	2460
tttctggc						2469

<210> 5
 <211> 631
 <212> PRT
 <213> Synechococcus PCC7942

<400> 5

Met	Arg	Ile	Pro	Leu	Asp	Tyr	Tyr	Arg	Ile	Leu	Cys	Val	Gly	Val	Gln
1				5				10						15	

Ala	Ser	Ala	Asp	Lys	Leu	Ala	Glu	Ser	Tyr	Arg	Asp	Arg	Leu	Asn	Gln
				20				25					30		

Ser	Pro	Ser	His	Glu	Phe	Ser	Glu	Leu	Ala	Leu	Gln	Ala	Arg	Arg	Gln
				35				40				45			

Leu	Leu	Glu	Ala	Ala	Ile	Ala	Glu	Leu	Ser	Asp	Pro	Glu	Gln	Arg	Asp
				50				55			60				

Arg	Tyr	Asp	Arg	Arg	Phe	Phe	Gln	Gly	Gly	Leu	Glu	Ala	Ile	Glu	Pro
65					70				75			80			

Ser	Leu	Glu	Leu	Glu	Asp	Trp	Gln	Arg	Ile	Gly	Ala	Leu	Leu	Ile	Leu
					85				90			95			

Leu	Glu	Leu	Gly	Glu	Tyr	Asp	Arg	Val	Ser	Gln	Leu	Ala	Glu	Glu	Leu
				100				105			110				

Leu	Pro	Asp	Tyr	Asp	Ala	Ser	Ala	Glu	Val	Arg	Asp	Gln	Phe	Ala	Arg
					115				120			125			

Gly Asp Ile Ala Leu Ala Ile Ala Leu Ser Gln Gln Ser Leu Gly Arg
130 135 140

Glu Cys Arg Gln Gln Gly Leu Tyr Glu Gln Ala Ala Gln His Phe Gly
145 150 155 160

Arg Ser Gln Ser Ala Leu Ala Asp His Gln Arg Phe Pro Glu Leu Ser
165 170 175

Arg Thr Leu His Gln Glu Gln Gly Gln Leu Arg Pro Tyr Arg Ile Leu
180 185 190

Glu Arg Leu Ala Gln Pro Leu Thr Ala Asp Ser Asp Arg Gln Gln Gly
195 200 205

Leu Leu Leu Leu Gln Ala Met Leu Asp Asp Arg Gln Gly Ile Glu Gly
210 215 220

Pro Gly Asp Asp Gly Ser Gly Leu Thr Leu Asp Asn Phe Leu Met Phe
225 230 235 240

Leu Gln Gln Ile Arg Gly Tyr Leu Thr Leu Ala Glu Gln Gln Leu Leu
245 250 255

Phe Glu Ser Glu Ala Arg Arg Pro Ser Pro Ala Ala Ser Phe Phe Ala
260 265 270

Cys Tyr Thr Leu Ile Ala Arg Gly Phe Cys Asp His Gln Pro Ser Leu
275 280 285

Ile His Arg Ala Ser Leu Leu Leu His Glu Leu Lys Ser Arg Met Asp
290 295 300

Val His Ile Glu Gln Ala Ile Ala Ser Leu Leu Leu Gly Gln Pro Glu
305 310 315 320

Glu Ala Glu Ala Leu Leu Val Gln Ser Gln Asp Glu Glu Thr Leu Ser
325 330 335

Gln Ile Arg Ala Leu Ala Gln Gly Glu Ala Leu Ile Val Gly Leu Cys
340 345 350

Arg Phe Thr Glu Thr Trp Leu Ala Thr Lys Val Phe Pro Asp Phe Arg
355 360 365

Asp Leu Lys Glu Arg Thr Ala Pro Leu Gln Pro Tyr Phe Asp Asp Pro
370 375 380

Asp Val Gln Thr Tyr Leu Asp Ala Ile Val Glu Leu Pro Ser Asp Leu
385 390 395 400

Met Pro Thr Pro Leu Pro Val Glu Pro Leu Glu Val Arg Ser Ser Leu
405 410 415

Leu Ala Lys Glu Leu Pro Thr Pro Ala Thr Pro Gly Val Ala Pro Pro
420 425 430

Pro Arg Arg Arg Arg Asp Arg Ser Glu Arg Pro Ala Arg Thr Ala
435 440 445

Lys Arg Leu Pro Leu Pro Trp Ile Gly Leu Gly Val Val Val Val Leu
450 455 460

Gly Gly Gly Thr Gly Val Trp Ala Trp Arg Ser Arg Ser Asn Ser Thr
465 470 475 480

Pro Pro Thr Pro Pro Val Val Gln Thr Leu Pro Glu Ala Val Pro
485 490 495

Ala Pro Ser Pro Ala Pro Val Thr Val Ala Leu Asp Arg Ala Gln Ala
500 505 510

Glu Thr Val Leu Gln Asn Trp Leu Ala Ala Lys Ala Ala Leu Gly
515 520 525

Pro Gln Tyr Asp Arg Asp Arg Leu Ala Thr Val Leu Thr Gly Glu Val
530 535 540

Leu Gln Thr Trp Gln Gly Phe Ser Ser Gln Gln Ala Asn Thr Gln Leu
545 550 555 560

Thr Ser Gln Phe Asp His Lys Leu Thr Val Asp Ser Val Gln Leu Ser
565 570 575

Asp Gly Asp Gln Arg Ala Val Val Gln Ala Lys Val Asp Glu Val Glu
580 585 590

Gln	Val	Tyr	Arg	Gly	Asp	Gln	Leu	Leu	Glu	Thr	Arg	Arg	Asp	Leu	Gly
595						600						605			
Leu	Val	Ile	Arg	Tyr	Gln	Leu	Val	Arg	Glu	Asn	Asn	Ile	Trp	Lys	Ile
610					615							620			
Ala	Ser	Ile	Ser	Leu	Val	Arg									
625					630										
<210>	6														
<211>	1390														
<212>	DNA														
<213>	Synechococcus PCC7942														
<400>	6														
ctcgataactt	gggagttgaa	cacagagtag	tagtctaagt	aacaactgct	cgtgagcaat										60
ttgctacact	ttttacccaaa	ttttgagctc	agttttcgcg	aaaactggga	tgttgagttg										120
aaccctcagc	agcaaaattt	taccgcctga	gacttttacc	gttttattcg	gccatctggg										180
aacaatcgcc	ctggagctta	tttgacactc	tacccgtact	gccgttattt	ccttgttaga										240
acgctatttc	gagctgtcgg	cagcgcgagc	agcagaggtc	ttgcagcaac	tgcgatcgca										300
ccaccctgaa	gcctggattt	atcccccac	agtcgaggcg	atttaccaag	gccgttaccg										360
ctgggtgtcg	atcgacaaaa	tccttgctct	gtggcagcgg	cgcgggcaga	tcaactgcca										420
ttcagtgca	gactatgagc	gcttggctct	cggtgaagtt	ccagagcaac	ccgatcgcat										480
caatgtttag	acgcggctcc	ctgcgatcgc	catgaccttgc	ccttgggtgc	cagaacagcc										540
tggagaagca	ttcgtgccag	cgcaagatca	gtcgggtta	actgagcgcc	tttataaaac										600
gttggtaaaa	gcgggcagcg	attgcgctgg	gtaggcttag	aacagttgcc	atccaaactt										660
gagagtgccc	gttcggccag	ccaagagaat	tccaagagcc	tttcagaacg	gacaacaatt										720
ctgctctaca	atcaagcccc	agtgaagagg	cggcgggcta	ttggctgaat	ggcaaaaaac										780
atcattctt	cagcaatcgt	gggttatacc	tacgacaaaa	ttgacctatt	cttaacttct										840
gcactccgta	acacctcagc	agatattctt	ttaattgcat	caagtccctc	agcccaactc										900
cgtcatcagt	tattgagttc	acctcgggtc	aaactcgttt	atgtgaacct	tcaagggtaa										960
ccagctgaaa	tggtatttgc	ccgtttcttt	attgccaagg	agattttggc	gagaatcgaa										1020
gcagatgaaa	ttctcttgag	cgatgctgc	gatgtctatt	tccaatctga	cccttttgtt										1080
gtccaagggg	ttttatttgc	cgaggaacct	cagctaatcg	caaactgtaa	agtcaatagc										1140
agctggataa	aaaaataactt	aggagaggat	gagttcaag	ccatttctcc	taatccaatt										1200

ctctgcgggg gcaaccatgt gctggatgcc accaaggcct ttagcctgac gttgaccaca 1260
 ccagaagaaa ttgttggct gcccgagagt ttgctggcct tggcggctca agctgctcaa 1320
 gccgctggtg aaacagaggc aacacccgaa gccggccctt ggcgaatcac cctcgacttc 1380
 ccaagcttg 1390

<210> 7
 <211> 152
 <212> PRT
 <213> Synechococcus PCC7942

<400> 7

Met Gly Thr Ile Ala Leu Glu Leu Ile Val Thr Ser Thr Arg Thr Ala
 1 5 10 15

Val Ile Ala Leu Leu Glu Arg Tyr Phe Glu Leu Ser Ala Ala Arg Ala
 20 25 30

Ala Glu Val Leu Gln Gln Leu Arg Ser His His Pro Glu Ala Trp Ile
 35 40 45

Tyr Pro Ala Thr Val Glu Ala Ile Tyr Gln Gly Arg Tyr Arg Trp Val
 50 55 60

Ser Ile Ala Gln Ile Leu Ala Leu Trp Gln Arg Arg Gly Gln Ile Asn
 65 70 75 80

Cys His Phe Ser Ala Asp Tyr Glu Arg Leu Leu Leu Gly Glu Val Pro
 85 90 95

Glu Gln Pro Asp Arg Ile Asn Val Glu Thr Arg Leu Pro Ala Ile Ala
 100 105 110

Met Thr Leu Pro Trp Val Pro Glu Gln Pro Gly Glu Ala Phe Val Pro
 115 120 125

Ala Gln Asp Gln Ser Gly Leu Thr Glu Arg Leu Tyr Lys Thr Leu Val
 130 135 140

Lys Ala Gly Ser Asp Cys Ala Gly
 145 150

<210>	8					
<400>	8					
000						
<210>	9					
<211>	2406					
<212>	DNA					
<213>	Arabidopsis thaliana					
<400>	9					
atggaagctc	ttagtcacgt	cggcattgg	ctctcccat	tccaattatg	ccgattacca	60
ccggcgacga	caaagctccg	acgtagccac	aacacctcta	caactatctg	ctccgccagc	120
aaatgggccc	accgtttct	ctccgacttc	aattcacctt	ccgattcctc	ctcctccctc	180
ttcgccaccg	ccaccaccac	cgcactctc	gtctctctgc	caccatctat	tgatcgcccc	240
gaacgccacg	tccccatccc	cattgatttc	taccaggtat	taggagctca	aacacatttc	300
ttaaccgatg	gaatcagaag	agcattcgaa	gctagggttt	cgaaccgc	gcaattcggt	360
ttcagcgacg	acgcttaat	cagccggaga	cagattctc	aagctgcttgc	cgaaactctg	420
tctaattcctc	ggtctagaag	agagtacaat	gaaggtcttc	ttgatgatga	agaagctaca	480
gtcatcactg	atgttccttgc	ggataagggtt	cctggggctc	tctgtgtatt	gcaagaaggt	540
ggtgagactg	agatagttct	tcgggttgg	gaggctctgc	ttaaggagag	gttgccataag	600
tcgtttaagc	aagatgtgg	tttagttatg	gcgcttgcgt	ttctcgatgt	ctcgagggat	660
gctatggcat	tggatccacc	tgattttatt	actggttatg	agtttgttga	ggaagctttg	720
aagctttac	aggaggaagg	agcaagtagc	cttgcaccgg	atttacgtgc	acaaattgtat	780
gagactttgg	aagagatcac	tccgcgttat	gtcttgagc	tacttggctt	accgcttgg	840
gatgattacg	ctgcgaaaag	actaaatgg	ttaagcggtg	tgccgaatat	tttgggtct	900
gttggaggag	gtggagcatc	agctcttgc	gggggttga	cccgtagagaa	gtttatgaat	960
gaggcgaaaa	tatgaatgac	agctgctgag	caggttgc	tttttgtac	tacccaaagc	1020
aatattccag	cagagtcat	tgaagtttac	gaagttgcac	ttgctcttgc	ggctcaagct	1080
tttattggta	agaagccaca	cctttacag	gatgctgata	agcaattcca	gcaacttcag	1140
caggctaagg	taatggctat	ggagattcct	gcgtatgtgt	atgatacagc	gaataattgg	1200
gagatagact	tcggtctaga	aaggggactc	tgtgcactgc	ttataggcaa	agttgatgaa	1260
tgccgtatgt	ggttgggctt	agacagttag	gattcacaat	ataggaatcc	agctattgtg	1320
gagtttgg	tggagaattc	aaatcgat	gacaatgat	atctccctgg	actatgc	1380

ttgttggaaa cctgggttggc	1440
agggggttgtc tttccttaggt	
tcagagacac caaagataaa	
aaatttaaac tcggggacta	1500
ctatgatgat cctatggttt	
tgagttactt ggaaagagtg	
gaggtagttc agggttctcc	1560
tttagctgct gctgcagcta	
tggcaaggat tggagccgag	
catgtgaaag cttagtgcata	1620
gcaggcactg cagaaagttt	
ttccctccccg ctatacagat	
agaaaactcg	1680
ctgaacccaa ggatgtgcaa	
gagacagtgt tttagtgtaga	
tcctgttggt	
aacaatgtag gccgtgatgg	1740
tgagcctggt gtctttattt	
cagaagctgt aagaccctct	
gaaaactttg aaactaatga	1800
ttatgcaatt cgagctgggg	
tctcagagag tagcgtttagt	
gaaactactg ttgaaatgtc	1860
cgttgctgat atgttaaagg	
aggcaagtgt gaagatccta	
gctgctggtg tggcaatttgg	1920
actgattca ctgttcagcc	
agaagtattt tctaaaagc	
agctcatctt ttcaacgcaa	1980
ggatatggtt tcttctatgg	
aatctgtatgt cgctaccata	
gggtcagtca gagctgacga	2040
ttcagaagca cttcccagaa	
tggatgctag gactgcagag	
aatatagtat ccaagtggca	2100
gaagattaag tctctggctt	
ttgggcctga tcaccgcata	
gaaatgttac cagaggtttt	2160
ggatgggcga atgctgaaga	
tttggactga cagagcagct	
gaaactgcgc agcttgggtt	2220
ggtttatgtat tatacactgt	
tgaaaactatc tggtgacagt	
gtgacagtct cagcagatgg	2280
aaccctgtct ctgggttgaag	
caactctggaa ggagtctgct	
tgtctatctg atttggttca	2340
tccagaaaaac aatgctactg	
atgtcagaac ctacacaaca	
agatacgaag ttttctggtc	2400
caagtcaggg tggaaaatca	
ctgaaggctc tgttcttgca	
tcataa	2406

<210> 10
 <211> 3667
 <212> DNA
 <213> Arabidopsis thaliana

<400> 10	
tgttctgcat taaggagaat acaattataa	60
gcaatttgc ttgatttcaa caagattttg	
cttggctata ggattcattt gctctgtttt	120
cttttacatt tacatgtcat aatagtttcg	
aattttacac atttcagttt gatgttaaga aaagagaggg	180
aattgtatggg gttttgtggg	
tttaaacttt aaagtagtca agaattaagt	240
cattggttt ctgttgctct atatgttaaa	
aatgaaggca actccaacgg ttcttaggtg	300
gaatagatta tttagacgt ttaacatcat	
aaagtccgtg gcgactgtaa catcatagat	360
tgttttttat ttttttcagt agctgggtat	
gttttttgcat ttaacttata ctactcaaaa	420
tcaaaaattcc ataaacccta gacgaccaaa	
cagtctcttc aatatgtaaa acagaacaaa	480
gtttttgttag tagcctaaaa agacactccc	

atggaagctc tgagtcacgt cggcattggc ctctccccat tccaattatg ccgattacca	540
ccggcgacga caaagctccg acgtagccac aacacccctta caactatctg ctccgccagc	600
aaatgggccc accgtcttct ctccgacttc aattcacct ccgattcctc ctccctcc	660
ttcgccaccg ccaccaccac cgccactctc gtctctctgc caccatctat tgatcgccc	720
gaacgccacg tccccatccc cattgatttc taccaggat taggagctca aacacatttc	780
ttaaccgatg gaatcagaag agcattcgaa gctagggttt cgaaaccgccc gcaattcggt	840
ttcagcgacg acgcttaat cagccggaga cagattctc aagctgcttg cgaaactctg	900
tctaattcctc ggtctagaag agagtacaat gaaggtcttc ttgatgatga agaagctaca	960
gtcatcactg atgttccttg ggataaggta atttcgattt cggaaaataata aagtttcttc	1020
gttttaattt catgaattgg ataaaggaag gaacttttat ctagtgaagg ttccctgggc	1080
tctctgtgta ttgcaagaag gtggtgagac tgagatagtt ctgcgggttg gtgaggctct	1140
gcttaaggag aggttgccta agtcgtttaa gcaagatgtg gtttagtta tggcgcttgc	1200
gtttctcgat gtctcgaggg atgctatggc attggatcca cctgatttttta ttactggta	1260
tgagtttgtt gaggaagctt tgaagctttt acaggttagtt tgacttgctt tggtaatttg	1320
acgagcgttg gcttataag aactttcttg atttgataact ttgttattga gtcttgtgta	1380
ggaggaagga gcaagtagcc ttgcaccgga tttacgtgca caaattgatg agactttgga	1440
agagatcact ccgcgttatg tcttggagct acttggctta ccgcgttggtg atgattacgc	1500
tgcgaaaaga ctaaatggtt taagcggtgt gcggaaatatt ttgtggcttg ttggaggagg	1560
tggagcatca gctcttgtt ggggtttgac ccgtgagaag tttatgaatg aggcgaaaa	1620
atgaatgaca gctgctgagc aggtatacag tttagataacc ttttttaat ttcttttagca	1680
tgatataact ttaggttct cattttatg tatgttgtgt ggttaggttga tcttttgta	1740
gctaccccaa gcaatattcc agcagagtca tttgaagttt acgaagttgc acttgcttct	1800
gtggctcaag cttttattgg taagaagcca cacctttac aggtatgttga taagcaattc	1860
cagcaacttc agcaggctaa ggtaatggct atggagattc ctgcgtatgtt gtatgataca	1920
cggaataatt gggagataga cttcggtcta gaaaggggac totgtgcact gcttataggc	1980
aaagttgatg aatgccgtat gtgggtggc ttagacagtg aggattcaca atataggaat	2040
ccagctattg tggagttgtt tttggagaat tcaaattcgat atgacaatga tgatctccct	2100
ggactatgca aattgttggaa aacctgggttgcaggggttg tctttcctag gttcagagac	2160
accaaagata aaaaatttaa actcgccccac tactatgatg atcctatggt tttgagttac	2220

ttggaaagag tggaggtagt tcagggttct ccttagctg ctgctgcagc tatggcaagg	2280
atggagccg agcatgtcaa agctagtgt atgcagggcac tgcagaaagt tttccttcc	2340
cgctatacag atagaaaactc ggctgaaccc aaggatgtgc aagagacagt gtttagtgta	2400
gatcctgttg gtaacaatgt aggccgtgat ggtgaggctg gtgtcttat tgcagaagct	2460
gtaagaccct ctgaaaacctt tgaaaactaat gattatgcaa ttcgagctgg ggtctcagag	2520
agtagcgttg atgaaaactac tggtaaatg tccgttgctg atatgttaaa ggaggcaagt	2580
gtgaagatcc tagctgctgg tgtggcaatt ggactgattt cactgttcag ccagaagtat	2640
tttcttaaaa gcagctcatc ttttcaacgc aaggatatgg tttcttctat ggaatctgat	2700
gtcgctacca taggtatgat taaatgatgc aattttcata tatctgcatt gctaaaaata	2760
tgcttggttt gtgagctaag aacatagttc ccacttaata catgtccaa aagttgtacc	2820
aagattaaca agttgctgag taaatttcac taattatgct gcttgaattt tttgatcaaa	2880
ctgttagacag aaatgtaaat ttcaactctca acatttctgt tttagaataac gtaggattag	2940
agattgcctt agtgtggctt tgtccaactt ttctttcctt gatTTTTTC tttcgattt	3000
agggtcagtc agagctgacg attcagaagc acttcccaga atggatgcta ggactgcaga	3060
gaatatagta tccaaagtggc agaagattaa gtctctggct ttggggcctg atcaccgcat	3120
agaaatgtta ccagaggtga gggataaat ctacaattca atcaattgtg tgaaaactgt	3180
tggacatgat tatagtctgg tgccttgaaa gattctgtta ttataggtt ttggatgggc	3240
gaatgctgaa gatttggact gacagagcag ctgaaaactgc gcagctggg ttggTTTATG	3300
attatacact gttgaaacta tctgttgaca gtgtgacagt ctcagcagat ggaaccgtg	3360
ctctgggtgga agcaactctg gaggagtctg cttgtctatc tgatttggtt catccagaaa	3420
acaatgctac tcatgtcaga acctacacaa caagatacga agtttctgg tccaaagttag	3480
ggtgaaaaat cactgaaggc tctgttcttg catcataata tactcatatg tagcatgtct	3540
gagcttgca gattctcttt gttctgtaaa ttctctctt aagtttagtgtt ttataatga	3600
acacaaaaaaa attaacgttc ttggcacacc ctttccttg atctaaacta taacataagg	3660
gctacaa	3667

<210> 11
 <211> 7980
 <212> DNA
 <213> Arabidopsis thaliana

<400>	11					
actgtaaaatt	ttgataaata	aaaaaaaaaca	aaaaaaagat	cgc当地tca	tat当地tac	60
tatcagattt	aaacaatata	atttgttcga	cgatacagaa	atat当地tacc	tcacaggaag	120
aggttgcgca	gaaggagcca	tggatgtgtt	tgtcgagtc	gagttgctt	gttctaagta	180
ggtaattgca	agaaaacttga	gttgtctata	aagcttgga	atacttctct	ttat当地atac	240
gtttacaaca	atttttttt	ttttttttt	tctat当地ta	caacaaattt	ttttttatta	300
taataataaa	cttaaacgaa	aataaataat	atctcttgt	tctat当地tctt	aaaaaaagaaa	360
ttagcttgc	gtacttcaac	gtatcttaac	tcttagtct	ttagtaggt	tat当地catct	420
atttat当地t	ttttat当地t	tttatattac	gattatagt	tacgtacgt	tttattaatc	480
aaaaataact	tggtagaagt	aaaaagaaaa	tgat当地ttt	tttactcagt	gatcagttt	540
acgttattc	aaaaataagt	tgtat当地tcc	ttcttaatata	tcaagttata	tgactaaaaa	600
ttggtcgg	atttactat	taagattaat	cggaaactct	agttagatca	cgagataatc	660
atcacgtg	gaaacattt	gttcttgc	cgtggagaaa	acgttaagct	tat当地tttac	720
ttcttatta	tat当地ttag	gaaatgg	aaagaaaagag	agtgtttaaa	atgtgaatgc	780
gctcgtat	aggtagg	taatgg	gaggtaggt	catatgtgt	ttagtgc	840
ataaaaatta	aaaacataaa	aaaaacttca	agctgtaaat	aatctatata	aagaacatag	900
aaatataatc	aaagaaccat	ttaactaaat	aaatactt	gattcaaata	gcataatct	960
aagtccaa	aatagctatc	ctctatccac	atgttacatt	tttttttct	tttcacatc	1020
catatagtt	ttaaaataat	tttcttagat	gtat当地tta	ttcgacattt	tttttcctt	1080
ttagatttac	tgattataat	ttat当地ttag	ataatgata	cgactgtcg	ttctacaaaa	1140
ctgaaattt	caaacattt	gg accaaaaagc	gaaacctt	aa tcacttgaaa	cgacaacgtt	1200
ctttagt	ttttggaca	tacaaagtac	acataagat	ttccctcact	cttcgattgt	1260
ttcttaacct	aatataat	agcaatattt	aacttgc	actcaatgc	gcaccgaagg	1320
agcctt	taga	tttgagca	attcatgaga	gtttagctc	tcattcatca	1380
ctctttatc	ctcttatc	gtccaaaaca	tgacacataa	cataatgtt	gttctcctgc	1440
atacttccaa	tggcaaata	aaaaagaga	cattgatcat	agaagtc	agt ttacc	1500
cttctgagct	cgatctctgt	gtccgtt	tttgatcaa	gtgattgccg	gagattcg	1560
atgtcgaaga	tactatcgag	gtcgtcttca	aatgcgtt	ccaactctt	ccggagaaga	1620
gcaggtaact	tatcaacgat	ggcattaga	agaaaacagt	tgaactgcag	aacaaaagaa	1680

aacacagata	caaactttt	aaaagaaaaag	tcatttaaa	agcaagaaga	atctgagtaa	1740
aaactgaagt	aggagcaaac	ctttaactca	gcagaggcga	gaaagtactc	tcgtatgcc	1800
tggatatct	gttggaccaa	tgcgtacaca	attctctcg	aggaaggagc	aagcttgccg	1860
ttccaaagtg	tgctatctag	aagatcagcc	aaccgcattt	ctgttgtctg	aatactggaa	1920
cctgaatcga	tgttgaggc	gagatggctt	agcttacat	ctgatcttga	cttggtgtct	1980
gttgtgccac	ctaattgcac	ttgggaaaga	ctaaatccta	tggcattacc	tgtgtcgta	2040
ttatgctctg	ttccacccaa	tgagtccaag	aattgacgta	gaccagctcg	gttctacata	2100
acattgagaa	acgaaaacta	ctcaatcaga	aacggatact	tgtgttatg	tacacaactc	2160
aattggattg	aaacagagct	atagggctgt	agcaatgacc	ttgttgtgaa	gagaccatgt	2220
aacatagcga	gttgtacttg	ctaaatcctc	catacatctg	caaacaatat	aaaatccaaa	2280
gggtgatcaa	tcactaaagc	tcactagaac	acaggttagga	ggcacccgaca	tggtaagaac	2340
aggaattgga	aatagaatta	cttgcacga	catgatttt	ctgtggactc	cacaaaactg	2400
ttgaatgctg	aagcaacccg	cttgagaaac	acctcatgcc	cacttaata	ttcaccttct	2460
ttctattcaa	atttagaaca	tacatcaaaa	aatttgctgg	aaagggatca	tgagtatgat	2520
accgtcaaac	caaagaaaac	agtacctacc	tgaagaagat	atacagaaaat	tggaaagcaat	2580
ctcttgagaa	tgtgtagaag	cctcgccccct	aactatatca	acgcaaaaca	aacgaaaatg	2640
agaactggaa	aaaactttct	gtatggaaag	agaaacatgt	gaataacaaa	attcagatg	2700
aaagtattcc	caaacatagt	ttctgtaaac	agaacatgtt	tactcgataa	ctcttatgca	2760
caaataagtt	ccagcaaatc	tcaaaactga	atggtagtat	gatttcaata	tataacgtta	2820
tatttcattt	tttttttac	gtacagtaca	ccttaactaa	ttagtaaaat	tgcttccat	2880
cctccacgaa	agaaaaagaa	aaaagtagct	atatctatgt	cacctgatga	aggaaaggtt	2940
caaacgtctc	acgagccctc	gcaactgcta	taacacaagc	tgttctacaa	cagcaaataa	3000
gagaaagaga	ataagaggcc	atagaaaaca	tgacaaacgt	tgcagctcag	attagatact	3060
gaaaggggtc	tgggatgcaa	agacaataaa	ttgagaagtg	tgttgcatgt	cagtcaatcc	3120
tatgataacct	ggaatagttt	gttccatcat	gaatatcctc	aactccacat	gcatttacaa	3180
tttcctccct	cgttattggg	ggacatttga	tagcaccaac	tagaaaacga	aactcagcca	3240
tggcacggtg	atattgtgca	cccccataga	gacgcatccc	tgcattctgt	aaaatgaaag	3300
ataatctggt	tatggctct	cataattctt	gaaggtccaa	cgaagtatct	cttttatttg	3360
tttccaatac	attattctt	ggcacatatg	tttcatgcgg	tcaaatttat	cttccatcat	3420

attataatcc atgtacaaga acaagacaac tggatttcaa gaccatgccc agcttgctct	3480
ataaaagtcca acaatattct gcttcaggaa aagacttacc ggtatttagct tatgtaaaaa	3540
ctggagacca tcagtagccaa caaatgctcc tccttgcgtc cttcatctt gcagtgtctc	3600
acctgaaaaa caccatgaga aattattaac aatcaaagaa cccaacataa agagaatgct	3660
gttataaaat gtgcttctgc cagtaaccaa agtacatga ccaatgattt attgattagc	3720
atacatcatt ccatgtgtaa tcatcgagt ctggtgaccc agtcgaattt aacaatatgc	3780
attnaactaa actgattttg caaaagtcca attnaacaac acccagaaaac aagaaaagtt	3840
tatgccaaag aagttgacta gcagagaaca gagcagtaac attaccaaattt ttatctggag	3900
gggccacaac tgcccccttc aataacagcg ataactgatc aagaaaaata taaacaaaac	3960
aggtgagaaa acacagcact gatcaatact aacaaaggta ctgcgtacgt caatcagaaa	4020
atatgacgca gcaattttaa agtcttaagg gcatccaaca caaaaagttt acagccattc	4080
tgaatttgcata gcaagtccta gatatcattt actgttagcat aattttatattt gtgtcagtaa	4140
tcaataaaca aatttgcattt tatgtgtcag tagttaataa accaaaaaaaaa aagagaagtt	4200
tacacaaatg aacttgcgtt aatttataaa aaactattaa tccacgagtc caggcaaaaa	4260
tgaaaaggta tggaaaggta taaatagaaa tctaaaaaaaaa cgaaatgctc tctacagtt	4320
ccttggtaa gaagagatca tggaaagtcc tgcctctctc tttgagttt gcttcattca	4380
aagagctgca ttgaaaggaa ttattcaacc tccaatgagt tatattttct ataaatcagt	4440
agctaacaat taaactgcct aaaatcaagt agacatttc agacaaaaca aattgcgacc	4500
taagttcattt gtcacggta tccagcttc tgactgtact gcggtactcc tttccataaca	4560
gtggaatgat caatggaaaca ctctttgtt acctggaaag agaaggcat caagactaca	4620
gcgaaaaagta aactacaata gaaacagagg ctggaaaaat cagagttaaa acaacagtt	4680
tacccccc agagtagttc ttccagaaac aacctcagtt tactgatgcc aatcctactc	4740
ttttccgtt ttgtcagtaa acggccaaac ttcttcctta aagatgcaat gtctccatt	4800
tctctaaatg acacagcctg taataaaaac cacacatagt tttagaaaaag acctgtttaa	4860
cttgcgtttaag gaatcagaca gcagagcaga gacctgtttg aactcgcat tagacttata	4920
cactgaatcc tgtccatagc caactcttcc agaaggcaca gacgtaaaaa aaggagaatc	4980
gccccataag gagctgtcaa gtgcgttgc aggaggttag agaaagactt ccacgtcaga	5040
tgaacatgag aattgaggaa ttttagtgc aagcttgcata gaaacaacaa ttgtccataga	5100
aagctcagga tcaacctaca tgaacgagaa acaaacttta acaaaaaataa agacaaggaa	5160

gtggtcgtag atcaggggac gcatttgtta ccgagtcctg ataattcgac gtttcaaaag	6960
catggagtga gtacaaaaat tattttcgt aacaacagaa atcaactgtg tgggttatg	7020
catgtcctta ccttgccttc ttcttgtaac aattctgaa caggtctgta tgcagctgct	7080
atgcatacatgt tctgcaatgt aagaaaagaa aaggaatcg aactactgtg ttgaatcata	7140
ctcgaaacttg taaatgaaac cccgaatgac caaaccttta gatcgcttcc tgaatatcct	7200
tcggtttcct ttgcaagttt atcaaactcg aaaccagttt caagatttc tgggtgcaga	7260
aatatcttca atatcttcaa cgggtttcc gcatctggta aatccacata tatccatataa	7320
acacaaggcct caatacaatt atcgaaaaga tacaaatatt ccaaaggaga aattacttga	7380
aagcttaaat taccgtcttg gtgcctacg aatgacagcg tcatcaagat caaaaggtcg	7440
gttggggca ccgagaatga gaatccttgc gctatcttt gatctgagtc catccaaagc	7500
tgc当地aaac tcatttctca ttcttcgtgt tgccctcggtc tcaaaagcac caccacgagc	7560
acccaacaaa ctgtcaacct atacgacaac aaaataaatt acagttagtc cttgagtaac	7620
acatttacg catcacaaaaa gtattcctca taaaaagcaa taaccgaaat tgaaaagtga	7680
tataaagcta aacaatttct cacctcatca acaaataaa tgacgggggc tagtttgctt	7740
gcaaaagaga acaaaggcctt cgtgagcttc tctgcacatc caaaccactg tgccaaacaa	7800
tggacgaaat tgacttaaat cagaaccaat cagaggtaaa gttggaaaga gatttactct	7860
aagttacaat cgccatttgc aataataagt cgatgaccgg ggtggaaaag tttttcttat	7920
gtcatttagat attctcctta tttatatgaa gatgtttaca aagtggata tcaacgtgac	7980

<210> 12
 <211> 2678
 <212> DNA
 <213> Arabidopsis thaliana

<400> 12	
gaaatttagcc gtagtctgcta attccatggc ggaaaaagga acggcgacga aaactaaaga	60
gtagaagaaa taagagacac tctcttactc ttactcttcc tcttgctcat tttcgtaaga	120
gacgatggcg gaagtatcg caaaatcggt gacgggttag gaaatggcgg aagaggacga	180
cgtgcgatt gaggagcggt ggagtcttta cgaagcttac aacgagttac acgctttggc	240
gcaggaattt gagacgccgt tcgaagcacc ggccgttctt gtgggtggac agcagaccga	300
cggtaaaagt gcgcttgtgg aagctttat ggggttcaa tttaaccatg tcggcggcgg	360
aaccaagact cgtcgccga ttactctcca tatgaagtac gatcctcagt gtcaattccc	420
gctttgtcat ctcggatctg atgatgatcc ttccgtttctt ctccccaaat ctctctcaca	480

aattcacgca tatattgagg ctgagaacat gaggctggag caagagccat gtagcccatt	540
ctctgcaaag gagattattg tgaaagtcca gtataagtat tgtccaaacc ttaccatcat	600
tgatacacct ggacttattg ctcctgcacc aggactgaaa aaccgagctc ttcaggttca	660
agcacgggct gtggaagctc tagtccgagc aaagatgcaa cacaaagagt tcacatcttt	720
atgcctcgaa gatagcagt actggagcat tgcaaccact cgaaggatag tcatgcaagt	780
tgatcctgag ctttctagga caattgttgt ttctacaaag cttgacacta aaatccctca	840
attctcatgt tcacatcgacg tggaagtctt tctctcacct cctgcaagcg cacttgacag	900
ctccttattg ggcgattctc ctttttac acgtgtgcct tctggaagag ttggctatgg	960
acaggattca gtgtataagt ctaatgacga gttcaaacag gctgtgtcac ttagagaaat	1020
ggaagacatt gcatcttag agaagaagtt gggccgtta ctgacaaaac aggaaaagag	1080
taggattggc atcagtaaac tgaggttgg tctggaagaa ctactctgga aaaggtacaa	1140
agagagtgtt ccattgatca ttccactgtt aggaaaggag taccgcagta cagtcagaaa	1200
gctggatacc gtgagcaagg aacttagctc tttggatgaa gcaaaaactca aagagagagg	1260
caggacttcc catgatctct tcttaaccaa gttatcgctg ttattgaagg gaacagttgt	1320
ggccctcca gataaatttgc tgagacact gcaagatgaa aggacacaag gaggagcatt	1380
tgttggtaact gatggctcc agtttcaca taagctaata cagaatgcag ggatgcgtct	1440
ctatgggggt gcacaatatc accgtgccat ggctgagttt cgaaaaatccat ttgggtctat	1500
caaatgtccc ccaataacga gggagggaaat tgtaaatgca tgtggagttg agatattca	1560
tgatggaaca aactattcca gaacagcttgc tgttatagca gttgcgaagg ctcgtgagac	1620
gtttgaacct ttccatttcattc agtttagggc gaggcttcta cacattctca agagattgt	1680
tccaaatttct gtatatcttc ttccagaaaga aggtgaatat ttaagtgggc atgaggtgtt	1740
tctcaagcgg gttgcttcag cattcaacag ttttggag tccacagaaa aatcatgtcg	1800
tgacaaatgt atggaggatt tagcaagtac aactcgctat gttacatggc ctcttcacaa	1860
caagaaccga gctggctac gtcaattctt ggactcattt ggtggAACAG AGCATAATAC	1920
gacatcaggt aatgccatag gatttgtct tccccaaatgc gcatttaggtg gcacaacaga	1980
caccaagtca agatcagatg taaagctaag ccatctcgcc tcaaacatcg attcaggttc	2040
cagtatttcag acaacagaaa tgccgttggc tgatcttcata gatagcacac tttggAACCG	2100
caagcttgct ctttcctctg agagaattgt gtacgcatttgc tccaaacaga tattccaggg	2160
catacgagag tactttctcg cctctgctga gttaaagttc aactgttttc ttctaatgcc	2220

catcggtat aagttacctg ctcttctccg ggaagagttg gaaaacgcatttgaagacga	2280
cctcgatagt atcttcgaca tcacgaatct ccggcaatca cttgatcaaa agaaaacggagg	2340
cacagagatc gagctcagaa gggtaaagag gataaaagag aaattcagag tgatgaatga	2400
gaagctaaac tctcatgaat ttgctcaaaa tctaaaggct ccttcggtgc agcattgagt	2460
gactcaagtt caatattgct taatttatatt aggttaagaa acaatcgaag agtgaggaa	2520
catcttatgt gtactttgta tgtccaaaaa catactaaag aacgttgtcg tttcaagtga	2580
ttaaggtttc gcttttggt ccaatgtttg caaatttcag tttttagaa acgacagtcg	2640
tatcatttat ttctaaataa attataatca qtaaatct	2678

<210> 13
<211> 777
<212> PRT
<213> *Arabidopsis thaliana*

<400> 13

```

Met Ala Glu Val Ser Ala Lys Ser Val Thr Val Glu Glu Met Ala Glu
1          5           10          15

```

Glu Asp Asp Ala Ala Ile Glu Glu Arg Trp Ser Leu Tyr Glu Ala Tyr
 20 25 30

Asn Glu Leu His Ala Leu Ala Gln Glu Leu Glu Thr Pro Phe Glu Ala
 35 40 45

Pro Ala Val Leu Val Val Gly Gln Gln Thr Asp Gly Lys Ser Ala Leu
50 55 60

Val Glu Ala Leu Met Gly Phe Gln Phe Asn His Val Gly Gly Gly Thr
65 70 75 80

Lys Thr Arg Arg Pro Ile Thr Leu His Met Lys Tyr Asp Pro Gln Cys
85 90 95

Gln Phe Pro Leu Cys His Leu Gly Ser Asp Asp Asp Pro Ser Val Ser
 100 105 110

Leu Pro Lys Ser Leu Ser Gln Ile His Ala Tyr Ile Glu Ala Glu Asn
115 120 125

Met Arg Leu Glu Gln Glu Pro Cys Ser Pro Phe Ser Ala Lys Glu Ile
130 135 140

Ile Val Lys Val Gln Tyr Lys Tyr Cys Pro Asn Leu Thr Ile Ile Asp
145 150 155 160

Thr Pro Gly Leu Ile Ala Pro Ala Pro Gly Leu Lys Asn Arg Ala Leu
165 170 175

Gln Val Gln Ala Arg Ala Val Glu Ala Leu Val Arg Ala Lys Met Gln
180 185 190

His Lys Glu Phe Ile Ile Leu Cys Leu Glu Asp Ser Ser Asp Trp Ser
195 200 205

Ile Ala Thr Thr Arg Arg Ile Val Met Gln Val Asp Pro Glu Leu Ser
210 215 220

Arg Thr Ile Val Val Ser Thr Lys Leu Asp Thr Lys Ile Pro Gln Phe
225 230 235 240

Ser Cys Ser Ser Asp Val Glu Val Phe Leu Ser Pro Pro Ala Ser Ala
245 250 255

Leu Asp Ser Ser Leu Leu Gly Asp Ser Pro Phe Phe Thr Ser Val Pro
260 265 270

Ser Gly Arg Val Gly Tyr Gly Gln Asp Ser Val Tyr Lys Ser Asn Asp
275 280 285

Glu Phe Lys Gln Ala Val Ser Leu Arg Glu Met Glu Asp Ile Ala Ser
290 295 300

Leu Glu Lys Lys Leu Gly Arg Leu Leu Thr Lys Gln Glu Lys Ser Arg
305 310 315 320

Ile Gly Ile Ser Lys Leu Arg Leu Phe Leu Glu Leu Leu Trp Lys
325 330 335

Arg Tyr Lys Glu Ser Val Pro Leu Ile Ile Pro Leu Leu Gly Lys Glu
340 345 350

Tyr Arg Ser Thr Val Arg Lys Leu Asp Thr Val Ser Lys Glu Leu Ser
355 360 365

Ser Leu Asp Glu Ala Lys Leu Lys Glu Arg Gly Arg Thr Phe His Asp
370 375 380

Leu Phe Leu Thr Lys Leu Ser Leu Leu Lys Gly Thr Val Val Ala
385 390 395 400

Pro Pro Asp Lys Phe Gly Glu Thr Leu Gln Asp Glu Arg Thr Gln Gly
405 410 415

Gly Ala Phe Val Gly Thr Asp Gly Leu Gln Phe Ser His Lys Leu Ile
420 425 430

Gln Asn Ala Gly Met Arg Leu Tyr Gly Ala Gln Tyr His Arg Ala
435 440 445

Met Ala Glu Phe Arg Phe Leu Val Gly Ala Ile Lys Cys Pro Pro Ile
450 455 460

Thr Arg Glu Glu Ile Val Asn Ala Cys Gly Val Glu Asp Ile His Asp
465 470 475 480

Gly Thr Asn Tyr Ser Arg Thr Ala Cys Val Ile Ala Val Ala Lys Ala
485 490 495

Arg Glu Thr Phe Glu Pro Phe Leu His Gln Leu Gly Ala Arg Leu Leu
500 505 510

His Ile Leu Lys Arg Leu Leu Pro Ile Ser Val Tyr Leu Leu Gln Lys
515 520 525

Glu Gly Glu Tyr Leu Ser Gly His Glu Val Phe Leu Lys Arg Val Ala
530 535 540

Ser Ala Phe Asn Ser Phe Val Glu Ser Thr Glu Lys Ser Cys Arg Asp
545 550 555 560

Lys Cys Met Glu Asp Leu Ala Ser Thr Thr Arg Tyr Val Thr Trp Ser
565 570 575

Leu His Asn Lys Asn Arg Ala Gly Leu Arg Gln Phe Leu Asp Ser Phe
580 585 590

Gly Gly Thr Glu His Asn Thr Thr Ser Gly Asn Ala Ile Gly Phe Ser
595 600 605

Leu Pro Gln Asp Ala Leu Gly Gly Thr Thr Asp Thr Lys Ser Arg Ser
610 615 620

Asp Val Lys Leu Ser His Leu Ala Ser Asn Ile Asp Ser Gly Ser Ser
625 630 635 640

Ile Gln Thr Thr Glu Met Arg Leu Ala Asp Leu Leu Asp Ser Thr Leu
645 650 655

Trp Asn Arg Lys Leu Ala Pro Ser Ser Glu Arg Ile Val Tyr Ala Leu
660 665 670

Val Gln Gln Ile Phe Gln Gly Ile Arg Glu Tyr Phe Leu Ala Ser Ala
675 680 685

Glu Leu Lys Phe Asn Cys Phe Leu Leu Met Pro Ile Val Asp Lys Leu
690 695 700

Pro Ala Leu Leu Arg Glu Glu Leu Glu Asn Ala Phe Glu Asp Asp Leu
705 710 715 720

Asp Ser Ile Phe Asp Ile Thr Asn Leu Arg Gln Ser Leu Asp Gln Lys
725 730 735

Lys Arg Ser Thr Glu Ile Glu Leu Arg Arg Val Lys Arg Ile Lys Glu
740 745 750

Lys Phe Arg Val Met Asn Glu Lys Leu Asn Ser His Glu Phe Ala Gln
755 760 765

Asn Leu Lys Ala Pro Ser Val Gln His
770 775

<210> 14
<211> 6900
<212> DNA
<213> Arabidopsis thaliana

<400>	14					
actgtaaaatt	ttgataaaata	aaaaaaaaaca	aaaaaaaaagat	cgc当地atca	tat当地catac	60
tatcagattt	aaacaatata	atttgc当地ga	cgatacagaa	atat当地tacc	tcacaggaag	120
agggtgc当地ca	gaaggagcca	tggatgtglocal	tgtcgagtc	gagttgctt	gttgtaaagta	180
ggtaattgca	agaaaacttga	gttgc当地tata	aagcttggaa	atacttctct	ttat当地atac	240
gttacaaca	atttttttt	ttttttttt	tctat当地tta	caacaaattt	tttttttatta	300
taataataaa	cttaaacgaa	aataaataat	atctcttgc当地t	tctat当地tctt	aaaaaaagaaaa	360
ttagcttgta	gtacttcaac	gtatcttcaac	tcttagtct	ttagtaggtt	tat当地catct	420
atttat当地tat	ttttat当地ttt	tttatattac	gattatagtg	tacgtacgta	tttattaatc	480
aaaaataact	tggtagaaagt	aaaaagaaaa	tgat当地ttt	tttactcagt	gatcagttt	540
acgtttattc	aaaaataagt	tgtat当地ttcc	ttcttaatata	tcaagttata	tgactaaaaaa	600
ttggtc当地ggtt	atttactat	taagattaat	cggaaactct	agtttagatca	cgagataatc	660
atcacgtgga	gaaacatttgc当地t	gttcttgc当地a	cgtggagaaa	acgtaagct	tat当地tttac	720
ttcttatta	tat当地tttgag	gaaatggttg	aaagaaagag	agtgttaaa	atgtgaatgc	780
gctc当地gttt	aggtaggt	taatggtag	gaggtaggt	catatgtgta	ttagtgatgg	840
ataaaaat	aaaacataaa	aaaaacttca	agctgtaaat	aatctaataa	aagaacatag	900
aaatataatc	aaagaaccat	ttaactaaat	aaatacttgc当地t	gattcaaata	gcataattct	960
aagtccaaag	aatagctatc	ctctatccac	atgttacatt	tttttttct	tttccatcatc	1020
catatagttt	ttaaaataat	tttcttagatg	gtat当地tttta	ttcgacattt	tttttc当地tctt	1080
tttagatttac	tgattataat	ttat当地tagaa	ataatgata	cgaactgtcg	ttctacaaaaa	1140
ctgaaatttgc当地t	caaacattgg	accaaaaagc	gaaaccttac	tcacttgaaa	cgacaacg	1200
ctttagtac	ttttggaca	tacaaagtac	acataagatg	ttccctca	cttc当地gtt	1260
ttcttaacct	aatataat	agcaatatttgc当地t	aacttgagtc	actcaatgct	gcaccgaagg	1320
agccctttaga	ttttgagcaa	attcatgaga	gtttagcttgc当地t	tcattcatca	ctctgaat	1380
ctctttatc	ctcttatct	gtccaaaaca	tgacacataa	cataatgttac	gttctc当地tgc	1440
atacttccaa	tggcaaata	aaaaagaga	cattgatcat	agaagtcagt	ttggtttacc	1500
cttctgagct	cgatctctgt	gctccgttgc当地t	tttgatcaa	gtgattgccg	gagattcg	1560
atgtcgaaga	tactatcgag	gtcgtcttca	aatgcgttttgc当地t	ccaaacttgc当地t	ccggagaaga	1620
gcaggtaact	tatcaacgat	ggcattaga	agaaaacagt	tgaactgcag	aacaaaagaa	1680
aacacagata	caaacttttgc当地t	aaaagaaaag	tcattttaaa	agcaagaaga	atctgagtaa	1740

aaactgaagt	aggagcaaac	ctttaactca	gcagaggcga	gaaagtactc	tcgtatgcc	1800
tggaatatct	gttggaccaa	tgcgtacaca	attctctcg	aggaaggagc	aagcttgcgg	1860
ttccaaagtg	tgctatctag	aagatcagcc	aaccgcattt	ctgttgtctg	aatactggaa	1920
cctgaatcga	tgtttgaggc	gagatggctt	agctttacat	ctgatcttga	cttggtgtct	1980
gttgtgccac	ctaattgcac	ttggggaga	ctaaatccta	tggcattacc	tgtgtcgta	2040
ttatgctctg	ttccacccaa	tgagtccaag	aattgacgta	gaccagctcg	gttctacata	2100
acattgagaa	acgaaaacta	ctcaatcaga	aacggatact	tgtatggatg	tacacaactc	2160
aattggattg	aaacagagct	atagggctgt	agcaatgacc	ttgttgtgaa	gagaccatgt	2220
aacatagcga	gttgtacttg	ctaaatcctc	catacatctg	caaacaatat	aaaatccaaa	2280
gggtgatcaa	tcactaaagc	tcactagaac	acaggttagga	ggcacccgaca	tggtaagaac	2340
aggaattgga	aatagaattha	cttgcacga	catgatttt	ctgtggactc	cacaaaactg	2400
ttgaatgctg	aagcaacccg	cttgagaaac	acctcatgcc	cacttaataa	ttcaccttct	2460
ttctattcaa	atttagaaca	tacatcaaaa	aatttgcgg	aaagggatca	tgagtatgat	2520
accgtcaaac	caaagaaaaac	agtacctacc	tgaagaagat	atacagaaaat	tggaaagcaat	2580
ctcttgagaa	tgtgtagaag	cctcgccccct	aactatatca	acgcaaaaca	aacgaaaatg	2640
agaactggaa	aaaactttct	gtatggaaag	agaaacatgt	gaataacaaa	atttcagatg	2700
aaagtattcc	caaacatagt	ttctgtaaac	agaacatgtt	tactcgataa	ctcttatgca	2760
caaataagtt	ccagcaaatc	tcaaaactga	atggtagtat	gatttcaata	tataacgtta	2820
tatttcattt	tttttttac	gtacagtaca	ccttaactaa	ttagtaaaat	tgcttccat	2880
cctccacgaa	agaaaaagaa	aaaagtagct	atatctatgt	cacctgatga	aggaaaggtt	2940
caaacgtctc	acgagccctc	gcaactgcta	taacacaagc	tgttctacaa	cagcaaataa	3000
gagaaagaga	ataagaggcc	atagaaaaaca	tgacaaacgt	tgcagctcg	attagatact	3060
gaaaggggtc	tgggatgcaa	agacaataaa	ttgagaagtg	tgttgcattgt	cagtcaatcc	3120
tatgataacct	ggaatagttt	gttccatcat	gaatatcctc	aactccacat	gcatttacaa	3180
tttcctccct	cgttattggg	ggacatttga	tagcaccaac	tagaaaacga	aactcagcca	3240
tggcacggtg	atattgtgca	cccccataga	gacgcacccc	tgcattctgt	aaaatgaaag	3300
ataatctggt	tatggctct	cataattctt	gaaggtccaa	cgaagtatct	cttttatttg	3360
tttccaatac	attattcttt	ggcacatatg	tttcatgcgg	tcaaatttat	tttccatcat	3420
attataatcc	atgtacaaga	acaagacaac	tggatttgaa	gaccatgccc	agcttgcgt	3480

ataaaagtcca acaatattct gcttcaggga aagacttacc ggtatttagct tatgtaaaa	3540
ctggagacca tcagtagccaa caaatgctcc tccttggtc ctttcatttgcagtgctc	3600
acctgaaaaa caccatgaga aattattaac aatcaaagaa cccaacataa agagaatgct	3660
gttataaaaat gtgcttcgtc cagtaaccaa agtatcatga ccaatgattt attgattagc	3720
atacatcatt ccatgtgtaa tcatcgagt ctggtagcccc agtcgaattt aacaatatgc	3780
attnaactaa actgattttg caaaagtcca attnaacaac acccagaaac aagaaaagtt	3840
tatgccaaag aagttgacta gcagagaaca gagcagtaac attaccaaattt atctggag	3900
gggcacacaac tgttcccttc aataacagcg ataactgatc aagaaaaata taaacaaaac	3960
aggtgagaaa acacagcact gatcaatact aacaaaggta ctgcgtacgt caatcagaaa	4020
atatgacgca gcaattttaa agtcttaagg gcatccaaca caaaaagttt acagccattc	4080
tgaatttgcata gcaagtcccta gatatcattt actgttagcat aattttatattt gtgtcagtaa	4140
tcaataaaaca aatttgcattt tatgtgtcag tagttaataa accaaaaaaaaa aagagaagtt	4200
tacacaaatg aacttgcgtt aatttataaa aaactattaa tccacgagtc caggcaaaaa	4260
tgaaaaggta tggaaaggta taaatagaaa tctaaaaaaaaa cgaaatgctc tctacagtt	4320
ccttggtaa gaagagatca tggaaagtcc tgcctctctc tttgagttt gcttcattcca	4380
aagagctgca ttgaaaggaa ttattcaacc tccaatgagt tatattttct ataaatcagt	4440
agctaacaat taaactgcct aaaatcaagt agacatttc agacaaaaca aattgcgacc	4500
taagttccctt gctcacggta tccagcttc tgactgtact gcggtactcc tttccataaca	4560
gtggaatgat caatggaaaca ctctcttgc acctggaaag agaaggcat caagactaca	4620
gcgaaaaagta aactacaata gaaacagagg ctggaaaaat cagagttaaa acaacagtt	4680
tacccccc agagtagttc ttccagaaac aacctcagtt tactgatgcc aatccctactc	4740
ttttccctt ttgtcagtaa acggcccaac ttcttcctta aagatgcaat gtctccatt	4800
tctctaaatg acacagcctg taataaaaaac cacacatagt tttagaaaaag acctgtttaa	4860
cttgcatttttgaatcagaca gcagagcaga gacctgtttg aactcgatcat tagacttata	4920
cactgaatcc tgtccatagc caactcttcc agaaggcaca gacgtaaaaa aaggagaatc	4980
gcggccataag gagctgtcaa gtgcgttgc aggaggtgag agaaagactt ccacgtcaga	5040
tgaacatgag aattgaggaa ttttagtgta aagcttgcata gaaacaacaa ttgtcctaga	5100
aagctcagga tcaacctaca tgaacgagaa acaaacttta acaaaaataaa agacaaggaa	5160
agacgcaatg gagttacgta aagcaacgta cttgcacatcac tattcattcgaa gtgggtgca	5220

tgctccagtc actgctatct tcgaggcata aaatgatgaa ctctttgtgt tgcatcttg	5280
ctcgactag agcttccaca gcccgtgctt gaacctaaga aaaagaacaa gtaaccact	5340
ctcaaataaa gcaaaaccaa aacatgaaat cagccacgga attggctgga agccataaga	5400
aaaaacaacc tgaagagctc ggttttcag tcctggtgca ggagcaataa gtccaggtgt	5460
atcaatgatg gtaaggtttg gacaatactt atactggact ttcacaataa tctcctttgc	5520
agagaatggg ctacatggct cttgctccag cctcatgttc tcagcctcaa tatatgccta	5580
actccaaatc atataacaaa tttcgtaac atgagcattt cgcttctcta caataaacct	5640
aagtacttgt gtttctcaac attcgtaaa atcttcccag aatttatacg cagaaacaag	5700
caattgaaga agcacaagta ataataataa caaaacacct gaatttgtga gagagattt	5760
ggaagagaaa cggaaggatc atcatcagat ccgagatgac aaagcgggaa ttgacactga	5820
ggatcgtaact tcataatggag agtaatcggc cgacgagtct tggttccgcc gccgacatgg	5880
ttaaattgaa accccataag agcttccaca agcgcacttt taccgtcggt ctgctgtccc	5940
accacaagaa ccgcccgtgc ttcgaacggc gtctccaatt cctgcgccaa agcgtgtaac	6000
tcgttgtaaag cttcgtaaag actccaccgc tcctcaatcg cagcgtcgtc ctcttccgcc	6060
atttcctcaa ccgtcaccga ttttgctgat acttccgcca tcgtctctta cgaaaatgag	6120
caagaggaag agtaagagta agagagtgtc tcttatttct tctactctt agtttcgtc	6180
gccgttcctt tttccgccat ggaatttagca gatacggtca atttcaattt ttgtcaaaaag	6240
aaatatttt tttttttaa ttcacgcgc atccatggcg cgttggatc acgttgtaat	6300
agttctccgc taaatttaaa taaaagagcg cgtaaggaga gagtttaagg atttttttt	6360
tttggtcggc aaatacaaag gatttgctt gtcttgacca atagtatatg cagaaatatt	6420
atctcaaagg atttgtgata actatgtagt acagaattgt gattattgga tgagaaacca	6480
gaaatatttt gagcaaatga cgacttggta atttactatt ttttcatttc ttaaaggct	6540
ctcttgtgta actatgatta aaattgaaat agtgacttt attgttacga catggaccaa	6600
atcaacgagt tctattgtta aagagagaca ttgatgaatg taacaaaact gtggctttaga	6660
agccgaaagg agacttagtt cgggtccctc cttcacggta ttgctcggtc cattttctca	6720
attcggtcat tgtcggtcgcg tcgtatgcca ctgacggact tacctgcaaa ttacattaca	6780
atgacgcaat ttgcataatg caaacaccag gggaaaaaac atgaatagag atgatgatga	6840
tgtttttaa gagattgatc aataccttag ctttggattt aatgaagtgc tccaaactca	6900

<210>	15	
<211>	2319	
<212>	DNA	
<213>	Arabidopsis thaliana	
<400>	15	
atggcggaaag tatcagcaaa atcggtgacg gttgaggaaa tggcggaaaga ggacgacgct	60	
gcgattgagg agcggtggag tctttacgaa gcttacaacg agttacacgc tttggcgcag	120	
gaattggaga cgccgttcga agcacccggcg gttcttgtgg tgggacagca gaccgacggt	180	
aaaagtgcgc ttgtggaagc tcttatgggg tttcaattta accatgtcgg cggcggaaacc	240	
aagactcgtc ggccgattac tctccatatg aagtacgatc ctcagtgtca attcccgctt	300	
tgtcatctcg gatctgatga tgatccttcc gtttctcttc ccaaattctct ctcacaaatt	360	
caggcatata ttgaggctga gaacatgagg ctggagcaag agccatgttag cccattctct	420	
gcaaaggaga ttattgtgaa agtccagtt aagtattgtc caaacattac catcattgat	480	
acacctggac ttattgctcc tgcaccagga ctgaaaaacc gagctttca ggttcaagca	540	
cgggctgtgg aagctctagt ccgagcaaaag atgcaacaca aagagttcat cattttatgc	600	
ctcgaagata gcagtgactg gagcattgca accactcgaa ggatagtgtat gcaagttgat	660	
cctgagctt ctaggacaat tggatgtttct acaaagcttg acactaaaat ccctcaattc	720	
tcatgttcat ctgacgtgga agtctttctc tcaccccttg caagcgcact tgacagctcc	780	
ttattggcg attctccctt tttcacgtct gtgcctctg gaagagttgg ctatggacag	840	
gattcagtgt ataagtctaa tgacgagttc aaacaggctg tgtcacttag agaaatggaa	900	
gacattgcat ctttagagaa gaagttggc cgtttactga caaaacagga aaagagtagg	960	
attggcatca gtaaaactgag gttgtttctg gaagaactac tctggaaaag gtacaaagag	1020	
agtgttccat tgatcattcc actgtttagga aaggagtacc gcagtagt cagaaagctg	1080	
gataccttat cgctgttatt gaagggaaca gttgtggccc ctccagataa atttggtgag	1140	
acactgcaag atgaaaggac acaaggagga gcatttggc gtactgatgg tctccagttt	1200	
tcacataagc taataccgaa tgcagggatg cgtctctatg ggggtgcaca atatcaccgt	1260	
gccatggctg agtttcgtt tctagttggt gctatcaaattt gtcggccat aacgagggag	1320	
gaaattgtaa atgcatgtgg agttgaggat attcatgatg gaacaaacta ttccagaaca	1380	
gcttgggtta tagcagttgc gaaggctcgt gagacgtttg aaccccccct tcatacggaaa	1440	
gtttttcca gttctcattt tcgtttgttt tgcgttata tagtttagggg cgaggctct	1500	
acacattctc aagagattgc ttccaaatttc tgtatatctt cttcaggttag gtactgtttt	1560	

ctttggtttg acggtaata tttaagtggg catgaggtgt ttctcaagcg gggtgcttca	1620
gcattcaaca gtttgtgga gtccacagaa aaatcatgtc gtgacaaatg tatggaggat	1680
ttagcaagta caactcgcta tgttacatgg tctcttcaca acaagaaccg agctggtcta	1740
cgtcaattct tggactcatt tggtaaca gacataata cgacatcagg taatgccata	1800
ggattnatgc ttccccaaaga tgcatttagt ggcacaacag acaccaagtc aagatcagat	1860
gtaaagctaa gccatctcgc ctcaaacatc gattcagggtt ccagtattca gacaacagaa	1920
atgcgggtgg ctgatcttct agatagcaca ctttggAAC gcaagcttgc tccttcctct	1980
gagagaattt tgtacgcatt ggtccaacag atattccagg gcatacgaga gtactttctc	2040
gcctctgctg agttaaagtt caactgtttt cttctaattgc ccattgttga taagttacct	2100
gctcttcctcc gggaaagagtt gaaaaacgca tttgaagacg acctcgatag tatcttcgac	2160
atcacgaatc tccggcaatc acttgatcaa aagaaacgga gcacagagat cgagctcaga	2220
aggataaaga ggataaaaga gaaattcaga gtgatgaatg agaagctaaa ctctcatgaa	2280
tttgctcaaa atctaaaggc tccttcggtg cagcattga	2319

<210> 16
 <211> 772
 <212> PRT
 <213> Arabidopsis thaliana

<400> 16

Met Ala Glu Val Ser Ala Lys Ser Val Thr Val Glu Glu Met Ala Glu			
1	5	10	15

Glu Asp Asp Ala Ala Ile Glu Glu Arg Trp Ser Leu Tyr Glu Ala Tyr			
20	25	30	

Asn Glu Leu His Ala Leu Ala Gln Glu Leu Glu Thr Pro Phe Glu Ala			
35	40	45	

Pro Ala Val Leu Val Val Gly Gln Gln Thr Asp Gly Lys Ser Ala Leu			
50	55	60	

Val Glu Ala Leu Met Gly Phe Gln Phe Asn His Val Gly Gly Gly Thr			
65	70	75	80

Lys Thr Arg Arg Pro Ile Thr Leu His Met Lys Tyr Asp Pro Gln Cys			
85	90	95	

Gln Phe Pro Leu Cys His Leu Gly Ser Asp Asp Asp Pro Ser Val Ser
100 105 110

Leu Pro Lys Ser Leu Ser Gln Ile Gln Ala Tyr Ile Glu Ala Glu Asn
115 120 125

Met Arg Leu Glu Gln Glu Pro Cys Ser Pro Phe Ser Ala Lys Glu Ile
130 135 140

Ile Val Lys Val Gln Tyr Lys Tyr Cys Pro Asn Leu Thr Ile Ile Asp
145 150 155 160

Thr Pro Gly Leu Ile Ala Pro Ala Pro Gly Leu Lys Asn Arg Ala Leu
165 170 175

Gln Val Gln Ala Arg Ala Val Glu Ala Leu Val Arg Ala Lys Met Gln
180 185 190

His Lys Glu Phe Ile Ile Leu Cys Leu Glu Asp Ser Ser Asp Trp Ser
195 200 205

Ile Ala Thr Thr Arg Arg Ile Val Met Gln Val Asp Pro Glu Leu Ser
210 215 220

Arg Thr Ile Val Val Ser Thr Lys Leu Asp Thr Lys Ile Pro Gln Phe
225 230 235 240

Ser Cys Ser Ser Asp Val Glu Val Phe Leu Ser Pro Pro Ala Ser Ala
245 250 255

Leu Asp Ser Ser Leu Leu Gly Asp Ser Pro Phe Phe Thr Ser Val Pro
260 265 270

Ser Gly Arg Val Gly Tyr Gly Gln Asp Ser Val Tyr Lys Ser Asn Asp
275 280 285

Glu Phe Lys Gln Ala Val Ser Leu Arg Glu Met Glu Asp Ile Ala Ser
290 295 300

Leu Glu Lys Lys Leu Gly Arg Leu Leu Thr Lys Gln Glu Lys Ser Arg
305 310 315 320

Ile Gly Ile Ser Lys Leu Arg Leu Phe Leu Glu Glu Leu Leu Trp Lys
325 330 335

Arg Tyr Lys Glu Ser Val Pro Leu Ile Ile Pro Leu Leu Gly Lys Glu
340 345 350

Tyr Arg Ser Thr Val Arg Lys Leu Asp Thr Leu Ser Leu Leu Leu Lys
355 360 365

Gly Thr Val Val Ala Pro Pro Asp Lys Phe Gly Glu Thr Leu Gln Asp
370 375 380

Glu Arg Thr Gln Gly Gly Ala Phe Val Gly Thr Asp Gly Leu Gln Phe
385 390 395 400

Ser His Lys Leu Ile Pro Asn Ala Gly Met Arg Leu Tyr Gly Gly Ala
405 410 415

Gln Tyr His Arg Ala Met Ala Glu Phe Arg Phe Leu Val Gly Ala Ile
420 425 430

Lys Cys Pro Pro Ile Thr Arg Glu Glu Ile Val Asn Ala Cys Gly Val
435 440 445

Glu Asp Ile His Asp Gly Thr Asn Tyr Ser Arg Thr Ala Cys Val Ile
450 455 460

Ala Val Ala Lys Ala Arg Glu Thr Phe Glu Pro Phe Leu His Gln Lys
465 470 475 480

Val Phe Ser Ser His Phe Arg Leu Phe Cys Val Asp Ile Val Arg
485 490 495

Gly Glu Ala Ser Thr His Ser Gln Glu Ile Ala Ser Asn Phe Cys Ile
500 505 510

Ser Ser Ser Gly Arg Tyr Cys Phe Leu Trp Phe Asp Gly Glu Tyr Leu
515 520 525

Ser Gly His Glu Val Phe Leu Lys Arg Val Ala Ser Ala Phe Asn Ser
530 535 540

Phe Val Glu Ser Thr Glu Lys Ser Cys Arg Asp Lys Cys Met Glu Asp
545 550 555 560

Leu Ala Ser Thr Thr Arg Tyr Val Thr Trp Ser Leu His Asn Lys Asn
 565 570 575

 Arg Ala Gly Leu Arg Gln Phe Leu Asp Ser Phe Gly Gly Thr Glu His
 580 585 590

 Asn Thr Thr Ser Gly Asn Ala Ile Gly Phe Ser Leu Pro Gln Asp Ala
 595 600 605

 Leu Gly Gly Thr Thr Asp Thr Lys Ser Arg Ser Asp Val Lys Leu Ser
 610 615 620

 His Leu Ala Ser Asn Ile Asp Ser Gly Ser Ser Ile Gln Thr Thr Glu
 625 630 635 640

 Met Arg Leu Ala Asp Leu Leu Asp Ser Thr Leu Trp Asn Arg Lys Leu
 645 650 655

 Ala Pro Ser Ser Glu Arg Ile Val Tyr Ala Leu Val Gln Gln Ile Phe
 660 665 670

 Gln Gly Ile Arg Glu Tyr Phe Leu Ala Ser Ala Glu Leu Lys Phe Asn
 675 680 685

 Cys Phe Leu Leu Met Pro Ile Val Asp Lys Leu Pro Ala Leu Leu Arg
 690 695 700

 Glu Glu Leu Glu Asn Ala Phe Glu Asp Asp Leu Asp Ser Ile Phe Asp
 705 710 715 720

 Ile Thr Asn Leu Arg Gln Ser Leu Asp Gln Lys Lys Arg Ser Thr Glu
 725 730 735

 Ile Glu Leu Arg Arg Ile Lys Arg Ile Lys Glu Lys Phe Arg Val Met
 740 745 750

 Asn Glu Lys Leu Asn Ser His Glu Phe Ala Gln Asn Leu Lys Ala Pro
 755 760 765

 Ser Val Gln His
 770

<210> 17

<211> 841

<212> PRT

<213> Arabidopsis thaliana

<400> 17

Met Gln Glu Leu Tyr Thr Asn Arg Thr Val Leu Asn Arg Pro Arg Phe
1 5 10 15

Ala Val Asn Val Arg Pro Thr Arg Leu Lys Arg Asn Gln Gln Ser Gln
20 25 30

Ser Lys Met Gln Ser His Ser Lys Asp Pro Ile Asn Ala Glu Ser Arg
35 40 45

Ser Arg Phe Glu Ala Tyr Asn Arg Leu Gln Ala Ala Ala Val Ala Phe
50 55 60

Gly Glu Lys Leu Pro Ile Pro Glu Ile Val Ala Ile Gly Gly Gln Ser
65 70 75 80

Asp Gly Lys Ser Ser Leu Leu Glu Ala Leu Leu Gly Phe Arg Phe Asn
85 90 95

Val Arg Glu Val Glu Met Gly Thr Arg Arg Pro Leu Ile Leu Gln Met
100 105 110

Val His Asp Leu Ser Ala Leu Glu Pro Arg Cys Arg Phe Gln Ile Ser
115 120 125

Arg Ile Phe Phe Val Glu Leu Ala Ile Leu Ile Thr Asp Leu Asp Glu
130 135 140

Asp Ser Glu Glu Tyr Gly Ser Pro Ile Val Ser Ala Thr Ala Val Ala
145 150 155 160

Asp Val Ile Arg Ser Arg Thr Glu Ala Leu Leu Lys Lys Thr Lys Thr
165 170 175

Ala Val Ser Pro Lys Pro Ile Val Met Arg Ala Glu Tyr Ala His Cys
180 185 190

Pro Asn Leu Thr Ile Ile Asp Thr Pro Gly Phe Val Leu Lys Ala Lys
195 200 205

Lys Gly Glu Pro Glu Thr Thr Pro Asp Glu Ile Leu Ser Met Val Lys
210 215 220

Ser Leu Ala Ser Pro Pro His Arg Ile Leu Leu Phe Leu Gln Gln Ser
225 230 235 240

Ser Val Glu Trp Cys Ser Ser Leu Trp Leu Asp Ala Val Arg Glu Ile
245 250 255

Asp Ser Ser Phe Arg Arg Thr Ile Val Val Val Ser Lys Phe Asp Asn
260 265 270

Arg Leu Lys Glu Phe Ser Asp Arg Gly Glu Val Asp Arg Tyr Leu Ser
275 280 285

Ala Ser Gly Tyr Leu Gly Glu Asn Thr Arg Pro Tyr Phe Val Ala Leu
290 295 300

Pro Lys Asp Arg Ser Thr Ile Ser Asn Asp Glu Phe Arg Arg Gln Ile
305 310 315 320

Ser Gln Val Asp Thr Glu Val Ile Arg His Leu Arg Glu Gly Val Lys
325 330 335

Gly Gly Phe Asp Glu Glu Lys Phe Arg Ser Cys Ile Gly Phe Gly Ser
340 345 350

Leu Arg Asp Phe Leu Glu Ser Glu Leu Gln Lys Arg Tyr Lys Glu Ala
355 360 365

Ala Pro Ala Thr Leu Ala Leu Leu Glu Glu Arg Cys Ser Glu Val Thr
370 375 380

Asp Asp Met Leu Arg Met Asp Met Lys Ile Gln Ala Thr Ser Asp Val
385 390 395 400

Ala His Leu Arg Lys Ala Ala Met Leu Tyr Thr Ala Ser Ile Ser Asn
405 410 415

His Val Gly Ala Leu Ile Asp Gly Ala Ala Asn Pro Ala Pro Glu Gln
420 425 430

Trp Gly Lys Thr Thr Glu Glu Glu Arg Gly Glu Ser Gly Ile Gly Ser
435 440 445

Trp Pro Gly Val Ser Val Asp Ile Lys Pro Pro Asn Ala Val Leu Lys
450 455 460

Leu Tyr Gly Gly Ala Ala Phe Glu Arg Val Ile His Glu Phe Arg Cys
465 470 475 480

Ala Ala Tyr Ser Ile Glu Cys Pro Pro Val Ser Arg Glu Lys Val Ala
485 490 495

Asn Ile Leu Leu Ala His Ala Gly Arg Gly Gly Arg Gly Val Thr
500 505 510

Glu Ala Ser Ala Glu Ile Ala Arg Thr Ala Ala Arg Ser Trp Leu Ala
515 520 525

Pro Leu Leu Asp Thr Ala Cys Asp Arg Leu Ala Phe Val Leu Gly Ser
530 535 540

Leu Phe Glu Ile Ala Leu Glu Arg Asn Leu Asn Gln Asn Ser Glu Tyr
545 550 555 560

Glu Lys Lys Thr Glu Asn Met Asp Gly Tyr Val Gly Phe His Ala Ala
565 570 575

Val Arg Asn Cys Tyr Ser Arg Phe Val Lys Asn Leu Ala Lys Gln Cys
580 585 590

Lys Gln Leu Val Arg His His Leu Asp Ser Val Thr Ser Pro Tyr Ser
595 600 605

Met Ala Cys Tyr Glu Asn Asn Tyr His Gln Gly Gly Ala Phe Gly Ala
610 615 620

Tyr Asn Lys Phe Asn Gln Ala Ser Pro Asn Ser Phe Cys Phe Glu Leu
625 630 635 640

Ser Asp Thr Ser Arg Asp Glu Pro Met Lys Asp Gln Glu Asn Ile Pro
645 650 655

Pro Glu Lys Asn Asn Gly Gln Glu Thr Thr Pro Gly Lys Gly Gly Glu
660 665 670

Ser His Ile Thr Val Pro Glu Thr Pro Ser Pro Asp Gln Pro Cys Glu
675 680 685

Ile Val Tyr Gly Leu Val Lys Lys Glu Ile Gly Asn Gly Pro Asp Gly
690 695 700

Val Gly Ala Arg Lys Arg Met Ala Arg Met Val Gly Asn Arg Asn Ile
705 710 715 720

Glu Pro Phe Arg Val Gln Asn Gly Gly Leu Met Phe Ala Asn Ala Asp
725 730 735

Asn Gly Met Lys Ser Ser Ala Tyr Ser Glu Ile Cys Ser Ser Ala
740 745 750

Ala Gln His Phe Ala Arg Ile Arg Glu Val Leu Val Glu Arg Ser Val
755 760 765

Thr Ser Thr Leu Asn Ser Gly Phe Leu Thr Pro Cys Arg Asp Arg Leu
770 775 780

Val Val Ala Leu Gly Leu Asp Leu Phe Ala Val Asn Asp Asp Lys Phe
785 790 795 800

Met Asp Met Phe Val Ala Pro Gly Ala Ile Val Val Leu Gln Asn Glu
805 810 815

Arg Gln Gln Leu Gln Lys Arg Gln Lys Ile Leu Gln Ser Cys Leu Thr
820 825 830

Glu Phe Lys Thr Val Ala Arg Ser Leu
835 840

<210> 18
<211> 817
<212> PRT
<213> Arabidopsis thaliana

<400> 18

Met Ala Asn Ser Asn Thr Tyr Leu Thr Thr Pro Thr Lys Thr Pro Ser
1 5 10 15

Ser Arg Arg Asn Gln Gln Ser Gln Ser Lys Met Gln Ser His Ser Lys
20 25 30

Asp Pro Ile Asn Ala Glu Ser Arg Ser Arg Phe Glu Ala Tyr Asn Arg
35 40 45

Leu Gln Ala Ala Ala Val Ala Phe Gly Glu Lys Leu Pro Ile Pro Glu
50 55 60

Ile Val Ala Ile Gly Gly Gln Ser Asp Gly Lys Ser Ser Leu Leu Glu
65 70 75 80

Ala Leu Leu Gly Phe Arg Phe Asn Val Arg Glu Val Glu Met Gly Thr
85 90 95

Arg Arg Pro Leu Ile Leu Gln Met Val His Asp Leu Ser Ala Leu Glu
100 105 110

Pro Arg Cys Arg Phe Gln Asp Glu Asp Ser Glu Glu Tyr Gly Ser Pro
115 120 125

Ile Val Ser Ala Thr Ala Val Ala Asp Val Ile Arg Ser Arg Thr Glu
130 135 140

Ala Leu Leu Lys Lys Thr Lys Thr Ala Val Ser Pro Lys Pro Ile Val
145 150 155 160

Met Arg Ala Glu Tyr Ala His Cys Pro Asn Leu Thr Ile Ile Asp Thr
165 170 175

Pro Gly Phe Val Leu Lys Ala Lys Lys Gly Glu Pro Glu Thr Thr Pro
180 185 190

Asp Glu Ile Leu Ser Met Val Lys Ser Leu Ala Ser Pro Pro His Arg
195 200 205

Ile Leu Leu Phe Leu Gln Gln Ser Ser Val Glu Trp Cys Ser Ser Leu
210 215 220

Trp Leu Asp Ala Val Arg Glu Ile Asp Ser Ser Phe Arg Arg Thr Ile
225 230 235 240

Val Val Val Ser Lys Phe Asp Asn Arg Leu Lys Glu Phe Ser Asp Arg
245 250 255

Gly Glu Val Asp Arg Tyr Leu Ser Ala Ser Gly Tyr Leu Gly Glu Asn
260 265 270

Thr Arg Pro Tyr Phe Val Ala Leu Pro Lys Asp Arg Ser Thr Ile Ser
275 280 285

Asn Asp Glu Phe Arg Arg Gln Ile Ser Gln Val Asp Thr Glu Val Ile
290 295 300

Arg His Leu Arg Glu Gly Val Lys Gly Gly Phe Asp Glu Glu Lys Phe
305 310 315 320

Arg Ser Cys Ile Gly Phe Gly Ser Leu Arg Asp Phe Leu Glu Ser Glu
325 330 335

Leu Gln Lys Arg Tyr Lys Glu Ala Ala Pro Ala Thr Leu Ala Leu Leu
340 345 350

Glu Glu Arg Cys Ser Glu Val Thr Asp Asp Met Leu Arg Met Asp Met
355 360 365

Lys Ile Gln Ala Thr Ser Asp Val Ala His Leu Arg Lys Ala Ala Met
370 375 380

Leu Tyr Thr Ala Ser Ile Ser Asn His Val Gly Ala Leu Ile Asp Gly
385 390 395 400

Ala Ala Asn Pro Ala Pro Glu Gln Trp Gly Lys Thr Thr Glu Glu Glu
405 410 415

Arg Gly Glu Ser Gly Ile Gly Ser Trp Pro Gly Val Ser Val Asp Ile
420 425 430

Lys Pro Pro Asn Ala Val Leu Lys Leu Tyr Gly Gly Ala Ala Phe Glu
435 440 445

Arg Val Ile His Glu Phe Arg Cys Ala Ala Tyr Ser Ile Glu Cys Pro
450 455 460

Pro Val Ser Arg Glu Lys Val Ala Asn Ile Leu Leu Ala His Ala Gly
465 470 475 480

Arg Gly Gly Gly Arg Gly Val Thr Glu Ala Ser Ala Glu Ile Ala Arg
485 490 495

Thr Ala Ala Arg Ser Trp Leu Ala Pro Leu Leu Asp Thr Ala Cys Asp
500 505 510

Arg Leu Ala Phe Val Leu Gly Ser Leu Phe Glu Ile Ala Leu Glu Arg
515 520 525

Asn Leu Asn Gln Asn Ser Glu Tyr Glu Lys Lys Thr Glu Asn Met Asp
530 535 540

Gly Tyr Val Gly Phe His Ala Ala Val Arg Asn Cys Tyr Ser Arg Phe
545 550 555 560

Val Lys Asn Leu Ala Lys Gln Cys Lys Gln Leu Val Arg His His Leu
565 570 575

Asp Ser Val Thr Ser Pro Tyr Ser Met Ala Cys Tyr Glu Asn Asn Tyr
580 585 590

His Gln Gly Gly Ala Phe Gly Ala Tyr Asn Lys Phe Asn Gln Ala Ser
595 600 605

Pro Asn Ser Phe Cys Phe Glu Leu Ser Asp Thr Ser Arg Asp Glu Pro
610 615 620

Met Lys Asp Gln Glu Asn Ile Pro Pro Glu Lys Asn Asn Gly Gln Glu
625 630 635 640

Thr Thr Pro Gly Lys Gly Glu Ser His Ile Thr Val Pro Glu Thr
645 650 655

Pro Ser Pro Asp Gln Pro Cys Glu Ile Val Tyr Gly Leu Val Lys Lys
660 665 670

Glu Ile Gly Asn Gly Pro Asp Gly Val Gly Ala Arg Lys Arg Met Ala
675 680 685

Arg Met Val Gly Asn Arg Asn Ile Glu Pro Phe Arg Val Gln Asn Gly
690 695 700

Gly Leu Met Phe Ala Asn Ala Asp Asn Gly Met Lys Ser Ser Ser Ala
705 710 715 720

Tyr Ser Glu Ile Cys Ser Ser Ala Ala Gln His Phe Ala Arg Ile Arg
725 730 735

Glu Val Leu Val Glu Arg Ser Val Thr Ser Thr Leu Asn Ser Gly Phe
740 745 750

Leu Thr Pro Cys Arg Asp Arg Leu Val Val Ala Leu Gly Leu Asp Leu
755 760 765

Phe Ala Val Asn Asp Asp Lys Phe Met Asp Met Phe Val Ala Pro Gly
770 775 780

Ala Ile Val Val Leu Gln Asn Glu Arg Gln Gln Leu Gln Lys Arg Gln
785 790 795 800

Lys Ile Leu Gln Ser Cys Leu Thr Glu Phe Lys Thr Val Ala Arg Ser
805 810 815

Leu

<210> 19
<211> 4283
<212> DNA
<213> Arabidopsis thaliana

<400> 19
ttcatgttct tagaagttct aaattttgat catcttttat ttgaaagctc aactaaaata 60
gctatgatat cattccctga tgctacgtac tagttttta aattcataaca cacacaaaatc
tataattaaa acttgttaaa ttcatacaca caaaggacaa atcttcttcg tattaaaaaa 120
gatggaggct ctggaacatc tagtggtgcc gtatcactta cttgactggc tcaagccgtt
tgtctttgtt tggaagaagt aaatttaatt gtgggagagg gatttcacga atttaaatct 180
gtttttctcc ctttcgtgg tatactttgg acctttgg tatgaacaca tatgtaaaaa 240
cgtaattca tgtgtttgaa aagtaattaa tcgcgcgcgc cgtcttatag ctttggatg
ggccaatagg atatttaaga gataagaaaa ctaatcagaa acacagacga aggtatctca 300
360 420 480

ctctctctct	ttctctctcc	atgagaactc	taatctctca	ccggcaatgt	gtgacgtcac	540
cgtttcttat	ctccgccgca	tctccaccgt	ttcctggccg	gtgctttaag	ttatcctcct	600
ttactcctcc	acgtcatagg	cgttttctt	ctctctcgat	cagaaacatt	tcgcatgaat	660
ccgcccgcata	gacttcttct	tctaggccgc	gaactcttta	tcctggtggt	tacaagcgtc	720
ccgaactcgc	cgttcccgggt	ttacttctcc	ggctagacgc	cgacgagggtt	atgagcggga	780
atcgtgaaga	gactcttgat	ttggtcgacc	gtgctttagc	taaatcggtt	caaatcgtcg	840
tgattgatgg	cgagccacc	gctggtaagc	tctacgaggc	ggcttgtttg	ctgaaatcac	900
ttgtcaaagg	ccgtgcttac	ctcttgatcg	ctgaacgtgt	tgatatcgcc	tccgcccgttg	960
gtgctagtgg	tgttgctctc	tccgacgaag	gtaacaactg	atttcattca	gttttagcat	1020
ttaatttctc	atagagttag	ttttgtctct	caatgctatg	tacaggtctt	ccggcgattt	1080
tggcgagaaa	cacattgatg	ggatccaacc	ccgactcgggt	acttcttcca	ctggtagctc	1140
ggatttgtgaa	ggatgttgat	tctgctctaa	ttgcctcaag	ctccgagggt	gctgatttcc	1200
ttatacttgg	atctggtgaa	gaagatacgc	aagtggcgga	ttctttgttg	aagagcgtga	1260
aaataccgat	atatgtgact	tgcagaggca	atgaagaagc	taaagaagaa	ttgcagttac	1320
tgaaatcagg	tgtttctgg	tttggatttt	cgttggaaaga	tttgcgttct	tctagggatg	1380
tagctttcg	ccagagtctt	gatggagctt	atgttgaaa	taatcatgag	acacaaaata	1440
tgaatgaact	gccggagaaa	aagaattctg	ctggcttcat	aaaatttagag	gacaaacaga	1500
aactaatagt	agaaatggag	aaatctgtgt	tgagagagac	gattgaaatc	atccacaagg	1560
cggctccact	ggtgattttt	atttcaaaca	tttggtagtt	gaagtcaatt	tttgaaatg	1620
gttctaagta	ggtttttgt	tggttataat	atggtttcat	ttacttcttc	gactatttt	1680
cattaacaga	tggaggaagt	ctcccttcta	attgatgctg	tttctcgat	cgatgagccg	1740
tttctgatgg	ttatagtgg	aattctgcac	tcaactccgt	caaattgtga	ttccaggaat	1800
ttgcattgg	attagctcta	tattcattcc	agaaacattt	tagttacaca	ctttgccag	1860
cactagatag	cttgagatac	aatgggcatg	cttctagtc	cttgccttt	agtgcctctc	1920
aatatcttct	ttcgtcgct	atgactatga	tgtttcgctt	tttctttgt	tctgtctatg	1980
cttccttct	taatttgctt	atggatctgg	ttgtaaggga	actgcattt	tcttaactgt	2040
accatctgct	tgtgtacata	gtttttcgc	tttcttgcga	cttgcgtgat	tgccgttctt	2100
ggaagatgtt	ttaagtggga	caagttgcct	ttatgattca	aaatagttt	tgtatggata	2160
attaattgga	atccacaatt	tgctggtaact	aggggaaatt	taactctgg	aaatcaacgg	2220

ttatcaatgc acttcttggg aagagatacc tgaaagaagg ggttagtcccc actaccaatg	2280
aaatcacgtt tctgtgtac tctgacttgg aatccgaaga gcaacaacgt tgccaaacac	2340
atccagatgg ccaatatgtta tgctatctc ctgcaccaat acttaaggat gtgagtaatt	2400
caaaaattcta ccatcgcaagt cctgaatttt tactaattat ttggaggaat tgatttgggt	2460
tgttctcctt tcgagcagat aaatattgtt gacacacctg ggaccaatgt gatccttcaa	2520
aggcaacagc gtcttacaga agaatttgtt ccacgtgcag atttgcttgc ttttgttctt	2580
tctgctgacc gcccttaac tgaaagttagt gtagaagtta ccgtttact tggcatgtta	2640
gttggtttg ttttgctca atatgtatct gcctaagtag cttgttagat ctatTTTca	2700
cgaaagtagt tagttaagtc atgtatagac catcaagacc ttgtgttaggg aaggaaagt	2760
tgtcactagg ttgaatgcat atatcaaggt tttgttgatt ataaatttaa actagactaa	2820
tttattttca aagtaatgag ttttatagct attgctggaa ccagtatgtc ctgttgttcc	2880
atatttttgtt aaagcttagg ccaatacatt tgagaggtga gttgttattt gtacagcaaa	2940
actgattttta cgtccatggc aaattgtatg taaatgtatca tctacgaagt actaacctta	3000
tgaatatttg gttcttattt tgaaaatctg aaaaagtttc aaaagaagga ataagcttct	3060
caatgtcatc atacccatgt catttctatc tctacctctg gagcttcctg ctgtcttgat	3120
tttactgttag gctgatttac attcatttgc gtttgcagg ttgcgtttct ccggcacaca	3180
cagcagtggaa aaaagaaatt tttttttttt ctgaataat ctgatatcta tcgtgtatgt	3240
cgtgaggttt atcagaaaca atatttatgt cttttccttg atagtctctg taattgttgg	3300
atttttcttg actaaagatt aattttactg ctgcagcttgc aggaagctat ttcatTTTttt	3360
aaagagaata cacggaagtt gcttaataca gaaaatgtga tattgtatcc ggtgtccgca	3420
cggtctgctc ttgaggcgaa gcttcaaca gcttcttgg ttggcagaga tgatcttgag	3480
atcgcagatc ctggttctaa ttggagatgc cagagcttca atgaacttga gaaatttctt	3540
tatagttctt tggatagctc aacagctacc gggatggaga gaataaggct taaattggag	3600
acacccatgg cgattgctga gcgtctcctt tcttctgtgg aagctttgtt gagacaagat	3660
tgcctagctg ctagggaaga cttggcttca gcagacaaga ttatcagtcg aactaaagaa	3720
tacgcgttta agatggaata tgagagcatt tcttggagaa ggcaggctct ctcgttgta	3780
taaattctat tagatattat cttgttgaat cacgaaggag gaaattggat tggttctaact	3840
tggctttttt gtgtttgtt ctctggctt tatcgacat tgataatgcc agattacaag	3900
ttgttgtatct gataggaact accctgcgac tatcaagcct tgatcttgcg atctcgtagc	3960

tgttcaaagg ggaaaaatcg gcctcagtag cagctacatc caaagttcaa ggtgaaatac	4020
tcgcctccagc actcacaaat gcgaaagtaa gtgtgatgct ttattcttg agtattggcc	4080
taactgggga catgttggtc atatatatga ggtctgagat atagtcacta ttcatgcaga	4140
aagtaaatat tgtctaacaa tgtcttggtt tgacctgatt gactttacat ttcactgttt	4200
gcagggaaattg cttggaaaat atgctgaatg gctacaatca aatactgccccc gtgaagggag	4260
tctgtctctg aaatcattcg aaa	4283

<210> 20
 <211> 1929
 <212> DNA
 <213> Arabidopsis thaliana

<400> 20	
atgagaactc taatctctca ccggcaatgt gtgacgtcac cgtttcttat ctccggcgca	60
tctccaccgt ttcctggccg gtgctttaag ttatcctcct ttactcctcc acgtcatagg	120
cgttttctt ctctctcgat cagaaacatt tcgcatgaat ccggccgatca gacttcttct	180
tctaggccgc gaactcttta tcctgggtgt tacaagcgtc ccgaactcgc cggtccgggt	240
ttacttctcc ggctagacgc cgacgagggtt atgagcggga atcgtgaaga gactcttgat	300
ttggtcgacc gtgctttagc taaatcggtt caaatcgtc tgattgatgg cggagccacc	360
gctggtaagc tctacgaggc ggottgtttg ctgaaatcac ttgtcaaagg ccgtgcttac	420
ctcttgatcg ctgaacgtgt tgatatcgcc tccggcgttg gtgctagtgg tttgtctc	480
tccgacgaag gtcttcoggc gattgtggcg agaaacacat tgatggatc caaccccgac	540
tcggtacttc ttccactgggt agtcggatt gtgaaggatg ttgattctgc tctaattgcc	600
tcaagctccg agggtgctga tttccttata cttggatctg gtgaagaaga tacgcaagtg	660
gcggattctt ttttgaagag cgtaaaaata ccgatatatg tgacttgcag aggcaatgaa	720
gaagctaaag aagaattgca gttactgaaa tcaggtgttt ctgggtttgt tatttcgttg	780
aaagatttgc gttttcttag ggatgttagct ctgcgcaga gtcttgatgg agcttatgtt	840
gtaaataatc atgagacaca aaatatgaat gaactgccgg agaaaaagaa ttctgctggc	900
ttcataaaat tagaggacaa acagaaacta atagtagaaa tggagaaatc tgtgttgaga	960
gagacgattg aaatcatcca caaggcggct ccactgatgg aggaagtctc cttcttaatt	1020
gatgtgttt ctcggatcga tgagccgtt ctgatggta tagtggggga atttaactct	1080
ggaaaaatcaa cggttatcaa tgcacttctt gggaaagagat acctgaaaga agggtagtc	1140
cccactacca atgaaatcac gtttctgtgc tactctgact tggaaatccga agagcaacaa	1200

cgttgccaaa cacatccaga tggccaatat gtatgctatc ttccctgcacc aatacttaag	1260
gatataaaata ttgttgacac acctgggacc aatgtgatcc ttcaaaggca acagcgtctt	1320
acagaagaat ttgttccacg tgcatcgatttgc cttgttttgc ttctttctgc tgaccgcctt	1380
ttaactgaaa gtgagggttgc gtttctccgg tacacacagc agtgaaaaaa gaaatttgt	1440
tttattctga ataaatctga tatctatcgt gatgctcggt agcttgagga agctatttca	1500
tttgttaaag agaatacacacg gaagttgctt aatacagaaa atgtgatatt gtatccgggt	1560
tccgcacgggt ctgctcttga ggcgaagctt tcaacagctt ctttggttgg cagagatgt	1620
ctttagatcg cagatcctgg ttctaattgg agagtccaga gcttcataatga acttgagaaa	1680
tttctttata gcttcttggta tagctcaaca gctaccggga tggagagaat aaggcttaaa	1740
ttggagacac ccatggcgat tgctgagcgt ctcccttctt ctgtggaaagc tcttgtgaga	1800
caagattgcc tagctgcttag ggaagacttg gcttcagcag acaagattat cagtcgaact	1860
aaagaatacg cgcttaagat ggaatatgag agcatttctt ggagaaggca ggctctctcg	1920
ttqqtataa	1929

<210> 21
<211> 642
<212> PRT
<213> *Arabidopsis thaliana*

<400> 21

Met Arg Thr Leu Ile Ser His Arg Gln Cys Val Thr Ser Pro Phe Leu
1 5 10 15

Ile Ser Ala Ala Ser Pro Pro Phe Pro Gly Arg Cys Phe Lys Leu Ser
20 25 30

Ser Phe Thr Pro Pro Arg His Arg Arg Phe Ser Ser Leu Ser Ile Arg
35 40 45

Asn Ile Ser His Glu Ser Ala Asp Gln Thr Ser Ser Ser Arg Pro Arg
50 55 60

Thr Leu Tyr Pro Gly Gly Tyr Lys Arg Pro Glu Leu Ala Val Pro Gly
65 70 75 80

Leu Leu Leu Arg Leu Asp Ala Asp Glu Val Met Ser Gly Asn Arg Glu
85 90 95

Glu Thr Leu Asp Leu Val Asp Arg Ala Leu Ala Lys Ser Val Gln Ile
100 105 110

Val Val Ile Asp Gly Gly Ala Thr Ala Gly Lys Leu Tyr Glu Ala Ala
115 120 125

Cys Leu Leu Lys Ser Leu Val Lys Gly Arg Ala Tyr Leu Leu Ile Ala
130 135 140

Glu Arg Val Asp Ile Ala Ser Ala Val Gly Ala Ser Gly Val Ala Leu
145 150 155 160

Ser Asp Glu Gly Leu Pro Ala Ile Val Ala Arg Asn Thr Leu Met Gly
165 170 175

Ser Asn Pro Asp Ser Val Leu Leu Pro Leu Val Ala Arg Ile Val Lys
180 185 190

Asp Val Asp Ser Ala Leu Ile Ala Ser Ser Ser Glu Gly Ala Asp Phe
195 200 205

Leu Ile Leu Gly Ser Gly Glu Glu Asp Thr Gln Val Ala Asp Ser Leu
210 215 220

Leu Lys Ser Val Lys Ile Pro Ile Tyr Val Thr Cys Arg Gly Asn Glu
225 230 235 240

Glu Ala Lys Glu Glu Leu Gln Leu Leu Lys Ser Gly Val Ser Gly Phe
245 250 255

Val Ile Ser Leu Lys Asp Leu Arg Ser Ser Arg Asp Val Ala Leu Arg
260 265 270

Gln Ser Leu Asp Gly Ala Tyr Val Val Asn Asn His Glu Thr Gln Asn
275 280 285

Met Asn Glu Leu Pro Glu Lys Lys Asn Ser Ala Gly Phe Ile Lys Leu
290 295 300

Glu Asp Lys Gln Lys Leu Ile Val Glu Met Glu Lys Ser Val Leu Arg
305 310 315 320

Glu Thr Ile Glu Ile Ile His Lys Ala Ala Pro Leu Met Glu Glu Val
325 330 335

Ser Leu Leu Ile Asp Ala Val Ser Arg Ile Asp Glu Pro Phe Leu Met
340 345 350

Val Ile Val Gly Glu Phe Asn Ser Gly Lys Ser Thr Val Ile Asn Ala
355 360 365

Leu Leu Gly Lys Arg Tyr Ile Lys Glu Gly Val Val Pro Thr Thr Asn
370 375 380

Glu Ile Thr Phe Leu Cys Tyr Ser Asp Leu Glu Ser Glu Glu Gln Gln
385 390 395 400

Arg Cys Gln Thr His Pro Asp Gly Gln Tyr Val Cys Tyr Leu Pro Ala
405 410 415

Pro Ile Leu Lys Asp Ile Asn Ile Val Asp Thr Pro Gly Thr Asn Val
420 425 430

Ile Leu Gln Arg Gln Gln Arg Leu Thr Glu Glu Phe Val Pro Arg Ala
435 440 445

Asp Leu Leu Val Phe Val Leu Ser Ala Asp Arg Pro Leu Thr Glu Ser
450 455 460

Glu Val Ala Phe Leu Arg Tyr Thr Gln Gln Trp Lys Lys Lys Phe Val
465 470 475 480

Phe Ile Leu Asn Lys Ser Asp Ile Tyr Arg Asp Ala Arg Glu Leu Glu
485 490 495

Glu Ala Ile Ser Phe Val Lys Glu Asn Thr Arg Lys Leu Leu Asn Thr
500 505 510

Glu Asn Val Ile Leu Tyr Pro Val Ser Ala Arg Ser Ala Leu Glu Ala
515 520 525

Lys Leu Ser Thr Ala Ser Leu Val Gly Arg Asp Asp Leu Glu Ile Ala
530 535 540

Asp Pro Gly Ser Asn Trp Arg Val Gln Ser Phe Asn Glu Leu Glu Lys
 545 550 555 560

Phe Leu Tyr Ser Phe Leu Asp Ser Ser Thr Ala Thr Gly Met Glu Arg
565 570 575

Ile Arg Leu Lys Leu Glu Thr Pro Met Ala Ile Ala Glu Arg Leu Leu
580 585 590

Ser Ser Val Glu Ala Leu Val Arg Gln Asp Cys Leu Ala Ala Arg Glu
595 600 605

Asp Leu Ala Ser Ala Asp Lys Ile Ile Ser Arg Thr Lys Glu Tyr Ala
610 615 620

Leu Lys Met Glu Tyr Glu Ser Ile Ser Trp Arg Arg Gln Ala Leu Ser
625 630 635 640

Leu Val

```
<210> 22
<211> 6060
<212> DNA
<213> Arabidopsis thaliana

<400> 22
actgtcacaa agaactagaa aaggcaagca aaactcaact atgtcaaaag tgtcacttag      60
attgattctt gaatagcgag acgaagtatc tggaaaata cggtactgaa ttaacatctc      120
cgtcagatca tagttcggta ttgaacagat gacacaatta aacaatgatg aagatcaaga      180
cactttaatc gactgaattc tagttagaac ttagactaaa agtatttaat acttgaagct      240
caccacttct cgaatatctt gttccaatcg ttttgatgtg gttccggcac tcaagttctg      300
tattgttttc aagctgactt tatcagtttt ctgaagtaag tcatatgtgt ctatgcccaa      360
ttgcgtttttt gaattgacat atgttggcca tttgttttcg aatgatttca gagacagact      420
cccttcacgg gcagtatttt attgtagcca ttcagcatat tttccaagca attcctgcaa      480
acagtgaardt gtaaagtcaa tcaggtcaca acaagacatt gttagacaat atttactttc      540
tgcataataa gtgactataat ctcagacactc atatatatga ccaacatgtc cccagttagg      600
ccaataactca aagaataaaag catcacactt actttcgcat ttgtgagtgc tggagcggagt      660
atttcacctt gaactttgga tgttagctgactcactgaggccg atttttcccc tttgaacacg      720
```

tacgagatcg caagatcaag gcttgatagt cgccaggtag ttccttatcag atcaacaact	780
tgtaatctgg cattatcaat ctgcgataaaa agccagaga caaaacacaa aaaagccaag	840
ttagaacaat ccaatttcct cttcgtgat tcaacaagat aatatctaata agaatttata	900
ccaacgagag agcctgcctt ctccaagaaa tgctctata ttccatctta agcgcgtatt	960
ctttagttcg actgataatc ttgtctgctg aagccaagtc ttccctagca gctaggcaat	1020
cttgtctcac aagagcttcc acagaagaaa ggagacgctc agcaatcgcc atgggtgtct	1080
ccaatttaag ccttattctc tccatcccg tagctgtga gctatccaag aagctataaa	1140
gaaatttctc aagttcattt aagctctgga ctctccaatt agaaccagga tctgcgatct	1200
caagatcatc tctgccaacc aaagaagctg ttgaaagctt cgcctcaaga gcagaccgtg	1260
cggacaccgg atacaatatc acattttctg tattaagcaa cttccgtgta ttctctttaa	1320
caaataatgaaat agtttctca agctgcagca gtaaaattaa tctttagtca agaaaaatcc	1380
agcaattaca gagactatca aggaaaagac ataaatattt tttctgataa acctcacgag	1440
catcacgata gatatcagat ttattcagaa taaacacaaa tttcttttc cactgctgtg	1500
tgtaccggag aaacgcaacc tgacaaacgc aatgagatgt aaatcagcct acagtaaaat	1560
caagacagca ggaagctcca gaggttagaga tagaaatgac atgggtatga tgacatttag	1620
aagcttattc cttctttga aacttttca gatttcaaa ataagaacca aatattcata	1680
aggtagtac ttctgtatgt atcatttaca tacaatttgc catggacgta aaatcagttt	1740
tgtgtacca atacaactc acctctcaaa tgtattggcc taagcttac caaaatatgg	1800
accaacagga catactgggtt ccagcaatag ctataacact cattactttg aaaataaatt	1860
agtctagtt aaatttataa tcaacaaaac cttgatatat gcattcaacc tagtgacaac	1920
tttcccttcc ctacacaagg tcttgatggt ctatacatga cttaactaac tactttcgtg	1980
aaaaatagat ctaacaagct acttaggcag atacatattt agcaaaaaca acaacaacta	2040
acatgccaag taaaacggta acttctacct cactttcagt taaagggcgg tcagcagaaa	2100
gaacaaaaac aagcaaattct gcacgtggaa caaattcttc tgtaagacgc tggtgcctt	2160
gaaggatcac attggtccc ggtgtgtcaa caatatttat ctgctcgaaa ggagaacaac	2220
ccaaatcaat tcctccaaat aatttagtaaa aattcaggac tgctgtggta gaattttgaa	2280
ttactcacat ctttaagtat tggtgcagga agatagcata catattggcc atctggatgt	2340
gtttggcaac gtgttgctc ttggattcc aagtcagagt agcacagaaa cgtgatttca	2400
ttggtagtgg ggactacccc ttcttcagg tatctcttcc caagaagtgc attgataacc	2460

gttgcatttc cagagttaaa ttccccctag taccagcaaa ttgtggattc caattaatta	2520
tccatacaaa aactattttg aatcataaag gcaacttgac ccactaaaa catcttccaa	2580
gaacggcata ctcacaagtc acaagaaaagc gaaaaaacta tgtacacaag cagatggac	2640
agttaagaaa tatgcagttc ctttacaacc agatccataa gcaaattaag aagagaagca	2700
tagacagaac aaaagaagaa gcgaaacatc atagtcata ggcacgaaag aagatattga	2760
gaagcactaa aggacaagtg actagaagca tgcccattgt atctcaagct atctagtgt	2820
ggcaaaagtg tgtaactaaa atgtttctgg aatgaatata gagctaatac caatgcaa	2880
tccttggaaatc acaatttgac ggagttgagt gcagaattac cactataacc atcagaaacg	2940
gctcatcgat ccgagaaaca gcatcaatta gaagggagac ttccctccatc tgttaatgaa	3000
aaatagtcga agaagtaaat gaaaccatat tataaccaca caaaaaccta cttagaacca	3060
tttcaaaaaaa ttgacttcaa ctaccaaattt tttgaaataa aaatcaccag tggagccgccc	3120
tttgtggatga tttcaatcgt ctctctcaac acagattctt ccatttctac tattagttt	3180
tgtttgtcct ctaattttat gaagccagca gaattttttt ttcattcata	3240
ttttgtgtct catgattatt tacaacataa gctccatcaa gactctggcg aagagctaca	3300
tccctagaag aacgcaaattc tttcaacgaa ataacaaaac cagaaacacc tgatttcagt	3360
aactgcaatt cttctttagc ttcttcattt cctctgcaag tcacatataat cggtattttc	3420
acgctcttca acaaagaatc cgccacttgc gtatcttctt caccagatcc aagtataagg	3480
aaatcagcac cctcggagct tgaggcaatt agagcagaat caacatcctt cacaatccga	3540
gctaccagtg gaagaagtac cgagtcgggg ttggatccc tcaatgtgtt tctcgccaca	3600
atcgccggaa gacctgtaca tagcatttag agacaaaact cactctatga gaaattaaat	3660
gctaaaactg aatgaaatca gttgttacct tcgtcgaga gagcaacacc actagcacca	3720
acggcggagg cgatatacAAC acgttcagcg atcaagaggt aagcacggcc tttgacaagt	3780
gatttcagca aacaagccgc ctctgttagc ttaccagcgg tggctccgccc atcaatcact	3840
acgatttgaa ccgatttagc taaagcacgg tcgaccaat caagagtctc ttcacgattc	3900
ccgctcataa cctcgtcgcc gtctagccgg agaagtaaac cggaaacggc gagttcggga	3960
cgcttgtaac caccaggata aagagttcgc ggcctagaag aagaagtctg atcggcggat	4020
tcatgcgaaa tgtttctgtat cgagagagaa gaaaaacgcc tatgacgtgg aggagtaaag	4080
gaggataact taaagcaccc gccaggaaac ggtggagatg cggcggagat aagaaacgggt	4140
gacgtcacac attgcccgtg agagattaga gttctcatgg agagagaaag agagagagtg	4200

agataacctc gtctgtgtt ctgatttagtt ttcttatctc ttaaatatcc tattggccca	4260
tcccaaagct ataagacgga cggcgcgatt aattactttt caaacacatg aattaacgtt	4320
ttcacatatg tgttcatatc caaaagggtcc aaagtatacc acgaaaaggg agaaaaacag	4380
attnaaattc gtgaaatccc tctcccacaa ttaaatttac ttcttccaaa caaagacaaa	4440
cggcttgaac cagtcaagta agtgatacgg caccactaga tggtccagag cctccatctt	4500
ttttaatacg aagaagattt gtccttgtg tgtatgaatt taacaagttt taattataga	4560
tttgtgtgtg tatgaattta aaaacctagt acgtacatc aggaaatgt atcatagcta	4620
tttagttga gcttcaaat aagagatgt caaaatttag aacttctaag aacatgaacg	4680
aataaacaac tattttctt tcaaaccac taaggttagat ggtcactgaa agtatataca	4740
tcagataaaa gttgcttgtt attccagatg aagttggacc gagaaaaaaaaaa aaagttactt	4800
gttattcaat atgtttggat ctttgtctt cagattgcta tatagggttg ataatggct	4860
tcgttgtaat gggtatacag tgtataagaa tcggccttgt gcaaccaatc ctaatatgt	4920
tgtctcatta aggttaagtgc ttaagattag aagagtaaaa cacttgactt atcaactatg	4980
tcaactaagg gttctatatt tttattaaat aaaaaataat tgaatatttt tttagaatgtat	5040
ttaataaatt taatgctatt gtttgattta aatgtataat tcaccgcgag aagaaatttt	5100
ataactcaaa ttttaaagtt ttaagttgtt tttgtttatt ttgttaaatg tttaatattt	5160
tataattgtt ttttgattgt tggttctcgat atttcaccccg tagtacatca tcccatatta	5220
atatcgaatc aaacccgtca attctaaaat ttcacccgtg gtatgtttt attgtataat	5280
tatattttaa ttgtcattct aagatttcac tccttaattct atcgcaaattt attatcaacc	5340
caaaccagtc aattctaaaaa tatcaccgt agtacaccat cccatattaa tatcgaatca	5400
agcccgtaa ttctaggatt tcacccgtgg tagtattaa ttgtataattt atattttat	5460
tgtcattcta ggatttcaact cctaattcta tcgcaaatta ttatcaaccc aaaccagtca	5520
attctaaaat atcaccgtta gtacaccatc ccatattaaat atcgattcaa actcgtaat	5580
tctaggattt cgctcggtt agtatttaat tgtataatta tattttattt gtcattttaa	5640
ctcctagttc tatcgcaaattt tcttatcaac ccaaacagtc aattctaaaaa ttccacccgt	5700
agtataaaagt ttaaatattt ataatattt aatttctttaat aaaaagatca aatgtgttt	5760
taaaaaattt aaagttttaa gttttttttt tttaatattt gttatattt gttatgtttt	5820
agatttatata attacattt gattgtcatt atatgtttt ctccatagca tactatcccc	5880
tgttattatc cactcaaacc tgcacaccca tataaccccg tcccgtaaaa tttaacacaa	5940

atttgtcatt ttattataaa tttcaaatat ttataaaatt agaaaacttca	aaaaagatta	6000
atattgaccc aaacttcatc attgaatttt gagtgtaata	tctaagattt ctctcgcaat	6060
<210> 23		
<211> 2469		
<212> DNA		
<213> Arabidopsis thaliana		
<400> 23		
atggaggcgc tggaacatct agtgcttgg gatgggccaa taggatattt aagagataag		60
aaaactaatac agaaaacacag acgaaggatc ctcactctct ctctttctct ctccatgaga		120
actctaatac ctcaccggca atgtgtgacg tcaccgttcc ttatctccgc cgcatctcca		180
ccgtttcctg gccggtgctt taagttatcc tccttactc ctccacgtca taggcgtttt		240
tcttctctct ccatcagaaa catttcgcattt gaatccgccc atcagacttc ttcttcttagg		300
ccgcgaactc tttatcctgg tggttacaag cgtcccgaaac tcgcccgttcc cggttactt		360
ctccggctag acgcccacga ggttatgagc gggaaatcgta aagagactct tgattggtc		420
gaccgtgctt tagctaaatac ggttcaatac gtcgtgattt atggcggagc caccgctgg		480
aagctctacg aggccggcttg tttgctgaaa tcacttgtca aaggccgtgc ttacctcttg		540
atcgctgaac gtgttgatatacg ccgcctccgccc gttggtgcta gtgggtttgc tctctccgac		600
gaaggtcttc cggcgattgt ggcgagaaac acattgtatgg gatccaaccc cgactcggt		660
cttcttccac tggtagctcg gattgtgaag gatgttgatt ctgctctaattt tgcctcaagc		720
tccgagggtg ctgatttcct tatacttgaa tctggtaag aagatacgcgca agtggcggat		780
tctttgtga agagcgtgaa aataccgata tatgtactt gcagaggcaaa tgaagaagct		840
aaagaagaat tgcagttact gaaatcaggt gtttctggtt ttgttatttc gttgaaagat		900
ttgcgttctt ctagggatgt agctcttcgc cagagtcttgc atggagcttataat tggcttgc		960
aatcatgaga cacaaaataat gaatgaactg ccggagaaaa agaattctgc tggcttcata		1020
aaatttagagg acaaacagaa actaatagta gaaatggaga aatctgtgtt gagagagacg		1080
attgaaatca tccacaaggc ggctccactg atggaggaag tctcccttctt aattgtatgc		1140
gtttctcgga tcgatgagcc gtttctgtatg gttatagtgg gggaaattaa ctctggaaaa		1200
tcaacggta tcaatgcact tcttggaaag agatacctga aagaagggtt agtccccact		1260
accaatgaaa tcacgttct gtgtactct gacttggaaat ccgaagagca acaacgttgc		1320
caaacacatc cagatggcca atatataaaat attgttgcata cacctggac caatgtgatc		1380
cttcaaaggc aacagcgtct tacagaagaa tttgttccac gtgcagattt gttttttt		1440

gttctttctg	ctgaccgccc	ttaactgaa	agtgaggtag	aagttaccgt	tttacttggc	1500
atggaaggga	aagttgtcac	taggttgaat	gcatatatca	aggttgcgtt	tctccggtag	1560
acacacgt	ggaaaaagaa	atttgtttt	attctgaata	aatctgata	ctatcgat	1620
gctcgtgagc	ttgaggaagc	tatttcattt	gttaaagaga	atacacggaa	gttgcttaat	1680
acagaaaatg	tgatattgt	tccgggtgtcc	gcacggctcg	ctcttgaggc	gaagcttca	1740
acagcttctt	tgggtggcag	agatgatctt	gagatcgcag	atcctggttc	taattggaga	1800
gtccagagct	tcaatgaact	tgagaaattt	ctttatagct	tcttggatag	ctcaacagct	1860
accgggatgg	agagaataag	gcttaaattt	gagacaccca	tggcgattgc	tgagcgtctc	1920
cattttctg	tggaagctct	tgtgagacaa	gattgcctag	ctgctaggga	agacttggct	1980
tcagcagaca	agattatcag	tcgaactaaa	gaatacgcgc	ttaagatgga	atatgagagc	2040
atttcttgg	gaaggcaggc	tctctcggtt	attgataatg	ccagattaca	agttgttgat	2100
ctgataggaa	ctaccctgcg	actatcaago	cttgatcttgc	cgatctcgta	cgtgttcaaa	2160
ggggaaaaat	cggcctcagt	agcagctaca	tccaaagttc	aaggtgaaat	actcgctcca	2220
gcactcacaa	atgcgaaaga	attgcttgg	aaatatgctg	aatggctaca	atcaaatact	2280
ccccgtgaag	ggagtctgtc	tctgaaatca	ttcgaaaaca	aatggccaac	atatgtcaat	2340
tcaaaaacgc	aattgggcat	agacacat	gacttacttc	agaaaaactga	taaagtgcgc	2400
ttgaaaacaa	tacagaactt	gagtgccgga	accacatcaa	aacgatttgg	acaagatatt	2460
cgagaagtg						2469

<210> 24

<211> 823

<212> PRT

<213> Arabidopsis thaliana

<400> 24

Met	Glu	Ala	Leu	Glu	His	Leu	Val	Leu	Trp	Asp	Gly	Pro	Ile	Gly	Tyr
1															15

Leu	Arg	Asp	Lys	Lys	Thr	Asn	Gln	Lys	His	Arg	Arg	Arg	Tyr	Leu	Thr
			20					25						30	

Leu	Ser	Leu	Ser	Leu	Ser	Met	Arg	Thr	Leu	Ile	Ser	His	Arg	Gln	Cys
														45	
35															

Val	Thr	Ser	Pro	Phe	Leu	Ile	Ser	Ala	Ala	Ser	Pro	Pro	Phe	Pro	Gly
50															60

Arg Cys Phe Lys Leu Ser Ser Phe Thr Pro Pro Arg His Arg Arg Phe
65 70 75 80

Ser Ser Leu Ser Ile Arg Asn Ile Ser His Glu Ser Ala Asp Gln Thr
85 90 95

Ser Ser Ser Arg Pro Arg Thr Leu Tyr Pro Gly Gly Tyr Lys Arg Pro
100 105 110

Glu Leu Ala Val Pro Gly Leu Leu Leu Arg Leu Asp Ala Asp Glu Val
115 120 125

Met Ser Gly Asn Arg Glu Glu Thr Leu Asp Leu Val Asp Arg Ala Leu
130 135 140

Ala Lys Ser Val Gln Ile Val Val Ile Asp Gly Gly Ala Thr Ala Gly
145 150 155 160

Lys Leu Tyr Glu Ala Ala Cys Leu Leu Lys Ser Leu Val Lys Gly Arg
165 170 175

Ala Tyr Leu Leu Ile Ala Glu Arg Val Asp Ile Ala Ser Ala Val Gly
180 185 190

Ala Ser Gly Val Ala Leu Ser Asp Glu Gly Leu Pro Ala Ile Val Ala
195 200 205

Arg Asn Thr Leu Met Gly Ser Asn Pro Asp Ser Val Leu Leu Pro Leu
210 215 220

Val Ala Arg Ile Val Lys Asp Val Asp Ser Ala Leu Ile Ala Ser Ser
225 230 235 240

Ser Glu Gly Ala Asp Phe Leu Ile Leu Gly Ser Gly Glu Glu Asp Thr
245 250 255

Gln Val Ala Asp Ser Leu Leu Lys Ser Val Lys Ile Pro Ile Tyr Val
260 265 270

Thr Cys Arg Gly Asn Glu Glu Ala Lys Glu Glu Leu Gln Leu Leu Lys
275 280 285

Ser Gly Val Ser Gly Phe Val Ile Ser Leu Lys Asp Leu Arg Ser Ser
290 295 300

Arg Asp Val Ala Leu Arg Gln Ser Leu Asp Gly Ala Tyr Val Val Asn
305 310 315 320

Asn His Glu Thr Gln Asn Met Asn Glu Leu Pro Glu Lys Lys Asn Ser
325 330 335

Ala Gly Phe Ile Lys Leu Glu Asp Lys Gln Lys Leu Ile Val Glu Met
340 345 350

Glu Lys Ser Val Leu Arg Glu Thr Ile Glu Ile Ile His Lys Ala Ala
355 360 365

Pro Leu Met Glu Glu Val Ser Leu Leu Ile Asp Ala Val Ser Arg Ile
370 375 380

Asp Glu Pro Phe Leu Met Val Ile Val Gly Glu Phe Asn Ser Gly Lys
385 390 395 400

Ser Thr Val Ile Asn Ala Leu Leu Gly Lys Arg Tyr Leu Lys Glu Gly
405 410 415

Val Val Pro Thr Thr Asn Glu Ile Thr Phe Leu Cys Tyr Ser Asp Leu
420 425 430

Glu Ser Glu Glu Gln Gln Arg Cys Gln Thr His Pro Asp Gly Gln Tyr
435 440 445

Ile Asn Ile Val Asp Thr Pro Gly Thr Asn Val Ile Leu Gln Arg Gln
450 455 460

Gln Arg Leu Thr Glu Glu Phe Val Pro Arg Ala Asp Leu Leu Val Phe
465 470 475 480

Val Leu Ser Ala Asp Arg Pro Leu Thr Glu Ser Glu Val Glu Val Thr
485 490 495

Val Leu Leu Gly Met Glu Gly Lys Val Val Thr Arg Leu Asn Ala Tyr
500 505 510

Ile Lys Val Ala Phe Leu Arg Tyr Thr Gln Gln Trp Lys Lys Lys Phe
515 520 525

Val Phe Ile Leu Asn Lys Ser Asp Ile Tyr Arg Asp Ala Arg Glu Leu
530 535 540

Glu Glu Ala Ile Ser Phe Val Lys Glu Asn Thr Arg Lys Leu Leu Asn
545 550 555 560

Thr Glu Asn Val Ile Leu Tyr Pro Val Ser Ala Arg Ser Ala Leu Glu
565 570 575

Ala Lys Leu Ser Thr Ala Ser Leu Val Gly Arg Asp Asp Leu Glu Ile
580 585 590

Ala Asp Pro Gly Ser Asn Trp Arg Val Gln Ser Phe Asn Glu Leu Glu
595 600 605

Lys Phe Leu Tyr Ser Phe Leu Asp Ser Ser Thr Ala Thr Gly Met Glu
610 615 620

Arg Ile Arg Leu Lys Leu Glu Thr Pro Met Ala Ile Ala Glu Arg Leu
625 630 635 640

Leu Ser Ser Val Glu Ala Leu Val Arg Gln Asp Cys Leu Ala Ala Arg
645 650 655

Glu Asp Leu Ala Ser Ala Asp Lys Ile Ile Ser Arg Thr Lys Glu Tyr
660 665 670

Ala Leu Lys Met Glu Tyr Glu Ser Ile Ser Trp Arg Arg Gln Ala Leu
675 680 685

Ser Leu Ile Asp Asn Ala Arg Leu Gln Val Val Asp Leu Ile Gly Thr
690 695 700

Thr Leu Arg Leu Ser Ser Leu Asp Leu Ala Ile Ser Tyr Val Phe Lys
705 710 715 720

Gly Glu Lys Ser Ala Ser Val Ala Ala Thr Ser Lys Val Gln Gly Glu
725 730 735

Ile Leu Ala Pro Ala Leu Thr Asn Ala Lys Glu Leu Leu Gly Lys Tyr
740 745 750

Ala Glu Trp Leu Gln Ser Asn Thr Ala Arg Glu Gly Ser Leu Ser Leu
755 760 765

Lys Ser Phe Glu Asn Lys Trp Pro Thr Tyr Val Asn Ser Lys Thr Gln
770 775 780

Leu Gly Ile Asp Thr Tyr Asp Leu Leu Gln Lys Thr Asp Lys Val Ser
785 790 795 800

Leu Lys Thr Ile Gln Asn Leu Ser Ala Gly Thr Thr Ser Lys Arg Leu
805 810 815

Glu Gln Asp Ile Arg Glu Val
820

<210> 25
<211> 2037
<212> DNA
<213> Arabidopsis thaliana

<400> 25
acaaagacca gttaaaaacg ttgttagtat aacttactgg taagtaaagc tataagcaag 60
aatctgtacc ttatttctc tctctctagt gagccctgac catccgaatt tcgcattcgc 120
caatcgctgt gtttccgtgt gtttcccccc ttttggttt tagatttgcc taaaccaatc 180
agaacaagag aaacctggaa acaagaacca aaaaaagtgg gctttctctg catcatcatt 240
ccacttctgg tcccccaactg aaaaggacaa tccaaagcta gatcccttca aattttcctt 300
tttggtttcg aaatttcgc aatttttaat attattttgg aagtctatgt ttctttctga 360
tcttagcaa caaaggaagg tggaatctgt ttcacgttta cacaaaaaca tgtcaactgg 420
agattttctc ttcccttaac ttttgaccat acagtaggtt ccatacttaa tattctct 480
ttgtttttaa taaaataaaa ggtttggta tcaagcataat atgtcattttt cttaaagcta 540
tgactttggtagaaaactt aggaggacca tatggcaagc ttttatacag tgtagactt 600
ctaacgttaa ttctaaacaa tctccagttt caagcattaa caaggttttagt tctagcac 660
ctggattttt aaaacttctc gaaccaatcc ttaactaaaa aagaaattca agcgtttat 720
cttttagaaat cacagctagc atatgctgag aattactctc catggaaact tataactaaga 780
ttgtttttt ccctcatatt taagccacta aagtcaaaag attagtagat tgacaactaa 840

gtttagatgc tctatgcgga gaatcaattt catatgaatg tatcaagcaa ttcatgaact	900
ctaggagacc ataaaatcca attgacagaa aaaatgagtc aactaacata tttacctgtg	960
atatgaggta catgtgcagg tcaaagatca gaagaaaatt ttctccatga gtctcttgag	1020
cttccaactc atccagcgat ttgtatcaca aacaatctga aaaagaagct aaaaaacgtt	1080
ataccaaagt ttcacgccc taatgctatt gtttggttct ttcaagaacc tccccaatct	1140
tttgaattcg cattcaaaaa aaccatcagt gagtccattt caagtcggaa ctggcaggta	1200
ttattcatta tgacaaagta catacacttg ccccccactg aacaatgtca agaaggaaaa	1260
acccgacatt gtgttggaat agctaaagtc tcatctcgtc tcgtgataca tgaaggttat	1320
caatatcaac ttgttagcaac tgtaatttac ttctaatac tgataattct ttctggattc	1380
ctaaaagacg atcaagtctt agctgagctt cttctcgata aggcttggca acaatattca	1440
caaagttaac tagattactc gtcgcattcg aaagatctt ttgcatacg tcttcgagct	1500
gtttagccaa cgcatcagcc actttattca ccttaccaat tatagcctgt ctgcgatatg	1560
ggaagtttgc tatagccaca tacctgtcac atagattatg ttatgcatac aaccagtctt	1620
tcttaaaagt cataaatatg cctctagttg caagaaaaaa atacactagg cgtgatctaa	1680
gaaggtggag taatgagaca ttgggaagag gggaaattta gagcagtgtt attaccctcc	1740
agcggagcaa aggccaagag caagaagatc ttccagtgtg gtcggtagca ctgaggtag	1800
aagtgtatgca gacagtccctg cagctccaag cccaccaact gtcacaaaga actagaaaaag	1860
gcaagcaaaa ctcaactatg tcaaaaagtgt cacttagatt gattctgaa tagcgagacg	1920
aagtatctgg gaaaatacgg tactgaatta acatctccgt cagatcatag gttcggattg	1980
aacagatgac acaattaaac aatgatgaag atcaagacac tttaatcgac tgaattc	2037

<210> 26
 <211> 2097
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 26 aaaaactttt caaaaacttca ttgttgtga aaacaaaagt tttttggtaa tgaaaactcg	60
acaaagacca gttaaaaacg ttgttagtat aacttactgg taagtaaagc tataagcaag	120
aatctgtacc ttatttctc tctctctagt gagccctgac catccgaatt tcgcattcgc	180
caatcgctgt gtttccgtgt gtttcccccc tttttggttt tagatttgcc taaaccaatc	240
agaacaagag aaacctggaa acaagaacca aaaaaagtgg gcattctctg catcatcatt	300
ccacttctgg tcccaactg aaaaggacaa tccaaagcta gatcccttca aatttcctt	360

tttgtttcg aaatttcgc aattttaat attatttgg aagtctatgt ttcttctga	420
tcttagcaa caaaggaagg tggaatctgt ttcacgtta cacaaaaaca tgtcaactgg	480
agatttctc ttccctaac tttgaccat acagtatggt ccatactaa tattctct	540
ttgttttaa taaaataaaa gggttggta tcaagcatat atgtcattag cttaaagcta	600
tgactttgtt tagaaaactt aggaggacca tatggcaagc ttttatacag tgtagactt	660
ctaacgttaa ttctaaacaa tctccagtat caagcattaa caaggtttat tctagcacct	720
ctggattttt aaaacttctc gaaccaatcc ttaactaaaa aagaaattca agcggttat	780
cttttagaaat cacagctagc atatgctgag aattactctc catggaaact tatactaaga	840
ttgtttttt ccctcatatt taagccacta aagtcaaaag attagtacat tgacaactaa	900
gtttagatgc tctatgcgga gaatcaattt catatgaatg tatcaagcaa ttcatgaact	960
ctaggagacc ataaaatcca attgacagaa aaaatgagtc aactaacata tttacctgtg	1020
atatgaggta catgtgcagg tcaaagatca gaagaaaatt ttctccatga gtcttttag	1080
cttccaactc atccagcgat ttgtatcaca aacaatctga aaaagaagct aaaaaacgtt	1140
ataccaaagt ttacgcggc taatgctatt gtttggttct ttcaagaacc tccccatct	1200
tttgaattcg cattcaaaaa aaccatcagt gagtccattt caagtcggaa ctggcaggta	1260
ttattcatta tgacaaagta catacacttg ccccccactg aacaatgtca agaaggaaaa	1320
acccgacatt gtgttggaat agctaaagtc tcatactcgatc tcgtgataca tgaaggttat	1380
caatatcaac ttgttagcaac tgtaatttac ttctaatatc tgataattct ttctggattc	1440
ctaaaagacg atcaagtctt agctgagctt cttctcgata aggcttggca acaatattca	1500
caaagttaac tagattactc gtcgcacactg aaagatctt ttgcatacg cg tctcgagct	1560
gtttagccaa cgcatcagcc actttattca ctttaccaat tatagcctgt ctgcataatg	1620
ggaagtttgc tatagccaca tacctgtcac atagattatg ttatgcatac aaccagtctt	1680
tctaaaagt cataaatatg cctctagttt caagaaaaaa atacactagg cgtgatctaa	1740
gaaggtggag taatgagaca ttggaaagag gggaaattta gagcagtgtt attaccctcc	1800
agcggagcaa aggccaaagag caagaagatc ttccagtgtg gtcggtagca ctgaggtag	1860
aagtgtatgc gacagtccctg cagctccaaag cccaccaact gtcacaaaga actagaaaaag	1920
gcaagcaaaa ctcaactatg tcaaaaagtgt cacttagatt gattcttcaa tagcgagacg	1980
aagtatctgg gaaaatacgg tactgaatta acatctccgt cagatcatag gttcggattt	2040
aacagatgac acaattaaac aatgtatgaag atcaagacac ttatcgac tgaattc	2097

<210>	27					
<211>	6400					
<212>	DNA					
<213>	Arabidopsis thaliana					
<400>	27					
tagttagaac	ttagactaaa	agtatttaat	acttgaagct	caccacttct	cgaatatctt	60
gttccaaatcg	tttgatgtg	gttccggcac	tcaagttctg	tattgtttc	aagctgactt	120
tatcagttt	ctgaagtaag	tcatatgtgt	ctatgcccaa	ttgcgtttt	gaattgacat	180
atgttggcca	tttggtttcg	aatgattca	gagacagact	cccttcacgg	gcagtattt	240
attgttagcca	ttcagcatat	tttccaagca	attcctgcaa	acagtgaaat	gtaaagtcaa	300
tcaggtcaca	acaagacatt	gttagacaat	atttacttc	tgcataata	gtgactata	360
ctcagacctc	atataatatga	ccaacatgtc	cccagttagg	ccaatactca	aagaataaaag	420
catcacactt	actttcgcat	tttgagtg	tggagcgagt	atttcacctt	gaactttgga	480
tgtagctgct	actgaggccg	atttttcccc	tttgaacacg	tacgagatcg	caagatcaag	540
gcttgatagt	cgcagggtag	ttcctatcag	atcaacaact	tgtatctgg	cattatcaat	600
ctgcgataaa	agccagagta	caaaacacaa	aaaagccaag	ttagaacaat	ccaatttcct	660
ccttcgtgat	tcaacaagat	aatatcta	agaatttata	ccaacgagag	agcctgcctt	720
ctccaagaaa	tgctctcata	ttccatctta	agcgcgtatt	ctttagttcg	actgataatc	780
ttgtctgctg	aagccaagtc	ttccctagca	gctaggcaat	cttgtctcac	aagagcttcc	840
acagaagaaa	ggagacgctc	agcaatcgcc	atgggtgtct	ccaatttaag	ccttattctc	900
tccatcccg	tagctgtga	gctatccaag	aagctataaa	gaaatttctc	aagttcattt	960
aagctctgga	ctctccaatt	agaaccagga	tctgcgtatc	caagatcatc	tctgccaacc	1020
aaagaagctg	ttgaaagctt	cgcctcaaga	gcagaccgtg	cgacaccgg	atacaatatc	1080
acattttctg	tattaagcaa	cttccgtgta	ttctctttaa	caaataaaat	agcttcctca	1140
agctgcagca	gtaaaattaa	tcttagtca	agaaaaatcc	agcaattaca	gagactatca	1200
aggaaaagac	ataaaatattt	tttctgataa	acctcacgag	catcacgata	gatatcagat	1260
ttattcagaa	taaacacaaa	tttcttttc	cactgctgtg	tgtacccggag	aaacgcaacc	1320
tgacaaacgc	aatgagatgt	aatcagcct	acagtaaaat	caagacagca	ggaagctcca	1380
gaggttagaga	tagaaatgac	atgggtatga	tgacattgag	aagcttattc	cttctttga	1440
aacttttca	gattttcaaa	ataagaacca	aatattcata	aggttagtac	ttcgttagatg	1500
atcatttaca	tacaatttgc	catggacgta	aaatcagttt	tgctgtacca	ataacaactc	1560

acctctcaa	tgtattggcc	taagcttac	caaaatatgg	accaacagga	catactggtt	1620
ccagcaatag	ctataacact	cattacttg	aaaataaatt	agtctagttt	aaatttataa	1680
tcaacaaaac	cttgatatat	gcattcaacc	tagtgacaac	tttcccttcc	ctacacaagg	1740
tcttgatggt	ctatacatga	cttaactaac	tactttcg	aaaaatagat	ctaacaagct	1800
acttaggcag	atacatattg	agcaaaaaca	acaacaacta	acatgccaag	taaaacggta	1860
acttctacct	cactttcagt	taaaggcg	tcagcagaaa	gaacaaaaac	aagcaaatct	1920
gcacgtggaa	caaattcttc	tgtaagacgc	tgtgcctt	gaaggatcac	attggtccc	1980
ggtgtgtcaa	caatatttat	ctgctcgaaa	ggagaacaac	ccaaatcaat	tcctccaaat	2040
aattagtaaa	aattcaggac	tgcgatggta	gaatttgaa	ttactcacat	ccttaagtat	2100
tggtcagga	agatagcata	catattggcc	atctggatgt	gttggcaac	gttggc	2160
ttcggattcc	aagtcagagt	agcacagaaa	cgtgattca	ttggtagtgg	ggactacccc	2220
ttcttcagg	tatctcttc	caagaagtgc	attgataacc	gttgatttc	cagagtaaa	2280
ttccccctag	taccagcaaa	ttgtggattc	caattaatta	tccatacaaa	aactatttg	2340
aatcataaaag	gcaacttg	ccacttaaaa	catctccaa	gaacggcata	ctcacaagtc	2400
acaagaaagc	aaaaaaacta	tgtacacaag	cagatgg	agttagaaa	tatgcagttc	2460
ccttacaacc	agatccataa	gcaaattaag	aagagaagca	tagacagaac	aaaagaagaa	2520
gcgaaacatc	atagtcata	gcgacgaaag	aagatattga	gaagcactaa	aggacaagt	2580
actagaagca	tgcccattgt	atctcaagct	atctagtgc	ggcaaaagt	tgtaactaaa	2640
atgttctgg	aatgaatata	gagctaatac	caatgcaat	tcctggaatc	acaatttgac	2700
ggagttgagt	gcagaattac	cactataacc	atcagaaacg	gctcatcgat	ccgagaaaca	2760
gcatcaatta	gaagggagac	ttcctccatc	tgttaatgaa	aaatagtcg	agaagtaat	2820
gaaaccat	tataaccaca	caaaaaccta	cttagaacca	tttcaaaaaa	ttgacttcaa	2880
ctaccaaatg	tttgaataa	aaatcaccag	tggagccg	ttgtggatg	tttcaatcg	2940
ctctctcaac	acagattct	ccatttctac	tattgtt	tggtgcct	ctaattttat	3000
gaagccagca	gaattcttt	tctccggcag	ttcattcata	tttgtgtct	catgattatt	3060
tacaacataa	gctccatcaa	gactctggcg	aagagctaca	tccctagaag	aacgcaaatc	3120
tttcaacgaa	ataacaaaac	cagaaacacc	tgatttcagt	aactgcaatt	cttctttagc	3180
ttcttcattg	cctctgcaag	tcacatata	cggtatttc	acgctttca	acaaagaatc	3240
cgccacttgc	gtatcttctt	caccagatcc	aagtataagg	aaatcagcac	cctcggagct	3300

tgaggcaatt agagcagaat caacatcctt cacaatccga gctaccagtg gaagaagtac	3360
cgagtcgggg ttggatccca tcaatgtgtt tctgc当地 atcgccggaa gacctgtaca	3420
tagcatttag agacaaaact cactctatga gaaattaaat gctaaaactg aatgaaatca	3480
gttgttacct tcgtcggaga gagcaacacc actagcacca acggcggagg cgatatcaac	3540
acgttcagcg atcaagaggt aagcacggcc tttgacaagt gatttcagca aacaagccgc	3600
ctcgtagagc ttaccagcgg tggctccgcc atcaatcacg acgatttcaa ccgatttagc	3660
taaagcacgg tcgaccaaata caagagtctc ttcacgattc ccgctcataa cctcgtcggc	3720
gtctagccgg agaagtaaac cggAACGGC gagttcggga cgcttgcataa caccaggata	3780
aagagttcgc ggcctagaag aagaagtctg atcggcggat tcatgcgaaa tgtttctgat	3840
cgagagagaa gaaaaacgcc tatgacgtgg aggagtaaag gaggataact taaagcaccc	3900
gccaggaaac ggtggagatg cggcggagat aagaaacggt gacgtcacac attgccggtg	3960
agagattaga gttctcatgg agagagaaag agagagagtg agataccttc gtctgtgtt	4020
ctgatttagtt ttcttatctc ttaaatatcc tattggccca tcccaaagct ataagacgga	4080
cggcgcgatt aattacttt caaacacatg aattaacgtt ttcacatatg tgttcatatc	4140
caaaagggtcc aaagtatacc acgaaaaggg agaaaaacag atttaaattc gtgaaatccc	4200
tctcccacaa ttaaatttac ttcttccaaa caaagacaaa cggcttgaac cagtcaagta	4260
agtgatacgg caccactaga tttccagag cttccatctt ttttaatacg aagaagattt	4320
gtccttgtg tgtatgaatt taacaagttt taattataga tttgtgtgtg tatgaattt	4380
aaaacctagt acgtacatc agggatgtat atcatacgta ttttagttga gctttcaaata	4440
aagagatgt caaaatttag aacttctaag aacatgaacg aataaacaac tattttcttt	4500
tcaaaccaac taaggttagat ggtcactgaa agtatacaca tcagataaaa gttgcttgc	4560
attccagatg aagttggacc gagaaaaaaaaaa aaagttactt gttattcaat atgttggat	4620
ctttgtctg cagattgcta tatagggttg ataatggct tcgttgcataa gggtatacag	4680
tgtataagaa tcggccttgt gcaaccaatc ctaatatgtg tgtctcatta aggtaaatgc	4740
ttaagattag aagagtaaaa cacttgactt atcaactatg tcaactaagg gttctatatt	4800
tttattaaat aaaaaataat tgaatatttt ttagaatgtat ttaataaattt taatgctatt	4860
gtttgattta aatgtataat tcaccgcgag aagaaatttt ataactcaaa ttttaaagtt	4920
ttaagttgta tttgtttatt ttgttaatgt ttaatattg tataattgta ttttgattgt	4980
tgtttctcgg atttcacccg tagtacatca tcccatatta atatcgaatc aaaccgtca	5040

attctaaaat	ttcacccgtg	gtagtattta	attgtataat	tatattttaa	ttgtcattct	5100
aagatttcac	tcctaattct	atcgcaaatt	attatcaacc	caaaccagtc	aattctaaaa	5160
tatcacccgt	agtacaccat	cccatattaa	tatcgaatca	agcccgtcaa	ttctaggatt	5220
tcacccgtgg	tagtatttaa	ttgtataatt	atatttaat	tgtcattcta	ggatttcact	5280
cctaattcta	tcgcaaatta	ttatcaaccc	aaaccagtca	attctaaaat	atcacccgta	5340
gtacaccatc	ccatattaat	atcgattcaa	actcgtaat	tctaggattt	cgctcgtggt	5400
agtatttaat	tgtataatta	tattnaattt	gtcattttaa	ctcctagttc	tatcgcaaata	5460
tcttatcaac	ccaaacagtc	aattctaaa	tttcacccgt	agtataaagt	ttaaatattt	5520
ataatattta	aatttcttat	aaaagaatca	aatgtgttt	aaaaaaaaatt	aaagttttaa	5580
gtttttttt	tttaatattg	ttaattttgt	tttagtgtta	agattatata	attacattat	5640
gattgtcatt	atatgtttt	ctccatagca	tactatccca	tgttattatc	cactcaaacc	5700
tgtcacacca	tataaccccg	tcccgtaaaa	ttaaacacaa	atttgcatt	ttattataaa	5760
tttcaaata	ttataaaaatt	agaaactca	aaaaagatta	atattgaccc	aaacttcatc	5820
attgaatttt	gagtgtata	tctaagattt	ctctcgcaat	atatcgccc	gtattaat	5880
cttttatatt	gtttaaattt	cttgtaaaat	ttaatttata	attttttaaa	cttttaaag	5940
tttcaatttt	ttaaaataaa	taaccctagg	aaacaaacca	tttaatttta	aagataaact	6000
ttataaaaag	ttttaaaat	tataatattt	aactttgtat	aaagttataa	tatttataat	6060
ttcttgaaac	attttaaagt	ttcaattctt	taaaataata	aatccgagta	aaatcagata	6120
actattttaa	ttttggacgc	ttgataaatac	aagcttcctg	ctcattcgta	atcagaatca	6180
ttttggtcct	tttataatat	gggtctgaac	cattgtccaa	tttttctaag	cgatgtggga	6240
cattgtacac	atattatttc	ttcataggtt	gaataatata	tgtccgttta	aaaaactttg	6300
aattacatca	tattcagaaa	aaaatataat	attttattaa	ctatataat	tttatataaa	6360
ttcaaaataa	ataaaagtata	agatcaaata	aaaatgaaag			6400

<210> 28
 <211> 30
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 28	
Met Glu Ala Leu Ser His Val Gly Ile Gly Leu Ser Pro Phe Gln Leu	
1 5 10 15	
Cys Arg Leu Pro Pro Ala Thr Thr Lys Leu Arg Arg Ser His	
20 25 30	
<210> 29	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 29	
tgtccaaatt ttatgtgaca ctcc	24
<210> 30	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 30	
ttgtgaaagg cttgaatgta aga	23
<210> 31	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 31	
ccgaattctc tgtgttggcg	20
<210> 32	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 32	
aagtttcgta cagaccctgc tgac	24

<210> 33		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 33		
ggtaagttga cggtcaag		18
<210> 34		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 34		
cgatagggcc gtagctgtc		19
<210> 35		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 35		
ggtaaacttg tgatcgaac		19
<210> 36		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 36		
gcagccagtc tgccctag		18
<210> 37		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 37		
gcgcagtccct ttcttgagg		19

<210> 38		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 38		
ctgaccggtg aggttctgc		19
<210> 39		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 39		
ccaggaatcg ctgaacatcc		20
<210> 40		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 40		
gcgatcgcgg tagtttcgg		20
<210> 41		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 41		
ctaggcagtgc tacgttc		17
<210> 42		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		

<400> 42		
ccgaattcgt gacctctacc cgtactgc		28
<210> 43		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 43		
ccaagcttcg ttttataaaag gcgctcag		28
<210> 44		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 44		
ctgctcgta gcaatttgc		19
<210> 45		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 45		
ccgttctgaa aggctc		16
<210> 46		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 46		
cagtgaattg taatac		16

<210> 47		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 47		
gaaatagcca tcgcgagc		18
<210> 48		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 48		
ccgaattcgt ggcagtggaa aatcgtgg		29
<210> 49		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 49		
ccgaattcca cttgcacgat tgggatc		27
<210> 50		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 50		
ccgaattcgc cctactcatt aactata		28
<210> 51		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		

<400> 51	27
ccgaattccg gagcgatcgc ttgtttg	
<210> 52	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 52	24
gattaatgag actatatatg agag	
<210> 53	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 53	24
atctgcataa cttcaattga actg	
<210> 54	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 54	22
gaaccccccag aatatcaaca tc	
<210> 55	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 55	23
gctctgatgg tgattctggt aac	

<210> 56		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 56		
gtagcattct ttagagattg atctag		26
<210> 57		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 57		
tattcgagtt tgaaattatg atttatgc		28
<210> 58		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 58		
gctacagttc tcaaccggta aatc		24
<210> 59		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 59		
cataagctt tatgctccaa aatagtctc		29
<210> 60		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		

<400> 60	
cttgatcttg tgttctgaca tctc	24
<210> 61	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 61	
ctaaactatt cacaaatgcc atagacg	27
<210> 62	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 62	
agccgtcttg tcccatcatt aaag	24
<210> 63	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 63	
gcacaaacaa acagggtcaa tagtta	26
<210> 64	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic	
<400> 64	
ttaaagtgaa gcttaagcag agg	23

<210> 65		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 65		
cattgttaga aagtcaacac tttg		24
<210> 66		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 66		
gcaagacata accaatgaac aag		23
<210> 67		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 67		
gacacgtatg cgtttcttaag ag		22
<210> 68		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 68		
ctccaaacttc aagcaaaacg gatg		24
<210> 69		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		

<400> 69		
ctctgtttt tgggctagtg atgg		24
<210> 70		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 70		
gcatacccaa tatccttgt gc		22
<210> 71		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 71		
gatagtataa ccagaggttg gag		23
<210> 72		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 72		
gaatcttctc aaactgaaat ccacc		25
<210> 73		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 73		
tcgaaaggaa gatcggtgaa cc		22

<210> 74		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 74		
gattgtgcta tggttcagga gttc		24
<210> 75		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 75		
catcagctat aacccctca gtg		23
<210> 76		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 76		
actgactata aggaccctc aaac		24
<210> 77		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		
<400> 77		
gttggaccata attcatccac cactatta		28
<210> 78		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic		

<pre> <400> 78 ggaattccga gtcgagttgc tttgttg </pre>	27
,	
<pre> <210> 79 <211> 30 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> Synthetic </pre>	
<pre> <400> 79 cgtctagagc ttacacctaaa ggtacatgg </pre>	30
,	
<pre> <210> 80 <211> 28 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> Synthetic </pre>	
<pre> <400> 80 cgggatccat gagtaaagga gaagaact </pre>	28
,	
<pre> <210> 81 <211> 27 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> Synthetic </pre>	
<pre> <400> 81 gctctagata gttcatccat gccatgt </pre>	27
,	
<pre> <210> 82 <211> 28 <212> DNA <213> Artificial Sequence </pre>	
<pre> <220> <223> Synthetic </pre>	
<pre> <400> 82 ggacttagtac gatggcgaa gtatcagc </pre>	28

```

<210> 83
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 83
cgggatccgc accgaaggag ccttttagatt 30

<210> 84
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 84
gactagttgg ctcaacgctt acctcaa 27

<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 85
cgggatccgc catcgtctct tacga 25

<210> 86
<211> 61
<212> PRT
<213> Arabidopsis thaliana

<400> 86

Asp Pro Tyr Lys Thr Leu Lys Ile Arg Pro Asp Ser Ser Glu Tyr Glu
1 5 10 15

Val Lys Lys Ala Phe Arg Gln Leu Ala Lys Lys Tyr His Pro Asp Val
20 25 30

Cys Arg Gly Ser Asn Cys Gly Val Gln Phe Gln Thr Ile Asn Glu Ala
35 40 45

Tyr Asp Ile Val Leu Lys Gln Ile Lys Asn Gln Met Glu
50 55 60

```

<210> 87
<211> 68
<212> PRT
<213> Phaseolus vulgaris

<400> 87

Ser Leu Tyr Asp Ile Leu Gly Ile Pro Ala Gly Ala Ser Ser Gln Glu
1 5 10 15

Ile Lys Ala Ala Tyr Arg Arg Leu Ala Arg Val Cys His Pro Asp Val
20 25 30

Ala Ala Ile Asp Arg Lys Asn Ser Ser Ala Asp Glu Phe Met Lys Ile
35 40 45

His Ala Ala Tyr Ser Thr Leu Ser Asp Pro Asp Lys Arg Ala Asn Tyr
50 55 60

Asp Arg Ser Leu
65

<210> 88
<211> 68
<212> PRT
<213> Arabidopsis thaliana

<400> 88

Ser Leu Tyr Glu Ile Leu Glu Ile Pro Val Gly Ser Thr Ser Gln Glu
1 5 10 15

Ile Lys Ser Ala Tyr Arg Arg Leu Ala Arg Ile Cys His Pro Asp Val
20 25 30

Ala Arg Asn Ser Arg Asp Asn Ser Ser Ala Asp Asp Phe Met Lys Ile
35 40 45

His Ala Ala Tyr Cys Thr Leu Ser Asp Pro Glu Lys Arg Ala Val Tyr
50 55 60

Asp Arg Arg Thr
65

<210> 89
<211> 63
<212> PRT
<213> Mycoplasma pneumoniae

<400> 89

Thr Leu Tyr Asp Leu Leu Glu Leu Pro Gln Thr Ala Thr Leu Gln Glu
1 5 10 15

Ile Lys Thr Ala Tyr Lys Arg Leu Ala Lys Arg Tyr His Pro Asp Ile
20 25 30

Asn Lys Gln Gly Ala Asp Thr Phe Val Lys Ile Asn Asn Ala Tyr Ala
35 40 45

Val Leu Ser Asp Thr Thr Gln Lys Ala Glu Tyr Asp Ala Met Leu
50 55 60

<210> 90
<211> 63
<212> PRT
<213> Mycoplasma genitalium

<400> 90

Asn Leu Tyr Asp Leu Leu Glu Leu Pro Thr Thr Ala Ser Ile Lys Glu
1 5 10 15

Ile Lys Ile Ala Tyr Lys Arg Leu Ala Lys Arg Tyr His Pro Asp Val
20 25 30

Asn Lys Leu Gly Ser Gln Thr Phe Val Glu Ile Asn Asn Ala Tyr Ser
35 40 45

Ile Leu Ser Asp Pro Asn Gln Lys Glu Lys Tyr Asp Ser Met Leu
50 55 60

<210> 91
<211> 68
<212> PRT
<213> Arabidopsis thaliana

<400> 91

Ser Phe Tyr Asp Leu Leu Gly Val Thr Glu Ser Val Thr Leu Pro Glu
1 5 10 15

Ile Lys Gln Ala Tyr Lys Gln Leu Ala Arg Lys Tyr His Pro Asp Val
20 25 30

Ser Pro Pro Asp Arg Val Glu Glu Tyr Thr Asp Arg Phe Ile Arg Val
35 40 45

Gln Glu Ala Tyr Glu Thr Leu Ser Asp Pro Arg Arg Arg Val Leu Tyr
50 55 60

Asp Arg Asp Leu
65

<210> 92

<211> 69

<212> PRT

<213> Drosophila melanogaster

<400> 92

Asn Cys Tyr Asp Val Leu Gly Val Thr Arg Glu Ser Ser Lys Ser Glu
1 5 10 15

Ile Gly Lys Ala Tyr Arg Gln Leu Ala Arg Arg Tyr His Pro Asp Leu
20 25 30

His Arg Gly Ala Glu Ala Lys Ala Ala Ala Glu Thr Gln Phe Lys Leu
35 40 45

Val Ala Thr Ala Tyr Glu Ile Leu Arg Asp Glu Glu Ser Arg Thr Asp
50 55 60

Tyr Asp Tyr Met Leu
65

<210> 93

<211> 70

<212> PRT

<213> Caenorhabditis elegans

<400> 93

Asn Cys Tyr Asp Val Leu Glu Val Asn Arg Glu Glu Phe Asp Lys Gln
1 5 10 15

Lys Leu Ala Lys Ala Tyr Arg Ala Leu Ala Arg Lys His His Pro Asp
20 25 30

Arg Val Lys Asn Lys Glu Glu Lys Leu Leu Ala Glu Glu Arg Phe Arg
35 40 45

Val Ile Ala Thr Ala Tyr Glu Thr Leu Lys Asp Asp Glu Ala Lys Thr
50 55 60

Asn Tyr Asp Tyr Tyr Leu
65 70

<210> 94
<211> 72
<212> PRT
<213> Arabidopsis thaliana

<400> 94

Ser Pro Tyr Asp Thr Leu Glu Leu Asp Arg Asn Ala Glu Glu Gln
1 5 10 15

Ile Lys Val Ala Tyr Arg Arg Leu Ala Lys Phe Tyr His Pro Asp Val
20 25 30

Tyr Asp Gly Lys Gly Thr Leu Glu Glu Gly Glu Thr Ala Glu Ala Arg
35 40 45

Phe Ile Lys Ile Gln Ala Ala Tyr Glu Leu Leu Met Asp Ser Glu Lys
50 55 60

Lys Val Gln Tyr Asp Met Asp Asn
65 70

<210> 95
<211> 68
<212> PRT
<213> Schizosaccharomyces pombe

<400> 95

Lys Leu Tyr Asp Ile Leu Glu Val His Phe Glu Ala Ser Ala Glu Glu
1 5 10 15

Ile Lys Lys Ser Tyr Lys Arg Leu Ala Leu Leu His His Pro Asp Lys
20 25 30

Ala Pro Ile His Glu Lys Glu Ala Ala Glu Arg Phe Arg Gly Val
35 40 45

Gln Glu Ala Tyr Asp Ile Leu Lys Asp Pro Glu Ser Arg Glu Met Tyr
50 55 60

Asp Met Tyr Gly
65

<210> 96

<211> 66

<212> PRT

<213> Unknown

<220>

<223> Synthetic

<400> 96

Asp Phe Tyr Lys Ile Leu Gly Ala Glu Pro His Phe Leu Gly Asp Gly
1 5 10 15

Ile Arg Arg Ala Phe Glu Ser Arg Ile Ala Lys Pro Pro Gln Tyr Gly
20 25 30

Tyr Ser Thr Glu Ala Leu Ala Gly Arg Arg Gln Met Leu Gln Ile Ala
35 40 45

His Asp Thr Leu Thr Asn Gln Ser Ser Arg Thr Glu Tyr Asp Arg Ala
50 55 60

Leu Ser
65

<210> 97
<211> 66
<212> PRT
<213> Oryza sativa

<400> 97

Asp Phe Tyr Lys Val Leu Gly Ala Glu Pro His Phe Leu Gly Asp Gly
1 5 10 15

Ile Arg Arg Ala Phe Glu Ala Arg Ile Ala Lys Pro Pro Gln Tyr Gly
20 25 30

Tyr Ser Thr Asp Ala Leu Val Gly Arg Arg Gln Met Leu Gln Ile Ala
35 40 45

His Asp Thr Leu Met Asn Gln Asn Ser Arg Thr Gln Tyr Asp Arg Ala
50 55 60

Leu Ser
65

<210> 98
<211> 66
<212> PRT
<213> Solanum tuberosum

<400> 98

Asp Phe Tyr Arg Val Leu Gly Ala Glu Ala His Phe Leu Gly Asp Gly
1 5 10 15

Ile Arg Arg Cys Tyr Asp Ala Arg Ile Thr Lys Pro Pro Gln Tyr Gly
20 25 30

Tyr Ser Gln Glu Ala Leu Ile Gly Arg Arg Gln Ile Leu Gln Ala Ala
35 40 45

Cys Glu Thr Leu Ala Asp Ser Thr Ser Arg Arg Glu Tyr Asn Gln Gly
50 55 60

Leu Ala
65

<210> 99
<211> 66
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 99

Asp Leu Tyr Lys Ile Leu Gly Ala Glu Thr His Phe Leu Gly Asp Gly
1 5 10 15

Ile Arg Arg Ala Tyr Glu Ala Lys Phe Ser Lys Pro Pro Gln Tyr Ala
20 25 30

Phe Ser Asn Glu Ala Leu Ile Ser Arg Arg Gln Ile Leu Gln Ala Ala
35 40 45

Cys Glu Thr Leu Ala Asp Pro Ala Ser Arg Arg Glu Tyr Asn Gln Ser
50 55 60

Leu Val
65

<210> 100
<211> 66
<212> PRT
<213> Arabidopsis thaliana

<400> 100

Asp Phe Tyr Gln Val Leu Gly Ala Gln Thr His Phe Leu Thr Asp Gly
1 5 10 15

Ile Arg Arg Ala Phe Glu Ala Arg Val Ser Lys Pro Pro Gln Phe Gly
20 25 30

Phe Ser Asp Asp Ala Leu Ile Ser Arg Arg Gln Ile Leu Gln Ala Ala
35 40 45

Cys Glu Thr Leu Ser Asn Pro Arg Ser Arg Arg Glu Tyr Asn Glu Gly
50 55 60

Leu Leu
65

<210> 101
<211> 66
<212> PRT
<213> Protochlorococcus marinus MED4

<400> 101

Asp His Phe Arg Leu Ile Gly Val Ser Pro Ser Ala Thr Ser Glu Glu
1 5 10 15

Ile Leu Arg Ala Phe Gln Leu Arg Leu Asp Lys Thr Pro Asp Glu Gly
20 25 30

Phe Thr Tyr Glu Val Leu Thr Gln Arg Ser Glu Leu Leu Arg Leu Thr
35 40 45

Ala Asp Leu Leu Thr Asp Pro Asp Ser Arg Arg Asp Tyr Glu Asn Leu
50 55 60

Leu Leu
65

<210> 102
<211> 66
<212> PRT
<213> Protochlorococcus marinus MT9313

<400> 102

Asp His Phe Arg Leu Leu Gly Val Ser Pro Ser Ala Asp Ser Glu Ala
1 5 10 15

Ile Leu Arg Ala Leu Glu Leu Arg Leu Asp Arg Cys Pro Asp Gln Gly
20 25 30

Phe Thr His Glu Val Leu Ile Gln Arg Ala Glu Leu Leu Arg Leu Ser
35 40 45

Ala Asp Leu Leu Thr Asp Pro Pro Arg Arg Gln Ala Tyr Glu Thr Ala
50 55 60

Leu Leu
65

<210> 103
<211> 66
<212> PRT
<213> Synechocystis PCC6803

<400> 103

Asp His Phe Arg Leu Leu Gly Val Ser Pro Ser Ala Asp Pro Ala Ser
1 5 10 15

Ile Leu Arg Arg Leu Gln Thr Arg Ser Asp Ser Pro Pro Asp Asp Gly
20 25 30

Phe Thr His Glu Gly Leu Leu Gln Arg Gln Ala Leu Leu His Arg Ser
35 40 45

Ala Asp Leu Leu Thr Asp Pro Ser Glu Arg Ala Asp Tyr Glu Ala Ala
50 55 60

Leu Leu
65

<210> 104
<211> 66
<212> PRT
<213> Synechocystis PCC6803

<400> 104

Asp Phe Tyr Arg Ile Leu Gly Ile Pro Pro Gln Ser Gly Gly Glu Thr
1 5 10 15

Ile Glu Gln Ala Tyr Gln Asp Arg Leu Leu Gln Leu Pro Arg Arg Glu
20 25 30

Phe Ser Asp Ala Ala Val Thr Leu Arg Asn Gln Leu Ala Ile Ala
35 40 45

Tyr Glu Thr Leu Arg Asp Pro Glu Lys Arg Gln Ala Tyr Asp Gln Glu
50 55 60

Trp Trp
65

<210> 105
<211> 66
<212> PRT
<213> Nostoc punctiforme

<400> 105

Asp Tyr Tyr Arg Ile Leu Gly Leu Pro Leu Ala Ala Ser Glu Glu Gln
1 5 10 15

Leu Arg Gln Ala Tyr Ser Asp Arg Ile Val Gln Leu Pro Arg Arg Glu
20 25 30

Tyr Ser Gln Ala Ala Ile Ser Ser Arg Lys Gln Leu Ile Glu Glu Ala
35 40 45

Tyr Val Val Leu Ser Asp Pro Lys Gln Arg Ser Thr Tyr Asp Gln Leu
50 55 60

Tyr Leu
65

<210> 106
<211> 66
<212> PRT
<213> Anabaena PCC7120

<400> 106

Asp Tyr Tyr Arg Ile Leu Gly Leu Pro Leu Ala Ala Ser Asp Glu Gln
1 5 10 15

Leu Arg Gln Ala Tyr Ser Asp Arg Ile Val Gln Leu Pro Arg Arg Glu
20 25 30

Tyr Ser Gln Ala Ala Ile Ala Ser Arg Lys Gln Leu Ile Glu Glu Ala
35 40 45

Tyr Val Val Leu Ser Asp Pro Lys Glu Arg Ser Ser Tyr Asp Gln Leu
50 55 60

Tyr Leu
65

<210> 107

<211> 66

<212> PRT

<213> Bombyx mori

<400> 107

Asp Tyr Tyr Ala Leu Leu Gly Cys Asp Glu Asn Ser Thr Val Glu Gln
1 5 10 15

Ile Thr Ala Glu Tyr Lys Ile Leu Ala Leu Gln His His Pro Asp Lys
20 25 30

Asn Asp Gly Glu Lys Glu Ala Glu Met Lys Phe Gln Lys Leu Lys Glu
35 40 45

Ala Lys Glu Ile Leu Cys Asp Pro Ser Lys Arg Ala Leu Tyr Asp Lys
50 55 60

Trp Arg

65

<210> 108

<211> 66

<212> PRT

<213> Drosophila melanogaster

<400> 108

Asp Phe Tyr Gly Leu Leu His Cys Asp Glu Asn Ser Ser Pro Glu Gln
1 5 10 15

Ile Gln Ala Glu Tyr Lys Val Leu Ala Leu Gln Tyr His Pro Asp Lys
20 25 30

Asn Ser Gly Asp Lys Glu Ala Glu Ala Lys Phe Gln Gln Leu Lys Glu
35 40 45

Ala Lys Glu Thr Leu Cys Asp Pro Glu Lys Arg Ala Ile Tyr Asp Lys
50 55 60

Trp Arg

65

<210> 109
<211> 66
<212> PRT
<213> Mus musculus

<400> 109

Asp Tyr Tyr Ala Leu Leu Gly Cys Asp Glu Leu Ser Ser Val Glu Gln
1 5 10 15

Ile Leu Ala Glu Phe Lys Ile Arg Ala Leu Glu Cys His Pro Asp Lys
20 25 30

His Pro Glu Asn Ser Lys Ala Val Glu Thr Phe Gln Lys Leu Gln Lys
35 40 45

Ala Lys Glu Ile Leu Cys Asn Ala Glu Ser Arg Ala Arg Tyr Asp His
50 55 60

Trp Arg
65

<210> 110
<211> 65
<212> PRT
<213> Saccharomyces cerevisiae

<400> 110

Asp Ala Tyr Ser Ile Leu Gly Val Pro Pro Asp Ser Ser Gln Glu Gln
1 5 10 15

Ile Arg Lys His Tyr Lys Lys Ile Ala Val Leu Val His Pro Asp Lys
20 25 30

Asn Lys Gln Ala Gly Ala Glu Glu Ala Phe Lys Val Leu Gln Arg Ala
35 40 45

Phe Glu Leu Ile Gly Glu Pro Glu Asn Arg Leu Ile Tyr Asp Gln Ser
50 55 60

Ile
65

<210> 111
<211> 64
<212> PRT
<213> Leishmania major

<400> 111

Glu Leu Tyr Gln Val Leu Glu Leu Asp Ala Gln Cys Thr Thr Ala Glu
1 5 10 15

Ile Ser Gln Gln Tyr Arg Arg Leu Ala Leu Arg Tyr His Pro Asp Arg
20 25 30

Asn Ala Gly Ala Thr Val Glu Gln Phe Gln Arg Ile Glu Glu Ala His
35 40 45

Arg Val Leu Ser Asp Leu Arg Gln Arg Gln Leu Tyr Asp Thr Val Gly
50 55 60

<210> 112
<211> 67
<212> PRT
<213> Schizosaccharomyces pombe

<400> 112

Asp Tyr Tyr Thr Ile Leu Gly Ala Glu Ser Thr Ser Ser Tyr Val Glu
1 5 10 15

Ile Arg Gln Gln Tyr Leu Lys Leu Val Leu Arg Tyr His Pro Asp Arg
20 25 30

Asn Pro Gly Arg Glu Ala Glu Val Leu Pro Gln Phe Gln Leu Ile Gln
35 40 45

Lys Ala His Glu Val Leu Lys Asp Pro Lys Leu Arg Glu Leu Phe Asp
50 55 60

Gln Arg Arg
65

<210> 113
<211> 67
<212> PRT
<213> Schizosaccharomyces pombe

<400> 113

Asp Tyr Tyr Ala Ile Leu Lys Leu Gln Lys Asn Ala Thr Phe Gln Gln
1 5 10 15

Ile Arg Lys Gln Tyr Leu Phe Leu Ala Leu Gln Tyr His Pro Asp Arg
20 25 30

Asn Pro Gly Asp Glu Glu Arg Ala Val Lys Arg Phe Gln Arg Leu Gln
35 40 45

Leu Ala His Glu Val Leu Ser Asp Ala Thr Lys Arg Leu Ile Tyr Asp
50 55 60

Gln Leu Phe
65

<210> 114
<211> 68
<212> PRT
<213> Schizosaccharomyces pombe

<400> 114

Asn His Tyr Ser Val Leu Asn Leu Lys Asp Gly Lys Thr Tyr Thr Asp
1 5 10 15

Asp Glu Ile Lys Glu Ala Tyr Arg Lys Ala Leu Leu Leu Phe His Pro
20 25 30

Asp Lys Cys Lys Glu Lys Pro Ser Val Val Tyr Thr Ile Asp Gln Val
35 40 45

Lys Glu Ala Tyr Gln Val Leu Ser Ser Glu Lys Asp Arg Gln Gln Tyr
50 55 60

Gln Ile Lys Gln
65

<210> 115
<211> 652
<212> PRT
<213> Anabaena PCC7120

<400> 115

Gln Gly Lys Tyr Ala Val Arg Ile Pro Leu Asp Tyr Tyr Arg Ile Leu
1 5 10 15

Gly Leu Pro Leu Ala Ala Ser Asp Glu Gln Leu Arg Gln Ala Tyr Ser
20 25 30

Asp Arg Ile Val Gln Leu Pro Arg Arg Glu Tyr Ser Gln Ala Ala Ile
35 40 45

Ala Ser Arg Lys Gln Leu Ile Glu Glu Ala Tyr Val Val Leu Ser Asp
50 55 60

Pro Lys Glu Arg Ser Ser Tyr Asp Gln Leu Tyr Leu Ala His Ala Tyr
65 70 75 80

Asp Pro Asp Asn Ala Ala Thr Thr Lys Val Ala Val Glu Asn Arg Gly
85 90 95

Asp Ser Asn Asn Gly His Phe Asp Val Gln Ser Leu Ser Ile Glu Val
100 105 110

Ser Ser Glu Glu Leu Ile Gly Ala Leu Leu Ile Leu Gln Glu Leu Gly
115 120 125

Glu Tyr Glu Leu Val Leu Lys Leu Gly Arg Asn Tyr Leu Gly Asn Gln
130 135 140

Asn Gly Thr Ala Ser Thr Arg Asn Gly Asn His Arg Thr Pro Glu Glu
145 150 155 160

Phe Leu Asp Ser Ser Glu Arg Pro Asp Ile Leu Leu Thr Val Ala Leu
165 170 175

Ala Ser Leu Glu Leu Gly Arg Glu Gln Trp Gln Gln Gly His Tyr Glu
180 185 190

Asn Ala Ala Leu Ser Leu Glu Thr Gly Gln Glu Val Leu Phe Ser Glu
195 200 205

Gly Ile Phe Pro Ser Val Gln Ala Glu Ile Gln Ala Asp Leu Tyr Lys
210 215 220

Leu Arg Pro Tyr Arg Ile Leu Glu Leu Leu Ala Leu Pro Gln Glu Lys
225 230 235 240

Thr Ile Glu Arg His Gln Gly Leu Asp Leu Leu Gln Ser Ile Leu Asp
245 250 255

Asp Arg Gly Gly Ile Asp Gly Thr Gly Asn Asp Gln Ser Gly Leu Asn
260 265 270

Ile Asp Asp Phe Leu Arg Phe Ile Gln Gln Leu Arg His His Leu Thr
275 280 285

Val Ala Glu Gln His Lys Leu Phe Asp Gly Glu Ser Lys Arg Pro Ser
290 295 300

Ala Val Ala Thr Tyr Leu Ala Val Tyr Ala Ser Ile Ala Arg Gly Phe
305 310 315 320

Thr Gln Arg Gln Pro Ala Leu Ile Arg His Ala Lys Gln Ile Leu Met
325 330 335

Arg Leu Ser Lys Arg Gln Asp Val His Leu Glu Gln Ser Leu Cys Ala
340 345 350

Leu Leu Leu Gly Gln Thr Glu Glu Ala Thr Arg Val Leu Glu Leu Ser
355 360 365

Gln Glu Tyr Glu Ala Leu Ala Leu Ile Arg Glu Lys Ser Gln Asp Ser
370 375 380

Pro Asp Leu Leu Pro Gly Leu Cys Leu Tyr Ala Glu Gln Trp Leu Gln
385 390 395 400

Asn Glu Val Phe Pro His Phe Arg Asp Leu Ser Arg Gln Gln Ala Ser
405 410 415

Leu Lys Asp Tyr Phe Ala Asn Gln Gln Val Gln Ala Tyr Leu Glu Ala
420 425 430

Leu Pro Asn Asp Ala Glu Thr Thr Asn Glu Trp Ala Val Ile Asn Arg
435 440 445

Gln Ser Phe Ser Gln Pro Arg Gly Asn Ser Tyr Ser Gly Gly Thr Pro
450 455 460

Val Ala Lys Arg Pro Val Gly Lys Ala Asn Arg Pro Gly Glu Ala Ser
465 470 475 480

Thr Arg Pro Val Pro Gln Arg Ser His Pro Ser Glu Val Asn Arg Gln
485 490 495

Phe His Gln Asn Arg Thr Pro Asp Pro Glu Leu Pro Glu Thr Ser Asn
500 505 510

His Arg Arg Pro Glu Ser Ser Asn Phe Thr Thr Ala Arg Glu Asn Ile
515 520 525

Ser Thr Thr Asp Ala Tyr Thr Asp Asn Tyr Pro Pro Glu Ile Pro Val
530 535 540

Glu Arg Ala Ser Arg Pro Val Gln Pro Gly Val Ser Gly Tyr Thr Gln
545 550 555 560

Ser Thr Pro Pro Arg Gln Thr Pro Lys Arg Arg Arg Lys Lys Pro
565 570 575

Gln Ala Val Val Asn Arg Gly His Ser Ile His Gln Gln Arg Gln Pro
580 585 590

Ser Pro Ser Thr Leu Gly Arg Lys Thr Arg Leu Leu Trp Ile Val Leu
595 600 605

Gly Ser Leu Gly Gly Ile Leu Leu Phe Trp Leu Ile Val Ser Thr Thr
610 615 620

Phe Gly Trp Leu Lys Asn Val Phe Phe Pro Ala Pro Ser Leu Gln Gly
625 630 635 640

Glu Gln Leu Ser Ile Gln Ile Ser Gln Pro Pro Leu
645 650

<210> 116

<211> 624

<212> PRT

<213> Nostoc punctiforme

<400> 116

Met Arg Ile Pro Leu Asp Tyr Tyr Arg Ile Leu Gly Leu Pro Leu Ala
1 5 10 15

Ala Ser Glu Glu Gln Leu Arg Gln Ala Tyr Ser Asp Arg Ile Val Gln
20 25 30

Leu Pro Arg Arg Glu Tyr Ser Gln Ala Ala Ile Ser Ser Arg Lys Gln
35 40 45

Leu Ile Glu Glu Ala Tyr Val Val Leu Ser Asp Pro Lys Gln Arg Ser
50 55 60

Thr Tyr Asp Gln Leu Tyr Leu Ala His Ala Tyr Asp Pro Asp Asn Leu
65 70 75 80

Ala Ala Ala Ala Val Ala Gln Glu Asn Arg Thr Glu Ser Thr Lys Arg
85 90 95

Gly Ser Asp Thr Gln Ser Leu Gly Ile Glu Ile Thr Gln Asp Glu Leu
100 105 110

Val Gly Ala Leu Leu Ile Leu Gln Glu Leu Gly Glu Tyr Glu Leu Val
115 120 125

Leu Lys Leu Gly Arg Pro Tyr Leu Val Asn Lys Asn Ser Ala Thr Ser
130 135 140

Ser Arg Lys Ser Asn Asn Leu Ala Asp Glu Glu Ile Tyr Glu Ser Ala
145 150 155 160

Glu His Pro Asp Val Val Leu Thr Val Ala Leu Ala Cys Leu Glu Leu
165 170 175

Gly Arg Glu Gln Trp Gln Gln Gly His Tyr Glu Asn Ala Ala Ile Ser
180 185 190

Leu Glu Thr Gly Gln Glu Leu Leu Val Arg Glu Gly Leu Phe Ser Ser
195 200 205

Ile Gln Ala Glu Ile Gln Ala Asp Leu Tyr Lys Leu Arg Pro Tyr Arg
210 215 220

Ile Leu Glu Leu Leu Ala Leu Pro Gln Glu Lys Thr Ala Glu Arg Ser
225 230 235 240

Gln Gly Leu Glu Leu Leu Gln Asn Leu Leu Glu Asp Arg Gly Gly Ile
245 250 255

Asp Gly Thr Asn Asn Asp Glu Ser Gly Leu Asn Ile Asp Asp Phe Leu
260 265 270

Arg Phe Ile Gln Gln Leu Arg Asn His Leu Thr Val Ala Glu Gln His
275 280 285

Lys Leu Phe Glu Ala Gln Ser Lys Arg Ser Ser Ala Val Ala Thr Tyr
290 295 300

Leu Ala Val Tyr Ala Leu Ile Ala Arg Gly Phe Ala Gln Arg Gln Pro
305 310 315 320

Ala Leu Ile Arg Gln Ala Arg Gln Met Leu Val Arg Leu Gly Lys Arg
325 330 335

Gln Asp Val His Leu Glu Gln Ser Leu Cys Ala Leu Leu Leu Gly Gln
340 345 350

Thr Glu Glu Ala Thr Arg Val Leu Glu Leu Ser Gln Glu Tyr Glu Ala
355 360 365

Leu Ala Phe Ile Arg Glu Lys Ser Gln Asp Ser Pro Asp Leu Leu Pro
370 375 380

Gly Leu Cys Leu Tyr Ala Glu Gln Trp Leu Gln His Glu Val Phe Pro
385 390 395 400

His Phe Arg Asp Leu Ala Asn Gln Gln Ala Phe Leu Lys Asp Tyr Phe
405 410 415

Ala Asn Gln Gln Val Gln Ala Tyr Leu Glu Ala Leu Pro Thr Asp Ala
420 425 430

Gln Thr Thr Asn Glu Trp Ala Val Ile Asn Pro Gln Tyr Phe Pro Gln
435 440 445

Ala Lys Ala Lys Asn Thr His Phe His Asn Asn Ser Thr Lys Thr Ser
450 455 460

Ala Ser Phe Asn His Ser Arg Val Pro Asn Pro Asp Leu Pro Glu Thr
465 470 475 480

Pro Thr Lys Glu Thr Ser Glu Tyr Pro Asn Phe Ser Pro Pro Met Trp
485 490 495

Ser Ser Ser Gly Ser Ile Lys Ser Glu Val Pro Ala Ala Glu Arg Met
500 505 510

Ser Arg Gly Thr Asn Gln His Leu Asn Gly Ser Ala Lys Ser Ala Ala
515 520 525

Ser Gly His Asn Gln Lys Arg Arg Arg Arg Lys Pro Thr Pro Ser Ala
530 535 540

Ser Arg Glu Arg Ile Pro Asp Asn Arg Pro His Ser Arg Arg Pro Arg
545 550 555 560

Arg Arg Arg Thr Phe Ala Asn Thr Ile Glu Gly Lys Thr Arg Leu Val
565 570 575

Trp Arg Val Phe Ile Ser Leu Val Ser Ile Leu Val Phe Trp Val Leu
580 585 590

Ala Thr Thr Thr Phe Gly Trp Leu Lys Asn Leu Phe Phe Pro Gln Pro
595 600 605

Ser Pro Pro Asp Leu Gln Leu Phe Val Gln Ile Asn Gln Pro Pro Leu
610 615 620

<210> 117
<211> 557
<212> PRT
<213> Protochlorococcus marinus MED4

<400> 117

Met Glu Leu Pro Leu Asp His Phe Arg Leu Ile Gly Val Ser Pro Ser
1 5 10 15

Ala Thr Ser Glu Glu Ile Leu Arg Ala Phe Gln Leu Arg Leu Asp Lys
20 25 30

Thr Pro Asp Glu Gly Phe Thr Tyr Glu Val Leu Thr Gln Arg Ser Glu
35 40 45

Leu Leu Arg Leu Thr Ala Asp Leu Leu Thr Asp Pro Asp Ser Arg Arg
50 55 60

Asp Tyr Glu Asn Leu Leu Asn Gly Ala Ser Gly Leu Asp Leu Ser
65 70 75 80

Ser Asn Arg Glu Val Ala Gly Leu Ile Leu Leu Trp Glu Ser Gly Ser
85 90 95

Ser Lys Glu Ala Phe Lys Ile Thr Arg Lys Ala Leu Gln Pro Pro Gln
100 105 110

Thr Pro Ala Leu Gly Ser Ser Arg Glu Ala Asp Leu Thr Leu Leu Ala
115 120 125

Ala Leu Thr Ser Arg Asp Ala Ala Ile Gln Glu Gln Asp Gln Arg Ser
130 135 140

Tyr Ser Asn Ala Ala Asp Phe Leu Gln Glu Gly Ile Gln Leu Leu Gln
145 150 155 160

Arg Met Gly Lys Leu Gly Glu Leu Arg Lys Thr Leu Glu Glu Asp Leu
165 170 175

Val Ser Leu Leu Pro Tyr Arg Ile Leu Asp Leu Leu Ser Arg Asp Leu
180 185 190

Asn Asp Tyr Asp Ser His Lys Lys Gly Leu Ser Met Leu Glu Asn Leu
195 200 205

Ile Ile Lys Arg Gly Gly Leu Glu Gly Lys Asn Lys Ser Glu Tyr Asn
210 215 220

Asp Phe Leu Asn Gln Gln Glu Phe Glu Ser Phe Phe Gln Gln Ile Lys
225 230 235 240

Pro Phe Leu Thr Val Gln Asp Gln Ile Asp Leu Phe Leu Glu Leu Gln
245 250 255

Lys Arg Gly Ser Ser Glu Ala Gly Phe Leu Ala Phe Leu Ser Leu Thr
260 265 270

Ala Ile Gly Phe Ala Arg Arg Lys Pro Ala Lys Leu Phe Glu Ala Arg
275 280 285

Lys Ile Leu Lys Lys Leu Asn Leu Ser Gly Leu Asp Ser Met Pro Leu
290 295 300

Ile Gly Cys Leu Asp Leu Leu Leu Ala Asp Val Glu Gln Ser Ser Ala
305 310 315 320

Arg Phe Leu Ser Ser Asp Glu Lys Leu Arg Asp Trp Leu Asn Asn
325 330 335

Tyr Pro Gly Glu Lys Leu Glu Ala Ile Cys Ile Phe Cys Lys Asn Trp
340 345 350

Leu Glu Asn Asp Val Leu Val Gly Tyr Arg Asp Ile Asp Leu Lys Glu
355 360 365

Ile Asp Leu Asp Ser Trp Phe Glu Asp Arg Glu Ile Gln Glu Phe Ile
370 375 380

Glu Gln Ile Glu Lys Lys Ser Asn Arg Thr Val Phe Lys Ser Gly Pro
385 390 395 400

Gln Asn Lys Pro Ile Phe Gln Ala Gln Glu Ser Leu Lys Asp Ser Ser
405 410 415

Thr Gly Pro Asp Leu Asn Ser Asp Asn Phe Glu Glu Gly Arg Leu Pro
420 425 430

Leu Pro Gly Gly Val Arg Glu Asp Gly Gln Glu Val Ile Glu Glu Asn
435 440 445

Ile Tyr Thr Asp Glu Ile Ile Lys Asn Lys Ser Ile Glu Phe Tyr Lys
450 455 460

Tyr Ala Ile Glu Lys Ile Ala Glu Leu Lys Phe Val Phe Gly Glu Ala
465 470 475 480

Leu Glu Asn Tyr Arg Ile Phe Asn Lys Ser Ser Tyr Leu Thr Tyr Leu
485 490 495

Tyr Ala Phe Leu Ile Leu Phe Ala Phe Gly Leu Gly Val Gly Phe Val
500 505 510

Arg Asn Asn Leu Lys Lys Pro Val Gln Glu Lys Glu Ile Ile Asp Asn
515 520 525

Ser Leu Ser Ile Asn Glu Asn Lys Asn Val Phe Tyr Glu Gly Leu Asn
530 535 540

Gln Asp Asp Lys Lys Lys Val Leu Asp Asn Ser Lys Ile
545 550 555

<210> 118
<211> 524
<212> PRT
<213> Protochlorococcus marinus MT9313

<400> 118

Met Ala Ala Gln Leu Val Asp Leu Pro Ile Asp His Phe Arg Leu Leu
1 5 10 15

Gly Val Ser Pro Ser Ala Asp Ser Glu Ala Ile Leu Arg Ala Leu Glu
20 25 30

Leu Arg Leu Asp Arg Cys Pro Asp Gln Gly Phe Thr His Glu Val Leu
35 40 45

Ile Gln Arg Ala Glu Leu Leu Arg Leu Ser Ala Asp Leu Leu Thr Asp
50 55 60

Pro Pro Arg Arg Gln Ala Tyr Glu Thr Ala Leu Leu Glu Leu Ser Arg
65 70 75 80

Asp His Pro Gly Glu Thr Ala Gly Leu Asp Val Ser Pro Ser Arg Glu
85 90 95

Val Ala Gly Leu Ile Leu Leu Phe Glu Ala Asn Ser Ser His Glu Val
100 105 110

Phe His Leu Ala Ser Gln Gly Leu Gln Pro Pro Gln Ser Pro Thr Leu
115 120 125

Gly Ser Glu Arg Glu Ala Asp Leu Ala Leu Leu Ala Leu Ala Cys
130 135 140

Arg Ala Ala Ala Ala Glu Glu Gln Glu Gln Arg Arg Tyr Glu Ala Ala
145 150 155 160

Ala Ser Leu Leu His Asp Gly Ile Gln Leu Leu Gln Arg Met Gly Lys
165 170 175

Leu Ser Glu Glu Cys His Lys Leu Glu Asn Asp Leu Asp Ala Leu Leu
180 185 190

Pro Tyr Arg Ile Leu Asp Leu Leu Ser Arg Asp Leu Gly Asp Gln Val
195 200 205

Ser His Gln Glu Gly Leu Arg Leu Leu Asp Asn Phe Val Ser Gln Arg
210 215 220

Gly Gly Leu Glu Gly Thr Ala Pro Ser Pro Ala Pro Gly Gly Leu Asp
225 230 235 240

Gln Ser Glu Phe Asp Asn Phe Phe Lys Gln Ile Arg Lys Phe Leu Thr
245 250 255

Val Gln Glu Gln Val Asp Leu Phe Leu Arg Trp Gln Gln Ala Gly Ser
260 265 270

Ala Asp Ala Gly Phe Leu Gly Gly Leu Ala Leu Ala Ala Val Gly Phe
275 280 285

Ser Arg Arg Lys Pro Glu Arg Val Gln Glu Ala Arg Gln His Leu Glu
290 295 300

Arg Leu Gln Leu Asp Gly Cys Asp Pro Leu Pro Met Leu Gly Cys Leu
305 310 315 320

Asp Leu Leu Leu Gly Asp Val Gly Arg Ala Gln Glu Arg Phe Leu Arg
325 330 335

Ser Thr Asp Pro Arg Val Lys Asp Cys Leu Asn Ser His Pro Gly Asp
340 345 350

Glu Leu Ala Ala Phe Cys Glu Tyr Cys Arg Ser Trp Leu Arg Gly Asp
355 360 365

Val Leu Pro Gly Tyr Arg Asp Val Asp Ala Glu Ala Val Asp Leu Glu
370 375 380

Ala Trp Phe Ala Asp Arg Asp Val Gln Ala Tyr Val Glu Arg Leu Glu
385 390 395 400

Arg Ser Glu Asn Arg Ala Ser Ser Leu Gly Lys Ala Phe Ser Gly Ser
405 410 415

Ser Val Lys Gln Pro Phe Pro Trp Ala Pro Leu Asp Pro Asp Gly Ile
420 425 430

Leu Pro Leu Ser Leu Gly Gly Pro Asp Val Gly Gln Pro Ala Ala Asp
435 440 445

Gln Ser Ser Asp Glu Phe Ala Ser Asp Gly Met Ala Trp Ile Asp Arg
450 455 460

Leu Ala Asp Leu Pro Arg Pro Thr Arg Pro Val Leu Ile Gly Ser Val
465 470 475 480

Val Phe Ala Ala Leu Ile Ala Ala Phe Ala Gly Phe Ser Leu Phe Gly
485 490 495

Gln Arg Pro Arg Thr Ser Val Ser Thr Ala Ala Asp Gln Pro Gln Val
500 505 510

Thr Ala Pro Pro Thr Ala Thr Leu Gln Glu Glu Val
515 520

<210> 119
<211> 566
<212> PRT
<213> Synechocystis PCC6803

<400> 119

Met Phe Ile Pro Leu Asp Phe Tyr Arg Ile Leu Gly Ile Pro Pro Gln
1 5 10 15

Ser Gly Gly Glu Thr Ile Glu Gln Ala Tyr Gln Asp Arg Leu Leu Gln
20 25 30

Leu Pro Arg Arg Glu Phe Ser Asp Ala Ala Val Thr Leu Arg Asn Gln
35 40 45

Leu Leu Ala Ile Ala Tyr Glu Thr Leu Arg Asp Pro Glu Lys Arg Gln
50 55 60

Ala Tyr Asp Gln Glu Trp Trp Gly Ala Met Asp Glu Ala Leu Gly Glu
65 70 75 80

Ala Leu Pro Leu Thr Thr Pro Glu Leu Glu Cys Ser Pro Glu Gln Glu
85 90 95

Ile Gly Ala Leu Leu Ile Leu Leu Asp Leu Gly Glu Tyr Glu Leu Val
100 105 110

Val Lys Tyr Gly Glu Pro Val Leu His Asp Pro Asn Pro Pro Ala Gly
115 120 125

Gly Leu Pro Gln Asp Tyr Leu Leu Ser Val Ile Leu Ala His Trp Glu
130 135 140

Leu Ser Arg Glu Arg Trp Gln Gln Gln Tyr Glu Phe Ala Ala Thr
145 150 155 160

Ala Ser Leu Lys Ala Leu Ala Arg Leu Gln Gln Asp Asn Asp Phe Pro
165 170 175

Ala Leu Glu Ala Glu Ile Arg Gln Glu Leu Tyr Arg Leu Arg Pro Tyr
180 185 190

Arg Ile Leu Glu Leu Leu Ala Lys Glu Gly Gln Gly Glu Glu Gln Arg
195 200 205

Gln Gln Gly Leu Ala Leu Leu Gln Ala Met Val Gln Asp Arg Gly Gly
210 215 220

Ile Glu Gly Lys Gly Glu Asp Tyr Ser Gly Leu Gly Asn Asp Asp Phe
225 230 235 240

Leu Lys Phe Ile His Gln Leu Arg Cys His Leu Thr Val Ala Glu Gln
245 250 255

Asn Ala Leu Phe Leu Pro Glu Ser Gln Arg Pro Ser Leu Val Ala Ser
260 265 270

Tyr Leu Ala Val His Ser Leu Met Ala Glu Gly Val Lys Glu Gln Asp
275 280 285

Pro Met Ala Ile Val Glu Ala Lys Ser Leu Ile Ile Gln Leu Glu Asn
290 295 300

Cys Gln Asp Leu Ala Leu Glu Lys Val Ile Cys Glu Leu Leu Leu Gly
305 310 315 320

Gln Thr Glu Val Val Leu Ala Ala Ile Asp Gln Gly Asp Pro Lys Ile
325 330 335

Val Ala Gly Leu Glu Ser Lys Leu Ala Thr Gly Glu Asp Pro Leu Thr
340 345 350

Ala Phe Tyr Thr Phe Thr Glu Gln Trp Leu Glu Glu Glu Ile Val Pro
355 360 365

Tyr Phe Arg Asp Leu Ser Pro Glu Thr Leu Ser Pro Lys Ala Tyr Phe
370 375 380

Asn Asn Pro Ser Val Gln Gln Tyr Leu Glu Gln Leu Glu Pro Asp Ser
385 390 395 400

Phe Thr Thr Asp Asn Ser Phe Ala Ser Pro Ala Leu Leu Ser Thr Ala
405 410 415

Thr Glu Ser Glu Thr Pro Met Val His Ser Ser Ala Ala Leu Pro Asp
420 425 430

Arg Pro Leu Thr Ser Thr Val Pro Ser Arg Arg Gly Arg Ser Pro Arg
435 440 445

Arg Ser Arg Asp Asp Val Phe Pro Ser Ala Asp Asn Ser Ser Gly Leu
450 455 460

Ala Val Thr Thr Leu Ser Pro Ala Ile Ala Tyr Asp Thr His Ser Leu
465 470 475 480

Gly Thr Asn Gly Ile Gly Gly Asp Ser Thr Ser Asn Gly Phe Ser Ser
485 490 495

Asn Ser Ala Pro Glu Ser Thr Ser Lys His Lys Ser Pro Arg Arg Arg
500 505 510

Lys Lys Arg Val Thr Ile Lys Pro Val Arg Phe Gly Ile Phe Leu Leu
515 520 525

Cys Leu Ala Gly Ile Val Gly Gly Ala Thr Ala Leu Ile Ile Asn Arg
530 535 540

Thr Gly Asp Pro Leu Gly Gly Leu Leu Glu Asp Pro Leu Asp Val Phe
545 550 555 560

Leu Asp Gln Pro Ser Glu
565

<210> 120
<211> 573
<212> PRT
<213> Synechococcus PCC7002

<400> 120

Thr Val Arg Ile Pro Leu Asp Tyr Tyr Arg Ile Leu Cys Val Pro Ala
1 5 10 15

Lys Ala Thr Thr Ala Gln Ile Thr Gln Ala Tyr Arg Asp Arg Leu Ser
20 25 30

Gln Phe Pro Arg Arg Glu His Asn Ala Leu Ala Ile Glu Ala Arg Asn
35 40 45

Arg Ile Ile Glu Gln Ala Phe Glu Val Leu Ser Gln Thr Glu Thr Arg
50 55 60

Ala Val Tyr Asp His Glu Leu Ser Gly Asn Met Phe Arg Ser Leu Val
65 70 75 80

Pro Ser Arg Pro Lys Leu Pro Phe Pro Asp Arg Pro Ser Ser Asp Thr
85 90 95

Glu Leu Glu Ala Leu Thr Ala His Gln Pro Thr Ile Asp Ile Ala Glu
100 105 110

Lys Asp Leu Leu Gly Gly Leu Leu Leu Leu Asp Leu Gly Glu Tyr
115 120 125

Glu Leu Val Leu Lys Trp Ala Ala Pro Tyr Leu Lys Gly Lys Gly Lys
130 135 140

Leu Val Lys Glu Gly Lys Phe Gly Ala Val Glu Ile Val Glu Gln Glu
145 150 155 160

Leu Arg Leu Cys Leu Ala Leu Ala His Trp Glu Leu Ser Arg Glu Gln
165 170 175

Trp Leu Gln Gln His Tyr Glu Gln Ala Ala Leu Ser Gly Gln Lys Ser
180 185 190

Gln Glu Leu Leu Val Asp Val Ala Gln Phe Ala Asp Leu Gln Gln Glu
195 200 205

Ile Gln Gly Asp Leu Asn Arg Leu Arg Pro Tyr Gln Val Leu Glu Leu
210 215 220

Leu Ala Leu Pro Glu Ser Glu Thr Gln Glu Arg Gln Arg Gly Leu Gln
225 230 235 240

Leu Leu Gln Glu Met Leu Ser Ala Arg Val Gly Ile Asp Gly Gln Gly
245 250 255

Asp Asp Gln Ser Gly Leu Ser Ile Asp Asp Phe Leu Arg Phe Ile Gln
260 265 270

Gln Leu Arg Ser Tyr Leu Thr Val Gln Glu Gln Leu Asp Leu Phe Val
275 280 285

Ala Glu Ser Lys Arg Pro Ser Ala Ala Ala Ala Tyr Leu Ala Val Tyr
290 295 300

Ala Leu Leu Ala Ala Gly Phe Ser Gln Arg Lys Pro Asp Leu Val Val
305 310 315 320

Gln Ala Gln Thr Leu Leu Lys Arg Leu Gly Lys Arg Gln Asp Val Phe
325 330 335

Leu Glu Gln Ser Ile Cys Ala Leu Leu Leu Gly Gln Pro Ser Glu Ala
340 345 350

Asn Gln Leu Leu Glu Gln Ser Gln Glu Gln Glu Ala Ile Ala Tyr Ile
355 360 365

Gln Glu Gln Ser Glu Gly Ala Pro Asp Leu Leu Pro Gly Leu Cys Leu
370 375 380

Tyr Gly Glu Gln Trp Leu Lys Thr Glu Val Phe Ser His Phe Arg Asp
385 390 395 400

Leu Arg Gln Arg Leu Glu Asp Gly Ser Val Ser Leu Thr Ala Tyr Phe
405 410 415

Ala Asp Pro Glu Val Gln Gln Tyr Leu Asp Asp Leu Leu Thr Glu Ala
420 425 430

Val Pro Thr Pro Thr Pro His Pro Asp Thr Glu Ser Thr Ala Ala Pro
435 440 445

Ser Glu Lys Pro Pro Glu Thr Leu Gln Ser Glu Thr Gly Val Ser Pro
450 455 460

His Pro Ser Arg Pro Ala Lys Val Asp Ser Phe Glu Asp Leu Val Thr
465 470 475 480

Gln Thr Pro Ala Thr Val Pro Pro Ala Pro Pro Ser Pro Gly Val Ala
485 490 495

Pro Val Thr Ala Ala Leu Asn Pro Asp Pro Glu Ala Ser Ser Ala Ser
500 505 510

Ser Lys Ser Val Ser Ser Lys Lys Ser Ile Gly Pro Trp Gly Ala Ile
515 520 525

Ala Ala Ile Val Gly Ser Val Leu Leu Val Val Gly Leu Val Arg Ile
530 535 540

Leu Ser Gly Leu Thr Thr Gln Glu Pro Leu Gln Val Thr Leu Asn Gly
545 550 555 560

Glu Pro Pro Leu Thr Ile Pro Ser Leu Asp Thr Ala Glu
565 570

<210> 121

<211> 515

<212> PRT

<213> Synechococcus WH8102

<400> 121

Gly Asp Leu Trp Thr Leu Asp Leu Pro Ile Asp His Phe Arg Leu Leu
1 5 10 15

Gly Val Ser Pro Ser Ala Asp Pro Ala Ser Ile Leu Arg Arg Leu Gln
20 25 30

Thr Arg Ser Asp Ser Pro Pro Asp Asp Gly Phe Thr His Glu Gly Leu
35 40 45

Leu Gln Arg Gln Ala Leu Leu His Arg Ser Ala Asp Leu Leu Thr Asp
50 55 60

Pro Ser Glu Arg Ala Asp Tyr Glu Ala Ala Leu Leu Ser Leu Ser Ala
65 70 75 80

Thr His Pro Asn Glu Thr Val Gly Leu Asp Leu Ala Ala Ser Ser Glu
85 90 95

Val Ala Gly Leu Ile Leu Leu Trp Glu Ala Gly Ala Ala Leu Glu Ala
100 105 110

Phe Gln Leu Ala Arg Gln Gly Leu Gln Pro Pro Gln Ala Pro Ala Leu
115 120 125

Gly Ser Gly Arg Glu Ala Asp Leu Thr Leu Leu Ala Ala Leu Ala Cys
130 135 140

Arg Asp Ala Ala Arg Asp Glu Gln Gln Arg Arg Tyr Glu Ser Ala
145 150 155 160

Ala Gln Leu Leu Arg Asp Gly Ile Glu Leu Gln Gln Arg Met Gly Lys
165 170 175

Leu Pro Asp Gln Gln Ala Arg Leu Gln Gln Glu Leu Asp Asp Leu Leu
180 185 190

Pro Tyr Arg Val Leu Asp Leu Leu Ser Arg Asp Leu Ser Asp Ala Asp
195 200 205

Ala Arg Gln Gln Gly Ile Ser Leu Leu Asp Gln Leu Val Arg Asp Arg
210 215 220

Gly Gly Leu Asp Pro Glu Gly Leu Asp Ser Glu Thr Pro Ala Ala Met
225 230 235 240

Gly Gln Ala Asp Phe Glu Ser Phe Phe Gln Gln Ile Arg Arg Phe Leu
245 250 255

Thr Val Gln Glu Gln Val Asp Leu Phe Arg Gly Trp Phe Ala Glu Gly
260 265 270

Ser Ile Glu Ala Gly Cys Leu Ala Val Phe Ala Leu Ala Ala Ala Gly
275 280 285

Tyr Ser Arg Arg Lys Pro Glu Phe Leu Glu Gln Ala Arg Glu Gln Leu
290 295 300

Gln Arg Leu Val Ala Ser Asp Leu Asp Pro Met Pro Leu Leu Gly Cys
305 310 315 320

Leu Asp Leu Leu Leu Gly Asn Val Ala Glu Ala Ser Leu His Phe Ser
325 330 335

Ala Ile Arg Asp Glu Glu Leu Leu Ser Trp Leu Ala Glu His Pro Gly
340 345 350

Asp His Leu Ala Ala Gln Cys Glu Tyr Cys Arg Val Trp Leu Glu Arg
355 360 365

Asp Val Leu Pro Gly Tyr Arg Asp Val Asp Ala Ala Gly Val Asp Leu
370 375 380

Asp Ala Trp Phe Ala Asp Arg Asp Val Gln Ala Tyr Val Asp Arg Ile
385 390 395 400

Asp Arg Gln Ser Ala Arg Leu Gly Ser Ala Ala Thr Val Thr Gly Ala
405 410 415

Gly Leu Ser Ser Ala Pro Ser Ala Asp Ala Ser Ser Pro His Glu Ala
420 425 430

Ala Leu Asp Asp Asp His Leu Pro Ala Glu Glu Ala Pro Ser Ser Asp
435 440 445

Pro Ala Asn Gln Arg Leu Ser Asn Arg Leu Arg Trp Leu Ala Ala Ser
450 455 460

Leu Val Val Gly Leu Val Ala Ala Leu Ala Ala Ala Val Met Leu Arg
465 470 475 480

Pro Arg Glu Thr Ala Pro Val Val Leu Gln Pro Glu Pro Asp Arg Gln
485 490 495

Asp Ala Val Glu Pro Lys Pro Ser Ala Gln Asp Ser Ala Thr Leu Lys
500 505 510

Pro Gln Ala
515

<210> 122
<211> 525
<212> PRT
<213> Oryza sativa

<400> 122

Ala Ala Glu Arg Ser Leu Pro Leu Gln Val Asp Phe Tyr Lys Val Leu
1 5 10 15

Gly Ala Glu Pro His Phe Leu Gly Asp Gly Ile Arg Arg Ala Phe Glu
20 25 30

Ala	Arg	Ile	Ala	Lys	Pro	Pro	Gln	Tyr	Gly	Tyr	Ser	Thr	Asp	Ala	Leu
							35		40					45	
Val	Gly	Arg	Arg	Gln	Met	Leu	Gln	Ile	Ala	His	Asp	Thr	Leu	Met	Asn
							50		55				60		
Gln	Asn	Ser	Arg	Thr	Gln	Tyr	Asp	Arg	Ala	Leu	Ser	Glu	Asn	Arg	Glu
							65		70			75		80	
Glu	Ala	Leu	Thr	Met	Asp	Ile	Ala	Trp	Asp	Lys	Glu	Ala	Gly	Glu	Ala
							85		90				95		
Leu	Ala	Val	Leu	Val	Thr	Gly	Glu	Gln	Leu	Leu	Leu	Asp	Arg	Pro	Pro
							100		105				110		
Lys	Arg	Phe	Lys	Gln	Asp	Val	Val	Leu	Ala	Met	Ala	Leu	Ala	Tyr	Val
							115		120				125		
Asp	Leu	Ser	Arg	Asp	Ala	Met	Ala	Ala	Ser	Pro	Pro	Asp	Val	Ile	Gly
							130		135				140		
Cys	Cys	Glu	Val	Leu	Glu	Arg	Ala	Leu	Lys	Leu	Leu	Gln	Glu	Asp	Gly
							145		150				155		160
Ala	Ser	Asn	Leu	Ala	Pro	Asp	Leu	Leu	Ser	Gln	Ile	Asp	Glu	Thr	Leu
							165		170				175		
Glu	Glu	Ile	Thr	Pro	Arg	Cys	Val	Leu	Glu	Leu	Leu	Ser	Leu	Pro	Ile
							180		185				190		
Asp	Thr	Glu	His	His	Lys	Lys	Arg	Gln	Glu	Gly	Leu	Gln	Gly	Ala	Arg
							195		200				205		
Asn	Ile	Leu	Trp	Ser	Val	Gly	Arg	Gly	Ile	Ala	Thr	Val	Gly	Gly	
							210		215				220		
Gly	Phe	Ser	Arg	Glu	Ala	Phe	Met	Asn	Glu	Ala	Phe	Leu	Arg	Met	Thr
							225		230				235		240
Ser	Ile	Glu	Gln	Met	Asp	Phe	Phe	Ser	Lys	Thr	Pro	Asn	Ser	Ile	Pro
							245		250				255		

Pro Glu Trp Phe Glu Ile Tyr Asn Val Ala Leu Ala His Val Ala Gln
260 265 270

Ala Ile Ile Ser Lys Arg Pro Gln Phe Ile Met Met Ala Asp Asp Leu
275 280 285

Phe Glu Gln Leu Gln Lys Phe Asn Ile Gly Ser His Tyr Ala Tyr Asp
290 295 300

Asn Glu Met Asp Leu Ala Leu Glu Arg Ala Phe Cys Ser Leu Leu Val
305 310 315 320

Gly Asp Val Ser Lys Cys Arg Met Trp Leu Gly Ile Asp Asn Glu Ser
325 330 335

Ser Pro Tyr Arg Asp Pro Lys Ile Leu Glu Phe Ile Val Thr Asn Ser
340 345 350

Ser Ile Ser Glu Glu Asn Asp Leu Leu Pro Gly Leu Cys Lys Leu Leu
355 360 365

Glu Thr Trp Leu Ile Phe Glu Val Phe Pro Arg Ser Arg Asp Thr Arg
370 375 380

Gly Met Gln Phe Arg Leu Gly Asp Tyr Tyr Asp Asp Pro Glu Val Leu
385 390 395 400

Ser Tyr Leu Glu Arg Met Glu Gly Gly Ala Ser His Leu Ala Ala
405 410 415

Ala Ala Ala Ile Ala Lys Leu Gly Ala Gln Ala Thr Ala Ala Leu Gly
420 425 430

Thr Val Lys Ser Asn Ala Ile Gln Ala Phe Asn Lys Val Phe Pro Leu
435 440 445

Ile Glu Gln Leu Asp Arg Ser Ala Met Glu Asn Thr Lys Asp Gly Pro
450 455 460

Gly Gly Tyr Leu Glu Asn Phe Asp Gln Glu Asn Ala Pro Ala His Asp
465 470 475 480

Ser Arg Asn Ala Ala Leu Lys Ile Ile Ser Ala Gly Ala Leu Phe Ala
485 490 495

Leu Leu Ala Val Ile Gly Ala Lys Tyr Leu Pro Arg Lys Arg Pro Leu
500 505 510

Ser Ala Ile Arg Ser Glu His Gly Ser Val Ala Val Ala
515 520 525

<210> 123
<211> 578
<212> PRT
<213> Arabidopsis thaliana

<400> 123

Arg Pro Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu
1 5 10 15

Gly Ala Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu
20 25 30

Ala Arg Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu
35 40 45

Ile Ser Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn
50 55 60

Pro Arg Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu
65 70 75 80

Ala Thr Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu
85 90 95

Cys Val Leu Gln Glu Gly Glu Thr Glu Ile Val Leu Arg Val Gly
100 105 110

Glu Ala Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val
115 120 125

Val Leu Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met
130 135 140

Ala Leu Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu
145 150 155 160

Ala Leu Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp
165 170 175

Leu Arg Ala Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Tyr
180 185 190

Val Leu Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys
195 200 205

Arg Leu Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly
210 215 220

Gly Gly Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe
225 230 235 240

Met Asn Glu Ala Phe Leu Arg Met Thr Ala Ala Glu Gln Val Asp Leu
245 250 255

Phe Val Ala Thr Pro Ser Asn Ile Pro Ala Glu Ser Phe Glu Val Tyr
260 265 270

Glu Val Ala Leu Ala Leu Val Ala Gln Ala Phe Ile Gly Lys Lys Pro
275 280 285

His Leu Leu Gln Asp Ala Asp Lys Gln Phe Gln Gln Leu Gln Gln Ala
290 295 300

Lys Val Met Ala Met Glu Ile Pro Ala Met Leu Tyr Asp Thr Arg Asn
305 310 315 320

Asn Trp Glu Ile Asp Phe Gly Leu Glu Arg Gly Leu Cys Ala Leu Leu
325 330 335

Ile Gly Lys Val Asp Glu Cys Arg Met Trp Leu Gly Leu Asp Ser Glu
340 345 350

Asp Ser Gln Tyr Arg Asn Pro Ala Ile Val Glu Phe Val Leu Glu Asn
355 360 365

Ser Asn Arg Asp Asp Asn Asp Asp Leu Pro Gly Leu Cys Lys Leu Leu
370 375 380

Glu Thr Trp Leu Ala Gly Val Val Phe Pro Arg Phe Arg Asp Thr Lys
385 390 395 400

Asp Lys Lys Phe Lys Leu Gly Asp Tyr Tyr Asp Asp Pro Met Val Leu
405 410 415

Ser Tyr Leu Glu Arg Val Glu Val Val Gln Gly Ser Pro Leu Ala Ala
420 425 430

Ala Ala Ala Met Ala Arg Ile Gly Ala Glu His Val Lys Ala Ser Ala
435 440 445

Met Gln Ala Leu Gln Lys Val Phe Pro Ser Arg Tyr Thr Asp Arg Asn
450 455 460

Ser Ala Glu Pro Lys Asp Val Gln Glu Thr Val Phe Ser Val Asp Pro
465 470 475 480

Val Gly Asn Asn Val Gly Arg Asp Gly Glu Pro Gly Val Phe Ile Ala
485 490 495

Glu Ala Val Arg Pro Ser Glu Asn Phe Glu Thr Asn Asp Tyr Ala Ile
500 505 510

Arg Ala Gly Val Ser Glu Ser Ser Val Asp Glu Thr Thr Val Glu Met
515 520 525

Ser Val Ala Asp Met Leu Lys Glu Ala Ser Val Lys Ile Leu Ala Ala
530 535 540

Gly Val Ala Ile Gly Leu Ile Ser Leu Phe Ser Gln Lys Tyr Phe Leu
545 550 555 560

Lys Ser Ser Ser Ser Phe Gln Arg Lys Asp Met Val Ser Ser Met Glu
565 570 575

Ser Asp

<210> 124
 <211> 99
 <212> PRT
 <213> Solanum tuberosum

<400> 124

Pro	Ser	Asp	His	His	Ile	Ser	Met	Pro	Ile	Asp	Phe	Tyr	Arg	Val	Leu
1															15

Gly Ala Glu Ala His Phe Leu Gly Asp Gly Ile Arg Arg Cys Tyr Asp
 20 25 30

Ala Arg Ile Thr Lys Pro Pro Gln Tyr Gly Tyr Ser Gln Glu Ala Leu
 35 40 45

Ile Gly Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ala Asp
 50 55 60

Ser Thr Ser Arg Arg Glu Tyr Asn Gln Gly Leu Ala Gln His Glu Phe
 65 70 75 80

Asp Thr Ile Leu Thr Pro Val Pro Trp Asp Lys Val Pro Gly Ala Met
 85 90 95

Cys Val Leu

<210> 125
 <211> 760
 <212> PRT
 <213> Oryza sativa

<400> 125

Met	Glu	Gly	Phe	His	Asn	Leu	Leu	Ala	Arg	Pro	Asn	Ser	Ala	Pro	Phe
1															15

Ala Phe Ser Leu Pro Arg Pro Arg Pro Arg Pro Arg Arg Pro Pro
 20 25 30

Pro His Pro Ser Ala Ala Cys Arg Ala Ala Ser Arg Trp Ala Glu Arg
 35 40 45

Leu Phe Ala Asp Phe His Leu Leu Pro Thr Ala Ala Pro Ser Asp Pro
 50 55 60

Pro Ser Pro Ala Pro Ala Pro Ala Ala Pro Ser Ala Ser Pro Phe
65 70 75 80

Val Pro Leu Phe Pro Asp Ala Ala Glu Arg Ser Leu Pro Leu Gln Val
85 90 95

Asp Phe Tyr Lys Val Leu Gly Ala Glu Pro His Phe Leu Gly Asp Gly
100 105 110

Ile Arg Arg Ala Phe Glu Ala Arg Ile Ala Lys Pro Pro Gln Tyr Gly
115 120 125

Tyr Ser Thr Asp Ala Leu Val Gly Arg Arg Gln Met Leu Gln Ile Ala
130 135 140

His Asp Thr Leu Met Asn Gln Asn Ser Arg Thr Gln Tyr Asp Arg Ala
145 150 155 160

Leu Ser Glu Asn Arg Glu Glu Ala Leu Thr Met Asp Ile Ala Trp Asp
165 170 175

Lys Glu Ala Gly Glu Ala Leu Ala Val Leu Val Thr Gly Glu Gln Leu
180 185 190

Leu Leu Asp Arg Pro Pro Lys Arg Phe Lys Gln Asp Val Val Leu Ala
195 200 205

Met Ala Leu Ala Tyr Val Asp Leu Ser Arg Asp Ala Met Ala Ala Ser
210 215 220

Pro Pro Asp Val Ile Gly Cys Cys Glu Val Leu Glu Arg Ala Leu Lys
225 230 235 240

Leu Leu Gln Glu Asp Gly Ala Ser Asn Leu Ala Pro Asp Leu Leu Ser
245 250 255

Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Cys Val Leu Glu
260 265 270

Leu Leu Ser Leu Pro Ile Asp Thr Glu His His Lys Lys Arg Gln Glu
275 280 285

Gly Leu Gln Gly Ala Arg Asn Ile Leu Trp Ser Val Gly Arg Gly Gly
290 295 300

Ile Ala Thr Val Gly Gly Gly Phe Ser Arg Glu Ala Phe Met Asn Glu
305 310 315 320

Ala Phe Leu Arg Met Thr Ser Ile Glu Gln Met Asp Phe Phe Ser Lys
325 330 335

Thr Pro Asn Ser Ile Pro Pro Glu Trp Phe Glu Ile Tyr Asn Val Ala
340 345 350

Leu Ala His Val Ala Gln Ala Ile Ile Ser Lys Arg Pro Gln Phe Ile
355 360 365

Met Met Ala Asp Asp Leu Phe Glu Gln Leu Gln Lys Phe Asn Ile Gly
370 375 380

Ser His Tyr Ala Tyr Asp Asn Glu Met Asp Leu Ala Leu Glu Arg Ala
385 390 395 400

Phe Cys Ser Leu Leu Val Gly Asp Val Ser Lys Cys Arg Met Trp Leu
405 410 415

Gly Ile Asp Asn Glu Ser Ser Pro Tyr Arg Asp Pro Lys Ile Leu Glu
420 425 430

Phe Ile Val Thr Asn Ser Ser Ile Ser Glu Glu Asn Asp Leu Leu Pro
435 440 445

Gly Leu Cys Lys Leu Leu Glu Thr Trp Leu Ile Phe Glu Val Phe Pro
450 455 460

Arg Ser Arg Asp Thr Arg Gly Met Gln Phe Arg Leu Gly Asp Tyr Tyr
465 470 475 480

Asp Asp Pro Glu Val Leu Ser Tyr Leu Glu Arg Met Glu Gly Gly
485 490 495

Ala Ser His Leu Ala Ala Ala Ala Ile Ala Lys Leu Gly Ala Gln
500 505 510

Ala Thr Ala Ala Leu Gly Thr Val Lys Ser Asn Ala Ile Gln Ala Phe
515 520 525

Asn Lys Val Phe Pro Leu Ile Glu Gln Leu Asp Arg Ser Ala Met Glu
530 535 540

Asn Thr Lys Asp Gly Pro Gly Gly Tyr Leu Glu Asn Phe Asp Gln Glu
545 550 555 560

Asn Ala Pro Ala His Asp Ser Arg Asn Ala Ala Leu Lys Ile Ile Ser
565 570 575

Ala Gly Ala Leu Phe Ala Leu Leu Ala Val Ile Gly Ala Lys Tyr Leu
580 585 590

Pro Arg Lys Arg Pro Leu Ser Ala Ile Arg Ser Glu His Gly Ser Val
595 600 605

Ala Val Ala Asn Ser Val Asp Ser Thr Asp Asp Pro Ala Leu Asp Glu
610 615 620

Asp Pro Val His Ile Pro Arg Met Asp Ala Lys Leu Ala Glu Asp Ile
625 630 635 640

Val Arg Lys Trp Gln Ser Ile Lys Ser Lys Ala Leu Gly Pro Glu His
645 650 655

Ser Val Ala Ser Leu Gln Glu Val Leu Asp Gly Asn Met Leu Lys Val
660 665 670

Trp Thr Asp Arg Ala Ala Glu Ile Glu Arg His Gly Trp Phe Trp Glu
675 680 685

Tyr Thr Leu Ser Asp Val Thr Ile Asp Ser Ile Thr Ile Ser Leu Asp
690 695 700

Gly Arg Arg Ala Thr Val Glu Ala Thr Ile Asp Glu Ala Gly Gln Leu
705 710 715 720

Thr Asp Val Thr Glu Pro Arg Asn Asn Asp Ser Tyr Asp Thr Lys Tyr
725 730 735

Thr Thr Arg Tyr Glu Met Ala Phe Ser Lys Leu Gly Gly Trp Lys Ile
740 745 750

Thr Glu Gly Ala Val Leu Lys Ser
755 760

<210> 126
<211> 2283
<212> DNA
<213> Oryza sativa

<400> 126
atggagggct tccacaacct cctcgcccgc cccaactcgg cgccattcgc cttctccctc 60
cctcgcccgc gcccgcgccc gcccgcagg ccgcgcgc acccctccgc tgcctgccgc 120
gccgcgagcc gctggccga acgcctcttc gccgacttcc acctcctccc caccgcgcg 180
ccctccgacc cgccgtcccc ggccccggcc ccggccgcg cgccctccgc ctcccccttc 240
gtcccgctct tccccgacgc cgccgaacgc tccctccgc tccaagtgcg tttctacaag 300
gttctagggg cagagccaca tttccttggc gatggcatca ggagggcggt cgaggcacgg 360
atagccaagc caccgcagta tggctacagc acggatgctc ttgttggtcg tcgacaaaatg 420
ctgcagattt cccatgacac tctcatgaac cagaactccc gcactcagta tgatcgtgcg 480
ctttctgaga accgtgaaga agctctcacc atggatattt cttggaccaa ggaggctggg 540
gaggcacttg ctgtgcttgt aactggagaa cagttgcttc tggatcggcc acccaagcgc 600
ttcaaggcagg acgtgggtgct agcgatggct ctggcttatg tggatctatc aaggatgct 660
atggcagcaa gcccctcaga tctaattggc tgctgcgagg tgctcgagag ggctctcaag 720
ctcttcgagg aagatggagc aagcaatctc gcacctgatc tgctttcaca gattgatgaa 780
actctcgagg agattacacc tcgctgtgtt ttggagcttc tctcccttcc tattgacaca 840
gagcatcata agaagcgcca agaaggcgtt caaggtgcga gaaacatttt gtggagcggt 900
ggcagaggag gtattgctac cgttggagga ggattttctc gtgaagcctt catgaacgag 960
gctttttga ggtatgacatc aattgaacag atggatttct tttcaaaaac accgaatagc 1020
attcctcctg aatggtttga aatttacaat gtagcacttg cacatgtcgc tcaagcaatt 1080
ataagtaaaa ggccacaatt catcatgatg gcggatgatc ttttgaaca actcoagaag 1140
ttcaacatag gttctcatta tgcttatgtt aatgagatgg accttgcatt ggaaaggcga 1200
ttctgctcat tgcttagtcgg agatgttagc aagtgcagaa tgtggcttgg aattgataat 1260
gagtcttcac catacagaga ccccaaaatt ctagagtttta ttgtgaccaa ctctagcatc 1320

agtgaagaga	atgatcttct	tccaggggctg	tgcaagcttt	tggagacttg	gcttatcttt	1380
gagggttttc	ctaggagcag	agatactcg	ggcatgcagt	tcagacttgg	agattactac	1440
gatgatccag	aagtttaag	ctacctagaa	aggatggagg	gtggtgtgc	ttctcatttg	1500
gctgctgctg	ctgctattgc	aaaacttgg	gctcaagcta	cagctgcact	tggtaactgt	1560
aatcaaatg	ctattcaagc	gttcaacaag	gttttccat	tgatagaaca	gttagacagg	1620
tcagccatgg	aaaatactaa	agatggccct	gggggatatac	ttgaaaattt	tgaccaggaa	1680
aatgcacctg	ctcatgattc	gagaaatgcc	gccttgaaga	ttatctctgc	tggcgcactg	1740
tttgcactgt	tggcagtaat	tggggccaaa	tattgcctc	gtaagaggcc	cctttctgct	1800
attaggagtg	agcatggatc	tgtggcagtt	gctaatagtg	tcgactctac	tgatgatcct	1860
gcactagatg	aagatccagt	acatattcct	agaatggatg	cgaagctggc	agaagatatt	1920
gttcgcaagt	ggcagagtat	caaatctaag	gccttggac	cagaacattc	ggttgcata	1980
ttgcaagagg	ttcttgatgg	caacatgcta	aaggtgtgga	ctgaccgagc	agcggagatt	2040
gagcgtcatg	ggtggttctg	ggagtataca	ctatccgatg	tgacgattga	tagcatcact	2100
atctccctag	atggtcgacg	agcgactgt	gaggctacga	ttgatgaggc	aggccaactt	2160
actgatgtta	ctgagcccag	aaacaatgtat	tcatatgaca	caaaatacac	tacccgttat	2220
gagatggcct	tctccaagct	aggagggtgg	aagataacgg	aaggagcagt	cctcaagtcg	2280
tag						2283

<210> 127
 <211> 801
 <212> PRT
 <213> Arabidopsis thaliana

<400> 127

Met	Glu	Ala	Leu	Ser	His	Val	Gly	Ile	Gly	Leu	Ser	Pro	Phe	Gln	Leu
1						5				10					15

Cys	Arg	Leu	Pro	Pro	Ala	Thr	Thr	Lys	Leu	Arg	Arg	Ser	His	Asn	Thr
								20				25		30	

Ser	Thr	Thr	Ile	Cys	Ser	Ala	Ser	Lys	Trp	Ala	Asp	Arg	Leu	Leu	Ser
											35		40	45	

Asp	Phe	Asn	Phe	Thr	Ser	Asp	Ser	Ser	Ser	Ser	Phe	Ala	Thr	Ala	
											50		55	60	

Thr Thr Thr Ala Thr Leu Val Ser Pro Pro Pro Ser Ile Asp Arg Pro
65 70 75 80

Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu Gly Ala
85 90 95

Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu Ala Arg
100 105 110

Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu Ile Ser
115 120 125

Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn Pro Arg
130 135 140

Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu Ala Thr
145 150 155 160

Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu Cys Val
165 170 175

Leu Gln Glu Gly Gly Glu Thr Glu Ile Val Leu Arg Val Gly Glu Ala
180 185 190

Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val Val Leu
195 200 205

Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met Ala Leu
210 215 220

Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu Ala Leu
225 230 235 240

Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp Leu Arg
245 250 255

Ala Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Tyr Val Leu
260 265 270

Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys Arg Leu
275 280 285

Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly Gly
290 295 300

Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe Met Asn
305 310 315 320

Glu Ala Phe Leu Arg Met Thr Ala Ala Glu Gln Val Asp Leu Phe Val
325 330 335

Ala Thr Pro Ser Asn Ile Pro Ala Glu Ser Phe Glu Val Tyr Glu Val
340 345 350

Ala Leu Ala Leu Val Ala Gln Ala Phe Ile Gly Lys Lys Pro His Leu
355 360 365

Leu Gln Asp Ala Asp Lys Gln Phe Gln Gln Leu Gln Gln Ala Lys Val
370 375 380

Met Ala Met Glu Ile Pro Ala Met Leu Tyr Asp Thr Arg Asn Asn Trp
385 390 395 400

Glu Ile Asp Phe Gly Leu Glu Arg Gly Leu Cys Ala Leu Leu Ile Gly
405 410 415

Lys Val Asp Glu Cys Arg Met Trp Leu Gly Leu Asp Ser Glu Asp Ser
420 425 430

Gln Tyr Arg Asn Pro Ala Ile Val Glu Phe Val Leu Glu Asn Ser Asn
435 440 445

Arg Asp Asp Asn Asp Asp Leu Pro Gly Leu Cys Lys Leu Leu Glu Thr
450 455 460

Trp Leu Ala Gly Val Val Phe Pro Arg Phe Arg Asp Thr Lys Asp Lys
465 470 475 480

Lys Phe Lys Leu Gly Asp Tyr Tyr Asp Asp Pro Met Val Leu Ser Tyr
485 490 495

Leu Glu Arg Val Glu Val Val Gln Gly Ser Pro Leu Ala Ala Ala
500 505 510

Ala Met Ala Arg Ile Gly Ala Glu His Val Lys Ala Ser Ala Met Gln
515 520 525

Ala Leu Gln Lys Val Phe Pro Ser Arg Tyr Thr Asp Arg Asn Ser Ala
530 535 540

Glu Pro Lys Asp Val Gln Glu Thr Val Phe Ser Val Asp Pro Val Gly
545 550 555 560

Asn Asn Val Gly Arg Asp Gly Glu Pro Gly Val Phe Ile Ala Glu Ala
565 570 575

Val Arg Pro Ser Glu Asn Phe Glu Thr Asn Asp Tyr Ala Ile Arg Ala
580 585 590

Gly Val Ser Glu Ser Ser Val Asp Glu Thr Thr Val Glu Met Ser Val
595 600 605

Ala Asp Met Leu Lys Glu Ala Ser Val Lys Ile Leu Ala Ala Gly Val
610 615 620

Ala Ile Gly Leu Ile Ser Leu Phe Ser Gln Lys Tyr Phe Leu Lys Ser
625 630 635 640

Ser Ser Ser Phe Gln Arg Lys Asp Met Val Ser Ser Met Glu Ser Asp
645 650 655

Val Ala Thr Ile Gly Ser Val Arg Ala Asp Asp Ser Glu Ala Leu Pro
660 665 670

Arg Met Asp Ala Arg Thr Ala Glu Asn Ile Val Ser Lys Trp Gln Lys
675 680 685

Ile Lys Ser Leu Ala Phe Gly Pro Asp His Arg Ile Glu Met Leu Pro
690 695 700

Glu Val Leu Asp Gly Arg Met Leu Lys Ile Trp Thr Asp Arg Ala Ala
705 710 715 720

Glu Thr Ala Gln Leu Gly Leu Val Tyr Asp Tyr Thr Leu Leu Lys Leu
725 730 735

Ser Val Asp Ser Val Thr Val Ser Ala Asp Gly Thr Arg Ala Leu Val
740 745 750

Glu Ala Thr Leu Glu Glu Ser Ala Cys Leu Ser Asp Leu Val His Pro
755 760 765

Glu Asn Asn Ala Thr Asp Val Arg Thr Tyr Thr Thr Arg Tyr Glu Val
770 775 780

Phe Trp Ser Lys Ser Gly Trp Lys Ile Thr Glu Gly Ser Val Leu Ala
785 790 795 800

Ser

<210> 128
<211> 2406
<212> DNA
<213> Arabidopsis thaliana

<400> 128
atggaagctc ttagtacgtt cggcattggc ctctccccat tccaaattatg ccgattacca 60
ccggcgacga caaagctccg acgttagccac aacacctcta caactatctg ctccgccagc
aaatgggccc accgtttctt ctccgacttc aatttcaccc cccatccctc ctccctcc 120
ttcgccaccg ccaccaccac cgccactctc gtctctccgc caccatctat tgatcgccc 180
gaacgccacg tccccatccc cattgatttc taccaggat taggagctca aacacatttc 240
ttaaccgatg gaatcagaag agcattcgaa gctagggttt cggaaaccgccc gcaattcggt 300
ttcagcgacg acgtttat cagccggaga cagattcttc aagctgcttg cgaaactctg 360
tctaattcctc ggtctagaag agagtacaat gaaggtcttc ttgatgatga agaagctaca 420
gtcatcactg atgttccttg ggataagggtt cctggtgctc tctgtgtatt gcaagaagg 480
ggtgagactg agatagttct tcgggttggg gaggctctgc ttaaggagag gttgcctaag 540
tcgtttaagc aagatgtggg ttttagttatg gcgcttgcgt ttctcgatgt ctcgagggat 600
gctatggcat tggatccacc tgatttata actggttatg agtttggat ggaagctttg 660
aagctttac aggaggaagg agcaagtagc cttgcaccgg atttacgtgc acaaattgat 720
gagactttgg aagagatcac tccgcgttat gtcttggagc tacttggctt accgcttggg 780
840

gatgattacg ctgcgaaaag actaaatggt ttaagcggtg tgccgaatat tttgtggct	900
gttggaggag gtggagcatc agctcttgtt gggggtttga cccgtgagaa gtttatgaat	960
gaggcgaaaa tacgaatgac agctgctgag caggttgate tttttgttagc taccccaagc	1020
aatattccag cagagtcatt tgaagtttac gaagttgcac ttgctcttgt ggctcaagct	1080
tttattggta agaagccaca ccttttacag gatgctgata agcaattcca gcaacttcag	1140
caggctaagg taatggctat ggagattcct gcgtatgtt atgatacacg gaataattgg	1200
gagatagact tcggtctaga aaggggactc tgtgcactgc ttataggcaa agttgatgaa	1260
tgcgtatgt ggttggctt agacagttagt gattcacaat ataggaatcc agctattgt	1320
gagtttggta tggagaattc aaatcgtgat gacaatgatg atctccctgg actatgcaaa	1380
ttgttggaaa cctgggttggc aggggttgct tttccttaggt tcagagacac caaagataaa	1440
aaatttaaac tcggggacta ctatgatgat cctatggtt tgagttactt ggaaagagtg	1500
gaggttagttc agggttctcc tttagctgct gctgcagcta tggcaaggat tggagccgag	1560
catgtgaaag ctatgttatgc cagggcactg cagaaagttt ttccttcccgtatacagat	1620
agaaactcgg ctgaacccaa ggatgtgcaa gagacagtgt ttagtgtaga tcctgttggt	1680
aacaatgttag gccgtgatgg tgagcctggt gtctttattt cagaagctgt aagaccctct	1740
gaaaactttt aaactaatga ttatgcaatt cgagctgggg totcagagag tagcgttgat	1800
gaaactactg ttgaaatgtc cgttgctgat atgttaaagg aggcaagtgt gaagatccta	1860
gctgctggtg tggcaattgg actgatttca ctgttcagcc agaagtattt tctaaaagc	1920
agctcatctt ttcaacgcaa ggatatggtt tcttctatgg aatctgatgt cgctaccata	1980
gggtcagtca gagctgacga ttcagaagca cttccagaa tggatgcttag gactgcagag	2040
aatatagtat ccaagtggca gaagattaag tctctggctt ttgggcctga tcaccgcata	2100
gaaatgttac cagaggtttt ggatgggcga atgctgaaga tttggactga cagagcagct	2160
gaaactgcgc agcttgggtt ggtttatgat tatacactgt tgaaaactatc tggtgacagt	2220
gtgacagtct cagcagatgg aaccctgtct ctgggtggaaag caactctggaa ggagtctgt	2280
tgtctatctg atttggttca tccagaaaaac aatgctactg atgtcagaac ctacacaaca	2340
agatacgaag ttttctggtc caagtcaggg tggaaaatca ctgaaggctc tgttcttgca	2400
tcataa	2406

<210> 129
<211> 801
<212> PRT
<213> Arabidopsis thaliana

<400> 129

Met Glu Ala Leu Ser His Val Gly Ile Gly Leu Ser Pro Phe Gln Leu
1 5 10 15

Cys Arg Leu Pro Pro Ala Thr Thr Lys Leu Arg Arg Ser His Asn Thr
20 25 30

Ser Thr Thr Ile Cys Ser Ala Ser Lys Trp Ala Asp Arg Leu Leu Ser
35 40 45

Asp Phe Asn Phe Thr Ser Asp Ser Ser Ser Ser Phe Ala Thr Ala
50 55 60

Thr Thr Thr Ala Thr Leu Val Ser Pro Pro Pro Ser Ile Asp Arg Pro
65 70 75 80

Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu Gly Ala
85 90 95

Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu Ala Arg
100 105 110

Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu Ile Ser
115 120 125

Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn Pro Arg
130 135 140

Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu Ala Thr
145 150 155 160

Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu Cys Val
165 170 175

Leu Gln Glu Gly Gly Glu Thr Glu Ile Val Leu Arg Val Gly Glu Ala
180 185 190

Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val Val Leu
195 200 205

Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met Ala Leu
210 215 220

Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu Ala Leu
225 230 235 240

Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp Leu Arg
245 250 255

Ala Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Tyr Val Leu
260 265 270

Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys Arg Leu
275 280 285

Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly Gly Gly
290 295 300

Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe Met Asn
305 310 315 320

Glu Ala Phe Leu Arg Met Thr Ala Ala Glu Gln Val Asp Leu Phe Val
325 330 335

Ala Thr Pro Ser Asn Ile Pro Ala Glu Ser Phe Glu Val Tyr Glu Val
340 345 350

Ala Leu Ala Leu Val Ala Gln Ala Phe Ile Gly Lys Lys Pro His Leu
355 360 365

Leu Gln Asp Ala Asp Lys Gln Phe Gln Gln Leu Gln Gln Ala Lys Val
370 375 380

Met Ala Met Glu Ile Pro Ala Met Leu Tyr Asp Thr Arg Asn Asn Trp
385 390 395 400

Glu Ile Asp Phe Gly Leu Glu Arg Gly Leu Cys Ala Leu Leu Ile Gly
405 410 415

Lys Val Asp Glu Cys Arg Met Trp Leu Gly Leu Asp Ser Glu Asp Ser
420 425 430

Gln Tyr Arg Asn Pro Ala Ile Val Glu Phe Val Leu Glu Asn Ser Asn
435 440 445

Arg Asp Asp Asn Asp Asp Leu Pro Gly Leu Cys Lys Leu Leu Glu Thr
450 455 460

Trp Leu Ala Gly Val Val Phe Pro Arg Phe Arg Asp Thr Lys Asp Lys
465 470 475 480

Lys Phe Lys Leu Gly Asp Tyr Tyr Asp Asp Pro Met Val Leu Ser Tyr
485 490 495

Leu Glu Arg Val Glu Val Val Gln Gly Ser Pro Leu Ala Ala Ala
500 505 510

Ala Met Ala Arg Ile Gly Ala Glu His Val Lys Ala Ser Ala Met Gln
515 520 525

Ala Leu Gln Lys Val Phe Pro Ser Arg Tyr Thr Asp Arg Asn Ser Ala
530 535 540

Glu Pro Lys Asp Val Gln Glu Thr Val Phe Ser Val Asp Pro Val Gly
545 550 555 560

Asn Asn Val Gly Arg Asp Gly Glu Pro Gly Val Phe Ile Ala Glu Ala
565 570 575

Val Arg Pro Ser Glu Asn Phe Glu Thr Asn Asp Tyr Ala Ile Arg Ala
580 585 590

Gly Val Ser Glu Ser Ser Val Asp Glu Thr Thr Val Glu Met Ser Val
595 600 605

Ala Asp Met Leu Lys Glu Ala Ser Val Lys Ile Leu Ala Ala Gly Val
610 615 620

Ala Ile Gly Leu Ile Ser Leu Phe Ser Gln Lys Tyr Phe Leu Lys Ser
625 630 635 640

Ser Ser Ser Phe Gln Arg Lys Asp Met Val Ser Ser Met Glu Ser Asp
645 650 655

Val Ala Thr Ile Gly Ser Val Arg Ala Asp Asp Ser Glu Ala Leu Pro
660 665 670

Arg Met Asp Ala Arg Thr Ala Glu Asn Ile Val Ser Lys Trp Gln Lys
675 680 685

Ile Lys Ser Leu Ala Phe Gly Pro Asp His Arg Ile Glu Met Leu Pro
690 695 700

Glu Val Leu Asp Gly Arg Met Leu Lys Ile Trp Thr Asp Arg Ala Ala
705 710 715 720

Glu Thr Ala Gln Leu Gly Leu Val Tyr Asp Tyr Thr Leu Leu Lys Leu
725 730 735

Ser Val Asp Ser Val Thr Val Ser Ala Asp Gly Thr Arg Ala Leu Val
740 745 750

Glu Ala Thr Leu Glu Glu Ser Ala Cys Leu Ser Asp Leu Val His Pro
755 760 765

Glu Asn Asn Ala Thr Asp Val Arg Thr Tyr Thr Thr Arg Tyr Glu Val
770 775 780

Phe Trp Ser Lys Ser Gly Trp Lys Ile Thr Glu Gly Ser Val Leu Ala
785 790 795 800

Ser

<210> 130
<211> 2637
<212> DNA
<213> Arabidopsis thaliana

<400> 130
gatttaactt atactactca aaatcaaaaat tccataaaacc ctagacgacc aaacagtctc 60
ttcaatatgt aaaacagaac aaagtttttg tagtagccta aaaagacact cccatggaaag 120
ctctgagtca cgtcggcatt ggtctctccc cattccaatt atgccgatta ccaccggcga 180
cgacaaagct ccgacgtgc cacaacacct ctacaactat ctgctccgcc agcaaatggg 240
ccgaccgtct tctctccgac ttcaatttca cctccgattc ctccctctcc tccttcgcca 300
ccgcaccac caccgcoact ctctgtctc cggcaccatc tattgatcgt cccgaacgcc 360

acgtccccat cccatttat ttctaccagg tatttaggagc tcaaacacat ttcttaaccg 420
atggaatcag aagagcattc gaagctaggg tttcgaaacc gcccgaattc ggtttcagcg 480
acgacgcctt aatcagccgg agacagattc ttcaagctgc ttgcgaaact ctgtctaattc 540
ctcggtctag aagagagtac aatgaaggta ttcttgatga tgaagaagct acagtcatca 600
ctgatgttcc ttggataag gttcctggtg ctctctgtgt attgcaagaa ggtggtgaga 660
ctgagatagt tcttcgggtt ggtgaggctc tgcttaagga gaggttgcct aagtcgttta 720
agcaagatgt ggttttagtt atggcgcttgcg cgtttctcgat tgtctcgagg gatgctatgg 780
cattggatcc acctgatttt ataactggtt atgagtttgt tgaggaagct ttgaagcttt 840
tacaggagga aggagcaagt agccttgcac cggatttacg tgcacaaatt gatgagactt 900
tggaaagagat cactccgcgt tatgtcttgg agctacttgg cttaccgcctt ggtgatgatt 960
acgctgcgaa aagactaaat ggttaagcg gtgtgcggaa tattttgtgg tctgttggag 1020
gaggtggagc atcagctctt gttgggggtt tgaccgcgtga gaagtttatg aatgaggcgt 1080
ttttacgaat gacagctgct gagcagggttgcgt atctttttgtt agctacccca agcaatattc 1140
cagcagagtc atttgaagtt tacgaagtttgcgtacttgcgtct tgtggctcaa gcttttattg 1200
gtaagaagcc acacctttta caggatgctg ataagcaatt ccagcaactt cagcaggcta 1260
aggtaatggc tatggagatt cctgcgtatgt tgtatgatac acggaataat tggagatag 1320
acttcggtct agaaagggga ctctgtgcac tgcttataagg caaagttgtatgaaatgcccgt 1380
tgtgggttggg cttagacagt gaggattcac aatataggaa tccagctatt gtggagtttg 1440
ttttggagaa ttcaaattcgat gatgacaatg atgatctccc tggactatgc aaattgttgg 1500
aacacctgggtt ggcaggggtt gtcttccta gtttcagaga caccaaaagat aaaaaattta 1560
aactcgggga ctactatgat gatcctatgg ttttgagtttgcgtacttgcgtcttgcgtct 1620
ttcagggttc tccttagct gctgcgtcag ctatggcaag gattggagcc gagcatgtga 1680
aagcttagtgc tatgcaggca ctgcagaaag ttttccttc cgcgtatatac gatagaaact 1740
cggtcgaaacc caaggatgtg caagagacag ttttagtgcgtacttgcgtcttgcgtct 1800
tagggccgtga tggtgagcct ggtgtcttta ttgcagaagc tgtaagaccc tctgaaaact 1860
ttgaaaactaa tgattatgca attcgagctg gggtctcaga gagtagcgtt gatgaaaacta 1920
ctgttggaaat gtccgttgct gatatgttaa aggaggcaag tggtaagatc ctagctgctg 1980
gtgtggcaat tggacttgatt tcactgttca gccagaagta ttttcttaaa agcagctcat 2040
cttttcaacg caaggatatg gtttcttcta tggaaatctga tggcgttacc atagggtcag 2100

<210> 131
<211> 801
<212> PRT
<213> *Arabidopsis thaliana*

<400> 131

Met Glu Ala Leu Ser His Val Gly Ile Gly Leu Ser Pro Phe Gln Leu
1 5 10 15

Cys Arg Leu Pro Pro Ala Thr Thr Lys Leu Arg Arg Ser His Asn Thr
 20 25 30

Ser Thr Thr Ile Cys Ser Ala Ser Lys Trp Ala Asp Arg Leu Leu Ser
35 40 45

Asp Phe Asn Phe Thr Ser Asp Ser Ser Ser Ser Ser Phe Ala Thr Ala
50 55 60

Thr Thr Thr Ala Thr Leu Val Ser Pro Pro Pro Ser Ile Asp Arg Pro
65 70 75 80

Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu Gly Ala
85 90 95

Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu Ala Arg
100 105 110

Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu Ile Ser
115 120 125

Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn Pro Arg
130 135 140

Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu Ala Thr
145 150 155 160

Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu Cys Val
165 170 175

Leu Gln Glu Gly Gly Glu Thr Glu Ile Val Leu Arg Val Gly Glu Ala
180 185 190

Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val Val Leu
195 200 205

Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met Ala Leu
210 215 220

Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu Ala Leu
225 230 235 240

Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp Leu Arg
245 250 255

Ala Gln Ile Asp Glu Thr Leu Glu Ile Thr Pro Arg Tyr Val Leu
260 265 270

Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys Arg Leu
275 280 285

Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly Gly Gly
290 295 300

Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe Met Asn
305 310 315 320

Glu Ala Phe Leu Arg Met Thr Ala Ala Glu Gln Val Asp Leu Phe Val
325 330 335

Ala Thr Pro Ser Asn Ile Pro Ala Glu Ser Phe Glu Val Tyr Glu Val
340 345 350

Ala Leu Ala Leu Val Ala Gln Ala Phe Ile Gly Lys Lys Pro His Leu
355 360 365

Leu Gln Asp Ala Asp Lys Gln Phe Gln Gln Leu Gln Gln Ala Lys Val
370 375 380

Met Ala Met Glu Ile Pro Ala Met Leu Tyr Asp Thr Arg Asn Asn Trp
385 390 395 400

Glu Ile Asp Phe Gly Leu Glu Arg Gly Leu Cys Ala Leu Leu Ile Gly
405 410 415

Lys Val Asp Glu Cys Arg Met Trp Leu Gly Leu Asp Ser Glu Asp Ser
420 425 430

Gln Tyr Arg Asn Pro Ala Ile Val Glu Phe Val Leu Glu Asn Ser Asn
435 440 445

Arg Asp Asp Asn Asp Asp Leu Pro Gly Leu Cys Lys Leu Leu Glu Thr
450 455 460

Trp Leu Ala Gly Val Val Phe Pro Arg Phe Arg Asp Thr Lys Asp Lys
465 470 475 480

Lys Phe Lys Leu Gly Asp Tyr Tyr Asp Asp Pro Met Val Leu Ser Tyr
485 490 495

Leu Glu Arg Val Glu Val Val Gln Gly Ser Pro Leu Ala Ala Ala
500 505 510

Ala Met Ala Arg Ile Gly Ala Glu His Val Lys Ala Ser Ala Met Gln
515 520 525

Ala Leu Gln Lys Val Phe Pro Ser Arg Tyr Thr Asp Arg Asn Ser Ala
530 535 540

Glu Pro Lys Asp Val Gln Glu Thr Val Phe Ser Val Asp Pro Val Gly
545 550 555 560

Asn Asn Val Gly Arg Asp Gly Glu Pro Gly Val Phe Ile Ala Glu Ala
565 570 575

Val Arg Pro Ser Glu Asn Phe Glu Thr Asn Asp Tyr Ala Ile Arg Ala
580 585 590

Gly Val Ser Glu Ser Ser Val Asp Glu Thr Thr Val Glu Met Ser Val
595 600 605

Ala Asp Met Leu Lys Glu Ala Ser Val Lys Ile Leu Ala Ala Gly Val
610 615 620

Ala Ile Gly Leu Ile Ser Leu Phe Ser Gln Lys Tyr Phe Leu Lys Ser
625 630 635 640

Ser Ser Ser Phe Gln Arg Lys Asp Met Val Ser Ser Met Glu Ser Asp
645 650 655

Val Ala Thr Ile Gly Ser Val Arg Ala Asp Asp Ser Glu Ala Leu Pro
660 665 670

Arg Met Asp Ala Arg Thr Ala Glu Asn Ile Val Ser Lys Trp Gln Lys
675 680 685

Ile Lys Ser Leu Ala Phe Gly Pro Asp His Arg Ile Glu Met Leu Pro
690 695 700

Glu Val Leu Asp Gly Arg Met Leu Lys Ile Trp Thr Asp Arg Ala Ala
705 710 715 720

Glu Thr Ala Gln Leu Gly Leu Val Tyr Asp Tyr Thr Leu Leu Lys Leu
725 730 735

Ser Val Asp Ser Val Thr Val Ser Ala Asp Gly Thr Arg Ala Leu Val
740 745 750

Glu Ala Thr Leu Glu Glu Ser Ala Cys Leu Ser Asp Leu Val His Pro
755 760 765

Glu Asn Asn Ala Thr Asp Val Arg Thr Tyr Thr Thr Arg Tyr Glu Val
770 775 780

Phe Trp Ser Lys Ser Gly Trp Lys Ile Thr Glu Gly Ser Val Leu Ala
785 790 795 800

Ser

```

<210> 132
<211> 561
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> misc_feature
<222> (127)..(127)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (520)..(520)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (541)..(541)
<223> n is a, c, g, or t

<400> 132
ataaacacta acttagagag agaatttaca aaacaaagag aatctcgcaa gctcagacat      60
gctacatatg agtatattat gatgcaagaa cagagccttc agtgattttc caccctgact      120
tggaccngaa aacttcgtat cttgttgtgt aggttctgac atcagtagca ttgtttctg      180
gatgaaccaa atcagataga caagcagact cctccagagt tgcttccacc agagcacggg      240
ttccatctgc tgagactgtc acactgtcaa cagatagttt caacagtgtta taatcataaa      300
ccaacccaag ctgcgcagtt tcagctgctc tgtcagtccaa aatcttcagc attcgcccat      360
ccaaaacctc tggtaacatt tctatgcggt gatcaggccc aaaagccaga gacttaatct      420
tctgccactt ggatactata ttctctgcag tccttagcatc cattctggga agtgottctg      480
aatcgtcagc tctgactgac cctatggtag cgacatcagn ttccatagaa gaaaccatat      540
ncttgcgttg aaaagatgag c                                         561

<210> 133
<211> 295
<212> DNA
<213> Medicago truncatula

<400> 133
ctgggttagc aattggactc ataactttag ctggttgaa gattttacct tctaaaaatg      60
gctcgccctgt tcttcacaaa gtgactggtt cagcaattgc gtcagatact atcaatttag      120
gtcctgttagg agatgaagaa ttaggagagc aactaccaaa aatgagtgca atggttgag      180

```

aagctctagt	ccgcaagtgg	caatatatca	catcccaggc	ttttggaccc	gaccattgcc	240
taggaagatt	gcaagaggtg	ttggacggcc	aatgttgaa	gatatggact	gatcg	295
<210>	134					
<211>	527					
<212>	DNA					
<213>	Medicago truncatula					
<400>	134					
cccaagctt	tggacctgac	cattgcctag	gaagattgca	agaggtgttg	gacggcgaaa	60
tgttgaagat	atggactgat	cgagcagctg	agattgcaga	gcttggttgg	tcatatgact	120
acaacttgga	ggatctcaac	atcgacagtg	tgaccatatac	acagaatggg	cgccgtgcag	180
tagtggaaac	aactctcaaa	gagtctaccc	acctcactgc	tgttggtcat	ccacagcatg	240
ctacttccaa	cagcagaacc	tacacaacaa	gatatgaaat	gtcttttca	gattcagggt	300
ggaaaattat	tgaaggagct	gtccttgagt	cgtaatttagg	ttttgtataa	tgtaatataat	360
gtcaggttag	tacacttcaa	tattaacccc	ctcgaggcta	tgcccactgt	cttgtatgta	420
cctgttgttt	tgtgcatttt	tcaagcattt	atgtagtcag	gctgtaaata	cttggagggt	480
atttgatcaa	ataattatcc	ggttaaaaaaa	aaaaaaaaaa	aaaaaaaaaa		527
<210>	135					
<211>	660					
<212>	DNA					
<213>	Medicago truncatula					
<400>	135					
cacgcttctc	caaaaaaccc	aaccgtctcc	attcctccgc	cgtctccgccc	accagtaaat	60
gggcggagcg	actcatttcc	gatttccaaat	tcctcggcga	cacccctctt	tcctcctcca	120
ccaccacctc	cggcacagtc	actctcactc	cttcttaccc	tcctccgata	gaacgccacg	180
tgtcaactccc	tctcgacctg	tacaaaatcc	tcggcgccga	aacgcatttt	ctcggtgatg	240
gtattcggag	agcttatgaa	gcgaaattct	cgaagcctcc	tcagtgatgt	ttcagtaatg	300
aagctttgat	tagtcgtcgt	cagattctc	aagctgcttg	tgaaaccccta	gctgatcctg	360
cttctagaag	agagtataat	caaagcctcg	tcgacgatga	agacgaagat	gaggaatctt	420
ccattctcac	tgaaatccct	ttcgacaaag	ttcctggagc	tctgtgcgtg	ttgcaagaag	480
ctggagagac	ggagttggtg	cttcggattg	gagggggttt	actgagagag	aggttaccga	540
agatgtttaa	gcaagatgtt	gtgttggcta	tggcgcttgc	atatgttgac	gtttctaggg	600
atgctatggc	tttgcctcccg	ccagatttca	ttgttgcttg	tgagatgctg	gaaagggcat	660

<210> 136		
<211> 187		
<212> DNA		
<213> Glycine max		
<400> 136		
agcgttgtgt gtgttcagg aagctggaga gacggagctt gtgcttgaga ttgggcaggg	60	
tttgcttagg gagaggttgc cgaagacgtt taagcaggat gttgtgttgg ctatggcact	120	
cgcatttgtt gacgtgtcaa gggatgcttg gcttgttcac cggatttcat tgcggctgtg	180	
agatgct	187	
<210> 137		
<211> 608		
<212> DNA		
<213> Solanum tuberosum		
<400> 137		
ggaaagcttc cttaacaatg gaggcattaa cacagctaag ctttggcatt tgtactccac	60	
gcctttcatc accatttcaa ctagccgccg ccgggtgtaa gaagccgccc agactcaatg	120	
ccgttaacgg aggagctagt agtgttaccg gtggaacaag tagtttacct actaacttct	180	
ccgctagtaa atgggcggat cgtcttctcg ccgatttcca attccttcct tccaccacca	240	
cctccgactc atcggatttc cagaattcaa cttctacaac ctccggttacg actattcctc	300	
ctcctgttgc tccttcagac caccacattt caatgcctat agactttat agagtgttg	360	
gtgctgaagc tcacttcctc ggtgacggta ttaggagatg ctacgatgct agaattacaa	420	
agcctccgca gtacggatac agtcaggaag cattgattgg ccgacggcag attcttcaag	480	
ctgcttgtga aacccttgct gactctacct ctcgtagaga gtacaatcaa ggcctcgctc	540	
agcatgagtt cgatactatt ctaactcctg tcccctggaa taaagttccg ggagcaatgt	600	
gtgttttg	608	
<210> 138		
<211> 307		
<212> DNA		
<213> Populus balsamifera		
<400> 138		
gaagatttca tgaatgaggc cttcttacgt atgacagcag ctgagcaggt tgatctgttc	60	
gtcaccacgc caagtaatat cccggctcaa aattttgaag tttatggagt ggcacttgcc	120	
cttggcccc aagcttcat tggaaaaag cctcatctca tcacagatgc tgataaccta	180	

ttcggacagc ttcagcagat taaggtaaca aatcaaggga gtcttgttcc tgtctttggt	240
tccatggaaa accgtgatat tgactttggg ttggagaggg gctttgttca ctgctttag	300
gccagct	307
<210> 139	
<211> 416	
<212> DNA	
<213> Mesembryanthemum crystallinum	
<400> 139	
gggaaacgtg ctttgttgc agcaactctt caagaatcag cgcatgttac tgacgttac	60
caacctgagc ataacgattc ttacagcaga acatacacaa caaggtacga gatgttcac	120
tccaatgctg ggtgaaagat catagaggga gctgtcctcc aatcttaagc tgctggaaat	180
ccagtcttga atgtacatat tttcacatca tctgcacatt atgaatgaag gatggtatgt	240
gttttcttgc cagtggtatt tgcgtatgtt gtgtttatgg tggtaacaag ttttgatcat	300
tatcaaaaag atcactcttgc taagtttagtt tttccacaa taaatcaact atttatatga	360
aagttttat atcaggacta cttgccttta cttatataaa ctttgagaaa tttttt	416
<210> 140	
<211> 465	
<212> DNA	
<213> Oryza sativa	
<220>	
<221> misc_feature	
<222> (113)..(113)	
<223> n is a, c, g, or t	
<400> 140	
tggtgcttct catttgggct gctgctgctg ctattgcaaa acttgggtct caagctacag	60
ctgcacttgg tactgtgaaa tcaaattgcta ttcaagcggtt caacaagggtt ttnccattga	120
tagaacagtt agacaggtca gccatggaaa atactaaaga tggccctggg ggatatcttgc	180
aaaattttga ccaggaaaaat gcacctgctc atgattcgag aaatgccgcc ttgaagattt	240
tctctcttggc gcactgttttgc cactgttggc agtaattggg gccaatattt tgcctcgtaa	300
gaggccccctt tctgcttattt ggagtgagca tggatctgtt gcaatgttca atagtgtcga	360
ctctactgtt gatcctgcac tagatgaaga tccagttacat attccttagaa tggatgcgaa	420
gctggcagaa gatattgttc gcaagtggca gagttatcaaa tctaa	465

<210>	141					
<211>	309					
<212>	DNA					
<213>	Oryza sativa					
 <400>	141					
atcataagaa	gcgccaagaa	gggcttcaag	gtgcgagaaa	cattttgtgg	agcggtggca	60
gaggaggtat	tgctaccgtt	ggaggaggat	tttctcgta	agccttcatg	aacgaggctt	120
ttttgaggat	gacatcaatt	gaacagatgg	atttctttc	aaaaacacccg	aatagcattc	180
ctcctgaatg	gtttgaaatt	tacaatgttag	cacttgcaca	tgtcgctcaa	gcaattataa	240
gtaaaaggcc	acaattcattc	atgatggcgg	atgatctttt	tgaacaactc	cagaagttcc	300
acataggtc						309
 <210>	142					
<211>	336					
<212>	DNA					
<213>	Oryza sativa					
 <400>	142					
atcataagaa	gcgccaagaa	gggcttcaag	gtgcgagaaa	cattttgtgg	agcggtggca	60
gaggaggtat	tgctaccgtt	ggaggaggat	tttctcgta	agccttcatg	aacgaggctt	120
ttttgaggat	gacatcaatt	gaacagatgg	atttctttc	aaaaacacccg	aatagcattc	180
ctcctgaatg	gtttgaaatt	tacaatgttag	cacttgcaca	tgtcgctcaa	gcaattataa	240
gtaaaaggcc	acaattcattc	atgatggcgg	atgatctttt	tgaacaactc	cagaagttca	300
acataggttc	tcattatgct	tatgataatg	agatgg			336
 <210>	143					
<211>	537					
<212>	DNA					
<213>	Triticum aestivum					
 <400>	143					
cagtgcgtgc	aattggaggg	cacttactgg	aggaccgccc	gcccaagcgg	ttcaagcagg	60
atgtggtgct	ggcaatggcg	ctcgcttatg	tggatctatc	aaggcacgca	atggcggcta	120
gccctccaga	tgtaatccgc	tgctgtgagg	tgcttggaaag	ggctctcaag	cttttgcagg	180
aggatggggc	aatcaatctc	gcacctgggt	tgctctcaca	aattgtatgaa	actctggagg	240
atatcacacc	tcgttgtgtt	ttggagcttc	ttgcccttcc	tcttgtatgaa	aaacatcaga	300
atgaacacca	agaaggtctt	cgtgggtgtga	gaaacatttt	gtggagtgtt	ggcagaggag	360
gtattggtac	tgttggagga	ggattttcgc	gtgaaggcta	catgaatgaa	gccttcctgc	420

agatgacatc ggcggagcag atggatttct tctcaaaaac accgaatagc ataccgcctg	480
aatggtttga aatctatagc gtggcacttg caaatgttgc tcaagcaatt gtaagta	537
<210> 144	
<211> 418	
<212> DNA	
<213> Triticum monococcum	
<220>	
<221> misc_feature	
<222> (144)..(144)	
<223> n is a, c, g, or t	
<220>	
<221> misc_feature	
<222> (301)..(301)	
<223> n is a, c, g, or t	
<400> 144	
acacctcggtt gtgttttggaa gcttccttgcc ctccctcttg ataaaaagca ccagagtaaa	60
cggccaagaag gtcttcgtgg tgtgagaaac attttggaa gtgttggttag aggaggatt	120
gctactgttg gaggaggatt ttncngtgaa gcctacatga atgaggcctt tttgcagatg	180
acatcagcgg agcagatgga tttctttca aaaacgccaa atagcataacc acctgaatgg	240
tttggaaatct atagtgtggc actcgcaa at gttgctcaag caattgttaag taaaaggcca	300
nagctcatca tggtggcaga tgatctttc gaacagctcc agaagttcaa tatagttct	360
caatatgctt atgataatga attggatctt gtgttgaaa gggcactttg ctcattgc	418
<210> 145	
<211> 480	
<212> DNA	
<213> Hordeum vulgare	
<400> 145	
gcgagcatga gtccgtggca gttgctaatg ttgttactc aggtgatgat gacgaaccag	60
atgagccat acagattcct aaaatggatg cgaagctggc agaagatatt gttcgcaagt	120
ggcagagcat caaatccaag gcottggat cagatcattc tggcatca ttgcaagagg	180
ttcttgatgg caacatgctg aaggtatgga cggaccgagc agcagagatc gagcgc当地	240
gctggttctg ggactacacg ctgtccaaacg tggcgatcga cagcatcacc gtctccctgg	300
acggacggcg ggcgaccgtg gaggcgacaa ttgaggaggc gggtcagctc accgacgcaa	360
ccgacccccag gaacgatgat ttgtacgaca ctaagtacac cacccggatc gagatggcct	420
tcaccggacc aggagggtgg aagataaccg aaggcgcagt cctcaagtgc tcataggcgc	480

```

<210> 146
<211> 622
<212> DNA
<213> Hordeum vulgare

<220>
<221> misc_feature
<222> (11)..(12)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (14)..(14)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (65)..(65)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (88)..(88)
<223> n is a, c, g, or t

<400> 146
gaaactctgg nngnagatca cccctcggtg tgtttagag ctcttgccc ttcccttga      60
cgagnaagca ccagagtaaa cgccaagnaa ggtcttcgtg gtgtgagaaa catttgtgg      120
agtgttggta gaggaggtat tgctactgtt ggtggaggat tttcacggga agcctacatg      180
aatgaggcct tttgcagat gacatcagct gagcagatgg atttctttc aaaaacgccg      240
aatagcatac cacctgaatg gttgaaatc tatagcgtgg cactcgcaaa tggtgctcaa      300
gcaattgtaa gtaaaaggcc agagctcatc atggtggcag atgatcttt cgaacagctc      360
cagaagttca atatcggttc tcaatatgct tatggtaacg agatggatct tgcgttggaa      420
agggcactt gtcattgct tgtggagac attagcaact gcagaacttg gcttgcgatt      480
gataatgaat ctaccacaca tagagacccg aaaattgttag agtttattgt gaacaactct      540
agcattgacc accaggagaa tgatcttctt ccaggcctgt gtaagcttt ggagacttgg      600
cttgtctcag aggtttccc ta                                         622

<210> 147
<211> 604
<212> DNA
<213> Hordeum vulgare

```

```

<220>
<221> misc_feature
<222> (13)..(13)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (516)..(516)
<223> n is a, c, g, or t

<400> 147
tggcttcacc tgnaaatcca gcactaagtt tctcttatca ccaacccaag gatctttct 60
agcctagcaa taatccgaat agaacacacc gaaaaacaaa gotcatcgct gactaactga 120
ctaaccaaac tatctccgtc ttccaaactg acaagagcct agactagact gcttatttac 180
acaccagaaa aacacgggag gaatcaatca acaaggtaa ctgcacgctg aacgccstat 240
gacgacttga ggactgcgcc ttccgttatac ttccaccctc ctggtccggc gaaggccatc 300
tcgtaccggg tggtgtactt agtgcgtac aaatcatcgta tcctgggtc gggtgcgtcg 360
gtgagctgac ccgcctccctc aattgtcgcc tccacggtcg cccgcccgtcc gtccagggag 420
acggtgatgc tgtcgatgc cacgttgaac agcgtgtagt cccagaacca gccttgcgc 480
tcaatctctg ctgctcggtc tgtccatacc ttcagnatgt tgccatcaag aaccttttgc 540
aatgatgcaa cagaatgatc tgatcccaag gccttggatt tgatgctctg ccacttgcga 600
acaa 604

<210> 148
<211> 653
<212> DNA
<213> Sorghum bicolor

<400> 148
tatgggtctg tggcagttgc tgactctgtt gatggtctgg gagcagatga agagccacta 60
gaaattccta gaatggatgc aaagttggct gaagatatttgc ttcgcaagtg gcaaagtatc 120
aagtccaaagg ctttggggcc agaacacact gtcacggcat tgcaagagat cctcgatggc 180
aacatgctga aggtatggat ggaccgagcc acagagatttgc agcgtcacgg ttgggtctgg 240
gaatacacac tctccgacgt gacgatcgac agtacccatggc tctccatggc cggtcgacgg 300
gcaactgtgg aggccgacgt tgaggagatg ggccaactta ccgacgtacg agacccaaag 360
aacaacgacg cctacgacac aaagtacacc gctcggtacg agatgagcta ctccaagtcc 420
ggaggggtgga ggatcaccga aggagcagtc ctcaagtcgt agaacggcgtc tgcagcagga 480
gttaggcgagt aggggttgct caactccat tctttttct tttgcaccag tgtatgtaaa 540

```

taaacagtgt gagcacaggt tctttctct cctggagaga gtttggttag gttgattagt	600
gatgagttcc tgaggccgag agaatttgc atctagttt tattgataga gat	653
<210> 149	
<211> 535	
<212> DNA	
<213> Sorghum bicolor	
<400> 149	
gcacgaggat agaacagcta gacagatcg gcaaggatac cccaggtat gatcttgaga	60
aatctttga aaaacttgcc caagaaatgt tgctggagat gatatccatg attccaaaaa	120
tgccgcttg aagattatct ctgctgggc actgttgca ctatggcag taataggct	180
gaagtgcgg cctcgtaaga agtcacttcc tgctcttaag agcgaatatg ggtctgtggc	240
agttgctgac tctgttgatg gtctgggagc agatgaagag coactagaaa ttccctagaat	300
ggatgcaaag ttggctgaag atattgttcg caagtggcaa agtatcaagt ccaaggctt	360
ggggccagaa cacactgtca cggcattgca agagatcctc gatggcaaca tgctgaaggt	420
atggatggac cgagccacag agattgagcg tcacggttgg ttctggaaat acacactctc	480
cgacgtgacg atcgacagta tcaccgtctc catggacggt cgacgggcaa ctgtg	535
<210> 150	
<211> 479	
<212> DNA	
<213> Zea mays	
<400> 150	
gccacaggcc gccaccgcct ggcccctcca cctgccgtc cgccagccgc tggccgacc	60
gcctcttcgc cgacttccac ctccctccccg ccggccgcga cccgcccagcc gcggcctcct	120
cttccttcgc gtccccgttc gtccccatct tccccgaagc cgccgaccgc gccttgcgg	180
tcccggtcga cttctacaag attcttggtg cggagccaca ttcccttaggc gatggcattc	240
ggagggcggt cgagtcgcgg atagctaagc cacctcagta tgggtacagc acagaagctc	300
ttgctggcg acggcaaattg ctgcagattg cccatgatac tctcacaaac cagagctcgc	360
gcaccgagta cgaccgtgcg cttccgagg accgtgatgc ggcactcacc atggatgttgc	420
cctggataa gttccaggt gtgctgcgtg tgcttcagga ggctgggag gcacaactg	479
<210> 151	
<211> 446	
<212> DNA	
<213> Zea mays	

<400>	151					
agcaatgtgg	gcaagtgcga	cactatacat	ctcaaaccat	tcaggtggta	tgctattcgg	60
tgttttagag	aagaaatcca	tctgctcagc	tgatgtcata	tgcaagaaaag	cctcattcat	120
gaaggcctca	cgagaaaatc	ctccctccaaac	agtagcaata	ccacccctgc	caacactcca	180
caatatgttt	tttgcaccc	gcagaccc	ttggcggtta	tttttatgtt	tttcatcagt	240
aggaagagca	agaagctcca	atacacaacg	aggtgtata	tcctccaaag	tttcatcaat	300
ctgtgcaagc	agttcaggtg	caagattgct	tgcaccatcc	tcctgcagga	gcttcagtgc	360
cctctcaagc	acctcacaac	agcagattac	atctggaggg	cttgctgcc	tagcatccct	420
tgatatgtcc	acataagcca	atgccca				446
<210>	152					
<211>	657					
<212>	DNA					
<213>	Zea mays					
<400>	152					
cgcgtcgacg	tatagagtct	gcatccatgt	tgccttgaat	gaagcgtctg	caaaagaagg	60
ctctttatc	accagtcgtg	tcaggaagca	ttttgaaaat	atatcaaaat	ttctttggct	120
gagtgatagg	cctaattcaa	atagcaaagg	aagtgataaa	cacccagcgg	ttaatgat	180
tactgctgca	gtttgcaagc	aaaagatgga	tattcaagaa	gcagaaacac	ttgtaaaaca	240
gtggcaagac	ataaaatctg	aagctcttgg	ccctgactat	caaactgaca	tgctacctga	300
gattcttcat	ggttcaatgc	tctctaagt	ggaagactta	gcgttattag	caaaggacca	360
gtcttgctat	tggagattt	tgctgctaaa	tcttaatgtt	gttcgagccg	agataatctt	420
ggatgaaata	ggtgctggtg	aggcagcaga	aattgatgct	gtacttgagg	aagcggctga	480
gcttggac	gattcccagc	ccaagaaaacc	gagttattac	agcacatatg	aagttcagta	540
cgtattgagg	aggcagaatc	atggatctt	gaaaatctcc	gaggctgctg	tccgggacct	600
gacgtgattt	ctgccaactc	ggcaaacggg	ctacacaacc	attggcgtat	aggcggc	657
<210>	153					
<211>	871					
<212>	DNA					
<213>	Ceratopteris richardii					
<400>	153					
gtggtgtctt	tgctcgtgtt	cctggataca	caagggatga	gtatataa	gcagcttttt	60
ctcgaatgac	agctgctgag	caagtagctt	tgttcacaaa	tacacccagt	aatatcccag	120
cagagagttc	tgaggttac	acagttgcgc	ttgctcacat	agcagaggga	tttggcaaa	180

agaagccgca attgattcag	gaagctgatt cactcttct	ttagcttcag cgaacaaatg	240
cctccatcatc tagtttgcta	gttactggtg gtctacggcc	attatcaagt ctgcagctt	300
attttgcctt tgaacgagcc	atgtgcaaac tgctcctagg	agaactggat ggttgtcg	360
catggctagg tttggatgat	acaaactctc catatagaga	ccctgcagtg actgatttt	420
ttatagctaa ttcttttgg	agtgaggaag gtgattattt	accaggcctt tgcaagttgt	480
tggaaagttg gttgagggaa	gcgggtttt tccccaaaccc	gtcaacagaa aagtggaggt	540
acaagttgag ggagtatttt	ttatgatgca aggagaaaaa	aagccgcgt gaatttttc	600
gcggggggcg ctagaaaaa	atatattcaa ccttttttg	ttggggcgtc gtctacaaag	660
aatgatggag tgtcattgtt	gttttgagg tgacgaaggg	gcggcgctcc tcttaaggg	720
atcgccgtg gggcgcgcg	ctcccatatc gccatctcg	ggacaccttg ttcgtggtc	780
aatggtgat gtcttttta	ccacgaacgt cacattattc	ttataatata agcgtgcggc	840
agcaactctca gttcgacga	aacagcctaa a		871

<210> 154			
<211> 541			
<212> DNA			
<213> <i>Physcomitrella patens</i>			
<400> 154			
gagaacggaa gctttagaag	tggaggttgt ccccaaaatg	gatgcttaggt tggcgaaat	60
tatggttcga agatggcaag	cagctaaagc tcgagcaatt	ggttctgctc atgatatggc	120
ggctcttcct gaggtgctgg	agggcgagat gctgaagagc	tggacagacc gtgttagtga	180
cgtcaagaga aatggtttgt	tttgggaaata cactctcctt	ggtcttcaca ttgatagtgt	240
aacagtaagt gacgatggga	ggcgagcaac tgcggaagcc	actttgcaag aggcagcccg	300
cttggtggac cgcaacaacc	ctgaccacaa tgattcttat	agaagcaactt acactacgcg	360
atatgacctc cggcatggca	tagatggttg gcgaatcaat	ggaggagctg tgctgcgtac	420
ttgattctga gatttcatc	tccggatcat gttgacttgt	aggcagatcg actagttgca	480
acccttgcatt	gctacgaatg agtagtctt	ttggatattt tgatccatca tgcagcttt	540
a			541

<210> 155		
<211> 2109		
<212> DNA		
<213> <i>Protochlorococcus marinus MED4</i>		

<400>	155					
ttggaaactc	cattagatca	cttcgtta	ataggcgtaa	gcccccgc	aacatctgag	60
gaaatattaa	gggcttcca	attacgctt	gataaaaactc	ctgatgaagg	attcacgtac	120
gaggtttaa	ctcaaaggc	ggaattgctt	cgccttactg	cagatttgct	tacagatcca	180
gatagtagaa	gagattacga	aaatttatta	ctaaatggag	catcaggttt	agatttatct	240
tccaatagag	agggtgcagg	attaattctc	ctttggaaat	cgggctcttc	taaagaagcc	300
tttaaaataa	caagaaaagc	attgcaaccc	ccccaaactc	ctgcattggg	tagcagtaga	360
gaagctgatc	ttaccttgtt	agcggctta	acatctagag	atgctgcaat	acaagagcaa	420
gatcaaagat	cttactcaaa	tgctgcagat	tttttacaag	aaggcataca	gcttctcaa	480
agaatggca	aactagggga	attacggaaa	actcttgagg	aggacttagt	gtcgcttctt	540
ccgtatcgaa	ttcttgattt	gttaagtaga	gatctaaatg	attatgactc	gcataaaaaaa	600
ggtttaagta	tgctggaaaa	tttaataatc	aaaagaggtg	gattagaagg	aaaaaataaa	660
tctgaatata	atgattttct	aaatcagcaa	gaatttgaat	cttctttca	acaatataaag	720
ccattcttga	ctgttcagga	tcagatagat	ttattttag	aattacaaaaa	aagggttca	780
agtgaagcag	gatttttagc	tttttatct	ttaacagcaa	ttggtttgc	aagaagaaaa	840
cctgcaaaat	tattcgaagc	tcgaaaaata	ttaaaaaaac	taaatttac	aggacttgac	900
tcaatgccat	taataggtt	ccttgattt	cttttagcag	atgttgagca	atcctcagca	960
aggttttaa	gtagttccga	tgagaagtt	agagatttgt	tgaataatta	tcctggagaa	1020
aaattagaag	caatatgtat	ttttgtaaa	aattggtag	aaaatgtatgt	tttgggttgg	1080
tatagggata	ttgatttaaa	agaaatcgat	ttagactctt	ggtttgaaga	tagagaaatc	1140
caagaattta	ttgagcaaat	agaaaagaag	tcaaataagaa	ctgtgtttaa	gtctgggcct	1200
caaaataaac	ctattttca	agcccaagaa	tcttaaaag	attcaagtac	ggccctgtat	1260
ttaaattcgg	ataatttga	agaaggccga	ttaccttgc	ctggaggagt	aagagaagat	1320
ggtcaagaag	ttattgaaga	aaatatttat	acagatgaga	ttattaaaaaa	caaataata	1380
gaattttata	agtacgcaat	agaaaaaatt	gctgaattaa	aatttgtatt	tggagaagcc	1440
ttagagaact	acagaatatt	taataaatct	tcctaccaa	catactgtat	tgctttttg	1500
attttattt	ctttggcct	agggtttgga	tttgtaagaa	ataatctcaa	aaaaccgtg	1560
cagaaaaaaag	aaataattga	taactcgta	tcgataaaatg	aaaataagaa	tgtctttat	1620
gaaggtttaa	atcaagatga	taaaaagaaa	gttctcgata	actcaaaaat	tattctctca	1680

gataatgcag aaaaagttat ttttcaggt gaagaaataa aaactgcttc tccctccta 1740
gaaaaaatag aaaatttaat taatacatgg cttgttaaca aaagtaaatt tctagcagga 1800
aaaggtgaaa ttaatttac aaagatagtt caagatgatt tgattgatag attaaagaag 1860
gaaagagaac ttgatattca aaaaggtatc tacaaaaata tcaatgctaa tatcgaaaat 1920
attgtacttt taactcaaac ggcatcaaga atatcagtat cagttgactt aaagtattca 1980
gaaaaaatat taaaaataga tggggattg ataaatgaaa caacttcac tccttttg 2040
aaagttaaat atattttagg tttctcaaat aactcctgga aatttagttga ctacattagt 2100
ggtgttttag 2109

<210> 156
<211> 702
<212> PRT
<213> Protochlorococcus marinus MED4

<400> 156

Leu Glu Leu Pro Leu Asp His Phe Arg Leu Ile Gly Val Ser Pro Ser
1 5 10 15

Ala Thr Ser Glu Glu Ile Leu Arg Ala Phe Gln Leu Arg Leu Asp Lys
20 25 30

Thr Pro Asp Glu Gly Phe Thr Tyr Glu Val Leu Thr Gln Arg Ser Glu
35 40 45

Leu Leu Arg Leu Thr Ala Asp Leu Leu Thr Asp Pro Asp Ser Arg Arg
50 55 60

Asp Tyr Glu Asn Leu Leu Asn Gly Ala Ser Gly Leu Asp Leu Ser
65 70 75 80

Ser Asn Arg Glu Val Ala Gly Leu Ile Leu Leu Trp Glu Ser Gly Ser
85 90 95

Ser Lys Glu Ala Phe Lys Ile Thr Arg Lys Ala Leu Gln Pro Pro Gln
100 105 110

Thr Pro Ala Leu Gly Ser Ser Arg Glu Ala Asp Leu Thr Leu Leu Ala
115 120 125

Ala Leu Thr Ser Arg Asp Ala Ala Ile Gln Glu Gln Asp Gln Arg Ser
130 135 140

Tyr Ser Asn Ala Ala Asp Phe Leu Gln Glu Gly Ile Gln Leu Leu Gln
145 150 155 160

Arg Met Gly Lys Leu Gly Glu Leu Arg Lys Thr Leu Glu Glu Asp Leu
165 170 175

Val Ser Leu Leu Pro Tyr Arg Ile Leu Asp Leu Leu Ser Arg Asp Leu
180 185 190

Asn Asp Tyr Asp Ser His Lys Lys Gly Leu Ser Met Leu Glu Asn Leu
195 200 205

Ile Ile Lys Arg Gly Gly Leu Glu Gly Lys Asn Lys Ser Glu Tyr Asn
210 215 220

Asp Phe Leu Asn Gln Gln Glu Phe Glu Ser Phe Phe Gln Gln Ile Lys
225 230 235 240

Pro Phe Leu Thr Val Gln Asp Gln Ile Asp Leu Phe Leu Glu Leu Gln
245 250 255

Lys Arg Gly Ser Ser Glu Ala Gly Phe Leu Ala Phe Leu Ser Leu Thr
260 265 270

Ala Ile Gly Phe Ala Arg Arg Lys Pro Ala Lys Leu Phe Glu Ala Arg
275 280 285

Lys Ile Leu Lys Lys Leu Asn Leu Ser Gly Leu Asp Ser Met Pro Leu
290 295 300

Ile Gly Cys Leu Asp Leu Leu Leu Ala Asp Val Glu Gln Ser Ser Ala
305 310 315 320

Arg Phe Leu Ser Ser Asp Glu Lys Leu Arg Asp Trp Leu Asn Asn
325 330 335

Tyr Pro Gly Glu Lys Leu Glu Ala Ile Cys Ile Phe Cys Lys Asn Trp
340 345 350

Leu Glu Asn Asp Val Leu Val Gly Tyr Arg Asp Ile Asp Leu Lys Glu
355 360 365

Ile Asp Leu Asp Ser Trp Phe Glu Asp Arg Glu Ile Gln Glu Phe Ile
370 375 380

Glu Gln Ile Glu Lys Lys Ser Asn Arg Thr Val Phe Lys Ser Gly Pro
385 390 395 400

Gln Asn Lys Pro Ile Phe Gln Ala Gln Glu Ser Leu Lys Asp Ser Ser
405 410 415

Thr Gly Pro Asp Leu Asn Ser Asp Asn Phe Glu Glu Gly Arg Leu Pro
420 425 430

Leu Pro Gly Gly Val Arg Glu Asp Gly Gln Glu Val Ile Glu Glu Asn
435 440 445

Ile Tyr Thr Asp Glu Ile Ile Lys Asn Lys Ser Ile Glu Phe Tyr Lys
450 455 460

Tyr Ala Ile Glu Lys Ile Ala Glu Leu Lys Phe Val Phe Gly Glu Ala
465 470 475 480

Leu Glu Asn Tyr Arg Ile Phe Asn Lys Ser Ser Tyr Leu Thr Tyr Leu
485 490 495

Tyr Ala Phe Leu Ile Leu Phe Ala Phe Gly Leu Gly Val Gly Phe Val
500 505 510

Arg Asn Asn Leu Lys Lys Pro Val Gln Glu Lys Glu Ile Ile Asp Asn
515 520 525

Ser Leu Ser Ile Asn Glu Asn Lys Asn Val Phe Tyr Glu Gly Leu Asn
530 535 540

Gln Asp Asp Lys Lys Val Leu Asp Asn Ser Lys Ile Ile Leu Ser
545 550 555 560

Asp Asn Ala Glu Lys Val Ile Phe Ser Gly Glu Glu Ile Lys Thr Ala
565 570 575

Ser Pro Ser Leu Glu Lys Ile Glu Asn Leu Ile Asn Thr Trp Leu Val
580 585 590

Asn Lys Ser Lys Phe Leu Ala Gly Lys Gly Glu Ile Asn Leu Ser Lys
595 600 605

Ile Val Gln Asp Asp Leu Ile Asp Arg Leu Lys Lys Glu Arg Glu Leu
610 615 620

Asp Ile Gln Lys Gly Ile Tyr Lys Asn Ile Asn Ala Asn Ile Glu Asn
625 630 635 640

Ile Val Leu Leu Thr Gln Thr Ala Ser Arg Ile Ser Val Ser Val Asp
645 650 655

Leu Lys Tyr Ser Glu Lys Ile Leu Lys Ile Asp Gly Glu Leu Ile Asn
660 665 670

Glu Thr Thr Phe Thr Pro Phe Leu Lys Val Lys Tyr Ile Leu Gly Phe
675 680 685

Ser Asn Asn Ser Trp Lys Leu Val Asp Tyr Ile Ser Gly Val
690 695 700

<210> 157
<211> 1986
<212> DNA
<213> Protochlorococcus marinus MT9313

<400> 157
gtggacctgc caatagatca tttccgcttg ctgggtgtca gtccttcggc agacagttag 60
gcgattttgc gggccttggaa gttgagggttg gatcgctgcc ctgacccaagg tttcacccat 120
gaggtcttaa ttcagcgggc agaattgttg cggcttcag cagatttgct gactgatccg 180
ccacggcgtc aggcttatga gactgccttg ttggagctca gtcgtatca tccaggtgag 240
accgcccggc ttgatgtgtc acctagtaga gaggtggcag ggctgatctt gctgtttgaa 300
gcgaattctt ctcatgaggt tttcatctc gcctctcagg gattgcaacc gccccagtc 360
ccgacgctag gtagcgaacg agaagctgac ctcgcttgc tggatggact ggcctgtcgg 420
gctcagccg ctgaggaaca ggaacaacgg cggttatgaag cagcagcgctc tcttcgtcat 480
gacgggatcc agttgctgca gcgatgggc aagctctccg aagagtgcac caagcttgag 540
aacgatttag atgccttctt gccctatcgc attctcgact tattgagtgc ggatcttgg 600
gatcagggtt ctcaccagga aggactgcgc ctacttgaca actttgtgag ccagagagga 660
ggtcttgagg gaacggcccc atcgccctgca cctggtggtc ttgatcagtc cgaatttgac 720

aacttcttca	agcagatcag	aaagtttta	actgttcagg	aacagggtga	tctttcctg	780
cgctggcagc	aagccggatc	agcagatgcg	ggtttctgg	gtgggttggc	tcttgctgct	840
gttggatttt	cgcgtcgaa	gcctgaacgg	gtcaggaag	ctcggcagca	cttagagagg	900
cttcaactgg	atggatgcga	cccgttgcgg	atgctgggtt	gcttggacct	cttgctcgga	960
gatgtgggcc	gcgctcagga	gcgtttctg	cgcagtacag	atcctcgagt	gaaggactgt	1020
cttaacagcc	accctggcga	tgaattggct	gcttttgtg	agtactgccg	ctcttggctg	1080
cgaggggacg	tgcttcccg	ttatagggat	gtggatgctg	aggccgttga	tctagaggct	1140
tggtttgctg	atcgggatgt	tcaggcttat	gtggagcgcc	tggaacgcag	cgaaaatcgt	1200
gcttcttctt	taggtaaggc	cttctcagga	tcgtctgtga	agcaaccctt	cccttggcg	1260
cctcttgatc	ccgatggat	tttgcctc	tctcttggtg	ggcctgatgt	tggtaaacct	1320
gcagctgatc	agagctctga	tgagtttgcc	agcgatggta	tggcatggat	tgatcgttt	1380
gcagatctgc	cacgcccac	gcggccggtg	ctgatcggtt	cggttgtctt	tgccggccctg	1440
attgcagcct	ttgcaggctt	cagtttgttt	ggccaacgtc	ctcgtacgtc	agttagtagc	1500
gctgctgatc	agcctaagt	cacagcacct	cctacagcca	cactgcaaga	ggaggtccctc	1560
atgcctcaag	tccctgtcag	cgctgtggtt	gagccgctta	ctttggagca	gccgaatgag	1620
gcacagctca	aaggcctgct	tcaggcctgg	ctcagcaaca	aggcagtcgt	gcttgcgggt	1680
ggcaagagtg	atgcactgcc	tgaggtcgca	agagatccat	tggtgcagcg	cgtggcgcaa	1740
gagcgtgcca	gggatgctgc	tttagctcag	acccagaagg	ttgtggccag	catcagctct	1800
gtagaggtgg	tgagtcgaac	gccgcagcgt	attgagctga	atgccgttgt	gacctatcgc	1860
gatcaacgca	ttgatgctgc	cgcaagggtt	gttgcacaaa	cgcggccaaa	agatctctcg	1920
gtgacttaca	tccttggtcg	tgcatacgat	cggtggcgcc	tgcataata	catcagcgcc	1980
aaataa						1986

<210> 158
 <211> 661
 <212> PRT
 <213> **Protochlorococcus marinus MT9313**

<400> 158

Val	Asp	Leu	Pro	Ile	Asp	His	Phe	Arg	Leu	Leu	Gly	Val	Ser	Pro	Ser
1															15

Ala	Asp	Ser	Glu	Ala	Ile	Leu	Arg	Ala	Leu	Glu	Leu	Arg	Leu	Asp	Arg
20															30

Cys Pro Asp Gln Gly Phe Thr His Glu Val Leu Ile Gln Arg Ala Glu
35 40 45

Leu Leu Arg Leu Ser Ala Asp Leu Leu Thr Asp Pro Pro Arg Arg Gln
50 55 60

Ala Tyr Glu Thr Ala Leu Leu Glu Leu Ser Arg Asp His Pro Gly Glu
65 70 75 80

Thr Ala Gly Leu Asp Val Ser Pro Ser Arg Glu Val Ala Gly Leu Ile
85 90 95

Leu Leu Phe Glu Ala Asn Ser Ser His Glu Val Phe His Leu Ala Ser
100 105 110

Gln Gly Leu Gln Pro Pro Gln Ser Pro Thr Leu Gly Ser Glu Arg Glu
115 120 125

Ala Asp Leu Ala Leu Leu Leu Ala Leu Ala Cys Arg Ala Ala Ala Ala
130 135 140

Glu Glu Gln Glu Gln Arg Arg Tyr Glu Ala Ala Ala Ser Leu Leu His
145 150 155 160

Asp Gly Ile Gln Leu Leu Gln Arg Met Gly Lys Leu Ser Glu Glu Cys
165 170 175

His Lys Leu Glu Asn Asp Leu Asp Ala Leu Leu Pro Tyr Arg Ile Leu
180 185 190

Asp Leu Leu Ser Arg Asp Leu Gly Asp Gln Val Ser His Gln Glu Gly
195 200 205

Leu Arg Leu Leu Asp Asn Phe Val Ser Gln Arg Gly Gly Leu Glu Gly
210 215 220

Thr Ala Pro Ser Pro Ala Pro Gly Gly Leu Asp Gln Ser Glu Phe Asp
225 230 235 240

Asn Phe Phe Lys Gln Ile Arg Lys Phe Leu Thr Val Gln Glu Gln Val
245 250 255

Asp Leu Phe Leu Arg Trp Gln Gln Ala Gly Ser Ala Asp Ala Gly Phe
260 265 270

Leu Gly Gly Leu Ala Leu Ala Val Gly Phe Ser Arg Arg Lys Pro
275 280 285

Glu Arg Val Gln Glu Ala Arg Gln His Leu Glu Arg Leu Gln Leu Asp
290 295 300

Gly Cys Asp Pro Leu Pro Met Leu Gly Cys Leu Asp Leu Leu Leu Gly
305 310 315 320

Asp Val Gly Arg Ala Gln Glu Arg Phe Leu Arg Ser Thr Asp Pro Arg
325 330 335

Val Lys Asp Cys Leu Asn Ser His Pro Gly Asp Glu Leu Ala Ala Phe
340 345 350

Cys Glu Tyr Cys Arg Ser Trp Leu Arg Gly Asp Val Leu Pro Gly Tyr
355 360 365

Arg Asp Val Asp Ala Glu Ala Val Asp Leu Glu Ala Trp Phe Ala Asp
370 375 380

Arg Asp Val Gln Ala Tyr Val Glu Arg Leu Glu Arg Ser Glu Asn Arg
385 390 395 400

Ala Ser Ser Leu Gly Lys Ala Phe Ser Gly Ser Ser Val Lys Gln Pro
405 410 415

Phe Pro Trp Ala Pro Leu Asp Pro Asp Gly Ile Leu Pro Leu Ser Leu
420 425 430

Gly Gly Pro Asp Val Gly Gln Pro Ala Ala Asp Gln Ser Ser Asp Glu
435 440 445

Phe Ala Ser Asp Gly Met Ala Trp Ile Asp Arg Leu Ala Asp Leu Pro
450 455 460

Arg Pro Thr Arg Pro Val Leu Ile Gly Ser Val Val Phe Ala Ala Leu
465 470 475 480

Ile Ala Ala Phe Ala Gly Phe Ser Leu Phe Gly Gln Arg Pro Arg Thr
485 490 495

Ser Val Ser Thr Ala Ala Asp Gln Pro Gln Val Thr Ala Pro Pro Thr
500 505 510

Ala Thr Leu Gln Glu Glu Val Leu Met Pro Gln Val Pro Val Ser Ala
515 520 525

Val Val Glu Pro Leu Thr Leu Glu Gln Pro Asn Glu Ala Gln Leu Lys
530 535 540

Gly Leu Leu Gln Ala Trp Leu Ser Asn Lys Ala Val Val Leu Ala Gly
545 550 555 560

Gly Lys Ser Asp Ala Leu Pro Glu Val Ala Arg Asp Pro Leu Val Gln
565 570 575

Arg Val Ala Gln Glu Arg Ala Arg Asp Ala Ala Leu Ala Gln Thr Gln
580 585 590

Lys Val Val Ala Ser Ile Ser Ser Val Glu Val Val Ser Arg Thr Pro
595 600 605

Gln Arg Ile Glu Leu Asn Ala Val Val Thr Tyr Arg Asp Gln Arg Val
610 615 620

Asp Ala Ala Gly Lys Val Val Asp Gln Thr Pro Gln Lys Asp Leu Ser
625 630 635 640

Val Thr Tyr Ile Leu Gly Arg Asp Pro Asp Arg Trp Arg Leu His Glu
645 650 655

Tyr Ile Ser Gly Lys
660

<210> 159
<211> 2151
<212> DNA
<213> Synechococcus PCC7002

<400>	159					
gtgcgcattc	cgctcgacta	ttaccgcata	ctatgcgtcc	cggccaaggc	aaccactgcc	60
caaattaccc	aagcctatcg	cgatgcctc	tcccaatttc	cccgtcgca	acataatgcc	120
ttggccattg	aggcccccaa	ccggattatc	gagcaagcct	ttgaggtgtt	atcccaaaca	180
gaaacccgcg	ccgtctacga	ccatgagctg	tcgggcaata	tgtttcggtc	cctcgcccc	240
agccgtccga	aactgcctt	tcccgcgc	ccctccagtg	acacagagtt	agaagccctg	300
acagcccacc	aaccaaccat	tgacatcgcg	gaaaaagatt	tactgggggg	actgctgtta	360
ctcctcgacc	tgggggagta	cgaatttagtg	ctgaagtggg	ctgcccccta	cctcaaggc	420
aaaggcaagc	tggcaagga	agggaaattt	ggggccgtcg	aaatcgctga	gcaagaacta	480
cggctttgtt	tggccctggc	ccactggaa	ttgagccggg	aacagtggct	ccaacaacat	540
tatgaacagg	cggctctctc	cggcagaag	agtcaagagc	tattggtaga	tgtggcacaa	600
tttgcagacc	tccaaacagga	aattcaaggg	gatctcaatc	gcctcagacc	ctatcaagtt	660
ctagaacttc	tggccctacc	cgaatcagaa	acccaagagc	gacaacgggg	cttacaactg	720
ctccaggaaa	tgttgagtgc	tcgcgtgggg	attgatggcc	agggggacga	tcagtcgggt	780
ctaagtattg	atgattttt	gcgcatttac	cagcagttac	gcagttatct	aacggtgcaa	840
gaacagttgg	atctcttgt	ggcagaatca	aagcgacctt	cggcggcagc	ggcctaccta	900
gcggtgtatg	ctctcttggc	tgctgggtt	tcgcaacgga	aacctgacct	ggtcgtgcaa	960
gcccagaccc	tataaaacg	cctcggcaa	cgcaggatg	ttttcttgg	gcaatcaatc	1020
tgcgccttac	ttttaggtca	gccgtcgaa	gccaatcaac	tgttagaaca	aagtcaggaa	1080
caggaggcga	tcgcctacat	tcaagagcag	tctgaggggg	caccggatct	actcccaggc	1140
ctatgtctct	acggggaaaca	gtggctgaag	acagaggttt	tttcccattt	ccgcgtatctc	1200
cggcaacggc	ttgaagatgg	ctctgtttcg	ttgacggctt	acttcgcccga	tcctgaagtg	1260
cagcaatatac	ttgacgatct	cctcacggag	gctgtcccc	cacccacacc	acatccagac	1320
acagaaagta	cagcggcccc	gtcgaaaag	ccaccggaaa	cattacagtc	agaaaccggt	1380
gtttcgccgc	atcccagtcg	tcccgccaag	gttgattcct	ttgaggatct	cgtcactcaa	1440
actcccgtta	cagttcccc	ggcaccgcct	tctcctggtg	tagcacctgt	aactgcggca	1500
ttaaaccacag	acccggaagc	gtcttctgct	tcgtcaaaat	cagttcgctc	aaaaaaagtct	1560
atcgggcctt	ggggggcgat	cgccgctatc	gtggggagtg	tttgctgggt	cgtgggcctg	1620
gtgcgaattt	tgtctggcct	aactaccag	gaacccttac	aggtcaccct	caacggtgag	1680

ccacccctaa	cgatccccag	cttagacacc	gccgaggcaa	ataataatcc	ggagaatgga	1740
gcgaccgata	caacgacaac	gcctgcgctc	aatgaggcga	tcgcccgtga	ggtgattcaa	1800
acttggtttg	agagtaaagc	tagagcctt	ggccaagacc	gtgatttggc	ggctctagaa	1860
aatattttgg	cagaaccgtc	cctgtcccgc	tggcgagta	gtgcccaggc	cgtccgcagc	1920
gctggtacct	accgcaccta	tgaccacagt	ttgaccattg	aaacggtgag	cttcaaccca	1980
gaccaaccca	atgtggcgac	cgttgaggcc	caggtgcagg	aaaaggcaga	ttattaccgg	2040
gcgaatgggg	aacgcgatcc	cggccagtcc	tatgattctg	acctgcgtgt	ccgctacagc	2100
ttggtgcgcc	aaggcgatcg	ctggttgatt	cgttcttccc	aaaccctgtta	a	2151

<210> 160
 <211> 716
 <212> PRT
 <213> Synechococcus PCC7002

<400> 160

Met	Arg	Ile	Pro	Leu	Asp	Tyr	Tyr	Arg	Ile	Leu	Cys	Val	Pro	Ala	Lys
1				5				10					15		

Ala	Thr	Thr	Ala	Gln	Ile	Thr	Gln	Ala	Tyr	Arg	Asp	Arg	Leu	Ser	Gln
			20				25					30	.		

Phe	Pro	Arg	Arg	Glu	His	Asn	Ala	Leu	Ala	Ile	Glu	Ala	Arg	Asn	Arg
		35				40						45			

Ile	Ile	Glu	Gln	Ala	Phe	Glu	Val	Leu	Ser	Gln	Thr	Glu	Thr	Arg	Ala
		50				55				60					

Val	Tyr	Asp	His	Glu	Leu	Ser	Gly	Asn	Met	Phe	Arg	Ser	Leu	Val	Pro
65				70					75				80		

Ser	Arg	Pro	Lys	Leu	Pro	Phe	Pro	Asp	Arg	Pro	Ser	Ser	Asp	Thr	Glu
			85					90					95		

Leu	Glu	Ala	Leu	Thr	Ala	His	Gln	Pro	Thr	Ile	Asp	Ile	Ala	Glu	Lys
			100				105					110			

Asp	Leu	Leu	Gly	Gly	Leu	Leu	Leu	Leu	Asp	Leu	Gly	Glu	Tyr	Glu
			115				120				125			

Leu	Val	Leu	Lys	Trp	Ala	Ala	Pro	Tyr	Leu	Lys	Gly	Lys	Gly	Lys	Leu
			130				135			140					

Val Lys Glu Gly Lys Phe Gly Ala Val Glu Ile Val Glu Gln Glu Leu
145 150 155 160

Arg Leu Cys Leu Ala Leu Ala His Trp Glu Leu Ser Arg Glu Gln Trp
165 170 175

Leu Gln Gln His Tyr Glu Gln Ala Ala Leu Ser Gly Gln Lys Ser Gln
180 185 190

Glu Leu Leu Val Asp Val Ala Gln Phe Ala Asp Leu Gln Gln Glu Ile
195 200 205

Gln Gly Asp Leu Asn Arg Leu Arg Pro Tyr Gln Val Leu Glu Leu Leu
210 215 220

Ala Leu Pro Glu Ser Glu Thr Gln Glu Arg Gln Arg Gly Leu Gln Leu
225 230 235 240

Leu Gln Glu Met Leu Ser Ala Arg Val Gly Ile Asp Gly Gln Gly Asp
245 250 255

Asp Gln Ser Gly Leu Ser Ile Asp Asp Phe Leu Arg Phe Ile Gln Gln
260 265 270

Leu Arg Ser Tyr Leu Thr Val Gln Glu Gln Leu Asp Leu Phe Val Ala
275 280 285

Glu Ser Lys Arg Pro Ser Ala Ala Ala Tyr Leu Ala Val Tyr Ala
290 295 300

Leu Leu Ala Ala Gly Phe Ser Gln Arg Lys Pro Asp Leu Val Val Gln
305 310 315 320

Ala Gln Thr Leu Leu Lys Arg Leu Gly Lys Arg Gln Asp Val Phe Leu
325 330 335

Glu Gln Ser Ile Cys Ala Leu Leu Leu Gly Gln Pro Ser Glu Ala Asn
340 345 350

Gln Leu Leu Glu Gln Ser Gln Glu Gln Glu Ala Ile Ala Tyr Ile Gln
355 360 365

Glu Gln Ser Glu Gly Ala Pro Asp Leu Leu Pro Gly Leu Cys Leu Tyr
370 375 380

Gly Glu Gln Trp Leu Lys Thr Glu Val Phe Ser His Phe Arg Asp Leu
385 390 395 400

Arg Gln Arg Leu Glu Asp Gly Ser Val Ser Leu Thr Ala Tyr Phe Ala
405 410 415

Asp Pro Glu Val Gln Gln Tyr Leu Asp Asp Leu Leu Thr Glu Ala Val
420 425 430

Pro Thr Pro Thr Pro His Pro Asp Thr Glu Ser Thr Ala Ala Pro Ser
435 440 445

Glu Lys Pro Pro Glu Thr Leu Gln Ser Glu Thr Gly Val Ser Pro His
450 455 460

Pro Ser Arg Pro Ala Lys Val Asp Ser Phe Glu Asp Leu Val Thr Gln
465 470 475 480

Thr Pro Ala Thr Val Pro Pro Ala Pro Pro Ser Pro Gly Val Ala Pro
485 490 495

Val Thr Ala Ala Leu Asn Pro Asp Pro Glu Ala Ser Ser Ala Ser Ser
500 505 510

Lys Ser Val Ser Ser Lys Lys Ser Ile Gly Pro Trp Gly Ala Ile Ala
515 520 525

Ala Ile Val Gly Ser Val Leu Leu Val Val Gly Leu Val Arg Ile Leu
530 535 540

Ser Gly Leu Thr Thr Gln Glu Pro Leu Gln Val Thr Leu Asn Gly Glu
545 550 555 560

Pro Pro Leu Thr Ile Pro Ser Leu Asp Thr Ala Glu Ala Asn Asn Asn
565 570 575

Pro Glu Asn Gly Ala Thr Asp Thr Thr Thr Pro Ala Leu Asn Glu
580 585 590

Ala Ile Ala Ala Glu Val Ile Gln Thr Trp Phe Glu Ser Lys Ala Arg
595 600 605

Ala Phe Gly Gln Asp Arg Asp Leu Ala Ala Leu Glu Asn Ile Leu Ala
610 615 620

Glu Pro Ser Leu Ser Arg Trp Arg Ser Ser Ala Gln Ala Val Arg Ser
625 630 635 640

Ala Gly Thr Tyr Arg Thr Tyr Asp His Ser Leu Thr Ile Glu Thr Val
645 650 655

Ser Phe Asn Pro Asp Gln Pro Asn Val Ala Thr Val Glu Ala Gln Val
660 665 670

Gln Glu Lys Ala Asp Tyr Tyr Arg Ala Asn Gly Glu Arg Asp Pro Gly
675 680 685

Gln Ser Tyr Asp Ser Asp Leu Arg Val Arg Tyr Ser Leu Val Arg Gln
690 695 700

Gly Asp Arg Trp Leu Ile Arg Ser Ser Gln Thr Leu
705 710 715

<210> 161
<211> 2469
<212> DNA
<213> Synechococcus PCC7942

<400> 161
cttgcggact aaaggctaag catgccatt ccttagatta aagcagtctg tcggccggcgc 60
tgtgccggtt aacaccagtc tgtcgtgtac agcggtgcct ttctgggct tgcctgtggg 120
gcgagtaacc gatcgctggg ataagagttg gtgcttctgg ctctcaagaa tagggtttc 180
cgtcgctat tccccatcac atccccctgt gtctgtacg gagataacgc cgatcaactca 240
acagaattgg taagttgacg gtcaagttgg gatgatgaag tcggctcaag ctggcgatcc 300
ggatctggtg ggtgttctgt gcgtattcct ctcgattact accgaattct ctgtgttggc 360
gtgcaagcct cggcagacaa acttgccgaa agctaccgcg atcgcctcaa ccaatcgccc 420
tccccatgagt tttcagagct ggcattgcag gcgccggc aactcctcga agcagcgatt 480
gctgagctga gtgatcccga acagcgcgat cgctacgatc gccgctttt tcagggcggt 540
ctggaaagcga ttgaaccaag cctagaactc gaagactggc agcgaattgg agccctgctg 600

atcctgctgg aattggggga atacgatcgc gtttcgcaac tggctgagga actccctgcca	660
gactacgacg cgagcgcaga agtacgcgtat cagttcgccgc ggggtgatat cgccttggcg	720
atcgcaactat cccagcaatc cctcggtcga gaatgccgtc agcagggtct gtacgaacag	780
gccgcccagc actttggccg cagccagtct gccctagccg atcatcagcg ctttcctgaa	840
ctgagtcgaa ccctgcacca agaacaagga cagctacggc cctatcgcat tttggagcgg	900
ttggcccagc ccttgactgc cgatagcgat cgccagcagg gtttgcgtt gttgcaggcg	960
atgttggacg accggcaggg cattgaaggc cctggggatg atggctcggg gctgaccctt	1020
gataacttt tgatgtttct ccagcaaatt cgccgtatc tgaccctggc tgaacagcag	1080
ttgctgttg aatcggaagc gcgtcgcccc tcgccccgtc cgagctttt tgcctgctac	1140
accctgattg cgccgggctt ttgcgtatcac caaccctcgt tgatccatcg cgccagctt	1200
ctcttgcattg aactcaagag ccgcattggat gtgcacatcg aacaggcgat cgccagccta	1260
ttgctcgac agcccgaaga agctgaggcg ctactcgcc agagccaaga tgagggaaacc	1320
ctcagccaaa tccgtgcctt agcccaaggg gaagccctga tcgctggttt gtgccgattc	1380
acggaaacct ggctagcgac caaggtattt ccggatttcc gcgaccaa ggaaaggact	1440
gcgcgcgtgc agccctactt tgacgacccc gatgtccaga cctatctgga tgcgtatcg	1500
gagttgccgt ccgatttgat gccaacgccc ctaccgttg agccgcttga ggtgcgtatcg	1560
tcgttgcggc ccaaggaact gcccacccc gcaacgcctg gtgttagctcc accccctcgc	1620
cggccgtgcc gcgatcgctc cgaacgtcct gctgcacgg ccaaacgctt gcccttgc	1680
tggattggtt tgggggttgt ggtggttctc ggccgtggaa caggggtttt ggcttggcga	1740
tcgcgttcca attccacccc gccgaccccg ccccccgtgg ttcaaacgct gcctgaggcg	1800
gtacctgccc cttcgccccgc gcaagttacc gttgcctcg atcgggctca ggctgaaact	1860
gtgttgcaaa actgggtggc cgctaaagct gcagccttgg ggcctaata cgatcgcgat	1920
cgcttagcga cggtgctgac cggtgagggtt ctgcagactt ggcagggttt ttctagccag	1980
caggccaaaca cccagctcac atcacagttc gatcacaagt taaccgtcga ctcagttcag	2040
ctcagtgcacg gtgatcaacg agcagtagtc caagccaaagg tcgatgaagt tgagcaggc	2100
tatcgaggcg accagctgct cgaaacgcgc cgagattgg gcttgggtat ccgctaccag	2160
ctcggtcgcc agaacaacat ctggaaaatt gcttcgatta gtttgggtcg ctaggaattc	2220
gcaaggggtg aacccctgc ggtctttct gtagatcccc tagagcgatc gcagaatgtt	2280
cagcgattcc tggatgtgcg cttggcatt caagagtcaa tcaaaaatgt ggcgcacctt	2340

gcccttttgc	tcgatcacat	aagtgacg	ccggaaatc	acaaacagg	tttggcac	2400										
gccatagg	tgacggaggc	gatcg	cctgc	atcgctcag	gttggagg	gcaagg	tgt	2460								
tttctggc								2469								
<210>	162															
<211>	631															
<212>	PRT															
<213>	Synechococcus	PCC7942														
<400>	162															
Met	Arg	Ile	Pro	Leu	Asp	Tyr	Tyr	Arg	Ile	Leu	Cys	Val	Gly	Val	Gln	
1																15
Ala	Ser	Ala	Asp	Lys	Leu	Ala	Glu	Ser	Tyr	Arg	Asp	Arg	Leu	Asn	Gln	
20															30	
Ser	Pro	Ser	His	Glu	Phe	Ser	Glu	Leu	Ala	Leu	Gln	Ala	Arg	Arg	Gln	
35															45	
Leu	Leu	Glu	Ala	Ala	Ile	Ala	Glu	Leu	Ser	Asp	Pro	Glu	Gln	Arg	Asp	
50															60	
Arg	Tyr	Asp	Arg	Arg	Phe	Phe	Gln	Gly	Gly	Leu	Glu	Ala	Ile	Glu	Pro	
65															80	
Ser	Leu	Glu	Leu	Glu	Asp	Trp	Gln	Arg	Ile	Gly	Ala	Leu	Leu	Ile	Leu	
85															95	
Leu	Glu	Leu	Gly	Glu	Tyr	Asp	Arg	Val	Ser	Gln	Leu	Ala	Glu	Glu	Leu	
100															110	
Leu	Pro	Asp	Tyr	Asp	Ala	Ser	Ala	Glu	Val	Arg	Asp	Gln	Phe	Ala	Arg	
115															125	
Gly	Asp	Ile	Ala	Leu	Ala	Ile	Ala	Leu	Ser	Gln	Gln	Ser	Leu	Gly	Arg	
130															140	
Glu	Cys	Arg	Gln	Gln	Gly	Leu	Tyr	Glu	Gln	Ala	Ala	Gln	His	Phe	Gly	
145															160	
Arg	Ser	Gln	Ser	Ala	Leu	Ala	Asp	His	Gln	Arg	Phe	Pro	Glu	Leu	Ser	
165															175	

Arg Thr Leu His Gln Glu Gln Gly Gln Leu Arg Pro Tyr Arg Ile Leu
180 185 190

Glu Arg Leu Ala Gln Pro Leu Thr Ala Asp Ser Asp Arg Gln Gln Gly
195 200 205

Leu Leu Leu Leu Gln Ala Met Leu Asp Asp Arg Gln Gly Ile Glu Gly
210 215 220

Pro Gly Asp Asp Gly Ser Gly Leu Thr Leu Asp Asn Phe Leu Met Phe
225 230 235 240

Leu Gln Gln Ile Arg Gly Tyr Leu Thr Leu Ala Glu Gln Gln Leu Leu
245 250 255

Phe Glu Ser Glu Ala Arg Arg Pro Ser Pro Ala Ala Ser Phe Phe Ala
260 265 270

Cys Tyr Thr Leu Ile Ala Arg Gly Phe Cys Asp His Gln Pro Ser Leu
275 280 285

Ile His Arg Ala Ser Leu Leu Leu His Glu Leu Lys Ser Arg Met Asp
290 295 300

Val His Ile Glu Gln Ala Ile Ala Ser Leu Leu Leu Gly Gln Pro Glu
305 310 315 320

Glu Ala Glu Ala Leu Leu Val Gln Ser Gln Asp Glu Glu Thr Leu Ser
325 330 335

Gln Ile Arg Ala Leu Ala Gln Gly Glu Ala Leu Ile Val Gly Leu Cys
340 345 350

Arg Phe Thr Glu Thr Trp Leu Ala Thr Lys Val Phe Pro Asp Phe Arg
355 360 365

Asp Leu Lys Glu Arg Thr Ala Pro Leu Gln Pro Tyr Phe Asp Asp Pro
370 375 380

Asp Val Gln Thr Tyr Leu Asp Ala Ile Val Glu Leu Pro Ser Asp Leu
385 390 395 400

Met Pro Thr Pro Leu Pro Val Glu Pro Leu Glu Val Arg Ser Ser Leu
405 410 415

Leu Ala Lys Glu Leu Pro Thr Pro Ala Thr Pro Gly Val Ala Pro Pro
420 425 430

Pro Arg Arg Arg Arg Asp Arg Ser Glu Arg Pro Ala Arg Thr Ala
435 440 445

Lys Arg Leu Pro Leu Pro Trp Ile Gly Leu Gly Val Val Val Val Leu
450 455 460

Gly Gly Gly Thr Gly Val Trp Ala Trp Arg Ser Arg Ser Asn Ser Thr
465 470 475 480

Pro Pro Thr Pro Pro Pro Val Val Gln Thr Leu Pro Glu Ala Val Pro
485 490 495

Ala Pro Ser Pro Ala Pro Val Thr Val Ala Leu Asp Arg Ala Gln Ala
500 505 510

Glu Thr Val Leu Gln Asn Trp Leu Ala Ala Lys Ala Ala Ala Leu Gly
515 520 525

Pro Gln Tyr Asp Arg Asp Arg Leu Ala Thr Val Leu Thr Gly Glu Val
530 535 540

Leu Gln Thr Trp Gln Gly Phe Ser Ser Gln Gln Ala Asn Thr Gln Leu
545 550 555 560

Thr Ser Gln Phe Asp His Lys Leu Thr Val Asp Ser Val Gln Leu Ser
565 570 575

Asp Gly Asp Gln Arg Ala Val Val Gln Ala Lys Val Asp Glu Val Glu
580 585 590

Gln Val Tyr Arg Gly Asp Gln Leu Leu Glu Thr Arg Arg Asp Leu Gly
595 600 605

Leu Val Ile Arg Tyr Gln Leu Val Arg Glu Asn Asn Ile Trp Lys Ile
610 615 620

Ala Ser Ile Ser Leu Val Arg
625 630

<210>	163					
<211>	2400					
<212>	DNA					
<213>	Anabaena PCC7120					
<400>	163					
attatgttga	tcacggtgca	gggaaagtac	gctgtgcgaa	ttccgctaga	ttactaccga	60
attttagggc	taccgttagc	ggcaagtgtat	gaacaactgc	gacaaggcata	cagcgatcgc	120
attgtccaat	tgccgcgacg	ggagtattct	caagcagcaa	ttgcttccc	taaacaactt	180
atagaagaag	cttacgttgtt	tttatcagat	ccaaaggAAC	gcagcagtta	tgaccagctg	240
tatcttgctc	acgcctacga	cccagacaac	gcggctacaa	ccaaagtggc	agtggaaaat	300
cgtggggaca	gcaacaatgg	tcatttcgat	gtccaaagcc	tgagcatcga	agtttccctcc	360
gaggaattaa	ttggtgcttt	attaattttg	caagagttgg	gagagtatga	actcgta	420
aagtttaggtc	gtaattactt	aggtatcaa	aacggcacag	catccaccag	aatggcaat	480
catcgacgc	ctgaagaatt	tctcgatagt	tctgaacgtc	cagatattct	cttgactgtt	540
gctttggcct	cattagaatt	agggcgggaa	caatggcaac	aaggccacta	tgaaaacgct	600
gctttgtctt	tagagactgg	gcaagaagtg	ctgttttagtg	aaggcatctt	ccccagcgtc	660
caggcagaaa	ttcaggctga	tcttacaaa	ttacgccc	atagaatttt	agaattactt	720
gccttacccc	aggaaaaaac	cattgaacgc	caccaagggc	tggatctatt	acaaagcatc	780
ttagacgatc	gcgggtggcat	tgttgtaca	ggcaatgatc	aatcaggctt	aaacattgtat	840
gacttcctcc	gattcatcca	gcaattacgc	caccactaa	cagtggctga	acaacataag	900
ttgtttgatg	gtgaaagcaa	acgccctcg	gctgtggcta	catacttagc	tgtttatgct	960
tccatcgcca	gaggattcac	ccaaacgcccag	cccgctttaa	ttcgtcatgc	caagcaaatt	1020
ctgatgcgtt	tgtctaagcg	gcaagatgtg	catttagagc	agtccctgtg	tgcgttatt	1080
ctagggcaaa	ctgaagaagc	cacgcgagtt	ttagaactga	gccagaata	cgaagcttta	1140
gccttaattc	gagaaaaatc	tcaagattca	cccgatttac	tgccttgc	gtgcttat	1200
gccgaacaat	ggctgcaaaa	tgaagtttc	ccccatttcc	gcgatttgtc	cagacagcaa	1260
gcttccctga	aagattactt	tgctaatcaa	caagtacaag	cgtatTTAGA	agcctgccc	1320
aacgacgcgg	aaaccactaa	tgaatggct	gtaattaacc	gccaatcggtt	ttctcaacccc	1380
aggggcaatt	cttactctgg	aggaacgcca	gtcgccaaac	gtccctgtgg	gaaggcgaac	1440
aggccaggag	aagcgtccac	aagaccagtt	ccccaacgta	gtcatccatc	agaagtaaat	1500
cggcagttc	atcaaaacag	aaccctgtat	cccgaaattac	cagaaacatc	aaaccacaga	1560

agaccagagt cttcaaattt tacaactgct agagaaaaata tatcgaccac agatgcttac 1620
actgacaatt atccaccaga gatccctgta gaacgcgcca gcagacctgt tcagccgggg 1680
gtaagtggtt atacccaatc gacccctcca cggcaaactc ctaaacgcag gagacgcaag 1740
aagccacagg cagttgtcaa cagaggacac agtattcatc agcaacgcca accctcacct 1800
agcactctag gccggaaaaac aagattactt tggatagttt tgggttcttt ggggtggata 1860
ttattgttct ggctgatagt ctcaacgact tttgggtggt taaagaatgt attcttccca 1920
gcaccatctt tacaagggtga gcaattatcg attcagatta gtcaaccacc ttttagagatt 1980
cctgacaaaa atgcccagat acaatcccc aaggtgagtc tcacagaaga aacggcaagg 2040
aaaataattg aaaattggtt ggctacccaa gctagtgcctt taggcgctga acataaaatt 2100
gagagttaa acgagatttt aactggttca gcgttatctc aatggcggct aattgccttg 2160
caagataaag cagacaatcg tcatcgagaa tacagtcata gtgtcaaggt agactccatc 2220
agtaaatctg acatagatcc caatcgtgca agtgtgggg ctacagtcag agagttAAC 2280
caatTTTATG agaatggca aaaagggaaag tcttctgacg aaagattacg tgtacgctat 2340
qaattqattc qacaaqatqa tatttqqcqg attcaqaaqqa tqtcaqccqc tataaaattaa 2400

<210> 164
<211> 798
<212> PRT
<213> Anabaena PCC7120

<400> 164

Met Leu Ile Thr Val Gln Gly Lys Tyr Ala Val Arg Ile Pro Leu Asp
1 5 10 15

Tyr Tyr Arg Ile Leu Gly Leu Pro Leu Ala Ala Ser Asp Glu Gln Leu
20 25 30

Arg Gln Ala Tyr Ser Asp Arg Ile Val Gln Leu Pro Arg Arg Glu Tyr
35 40 45

Ser Gln Ala Ala Ile Ala Ser Arg Lys Gln Leu Ile Glu Glu Ala Tyr
50 55 60

Val Val Leu Ser Asp Pro Lys Glu Arg Ser Ser Tyr Asp Gln Leu Tyr
65 70 75 80

Leu Ala His Ala Tyr Asp Pro Asp Asn Ala Ala Thr Thr Lys Val Ala
85 90 95

Val Glu Asn Arg Gly Asp Ser Asn Asn Gly His Phe Asp Val Gln Ser
100 105 110

Leu Ser Ile Glu Val Ser Ser Glu Glu Leu Ile Gly Ala Leu Leu Ile
115 120 125

Leu Gln Glu Leu Gly Glu Tyr Glu Leu Val Leu Lys Leu Gly Arg Asn
130 135 140

Tyr Leu Gly Asn Gln Asn Gly Thr Ala Ser Thr Arg Asn Gly Asn His
145 150 155 160

Arg Thr Pro Glu Glu Phe Leu Asp Ser Ser Glu Arg Pro Asp Ile Leu
165 170 175

Leu Thr Val Ala Leu Ala Ser Leu Glu Leu Gly Arg Glu Gln Trp Gln
180 185 190

Gln Gly His Tyr Glu Asn Ala Ala Leu Ser Leu Glu Thr Gly Gln Glu
195 200 205

Val Leu Phe Ser Glu Gly Ile Phe Pro Ser Val Gln Ala Glu Ile Gln
210 215 220

Ala Asp Leu Tyr Lys Leu Arg Pro Tyr Arg Ile Leu Glu Leu Leu Ala
225 230 235 240

Leu Pro Gln Glu Lys Thr Ile Glu Arg His Gln Gly Leu Asp Leu Leu
245 250 255

Gln Ser Ile Leu Asp Asp Arg Gly Gly Ile Asp Gly Thr Gly Asn Asp
260 265 270

Gln Ser Gly Leu Asn Ile Asp Asp Phe Leu Arg Phe Ile Gln Gln Leu
275 280 285

Arg His His Leu Thr Val Ala Glu Gln His Lys Leu Phe Asp Gly Glu
290 295 300

Ser Lys Arg Pro Ser Ala Val Ala Thr Tyr Leu Ala Val Tyr Ala Ser
305 310 315 320

Ile Ala Arg Gly Phe Thr Gln Arg Gln Pro Ala Leu Ile Arg His Ala
325 330 335

Lys Gln Ile Leu Met Arg Leu Ser Lys Arg Gln Asp Val His Leu Glu
340 345 350

Gln Ser Leu Cys Ala Leu Leu Gly Gln Thr Glu Glu Ala Thr Arg
355 360 365

Val Leu Glu Leu Ser Gln Glu Tyr Glu Ala Leu Ala Leu Ile Arg Glu
370 375 380

Lys Ser Gln Asp Ser Pro Asp Leu Leu Pro Gly Leu Cys Leu Tyr Ala
385 390 395 400

Glu Gln Trp Leu Gln Asn Glu Val Phe Pro His Phe Arg Asp Leu Ser
405 410 415

Arg Gln Gln Ala Ser Leu Lys Asp Tyr Phe Ala Asn Gln Gln Val Gln
420 425 430

Ala Tyr Leu Glu Ala Leu Pro Asn Asp Ala Glu Thr Thr Asn Glu Trp
435 440 445

Ala Val Ile Asn Arg Gln Ser Phe Ser Gln Pro Arg Gly Asn Ser Tyr
450 455 460

Ser Gly Gly Thr Pro Val Ala Lys Arg Pro Val Gly Lys Ala Asn Arg
465 470 475 480

Pro Gly Glu Ala Ser Thr Arg Pro Val Pro Gln Arg Ser His Pro Ser
485 490 495

Glu Val Asn Arg Gln Phe His Gln Asn Arg Thr Pro Asp Pro Glu Leu
500 505 510

Pro Glu Thr Ser Asn His Arg Arg Pro Glu Ser Ser Asn Phe Thr Thr
515 520 525

Ala Arg Glu Asn Ile Ser Thr Thr Asp Ala Tyr Thr Asp Asn Tyr Pro
530 535 540

Pro Glu Ile Pro Val Glu Arg Ala Ser Arg Pro Val Gln Pro Gly Val
545 550 555 560

Ser Gly Tyr Thr Gln Ser Thr Pro Pro Arg Gln Thr Pro Lys Arg Arg
565 570 575

Arg Arg Lys Lys Pro Gln Ala Val Val Asn Arg Gly His Ser Ile His
580 585 590

Gln Gln Arg Gln Pro Ser Pro Ser Thr Leu Gly Arg Lys Thr Arg Leu
595 600 605

Leu Trp Ile Val Leu Gly Ser Leu Gly Gly Ile Leu Leu Phe Trp Leu
610 615 620

Ile Val Ser Thr Thr Phe Gly Trp Leu Lys Asn Val Phe Phe Pro Ala
625 630 635 640

Pro Ser Leu Gln Gly Glu Gln Leu Ser Ile Gln Ile Ser Gln Pro Pro
645 650 655

Leu Glu Ile Pro Asp Lys Asn Ala Gln Ile Gln Ser Pro Glu Val Ser
660 665 670

Leu Thr Glu Glu Thr Ala Arg Lys Ile Ile Glu Asn Trp Leu Ala Thr
675 680 685

Lys Ala Ser Ala Leu Gly Ala Glu His Lys Ile Glu Ser Leu Asn Glu
690 695 700

Ile Leu Thr Gly Ser Ala Leu Ser Gln Trp Arg Leu Ile Ala Leu Gln
705 710 715 720

Asp Lys Ala Asp Asn Arg His Arg Glu Tyr Ser His Ser Val Lys Val
725 730 735

Asp Ser Ile Ser Lys Ser Asp Ile Asp Pro Asn Arg Ala Ser Val Gly
740 745 750

Ala Thr Val Arg Glu Leu Thr Gln Phe Tyr Glu Asn Gly Gln Lys Gly
755 760 765

Lys Ser Ser Asp Glu Arg Leu Arg Val Arg Tyr Glu Leu Ile Arg Gln
770 775 780

Asp Asp Ile Trp Arg Ile Gln Arg Met Ser Ala Ala Ile Asn
785 790 795

<210> 165
<211> 798
<212> PRT
<213> Anabaena PCC7120

<400> 165

Met Leu Ile Thr Val Gln Gly Lys Tyr Ala Val Arg Ile Pro Leu Asp
1 5 10 15

Tyr Tyr Arg Ile Leu Gly Leu Pro Leu Ala Ala Ser Asp Glu Gln Leu
20 25 30

Arg Gln Ala Tyr Ser Asp Arg Ile Val Gln Leu Pro Arg Arg Glu Tyr
35 40 45

Ser Gln Ala Ala Ile Ala Ser Arg Lys Gln Leu Ile Glu Glu Ala Tyr
50 55 60

Val Val Leu Ser Asp Pro Lys Glu Arg Ser Ser Tyr Asp Gln Leu Tyr
65 70 75 80

Leu Ala His Ala Tyr Asp Pro Asp Asn Ala Ala Thr Thr Lys Val Ala
85 90 95

Val Glu Asn Arg Gly Asp Ser Asn Asn Gly His Phe Asp Val Gln Ser
100 105 110

Leu Ser Ile Glu Val Ser Ser Glu Glu Leu Ile Gly Ala Leu Leu Ile
115 120 125

Leu Gln Glu Leu Gly Glu Tyr Glu Leu Val Leu Lys Leu Gly Arg Asn
130 135 140

Tyr Leu Gly Asn Gln Asn Gly Thr Ala Ser Thr Arg Asn Gly Asn His
145 150 155 160

Arg Thr Pro Glu Glu Phe Leu Asp Ser Ser Glu Arg Pro Asp Ile Leu
165 170 175

Leu Thr Val Ala Leu Ala Ser Leu Glu Leu Gly Arg Glu Gln Trp Gln
180 185 190

Gln Gly His Tyr Glu Asn Ala Ala Leu Ser Leu Glu Thr Gly Gln Glu
195 200 205

Val Leu Phe Ser Glu Gly Ile Phe Pro Ser Val Gln Ala Glu Ile Gln
210 215 220

Ala Asp Leu Tyr Lys Leu Arg Pro Tyr Arg Ile Leu Glu Leu Leu Ala
225 230 235 240

Leu Pro Gln Glu Lys Thr Ile Glu Arg His Gln Gly Leu Asp Leu Leu
245 250 255

Gln Ser Ile Leu Asp Asp Arg Gly Gly Ile Asp Gly Thr Gly Asn Asp
260 265 270

Gln Ser Gly Leu Asn Ile Asp Asp Phe Leu Arg Phe Ile Gln Gln Leu
275 280 285

Arg His His Leu Thr Val Ala Glu Gln His Lys Leu Phe Asp Gly Glu
290 295 300

Ser Lys Arg Pro Ser Ala Val Ala Thr Tyr Leu Ala Val Tyr Ala Ser
305 310 315 320

Ile Ala Arg Gly Phe Thr Gln Arg Gln Pro Ala Leu Ile Arg His Ala
325 330 335

Lys Gln Ile Leu Met Arg Leu Ser Lys Arg Gln Asp Val His Leu Glu
340 345 350

Gln Ser Leu Cys Ala Leu Leu Gly Gln Thr Glu Glu Ala Thr Arg
355 360 365

Val Leu Glu Leu Ser Gln Glu Tyr Glu Ala Leu Ala Leu Ile Arg Glu
370 375 380

Lys Ser Gln Asp Ser Pro Asp Leu Leu Pro Gly Leu Cys Leu Tyr Ala
385 390 395 400

Glu Gln Trp Leu Gln Asn Glu Val Phe Pro His Phe Arg Asp Leu Ser
405 410 415

Arg Gln Gln Ala Ser Leu Lys Asp Tyr Phe Ala Asn Gln Gln Val Gln
420 425 430

Ala Tyr Leu Glu Ala Leu Pro Asn Asp Ala Glu Thr Thr Asn Glu Trp
435 440 445

Ala Val Ile Asn Arg Gln Ser Phe Ser Gln Pro Arg Gly Asn Ser Tyr
450 455 460

Ser Gly Gly Thr Pro Val Ala Lys Arg Pro Val Gly Lys Ala Asn Arg
465 470 475 480

Pro Gly Glu Ala Ser Thr Arg Pro Val Pro Gln Arg Ser His Pro Ser
485 490 495

Glu Val Asn Arg Gln Phe His Gln Asn Arg Thr Pro Asp Pro Glu Leu
500 505 510

Pro Glu Thr Ser Asn His Arg Arg Pro Glu Ser Ser Asn Phe Thr Thr
515 520 525

Ala Arg Glu Asn Ile Ser Thr Thr Asp Ala Tyr Thr Asp Asn Tyr Pro
530 535 540

Pro Glu Ile Pro Val Glu Arg Ala Ser Arg Pro Val Gln Pro Gly Val
545 550 555 560

Ser Gly Tyr Thr Gln Ser Thr Pro Pro Arg Gln Thr Pro Lys Arg Arg
565 570 575

Arg Arg Lys Lys Pro Gln Ala Val Val Asn Arg Gly His Ser Ile His
580 585 590

Gln Gln Arg Gln Pro Ser Pro Ser Thr Leu Gly Arg Lys Thr Arg Leu
595 600 605

Leu Trp Ile Val Leu Gly Ser Leu Gly Gly Ile Leu Leu Phe Trp Leu
610 615 620

Ile Val Ser Thr Thr Phe Gly Trp Leu Lys Asn Val Phe Phe Pro Ala
625 630 635 640

Pro Ser Leu Gln Gly Glu Gln Leu Ser Ile Gln Ile Ser Gln Pro Pro
645 650 655

Leu Glu Ile Pro Asp Lys Asn Ala Gln Ile Gln Ser Pro Glu Val Ser
660 665 670

Leu Thr Glu Glu Thr Ala Arg Lys Ile Ile Glu Asn Trp Leu Ala Thr
675 680 685

Lys Ala Ser Ala Leu Gly Ala Glu His Lys Ile Glu Ser Leu Asn Glu
690 695 700

Ile Leu Thr Gly Ser Ala Leu Ser Gln Trp Arg Leu Ile Ala Leu Gln
705 710 715 720

Asp Lys Ala Asp Asn Arg His Arg Glu Tyr Ser His Ser Val Lys Val
725 730 735

Asp Ser Ile Ser Lys Ser Asp Ile Asp Pro Asn Arg Ala Ser Val Gly
740 745 750

Ala Thr Val Arg Glu Leu Thr Gln Phe Tyr Glu Asn Gly Gln Lys Gly
755 760 765

Lys Ser Ser Asp Glu Arg Leu Arg Val Arg Tyr Glu Leu Ile Arg Gln
770 775 780

Asp Asp Ile Trp Arg Ile Gln Arg Met Ser Ala Ala Ile Asn
785 790 795

<210> 166
<211> 2307
<212> DNA
<213> Nostoc punctiforme

<400>	166					
gtgcgaattc	cgctagatta	ctaccgaatt	ttaggactac	cgttagcggc	aagtgaagaa	60
caattgcgac	aggcatacag	cgatcgatt	gtacaattgc	cacgacgtga	gtattctcag	120
gcagcaattt	cttctcgtaa	acaactcata	gaagaagctt	acgtggttt	atcagatcca	180
aaacaacgca	gtacctacga	tcagcttat	cttgcccacg	cctatgaccc	tgataacctt	240
gctgctgccg	cagtagcaca	ggaaaatcgt	acagaaagca	ccaaaagggg	tagtgatacc	300
cagagtcttg	gtatagaaat	taccaagac	gaattagttg	gcgcttatt	aatttgcaa	360
gagttgggtg	aatacgaact	tgtattgaaa	ctaggtcgtc	cgtacctagt	aaataaaaat	420
agtgtacaa	gttcaagaaa	aagcaataac	ttagcagatg	aagaaatttta	tgaaagtgct	480
gaacacccag	atgtcggtct	cactgttgct	cttgccgtgc	tagaattagg	tcgggaacag	540
tggcagcaag	gtcactacga	aatgcccgc	atatccctag	aaactggtca	agagotgcta	600
gtacgtgaag	gtttgttctc	cagtatccag	gcagaaattc	aggctgatct	ttacaaattt	660
cggccatatac	gaattttgga	gttgctcgca	ttacctcaag	aaaagactgc	cgaacgaagc	720
caaggcttag	aattattgca	aaatctctta	gaagatcg	gcgggattga	tggcacgaac	780
aatgatgaat	cgggtttaaa	catagatgac	tttctgcgt	ttatccagca	gttacgcaac	840
cacttaacag	ttgcagaaca	gcacaagtt	tttgaagctc	aaagcaaacg	ttcttctgct	900
gttgcactt	acttagctgt	ttatgcctt	atagcgcgag	gatttgctca	acggcaac	960
gcttaattc	gtcaagcaag	acaaatgctc	gtgcgtctgg	gcaagcgcca	agatgtacat	1020
ttagaacagt	cgctatgtgc	cttactttt	ggccaaactg	aagaagcaac	tcgtgtttt	1080
gaacttagtc	aggagtacga	agctttagct	tttattcggg	aaaaatctca	ggactctcca	1140
gatttgttac	cgggtctgt	tttatatgca	gaacagtggc	tgcaacacga	agtcttccc	1200
catttcgag	atttagcaaa	ccagcaagct	ttcctaaaag	attactttgc	taaccaacag	1260
gtgcaagctt	atttagaagc	actgccaact	gatgccaaa	caactaatga	atgggctgta	1320
attaaccccc	agtatttcc	ccaggccaag	gcaaagaata	ctcattttca	taacaattca	1380
actaaaactt	cagcgtcatt	taatcacagc	agagtaccta	acccagattt	gccagaaaca	1440
ccaacaaaag	aaacctctga	atatccaaac	ttctcaccac	ctatgtggag	ttcatctgga	1500
agtataaaat	cagaggttcc	tgctgctgaa	aggatgagca	gaggtactaa	tcagcattt	1560
aacggttcag	ctaagagtgc	tgcattctggt	cataaccaa	agcgtaggcg	gagaaaac	1620
actccatctg	ctagccgaga	gcgtatacca	gataatcg	ctcattctcg	tcgtccccga	1680

aggcggcgaa	ctttgcgaa	caccatagaa	ggtaaaacac	ggctggtatg	gagagtgtt	1740
atttcttgg	ttagcatatt	agtttttgg	gtattagcca	caacaactt	tggatggta	1800
aaaaatctgt	ttttccctca	accttctccg	cctgatctac	agttgttgt	acaaataaac	1860
caaccaccgt	tacctattcc	cgtccaaat	agaaaaccag	aatcagaaga	aggccctta	1920
acaaatgcag	aggcagaaga	agttattcac	acttggttat	ctaccaaagc	cgcagctta	1980
gggcccatac	atgagattaa	taatttagag	caaattttaa	ctggttcagc	tttatctcaa	2040
tggcgactga	ttgctcaaca	gaataagtta	gacaatcgct	accgcaagtt	cgaccatagt	2100
ttgaagatag	aatctgttga	gaaaattgg	ttatggcag	atcggtccgc	agtagaagct	2160
acggtaaag	aagtgacgca	gttatatgaa	aataatcagt	ttaaaaactc	ttctaacgat	2220
aaattaagag	ttcggtatga	cttgattcga	gaacgaggta	aatggcgtat	tcagagtaca	2280
tctgttgtaa	atcaattcac	cagataaa				2307

<210> 167
 <211> 768
 <212> PRT
 <213> Nostoc punctiforme

<400> 167

Val	Arg	Ile	Pro	Leu	Asp	Tyr	Tyr	Arg	Ile	Leu	Gly	Leu	Pro	Leu	Ala
1				5				10					15		

Ala	Ser	Glu	Glu	Gln	Leu	Arg	Gln	Ala	Tyr	Ser	Asp	Arg	Ile	Val	Gln
		20						25				30			

Leu	Pro	Arg	Arg	Glu	Tyr	Ser	Gln	Ala	Ala	Ile	Ser	Ser	Arg	Lys	Gln
		35						40				45			

Leu	Ile	Glu	Glu	Ala	Tyr	Val	Val	Leu	Ser	Asp	Pro	Lys	Gln	Arg	Ser
		50				55					60				

Thr	Tyr	Asp	Gln	Leu	Tyr	Leu	Ala	His	Ala	Tyr	Asp	Pro	Asp	Asn	Leu
		65			70			75			80				

Ala	Ala	Ala	Ala	Val	Ala	Gln	Glu	Asn	Arg	Thr	Glu	Ser	Thr	Lys	Arg
					85			90				95			

Gly	Ser	Asp	Thr	Gln	Ser	Leu	Gly	Ile	Glu	Ile	Thr	Gln	Asp	Glu	Leu
			100					105				110			

Val Gly Ala Leu Leu Ile Leu Gln Glu Leu Gly Glu Tyr Glu Leu Val
115 120 125

Leu Lys Leu Gly Arg Pro Tyr Leu Val Asn Lys Asn Ser Ala Thr Ser
130 135 140

Ser Arg Lys Ser Asn Asn Leu Ala Asp Glu Glu Ile Tyr Glu Ser Ala
145 150 155 160

Glu His Pro Asp Val Val Leu Thr Val Ala Leu Ala Cys Leu Glu Leu
165 170 175

Gly Arg Glu Gln Trp Gln Gln Gly His Tyr Glu Asn Ala Ala Ile Ser
180 185 190

Leu Glu Thr Gly Gln Glu Leu Leu Val Arg Glu Gly Leu Phe Ser Ser
195 200 205

Ile Gln Ala Glu Ile Gln Ala Asp Leu Tyr Lys Leu Arg Pro Tyr Arg
210 215 220

Ile Leu Glu Leu Leu Ala Leu Pro Gln Glu Lys Thr Ala Glu Arg Ser
225 230 235 240

Gln Gly Leu Glu Leu Leu Gln Asn Leu Leu Glu Asp Arg Gly Gly Ile
245 250 255

Asp Gly Thr Asn Asn Asp Glu Ser Gly Leu Asn Ile Asp Asp Phe Leu
260 265 270

Arg Phe Ile Gln Gln Leu Arg Asn His Leu Thr Val Ala Glu Gln His
275 280 285

Lys Leu Phe Glu Ala Gln Ser Lys Arg Ser Ser Ala Val Ala Thr Tyr
290 295 300

Leu Ala Val Tyr Ala Leu Ile Ala Arg Gly Phe Ala Gln Arg Gln Pro
305 310 315 320

Ala Leu Ile Arg Gln Ala Arg Gln Met Leu Val Arg Leu Gly Lys Arg
325 330 335

Gln Asp Val His Leu Glu Gln Ser Leu Cys Ala Leu Leu Leu Gly Gln
340 345 350

Thr Glu Glu Ala Thr Arg Val Leu Glu Leu Ser Gln Glu Tyr Glu Ala
355 360 365

Leu Ala Phe Ile Arg Glu Lys Ser Gln Asp Ser Pro Asp Leu Leu Pro
370 375 380

Gly Leu Cys Leu Tyr Ala Glu Gln Trp Leu Gln His Glu Val Phe Pro
385 390 395 400

His Phe Arg Asp Leu Ala Asn Gln Gln Ala Phe Leu Lys Asp Tyr Phe
405 410 415

Ala Asn Gln Gln Val Gln Ala Tyr Leu Glu Ala Leu Pro Thr Asp Ala
420 425 430

Gln Thr Thr Asn Glu Trp Ala Val Ile Asn Pro Gln Tyr Phe Pro Gln
435 440 445

Ala Lys Ala Lys Asn Thr His Phe His Asn Asn Ser Thr Lys Thr Ser
450 455 460

Ala Ser Phe Asn His Ser Arg Val Pro Asn Pro Asp Leu Pro Glu Thr
465 470 475 480

Pro Thr Lys Glu Thr Ser Glu Tyr Pro Asn Phe Ser Pro Pro Met Trp
485 490 495

Ser Ser Ser Gly Ser Ile Lys Ser Glu Val Pro Ala Ala Glu Arg Met
500 505 510

Ser Arg Gly Thr Asn Gln His Leu Asn Gly Ser Ala Lys Ser Ala Ala
515 520 525

Ser Gly His Asn Gln Lys Arg Arg Arg Lys Pro Thr Pro Ser Ala
530 535 540

Ser Arg Glu Arg Ile Pro Asp Asn Arg Pro His Ser Arg Arg Pro Arg
545 550 555 560

Arg Arg Arg Thr Phe Ala Asn Thr Ile Glu Gly Lys Thr Arg Leu Val
565 570 575

Trp	Arg	Val	Phe	Ile	Ser	Leu	Val	Ser	Ile	Leu	Val	Phe	Trp	Val	Leu
580								585						590	
Ala	Thr	Thr	Thr	Phe	Gly	Trp	Leu	Lys	Asn	Leu	Phe	Phe	Pro	Gln	Pro
595							600						605		
Ser	Pro	Pro	Asp	Leu	Gln	Leu	Phe	Val	Gln	Ile	Asn	Gln	Pro	Pro	Leu
610						615						620			
Pro	Ile	Pro	Asp	Pro	Asn	Arg	Lys	Pro	Glu	Ser	Glu	Glu	Gly	Pro	Leu
625							630				635			640	
Thr	Asn	Ala	Glu	Ala	Glu	Glu	Val	Ile	His	Thr	Trp	Leu	Ser	Thr	Lys
645								650					655		
Ala	Ala	Ala	Leu	Gly	Pro	Asn	His	Glu	Ile	Asn	Asn	Leu	Glu	Gln	Ile
660								665					670		
Leu	Thr	Gly	Ser	Ala	Leu	Ser	Gln	Trp	Arg	Leu	Ile	Ala	Gln	Gln	Asn
675							680					685			
Lys	Leu	Asp	Asn	Arg	Tyr	Arg	Lys	Phe	Asp	His	Ser	Leu	Lys	Ile	Glu
690							695					700			
Ser	Val	Glu	Lys	Ile	Gly	Leu	Phe	Ala	Asp	Arg	Ala	Ala	Val	Glu	Ala
705							710				715			720	
Thr	Val	Lys	Glu	Val	Thr	Gln	Leu	Tyr	Glu	Asn	Asn	Gln	Phe	Lys	Asn
725								730					735		
Ser	Ser	Asn	Asp	Lys	Leu	Arg	Val	Arg	Tyr	Asp	Leu	Ile	Arg	Glu	Arg
740								745					750		
Gly	Lys	Trp	Arg	Ile	Gln	Ser	Thr	Ser	Val	Val	Asn	Gln	Phe	Thr	Arg
755								760					765		
<210>	168														
<211>	2145														
<212>	DNA														
<213>	Synechocystis	PCC6803													
<400>	168														
gtgttatcc	ccctcgactt	ttatcgtatt	ttaggcattc	ctccccagag	tggtgaaaa									60	
accattgagc	aggcctacca	agatcgccctt	ttacaattac	cccggcgaga	atttagtgac									120	

gccgcagtta	ctctccgcaa	tcaattactg	gcgatcgccct	atgaaaccct	gagggatccg	180
aaaaaacgtc	aggcatacga	ccaagaatgg	tggggagcca	tggatgaagc	cctggggag	240
gccttacccc	tcactacccc	ggagttggaa	tgtagcccag	agcaagaaaat	tggagccctg	300
ttgatcctgt	tggatttggg	ggaatacgaa	ctcgtggta	agtatggtga	gccagtactc	360
cacgatccca	accctccggc	gggaggcctg	ccccaggact	atttgcttc	ggtaattttg	420
gcccaactggg	aactgagccg	ggaacgttgg	caacaacagc	agtatgaatt	tgccgccacc	480
gccagtctta	aggcccttagc	tcggttgcaa	caggataatg	acttccccgc	cttggaaagca	540
gaaattcgtc	aggaactata	ccgtctgcga	ccctaccgta	tcctcgaact	tttggctaag	600
gaggggcaag	gggaggagca	acgtcagcag	ggtctagctc	tgttgc当地	gatggtgcag	660
gaccggggcg	gcattgaagg	taagggggaa	gattattccg	gattggaaa	tgatgacttt	720
ctaaaattca	tccaccaact	acgctgtcac	ctcacagtgg	ccgagcaaaa	cgcctatatt	780
ttgcccggaaa	gtcaacggcc	atcttagta	gcaagctatt	tggcagtaca	tagtotgatg	840
gctgagggag	tgaaggaaca	ggaccccatg	gccattgtcg	aagcaaaatc	tttGattata	900
cagttggaaa	attgtcaaga	tttggcccta	gaaaaggtaa	tttgtgaatt	attattgggt	960
caaacggaag	ttgttctggc	ggcgatcgac	cagggagatc	cggaaaatagt	agctggcctc	1020
gaatctaagt	tagcgacggg	ggaagacccc	ttaactgctt	tttatacttt	cactgagcag	1080
tggctagagg	aagaaattgt	cccctacttt	agggatctt	ctccggagac	cctttcccc	1140
aaggcctatt	tcaataatcc	ctccgttcag	cagtatctag	aacaactaga	gccggattcc	1200
ttcaccactg	acaattcttt	tgccctccct	gccctcctta	gcacggcaac	ggaatcgaa	1260
actcccatgg	tacatagttc	cgccgcccctt	cccgatcgcc	cttgacac	caccgttccc	1320
tcacgacggg	gacgcagtcc	aagacgttcc	cgagacgatg	ttttccccag	cgccgacaat	1380
tccagtggtt	tggccgtcac	caccctatct	ccggcgatcg	cctacgacac	ccactccttgc	1440
ggcaccaacg	gtattggcg	ggatagcact	agcaacggtt	tttccagtaa	ctccggccca	1500
gaatccacca	gtaaacataa	atctccccgg	cgacgcaaaa	aacgggtgac	catcaagccg	1560
gtgcgttcg	gcattttct	gcttgccta	gcaggcattg	tggggggggc	aactgcccta	1620
attatcaatc	gtactggcga	tcccctaggt	gggttgctag	aagaccccct	agatgtttc	1680
ctggaccaac	cttcagaatt	tatccccat	gaagccacga	gccggaattt	gattctcagt	1740
caacccaact	tcaatcagca	agtgggtcag	atggtagtac	aaggctggct	tgatagtaaa	1800
aagttagcct	ttggccaaaa	ctacgatgtc	ggggcattgc	agagtgtttt	agccccaaat	1860

ctccttgcgg aacaacgggg tcgggccccaa cgggatcaag cccaaaagg ctatcaccaa 1920
tacgaacaca agttgcagat tttagcctat caagttaacc cccaagaccc caaccgagcc 1980
accgttactg cccgggtaga agaaattagc cagccctta ccctaggtaa tcaacagcag 2040
aagggctccg ccaccaaaga tgacttgact gtgcgtatc agctagtacg acaccaaggg 2100
gtttggaaaa ttgaccaaata acaagtggta aatggccccc gttag 2145

<210> 169
<211> 714
<212> PRT
<213> Synechocystis PCC6803

<400> 169

Met Phe Ile Pro Leu Asp Phe Tyr Arg Ile Leu Gly Ile Pro Pro Gln
1 5 10 15

Ser Gly Gly Glu Thr Ile Glu Gln Ala Tyr Gln Asp Arg Leu Leu Gln
20 25 30

Leu Pro Arg Arg Glu Phe Ser Asp Ala Ala Val Thr Leu Arg Asn Gln
35 40 45

Leu Leu Ala Ile Ala Tyr Glu Thr Leu Arg Asp Pro Glu Lys Arg Gln
50 55 60

Ala Tyr Asp Gln Glu Trp Trp Gly Ala Met Asp Glu Ala Leu Gly Glu
65 70 75 80

Ala Leu Pro Leu Thr Thr Pro Glu Leu Glu Cys Ser Pro Glu Gln Glu
85 90 95

Ile Gly Ala Leu Leu Ile Leu Leu Asp Leu Gly Glu Tyr Glu Leu Val
100 105 110

Val Lys Tyr Gly Glu Pro Val Leu His Asp Pro Asn Pro Pro Ala Gly
115 120 125

Gly Leu Pro Gln Asp Tyr Leu Leu Ser Val Ile Leu Ala His Trp Glu
130 135 140

Leu Ser Arg Glu Arg Trp Gln Gln Gln Tyr Glu Phe Ala Ala Thr
145 150 155 160

Ala Ser Leu Lys Ala Leu Ala Arg Leu Gln Gln Asp Asn Asp Phe Pro
165 170 175

Ala Leu Glu Ala Glu Ile Arg Gln Glu Leu Tyr Arg Leu Arg Pro Tyr
180 185 190

Arg Ile Leu Glu Leu Leu Ala Lys Glu Gly Gln Gly Glu Glu Gln Arg
195 200 205

Gln Gln Gly Leu Ala Leu Leu Gln Ala Met Val Gln Asp Arg Gly Gly
210 215 220

Ile Glu Gly Lys Gly Glu Asp Tyr Ser Gly Leu Gly Asn Asp Asp Phe
225 230 235 240

Leu Lys Phe Ile His Gln Leu Arg Cys His Leu Thr Val Ala Glu Gln
245 250 255

Asn Ala Leu Phe Leu Pro Glu Ser Gln Arg Pro Ser Leu Val Ala Ser
260 265 270

Tyr Leu Ala Val His Ser Leu Met Ala Glu Gly Val Lys Glu Gln Asp
275 280 285

Pro Met Ala Ile Val Glu Ala Lys Ser Leu Ile Ile Gln Leu Glu Asn
290 295 300

Cys Gln Asp Leu Ala Leu Glu Lys Val Ile Cys Glu Leu Leu Gly
305 310 315 320

Gln Thr Glu Val Val Leu Ala Ala Ile Asp Gln Gly Asp Pro Lys Ile
325 330 335

Val Ala Gly Leu Glu Ser Lys Leu Ala Thr Gly Glu Asp Pro Leu Thr
340 345 350

Ala Phe Tyr Thr Phe Thr Glu Gln Trp Leu Glu Glu Glu Ile Val Pro
355 360 365

Tyr Phe Arg Asp Leu Ser Pro Glu Thr Leu Ser Pro Lys Ala Tyr Phe
370 375 380

Asn Asn Pro Ser Val Gln Gln Tyr Leu Glu Gln Leu Glu Pro Asp Ser
385 390 395 400

Phe Thr Thr Asp Asn Ser Phe Ala Ser Pro Ala Leu Leu Ser Thr Ala
405 410 415

Thr Glu Ser Glu Thr Pro Met Val His Ser Ser Ala Ala Leu Pro Asp
420 425 430

Arg Pro Leu Thr Ser Thr Val Pro Ser Arg Arg Gly Arg Ser Pro Arg
435 440 445

Arg Ser Arg Asp Asp Val Phe Pro Ser Ala Asp Asn Ser Ser Gly Leu
450 455 460

Ala Val Thr Thr Leu Ser Pro Ala Ile Ala Tyr Asp Thr His Ser Leu
465 470 475 480

Gly Thr Asn Gly Ile Gly Gly Asp Ser Thr Ser Asn Gly Phe Ser Ser
485 490 495

Asn Ser Ala Pro Glu Ser Thr Ser Lys His Lys Ser Pro Arg Arg Arg
500 505 510

Lys Lys Arg Val Thr Ile Lys Pro Val Arg Phe Gly Ile Phe Leu Leu
515 520 525

Cys Leu Ala Gly Ile Val Gly Gly Ala Thr Ala Leu Ile Ile Asn Arg
530 535 540

Thr Gly Asp Pro Leu Gly Gly Leu Leu Glu Asp Pro Leu Asp Val Phe
545 550 555 560

Leu Asp Gln Pro Ser Glu Phe Ile Pro Asp Glu Ala Thr Ser Arg Asn
565 570 575

Leu Ile Leu Ser Gln Pro Asn Phe Asn Gln Gln Val Gly Gln Met Val
580 585 590

Val Gln Gly Trp Leu Asp Ser Lys Lys Leu Ala Phe Gly Gln Asn Tyr
595 600 605

Asp Val Gly Ala Leu Gln Ser Val Leu Ala Pro Asn Leu Leu Ala Gln
610 615 620

Gln Arg Gly Arg Ala Gln Arg Asp Gln Ala Gln Lys Val Tyr His Gln
625 630 635 640

Tyr Glu His Lys Leu Gln Ile Leu Ala Tyr Gln Val Asn Pro Gln Asp
645 650 655

Pro Asn Arg Ala Thr Val Thr Ala Arg Val Glu Glu Ile Ser Gln Pro
660 665 670

Phe Thr Leu Gly Asn Gln Gln Lys Gly Ser Ala Thr Lys Asp Asp
675 680 685

Leu Thr Val Arg Tyr Gln Leu Val Arg His Gln Gly Val Trp Lys Ile
690 695 700

Asp Gln Ile Gln Val Val Asn Gly Pro Arg
705 710

<210> 170
<211> 714
<212> PRT
<213> Synechocystis PCC6803

<400> 170

Met Phe Ile Pro Leu Asp Phe Tyr Arg Ile Leu Gly Ile Pro Pro Gln
1 5 10 15

Ser Gly Gly Glu Thr Ile Glu Gln Ala Tyr Gln Asp Arg Leu Leu Gln
20 25 30

Leu Pro Arg Arg Glu Phe Ser Asp Ala Ala Val Thr Leu Arg Asn Gln
35 40 45

Leu Leu Ala Ile Ala Tyr Glu Thr Leu Arg Asp Pro Glu Lys Arg Gln
50 55 60

Ala Tyr Asp Gln Glu Trp Trp Gly Ala Met Asp Glu Ala Leu Gly Glu
65 70 75 80

Ala Leu Pro Leu Thr Thr Pro Glu Leu Glu Cys Ser Pro Glu Gln Glu
85 90 95

Ile	Gly	Ala	Leu	Leu	Ile	Leu	Leu	Asp	Leu	Gly	Glu	Tyr	Glu	Leu	Val
					100				105					110	
Val	Lys	Tyr	Gly	Glu	Pro	Val	Leu	His	Asp	Pro	Asn	Pro	Pro	Ala	Gly
	115					120						125			
Gly	Leu	Pro	Gln	Asp	Tyr	Leu	Leu	Ser	Val	Ile	Leu	Ala	His	Trp	Glu
	130					135					140				
Leu	Ser	Arg	Glu	Arg	Trp	Gln	Gln	Gln	Tyr	Glu	Phe	Ala	Ala	Thr	
	145					150				155			160		
Ala	Ser	Leu	Lys	Ala	Leu	Ala	Arg	Leu	Gln	Gln	Asp	Asn	Asp	Phe	Pro
					165				170				175		
Ala	Leu	Glu	Ala	Glu	Ile	Arg	Gln	Glu	Leu	Tyr	Arg	Leu	Arg	Pro	Tyr
		180				185					190				
Arg	Ile	Leu	Glu	Leu	Leu	Ala	Lys	Glu	Gly	Gln	Gly	Glu	Gln	Arg	
		195					200				205				
Gln	Gln	Gly	Leu	Ala	Leu	Leu	Gln	Ala	Met	Val	Gln	Asp	Arg	Gly	Gly
		210				215					220				
Ile	Glu	Gly	Lys	Gly	Glu	Asp	Tyr	Ser	Gly	Leu	Gly	Asn	Asp	Asp	Phe
		225				230				235			240		
Leu	Lys	Phe	Ile	His	Gln	Leu	Arg	Cys	His	Leu	Thr	Val	Ala	Glu	Gln
			245				250					255			
Asn	Ala	Leu	Phe	Leu	Pro	Glu	Ser	Gln	Arg	Pro	Ser	Leu	Val	Ala	Ser
			260				265				270				
Tyr	Leu	Ala	Val	His	Ser	Leu	Met	Ala	Glu	Gly	Val	Lys	Glu	Gln	Asp
			275				280				285				
Pro	Met	Ala	Ile	Val	Glu	Ala	Lys	Ser	Leu	Ile	Ile	Gln	Leu	Glu	Asn
			290				295				300				
Cys	Gln	Asp	Leu	Ala	Leu	Glu	Lys	Val	Ile	Cys	Glu	Leu	Leu	Gly	
			305				310				315		320		

Gln	Thr	Glu	Val	Val	Leu	Ala	Ala	Ile	Asp	Gln	Gly	Asp	Pro	Lys	Ile
														330	335
Val	Ala	Gly	Leu	Glu	Ser	Lys	Leu	Ala	Thr	Gly	Glu	Asp	Pro	Leu	Thr
														345	350
Ala	Phe	Tyr	Thr	Phe	Thr	Glu	Gln	Trp	Leu	Glu	Glu	Glu	Ile	Val	Pro
														360	365
Tyr	Phe	Arg	Asp	Leu	Ser	Pro	Glu	Thr	Leu	Ser	Pro	Lys	Ala	Tyr	Phe
														370	375
															380
Asn	Asn	Pro	Ser	Val	Gln	Gln	Tyr	Leu	Glu	Gln	Leu	Glu	Pro	Asp	Ser
														385	390
															395
															400
Phe	Thr	Thr	Asp	Asn	Ser	Phe	Ala	Ser	Pro	Ala	Leu	Leu	Ser	Thr	Ala
														405	410
															415
Thr	Glu	Ser	Glu	Thr	Pro	Met	Val	His	Ser	Ser	Ala	Ala	Leu	Pro	Asp
														420	425
															430
Arg	Pro	Leu	Thr	Ser	Thr	Val	Pro	Ser	Arg	Arg	Gly	Arg	Ser	Pro	Arg
														435	440
															445
Arg	Ser	Arg	Asp	Asp	Val	Phe	Pro	Ser	Ala	Asp	Asn	Ser	Ser	Gly	Leu
														450	455
															460
Ala	Val	Thr	Thr	Leu	Ser	Pro	Ala	Ile	Ala	Tyr	Asp	Thr	His	Ser	Leu
														465	470
															475
															480
Gly	Thr	Asn	Gly	Ile	Gly	Gly	Asp	Ser	Thr	Ser	Asn	Gly	Phe	Ser	Ser
														485	490
															495
Asn	Ser	Ala	Pro	Glu	Ser	Thr	Ser	Lys	His	Lys	Ser	Pro	Arg	Arg	Arg
														500	505
															510
Lys	Lys	Arg	Val	Thr	Ile	Lys	Pro	Val	Arg	Phe	Gly	Ile	Phe	Leu	Leu
														515	520
															525
Cys	Leu	Ala	Gly	Ile	Val	Gly	Gly	Ala	Thr	Ala	Leu	Ile	Ile	Asn	Arg
														530	535
															540

Thr Gly Asp Pro Leu Gly Gly Leu Leu Glu Asp Pro Leu Asp Val Phe
545 550 555 560

Leu Asp Gln Pro Ser Glu Phe Ile Pro Asp Glu Ala Thr Ser Arg Asn
565 570 575

Leu Ile Leu Ser Gln Pro Asn Phe Asn Gln Gln Val Gly Gln Met Val
580 585 590

Val Gln Gly Trp Leu Asp Ser Lys Lys Leu Ala Phe Gly Gln Asn Tyr
595 600 605

Asp Val Gly Ala Leu Gln Ser Val Leu Ala Pro Asn Leu Leu Ala Gln
610 615 620

Gln Arg Gly Arg Ala Gln Arg Asp Gln Ala Gln Lys Val Tyr His Gln
625 630 635 640

Tyr Glu His Lys Leu Gln Ile Leu Ala Tyr Gln Val Asn Pro Gln Asp
645 650 655

Pro Asn Arg Ala Thr Val Thr Ala Arg Val Glu Glu Ile Ser Gln Pro
660 665 670

Phe Thr Leu Gly Asn Gln Gln Lys Gly Ser Ala Thr Lys Asp Asp
675 680 685

Leu Thr Val Arg Tyr Gln Leu Val Arg His Gln Gly Val Trp Lys Ile
690 695 700

Asp Gln Ile Gln Val Val Asn Gly Pro Arg
705 710

<210> 171
<211> 819
<212> PRT
<213> Arabidopsis thaliana

<400> 171

Met Pro Val Ala Tyr Thr Phe Pro Val Leu Pro Ser Ser Cys Leu Leu
1 5 10 15

Cys Gly Ile Ser Asn Arg Ser Thr Ser Phe Val Val Asp Arg Pro Glu
20 25 30

Leu Gln Ile Ser Gly Leu Leu Val Val Arg Ser Glu Ser Gly Glu Phe
35 40 45

Phe Gly Ser Gly Leu Ser Leu Arg Arg Phe Gln Arg Glu Gly Arg Arg
50 55 60

Arg Leu Asn Ala Ala Gly Gly Ile His Val Val Asp Asn Ala Pro
65 70 75 80

Ser Arg Thr Ser Ser Leu Ala Ala Ser Thr Ser Thr Ile Glu Leu Pro
85 90 95

Val Thr Cys Tyr Gln Leu Ile Gly Val Ser Glu Gln Ala Glu Lys Asp
100 105 110

Glu Val Val Lys Ser Val Ile Asn Leu Lys Lys Thr Asp Ala Glu Glu
115 120 125

Gly Tyr Thr Met Glu Ala Ala Ala Arg Gln Asp Leu Leu Met Asp
130 135 140

Val Arg Asp Lys Leu Leu Phe Glu Ser Glu Tyr Ala Gly Asn Leu Lys
145 150 155 160

Glu Lys Ile Ala Pro Lys Ser Pro Leu Arg Ile Pro Trp Ala Trp Leu
165 170 175

Pro Gly Ala Leu Cys Leu Leu Gln Glu Val Gly Gln Glu Lys Leu Val
180 185 190

Leu Asp Ile Gly Arg Ala Ala Leu Arg Asn Leu Asp Ser Lys Pro Tyr
195 200 205

Ile His Asp Ile Phe Leu Ser Met Ala Leu Ala Glu Cys Ala Ile Ala
210 215 220

Lys Ala Ala Phe Glu Val Asn Lys Val Ser Gln Gly Phe Glu Ala Leu
225 230 235 240

Ala Arg Ala Gln Ser Phe Leu Lys Ser Lys Val Thr Leu Gly Lys Leu
245 250 255

Ala Leu Leu Thr Gln Ile Glu Glu Ser Leu Glu Gly Leu Ala Pro Pro
260 265 270

Cys Thr Leu Asp Leu Leu Gly Leu Pro Arg Thr Pro Glu Asn Ala Glu
275 280 285

Arg Arg Arg Gly Ala Ile Ala Ala Leu Arg Glu Leu Leu Arg Gln Gly
290 295 300

Leu Ser Val Glu Ala Ser Cys Gln Ile Gln Asp Trp Pro Cys Phe Leu
305 310 315 320

Ser Gln Ala Ile Ser Arg Leu Leu Ala Thr Glu Ile Val Asp Leu Leu
325 330 335

Pro Trp Asp Asp Leu Ala Ile Thr Arg Lys Asn Lys Lys Ser Leu Glu
340 345 350

Ser His Asn Gln Arg Val Val Ile Asp Phe Asn Cys Phe Tyr Met Val
355 360 365

Leu Leu Gly His Ile Ala Val Gly Phe Ser Gly Lys Gln Asn Glu Thr
370 375 380

Ile Asn Lys Ala Lys Thr Ile Cys Glu Cys Leu Ile Ala Ser Glu Gly
385 390 395 400

Val Asp Leu Lys Phe Glu Glu Ala Phe Cys Ser Phe Leu Leu Lys Gln
405 410 415

Gly Ser Glu Ala Glu Ala Leu Glu Lys Leu Lys Gln Leu Glu Ser Asn
420 425 430

Ser Asp Ser Ala Val Arg Asn Ser Ile Leu Gly Lys Glu Ser Arg Ser
435 440 445

Thr Ser Ala Thr Pro Ser Leu Glu Ala Trp Leu Met Glu Ser Val Leu
450 455 460

Ala Asn Phe Pro Asp Thr Arg Gly Cys Ser Pro Ser Leu Ala Asn Phe
465 470 475 480

Phe Arg Ala Glu Lys Lys Tyr Pro Glu Asn Lys Lys Met Gly Ser Pro
485 490 495

Ser Ile Met Asn His Lys Thr Asn Gln Arg Pro Leu Ser Thr Thr Gln
500 505 510

Phe Val Asn Ser Ser Gln His Leu Tyr Thr Ala Val Glu Gln Leu Thr
515 520 525

Pro Thr Asp Leu Gln Ser Pro Val Val Ser Ala Lys Asn Asn Asp Glu
530 535 540

Thr Ser Ala Ser Met Pro Ser Val Gln Leu Lys Arg Asn Leu Gly Val
545 550 555 560

His Lys Asn Lys Ile Trp Asp Glu Trp Leu Ser Gln Ser Ser Leu Ile
565 570 575

Gly Arg Val Ser Val Val Ala Leu Leu Gly Cys Thr Val Phe Phe Ser
580 585 590

Leu Lys Leu Ser Gly Ile Arg Ser Gly Arg Leu Gln Ser Met Pro Ile
595 600 605

Ser Val Ser Ala Arg Pro His Ser Glu Ser Asp Ser Phe Leu Trp Lys
610 615 620

Thr Glu Ser Gly Asn Phe Arg Lys Asn Leu Asp Ser Val Asn Arg Asn
625 630 635 640

Gly Ile Val Gly Asn Ile Lys Val Leu Ile Asp Met Leu Lys Met His
645 650 655

Cys Gly Glu His Pro Asp Ala Leu Tyr Leu Lys Ser Ser Gly Gln Ser
660 665 670

Ala Thr Ser Leu Ser His Ser Ala Ser Glu Leu His Lys Arg Pro Met
675 680 685

Asp Thr Glu Glu Ala Glu Glu Leu Val Arg Gln Trp Glu Asn Val Lys
690 695 700

Ala Glu Ala Leu Gly Pro Thr His Gln Val Tyr Ser Leu Ser Glu Val
705 710 715 720

Leu Asp Glu Ser Met Leu Val Gln Trp Gln Thr Leu Ala Gln Thr Ala
725 730 735

Glu Ala Lys Ser Cys Tyr Trp Arg Phe Val Leu Leu His Leu Glu Val
740 745 750

Leu Gln Ala His Ile Phe Glu Asp Gly Ile Ala Gly Glu Ala Ala Glu
755 760 765

Ile Glu Ala Leu Leu Glu Ala Ala Glu Leu Val Asp Glu Ser Gln
770 775 780

Pro Lys Asn Ala Lys Tyr Tyr Ser Thr Tyr Lys Ile Arg Tyr Ile Leu
785 790 795 800

Lys Lys Gln Glu Asp Gly Leu Trp Lys Phe Cys Gln Ser Asp Ile Gln
805 810 815

Ile Gln Lys

<210> 172
<211> 2857
<212> DNA
<213> Arabidopsis thaliana

<400> 172	
actgtcaaaa ctcaaaagcc ttgagaccaa atttccgatt ttttcctcctc tgaagaaaatc	60
caacaaattg taccatgatt ccagcttcac tctacttctt cttagggttcg ttcgaaaaatc	120
ggagctgttg cgcaatgcc a gtagcttaca catttccagt tctcccttct tcttgtctgc	180
tttgcggaat ctccaatcgc agcaccagct tcgtcgtaga tcgccccggag cttcagatct	240
caggctctcct cgtcgttcgt tctgaatccg gtgaattctt cgggtctgggt ttatcttgc	300
ggcggtttca gcgagaagga cggaggaggt tgaatgctgc tggtgggtatccatgtcg	360
tcgacaatgc gccgtctcgt acttcttctc tcgctgcata tacctctaca atcgaactcc	420
cggttacgtg ttaccagctt atcggagttt ctgagcaagc tgagaaagac gaggtcgtta	480
agtccgttat aaatttggaaa aaaactgatg ctgaagaggg ttatacaatg gaagctgctg	540
cagctcgcca ggatcttctc atggatgtta gggataaact tcttttgaa tcagaatatg	600

ctggtaacct aaaagaaaaag attgctccta aatctcctct cagaattccg tgggcatttgtt	660
tgcctggtgc tctatgcctt cttcaagagg ttggacaaga aaaacttgtg ctggatattg	720
gccgggctgc tctcaggaac cttgattcaa agccatatata tcatgatata ttcttatcta	780
tggcacttgc tgagtgtgca attgccaagg ctgcttcga ggttaacaag gtctctcaag	840
gatttgaagc tcttgctcggt gctcaaagtt ttctgaagag taaagttact cttggaaac	900
ttgcattgtt aactcagatt gaggagtcac tagagggct tgcaccaccc tgcacattgg	960
atctactggg cctgccacgc acgccagaaa atgcagagag gaggcgaggt gcaattgccg	1020
cgctacgcga actgctcaga cagggcctta gtgttgaagc ttcatgtcaa attcaagact	1080
ggccatgctt tttgagccag gcaatttagca ggttattggc cacagagatt gtcgatctc	1140
ttccatggga tgathtagcc attacacgga aaaataaaaa atcactggaa tcccacaatc	1200
aaagagttgt tattgatttt aattgtttct acatggtggt acttggtcac atcgctgttgc	1260
gattttcagg caagcaaaat gaaacgatta ataaagcaaa aacgatatgc gaatgtctca	1320
tagcatcaga aggtgttgcgt ctgaaatttg aggaagctt ttgctcattt cttctaaaac	1380
agggttccga ggcagaggcc ctggaaaaac ttaagcagct ggaatcaaatt tcagactctg	1440
ccggtcgtaa ttcgatcttgc gggaaagagt cgagaagttac ttctgctact ccctcactgg	1500
aagcgtggct aatggagtcgtt gtgcttgcata actttccaga cacaagggt tgttctccat	1560
ctttggccaa tttttccgg gctgaaaaga aatatccaga aaacaagaaa atggggtcac	1620
cttcgatcat gaatcataag acgaaccaaa gaccacttgc cacaacacag ttcgtgaact	1680
cgtcacaaca tctttataca gctgtcgagc agttgacacc aacagatttgc cagagccccag	1740
tggtatcagc caagaataat gatgaaacca gtgccagttt gccatctgtt caactgaaga	1800
ggaaccttgg tgtacacaaa aataaaatggatgagtg gctctctcaa agcagtttgc	1860
tcggaagggt atctgttgcgtt gctttactgg gttgcaccgt gttcttctct ctgaagctat	1920
caggcattag gtctggtaga ctacagagta tgcctatatac ggtttctgtt aggccgcatt	1980
cagaatcaga ttctttctg tgaaaacag agtctggaa tttcagaaaaa aaccttgatt	2040
ctgtgaatag aaatggtatac gtggaaaca tcaaagtgc cattgacatg taaaagatgc	2100
attgtggcga acatccggat gccctgtatc tgaaaagctc tggtaatca gctacatcat	2160
tgtctcatttgc tgcgtcagaa ctgcataaga gaccaatggta tacagaagaa gcggaaagagc	2220
ttgtgagaca gtggaaaaat gttaaggctg aagctttgg accaacacat caagtttata	2280
gcctttccga agtccttgcgtt gatccatgc ttgtccagtg gcaaacatttgc acacaaacag	2340

cagaggcgaa atcctgttat	tggaggttcg ttctgcttca	tcttgagggtt ttgcaagcac	2400
atataattcga agatggtatt	gctggtgagg ctgcagaaat	cgaagctctt ctggaggaag	2460
cagcagaatt agttgatgaa	tctcagccca aaaacgcaaa	atattatagc acttacaaga	2520
tccgatatat tctgaagaag	caagaagatg gattgtggaa	attctgccaa agcgatattc	2580
aaatacagaa gtgaaaatcc	cccagaaaaaa aaagctcatc	atctaactaa aggtttagc	2640
atcaacagta gaacatggga	tcathtagct aacggttgtt	cttgcacc taacggtgta	2700
ggaaaagtctc aggtttgttt	ctttattcct tagtaaccca	caggatttgtt cttttagat	2760
tctttgatt tcaatgtgtt	tatggataaa caaacttctt	gagtattttt tttattatta	2820
ttgtaaagcg ttactgatca	caaaaaaaaaa aaaaaaaaaa		2857

<210> 173
 <211> 819
 <212> PRT
 <213> Arabidopsis thaliana

 <400> 173

Met Pro Val Ala Tyr Thr Phe Pro Val Leu Pro Ser Ser Cys Leu Leu			
1	5	10	15

Cys Gly Ile Ser Asn Arg Ser Thr Ser Phe Val Val Asp Arg Pro Glu			
20	25	30	

Leu Gln Ile Ser Gly Leu Leu Val Val Arg Ser Glu Ser Gly Glu Phe			
35	40	45	

Phe Gly Ser Gly Leu Ser Leu Arg Arg Phe Gln Arg Glu Gly Arg Arg			
50	55	60	

Arg Leu Asn Ala Ala Gly Gly Ile His Val Val Asp Asn Ala Pro			
65	70	75	80

Ser Arg Thr Ser Ser Leu Ala Ala Ser Thr Ser Thr Ile Glu Leu Pro			
85	90	95	

Val Thr Cys Tyr Gln Leu Ile Gly Val Ser Glu Gln Ala Glu Lys Asp			
100	105	110	

Glu Val Val Lys Ser Val Ile Asn Leu Lys Lys Thr Asp Ala Glu Glu			
115	120	125	

Gly Tyr Thr Met Glu Ala Ala Ala Arg Gln Asp Leu Leu Met Asp
130 135 140

Val Arg Asp Lys Leu Leu Phe Glu Ser Glu Tyr Ala Gly Asn Leu Lys
145 150 155 160

Glu Lys Ile Ala Pro Lys Ser Pro Leu Arg Ile Pro Trp Ala Trp Leu
165 170 175

Pro Gly Ala Leu Cys Leu Leu Gln Glu Val Gly Gln Glu Lys Leu Val
180 185 190

Leu Asp Ile Gly Arg Ala Ala Leu Arg Asn Leu Asp Ser Lys Pro Tyr
195 200 205

Ile His Asp Ile Phe Leu Ser Met Ala Leu Ala Glu Cys Ala Ile Ala
210 215 220

Lys Ala Ala Phe Glu Val Asn Lys Val Ser Gln Gly Phe Glu Ala Leu
225 230 235 240

Ala Arg Ala Gln Ser Phe Leu Lys Ser Lys Val Thr Leu Gly Lys Leu
245 250 255

Ala Leu Leu Thr Gln Ile Glu Glu Ser Leu Glu Gly Leu Ala Pro Pro
260 265 270

Cys Thr Leu Asp Leu Leu Gly Leu Pro Arg Thr Pro Glu Asn Ala Glu
275 280 285

Arg Arg Arg Gly Ala Ile Ala Ala Leu Arg Glu Leu Leu Arg Gln Gly
290 295 300

Leu Ser Val Glu Ala Ser Cys Gln Ile Gln Asp Trp Pro Cys Phe Leu
305 310 315 320

Ser Gln Ala Ile Ser Arg Leu Leu Ala Thr Glu Ile Val Asp Leu Leu
325 330 335

Pro Trp Asp Asp Leu Ala Ile Thr Arg Lys Asn Lys Lys Ser Leu Glu
340 345 350

Ser His Asn Gln Arg Val Val Ile Asp Phe Asn Cys Phe Tyr Met Val
355 360 365

Leu Leu Gly His Ile Ala Val Gly Phe Ser Gly Lys Gln Asn Glu Thr
370 375 380

Ile Asn Lys Ala Lys Thr Ile Cys Glu Cys Leu Ile Ala Ser Glu Gly
385 390 395 400

Val Asp Leu Lys Phe Glu Glu Ala Phe Cys Ser Phe Leu Leu Lys Gln
405 410 415

Gly Ser Glu Ala Glu Ala Leu Glu Lys Leu Lys Gln Leu Glu Ser Asn
420 425 430

Ser Asp Ser Ala Val Arg Asn Ser Ile Leu Gly Lys Glu Ser Arg Ser
435 440 445

Thr Ser Ala Thr Pro Ser Leu Glu Ala Trp Leu Met Glu Ser Val Leu
450 455 460

Ala Asn Phe Pro Asp Thr Arg Gly Cys Ser Pro Ser Leu Ala Asn Phe
465 470 475 480

Phe Arg Ala Glu Lys Lys Tyr Pro Glu Asn Lys Lys Met Gly Ser Pro
485 490 495

Ser Ile Met Asn His Lys Thr Asn Gln Arg Pro Leu Ser Thr Thr Gln
500 505 510

Phe Val Asn Ser Ser Gln His Leu Tyr Thr Ala Val Glu Gln Leu Thr
515 520 525

Pro Thr Asp Leu Gln Ser Pro Val Val Ser Ala Lys Asn Asn Asp Glu
530 535 540

Thr Ser Ala Ser Met Pro Ser Val Gln Leu Lys Arg Asn Leu Gly Val
545 550 555 560

His Lys Asn Lys Ile Trp Asp Glu Trp Leu Ser Gln Ser Ser Leu Ile
565 570 575

Gly Arg Val Ser Val Val Ala Leu Leu Gly Cys Thr Val Phe Phe Ser
580 585 590

Leu Lys Leu Ser Gly Ile Arg Ser Gly Arg Leu Gln Ser Met Pro Ile
595 600 605

Ser Val Ser Ala Arg Pro His Ser Glu Ser Asp Ser Phe Leu Trp Lys
610 615 620

Thr Glu Ser Gly Asn Phe Arg Lys Asn Leu Asp Ser Val Asn Arg Asn
625 630 635 640

Gly Ile Val Gly Asn Ile Lys Val Leu Ile Asp Met Leu Lys Met His
645 650 655

Cys Gly Glu His Pro Asp Ala Leu Tyr Leu Lys Ser Ser Gly Gln Ser
660 665 670

Ala Thr Ser Leu Ser His Ser Ala Ser Glu Leu His Lys Arg Pro Met
675 680 685

Asp Thr Glu Glu Ala Glu Glu Leu Val Arg Gln Trp Glu Asn Val Lys
690 695 700

Ala Glu Ala Leu Gly Pro Thr His Gln Val Tyr Ser Leu Ser Glu Val
705 710 715 720

Leu Asp Glu Ser Met Leu Val Gln Trp Gln Thr Leu Ala Gln Thr Ala
725 730 735

Glu Ala Lys Ser Cys Tyr Trp Arg Phe Val Leu Leu His Leu Glu Val
740 745 750

Leu Gln Ala His Ile Phe Glu Asp Gly Ile Ala Gly Glu Ala Ala Glu
755 760 765

Ile Glu Ala Leu Leu Glu Ala Ala Glu Leu Val Asp Glu Ser Gln
770 775 780

Pro Lys Asn Ala Lys Tyr Tyr Ser Thr Tyr Lys Ile Arg Tyr Ile Leu
785 790 795 800

Lys Lys Gln Glu Asp Gly Leu Trp Lys Phe Cys Gln Ser Asp Ile Gln
805 810 815

Ile Gln Lys

```

<210> 174
<211> 491
<212> DNA
<213> Triticum aestivum

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (451)..(451)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (471)..(471)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (483)..(484)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (487)..(487)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (489)..(490)
<223> n is a, c, g, or t

<400> 174
ggccgtcggc aaatactgca gnttgcacat gatactctca caaaccagag ctcccgacc 60
gagtagtgcacc gcgcgccttc tgaggaccgt gacgcggcgc tcacactgga tgttgcttgg 120
gacaagggttc cgggtgtgct atgtgccctt caggaggctg gggaggcaca ggcagtgctt 180
gcaattggag agcacttact ggaggaccgc ccgcggcaagc gggtcaagca ggatgtggtg 240
ctggcaatgg cgctcgctta tgtggacata tcaaggatg caatggcggc tagccctcca 300
gatgtaatcc gctgctgtga ggtgcttcaa agggctctca agctcttgcga ggaggatggg 360
gcaatcaacc ttgcacctgg tctgcttca caaattgatg aaactctgga ggagatcaca 420
cctcggtgtg ttttggagct tcttgcctt nctcttgatg aaaaacatca nattgaacgc 480
cannaangnn t 491

```

```

<210> 175
<211> 545
<212> DNA
<213> Gossypium arboreum

<220>
<221> misc_feature
<222> (528)..(528)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (536)..(536)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (540)..(540)
<223> n is a, c, g, or t

<400> 175
aattgcagaa ggcattgttc gcaagtggca gaacattaaa tctgaggcgt ttggacctga      60
tcaccgcctt gataaattgc cagaggttct ggatggtcaa atgttgaaga catggacaga      120
tcgtgcagcc gaaatcgctc agcttggttg ggtatatgaa tatagtctac tgaacatggc      180
cattgacagt gttacccttt cactagatgg ccagcgagct gttagtcgaag ctactctgga      240
agaatccacc tgcttgactg atgttcatca tccggagaac aatgcctcta atgtaaactc      300
ctacaccacg agatatgaga tgtcttggtc caactcaggc tggaaaatca ctgaaggatc      360
tgtctacaaa tcttaactat gatgtataaa gcataaaaag cctgaaagct ccaatgtgg      420
taccagctt gccttttac gtagctatat ttgttatatt gtttgagaaa acaagagttt      480
gcgtttcca gtcatgcaag cagttcaa ataaaagaggc aatgcttntc atgganaacn      540
aaatg                                              545

<210> 176
<211> 420
<212> DNA
<213> Hordeum vulgare

<400> 176
gatgagccc tacagattcc taaaatggat gcgaagctgg cagaagatata tggcgcaag      60
tggcagagca tcaaattccaa ggcctggta tcagatcatt ctgttgcattc attgcaagag      120
gttcttgatg gcaacatgct gaaggtatgg acagaccgag cagcagagat tgagcgcaaa      180
ggctggttct gggactacac gctgttcaac gtggcgatcg acagcatcac cgtctccctg      240
gacggacggc gggcgaccgt ggaggcgaca attgaggagg cgggtcagct caccgacgca      300

```

accgacccca	ggaacgatga	tttgtacgac	actaagtaca	ccacccggta	cgagatggcc	360
ttcacccggac	caggagggtg	gaagataacc	gaaggcgcag	tcctcaagtc	gtcatagggc	420
<210> 177						
<211> 606						
<212> DNA						
<213> <i>Triticum aestivum</i>						
<400> 177						
ctgcaaatct	agcactatgt	ttctcttat	ctccaggatc	tagccttagca	ccaacaatcc	60
aaatacaaca	caagaaaaat	aaagctcttc	gtcgatcaca	tcaagactaac	gcaactatcg	120
gtcttccaaa	ctaaaaaggg	cctagactgc	ctgcttattt	acacacccccc	aaaagaaaaac	180
tggaaggaat	taacaaacctt	aatgaggta	ccgcacacca	actaccctaa	gacgacttga	240
ggaccgcgcc	ttccattatc	ttccaccctc	ctagtcgggt	gaaggtcatc	tcataccggg	300
tgggtactt	cgtgtcgta	gagtcgttgt	tcttgggtc	ggttgcgtcg	atgagctggc	360
ctgcctcctc	gatcggtgcc	tccacggtcg	cccgccgtcc	gtccaggag	accgtgatgc	420
tgtcgatcgc	cacgtcagac	agtgtgtagt	cccagaacca	gccttgcgc	ccgatctccg	480
ctgctcggtc	cgtccatacc	ttcagcatgt	tgccatcaag	aacctcttgc	aatgattcca	540
cagaatgatc	tgatcccaag	gccttggttt	tgataactctg	ccacttgcga	acaatatctt	600
ctgcca						606
<210> 178						
<211> 563						
<212> DNA						
<213> <i>Gossypium arboreum</i>						
<400> 178						
tttttttttt	tttttttttt	tttttttttt	ttttttttaa	cttgcctctt	ttaatttcaa	60
ctgcttgcct	gactggaaaa	ccctaactct	tgtttctca	aacaattttaa	caaataatgc	120
tccctaaaaa	ggcaaagctg	gtaaccacat	tggagcttgc	aggctttta	tgcttataac	180
atcatagtta	aaatttgtag	acagatcctt	cagtgatttt	ccaacctgag	ttggaacaaa	240
acatctcata	tttcgtgggg	taggatTTA	cattacaggc	attgttctcc	ggatgatgaa	300
cattactcaa	gccggggggt	tcttccaaaa	taacttcgac	tacagctcgc	tggccattta	360
atgaaagggt	aacactgtca	atggccctgt	tcagtcaact	ttattcatat	acccaaccca	420

gctgaccgat	ttcggctgca	ccaactgtcc	atgtttcaa	catttgacca	tccaaaacct	480
ttggcaattt	atcaaggggg	ggatcaagtc	caaacgcctc	agatttaatg	ttctgccact	540
tgcgaaacaat	gcctttgca	att				563
<210>	179					
<211>	360					
<212>	DNA					
<213>	Hordeum vulgare					
<400>	179					
gatgagccca	tacagattcc	taaaatggat	gcgaagctgg	cagaagatat	tgttcgcaag	60
tggcagagca	tcaaatccaa	ggccttggga	tcagatcatt	ctgttgcatc	attgcaagag	120
gttcttgatg	gcaacatgct	gaaggtatgg	acagaccgag	cagcagagat	tgagcgcaaa	180
ggctggttct	gggactacac	gctgttcaac	gtggcgatcg	acagcatcac	cgtctccctg	240
gacggacggc	ggcgaccgt	ggaggcgaca	attgaggagg	cgggtcagct	caccgacgca	300
accgacccca	ggaacgatga	tttgtacgac	actaagtaca	ccacccggta	cgagatggcc	360
<210>	180					
<211>	300					
<212>	DNA					
<213>	Hordeum vulgare					
<400>	180					
tgatggcaac	atgctgaagg	tatggacaga	ccgagcagca	gagattgagc	gcaaaggctg	60
gttctggac	tacacgctgt	tcaacgtggc	gatcgacagc	atcaccgtct	ccctggacgg	120
acggcggcgc	accgtggagg	cgacaattga	ggaggcgggt	cagtcaccg	acgcaaccga	180
ccccaggaac	gatgatttgc	acgacactaa	gtacaccacc	cggtacgaga	tggccttcac	240
cggaccagga	gggtggaaga	taaccgaagg	cgcagtcctc	aagtcgtcat	agggcggtca	300
<210>	181					
<211>	549					
<212>	DNA					
<213>	Triticum monococcum					
<400>	181					
tttttttttt	ttttttttca	gcggcaaatt	cagcactatg	tttcttttat		60
ccccaaactca	aagatcttct	aagcttagcaa	taatccgaaa	acgacacagg	aaaaaacaaa	120
gctcatcgct	gattgcacat	cagactaacc	aaactatctc	caacttccaa	actgagaagg	180
gcctagactg	cttatttaca	caccaaaaag	aacacgggag	aatcaatca	acaaaggct	240

actgcacacc	gaacgcccta	tgacgacttg	aggaccgcac	cttctgttat	cttccaccct	300
cctggtccag	tgaaggtcat	ctcgtaaccgg	gtggtgtact	tagtgtcgta	caaatcgttg	360
ttcctgggt	cggttgcata	ggtaagctgg	cctgcctcct	caattgtcg	ctccacagtc	420
gcccgtcg	cgtccaggga	gacggtgatg	ctgtcaatcg	ccacgtcgga	cagcgtgtag	480
tcccagaacc	agccttgcg	ctcgatctct	gctgctcggt	ccctccatac	cttcagcatg	540
ttgccatca						549
<210>	182					
<211>	573					
<212>	DNA					
<213>	Hordeum vulgare					
<220>						
<221>	misc_feature					
<222>	(6)..(6)					
<223>	n is a, c, g, or t					
<220>						
<221>	misc_feature					
<222>	(16)..(16)					
<223>	n is a, c, g, or t					
<400>	182					
gcgagnaagg	acgagnatcg	tcaagtccgc	catcgagctg	aggaaatcg	agatcgaaga	60
tgggtacacg	gaggaggtgt	ccacctgcag	acaggctctg	ctgctggacg	tgagagacaa	120
gcttctcttt	gaacaggagt	acgcaggaag	caccagggcc	aagggtccgc	ccagatcctc	180
tcttcatata	ccctggagct	ggtgcctgc	tgccttgtgt	gtctgcagg	aggttgggga	240
agagaagctg	gtcttgaca	ttggtcaggc	agctctacga	cgccttgatt	ctaagccata	300
tgctcacat	gtacttcttg	caatggcact	agctgaatgc	tccattgcaa	aagctagctt	360
tgaaaaaaagt	aaagtatctc	ttggcttga	ggctctagca	cgtgctcaat	atcttttag	420
gaaaaaaaaacca	tcttagaga	agatgcctct	tcttgagcag	atcgaagaat	cacttgaaga	480
gcttgcacca	gcttgcactc	tagaggttt	aagcctgccc	cgtacacac	tga	540
acgcaggcgt	ggtgctattg	cagctctctg	tga			573
<210>	183					
<211>	400					
<212>	DNA					
<213>	Beta vulgaris					

<400> 183		
gcataacacg gcaagaagat gttgcagtta atggcttgg aaatgaggat gttacaatgg	60	
agcttggccg tgataaacact ttagattatg tgaatttagc cagttcaaat tttactgaag	120	
ataatatcga gcaagaatcg gttactgaga agataaaaaga tttaggtgtg aaggttatgt	180	
gtgccggtgt ggtgattgga ctgacaacctt tggctggcat gaaacttttg cctggcagaa	240	
gtgggtctgc cattccacac aggcacatctt gttctgtgt ggcttctgat gtctccagtg	300	
tggggctctc agtaaatgaa actactgagg agaaagtacc aaaaatggat gcaagacttg	360	
cagaagttct agttagaaga tggcagaacg tttaaatcaca	400	
<210> 184		
<211> 631		
<212> DNA		
<213> Prunus persica		
<220>		
<221> misc_feature		
<222> (21)..(21)		
<223> n is a, c, g, or t		
<400> 184		
gcagttgcaa ttgctgggg ngattcacta cgtaaaaatt tcatgaacga ggccttcgg	60	
catatgactg cagctgagca gttgattta ttgttagcta cccccagtaa tatcccgca	120	
gaaagctttg aagtttatgg ggtggcttt gcgcgttgg ctcaagcctt tggtggtaaa	180	
aaacctcatc acattcaaga tgctaaaaac ctattccaga aacttcagca gtctaaggta	240	
acagctgttag gacattctct tgacaactat ataaccaaag aaagcagtga gataacttt	300	
gcttggaga ggggactctg ttcaattttt ctaggggacc ttgatgacag tcgttcgtgg	360	
ttgggcctag acagtaatga ttcaaccat agaaatccat ctgttgtaga ctttgcgg	420	
gagaactcaa aggatgacga tgacaatgac aatgacaatg atcttcctgg actttgcaag	480	
ctattggaga cgtggttgat ggaggtggta ttccccaggt ttagagacac caaagacata	540	
gagttcagac tgggagacta ctatgatgat cctacagtct tgagatactt agaaaggctg	600	
gatggcacta atggttcacc cttagctgct g	631	
<210> 185		
<211> 647		
<212> DNA		
<213> Helianthus annuus		

<400>	185					
cagaaagagg	tggctggatt	gatgactttg	gctggcttga	aatttataacc	gtcttaaaca	60
ggctctacta	gtactactgc	tcgtaaagaa	gttgattcgg	ctctggcttc	agacgtcacc	120
aatgtggagg	attcttagggt	tgaggatgct	gaagacattc	ctaaaatgga	tgcaagatta	180
gccgaaggtc	tagttcgtaa	gtggcagagc	ataaaatccc	aagcccttgg	acctgagcat	240
tgccactcaa	aattatcata	ggtatttagat	ggtgaaatgc	acaagatctg	gcttcaacgg	300
gcaaccgaaa	ttgctcaacg	tggttggttt	tgggactaca	cgctttaaa	cattaccatt	360
gacagtgtta	ccgtttcaact	cgatgggcgc	ttagctgttgc	tggaaagcaac	ccttgaagag	420
tctgccaagt	tgattgattt	gaccacccg	gaaaacaatg	actcctataaa	tttaacttac	480
accacacgtt	atgagatgtc	gtgtgccaag	tcatcatgga	aaatcacaaa	gggggctgtc	540
ctcaaatatcat	aacagatgta	attcttctc	acctttctg	tatttatctg	ttattagatt	600
actcagcagt	tgaatgata	gtttctccac	catttcgatc	atgagcg		647
<210>	186					
<211>	652					
<212>	DNA					
<213>	Helianthus annuus					
<400>	186					
tgtgggtgg	ggattgatga	cttggctgg	cttggaaattt	acaccgtcca	aaagaggctc	60
tactagta	actgctcgta	aagaagtga	ttcggctctg	gcttcagacg	tcaccaatag	120
gattctagg	ttgaggatgc	tgaagacatt	cctaaaatgg	atgcaagatt	agccgagggt	180
ctagttcgta	agtggcagag	cataaaatcc	caagcccttg	gacctgagca	ttgccactca	240
aaattatcag	aggtattaga	tggtaaaatg	cacaagatct	ggcttcaacg	ggcaaccgaa	300
attgctcaac	gtgggtgg	ttggactac	acgctttaa	acattaccat	tgacagtgtt	360
accgtctcac	tcgatgggcgc	cttagctgtt	gtggaagcaa	cccttgaaga	gtctgccaag	420
ttgattgatt	tgacccaccc	ggaaaacaat	gactcctata	attnaactta	caccacacgt	480
tatgagatgt	cgtgtgcca	gtcttcatgg	aaaatcacaa	agggggctgt	cctcaaata	540
taacagatgt	aattcttct	cacctttct	gtattnaact	gttattagat	tactcagcag	600
ttgaatgata	tgtttctcca	ccatatcgat	catgagtgta	tttggtgctg	cc	652
<210>	187					
<211>	460					
<212>	DNA					
<213>	Populus tremula					

<400> 187		
gactgaaaaa ataaaagatg ccagtatcaa aatatgtgtg ctggtgtggc aattggactg	60	
ctgactttag ctggcctgaa gtgtttcct cctaggactg gtccttcat tcgacagaaa	120	
gaaattggtt cgccaatggc atctgacacc atcaatttga attcagcagt agatgaacaa	180	
atttccgagg acttaccagg aatggatgca aggggtgcag aggatatagt tcgcaagtgg	240	
caaaacatta aatctcaggc ttttggact gatcaactgcc tggcaaaattt gccagaggtt	300	
ttggatagtc agatgttcaa aatatggaca gatcggtcgcc ccgaaattgc acatcttggt	360	
tgggtatacg agtatatgct gttggacctg actattgaca gtgtgactgt atctgttagat	420	
ggcctaaatg ctgttagtaga agcaacactc aaagagtcaa	460	
<210> 188		
<211> 3933		
<212> DNA		
<213> Chlamydomonas reinhardtii		
<400> 188		
atgaactcggtt cgagcacgt ctctgttgcc gtggactatt accgaatgct gcacgttccc	60	
cgcgttaagcc gcccgtacgc cattcgcaag gcgtatgaga acctggtaa gcaaccccccc	120	
gctgccgcgt actctgcgga caccctttc gcacgcgcgg tgctactcaa ggcagccgcg	180	
gagtcgtga ccgaccggc cctgcgcgc tcataatgacg ccaagctggc cgctggtcac	240	
acagccctgc gcgtcagcca gcaggaccta cccggagccc ttgtcggtgc gcaggaggtg	300	
agccgtgctc tggcgaccgc tcaacccctt gcgaccgcta aaaccatcag cacatatacg	360	
acatataaat tcccatgggt tctgtactac cgcacccccc tctgaagggg gcgagttttc	420	
attcttcacg catgagcgca gacttttacc ctatcaagtc cgcacccctcgccgc cgcaccccttc	480	
ttccacaga tcggcgagca ccagttgggt ctggatctgg gtctgcgtgc gctagaggtt	540	
aacggcgcc agcccgacgc cggcgacgtg gcccgtccgc tgccctggc ctactgtgac	600	
cgcgtggcg agcgcctcac ctcccgatgt cagccgcgc cggcctcagc gctgccaggc	660	
cccgatggcg cggcggtgcc gcacgcgcac gtggcgccgg tgctgcccgc atgcgacgac	720	
ctggacgcag cgctgagcaa gctccggcg gacggatgg cgcagcagct gcagcagcag	780	
atcgtggcg cgctgcgggtt gaggctggag cagggctgg accggcaacc ggtcatagat	840	
gtagacacag ggatgttaggc gtcgatgcga gggatggaa gtatgggtc ctgtgagtgt	900	
gagccgatgg aaggtataga tgctgggagc tggcgacccc gacccatgtc atccaaggac	960	
ttggctgtatg catcgctcac ccccgccctc caacccgaat gcccgttgcagga cctggcgcca	1020	

gagtacgcgt	gcgagctggc	cgcctgccg	ctgggcgccg	agaccgccgc	ccggcgccc	1080
aaggcggtgg	cgctcatgcg	cggtgtgctg	cgcgccccc	ccaccgtggc	cgccgccaca	1140
gccaagtagg	tgacaagcac	gcaggaaatc	gtgtgtata	ttgcattgcg	gtacattgcc	1200
ttgcattgcg	gaggcagtgc	tcgagaatgc	gtttcggtcg	cgtgatccgt	ttgctcgctg	1260
tgccttatcc	gccacccca	gcccggaggct	gctgctgacg	acagcgacga	cgacgagggt	1320
gaccgcgca	gtgtgtggc	ggccgcccgc	cgcattgtga	cccgccagccg	cgacgtgctc	1380
acctgcagcg	agcaggtaca	gcgctgcaac	cgggcagttt	tagatggatg	caagtgcgtg	1440
gacgcccgaac	gtacagttt	tgctgtgttc	cccgcggtca	ccttagccgc	tcctcctgca	1500
accctcaactt	gcgaccta	tgcgtgcacc	ttagccgctc	ctcctgcaac	cctcagttgc	1560
gacctcacga	cacaccgtct	ggcttacccc	tgccccacc	ccaggtggcc	ctgctgccgg	1620
acgcgctgcg	cggcagcggt	gtgtcgccca	ccccggacgc	gctgtacgac	ggcgccctgg	1680
cgcacctgg	ggacggottc	cgcaacggct	ggccgcactc	cgtgcaccag	gtgggggagc	1740
gcgggtcctg	gatgtctgga	tggtcaactgg	ccgcaaggct	gtgcgcacca	tcgggttagag	1800
tgtaacaaa	tgtatgtgcgc	gcaatgaagg	gtgagcagat	tccagcctcc	ctctgtcgcc	1860
tggcgtccaa	ctgtgccaac	tgcgcacaca	cctgcgcacg	ccccaggccg	accagctgct	1920
ggccaagctg	gaggcgcagc	aggccgcgc	agccgcctat	cgccgcgagc	agtccgagct	1980
ggccgcccgc	gccgcagccc	gccgtgccat	gtacagcggt	cccgccgcgc	cccacgggtcc	2040
caccctgtac	accaactaca	acaaccctgc	cggcagcggt	aatggcgccgc	cgccgcgcgc	2100
gccccgcccc	atgcccattgg	tgcccagggg	cgacggccag	cacgccatgg	cgcgctctgt	2160
ggcggcgcac	gtgcactcca	cggcgatggc	ggagcacgcg	gcgcgcagcg	cggtggcg	2220
cgcgcgcggc	gcctccgatg	gcggcgccca	cgccaaacggc	gtggctctag	agcggggccgt	2280
gtgcgcgc	ctgctgggtg	actacaccgc	ggcggtggag	cggctggggc	tagacacgaa	2340
cgcggcggtg	gagcaggagc	agctgcgcga	gttcgtcctg	gtgcgcgcggg	gagggcctac	2400
tgcaaaacgt	gttgctcagg	gttttgagat	accgaacaca	atgtttcgt	atacatctcc	2460
cgtcgagaga	gctatgcctc	caccgtcgcc	ccggctccac	tgcacccgat	gcgggtgcag	2520
gcccaactcgc	ccaacggccg	cggcgacctg	cgcccgccc	tgagggcgct	ggccacccgc	2580
tggctggagg	gcgtggcgct	ggcgcccttc	cgcgacactg	ccggcagccc	cgtgcgcgcg	2640
ctggaggcca	gctggttcgc	ggacctgcgt	gtgccttct	atctgcaggt	gaggggcggc	2700
agaagagagg	ggggaaaggg	aggcgagaag	gcgcattccgc	cgctggcgca	acggggccatc	2760

ctgggtggagc acggcgctac atcgcatctg gtccaccgtc tctggatgt a	taattcgtgc	2820
actcttaacc ggccgcgcag gatatggcggc tgtgccgcgt ggagcagggtg ctggccgcgc		2880
cccacttcct ggccaacctg ctgcccaca tgctcaaggc catcgccggc actgccgtca		2940
aggtcgccagc caacaccgcgt gtggcagcct cccgcgcga ggcgcctcagc gccaccgtcg		3000
cggccagcac cgccaccgcgt tcgtcatctt cctctgccgc ccgcggcgct cgtgccggtg		3060
ccctgagcgc tgccaccgcgc gccgcacacg ccgcgcgcgc ccagcaggcg aacgcggtcg		3120
gtgccagcat cgtcgggtgt gacgtgtgc cccccacacg agtggccgcg gctgccgcgg		3180
ctggcacacgc ggccgcgcgc gcagtcaccg gccccgcct cggccgtggc gctgcagctt		3240
ccgcctcttc cttttagggag ggccgcgcgtg aggccgctga cctgcgtcgt cgctttgtcg		3300
ccaccagccg cggcgccagc gcccgcgtcg gtgcgcacac agcaccagcc gctatgactg		3360
ggccccagca cggcgccgcgc tctgctgcgc agtcgcaccg ggaggaggat gaggattcgc		3420
acggcggcca ggaggggggc gtgccgcggc gcatgagcga ggccggacctg cgtgcgcacc		3480
tggcgggcct ggagaaggcc atgtggact cggagctgcc gcccgcgcgc ccatcccgcg		3540
cgcagaaggc gtcacccatc gcccaggac tggtaggttg ctgcgcagcc tgacggccat		3600
agttgccgt aattgcatca acgctgaaa tctggtgtat ggtacgcgcg ttccctgtca		3660
ccaaacaaggc tggtgaccaa gctgctgcgt cccttgcact cttcaacgc ccgtctgcag		3720
ctggccgtgg tggtaggcctt cctgggtgtcc agcttcttcc gccgcaacga cggcgccgc		3780
tccgcctgg cacccgcgcgc cgtcaccacc gcctccgtgg ccgttagcgc gcagccgc		3840
aagccggca aggccaccccg ctccgcgcac tga		3900
		3933

<210> 189
 <211> 2511
 <212> DNA
 <213> Chlamydomonas reinhardtii

<400> 189	
atgaactcgg cggagcacgt ctctgttgcc gtggactatt accgaatgt gcacgttccc	60
cgcgtaagcc gcccgtacgc cattcgcaag gcgtatgaga acctgggtgaa gcaacccccc	120
gctgccgcgt actctgcgga caccctcttc gcacgcgcgg tgctactcaa ggcagccgc	180
gagtcgtga cccgacccgga cctgcgcgc tcataatgacg ccaagctggc cgctggtcac	240
acagccctgc gcgtcagcca gcaggaccta cccggagccc ttgtcgtgt gcaggagatc	300
ggcgagcacc agttggttct ggatctgggt ctgcgtggc tagaggtaaa cggcgccag	360

cccgacgccc	gcgacgtggc	cgctgccgtg	gccctggcct	actgtgaccg	cgctggtag	420
cgcctcacct	cccagctgca	gccgcccggc	gcctcagcgc	tgccaggccc	cgatggcg	480
gcgggtgccgc	acgcgcacgt	gggcgcggtg	ctgcccgc	gacgcacact	ggacgcagcg	540
ctgagcaagc	tccggcggt	cgcatggcg	cagcagctgc	agcagcagat	cgtggcg	600
ctgcgggacc	tggcgccaga	gtacgcgtgc	gagctggccg	ccctgccgt	ggcgccgag	660
accgcccggc	ggcgccaa	gggcgtggcg	ctcatgcgc	gtgtgtgc	cgccgcccgc	720
accgtggccg	ccgcccacagc	caagcccag	gctgctgctg	acgacagcga	cgacgacag	780
gtggaccgc	gcagtgtgc	ggcgccgc	cgccgc	tgacccgcag	ccgcgacgt	840
ctcacctgca	gcgagcagg	ggccctgctg	ccggacgcgc	tgcgccgcag	cggtgtgt	900
cccaccccg	acgcgctgt	cgacggcgcc	ctggcgacc	tggtggacgg	cttcgcac	960
ggctggccgc	actccgtgca	ccaggccgac	cagctgctgg	ccaagctgga	ggcgacag	1020
ccccgcgcag	ccgccatgc	ccgcgagcag	tccgagctgg	ccgcccgc	cgcagcccgc	1080
cgtgccatgt	acagcggtcc	cgccgcccgc	cacggtccc	ccctgtacac	caactacaac	1140
aaccctgccc	gcagcgccaa	tggcgccgc	ccgcccgc	cccgccccat	gcccattgg	1200
cccagggcgc	acggccagca	cgccatggcg	gcgtctgtgg	cgccgc	catgttccac	1260
gcgatggcgg	agcacgcggc	gcgcagcgc	gctggcggcg	ccgcccgc	ctccgatgg	1320
ggcgccacg	ccaacggcgt	ggctctagag	cgggccgtgt	gcccgc	ctgtgggt	1380
tacaccgcgg	cggtgtggc	gctggggcta	gacacgaac	cgccgggtgg	gcaggagcag	1440
ctgcgcgagt	tcgtcctggc	ccactcgccc	aacggccgc	gcgacctgc	cccgggcct	1500
agggcgctgg	ccacccgc	gctggagggc	gtggcgctgg	cgtcctcc	cgacactgc	1560
ggcagccccg	tgccgcgc	ggaggccagc	tggttcgcc	acctgcgt	cgccctctat	1620
ctgcaggtat	ggcgctgt	ccgcgtggag	caggtgtgg	ccgccc	cttcctgg	1680
aacctgctgc	ccaacatgc	caaggccatc	gccggcact	ccgtcaaggt	cgcagccaac	1740
accgcgcgtgg	cagcctcccg	cgcgacgc	ctcagcgc	ccgtcgccgc	cagcacgc	1800
accgcctcg	catcttcctc	tgccgcgc	ggcgctcg	ccggtgcc	gagcgtgc	1860
accgcgcgc	cacacgcgc	gcgcgc	caggcgaac	cggtcggtgc	cagcatcg	1920
ggtgctgacg	tgctgcccc	cacagcagt	gccgcggct	ccgcggctgg	cacagcggcc	1980
gccgcgcag	tcacccggccc	cgccctcg	cgtggcgct	cagctccgc	cttcctt	2040
gaggagggcg	ccgctgaggc	cgctgacct	cgctgcgt	ttgtcgccac	cagccgcggc	2100

gccagcgccgg ccgtcggtgc gccccacagca ccagccgcta tgactgggcc ccagcacggc 2160
gccgcctctg ctgcgcagtc gcaccggag gaggatgagg attcgacgg cggccaggag 2220
gggggcgtgc cgccgcgcata gagcgaggcg gacctgcgtg cgcacctggc gggcctggag 2280
aaggccatgt gggactcgga gctgccgccc cccgcgcgcga gaaggcgctc 2340
acctacgccc caggactgct ggccgtggtg gtggccttcc tggtgtccag cttttccgc 2400
cgcaacgacg gcccgcctc cgcctggca cccgcgcgc tcaccaccgc ctccgtggcc 2460
gttagcgccgc agcccgccaa gccgggcaag gccaccgcct ccgcgcactg a 2511

<210> 190

<211> 836

<212> PRT

<213> Chlamydomonas reinhardtii

<400> 190

Met Asn Ser Ala Glu His Val Ser Val Ala Val Asp Tyr Tyr Arg Met
1 5 10 15

Leu His Val Pro Arg Val Ser Arg Pro Asp Ala Ile Arg Lys Ala Tyr
20 25 30

Glu Asn Leu Val Lys Gln Pro Pro Ala Ala Ala Tyr Ser Ala Asp Thr
35 40 45

Leu Phe Ala Arg Ala Val Leu Leu Lys Ala Ala Ala Glu Ser Leu Thr
50 55 60

Asp Pro Asp Leu Arg Arg Ser Tyr Asp Ala Lys Leu Ala Ala Gly His
65 70 75 80

Thr Ala Leu Arg Val Ser Gln Gln Asp Leu Pro Gly Ala Leu Val Val
85 90 95

Leu Gln Glu Ile Gly Glu His Gln Leu Val Leu Asp Leu Gly Leu Arg
100 105 110

Trp Leu Glu Val Asn Gly Gly Gln Pro Asp Ala Gly Asp Val Ala Ala
115 120 125

Ala Val Ala Leu Ala Tyr Cys Asp Arg Ala Gly Glu Arg Leu Thr Ser
130 135 140

Gln Leu Gln Pro Pro Pro Ala Ser Ala Leu Pro Gly Pro Asp Gly Ala
145 150 155 160

Ala Val Pro His Ala His Val Gly Ala Val Leu Pro Ala Cys Asp Asp
165 170 175

Leu Asp Ala Ala Leu Ser Lys Leu Arg Arg Tyr Gly Met Ala Gln Gln
180 185 190

Leu Gln Gln Gln Ile Val Gly Ala Leu Arg Asp Leu Ala Pro Glu Tyr
195 200 205

Ala Cys Glu Leu Ala Ala Leu Pro Leu Gly Ala Glu Thr Ala Ala Arg
210 215 220

Arg Ala Lys Gly Val Ala Leu Met Arg Gly Val Leu Arg Ala Ala Ala
225 230 235 240

Thr Val Ala Ala Ala Thr Ala Lys Pro Glu Ala Ala Ala Asp Asp Ser
245 250 255

Asp Asp Asp Glu Val Asp Pro Arg Ser Val Leu Ala Ala Ala Arg Arg
260 265 270

Met Leu Thr Arg Ser Arg Asp Val Leu Thr Cys Ser Glu Gln Val Ala
275 280 285

Leu Leu Pro Asp Ala Leu Arg Gly Ser Gly Val Ser Pro Thr Pro Asp
290 295 300

Ala Leu Tyr Asp Gly Ala Leu Ala His Leu Val Asp Gly Phe Arg Asn
305 310 315 320

Gly Trp Pro His Ser Val His Gln Ala Asp Gln Leu Leu Ala Lys Leu
325 330 335

Glu Ala Gln Gln Ala Arg Ala Ala Met Arg Arg Glu Gln Ser Glu
340 345 350

Leu Ala Ala Ala Ala Ala Arg Arg Ala Met Tyr Ser Gly Pro Ala
355 360 365

Ala Ala His Gly Pro Thr Leu Tyr Thr Asn Tyr Asn Asn Pro Ala Gly
370 375 380

Ser Gly Asn Gly Ala Pro Pro Pro Pro Arg Pro Met Pro Met Val
385 390 395 400

Pro Arg Gly Asp Gly Gln His Ala Met Ala Ala Ser Val Ala Ala His
405 410 415

Val His Ser Thr Ala Met Ala Glu His Ala Ala Arg Ser Ala Ala Gly
420 425 430

Gly Ala Ala Gly Ala Ser Asp Gly Gly Ala His Ala Asn Gly Val Ala
435 440 445

Leu Glu Arg Ala Val Cys Ala Val Leu Leu Gly Asp Tyr Thr Ala Ala
450 455 460

Val Glu Arg Leu Gly Leu Asp Thr Asn Ala Ala Val Glu Gln Glu Gln
465 470 475 480

Leu Arg Glu Phe Val Leu Ala His Ser Pro Asn Gly Arg Gly Asp Leu
485 490 495

Arg Pro Gly Leu Arg Ala Leu Ala Thr Arg Trp Leu Glu Gly Val Ala
500 505 510

Leu Ala Ser Phe Arg Asp Thr Ala Gly Ser Pro Val Pro Pro Leu Glu
515 520 525

Ala Ser Trp Phe Ala Asp Leu Arg Val Ala Phe Tyr Leu Gln Val Trp
530 535 540

Arg Leu Cys Arg Val Glu Gln Val Leu Ala Ala Ala His Phe Leu Ala
545 550 555 560

Asn Leu Leu Pro Asn Met Leu Lys Ala Ile Ala Gly Thr Ala Val Lys
565 570 575

Val Ala Ala Asn Thr Ala Val Ala Ala Ser Arg Ala Gln Arg Leu Ser
580 585 590

Ala Thr Val Ala Ala Ser Thr Ala Thr Ala Ser Ser Ser Ser Ala
595 600 605

Ala Arg Gly Ala Arg Ala Gly Ala Leu Ser Ala Ala Thr Ala Ala Ala
610 615 620

His Ala Ala Arg Arg Gln Gln Ala Asn Ala Val Gly Ala Ser Ile Val
625 630 635 640

Gly Ala Asp Val Leu Pro Pro Thr Ala Val Ala Ala Ala Ala Ala Ala
645 650 655

Gly Thr Ala Ala Ala Ala Val Thr Gly Pro Ala Leu Gly Arg Gly
660 665 670

Ala Ala Ala Ser Ala Ser Ser Phe Glu Glu Gly Ala Ala Glu Ala Ala
675 680 685

Asp Leu Arg Arg Arg Phe Val Ala Thr Ser Arg Gly Ala Ser Ala Ala
690 695 700

Val Gly Ala Pro Thr Ala Pro Ala Ala Met Thr Gly Pro Gln His Gly
705 710 715 720

Ala Ala Ser Ala Ala Gln Ser His Arg Glu Glu Asp Glu Asp Ser His
725 730 735

Gly Gly Gln Glu Gly Gly Val Pro Arg Arg Met Ser Glu Ala Asp Leu
740 745 750

Arg Ala His Leu Ala Gly Leu Glu Lys Ala Met Trp Asp Ser Glu Leu
755 760 765

Pro Pro Pro Pro Pro Ser Arg Ala Gln Lys Ala Leu Thr Tyr Ala Ala
770 775 780

Gly Leu Leu Ala Val Val Val Ala Phe Leu Val Ser Ser Phe Phe Arg
785 790 795 800

Arg Asn Asp Gly Ala Ala Ser Ala Leu Ala Pro Ala Ala Val Thr Thr
805 810 815

Ala Ser Val Ala Val Ser Ala Gln Pro Ala Lys Pro Gly Lys Ala Thr
820 825 830

Arg Ser Ala His
835

<210> 191
<211> 2022
<212> DNA
<213> Thermosynechococcus elongatus

<400> 191		
gtgcgcattc ccctcgatta ttaccaagtg ttgggtgtgc ctattcaggc aacgccggag	60	
caaattgagc aggcctttcg ggaccggctg ttgcagctcc ctacccatca gcactcccc	120	
accacagttg ccacccgtcg cgaactcatt gagcaggcct atgcagttt gcgagaaccg	180	
gagcagcgcg atgcctacga tcgcccactgc cgtaccgttg atcccgatga tttgattgcc	240	
cagttggatc ccgatgccac cactccccac attgaaatta gtgatgagca attgtcgaaa	300	
gcactcctac tgctgtatga actaggaaat tatgccaaag ttgtcaacct gggagacgcc	360	
tttcttaaaa aggatgttt tgagcgcaat cgccctaca cttccctgc cgccgttgcc	420	
gacattaccc tcactgtggc tttggcctat ctgaaattgg gacgggagga atggcagcgg	480	
cagtcctatg aatcagccgc ctctcagcta gaagccggc tccaggtact tcagcggta	540	
aatttgttc ccgagctcca ggagcagttt cagacgaaac tgaatcggct gcgtccctac	600	
cgcattctgg aattactggc actgccttg tccgatagtg cgaatcggca gcgggttatt	660	
ttattgctgc ggcaaattgtc gagtgagcgc gggggcattt aggggcccgg tgacgatcgc	720	
tcaggactaa cagttgagga ttttctgaaa ttatattgc aactgcgcag ccatcttacc	780	
gtggcagaac aacaggaact cttgaacgg gaatcgcggc gtccctcagc ggtggccacc	840	
taccttgcgg tacatgcctt ggttagcacgg ggagtgcattg aactgcagcc gagctatatt	900	
tgtcggcca aggatttatt gcagcagctg ctccccatc aagacgtcta tcttgaactt	960	
gccagttgtc tgctgcttt gggacagccc accgaggcct tggcagctct tgaccacagc	1020	
caagatcaac cgactctgga ctttatccgc cgtcatgcgg gtgaggctgg cgatcgactg	1080	
ccggggcttt attactacac cacacaatgg ctcacggagg aaatttatcc tgcatttcgg	1140	
gacttgggg aaacacccgt ggccttggag gcttactttt ctgatgccaa tgtccaaacc	1200	
tatctagagg ctctcagtga ggactccatt gcccctgaac cccctgcgac cactgcctct	1260	
gcgcctccctg aagtgatcag accaacggtg gccgtgcccc ctcccccttc cttcacagcg	1320	

gaaacgttac	cgttgcagga	tcagagtcgg	ctgggtcagg	gccttcggc	atcggtttt	1380
acccttctg	caactgcaac	ggggacatcg	atgccccaac	catgcctcg	caaacggcgc	1440
agccctcgaa	accgttgcgc	ccaaaaacgt	cagacttggt	tttggatggg	tgcaggagtg	1500
gttcttgtgg	gtttaggggc	gttggcaaaa	gtctattggc	ccgccaaaac	cgctgaagcc	1560
ccccggccgc	cggtgacacc	ggcaccaact	cctgtggcaa	cgccgacccc	aacgccacaa	1620
ccgacgacct	tagccatcac	tttaacacca	gagatggcgc	gcgatcgct	ccacacttgg	1680
cagcaaatta	aagcccaagc	ccttggcga	ccatttgagg	tggacaaact	aacaacgatt	1740
ttggcggagc	cagaactcag	ccgctggcga	tcgcggcac	agggcttaaa	gtccgagggc	1800
agctatttggg	tttataccct	aaagaactta	gaagtgaagg	aagtccgcct	ccaaaggagc	1860
gatcgtgtgg	aggtgttggc	agaagtcaac	gaggatgccc	gtttctatga	acagggAAC	1920
ctgcgcactg	atatttccta	tagcgatccc	taccgggtca	tttatacctt	tatccgtcgc	1980
ggcaatcaat	ggttgattca	aggcatgcag	gtggtagtt	aa		2022

<210> 192
 <211> 673
 <212> PRT
 <213> Thermosynechococcus elongatus

<400> 192

Met Arg Ile Pro Leu Asp Tyr Tyr Gln Val Leu Gly Val Pro Ile Gln
 1 5 10 15

Ala Thr Pro Glu Gln Ile Glu Gln Ala Phe Arg Asp Arg Leu Leu Gln
 20 25 30

Leu Pro Thr His Gln His Ser Pro Thr Thr Val Ala Thr Arg Arg Glu
 35 40 45

Leu Ile Glu Gln Ala Tyr Ala Val Leu Arg Glu Pro Glu Gln Arg Asp
 50 55 60

Ala Tyr Asp Arg His Cys Arg Thr Val Asp Pro Asp Asp Leu Ile Ala
 65 70 75 80

Gln Leu Asp Pro Asp Ala Thr Thr Pro His Ile Glu Ile Ser Asp Glu
 85 90 95

Gln Leu Ser Gly Ala Leu Leu Leu Tyr Glu Leu Gly Asn Tyr Ala
 100 105 110

Gln Val Val Asn Leu Gly Asp Ala Phe Leu Lys Lys Asp Val Phe Glu
115 120 125

Arg Asn Arg Pro Tyr Thr Ser Pro Ala Ala Val Ala Asp Ile Thr Leu
130 135 140

Thr Val Ala Leu Ala Tyr Leu Glu Leu Gly Arg Glu Glu Trp Gln Arg
145 150 155 160

Gln Ser Tyr Glu Ser Ala Ala Ser Gln Leu Glu Ala Gly Leu Gln Val
165 170 175

Leu Gln Arg Val Asn Leu Phe Pro Glu Leu Gln Glu Gln Phe Gln Thr
180 185 190

Glu Leu Asn Arg Leu Arg Pro Tyr Arg Ile Leu Glu Leu Leu Ala Leu
195 200 205

Pro Leu Ser Asp Ser Ala Asn Arg Gln Arg Gly Ile Leu Leu Leu Arg
210 215 220

Gln Met Leu Ser Glu Arg Gly Gly Ile Glu Gly Arg Gly Asp Asp Arg
225 230 235 240

Ser Gly Leu Thr Val Glu Asp Phe Leu Lys Phe Ile Leu Gln Leu Arg
245 250 255

Ser His Leu Thr Val Ala Glu Gln Gln Glu Leu Phe Glu Arg Glu Ser
260 265 270

Arg Arg Pro Ser Ala Val Ala Thr Tyr Leu Ala Val His Ala Leu Val
275 280 285

Ala Arg Gly Val His Glu Leu Gln Pro Ser Tyr Ile Cys Arg Ala Lys
290 295 300

Asp Leu Leu Gln Gln Leu Leu Pro His Gln Asp Val Tyr Leu Glu Leu
305 310 315 320

Ala Ser Cys Leu Leu Leu Gly Gln Pro Thr Glu Ala Leu Ala Ala
325 330 335

Leu Asp His Ser Gln Asp Gln Pro Thr Leu Asp Phe Ile Arg Arg His
340 345 350

Ala Gly Glu Ala Gly Asp Arg Leu Pro Gly Leu Tyr Tyr Tyr Thr Thr
355 360 365

Gln Trp Leu Thr Glu Glu Ile Tyr Pro Ala Phe Arg Asp Leu Gly Glu
370 375 380

Thr Pro Val Ala Leu Glu Ala Tyr Phe Ala Asp Ala Asn Val Gln Thr
385 390 395 400

Tyr Leu Glu Ala Leu Ser Glu Asp Ser Ile Ala Pro Glu Pro Pro Ala
405 410 415

Thr Thr Ala Ser Ala Leu Pro Glu Val Ile Arg Pro Thr Val Ala Val
420 425 430

Pro Pro Pro Leu Ser Phe Thr Ala Glu Thr Leu Pro Leu Gln Asp Gln
435 440 445

Ser Arg Leu Gly Gln Gly Leu Ser Ala Ser Ala Phe Thr Pro Ser Ala
450 455 460

Thr Ala Thr Gly Thr Ser Met Pro Gln Pro Ser Pro Arg Lys Arg Arg
465 470 475 480

Ser Pro Arg Asn Arg Cys Ala Gln Lys Arg Gln Thr Trp Phe Trp Met
485 490 495

Gly Ala Gly Val Val Leu Val Gly Leu Gly Ala Leu Ala Lys Val Tyr
500 505 510

Trp Pro Ala Lys Thr Ala Glu Ala Pro Pro Pro Val Thr Pro Ala
515 520 525

Pro Thr Pro Val Ala Thr Pro Thr Pro Thr Pro Gln Pro Thr Thr Leu
530 535 540

Ala Ile Thr Leu Thr Pro Glu Met Ala Arg Asp Arg Leu His Thr Trp
545 550 555 560

Gln Gln Ile Lys Ala Gln Ala Leu Gly Arg Pro Phe Glu Val Asp Lys
565 570 575

Leu Thr Thr Ile Leu Ala Glu Pro Glu Leu Ser Arg Trp Arg Ser Arg
580 585 590

Ala Gln Gly Leu Lys Ser Glu Gly Ser Tyr Trp Val Tyr Thr Leu Lys
595 600 605

Asn Leu Glu Val Lys Glu Val Arg Leu Gln Arg Ser Asp Arg Val Glu
610 615 620

Val Leu Ala Glu Val Asn Glu Asp Ala Arg Phe Tyr Glu Gln Gly Thr
625 630 635 640

Leu Arg Thr Asp Ile Ser Tyr Ser Asp Pro Tyr Arg Val Ile Tyr Thr
645 650 655

Phe Ile Arg Arg Gly Asn Gln Trp Leu Ile Gln Gly Met Gln Val Val
660 665 670

Ser

<210> 193
<211> 2370
<212> DNA
<213> Trichodesmium erythraeum

<400> 193
gtgcggattc cattagatta ttatcgaaatt ttaggtttac caattcaggc tactgctgaa 60
cagttgcggc aggcacatca agaccgcact cagcagtttc ctagaaggga gtattctgaa 120
gccacaatag ttgctcgtaa acagcttata gatgaggctt atgctgttct ttgcgatcct 180
gaacaacgtc aaacctatga tggttaacttt ttagctaaaa cctacgagcc aatagtagaa 240
gaactcaatc caagttctca gataaatttt gatcaagcac aagaaaaaga aaccacactt 300
aaggagacta gagaagtct tcggaaata gcttctaaac agttaaaaaa aaggacaagt 360
tatcaaaaaca gagagactaa agctgcctct gatttcatt ctaataccccc tagtatagaa 420
atagaatatc cacaatttgt gggagccato ctaattttac atgagctagg agaatatgag 480
ctagtattaa aaataactca cccttatctt cttaacaata gtataactat taaagatgga 540
cgttttggag acccagcatt agtttgcca gatgttgtcc ttacagttgc tctagcaaat 600

ttagaattgg gcagagagga atggcaacaa ggacaatacg aaagtgcagc tacagctta	660
gaggctggcc tagggttatt gctacgagaa aacctatttgc tccaaatacg aggagagata	720
caagctgacc tttataagct acgtccttat agaataatgg agctaatacg actaccagag	780
gaaatagctc tagaccgttag ccgtggacta gaaattcttc aagatatgct caatgaacgg	840
ggaggaattt atggtcaagg tgaagatagc tctggacttg ggatagaaga ttttctaaag	900
tttggcagc agctacgtca atacttaact acagcagagc aaaagaagtt atttgaggca	960
gaagcccttc gccctccgc agttggtgca tatctagcgg tttatacttt tttagctcaa	1020
gggtttgctc aaaaacaacc agccttattt cgtaaagcta agttgatgtt aatgcaattt	1080
ggtcggagtc aagatgtaaa ttttagagaaa tctgtctgtg ctttactttt agggcaaact	1140
gaagaagcta gtcgttcatt agaacttagc catgaaaatg aacctctatc cttaattttt	1200
aaaaattctc aacaatctcc agatttatttgc ccaggtctat gtctctatgc tgaacattgg	1260
ttgacagagg aggttttcc acatttccgt gatttgcgtt acaagtcagc ttctttgaaa	1320
gattatttttgc cagatcaaca tggtcaagct tatctagaag cttaacctac agaagcagag	1380
gtagctaattc aatgggttgtt cggtcagcgtt cggtcgtagt atcacaataa aaaacaaatg	1440
tgcacccca aggaacttga gaagttgaat gtatcagatt tggaggataa agatatttct	1500
cgggttagatg ctactgctac tggattgtt gtttctggaa gtcagggaaat ttcttaattt	1560
ctaggggctt gtttctgttgc gtttcttcaa gaattagaaa aatcatcatc tactagaggt	1620
gggcacaaac aagtaactac taagagttct agtcaactt tagggaaaat tagggaaaag	1680
agtataagtgc gtttacacttgc gtttacacttgc agtacatcta ttgagagtgg ggggttaccc	1740
caatctatcc aagagcatag ttcacgtaga acttctgctt gtttacacttgc ttgagagtgg ggggttaccc	1800
ggtcgtttaa tattaatcgatgc aattgtggaa tttttgtttaa taggattttt tgggttgc	1860
acaatttttttgc gtttacacttgc gtttacacttgc agtacatcta ttgagagtgg ggggttaccc	1920
atacaatttttttgc gtttacacttgc gtttacacttgc agtacatcta ttgagagtgg ggggttaccc	1980
tcaggaccga taacaaaaga agtagcaagg cgaacaatttgc aaagttgggtt agatatcaag	2040
gttttctgc ttggccttcaa tcataaaatttgc gtttacacttgc gtttacacttgc ttgagagtgg ggggttaccc	2100
gcactttctc gtttacacttgc gtttacacttgc gtttacacttgc gtttacacttgc ttgagagtgg ggggttaccc	2160
tatgagcatg atttagaaaat aagtaatata aagatgagta atacaaatttgc ttgagagtgg ggggttaccc	2220

caagtagatg	ctaaagtatg	agaaaaggta	gagtttatt	ctgacaatgg	tagattaact	2280										
aatactaaca	atgaaaacctt	atttgttcgt	tatgatttag	ttcgtaaaag	tcaaaaatgg	2340										
caaatttagta	attggaaggt	attgagataa				2370										
<210>	194															
<211>	789															
<212>	PRT															
<213> Trichodesmium erythraeum																
<400>	194															
Val	Arg	Ile	Pro	Leu	Asp	Tyr	Tyr	Arg	Ile	Leu	Gly	Leu	Pro	Ile	Gln	
1				5				10						15		
Ala	Thr	Ala	Glu	Gln	Leu	Arg	Gln	Ala	His	Gln	Asp	Arg	Thr	Gln	Gln	
				20				25					30			
Phe	Pro	Arg	Arg	Glu	Tyr	Ser	Glu	Ala	Thr	Ile	Val	Ala	Arg	Lys	Gln	
				35			40						45			
Leu	Ile	Asp	Glu	Ala	Tyr	Ala	Val	Leu	Cys	Asp	Pro	Glu	Gln	Arg	Gln	
				50			55				60					
Thr	Tyr	Asp	Gly	Asn	Phe	Leu	Ala	Lys	Thr	Tyr	Glu	Pro	Ile	Val	Glu	
				65			70			75			80			
Glu	Leu	Asn	Pro	Ser	Ser	Gln	Ile	Asn	Phe	Asp	Gln	Ala	Gln	Glu	Lys	
				85				90					95			
Glu	Thr	Thr	Leu	Lys	Glu	Thr	Arg	Glu	Val	Leu	Pro	Glu	Ile	Ala	Ser	
				100			105					110				
Lys	Gln	Leu	Lys	Lys	Arg	Thr	Ser	Tyr	Gln	Asn	Arg	Glu	Thr	Lys	Ala	
				115			120				125					
Ala	Ser	Asp	Phe	His	Ser	Asn	Thr	Pro	Ser	Ile	Glu	Ile	Glu	Tyr	Pro	
				130			135				140					
Gln	Phe	Val	Gly	Ala	Ile	Leu	Ile	Leu	His	Glu	Leu	Gly	Glu	Tyr	Glu	
				145			150			155			160			
Leu	Val	Leu	Lys	Ile	Thr	His	Pro	Tyr	Leu	Leu	Asn	Asn	Ser	Ile	Thr	
				165			170					175				

Ile Lys Asp Gly Arg Phe Gly Asp Pro Ala Leu Val Leu Pro Asp Val
180 185 190

Val Leu Thr Val Ala Leu Ala Asn Leu Glu Leu Gly Arg Glu Glu Trp
195 200 205

Gln Gln Gly Gln Tyr Glu Ser Ala Ala Thr Ala Leu Glu Ala Gly Leu
210 215 220

Gly Leu Leu Leu Arg Glu Asn Leu Phe Val Gln Ile Arg Gly Glu Ile
225 230 235 240

Gln Ala Asp Leu Tyr Lys Leu Arg Pro Tyr Arg Ile Met Glu Leu Ile
245 250 255

Ala Leu Pro Glu Glu Ile Ala Leu Asp Arg Ser Arg Gly Leu Glu Ile
260 265 270

Leu Gln Asp Met Leu Asn Glu Arg Gly Gly Ile Asp Gly Gln Gly Glu
275 280 285

Asp Ser Ser Gly Leu Gly Ile Glu Asp Phe Leu Lys Phe Val Gln Gln
290 295 300

Leu Arg Gln Tyr Leu Thr Thr Ala Glu Gln Lys Lys Leu Phe Glu Ala
305 310 315 320

Glu Ala Leu Arg Pro Ser Ala Val Gly Ala Tyr Leu Ala Val Tyr Thr
325 330 335

Phe Leu Ala Gln Gly Phe Ala Gln Lys Gln Pro Ala Phe Ile Arg Lys
340 345 350

Ala Lys Leu Met Leu Met Gln Leu Gly Arg Ser Gln Asp Val Asn Leu
355 360 365

Glu Lys Ser Val Cys Ala Leu Leu Leu Gly Gln Thr Glu Glu Ala Ser
370 375 380

Arg Ser Leu Glu Leu Ser His Glu Asn Glu Pro Leu Ser Phe Ile Lys
385 390 395 400

Glu Asn Ser Gln Gln Ser Pro Asp Leu Leu Pro Gly Leu Cys Leu Tyr
405 410 415

Ala Glu His Trp Leu Thr Glu Glu Val Phe Pro His Phe Arg Asp Leu
420 425 430

Ser Asp Lys Ser Ala Ser Leu Lys Asp Tyr Phe Ala Asp Gln His Val
435 440 445

Gln Ala Tyr Leu Glu Ala Leu Pro Thr Glu Ala Glu Val Ala Asn Gln
450 455 460

Trp Val Val Val Gln Pro Arg Arg Ser Asn His Asn Lys Lys Gln Met
465 470 475 480

Phe Asp Pro Lys Glu Leu Glu Lys Leu Asn Val Ser Asp Leu Glu Asp
485 490 495

Lys Asp Ile Ser Arg Val Asp Ala Thr Ala Thr Gly Ile Val Ala Ser
500 505 510

Gly Ser Gln Gly Ser Ser Asn Leu Leu Gly Ala Ser Ser Asp Gly Leu
515 520 525

Leu Gln Glu Leu Glu Lys Ser Ser Ser Thr Arg Gly Gly Pro Lys Gln
530 535 540

Val Thr Thr Lys Ser Ser Ser His Tyr Leu Gly Lys Ile Arg Glu Lys
545 550 555 560

Ser Ile Ser Gly Leu Pro Glu Phe Asn Glu Ser Thr Ser Ile Glu Ser
565 570 575

Gly Gly Leu Pro Gln Ser Ile Gln Glu His Ser Ser Arg Arg Thr Ser
580 585 590

Ala Arg Arg Glu Pro Val Lys Phe Gly Arg Leu Ile Leu Ile Ala Ile
595 600 605

Val Gly Phe Leu Leu Ile Gly Phe Ile Gly Leu Leu Thr Ile Lys Thr
610 615 620

Ile Gly Trp Leu Val Asn Ala Leu Gly Trp Glu Arg Glu Lys Leu Met
625 630 635 640

Ile Gln Leu Asp Arg Pro Pro Ile Glu Ile Pro Glu Pro Asp Arg Val
645 650 655

Asn Leu Ala Ala Ser Gly Pro Ile Thr Lys Glu Val Ala Arg Arg Thr
660 665 670

Ile Gln Ser Trp Leu Asp Ile Lys Ala Ser Ala Leu Gly Pro Asn His
675 680 685

Lys Ile Glu Gln Leu Pro Asn Ile Leu Val Glu Pro Ala Leu Ser Arg
690 695 700

Trp Leu Pro Thr Ala Asn Ala Leu Lys Gln Glu Lys Ser Tyr Arg Arg
705 710 715 720

Tyr Glu His Asp Leu Glu Ile Ser Asn Ile Lys Met Ser Asn Thr Asn
725 730 735

Ser Asn Leu Ala Gln Val Asp Ala Lys Val Ile Glu Lys Val Glu Phe
740 745 750

Tyr Ser Asp Asn Gly Arg Leu Thr Asn Thr Asn Asn Glu Asn Leu Phe
755 760 765

Val Arg Tyr Asp Leu Val Arg Lys Ser Gln Lys Trp Gln Ile Ser Asn
770 775 780

Trp Lys Val Leu Arg
785

<210> 195
<211> 765
<212> PRT
<213> Homo sapiens

<400> 195

Met Gly Asn Arg Gly Met Glu Asp Leu Ile Pro Leu Val Asn Arg Leu
1 5 10 15

Gln Asp Ala Phe Ser Ala Ile Gly Gln Asn Ala Asp Leu Asp Leu Pro
20 25 30

Gln Ile Ala Val Val Gly Gly Gln Ser Ala Gly Lys Ser Ser Val Leu
35 40 45

Glu Asn Phe Val Gly Arg Val Thr Arg Arg Pro Leu Val Leu Gln Leu
50 55 60

Val Asn Ala Thr Thr Glu Tyr Ala Glu Phe Leu His Cys Lys Gly Lys
65 70 75 80

Lys Phe Thr Glu Ala Glu Thr Asp Arg Val Thr Gly Thr Asn Lys Gly
85 90 95

Ile Ser Pro Val Pro Ile Asn Leu Arg Val Tyr Ser Pro His Val Leu
100 105 110

Asn Leu Thr Leu Val Asp Leu Pro Gly Met Thr Lys Val Pro Val Gly
115 120 125

Asp Gln Pro Pro Asp Ile Glu Phe Gln Ile Arg Asp Met Leu Met Gln
130 135 140

Phe Val Thr Lys Glu Asn Cys Ser Asp Leu Ala Asn Ser Asp Ala Leu
145 150 155 160

Lys Val Ala Lys Glu Val Asp Pro Gln Gly Gln Arg Thr Ile Gly Val
165 170 175

Ile Thr Lys Leu Asp Leu Met Asp Glu Gly Thr Asp Ala Arg Asp Val
180 185 190

Leu Glu Asn Lys Leu Leu Pro Leu Arg Arg Gly Tyr Ile Gly Val Val
195 200 205

Asn Arg Ser Gln Lys Asp Ile Asp Gly Lys Lys Asp Ile Thr Phe Leu
210 215 220

Ser His Pro Ser Tyr Arg His Leu Ala Asp Arg Met Gly Thr Pro Tyr
225 230 235 240

Leu Gln Lys Val Leu Asn Gln Gln Leu Thr Asn His Ile Arg Asp Thr
245 250 255

Leu Pro Gly Leu Arg Asn Lys Leu Gln Ser Gln Leu Leu Ser Ile Glu
260 265 270

Lys Glu Val Glu Glu Tyr Lys Asn Phe Arg Pro Asp Asp Pro Ala Arg
275 280 285

Lys Thr Lys Ala Leu Asp Phe Glu Lys Arg Ile Glu Gly Ser Gly Asp
290 295 300

Gln Ile Asp Thr Tyr Glu Leu Ser Gly Gly Ala Arg Ile Asn Arg Ile
305 310 315 320

Phe His Glu Arg Phe Pro Phe Glu Leu Val Lys Met Glu Phe Asp Glu
325 330 335

Lys Glu Leu Arg Arg Glu Ile Ser Tyr Ala Ile Lys Asn Ile His Gly
340 345 350

Ile Arg Thr Gly Leu Phe Thr Pro Asp Met Ala Lys Lys Ile Arg Glu
355 360 365

Pro Cys Leu Lys Cys Val Asp Met Val Ile Ser Glu Leu Ile Ser Thr
370 375 380

Val Arg Gln Cys Thr Lys Lys Leu Gln Gln Tyr Pro Arg Leu Arg Glu
385 390 395 400

Glu Met Glu Arg Ile Val Thr Thr His Ile Arg Glu Arg Glu Gly Arg
405 410 415

Thr Lys Glu Gln Val Met Met Asn Thr Asn His Glu Asp Phe Ile Gly
420 425 430

Phe Ala Asn Ala Gln Gln Arg Ser Asn Gln Met Asn Lys Lys Lys Thr
435 440 445

Ser Gly Asn Gln Asp Glu Ile Leu Val Ile Arg Lys Gly Trp Leu Thr
450 455 460

Ile Asn Asn Ile Gly Ile Met Lys Gly Gly Ser Lys Glu Tyr Trp Phe
465 470 475 480

Val Leu Thr Ala Glu Asn Leu Ser Trp Tyr Lys Asp Asp Ser Val Asp
485 490 495

Asn Leu Lys Leu Arg Asp Val Glu Lys Gly Phe Met Ser Ser Lys His
500 505 510

Ile Phe Ala Leu Phe Asn Thr Glu Gln Arg Asn Val Tyr Lys Asp Tyr
515 520 525

Arg Gln Leu Glu Leu Ala Cys Glu Thr Gln Glu Glu Val Asp Ser Trp
530 535 540

Lys Ala Ser Phe Leu Arg Ala Gly Val Tyr Pro Glu Arg Val Gly Asp
545 550 555 560

Lys Glu Lys Asp Ser Phe Met His Ser Met Asp Pro Gln Leu Glu Arg
565 570 575

Gln Val Glu Thr Ile Arg Asn Leu Val Asp Ser Tyr Met Ala Ile Val
580 585 590

Asn Lys Thr Val Arg Asp Leu Met Pro Lys Thr Ile Met His Leu Met
595 600 605

Ile Asn Asn Thr Lys Glu Phe Ile Phe Ser Glu Leu Leu Ala Asn Leu
610 615 620

Tyr Ser Cys Gly Asp Gln Asn Thr Leu Met Arg Asp Glu Met Leu Arg
625 630 635 640

Met Tyr His Ala Leu Lys Glu Ala Leu Ser Ile Ile Gly Asn Ile Asn
645 650 655

Thr Thr Thr Val Ser Thr Pro Met Pro Pro Pro Val Asp Asp Ser Trp
660 665 670

Leu Gln Val Gln Ser Val Pro Ala Gly Arg Arg Ser Pro Thr Ser Ser
675 680 685

Pro Thr Pro Gln Arg Arg Ala Pro Ala Val Pro Pro Ala Arg Pro Gly
690 695 700

Ser Ala Gly Ser Ala Leu Gly Gly Ala Pro Pro Val Pro Ser Arg Pro
705 710 715 720

Gly Ala Ser Pro Asp Pro Phe Gly Pro Pro Pro Gln Val Pro Ser Arg
725 730 735

Pro Asn Arg Ala Pro Pro Gly Val Pro Ser Arg Ser Gly Gln Ala Ser
740 745 750

Pro Ser Arg Pro Glu Ser Pro Arg Pro Pro Phe Asp Leu
755 760 765

<210> 196
<211> 670
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 196

Met Ala Ser Leu Glu Asp Leu Ile Pro Thr Val Asn Lys Leu Gln Asp
1 5 10 15

Val Met Tyr Asp Ser Gly Ile Asp Thr Leu Asp Leu Pro Ile Leu Ala
20 25 30

Val Val Gly Ser Gln Ser Ser Gly Lys Ser Ser Ile Leu Glu Thr Leu
35 40 45

Val Gly Arg Val Thr Arg Arg Pro Leu Val Leu Gln Leu Asn Asn Ile
50 55 60

Ser Pro Asn Ser Pro Leu Ile Glu Glu Asp Asp Asn Ser Val Asn Pro
65 70 75 80

His Asp Glu Val Thr Lys Ile Ser Gly Phe Glu Ala Gly Thr Lys Pro
85 90 95

Leu Glu Tyr Arg Gly Lys Glu Arg Asn His Ala Asp Glu Trp Gly Glu
100 105 110

Phe Leu His Ile Pro Gly Lys Arg Phe Tyr Glu Asn Glu Thr Ala Arg
115 120 125

Ile Ala Gly Lys Asp Lys Gly Ile Ser Lys Ile Pro Ile Asn Leu Lys
130 135 140

Val Phe Ser Pro His Val Leu Asn Leu Thr Leu Val Asp Leu Pro Gly
145 150 155 160

Ile Thr Lys Val Pro Ile Gly Glu Gln Pro Pro Asp Ile Glu Lys Gln
165 170 175

Ile Lys Asn Leu Ile Leu Asp Tyr Ile Ala Thr Pro Asn Cys Val Asp
180 185 190

Leu Val Asn Ser Glu Ser Leu Lys Leu Ala Arg Glu Val Asp Pro Gln
195 200 205

Gly Lys Arg Thr Ile Gly Val Ile Thr Lys Leu Asp Leu Met Asp Ser
210 215 220

Gly Thr Asn Ala Leu Asp Ile Leu Ser Gly Lys Met Tyr Pro Leu Lys
225 230 235 240

Leu Gly Phe Val Gly Val Val Asn Arg Ser Gln Gln Asp Ile Gln Leu
245 250 255

Asn Lys Thr Val Glu Phe Arg Lys His Pro Val Tyr Arg Thr Ile Ser
260 265 270

Thr Lys Cys Gly Thr Arg Tyr Leu Ala Lys Leu Leu Asn Gln Thr Leu
275 280 285

Leu Ser His Ile Arg Asp Lys Leu Pro Asp Ile Lys Thr Lys Leu Asn
290 295 300

Thr Leu Ile Ser Gln Thr Glu Gln Glu Leu Ala Arg Tyr Gly Gly Val
305 310 315 320

Gly Ala Thr Thr Asn Glu Ser Arg Ala Ser Leu Val Asn Phe Ile Ser
325 330 335

Ser Ile Asp Gly Thr Ser Ser Asp Ile Asn Thr Lys Glu Leu Cys Gly
340 345 350

Gly Ala Arg Ile Tyr Tyr Ile Tyr Asn Asn Val Phe Gly Asn Ser Leu
355 360 365

Lys Ser Ile Asp Pro Thr Ser Asn Leu Ser Val Leu Asp Val Arg Thr
370 375 380

Ala Ile Arg Asn Ser Thr Gly Pro Arg Pro Thr Leu Phe Val Pro Glu
385 390 395 400

Leu Ala Lys Leu Leu Glu Pro Ser Gln Arg Cys Val Glu Leu Val
405 410 415

Tyr Glu Glu Leu Met Lys Ile Cys His Lys Cys Gly Ser Ala Glu Leu
420 425 430

Ala Arg Tyr Pro Lys Leu Lys Ser Met Leu Ile Glu Val Ile Ser Glu
435 440 445

Leu Leu Arg Glu Arg Leu Gln Pro Thr Arg Ser Tyr Val Glu Ile Asn
450 455 460

Thr Asn His Pro Asn Phe Leu Ser Ala Thr Glu Ala Met Asp Asp Ile
465 470 475 480

Met Lys Thr Arg Arg Lys Arg Asn Gln Glu Leu Leu Lys Ser Lys Leu
485 490 495

Ser Gln Gln Glu Asn Gly Gln Thr Asn Gly Ile Asn Gly Thr Ser Ser
500 505 510

Ile Ser Ser Asn Ile Asp Gln Asp Asp Gly Ile Asp Ala Glu Ser Lys
515 520 525

Gln Thr Lys Asp Lys Phe Leu Asn Tyr Phe Phe Gly Lys Asp Lys Lys
530 535 540

Gly Gln Pro Val Phe Asp Ala Ser Asp Lys Lys Arg Ser Ile Ala Gly
545 550 555 560

Asp Gly Asn Ile Glu Asp Phe Arg Asn Leu Gln Ile Ser Asp Phe Ser
565 570 575

Leu Gly Asp Ile Asp Asp Pro Leu Thr Glu Arg Glu Glu Leu Glu Cys
580 585 590

Glu Leu Ile Lys Arg Leu Ile Val Ser Tyr Phe Asp Ile Ile Arg Glu
595 600 605

Met Ile Glu Asp Gln Val Pro Lys Ala Val Met Cys Leu Leu Val Asn
610 615 620

Tyr Cys Lys Asp Ser Val Gln Asn Arg Leu Val Thr Lys Leu Tyr Lys
625 630 635 640

Glu Thr Leu Phe Glu Glu Leu Leu Arg Glu Leu Cys Val Lys Ser Leu
645 650 655

Gly Val Tyr Lys Lys Ala Ala Thr Leu Ile Ser Asn Ile Leu
660 665 670

<210> 197

<211> 690

<212> PRT

<213> Arabidopsis thaliana

<400> 197

Met Ala Glu Val Ser Ala Lys Ser Val Thr Val Glu Glu Met Ala Glu
1 5 10 15

Glu Asp Asp Ala Ala Ile Glu Glu Arg Trp Ser Leu Tyr Glu Ala Tyr
20 25 30

Asn Glu Leu His Ala Leu Ala Gln Glu Leu Glu Thr Pro Phe Glu Ala
35 40 45

Pro Ala Val Leu Val Val Gly Gln Gln Thr Asp Gly Lys Ser Ala Leu
50 55 60

Val Glu Ala Leu Met Gly Phe Lys Thr Arg Arg Pro Ile Thr Leu His
65 70 75 80

Met Lys Tyr Asp Pro Gln Cys Gln Phe Pro Leu Cys His Leu Gly Ser
85 90 95

Asp Asp Asp Pro Ser Val Ser Leu Pro Lys Glu Ala Glu Asn Met Arg
100 105 110

Leu Glu Gln Glu Pro Cys Ser Pro Phe Ser Ala Lys Glu Ile Ile Val
115 120 125

Lys Val Gln Tyr Lys Tyr Cys Pro Asn Leu Thr Ile Ile Asp Thr Pro
130 135 140

Gly Leu Ile Ala Pro Ala Pro Gly Leu Lys Asn Arg Ala Leu Gln Val
145 150 155 160

Gln Ala Arg Ala Val Glu Ala Leu Val Arg Ala Lys Met Gln His Lys
165 170 175

Glu Ser Asp Trp Ser Ile Ala Thr Thr Arg Arg Ile Val Met Gln Val
180 185 190

Asp Pro Glu Leu Ser Arg Thr Ile Val Val Ser Thr Lys Leu Asp Thr
195 200 205

Lys Ile Pro Gln Phe Ser Cys Ser Ser Asp Val Glu Val Phe Leu Ser
210 215 220

Pro Pro Ala Ser Ala Leu Asp Ser Ser Leu Leu Gly Asp Ser Pro Phe
225 230 235 240

Phe Tyr Gly Gln Asp Ser Val Tyr Lys Ser Asn Asp Glu Phe Lys Gln
245 250 255

Ala Val Ser Leu Arg Glu Met Glu Asp Ile Ala Ser Leu Glu Lys Lys
260 265 270

Leu Gly Arg Leu Leu Thr Lys Gln Glu Lys Ser Arg Ile Gly Ile Ser
275 280 285

Lys Leu Arg Leu Phe Leu Glu Glu Leu Leu Trp Lys Arg Tyr Lys Glu
290 295 300

Ser Val Pro Leu Ile Ile Pro Leu Arg Lys Leu Asp Thr Val Ser Lys
305 310 315 320

Glu Leu Ser Ser Leu Asp Glu Ala Lys Leu Lys Glu Arg Gly Arg Thr
325 330 335

Phe His Asp Leu Phe Leu Thr Lys Leu Ser Leu Leu Lys Gly Thr
340 345 350

Val Val Ala Pro Pro Asp Lys Phe Gly Glu Thr Leu Gln Asp Glu Arg
355 360 365

Thr Gln Gly Gly Ala Phe Val Gly Thr Asp Gly Leu Gln Phe Ser Arg
370 375 380

Leu Tyr Gly Gly Ala Gln Tyr His Arg Ala Met Ala Glu Phe Arg Phe
385 390 395 400

Leu Val Gly Ala Ile Lys Cys Pro Pro Ile Thr Arg Glu Glu Ile Val
405 410 415

Asn Ala Cys Gly Val Glu Asp Ile His Asp Gly Thr Asn Tyr Ser Arg
420 425 430

Thr Ala Cys Val Ile Ala Val Ala Lys Ala Arg Glu Thr Phe Glu Pro
435 440 445

Phe Leu His Gln Leu Gly Leu Leu Pro Ile Ser Val Tyr Leu Leu Gln
450 455 460

Lys Glu Gly Glu Tyr Leu Ser Gly His Glu Val Phe Leu Lys Arg Val
465 470 475 480

Ala Ser Ala Phe Asn Ser Phe Val Glu Ser Thr Glu Lys Ser Cys Arg
485 490 495

Asp Lys Cys Met Glu Asp Leu Ala Ser Thr Thr Arg Tyr Val Thr Trp
500 505 510

Ser Leu His Asn Lys Asn Ser Phe Gly Gly Thr Glu His Asn Thr Thr
515 520 525

Ser Gly Asn Ala Ile Gly Phe Ser Leu Pro Gln Asp Ala Leu Gly Gly
530 535 540

Thr Thr Asp Thr Lys Ser Arg Ser Asp Val Lys Leu Ser His Leu Ala
545 550 555 560

Ser Asn Ile Asp Ser Gly Ser Ser Ile Gln Thr Thr Glu Met Arg Leu
565 570 575

Ala Asp Leu Leu Asp Ser Thr Leu Trp Asn Arg Lys Leu Ile Val Tyr
580 585 590

Ala Leu Val Gln Gln Ile Phe Gln Gly Ile Arg Glu Tyr Phe Leu Ala
595 600 605

Ser Ala Glu Leu Lys Phe Asn Cys Phe Leu Leu Met Pro Ile Val Asp
610 615 620

Lys Leu Pro Ala Leu Leu Arg Glu Glu Leu Glu Asn Ala Phe Glu Asp
625 630 635 640

Asp Leu Asp Ser Ile Phe Asp Ile Thr Asn Leu Arg Thr Glu Ile Glu
645 650 655

Leu Arg Arg Val Lys Arg Ile Lys Glu Lys Phe Arg Val Met Asn Glu
660 665 670

Lys Leu Asn Ser His Glu Phe Ala Gln Asn Leu Lys Ala Pro Ser Val
675 680 685

Gln His
690

<210> 198
<211> 712
<212> DNA
<213> Lactuca sativa

<220>
<221> misc_feature
<222> (608)..(608)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (656)..(656)
<223> n is a, c, g, or t

<400> 198
ttgttcagct ccgccaaaag aatccaagaa ttggcgtaat ccggctcgat tcttatttg 60
aagggaccag gtgacataac gggtggtgct tattagatct tccatgcatt tttcatgg 120
tgatcttcg gtggattcag caaagtata gaaagcagat gaaacacgtc tcaagaaa 180
ttcatggcca cttaggaatt cgcccttctt ctgaagaaga taaacggaga tggaaagta 240

tctctt	gaga atgtgaagaa gtcgactgcc caactgatga agaaaagg	tt caaaagtatc	300
acgagctttt	gcaacagcga tgacacatgc agtcctggag taatttgttc	catcatgaat	360
atcttcgacc	ccacatgcat tcacaatttc ttcacgtgta attgcagg	gc attttatccc	420
tccaacaaca	aacctaattt cagccatggc acgatgat	at tgcacctc catatagacg	480
catacctgca	ttaggtatta gtttgtgg gaactgagag ccatcaata	cgattaatgc	540
ccctccatta	accctctcat cttgtagtgt ttccccaaat ttatctggag	gtgcaacaac	600
tgtccctntt	catagcagtg ataacttggt aaggaaaaga tcatgaaaag	atctcnctt	660
ctcccttagt	ttgacttcat ctaaagtgct gagttcttga ttatgtcat tt		712
<210>	199		
<211>	666		
<212>	DNA		
<213>	Medicago truncatula		
<220>			
<221>	misc_feature		
<222>	(646)..(646)		
<223>	n is a, c, g, or t		
<400>	199		
atctaaagta	acaaccacca caaaacacaa caatggagga agaaagagaa	caccaccaac	60
tcaaagacaa	agaagaaaac gagtggcg	tc t tacgaagc ttacaatgaa ct tc acgcgc	120
ttgctcaaga	acttcacacg ctttcgacg cgccggcg	gt actggttgtg ggccaccaaa	180
cagacggaa	gagcgcccta gttgaggctc	taatgggctt cc agttcaac cacgtcggt	240
gtggcaccaa	a acccgccgg cccattactc	ttcacatgaa atatggccca cattgcgagt	300
ctcccttctt	g t atcttctt tctgatgatg	acccttctt ttctcaccat atgtcactt	360
cccaa atcca	gggttatatt gaagctgaga	atgcgagg tt ggagcgtgac tcatgtgtc	420
aattttcagc	taaggaaata atcataaaag	tggaatacaa atactgtccc aatctcacca	480
taatagacac	accaggatta gttgctcctg	caccaggtcg taaaatagg gcgatacagg	540
cacaggcacg	agcggttagag tcactcg	ttc gtgcaaaaat gcagcacaag gagttcatta	600
tactctgtct	tgaagattgt agtgattgga	gcaatgcgac tacgangcgc gttgtaatgc	660
aaattg			666

<210>	200					
<211>	663					
<212>	DNA					
<213>	Medicago truncatula					
<400>	200					
gtcttatgg	gggtgcacaa	tatcatcgag	caatggctga	atttcgtttt	gtagttggag	60
gaatcaagtg	ccctccaatt	acccgggaag	aaattgtaaa	tgcttgtgga	gttgaagaca	120
ttcatgatgg	aacaaactac	tctaggactg	cttgtgtaat	tgctgtgca	aaggctcatg	180
atacatttga	acctttctt	catcagttgg	ggtcttagatt	gttgcacata	cttaagagat	240
tgctccaat	ctcttttat	cttcttcaga	aagattgtga	gtatctaagt	ggccatcagg	300
tgttcctcag	gcgtgttgcc	tccgccttcg	acaactttgc	agaatccact	aaaaaatcat	360
gccgtgaaaa	atgtatggag	gacttggtaa	gcaccacacg	atatgtctca	tggtctctac	420
acaataagag	tcgggcagga	ttacgccagt	tcttagattc	atttggtgga	acagaacatt	480
ccaatgtttg	taatgatccc	actgcaactg	ttctatcaca	aacaaatgtg	caagagaagg	540
aagacacaaa	gccacaacta	gaagtaaagc	tcagtcacgt	ggcctctgga	actgatccta	600
gcacatccac	ccagacagct	gaaacaaagc	ttgctgacct	tcttgatagt	acactttgga	660
atc						663
<210>	201					
<211>	622					
<212>	DNA					
<213>	Prunus persica					
<220>						
<221>	misc_feature					
<222>	(609)..(609)					
<223>	n is a, c, g, or t					
<400>	201					
gcttataacct	aacgcaggaa	tgcgttata	tggtggtgca	caataccacc	gtgccatggc	60
tgagttccgc	tttgttagttg	gaggaataaa	atgccctcca	attacaaggg	aagaaattgt	120
aaatgcatgt	ggagttgaag	atttacatga	tggcacaaac	tactcaagga	cagttgtgt	180
aatagccgtt	gcaaaggccc	gtgatacatt	tgagccttcc	cttcatcagt	tagttgttag	240
actcttgcac	attctaaaga	gattacttcc	tatatcagtc	tatcttcttc	agaaagatgg	300
tgagtattta	agtggccatg	aggtgtttct	taggcgtgtt	gcttctgctt	tcaatgactt	360
tgcagaatct	accgaaaggg	catgtcgtga	aaaatgcacg	gaggattnag	taagcaccac	420

ccgctatgtc acctggtccc ttcacaacaa gaatcgagct gggttacgtc aattttaga	480
ctcgttcgct ggaacagaac ataacactat ggtagtaat tgcgtacctg ctggatttc	540
ccaagattca tccttggt ctgtgccaa tgagaaggat actaagtcaa gggcagatgt	600
gaagctcanc catgtggcgt ct	622
<210> 202	
<211> 752	
<212> DNA	
<213> Solanum tuberosum	
<400> 202	
gcgaatgtga ttcttcaaag gcaacaaagg ctgacggagg aatttgcgc tcgtgcagat	60
ctgcttctgt ttctcatgtc tgctgatcga ccattaactg aaagtgggt tagtttctg	120
cgttacactc agcagtggag taagaaggc attttgc tgaacaagtc tgacatatac	180
aagaataacg gcgagttgga ggaggccatt gcatttatca aagaaaatac acggaaattg	240
ctgaatacag aatccgtAAC actgttatcca gtatctgcac ggctcgctct tgaatcaaag	300
ctttctactt ttgatggtgc ccttagtcaa aacaatggga gttcaaataa tgattctcac	360
tggaaaacca agagcttcta tgagcttgag aagtacttgt ctagctttt ggattcatcc	420
acaagtactg gaattgagag aatgaagctg aagcttggaa ctccaaattgc cattgcagaa	480
caactacttt tagcttgcaggacttgc agacaagaat gtcagcaagc caaacaagac	540
ttgctgttg ttgaggatct tgtcaacaggc gtagaagagt gcacaaagaa gctggaaat	600
gatagcattc tgtggaaagag gcagggttcta tctctgataa actctgctca agcacgtgtt	660
gtccggcttg tagagtcaac gttacaactg tcaaattttt atcttgcgc tacatatgt	720
ttcagaagag aaaactctac tcaaattgcca gc	752
<210> 203	
<211> 492	
<212> DNA	
<213> Glycine max	
<400> 203	
tgttgaatga agctattgaa gctatcaaga gggctgcacc tctgatggag gaggtttcac	60
ttcttaatga tgcggtttct caaattgtatg agccattctt actgggtata gtggggaaat	120
tcaactctgg taaatctacc gtgattaatg cgcttcttgg agaaagatat ctcaaagagg	180
gagttgttcc aacaactaat gagatcacat tttacgata tactgactta gatattgaac	240
aacaacggtg tgaaaggcat ccagatggcc aatataatttgc tctacattcct gctccaaattc	300

ttaaagagat gaccattgtt gatacacctg gaactaatgt gattcttcag aggcagcagc	360
gtcttacaga ggaatttcta ccccggtcag atttacttct ttttgcatt tctgctgatc	420
gcccttaac tggaagttag attgctttc ttgcatttc tcagcagtgg aaaaagaaag	480
cggctttgt ct	492
<210> 204	
<211> 446	
<212> DNA	
<213> Lycopersicon esculentum	
<400> 204	
gagaccatta agtacaattc tataaggagt ctttgaaaa aagatggact tcattggta	60
atccgtctga ccaaattttagt ttaggaacaa ctgggtgtct ggatagaaaa tctgaagtta	120
ccataagtgt catagaggat ttcaagtgtc cagctgcttc aaaattgctt gagagagata	180
ttcgtgaagt gttcttgggt acttttggtg gtcttggagc agctggtttca cagcgtcgc	240
ttctgacatc tgttcttcaa accacattag aagacccctt tgcacttggc ctttgtctg	300
ctggcgggtt attagcggtc ttcaacttct catccggag acagcaagtg gtagataaag	360
taaagaggac tgctgatggc cttcacgtg aactcgaaga ggctatgcag aaggagctct	420
tggagacgac tagtaatgtg gaggac	446
<210> 205	
<211> 521	
<212> DNA	
<213> Populus balsamifera subsp. trichocarpa	
<400> 205	
tgggtttgtt ctgtctgatc aagggtttcc tgcccttgc gcaagaaata tggatgtggg	60
ttctcgaact gaatcagttt ttctaccttt ggtagccagg attgtgcaga caccatatgc	120
tgcattaaat gcgtctaatt ctgaagggtgc tgatttctt atatatgttc atggcccaga	180
ggatgtatcct gatgttagaaa tgagccctgg attcggaaat gtgaagatac caatcttgc	240
cctcaatgct tcacgtgggg aggacacatt gtcgggtgggg gcatcaaaat ttctgaaaac	300
cggtgctagt ggttttagttc tgcatttgcg agatggagg ttatgtcg atgtatgttt	360
gagtcagatg tttgacactc tgagtgcac cggtaaaaac tttcaggatg accttgcac	420
cttcagtaag ctcaaatactt tggatgtttt aaatgtatgcg catgaaaaaa caacgggtggc	480
aggctttgtt aaactggagg atagagaaaa acagctcata g	521

<210> 206
<211> 324
<212> PRT
<213> Arabidopsis thaliana

<400> 206

Met Glu Ala Leu Ser His Val Gly Ile Gly Leu Ser Pro Phe Gln Leu
1 5 10 15

Cys Arg Leu Pro Pro Ala Thr Thr Lys Leu Arg Arg Ser His Asn Thr
20 25 30

Ser Thr Thr Ile Cys Ser Ala Ser Lys Trp Ala Asp Arg Leu Leu Ser
35 40 45

Asp Phe Asn Phe Thr Ser Asp Ser Ser Ser Ser Phe Ala Thr Ala
50 55 60

Thr Thr Thr Ala Thr Leu Val Ser Leu Pro Pro Ser Ile Asp Arg Pro
65 70 75 80

Glu Arg His Val Pro Ile Pro Ile Asp Phe Tyr Gln Val Leu Gly Ala
85 90 95

Gln Thr His Phe Leu Thr Asp Gly Ile Arg Arg Ala Phe Glu Ala Arg
100 105 110

Val Ser Lys Pro Pro Gln Phe Gly Phe Ser Asp Asp Ala Leu Ile Ser
115 120 125

Arg Arg Gln Ile Leu Gln Ala Ala Cys Glu Thr Leu Ser Asn Pro Arg
130 135 140

Ser Arg Arg Glu Tyr Asn Glu Gly Leu Leu Asp Asp Glu Glu Ala Thr
145 150 155 160

Val Ile Thr Asp Val Pro Trp Asp Lys Val Pro Gly Ala Leu Cys Val
165 170 175

Leu Gln Glu Gly Gly Glu Thr Glu Ile Val Leu Arg Val Gly Glu Ala
180 185 190

Leu Leu Lys Glu Arg Leu Pro Lys Ser Phe Lys Gln Asp Val Val Leu
195 200 205

Val Met Ala Leu Ala Phe Leu Asp Val Ser Arg Asp Ala Met Ala Leu
210 215 220

Asp Pro Pro Asp Phe Ile Thr Gly Tyr Glu Phe Val Glu Glu Ala Leu
225 230 235 240

Lys Leu Leu Gln Glu Glu Gly Ala Ser Ser Leu Ala Pro Asp Leu Arg
245 250 255

Ala Gln Ile Asp Glu Thr Leu Glu Glu Ile Thr Pro Arg Tyr Val Leu
260 265 270

Glu Leu Leu Gly Leu Pro Leu Gly Asp Asp Tyr Ala Ala Lys Arg Leu
275 280 285

Asn Gly Leu Ser Gly Val Arg Asn Ile Leu Trp Ser Val Gly Gly Gly
290 295 300

Gly Ala Ser Ala Leu Val Gly Gly Leu Thr Arg Glu Lys Phe Met Asn
305 310 315 320

Glu Ala Phe Leu

<210> 207
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic

<220>
<221> misc_feature
<222> (2)..(3)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (5)..(5)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (7)..(7)
<223> Xaa can be any naturally occurring amino acid

<400> 207

Cys Xaa Xaa Cys Xaa Gly Xaa Gly
1 5

<210> 208

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<220>

<221> CDS

<222> (1) .. (21)

<400> 208

gcg ttt tta tga atg aca gct

Ala Phe Leu Met Thr Ala

1 5

21