

Low Noise Amplifier PMA2-162LNA+

50Ω 700 to 1600 MHz Ultra Low Noise

THE BIG DEAL

- Noise Figure, Typ 0.5 dB
- · Adjustable Gain, Typ. 19.7 dB to 23.5 dB
- Class 1B HBM ESD (500V)
- OIP3, Typ. +30 dBm
- P1dB, Typ +20 dBm
- 2x2mm 8-Lead SMT Package
- May be used as a replacement for MGA-631P8^{a,b}

APPLICATIONS

- Base Station Infrastructure
- Portable Wireless
- LTE
- GPS
- GSM
- Airborn Radar

Generic photo used for illustration purposes only

FUNCTIONAL DIAGRAM

PRODUCT OVERVIEW

The PMA2-162LNA+ is an E-pHEMT* amplifier that operates from 700 to 1600 MHz. The amplifier has a low noise figure of 0.5 dB typical while providing 22.7 dB of gain, +30 dBm OIP3, and +20 dBm P1dB with 18 dB typical return loss with a +4V and 55mA DC power. Gain is adjustable from 19.7 dB to 23.5 dB. The amplifier is housed in an industry standard 2x2mm SMT package, with RF ports internally matched to 50Ω , facilitating easy integration into microwave system PC boards.

KEY FEATURES

Feature	Advantages
Ultra Low Noise Figure • Typ. 0.5 dB	Excellent noise figure performance.
High OIP3 OIP3, Typ. +30 dBm	Suitable as a driver amplifier in receiver/transmitter chains.
Adjustable Gain	By changing feedback resistor R1, gain can be changed from 19.7 dB to 23.5 dB.
Max Input Power, +25 dBm	Ruggedized design operates up to high input power often seen at Receiver inputs eliminating the need for an external limiter.
Class 1B ESD (500V HBM)	The PMA2-162LNA+ is a super low noise E-pHEMT based design. Mini-Circuits incorporates ESD protection on die to achieve industry leading ESD performance for a low noise amplifier.
2x2mm 8-Lead SMT package	Small footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, and compatibility with other components and environmental conditions and stresses.

b. The Avago MGA-631P8 part number is used for identification and comparison purposes only.

^{*}Enhanced mode Pseudomorphic High Electron Mobility Transistor

Low Noise Amplifier PMA2-162LNA+

 50Ω 700 to 1600 MHz Ultra Low Noise

ELECTRICAL SPECIFICATIONS^{1,2} AT +25°C, $Z_0 = 50\Omega$, AND $V_s = +4V$ UNLESS NOTED OTHERWISE

Donomotor	Canditian (MIII)	R1 = 267Ω¹		R1 = 93Ω ²		Heite		
Parameter	Condition (MHz)	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		700		1600	700		1600	MHz
	700		24.4			22.7		
	800		24.1			22.2		
Gain	1000	20.9	22.7	24.5	18.6	20.8	23.1	dB
	1300		20.7			19.1		
	1600		18.8			17.7		
	700		9.5			11.5		
	800		15.5			18.8		
Input Return Loss	1000		17.9			20.0		dB
	1300		12.4			14.5		
	1600		10.8			12.4		
	700		13.6			21.6		
	800		16.1			17.8		
Output Return Loss	1000		18.9			16.0		dB
	1300		15.6			15.1		
	1600		10.7			11.6		
Isolation	700-1600		38.2			34.2		dB
	700		+19.5			+18.3		
	800		+19.8			+18.9		
Output Power at 1 dB Compression (P1dB)	1000		+19.9			+19.7		dBm
	1300		+19.7			+19.8		
	1600		+18.8			+19.0		
	700		+29.1			+28.3		
	800		+30.3			+38.5		
Output Third-Order Intercept Point (Pout = 0 dBm/Tone)	1000		+30.0			+29.0		dBm
(Fout - O dBill/ Folle)	1300		+30.1			+29.2		
	1600		+29.4			+28.5		
	700		0.55			0.57		
	800		0.51			0.54		
Noise Figure	1000		0.47			0.48		dB
	1300		0.64			0.65		
	1600		0.80			0.81		
Device Operating Voltage (V _S)		+3.8	+4.0	+4.2	+3.8	+4.0	+4.2	V
Device Operating Current (I _s) ³			55			55		mA
Device Current Variation Vs. Temperature ⁴			2			2		μΑ/°C
Device Current Variation Vs. Voltage ⁵			0.018			0.016		mA/mV

^{1.} Tested in Mini-Circuits Characterization Test/Evaluation Board TB-PMA2162LNAC+ with R1 = 267Ω . See Figure 2. De-embedded to the device reference plane.

^{2.} Tested in Mini-Circuits Characterization Test/Evaluation Board TB-PMA2162LNAC+ with R1* = 93Ω . See Figure 2. De-embedded to the device reference plane.

^{3.} Current at P_{IN} = -25 dBm. Increases to 95 mA at P1dB.

^{4. ((}Current at Tmax°C – Current at -Tmin°C))/(Tmax °C -Tmin °C)

^{5. (}Current at Nominal V + Δ V in mA)- (Current at Nominal V - Δ V mA)/(2 Δ V mV)

Low Noise Amplifier PMA2-162LNA+

 50Ω 700 to 1600 MHz Ultra Low Noise

Low Noise Amplifier PMA2-162LNA+

 50Ω 700 to 1600 MHz Ultra Low Noise

Low Noise Amplifier PMA2-162LNA+

50Ω 700 to 1600 MHz Ultra Low Noise

Low Noise Amplifier PMA2-162LNA+

50Ω 700 to 1600 MHz Ultra Low Noise

Low Noise Amplifier PMA2-162LNA+

700 to 1600 MHz Ultra Low Noise

ABSOLUTE MAXIMUM RATINGS⁶

Parameter	Ratings
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C
Total Power Dissipation	0.55W
Junction Temperature ⁷	+150°C
Input Power (CW), V _S = +4V	+25 dBm
DC Voltage on V _S	+5.5V
Current I _s	130mA

^{6.} Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

THERMAL RESISTANCE

Parameter	Ratings
Thermal Resistance $(\Theta_{jc})^8$	53°C/W

^{8.} Θ_{ic} = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

	Class	Voltage Range	Reference Standard
Human Body Model (HBM)	1B	500V to <1000V	ANSI/ESDA/JEDEC JS-001-2017
Machine Model (MM)	M1	25V	JESD22-C101F

ESD HANDLING PRECAUTION: This device is designed to be Class 1B for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020E/JEDEC J-STD-033C

^{7.} Peak temperature on top of Die.

Low Noise Amplifier PMA2-162LNA+

700 to 1600 MHz Ultra Low Noise

FUNCTIONAL DIAGRAM

Figure 1. PMA2-162LNA+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description
RF-IN	2	RF-IN Pad connects to RF-Input port.
RF-OUT & DC-IN	7	RF-OUT Pad connects to RF-Output and the voltage input port, DC-IN.
BIAS	4	Bias Pad that is used to adjust the bias voltage supplied to the DUT through the use of an RBIAS resistor.
FEEDBACK	5	Feedback Pad used to reflect any feedback into the DUT.
RF-GROUND	3	RF-Ground Pad used for grounding.
GROUND	8 & Paddle	Connects to ground.
NC	1 & 6	Not used internally. Connected to ground on test board.

CHARACTERIZATION TEST BOARD

Figure 2. DUT soldered on Mini-Circuits Characterization Test Board: TB-PMA2162LNAC+

Gain, Return Loss, Output Power at 1dB compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using PNA-X N5242A Microwave Network Analyzer.

- 1. Gain and Return Loss: $P_{\rm IN}$ = -25 dBm 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. $V_s = +4V$

Component	Vendor	Vendor P/N	Value	Size
C1, C6	AVX CORP	04025U9R1CAT2A	9.1pF	0402
C2, C4	Murata	GRM15555C1H101JA01D	100pF	0402
C3	Murata	GJM1555C1H5R6BB01D	5.6pF	0402
C5, C7	Murata	GRM155R71C104KA88D	0.1µF	0402
R1	KOA Speer Electronics	RK73H1ETTP2670F	267Ω	0402
R1*	KOA Speer Electronics	RK73H1ETTP930F	93Ω	0402
Rbias	KOA Speer Electronics	RK73H1ETTP7500F	750Ω	0402
L1	Coilcraft	0402CS-6N8XGLW	6.8nH	0402
L2	Coilcraft	0402CS-15NXGLW	15nH	0402

Low Noise Amplifier PMA2-162LNA+

50Ω 700 to 1600 MHz Ultra Low Noise

CASE STYLE DRAWING

Weight: 0.006 grams Dimensions are in inches [mm].

Figure 3. MC1631-1 Case Style Drawing

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Figure 4. PMA2-162LNA+ Product Marking

Low Noise Amplifier PMA2-162LNA+

 50Ω 700 to 1600 MHz Ultra Low Noise

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASH BOARD CLICK HERE

	Data		
Performance Data	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file)		
Case Style	MC1631-1. Plastic Package, Exposed Paddle, Lead Finish: Matte Tin		
RoHs Status	Compliant		
Tape & Reel	F66		
Standard quantities available on reel	7" reels with 20, 50 , 100, 200, 500, or 1000 devices		
Suggested Layout for PCB Design	PL-737		
Evaluation Board	TB-PMA2162LNAC+		
Evaluation doard	Gerber File		
Environmental Ratings	ENV08T1		

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

