29 September 2020

2. F test

(b) Distributions

$$\frac{\text{Total S. S.}}{\sigma^2} = \frac{\text{Reg. S. S.}}{\sigma^2} + \frac{\text{Res. S. S.}}{\sigma^2}$$

$$\sim \chi^2 (n - 1, \lambda) \sim \chi^2 (p, \lambda) \sim \chi^2 (n - p')$$
where $\lambda = \frac{1}{\sigma^2} \sum_{i=1}^p \sum_{j=1}^p \beta_i \beta_j S_{x_i, x_j}$.

(c) All regression coefficients equal to zero

For testing $H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$

Model with intercept (Intercept is unknown)

Source	Sum of squares (S.S.)	d.f.
Regression	$\hat{\beta}_1 S_{x_1 y} + \ldots + \hat{\beta}_p S_{x_p y}$	p
Residual	$S_{yy} - \hat{\beta}_1 S_{x_1 y} - \ldots - \hat{\beta}_p S_{x_p y}$	n - p' = n - (p+1)
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2 = S_{yy}$	n-1

$$F = \frac{RegS.S./p}{Res.S.S./(n-p')} = \frac{Reg.M.S.}{\hat{\sigma}^2} \sim F(p, n-p') \text{ under } H_0$$

Reject H_0 is $F_{obs} > F_{\alpha}(p, n - p')$

Model without intercept (Intercept is known)

Source	Sum of squares (S.S.)	d.f.
Regression	$\hat{\beta}_1 \sum_{i=1}^n x_{i1}(y_i - \beta_0) + \ldots + \hat{\beta}_p \sum_{i=1}^n x_{ip}(y_i - \beta_0)$	p
Residual	$\sum_{i=1}^{n} (y_i - \beta_0)^2 - \hat{\beta}_1 \sum_{i=1}^{n} x_{i1} (y_i - \beta_0) - \dots - \hat{\beta}_p \sum_{i=1}^{n} x_{ip} (y_i - \beta_0)$	n-p
Total	$\sum_{i=1}^{n} (y_i - \beta_0)^2$	n

$$F = \frac{RegS.S./p}{Res.S.S./(n-p)} = \frac{Reg.M.S.}{\hat{\sigma}^2} \sim F(p, n-p) \text{ under } H_0$$

Reject H_0 is $F_{obs} > F_{\alpha}(p, n-p)$

• For testing $H_0: \beta_1 = \ldots = \beta_p = 0$, it is incorrect to test $H_0: \beta_i = 0$ for $i = 1 \ldots p$ separately.

11