Examenul național de bacalaureat 2022 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Model

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(6-3\sqrt{3})(2+\sqrt{3})=3(2-\sqrt{3})(2+\sqrt{3})=3=$	3 p
	$=(\sqrt{3})^2$, deci numerele $6-2\sqrt{3}$, $\sqrt{3}$ și $2+\sqrt{3}$ sunt termeni consecutivi ai unei progresii geometrice	2p
2.	Axa Ox este tangentă graficului funcției $f \Leftrightarrow \Delta = 0 \Leftrightarrow m^2 - 4 = 0$	3p
	m = -2 sau $m = 2$	2p
3.	$25 \cdot 5^x - 5^x = 24$, deci $5^x = 1$	3p
	x = 0	2p
4.	Mulțimea numerelor naturale de două cifre distincte are 81 de elemente, deci sunt 81 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre distincte sunt $3 \cdot 9 = 27$ de numere care au cifra zecilor multiplu de 3, deci sunt 27 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{3}$	1p
5.	$\overrightarrow{MA} + 2\overrightarrow{MA} + 2\overrightarrow{AB} + 3\overrightarrow{MC} = \overrightarrow{0}$, deci $3(\overrightarrow{MA} + \overrightarrow{MC}) + 2\overrightarrow{AB} = \overrightarrow{0}$ și, cum $\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MD}$, obținem $\overrightarrow{MD} = -\frac{1}{3}\overrightarrow{AB}$	3p
	Vectorii \overrightarrow{MD} și \overrightarrow{AB} sunt coliniari, deci dreptele MD și AB sunt paralele	2p
6.	Unghiul C are măsura egală cu 90° , deci triunghiul ABC este dreptunghic în C	2p
	$\sin B = \frac{\sqrt{3}}{2}$ şi, cum $AC = 3$, obţinem $AB = 2\sqrt{3}$	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det B = \begin{vmatrix} 1 & 0 & 1 \\ 0 & i & 0 \\ -2 & 0 & -1 \end{vmatrix} = 1 \cdot i \cdot (-1) + 0 + 0 - (-2) \cdot i \cdot 1 - 0 - 0 =$	3p
	=-i+2i=i	2p
b)	Cum $B \cdot B = -I_3$, $A(z_1) \cdot A(z_2) = (aI_3 + bB)(cI_3 + dB) = acI_3 + adB + bcB + bdB \cdot B =$	3p
	$=(ac-bd)I_3+(ad+bc)B=A(z_1z_2)$, pentru orice $z_1=a+ib$ și $z_2=c+id$, cu a , b , c și d numere reale	2p
c)	$A(1+i) \cdot A(2+i) \cdot A(3+i) \cdot A(1-i) \cdot A(2-i) \cdot A(3-i) = A((1+i)(2+i)(3+i)(1-i)(2-i)(3-i)) = A(1+i) \cdot A(2+i) \cdot A(3+i) \cdot A(3-i) = A(1+i)(3+i)(3+i)(3+i)(3-i) = A(1+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3+i)(3$	2p
	$= A((1+i)(1-i)(2+i)(2-i)(3+i)(3-i)) = A(2\cdot5\cdot10) = 100I_3, \text{ deci } n=100$	3 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

2.a)	$x * y = \log_2(2^x(2^y - 2) - 2^{y+1} + 4 + 2) =$	3 p
	$= \log_2(2^x(2^y - 2) - 2(2^y - 2) + 2) = \log_2((2^x - 2)(2^y - 2) + 2), \text{ pentru orice } x, y \in M$	2p
b)	$x*e=x$ pentru orice $x \in M$, unde e este elementul neutru al legii de compoziție, deci $(2^x-2)(2^e-3)=0$ pentru orice $x \in M$, de unde obținem $e=\log_2 3 \in M$	3p
	Cum $(\log_2 3) * x = x$ pentru orice $x \in M$, obținem că $e = \log_2 3$ este elementul neutru al legii de compoziție ",*"	2p
c)	$x * x * x = \log_2\left(\left(2^x - 2\right)^3 + 2\right)$, pentru orice $x \in M$	3p
	$\left(x * x * x\right) - 3x = \log_2\left(\frac{\left(2^x - 2\right)^3 + 2}{2^{3x}}\right) = \log_2\left(1 - \frac{6\left(2^x - 1\right)^2}{2^{3x}}\right) < 0, \text{ pentru orice } x \in M, \text{ de}$	2p
	unde obținem că $x * x * x < 3x$, pentru orice $x \in M$	

SUBIECTUL al III-lea (30 de puncte)

~ ~ ~ ~ ~	(30 de pi	
1.a)	$f'(x) = (x^3 + 3x + 1)'e^{-x} + (x^3 + 3x + 1)(e^{-x})' = (3x^2 + 3)e^{-x} - (x^3 + 3x + 1)e^{-x} =$	3p
	$= \left(-x^3 + 3x^2 - 3x + 2\right)e^{-x} = \left(2 - x\right)\left(x^2 - x + 1\right)e^{-x}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \left(\frac{f(x) - e^{-x}}{f(x) + e^{-x}} \right)^{f(x)} e^{x} = \lim_{x \to +\infty} \left(\frac{x^{3} + 3x}{x^{3} + 3x + 2} \right)^{x^{3} + 3x + 1} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 1)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}} = \lim_{x \to +\infty} \left(1 + \frac{-2}{x^{3} + 3x + 2} \right)^{\frac{-2(x^{3} + 3x + 2)}{x^{3} + 3x + 2}$	3р
	$= e^{\lim_{x \to +\infty} \frac{-2(x^3 + 3x + 1)}{x^3 + 3x + 2}} = e^{-2}$	2p
c)		2p
	g este continuă și, cum pentru orice $x \in (-\infty,0)$, $g'(x) = -3x^2 - 3 < 0 \Rightarrow g$ este strict descrescătoare pe $(-\infty,0)$ și pentru orice $x \in (0,+\infty)$, $g'(x) = 3x^2 + 3 > 0 \Rightarrow g$ este strict	3p
	crescătoare pe $(0,+\infty)$, obținem că funcția g are un singur punct de extrem	
2.a)	$\int_{4}^{6} \frac{f(x)}{\ln(x-1)} dx = \int_{4}^{6} x dx = \frac{x^{2}}{2} \Big _{4}^{6} =$	3р
	=18-8=10	2p
b)	F este o primitivă a lui f , deci $F'(x) = f(x) = x \ln(x-1)$, de unde obținem că $F'(x) > 0$, pentru orice $x \in (2, +\infty)$, deci F este strict crescătoare pe $(2, +\infty)$	3 p
	Cum $2 < \sqrt{7} < 3$, obținem că $F(\sqrt{7}) < F(3)$	2p
c)	$\int_{3}^{5} f(x) dx = \int_{3}^{5} \left(\frac{x^{2} - 1}{2} \right) \ln(x - 1) dx = \frac{x^{2} - 1}{2} \ln(x - 1) \Big _{3}^{5} - \frac{1}{2} \int_{3}^{5} \frac{(x - 1)(x + 1)}{x - 1} dx =$	3p
	$= 12 \ln 4 - 4 \ln 2 - \frac{1}{2} \left(\frac{x^2}{2} + x \right) \Big _{3}^{5} = 20 \ln 2 - 5 = 5 (4 \ln 2 - 1), \text{ de unde obținem } m = 5$	2p