Name: Kevin Zhang

Problem 1.

- (a) Given a function $f: X \to Y$ where X and Y are finite sets, and |X| = |Y|. Suppose that f is injective. This means for every element $y \in Y$, there is at most one arrow pointing in. But, f is a function, which means for every unique $x \in X$, there must be an arrow going from x to y. Since no y can have more than one arrow pointing in, and |X| = |Y|, then the number of arrows pointing in must be exactly 1 for every y. This implies that f is bijective, which then implies that f must also be surjective as well.
- (b) Given a function $f: X \to Y$ where X and Y are finite sets, and |X| = |Y|. Suppose that f is surjective. This means that for every element $y \in Y$, there is at least one arrow pointing in. But f is a function, which means there cannot be more than one arrow pointing out for every $x \in X$. Since |X| = |Y|, it is not possible for there to be any y with more than one arrow pointing in, which means there is exactly 1 arrow pointing in for every y. This implies that f is bijective, which then implies that f must also be injective as well.

Problem 2.

- (a) A function that produces every n^{th} prime number. Some numbers are not prime, and will have no arrows pointing into them, making the function not surjective by default.
- (b) A function that produces the smallest factor of *n*. Multiple numbers will have the same smallest factor (eg. 2), making this surjective, but not injective.

Problem 3.

In b-adic ordering, a = 1, b = 2, and c = 3, so the total would be

$$(3^6 \times 2) + (3^5 \times 3) + (3^4 \times 1) + (3^3 \times 3) + (3^2 \times 2) + (3^1 \times 1) + (3^0 \times 2) =$$
2372

Problem 4.

Number 909 can be broken down as follows:

$$909 = 3 \times 302 + 3$$

$$302 = 3 \times 100 + 2$$

$$100 = 3 \times 33 + 1$$

$$33 = 3 \times 10 + 3$$

$$10 = 3 \times 3 + 1$$

$$3 = 3 \times 0 + 3$$

With a = 1, b = 2, and c = 3, the string would be **cbacac**.

Problem 5.

If we assign a bit vector to each of the results from f, we would get:

$$f(a) = \{a, b\} \qquad \rightarrow 11000$$

$$f(b) = \{c, d, e\} \qquad \rightarrow 00111$$

$$f(c) = \{b, c\} \qquad \rightarrow 01100$$

$$f(d) = \emptyset \qquad \rightarrow 00000$$

$$f(e) = \{a, c, d\} \qquad \rightarrow 10110$$

We can then take the flipped diagonal, and we get the bit-vector 01011, which corresponds to the set $\{b, d, e\}$.

Problem 6.

For the sets in the sequence S_0 , S_1 , S_2 ,... of subsets of \mathbb{N} , we are only concerned with the even numbers in each set (since S can contain only evens), so we can form the diagram as such:

	0	2	4	6	
S_0	1	0	1	0	
S_1	0	1	0	1	
S_2	1	1	1	1	
S_3	0	0	0	1	
:	:	:	:	:	٠

The bit-vectors for S_0 , S_1 , S_2 ,... are arbitrary here, simply for demonstration. Then, we can use diagonalization (by flipping the bits along the diagonal) to create a unique bit-vector for S, consisting of only even numbers, and where $S \neq S_0$, S_1 , S_2 .

Problem 7.

The tuple $(Q, \sigma, \delta, s, F)$ in order:

The states are $Q = q_1, q_2, q_3$

The alphabet is $\sigma = a, b$

The transition function (δ) is shown in the table below

The starting state is s = 1

The acceptable final states are $F = q_1, q_3$

δ	a	b
q_1	q_2	92
q_2	q_2	<i>q</i> ₃
93	q_1	92

Problem 8.

Problem 9.

 $L(M) = \{w \in \sigma * | w \text{ does not start with b and does not contain bb.} \}$

Problem 10.

(a)
$$\begin{array}{c|c|c|c} \delta & 0 & 1 \\ \hline q_s & q_s & q_s \end{array}$$

where $s = q_s$ and $F = \{\}$. q_s represents the starting state, and there is no final state in this case, because there is no word that belongs in \emptyset .

(b)
$$\begin{vmatrix} \delta & 0 & 1 \\ q_s & q_e & q_e \end{vmatrix}$$

where $s = q_s$ and $F = \{q_s\}$. q_s represents the starting state, and q_e represents a non-empty state. Since we are trying to get to ϵ , the only acceptable state is the starting state.

	δ	0	1
	q_s	q_0	q_1
(c)	q_0	q_n	q_f
(C)	q_1	q_f	q_n
	q_n	q_n	q_n
	$ q_f $	q_n	q_n

where $s = q_s$ and $F = \{q_f\}$. q_0 and q_1 represents states in which the word starts with 0 or 1, respectively. From q_0 , if a 1 is entered, then we enter q_f , which is the accepting state (similar is true for q_1). Any more letters after that (or if 0 is entered after q_0 or 1 after q_1), we enter q_n , which is simply a non-accepting state from which we can't exit.

3

	δ	0	1
	q_s	q_0	q_1
(d)	q_0	q_0	q_0
	q_1	q_n	q_1
	q_n	q_n	q_n

where $s = q_s$ and $F = \{q_1\}$. Because we have to start with 1, q_s and q_n are here for the situations of ϵ and when we start with 0, respectively. There is no exit from q_n . Then, for situations we do start with 1, we simply shuffle between q_1 and q_0 , which represents what was the last digit read.

	δ	0	1
	q_s	q_0	q_1
(e)	q_0	q_n	q_1
	q_1	q_0	q_n
	q_n	q_n	q_n

where $s = q_s$ and $F = \{q_s, q_0, q_1\}$. Here, the only non-accepting state is q_n , which represents when 00 or 11 has been found. q_1 and q_0 represents the last digit read, and simply transitions between each other, except if there is a 00 or a 11.

	δ	0	1
	q_s	q_0	q_1
(f)	q_0	q_0	q_1
	q_1	<i>q</i> ₂	q_0
	q_2	92	q_1

where $s = q_s$ and $F = \{q_0\}$. The states q_0, q_1, q_2 represent the remainder when the binary string (so far) is divided by three. This logic works because each digit on a binary string is eventually added together, so whenever the remainder becomes 0, it can be treated as a new string. For when the remainder is 1, then we can examine 11 or 10 (for the next read). In the prior case, $11_2 = 3$, so the remainder is 0. In the latter case, $10_2 = 2$, so the remainder is 2. Finally, we can move into the cases when the remainder is 2. Remainder 2 in binary is 10, so we prepend that to the next digit and the cases become 101 or 100. The former gives remainder 2 (again), and the latter gives remainder 1.

	δ	0	1
	q_0	q_0	q_1
(g)	q_1	q_0	92
	q_2	q_0	<i>q</i> ₃
	93	93	q_3

where $s = q_0$ and $F = \{q_3\}$. Since the strings x and y can be empty, then this simply becomes a search to see if the substring 111 is in this string. q_0 , q_1 , q_2 , q_3 represents the number of consecutive 1's found, and once 3 are found, q_3 doubles as the accepting truthy state.

Problem 11.

The code is as follows:

```
# Accepts All binary strings in which all two successive ones
# are separated by an odd number of zeroes

start: truthy

accept-states: [truthy]

transitions:
- [truthy, 0, truthy]
- [truthy, 1, open_1]

- [open_1, 0, odd_zero]
- [open_1, 1, falsy]

- [odd_zero, 0, even_zero]
- [odd_zero, 1, truthy]

- [even_zero, 0, odd_zero]
- [even_zero, 1, falsy]

- [falsy, 0, falsy]
- [falsy, 1, falsy]
```