Question 1:

First, I build this workflow:

This workflow builds a neural network by its default setting

and predict by cross-validation with 5 folds. In partitioning, set the random seed to let each time's folding be the same. Let me show its performance by its error rate, score, and timing.

Error rate in each folder:

Row	ID Err	or in %	Size of Test Set	Error Count
fold 0	18.575	393	73	3
fold 1	20.611	393	8:	1
fold 2	23.469	392	92	2
fold 3	21.939	392	86	6
fold 4	22.959	392	90	0

The overall Accuracy is 78.37%. It's similar for the accuracy to predict 1 and 0.

For timing, we can use the time info node, to show general timing information for each node,

RowlD ↓↑	Name ↓↑	Execution Time 11	Execution Time since last Reset	Execution Time since Start	Nr of Executions since last Reset	Nr of Executions since Start 11	NodelD ↓↑
Node 18	MultiLayerPerceptron Predictor	328	328	328	1	1	3:18
Node 19	RProp MLP Learner	812	812	815	1	3	3:19
Node 22	Parameter Optimization Loop Start	?	0	0	0	0	3:22
Node 23	Parameter Optimization Loop End	?	0	0	0	0	3:23
Node 48	File Reader	47	47	47	1	1	3:48
Node 101	Partitioning	12	12	28	1	2	3:101
Node 102	Scorer (JavaScript)	21	21	21	1	1	3:102
Node	X-Partitioner	8	54	1023	5	60	3:103

But I think what we need now is total execution time, since it is easier to compare. So, I changed the workflow:

By the new nodes, benchmark start and benchmark end, it's easy to calculate the total execution time for the cross-validation and neural network.

It's 2.013 seconds.

Then, add the normalization, between 0 and 1.

The result is:

	Row ID	D Error in %	Size of	Error C
	fold 0	11.196	393	44
1	fold 1	11.959	393	47
1	fold 2	9.439	392	37
1	fold 3	13.01	392	51
	fold 4	9.949	392	39

(error rate in each folders)

Rows Numb	er : 1962	0 (Predicted	l)		1 (Predicted)	
0 (Actual)		882		99		89.91%
1 (Actu	ıal)	108		873		88.99%
		89.09%			89.81%	
Overall Statistics						
Overall Accuracy	Overall Error	Cohen's kappa (κ)	Correctly	Classified	Incorrectly Classified	

Accuracy is 89.45%, it's still similar between the prediction accuracy between 1 and 0. The execution time is 2.566 seconds.

So, by the solution above, with normalization, it has a higher accuracy, but its computational cost is higher since it costs more time.

Question 2

The regression does not work if the data is not normalized for margin.csv.

KNIME says the range for regression should in [0,1]. So, I need to normalize the data.

This is similar as question 1. I read the data, normalize the data, start to calculate the time, since I want to calculate how much time the neutral network works. Then build the neural network, by default setting, and cross-validation with 5 folds.

Here is the result:

(for the result of cross validation)

	Specific Communication Communi						
Row ID	D Total squared error	D Mean squared error	Size of Test Set				
fold 0	2.511	0.006	393				
fold 1	2.119	0.005	393				
fold 2	2.609	0.007	392				
fold 3	2.024	0.005	392				
fold 4	2.778	0.007	392				

It calculates each fold's total squared error and mean square error.

Row ID	Iteration	Start Time	End Time	D Executi
Row_1	1	2020-10-08T12:24:43.052-04:00[America/New_Yo	2020-10-08T12:24:45.573-04:00[America/New_Yo	2.521

For the timing, it is similar as classification with normalization.

(prediction result)

D margin	D Predicti
0.616	0.627
0.545	0.573
0.518	0.463
0.696	0.553
0.688	0.598
0.518	0.378
0.509	0.593

Since we did normalization for the prediction, we can do the denormalization for Prediction column to get the numerical result.

I add a numerical scorer after our prediction. There is an error with this node because it cannot calculate its mean absolute percentage error. Mean absolute error tells us the average size of error relates to the actual value. So I want to calculate it. To solving this problem, I change the scaler from 0.0001 to 1.

Then it works.

It has root mean square error 0.076 before denormalization.

Also, I'm trying do the denormalization, and see the score again.

On the top of the joiner, these nodes denormalized the target column, and select the denormalized predicted target column. (this is complex since I need to satisfy the Denormalizer node's conditions, to make sure the column names are the same before denormalization)

On the bottom, I select the original margin column, to make a comparison. Here is the output:

						Row ID	D margin
Row ID	D Predicti	D margin				Row2	13
Row2	14.203	13				Row8	5
Row8	8.169	5				Row17	2
Row17	-4.155	2				Row22	22
Row22	5.929	22	l.,				
Row29	10.941	21		Row ID	D Predicti	Row29	21
Row30	-13.703	2		_		Row30	2
Row33	10.385	1	ш	Row2	14.203	Row33	1
Row34	13.626	11	Ш	Row8	8.169		
Row37	10.124	9	Eli:	Row17	-4.155	Row34	11
Row38	8.028	8	Ш			Row37	9
Row45	0.311	22		Row22	5.929	Row38	8
Row51	1.834	6	Ш	Row29	10.941	_	
Row53	-10.633	2	Ui:	Row30	-13,703	Row45	22
Row54	-4.795	11	Ш			Row51	6
Row69	18.754	27		Row33	10.385	Row53	2
Row70 Row90	0.337	15	-	Row34	13.626		
			Hi:	Row37	10.124	Row54	11
Row95 Row100	13.453	12				Row69	27
Row 100	-0.387	4		Row38	8.028	Row70	15
Row109	-3.814	1		Row45	0.311		
Row116	1.639	4	Hi	Row51	1.834	Row90	19
NOW 110	1.039	7			1001	Row95	12

So, by the normalization and denormalization, I finished to predict the output with numerical values. Then I run the scorer.

Row ID	D Prediction(margin)
R^2	0.624
mean absolute error	6.718
mean squared error	76.983
root mean squared error	8.774
mean signed difference	-0.058
mean absolute percentage error	1.116

Now it's our result for numerical scorer.

So the regression has root mean squared error with 8.774, the classifier has accuracy 89.45% with normalizer. To do the question 'Does regression outperform classification', I need to use grouping to compare the result with classifier, since we cannot compare mean squared error with classification accuracy. So that I'm trying to grouping target and predicted result by width or frequency into 2 groups.

(grouping by width)

Row ID	S Predicti	S margin
Row2	(0,56]	(0,56]
Row8	(0,56]	(0,56]
Row17	[-56,0]	(0,56]
Row22	(0,56]	(0,56]
Row29	(0,56]	(0,56]
Row30	[-56,0]	(0,56]
Row33	(0,56]	(0,56]
Row34	(0,56]	(0,56]
Row37	(0,56]	(0,56]
Row38	(0,56]	(0,56]
Row45	(0,56]	(0,56]
Row51	(0,56]	(0,56]
Row53	[-56,0]	(0,56]
Row54	[-56,0]	(0,56]
Row69	(0,56]	(0,56]
Row70	(0,56]	(0,56]
Row90	(0,56]	(0,56]
Row95	(0,56]	(0,56]
Row100	(0,56]	(0,56]
Row109	[-56,0]	(0,56]
Row110	[-56,0]	(0,56]
Row116	(0,56]	(0,56]
Row120	(0,56]	(0,56]
Row123	[-56,0]	(0,56]
Row127	(0,56]	(0,56]

Scorer View

Confusion Matrix	onfusion Matrix						
Rows Number : 1962	(0,56] (Predicted)	[-56,0] (Predicted)					
(0,56] (Actual)	837	144	85.32%				
[-56,0] (Actual)	129	852	86.85%				
	86.65%	85.54%					

Overall Accuracy	Overall Error	Cohen's kappa (κ)	Correctly Classified	Incorrectly Classified
86.09%	13.91%	0.722	1689	273

The overall accuracy is 86.09%.

(grouping by frequency, similar as above)

Scorer View Confusion Matrix								
Rows Number : 1962		(-1,56] (Predicted)		[-56,-1] (Predicted)				
(-1,56] (Actual)		858		123		87.46%		
[-56,-1] (Actual)		162		819		83.49%		
		84.12%		86.94%				
Overall Statistics								
Overall Accuracy	Overall Error	Cohen's kappa (κ)	Correctly (Classified	Incorrectly Classified			
85.47%	14.53%	0.709	1677		285			

The overall accuracy is 85.47%, lower than 86.09%.

Also, I need to change the normalizer to 0.0001-1 in classifier with normalization. Here is the result:

Scorer View Confusion Matrix									
Rows Number : 1962		0 (Predicted)		1 (Predicted)					
0 (Actual)		869		112		88.58%			
1 (Actual)		106		875		89.19%			
		89.13%		88.65%					
Overall Statistics									
Overall Accuracy	Overall Error	Cohen's kappa (к)	Correctly (Classified	Incorrectly Classified				
88.89%	11.11%	0.778	1744		218				

It has overall accuracy 88.89%. So, by comparing with the overall accuracy, Classifier with normalizer has a higher performance than regression.

In question 1, the accuracy for classifier without normalizer is 78.37% accuracy. So, classifier without normalizer has a lower performance than regression.

(performance: classifier without normalizer < regression (grouping by frequency) < regression (grouping by width) < classifier with normalizer)

Summary for question 2:

By compare with accuracy, regression outperforms classifier when classifier does not have normalizer, but classifier outperforms regression when classifier has normalizer. The timing is similar as classification with normalization, but it is longer than classification without normalization.

Appendix: Overall workflow in question 2, with explanations on the nodes.

