8.Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

- 1. Geben Sie ein Beispiel für ein Maß auf $(\mathbb{R}, \mathfrak{B})$, das sigmaendlich aber nicht regulär von oben, und eines, das von oben regulär aber nicht sigmaendlich ist.
- 2. Monotone Ereignisse und die FKG Ungleichung: es sei für $n \in \mathbb{N}$ $\Omega_n = \{0,1\}^n$, $\mathfrak{S}_n = 2^{\Omega_n}$ und $\mathbb{P}_n(A) = 2^{-n}|A|$ für $A \subseteq \Omega_n$. Das Ereignis $A \subseteq \Omega$ heißt monoton, wenn aus $x \in A$ und $x \leq y$ (was natürlich $x_i \leq y_i$ für alle $i = 1, \ldots, n$ heißt) $y \in A$ folgt. Zeigen Sie: wenn A und B monoton sind, dann gilt

$$\mathbb{P}_n(A \cap B) \ge \mathbb{P}_n(A)\mathbb{P}_n(B).$$

(das geht natürlich per induktionem; setzen sie für i=0,1 $A_i=\{(x_1,\ldots,x_{n-1}):(x_1,\ldots,x_{n-1},i)\in A\}$. Es gilt

$$\mathbb{P}_n(A) = \frac{1}{2} (\mathbb{P}_{n-1}(A_0) + \mathbb{P}_{n-1}(A_1))$$

und wenn A monoton ist, dann sind es auch A_0 und A_1 und zusätzlich $A_0 \subseteq A_1$)

3. Mehr Spaß mit Cantor: wir modifizieren die Vorschrift zur Konstruktion der Cantormenge für $\epsilon \in]0,1]$ so, dass die Menge $C_{n,\epsilon}$ aus $C_{n-1,\epsilon}$ dadurch enthalten wird, dass aus der Mitte jedes der 2^{n-1} Teilintervalle von $C_{n-1,\epsilon}$ ein offenes Intervall der Länge $\epsilon/3^n$ entfernt wird ($\epsilon=1$ gibt genau die Cantormenge), und wir setzen

$$C_{\epsilon} = \bigcap_{n} C_{n,\epsilon}.$$

Zeigen Sie: Wie die Cantormenge selbst sind die "fetten Cantormengen" C_{ϵ} abgeschlossen und nirgends dicht (d.h., sie enthalten kein nichtleeres offenes Intervall) und überabzählbar, aber es gilt

$$\lambda(C_{\epsilon}) = 1 - \epsilon.$$

(Fleißaufgabe: $C_{n,\epsilon}$ besteht aus 2^n Intervallen der Länge

$$\frac{1-\epsilon}{2^n} + \frac{\epsilon}{3^n}$$

und

$$C_{\epsilon} = \left\{ \sum_{n=1}^{\infty} a_n \left(\frac{1-\epsilon}{2^n} + \frac{2\epsilon}{3^n} \right) : a_n \in \{0, 1\} \forall n \in \mathbb{N} \right\} \right)$$

4. Noch mehr Spaß mit noch mehr Cantor: die Menge aller offenen Intervallen mit rationalen Endpunkten ist abzählbar, $I_n =]a_n, b_n[$ sei eine Abzählung davon. Wir Konstruieren zwei Folgen A_n und B_n von abgeschlossenen nirgends dichten Mengen wie folgt: einem offenen Teilintervall von $I_n \setminus$

 $\bigcup_{i=1}^{n-1}(A_i\cup B_i)$ werden zwei disjunkte fette Cantormengen A_n und B_n eingeschrieben. Zeigen Sie für

$$A = \bigcup_{n} A_n :$$

Für jede nichtleere offene Menge U gilt $\lambda(A \cap U) > 0$ und $\lambda(A^C \cap U) > 0$.

- 5. Zeigen Sie: wenn μ ein Inhalt auf $(\mathbb{R},\mathfrak{B})$ ist, und wenn μ regulär sit, dann ist μ ein Maß.
- 6. $f:\mathbb{R}\to\mathbb{R}$ sei überall differenzierbar. Dann ist die Ableitung f' Borelmessbar.
- 7. Es sei

$$\mathfrak{C} = \{ A \in \mathfrak{B} : x \in A \Rightarrow -x \in A \}$$

die Menge der symmetrischen Borelmengen. Zeigen Sie, dass $\mathfrak C$ eine Sigmaalgebra ist, und stellen Sie fest, für welche Werte $n\in\mathbb N$

$$f(x) = x^n$$

 $\mathfrak{C}\text{-messbar}$ ist.