Finite automata and formal languages (DIT323, TMV029)

Nils Anders Danielsson, partly based on slides by Ana Bove

Today

- ► Structural induction.
- ▶ Some concepts from automata theory.
- ► Inductively defined subsets (if we have time).

- ► For a given inductively defined set we have a corresponding induction principle.
- ► Example:

$$\frac{n\in\mathbb{N}}{\mathrm{zero}\in\mathbb{N}}\qquad \frac{n\in\mathbb{N}}{\mathrm{suc}(n)\in\mathbb{N}}$$

In order to prove $\forall n \in \mathbb{N}$. P(n):

- ▶ Prove P(zero).
- ▶ For all $n \in \mathbb{N}$, prove that P(n) implies $P(\operatorname{suc}(n))$.

- ► For a given inductively defined set we have a corresponding induction principle.
- ► Example:

$$\overline{\mathsf{true} \in Bool} \qquad \qquad \overline{\mathsf{false} \in Bool}$$

In order to prove $\forall b \in Bool. \ P(b)$:

- ▶ Prove P(true).
- ▶ Prove $P(\mathsf{false})$.

- ► For a given inductively defined set we have a corresponding induction principle.
- Example:

$$\frac{x \in A \quad xs \in List(A)}{\mathsf{cons}(x, xs) \in List(A)}$$

In order to prove $\forall xs \in List(A)$. P(xs):

- ▶ Prove $P(\mathsf{nil})$.
- For all $x \in A$ and $xs \in List(A)$, prove that P(xs) implies P(cons(x, xs)).

Pattern

► An inductively defined set:

$$\dots \qquad \frac{x \in A \quad \dots \quad d \in D(A)}{\mathsf{c}(x, \dots, d) \in D(A)} \qquad \dots$$

Note that x is a non-recursive argument, and that d is recursive.

- ▶ In order to prove $\forall d \in D(A)$. P(d):
 - •
 - For all $x \in A$, ..., $d \in D(A)$, prove that ... and P(d) imply P(c(x, ..., d)).
 - ;

One inductive hypothesis for each *recursive* argument.

 $\begin{array}{l} 1. \ \, \big(\forall n \in \mathbb{N}. \ P(\mathsf{leaf}(n)) \big) \wedge \\ \, \big(\forall l, r \in \mathit{Tree}. \ P(l) \wedge P(r) \Rightarrow P(\mathsf{node}(l,r)) \big). \\ \\ 2. \ \, \big(\forall n \in \mathbb{N}. \ P(\mathsf{leaf}(n)) \big) \wedge \\ \, \big(\forall l, r \in \mathit{Tree}. \ P(l) \wedge P(r) \Rightarrow P(\mathsf{node}(l,r)) \big) \Rightarrow \\ \, \big(\forall t \in \mathit{Tree}. \ P(t) \big). \\ \\ 3. \ \, \big(\forall n \in \mathbb{N}. \ P(\mathsf{leaf}(n)) \big) \wedge \\ \end{array}$

 $l, r \in \mathit{Tree}$

 $\mathsf{node}(l,r) \in \mathit{Tree}$

What is the induction principle for

 $n \in \mathbb{N}$

 $leaf(n) \in Tree$

 $(\forall t \in Tree. P(t)).$

Respond at https://pingo.coactum.de/729558.

 $(\forall t \in \mathit{Tree}.\ P(t) \Rightarrow P(\mathsf{node}(t,t))) \Rightarrow$

Some functions

Recall from last lecture:

```
\begin{split} length &\in List(A) \to \mathbb{N} \\ length(\mathsf{nil}) &= \mathsf{zero} \\ length(\mathsf{cons}(x,xs)) &= \mathsf{suc}(length(xs)) \\ append &\in List(A) \times List(A) \to List(A) \\ append(\mathsf{nil}, \qquad ys) &= ys \\ append(\mathsf{cons}(x,xs),ys) &= \mathsf{cons}(x,append(xs,ys)) \end{split}
```

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Let us prove the property

```
P(xs) := \forall ys \in List(A).

length(append(xs, ys)) =

length(xs) + length(ys)
```

by induction on the structure of the list.

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case nil:

```
\mathit{length}(\mathit{append}(\mathsf{nil}, \mathit{ys}))
```

length(nil) + length(ys)

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case nil:

```
length(append(nil, ys)) = length(ys)
```

length(nil) + length(ys)

 $\forall xs, ys \in List(A)$. length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case nil:

```
length(append(nil, ys)) =
```

0 + length(ys) =length(nil) + length(ys)

 $\forall xs, ys \in List(A)$. length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case nil:

```
length(append(nil, ys)) =
length(ys) =
```

0 + length(ys) =

length(nil) + length(ys)

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case cons(x, xs):

```
length(append(\mathsf{cons}(x,xs),ys))
```

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

```
Case cons(x, xs):
```

```
length(append(\mathsf{cons}(x, xs), ys)) = \\ length(\mathsf{cons}(x, append(xs, ys)))
```

 $\forall \textit{xs}, \textit{ys} \in List(\textit{A}). \\ \textit{length}(\textit{append}(\textit{xs}, \textit{ys})) = \textit{length}(\textit{xs}) + \textit{length}(\textit{ys}).$

Proof.

```
Case cons(x, xs):
```

```
length(append(\mathsf{cons}(x, xs), ys)) = \\ length(\mathsf{cons}(x, append(xs, ys))) = \\ 1 + length(append(xs, ys))
```

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

Case cons(x, xs):

```
length(append(cons(x, xs), ys)) = \\ length(cons(x, append(xs, ys))) = \\ 1 + length(append(xs, ys))
```

(1 + length(xs)) + length(ys) = length(cons(x, xs)) + length(ys)

 $\forall xs, ys \in List(A). \\ length(append(xs, ys)) = length(xs) + length(ys).$

Proof.

```
Case cons(x, xs):
```

```
length(append(cons(x, xs), ys)) =
length(cons(x, append(xs, ys))) =
1 + length(append(xs, ys))
1 + (length(xs) + length(ys)) =
(1 + length(xs)) + length(ys) =
```

 $\forall xs, ys \in List(A).$ length(append(xs, ys)) = length(xs) + length(ys).

Proof.

```
Case cons(x, xs):
```

```
length(append(\mathsf{cons}(x,xs),ys)) = \\ length(\mathsf{cons}(x,append(xs,ys))) = \\ 1 + length(append(xs,ys)) = \{\mathsf{By the IH},\ P(xs).\} \\ 1 + (length(xs) + length(ys)) = \\ (1 + length(xs)) + length(ys) =
```

Prove $\forall xs \in List(A).append(xs, nil) = xs$ and $\forall xs \in List(A).append(nil, xs) = xs$.

1. The first.

Which proof is "easiest"?

2. The second.

Respond at https://pingo.coactum.de/729558.

Induction/recursion

- Inductively defined sets: inference rules with constructors.
- Recursion (primitive recursion): recursive calls only for recursive arguments (f(c(x,d)) = ... f(d)...).
- ▶ Structural induction: inductive hypotheses for recursive arguments $(P(d) \Rightarrow P(c(x,d)))$.

Some concepts

theory

from automata

Alphabets and strings

- ► An *alphabet* is a finite, nonempty set.
 - $ightharpoonup \{ a, b, c, ..., z \}.$
 - ► { 0, 1, ..., 9 }.
- ▶ A string (or word) over the alphabet Σ is a member of $List(\Sigma)$.

Some conventions

Following the course text book:

- \blacktriangleright Σ : An alphabet.
- ightharpoonup a, b, c: Elements of alphabets.
- ightharpoonup u, v, w: Words over an alphabet.

Notation

- ▶ Σ^* instead of $List(\Sigma)$.
- \blacktriangleright ε instead of nil or [].
- aw instead of cons(a, w).
- a instead of cons(a, nil) or [a].
- ▶ abc instead of [a, b, c].
- uv instead of append(u, v).
- ▶ |w| instead of length(w).
- $\qquad \qquad \Sigma^+ \colon \text{Nonempty strings, } \{ \ w \in \Sigma^* \mid w \neq \varepsilon \ \}.$

Exponentiation

- $ightharpoonup \Sigma^n$: Strings of length n, $\{w \in \Sigma^* \mid |w| = n\}$.
- $\blacktriangleright \text{ An example: } \left\{ \, a,b \, \right\}^2 = \left\{ \, aa,ab,ba,bb \, \right\}.$
- ▶ Alternative definition of $\Sigma^n \subseteq \Sigma^*$:

$$\Sigma^{0} = \{ \varepsilon \}$$

$$\Sigma^{n+1} = \{ aw \mid a \in \Sigma, w \in \Sigma^{n} \}$$

Exponentiation

- w^n : w repeated n times.
- An example: $(ab)^3 = ababab$.
- ▶ A recursive definition:

$$w^0 = \varepsilon$$
$$w^{n+1} = ww^n$$

Which of the following propositions are valid? The alphabet is $\{a,b,c\}$.

- 1. |uv| = |u| + |v|.
 - 2. |uv| = |u||v|.
 - 3. $|w^n| = n$.
 - 4. uv = vu.

5. $\varepsilon v = v \varepsilon$.

Respond at https://pingo.coactum.de/729558.

Languages

A *language* over an alphabet Σ is a set $L \subseteq \Sigma^*$.

- Typical programming languages.
- Typical natural languages? (Are they well-defined?)
- ▶ Other examples, for instance the odd natural numbers expressed in binary notation (without leading zeros), which is a language over { 0, 1 }.

Another convention

Following the course text book:

ightharpoonup L, M, N: Languages.

- ▶ Concatenation: $LM = \{ uv \mid u \in L, v \in M \}.$
- ► An example:

```
\{a, bc\}\{de, f\} = \{ade, af, bcde, bcf\}
```

Exponentiation:

$$L^0 = \{ \varepsilon \}$$

$$L^{n+1} = LL^n$$

An example:

```
{a, bc}^2 =
{a, bc}({a, bc}^1) =
{a, bc}({a, bc}^1) =
{a, bc}({a, bc}^1) =
{a, bc}({a, bc}^1) =
{a, bc}^1
{a, bc}^1
{a, bc}^1
```

Exponentiation:

$$L^0 = \{ \varepsilon \}$$
$$L^{n+1} = LL^n$$

► This definition is consistent with a previous one:

$$\Sigma^n = \left\{ w \in \Sigma^* \mid |w| = 1 \right\}^n$$

- ▶ The Kleene star $L^* = \bigcup_{n \in \mathbb{N}} L^n$.
- ► An example:

```
{a, bc}^* = {a, bc}^0 \cup {a, bc}^1 \cup {a, bc}^2 \cup ... = {\varepsilon, a, bc, aa, abc, bca, bcbc, ...}
```

► This definition is consistent with a previous one:

$$\Sigma^* = \{ w \in \Sigma^* \mid |w| = 1 \}^*$$

Which of the following propositions are valid? The alphabet is $\{0,1,2\}$.

- 1. $\forall w \in L^n$. |w| = n.
- 2. LM = ML
- 3. $L(M \cup N) = LM \cup LN$.
- **4**. $LM \cap LN \subset L(M \cap N)$. 5. $L^*L^* \subset L^*$.
- Respond at https://pingo.coactum.de/729558.

Which of the following propositions are valid? The alphabet is $\{\,0,1,2\,\}$.

1. $\forall w \in L^n$. |w| = n.

No. Counterexample: $L = \{ \varepsilon \}, n = 1.$

Which of the following propositions are valid? The alphabet is $\{\,0,1,2\,\}$.

No. Counterexample: $L = \{0\}, M = \{1\}.$

2. LM = ML.

Which of the following propositions are valid? The alphabet is $\{\,0,1,2\,\}$.

 $3. \ L(M \cup N) = LM \cup LN.$

Yes. The set $L(M \cup N)$ consists exactly of the strings in LM and the strings in LN.

Which of the following propositions are valid? The alphabet is $\{0,1,2\}$.

4. $LM \cap LN \subseteq L(M \cap N)$.

No. With $L=\{\, \varepsilon,1\,\}$, $M=\{\,1\,\}$ and $N=\{\,\varepsilon\,\}$ we get that

$$LM \cap LN = \{1,11\} \cap \{\varepsilon,1\} = \{1\} \quad \nsubseteq \\ \emptyset = L\emptyset = \\ L(M \cap N).$$

Which of the following propositions are valid? The alphabet is $\{0, 1, 2\}$.

5. $L^*L^* \subseteq L^*$.

Yes. Any string in L^*L^* consists of

- ightharpoonup a string in L^* followed by a string in L^* ,
- i.e. m strings in L followed by n strings in L (for some $m,n\in\mathbb{N}$),
- i.e. m+n strings in L,
 - \blacktriangleright and such a string is a member of L^* .

In fact, $(L^*)^* = L^*$.

Inductively defined

subsets

Inductively defined subsets

- ▶ One can define subsets of (say) Σ^* inductively.
- ▶ For instance, for $L \subseteq \Sigma^*$ we can define $L^* \subseteq \Sigma^*$ inductively:

$$\frac{u \in L \quad v \in L^*}{\varepsilon \in L^*}$$

Note that there are no constructors (but in some cases it might make sense to name the rules).

$$\frac{u \in L \quad v \in L^*}{\varepsilon \in L^*}$$

$$\frac{u \in L \quad v \in L^*}{uv \in L^*}$$

$aba \in \{a, ab\}^*$

Proof:

$$\cfrac{ab \in \set{a,ab}}{\cfrac{a \in \set{a,ab}}{\cfrac{\varepsilon \in \set{a,ab}^*}{}}} \cfrac{\varepsilon \in \set{a,ab}^*}{\cfrac{a \in \set{a,ab}^*}{}}}{aba \in \set{a,ab}^*}$$

$bab \notin \{a, ab\}^*$

Proof:

▶ Because $bab \neq \varepsilon$ a derivation of $bab \in \{a, ab\}^*$ would have to end in the following way, with uv = bab:

$$\frac{u \in \{a, ab\} \qquad v \in \{a, ab\}^*}{uv \in \{a, ab\}^*}$$

- ▶ Because $u \in \{a, ab\}$ we get that u = a or u = ab.
- In either case we get a contradiction, because u must be empty or start with b.

Inductively defined subsets

▶ What about recursion?

$$\begin{array}{l} f \in L^* \to Bool \\ f(\varepsilon) &= \mathsf{false} \\ f(uv) = not(f(v)) \end{array}$$

• If $\varepsilon \in L$, do we have

$$f(\varepsilon) = f(\varepsilon \varepsilon) = not(f(\varepsilon))$$
?

Inductively defined subsets

- Induction works (assuming "proof irrelevance").
- $P(\varepsilon) \wedge (\forall u \in L, v \in L^*. \ P(v) \Rightarrow P(uv)) \Rightarrow \forall w \in L^*. \ P(w).$

Another example

 $L\subseteq \{\ a,b\ \}^*$ is defined inductively in the following way:

$$\frac{u, v \in L}{ubv \in L}$$

An induction principle for L:

$$P(a) \land (\forall u, v \in L. \ P(u) \land P(v) \Rightarrow P(ubv)) \Rightarrow \forall w \in L. \ P(w)$$

Which of the following propositions are valid? $1. \ \varepsilon \in L.$ $2. \ aba \in L.$

 $u,v\in L$

 $ubv \in L$

 $L \subseteq \{a, b\}^*$ is defined inductively in the

following way:

3. $bab \in L$.

4. $aabaa \in L$.

5. $ababa \in L$.

 $a \in L$

Respond at https://pingo.coactum.de/729558.

Today

- ▶ Structural induction.
- ▶ Some concepts from automata theory.
- Inductively defined subsets.

Next lecture

▶ Deterministic finite automata.