DOCUMENTS ET CALCULATRICES NON AUTORISÉS

LA PRÉCISION DES RAISONNEMENTS ET LE SOIN APPORTÉ À LA RÉDACTION SERONT PRIS EN COMPTE DANS LA NOTATION

Exercice 1

On suppose connue la propriété de transformation de somme en produit de la fonction exponentielle. Démontrer que, pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, $(\exp(x))^n = \exp(nx)$.

Exercice 2

On considère la fonction $f: x \mapsto \ln(-x^2 - 3x + 4)$ et on note \mathcal{D}_f son domaine de définition.

- 1. Déterminer \mathcal{D}_f .
- 2. Donner deux fonctions u et v de sorte que $f = v \circ u$.
- 3. Sans dériver f, déterminer le sens de variation de f.

Exercice 3

Soit g la fonction définie sur \mathbb{R} par : $t \mapsto \sin(\omega t + \varphi)$, où ω et φ sont des réels. Le graphe de g est donné page 3.

Déterminer ω et φ .

Exercice 4

Compléter le tableau page 4. Aucune justification n'est attendue.

Exercice 5

L'espace est muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On nomme, comme dans le cours, $[r, \varphi, \theta]$ les coordonnées sphériques d'un point où φ représente la longitude et θ représente la colatidude.

Décrire et représenter l'ensemble \mathcal{F} :

$$\mathcal{F} = \left\{ M[\rho, \varphi, \theta], \rho = 1, \varphi = \frac{\pi}{4}, \theta \in [0, \pi] \right\}$$

Exercice 6

Déterminer et représenter l'ensemble \mathcal{E} des points M du plan d'affixe z tels que :

$$\left|\frac{z-5}{z+1-i}\right|\leqslant 1$$

Exercice 7

Les questions de cet exercice se trouvent sur la copie (page 6).

Exercice 8

L'espace est muni d'un repère orthonormé direct $(O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$.

Soient A, B, C et D quatre points tels que :

$$A(-1,1,2)$$
; $B(0,1,4)$; $C(1,1,3)$ et $D(-1,4,3)$

- 1. Déterminer l'aire, en unités d'aire, du triangle ABC.
- 2. Le triangle ABC est-il rectangle en A? Justifier la réponse.
- 3. (a) Justifier que les points A, B, C et D ne sont pas coplanaires.
 - (b) Donner le volume, en unités de volume, du parallélépipède engendré par les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .

Pour information...

(cette partie n'est pas distribuée aux étudiants car elle se trouve sur la copie)

Exercice 3

Exercice 4

	Forme algébrique	Forme exponentielle
$z_1 = \frac{-3 + 3i}{-1 - \sqrt{3}i}$		
$z_2 = -4(\cos\alpha - i\sin\alpha)$		
. 91		
$z_3 = \left(\frac{2}{-5 - 5i}\right)^{31}$		

Exercice 7

 $\mathcal{B}=(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ une base orthonormée directe de l'espace. Soient $\overrightarrow{u},\overrightarrow{v}$ et \overrightarrow{w} trois vecteurs tels que :

$$\overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{j}; \quad \overrightarrow{v} = \overrightarrow{i} - \overrightarrow{k} \text{ et } \overrightarrow{w} = \overrightarrow{j} + 2\overrightarrow{k}$$

Lorsque la réponse à la question est un vecteur , vous donnerez ses coordonnées cartésiennes dans \mathcal{B} .

Question	Bref justificatif	Réponse
\overrightarrow{v} et \overrightarrow{w} sont-ils colinéaires?		
Calculer $\overrightarrow{u} \cdot \overrightarrow{v}$		
Déterminer $\overrightarrow{u} \wedge \overrightarrow{v}$		
Calculer $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$		
Donner $[\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{v}]$		