Sentiment analysis of Federal Open
Market Committee (FOMC) minutes: are
they leading indicators of a recession
similar to traditional Metrics?

Patrick Long

What's in the Presentation?

- 1. Recap of the Project Overview and EDA
- 2. Developing a target Variable and Final EDA
- 3. Model Comparisons and Evaluations
- 4. Conclusions
- 5. To-do List What's next?

Recap of the Project

- Dataset: FOMC Meeting Minutes
- Use NLP to assess whether FOMC Meeting Minutes can act as a leading indicator of a recession, i.e., trends downward typically 12 to 18 months before a recession starts and upward similarly early for an economic expansion.

Conference Board U.S. Leading, Coincident, and Lagging Indexes

Recap of Dataset Preparation and EDA

- Dataset: FOMC Meeting Minutes text
- Use: using VADER Sentiment Library generated corresponding scores that assess percentages of meeting minutes that are positive, negative and neutral.
- EDA: Reviewed these scores over time

Chart 0a - The Positive Sentiment in FOMC Minutes (1996-2019) using 3rd Dimensional Polynomial Smoothing 0.115 0.110 0.105 0.100 0.095

Positive

Sentiment

1995

Year

2010

2015

2020

2005

2000

Year

Creating Target Variables Recipe:

- 1. Is it a recession or not?
- 2. Did the Real GDP Decrease this Quarter?
- 3. Did the Unemployment Rate Decrease this month?
- 4. Did the Employment Level Decrease this month?

Based on:

Code

```
%%time
!pip install vaderSentiment
import matplotlib.pyplot as plt
import vaderSentiment
from vaderSentiment.vaderSentiment im
import pandas as pd
import re
import requests
from bs4 import BeautifulSoup
from urllib.request import urlopen
import datetime
calendar url = 'https://www.federalres
recent socket = urlopen(calendar url)
```

Leading Indicator as Target Variable

	model / parameters	trainingImportance	testingImportance
0	Gaussian Naive Bayes	0.523810	0.567568
1	MN Naive Bayes (alpha=0.1)	0.489796	0.486486
2	MN Naive Bayes (alpha=0.01)	0.489796	0.486486
3	5-NN (brute)	0.605442	0.405405
4	5-NN (ball-tree)	0.619048	0.432432
5	Logistic Regression (c=1 - defult)	0.489796	0.486486
6	Logistic Regression - (c=100)	0.496599	0.486486
7	Logistic Regression (c=0.1)	0.489796	0.486486
8	Logistic Regression - (c=1000)	0.489796	0.567568
9	Logistic Regression - (c=0.0001)	0.489796	0.486486
10	Logistic Regression (c=0.1)	0.489796	0.486486
11	Logistic Regression - (c=0.001)	0.489796	0.486486
12	LinearSVC (c=1 - defult)	0.489796	0.486486
13	LinearSVC (c=0.1)	0.489796	0.486486
14	LinearSVC (c=100)	0.517007	0.486486

Leading Indicator as Target Variable

Gradient Boosting Classification --- Results Table

	parameters	trainingImportance	testingImportance
0	default parameters	0.979592	0.459459
1	learning_rate=0.01	0.741497	0.405405
2	learning_rate=0.001	0.523810	0.486486
3	max_depth=10	0.986395	0.405405
4	max_depth=5	0.986395	0.405405
5	max_depth=10, learning_rate=0.01	0.972789	0.405405

Leading Indicator as Target Variable

Random Forest Classification --- Results Table

	parameters	trainingImportance	testingImportance
0	default parameters	0.980769	0.461538
1	n_estimators=5	0.916667	0.589744
2	n_estimators=5, max_depth=2	0.487179	0.538462
3	n_estimators=5, max_depth=8	0.801282	0.461538
4	n_estimators=5, max_depth=16	0.903846	0.589744
5	n_estimators=10, random_state=1	0.935897	0.435897
6	n_estimators=10, max_depth=8	0.839744	0.512821
7	n_estimators=12, max_depth=8	0.846154	0.487179
8	n_estimators=100, max_depth=25	0.980769	0.461538

Coincident Indicator as Target Variable

	model / parameters	trainingImportance	testingImportance
0	Gaussian Naive Bayes	0.467949	0.461538
1	MN Naive Bayes (alpha=0.1)	0.435897	0.487179
2	MN Naive Bayes (alpha=0.01)	0.435897	0.487179
3	5-NN (brute)	0.576923	0.564103
4	5-NN (ball-tree)	0.576923	0.512821
5	Logistic Regression (c=1 - defult)	0.435897	0.487179
6	Logistic Regression - (c=100)	0.455128	0.461538
7	Logistic Regression (c=0.1)	0.435897	0.487179
8	Logistic Regression - (c=1000)	0.442308	0.487179
9	Logistic Regression - (c=0.0001)	0.435897	0.487179
10	Logistic Regression (c=0.1)	0.435897	0.487179
11	Logistic Regression - (c=0.001)	0.435897	0.487179
12	LinearSVC (c=1 - defult)	0.435897	0.487179
13	LinearSVC (c=0.1)	0.435897	0.487179
14	LinearSVC (c=100)	0.461538	0.512821

Coincident Indicator as Target Variable

Random Forest Classification --- Results Table

	parameters	trainingImportance	testingImportance
0	default parameters	0.986395	0.486486
1	n_estimators=5	0.918367	0.351351
2	n_estimators=5, max_depth=2	0.598639	0.513514
3	n_estimators=5, max_depth=8	0.802721	0.351351
4	n_estimators=5, max_depth=16	0.918367	0.351351
5	n_estimators=10, random_state=1	0.938776	0.459459
6	n_estimators=10, max_depth=8	0.816327	0.486486
7	n_estimators=12, max_depth=8	0.843537	0.459459
8	n_estimators=100, max_depth=25	0.986395	0.486486
9	default parameters	0.980769	0.461538
10	n_estimators=5	0.916667	0.589744
11	n_estimators=5, max_depth=2	0.487179	0.538462
12	n_estimators=5, max_depth=8	0.801282	0.461538

Coincident Indicator as Target Variable

Gradient Boosting Classification --- Results Table

	parameters	trainingImportance	testingImportance
0	default parameters	0.979592	0.459459
1	learning_rate=0.01	0.741497	0.405405
2	learning_rate=0.001	0.523810	0.486486
3	max_depth=10	0.986395	0.405405
4	max_depth=5	0.986395	0.405405
5	max_depth=10, learning_rate=0.01	0.972789	0.405405
6	default parameters	0.974359	0.487179
7	learning_rate=0.01	0.782051	0.512821
8	learning_rate=0.001	0.500000	0.538462
9	max_depth=10	0.980769	0.512821
10	max_depth=5	0.980769	0.512821
11	max_depth=10, learning_rate=0.01	0.980769	0.538462
12	default parameters	0.974359	0.487179
40	In a relation to the Control	0.700054	0.540004

What's Next?

- 1. Finalize Analysis
- 2. More Parameter tuning on classification models that were most promising
- 3. Determine if there's evidence to support the initial hypothesis that FOMC Minute Sentiments can serve as a leading indicator of a recession
- 4. What could be improved and done differently?

Sentiment analysis of Federal Open
Market Committee (FOMC) minutes: are
they leading indicators of a recession
similar to traditional Metrics?

Patrick Long