第12章 集成学习

决策树: 高方差

- 问题: 决策树容易过拟合
- 剪枝有助于将方差 (variance)减少 到一定程度
- 通常提高模型泛化的 效果并不显著

改进: 使用多棵树

创建许多棵不同的树

改进: 使用多棵树

结合所有树的预测来降低方差

什么是集成学习

训练多个学习器来完成预测任务(分类或回归),然后通过<mark>结合</mark>多个学习器的预测结果而得到最终的结果。

- 简单平均
- 投票: 硬投票、软投票

"三个臭皮匠,顶个诸葛亮"?

如何构建多个有差异的学习器

- 不同的机器学习模型
- 相同的机器学习模型
 - 不同的训练数据集
 - 不同的特征选择
 - 不同的超参数

BAGGING 袋装

如何创建多棵树

使用bootstrapping,即有放回的随机抽样

	Dens	Title	Budget	Domestic Total Gross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-06-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pleme CoffinChris Flenaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	1000000000	274092705	Alfansio Guston	PG-13	91
8	2013-06-21	Monsters University	NeN	208402764	Den Scienton	a	107
7	2013-12-13	The Hobbit: The Descention of Smaug	Nan	258366855	Poter Jackson	PG-13	181
8	2013-06-24	First & Furious 8	160000000	238679850	Justin Lim	PG-13	130
9	2013-08-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-06-16	Star Trek Into Darkness	190000000	228778961	J.J. Atrama	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World Wer Z	190000000	202359711	Marc Foreter	PG-13	116
13	2013-03-22	The Croads	135000000	187158425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Field	43000000	159562188	Past Feig	n.	117
15	2013-08-07	We're the Millers	37000000	150594119	Rawson Marshall Thurber	R.	110
16	2013-12-13	American Hustle	40000000	160117807	David O. Punnell	B	138
17	2013-06-10	The Great Garsty	105000000	144840419	Baz Lufemann	PG-13	143

如何创建多棵树

创建多个bootstrapped样本

如何创建多棵树

使用每个bootstrapped样本构建一棵决策树

样本中的数据分布

- 给定一个包含n条记录的 数据集,创建n个 bootstrapped样本
- 对于给定的一条记录 x,

 $P(rec \ x \ not \ selected) = (1 - \frac{1}{n})^n$

■ 每个bootstrapped样本 包含大约2/3条记录

Bagging集成学习

Bagging错误率的计算

	Date	Title	Budget	DomesticTota/Gross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424666047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Ohris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanion	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-06-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PQ	127
10	2013-06-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrama	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187158425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	A.	138
17	2013-06-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

- bootstrapped样本为 每棵决策树提供了内 置的错误率估算
- 在数据子集上创建决策树
- 用未使用的样例来计算 那棵树的错误率

Bagging错误率的计算

- bootstrapped样本为 每棵决策树提供了内 置的错误率估算
- 在数据子集上创建决策树
- 用未使用的样例来计算 那棵树的错误率

Bagging错误率的计算

	Date	Title	Budget	DomesticTota/Gross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424666047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Ohris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pieme CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanion	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-06-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PQ	127
10	2013-06-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrama	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forstor	PG-13	116
13	2013-03-22	The Croods	135000000	187158425	Kirk De MicooChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshell Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-06-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

- bootstrapped样本为 每棵决策树提供了内 置的错误率估算
- 在数据子集上创建决策树
- 用未使用的样例来计算 那棵树的错误率
- 称作"袋外(out-of-bag)"错误率

拟合多少棵树?

- Bagging模型的性能 随着树的数目增大 而改进
- 一般在大约50棵树时获 得最大的改进

Bagging的优势

	Date	Title	Budget	DomesticTota/Gross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424666047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Ohris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pieme CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
6	2013-10-64	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanion	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-06-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-06-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrama	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forstor	PG-13	116
13	2013-03-22	The Croods	135000000	187158425	Kirk De MicooChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshell Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-06-10	The Great Gateby	105000000	144840419	Baz Luhrmann	PG-13	143

同决策树:

- 易于解释和实现
- 输入数据可以是异 构的,不要求预处理

特有的:

- 比决策树的方差低
- 可以并行地构建多棵树

Bagging分类器的语法

```
导入包含分类方法的类:
    from sklearn.ensemble import BaggingClassifier

创建该类的一个对象:
    BC = BaggingClassifier(n_estimators=50)

拟合训练数据,并预测:
    BC = BC.fit(X_train, y_train)
    y_predict = BC.predict(X_test)

使用交叉验证调参。回归用BaggingRegressor。
```

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

BaggingClassifier参数设置

base_estimator	基学习器 在采样得到的数据子集上训练的基学习器。 缺省值是None。等于None时,则使用决策树做基学习器。
n_estimators	基学习器个数 用于集成的基学习器的个数。 缺省值是 10 。
max_samples	最大样例个数 从训练集中随机抽取的,用于训练每个基学习器的样例数目 缺省值是1.0。整数值表示抽取样例的个数;小数值表示抽取 样例数占训练集的总样例数的比。
max_features	最大特征数 从训练集中随机抽取的,用于训练每个基学习器的特征数目 缺省值是1.0。整数值表示抽取特征的个数;小数值表示抽取 特征数占训练集的总特征数的比。

Bagging減少的方差

• 有 n 棵独立的决策树,每棵树的方差是 σ^2 ,则 bagged方差是:

$$\frac{\sigma^2}{n}$$

然而,bootstrap样本 是相关的(ρ):

$$\rho \sigma^2 + \frac{1-\rho}{n} \sigma^2$$

引入更多的随机性

- 解决方案: 进一步消除 树之间的相关性
- 每棵树使用一组 随机抽取的特征:
 - 分类:√m
 - 回归: m/3

Why?

引入更多的随机性

- ■解决方案: 进一步消除 树之间的相关性
- 每棵树使用一组 随机抽取的特征:
 - 分类:√m
 - 回归: *m*/3
- 称作"随机森林"

随机森林

李奥·布瑞曼 Leo Breiman 1928–2005

- > 二十世纪伟大的统计学家
- ➤ 创建CART决策树
- ▶ 对集成学习三大贡献:
 - Bagging,
 - 随机森林
 - 关于Boosting的理论探讨

随机森林多少棵树?

- 相对于Bagging,随机 森林的错误率会进一步 降低。
- 增加足够的树直到错误 率不再变化为止
- 新增加树不会改善 结果了。

随机森林的语法

导入包含分类方法的类:

from sklearn.ensemble import RandomForestClassifier

创建该类的一个对象:

RC = RandomForestClassifier(n_estimators=100, max_features=10)

拟合训练数据,并预测:

```
RC = RC.fit(X_train, y_train)
y_predict = RC.predict(X_test)
```

使用交叉验证调参数。回归用RandomForestRegressor。

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

随机森林参数设置

	四小小个个多数以且
n_estimators	基学习器个数,森林中树的个数。 缺省值是 10 。
criterion	分裂条件选择标准 RandomForestClassifier的缺省值是"gini",即用基尼指数作为衡量 指标,也可以是"entropy",即使用熵作为衡量指标; RandomForestRegressor的缺省值是"mse",即使用均方差作为衡 量指标,也可以是"mae",即使用平均绝对值误差作为衡量指标
max_features	选择分裂条件时考虑的最大特征数 有以下多种可能的取值: ★ 整数,即可考虑的特征的最多个数; ★ 小数,即可考虑的特征的最多个数占总的特征数的比例; ★ "auto",即最多考虑(v总的特征数)个特征; ★ "log2",即最多考虑(log2 总的特征数)个特征; ★ "sqrt",即最多考虑(v总的特征数)个特征; 缺省值是 "auto"。 直到找到一个有效的分裂为止,即使需要考虑多于max_features个特征。
max_depth	决策树的最大深度 缺省值是None。如果为None,则节点会一直分裂下去直到每个叶 子节点都纯了或者叶子节点包含的样例个数少于min_samples_split

引入更多的随机性

- ■有时需要比随机森林更多的随机性
- ■解决方案: 随机选择特征,并创建随机划分---即不使用贪婪划分
- 称作"超随机森林"

超随机森林分类器的语法

```
导入包含分类方法的类:
    from sklearn.ensemble import ExtraTreesClassifier

创建该类的一个对象:
    EC = ExtraTreesClassifier(n_estimators=100, max_features=10)
```

拟合训练数据,并预测:

```
EC = EC.fit(X_train, y_train)
y_predict = EC.predict(X_test)
```

使用交叉验证调参。回归用ExtraTreesRegressor。

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

BOOSTING 提升

起源

- PAC (Probably Approximately Correct) 学习框架
- Valiant & Kearns (1984)
 - 强可学习:一个概念(或类)如果存在一个多项式时间内的学习 算法能够学习它,并且正确率很高
 - 弱可学习
- 瓦利安特Valiant & 卡恩斯Kearns (1989)
 - 证明了弱可学习和强可学习的等价性
- 夏皮罗Schapire (1990)
 - 第一次提出一个多项式时间的Boosting算法
- 弗罗因德Freund (1991)
 - 提出一种效率更高的Boosting算法
- Freund & Schapire (1995)
 - 提出AdaBoost (Adaptive Boosting) 算法
- 弗里德曼Friedman (1999)
 - 提出**梯度提升**(Gradient Boosting)算法

Boosting模型的基本思路

相继地训练多个弱学习器,每个弱学习器力图纠正前面学习器的错误,最后将多个弱学习器加权结合起来。

AdaBoost

Boosting概述

AdaBoost伪码

- 1. 给定包含n个样本的训练集 $\{x_1, x_2, ..., x_n\}$,初始化每个样本的权重 $w_i = 1/n$ 。
- 2. 分别设m = 1, 2, ..., M,重复下面的步骤:
 - a) 在当前训练集上训练一个弱学习器: $C^{(m)}$
 - b) 用训练出的弱学习器预测训练集中每个样例的类别: $C^{(m)}(x_i)$
 - c) 计算该弱学习器的加权错误率:

$$err^{(m)} = \frac{\sum_{i=1}^{n} \omega_i I(C^{(m)}(x_i) \neq y_i)}{\sum_{i=1}^{n} \omega_i}$$

其中 $I(C^{(m)}(x_i) \neq y_i)$ 是指示函数, $C^{(m)}(x_i) \neq y_i$ 成立时,值为1,否则为0。

d) 计算该弱学习器的权重值:

$$\alpha^{(m)} = \eta \log \frac{(1 - err^{(m)})}{err^{(m)}}$$

其中η是学习率。

- e) 修改训练集中每个样例的权重: $\omega_i = \omega_i \exp(\alpha^{(m)} I(C^{(m)}(x_i) \neq y_i))$, i = 1, 2, ..., n
- f) 归一化 ω_i : $\omega_i = \omega_i / \sum_{i=1}^n \omega_i$
- 3. 将M个训练好的弱学习器用加权投票法结合起来,得到最终的集成学习器C:

$$C(x) = \underset{k}{\operatorname{argmax}} \sum_{m=1}^{M} \alpha^{(m)} I(C^{(m)}(x) = k)$$

AdaBoost参数设置

base_estimator	基学习器
	缺省是使用决策树做基学习器。要求基学习器支持样本加权。
n_estimators	基学习器个数
II_estilliators	= + + ····· + >>+
	缺省值是50。集成的基学习器的最大个数。或者说算法的最大迭代次数,如果
	己 经完美拟合数据了,则会提前停止。
learning_rate	学习率
	缺省值是1.0。一般设为0到1之间的值,收缩每个基学习器对最终结果的贡献量,
	也即每个基学习器的权重缩减系数。它和n estimators之间存在一个折衷,一起来
	决定算法的拟合效果。如果要达到一定的拟合效果,更小的学习率意味着要训练
	更多的弱学习器。
algorithm	AdaBoost分类算法(仅用于AdaBoostClassifier)
	可能取值: "SAMME"或"SAMME.R",缺省值是"SAMME.R"。
	Scikit-Learn中实现的AdaBoost分类算法实际是一个被称作SAMME的多分类算法版
	本,当只有两个类别时,SAMME就等同于AdaBoost。如果基学习器可以估算类别
	概率值(即它们有一个predict prob()方法),则可以使用SAMME的一个变体
	SAMME.R(R表示"real",即实数),它基于类别概率值而不是类别标签来计算
	弱学习器的权重。通常它比SAMME算法收敛更快,且测试错误率更低,但要求基
	学习器必须支持类别概率值的计算。
loss	损失函数(仅用于AdaBoostRegressor)
	可能取值: "linear","square"或"exponential",缺省值是"linear"。
	每一轮调整样本权重时需要用到的损失函数,用于计算每一轮训练出的弱学习
	器。在训练集中每个样本上的预测值与真实值之间的误差,可以是线性误差,平
	方误 差或指数误差。

AdaBoost分类器的语法

导入包含分类方法的类:

```
from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier
```

创建该类的一个对象:

基学习器

可以被手

AdaBoost分类器的语法

导入包含分类方法的类:

```
from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier
```

创建该类的一个对象:

这里也可以

设置最大深

AdaBoost分类器的语法

```
导入包含该分类方法的类:
  from sklearn.ensemble import AdaBoostClassifier
 from sklearn.tree import DecisionTreeClassifier
创建该类的一个对象:
   ABC = AdaBoostClassifier(base estimator=DecisionTreeClassifier(),
         learning rate=0.1, n estimators=200)
拟合训练数据,并预测:
   ABC = ABC.fit (X_train, y_train)
   y predict = ABC.predict(X_test)
使用交叉验证调节参数。回归用AdaBoostRegressor
```

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

Gradient Boosting

• 加性模型(additive model):

$$F(x) = \sum_{m=1}^{M} \gamma_m h_m(x)$$

• 前向分步式构建加性模型:

Gradient Boosting

• 每一步弱学习器 $h_m(x)$ 的训练目标是减少当前模型的预测值 $F_{(m-1)}(x)$ 和目标值y之间的差距,即最小化损失函数 $L(y, F_{(m-1)}(x) + h_m(x))$:

$$h_m(x) = \underset{h_m}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, F_{m-1}(x_i) + h_m(x_i))$$

- 对于任意可微的损失函数L,数值化地近似求解最小化问题

$$F_{m}(\mathbf{x}) = F_{m-1}(\mathbf{x}) - \gamma_{m} \sum_{i=1}^{n} \nabla_{F_{m-1}} L(\mathbf{y}_{i}, F_{m-1}(\mathbf{x}_{i}))$$

$$h_{m}(\mathbf{x}_{i}) \approx -\left[\frac{\partial L(\mathbf{y}_{i}, F(\mathbf{x}_{i}))}{\partial F|(\mathbf{x}_{i})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$
伪残差

$$\gamma_m = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, F_{m-1}(x_i) - \gamma \sum_{i=1}^n \nabla_{F_{m-1}} L(y_i, F_{m-1}(x_i)))$$

Gradient Boosting伪码

1. 初始化弱学习器为一个常数值:

$$F_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$$

- 2. 分别设*m = 1, 2, ..., M*,重复下面的步骤:
 - a) 计算伪残差(pseudo residuals):

$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)} i = 1, 2, \dots, n$$

- b) 训练一个弱学习器 $h_m(x)$ 拟合伪残差,即用训练集 $\{(x_i, r_{im})\}_{i=1}^n$ 训练
- c) 求解下面的一维优化问题得到 γ_m :

$$\gamma_m = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, F_{m-1}(x_i) - \gamma \sum_{i=1}^n \nabla_{F_{m-1}} L(y_i, F_{m-1}(x_i)))$$

d) 更新模型:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$$

3. 输出最终模型: $F_M(x)$

- Boosting基本思想是"知错就改"
- 每一步训练的弱学习器都是去纠正前面 学习器所犯的错误
- ■最终将多个弱学习器结合起来得到一个 很强的学习器

分类常见的损失函数:

• 指数损失

$$L(y, f(x)) = \exp(-yf(x))$$

• 二项对数似然损失

$$L(y, f(x)) = \log(1 + \exp(-yf(x)))$$

分类常见的损失函数:

• 多项对数似然损失

k个类别分类器输出值归一化为概率值:

$$p_{k}(x) = \frac{\exp(f_{k}(x))}{\sum_{l=1}^{K} \exp(f_{l}(x))}$$

$$L(y, f(x)) = -\sum_{k=1}^{K} I(y = k) \log p_{k}(x)$$

$$= -\sum_{k=1}^{K} I(y = k) f_{k}(x) + \log \sum_{l=1}^{K} \exp(f_{l}(x))$$

回归常见的损失函数:

• 平方损失

$$L(y, f(x)) = (y - f(x))^2$$

• 绝对损失

$$L(y, f(x)) = |y - f(x)|$$

回归常见的损失函数:

• Hubber损失

$$L(y, f(x)) = \begin{cases} (y - f(x))^2, & |y - f(x)| \le \alpha \\ 2\alpha |y - f(x)| - \alpha^2, & |y - f(x)| > \alpha \end{cases}$$

• 分位数损失

$$L(y, f(x)) = \sum_{y \ge f(x)} \alpha |y - f(x)| + \sum_{y < f(x)} (1 - \alpha) |y - f(x)|$$

- Boosting是递加的,所 以可能过拟合
- ●使用交叉验证来设置决策树的个数

学习率 (η): 设为<1.0用于正则化。又称作 "shrinkage"

$$F_m(x) = F_{m-1}(x) + \eta \gamma_m h_m(x)$$

- 学习率 (η): 设为<1.0用于正则化。又称作 "shrinkage"
- ■子采样: 只使用部分数据用于训练基学习器(stochastic gradient boosting,随机梯度提升)

- 学习率 (η): 设为<1.0用于正则化。又称作 "shrinkage"
- ■子采样: 只使用部分数据用于训练基学习器(stochastic gradient boosting,随机梯度提升)

- 学习率 (η): 设为<1.0用于正则化。又称作 "shrinkage"
- 子采样: 只使用部分数 据用于训练基学习器 (stochastic gradient boosting, 随机梯度提 升)
- 最大特征数:基学习器 分裂时考虑的特征数目

Gradient Boosting分类器的语法

使用交叉验证调节参数,回归用GradientBoostingRegressor

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

GradientBoostingClassifier参数设置

loss 损失函数 分类和回归的损失函数不同。 对于分类,可以是对数似然损失"deviance"或者指数损失"exponential" 缺省值是"deviance"。使用"exponential"则等同于AdaBoost算法。 对于回归,可以是平方损失"ls"、绝对损失"lad"、Huber损失"huber" 或分位数损失"quantile",缺省值是"Is"。一般来说,如果数据的噪音 点不多,用默认的"Is"比较好。如果噪音点较多,则推荐使用抗噪音的 "huber"损失函数。如果我们需要对训练集进行分段预测时,则采用 "quantile"损失函数。 n_estimators 基学习器个数 集成的基学习器的个数。或者说算法的迭代次数。

缺省值是100。

learning_rate 学习率

缺省值是0.1。一般设为0到1之间的值,缩减每个基学习器对最终结果的贡 献量,即每个基学习器的权重缩减系数,也称步长。它和n_estimators之间 存在一个折衷,一起来决定算法的拟合效果。如果要达到一定的拟合效果 更小的学习率意味着要训练更多的弱学习器。

subsample 子采样

用于训练每个基学习器的样本数量占整个训练集的比例。

缺省值是1.0,即用全部数据训练基学习器。小于1.0则是随机梯度提升。小 于1.0的值会降低系统的方差,防止过拟合,但会增大系统的偏差。

Bagging vs. Boosting

Bagging vs. Boosting

bagging

- Bootstrap产生的样本
- 独立创建的基学习器
- 只考虑数据点
- 不使用权重
- 不会造成过拟合
- 主要关注降低方差

- 拟合全部数据集
- 相继创建的基本树
- 利用前面创建的模型的残差

boosting

- 增加错误分类点的权重
- 当心过拟合
- 主要关注降低偏差

STACKING 维叠

Stacking: 结合多个异构的分类器

- 不同类型的模型 可以结合起来构 建stacked模型
- 类似bagging,但不 局限于决策树

Stacking: 结合多个异构的分类器

- ■不同类型的模型 可以结合起来构 建stacked模型
- 类似bagging,但不 局限于决策树
- 基学习器的输出产生的特征,可以和数据特征结合在一起

Stacking: 结合多个异构的分类器

- 基学习器的输出可以 用多数投票或加权和 等方式结合起来
- 如果元学习器有参数,则需要另外取出的数据做预测
- 当心增加的模型复 杂度

多层堆叠

