# Pseudo-likelihood Information Criteria in Copula Model Selection

#### **Aibat Kossumov**

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

#### **Sklar's Theorem for Bivariate Distributions**

- A function  $C:[0,1]^2 \to [0,1]$ , is called a **copula** if it is a cumulative distribution function (cdf) with uniform marginals on [0,1].
- Sklar's Theorem. Assume that *H* is the cdf of an absolutely continuous distribution. Then there exists a **unique** copula *C* such that

$$H(x_1,x_2) = C(F_1(x_1),F_2(x_2)),$$

where  $F_1$  and  $F_2$  are the marginal cdfs of H.

- Sklar's theorem allows us to separate the dependence structure from the structure of the marginal distributions.
- Since we consider only absolutely continuous distributions, densities can be derived from Sklar's theorem as

$$h(x_1,x_2) = c(F_1(x_1),F_2(x_2)) \prod_{k=1}^2 f_k(x_k).$$

#### **Fully Parametric Approach**

• Assume that the copula C can be parametrized by a real vector  $\theta$ , and each marginal cdf  $F_i$  can be parametrized by a real vector  $\gamma(i)$  for i=1,2. Then the joint density can be written as

$$h_{(\theta,\gamma)}(x_1,x_2) = c_{\theta}(F_{\gamma(1)}(x_1),F_{\gamma(2)}(x_2)) \prod_{k=1}^{2} f_{\gamma(k)}(x_k),$$

where  $\gamma = (\gamma(1)^{\mathsf{T}}, \gamma(2)^{\mathsf{T}})^{\mathsf{T}}$ .

- In statistics, we observe  $\mathcal{X}_n = \{\mathbf{x}_i\}_{i=1}^n \stackrel{\text{i.i.d}}{\sim} h^0$ , where  $h^0$  denotes the unknown data-generating density.
- Let  $B \in \mathbb{N}$  denote the number of considered parametric families

$$\mathcal{H}_b = \{h_{(\boldsymbol{\theta}_b, \boldsymbol{\gamma}_b)} : (\boldsymbol{\theta}_b, \boldsymbol{\gamma}_b) \in \Theta_b \times \Gamma_b\} \text{ for } b = 1, \dots, B.$$

- By fitting each family  $\mathcal{H}_b$  to the data  $\mathcal{X}_n$ , one can obtain the MLEs  $\left(\widehat{\theta}_b, \widehat{\gamma}_b\right)$ .
- Our goal is to rank the fitted models to identify the most suitable one.
- To do so, we compute the Akaike Information Criterion (AIC) for each model:

$$\mathrm{AIC}_b = 2 \cdot \left[ \ell_b \left( \widehat{\boldsymbol{\theta}}_b, \widehat{\boldsymbol{\gamma}}_b \right) - \mathrm{dim}(\boldsymbol{\theta}_b, \boldsymbol{\gamma}_b) \right].$$

## **Challenges in the Parametric Setting**

The use of AIC in the parametric setting is theoretically justified, but fully parametric models have limitations:

- Joint estimation of all parameters,  $\theta$  and  $\gamma = (\gamma(1)^T, \gamma(2)^T)^T$ , can be computationally expensive.
- The estimates of the dependence parameters  $\theta$  are sensitive to the choice of marginal models.

## Semiparametric Approach

- Assume that we are only interested in the reliable estimation of the dependence parameters  $\theta$ , and we don't want to make any parametric assumptions about marginals.
- Instead of fitting models to the **independent observations**  $\mathcal{X}_n \subset \mathbb{R}^2$ , we fit only copula models to the **dependent pseudo-observations**  ${}^{\rho}\mathcal{X}_n \subset [0,1]^2$ .
- The transformation  $\mathcal{X}_n \longmapsto {}^p \mathcal{X}_n$  is defined by the function

$$\widetilde{\mathbf{F}}_n(\mathbf{x}_1,\mathbf{x}_2) = \left(\widetilde{\mathbf{F}}_{n,1}(\mathbf{x}_1),\widetilde{\mathbf{F}}_{n,2}(\mathbf{x}_2)\right),$$

where  $\widetilde{F}_{n,k}$  is the  $\frac{n}{n+1}$ -rescaled empirical cdf of the kth marginal, for k=1,2.

- The corresponding pseudo-observations  ${}^{p}\mathcal{X}_{n} = \{{}^{p}\mathbf{x}_{i}\}_{i=1}^{n}$  are then given by  ${}^{p}\mathbf{x}_{i} = \widetilde{\mathbf{F}}_{n}(\mathbf{x}_{i})$ , for all  $i = 1, \ldots, n$ .
- The pseudo-log-likelihood is then defined as

$$^{p}\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log[c_{\boldsymbol{\theta}}(^{p}\boldsymbol{x}_{i})].$$

• The maximum pseudo-likelihood estimator (MPLE) is given by  ${}^p\widehat{\theta}=\mathop{\rm argmax}_{\theta\in\Theta}{}^p\ell(\theta).$ 

#### Naive Adaptation of AIC to the Semiparametric Case

• The AIC was originally derived in Akaike [1974] from the "loss-function perspective" in the parametric setting:

$$\mathrm{AIC} = 2 \cdot \left[ \ell \left( \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\gamma}} \right) - \mathrm{dim}(\boldsymbol{\theta}, \boldsymbol{\gamma}) \right].$$

#### Naive Adaptation of AIC to the Semiparametric Case

• The AIC was originally derived in Akaike [1974] from the "loss-function perspective" in the parametric setting:

$$\mathrm{AIC} = 2 \cdot \left[ \ell \left( \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\gamma}} \right) - \mathrm{dim}(\boldsymbol{\theta}, \boldsymbol{\gamma}) \right].$$

• In Grønneberg and Hjort [2014], the authors attempted to extend the same line of reasoning from Akaike [1974] to the semiparametric case. However, their resulting expression is not applicable in most situations.

### Naive Adaptation of AIC to the Semiparametric Case

• The AIC was originally derived in Akaike [1974] from the "loss-function perspective" in the parametric setting:

$$\mathrm{AIC} = 2 \cdot \left[ \ell \left( \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\gamma}} \right) - \mathrm{dim}(\boldsymbol{\theta}, \boldsymbol{\gamma}) \right].$$

- In Grønneberg and Hjort [2014], the authors attempted to extend the same line of reasoning from Akaike [1974] to the semiparametric case. However, their resulting expression is not applicable in most situations.
- A naive adaptation of AIC to the semiparametric case yields

$${}^{p}\mathrm{AIC} = 2 \cdot \left[ {}^{p}\ell \left( {}^{p}\widehat{oldsymbol{ heta}} 
ight) - \mathrm{dim}(oldsymbol{ heta}) 
ight].$$

- The use of <sup>p</sup>AIC was motivated by the **belief** that, in the limit, a continuous connection between AIC and <sup>p</sup>AIC **may** exist-but it turns out that **this is not the case**, see Grønneberg and Hjort [2014].
- **Conclusion**: <sup>p</sup>AIC is not formally valid for model selection in the semiparametric case. However, it is still commonly used due to its computational simplicity.

### **Leave-One-Out Copula Information Criterion**

Grønneberg and Hjort [2014] introduced the following information criterion from a "**prediction perspective**", based on leave-one-out cross validation:

$$\mathsf{xv}_1 = rac{1}{n} \sum_{i=1}^n \log \left[ c_{m{ heta}} \left( \widetilde{m{F}}_{(-i)}(m{x}_i) 
ight) 
ight]_{m{ heta} = ^p \widehat{m{ heta}}_{(-i)}}, ext{ where}$$

- $\widetilde{\mathbf{F}}_{(-i)}(x_1, x_2) = \left(\widetilde{F}_{(-i),1}(x_1), \widetilde{F}_{(-i),2}(x_2)\right)$ , where  $\widetilde{F}_{(-i),k}$  is the  $\frac{n-1}{n}$ -rescaled empirical cdf of the kth marginal, computed from the sample  $\mathcal{X}_n$  excluding  $\mathbf{x}_i$ , for k = 1, 2,
- $ullet \ ^{
  ho}\widehat{oldsymbol{ heta}}_{(-i)} = rgmax_{oldsymbol{ heta} \in \Theta} \ \sum_{j 
  eq i} \log \left[ c_{oldsymbol{ heta}} \left( \widetilde{oldsymbol{ extit{F}}}_{(-i)}(oldsymbol{ extit{x}}_{j}) 
  ight) 
  ight].$

However, since computing  $xv_1$  is computationally expensive, the authors recommend using its approximation,  $xv_{CIC}$ , defined as:

$$\mathbf{x}\mathbf{v}_{\mathrm{CIC}} = 2 \cdot \left[ {}^{\mathbf{p}} \ell \left( {}^{\mathbf{p}} \widehat{\boldsymbol{\theta}} \right) - \widehat{\mathbf{p}} - \widehat{\mathbf{q}} - \widehat{\mathbf{r}} 
ight],$$

where  $\hat{p}$ ,  $\hat{q}$  and  $\hat{r}$  are bias-correction terms (see Section 4 in Grønneberg and Hjort [2014] for details).

#### **Leave-** $n_{V}$ -**Out Copula Information Criterion**

In the context of **linear model selection**, Shao [1993] showed that the optimal selection procedure is leave- $n_v$ -out cross-validation, where the **the validation set size**  $n_v$  is of the same order as the full sample size n, that is,  $n_v/n \to 1$  as  $n \to \infty$ .

$$\mathsf{xv}_{n_{\mathsf{v}}} = \frac{1}{n_{\mathsf{v}} b_n} \sum_{s_{\mathsf{v}} \in \mathcal{T}_n} \sum_{i \in s_{\mathsf{v}}} \log \left[ c_{\boldsymbol{\theta}} \left( \widetilde{\boldsymbol{F}}_{(-s_{\mathsf{v}})}(\boldsymbol{x}_i) \right) \right]_{\boldsymbol{\theta} = {}^{\rho} \widehat{\boldsymbol{\theta}}_{(-s_{\mathsf{v}})}}, \text{ where }$$

- $\mathcal{T}_n$  is a collection of  $b_n = O(n)$  subsets of  $\{1, \ldots, n\}$ , each of size  $n_v$ , randomly drawn without replacement. For example, one could set  $b_n = \lfloor 0.8n \rfloor$  and  $n_v = n n^{0.9}$ .
- $s_v \in \mathcal{T}_n$  is the set of indices for the  $n_v$  validation observations.
- $\widetilde{\pmb{F}}_{(-\mathbf{s}_v)}(x_1,x_2) = \left(\widetilde{F}_{(-\mathbf{s}_v),1}(x_1),\widetilde{F}_{(-\mathbf{s}_v),2}(x_2)\right)$ , where  $\widetilde{F}_{(-\mathbf{s}_v),k}$  is the  $\frac{(n-n_v)}{(n-n_v)+1}$ -rescaled empirical cdf of the kth marginal, computed from the sample  $\mathcal{X}_n$  excluding  $\{\pmb{x}_i: i \in \mathbf{s}_v\}$ , for  $k=1,2,\ldots,n$
- $\bullet \ ^{p}\widehat{\boldsymbol{\theta}}_{(-s_{v})} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmax}} \ \textstyle \sum_{j \notin s_{v}} \log \left[ c_{\boldsymbol{\theta}} \left( \widetilde{\boldsymbol{F}}_{(-s_{v})}(\boldsymbol{x}_{j}) \right) \right].$

#### **Summary of Information Criteria**

In the semiparametric setting of copula model selection, we consider the following four information criteria:

- 1. Naive Akaike Information Criterion: PAIC (not valid, easy to compute)
- 2. Leave-One-Out Cop. Information Criterion: xv<sub>1</sub> (valid, computationally expensive)
- 3. Approximate Leave-One-Out Criterion: xv<sub>ClC</sub> (valid, moderately expensive to compute)
- 4. Leave- $n_v$ -Out Copula Information Criterion:  $xv_{n_v}$  (?, computationally expensive)

In the study Jordanger and Tjøstheim [2014], the authors compared  $xv_{CIC}$  and  $p^{\rho}AIC$ .

### **Setup of the Simulation Study**

The simulation study is based on the following settings:

- One-dimensional parametric copula families: Clayton, Gumbel, Joe, Frank, Gaussian.
- $\bullet$  Each copula was parametrized using different values of Kendall's tau  $\tau.$
- In each simulation scenario, we conducted 5000 replications.

#### **Hit rates**

| IC         | Clayton                 | Gumbel                  | Joe                     | Frank                   | Gaussian                |
|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| AIC        | $\textbf{62.5} \pm 1.3$ | $16.2 \pm 1.0$          | 61.9 ± 1.3              | $33.6 \pm 1.3$          | $18.2 \pm 1.1$          |
| $xv_1$     | $\textbf{62.6} \pm 1.3$ | $\textbf{16.2} \pm 1.0$ | $\textbf{61.9} \pm 1.3$ | $\textbf{33.6} \pm 1.3$ | $\textbf{18.1} \pm 1.1$ |
| $xv_{CIC}$ | $\textbf{60.7} \pm 1.3$ | $12.4 \pm 0.9$          | $\textbf{64.9} \pm 1.3$ | $\textbf{30.8} \pm 1.3$ | $\textbf{20.8} \pm 1.1$ |
| $XV_{n_v}$ | $\textbf{43.9} \pm 1.4$ | $\textbf{26.9} \pm 1.2$ | $\textbf{59.6} \pm 1.4$ | $\textbf{28.1} \pm 1.2$ | $\textbf{16.8} \pm 1.0$ |

Table: Hit rates ( $n=100, \tau=0.10$ ) are shown with 95% confidence intervals, and all values are expressed as percentages.

| IC         | Clayton                 | Gumbel                  | Joe                     | Frank                   | Gaussian                |
|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| AIC        | $90.6 \pm 0.8$          | $\textbf{49.5} \pm 1.4$ | $\textbf{79.4} \pm 1.1$ | $\textbf{60.6} \pm 1.3$ | $\textbf{49.2} \pm 1.4$ |
| $xv_1$     | $90.6 \pm 0.8$          | $\textbf{49.5} \pm 1.4$ | $\textbf{79.4} \pm 1.1$ | $\textbf{60.6} \pm 1.3$ | $\textbf{49.2} \pm 1.4$ |
| $xv_{CIC}$ | $\textbf{87.2} \pm 0.9$ | $\textbf{46.4} \pm 1.4$ | $\textbf{83.4} \pm 1.0$ | $\textbf{63.2} \pm 1.3$ | $\textbf{49.2} \pm 1.4$ |
| $xv_{n_v}$ | $\textbf{90.2} \pm 0.8$ | $\textbf{51.5} \pm 1.4$ | $\textbf{77.7} \pm 1.1$ | $\textbf{61.9} \pm 1.3$ | $\textbf{47.0} \pm 1.4$ |

Table: Hit rates ( $n=200, \tau=0.20$ ) are shown with 95% confidence intervals, and all values are expressed as percentages.

## **Coincidence Percentages for Weak Dependence**

|                                   | n   | $\tau = 0.05$ | $\tau = 0.1$ | $\tau = 0.15$ | $\tau = 0.2$ | All   |
|-----------------------------------|-----|---------------|--------------|---------------|--------------|-------|
| AIC & xv <sub>1</sub>             | 100 | 99.77         | 99.90        | 99.92         | 99.94        | 99.88 |
| AIC $\& xv_1$                     | 200 | 99.93         | 99.99        | 99.99         | 100.00       | 99.97 |
| AIC & xv <sub>CIC</sub>           | 100 | 79.85         | 85.63        | 88.52         | 89.74        | 85.93 |
| AIC & xv <sub>CIC</sub>           | 200 | 86.10         | 91.58        | 93.09         | 93.75        | 91.13 |
| ĀIC & xv <sub>nv</sub>            | 100 | 47.86         | 67.71        | 80.67         | 87.44        | 70.91 |
| AIC & xv <sub>n<sub>v</sub></sub> | 200 | 59.30         | 83.14        | 91.77         | 94.65        | 82.21 |

Table: Coincidence of AIC with cross-validation based information criteria, with all values expressed as percentages.

#### Conclusion

- The proposed method  $xv_{n_{u}}$  was still unable to beat the well-known AIC.
- For larger sample sizes or stronger dependence, all considered criteria are able to select the true copula model reliably.
- All criteria perform poorly under small sample sizes and weak dependence.
- Regardless of the sample size and the value of Kendall's tau, the most challenging copulas to identify for all criteria are Gaussian and Gumbel.
- As an interesting secondary finding, it was shown that for all considered values  $\tau$ , the closest method to AIC is xv<sub>1</sub>.
- Under weaker dependence  $\tau \in \{0.05, 0.1, 0.15\}$ ,  $\text{xv}_{\text{CIC}}$  is much closer to AIC than  $\text{xv}_{n_{\text{v}}}$ .
- In the specific case when the true copula model is Gumbel, the proposed  $xv_{n_v}$  outperformed the other criteria (in terms of hit rates and their confidence intervals) for all considered combinations of  $\tau$  and n.

ttroduction Information Criteria Simulation Study Conclusion Reference

#### References

- H. Akaike. A new look at the statistical model identification. *IEEE Transactions on automatic control*, 19:716–723, 1974.
- S. Grønneberg and N. L. Hjort. The copula information criteria. *Scandinavian Journal of Statistics*, 41:436–459, 2014.
- L. A. Jordanger and D. Tjøstheim. Model selection of copulas: AIC versus a cross validation copula information criterion. *Statistics and Probability Letters*, 92:249–255, 2014.

J. Shao. Linear model selection by cross-validation. *Journal of the American Statistical Association*, 88:486–494, 1993.

