Lab Report 1: Introduction to DSO, Breadboard and RC Circuit Experiment

V.L.S. Bhargav; Lanka Kushwanth Table Number: 3 Room Number: 114 Roll Number: 2025102061

26-09-2025

Aim:

The aim is to study the Digital Storage Oscilloscope (DSO), understand how a breadboard works, and analyze the charging and discharging behavior of an RC circuit by comparing the theoretical and practical values of the time constant and cutoff frequency.

Components Used:

- 1. Breadboard
- 2. Resistors (various values)
- 3. Capacitors (ceramic and polarized, various values)
- 4. Digital Storage Oscilloscope (DSO)
- 5. Function Generator

Procedure:

- 1. Connect the RC circuit on the breadboard as shown in the lab handout.
- 2. Use the function generator to apply a square wave input.
- 3. Observe the waveform of the capacitor on the DSO screen.
- 4. For each R and C combination:
 - 4.1. Calculate the theoretical time constant ($\tau = RC$).
 - 4.2. Measure the practical time constant from the DSO waveform.
 - 4.3. Calculate the theoretical cut-off frequency $(f_c = \frac{1}{2\pi RC})$.
 - 4.4. Measure the practical cutoff frequency using the DSO.
 - 4.5. Record all the values in the observation table.
- 5. Repeat steps 4 and 5 for three different combinations of R-C.

Circuit Diagram:

Figure 1: Physical RC circuit implemented on PCB.

Physical Circuit:

(a) Ceramic capacitor used in Case 1.

(b) Polarized capacitor used in Case 2.

Figure 2: Types of capacitors used in the RC circuit.

Observation:

Experimental Waveforms:

(a) Time response for Case 1 (Δt)

(b) Voltage response for Case 1 (ΔV)

Figure 3: Experimental waveforms of the RC circuit for Case 1.

(a) Time response for Case 2 (Δt)

(b) Voltage response for Case 2 (ΔV)

Figure 4: Experimental waveforms of the RC circuit for Case 2.

Observation Table:

Theoretical and practical values of the time constant and cutoff frequency were measured for different combinations of resistors and capacitors. The results are tabulated below:

Figure 5: Observation table of RC circuit on PCB.

Explanation:

The behavior of an RC circuit can be understood using its time constant, cutoff frequency, and transfer function.

Time Constant:

The time constant τ is defined as:

$$\tau = R \times C \tag{1}$$

During charging, the capacitor voltage is:

$$V_c(t) = V_{in} \left(1 - e^{-t/\tau} \right)$$
(2)

which shows that the capacitor charges up to about 63.2% of the input voltage in one time constant.

During discharging, the capacitor voltage is:

$$V_c(t) = V_{in}e^{-t/\tau}$$
(3)

which means that about 36.8% of the initial voltage remains after one time constant.

Cutoff Frequency:

The cutoff frequency f_c of the RC circuit is:

$$f_c = \frac{1}{2\pi RC} \tag{4}$$

At this frequency, the output amplitude is reduced to about $\frac{1}{\sqrt{2}}$ (approximately 70%) of the input, which corresponds to a reduction of 3 dB.

Conclusion:

- Gained an understanding of the functioning and basic controls of the Digital Storage Oscilloscope (DSO).
- Learned the structure and application of the breadboard for making circuit connections.
- Analyzed the charging and discharging behavior of RC circuits.
- Compared theoretical and practical values of the time constant (τ) and cutoff frequency (f_c) .
- Minor deviations between theoretical and experimental results were observed due to:
 - Resistor and capacitor tolerances
 - Parasitic effects in the setup
 - Measurement limitations

References:

- Lab manual: Introduction to DSO, Breadboard and RC Circuit Experiment
- Engineering Circuit Analysis by William Hayt et al.
- Signals and Systems by V.A. Oppenheim et al.

Lab Report 2: RC Circuit on PCB and Introduction to Soldering

V.L.S. Bhargav; Lanka Kushwanth Table Number: 3 Room Number: 114 Roll Number: 2025102061

30-09-2025

Aim:

The aim of this experiment is to learn the soldering process and build an RC circuit on a PCB. The objective is to study its time constant, observe the frequency response, and compare the theoretical results with the practical ones.

Components Used:

- 1. Resistors (different values)
- 2. Capacitors (different values, including electrolytic)
- 3. Breadboard and PCB
- 4. Function generator
- 5. Oscilloscope (DSO)
- 6. Multimeter
- 7. Soldering iron, stand, solder, solder sucker, solder wick
- 8. Connecting wires

Procedure:

- 1. Heat up the soldering iron and clean the tip with a damp sponge.
- 2. Tin the tip with solder to improve conductivity and heat transfer.
- 3. Place the RC circuit components onto the PCB as per the circuit diagram.
- 4. Secure the components by bending their leads and solder them carefully, starting with the smaller ones.
- 5. Check the solder joints to ensure they are shiny, solid, and free from solder bridges.
- 6. Trim extra leads and clean the board using solder wick or solder sucker if needed.
- 7. Verify circuit continuity with a multimeter.
- 8. Connect the circuit to a function generator and observe the capacitor's response using a DSO.
- 9. Change the input frequency and record the practical time constant and cutoff frequency.
- 10. Compare the PCB results with those from the breadboard implementation.

Circuit Diagram:

Figure 1: Schematic of the RC circuit implemented on PCB.

Physical Circuit:

Figure 2: Physical RC circuit implemented on PCB.

Observation:

Experimental Waveforms and Table:

Figure 3: Time response (Δt) of RC circuit on PCB.

Figure 4: Voltage response (ΔV) of RC circuit on PCB.

Observation Table:

Theoretical and practical values of the time constant and cutoff frequency were measured for different combinations of resistors and capacitors. The results are tabulated below:

Figure 5: Observation table of RC circuit on PCB.

Explanation:

- Similar to Lab-1, the circuit was assembled using the same components.
- In this lab, the components were soldered onto a PCB (Printed Circuit Board).
- Soldering provides strong and permanent connections between components.
- Using a PCB minimizes loose connections and wiring errors.
- It ensures better stability, durability, and reliability compared to a breadboard.
- The circuit layout becomes more compact and organized, closely resembling practical real-world implementations.

Conclusion:

The experiment introduced soldering and circuit implementation on a PCB. The RC circuit displayed the expected low-pass filter behavior, and the theoretical and practical results were consistent, confirming the concepts of time constant and cutoff frequency.

References:

- Lab manual: Introduction to DSO, Breadboard and RC Circuit Experiment
- Engineering Circuit Analysis by William Hayt et al.
- Signals and Systems by V.A. Oppenheim et al.