EXERCISE 1 b)

FOR THE FUNCTION:

$$p(x, y) = \lambda \eta e^{-\lambda x - \eta y} = B \cdot \lambda e^{-\lambda x}$$

WITH UNKNOWN X, WE SOLVE THE FOLLOWING PROBLEM:

GIVEN D AND ne (0,00)

 $m_{\lambda}^{in} l(\lambda; D)$

SUBJECT TO MARINI LE(0,00)

WHERE

$$l(\lambda; D) = -\sum_{n=1}^{N} log(B - \lambda e^{-\lambda x_n})$$

= - N Log
$$\lambda + \sum_{n=1}^{N} \lambda x_n + CONST$$
.

SOLVE BY DIFFERENTIATION:

$$0 = \nabla I(\lambda; D) = -\frac{1}{\lambda} + \sum_{n=1}^{N} x_n$$

$$\Rightarrow \lambda = \frac{N}{\sum_{n=1}^{N} x_n}$$

1.E. THE ML ESTIMATOR FOR & 15 THE IN-VERSE OF THE SAMPLE MEAN EXERCISE 1c) FOR THE FUNCTION: $P(x, y) = \lambda \eta e^{-\lambda x - \eta y}$ WITH $\eta = \frac{1}{\lambda}$ $\Rightarrow p(x, y) = e^{-\lambda x - \frac{\lambda}{\lambda}}$ WE PROCEED ANALOGOUSLY TO 1b), BUT NOW! $I(\lambda; D) = -\sum_{n=1}^{N} \log e^{-\lambda x_n - \frac{\lambda}{\lambda n}} = -\sum_{n=1}^{N} (-\lambda x_n - \frac{\lambda}{\lambda n})$ = $\lambda X + \frac{Y}{\lambda}$ WHERE $X = \sum_{n=1}^{N} x_n$ AND $Y = \sum_{n=1}^{N} y_n$ SOLVE BY DIFFERENTIATION: $0 = \nabla I(\lambda; D) = X - \frac{Y}{\lambda^2}$ $\Rightarrow \lambda^2 = \frac{1}{X} \quad \text{or} \quad \lambda = \frac{1}{X} \frac{N}{X} \frac{y_h}{x_h}$ BUT 20, 50: $\lambda = \sqrt{\frac{\sum_{n=1}^{N} y_n}{\sum_{n=1}^{N} x_n}}$

EXERCISE 1d) SUBSTITUTING FOR $N = (1 - \lambda)$, OUR FUNCTION BECOMES! $P(x, y) = \lambda (1 - \lambda) e^{-\lambda x - (1 - \lambda)y}$ $=) 1(\lambda; D) = -\sum_{n=1}^{N} \log \left(\lambda (1-\lambda) e^{-\lambda x_n - (1-\lambda) y_n} \right)$ $=-\sum_{n=1}^{N}\left|\log\left(\lambda\left(n-\lambda\right)\right)-\lambda\left(x_{n}-\left(1-\lambda\right)\right)\right|$ $= -N \log(\lambda(1-\lambda)) + \lambda X + (1-\lambda)Y$ WHERE X, Y AS IN 1c) SOLVE BY DIFFERENTIATION: $0 = \sqrt{I(\lambda; D)} = -\frac{N(1-2\lambda)}{\lambda(1-\lambda)} + X - Y$ $\Rightarrow \lambda^2 (X-Y) + \lambda (Y-X-2N) + N = 0$ $\Rightarrow \lambda = -\frac{Y + X + 2N \pm \sqrt{(Y - X - 2N)^2 - 4N(X - Y)^2}}{2(X - Y)}$ $= 1 \text{ OR } \frac{2N}{Y-X}$

 $\lambda = 1$ IS UNPERMISSIBLE SINCE IT IMPLIES $\eta = 0$ HENCE $\lambda = \frac{2N}{\sum_{n=1}^{N} x_n - \sum_{n=1}^{N} x_n}$ FOR ALL $\sum_{n=1}^{N} y_n > \sum_{n=1}^{N} x_n$