BERT

Pre-training & Fine-Tuning

Learning goals

- Know the pre-training tasks
- How to construct samples
- Understand the pre-training
- Gain understanding of the fine-tuning procedure
- Differences between token- and sequence classification

MASKED LANGUAGE MODELING (MLM)

First remark:

- Distinguish from Masked Self-Attenion
 - \rightarrow Masked Self-Attention is an architectural detail in the decoder of the Transformer, i.e. used by e.g. GPT
- Masked Self-Attention as a way to prevent causality issues in a Transformer decoder
- MLM is a self-supervised modeling objective introduced to couple Self-Attention and (deep) bidirectionality without violating causality

MLM (2)

Training objective:

Given a sentence, predict [MASK] ed tokens

• Generation of samples:

Randomly replace* a fraction of the words by [MASK]

*Sample 15% of the tokens; replace 80% of them by [MASK], 10% by a random token & leave 10% unchanged

Input:

Targets:

(fox, lazy)

MLM (3)

- A But 20% of the samples will look different!
 - → 10% replaced by a random token; 10% left unchanged
- Input (first case):

Targets (first case):

Input (second case):

Targets (second case):

©

MLM (4)

Discrepancy between pre-training & fine-tuning:

- [MASK] -token as central part of pre-training procedure
- [MASK] -token does not occur during fine-tuning
- Modified pre-training task:

Predict 15% of the tokens of which only 80% have been replaced by [MASK]

- 80% of the selected tokens are actually [MASK] ed
- 10% of the selected tokens: The model has to "understand" that the word needs to be replaced
- 10% of the selected tokens: The model has to "understand" that the word needs to be kept
- This ensures overlap between the kind data seen during pre-training and during fine-tuning

MLM (5)

NEXT SENTENCE PREDICTION (NSP)

Training objective:

Given two sentences, predict whether s_2 follows s_1

Generation of samples:

Randomly sample* negative examples (cf. word2vec)

*50% of the time the second sentence is the actual next sentence, 50% of the time it is a randomly sampled sentence

Full Input:

- [CLS] token as sequence representation for classification
- [SEP] token for separation of the two input sequences

NSP (2)

PRE-TRAINING BERT

Setup:

- 13 GB of text (BooksCorpus + Eng. Wikipedia)
 - → Back then: **huge**; Now: rather **small**
- Train for approximately* 40 epochs
- 4 (16) Cloud TPUs for 4 days for the BASE (LARGE) variant
- Loss function:

$$Loss_{BERT} = Loss_{MLM} + Loss_{NSP}$$

*1.000.000 steps on batches of 256 sequences with a sequence length of 512 tokens

PRE-TRAINING BERT

Sequence lengths:

- For their experiments:
 - Pre-train w/ sequence length 128 for 90% of the steps
 - Pre-train w/ sequence length 512 for 10% of the steps
- Reason: Positional embeddings
 - Learned, not sinusoidal (as opposed to the original Transformer)
 - Training on long sequences necessary to learn them well
 - But: Training expensive, hence this "compromise"

FINE-TUNING BERT

FINE-TUNING BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

➤ Source: Devlin et al., 2019

- Performance of BERT on the GLUE Benchmark Wang et al., 2018
- Beats all of the previous state-of-the-art models
- In the meantime: Other models (way) better than BERT

FINE-TUNING DETAILS

- Relatively cheap compared to pre-training:
 - < 1 hour on a single Cloud TPU
 - "a few hours" on a GPU
- Recommendations for hyperparameters:
 - Batch Size: 16, 32
 - Adam learning rate: 5e-5, 3e-5, 2e-5
 - #epochs: 2, 3, 4
 - Dropout probability: 0.1
- Data sets w/ > 100k labeled examples rather insensitive to hyperparameters

©

FEATURE EXTRACTION FROM BERT

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

FEATURE EXTRACTION FROM BERT

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
$BERT_{LARGE}$	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	_
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	_
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

➤ Source: Devlin et al., 2019