Université Paris-Dauphine

Analyse 3 (L2)

Date: 21 octobre 2022

Année universitaire 2022-2023 Responsable : Emeric Bouin Durée : 3 heures

Examen partiel

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Aucun document n'est autorisé, aucune calculatrice. Le barême est donné à titre indicatif.

Bon travail!

Exercice 1. (1+1+2+3+1+1+1=10 points)

Les questions suivantes sont indépendantes.

- 1. Vrai ou faux (avec justification):
 - (a) Si une suite de fonctions continues converge simplement vers une fonction continue, alors la convergence est uniforme.
 - (b) Si u_n est une suite réelle, terme général d'une série convergente, alors nu_n tend vers 0.
 - (c) Si u_n est une suite positive, terme général d'une série convergente, alors nu_n tend vers 0^{1} .
 - (d) Si u_n est une suite positive décroissante, terme général d'une série convergente, alors nu_n tend vers 0.
- 2. (a) Donner, en le justifiant, un exemple de suite réelle u_n telle que nu_n tende vers 0 et telle que la série de terme général u_n diverge.
 - (b) Donner, en le justifiant, un exemple de suite réelle u_n telle que nu_n tende vers 0 et telle que la série de terme général u_n converge.
 - (c) Soit $u_n \ge 0$ tel que $\frac{u_{n+1}}{u_n} < 1$ et tend vers 1. Peut-on affirmer que la série de terme général u_n converge?

Exercice 2. (1+1+2+2+2+3=11 points)

Etudier la convergence absolue puis la semi-convergence des séries de terme général ...

$$a_n = \frac{1}{(\ln(n))^n}, \quad b_n = \prod_{k=1}^n \sin\left(\frac{1}{k}\right), \quad c_n = \sqrt{1 + \sin\left(\frac{1}{n}\right)} - 1 - \frac{\beta}{n},$$

$$d_n = \frac{1}{n\cos(n)^2}$$
, $e_n = (-1)^n (\ln(n+1) - \ln(n))$, $f_n = \frac{\omega_n}{\sqrt{n}}^2$,

avec $\beta \in \mathbb{R}$ et $(\omega_n)_{n \in \mathbb{N}} = (1, 2, -3, 1, 2, -3, \ldots)$.

Exercice 3. ((2+3) + 4 = 9 points)

Les questions suivantes sont indépendantes.

1. On suppose que $(u_n)_{n\in\mathbb{N}}$ est une suite de fonctions réelles qui vérifie le *critère de Cauchy uniforme* sur un intervalle I, c'est à dire

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N}, \quad \forall n \ge N_{\varepsilon}, \quad \forall p > 0, \quad \forall x \in I, \qquad |u_{n+p}(x) - u_n(x)| < \varepsilon.$$

- 1. Penser à une suite lacunaire.
- 2. Hint : a **4**.

- (a) Montrer que pour chaque $x \in I$, la suite réelle $(u_n(x))_{n \in \mathbb{N}}$ est convergente. De quel mode de convergence de la suite de fonctions $(u_n)_{n \in \mathbb{N}}$ s'agit-il?
- (b) Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ converge uniformément sur I.
- 2. Etudier les modes de convergence sur \mathbb{R}^+ des suites de fonctions suivantes :

$$u_n(x) = \frac{nx}{1 + n^3 x^3}, \qquad v_n(x) = \frac{x}{1 + n^2 x^2}.$$

Exercise 4. (1+(1+1)+(2+1)+(1+(2+2+1+1)+(2+3)+(3+2))=23 points)

Soit a_n le terme général d'une série convergente. On définit

$$r_n = \sum_{k=n+1}^{\infty} a_k.$$

- 1. Justifier que la suite r_n est bien définie.
- 2. Dans cette question, on suppose que $a_n = q^n$, avec $q \in [0, 1]$.
 - (a) Calculer r_n pour tout $n \in \mathbb{N}$.
 - (b) Montrer que la série de terme général r_n converge et calculer sa somme.
- 3. Dans cette question, on suppose que $a_n = \frac{1}{n^2}$, avec $q \in [0, 1[$.
 - (a) Donner un équivalent de r_n .
 - (b) Quelle est la nature de la série de terme général r_n ?
- 4. Dans cette question, on suppose que $a_n = \frac{(-1)^n}{n}$, avec $q \in [0, 1[$.
 - (a) Justifier la convergence de la série de terme général a_n .
 - (b) Soit $n \in \mathbb{N}^*$, on définit $I_n = (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
 - i. Montrer que I_n tend vers 0.
 - ii. Après avoir calculé $\sum_{k=0}^{n-1} (-x)^k$, pour $x \in [0,1[$, montrer que

$$I_n = \ln(2) + \sum_{k=1}^n \frac{(-1)^k}{k}.$$

- iii. En déduire la somme de la série de terme général a_n , notée $S := \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$.
- iv. Exprimer r_n en fonction de I_n .
- (c) Une première méthode.
 - i. Montrer que

$$\sum_{k=0}^{n} I_k = \int_0^1 \frac{1 - (-x)^{n+1}}{(1+x)^2} dx$$

- ii. Montrer que la série de terme général r_n converge et calculer sa somme.
- (d) Une deuxième méthode.
 - i. En utilisant des intégrations par parties, montrer que, lorsque n tend vers $+\infty$,

$$I_n = \frac{(-1)^n}{\alpha(n+1)} + \frac{(-1)^n}{\beta(n+1)(n+2)} + o\left(\frac{1}{n^2}\right)$$

où α et β sont deux réels que l'on précisera.

ii. Montrer que la série de terme général r_n converge.