EE2015: Electric Circuits and Networks

Tutorial 4

(September 6, 2024)

Obtain the impedance and admittance parameters for the two-port network shown on the left.

Solution:

Consider nodes A and B as shown below. Let the negative terminals of both ports be grounded.

For this network it is easy to compute Y parameters, Set $V_2 = 0$ i.e., short circuit port 2 and connect a voltage source V_1 to port 1.

$$I_1 = V_1 \left(\frac{1}{50} + \frac{1}{100}\right)$$

$$\implies y_{11} = 0.03$$

$$I_2 = 0.08V_1 - \frac{V_1}{100}$$

$$\implies y_{21} = 0.07$$

Set $V_1 = 0$ i.e., short circuit port 1 and connect a voltage source V_2 to port 2.

$$I_2 = V_2 \left(\frac{1}{30} + \frac{1}{100}\right)$$

$$\implies y_{22} = 0.0433$$

$$I_1 = 0.2V_2 - \frac{V_1}{100}$$

$$\implies y_{21} = 0.19$$

This gives us the admittance (\mathbf{Y}) matrix (in S):

$$\begin{bmatrix}
 0.03 & 0.19 \\
 0.07 & 0.0433
 \end{bmatrix}$$

Alternate method using nodal analysis:

Alternately, you can use nodal analysis

Writing KCL at node A:

$$I_1 = 0.2V_2 + \frac{V_1}{50} + \frac{V_1 - V_2}{100}$$

Writing KCL at node B:

$$I_2 = 0.08V_1 + \frac{V_2}{30} + \frac{V_2 - V_1}{100}$$

The admittance (Y) matrix can be obtained from this (in S):

$$\begin{bmatrix}
 0.03 & 0.19 \\
 0.07 & 0.0433
 \end{bmatrix}$$

Inverting this gives us the impedance (\mathbf{Z}) matrix (in Ω):

$$\begin{bmatrix} -3.61 & 15.833 \\ 5.833 & -2.5 \end{bmatrix}$$

- 2. (a) Find the h-parameters of the two-port network shown below.
 - (b) Find \mathbf{Z}_{out} if an input \mathbf{V}_s having source resistance of $R_s = 200\,\Omega$ is connected at 11'.

Solution:

Set $V_2 = 0$ and connect a current source I_1 to port 1. Therefore,

•
$$V_1 = 1000I_1 \implies h_1 1 = 1k\Omega$$

•
$$I_2 = 10^5 I_1 / 10^4 \implies h_{21} = 10.$$

Set $I_1 = 0$ and connect V_2 to port 2.

•
$$V_1 = 10^{-5}V_2 \cdot 1000 \implies h_{12} = 0.01.$$

•
$$I_2 = (V_2 + 100 \times 10^{-2} V_2)/10^4 \implies h_{22} = 2 \times 10^{-4} S.$$

To find Z_{out} , we can short V_s , connect a voltage source V_2 at port 2 and find I_2 .

$$V_1 = h_{11}I_1 + h_{12}V_2$$

$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$I_1 = -R_sV_1$$

We can solve this to get:

$$Z_{out} = \frac{h_{11} + R_s}{(h_{22}(h_{11} + R_s) - h_{12}h_{21})} = 8576\Omega$$

Alternate Method:

For part (a), consider nodes A and B as below, also ground the 1'-2' terminals.

Writing KCL at node A:

$$I_1 = \frac{V_1}{1000} - 10^{-5} V_2$$

Writing KVL across the VDVS and $10k\Omega$ resistor:

$$V_2 = 10000I_2 - 100V_1$$

Solving these two equations gives us the matrix:

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 1000\Omega & 0.01 \\ 10 & 0.0002\Omega^{-1} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

This gives us the h-parameters:

$$\begin{bmatrix}
 1000\Omega & 0.01 \\
 10 & 0.0002\Omega^{-1}
 \end{bmatrix}$$

For part (b), we can assume that the ratio $-\frac{V_1}{I_1}$ is equal to 200Ω , since that would be the case if a voltage source with input impedance 200Ω was connected.

Now, we have three equations:

$$I_1 = \frac{V_1}{1000} - 10^{-5} V_2$$

$$V_2 = 10000I_2 - 100V_1$$

$$-\frac{V_1}{I_1} = 200$$

Solving this, we get $\frac{V_2}{I_2} = 8576\Omega$.

3.

Consider the two-port network shown on the left. Find its g-parameters.

Solution:

Set $I_2 = 0$ and connect a voltage source V_1 to port 1. This will give $g_{11} = \frac{1}{s+1}$ and $g_{21} = \frac{1}{s+1}$.

Now set $V_1=0$ and connect a current source I_2 to port 2. This will give $g_{12}=\frac{-1}{s+1}$ and $g_{22}=\frac{s^2+s+1}{s(s+1)}$

This gives us the g-matrix:

$$\begin{bmatrix}
\frac{1}{1+s}\Omega^{-1} & \frac{-1}{1+s} \\
\frac{1}{1+s} & \frac{s^2+s+1}{s(1+s)}\Omega
\end{bmatrix}$$

Alternate Method:

Writing KVL across the 1H inductor and 1Ω capacitor loop:

$$V_1 = sI_1 + 1(I_1 + I_2)$$

Writing KVL across the 1F capacitor and 1Ω capacitor loop:

$$V_2 = \frac{1}{s}I_2 + 1(I_1 + I_2)$$

Solving this, we get the following equations:

$$\begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{1+s} & \frac{-1}{1+s} \\ \frac{1}{1+s} & \frac{s^2+s+1}{s(1+s)} \end{bmatrix} \begin{bmatrix} V_1 \\ I_2 \end{bmatrix}$$

This gives us the g-matrix:

$$\begin{bmatrix} \frac{1}{1+s}\Omega^{-1} & \frac{-1}{1+s} \\ \frac{1}{1+s} & \frac{s^2+s+1}{s(1+s)}\Omega \end{bmatrix}$$

4. Find the z and g parameters of a network if the T parameters are

$$T = \begin{bmatrix} 10 & 1.5\Omega \\ 2S & 4 \end{bmatrix}$$

Solution: From the T matrix A = 10, B = 1.5, C = 2 and D = 4. |T| = 37

$$Z = \begin{bmatrix} \frac{A}{C} & \frac{|T|}{C} \\ \frac{1}{C} & \frac{D}{C} \end{bmatrix} = \begin{bmatrix} 5 & 18.5 \\ 0.5 & 2 \end{bmatrix}$$

$$G = \begin{bmatrix} \frac{C}{A} & \frac{-|T|}{A} \\ \frac{1}{4} & \frac{B}{A} \end{bmatrix} = \begin{bmatrix} 0.2 & -3.7 \\ 0.1 & 0.15 \end{bmatrix}$$

5. The T parameters of the network N in the figure below are

$$T = \begin{bmatrix} 10 & 1.5\Omega \\ 2S & 4 \end{bmatrix}$$

The output port is connected to a variable load resistor R_L . Find R_L for maximum power transfer. What is the maximum power transferred?

Solution: This can be solved by finding the Thevenin equivalent circuit looking from R_L . From the T matrix A = 20, B = 1.5, C = 2 and D = 4 and ,

$$\begin{cases}
V_1 = AV_2 - BI_2 = 20V_2 - 1.5I_2 \\
I_1 = CV_2 - DI_2 = 2V_2 - 4I_2
\end{cases}$$
(1)

From circuit,

$$50 - 10I_1 = V_1 \tag{2}$$

Finding $V_2 = V_{OC}$, $I_2 = 0$, on solving 1 and 2 gives $V_{OC} = 5/3V$. Finding I_{SC} , $V_2 = 0$, on solving 1 and 2 gives $I_{SC} = 50/38.5A$.

 $R_{th}=1.28\Omega$, and $R_L=1.28\Omega$. and $P_{max}=\frac{V^2}{4R}=0.54W$

6. A resistive symmetric two-port network N is shown on the right. It was observed that $y_{11} = 0.2 \,\mathrm{S}$ and $y_{12} = -0.05 \,\mathrm{S}$. Find the port voltages.

Solution:

Since the network is symmetric, $y_{21} = y_{12}$ and $y_{22} = y_{11}$. The equations at node 1 and 2 are

$$2 = V_1 \left(\frac{1}{2.5} + \frac{1}{10} + y_{11} \right) - V_2 \left(\frac{1}{10} + y_{12} \right)$$
$$0 = V_1 \left(-\frac{1}{10} + y_{21} \right) + V_2 \left(\frac{1}{10} + \frac{1}{2} + y_{22} \right)$$

Substituting h-parameters, we get

$$2 = V_1 \left(\frac{1}{2.5} + \frac{1}{10} + 0.2 \right) - V_2 \left(\frac{1}{10} - 0.05 \right)$$
$$0 = V_1 \left(-\frac{1}{10} - 0.05 \right) + V_2 \left(\frac{1}{10} + \frac{1}{2} + 0.2 \right)$$

On solving $V_1 = 2.97V$ and $V_2 = 0.558V$

Alternate Method:

Since the two-port network is symmetric and Y parameters are given it can be replaced by equivalent π network. $Y_{11} = Y_{22}$

$$\begin{split} Y_a &= Y_{11} + Y_{12} = 0.15; R_a = 20/3\Omega \\ Y_b &= -Y_{12} = 0.05; R_b = 20\Omega \\ Y_c &= Y_{11} + Y_{12} = 0.15; R_c = 20/3\Omega \end{split}$$

$$Y_b = -Y_{12} = 0.05; R_b = 20\Omega$$

$$Y_c = Y_{11} + Y_{12} = 0.15$$
; $R_c = 20/3\Omega$

On solving $V_1 = 2.97V$ and $V_2 = 0.558V$

7.

Consider the two-port network shown on the left. Find the condition that k_1 , k_2 , R_1 , and R_2 should satisfy for the network to be reciprocal.

Solution:

Finding the g parameters : $g_{11} = 0$, $g_{21} = k_2$, $g_{12} = k_1$ and $g_{22} = R_2 - k_1 k_2 R_1$. For reciprocity, $g_{12} = -g_{21} \implies k_1 = -k_2$

All parameters need not exist for all circuits. If $R_1 = R_2 = 0$, then y parameters will not exist, but g parameters will.

8. Consider the resistive two-port network N shown below on the left. When an independent source of $10\,\mathrm{V}$ was connected as shown, the measured voltage at port 2 was $2\,\mathrm{V}$. The same network N is now connected in the configuration shown on the right. Find the power dissipated in R_x in this configuration.

Solution: A purely resistive network obeys reciprocity. Consider the modified two port network N_1 .

In case 1, N1 is excited by voltage source 10V from the left. So, $V_1=10$ V. The current at the output $I_2=\frac{-2}{4\times 10^3}=-0.5$ mA, following the general two port sign convention.

In case 2, after source transformation at the right side, we get a $4k\Omega$ resistor and a 20V source.

Now, $V_2 = -20 \text{V}$. By reciprocity theorem, $I_1 = \frac{-20}{10} \times -0.5 \text{ mA} = 1 \text{ mA}$. So the current through 2 k Ω is 1 mA and the power dissipated is 2 mW.