Textbook notes on Abstract Algebra

David Cardozo

January 25, 2015

The following are notes based on the book $Abstract\ Algebra$ by Dummit & Foote.

0.1 Basics

We shall use the notation $f: A \to B$, and the value of f at a is denoted f(a), that is we shall apply our functions on the left). map is a synonymous of function. The set A is called the domain of f and B the codomain of f. The notation $a \mapsto b$ if f is understood indicates that f(a) = b The set

$$f(A) = \{b \in B | b = f(a), \text{ for some } a \in A\}$$

is a subset of B, called the **range** or **image** if f. Fir each subset C of B the set:

$$f^{-1}(C)=\{a\in A|f(a)\in C\}$$

consisting of the elements of A mapping into C under f the **preimage** or **inverse** image of C under f. For each $b \in B$, the preimage of $\{b\}$ under f is called the **fiber** of f over b. The fibers of f generally contain many elements since there may be many elements of A mapping to the element b.

If $f:A\to B$ and $g:B\to C$, then the composite map $g\circ f:A\to C$ is defined by:

$$(g \circ f)(a) = g(f(a))$$

Some important terminologies: Let $f: A \to B$:

- f is **injective** if whenever $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$
- f is surjective if for all $b \in B$ there is some $a \in A$ such that f(a) = b
- f is **bijective** or it is a bijection if it is both injective and surjective.
- f has a left inverse if there is a function $g: B \to A$ such that $g \circ f: A \to A$ is the identity map.
- f has a right inverse if there is function $h:A\to B$ such that $f\circ h:B\to B$ is the identity map on B.

Proposition 1. Let $f: A \to B$.

- The map f is injective if and only if f has a left inverse.
- The map f is surjective if and only if f has a right inverse.
- The map f is a bijection if and only if there exists $G: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
- If A and B are finite sets with the same number of elements. then f: A →
 B is bijective if and only if f is injective if and only if f is surjective.

An important remark is that any function is surjective onto its range (by definition).

Lemma 1. The map f is a bijection if and only if there exists $G: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.

Proof. Suppose f is a bijection, i.e, f is both surjective and injective. That is, since it is surjective, there exist $g: B \to A$ such that

$$f \circ g = 1_B$$

. Since it is injective, there exist a $g': B \to A$ such that

$$g' \circ f = 1_A$$

Now let us observe that g = g'. Take note that for any $b \in B$.

$$g(b) = 1_A(g(b)) = (g' \circ f)(g(b))$$

$$= ((g' \circ f) \circ g)(b) = (g' \circ (f \circ g))(b)$$

$$= (g' \circ 1_B)(b)$$

$$= g'(b)$$

Lemma 2. If A and B are finite sets with the same number of elements. then $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proof. Suppose that f is an injective function, then f(A) = |A|, this is known as the **cardinality of Image of Injection** and is proven using induction, therefore the subset f(A) of B has the same number of elements of B and so f(A) = B, so f is surjective, and this implies is a bijection.

A **permutation** of a set A is simply a bijection from A to itself. If $A \subseteq B$ and $f: B \to C$, we denote the **restriction** of f to A by $f \upharpoonright_A$

0.2 Properties of the Integers

- Well Ordering of \mathbb{Z} If A is any nonempty subset of \mathbb{Z}^+ , there is some element $m \in A$ such that $m \leq a$, for all $a \in A$.
- If $a, b \in \mathbb{Z}$ with $a \neq 0$, we say a divides b if there is an element $c \in \mathbb{Z}$ such that b = ac. In this case we write $a \mid b$, otherwise we write $x \nmid y$
- If $a, b \in \mathbb{Z} \{0\}$, there is a unique positive integer d, called the **greatest** common divisor of a and b, satisfying:
 - $-d \mid a$, and $d \mid b$, and
 - If $e \mid a$ and $e \mid b$, then $e \mid d$

The notation for d will be (a, b), if it happens that (a, b) = 1, we say that a and b are relatively prime.

- If $a, b \in \mathbb{Z} \{0\}$, there is a unique positive integer l, called the **least** common multiple of a and b satisfying:
 - $-a \mid l \text{ and } b \mid l, \text{ and }$
 - if $a \mid m$ and $b \mid m$, then $l \mid m$ (so that l is the least such multiple)
- The Division Algorithm: if $a, b \in \mathbb{Z}$ and $b \neq 0$, then there exist unique $q, r \in \mathbb{Z}$ such that:

$$a = qb + r$$
 and $0 \le r < |b|$

where q is the quotient and r is the remainder.

- The Euclidean Algorithm It produces the greatest common divisor of two integers.
- If $a, b \in \mathbb{Z} \{0\}$, then there exist $x, y \in \mathbb{Z}$ such that:

$$(a,b) = ax + by$$

- An element p of \mathbb{Z}^+ is called a prime if p > 1 and the only positive divisors of p are 1 and p.
- The Fundamental Theorem of Arithmetic If $n \in \mathbb{Z}$, n > 1, then n can be factored uniquely into the product of primes.
- The Euler ϕ function is defined as: for $n \in \mathbb{Z}$ let $\phi(n)$ be the number of positive integers $a \leq n$ with a relatively prime to n, i.e., (a, n) = 1. For prime p, $\phi(p) = p 1$, and more generally, for all $a \geq 1$ we have the formula:

$$\phi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$$

The function ϕ is multiplicative in the sense that:

$$\phi(ab) = \phi(a)\phi(b)$$
 if $(a,b) = 1$

PUT LINE HERE!

0.3 Exercises

- **3.** Prove that if n is composite, then there are integers a and b such that n divides ab but n does not divide either a or b. **Solution** Since n is composite, then n = ab with a < n and b < n, in both cases, because n cannot divide a positive number smaller than itself, so that $n \mid n = n \mid ab$.
- **6.** Prove the Well Ordering Property of \mathbb{Z} by induction and prove the minimal element is unique.

Lemma 3. Every nonempty subset $S \neq \emptyset \subseteq \mathbb{Z}^+$ has a minimum.

Proof. Let us define the set:

$$T = \left\{ n \in \mathbb{Z}^+ \cup \{0\} \mid n \le s \text{ for all } s \in S \right\}$$

Since $S \neq \emptyset$, we have that $T \neq \mathbb{Z}^+$, this is given by the fact that if $s' \in S$, then $s' + 1 \notin T$. Observe that at most $0 \in T$ to be done!

7. Prove that if p is a prime, then \sqrt{p} is not a rational number

Proof. Suppose \sqrt{p} is a rational number, in other words:

$$\sqrt{p} = \frac{a}{b}$$
 with $(a, b) = 1$

or equivalently:

$$b^2 p = a^2$$

so we can see that $p \mid a \cdot a$, and we can conclude that $p \mid a$, i.e., a = kp for some integer p. returning to our previous expression, we have that:

$$b^2p = k^2p^2$$

so that:

$$b^2 = k^2 p$$

from which we conclude that $p \mid b$, but this is a contradiction since (a, b) = 1. Therefore, our assumption that \sqrt{p} is a rational number must be wrong.

 $\textbf{8.} \ \ \text{Find a formula for the largest power of} \ p \ \text{which divides} \ n! \ \text{https://www.proofwiki.org/wiki/Factorial_Divisible_by_Prime_Power}$