ATLAS Tile Calorimeter

TileCal Calib, DQ, DP, Performance and Processing meeting

Attila Rádl¹ Pratyush Anand² Arely Cortes-Gonzalez³

¹Institute of Physics Eötvös Loránd University

 $^2\mathrm{Department}$ of Physics Indian Institute of Technology Madras

³ATLAS TileCal Group CERN

16th July 2018

Introduction

Laser Data: We use the laser calibration data produced by **Giulia di Gregorio** for 1/3 of the laser runs since 2015 untill the end of 2017. She used the combined method to calculate the corrections (the same method used for this years corrections).

Thanks, Giulia!

Goals:

- study the average drift of the different cell types
- study the RMS of the variations in the channels (as done with Cesium)
- study on the difference between the measurements of the two PMTs connected to a given cell.

NB: The version used by Giulia is outdated (new developments by Henric not yet included). We will update this to the latest version of the calculation.

Masked channels: We exclude all channels that are masked in the HG (combined method uses HG). We also exclude those channels flagged as affected for the laser system. Non-instrumented channels are also not used, and

Cesium Scans in Run 2

Plan: Compare the drifts measured by Cesium and laser system during several time periods (IOV), according to Cesium scan availability.

ATLAS Tile Calorimeter

Cesium Vs Laser

Cesium Vs Laser

- We start doing a comparison in 2015, where more scans were performed.
- We defined 3 IOVs covering different data taking periods. Laser runs selected within 1 day of the Cesium scan (avoided runs right after the scan).
- Cesium data: Extracted Cesium constants from COOL DB.
- Laser data: Combined method using latest version of the code (new smoothing).
- CESIUM (from DB, all with magnetic field)
 IOV1: 263962 (11/june) ↔ 270000 (17/july)
 IOV2: 270000 (17/july) ↔ 277321 (27/aug)
 IOV3: 277321 (27/aug) ↔ 284600 (3/nov)
- LASER (new combined method, reference from Giulia) IOV1: 267534 (12/june) ↔ 272493 (19/july) IOV2: 272493 (19/july) ↔ 277320 (17/aug before Cs) IOV3: 277320 (27/aug) ↔ 284682 (4/nov)

Part I

Laser Study

Figure: Average Drift vs Time

Figure: RMS of the Drift vs Time

NOTE: We will try to understand the jumps encircled above.

9 / 47

Figure: Average Drift vs η (Dec 12, 2015)

Figure: RMS of Drift vs η (Dec 12, 2015)

NOTE: We will check the cells with large fluctuations.

Figure: Distribution of Drift (May 20, 2015)

Figure: Distribution of Drift (Dec 12, 2015)

Figure: Distribution of Δ PMT (May 20, 2015)

NOTE: We will try to understand the peak at zero in D-cells in Long barrel.

Figure: Distribution of ΔPMT (Dec 12, 2015)

Figure: Average Drift vs Time

- We see jump of the D-cells since the HV was increased for D5 and D6 here.
- Giulia used a single reference (in 2015) for these points too. We'll update to a new reference each year.

Figure: RMS of the Drift vs Time

NOTE : We see jump of the D-cells since the HV was increased for D5 and D6 here.

Figure: Average Drift vs Time

- We see jump of the D-cells since the HV was increased for D5 and D6 here.
- Giulia used a single reference (in 2015) for these points too. We'll update to a new reference each year.

Figure: RMS of the Drift vs Time

NOTE : We see jump of the D-cells since the HV was increased for D5 and D6 here.

Comparison against Cesium

Reminding about the IOV's

Figure: Laser vs Cesium drift for all instrumented channels

Figure: Laser vs Cesium drift for different types of channels

Figure: Laser and Cesium gain variation for A channels IOV 1

NOTE: We are investigating which channels return a zero variation in the cesium drift for these IOV's.

Figure: Laser and Cesium gain variation for BC channels IOV 1

Figure: Laser and Cesium gain variation for D channels IOV 1

Figure: Laser and Cesium gain variation for A channels IOV 3

Figure: Laser and Cesium gain variation for BC channels IOV 3

Figure: Laser and Cesium gain variation for D channels IOV 3

Figure: Fraction of Laser and Cesium gain variation IOV 1

- The goal is to do a similar study as done for run 1 laser data by Djamel, Dominique and Emmanuelle.
- For reference see the following document.

(a) Long Barrel

(b) Extended Barrel

Figure: Fraction of Laser and Cesium gain variation IOV 2

Figure: Fraction of Laser and Cesium gain variation IOV 3

Outlook

We will continue this study.

- Update the laser calibration files with the latest and greatest version of the code (including latest developments by Henric)
- Include a comparison Cesium-Laser for 2016 and 2017 (covering the full year)
- Doing similar checks for the direct method (CF). Djamel/Nazlim will kindly provide the data for this (so it includes the latest developments).
- The ultimate goal of this is to extract conclusions from the comparison with Cesium measurements and approve plots for public use.

Comments or Questions?

Thank you for your attention!

Backup Slides

Figure: Distribution of Drift (Aug 30, 2015)

Figure: Distribution of ΔPMT (Aug 30, 2015)

Figure: Laser and Cesium gain variation for A channels IOV 2

Figure: Laser and Cesium gain variation for BC channels IOV 2

Figure: Laser and Cesium gain variation for D channels IOV 2

Reference plots

Figure: Gain variation in Cesium vs Gain variation in Laser

This plot is taken from the document referred in slide 35.

Reference plots

Figure: Distribution of the ratio f_{Las}/f_{Cs}

This plot is taken from the document referred in slide 35.