SECTION 1.1 LEXICAL ANALYSIS- INTRODUCTION

LEXICAL ANALYZER

- Lexical Analyzer reads the source program character by character to produce tokens.
- Normally a lexical analyzer doesn't return a list of tokens at one shot, it returns a token when the parser asks a token from it.

ROLES OF THE LEXICAL ANALYSER

Lexical analyzer performs following tasks:

- Helps to identify token in the symbol table
- Removes white spaces and comments from the source program
- Correlates error messages with the source program
- Helps you to expands the macros if it is found in the source program
- Read input characters from the source program

TOKENS, LEXEMES AND PATTERNS

• **Token:** Token is a sequence of characters that can be treated as a single logical entity. Typical tokens are:

Identifiers 2) keywords 3) operators 4) special symbols 5)constants

- **Lexeme:** A lexeme is a sequence of characters in the source program that is matched by the pattern for a token.
- **Pattern:** A set of strings in the input for which the same token is produced as output. This set of strings is described by a rule called a pattern associated with the token.

TOKENS, LEXEMES AND PATTERNS

Token	Lexeme	Pattern
	(element of a	
	kind)	
ID	x y n_0	letter followed by letters
		and digits
NUM	-123	any numeric constant
	1.456e- ⁵	
IF	if	if
LPAREN	((
LITERAL	``Hello''	any string of characters
		(except ``) between `` and ``

• Regular expressions are widely used to specify patterns.

EXAMPLE

Tokens Generated

Lexeme	Token
int	Keyword
maximu m	Identifier
(Operator
int	Keyword
X	Identifier
,	Operator
int	Keyword
Y	Identifier
)	Operator
{	Operator

#include <stdio.h>
 int maximum(int x, int y){
 // This will compare 2 numbers

Type	Examples
Comment	// This will compare 2 numbers
Pre- processor directive	#include <stdio.h></stdio.h>
Whitespace	/n /b /t

Non-Tokens

TERMINOLOGY OF LANGUAGES

- **Alphabet**: a finite set of symbols (ASCII characters)
- String:
 - Finite sequence of symbols on an alphabet
 - Sentence and word are also used in terms of string
 - ε is the empty string
 - |s| is the length of string s.
- Language: sets of strings over some fixed alphabet
 - \emptyset the empty set is a language.
 - {ε} the set containing empty string is a language
 - The set of well-formed C programs is a language
 - The set of all possible identifiers is a language.
- Operators on Strings:
 - Concatenation: xy represents the concatenation of strings x and y.

OPERATIONS ON LANGUAGES

Concatenation:

•
$$L_1L_2 = \{ s_1s_2 | s_1 \in L_1 \text{ and } s_2 \in L_2 \}$$

Union

•
$$L_1 \cup L_2 = \{ s \mid s \in L_1 \text{ or } s \in L_2 \}$$

Exponentiation:

•
$$\tilde{L}^0 = \{\epsilon\}$$
 $L^1 = L$ $L^2 = LL$

$$L^1 = L$$

$$L^2 = LL$$

Kleene Closure

•
$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Positive Closure

•
$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

EXAMPLE

•
$$L_1 = \{a,b,c,d\}$$
 $L_2 = \{1,2\}$

•
$$L_1L_2 = \{a1,a2,b1,b2,c1,c2,d1,d2\}$$

•
$$L_1 \cup L_2 = \{a,b,c,d,1,2\}$$

- L_1^3 = all strings with length three (using a,b,c,d)
- L_1^* = all strings using letters a,b,c,d and empty string
- L_1^+ = doesn't include the empty string

REGULAR EXPRESSIONS

- We use regular expressions to describe tokens of a programming language.
- A regular expression is built up of simpler regular expressions (using defining rules)
- Each regular expression denotes a language.
- A language denoted by a regular expression is called as a regular set.

REGULAR EXPRESSIONS (RULES)

Regular expressions over alphabet Σ

Language it denotes
{8}
{a}
$L(r_1) \cup L(r_2)$
$L(r_1) L(r_2)$
$(L(r))^*$
L(r)

- $(r)^+ = (r)(r)^*$
- (r)? = $(r) \mid \epsilon$

REGULAR EXPRESSIONS (CONT.)

• We may remove parentheses by using precedence rules.

• * highest

concatenation next

• lowest

 \circ ab*|c means $(a(b)^*)|(c)$

o Ex:

- $\Sigma = \{0,1\}$
- $0|1 \Rightarrow \{0,1\}$
- $(0|1)(0|1) \Rightarrow \{00,01,10,11\}$
- $0^* = \{\epsilon, 0, 00, 000, 0000, \dots\}$
- $(0|1)^*$ => all strings with 0 and 1, including the empty string

REGULAR DEFINITIONS

- To write regular expression for some languages can be difficult, because their regular expressions can be quite complex. In those cases, we may use *regular definitions*.
- We can give names to regular expressions and we can use these names as symbols to define other regular expressions.
- A regular definition is a sequence of the definitions of the form:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$d_n \rightarrow r_n$$

where d_i is a distinct name and

r_i is a regular expression over symbols in

REGULAR DEFINITIONS (CONT.)

• Ex: Identifiers in Pascal

letter
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z
digit \rightarrow 0 | 1 | ... | 9
id \rightarrow letter (letter | digit) *

• If we try to write the regular expression representing identifiers without using regular definitions, that regular expression will be complex.

$$(A|...|Z|a|...|z) ((A|...|Z|a|...|z) | (0|...|9))$$
*

Ex: Unsigned numbers in Pascal

```
digit \rightarrow 0 | 1 | ... | 9
digits \rightarrow digit +
opt-fraction \rightarrow ( . digits ) ?
opt-exponent \rightarrow ( E (+|-)? digits ) ?
unsigned-num \rightarrow digits opt-fraction opt-exponent
```

NOTATIONAL SHORTHAND

• The following shorthand are often used:

$$r^{+} = rr^{*}$$

$$r? = r \mid \varepsilon$$

$$[a-z] = a \mid b \mid c \mid \dots \mid z$$

• Examples:

```
\begin{array}{l} \textbf{digit} \rightarrow [0\text{-}9] \\ \textbf{digits} \rightarrow \textbf{digit}^+ \\ \textbf{optional\_fraction} \rightarrow (. \ \textbf{digits})? \\ \textbf{optional\_exponent} \rightarrow (. \ \textbf{E} \ (+ \ \big| \ \text{-})? \ \textbf{digit}^+)? \\ \textbf{num} \rightarrow \textbf{digits} \ \textbf{optional\_fraction} \ \textbf{optional\_exponent} \end{array}
```

RECOGNITION OF TOKENS

```
e.g.
 stmt \rightarrow \mathbf{if} \ expr \ \mathbf{then} \ stmt
                if expr then stmt else stm then \rightarrow then
 expr \rightarrow term \ \mathbf{relop} \ term
                term
 term \rightarrow id
              num
```

Regular Definitions

if \rightarrow if else \rightarrow else $\mathbf{relop} \rightarrow < \mid <= \mid = \mid <> \mid > \mid >=$ $id \rightarrow letter (letter | digit)^*$ **num** →**digits optional_fraction** optional_exponent

Assumptions delim → blank | tab | newline

TRANSITION DIAGRAMS

$$| color | co$$

TRANSITION DIAGRAMS: CODE

```
o token nexttoken()
  { while (1) {
      switch (state) {
      case 0: c = nextchar();
                                                        Decides the
         if (c==blank || c==tab || c==newline) {
           state = 0;
                                                       next start state
           lexeme beginning++;
                                                          to check
         else if (c=='<') state = 1;
         else if (c=='=') state = 5;
         else if (c=='>') state = 6;
         else state = fail();
                                                int fail()
         break;
                                                { forward = token beginning;
       case 1:
                                                  swith (start) {
                                                  case 0: start = 9; break;
       case 9: c = nextchar();
                                                  case 9: start = 12; break;
         if (isletter(c)) state = 10;
                                                  case 12: start = 20; break;
         else state = fail();
                                                  case 20: start = 25; break;
         break;
                                                  case 25: recover(); break;
       case 10: c = nextchar();
                                                  default: /* error */
         if (isletter(c)) state = 10;
         else if (isdigit(c)) state = 10;
                                                  return start;
         else state = 11;
         break;
```

THE LEX AND FLEX SCANNER GENERATORS

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

CREATING A LEXICAL ANALYZER WITH LEX AND FLEX

LEX SPECIFICATION

```
    A lex specification consists of three parts:
        regular definitions, C declarations in % { % }
        % translation rules
        % user-defined auxiliary procedures
    The translation rules are of the form:
```

 $p_1 \qquad \{ action_1 \}$

 $p_2 \qquad \{ action_2 \}$

 $p_n \quad \{ action_n \}$

REGULAR EXPRESSIONS IN LEX

```
match the character x
X
         match the character.
"string" match contents of string of characters
         match any character except newline
         match beginning of a line
         match the end of a line
[xyz] match one character x, y, or z (use \setminus to escape -)
[^xyz] match any character except x, y, and z
[a-z] match one of a to z
         closure (match zero or more occurrences)
        positive closure (match one or more occurrences)
r+
         optional (match zero or one occurrence)
r?
         match r_1 then r_2 (concatenation)
r_1r_2
         match r_1 or r_2 (union)
r_1 \mid r_2
(r)
     grouping
r_1 \backslash r_2
        match r_1 when followed by r_2
         match the regular expression defined by d
{d}
```

STAR OPERATION (KLEENE CLOSURE)

$$a^* = \{a^0, a^1, a^2, a^3, a^4, \dots a^{\infty}\} = \{\epsilon, a, aa, aaa, aaaa, \dots a^{\infty}\}$$

Important Characteristics

- Value of * ranges from 0 to ∞ i.e. the elements of set a* will include $\{a^0, a^1, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\}$
- \triangleright a⁰ means zero number of a's and this is represented by ε .
- * is represented in finite automata by a loop on that particular state; if value of a is 3 i.e. a³ loop iterates for 3 times.
- \triangleright If value of a is 0 i.e. a^0 loop will not iterate at all.

POSITIVE CLOSURE

$$a^{+} = \{a^{1}, a^{2}, a^{3}, a^{4}, \dots, a^{\infty}\} = \{a, aa, aaa, aaaa, aaaa, \dots a^{\infty}\}$$

Important Characteristics

- ➤ value of + ranges from 1 to ∞ *i.e.* the elements of set a^+ will include $\{a^1, a^2, a^3, a^4, a^5, a^5, a^6\}$
- \triangleright There is no a⁰ move i.e. ϵ is not part of this set.
- ➤ Value of a will start from 1 *i.e.* at least one will come which can be followed by 0 or more 1's.

m/c for a⁺

CONCATENATION OPERATION

Concatenation means joining (a.b)

Important Note: a.b \neq b.a *i.e.* order of join will change the design of automata

OR OPERATION

NFA for a+b (a/b)

SECTION 1.2 INTRODUCTION TO FINITE AUTOMATA

FINITE AUTOMATA

Automata means machine

Finite Automata consist of 5 tuples:

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q A finite set of states
- Σ A finite set of input alphabet
- δ A transition function
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of F

Types of Automata

There are two types of finite Automata:

- Deterministic Finite Automata (DFA)
- Non-deterministic finite Automata (NFA)

DETERMINISTIC FINITE AUTOMATA

Deterministic Finite Automata is a Machine where corresponding to a every input of Σ , there can be only one output from every state.

Here $\Sigma = \{a, b\}$ and at every state there is one O/P from 'a' and one O/P from 'b'. None of the states have more then one output corresponding to a or b.

NON-DETERMINISTIC FINITE AUTOMATA

Non-Deterministic Finite Automata is a machine where corresponding to a single input of Σ (a,b), there can be more than one output from a particular state.

Here state q_0 has two moves from a, one to q_1 and other to q_2 , like wise state q_2 has two moves on 'b' one self loop to q_1 and another to q_f

Types of NFA

There are two type of NFA

i. NFA without ε -move

ii. NFA with ε -move

NFA WITH E-MOVE

Consider the following NFA, here corresponding q_1 there is an ε -move.

DIFFERENCE BETWEEN DFA AND NFA

Deterministic Finite Automata

- Deterministic Finite Automata is a Machine where corresponding to a every input of Σ , there can be only one output from every state.
- DFA will not have εmove

Non-Deterministic Finite Automata

- Non-Deterministic Finite Automata is a machine where corresponding to a single input of Σ (a,b), there can be more than one output from a particular state.
- o NFA can have ε-move

SECTION 1.3
THOMSON'S CONSTRUCTION

THOMPSON'S CONSTRUCTION

We have three operations on Regular Expressions:

- i) Star operation
- ii) Concatenation
- iii) OR operation

For each operation we have defined rules to build a NFA with ε-move

Thompson's Construction for Star Operation

 $a^* = \{\varepsilon, a, aa, aaa, aaaa,\}$

NFA for a*

NFA for a* using Thomson's Construction:

Thompson's Construction for Star Operation

NFA for a* using Thomson's Construction:

Thompson's Construction for Star Operation

NFA for a* using Thomson's Construction:

Two a's
$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_4 \rightarrow q_5$$

N number of a's $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_1 \rightarrow q_2 \rightarrow q_f$ $q_1 \rightarrow q_2 \rightarrow q_1$ loops for N
times where N varies from
2 to ∞

THOMPSON'S CONSTRUCTION FOR CONCATENATION OPERATION

NFA for ab using Thomson's Construction

THOMPSON'S CONSTRUCTION FOR OR OPERATION

NFA for a+b (a/b) using Thomson's Construction

THOMPSON'S CONSTRUCTION FOR AA*B

Question 1

Thompson's for a:

Thompson's for b:

Thompson's for a*:

THOMPSON'S CONSTRUCTION FOR a*b(a/b)

Question 1

Thompson's Construction for aa*b:

NFA using Thompson's Construction

THOMPSON'S CONSTRUCTION FOR a*b(a/b)

Question 2

THOMPSON'S CONSTRUCTION FOR a*b(a/b)

Question 2

NFA using Thompson's Construction

THOMPSON'S CONSTRUCTION FOR (a/b/c)

Question 3

Three ε out moves moves from a state are not allowed

THOMPSON'S CONSTRUCTION FOR ab(a/b)*

Question 4

THOMPSON'S CONSTRUCTION FOR ab(a/b)*

Question 4

THOMPSON'S CONSTRUCTION FOR ab(a/b)*

Question 4

NFA using Thompson's Construction

SECTION 1.4 SUBSET CONSTRUCTION

HOW TO WORK WITH E-CLOSURE FUNCTION

Steps for ε -Closure function:

- First step is to take ε -Closure of the start state, for *e.g.* if the start state is 0 so take ε -Closure(0).
- \triangleright ϵ -Closure(n) will include set of all the states which can be traversed from state n without consuming any input *i.e.* through ϵ move only.
- > Most Imp.- "ε-Closure of a state will include that state itself in the set", *i.e.* ε-Closure(n) will include n in its set of states.

Start with the start state: state 0 ϵ -closure(0):{0,1,2,4,7} = A

State	a	b
A		
(0,1,2,4,7)		

Start with the start state:

$$\epsilon$$
-closure(0):{0,1,2,4,7} = A

$$(A, a) = (\{0,1,2,4,7\}, a) = \{0,a\} \cup \{1,a\} \cup \{2,a\} \cup \{4,a\} \cup \{7,a\}$$

= $\Phi \cup \Phi \cup \{3\} \cup \Phi \cup \{8\}$

$$=$$
 ε -closure (3) \cup ε -closure (8)

State	a	b
A (0.1.9.4.7)		
(0,1,2,4,7)		

(A, a)=	ε -closure (3) U ε -closure (8)
$= \{1,2,3\}$	3,4,6,7} U {8}
$= \{1,2,3\}$	$3,4,6,7,8$ }=B

a	b
B (1,2,3,4,6,7,8	
	В

$(A, b) = (\{0,1,2,4,7\}, b)$
$=\{0,b\} \cup \{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{7,b\}$
$= \Phi \cup \Phi \cup \Phi \cup \{5\} \cup \Phi$
$= \varepsilon$ -closure (5)

State	a	b
A	В	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	

$(A, b) = \varepsilon$ -closure (5)	
= {1,2,4,5,6,7}=C	

State	a	b
A	В	C
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)

$(B, a) = (\{1,2,3,4,6,7,8\}, a)$
$= \{1,a\} \cup \{2,a\} \cup \{a,a\} \cup \{4,a\} \cup \{6,a\} \cup \{7,a\} \cup \{8,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \Phi \cup \{8\} \cup \Phi$
= ε -closure (3) $\bigcup \varepsilon$ -closure (8)
= {1,2,3,4,6,7,8}=B (Slide No. 55)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	

$(\mathbf{B}, \mathbf{b}) = (\{1,2,4,5,6,7,8\}, \mathbf{b})$
$=\{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{5,b\} \cup \{6,b\} \cup \{7,b\} \cup \{8,b\}$
$= \Phi \cup \Phi \cup \{5\} \cup \Phi \cup \Phi \cup \Phi \{9\}$
= ε -closure (5) U $ε$ -closure (9)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	

(B, b) = ε -closure $(5) U ε$ -closure (9)
$= \{1,2,4,5,6,7,9\} = D$

State	a	b
A (0.1.2.4.5)	B (1.2.2.4.6.7.0)	C
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)

$(C, a) = (\{1,2,4,5,6,7\}, a)$
$= \{1,a\} \cup \{2,a\} \cup \{4,a\} \cup \{5,a\} \cup \{6,a\} \cup \{7,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \Phi \cup \{8\}$
$=$ ε -closure (3) \cup ε -closure (8)
= {1,2,3,4,6,7,8}=B (Slide no. 55)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	D (1,2,4,5,6,7,9)
С	В	

$(\mathbf{C}, \mathbf{b}) = (\{1, 2, 4, 5, 6, 7\}, \mathbf{b})$
$= \{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{5,b\} \cup \{6,b\} \cup \{7,b\}$
$= \Phi \cup \Phi \cup \{5\} \cup \Phi \cup \Phi \cup \Phi$
$= ε$ -closure (5)= {1,2,4,5,6,7}=C (Slide no. 57)

State	a	b
A (0,1,2,4,7)	B (1,2,3,4,6,7,8)	C (1,2,4,5,6,7)
В	В	D (1,2,4,5,6,7,9)
C	В	C

$(\mathbf{D}, \mathbf{a}) = (\{1, 2, 4, 5, 6, 7, 9\}, \mathbf{a})$
$= \{1,a\} \cup \{2,a\} \cup \{4,a\} \cup \{5,a\} \cup \{6,a\} \cup \{7,a\} \cup \{9,a\}$
$= \Phi \cup \{3\} \cup \Phi \cup \Phi \cup \Phi \cup \{8\} \cup \Phi$
= ε -closure (3) U $ε$ -closure (8)
= {1,2,3,4,6,7,8}=B (Slide no. 55)

State	a	b	
A	В	C	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7	7)
В	В	D	
		(1,2,4,5,6,7	,9)
С	В	С	
D	В		

$(\mathbf{D}, \mathbf{b}) = (\{1,2,4,5,6,7,9\}, \mathbf{b})$
$= \{1,b\} \cup \{2,b\} \cup \{4,b\} \cup \{5,b\} \cup \{6,b\} \cup \{7,b\} \cup \{9,b\}$
= Φ U Φ U{5} U Φ U Φ U Φ U Φ
= ε -closure (5)= {1,2,4,5,6,7}=C (Slide no. 57)

State	a	b	
A	В	C	
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)	
В	В	D	
		(1,2,4,5,6,7,9)	
С	В	C	
D	В	C	

State	a	b
A	В	C
(0,1,2,4,7)	(1,2,3,4,6,7,8)	(1,2,4,5,6,7)
В	В	D
		(1,2,4,5,6,7,9)
С	В	C
D	В	C

Final Output

- ➤ Here state A is start state since set 'A' has state '0' in its subset which is start state in the NFA with Thompson's construction.
- ➤ D is final state since the set D has state '9' which is final state in the NFA with Thompson's Construction

E-CLOSURE(T)

```
push all states of T onto stack
initialize \epsilon-closure(T) to T
while (stack is not empty) do
        begin
        pop t, the top element, off stack;
        for (each state u with an edge from t to u labelled \epsilon do
                 begin
                 if (u is not in \epsilon-closure(T)) do
                         begin
                         add u to \epsilon-closure(T)
                         push u onto stack
                         end
                 end
        end
```

CONVERTING A NFA INTO A DFA (SUBSET CONSTRUCTION)

```
put \varepsilon-closure(\{s_0\}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S_1 in DS) do \epsilon-closure(\{s_0\}) is the set of all states can be accessible
                                                           from s_0 by \epsilon-transition.
   begin
         mark S<sub>1</sub>
                                                       set of states to which there is a transition on
         for each input symbol a do
                                                       a from a state s in S_1
             begin
                S_2 \leftarrow \epsilon-closure(move(S_1,a))
                if (S_2 \text{ is not in DS}) then
                    add S2 into DS as an unmarked state
                transfunc[S_1,a] \leftarrow S_2
             end
        end
```

- a state S in DS is an accepting state of DFA if a state s in S is an accepting state of NFA
- the start state of DFA is ε -closure($\{s_0\}$)

SECTION 1.5 RE TO DFA THROUGH SYNTAX TREE METHOD OR DIRECT METHOD

CONVERTING REGULAR EXPRESSIONS DIRECTLY TO DFAS

- Important state
- We may convert a regular expression into a DFA (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - r → (r)# augmented regular expression
- Then, we create a syntax tree for this augmented regular expression.
- In this syntax tree, all alphabet symbols (plus # and the empty string) in the augmented regular expression will be on the leaves, and all inner nodes will be the operators in that augmented regular expression.
- Then each alphabet symbol (plus #) will be numbered (position numbers).

FROM REGULAR EXPRESSION TO DFA DIRECTLY: SYNTAX TREE OF (a/b)*abb#

FROM REGULAR EXPRESSION TO DFA DIRECTLY: ANNOTATING THE TREE

- nullable(n): the subtree at node n generates languages including the empty string
- o *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- o *lastpos*(*n*): the set of positions that can match the last symbol of a string generated by the subtree at node *n*
- followpos(i): the set of positions that can follow position i
 in the tree

FROM REGULAR EXPRESSION TO DFA DIRECTLY: ANNOTATING THE TREE

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	<i>{i}</i>	<i>{i}</i>
$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \textit{nullable}(c_1) \\ \text{or} \\ \textit{nullable}(c_2) \end{array}$	$firstpos(c_1)$ U $firstpos(c_2)$	$lastpos(c_1)$ U $lastpos(c_2)$
• / \ c ₁ c ₂	$\begin{array}{c} \textit{nullable}(c_1) \\ \text{and} \\ \textit{nullable}(c_2) \end{array}$	if $nullable(c_1)$ then $firstpos(c_1) \cup$ $firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1)$ U $lastpos(c_2)$ else $lastpos(c_2)$
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

FROM REGULAR EXPRESSION TO DFA DIRECTLY: SYNTAX TREE OF (a/b)*abb#

FROM REGULAR EXPRESSION TO DFA DIRECTLY: EXAMPLE

Node	followpos
1	{1, 2, 3}
2	{1, 2, 3}
3	{4}
4	{5}
5	{6}
6	-

FROM RE TO DFA DIRECTLY

	Let {1,2,3}=A			
A,a	({1,2,3},a)	followpos (1) U followpos(3)	{1,2,3,4}	В
A,b	({1,2,3},b)	followpos (2)	$\{1,2,3\}$	A
В,а	({1,2,3,4},a	followpos (1) U followpos(3)	{1,2,3,4}	В
B,b	({1,2,3,4},b	followpos (2) U followpos(4)	{1,2,3,5}	С
С,а	({1,2,3,5},a	followpos (1) U followpos(3)	{1,2,3,4}	В
C,b	({1,2,3,5},b	followpos (2) U followpos(5)	{1,2,3,6}	D
D,a	({1,2,3,6},a	followpos (1) U followpos(3)	{1,2,3,4}	В
D,b	({1,2,3,6},b	followpos (2)	{1,2,3}	A

(a/b)*a b b #

• • • • • •

1 2 3 4 5 6

Node Name	Symbol	followpos
1	a	{1, 2, 3}
2	b	{1, 2, 3}
3	a	{4}
4	ь	{5}
5	ь	{6}
6	#	-

State	a	b
A	В	A
В	В	С
С	В	D
D	В	A

FROM REGULAR EXPRESSION TO DFA DIRECTLY: EXAMPLE

Node	followpos
1	{1, 2, 3}
2	{1, 2, 3}
3	{4}
4	{5}
5	{6}
6	-

DIFFERENT DFA'S FOR (a/b)*abb

State	a	b
A	В	С
В	В	D
С	В	С
D	В	Е
Е	В	С

b	<u>b</u>	_
$\frac{\text{start}}{}$ $(1,2,3)$	1,2, b 1,2,	b 1,2,
	a a	0,0

State	a	b
A	В	A
В	В	C
C	A	D
D	В	A

FROM REGULAR EXPRESSION TO DFA DIRECTLY: FOLLOWPOS

```
for each node n in the tree do

if n is a cat-node with left child c_1 and right child c_2 then

for each i in lastpos(c_1) do

followpos(i) := followpos(i) \cup firstpos(c_2)
end do

else if n is a star-node
for each i in lastpos(n) do

followpos(i) := followpos(i) \cup firstpos(n)
end do

end if
end do
```

FROM REGULAR EXPRESSION TO DFA DIRECTLY: ALGORITHM

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
         mark T
         for each input symbol a \in \Sigma do
                   let U be the set of positions that are in followpos(p)
                            for some position p in T,
                            such that the symbol at position p is a
                   if U is not empty and not in Dstates then
                            add U as an unmarked state to Dstates
                   end if
                   Dtran[T,a] := U
         end do
end do
```

SECTION 1.6
MINIMIZATION OF DFA

MINIMIZATION THE FOLLOWING DFA, IF POSSIBLE

USING FINAL AND NON FINAL STATE

•Divide the entire set of states into two subsets: Set of final States and set of non final states.

•Consider each sub-set as a separate entity and identify if they need to be split further or can they be combined together

DFA MINIMIZATION USING PARTITIONING METHOD

Draw the transition table corresponding to the given DFA

DFA MINIMIZATION USING PARTITIONING METHOD

Divide the states into two subsets- final and non-final

Set of non Final States (NF): {A,B,C, D} Set of Final States (F): {E}

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	C

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,C,D) with Σ =a

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	Е
*	E	В	C

 $NF = \{A,B,C,D\}$ $F = \{E\}$

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,C,D) with Σ =b

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,C) with $\Sigma=a$

	State	a	b
\rightarrow	A	В	C
	В	В	D
	C	В	C
	D	В	E
*	Е	В	C

 $NF = (\{A,B,C\}, \{D\})$

NO SPLIT

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,C) with Σ =b

	State	a	b
\rightarrow	A	В (C
	В	В	D
	C	В	C
	D	В	Е
*	Е	В	С

NF= ({A,C}, {B} {D})

Split into two since {A,C} goes to state {C} while {B} goes to State {D} which is already separated.

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,C) with Σ =a

NO SPLIT

already separated

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,C) with Σ =b

NO SPLIT

	State	a	b
\rightarrow	A	В (C
	В	В	D
	C	В	C
	D	В	E
*	Е	В	C

 $NF = (\{A,C\}, \{B\})$

Both A and C state go to same group $\{A,C\}$ on $\Sigma=b$

Since subset {A,C} remain as single combined state till end, both states will be joined together as a single state

DFA MINIMIZATION > USING PARTITIONING METHOD

	State	a	b		
>	A	В	C		
	В	В	D		
	С	В	C		
	D	В	Е		
K	Е	В	C		

Final Output

Question 2

MINIMIZATION THE FOLLOWING DFA, IF POSSIBLE

Question 2

DFA MINIMIZATION USING PARTITIONING METHOD

	State	a	b
\rightarrow	A	В	F
	В	G	C
*	C	A	C
D	D	C	G
	E	Н	F
	F	C	G
	G	G	Е
	Н	G	C

Draw the transition table corresponding to the given DFA

DFA MINIMIZATION USING PARTITIONING METHOD

Divide the states into two subsets- final and non-final

Set of Non Final States (NF): {A,B,D,E,F,G,H} Set of Final States (F): {C}

State	a	b
A	В	\mathbf{F}
В	G	C
C	A	C
D	C	G
E	Н	F
F	C	G
G	G	E
H	G	C

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,D,E,F,G,H) with Σ =a

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,E,G,H) with Σ =a

	State	a	b
\rightarrow	A	B	F
	B	G	C
*	C	A	C
	D	C	G
	E	H	F
	F	C	G
	G	G	E
	H	G	C

NO SPLIT

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,B,E,G,H) with Σ =b

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,E) with Σ =a

	State	a	b
\rightarrow	A	B	F
	В	G	C
*	C	A	C
	D	C	G
	E	H	F
	F	C	G
	G	G	E
	Н	G	C

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (A,E) with Σ =b

	State	a	b
\rightarrow	A	В	F
	В	G	C
*	C	A	C
	D	C	G
	E	Н	F
	F	C	G
	G	G	E
	Н	G	C

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (B,H) with Σ =a

	State	a	b	NO SPLIT
\rightarrow	A	В	F	
	B	G	C	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
*	C	A	C	(A,E)
	D	C	G	B,H
	E	Н	F	a
	F	C	G	\bigcirc
	G	G	E	$\overline{\mathbf{c}}$
	H	G	C	

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (B,H) with Σ =b

	State	a	b	NO SPLIT
\rightarrow	A	В	F	
	B	G	C	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
*	C	A	C	(A,E)
	D	C	G	B,H
	E	Н	F	\b\
	F	C	G	G D,F
	G	G	E	$\overline{\mathbf{C}}$
	H	G	$\left(\mathbf{C}\right)$	

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (D,F) with $\Sigma=a$

	State	a	b	NO SPLIT
\rightarrow	A	В	F	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
	В	G	C	
*	C	A	C	A,E
	D	C	G	B,H
	E	H	F	
	F	C	G	G a D,F
	G	G	E	(c)
	Н	G	C	

DFA MINIMIZATION USING PARTITIONING METHOD

Check O/P of all clubbed states (D,F) with Σ =b

State	a	b	NO SPLIT
A	В	F	$NF = \{A,E\}, \{G\}, \{B,H\}, \{D,F\}$
В	G	C	
C	A	C	(A,E) (B,H) (D,F)
D	C	G	B,H b
E	H	F	
F	C	G	G
G	G	E	$\overline{\mathbf{C}}$
Н	G	C	
	A B C D E F	A B B G C A D C E H F C G G	A B F B G C C A C D C G E H F F C G G G E

THANKS