Лекции 7 и 8 Мощности множеств. Натуральные числа

1. Мощность множеств

1. Конечные множества

Множество $X = \{x_1, x_2, ..., x_n\}$ имеет п элементов, т.к. все элементы пронумерованы натуральными числами от 1 до n: $i \to x_i$ — это взаимно-однозначное отображение множества $\mathbb{N}_n = \{1, 2, ..., n\}$ на X. Пустое множество будем считать конечным с 0 элементов.

Утв. 1

Конечные множества X и Y имеют одинаковое число элементов, если существует взаимно-однозначное отображение $f: X \to Y$.

Доказательство

Пусть в множестве X п элементов, тогда $\exists \ g \colon \mathbb{N}_n \to X$ — взаимно-однозначное отображение. Если $\exists \ f \colon X \to Y$ -взаимно-однозначное, то $f \circ g \colon \mathbb{N}_n \to Y$ — взаимно-однозначное, т.е. в Y - п элементов.

Определение 1.

Множества X и Y (не обязательно конечные) называются равномощными, если существует взаимно-однозначное отображение $f: X \to Y$.

Пример

 $X = \mathbb{N} = \{1, 2, 3, ...\}$ равномощно $Y = \{2, 4, ..., 2k, ...\}$: отображение f(k) = 2k — взаимно-однозначно, несмотря на то, что Y - подмножество X и $Y \neq X$.

Определение 2.

Непустое множество называется бесконечным, если оно не равномощно ни одному из множеств $\mathbb{N}_n = \{1, 2, ..., n\}$

Замечание

В нашем примере Y ⊂ X, это характерное свойство бесконечных множеств.

2. Счетные множества

Определение 2.

Множество X называется счетным, если оно равномощно множеству $\mathbb{N} = \{1, 2, 3, ...\}$.

Утв. 2

Счетное множество является бесконечным.

Утв. 3 Всякое бесконечное множество имеет счетное

Доказательство

подмножество.

Пусть X — бесконечное множество, следовательно, X не пустое. Пусть $x_1 \in X$, тогда $X \setminus \{x_1\}$ — не пустое, иначе $X = \{x_1\}$ конечное одноэлементное множество. Пусть $x_2 \in X \setminus \{x_1\}$, тогда $X \setminus \{x_1, x_2\}$ — не пустое, иначе $X = \{x_1, x_2\}$ — конечное двухэлементное множество и т.д. Этот процесс не может остановиться, т.к. X — бесконечное множество. В итоге мы построим счетное подмножество $\{x_1, x_2, ...\}$ в X: $\{x_1, x_2, ...\}$ $\subset X$

Утв. 4

Всякое подмножество счетного множества конечно или счетно.

Доказательство

Пусть $X = \{x_1, x_2, ...\}$ счетное, а $Y \subset X$. Пусть n_1 – минимальный номер элемента x_i , такой, что $x_{n_1} \in Y$, n_2 – минимальный номер элемента x_i , такой, что $x_{n_2} \in Y \setminus \{x_{n_1}\}$ и т.д. Продолжая процесс мы пронумеруем все элементы множества Y: $Y = \{x_{n_1}, x_{n_2}, ...\}$.

Утв. 5

- 1. Объединение конечного и счетного множества счетно;
- 2. Объединение двух счетных множеств счетно;
- 3. Объединение конечного числа счетных множеств счетно;
- 4. Объединение счетного множества конечных множеств счетно;
- 5. Объединение счетного числа счетных множеств счетно.

Доказательство

- 1. Пусть $X = \{x_1, x_2, ..., x_n\}$ конечное, а $Y = \{y_1, y_2, y_3, ...\}$ счетное, тогда $X \cup Y = \{x_1, x_2, ..., x_n, y_1, y_2, y_3, ...\}$ (с исключением конечного числа повторяющихся элементов) счетное.
- 2. Пусть $X = \{x_1, x_2, x_3, ...\}$ счетное и $Y = \{y_1, y_2, y_3, ...\}$ счетное, тогда $X \cup Y = \{x_1, y_1, x_2, y_2, x_3, y_3, ...\}$ (с исключением повторяющихся элементов) счетное.
- 3. Пусть $X^{(k)} = \{x_1^{(k)}, x_2^{(k)}, \dots\}$, $k = 1, 2, \dots, m$, $X^{(k)}$ счетные. Тогда $\cup_{k=1}^m X^{(k)} = \{x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)}, x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(m)}, \dots\}$ (с исключением повторяющихся элементов).
- 4. Пусть $X^{(k)}=\{x_1^{(k)},x_2^{(k)}...x_{n_k}^{(k)}\},$ $\mathbf{k}=1,2,...$ $X^{(k)}$ конечные. Тогда $\cup_{k=1}^{\infty}X^{(k)}=$

$$=\{x_1^{(1)},x_2^{(1)},...,x_{n_1}^{(1)},x_1^{(2)},x_2^{(2)},...,x_{n_2}^{(2)},...\}$$
 (с исключением повторяющихся элементов) 5. Пусть $X^{(k)}=\{x_1^{(k)},x_2^{(k)}...x_{n_k}^{(k)},...\}$, $k=1,2,...$ $X^{(k)}$ — счетные. Тогда $\bigcup_{k=1}^{\infty}X^{(k)}=\{x_1^{(1)},x_1^{(2)},x_2^{(1)},x_1^{(3)},x_2^{(2)},x_3^{(1)},...\}==\{\bigcup_{p=1}^{\infty}C^{(p)}=\bigcup_{p=2}^{\infty}\{x_1^{(p-1)},x_2^{(p-2)},...,x_{p-1}^{(1)}\}$ (с исключением повторяющихся элементов) — объединение счетного числа счетных множеств счетно.

Определение

Множество X не более чем счетно, если оно конечно или счетно.

Утв. 5'

Объединение не более чем счетного набора не более чем счетных множеств не более чем счетно.

Утв. 6

Пусть X — бесконечное множество, а Y — не более чем счетное множество, тогда множество $X \cup Y$ равномощно множеству X.

Доказательство

По Утв. 3. $\exists X_1 \subset X$: X_1 — счетное, тогда $X_1 \cup Y$ — счетное, т.е. равномощное X_1 . Следовательно, $X \cup Y = (X \setminus X_1) \cup X_1 \cup Y$ и $X = (X \setminus X_1) \cup X_1$ равномощны.

Следствие

Пусть X – бесконечное множество, а Y – не более чем счетное множество, такое, что $X \setminus Y$ – бесконечное. Тогда множество $X \setminus Y$ равномощно множеству X.

Утв. 7

Пусть $X = \{x_1, x_2, x_3, ...\}$ и $Y = \{y_1, y_2, y_3, ...\}$ – счетные множества, тогда XxY – счетно.

Доказательство

$$XxY = \{(x_i, y_j) | i, j = 1, 2, ...\}$$

 $XxY = \{(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_1, y_3), ...\}$

Утв. 8

- 1. Множество целых чисел $\mathbb Z$ счетно;
- 2. Множество рациональных чисел ℚ счетно. Доказательство

1.
$$\mathbb{Z} = \{..., -2, -1\} \cup \{0\} \cup \{1, 2, ...\}$$

2.
$$\mathbb{Q} = \{ p / q | p \in \mathbb{Z}, q \in \mathbb{N}, (|p|,q) = 1 \} \subset \mathbb{Z}x \mathbb{N}.$$

Утв. 9

Множество бесконечных последовательностей, состоящих из 0 и 1 несчетно.

Доказательство

Пусть множество бесконечных последовательностей, состоящих из 0 и 1, счетно. Тогда их можно выписать виде списка

$$1 \leftrightarrow (m_{11}, m_{12}, m_{13}...)$$

$$2 \leftrightarrow (m_{21}, m_{22}, m_{23}...)$$

 $3 \leftrightarrow (m_{31}, m_{32}, m_{33}...)$

Возьмем диагональную последовательность $\mu = (m_{11}, m_{22}, m_{33}, ...)$ и построим последовательность из нулей и единиц v все члены которой отличаются от соответствующих членов последовательности μ : $v = (1 - m_{11}, 1 - m_{22}, 1 - m_{33}, ...)$ Последовательность у не может входить в наш список, т.к. для любого к последовательность $(m_{k1}, m_{k2}, ..., m_{kk}...)$ не совпадает с v, т.к. элемент равный m_{kk} не совпадает в k-м элементом v, равным $1-m_{kk}$.

Следствие

Множество вещественных чисел на промежутке [0, 1] несчетно.

вещественные числа несчетно.

Доказательство

Вещественные чисел на промежутке [0, 1] представляется двоичными бесконечными дробями. Дроби с нулем в периоде и 1 в периоде можно использовать для представления одного числа, но таких дробей счетное число. Всех дробей – не счетное множество, поэтому множество двоичных дробей, представляющих

3. Сравнение мощностей множеству

Раньше обсуждали равенство мощностей (равномощность) множеств: |X| = |Y|. Перейдем к сравнению мощностей. Определение

Мощность множества X меньше мощности множества Y: (пишут |X| < |Y|), если

- $-|\mathbf{X}|\neq |\mathbf{Y}|;$
- $\exists \ Y_1 \subset Y$, такое что $|X| = |Y_1|$. Пишут $|X| \le |Y|$, если |X| = |Y| или |X| < |Y|.

Теорема (о сравнении мощностей) Если $|X| \le |Y|$ и $|Y| \le |X|$, то |X| = |Y|.

Утв. 10

 $|X| < |2^X|$ т.е. мощность множества все подмножеств множества X больше мощности самого множества X.

Доказательство

- 1. Множество X равномощно множеству одноэлементных подмножеств X, следовательно, $|X| \le |2^X|$.
- 2. Пусть $\forall \ x \in X \to B_x \in 2^X$. Покажем, что существует $B_1 \subset X$, такое, что $B_1 \neq B_x$, $x \in X$, т.е. отображение $x \in X \to B_x \in 2^X$ не сюрьективно, что исключает $|X| = |2^X|$.

Для \forall $x \in X$ выполнено одно из двух: $x \in B_x$ или $x \in B_x$.

Рассмотрим множество $B_1 = \{x | x \in B_x\}$. Покажем, что не существует x_1 , т.ч. $B_1 = B_{x_1}$. Предположим, что такое x_1 существует, т.е. $B_1 = B_{x_1}$, тогда x_1 либо принадлежит B_1 , либо не принадлежит B_1 .

Во первом случае $x_1 \in B_1 = B_{x_1}$, но $B_1 = \{x \mid x \in B_x\}$, поэтому $x_1 \in B_{x_1} = B_1$. Это противоречие показывает, что x_1 не может принадлежать $B_1 = B_{x_1}$.

Во втором случае $x_1 \in B_1 = B_{x_1}$, но, поскольку, $B_1 = \{x \mid x \in B_x\}$, то $x_1 \in B_{x_1} = B_1$. Это противоречие показывает, что x_1 не может не принадлежать $B_1 = B_{x_1}$.

Определение

Мощность множества $2^{\mathbb{N}}$ называется мощностью континуума $c: c = |2^{\mathbb{N}}|$.

Утв. 17

Множество всех бесконечных двоичных последовательностей имеет мощность континуума.

Доказательство

Множество двоичных последовательностей взаимно-однозначно отображается на множество подмножеств натуральных чисел. Действительно, последовательности $\mu = (m_1, m_2, m_3, \ldots)$ можно сопоставить подмножество \mathbb{N} : $A_{\mu} = \{k | m_k = 1\}$ и обратно $A \subset \mathbb{N}$ соответствует последовательность из 0 и 1: $m_k = 1$ если $k \in A$, иначе $m_k = 0$.

Следствие

Множество [0, 1] имеет мощность континуума.

Замечание

1. Имеется бесконечная последовательность увеличивающихся мощностей:

$$|N| < c = |2^N| < |2^{2^N}| < ...$$

2. Проблема: существует ли множество A, т.ч. $|\, \mathbb{N}| \, < |A| < \, c = |2^{\,\mathbb{N}}|.$

Континуум-гипотеза: такого множества не существует.

В аксиоматической теории множеств было доказано, что, фактически, это независимая аксиома теории множеств.

Задание

- 1. Доказать, что любой интервал [a, b], a < b имеет мощность континуума;
- 2. Доказать, что множество (0, 1) имеет мощность континуума;

- 3. Доказать, что $\mathbb{R} = (-\infty, +\infty)$ имеет мощность континуума;
- 4. Определить мощность множества полиномов с целыми коэффициентами;
- 5. Определит мощность множества иррациональных чисел;
- 6. Алгебраическое число это решение алгебраического уравнения с целыми коэффициентами (пример: $x = \sqrt{2}$ решение уравнения $x^2 2 = 0$). Найти мощность множества алгебраических чисел;
- 7. Вещественное число не являющееся алгебраическим называется трансцендентным. Найти мощность множества трансцендентных чисел.

Натуральные числа

1. Аксиомы Пеано

Натуральным рядом называется система (N, '), где N- множество натуральных чисел, ': $N \to N$ бинарное отношение непосредственного следования: $m=n'\equiv m$ непосредственно следует за n, т.ч.

- 1. $\exists 1 \in \mathbb{N}: n' \neq 1, \forall n \in \mathbb{N}$
- 2. \forall n ∈ N \exists ! n' ∈ N \equiv отношение ' функционально и определено на всем N
- 3. $n' = m' \implies n = m \equiv отображение ' инъективно$
- 4. Аксиома индукции: пусть М ⊂ N:
 - 1. 1 ∈ M
 - 2. \forall $\mathbf{n} \in \mathbf{M} \implies \mathbf{n}' \in \mathbf{M}$

тогда M = N.

2. Принцип полной математической индукции

Теорема

Пусть T(n) – утверждение, зависящее от параметра n:

- 1. Т(1) истинно;
- 2. Для ∀ n ∈ N, если T(n) истинно, то T(n + 1) истинно

Тогда T(n) истинно для \forall n ∈ N.

Доказательство

Пусть $M = \{ \forall n \in \mathbb{N} | T(n) \text{ истинно} \}$, тогда M удовлетворяет всем требованиям Аксиомы индукции и, следовательно, $M = \mathbb{N}$.

Доказательство теорем с использованием принципа математической индукции: проверяем истинность T(1) — база индукции и $T(n) \Rightarrow T(n+1)$ — шаг индукции.

- 3. Примеры использования принципа математической индукции
 - 1. $1+2+...+n=n\ (n+1)/2-$ это наше утверждение T(n)

a.
$$T(1) = 1 = 1 (1 + 1)/2$$

- b. Пусть T(n) истинно, тогда 1+2+...+n+(n+1)=n (n+1)/2+(n+1)=(n+1) (n/2+1)=(n+1) (n+2)/2, т.е. T(n+1) истинно \forall $n \in \mathbb{N}$.
- 2. $1+3+5+...+(2 n-1)=n^2-$ это наше T(n) a. $T(1)=1=1^2$
 - b. Пусть T(n) истинно, тогда $1+3+5+\ldots+(2\ n-1)+(2\ n+1)=n^2+$ $+(2\ n+1)=(n+1)^2$, т.е. T(n+1) истинно $\forall\ n\in\mathbb{N}$.

Самостоятельная работа:

- 3. Доказать: $1+2^2+...+n^2=n (n+1) (2 n+1)/2$
- 4. Доказать: $1+2^3+...+n^3=n^2(n+1)^2/2$

- 4. Арифметические действия с натуральными числами
 - 1. Сложение натуральных чисел Сложение натуральных чисел – это бинарная операция на N: N x N → N: (m, n) → m + n:
 - 1. m + 1 = m'
 - 2. m + n' = (m + n)'

Бинарная операция задается тетранарным отношением функционального типа на N.

Теорема (свойства операции сложения натуральных чисел)

- 1. Операция сложения натуральных чисел существует и единственна;
- 2. Сложение ассоциативно: (k + m) + n = k + (m + n);
- 3. Сложение коммутативно: m + n = n + m;
- 4. Сложение обладает свойством сократимости: если k + n = m + n, то k = m.

Доказательство

Утв. 2: доказываем (k + m) + n = k + (m + n) индукцией по n при произвольных k и m:

1.
$$n = 1$$
: $(k + m) + 1 = (k + m)' = k + m' = k + (m + 1)$

2.
$$(\mathbf{k} + \mathbf{m}) + \mathbf{n}' = ((\mathbf{k} + \mathbf{m}) + \mathbf{n})' =$$

= $(\mathbf{k} + (\mathbf{m} + \mathbf{n}))' = \mathbf{k} + (\mathbf{m} + \mathbf{n})' =$
= $\mathbf{k} + \mathbf{m} + \mathbf{n}'$.

Утв. 3:

1. Доказываем m + 1 = 1 + m индукцией по m:

a.
$$m = 1 \Rightarrow 1 + 1 = 1 + 1;$$

b. m' : $(m' + 1) = (m + 1) + 1 = (1 + m) + 1 = 1 + (m + 1) = 1 + m'$

2. Доказываем m + n = n + m индукцией по n при фиксированном m:

а.
$$\mathbf{n} = 1$$
 утверждение доказано в п. 1
b. n' : $\mathbf{m} + n' = (m+n)' = (n+m)' =$
 $= \mathbf{n} + m' = \mathbf{n} + (\mathbf{m} + 1) = \mathbf{n} + (1+\mathbf{m}) =$
 $= (\mathbf{n} + 1) + \mathbf{m} = n' + \mathbf{m}$.

2. Умножение натуральных чисел Умножение натуральных чисел — это бинарная операция на N: N x N → N: (m, n) → m · n:

1.
$$\mathbf{m} \cdot \mathbf{1} = \mathbf{m}$$

2.
$$\mathbf{m} \cdot \mathbf{n}' = \mathbf{m} \cdot \mathbf{n} + \mathbf{m}$$

Теорема (свойства операции умножения натуральных чисел)

- 1. Операция умножения натуральных чисел существует и единственна;
- **2.** Операция умножения натуральных чисел дистрибутивна: $\mathbf{k} \cdot (\mathbf{m} + \mathbf{n}) = \mathbf{k} \cdot \mathbf{m} + \mathbf{k} \cdot \mathbf{n}$;
- 3. Операция умножения натуральных чисел ассоциативна: $(k \cdot m) \cdot n = k \cdot (m \cdot n)$;
- 4. Операция умножения натуральных чисел коммутативна $\mathbf{m} \cdot \mathbf{n} = \mathbf{n} \cdot \mathbf{m}$;

- 5. Операция умножения натуральных чисел обладает свойством сократимости: если $\mathbf{k} \cdot \mathbf{n} = \mathbf{m} \cdot \mathbf{n}$, то $\mathbf{k} = \mathbf{m}$.
- 3. Линейный порядок на множестве натуральных чисел

Число m меньше числа n (m < n), если существует

 $k \in \mathbb{N}$, т.ч. n = m + k.

Теорема (свойства отношения m < n)

- 1. Бинарное отношение m < n задает на N строгий линейный порядок;
- 2. (N, <) вполне упорядоченное множество: если М ⊂ N, то во множестве М существует наименьший элемент;
- 3. Если m < n и $k \in N$, то m + k < n + k
- 4. Если m < n и $k \in \mathbb{N}$, то $m \cdot k < n \cdot k$