ÉTUDE DE FONCTIONS

I Généralités

Définition n°1. Maximum et minimum d'une fonction sur un intervalle

Soit f une fonction définie sur un intervalle I et a un réel de l'intervalle I . On dit que :

f admet un maximum en a sur I lorsque,

pour tout $x \in I$, $f(x) \le f(a)$

f admet un minimum en a sur I lorsque,

pour tout $x \in I$, $f(x) \ge f(a)$

f admet un extremum en a sur I lorsque, f admet un maximum en a sur I ou f admet un minimum en a sur I.

Remarque n°1.

Le pluriel de « extremum » c'est « extrema » mais vous verrez souvent « extremums »...

La fonction f possède un maximum sur I qui est f(a) et qui est atteint en a.

La fonction f possède un minimum sur I qui est f(b) et qui est atteint en b.

(f possède deux extrema sur I : un maximum et un minimum)

Définition n°2. <u>Croissance</u>, <u>décroissance</u>

Soit f une fonction définie sur D_f et $I \subset D_f$ un intervalle.

• « f est strictement croissante sur I » signifie que :

Pour tous a et b appartenant à I, $a < b \Rightarrow f(a) < f(b)$

• « f est croissante sur I » signifie que :

Pour tous a et b appartenant à I, $a < b \Rightarrow f(a) \leq f(b)$

• « f est strictement décroissante sur I » signifie que :

Pour tous a et b appartenant à I, $a < b \Rightarrow f(a) > f(b)$

• « f est décroissante sur I » signifie que :

Pour tous a et b appartenant à I , $a < b \Rightarrow f(a) \ge f(b)$

Remarque n°2. Le tableau de variations

On peut résumer les variations d'une fonction sous la forme d'un **tableau de variations**. Les variations peuvent sur lire graphiquement ou se déduire de propriétés et de calculs. On pose I = [d, e]

On trouve facilement les extrema avec le tableau de variations.

Les fonctions de références II

Les fonctions affines

f(x)=mx+p avec m et p des réels Le domaine de définition est : $D_f = \mathbb{R}$

x	$-\infty$ $\frac{-p}{m}$ $+\infty$
Variations	0
signes	- 0 +

f est constante sur \mathbb{R}

x	$-\infty$	<u>- р</u> т	+∞
Variations		_ 0	
signes	+	0	_

La fonction carré : $f(x) = x^2$

x	$-\infty$		0		$+\infty$
Variations			<u> </u>		
signes		+	0	+	

 $f(x)=x^3$ La fonction cube : $D_f = \mathbb{R}$

x	$-\infty$	0	+∞
Variations			
signes	_	0	+

La fonction racine carrée: $f(x) = \sqrt{x}$ $D_f = [0 ; +\infty[$

La fonction inverse : $f(x) = \frac{1}{x}$

