Bukti bahwa $2^n \geq n!$ Menggunakan Induksi Matematika

Balya Rochmadi

September 15, 2017

Pertama sebelum dilakukan pembuktian domain yang dimaksud adalah $\{n \geq 0\}$. Asumsikan bahwa n=k maka $2^k \geq k!$. Sehingga jika n=k+1 maka $2^{k+1} \geq (k+1)!$ dengan $n=k \geq 0$. Jadi $2^{k+1}-(k+1)! \geq 0$. Perlu diingat bahwa dengan adanya $2^k \geq k!$, berarti,

$$\begin{split} 2^{k+1} - (k+1)! &= 2 \cdot 2^k - (k+1)! > 2 \cdot k! - (k+1)! \\ 2^{k+1} - (k+1)! &\geq 2 \cdot k! - (k+1)! \\ 2^{k+1} - (k+1)! &\geq 2 \cdot k! - (k+1)k! \\ 2^{k+1} - (k+1)! &\geq 2 \cdot (1 - (k+1))k! \\ 2^{k+1} - (k+1)! &\geq 2 \cdot (k)k! \end{split}$$

karena sisi kanan dari pertidaksamaan tersebut bernilai positif, ingat bahwa $k=n\geq 0$, maka terbukti bahwa $2^{k+1}-(k+1)!\geq 0$ atau $2^k\geq k!$, dan persamaan ditunjukkan jika dan hanya jika k=0.