Cours 5

Calcul propositionnel : sémantique (suite et fin) et déduction par coupure

Substitutions

Notation : $F[p_1,...,p_n]$ indique qu'une formule F ne comporte pas de variables en dehors de $p_1,...,p_n$.

Proposition

Soit $F[p_1,..,p_n]$ une formule et φ une valuation, alors la valeur $\varphi(F)$ ne dépend que de la valeur de φ sur $p_1,..,p_n$.

Proposition

Soient F et G deux formules et φ une valuation, alors la valeur de F[G/p] pour φ est égale à la valeur de F pour une valuation φ' telle que $\varphi'(p) = \varphi(G)$ et $\varphi'(q) = \varphi(q)$ pour tout $q \in \mathbb{V} \setminus \{p\}$.

Substitutions

Corollaire

Soit F, F', G, G' *des formules et* $p \in \mathbb{V}$:

- ightharpoonup si F est une tautologie alors F[G/p] est une tautologie
- $si\ F \equiv F'\ alors\ F[G/p] \equiv F'[G/p]$
- $si\ G \equiv G'\ alors\ F[G/p] \equiv F[G'/p]$

Exemples:

- ▶ pour toutes formules F, G, H, $((F \Rightarrow (G \Rightarrow H)) \Rightarrow ((F \Rightarrow G) \Rightarrow (F \Rightarrow H)))$ est une tautologie.
- $\neg (F \land G) \equiv (\neg F \lor \neg G)$

Formes normales

Théorème

On a une bijection entre les applications de $\{0,1\}^n \to \{0,1\}$ et l'ensemble des formules sur $p_1,...,p_n$ quotienté par \equiv .

Représentants particuliers : formes normales

- ► Forme normale disjonctive (FND) : $F = G_1 \lor ... \lor G_k$ et $G_i = (B_{i,1} \land ... \land B_{i,n_i})$ avec $B_{i,j} = p$ ou $\neg p$ (litéral).
- ► Forme normale conjonctive (FNC) : $F = G_1 \land ... \land G_k$ et $G_i = (B_{i,1} \lor ... \lor B_{i,n_i})$ avec $B_{i,j}$ un litéral.

Théorème

Tout formule est équivalente à une formule sous FND et une formule sous FNC.

Remarque : on s'autorise à supprimer des parenthèses quand cela ne change pas la classe d'équivalence.

Forme normale

Comment calculer une forme normale?

à partir de la table de vérité

par manipulation symbolique

Systèmes complets de connecteurs

Définition

Un système complet de connecteurs est un ensemble de connecteurs qui permet d'engendrer toutes les applications de $\{0,1\}^n \to \{0,1\}$

Exemple : $\{\neg, \land, \lor\}$, $\{\neg, \lor\}$, $\{nand\}$, $\{nor\}$.

Théorème de compacité

Définition

Un ensemble Σ de formules est *finiment satisfiable* si tout sous-ensemble fini de Σ est satisfiable.

Théorème (de compacité)

 Σ satisfiable si et seulement si Σ finiment satisfiable.

Systèmes de déduction : la déduction par coupure

Système de déduction (rappel)

Un système formel est constitué

- ▶ d'une syntaxe
 - ▶ un alphabet *A*
 - ▶ une procédé de formation des formules : $\mathfrak{F} \subseteq A^*$
- d'une sémantique :

$$\Sigma \models F$$

- d'un système de déduction
 - un ensemble d'axiomes
 - un ensemble fini de règles de déduction

$$\Sigma \vdash F$$

Vocabulaire : le système de déduction

- est dit *correct* si $\Sigma \vdash F$ implique $\Sigma \models F$,
- est dit *complet* si $\Sigma \models F$ implique $\Sigma \vdash F$.

La déduction par coupure

On se limite à un sous ensemble des formules : les clauses.

Définition

Une clause est une disjonction de littéraux.

Il s'agit d'un sous ensemble suffisamment représentatif :

Théorème

Toute formule est sémantiquement équivalente à une conjonction de clauses.

Exemple

$$ightharpoonup p \lor \neg q \lor r$$

Vocabulaire et notations

Nous noterons les clauses sous la forme d'un ensemble de littéraux en distinguant les variables *négatives* (apparaissant avec une négation) des variables *positives* (apparaissant sans négation).

$$C = (\Gamma, \Delta)$$

 Γ : variables propositionnelles négatives

 Δ : variables propositionnelles positives

Exemples

- ▶ $p \lor \neg q \lor r$ sera noté $(\{q\}, \{p, r\})$.
- ▶ $p \lor \neg q \lor \neg q \lor p$ sera noté $(\{q\}, \{p\})$.

Vocabulaire et notations

$$C = (\Gamma, \Delta)$$

Cas particuliers:

- ▶ $\Delta = \emptyset$: clause négative
- $ightharpoonup Γ = \emptyset$: clause positive
- ▶ $\Delta = \Gamma = \emptyset$: clause vide, notée □

Remarque : une clause $(\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_m\})$ est équivalente à

$$(a_1 \wedge \cdots \wedge a_n) \Rightarrow (b_1 \vee \cdots \vee b_m)$$

Règle de coupure

Définition

Soit $C_1 = (\Gamma_1, \Delta_1)$ et $C_2 = (\Gamma_2, \Delta_2)$, et $p \in \Delta_1 \cap \Gamma_2$. $C = (\Gamma, \Delta)$ se déduit par coupure sur p si

$$\Gamma = \Gamma_1 \cup (\Gamma_2 \setminus \{p\}) \text{ et } \Delta = \Delta_2 \cup (\Delta_1 \setminus \{p\})$$

On note:

$$C_1$$
 C_2

Preuve par coupure

Définition (Preuve par coupure)

Soit S un ensemble de clauses. L'ensemble des clauses C prouvables par coupure à partir de S (noté $S \vdash C$) est définie inductivement par

pour toute clause C

si
$$C$$
 ∈ S alors S \vdash C

▶ pour toutes clauses C_1 , C_2 et C

si
$$S \vdash C_1$$
, $S \vdash C_2$ et $\frac{C_1 \quad C_2}{C}$ alors $S \vdash C$

Réfutation par coupure de $S: S \vdash \Box$

Correction

Lemme

$$Si \frac{C_1 \quad C_2}{C} \quad alors \{C_1, C_2\} \models C.$$

Théorème

$$Si S \vdash C$$
, alors $S \models C$.

Corollaire

 $Si S \vdash \square \ alors S \ n'est \ pas \ satisfiable.$

Complétude

Lemme

Soit S un ensemble de clauses non satisfiables qui ne contient pas \square . *Alors il existe p,* C_1 *et* C_2 *tels que* $p \in \Gamma_1 \cap \Delta_2$.

Définition (Résolvant)

Avec les notations précédentes et S_p le sous-ensemble des clauses de S contenant p, on appelle *résolvant* de S_p (noté $Res(S_p)$) l'ensemble des clauses obtenues à partir de deux clauses de S_p par coupure sur p.

Remarque : Si S est non satisfiable et ne contient pas \square , alors il existe p tel que $Res(S_p) \neq \emptyset$.

Complétude

Lemme

S satisfiable ssi $(S \setminus S_p) \cup Res(S_p)$ satisfiable.

Lemme

Si S est fini et S \models *C, alors S* \vdash *C.*

Théorème

 $Si S \models C$, alors $S \vdash C$.

Plan

1 Sémantique : suite et fin

Systèmes de déduction : la déduction par coupure