诚信保证(Integrity commitment)

本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字(Signature):

编号:

西北工业大学考试试题 (B卷) 2021 - 2022 学年第 2 学期

开课学院 School of Computer Science

课程 Compiler Principles/编译原理(英) (U10M12008.01)

学时 48 hours

考试日期 _2022.7.2 _ 考试时间 _2 hours _ 小时 _ 考试形式 (闭) 卷

Qı	uestion	Q1(12)	Q2(8)	Q3(8)	Q4(8)	Q5(10)	Q6(15)	Q7(14)	Q8(15)	Q9(10)	Sum of Scores
S	Scores										

考生班级	学号 (Student	姓名	
(Class ID)	ID)	(Name)	

Q1 (12 scores: 3+3+3+3)

For grammar G[S]:

$$S \rightarrow SaS \mid A$$
, $A \rightarrow \varepsilon \mid aB$, $B \rightarrow (B) \mid b$

Answer the following questions:

- (1) Is this grammar a recursive grammar? Give the answer and the reason for your answer.
 - (2) What are the terminals and non-terminals of this grammar?
- (3) G[S] is an ambiguous grammar. Find one example string and give two different left-most derivation sequences to prove the ambiguity of G[S].
- (4) Given a string "aaa(b)", is it a legal sentence defined by this grammar? Please draw the parsing tree for the input?

Q2 (8 scores: 4+4)

Given grammar G[E]:

 $\Im T \rightarrow \varepsilon \quad \{ printf("3"); \} \qquad \Im T \rightarrow xyT \{ printf("4"); \}$

Given "bxyxya" as the input string, and supposed that we use LR similar parsing algorithm (reduction based analysis), please present the left-most reduction sequences. Then give the output of printf functions defined in the question.

Notation: here we suppose to execute the printf when we use the rule to do derivation.

- 注: 1. 答题请写在该试卷上相应位置。
 - 2. 命题教师和审题教师姓名应在试卷存档时填写。

教务处印制

[Q3] (8 scores: 4+4)

Given grammar G[S]: S→Sa | b

- (1) Please rewrite G[S] into G[A] so that G[A] could recognize the same language as G[S] while G[A] is not a left-recursive grammar.
- (2) Prove that G[A] is equivalent to G[S] (recognize the same language).

Notation: You could utilize basic BNF or EBNF to represent G[A].

[Q4] Please answer the following questions: (8 scores)

- (1) Given regular expression ($(a|b)|(0|1)^*$)*, please draw the NFA. (2scores)
- (2) Write down the regular expression or NFA or DFA for the following language:

Hex integer such as 0x01AF or 0X01af. (2 scores)

Octal integer such as 01 or 07 (2 scores)

Decimal integer such as 1 or 19 (2 scores)

【Q5】 (10 scores) Given the following C program:

```
int i, x, y;
for (i=1+x; i<=x+y; i++)
{
   if (x>y+1) break;
   else
   {
        x = x*2;
   };
}
x=9;
```

Please present the Quadruple (three-address code) or if-goto forms with equivalent logic to above program. (10 scores)

Q6 (15 scores)

Given G[S] as following:

$$S \to aA \mid d \mid \epsilon$$

$$A \rightarrow bAS \mid \varepsilon$$

- (1) Present the First set for each production rule. (3 scores)
- (2) Present the Follow Set for each non-terminal symbol. (3 scores)

	First	Follow
$S \rightarrow aA$		
$S \rightarrow d$		
$S \rightarrow \epsilon$		
$A \rightarrow bAS$		
$A \rightarrow \epsilon$		

(3) Present the LL(1) table. Is this grammar LL(1)? (5 +2 scores)

	а	b	d	#
S				
Α				

(4) Given input string "abd", present the derivation sequences according to the LL(1) table: (2 scores)

【Q7】 (14 scores)

Given the following NFA:

(1) Present the equivalent Matrix representation of this NFA. (7 scores)

	a	ь	ε
1			
2			
3			
4			

(2) Transform the NFA to DFA. (7 scores)

【Q8】 (15 scores)

Given the following grammar G[Z]:

$$Z\rightarrow ABa$$
 $A\rightarrow bB \mid \epsilon$

$$B \rightarrow \epsilon$$
 $B \rightarrow xyB$

bxyxya=>bB

- (1) Please write down the LR(0) automata. (6 scores)
- (2) Please present the LR(0) parsing table. (7 scores)

	a	b	X	у	Z	A	В
10							
I1							
	•••	•••	•••	•••	•••	•••	

【 Q9 】 For the following three addresses IR code, write down the basic blocks and
draw the control flow graph of it. (10 scores).
(1) X := X*3
(2) if X!=10 goto (6)
(3) goto (4)
(4) X := X*X
(5) goto (2)
(6) if X>0 goto (7)
(7) X := X-2
(8) Y := X+5
(9) goto (2)
(3) goto (2)