

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

Reflection matrix H

The matrix H reflects every vector in R2 onto any 'O' line.

From the figure
$$\overline{OA'} + \overline{A'B} = \overline{OB} - \overline{O}$$
and $\overline{OA'} + \overline{AB} = \overline{OB} - \overline{O}$

(Fine
$$\overrightarrow{AB} = -\overrightarrow{AB}$$
)

Reflection matrix H

$$H = \begin{bmatrix} 2cs^2\theta - 1 & 2cs^2\theta & 6n\theta \\ 2cs^2\theta & 26n^2\theta - 1 \end{bmatrix}$$

Note:

. Two reflection brings back the oscieptal.

- A reflection 25 its own Ermone.

Reflection matrix H

To conclude....

Product of two transformations is another transformation by itself. Matrix multiplication is so defined that product of matrices corresponds to the product of the transformations that they represent.

Problems

Find the matrix S that reflects every vector in R^2 on the line y = x. Also find the matrix T which projects every vector in R^2 on to the line y = x. Explain why ST = TS.

$$S = \begin{cases} 2\left(\frac{1}{\sqrt{2}}\right)^{-1} & 2\left(\frac{1}{\sqrt{2}}\right)^{-1} \\ 2\left(\frac{1}{\sqrt{2}}\right)^{-1} & 2\left(\frac{1}{\sqrt{2}}\right)^{-1} \end{cases}$$

$$S.T = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$= TS.$$

Problems

ST is the ecomposition of projecting any verbor of R2 onto y = x line than reflecting it onto y = x line.

The is the ecomposition of reflecting any vertor of R2 onto y = x line than projecting it onto y = x line.

Both towary formation produces the same output.

Problems

Solution

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Problems

Rotation matrix to notate any verter of IR, by 45 counter clockwise about the origin (1 given by

Q(45') = [exs(45)] - Sin(45)]

Sin(45') cos(45')

The projection of 9 = (-2(1)) on the y-anis and then softening about 0 = 45 counter clockwise is given

by
$$\theta_{45}$$
 $P_{(q0)}$ $\begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/r_2 & -11/2 \\ 1/r_2 & 11/2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Problems

60. counten chockwise is given by

Projection orabren to project any vector of R? onto

THANK YOU