SSD1351

Product Preview

128 RGB x 128 Dot Matrix
OLED/PLED Segment/Common Driver with Controller

CONTENTS

1	GENERAL DESCRIPTION	6
2	FEATURES	6
3	ORDERING INFORMATION	
4		
4	BLOCK DIAGRAM	······································
5	DIE PAD FLOOR PLAN	8
6	PIN ARRANGEMENT	11
6	6.1 SSD1351UR1 PIN ASSIGNMENT	11
7	PIN DESCRIPTIONS	14
8		
_	8.1 MCU INTERFACE	I7
	8.1.1 MCU Parallel 6800-series Interface8.1.2 MCU Parallel 8080-series Interface	
	8.1.2 MCU Paraner 8080-series interface 8.1.3 MCU Serial Interface (4-wire SPI)	
	8.1.4 MCU Serial Interface (4-wire SFI)	
	8.2 RESET CIRCUIT	
	8.3 GDDRAM	
	8.3.1 GDDRAM structure	
	8.3.2 Data bus to RAM mapping under different input mode	
	8.4 COMMAND DECODER	
	8.5 OSCILLATOR & TIMING GENERATOR	
	8.5.1 Oscillator	
	8.6 SEG/COM DRIVING BLOCK	
	8.7 SEG / COM DRIVER	
	8.8 GRAY SCALE DECODER	
	8.9 POWER ON AND OFF SEQUENCE	
	8.10 V _{DD} REGULATOR	
	8.10.1 V _{DD} Regulator in Sleep Mode	
9		
	9.1 BASIC COMMAND LIST	
	0 COMMAND	
	10.1.1 Set Column Address (15h)	
	10.1.2 Set Row Address (75h)	
	10.1.4 Read RAM Command (5Dh)	
	10.1.5 Set Re-map & Dual COM Line Mode (A0h)	
	10.1.6 Set Display Start Line (A1h)	
	10.1.7 Set Display Offset (A2h)	
	10.1.8 Set Display Mode (A4h ~ A7h)	
	10.1.9 Set Function selection (ABh)	
	10.1.10 Set Sleep mode ON/OFF (AEh / AFh)	
	10.1.11 Set Phase Length (B1h)	
	10.1.12 Set Front Clock Divider / Oscillator Frequency (B3h)	
	10.1.13 Set GPIO (B5h)	
	10.1.14 Set Second Pre-charge period (B6h)	
	10.1.15 Look Up Table for Gray Scale Pulse width (B8h)	
	10.1.16 Use Built-in Linear LUT (B9h)	
	10.1.17 Set Pre-charge voltage (BBh)	
	TO.I.IO BULYCOME YORARU (DEII)	43

10	0.1.19	Set Contrast Current for Color A,B,C (C1h)	45
1	0.1.20	Master Contrast Current Control (C7h)	45
10	0.1.21	Set Multiplex Ratio (CAh)	46
10	0.1.22	Set Multiplex Ratio (CAh)	46
		XIMUM RATINGS	
12	DC	CHARACTERISTICS	48
13	AC	CHARACTERISTICS	49
14	API	PLICATION EXAMPLE	54
15	PAC	CKAGE INFORMATION	55
15		SSD1351UR1 DETAIL DIMENSION	
15	.2	SSD1351Z DIE TRAY INFORMATION	56

Gonfidential to the transfer of the transfer o

SSD1351 Rev 0.10 P 3/57 May 2008 **Solomon Systech**

TABLES

Table 3-1 : Ordering Information	6
Table 5-1: SSD1351Z Bump Die Pad Coordinates	9
Table 6-1: SSD1351UR1 Pin Assignment Table	12
Table 7-1: SSD1351 Pin Description	14
Table 7-2 : Bus Interface selection	
Table 8-1: MCU interface assignment under different bus interface mode	
Table 8-2 : Data bus selection modes	17
Table 8-3: Control pins of 6800 interface	
Table 8-4: Control pins of 8080 interface	
Table 8-5 : Control pins of 4-wire Serial interface	
Table 8-6 : Control pins of 3-wire Serial interface	
Table 8-7: 262k Color Depth Graphic Display Data RAM Structure	
Table 8-8: Write Data bus usage under different bus width and color depth mode	
Table 8-9: Read Data bus usage under different bus width and color depth mode	22
Table 9-1: Command table	
Table 9-2 : Graphic acceleration command	
Table 11-1 : Maximum Ratings	
Table 12-1 : DC Characteristics.	48
Table 13-1 : AC Characteristics.	
Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics	
Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics	
Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI)	
Table 13-5 : Serial Interface Timing Characteristics (3-wire SPI)	53
Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics	

 Solomon Systech
 May 2008
 P 4/57
 Rev 0.10
 SSD1351

FIGURES

Figure 4-1 Block Diagram	7
Figure 5-1: SSD1351Z Die Drawing	8
Figure 6-1: SSD1351UR1 Pin Assignment	
Figure 8-1: Data read back procedure - insertion of dummy read	18
Figure 8-2 : Example of Write procedure in 8080 parallel interface mode	18
Figure 8-3 : Example of Read procedure in 8080 parallel interface mode	
Figure 8-4: Display data read back procedure - insertion of dummy read	19
Figure 8-5 : Write procedure in 4-wire Serial interface mode	20
Figure 8-6 : Write procedure in 3-wire Serial interface mode	20
Figure 8-7 : Oscillator Circuit	
Figure 8-8 : I _{REF} Current Setting by Resistor Value	24
Figure 8-9 : Segment and Common Driver Block Diagram	25
Figure 8-10 : Segment and Common Driver Signal Waveform	26
Figure 8-11: Gray Scale Control in Segment	27
Figure 8-12: Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode	
(under command B9h Use Built-in Linear LUT)	
Figure 8-13 : The Power ON sequence.	
Figure 8-14: The Power OFF sequence	
Figure 8-15 V _{CI} > 2.6V, V _{DD} regulator enable : pin connection scheme	30
Figure 8-16 V _{DD} regulator disable: pin connection scheme	
Figure 8-17 : Case 1 - Command sequence for just entering/ exiting sleep mode	
Figure 8-18 : Case 2 - Command sequence for disabling internal V _{DD} regulator during sleep mode	
Figure 10-1 : Example of Column and Row Address Pointer Movement	
Figure 10-2 : Address Pointer Movement of Horizontal Address Increment Mode	39
Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode	
Figure 10-4: COM Pins Hardware Configuration (MUX ratio: 128)	
Figure 10-5 : Example of Set Display Start Line with no Remap	
Figure 10-6: Example of Set Display Offset with no Remap	42
Figure 10-7 : Example of Entire Display OFF	43
Figure 10-8 : Example of Entire Display ON	
Figure 10-9 : Example of Normal Display	43
Figure 10-10: Example of Inverse Display	
Figure 10-11 : Example of Gamma correction by Gamma Look Up table setting	
Figure 13-1 : 6800-series MCU parallel interface characteristics.	
Figure 13-2: 8080-series MCU parallel interface characteristics.	
Figure 13-3 : Serial interface characteristics (4-wire SPI)	
Figure 13-4 : Serial interface characteristics (3-wire SPI)	
Figure 14-1 : SSD1351Z application example for 18-bit 6800-parallel interface mode (Internal regulated V_{DD})	
Figure 15-1: SSD1351UR1 Detail Dimension	
Figure 15-2: SSD1351UR1 Die Tray Information	56

SSD1351 Rev 0.10 P 5/57 May 2008 **Solomon Systech**

GENERAL DESCRIPTION 1

The SSD1351 is a CMOS OLED/PLED driver with 384 segments and 128 commons output, supporting up to 128RGB x 128 dot matrix display. This chip is designed for Common Cathode type OLED/PLED panel.

The SSD1351 has embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 16, 18 bits 8080 / 6800 parallel interface, Serial Peripheral Interface. It has 256-step contrast and 262K color control, giving vivid color display on OLED panels.

2 **FEATURES**

- Resolution: 128 RGB x 128 dot matrix panel
- 262k color depth supported by embedded 128x128x18 bit SRAM display buffer
- Power supply

 $V_{DD} = 2.4V - 2.6V$ (Core V_{DD} power supply, can be regulated from V_{CI})

(MCU interface logic level) $V_{DDIO} = 1.65V - V_{CI}$ $V_{CI} = 2.4V - 3.5V$ (Low voltage power supply) \circ $V_{CC} = 10.0V - 20.0V$ (Panel driving power supply)

- When V_{CI} is lower than 2.6V, V_{DD} should be supplied by external power source
- Segment maximum source current: 200uA
- Common maximum sink current: 70mA
- 256 step brightness current control for the each color component plus 16 step master current control ar c ling.
- Pin selectable MCU Interfaces:
 - o 8/16/18 bits 6800-series parallel interface
 - 8/16/18 bits 8080-series parallel interface
 - 3 –wire and 4-wire Serial Peripheral Interface
- Support various color depths
 - o 262k color (6:6:6)
 - o 65k color (5:6:5)
- Gamma Look Up Tables (GLUT) with 8 bit entry
- Row re-mapping and Column re-mapping
- Vertical and horizontal scrolling
- Programmable Frame Rate and Multiplexing Ratio
- On-Chip Oscillator
- Color Swapping Function (RGB BGR), arranged in RGB sequence when reset
- Slim chip layout for COF
- Operating temperature range -40°C to 85°C.

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	SEG	СОМ	Package Form	Reference	Remark
SSD1351Z	128RGB	128	Gold Bump Die	8,56	 Min SEG pad pitch: 25um Min COM pad pitch: 35um Die thickness: 300 +/- 25um
SSD1351UR1	128RGB	128	COF	11,55	 48mm film, 4 sprocket hole Hot bar type COF 8/16/18-bit 80/68/SPI interface SEG lead pitch: 0.050x0.999=0.04995mm COM lead pitch: 0.06x0.999=0.05994mm

Solomon Systech May 2008 P 6/57 Rev 0.10 SSD1351

4 BLOCK DIAGRAM

V_{DD} Regulator **BGGND** V_{DD} ↑ V_{CI} RES# Common Drivers COM127 COM125 COM123 CS# (ppo) D/C# Gray Scale Decoder R/W#(W/R#) COM5 COM3 COM1 MCU Interface E(RD#) **GDDRAM** D[17:0] BS[1:0] SC127 SB127 SA127 SC126 SB126 SA126 SC125 SB125 SA125 \boldsymbol{V}_{DDIO} Segment Drivers V_{LSS} \mathbf{V}_{CC} \mathbf{V}_{CI} SC2 SB2 SA2 SC1 SB1 SA1 SC0 SB0 SA0 V_{ss} VSL SEG/COM Driving Block Command Decoder Display Timing Generator GPIO 0 Common Drivers GPIO 1 COM0 COM2 COM4 Oscillator (even) COM122 COM124 COM126 \boldsymbol{V}_{PP} V_{COMH} CLS FR $C\Gamma$ ${
m I}_{
m REF}$

Figure 4-1 Block Diagram

SSD1351 | Rev 0.10 | P 7/57 | May 2008 | **Solomon Systech**

5 DIE PAD FLOOR PLAN

Figure 5-1: SSD1351Z Die Drawing

Die size	10.7mm x 1.5mm
Die Thickness	300 +/- 25um
Min I/O pad pitch	70um
Min SEG pad pitch	25um
Min COM pad pitch	35um

Bump height	Nominal 15um
Bump size	
Pad 1, 157	49um x 70um
Pad 2-37, 121-156	23um x 70um
Pad 38-120	45um x 90um
Pad 158-189, 582-6	70um x 23um
Pad 192-579	13um x 96um
Pad 190,581	70um x 49um
Pad 191,580	50um x 96um

Alignment mark		
L shape	(4736.35, 126.58)	75um x 75um
T shape	(-4736.35, 126.58	75um x 75um
+ shape	(-4736.35, -284.7	75um x 75um

 Solomon Systech
 May 2008
 P 8/57
 Rev 0.10
 SSD1351

Table 5-1: SSD1351Z Bump Die Pad Coordinates

Pad#	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis	Pad #	Pad Name	X-Axis	Y-Axis
1 1	NC	-5245.12	-662.08	81	D2	-193.30	-651.82	161	COM28	5234.62	-335.04	241	SB16	3618.00	681.25
2	COM94	-5197.62	-662.08	82	D3	-107.30	-651.82	162	COM27	5234.62	-300.04	242	SC16	3593.00	681.25
3	COM95	-5162.62	-662.08	83	D4	2.70	-651.82	163	COM26	5234.62	-265.04	243	SA17	3568.00	681.25
4	COM96	-5127.62	-662.08	84	D5	88.70	-651.82	164	COM25	5234.62	-230.04	244	SB17	3543.00	681.25
5	COM97	-5092.62	-662.08	85	D6	198.70	-651.82	165	COM24	5234.62	-195.04	245	SC17	3518.00	681.25
6	COM98	-5057.62	-662.08	86	D7	284.70	-651.82	166	COM23	5234.62	-160.04	246	SA18	3493.00	681.25
7	COM99	-5022.62	-662.08	87	D8	394.70	-651.82	167	COM22	5234.62	-125.04	247	SB18	3468.00	681.25
8	COM100	-4987.62	-662.08	88	D9	480.70	-651.82	168	COM21	5234.62	-90.04	248	SC18	3443.00	681.25
9	COM101 COM102	-4952.62 -4917.62	-662.08 -662.08	89	D10 D11	590.70 676.70	-651.82	169	COM20 COM19	5234.62 5234.62	-55.04 -20.04	249	SA19 SB19	3418.00 3393.00	681.25 681.25
11	COM102 COM103	-4917.62 -4882.62	-662.08	90	D11	786.70	-651.82 -651.82	170 171	COM19	5234.62	14.96	250 251	SC19	3368.00	681.25
12	COM103	-4847.62	-662.08	92	D12	872.70	-651.82	172	COM17	5234.62	49.96	252	SA20	3343.00	681.25
13	COM105	-4812.62	-662.08	93	D14	982.70	-651.82	173	COM16	5234.62	84.96	253	SB20	3318.00	681.25
14	COM106	-4777.62	-662.08	94	D15	1068.70	-651.82	174	COM15	5234.62	119.96	254	SC20	3293.00	681.25
15	COM107	-4742.62	-662.08	95	D16	1178.70	-651.82	175	COM14	5234.62	154.96	255	SA21	3268.00	681.25
16	COM108	-4707.62	-662.08	96	D17	1264.70	-651.82	176	COM13	5234.62	189.96	256	SB21	3243.00	681.25
17	COM109	-4672.62	-662.08	97	VSS	1356.70	-651.82	177	COM12	5234.62	224.96	257	SC21	3218.00	681.25
18	COM110	-4637.62	-662.08	98	BGGND	1426.70	-651.82	178	COM11	5234.62	259.96	258	SA22	3193.00	681.25
19	COM111	-4602.62	-662.08	99	VSL	1496.70	-651.82	179	COM10	5234.62	294.96	259	SB22	3168.00	681.25
20	COM112	-4567.62 -4532.62	-662.08	100	VSL CLS	1566.70	-651.82	180	COM9 COM8	5234.62 5234.62	329.96	260	SC22 SA23	3143.00 3118.00	681.25 681.25
21	COM113 COM114	-4497.62	-662.08 -662.08	101	VDDIO	1636.70 1706.70	-651.82 -651.82	181 182	COM7	5234.62	364.96 399.96	261 262	SB23	3093.00	681.25
23	COM115	-4462.62	-662.08	102	VDDIO	1776.70	-651.82	183	COM6	5234.62	434.96	263	SC23	3068.00	681.25
24	COM116	-4427.62	-662.08	104	VSS	1890.70	-651.82	184	COM5	5234.62	469.96	264	SA24	3043.00	681.25
25	COM117	-4392.62	-662.08	105	VLSS	1960.70	-651.82	185	COM4	5234.62	504.96	265	SB24	3018.00	681.25
26	COM118	-4357.62	-662.08	106	VCOMH	2030.70	-651.82	186	COM3	5234.62	539.96	266	SC24	2993.00	681.25
27	COM119	-4322.62	-662.08	107	VCOMH	2100.70	-651.82	187	COM2	5234.62	574.96	267	SA25	2968.00	681.25
28	COM120	-4287.62	-662.08	108	VCC	2207.70	-651.82	188	COM1	5234.62	609.96	268	SB25	2943.00	681.25
29	COM121	-4252.62	-662.08	109	VCC	2277.70	-651.82	189	COM0	5234.62	644.96	269	SC25	2918.00	681.25
30	COM122	-4217.62	-662.08	110	TR0	2395.70	-651.82	190	NC VII.00	5234.62	692.96	270	SA26	2893.00	681.25
31	COM123	-4182.62	-662.08	111	VCI1	2535.70	-651.82	191	VLSS	4890.00	681.25	271	SB26	2868.00	681.25
32	COM124 COM125	-4147.62 -4112.62	-662.08 -662.08	112	TR1 TR2	2699.70 2949.70	-651.82 -651.82	192	SA0 SB0	4843.00 4818.00	681.25 681.25	272 273	SC26 SA27	2843.00 2818.00	681.25 681.25
33 34	COM125	-4077.62	-662.08	113	TR3	3144.70	-651.82	193 194	SC0	4793.00	681.25	274	SB27	2793.00	681.25
35	COM127	-4042.62	-662.08	115	TR4	3409.70	-651.82	195	SA1	4768.00	681.25	275	SC27	2768.00	681.25
36	VLSS	-4007.62	-662.08	116	VSS1	3479.70	-651.82	196	SB1	4743.00	681.25	276	SA28	2743.00	681.25
37	VLSS	-3972.62	-662.08	117	VLSS	3549.70	-651.82	197	SC1	4718.00	681.25	277	SB28	2718.00	681.25
38	VLSS	-3786.30	-651.82	118	VLSS	3619.70	-651.82	198	SA2	4693.00	681.25	278	SC28	2693.00	681.25
39	VSS	-3716.30	-651.82	119	VSS	3689.70	-651.82	199	SB2	4668.00	681.25	279	SA29	2668.00	681.25
40	VCC	-3619.30	-651.82	120	VSS	3759.70	-651.82	200	SC2	4643.00	681.25	280	SB29	2643.00	681.25
41	VCC	-3549.30	-651.82	121	VLSS	3972.62	-662.08	201	SA3	4618.00	681.25	281	SC29	2618.00	681.25
42	VCOMH	-3442.30	-651.82	122	VLSS	4007.62	-662.08	202	SB3	4593.00	681.25	282	SA30	2593.00	681.25
43	VLSS VLSS	-3372.30 -3302.30	-651.82 -651.82	123 124	COM63 COM62	4042.62 4077.62	-662.08 -662.08	203	SC3 SA4	4568.00 4543.00	681.25 681.25	283 284	SB30 SC30	2568.00 2543.00	681.25 681.25
45	VSS	-3232.30	-651.82	125	COM61	4112.62	-662.08	205	SB4	4518.00	681.25	285	SA31	2518.00	681.25
46	VSS	-3162.30	-651.82	126	COM60	4147.62	-662.08	206	SC4	4493.00	681.25	286	SB31	2493.00	681.25
47	VSL	-3092.30	-651.82	127	COM59	4182.62	-662.08	207	SA5	4468.00	681.25	287	SC31	2468.00	681.25
48	VCI	-3022.30	-651.82	128	COM58	4217.62	-662.08	208	SB5	4443.00	681.25	288	SA32	2443.00	681.25
49	VCI	-2952.30	-651.82	129	COM57	4252.62	-662.08	209	SC5	4418.00	681.25	289	SB32	2418.00	681.25
50	VDD	-2799.30	-651.82	130	COM56	4287.62	-662.08	210	SA6	4393.00	681.25	290	SC32	2393.00	681.25
51	VDD	-2729.30	-651.82	131	COM55	4322.62	-662.08	211	SB6	4368.00	681.25	291	SA33	2368.00	681.25
52	VDD	-2659.30	-651.82	132	COM54	4357.62	-662.08	212	SC6	4343.00	681.25	292	SB33	2343.00	681.25
53	VDD	-2589.30 2510.30	-651.82	133	COM53	4392.62	-662.08	213	SA7	4318.00	681.25	293	SC33	2318.00	681.25
54	VDDIO	-2519.30 -2366.30	-651.82 -651.82	134	COM52 COM51	4427.62	-662.08 -662.08	214	SB7	4293.00 4268.00	681.25	294	SA34 SB34	2293.00	681.25
55 56	VDDIO	-2306.30	-651.82	135	COM51	4402.02	-662.08	215 216	SA8	4243.00	681.25	295	SC34	2243.00	681.25
57	VLSS	-2226.30	-651.82	137	COM49	4532.62	-662.08	217	SB8	4218.00	681.25	297	SA35	2218.00	681.25
58	GPIO0	-2134.30	-651.82	138	COM48	4567.62	-662.08	218	SC8	4193.00	681.25	298	SB35	2193.00	681.25
59	GPIO1	-2048.30	-651.82	139	COM47	4602.62	-662.08	219	SA9	4168.00	681.25	299	SC35	2168.00	681.25
60	IREF	-1956.30	-651.82	140	COM46	4637.62	-662.08	220	SB9	4143.00	681.25	300	SA36	2143.00	681.25
61	FR	-1864.30	-651.82	141	COM45	4672.62	-662.08	221	SC9	4118.00	681.25	301	SB36	2118.00	681.25
62	CL	-1778.30	-651.82	142	COM44	4707.62	-662.08	222	SA10	4093.00	681.25	302	SC36	2093.00	681.25
63	VSS	-1686.30	-651.82	143	COM43	4742.62	-662.08	223	SB10	4068.00	681.25	303	SA37	2068.00	681.25
64	RES#	-1616.30 1546.30	-651.82	144	COM42	4777.62	-662.08	224	SC10	4043.00	681.25	304	SB37 SC37	2043.00	681.25
65 66	D/C# CS#	-1546.30 -1476.30	-651.82 -651.82	145 146	COM41 COM40	4812.62 4847.62	-662.08 -662.08	225 226	SA11 SB11	4018.00 3993.00	681.25 681.25	305 306	SC37 SA38	2018.00 1993.00	681.25 681.25
67	VSS	-1476.30	-651.82	146	COM39	4882.62	-662.08	227	SC11	3968.00	681.25	306	SB38	1968.00	681.25
68	BS1	-1336.30	-651.82	148	COM38	4917.62	-662.08	228	SA12	3943.00	681.25	308	SC38	1943.00	681.25
69	VDDIO	-1266.30	-651.82	149	COM37	4952.62	-662.08	229	SB12	3918.00	681.25	309	SA39	1918.00	681.25
70	BS0	-1196.30	-651.82	150	COM36	4987.62	-662.08	230	SC12	3893.00	681.25	310	SB39	1893.00	681.25
71	VSS	-1126.30	-651.82	151	COM35	5022.62	-662.08	231	SA13	3868.00	681.25	311	SC39	1868.00	681.25
72	R/W# (WR#	-1056.30	-651.82	152	COM34	5057.62	-662.08	232	SB13	3843.00	681.25	312	SA40	1843.00	681.25
73	E(RD#)	-986.30	-651.82	153	COM33	5092.62	-662.08	233	SC13	3818.00	681.25	313	SB40	1818.00	681.25
74	VDDIO	-916.30	-651.82	154	COM32	5127.62	-662.08	234	SA14	3793.00	681.25	314	SC40	1793.00	681.25
75	VCI	-763.30	-651.82	155	COM31	5162.62	-662.08	235	SB14	3768.00	681.25	315	SA41	1768.00	681.25
76	VDD	-693.30 570.30	-651.82	156	COM30	5197.62	-662.08	236	SC14	3743.00	681.25	316	SB41	1743.00	681.25
77 78	VPP VPP	-579.30 -509.30	-651.82 -651.82	157 158	NC VLSS	5245.12 5234.62	-662.08 -440.04	237	SA15 SB15	3718.00 3693.00	681.25 681.25	317 318	SC41 SA42	1718.00 1693.00	681.25 681.25
78	D0	-389.30	-651.82	158	VLSS	5234.62	-440.04	238	SC15	3668.00	681.25	318	SB42	1668.00	681.25
80	D1	-303.30	-651.82	160	COM29	5234.62	-370.04	240	SA16	3643.00	681.25	320	SC42	1643.00	681.25
									· · · · · ·						

SSD1351 Rev 0.10 P 9/57 May 2008 **Solomon Systech**

-	Pad Name		Y-Axis	-	Pad Name		Y-Axis	_	Pad Name		Y-Axis		Pad Name		Y-Axis
321	SA43	1618.00	681.25	401	SC69	-382.00	681.25	481	SA95	-2393.00	681.25	561	SC121	-4393.00	681.25
322	SB43	1593.00	681.25	402	SA70	-407.00	681.25	482	SB95	-2418.00	681.25	562	SA122	-4418.00	681.25
323	SC43	1568.00	681.25	403	SB70	-432.00	681.25	483	SC95	-2443.00	681.25	563	SB122	-4443.00	681.25
324	SA44	1543.00	681.25	404	SC70	-457.00	681.25	484	SA96	-2468.00	681.25	564	SC122	-4468.00	681.25
325	SB44	1518.00	681.25	405	SA71	-482.00	681.25	485	SB96	-2493.00	681.25	565	SA123	-4493.00	681.25
326	SC44	1493.00	681.25	406	SB71	-507.00	681.25	486	SC96	-2518.00	681.25	566	SB123	-4518.00	681.25
327	SA45	1468.00	681.25	407	SC71	-532.00	681.25	487	SA97	-2543.00	681.25	567	SC123	-4543.00	681.25
328	SB45	1443.00	681.25	408	SA72	-557.00	681.25	488	SB97	-2568.00	681.25	568	SA124	-4568.00	681.25
329	SC45	1418.00	681.25	409	SB72	-582.00	681.25	489	SC97	-2593.00	681.25	569	SB124	-4593.00	681.25
330	SA46	1393.00	681.25	410	SC72	-607.00	681.25	490	SA98	-2618.00	681.25	570	SC124	-4618.00	681.25
331	SB46	1368.00	681.25	411	SA73	-632.00	681.25	491	SB98	-2643.00	681.25	571	SA125	-4643.00	681.25
332	SC46	1343.00	681.25	412	SB73	-657.00	681.25	492	SC98	-2668.00	681.25	572	SB125	-4668.00	681.25
333	SA47	1318.00	681.25	413	SC73	-682.00	681.25	493	SA99	-2693.00	681.25	573	SC125	-4693.00	681.25
334	SB47	1293.00	681.25	414	SA74	-707.00	681.25	494	SB99	-2718.00	681.25	574	SA126	-4718.00	681.25
335	SC47	1268.00	681.25	415	SB74	-732.00	681.25	495	SC99	-2743.00	681.25	575	SB126	-4743.00	681.25
336	SA48	1243.00	681.25	416	SC74	-757.00	681.25	496	SA100	-2768.00	681.25	576	SC126	-4768.00	681.25
337	SB48	1218.00	681.25	417	SA75	-782.00	681.25	497	SB100	-2793.00	681.25	577	SA127	-4793.00	681.25
338	SC48	1193.00	681.25	418	SB75	-807.00	681.25	498	SC100	-2818.00	681.25	578	SB127	-4818.00	681.25
339	SA49	1168.00	681.25	419	SC75	-832.00	681.25	499	SA101	-2843.00	681.25	579	SC127	-4843.00	681.25
340	SB49	1143.00	681.25	420	SA76	-857.00	681.25	500	SB101	-2868.00	681.25	580	VLSS	-4890.00	681.25
341	SC49	1118.00	681.25	421	SB76	-882.00	681.25	501	SC101	-2893.00	681.25	581	NC	-5234.62	692.96
342	SA50	1093.00	681.25	422	SC76	-907.00	681.25	502	SA102	-2918.00	681.25	582	COM64	-5234.62	644.96
343	SB50	1068.00	681.25	423	SA77	-932.00	681.25	503	SB102	-2943.00	681.25	583	COM65	-5234.62	609.96
344	SC50	1043.00	681.25	424	SB77	-957.00	681.25	504	SC102	-2968.00	681.25	584	COM66	-5234.62	574.96
345	SA51	1018.00	681.25	425	SC77	-982.00	681.25	505	SA103	-2993.00	681.25	585	COM67	-5234.62	539.96
346	SB51	993.00	681.25	426	SA78	-1007.00	681.25	506	SB103	-3018.00	681.25	586	COM68	-5234.62	504.96
347	SC51	968.00	681.25	427	SB78	-1032.00	681.25	507	SC103	-3043.00	681.25	587	COM69	-5234.62	469.96
348	SA52	943.00	681.25	428	SC78	-1057.00	681.25	508	SA104	-3068.00	681.25	588	COM70	-5234.62	434.96
349	SB52	918.00	681.25	429	SA79	-1082.00	681.25	509	SB104	-3093.00	681.25	589	COM71	-5234.62	399.96
350	SC52	893.00	681.25	430	SB79	-1107.00	681.25	510	SC104	-3118.00	681.25	590	COM72	-5234.62	364.96
351	SA53	868.00	681.25	431	SC79	-1132.00	681.25	511	SA105	-3143.00	681.25	591	COM73	-5234.62	329.96
352	SB53	843.00	681.25	432	VCC	-1158.00	681.25	512	SB105	-3168.00	681.25	592	COM74	-5234.62	294.96
353	SC53	818.00	681.25	433	VCC	-1186.00	681.25	513	SC105	-3193.00	681.25	593	COM75	-5234.62	259.96
354	SA54	793.00	681.25	434	VCC	-1214.00	681.25	514	SA106	-3218.00	681.25	594	COM76	-5234.62	224.96
355	SB54	768.00	681.25	435	VCC	-1242.00	681.25	515	SB106	-3243.00	681.25	595	COM77	-5234.62	189.96
356	SC54	743.00	681.25	436	SA80	-1268.00	681.25	516	SC106	-3268.00	681.25	596	COM78	-5234.62	154.96
357	SA55	718.00	681.25	437	SB80	-1293.00	681.25	517	SA107	-3293.00	681.25	597	COM79	-5234.62	119.96
358	SB55	693.00	681.25	438	SC80	-1318.00	681.25	518	SB107	-3318.00	681.25	598	COM80	-5234.62	84.96
359	SC55	668.00	681.25	439	SA81	-1343.00	681.25	519	SC107	-3343.00	681.25	599	COM81	-5234.62	49.96
360	SA56	643.00	681.25	440	SB81	-1368.00	681.25	520	SA108	-3368.00	681.25	600	COM82	-5234.62	14.96
361	SB56	618.00	681.25	441	SC81	-1393.00	681.25	521	SB108	-3393.00	681.25	601	COM83	-5234.62	-20.04
362	SC56	593.00	681.25	442	SA82	-1418.00	681.25	522	SC108	-3418.00	681.25	602	COM84	-5234.62	-55.04
363	SA57	568.00	681.25	443	SB82	-1443.00	681.25	523	SA109	-3443.00	681.25	603	COM85	-5234.62	-90.04
364	SB57	543.00	681.25	444	SC82	-1468.00	681.25	524	SB109	-3468.00	681.25	604	COM86	-5234.62	-125.04
365	SC57	518.00	681.25	445	SA83	-1493.00	681.25	525	SC109	-3493.00	681.25	605	COM87	-5234.62	-160.04
366	SA58	493.00	681.25	446	SB83	-1518.00	681.25	526	SA110	-3518.00	681.25	606	COM88	-5234.62	-195.04
367	SB58	468.00	681.25	447	SC83	-1543.00	681.25	527	SB110	-3543.00	681.25	607	COM89	-5234.62	-230.04
368	SC58	443.00	681.25	448	SA84	-1568.00	681.25	528	SC110	-3568.00	681.25	608	COM90	-5234.62	-265.04
369	SA59	418.00	681.25	449	SB84	-1593.00	681.25	529	SA111	-3593.00	681.25	609	COM91	-5234.62	-300.04
370	SB59	393.00	681.25	450	SC84	-1618.00	681.25	530	SB111	-3618.00	681.25	610	COM92	-5234.62	-335.04
371	SC59	368.00	681.25		SA85	-1643.00	681.25		SC111	-3643.00	681.25	611	COM93	-5234.62	-370.04
371	SA60	343.00	681.25	451 452	SB85	-1668.00		531	SA112	-3668.00	681.25		VLSS	-5234.62	-405.04
			681.25		SC85	-1693.00	681.25	_	SB112	-3693.00		612			-440.04
373	SB60	318.00		453				533			681.25	613	VLSS	-5234.62	-440.04
374	SC60	293.00	681.25	454	SA86	-1718.00	681.25	534	SC112	-3718.00	681.25				
375	SA61	268.00	681.25	455	SB86	-1743.00	681.25	535	SA113	-3743.00	681.25				
376	SB61	243.00	681.25	456	SC86	-1768.00	681.25	536	SB113	-3768.00	681.25				
377	SC61	218.00	681.25	457	SA87	-1793.00	681.25	537	SC113	-3793.00	681.25 681.25				
378	SA62	193.00	681.25	458	SB87	-1818.00	681.25	538	SA114	-3818.00					
379	SB62	168.00	681.25	459	SC87	-1843.00	681.25	539	SB114	-3843.00	681.25				
380	SC62	143.00	681.25	460	SA88	-1868.00	681.25	540	SC114	-3868.00	681.25				
381	SA63	118.00	681.25	461	SB88	-1893.00	681.25	541	SA115	-3893.00	681.25				
382	SB63	93.00	681.25	462	SC88	-1918.00	681.25	542	SB115	-3918.00	681.25				
383	SC63	68.00	681.25	463	SA89	-1943.00	681.25	543	SC115	-3943.00	681.25				
384	SA64	43.00	681.25	464	SB89	-1968.00	681.25	544	SA116	-3968.00	681.25				
385	SB64	18.00	681.25	465	SC89	-1993.00	681.25	545	SB116	-3993.00	681.25				
386	SC64	-7.00	681.25	466	SA90	-2018.00	681.25	546	SC116	-4018.00	681.25				
387	SA65	-32.00	681.25	467	SB90	-2043.00	681.25	547	SA117	-4043.00	681.25				
388	SB65	-57.00	681.25	468	SC90	-2068.00	681.25	548	SB117	-4068.00	681.25				
389	SC65	-82.00	681.25	469	SA91	-2093.00	681.25	549	SC117	-4093.00	681.25				
390	SA66	-107.00	681.25	470	SB91	-2118.00	681.25	550	SA118	-4118.00	681.25				
391	SB66	-132.00	681.25	471	SC91	-2143.00	681.25	551	SB118	-4143.00	681.25				
392	SC66	-157.00	681.25	472	SA92	-2168.00	681.25	552	SC118	-4168.00	681.25				
393	SA67	-182.00	681.25	473	SB92	-2193.00	681.25	553	SA119	-4193.00	681.25				
394	SB67	-207.00	681.25	474	SC92	-2218.00	681.25	554	SB119	-4218.00	681.25				
395	SC67	-232.00	681.25	475	SA93	-2243.00	681.25	555	SC119	-4243.00	681.25				
396	SA68	-257.00	681.25	476	SB93	-2268.00	681.25	556	SA120	-4268.00	681.25				
397	SB68	-282.00	681.25	477	SC93	-2293.00	681.25	557	SB120	-4293.00	681.25				
398	SC68	-307.00	681.25	478	SA94	-2318.00	681.25	558	SC120	-4318.00	681.25				
399	SA69	-332.00	681.25	479	SB94	-2343.00	681.25	559	SA121	-4343.00	681.25				
400	SB69	-357.00	681.25	480	SC94	-2368.00	681.25	560	SB121	-4368.00	681.25				
	· <u></u>			_			_	· <u></u>							

SSD1351 Solomon Systech May 2008 P 10/57 Rev 0.10

6 PIN ARRANGEMENT

6.1 SSD1351UR1 pin assignment

Figure 6-1: SSD1351UR1 Pin Assignment

SSD1351 | Rev 0.10 | P 11/57 | May 2008 | **Solomon Systech**

Table 6-1: SSD1351UR1 Pin Assignment Table

		Table 0-1	330133101	KI Pin Assigni	nent rable		
Pad#	Pad Name	Pad#	Pad Name	Pad#	Pad Name	Pad#	Pad Name
1	NC	81	COM90	161	SA116	241	SB89
2	VCC	82	COM89	162	SC115	242	SA89
3	VCOMH	83	COM88	163	SB115	243	SC88
4	VDDIO	84	COM87	164	SA115	244	SB88
5	VSL	85	COM86	165	SC114	245	SA88
6	D17	86	COM85	166	SB114	246	SC87
7	D16	87	COM84	167	SA114	247	SB87
8	D15	88	COM83	168	SC113	248	SA87
9	D14	89	COM82	169	SB113	249	SC86
10	D13	90	COM81	170	SA113	250	SB86
11	D12	91	COM80	171	SC112	251	SA86
12	D11	92	COM79	172	SB112	252	SC85
13	D10	93	COM78	173	SA112	253	SB85
14	D9	94	COM77	174	SC111	254	SA85
15	D8	95	COM76	175	SB111	255	SC84
16	D7	96	COM75	176	SA111	256	SB84
17	D6	97	COM74	177	SC110	257	SA84
18	D5	98	COM73	178	SB110	258	SC83
19	D4	99	COM72	179	SA110	259	SB83
20	D3	100	COM71	180	SC109	260	SA83
21	D3	101	COM70	181		261	
21	D2 D1	102	COM70 COM69	182	SB109 SA109	262	SC82 SB82
22	D1 D0	102	COM69 COM68	182	SA109 SC108	262	
							SA82
24	E (RD#)	104	COM67	184	SB108	264	SC81
25	R/W# (WR#)	105	COM66	185	SA108	265	SB81
26	BS0	106	NC NC	186	SC107	266	SA81
27	BS1	107	NC NC	187	SB107	267	SC80
28	NC	108	NC NC	188	SA107	268	SB80
29	CS#	109	NC NO	189	SC106	269	SA80
30	D/C#	110	NC	190	SB106	270	SC79
31	RES#	111	NC	191	SA106	271	SB79
32	IREF	112	NC	192	SC105	272	SA79
33	VDD	113	NC	193	SB105	273	SC78
34	NC	114	NC	194	SA105	274	SB78
35	NC	115	NC	195	SC104	275	SA78
36	VCI	116	NC	196	SB104	276	SC77
37	NC	117	NC	197	SA104	277	SB77
38	VSS	118	NC	198	SC103	278	SA77
39	NC	119	NC	199	SB103	279	SC76
40	NC	120	NC	200	SA103	280	SB76
41	NC	121	NC	201	SC102	281	SA76
42	COM129	122	NC	202	SB102	282	SC75
43	COM128	123	NC	203	SA102	283	SB75
44	COM127	124	NC	204	SC101	284	SA75
45	COM126	125	NC	205	SB101	285	SC74
46	COM125	126	SC127	206	SA101	286	SB74
47	COM124	127	SB127	207	SC100	287	SA74
48	COM123	128	SA127	208	SB100	288	SC73
49	COM122	129	SC126	209	SA100	289	SB73
50	COM121	130	SB126	210	SC99	290	SA73
51	COM120	131	SA126	211	SB99	291	SC72
52	COM119	132	SC125	212	SA99	292	SB72
53	COM118	133	SB125	213	SC98	293	SA72
54	COM117	134	SA125	214	SB98	294	SC71
55	COM116	135	SC124	215	SA98	295	SB71
56	COM115	136	SB124	216	SC97	296	SA71
57	COM114	137	SA124	217	SB97	297	SC70
58	COM113	138	SC123	218	SA97	298	SB70
59	COM112	139	SB123	219	SC96	299	SA70
60	COM111	140	SA123	220	SB96	300	SC69
61	COM110	141	SC122	221	SA96	301	SB69
62	COM109	142	SB122	222	SC95	302	SA69
63	COM108	143	SA122	223	SB95	303	SC68
64	COM107	144	SC121	224	SA95	304	SB68
65	COM106	145	SB121	225	SC94	305	SA68
66	COM105	146	SA121	226	SB94	306	SC67
67	COM104	147	SC120	227	SA94	307	SB67
68	COM103	148	SB120	228	SC93	308	SA67
69	COM102	149	SA120	229	SB93	309	SC66
70	COM101	150	SC119	230	SA93	310	SB66
71	COM100	151	SB119	231	SC92	311	SA66
72	COM99	152	SA119	232	SB92	312	SC65
73	COM98	153	SC118	233	SA92	313	SB65
74	COM97	154	SB118	234	SC91	314	SA65
75	COM96	155	SA118	235	SB91	315	SC64
76	COM95	156	SC117	236	SA91	316	SB64
77	COM95 COM94	157	SB117	237	SC90	317	SA64
78	COM93	158	SA117	238	SB90	318	SC63
79	COM93	159	SC116	239	SA90	319	SB63
80	COM92 COM91	160	SB116	240	SC89	320	SA63
	OCIVIST	100	00110	240	0008	320	0/100

 Solomon Systech
 May 2008
 P 12/57
 Rev 0.10
 SSD1351

Pad#	Pad Name	
321	SC62	
322	SB62	
323	SA62	
324	SC61	
325	SB61	
326	SA61	
327	SC60	
328	SB60	
329	SA60	
330	SC59	
331	SB59	
332	SA59	
333	SC58	
334	SB58	
335	SA58	
336 337	SC57	
338	SB57 SA57	
339	SC56	
340	SB56	
341	SA56	
342	SC55	
343	SB55	
344	SA55	
345	SC54	
346	SB54	
347	SA54	
348	SC53	
349	SB53	
350	SA53	
351	SC52	
352	SB52	
353	SA52	
354	SC51	_
355	SB51	
356	SA51	
357	SC50	
358	SB50	
359	SA50	
360	SC49 SB49	
361 362	SA49	
363	SC48	
364	SB48	
365	SA48	
366	SC47	
367	SB47	
368	SA47	
369	SC46	
370	SB46	
371	SA46	
372	SC45	
373	SB45	
374	SA45	
375	SC44	
376	SB44	
377	SA44	
378	SC43	
379	SB43	
380 381	SA43 SC42	
382	SB42	
383	SA42	
384	SC41	
385	SB41	
386	SA41	
387	SC40	
388	SB40	
389	SA40	
390	SC39	
391	SB39	
392	SA39	
393	SC38	
	SB38	
394		
	SA38	
394	SA38 SC37	
394 395	SC37 SB37	
394 395 396 397 398	SC37 SB37 SA37	
394 395 396 397	SC37 SB37	

Pad#	Pad Name
401	SA36
402	SC35
403 404	SB35 SA35
	SC34
405 406	SB34
407	SA34
408	SC33
409	SB33
410	SA33
411	SC32
412	SB32
413	SA32
414	SC31
415	SB31
416	SA31
417	SC30
418	SB30
419	SA30
420	SC29
421	SB29
422	SA29
423	SC28
424	SB28
425	SA28
426	SC27
427	SB27
428	SA27
429	SC26
430	SB26
431	SA26
432	SC25
433	SB25
434	SA25
435	SC24
436	SB24
437	SA24
438	SC23
439	SB23
440	SA23
441	SC22
442	SB22
443	SA22
445	SC21 SB21
446	SA21
447	SC20
448	SB20
449	SA20
450	SC19
451	SB19
452	SA19
453	SC18
454	SB18
455	SA18
456	SC17
457	SB17
458	SA17
	SC16
459	
460	SB16
460 461	SB16 SA16
460 461 462	SB16 SA16 SC15
460 461 462 463	SB16 SA16 SC15 SB15
460 461 462 463 464	SB16 SA16 SC15 SB15 SA15
460 461 462 463 464 465	SB16 SA16 SC15 SB15 SA15 SC14
460 461 462 463 464 465 466	SB16 SA16 SC15 SB15 SA15 SC14 SB14
460 461 462 463 464 465 466 467	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14
460 461 462 463 464 465 466 467 468	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13
460 461 462 463 464 465 466 467 468	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13
460 461 462 463 464 465 466 467 468 469 470	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SB14 SC13 SB13 SB13 SA13
460 461 462 463 464 465 466 467 468 469 470	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SC13 SC13 SC13 SC13 SC12
460 461 462 463 464 465 466 467 468 469 470 471	SB16 SA16 SC15 SB15 SB15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12
460 461 462 463 464 465 466 467 468 469 470 471 472 473	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12 SA12
460 461 462 463 464 465 466 467 468 469 470 471 471 472 473	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SA12 SC12 SB12 SA12 SC11
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SC13 SB13 SA13 SC12 SB12 SA12 SC11 SB11
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476	SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12 SA12 SA12 SC11 SB11 SA11
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	SB16 SA16 SC15 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12 SA12 SC11 SB11 SA11 SC10
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478	SB16 SA16 SC15 SB15 SB15 SC14 SB14 SA14 SC13 SB13 SB13 SA13 SC12 SB12 SA12 SC11 SB11 SA11 SC10 SB10
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	SB16 SA16 SC15 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12 SA12 SC11 SB11 SA11 SC10

Pad#	Pad Name			
481	SB9			
482	SA9			
483 484	SC8 SB8			
485	SA8			
486	SC7			
487	SB7			
488	SA7			
489	SC6			
490	SB6			
491 492	SA6 SC5			
493	SB5			
494	SA5			
495	SC4			
496	SB4			
497	SA4			
498	SC3			
499 500	SB3			
500	SA3 SC2			
502	SB2			
503	SA2			
504	SC1			
505	SB1			
506	SA1			
507	SC0			
508	SB0			
509 510	SA0 NC			
511	NC NC			
512	NC			
513	NC			
514	NC			
515	NC			
516	NC NC			
517 518	NC NC			
519	NC NC			
520	NC			
521	NC			
522	NC			
523	NC			
524	NC			
525 526	NC NC			
527	NC NC			
528	NC			
529	NC			
530	COM0			
531	COM1			
532	COM2			
533	COM3			
534 535	COM4 COM5			
536	COM6			
537	COM7			
538	COM8			
539	COM9			
540	COM10			
541	COM11			
542	COM12			
543 544	COM13 COM14			
545	COM15			
546	COM16			
547	COM17			
548	COM18			
549	COM19			
550	COM20			
551 552	COM21			
552 553	COM22 COM23			
554	COM24			
555	COM25			
556	COM26			
557	COM27			
337	0011121			

	Dod#	Ded Neme
	Pad#	Pad Name
	561	COM31
-	562	COM32
	563	COM33
	564	COM34
	565	COM35
	566	COM36
	567	COM37
	568	COM38
	569	COM39
	570	COM40
	571	COM41
	572	COM42
	573	COM43
	574	COM44
	575	COM45
	576	COM46
	577	COM47
	578	COM48
	579	COM49
	580	COM50
1	581	COM51
	582	COM52
	583	COM53
	584	COM54
	585	COM55
	586	COM56
	587	COM57
	588	COM58
	589	COM59
	590	COM60
	591	COM61
	592	COM62
	593	COM63
	594	NC
	595	NC
V		
J		

SSD1351 Rev 0.10 P 13/57 May 2008 **Solomon Systech**

559 560 COM29 COM30

7 PIN DESCRIPTIONS

Key:

I = Input	NC = Not Connected
O =Output	Pull LOW= connect to Ground
I/O = Bi-directional (input/output)	Pull HIGH= connect to V _{DDIO}
P = Power pin	

Table 7-1: SSD1351 Pin Description

Pin Name	Pin Type	Description
$ m V_{DD}$	P	Power supply pin for core logic operation. V_{DD} can be supplied externally (within the range of 2.4V to 2.6V) or regulated internally from V_{CI} . A capacitor should be connected between V_{DD} and V_{SS} under all circumstances.
		Refer to Section 8.10 for details.
$V_{ m DDIO}$	P	Power supply for interface logic level. It should match with the MCU interface voltage level and must be connected to external source.
V_{CI}	P	Low voltage power supply V_{CI} must always be equal to or higher than V_{DD} and V_{DDIO} .
X 7	D	Refer to Section 8.10 for details.
V_{CC}	P	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. It is supplied by external high voltage source.
V_{PP}	P	Reserved pin. It must be connected to V_{DD} .
V_{SS}	P	Ground pin
V_{LSS}	P	Analog system ground pin
V_{COMH}	P	COM signal deselected voltage level. A capacitor should be connected between this pin and $V_{\rm SS}$.
BGGND	P	It should be connected to Ground.
GPIO0	I/O	Detail refer to Command B5h
GPIO1	I/O	Detail refer to Command B5h
VSL	P	This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, connect with resistor and diode to ground. (details depend on application)

 Solomon Systech
 May 2008
 P 14/57
 Rev 0.10
 SSD1351

Pin Name	Pin Type	Description					
BS[1:0]	I	MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS3 and BS2 are command programmable (by command ABh).					
		[reset = 00]. BS1 and BS0 are pin select.					
		Table 7-2 : Bus Interface selection					
		BS[3:0] Interface					
		XX00 4 line SPI					
		XX01 3 line SPI					
		0011 8-bit 6800 parallel 0010 8-bit 8080 parallel					
		0111 16-bit 6800 parallel					
		0110 16-bit 8080 parallel					
		1111 18-bit 6800 parallel					
		1110 18-bit 8080 parallel Note					
		(1) 0 is connected to V _{SS}					
		$^{(2)}$ 1 is connected to $V_{\rm DDIO}$					
T	I	This min is the second output engage to forence min					
I_{REF}	1	This pin is the segment output current reference pin. A resistor should be connected between this pin and V _{SS} .					
		The state of the s					
CL	I	External clock input pin.					
		When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and					
		should be connected to Ground.					
		When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external					
		clock source input pin.					
CLS	I	Internal clock selection pin.					
		When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL.					
		when this pin is puned LOW, an external clock signal should be connected to CL.					
CS#	I	This pin is the chip select input connecting to the MCU.					
		The chip is enabled for MCU communication only when CS# is pulled LOW.					
RES#	I	This pin is reset signal input.					
		When the pin is pulled LOW, initialization of the chip is executed.					
		Keep this pin pull HIGH during normal operation.					
D/C#	I	This pin is Data/Command control pin connecting to the MCU.					
		When the pin is pulled HIGH, the data at D[17:0] will be interpreted as data.					
		When the pin is pulled LOW, the data at D[17:0] will be interpreted as command.					
R/W# (WR#)	I	This pin is read / write control input pin connecting to the MCU interface.					
		When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW.					
		When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected.					
		When serial interface is selected, this pin R/W (WR#) must be connected to $V_{SS.}$					
<u> </u>	1						

SSD1351 Rev 0.10 P 15/57 May 2008 **Solomon Systech**

Pin Name	Pin Type	Description
E (RD#)	I	This pin is MCU interface input.
		When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected.
		When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected.
		When serial interface is selected, this pin $E(RD\#)$ must be connected to V_{SS} .
D[17:0]	I/O	These pins are bi-directional data bus connecting to the MCU data bus.
		Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)
FR	О	This pin is reserved pin. No connection is necessary and should be left open individually.
TR[4:0]	О	These are reserved pins. No connection is necessary and should be left open individually.
$ m V_{SS1}$	P	This pin is reserved pin. It should be connected to V_{SS} .
V_{CI1}	P	This pin is reserved pin. No connection is necessary and should be left open individually.
SA[127:0] SB[127:0] SC[127:0]	0	These pins provide the OLED segment driving signals. These pins are V_{SS} state when display is OFF.
SC[127.0]		The 384 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C.
COM[127:0]	I/O	These pins provide the Common switch signals to the OLED panel.
	uni	These pins provide the Common switch signals to the OLED panel.

 Solomon Systech
 May 2008
 P 16/57
 Rev 0.10
 SSD1351

8 FUNCTIONAL BLOCK DESCRIPTIONS

8.1 MCU Interface

SSD1351 MCU interface consist of 18 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[1:0] pins and software command on BS[3:0].(refer to Table 7-2 for BS[3:0] setting)

Pin Name Control Signal Data / Command Interface D17 D16 D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 Bus Interface E R/W# CS# D/C# RES# 8b / 8080 RD# Tie Low D[7:0] RES# Tie Low D[7:0] R/W# 8b / 6800 D/C# RD# WR# 16b / 8080 D[15:0] Tie Low D[15:0] R/W# 16b / 6800 D/C# 18b / 8080 D[17:0] RD# WR# CS# D/C# 18b / 6800 D[17:01 R/W# CS# D/C# Tie Low SPI 4-wire Tie Low D/C# SPI 3-Wire Tie Low SDIN SCLK Tie Low Tie Low

Table 8-1: MCU interface assignment under different bus interface mode

Table 8-2: Data bus selection modes

	6800 – series Parallel Interface	8080 – series Parallel Interface	3-wire Serial Interface or 4-wire Serial Interface
Data Read	18-/16-/8-bits	18-/16-/8-bits	No
Data Write	18-/16-/8-bits	18-/16-/8-bits	8-bits
Command Read	Yes. Refer to section 9	Yes. Refer to section 9	No
Command Write	Yes	Yes	Yes

8.1.1 MCU Parallel 6800-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), R/W#, D/C#, E and CS#.

A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 8-3: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	1	L	L	L
Read status	↓	Н	L	L
Write data	1	L	L	Н
Read data	↓	Н	L	Н

Note

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1.

SSD1351 | Rev 0.10 | P 17/57 | May 2008 | Solomon Systech

^{(1) ↓} stands for falling edge of signal

⁽²⁾ H stands for HIGH in signal

⁽³⁾ L stands for LOW in signal

Figure 8-1: Data read back procedure - insertion of dummy read

8.1.2 MCU Parallel 8080-series Interface

The parallel interface consists of 18 bi-directional data pins (D[17:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 8-2: Example of Write procedure in 8080 parallel interface mode

Figure 8-3: Example of Read procedure in 8080 parallel interface mode

Solomon Systech May 2008 | P 18/57 | Rev 0.10 | SSD1351

Table 8-4: Control pins of 8080 interface

Function	RD#	WR#	CS#	D/C#
Write command	Н	1	L	L
Read status	1	Н	L	L
Write data	Н	1	L	Н
Read data	1	Н	L	Н

Note

(1) ↑ stands for rising edge of signal

(2) H stands for HIGH in signal

(3) L stands for LOW in signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4.

Figure 8-4: Display data read back procedure - insertion of dummy read

8.1.3 MCU Serial Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, R/W# (WR#) acts as SCLK, D0 acts as SDIN. For the unused data pins, D1 should be left open. The pins from D2 to D17and E can be connected to an external ground.

Table 8-5: Control pins of 4-wire Serial interface

Function	E	CS#	D/C#
Write command	Tie LOW	L	L
Write data	Tie LOW	L	Н

Note

(1) H stands for HIGH in signal

(2) L stands for LOW in signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

SSD1351 | Rev 0.10 | P 19/57 | May 2008 | **Solomon Systech**

Figure 8-5: Write procedure in 4-wire Serial interface mode

8.1.4 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 8-6: Control pins of 3-wire Serial interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	D0	
Write command	Tie LOW	Tie LOW	L	Tie LOW	↑	Note
Write data	Tie LOW	Tie LOW	L	Tie LOW	↑	(1) L stands for

Note (1) L stands for LOW in signal

Figure 8-6: Write procedure in 3-wire Serial interface mode

Solomon Systech May 2008 | P 20/57 | Rev 0.10 | SSD1351

8.2 Reset Circuit

When RES# input is pulled LOW, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 128 MUX Display Mode
- 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h)
- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Command A2h,B1h,B3h,BBh,BEh are locked by command FDh

8.3 GDDRAM

8.3.1 GDDRAM structure

The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 128 x 128 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown in Table 8-7

Table 8-7: 262k Color Depth Graphic Display Data RAM Structure

Segment	Normal		0			1		2			126		127		
Address	Remapped		127			126		125			1		0		
C	olor	A	В	C	\cup A	В	C	A			C	A	В	C	
<u> </u>	Data	A5	B5	C5	A5	B5	C5	A5		,	C5	A5	B5	C5	
	Format	A4	B4	C4	A4	B4	C4	A4		a	C4	A4	B4	C4	
		A3	В3	C3	A3	В3	C3	A3			C3	A3	В3	C3	
Common		A2	B2	C2	A2	B2	C2	A2	\\		C2	A2	B2	C2	
Address		A1	B1	C1	A1	B1	C1	A1			C1	A1	B1	C1	
		A0	В0	C0	A0	В0	C0	A0			C0	A0	В0	C0	Common
Normal	Remapped														output
0	127	6	6	6	6	6	6	6			6	6	6	6	COM0
1	126	6	6	6	6	- 6	6	6			6	6	6	6	COM1
2	125	6	6	6	6	6	6	6			6	6	6	6	COM2
3	124	6	6	6	6	6	6	6			6	6	6	6	COM3
4	123	6	6	6	6	6	6	6			6	6	6	6	COM4
5	122	6	6	6	6	6	6	6			6	6	6	6	COM5
6	121	6	6	no of bi	ts in this	cell	6	6			6	6	6	6	COM6
7	120										6	6	6	6	COM7
:	:	:	:	:	:	:	:	:			:	:	:	:	:
:	:	:	:	:	:	:	:	:			:	:	:	:	:
:	:	:	:	:	:	:	:	:			:	:	:	:	:
123	4	6	6	6	6	6	6	6			6	6	6	6	:
124	3	6	6	6	6	6	6	6			6	6	6	6	COM124
125	2	6	6	6	6	6	6	6			6	6	6	6	COM125
126	1	6	6	6	6	6	6	6			6	6	6	6	COM126
127	0	6	6	6	6	6	6	6			6	6	6	6	COM127
				1		1			1	1	1		ı		ī
SEG	output	SA0	SB0	SC0	SA1	SB1	SC1	SA2			SC126	SA 127	SB127	SC127	

SSD1351 | Rev 0.10 | P 21/57 | May 2008 | Solomon Systech

8.3.2 Data bus to RAM mapping under different input mode

Table 8-8: Write Data bus usage under different bus width and color depth mode

	Write Data		Data bus																	
Bus width	Color Depth	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	D1	D0
8 bits/Serial	65k	1st	X	X	X	X	X	X	X	X	X	X	C4	C ₃	C ₂	C_1	C ₀	B ₅	B4	B_3
o bits/Scitai	USK	2nd	X	X	X	X	X	X	X	X	X	X	B_2	\mathbf{B}_{1}	B_0	A4	A3	A_2	A_1	A_0
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C4	C ₃	C ₂	C ₁	C ₀
8 bits/Serial	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	B ₅	B4	B_3	B_2	B_1	B_0
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A 5	A4	A3	A_2	A_1	A_0
16 bits	65k		X	X	C ₄	C ₃	C ₂	Cı	C ₀	B ₅	B4	B ₃	B_2	Bı	B_0	A4	A3	A ₂	A_1	A_0
16 bits	262k	1st	X	X	X	X	X	X	X	X	X	X	X	X	C ₅	C4	C ₃	C ₂	C ₁	C ₀
10 5163	format 1	2nd	X	X	X	X	B_5	B_4	B_3	B_2	B_1	B_0	X	X	A_5	A_4	A ₃	A_2	A_1	A_0
		1st	X	X	X	X	C15	C14	C1 ₃	C1 ₂	C1 ₁	C10	X	X	B15	B14	B13	B12	B1 ₁	B1 ₀
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A 12	A1 ₁	A10	X	X	C25	C24	C2 ₃	C2 ₂	C2 ₁	C20
		3rd	X	X	X	X	B25	B24	B2 ₃	B2 ₂	B2 ₁	B20	X	X	A25	A24	A23	A22	A21	A20
18 bits	262k		C ₅	C ₄	C ₃	C ₂	Cı	C ₀	B 5	B ₄	B ₃	B_2	Bı	B_0	A5	A ₄	A 3	A ₂	\mathbf{A}_1	A_0

Table 8-9: Read Data bus usage under different bus width and color depth mode

	Read Data		Data bus																	
Bus width	Color Depth	Input order	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
8 bits	65k	1st	X	X	X	X	X	X	X	X	X	X	C ₄	C ₃	C ₂	C_1	C ₀	\mathbf{B}_5	B4	B_3
o bits	USK	2nd	X	X	X	X	X	X	X	X	X	X	B_2	\mathbf{B}_{1}	B_0	A4	A3	A_2	A_1	A_0
		1st	X	X	X	X	X	X	X	X	X	X	X	X	C5	C4	C ₃	C ₂	Cı	C ₀
8 bits	262k	2nd	X	X	X	X	X	X	X	X	X	X	X	X	\mathbf{B}_5	B4	B ₃	B_2	B_1	B_0
		3rd	X	X	X	X	X	X	X	X	X	X	X	X	A 5	A4	A3	A_2	A_1	A_0
16 bits	65k		X	X	C ₄	C ₃	C ₂	C ₁	C ₀	\mathbf{B}_5	B ₄	B ₃	B_2	B_1	B_0	A4	A3	A ₂	A_1	A_0
16 bits	262k	1st	X	X	X	X	X	X	X	X	X	X	X	X	C5	C4	C ₃	C ₂	Cı	C ₀
To bits	format 1	2nd	X	X	X	X	\mathbf{B}_5	B4	\mathbf{B}_3	B_2	\mathbf{B}_1	B_0	X	X	A 5	A4	A3	A_2	A_1	A_0
		1st	X	X	X	X	C15	C14	C1 ₃	C1 ₂	C1 ₁	C10	X	X	B15	B14	B13	B12	B1 ₁	B10
16 bits	262k format 2	2nd	X	X	X	X	A15	A14	A13	A12	A1 ₁	A 1 ₀	X	X	C25	C24	C2 ₃	C2 ₂	C2 ₁	C20
		3rd	X	X	X	X	B25	B24	B2 ₃	B2 ₂	B2 ₁	B20	X	X	A25	A24	A23	A22	A2 ₁	A20
18 bits	262k		C ₅	C ₄	C ₃	C ₂	C ₁	C_0	\mathbf{B}_{5}	B_4	B_3	B_2	B_1	B_0	A_5	A_4	A ₃	A_2	A_1	A_0

 Solomon Systech
 May 2008
 P 22/57
 Rev 0.10
 SSD1351

8.4 Command Decoder

This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin.

If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D17 are interpreted as a Command and it will be decoded and be written to the corresponding command register.

8.5 Oscillator & Timing Generator

8.5.1 Oscillator

Figure 8-7: Oscillator Circuit

This module is an On-Chip low power RC oscillator circuitry (Figure 8-7). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator F_{OSC} can be programmed by command B3h.

The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor "D" can be programmed from 1 to 16 by command B3h.

$$DCLK = F_{OSC} / D$$

The frame frequency of display is determined by the following formula:

$$F_{FRM} = \frac{F_{osc}}{D \times K \times No. \text{ of Mux}}$$

where

- D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 1024
- K is the number of display clocks per row. The value is derived by

K = Phase 1 period + Phase 2 period + X

X = DCLKs in current drive period. Default X = 134

Default K is 5 + 8 + 134 = 147

- Number of multiplex ratio is set by command CAh. The reset value is 127 (i.e. 128MUX).
- F_{osc} is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency.

If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system.

SSD1351 | Rev 0.10 | P 23/57 | May 2008 | Solomon Systech

8.6 SEG/COM Driving block

This block is used to derive the incoming power sources into the different levels of internal use voltage and current.

- V_{CC} is the most positive voltage supply.
- V_{COMH} is the Common deselected level. It is internally regulated.
- V_{LSS} is the ground path of the analog and panel current.
- I_{REF} is a reference current for segment current drivers I_{SEG}. The relationship between reference current and segment current of a color is:

```
I_{SEG} = Contrast / 256 * I_{REF} * scale factor in which the contrast is set by Set Contrast command (C1h); and the scale factor (1 \sim 16) is set by Master Current Control command (C7h).
```

A resistor should be connected between I_{REF} pin and V_{SS} pin.

For example, in order to achieve I_{SEG} = 200uA at maximum contrast 255, I_{REF} is set to around 12.5uA. This current value is obtained by connecting an appropriate resistor from I_{REF} pin to V_{SS} as shown in Figure 8-8.

Figure 8-8: I_{REF} Current Setting by Resistor Value

Since the voltage at I_{REF} pin is $V_{CC} - 6V$, the value of resistor R1 can be found as below:

$$R1 = (Voltage at I_{REF} - V_{SS}) / I_{REF}$$

$$\approx (18 - 6) / 12.5uA$$

$$\approx 1M\Omega$$

For $I_{REF} = 12.5uA$, $V_{CC} = 18V$:

 Solomon Systech
 May 2008
 P 24/57
 Rev 0.10
 SSD1351

8.7 SEG / COM Driver

Segment drivers consist of 384 (128 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 200uA with 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow.

Figure 8-9: Segment and Common Driver Block Diagram

The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage V_{COMH} as shown in Figure 8-10.

In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is disabled and the Reset switch is enabled. On the other hand, the segment drives to I_{SEG} when the pixel is turned ON.

SSD1351 | Rev 0.10 | P 25/57 | May 2008 | Solomon Systech

Figure 8-10: Segment and Common Driver Signal Waveform

There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to V_{LSS} in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging.

Solomon Systech May 2008 | P 26/57 | Rev 0.10 | SSD1351

In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level V_P from V_{LSS} . The amplitude of V_P can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.

In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h.

Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting in the current drive stage results in brighter pixels and vice versa (Details refer to Section 8.8). This is shown in the following figure.

Figure 8-11: Gray Scale Control in Segment

After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel.

The length of phase 4 is defined by command B8h "Look Up Table for Gray Scale Pulse width" or B9h "Use Built-in Linear LUT". In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry.

SSD1351 | Rev 0.10 | P 27/57 | May 2008 | Solomon Systech

8.8 Gray Scale Decoder

The gray scale effect is generated by controlling the segment current in current drive phase. The segment current is controlled by the Gamma Settings (Setting $0\sim$ Setting 180) through command B8h. The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding Gamma Setting of the 64 gray scale levels (GS0 \sim GS63) through the software commands B8h or B9h. Three programmable Gray Scale Tables (Gamma Look Up table) support the three colors A, B and C.

As shown in Figure 8-12, color A, B, C sub-pixel RAM data has 6 bits, represent the 64 gray scale level from GS0 to GS63.

Figure 8-12: Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode (under command B9h Use Built-in Linear LUT)

Color A, B or C	Gray Scale Table	Default Gamma Setting
GDDRAM data (6 bits)		(Command B9h Linear Gamma Look Up Table)
000000	GS0	Setting 0
000001	GS1	Setting 0
000010	GS2	Setting 2
000011	GS3	Setting 4
000100	GS4	Setting 6
:		
111101	GS61	Setting 120
111110	GS62	Setting 122
111111	GS63	Setting 124

In command B8h, there are total 180 Gamma Settings (Setting 0 to Setting 180) available for the Gray Scale table. GS0 has no pre-charge and current drive stages so it is in Gamma Setting 0. GS1 can be set as only pre-charge but no current drive stage by input Gamma Setting 0.

When setting the Gray Scale Table (by B8h command), the rules below must follow:

- 1) All Gamma Settings (i.e. GS1, GS2, GS3,.....GS63) are entered after command B8h.
- 2) The gray scale is defined in incremental way, with reference to the length of previous table entry:

Setting of GS1 has to be >= 0 Setting of GS2 has to be > Setting of GS1 +1 Setting of GS3 has to be > Setting of GS2 +1

Setting of GS63 has to be > Setting of GS62 +1

Solomon Systech May 2008 | P 28/57 | Rev 0.10 | SSD1351

Power ON and OFF sequence

The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume V_{CI} and V_{DDIO} are at the same voltage level and internal V_{DD} is used).

Power ON sequence:

- 1. Power ON V_{CI}, V_{DDIO}.
- 2. After V_{CI} , V_{DDIO} become stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 2us (t₁) ⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 2us (t_2). Then Power ON V_{CC} .
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms $(t_{AF}).$

Figure 8-13: The Power ON sequence.

Power OFF sequence:

- Send command AEh for display OFF.
 Power OFF V_{CC}. (1), (2)
- 3. Wait for t_{OFF} . Power OFF V_{CI} , V_{DDIO} (where Minimum t_{OFF} =0ms ⁽³⁾, Typical t_{OFF} =100ms)

Figure 8-14: The Power OFF sequence

Note:

 $^{(1)}$ Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 8-13 and Figure 8-14.

(2) V_{CC} should be kept float (disable) when it is OFF.

 $^{(3)}$ V_{CI} , V_{DDIO} should not be Power OFF before V_{CC} Power OFF.

⁽⁴⁾ The register values are reset after t_1 .

⁽⁵⁾ Power pins (V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.

P 29/57 SSD1351 Rev 0.10 May 2008 Solomon Systech

8.10 V_{DD} Regulator

In SSD1351, the power supply pin for core logic operation: V_{DD} , can be supplied by external source or internally regulated through the V_{DD} regulator.

When the command ABh, bit A[0] is set to 1b, the internal V_{DD} regulator is enabled. V_{CI} should be larger than 2.6V when using the internal V_{DD} regulator. The typical regulated V_{DD} is about 2.5V

When the command ABh, bit A[0] is set to 0b, external V_{DD} should be used. (external V_{DD} range : 2.4V~2.6V)

It should be notice that, no matter V_{DD} is supplied by external source or internally regulated, V_{CI} must always be equal or higher than V_{DD} and V_{DDIO} .

The following figure shows the V_{DD} regulator pin connection scheme:

Figure 8-15 $V_{CI} > 2.6V$, V_{DD} regulator enable : pin connection scheme

Figure 8-16 V_{DD} regulator disable: pin connection scheme

Solomon Systech May 2008 | P 30/57 | Rev 0.10 | SSD1351

8.10.1 V_{DD} Regulator in Sleep Mode

Power can be saved by disable the internal V_{DD} regulator during Sleep mode. The following figures show the corresponding command sequence:

Figure 8-17: Case 1 - Command sequence for just entering/ exiting sleep mode

Command for entering sleep mode : AEh (Sleep In)

Sleep mode

Command for exiting sleep mode : AFh (Sleep Out)

Figure 8-18: Case 2 - Command sequence for disabling internal VDD regulator during sleep mode

Command for entering sleep mode : AEh (Sleep In)

Command for disable internal V_{DD} regulator: ABh, bit A[0] is set to 0b

Sleep mode

Command for enable internal V_{DD} regulator $^{(1)}$: ABh, bit A[0] is set to 1b

Wait at least 1ms for V_{DD} becomes stable

Command for exiting sleep mode : AFh (Sleep Out)

In the above two cases, the RAM content can also be kept during the sleep mode.

Note:

(1) It should be noted that the internal V_{DD} regulator should be enabled before exiting sleep mode (issuing command AFh).

 $^{(2)}$ No RAM access through MCU interface when there is no external/ internal V_{DD} .

9 COMMAND

9.1 Basic Command List

Table 9-1: Command table

(D/C# = 0, R/W#(WR#) = 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0) for first byte, D/C# = 1 for other bytes

-	Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes) Fundamental Command Table												
-		1				D2	D2	D.A	БА		n		
D/C#	Hex	D7			D4		D2			Command	Description		
0	15	0	0	0	1	0	<u> </u>	0	1	g , g ;	A[6:0]: Start Address. [reset=0]		
1	A[6:0]	*	A_6	_		A_3	A ₂	\mathbf{A}_1	A_0	Set Column Address	B[6:0]: End Address. [reset=127] Range from 0 to 127		
1	B[6:0]	~	B_6	B_5	B_4	B_3	B_2	\mathbf{B}_1	\mathbf{B}_0	Address	Range from 0 to 127		
	7.5	0	1	1	1	_	1		1				
0	75	0	1	1	1	0	1	0	1	G 4 D	A[6:0]: Start Address. [reset=0]		
1	A[6:0]	*	A ₆	_		A ₃	\mathbf{A}_2	\mathbf{A}_1	A_0	Set Row Address	B[6:0]: End Address. [reset=127] Range from 0 to 127		
1	B[6:0]		B_6	B_5	B_4	B_3	B_2	\mathbf{B}_1	B_0	ridaress	italige from 0 to 127		
0	5C	0	1	0	1	1	1	0	0	Write RAM	Enable MCU to write Data into RAM		
										Command			
										Communa	E II MOVE ID A DAM		
0	5D	0	1	0	1	1	1	0	1	Read RAM	Enable MCU to read Data from RAM		
									31	Command	1110		
0	A0	1	0	1	0	0	0	0	0	b	A[0]=0b, Horizontal address increment [reset]		
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	40	A[0]=1b, Vertical address increment		
											A[1]=0b, Column address 0 is mapped to SEG0 [reset]		
1										400	A[1]=1b, Column address 127 is mapped to SEG0		
										16			
											$A[2]=0b$, Color sequence: $A \rightarrow B \rightarrow C$ [reset]		
								X	0		A[2]=1b, Color sequence is swapped: $C \rightarrow B \rightarrow A$		
							9				A[3]=0b, Reserved		
											A[3]=1b, Reserved		
										Set Re-map /	[-] -,		
										Color	ALL OF COMPANIES O		
											A[4]=0b, Scan from COM0 to COM[N-1] [reset] A[4]=1b, Scan from COM[N-1] to COM0. Where N is the		
										KAWI to I alici)	Multiplex ratio.		
											ALCI OF D. 11 COMO L'OTTE - 1 - 4		
											A[5]=0b, Disable COM Split Odd Even [reset] A[5]=1b, Enable COM Split Odd Even		
											2 10, Enable Colvi Spirt Odd Even		
											AF7-CL Cat Caller Develo		
											A[7:6] Set Color Depth, 00b 256 color		
											01b 65K color, [reset]		
											10b 262k color, 8/18-bit,16 bit (1st option) MCU interface		
											11b 262k color, 16 - bit MCU interface (2 nd option)		
											Refer to section for 8.3.2 details.		

 Solomon Systech
 May 2008
 P 32/57
 Rev 0.10
 SSD1351

Funda	mental (Com	man	d Ta	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	A1 A[7:0]	1 *	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Display Start Line	Set vertical scroll by RAM from 0~127. [reset=00h]
0	A2 A[7:0]	1 *	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Set Display Offset	Set vertical scroll by Row from 0-127. [reset=60h] Note (1) This command is locked by Command FDh by default. To
0	A4~A7	1	0	1	0	0	1	X ₁	X_0	Set Display Mode	A4h: All OFF A5h: All ON (All pixels have GS63) A6h: Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62,)
0 1	AB A[0]	1 A ₇	0 A ₆	1 0	0 0	1 0	0 0	1 0	1 A ₀	Function Selection	A[0]=0b, Select external V_{DD} A[0]=1b, Enable internal V_{DD} regulator [reset] A[7:6]=00b, Select 8-bit parallel interface [reset] A[7:6]=01b, Select 16-bit parallel interface A[7:6]=11b, Select 18-bit parallel interface
0	AD	1	0	1	0	1	1	0	1	NOP	Command for no operation.
0	AE~AF	1	0	1	0	1	1	1	X_0	Set Sleep mode ON/OFF	AEh = Sleep mode On (Display OFF) AFh = Sleep mode OFF (Display ON)
0	В0	1	0	1	1	0	0	0	0	NOP	Command for no operation.
0 1	B1 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Reset (Phase 1) /Pre- charge (Phase 2) period	A[3:0] Phase 1 period of 5~31 DCLK(s) clocks [reset=0010b] A[3:0]: 0-1 invalid 2 = 5 DCLKs 3 = 7 DCLKs : 15 =31DCLKs A[7:4] Phase 2 period of 3~15 DCLK(s) clocks [reset=1000b] A[7:4]: 0-2 invalid 3 = 3 DCLKs 4 = 4 DCLKs : 15 =15DCLKs Note (1) 0 DCLK is invalid in phase 1 & phase 2 (2) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh.

SSD1351 Rev 0.10 P 33/57 May 2008 **Solomon Systech**

Funda	mental (Com	man	d Ta	ble						
D / C #	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	В3	1	0	1	1	0	0	1	1	0011111111	A[3:0] [reset=0001], divide by DIVSET where
1	A[7:0]			٨		-	A_2	Λ	A_0		rigs.of freser ooots, divide by BrysEr where
1	A[7.0]	A_7	A_6	A_5	A_4	A_3	A2	\mathbf{A}_1	A_0		A[3:0] DIVSET
											0000 divide by 1
											0001 divide by 2
											0010 divide by 4
											0011 divide by 8
											0100 divide by 16
											0101 divide by 32
										Front Clock	0110 divide by 64
										Divider	0111 divide by 128
										(DivSet)/	1000 divide by 256
										Oscillator	1001 divide by 512
										Frequency	1010 divide by 1024
											>=1011 invalid
											A [7:4] O = ill + C = C = i = 1 = - 1
											A[7:4] Oscillator frequency, frequency increases as level increases [reset=1101b]
										150	increases [reset=11010]
											Note
											(1) This command is locked by Command FDh by default. To
									~		unlock it, please refer to Command FDh.
								Á			
0	B4	1	0	1	1	0	1	0	0		A[3:0] sets the VSL voltage as follow:
1	A[7:0]	1	0	1	0	0	0	A_1	A_0	40	A[1:0]=00 External VSL [reset]
1	B[7:0]	1	0	1	1	0	1	0	1		A[1:0]=00 External VSL [reset] A[1:0]=10 Internal VSL (kept VSL pin NC)
1	C[7:0]	0	1	0	1	0	1	0	1	Set Segment	A[1.0] To internal VSE (kept VSE pin Ne)
										Low Voltage	
										(VSL)	Note
											(1) When external VSL is enabled, in order to avoid distortion
											in display pattern, an external circuit is needed to connect
							$\prec \checkmark$				between VSL and V _{SS} as shown in Figure 14-1
0	D.f.	1	0	1	1	0	1	0	1		A[1:0] GPIO0: 00 pin HiZ, Input disabled
0	B5	1	0	*	1 *	0	1	0	1		01 pin HiZ, Input enabled
1	A[3:0]	*	~	•	•	A_3	A_2	A_1	A_0		10 pin output LOW [reset]
											11 pin output HIGH
										Set GPIO	
										Set 01 10	A[3:2] GPIO1: 00 pin HiZ, Input disabled
											01 pin HiZ, Input enabled
											10 pin output LOW [reset]
											11 pin output HIGH
0	В6	1	0	1	1	0	1	0	0		A[3:0] Set Second Pre-charge Period
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		
1	11[J.U]					113	132	11]	1-1()		0000b invalid
											0001b 1 DCLKS
										Set Second Pre-	0010b 2 DCLKS
										charge Period	 1000 - 9 DCI V.S. [wood]
										_	1000 8 DCLKS [reset]
											1111 15 DCLKS

 Solomon Systech
 May 2008
 P 34/57
 Rev 0.10
 SSD1351

Funda	mental (Com	man	d Ta	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0 1 1 1 1 1 1 1	B8 A1[7:0] A2[7:0] A62[7:0] A63[7:0]	A2 ₇	A2 ₆	A2 ₅	A2 ₄	A2 ₃	A2 ₂	A2 ₁	A2 ₀	Look Up Table for Gray Scale Pulse width	The next 63 data bytes define Gray Scale (GS) Table by setting the gray scale pulse width in unit of DCLK's (ranges from 0d ~ 180d) A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2, : A62[7:0]: Gamma Setting for GS63, Note (1] 0 ≤ Setting of GS1 < Setting of GS63 Note (2) GS0 has only pre-charge but no current drive stages. (3) GS1 can be set as only pre-charge but no current drive stage by input gamma setting for GS1 equals 0. (4) Refer to section 8.8 for details
0	В9	1	0	1	1	1	0	0		Use Built-in Linear LUT [reset= linear]	Reset to default Look Up Table: GS1 = 0 DCLK GS2 = 2 DCLK GS3 = 4 DCLK GS4 = 6 DCLK GS62 = 122 DCLK GS63 = 124 DCLK
0 1	BB A[4:0]	1 0	0 0	1 0	1 A ₄	1 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Pre-charge voltage	Set pre-charge voltage level.[reset = 17h]
0	BE A[6:0]	1 0	0 0	1 0	1 0	1 0	1 A ₂	1 A ₁	0 A ₀	Set V _{COMH} Voltage	Set COM deselect voltage level [reset = 05h]

SSD1351 Rev 0.10 P 35/57 May 2008 **Solomon Systech**

Funda	mental (Com	man	d Ta	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	C1	1	1	0	0	0	0	0	1		A[7:0] Contrast Value Color A [reset=10001010b]
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set Contrast	B[7:0] Contrast Value Color B [reset=01010001b]
1	B[7:0]	\mathbf{B}_{7}	B_6	B_5	B_4	-	B_2		B_0	Current for	C[7:0] Contrast Value Color C [reset=10001010b]
1	C[7:0]	C_7	C_6	C ₅	C ₄	C ₃	C_2	C_1	C_0	Color A,B,C	
0	C7	1	1	0	0	0	1	1	1		A[3:0]:
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		0000b reduce output currents for all colors to 1/16 0001b reduce output currents for all colors to 2/16
										Master Contrast	
										Current Control	1110b reduce output currents for all colors to 15/16
											1111b no change [reset = 1111b]
0	CA	1	1	0	0	1	0	1	0	1011	A[6:0] MUX ratio 16MUX ~ 128MUX, [reset=127],
1	A[6:0]	0	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set MUX Ratio	(Range from 15 to 127)
											Command for No Operation
0	D1	1	0	1	0	1	1	0	1	NOP	Command for No Operation
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation
0	FD	1	1	1	1	1	1	0	1	400	A[7:0]: MCU protection status [reset = 12h] A[7:0] = 12b, Unlock OLED driver IC MCU interface from
1	A[7:0]	A_7	A_6	\mathbf{A}_5	A_4	A_3	A_2	\mathbf{A}_1	A_0		entering command [reset]
											A[7:0] = 16b, Lock OLED driver IC MCU interface from
							3				entering command
							24			Set Command	A[7:0] = B0b, Command A2,B1,B3,BB,BE inaccessible in
											both lock and unlock state [reset]
											A[7:0] = B1b, Command A2,B1,B3,BB,BE accessible if in unlock state
											N
											Note (1) The locked OLED driver IC MCU interface prohibits all
											commands and memory access except the FDh command.

 Solomon Systech
 May 2008
 P 36/57
 Rev 0.10
 SSD1351

Table 9-2: Graphic acceleration command

Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes)

Grap	hic acc	ele	rati	on	con	nm	and	1			
D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D0	Command	Description
	96 A[7:0]			\mathbf{A}_5	A_4		A_2				A[7:0] : = 00000000b No scrolling A[7:0] : = 00000001b-011111111b Scroll towards SEG127 with 1 column offset A[7:0] : = 10000001b-111111111b Scroll towards SEG0 with 1 column offset
1 1	B[6:0] C[7:0] D[6:0] E[1:0]	C ₇	C_6 D_6	C ₅	C ₄	C ₃	C_2	C_1	C_0	Horizontal Scroll	B[6:0]: start row address C[7:0]: number of rows to be H-scrolled B+C <= 128 D[6:0]: Reserved (reset=00h) E[1:0]: scrolling time interval
											00b test mode 01b normal 10b slow 11b slowest Note: operates during display ON.
0	9E	1	0	0	1	1	1	1	0	Stop Moving	Note (1) After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten
0	9F	1	0	0	1	1	1	1	1	Start Moving	Start horizontal scroll

SSD1351 P 37/57 Rev 0.10 May 2008 Solomon Systech

Note
(1) After executed the graphic command, waiting time is required for update GDDRAM content. .s requ

10 COMMAND

10.1.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

10.1.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation(solid line in Figure 10-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1(solid line in Figure 10-1). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2(dotted line in Figure 10-1).

 Col 0
 Col 1
 Col 2

 Col 125
 Col 126
 Col 127

 Row 0
 Row 1

Figure 10-1: Example of Column and Row Address Pointer Movement

Solomon Systech May 2008 | P 38/57 | Rev 0.10 | SSD1351

10.1.3 Write RAM Command (5Ch)

After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

10.1.4 Read RAM Command (5Dh)

After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

10.1.5 Set Re-map & Dual COM Line Mode (A0h)

This command has multiple configurations and each bit setting is described as follows:

• Address increment mode (A[0])

When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-2.

 Col 0
 Col 1

 Col 126
 Col 127

 Row 0

 <

Figure 10-2: Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-3.

 Col 0
 Col 1

 Col 126
 Col 127

 Row 0

 Row 1

 Row 126

 Row 127

Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode

• Column Address Remap (A[1])

This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 10-4.

A[1] = 0 (reset): RAM Column $0 \sim 127$ maps to Col0 \sim Col127

A[1] = 1: RAM Column $0 \sim 127$ maps to Col127 \sim Col0

Color Remap (A[2])

A[2] = 0 (reset): color sequence $A \rightarrow B \rightarrow C$

A[2] = 1: color sequence $C \rightarrow B \rightarrow A$

COM scan direction Remap (A[4])

This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

A[1] = 0 (reset): Scan from up to down

A[1] = 1: Scan from bottom to up

Details of pin arrangement can be found in Figure 10-4.

Odd even split of COM pins (A[5])

This command bit can set the odd even arrangement of COM pins.

A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63

A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 10-4.

A[0] = 0A[1]=0A[7]=0Disable Odd Even Split of Disable COM Left / Right COM Scan Direction: from COM0 to COM127 COM pins Remap ROW12 ROW ROW63 ROW0 OMO SSD135 COM127 COM63 Pad 1,2,3,...Gold Bumps face up $A[\overline{0}] = 1$ A[1]=0 A[7]=0Enable Odd Even Split of Disable COM Left / Right COM Scan Direction: from Remap COM pins COM0 to COM127 ROW126 ROW127 ROW125 128 x 128 ROW1 ROW0

Figure 10-4: COM Pins Hardware Configuration (MUX ratio: 128)

SSD1351 Solomon Systech May 2008 P 40/57 Rev 0.10

SSD1351Z

Pad 1,2,3,...

COM64

COM0

Gold Bumps face up

Display color mode (A[7:6]) Select either 262k, 65k or 256 color mode.

10.1.6 Set Display Start Line (A1h)

This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-5 shows an example of using this command when MUX ratio = 128 and MUX ratio = 100 and Display Start Line = 28. In there, "Row" means the graphic display data RAM row.

Figure 10-5: Example of Set Display Start Line with no Remap

	128	128	100	100	MUX ratio (CAh)
COM Pin	0	28	0	28	Display start line (A1h)
COM0	Row0	Row28	Row0	Row28	
COM1	Row1	Row29	Row1	Row29	7
COM2	Row2	Row30	Row2	Row30	7
COM3	Row3	Row31	Row3	Row31	1
COM4	Row4	Row32	Row4	Row32	1
COM5	Row5	Row33	Row5	Row33	1
COM6	Row6	Row34	Row6	Row34	1
:	:	:		:	1
:	:	:		:	1
:	:			:	1
	:	:		· :	1
COM95	Row95	Row123	Row95	Row124	
COM96	Row96	Row124	Row96	Row125	1
COM97	Row97	Row125	Row97	Row126	UC.
COM98	Row98	Row126	Row98	Row127	
COM99	Row99	Row127	Row99	Row0	-
COM100	Row100	Row0	-	- Rowo	-
COM100	Row100	Row1	-		4
COM101 COM102	Row101	Row2	-	-	4
COM102	Row102	Row3	-	-	-
	Row103	Row4			-
COM104 COM105		Row5		-	4
	Row105			-	4
COM106	Row106	Row6		-	4
COM107	Row107	Row7	-	-	4
COM108	Row108	Row8	-	-	4
COM109	Row109	Row9	-	-	_
COM110	Row110	Row10	-	-	4
COM111	Row111	Row11	-	-	4
COM112	Row112	Row12	=	-	_
COM113	Row113	Row13	-	=	4
COM114	Row114	Row14	-	-	_
COM115	Row115	Row15	-	-	4
COM116	Row116	Row16	-	-	
COM117	Row117	Row17	-	-	
COM118	Row118	Row18	-	-	
COM119	Row119	Row19	-	-	
COM120	Row120	Row20	-	-	
COM121	Row121	Row21	=	-	
COM122	Row122	Row22	-	-	
COM123	Row123	Row23	-	-	7
COM124	Row124	Row24	-	-]
COM125	Row125	Row25	-	-	1
COM126	Row126	Row26	-	=	1
COM127	Row127	Row27	-	-	1
Display example	SOLOMON SYSTECH	SOLOMON	SOLOMON.	SOLOMON SYSTECH	SOLOMON
	(a)	(b)	(c)	(d)	(GDDARAM)

SSD1351 | Rev 0.10 | P 41/57 | May 2008 | **Solomon Systech**

10.1.7 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM16 towards the COM0 direction for 16 lines, A[7:0] should be given by 00010000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 10-6: Example of Set Display Offset with no Remap

	a	b	С	Case	
	128	96	96	MUX ratio (CAh)	
	0	0	32	Display offset (A2h A[7:0])	
COM0	Row0	Row0	Row32		
COM1	Row1	Row1	Row33		
COM2	Row2	Row2	Row34		
:	:	:	:		
COM61	Row61	Row61	Row93		
COM62	Row62	Row62	Row94		
COM63	Row63	Row63	Row95		
COM64	Row64	Row64	-		
COM65	Row65	Row65	-		
COM66	Row66	Row66	-		
:		:	:		
COM93	Row93	Row93	-		
COM94	Row94	Row94	-		
COM95	Row95	Row95	-		
COM96	Row96	-	Row0		
COM97	Row97	-	Row1		
COM98	Row98	-	Row2	Inc.	
	•				
COM125	Row125		Row29		
COM126	Row126	-	Row30	1099	
COM127	Row127	-	Row31		
Display					
example			COLOMON		
			COLOMON		
	SOLOMON	COLOMON		SOLOMON	
	SYSTECH			SYSTECH	
	(a)	(c)	(d)	(GDDARAM)	
	(4)			,	

 Solomon Systech
 May 2008
 P 42/57
 Rev 0.10
 SSD1351

10.1.8 Set Display Mode (A4h \sim A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

• All OFF (A4h)

Force the entire display to be at gray scale level "GS0" regardless of the contents of the display data RAM as shown in Figure.

Figure 10-7: Example of Entire Display OFF

• Set Entire Display ON (A5h)
Force the entire display to be at gray scale "GS63" regardless of the contents of the display data RAM as shown in Figure 10-8.

Figure 10-8: Example of Entire Display ON

• Set Entire Display OFF (A6h)

Reset the above effect and turn the data to ON at the corresponding gray level. Figure 10-9 shows an example of Normal Display.

Figure 10-9: Example of Normal Display

• Inverse Display (A7h)

The gray level of display data are swapped such that "GS0" \leftrightarrow "GS63", "GS1" \leftrightarrow "GS62", ... Figure 10-10 shows an example of inverse display.

Figure 10-10: Example of Inverse Display

SSD1351 | Rev 0.10 | P 43/57 | May 2008 | **Solomon Systech**

10.1.9 Set Function selection (ABh)

This double byte command is used to enable or disable the V_{DD} regulator.

Internal V_{DD} regulator is selected when the bit A[0] is set to 0b, while external V_{DD} is selected when A[0] is set to 1b.

10.1.10 Set Sleep mode ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is OFF (command AEh), the segment is in V_{SS} state and common is in high impedance state.

10.1.11 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 5 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 3 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P.

10.1.12 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to Section 8.5 for the detail relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency settings being available.

10.1.13 Set GPIO (B5h)

This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 9-1 for details.

10.1.14 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's. Please refer to Table 9-1 for the detail information.

10.1.15 Look Up Table for Gray Scale Pulse width (B8h)

This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2, ..., GS62, GS63 one by one in sequence. GS1 can be set as gamma setting 0, which means there is only precharge phase but no current drive phase. Refer to Section 8.8 for details.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 10-11) can compensate this effect.

Solomon Systech May 2008 | P 44/57 | Rev 0.10 | SSD1351

Figure 10-11: Example of Gamma correction by Gamma Look Up table setting

10.1.16 Use Built-in Linear LUT (B9h)

This single byte command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, GS3 = Gamma Setting 4,... GS62 = Gamma Setting 122, GS63 = Gamma Setting 124. Refer to Section 8.8 for details.

10.1.17 Set Pre-charge voltage (BBh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to V_{CC} . Refer to Table 9-1 for details.

10.1.18 Set V_{COMH} Voltage (BEh)

This double byte command sets the high voltage level of common pins, V_{COMH} . The level of V_{COMH} is programmed with reference to V_{CC} . Refer to Table 9-1 for details.

10.1.19 Set Contrast Current for Color A,B,C (C1h)

This double byte command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter display.

10.1.20 Master Contrast Current Control (C7h)

This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set.

For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA.

10.1.21 Set Multiplex Ratio (CAh)

This double byte command switches default 1:128 multiplex mode to any multiplex mode from 16 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 10-5 and Figure 10-6 show examples of setting the multiplex ratio through command CAh.

10.1.22 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

Solomon Systech May 2008 | P 46/57 | Rev 0.10 | SSD1351

11 MAXIMUM RATINGS

Table 11-1: Maximum Ratings

(Voltage Reference to V_{SS})

Symbol	Parameter	Value	Unit
$V_{ m DD}$		-0.5 to 2.75	V
V _{CC}	Cumhy Waltaga	-0.5 to 21.0	V
$V_{ m DDIO}$	Supply Voltage	-0.5 to $V_{\rm CI}$	V
V _{CI}		-0.3 to 4.0	V
V _{SEG}	SEG output voltage	0 to V _{CC}	V
V _{COM}	COM output voltage	0 to 0.9*V _{CC}	V
V _{in}	Input voltage	Vss-0.3 to V _{DDIO} +0.3	V
T _A	Operating Temperature	-40 to +85	°C
T_{stg}	Storage Temperature Range	-65 to +150	°C
	48		· · · · · · ·
	anfide		luc.
	confide	3 3093	Inc.
	confide	o hnology	Inc.
	Confide	echnology echnology	InG.
	Confide to	echnology,	Inc
	confide to	echnology,	Inc
	confide	echnology,	Inc
	confide	echnology,	Inc.
	confide	echnology,	InG.

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description.

SSD1351 Rev 0.10 P 47/57 May 2008 Solomon Systech

^{*}This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

12 DC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = 2.4$ to 2.6V

 V_{CI} = 2.4 to 3.5V (V_{CI} must be larger than or equal to V_{DD}) T_A = 25°C

Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition			Min	Тур	Max	Unit
V_{CC}	Operating Voltage	-			10	-	20	V
V_{DD}	Logic Supply Voltage	-			2.4	-	2.6	V
V_{CI}	Low voltage power supply	-			2.4	-	3.5	V
V_{DDIO}	Power Supply for I/O pins	-			1.65	-	V_{CI}	V
V_{OH}	High Logic Output Level	Iout =100uA			$0.9*V_{DDIO}$	-	V_{DDIO}	V
V_{OL}	Low Logic Output Level	Iout =100uA			0	-	$0.1*V_{DDIO}$	V
V_{IH}	High Logic Input Level	-			$0.8*V_{DDIO}$	-	$V_{\rm DDIO}$	V
$V_{\rm IL}$	Low Logic Input Level	-			0	-	$0.2*V_{DDIO}$	V
I_{SLP_VDD}	V _{DD} Sleep mode Current	$V_{CI} = V_{DDIO} = 2.8V, V_{CC}$ $V_{DD}(external) = 2.5V, Di$ No panel attached			-	-	10	uA
I _{SLP_VDDIO}	V _{DDIO} Sleep mode Current	$V_{CI} = V_{DDIO} = 2.8V,$ $V_{CC} = 18V$	External V _{DD}	= 2.5V	-	-	10	uA
SEI_VBBIO	DDIO 1	Display OFF, No panel attached	Internal V _{DD}		-	-	10	uA
ī	V _{CC} Sleep mode Current	$V_{\text{CI}} = V_{\text{DDIO}} = 2.8 \text{V},$ $V_{\text{CC}} = 18 \text{V}$	External V _{DD}	= 2.5V	-		10	uA
I _{SLP_VCC}	VCC Sicep mode Current	Display OFF, No panel attached	Internal V _{DD}			-	10	uA
		$V_{CI} = V_{DDIO} = 2.8V$,	External V _{DD}	= 2.5V			10	uA
I _{SLP_VCI}	V _{CI} Sleep mode Current	V _{CC} =18V Display OFF,	Enable International during Sleep r		-	-	40	uA
		No panel attached Disable Internal V during Sleep mode		al V _{DD}	-	-	10	uA
I_{DD}	V _{DD} Supply Current	$V_{CI} = V_{DDIO} = 3.3 \text{V}, V_{CC}$ External $V_{DD} = 2.5 \text{V}, \text{Di}$ No panel attached, contra	= 18V, splay ON,		-	TBD	TBD	uA
T	V. Sunnin Custos	$V_{CI} = V_{DDIO} = 3.3V$, $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	0.5	10	uA
I_{DDIO}	V _{DDIO} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	0.5	10	uA
T	V. S. and G. and	$V_{CI} = V_{DDIO} = 3.3V$, $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	TBD	TBD	uA
I_{CI}	V _{CI} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	TBD	TBD	uA
ī	V Supply Current	$V_{CI} = V_{DDIO} = 3.3V,$ $V_{CC} = 18$, Display ON,	External V _{DD}	= 2.5V	-	TBD	TBD	mA
I_{CC}	V _{CC} Supply Current	No panel attached, contrast = FF	Internal V _{DD}		-	TBD	TBD	mA
	Segment Output Current	Contrast = FFh			-	200	-	uA
I_{SEG}	Setting $V_{CC} = 18$ at $I_{REF} = 12.5$ uA	Contrast = 7Fh			-	100	-	uA
	v _{CC} - 10 at 1 _{REF} - 12.3uA	Contrast $= 3Fh$			-	50	-	uA
	Segment (SA, SB, SC) output	$Dev = (I_{Sn} - I_{MID})/I_{MID}$		n = A	-3	-	3	%
Dev	current uniformity (contrast = FF)	$I_{MID} = (I_{MAX} + I_{MIN})/2$ $I_{Sn} = Segment n current .$	eg Forn=A	n = B	-3	-	3	
	(Contrast 11)	then $I_{Sn} = I_{SA} = SA$ current		n = C	-3	-	3	
	A diamond minus de de	Adj Dev = $(I_{Sn}[m]-I_{Sn}[m-1])$		n = A	-2	-	2	%
Adj. Dev	Adjacent pin output current uniformity (contrast = FF)	I _{Sn} [m+1]) e.g. For n=A, m=3, then	$I_{Sn}[m] = I_{SA}[3]$	n = B	-2	-	2	
		= SA[3] current		n = C	-2	-	2	

Rev 0.10 SSD1351 P 48/57 Solomon Systech May 2008

13 AC CHARACTERISTICS

Conditions (Unless otherwise specified):

Voltage referenced to V_{SS} $V_{DD} = 2.4 \text{ to } 2.6 \text{ V}$ $T_A = 25^{\circ}C$

Table 13-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Fosc (1)	Oscillation Frequency of Display Timing Generator	$V_{CI} = 2.8V$	TBD	TBD	TBD	MHz
FFRM	Frame Frequency for 128 MUX Mode	128x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled	-	F _{OSC} * 1/(D*K*128)	-	Hz
t_{RES}	Reset low pulse width (RES#)	-	2000	-	-	ns

. command B3h & Note $^{(1)}F_{OSC}$ stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value.

(2) D: divide ratio set by command B3h A[3:0]

K: Phase 1 period +Phase 2 period + X

X: DCLKs in current drive period

SSD1351 Rev 0.10 P 49/57 **Solomon Systech** May 2008

Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.65 \text{V}, V_{CI} = 2.8 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t_{CYCLE}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{\rm DHW}$	Write Data Hold Time	7	-	-	ns
t_{DHR}	Read Data Hold Time	20	-	-	ns
t_{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	_	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-1: 6800-series MCU parallel interface characteristics

SSD1351 Rev 0.10 Solomon Systech May 2008 P 50/57

Note $^{(1)}$ when 8 bit used: D[7:0] instead; when 16 bit used: D[15:0] instead; when 18 bit used: D[17:0] instead.

Table 13-3: 8080-Series MCU Parallel Interface Timing Characteristics

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.65 \text{V}, V_{CI} = 2.8 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t_{CYCLE}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	•	ns
t_{AH}	Address Hold Time	0	-	ı	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
$t_{ m DHR}$	Read Data Hold Time	20	-	ı	ns
t_{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t_{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t_{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_{R}	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns
t_{CS}	Chip select setup time	0	-	1	ns
t_{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	•	ns

Figure 13-2: 8080-series MCU parallel interface characteristics

Note(1) when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead.

SSD1351 Rev 0.10 P 51/57 May 2008 Solomon Systech

Table 13-4: Serial Interface Timing Characteristics (4-wire SPI)

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	50	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-3: Serial interface characteristics (4-wire SPI)

 Solomon Systech
 May 2008
 P 52/57
 Rev 0.10
 SSD1351

Table 13-5: Serial Interface Timing Characteristics (3-wire SPI)

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6V, V_{DDIO} = 1.65V, V_{CI} = 2.8V, T_A = 25^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
t_{cycle}	Clock Cycle Time	50	-	-	ns
t_{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t_{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Figure 13-4: Serial interface characteristics (3-wire SPI) CS# **SCLK** SDIN D5 D/C# D7 D2 D1 D0D6 D4 D3 t_{CSH} CS# t_{CYCLE} t_{CLKH} t_{CLKL} SCLK $(R/W\# (WR\#)) t_F$ t_{DSW} $t_{\,\underline{DHW}}$ SDIN Valid Data (D0)

SSD1351 Rev 0.10 P 53/57 May 2008 **Solomon Systech**

14 APPLICATION EXAMPLE

Figure 14-1 : SSD1351Z application example for 18-bit 6800-parallel interface mode (Internal regulated V_{DD}) The configuration for 18-bit 6800-parallel interface mode is shown in the following diagram: $(V_{CI} = 3.3 \text{V} \text{ (V}_{CI} \text{ must be} > 2.6 \text{V}), \text{ Internal regulated } V_{DD} = 2.5 \text{V}, V_{DDIO} = 1.8 \text{V}, \text{ external } V_{CC} = 18 \text{V}, I_{REF} = 12.5 \text{uA},$ BS[3:2] are set to 11b through command A0h) Color OLED Panel 128RGBx128 SSD1351Z $V_{DDIO} \ V_{CI}$ [GND] Voltage at I_{REF} = V_{CC} – 6V. For V_{CC} = 18V, I_{REF} = 12.5uA: R1 = (Voltage at I_{REF} - $V_{SS})$ / I_{REF} =(18-6)/12.5u $= 1M\Omega$ $R2 = 50\Omega$, $1/8W^{(1)}$ D1 ~ D2: $\overset{\cdot}{V}_{th}$ =0.7V, 1N4148 $^{(1)}$ C1 ~ C3: 1uF, C4a, C5: 4.7uF, C4b: 0.1uF (1) (1) The values are recommended value. Select appropriate value against module application.

Solomon Systech May 2008 | P 54/57 | Rev 0.10 | SSD1351

15 PACKAGE INFORMATION

15.1 SSD1351UR1 detail dimension

Figure 15-1: SSD1351UR1 Detail Dimension

15.2 SSD1351Z Die Tray Information

Figure 15-2: SSD1351UR1 Die Tray Information

 Solomon Systech
 May 2008
 P 56/57
 Rev 0.10
 SSD1351

confidentie

All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) "Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)" and China standard "电子信息产品污染控制标识要求 (SJ/T11364-2006)" with control Marking Symbol Hazardous Substances test report is available upon requested.

http://www.solomon-systech.com

SSD1351 P 57/57 Rev 0.10 Solomon Systech May 2008