Implementation details and non-dimensionalization

1 Full version with projection operators

This is the main version of the code and structs are designed for this, below is also a description of the one constant approximation version which uses some of the fields from below for its variables. Here I use:

$$f_{\text{bulk}} = AE_{ij}E_{ij}^* + \frac{C}{2}(E_{ij}E_{ij}^*)^2$$
 (1)

$$f_{\text{comp}} = b_1^{\parallel} \Pi_{kl} E_{ij,k} E_{ij,l}^* + b_1^{\perp} T_{kl} E_{ij,k} E_{ij,l}^*$$
 (2)

$$f_{\text{cdiv}} = b_d |\underline{\nabla} \cdot \underline{\underline{E}}|^2 = b_d E_{ji,j} E_{ji,j}^*$$
 No $\underline{\underline{\Pi}}$ for now (3)

$$f_{\text{curv}} = b_2^{\parallel} \Pi_{kl} E_{ij,lk} \Pi_{mn} E_{ij,nm}^* + b_2^{\perp} T_{kl} E_{ij,lk} T_{mn} E_{ij,nm}^* + b_2^{\parallel \perp} (\Pi_{kl} E_{ij,lk} T_{mn} E_{ij,nm}^* + T_{kl} E_{ij,lk} \Pi_{mn} E_{ij,nm}^*)$$

$$(4)$$

where C, and all the bs are positive, but A can be negative. And a time evolution of form

$$\frac{\partial \underline{\underline{E}}}{\partial t} = -\mu \frac{\delta F}{\delta \underline{E}^*} \tag{5}$$

Notable differences from Jack's are that I omit the 2 extra factors of $\frac{1}{2}$ in the bulk contribution, change μ to its inverse and add the divergence term (it can be set to 0).

Three dimensions come up – energy (E), length (L) and time (T) and the quantities above have units as follows:

1.1 Physical quantities

These are taken straight from Jack's, I do not account for the change of a $\frac{1}{2}$ factor in A and C as they are order of magnitude numbers anyway.

$$|\psi|_{eq} = \sqrt{\frac{3}{2} * \frac{-A}{C}}$$
 The ideal smectic phase value (6)

$$\varepsilon = \sqrt{\frac{b_1^{\parallel}}{|A|}}$$
 Lamellar in-plane coherence length (7)

$$\lambda = \sqrt{\frac{b_2^{\perp}}{b_1^{\parallel}}} \quad \text{Penetration depth} \tag{8}$$

$$\kappa = \frac{\lambda}{\varepsilon} = \sqrt{\frac{b_2^{\perp}|A|}{b_1^{\parallel 2}}} \quad \text{Ginzburg parameter}$$
 (9)

1.2 Non-dimensionalization

In the end I decided the simulation itself is best ran with all the constants above (they are all stored in the lcParam struct) so that things are easy to compare and the non-dimensionalization choices can be changed relatively easily.

The non-dimensionalization is however still implemented, just before the simulation itself. Currently, the requirements are that $|\psi|_{eq} = 1$, $\varepsilon = 1$ and only allow A to be ± 1 (or 0). For the $A \neq 0$ cases this implies $C = \frac{3}{2}$ and $b_1^{\parallel} = 1$. Out of the remaining parameters we can set $\mu = 1$ which will specify the time units and the rest needs to be set. This way A, b_1^{\parallel} and μ are what sets the units as follows:

$$L = \sqrt{\frac{b_1^{\parallel}}{|A|}}, \qquad E = b_1 L = \sqrt{\frac{b_1^{\parallel 3}}{|A|}}, \qquad T = \frac{1}{\mu E} = \frac{1}{\mu} \sqrt{\frac{|A|}{b_1^{\parallel 3}}}$$
 (10)

I haven't actually figured out the A = 0 case currently.

UPDATE

So I changed the above now so that I can better explore different params. I now allow A to be set to any value and set C relatively to it to make the bulk energy minimum at $|\psi_1| = 1$ (if negative A). I allow both b_1^2 values to be set to any non-negative numbers directly. For the b_2^2 values I still have a Ginzburg parameter input, but then I also have one input for each b_2^2 and they are scaled by \sqrt{K} .

1.3 Implementation

So A, C, b_1^{\parallel} and μ are set already from units, then we can still use the Ginzburg parameter to set b_2^{\perp} and set b_d directly as it is an extra for now. Finally then I set the other b_1 value via b_1^{\parallel} and respectively with b_2^{\perp} .

2 One constant approximation version

Here I use the simplified free energies:

$$f_{\text{bulk}} = A|\underline{\underline{E}}|^2 + \frac{C}{2}|\underline{\underline{E}}|^4 \tag{11}$$

$$f_{\text{comp}} = b_1 |\underline{\nabla}\underline{\underline{E}}|^2 \tag{12}$$

$$f_{\text{cdiv}} = b_d |\underline{\nabla} \cdot \underline{\underline{E}}|^2 \tag{13}$$

$$f_{\text{curv}} = b_2 |\nabla^2 \underline{E}|^2 \tag{14}$$

(15)

where C, and all the bs are positive, but A can be negative. And a time evolution of form

$$\frac{\partial \underline{\underline{E}}}{\partial t} = -\mu \frac{\delta F}{\delta \underline{E}^*} \tag{16}$$

Still holds that notable differences from Jack's are that I omit the 2 extra factors of $\frac{1}{2}$ in the bulk contribution, change μ to its inverse and add the divergence term (it can be set to 0).

2.1 Physical quantities

Here I adopt the quantities from above as

$$|\psi|_{eq} = \sqrt{\frac{3}{2} * \frac{-A}{C}}$$
 The ideal smectic phase value (17)

$$\varepsilon = \sqrt{\frac{b_1}{|A|}}$$
 Lamellar in-plane coherence length (18)

$$\lambda = \sqrt{\frac{b_2}{b_1}} \quad \text{Penetration depth} \tag{19}$$

$$\kappa = \frac{\lambda}{\varepsilon} = \sqrt{\frac{b_2|A|}{b_1^2}} \quad \text{Ginzburg parameter}$$
 (20)

2.2 Units and non-dimensionalization for simulation

Exactly as above, the requirements are that $|\psi|_{eq} = 1$, $\varepsilon = 1$ and only allow A to be ± 1 or 0. For the $A \neq 0$ cases this implies $C = \frac{3}{2}$ and $b_1 = 1$. Out of the remaining parameters we can set $\mu = 1$ which will specify the time units, set b_2 via the Ginzburg parameter and b_d directly. This way A, b_1 and μ are what sets the units as follows:

$$L = \sqrt{\frac{b_1}{|A|}}, \qquad E = b_1 L = \sqrt{\frac{b_1^3}{|A|}}, \qquad T = \frac{1}{\mu E} = \frac{1}{\mu} \sqrt{\frac{|A|}{b_1^3}}$$
 (21)

I haven't actually figured out the A=0 case as of now.

2.3 Summary

So A, b_1 and μ are used to set the units, $|\psi|$ is in the 0 to 1 range and coherence length is 1L which sets C to $\frac{3}{2}$. Then the user specifies K to set b_2 and possibly a non-zero b_d .