Introduction to Python Exercises

Andres Mendez-Vazquez

November 5, 2016

)utline

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists
- **Basic Operators**
 - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators
 - Membership Operators
 - Identity Operator
- Control Flow Structures
 - If Then Else together with a Loop
 - **Functions**
 - Define a Geometric Series
 - Implement Fibonacci

 - Define a Polynomial
 - Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - Dictionary and λ Expressions
 - Using Maps and the Dictionary

The Basics

- Variables
- Numeric Values
- Random Functions
- Strings
- Lists

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- If Then Else together with a Loop

- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Play with the reference counter

- Assign four references an integer
- Add some stuff to one of the references and see what happened

- add key/value to build a dictionary
- Use the dictionary instead of cases

Play with the reference counter

- Assign four references an integer
- Add some stuff to one of the references and see what happened

Standard Data Types

- add key/value to build a dictionary
- Use the dictionary instead of cases

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

 - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators
 - Membership Operators Identity Operator

 - If Then Else together with a Loop
 - Define a Geometric Series
 - Implement Fibonacci
 - Define a Polynomial

 - Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Instantiate values

- Complex
- float
- Do a conversions
 - ► From float to complex
 - ► From complex to float

- Play with
 - Absolute value
 - Compare references
 - exponential function from math package
 - exponential function from math package
 - ▶ etc

Instantiate values

- Complex
- float
- Do a conversions
 - ► From float to complex
 - ► From complex to float

Mathematical Functions

- Play with
 - Absolute value
 - Compare references
 - exponential function from math package
 - etc

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists
 - Basic Operators
 - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators
 - Membership Operators
 - Identity Operator
 - Control Flow Structures
 - If Then Else together with a Loop
 - If then Else together with a Loop
 - Define a Geometric Series
 - Define a Geometric Series
 - Implement Fibonacci
 - Define a Polynomial
 - Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Playing Random Functions in Lists

import random

- Create a List
- Shuffle the elements
- Do a random choice

- randrange(a,b,step) A unique number from a random number
- uniform Uniform Distribution
- randint(a,b)
- sample()
 - random.sample(range(100),5)

Playing Random Functions in Lists

import random

- Create a List
- Shuffle the elements
- Do a random choice

Some other instructions to play with them

- randrange(a,b,step) A unique number from a random number
- uniform Uniform Distribution
- randint(a,b)
- sample()
 - random.sample(range(100),5)

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists
- - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators
 - Membership Operators
 - Identity Operator

 - If Then Else together with a Loop

 - Define a Geometric Series

 - Implement Fibonacci
 - Define a Polynomial
 - Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Create two string

Concatenate them

Make them into a list

Using the conversion list

ktract stuff from a string

Using the concept of a list

Create two string

Concatenate them

Make them into a list

• Using the conversion list

Using the concept of a list

Create two string

Concatenate them

Make them into a list

Using the conversion list

Extract stuff from a string

• Using the concept of a list

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- If Then Else together with a Loop

- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Generate a List

- Change some values in the list
- Concatenate Tree Lists
- Play with the Range Function
- Slice a List
- enerate a dictionar
- add key/value to the dictionary

Generate a List

- Change some values in the list
- Concatenate Tree Lists
- Play with the Range Function
- Slice a List

Generate a dictionary

add key/value to the dictionary

Some Extra Stuff

Using None and *

This is a special one

- [None]*10
- [1]*10
- etc

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators Identity Operator
- - If Then Else together with a Loop
 - Define a Geometric Series

 - Implement Fibonacci
 - Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Do some operations using

- a+b
- 2 a-b
- **3** b/a
- a**b
- a%b

Define

A polynomial and evaluate it

$$a_0 + a_1r + a_2r^2 + \dots + a_nr^n$$

- B_2 , $A_1 > B_1 \neq 0$

 - $B_1 = tA_2 + A_3$
 - etc

Define

A polynomial and evaluate it

$$a_0 + a_1r + a_2r^2 + \dots + a_nr^n$$

Define the Greatest Common Divisor Between Two Number A_1 and B_2 , $A_1>B_1\neq 0$

- \bullet $A_1 = kB_1 + A_2$
- \bullet $B_1 = tA_2 + A_3$
- etc

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator

 - If Then Else together with a Loop

Define a Geometric Series

- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Play a little bit with

- <less</p>
- <>not equal
- ! =Not Equal
- Greater

Do the following

- **1**<2
- **2** 2<1
- **3**!=4
- 4 etc

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
 - Control Flow Structures
 - If Then Else together with a Loop
- Functions
- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

We have

- \bullet a = b+c
- c+=a
- c*=s
- c/=b
- c%=d
- c**=a

Do the Folllowing

- **1** A = 100
- **2** B = 100

- \bigcirc C+=A
- C*=A
- C/=2
- O (**_)

Do the Folllowing

- A = 100
- **a** B = 100

Then Play with the Operators

- **1** C = A + B
- \circ C+=A
- C*=A
- C –A
- **○** C/=2
- **○** C**=2

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator

- If Then Else together with a Loop
- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Play with the Operators to Compare Two Numbers

- And &
- Or |
- Xor ^
- Megation ~
- shift to the left <<</p>
- shift to the right >>

Do the following

- 0 (3 & 1 == 0)
- (4 & 1 == 0)
- 3 (3 & 1 == 0)

A simple even-odd detector

100 | 100

Do the following

- (3 & 1 == 0)
- (4 & 1 == 0)
- (3 & 1 == 0)

What is this

A simple even-odd detector

∼100+100

Do the following

- (3 & 1 == 0)
- (4 & 1 == 0)
- (3 & 1 == 0)

What is this

A simple even-odd detector

Now \sim is the Complement of $x \approx -x - 1$

● ~100+100

Power

Using <<

- **1**00<<2
- **2** 1<<1
- **3** 1<<2
- **1**<<3
- Basically a Multiplication By 2

Thus what is >>?

Power

Using <<

- **1**00<<2
- **2** 1<<1
- **3** 1<<2
- **4** 1<<3

Basically a Multiplication By 2

Thus what is >>?

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- If Then Else together with a Loop

Define a Geometric Series

- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Belonging Operators

- ① "in"
- 2 "not in"

Generate a List

For Example

- \bullet L = [1,2,3,4]
- ② Then (5 in L)
- **3** (4 in L)
- (3 not in L)

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators

Identity Operator

- Control Flow Structures
- If Then Else together with a Loop

Define a Geometric Series

- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication

λ Expressions

- Fibonacci Using λ Expressions
- lacktriangle Dictionary and λ Expressions
- Using Maps and the Dictionary

Play with

- a is b
- a == b
- a is not b

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- Control Flow Structures
- If Then Else together with a Loop

Functions

- Define a Geometric Series
- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- δ λ Expressions
 - Fibonacci Using λ Expressions
 - ullet Dictionary and λ Expressions
 - Using Maps and the Dictionary

Combine the if elif else

To select given a List of numbers from 0 to 100 which are a power of two

Remember the following pattern in bitwise

Combine the if elif else

To select given a List of numbers from 0 to 100 which are a power of two

For This

Remember the following pattern in bitwise

1	
2	
3	

U	U	
0	1	0
0	1	1
1	0	0

Solve the following using a While Loop

- Given a List of numbers from 0 to 100 with one not there
- 2 Set one of the numbers to zero using random
- Find which one is not there using

I her

Print the one is not there!!!

Solve the following using a While Loop

- Given a List of numbers from 0 to 100 with one not there
- Set one of the numbers to zero using random
- Find which one is not there using

Then

Print the one is not there!!!

Do the following

Given a list of random numbers

- Print the multiples of 3
- Print the multiples of 4
- Print the multiples of 7

Hin

Use List+= [Number]

Do the following

Given a list of random numbers

- Print the multiples of 3
- Print the multiples of 4
- Print the multiples of 7

Hint

Use List+= [Number]

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- Control Flow Structures
- If Then Else together with a Loop
- \ _ .

Functions

- Define a Geometric Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- δ λ Expressions
 - Fibonacci Using λ Expressions
 - \bullet Dictionary and λ Expressions
 - Using Maps and the Dictionary

Give a Geometric Sequence Efficiently

Given the following function

$$S_n = \sum_{k=0}^n r^k$$

Hint accumulate a power!!!

Give a Geometric Sequence Efficiently

Given the following function

$$S_n = \sum_{k=0}^n r^k$$

Implement this in linear time O(n)

Hint accumulate a power!!!

- The Basics
 - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

Basic Operators

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- Control Flow Structures
- If Then Else together with a Loop

Functions

- Define a Geometric Series
- Define a Geoffieth Series
- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- δ λ Expressions
 - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Implement Fibonacci

Implement two versions of the function

$$F_N = \begin{cases} 1 & \text{if } N = 1, 2\\ F_{N-1} + F_{N-2} & \text{if } N > 2 \end{cases}$$
 (1)

The R

Simply interpret the function!!!

Use extra memory by building a list

$$F_1 \mid F_2 \mid F_3 \mid \dots \mid F_N$$

Implement Fibonacci

Implement two versions of the function

$$F_N = \begin{cases} 1 & \text{if } N = 1, 2\\ F_{N-1} + F_{N-2} & \text{if } N > 2 \end{cases}$$
 (1)

The Recursive One

Simply interpret the function!!!

Use extra memory by building a list

 $F_1 \mid F_2 \mid F_3 \mid \dots \mid F_N$

Implement Fibonacci

Implement two versions of the function

$$F_N = \begin{cases} 1 & \text{if } N = 1, 2\\ F_{N-1} + F_{N-2} & \text{if } N > 2 \end{cases}$$
 (1)

The Recursive One

Simply interpret the function!!!

Iterative

Use extra memory by building a list

$$F_1 \mid F_2 \mid F_3 \mid \dots \mid F_N$$

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- If Then Else together with a Loop

Functions

- Define a Geometric Series
 - Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Define the Polynomial Function

Implement the polynomial function

Use a While Loop for it

Do so...

Define the Polynomial Function

Implement the polynomial function

Use a While Loop for it

Similar to the Geometric Series

Do so...

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

 - Arithmetic Operators Comparison Operator

 - Assignment Operator Bitwise Operators

 - Membership Operators Identity Operator

 - If Then Else together with a Loop

 - **Functions**
 - Define a Geometric Series
 - Implement Fibonacci
 - Define a Polynomial Implement Matrix Multiplication
- - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Implement the Matrix Multiplication

Using a List of List

Implement the Matrix Multiplication of 3 by 3 matrices

- 2 Then Remember

$$C = AB$$

$$[c_{ij}] = \left[\sum_{k=1}^{N} a_{ik} b_{kj}\right]$$

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists
 - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators

 - Membership Operators Identity Operator

 - If Then Else together with a Loop

 - Define a Geometric Series
 - Implement Fibonacci

 - Define a Polynomial
 - Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Give me an in-line function of the Fibonacci Numbers

For This, we can try the following

t = lambda x: 1 if x==1 or x==2 else t(x-1)+t(x-2)

Then using this as ba

Give me the recursive version of the factorial

 $n! = n \times (n-1)!$

Give me an in-line function of the Fibonacci Numbers

For This, we can try the following

t = lambda x: 1 if x==1 or x==2 else t(x-1)+t(x-2)

Then using this as basis

Give me the recursive version of the factorial

$$n! = n \times (n-1)!$$

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists

- Arithmetic Operators
- Comparison Operator
- Assignment Operator
- Bitwise Operators
- Membership Operators
- Identity Operator
- If Then Else together with a Loop

Define a Geometric Series

- Implement Fibonacci
- Define a Polynomial
- Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - Dictionary and λ Expressions
 - Using Maps and the Dictionary

Now, Using a Dictionary

Select Different Functions Like

- 0 %
- 2 **
- **3** /
- A < < 2
 </p>
- **5** B>>2

- FDictionary = {'Power': lambda x: x**2,...
- Then you can use the FDictionary ['Power'](5)
- To evaluate the lambda functions

Now, Using a Dictionary

Select Different Functions Like

- 0 %
- 2 **
- **3** /
- A < < 2
 </p>
- **6** B>>2

For This, you can use a dictionary

- FDictionary = {'Power': lambda x: $x^{**}2,...$ }
- 2 Then you can use the FDictionary['Power'](5)
- To evaluate the lambda functions

- - Variables
 - Numeric Values
 - Random Functions
 - Strings
 - Lists
 - Arithmetic Operators
 - Comparison Operator
 - Assignment Operator
 - Bitwise Operators
 - Membership Operators
 - Identity Operator

 - If Then Else together with a Loop

 - Define a Geometric Series
 - Implement Fibonacci

 - Define a Polynomial
 - Implement Matrix Multiplication
- λ Expressions
 - Fibonacci Using λ Expressions
 - lacktriangle Dictionary and λ Expressions
 - Using Maps and the Dictionary

Now Try to use the Dictionary in a Numerical List

Given

- L = range(10)
- Use map to apply one of your dictionary functions
 - map(FDictionary['Power'],L)

It is fun

Now Try to use the Dictionary in a Numerical List

Given

- L = range(10)
- Use map to apply one of your dictionary functions
 - map(FDictionary['Power'],L)

Play with it

It is fun