Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$$\{a,bc\}^* = \{\mathcal{E},a,bc,aa,abc,bca,\ldots\}$$

Recursive Definition

Primitive regular expressions: \varnothing , ε , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression: (a+b+)

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)^*) = \{\mathcal{E}, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\mathcal{E}) = \{\mathcal{E}\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\mathcal{E}, a, aa, aaa, ...\}$$

$$= \{a,aa, aaa, ..., b, ba, baa, ...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings containing substring 00 }

Regular expression
$$r = (1+01)*(0+\mathcal{E})$$

$$L(r) = \{ all strings without substring 00 \}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+\mathcal{E})$$

 $r_2 = (1*011*)*(0+\mathcal{E})+1*(0+\mathcal{E})$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Proof:

```
Languages
Generated by
Regular Expressions

Regular Languages
```

Languages
Generated by
Regular Expressions

Regular Languages

Proof - Part 1

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \varnothing , ε , α Corresponding

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{ \mathcal{E} \} = L(\mathcal{E})$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose

that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Are regular languages

is trivially a regular language (by induction hypothesis)

End of Proof-Part 1

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)

Example: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

We will convert an NFA that accepts L to a regular expression

Since L is regular, there is a NFA M that accepts it

$$L(M) = L$$

Take it with a single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example:

Transition labels are regular expressions

Reducing the states:

Transition labels are regular expressions

Resulting Regular Expression:

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

In General

Removing a state: q_{j} q_i qace*bae*d*ce***d* q_{j} q_i ae*b

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)