Практическая работа №1

Санитарно-гигиеническое нормирование качества атмосферного воздуха

Предельно допустимая концентрация загрязняющего вещества в атмосферном воздухе населенных мест — гигиенический норматив, утверждаемый постановлением Главного санитарного врача Российской Федерации по рекомендации Комиссии по государственному санитарно-эпидемиологическому нормированию при Минздраве России.

ПДК загрязняющего вещества в атмосферном воздухе — это концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного воздействия на настоящее или будущие поколения, не снижающая работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни.

Лимитирующий (определяющий) показатель вредности (ЛПВ) биологического лействия характеризует направленность вещества: рефлекторное (рефл.) и резорбтивное (рез.). Под рефлекторным действием понимается реакция со стороны рецепторов верхних дыхательных путей – ощущение запаха, раздражение слизистых оболочек, задержка дыхания и т.д. Указанные эффекты возникают при кратковременном воздействии вредных веществ, поэтому рефлекторное действие лежит в основе установления максимальной разовой (20-30-минутная) ПДК (ПДК_{м.р.}). Под резорбтивным действием общетоксических, понимают возможность развития эмбриотоксических, мутагенных, канцерогенных и эффектов, других возникновение которых зависит не только от концентрации вещества в воздухе, но и длительности его вдыхания.

Помимо максимальной разовой предельно допустимой концентрации, временной интервал воздействия которой строго ограничен, разработаны так же среднесуточная предельно допустимая концентрация (ПДК_{с.с.}) и рабочей $(\Pi \coprod K_{p,3}).$ Предельно допустимая концентрация среднесуточная 30НЫ соответствует такой величине содержания загрязняющего вещества в воздухе населенных мест, при которой не оказывается негативного влияния на здоровье населения, на все его группы (половые, возрастные, здоровья) при неограниченной длительности вдыхания воздуха, содержащего указанные вещества. В рабочей же зоне находятся люди работоспособного возраста, прошедшие медицинское обследование, что позволяет им без вреда для собственного переносить более здоровья высокие концентрации загрязняющих веществ.

Таблица 1.1 - ПДК вредных веществ в атмосферном воздухе населенных пунктов

	Концентрация,				Класс
Вещество	$M\Gamma/M^3$			ЛПВ	опасности
20Meento	ПДК _{м.р.}	ПДКс.с.	ПДК _{р.з.}		
Азота оксид	0,4	0,06	3,0	рефлекторный	3
Азота диоксид	0,085	0,04	2,0	рефлекторно- резорбтивный	2
Аммиак	0,2	0,04	20,0	- "-	4
Ацетальдегид	0,01	-	5,0	резорбтивный	3
Бензол	1,5	0,8	5,0	_ "_	2
Бенз(а)пирен	-	0,000001	1,5.10-4	_ "_	1
Бензин нефтяной малосернистый (в пересчете на C)	5	1,5		рефлекторно- резорбтивный	4
Диоксид серы	0,5	0,05	10,0	рефлекторно- резорбтивный	3
Мазутная зола теплоэлектростанци й в пересчете на ванадий	-	0,002	0,5	резорбтивный	4
Пентоксид ванадия	-	0,002	0,5	- "-	1
Пыль нетоксичная	0,5	0,15	6,0	- "-	3
Ртуть металлическая	-	0,0003	0,01	- "-	1
Сероводород	0,008	0,008	10,0	рефлекторный	2
Сероуглерод	0,03	0,005		резорбтивный	2
Углерода оксид	5,0	3,0	20,0	- "-	4
Угольная зола	0,05	0,02	-	- "-	2

теплоэлектростанци й					
Фенол	0,01	0,003	0,3	рефлекторно- резорбтивный	2
Формальдегид	0,035	0,003	0,5	_ "_	2
Фтороводород	0,02	0,005	0,5	_ "_	2
Хлор	0,1	0,03	1,0	_ "_	2
Этанол	5,0	5,0	1000	рефлекторный	4

Оценка степени суммарного загрязнения атмосферы рядом веществ проводится двумя часто используемыми способами: по индексу загрязнения атмосферы I (ИЗА) и комплексному показателю загрязнения атмосферного воздуха (P).

Расчет ИЗА выполняется, как правило, для пяти веществ, нормированное содержание которых в атмосферном воздухе максимально. Расчет нормированного содержания для одного вещества проводится по формуле:

$$I_i = \frac{q_{cp,i} \cdot k_i}{\Pi \not \square K_{cc,i}} \tag{1.1}$$

где $q_{cp.i}$ — среднее содержание i-го вещества в атмосферном воздухе в пункте наблюдения, мг/м 3 ;

 k_i - безразмерный коэффициент, учитывающий принадлежность к разным классам опасности.

Значение k_i

k_i	0,85	1,0	1,3	1,5
Класс опасности	4	3	2	1

Далее отбираются пять веществ с максимальными значениями нормированного параметра I_i . Расчет ИЗА проводится по этим веществам в соответствии с формулой:

ИЗА =
$$\sum_{i=1}^{5} \frac{q_{cp,i} \cdot k_i}{\Pi \angle K_{CCi}}$$
 (1.2.)

В соответствии со значениями ИЗА установлена качественная характеристика загрязнения атмосферного воздуха:

менее 5 – удовлетворительная обстановка,

6-15 – относительно напряженная,

16-50 – существенно напряженная,

51-100 – критическая,

более 100 - катастрофическая обстановка.

Данный способ оценки качества атмосферного воздуха в достаточной степени условен и ориентирован в основном на получение сравнительных характеристик загрязнения.

При загрязнении воздуха чаще проявляется эффект неполной суммации, который следовало бы принимать во внимание при оценке качества воздуха. В расчете значений комплексного показателя загрязнения атмосферного воздуха (P) эффект частичной суммации учитывается с помощью коэффициента \sqrt{n} , где n – число веществ в смеси.

Комплексный показатель Р рассчитывается следующим образом:

$$P = \sqrt{\sum_{i=1}^{n} K_i^2}$$
 (1.3)

где $\sum K_i^2$ - сумма квадратов концентраций, нормированных по ПДК и приведенных к концентрациям веществ 3-го класса опасности с использованием коэффициента изоэффективности R_i :

R_i	0,87	1,0	1,3	2,3
Класс опасности	4	3	2	1

При значениях K_i для 1-го класса опасности более 2,5; для 2-го — более 5, для 3-го — более 8 и для 4-го — более 11 приведение к 3-му классу осуществляется с применением других коэффициентов изоэффективности:

R_i	0,7	1,0	1,6	3,2
Класс опасности	4	3	2	1

Значение K_i определяется следующим образом:

$$K_i = \frac{C_i}{\Pi \square K_i} \cdot R_i \tag{1.4}$$

где C_i – фактическая концентрация i-го вещества, мг/м³;

 R_i – коэффициент изоэффективности i-го вещества.

Степень загрязнения атмосферного воздуха по комплексному показателю оценивается в соответствии с табл. 1.2.

Таблица 1.2 - Оценка степени среднегодового загрязнения атмосферы

Уровень	Показатель P в зависимости от числа веществ				
загрязнения	1	2-4	5-9	10-16	16-25
Допустимое	≤1	2	3	4	5
Слабое	1-2	2-4	3-6	4-8	8-10
Умеренное	2-4	4-8	6-12	9-16	10-20
Сильное	4-8	8-16	12-24	16-32	20-40
Зона чрезвычайной экологической ситуации Зона экологического бедствия	8-16	16-32	24-48	32-64	40-80
	> 16	> 32	> 48	> 64	> 80

Пример. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: диоксид азота – 0,056

мг/м 3 ; бенз(а)пирен – 0,0008 мкг/м 3 ; диоксид серы – 2,5 мг/м 3 ; оксид углерода – 2,7 мг/м 3 ; бензол 0,2 мг/м 3 ; свинец 3,4·10 $^{-4}$ мг/м 3 ; пыль 0,63 мг/м 3 .

Решение.

Рассчитаем нормированное содержание для каждого загрязнителя по формуле

$$I_i = \frac{q_{cp.i} \cdot k_i}{\Pi \coprod K_{cc.i}}$$

$$I_{NO_2} = \frac{0,056 \cdot 1,3}{0,04} = 1,82$$
 $I_{SO_2} = \frac{2,5 \cdot 1}{0,05} = 50$ $I_{E(A)II} = \frac{0,0008 \cdot 1,5}{0,001} = 1,2$ $I_{CO} = \frac{2,7 \cdot 0,85}{3,0} = 0,765$ $I_{E(A)II} = \frac{0,2 \cdot 1,3}{0,1} = 2,6$ $I_{Pb} = \frac{3,4 \cdot 10^{-4} \cdot 1,5}{3,0 \cdot 10^{-4}} = 1,7$ $I_{Pb} = \frac{0,63 \cdot 1}{0,5} = 1,26$

Из рассчитанных нормированных параметров выбираем пять веществ с максимальным значением I, т.е. диоксид серы, свинец, диоксид азота, бензол и пыль, и рассчитываем ИЗА:

$$И3A = I_{SO_2} + I_{Pb} + I_{NO_2} + I_{бензол} + I_{пыль} = 50+1,9+1,82+2,6+1,26 = 59,58$$

В соответствии со значением ИЗА состояние загрязнения атмосферного воздуха – *критическое*, что отвечает зонам ЧЭС.

Задания для самостоятельной работы

- 1. Что понимают под рефлекторным действием? Резорбтивным действием?
 - 2. Что такое ИЗА? Как он рассчитывается?
- 3. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: оксид азота -0.47 мг/м³; аммиак–0.038 мкг/м³; диоксид серы -1.2 мг/м³; оксид углерода -2.7 мг/м³; бензол 0.8 мг/м³; пыль 0.61 мг/м³; диоксид азота 0.05 мг/м³.

- 4. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: диоксид азота -0.027 мг/м³; диоксид серы -0.057 мг/м³; оксид углерода -4.2 мг/м³; бенз(а)пирен 0.0005 мг/м³; свинец $4\cdot10^{-5}$ мг/м³; пыль 1.3 мг/м³.
- 5. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: сероводород $-5\cdot10^{-3}$ мг/м³; бенз(а)пирен -0,0002 мкг/м³; диоксид серы -0,37 мг/м³; оксид азота -0,69 мг/м³; бензол 0,8 мг/м³; пыль 0,24 мг/м³.
- 6. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: диоксид серы -0.5 мг/м³; оксид углерода -1.2 мг/м³; бензол 0.002 мг/м³; свинец $0.7 \cdot 10^{-4}$ мг/м³; пыль 1.6 мг/м³; диоксид азота -0.006 мг/м³; бенз(а)пирен -0.0003 мкг/м³; оксид азота 0.022 мг/м³.
- 7. Рассчитайте ИЗА, если среднее содержание загрязнителей в атмосферном воздухе в пункте наблюдения составило: пыль 0.82 мг/м^3 ; сероводород $1 \cdot 10^{-3} \text{ мг/м}^3$; диоксид азота -0.09 мг/м^3 ; бенз(а)пирен -0.001 мкг/м^3 ; диоксид серы -1.9 мг/м^3 ; оксид углерода -1.8 мг/м^3 ; бензол 0.01 мг/м^3 .
- 8. Что такое комплексный показатель загрязнения атмосферного воздуха? Как он определяется?
- 9. При каких значениях комплексного показателя загрязнения атмосферного воздуха территории относят к зонам чрезвычайной экологической ситуации? К зонам экологического бедствия?
- 10. ПДК максимально разовая SO_2 составляет 0,5 мг/м³. Какой может быть (больше или меньше) ПДК для рабочей зоны?
- 11. ПДК максимально разовая SO_2 составляет 0,5 мг/м³. Какой может быть (больше или меньше) ПДК среднесуточная?
- 12. ПДК максимально разовая для летучей золы составляет 0.5 мг/м^3 . Какой может быть (больше или меньше) ПДК для рабочей зоны?
- 13. ПДК максимально разовая для летучей золы составляет 0,5 мг/м³. Какой может быть (больше или меньше) ПДК среднесуточная?
- 14. Максимальная разовая ПДК для СО составляет 5 мг/м³, какой будет среднесуточная концентрация этого вещества: 1) 3 мг/м³; 2) 6 мг/м³; 3) 7 мг/м³; 4) 10 мг/м³; 5) такая же?