Stochastic Gradient Descent STAT 672 Project

Tom Wallace

George Mason University

Spring 2018

Optimization is fundamental to statistical modeling

Suppose that we have a typical supervised classification problem

- Non-parametric: no assumptions about distribution of data
- Feature vector \mathbf{X}_i , label Y_i
- ullet Want to find best prediction function f_w^* from class ${\mathcal F}$
- Optimization: pick weights $\hat{\mathbf{w}}$ that minimize empirical risk according to some convex loss function $L(f_w(x), y)$

Our lack of assumptions takes away some familiar tools for finding $\hat{\boldsymbol{w}}$

- Cannot analytically identify $\hat{\mathbf{w}}$ (e.g. in OLS = $(X'X)^{-1}X'Y$))
- Newton-Raphson requires 2nd derivative of L, which might be a pain (unlike in, for example, GLM)

But we still know that if L is convex, there is a unique global minimum, and the gradient at that point must be 0

Gradient descent is an iterative search procedure

A more formal explanation

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma \frac{1}{n} \sum_{i=1}^n \nabla_w L(f_w(\mathbf{X}_i), y_i)$$

Stop if gradient $\leq \epsilon$

Step size γ can vary over time

Theoretical guarantees on speed of convergence ($\rho :=$ size of error):

- ullet Version presented here: $-\log
 ho\sim t$
- More optimized version: $-\log\log\rho\sim t$

Batch gradient descent is computationally expensive

In "plain" (batch) gradient descent, for every step, we have to evaluate the gradient at every observation

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma \frac{1}{n} \sum_{i=1}^n \nabla_w L(f_w(\mathbf{X}_i), y_i)$$

This becomes computationally intractable as n grows large

- If we have n = 10 million, we have to evaluate the gradient 10 million times for every step (and the algorithm may take many steps to converge)
- May take hours or days to converge

Stochastic gradient descent (SGD) takes less time

For each step, gradient is computed for a single randomly chosen observation *i*:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma \nabla_w L(f_w(\mathbf{X}_i), y_i)$$

This simplification makes approximation much "noisier", and hence SGD requires more iterations

But, each iteration is faster and so SGD can reach a predefined level of risk or error in less time

Spring 2018

SGD is noisier than batch GD

Source: towardsdatascience.com

SGD is useful when n is large & compute time is important

	GD	SGD
Time to accuracy $ ho$	$n\log \frac{1}{\rho}$	$\frac{1}{ ho}$

Time to (fixed) accuracy

SGD is widely used in industry

If a Silicon Valley press release uses any of the following phrases...

- "Neural networks"
- "Machine learning"
- "AI"

...SGD probably is involved.

Example: Google's **AlphaGo** program.

Google slides from ICML 2016

Supervised learning of policy networks

Policy network: 12 layer convolutional neural network

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

$$\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

Google DeepMind