1. The Cell

- 1. 1308 Bonus Credit Chapter #1--Cell Communication
 - 1. Introduction
 - 2. <u>Signaling Molecules and Cellular Receptors</u>
 - 3. Propagation of the Signal
 - 4. Response to the Signal
 - 5. <u>Signaling in Single-Celled Organisms</u>
- 2. Biological Diversity
 - 1. 1308 Bonus Credit Chapter #2--Viruses
 - 1. Introduction
 - 2. <u>Viral Evolution, Morphology, and Classification</u>
 - 3. Virus Infections and Hosts
 - 4. Prevention and Treatment of Viral Infections
 - 5. Other Acellular Entities: Prions and Viroids
 - 2. 1308 Bonus Credit Chapter #3--Prokaryotes: Bacteria and Archaea
 - 1. Introduction
 - 2. Prokaryotic Diversity
 - 3. Structure of Prokaryotes
 - 4. <u>Prokaryotic Metabolism</u>
 - 5. Bacterial Diseases in Humans
 - 6. Beneficial Prokaryotes
- 3. Plant Structure and Function
 - 1. 1308 Bonus Credit Chapter #4--Plant Form and Physiology
 - 1. Introduction
 - 2. The Plant Body
 - 3. Stems
 - 4. Roots
 - 5. Leaves
 - 6. Transport of Water and Solutes in Plants

- 7. <u>Plant Sensory Systems and Responses</u>
- 2. 1308 Bonus Credit Chapter #5--Soil and Plant Nutrition
 - 1. Introduction
 - 2. Nutritional Requirements of Plants
 - 3. The Soil
 - 4. Nutritional Adaptations of Plants
- 3. 1308 Bonus Credit Chapter #6--Plant Reproduction
 - 1. Introduction
 - 2. Reproductive Development and Structure
 - 3. Pollination and Fertilization
 - 4. Asexual Reproduction
- 4. Animal Structure and Function
 - 1. 1308 Bonus Credit Chapter #7--The Animal Body: Basic Form and Function
 - 1. Introduction
 - 2. Animal Form and Function
 - 3. Animal Primary Tissues
 - 4. Homeostasis
 - 2. 1308 Bonus Credit Chapter #8--Animal Nutrition and the Digestive System
 - 1. Introduction
 - 2. <u>Digestive Systems</u>
 - 3. Nutrition and Energy Production
 - 4. Digestive System Processes
 - 5. <u>Digestive System Regulation</u>

Introduction class="introduction"

Have you ever become separated from a friend while in a crowd? If so, you know the challenge of searching for someone when surrounded by thousands of other people. If you and your friend have cell phones, your chances of finding each other are good. A cell phone's ability to send and receive messages makes it an ideal communicatio n device. (credit: modification of work by Vincent and Bella Productions)

Imagine what life would be like if you and the people around you could not communicate. You would not be able to express your wishes to others, nor could you ask questions to find out more about your environment. Social organization is dependent on communication between the individuals that comprise that society; without communication, society would fall apart.

As with people, it is vital for individual cells to be able to interact with their environment. This is true whether a cell is growing by itself in a pond or is one of many cells that form a larger organism. In order to properly respond to external stimuli, cells have developed complex mechanisms of communication that can receive a message, transfer the information across the plasma membrane, and then produce changes within the cell in response to the message.

In multicellular organisms, cells send and receive chemical messages constantly to coordinate the actions of distant organs, tissues, and cells. The ability to send messages quickly and efficiently enables cells to coordinate and fine-tune their functions.

While the necessity for cellular communication in larger organisms seems obvious, even single-celled organisms communicate with each other. Yeast cells signal each other to aid mating. Some forms of bacteria coordinate their actions in order to form large complexes called biofilms or to organize the production of toxins to remove competing organisms. The ability of cells to communicate through chemical signals originated in single cells and was essential for the evolution of multicellular organisms. The efficient and error-free function of communication systems is vital for all life as we know it.

Signaling Molecules and Cellular Receptors By the end of this section, you will be able to:

- Describe four types of signaling found in multicellular organisms
- Compare internal receptors with cell-surface receptors
- Recognize the relationship between a ligand's structure and its mechanism of action

There are two kinds of communication in the world of living cells. Communication between cells is called **intercellular signaling**, and communication within a cell is called **intracellular signaling**. An easy way to remember the distinction is by understanding the Latin origin of the prefixes: inter- means "between" (for example, intersecting lines are those that cross each other) and intra- means "inside" (like intravenous).

Chemical signals are released by **signaling cells** in the form of small, usually volatile or soluble molecules called ligands. A **ligand** is a molecule that binds another specific molecule, in some cases, delivering a signal in the process. Ligands can thus be thought of as signaling molecules. Ligands interact with proteins in **target cells**, which are cells that are affected by chemical signals; these proteins are also called **receptors**. Ligands and receptors exist in several varieties; however, a specific ligand will have a specific receptor that typically binds only that ligand.

Forms of Signaling

There are four categories of chemical signaling found in multicellular organisms: paracrine signaling, endocrine signaling, autocrine signaling, and direct signaling across gap junctions ([link]). The main difference between the different categories of signaling is the distance that the signal travels through the organism to reach the target cell. Not all cells are affected by the same signals.

In chemical signaling, a cell may target itself (autocrine signaling), a cell connected by gap junctions, a nearby cell (paracrine signaling), or a distant cell (endocrine signaling).

Paracrine signaling acts on nearby cells, endocrine signaling uses the circulatory system to transport ligands, and autocrine signaling acts on the signaling cell. Signaling via gap junctions involves signaling molecules moving directly between adjacent cells.

Paracrine Signaling

Signals that act locally between cells that are close together are called **paracrine signals**. Paracrine signals move by diffusion through the

extracellular matrix. These types of signals usually elicit quick responses that last only a short amount of time. In order to keep the response localized, paracrine ligand molecules are normally quickly degraded by enzymes or removed by neighboring cells. Removing the signals will reestablish the concentration gradient for the signal, allowing them to quickly diffuse through the intracellular space if released again.

One example of paracrine signaling is the transfer of signals across synapses between nerve cells. A nerve cell consists of a cell body, several short, branched extensions called dendrites that receive stimuli, and a long extension called an axon, which transmits signals to other nerve cells or muscle cells. The junction between nerve cells where signal transmission occurs is called a synapse. A **synaptic signal** is a chemical signal that travels between nerve cells. Signals within the nerve cells are propagated by fast-moving electrical impulses. When these impulses reach the end of the axon, the signal continues on to a dendrite of the next cell by the release of chemical ligands called **neurotransmitters** by the presynaptic cell (the cell emitting the signal). The neurotransmitters are transported across the very small distances between nerve cells, which are called **chemical synapses** ([link]). The small distance between nerve cells allows the signal to travel quickly; this enables an immediate response, such as, Take your hand off the stove!

When the neurotransmitter binds the receptor on the surface of the postsynaptic cell, the electrochemical potential of the target cell changes, and the next electrical impulse is launched. The neurotransmitters that are released into the chemical synapse are degraded quickly or get reabsorbed by the presynaptic cell so that the recipient nerve cell can recover quickly and be prepared to respond rapidly to the next synaptic signal.

Synapse

The distance between the presynaptic cell and the postsynaptic cell—called the synaptic gap—is very small and allows for rapid diffusion of the neurotransmitter. Enzymes in the synapatic cleft degrade some types of neurotransmitters to terminate the signal.

Endocrine Signaling

Signals from distant cells are called **endocrine signals**, and they originate from **endocrine cells**. (In the body, many endocrine cells are located in endocrine glands, such as the thyroid gland, the hypothalamus, and the pituitary gland.) These types of signals usually produce a slower response

but have a longer-lasting effect. The ligands released in endocrine signaling are called hormones, signaling molecules that are produced in one part of the body but affect other body regions some distance away.

Hormones travel the large distances between endocrine cells and their target cells via the bloodstream, which is a relatively slow way to move throughout the body. Because of their form of transport, hormones get diluted and are present in low concentrations when they act on their target cells. This is different from paracrine signaling, in which local concentrations of ligands can be very high.

Autocrine Signaling

Autocrine signals are produced by signaling cells that can also bind to the ligand that is released. This means the signaling cell and the target cell can be the same or a similar cell (the prefix *auto*- means self, a reminder that the signaling cell sends a signal to itself). This type of signaling often occurs during the early development of an organism to ensure that cells develop into the correct tissues and take on the proper function. Autocrine signaling also regulates pain sensation and inflammatory responses. Further, if a cell is infected with a virus, the cell can signal itself to undergo programmed cell death, killing the virus in the process. In some cases, neighboring cells of the same type are also influenced by the released ligand. In embryological development, this process of stimulating a group of neighboring cells may help to direct the differentiation of identical cells into the same cell type, thus ensuring the proper developmental outcome.

Direct Signaling Across Gap Junctions

Gap junctions in animals and plasmodesmata in plants are connections between the plasma membranes of neighboring cells. These water-filled channels allow small signaling molecules, called **intracellular mediators**, to diffuse between the two cells. Small molecules, such as calcium ions (Ca²⁺), are able to move between cells, but large molecules like proteins

and DNA cannot fit through the channels. The specificity of the channels ensures that the cells remain independent but can quickly and easily transmit signals. The transfer of signaling molecules communicates the current state of the cell that is directly next to the target cell; this allows a group of cells to coordinate their response to a signal that only one of them may have received. In plants, plasmodesmata are ubiquitous, making the entire plant into a giant, communication network.

Types of Receptors

Receptors are protein molecules in the target cell or on its surface that bind ligand. There are two types of receptors, internal receptors and cell-surface receptors.

Internal receptors

Internal receptors, also known as intracellular or cytoplasmic receptors, are found in the cytoplasm of the cell and respond to hydrophobic ligand molecules that are able to travel across the plasma membrane. Once inside the cell, many of these molecules bind to proteins that act as regulators of mRNA synthesis (transcription) to mediate gene expression. Gene expression is the cellular process of transforming the information in a cell's DNA into a sequence of amino acids, which ultimately forms a protein. When the ligand binds to the internal receptor, a conformational change is triggered that exposes a DNA-binding site on the protein. The ligandreceptor complex moves into the nucleus, then binds to specific regulatory regions of the chromosomal DNA and promotes the initiation of transcription ([link]). Transcription is the process of copying the information in a cells DNA into a special form of RNA called messenger RNA (mRNA); the cell uses information in the mRNA (which moves out into the cytoplasm and associates with ribosomes) to link specific amino acids in the correct order, producing a protein. Internal receptors can directly influence gene expression without having to pass the signal on to other receptors or messengers.

Hydrophobic signaling molecules typically diffuse across the plasma membrane and interact with intracellular receptors in the cytoplasm.

Many intracellular receptors are transcription factors that interact with DNA in the nucleus and regulate gene expression.

Cell-Surface Receptors

Cell-surface receptors, also known as transmembrane receptors, are cell surface, membrane-anchored (integral) proteins that bind to external ligand molecules. This type of receptor spans the plasma membrane and performs signal transduction, in which an extracellular signal is converted into an intercellular signal. Ligands that interact with cell-surface receptors do not have to enter the cell that they affect. Cell-surface receptors are also called

cell-specific proteins or markers because they are specific to individual cell types.

Because cell-surface receptor proteins are fundamental to normal cell functioning, it should come as no surprise that a malfunction in any one of these proteins could have severe consequences. Errors in the protein structures of certain receptor molecules have been shown to play a role in hypertension (high blood pressure), asthma, heart disease, and cancer.

Each cell-surface receptor has three main components: an external ligand-binding domain, a hydrophobic membrane-spanning region, and an intracellular domain inside the cell. The ligand-binding domain is also called the **extracellular domain**. The size and extent of each of these domains vary widely, depending on the type of receptor.

Note:

Evolution Connection

How Viruses Recognize a Host

Unlike living cells, many viruses do not have a plasma membrane or any of the structures necessary to sustain life. Some viruses are simply composed of an inert protein shell containing DNA or RNA. To reproduce, viruses must invade a living cell, which serves as a host, and then take over the hosts cellular apparatus. But how does a virus recognize its host? Viruses often bind to cell-surface receptors on the host cell. For example, the virus that causes human influenza (flu) binds specifically to receptors on membranes of cells of the respiratory system. Chemical differences in the cell-surface receptors among hosts mean that a virus that infects a specific species (for example, humans) cannot infect another species (for example, chickens).

However, viruses have very small amounts of DNA or RNA compared to humans, and, as a result, viral reproduction can occur rapidly. Viral reproduction invariably produces errors that can lead to changes in newly produced viruses; these changes mean that the viral proteins that interact with cell-surface receptors may evolve in such a way that they can bind to receptors in a new host. Such changes happen randomly and quite often in the reproductive cycle of a virus, but the changes only matter if a virus

with new binding properties comes into contact with a suitable host. In the case of influenza, this situation can occur in settings where animals and people are in close contact, such as poultry and swine farms. [footnote] Once a virus jumps to a new host, it can spread quickly. Scientists watch newly appearing viruses (called emerging viruses) closely in the hope that such monitoring can reduce the likelihood of global viral epidemics.

A. B. Sigalov, The School of Nature. IV. Learning from Viruses, Self/Nonself 1, no. 4 (2010): 282-298. Y. Cao, X. Koh, L. Dong, X. Du, A. Wu, X. Ding, H. Deng, Y. Shu, J. Chen, T. Jiang, Rapid Estimation of Binding Activity of Influenza Virus Hemagglutinin to Human and Avian Receptors, PLoS One 6, no. 4 (2011): e18664.

Cell-surface receptors are involved in most of the signaling in multicellular organisms. There are three general categories of cell-surface receptors: ion channel-linked receptors, G-protein-linked receptors, and enzyme-linked receptors.

Ion channel-linked receptors bind a ligand and open a channel through the membrane that allows specific ions to pass through. To form a channel, this type of cell-surface receptor has an extensive membrane-spanning region. In order to interact with the phospholipid fatty acid tails that form the center of the plasma membrane, many of the amino acids in the membrane-spanning region are hydrophobic in nature. Conversely, the amino acids that line the inside of the channel are hydrophilic to allow for the passage of water or ions. When a ligand binds to the extracellular region of the channel, there is a conformational change in the proteins structure that allows ions such as sodium, calcium, magnesium, and hydrogen to pass through ([link]).

Gated ion channels form a pore through the plasma membrane that opens when the signaling molecule binds. The open pore then allows ions to flow into or out of the cell.

G-protein-linked receptors bind a ligand and activate a membrane protein called a G-protein. The activated G-protein then interacts with either an ion channel or an enzyme in the membrane ([link]). All G-protein-linked receptors have seven transmembrane domains, but each receptor has its own specific extracellular domain and G-protein-binding site.

Cell signaling using G-protein-linked receptors occurs as a cyclic series of events. Before the ligand binds, the inactive G-protein can bind to a newly revealed site on the receptor specific for its binding. Once the ligand binds to the receptor, the resultant shape change activates the G-protein, which releases GDP and picks up GTP. The subunits of the G-protein then split into the α subunit and the $\beta\gamma$ subunit. One or both of these G-protein fragments may be able to activate other proteins as a result. After a while, the GTP on the active α subunit of the G-protein is hydrolyzed to GDP and the $\beta\gamma$ subunit is deactivated. The subunits reassociate to form the inactive G-protein and the cycle begins anew.

Heterotrimeric G proteins have three subunits: α , β , and γ . When a signaling molecule binds to a G-protein-coupled receptor in the plasma membrane, a GDP molecule associated with the α subunit is exchanged for GTP. The β and γ subunits dissociate from the α subunit, and a cellular response is triggered either by the α subunit or the dissociated $\beta\gamma$ pair. Hydrolysis of GTP to GDP terminates the signal.

G-protein-linked receptors have been extensively studied and much has been learned about their roles in maintaining health. Bacteria that are pathogenic to humans can release poisons that interrupt specific G-protein-

linked receptor function, leading to illnesses such as pertussis, botulism, and cholera. In cholera ([link]), for example, the water-borne bacterium *Vibrio cholerae* produces a toxin, choleragen, that binds to cells lining the small intestine. The toxin then enters these intestinal cells, where it modifies a G-protein that controls the opening of a chloride channel and causes it to remain continuously active, resulting in large losses of fluids from the body and potentially fatal dehydration as a result.

Transmitted primarily through contaminated drinking water, cholera is a major cause of death in the developing world and in areas where natural disasters interrupt the availability of clean water. The cholera bacterium, *Vibrio cholerae*, creates a toxin that modifies G-proteinmediated cell signaling

pathways in the intestines. Modern sanitation eliminates the threat of cholera outbreaks, such as the one that swept through New York City in 1866. This poster from that era shows how, at that time, the way that the disease was transmitted was not understood. (credit: New York City Sanitary Commission)

Enzyme-linked receptors are cell-surface receptors with intracellular domains that are associated with an enzyme. In some cases, the intracellular domain of the receptor itself is an enzyme. Other enzyme-linked receptors have a small intracellular domain that interacts directly with an enzyme. The enzyme-linked receptors normally have large extracellular and intracellular domains, but the membrane-spanning region consists of a single alpha-helical region of the peptide strand. When a ligand binds to the extracellular domain, a signal is transferred through the membrane, activating the enzyme. Activation of the enzyme sets off a chain of events within the cell that eventually leads to a response. One example of this type of enzyme-linked receptor is the tyrosine kinase receptor ([link]). A kinase is an enzyme that transfers phosphate groups from ATP to another protein. The tyrosine kinase receptor transfers phosphate groups to tyrosine molecules (tyrosine residues). First, signaling molecules bind to the extracellular domain of two nearby tyrosine kinase receptors. The two neighboring receptors then bond together, or dimerize. Phosphates are then added to tyrosine residues on the intracellular domain of the receptors (phosphorylation). The phosphorylated residues can then transmit the signal to the next messenger within the cytoplasm.

Note: **Art Connection** Plasma membrane Receptor tyrosine kinase Cytoplasm When signaling molecules bind the receptors, the receptors dimerize. Signaling molecule Tyrosine • residues Tyrosine residues on the intracellular domain are phosphorylated, triggering a downstream cellular response. hosphorylated tyrosine résidues Cellular response

A receptor tyrosine kinase is an enzyme-linked receptor with a single transmembrane region, and extracellular and intracellular domains.

Binding of a signaling molecule to the extracellular domain causes the receptor to dimerize. Tyrosine residues on the intracellular domain are then autophosphorylated,

triggering a downstream cellular response. The signal is terminated by a phosphatase that removes the phosphates from the phosphotyrosine residues.

HER2 is a receptor tyrosine kinase. In 30 percent of human breast cancers, HER2 is permanently activated, resulting in unregulated cell division. Lapatinib, a drug used to treat breast cancer, inhibits HER2 receptor tyrosine kinase autophosphorylation (the process by which the receptor adds phosphates onto itself), thus reducing tumor growth by 50 percent. Besides autophosphorylation, which of the following steps would be inhibited by Lapatinib?

- a. Signaling molecule binding, dimerization, and the downstream cellular response
- b. Dimerization, and the downstream cellular response
- c. The downstream cellular response
- d. Phosphatase activity, dimerization, and the downsteam cellular response

Signaling Molecules

Produced by signaling cells and the subsequent binding to receptors in target cells, ligands act as chemical signals that travel to the target cells to coordinate responses. The types of molecules that serve as ligands are incredibly varied and range from small proteins to small ions like calcium (Ca²⁺).

Small Hydrophobic Ligands

Small hydrophobic ligands can directly diffuse through the plasma membrane and interact with internal receptors. Important members of this class of ligands are the steroid hormones. Steroids are lipids that have a hydrocarbon skeleton with four fused rings; different steroids have different functional groups attached to the carbon skeleton. Steroid hormones include the female sex hormone, estradiol, which is a type of estrogen; the male sex hormone, testosterone; and cholesterol, which is an important structural component of biological membranes and a precursor of steriod hormones ([link]). Other hydrophobic hormones include thyroid hormones and vitamin D. In order to be soluble in blood, hydrophobic ligands must bind to carrier proteins while they are being transported through the bloodstream.

Steroid hormones have similar chemical structures to their precursor, cholesterol. Because these molecules are small and hydrophobic, they can diffuse directly across the plasma membrane into the cell, where they interact with internal receptors.

Water-Soluble Ligands

Water-soluble ligands are polar and therefore cannot pass through the plasma membrane unaided; sometimes, they are too large to pass through the membrane at all. Instead, most water-soluble ligands bind to the extracellular domain of cell-surface receptors. This group of ligands is quite diverse and includes small molecules, peptides, and proteins.

Other Ligands

Nitric oxide (NO) is a gas that also acts as a ligand. It is able to diffuse directly across the plasma membrane, and one of its roles is to interact with receptors in smooth muscle and induce relaxation of the tissue. NO has a very short half-life and therefore only functions over short distances. Nitroglycerin, a treatment for heart disease, acts by triggering the release of NO, which causes blood vessels to dilate (expand), thus restoring blood flow to the heart. NO has become better known recently because the pathway that it affects is targeted by prescription medications for erectile dysfunction, such as Viagra (erection involves dilated blood vessels).

Section Summary

Cells communicate by both inter- and intracellular signaling. Signaling cells secrete ligands that bind to target cells and initiate a chain of events within the target cell. The four categories of signaling in multicellular organisms are paracrine signaling, endocrine signaling, autocrine signaling, and direct signaling across gap junctions. Paracrine signaling takes place over short distances. Endocrine signals are carried long distances through the bloodstream by hormones, and autocrine signals are received by the same cell that sent the signal or other nearby cells of the same kind. Gap junctions allow small molecules, including signaling molecules, to flow between neighboring cells.

Internal receptors are found in the cell cytoplasm. Here, they bind ligand molecules that cross the plasma membrane; these receptor-ligand complexes move to the nucleus and interact directly with cellular DNA. Cell-surface receptors transmit a signal from outside the cell to the cytoplasm. Ion channel-linked receptors, when bound to their ligands, form a pore through the plasma membrane through which certain ions can pass. G-protein-linked receptors interact with a G-protein on the cytoplasmic side of the plasma membrane, promoting the exchange of bound GDP for GTP and interacting with other enzymes or ion channels to transmit a signal. Enzyme-linked receptors transmit a signal from outside the cell to an intracellular domain of a membrane-bound enzyme. Ligand binding causes activation of the enzyme. Small hydrophobic ligands (like steroids) are able to penetrate the plasma membrane and bind to internal receptors. Watersoluble hydrophilic ligands are unable to pass through the membrane; instead, they bind to cell-surface receptors, which transmit the signal to the inside of the cell.

Art Connections

Exercise:

Problem:

[link] HER2 is a receptor tyrosine kinase. In 30 percent of human breast cancers, HER2 is permanently activated, resulting in unregulated cell division. Lapatinib, a drug used to treat breast cancer, inhibits HER2 receptor tyrosine kinase autophosphorylation (the process by which the receptor adds phosphates onto itself), thus reducing tumor growth by 50 percent. Besides autophosphorylation, which of the following steps would be inhibited by Lapatinib?

- a. Signaling molecule binding, dimerization, and the downstream cellular response.
- b. Dimerization, and the downstream cellular response.
- c. The downstream cellular response.
- d. Phosphatase activity, dimerization, and the downsteam cellular response.

Solution:

[link] C. The downstream cellular response would be inhibited.

Review Questions

Exercise:

Problem:

What property prevents the ligands of cell-surface receptors from entering the cell?

- a. The molecules bind to the extracellular domain.
- b. The molecules are hydrophilic and cannot penetrate the hydrophobic interior of the plasma membrane.
- c. The molecules are attached to transport proteins that deliver them through the bloodstream to target cells.
- d. The ligands are able to penetrate the membrane and directly influence gene expression upon receptor binding.

Solution:

В

Exercise:

Problem:

The secretion of hormones by the pituitary gland is an example of

a. autocrine signaling

b. paracrine signaling

c. endocrine signaling

d. direct signaling across gap junctions

Solution:
C
Exercise:
Problem:
Why are ion channels necessary to transport ions into or out of a cell?
a. Ions are too large to diffuse through the membrane.b. Ions are charged particles and cannot diffuse through the hydrophobic interior of the membrane.c. Ions do not need ion channels to move through the membrane.d. Ions bind to carrier proteins in the bloodstream, which must be removed before transport into the cell.
Solution:
В
Exercise:
Problem:
Endocrine signals are transmitted more slowly than paracrine signals because
a. the ligands are transported through the bloodstream and travel greater distances
b. the target and signaling cells are close together
c. the ligands are degraded rapidly d. the ligands don't bind to carrier proteins during transport

Solution:

A

Free Response

Exercise:

Problem:

What is the difference between intracellular signaling and intercellular signaling?

Solution:

Intracellular signaling occurs within a cell, and intercellular signaling occurs between cells.

Exercise:

Problem:

How are the effects of paracrine signaling limited to an area near the signaling cells?

Solution:

The secreted ligands are quickly removed by degradation or reabsorption into the cell so that they cannot travel far.

Exercise:

Problem:

What are the differences between internal receptors and cell-surface receptors?

Solution:

Internal receptors are located inside the cell, and their ligands enter the cell to bind the receptor. The complex formed by the internal receptor and the ligand then enters the nucleus and directly affects protein production by binding to the chromosomal DNA and initiating the making of mRNA that codes for proteins. Cell-surface receptors, however, are embedded in the plasma membrane, and their ligands do

not enter the cell. Binding of the ligand to the cell-surface receptor initiates a cell signaling cascade and does not directly influence the making of proteins; however, it may involve the activation of intracellular proteins.

Exercise:

Problem:

Cells grown in the laboratory are mixed with a dye molecule that is unable to pass through the plasma membrane. If a ligand is added to the cells, observations show that the dye enters the cells. What type of receptor did the ligand bind to on the cell surface?

Solution:

An ion channel receptor opened up a pore in the membrane, which allowed the ionic dye to move into the cell.

Glossary

autocrine signal

signal that is sent and received by the same or similar nearby cells

cell-surface receptor

cell-surface protein that transmits a signal from the exterior of the cell to the interior, even though the ligand does not enter the cell

chemical synapse

small space between axon terminals and dendrites of nerve cells where neurotransmitters function

endocrine cell

cell that releases ligands involved in endocrine signaling (hormones)

endocrine signal

long-distance signal that is delivered by ligands (hormones) traveling through an organisms circulatory system from the signaling cell to the

target cell

enzyme-linked receptor

cell-surface receptor with intracellular domains that are associated with membrane-bound enzymes

extracellular domain

region of a cell-surface receptor that is located on the cell surface

G-protein-linked receptor

cell-surface receptor that activates membrane-bound G-proteins to transmit a signal from the receptor to nearby membrane components

intercellular signaling

communication between cells

internal receptor

(also, intracellular receptor) receptor protein that is located in the cytosol of a cell and binds to ligands that pass through the plasma membrane

intracellular mediator

(also, second messenger) small molecule that transmits signals within a cell

intracellular signaling

communication within cells

ion channel-linked receptor

cell-surface receptor that forms a plasma membrane channel, which opens when a ligand binds to the extracellular domain (ligand-gated channels)

ligand

molecule produced by a signaling cell that binds with a specific receptor, delivering a signal in the process

neurotransmitter

chemical ligand that carries a signal from one nerve cell to the next

paracrine signal

signal between nearby cells that is delivered by ligands traveling in the liquid medium in the space between the cells

receptor

protein in or on a target cell that bind to ligands

signaling cell

cell that releases signal molecules that allow communication with another cell

synaptic signal

chemical signal (neurotransmitter) that travels between nerve cells

target cell

cell that has a receptor for a signal or ligand from a signaling cell

Propagation of the Signal By the end of this section, you will be able to:

- Explain how the binding of a ligand initiates signal transduction throughout a cell
- Recognize the role of phosphorylation in the transmission of intracellular signals
- Evaluate the role of second messengers in signal transmission

Once a ligand binds to a receptor, the signal is transmitted through the membrane and into the cytoplasm. Continuation of a signal in this manner is called **signal transduction**. Signal transduction only occurs with cell-surface receptors because internal receptors are able to interact directly with DNA in the nucleus to initiate protein synthesis.

When a ligand binds to its receptor, conformational changes occur that affect the receptor's intracellular domain. Conformational changes of the extracellular domain upon ligand binding can propagate through the membrane region of the receptor and lead to activation of the intracellular domain or its associated proteins. In some cases, binding of the ligand causes **dimerization** of the receptor, which means that two receptors bind to each other to form a stable complex called a dimer. A **dimer** is a chemical compound formed when two molecules (often identical) join together. The binding of the receptors in this manner enables their intracellular domains to come into close contact and activate each other.

Binding Initiates a Signaling Pathway

After the ligand binds to the cell-surface receptor, the activation of the receptor's intracellular components sets off a chain of events that is called a **signaling pathway** or a signaling cascade. In a signaling pathway, second messengers, enzymes, and activated proteins interact with specific proteins, which are in turn activated in a chain reaction that eventually leads to a change in the cell's environment ([link]). The events in the cascade occur in a series, much like a current flows in a river. Interactions that occur before a certain point are defined as upstream events, and events after that point are called downstream events.

Note:

Art Connection

Upon binding of epidermal growth factor (EGF) to the EGF receptor (EGFR), two proteins associated with the receptor called GRB2 and SOS activate RAS, a small G-protein.

A protein kinase called RAF is activated by RAS-GTP. RAF phosphorylates MEK, which in turn phosphorylates ERK, a MAP kinase. The phosphorylated ERK enters the nucleus, where it triggers a cellular response.

The epidermal growth factor (EGF) receptor (EGFR) is a receptor tyrosine kinase involved in the regulation of cell growth, wound healing, and tissue repair. When EGF binds to the EGFR, a cascade of downstream events causes the cell to grow and divide. If EGFR is activated at

inappropriate times, uncontrolled cell growth (cancer) may occur.

In certain cancers, the GTPase activity of the RAS G-protein is inhibited. This means that the RAS protein can no longer hydrolyze GTP into GDP. What effect would this have on downstream cellular events?

Signaling pathways can get very complicated very quickly because most cellular proteins can affect different downstream events, depending on the conditions within the cell. A single pathway can branch off toward different endpoints based on the interplay between two or more signaling pathways, and the same ligands are often used to initiate different signals in different cell types. This variation in response is due to differences in protein expression in different cell types. Another complicating element is **signal integration** of the pathways, in which signals from two or more different cell-surface receptors merge to activate the same response in the cell. This process can ensure that multiple external requirements are met before a cell commits to a specific response.

The effects of extracellular signals can also be amplified by enzymatic cascades. At the initiation of the signal, a single ligand binds to a single receptor. However, activation of a receptor-linked enzyme can activate many copies of a component of the signaling cascade, which amplifies the signal.

Methods of Intracellular Signaling

The induction of a signaling pathway depends on the modification of a cellular component by an enzyme. There are numerous enzymatic modifications that can occur, and they are recognized in turn by the next component downstream. The following are some of the more common events in intracellular signaling.

Note:

Link to Learning

Observe an animation of cell signaling at this site.

Phosphorylation

One of the most common chemical modifications that occurs in signaling pathways is the addition of a phosphate group (PO₄⁻³) to a molecule such as a protein in a process called phosphorylation. The phosphate can be added to a nucleotide such as GMP to form GDP or GTP. Phosphates are also often added to serine, threonine, and tyrosine residues of proteins, where they replace the hydroxyl group of the amino acid ([link]). The transfer of the phosphate is catalyzed by an enzyme called a **kinase**. Various kinases are named for the substrate they phosphorylate. Phosphorylation of serine and threonine residues often activates enzymes. Phosphorylation of tyrosine residues can either affect the activity of an enzyme or create a binding site that interacts with downstream components in the signaling cascade. Phosphorylation may activate or inactivate enzymes, and the reversal of phosphorylation, dephosphorylation by a phosphatase, will reverse the effect.

In protein phosphorylation, a phosphate group (PO₄⁻³) is added to residues of the amino acids serine, threonine, and tyrosine.

Second Messengers

Second messengers are small molecules that propagate a signal after it has been initiated by the binding of the signaling molecule to the receptor. These molecules help to spread a signal through the cytoplasm by altering the behavior of certain cellular proteins.

Calcium ion is a widely used second messenger. The free concentration of calcium ions (Ca²⁺) within a cell is very low because ion pumps in the plasma membrane continuously use adenosine-5'-triphosphate (ATP) to remove it. For signaling purposes, Ca²⁺ is stored in cytoplasmic vesicles, such as the endoplasmic reticulum, or accessed from outside the cell. When signaling occurs, ligand-gated calcium ion channels allow the higher levels

of Ca^{2+} that are present outside the cell (or in intracellular storage compartments) to flow into the cytoplasm, which raises the concentration of cytoplasmic Ca^{2+} . The response to the increase in Ca^{2+} varies, depending on the cell type involved. For example, in the β -cells of the pancreas, Ca^{2+} signaling leads to the release of insulin, and in muscle cells, an increase in Ca^{2+} leads to muscle contractions.

Another second messenger utilized in many different cell types is **cyclic AMP** (**cAMP**). Cyclic AMP is synthesized by the enzyme adenylyl cyclase from ATP ([link]). The main role of cAMP in cells is to bind to and activate an enzyme called **cAMP-dependent kinase** (**A-kinase**). A-kinase regulates many vital metabolic pathways: It phosphorylates serine and threonine residues of its target proteins, activating them in the process. A-kinase is found in many different types of cells, and the target proteins in each kind of cell are different. Differences give rise to the variation of the responses to cAMP in different cells.

This diagram shows the mechanism for the formation of cyclic AMP (cAMP). cAMP serves as a second messenger to activate or inactivate proteins within the cell. Termination of the signal occurs when an enzyme called phosphodiesterase converts cAMP into AMP.

Present in small concentrations in the plasma membrane, **inositol phospholipids** are lipids that can also be converted into second messengers. Because these molecules are membrane components, they are located near membrane-bound receptors and can easily interact with them. Phosphatidylinositol (PI) is the main phospholipid that plays a role in cellular signaling. Enzymes known as kinases phosphorylate PI to form PI-phosphate (PIP) and PI-bisphosphate (PIP₂).

The enzyme phospholipase C cleaves PIP_2 to form **diacylglycerol (DAG)** and **inositol triphosphate (IP₃)** ([link]). These products of the cleavage of PIP_2 serve as second messengers. Diacylglycerol (DAG) remains in the plasma membrane and activates protein kinase C (PKC), which then phosphorylates serine and threonine residues in its target proteins. IP_3 diffuses into the cytoplasm and binds to ligand-gated calcium channels in the endoplasmic reticulum to release Ca^{2+} that continues the signal cascade.

The enzyme phospholipase C breaks down PIP₂ into IP₃ and DAG, both of which serve

as second messengers.

Section Summary

Ligand binding to the receptor allows for signal transduction through the cell. The chain of events that conveys the signal through the cell is called a signaling pathway or cascade. Signaling pathways are often very complex because of the interplay between different proteins. A major component of cell signaling cascades is the phosphorylation of molecules by enzymes known as kinases. Phosphorylation adds a phosphate group to serine, threonine, and tyrosine residues in a protein, changing their shapes, and activating or inactivating the protein. Small molecules like nucleotides can also be phosphorylated. Second messengers are small, non-protein molecules that are used to transmit a signal within a cell. Some examples of second messengers are calcium ions (Ca²⁺), cyclic AMP (cAMP), diacylglycerol (DAG), and inositol triphosphate (IP₃).

Art Connections

Exercise:

Problem:

[link] In certain cancers, the GTPase activity of the RAS G-protein is inhibited. This means that the RAS protein can no longer hydrolyze GTP into GDP. What effect would this have on downstream cellular events?

Solution:

[link] ERK would become permanently activated, resulting in cell proliferation, migration, adhesion, and the growth of new blood vessels. Apoptosis would be inhibited.

Review Questions

Exercise:

Problem: Where do DAG and IP₃ originate?

- a. They are formed by phosphorylation of cAMP.
- b. They are ligands expressed by signaling cells.
- c. They are hormones that diffuse through the plasma membrane to stimulate protein production.
- d. They are the cleavage products of the inositol phospholipid, PIP₂.

\circ	•
	lution:
	uuuui.

D

Exercise:

Problem:

What property enables the residues of the amino acids serine, threonine, and tyrosine to be phosphorylated?

- a. They are polar.
- b. They are non-polar.
- c. They contain a hydroxyl group.
- d. They occur more frequently in the amino acid sequence of signaling proteins.

$\boldsymbol{\alpha}$	•	
S O	lution	•
	<i>.</i>	-

 \mathbf{C}

Free Response

Exercise:

Problem:

The same second messengers are used in many different cells, but the response to second messengers is different in each cell. How is this possible?

Solution:

Different cells produce different proteins, including cell-surface receptors and signaling pathway components. Therefore, they respond to different ligands, and the second messengers activate different pathways. Signal integration can also change the end result of signaling.

Exercise:

Problem:

What would happen if the intracellular domain of a cell-surface receptor was switched with the domain from another receptor?

Solution:

The binding of the ligand to the extracellular domain would activate the pathway normally activated by the receptor donating the intracellular domain.

Glossary

```
cyclic AMP (cAMP) second messenger that is derived from ATP
```

cyclic AMP-dependent kinase (also, protein kinase A, or PKA) kinase that is activated by binding to cAMP

diacylglycerol (DAG)

cleavage product of PIP₂ that is used for signaling within the plasma membrane

dimer

chemical compound formed when two molecules join together

dimerization

(of receptor proteins) interaction of two receptor proteins to form a functional complex called a dimer

inositol phospholipid

lipid present at small concentrations in the plasma membrane that is converted into a second messenger; it has inositol (a carbohydrate) as its hydrophilic head group

inositol triphosphate (IP₃)

cleavage product of PIP₂ that is used for signaling within the cell

kinase

enzyme that catalyzes the transfer of a phosphate group from ATP to another molecule

second messenger

small, non-protein molecule that propagates a signal within the cell after activation of a receptor causes its release

signal integration

interaction of signals from two or more different cell-surface receptors that merge to activate the same response in the cell

signal transduction

propagation of the signal through the cytoplasm (and sometimes also the nucleus) of the cell

signaling pathway

(also signaling cascade) chain of events that occurs in the cytoplasm of the cell to propagate the signal from the plasma membrane to produce a response

Response to the Signal By the end of this section, you will be able to:

- Describe how signaling pathways direct protein expression, cellular metabolism, and cell growth
- Identify the function of PKC in signal transduction pathways
- Recognize the role of apoptosis in the development and maintenance of a healthy organism

Inside the cell, ligands bind to their internal receptors, allowing them to directly affect the cell's DNA and protein-producing machinery. Using signal transduction pathways, receptors in the plasma membrane produce a variety of effects on the cell. The results of signaling pathways are extremely varied and depend on the type of cell involved as well as the external and internal conditions. A small sampling of responses is described below.

Gene Expression

Some signal transduction pathways regulate the transcription of RNA. Others regulate the translation of proteins from mRNA. An example of a protein that regulates translation in the nucleus is the MAP kinase ERK. ERK is activated in a phosphorylation cascade when epidermal growth factor (EGF) binds the EGF receptor (see [link]). Upon phosphorylation, ERK enters the nucleus and activates a protein kinase that, in turn, regulates protein translation ([link]).

The MAP kinase ERK phosphorylates MNK1. MNK1 in turn phosphorylates eIF-4E, which is associated with mRNA. The mRNA unfolds and protein sythesis begins.

ERK is a MAP kinase that activates translation when it is phosphorylated. ERK phosphorylates MNK1, which in turn phosphorylates eIF-4E, an elongation initiation factor that, with other initiation factors, is associated with mRNA. When eIF-4E becomes phosphorylated, the mRNA unfolds, allowing protein synthesis in the nucleus to begin. (See [link] for the phosphorylation pathway that activates ERK.)

The second kind of protein with which PKC can interact is a protein that acts as an inhibitor. An **inhibitor** is a molecule that binds to a protein and prevents it from functioning or reduces its function. In this case, the

inhibitor is a protein called I κ -B, which binds to the regulatory protein NF- κ B. (The symbol κ represents the Greek letter kappa.) When I κ -B is bound to NF- κ B, the complex cannot enter the nucleus of the cell, but when I κ -B is phosphorylated by PKC, it can no longer bind NF- κ B, and NF- κ B (a transcription factor) can enter the nucleus and initiate RNA transcription. In this case, the effect of phosphorylation is to inactivate an inhibitor and thereby activate the process of transcription.

Increase in Cellular Metabolism

The result of another signaling pathway affects muscle cells. The activation of β-adrenergic receptors in muscle cells by adrenaline leads to an increase in cyclic AMP (cAMP) inside the cell. Also known as epinephrine, adrenaline is a hormone (produced by the adrenal gland attached to the kidney) that readies the body for short-term emergencies. Cyclic AMP activates PKA (protein kinase A), which in turn phosphorylates two enzymes. The first enzyme promotes the degradation of glycogen by activating intermediate glycogen phosphorylase kinase (GPK) that in turn activates glycogen phosphorylase (GP) that catabolizes glycogen into glucose. (Recall that your body converts excess glucose to glycogen for short-term storage. When energy is needed, glycogen is quickly reconverted to glucose.) Phosphorylation of the second enzyme, glycogen synthase (GS), inhibits its ability to form glycogen from glucose. In this manner, a muscle cell obtains a ready pool of glucose by activating its formation via glycogen degradation and by inhibiting the use of glucose to form glycogen, thus preventing a futile cycle of glycogen degradation and synthesis. The glucose is then available for use by the muscle cell in response to a sudden surge of adrenaline—the "fight or flight" reflex.

Cell Growth

Cell signaling pathways also play a major role in cell division. Cells do not normally divide unless they are stimulated by signals from other cells. The ligands that promote cell growth are called **growth factors**. Most growth factors bind to cell-surface receptors that are linked to tyrosine kinases. These cell-surface receptors are called receptor tyrosine kinases (RTKs).

Activation of RTKs initiates a signaling pathway that includes a G-protein called RAS, which activates the MAP kinase pathway described earlier. The enzyme MAP kinase then stimulates the expression of proteins that interact with other cellular components to initiate cell division.

Note:

Career Connection

Cancer Biologist

Cancer biologists study the molecular origins of cancer with the goal of developing new prevention methods and treatment strategies that will inhibit the growth of tumors without harming the normal cells of the body. As mentioned earlier, signaling pathways control cell growth. These signaling pathways are controlled by signaling proteins, which are, in turn, expressed by genes. Mutations in these genes can result in malfunctioning signaling proteins. This prevents the cell from regulating its cell cycle, triggering unrestricted cell division and cancer. The genes that regulate the signaling proteins are one type of oncogene which is a gene that has the potential to cause cancer. The gene encoding RAS is an oncogene that was originally discovered when mutations in the RAS protein were linked to cancer. Further studies have indicated that 30 percent of cancer cells have a mutation in the RAS gene that leads to uncontrolled growth. If left unchecked, uncontrolled cell division can lead tumor formation and metastasis, the growth of cancer cells in new locations in the body. Cancer biologists have been able to identify many other oncogenes that contribute to the development of cancer. For example, HER2 is a cellsurface receptor that is present in excessive amounts in 20 percent of human breast cancers. Cancer biologists realized that gene duplication led to HER2 overexpression in 25 percent of breast cancer patients and developed a drug called Herceptin (trastuzumab). Herceptin is a monoclonal antibody that targets HER2 for removal by the immune system. Herceptin therapy helps to control signaling through HER2. The use of Herceptin in combination with chemotherapy has helped to increase the overall survival rate of patients with metastatic breast cancer. More information on cancer biology research can be found at the National Cancer Institute website

(http://www.cancer.gov/cancertopics/understandingcancer/targetedtherapie s).

Cell Death

When a cell is damaged, superfluous, or potentially dangerous to an organism, a cell can initiate a mechanism to trigger programmed cell death, or **apoptosis**. Apoptosis allows a cell to die in a controlled manner that prevents the release of potentially damaging molecules from inside the cell. There are many internal checkpoints that monitor a cell's health; if abnormalities are observed, a cell can spontaneously initiate the process of apoptosis. However, in some cases, such as a viral infection or uncontrolled cell division due to cancer, the cell's normal checks and balances fail. External signaling can also initiate apoptosis. For example, most normal animal cells have receptors that interact with the extracellular matrix, a network of glycoproteins that provides structural support for cells in an organism. The binding of cellular receptors to the extracellular matrix initiates a signaling cascade within the cell. However, if the cell moves away from the extracellular matrix, the signaling ceases, and the cell undergoes apoptosis. This system keeps cells from traveling through the body and proliferating out of control, as happens with tumor cells that metastasize.

Another example of external signaling that leads to apoptosis occurs in T-cell development. T-cells are immune cells that bind to foreign macromolecules and particles, and target them for destruction by the immune system. Normally, T-cells do not target "self" proteins (those of their own organism), a process that can lead to autoimmune diseases. In order to develop the ability to discriminate between self and non-self, immature T-cells undergo screening to determine whether they bind to so-called self proteins. If the T-cell receptor binds to self proteins, the cell initiates apoptosis to remove the potentially dangerous cell.

Apoptosis is also essential for normal embryological development. In vertebrates, for example, early stages of development include the formation of web-like tissue between individual fingers and toes ([link]). During the

course of normal development, these unneeded cells must be eliminated, enabling fully separated fingers and toes to form. A cell signaling mechanism triggers apoptosis, which destroys the cells between the developing digits.

The histological section of a foot of a 15-day-old mouse embryo, visualized using light microscopy, reveals areas of tissue between the toes, which apoptosis will eliminate before the mouse reaches its full gestational age at 27 days. (credit: modification of

Termination of the Signal Cascade

The aberrant signaling often seen in tumor cells is proof that the termination of a signal at the appropriate time can be just as important as the initiation of a signal. One method of stopping a specific signal is to degrade the ligand or remove it so that it can no longer access its receptor. One reason that hydrophobic hormones like estrogen and testosterone trigger long-lasting events is because they bind carrier proteins. These proteins allow the insoluble molecules to be soluble in blood, but they also protect the hormones from degradation by circulating enzymes.

Inside the cell, many different enzymes reverse the cellular modifications that result from signaling cascades. For example, **phosphatases** are enzymes that remove the phosphate group attached to proteins by kinases in a process called dephosphorylation. Cyclic AMP (cAMP) is degraded into AMP by **phosphodiesterase**, and the release of calcium stores is reversed by the Ca²⁺ pumps that are located in the external and internal membranes of the cell.

Section Summary

The initiation of a signaling pathway is a response to external stimuli. This response can take many different forms, including protein synthesis, a change in the cell's metabolism, cell growth, or even cell death. Many pathways influence the cell by initiating gene expression, and the methods utilized are quite numerous. Some pathways activate enzymes that interact with DNA transcription factors. Others modify proteins and induce them to change their location in the cell. Depending on the status of the organism, cells can respond by storing energy as glycogen or fat, or making it available in the form of glucose. A signal transduction pathway allows muscle cells to respond to immediate requirements for energy in the form of glucose. Cell growth is almost always stimulated by external signals called growth factors. Uncontrolled cell growth leads to cancer, and mutations in

the genes encoding protein components of signaling pathways are often found in tumor cells. Programmed cell death, or apoptosis, is important for removing damaged or unnecessary cells. The use of cellular signaling to organize the dismantling of a cell ensures that harmful molecules from the cytoplasm are not released into the spaces between cells, as they are in uncontrolled death, necrosis. Apoptosis also ensures the efficient recycling of the components of the dead cell. Termination of the cellular signaling cascade is very important so that the response to a signal is appropriate in both timing and intensity. Degradation of signaling molecules and dephosphorylation of phosphorylated intermediates of the pathway by phosphatases are two ways to terminate signals within the cell.

Review Questions

Exercise:

Problem: What is the function of a phosphatase?

- a. A phosphatase removes phosphorylated amino acids from proteins.
- b. A phosphatase removes the phosphate group from phosphorylated amino acid residues in a protein.
- c. A phosphatase phosphorylates serine, threonine, and tyrosine residues.
- d. A phosphatase degrades second messengers in the cell.

Solution:

B

Exercise:

Problem:How does NF-κB induce gene expression?

a. A small, hydrophobic ligand binds to NF-κB, activating it.

- b. Phosphorylation of the inhibitor $I\kappa$ -B dissociates the complex between it and NF- κ B, and allows NF- κ B to enter the nucleus and stimulate transcription.
- c. NF-kB is phosphorylated and is then free to enter the nucleus and bind DNA.
- d. NF-κB is a kinase that phosphorylates a transcription factor that binds DNA and promotes protein production.

Solution:					
В					
Exercise:					
Problem:					
Apoptosis can occur in a cell when the cell is					
a. damagedb. no longer neededc. infected by a virusd. all of the above					
Solution:					
D					
Exercise:					
Problem: What is the effect of an inhibitor binding an enzyme?					
a. The enzyme is degraded.b. The enzyme is activated.c. The enzyme is inactivated.					

d. The complex is transported out of the cell.

Solution:

Free Response

Exercise:

Problem:

What is a possible result of a mutation in a kinase that controls a pathway that stimulates cell growth?

Solution:

If a kinase is mutated so that it is always activated, it will continuously signal through the pathway and lead to uncontrolled growth and possibly cancer. If a kinase is mutated so that it cannot function, the cell will not respond to ligand binding.

Exercise:

Problem:

How does the extracellular matrix control the growth of cells?

Solution:

Receptors on the cell surface must be in contact with the extracellular matrix in order to receive positive signals that allow the cell to live. If the receptors are not activated by binding, the cell will undergo apoptosis. This ensures that cells are in the correct place in the body and helps to prevent invasive cell growth as occurs in metastasis in cancer.

Glossary

apoptosis

programmed cell death

growth factor

ligand that binds to cell-surface receptors and stimulates cell growth

inhibitor

molecule that binds to a protein (usually an enzyme) and keeps it from functioning

phosphatase

enzyme that removes the phosphate group from a molecule that has been previously phosphorylated

phosphodiesterase

enzyme that degrades cAMP, producing AMP, to terminate signaling

Signaling in Single-Celled Organisms By the end of this section, you will be able to:

- Describe how single-celled yeasts use cell signaling to communicate with one another
- Relate the role of quorum sensing to the ability of some bacteria to form biofilms

Within-cell signaling allows bacteria to respond to environmental cues, such as nutrient levels, some single-celled organisms also release molecules to signal to each other.

Signaling in Yeast

Yeasts are eukaryotes (fungi), and the components and processes found in yeast signals are similar to those of cell-surface receptor signals in multicellular organisms. Budding yeasts ([link]) are able to participate in a process that is similar to sexual reproduction that entails two haploid cells (cells with one-half the normal number of chromosomes) combining to form a diploid cell (a cell with two sets of each chromosome, which is what normal body cells contain). In order to find another haploid yeast cell that is prepared to mate, budding yeasts secrete a signaling molecule called **mating factor**. When mating factor binds to cell-surface receptors in other yeast cells that are nearby, they stop their normal growth cycles and initiate a cell signaling cascade that includes protein kinases and GTP-binding proteins that are similar to G-proteins.

Budding *Saccharomyces cerevisiae* yeast cells can communicate by releasing a signaling molecule called mating factor. In this micrograph, they are visualized using differential interference contrast microscopy, a light microscopy technique that enhances the contrast of the sample.

Signaling in Bacteria

Signaling in bacteria enables bacteria to monitor extracellular conditions, ensure that there are sufficient amounts of nutrients, and ensure that hazardous situations are avoided. There are circumstances, however, when bacteria communicate with each other.

The first evidence of bacterial communication was observed in a bacterium that has a symbiotic relationship with Hawaiian bobtail squid. When the

population density of the bacteria reaches a certain level, specific gene expression is initiated, and the bacteria produce bioluminescent proteins that emit light. Because the number of cells present in the environment (cell density) is the determining factor for signaling, bacterial signaling was named **quorum sensing**. In politics and business, a quorum is the minimum number of members required to be present to vote on an issue.

Quorum sensing uses autoinducers as signaling molecules. **Autoinducers** are signaling molecules secreted by bacteria to communicate with other bacteria of the same kind. The secreted autoinducers can be small, hydrophobic molecules such as acyl-homoserine lactone, (AHL) or larger peptide-based molecules; each type of molecule has a different mode of action. When AHL enters target bacteria, it binds to transcription factors, which then switch gene expression on or off ([link]). The peptide autoinducers stimulate more complicated signaling pathways that include bacterial kinases. The changes in bacteria following exposure to autoinducers can be quite extensive. The pathogenic bacterium *Pseudomonas aeruginosa* has 616 different genes that respond to autoinducers.

Note:			
Art Connection			

Autoinducers are small molecules or proteins produced by bacteria that regulate gene expression.

Which of the following statements about quorum sensing is false?

- a. Autoinducer must bind to receptor to turn on transcription of genes responsible for the production of more autoinducer.
- b. The receptor stays in the bacterial cell, but the autoinducer diffuses out.
- c. Autoinducer can only act on a different cell: it cannot act on the cell in which it is made.
- d. Autoinducer turns on genes that enable the bacteria to form a biofilm.

Some species of bacteria that use quorum sensing form biofilms, complex colonies of bacteria (often containing several species) that exchange chemical signals to coordinate the release of toxins that will attack the host. Bacterial biofilms ([link]) can sometimes be found on medical equipment; when biofilms invade implants such as hip or knee replacements or heart pacemakers, they can cause life-threatening infections.

Note: Art Connection

Cell-cell communication enables these (a) *Staphylococcus aureus* bacteria to work together to form a biofilm inside a hospital patient's catheter, seen here via scanning electron microscopy. *S. aureus* is the main cause of hospital-acquired infections. (b) Hawaiian bobtail squid have a symbiotic relationship with the bioluminescent bacteria *Vibrio fischeri*. The luminescence makes it difficult to see the squid from below because it effectively eliminates its shadow. In return for camouflage, the squid provides food for the bacteria. Free-living *V. fischeri* do not produce luciferase, the enzyme responsible for luminescence, but *V. fischeri* living in a symbiotic relationship with the squid do. Quorum sensing determines whether the bacteria should produce the luciferase enzyme. (credit a: modifications of

work by CDC/Janice Carr; credit b: modifications of work by Cliff1066/Flickr)

What advantage might biofilm production confer on the *S. aureus* inside the catheter?

Research on the details of quorum sensing has led to advances in growing bacteria for industrial purposes. Recent discoveries suggest that it may be possible to exploit bacterial signaling pathways to control bacterial growth; this process could replace or supplement antibiotics that are no longer effective in certain situations.

Note:

Link to Learning

Watch geneticist Bonnie Bassler discuss her <u>discovery</u> of quorum sensing in biofilm bacteria in squid.

Note:

Evolution Connection

Cellular Communication in Yeasts

The first life on our planet consisted of single-celled prokaryotic organisms that had limited interaction with each other. While some external signaling occurs between different species of single-celled organisms, the majority of signaling within bacteria and yeasts concerns only other members of the same species. The evolution of cellular communication is an absolute

necessity for the development of multicellular organisms, and this innovation is thought to have required approximately 2.5 billion years to appear in early life forms.

Yeasts are single-celled eukaryotes, and therefore have a nucleus and organelles characteristic of more complex life forms. Comparisons of the genomes of yeasts, nematode worms, fruit flies, and humans illustrate the evolution of increasingly complex signaling systems that allow for the efficient inner workings that keep humans and other complex life forms functioning correctly.

Kinases are a major component of cellular communication, and studies of these enzymes illustrate the evolutionary connectivity of different species. Yeasts have 130 types of kinases. More complex organisms such as nematode worms and fruit flies have 454 and 239 kinases, respectively. Of the 130 kinase types in yeast, 97 belong to the 55 subfamilies of kinases that are found in other eukaryotic organisms. The only obvious deficiency seen in yeasts is the complete absence of tyrosine kinases. It is hypothesized that phosphorylation of tyrosine residues is needed to control the more sophisticated functions of development, differentiation, and cellular communication used in multicellular organisms.

Because yeasts contain many of the same classes of signaling proteins as humans, these organisms are ideal for studying signaling cascades. Yeasts multiply quickly and are much simpler organisms than humans or other multicellular animals. Therefore, the signaling cascades are also simpler and easier to study, although they contain similar counterparts to human signaling.[footnote]

G. Manning, G.D. Plowman, T. Hunter, S. Sudarsanam, "Evolution of Protein Kinase Signaling from Yeast to Man," *Trends in Biochemical Sciences* 27, no. 10 (2002): 514–520.

note:	
Link to	Learning

Watch this collection of interview clips with biofilm researchers in "What Are Bacterial Biofilms?"

https://www.openstaxcollege.org/l/bacteria bioflm

Section Summary

Yeasts and multicellular organisms have similar signaling mechanisms. Yeasts use cell-surface receptors and signaling cascades to communicate information on mating with other yeast cells. The signaling molecule secreted by yeasts is called mating factor.

Bacterial signaling is called quorum sensing. Bacteria secrete signaling molecules called autoinducers that are either small, hydrophobic molecules or peptide-based signals. The hydrophobic autoinducers, such as AHL, bind transcription factors and directly affect gene expression. The peptide-based molecules bind kinases and initiate signaling cascades in the cells.

Art Connections

Exercise:

Problem:

[link] Which of the following statements about quorum sensing is false?

- a. Autoinducer must bind to receptor to turn on transcription of genes responsible for the production of more autoinducer.
- b. The receptor stays in the bacterial cell, but the autoinducer diffuses out.

- c. Autoinducer can only act on a different cell: it cannot act on the cell in which it is made.
- d. Autoinducer turns on genes that enable the bacteria to form a biofilm.

Solution:

[link] C.

Exercise:

Problem:

[link] What advantage might biofilm production confer on the *S. aureus* inside the catheter?

Solution:

[link] *S. aureus* produces a biofilm because the higher cell density in the biofilm permits the formation of a dense surface that helps protect the bacteria from antibiotics.

Review Questions

Exercise:

Problem:

Which type of molecule acts as a signaling molecule in yeasts?

- a. steroid
- b. autoinducer
- c. mating factor
- d. second messenger

Solution:

Exercise:

Problem:Quorum sensing is triggered to begin when _____

- a. treatment with antibiotics occurs
- b. bacteria release growth hormones
- c. bacterial protein expression is switched on
- d. a sufficient number of bacteria are present

Solution:

D

Free Response

Exercise:

Problem:

What characteristics make yeasts a good model for learning about signaling in humans?

Solution:

Yeasts are eukaryotes and have many of the same systems that humans do; however, they are single-celled, so they are easy to grow, grow rapidly, have a short generation time, and are much simpler than humans.

Exercise:

Problem:

Why is signaling in multicellular organisms more complicated than signaling in single-celled organisms?

Solution:

Multicellular organisms must coordinate many different events in different cell types that may be very distant from each other. Singlecelled organisms are only concerned with their immediate environment and the presence of other cells in the area.

Glossary

autoinducer

signaling molecule secreted by bacteria to communicate with other bacteria of its kind and others

mating factor

signaling molecule secreted by yeast cells to communicate to nearby yeast cells that they are available to mate and communicating their mating orientation

quorum sensing

method of cellular communication used by bacteria that informs them of the abundance of similar (or different) bacteria in the environment

Introduction class="introduction"

The tobacco mosaic virus (left), seen here by transmission electron microscopy, was the first virus to be discovered. The virus causes disease in tobacco and other plants, such as the orchid (right). (credit a: **USDA** ARS; credit b: modificatio n of work by USDA Forest Service, Department of Plant Pathology Archive North Carolina State

University; scale-bar data from Matt Russell)

No one knows exactly when viruses emerged or from where they came, since viruses do not leave historical footprints such as fossils. Modern viruses are thought to be a mosaic of bits and pieces of nucleic acids picked up from various sources along their respective evolutionary paths. Viruses are acellular, parasitic entities that are not classified within any kingdom. Unlike most living organisms, viruses are not cells and cannot divide. Instead, they infect a host cell and use the host's replication processes to produce identical progeny virus particles. Viruses infect organisms as diverse as bacteria, plants, and animals. They exist in a netherworld between a living organism and a nonliving entity. Living things grow, metabolize, and reproduce. Viruses replicate, but to do so, they are entirely dependent on their host cells. They do not metabolize or grow, but are assembled in their mature form.

Viral Evolution, Morphology, and Classification By the end of this section, you will be able to:

- Describe how viruses were first discovered and how they are detected
- Discuss three hypotheses about how viruses evolved
- Recognize the basic shapes of viruses
- Understand past and emerging classification systems for viruses

Viruses are diverse entities. They vary in their structure, their replication methods, and in their target hosts. Nearly all forms of life—from bacteria and archaea to eukaryotes such as plants, animals, and fungi—have viruses that infect them. While most biological diversity can be understood through evolutionary history, such as how species have adapted to conditions and environments, much about virus origins and evolution remains unknown.

Discovery and Detection

Viruses were first discovered after the development of a porcelain filter, called the Chamberland-Pasteur filter, which could remove all bacteria visible in the microscope from any liquid sample. In 1886, Adolph Meyer demonstrated that a disease of tobacco plants, tobacco mosaic disease, could be transferred from a diseased plant to a healthy one via liquid plant extracts. In 1892, Dmitri Ivanowski showed that this disease could be transmitted in this way even after the Chamberland-Pasteur filter had removed all viable bacteria from the extract. Still, it was many years before it was proven that these "filterable" infectious agents were not simply very small bacteria but were a new type of very small, disease-causing particle.

Virions, single virus particles, are very small, about 20–250 nanometers in diameter. These individual virus particles are the infectious form of a virus outside the host cell. Unlike bacteria (which are about 100-times larger), we cannot see viruses with a light microscope, with the exception of some large virions of the poxvirus family. It was not until the development of the electron microscope in the late 1930s that scientists got their first good view of the structure of the tobacco mosaic virus (TMV) ([link]) and other viruses ([link]). The surface structure of virions can be observed by both scanning and transmission electron microscopy, whereas the internal

structures of the virus can only be observed in images from a transmission electron microscope. The use of these technologies has allowed for the discovery of many viruses of all types of living organisms. They were initially grouped by shared morphology. Later, groups of viruses were classified by the type of nucleic acid they contained, DNA or RNA, and whether their nucleic acid was single- or double-stranded. More recently, molecular analysis of viral replicative cycles has further refined their classification.

In these transmission electron micrographs, (a) a virus is dwarfed by the bacterial cell it infects, while (b) these *E. coli* cells are dwarfed by cultured colon cells. (credit a: modification of work by U.S. Dept. of Energy, Office of Science, LBL, PBD; credit b: modification of work by J.P. Nataro and S. Sears, unpub. data, CDC; scale-bar data from Matt Russell)

Evolution of Viruses

Although biologists have accumulated a significant amount of knowledge about how present-day viruses evolve, much less is known about how viruses originated in the first place. When exploring the evolutionary history of most organisms, scientists can look at fossil records and similar historic evidence. However, viruses do not fossilize, so researchers must conjecture by investigating how today's viruses evolve and by using biochemical and genetic information to create speculative virus histories.

While most findings agree that viruses don't have a single common ancestor, scholars have yet to find a single hypothesis about virus origins that is fully accepted in the field. One such hypothesis, called devolution or the regressive hypothesis, proposes to explain the origin of viruses by suggesting that viruses evolved from free-living cells. However, many components of how this process might have occurred are a mystery. A second hypothesis (called escapist or the progressive hypothesis) accounts for viruses having either an RNA or a DNA genome and suggests that viruses originated from RNA and DNA molecules that escaped from a host cell. A third hypothesis posits a system of self-replication similar to that of other self-replicating molecules, likely evolving alongside the cells they rely on as hosts; studies of some plant pathogens support this hypothesis.

As technology advances, scientists may develop and refine further hypotheses to explain the origin of viruses. The emerging field called virus molecular systematics attempts to do just that through comparisons of sequenced genetic material. These researchers hope to one day better understand the origin of viruses, a discovery that could lead to advances in the treatments for the ailments they produce.

Viral Morphology

Viruses are **acellular**, meaning they are biological entities that do not have a cellular structure. They therefore lack most of the components of cells, such as organelles, ribosomes, and the plasma membrane. A virion consists of a nucleic acid core, an outer protein coating or capsid, and sometimes an outer **envelope** made of protein and phospholipid membranes derived from

the host cell. Viruses may also contain additional proteins, such as enzymes. The most obvious difference between members of viral families is their morphology, which is quite diverse. An interesting feature of viral complexity is that the complexity of the host does not correlate with the complexity of the virion. Some of the most complex virion structures are observed in bacteriophages, viruses that infect the simplest living organisms, bacteria.

Morphology

Viruses come in many shapes and sizes, but these are consistent and distinct for each viral family. All virions have a nucleic acid genome covered by a protective layer of proteins, called a **capsid**. The capsid is made up of protein subunits called **capsomeres**. Some viral capsids are simple polyhedral "spheres," whereas others are quite complex in structure.

In general, the shapes of viruses are classified into four groups: filamentous, isometric (or icosahedral), enveloped, and head and tail. Filamentous viruses are long and cylindrical. Many plant viruses are filamentous, including TMV. Isometric viruses have shapes that are roughly spherical, such as poliovirus or herpesviruses. Enveloped viruses have membranes surrounding capsids. Animal viruses, such as HIV, are frequently enveloped. Head and tail viruses infect bacteria and have a head that is similar to icosahedral viruses and a tail shape like filamentous viruses.

Many viruses use some sort of glycoprotein to attach to their host cells via molecules on the cell called **viral receptors** ([link]). For these viruses, attachment is a requirement for later penetration of the cell membrane, so they can complete their replication inside the cell. The receptors that viruses use are molecules that are normally found on cell surfaces and have their own physiological functions. Viruses have simply evolved to make use of these molecules for their own replication. For example, HIV uses the CD4 molecule on T lymphocytes as one of its receptors. CD4 is a type of molecule called a cell adhesion molecule, which functions to keep different types of immune cells in close proximity to each other during the generation of a T lymphocyte immune response.

The KSHV virus binds the xCT receptor on the surface of human cells. xCT receptors protect cells against stress. Stressed cells express more xCT receptors than non-stressed cells. The KSHV virion causes cells to become stressed, thereby increasing expression of the receptor to which it binds. (credit: modification of work by NIAID, NIH)

Among the most complex virions known, the T4 bacteriophage, which infects the *Escherichia coli* bacterium, has a tail structure that the virus uses to attach to host cells and a head structure that houses its DNA.

Adenovirus, a non-enveloped animal virus that causes respiratory illnesses in humans, uses glycoprotein spikes protruding from its capsomeres to attach to host cells. Non-enveloped viruses also include those that cause

polio (poliovirus), plantar warts (papillomavirus), and hepatitis A (hepatitis A virus).

Enveloped virions like HIV, the causative agent in AIDS, consist of nucleic acid (RNA in the case of HIV) and capsid proteins surrounded by a phospholipid bilayer envelope and its associated proteins. Glycoproteins embedded in the viral envelope are used to attach to host cells. Other envelope proteins are the **matrix proteins** that stabilize the envelope and often play a role in the assembly of progeny virions. Chicken pox, influenza, and mumps are examples of diseases caused by viruses with envelopes. Because of the fragility of the envelope, non-enveloped viruses are more resistant to changes in temperature, pH, and some disinfectants than enveloped viruses.

Overall, the shape of the virion and the presence or absence of an envelope tell us little about what disease the virus may cause or what species it might infect, but they are still useful means to begin viral classification ([link]).

Viruses can be either complex in shape or relatively simple. This figure shows three relatively complex virions: the bacteriophage T4, with its DNA-containing head group and tail fibers that attach to host cells; adenovirus, which uses spikes from its capsid to bind to host cells; and HIV, which uses glycoproteins embedded in its envelope to bind to host cells. Notice that HIV has proteins called matrix proteins, internal to the envelope, which help stabilize virion shape. (credit "bacteriophage, adenovirus": modification of work by NCBI, NIH; credit "HIV retrovirus": modification of work by NIAID, NIH)

Which of the following statements about virus structure is true?

- a. All viruses are encased in a viral membrane.
- b. The capsomere is made up of small protein subunits called capsids.
- c. DNA is the genetic material in all viruses.
- d. Glycoproteins help the virus attach to the host cell.

Types of Nucleic Acid

Unlike nearly all living organisms that use DNA as their genetic material, viruses may use either DNA or RNA as theirs. The **virus core** contains the genome or total genetic content of the virus. Viral genomes tend to be small, containing only those genes that encode proteins that the virus cannot get from the host cell. This genetic material may be single- or double-stranded. It may also be linear or circular. While most viruses contain a single nucleic acid, others have genomes that have several, which are called segments.

In DNA viruses, the viral DNA directs the host cell's replication proteins to synthesize new copies of the viral genome and to transcribe and translate that genome into viral proteins. DNA viruses cause human diseases, such as

chickenpox, hepatitis B, and some venereal diseases, like herpes and genital warts.

RNA viruses contain only RNA as their genetic material. To replicate their genomes in the host cell, the RNA viruses encode enzymes that can replicate RNA into DNA, which cannot be done by the host cell. These RNA polymerase enzymes are more likely to make copying errors than DNA polymerases, and therefore often make mistakes during transcription. For this reason, mutations in RNA viruses occur more frequently than in DNA viruses. This causes them to change and adapt more rapidly to their host. Human diseases caused by RNA viruses include hepatitis C, measles, and rabies.

Virus Classification

To understand the features shared among different groups of viruses, a classification scheme is necessary. As most viruses are not thought to have evolved from a common ancestor, however, the methods that scientists use to classify living things are not very useful. Biologists have used several classification systems in the past, based on the morphology and genetics of the different viruses. However, these earlier classification methods grouped viruses differently, based on which features of the virus they were using to classify them. The most commonly used classification method today is called the Baltimore classification scheme and is based on how messenger RNA (mRNA) is generated in each particular type of virus.

Past Systems of Classification

Viruses are classified in several ways: by factors such as their core content ([link]] and [link]), the structure of their capsids, and whether they have an outer envelope. The type of genetic material (DNA or RNA) and its structure (single- or double-stranded, linear or circular, and segmented or non-segmented) are used to classify the virus core structures.

Core Classifications	Examples
RNADNA	Rabies virus, retrovirusesHerpesviruses, smallpox virus
Single-strandedDouble-stranded	Rabies virus, retrovirusesHerpesviruses, smallpox virus
LinearCircular	Rabies virus, retroviruses, herpesviruses, smallpox virus Papillomaviruses, many bacteriophages
 Non-segmented: genome consists of a single segment of genetic material Segmented: genome is divided into multiple segments 	Parainfluenza viruses Influenza viruses

(a) Rabies virus (b) Variola virus

Viruses are classified based on their core genetic material and capsid design. (a) Rabies virus has a single-stranded RNA (ssRNA) core and an enveloped helical capsid, whereas (b) variola virus, the causative agent of smallpox, has a doublestranded DNA (dsDNA) core and a complex capsid. Rabies transmission occurs when saliva from an infected mammal enters a wound. The virus travels through neurons in the peripheral nervous system to the central nervous system where it impairs brain function, and then travels to other tissues. The virus can infect any mammal, and most die within weeks of infection. Smallpox is a human virus transmitted by inhalation of the variola virus, localized in the skin, mouth, and throat, which causes a characteristic rash. Before its eradication in 1979, infection resulted in a 30–35 percent mortality rate. (credit "rabies diagram": modification of work by CDC; "rabies micrograph": modification of work by Dr. Fred Murphy, CDC; credit "small pox micrograph": modification of work by Dr. Fred Murphy, Sylvia Whitfield, CDC; credit "smallpox photo": modification of work by CDC; scale-bar data from Matt Russell)

Viruses can also be classified by the design of their capsids ([link] and [link]). Capsids are classified as naked icosahedral, enveloped icosahedral, enveloped helical, naked helical, and complex ([link] and [link]). The type of genetic material (DNA or RNA) and its structure (single- or double-stranded, linear or circular, and segmented or non-segmented) are used to classify the virus core structures ([link]).

Adenovirus (left) is depicted with a doublestranded DNA genome enclosed in an icosahedral capsid that is 90–100 nm across. The virus, shown clustered in the micrograph (right), is transmitted orally and causes a variety of illnesses in vertebrates, including human eye and respiratory infections. (credit "adenovirus": modification of work by Dr. Richard Feldmann, National Cancer Institute; credit "micrograph": modification of work by Dr. G. William Gary, Jr., CDC; scale-bar data from Matt Russell)

Virus Classification by Capsid Structure	
Capsid Classification	Examples
Naked icosahedral	Hepatitis A virus, polioviruses
Enveloped icosahedral	Epstein-Barr virus, herpes simplex virus, rubella virus, yellow fever virus, HIV-1
Enveloped helical	Influenza viruses, mumps virus, measles virus, rabies virus
Naked helical	Tobacco mosaic virus
Complex with many proteins; some have combinations of icosahedral and helical capsid structures	Herpesviruses, smallpox virus, hepatitis B virus, T4 bacteriophage

Transmission electron micrographs of various viruses show their structures. The capsid of the (a) polio virus is naked icosahedral; (b) the Epstein-Barr virus capsid is enveloped icosahedral; (c) the mumps virus capsid is an enveloped helix; (d) the tobacco mosaic virus capsid is naked helical; and (e) the herpesvirus capsid is complex. (credit a: modification of work by Dr. Fred Murphy, Sylvia Whitfield; credit b: modification of work by Liza Gross; credit c: modification of work by Dr. F. A. Murphy, CDC; credit d: modification of work by USDA ARS; credit e: modification of work by Linda Stannard, Department of Medical Microbiology, University of Cape Town, South Africa, NASA; scale-bar data from Matt Russell)

Baltimore Classification

The most commonly used system of virus classification was developed by Nobel Prize-winning biologist David Baltimore in the early 1970s. In

addition to the differences in morphology and genetics mentioned above, the Baltimore classification scheme groups viruses according to how the mRNA is produced during the replicative cycle of the virus.

Group I viruses contain double-stranded DNA (dsDNA) as their genome. Their mRNA is produced by transcription in much the same way as with cellular DNA. **Group II** viruses have single-stranded DNA (ssDNA) as their genome. They convert their single-stranded genomes into a dsDNA intermediate before transcription to mRNA can occur. **Group III** viruses use dsRNA as their genome. The strands separate, and one of them is used as a template for the generation of mRNA using the RNA-dependent RNA polymerase encoded by the virus. **Group IV** viruses have ssRNA as their genome with a positive polarity. **Positive polarity** means that the genomic RNA can serve directly as mRNA. Intermediates of dsRNA, called **replicative intermediates**, are made in the process of copying the genomic RNA. Multiple, full-length RNA strands of negative polarity (complimentary to the positive-stranded genomic RNA) are formed from these intermediates, which may then serve as templates for the production of RNA with positive polarity, including both full-length genomic RNA and shorter viral mRNAs. **Group V** viruses contain ssRNA genomes with a **negative polarity**, meaning that their sequence is complementary to the mRNA. As with Group IV viruses, dsRNA intermediates are used to make copies of the genome and produce mRNA. In this case, the negativestranded genome can be converted directly to mRNA. Additionally, fulllength positive RNA strands are made to serve as templates for the production of the negative-stranded genome. **Group VI** viruses have diploid (two copies) ssRNA genomes that must be converted, using the enzyme **reverse transcriptase**, to dsDNA; the dsDNA is then transported to the nucleus of the host cell and inserted into the host genome. Then, mRNA can be produced by transcription of the viral DNA that was integrated into the host genome. **Group VII** viruses have partial dsDNA genomes and make ssRNA intermediates that act as mRNA, but are also converted back into dsDNA genomes by reverse transcriptase, necessary for genome replication. The characteristics of each group in the Baltimore classification are summarized in [link] with examples of each group.

Baltimor	e Classification		
Group	Characteristics	Mode of mRNA Production	Example
I	Double- stranded DNA	mRNA is transcribed directly from the DNA template	Herpes simplex (herpesvirus)
II	Single-stranded DNA	DNA is converted to double-stranded form before RNA is transcribed	Canine parvovirus (parvovirus)
III	Double- stranded RNA	mRNA is transcribed from the RNA genome	Childhood gastroenteritis (rotavirus)
IV	Single stranded RNA (+)	Genome functions as mRNA	Common cold (pircornavirus)
V	Single stranded RNA (-)	mRNA is transcribed from the RNA genome	Rabies (rhabdovirus)

Raltimore	Classification
Daiumure	Ciassilication

Group	Characteristics	Mode of mRNA Production	Example
VI	Single stranded RNA viruses with reverse transcriptase	Reverse transcriptase makes DNA from the RNA genome; DNA is then incorporated in the host genome; mRNA is transcribed from the incorporated DNA	Human immunodeficiency virus (HIV)

Baltimore Classification			
Group	Characteristics	Mode of mRNA Production	Example
VII	Double stranded DNA viruses with reverse transcriptase	The viral genome is double-stranded DNA, but viral DNA is replicated through an RNA intermediate; the RNA may serve directly as mRNA or as a template to make mRNA	Hepatitis B virus (hepadnavirus)

Section Summary

Viruses are tiny, acellular entities that can usually only be seen with an electron microscope. Their genomes contain either DNA or RNA—never both—and they replicate using the replication proteins of a host cell. Viruses are diverse, infecting archaea, bacteria, fungi, plants, and animals. Viruses consist of a nucleic acid core surrounded by a protein capsid with or without an outer lipid envelope. The capsid shape, presence of an envelope, and core composition dictate some elements of the classification of viruses. The most commonly used classification method, the Baltimore classification, categorizes viruses based on how they produce their mRNA.

Art Connections

Exercise:

Problem:

[link] Which of the following statements about virus structure is true?

- a. All viruses are encased in a viral membrane.
- b. The capsomere is made up of small protein subunits called capsids.
- c. DNA is the genetic material in all viruses.
- d. Glycoproteins help the virus attach to the host cell.

Solution:

[link] D

Review Questions

Exercise:

Problem: Which statement is true?

- a. A virion contains DNA and RNA.
- b. Viruses are acellular.
- c. Viruses replicate outside of the cell.
- d. Most viruses are easily visualized with a light microscope.

α	•		
Sol	11111	Λn	•
$\mathbf{D}\mathbf{U}$	uu	VII	•

В

Exercise:

Problem:
The viral plays a role in attaching a virion to the host cell.
a. core b. capsid c. envelope d. both b and c
Solution:
D
Exercise:
Problem: Viruses
a. all have a round shapeb. cannot have a long shapec. do not maintain any shaped. vary in shape
Solution:
D
Free Response
Exercise:
Problem:

The first electron micrograph of a virus (tobacco mosaic virus) was produced in 1939. Before that time, how did scientists know that viruses existed if they could not see them? (Hint: Early scientists called viruses "filterable agents.")

Solution:

Viruses pass through filters that eliminated all bacteria that were visible in the light microscopes at the time. As the bacteria-free filtrate could still cause infections when given to a healthy organism, this observation demonstrated the existence of very small infectious agents. These agents were later shown to be unrelated to bacteria and were classified as viruses.

Glossary

```
acellular
     lacking cells
capsid
     protein coating of the viral core
capsomere
     protein subunit that makes up the capsid
envelope
     lipid bilayer that envelopes some viruses
group I virus
     virus with a dsDNA genome
group II virus
     virus with a ssDNA genome
group III virus
     virus with a dsRNA genome
group IV virus
     virus with a ssRNA genome with positive polarity
group V virus
     virus with a ssRNA genome with negative polarity
```

group VI virus

virus with a ssRNA genomes converted into dsDNA by reverse transcriptase

group VII virus

virus with a single-stranded mRNA converted into dsDNA for genome replication

matrix protein

envelope protein that stabilizes the envelope and often plays a role in the assembly of progeny virions

negative polarity

ssRNA viruses with genomes complimentary to their mRNA

positive polarity

ssRNA virus with a genome that contains the same base sequences and codons found in their mRNA

replicative intermediate

dsRNA intermediate made in the process of copying genomic RNA

reverse transcriptase

enzyme found in Baltimore groups VI and VII that converts singlestranded RNA into double-stranded DNA

viral receptor

glycoprotein used to attach a virus to host cells via molecules on the cell

virion

individual virus particle outside a host cell

virus core

contains the virus genome

Virus Infections and Hosts By the end of this section, you will be able to:

- List the steps of replication and explain what occurs at each step
- Describe the lytic and lysogenic cycles of virus replication
- Explain the transmission and diseases of animal and plant viruses
- Discuss the economic impact of animal and plant viruses

Viruses can be seen as obligate, intracellular parasites. A virus must attach to a living cell, be taken inside, manufacture its proteins and copy its genome, and find a way to escape the cell so that the virus can infect other cells. Viruses can infect only certain species of hosts and only certain cells within that host. Cells that a virus may use to replicate are called **permissive**. For most viruses, the molecular basis for this specificity is that a particular surface molecule known as the viral receptor must be found on the host cell surface for the virus to attach. Also, metabolic and host cell immune response differences seen in different cell types based on differential gene expression are a likely factor in which cells a virus may target for replication. The permissive cell must make the substances that the virus needs or the virus will not be able to replicate there.

Steps of Virus Infections

A virus must use cell processes to replicate. The viral replication cycle can produce dramatic biochemical and structural changes in the host cell, which may cause cell damage. These changes, called **cytopathic** (causing cell damage) effects, can change cell functions or even destroy the cell. Some infected cells, such as those infected by the common cold virus known as rhinovirus, die through **lysis** (bursting) or apoptosis (programmed cell death or "cell suicide"), releasing all progeny virions at once. The symptoms of viral diseases result from the immune response to the virus, which attempts to control and eliminate the virus from the body, and from cell damage caused by the virus. Many animal viruses, such as HIV (human immunodeficiency virus), leave the infected cells of the immune system by a process known as **budding**, where virions leave the cell individually. During the budding process, the cell does not undergo lysis and is not immediately killed. However, the damage to the cells that the virus infects

may make it impossible for the cells to function normally, even though the cells remain alive for a period of time. Most productive viral infections follow similar steps in the virus replication cycle: attachment, penetration, uncoating, replication, assembly, and release ([link]).

Attachment

A virus attaches to a specific receptor site on the host cell membrane through attachment proteins in the capsid or via glycoproteins embedded in the viral envelope. The specificity of this interaction determines the host—and the cells within the host—that can be infected by a particular virus. This can be illustrated by thinking of several keys and several locks, where each key will fit only one specific lock.

Note:

Link to Learning

This <u>video</u> explains how influenza attacks the body.

Entry

The nucleic acid of bacteriophages enters the host cell naked, leaving the capsid outside the cell. Plant and animal viruses can enter through endocytosis, in which the cell membrane surrounds and engulfs the entire virus. Some enveloped viruses enter the cell when the viral envelope fuses directly with the cell membrane. Once inside the cell, the viral capsid is

degraded, and the viral nucleic acid is released, which then becomes available for replication and transcription.

Replication and Assembly

The replication mechanism depends on the viral genome. DNA viruses usually use host cell proteins and enzymes to make additional DNA that is transcribed to messenger RNA (mRNA), which is then used to direct protein synthesis. RNA viruses usually use the RNA core as a template for synthesis of viral genomic RNA and mRNA. The viral mRNA directs the host cell to synthesize viral enzymes and capsid proteins, and assemble new virions. Of course, there are exceptions to this pattern. If a host cell does not provide the enzymes necessary for viral replication, viral genes supply the information to direct synthesis of the missing proteins. Retroviruses, such as HIV, have an RNA genome that must be reverse transcribed into DNA, which then is incorporated into the host cell genome. They are within group VI of the Baltimore classification scheme. To convert RNA into DNA, retroviruses must contain genes that encode the virus-specific enzyme reverse transcriptase that transcribes an RNA template to DNA. Reverse transcription never occurs in uninfected host cells—the needed enzyme reverse transcriptase is only derived from the expression of viral genes within the infected host cells. The fact that HIV produces some of its own enzymes not found in the host has allowed researchers to develop drugs that inhibit these enzymes. These drugs, including the reverse transcriptase inhibitor **AZT**, inhibit HIV replication by reducing the activity of the enzyme without affecting the host's metabolism. This approach has led to the development of a variety of drugs used to treat HIV and has been effective at reducing the number of infectious virions (copies of viral RNA) in the blood to non-detectable levels in many HIV-infected individuals.

Egress

The last stage of viral replication is the release of the new virions produced in the host organism, where they are able to infect adjacent cells and repeat

the replication cycle. As you've learned, some viruses are released when the host cell dies, and other viruses can leave infected cells by budding through the membrane without directly killing the cell.

In influenza virus infection, glycoproteins attach to a host epithelial cell. As a result, the virus is engulfed. RNA and proteins are made and assembled into new virions.

Influenza virus is packaged in a viral envelope that fuses with the plasma membrane. This way, the virus can exit the host cell without killing it. What advantage does the virus gain by keeping the host cell alive?

Note:

Link to Learning

Watch a <u>video</u> on viruses, identifying structures, modes of transmission, replication, and more.

Different Hosts and Their Viruses

As you've learned, viruses are often very specific as to which hosts and which cells within the host they will infect. This feature of a virus makes it specific to one or a few species of life on Earth. On the other hand, so many different types of viruses exist on Earth that nearly every living organism has its own set of viruses that tries to infect its cells. Even the smallest and simplest of cells, prokaryotic bacteria, may be attacked by specific types of viruses.

Bacteriophages

This transmission electron micrograph shows bacteriophages attached to a bacterial cell. (credit: modification of work by Dr. Graham Beards; scalebar data from Matt Russell)

Bacteriophages are viruses that infect bacteria ([link]). When infection of a cell by a bacteriophage results in the production of new virions, the infection is said to be **productive**. If the virions are released by bursting the cell, the virus replicates by means of a **lytic cycle** ([link]). An example of a lytic bacteriophage is T4, which infects *Escherichia coli* found in the human intestinal tract. Sometimes, however, a virus can remain within the cell without being released. For example, when a temperate bacteriophage infects a bacterial cell, it replicates by means of a **lysogenic cycle** ([link]), and the viral genome is incorporated into the genome of the host cell. When the phage DNA is incorporated into the host cell genome, it is called a **prophage**. An example of a lysogenic bacteriophage is the λ (lambda) virus, which also infects the *E. coli* bacterium. Viruses that infect plant or

animal cells may also undergo infections where they are not producing virions for long periods. An example is the animal herpesviruses, including herpes simplex viruses, the cause of oral and genital herpes in humans. In a process called **latency**, these viruses can exist in nervous tissue for long periods of time without producing new virions, only to leave latency periodically and cause lesions in the skin where the virus replicates. Even though there are similarities between lysogeny and latency, the term lysogenic cycle is usually reserved to describe bacteriophages. Latency will be described in more detail below.

A temperate bacteriophage has both lytic and lysogenic cycles. In the lytic cycle, the phage replicates and lyses the host cell. In the lysogenic cycle, phage DNA is incorporated into the host genome, where it is passed on to subsequent generations. Environmental stressors such as starvation or

exposure to toxic chemicals may cause the prophage to excise and enter the lytic cycle.

Which of the following statements is false?

- a. In the lytic cycle, new phage are produced and released into the environment.
- b. In the lysogenic cycle, phage DNA is incorporated into the host genome.
- c. An environmental stressor can cause the phage to initiate the lysogenic cycle.
- d. Cell lysis only occurs in the lytic cycle.

Animal Viruses

Animal viruses, unlike the viruses of plants and bacteria, do not have to penetrate a cell wall to gain access to the host cell. Non-enveloped or "naked" animal viruses may enter cells in two different ways. As a protein in the viral capsid binds to its receptor on the host cell, the virus may be taken inside the cell via a vesicle during the normal cell process of receptormediated endocytosis. An alternative method of cell penetration used by non-enveloped viruses is for capsid proteins to undergo shape changes after binding to the receptor, creating channels in the host cell membrane. The viral genome is then "injected" into the host cell through these channels in a manner analogous to that used by many bacteriophages. Enveloped viruses also have two ways of entering cells after binding to their receptors: receptor-mediated endocytosis, or **fusion**. Many enveloped viruses enter the cell by receptor-mediated endocytosis in a fashion similar to some nonenveloped viruses. On the other hand, fusion only occurs with enveloped virions. These viruses, which include HIV among others, use special fusion proteins in their envelopes to cause the envelope to fuse with the plasma membrane of the cell, thus releasing the genome and capsid of the virus into the cell cytoplasm.

After making their proteins and copying their genomes, animal viruses complete the assembly of new virions and exit the cell. As we have already discussed using the example of HIV, enveloped animal viruses may bud from the cell membrane as they assemble themselves, taking a piece of the cell's plasma membrane in the process. On the other hand, non-enveloped viral progeny, such as rhinoviruses, accumulate in infected cells until there is a signal for lysis or apoptosis, and all virions are released together.

As you will learn in the next module, animal viruses are associated with a variety of human diseases. Some of them follow the classic pattern of **acute disease**, where symptoms get increasingly worse for a short period followed by the elimination of the virus from the body by the immune system and eventual recovery from the infection. Examples of acute viral diseases are the common cold and influenza. Other viruses cause long-term **chronic infections**, such as the virus causing hepatitis C, whereas others, like herpes simplex virus, only cause **intermittent** symptoms. Still other viruses, such as human herpesviruses 6 and 7, which in some cases can cause the minor childhood disease roseola, often successfully cause productive infections without causing any symptoms at all in the host, and thus we say these patients have an **asymptomatic infection**.

In hepatitis C infections, the virus grows and reproduces in liver cells, causing low levels of liver damage. The damage is so low that infected individuals are often unaware that they are infected, and many infections are detected only by routine blood work on patients with risk factors such as intravenous drug use. On the other hand, since many of the symptoms of viral diseases are caused by immune responses, a lack of symptoms is an indication of a weak immune response to the virus. This allows for the virus to escape elimination by the immune system and persist in individuals for years, all the while producing low levels of progeny virions in what is known as a chronic viral disease. Chronic infection of the liver by this virus leads to a much greater chance of developing liver cancer, sometimes as much as 30 years after the initial infection.

As already discussed, herpes simplex virus can remain in a state of latency in nervous tissue for months, even years. As the virus "hides" in the tissue and makes few if any viral proteins, there is nothing for the immune

response to act against, and immunity to the virus slowly declines. Under certain conditions, including various types of physical and psychological stress, the latent herpes simplex virus may be reactivated and undergo a lytic replication cycle in the skin, causing the lesions associated with the disease. Once virions are produced in the skin and viral proteins are synthesized, the immune response is again stimulated and resolves the skin lesions in a few days by destroying viruses in the skin. As a result of this type of replicative cycle, appearances of cold sores and genital herpes outbreaks only occur intermittently, even though the viruses remain in the nervous tissue for life. Latent infections are common with other herpesviruses as well, including the varicella-zoster virus that causes chickenpox. After having a chickenpox infection in childhood, the varicella-zoster virus can remain latent for many years and reactivate in adults to cause the painful condition known as "shingles" ([link]ab).

(a) Varicella-zoster, the virus that causes chickenpox, has an enveloped icosahedral capsid visible in this transmission electron micrograph. Its double-stranded DNA genome becomes incorporated in the host DNA and can reactivate after latency in the form of (b) shingles, often exhibiting a rash. (credit a: modification of work by Dr. Erskine Palmer, B. G. Martin, CDC; credit b: modification of work by "rosmary"/Flickr; scale-bar data from Matt Russell)

Some animal-infecting viruses, including the hepatitis C virus discussed above, are known as **oncogenic viruses**: They have the ability to cause cancer. These viruses interfere with the normal regulation of the host cell cycle either by either introducing genes that stimulate unregulated cell growth (oncogenes) or by interfering with the expression of genes that inhibit cell growth. Oncogenic viruses can be either DNA or RNA viruses. Cancers known to be associated with viral infections include cervical cancer caused by human papillomavirus (HPV) ([link]), liver cancer caused by hepatitis B virus, T-cell leukemia, and several types of lymphoma.

HPV, or human papillomavirus, has a naked icosahedral capsid visible in this transmission electron micrograph and a double-stranded DNA genome that is incorporated into

the host DNA. The virus, which is sexually transmitted, is oncogenic and can lead to cervical cancer. (credit: modification of work by NCI, NIH; scale-bar data from Matt Russell)

Note:

Link to Learning

Visit the interactive <u>animations</u> showing the various stages of the replicative cycles of animal viruses and click on the flash animation links.

Plant Viruses

Plant viruses, like other viruses, contain a core of either DNA or RNA. You have already learned about one of these, the tobacco mosaic virus. As plant cells have a cell wall to protect their cells, these viruses do not use receptor-mediated endocytosis to enter host cells as is seen with animal viruses. For many plant viruses to be transferred from plant to plant, damage to some of the plants' cells must occur to allow the virus to enter a new host. This damage is often caused by weather, insects, animals, fire, or human activities like farming or landscaping. Additionally, plant offspring may

inherit viral diseases from parent plants. Plant viruses can be transmitted by a variety of vectors, through contact with an infected plant's sap, by living organisms such as insects and nematodes, and through pollen. When plants viruses are transferred between different plants, this is known as **horizontal transmission**, and when they are inherited from a parent, this is called **vertical transmission**.

Symptoms of viral diseases vary according to the virus and its host ([link]). One common symptom is **hyperplasia**, the abnormal proliferation of cells that causes the appearance of plant tumors known as **galls**. Other viruses induce **hypoplasia**, or decreased cell growth, in the leaves of plants, causing thin, yellow areas to appear. Still other viruses affect the plant by directly killing plant cells, a process known as **cell necrosis**. Other symptoms of plant viruses include malformed leaves, black streaks on the stems of the plants, altered growth of stems, leaves, or fruits, and ring spots, which are circular or linear areas of discoloration found in a leaf.

Some Common Symptoms of Plant Viral Diseases	
Symptom	Appears as
Hyperplasia	Galls (tumors)
Hypoplasia	Thinned, yellow splotches on leaves
Cell necrosis	Dead, blackened stems, leaves, or fruit
Abnormal growth patterns	Malformed stems, leaves, or fruit
Discoloration	Yellow, red, or black lines, or rings in stems, leaves, or fruit

Plant viruses can seriously disrupt crop growth and development, significantly affecting our food supply. They are responsible for poor crop quality and quantity globally, and can bring about huge economic losses annually. Others viruses may damage plants used in landscaping. Some viruses that infect agricultural food plants include the name of the plant they infect, such as tomato spotted wilt virus, bean common mosaic virus, and cucumber mosaic virus. In plants used for landscaping, two of the most common viruses are peony ring spot and rose mosaic virus. There are far too many plant viruses to discuss each in detail, but symptoms of bean common mosaic virus result in lowered bean production and stunted, unproductive plants. In the ornamental rose, the rose mosaic disease causes wavy yellow lines and colored splotches on the leaves of the plant.

Section Summary

Viral replication within a living cell always produces changes in the cell, sometimes resulting in cell death and sometimes slowly killing the infected cells. There are six basic stages in the virus replication cycle: attachment, penetration, uncoating, replication, assembly, and release. A viral infection may be productive, resulting in new virions, or nonproductive, which means that the virus remains inside the cell without producing new virions. Bacteriophages are viruses that infect bacteria. They have two different modes of replication: the lytic cycle, where the virus replicates and bursts out of the bacteria, and the lysogenic cycle, which involves the incorporation of the viral genome into the bacterial host genome. Animal viruses cause a variety of infections, with some causing chronic symptoms (hepatitis C), some intermittent symptoms (latent viruses such a herpes simplex virus 1), and others that cause very few symptoms, if any (human herpesviruses 6 and 7). Oncogenic viruses in animals have the ability to cause cancer by interfering with the regulation of the host cell cycle. Viruses of plants are responsible for significant economic damage in both agriculture and plants used for ornamentation.

Art Connections

Exercise:

Problem:

[link] Influenza virus is packaged in a viral envelope that fuses with the plasma membrane. This way, the virus can exit the host cell without killing it. What advantage does the virus gain by keeping the host cell alive?

Solution:

[link] The host cell can continue to make new virus particles.

Exercise:

Problem: [link] Which of the following statements is false?

- a. In the lytic cycle, new phage are produced and released into the environment.
- b. In the lysogenic cycle, phage DNA is incorporated into the host genome.
- c. An environmental stressor can cause the phage to initiate the lysogenic cycle.
- d. Cell lysis only occurs in the lytic cycle.

Solution:

[<u>link</u>] C

Review Questions

Exercise:

Problem: Which statement is *not* true of viral replication?

- a. A lysogenic cycle kills the host cell.
- b. There are six basic steps in the viral replication cycle.
- c. Viral replication does not affect host cell function.

d. Newly released virions can infect adjacent cells.
Solution:
D
Exercise:
Problem: Which statement is true of viral replication?
a. In the process of apoptosis, the cell survives.b. During attachment, the virus attaches at specific sites on the cell surface.
c. The viral capsid helps the host cell produce more copies of the
viral genome. d. mRNA works outside of the host cell to produce enzymes and proteins.
Solution:
В
Exercise:
Problem: Which statement is true of reverse transcriptase?
a. It is a nucleic acid.
b. It infects cells.
c. It transcribes RNA to make DNA. d. It is a lipid.
Solution:
C
Exercise:

Problem: Oncogenic virus cores can be
a. RNA
b. DNA
c. neither RNA nor DNA
d. either RNA or DNA
Solution:
D
Exercise:
Problem: Which is true of DNA viruses?
a. They use the host cell's machinery to produce new copies of their genome.
b. They all have envelopes.
c. They are the only kind of viruses that can cause cancer.
d. They are not important plant pathogens.
Solution:
A
Exercise:
Problem: A bacteriophage can infect
a. the lungs
b. viruses
c. prions
d. bacteria

Solution:

D

Free Response

Exercise:

Problem: Why can't dogs catch the measles?

Solution:

The virus can't attach to dog cells, because dog cells do not express the receptors for the virus and/or there is no cell within the dog that is permissive for viral replication.

Exercise:

Problem:

One of the first and most important targets for drugs to fight infection with HIV (a retrovirus) is the reverse transcriptase enzyme. Why?

Solution:

Reverse transcriptase is needed to make more HIV-1 viruses, so targeting the reverse transcriptase enzyme may be a way to inhibit the replication of the virus. Importantly, by targeting reverse transcriptase, we do little harm to the host cell, since host cells do not make reverse transcriptase. Thus, we can specifically attack the virus and not the host cell when we use reverse transcriptase inhibitors.

Exercise:

Problem:

In this section, you were introduced to different types of viruses and viral diseases. Briefly discuss the most interesting or surprising thing you learned about viruses.

Solution:

Answer is open and will vary.

Exercise:

Problem:

Although plant viruses cannot infect humans, what are some of the ways in which they affect humans?

Solution:

Plant viruses infect crops, causing crop damage and failure, and considerable economic losses.

Glossary

acute disease

disease where the symptoms rise and fall within a short period of time

asymptomatic disease

disease where there are no symptoms and the individual is unaware of being infected unless lab tests are performed

AZT

anti-HIV drug that inhibits the viral enzyme reverse transcriptase

bacteriophage

virus that infects bacteria

budding

method of exit from the cell used in certain animal viruses, where virions leave the cell individually by capturing a piece of the host plasma membrane

cell necrosis

cell death

chronic infection

describes when the virus persists in the body for a long period of time

cytopathic

causing cell damage

fusion

method of entry by some enveloped viruses, where the viral envelope fuses with the plasma membrane of the host cell

gall

appearance of a plant tumor

horizontal transmission

transmission of a disease between unrelated individuals

hyperplasia

abnormally high cell growth and division

hypoplasia

abnormally low cell growth and division

intermittent symptom

symptom that occurs periodically

latency

virus that remains in the body for a long period of time but only causes intermittent symptoms

lysis

bursting of a cell

lytic cycle

type of virus replication in which virions are released through lysis, or bursting, of the cell

lysogenic cycle

type of virus replication in which the viral genome is incorporated into the genome of the host cell

oncogenic virus

virus that has the ability to cause cancer

permissive

cell type that is able to support productive replication of a virus

productive

viral infection that leads to the production of new virions

prophage

phage DNA that is incorporated into the host cell genome

vertical transmission

transmission of disease from parent to offspring

Prevention and Treatment of Viral Infections By the end of this section, you will be able to:

- Identify major viral illnesses that affect humans
- Compare vaccinations and anti-viral drugs as medical approaches to viruses

Viruses cause a variety of diseases in animals, including humans, ranging from the common cold to potentially fatal illnesses like meningitis ([link]). These diseases can be treated by antiviral drugs or by vaccines, but some viruses, such as HIV, are capable of both avoiding the immune response and mutating to become resistant to antiviral drugs.

Viruses can cause dozens of ailments in humans, ranging from mild illnesses to serious diseases. (credit: modification of work by Mikael Häggström)

Vaccines for Prevention

While we do have limited numbers of effective antiviral drugs, such as those used to treat HIV and influenza, the primary method of controlling viral disease is by vaccination, which is intended to prevent outbreaks by building immunity to a virus or virus family ([link]). Vaccines may be prepared using live viruses, killed viruses, or molecular subunits of the virus. The killed viral vaccines and subunit viruses are both incapable of causing disease.

Live viral vaccines are designed in the laboratory to cause few symptoms in recipients while giving them protective immunity against future infections. Polio was one disease that represented a milestone in the use of vaccines. Mass immunization campaigns in the 1950s (killed vaccine) and 1960s (live vaccine) significantly reduced the incidence of the disease, which caused muscle paralysis in children and generated a great amount of fear in the general population when regional epidemics occurred. The success of the polio vaccine paved the way for the routine dispensation of childhood vaccines against measles, mumps, rubella, chickenpox, and other diseases.

The danger of using live vaccines, which are usually more effective than killed vaccines, is the low but significant danger that these viruses will revert to their disease-causing form by back mutations. Live vaccines are usually made by **attenuating** (weakening) the "wild-type" (diseasecausing) virus by growing it in the laboratory in tissues or at temperatures different from what the virus is accustomed to in the host. Adaptations to these new cells or temperatures induce mutations in the genomes of the virus, allowing it to grow better in the laboratory while inhibiting its ability to cause disease when reintroduced into conditions found in the host. These attenuated viruses thus still cause infection, but they do not grow very well, allowing the immune response to develop in time to prevent major disease. Back mutations occur when the vaccine undergoes mutations in the host such that it readapts to the host and can again cause disease, which can then be spread to other humans in an epidemic. This type of scenario happened as recently as 2007 in Nigeria where mutations in a polio vaccine led to an epidemic of polio in that country.

Some vaccines are in continuous development because certain viruses, such as influenza and HIV, have a high mutation rate compared to other viruses and normal host cells. With influenza, mutations in the surface molecules of the virus help the organism evade the protective immunity that may have been obtained in a previous influenza season, making it necessary for individuals to get vaccinated every year. Other viruses, such as those that cause the childhood diseases measles, mumps, and rubella, mutate so infrequently that the same vaccine is used year after year.

Vaccinations are designed to boost immunity to a virus to prevent infection. (credit: USACE Europe District)

Note:

Link to Learning

Watch this NOVA <u>video</u> to learn how microbiologists are attempting to replicate the deadly 1918 Spanish influenza virus so they can understand more about virology.

Vaccines and Anti-viral Drugs for Treatment

In some cases, vaccines can be used to treat an active viral infection. The concept behind this is that by giving the vaccine, immunity is boosted without adding more disease-causing virus. In the case of rabies, a fatal neurological disease transmitted via the saliva of rabies virus-infected animals, the progression of the disease from the time of the animal bite to the time it enters the central nervous system may be 2 weeks or longer. This is enough time to vaccinate an individual who suspects that they have been bitten by a rabid animal, and their boosted immune response is sufficient to prevent the virus from entering nervous tissue. Thus, the potentially fatal neurological consequences of the disease are averted, and the individual only has to recover from the infected bite. This approach is also being used for the treatment of Ebola, one of the fastest and most deadly viruses on earth. Transmitted by bats and great apes, this disease can cause death in 70–90 percent of infected humans within 2 weeks. Using newly developed vaccines that boost the immune response in this way, there is hope that affected individuals will be better able to control the virus, potentially saving a greater percentage of infected persons from a rapid and very painful death.

Another way of treating viral infections is the use of antiviral drugs. These drugs often have limited success in curing viral disease, but in many cases, they have been used to control and reduce symptoms for a wide variety of viral diseases. For most viruses, these drugs can inhibit the virus by

blocking the actions of one or more of its proteins. It is important that the targeted proteins be encoded by viral genes and that these molecules are not present in a healthy host cell. In this way, viral growth is inhibited without damaging the host. There are large numbers of antiviral drugs available to treat infections, some specific for a particular virus and others that can affect multiple viruses.

Antivirals have been developed to treat genital herpes (herpes simplex II) and influenza. For genital herpes, drugs such as acyclovir can reduce the number and duration of episodes of active viral disease, during which patients develop viral lesions in their skin cells. As the virus remains latent in nervous tissue of the body for life, this drug is not curative but can make the symptoms of the disease more manageable. For influenza, drugs like Tamiflu (oseltamivir) ([link]) can reduce the duration of "flu" symptoms by 1 or 2 days, but the drug does not prevent symptoms entirely. Tamiflu works by inhibiting an enzyme (viral neuraminidase) that allows new virions to leave their infected cells. Thus, Tamiflu inhibits the spread of virus from infected to uninfected cells. Other antiviral drugs, such as Ribavirin, have been used to treat a variety of viral infections, although its mechanism of action against certain viruses remains unclear.

(a) Tamiflu inhibits a viral enzyme called neuraminidase (NA) found in the influenza viral envelope. (b)

Neuraminidase cleaves the connection between viral

hemagglutinin (HA), also found in the viral envelope, and glycoproteins on the host cell surface. Inhibition of neuraminidase prevents the virus from detaching from the host cell, thereby blocking further infection. (credit a: modification of work by M. Eickmann)

By far, the most successful use of antivirals has been in the treatment of the retrovirus HIV, which causes a disease that, if untreated, is usually fatal within 10–12 years after infection. Anti-HIV drugs have been able to control viral replication to the point that individuals receiving these drugs survive for a significantly longer time than the untreated.

Anti-HIV drugs inhibit viral replication at many different phases of the HIV replicative cycle ([link]). Drugs have been developed that inhibit the fusion of the HIV viral envelope with the plasma membrane of the host cell (fusion inhibitors), the conversion of its RNA genome into double-stranded DNA (reverse transcriptase inhibitors), the integration of the viral DNA into the host genome (integrase inhibitors), and the processing of viral proteins (protease inhibitors).

HIV, an enveloped, icosahedral virus, attaches to the CD4 receptor of an immune cell and fuses with the cell membrane. Viral contents are released into the cell, where viral enzymes convert the single-stranded RNA genome into DNA and incorporate it into the host genome. (credit: NIAID, NIH)

When any of these drugs are used individually, the high mutation rate of the virus allows it to easily and rapidly develop resistance to the drug, limiting the drug's effectiveness. The breakthrough in the treatment of HIV was the development of HAART, highly active anti-retroviral therapy, which involves a mixture of different drugs, sometimes called a drug "cocktail." By attacking the virus at different stages of its replicative cycle, it is much more difficult for the virus to develop resistance to multiple drugs at the same time. Still, even with the use of combination HAART therapy, there is concern that, over time, the virus will develop resistance to this therapy. Thus, new anti-HIV drugs are constantly being developed with the hope of continuing the battle against this highly fatal virus.

Note:

Everyday Connection Applied Virology

The study of viruses has led to the development of a variety of new ways to treat non-viral diseases. Viruses have been used in **gene therapy**. Gene therapy is used to treat genetic diseases such as severe combined immunodeficiency (SCID), a heritable, recessive disease in which children are born with severely compromised immune systems. One common type of SCID is due to the lack of an enzyme, adenosine deaminase (ADA), which breaks down purine bases. To treat this disease by gene therapy, bone marrow cells are taken from a SCID patient and the ADA gene is inserted. This is where viruses come in, and their use relies on their ability to penetrate living cells and bring genes in with them. Viruses such as adenovirus, an upper respiratory human virus, are modified by the addition of the ADA gene, and the virus then transports this gene into the cell. The modified cells, now capable of making ADA, are then given back to the patients in the hope of curing them. Gene therapy using viruses as carrier of genes (viral vectors), although still experimental, holds promise for the treatment of many genetic diseases. Still, many technological problems need to be solved for this approach to be a viable method for treating genetic disease.

Another medical use for viruses relies on their specificity and ability to kill the cells they infect. **Oncolytic viruses** are engineered in the laboratory

specifically to attack and kill cancer cells. A genetically modified adenovirus known as H101 has been used since 2005 in clinical trials in China to treat head and neck cancers. The results have been promising, with a greater short-term response rate to the combination of chemotherapy and viral therapy than to chemotherapy treatment alone. This ongoing research may herald the beginning of a new age of cancer therapy, where viruses are engineered to find and specifically kill cancer cells, regardless of where in the body they may have spread.

A third use of viruses in medicine relies on their specificity and involves using bacteriophages in the treatment of bacterial infections. Bacterial diseases have been treated with antibiotics since the 1940s. However, over time, many bacteria have developed resistance to antibiotics. A good example is methicillin-resistant *Staphylococcus aureus* (MRSA, pronounced "mersa"), an infection commonly acquired in hospitals. This bacterium is resistant to a variety of antibiotics, making it difficult to treat. The use of bacteriophages specific for such bacteria would bypass their resistance to antibiotics and specifically kill them. Although **phage therapy** is in use in the Republic of Georgia to treat antibiotic-resistant bacteria, its use to treat human diseases has not been approved in most countries. However, the safety of the treatment was confirmed in the United States when the U.S. Food and Drug Administration approved spraying meats with bacteriophages to destroy the food pathogen *Listeria*. As more and more antibiotic-resistant strains of bacteria evolve, the use of bacteriophages might be a potential solution to the problem, and the development of phage therapy is of much interest to researchers worldwide.

Section Summary

Viruses cause a variety of diseases in humans. Many of these diseases can be prevented by the use of viral vaccines, which stimulate protective immunity against the virus without causing major disease. Viral vaccines may also be used in active viral infections, boosting the ability of the immune system to control or destroy the virus. A series of antiviral drugs that target enzymes and other protein products of viral genes have been

developed and used with mixed success. Combinations of anti-HIV drugs have been used to effectively control the virus, extending the lifespans of infected individuals. Viruses have many uses in medicines, such as in the treatment of genetic disorders, cancer, and bacterial infections.

Review Questions		
Exercise:		
Problem:		
Which of the following is NOT used to treat active viral disease?		
a. vaccinesb. antiviral drugsc. antibioticsd. phage therapy		
Solution:		
С		
Exercise:		
Problem: Vaccines		
a. are similar to viroidsb. are only needed oncec. kill virusesd. stimulate an immune response		
Solution:		
D		

Free Response

Exercise:

Problem:

Why is immunization after being bitten by a rabid animal so effective and why aren't people vaccinated for rabies like dogs and cats are?

Solution:

Rabies vaccine works after a bite because it takes week for the virus to travel from the site of the bite to the central nervous system, where the most severe symptoms of the disease occur. Adults are not routinely vaccinated for rabies for two reasons: first, because the routine vaccination of domestic animals makes it unlikely that humans will contract rabies from an animal bite; second, if one is bitten by a wild animal or a domestic animal that one cannot confirm has been immunized, there is still time to give the vaccine and avoid the often fatal consequences of the disease.

Glossary

attenuation

weakening of a virus during vaccine development

back mutation

when a live virus vaccine reverts back to it disease-causing phenotype

gene therapy

treatment of genetic disease by adding genes, using viruses to carry the new genes inside the cell

oncolytic virus

virus engineered to specifically infect and kill cancer cells

phage therapy

treatment of bacterial diseases using bacteriophages specific to a particular bacterium

vaccine

weakened solution of virus components, viruses, or other agents that produce an immune response

Other Acellular Entities: Prions and Viroids By the end of this section, you will be able to:

- Describe prions and their basic properties
- Define viroids and their targets of infection

Prions and viroids are **pathogens** (agents with the ability to cause disease) that have simpler structures than viruses but, in the case of prions, still can produce deadly diseases.

Prions

Prions, so-called because they are proteinaceous, are infectious particles—smaller than viruses—that contain no nucleic acids (neither DNA nor RNA). Historically, the idea of an infectious agent that did not use nucleic acids was considered impossible, but pioneering work by Nobel Prizewinning biologist Stanley Prusiner has convinced the majority of biologists that such agents do indeed exist.

Fatal neurodegenerative diseases, such as kuru in humans and bovine spongiform encephalopathy (BSE) in cattle (commonly known as "mad cow disease") were shown to be transmitted by prions. The disease was spread by the consumption of meat, nervous tissue, or internal organs between members of the same species. Kuru, native to humans in Papua New Guinea, was spread from human to human via ritualistic cannibalism. BSE, originally detected in the United Kingdom, was spread between cattle by the practice of including cattle nervous tissue in feed for other cattle. Individuals with kuru and BSE show symptoms of loss of motor control and unusual behaviors, such as uncontrolled bursts of laughter with kuru, followed by death. Kuru was controlled by inducing the population to abandon its ritualistic cannibalism.

On the other hand, BSE was initially thought to only affect cattle. Cattle dying of the disease were shown to have developed lesions or "holes" in the brain, causing the brain tissue to resemble a sponge. Later on in the outbreak, however, it was shown that a similar encephalopathy in humans known as variant Creutzfeldt-Jakob disease (CJD) could be acquired from

eating beef from animals with BSE, sparking bans by various countries on the importation of British beef and causing considerable economic damage to the British beef industry ([link]). BSE still exists in various areas, and although a rare disease, individuals that acquire CJD are difficult to treat. The disease can be spread from human to human by blood, so many countries have banned blood donation from regions associated with BSE.

The cause of spongiform encephalopathies, such as kuru and BSE, is an infectious structural variant of a normal cellular protein called PrP (prion protein). It is this variant that constitutes the prion particle. PrP exists in two forms, **PrP**^c, the normal form of the protein, and **PrP**^{sc}, the infectious form. Once introduced into the body, the PrP^{sc} contained within the prion binds to PrP^c and converts it to PrP^{sc}. This leads to an exponential increase of the PrP^{sc} protein, which aggregates. PrP^{sc} is folded abnormally, and the resulting conformation (shape) is directly responsible for the lesions seen in the brains of infected cattle. Thus, although not without some detractors among scientists, the prion seems likely to be an entirely new form of infectious agent, the first one found whose transmission is not reliant upon genes made of DNA or RNA.

(a) Endogenous normal prion protein (PrP^c) is converted into the disease-causing form (PrP^{sc}) when it encounters this variant form of the protein. PrP^{sc} may arise spontaneously in brain tissue, especially if a mutant form of the protein is present, or it

may occur via the spread of misfolded prions consumed in food into brain tissue. (b) This prion-infected brain tissue, visualized using light microscopy, shows the vacuoles that give it a spongy texture, typical of transmissible spongiform encephalopathies. (credit b: modification of work by Dr. Al Jenny, USDA APHIS; scale-bar data from Matt Russell)

Viroids

Viroids are plant pathogens: small, single-stranded, circular RNA particles that are much simpler than a virus. They do not have a capsid or outer envelope, but like viruses can reproduce only within a host cell. Viroids do not, however, manufacture any proteins, and they only produce a single, specific RNA molecule. Human diseases caused by viroids have yet to be identified.

Viroids are known to infect plants ([link]) and are responsible for crop failures and the loss of millions of dollars in agricultural revenue each year. Some of the plants they infect include potatoes, cucumbers, tomatoes, chrysanthemums, avocados, and coconut palms.

These potatoes have been infected by the potato spindle tuber viroid (PSTV), which is typically spread when infected knives are used to cut healthy potatoes, which are then planted. (credit: Pamela Roberts, University of Florida Institute of Food and Agricultural Sciences, USDA ARS)

Note:

Career Connection

Virologist

Virology is the study of viruses, and a virologist is an individual trained in this discipline. Training in virology can lead to many different career paths. Virologists are actively involved in academic research and teaching in colleges and medical schools. Some virologists treat patients or are involved in the generation and production of vaccines. They might participate in epidemiologic studies ([link]) or become science writers, to name just a few possible careers.

This virologist is engaged in fieldwork, sampling eggs from this nest for avian influenza. (credit: Don Becker, USGS EROS, U.S. Fish and Wildlife Service)

If you think you may be interested in a career in virology, find a mentor in the field. Many large medical centers have departments of virology, and smaller hospitals usually have virology labs within their microbiology departments. Volunteer in a virology lab for a semester or work in one over the summer. Discussing the profession and getting a first-hand look at the work will help you decide whether a career in virology is right for you. The American Society of Virology's website is a good resource for information regarding training and careers in virology.

Section Summary

Prions are infectious agents that consist of protein, but no DNA or RNA, and seem to produce their deadly effects by duplicating their shapes and accumulating in tissues. They are thought to contribute to several progressive brain disorders, including mad cow disease and Creutzfeldt-Jakob disease. Viroids are single-stranded RNA pathogens that infect plants. Their presence can have a severe impact on the agriculture industry.

Review Questions

Exercise:

Problem: Which of the following is not associated with prions?

- a. replicating shapes
- b. mad cow disease
- c. DNA
- d. toxic proteins

Solution:

 \mathbf{C}

Exercise:

Problem: Which statement is true of viroids?

- a. They are single-stranded RNA particles.
- b. They reproduce only outside of the cell.
- c. They produce proteins.
- d. They affect both plants and animals.

Solution:

A

Free Response

Exercise:

Problem:

Prions are responsible for variant Creutzfeldt-Jakob Disease, which has resulted in over 100 human deaths in Great Britain during the last 10 years. How do humans obtain this disease?

Solution:

This prion-based disease is transmitted through human consumption of infected meat.

Exercise:

Problem:How are viroids like viruses?

Solution:

They both replicate in a cell, and they both contain nucleic acid.

Glossary

pathogen

agent with the ability to cause disease

prion

infectious particle that consists of proteins that replicate without DNA or RNA

PrPc

normal prion protein

PrPsc

infectious form of a prion protein

viroid

plant pathogen that produces only a single, specific RNA

Introduction class="introduction"

Certain prokaryotes can live in extreme environment s such as the Morning Glory pool, a hot spring in Yellowstone National Park. The spring's vivid blue color is from the prokaryotes that thrive in its very hot waters. (credit: modification of work by Jon Sullivan)

In the recent past, scientists grouped living things into five kingdoms—animals, plants, fungi, protists, and prokaryotes—based on several criteria, such as the absence or presence of a nucleus and other membrane-bound organelles, the absence or presence of cell walls, multicellularity, and so on. In the late 20th century, the pioneering work of Carl Woese and others compared sequences of small-subunit ribosomal RNA (SSU rRNA), which resulted in a more fundamental way to group organisms on Earth. Based on differences in the structure of cell membranes and in rRNA, Woese and his colleagues proposed that all life on Earth evolved along three lineages, called domains. The domain Bacteria comprises all organisms in the kingdom Bacteria, the domain Archaea comprises the rest of the prokaryotes, and the domain Eukarya comprises all eukaryotes—including organisms in the kingdoms Animalia, Plantae, Fungi, and Protista.

Two of the three domains—Bacteria and Archaea—are prokaryotic. Prokaryotes were the first inhabitants on Earth, appearing 3.5 to 3.8 billion years ago. These organisms are abundant and ubiquitous; that is, they are present everywhere. In addition to inhabiting moderate environments, they are found in extreme conditions: from boiling springs to permanently frozen environments in Antarctica; from salty environments like the Dead Sea to environments under tremendous pressure, such as the depths of the ocean;

and from areas without oxygen, such as a waste management plant, to radioactively contaminated regions, such as Chernobyl. Prokaryotes reside in the human digestive system and on the skin, are responsible for certain illnesses, and serve an important role in the preparation of many foods.

Prokaryotic Diversity By the end of this section, you will be able to:

- Describe the evolutionary history of prokaryotes
- Discuss the distinguishing features of extremophiles
- Explain why it is difficult to culture prokaryotes

Prokaryotes are ubiquitous. They cover every imaginable surface where there is sufficient moisture, and they live on and inside of other living things. In the typical human body, prokaryotic cells outnumber human body cells by about ten to one. They comprise the majority of living things in all ecosystems. Some prokaryotes thrive in environments that are inhospitable for most living things. Prokaryotes recycle **nutrients**—essential substances (such as carbon and nitrogen)—and they drive the evolution of new ecosystems, some of which are natural and others man-made. Prokaryotes have been on Earth since long before multicellular life appeared.

Prokaryotes, the First Inhabitants of Earth

When and where did life begin? What were the conditions on Earth when life began? Prokaryotes were the first forms of life on Earth, and they existed for billions of years before plants and animals appeared. The Earth and its moon are thought to be about 4.54 billion years old. This estimate is based on evidence from radiometric dating of meteorite material together with other substrate material from Earth and the moon. Early Earth had a very different atmosphere (contained less molecular oxygen) than it does today and was subjected to strong radiation; thus, the first organisms would have flourished where they were more protected, such as in ocean depths or beneath the surface of the Earth. At this time too, strong volcanic activity was common on Earth, so it is likely that these first organisms—the first prokaryotes—were adapted to very high temperatures. Early Earth was prone to geological upheaval and volcanic eruption, and was subject to bombardment by mutagenic radiation from the sun. The first organisms were prokaryotes that could withstand these harsh conditions.

Microbial Mats

Microbial mats or large biofilms may represent the earliest forms of life on Earth; there is fossil evidence of their presence starting about 3.5 billion years ago. A **microbial mat** is a multi-layered sheet of prokaryotes ([link]) that includes mostly bacteria, but also archaea. Microbial mats are a few centimeters thick, and they typically grow where different types of materials interface, mostly on moist surfaces. The various types of prokaryotes that comprise them carry out different metabolic pathways, and that is the reason for their various colors. Prokaryotes in a microbial mat are held together by a glue-like sticky substance that they secrete called extracellular matrix.

The first microbial mats likely obtained their energy from chemicals found near hydrothermal vents. A **hydrothermal vent** is a breakage or fissure in the Earth's surface that releases geothermally heated water. With the evolution of photosynthesis about 3 billion years ago, some prokaryotes in microbial mats came to use a more widely available energy source—sunlight—whereas others were still dependent on chemicals from hydrothermal vents for energy and food.

This (a) microbial mat, about one meter in diameter, grows over a hydrothermal vent in the Pacific Ocean in a region known as the "Pacific Ring of Fire." The mat helps retain microbial nutrients. Chimneys such as the one indicated by the arrow allow gases to escape. (b) In this micrograph, bacteria are

visualized using fluorescence microscopy. (credit a: modification of work by Dr. Bob Embley, NOAA PMEL, Chief Scientist; credit b: modification of work by Ricardo Murga, Rodney Donlan, CDC; scale-bar data from Matt Russell)

Stromatolites

Fossilized microbial mats represent the earliest record of life on Earth. A **stromatolite** is a sedimentary structure formed when minerals are precipitated out of water by prokaryotes in a microbial mat ([link]). Stromatolites form layered rocks made of carbonate or silicate. Although most stromatolites are artifacts from the past, there are places on Earth where stromatolites are still forming. For example, growing stromatolites have been found in the Anza-Borrego Desert State Park in San Diego County, California.

(a) These living stromatolites are located in Shark Bay, Australia. (b) These fossilized stromatolites, found in Glacier National Park, Montana, are nearly 1.5 billion years old. (credit a: Robert Young; credit b: P. Carrara, NPS)

The Ancient Atmosphere

Evidence indicates that during the first two billion years of Earth's existence, the atmosphere was **anoxic**, meaning that there was no molecular oxygen. Therefore, only those organisms that can grow without oxygen—**anaerobic** organisms—were able to live. Autotrophic organisms that convert solar energy into chemical energy are called **phototrophs**, and they appeared within one billion years of the formation of Earth. Then, **cyanobacteria**, also known as blue-green algae, evolved from these simple phototrophs one billion years later. Cyanobacteria ([link]) began the oxygenation of the atmosphere. Increased atmospheric oxygen allowed the development of more efficient O_2 -utilizing catabolic pathways. It also opened up the land to increased colonization, because some O_2 is converted into O_3 (ozone) and ozone effectively absorbs the ultraviolet light that would otherwise cause lethal mutations in DNA. Ultimately, the increase in O_2 concentrations allowed the evolution of other life forms.

This hot spring in Yellowstone National Park flows toward the foreground. Cyanobacteria in the spring are green, and as

water flows down the gradient,
the intensity of the color
increases as cell density
increases. The water is cooler at
the edges of the stream than in
the center, causing the edges to
appear greener. (credit: Graciela
Brelles-Mariño)

Microbes Are Adaptable: Life in Moderate and Extreme Environments

Some organisms have developed strategies that allow them to survive harsh conditions. Prokaryotes thrive in a vast array of environments: Some grow in conditions that would seem very normal to us, whereas others are able to thrive and grow under conditions that would kill a plant or animal. Almost all prokaryotes have a cell wall, a protective structure that allows them to survive in both hyper- and hypo-osmotic conditions. Some soil bacteria are able to form endospores that resist heat and drought, thereby allowing the organism to survive until favorable conditions recur. These adaptations, along with others, allow bacteria to be the most abundant life form in all terrestrial and aquatic ecosystems.

Other bacteria and archaea are adapted to grow under extreme conditions and are called **extremophiles**, meaning "lovers of extremes." Extremophiles have been found in all kinds of environments: the depth of the oceans, hot springs, the Artic and the Antarctic, in very dry places, deep inside Earth, in harsh chemical environments, and in high radiation environments ([link]), just to mention a few. These organisms give us a better understanding of prokaryotic diversity and open up the possibility of finding new prokaryotic species that may lead to the discovery of new therapeutic drugs or have industrial applications. Because they have specialized adaptations that allow them to live in extreme conditions, many extremophiles cannot survive in moderate environments. There are many different groups of extremophiles: They are identified based on the

conditions in which they grow best, and several habitats are extreme in multiple ways. For example, a soda lake is both salty and alkaline, so organisms that live in a soda lake must be both alkaliphiles and halophiles ([link]). Other extremophiles, like **radioresistant** organisms, do not prefer an extreme environment (in this case, one with high levels of radiation), but have adapted to survive in it ([link]).

Extremophiles and Their Preferred Conditions	
Extremophile Type	Conditions for Optimal Growth
Acidophiles	pH 3 or below
Alkaliphiles	pH 9 or above
Thermophiles	Temperature 60–80 °C (140–176 °F)
Hyperthermophiles	Temperature 80–122 °C (176–250 °F)
Psychrophiles	Temperature of -15-10 °C (5-50 °F) or lower
Halophiles	Salt concentration of at least 0.2 M
Osmophiles	High sugar concentration

Deinococcus radiodurans, visualized in this false color transmission electron micrograph, is a prokaryote that can tolerate very high doses of ionizing radiation. It has developed DNA repair mechanisms that allow it to reconstruct its chromosome even if it has been broken into hundreds of pieces by radiation or heat. (credit: modification of work by Michael Daly; scale-bar data from Matt Russell)

One example of a very harsh environment is the Dead Sea, a hypersaline basin that is located between Jordan and Israel. Hypersaline environments are essentially concentrated seawater. In the Dead Sea, the sodium concentration is 10 times higher than that of seawater, and the water contains high levels of magnesium (about 40 times higher than in seawater) that would be toxic to most living things. Iron, calcium, and magnesium, elements that form divalent ions (Fe²⁺, Ca²⁺, and Mg²⁺), produce what is commonly referred to as "hard" water. Taken together, the high concentration of divalent cations, the acidic pH (6.0), and the intense solar radiation flux make the Dead Sea a unique, and uniquely hostile, ecosystem^[footnote] ([link]).

Bodaker, I, Itai, S, Suzuki, MT, Feingersch, R, Rosenberg, M, Maguire, ME, Shimshon, B, and others. Comparative community genomics in the Dead Sea: An increasingly extreme environment. *The ISME Journal* 4 (2010): 399–407, doi:10.1038/ismej.2009.141. published online 24 December 2009.

What sort of prokaryotes do we find in the Dead Sea? The extremely salt-tolerant bacterial mats include *Halobacterium*, *Haloferax volcanii* (which is found in other locations, not only the Dead Sea), *Halorubrum sodomense*, and *Halobaculum gomorrense*, and the archaea *Haloarcula marismortui*, among others.

(a) The Dead Sea is hypersaline. Nevertheless, salt-tolerant bacteria thrive in this sea. (b) These halobacteria cells can form salt-tolerant bacterial

Unculturable Prokaryotes and the Viable-but-Non-Culturable State

Microbiologists typically grow prokaryotes in the laboratory using an appropriate culture medium containing all the nutrients needed by the target organism. The medium can be liquid, broth, or solid. After an incubation time at the right temperature, there should be evidence of microbial growth ([link]). The process of culturing bacteria is complex and is one of the greatest discoveries of modern science. German physician Robert Koch is credited with discovering the techniques for pure culture, including staining and using growth media. His assistant Julius Petri invented the Petri dish whose use persists in today's laboratories. Koch worked primarily with the Mycobacterium tuberculosis bacterium that causes tuberculosis and developed postulates to identify disease-causing organisms that continue to be widely used in the medical community. Koch's postulates include that an organism can be identified as the cause of disease when it is present in all infected samples and absent in all healthy samples, and it is able to reproduce the infection after being cultured multiple times. Today, cultures remain a primary diagnostic tool in medicine and other areas of molecular biology.

In these agar plates, the

growth medium is supplemented with red blood cells. Blood agar becomes transparent in the presence of hemolytic *Streptococcus*, which destroys red blood cells and is used to diagnose *Streptococcus* infections. The plate on the left is inoculated with nonhemolytic Staphylococcus (large white colonies), and the plate on the right is inoculated with hemolytic Streptococcus (tiny clear colonies). If you look closely at the right plate, you can see that the agar surrounding the bacteria has turned clear. (credit: Bill Branson, NCI)

Some prokaryotes, however, cannot grow in a laboratory setting. In fact, over 99 percent of bacteria and archaea are unculturable. For the most part, this is due to a lack of knowledge as to what to feed these organisms and how to grow them; they have special requirements for growth that remain unknown to scientists, such as needing specific micronutrients, pH, temperature, pressure, co-factors, or co-metabolites. Some bacteria cannot be cultured because they are obligate intracellular parasites and cannot be grown outside a host cell.

In other cases, culturable organisms become unculturable under stressful conditions, even though the same organism could be cultured previously. Those organisms that cannot be cultured but are not dead are in a **viable-but-non-culturable** (VBNC) state. The VBNC state occurs when prokaryotes respond to environmental stressors by entering a dormant state

that allows their survival. The criteria for entering into the VBNC state are not completely understood. In a process called **resuscitation**, the prokaryote can go back to "normal" life when environmental conditions improve.

Is the VBNC state an unusual way of living for prokaryotes? In fact, most of the prokaryotes living in the soil or in oceanic waters are non-culturable. It has been said that only a small fraction, perhaps one percent, of prokaryotes can be cultured under laboratory conditions. If these organisms are non-culturable, then how is it known whether they are present and alive? Microbiologists use molecular techniques, such as the polymerase chain reaction (PCR), to amplify selected portions of DNA of prokaryotes, demonstrating their existence. Recall that PCR can make billions of copies of a DNA segment in a process called amplification.

The Ecology of Biofilms

Until a couple of decades ago, microbiologists used to think of prokaryotes as isolated entities living apart. This model, however, does not reflect the true ecology of prokaryotes, most of which prefer to live in communities where they can interact. A **biofilm** is a microbial community ([link]) held together in a gummy-textured matrix that consists primarily of polysaccharides secreted by the organisms, together with some proteins and nucleic acids. Biofilms grow attached to surfaces. Some of the best-studied biofilms are composed of prokaryotes, although fungal biofilms have also been described as well as some composed of a mixture of fungi and bacteria.

Biofilms are present almost everywhere: they can cause the clogging of pipes and readily colonize surfaces in industrial settings. In recent, large-scale outbreaks of bacterial contamination of food, biofilms have played a major role. They also colonize household surfaces, such as kitchen counters, cutting boards, sinks, and toilets, as well as places on the human body, such as the surfaces of our teeth.

Interactions among the organisms that populate a biofilm, together with their protective exopolysaccharidic (EPS) environment, make these communities more robust than free-living, or planktonic, prokaryotes. The sticky substance that holds bacteria together also excludes most antibiotics and disinfectants, making biofilm bacteria hardier than their planktonic counterparts. Overall, biofilms are very difficult to destroy because they are resistant to many common forms of sterilization.

Five stages of biofilm development are shown. During stage 1, initial attachment, bacteria adhere to a solid surface via weak van der Waals interactions. During stage 2, irreversible attachment, hairlike appendages called pili permanently anchor the bacteria to the surface. During stage 3, maturation I, the biofilm grows through cell division and recruitment of other bacteria. An extracellular matrix composed primarily of polysaccharides holds the biofilm together. During stage 4, maturation II, the biofilm continues to grow and takes on a more complex shape. During stage 5, dispersal, the

biofilm matrix is partly broken down, allowing some bacteria to escape and colonize another surface. Micrographs of a *Pseudomonas aeruginosa* biofilm in each of the stages of development are shown. (credit: D. Davis, Don Monroe, PLoS)

Compared to free-floating bacteria, bacteria in biofilms often show increased resistance to antibiotics and detergents. Why do you think this might be the case?

Section Summary

Prokaryotes existed for billions of years before plants and animals appeared. Hot springs and hydrothermal vents may have been the environments in which life began. Microbial mats are thought to represent the earliest forms of life on Earth, and there is fossil evidence of their presence about 3.5 billion years ago. A microbial mat is a multi-layered sheet of prokaryotes that grows at interfaces between different types of material, mostly on moist surfaces. During the first 2 billion years, the atmosphere was anoxic and only anaerobic organisms were able to live. Cyanobacteria evolved from early phototrophs and began the oxygenation of the atmosphere. The increase in oxygen concentration allowed the evolution of other life forms. Fossilized microbial mats are called stromatolites and consist of laminated organo-sedimentary structures formed by precipitation of minerals by prokaryotes. They represent the earliest fossil record of life on Earth.

Bacteria and archaea grow in virtually every environment. Those that survive under extreme conditions are called extremophiles (extreme lovers). Some prokaryotes cannot grow in a laboratory setting, but they are not dead. They are in the viable-but-non-culturable (VBNC) state. The VBNC state occurs when prokaryotes enter a dormant state in response to

environmental stressors. Most prokaryotes are social and prefer to live in communities where interactions take place. A biofilm is a microbial community held together in a gummy-textured matrix.

Art Connections

Exercise:

Problem:

[link] Compared to free-floating bacteria, bacteria in biofilms often show increased resistance to antibiotics and detergents. Why do you think this might be the case?

Solution:

[link] The extracellular matrix and outer layer of cells protects the inner bacteria. The close proximity of cells also facilitates lateral gene transfer, a process by which genes such as antibiotic resistance genes are transferred from one bacterium to another. And even if lateral gene transfer does not occur, one bacterium that produces an exo-enzyme that destroys antibiotic may save neighboring bacteria.

Review Questions

Exercise:

Problem:

The first forms of life on Earth were thought to be_____.

- a. single-celled plants
- b. prokaryotes
- c. insects
- d. large animals such as dinosaurs

Solution:

A
Exercise:
Problem: Microbial mats
a. are the earliest forms of life on Earthb. obtained their energy and food from hydrothermal ventsc. are multi-layered sheet of prokaryotes including mostly bacteria but also archaead. all of the above
Solution:
D
Exercise:
Problem: The first organisms that oxygenated the atmosphere were a. cyanobacteria b. phototrophic organisms c. anaerobic organisms d. all of the above
Solution:
A
Exercise:
Problem: Halophiles are organisms that require
a. a salt concentration of at least 0.2 Mb. high sugar concentrationc. the addition of halogensd. all of the above

Solution:

Α

Free Response

Exercise:

Problem:

Describe briefly how you would detect the presence of a nonculturable prokaryote in an environmental sample.

Solution:

As the organisms are non-culturable, the presence could be detected through molecular techniques, such as PCR.

Exercise:

Problem:

Why do scientists believe that the first organisms on Earth were extremophiles?

Solution:

Because the environmental conditions on Earth were extreme: high temperatures, lack of oxygen, high radiation, and the like.

Glossary

acidophile

organism with optimal growth pH of three or below

alkaliphile

organism with optimal growth pH of nine or above

anaerobic

refers to organisms that grow without oxygen

anoxic

without oxygen

biofilm

a microbial community growing together on a surface, often held together with a gummy matrix

cyanobacteria

bacteria that evolved from early phototrophs and oxygenated the atmosphere; also known as blue-green algae

extremophile

organism that grows under extreme or harsh conditions

halophile

organism that require a salt concentration of at least 0.2 M

hydrothermal vent

fissure in Earth's surface that releases geothermally heated water

hyperthermophile

organism that grows at temperatures between 80–122 °C

microbial mat

multi-layered sheet of prokaryotes that may include bacteria and archaea

nutrient

essential substances for growth, such as carbon and nitrogen

osmophile

organism that grows in a high sugar concentration

phototroph

organism that is able to make its own food by converting solar energy to chemical energy

psychrophile

organism that grows at temperatures of -15 °C or lower

radioresistant

organism that grows in high levels of radiation

resuscitation

process by which prokaryotes that are in the VBNC state return to viability

stromatolite

layered sedimentary structure formed by precipitation of minerals by prokaryotes in microbial mats

thermophile

organism that lives at temperatures between 60-80 °C

viable-but-non-culturable (VBNC) state

survival mechanism of bacteria facing environmental stress conditions

Structure of Prokaryotes By the end of this section, you will be able to:

- Describe the basic structure of a typical prokaryote
- Describe important differences in structure between Archaea and Bacteria

There are many differences between prokaryotic and eukaryotic cells. However, all cells have four common structures: the plasma membrane, which functions as a barrier for the cell and separates the cell from its environment; the cytoplasm, a jelly-like substance inside the cell; nucleic acids, the genetic material of the cell; and ribosomes, where protein synthesis takes place. Prokaryotes come in various shapes, but many fall into three categories: cocci (spherical), bacilli (rod-shaped), and spirilli (spiral-shaped) ([link]).

Prokaryotes fall into three basic categories based on their shape, visualized here using scanning electron microscopy: (a) cocci, or spherical (a pair is shown); (b) bacilli, or rod-shaped; and (c) spirilli, or spiral-shaped. (credit a: modification of work by Janice Haney Carr, Dr. Richard Facklam, CDC; credit c: modification of work by Dr. David Cox; scale-bar data from Matt Russell)

The Prokaryotic Cell

Recall that prokaryotes ([link]) are unicellular organisms that lack organelles or other internal membrane-bound structures. Therefore, they do not have a nucleus but instead generally have a single chromosome—a piece of circular, double-stranded DNA located in an area of the cell called the nucleoid. Most prokaryotes have a cell wall outside the plasma membrane.

The features of a typical prokaryotic cell are shown.

Recall that prokaryotes are divided into two different domains, Bacteria and Archaea, which together with Eukarya, comprise the three domains of life ([link]).

Bacteria and Archaea are both prokaryotes but differ enough to be placed in separate domains. An ancestor of modern Archaea is believed to have given rise to Eukarya, the third domain of life. Archaeal and bacterial phyla are shown; the evolutionary relationship between these phyla is still open to debate.

The composition of the cell wall differs significantly between the domains Bacteria and Archaea. The composition of their cell walls also differs from the eukaryotic cell walls found in plants (cellulose) or fungi and insects (chitin). The cell wall functions as a protective layer, and it is responsible for the organism's shape. Some bacteria have an outer **capsule** outside the cell wall. Other structures are present in some prokaryotic species, but not in others ([link]). For example, the capsule found in some species enables the organism to attach to surfaces, protects it from dehydration and attack by phagocytic cells, and makes pathogens more resistant to our immune responses. Some species also have flagella (singular, flagellum) used for

locomotion, and **pili** (singular, pilus) used for attachment to surfaces. Plasmids, which consist of extra-chromosomal DNA, are also present in many species of bacteria and archaea.

Characteristics of phyla of Bacteria are described in [link] and [link]; Archaea are described in [link].

Bacteria of Phylum Proteobacteria		
Class	Representative organisms	Representative micrograph
Alpha Proteobacteria Some species are photoautotrophic but some are symbionts of plants and animals and others are pathogens. Eukaryotic mitochondria are thought be derived from bacteria in this group.	Rhizobium Nitrogen-fixing endosymbiont associated with the roots of legumes Rickettsia Obligate intracellular parasite that causes typhus and Rocky Mountain Spotted Fever (but not rickets, which is caused by Vitamin C deficiency)	5 μm Rickettsia rickettsia, stained red, grow inside a host cell.
Beta Proteobacteria This group of bacteria is diverse. Some species play an important role in the nitrogen cycle.	Nitrosomas Species from this group oxidize ammonia into nitrite. Spirillum minus Causes rat-bite fever	1 μm Spirillum minus
Gamma Proteobacteria Many are beneficial symbionts that populate the human gut, but others are familiar human pathogens. Some species from this subgroup oxidize sulfur compounds.	Escherichia coli Normally beneficial microbe of the human gut, but some strains cause disease Salmonella Certain strains cause food poisoning or typhoid fever Yersinia pestis Causative agent of Bubonic plague Psuedomonas aeruginosa Causes lung infections Vibrio cholera Causative agent of cholera Chromatium Sulfur-producing bacteria that oxidize sulfur, producing H ₂ S	1 μm Vibrio cholera
Delta Proteobacteria Some species generate a spore-forming fruiting body in adverse conditions. Others reduce sulfate and sulfur.	Myxobacteria Generate spore-forming fruiting bodies in adverse conditions Desulfovibrio vulgaris Aneorobic, sulfate-reducing bacterium	500 nm Desulfovibrio vulgaris
Epsilon Proteobacteria Many species inhabit the digestive tract of animals as symbionts or pathogens. Bacteria from this group have been found in deep-sea hydrothermal vents and cold seep habitats.	Campylobacter Causes blood poisoning and intestinal inflammation Heliobacter pylori Causes stomach ulcers	500 nm Campylobacter

Phylum Proteobacteria is one of up to 52 bacteria phyla. Proteobacteria is further subdivided into five classes, Alpha through Epsilon. (credit "Rickettsia rickettsia": modification of work by CDC; credit "Spirillum minus": modification of work by Wolframm Adlassnig; credit "Vibrio cholera": modification of work by Janice Haney Carr, CDC; credit "Desulfovibrio

vulgaris": modification of work by Graham Bradley; credit "Campylobacter": modification of work by De Wood, Pooley, USDA, ARS, EMU; scale-bar data from Matt Russell)

Bacteria: Chlamydia, Spirochaetae, Cyanobacteria, and Gram-positive		
Phylum	Representative organisms	Representative micrograph
Chlamydias All members of this group are obligate intracellular parasites of animal cells. Cells walls lack peptidoglycan.	Chlamydia trachomatis Common sexually transmitted disease that can lead to blindness	In this pap smear, <i>Chlamydia trachomatis</i> appear as pink inclusions inside cells.
Spirochetes Most members of this species, which has spiral-shaped cells, are free-living aneaerobes, but some are pathogenic. Flagella run lengthwise in the periplasmic space between the inner and outer membrane.	Treponema pallidum Causative agent of syphilis Borrelia burgdorferi Causative agent of Lyme disease	500 nm Treponema pallidum
Cyanobacteria Also known as blue-green algae, these bacteria obtain their energy through photosynthesis. They are ubiquitous, found in terrestrial, marine, and freshwater environments. Eukaryotic chloroplasts are thought be derived from bacteria in this group.	Prochlorococcus Believed to be the most abundant photosynthetic organism on earth; responsible for generating half the world's oxygen	20 μm Phormidium
Gram-positive Bacteria Soil-dwelling members of this subgroup decompose organic matter. Some species cause disease. They have a thick cell wall and lack an outer membrane.	Bacillus anthracis Causes anthrax Clostridium botulinum Causes Botulism Clostridium difficile Causes diarrhea during antibiotic therapy Streptomyces Many antibiotics, including streptomyocin, are derived from these bacteria. Mycoplasmas These tiny bacteria, the smallest known, lack a cell wall. Some are free-living, and some are pathogenic.	Clostridium difficile

Chlamydia, Spirochetes, Cyanobacteria, and Gram-positive bacteria are described in this table. Note that bacterial shape is not phylum-dependent; bacteria within a phylum may be cocci,

rod-shaped, or spiral. (credit "Chlamydia trachomatis": modification of work by Dr. Lance Liotta Laboratory, NCI; credit "Treponema pallidum": modification of work by Dr. David Cox, CDC; credit "Phormidium": modification of work by USGS; credit "Clostridium difficile": modification of work by Lois S. Wiggs, CDC; scale-bar data from Matt Russell)

	Archaea	
Phylum	Representative organisms	Representative micrograph
Euryarchaeota This phylum includes methanogens, which produce methane as a metabolic waste product, and halobacteria, which live in an extreme saline environment.	Methanogens Methane production causes flatulence in humans and other animals. Halobacteria Large blooms of this salt-loving archaea appear reddish due to the presence of bacterirhodopsin in the membrane. Bacteriorhodopsin is related to the retinal pigment rhodopsin.	2 μm Halobacterium strain NRC-1
Crenarchaeota Members of the ubiquitous phylum play an important role in the fixation of carbon. Many members of this group are sulfur-dependent extremophiles. Some are thermophilic or hyperthermophilic.	Sulfolobus Members of this genus grow in volcanic springs at temperatures between 75° and 80°C and at a pH between 2 and 3.	1 μm Sulfolobus being infected by bacteriophage
Nanoarchaeota This group currently contains only one species, Nanoarchaeum equitans.	Nanoarchaeum equitans This species was isolated from the bottom of the Atlantic Ocean and from a hydrothermal vent at Yellowstone National Park. It is an obligate symbiont with Ignicoccus, another species of archaea.	1 μm Nanoarchaeum equitans (small dark spheres) are in contact with their larger host, Ignicoccus.
Korarchaeota Members of this phylum, considered to be one of the most primitive forms of life, have only been found in the Obsidian Pool, a hot spring at Yellowstone National Park.	No members of this species have been cultivated.	1 μm This image shows a variety of korarchaeota species from the Obsidian Pool at Yellowstone National Park.

Archaea are separated into four phyla: the Korarchaeota, Euryarchaeota, Crenarchaeota, and Nanoarchaeota. (credit "Halobacterium": modification of work by NASA; credit "Nanoarchaeotum equitans": modification of work by Karl O. Stetter; credit "korarchaeota": modification of work by Office of Science of the U.S. Dept. of Energy; scale-bar data from Matt Russell)

The Plasma Membrane

The plasma membrane is a thin lipid bilayer (6 to 8 nanometers) that completely surrounds the cell and separates the inside from the outside. Its selectively permeable nature keeps ions, proteins, and other molecules within the cell and prevents them from diffusing into the extracellular environment, while other molecules may move through the membrane. Recall that the general structure of a cell membrane is a phospholipid bilayer composed of two layers of lipid molecules. In archaeal cell membranes, isoprene (phytanyl) chains linked to glycerol replace the fatty acids linked to glycerol in bacterial membranes. Some archaeal membranes are lipid monolayers instead of bilayers ([link]).

Archaeal phospholipids differ from those found in Bacteria and

Eukarya in two ways. First, they have branched phytanyl sidechains instead of linear ones. Second, an ether bond instead of an ester bond connects the lipid to the glycerol.

The Cell Wall

The cytoplasm of prokaryotic cells has a high concentration of dissolved solutes. Therefore, the osmotic pressure within the cell is relatively high. The cell wall is a protective layer that surrounds some cells and gives them shape and rigidity. It is located outside the cell membrane and prevents osmotic lysis (bursting due to increasing volume). The chemical composition of the cell walls varies between archaea and bacteria, and also varies between bacterial species.

Bacterial cell walls contain **peptidoglycan**, composed of polysaccharide chains that are cross-linked by unusual peptides containing both L- and D-amino acids including D-glutamic acid and D-alanine. Proteins normally have only L-amino acids; as a consequence, many of our antibiotics work by mimicking D-amino acids and therefore have specific effects on bacterial cell wall development. There are more than 100 different forms of peptidoglycan. **S-layer** (surface layer) proteins are also present on the outside of cell walls of both archaea and bacteria.

Bacteria are divided into two major groups: **Gram positive** and **Gram negative**, based on their reaction to Gram staining. Note that all Grampositive bacteria belong to one phylum; bacteria in the other phyla (Proteobacteria, Chlamydias, Spirochetes, Cyanobacteria, and others) are Gram-negative. The Gram staining method is named after its inventor, Danish scientist Hans Christian Gram (1853–1938). The different bacterial responses to the staining procedure are ultimately due to cell wall structure. Gram-positive organisms typically lack the outer membrane found in Gramnegative organisms ([link]). Up to 90 percent of the cell wall in Gram-

positive bacteria is composed of peptidoglycan, and most of the rest is composed of acidic substances called **teichoic acids**. Teichoic acids may be covalently linked to lipids in the plasma membrane to form lipoteichoic acids. Lipoteichoic acids anchor the cell wall to the cell membrane. Gramnegative bacteria have a relatively thin cell wall composed of a few layers of peptidoglycan (only 10 percent of the total cell wall), surrounded by an outer envelope containing lipopolysaccharides (LPS) and lipoproteins. This outer envelope is sometimes referred to as a second lipid bilayer. The chemistry of this outer envelope is very different, however, from that of the typical lipid bilayer that forms plasma membranes.

Bacteria are divided into two major groups:
Gram positive and Gram negative. Both groups have a cell wall composed of peptidoglycan: in Gram-positive bacteria, the wall is thick, whereas in Gram-negative bacteria, the wall is thin. In Gram-negative bacteria, the cell wall is surrounded by an outer membrane that contains lipopolysaccharides and lipoproteins. Porins are proteins in this cell membrane that allow substances to pass through the outer membrane of Gram-negative bacteria. In Gram-positive bacteria, lipoteichoic acid anchors the cell wall to the cell membrane.

(credit: modification of work by "Franciscosp2"/Wikimedia Commons)

Which of the following statements is true?

- a. Gram-positive bacteria have a single cell wall anchored to the cell membrane by lipoteichoic acid.
- b. Porins allow entry of substances into both Gram-positive and Gram-negative bacteria.
- c. The cell wall of Gram-negative bacteria is thick, and the cell wall of Gram-positive bacteria is thin.
- d. Gram-negative bacteria have a cell wall made of peptidoglycan, whereas Gram-positive bacteria have a cell wall made of lipoteichoic acid.

Archaean cell walls do not have peptidoglycan. There are four different types of Archaean cell walls. One type is composed of **pseudopeptidoglycan**, which is similar to peptidoglycan in morphology but contains different sugars in the polysaccharide chain. The other three types of cell walls are composed of polysaccharides, glycoproteins, or pure protein.

Structural Difference Archaea	es and Similarities be	tween Bacteria and
Structural Characteristic	Bacteria	Archaea

Structural Differences and Similarities between Bacteria and	
Archaea	

Structural Characteristic	Bacteria	Archaea
Cell type	Prokaryotic	Prokaryotic
Cell morphology	Variable	Variable
Cell wall	Contains peptidoglycan	Does not contain peptidoglycan
Cell membrane type	Lipid bilayer	Lipid bilayer or lipid monolayer
Plasma membrane lipids	Fatty acids	Phytanyl groups

Reproduction

Reproduction in prokaryotes is asexual and usually takes place by binary fission. Recall that the DNA of a prokaryote exists as a single, circular chromosome. Prokaryotes do not undergo mitosis. Rather the chromosome is replicated and the two resulting copies separate from one another, due to the growth of the cell. The prokaryote, now enlarged, is pinched inward at its equator and the two resulting cells, which are clones, separate. Binary fission does not provide an opportunity for genetic recombination or genetic diversity, but prokaryotes can share genes by three other mechanisms.

In **transformation**, the prokaryote takes in DNA found in its environment that is shed by other prokaryotes. If a nonpathogenic bacterium takes up DNA for a toxin gene from a pathogen and incorporates the new DNA into its own chromosome, it too may become pathogenic. In **transduction**, bacteriophages, the viruses that infect bacteria, sometimes also move short pieces of chromosomal DNA from one bacterium to another. Transduction

results in a recombinant organism. Archaea are not affected by bacteriophages but instead have their own viruses that translocate genetic material from one individual to another. In **conjugation**, DNA is transferred from one prokaryote to another by means of a pilus, which brings the organisms into contact with one another. The DNA transferred can be in the form of a plasmid or as a hybrid, containing both plasmid and chromosomal DNA. These three processes of DNA exchange are shown in [link].

Reproduction can be very rapid: a few minutes for some species. This short generation time coupled with mechanisms of genetic recombination and high rates of mutation result in the rapid evolution of prokaryotes, allowing them to respond to environmental changes (such as the introduction of an antibiotic) very quickly.

Besides binary fission, there are three other mechanisms by which prokaryotes can exchange DNA. In (a) transformation, the cell takes up prokaryotic DNA directly from the environment. The DNA may remain separate as plasmid DNA or be incorporated into the host genome. In (b) transduction, a bacteriophage injects DNA into the cell that contains a small fragment of DNA from a different prokaryote. In (c) conjugation, DNA is transferred from one cell to another via a mating bridge that connects the two cells after the

sex pilus draws the two bacteria close enough to form the bridge.

Note:

Evolution Connection

The Evolution of Prokaryotes

How do scientists answer questions about the evolution of prokaryotes? Unlike with animals, artifacts in the fossil record of prokaryotes offer very little information. Fossils of ancient prokaryotes look like tiny bubbles in rock. Some scientists turn to genetics and to the principle of the molecular clock, which holds that the more recently two species have diverged, the more similar their genes (and thus proteins) will be. Conversely, species that diverged long ago will have more genes that are dissimilar. Scientists at the NASA Astrobiology Institute and at the European Molecular Biology Laboratory collaborated to analyze the molecular evolution of 32 specific proteins common to 72 species of prokaryotes. [footnote] The model they derived from their data indicates that three important groups of bacteria—Actinobacteria, Deinococcus, and Cyanobacteria (which the authors call *Terrabacteria*)—were the first to colonize land. (Recall that *Deinococcus* is a genus of prokaryote—a bacterium—that is highly resistant to ionizing radiation.) Cyanobacteria are photosynthesizers, while Actinobacteria are a group of very common bacteria that include species important in decomposition of organic wastes. Battistuzzi, FU, Feijao, A, and Hedges, SB. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. *BioMed Central: Evolutionary* Biology 4 (2004): 44, doi:10.1186/1471-2148-4-44.

The timelines of divergence suggest that bacteria (members of the domain Bacteria) diverged from common ancestral species between 2.5 and 3.2 billion years ago, whereas archaea diverged earlier: between 3.1 and 4.1 billion years ago. Eukarya later diverged off the Archaean line. The work further suggests that stromatolites that formed prior to the advent of cyanobacteria (about 2.6 billion years ago) photosynthesized in an anoxic environment and that because of the modifications of the Terrabacteria for

land (resistance to drying and the possession of compounds that protect the organism from excess light), photosynthesis using oxygen may be closely linked to adaptations to survive on land.

Section Summary

Prokaryotes (domains Archaea and Bacteria) are single-celled organisms lacking a nucleus. They have a single piece of circular DNA in the nucleoid area of the cell. Most prokaryotes have a cell wall that lies outside the boundary of the plasma membrane. Some prokaryotes may have additional structures such as a capsule, flagella, and pili. Bacteria and Archaea differ in the lipid composition of their cell membranes and the characteristics of the cell wall. In archaeal membranes, phytanyl units, rather than fatty acids, are linked to glycerol. Some archaeal membranes are lipid monolayers instead of bilayers.

The cell wall is located outside the cell membrane and prevents osmotic lysis. The chemical composition of cell walls varies between species. Bacterial cell walls contain peptidoglycan. Archaean cell walls do not have peptidoglycan, but they may have pseudopeptidoglycan, polysaccharides, glycoproteins, or protein-based cell walls. Bacteria can be divided into two major groups: Gram positive and Gram negative, based on the Gram stain reaction. Gram-positive organisms have a thick cell wall, together with teichoic acids. Gram-negative organisms have a thin cell wall and an outer envelope containing lipopolysaccharides and lipoproteins.

Art Connections

Exercise:

Problem: [link] Which of the following statements is true?

a. Gram-positive bacteria have a single cell wall anchored to the cell membrane by lipoteichoic acid.

- b. Porins allow entry of substances into both Gram-positive and Gram-negative bacteria.
- c. The cell wall of Gram-negative bacteria is thick, and the cell wall of Gram-positive bacteria is thin.
- d. Gram-negative bacteria have a cell wall made of peptidoglycan, whereas Gram-positive bacteria have a cell wall made of lipoteichoic acid.

Solution:

[link] A

Review Questions

Exercise:

Problem:

The presence of a membrane-enclosed nucleus is a characteristic of

- a. prokaryotic cells
- b. eukaryotic cells
- c. all cells
- d. viruses

Solution:

В

Exercise:

Problem: Which of the following consist of prokaryotic cells?

- a. bacteria and fungi
- b. archaea and fungi

d. bacteria and archaea
Solution:
D
Exercise:
Problem: The cell wall is
a. interior to the cell membraneb. exterior to the cell membranec. a part of the cell membrane
d. interior or exterior, depending on the particular cell
Solution:
В
Exercise:
Problem:
Organisms most likely to be found in extreme environments are
a. fungi
b. bacteria c. viruses
d. archaea
Solution:
В
Exercise:

c. protists and animals

Problem:
Prokaryotes stain as Gram-positive or Gram-negative because of differences in the cell
a. wall b. cytoplasm c. nucleus d. chromosome
Solution:
A
Exercise:
Problem:
Pseudopeptidoglycan is a characteristic of the walls of
a. eukaryotic cells
b. bacterial prokaryotic cellsc. archaean prokaryotic cells
d. bacterial and archaean prokaryotic cells
Solution:
C
Exercise:
Problem:
The lipopolysaccharide layer (LPS) is a characteristic of the wall of .
a. archaean cells b. Gram-negative bacteria

- c. bacterial prokaryotic cells
- d. eukaryotic cells

Solution:

B

Free Response

Exercise:

Problem: Mention three differences between bacteria and archaea.

Solution:

Responses will vary. A possible answer is: Bacteria contain peptidoglycan in the cell wall; archaea do not. The cell membrane in bacteria is a lipid bilayer; in archaea, it can be a lipid bilayer or a monolayer. Bacteria contain fatty acids on the cell membrane, whereas archaea contain phytanyl.

Exercise:

Problem:

Explain the statement that both types, bacteria and archaea, have the same basic structures, but built from different chemical components.

Solution:

Both bacteria and archaea have cell membranes and they both contain a hydrophobic portion. In the case of bacteria, it is a fatty acid; in the case of archaea, it is a hydrocarbon (phytanyl). Both bacteria and archaea have a cell wall that protects them. In the case of bacteria, it is composed of peptidoglycan, whereas in the case of archaea, it is pseudopeptidoglycan, polysaccharides, glycoproteins, or pure protein. Bacterial and archaeal flagella also differ in their chemical structure.

Glossary

capsule

external structure that enables a prokaryote to attach to surfaces and protects it from dehydration

conjugation

process by which prokaryotes move DNA from one individual to another using a pilus

Gram negative

bacterium whose cell wall contains little peptidoglycan but has an outer membrane

Gram positive

bacterium that contains mainly peptidoglycan in its cell walls

peptidoglycan

material composed of polysaccharide chains cross-linked to unusual peptides

pilus

surface appendage of some prokaryotes used for attachment to surfaces including other prokaryotes

pseudopeptidoglycan

component of archaea cell walls that is similar to peptidoglycan in morphology but contains different sugars

S-layer

surface-layer protein present on the outside of cell walls of archaea and bacteria

teichoic acid

polymer associated with the cell wall of Gram-positive bacteria

transduction

process by which a bacteriophage moves DNA from one prokaryote to another

transformation

process by which a prokaryote takes in DNA found in its environment that is shed by other prokaryotes

Prokaryotic Metabolism By the end of this section, you will be able to:

- Identify the macronutrients needed by prokaryotes, and explain their importance
- Describe the ways in which prokaryotes get energy and carbon for life processes
- Describe the roles of prokaryotes in the carbon and nitrogen cycles

Prokaryotes are metabolically diverse organisms. There are many different environments on Earth with various energy and carbon sources, and variable conditions. Prokaryotes have been able to live in every environment by using whatever energy and carbon sources are available. Prokaryotes fill many niches on Earth, including being involved in nutrient cycles such as nitrogen and carbon cycles, decomposing dead organisms, and thriving inside living organisms, including humans. The very broad range of environments that prokaryotes occupy is possible because they have diverse metabolic processes.

Needs of Prokaryotes

The diverse environments and ecosystems on Earth have a wide range of conditions in terms of temperature, available nutrients, acidity, salinity, and energy sources. Prokaryotes are very well equipped to make their living out of a vast array of nutrients and conditions. To live, prokaryotes need a source of energy, a source of carbon, and some additional nutrients.

Macronutrients

Cells are essentially a well-organized assemblage of macromolecules and water. Recall that macromolecules are produced by the polymerization of smaller units called monomers. For cells to build all of the molecules required to sustain life, they need certain substances, collectively called **nutrients**. When prokaryotes grow in nature, they obtain their nutrients from the environment. Nutrients that are required in large amounts are called macronutrients, whereas those required in smaller or trace amounts are called micronutrients. Just a handful of elements are considered macronutrients—carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur. (A mnemonic for remembering these elements is the acronym *CHONPS*.)

Why are these macronutrients needed in large amounts? They are the components of organic compounds in cells, including water. Carbon is the major element in all macromolecules: carbohydrates, proteins, nucleic acids, lipids, and many other compounds. Carbon accounts for about 50 percent of the composition of the cell. Nitrogen represents 12 percent of the total dry weight of a typical cell and is a component of proteins, nucleic acids, and other cell constituents. Most of the nitrogen available in nature is either atmospheric nitrogen (N_2) or another inorganic form. Diatomic (N_2) nitrogen, however, can be converted into an organic form only by certain organisms, called nitrogen-fixing organisms. Both hydrogen and oxygen are part of many organic compounds and of water. Phosphorus is required by all organisms for the synthesis of nucleotides and phospholipids. Sulfur is part of the structure of some amino acids such as cysteine and methionine, and is also present in several vitamins and

coenzymes. Other important macronutrients are potassium (K), magnesium (Mg), calcium (Ca), and sodium (Na). Although these elements are required in smaller amounts, they are very important for the structure and function of the prokaryotic cell.

Micronutrients

In addition to these macronutrients, prokaryotes require various metallic elements in small amounts. These are referred to as micronutrients or trace elements. For example, iron is necessary for the function of the cytochromes involved in electron-transport reactions. Some prokaryotes require other elements—such as boron (B), chromium (Cr), and manganese (Mn)—primarily as enzyme cofactors.

The Ways in Which Prokaryotes Obtain Energy

Prokaryotes can use different sources of energy to assemble macromolecules from smaller molecules. **Phototrophs** (or phototrophic organisms) obtain their energy from sunlight. **Chemotrophs** (or chemosynthetic organisms) obtain their energy from chemical compounds. Chemotrophs that can use organic compounds as energy sources are called chemoorganotrophs. Those that can also use inorganic compounds as energy sources are called chemolitotrophs.

The Ways in Which Prokaryotes Obtain Carbon

Prokaryotes not only can use different sources of energy but also different sources of carbon compounds. Recall that organisms that are able to fix inorganic carbon are called autotrophs. Autotrophic prokaryotes synthesize organic molecules from carbon dioxide. In contrast, heterotrophic prokaryotes obtain carbon from organic compounds. To make the picture more complex, the terms that describe how prokaryotes obtain energy and carbon can be combined. Thus, photoautotrophs use energy from sunlight, and carbon from carbon dioxide and water, whereas chemoheterotrophs obtain energy and carbon from an organic chemical source. Chemolitoautotrophs obtain their energy from inorganic compounds, and they build their complex molecules from carbon dioxide. The table below ([link]) summarizes carbon and energy sources in prokaryotes.

Carbon and Energy Sources in Prokaryotes

Earbgy Sources in Prokaryotes	Carbon Sources

Energy Sources		Carbon Sources		
Light	Chemicals		Carbon dioxide	Organic compounds
Phototrophs	Chemotrophs		Autotrophs	Heterotrophs
	Organic chemicals	Inorganic chemicals		
	Chemo- organotrophs	Chemolithotrophs		

Role of Prokaryotes in Ecosystems

Prokaryotes are ubiquitous: There is no niche or ecosystem in which they are not present. Prokaryotes play many roles in the environments they occupy. The roles they play in the carbon and nitrogen cycles are vital to life on Earth.

Prokaryotes and the Carbon Cycle

Carbon is one of the most important macronutrients, and prokaryotes play an important role in the carbon cycle ([link]). Carbon is cycled through Earth's major reservoirs: land, the atmosphere, aquatic environments, sediments and rocks, and biomass. The movement of carbon is via carbon dioxide, which is removed from the atmosphere by land plants and marine prokaryotes, and is returned to the atmosphere via the respiration of chemoorganotrophic organisms, including prokaryotes, fungi, and animals. Although the largest carbon reservoir in terrestrial ecosystems is in rocks and sediments, that carbon is not readily available.

A large amount of available carbon is found in land plants. Plants, which are producers, use carbon dioxide from the air to synthesize carbon compounds. Related to this, one very significant source of carbon compounds is humus, which is a mixture of organic materials from dead plants and prokaryotes that have resisted decomposition. Consumers such as animals use organic compounds generated by producers and release carbon dioxide to the atmosphere. Then, bacteria and fungi, collectively called **decomposers**, carry out the breakdown (decomposition) of plants and animals and their organic compounds. The most important contributor of carbon dioxide to the atmosphere is microbial decomposition of dead material (dead animals, plants, and humus) that undergo respiration.

In aqueous environments and their anoxic sediments, there is another carbon cycle taking place. In this case, the cycle is based on one-carbon compounds. In anoxic sediments, prokaryotes, mostly archaea, produce methane (CH_4). This methane moves into the zone above the sediment, which is richer in oxygen and supports bacteria called methane oxidizers that oxidize methane to carbon dioxide, which then returns to the atmosphere.

Prokaryotes play a significant role in continuously moving carbon through the biosphere. (credit: modification of work by John M. Evans and Howard Perlman, USGS)

Prokaryotes and the Nitrogen Cycle

Nitrogen is a very important element for life because it is part of proteins and nucleic acids. It is a macronutrient, and in nature, it is recycled from organic compounds to ammonia, ammonium ions, nitrate, nitrite, and nitrogen gas by myriad processes, many of which are carried out only by prokaryotes. As illustrated in [link], prokaryotes are key to the nitrogen cycle. The largest pool of nitrogen available in the terrestrial ecosystem is gaseous nitrogen from the air, but this nitrogen is not usable by plants, which are primary producers. Gaseous nitrogen is transformed, or "fixed" into more readily available forms such as ammonia through the process of **nitrogen fixation**. Ammonia can be used by plants or converted to other forms.

Another source of ammonia is **ammonification**, the process by which ammonia is released during the decomposition of nitrogen-containing organic compounds. Ammonia released to the atmosphere, however, represents only 15 percent of the total nitrogen released; the rest is as N_2 and N_2O . Ammonia is catabolized anaerobically by some prokaryotes, yielding N_2 as the final product. **Nitrification** is the conversion of ammonium to nitrite and nitrate. Nitrification in soils is carried out by bacteria belonging to the genera *Nitrosomas*, *Nitrobacter*, and *Nitrospira*. The bacteria performs the reverse process, the reduction of nitrate from the soils to gaseous compounds such as N_2O , NO, and N_2 , a process called **denitrification**.

Note:

Prokaryotes play a key role in the nitrogen cycle. (credit: Environmental Protection Agency)

Which of the following statements about the nitrogen cycle is false?

- a. Nitrogen fixing bacteria exist on the root nodules of legumes and in the soil.
- b. Denitrifying bacteria convert nitrates (NO_3 -) into nitrogen gas (N_2).
- c. Ammonification is the process by which ammonium ion (NH_4^+) is released from decomposing organic compounds.
- d. Nitrification is the process by which nitrites (NO_2^-) are converted to ammonium ion (NH_4^+) .

Section Summary

Prokaryotes are the most metabolically diverse organisms; they flourish in many different environments with various carbon energy and carbon sources, variable temperature, pH, pressure, and water availability. Nutrients required in large amounts are called macronutrients, whereas those required in trace amounts are called micronutrients or trace elements. Macronutrients include C, H, O, N, P, S, K, Mg, Ca, and Na. In addition to these macronutrients, prokaryotes require various metallic elements for growth and enzyme function. Prokaryotes use different sources of energy to assemble macromolecules from smaller molecules. Phototrophs obtain their energy from sunlight, whereas chemotrophs obtain energy from chemical compounds.

Prokaryotes play roles in the carbon and nitrogen cycles. Carbon is returned to the atmosphere by the respiration of animals and other chemoorganotrophic organisms. Consumers use organic compounds generated by producers and release carbon dioxide into the atmosphere. The most important contributor of carbon dioxide to the atmosphere is microbial decomposition of dead material. Nitrogen is recycled in nature from organic compounds to ammonia, ammonium ions, nitrite, nitrate, and nitrogen gas. Gaseous nitrogen is transformed into ammonia through nitrogen fixation. Ammonia is anaerobically catabolized by some prokaryotes, yielding N_2 as the final product. Nitrification is the conversion of ammonium into nitrite. Nitrification in soils is carried out by bacteria. Denitrification is also performed by bacteria and transforms nitrate from soils into gaseous nitrogen compounds, such as N_2O , NO, and N_2 .

Art Connections

Exercise:

Problem: [link] Which of the following statements about the nitrogen cycle is false?

- a. Nitrogen fixing bacteria exist on the root nodules of legumes and in the soil.
- b. Denitrifying bacteria convert nitrates (NO₃⁻) into nitrogen gas (N₂).
- c. Ammonification is the process by which ammonium ion (NH₄⁺) is released from decomposing organic compounds.
- d. Nitrification is the process by which nitrites (NO_2^-) are converted to ammonium ion (NH_4^+).

Solution:

[link] D

Review Questions

Exercise:

Problem: Which of the following elements is *not* a micronutrient?

b. calcium
c. chromium
d. manganese
Solution:
В
Exercise:
Problem:
Prokaryotes that obtain their energy from chemical compounds are called
a. phototrophs b. auxotrophs
c. chemotrophs d. lithotrophs
Solution:
С
Exercise:
Problem: Ammonification is the process by which
 a. ammonia is released during the decomposition of nitrogen-containing organic compounds
b. ammonium is converted to nitrite and nitrate in soils c. nitrate from soil is transformed to gaseous nitrogen compounds such as NO, N_2O ,
and N_2 d. gaseous nitrogen is fixed to yield ammonia
Solution:
A
Exercise:
Problem: Plants use carbon dioxide from the air and are therefore called
a. consumers
b. producers
c. decomposer

a. boron

Solution:

В

Free Response

Exercise:

Problem:

Think about the conditions (temperature, light, pressure, and organic and inorganic materials) that you may find in a deep-sea hydrothermal vent. What type of prokaryotes, in terms of their metabolic needs (autotrophs, phototrophs, chemotrophs, etc.), would you expect to find there?

Solution:

Responses will vary. In a deep-sea hydrothermal vent, there is no light, so prokaryotes would be chemotrophs instead of phototrophs. The source of carbon would be carbon dioxide dissolved in the ocean, so they would be autotrophs. There is not a lot of organic material in the ocean, so prokaryotes would probably use inorganic sources, thus they would be chemolitotrophs. The temperatures are very high in the hydrothermal vent, so the prokaryotes would be thermophilic.

Glossary

ammonification

process by which ammonia is released during the decomposition of nitrogen-containing organic compounds

chemotroph

organism that obtains energy from chemical compounds

decomposer

organism that carries out the decomposition of dead organisms

denitrification

transformation of nitrate from soil to gaseous nitrogen compounds such as $N_2\text{O},\,\text{NO}$ and N_2

nitrification

conversion of ammonium into nitrite and nitrate in soils

nitrogen fixation

process by which gaseous nitrogen is transformed, or "fixed" into more readily available forms such as ammonia

Bacterial Diseases in Humans By the end of this section, you will be able to:

- Identify bacterial diseases that caused historically important plagues and epidemics
- Describe the link between biofilms and foodborne diseases
- Explain how overuse of antibiotic may be creating "super bugs"
- Explain the importance of MRSA with respect to the problems of antibiotic resistance

Devastating pathogen-borne diseases and plagues, both viral and bacterial in nature, have affected humans since the beginning of human history. The true cause of these diseases was not understood at the time, and some people thought that diseases were a spiritual punishment. Over time, people came to realize that staying apart from afflicted persons, and disposing of the corpses and personal belongings of victims of illness, reduced their own chances of getting sick.

Epidemiologists study how diseases affect a population. An **epidemic** is a disease that occurs in an unusually high number of individuals in a population at the same time. A **pandemic** is a widespread, usually worldwide, epidemic. An **endemic disease** is a disease that is constantly present, usually at low incidence, in a population.

Long History of Bacterial Disease

There are records about infectious diseases as far back as 3000 B.C. A number of significant pandemics caused by bacteria have been documented over several hundred years. Some of the most memorable pandemics led to the decline of cities and nations.

In the 21st century, infectious diseases remain among the leading causes of death worldwide, despite advances made in medical research and treatments in recent decades. A disease spreads when the pathogen that causes it is passed from one person to another. For a pathogen to cause disease, it must be able to reproduce in the host's body and damage the host in some way.

The Plague of Athens

In 430 B.C., the Plague of Athens killed one-quarter of the Athenian troops that were fighting in the great Peloponnesian War and weakened Athens' dominance and power. The plague impacted people living in overcrowded Athens as well as troops aboard ships that had to return to Athens. The source of the plague may have been identified recently when researchers from the University of Athens were able to use DNA from teeth recovered from a mass grave. The scientists identified nucleotide sequences from a pathogenic bacterium, *Salmonella enterica* serovar Typhi ([link]), which causes typhoid fever. [footnote] This disease is commonly seen in overcrowded areas and has caused epidemics throughout recorded history. Papagrigorakis MJ, Synodinos PN, and Yapijakis C. Ancient typhoid epidemic reveals possible ancestral strain of *Salmonella enterica* serovar Typhi. *Infect Genet Evol* 7 (2007): 126–7, Epub 2006 Jun.

Salmonella enterica serovar
Typhi, the causative agent of
Typhoid fever, is a Gram-negative,
rod-shaped gamma
protobacterium. Typhoid fever,
which is spread through feces,
causes intestinal hemorrhage, high
fever, delirium and dehydration.
Today, between 16 and 33 million

cases of this re-emerging disease occur annually, resulting in over 200,000 deaths. Carriers of the disease can be asymptomatic. In a famous case in the early 1900s, a cook named Mary Mallon unknowingly spread the disease to over fifty people, three of whom died. Other *Salmonella* serotypes cause food poisoning. (credit: modification of work by NCI, CDC)

Bubonic Plagues

From 541 to 750, an outbreak of what was likely a bubonic plague (the Plague of Justinian), eliminated one-quarter to one-half of the human population in the eastern Mediterranean region. The population in Europe dropped by 50 percent during this outbreak. Bubonic plague would strike Europe more than once.

One of the most devastating pandemics was the **Black Death** (1346 to 1361) that is believed to have been another outbreak of bubonic plague caused by the bacterium *Yersinia pestis*. It is thought to have originated initially in China and spread along the Silk Road, a network of land and sea trade routes, to the Mediterranean region and Europe, carried by rat fleas living on black rats that were always present on ships. The Black Death reduced the world's population from an estimated 450 million to about 350 to 375 million. Bubonic plague struck London hard again in the mid-1600s ([link]). In modern times, approximately 1,000 to 3,000 cases of plague arise globally each year. Although contracting bubonic plague before antibiotics meant almost certain death, the bacterium responds to several types of modern antibiotics, and mortality rates from plague are now very low.

The (a) Great Plague of London killed an estimated 200,000 people, or about twenty percent of the city's population. The causative agent, the (b) bacterium *Yersinia pestis*, is a Gram-negative, rod-shaped bacterium from the class Gamma Proteobacteria. The disease is transmitted through the bite of an infected flea, which is infected by a rodent. Symptoms include swollen lymph nodes, fever, seizure, vomiting of blood, and (c) gangrene. (credit b: Rocky Mountain Laboratories, NIAID, NIH; scale-bar data from Matt Russell; credit c: Textbook of Military Medicine, Washington, D.C., U.S. Dept. of the Army, Office of the Surgeon General, Borden Institute)

Note:

Link to Learning

Watch a <u>video</u> on the modern understanding of the Black Death—bubonic plague in Europe during the 14th century.

Migration of Diseases to New Populations

Over the centuries, Europeans tended to develop genetic immunity to endemic infectious diseases, but when European conquerors reached the western hemisphere, they brought with them disease-causing bacteria and viruses, which triggered epidemics that completely devastated populations of Native Americans, who had no natural resistance to many European diseases. It has been estimated that up to 90 percent of Native Americans died from infectious diseases after the arrival of Europeans, making conquest of the New World a foregone conclusion.

Emerging and Re-emerging Diseases

The distribution of a particular disease is dynamic. Therefore, changes in the environment, the pathogen, or the host population can dramatically impact the spread of a disease. According to the World Health Organization (WHO) an **emerging disease** ([link]) is one that has appeared in a population for the first time, or that may have existed previously but is rapidly increasing in incidence or geographic range. This definition also includes re-emerging diseases that were previously under control. Approximately 75 percent of recently emerging infectious diseases affecting humans are zoonotic diseases, **zoonoses**, diseases that primarily infect animals and are transmitted to humans; some are of viral origin and some are of bacterial origin. Brucellosis is an example of a prokaryotic zoonosis that is re-emerging in some regions, and necrotizing fasciitis (commonly known as flesh-eating bacteria) has been increasing in virulence for the last 80 years for unknown reasons.

The map shows regions where bacterial diseases are emerging or reemerging. (credit: modification of work by NIH)

Some of the present emerging diseases are not actually new, but are diseases that were catastrophic in the past ([link]). They devastated populations and became dormant for a while, just to come back, sometimes more virulent than before, as was the case with bubonic plague. Other diseases, like tuberculosis, were never eradicated but were under control in some regions of the world until coming back, mostly in urban centers with high concentrations of immunocompromised people. The WHO has identified certain diseases whose worldwide re-emergence should be monitored. Among these are two viral diseases (dengue fever and yellow fever), and three bacterial diseases (diphtheria, cholera, and bubonic plague). The war against infectious diseases has no foreseeable end.

Lyme disease often, but not always, results in (a) a characteristic bullseye rash. The disease is caused by a (b) Gram-negative spirochete bacterium of the genus *Borrelia*. The bacteria (c) infect ticks, which in turns infect mice. Deer are the preferred secondary host, but the ticks also may feed on humans. Untreated, the disease causes chronic disorders in the nervous system, eyes, joints, and heart. The disease is named after Lyme, Connecticut, where an outbreak occurred in 1995 and has subsequently spread. The disease is not new, however. Genetic evidence suggests that Ötzi the Iceman, a 5,300-year-old mummy found in the Alps, was infected with *Borrelia*. (credit a: James Gathany, CDC; credit b: CDC; scale-bar data from Matt Russell)

Biofilms and Disease

Recall that biofilms are microbial communities that are very difficult to destroy. They are responsible for diseases such as infections in patients with cystic fibrosis, Legionnaires' disease, and otitis media. They produce dental plaque and colonize catheters, prostheses, transcutaneous and orthopedic devices, contact lenses, and internal devices such as pacemakers. They also form in open wounds and burned tissue. In healthcare environments,

biofilms grow on hemodialysis machines, mechanical ventilators, shunts, and other medical equipment. In fact, 65 percent of all infections acquired in the hospital (nosocomial infections) are attributed to biofilms. Biofilms are also related to diseases contracted from food because they colonize the surfaces of vegetable leaves and meat, as well as food-processing equipment that isn't adequately cleaned.

Biofilm infections develop gradually; sometimes, they do not cause symptoms immediately. They are rarely resolved by host defense mechanisms. Once an infection by a biofilm is established, it is very difficult to eradicate, because biofilms tend to be resistant to most of the methods used to control microbial growth, including antibiotics. Biofilms respond poorly or only temporarily to antibiotics; it has been said that they can resist up to 1,000 times the antibiotic concentrations used to kill the same bacteria when they are free-living or planktonic. An antibiotic dose that large would harm the patient; therefore, scientists are working on new ways to get rid of biofilms.

Antibiotics: Are We Facing a Crisis?

The word *antibiotic* comes from the Greek *anti* meaning "against" and *bios* meaning "life." An **antibiotic** is a chemical, produced either by microbes or synthetically, that is hostile to the growth of other organisms. Today's news and media often address concerns about an antibiotic crisis. Are the antibiotics that easily treated bacterial infections in the past becoming obsolete? Are there new "superbugs"—bacteria that have evolved to become more resistant to our arsenal of antibiotics? Is this the beginning of the end of antibiotics? All these questions challenge the healthcare community.

One of the main causes of resistant bacteria is the abuse of antibiotics. The imprudent and excessive use of antibiotics has resulted in the natural selection of resistant forms of bacteria. The antibiotic kills most of the infecting bacteria, and therefore only the resistant forms remain. These resistant forms reproduce, resulting in an increase in the proportion of resistant forms over non-resistant ones. Another major misuse of antibiotics is in patients with colds or the flu, for which antibiotics are useless. Another

problem is the excessive use of antibiotics in livestock. The routine use of antibiotics in animal feed promotes bacterial resistance as well. In the United States, 70 percent of the antibiotics produced are fed to animals. These antibiotics are given to livestock in low doses, which maximize the probability of resistance developing, and these resistant bacteria are readily transferred to humans.

Note:

Link to Learning

Watch a recent news <u>report</u> on the problem of routine antibiotic administration to livestock and antibiotic-resistant bacteria.

One of the Superbugs: MRSA

The imprudent use of antibiotics has paved the way for bacteria to expand populations of resistant forms. For example, *Staphylococcus aureus*, often called "staph," is a common bacterium that can live in the human body and is usually easily treated with antibiotics. A very dangerous strain, however, **methicillin-resistant** *Staphylococcus aureus* (MRSA) has made the news over the past few years ([link]). This strain is resistant to many commonly used antibiotics, including methicillin, amoxicillin, penicillin, and oxacillin. MRSA can cause infections of the skin, but it can also infect the bloodstream, lungs, urinary tract, or sites of injury. While MRSA infections are common among people in healthcare facilities, they have also appeared in healthy people who haven't been hospitalized but who live or work in tight populations (like military personnel and prisoners). Researchers have expressed concern about the way this latter source of MRSA targets a much

younger population than those residing in care facilities. *The Journal of the American Medical Association* reported that, among MRSA-afflicted persons in healthcare facilities, the average age is 68, whereas people with "community-associated MRSA" (**CA-MRSA**) have an average age of 23. [footnote]

Naimi, TS, LeDell, KH, Como-Sabetti, K, et al. Comparison of community-and health care-associated methicillin-resistant *Staphylococcus aureus* infection. *JAMA* 290 (2003): 2976–84, doi: 10.1001/jama.290.22.2976.

This scanning electron micrograph shows methicillin-resistant *Staphylococcus aureus* bacteria, commonly known as MRSA. *S. aureus* is not always pathogenic, but can cause diseases such as food poisoning and skin and respiratory infections. (credit: modification of work by Janice Haney Carr; scale-bar data from Matt Russell)

In summary, the medical community is facing an antibiotic crisis. Some scientists believe that after years of being protected from bacterial

infections by antibiotics, we may be returning to a time in which a simple bacterial infection could again devastate the human population. Researchers are developing new antibiotics, but it takes many years to of research and clinical trials, plus financial investments in the millions of dollars, to generate an effective and approved drug.

Foodborne Diseases

Prokaryotes are everywhere: They readily colonize the surface of any type of material, and food is not an exception. Most of the time, prokaryotes colonize food and food-processing equipment in the form of a biofilm. Outbreaks of bacterial infection related to food consumption are common. A **foodborne disease** (colloquially called "food poisoning") is an illness resulting from the consumption the pathogenic bacteria, viruses, or other parasites that contaminate food. Although the United States has one of the safest food supplies in the world, the U.S. Centers for Disease Control and Prevention (CDC) has reported that "76 million people get sick, more than 300,000 are hospitalized, and 5,000 Americans die each year from foodborne illness."

The characteristics of foodborne illnesses have changed over time. In the past, it was relatively common to hear about sporadic cases of **botulism**, the potentially fatal disease produced by a toxin from the anaerobic bacterium *Clostridium botulinum*. Some of the most common sources for this bacterium were non-acidic canned foods, homemade pickles, and processed meat and sausages. The can, jar, or package created a suitable anaerobic environment where *Clostridium* could grow. Proper sterilization and canning procedures have reduced the incidence of this disease.

While people may tend to think of foodborne illnesses as associated with animal-based foods, most cases are now linked to produce. There have been serious, produce-related outbreaks associated with raw spinach in the United States and with vegetable sprouts in Germany, and these types of outbreaks have become more common. The raw spinach outbreak in 2006 was produced by the bacterium *E. coli* serotype O157:H7. A **serotype** is a strain of bacteria that carries a set of similar antigens on its cell surface, and there are often many different serotypes of a bacterial species. Most *E. coli*

are not particularly dangerous to humans, but serotype O157:H7 can cause bloody diarrhea and is potentially fatal.

All types of food can potentially be contaminated with bacteria. Recent outbreaks of *Salmonella* reported by the CDC occurred in foods as diverse as peanut butter, alfalfa sprouts, and eggs. A deadly outbreak in Germany in 2010 was caused by *E. coli* contamination of vegetable sprouts ([link]). The strain that caused the outbreak was found to be a new serotype not previously involved in other outbreaks, which indicates that *E. coli* is continuously evolving.

(a) Vegetable sprouts grown at an organic farm were the cause of an (b) *E. coli* outbreak that killed 32 people and sickened 3,800 in Germany in 2011. The strain responsible, *E. coli* O104:H4, produces Shiga toxin, a substance that inhibits protein synthesis in the host cell. The toxin (c) destroys red blood cells resulting in bloody diarrhea. Deformed red blood cells clog the capillaries of the kidney, which can lead to kidney failure, as happened to 845 patients in the 2011 outbreak. Kidney failure is usually reversible, but some patients experience kidney problems years later. (credit c: NIDDK, NIH)

Note:

Career Connection **Epidemiologist**

Epidemiology is the study of the occurrence, distribution, and determinants of health and disease in a population. It is, therefore, part of public health. An epidemiologist studies the frequency and distribution of diseases within human populations and environments.

Epidemiologists collect data about a particular disease and track its spread to identify the original mode of transmission. They sometimes work in close collaboration with historians to try to understand the way a disease evolved geographically and over time, tracking the natural history of pathogens. They gather information from clinical records, patient interviews, surveillance, and any other available means. That information is used to develop strategies, such as vaccinations ([link]), and design public health policies to reduce the incidence of a disease or to prevent its spread. Epidemiologists also conduct rapid investigations in case of an outbreak to recommend immediate measures to control it.

An epidemiologist has a bachelor's degree, plus a master's degree in public health (MPH). Many epidemiologists are also physicians (and have an M.D.), or they have a Ph.D. in an associated field, such as biology or microbiology.

Vaccinations can slow the spread of communicable diseases. (credit: modification of work by Daniel Paquet)

Section Summary

Devastating diseases and plagues have been among us since early times. There are records about microbial diseases as far back as 3000 B.C. Infectious diseases remain among the leading causes of death worldwide. Emerging diseases are those rapidly increasing in incidence or geographic range. They can be new or re-emerging diseases (previously under control). Many emerging diseases affecting humans, such as brucellosis, are zoonoses. The WHO has identified a group of diseases whose re-emergence should be monitored: Those caused by bacteria include bubonic plague, diphtheria, and cholera.

Biofilms are considered responsible for diseases such as bacterial infections in patients with cystic fibrosis, Legionnaires' disease, and otitis media. They produce dental plaque; colonize catheters, prostheses, transcutaneous, and orthopedic devices; and infect contact lenses, open wounds, and burned tissue. Biofilms also produce foodborne diseases because they colonize the surfaces of food and food-processing equipment. Biofilms are resistant to most of the methods used to control microbial growth. The excessive use of antibiotics has resulted in a major global problem, since resistant forms of bacteria have been selected over time. A very dangerous strain, methicillin-resistant *Staphylococcus aureus* (MRSA), has wreaked havoc recently. Foodborne diseases result from the consumption of contaminated food, pathogenic bacteria, viruses, or parasites that contaminate food.

Review Questions

Exercise:

Problem:

A disease that is constantly present in a population is called _____.

- a. pandemic
- b. epidemic
- c. endemic
- d. re-emerging

Solution:

 \mathbf{C}

Exercise:

Problem: Which of the statements about biofilms is incorrect?

- a. Biofilms are considered responsible for diseases such as cystic fibrosis.
- b. Biofilms produce dental plaque, and colonize catheters and prostheses.
- c. Biofilms colonize open wounds and burned tissue.
- d. All statements are incorrect.

Solution:

D

Exercise:

Problem: Which of these statements is true?

- a. An antibiotic is any substance produced by a organism that is antagonistic to the growth of prokaryotes.
- b. An antibiotic is any substance produced by a prokaryote that is antagonistic to the growth of other viruses.
- c. An antibiotic is any substance produced by a prokaryote that is antagonistic to the growth of eukaryotic cells.
- d. An antibiotic is any substance produced by a prokaryote that prevents growth of the same prokaryote.

Solution:

A

Free Response

Exercise:

Problem:

Explain the reason why the imprudent and excessive use of antibiotics has resulted in a major global problem.

Solution:

Antibiotics kill bacteria that are sensitive to them; thus, only the resistant ones will survive. These resistant bacteria will reproduce, and therefore, after a while, there will be only resistant bacteria.

Exercise:

Problem:

Researchers have discovered that washing spinach with water several times does not prevent foodborne diseases due to *E. coli*. How can you explain this fact?

Solution:

E. coli colonizes the surface of the leaf, forming a biofilm that is more difficult to remove than free (planktonic) cells. Additionally, bacteria can be taken up in the water that plants are grown in, thereby entering the plant tissues rather than simply residing on the leaf surface.

Glossary

antibiotic

biological substance that, in low concentration, is antagonistic to the growth of prokaryotes

Black Death

devastating pandemic that is believed to have been an outbreak of bubonic plague caused by the bacterium *Yersinia pestis*

botulism

disease produced by the toxin of the anaerobic bacterium *Clostridium botulinum*

CA-MRSA

MRSA acquired in the community rather than in a hospital setting

emerging disease

disease making an initial appearance in a population or that is increasing in incidence or geographic range

endemic disease

disease that is constantly present, usually at low incidence, in a population

epidemic

disease that occurs in an unusually high number of individuals in a population at the same time

foodborne disease

any illness resulting from the consumption of contaminated food, or of the pathogenic bacteria, viruses, or other parasites that contaminate food

MRSA

(methicillin-resistant *Staphylococcus aureus*) very dangerous *Staphylococcus aureus* strain resistant to multiple antibiotics

pandemic

widespread, usually worldwide, epidemic disease

serotype

strain of bacteria that carries a set of similar antigens on its cell surface, often many in a bacterial species

zoonosis

disease that primarily infects animals that is transmitted to humans

Beneficial Prokaryotes By the end of this section, you will be able to:

- Explain the need for nitrogen fixation and how it is accomplished
- Identify foods in which prokaryotes are used in the processing
- Describe the use of prokaryotes in bioremediation
- Describe the beneficial effects of bacteria that colonize our skin and digestive tracts

Not all prokaryotes are pathogenic. On the contrary, pathogens represent only a very small percentage of the diversity of the microbial world. In fact, our life would not be possible without prokaryotes. Just think about the role of prokaryotes in biogeochemical cycles.

Cooperation between Bacteria and Eukaryotes: Nitrogen Fixation

Nitrogen is a very important element to living things, because it is part of nucleotides and amino acids that are the building blocks of nucleic acids and proteins, respectively. Nitrogen is usually the most limiting element in terrestrial ecosystems, with atmospheric nitrogen, N₂, providing the largest pool of available nitrogen. However, eukaryotes cannot use atmospheric, gaseous nitrogen to synthesize macromolecules. Fortunately, nitrogen can be "fixed," meaning it is converted into ammonia (NH₃) either biologically or abiotically. Abiotic nitrogen fixation occurs as a result of lightning or by industrial processes.

Biological nitrogen fixation (BNF) is exclusively carried out by prokaryotes: soil bacteria, cyanobacteria, and *Frankia* spp. (filamentous bacteria interacting with actinorhizal plants such as alder, bayberry, and sweet fern). After photosynthesis, BNF is the second most important biological process on Earth. The equation representing the process is as follows

Equation:

$$N_2 + 16ATP + 8e^- + 8H^+ \rightarrow 2NH_3 + 16ADP + 16Pi + H_2$$

where Pi stands for inorganic phosphate. The total fixed nitrogen through BNF is about 100 to 180 million metric tons per year. Biological processes contribute 65 percent of the nitrogen used in agriculture.

Cyanobacteria are the most important nitrogen fixers in aquatic environments. In soil, members of the genus *Clostridium* are examples of free-living, nitrogen-fixing bacteria. Other bacteria live symbiotically with legume plants, providing the most important source of BNF. Symbionts may fix more nitrogen in soils than free-living organisms by a factor of 10. Soil bacteria, collectively called rhizobia, are able to symbiotically interact with legumes to form **nodules**, specialized structures where nitrogen fixation occurs ([link]). Nitrogenase, the enzyme that fixes nitrogen, is inactivated by oxygen, so the nodule provides an oxygen-free area for nitrogen fixation to take place. This process provides a natural and inexpensive plant fertilizer, as it reduces atmospheric nitrogen to ammonia, which is easily usable by plants. The use of legumes is an excellent alternative to chemical fertilization and is of special interest to sustainable agriculture, which seeks to minimize the use of chemicals and conserve natural resources. Through symbiotic nitrogen fixation, the plant benefits from using an endless source of nitrogen: the atmosphere. Bacteria benefit from using photosynthates (carbohydrates produced during photosynthesis) from the plant and having a protected niche. Additionally, the soil benefits from being naturally fertilized. Therefore, the use of rhizobia as biofertilizers is a sustainable practice.

Why are legumes so important? Some, like soybeans, are key sources of agricultural protein. Some of the most important grain legumes are soybean, peanuts, peas, chickpeas, and beans. Other legumes, such as alfalfa, are used to feed cattle.

Soybean (*Glycine max*) is a legume that interacts symbiotically with the soil bacterium *Bradyrhizobium japonicum* to form specialized structures on the roots called nodules where nitrogen fixation occurs. (credit: USDA)

Early Biotechnology: Cheese, Bread, Wine, Beer, and Yogurt

According to the United Nations Convention on Biological Diversity, biotechnology is "any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use." [footnote] The concept of "specific use" involves some sort of commercial application. Genetic engineering, artificial selection, antibiotic production, and cell culture are current topics of study in biotechnology. However, humans have used prokaryotes before the term biotechnology was even coined. In addition, some of the goods and services are as simple as cheese, bread, wine, beer, and yogurt, which employ both bacteria and other microbes, such as yeast, a fungus ([link]). http://www.cbd.int/convention/articles/?a=cbd-02, United Nations Convention on Biological Diversity: Article 2: Use of Terms.

Some of the products derived from the use of prokaryotes in early biotechnology include (a) cheese, (b) wine, (c) beer and bread, and (d) yogurt. (credit bread: modification of work by F. Rodrigo/Wikimedia Commons; credit wine: modification of work by Jon Sullivan; credit beer and bread: modification of work by Kris Miller; credit yogurt: modification of work by Jon Sullivan)

Cheese production began around 4,000–7,000 years ago when humans began to breed animals and process their milk. Fermentation in this case preserves nutrients: Milk will spoil relatively quickly, but when processed as cheese, it is more stable. As for beer, the oldest records of brewing are about 6,000 years old and refer to the Sumerians. Evidence indicates that the Sumerians discovered fermentation by chance. Wine has been produced

for about 4,500 years, and evidence suggests that cultured milk products, like yogurt, have existed for at least 4,000 years.

Using Prokaryotes to Clean up Our Planet: Bioremediation

Microbial **bioremediation** is the use of prokaryotes (or microbial metabolism) to remove pollutants. Bioremediation has been used to remove agricultural chemicals (pesticides, fertilizers) that leach from soil into groundwater and the subsurface. Certain toxic metals and oxides, such as selenium and arsenic compounds, can also be removed from water by bioremediation. The reduction of SeO₄⁻² to SeO₃⁻² and to Se⁰ (metallic selenium) is a method used to remove selenium ions from water. Mercury is an example of a toxic metal that can be removed from an environment by bioremediation. As an active ingredient of some pesticides, mercury is used in industry and is also a by-product of certain processes, such as battery production. Methyl mercury is usually present in very low concentrations in natural environments, but it is highly toxic because it accumulates in living tissues. Several species of bacteria can carry out the biotransformation of toxic mercury into nontoxic forms. These bacteria, such as *Pseudomonas aeruginosa*, can convert Hg⁺² into Hg⁰, which is nontoxic to humans.

One of the most useful and interesting examples of the use of prokaryotes for bioremediation purposes is the cleanup of oil spills. The importance of prokaryotes to petroleum bioremediation has been demonstrated in several oil spills in recent years, such as the Exxon Valdez spill in Alaska (1989) ([link]), the Prestige oil spill in Spain (2002), the spill into the Mediterranean from a Lebanon power plant (2006), and more recently, the BP oil spill in the Gulf of Mexico (2010). To clean up these spills, bioremediation is promoted by the addition of inorganic nutrients that help bacteria to grow. Hydrocarbon-degrading bacteria feed on hydrocarbons in the oil droplet, breaking down the hydrocarbons. Some species, such as *Alcanivorax borkumensis*, produce surfactants that solubilize the oil, whereas other bacteria degrade the oil into carbon dioxide. In the case of oil spills in the ocean, ongoing, natural bioremediation tends to occur, inasmuch as there are oil-consuming bacteria in the ocean prior to the spill. In addition to naturally occurring oil-degrading bacteria, humans select and engineer bacteria that possess the same capability with increased efficacy

and spectrum of hydrocarbon compounds that can be processed. Under ideal conditions, it has been reported that up to 80 percent of the nonvolatile components in oil can be degraded within one year of the spill. Other oil fractions containing aromatic and highly branched hydrocarbon chains are more difficult to remove and remain in the environment for longer periods of time.

(b)

(a) Cleaning up oil after the Valdez spill in Alaska, workers hosed oil from beaches and then used a floating boom to corral the oil, which was finally skimmed from the water surface. Some species of bacteria are able to solubilize and degrade the oil. (b) One of the most catastrophic consequences of oil spills is the damage to fauna. (credit a: modification of work by NOAA; credit b: modification of work by GOLUBENKOV, NGO: Saving Taman)

Note:

Everyday Connection

Microbes on the Human Body

The commensal bacteria that inhabit our skin and gastrointestinal tract do a host of good things for us. They protect us from pathogens, help us digest our food, and produce some of our vitamins and other nutrients. These

activities have been known for a long time. More recently, scientists have gathered evidence that these bacteria may also help regulate our moods, influence our activity levels, and even help control weight by affecting our food choices and absorption patterns. The Human Microbiome Project has begun the process of cataloging our normal bacteria (and archaea) so we can better understand these functions.

A particularly fascinating example of our normal flora relates to our digestive systems. People who take high doses of antibiotics tend to lose many of their normal gut bacteria, allowing a naturally antibiotic-resistant species called *Clostridium difficile* to overgrow and cause severe gastric problems, especially chronic diarrhea ([link]). Obviously, trying to treat this problem with antibiotics only makes it worse. However, it has been successfully treated by giving the patients fecal transplants from healthy donors to reestablish the normal intestinal microbial community. Clinical trials are underway to ensure the safety and effectiveness of this technique.

This scanning electron micrograph shows *Clostridium difficile*, a Gram-positive, rod-shaped bacterium that causes severe diarrhea. Infection commonly occurs after the normal gut fauna is eradicated by antibiotics. (credit: modification of work by CDC, HHS; scale-bar data from Matt Russell)

Scientists are also discovering that the absence of certain key microbes from our intestinal tract may set us up for a variety of problems. This seems to be particularly true regarding the appropriate functioning of the immune system. There are intriguing findings that suggest that the absence of these microbes is an important contributor to the development of allergies and some autoimmune disorders. Research is currently underway to test whether adding certain microbes to our internal ecosystem may help in the treatment of these problems as well as in treating some forms of autism.

Section Summary

Pathogens are only a small percentage of all prokaryotes. In fact, our life would not be possible without prokaryotes. Nitrogen is usually the most limiting element in terrestrial ecosystems; atmospheric nitrogen, the largest pool of available nitrogen, is unavailable to eukaryotes. Nitrogen can be "fixed," or converted into ammonia (NH₃) either biologically or abiotically. Biological nitrogen fixation (BNF) is exclusively carried out by prokaryotes. After photosynthesis, BNF is the second most important biological process on Earth. The most important source of BNF is the symbiotic interaction between soil bacteria and legume plants.

Microbial bioremediation is the use of microbial metabolism to remove pollutants. Bioremediation has been used to remove agricultural chemicals that leach from soil into groundwater and the subsurface. Toxic metals and oxides, such as selenium and arsenic compounds, can also be removed by bioremediation. Probably one of the most useful and interesting examples of the use of prokaryotes for bioremediation purposes is the cleanup of oil spills.

Human life is only possible due to the action of microbes, both those in the environment and those species that call us home. Internally, they help us digest our food, produce crucial nutrients for us, protect us from pathogenic microbes, and help train our immune systems to function correctly.

Review Questions

Exercise:

Problem: Which of these occurs through symbiotic nitrogen fixation?

- a. The plant benefits from using an endless source of nitrogen.
- b. The soil benefits from being naturally fertilized.
- c. Bacteria benefit from using photosynthates from the plant.
- d. All of the above occur.

\mathbf{c}	1		. •			
S	ΛI	11	tı	n	n	•
	.,.	u		w		•

D

Exercise:

Problem:

Synthetic compounds found in an organism but not normally produced or expected to be present in that organism are called _____.

- a. pesticides
- b. bioremediators
- c. recalcitrant compounds
- d. xenobiotics

Solution:

 \Box

Exercise:

Problem: Bioremediation includes _____.

- a. the use of prokaryotes that can fix nitrogen
- b. the use of prokaryotes to clean up pollutants

- c. the use of prokaryotes as natural fertilizers
- d. All of the above

Solution:

B

Free Response

Exercise:

Problem:

Your friend believes that prokaryotes are always detrimental and pathogenic. How would you explain to them that they are wrong?

Solution:

Remind them of the important roles prokaryotes play in decomposition and freeing up nutrients in biogeochemical cycles; remind them of the many prokaryotes that are not human pathogens and that fill very specialized niches. Furthermore, our normal bacterial symbionts are crucial for our digestion and in protecting us from pathogens.

Glossary

biological nitrogen fixation

conversion of atmospheric nitrogen into ammonia exclusively carried out by prokaryotes

bioremediation

use of microbial metabolism to remove pollutants

biotechnology

any technological application that uses living organisms, biological systems, or their derivatives to produce or modify other products

nodule

novel structure on the roots of certain plants (legumes) that results from the symbiotic interaction between the plant and soil bacteria, is the site of nitrogen fixation

Introduction class="introduction"

A locust leaf consists of leaflets arrayed along a central midrib. Each leaflet is a complex photosynthetic machine, exquisitely adapted to capture sunlight and carbon dioxide. An intricate vascular system supplies the leaf with water and minerals, and exports the products of photosynthesis . (credit: modification of work by Todd Petit)

Plants are as essential to human existence as land, water, and air. Without plants, our day-to-day lives would be impossible because without oxygen from photosynthesis, aerobic life cannot be sustained. From providing food and shelter to serving as a source of medicines, oils, perfumes, and industrial products, plants provide humans with numerous valuable resources.

When you think of plants, most of the organisms that come to mind are vascular plants. These plants have tissues that conduct food and water, and they have seeds. Seed plants are divided into gymnosperms and angiosperms. Gymnosperms include the needle-leaved conifers—spruce, fir, and pine—as well as less familiar plants, such as ginkgos and cycads. Their seeds are not enclosed by a fleshy fruit. Angiosperms, also called flowering plants, constitute the majority of seed plants. They include broadleaved trees (such as maple, oak, and elm), vegetables (such as potatoes, lettuce, and carrots), grasses, and plants known for the beauty of their flowers (roses, irises, and daffodils, for example).

While individual plant species are unique, all share a common structure: a plant body consisting of stems, roots, and leaves. They all transport water, minerals, and sugars produced through photosynthesis through the plant body in a similar manner. All plant species also respond to environmental factors, such as light, gravity, competition, temperature, and predation.

The Plant Body

By the end of this section, you will be able to:

- Describe the shoot organ system and the root organ system
- Distinguish between meristematic tissue and permanent tissue
- Identify and describe the three regions where plant growth occurs
- Summarize the roles of dermal tissue, vascular tissue, and ground tissue
- Compare simple plant tissue with complex plant tissue

Like animals, plants contain cells with organelles in which specific metabolic activities take place. Unlike animals, however, plants use energy from sunlight to form sugars during photosynthesis. In addition, plant cells have cell walls, plastids, and a large central vacuole: structures that are not found in animal cells. Each of these cellular structures plays a specific role in plant structure and function.

Note:

Link to Learning

Watch <u>Botany Without Borders</u>, a video produced by the Botanical Society of America about the importance of plants.

Plant Organ Systems

In plants, just as in animals, similar cells working together form a tissue. When different types of tissues work together to perform a unique function, they form an organ; organs working together form organ systems. Vascular

plants have two distinct organ systems: a shoot system, and a root system. The **shoot system** consists of two portions: the vegetative (non-reproductive) parts of the plant, such as the leaves and the stems, and the reproductive parts of the plant, which include flowers and fruits. The shoot system generally grows above ground, where it absorbs the light needed for photosynthesis. The **root system**, which supports the plants and absorbs water and minerals, is usually underground. [link] shows the organ systems of a typical plant.

The shoot system of a plant consists of leaves, stems, flowers, and fruits. The root system anchors the plant while absorbing water and minerals from the soil.

Plant Tissues

Plants are multicellular eukaryotes with tissue systems made of various cell types that carry out specific functions. Plant tissue systems fall into one of two general types: meristematic tissue, and permanent (or non-meristematic) tissue. Cells of the meristematic tissue are found in **meristems**, which are plant regions of continuous cell division and growth. **Meristematic tissue** cells are either undifferentiated or incompletely differentiated, and they continue to divide and contribute to the growth of the plant. In contrast, **permanent tissue** consists of plant cells that are no longer actively dividing.

Meristematic tissues consist of three types, based on their location in the plant. **Apical meristems** contain meristematic tissue located at the tips of stems and roots, which enable a plant to extend in length. **Lateral meristems** facilitate growth in thickness or girth in a maturing plant. **Intercalary meristems** occur only in monocots, at the bases of leaf blades and at nodes (the areas where leaves attach to a stem). This tissue enables the monocot leaf blade to increase in length from the leaf base; for example, it allows lawn grass leaves to elongate even after repeated mowing.

Meristems produce cells that quickly differentiate, or specialize, and become permanent tissue. Such cells take on specific roles and lose their ability to divide further. They differentiate into three main types: dermal, vascular, and ground tissue. **Dermal tissue** covers and protects the plant, and **vascular tissue** transports water, minerals, and sugars to different parts of the plant. **Ground tissue** serves as a site for photosynthesis, provides a supporting matrix for the vascular tissue, and helps to store water and sugars.

Secondary tissues are either simple (composed of similar cell types) or complex (composed of different cell types). Dermal tissue, for example, is a simple tissue that covers the outer surface of the plant and controls gas exchange. Vascular tissue is an example of a complex tissue, and is made of two specialized conducting tissues: xylem and phloem. Xylem tissue transports water and nutrients from the roots to different parts of the plant, and includes three different cell types: vessel elements and tracheids (both of which conduct water), and xylem parenchyma. Phloem tissue, which transports organic compounds from the site of photosynthesis to other parts

of the plant, consists of four different cell types: sieve cells (which conduct photosynthates), companion cells, phloem parenchyma, and phloem fibers. Unlike xylem conducting cells, phloem conducting cells are alive at maturity. The xylem and phloem always lie adjacent to each other ([link]). In stems, the xylem and the phloem form a structure called a **vascular bundle**; in roots, this is termed the **vascular stele** or **vascular cylinder**.

This light micrograph shows a cross section of a squash (*Cucurbita maxima*) stem. Each teardrop-shaped vascular bundle consists of large xylem vessels toward the inside and smaller phloem cells toward the outside. Xylem cells, which transport water and nutrients from the roots to the rest of the plant, are dead at functional maturity. Phloem cells, which transport sugars and other organic compounds from photosynthetic tissue to the rest of the plant, are living. The vascular bundles are encased in ground tissue and surrounded by dermal tissue. (credit: modification of work by "

(biophotos)"/Flickr; scale-bar data from Matt Russell)

Section Summary

A vascular plant consists of two organ systems: the shoot system and the root system. The shoot system includes the aboveground vegetative portions (stems and leaves) and reproductive parts (flowers and fruits). The root system supports the plant and is usually underground. A plant is composed of two main types of tissue: meristematic tissue and permanent tissue. Meristematic tissue consists of actively dividing cells found in root and shoot tips. As growth occurs, meristematic tissue differentiates into permanent tissue, which is categorized as either simple or complex. Simple tissues are made up of similar cell types; examples include dermal tissue and ground tissue. Dermal tissue provides the outer covering of the plant. Ground tissue is responsible for photosynthesis; it also supports vascular tissue and may store water and sugars. Complex tissues are made up of different cell types. Vascular tissue, for example, is made up of xylem and phloem cells.

Review Questions

HV	arci	ICO.			
ĿA	erci	13C.			

Problem:

Plant regions of continuous growth are made up of _____.

- a. dermal tissue
- b. vascular tissue
- c. meristematic tissue
- d. permanent tissue

Solution:

Exercise:

Problem: Which of the following is the major site of photosynthesis?

- a. apical meristem
- b. ground tissue
- c. xylem cells
- d. phloem cells

Solution:

В

Free Response

Exercise:

Problem:

What type of meristem is found only in monocots, such as lawn grasses? Explain how this type of meristematic tissue is beneficial in lawn grasses that are mowed each week.

Solution:

Lawn grasses and other monocots have an intercalary meristem, which is a region of meristematic tissue at the base of the leaf blade. This is beneficial to the plant because it can continue to grow even when the tip of the plant is removed by grazing or mowing.

Exercise:

Problem:

Which plant part is responsible for transporting water, minerals, and sugars to different parts of the plant? Name the two types of tissue that make up this overall tissue, and explain the role of each.

Solution:

Vascular tissue transports water, minerals, and sugars throughout the plant. Vascular tissue is made up of xylem tissue and phloem tissue. Xylem tissue transports water and nutrients from the roots upward. Phloem tissue carries sugars from the sites of photosynthesis to the rest of the plant.

Glossary

apical meristem

meristematic tissue located at the tips of stems and roots; enables a plant to extend in length

dermal tissue

protective plant tissue covering the outermost part of the plant; controls gas exchange

ground tissue

plant tissue involved in photosynthesis; provides support, and stores water and sugars

intercalary meristem

meristematic tissue located at nodes and the bases of leaf blades; found only in monocots

lateral meristem

meristematic tissue that enables a plant to increase in thickness or girth

meristematic tissue

tissue containing cells that constantly divide; contributes to plant growth

meristem

plant region of continuous growth

permanent tissue

plant tissue composed of cells that are no longer actively dividing

root system

belowground portion of the plant that supports the plant and absorbs water and minerals

shoot system

aboveground portion of the plant; consists of non-reproductive plant parts, such as leaves and stems, and reproductive parts, such as flowers and fruits

vascular bundle

strands of stem tissue made up of xylem and phloem

vascular stele

strands of root tissue made up of xylem and phloem

vascular tissue

tissue made up of xylem and phloem that transports food and water throughout the plant

Stems

By the end of this section, you will be able to:

- Describe the main function and basic structure of stems
- Compare and contrast the roles of dermal tissue, vascular tissue, and ground tissue
- Distinguish between primary growth and secondary growth in stems
- Summarize the origin of annual rings
- List and describe examples of modified stems

Stems are a part of the shoot system of a plant. They may range in length from a few millimeters to hundreds of meters, and also vary in diameter, depending on the plant type. Stems are usually above ground, although the stems of some plants, such as the potato, also grow underground. Stems may be herbaceous (soft) or woody in nature. Their main function is to provide support to the plant, holding leaves, flowers and buds; in some cases, stems also store food for the plant. A stem may be unbranched, like that of a palm tree, or it may be highly branched, like that of a magnolia tree. The stem of the plant connects the roots to the leaves, helping to transport absorbed water and minerals to different parts of the plant. It also helps to transport the products of photosynthesis, namely sugars, from the leaves to the rest of the plant.

Plant stems, whether above or below ground, are characterized by the presence of nodes and internodes ([link]). **Nodes** are points of attachment for leaves, aerial roots, and flowers. The stem region between two nodes is called an **internode**. The stalk that extends from the stem to the base of the leaf is the petiole. An **axillary bud** is usually found in the axil—the area between the base of a leaf and the stem—where it can give rise to a branch or a flower. The apex (tip) of the shoot contains the apical meristem within the **apical bud**.

Leaves are attached to the plant stem at areas called nodes. An internode is the stem region between two nodes. The petiole is the stalk connecting the leaf to the stem. The leaves just above the nodes arose from axillary buds.

Stem Anatomy

The stem and other plant organs arise from the ground tissue, and are primarily made up of simple tissues formed from three types of cells: parenchyma, collenchyma, and sclerenchyma cells.

Parenchyma cells are the most common plant cells ([link]). They are found in the stem, the root, the inside of the leaf, and the pulp of the fruit. Parenchyma cells are responsible for metabolic functions, such as

photosynthesis, and they help repair and heal wounds. Some parenchyma cells also store starch.

The stem of common St John's Wort (*Hypericum perforatum*) is shown in cross section in this light micrograph. The central pith (greenish-blue, in the center) and peripheral cortex (narrow zone 3–5 cells thick just inside the epidermis) are composed of parenchyma cells. Vascular tissue composed of xylem (red) and phloem tissue (green, between the xylem and cortex) surrounds the pith. (credit: Rolf-Dieter Mueller)

Collenchyma cells are elongated cells with unevenly thickened walls ([link]). They provide structural support, mainly to the stem and leaves. These cells are alive at maturity and are usually found below the epidermis. The "strings" of a celery stalk are an example of collenchyma cells.

Collenchyma cell walls are uneven in thickness, as seen in this light micrograph. They provide support to plant structures. (credit: modification of work by Carl Szczerski; scale-bar data from Matt Russell)

Sclerenchyma cells also provide support to the plant, but unlike collenchyma cells, many of them are dead at maturity. There are two types of sclerenchyma cells: fibers and sclereids. Both types have secondary cell walls that are thickened with deposits of lignin, an organic compound that is a key component of wood. Fibers are long, slender cells; sclereids are smaller-sized. Sclereids give pears their gritty texture. Humans use sclerenchyma fibers to make linen and rope ([link]).

Note:

Art Connection

The central pith and outer cortex of the (a) flax stem are made up of parenchyma cells. Inside the cortex is a layer of sclerenchyma cells, which make up the fibers in flax rope and clothing.

Humans have grown and harvested flax for thousands of years. In (b) this drawing, fourteenth-century women prepare linen. The (c) flax plant is grown and harvested for its fibers, which are used to weave linen, and for its seeds, which are the source of linseed oil. (credit a: modification of work by Emmanuel Boutet based on original work by Ryan R. MacKenzie; credit c: modification of work by Brian Dearth; scale-bar data from Matt Russell)

Which layers of the stem are made of parenchyma cells?

- a. cortex and pith
- b. phloem
- c. sclerenchyma
- d. xylem

Like the rest of the plant, the stem has three tissue systems: dermal, vascular, and ground tissue. Each is distinguished by characteristic cell types that perform specific tasks necessary for the plant's growth and survival.

Dermal Tissue

The dermal tissue of the stem consists primarily of **epidermis**, a single layer of cells covering and protecting the underlying tissue. Woody plants have a tough, waterproof outer layer of cork cells commonly known as **bark**, which further protects the plant from damage. Epidermal cells are the most numerous and least differentiated of the cells in the epidermis. The epidermis of a leaf also contains openings known as stomata, through which the exchange of gases takes place ([link]). Two cells, known as **guard cells**, surround each leaf stoma, controlling its opening and closing and thus regulating the uptake of carbon dioxide and the release of oxygen and water vapor. **Trichomes** are hair-like structures on the epidermal surface. They help to reduce **transpiration** (the loss of water by aboveground plant parts), increase solar reflectance, and store compounds that defend the leaves against predation by herbivores.

Openings called stomata (singular: stoma) allow a plant to take up carbon dioxide and release oxygen and water vapor. The (a) colorized scanning-electron micrograph shows a closed stoma of a dicot. Each stoma is flanked by two guard cells that regulate its (b) opening and closing. The (c) guard cells sit within the layer of epidermal cells (credit a: modification of work by Louisa Howard, Rippel Electron Microscope Facility, Dartmouth College; credit b: modification of work by June Kwak, University of Maryland; scale-bar data from Matt Russell)

Vascular Tissue

The xylem and phloem that make up the vascular tissue of the stem are arranged in distinct strands called vascular bundles, which run up and down the length of the stem. When the stem is viewed in cross section, the vascular bundles of dicot stems are arranged in a ring. In plants with stems that live for more than one year, the individual bundles grow together and

produce the characteristic growth rings. In monocot stems, the vascular bundles are randomly scattered throughout the ground tissue ([link]).

In (a) dicot stems, vascular bundles are arranged around the periphery of the ground tissue. The xylem tissue is located toward the interior of the vascular bundle, and phloem is located toward the exterior. Sclerenchyma fibers cap the vascular bundles. In (b) monocot stems, vascular bundles composed of xylem and phloem tissues are scattered throughout the ground tissue.

Xylem tissue has three types of cells: xylem parenchyma, tracheids, and vessel elements. The latter two types conduct water and are dead at maturity. **Tracheids** are xylem cells with thick secondary cell walls that are lignified. Water moves from one tracheid to another through regions on the side walls known as pits, where secondary walls are absent. **Vessel elements** are xylem cells with thinner walls; they are shorter than tracheids. Each vessel element is connected to the next by means of a perforation plate at the end walls of the element. Water moves through the perforation plates to travel up the plant.

Phloem tissue is composed of sieve-tube cells, companion cells, phloem parenchyma, and phloem fibers. A series of **sieve-tube cells** (also called sieve-tube elements) are arranged end to end to make up a long sieve tube, which transports organic substances such as sugars and amino acids. The sugars flow from one sieve-tube cell to the next through perforated sieve plates, which are found at the end junctions between two cells. Although still alive at maturity, the nucleus and other cell components of the sieve-tube cells have disintegrated. **Companion cells** are found alongside the sieve-tube cells, providing them with metabolic support. The companion cells contain more ribosomes and mitochondria than the sieve-tube cells, which lack some cellular organelles.

Ground Tissue

Ground tissue is mostly made up of parenchyma cells, but may also contain collenchyma and sclerenchyma cells that help support the stem. The ground tissue towards the interior of the vascular tissue in a stem or root is known as **pith**, while the layer of tissue between the vascular tissue and the epidermis is known as the **cortex**.

Growth in Stems

Growth in plants occurs as the stems and roots lengthen. Some plants, especially those that are woody, also increase in thickness during their life span. The increase in length of the shoot and the root is referred to as **primary growth**, and is the result of cell division in the shoot apical meristem. **Secondary growth** is characterized by an increase in thickness or girth of the plant, and is caused by cell division in the lateral meristem. [link] shows the areas of primary and secondary growth in a plant. Herbaceous plants mostly undergo primary growth, with hardly any secondary growth or increase in thickness. Secondary growth or "wood" is noticeable in woody plants; it occurs in some dicots, but occurs very rarely in monocots.

In woody plants, primary growth is followed by secondary growth, which allows the plant stem to increase in thickness or girth. Secondary vascular tissue is added as the plant grows, as well as a cork layer. The bark of a tree extends from the vascular cambium to the epidermis.

Some plant parts, such as stems and roots, continue to grow throughout a plant's life: a phenomenon called indeterminate growth. Other plant parts, such as leaves and flowers, exhibit determinate growth, which ceases when a plant part reaches a particular size.

Primary Growth

Most primary growth occurs at the apices, or tips, of stems and roots. Primary growth is a result of rapidly dividing cells in the apical meristems at the shoot tip and root tip. Subsequent cell elongation also contributes to

primary growth. The growth of shoots and roots during primary growth enables plants to continuously seek water (roots) or sunlight (shoots).

The influence of the apical bud on overall plant growth is known as apical dominance, which diminishes the growth of axillary buds that form along the sides of branches and stems. Most coniferous trees exhibit strong apical dominance, thus producing the typical conical Christmas tree shape. If the apical bud is removed, then the axillary buds will start forming lateral branches. Gardeners make use of this fact when they prune plants by cutting off the tops of branches, thus encouraging the axillary buds to grow out, giving the plant a bushy shape.

Note:

Link to Learning

Watch this <u>BBC Nature video</u> showing how time-lapse photography captures plant growth at high speed.

Secondary Growth

The increase in stem thickness that results from secondary growth is due to the activity of the lateral meristems, which are lacking in herbaceous plants. Lateral meristems include the vascular cambium and, in woody plants, the cork cambium (see [link]). The vascular cambium is located just outside the primary xylem and to the interior of the primary phloem. The cells of the vascular cambium divide and form secondary xylem (tracheids and vessel elements) to the inside, and secondary phloem (sieve elements and companion cells) to the outside. The thickening of the stem that occurs in

secondary growth is due to the formation of secondary phloem and secondary xylem by the vascular cambium, plus the action of cork cambium, which forms the tough outermost layer of the stem. The cells of the secondary xylem contain lignin, which provides hardiness and strength.

In woody plants, cork cambium is the outermost lateral meristem. It produces cork cells (bark) containing a waxy substance known as suberin that can repel water. The bark protects the plant against physical damage and helps reduce water loss. The cork cambium also produces a layer of cells known as phelloderm, which grows inward from the cambium. The cork cambium, cork cells, and phelloderm are collectively termed the **periderm**. The periderm substitutes for the epidermis in mature plants. In some plants, the periderm has many openings, known as **lenticels**, which allow the interior cells to exchange gases with the outside atmosphere ([link]). This supplies oxygen to the living and metabolically active cells of the cortex, xylem and phloem.

Lenticels on the bark of this cherry tree enable the woody stem to exchange gases with

the surrounding atmosphere. (credit: Roger Griffith)

Annual Rings

The activity of the vascular cambium gives rise to annual growth rings. During the spring growing season, cells of the secondary xylem have a large internal diameter and their primary cell walls are not extensively thickened. This is known as early wood, or spring wood. During the fall season, the secondary xylem develops thickened cell walls, forming late wood, or autumn wood, which is denser than early wood. This alternation of early and late wood is due largely to a seasonal decrease in the number of vessel elements and a seasonal increase in the number of tracheids. It results in the formation of an annual ring, which can be seen as a circular ring in the cross section of the stem ([link]). An examination of the number of annual rings and their nature (such as their size and cell wall thickness) can reveal the age of the tree and the prevailing climatic conditions during each season.

The rate of wood growth increases

in summer and decreases in winter, producing a characteristic ring for each year of growth. Seasonal changes in weather patterns can also affect the growth rate—note how the rings vary in thickness. (credit: Adrian Pingstone)

Stem Modifications

Some plant species have modified stems that are especially suited to a particular habitat and environment ([link]). A **rhizome** is a modified stem that grows horizontally underground and has nodes and internodes. Vertical shoots may arise from the buds on the rhizome of some plants, such as ginger and ferns. **Corms** are similar to rhizomes, except they are more rounded and fleshy (such as in gladiolus). Corms contain stored food that enables some plants to survive the winter. **Stolons** are stems that run almost parallel to the ground, or just below the surface, and can give rise to new plants at the nodes. **Runners** are a type of stolon that runs above the ground and produces new clone plants at nodes at varying intervals: strawberries are an example. **Tubers** are modified stems that may store starch, as seen in the potato (Solanum sp.). Tubers arise as swollen ends of stolons, and contain many adventitious or unusual buds (familiar to us as the "eyes" on potatoes). A **bulb**, which functions as an underground storage unit, is a modification of a stem that has the appearance of enlarged fleshy leaves emerging from the stem or surrounding the base of the stem, as seen in the iris.

Stem modifications enable plants to thrive in a variety of environments. Shown are (a) ginger (*Zingiber officinale*) rhizomes, (b) a carrion flower (*Amorphophallus titanum*) corm (c) Rhodes grass (*Chloris gayana*) stolons, (d) strawberry (*Fragaria ananassa*) runners, (e) potato (*Solanum tuberosum*) tubers, and (f) red onion (*Allium*) bulbs. (credit a: modification of work by Maja Dumat; credit c: modification of work by Harry Rose; credit d: modification of work by Rebecca Siegel; credit e: modification of work by Scott Bauer, USDA ARS; credit f: modification of work by Stephen Ausmus, USDA ARS)

Note:

Link to Learning

Watch botanist Wendy Hodgson, of Desert Botanical Garden in Phoenix, Arizona, explain how agave plants were cultivated for food hundreds of years ago in the Arizona desert in this <u>video</u>: *Finding the Roots of an Ancient Crop*.

Some aerial modifications of stems are tendrils and thorns ([link]). **Tendrils** are slender, twining strands that enable a plant (like a vine or pumpkin) to seek support by climbing on other surfaces. **Thorns** are modified branches appearing as sharp outgrowths that protect the plant; common examples include roses, Osage orange and devil's walking stick.

Found in southeastern United States, (a) buckwheat vine (*Brunnichia ovata*) is a weedy plant that climbs with the aid of tendrils. This one is shown climbing up a wooden stake. (b) Thorns are modified branches. (credit a: modification of work by Christopher Meloche, USDA ARS; credit b: modification of work by "macrophile"/Flickr)

Section Summary

The stem of a plant bears the leaves, flowers, and fruits. Stems are characterized by the presence of nodes (the points of attachment for leaves or branches) and internodes (regions between nodes).

Plant organs are made up of simple and complex tissues. The stem has three tissue systems: dermal, vascular, and ground tissue. Dermal tissue is the outer covering of the plant. It contains epidermal cells, stomata, guard cells, and trichomes. Vascular tissue is made up of xylem and phloem tissues and conducts water, minerals, and photosynthetic products. Ground tissue is responsible for photosynthesis and support and is composed of parenchyma, collenchyma, and sclerenchyma cells.

Primary growth occurs at the tips of roots and shoots, causing an increase in length. Woody plants may also exhibit secondary growth, or increase in thickness. In woody plants, especially trees, annual rings may form as growth slows at the end of each season. Some plant species have modified stems that help to store food, propagate new plants, or discourage predators. Rhizomes, corms, stolons, runners, tubers, bulbs, tendrils, and thorns are examples of modified stems.

Art Connections

Exercise:

Problem:

[link] Which layers of the stem are made of parenchyma cells?

- A. cortex and pith
- B. epidermis
- C. sclerenchyma
- D. epidermis and cortex.

Solution:

[link] A and B. The cortex, pith, and epidermis are made of parenchyma cells.

Review Questions
Exercise:
Problem:
Stem regions at which leaves are attached are called
a. trichomes b. lenticels c. nodes d. internodes
Solution:
С
Exercise:
Problem:
Which of the following cell types forms most of the inside of a plant?
a. meristem cellsb. collenchyma cellsc. sclerenchyma cellsd. parenchyma cells
Solution:
D
Exercise:

Problem:
Tracheids, vessel elements, sieve-tube cells, and companion cells are components of
a. vascular tissueb. meristematic tissuec. ground tissued. dermal tissue
Solution:
A
Exercise:
Problem:
The primary growth of a plant is due to the action of the
a. lateral meristemb. vascular cambiumc. apical meristemd. cork cambium
Solution:
С
Exercise:
Problem: Which of the following is an example of secondary growth?
a. increase in lengthb. increase in thickness or girthc. increase in root hairs

d. increase in leaf number

Solution:
В
Exercise:
Problem: Secondary growth in stems is usually seen in
a. monocotsb. dicotsc. both monocots and dicotsd. neither monocots nor dicots
Solution:
В
Free Response
Exercise:
Problem:

Describe the roles played by stomata and guard cells. What would happen to a plant if these cells did not function correctly?

Solution:

Stomata allow gases to enter and exit the plant. Guard cells regulate the opening and closing of stomata. If these cells did not function correctly, a plant could not get the carbon dioxide needed for photosynthesis, nor could it release the oxygen produced by photosynthesis.

Exercise:

Problem:

Compare the structure and function of xylem to that of phloem.

Solution:

Xylem is made up tracheids and vessel elements, which are cells that transport water and dissolved minerals and that are dead at maturity. Phloem is made up of sieve-tube cells and companion cells, which transport carbohydrates and are alive at maturity.

Exercise:

Problem: Explain the role of the cork cambium in woody plants.

Solution:

In woody plants, the cork cambium is the outermost lateral meristem; it produces new cells towards the interior, which enables the plant to increase in girth. The cork cambium also produces cork cells towards the exterior, which protect the plant from physical damage while reducing water loss.

Exercise:

Problem: What is the function of lenticels?

Solution:

In woody stems, lenticels allow internal cells to exchange gases with the outside atmosphere.

Exercise:

Problem:

Besides the age of a tree, what additional information can annual rings reveal?

Solution:

Annual rings can also indicate the climate conditions that prevailed during each growing season.

Exercise:

Problem:

Give two examples of modified stems and explain how each example benefits the plant.

Solution:

Answers will vary. Rhizomes, stolons, and runners can give rise to new plants. Corms, tubers, and bulbs can also produce new plants and can store food. Tendrils help a plant to climb, while thorns discourage herbivores.

Glossary

apical bud

bud formed at the tip of the shoot

axillary bud

bud located in the axil: the stem area where the petiole connects to the stem

bark

tough, waterproof, outer epidermal layer of cork cells

bulb

modified underground stem that consists of a large bud surrounded by numerous leaf scales

collenchyma cell

elongated plant cell with unevenly thickened walls; provides structural support to the stem and leaves

companion cell

phloem cell that is connected to sieve-tube cells; has large amounts of ribosomes and mitochondrion

corm

rounded, fleshy underground stem that contains stored food

cortex

ground tissue found between the vascular tissue and the epidermis in a stem or root

epidermis

single layer of cells found in plant dermal tissue; covers and protects underlying tissue

guard cells

paired cells on either side of a stoma that control stomatal opening and thereby regulate the movement of gases and water vapor

internode

region between nodes on the stem

lenticel

opening on the surface of mature woody stems that facilitates gas exchange

node

point along the stem at which leaves, flowers, or aerial roots originate

parenchyma cell

most common type of plant cell; found in the stem, root, leaf, and in fruit pulp; site of photosynthesis and starch storage

periderm

outermost covering of woody stems; consists of the cork cambium, cork cells, and the phelloderm

pith

ground tissue found towards the interior of the vascular tissue in a stem or root

primary growth

growth resulting in an increase in length of the stem and the root; caused by cell division in the shoot or root apical meristem

rhizome

modified underground stem that grows horizontally to the soil surface and has nodes and internodes

runner

stolon that runs above the ground and produces new clone plants at nodes

sclerenchyma cell

plant cell that has thick secondary walls and provides structural support; usually dead at maturity

secondary growth

growth resulting in an increase in thickness or girth; caused by the lateral meristem and cork cambium

sieve-tube cell

phloem cell arranged end to end to form a sieve tube that transports organic substances such as sugars and amino acids

stolon

modified stem that runs parallel to the ground and can give rise to new plants at the nodes

tendril

modified stem consisting of slender, twining strands used for support or climbing

thorn

modified stem branch appearing as a sharp outgrowth that protects the plant

tracheid

xylem cell with thick secondary walls that helps transport water

trichome

hair-like structure on the epidermal surface

tuber

modified underground stem adapted for starch storage; has many adventitious buds

vessel element

xylem cell that is shorter than a tracheid and has thinner walls

Roots

By the end of this section, you will be able to:

- Identify the two types of root systems
- Describe the three zones of the root tip and summarize the role of each zone in root growth
- Describe the structure of the root
- List and describe examples of modified roots

The roots of seed plants have three major functions: anchoring the plant to the soil, absorbing water and minerals and transporting them upwards, and storing the products of photosynthesis. Some roots are modified to absorb moisture and exchange gases. Most roots are underground. Some plants, however, also have **adventitious roots**, which emerge above the ground from the shoot.

Types of Root Systems

Root systems are mainly of two types ([link]). Dicots have a tap root system, while monocots have a fibrous root system. A **tap root system** has a main root that grows down vertically, and from which many smaller lateral roots arise. Dandelions are a good example; their tap roots usually break off when trying to pull these weeds, and they can regrow another shoot from the remaining root). A tap root system penetrates deep into the soil. In contrast, a **fibrous root system** is located closer to the soil surface, and forms a dense network of roots that also helps prevent soil erosion (lawn grasses are a good example, as are wheat, rice, and corn). Some plants have a combination of tap roots and fibrous roots. Plants that grow in dry areas often have deep root systems, whereas plants growing in areas with abundant water are likely to have shallower root systems.

(a) Taproot system (b) Fibrous root system

(a) Tap root systems have a main root that grows down, while (b) fibrous root systems consist of many small roots. (credit b: modification of work by "Austen Squarepants"/Flickr)

Root Growth and Anatomy

Root growth begins with seed germination. When the plant embryo emerges from the seed, the radicle of the embryo forms the root system. The tip of the root is protected by the **root cap**, a structure exclusive to roots and unlike any other plant structure. The root cap is continuously replaced because it gets damaged easily as the root pushes through soil. The root tip can be divided into three zones: a zone of cell division, a zone of elongation, and a zone of maturation and differentiation ([link]). The zone of cell division is closest to the root tip; it is made up of the actively dividing cells of the root meristem. The zone of elongation is where the newly formed cells increase in length, thereby lengthening the root. Beginning at the first root hair is the zone of cell maturation where the root

cells begin to differentiate into special cell types. All three zones are in the first centimeter or so of the root tip.

A longitudinal view of the root reveals the zones of cell division, elongation, and maturation. Cell division occurs in the apical meristem.

The root has an outer layer of cells called the epidermis, which surrounds areas of ground tissue and vascular tissue. The epidermis provides protection and helps in absorption. **Root hairs**, which are extensions of root epidermal cells, increase the surface area of the root, greatly contributing to the absorption of water and minerals.

Inside the root, the ground tissue forms two regions: the cortex and the pith ([link]). Compared to stems, roots have lots of cortex and little pith. Both regions include cells that store photosynthetic products. The cortex is between the epidermis and the vascular tissue, whereas the pith lies between the vascular tissue and the center of the root.

Staining reveals different cell types in this light micrograph of a wheat (*Triticum*) root cross section. Sclerenchyma cells of the exodermis and xylem cells stain red, and phloem cells stain blue. Other cell types stain black. The stele, or vascular tissue, is the area inside endodermis (indicated by a green ring). Root hairs are visible outside the epidermis. (credit: scale-bar data from Matt Russell)

The vascular tissue in the root is arranged in the inner portion of the root, which is called the **stele** ([link]). A layer of cells known as the **endodermis** separates the stele from the ground tissue in the outer portion of the root. The endodermis is exclusive to roots, and serves as a checkpoint for materials entering the root's vascular system. A waxy substance called suberin is present on the walls of the endodermal cells. This waxy region, known as the **Casparian strip**, forces water and solutes to cross the plasma membranes of endodermal cells instead of slipping between the cells. This ensures that only materials required by the root pass through the endodermis, while toxic substances and pathogens are generally excluded.

The outermost cell layer of the root's vascular tissue is the **pericycle**, an area that can give rise to lateral roots. In dicot roots, the xylem and phloem of the stele are arranged alternately in an X shape, whereas in monocot roots, the vascular tissue is arranged in a ring around the pith.

In (left) typical dicots, the vascular tissue forms an X shape in the center of the root. In (right) typical monocots, the phloem cells and the larger xylem cells form a characteristic ring around the central pith.

Root Modifications

Root structures may be modified for specific purposes. For example, some roots are bulbous and store starch. Aerial roots and prop roots are two forms of aboveground roots that provide additional support to anchor the plant. Tap roots, such as carrots, turnips, and beets, are examples of roots that are modified for food storage ([link]).

Many vegetables are modified roots.

Epiphytic roots enable a plant to grow on another plant. For example, the epiphytic roots of orchids develop a spongy tissue to absorb moisture. The banyan tree (*Ficus* sp.) begins as an epiphyte, germinating in the branches of a host tree; aerial roots develop from the branches and eventually reach the ground, providing additional support ([link]). In screwpine (*Pandanus* sp.), a palm-like tree that grows in sandy tropical soils, aboveground prop roots develop from the nodes to provide additional support.

The (a) banyan tree, also known as the strangler fig, begins life as an epiphyte in a host tree. Aerial roots extend to the ground and support the growing plant,

which eventually strangles the host tree. The (b) screwpine develops aboveground roots that help support the plant in sandy soils. (credit a: modification of work by "psyberartist"/Flickr; credit b: modification of work by David Eikhoff)

Section Summary

Roots help to anchor a plant, absorb water and minerals, and serve as storage sites for food. Taproots and fibrous roots are the two main types of root systems. In a taproot system, a main root grows vertically downward with a few lateral roots. Fibrous root systems arise at the base of the stem, where a cluster of roots forms a dense network that is shallower than a taproot. The growing root tip is protected by a root cap. The root tip has three main zones: a zone of cell division (cells are actively dividing), a zone of elongation (cells increase in length), and a zone of maturation (cells differentiate to form different kinds of cells). Root vascular tissue conducts water, minerals, and sugars. In some habitats, the roots of certain plants may be modified to form aerial roots or epiphytic roots.

Review Questions

Exercise:

Problem:

Roots that enable a plant to grow on another plant are called

a. epiphytic roots

b. prop roots

c. adventitious roots

d. aerial roots

Solution:
A
Exercise:
Problem: The forces selective uptake of minerals in the root.
a. pericycleb. epidermisc. endodermisd. root cap
Solution:
C
Exercise:
Problem:
Newly-formed root cells begin to form different cell types in the
a. zone of elongation
b. zone of maturation
c. root meristem d. zone of cell division
Solution:
В
Free Response
Exercise:

Problem:

Compare a tap root system with a fibrous root system. For each type, name a plant that provides a food in the human diet. Which type of root system is found in monocots? Which type of root system is found in dicots?

Solution:

A tap root system has a single main root that grows down. A fibrous root system forms a dense network of roots that is closer to the soil surface. An example of a tap root system is a carrot. Grasses such as wheat, rice, and corn are examples of fibrous root systems. Fibrous root systems are found in monocots; tap root systems are found in dicots.

Exercise:

Problem: What might happen to a root if the pericycle disappeared?

Solution:

The root would not be able to produce lateral roots.

Glossary

adventitious root

aboveground root that arises from a plant part other than the radicle of the plant embryo

Casparian strip

waxy coating that forces water to cross endodermal plasma membranes before entering the vascular cylinder, instead of moving between endodermal cells

endodermis

layer of cells in the root that forms a selective barrier between the ground tissue and the vascular tissue, allowing water and minerals to enter the root while excluding toxins and pathogens

fibrous root system

type of root system in which the roots arise from the base of the stem in a cluster, forming a dense network of roots; found in monocots

pericycle

outer boundary of the stele from which lateral roots can arise

root cap

protective cells covering the tip of the growing root

root hair

hair-like structure that is an extension of epidermal cells; increases the root surface area and aids in absorption of water and minerals

stele

inner portion of the root containing the vascular tissue; surrounded by the endodermis

tap root system

type of root system with a main root that grows vertically with few lateral roots; found in dicots

Leaves

By the end of this section, you will be able to:

- Identify the parts of a typical leaf
- Describe the internal structure and function of a leaf
- Compare and contrast simple leaves and compound leaves
- List and describe examples of modified leaves

Leaves are the main sites for photosynthesis: the process by which plants synthesize food. Most leaves are usually green, due to the presence of chlorophyll in the leaf cells. However, some leaves may have different colors, caused by other plant pigments that mask the green chlorophyll.

The thickness, shape, and size of leaves are adapted to the environment. Each variation helps a plant species maximize its chances of survival in a particular habitat. Usually, the leaves of plants growing in tropical rainforests have larger surface areas than those of plants growing in deserts or very cold conditions, which are likely to have a smaller surface area to minimize water loss.

Structure of a Typical Leaf

Each leaf typically has a leaf blade called the **lamina**, which is also the widest part of the leaf. Some leaves are attached to the plant stem by a **petiole**. Leaves that do not have a petiole and are directly attached to the plant stem are called **sessile** leaves. Small green appendages usually found at the base of the petiole are known as **stipules**. Most leaves have a midrib, which travels the length of the leaf and branches to each side to produce veins of vascular tissue. The edge of the leaf is called the margin. [link] shows the structure of a typical eudicot leaf.

Deceptively simple in appearance, a leaf is a highly efficient structure.

Within each leaf, the vascular tissue forms veins. The arrangement of veins in a leaf is called the **venation** pattern. Monocots and dicots differ in their patterns of venation ([link]). Monocots have parallel venation; the veins run in straight lines across the length of the leaf without converging at a point. In dicots, however, the veins of the leaf have a net-like appearance, forming a pattern known as reticulate venation. One extant plant, the *Ginkgo biloba*, has dichotomous venation where the veins fork.

(a) Tulip (*Tulipa*), a monocot, has leaves with parallel venation. The netlike venation in this (b) linden (*Tilia cordata*) leaf distinguishes it as a dicot. The (c) *Ginkgo biloba* tree has dichotomous venation. (credit a photo: modification of work by "Drewboy64"/Wikimedia Commons; credit b photo: modification of work by Roger Griffith; credit c photo: modification of work by "geishaboy500"/Flickr; credit abc illustrations: modification of work by Agnieszka Kwiecień)

Leaf Arrangement

The arrangement of leaves on a stem is known as **phyllotaxy**. The number and placement of a plant's leaves will vary depending on the species, with each species exhibiting a characteristic leaf arrangement. Leaves are classified as either alternate, spiral, or opposite. Plants that have only one leaf per node have leaves that are said to be either alternate—meaning the leaves alternate on each side of the stem in a flat plane—or spiral, meaning the leaves are arrayed in a spiral along the stem. In an opposite leaf arrangement, two leaves arise at the same point, with the leaves connecting

opposite each other along the branch. If there are three or more leaves connected at a node, the leaf arrangement is classified as **whorled**.

Leaf Form

Leaves may be simple or compound ([link]). In a **simple leaf**, the blade is either completely undivided—as in the banana leaf—or it has lobes, but the separation does not reach the midrib, as in the maple leaf. In a **compound leaf**, the leaf blade is completely divided, forming leaflets, as in the locust tree. Each leaflet may have its own stalk, but is attached to the rachis. A **palmately compound leaf** resembles the palm of a hand, with leaflets radiating outwards from one point Examples include the leaves of poison ivy, the buckeye tree, or the familiar houseplant *Schefflera* sp. (common name "umbrella plant"). **Pinnately compound leaves** take their name from their feather-like appearance; the leaflets are arranged along the midrib, as in rose leaves (*Rosa* sp.), or the leaves of hickory, pecan, ash, or walnut trees.

Leaves may be simple or compound. In simple leaves, the lamina is continuous. The (a) banana plant (*Musa* sp.) has simple leaves. In compound leaves, the lamina is separated into leaflets. Compound leaves may be palmate or pinnate. In (b) palmately compound leaves, such as those of the horse chestnut (Aesculus hippocastanum), the leaflets branch from the petiole. In (c) pinnately compound leaves, the leaflets branch from the midrib, as on a scrub hickory (Carya floridana). The (d) honey locust has double compound leaves, in which leaflets branch from the veins. (credit a: modification of work by "BazzaDaRambler"/Flickr; credit b: modification of work by Roberto Verzo; credit c: modification of work by Eric Dion; credit d: modification of work by Valerie Lykes)

Leaf Structure and Function

The outermost layer of the leaf is the epidermis; it is present on both sides of the leaf and is called the upper and lower epidermis, respectively. Botanists call the upper side the adaxial surface (or adaxis) and the lower side the abaxial surface (or abaxis). The epidermis helps in the regulation of gas exchange. It contains stomata ([link]): openings through which the exchange of gases takes place. Two guard cells surround each stoma, regulating its opening and closing.

Visualized at 500x with a scanning electron microscope, several stomata are clearly visible on (a) the surface of this sumac (*Rhus glabra*) leaf. At 5,000x magnification, the guard cells of (b) a single stoma from lyre-leaved sand cress (*Arabidopsis lyrata*) have the appearance of lips that surround the opening. In this (c) light micrograph cross-section of an *A. lyrata* leaf, the guard cell pair is visible along with the large, sub-stomatal air space in the leaf. (credit: modification of work by Robert R. Wise; part c scalebar data from Matt Russell)

The epidermis is usually one cell layer thick; however, in plants that grow in very hot or very cold conditions, the epidermis may be several layers thick to protect against excessive water loss from transpiration. A waxy layer known as the **cuticle** covers the leaves of all plant species. The cuticle reduces the rate of water loss from the leaf surface. Other leaves may have small hairs (trichomes) on the leaf surface. Trichomes help to deter herbivory by restricting insect movements, or by storing toxic or bad-tasting compounds; they can also reduce the rate of transpiration by blocking air flow across the leaf surface ([link]).

Trichomes give leaves a fuzzy appearance as in this (a) sundew (*Drosera* sp.). Leaf trichomes include (b) branched trichomes on the leaf of *Arabidopsis lyrata* and (c) multibranched trichomes on a mature *Quercus marilandica* leaf. (credit a: John Freeland; credit b, c: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Below the epidermis of dicot leaves are layers of cells known as the mesophyll, or "middle leaf." The mesophyll of most leaves typically contains two arrangements of parenchyma cells: the palisade parenchyma and spongy parenchyma ([link]). The palisade parenchyma (also called the palisade mesophyll) has column-shaped, tightly packed cells, and may be present in one, two, or three layers. Below the palisade parenchyma are loosely arranged cells of an irregular shape. These are the cells of the spongy parenchyma (or spongy mesophyll). The air space found between the spongy parenchyma cells allows gaseous exchange between the leaf and the outside atmosphere through the stomata. In aquatic plants, the intercellular spaces in the spongy parenchyma help the leaf float. Both layers of the mesophyll contain many chloroplasts. Guard cells are the only epidermal cells to contain chloroplasts.

(a)

(b)

In the (a) leaf drawing, the central mesophyll is sandwiched between an upper and lower epidermis. The mesophyll has two layers: an upper palisade layer comprised of tightly packed, columnar cells, and a lower spongy layer, comprised of loosely packed, irregularly shaped cells. Stomata on the leaf underside allow gas exchange. A waxy cuticle covers all aerial surfaces of land plants to minimize water loss. These leaf layers are clearly visible in the (b) scanning electron micrograph. The numerous small bumps

in the palisade parenchyma cells are chloroplasts. Chloroplasts are also present in the spongy parenchyma, but are not as obvious. The bumps protruding from the lower surface of the leave are glandular trichomes, which differ in structure from the stalked trichomes in [link]. (credit b: modification of work by Robert R. Wise)

Like the stem, the leaf contains vascular bundles composed of xylem and phloem ([link]). The xylem consists of tracheids and vessels, which transport water and minerals to the leaves. The phloem transports the photosynthetic products from the leaf to the other parts of the plant. A single vascular bundle, no matter how large or small, always contains both xylem and phloem tissues.

This scanning electron micrograph shows xylem and phloem in the leaf vascular bundle from the lyre-leaved sand cress (*Arabidopsis lyrata*).

(credit: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Leaf Adaptations

Coniferous plant species that thrive in cold environments, like spruce, fir, and pine, have leaves that are reduced in size and needle-like in appearance. These needle-like leaves have sunken stomata and a smaller surface area: two attributes that aid in reducing water loss. In hot climates, plants such as cacti have leaves that are reduced to spines, which in combination with their succulent stems, help to conserve water. Many aquatic plants have leaves with wide lamina that can float on the surface of the water, and a thick waxy cuticle on the leaf surface that repels water.

Note:

Link to Learning

Watch "The Pale Pitcher Plant" episode of the <u>video</u> series *Plants Are Cool, Too*, a Botanical Society of America video about a carnivorous plant species found in Louisiana.

Note:

Evolution Connection

Plant Adaptations in Resource-Deficient Environments

Roots, stems, and leaves are structured to ensure that a plant can obtain the required sunlight, water, soil nutrients, and oxygen resources. Some remarkable adaptations have evolved to enable plant species to thrive in less than ideal habitats, where one or more of these resources is in short supply.

In tropical rainforests, light is often scarce, since many trees and plants grow close together and block much of the sunlight from reaching the forest floor. Many tropical plant species have exceptionally broad leaves to maximize the capture of sunlight. Other species are epiphytes: plants that grow on other plants that serve as a physical support. Such plants are able to grow high up in the canopy atop the branches of other trees, where sunlight is more plentiful. Epiphytes live on rain and minerals collected in the branches and leaves of the supporting plant. Bromeliads (members of the pineapple family), ferns, and orchids are examples of tropical epiphytes ([link]). Many epiphytes have specialized tissues that enable them to efficiently capture and store water.

One of the most well known bromeliads is Spanish moss (*Tillandsia usneoides*), seen here in an oak tree. (credit: Kristine Paulus)

Some plants have special adaptations that help them to survive in nutrient-poor environments. Carnivorous plants, such as the Venus flytrap and the pitcher plant ([link]), grow in bogs where the soil is low in nitrogen. In these plants, leaves are modified to capture insects. The insect-capturing leaves may have evolved to provide these plants with a supplementary source of much-needed nitrogen.

The (a) Venus flytrap has modified leaves that can capture insects. When an unlucky insect touches the trigger hairs inside the leaf, the trap suddenly closes. The opening of the (b) pitcher plant is lined with a slippery wax. Insects crawling on the lip slip and fall into a pool of water in the bottom of the pitcher, where they are digested by bacteria. The plant then absorbs the smaller molecules. (credit a: modification of work by Peter Shanks; credit b: modification of work by Tim Mansfield)

Many swamp plants have adaptations that enable them to thrive in wet areas, where their roots grow submerged underwater. In these aquatic areas, the soil is unstable and little oxygen is available to reach the roots. Trees such as mangroves (*Rhizophora* sp.) growing in coastal waters produce aboveground roots that help support the tree ([link]). Some species of mangroves, as well as cypress trees, have pneumatophores: upward-

growing roots containing pores and pockets of tissue specialized for gas exchange. Wild rice is an aquatic plant with large air spaces in the root cortex. The air-filled tissue—called aerenchyma—provides a path for oxygen to diffuse down to the root tips, which are embedded in oxygen-poor bottom sediments.

The branches of (a) mangrove trees develop aerial roots, which descend to the ground and help to anchor the trees. (b) Cypress trees and some mangrove species have upward-growing roots called pneumatophores that are involved in gas exchange. Aquatic plants such as (c) wild rice have large spaces in the root cortex called aerenchyma, visualized here using scanning electron microscopy. (credit a: modification of work by Roberto Verzo; credit b: modification of work by Duane Burdick; credit c: modification of work by Robert R. Wise)

Note:

Link to Learning

Watch *Venus Flytraps: Jaws of Death*, an extraordinary BBC close-up of the Venus flytrap in action.

Section Summary

Leaves are the main site of photosynthesis. A typical leaf consists of a lamina (the broad part of the leaf, also called the blade) and a petiole (the stalk that attaches the leaf to a stem). The arrangement of leaves on a stem, known as phyllotaxy, enables maximum exposure to sunlight. Each plant species has a characteristic leaf arrangement and form. The pattern of leaf arrangement may be alternate, opposite, or spiral, while leaf form may be simple or compound. Leaf tissue consists of the epidermis, which forms the outermost cell layer, and mesophyll and vascular tissue, which make up the inner portion of the leaf. In some plant species, leaf form is modified to form structures such as tendrils, spines, bud scales, and needles.

Review Questions

Exercise: Problem: The stalk of a leaf is known as the ______. a. petiole b. lamina c. stipule d. rachis Solution: A Exercise: Problem: Leaflets are a characteristic of ______ leaves.

b. whorled	
c. compound	
d. opposite	
Solution:	
С	
Exercise:	
Problem: Cells of the contain chloroplasts.	
a. epidermis	
b. vascular tissue	
c. stomata	
d. mesophyll	
Solution:	_
D	
Exercise:	
Problem:	
Which of the following is most likely to be found in a desert environment?	
a. broad leaves to capture sunlight	
b. spines instead of leaves	
c. needle-like leaves	
d. wide, flat leaves that can float	
Solution:	

a. alternate

Free Response

Exercise:

Problem:

How do dicots differ from monocots in terms of leaf structure?

Solution:

Monocots have leaves with parallel venation, and dicots have leaves with reticulate, net-like venation.

Exercise:

Problem:

Describe an example of a plant with leaves that are adapted to cold temperatures.

Solution:

Conifers such as spruce, fir, and pine have needle-shaped leaves with sunken stomata, helping to reduce water loss.

Glossary

compound leaf

leaf in which the leaf blade is subdivided to form leaflets, all attached to the midrib

cuticle

waxy protective layer on the leaf surface

lamina

leaf blade

palmately compound leaf

leaf type with leaflets that emerge from a point, resembling the palm of a hand

petiole

stalk of the leaf

phyllotaxy

arrangement of leaves on a stem

pinnately compound leaf

leaf type with a divided leaf blade consisting of leaflets arranged on both sides of the midrib

sessile

leaf without a petiole that is attached directly to the plant stem

simple leaf

leaf type in which the lamina is completely undivided or merely lobed

stipule

small green structure found on either side of the leaf stalk or petiole

venation

pattern of veins in a leaf; may be parallel (as in monocots), reticulate (as in dicots), or dichotomous (as in *Gingko biloba*)

whorled

pattern of leaf arrangement in which three or more leaves are connected at a node

Transport of Water and Solutes in Plants By the end of this section, you will be able to:

- Define water potential and explain how it is influenced by solutes, pressure, gravity, and the matric potential
- Describe how water potential, evapotranspiration, and stomatal regulation influence how water is transported in plants
- Explain how photosynthates are transported in plants

The structure of plant roots, stems, and leaves facilitates the transport of water, nutrients, and photosynthates throughout the plant. The phloem and xylem are the main tissues responsible for this movement. Water potential, evapotranspiration, and stomatal regulation influence how water and nutrients are transported in plants. To understand how these processes work, we must first understand the energetics of water potential.

Water Potential

Plants are phenomenal hydraulic engineers. Using only the basic laws of physics and the simple manipulation of potential energy, plants can move water to the top of a 116-meter-tall tree ([link]a). Plants can also use hydraulics to generate enough force to split rocks and buckle sidewalks ([link]b). Plants achieve this because of water potential.

(b)

With heights nearing 116 meters, (a) coastal redwoods (*Sequoia sempervirens*) are the tallest trees in the world. Plant roots can easily generate enough force to (b) buckle and break concrete sidewalks, much to the dismay of homeowners and city maintenance departments. (credit a: modification of work by Bernt Rostad; credit b: modification of work by Pedestrians Educating Drivers on Safety, Inc.)

Water potential is a measure of the potential energy in water. Plant physiologists are not interested in the energy in any one particular aqueous system, but are very interested in water movement between two systems. In practical terms, therefore, water potential is the difference in potential energy between a given water sample and pure water (at atmospheric pressure and ambient temperature). Water potential is denoted by the Greek letter ψ (psi) and is expressed in units of pressure (pressure is a form of energy) called **megapascals** (MPa). The potential of pure water ($\Psi_w^{\text{pure}}^{\text{H2O}}$) is, by convenience of definition, designated a value of zero (even though pure water contains plenty of potential energy, that energy is ignored). Water potential values for the water in a plant root, stem, or leaf are therefore expressed relative to $\Psi_w^{\text{pure H2O}}$.

The water potential in plant solutions is influenced by solute concentration, pressure, gravity, and factors called matrix effects. Water potential can be broken down into its individual components using the following equation: **Equation:**

$$\Psi_{\mathrm{system}} = \Psi_{\mathrm{total}} = \Psi_{\mathrm{s}} + \Psi_{\mathrm{p}} + \Psi_{\mathrm{g}} + \Psi_{\mathrm{m}}$$

where Ψ_s , Ψ_p , Ψ_g , and Ψ_m refer to the solute, pressure, gravity, and matric potentials, respectively. "System" can refer to the water potential of the soil water (Ψ^{soil}), root water (Ψ^{root}), stem water (Ψ^{stem}), leaf water (Ψ^{leaf}) or the water in the atmosphere ($\Psi^{atmosphere}$): whichever aqueous system is under consideration. As the individual components change, they raise or lower the

total water potential of a system. When this happens, water moves to equilibrate, moving from the system or compartment with a higher water potential to the system or compartment with a lower water potential. This brings the difference in water potential between the two systems ($\Delta\Psi$) back to zero ($\Delta\Psi=0$). Therefore, for water to move through the plant from the soil to the air (a process called transpiration), $\Psi^{\rm soil}$ must be $>\Psi^{\rm root}>\Psi^{\rm stem}>\Psi^{\rm leaf}>\Psi^{\rm atmosphere}$.

Water only moves in response to $\Delta\Psi$, not in response to the individual components. However, because the individual components influence the total Ψ_{system} , by manipulating the individual components (especially Ψ_{s}), a plant can control water movement.

Solute Potential

Solute potential (Ψ_s), also called osmotic potential, is negative in a plant cell and zero in distilled water. Typical values for cell cytoplasm are -0.5 to -1.0 MPa. Solutes reduce water potential (resulting in a negative $\Psi_{\rm w}$) by consuming some of the potential energy available in the water. Solute molecules can dissolve in water because water molecules can bind to them via hydrogen bonds; a hydrophobic molecule like oil, which cannot bind to water, cannot go into solution. The energy in the hydrogen bonds between solute molecules and water is no longer available to do work in the system because it is tied up in the bond. In other words, the amount of available potential energy is reduced when solutes are added to an aqueous system. Thus, Ψ_s decreases with increasing solute concentration. Because Ψ_s is one of the four components of Ψ_{system} or Ψ_{total} , a decrease in Ψ_{s} will cause a decrease in Ψ_{total} . The internal water potential of a plant cell is more negative than pure water because of the cytoplasm's high solute content ([link]). Because of this difference in water potential water will move from the soil into a plant's root cells via the process of osmosis. This is why solute potential is sometimes called osmotic potential.

Plant cells can metabolically manipulate Ψ_s (and by extension, Ψ_{total}) by adding or removing solute molecules. Therefore, plants have control over Ψ_{total} via their ability to exert metabolic control over Ψ_s .

In this example with a semipermeable membrane between two aqueous systems, water will move from a region of higher to lower water potential until equilibrium is reached. Solutes (Ψ_s) , pressure (Ψ_p) , and gravity (Ψ_g) influence total water potential for each side of the tube $(\Psi_{total}^{\ \ right\ or\ left})$, and therefore, the difference between Ψ_{total} on each side $(\Delta\Psi)$. $(\Psi_m$, the potential due to interaction of water with solid substrates, is ignored in this example because glass is not especially hydrophilic). Water moves in response to the difference in water potential between two systems (the left and right sides of the tube).

Positive water potential is placed on the left side of the tube by increasing Ψ_p such that the water level rises on the right side. Could you equalize the

Pressure Potential

Pressure potential (Ψ_p) , also called turgor potential, may be positive or negative ([link]). Because pressure is an expression of energy, the higher the pressure, the more potential energy in a system, and vice versa. Therefore, a positive Ψ_p (compression) increases Ψ_{total} , and a negative Ψ_p (tension) decreases Ψ_{total} . Positive pressure inside cells is contained by the cell wall, producing turgor pressure. Pressure potentials are typically around 0.6–0.8 MPa, but can reach as high as 1.5 MPa in a well-watered plant. A Ψ_p of 1.5 MPa equates to 210 pounds per square inch (1.5 MPa x 140 lb in $^{-2}$ MPa $^{-1}$ = 210 lb/in $^{-2}$). As a comparison, most automobile tires are kept at a pressure of 30–34 psi. An example of the effect of turgor pressure is the wilting of leaves and their restoration after the plant has been watered ([link]). Water is lost from the leaves via transpiration (approaching Ψ_p = 0 MPa at the wilting point) and restored by uptake via the roots.

A plant can manipulate Ψ_p via its ability to manipulate Ψ_s and by the process of osmosis. If a plant cell increases the cytoplasmic solute concentration, Ψ_s will decline, Ψ_{total} will decline, the $\Delta\Psi$ between the cell and the surrounding tissue will decline, water will move into the cell by osmosis, and Ψ_p will increase. Ψ_p is also under indirect plant control via the opening and closing of stomata. Stomatal openings allow water to evaporate from the leaf, reducing Ψ_p and Ψ_{total} of the leaf and increasing ii between the water in the leaf and the petiole, thereby allowing water to flow from the petiole into the leaf.

When (a) total water potential (Ψ_{total}) is lower outside the cells than inside, water moves out of the cells and the plant wilts. When (b) the total water potential is higher outside the plant cells than inside, water moves into the cells, resulting in turgor pressure (Ψ_p) and keeping the plant erect. (credit: modification of work by Victor M. Vicente Selvas)

Gravity Potential

Gravity potential (Ψ_g) is always negative to zero in a plant with no height. It always removes or consumes potential energy from the system. The force of gravity pulls water downwards to the soil, reducing the total amount of potential energy in the water in the plant (Ψ_{total}). The taller the plant, the taller the water column, and the more influential Ψ_g becomes. On a cellular scale and in short plants, this effect is negligible and easily ignored. However, over the height of a tall tree like a giant coastal redwood, the gravitational pull of -0.1 MPa m⁻¹ is equivalent to an extra 1 MPa of resistance that must be overcome for water to reach the leaves of the tallest trees. Plants are unable to manipulate Ψ_g .

Matric Potential

Matric potential (Ψ_m) is always negative to zero. In a dry system, it can be as low as -2 MPa in a dry seed, and it is zero in a water-saturated system. The binding of water to a matrix always removes or consumes potential energy from the system. Ψ_m is similar to solute potential because it involves tying up the energy in an aqueous system by forming hydrogen bonds between the water and some other component. However, in solute potential, the other components are soluble, hydrophilic solute molecules, whereas in Ψ_m , the other components are insoluble, hydrophilic molecules of the plant cell wall. Every plant cell has a cellulosic cell wall and the cellulose in the cell walls is hydrophilic, producing a matrix for adhesion of water: hence the name matric potential. Ψ_m is very large (negative) in dry tissues such as seeds or drought-affected soils. However, it quickly goes to zero as the seed takes up water or the soil hydrates. Ψ_m cannot be manipulated by the plant and is typically ignored in well-watered roots, stems, and leaves.

Movement of Water and Minerals in the Xylem

Solutes, pressure, gravity, and matric potential are all important for the transport of water in plants. Water moves from an area of higher total water potential (higher Gibbs free energy) to an area of lower total water potential. Gibbs free energy is the energy associated with a chemical reaction that can be used to do work. This is expressed as $\Delta\Psi$.

Transpiration is the loss of water from the plant through evaporation at the leaf surface. It is the main driver of water movement in the xylem. Transpiration is caused by the evaporation of water at the leaf—atmosphere interface; it creates negative pressure (tension) equivalent to -2 MPa at the leaf surface. This value varies greatly depending on the vapor pressure deficit, which can be negligible at high relative humidity (RH) and substantial at low RH. Water from the roots is pulled up by this tension. At night, when stomata shut and transpiration stops, the water is held in the stem and leaf by the adhesion of water to the cell walls of the xylem vessels and tracheids, and the cohesion of water molecules to each other. This is called the cohesion—tension theory of sap ascent.

Inside the leaf at the cellular level, water on the surface of mesophyll cells saturates the cellulose microfibrils of the primary cell wall. The leaf contains many large intercellular air spaces for the exchange of oxygen for carbon dioxide, which is required for photosynthesis. The wet cell wall is exposed to this leaf internal air space, and the water on the surface of the cells evaporates into the air spaces, decreasing the thin film on the surface of the mesophyll cells. This decrease creates a greater tension on the water in the mesophyll cells ([link]), thereby increasing the pull on the water in the xylem vessels. The xylem vessels and tracheids are structurally adapted to cope with large changes in pressure. Rings in the vessels maintain their tubular shape, much like the rings on a vacuum cleaner hose keep the hose open while it is under pressure. Small perforations between vessel elements reduce the number and size of gas bubbles that can form via a process called cavitation. The formation of gas bubbles in xylem interrupts the continuous stream of water from the base to the top of the plant, causing a break termed an embolism in the flow of xylem sap. The taller the tree, the greater the tension forces needed to pull water, and the more cavitation events. In larger trees, the resulting embolisms can plug xylem vessels, making them non-functional.

Note:	
Art Connection	

The cohesion—tension theory of sap ascent is shown. Evaporation from the mesophyll cells produces a negative water potential gradient that causes water to move upwards from the roots through the xylem.

Which of the following statements is false?

- a. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the xylem. Transpiration draws water from the leaf.
- b. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the phloem. Transpiration draws water from the leaf.
- c. Water potential decreases from the roots to the top of the plant.
- d. Water enters the plants through root hairs and exits through stoma.

Transpiration—the loss of water vapor to the atmosphere through stomata —is a passive process, meaning that metabolic energy in the form of ATP is not required for water movement. The energy driving transpiration is the difference in energy between the water in the soil and the water in the atmosphere. However, transpiration is tightly controlled.

Control of Transpiration

The atmosphere to which the leaf is exposed drives transpiration, but also causes massive water loss from the plant. Up to 90 percent of the water taken up by roots may be lost through transpiration.

Leaves are covered by a waxy **cuticle** on the outer surface that prevents the loss of water. Regulation of transpiration, therefore, is achieved primarily through the opening and closing of stomata on the leaf surface. Stomata are surrounded by two specialized cells called guard cells, which open and close in response to environmental cues such as light intensity and quality, leaf water status, and carbon dioxide concentrations. Stomata must open to allow air containing carbon dioxide and oxygen to diffuse into the leaf for photosynthesis and respiration. When stomata are open, however, water vapor is lost to the external environment, increasing the rate of transpiration. Therefore, plants must maintain a balance between efficient photosynthesis and water loss.

Plants have evolved over time to adapt to their local environment and reduce transpiration([link]). Desert plant (xerophytes) and plants that grow on other plants (epiphytes) have limited access to water. Such plants usually have a much thicker waxy cuticle than those growing in more moderate, well-watered environments (mesophytes). Aquatic plants (hydrophytes) also have their own set of anatomical and morphological leaf adaptations.

Plants are suited to their local environment.

(a) Xerophytes, like this prickly pear cactus (*Opuntia sp.*) and (b) epiphytes such as this tropical *Aeschynanthus perrottetii* have adapted to very limited water resources. The leaves of a prickly pear are modified into spines, which lowers the surface-to-volume ratio and reduces water loss. Photosynthesis takes place in the stem, which also stores water. (b) *A. perottetii* leaves have a waxy cuticle that prevents water loss. (c) Goldenrod (*Solidago sp.*) is a mesophyte, well suited for moderate environments. (d)

Hydrophytes, like this fragrant water lily (*Nymphaea odorata*), are adapted to thrive in aquatic environments. (credit a: modification of work by Jon Sullivan; credit b: modification of work by L. Shyamal/Wikimedia Commons; credit c: modification of work by Huw Williams; credit d: modification of work by Jason Hollinger)

Xerophytes and epiphytes often have a thick covering of trichomes or of stomata that are sunken below the leaf's surface. Trichomes are specialized hair-like epidermal cells that secrete oils and substances. These adaptations impede air flow across the stomatal pore and reduce transpiration. Multiple epidermal layers are also commonly found in these types of plants.

Transportation of Photosynthates in the Phloem

Plants need an energy source to grow. In seeds and bulbs, food is stored in polymers (such as starch) that are converted by metabolic processes into sucrose for newly developing plants. Once green shoots and leaves are growing, plants are able to produce their own food by photosynthesizing. The products of photosynthesis are called photosynthates, which are usually in the form of simple sugars such as sucrose.

Structures that produce photosynthates for the growing plant are referred to as **sources**. Sugars produced in sources, such as leaves, need to be delivered to growing parts of the plant via the phloem in a process called **translocation**. The points of sugar delivery, such as roots, young shoots, and developing seeds, are called **sinks**. Seeds, tubers, and bulbs can be either a source or a sink, depending on the plant's stage of development and the season.

The products from the source are usually translocated to the nearest sink through the phloem. For example, the highest leaves will send

photosynthates upward to the growing shoot tip, whereas lower leaves will direct photosynthates downward to the roots. Intermediate leaves will send products in both directions, unlike the flow in the xylem, which is always unidirectional (soil to leaf to atmosphere). The pattern of photosynthate flow changes as the plant grows and develops. Photosynthates are directed primarily to the roots early on, to shoots and leaves during vegetative growth, and to seeds and fruits during reproductive development. They are also directed to tubers for storage.

Translocation: Transport from Source to Sink

Photosynthates, such as sucrose, are produced in the mesophyll cells of photosynthesizing leaves. From there they are translocated through the phloem to where they are used or stored. Mesophyll cells are connected by cytoplasmic channels called plasmodesmata. Photosynthates move through these channels to reach phloem sieve-tube elements (STEs) in the vascular bundles. From the mesophyll cells, the photosynthates are loaded into the phloem STEs. The sucrose is actively transported against its concentration gradient (a process requiring ATP) into the phloem cells using the electrochemical potential of the proton gradient. This is coupled to the uptake of sucrose with a carrier protein called the sucrose-H⁺ symporter.

Phloem STEs have reduced cytoplasmic contents, and are connected by a sieve plate with pores that allow for pressure-driven bulk flow, or translocation, of phloem sap. Companion cells are associated with STEs. They assist with metabolic activities and produce energy for the STEs ([link]).

Phloem is comprised of cells called sievetube elements. Phloem sap travels through perforations called sieve tube plates. Neighboring companion cells carry out metabolic functions for the sievetube elements and provide them with energy. Lateral sieve areas connect the sieve-tube elements to the companion cells.

Once in the phloem, the photosynthates are translocated to the closest sink. Phloem sap is an aqueous solution that contains up to 30 percent sugar, minerals, amino acids, and plant growth regulators. The high percentage of sugar decreases Ψ_{s_s} which decreases the total water potential and causes

water to move by osmosis from the adjacent xylem into the phloem tubes, thereby increasing pressure. This increase in total water potential causes the bulk flow of phloem from source to sink ([link]). Sucrose concentration in the sink cells is lower than in the phloem STEs because the sink sucrose has been metabolized for growth, or converted to starch for storage or other polymers, such as cellulose, for structural integrity. Unloading at the sink end of the phloem tube occurs by either diffusion or active transport of sucrose molecules from an area of high concentration to one of low concentration. Water diffuses from the phloem by osmosis and is then transpired or recycled via the xylem back into the phloem sap.

Sucrose is actively transported from source cells into companion cells and then into the sieve-tube elements. This reduces the water potential, which causes water to enter the phloem from the xylem.

The resulting positive pressure forces the sucrose-water mixture down toward the roots, where sucrose is unloaded. Transpiration causes water to return to the leaves through the xylem vessels.

Section Summary

Water potential (Ψ) is a measure of the difference in potential energy between a water sample and pure water. The water potential in plant solutions is influenced by solute concentration, pressure, gravity, and matric potential. Water potential and transpiration influence how water is transported through the xylem in plants. These processes are regulated by stomatal opening and closing. Photosynthates (mainly sucrose) move from sources to sinks through the plant's phloem. Sucrose is actively loaded into the sieve-tube elements of the phloem. The increased solute concentration causes water to move by osmosis from the xylem into the phloem. The positive pressure that is produced pushes water and solutes down the pressure gradient. The sucrose is unloaded into the sink, and the water returns to the xylem vessels.

Art Connections

Exercise:

Problem:

[link] Positive water potential is placed on the left side of the tube by increasing Ψ_p such that the water level rises on the right side. Could you equalize the water level on each side of the tube by adding solute, and if so, how?

Solution:

[link] Yes, you can equalize the water level by adding the solute to the left side of the tube such that water moves toward the left until the water levels are equal.

Exercise:

Problem: [link] Which of the following statements is false?

- a. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the xylem. Transpiration draws water from the leaf.
- b. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the phloem. Transpiration draws water from the leaf.
- c. Water potential decreases from the roots to the top of the plant.
- d. Water enters the plants through root hairs and exits through stoma.

Solution:

[link] B.

Review Questions

Exercise:

Problem: When stomata open, what occurs?

- a. Water vapor is lost to the external environment, increasing the rate of transpiration.
- b. Water vapor is lost to the external environment, decreasing the rate of transpiration.

- c. Water vapor enters the spaces in the mesophyll, increasing the rate of transpiration.
- d. Water vapor enters the spaces in the mesophyll, increasing the rate of transpiration.

Solution:

Α

Exercise:

Problem:

Which cells are responsible for the movement of photosynthates through a plant?

- a. tracheids, vessel elements
- b. tracheids, companion cells
- c. vessel elements, companion cells
- d. sieve-tube elements, companion cells

Solution:

D

Free Response

Exercise:

Problem:

The process of bulk flow transports fluids in a plant. Describe the two main bulk flow processes.

Solution:

The process of bulk flow moves water up the xylem and moves photosynthates (solutes) up and down the phloem.

Glossary

cuticle

waxy covering on the outside of the leaf and stem that prevents the loss of water

megapascal (MPa)

pressure units that measure water potential

sink

growing parts of a plant, such as roots and young leaves, which require photosynthate

source

organ that produces photosynthate for a plant

translocation

mass transport of photosynthates from source to sink in vascular plants

transpiration

loss of water vapor to the atmosphere through stomata

water potential (Ψ_w)

the potential energy of a water solution per unit volume in relation to pure water at atmospheric pressure and ambient temperature

Plant Sensory Systems and Responses By the end of this section, you will be able to:

- Describe how red and blue light affect plant growth and metabolic activities
- Discuss gravitropism
- Understand how hormones affect plant growth and development
- Describe thigmotropism, thigmonastism, and thigmogenesis
- Explain how plants defend themselves from predators and respond to wounds

Animals can respond to environmental factors by moving to a new location. Plants, however, are rooted in place and must respond to the surrounding environmental factors. Plants have sophisticated systems to detect and respond to light, gravity, temperature, and physical touch. Receptors sense environmental factors and relay the information to effector systems—often through intermediate chemical messengers—to bring about plant responses.

Plant Responses to Light

Plants have a number of sophisticated uses for light that go far beyond their ability to photosynthesize low-molecular-weight sugars using only carbon dioxide, light, and water. **Photomorphogenesis** is the growth and development of plants in response to light. It allows plants to optimize their use of light and space. **Photoperiodism** is the ability to use light to track time. Plants can tell the time of day and time of year by sensing and using various wavelengths of sunlight. **Phototropism** is a directional response that allows plants to grow towards, or even away from, light.

The sensing of light in the environment is important to plants; it can be crucial for competition and survival. The response of plants to light is mediated by different photoreceptors, which are comprised of a protein covalently bonded to a light-absorbing pigment called a **chromophore**. Together, the two are called a chromoprotein.

The red/far-red and violet-blue regions of the visible light spectrum trigger structural development in plants. Sensory photoreceptors absorb light in

these particular regions of the visible light spectrum because of the quality of light available in the daylight spectrum. In terrestrial habitats, light absorption by chlorophylls peaks in the blue and red regions of the spectrum. As light filters through the canopy and the blue and red wavelengths are absorbed, the spectrum shifts to the far-red end, shifting the plant community to those plants better adapted to respond to far-red light. Blue-light receptors allow plants to gauge the direction and abundance of sunlight, which is rich in blue—green emissions. Water absorbs red light, which makes the detection of blue light essential for algae and aquatic plants.

The Phytochrome System and the Red/Far-Red Response

The **phytochromes** are a family of chromoproteins with a linear tetrapyrrole chromophore, similar to the ringed tetrapyrrole light-absorbing head group of chlorophyll. Phytochromes have two photo-interconvertible forms: Pr and Pfr. Pr absorbs red light (~667 nm) and is immediately converted to Pfr. Pfr absorbs far-red light (~730 nm) and is quickly converted back to Pr. Absorption of red or far-red light causes a massive change to the shape of the chromophore, altering the conformation and activity of the phytochrome protein to which it is bound. Pfr is the physiologically active form of the protein; therefore, exposure to red light yields physiological activity. Exposure to far-red light inhibits phytochrome activity. Together, the two forms represent the phytochrome system ([link]).

The phytochrome system acts as a biological light switch. It monitors the level, intensity, duration, and color of environmental light. The effect of red light is reversible by immediately shining far-red light on the sample, which converts the chromoprotein to the inactive Pr form. Additionally, Pfr can slowly revert to Pr in the dark, or break down over time. In all instances, the physiological response induced by red light is reversed. The active form of phytochrome (Pfr) can directly activate other molecules in the cytoplasm, or it can be trafficked to the nucleus, where it directly activates or represses specific gene expression.

Once the phytochrome system evolved, plants adapted it to serve a variety of needs. Unfiltered, full sunlight contains much more red light than far-red light. Because chlorophyll absorbs strongly in the red region of the visible spectrum, but not in the far-red region, any plant in the shade of another plant on the forest floor will be exposed to red-depleted, far-red-enriched light. The preponderance of far-red light converts phytochrome in the shaded leaves to the Pr (inactive) form, slowing growth. The nearest non-shaded (or even less-shaded) areas on the forest floor have more red light; leaves exposed to these areas sense the red light, which activates the Pfr form and induces growth. In short, plant shoots use the phytochrome system to grow away from shade and towards light. Because competition for light is so fierce in a dense plant community, the evolutionary advantages of the phytochrome system are obvious.

In seeds, the phytochrome system is not used to determine direction and quality of light (shaded versus unshaded). Instead, is it used merely to determine if there is any light at all. This is especially important in species with very small seeds, such as lettuce. Because of their size, lettuce seeds have few food reserves. Their seedlings cannot grow for long before they run out of fuel. If they germinated even a centimeter under the soil surface, the seedling would never make it into the sunlight and would die. In the dark, phytochrome is in the Pr (inactive form) and the seed will not germinate; it will only germinate if exposed to light at the surface of the soil. Upon exposure to light, Pr is converted to Pfr and germination proceeds.

The biologically inactive form of phytochrome (Pr) is converted to the biologically active form Pfr under illumination with red light. Far-red light and darkness convert the molecule back to the inactive form.

Plants also use the phytochrome system to sense the change of season. Photoperiodism is a biological response to the timing and duration of day and night. It controls flowering, setting of winter buds, and vegetative growth. Detection of seasonal changes is crucial to plant survival. Although temperature and light intensity influence plant growth, they are not reliable indicators of season because they may vary from one year to the next. Day length is a better indicator of the time of year.

As stated above, unfiltered sunlight is rich in red light but deficient in farred light. Therefore, at dawn, all the phytochrome molecules in a leaf quickly convert to the active Pfr form, and remain in that form until sunset. In the dark, the Pfr form takes hours to slowly revert back to the Pr form. If the night is long (as in winter), all of the Pfr form reverts. If the night is short (as in summer), a considerable amount of Pfr may remain at sunrise. By sensing the Pr/Pfr ratio at dawn, a plant can determine the length of the day/night cycle. In addition, leaves retain that information for several days, allowing a comparison between the length of the previous night and the preceding several nights. Shorter nights indicate springtime to the plant; when the nights become longer, autumn is approaching. This information, along with sensing temperature and water availability, allows plants to determine the time of the year and adjust their physiology accordingly. Short-day (long-night) plants use this information to flower in the late

summer and early fall, when nights exceed a critical length (often eight or fewer hours). Long-day (short-night) plants flower during the spring, when darkness is less than a critical length (often eight to 15 hours). Not all plants use the phytochrome system in this way. Flowering in day-neutral plants is not regulated by daylength.

Note:

Career Connection

Horticulturalist

The word "horticulturist" comes from the Latin words for garden (*hortus*) and culture (*cultura*). This career has been revolutionized by progress made in the understanding of plant responses to environmental stimuli. Growers of crops, fruit, vegetables, and flowers were previously constrained by having to time their sowing and harvesting according to the season. Now, horticulturists can manipulate plants to increase leaf, flower, or fruit production by understanding how environmental factors affect plant growth and development.

Greenhouse management is an essential component of a horticulturist's education. To lengthen the night, plants are covered with a blackout shade cloth. Long-day plants are irradiated with red light in winter to promote early flowering. For example, fluorescent (cool white) light high in blue wavelengths encourages leafy growth and is excellent for starting seedlings. Incandescent lamps (standard light bulbs) are rich in red light, and promote flowering in some plants. The timing of fruit ripening can be increased or delayed by applying plant hormones. Recently, considerable progress has been made in the development of plant breeds that are suited to different climates and resistant to pests and transportation damage. Both crop yield and quality have increased as a result of practical applications of the knowledge of plant responses to external stimuli and hormones. Horticulturists find employment in private and governmental laboratories, greenhouses, botanical gardens, and in the production or research fields. They improve crops by applying their knowledge of genetics and plant physiology. To prepare for a horticulture career, students take classes in botany, plant physiology, plant pathology, landscape design, and plant

breeding. To complement these traditional courses, horticulture majors add studies in economics, business, computer science, and communications.

The Blue Light Responses

Phototropism—the directional bending of a plant toward or away from a light source—is a response to blue wavelengths of light. Positive phototropism is growth towards a light source ([link]), while negative phototropism (also called skototropism) is growth away from light.

The aptly-named **phototropins** are protein-based receptors responsible for mediating the phototropic response. Like all plant photoreceptors, phototropins consist of a protein portion and a light-absorbing portion, called the chromophore. In phototropins, the chromophore is a covalently-bound molecule of flavin; hence, phototropins belong to a class of proteins called flavoproteins.

Other responses under the control of phototropins are leaf opening and closing, chloroplast movement, and the opening of stomata. However, of all responses controlled by phototropins, phototropism has been studied the longest and is the best understood.

In their 1880 treatise *The Power of Movements in Plants*, Charles Darwin and his son Francis first described phototropism as the bending of seedlings toward light. Darwin observed that light was perceived by the tip of the plant (the apical meristem), but that the response (bending) took place in a different part of the plant. They concluded that the signal had to travel from the apical meristem to the base of the plant.

Azure bluets (*Houstonia caerulea*) display a phototropic response by bending toward the light. (credit: Cory Zanker)

In 1913, Peter Boysen-Jensen demonstrated that a chemical signal produced in the plant tip was responsible for the bending at the base. He cut off the tip of a seedling, covered the cut section with a layer of gelatin, and then replaced the tip. The seedling bent toward the light when illuminated. However, when impermeable mica flakes were inserted between the tip and the cut base, the seedling did not bend. A refinement of the experiment showed that the signal traveled on the shaded side of the seedling. When the mica plate was inserted on the illuminated side, the plant did bend towards the light. Therefore, the chemical signal was a growth stimulant because the phototropic response involved faster cell elongation on the shaded side than on the illuminated side. We now know that as light passes through a plant stem, it is diffracted and generates phototropin activation across the stem. Most activation occurs on the lit side, causing the plant hormone indole acetic acid (IAA) to accumulate on the shaded side. Stem cells elongate under influence of IAA.

Cryptochromes are another class of blue-light absorbing photoreceptors that also contain a flavin-based chromophore. Cryptochromes set the plants

24-hour activity cycle, also know as its circadian rhythem, using blue light cues. There is some evidence that cryptochromes work together with phototropins to mediate the phototropic response.

Note:

Link to Learning

Use the navigation menu in the left panel of this <u>website</u> to view images of plants in motion.

Plant Responses to Gravity

Whether or not they germinate in the light or in total darkness, shoots usually sprout up from the ground, and roots grow downward into the ground. A plant laid on its side in the dark will send shoots upward when given enough time. Gravitropism ensures that roots grow into the soil and that shoots grow toward sunlight. Growth of the shoot apical tip upward is called **negative gravitropism**, whereas growth of the roots downward is called **positive gravitropism**.

Amyloplasts (also known as **statoliths**) are specialized plastids that contain starch granules and settle downward in response to gravity. Amyloplasts are found in shoots and in specialized cells of the root cap. When a plant is tilted, the statoliths drop to the new bottom cell wall. A few hours later, the shoot or root will show growth in the new vertical direction.

The mechanism that mediates gravitropism is reasonably well understood. When amyloplasts settle to the bottom of the gravity-sensing cells in the

root or shoot, they physically contact the endoplasmic reticulum (ER), causing the release of calcium ions from inside the ER. This calcium signaling in the cells causes polar transport of the plant hormone IAA to the bottom of the cell. In roots, a high concentration of IAA inhibits cell elongation. The effect slows growth on the lower side of the root, while cells develop normally on the upper side. IAA has the opposite effect in shoots, where a higher concentration at the lower side of the shoot stimulates cell expansion, causing the shoot to grow up. After the shoot or root begin to grow vertically, the amyloplasts return to their normal position. Other hypotheses—involving the entire cell in the gravitropism effect—have been proposed to explain why some mutants that lack amyloplasts may still exhibit a weak gravitropic response.

Growth Responses

A plant's sensory response to external stimuli relies on chemical messengers (hormones). Plant hormones affect all aspects of plant life, from flowering to fruit setting and maturation, and from phototropism to leaf fall. Potentially every cell in a plant can produce plant hormones. They can act in their cell of origin or be transported to other portions of the plant body, with many plant responses involving the synergistic or antagonistic interaction of two or more hormones. In contrast, animal hormones are produced in specific glands and transported to a distant site for action, and they act alone.

Plant hormones are a group of unrelated chemical substances that affect plant morphogenesis. Five major plant hormones are traditionally described: auxins (particularly IAA), cytokinins, gibberellins, ethylene, and abscisic acid. In addition, other nutrients and environmental conditions can be characterized as growth factors.

Auxins

The term auxin is derived from the Greek word *auxein*, which means "to grow." **Auxins** are the main hormones responsible for cell elongation in

phototropism and gravitropism. They also control the differentiation of meristem into vascular tissue, and promote leaf development and arrangement. While many synthetic auxins are used as herbicides, IAA is the only naturally occurring auxin that shows physiological activity. Apical dominance—the inhibition of lateral bud formation—is triggered by auxins produced in the apical meristem. Flowering, fruit setting and ripening, and inhibition of **abscission** (leaf falling) are other plant responses under the direct or indirect control of auxins. Auxins also act as a relay for the effects of the blue light and red/far-red responses.

Commercial use of auxins is widespread in plant nurseries and for crop production. IAA is used as a rooting hormone to promote growth of adventitious roots on cuttings and detached leaves. Applying synthetic auxins to tomato plants in greenhouses promotes normal fruit development. Outdoor application of auxin promotes synchronization of fruit setting and dropping to coordinate the harvesting season. Fruits such as seedless cucumbers can be induced to set fruit by treating unfertilized plant flowers with auxins.

Cytokinins

The effect of cytokinins was first reported when it was found that adding the liquid endosperm of coconuts to developing plant embryos in culture stimulated their growth. The stimulating growth factor was found to be **cytokinin**, a hormone that promotes cytokinesis (cell division). Almost 200 naturally occurring or synthetic cytokinins are known to date. Cytokinins are most abundant in growing tissues, such as roots, embryos, and fruits, where cell division is occurring. Cytokinins are known to delay senescence in leaf tissues, promote mitosis, and stimulate differentiation of the meristem in shoots and roots. Many effects on plant development are under the influence of cytokinins, either in conjunction with auxin or another hormone. For example, apical dominance seems to result from a balance between auxins that inhibit lateral buds, and cytokinins that promote bushier growth.

Gibberellins

Gibberellins (GAs) are a group of about 125 closely related plant hormones that stimulate shoot elongation, seed germination, and fruit and flower maturation. GAs are synthesized in the root and stem apical meristems, young leaves, and seed embryos. In urban areas, GA antagonists are sometimes applied to trees under power lines to control growth and reduce the frequency of pruning.

GAs break dormancy (a state of inhibited growth and development) in the seeds of plants that require exposure to cold or light to germinate. Abscisic acid is a strong antagonist of GA action. Other effects of GAs include gender expression, seedless fruit development, and the delay of senescence in leaves and fruit. Seedless grapes are obtained through standard breeding methods and contain inconspicuous seeds that fail to develop. Because GAs are produced by the seeds, and because fruit development and stem elongation are under GA control, these varieties of grapes would normally produce small fruit in compact clusters. Maturing grapes are routinely treated with GA to promote larger fruit size, as well as looser bunches (longer stems), which reduces the instance of mildew infection ([link]).

In grapes, application of gibberellic acid increases the size of fruit and loosens clustering. (credit: Bob Nichols, USDA)

Abscisic Acid

The plant hormone **abscisic acid** (ABA) was first discovered as the agent that causes the abscission or dropping of cotton bolls. However, more recent studies indicate that ABA plays only a minor role in the abscission process. ABA accumulates as a response to stressful environmental conditions, such as dehydration, cold temperatures, or shortened day lengths. Its activity counters many of the growth-promoting effects of GAs and auxins. ABA inhibits stem elongation and induces dormancy in lateral buds.

ABA induces dormancy in seeds by blocking germination and promoting the synthesis of storage proteins. Plants adapted to temperate climates require a long period of cold temperature before seeds germinate. This mechanism protects young plants from sprouting too early during unseasonably warm weather in winter. As the hormone gradually breaks down over winter, the seed is released from dormancy and germinates when conditions are favorable in spring. Another effect of ABA is to promote the development of winter buds; it mediates the conversion of the apical meristem into a dormant bud. Low soil moisture causes an increase in ABA, which causes stomata to close, reducing water loss in winter buds.

Ethylene

Ethylene is associated with fruit ripening, flower wilting, and leaf fall. Ethylene is unusual because it is a volatile gas (C_2H_4) . Hundreds of years ago, when gas street lamps were installed in city streets, trees that grew close to lamp posts developed twisted, thickened trunks and shed their leaves earlier than expected. These effects were caused by ethylene volatilizing from the lamps.

Aging tissues (especially senescing leaves) and nodes of stems produce ethylene. The best-known effect of the hormone, however, is the promotion of fruit ripening. Ethylene stimulates the conversion of starch and acids to sugars. Some people store unripe fruit, such as avocadoes, in a sealed paper bag to accelerate ripening; the gas released by the first fruit to mature will speed up the maturation of the remaining fruit. Ethylene also triggers leaf and fruit abscission, flower fading and dropping, and promotes germination in some cereals and sprouting of bulbs and potatoes.

Ethylene is widely used in agriculture. Commercial fruit growers control the timing of fruit ripening with application of the gas. Horticulturalists inhibit leaf dropping in ornamental plants by removing ethylene from greenhouses using fans and ventilation.

Nontraditional Hormones

Recent research has discovered a number of compounds that also influence plant development. Their roles are less understood than the effects of the major hormones described so far.

Jasmonates play a major role in defense responses to herbivory. Their levels increase when a plant is wounded by a predator, resulting in an increase in toxic secondary metabolites. They contribute to the production of volatile compounds that attract natural enemies of predators. For example, chewing of tomato plants by caterpillars leads to an increase in jasmonic acid levels, which in turn triggers the release of volatile compounds that attract predators of the pest.

Oligosaccharins also play a role in plant defense against bacterial and fungal infections. They act locally at the site of injury, and can also be transported to other tissues. **Strigolactones** promote seed germination in some species and inhibit lateral apical development in the absence of auxins. Strigolactones also play a role in the establishment of mycorrhizae, a mutualistic association of plant roots and fungi. Brassinosteroids are important to many developmental and physiological processes. Signals between these compounds and other hormones, notably auxin and GAs, amplifies their physiological effect. Apical dominance, seed germination, gravitropism, and resistance to freezing are all positively influenced by hormones. Root growth and fruit dropping are inhibited by steroids.

Plant Responses to Wind and Touch

The shoot of a pea plant winds around a trellis, while a tree grows on an angle in response to strong prevailing winds. These are examples of how plants respond to touch or wind.

The movement of a plant subjected to constant directional pressure is called **thigmotropism**, from the Greek words *thigma* meaning "touch," and *tropism* implying "direction." Tendrils are one example of this. The meristematic region of tendrils is very touch sensitive; light touch will evoke a quick coiling response. Cells in contact with a support surface

contract, whereas cells on the opposite side of the support expand ([link]). Application of jasmonic acid is sufficient to trigger tendril coiling without a mechanical stimulus.

A **thigmonastic** response is a touch response independent of the direction of stimulus [link]. In the Venus flytrap, two modified leaves are joined at a hinge and lined with thin fork-like tines along the outer edges. Tiny hairs are located inside the trap. When an insect brushes against these trigger hairs, touching two or more of them in succession, the leaves close quickly, trapping the prey. Glands on the leaf surface secrete enzymes that slowly digest the insect. The released nutrients are absorbed by the leaves, which reopen for the next meal.

Thigmomorphogenesis is a slow developmental change in the shape of a plant subjected to continuous mechanical stress. When trees bend in the wind, for example, growth is usually stunted and the trunk thickens. Strengthening tissue, especially xylem, is produced to add stiffness to resist the wind's force. Researchers hypothesize that mechanical strain induces growth and differentiation to strengthen the tissues. Ethylene and jasmonate are likely involved in thigmomorphogenesis.

Note:

Link to Learning

Use the menu at the left to navigate to three short <u>movies</u>: a Venus fly trap capturing prey, the progressive closing of sensitive plant leaflets, and the twining of tendrils.

Defense Responses against Herbivores and Pathogens

Plants face two types of enemies: herbivores and pathogens. Herbivores both large and small use plants as food, and actively chew them. Pathogens are agents of disease. These infectious microorganisms, such as fungi, bacteria, and nematodes, live off of the plant and damage its tissues. Plants have developed a variety of strategies to discourage or kill attackers.

The first line of defense in plants is an intact and impenetrable barrier. Bark and the waxy cuticle can protect against predators. Other adaptations against herbivory include thorns, which are modified branches, and spines, which are modified leaves. They discourage animals by causing physical damage and inducing rashes and allergic reactions. A plant's exterior protection can be compromised by mechanical damage, which may provide an entry point for pathogens. If the first line of defense is breached, the plant must resort to a different set of defense mechanisms, such as toxins and enzymes.

Secondary metabolites are compounds that are not directly derived from photosynthesis and are not necessary for respiration or plant growth and development. Many metabolites are toxic, and can even be lethal to animals that ingest them. Some metabolites are alkaloids, which discourage predators with noxious odors (such as the volatile oils of mint and sage) or repellent tastes (like the bitterness of quinine). Other alkaloids affect herbivores by causing either excessive stimulation (caffeine is one example) or the lethargy associated with opioids. Some compounds become toxic after ingestion; for instance, glycol cyanide in the cassava root releases cyanide only upon ingestion by the herbivore.

Mechanical wounding and predator attacks activate defense and protection mechanisms both in the damaged tissue and at sites farther from the injury location. Some defense reactions occur within minutes: others over several hours. The infected and surrounding cells may die, thereby stopping the spread of infection.

Long-distance signaling elicits a systemic response aimed at deterring the predator. As tissue is damaged, jasmonates may promote the synthesis of compounds that are toxic to predators. Jasmonates also elicit the synthesis

of volatile compounds that attract parasitoids, which are insects that spend their developing stages in or on another insect, and eventually kill their host. The plant may activate abscission of injured tissue if it is damaged beyond repair.

Section Summary

Plants respond to light by changes in morphology and activity. Irradiation by red light converts the photoreceptor phytochrome to its far-red lightabsorbing form—Pfr. This form controls germination and flowering in response to length of day, as well as triggers photosynthesis in dormant plants or those that just emerged from the soil. Blue-light receptors, cryptochromes, and phototropins are responsible for phototropism. Amyloplasts, which contain heavy starch granules, sense gravity. Shoots exhibit negative gravitropism, whereas roots exhibit positive gravitropism. Plant hormones—naturally occurring compounds synthesized in small amounts—can act both in the cells that produce them and in distant tissues and organs. Auxins are responsible for apical dominance, root growth, directional growth toward light, and many other growth responses. Cytokinins stimulate cell division and counter apical dominance in shoots. Gibberellins inhibit dormancy of seeds and promote stem growth. Abscisic acid induces dormancy in seeds and buds, and protects plants from excessive water loss by promoting stomatal closure. Ethylene gas speeds up fruit ripening and dropping of leaves. Plants respond to touch by rapid movements (thigmotropy and thigmonasty) and slow differential growth (thigmomorphogenesis). Plants have evolved defense mechanisms against predators and pathogens. Physical barriers like bark and spines protect tender tissues. Plants also have chemical defenses, including toxic secondary metabolites and hormones, which elicit additional defense mechanisms.

Review Questions

Exercise:

Problem:				
The main photoreceptor that triggers phototropism is a				
a. phytochromeb. cryptochromec. phototropind. carotenoid				
Solution:				
C				
Exercise:				
Problem: Phytochrome is a plant pigment protein that:				
a. mediates plant infection				
b. promotes plant growthc. mediates morphological changes in response to red and far-red light				
d. inhibits plant growth				
Solution:				
C .				

Exercise:

Problem:

A mutant plant has roots that grow in all directions. Which of the following organelles would you expect to be missing in the cell?

- a. mitochondria
- b. amyloplast
- c. chloroplast

0 1	•	
6 0	lııtı	on:
. 711		

В

Exercise:

Problem:

After buying green bananas or unripe avocadoes, they can be kept in a brown bag to ripen. The hormone released by the fruit and trapped in the bag is probably:

- a. abscisic acid
- b. cytokinin
- c. ethylene
- d. gibberellic acid

Solution:

C

Exercise:

Problem:

A decrease in the level of which hormone releases seeds from dormancy?

- a. abscisic acid
- b. cytokinin
- c. ethylene
- d. gibberellic acid

Solution:

A

Exercise:

Problem:

A seedling germinating under a stone grows at an angle away from the stone and upward. This response to touch is called _____.

- a. gravitropism
- b. thigmonasty
- c. thigmotropism
- d. skototropism

Solution:

 \mathbf{C}

Free Response

Exercise:

Problem:

Owners and managers of plant nurseries have to plan lighting schedules for a long-day plant that will flower in February. What lighting periods will be most effective? What color of light should be chosen?

Solution:

A long-day plant needs a higher proportion of the Pfr form to Pr form of phytochrome. The plant requires long periods of illumination with light enriched in the red range of the spectrum.

Exercise:

Problem:

What are the major benefits of gravitropism for a germinating seedling?

Solution:

Gravitropism will allow roots to dig deep into the soil to find water and minerals, whereas the seedling will grow towards light to enable photosynthesis.

Exercise:

Problem:

Fruit and vegetable storage facilities are usually refrigerated and well ventilated. Why are these conditions advantageous?

Solution:

Refrigeration slows chemical reactions, including fruit maturation. Ventilation removes the ethylene gas that speeds up fruit ripening.

Exercise:

Problem:

Stomata close in response to bacterial infection. Why is this response a mechanism of defense for the plant? Which hormone is most likely to mediate this response?

Solution:

To prevent further entry of pathogens, stomata close, even if they restrict entry of CO_2 . Some pathogens secrete virulence factors that inhibit the closing of stomata. Abscisic acid is the stress hormone responsible for inducing closing of stomata.

Glossary

abscisic acid (ABA)

plant hormone that induces dormancy in seeds and other organs

abscission

physiological process that leads to the fall of a plant organ (such as leaf or petal drop)

auxin

plant hormone that influences cell elongation (in phototropism), gravitropism, apical dominance and root growth

chromophore

molecule that absorbs light

cryptochrome

protein that absorbs light in the blue and ultraviolet regions of the light spectrum

cytokinin

plant hormone that promotes cell division

ethylene

volatile plant hormone that is associated with fruit ripening, flower wilting, and leaf fall

gibberellin (GA)

plant hormone that stimulates shoot elongation, seed germination, and the maturation and dropping of fruit and flowers

jasmonates

small family of compounds derived from the fatty acid linoleic acid

negative gravitropism

growth away from Earth's gravity

oligosaccharin

hormone important in plant defenses against bacterial and fungal infections

photomorphogenesis

growth and development of plants in response to light

photoperiodism

occurrence of plant processes, such as germination and flowering, according to the time of year

phototropin

blue-light receptor that promotes phototropism, stomatal opening and closing, and other responses that promote photosynthesis

phototropism

directional bending of a plant toward a light source

phytochrome

plant pigment protein that exists in two reversible forms (Pr and Pfr) and mediates morphologic changes in response to red light

positive gravitropism

growth toward Earth's gravitational center

statolith

(also, amyloplast) plant organelle that contains heavy starch granules

strigolactone

hormone that promotes seed germination in some species and inhibits lateral apical development in the absence of auxins

thigmomorphogenesis

developmental response to touch

thigmonastic

directional growth of a plant independent of the direction in which contact is applied

thigmotropism

directional growth of a plant in response to constant contact

Introduction class="introduction"

For this (a) squash seedling (*Cucurbita maxima*) to develop into a mature plant bearing its (b) fruit, numerous nutritional requirements must be met. (credit a: modification of work by Julian Colton; credit b: modification of work by "Wildfeuer"/Wikimedi a Commons)

Cucurbitaceae is a family of plants first cultivated in Mesoamerica, although several species are native to North America. The family includes many edible species, such as squash and pumpkin, as well as inedible gourds. In order to grow and develop into mature, fruit-bearing plants, many requirements must be met and events must be coordinated. Seeds must germinate under the right conditions in the soil; therefore, temperature, moisture, and soil quality are important factors that play a role

in germination and seedling development. Soil quality and climate are significant to plant distribution and growth. The young seedling will eventually grow into a mature plant, and the roots will absorb nutrients and water from the soil. At the same time, the aboveground parts of the plant will absorb carbon dioxide from the atmosphere and use energy from sunlight to produce organic compounds through photosynthesis. This chapter will explore the complex dynamics between plants and soils, and the adaptations that plants have evolved to make better use of nutritional resources.

Nutritional Requirements of Plants By the end of this section, you will be able to:

- Describe how plants obtain nutrients
- List the elements and compounds required for proper plant nutrition
- Describe an essential nutrient

Plants are unique organisms that can absorb nutrients and water through their root system, as well as carbon dioxide from the atmosphere. Soil quality and climate are the major determinants of plant distribution and growth. The combination of soil nutrients, water, and carbon dioxide, along with sunlight, allows plants to grow.

The Chemical Composition of Plants

Since plants require nutrients in the form of elements such as carbon and potassium, it is important to understand the chemical composition of plants. The majority of volume in a plant cell is water; it typically comprises 80 to 90 percent of the plant's total weight. Soil is the water source for land plants, and can be an abundant source of water, even if it appears dry. Plant roots absorb water from the soil through root hairs and transport it up to the leaves through the xylem. As water vapor is lost from the leaves, the process of transpiration and the polarity of water molecules (which enables them to form hydrogen bonds) draws more water from the roots up through the plant to the leaves ([link]). Plants need water to support cell structure, for metabolic functions, to carry nutrients, and for photosynthesis.

Water is absorbed through the root hairs and moves up the xylem to the leaves.

Plant cells need essential substances, collectively called nutrients, to sustain life. Plant nutrients may be composed of either organic or inorganic compounds. An **organic compound** is a chemical compound that contains carbon, such as carbon dioxide obtained from the atmosphere. Carbon that was obtained from atmospheric CO2 composes the majority of the dry mass within most plants. An **inorganic compound** does not contain carbon and is not part of, or produced by, a living organism. Inorganic substances, which form the majority of the soil solution, are commonly called minerals: those required by plants include nitrogen (N) and potassium (K) for structure and regulation.

Essential Nutrients

Plants require only light, water and about 20 elements to support all their biochemical needs: these 20 elements are called essential nutrients ([link]). For an element to be regarded as **essential**, three criteria are required: 1) a

plant cannot complete its life cycle without the element; 2) no other element can perform the function of the element; and 3) the element is directly involved in plant nutrition.

Essential Elements for Plant Growth		
Macronutrients	Micronutrients	
Carbon (C)	Iron (Fe)	
Hydrogen (H)	Manganese (Mn)	
Oxygen (O)	Boron (B)	
Nitrogen (N)	Molybdenum (Mo)	
Phosphorus (P)	Copper (Cu)	
Potassium (K)	Zinc (Zn)	
Calcium (Ca)	Chlorine (Cl)	
Magnesium (Mg)	Nickel (Ni)	
Sulfur (S)	Cobalt (Co)	
	Sodium (Na)	
	Silicon (Si)	

Macronutrients and Micronutrients

The essential elements can be divided into two groups: macronutrients and micronutrients. Nutrients that plants require in larger amounts are called **macronutrients**. About half of the essential elements are considered macronutrients: carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium and sulfur. The first of these macronutrients, carbon (C), is required to form carbohydrates, proteins, nucleic acids, and many other compounds; it is therefore present in all macromolecules. On average, the dry weight (excluding water) of a cell is 50 percent carbon. As shown in [link], carbon is a key part of plant biomolecules.

Cellulose, the main structural component of the plant cell wall, makes up over thirty percent of plant matter. It is the most abundant organic compound on earth.

The next most abundant element in plant cells is nitrogen (N); it is part of proteins and nucleic acids. Nitrogen is also used in the synthesis of some vitamins. Hydrogen and oxygen are macronutrients that are part of many

organic compounds, and also form water. Oxygen is necessary for cellular respiration; plants use oxygen to store energy in the form of ATP. Phosphorus (P), another macromolecule, is necessary to synthesize nucleic acids and phospholipids. As part of ATP, phosphorus enables food energy to be converted into chemical energy through oxidative phosphorylation. Likewise, light energy is converted into chemical energy during photophosphorylation in photosynthesis, and into chemical energy to be extracted during respiration. Sulfur is part of certain amino acids, such as cysteine and methionine, and is present in several coenzymes. Sulfur also plays a role in photosynthesis as part of the electron transport chain, where hydrogen gradients play a key role in the conversion of light energy into ATP. Potassium (K) is important because of its role in regulating stomatal opening and closing. As the openings for gas exchange, stomata help maintain a healthy water balance; a potassium ion pump supports this process.

Magnesium (Mg) and calcium (Ca) are also important macronutrients. The role of calcium is twofold: to regulate nutrient transport, and to support many enzyme functions. Magnesium is important to the photosynthetic process. These minerals, along with the micronutrients, which are described below, also contribute to the plant's ionic balance.

In addition to macronutrients, organisms require various elements in small amounts. These **micronutrients**, or trace elements, are present in very small quantities. They include boron (B), chlorine (Cl), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), and sodium (Na).

Deficiencies in any of these nutrients—particularly the macronutrients—can adversely affect plant growth ([link]. Depending on the specific nutrient, a lack can cause stunted growth, slow growth, or chlorosis (yellowing of the leaves). Extreme deficiencies may result in leaves showing signs of cell death.

Note:

Link to Learning

Visit this <u>website</u> to participate in an interactive experiment on plant nutrient deficiencies. You can adjust the amounts of N, P, K, Ca, Mg, and Fe that plants receive . . . and see what happens.

Nutrient deficiency is evident in the symptoms these plants show. This (a) grape tomato suffers from blossom end rot caused by calcium deficiency. The yellowing in this (b) *Frangula alnus* results from magnesium deficiency. Inadequate magnesium also leads to (c) intervenal chlorosis, seen here in a sweetgum

leaf. This (d) palm is affected by potassium deficiency. (credit c: modification of work by Jim Conrad; credit d: modification of work by Malcolm Manners)

Note:

Everyday Connection **Hydroponics**

Hydroponics is a method of growing plants in a water-nutrient solution instead of soil. Since its advent, hydroponics has developed into a growing process that researchers often use. Scientists who are interested in studying plant nutrient deficiencies can use hydroponics to study the effects of different nutrient combinations under strictly controlled conditions. Hydroponics has also developed as a way to grow flowers, vegetables, and other crops in greenhouse environments. You might find hydroponically grown produce at your local grocery store. Today, many lettuces and tomatoes in your market have been hydroponically grown.

Section Summary

Plants can absorb inorganic nutrients and water through their root system, and carbon dioxide from the environment. The combination of organic compounds, along with water, carbon dioxide, and sunlight, produce the energy that allows plants to grow. Inorganic compounds form the majority of the soil solution. Plants access water though the soil. Water is absorbed by the plant root, transports nutrients throughout the plant, and maintains the structure of the plant. Essential elements are indispensable elements for plant growth. They are divided into macronutrients and micronutrients. The macronutrients plants require are carbon, nitrogen, hydrogen, oxygen, phosphorus, potassium, calcium, magnesium, and sulfur. Important

micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, silicon and sodium.

Review Questions

Exercise:

Problem:

For an element to be regarded as essential, all of the following criteria must be met, except:

- a. No other element can perform the function.
- b. The element is directly involved in plant nutrition.
- c. The element is inorganic.
- d. The plant cannot complete its lifecycle without the element.

•		
6 0	liiti	nn
JU	luti	UII.

 \mathbf{C}

Exercise:

Problem:

The nutrient that is part of carbohydrates, proteins, and nucleic acids, and that forms biomolecules, is _____.

- a. nitrogen
- b. carbon
- c. magnesium
- d. iron

Solution:

В

Exercise:

Problem: Most	are necessary for enzyme function.
a. micronutrients	
b. macronutrients	
c. biomolecules	
d. essential nutrients	
Solution:	
A	
Exercise:	
Problem: What is the	main water source for land plants?
a. rain	
b. soil	
c. biomolecules	
d. essential nutrients	
Solution:	
В	
Free Response	
Exercise:	
Problem:	
What type of plant pro deficiencies?	blems result from nitrogen and calcium
Solution:	

Deficiencies in these nutrients could result in stunted growth, slow growth, and chlorosis.

Exercise:

Problem:

Research the life of Jan Babtista van Helmont. What did the van Helmont experiment show?

Solution:

van Helmont showed that plants do not consume soil, which is correct. He also thought that plant growth and increased weight resulted from the intake of water, a conclusion that has since been disproven.

Exercise:

Problem:

List two essential macronutrients and two essential nutrients.

Solution:

Answers may vary. Essential macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. Essential micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, sodium, and silicon.

Glossary

inorganic compound

chemical compound that does not contain carbon; it is not part of or produced by a living organism

macronutrient

nutrient that is required in large amounts for plant growth; carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium,

magnesium, and sulfur

micronutrient

nutrient required in small amounts; also called trace element

organic compound

chemical compound that contains carbon

The Soil

By the end of this section, you will be able to:

- Describe how soils are formed
- Explain soil composition
- Describe a soil profile

Plants obtain inorganic elements from the soil, which serves as a natural medium for land plants. **Soil** is the outer loose layer that covers the surface of Earth. Soil quality is a major determinant, along with climate, of plant distribution and growth. Soil quality depends not only on the chemical composition of the soil, but also the topography (regional surface features) and the presence of living organisms. In agriculture, the history of the soil, such as the cultivating practices and previous crops, modify the characteristics and fertility of that soil.

Soil develops very slowly over long periods of time, and its formation results from natural and environmental forces acting on mineral, rock, and organic compounds. Soils can be divided into two groups: **organic soils** are those that are formed from sedimentation and primarily composed of organic matter, while those that are formed from the weathering of rocks and are primarily composed of inorganic material are called **mineral soils**. Mineral soils are predominant in terrestrial ecosystems, where soils may be covered by water for part of the year or exposed to the atmosphere.

Soil Composition

Soil consists of these major components ([link]):

- inorganic mineral matter, about 40 to 45 percent of the soil volume
- organic matter, about 5 percent of the soil volume
- water and air, about 50 percent of the soil volume

The amount of each of the four major components of soil depends on the amount of vegetation, soil compaction, and water present in the soil. A good healthy soil has sufficient air, water, minerals, and organic material to promote and sustain plant life.

The organic material of soil, called **humus**, is made up of microorganisms (dead and alive), and dead animals and plants in varying stages of decay. Humus improves soil structure and provides plants with water and minerals. The inorganic material of soil consists of rock, slowly broken down into smaller particles that vary in size. Soil particles that are 0.1 to 2 mm in diameter are **sand**. Soil particles between 0.002 and 0.1 mm are called **silt**, and even smaller particles, less than 0.002 mm in diameter, are called **clay**. Some soils have no dominant particle size and contain a mixture of sand, silt, and humus; these soils are called **loams**.

Note:

Link to Learning

Explore this <u>interactive map</u> from the USDA's National Cooperative Soil Survey to access soil data for almost any region in the United States.

Soil Formation

Soil formation is the consequence of a combination of biological, physical, and chemical processes. Soil should ideally contain 50 percent solid material and 50 percent pore space. About one-half of the pore space should contain water, and the other half should contain air. The organic component of soil serves as a cementing agent, returns nutrients to the plant, allows soil to store moisture, makes soil tillable for farming, and provides energy for soil microorganisms. Most soil microorganisms—bacteria, algae, or fungi—are dormant in dry soil, but become active once moisture is available.

Soil distribution is not homogenous because its formation results in the production of layers; together, the vertical section of a soil is called the **soil profile**. Within the soil profile, soil scientists define zones called horizons. A **horizon** is a soil layer with distinct physical and chemical properties that differ from those of other layers. Five factors account for soil formation: parent material, climate, topography, biological factors, and time.

Parent Material

The organic and inorganic material in which soils form is the **parent material**. Mineral soils form directly from the weathering of **bedrock**, the

solid rock that lies beneath the soil, and therefore, they have a similar composition to the original rock. Other soils form in materials that came from elsewhere, such as sand and glacial drift. Materials located in the depth of the soil are relatively unchanged compared with the deposited material. Sediments in rivers may have different characteristics, depending on whether the stream moves quickly or slowly. A fast-moving river could have sediments of rocks and sand, whereas a slow-moving river could have fine-textured material, such as clay.

Climate

Temperature, moisture, and wind cause different patterns of weathering and therefore affect soil characteristics. The presence of moisture and nutrients from weathering will also promote biological activity: a key component of a quality soil.

Topography

Regional surface features (familiarly called "the lay of the land") can have a major influence on the characteristics and fertility of a soil. Topography affects water runoff, which strips away parent material and affects plant growth. Steeps soils are more prone to erosion and may be thinner than soils that are relatively flat or level.

Biological factors

The presence of living organisms greatly affects soil formation and structure. Animals and microorganisms can produce pores and crevices, and plant roots can penetrate into crevices to produce more fragmentation. Plant secretions promote the development of microorganisms around the root, in an area known as the **rhizosphere**. Additionally, leaves and other material that fall from plants decompose and contribute to soil composition.

Time

Time is an important factor in soil formation because soils develop over long periods. Soil formation is a dynamic process. Materials are deposited over time, decompose, and transform into other materials that can be used by living organisms or deposited onto the surface of the soil.

Physical Properties of the Soil

Soils are named and classified based on their horizons. The soil profile has four distinct layers: 1) O horizon; 2) A horizon; 3) B horizon, or subsoil; and 4) C horizon, or soil base ([link]). The **O horizon** has freshly decomposing organic matter—humus—at its surface, with decomposed vegetation at its base. Humus enriches the soil with nutrients and enhances soil moisture retention. Topsoil—the top layer of soil—is usually two to three inches deep, but this depth can vary considerably. For instance, river deltas like the Mississippi River delta have deep layers of topsoil. Topsoil is rich in organic material; microbial processes occur there, and it is the "workhorse" of plant production. The **A horizon** consists of a mixture of organic material with inorganic products of weathering, and it is therefore the beginning of true mineral soil. This horizon is typically darkly colored because of the presence of organic matter. In this area, rainwater percolates through the soil and carries materials from the surface. The **B horizon** is an accumulation of mostly fine material that has moved downward, resulting in a dense layer in the soil. In some soils, the B horizon contains nodules or a layer of calcium carbonate. The **C horizon**, or soil base, includes the parent material, plus the organic and inorganic material that is broken down to form soil. The parent material may be either created in its natural place, or transported from elsewhere to its present location. Beneath the C horizon lies bedrock.

Not	e:
Art	Connection

This soil profile shows the different soil layers (O horizon, A horizon, B horizon, and C horizon) found in typical soils. (credit: modification of work by USDA)

Which horizon is considered the topsoil, and which is considered the subsoil?

Some soils may have additional layers, or lack one of these layers. The thickness of the layers is also variable, and depends on the factors that influence soil formation. In general, immature soils may have O, A, and C horizons, whereas mature soils may display all of these, plus additional layers ([link]).

The San Joaquin soil profile has an O horizon, A horizon, B horizon, and C horizon. (credit: modification of work by USDA)

Note:

Career Connections **Soil Scientist**

A soil scientist studies the biological components, physical and chemical properties, distribution, formation, and morphology of soils. Soil scientists need to have a strong background in physical and life sciences, plus a foundation in mathematics. They may work for federal or state agencies, academia, or the private sector. Their work may involve collecting data, carrying out research, interpreting results, inspecting soils, conducting soil surveys, and recommending soil management programs.

This soil scientist is studying the horizons and composition of soil at a research site. (credit: USDA)

Many soil scientists work both in an office and in the field. According to the United States Department of Agriculture (USDA): "a soil scientist needs good observation skills to analyze and determine the characteristics of different types of soils. Soil types are complex and the geographical areas a soil scientist may survey are varied. Aerial photos or various satellite images are often used to research the areas. Computer skills and geographic information systems (GIS) help the scientist to analyze the multiple facets of geomorphology, topography, vegetation, and climate to discover the patterns left on the landscape." [footnote] Soil scientists play a key role in understanding the soil's past, analyzing present conditions, and making recommendations for future soil-related practices.

National Resources Conservation Service / United States Department of Agriculture. "Careers in Soil Science."

http://soils.usda.gov/education/facts/careers.html

Section Summary

Plants obtain mineral nutrients from the soil. Soil is the outer loose layer that covers the surface of Earth. Soil quality depends on the chemical composition of the soil, the topography, the presence of living organisms, the climate, and time. Agricultural practice and history may also modify the characteristics and fertility of soil. Soil consists of four major components: 1) inorganic mineral matter, 2) organic matter, 3) water and air, and 4) living matter. The organic material of soil is made of humus, which improves soil structure and provides water and minerals. Soil inorganic material consists of rock slowly broken down into smaller particles that vary in size, such as sand, silt, and loam.

Soil formation results from a combination of biological, physical, and chemical processes. Soil is not homogenous because its formation results in the production of layers called a soil profile. Factors that affect soil formation include: parent material, climate, topography, biological factors, and time. Soils are classified based on their horizons, soil particle size, and proportions. Most soils have four distinct horizons: O, A, B, and C.

Art Connections

Exercise:

Problem:

[link] Soil compaction can result when soil is compressed by heavy machinery or even foot traffic. How might this compaction change the soil composition?

Solution:

[link] The air content of the soil decreases.

Exercise:

[link] Which horizon is considered the topsoil, and which is considered the subsoil?

Solution:

[link] The A horizon is the topsoil, and the B horizon is subsoil.

Review Questions

Exercise:

Problem: Which factors affect soil quality?

- a. chemical composition
- b. history of the soil
- c. presence of living organisms and topography
- d. all of the above

Solution:

D

Exercise:

Problem:

Soil particles that are 0.1 to 2 mm in diameter are called _____.

- a. sand
- b. silt
- c. clay
- d. loam

Solution:

A
Exercise:
Problem:
A soil consists of layers called that taken together are called a a. soil profiles: horizon b. horizons: soil profile c. horizons: humus d. humus: soil profile
Solution:
В
Exercise:
Problem:
What is the term used to describe the solid rock that lies beneath the soil?
a. sand b. bedrock c. clay d. loam
Solution:
В
Exercise:
Problem:

Describe the main differences between a mineral soil and an organic soil.

Solution:

A mineral soil forms from the weathering of rocks; it is inorganic material. An organic soil is formed from sedimentation; it mostly consists of humus.

Exercise:

Problem:

Name and briefly explain the factors that affect soil formation.

Solution:

Parent material, climate, topography, biological factors, and time affect soil formation. Parent material is the material in which soils form. Climate describes how temperature, moisture, and wind cause different patterns of weathering, influencing the characteristics of the soil. Topography affects the characteristics and fertility of a soil. Biological factors include the presence of living organisms that greatly affect soil formation. Processes such as freezing and thawing may produce cracks in rocks; plant roots can penetrate these crevices and produce more fragmentation. Time affects soil because soil develops over long periods.

Exercise:

Problem:

Describe how topography influences the characteristics and fertility of a soil.

Solution:

Topography affects water runoff, which strips away parent material and affects plant growth. Steeps soils are more prone to erosion and may be thinner than soils that are on level surfaces.

Glossary

A horizon

consists of a mixture of organic material with inorganic products of weathering

B horizon

soil layer that is an accumulation of mostly fine material that has moved downward

bedrock

solid rock that lies beneath the soil

C horizon

layer of soil that contains the parent material, and the organic and inorganic material that is broken down to form soil; also known as the soil base

clay

soil particles that are less than 0.002 mm in diameter

horizon

soil layer with distinct physical and chemical properties, which differs from other layers depending on how and when it was formed

humus

organic material of soil; made up of microorganisms, dead animals and plants in varying stages of decay

loam

soil that has no dominant particle size

mineral soil

type of soil that is formed from the weathering of rocks and inorganic material; composed primarily of sand, silt, and clay

O horizon

layer of soil with humus at the surface and decomposed vegetation at the base

organic soil

type of soil that is formed from sedimentation; composed primarily of organic material

parent material

organic and inorganic material in which soils form

rhizosphere

area of soil affected by root secretions and microorganisms

sand

soil particles between 0.1–2 mm in diameter

silt

soil particles between 0.002 and 0.1 mm in diameter

soil profile

vertical section of a soil

soil

outer loose layer that covers the surface of Earth

Nutritional Adaptations of Plants By the end of this section, you will be able to:

- Understand the nutritional adaptations of plants
- Describe mycorrhizae
- Explain nitrogen fixation

Plants obtain food in two different ways. Autotrophic plants can make their own food from inorganic raw materials, such as carbon dioxide and water, through photosynthesis in the presence of sunlight. Green plants are included in this group. Some plants, however, are heterotrophic: they are totally parasitic and lacking in chlorophyll. These plants, referred to as holo-parasitic plants, are unable to synthesize organic carbon and draw all of their nutrients from the host plant.

Plants may also enlist the help of microbial partners in nutrient acquisition. Particular species of bacteria and fungi have evolved along with certain plants to create a mutualistic symbiotic relationship with roots. This improves the nutrition of both the plant and the microbe. The formation of nodules in legume plants and mycorrhization can be considered among the nutritional adaptations of plants. However, these are not the only type of adaptations that we may find; many plants have other adaptations that allow them to thrive under specific conditions.

Note:

Link to Learning

This <u>video</u> reviews basic concepts about photosynthesis. In the left panel, click each tab to select a topic for review.

Nitrogen Fixation: Root and Bacteria Interactions

Nitrogen is an important macronutrient because it is part of nucleic acids and proteins. Atmospheric nitrogen, which is the diatomic molecule N_2 , or dinitrogen, is the largest pool of nitrogen in terrestrial ecosystems. However, plants cannot take advantage of this nitrogen because they do not have the necessary enzymes to convert it into biologically useful forms. However, nitrogen can be "fixed," which means that it can be converted to ammonia (NH_3) through biological, physical, or chemical processes. As you have learned, biological nitrogen fixation (BNF) is the conversion of atmospheric nitrogen (N_2) into ammonia (NH_3), exclusively carried out by prokaryotes such as soil bacteria or cyanobacteria. Biological processes contribute 65 percent of the nitrogen used in agriculture. The following equation represents the process:

Equation:

$$m N_2 + 16~ATP~+~8~e^-~+~8~H^+~\rightarrow~2NH_3~+~16~ADP~+~16~Pi~+~H_2$$

The most important source of BNF is the symbiotic interaction between soil bacteria and legume plants, including many crops important to humans ([link]). The NH₃ resulting from fixation can be transported into plant tissue and incorporated into amino acids, which are then made into plant proteins. Some legume seeds, such as soybeans and peanuts, contain high levels of protein, and serve among the most important agricultural sources of protein in the world.

Some common edible legumes—like (a) peanuts, (b) beans, and (c) chickpeas—are able to interact symbiotically with soil bacteria that fix nitrogen. (credit a: modification of work by Jules Clancy; credit b: modification of work by USDA)

Farmers often rotate corn (a cereal crop) and soy beans (a legume), planting a field with each crop in alternate seasons. What advantage might this crop rotation confer?

Soil bacteria, collectively called **rhizobia**, symbiotically interact with legume roots to form specialized structures called **nodules**, in which nitrogen fixation takes place. This process entails the reduction of atmospheric nitrogen to ammonia, by means of the enzyme **nitrogenase**. Therefore, using rhizobia is a natural and environmentally friendly way to fertilize plants, as opposed to chemical fertilization that uses a nonrenewable resource, such as natural gas. Through symbiotic nitrogen fixation, the plant benefits from using an endless source of nitrogen from the atmosphere. The process simultaneously contributes to soil fertility because the plant root system leaves behind some of the biologically available nitrogen. As in any symbiosis, both organisms benefit from the interaction: the plant obtains ammonia, and bacteria obtain carbon compounds generated through photosynthesis, as well as a protected niche in which to grow ([link]).

Soybean roots contain (a) nitrogen-fixing nodules.

Cells within the nodules are infected with
Bradyrhyzobium japonicum, a rhizobia or "rootloving" bacterium. The bacteria are encased in (b)

vesicles inside the cell, as can be seen in this
transmission electron micrograph. (credit a:
modification of work by USDA; credit b:
modification of work by Louisa Howard, Dartmouth
Electron Microscope Facility; scale-bar data from
Matt Russell)

Mycorrhizae: The Symbiotic Relationship between Fungi and Roots

A nutrient depletion zone can develop when there is rapid soil solution uptake, low nutrient concentration, low diffusion rate, or low soil moisture. These conditions are very common; therefore, most plants rely on fungi to facilitate the uptake of minerals from the soil. Fungi form symbiotic associations called mycorrhizae with plant roots, in which the fungi actually are integrated into the physical structure of the root. The fungi colonize the living root tissue during active plant growth.

Through mycorrhization, the plant obtains mainly phosphate and other minerals, such as zinc and copper, from the soil. The fungus obtains nutrients, such as sugars, from the plant root ([link]). Mycorrhizae help

increase the surface area of the plant root system because hyphae, which are narrow, can spread beyond the nutrient depletion zone. Hyphae can grow into small soil pores that allow access to phosphorus that would otherwise be unavailable to the plant. The beneficial effect on the plant is best observed in poor soils. The benefit to fungi is that they can obtain up to 20 percent of the total carbon accessed by plants. Mycorrhizae functions as a physical barrier to pathogens. It also provides an induction of generalized host defense mechanisms, and sometimes involves production of antibiotic compounds by the fungi.

Root tips proliferate in the presence of mycorrhizal infection, which appears as off-white fuzz in this image. (credit: modification of work by Nilsson et al., BMC Bioinformatics 2005)

There are two types of mycorrhizae: ectomycorrhizae and endomycorrhizae. Ectomycorrhizae form an extensive dense sheath around the roots, called a mantle. Hyphae from the fungi extend from the mantle into the soil, which increases the surface area for water and mineral absorption. This type of mycorrhizae is found in forest trees, especially conifers, birches, and oaks. Endomycorrhizae, also called arbuscular mycorrhizae, do not form a dense sheath over the root. Instead, the fungal mycelium is embedded within the root tissue. Endomycorrhizae are found in the roots of more than 80 percent of terrestrial plants.

Nutrients from Other Sources

Some plants cannot produce their own food and must obtain their nutrition from outside sources. This may occur with plants that are parasitic or saprophytic. Some plants are mutualistic symbionts, epiphytes, or insectivorous.

Plant Parasites

A **parasitic plant** depends on its host for survival. Some parasitic plants have no leaves. An example of this is the dodder ([link]), which has a weak, cylindrical stem that coils around the host and forms suckers. From these suckers, cells invade the host stem and grow to connect with the vascular bundles of the host. The parasitic plant obtains water and nutrients through these connections. The plant is a total parasite (a holoparasite) because it is completely dependent on its host. Other parasitic plants (hemiparasites) are fully photosynthetic and only use the host for water and minerals. There are about 4,100 species of parasitic plants.

The dodder is a holoparasite that penetrates the host's vascular tissue and diverts nutrients for its own growth. Note that the vines of the dodder, which has white flowers, are beige. The dodder has no chlorophyll and cannot produce its own food. (credit: "Lalithamba"/Flickr)

Saprophytes

A **saprophyte** is a plant that does not have chlorophyll and gets its food from dead matter, similar to bacteria and fungi (note that fungi are often called saprophytes, which is incorrect, because fungi are not plants). Plants like these use enzymes to convert organic food materials into simpler forms from which they can absorb nutrients ([link]). Most saprophytes do not directly digest dead matter: instead, they parasitize fungi that digest dead matter, or are mycorrhizal, ultimately obtaining photosynthate from a fungus that derived photosynthate from its host. Saprophytic plants are uncommon; only a few species are described.

Saprophytes, like this Dutchmen's pipe (*Monotropa hypopitys*), obtain their food from dead matter and do not have chlorophyll. (credit: modification of work by Iwona Erskine-Kellie)

Symbionts

A **symbiont** is a plant in a symbiotic relationship, with special adaptations such as mycorrhizae or nodule formation. Fungi also form symbiotic associations with cyanobacteria and green algae (called lichens). Lichens can sometimes be seen as colorful growths on the surface of rocks and trees ([link]). The algal partner (phycobiont) makes food autotrophically, some of which it shares with the fungus; the fungal partner (mycobiont) absorbs water and minerals from the environment, which are made available to the green alga. If one partner was separated from the other, they would both die.

Lichens, which often have symbiotic relationships with other plants, can sometimes be found growing on trees. (credit: "benketaro"/Flickr)

Epiphytes

An **epiphyte** is a plant that grows on other plants, but is not dependent upon the other plant for nutrition ([link]). Epiphytes have two types of roots: clinging aerial roots, which absorb nutrients from humus that accumulates in the crevices of trees; and aerial roots, which absorb moisture from the atmosphere.

These epiphyte plants grow in the main greenhouse of the *Jardin des Plantes* in Paris.

Insectivorous Plants

An **insectivorous** plant has specialized leaves to attract and digest insects. The Venus flytrap is popularly known for its insectivorous mode of nutrition, and has leaves that work as traps ([link]). The minerals it obtains from prey compensate for those lacking in the boggy (low pH) soil of its native North Carolina coastal plains. There are three sensitive hairs in the center of each half of each leaf. The edges of each leaf are covered with long spines. Nectar secreted by the plant attracts flies to the leaf. When a fly touches the sensory hairs, the leaf immediately closes. Next, fluids and enzymes break down the prey and minerals are absorbed by the leaf. Since this plant is popular in the horticultural trade, it is threatened in its original habitat.

A Venus flytrap has specialized leaves to trap insects. (credit: "Selena N. B. H."/Flickr)

Section Summary

Atmospheric nitrogen is the largest pool of available nitrogen in terrestrial ecosystems. However, plants cannot use this nitrogen because they do not have the necessary enzymes. Biological nitrogen fixation (BNF) is the conversion of atmospheric nitrogen to ammonia. The most important source of BNF is the symbiotic interaction between soil bacteria and legumes. The bacteria form nodules on the legume's roots in which nitrogen fixation takes place. Fungi form symbiotic associations (mycorrhizae) with plants, becoming integrated into the physical structure of the root. Through mycorrhization, the plant obtains minerals from the soil and the fungus obtains photosynthate from the plant root. Ectomycorrhizae form an extensive dense sheath around the root, while endomycorrhizae are embedded within the root tissue. Some plants—parasites, saprophytes, symbionts, epiphytes, and insectivores—have evolved adaptations to obtain their organic or mineral nutrition from various sources.

Art Connections

Exercise:

Problem:

[link] Farmers often rotate corn (a cereal crop) and soy beans (a legume) planting a field with each crop in alternate seasons. What advantage might this crop rotation confer?

Solution:

[link] Soybeans are able to fix nitrogen in their roots, which are not harvested at the end of the growing season. The belowground nitrogen can be used in the next season by the corn.

Review Questions

Exercise:

Problem:

Which process produces an inorganic compound that plants can easily use?

- a. photosynthesis
- b. nitrogen fixation
- c. mycorrhization
- d. Calvin cycle

Solution:

В

Exercise:

Problem:

Through mycorrhization, a plant obtains important nutrients such as

- a. phosphorus, zinc, and copper
- b. phosphorus, zinc, and calcium
- c. nickel, calcium, and zinc
- d. all of the above

Solution:

A

Exercise:

Problem:

What term describes a plant that requires nutrition from a living host plant?

- a. parasite
- b. saprophyte
- c. epiphyte
- d. insectivorous

Solution:

Α

Exercise:

Problem:

What is the term for the symbiotic association between fungi and cyanobacteria?

- a. lichen
- b. mycorrhizae
- c. epiphyte
- d. nitrogen-fixing nodule

Solution:

Free Response

Exercise:

Problem:

Why is biological nitrogen fixation an environmentally friendly way of fertilizing plants?

Solution:

Because it is natural and does not require use of a nonrenewable resource, such as natural gas.

Exercise:

Problem:

What is the main difference, from an energy point of view, between photosynthesis and biological nitrogen fixation?

Solution:

Photosynthesis harvests and stores energy, whereas biological nitrogen fixation requires energy.

Exercise:

Problem: Why is a root nodule a nutritional adaptation of a plant?

Solution:

A nodule results from the symbiosis between a plant and bacterium. Within nodules, the process of nitrogen fixation allows the plant to obtain nitrogen from the air.

Glossary

epiphyte

plant that grows on other plants but is not dependent upon other plants for nutrition

insectivorous plant

plant that has specialized leaves to attract and digest insects

nitrogenase

enzyme that is responsible for the reduction of atmospheric nitrogen to ammonia

nodules

specialized structures that contain *Rhizobia* bacteria where nitrogen fixation takes place

parasitic plant

plant that is dependent on its host for survival

rhizobia

soil bacteria that symbiotically interact with legume roots to form nodules and fix nitrogen

saprophyte

plant that does not have chlorophyll and gets its food from dead matter

symbiont

plant in a symbiotic relationship with bacteria or fungi

Introduction class="introduction"

Plants that reproduce sexually often achieve fertilization with the help of pollinators such as (a) bees, (b) birds, and (c) butterflies. (credit a: modification of work by John Severns; credit b: modification of work by Charles J. Sharp; credit c: modification of work by "Galawebdesign"/Flickr

Plants have evolved different reproductive strategies for the continuation of their species. Some plants reproduce sexually, and others asexually, in contrast to animal species, which rely almost exclusively on sexual reproduction. Plant sexual reproduction usually depends on pollinating agents, while asexual reproduction is independent of these agents. Flowers are often the showiest or most strongly scented part of plants. With their bright colors, fragrances, and interesting shapes and sizes, flowers attract

insects, birds, and animals to serve their pollination needs. Other plants pollinate via wind or water; still others self-pollinate.

Reproductive Development and Structure By the end of this section, you will be able to:

- Describe the two stages of a plant's lifecycle
- Compare and contrast male and female gametophytes and explain how they form in angiosperms
- Describe the reproductive structures of a plant
- Describe the components of a complete flower
- Describe the development of microsporangium and megasporangium in gymnosperms

Sexual reproduction takes place with slight variations in different groups of plants. Plants have two distinct stages in their lifecycle: the gametophyte stage and the sporophyte stage. The haploid **gametophyte** produces the male and female gametes by mitosis in distinct multicellular structures. Fusion of the male and females gametes forms the diploid zygote, which develops into the **sporophyte**. After reaching maturity, the diploid sporophyte produces spores by meiosis, which in turn divide by mitosis to produce the haploid gametophyte. The new gametophyte produces gametes, and the cycle continues. This is the alternation of generations, and is typical of plant reproduction ([link]).

The alternation of generations in angiosperms is depicted in this diagram. (credit: modification of work by Peter Coxhead)

The life cycle of higher plants is dominated by the sporophyte stage, with the gametophyte borne on the sporophyte. In ferns, the gametophyte is freeliving and very distinct in structure from the diploid sporophyte. In bryophytes, such as mosses, the haploid gametophyte is more developed than the sporophyte.

During the vegetative phase of growth, plants increase in size and produce a shoot system and a root system. As they enter the reproductive phase, some of the branches start to bear flowers. Many flowers are borne singly, whereas some are borne in clusters. The flower is borne on a stalk known as a receptacle. Flower shape, color, and size are unique to each species, and are often used by taxonomists to classify plants.

Sexual Reproduction in Angiosperms

The lifecycle of angiosperms follows the alternation of generations explained previously. The haploid gametophyte alternates with the diploid sporophyte during the sexual reproduction process of angiosperms. Flowers contain the plant's reproductive structures.

Flower Structure

A typical flower has four main parts—or whorls—known as the calyx, corolla, androecium, and gynoecium ([link]). The outermost whorl of the flower has green, leafy structures known as sepals. The sepals, collectively called the calyx, help to protect the unopened bud. The second whorl is comprised of petals—usually, brightly colored—collectively called the corolla. The number of sepals and petals varies depending on whether the plant is a monocot or dicot. In monocots, petals usually number three or multiples of three; in dicots, the number of petals is four or five, or multiples of four and five. Together, the calyx and corolla are known as the **perianth**. The third whorl contains the male reproductive structures and is known as the androecium. The **androecium** has stamens with anthers that contain the microsporangia. The innermost group of structures in the flower is the **gynoecium**, or the female reproductive component(s). The carpel is the individual unit of the gynoecium and has a stigma, style, and ovary. A flower may have one or multiple carpels.

Note: Art Connection Androecium Petal Sepal Perianth Corolla (composed of petals) Calyx (composed of sepals) Androecium (stamens) Pollen grain Microsporangia Ovary Ovary Anther Filament

The four main parts of the flower are the calyx, corolla, androecium, and gynoecium. The androecium is the sum of all the male reproductive organs, and the gynoecium is the sum of the female reproductive organs. (credit: modification of work by Mariana Ruiz Villareal)

If the anther is missing, what type of reproductive structure will the flower be unable to produce? What term is used to describe an incomplete flower lacking the androecium? What term describes an incomplete flower lacking a gynoecium? If all four whorls (the calyx, corolla, androecium, and gynoecium) are present, the flower is described as complete. If any of the four parts is missing, the flower is known as incomplete. Flowers that contain both an androecium and a gynoecium are called perfect, androgynous or hermaphrodites. There are two types of incomplete flowers: staminate flowers contain only an androecium, and carpellate flowers have only a gynoecium ([link]).

The corn plant has both staminate (male) and carpellate (female) flowers. Staminate flowers, which are clustered in the tassel at the tip of the stem, produce pollen grains. Carpellate flower are clustered in

the immature ears. Each strand of silk is a stigma. The corn kernels are seeds that develop on the ear after fertilization. Also shown is the lower stem and root.

If both male and female flowers are borne on the same plant, the species is called monoecious (meaning "one home"): examples are corn and pea. Species with male and female flowers borne on separate plants are termed dioecious, or "two homes," examples of which are *C. papaya* and *Cannabis*. The ovary, which may contain one or multiple ovules, may be placed above other flower parts, which is referred to as superior; or, it may be placed below the other flower parts, referred to as inferior ([link]).

The (a) lily is a superior flower, which has the ovary above the other flower parts. (b) Fuchsia is an inferior flower, which has the ovary beneath other flower parts. (credit a photo: modification of work by Benjamin Zwittnig; credit b photo: modification of work by "Koshy Koshy"/Flickr)

Male Gametophyte (The Pollen Grain)

The male gametophyte develops and reaches maturity in an immature anther. In a plant's male reproductive organs, development of pollen takes place in a structure known as the **microsporangium** ([link]). The microsporangia, which are usually bi-lobed, are pollen sacs in which the microspores develop into pollen grains. These are found in the anther, which is at the end of the stamen—the long filament that supports the anther.

Shown is (a) a cross section of an anther at two developmental stages. The immature anther (top) contains four microsporangia, or pollen sacs. Each microsporangium contains hundreds of microspore mother cells that will each give rise to four pollen grains. The tapetum supports the development and maturation of the pollen grains. Upon maturation of the pollen (bottom), the pollen sac walls split open and the pollen grains (male gametophytes) are released. (b) In these scanning electron micrographs, pollen sacs are ready to burst, releasing their grains. (credit b: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Within the microsporangium, the microspore mother cell divides by meiosis to give rise to four microspores, each of which will ultimately form a pollen grain ([link]). An inner layer of cells, known as the tapetum, provides nutrition to the developing microspores and contributes key components to the pollen wall. Mature pollen grains contain two cells: a generative cell and a pollen tube cell. The generative cell is contained within the larger pollen tube cell. Upon germination, the tube cell forms the pollen tube through which the generative cell migrates to enter the ovary. During its transit inside the pollen tube, the generative cell divides to form two male gametes (sperm cells). Upon maturity, the microsporangia burst, releasing the pollen grains from the anther.

Pollen develops from the microspore mother cells. The mature pollen grain is composed of two cells: the pollen tube cell and the generative cell, which is inside the tube cell. The pollen grain has two coverings: an inner layer (intine) and an outer layer (exine). The inset scanning electron micrograph shows *Arabidopsis lyrata* pollen grains. (credit "pollen micrograph": modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Each pollen grain has two coverings: the **exine** (thicker, outer layer) and the **intine** ([link]). The exine contains sporopollenin, a complex waterproofing substance supplied by the tapetal cells. Sporopollenin allows the pollen to survive under unfavorable conditions and to be carried by wind, water, or biological agents without undergoing damage.

Female Gametophyte (The Embryo Sac)

While the details may vary between species, the overall development of the female gametophyte has two distinct phases. First, in the process of **megasporogenesis**, a single cell in the diploid **megasporangium**—an area of tissue in the ovules—undergoes meiosis to produce four megaspores, only one of which survives. During the second phase, **megagametogenesis**, the surviving haploid megaspore undergoes mitosis to produce an eightnucleate, seven-cell female gametophyte, also known as the megagametophyte or embryo sac. Two of the nuclei—the **polar nuclei** move to the equator and fuse, forming a single, diploid central cell. This central cell later fuses with a sperm to form the triploid endosperm. Three nuclei position themselves on the end of the embryo sac opposite the micropyle and develop into the **antipodal** cells, which later degenerate. The nucleus closest to the micropyle becomes the female gamete, or egg cell, and the two adjacent nuclei develop into **synergid** cells ([<u>link</u>]). The synergids help guide the pollen tube for successful fertilization, after which they disintegrate. Once fertilization is complete, the resulting diploid zygote develops into the embryo, and the fertilized ovule forms the other tissues of the seed.

A double-layered integument protects the megasporangium and, later, the embryo sac. The integument will develop into the seed coat after fertilization and protect the entire seed. The ovule wall will become part of the fruit. The integuments, while protecting the megasporangium, do not enclose it completely, but leave an opening called the **micropyle**. The

micropyle allows the pollen tube to enter the female gametophyte for fertilization.

As shown in this diagram of the embryo sac in angiosperms, the ovule is covered by integuments and has an opening called a micropyle. Inside the embryo sac are three antipodal cells, two synergids, a central cell, and the egg cell.

An embryo sac is missing the synergids. What specific impact would you expect this to have on fertilization?

- a. The pollen tube will be unable to form.
- b. The pollen tube will form but will not be guided toward the egg.

- c. Fertilization will not occur because the synergid is the egg.
- d. Fertilization will occur but the embryo will not be able to grow.

Sexual Reproduction in Gymnosperms

As with angiosperms, the lifecycle of a gymnosperm is also characterized by alternation of generations. In conifers such as pines, the green leafy part of the plant is the sporophyte, and the cones contain the male and female gametophytes ([link]). The female cones are larger than the male cones and are positioned towards the top of the tree; the small, male cones are located in the lower region of the tree. Because the pollen is shed and blown by the wind, this arrangement makes it difficult for a gymnosperm to self-pollinate.

This image shows the life cycle of a conifer. Pollen from male cones blows up into upper branches, where it fertilizes female cones. Examples are shown of female and male cones. (credit "female": modification of work by "Geographer"/Wikimedia Commons; credit "male": modification of work by Roger Griffith)

Male Gametophyte

A male cone has a central axis on which bracts, a type of modified leaf, are attached. The bracts are known as **microsporophylls** ([link]) and are the sites where microspores will develop. The microspores develop inside the microsporangium. Within the microsporangium, cells known as microsporocytes divide by meiosis to produce four haploid microspores. Further mitosis of the microspore produces two nuclei: the generative nucleus, and the tube nucleus. Upon maturity, the male gametophyte (pollen) is released from the male cones and is carried by the wind to land on the female cone.

Note:

Link to Learning

Watch this video to see a cedar releasing its pollen in the wind. https://www.openstaxcollege.org/l/pollen release

Female Gametophyte

The female cone also has a central axis on which bracts known as **megasporophylls** ([link]) are present. In the female cone, megaspore mother cells are present in the megasporangium. The megaspore mother cell divides by meiosis to produce four haploid megaspores. One of the megaspores divides to form the multicellular female gametophyte, while the others divide to form the rest of the structure. The female gametophyte is contained within a structure called the archegonium.

These series of micrographs shows male and female gymnosperm gametophytes. (a) This male cone, shown in cross section, has approximately 20 microsporophylls, each of which produces hundreds of male gametophytes (pollen grains). (b) Pollen grains are visible in this single microsporophyll. (c) This micrograph shows an individual pollen grain. (d)

This cross section of a female cone shows portions of about 15 megasporophylls. (e) The ovule can be seen in this single megasporophyll. (f) Within this single ovule are the megaspore mother cell (MMC), micropyle, and a pollen grain. (credit: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Reproductive Process

Upon landing on the female cone, the tube cell of the pollen forms the pollen tube, through which the generative cell migrates towards the female gametophyte through the micropyle. It takes approximately one year for the pollen tube to grow and migrate towards the female gametophyte. The male gametophyte containing the generative cell splits into two sperm nuclei, one of which fuses with the egg, while the other degenerates. After fertilization of the egg, the diploid zygote is formed, which divides by mitosis to form the embryo. The scales of the cones are closed during development of the seed. The seed is covered by a seed coat, which is derived from the female sporophyte. Seed development takes another one to two years. Once the seed is ready to be dispersed, the bracts of the female cones open to allow the dispersal of seed; no fruit formation takes place because gymnosperm seeds have no covering.

Angiosperms versus Gymnosperms

Gymnosperm reproduction differs from that of angiosperms in several ways ([link]). In angiosperms, the female gametophyte exists in an enclosed structure—the ovule—which is within the ovary; in gymnosperms, the female gametophyte is present on exposed bracts of the female cone. Double fertilization is a key event in the lifecycle of angiosperms, but is completely absent in gymnosperms. The male and female gametophyte structures are present on separate male and female cones in gymnosperms,

whereas in angiosperms, they are a part of the flower. Lastly, wind plays an important role in pollination in gymnosperms because pollen is blown by the wind to land on the female cones. Although many angiosperms are also wind-pollinated, animal pollination is more common.

(a) Angiosperms are flowering plants, and include grasses, herbs, shrubs and most deciduous trees, while (b) gymnosperms are conifers. Both produce seeds but have different reproductive strategies. (credit a: modification of work by Wendy Cutler; credit b: modification of work by Lews Castle UHI)

Note:

Link to Learning

View an animation of the double fertilization process of angiosperms. https://www.openstaxcollege.org/l/angiosperms

Section Summary

The flower contains the reproductive structures of a plant. All complete flowers contain four whorls: the calyx, corolla, androecium, and gynoecium. The stamens are made up of anthers, in which pollen grains are produced, and a supportive strand called the filament. The pollen contains two cells— a generative cell and a tube cell—and is covered by two layers called the intine and the exine. The carpels, which are the female reproductive structures, consist of the stigma, style, and ovary. The female gametophyte is formed from mitotic divisions of the megaspore, forming an eight-nuclei ovule sac. This is covered by a layer known as the integument. The integument contains an opening called the micropyle, through which the pollen tube enters the embryo sac.

The diploid sporophyte of angiosperms and gymnosperms is the conspicuous and long-lived stage of the life cycle. The sporophytes differentiate specialized reproductive structures called sporangia, which are dedicated to the production of spores. The microsporangium contains microspore mother cells, which divide by meiosis to produce haploid microspores. The microspores develop into male gametophytes that are released as pollen. The megasporangium contains megaspore mother cells, which divide by meiosis to produce haploid megaspores. A megaspore develops into a female gametophyte containing a haploid egg. A new diploid sporophyte is formed when a male gamete from a pollen grain enters the ovule sac and fertilizes this egg.

Art Connections

Exercise:

Problem:

[link] If the anther is missing, what type of reproductive structure will the flower be unable to produce? What term is used to describe a flower that is normally lacking the androecium? What term describes a flower lacking a gynoecium?

Solution:

[link] Pollen (or sperm); carpellate; staminate.

Exercise:

Problem:

[link] An embryo sac is missing the synergids. What specific impact would you expect this to have on fertilization?

- a. The pollen tube will be unable to form.
- b. The pollen tube will form but will not be guided toward the egg.
- c. Fertilization will not occur because the synergid is the egg.
- d. Fertilization will occur but the embryo will not be able to grow.

Solution:

[link] B: The pollen tube will form but will not be guided toward the egg.

Review Questions

Exercise:

Problem:
In a plant's male reproductive organs, development of pollen takes place in a structure known as the
a. stamen
b. microsporangium
c. anther
d. tapetum
Solution:
В
Exercise:
Problem:
The stamen consists of a long stalk called the filament that supports
the
a. stigma
b. sepal
c. style
d. anther
Solution:
D
Exercise:
Problem: The are collectively called the calyx.
a. sepals
b. petals
c. tepals

Solution:

Α

Exercise:

Problem: The pollen lands on which part of the flower?

- a. stigma
- b. style
- c. ovule
- d. integument

Solution:

Α

Free Response

Exercise:

Problem: Describe the reproductive organs inside a flower.

Solution:

Inside the flower are the reproductive organs of the plant. The stamen is the male reproductive organ. Pollen is produced in the stamen. The carpel is the female reproductive organ. The ovary is the swollen base of the carpel where ovules are found. Not all flowers have every one of the four parts.

Exercise:

Problem:

Describe the two-stage lifecycle of plants: the gametophyte stage and the sporophyte stage.

Solution:

Plants have two distinct phases in their lifecycle: the gametophyte stage and the sporophyte stage. In the gametophyte stage, when reproductive cells undergo meiosis and produce haploid cells called spores, the gametophyte stage begins. Spores divide by cell division to form plant structures of an entirely new plant. The cells in these structures or plants are haploid. Some of these cells undergo cell division and form sex cells. Fertilization, the joining of haploid sex cells, begins the sporophyte stage. Cells formed in this stage have the diploid number of chromosomes. Meiosis in some of these cells forms spores, and the cycle begins again: a process known as alternation of generations.

Exercise:

Problem: Describe the four main parts, or whorls, of a flower.

Solution:

A typical flower has four main parts, or whorls: the calyx, corolla, androecium, and gynoecium. The outermost whorl of the flower has green, leafy structures known as sepals, which are collectively called the calyx. It helps to protect the unopened bud. The second whorl is made up of brightly colored petals that are known collectively as the corolla. The third whorl is the male reproductive structure known as the androecium. The androecium has stamens, which have anthers on a stalk or filament. Pollen grains are borne on the anthers. The gynoecium is the female reproductive structure. The carpel is the individual structure of the gynoecium and has a stigma, the stalk or style, and the ovary.

Exercise:

Problem:

Discuss the differences between a complete flower and an incomplete flower.

Solution:

If all four whorls of a flower are present, it is a complete flower. If any of the four parts is missing, it is known as incomplete. Flowers that contain both an androecium and gynoecium are called androgynous or hermaphrodites. Those that contain only an androecium are known as staminate flowers, and those that have only carpels are known as carpellate. If both male and female flowers are borne on the same plant, it is called monoecious, while plants with male and female flowers on separate plants are termed dioecious.

Glossary

androecium

sum of all the stamens in a flower

antipodals

the three cells away from the micropyle

exine

outermost covering of pollen

gametophyte

multicellular stage of the plant that gives rise to haploid gametes or spores

gynoecium

the sum of all the carpels in a flower

intine

inner lining of the pollen

megagametogenesis

second phase of female gametophyte development, during which the surviving haploid megaspore undergoes mitosis to produce an eight-nucleate, seven-cell female gametophyte, also known as the megagametophyte or embryo sac.

megasporangium

tissue found in the ovary that gives rise to the female gamete or egg

megasporogenesis

first phase of female gametophyte development, during which a single cell in the diploid megasporangium undergoes meiosis to produce four megaspores, only one of which survives

megasporophyll

bract (a type of modified leaf) on the central axis of a female gametophyte

micropyle

opening on the ovule sac through which the pollen tube can gain entry

microsporangium

tissue that gives rise to the microspores or the pollen grain

microsporophyll

central axis of a male cone on which bracts (a type of modified leaf) are attached

perianth

(also, petal or sepal) part of the flower consisting of the calyx and/or corolla; forms the outer envelope of the flower

polar nuclei

found in the ovule sac; fusion with one sperm cell forms the endosperm

sporophyte

multicellular diploid stage in plants that is formed after the fusion of male and female gametes

synergid

type of cell found in the ovule sac that secretes chemicals to guide the pollen tube towards the egg

Pollination and Fertilization By the end of this section, you will be able to:

- Describe what must occur for plant fertilization
- Explain cross-pollination and the ways in which it takes place
- Describe the process that leads to the development of a seed
- Define double fertilization

In angiosperms, **pollination** is defined as the placement or transfer of pollen from the anther to the stigma of the same flower or another flower. In gymnosperms, pollination involves pollen transfer from the male cone to the female cone. Upon transfer, the pollen germinates to form the pollen tube and the sperm for fertilizing the egg. Pollination has been well studied since the time of Gregor Mendel. Mendel successfully carried out self- as well as cross-pollination in garden peas while studying how characteristics were passed on from one generation to the next. Today's crops are a result of plant breeding, which employs artificial selection to produce the present-day cultivars. A case in point is today's corn, which is a result of years of breeding that started with its ancestor, teosinte. The teosinte that the ancient Mayans originally began cultivating had tiny seeds—vastly different from today's relatively giant ears of corn. Interestingly, though these two plants appear to be entirely different, the genetic difference between them is miniscule.

Pollination takes two forms: self-pollination and cross-pollination. **Self-pollination** occurs when the pollen from the anther is deposited on the stigma of the same flower, or another flower on the same plant. **Cross-pollination** is the transfer of pollen from the anther of one flower to the stigma of another flower on a different individual of the same species. Self-pollination occurs in flowers where the stamen and carpel mature at the same time, and are positioned so that the pollen can land on the flower's stigma. This method of pollination does not require an investment from the plant to provide nectar and pollen as food for pollinators.

Note:

Link to Learning

Explore this <u>interactive website</u> to review self-pollination and cross-pollination.

Living species are designed to ensure survival of their progeny; those that fail become extinct. Genetic diversity is therefore required so that in changing environmental or stress conditions, some of the progeny can survive. Self-pollination leads to the production of plants with less genetic diversity, since genetic material from the same plant is used to form gametes, and eventually, the zygote. In contrast, cross-pollination—or outcrossing—leads to greater genetic diversity because the microgametophyte and megagametophyte are derived from different plants.

Because cross-pollination allows for more genetic diversity, plants have developed many ways to avoid self-pollination. In some species, the pollen and the ovary mature at different times. These flowers make self-pollination nearly impossible. By the time pollen matures and has been shed, the stigma of this flower is mature and can only be pollinated by pollen from another flower. Some flowers have developed physical features that prevent self-pollination. The primrose is one such flower. Primroses have evolved two flower types with differences in anther and stigma length: the pin-eyed flower has anthers positioned at the pollen tube's halfway point, and the thrum-eyed flower's stigma is likewise located at the halfway point. Insects easily cross-pollinate while seeking the nectar at the bottom of the pollen tube. This phenomenon is also known as heterostyly. Many plants, such as cucumber, have male and female flowers located on different parts of the plant, thus making self-pollination difficult. In yet other species, the male and female flowers are borne on different plants (dioecious). All of these are barriers to self-pollination; therefore, the plants depend on pollinators to transfer pollen. The majority of pollinators are biotic agents such as insects

(like bees, flies, and butterflies), bats, birds, and other animals. Other plant species are pollinated by abiotic agents, such as wind and water.

Note:

Everyday Connection

Incompatibility Genes in Flowers

In recent decades, incompatibility genes—which prevent pollen from germinating or growing into the stigma of a flower—have been discovered in many angiosperm species. If plants do not have compatible genes, the pollen tube stops growing. Self-incompatibility is controlled by the S (sterility) locus. Pollen tubes have to grow through the tissue of the stigma and style before they can enter the ovule. The carpel is selective in the type of pollen it allows to grow inside. The interaction is primarily between the pollen and the stigma epidermal cells. In some plants, like cabbage, the pollen is rejected at the surface of the stigma, and the unwanted pollen does not germinate. In other plants, pollen tube germination is arrested after growing one-third the length of the style, leading to pollen tube death. Pollen tube death is due either to apoptosis (programmed cell death) or to degradation of pollen tube RNA. The degradation results from the activity of a ribonuclease encoded by the S locus. The ribonuclease is secreted from the cells of the style in the extracellular matrix, which lies alongside the growing pollen tube. In summary, self-incompatibility is a mechanism that prevents selffertilization in many flowering plant species. The working of this selfincompatibility mechanism has important consequences for plant breeders because it inhibits the production of inbred and hybrid plants.

Pollination by Insects

Bees are perhaps the most important pollinator of many garden plants and most commercial fruit trees ([link]). The most common species of bees are bumblebees and honeybees. Since bees cannot see the color red, beepollinated flowers usually have shades of blue, yellow, or other colors. Bees collect energy-rich pollen or nectar for their survival and energy needs.

They visit flowers that are open during the day, are brightly colored, have a strong aroma or scent, and have a tubular shape, typically with the presence of a nectar guide. A **nectar guide** includes regions on the flower petals that are visible only to bees, and not to humans; it helps to guide bees to the center of the flower, thus making the pollination process more efficient. The pollen sticks to the bees' fuzzy hair, and when the bee visits another flower, some of the pollen is transferred to the second flower. Recently, there have been many reports about the declining population of honeybees. Many flowers will remain unpollinated and not bear seed if honeybees disappear. The impact on commercial fruit growers could be devastating.

Insects, such as bees, are important agents of pollination. (credit: modification of work by Jon Sullivan)

Many flies are attracted to flowers that have a decaying smell or an odor of rotting flesh. These flowers, which produce nectar, usually have dull colors, such as brown or purple. They are found on the corpse flower or voodoo lily (*Amorphophallus*), dragon arum (*Dracunculus*), and carrion flower (*Stapleia*, *Rafflesia*). The nectar provides energy, whereas the pollen

provides protein. Wasps are also important insect pollinators, and pollinate many species of figs.

Butterflies, such as the monarch, pollinate many garden flowers and wildflowers, which usually occur in clusters. These flowers are brightly colored, have a strong fragrance, are open during the day, and have nectar guides to make access to nectar easier. The pollen is picked up and carried on the butterfly's limbs. Moths, on the other hand, pollinate flowers during the late afternoon and night. The flowers pollinated by moths are pale or white and are flat, enabling the moths to land. One well-studied example of a moth-pollinated plant is the yucca plant, which is pollinated by the yucca moth. The shape of the flower and moth have adapted in such a way as to allow successful pollination. The moth deposits pollen on the sticky stigma for fertilization to occur later. The female moth also deposits eggs into the ovary. As the eggs develop into larvae, they obtain food from the flower and developing seeds. Thus, both the insect and flower benefit from each other in this symbiotic relationship. The corn earworm moth and Gaura plant have a similar relationship ([link]).

A corn earworm sips nectar from a night-blooming Gaura plant. (credit: Juan Lopez, USDA ARS)

Pollination by Bats

In the tropics and deserts, bats are often the pollinators of nocturnal flowers such as agave, guava, and morning glory. The flowers are usually large and white or pale-colored; thus, they can be distinguished from the dark surroundings at night. The flowers have a strong, fruity, or musky fragrance and produce large amounts of nectar. They are naturally large and widemouthed to accommodate the head of the bat. As the bats seek the nectar, their faces and heads become covered with pollen, which is then transferred to the next flower.

Pollination by Birds

Many species of small birds, such as the hummingbird ([link]) and sun birds, are pollinators for plants such as orchids and other wildflowers. Flowers visited by birds are usually sturdy and are oriented in such a way as to allow the birds to stay near the flower without getting their wings entangled in the nearby flowers. The flower typically has a curved, tubular shape, which allows access for the bird's beak. Brightly colored, odorless flowers that are open during the day are pollinated by birds. As a bird seeks energy-rich nectar, pollen is deposited on the bird's head and neck and is then transferred to the next flower it visits. Botanists have been known to determine the range of extinct plants by collecting and identifying pollen from 200-year-old bird specimens from the same site.

Hummingbirds have adaptations that allow them to reach the nectar of certain tubular flowers. (credit: Lori Branham)

Pollination by Wind

Most species of conifers, and many angiosperms, such as grasses, maples and oaks, are pollinated by wind. Pine cones are brown and unscented, while the flowers of wind-pollinated angiosperm species are usually green, small, may have small or no petals, and produce large amounts of pollen. Unlike the typical insect-pollinated flowers, flowers adapted to pollination by wind do not produce nectar or scent. In wind-pollinated species, the microsporangia hang out of the flower, and, as the wind blows, the lightweight pollen is carried with it ([link]). The flowers usually emerge early in the spring, before the leaves, so that the leaves do not block the movement of the wind. The pollen is deposited on the exposed feathery stigma of the flower ([link]).

A person knocks pollen from a pine tree.

These male (a) and female (b) catkins are from the goat willow tree (*Salix caprea*). Note how both structures are light and feathery to better disperse and catch the windblown pollen.

Pollination by Water

Some weeds, such as Australian sea grass and pond weeds, are pollinated by water. The pollen floats on water, and when it comes into contact with the flower, it is deposited inside the flower.

Note:

Evolution Connection Pollination by Deception

Orchids are highly valued flowers, with many rare varieties ([link]). They grow in a range of specific habitats, mainly in the tropics of Asia, South America, and Central America. At least 25,000 species of orchids have been identified.

Certain orchids use food deception or sexual deception to attract pollinators. Shown here is a bee orchid (*Ophrys apifera*). (credit: David Evans)

Flowers often attract pollinators with food rewards, in the form of nectar. However, some species of orchid are an exception to this standard: they have evolved different ways to attract the desired pollinators. They use a method known as food deception, in which bright colors and perfumes are offered, but no food. *Anacamptis morio*, commonly known as the greenwinged orchid, bears bright purple flowers and emits a strong scent. The bumblebee, its main pollinator, is attracted to the flower because of the strong scent—which usually indicates food for a bee—and in the process, picks up the pollen to be transported to another flower. Other orchids use sexual deception. *Chiloglottis trapeziformis* emits a compound that smells the same as the pheromone emitted by a female wasp to attract male wasps. The male wasp is attracted to the scent, lands on the orchid flower, and in the process, transfers pollen. Some orchids, like the Australian hammer orchid, use scent as well as visual trickery in yet another sexual deception strategy to attract wasps. The flower of this orchid mimics the appearance of a female wasp and emits a pheromone. The male wasp tries to mate with what appears to be a female wasp, and in the process, picks up pollen, which it then transfers to the next counterfeit mate.

Double Fertilization

After pollen is deposited on the stigma, it must germinate and grow through the style to reach the ovule. The microspores, or the pollen, contain two cells: the pollen tube cell and the generative cell. The pollen tube cell grows into a pollen tube through which the generative cell travels. The germination of the pollen tube requires water, oxygen, and certain chemical signals. As it travels through the style to reach the embryo sac, the pollen tube's growth is supported by the tissues of the style. In the meantime, if the generative cell has not already split into two cells, it now divides to form two sperm cells. The pollen tube is guided by the chemicals secreted by the synergids present in the embryo sac, and it enters the ovule sac through the micropyle. Of the two sperm cells, one sperm fertilizes the egg cell, forming a diploid zygote; the other sperm fuses with the two polar nuclei,

forming a triploid cell that develops into the **endosperm**. Together, these two fertilization events in angiosperms are known as **double fertilization** ([link]). After fertilization is complete, no other sperm can enter. The fertilized ovule forms the seed, whereas the tissues of the ovary become the fruit, usually enveloping the seed.

In angiosperms, one sperm fertilizes the egg to form the 2n zygote, and the other sperm fertilizes the central cell to form the 3n endosperm. This is called a double fertilization.

After fertilization, the zygote divides to form two cells: the upper cell, or terminal cell, and the lower, or basal, cell. The division of the basal cell gives rise to the **suspensor**, which eventually makes connection with the maternal tissue. The suspensor provides a route for nutrition to be transported from the mother plant to the growing embryo. The terminal cell also divides, giving rise to a globular-shaped proembryo ([link]a). In dicots (eudicots), the developing embryo has a heart shape, due to the presence of the two rudimentary **cotyledons** ([link]b). In non-endospermic dicots, such as *Capsella bursa*, the endosperm develops initially, but is then digested, and the food reserves are moved into the two cotyledons. As the embryo

and cotyledons enlarge, they run out of room inside the developing seed, and are forced to bend ([link]c). Ultimately, the embryo and cotyledons fill the seed ([link]d), and the seed is ready for dispersal. Embryonic development is suspended after some time, and growth is resumed only when the seed germinates. The developing seedling will rely on the food reserves stored in the cotyledons until the first set of leaves begin photosynthesis.

Shown are the stages of embryo development in the ovule of a shepherd's purse (*Capsella bursa*). After fertilization, the zygote divides to form an upper terminal cell and a lower basal cell. (a) In the first

stage of development, the terminal cell divides, forming a globular pro-embryo. The basal cell also divides, giving rise to the suspensor. (b) In the second stage, the developing embryo has a heart shape due to the presence of cotyledons. (c) In the third stage, the growing embryo runs out of room and starts to bend. (d) Eventually, it completely fills the seed. (credit: modification of work by Robert R. Wise; scale-bar data from Matt Russell)

Development of the Seed

The mature ovule develops into the seed. A typical seed contains a seed coat, cotyledons, endosperm, and a single embryo ([link]).

channels nutrition to the growing embryo. Both monocot and dicot embryos have a plumule that forms the leaves, a hypocotyl that forms the stem, and a radicle that forms the root. The embryonic axis comprises everything between the plumule and the radicle, not including the cotyledon(s).

What is of the following statements is true?

- a. Both monocots and dicots have an endosperm.
- b. The radicle develops into the root.
- c. The plumule is part of the epicotyl
- d. The endosperm is part of the embryo.

The storage of food reserves in angiosperm seeds differs between monocots and dicots. In monocots, such as corn and wheat, the single cotyledon is called a **scutellum**; the scutellum is connected directly to the embryo via vascular tissue (xylem and phloem). Food reserves are stored in the large endosperm. Upon germination, enzymes are secreted by the **aleurone**, a single layer of cells just inside the seed coat that surrounds the endosperm and embryo. The enzymes degrade the stored carbohydrates, proteins and lipids, the products of which are absorbed by the scutellum and transported via a vasculature strand to the developing embryo. Therefore, the scutellum can be seen to be an absorptive organ, not a storage organ.

The two cotyledons in the dicot seed also have vascular connections to the embryo. In **endospermic dicots**, the food reserves are stored in the endosperm. During germination, the two cotyledons therefore act as absorptive organs to take up the enzymatically released food reserves, much like in monocots (monocots, by definition, also have endospermic seeds). Tobacco (*Nicotiana tabaccum*), tomato (*Solanum lycopersicum*), and pepper (*Capsicum annuum*) are examples of endospermic dicots. In **non-endospermic dicots**, the triploid endosperm develops normally following

double fertilization, but the endosperm food reserves are quickly remobilized and moved into the developing cotyledon for storage. The two halves of a peanut seed (*Arachis hypogaea*) and the split peas (*Pisum sativum*) of split pea soup are individual cotyledons loaded with food reserves.

The seed, along with the ovule, is protected by a seed coat that is formed from the integuments of the ovule sac. In dicots, the seed coat is further divided into an outer coat known as the **testa** and inner coat known as the **tegmen**.

The embryonic axis consists of three parts: the plumule, the radicle, and the hypocotyl. The portion of the embryo between the cotyledon attachment point and the radicle is known as the **hypocotyl** (hypocotyl means "below the cotyledons"). The embryonic axis terminates in a **radicle** (the embryonic root), which is the region from which the root will develop. In dicots, the hypocotyls extend above ground, giving rise to the stem of the plant. In monocots, the hypocotyl does not show above ground because monocots do not exhibit stem elongation. The part of the embryonic axis that projects above the cotyledons is known as the **epicotyl**. The **plumule** is composed of the epicotyl, young leaves, and the shoot apical meristem.

Upon germination in dicot seeds, the epicotyl is shaped like a hook with the plumule pointing downwards. This shape is called the plumule hook, and it persists as long as germination proceeds in the dark. Therefore, as the epicotyl pushes through the tough and abrasive soil, the plumule is protected from damage. Upon exposure to light, the hypocotyl hook straightens out, the young foliage leaves face the sun and expand, and the epicotyl continues to elongate. During this time, the radicle is also growing and producing the primary root. As it grows downward to form the tap root, lateral roots branch off to all sides, producing the typical dicot tap root system.

In monocot seeds ([link]), the testa and tegmen of the seed coat are fused. As the seed germinates, the primary root emerges, protected by the root-tip covering: the **coleorhiza**. Next, the primary shoot emerges, protected by the **coleoptile**: the covering of the shoot tip. Upon exposure to light (i.e. when the plumule has exited the soil and the protective coleoptile is no longer

needed), elongation of the coleoptile ceases and the leaves expand and unfold. At the other end of the embryonic axis, the primary root soon dies, while other, adventitious roots (roots that do not arise from the usual place – i.e. the root) emerge from the base of the stem. This gives the monocot a fibrous root system.

As this monocot grass seed germinates, the primary root, or radicle, emerges first, followed by the primary shoot, or coleoptile, and the adventitious roots.

Seed Germination

Many mature seeds enter a period of inactivity, or extremely low metabolic activity: a process known as **dormancy**, which may last for months, years or even centuries. Dormancy helps keep seeds viable during unfavorable conditions. Upon a return to favorable conditions, seed germination takes place. Favorable conditions could be as diverse as moisture, light, cold, fire,

or chemical treatments. After heavy rains, many new seedlings emerge. Forest fires also lead to the emergence of new seedlings. Some seeds require **vernalization** (cold treatment) before they can germinate. This guarantees that seeds produced by plants in temperate climates will not germinate until the spring. Plants growing in hot climates may have seeds that need a heat treatment in order to germinate, to avoid germination in the hot, dry summers. In many seeds, the presence of a thick seed coat retards the ability to germinate. **Scarification**, which includes mechanical or chemical processes to soften the seed coat, is often employed before germination. Presoaking in hot water, or passing through an acid environment, such as an animal's digestive tract, may also be employed.

Depending on seed size, the time taken for a seedling to emerge may vary. Species with large seeds have enough food reserves to germinate deep below ground, and still extend their epicotyl all the way to the soil surface. Seeds of small-seeded species usually require light as a germination cue. This ensures the seeds only germinate at or near the soil surface (where the light is greatest). If they were to germinate too far underneath the surface, the developing seedling would not have enough food reserves to reach the sunlight.

Development of Fruit and Fruit Types

After fertilization, the ovary of the flower usually develops into the fruit. Fruits are usually associated with having a sweet taste; however, not all fruits are sweet. Botanically, the term "fruit" is used for a ripened ovary. In most cases, flowers in which fertilization has taken place will develop into fruits, and flowers in which fertilization has not taken place will not. Some fruits develop from the ovary and are known as true fruits, whereas others develop from other parts of the female gametophyte and are known as accessory fruits. The fruit encloses the seeds and the developing embryo, thereby providing it with protection. Fruits are of many types, depending on their origin and texture. The sweet tissue of the blackberry, the red flesh of the tomato, the shell of the peanut, and the hull of corn (the tough, thin part that gets stuck in your teeth when you eat popcorn) are all fruits. As the fruit matures, the seeds also mature.

Fruits may be classified as simple, aggregate, multiple, or accessory, depending on their origin ([link]). If the fruit develops from a single carpel or fused carpels of a single ovary, it is known as a **simple fruit**, as seen in nuts and beans. An **aggregate fruit** is one that develops from more than one carpel, but all are in the same flower: the mature carpels fuse together to form the entire fruit, as seen in the raspberry. **Multiple fruit** develops from an inflorescence or a cluster of flowers. An example is the pineapple, where the flowers fuse together to form the fruit. **Accessory fruits** (sometimes called false fruits) are not derived from the ovary, but from another part of the flower, such as the receptacle (strawberry) or the hypanthium (apples and pears).

There are four main types of fruits. Simple fruits, such as these nuts, are derived from a

single ovary. Aggregate fruits, like raspberries, form from many carpels that fuse together. Multiple fruits, such as pineapple, form from a cluster of flowers called an inflorescence. Accessory fruit, like the apple, are formed from a part of the plant other than the ovary. (credit "nuts": modification of work by Petr Kratochvil; credit "raspberries": modification of work by Cory Zanker; credit "pineapple": modification of work by Howie Le; credit "apple": modification of work by Paolo Neo)

Fruits generally have three parts: the **exocarp** (the outermost skin or covering), the **mesocarp** (middle part of the fruit), and the **endocarp** (the inner part of the fruit). Together, all three are known as the **pericarp**. The mesocarp is usually the fleshy, edible part of the fruit; however, in some fruits, such as the almond, the endocarp is the edible part. In many fruits, two or all three of the layers are fused, and are indistinguishable at maturity. Fruits can be dry or fleshy. Furthermore, fruits can be divided into dehiscent or indehiscent types. Dehiscent fruits, such as peas, readily release their seeds, while indehiscent fruits, like peaches, rely on decay to release their seeds.

Fruit and Seed Dispersal

The fruit has a single purpose: seed dispersal. Seeds contained within fruits need to be dispersed far from the mother plant, so they may find favorable and less competitive conditions in which to germinate and grow.

Some fruit have built-in mechanisms so they can disperse by themselves, whereas others require the help of agents like wind, water, and animals ([link]). Modifications in seed structure, composition, and size help in dispersal. Wind-dispersed fruit are lightweight and may have wing-like

appendages that allow them to be carried by the wind. Some have a parachute-like structure to keep them afloat. Some fruits—for example, the dandelion—have hairy, weightless structures that are suited to dispersal by wind.

Seeds dispersed by water are contained in light and buoyant fruit, giving them the ability to float. Coconuts are well known for their ability to float on water to reach land where they can germinate. Similarly, willow and silver birches produce lightweight fruit that can float on water.

Animals and birds eat fruits, and the seeds that are not digested are excreted in their droppings some distance away. Some animals, like squirrels, bury seed-containing fruits for later use; if the squirrel does not find its stash of fruit, and if conditions are favorable, the seeds germinate. Some fruits, like the cocklebur, have hooks or sticky structures that stick to an animal's coat and are then transported to another place. Humans also play a big role in dispersing seeds when they carry fruits to new places and throw away the inedible part that contains the seeds.

All of the above mechanisms allow for seeds to be dispersed through space, much like an animal's offspring can move to a new location. Seed dormancy, which was described earlier, allows plants to disperse their progeny through time: something animals cannot do. Dormant seeds can wait months, years, or even decades for the proper conditions for germination and propagation of the species.

Fruits and seeds are dispersed by various means. (a) Dandelion seeds are dispersed by wind, the (b) coconut seed is dispersed by water, and the (c) acorn is dispersed by

animals that cache and then forget it.
(credit a: modification of work by
"Rosendahl"/Flickr; credit b: modification
of work by Shine Oa; credit c:
modification of work by Paolo Neo)

Section Summary

For fertilization to occur in angiosperms, pollen has to be transferred to the stigma of a flower: a process known as pollination. Gymnosperm pollination involves the transfer of pollen from a male cone to a female cone. When the pollen of the flower is transferred to the stigma of the same flower, it is called self-pollination. Cross-pollination occurs when pollen is transferred from one flower to another flower on the same plant, or another plant. Cross-pollination requires pollinating agents such as water, wind, or animals, and increases genetic diversity. After the pollen lands on the stigma, the tube cell gives rise to the pollen tube, through which the generative nucleus migrates. The pollen tube gains entry through the micropyle on the ovule sac. The generative cell divides to form two sperm cells: one fuses with the egg to form the diploid zygote, and the other fuses with the polar nuclei to form the endosperm, which is triploid in nature. This is known as double fertilization. After fertilization, the zygote divides to form the embryo and the fertilized ovule forms the seed. The walls of the ovary form the fruit in which the seeds develop. The seed, when mature, will germinate under favorable conditions and give rise to the diploid sporophyte.

Art Connections

Exercise:

Problem: [link] What is the function of the cotyledon?

a. It develops into the root.

c. It forms the embryo.	
d. It protects the embryo.	
Solution:	
[<u>link</u>] B	
Review Questions	
Exercise:	
Problem: After double fertilization, a zygote and form.	
a. an ovule	
b. endosperm	
c. a cotyledon	
d. a suspensor	
Solution:	
В	
Exercise:	
Problem: The fertilized ovule gives rise to the	
a. fruit	
b. seed	
c. endosperm	
d. embryo	
Solution:	

b. It provides nutrition for the embryo.

Exercise:

-
Exercise:
Problem:
What is the term for a fruit that develops from tissues other than the ovary?
a. simple fruitb. aggregate fruitc. multiple fruitd. accessory fruit
Solution:
D
Exercise:
Problem: The is the outermost covering of a fruit.
a. endocarp b. pericarp c. exocarp d. mesocarp
Solution:
С
Free Response

Problem:

Why do some seeds undergo a period of dormancy, and how do they break dormancy?

Solution:

Many seeds enter a period of inactivity or extremely low metabolic activity, a process known as dormancy. Dormancy allows seeds to tide over unfavorable conditions and germinate on return to favorable conditions. Favorable conditions could be as diverse as moisture, light, cold, fire, or chemical treatments. After heavy rains, many new seedlings emerge. Forest fires also lead to the emergence of new seedlings.

Exercise:

Problem: Discuss some ways in which fruit seeds are dispersed.

Solution:

Some fruits have built-in mechanisms that allow them to disperse seeds by themselves, but others require the assistance of agents like wind, water, and animals. Fruit that are dispersed by the wind are light in weight and often have wing-like appendages that allow them to be carried by the wind; other have structures resembling a parachute that keep them afloat in the wind. Some fruits, such as those of dandelions, have hairy, weightless structures that allow them to float in the wind. Fruits dispersed by water are light and buoyant, giving them the ability to float; coconuts are one example. Animals and birds eat fruits and disperse their seeds by leaving droppings at distant locations. Other animals bury fruit that may later germinate. Some fruits stick to animals' bodies and are carried to new locations. People also contribute to seed dispersal when they carry fruits to new places.

Glossary

accessory fruit

fruit derived from tissues other than the ovary

aggregate fruit

fruit that develops from multiple carpels in the same flower

aleurone

single layer of cells just inside the seed coat that secretes enzymes upon germination

coleoptile

covering of the shoot tip, found in germinating monocot seeds

coleorhiza

covering of the root tip, found in germinating monocot seeds

cotyledon

fleshy part of seed that provides nutrition to the seed

cross-pollination

transfer of pollen from the anther of one flower to the stigma of a different flower

dormancy

period of no growth and very slow metabolic processes

double fertilization

two fertilization events in angiosperms; one sperm fuses with the egg, forming the zygote, whereas the other sperm fuses with the polar nuclei, forming endosperm

endocarp

innermost part of fruit

endosperm

triploid structure resulting from fusion of a sperm with polar nuclei, which serves as a nutritive tissue for embryo

endospermic dicot

```
dicot that stores food reserves in the endosperm
```

exocarp

outermost covering of a fruit

epicotyl

embryonic shoot above the cotyledons

gravitropism

response of a plant growth in the same direction as gravity

hypocotyl

embryonic axis above the cotyledons

mesocarp

middle part of a fruit

multiple fruit

fruit that develops from multiple flowers on an inflorescence

nectar guide

pigment pattern on a flower that guides an insect to the nectaries

non-endospermic dicot

dicot that stores food reserves in the developing cotyledon

pericarp

collective term describing the exocarp, mesocarp, and endocarp; the structure that encloses the seed and is a part of the fruit

plumule

shoot that develops from the germinating seed

pollination

transfer of pollen to the stigma

radicle

original root that develops from the germinating seed

scarification

mechanical or chemical processes to soften the seed coat

scutellum

type of cotyledon found in monocots, as in grass seeds

self-pollination

transfer of pollen from the anther to the stigma of same flower

simple fruit

fruit that develops from a single carpel or fused carpels

suspensor

part of the growing embryo that makes connection with the maternal tissues

tegmen

inner layer of the seed coat

testa

outer layer of the seed coat

vernalization

exposure to cold required by some seeds before they can germinate

Asexual Reproduction By the end of this section, you will be able to:

- Compare the mechanisms and methods of natural and artificial asexual reproduction
- Describe the advantages and disadvantages of natural and artificial asexual reproduction
- Discuss plant life spans

Many plants are able to propagate themselves using asexual reproduction. This method does not require the investment required to produce a flower, attract pollinators, or find a means of seed dispersal. Asexual reproduction produces plants that are genetically identical to the parent plant because no mixing of male and female gametes takes place. Traditionally, these plants survive well under stable environmental conditions when compared with plants produced from sexual reproduction because they carry genes identical to those of their parents.

Many different types of roots exhibit asexual reproduction [link]. The corm is used by gladiolus and garlic. Bulbs, such as a scaly bulb in lilies and a tunicate bulb in daffodils, are other common examples. A potato is a stem tuber, while parsnip propagates from a taproot. Ginger and iris produce rhizomes, while ivy uses an adventitious root (a root arising from a plant part other than the main or primary root), and the strawberry plant has a stolon, which is also called a runner.

Different types of stems allow for asexual reproduction. (a) The corm of a garlic plant looks similar to (b) a tulip bulb, but the corm is solid tissue, while the bulb consists of layers of modified leaves that surround an underground stem. Both corms and bulbs can self-propagate, giving rise to new plants. (c) Ginger forms masses

of stems called rhizomes that can give rise to multiple plants. (d) Potato plants form fleshy stem tubers. Each eye in the stem tuber can give rise to a new plant. (e) Strawberry plants form stolons: stems that grow at the soil surface or just below ground and can give rise to new plants. (credit a: modification of work by Dwight Sipler; credit c: modification of work by Albert Cahalan, USDA ARS; credit d: modification of work by Richard North; credit e: modification of work by Julie Magro)

Some plants can produce seeds without fertilization. Either the ovule or part of the ovary, which is diploid in nature, gives rise to a new seed. This method of reproduction is known as **apomixis**.

An advantage of asexual reproduction is that the resulting plant will reach maturity faster. Since the new plant is arising from an adult plant or plant parts, it will also be sturdier than a seedling. Asexual reproduction can take place by natural or artificial (assisted by humans) means.

Natural Methods of Asexual Reproduction

Natural methods of asexual reproduction include strategies that plants have developed to self-propagate. Many plants—like ginger, onion, gladioli, and dahlia—continue to grow from buds that are present on the surface of the stem. In some plants, such as the sweet potato, adventitious roots or runners can give rise to new plants [link]. In *Bryophyllum* and kalanchoe, the leaves have small buds on their margins. When these are detached from the plant,

they grow into independent plants; or, they may start growing into independent plants if the leaf touches the soil. Some plants can be propagated through cuttings alone.

A stolon, or runner, is a stem that runs along the ground. At the nodes, it forms adventitious roots and buds that grow into a new plant.

Artificial Methods of Asexual Reproduction

These methods are frequently employed to give rise to new, and sometimes novel, plants. They include grafting, cutting, layering, and micropropagation.

Grafting

Grafting has long been used to produce novel varieties of roses, citrus species, and other plants. In **grafting**, two plant species are used; part of the stem of the desirable plant is grafted onto a rooted plant called the stock. The part that is grafted or attached is called the **scion**. Both are cut at an oblique angle (any angle other than a right angle), placed in close contact with each other, and are then held together [link]. Matching up these two surfaces as closely as possible is extremely important because these will be holding the plant together. The vascular systems of the two plants grow and fuse, forming a graft. After a period of time, the scion starts producing shoots, and eventually starts bearing flowers and fruits. Grafting is widely used in viticulture (grape growing) and the citrus industry. Scions capable of producing a particular fruit variety are grated onto root stock with specific resistance to disease.

Grafting is an artificial method of asexual reproduction used to produce plants combining favorable stem characteristics with favorable root characteristics. The stem of the plant to be grafted is

known as the scion, and the root is called the stock.

Cutting

Plants such as coleus and money plant are propagated through stem **cuttings**, where a portion of the stem containing nodes and internodes is placed in moist soil and allowed to root. In some species, stems can start producing a root even when placed only in water. For example, leaves of the African violet will root if kept in water undisturbed for several weeks.

Layering

Layering is a method in which a stem attached to the plant is bent and covered with soil. Young stems that can be bent easily without any injury are preferred. Jasmine and bougainvillea (paper flower) can be propagated this way [link]. In some plants, a modified form of layering known as air layering is employed. A portion of the bark or outermost covering of the stem is removed and covered with moss, which is then taped. Some gardeners also apply rooting hormone. After some time, roots will appear, and this portion of the plant can be removed and transplanted into a separate pot.

In layering, a part of the stem is buried so that it forms a new plant. (credit: modification of work by Pearson Scott Foresman, donated to the Wikimedia Foundation)

Micropropagation

Micropropagation (also called plant tissue culture) is a method of propagating a large number of plants from a single plant in a short time under laboratory conditions [link]. This method allows propagation of rare, endangered species that may be difficult to grow under natural conditions, are economically important, or are in demand as disease-free plants.

Micropropagation is used to propagate plants in sterile conditions. (credit: Nikhilesh Sanyal)

To start plant tissue culture, a part of the plant such as a stem, leaf, embryo, anther, or seed can be used. The plant material is thoroughly sterilized using a combination of chemical treatments standardized for that species. Under sterile conditions, the plant material is placed on a plant tissue culture medium that contains all the minerals, vitamins, and hormones required by the plant. The plant part often gives rise to an undifferentiated mass known as callus, from which individual plantlets begin to grow after a period of time. These can be separated and are first grown under greenhouse conditions before they are moved to field conditions.

Plant Life Spans

The length of time from the beginning of development to the death of a plant is called its life span. The life cycle, on the other hand, is the sequence of stages a plant goes through from seed germination to seed production of the mature plant. Some plants, such as annuals, only need a few weeks to grow, produce seeds and die. Other plants, such as the bristlecone pine, live for thousands of years. Some bristlecone pines have a documented age of 4,500 years [link]. Even as some parts of a plant, such as regions containing meristematic tissue—the area of active plant growth consisting of undifferentiated cells capable of cell division—continue to grow, some parts undergo programmed cell death (apoptosis). The cork found on stems, and the water-conducting tissue of the xylem, for example, are composed of dead cells.

The bristlecone pine, shown here in the Ancient Bristlecone Pine Forest in the White Mountains of eastern California, has been known to live for 4,500 years. (credit: Rick Goldwaser)

Plant species that complete their lifecycle in one season are known as annuals, an example of which is *Arabidopsis*, or mouse-ear cress. Biennials such as carrots complete their lifecycle in two seasons. In a biennial's first

season, the plant has a vegetative phase, whereas in the next season, it completes its reproductive phase. Commercial growers harvest the carrot roots after the first year of growth, and do not allow the plants to flower. Perennials, such as the magnolia, complete their lifecycle in two years or more.

In another classification based on flowering frequency, **monocarpic** plants flower only once in their lifetime; examples include bamboo and yucca. During the vegetative period of their life cycle (which may be as long as 120 years in some bamboo species), these plants may reproduce asexually and accumulate a great deal of food material that will be required during their once-in-a-lifetime flowering and setting of seed after fertilization. Soon after flowering, these plants die. **Polycarpic** plants form flowers many times during their lifetime. Fruit trees, such as apple and orange trees, are polycarpic; they flower every year. Other polycarpic species, such as perennials, flower several times during their life span, but not each year. By this means, the plant does not require all its nutrients to be channelled towards flowering each year.

As is the case with all living organisms, genetics and environmental conditions have a role to play in determining how long a plant will live. Susceptibility to disease, changing environmental conditions, drought, cold, and competition for nutrients are some of the factors that determine the survival of a plant. Plants continue to grow, despite the presence of dead tissue such as cork. Individual parts of plants, such as flowers and leaves, have different rates of survival. In many trees, the older leaves turn yellow and eventually fall from the tree. Leaf fall is triggered by factors such as a decrease in photosynthetic efficiency, due to shading by upper leaves, or oxidative damage incurred as a result of photosynthetic reactions. The components of the part to be shed are recycled by the plant for use in other processes, such as development of seed and storage. This process is known as nutrient recycling.

The aging of a plant and all the associated processes is known as **senescence**, which is marked by several complex biochemical changes. One of the characteristics of senescence is the breakdown of chloroplasts, which is characterized by the yellowing of leaves. The chloroplasts contain

components of photosynthetic machinery such as membranes and proteins. Chloroplasts also contain DNA. The proteins, lipids, and nucleic acids are broken down by specific enzymes into smaller molecules and salvaged by the plant to support the growth of other plant tissues.

The complex pathways of nutrient recycling within a plant are not well understood. Hormones are known to play a role in senescence. Applications of cytokinins and ethylene delay or prevent senescence; in contrast, abscissic acid causes premature onset of senescence.

Sections Summary

Many plants reproduce asexually as well as sexually. In asexual reproduction, part of the parent plant is used to generate a new plant. Grafting, layering, and micropropagation are some methods used for artificial asexual reproduction. The new plant is genetically identical to the parent plant from which the stock has been taken. Asexually reproducing plants thrive well in stable environments.

Plants have different life spans, dependent on species, genotype, and environmental conditions. Parts of the plant, such as regions containing meristematic tissue, continue to grow, while other parts experience programmed cell death. Leaves that are no longer photosynthetically active are shed from the plant as part of senescence, and the nutrients from these leaves are recycled by the plant. Other factors, including the presence of hormones, are known to play a role in delaying senescence.

Review Questions

Exercise: Problem: _____ is a useful method of asexual reproduction for propagating hard-to-root plants. a. grafting

c. cuttings d. budding Solution: A Exercise:
Solution: A
A
Exercise:
Problem:
Which of the following is an advantage of asexual reproduction?
a. Cuttings taken from an adult plant show increased resistance to diseases.b. Grafted plants can more successfully endure drought.c. When cuttings or buds are taken from an adult plant or plant parts, the resulting plant will grow into an adult faster than a
seedling. d. Asexual reproduction takes advantage of a more diverse gene pool.
Solution:
С
Exercise:
Problem:
Plants that flower once in their lifetime are known as
a. monoecious
b. dioecious
c. polycarpic
d. monocarpic

Solution:
D
Exercise:
Problem:
Plant species that complete their lifecycle in one season are known as
a. biennials b. perennials c. annuals
d. polycarpic
Solution:
C
Free Response
Exercise:
Problem:
What are some advantages of asexual reproduction in plants?
Solution:

Asexual reproduction does not require the expenditure of the plant's resources and energy that would be involved in producing a flower, attracting pollinators, or dispersing seeds. Asexual reproduction results in plants that are genetically identical to the parent plant, since there is no mixing of male and female gametes, resulting in better survival. The cuttings or buds taken from an adult plant produce progeny that mature faster and are sturdier than a seedling grown from a seed.

Exercise:

Problem:

Describe natural and artificial methods of asexual reproduction in plants.

Solution:

Asexual reproduction in plants can take place by natural methods or artificial methods. Natural methods include strategies used by the plant to propagate itself. Artificial methods include grafting, cutting, layering, and micropropagation.

Exercise:

Problem: Discuss the life cycles of various plants.

Solution:

Plant species that complete their life cycle in one season are known as annuals. Biennials complete their life cycle in two seasons. In the first season, the plant has a vegetative phase, whereas in the next season, it completes its reproductive phase. Perennials, such as the magnolia, complete their life cycle in two years or more.

Exercise:

Problem:

How are plants classified on the basis of flowering frequency?

Solution:

Monocarpic plants flower only once during their lifetime. During the vegetative period of their lifecycle, these plants accumulate a great deal of food material that will be required during their once-in-a-lifetime flowering and setting of seed after fertilization. Soon after flowering, these plants die. Polycarpic plants flower several times

during their life span; therefore, not all nutrients are channelled towards flowering.

Glossary

apomixis

process by which seeds are produced without fertilization of sperm and egg

cutting

method of asexual reproduction where a portion of the stem contains notes and internodes is placed in moist soil and allowed to root

grafting

method of asexual reproduction where the stem from one plant species is spliced to a different plant

layering

method of propagating plants by bending a stem under the soil

micropropagation

propagation of desirable plants from a plant part; carried out in a laboratory

monocarpic

plants that flower once in their lifetime

polycarpic

plants that flower several times in their lifetime

scion

the part of a plant that is grafted onto the root stock of another plant

senescence

process that describes aging in plant tissues

Introduction class="introduction"

An arctic fox is a complex animal, well adapted to its environment . It changes coat color with the seasons, and has longer fur in winter to trap heat. (credit: modification of work by Keith Morehouse, USFWS)

The arctic fox is an example of a complex animal that has adapted to its environment and illustrates the relationships between an animal's form and function. The structures of animals consist of primary tissues that make up more complex organs and organ systems. Homeostasis allows an animal to maintain a balance between its internal and external environments.

Animal Form and Function By the end of this section, you will be able to:

- Describe the various types of body plans that occur in animals
- Describe limits on animal size and shape
- Relate bioenergetics to body size, levels of activity, and the environment

Animals vary in form and function. From a sponge to a worm to a goat, an organism has a distinct body plan that limits its size and shape. Animals' bodies are also designed to interact with their environments, whether in the deep sea, a rainforest canopy, or the desert. Therefore, a large amount of information about the structure of an organism's body (anatomy) and the function of its cells, tissues and organs (physiology) can be learned by studying that organism's environment.

Body Plans

Animals exhibit different types of body symmetry. The sponge is asymmetrical, the sea anemone has radial symmetry, and the goat has bilateral symmetry.

Animal body plans follow set patterns related to symmetry. They are asymmetrical, radial, or bilateral in form as illustrated in [link]. **Asymmetrical** animals are animals with no pattern or symmetry; an example of an asymmetrical animal is a sponge. Radial symmetry, as illustrated in [link], describes when an animal has an up-and-down orientation: any plane cut along its longitudinal axis through the organism produces equal halves, but not a definite right or left side. This plan is found mostly in aquatic animals, especially organisms that attach themselves to a base, like a rock or a boat, and extract their food from the surrounding water as it flows around the organism. Bilateral symmetry is illustrated in the same figure by a goat. The goat also has an upper and lower component to it, but a plane cut from front to back separates the animal into definite right and left sides. Additional terms used when describing positions in the body are anterior (front), posterior (rear), dorsal (toward the back), and ventral (toward the stomach). Bilateral symmetry is found in both land-based and aquatic animals; it enables a high level of mobility.

Limits on Animal Size and Shape

Animals with bilateral symmetry that live in water tend to have a **fusiform** shape: this is a tubular shaped body that is tapered at both ends. This shape decreases the drag on the body as it moves through water and allows the animal to swim at high speeds. [link] lists the maximum speed of various animals. Certain types of sharks can swim at fifty kilometers an hour and some dolphins at 32 to 40 kilometers per hour. Land animals frequently travel faster, although the tortoise and snail are significantly slower than cheetahs. Another difference in the adaptations of aquatic and land-dwelling organisms is that aquatic organisms are constrained in shape by the forces of drag in the water since water has higher viscosity than air. On the other hand, land-dwelling organisms are constrained mainly by gravity, and drag is relatively unimportant. For example, most adaptations in birds are for gravity not for drag.

Maximum Speed of Assorted Land Marine Animals		
Animal	Speed (kmh)	Speed (mph)
Cheetah	113	70
Quarter horse	77	48
Fox	68	42
Shortfin mako shark	50	31
Domestic house cat	48	30
Human	45	28
Dolphin	32–40	20–25
Mouse	13	8
Snail	0.05	0.03

Most animals have an exoskeleton, including insects, spiders, scorpions, horseshoe crabs, centipedes, and crustaceans. Scientists estimate that, of insects alone, there are over 30 million species on our planet. The exoskeleton is a hard covering or shell that provides benefits to the animal, such as protection against damage from predators and from water loss (for land animals); it also provides for the attachments of muscles.

As the tough and resistant outer cover of an arthropod, the exoskeleton may be constructed of a tough polymer such as chitin and is often biomineralized with materials such as calcium carbonate. This is fused to the animal's epidermis. Ingrowths of the exoskeleton, called **apodemes**, function as attachment sites for muscles, similar to tendons in more advanced animals ([link]). In order to grow, the animal must first synthesize a new exoskeleton underneath the old one and then shed or molt the original

covering. This limits the animal's ability to grow continually, and may limit the individual's ability to mature if molting does not occur at the proper time. The thickness of the exoskeleton must be increased significantly to accommodate any increase in weight. It is estimated that a doubling of body size increases body weight by a factor of eight. The increasing thickness of the chitin necessary to support this weight limits most animals with an exoskeleton to a relatively small size. The same principles apply to endoskeletons, but they are more efficient because muscles are attached on the outside, making it easier to compensate for increased mass.

Apodemes are ingrowths on arthropod exoskeletons to which muscles attach. The apodemes on this crab leg are located above and below the fulcrum of the claw. Contraction of muscles attached to the apodemes pulls the claw closed.

An animal with an endoskeleton has its size determined by the amount of skeletal system it needs in order to support the other tissues and the amount of muscle it needs for movement. As the body size increases, both bone and muscle mass increase. The speed achievable by the animal is a balance between its overall size and the bone and muscle that provide support and movement.

Limiting Effects of Diffusion on Size and Development

The exchange of nutrients and wastes between a cell and its watery environment occurs through the process of diffusion. All living cells are bathed in liquid, whether they are in a single-celled organism or a multicellular one. Diffusion is effective over a specific distance and limits the size that an individual cell can attain. If a cell is a single-celled microorganism, such as an amoeba, it can satisfy all of its nutrient and waste needs through diffusion. If the cell is too large, then diffusion is ineffective and the center of the cell does not receive adequate nutrients nor is it able to effectively dispel its waste.

An important concept in understanding how efficient diffusion is as a means of transport is the surface to volume ratio. Recall that any three-dimensional object has a surface area and volume; the ratio of these two quantities is the surface-to-volume ratio. Consider a cell shaped like a perfect sphere: it has a surface area of $4\pi r^2$, and a volume of $(4/3)\pi r^3$. The surface-to-volume ratio of a sphere is 3/r; as the cell gets bigger, its surface to volume ratio decreases, making diffusion less efficient. The larger the size of the sphere, or animal, the less surface area for diffusion it possesses.

The solution to producing larger organisms is for them to become multicellular. Specialization occurs in complex organisms, allowing cells to become more efficient at doing fewer tasks. For example, circulatory systems bring nutrients and remove waste, while respiratory systems provide oxygen for the cells and remove carbon dioxide from them. Other organ systems have developed further specialization of cells and tissues and efficiently control body functions. Moreover, surface-to-volume ratio applies to other areas of animal development, such as the relationship between muscle mass and cross-sectional surface area in supporting skeletons, and in the relationship between muscle mass and the generation of dissipation of heat.

Note:	
Link to	Learning

Visit <u>this interactive site</u> to see an entire animal (a zebrafish embryo) at the cellular and sub-cellular level. Use the zoom and navigation functions for a virtual nanoscopy exploration.

Animal Bioenergetics

All animals must obtain their energy from food they ingest or absorb. These nutrients are converted to adenosine triphosphate (ATP) for short-term storage and use by all cells. Some animals store energy for slightly longer times as glycogen, and others store energy for much longer times in the form of triglycerides housed in specialized adipose tissues. No energy system is one hundred percent efficient, and an animal's metabolism produces waste energy in the form of heat. If an animal can conserve that heat and maintain a relatively constant body temperature, it is classified as a warm-blooded animal and called an **endotherm**. The insulation used to conserve the body heat comes in the forms of fur, fat, or feathers. The absence of insulation in **ectothermic** animals increases their dependence on the environment for body heat.

The amount of energy expended by an animal over a specific time is called its metabolic rate. The rate is measured variously in joules, calories, or kilocalories (1000 calories). Carbohydrates and proteins contain about 4.5 to 5 kcal/g, and fat contains about 9 kcal/g. Metabolic rate is estimated as the **basal metabolic rate (BMR)** in endothermic animals at rest and as the **standard metabolic rate (SMR)** in ectotherms. Human males have a BMR of 1600 to 1800 kcal/day, and human females have a BMR of 1300 to 1500 kcal/day. Even with insulation, endothermal animals require extensive amounts of energy to maintain a constant body temperature. An ectotherm such as an alligator has an SMR of 60 kcal/day.

Energy Requirements Related to Body Size

Smaller endothermic animals have a greater surface area for their mass than larger ones ([link]). Therefore, smaller animals lose heat at a faster rate than larger animals and require more energy to maintain a constant internal temperature. This results in a smaller endothermic animal having a higher BMR, per body weight, than a larger endothermic animal.

The mouse has a much higher metabolic rate than the elephant. (credit "mouse": modification of work by Magnus Kjaergaard; credit "elephant": modification of work by "TheLizardQueen"/Flickr)

Energy Requirements Related to Levels of Activity

The more active an animal is, the more energy is needed to maintain that activity, and the higher its BMR or SMR. The average daily rate of energy consumption is about two to four times an animal's BMR or SMR. Humans are more sedentary than most animals and have an average daily rate of only 1.5 times the BMR. The diet of an endothermic animal is determined by its BMR. For example: the type of grasses, leaves, or shrubs that an herbivore eats affects the number of calories that it takes in. The relative caloric content of herbivore foods, in descending order, is tall grasses >

legumes > short grasses > forbs (any broad-leaved plant, not a grass) > subshrubs > annuals/biennials.

Energy Requirements Related to Environment

Animals adapt to extremes of temperature or food availability through torpor. **Torpor** is a process that leads to a decrease in activity and metabolism and allows animals to survive adverse conditions. Torpor can be used by animals for long periods, such as entering a state of **hibernation** during the winter months, in which case it enables them to maintain a reduced body temperature. During hibernation, ground squirrels can achieve an abdominal temperature of 0° C (32° F), while a bear's internal temperature is maintained higher at about 37° C (99° F).

If torpor occurs during the summer months with high temperatures and little water, it is called **estivation**. Some desert animals use this to survive the harshest months of the year. Torpor can occur on a daily basis; this is seen in bats and hummingbirds. While endothermy is limited in smaller animals by surface to volume ratio, some organisms can be smaller and still be endotherms because they employ daily torpor during the part of the day that is coldest. This allows them to conserve energy during the colder parts of the day, when they consume more energy to maintain their body temperature.

Animal Body Planes and Cavities

A standing vertebrate animal can be divided by several planes. A **sagittal plane** divides the body into right and left portions. A **midsagittal plane** divides the body exactly in the middle, making two equal right and left halves. A **frontal plane** (also called a coronal plane) separates the front from the back. A **transverse plane** (or, horizontal plane) divides the animal into upper and lower portions. This is sometimes called a cross section, and, if the transverse cut is at an angle, it is called an oblique plane. [link] illustrates these planes on a goat (a four-legged animal) and a human being.

Shown are the planes of a quadruped goat and a bipedal human. The midsagittal plane divides the body exactly in half, into right and left portions. The frontal plane divides the front and back, and the transverse plane divides the body into upper and lower portions.

Vertebrate animals have a number of defined body cavities, as illustrated in [link]. Two of these are major cavities that contain smaller cavities within them. The **dorsal cavity** contains the cranial and the vertebral (or spinal) cavities. The **ventral cavity** contains the thoracic cavity, which in turn contains the pleural cavity around the lungs and the pericardial cavity, which surrounds the heart. The ventral cavity also contains the abdominopelvic cavity, which can be separated into the abdominal and the pelvic cavities.

Vertebrate animals have two major body cavities. The dorsal cavity, indicated in green, contains the cranial and the spinal cavity. The ventral cavity, indicated in yellow, contains the thoracic cavity and the abdominopelvic cavity. The thoracic cavity is separated from the abdominopelvic cavity by the diaphragm. The thoracic cavity is separated into the abdominal cavity and the pelvic cavity by an imaginary line parallel to the pelvis bones. (credit: modification of work by NCI)

Note:

Career Connections

Physical Anthropologist

Physical anthropologists study the adaption, variability, and evolution of human beings, plus their living and fossil relatives. They can work in a variety of settings, although most will have an academic appointment at a university, usually in an anthropology department or a biology, genetics, or zoology department.

Non-academic positions are available in the automotive and aerospace industries where the focus is on human size, shape, and anatomy. Research by these professionals might range from studies of how the human body reacts to car crashes to exploring how to make seats more comfortable. Other non-academic positions can be obtained in museums of natural history, anthropology, archaeology, or science and technology. These positions involve educating students from grade school through graduate school. Physical anthropologists serve as education coordinators, collection managers, writers for museum publications, and as administrators. Zoos employ these professionals, especially if they have an expertise in primate biology; they work in collection management and captive breeding programs for endangered species. Forensic science utilizes physical anthropology expertise in identifying human and animal remains, assisting in determining the cause of death, and for expert testimony in trials.

Section Summary

Animal bodies come in a variety of sizes and shapes. Limits on animal size and shape include impacts to their movement. Diffusion affects their size and development. Bioenergetics describes how animals use and obtain energy in relation to their body size, activity level, and environment.

Review Questions

Exercise:
Problem:
Which type of animal maintains a constant internal body temperature?
a. endotherm b. ectotherm c. coelomate d. mesoderm
Solution:
A
Exercise:
Problem:
The symmetry found in animals that move swiftly is
a. radialb. bilateralc. sequentiald. interrupted
Solution:
В
Exercise:
Problem:
What term describes the condition of a desert mouse that lowers its metabolic rate and "sleeps" during the hot day?
a. turgid b. hibernation

d. normal sleep pattern	
Solution:	
С	
Exercise:	
Problem:	
A plane that divides an animal into equal right and left portions is	
a. diagonalb. midsagittalc. coronald. transverse	
Solution:	
В	
Exercise:	
Problem:	
A plane that divides an animal into dorsal and ventral portions is	
a. sagittal	
b. midsagittal	
c. coronal	
d. transverse	
Solution:	
D	

c. estivation

Exercise:

Problem: The pleural cavity is a part of which cavity?

- a. dorsal cavity
- b. thoracic cavity
- c. abdominal cavity
- d. pericardial cavity

Solution:

В

Free Response

Exercise:

Problem:

How does diffusion limit the size of an organism? How is this counteracted?

Solution:

Diffusion is effective over a very short distance. If a cell exceeds this distance in its size, the center of the cell cannot get adequate nutrients nor can it expel enough waste to survive. To compensate for this, cells can loosely adhere to each other in a liquid medium, or develop into multi-celled organisms that use circulatory and respiratory systems to deliver nutrients and remove wastes.

Exercise:

Problem: What is the relationship between BMR and body size? Why?

Solution:

Basal Metabolic Rate is an expression of the metabolic processes that occur to maintain an individual's functioning and body temperature. Smaller bodied animals have a relatively large surface area compared to a much larger animal. The small animal's large surface area leads to increased heat loss that the animal must compensate for, resulting in a higher BMR. A large animal, having less relative surface area, does not lose as much heat and has a correspondingly lower BMR.

Glossary

apodeme

ingrowth of an animal's exoskeleton that functions as an attachment site for muscles

asymmetrical

describes animals with no axis of symmetry in their body pattern

basal metabolic rate (BMR)

metabolic rate at rest in endothermic animals

dorsal cavity

body cavity on the posterior or back portion of an animal; includes the cranial and vertebral cavities

ectotherm

animal incapable of maintaining a relatively constant internal body temperature

endotherm

animal capable of maintaining a relatively constant internal body temperature

estivation

torpor in response to extremely high temperatures and low water availability

frontal (coronal) plane

plane cutting through an animal separating the individual into front and back portions

fusiform

animal body shape that is tubular and tapered at both ends

hibernation

torpor over a long period of time, such as a winter

midsagittal plane

plane cutting through an animal separating the individual into even right and left sides

sagittal plane

plane cutting through an animal separating the individual into right and left sides

standard metabolic rate (SMR)

metabolic rate at rest in ectothermic animals

torpor

decrease in activity and metabolism that allows an animal to survive adverse conditions

transverse (horizontal) plane

plane cutting through an animal separating the individual into upper and lower portions

ventral cavity

body cavity on the anterior or front portion of an animal that includes the thoracic cavities and the abdominopelvic cavities

Animal Primary Tissues By the end of this section, you will be able to:

- Describe epithelial tissues
- Discuss the different types of connective tissues in animals
- Describe three types of muscle tissues
- Describe nervous tissue

The tissues of multicellular, complex animals are four primary types: epithelial, connective, muscle, and nervous. Recall that tissues are groups of similar cells group of similar cells carrying out related functions. These tissues combine to form organs—like the skin or kidney—that have specific, specialized functions within the body. Organs are organized into organ systems to perform functions; examples include the circulatory system, which consists of the heart and blood vessels, and the digestive system, consisting of several organs, including the stomach, intestines, liver, and pancreas. Organ systems come together to create an entire organism.

Epithelial Tissues

Epithelial tissues cover the outside of organs and structures in the body and line the lumens of organs in a single layer or multiple layers of cells. The types of epithelia are classified by the shapes of cells present and the number of layers of cells. Epithelia composed of a single layer of cells is called **simple epithelia**; epithelial tissue composed of multiple layers is called **stratified epithelia**. [link] summarizes the different types of epithelial tissues.

Different Types of Epithelial Tissues			
Cell shape	Description	Location	

Different Types of Epithelial Tissues				
Cell shape	Description	Location		
squamous	flat, irregular round shape	simple: lung alveoli, capillaries stratified: skin, mouth, vagina		
cuboidal	cube shaped, central nucleus	glands, renal tubules		
columnar	tall, narrow, nucleus toward base tall, narrow, nucleus along cell	simple: digestive tract pseudostratified: respiratory tract		
transitional	round, simple but appear stratified	urinary bladder		

Squamous Epithelia

Squamous epithelial cells are generally round, flat, and have a small, centrally located nucleus. The cell outline is slightly irregular, and cells fit together to form a covering or lining. When the cells are arranged in a single layer (simple epithelia), they facilitate diffusion in tissues, such as the areas of gas exchange in the lungs and the exchange of nutrients and waste at blood capillaries.

Squamous epithelia cells (a) have a slightly irregular shape, and a small, centrally located nucleus. These cells can be stratified into layers, as in (b) this human cervix specimen. (credit b: modification of work by Ed Uthman; scale-bar data from Matt Russell)

[link]a illustrates a layer of squamous cells with their membranes joined together to form an epithelium. Image [link]b illustrates squamous epithelial cells arranged in stratified layers, where protection is needed on the body from outside abrasion and damage. This is called a stratified squamous epithelium and occurs in the skin and in tissues lining the mouth and vagina.

Cuboidal Epithelia

Cuboidal epithelial cells, shown in [link], are cube-shaped with a single, central nucleus. They are most commonly found in a single layer representing a simple epithelia in glandular tissues throughout the body where they prepare and secrete glandular material. They are also found in the walls of tubules and in the ducts of the kidney and liver.

Simple cuboidal
epithelial cells line
tubules in the
mammalian kidney,
where they are involved
in filtering the blood.

Columnar Epithelia

Columnar epithelial cells are taller than they are wide: they resemble a stack of columns in an epithelial layer, and are most commonly found in a single-layer arrangement. The nuclei of columnar epithelial cells in the digestive tract appear to be lined up at the base of the cells, as illustrated in [link]. These cells absorb material from the lumen of the digestive tract and prepare it for entry into the body through the circulatory and lymphatic systems.

Simple columnar epithelial cells absorb material from the digestive tract. Goblet cells secret mucous into the digestive tract lumen.

Columnar epithelial cells lining the respiratory tract appear to be stratified. However, each cell is attached to the base membrane of the tissue and, therefore, they are simple tissues. The nuclei are arranged at different levels in the layer of cells, making it appear as though there is more than one layer, as seen in [link]. This is called **pseudostratified**, columnar epithelia. This cellular covering has cilia at the apical, or free, surface of the cells. The cilia enhance the movement of mucous and trapped particles out of the respiratory tract, helping to protect the system from invasive microorganisms and harmful material that has been breathed into the body. Goblet cells are interspersed in some tissues (such as the lining of the trachea). The goblet cells contain mucous that traps irritants, which in the case of the trachea keep these irritants from getting into the lungs.

Pseudostratified columnar epithelia line the respiratory tract. They exist in one layer, but the arrangement of nuclei at different levels makes it appear that there is more than one layer. Goblet cells interspersed between the columnar epithelial cells secrete mucous into the respiratory tract.

Transitional Epithelia

Transitional or uroepithelial cells appear only in the urinary system, primarily in the bladder and ureter. These cells are arranged in a stratified layer, but they have the capability of appearing to pile up on top of each other in a relaxed, empty bladder, as illustrated in [link]. As the urinary bladder fills, the epithelial layer unfolds and expands to hold the volume of

urine introduced into it. As the bladder fills, it expands and the lining becomes thinner. In other words, the tissue transitions from thick to thin.

Note:

Art Connection

Transitional epithelia of the urinary bladder undergo changes in thickness depending on how full the bladder is.

Which of the following statements about types of epithelial cells is false?

- a. Simple columnar epithelial cells line the tissue of the lung.
- b. Simple cuboidal epithelial cells are involved in the filtering of blood in the kidney.
- c. Pseudostratisfied columnar epithilia occur in a single layer, but the arrangement of nuclei makes it appear that more than one layer is present.
- d. Transitional epithelia change in thickness depending on how full the bladder is.

Connective Tissues

Connective tissues are made up of a matrix consisting of living cells and a non-living substance, called the ground substance. The ground substance is made of an organic substance (usually a protein) and an inorganic substance (usually a mineral or water). The principal cell of connective tissues is the fibroblast. This cell makes the fibers found in nearly all of the connective tissues. Fibroblasts are motile, able to carry out mitosis, and can synthesize whichever connective tissue is needed. Macrophages, lymphocytes, and, occasionally, leukocytes can be found in some of the tissues. Some tissues have specialized cells that are not found in the others. The **matrix** in connective tissues gives the tissue its density. When a connective tissue has a high concentration of cells or fibers, it has proportionally a less dense matrix.

The organic portion or protein fibers found in connective tissues are either collagen, elastic, or reticular fibers. Collagen fibers provide strength to the tissue, preventing it from being torn or separated from the surrounding tissues. Elastic fibers are made of the protein elastin; this fiber can stretch to one and one half of its length and return to its original size and shape. Elastic fibers provide flexibility to the tissues. Reticular fibers are the third type of protein fiber found in connective tissues. This fiber consists of thin strands of collagen that form a network of fibers to support the tissue and other organs to which it is connected. The various types of connective tissues, the types of cells and fibers they are made of, and sample locations of the tissues is summarized in [link].

Connective Tissues			
Tissue	Cells	Fibers	Location

Connective Tis	Connective Tissues				
Tissue	Cells	Fibers	Location		
loose/areolar	fibroblasts, macrophages, some lymphocytes, some neutrophils	few: collagen, elastic, reticular	around blood vessels; anchors epithelia		
dense, fibrous connective tissue	fibroblasts, macrophages,	mostly collagen	irregular: skin regular: tendons, ligaments		
cartilage	chondrocytes, chondroblasts	hyaline: few collagen fibrocartilage: large amount of collagen	shark skeleton, fetal bones, human ears, intervertebral discs		
bone	osteoblasts, osteocytes, osteoclasts	some: collagen, elastic	vertebrate skeletons		
adipose	adipocytes	few	adipose (fat)		
blood	red blood cells, white blood cells	none	blood		

Loose/Areolar Connective Tissue

Loose connective tissue, also called areolar connective tissue, has a sampling of all of the components of a connective tissue. As illustrated in [link], loose connective tissue has some fibroblasts; macrophages are present as well. Collagen fibers are relatively wide and stain a light pink, while elastic fibers are thin and stain dark blue to black. The space between the formed elements of the tissue is filled with the matrix. The material in the connective tissue gives it a loose consistency similar to a cotton ball that has been pulled apart. Loose connective tissue is found around every blood vessel and helps to keep the vessel in place. The tissue is also found around and between most body organs. In summary, areolar tissue is tough, yet flexible, and comprises membranes.

Loose connective tissue is composed of loosely woven collagen and elastic fibers. The fibers and other components of the connective tissue matrix are secreted by fibroblasts.

Fibrous Connective Tissue

Fibrous connective tissues contain large amounts of collagen fibers and few cells or matrix material. The fibers can be arranged irregularly or regularly with the strands lined up in parallel. Irregularly arranged fibrous connective tissues are found in areas of the body where stress occurs from all directions, such as the dermis of the skin. Regular fibrous connective tissue, shown in [link], is found in tendons (which connect muscles to bones) and ligaments (which connect bones to bones).

Fibrous connective tissue from the tendon has strands of collagen fibers lined up in parallel.

Cartilage

Cartilage is a connective tissue with a large amount of the matrix and variable amounts of fibers. The cells, called **chondrocytes**, make the matrix

and fibers of the tissue. Chondrocytes are found in spaces within the tissue called **lacunae**.

A cartilage with few collagen and elastic fibers is hyaline cartilage, illustrated in [link]. The lacunae are randomly scattered throughout the tissue and the matrix takes on a milky or scrubbed appearance with routine histological stains. Sharks have cartilaginous skeletons, as does nearly the entire human skeleton during a specific pre-birth developmental stage. A remnant of this cartilage persists in the outer portion of the human nose. Hyaline cartilage is also found at the ends of long bones, reducing friction and cushioning the articulations of these bones.

Hyaline cartilage consists of a matrix with cells called chondrocytes embedded in it. The chondrocytes exist in cavities in the matrix called lacunae.

Elastic cartilage has a large amount of elastic fibers, giving it tremendous flexibility. The ears of most vertebrate animals contain this cartilage as do portions of the larynx, or voice box. Fibrocartilage contains a large amount of collagen fibers, giving the tissue tremendous strength. Fibrocartilage comprises the intervertebral discs in vertebrate animals. Hyaline cartilage found in movable joints such as the knee and shoulder becomes damaged as a result of age or trauma. Damaged hyaline cartilage is replaced by fibrocartilage and results in the joints becoming "stiff."

Bone

Bone, or osseous tissue, is a connective tissue that has a large amount of two different types of matrix material. The organic matrix is similar to the matrix material found in other connective tissues, including some amount of collagen and elastic fibers. This gives strength and flexibility to the tissue. The inorganic matrix consists of mineral salts—mostly calcium salts—that give the tissue hardness. Without adequate organic material in the matrix, the tissue breaks; without adequate inorganic material in the matrix, the tissue bends.

There are three types of cells in bone: osteoblasts, osteocytes, and osteoclasts. Osteoblasts are active in making bone for growth and remodeling. Osteoblasts deposit bone material into the matrix and, after the matrix surrounds them, they continue to live, but in a reduced metabolic state as osteocytes. Osteocytes are found in lacunae of the bone. Osteoclasts are active in breaking down bone for bone remodeling, and they provide access to calcium stored in tissues. Osteoclasts are usually found on the surface of the tissue.

Bone can be divided into two types: compact and spongy. Compact bone is found in the shaft (or diaphysis) of a long bone and the surface of the flat bones, while spongy bone is found in the end (or epiphysis) of a long bone. Compact bone is organized into subunits called **osteons**, as illustrated in [link]. A blood vessel and a nerve are found in the center of the structure within the Haversian canal, with radiating circles of lacunae around it known as lamellae. The wavy lines seen between the lacunae are

microchannels called **canaliculi**; they connect the lacunae to aid diffusion between the cells. Spongy bone is made of tiny plates called **trabeculae** these plates serve as struts to give the spongy bone strength. Over time, these plates can break causing the bone to become less resilient. Bone tissue forms the internal skeleton of vertebrate animals, providing structure to the animal and points of attachment for tendons.

(a) Compact bone is a dense matrix on the outer surface of bone. Spongy bone, inside the compact bone, is porous with web-like trabeculae. (b) Compact bone is organized into rings called osteons. Blood vessels, nerves, and lymphatic vessels are found in the central Haversian canal. Rings of lamellae surround the Haversian canal. Between the lamellae are cavities called lacunae. Canaliculi are microchannels connecting the lacunae together. (c) Osteoblasts surround the exterior of the bone. Osteoclasts bore tunnels into the bone and osteocytes are found in the lacunae.

Adipose Tissue

Adipose tissue, or fat tissue, is considered a connective tissue even though it does not have fibroblasts or a real matrix and only has a few fibers. Adipose tissue is made up of cells called adipocytes that collect and store fat in the form of triglycerides, for energy metabolism. Adipose tissues additionally serve as insulation to help maintain body temperatures, allowing animals to be endothermic, and they function as cushioning against damage to body organs. Under a microscope, adipose tissue cells appear empty due to the extraction of fat during the processing of the material for viewing, as seen in [link]. The thin lines in the image are the cell membranes, and the nuclei are the small, black dots at the edges of the cells.

Adipose is a connective tissue is made up of cells called adipocytes. Adipocytes have small nuclei localized at the cell edge.

Blood

Blood is considered a connective tissue because it has a matrix, as shown in [link]. The living cell types are red blood cells (RBC), also called erythrocytes, and white blood cells (WBC), also called leukocytes. The fluid portion of whole blood, its matrix, is commonly called plasma.

Blood is a connective tissue that has a fluid matrix, called plasma, and no fibers. Erythrocytes (red blood cells), the predominant cell type, are involved in the transport of oxygen and carbon dioxide. Also present are various leukocytes (white blood cells) involved in immune response.

The cell found in greatest abundance in blood is the erythrocyte. Erythrocytes are counted in millions in a blood sample: the average number of red blood cells in primates is 4.7 to 5.5 million cells per microliter. Erythrocytes are consistently the same size in a species, but vary in size between species. For example, the average diameter of a primate red blood cell is 7.5 μ l, a dog is close at 7.0 μ l, but a cat's RBC diameter is 5.9 μ l. Sheep erythrocytes are even smaller at 4.6 μ l. Mammalian erythrocytes lose their nuclei and mitochondria when they are released from the bone marrow where they are made. Fish, amphibian, and avian red blood cells maintain their nuclei and mitochondria throughout the cell's life. The principal job of an erythrocyte is to carry and deliver oxygen to the tissues.

Leukocytes are the predominant white blood cells found in the peripheral blood. Leukocytes are counted in the thousands in the blood with measurements expressed as ranges: primate counts range from 4,800 to 10,800 cells per µl, dogs from 5,600 to 19,200 cells per µl, cats from 8,000

to 25,000 cells per μ l, cattle from 4,000 to 12,000 cells per μ l, and pigs from 11,000 to 22,000 cells per μ l.

Lymphocytes function primarily in the immune response to foreign antigens or material. Different types of lymphocytes make antibodies tailored to the foreign antigens and control the production of those antibodies. Neutrophils are phagocytic cells and they participate in one of the early lines of defense against microbial invaders, aiding in the removal of bacteria that has entered the body. Another leukocyte that is found in the peripheral blood is the monocyte. Monocytes give rise to phagocytic macrophages that clean up dead and damaged cells in the body, whether they are foreign or from the host animal. Two additional leukocytes in the blood are eosinophils and basophils—both help to facilitate the inflammatory response.

The slightly granular material among the cells is a cytoplasmic fragment of a cell in the bone marrow. This is called a platelet or thrombocyte. Platelets participate in the stages leading up to coagulation of the blood to stop bleeding through damaged blood vessels. Blood has a number of functions, but primarily it transports material through the body to bring nutrients to cells and remove waste material from them.

Muscle Tissues

There are three types of muscle in animal bodies: smooth, skeletal, and cardiac. They differ by the presence or absence of striations or bands, the number and location of nuclei, whether they are voluntarily or involuntarily controlled, and their location within the body. [link] summarizes these differences.

Types of Muscles

Types of N	Muscles				
Muscle	Striations	Nuclei	Control	Location	
Type of Muscle	Striations	Nuclei	Control	Location	
smooth	no	single, in center	involuntary	visceral organs	
skeletal	yes	many, at periphery	voluntary	skeletal muscles	
cardiac	yes	single, in center	involuntary	heart	

Smooth Muscle

Smooth muscle does not have striations in its cells. It has a single, centrally located nucleus, as shown in [link]. Constriction of smooth muscle occurs under involuntary, autonomic nervous control and in response to local conditions in the tissues. Smooth muscle tissue is also called non-striated as it lacks the banded appearance of skeletal and cardiac muscle. The walls of blood vessels, the tubes of the digestive system, and the tubes of the reproductive systems are composed of mostly smooth muscle.

Smooth muscle cells do not have striations, while skeletal

muscle cells do. Cardiac muscle cells have striations, but, unlike the multinucleate skeletal cells, they have only one nucleus. Cardiac muscle tissue also has intercalated discs, specialized regions running along the plasma membrane that join adjacent cardiac muscle cells and assist in passing an electrical impulse from cell to cell.

Skeletal Muscle

Skeletal muscle has striations across its cells caused by the arrangement of the contractile proteins actin and myosin. These muscle cells are relatively long and have multiple nuclei along the edge of the cell. Skeletal muscle is under voluntary, somatic nervous system control and is found in the muscles that move bones. [link] illustrates the histology of skeletal muscle.

Cardiac Muscle

Cardiac muscle, shown in [link], is found only in the heart. Like skeletal muscle, it has cross striations in its cells, but cardiac muscle has a single, centrally located nucleus. Cardiac muscle is not under voluntary control but can be influenced by the autonomic nervous system to speed up or slow down. An added feature to cardiac muscle cells is a line than extends along the end of the cell as it abuts the next cardiac cell in the row. This line is called an intercalated disc: it assists in passing electrical impulse efficiently from one cell to the next and maintains the strong connection between neighboring cardiac cells.

Nervous Tissues

Nervous tissues are made of cells specialized to receive and transmit electrical impulses from specific areas of the body and to send them to specific locations in the body. The main cell of the nervous system is the neuron, illustrated in [link]. The large structure with a central nucleus is the cell body of the neuron. Projections from the cell body are either dendrites specialized in receiving input or a single axon specialized in transmitting impulses. Some glial cells are also shown. Astrocytes regulate the chemical environment of the nerve cell, and oligodendrocytes insulate the axon so the electrical nerve impulse is transferred more efficiently. Other glial cells that are not shown support the nutritional and waste requirements of the neuron. Some of the glial cells are phagocytic and remove debris or damaged cells from the tissue. A nerve consists of neurons and glial cells.

The neuron has projections called dendrites that receive signals and projections called axons that send signals. Also shown are two types of glial cells: astrocytes regulate the chemical environment of the nerve cell, and oligodendrocytes insulate the axon so the electrical nerve impulse is transferred more efficiently.

Note:

Link to Learning

Click through the <u>interactive review</u> to learn more about epithelial tissues.

Note:

Career Connections

Pathologist

A pathologist is a medical doctor or veterinarian who has specialized in the laboratory detection of disease in animals, including humans. These professionals complete medical school education and follow it with an extensive post-graduate residency at a medical center. A pathologist may oversee clinical laboratories for the evaluation of body tissue and blood samples for the detection of disease or infection. They examine tissue specimens through a microscope to identify cancers and other diseases. Some pathologists perform autopsies to determine the cause of death and the progression of disease.

Section Summary

The basic building blocks of complex animals are four primary tissues. These are combined to form organs, which have a specific, specialized function within the body, such as the skin or kidney. Organs are organized together to perform common functions in the form of systems. The four primary tissues are epithelia, connective tissues, muscle tissues, and nervous tissues.

Art Connections

Exercise:

Problem:

[link] Which of the following statements about types of epithelial cells is false?

- a. Simple columnar epithelial cells line the tissue of the lung.
- b. Simple cuboidal epithelial cells are involved in the filtering of blood in the kidney.
- c. Pseudostratisfied columnar epithilia occur in a single layer, but the arrangement of nuclei makes it appear that more than one layer is present.
- d. Transitional epithelia change in thickness depending on how full the bladder is.

Solution:

[link] A

Review Questions

Exercise:

Problem: Which type of epithelial cell is best adapted to aid diffusion?

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

Solution:

Exercise:

Problem: Which	type of	epithelial	cell is	found in	glands?
-----------------------	---------	------------	---------	----------	---------

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

Solution:

В

Exercise:

Problem: Which type of epithelial cell is found in the urinary bladder?

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

Solution:

D

Exercise:

Problem: Which type of connective tissue has the most fibers?

- a. loose connective tissue
- b. fibrous connective tissue
- c. cartilage
- d. bone

Solution:
В
Exercise:
Problem:
Which type of connective tissue has a mineralized different matrix?
a. loose connective tissueb. fibrous connective tissuec. cartilaged. bone
Solution:
D
Exercise:
Problem:
The cell found in bone that breaks it down is called an
a. osteoblast
b. osteocyte
c. osteoclast d. osteon
Solution:
C
Exercise:
Problem:
The cell found in bone that makes the bone is called an

	a. osteoblast
	b. osteocyte
	c. osteoclast
	d. osteon
	Solution:
	A
E	xercise:
	Problem: Plasma is the
	a. fibers in blood
	b. matrix of blood
	c. cell that phagocytizes bacteria
	d. cell fragment found in the tissue
	d. Cell fragment found in the tissue
	Solution:
	В
E	xercise:
	Problem:
	The type of muscle cell under voluntary control is the
	a. smooth muscle
	b. skeletal muscle
	c. cardiac muscle
	d. visceral muscle
	Solution:
	В
	D

Exercise:

Problem: The part of a neuron that contains the nucleus is the

- a. cell body
- b. dendrite
- c. axon
- d. glial

Solution:

A

Free Response

Exercise:

Problem:

How can squamous epithelia both facilitate diffusion and prevent damage from abrasion?

Solution:

Squamous epithelia can be either simple or stratified. As a single layer of cells, it presents a very thin epithelia that minimally inhibits diffusion. As a stratified epithelia, the surface cells can be sloughed off and the cells in deeper layers protect the underlying tissues from damage.

Exercise:

Problem: What are the similarities between cartilage and bone?

Solution:

Both contain cells other than the traditional fibroblast. Both have cells that lodge in spaces within the tissue called lacunae. Both collagen and elastic fibers are found in bone and cartilage. Both tissues participate in vertebrate skeletal development and formation.

Glossary

canaliculus

microchannel that connects the lacunae and aids diffusion between cells

cartilage

type of connective tissue with a large amount of ground substance matrix, cells called chondrocytes, and some amount of fibers

chondrocyte

cell found in cartilage

columnar epithelia

epithelia made of cells taller than they are wide, specialized in absorption

connective tissue

type of tissue made of cells, ground substance matrix, and fibers

cuboidal epithelia

epithelia made of cube-shaped cells, specialized in glandular functions

epithelial tissue

tissue that either lines or covers organs or other tissues

fibrous connective tissue

type of connective tissue with a high concentration of fibers

lacuna

space in cartilage and bone that contains living cells

loose (areolar) connective tissue

type of connective tissue with small amounts of cells, matrix, and fibers; found around blood vessels

matrix

component of connective tissue made of both living and non-living (ground substances) cells

osteon

subunit of compact bone

pseudostratified

layer of epithelia that appears multilayered, but is a simple covering

simple epithelia

single layer of epithelial cells

squamous epithelia

type of epithelia made of flat cells, specialized in aiding diffusion or preventing abrasion

stratified epithelia

multiple layers of epithelial cells

trabecula

tiny plate that makes up spongy bone and gives it strength

transitional epithelia

epithelia that can transition for appearing multilayered to simple; also called uroepithelial

Homeostasis

By the end of this section, you will be able to:

- Define homeostasis
- Describe the factors affecting homeostasis
- Discuss positive and negative feedback mechanisms used in homeostasis
- Describe thermoregulation of endothermic and ectothermic animals

Animal organs and organ systems constantly adjust to internal and external changes through a process called homeostasis ("steady state"). These changes might be in the level of glucose or calcium in blood or in external temperatures. **Homeostasis** means to maintain dynamic equilibrium in the body. It is dynamic because it is constantly adjusting to the changes that the body's systems encounter. It is equilibrium because body functions are kept within specific ranges. Even an animal that is apparently inactive is maintaining this homeostatic equilibrium.

Homeostatic Process

The goal of homeostasis is the maintenance of equilibrium around a point or value called a **set point**. While there are normal fluctuations from the set point, the body's systems will usually attempt to go back to this point. A change in the internal or external environment is called a stimulus and is detected by a receptor; the response of the system is to adjust the deviation parameter toward the set point. For instance, if the body becomes too warm, adjustments are made to cool the animal. If the blood's glucose rises after a meal, adjustments are made to lower the blood glucose level by getting the nutrient into tissues that need it or to store it for later use.

Control of Homeostasis

When a change occurs in an animal's environment, an adjustment must be made. The receptor senses the change in the environment, then sends a signal to the control center (in most cases, the brain) which in turn generates a response that is signaled to an effector. The effector is a muscle (that contracts or relaxes) or a gland that secretes. Homeostatsis is

maintained by negative feedback loops. Positive feedback loops actually push the organism further out of homeostasis, but may be necessary for life to occur. Homeostasis is controlled by the nervous and endocrine system of mammals.

Negative Feedback Mechanisms

Any homeostatic process that changes the direction of the stimulus is a **negative feedback loop**. It may either increase or decrease the stimulus, but the stimulus is not allowed to continue as it did before the receptor sensed it. In other words, if a level is too high, the body does something to bring it down, and conversely, if a level is too low, the body does something to make it go up. Hence the term negative feedback. An example is animal maintenance of blood glucose levels. When an animal has eaten, blood glucose levels rise. This is sensed by the nervous system. Specialized cells in the pancreas sense this, and the hormone insulin is released by the endocrine system. Insulin causes blood glucose levels to decrease, as would be expected in a negative feedback system, as illustrated in [link]. However, if an animal has not eaten and blood glucose levels decrease, this is sensed in another group of cells in the pancreas, and the hormone glucagon is released causing glucose levels to increase. This is still a negative feedback loop, but not in the direction expected by the use of the term "negative." Another example of an increase as a result of the feedback loop is the control of blood calcium. If calcium levels decrease, specialized cells in the parathyroid gland sense this and release parathyroid hormone (PTH), causing an increased absorption of calcium through the intestines and kidneys and, possibly, the breakdown of bone in order to liberate calcium. The effects of PTH are to raise blood levels of the element. Negative feedback loops are the predominant mechanism used in homeostasis.

Blood sugar levels are controlled by a negative feedback loop. (credit: modification of work by Jon Sullivan)

Positive Feedback Loop

A **positive feedback loop** maintains the direction of the stimulus, possibly accelerating it. Few examples of positive feedback loops exist in animal bodies, but one is found in the cascade of chemical reactions that result in blood clotting, or coagulation. As one clotting factor is activated, it activates the next factor in sequence until a fibrin clot is achieved. The direction is maintained, not changed, so this is positive feedback. Another example of positive feedback is uterine contractions during childbirth, as illustrated in [link]. The hormone oxytocin, made by the endocrine system, stimulates the contraction of the uterus. This produces pain sensed by the nervous system. Instead of lowering the oxytocin and causing the pain to subside, more oxytocin is produced until the contractions are powerful enough to produce childbirth.

Note:

Art Connection

The birth of a human infant is the result of positive feedback.

State whether each of the following processes is regulated by a positive feedback loop or a negative feedback loop.

- a. A person feels satiated after eating a large meal.
- b. The blood has plenty of red blood cells. As a result, erythropoietin, a hormone that stimulates the production of new red blood cells, is no longer released from the kidney.

Set Point

It is possible to adjust a system's set point. When this happens, the feedback loop works to maintain the new setting. An example of this is blood pressure: over time, the normal or set point for blood pressure can increase as a result of continued increases in blood pressure. The body no longer recognizes the elevation as abnormal and no attempt is made to return to the lower set point. The result is the maintenance of an elevated blood pressure that can have harmful effects on the body. Medication can lower blood

pressure and lower the set point in the system to a more healthy level. This is called a process of **alteration** of the set point in a feedback loop.

Changes can be made in a group of body organ systems in order to maintain a set point in another system. This is called **acclimatization**. This occurs, for instance, when an animal migrates to a higher altitude than it is accustomed to. In order to adjust to the lower oxygen levels at the new altitude, the body increases the number of red blood cells circulating in the blood to ensure adequate oxygen delivery to the tissues. Another example of acclimatization is animals that have seasonal changes in their coats: a heavier coat in the winter ensures adequate heat retention, and a light coat in summer assists in keeping body temperature from rising to harmful levels.

Note:

Link to Learning

Feedback mechanisms can be understood in terms of driving a race car along a track: watch a short video lesson on positive and negative feedback loops.

https://www.openstaxcollege.org/l/feedback_loops

Homeostasis: Thermoregulation

Body temperature affects body activities. Generally, as body temperature rises, enzyme activity rises as well. For every ten degree centigrade rise in temperature, enzyme activity doubles, up to a point. Body proteins, including enzymes, begin to denature and lose their function with high heat

(around 50°C for mammals). Enzyme activity will decrease by half for every ten degree centigrade drop in temperature, to the point of freezing, with a few exceptions. Some fish can withstand freezing solid and return to normal with thawing.

Note:

Link to Learning

Watch this Discovery Channel video on thermoregulation to see illustrations of this process in a variety of animals. https://www.openstaxcollege.org/l/thermoregulate

Endotherms and Ectotherms

Animals can be divided into two groups: some maintain a constant body temperature in the face of differing environmental temperatures, while others have a body temperature that is the same as their environment and thus varies with the environment. Animals that do not control their body temperature are ectotherms. This group has been called cold-blooded, but the term may not apply to an animal in the desert with a very warm body temperature. In contrast to ectotherms, which rely on external temperatures to set their body temperatures, poikilotherms are animals with constantly varying internal temperatures. An animal that maintains a constant body temperature in the face of environmental changes is called a homeotherm. Endotherms are animals that rely on internal sources for body temperature but which can exhibit extremes in temperature. These animals are able to maintain a level of activity at cooler temperature, which an ectotherm cannot due to differing enzyme levels of activity.

Heat can be exchanged between an animal and its environment through four mechanisms: radiation, evaporation, convection, and conduction ([link]). Radiation is the emission of electromagnetic "heat" waves. Heat comes from the sun in this manner and radiates from dry skin the same way. Heat can be removed with liquid from a surface during evaporation. This occurs when a mammal sweats. Convection currents of air remove heat from the surface of dry skin as the air passes over it. Heat will be conducted from one surface to another during direct contact with the surfaces, such as an animal resting on a warm rock.

Heat can be exchanged by four mechanisms: (a) radiation, (b) evaporation, (c) convection, or (d) conduction. (credit b: modification of work by "Kullez"/Flickr; credit c: modification of work by Chad Rosenthal; credit d: modification of work by "stacey.d"/Flickr)

Heat Conservation and Dissipation

Animals conserve or dissipate heat in a variety of ways. In certain climates, endothermic animals have some form of insulation, such as fur, fat, feathers, or some combination thereof. Animals with thick fur or feathers create an insulating layer of air between their skin and internal organs. Polar bears and seals live and swim in a subfreezing environment and yet maintain a constant, warm, body temperature. The arctic fox, for example, uses its fluffy tail as extra insulation when it curls up to sleep in cold weather. Mammals have a residual effect from shivering and increased muscle activity: arrector pili muscles cause "goose bumps," causing small hairs to stand up when the individual is cold; this has the intended effect of increasing body temperature. Mammals use layers of fat to achieve the same end. Loss of significant amounts of body fat will compromise an individual's ability to conserve heat.

Endotherms use their circulatory systems to help maintain body temperature. Vasodilation brings more blood and heat to the body surface, facilitating radiation and evaporative heat loss, which helps to cool the body. Vasoconstriction reduces blood flow in peripheral blood vessels, forcing blood toward the core and the vital organs found there, and conserving heat. Some animals have adaptions to their circulatory system that enable them to transfer heat from arteries to veins, warming blood returning to the heart. This is called a countercurrent heat exchange; it prevents the cold venous blood from cooling the heart and other internal organs. This adaption can be shut down in some animals to prevent overheating the internal organs. The countercurrent adaption is found in many animals, including dolphins, sharks, bony fish, bees, and hummingbirds. In contrast, similar adaptations can help cool endotherms when needed, such as dolphin flukes and elephant ears.

Some ectothermic animals use changes in their behavior to help regulate body temperature. For example, a desert ectothermic animal may simply seek cooler areas during the hottest part of the day in the desert to keep from getting too warm. The same animals may climb onto rocks to capture heat during a cold desert night. Some animals seek water to aid evaporation

in cooling them, as seen with reptiles. Other ectotherms use group activity such as the activity of bees to warm a hive to survive winter.

Many animals, especially mammals, use metabolic waste heat as a heat source. When muscles are contracted, most of the energy from the ATP used in muscle actions is wasted energy that translates into heat. Severe cold elicits a shivering reflex that generates heat for the body. Many species also have a type of adipose tissue called brown fat that specializes in generating heat.

Neural Control of Thermoregulation

The nervous system is important to **thermoregulation**, as illustrated in [link]. The processes of homeostasis and temperature control are centered in the hypothalamus of the advanced animal brain.

When bacteria are destroyed by leuckocytes, pyrogens are released into the blood. Pyrogens reset the body's thermostat to a higher temperature, resulting in fever. How might pyrogens cause the body temperature to rise?

The hypothalamus maintains the set point for body temperature through reflexes that cause vasodilation and sweating when the body is too warm, or vasoconstriction and shivering when the body is too cold. It responds to chemicals from the body. When a bacterium is destroyed by phagocytic leukocytes, chemicals called endogenous pyrogens are released into the blood. These pyrogens circulate to the hypothalamus and reset the thermostat. This allows the body's temperature to increase in what is commonly called a fever. An increase in body temperature causes iron to be conserved, which reduces a nutrient needed by bacteria. An increase in body heat also increases the activity of the animal's enzymes and protective cells while inhibiting the enzymes and activity of the invading microorganisms. Finally, heat itself may also kill the pathogen. A fever that was once thought to be a complication of an infection is now understood to be a normal defense mechanism.

Section Summary

Homeostasis is a dynamic equilibrium that is maintained in body tissues and organs. It is dynamic because it is constantly adjusting to the changes that the systems encounter. It is in equilibrium because body functions are kept within a normal range, with some fluctuations around a set point for the processes.

Art Connections

Exercise:

Problem:

[link] State whether each of the following processes are regulated by a positive feedback loop or a negative feedback loop.

- a. A person feels satiated after eating a large meal.
- b. The blood has plenty of red blood cells. As a result, erythropoietin, a hormone that stimulates the production of new red blood cells, is no longer released from the kidney.

Solution:

[link] Both processes are the result of negative feedback loops. Negative feedback loops, which tend to keep a system at equilibrium, are more common than positive feedback loops.

Exercise:

Problem:

[link] When bacteria are destroyed by leuckocytes, pyrogens are released into the blood. Pyrogens reset the body's thermostat to a higher temperature, resulting in fever. How might pyrogens cause the body temperature to rise?

Solution:

[link] Pyrogens increase body temperature by causing the blood vessels to constrict, inducing shivering, and stopping sweat glands from secreting fluid.

Review Questions

Exercise:

Problem:

When faced with a sudden drop in environmental temperature, an endothermic animal will:

- a. experience a drop in its body temperature
- b. wait to see if it goes lower
- c. increase muscle activity to generate heat

Solution:
С
xercise:
ACI CISC.
Problem: Which is an example of negative feedback?
a. lowering of blood glucose after a meal
b. blood clotting after an injury
c. lactation during nursing d. uterine contractions during labor
d. decime contractions during labor
Solution:
A
Exercise:
Problem:
Which method of heat exchange occurs during direct contact between
the source and animal?
a. radiation
b. evaporation
c. convection
d. conduction
Solution:
Solution:

Problem: The body's thermostat is located in the _____.

- a. homeostatic receptor
- b. hypothalamus
- c. medulla
- d. vasodilation center

Solution:

В

Free Response

Exercise:

Problem:

Why are negative feedback loops used to control body homeostasis?

Solution:

An adjustment to a change in the internal or external environment requires a change in the direction of the stimulus. A negative feedback loop accomplishes this, while a positive feedback loop would continue the stimulus and result in harm to the animal.

Exercise:

Problem: Why is a fever a "good thing" during a bacterial infection?

Solution:

Mammalian enzymes increase activity to the point of denaturation, increasing the chemical activity of the cells involved. Bacterial enzymes have a specific temperature for their most efficient activity and are inhibited at either higher or lower temperatures. Fever results

in an increase in the destruction of the invading bacteria by increasing the effectiveness of body defenses and an inhibiting bacterial metabolism.

Exercise:

Problem:

How is a condition such as diabetes a good example of the failure of a set point in humans?

Solution:

Diabetes is often associated with a lack in production of insulin. Without insulin, blood glucose levels go up after a meal, but never go back down to normal levels.

Glossary

acclimatization

alteration in a body system in response to environmental change

alteration

change of the set point in a homeostatic system

homeostasis

dynamic equilibrium maintaining appropriate body functions

negative feedback loop

feedback to a control mechanism that increases or decreases a stimulus instead of maintaining it

positive feedback loop

feedback to a control mechanism that continues the direction of a stimulus

set point

midpoint or target point in homeostasis

thermoregulation regulation of body temperature

Introduction class="introduction"

For humans, fruits and vegetables are important in maintaining a balanced diet. (credit: modificatio n of work by Julie Rybarczyk)

All living organisms need nutrients to survive. While plants can obtain the molecules required for cellular function through the process of photosynthesis, most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food consumed consists of protein, fat, and complex carbohydrates. Animals must convert these macromolecules into the simple molecules required for maintaining cellular functions, such as assembling new molecules, cells, and tissues. The conversion of the food consumed to the nutrients required is a multi-step process involving digestion and absorption. During digestion, food particles are broken down to smaller components, and later, they are absorbed by the body.

One of the challenges in human nutrition is maintaining a balance between food intake, storage, and energy expenditure. Imbalances can have serious health consequences. For example, eating too much food while not expending much energy leads to obesity, which in turn will increase the risk of developing illnesses such as type-2 diabetes and cardiovascular disease. The recent rise in obesity and related diseases makes understanding the role of diet and nutrition in maintaining good health all the more important.

Digestive Systems By the end of this section, you will be able to:

- Explain the processes of digestion and absorption
- Compare and contrast different types of digestive systems
- Explain the specialized functions of the organs involved in processing food in the body
- Describe the ways in which organs work together to digest food and absorb nutrients

Animals obtain their nutrition from the consumption of other organisms. Depending on their diet, animals can be classified into the following categories: plant eaters (herbivores), meat eaters (carnivores), and those that eat both plants and animals (omnivores). The nutrients and macromolecules present in food are not immediately accessible to the cells. There are a number of processes that modify food within the animal body in order to make the nutrients and organic molecules accessible for cellular function. As animals evolved in complexity of form and function, their digestive systems have also evolved to accommodate their various dietary needs.

Herbivores, Omnivores, and Carnivores

Herbivores are animals whose primary food source is plant-based. Examples of herbivores, as shown in [link] include vertebrates like deer, koalas, and some bird species, as well as invertebrates such as crickets and caterpillars. These animals have evolved digestive systems capable of handling large amounts of plant material. Herbivores can be further classified into frugivores (fruit-eaters), granivores (seed eaters), nectivores (nectar feeders), and folivores (leaf eaters).

Herbivores, like this (a) mule deer and (b) monarch caterpillar, eat primarily plant material. (credit a: modification of work by Bill Ebbesen; credit b: modification of work by Doug Bowman)

Carnivores are animals that eat other animals. The word carnivore is derived from Latin and literally means "meat eater." Wild cats such as lions, shown in [link]a and tigers are examples of vertebrate carnivores, as are snakes and sharks, while invertebrate carnivores include sea stars, spiders, and ladybugs, shown in [link]b. Obligate carnivores are those that rely entirely on animal flesh to obtain their nutrients; examples of obligate carnivores are members of the cat family, such as lions and cheetahs. Facultative carnivores are those that also eat non-animal food in addition to animal food. Note that there is no clear line that differentiates facultative carnivores from omnivores; dogs would be considered facultative carnivores.

Carnivores like the (a) lion eat primarily meat. The (b) ladybug is also a carnivore that consumes small insects called aphids. (credit a: modification of work by Kevin Pluck; credit b: modification of work by Jon Sullivan)

Omnivores are animals that eat both plant- and animal-derived food. In Latin, omnivore means to eat everything. Humans, bears (shown in [link]a), and chickens are example of vertebrate omnivores; invertebrate omnivores include cockroaches and crayfish (shown in [link]b).

Omnivores like the (a) bear and (b) crayfish eat both plant and animal based food. (credit a: modification of work by Dave Menke; credit b: modification of work by Jon Sullivan)

Invertebrate Digestive Systems

Animals have evolved different types of digestive systems to aid in the digestion of the different foods they consume. The simplest example is that of a **gastrovascular cavity** and is found in organisms with only one opening for digestion. Platyhelminthes (flatworms), Ctenophora (comb jellies), and Cnidaria (coral, jelly fish, and sea anemones) use this type of digestion. Gastrovascular cavities, as shown in [link]a, are typically a blind tube or cavity with only one opening, the "mouth", which also serves as an "anus". Ingested material enters the mouth and passes through a hollow, tubular cavity. Cells within the cavity secrete digestive enzymes that break down the food. The food particles are engulfed by the cells lining the gastrovascular cavity.

The **alimentary canal**, shown in [link]b, is a more advanced system: it consists of one tube with a mouth at one end and an anus at the other. Earthworms are an example of an animal with an alimentary canal. Once the food is ingested through the mouth, it passes through the esophagus and is stored in an organ called the crop; then it passes into the gizzard where it is churned and digested. From the gizzard, the food passes through the intestine, the nutrients are absorbed, and the waste is eliminated as feces, called castings, through the anus.

(a) A gastrovascular cavity has a single opening through which food is ingested and waste is excreted, as shown in this hydra and in this jellyfish medusa. (b) An alimentary canal has two openings: a mouth for ingesting food, and an anus for eliminating waste, as shown in this nematode.

Vertebrate Digestive Systems

Vertebrates have evolved more complex digestive systems to adapt to their dietary needs. Some animals have a single stomach, while others have multi-chambered stomachs. Birds have developed a digestive system adapted to eating unmasticated food.

Monogastric: Single-chambered Stomach

As the word **monogastric** suggests, this type of digestive system consists of one ("mono") stomach chamber ("gastric"). Humans and many animals have a monogastric digestive system as illustrated in [link]ab. The process of digestion begins with the mouth and the intake of food. The teeth play an important role in masticating (chewing) or physically breaking down food into smaller particles. The enzymes present in saliva also begin to chemically break down food. The esophagus is a long tube that connects the mouth to the stomach. Using peristalsis, or wave-like smooth muscle contractions, the muscles of the esophagus push the food towards the stomach. In order to speed up the actions of enzymes in the stomach, the stomach is an extremely acidic environment, with a pH between 1.5 and 2.5. The gastric juices, which include enzymes in the stomach, act on the food particles and continue the process of digestion. Further breakdown of food takes place in the small intestine where enzymes produced by the liver, the small intestine, and the pancreas continue the process of digestion. The nutrients are absorbed into the blood stream across the epithelial cells lining the walls of the small intestines. The waste material travels on to the large intestine where water is absorbed and the drier waste material is compacted into feces; it is stored until it is excreted through the rectum.

(a) Humans and herbivores, such as the (b) rabbit, have a monogastric digestive system. However, in the rabbit the small intestine and cecum are enlarged to allow more time to digest plant material. The enlarged organ provides more surface area for absorption of nutrients.Rabbits digest their food twice: the first time food passes through the digestive system, it collects in the cecum, and then it passes as soft feces called cecotrophes. The rabbit re-ingests these cecotrophes to further digest them.

Avian

Birds face special challenges when it comes to obtaining nutrition from food. They do not have teeth and so their digestive system, shown in [link], must be able to process un-masticated food. Birds have evolved a variety of beak types that reflect the vast variety in their diet, ranging from seeds and insects to fruits and nuts. Because most birds fly, their metabolic rates are high in order to efficiently process food and keep their body weight low. The stomach of birds has two chambers: the **proventriculus**, where gastric juices are produced to digest the food before it enters the stomach, and the **gizzard**, where the food is stored, soaked, and mechanically ground. The undigested material forms food pellets that are sometimes regurgitated. Most of the chemical digestion and absorption happens in the intestine and the waste is excreted through the cloaca.

The avian esophagus has a pouch, called a crop, which stores food. Food passes from the crop to the first of two stomachs, called the proventriculus, which contains digestive juices that break down food. From the proventriculus, the food enters the second stomach, called the gizzard, which grinds food. Some birds swallow stones or grit, which are stored in the gizzard, to aid the grinding process. Birds do not have separate

openings to excrete urine and feces. Instead, uric acid from the kidneys is secreted into the large intestine and combined with waste from the digestive process. This waste is excreted through an opening called the cloaca.

Note:

Evolution Connection **Avian Adaptations**

Birds have a highly efficient, simplified digestive system. Recent fossil evidence has shown that the evolutionary divergence of birds from other land animals was characterized by streamlining and simplifying the digestive system. Unlike many other animals, birds do not have teeth to chew their food. In place of lips, they have sharp pointy beaks. The horny beak, lack of jaws, and the smaller tongue of the birds can be traced back to their dinosaur ancestors. The emergence of these changes seems to coincide with the inclusion of seeds in the bird diet. Seed-eating birds have beaks that are shaped for grabbing seeds and the two-compartment stomach allows for delegation of tasks. Since birds need to remain light in order to fly, their metabolic rates are very high, which means they digest their food very quickly and need to eat often. Contrast this with the ruminants, where the digestion of plant matter takes a very long time.

Ruminants

Ruminants are mainly herbivores like cows, sheep, and goats, whose entire diet consists of eating large amounts of **roughage** or fiber. They have evolved digestive systems that help them digest vast amounts of cellulose. An interesting feature of the ruminants' mouth is that they do not have

upper incisor teeth. They use their lower teeth, tongue and lips to tear and chew their food. From the mouth, the food travels to the esophagus and on to the stomach.

To help digest the large amount of plant material, the stomach of the ruminants is a multi-chambered organ, as illustrated in [link]. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break down cellulose and ferment ingested food. The abomasum is the "true" stomach and is the equivalent of the monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary to digest plant material in ruminants. The fermentation process produces large amounts of gas in the stomach chamber, which must be eliminated. As in other animals, the small intestine plays an important role in nutrient absorption, and the large intestine helps in the elimination of waste.

Ruminant animals, such as goats and cows, have four stomachs. The first two stomachs, the rumen and the reticulum, contain prokaryotes and protists that are able to digest cellulose fiber. The ruminant regurgitates cud from the reticulum, chews it, and swallows it into a third stomach, the omasum, which removes water. The cud then passes onto the fourth stomach, the abomasum, where it is digested by enzymes produced by the ruminant.

Pseudo-ruminants

Some animals, such as camels and alpacas, are pseudo-ruminants. They eat a lot of plant material and roughage. Digesting plant material is not easy because plant cell walls contain the polymeric sugar molecule cellulose. The digestive enzymes of these animals cannot break down cellulose, but microorganisms present in the digestive system can. Therefore, the digestive system must be able to handle large amounts of roughage and break down the cellulose. Pseudo-ruminants have a three-chamber stomach in the digestive system. However, their cecum—a pouched organ at the beginning of the large intestine containing many microorganisms that are necessary for the digestion of plant materials—is large and is the site where the roughage is fermented and digested. These animals do not have a rumen but have an omasum, abomasum, and reticulum.

Parts of the Digestive System

The vertebrate digestive system is designed to facilitate the transformation of food matter into the nutrient components that sustain organisms.

Oral Cavity

The oral cavity, or mouth, is the point of entry of food into the digestive system, illustrated in [link]. The food consumed is broken into smaller

particles by mastication, the chewing action of the teeth. All mammals have teeth and can chew their food.

The extensive chemical process of digestion begins in the mouth. As food is being chewed, saliva, produced by the salivary glands, mixes with the food. Saliva is a watery substance produced in the mouths of many animals. There are three major glands that secrete saliva—the parotid, the submandibular, and the sublingual. Saliva contains mucus that moistens food and buffers the pH of the food. Saliva also contains immunoglobulins and lysozymes, which have antibacterial action to reduce tooth decay by inhibiting growth of some bacteria. Saliva also contains an enzyme called salivary amylase that begins the process of converting starches in the food into a disaccharide called maltose. Another enzyme called **lipase** is produced by the cells in the tongue. Lipases are a class of enzymes that can break down triglycerides. The lingual lipase begins the breakdown of fat components in the food. The chewing and wetting action provided by the teeth and saliva prepare the food into a mass called the **bolus** for swallowing. The tongue helps in swallowing—moving the bolus from the mouth into the pharynx. The pharynx opens to two passageways: the trachea, which leads to the lungs, and the esophagus, which leads to the stomach. The trachea has an opening called the glottis, which is covered by a cartilaginous flap called the epiglottis. When swallowing, the epiglottis closes the glottis and food passes into the esophagus and not the trachea. This arrangement allows food to be kept out of the trachea.

Digestion of food begins in the (a) oral cavity. Food is masticated by teeth and moistened by saliva secreted from the (b) salivary glands. Enzymes in the saliva begin to digest starches and fats. With the help of the tongue, the resulting bolus is moved into the esophagus by swallowing. (credit: modification of work by the National Cancer Institute)

Esophagus

The **esophagus** is a tubular organ that connects the mouth to the stomach. The chewed and softened food passes through the esophagus after being swallowed. The smooth muscles of the esophagus undergo a series of wave like movements called **peristalsis** that push the food toward the stomach, as illustrated in [link]. The peristalsis wave is unidirectional—it moves food from the mouth to the stomach, and reverse movement is not possible. The peristaltic movement of the esophagus is an involuntary reflex; it takes place in response to the act of swallowing.

The esophagus transfers food from the mouth to the stomach through peristaltic movements.

A ring-like muscle called a **sphincter** forms valves in the digestive system. The gastro-esophageal sphincter is located at the stomach end of the esophagus. In response to swallowing and the pressure exerted by the bolus of food, this sphincter opens, and the bolus enters the stomach. When there is no swallowing action, this sphincter is shut and prevents the contents of the stomach from traveling up the esophagus. Many animals have a true sphincter; however, in humans, there is no true sphincter, but the esophagus remains closed when there is no swallowing action. Acid reflux or "heartburn" occurs when the acidic digestive juices escape into the esophagus.

Stomach

A large part of digestion occurs in the stomach, shown in [link]. The **stomach** is a saclike organ that secretes gastric digestive juices. The pH in the stomach is between 1.5 and 2.5. This highly acidic environment is required for the chemical breakdown of food and the extraction of nutrients. When empty, the stomach is a rather small organ; however, it can expand to

up to 20 times its resting size when filled with food. This characteristic is particularly useful for animals that need to eat when food is available.

The human stomach has an extremely acidic environment where most of the protein gets digested. (credit: modification of work by Mariana Ruiz Villareal)

Which of the following statements about the digestive system is false?

- a. Chyme is a mixture of food and digestive juices that is produced in the stomach.
- b. Food enters the large intestine before the small intestine.
- c. In the small intestine, chyme mixes with bile, which emulsifies fats.
- d. The stomach is separated from the small intestine by the pyloric sphincter.

The stomach is also the major site for protein digestion in animals other than ruminants. Protein digestion is mediated by an enzyme called pepsin in the stomach chamber. **Pepsin** is secreted by the chief cells in the stomach in an inactive form called **pepsinogen**. Pepsin breaks peptide bonds and cleaves proteins into smaller polypeptides; it also helps activate more pepsinogen, starting a positive feedback mechanism that generates more pepsin. Another cell type—parietal cells—secrete hydrogen and chloride ions, which combine in the lumen to form hydrochloric acid, the primary acidic component of the stomach juices. Hydrochloric acid helps to convert the inactive pepsinogen to pepsin. The highly acidic environment also kills many microorganisms in the food and, combined with the action of the enzyme pepsin, results in the hydrolysis of protein in the food. Chemical digestion is facilitated by the churning action of the stomach. Contraction and relaxation of smooth muscles mixes the stomach contents about every 20 minutes. The partially digested food and gastric juice mixture is called **chyme**. Chyme passes from the stomach to the small intestine. Further protein digestion takes place in the small intestine. Gastric emptying occurs within two to six hours after a meal. Only a small amount of chyme is released into the small intestine at a time. The movement of chyme from the stomach into the small intestine is regulated by the pyloric sphincter.

When digesting protein and some fats, the stomach lining must be protected from getting digested by pepsin. There are two points to consider when describing how the stomach lining is protected. First, as previously mentioned, the enzyme pepsin is synthesized in the inactive form. This protects the chief cells, because pepsinogen does not have the same enzyme functionality of pepsin. Second, the stomach has a thick mucus lining that protects the underlying tissue from the action of the digestive juices. When this mucus lining is ruptured, ulcers can form in the stomach. Ulcers are open wounds in or on an organ caused by bacteria (*Helicobacter pylori*) when the mucus lining is ruptured and fails to reform.

Small Intestine

Chyme moves from the stomach to the small intestine. The **small intestine** is the organ where the digestion of protein, fats, and carbohydrates is

completed. The small intestine is a long tube-like organ with a highly folded surface containing finger-like projections called the **villi**. The apical surface of each villus has many microscopic projections called microvilli. These structures, illustrated in [link], are lined with epithelial cells on the luminal side and allow for the nutrients to be absorbed from the digested food and absorbed into the blood stream on the other side. The villi and microvilli, with their many folds, increase the surface area of the intestine and increase absorption efficiency of the nutrients. Absorbed nutrients in the blood are carried into the hepatic portal vein, which leads to the liver. There, the liver regulates the distribution of nutrients to the rest of the body and removes toxic substances, including drugs, alcohol, and some pathogens.

Villi are folds on the small intestine lining that increase the surface area to facilitate the absorption of nutrients.

Which of the following statements about the small intestine is false?

a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food.

- b. The inside of the small intestine has many folds, called villi.
- c. Microvilli are lined with blood vessels as well as lymphatic vessels.
- d. The inside of the small intestine is called the lumen.

The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The "C-shaped," fixed part of the small intestine is called the **duodenum** and is shown in [link]. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. **Bile** is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum.

The second part of the small intestine is called the **jejunum**, shown in [link]. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.

The **ileum**, also illustrated in [link] is the last part of the small intestine and here the bile salts and vitamins are absorbed into blood stream. The undigested food is sent to the colon from the ileum via peristaltic movements of the muscle. The ileum ends and the large intestine begins at the ileocecal valve. The vermiform, "worm-like," appendix is located at the ileocecal valve. The appendix of humans secretes no enzymes and has an insignificant role in immunity.

Large Intestine

The **large intestine**, illustrated in [link], reabsorbs the water from the undigested food material and processes the waste material. The human large intestine is much smaller in length compared to the small intestine but larger in diameter. It has three parts: the cecum, the colon, and the rectum. The cecum joins the ileum to the colon and is the receiving pouch for the waste matter. The colon is home to many bacteria or "intestinal flora" that aid in the digestive processes. The colon can be divided into four regions, the ascending colon, the transverse colon, the descending colon and the sigmoid colon. The main functions of the colon are to extract the water and mineral salts from undigested food, and to store waste material. Carnivorous mammals have a shorter large intestine compared to herbivorous mammals due to their diet.

The large intestine reabsorbs water from undigested food and stores waste material until it is eliminated.

Rectum and Anus

The **rectum** is the terminal end of the large intestine, as shown in [link]. The primary role of the rectum is to store the feces until defecation. The feces are propelled using peristaltic movements during elimination. The **anus** is an opening at the far-end of the digestive tract and is the exit point for the waste material. Two sphincters between the rectum and anus control elimination: the inner sphincter is involuntary and the outer sphincter is voluntary.

Accessory Organs

The organs discussed above are the organs of the digestive tract through which food passes. Accessory organs are organs that add secretions (enzymes) that catabolize food into nutrients. Accessory organs include salivary glands, the liver, the pancreas, and the gallbladder. The liver, pancreas, and gallbladder are regulated by hormones in response to the food consumed.

The **liver** is the largest internal organ in humans and it plays a very important role in digestion of fats and detoxifying blood. The liver produces bile, a digestive juice that is required for the breakdown of fatty components of the food in the duodenum. The liver also processes the vitamins and fats and synthesizes many plasma proteins.

The **pancreas** is another important gland that secretes digestive juices. The chyme produced from the stomach is highly acidic in nature; the pancreatic juices contain high levels of bicarbonate, an alkali that neutralizes the acidic chyme. Additionally, the pancreatic juices contain a large variety of enzymes that are required for the digestion of protein and carbohydrates.

The **gallbladder** is a small organ that aids the liver by storing bile and concentrating bile salts. When chyme containing fatty acids enters the duodenum, the bile is secreted from the gallbladder into the duodenum.

Section Summary

Different animals have evolved different types of digestive systems specialized to meet their dietary needs. Humans and many other animals have monogastric digestive systems with a single-chambered stomach. Birds have evolved a digestive system that includes a gizzard where the food is crushed into smaller pieces. This compensates for their inability to masticate. Ruminants that consume large amounts of plant material have a multi-chambered stomach that digests roughage. Pseudo-ruminants have similar digestive processes as ruminants but do not have the four-compartment stomach. Processing food involves ingestion (eating), digestion (mechanical and enzymatic breakdown of large molecules), absorption (cellular uptake of nutrients), and elimination (removal of undigested waste as feces).

Many organs work together to digest food and absorb nutrients. The mouth is the point of ingestion and the location where both mechanical and chemical breakdown of food begins. Saliva contains an enzyme called amylase that breaks down carbohydrates. The food bolus travels through the esophagus by peristaltic movements to the stomach. The stomach has an extremely acidic environment. An enzyme called pepsin digests protein in the stomach. Further digestion and absorption take place in the small intestine. The large intestine reabsorbs water from the undigested food and stores waste until elimination.

Art Connections

Exercise:

Problem:

[link] Which of the following statements about the digestive system is false?

- a. Chyme is a mixture of food and digestive juices that is produced in the stomach.
- b. Food enters the large intestine before the small intestine.
- c. In the small intestine, chyme mixes with bile, which emulsifies fats.

d. The stomach is separated from the small intestine by the pyloric sphincter.

Solution:

[link] B

Exercise:

Problem:

[link] Which of the following statements about the small intestine is false?

- a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food.
- b. The inside of the small intestine has many folds, called villi.
- c. Microvilli are lined with blood vessels as well as lymphatic vessels.
- d. The inside of the small intestine is called the lumen.

Solution:

[link] C

Review Questions

Exercise:

Problem: Which of the following is a pseudo-ruminant?

- a. cow
- b. pig
- c. crow
- d. horse

Solution:
D
Exercise:
Problem: Which of the following statements is untrue?
a. Roughage takes a long time to digest.b. Birds eat large quantities at one time so that they can fly long distances.c. Cows do not have upper teeth.d. In pseudo-ruminants, roughage is digested in the cecum.
Solution:
В
Exercise:
Problem: The acidic nature of chyme is neutralized by
a. potassium hydroxideb. sodium hydroxidec. bicarbonatesd. vinegar
Solution:
С
Exercise:
Problem:
The digestive juices from the liver are delivered to the

- a. stomach
- b. liver
- c. duodenum
- d. colon

Solution:

 \mathbf{C}

Free Response

Exercise:

Problem:

How does the polygastric digestive system aid in digesting roughage?

Solution:

Animals with a polygastric digestive system have a multi-chambered stomach. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break down the cellulose and ferment the ingested food. The abomasum is the "true" stomach and is the equivalent of a monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary for ruminants to digest plant material.

Exercise:

Problem:How do birds digest their food in the absence of teeth?

Solution:

Birds have a stomach chamber called a gizzard. Here, the food is stored, soaked, and ground into finer particles, often using pebbles.

Once this process is complete, the digestive juices take over in the proventriculus and continue the digestive process.

Exercise:

Problem: What is the role of the accessory organs in digestion?

Solution:

Accessory organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs can lead to disease states.

Exercise:

Problem:Explain how the villi and microvilli aid in absorption.

Solution:

The villi and microvilli are folds on the surface of the small intestine. These folds increase the surface area of the intestine and provide more area for the absorption of nutrients.

Glossary

alimentary canal

tubular digestive system with a mouth and anus

anus

exit point for waste material

bile

digestive juice produced by the liver; important for digestion of lipids

bolus

mass of food resulting from chewing action and wetting by saliva

carnivore

animal that consumes animal flesh

chyme

mixture of partially digested food and stomach juices

duodenum

first part of the small intestine where a large part of digestion of carbohydrates and fats occurs

esophagus

tubular organ that connects the mouth to the stomach

gallbladder

organ that stores and concentrates bile

gastrovascular cavity

digestive system consisting of a single opening

gizzard

muscular organ that grinds food

herbivore

animal that consumes strictly plant diet

ileum

last part of the small intestine; connects the small intestine to the large intestine; important for absorption of B-12

jejunum

second part of the small intestine

large intestine

digestive system organ that reabsorbs water from undigested material and processes waste matter

lipase

```
enzyme that chemically breaks down lipids
```

liver

organ that produces bile for digestion and processes vitamins and lipids

monogastric

digestive system that consists of a single-chambered stomach

omnivore

animal that consumes both plants and animals

pancreas

gland that secretes digestive juices

pepsin

enzyme found in the stomach whose main role is protein digestion

pepsinogen

inactive form of pepsin

peristalsis

wave-like movements of muscle tissue

proventriculus

glandular part of a bird's stomach

rectum

area of the body where feces is stored until elimination

roughage

component of food that is low in energy and high in fiber

ruminant

animal with a stomach divided into four compartments

salivary amylase

enzyme found in saliva, which converts carbohydrates to maltose

small intestine

organ where digestion of protein, fats, and carbohydrates is completed

sphincter

band of muscle that controls movement of materials throughout the digestive tract

stomach

saclike organ containing acidic digestive juices

villi

folds on the inner surface of the small intestine whose role is to increase absorption area

Nutrition and Energy Production By the end of this section, you will be able to:

- Explain why an animal's diet should be balanced and meet the needs of the body
- Define the primary components of food
- Describe the essential nutrients required for cellular function that cannot be synthesized by the animal body
- Explain how energy is produced through diet and digestion
- Describe how excess carbohydrates and energy are stored in the body

Given the diversity of animal life on our planet, it is not surprising that the animal diet would also vary substantially. The animal diet is the source of materials needed for building DNA and other complex molecules needed for growth, maintenance, and reproduction; collectively these processes are called biosynthesis. The diet is also the source of materials for ATP production in the cells. The diet must be balanced to provide the minerals and vitamins that are required for cellular function.

Food Requirements

What are the fundamental requirements of the animal diet? The animal diet should be well balanced and provide nutrients required for bodily function and the minerals and vitamins required for maintaining structure and regulation necessary for good health and reproductive capability. These requirements for a human are illustrated graphically in [link]

For humans, a balanced diet includes fruits, vegetables, grains, and protein. (credit: USDA)

Note:

Link to Learning

The first step in ensuring that you are meeting the food requirements of your body is an awareness of the food groups and the nutrients they provide. To learn more about each food group and the recommended daily amounts, explore this <u>interactive site</u> by the United States Department of Agriculture.

Note:

Everyday Connection

Let's Move! Campaign

Obesity is a growing epidemic and the rate of obesity among children is rapidly rising in the United States. To combat childhood obesity and ensure that children get a healthy start in life, first lady Michelle Obama has launched the Let's Move! campaign. The goal of this campaign is to educate parents and caregivers on providing healthy nutrition and encouraging active lifestyles to future generations. This program aims to involve the entire community, including parents, teachers, and healthcare providers to ensure that children have access to healthy foods—more fruits, vegetables, and whole grains—and consume fewer calories from processed foods. Another goal is to ensure that children get physical activity. With the increase in television viewing and stationary pursuits such as video games, sedentary lifestyles have become the norm. Learn more at www.letsmove.gov.

Organic Precursors

The organic molecules required for building cellular material and tissues must come from food. Carbohydrates or sugars are the primary source of organic carbons in the animal body. During digestion, digestible carbohydrates are ultimately broken down into glucose and used to provide energy through metabolic pathways. Complex carbohydrates, including polysaccharides, can be broken down into glucose through biochemical modification; however, humans do not produce the enzyme cellulase and lack the ability to derive glucose from the polysaccharide cellulose. In humans, these molecules provide the fiber required for moving waste through the large intestine and a healthy colon. The intestinal flora in the human gut are able to extract some nutrition from these plant fibers. The excess sugars in the body are converted into glycogen and stored in the liver and muscles for later use. Glycogen stores are used to fuel prolonged exertions, such as long-distance running, and to provide energy during food shortage. Excess glycogen can be converted to fats, which are stored in the lower layer of the skin of mammals for insulation and energy storage. Excess digestible carbohydrates are stored by mammals in order to survive famine and aid in mobility.

Another important requirement is that of nitrogen. Protein catabolism provides a source of organic nitrogen. Amino acids are the building blocks of proteins and protein breakdown provides amino acids that are used for cellular function. The carbon and nitrogen derived from these become the building block for nucleotides, nucleic acids, proteins, cells, and tissues. Excess nitrogen must be excreted as it is toxic. Fats add flavor to food and promote a sense of satiety or fullness. Fatty foods are also significant sources of energy because one gram of fat contains nine calories. Fats are required in the diet to aid the absorption of fat-soluble vitamins and the production of fat-soluble hormones.

Essential Nutrients

While the animal body can synthesize many of the molecules required for function from the organic precursors, there are some nutrients that need to be consumed from food. These nutrients are termed **essential nutrients**, meaning they must be eaten, and the body cannot produce them.

The omega-3 alpha-linolenic acid and the omega-6 linoleic acid are essential fatty acids needed to make some membrane phospholipids. **Vitamins** are another class of essential organic molecules that are required in small quantities for many enzymes to function and, for this reason, are considered to be co-enzymes. Absence or low levels of vitamins can have a dramatic effect on health, as outlined in [link] and [link]. Both fat-soluble and water-soluble vitamins must be obtained from food. **Minerals**, listed in [link], are inorganic essential nutrients that must be obtained from food. Among their many functions, minerals help in structure and regulation and are considered co-factors. Certain amino acids also must be procured from food and cannot be synthesized by the body. These amino acids are the "essential" amino acids. The human body can synthesize only 11 of the 20 required amino acids; the rest must be obtained from food. The essential amino acids are listed in [link].

Deficiencies			
Vitamin	Function	Can Lead To	Sources
Vitamin B ₁ (Thiamine)	Needed by the body to process lipids, proteins, and carbohydrates Coenzyme removes CO ₂ from organic compounds	Muscle weakness, Beriberi: reduced heart function, CNS problems	Milk, meat, dried beans, whole grains
Vitamin B ₂ (Riboflavin)	Takes an active role in metabolism, aiding in the conversion of food to energy (FAD and FMN)	Cracks or sores on the outer surface of the lips (cheliosis); inflammation and redness of the tongue; moist, scaly skin inflammation (seborrheic dermatitis)	Meat, eggs, enriched grains, vegetables

Water-soluble Essential Vitamins

Vitamin	Function	Deficiencies Can Lead To	Sources
Vitamin B ₃ (Niacin)	Used by the body to release energy from carbohydrates and to process alcohol; required for the synthesis of sex hormones; component of coenzyme NAD ⁺ and NADP ⁺	Pellagra, which can result in dermatitis, diarrhea, dementia, and death	Meat, eggs, grains, nuts, potatoes
Vitamin B ₅ (Pantothenic acid)	Assists in producing energy from foods (lipids, in particular); component of coenzyme A	Fatigue, poor coordination, retarded growth, numbness, tingling of hands and feet	Meat, whole grains, milk, fruits, vegetables
Vitamin B ₆ (Pyridoxine)	The principal vitamin for processing amino acids and lipids; also helps convert nutrients into energy	Irritability, depression, confusion, mouth sores or ulcers, anemia, muscular twitching	Meat, dairy products, whole grains, orange juice

Water-soluble Essential Vitamins			
Vitamin	Function	Deficiencies Can Lead To	Sources
Vitamin B ₇ (Biotin)	Used in energy and amino acid metabolism, fat synthesis, and fat breakdown; helps the body use blood sugar	Hair loss, dermatitis, depression, numbness and tingling in the extremities; neuromuscular disorders	Meat, eggs, legumes and other vegetables
Vitamin B ₉ (Folic acid)	Assists the normal development of cells, especially during fetal development; helps metabolize nucleic and amino acids	Deficiency during pregnancy is associated with birth defects, such as neural tube defects and anemia	Leafy green vegetables, whole wheat, fruits, nuts, legumes
Vitamin B ₁₂ (Cobalamin)	Maintains healthy nervous system and assists with blood cell formation; coenzyme in nucleic acid metabolism	Anemia, neurological disorders, numbness, loss of balance	Meat, eggs, animal products

Water-soluble Essential Vitamins			
Vitamin	Function	Deficiencies Can Lead To	Sources
Vitamin C (Ascorbic acid)	Helps maintain connective tissue: bone, cartilage, and dentin; boosts the immune system	Scurvy, which results in bleeding, hair and tooth loss; joint pain and swelling; delayed wound healing	Citrus fruits, broccoli, tomatoes, red sweet bell peppers

Fat-soluble Essential Vitamins				
Vitamin	Function	Deficiencies Can Lead To	Sources	

Fat-soluble Essential Vitamins

Vitamin	Function	Deficiencies Can Lead To	Sources
Vitamin A (Retinol)	Critical to the development of bones, teeth, and skin; helps maintain eyesight, enhances the immune system, fetal development, gene expression	Night- blindness, skin disorders, impaired immunity	Dark green leafy vegetables, yellow-orange vegetables fruits, milk, butter
Vitamin D	Critical for calcium absorption for bone development and strength; maintains a stable nervous system; maintains a normal and strong heartbeat; helps in blood clotting	Rickets, osteomalacia, immunity	Cod liver oil, milk, egg yolk

Fat-soluble Essential Vitamins			
Vitamin	Function	Deficiencies Can Lead To	Sources
Vitamin E (Tocopherol)	Lessens oxidative damage of cells,and prevents lung damage from pollutants; vital to the immune system	Deficiency is rare; anemia, nervous system degeneration	Wheat germ oil, unrefined vegetable oils, nuts, seeds, grains
Vitamin K (Phylloquinone)	Essential to blood clotting	Bleeding and easy bruising	Leafy green vegetables, tea

A healthy diet should include a variety of

foods to ensure that needs for essential nutrients are met. (credit: Keith Weller, USDA ARS)

Minerals and T	Minerals and Their Function in the Human Body			
Mineral	Function	Deficiencies Can Lead To	Sources	
*Calcium	Needed for muscle and neuron function; heart health; builds bone and supports synthesis and function of blood cells; nerve function	Osteoporosis, rickets, muscle spasms, impaired growth	Milk, yogurt, fish, green leafy vegetables, legumes	
*Chlorine	Needed for production of hydrochloric acid (HCl) in the stomach and nerve function; osmotic balance	Muscle cramps, mood disturbances, reduced appetite	Table salt	

$\label{eq:minerals} \textbf{Minerals and Their Function in the Human Body}$

Mineral	Function	Deficiencies Can Lead To	Sources
Copper (trace amounts)	Required component of many redox enzymes, including cytochrome coxidase; cofactor for hemoglobin synthesis	Copper deficiency is rare	Liver, oysters, cocoa, chocolate, sesame, nuts
Iodine	Required for the synthesis of thyroid hormones	Goiter	Seafood, iodized salt, dairy products
Iron	Required for many proteins and enzymes, notably hemoglobin, to prevent anemia	Anemia, which causes poor concentration, fatigue, and poor immune function	Red meat, leafy green vegetables, fish (tuna, salmon), eggs, dried fruits, beans, whole grains

$\label{eq:minerals} \textbf{Minerals and Their Function in the Human Body}$

Mineral	Function	Deficiencies Can Lead To	Sources
*Magnesium	Required co- factor for ATP formation; bone formation; normal membrane functions; muscle function	Mood disturbances, muscle spasms	Whole grains, leafy green vegetables
Manganese (trace amounts)	A cofactor in enzyme functions; trace amounts are required	Manganese deficiency is rare	Common in most foods
Molybdenum (trace amounts)	Acts as a cofactor for three essential enzymes in humans: sulfite oxidase, xanthine oxidase, and aldehyde oxidase	Molybdenum deficiency is rare	
*Phosphorus	A component of bones and teeth; helps regulate acid-base balance; nucleotide synthesis	Weakness, bone abnormalities, calcium loss	Milk, hard cheese, whole grains, meats

$\label{eq:minerals} \textbf{Minerals and Their Function in the Human Body}$

Mineral	Function	Deficiencies Can Lead To	Sources
*Potassium	Vital for muscles, heart, and nerve function	Cardiac rhythm disturbance, muscle weakness	Legumes, potato skin, tomatoes, bananas
Selenium (trace amounts)	A cofactor essential to activity of antioxidant enzymes like glutathione peroxidase; trace amounts are required	Selenium deficiency is rare	Common in most foods
*Sodium	Systemic electrolyte required for many functions; acid- base balance; water balance; nerve function	Muscle cramps, fatigue, reduced appetite	Table salt
Zinc (trace amounts)	Required for several enzymes such as carboxypeptidase, liver alcohol dehydrogenase, and carbonic anhydrase	Anemia, poor wound healing, can lead to short stature	Common in most foods

Minerals and Their Function in the Human Body					
Mineral	Deficiencies al Function Can Lead To Sources				
*Greater than 20	00mg/day required				

Essential Amino Acids			
Amino acids that must be consumed Amino acids anabolized body			
isoleucine	alanine		
leucine	selenocysteine		
lysine	aspartate		
methionine	cysteine		
phenylalanine	glutamate		
tryptophan	glycine		
valine	proline		
histidine*	serine		
threonine	tyrosine		
arginine*	asparagine		

Essential Amino Acids

Amino acids that must be consumed

Amino acids anabolized by the body

*The human body can synthesize histidine and arginine, but not in the quantities required, especially for growing children.

Food Energy and ATP

Animals need food to obtain energy and maintain homeostasis. Homeostasis is the ability of a system to maintain a stable internal environment even in the face of external changes to the environment. For example, the normal body temperature of humans is 37°C (98.6°F). Humans maintain this temperature even when the external temperature is hot or cold. It takes energy to maintain this body temperature, and animals obtain this energy from food.

The primary source of energy for animals is carbohydrates, mainly glucose. Glucose is called the body's fuel. The digestible carbohydrates in an animal's diet are converted to glucose molecules through a series of catabolic chemical reactions.

Adenosine triphosphate, or ATP, is the primary energy currency in cells; ATP stores energy in phosphate ester bonds. ATP releases energy when the phosphodiester bonds are broken and ATP is converted to ADP and a phosphate group. ATP is produced by the oxidative reactions in the cytoplasm and mitochondrion of the cell, where carbohydrates, proteins, and fats undergo a series of metabolic reactions collectively called cellular respiration. For example, glycolysis is a series of reactions in which glucose is converted to pyruvic acid and some of its chemical potential energy is transferred to NADH and ATP.

ATP is required for all cellular functions. It is used to build the organic molecules that are required for cells and tissues; it provides energy for muscle contraction and for the transmission of electrical signals in the nervous system. When the amount of ATP is available in excess of the body's requirements, the liver uses the excess ATP and excess glucose to produce

molecules called glycogen. Glycogen is a polymeric form of glucose and is stored in the liver and skeletal muscle cells. When blood sugar drops, the liver releases glucose from stores of glycogen. Skeletal muscle converts glycogen to glucose during intense exercise. The process of converting glucose and excess ATP to glycogen and the storage of excess energy is an evolutionarily important step in helping animals deal with mobility, food shortages, and famine.

Note:

Everyday Connection **Obesity**

Obesity is a major health concern in the United States, and there is a growing focus on reducing obesity and the diseases it may lead to, such as type-2 diabetes, cancers of the colon and breast, and cardiovascular disease. How does the food consumed contribute to obesity?

Fatty foods are calorie-dense, meaning that they have more calories per unit mass than carbohydrates or proteins. One gram of carbohydrates has four calories, one gram of protein has four calories, and one gram of fat has nine calories. Animals tend to seek lipid-rich food for their higher energy content. The signals of hunger ("time to eat") and satiety ("time to stop eating") are controlled in the hypothalamus region of the brain. Foods that are rich in fatty acids tend to promote satiety more than foods that are rich only in carbohydrates.

Excess carbohydrate and ATP are used by the liver to synthesize glycogen. The pyruvate produced during glycolysis is used to synthesize fatty acids. When there is more glucose in the body than required, the resulting excess pyruvate is converted into molecules that eventually result in the synthesis of fatty acids within the body. These fatty acids are stored in adipose cells—the fat cells in the mammalian body whose primary role is to store fat for later use.

It is important to note that some animals benefit from obesity. Polar bears and seals need body fat for insulation and to keep them from losing body heat during Arctic winters. When food is scarce, stored body fat provides energy for maintaining homeostasis. Fats prevent famine in mammals, allowing them to access energy when food is not available on a daily basis; fats are stored when a large kill is made or lots of food is available.

Section Summary

Animal diet should be balanced and meet the needs of the body. Carbohydrates, proteins, and fats are the primary components of food. Some essential nutrients are required for cellular function but cannot be produced by the animal body. These include vitamins, minerals, some fatty acids, and some amino acids. Food intake in more than necessary amounts is stored as glycogen in the liver and muscle cells, and in fat cells. Excess adipose storage can lead to obesity and serious health problems. ATP is the energy currency of the cell and is obtained from the metabolic pathways. Excess carbohydrates and energy are stored as glycogen in the body.

Review Questions

Exercise:

Problem: Which of the following statements is not true?

- a. Essential nutrients can be synthesized by the body.
- b. Vitamins are required in small quantities for bodily function.
- c. Some amino acids can be synthesized by the body, while others need to be obtained from diet.
- d. Vitamins come in two categories: fat-soluble and water-soluble.

Solution:

Α

Exercise:

Problem: Which of the following is a water-soluble vitamin?

- a. vitamin A
- b. vitamin E
- c. vitamin K
- d. vitamin C

Solution:
D
Exercise:
Problem: What is the primary fuel for the body?
a. carbohydrates b. lipids c. protein d. glycogen
u. grycogen
Solution:
A
Exercise:
Problem: Excess glucose is stored as
a. fat
b. glucagon c. glycogen
d. it is not stored in the body
Solution:
С
Free Response
Exercise:
Problem: What are essential nutrients?

Solution:

Essential nutrients are those nutrients that must be obtained from the diet because they cannot be produced by the body. Vitamins and minerals are examples of essential nutrients.

Exercise:

Problem: What is the role of minerals in maintaining good health?

Solution:

Minerals—such as potassium, sodium, and calcium—are required for the functioning of many cellular processes, including muscle contraction and nerve conduction. While minerals are required in trace amounts, not having minerals in the diet can be potentially harmful.

Exercise:

Problem: Discuss why obesity is a growing epidemic.

Solution:

In the United States, obesity, particularly childhood obesity, is a growing concern. Some of the contributors to this situation include sedentary lifestyles and consuming more processed foods and less fruits and vegetables. As a result, even young children who are obese can face health concerns.

Exercise:

Problem:

There are several nations where malnourishment is a common occurrence. What may be some of the health challenges posed by malnutrition?

Solution:

Malnutrition, often in the form of not getting enough calories or not enough of the essential nutrients, can have severe consequences. Many malnourished children have vision and dental problems, and over the years may develop many serious health problems.

Glossary

essential nutrient

nutrient that cannot be synthesized by the body; it must be obtained from food

mineral

inorganic, elemental molecule that carries out important roles in the body

vitamin

organic substance necessary in small amounts to sustain life

Digestive System Processes By the end of this section, you will be able to:

- Describe the process of digestion
- Detail the steps involved in digestion and absorption
- Define elimination
- Explain the role of both the small and large intestines in absorption

Obtaining nutrition and energy from food is a multi-step process. For true animals, the first step is ingestion, the act of taking in food. This is followed by digestion, absorption, and elimination. In the following sections, each of these steps will be discussed in detail.

Ingestion

The large molecules found in intact food cannot pass through the cell membranes. Food needs to be broken into smaller particles so that animals can harness the nutrients and organic molecules. The first step in this process is **ingestion**. Ingestion is the process of taking in food through the mouth. In vertebrates, the teeth, saliva, and tongue play important roles in mastication (preparing the food into bolus). While the food is being mechanically broken down, the enzymes in saliva begin to chemically process the food as well. The combined action of these processes modifies the food from large particles to a soft mass that can be swallowed and can travel the length of the esophagus.

Digestion and Absorption

Digestion is the mechanical and chemical break down of food into small organic fragments. It is important to break down macromolecules into smaller fragments that are of suitable size for absorption across the digestive epithelium. Large, complex molecules of proteins, polysaccharides, and lipids must be reduced to simpler particles such as simple sugar before they can be absorbed by the digestive epithelial cells. Different organs play specific roles in the digestive process. The animal diet needs carbohydrates, protein, and fat, as well as vitamins and inorganic components for nutritional balance. How each of these components is digested is discussed in the following sections.

Carbohydrates

The digestion of carbohydrates begins in the mouth. The salivary enzyme amylase begins the breakdown of food starches into maltose, a disaccharide. As the bolus of food travels through the esophagus to the stomach, no significant digestion of carbohydrates takes place. The esophagus produces no digestive enzymes but does produce mucous for lubrication. The acidic environment in the stomach stops the action of the amylase enzyme.

The next step of carbohydrate digestion takes place in the duodenum. Recall that the chyme from the stomach enters the duodenum and mixes with the digestive secretion from the pancreas, liver, and gallbladder. Pancreatic juices also contain amylase, which continues the breakdown of starch and glycogen into maltose, a disaccharide. The disaccharides are broken down into

monosaccharides by enzymes called **maltases**, **sucrases**, and **lactases**, which are also present in the brush border of the small intestinal wall. Maltase breaks down maltose into glucose. Other disaccharides, such as sucrose and lactose are broken down by sucrase and lactase, respectively. Sucrase breaks down sucrose (or "table sugar") into glucose and fructose, and lactase breaks down lactose (or "milk sugar") into glucose and galactose. The monosaccharides (glucose) thus produced are absorbed and then can be used in metabolic pathways to harness energy. The monosaccharides are transported across the intestinal epithelium into the bloodstream to be transported to the different cells in the body. The steps in carbohydrate digestion are summarized in [link] and [link].

Digestion of carbohydrates is performed by several enzymes. Starch and glycogen are broken down into glucose by amylase and maltase. Sucrose (table sugar) and lactose (milk sugar) are broken down by sucrase and lactase, respectively.

Digestion of Carbohydrates				
Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Salivary amylase	Salivary glands	Mouth	Polysaccharides (Starch)	Disaccharides (maltose), oligosaccharides
Pancreatic amylase	Pancreas	Small intestine	Polysaccharides (starch)	Disaccharides (maltose), monosaccharides

Digestion of Carbohydrates				
Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Oligosaccharidases	Lining of the intestine; brush border membrane	Small intestine	Disaccharides	Monosaccharides (e.g., glucose, fructose, galactose)

Protein

A large part of protein digestion takes place in the stomach. The enzyme pepsin plays an important role in the digestion of proteins by breaking down the intact protein to peptides, which are short chains of four to nine amino acids. In the duodenum, other enzymes—trypsin, elastase, and chymotrypsin—act on the peptides reducing them to smaller peptides. Trypsin elastase, carboxypeptidase, and chymotrypsin are produced by the pancreas and released into the duodenum where they act on the chyme. Further breakdown of peptides to single amino acids is aided by enzymes called peptidases (those that break down peptides). Specifically, carboxypeptidase, dipeptidase, and aminopeptidase play important roles in reducing the peptides to free amino acids. The amino acids are absorbed into the bloodstream through the small intestines. The steps in protein digestion are summarized in [link] and [link].

Protein digestion is a multistep process that begins in the stomach and continues through the intestines.

Digestion of Protein				
Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Pepsin	Stomach chief cells	Stomach	Proteins	Peptides
Trypsin Elastase Chymotrypsin	Pancreas	Small intestine	Proteins	Peptides

Digestion of Protein				
Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Carboxypeptidase	Pancreas	Small intestine	Peptides	Amino acids and peptides
Aminopeptidase Dipeptidase	Lining of intestine	Small intestine	Peptides	Amino acids

Lipids

Lipid digestion begins in the stomach with the aid of lingual lipase and gastric lipase. However, the bulk of lipid digestion occurs in the small intestine due to pancreatic lipase. When chyme enters the duodenum, the hormonal responses trigger the release of bile, which is produced in the liver and stored in the gallbladder. Bile aids in the digestion of lipids, primarily triglycerides by emulsification. Emulsification is a process in which large lipid globules are broken down into several small lipid globules. These small globules are more widely distributed in the chyme rather than forming large aggregates. Lipids are hydrophobic substances: in the presence of water, they will aggregate to form globules to minimize exposure to water. Bile contains bile salts, which are amphipathic, meaning they contain hydrophobic and hydrophilic parts. Thus, the bile salts hydrophilic side can interface with water on one side and the hydrophobic side interfaces with lipids on the other. By doing so, bile salts emulsify large lipid globules into small lipid globules.

Why is emulsification important for digestion of lipids? Pancreatic juices contain enzymes called lipases (enzymes that break down lipids). If the lipid in the chyme aggregates into large globules, very little surface area of the lipids is available for the lipases to act on, leaving lipid digestion incomplete. By forming an emulsion, bile salts increase the available surface area of the lipids many fold. The pancreatic lipases can then act on the lipids more efficiently and digest them, as detailed in [link]. Lipases break down the lipids into fatty acids and glycerides. These molecules can pass through the plasma membrane of the cell and enter the epithelial cells of the intestinal lining. The bile salts surround long-chain fatty acids and monoglycerides forming tiny spheres called micelles. The micelles move into the brush border of the small intestine absorptive cells where the long-chain fatty acids and monoglycerides diffuse out of the micelles into the absorptive cells leaving the micelles behind in the chyme. The long-chain fatty acids and monoglycerides recombine in the absorptive cells to form triglycerides, which aggregate into globules and become coated with proteins. These large spheres are called **chylomicrons**. Chylomicrons contain triglycerides, cholesterol, and other lipids and have proteins on their surface. The surface is also composed of the hydrophilic phosphate "heads" of phospholipids. Together, they enable the chylomicron to move in an aqueous environment without exposing the lipids to water. Chylomicrons leave the absorptive cells via exocytosis. Chylomicrons enter the lymphatic vessels, and then enter the blood in the subclavian vein.

Lipids are digested and absorbed in the small intestine.

Vitamins

Note:

Vitamins can be either water-soluble or lipid-soluble. Fat soluble vitamins are absorbed in the same manner as lipids. It is important to consume some amount of dietary lipid to aid the absorption of lipid-soluble vitamins. Water-soluble vitamins can be directly absorbed into the bloodstream from the intestine.

This <u>website</u> has an overview of the digestion of protein, fat, and carbohydrates.

Mechanical and chemical digestion of food takes place in many steps, beginning in the mouth and ending in the rectum.

Which of the following statements about digestive processes is true?

- a. Amylase, maltase, and lactase in the mouth digest carbohydrates.
- b. Trypsin and lipase in the stomach digest protein.
- c. Bile emulsifies lipids in the small intestine.
- d. No food is absorbed until the small intestine.

Elimination

The final step in digestion is the elimination of undigested food content and waste products. The undigested food material enters the colon, where most of the water is reabsorbed. Recall that the colon is also home to the microflora called "intestinal flora" that aid in the digestion process. The semi-solid waste is moved through the colon by peristaltic movements of the muscle and is stored in the rectum. As the rectum expands in response to storage of fecal matter, it triggers the neural signals required to set up the urge to eliminate. The solid waste is eliminated through the anus using peristaltic movements of the rectum.

Common Problems with Elimination

Diarrhea and constipation are some of the most common health concerns that affect digestion. Constipation is a condition where the feces are hardened because of excess water removal in the colon. In contrast, if enough water is not removed from the feces, it results in diarrhea. Many bacteria, including the ones that cause cholera, affect the proteins involved in water reabsorption in the colon and result in excessive diarrhea.

Emesis

Emesis, or vomiting, is elimination of food by forceful expulsion through the mouth. It is often in response to an irritant that affects the digestive tract, including but not limited to viruses, bacteria, emotions, sights, and food poisoning. This forceful expulsion of the food is due to the strong contractions produced by the stomach muscles. The process of emesis is regulated by the medulla.

Section Summary

Digestion begins with ingestion, where the food is taken in the mouth. Digestion and absorption take place in a series of steps with special enzymes playing important roles in digesting carbohydrates, proteins, and lipids. Elimination describes removal of undigested food contents and waste products from the body. While most absorption occurs in the small intestines, the large intestine is responsible for the final removal of water that remains after the absorptive process of the small intestines. The cells that line the large intestine absorb some vitamins as well as any leftover salts and water. The large intestine (colon) is also where feces is formed.

Art Connections

Exercise:

Problem: [link] Which of the following statements about digestive processes is true?

- a. Amylase, maltase and lactase in the mouth digest carbohydrates.
- b. Trypsin and lipase in the stomach digest protein.
- c. Bile emulsifies lipids in the small intestine.
- d. No food is absorbed until the small intestine.

[link] C

Review Questions

Exercise:

Problem: Where does the majority of protein digestion take place?
a. stomach b. duodenum c. mouth d. jejunum
Solution:
A
Exercise:
Problem: Lipases are enzymes that break down
a. disaccharides b. lipids c. proteins d. cellulose
Solution:
В
Free Response
Exercise:
Problem: Explain why some dietary lipid is a necessary part of a balanced diet.

Solution:

Lipids add flavor to food and promote a sense of satiety or fullness. Fatty foods are sources of high energy; one gram of lipid contains nine calories. Lipids are also required in the diet to aid the absorption of lipid-soluble vitamins and for the production of lipid-soluble hormones.

Glossary

aminopeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of small intestine

carboxypeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of the small intestine

chylomicron

small lipid globule

chymotrypsin

pancreatic protease

digestion

mechanical and chemical break down of food into small organic fragments

dipeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of small intestine

elastase

pancreatic protease

ingestion

act of taking in food

lactase

enzyme that breaks down lactose into glucose and galactose

maltase

enzyme that breaks down maltose into glucose

sucrase

enzyme that breaks down sucrose into glucose and fructose

trypsin

pancreatic protease that breaks down protein

Digestive System Regulation By the end of this section, you will be able to:

- Discuss the role of neural regulation in digestive processes
- Explain how hormones regulate digestion

The brain is the control center for the sensation of hunger and satiety. The functions of the digestive system are regulated through neural and hormonal responses.

Neural Responses to Food

In reaction to the smell, sight, or thought of food, like that shown in [link], the first response is that of salivation. The salivary glands secrete more saliva in response to stimulation by the autonomic nervous system triggered by food in preparation for digestion. Simultaneously, the stomach begins to produce hydrochloric acid to digest the food. Recall that the peristaltic movements of the esophagus and other organs of the digestive tract are under the control of the brain. The brain prepares these muscles for movement as well. When the stomach is full, the part of the brain that detects satiety signals fullness. There are three overlapping phases of gastric control—the cephalic phase, the gastric phase, and the intestinal phase—each requires many enzymes and is under neural control as well.

Seeing a plate of food triggers the secretion of saliva in the mouth and the production of HCL in the stomach. (credit: Kelly Bailey)

Digestive Phases

The response to food begins even before food enters the mouth. The first phase of ingestion, called the **cephalic phase**, is controlled by the neural response to the stimulus provided by food. All aspects—such as sight, sense, and smell—trigger the neural responses resulting in salivation and secretion of gastric juices. The gastric and salivary secretion in the cephalic phase can also take place due to the thought of food. Right now, if you think about a piece of chocolate or a crispy potato chip, the increase in salivation is a cephalic phase response to the thought. The central nervous system prepares the stomach to receive food.

The **gastric phase** begins once the food arrives in the stomach. It builds on the stimulation provided during the cephalic phase. Gastric acids and enzymes process the ingested materials. The gastric phase is stimulated by

(1) distension of the stomach, (2) a decrease in the pH of the gastric contents, and (3) the presence of undigested material. This phase consists of local, hormonal, and neural responses. These responses stimulate secretions and powerful contractions.

The **intestinal phase** begins when chyme enters the small intestine triggering digestive secretions. This phase controls the rate of gastric emptying. In addition to gastrin emptying, when chyme enters the small intestine, it triggers other hormonal and neural events that coordinate the activities of the intestinal tract, pancreas, liver, and gallbladder.

Hormonal Responses to Food

The **endocrine system** controls the response of the various glands in the body and the release of hormones at the appropriate times.

One of the important factors under hormonal control is the stomach acid environment. During the gastric phase, the hormone **gastrin** is secreted by G cells in the stomach in response to the presence of proteins. Gastrin stimulates the release of stomach acid, or hydrochloric acid (HCl) which aids in the digestion of the proteins. However, when the stomach is emptied, the acidic environment need not be maintained and a hormone called **somatostatin** stops the release of hydrochloric acid. This is controlled by a negative feedback mechanism.

In the duodenum, digestive secretions from the liver, pancreas, and gallbladder play an important role in digesting chyme during the intestinal phase. In order to neutralize the acidic chyme, a hormone called **secretin** stimulates the pancreas to produce alkaline bicarbonate solution and deliver it to the duodenum. Secretin acts in tandem with another hormone called **cholecystokinin** (CCK). Not only does CCK stimulate the pancreas to produce the requisite pancreatic juices, it also stimulates the gallbladder to release bile into the duodenum.

N	^	t	Δ	•
Τ.	v	u	L	•

Link to Learning

Visit <u>this website</u> to learn more about the endocrine system. Review the text and watch the animation of how control is implemented in the endocrine system.

Another level of hormonal control occurs in response to the composition of food. Foods high in lipids take a long time to digest. A hormone called **gastric inhibitory peptide** is secreted by the small intestine to slow down the peristaltic movements of the intestine to allow fatty foods more time to be digested and absorbed.

Understanding the hormonal control of the digestive system is an important area of ongoing research. Scientists are exploring the role of each hormone in the digestive process and developing ways to target these hormones. Advances could lead to knowledge that may help to battle the obesity epidemic.

Section Summary

The brain and the endocrine system control digestive processes. The brain controls the responses of hunger and satiety. The endocrine system controls the release of hormones and enzymes required for digestion of food in the digestive tract.

Review Questions

Exercise:

Problem:
Which hormone controls the release of bile from the gallbladder
a. pepsin
b. amylase c. CCK
d. gastrin
Solution:
C
Exercise:
Problem: Which hormone stops acid secretion in the stomach?
a. gastrin
b. somatostatin
c. gastric inhibitory peptide d. CCK
Solution:
В
Free Response
Exercise:

Problem: Describe how hormones regulate digestion.

Solution:

Hormones control the different digestive enzymes that are secreted in the stomach and the intestine during the process of digestion and absorption. For example, the hormone gastrin stimulates stomach acid secretion in response to food intake. The hormone somatostatin stops the release of stomach acid.

Exercise:

Problem:

Describe one or more scenarios where loss of hormonal regulation of digestion can lead to diseases.

Solution:

There are many cases where loss of hormonal regulation can lead to illnesses. For example, the bilirubin produced by the breakdown of red blood cells is converted to bile by the liver. When there is malfunction of this process, there is excess bilirubin in the blood and bile levels are low. As a result, the body struggles with dealing with fatty food. This is why a patient suffering from jaundice is asked to eat a diet with almost zero fat.

Glossary

cephalic phase

first phase of digestion, controlled by the neural response to the stimulus provided by food

cholecystokinin

hormone that stimulates the contraction of the gallbladder to release bile

endocrine system

system that controls the response of the various glands in the body and the release of hormones at the appropriate times

gastric inhibitory peptide

hormone secreted by the small intestine in the presence of fatty acids and sugars; it also inhibits acid production and peristalsis in order to slow down the rate at which food enters the small intestine

gastric phase

digestive phase beginning once food enters the stomach; gastric acids and enzymes process the ingested materials

gastrin

hormone which stimulates hydrochloric acid secretion in the stomach

intestinal phase

third digestive phase; begins when chyme enters the small intestine triggering digestive secretions and controlling the rate of gastric emptying

secretin

hormone which stimulates sodium bicarbonate secretion in the small intestine

somatostatin

hormone released to stop acid secretion when the stomach is empty