امتحانات الشهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديريّـة العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
الرقم:	المدة: أربع ساعات	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

N°	Questions	Réponses		
	Quo onomo	a	b	С
1	Si $arg(z) = \alpha + 2k\pi$, $(k \in \Box)$ et $z' = \frac{iz}{\overline{z}}$ où $z \neq 0$, alors un argument de $\frac{z'}{z}$ est:	$\pi + \alpha$	$\frac{\pi}{2} + \alpha$	$\frac{\pi}{2}$ $-\alpha$
2	Si (u_n) est une suite arithmétique de raison r $(r \neq 0)$, et (v_n) est la suite définie par : $v_n = e^{u_n}$, alors (v_n) est une suite:	géométrique de raison e ^r	arithmétique de raison e ^r	géométrique de raison r
3	Si $z = e^{i\theta} + e^{-i\theta}$ où $\theta \in \left[0; \frac{\pi}{2}\right]$, alors un argument de z est :	π	$\frac{\pi}{2}$	0
4	$\int \frac{\left(\arctan x\right)^2}{1+x^2} dx =$	$(\arctan x)^3 + c$	$\frac{(\arctan x)^2}{2} + c$	$\frac{(\arctan x)^3}{3} + c$

II- (2 points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$ on considère les deux points A(1; 0; 1) et B(-1; 2; 0) et les deux droites (L) et (D) d'équations paramétriques:

$$\text{(L):} \begin{cases} x=2t-1 \\ y=t-1 \\ z=-2t+3 \end{cases} \quad \text{($t\in\square$) et (D):} \begin{cases} x=2 \\ y=m-1 \\ z=-m \end{cases}$$

- 1) Ecrire une équation cartésienne du plan (P) passant par les deux points A et B et parallèle à (D).
- 2) a- Vérifier que la droite (L) est contenue dans (P).b- Montrer que (L) est perpendiculaire à (AB) en A.
- 3) Trouver les coordonnées du point C de (L) d'abscisse négative tel que AC = 6.
- 4) Soit M un point variable de (D). Montrer que le volume du tétraèdre MABC reste constant lorsque M varie sur la droite (D).

III- (3 points)

Soit ABCD un carré direct de côté 1 tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}$ [2 π].

On désigne par I, J, E et F les milieux respectifs des segments [AC], [CD], [IC] et [DI].

On considère la similitude plane directe S qui transforme A en I et C en J.

- 1) Vérifier que le rapport k de S est égal à $\frac{\sqrt{2}}{4}$ et trouver un angle α de S.
- 2) a- Montrer que S(B) = E.b- Déduire l'image du carré ABCD par S.
- 3) Le plan est rapporté à un repère orthonormé direct $(A; \overrightarrow{AB}, \overrightarrow{AD})$.
 - a- Déterminer la forme complexe de S.
 - b- Déduire l'affixe du point W centre de S.
- 4) Soient (P) la parabole de foyer A et de directrice (BC) et (P') l'image de (P) par S.
 - a- Montrer que le point D est sur (P).
 - b- Préciser la tangente à (P') en F.

IV- (3 points)

Une urne contient quatre boules noires et une boule blanche.

Un jeu se déroule de la manière suivante :

Le joueur jette un dé parfait ;

- Si le numéro de la face supérieure du dé est impair, alors une boule blanche est ajoutée à l'urne,
- Si le numéro de la face supérieure du dé est pair, alors une boule noire est ajoutée à l'urne,

Ensuite le joueur tire simultanément, et au hasard, trois boules de l'urne.

On considère les événements suivants:

I: « le numéro de la face supérieure du dé est impair »

N: « les trois boules tirées sont noires ».

- 1) Calculer les probabilités P(N/I) et $P(N \cap I)$ puis vérifier que P(N) = 0.35.
- 2) Les trois boules tirées sont noires. Quelle est la probabilité que le numéro de la face supérieure du dé est pair ?
- 3) On désigne par X la variable aléatoire égale au nombre de boules blanches tirées lors de ce jeu.
 - a- Montrer que P(X=1) = 0.55.
 - b- Déterminer la loi de probabilité de X.
- 4) Chacun de Sami et Karim ont participé à ce jeu une seule fois. Soit S la variable aléatoire égale au nombre total de boules blanches obtenues par les deux joueurs Sami et Karim. Calculer P(S≥1).

V- (**3** points)

Dans la figure ci-contre :

- OFGB est un carré de côté $\sqrt{2}$,
- F est le milieu du segment [OH],
- (d) est la perpendiculaire en H à (OF),
- A est le point de [OH] tel que OA = 2,
- L est le point de [FG] tel que FL=1.

Soit (E) l'ellipse de foyer F, de directrice (d) et passant par B.

Partie A

- 1) Vérifier que l'excentricité de (E) est $e = \frac{\sqrt{2}}{2}$.
- 2) Montrer que A est un sommet de l'ellipse (E).
- 3) Vérifier que O est le centre de l'ellipse (E) et que B est un sommet de (E).

Partie B

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$ tel que $\vec{i} = \frac{1}{2} \overrightarrow{OA}$ et $F(\sqrt{2}; 0)$.

Soit le point S(0;-1).

- 1) Ecrire une équation de (E).
- 2) Vérifier que L est un point de l'ellipse (E).
- 3) Tracer (E).
- 4) Montrer que la droite (LH) est tangente en L à (E) et que la droite (SL) est la normale en L à (E).

VI- (7 points)

Partie A

On considère l'équation différentielle (E): y'' + 2y' + y = x + 2. On pose y = z + x.

- 1) Trouver une équation différentielle (E₁) satisfaite par z.
- 2) Résoudre (E₁) puis déduire la solution générale de (E).
- 3) Déterminer la solution particulière de (E) qui vérifie y(0) = -1 et y'(0) = 3.

Partie B

Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = x + (x-1)e^{-x}$ et $g(x) = 1 + (2-x)e^{-x}$.

On désigne par (C) la courbe représentative de la fonction f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1) a- Dresser le tableau de variations de g . (On ne demande pas les limites de g en $-\infty$ et en $+\infty$).
 - b-Déduire que g(x) > 0 pour tout réel x.
- 2) a- Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
 - b- Déterminer $\lim_{x\to -\infty}\frac{f(x)}{x}$. Interpréter ce résultat graphiquement.
- 3) Soit (L) la droite d'équation: y = x.
 - a- Etudier, suivant les valeurs de x, la position relative de (L) et (C).
 - b- Montrer que la droite (L) est une asymptote à (C) en $+\infty$.
- 4) Vérifier que f'(x) = g(x) et dresser le tableau de variations de f.
- 5) Déterminer les coordonnées du point A de (C) où la tangente à (C) en A est parallèle à (L).
- 6) Montrer que l'équation f(x) = 0 admet une racine unique α et vérifier que $0, 4 < \alpha < 0, 5$.
- 7) Tracer (L) et (C) dans le repère donné.
- 8) f admet une fonction réciproque h. On désigne par (C') la courbe représentative de la fonction h.

Tracer (C') dans le même repère que (C).

- 9) a- Déterminer $\int [x f(x)] dx$.
 - b- On considère les points E(0;-1) de (C) et F(-1;0) de (C').

Calculer l'aire du domaine limité par (C), (C') et le segment [EF].

عدد المسائل: ست

أسس تصحيح مسابقة الرياضيات

	Question I (4 points)	
1	$\arg\left(\frac{z'}{z}\right) = \arg\left(\frac{i}{z}\right) = \arg\left(i\right) - \arg\left(z\right) = \frac{\pi}{2} + \theta \left[2\pi\right] \qquad \mathbf{b}$	1
2	$V_{n+1=}e^{u_{n+1}}=e^{u_n+d}=e^{u_n}.e^d=v_ne^d. \ (v_n) \ est \ une \ suite \ g\'{e}om\'{e}trique \ de \ raison \ r=e^d \qquad \textbf{a}$	1
3	$arg(z) = arg(e^{i\theta} + e^{-i\theta}) [2\pi] = arg(2\cos\theta) = 0 [2\pi]$ c	1
4	$\int \frac{(\arctan x)^2}{1+x^2} dx = \int \frac{(\arctan x)^2}{1+x^2} dx = \int (\arctan x)^2 (\arctan x) dx = \frac{(\arctan x)^3}{3} + c \mathbf{c}$	1

	Question II (4 points)	Points
1	$\vec{AM}.(\vec{AB} \wedge \vec{v}) = 0$, alors $x + 2y + 2z - 3 = 0$	1
2.a	$(L) \subset (P)$.	0.5
2.b	$\overrightarrow{V}_{L} \cdot \overrightarrow{AB} = 0 \text{ et } A \in (L).$	0.5
3)	$AC^2 = 36$, donc $9(t-1)^2 = 36$, donc $t = 3$ ou $t = -1$ pour $t = 3$ donc $x_c = 5 > 0$ rejeted pour $t = -1$ donc $x_c = -1$ Alors $C(-3, -2, 5)$	1
4)	(D) // (P) et M appartient à (D), donc d(M, (P)) est constante A, B et C sont fixes, alors l'aire de ABC est constante Alors, le volume $V = \frac{1}{3} \times d(M, (P)) \times Area_{ABC}$ est constante \overline{OR} Soit $M(2, m-1, -m) \in (D)$. \overline{AM} . $\overline{(AB} \wedge \overline{AC}) = -18$, alors $V = 3$ unités de volume qui est une constante.	1

	Question III (6 points)	Point
1)	$k = \frac{JI}{AC} = \frac{\frac{1}{2}AD}{AC} = \frac{\frac{1}{2}AD}{\frac{1}{2}AD} = \frac{\sqrt{2}}{4} \text{ et } \alpha = \left(\overrightarrow{AC}; \overrightarrow{IJ}\right) = \left(\overrightarrow{IC}; \overrightarrow{IJ}\right) = \frac{\pi}{4}.$	1
2.a	$\frac{IE}{AB} = k \text{ et } (\overrightarrow{AB}, \overrightarrow{IE}) = \alpha. \text{ comme } S(A) = I, \text{ donc } S(B) = E \underline{\mathbf{OR}}$ $ABC \text{ est direct et rectangle isoscèle en B. IEJ est aussi direct et rectangle isoscèle en E.}$ $Comme S(A) = I \text{ et } S(C) = J, \text{ Alors } S(B) = E$	1
2.b	S(A) = I, $S(B) = E$, $S(C) = J$, Alors l'image du carré ABCD est aussi un carré qui est IEJF.	0.5
3a	$\begin{split} z' = az + b; \ a = \ ke^{i\theta} = & \frac{\sqrt{2}}{4} e^{i\frac{\pi}{4}} = \frac{1}{4} + \frac{1}{4}i ; \ S(A) = I \ et \ \ z_I = \frac{1}{2} + \frac{1}{2}i \ \ alors \ \ b = \frac{1}{2} + \frac{1}{2}i . \\ D'où \ z' = & \left(\frac{1}{4} + \frac{1}{4}i\right)z + \frac{1}{2} + \frac{1}{2}i \end{split}$	1.5
3b	$Z_{w} = \frac{b}{1-a} = \frac{2}{5} + \frac{4}{5}i$	0.5
4a	DA = DC, donc D est sur (P)	0.5
4b	$D \in (P)$, donc (DB) est la tangente à (P) en D comme (DB) est la bissectrice de l'angle \widehat{ADC} . $S(DB) = (EF)$, alors (EF) est la tangente à (P') en F.	1

	Question IV (6 points)	Points
1)	$P(B / O) = \frac{C_4^3}{C_6^3} = 0.2 \text{ et } P(B \cap O) = 0.2 \times \frac{1}{2} = 0.1$	1.5
	$P(B \cap \overline{O}) = 0.5 \times \frac{1}{2} = 0.25$ P(B) = 0.1 + 0.25 = 0.35	
2)	$P(\overline{O}/B) = \frac{P(\overline{O} \cap B)}{P(B)} = \frac{P(B) - P(B \cap O)}{P(B)} = \frac{5}{7}$	1
3.a	$P(X=1) = \frac{1}{2} \times \frac{C_4^2 \times C_2^1}{C_6^3} + \frac{1}{2} \times \frac{C_5^2 \times C_1^1}{C_6^3} = 0.55$	1
3.b	Les valeurs possibles de X sont 0, 1 et 2. $P(X = 0) = 0.35 ; P(X = 1) = 0.55; P(X = 2) = 1 - (P(X = 0) + P(X = 1)) = 0.1$	1.5
4	$P(S \ge 1) = 1 - P(S < 1) = 1 - [P(x = 0)]^{2} = 1 - (0.35)^{2} = 0.8775$	1

	Question V (6 points)	
A.1	$e = \frac{BF}{d(B;(d))} = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}$	0.5
A.2	$\frac{AF}{d(A;(d))} = \frac{2-\sqrt{2}}{2\sqrt{2}-2} = \frac{\sqrt{2}}{2} = e \text{ et A appartient à l'axe focal (FH), alors A est un sommet}$	1
A.3	O appartient à l'axe focal; $\frac{OF}{OA} = \frac{\sqrt{2}}{2} = e = \frac{c}{a}$, et O , F et A sont alignés dans ce sens alors O est le centre de (E). OU $e = \frac{c}{a}$ et $AF = a - c = 2 - \sqrt{2}$ donnent $c = \sqrt{2} = OF$ avec O est un point de l'axe focal alors O est le centre de (E) (OB) est perpendiculaire à (OA), alors B appartient à l'axe focal; or $B \in (E)$, alors B est un sommet de (E).	1
B.1	$\frac{x^2}{4} + \frac{y^2}{2} = 1$	0.5
B.2	$L(\sqrt{2};1) \in (E)$	0.5
В.3	(E) B A 3	1
B.4	Une équation de la tangente à (E) en L est $y = \frac{-\sqrt{2}}{2}x + 2$; Une équation de (LH) est $y = \frac{-\sqrt{2}}{2}x + 2$. Donc, (LH) est tangente à (E) en L	1.5

 $L \in (LS)$ et $a_{(LS)} \times a_{(LH)} =$ -1, alors (SL) est la normale à (E) en L.

	Question VI (14 points)	points
A.1	y' = z' + 1; $y'' = z''$; $z'' + 2z' + z = 0$ (E ₁)	0.5
A.2	L'équation caractéristique de (E) est: $r^2 + 2r + 1 = 0$; $r_1 = r_2 = -1$; donc $z = (c_1 + c_2 x)e^{-x}$ est la solution générale de (E ₁); $z = (c_1 + c_2 x)e^{-x}$ est la solution générale de (E).	1.5
A.3	$y(0) = -1 \text{ donne } c_1 = -1 \text{ ; } y'(0) = 3 \text{ donne } c_2 = 1$ $g(x) = 1 + (2 - x)e^{-x} \qquad \underline{x - \infty} \qquad 3 \qquad +\infty$	0.5
B.1 a	$g(x) = 1 + (2 - x)e^{-x}$ $g'(x) = (x - 3)e^{-x}$ $g(x) = 1 + (2 - x)e^{-x}$ $g'(x) = 0 + 1$	1
B.1b	La valeur minimale de g est > 0 then $g(x) > 0$ for all x $1-e^{-3}$	0.5
B.2a	$\lim_{x \to -\infty} f(x) = (-\infty) + (-\infty)(+\infty) = -\infty; \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + \frac{x}{e^x} - \frac{1}{e^x}) = +\infty$	1
B.2 b	$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} (1 + \frac{x+1}{x} e^{-x}) = 1 + (1)(+\infty) = +\infty, \text{ direction asymptotique verticale.}$ $\delta(x) = f(x) - x = (x-1) e^{-x}$	1
B3.a	$\delta(x) = f(x) - x = (x - 1) e^{-x}$ $\delta(x) = 0 ; (L) \text{ coupe } (C) \text{ au point } (1 ; 1)$ $\delta(x) > 0 ; x > 1 \text{ et } (C) \text{ est strictement au-dessus de } (L)$ $\delta(x) < 0 ; x < 1 \text{ and } (C) \text{ est strictement en-dessous de } (L)$	1
B.3 b	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} (\frac{x}{e^x} - \frac{1}{e^x}) = 0 $; (L) est une asymptote à (C) en $+\infty$.	0.5
B.4	$f'(x) = 1 + e^{-x} - e^{-x}(x - 1) = 1 + e^{-x}(1 - x + 1) = 1 + (2 - x)e^{-x} = g(x) > 0$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
B.5	$f'(x_A) = 1$ gives $x_A = 2$; hence, $A(2; 2 + \frac{1}{e^2})$	0.5
B.6	Sur IR, f est définie, continue and strictement croissante and f(x) change de signes (- to +), alors l'équation $f(x) = 0$ admet une unique solution α . $f(0.4) = -0.002 < 0$, $f(0.5) = 0.196 > 0$, alors $0.4 < \alpha < 0.5$	1
B.7		1
B.8	(C) et (C') sont symétriques par rapport à $y = x$; Voir la figure	1
B.9a	$\int (x - f(x))dx = \int (1 - x)e^{-x}dx = xe^{-x} + c$	1
B.9b	$A = \frac{1 \times 1}{2} + 2 \int_0^1 (x - f(x)) dx = \frac{1}{2} + \frac{2}{e} u^2$	1