Word Docs Summary

A very simple point by point summary of the topics of the exam of Recommender System. It may be not complete, because professor Cremonesi has talked about a few other topics (not many!) during his lectures, this is just the list of the chapters from his material on BeeP.

Edited by: William Bonvini

Word Docs Summary

Basic 1

Introduction

Taxonomy

Ratings, predictions and recommendations

Inferring preferences

Non-personalized recommenders

Ratings, predictions and recommendations

Global effects

Basic 2

Requirements

Quality Indicators

Evaluation Techniques

Offline Evaluation

Algorithms for RSs

Evaluation Techniques in depth

Error Metrics

Classification Metrics

Combining Metrics

Ranking Metrics

Evaluating Diversity

Evaluating Novelty

Basic 3

Content Based Filtering

Cosine Similarity

Estimating Ratings

Similarity Matrix

Improving the Item-Content Matrix

TF-IDF

Users Based Filtering

Basic 4

Collaborative User Based

Item Based Collaborative Filtering

Some Considerations about CF

Recommendation as Association Rules

Advanced 1

Estimating ratings as an optimization problem

2-norm vs F-norm

Missing as Negative vs Missing as Random

Overfitting and the regularization of the model

Stochastic Gradient Descent

Learning to rank

BPR

Advanced 2

Matrix Factorization

SVD ++

Model Based Matrix Factorization

Advanced 3

Hybrid Recommender Systems

S SLIM

Context Aware Recommender Systems

Advanced 4

Factorization Machines Introduction Explaining FM's formula

Comparison to CF techniques

Benefits and harms of FMs

Mixing different kinds of filtering

Introduction

- Recommend Systems
- Data Representation

Taxonomy

- categorizing algorithms
- personalized recommenders
- collaborative filtering

Ratings, predictions and recommendations

Inferring preferences

- formal representation of INPUT
- sparsity of URM

Non-personalized recommenders

Ratings, predictions and recommendations

- rating distribution
- computing ratings

Global effects

- general description
- computing averages and biases

Requirements

- Functional
- Non Functional
 - Response Time
 - Scalability
 - Privacy and Security
 - User Interface

Quality Indicators

- Consistency
- Confidence
- Coverage
- Diversity
- Novelty
- Serendipity
- Relevance

Evaluation Techniques

- Direct Users' Feedbacks
- A/B Testing
- Controlled Experiment
- Crowdsourcing

Offline Evaluation

- Ground Truth
- Top-K Recommendations
- Error metrics
- Classification metrics
- Algorithm

Algorithms for RSs

- The recommender algorithm
- Relevant Data Sets
- Model Based Algorithms, Memory Based Algorithms

Evaluation Techniques in depth

- Hold-out technique
- the Netflix Prize
- K-fold evaluation
- LOO technique

Error Metrics

- MAE
- RMSE
- limitations of error metrics
- comparing the distributions of metrics

Classification Metrics

- Recall
- Precision
- the implicit assumption
- missing ratings

Combining Metrics

- Precision or Recall?
- F-Measure
- ROC curve
- Popularity Bias
- Utility

Ranking Metrics

- Ranking in general
- ARHR
- MAP
- MAP's interpretation
- Spearman's Rho
- Kendall's Tau

Evaluating Diversity

- defining diversity
- measuring the distance
- balancing quality and diversity

Evaluating Novelty

- defining novelty
- estimating novelty

Content Based Filtering

- CBF Definition
- ICM

Cosine Similarity

- Measuring Similarity
- The Cosine
- Shrinking

Estimating Ratings

• Estimating

Similarity Matrix

- Definition
- ullet the choice of K

Improving the Item-Content Matrix

- Non Binary attributes
- Attribute weights

TF-IDF

- Definition
- Term Frequency
- Inverse Document Frequency

Users Based Filtering

Definition

Collaborative User Based

- URM
- User Similarity
- Pearson Coefficient
- the delta

Item Based Collaborative Filtering

- IBCF
- how to compute similarity on explicit ratings
- adjusted cosine

Some Considerations about CF

- Normalization
- KNN
- choosing between user based and item based CF

Recommendation as Association Rules

• the point of view of association rules

Estimating ratings as an optimization problem

- recap in IBCF
- minimizing the estimation error
- the optimization problem setting

2-norm vs F-norm

• Frobenius Norm

Missing as Negative vs Missing as Random

- the choice of the assumption
- Frobenius norm's problem
- Quality Metrics for ML approaches

Overfitting and the regularization of the model

- the risk of overfitting
- the regularization term
- the problems of machine learning approaches

Stochastic Gradient Descent

- definition
- the gradient descent problem and the learning rate
- implementing a Stochastic Gradient Descent

Learning to rank

- the learning to Rank approach
- ranking error metrics
 - list-wise metric
 - o point-wise metric
 - o pair-wise metric

BPR

- definition
- stochastic gradient descent
- the risk with the gradient
- BPR with implicit ratings
- BPR error function
 - o regularization term!
- BPR with explicit ratings

Matrix Factorization

- introduction
- FunkSVD
- Latent Factors
- Avoiding Overfitting

SVD ++

- definition
- the assumption on zero elements

Model Based Matrix Factorization

- Adapting SVD++
- matrix formulation
- Asymmetric SVD

Hybrid Recommender Systems

- Definition
- Linear Combination
- disadvantages of linear combination
- Combining Lists
- Pipelining Algorithms
- pipeline disadvantages
- Merging Models

S SLIM

- Definition
- Weighted Average
- the idea of S SLIM
- how to choose the value of alpha

Context Aware Recommender Systems

- definition
- tensor factorization
- how to learn the three matrices
- limitations of tensor factorization

Factorization Machines Introduction

- FM Definition
- Matrix Representation
- FM formulation

Explaining FM's formula

- Constant component
- Vector component
- improved global effects
- matrix component
- handling big numbers of parameters

Comparison to CF techniques

- Similarity to CF with matrix factorization
- Why FMs are better than classical CF techniques

Benefits and harms of FMs

- FMs flexibility, an example
- FMs issues

Mixing different kinds of filtering

- putting together collaborative and content based
- the general problem of content-based predictions
- balancing content-based parameters

Solving the optimization problem

- implementing the algorithm
- the classification problem
- quality of the input