Sistemas Digitais

Buffers 3 estados (Three-state buffers)

• SAÍDA = LOW, HIGH, or Hi-Z.

 Várias saídas podem ser ligadas entre si, no entanto só uma delas pode estar activa.

Aplicação Z-Buffers

(a)

"Drivers" 3-estados

Sistemas Digitais 7ª aula 3-21

Aplicação de Drivers

"Transceiver" 3 - estados

Aplicação de Transceivers

Encoders vs. Decoders

Binary encoders

Muitas aplicações necessitam de sistema de definição de prioridades

Encoder de prioridade de 8 entradas

Equações lógicas dum "Priority-encoder"

$$H7 = I7$$
 $H6 = I6 \cdot I7'$
 $H5 = I5 \cdot I6' \cdot I7'$
...
 $H0 = I0 \cdot I1' \cdot I2' \cdot I3' \cdot I4' \cdot I5' \cdot I6' \cdot I7'$

$$A2 = H4 + H5 + H6 + H7$$

$$A1 = H2 + H3 + H6 + H7$$

$$A0 = H1 + H3 + H5 + H7$$

$$IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)'$$

$$= I0' \cdot I1' \cdot I2' \cdot I3' \cdot I4' \cdot I5' \cdot I6' \cdot I7'$$

"74x148: 8-input priority encoder"

- Active-low I/O
- Input Enable
- "Got Something"
- Enable Output

Tabela de Verdade do IC 74x148

Inputs								Outputs					
ELL	IO_L	I1_L	l2_L	13_L	14_L	15_L	16_L	17_L	A2_L	A1_L	A0_L	GS_L	EO_L
1	Х	х	Х	Х	х	Х	Х	х	1	1	1	1	1
O	X	x	х	x	x	X	х	0	0	0	0	0	1
O	X	х	x	X	x	X	0	1	0	0	1	0	1
O	X	x	x	x	x	0	1	1	0	1	0	0	1
O	X	x	x	x	0	1	1	1	0	1	1	O	1
O	X	x	x	0	1	1	1	1	1	0	O	O	1
O	X	x	0	1	1	1	1	1	1	0	1	O	1
O	X	0	1	1	1	1	1	1	1	1	O	O	1
O	0	1	1	1	1	1	1	1	1	1	1	O	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0

"Priority encoders" em cascata

"32-input priority encoder"

Comparadores de Igualdade

comparador 1-bit

comparador 4-bit

Comparador 8-bits

Comparador

- Verificação Igualdade
 - -PEQQ = ([P7..P0] == [Q7..Q0]);
 - $-PEQQ_L = !([P7..P0] == [Q7..Q0]);$
 - 16 termos produto
- Comparação Magnitude
 - -PGTQ = ([P7..P0] > [Q7..Q0]);
 - $-PGTQ_L = !([P7..P0] > [Q7..Q0]);$
 - 255 termos produto

Somadores

- Bloco básico é denominado "full adder"
 - Somador de 1-bit, produz soma e saídas carry
- Tabela de Verdade:

X	Y	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	O
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Somador "Ripple adder"

Velocidade limitada pelo tamanho da cadeia

74x283 Somador 4-bit

 Usa "carry lookahead" internamente

"Ripple carry" entre grupos

Sistemas Digitais 7ª aula 19-21

"Full subtractor" = "full adder", quase

Multiplicador

multiplicador 8x8

