Orthogonal Vectors

To show that the vectors $ec w_1=-b\hat i+a\hat j$ and $ec w_2=b\hat i-a\hat j$ are both orthogonal to the vector $ec{w}=a\hat{i}+b\hat{j}$, we need to confirm that their dot products with $ec{w}$ are zero. When two vectors have a dot product of zero, they are orthogonal.

Step-by-Step Solution

1. Dot Product of \vec{w} and \vec{w}_1 :

Given:

$$ec{w} = a\hat{i} + b\hat{j}$$

$$ec{w}_1 = -b\hat{i} + a\hat{j}$$

The dot product $\vec{w} \cdot \vec{w}_1$ is:

$$ec{w}\cdotec{w}_1=(a\hat{i}+b\hat{j})\cdot(-b\hat{i}+a\hat{j})$$

Expanding the dot product:

$$=a(-b)+b(a)$$

$$=-ab+ab=0$$

Since $\vec{w} \cdot \vec{w}_1 = 0$, \vec{w}_1 is orthogonal to \vec{w} .

2. Dot Product of \vec{w} and \vec{w}_2 :

Given:

$$ec{w}_2 = b\hat{i} - a\hat{j}$$

The dot product $\vec{w} \cdot \vec{w}_2$ is:

$$ec{w}\cdotec{w}_2=(a\hat{i}+b\hat{j})\cdot(b\hat{i}-a\hat{j})$$

Expanding the dot product:

$$= a(b) + b(-a)$$

$$=ab-ab=0$$

Since $ec{w} \cdot ec{w}_2 = 0$, $ec{w}_2$ is also orthogonal to $ec{w}$.

Conclusion

Both $ec{w}_1$ and $ec{w}_2$ are orthogonal to $ec{w}$ because their dot products with $ec{w}$ are zero.

"Education should be free and accessible to all, but it should be granted only to those who truly deserve it." - Bilal Ahmad Khan, also known as Mr. BILRED