STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES

This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are:

- $\Delta_{\rm f} H^{\rm o}$ Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol
- $\Delta_{\rm f} G^{\rm o}$ Standard molar Gibbs energy of formation at 298.15 K in kI/mol
- S° Standard molar entropy at 298.15 K in J/mol K
- C_p Molar heat capacity at constant pressure at 298.15 K in J/ mol K

The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by:

- The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure.
- The standard state of a pure liquid substance is that of the liquid under the standard state pressure.
- The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure.

An entry of 0.0 for $\Delta_t H^o$ for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available.

The data are derived from the sources listed in the references, from other papers appearing in the *Journal of Physical and Chemical Reference Data*, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.

References

- Cox, J. D., Wagman, D. D., and Medvedev, V. A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2, 1982.
- 3. Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A. N., *JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data*, Vol. 14, Suppl. 1, 1985.
- Chase, M. W., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998.
- Daubert, T. E., Danner, R. P., Sibul, H. M., and Stebbins, C. C., *Physical and Thermodynamic Properties of Pure Compounds: Data Compilation*, extant 1994 (core with 4 supplements), Taylor & Francis, Bristol, PA.
- Pedley, J. B., Naylor, R. D., and Kirby, S. P., Thermochemical Data of Organic Compounds, Second Edition, Chapman & Hall, London, 1986.
- Pedley, J. B., Thermochemical Data and Structures of Organic Compounds, Thermodynamic Research Center, Texas A & M University, College Station, TX, 1994.
- 8. Domalski, E. S., and Hearing, E. D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase, Volume III, *J. Phys. Chem. Ref. Data*, 25, 1–525, 1996.
- 9. Zabransky, M., Ruzicka, V., Majer, V., and Domalski, E. S., Heat Capacity of Liquids, J. Phys. Chem. Ref. Data, Monograph No. 6, 1996.
- Gurvich, L. V., Veyts, I.V., and Alcock, C. B., Thermodynamic Properties of Individual Substances, Fourth Edition, Vol. 1, Hemisphere Publishing Corp., New York, 1989.
- Gurvich, L. V., Veyts, I.V., and Alcock, C. B., Thermodynamic Properties of Individual Substances, Fourth Edition, Vol. 3, CRC Press, Boca Raton, FL, 1994.
- 12. NIST Chemistry Webbook, <webbook.nist.gov>

			Cryst	al			Liq	Juid			Ga	ıs	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _ι G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _ι <i>G</i> ° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _p J/mol K
Substances	not containing carbon:												
Ac	Actinium	0.0		56.5	27.2					406.0	366.0	188.1	20.8
Ag	Silver	0.0		42.6	25.4					284.9	246.0	173.0	20.8
AgBr	Silver(I) bromide	-100.4	-96.9	107.1	52.4								
AgBrO ₃	Silver(I) bromate	-10.5	71.3	151.9									
AgCl	Silver(I) chloride	-127.0	-109.8	96.3	50.8								
AgCIO ₃	Silver(I) chlorate	-30.3	64.5	142.0									
AgCIO ₄	Silver(I) perchlorate	-31.1											
AgF	Silver(I) fluoride	-204.6											
AgF,	Silver(II) fluoride	-360.0											
Agl	Silver(I) iodide	-61.8	-66.2	115.5	56.8								
AgIO ₃	Silver(I) iodate	-171.1	-93.7	149.4	102.9								
AgNO ₃	Silver(I) nitrate	-124.4	-33.4	140.9	93.1								
Ag,	Disilver									410.0	358.8	257.1	37.0
Ag ₂ CrO ₄	Silver(I) chromate	-731.7	-641.8	217.6	142.3								
Ag ₂ O	Silver(I) oxide	-31.1	-11.2	121.3	65.9								
$\overline{Ag_2O_2}$	Silver(II) oxide	-24.3	27.6	117.0	88.0								
Ag_2O_3	Silver(III) oxide	33.9	121.4	100.0									
$\overline{Ag_2O_4S}$	Silver(I) sulfate	-715.9	-618.4	200.4	131.4								
Ag ₂ S	Silver(I) sulfide (argentite)	-32.6	-40.7	144.0	76.5								
Al	Aluminum	0.0		28.3	24.2					330.0	289.4	164.6	21.4
AIB ₃ H ₁₂	Aluminum borohydride					-16.3	145.0	289.1	194.6	13.0	147.0	379.2	
AlBr	Aluminum monobromide									-4.0	-42.0	239.5	35.6

Martin 1			Cryst	al			Lic	uid			Ga	s	
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S °	C _p J/mol K	Δ _ι Η° kJ/mol	Δ _r G° kJ/mol	S º	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
AlBr ₃	Aluminum bromide	-527.2		180.2	100.6					-425.1			
AICI	Aluminum monochloride									-47.7	-74.1	228.1	35.0
AICI ₂	Aluminum dichloride	704.0	200.0	400.0	01.1					-331.0			
AICI ₃	Aluminum chloride	-704.2	-628.8	109.3	91.1					-583.2	000.7	045.0	
AIF	Aluminum monofluoride Aluminum fluoride	-1510.4	-1431.1	66.5	75.1					-258.2 -1204.6	-283.7 -1188.2	215.0 277.1	31.9 62.6
AIF ₃ AIF ₄ Na	Sodium tetrafluoroaluminate	-1510.4	-1431.1	00.0	75.1					-1869.0	-1827.5	345.7	105.9
AIF ₄ Na AIH	Aluminum monohydride									259.2	231.2	187.9	29.4
AIH,	Aluminum hydride	-46.0		30.0	40.2					233.2	201.2	107.5	
AIH ₄ K	Potassium aluminum hydride	-183.7			10.2								
AIH, Li	Lithium aluminum hydride	-116.3	-44.7	78.7	83.2								
AIH, Na	Sodium aluminum hydride	-115.5											
All	Aluminum monoiodide									65.5			36.0
All ₃	Aluminum iodide	-302.9		195.9	98.7					-289.4		223.6	
AIN	Aluminum nitride	-318.0	-287.0	20.2	30.1								
AIO	Aluminum monoxide									91.2	65.3	218.4	30.9
AIO ₄ P	Aluminum phosphate	-1733.8	-1617.9	90.8	93.2								
AIP	Aluminum phosphide	-166.5											
AIS	Aluminum monosulfide									200.9	150.1	230.6	33.4
Al ₂	Dialuminum									485.9	433.3	233.2	36.4
Al ₂ Br ₆	Aluminum hexabromide									-970.7			
Al ₂ Cl ₆	Aluminum hexachloride									-1290.8	-1220.4	490.0	
Al ₂ F ₆	Aluminum hexafluoride									-2628.0			
Al ₂ l ₆	Aluminum hexaiodide									-516.7			
Al ₂ 0	Aluminum oxide (Al ₂ 0)									-130.0	-159.0	259.4	45.7
Al ₂ O ₃	Aluminum oxide (corundum)	-1675.7	-1582.3	50.9	79.0								
Al ₂ S ₃	Aluminum sulfide	-724.0		116.9	105.1								
Am	Americium	0.0										454.0	
Ar	Argon	0.0			04.0					0.0	004.0	154.8	20.8
As As	Arsenic (gray)	0.0 14.6		35.1	24.6					302.5	261.0	174.2	20.8
AsBr.	Arsenic (yellow) Arsenic(III) bromide	-197.5								-130.0	-159.0	363.9	79.2
AsCI ₃	Arsenic(III) broffide Arsenic(III) chloride	-197.5				-305.0	-259.4	216.3		-261.5	-248.9	327.2	75.7
AsF ₃	Arsenic(III) fluoride					-821.3	-774.2	181.2	126.6	-785.8	-770.8	289.1	65.6
AsGa	Gallium arsenide	-71.0	-67.8	64.2	46.2	021.0	114.2	101.2	120.0	700.0	110.0	200.1	
AsH _o	Arsine	71.0	07.0	- 01.2	10.2					66.4	68.9	222.8	38.1
AsH ₂ O ₄	Arsenic acid	-906.3											
Asl _a	Arsenic(III) iodide	-58.2	-59.4	213.1	105.8							388.3	80.6
AsIn	Indium arsenide	-58.6	-53.6	75.7	47.8								
As0	Arsenic monoxide									70.0			
As,	Diarsenic									222.2	171.9	239.4	35.0
As ₂ O ₅	Arsenic(V) oxide	-924.9	-782.3	105.4	116.5								
As ₂ S ₃	Arsenic(III) sulfide	-169.0	-168.6	163.6	116.3								
At	Astatine	0.0											
Au	Gold	0.0		47.4	25.4					366.1	326.3	180.5	20.8
AuBr	Gold(I) bromide	-14.0											
AuBr ₃	Gold(III) bromide	-53.3											
AuCl	Gold(I) chloride	-34.7											
AuCl ₃	Gold(III) chloride	-117.6											
AuF ₃	Gold(III) fluoride	-363.6											
AuH	Gold hydride									295.0	265.7	211.2	29.2
Aul	Gold(I) iodide	0.0											
Au ₂	Digold									515.1	504.0	150.4	36.9
B	Boron (β-rhombohedral)	0.0		5.9	11.1					565.0	521.0	153.4	20.8
BBr	Bromoborane(1)					-220.7	_ეეი г	220 7		238.1	195.4	225.0	32.9
BBr ₃	Boron tribromide					-239.7	-238.5	229.7		-205.6	-232.5	324.2	67.8
BCIO BCIO	Chloroborane(1) Chloroxyborane									-314.0	120.9	213.2	31.7
BCI ₃	Boron trichloride					-427.2	-387.4	206.3	106.7	-403.8	-388.7	290.1	62.7
BCsO ₂	Cesium metaborate	-972.0	-915.0	104.4	80.6	-421.2	-301.4	200.3	100./	-403.0	-300.7	29U. I	UZ.1
BF	Fluoroborane(1)	-312.0	910.0	104.4	50.0					-122.2	-149.8	200.5	29.6
BFO	Fluorooxyborane									-607.0	1+3.0	۷.00.3	
	Boron trifluoride									-1136.0	-1119.4	254.4	
										1 100.0	1110.4	_J-,-†	
BF ₃	Aminetrifluoroboron	-1353.9											
		-1353.9								-854.0			

March Marc				Cryst	al			Lic	luid			Ga	s	
Metablook and if you morelanicy -943 7234 380 -941	formula	Name		Δ _f G °	<i>S</i> ⁰			Δ _f <i>G</i> °	S º					
194,		Borane(1)									442.7	412.7		
Big		N : /	-794.3	-723.4	38.0									
Pint Potestam beochystride 1928 1928 799 208 209 2												93.3	188.2	36.0
											-994.1			
Billion Borlown borrowydride 1818 1239 1013 68.8														
Secon inconder		-												
Month Mont			-188.6	-123.9	101.3	86.8					74.4	00.7	0.40.0	70.0
Big Different metaborate 1002 2 9761 515 508 508			001.6	000.4	90.0	66.7					/1.1	20.7	349.2	70.8
Bell														
Billion Solium mutaborate 977,0 992,7 72,5 65,9											C 47 F	C14 E	010.0	20.5
Both											047.3	014.3	212.3	
Boyn Born dicoide			-311.0	-320.1	73.3						25.0	-4.0	203.5	20.2
Books Bulbintum metaborate 9710 9130 943 741														
Bottom managaling			-971 N	-913 N	943	74 1					-300.4	-505.5	223.0	
B			371.0	310.0	34.0	77.1					342 0	288.8	216.2	30.0
B_C														
Part							-523 0	-464 8	262.3	137 7				
B, B,							223.0	.0 1.0						
B_O														
Bond 1,273 1,943 54.0 62.8 48.18 482.0 27.8 65.9 Bond 1,473 1,414	2 0													
B.S. Algorithm 240.6 100.0 111.7 67.0 54.0 200.0 111.7 67.0 54.0 200.0 184.0 200.0 184.0 200.0 184.0 200.0 184.0 200.0 189.5 186.0 392.7 197.8 181.0 181.0 181.0 181.0 200.0 90.6 90.0 90.6 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0	2 2		-1273.5	-1194.3	54.0	62.8								
Bit Min	2 3													
B_NR_0, Sodium tetraboranet	2 0	Borazine					-541.0	-392.7	199.6					
Byadon Soutium tetrationate -3291.1 3096.0 189.5 189.8 189.8	3 0 3										66.1	184.3	280.3	
B, H ₁ branche (9) 42,7 171.8 1842 151.1 732 173.6 280.6 98.6 98.6 98.6 98.6 18.4 19.1 732 173.8 18.2 18.2 18.3 28.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 1			-3291.1	-3096.0	189.5	186.8								
Big Hexaborane(10)	4 2 1						42.7	171.8	184.2	151.1	73.2	173.6	280.6	99.6
B, H ₃ Monaborane(10) Sea	3 3													
B _H _H _A Decaborane(15) 158.4 37.5 36.4 187.0 188.1 38.5 37.5 36.4 187.0 188.1 38.5 38.5 188.1 38.5														
B _A H _A Decaborane(14) September	B.H.										158.4	357.5	364.9	187.0
Ba Barium 0.0 62.5 28.1 180.0 146.0 170.2 20.8 BaCl, 10 Barium chloride -855.0 -806.7 123.7 75.1		3 7												
BaCl, Ilog. Barlum chloride -855.0 -806.7 123.7 75.1 BaCl, Ilog. Barlum chloride dilhydrate -1456.9 -1293.2 203.0 BaF. Barlum fluoride -1207.1 -1156.8 96.4 71.2 BaH, O. Barlum hydroide -1277.1 -138.2 63.0 46.0 BaH, O. Barlum hydroide -1947.7 -138.2 63.0 46.0 BaN, O. Barlum hydroide -944.7 -188.2 -115.4 -112.0			0.0		62.5	28.1					180.0	146.0	170.2	20.8
BaCl, H, Q, Sarium chloride dihydrate 1456.9 -1293.2 203.0	BaBr ₂	Barium bromide	-757.3	-736.8	146.0									
BaFs Barlum fluoride -1207.1 -1156.8 96.4 71.2 BaH, Barlum Nydride -177.0 -138.2 63.0 46.0 BaH, Qarlum Nydrode -944.7 -944.7 -84.2 -84.0 -84.4 -84.0 -84.0		Barium chloride	-855.0	-806.7	123.7	75.1								
Ball, 0, 2 Barlum hydroxide -177.0 - 138.2 - 63.0 - 46.0 Ball, 0, 2 Barlum hydroxide -944.7			-1456.9	-1293.2	203.0									
Barly O ₂ Barlum Inydroxide -944.7 Bal ₂ O ₃ Barlum Indide -602.1 BaN ₂ O ₄ Barlum Initrate -768.2 BaN ₂ O ₄ Barlum Initrate -988.0 -792.6 214.0 151.4 BaO Barlum oxide -548.0 -520.3 72.1 47.3 -112.0 BaO Barlum sulfide -460.0 -450.0 782.2 101.8 BaS Barlum sulfide -460.0 -450.0 782.2 49.4 Be Beryllium bromide -460.0 -450.0 87.2 49.4 Be Beryllium bromide -353.5 108.0 69.4 BeCl ₂ Beryllium bromide -1026.8 -979.4 53.4 51.8 Betl ₂ O ₂ Beryllium ydroxide -902.5 815.0 45.5 62.1 Betl ₂ O ₃ Beryllium sulfate -1026.8 -979.4 53.4 51.8 Bel ₂ O ₃ Beryllium sulfate -1026.8 -979.4 53.4 51.8 Bel ₂ O ₄ </td <td>BaF,</td> <td>Barium fluoride</td> <td>-1207.1</td> <td></td> <td>-1156.8</td> <td>96.4</td> <td>71.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BaF,	Barium fluoride	-1207.1		-1156.8	96.4	71.2							
Bal_2 Barium iodide -602.1 BaN_Q, Q Barium initrite -768.2 BaN_Q, Q Barium nitrite -988.0 -792.6 214.0 151.4 BaO Barium oxide -548.0 -520.3 72.1 47.3 -112.0 BaO Barium sulfate -1473.2 -1362.2 101.8 -112.0 BaS Barium sulfate -460.0 -456.0 78.2 49.4	BaH,	Barium hydride	-177.0	-138.2	63.0	46.0								
BaN, Q₁ all Barium nitrite -768.2 blaN, Q₂ all Barium nitrite -798.0 class - 792.6 c	BaH,O,	Barium hydroxide	-944.7											
Bally Q ₈ Barium nitrate Ba80	Bal,	Barium iodide	-602.1											
Ba0 Barium oxide -548.0 -520.3 72.1 47.3 -112.0 BaQ,S Barium sulfate -1473.2 -1362.2 132.2 101.8 BaS Barium sulfate -1473.2 -1362.2 132.2 101.8 Be Beryllium sulfate -460.0 -466.0 78.2 49.4 Be Beryllium bromide -353.5 108.0 69.4 BeC1 ₂ Beryllium chloride -449.4 -445.6 75.8 62.4 Bet ₂ Beryllium fluoride -1026.8 -979.4 53.4 51.8 Bet ₂ Beryllium phydroxide -902.5 -815.0 45.5 62.1 Bet ₂ Beryllium oxide -902.5 -815.0 45.5 62.1 Bet ₂ Beryllium sulfate -1205.2 -103.8 77.9 85.7 BeS Beryllium sulfate -234.3 34.0 34.0 BiGO Bismuth boxychloride -366.9 -322.1 120.5 BiGO Bismuth hydroxide </td <td>BaN₂O₄</td> <td>Barium nitrite</td> <td>-768.2</td> <td></td>	BaN ₂ O ₄	Barium nitrite	-768.2											
BaO _s S Barium sulfide -1473.2 -1362.2 132.2 101.8 BaS Barium sulfide -460.0 -456.0 78.2 49.4 Be Beryllium bromide 0.0 9.5 16.4 324.0 286.6 136.3 20.8 BeBry Beryllium bromide -353.5 108.0 69.4		Barium nitrate	-988.0	-792.6	214.0	151.4								
Bas Barium sulfide -460.0 -456.0 78.2 49.4 Be Beryllium 0.0 -9.5 16.4 324.0 286.6 136.3 20.8 BeBr ₂ Beryllium bromide -353.5 108.0 69.4	BaO	Barium oxide	-548.0	-520.3	72.1	47.3					-112.0			
Be	BaO ₄ S	Barium sulfate	-1473.2	-1362.2	132.2	101.8								
BeBr Beryllium bromide -353.5 108.0 69.4	BaS	Barium sulfide	-460.0	-456.0	78.2	49.4								
BeCl ₂ beryllium chloride -490.4 -445.6 r/s.8 r/s.8 r/s.8 r/s.4 r/s.4 r/s.6 r/s.8 r/s.8 r/s.4 r/s.6 r/s.8 r/s		Beryllium	0.0		9.5	16.4					324.0	286.6	136.3	20.8
BeF2 Beryllium fluoride -1026.8 -979.4 53.4 51.8 BeH2 02 Beryllium hydroxide -902.5 -815.0 45.5 62.1 Be1 2 Beryllium oxide -192.5 121.0 71.1 Be0 3 Beryllium oxide -609.4 -580.1 13.8 25.6 Be0.5 Beryllium sulfate -1205.2 -1093.8 77.9 85.7 BeS Beryllium sulfate -234.3 34.0 34.0 Bi is muth 0.0 56.7 25.5 207.1 168.2 187.0 20.8 BiClO Bismuth bxychloride -366.9 -322.1 120.5 207.1 168.2 187.0 20.8 BiCl3 Bismuth hydroxide -379.1 -315.0 177.0 105.0 -265.7 -256.0 358.9 79.7 BiH3 O3 Bismuth hydroxide -711.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 -175.3 <th< td=""><td></td><td>Beryllium bromide</td><td>-353.5</td><td></td><td>108.0</td><td>69.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Beryllium bromide	-353.5		108.0	69.4								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Beryllium chloride	-490.4	-445.6	75.8									
Bel_2 Beryllium iodide -192.5 121.0 71.1	BeF ₂	Beryllium fluoride	-1026.8	-979.4	53.4	51.8								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Beryllium hydroxide		-815.0		62.1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1093.8										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						25.5					207.1	168.2	187.0	20.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-315.0	177.0	105.0					-265.7	-256.0	358.9	79.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-711.3											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-175.3										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											219.7			36.9
Bi _g S ₃ Bismuth sulfide -143.1 -140.6 200.4 122.2 Bk Berkelium 0.0 The summer of the su				-493.7	151.5	113.5								
Bk Berkelium 0.0 Br Bromine (atomic) 111.9 82.4 175.0 20.8 BrCl Bromine chloride 14.6 -1.0 240.1 35.0														
Br Bromine (atomic) 111.9 82.4 175.0 20.8 BrCl Bromine chloride 14.6 -1.0 240.1 35.0				-140.6	200.4	122.2								
BrCl Bromine chloride 14.6 -1.0 240.1 35.0			0.0											
BrCl ₃ Si Bromotrichlorosilane 350.1 90.9											14.6	-1.0		
	BrCl ₃ Si	Bromotrichlorosilane											350.1	90.9

			Cryst	al			Liq	uid			Ga	ıs	
Molecular formula	Name	Δ _t H° kJ/mol	Δ _ι G° kJ/mol	Sº J/mol K	C _p J/mol K	Δ _f H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	<i>C_p</i> J/mol K
BrCs	Cesium bromide	-405.8	-391.4	113.1	52.9								
BrCu	Copper(I) bromide	-104.6	-100.8	96.1	54.7								
BrF	Bromine fluoride									-93.8	-109.2	229.0	33.0
BrF ₃	Bromine trifluoride					-300.8	-240.5	178.2	124.6	-255.6	-229.4	292.5	66.6
BrF ₅	Bromine pentafluoride					-458.6	-351.8	225.1		-428.9	-350.6	320.2	99.6
BrGe	Germanium monobromide									235.6			37.1
BrGeH ₃	Bromogermane											274.8	56.4
BrH	Hydrogen bromide									-36.3	-53.4	198.7	29.1
BrHSi	Bromosilylene									-464.4			
BrH₃Si	Bromosilane											262.4	52.8
BrH ₄ N	Ammonium bromide	-270.8	-175.2	113.0	96.0								
Brl	lodine bromide									40.8	3.7	258.8	36.4
Brln	Indium(I) bromide	-175.3	-169.0	113.0						-56.9	-94.3	259.5	36.7
BrK	Potassium bromide	-393.8	-380.7	95.9	52.3								
BrKO ₃	Potassium bromate	-360.2	-271.2	149.2	105.2								
BrKO ₄	Potassium perbromate	-287.9	-174.4	170.1	120.2								
BrLi	Lithium bromide	-351.2	-342.0	74.3									
BrNO	Nitrosyl bromide									82.2	82.4	273.7	45.5
BrNa	Sodium bromide	-361.1	-349.0	86.8	51.4					-143.1	-177.1	241.2	36.3
BrNaO ₃	Sodium bromate	-334.1	-242.6	128.9									
Br0	Bromine monoxide									125.8	109.6	233.0	34.2
BrO ₂	Bromine dioxide									152.0	155.0	271.1	45.4
BrRb	Rubidium bromide	-394.6	-381.8	110.0	52.8								
BrSi	Bromosilyldyne									209.0			38.6
BrTI	Thallium(I) bromide	-173.2	-167.4	120.5						-37.7			
Br.	Bromine					0.0		152.2	75.7	30.9	3.1	245.5	36.0
Br _o Ca	Calcium bromide	-682.8	-663.6	130.0				.02.2					
Br ₂ Cd	Cadmium bromide	-316.2	-296.3	137.2	76.7								
Br ₂ Co	Cobalt(II) bromide	-220.9	200.0		79.5								
Br ₂ Cr	Chromium(II) bromide	-302.1			70.0								
Br ₂ Cu	Copper(II) bromide	-141.8											
Br ₂ Gu Br ₂ Fe	Iron(II) bromide	-249.8	-238.1	140.6									
Br ₂ H ₂ Si	Dibromosilane	240.0	200.1	140.0								309.7	65.5
Br ₂ Hg	Mercury(II) bromide	-170.7	-153.1	172.0								000.7	00.0
Br ₂ Hg ₂	Mercury(I) bromide	-206.9	-181.1	218.0									
Br ₂ Ng	Magnesium bromide	-524.3	-503.8	117.2									
Br ₂ Mn	Manganese(II) bromide	-384.9	-300.0	117.2									
Br ₂ Nii	Nickel(II) bromide	-212.1							-				
Br ₂ NI Br ₂ Pb	Lead(II) bromide	-278.7	-261.9	161.5	80.1								
Br ₂ Pt	Platinum(II) bromide	-82.0	-201.9	101.5	00.1								
		-02.0				12.0							
Br ₂ S ₂	Sulfur bromide					-13.0							-
Br ₂ Se	Selenium dibromide	040.5								-21.0			
Br ₂ Sn	Tin(II) bromide	-243.5	007.4	405.4	75.0								
Br ₂ Sr	Strontium bromide	-717.6	-697.1	135.1	75.3								
Br ₂ Ti	Titanium(II) bromide	-402.0											
Br ₂ Zn	Zinc bromide	-328.7	-312.1	138.5									
Br ₃ Ce	Cerium(III) bromide	-891.4											
Br ₃ CISi	Tribromochlorosilane											377.1	95.3
Br ₃ Dy	Dysprosium(III) bromide	-836.2											
Br ₃ Fe	Iron(III) bromide	-268.2											
Br ₃ Ga	Gallium(III) bromide	-386.6	-359.8	180.0									
Br₃HSi	Tribromosilane					-355.6	-336.4	248.1		-317.6	-328.5	348.6	80.8
Br ₃ In	Indium(III) bromide	-428.9								-282.0			
Br ₃ OP	Phosphoric tribromide	-458.6										359.8	89.9
Br ₃ P	Phosphorus(III) bromide					-184.5	-175.7	240.2		-139.3	-162.8	348.1	76.0
Br₃Pt	Platinum(III) bromide	-120.9											
Br ₃ Re	Rhenium(III) bromide	-167.0											
Br₃Ru	Ruthenium(III) bromide	-138.0											
Br ₃ Sb	Antimony(III) bromide	-259.4	-239.3	207.1						-194.6	-223.9	372.9	80.2
Br ₃ Sc	Scandium bromide	-743.1											
Br ₃ Ti	Titanium(III) bromide	-548.5	-523.8	176.6	101.7								
Br ₄ Ge	Germanium(IV) bromide					-347.7	-331.4	280.7		-300.0	-318.0	396.2	101.8
Br ₄ Pa	Protactinium(IV) bromide	-824.0	-787.8	234.0									
Br ₄ Pt	Platinum(IV) bromide	-156.5											
Br ₄ Si	Tetrabromosilane					-457.3	-443.9	277.8		-415.5	-431.8	377.9	97.1
Br ₄ Sn	Tin(IV) bromide	-377.4	-350.2	264.4		·				-314.6	-331.4	411.9	103.4
4 -	V 1												

			Cryst	al			Lic	quid			Ga	s	
Molecular formula	Name	Δ _i H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p
Br₄Te	Tellurium tetrabromide	-190.4	-										
Br₄Ti	Titanium(IV) bromide	-616.7	-589.5	243.5	131.5					-549.4	-568.2	398.4	100.8
Br ₄ V	Vanadium(IV) bromide									-336.8			
Br₄Zr	Zirconium(IV) bromide	-760.7											
Br ₅ P	Phosphorus(V) bromide	-269.9											
Br ₅ Ta	Tantalum(V) bromide	-598.3											
Br ₆ W	Tungsten(VI) bromide	-348.5		- 44.0	25.0							1510	
Ca	Calcium	0.0	740.0	41.6	25.9					177.8	144.0	154.9	
CaCl ₂	Calcium chloride	-795.4	-748.8	108.4	72.9								
CaF ₂	Calcium fluoride	-1228.0	-1175.6	68.5	67.0								
CaH ₂ CaH ₂ O ₃	Calcium hydride	-181.5 -985.2	-142.5 -897.5	41.4 83.4	41.0 87.5								
Cal,	Calcium hydroxide Calcium iodide	-533.5	-528.9	142.0	07.3								
CaN ₂ O ₂	Calcium nitrate	-938.2	-742.8	193.2	149.4								
CaO	Calcium oxide	-634.9	-603.3	38.1	42.0								
CaO₄S	Calcium sulfate	-1434.5	-1322.0	106.5	99.7								
CaS	Calcium sulfide	-482.4	-477.4	56.5	47.4								
Ca ₃ O ₈ P ₂	Calcium phosphate	-4120.8	-3884.7	236.0	227.8								
Cd Cd	Cadmium	0.0	5551.7		51.8	26.0					111.8		167.7
CdCl	Cadmium chloride	-391.5	-343.9	115.3	74.7								.07.7
CdF ₂	Cadmium fluoride	-700.4	-647.7	77.4									
CdH ₂ O ₂	Cadmium hydroxide	-560.7	-473.6	96.0									
Cdl	Cadmium iodide	-203.3	-201.4	161.1	80.0								
CdO	Cadmium oxide	-258.4	-228.7	54.8	43.4								
CdO ₄ S	Cadmium sulfate	-933.3	-822.7	123.0	99.6								
CdS	Cadmium sulfide	-161.9	-156.5	64.9					-				
CdTe	Cadmium telluride	-92.5	-92.0	100.0									
Ce	Cerium (γ, fcc)	0.0		72.0	26.9					423.0	385.0	191.8	23.1
CeCl ₃	Cerium(III) chloride	-1060.5	-984.8	151.0	87.4								
Cel ₃	Cerium(III) iodide	-669.3			-								
CeO ₂	Cerium(IV) oxide	-1088.7	-1024.6	62.3	61.6								
CeS	Cerium(II) sulfide	-459.4	-451.5	78.2	50.0								
Ce ₂ O ₃	Cerium(III) oxide	-1796.2	-1706.2	150.6	114.6								
Cf	Californium	0.0											
CI	Chlorine (atomic)									121.3	105.3	165.2	21.8
CICs	Cesium chloride	-443.0	-414.5	101.2	52.5								
CICsO ₄	Cesium perchlorate	-443.1	-314.3	175.1	108.3								
CICu	Copper(I) chloride	-137.2	-119.9	86.2	48.5								
CIF	Chlorine fluoride									-50.3	-51.8	217.9	32.1
CIFO ₃	Perchloryl fluoride									-23.8	48.2	279.0	64.9
CIF ₃	Chlorine trifluoride					-189.5				-163.2	-123.0	281.6	63.9
CIF ₅ S	Sulfur chloride pentafluoride					-1065.7				455.0	4040	0.47.0	
CIGe	Germanium monochloride				-					155.2	124.2	247.0	36.9
CIGeH ₃	Chlorogermane				-						05.0	263.7	54.7
CIHO	Hydrogen chloride Hypochlorous acid									-92.3 -78.7	-95.3 -66.1	186.9 236.7	29.1 37.2
CIHO ₄	Perchloric acid					-40.6				-70.7	-00.1		- 37.2
CIH ₃ Si	Chlorosilane											250.7	51.0
CIH ₄ N	Ammonium chloride	-314.4	-202.9	94.6	84.1	-						200.1	01.0
CIH,NO,	Ammonium perchlorate	-295.3	-88.8	186.2	04.1								
CIH ₄ NO ₄	Phosphonium chloride	-145.2	55.0	100.2									
CII	Iodine chloride	140.2			-	-23.9	-13.6	135.1		17.8	-5.5	247.6	35.6
Clin	Indium(I) chloride	-186.2								-75.0			
CIK	Potassium chloride	-436.5	-408.5	82.6	51.3					-214.6	-233.3	239.1	36.5
CIKO ₃	Potassium chlorate	-397.7	-296.3	143.1	100.3								
CIKO ₄	Potassium perchlorate	-432.8	-303.1	151.0	112.4								
CILi	Lithium chloride	-408.6	-384.4	59.3	48.0								
CILiO ₄	Lithium perchlorate	-381.0											
CINO	Nitrosyl chloride									51.7	66.1	261.7	44.7
CINO ₂	Nitryl chloride									12.6	54.4	272.2	53.2
CINa	Sodium chloride	-411.2	-384.1	72.1	50.5								
CINaO ₂	Sodium chlorite	-307.0											
CINaO ₃	Sodium chlorate	-365.8	-262.3	123.4									
OINL- O	Cadima applants	-383.3	-254.9	142.3			-						
CINaO ₄	Sodium perchlorate	-303.3	204.0	172.0									
CINAU ₄	Chlorine oxide	-303.3	204.0	142.0						101.8	98.1	226.6	31.5

			Cryst	al			Liq	uid			Ga	s	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	Sº	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S º	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
CIO ₂	Chlorine dioxide									102.5	120.5	256.8	42.0
CIO ₂	Chlorine superoxide (CIOO)	407.0	200.0	101.1						89.1	105.0	263.7	46.0
CIO₄Rb CIRb	Rubidium perchlorate Rubidium chloride	-437.2 -435.4	-306.9 -407.8	95.9	52.4								-
CISi	Chlorosilylidyne	-430.4	-407.0	90.9	JZ.4					189.9			36.9
CITI	Thallium(I) chloride	-204.1	-184.9	111.3	50.9					-67.8			
CI,	Chlorine	20								0.0		223.1	33.9
Cl ₂ Co	Cobalt(II) chloride	-312.5	-269.8	109.2	78.5								
Cl ₂ Cr	Chromium(II) chloride	-395.4	-356.0	115.3	71.2								
Cl ₂ CrO ₂	Chromyl chloride			-		-579.5	-510.8	221.8		-538.1	-501.6	329.8	84.5
Cl ₂ Cu	Copper(II) chloride	-220.1	-175.7	108.1	71.9								
Cl ₂ Fe	Iron(II) chloride	-341.8	-302.3	118.0	76.7								
Cl ₂ H ₂ Si	Dichlorosilane											285.7	60.5
CI ₂ Hg	Mercury(II) chloride	-224.3	-178.6	146.0									
Cl ₂ Hg ₂	Mercury(I) chloride	-265.4	-210.7	191.6									
Cl ₂ Mg	Magnesium chloride	-641.3	-591.8	89.6	71.4								
Cl ₂ Mn Cl ₃ Ni	Manganese(II) chloride	-481.3	-440.5	118.2 97.7	72.9 71.7								-
Cl ₂ NI	Nickel(II) chloride Chlorine monoxide	-305.3	-259.0	97.7	/ 1./	-				80.3	97.9	266.2	45.4
Cl ₂ OS	Thionyl chloride					-245.6			121.0	-212.5	-198.3	309.8	66.5
Cl ₂ O ₃ S	Sulfuryl chloride					-394.1			134.0	-364.0	-320.0	311.9	77.0
CI ₂ O ₂ U	Uranyl chloride	-1243.9	-1146.4	150.5	107.9	00 1.1			101.0		020.0	011.0	77.0
Cl ₂ Pb	Lead(II) chloride	-359.4	-314.1	136.0									
Cl _a Pt	Platinum(II) chloride	-123.4											
Cl ₂ S	Sulfur dichloride					-50.0							
Cl ₂ S ₂	Sulfur chloride					-59.4							
Cl ₂ Sn	Tin(II) chloride	-325.1											
Cl ₂ Sr	Strontium chloride	-828.9	-781.1	114.9	75.6								
Cl ₂ Ti	Titanium(II) chloride	-513.8	-464.4	87.4	69.8								
Cl ₂ Zn	Zinc chloride	-415.1	-369.4	111.5	71.3					-266.1			
Cl ₂ Zr	Zirconium(II) chloride	-502.0											
Cl ₃ Cr	Chromium(III) chloride	-556.5	-486.1	123.0	91.8								
Cl ₃ Dy	Dysprosium(III) chloride	-1000.0			100.0								
Cl ₃ Er Cl ₃ Eu	Erbium chloride Europium(III) chloride	-998.7 -936.0			100.0								
Cl ₃ Eu	Iron(III) chloride	-399.5	-334.0	142.3	96.7								
Cl ₃ Ga	Gallium(III) chloride	-524.7	-454.8	142.0	30.1								
Cl ₃ Gd	Gadolinium(III) chloride	-1008.0			88.0								
Cl _o HSi	Trichlorosilane					-539.3	-482.5	227.6		-513.0	-482.0	313.9	75.8
Cl ₃ Ho	Holmium chloride	-1005.4			88.0								
Cl ₃ In	Indium(III) chloride	-537.2								-374.0			
Cl ₃ Ir	Iridium(III) chloride	-245.6											
Cl ₃ La	Lanthanum chloride	-1072.2			108.8								
Cl ₃ Lu	Lutetium chloride	-945.6								-649.0			
CI ₃ N	Nitrogen trichloride						230.0						
Cl ₃ Nd	Neodymium chloride	-1041.0			113.0	507.1	500.0	200.5				205.5	24.0
CI ₃ OP CI ₃ OV	Phosphoric trichloride					-597.1	-520.8	222.5	138.8	-558.5	-512.9	325.5	84.9
Cl ₃ OV	Vanadyl trichloride Osmium(III) chloride	-190.4				-734.7	-668.5	244.3		-695.6	-659.3	344.3	89.9
Cl ₃ US	Phosphorus(III) chloride	-190.4				-319.7	-272.3	217.1		-287.0	-267.8	311.8	71.8
Cl ₃ Pr	Praseodymium chloride	-1056.9			100.0	J13.1	212.3	411.1		201.0	-201.0	311.0	11.0
Cl ₃ F1	Platinum(III) chloride	-182.0			100.0								
Cl ₃ Re	Rhenium(III) chloride	-264.0	-188.0	123.8	92.4								-
Cl ₃ Rh	Rhodium(III) chloride	-299.2											
Cl ₃ Ru	Ruthenium(III) chloride	-205.0											
Cl ₃ Sb	Antimony(III) chloride	-382.2	-323.7	184.1	107.9								-
Cl ₃ Sc	Scandium chloride	-925.1											
Cl ₃ Sm	Samarium(III) chloride	-1025.9											
Cl ₃ Tb	Terbium chloride	-997.0											
Cl ₃ Ti	Titanium(III) chloride	-720.9	-653.5	139.7	97.2								
CI ₃ TI	Thallium(III) chloride	-315.1											
Cl ₃ Tm	Thulium chloride	-986.6											
CI ₃ U	Uranium(III) chloride	-866.5	-799.1	159.0	102.5								
Cl ₃ V	Vanadium(III) chloride	-580.7	-511.2	131.0	93.2					750.0			75.5
Cl ₃ Y	Yttrium chloride	-1000.0								-750.2			75.0
Cl ₃ Yb	Ytterbium(III) chloride	-959.8											

			Cryst	al			Liq	uid			Ga	s	
Molecular formula	Name	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
Cl ₄ Ge	Germanium(IV) chloride					-531.8	-462.7	245.6		-495.8	-457.3	347.7	96.1
Cl₄Hf	Hafnium(IV) chloride	-990.4	-901.3	190.8	120.5					-884.5	-		
Cl ₄ Pa	Protactinium(IV) chloride	-1043.0	-953.0	192.0									
Cl ₄ Pb	Lead(IV) chloride					-329.3							
Cl ₄ Pt	Platinum(IV) chloride	-231.8				207.0		200 7	1.15.0			200 7	
Cl ₄ Si	Tetrachlorosilane					-687.0	-619.8	239.7	145.3	-657.0	-617.0	330.7	90.3
Cl ₄ Sn	Tin(IV) chloride	000.4			400.5	-511.3	-440.1	258.6	165.3	-471.5	-432.2	365.8	98.3
CI ₄ Te	Tellurium tetrachloride	-326.4	10011	100.4	138.5					004.4	000.0	200.7	107.5
CI ₄ Th	Thorium(IV) chloride	-1186.2	-1094.1	190.4	120.3	004.0	707.0	050.0	145.0	-964.4	-932.0	390.7	107.5
CI ₄ Ti	Titanium(IV) chloride	1010.0	000.0	107.1	100.0	-804.2	-737.2	252.3	145.2	-763.2	-726.3	353.2	95.4
CI ₄ U	Uranium(IV) chloride	-1019.2	-930.0	197.1	122.0	-569.4	-503.7	255.0		-809.6 -525.5	-786.6	419.0 362.4	96.2
CI₄V CI₄Zr	Vanadium(IV) chloride Zirconium(IV) chloride	-980.5	-889.9	181.6	119.8	-309.4	-303.7	255.0		-020.0	-492.0	302.4	90.2
Cl₂Nb	Niobium(V) chloride	-797.5	-683.2	210.5	148.1					-703.7	-646.0	400.6	120.8
CI ₅ ND	Phosphorus(V) chloride	-443.5	-005.2	210.5	140.1					-374.9	-305.0	364.6	112.8
Cl ₅ Pa	Protactinium(V) chloride	-1145.0	-1034.0	238.0						-3/4.3	-303.0	304.0	112.0
CI ₅ Ta	Tantalum(V) chloride	-859.0	-1034.0	230.0									
CI ₆ U	Uranium(VI) chloride	-1092.0	-962.0	285.8	175.7					-1013.0	-928.0	431.0	
CI ₆ U	Tungsten(VI) chloride	-602.5	302.0	۷.00.0	173.7					-513.8	320.0	731.0	
Cm	Curium	0.0								313.0			
Co	Cobalt	0.0		30.0	24.8					424.7	380.3	179.5	23.0
CoF ₂	Cobalt(II) fluoride	-692.0	-647.2	82.0	68.8					74.7		113.3	
CoH ₂ O ₃	Cobalt(II) huoride Cobalt(II) hydroxide	-539.7	-454.3	79.0	00.0								
Col ₂	Cobalt(II) hydroxide	-88.7	-404.3	19.0									
CoN ₂ O ₂	Cobalt(II) nitrate	-420.5											
C00 ₂ O ₆	Cobalt(II) oxide	-237.9	-214.2	53.0	55.2								
CoO ₄ S	Cobalt(II) sulfate	-888.3	-782.3	118.0	33.2								
CoS	Cobalt(II) sulfide	-82.8	-702.3	110.0									
Co ₂ S ₃	Cobalt(III) sulfide	-147.3											
Co ₂ O ₄	Cobalt(II,III) oxide	-891.0	-774.0	102.5	123.4								
Cr Cr	Chromium	0.0	-114.0	23.8	23.4					396.6	351.8	174.5	20.8
CrF ₂	Chromium(II) fluoride	-778.0		23.0	23.4					390.0	331.0	174.3	
CrF ₂	Chromium(III) fluoride	-1159.0	-1088.0	93.9	78.7								
Crl ₃	Chromium(II) iodide	-156.9	-1000.0	33.3	70.7								
Crl ₂	Chromium(III) iodide	-205.0											
CrO _o	Chromium(IV) oxide	-598.0											
CrO ₂	Chromium(VI) oxide	330.0								-292.9		266.2	56.0
CrO₄Pb	Lead(II) chromate	-930.9								232.3		200.2	
Cr ₂ FeO ₄	Chromium iron oxide	-1444.7	-1343.8	146.0	133.6								
Cr ₂ O ₃	Chromium(III) oxide	-1139.7	-1058.1	81.2	118.7								
Cr ₂ O ₃	Chromium(II,III) oxide	-1531.0	1000.1	01.2	110.7								
Cs	Cesium	0.0		85.2	32.2					76.5	49.6	175.6	20.8
CsF	Cesium fluoride	-553.5	-525.5	92.8	51.1					70.0		170.0	
CsF ₂ H	Cesium hydrogen fluoride	-923.8	-858.9	135.2	87.3								
CsH	Cesium hydride	-54.2	000.0	100.2	07.0								
CsH0	Cesium hydroxide	-416.2	-371.8	104.2	69.9					-256.0	-256.5	254.8	49.7
CsHO ₄ S	Cesium hydrogen sulfate	-1158.1	071.0	104.2	00.0					200.0	200.0	204.0	70.1
CsH ₂ N	Cesium amide	-118.4											
Csl	Cesium iodide	-346.6	-340.6	123.1	52.8								
CsNO _s	Cesium nitrate	-506.0	-406.5	155.2	52.0								
CsO ₂	Cesium superoxide	-286.2	700.0	100.2									
Cs ₂ O	Cesium oxide	-345.8	-308.1	146.9	76.0								
Cs ₂ O ₃ S	Cesium sulfite	-1134.7	500.1	170.0	70.0						-		
Cs ₂ O ₄ S	Cesium sulfate	-1443.0	-1323.6	211.9	134.9								
Cs ₂ O ₄ S	Cesium sulfide	-359.8	.020.0	۵.1.3	104.0								
Cu	Copper	0.0		33.2	24.4					337.4	297.7	166.4	20.8
CuF,	Copper(II) fluoride	-542.7			LT.7					307.7		100.4	
CuH ₂ O ₃	Copper(II) hydroxide	-449.8											
Cul	Copper(I) iodide	-67.8	-69.5	96.7	54.1								
CuN ₂ O ₆	Copper(II) nitrate	-302.9	-03.3	30.7	J4. I								
CuO ₂ O ₆	Copper(II) oxide	-157.3	-129.7	42.6	42.3								
CuO ₄ S	Copper(II) sulfate	-771.4	-662.2	109.2	74.0								
CuO ₄ S	Copper(II) tungstate	-1105.0	002.2	100.2									
CuO ₄ vv	Copper(II) sulfide	-53.1	-53.6	66.5	47.8								
CuSe	Copper(II) selenide	-39.5	-55.0	00.5	41.0								
Cu ₂	Dicopper Dicopper	-03.0								484.2	431.9	241.6	36.6
Ju ₂	ысорры									+04.2	₩.10+	241.0	50.0

			Cryst	al			Lic	quid			Ga	as	
Molecular formula	Name	Δ _τ <i>H</i> ° kJ/mol	Δ _ι G° kJ/mol		C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
Cu ₂ O	Copper(I) oxide	-168.6	-146.0	93.1	63.6								
Cu ₂ S	Copper(I) sulfide	-79.5	-86.2	120.9	76.3								
Dy	Dysprosium	0.0		75.6	27.7					290.4	254.4	196.6	20.8
Dyl ₃	Dysprosium(III) iodide	-620.5	1771 5	140.0	1100					-	-		
Dy ₂ O ₃ Er	Dysprosium(III) oxide Erbium	-1863.1 0.0	-1771.5	149.8 73.2	116.3 28.1					317.1	280.7	195.6	20.8
ErF.	Erbium fluoride	-1711.0		13.2	20.1					317.1	200.7	193.0	
Er,O,	Erbium oxide	-1897.9	-1808.7	155.6	108.5								
Es	Einsteinium	0.0	-1000.7	100.0	100.5								
Eu	Europium	0.0		77.8	27.7					175.3	142.2	188.8	20.8
Eu _o O _o	Europium(III) oxide	-1651.4	-1556.8	146.0	122.2					170.0	172.2	100.0	
Eu ₂ O ₃	Europium(II,III) oxide	-2272.0	-2142.0	205.0	122.2								
F	Fluorine (atomic)	2272.0								79.4	62.3	158.8	22.7
FGa	Gallium monofluoride									-251.9			33.3
FGe	Germanium monofluoride									-33.4			34.7
FGeH ₃	Fluorogermane											252.8	
FH	Hydrogen fluoride					-299.8				-273.3	-275.4	173.8	
FH ₃ Si	Fluorosilane											238.4	47.4
FH ₄ N	Ammonium fluoride	-464.0	-348.7	72.0	65.3								
FI	lodine fluoride									-95.7	-118.5	236.2	33.4
FIn	Indium(I) fluoride									-203.4			
FK	Potassium fluoride	-567.3	-537.8	66.6	49.0								
FLi	Lithium fluoride	-616.0	-587.7	35.7	41.6								
FNO	Nitrosyl fluoride									-66.5	-51.0	248.1	41.3
FNO ₂	Nitryl fluoride											260.4	49.8
FNS	Thionitrosyl fluoride (NSF)											259.8	44.1
FNa	Sodium fluoride	-576.6	-546.3	51.1	46.9								
F0	Fluorine oxide									109.0	105.3	216.4	
FO ₂	Fluorine superoxide (F00)									25.4	39.4	259.5	44.5
FRb	Rubidium fluoride	-557.7											
FSi	Fluorosilylidyne									7.1	-24.3	225.8	32.6
FTI	Thallium(I) fluoride	-324.7								-182.4			
F ₂	Fluorine	711.0	200.0							0.0		202.8	31.3
F ₂ Fe	Iron(II) fluoride	-711.3	-668.6	87.0	68.1					-			
F ₂ HK F ₃ HN	Potassium hydrogen fluoride Difluoramine	-927.7	-859.7	104.3	76.9							252.8	43.4
F ₂ HNa	Sodium hydrogen fluoride	-920.3	-852.2	90.9	75.0							202.0	43.4
F ₂ HRb	Rubidium hydrogen fluoride	-922.6	-855.6	120.1	79.4					-			
F ₂ Mg	Magnesium fluoride	-1124.2	-1071.1	57.2	61.6								
F _a N	Difluoroamidogen	1124.2	1071.1	31.2	01.0					43.1	57.8	249.9	41.0
F ₂ N ₂	cis-Difluorodiazine				-					69.5	07.0	240.0	71.0
F _a N _a	trans-Difluorodiazine									82.0		-	
F ₂ Ni	Nickel(II) fluoride	-651.4	-604.1	73.6	64.1					02.0			
F ₂ 0	Fluorine monoxide									24.5	41.8	247.5	43.3
F ₂ OS	Thionyl fluoride											278.7	56.8
F,0,	Fluorine dioxide									19.2	58.2	277.2	
F,0,S	Sulfuryl fluoride											284.0	
F,0,U	Uranyl fluoride	-1653.5	-1557.4	135.6	103.2								
F ₂ Pb	Lead(II) fluoride	-664.0	-617.1	110.5									
F _o Si	Difluorosilylene									-619.0	-628.0	252.7	43.9
F ₂ Sr	Strontium fluoride	-1216.3	-1164.8	82.1	70.0								
F ₂ Zn	Zinc fluoride	-764.4	-713.3	73.7	65.7								
F ₃ Ga	Gallium(III) fluoride	-1163.0	-1085.3	84.0									
F ₃ Gd	Gadolinium(III) fluoride									-1297.0			
F ₃ HSi	Trifluorosilane											271.9	60.5
F ₃ Ho	Holmium fluoride	-1707.0											
F ₃ N	Nitrogen trifluoride									-132.1	-90.6	260.8	53.4
F ₃ Nd	Neodymium fluoride	-1657.0											
F ₃ OP	Phosphoric trifluoride									-1254.3	-1205.8	285.4	68.8
$\frac{3}{F_3P}$	Phosphorus(III) fluoride									-958.4	-936.9	273.1	58.7
F ₃ Sb	Antimony(III) fluoride	-915.5											
F ₃ Sc	Scandium fluoride	-1629.2	-1555.6	92.0						-1247.0	-1234.0	300.5	67.8
F ₃ Sm	Samarium(III) fluoride	-1778.0											
$\overline{F_3}$ Th	Thorium(III) fluoride									-1166.1	-1160.6	339.2	73.3
F ₃ U	Uranium(III) fluoride	-1502.1	-1433.4	123.4	95.1					-1058.5	-1051.9	331.9	74.3
$\overline{F_3}$ Y	Yttrium fluoride	-1718.8	-1644.7	100.0						-1288.7	-1277.8	311.8	70.3

			Cryst	al				quid			Ga		
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	<i>S</i> º J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
F ₄ Ge	Germanium(IV) fluoride									-1190.2	-1150.0	301.9	
F ₄ Hf	Hafnium fluoride	-1930.5	-1830.4	113.0						-1669.8			
F_4N_2	Tetrafluorohydrazine									-8.4	79.9	301.2	79.2
F ₄ Pb	Lead(IV) fluoride	-941.8											
F ₄ S	Sulfur tetrafluoride									-763.2	-722.0	299.6	77.6
F ₄ Si	Tetrafluorosilane	0007.0	0000.4	440.0						-1615.0	-1572.8	282.8	73.6
F ₄ Th	Thorium(IV) fluoride	-2097.8 -1914.2	-2003.4 -1823.3	142.0 151.7	110.7					-1759.0 -1598.7	-1724.0 -1572.7	341.7 368.0	93.0
$\frac{F_4U}{F_4V}$	Uranium(IV) fluoride Vanadium(IV) fluoride	-1403.3	-1023.3		110.0					-1090.7	-1372.7	300.0	91.2
F ₄ Ve	Xenon tetrafluoride	-261.5											
F₄Zr	Zirconium(IV) fluoride	-1911.3	-1809.9	104.6	103.7								
F _E I	lodine pentafluoride	1311.0	1000.0	104.0	100.7	-864.8				-822.5	-751.7	327.7	99.2
F _c Nb	Niobium(V) fluoride	-1813.8	-1699.0	160.2	134.7					-1739.7	-1673.6	321.9	97.1
F ₅ P	Phosphorus(V) fluoride									-1594.4	-1520.7	300.8	84.8
F ₅ Ta	Tantalum(V) fluoride	-1903.6											
F ₅ V	Vanadium(V) fluoride					-1480.3	-1373.1	175.7		-1433.9	-1369.8	320.9	98.6
F ₆ H ₈ N ₂ Si	Ammonium hexafluorosilicate	-2681.7	-2365.3	280.2	228.1								
F ₆ Ir	Iridium(VI) fluoride	-579.7	-461.6	247.7						-544.0	-460.0	357.8	121.1
F ₆ K ₂ Si	Potassium hexafluorosilicate	-2956.0	-2798.6	226.0									
F ₆ Mo	Molybdenum(VI) fluoride					-1585.5	-1473.0	259.7	169.8	-1557.7	-1472.2	350.5	,
F ₆ Na ₂ Si	Sodium hexafluorosilicate	-2909.6	-2754.2	207.1	187.1								
F_6 0s	Osmium(VI) fluoride			246.0								358.1	120.8
F ₆ Pt	Platinum(VI) fluoride			235.6								348.3	122.8
F ₆ S	Sulfur hexafluoride									-1220.5	-1116.5	291.5	97.0
F ₆ Se	Selenium hexafluoride	0.407.0	2000 7		100 5					-1117.0	-1017.0	313.9	110.5
F ₆ Si ₂	Hexafluorodisilane	-2427.0	-2299.7	219.1	129.5					-2383.3	-2307.3	391.0	129.9
F ₆ Te	Tellurium hexafluoride	0107.0	0000.5	007.0	100.0					-1318.0	0000 7	077.0	100.0
F ₆ U F _c W	Uranium(VI) fluoride Tungsten(VI) fluoride	-2197.0	-2068.5	227.6	166.8	-1747.7	-1631.4	251.5		-2147.4 -1721.7	-2063.7 -1632.1	377.9 341.1	129.6 119.0
Fe	Iron	0.0		27.3	25.1	-1/4/./	-1031.4	201.0		416.3	370.7	180.5	25.7
Fel _a	Iron(II) iodide	-113.0		21.3	20.1					410.3	3/0./	100.5	23.7
Fel ₃	Iron(III) iodide	110.0								71.0			
FeMoO ₄	Iron(II) molybdate	-1075.0	-975.0	129.3	118.5								
FeO	Iron(II) oxide	-272.0											
FeO ₄ S	Iron(II) sulfate	-928.4	-820.8	107.5	100.6								
FeO ₄ W	Iron(II) tungstate	-1155.0	-1054.0	131.8	114.6								
FeS	Iron(II) sulfide	-100.0	-100.4	60.3	50.5								
FeS ₂	Iron disulfide	-178.2	-166.9	52.9	62.2								
Fe ₂ O ₃	Iron(III) oxide	-824.2	-742.2	87.4	103.9								
Fe ₂ O ₄ Si	Iron(II) orthosilicate	-1479.9	-1379.0	145.2	132.9								
Fe ₃ O ₄	Iron(II,III) oxide	-1118.4	-1015.4	146.4	143.4								
Fm	Fermium	0.0								-			
Fr	Francium	0.0		95.4						070.0			
Ga	Gallium	0.0	0.0	40.8	26.1	5.6				272.0	233.7	169.0	25.3
GaH ₃ O ₃	Gallium(III) hydroxide	-964.4	-831.3	100.0	100.0					-			
Gal ₃ GaN	Gallium(III) iodide Gallium nitride	-238.9 -110.5		205.0	100.0								
GaO	Gallium monoxide	-110.5								279.5	253.5	231.1	32.1
GaP	Gallium phosphide	-88.0								213.3	200.0		
GaSb	Gallium antimonide	-41.8	-38.9	76.1	48.5				-	-		-	
Ga ₂	Digallium	11.0	55.5							438.5			
Ga ₂ O	Gallium suboxide	-356.0											
Ga ₂ O ₃	Gallium(III) oxide	-1089.1	-998.3	85.0	92.1					-			
Gd	Gadolinium	0.0		68.1	37.0					397.5	359.8	194.3	27.5
$\overline{\text{Gd}_2\text{O}_3}$	Gadolinium(III) oxide	-1819.6			106.7								
Ge	Germanium	0.0		31.1	23.3					372.0	331.2	167.9	30.7
GeH ₃ I	lodogermane											283.2	57.5
GeH ₄	Germane									90.8	113.4	217.1	45.0
Gel ₄	Germanium(IV) iodide	-141.8	-144.3	271.1						-56.9	-106.3	428.9	104.1
GeO	Germanium(II) oxide	-261.9	-237.2	50.0						-46.2	-73.2	224.3	30.9
GeO ₂	Germanium(IV) oxide	-580.0	-521.4	39.7	52.1								
GeP	Germanium phosphide	-21.0	-17.0	63.0									
GeS	Germanium(II) sulfide	-69.0	-71.5	71.0						92.0	42.0	234.0	33.7
GeTe	Germanium(II) telluride	20.0											
0.	Discount of									4		0=0=	~
Ge ₂ Ge ₂ H ₆	Digermanium Digermane					137.3				473.1 162.3	416.3	252.8	35.6

			Cryst	al			Lic	Juid			Ga	s	
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
Ge ₃ H ₈	Trigermane					193.7				226.8			
Н	Hydrogen (atomic)									218.0	203.3	114.7	20.8
HI	Hydrogen iodide									26.5	1.7	206.6	29.2
HIO ₃	lodic acid	-230.1											
HK	Potassium hydride	-57.7											
HK0	Potassium hydroxide	-424.6	-379.4	81.2	68.9					-232.0	-229.7	238.3	49.2
HKO₄S	Potassium hydrogen sulfate	-1160.6	-1031.3	138.1									
HLi	Lithium hydride	-90.5	-68.3	20.0	27.9								
HLi0	Lithium hydroxide	-487.5	-441.5	42.8	49.6					-229.0	-234.2	214.4	46.0
HN	Imidogen									351.5	345.6	181.2	29.2
HNO ₂	Nitrous acid									-79.5	-46.0	254.1	45.6
HNO ₃	Nitric acid					-174.1	-80.7	155.6	109.9	-133.9	-73.5	266.9	54.1
HN ₃	Hydrazoic acid			40.0	00.4	264.0	327.3	140.6		294.1	328.1	239.0	43.7
HNa	Sodium hydride	-56.3	-33.5	40.0	36.4					101.0	400.0	000.0	40.0
HNaO	Sodium hydroxide	-425.8	-379.7	64.4	59.5					-191.0	-193.9	229.0	48.0
HNaO ₄ S	Sodium hydrogen sulfate	-1125.5	-992.8	113.0	105.0								
HNa ₂ O ₄ P HO	Sodium hydrogen phosphate	-1748.1	-1608.2	150.5	135.3					20.0	24.0	100 7	20.0
	Hydroxyl Bubidium budrovido	440.0	270.0	04.0	60.0					39.0	34.2	183.7	29.9
HORb HOTI	Rubidium hydroxide	-418.8	-373.9 -195.8	94.0	69.0					-238.0	-239.1	248.5	49.5
HOTT HO ₂	Thallium(I) hydroxide	-238.9	-195.8	88.0						10.5	22.6	229.0	240
	Hydroperoxy Mataphagapharia acid	040 5			-					10.5	22.0	229.0	34.9
HO ₃ P	Metaphosphoric acid	-948.5											
HO ₄ RbS	Rubidium hydrogen sulfate Perrhenic acid	-1159.0	-656.4	150.0									
HO₄Re HRb		-762.3 -52.3	-000.4	158.2									
HS	Rubidium hydride	-52.3								140.7	1100	105.7	20.0
HSi	Mercapto									142.7	113.3	195.7	32.3
HTa,	Silylidyne Tantalum hydride	-32.6	-69.0	79.1	90.8					361.0			
H ₂		-32.0	-09.0	79.1	90.0					0.0		130.7	28.8
H _a KN	Hydrogen Potossium amida	100.0								0.0		130.7	20.0
H ₂ KO ₄ P	Potassium amide	-128.9 -1568.3	-1415.9	134.9	116.6								
H ₂ KU ₄ F H ₃ LiN	Potassium dihydrogen phosphate Lithium amide	-179.5	-1410.9	134.9	110.0								
H _a Mg	Magnesium hydride	-75.3	-35.9	31.1	35.4								
H ₂ MgO ₂	Magnesium hydroxide	-924.5	-833.5	63.2	77.0								
H ₂ NIGO ₂	Amidogen	324.3	-000.0	00.2	11.0					184.9	194.6	195.0	33.9
H _a NNa	Sodium amide	-123.8	-64.0	76.9	66.2					104.5	104.0	130.0	00.5
H _a NRb	Rubidium amide	-113.0		70.0									
H _a N _a O _a	Nitramide	-89.5											
H ₂ NiO ₂	Nickel(II) hydroxide	-529.7	-447.2	88.0									
H ₂ O	Water					-285.8	-237.1	70.0	75.3	-241.8	-228.6	188.8	33.6
H ₂ O ₂	Hydrogen peroxide					-187.8	-120.4	109.6	89.1	-136.3	-105.6	232.7	43.1
H ₂ O ₂ Sn	Tin(II) hydroxide	-561.1	-491.6	155.0									
H ₂ O ₂ Sr	Strontium hydroxide	-959.0											
H ₂ O ₂ Zn	Zinc hydroxide	-641.9	-553.5	81.2									
H ₂ O ₂ Si	Metasilicic acid	-1188.7	-1092.4	134.0									
H ₂ O ₄ S	Sulfuric acid					-814.0	-690.0	156.9	138.9				
H ₂ O ₄ Se	Selenic acid	-530.1											
H ₂ S	Hydrogen sulfide				-					-20.6	-33.4	205.8	34.2
H ₂ S ₂	Hydrogen disulfide					-18.1			84.1	15.5			51.5
H ₂ Se	Hydrogen selenide									29.7	15.9	219.0	34.7
H ₂ Sr	Strontium hydride	-180.3											
H,Te	Hydrogen telluride				-					99.6			
H,Th	Thorium hydride	-139.7	-100.0	50.7	36.7								
H ₂ Zr	Zirconium(II) hydride	-169.0	-128.8	35.0	31.0								
H ₃ ISi	Iodosilane											270.9	54.4
H ₃ N	Ammonia									-45.9	-16.4	192.8	35.1
H ₃ NO	Hydroxylamine	-114.2											
$\frac{3}{H_3O_2P}$	Phosphinic acid	-604.6				-595.4			,				
H_3O_3P	Phosphonic acid	-964.4											
H_3O_4P	Phosphoric acid		-1124.3	110.5	106.1	-1271.7	-1123.6	150.8	145.0				
H ₃ P	Phosphine									5.4	13.5	210.2	37.1
H ₃ Sb	Stibine									145.1	147.8	232.8	41.1
H ₃ U	Uranium(III) hydride	-127.2	-72.8	63.7	49.3								
H ₄ IN	Ammonium iodide	-201.4	-112.5	117.0									
	Ammonium iodide Hydrazine	-201.4	-112.5	117.0		50.6	149.3	121.2	98.9	95.4	159.4	238.5	48.4

			Crysta	al			Liq	uid			Ga	ıs	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _t G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
$H_4N_2O_3$	Ammonium nitrate	-365.6	-183.9	151.1	139.3								
H_4N_4	Ammonium azide	115.5	274.2	112.5									
H ₄ O ₄ Si	Orthosilicic acid	-1481.1	-1332.9	192.0									
$H_4O_7P_2$	Diphosphoric acid	-2241.0				-2231.7							
H_4P_2	Diphosphine					-5.0				20.9			
H ₄ Si	Silane									34.3	56.9	204.6	42.8
H ₄ Sn	Stannane									162.8	188.3	227.7	49.0
H₅NO	Ammonium hydroxide					-361.2	-254.0	165.6	154.9				
H ₅ NO ₃ S	Ammonium hydrogen sulfite	-768.6											
H ₅ NO ₄ S	Ammonium hydrogen sulfate	-1027.0											
H ₆ Si ₂	Disilane									80.3	127.3	272.7	80.8
H ₈ N ₂ O ₄ S	Ammonium sulfate	-1180.9	-901.7	220.1	187.5					100.0			
H ₈ Si ₃	Trisilane	1500.0			100.0	92.5				120.9			
H ₉ N ₂ O ₄ P	Ammonium hydrogen phosphate	-1566.9			188.0								
H ₁₂ N ₃ O ₄ P	Ammonium phosphate	-1671.9											
He	Helium									0.0		126.2	
Hf	Hafnium	0.0		43.6	25.7					619.2	576.5	186.9	20.8
HfO ₂	Hafnium oxide	-1144.7	-1088.2	59.3	60.3								
Hg	Mercury		40.5	1000		0.0		75.9	28.0	61.4	31.8	175.0	20.8
Hgl ₂	Mercury(II) iodide	-105.4	-101.7	180.0									
Hg0	Mercury(II) oxide	-90.8	-58.5	70.3	44.1								
HgO ₄ S	Mercury(II) sulfate	-707.5											
HgS	Mercury(II) sulfide (red)	-58.2	-50.6	82.4	48.4								
HgTe	Mercury(II) telluride	-42.0											
Hg ₂	Dimercury									108.8	68.2	288.1	37.4
Hg_2I_2	Mercury(I) iodide	-121.3	-111.0	233.5									
Hg_2O_4S	Mercury(I) sulfate	-743.1	-625.8	200.7	132.0								
Но	Holmium	0.0		75.3	27.2					300.8	264.8	195.6	20.8
Ho_2O_3	Holmium oxide	-1880.7	-1791.1	158.2	115.0								
<u> </u>	lodine (atomic)									106.8	70.2	180.8	20.8
IIn	Indium(I) iodide	-116.3	-120.5	130.0						7.5	-37.7	267.3	36.8
IK	Potassium iodide	-327.9	-324.9	106.3	52.9								
IKO ₃	Potassium iodate	-501.4	-418.4	151.5	106.5								
IKO ₄	Potassium periodate	-467.2	-361.4	175.7									
lLi	Lithium iodide	-270.4	-270.3	86.8	51.0								
INa	Sodium iodide	-287.8	-286.1	98.5	52.1								
INaO ₃	Sodium iodate	-481.8			92.0								
INaO ₄	Sodium periodate	-429.3	-323.0	163.0									
10	lodine monoxide									126.0	102.5	239.6	32.9
IRb	Rubidium iodide	-333.8	-328.9	118.4	53.2								
ITI	Thallium(I) iodide	-123.8	-125.4	127.6					_	7.1			
l ₂	lodine (rhombic)	0.0		116.1	54.4					62.4	19.3	260.7	36.9
I ₂ Mg	Magnesium iodide	-364.0	-358.2	129.7									
I ₂ Ni	Nickel(II) iodide	-78.2											
I ₂ Pb	Lead(II) iodide	-175.5	-173.6	174.9	77.4								
I ₂ Sn	Tin(II) iodide	-143.5											
I ₂ Sr	Strontium iodide	-558.1			81.6								
I ₂ Zn	Zinc iodide	-208.0	-209.0	161.1									
l ₃ In	Indium(III) iodide	-238.0								-120.5			
I ₃ La	Lanthanum iodide	-668.9											
I ₃ Lu	Lutetium iodide	-548.0											
I ₃ P	Phosphorus(III) iodide	-45.6										374.4	78.4
I ₃ Ru	Ruthenium(III) iodide	-65.7											
I ₃ Sb	Antimony(III) iodide	-100.4											
I ₄ Pt	Platinum(IV) iodide	-72.8											
I ₄ Si	Tetraiodosilane	-189.5											
I ₄ Sn	Tin(IV) iodide				84.9							446.1	105.4
Ī ₄ Ti	Titanium(IV) iodide	-375.7	-371.5	249.4	125.7					-277.8			
I ₄ V	Vanadium(IV) iodide									-122.6			
I₄Zr	Zirconium(IV) iodide	-481.6											
In	Indium	0.0		57.8	26.7					243.3	208.7	173.8	20.8
ln0	Indium monoxide									387.0	364.4	236.5	32.6
InP	Indium phosphide	-88.7	-77.0	59.8	45.4							-	
InS	Indium(II) sulfide	-138.1	-131.8	67.0					-	238.0			
1110	· /												
InSb	Indium antimonide	-30.5	-25.5	86.2	49.5					344.3			

			Cryst	al			Lic	Juid			Ga	ıs	
Molecular formula	Name	Δ _i H° kJ/mol	Δ _ι <i>G</i> ° kJ/mol	Sº J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ,G° kJ/mol	S° J/mol K	C _p J/mol K
In ₂ O ₃	Indium(III) oxide	-925.8	-830.7	104.2	92.0								
In ₂ S ₃	Indium(III) sulfide	-427.0	-412.5	163.6	118.0								
In ₂ Te ₅	Indium(IV) telluride	-175.3											
Ir	Iridium	0.0		35.5	25.1					665.3	617.9	193.6	20.8
IrO ₂	Iridium(IV) oxide	-274.1			57.3								
IrS ₂	Iridium(IV) sulfide	-138.0											
Ir ₂ S ₃	Iridium(III) sulfide	-234.0											
K	Potassium	0.0		64.7	29.6					89.0	60.5	160.3	20.8
KMnO ₄	Potassium permanganate	-837.2	-737.6	171.7	117.6								
KNO ₂	Potassium nitrite	-369.8	-306.6	152.1	107.4								
KNO ₃	Potassium nitrate	-494.6	-394.9	133.1	96.4								
KNa	Potassium sodium					6.3							
KO ₂	Potassium superoxide	-284.9	-239.4	116.7	77.5								
K ₂	Dipotassium									123.7	87.5	249.7	37.9
K ₂ 0	Potassium oxide	-361.5											
K_2O_2	Potassium peroxide	-494.1	-425.1	102.1									
K_2O_4S	Potassium sulfate	-1437.8	-1321.4	175.6	131.5								
K ₂ S	Potassium sulfide	-380.7	-364.0	105.0									
K ₃ O ₄ P	Potassium phosphate	-1950.2											
Kr	Krypton									0.0		164.1	20.8
La	Lanthanum	0.0		56.9	27.1					431.0	393.6	182.4	22.8
LaS	Lanthanum monosulfide	-456.0	-451.5	73.2	59.0								
La ₂ O ₃	Lanthanum oxide	-1793.7	-1705.8	127.3	108.8								
Li	Lithium	0.0		29.1	24.8					159.3	126.6	138.8	20.8
LiNO,	Lithium nitrite	-372.4	-302.0	96.0									
LiNO	Lithium nitrate	-483.1	-381.1	90.0									
Li	Dilithium									215.9	174.4	197.0	36.1
Li _o 0	Lithium oxide	-597.9	-561.2	37.6	54.1								
Li _o O _o	Lithium peroxide	-634.3											
Li ₂ O ₂ Si	Lithium metasilicate	-1648.1	-1557.2	79.8	99.1								
Li ₂ O ₄ S	Lithium sulfate	-1436.5	-1321.7	115.1	117.6								
Li ₂ S	Lithium sulfide	-441.4											
Li _s O _s P	Lithium phosphate	-2095.8											
Lr	Lawrencium	0.0											
Lu	Lutetium	0.0		51.0	26.9					427.6	387.8	184.8	20.9
Lu ₀ 0	Lutetium oxide	-1878.2	-1789.0	110.0	101.8								
Md	Mendelevium	0.0											
Mg	Magnesium	0.0		32.7	24.9					147.1	112.5	148.6	20.8
MgN ₂ O ₂	Magnesium nitrate	-790.7	-589.4	164.0	141.9								
MgO	Magnesium oxide	-601.6	-569.3	27.0	37.2								
MgO ₄ S	Magnesium sulfate	-1284.9	-1170.6	91.6	96.5								
MgO ₄ Se	Magnesium selenate	-968.5											
MgS	Magnesium sulfide	-346.0	-341.8	50.3	45.6								
Mg ₂	Dimagnesium								-	287.7			
Mg ₂ O ₄ Si	Magnesium orthosilicate	-2174.0	-2055.1	95.1	118.5								
Mn	Manganese	0.0		32.0	26.3					280.7	238.5	173.7	20.8
MnN ₂ O ₆	Manganese(II) nitrate	-576.3											
MnNaO ₄	Sodium permanganate	-1156.0											
Mn0	Manganese(II) oxide	-385.2	-362.9	59.7	45.4								
MnO _o	Manganese(IV) oxide	-520.0	-465.1	53.1	54.1								
MnO ₂ Si	Manganese(II) metasilicate	-1320.9	-1240.5	89.1	86.4								
MnS	Manganese(II) sulfide (a form)	-214.2	-218.4	78.2	50.0								
MnSe	Manganese(II) selenide	-106.7	-111.7	90.8	51.0								
Mn ₂ O ₃	Manganese(III) oxide	-959.0	-881.1	110.5	107.7								
Mn ₂ O ₄ Si	Manganese(II) orthosilicate	-1730.5	-1632.1	163.2	129.9								
Mn ₃ O ₄	Manganese(II,III) oxide	-1387.8	-1283.2	155.6	139.7								
Mo	Molybdenum	-1307.0	1200.2	28.7	24.1					658.1	612.5	182.0	20.8
MoNa ₂ O ₄	Sodium molybdate	-1468.1	-1354.3	159.7	141.7					U30. I	012.3	102.0	20.0
MoO ₂	Molybdenum(IV) oxide	-588.9	-533.0	46.3	56.0								
			-668.0	77.7	75.0								
MoO		7/5 1	-000 U	11.1	70.0								
	Molybdenum(VI) oxide	-745.1		1001	110.7								
MoO ₄ Pb	Molybdenum(VI) oxide Lead(II) molybdate	-1051.9	-951.4	166.1	119.7								
MoO ₄ Pb MoS ₂	Molybdenum(VI) oxide Lead(II) molybdate Molybdenum(IV) sulfide	-1051.9 -235.1	-951.4 -225.9	62.6	63.6								
MoO ₄ Pb MoS ₂ Mo ₃ Si	Molybdenum(VI) oxide Lead(II) molybdate Molybdenum(IV) sulfide Molybdenum silicide	-1051.9	-951.4							470.7	AEFF	150.0	00.0
MoO ₃ MoO ₄ Pb MoS ₂ Mo ₃ Si N	Molybdenum(VI) oxide Lead(II) molybdate Molybdenum(IV) sulfide Molybdenum silicide Nitrogen (atomic)	-1051.9 -235.1 -125.2	-951.4 -225.9 -125.7	62.6 106.3	63.6					472.7	455.5	153.3	20.8
MoO ₄ Pb MoS ₂ Mo ₃ Si	Molybdenum(VI) oxide Lead(II) molybdate Molybdenum(IV) sulfide Molybdenum silicide	-1051.9 -235.1	-951.4 -225.9	62.6	63.6					472.7	455.5	153.3	20.8

			Cryst	al			Lic	Juid			Ga	s	
Molecular formula	Name	Δ _ι <i>H</i> ° kJ/mol	Δ _ι <i>G</i> ° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
NO	Nitric oxide									91.3	87.6	210.8	29.9
$\overline{NO_{\scriptscriptstyle 2}}$	Nitrogen dioxide									33.2	51.3	240.1	37.2
NO ₂ Rb	Rubidium nitrite	-367.4	-306.2	172.0									
NO ₃ Rb	Rubidium nitrate	-495.1	-395.8	147.3	102.1								
NO ₃ TI	Thallium(I) nitrate	-243.9	-152.4	160.7	99.5								
NP	Phosphorus nitride	-63.0								171.5	149.4	211.1	29.7
N_2	Nitrogen									0.0		191.6	29.1
N_2O	Nitrous oxide									81.6	103.7	220.0	38.6
N_2O_3	Nitrogen trioxide					50.3				86.6	142.4	314.7	72.7
N_2O_4	Nitrogen tetroxide					-19.5	97.5	209.2	142.7	11.1	99.8	304.4	79.2
N_2O_4Sr	Strontium nitrite	-762.3											
N ₂ O ₅	Nitrogen pentoxide	-43.1	113.9	178.2	143.1					13.3	117.1	355.7	95.3
N_2O_6Pb	Lead(II) nitrate	-451.9	700.1										
N ₂ O ₆ Ra	Radium nitrate	-992.0	-796.1	222.0									
N_2O_6Sr	Strontium nitrate	-978.2	-780.0	194.6	149.9								
N_2O_6Zn	Zinc nitrate	-483.7	00.0	00.0	70.0								
N ₃ Na	Sodium azide	21.7	93.8	96.9	76.6								
N ₄ Si ₃	Silicon nitride	-743.5	-642.6	101.3					-	407.5	77.0	450.7	00.0
Na	Sodium	0.0	040.4	51.3	28.2				-	107.5	77.0	153.7	20.8
NaO ₂	Sodium superoxide	-260.2	-218.4	115.9	72.1				-	140 1	100.0	000.0	07.0
Na ₂	Disodium Codium ovido	444.0	075.5	75.3	00.1				-	142.1	103.9	230.2	37.6
Na ₂ O	Sodium oxide	-414.2	-375.5	75.1	69.1				-		-		
Na ₂ O ₂	Sodium peroxide	-510.9	-447.7	95.0	89.2				-				
Na ₂ O ₃ S	Sodium sulfite	-1100.8	-1012.5	145.9	120.3								
Na ₂ O ₃ Si	Sodium metasilicate	-1554.9	-1462.8	113.9	400.0				-				
Na ₂ O ₄ S	Sodium sulfate	-1387.1	-1270.2	149.6	128.2				-				
Na ₂ S	Sodium sulfide	-364.8	-349.8	83.7	04.0					705.0	004.4	100.0	00.0
Nb	Niobium	0.0	070.0	36.4	24.6					725.9	681.1	186.3	30.2
NbO	Niobium(II) oxide	-405.8	-378.6	48.1	41.3				-				
NbO ₂	Niobium(IV) oxide	-796.2	-740.5	54.5	57.5		,						
Nb ₂ O ₅	Niobium(V) oxide	-1899.5	-1766.0	137.2	132.1					007.0	000.4	100.4	00.1
Nd	Neodymium	0.0	1700.0	71.5	27.5					327.6	292.4	189.4	22.1
Nd ₂ O ₃	Neodymium oxide	-1807.9	-1720.8	158.6	111.3				-			1100	00.0
Ne	Neon	0.0					,			0.0	0045	146.3	20.8
Ni NiO C	Nickel	0.0	750.7	29.9	26.1					429.7	384.5	182.2	23.4
NiO₄S NiS	Nickel(II) sulfate	-872.9 -82.0	-759.7 -79.5	92.0	138.0 47.1								
	Nickel(II) sulfide		-79.5	33.0	47.1								
Ni ₂ O ₃	Nickel(III) oxide Nobelium	-489.5 0.0							-				
0	Oxygen (atomic)	0.0								249.2	231.7	161.1	21.9
OP OP	Phosphorus monoxide									-28.5	-51.9	222.8	31.8
OPb	Lead(II) oxide (massicot)	-217.3	-187.9	68.7	45.8				-	-20.5	-51.5	222.0	31.0
OPb									-				
OPd OPd	Lead(II) oxide (litharge) Palladium(II) oxide	-219.0 -85.4	-188.9	66.5	45.8 31.4				-	348.9	325.9	218.0	
ORa ORa	Radium oxide	-523.0			31.4						323.3	210.0	
ORb _o	Rubidium oxide	-339.0											
ORh	Rhodium monoxide	-338.0								385.0			
OS OS	Sulfur monoxide									6.3	-19.9	222.0	30.2
OSe OSe	Selenium monoxide				-					53.4	26.8	234.0	31.3
0Si	Silicon monoxide									-99.6	-126.4	211.6	29.9
OSn	Tin(II) oxide	-280.7	-251.9	57.2	44.3					15.1	-8.4	232.1	31.6
0Sr	Strontium oxide	-592.0	-561.9	54.4	45.0					1.5	-0.4	۷۵۷.۱	31.0
OTi	Titanium(II) oxide	-519.7	-495.0	50.0	40.0					1.3			
OTI,	Thallium(I) oxide	-178.7	-147.3	126.0	40.0								
011 ₂	Uranium(II) oxide	-1/0./	147.3	120.0						21.0			
0V	Vanadium(II) oxide	-431.8	-404.2	38.9	45.4								
OZn	Zinc oxide	-350.5	-320.5	43.7	40.3								
0,	Oxygen	-300.5	520.5	40.7	40.3					0.0		205.2	29.4
$\frac{O_2}{O_2P}$	Phosphorus dioxide									-279.9	-281.6	252.1	39.5
$\frac{O_2P}{O_3Pb}$	Lead(IV) oxide	-277.4	-217.3	68.6	64.6				-	-213.3	-201.0	۷۵۷.۱	აყ.ე
O_2PD O_3Rb	Rubidium superoxide	-277.4	-211.3	0.00	04.0								
		-278.7 -472.0											
0,Rb,													
0 P:-	Rubidium peroxide												
O ₂ Ru	Ruthenium(IV) oxide	-305.0				200 5				000.0	200 4	0.40.0	00.0
0 ₂ S	Ruthenium(IV) oxide Sulfur dioxide	-305.0				-320.5				-296.8	-300.1	248.2	39.9
	Ruthenium(IV) oxide		-856.3	41.5	44.4	-320.5				-296.8	-300.1	248.2	39.9

				Cryst	al			Lic	luid			Ga	S	
	Molecular formula	Name				C _p J/mol K				C _p J/mol K				
1	O ₂ Sn	Tin(IV) oxide	-577.6	-515.8	49.0	52.6								
	O ₂ Te		-322.6											
Unarticent(Y) code 1088 0 1091.8 77.0 8.3 465.7 471.5 274.6 81.4														
Description														
0.27											-465.7	-471.5	274.6	51.4
0.PRS Laadity sulfies			-1100.6	-1042.8	50.4	56.2					440.7	400.0	000.0	00.0
0.0.145. Lastiffy metasticite 1145.7 1062.1 1066. 9.0.0	- 3		0000								142.7	163.2	238.9	39.2
Prescription Prescription 1898	_ 0			1062.1	100.6	00.0								
				-1002.1	109.0									
Sulfur frioride	3 2													
	3 2			-374 2	70.7	100.0	-441 N	-373 8	113.8		-395.7	-371 1	256.8	50.7
1,538 1,549 1,947 1,94						94.2	771.0	070.0	110.0		030.7	071.1	200.0	
	3 2													
1,														
	0,Tb,													
1,1			-1520.9	-1434.2	78.8									
0 y Vanadium(III) oxide	0,Tm,	Thulium oxide	-1888.7	-1794.5	139.7	116.7				.,				
	0 ₃ U	Uranium(VI) oxide	-1223.8	-1145.7	96.1	81.7								
0, Y. Vittrium oxide -1985,3 -1816,6 99.1 102.5 0, Vb. Vitterbun(III) oxide -1814,6 -1226,7 1331,1 118.4 -1826,7 1331,1 118.4 -1826,7 1331,1 118.4 -1826,7 1331,1 118.4 -1826,7 1331,1 118.4 -1826,7 1331,1 1838,1 -1826,7 1833,1 183,2 -337,2 -292,8 293,8 74,1 74,0	0 ₃ V ₂	Vanadium(III) oxide	-1218.8	-1139.3	98.3	103.2								
0 y b, 1	0 ₃ W	Tungsten(VI) oxide	-842.9	-764.0	75.9	73.8								
OBST	0 ₃ Y ₂	Yttrium oxide	-1905.3	-1816.6	99.1	102.5								
OPES Lead(II) sulfate -920.0 -813.0 148.5 103.2 OPES Lead(II) selentate -1692.2 -504.9 167.8 OPES Lead(III) visione -1383.1 -122.2 186.6 137.2 OPES Lead(III) visione -718.4 -601.2 211.3 146.9 OPES Lead(III) visione -718.4 -601.2 211.3 146.9 ORAS Rubdium sulfate -1471.1 -1365.6 1316.9 197.4 134.1 ORA Rubdium sulfate -1445.1 -130.9 117.0 -0	O_3Yb_2	Ytterbium(III) oxide	-1814.6	-1726.7	133.1	115.4								
Pipes Lead(II) selenter -6.09 2 -504 9 -167.8 -0. Pipes Lead(II) orthosilicate -1383.1 -1252.6 186.6 137.2 -0. Pipes Lead(III,IV) oxide -7164 - 601.2 211.3 146.9 -0. Pipes Radium sulfate -1471.1 -1365.6 138.0 -0. Pipes Radium sulfate -1471.1 -1365.6 138.0 -0. Pipes Radium sulfate -1485.6 1316.9 197.4 134.1 -0. Pipes Ruthenium/(III) oxide -239.3 -152.2 146.4 -0. Pipes Ruthenium/(III) oxide -239.3 -152.2 146.4 -0. Pipes Ruthenium/(III) oxide -331.8 -380.4 230.5 -0. Pipes -318.8 -318.8 -318.8 -0. Pipes -318.8 -318.8 -0. Pi	0 ₄ 0s	Osmium(VIII) oxide	-394.1	-304.9	143.9						-337.2	-292.8	293.8	74.1
Ö.Pb.S. Lead(II) inflosilicate -1383.1 - 1252.6 186.6 137.2 O.Pb. Lead(II,II,V) oxide -718.4 - 601.2 211.3 146.9 O.Rb.S. Rubidium sulfate -147.1 - 1385.6 138.0 O.Rb.S. Rubidium sulfate -1435.6 - 1316.9 197.4 134.1 O.Rb. R. Strontium sulfate -1435.6 - 1316.9 197.4 134.1 O.SST. Strontium sulfate -1433.1 - 1340.9 117.0 O.ST. Translation (I) sulfate -931.8 - 830.4 230.5 O.ST. Translation (I) controllicate -982.8 - 871.5 - 110.5 99.2 O.ST. Zoronium (IV) orthosilicate -2304.5 - 2191.1 153.1 - 134.3 O.SIG. Zoronium (IV) orthosilicate -2304.5 - 1291.8 166.7 - 114.0 O.SIG. Zoronium (IV) orthosilicate -203.4 - 1915.8 167.7 - 114.0 O.SD. Antomory (V) oxide -9719 - 829.2 125.1 O.J. T. Zoronium (IV) oxide -2459.4 - 1915.8 167.7 - 114.0 O.J. J. Tallaum (IV) oxide -2459.4 - 1915.8 167.7 - 114.0 O.J. J. Tallaum (IV) oxide -2459.4 - 1915.8 162.1 - 1915.0 O.J. J. Tallaum (IV) oxide	O ₄ PbS	Lead(II) sulfate	-920.0	-813.0	148.5	103.2								
Q-Ps	O ₄ PbSe	Lead(II) selenate												
Q, RS, Radium sulfate 1.471.1 -1.365.6 138.0 Q, Rb, S Rubidium sulfate -1.435.6 -131.6 9 197.4 134.1 Q, D, N Rubinium(VIII) oxide -2.293.3 -152.2 146.4 Q, SST Strontlum sulfate -1453.1 -1340.9 117.0 Q, ST, Tallium(I) sulfate -931.8 -830.4 230.5 Q, SST, Strontlum sulfate -982.8 -871.5 110.5 99.2 Q, SST, Strontlum orthosilicate -1656.7 -1523.2 131.4 123.3 Q, SIZT, Zinc orthosilicate -1656.7 -1523.2 131.4 198.7 Q, SIZT, Zinc orthosilicate -1656.7 -1523.2 131.4 198.7 Q, SIZT, Zinconium (I) orthosilicate -2034.4 -1919.1 84.1 98.7 Q, IZZ Zinconium (I) oxide -91.9 -829.2 125.1 Q, IZZ Tall oxide -245.0 -1911.2 143.1 135.1 Q, IZ Varianum(II) oxide -155.0 1414.9 131.0 127.7	4 4													
0,Rb,S or Subidium sulfate -1435.6 - 1316.9 197.4 134.1 0,Ru or Ruthenium(VIII) oxide -239.3 - 152.2 146.4 0,SFS or Strontium sulfate -1453.1 1340.9 0,SFS or Strontium sulfate -1453.1 1340.9 0,STA or Zinc sulfate -981.8 830.4 230.5 0,SIG ₂ Zinc sulfate -982.8 871.5 110.5 99.2 0,SIG ₂ Zinc continum orthosilicate -2394.5 -2191.1 153.1 134.3 0,SIG ₂ Zinconium(VI) orthosilicate -1636.7 -1523.2 131.4 123.3 0,SIG ₂ Zinconium(VI) orthosilicate -2034.5 -2191.1 153.1 134.3 0,RIZ Zinconium Utanate -2024.1 -1915.8 116.7 114.0 0,RIZ Zinconium Utanate -2041.1 -1915.8 116.7 114.0 0,RIZ Zinconium Utanate -2044.1 -1915.8 116.7 114.0 0,RIZ Zinconium Utanate -2046.0 -1911.2 143.1 135.1 0,RIZ Zinconium Utanate -2046.0 -1911.2 143.1 135.1 0,RIZ Zinconium Utanate -2045.1 -1915.8 116.7 114.0 0,RIZ Zinconium Utanate -2041.1 -1915.8 116.3 127.7 0,RIZ Zinconium Utanate -217.1 123.1 123.1 127.7 0,RIZ Zinconium Utanate -1240.1 -1066.0 207.1 166.1 -1100.0 -994.0 452.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>146.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						146.9								
O_Res Ruthenium(VIII) oxide -239.3 -152.2 146.4 0_SSF Strontium sullate -1453.1 -1349.9 117.0 0_STI_ Thillium(I) sulfate -931.8 -830.4 230.5 0_SZO Zinc sulfate -982.8 -871.5 110.5 99.2 0_SIST_S Strontium orthosilicate -1656.7 -1523.2 131.4 123.3 0_SIZO_Zinc orthosilicate -1656.7 -1529.2 131.4 123.3 0_SIZO_Zincontium(IV) orthosilicate -2034.1 -1915.8 116.7 114.0 0_SEC Antimony(V) oxide -971.9 -829.2 125.1 0_TIZO Zirconium(IV) oxide -2046.0 -1911.2 143.1 135.1 0_TIZO_T Tantalium(V) oxide -2459.4 -2317.4 129.3 154.8 0_V_V Vanadium(V) oxide -1450.6 -1419.5 131.0 127.7 0_V_V Vanadium(IV) oxide -1249.4 -1363.0 163.0 0_Rep. Phenhum(V) Oxide -124.1	_ 4													
Q, SR Strontium sulfate -1463.1 -1340.9 117.0 Q, SR1, 20, 251. Thallum(I) sulfate -931.8 -830.4 230.5 Q, SR2, 20, 252. Cinc sulfate -982.8 -871.5 110.5 99.2 Q, SSR7, 30, 252. Zincon stronsilicate -1636.7 -1523.2 131.4 123.3 Q, SSR7, 20, 272. Zinconium (IV) orthosilicate -1636.7 -1523.2 131.4 198.7 Q, SEZ, 27. Zinconium (Itanate -2024.1 -1915.8 116.7 114.0 Q, SB, Antimony(V) oxide -971.9 -822.2 125.1 Q, SB, Antimony(V) oxide -971.9 -822.2 125.1 Q, Ta, 3. Tatalum(V) oxide -915.6 -1419.5 116.7 114.0 Q, V. Vanadium(III,V) oxide -150.6 -1419.5 131.0 127.7 Q, Y. Vanadium(III,V) oxide -140.1 -1666.1 -1100.0 -994.0 452.0 Q, Y. Vanadium(IV) oxide -150.6 -1419.5 172.0 152.5 20.5 21.5	7 4					134.1								
Q,ST1_Q Thallium(I) sulfate -931.8 -830.4 230.5 Q,SZn_Z Zinc sulfate -982.8 -871.5 110.5 99.2 Q,SIST_S Strontium orthosilicate -293.4 -219.1 153.1 134.3 Q,SZn_Z Zinc orthosilicate -1636.7 -1523.2 131.4 123.3 Q,SIZT Zinconium (VIV) orthosilicate -203.4 -1919.1 84.1 98.7 Q,IIZT Zirconium Itanate -2024.1 -1919.8 84.1 98.7 Q,SS, Antimony(V) oxide -971.9 -829.2 125.1 Q,Fa_ Tantalum(V) oxide -971.9 -829.2 125.1 Q,II_T Titanium(VI) oxide -2469.4 -2317.4 129.3 154.8 Q,V_V Vanadium(VII) oxide -1550.6 -1419.5 131.0 127.7 Q,V_S Vanadium(VII) oxide -1393.0 -1803.0 163.0 -1100.0 -94.0 452.0 Q,V_S Zar Zirconium(V) suide -3427.1 -3242.9 250.5 215.5 -1100.0 -99.4 45		. ,												
Q,SZn Zinc sulfate -992.8 -871.5 110.5 99.2 Q,SiSing Storntum orthosilicate -2304.5 -2191.1 153.1 134.3														
Q.SISR2_SISR2_STrontium orthosilicate -2304.5 - 2191.1 153.1 134.3 134.3 Q.SIZP_ZINcontimi(IV) orthosilicate -1636.7 - 1523.2 131.4 123.3 123.3 Q.SIZP_ZIrconium (IV) orthosilicate -2034. -1915.8 116.7 114.0 114.0 Q.SEx_ZIrconium titanate -2024.1 -1915.8 116.7 114.0 114.0 Q.SEx_Antimony(V) oxide -2974.9 -829.2 125.1 125.1 Q.Ta_ZIRCONIUM titanate -2459.4 -2317.4 129.3 154.8 155.8 Q.V_V. Vanadium(V) oxide -1455.6 -1415.5 131.0 127.7 Q.V_V. Vanadium(V) oxide -1550.6 -1415.5 131.0 127.7 Q.V_V. Vanadium(VI) oxide -1593.0 -1603.0 160.0 160.0 Q.V_V. Vanadium(VI) oxide -1240.1 -1066.0 207.1 166.1 -1100.0 -994.0 452.0 Q.P.B. Rhenium(VII) oxide -1240.1 -1066.0 207.1 166.1 -1100.0 -994.0 452.0 Q.P. Q.Y. Vanadium(VIV) oxide -3427.1 -3242.9 250.5 215.5 Q.S.Z. Zirconium(VI) oxide -3427.1 -3242.9 250.5 215.5 Q.S.Z. Zirconium(VI) oxide -3427.1 -3242.9 250.5 215.5 Q.S.Z. Zirconium(VI) oxide -3451.0 -4275.1 324.2 233.3 Q.J. Uranium(VIV) oxide -3451.0 -4275.1 324.2 233.3 Q.S.Z. Zirconium(VI) oxide </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						00.0								
Q,SIZR ₁ / ₂ Zinc orthosilicate -1636.7 -1523.2 131.4 123.3 Q,SIZr Zirconium(IV) orthosilicate -2033.4 -1919.1 84.1 98.7 Q,SEz Zirconium Itanate -2024.1 +1918.8 116.7 114.0 Q,Sb2 Antimony(V) oxide -971.9 -829.2 125.1 Q,Ia, Tantalum(I), Oxide -2046.0 -1911.2 143.1 135.1 Q,I _Y Vanadium(V) oxide -1550.6 -1419.5 131.0 127.7 Q,V _Y Vanadium(I), Oxide -1506.0 -1419.5 131.0 127.7 Q,V _Y Vanadium(II), Oxide -1530.0 -1830.0 163.0 -1100.0 -994.0 452.0 Q,V _Y Vanadium(II), Oxide -1240.1 -1606.0 207.1 166.1 -1100.0 -994.0 452.0 Q,V _Y Vanadium(IV) oxide -3427.1 -3242.9 250.5 215.5 -1100.0 -994.0 452.0 Q,S,Zr Zirconium (IVI) oxide -3427.1 -3248.2	_ 4													
Q,SiZr Zirconium(IV) orthosilicate -2033.4 -1919.1 84.1 98.7 Q,SiZr Zirconium titanate -2024.1 -1915.8 116.7 114.0 Q,Sb ₂ Antimony(V) oxide -971.9 -829.2 125.1 Q,II ₂ Tantalum(V) oxide -2046.0 -1911.2 143.1 135.1 Q,I ₃ Titanium(III/V) oxide -2459.4 -2317.4 129.3 154.8 Q,V ₂ Vanadium(VI) oxide -1550.6 -1419.5 131.0 127.7 Q,V ₂ Vanadium(VI) oxide -1550.6 -1419.5 130.0 127.7 Q,V ₃ Vanadium(VI) oxide -1393.0 -1803.0 163.0 -1 Q,V ₄ Vanadium(VI) oxide -1393.0 -1803.0 163.0 -1 Q,V ₄ Vanadium(VII) oxide -1393.0 -1803.0 -1 -1 -100.0 -994.0 452.0 Q,V ₂ Vanadium(IVVI) oxide -3427.1 -3242.9 250.5 215.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2<	4 4													
Q₁TZT Zirconium titanate -2024.1 -1915.8 116.7 114.0 Q₁Sb₂ Antimony(V) oxide -971.9 -829.2 125.1 Q₁T₃ Titanium(I) oxide -204.0 -1911.2 143.1 135.1 Q₁T₃ Titanium(III,IV) oxide -2459.4 -2317.4 129.3 154.8 Q₁V₃ Vanadium(III,IV) oxide -1550.6 -1419.5 131.0 127.7 Q₁V₃ Vanadium(III,IV) oxide -1505.6 -1419.5 131.0 127.7 Q₁V₃ Vanadium(III,IV) oxide -1240.1 -1066.0 207.1 166.1 -1100.0 -994.0 452.0 Q₁V₃ Uranium(IV) oxide -3427.1 -3242.9 250.5 215.5	7 4									-				
ŌSSb2 OR Antimony(V) oxide -971,9 -829,2 125.1 O₁Sb2 ORITS Tantalum(II) voxide -2046.0 -1911.2 143.1 135.1 O₂TI3 Titanium(III,V) oxide -2459.4 -2317.4 129.3 154.8 O½V Vanadium(V) oxide -1550.6 -1419.5 131.0 127.7 O½V Vanadium(VII) oxide -1933.0 -1803.0 163.0 163.0 O₂Re2 Rhenium(VII) oxide -1940.1 -1066.0 207.1 166.1 -1100.0 -994.0 452.0 O₁V_1 Uranium(IV) oxide -3427.1 -3242.9 250.5 215.5 O₁V_2 Uranium(IV) oxide -3427.1 -3242.9 250.5 215.5 O₁V_2 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₁V_2 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₂V_3 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₂V_3 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₂V_3 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₂V_4 Uranium(IV) oxide -3574.8 -3389.5 282.6 238.4 O₂V_4 Phosphorus (white) 0.0 32.6 24.7 791.0 745.0 192.6 20.8 P Phosphorus (white) 0.0 41.1 23.8 21.2 P Phosphorus (black) -39.3 P₂ Diphosphorus 144.0 103.5 218.1 32.1 P₄ Tetraphosphorus 14														
0, Ta,						114.0				-				
Q ₁ Ti ₁ Titanium(III,IV) oxide -2459.4 -2317.4 129.3 154.8 154.8						135 1								
O _V v Vanadium(V) oxide -1550.6 -1419.5 131.0 127.7 O _V V vanadium(III,IV) oxide -1803.0 1603.0 160.1 160.1 100.0 -994.0 452.0 100.0	_ J _ L													
Q̄, Vg Vanadium(III,IV) oxide -1933.0 -1803.0 163.0 172.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Ō,Re₂ OJ,Re₂ Uranium(VII) oxide -1240.1 -1066.0 207.1 166.1 207.1 166.1 -1100.0 -994.0 452.0 Ō,U₃ Uranium(IV,VI) oxide O₃,Yz Zirconium(IV) sulfate -2217.1 172.0 -2217.1 172.0 O₃,U₃ Uranium(V,VI) oxide O₃,U₃ Uranium(V,VI) oxide -3574.8 -3369.5 282.6 238.4 0,U₄ Uranium(IV,VI) oxide -4510.4 -4275.1 334.1 293.3 283.4 0 OS Osmium OS Osmium OS Osmium OS Osmium OS OS Osmium OS Osmium OS														
O,U ₃ Uranium(IV,VI) oxide -3427.1 -3242.9 250.5 215.5 O ₃ S ₂ Zr Zirconium(IV) sulfate -2217.1 172.0 O ₃ U ₃ Uranium(VIV) oxide -3574.8 -3369.5 282.6 238.4 O ₂ U ₄ Uranium(IV,V) oxide -4510.4 -4275.1 334.1 293.3 Os Osmium 0.0 32.6 24.7 791.0 745.0 192.6 20.8 P Phosphorus (white) 0.0 41.1 23.8 316.5 280.1 163.2 20.8 P Phosphorus (red) -17.6 22.8 21.2 2	$\overline{O_7 Re_2}$	Rhenium(VII) oxide	-1240.1	-1066.0	207.1	166.1					-1100.0	-994.0	452.0	
O₂SZ r Zirconium(IV) sulfate -2217.1 172.0 O₂U₃ Uranium(VVI) oxide -3574.8 -3369.5 282.6 238.4 O₂U₃ Uranium(IV,VI) oxide -4510.4 -4275.1 334.1 293.3 Os Osmium 0.0 32.6 24.7 791.0 745.0 192.6 20.8 P Phosphorus (white) 0.0 41.1 23.8 316.5 280.1 163.2 20.8 P Phosphorus (red) -17.6 22.8 21.2 2		Uranium(IV,VI) oxide	-3427.1	-3242.9	250.5	215.5				,				
OgU4 Dynamium(IV,V) oxide -4510.4 -4275.1 334.1 293.3 293.3 26.6 24.7 791.0 745.0 192.6 20.8 20.8 20.8 20.8 20.8 20.8 21.2 20.8 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8 21.2 20.8	O ₈ S ₂ Zr	Zirconium(IV) sulfate	-2217.1			172.0								
Os Osmium 0.0 32.6 24.7 791.0 745.0 192.6 20.8 P Phosphorus (white) 0.0 41.1 23.8 316.5 280.1 163.2 20.8 P Phosphorus (red) -17.6 22.8 21.2 20.8 20.8 20.2 20.8 20.0 67.2 20.9 20.0 67.2 20.9 20.0 67.2 20.8 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	0 ₈ U ₃	Uranium(V,VI) oxide	-3574.8	-3369.5	282.6	238.4								
P Phosphorus (white) 0.0 41.1 23.8 316.5 280.1 163.2 20.8 P Phosphorus (red) -17.6 22.8 21.2 P Phosphorus (black) -39.3 -39.3 P2 Diphosphorus 144.0 103.5 218.1 32.1 P4 Tetraphosphorus 58.9 24.4 280.0 67.2 Pa Protactinium 0.0 51.9 607.0 563.0 198.1 22.9 Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 49.5 91.2 49.5 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5 91.2 49.5<	O_9U_4	Uranium(IV,V) oxide	-4510.4	-4275.1	334.1	293.3								
P Phosphorus (red) -17.6 22.8 21.2 P Phosphorus (black) -39.3 -39.3 P2 Diphosphorus 144.0 103.5 218.1 32.1 P4 Tetraphosphorus 58.9 24.4 280.0 67.2 Pa Protactinium 0.0 51.9 607.0 563.0 198.1 22.9 Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selenide -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0 46.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75	0s		0.0		32.6	24.7					791.0		192.6	20.8
P Phosphorus (black) -39.3 P₂ Diphosphorus 144.0 103.5 218.1 32.1 P₄ Tetraphosphorus 58.9 24.4 280.0 67.2 Pa Protactinium 0.0 51.9 607.0 563.0 198.1 22.9 Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selnide -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0<	Р										316.5	280.1	163.2	20.8
P2 Diphosphorus 144.0 103.5 218.1 32.1 P4 Tetraphosphorus 58.9 24.4 280.0 67.2 Pa Protactinium 0.0 51.9 607.0 563.0 198.1 22.9 Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selenide -102.9 -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0 46.0 47.1 24.3 Pm Promethium 0.0 73.2 27.2	Р	Phosphorus (red)	-17.6		22.8	21.2								
Pa	Р		-39.3											
Pa Protactinium 0.0 51.9 607.0 563.0 198.1 22.9 Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selnide -102.9 -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0	P ₂													32.1
Pb Lead 0.0 64.8 26.4 195.2 162.2 175.4 20.8 PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selenide -102.9 -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0														67.2
PbS Lead(II) sulfide -100.4 -98.7 91.2 49.5 PbSe Lead(II) selenide -102.9 -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0	Pa													22.9
PbSe Lead(II) selenide -102.9 -101.7 102.5 50.2 PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0	Pb										195.2	162.2	175.4	20.8
PbTe Lead(II) telluride -70.7 -69.5 110.0 50.5 Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0	PbS													
Pd Palladium 0.0 37.6 26.0 378.2 339.7 167.1 20.8 PdS Palladium(II) sulfide -75.0 -67.0 46.0										_				
PdS Palladium(II) sulfide -75.0 -67.0 46.0 Pm Promethium 0.0 187.1 24.3 Po Polonium 0.0 73.2 27.2 355.6 320.9 189.8 21.4 Pr Praseodymium 0.0 73.2 27.2 355.6 320.9 189.8 21.4				-69.5						-				
Pm Promethium 0.0 187.1 24.3 Po Polonium 0.0						26.0					378.2	339.7	167.1	20.8
Po Polonium 0.0 Pr Praseodymium 0.0 73.2 27.2 355.6 320.9 189.8 21.4				-67.0	46.0								10-	
Pr Praseodymium 0.0 73.2 27.2 355.6 320.9 189.8 21.4													187.1	24.3
•					70.0	07.0				-	055.0	000.0	100.0	04.4
rt raumum 0.0 41.6 20.9 505.3 520.5 192.4 25.5														
	rı	ridullulli	0.0		41.0	∠5.9					200.3	5∠0.5	192.4	20.0

			Cryst	al			Lic	luid			Ga	as	
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
PtS	Platinum(II) sulfide	-81.6	-76.1	55.1	43.4								
PtS ₂	Platinum(IV) sulfide	-108.8	-99.6	74.7	65.9								
Pu	Plutonium	0.0		74.0						450.0	400.0	470.5	
Ra Rb	Radium	0.0		71.0 76.8	31.1		-			159.0	130.0	176.5 170.1	20.8
Re	Rubidium Rhenium	0.0		36.9	25.5		-			769.9	724.6	188.9	20.8
Rh	Rhodium	0.0		31.5	25.0					556.9	510.8	185.8	21.0
Rn	Radon	0.0		01.0	20.0					0.0	010.0	176.2	20.8
Ru	Ruthenium	0.0		28.5	24.1					642.7	595.8	186.5	21.5
S	Sulfur (rhombic)	0.0		32.1	22.6					277.2	236.7	167.8	23.7
S	Sulfur (monoclinic)	0.3											
SSi	Silicon monosulfide									112.5	60.9	223.7	32.3
SSn	Tin(II) sulfide	-100.0	-98.3	77.0	49.3								
SSr	Strontium sulfide	-472.4	-467.8	68.2	48.7								
STI ₂	Thallium(I) sulfide	-97.1	-93.7	151.0									
SZn	Zinc sulfide (wurtzite)	-192.6											
SZn	Zinc sulfide (sphalerite)	-206.0	-201.3	57.7	46.0								
S ₂	Disulfur									128.6	79.7	228.2	32.5
Sb	Antimony	0.0		45.7	25.2					262.3	222.1	180.3	20.8
Sb ₂	Diantimony	0.0		040	05.5					235.6	187.0	254.9	36.4
Sc Se	Scandium Selenium (gray)	0.0		34.6 42.4	25.5 25.4					377.8 227.1	336.0 187.0	174.8	22.1
Se	Selenium (gray) Selenium (α form)	6.7		42.4	25.4					227.1	107.0	1/0./	20.0
Se	Selenium (vitreous)	5.0								227.1			
SeSr	Strontium selenide	-385.8								221.1			
SeTI ₂	Thallium(I) selenide	-59.0	-59.0	172.0									
SeZn	Zinc selenide	-163.0	-163.0	84.0									
Se ₂	Diselenium								-	146.0	96.2	252.0	35.4
Si	Silicon	0.0		18.8	20.0					450.0	405.5	168.0	22.3
Si,	Disilicon									594.0	536.0	229.9	34.4
Sm	Samarium	0.0		69.6	29.5					206.7	172.8	183.0	30.4
Sn	Tin (white)	0.0		51.2	27.0					301.2	266.2	168.5	21.3
Sn	Tin (gray)	-2.1	0.1	44.1	25.8								
Sr	Strontium	0.0		55.0	26.8					164.4	130.9	164.6	20.8
Та	Tantalum	0.0		41.5	25.4					782.0	739.3	185.2	20.9
Tb	Terbium	0.0		73.2	28.9		-			388.7	349.7	203.6	24.6
Tc	Technetium	0.0		40.7						678.0		181.1	20.8
Te	Tellurium	0.0		49.7	25.7					196.7	157.1	182.7 268.1	20.8
Te ₂	Ditellurium Thorium	0.0		51.8	27.3					168.2	118.0 560.7	190.2	20.8
Ti	Titanium	0.0		30.7	25.0					473.0	428.4	180.2	24.4
TI TI	Thallium	0.0		64.2	26.3					182.2	147.4	181.0	20.8
Tm	Thulium	0.0		74.0	27.0					232.2	197.5	190.1	20.8
U	Uranium	0.0		50.2	27.7					533.0	488.4	199.8	23.7
V	Vanadium	0.0		28.9	24.9					514.2	754.4	182.3	26.0
W	Tungsten	0.0		32.6	24.3					849.4	807.1	174.0	21.3
Xe	Xenon									0.0		169.7	20.8
Υ	Yttrium	0.0		44.4	26.5					421.3	381.1	179.5	25.9
Yb	Ytterbium	0.0		59.9	26.7					152.3	118.4	173.1	20.8
Zn	Zinc	0.0		41.6	25.4					130.4	94.8	161.0	20.8
Zr	Zirconium	0.0		39.0	25.4					608.8	566.5	181.4	26.7
	es containing carbon:	4 -									27: 5		0.7
C	Carbon (graphite)	0.0	0.0	5.7	8.5					716.7	671.3	158.1	20.8
CAgN	Carbon (diamond) Silver(I) cyanide	1.9	2.9 156.9	107.2	6.1								
CAg ₂ O ₃	Silver(I) cyanide Silver(I) carbonate	-505.8	-436.8	107.2	112.3								
CBaO ₂	Barium carbonate	-1213.0	-1134.4	112.1	86.0							-	
CBeO _s	Beryllium carbonate	-1025.0	1104.4	52.0	65.0								
CBrCIF _o	Bromochlorodifluoromethane	-1020.0		JZ.U	00.0							318.5	74.6
CBrCl ₂ F	Bromodichlorofluoromethane											330.6	80.0
CBrCl ₃	Bromotrichloromethane									-41.1		200.0	85.3
CBrF,	Bromotrifluoromethane									-648.3			69.3
CBrN	Cyanogen bromide	140.5					-			186.2	165.3	248.3	46.9
OD NI O						32.5				80.3			
CBrN ₃ O ₆	Bromotrinitromethane					32.3				00.5			

			Cryst	al			Liq	uid			Gas	S	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
CBr ₂ Cl ₂	Dibromodichloromethane											347.8	87.1
CBr ₂ F ₂	Dibromodifluoromethane											325.3	77.0
CBr ₂ O	Carbonyl bromide					-127.2				-96.2	-110.9	309.1	61.8
CBr ₃ Cl	Tribromochloromethane											357.8	89.4
CBr ₃ F	Tribromofluoromethane		47.7	010.5	1110							345.9	84.4
CBr ₄	Tetrabromomethane	29.4	47.7	212.5	144.3					83.9	67.0	358.1	91.2
CCaO ₃	Calcium carbonate (calcite)	-1207.6	-1129.1	91.7	83.5								
CCaO ³	Calcium carbonate (aragonite)	-1207.8	-1128.2	88.0	82.3								
CCdO ₃	Cadmium carbonate	-750.6	-669.4	92.5								076.7	E0 4
CCIFO	Carbonyl chloride fluoride									700.0		276.7	52.4
CCIF ₃	Chlorotrifluoromethane Cyanogen chloride					110.1				-706.3	101.0	006.0	66.9
CCIN ₂ O ₂	Chlorotrinitromethane					-27.1				138.0	131.0	236.2	45.0
CCI ₂ F ₂	Dichlorodifluoromethane			-		-21.1				-477.4	-439.4	300.8	72.3
CCI ₂ O	Carbonyl chloride			-0	-					-219.1	-204.9	283.5	57.7
CCI ₂ O	Trichloromethyl									59.0	-204.9	203.3	37.7
CCI ₃	Trichlorofluoromethane					-301.3	-236.8	225.4	121.6	-268.3			78.1
CCI ₃ F	Tetrachloromethane			-		-128.2	-230.0	223.4	130.7	-95.7			83.3
		-713.0				-120.2			130.7	-90.7			03.3
CCoO ₃ CCs ₂ O ₃	Cobalt(II) carbonate Cesium carbonate	-713.0	-1054.3	204.5	123.9								
CCuN	Copper(I) cyanide	-1139.7 96.2	111.3	84.5	123.9								
CFN	11 (7)	90.2	111.3	04.0								2047	41.0
CFN CF ₂ O	Cyanogen fluoride									-639.8		224.7	41.8
CF ₂ U	Carbonyl fluoride										464.0	064 F	
CF ₃	Trifluoromethyl									-477.0 -587.8	-464.0	264.5 307.4	49.6
	Trifluoroiodomethane												70.9
CF ₄	Tetrafluoromethane	740.0	000.7	00.0	00.1					-933.6		261.6	61.1
CFeO ₃	Iron(II) carbonate	-740.6	-666.7	92.9	82.1								
CH ₃	Iron carbide	25.1	20.1	104.6	105.9								
	Methylidyne									595.8		0040	00.0
CHBrCIF	Bromochlorofluoromethane											304.3	63.2
CHBrCl ₂ CHBrF ₃	Bromodichloromethane Bromodifluoromethane									-424.9		316.4 295.1	67.4 58.7
	Chlorodibromomethane									-424.9		327.7	69.2
CHBr ₂ CI CHBr ₃ F	Dibromofluoromethane												65.1
CHBr ₂ F	Tribromomethane					-22.3	-5.0	220.9	130.7	23.8	8.0	316.8 330.9	71.2
CHCIF.	Chlorodifluoromethane					-22.3	-5.0	220.9	130.7	-482.6	0.0	280.9	55.9
CHCI ₂	Dichlorofluoromethane									-402.0		293.1	60.9
CHCI ₂ F						-134.1	-73.7	201.7	114.2	-102.7	6.0	295.7	65.7
CHCsO ₂	Trichloromethane Cesium hydrogen carbonate	-966.1				-134.1	-13.1	201.7	114.2	-102.7	0.0	293.7	05.7
CHFO	Formyl fluoride	-900.1										246.6	39.9
CHF.	Trifluoromethane									-695.4		259.7	51.0
CHI ₃	Triiodomethane	-181.1								251.0		356.2	75.0
CHKO,										231.0		330.2	75.0
CHKO ₂	Potassium formate	-679.7	060 F	1155									
CHN ₃	Potassium hydrogen carbonate Hydrogen cyanide	-963.2	-863.5	115.5		108.9	125.0	112.8	70.6	135.1	124.7	201.8	35.9
CHNO	Isocyanic acid (HNCO)					100.9	123.0	112.0	70.0	133.1	124.7	238.0	44.9
CHNS	Isotyanic acid (HNCO)									127.6	113.0	247.8	44.9
CHN ₃ O ₆	Trinitromethane					-32.8				-13.4	113.0	435.6	134.1
		666 5	500.0	102.0	99.7	-32.0				-13.4		433.0	134.1
CHNaO ₂	Sodium formate Sodium hydrogen carbonate	-666.5 -950.8	-599.9 -851.0	103.8	82.7 87.6								
CHO CHO		-930.0	-051.0	101.7	07.0					40.1	20.0	2047	246
	Oxomethyl (HCO)									43.1	28.0	224.7	34.6
CH ₂ CH ₃ BrCl	Methylene Bromochloromethane									390.4	372.9	194.9 287.6	33.8 52.7
CH ₂ BrCi CH ₃ BrF	Bromocnioromethane Bromofluoromethane											276.3	49.2
	Dibromomethane											293.2	54.7
CH ₂ Br ₂													47.0
CH ₂ CIF	Chlorofluoromethane					1040		177.0	101.0	05.4		264.4	
CH ₂ Cl ₂	Dichloromethane					-124.2		177.8	101.2	-95.4		270.2	51.0
CH ₂ F ₂						COF	00.4	1711	1040	-452.3	05.0	246.7	42.9
	Difluoromethane					68.5	90.4	174.1	134.0	119.5	95.8	309.7	57.7
CH ₂ I ₂	Diiodomethane											0.40.0	E0 F
CH ₂ N ₂	Diiodomethane Diazomethane											242.9	52.5
CH ₂ N ₂ CH ₂ N ₂	Diiodomethane Diazomethane Cyanamide	58.8		-		404.5							
CH ₂ N ₂ CH ₂ N ₂ CH ₂ N ₂ O ₄	Diiodomethane Diazomethane Cyanamide Dinitromethane	58.8				-104.9				-61.5	100.5	358.1	52.5 86.4
CH ₂ N ₂ CH ₂ N ₂ CH ₂ N ₂ O ₄ CH ₂ O	Diiodomethane Diazomethane Cyanamide Dinitromethane Formaldehyde					-104.9				-61.5 -108.6	-102.5		
CH ₂ N ₂ CH ₂ N ₂ CH ₂ N ₂ O ₄ CH ₂ O (CH ₂ O) _x	Diiodomethane Diazomethane Cyanamide Dinitromethane Formaldehyde Paraformaldehyde	58.8 -177.6					0511	1225		-108.6	-102.5	358.1	86.4
CH ₂ N ₂ CH ₂ N ₂ CH ₂ N ₂ O ₄ CH ₂ O	Diiodomethane Diazomethane Cyanamide Dinitromethane Formaldehyde					-104.9 -425.0 24.0	-361.4	129.0	99.0		-102.5	358.1	86.4

			Cryst	al			Lic	luid			Ga	S	
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p
CH ₃	Methyl									145.7	147.9	194.2	38.7
CH ₃ BO	Borane carbonyl									-111.2	-92.9	249.4	59.5
CH ₃ Br	Bromomethane					-59.8				-35.4	-26.3	246.4	42.4
CH ₃ CI CH ₃ CI ₃ Si	Chloromethane Methyltrichlorosilane							262.8	163.1	-81.9 -528.9	-	234.6 351.1	40.8
CH ₂ F	Fluoromethane							202.0	100.1	-320.9		222.9	37.5
CH _a I	lodomethane					-13.6		163.2	126.0	14.4		254.1	44.1
CH ₃ NO	Formamide					-254.0				-193.9			
CH ₃ NO ₂	Nitromethane					-112.6	-14.4	171.8	106.6	-80.8		282.9	55.5
CH ₃ NO ₂	Methyl nitrite									-66.1			
CH ₃ NO ₃	Methyl nitrate					-156.3	-43.4	217.1	157.3	-122.0		305.8	76.6
CH ₄	Methane									-74.6	-50.5	186.3	35.7
CH ₄ N ₂	Ammonium cyanide	0.4			134.0								
CH ₄ N ₂ O	Urea	-333.1								-245.8			
CH ₄ N ₂ S	Thiourea	-89.1								22.9			
CH ₄ N ₄ O ₂	Nitroguanidine Methanol	-92.4				220.0	100.0	100.0	01.1	201.0	160.0	220.0	44.1
CH₄O CH₄S	Methanethiol					-239.2 -46.7	-166.6 -7.7	126.8 169.2	81.1 90.5	-201.0 -22.9	-162.3 -9.3	239.9 255.2	44.1 50.3
CH₂N	Methylamine					-40.7	35.7	150.2	102.1	-22.5	32.7	242.9	50.3
CH ₂ NO ₃	Ammonium hydrogen carbonate	-849.4	-665.9	120.9		41.3	33.7	100.2	102.1	22.3	34.1	د.ع+∠.ع	JU. I
CH ₅ NO ₃	Guanidine	-56.0	500.5	120.3					-				
CH _E N ₂ S	Hydrazinecarbothioamide	24.7											
CH ₅ N ₅ O ₂	3-Amino-1-nitroguanidine	22.1											
CH ₆ CIN	Methylamine hydrochloride	-298.1											
CH ₆ N ₂	Methylhydrazine					54.2	180.0	165.9	134.9	94.7	187.0	278.8	71.1
CH ₆ Si	Methylsilane											256.5	65.9
CHg ₂ O ₃	Mercury(I) carbonate	-553.5	-468.1	180.0									
CIN	Cyanogen iodide	166.2	185.0	96.2						225.5	196.6	256.8	48.3
CI ₄	Tetraiodomethane	-392.9								474.0		391.9	95.9
CKN	Potassium cyanide	-113.0	-101.9	128.5	66.3								
CKNS	Potassium thiocyanate	-200.2	-178.3	124.3	88.5								
CK ₂ O ₃	Potassium carbonate	-1151.0	-1063.5	155.5	114.4								
CLi ₂ O ₃	Lithium carbonate	-1215.9	-1132.1	90.4	99.1								
CMgO ₃ CMnO ₃	Magnesium carbonate Manganese(II) carbonate	-1095.8 -894.1	-1012.1 -816.7	65.7 85.8	75.5 81.5								
CN CN	Cyanide	-094.1	-010.7	00.0	01.0					437.6	407.5	202.6	29.2
CNNa	Sodium cyanide	-87.5	-76.4	115.6	70.4					407.0	407.5	202.0	23.2
CNNaO	Sodium cyanate	-405.4	-358.1	96.7	86.6								
CN ₄ O ₈	Tetranitromethane					38.4				82.4		503.7	176.1
CNa ₂ O ₂	Sodium carbonate	-1130.7	-1044.4	135.0	112.3								
CO	Carbon monoxide									-110.5	-137.2	197.7	29.1
COS	Carbon oxysulfide									-142.0	-169.2	231.6	41.5
CO ₂	Carbon dioxide									-393.5	-394.4	213.8	37.1
CO ₃ Pb	Lead(II) carbonate	-699.1	-625.5	131.0	87.4								
CO ₃ Rb ₂	Rubidium carbonate	-1136.0	-1051.0	181.3	117.6								
CO ₃ Sr	Strontium carbonate	-1220.1	-1140.1	97.1	81.4								
CO ₃ TI ₂	Thallium(I) carbonate	-700.0	-614.6	155.2									
CO ₃ Zn	Zinc carbonate	-812.8	-731.5	82.4	79.7					000.0	000.0	040.0	
CS	Carbon monosulfide Carbon disulfide					00.0	C4.C	151.0	70.4	280.3	228.8	210.6	29.8
CS ₂ CSe ₂	Carbon disulfide Carbon diselenide					89.0	64.6	151.3	76.4	116.7	67.1	237.8	45.4
CSi	Silicon carbide (cubic)	-65.3	-62.8	16.6	26.9	104.0							
CSi	Silicon carbide (cubic)	-62.8	-60.2	16.5	26.7								
C ₂	Dicarbon	02.0	00.2	10.0	20.7					831.9	775.9	199.4	43.2
C ₂ BrF ₅	Bromopentafluoroethane									-1064.4			
C ₂ Br ₂ CIF ₃	1,2-Dibromo-1-chloro-1,2,2-trifluoroethane					-691.7				-656.6			
C ₂ Br ₂ F ₄	1,2-Dibromotetrafluoroethane					-817.7				-789.1			
$\frac{2}{C_2Br_4}$	Tetrabromoethene											387.1	102.7
C ₂ Br ₆	Hexabromoethane											441.9	139.3
C ₂ Ca	Calcium carbide	-59.8	-64.9	70.0	62.7								
C ₂ CaN ₂	Calcium cyanide	-184.5											
C ₂ CaO ₄	Calcium oxalate	-1360.6											
C ₂ CIF ₃	Chlorotrifluoroethene			-		-522.7			-	-505.5	-523.8	322.1	83.9
C ₂ CIF ₅	Chloropentafluoroethane					222.2				-1118.8			184.2
C ₂ Cl ₂ F ₄	1,2-Dichloro-1,1,2,2-tetrafluoroethane			-		-960.2			111.7	-937.0			
C,CI,O,	Oxalyl chloride					-367.6				-335.8			

			Crys	al			Liq	luid			Ga	as	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _ρ J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₂ CI ₃ F ₃	1,1,2-Trichloro-1,2,2-trifluoroethane					-745.0			170.1	-716.8			
C ₂ CI ₃ N	Trichloroacetonitrile											336.6	96.1
C ₂ CI ₄	Tetrachloroethene					-50.6	3.0	266.9	143.4	-10.9			100.4
C ₂ Cl ₄ F ₂	1,1,1,2-Tetrachloro-2,2-difluoroethane								470.0	-489.9	-407.0	382.9	123.4
C ₂ CI ₄ F ₂	1,1,2,2-Tetrachloro-1,2-difluoroethane								173.6				
C ₂ CI ₄ O	Trichloroacetyl chloride	000.0		007.0	100.0	-280.8				-239.8			
C ₂ Cl ₆	Hexachloroethane Trifluoroacetonitrile	-202.8		237.3	198.2					-143.6 -497.9		298.1	77.9
$\frac{C_2F_3N}{C_2F_4}$	Tetrafluoroethene	-820.5								-658.9		300.1	80.5
$\frac{C_2I_4}{C_2F_6}$	Hexafluoroethane	-020.3								-1344.2		332.3	106.7
C ₂ HBr	Bromoacetylene									1044.2		253.7	55.7
C ₂ HBrCIF ₃	1-Bromo-2-chloro-1,1,2-trifluoroethane					-675.3				-644.8		200.1	33.1
C ₂ HBrCIF ₃	2-Bromo-2-chloro-1,1,1-trifluoroethane					-720.0				-690.4			
C ₂ HCI	Chloroacetylene					720.0			-			242.0	54.3
C ₂ HCIF ₂	1-Chloro-2,2-difluoroethene									-315.5	-289.1	303.0	72.1
C ₂ HCl ₂ F	1,1-Dichloro-2-fluoroethene											313.9	76.5
C,HCl,F,	2,2-Dichloro-1,1,1-trifluoroethane											352.8	102.5
C,HCl,	Trichloroethene					-43.6		228.4	124.4	-9.0		324.8	80.3
C,HCI,O	Trichloroacetaldehyde					-234.5			151.0	-196.6			
C,HCI,O	Dichloroacetyl chloride					-280.4				-241.0			
C,HCl ₃ O,	Trichloroacetic acid	-503.3											
C,HCI,	Pentachloroethane					-187.6			173.8	-142.0			
C,HF	Fluoroacetylene								-			231.7	52.4
C,HF,	Trifluoroethene									-490.5			
C ₂ HF ₃ O ₂	Trifluoroacetic acid					-1069.9				-1031.4			
C ₂ HF ₅	Pentafluoroethane									-1100.4			
C,H,	Acetylene					-	-			227.4	209.9	200.9	44.0
C ₂ H ₂ BrF ₃	2-Bromo-1,1,1-trifluoroethane									-694.5			
$C_2H_2Br_2$	cis-1,2-Dibromoethene											311.3	68.8
C ₂ H ₂ Br ₂	trans-1,2-Dibromoethene											313.5	70.3
C ₂ H ₂ Br ₂ Cl ₂	1,2-Dibromo-1,2-dichloroethane									-36.9			
C ₂ H ₂ Br ₄	1,1,2,2-Tetrabromoethane								165.7				
C ₂ H ₂ CIF ₃	2-Chloro-1,1,1-trifluoroethane											326.5	89.1
C ₂ H ₂ Cl ₂	1,1-Dichloroethene					-23.9	24.1	201.5	111.3	2.8	25.4	289.0	67.1
C ₂ H ₂ Cl ₂	cis-1,2-Dichloroethene					-26.4		198.4	116.4	4.6		289.6	65.1
C ₂ H ₂ Cl ₂	trans-1,2-Dichloroethene					-24.3	27.3	195.9	116.8	5.0	28.6	290.0	66.7
C ₂ H ₂ Cl ₂ O	Chloroacetyl chloride					-283.7				-244.8			
$C_2H_2CI_2O_2$	Dichloroacetic acid					-496.3							
C ₂ H ₂ CI ₃ NO	2,2,2-Trichloroacetamide	-358.0											
C ₂ H ₂ Cl ₄	1,1,1,2-Tetrachloroethane											356.0	102.7
C ₂ H ₂ CI ₄	1,1,2,2-Tetrachloroethane					-195.0		246.9	162.3	-149.2		362.8	100.8
C ₂ H ₂ F ₂	1,1-Difluoroethene									-335.0		266.2	60.1
C ₂ H ₂ F ₂	cis-1,2-Difluoroethene											268.3	58.2
C ₂ H ₂ F ₃ I	1,1,1-Trifluoro-2-iodoethane									-644.5			
C ₂ H ₂ I ₂	cis-1,2-Diiodoethene									-207.4	40.0	0.47.0	
C ₂ H ₂ O	Ketene					-67.9				-47.5	-48.3	247.6	51.8
C ₂ H ₂ O ₂	Glyoxal	000.0		100.0						-212.0	-189.7	272.5	60.6
C ₂ H ₂ O ₄	Oxalic acid Strontium formate	-829.9		109.8	91.0					-731.8	-662.7	320.6	86.2
C ₂ H ₂ O ₄ Sr		-1393.3								200.0	975.0	055.0	E 4 7
C ₂ H ₂ S	Thiirene									300.0	275.8	255.3	54.7
C ₂ H ₃ Br	Bromoethene Acetyl bromide					-223.5				79.2	81.8	275.8	55.5
C ₂ H ₃ BrO C ₃ H ₃ BrO ₃	Acetyl bromide Bromoacetic acid					-223.5				-190.4 -383.5	-338.3	337.0	80.5
2 3 2		04.4				146							53.7
C ₂ H ₃ CI C ₂ H ₃ CIF ₂	Chloroethene 1-Chloro-1,1-difluoroethane	-94.1			59.4	14.6				37.2	53.6	264.0 307.2	82.5
C ₂ H ₃ CIO	Acetyl chloride					-272.9	-208.0	200.8	117.0	-242.8	-205.8	295.1	67.8
C ₂ H ₃ CIO ₂	Chloroacetic acid	-509.7							117.0	-427.6	-368.5	325.9	78.8
C ₂ H ₃ ClO ₂ C ₃ H ₃ Cl ₃ F	1,1-Dichloro-1-fluoroethane	-303.7								-141.0		320.2	88.7
C ₂ H ₃ Cl ₂ I	1,1,1-Trichloroethane			-		-177.4		227.4	144.3	-144.4		323.1	93.3
C ₂ H ₃ Cl ₃	1,1,2-Trichloroethane					-190.8		232.6	150.9	-151.3		337.2	89.0
C ₂ H ₃ F	Fluoroethene					130.0			100.3	-138.8			05.0
C ₂ H ₃ FO	Acetyl fluoride					-467.2				-442.1			
2 3	1,1,1-Trifluoroethane					101.2				-744.6		279.9	78.2
	.,.,												10.2
C ₂ H ₃ F ₃ C H F	1 1 2-Trifluoroethane									-/,311/			
C ₂ H ₃ F ₃ C ₂ H ₃ F ₃	1,1,2-Trifluoroethane 2,2,2-Trifluoroethanol					-932.4				-730.7 -888.4			

			Crys	tal			Lic	luid			G	as	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	S ⁰	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S º	C _p J/mol K	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₂ H ₃ IO	Acetyl iodide					-163.5				-126.4			
C ₂ H ₃ KO ₂	Potassium acetate	-723.0			-								
C ₂ H ₃ N	Acetonitrile					40.6	86.5	149.6	91.5	74.0	91.9	243.4	52.2
$\frac{C_2H_3N}{C_2H_3NO}$	Isocyanomethane Methyl isocyanate					130.8 -92.0	159.5	159.0		163.5	165.7	246.9	52.9
C ₂ H ₃ NO ₂	Nitroethene					32.0				33.3		300.5	73.7
C ₂ H ₃ NO ₃	Oxamic acid	-661.2								-552.3			70.7
C ₂ H ₃ NS	Methyl isothiocyanate	79.4			-								
C ₂ H ₃ NaO ₂	Sodium acetate	-708.8	-607.2	123.0	79.9								
C ₂ H ₄	Ethylene									52.4	68.4	219.3	42.9
C ₂ H ₄ BrCl	1-Bromo-2-chloroethane								130.1				
C ₂ H ₄ Br ₂	1,1-Dibromoethane					-66.2						327.7	80.8
C ₂ H ₄ Br ₂	1,2-Dibromoethane					-79.2		223.3	136.0	-37.5			
C ₂ H ₄ CIF	1-Chloro-1-fluoroethane					150 /	70.0	011.0	1000	-313.4	70.0	205.1	76.0
C ₂ H ₄ Cl ₂ C ₂ H ₄ Cl ₂	1,1-Dichloroethane 1,2-Dichloroethane					-158.4 -166.8	-73.8	211.8	126.3	-127.7 -126.4	-70.8	305.1 308.4	76.2 78.7
$\frac{G_2H_4GI_2}{G_2H_4F_2}$	1,1-Difluoroethane					-100.0			120.4	-497.0		282.5	67.8
$\frac{O_2 \Pi_4 \Pi_2}{C_2 H_4 I_2}$	1,2-Diiodoethane	9.3			-					75.0		202.0	07.0
C ₂ H ₄ N ₂ O ₂	Oxamide	-504.4								-387.1			
C ₂ H ₄ N ₂ O ₂	Ethanedial dioxime	-90.5											
C ₂ H ₄ N ₂ O ₄	1,1-Dinitroethane					-148.2							
$C_2H_4N_2O_4$	1,2-Dinitroethane					-165.2							
$C_2H_4N_2S_2$	Ethanedithioamide	-20.8								83.0			
$C_2H_4N_4$	1 <i>H</i> -1,2,4-Triazol-3-amine	76.8											
C ₂ H ₄ O	Acetaldehyde					-192.2	-127.6	160.2	89.0	-166.2	-133.0	263.8	55.3
C ₂ H ₄ O	Oxirane				-	-78.0	-11.8	153.9	88.0	-52.6	-13.0	242.5	47.9
C ₂ H ₄ OS	Thioacetic acid					-216.9	000.0	450.0	400.0	-175.1	074.0	000.5	00.4
C ₂ H ₄ O ₂	Acetic acid					-484.3 -386.1	-389.9	159.8	123.3	-432.2 -357.4	-374.2	283.5 285.3	63.4
$\frac{C_2H_4O_2}{C_2H_4O_3}$	Methyl formate Peroxyacetic acid				-	-300.1			119.1	-337.4		200.3	82.4
$\frac{G_2H_4G_3}{G_2H_4G_3}$	Glycolic acid									-583.0	-504.9	318.6	87.1
$\frac{O_2 H_4 O_3}{C_2 H_4 S}$	Thiirane				-	51.6				82.0	96.8	255.2	53.3
C ₂ H ₄ Si	Ethynylsilane											269.4	72.6
C ₂ H ₅ Br	Bromoethane					-90.5	-25.8	198.7	100.8	-61.9	-23.9	286.7	64.5
C ₂ H ₅ CI	Chloroethane					-136.8	-59.3	190.8	104.3	-112.1	-60.4	276.0	62.8
C ₂ H ₅ CIO	2-Chloroethanol					-295.4							
C ₂ H ₅ F	Fluoroethane											264.5	58.6
C ₂ H ₅ I	Iodoethane					-40.0	14.7	211.7	115.1	-8.1	19.2	306.0	66.9
C ₂ H ₅ N	Ethyleneimine	047.0		445.0	01.0	91.9				126.5			
C ₂ H ₅ NO	Acetamide At Mathylformanida	-317.0		115.0	91.3				123.8	-238.3			
$\frac{C_2H_5NO}{C_2H_5NO_2}$	N-Methylformamide Nitroethane					-143.9			134.4	-103.8		320.5	79.0
$\frac{G_2\Pi_5NO_2}{G_2H_5NO_2}$	Glycine	-528.5				-143.3			134.4	-392.1		320.3	19.0
$\frac{O_2 H_5 NO_2}{C_2 H_5 NO_3}$	2-Nitroethanol	020.0				-350.7				002.1			
C ₂ H ₅ NO ₃	Ethyl nitrate					-190.4				-154.1			-
C ₂ H ₅ NS	Thioacetamide	-71.7								11.4			
C ₂ H ₆	Ethane									-84.0	-32.0	229.2	52.5
C ₂ H ₆ Cd	Dimethyl cadmium					63.6	139.0	201.9	132.0	101.6	146.9	303.0	
C ₂ H ₆ Hg	Dimethyl mercury				-	59.8	140.3	209.0		94.4	146.1	306.0	83.3
$C_2H_6N_2O$	N-Methylurea	-332.8			-								
C ₂ H ₆ N ₄ O ₂	1,2-Hydrazinedicarboxamide	-498.7											
$\frac{C_2H_6N_4O_2}{C_2H_6O}$	Oxalyl dihydrazide Ethanol	-295.2				-277.6	-174.8	160.7	112.3	-234.8	-167.9	281.6	65.6
$\frac{C_2 \Pi_6 U}{C_2 H_6 O}$	Dimethyl ether					-203.3	-1/4.0	100.7	112.3	-184.1	-112.6	266.4	64.4
$\frac{G_2\Pi_6G}{G_2H_6GS}$	Dimethyl sulfoxide					-203.3	-99.9	188.3	153.0	-151.3	-112.0	200.4	04.4
$\frac{O_2 H_6 O_0}{C_2 H_6 O_2}$	Ethylene glycol				-	-460.0	33.3	163.2	148.6	-392.2		303.8	82.7
$\frac{O_2 H_6 O_2}{C_2 H_6 O_2 S}$	Dimethyl sulfone	-450.1	-302.4	142.0		.50.0		.00.2	. 10.0	-373.1	-272.7	310.6	100.0
C ₂ H ₆ O ₃ S	Dimethyl sulfite		502.1	2.0		-523.6				-483.4		3.0.0	
C ₂ H ₆ O ₄ S	Dimethyl sulfate					-735.5				-687.0			
C_2H_6S	Ethanethiol					-73.6	-5.5	207.0	117.9	-46.1	-4.8	296.2	72.7
C ₂ H ₆ S	Dimethyl sulfide					-65.3		196.4	118.1	-37.4		286.0	74.1
C ₂ H ₆ S ₂	1,2-Ethanedithiol					-54.3				-9.7			
C ₂ H ₆ S ₂	Dimethyl disulfide					-62.6		235.4	146.1	-24.7			
C ₂ H ₆ Zn	Dimethyl zinc				-	23.4		201.6	129.2	53.0			
C ₂ H ₇ N	Ethylamine					-74.1	70.0	100.0	130.0	-47.5	36.3	283.8	71.5
C_2H_7N	Dimethylamine					-43.9	70.0	182.3	137.7	-18.8	68.5	273.1	70.7

			Cryst	al			Lic	luid			Ga	IS	
Molecular formula	Name	Δ ₁ H° kJ/mol	Δ _r G° kJ/mol	Sº	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol		C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₂ H ₇ NO	Ethanolamine								195.5				
C ₂ H ₈ CIN	Dimethylamine hydrochloride	-289.3											
C ₂ H ₈ N ₂	1,2-Ethanediamine					-63.0			172.6	-18.0			
C ₂ H ₈ N ₂	1,1-Dimethylhydrazine					48.9	206.4	198.0	164.1	84.1			
C ₂ H ₈ N ₂	1,2-Dimethylhydrazine	4400.0				52.7				92.2			
C ₂ H ₈ N ₂ O ₄	Ammonium oxalate	-1123.0			226.0								
C ₂ HgO ₄	Mercury(II) oxalate	-678.2										010.1	70.0
C ₂ I ₂	Diiodoacetylene Tetraiodoethene	305.0										313.1	70.3
$\frac{C_2I_4}{C_2K_2O_4}$	Potassium oxalate	-1346.0											
$\frac{G_2N_2G_4}{G_2MgO_4}$	Magnesium oxalate	-1346.0											
C ₂ NIGO ₄	Cyanogen	-1209.0				285.9				306.7		241.9	56.8
$\frac{O_2N_2}{C_2N_4O_6}$	Trinitroacetonitrile					183.7				300.7		241.3	
$\frac{O_2N_4O_6}{C_3Na_3O_4}$	Sodium oxalate					100.7				-1318.0			
$\frac{O_2 N U_2 O_4}{C_2 O_4 Pb}$	Lead(II) oxalate	-851.4	-750.1	146.0	105.4					1010.0			
C ₃ F ₈	Perfluoropropane	-031.4	7 30.1	140.0	100.4					-1783.2			
C ₃ H ₂ N ₂	Malononitrile	186.4								265.5			
$\frac{O_3 H_2 H_2}{C_3 H_2 O_2}$	2-Propynoic acid	100.1				-193.2			-				
C ₃ H ₂ O ₂	1,3-Dioxol-2-one					-459.9				-418.6			
C ₃ H ₂ C ₃	1,2,3-Trichloropropene					-101.8							
C ₃ H ₃ F ₃	3,3,3-Trifluoropropene			-					-	-614.2			
C ₃ H ₃ N	Acrylonitrile					147.1				180.6			
C ₃ H ₃ NO	Oxazole					-48.0				-15.5			
C ₃ H ₃ NO	Isoxazole					42.1				78.6			
C_3H_4	Allene									190.5			
C_3H_4	Propyne									184.9			
C ₃ H ₄	Cyclopropene									277.1			
C ₃ H ₄ Cl ₂	2,3-Dichloropropene					-73.3							
C ₃ H ₄ Cl ₄	1,1,1,3-Tetrachloropropane					-208.7							
C ₃ H ₄ Cl ₄	1,2,2,3-Tetrachloropropane					-251.8							
C ₃ H ₄ F ₄ O	2,2,3,3-Tetrafluoro-1-propanol					-1114.9				-1061.3			
C ₃ H ₄ N ₂	1 <i>H</i> -Pyrazole	105.4			81.0					179.4			
C ₃ H ₄ N ₂	Imidazole	49.8								132.9			
C_3H_4O	Acrolein												71.3
$C_{3}H_{4}O_{2}$	1,2-Propanedione					-309.1				-271.0			
$C_{3}H_{4}O_{2}$	Acrylic acid					-383.8			145.7				
C ₃ H ₄ O ₂	2-Oxetanone					-329.9		175.3	122.1	-282.9			
$C_{3}H_{4}O_{3}$	Ethylene carbonate					-682.8			133.9	-508.4			
C₃H₅Br	cis-1-Bromopropene					7.9				40.8			
C₃H₅Br	3-Bromopropene					12.2				45.2			
C ₃ H ₅ BrO	Bromoacetone									-181.0			
C ₃ H ₅ CI	2-Chloropropene									-21.0			
C ₃ H ₅ CI	3-Chloropropene								125.1				
C ₃ H ₅ CIO	Epichlorohydrin					-148.4			131.6	-107.8			
C ₃ H ₅ CIO ₂	2-Chloropropanoic acid					-522.5				-475.8			
C ₃ H ₅ CIO ₂	3-Chloropropanoic acid	-549.3								100 0			
C ₃ H ₅ CIO ₂	Ethyl chloroformate					-505.3				-462.9			
C ₃ H ₅ CIO ₂	Methyl chloroacetate					-487.0			100.0	-444.0			
C ₃ H ₅ Cl ₃	1,2,3-Trichloropropane					-230.6			183.6	-182.9			
C ₃ H ₅ I	3-lodopropene					53.7				91.5			
C ₃ H ₅ IO	lodoacetone	400.0								-130.5			
C ₃ H ₅ IO ₂	3-lodopropanoic acid	-460.0				45.5			1100	F4 7			
C ₃ H ₅ N	Propanenitrile					15.5			119.3	51.7			
C ₃ H ₅ N	2-Propyn-1-amine					205.7				1117			
C ₃ H ₅ N	Ethyl isocyanide	010.1			110.0	108.6				141.7			
C ₃ H ₅ NO	Acrylamide	-212.1			110.6	-224.0				-130.2			
C ₃ H ₅ NO ₃	Nitroacetone Methyl nitroacetate					-278.6 -464.0							
C ₃ H ₅ NO ₄ C ₃ H ₅ N ₃ O ₀	Trinitroglycerol					-370.9				-279.1		545.9	234.2
$\frac{C_3H_5N_3U_9}{C_3H_6}$	Propene					4.0				20.0		545.9	234.2
						35.2				53.3	104.5	997 F	55.0
CH Br	Cyclopropane 1,2-Dibromopropane					-113.6				-71.6	104.5	237.5	55.6
C ₃ H ₆ Br ₂									1/01	-/1.6			
C ₃ H ₆ Cl ₂	1,2-Dichloropropane, (±)					-198.8 -199.9			149.1	-162.8			
C ₃ H ₆ Cl ₂	1,3-Dichloropropane												
C ₃ H ₆ Cl ₂	2,2-Dichloropropane					-205.8				-173.2			
C ₂ H ₂ Cl ₂ O	2,3-Dichloro-1-propanol					-381.5				-316.3			

			Cryst	al			Liq	luid			Ga	is	
Molecular formula	Name	Δ _i H° kJ/mol	Δ _r G° kJ/mol	Sº J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₃ H ₆ Cl ₂ O	1,3-Dichloro-2-propanol					-385.3				-318.4			
$\overline{C_3H_6I_2}$	1,2-Diiodopropane									35.6			
C ₃ H ₆ I ₂	1,3-Diiodopropane					-9.0							
C ₃ H ₆ N ₂ O ₂	Propanediamide	-546.1		,									
C ₃ H ₆ N ₂ O ₂	N-(Aminocarbonyl)acetamide	-544.2								-441.2			
C ₃ H ₆ N ₂ O ₄	1,1-Dinitropropane					-163.2				-100.7			
C ₃ H ₆ N ₂ O ₄	1,3-Dinitropropane					-207.1							
C ₃ H ₆ N ₂ O ₄	2,2-Dinitropropane					-181.2							
$C_3H_6N_6O_6$	Hexahydro-1,3,5-trinitro-1,3,5-triazine									192.0		482.4	230.2
C ₃ H ₆ O	Allyl alcohol					-171.8			138.9	-124.5			
C ₃ H ₆ O	Propanal					-215.6				-185.6		304.5	80.7
C ₃ H ₆ O	Acetone					-248.4		199.8	126.3	-217.1	-152.7	295.3	74.5
C ₃ H ₆ O	Methyloxirane					-123.0		196.5	120.4	-94.7		286.9	72.6
C ₃ H ₆ O	Oxetane					-110.8				-80.5			
$\frac{C_3H_6O_2}{C_3H_6O_2}$	Propanoic acid					-510.7		191.0	152.8	-455.7		-	-
$\frac{O_3 H_6 O_2}{C_3 H_6 O_2}$	Ethyl formate					010.7		131.0	149.3	400.1			
$\frac{O_3 H_6 O_2}{C_3 H_6 O_2}$	Methyl acetate					-445.9			141.9	-413.3		324.4	86.0
$\frac{O_3 H_6 O_2}{C_3 H_6 O_2}$	1,3-Dioxolane				-	-333.5			118.0	-298.0		- 024.4	00.0
C ₃ H ₆ O ₂ C ₃ H ₆ O ₃ S	Thiolactic acid					-468.4			110.0	-230.0			
3 0 2	1.3.5-Trioxane	-522.5		133.0	111 /	-400.4				-465.9			
C ₃ H ₆ O ₃	7-7-	-322.3		133.0	111.4	04.7		1010			1071	005.0	
C ₃ H ₆ S	Thietane					24.7		184.9		60.6	107.1	285.0	68.3
C ₃ H ₆ S	Methylthiirane					11.3				45.8			
C ₃ H ₆ S ₂	1,2-Dithiolane									0.0	47.7	313.5	86.5
C ₃ H ₆ S ₂	1,3-Dithiolane									10.0	54.7	323.3	84.7
C ₃ H ₆ S ₃	1,3,5-Trithiane									80.0	130.4	336.4	111.3
C ₃ H ₇ Br	1-Bromopropane					-121.9				-87.0			
C ₃ H ₇ Br	2-Bromopropane					-130.5				-99.4			
C ₃ H ₇ CI	1-Chloropropane					-160.5				-131.9			
C ₃ H ₇ CI	2-Chloropropane					-172.3				-144.9			
C ₃ H ₇ CIO ₂	3-Chloro-1,2-propanediol					-525.3							
C ₃ H ₇ CIO ₂	2-Chloro-1,3-propanediol					-517.5							-
C ₃ H ₇ F	1-Fluoropropane									-285.9			
C ₃ H ₇ F	2-Fluoropropane									-293.5			
C ₃ H ₇ I	1-lodopropane					-66.0				-30.0			
C ₃ H ₇ I	2-lodopropane					-74.8				-40.3			
C ₃ H ₇ N	Allylamine					-10.0							
C ₃ H ₇ N	Cyclopropylamine					45.8		187.7	147.1	77.0			-
C ₃ H ₇ NO	N,N-Dimethylformamide					-239.3			150.6	-192.4			
C ₃ H ₇ NO	Propanamide	-338.2								-259.0			
C ₃ H ₇ NO ₂	1-Nitropropane					-167.2				-124.3		350.0	104.1
C ₃ H ₇ NO ₂	2-Nitropropane					-180.3			170.3	-138.9			
$\frac{G_3H_7NO_2}{C_3H_7NO_2}$	Ethyl carbamate	-517.1			156.4	-497.3				-446.3			
$\frac{O_3 H_7 NO_2}{C_3 H_7 NO_2}$	DL-Alanine	-563.6			100.1	107.0				110.0		-	
$\frac{O_3H_7NO_2}{C_3H_7NO_2}$	D-Alanine	-561.2											
$\frac{O_3 N_7 NO_2}{C_3 H_7 NO_2}$	L-Alanine	-604.0								-465.9			
$\frac{O_3 N_7 NO_2}{C_3 H_7 NO_2}$	β-Alanine	-558.0								-424.0			-
	Sarcosine	-513.3								-367.3			
C ₃ H ₇ NO ₂										-307.3			
C ₃ H ₇ NO ₂ S	L-Cysteine	-534.1				0445				474.4		000 -	100 -
C ₃ H ₇ NO ₃	Propyl nitrate					-214.5				-174.1		362.6	123.2
C ₃ H ₇ NO ₃	Isopropyl nitrate					-229.7				-191.0			
C ₃ H ₇ NO ₃	DL-Serine	-739.0											
C ₃ H ₇ NO ₃	L-Serine	-732.7											
C ₃ H ₈	Propane					-120.9				-103.8	-23.4	270.3	73.6
C ₃ H ₈ N ₂ O	<i>N</i> -Ethylurea	-357.8											
$C_3H_8N_2O$	N,N-Dimethylurea	-319.1											
C ₃ H ₈ N ₂ O	N,N'-Dimethylurea	-312.1											
$\overline{C_3H_8N_2O_3}$	Oxymethurea	-717.0											
C ₃ H ₈ O	1-Propanol					-302.6		193.6	143.9	-255.1		322.6	85.6
C ₃ H ₈ O	2-Propanol					-318.1		181.1	156.5	-272.6		309.2	89.3
C ₃ H ₈ O	Ethyl methyl ether									-216.4		309.2	93.3
C ₃ H ₈ O ₂	1,2-Propylene glycol					-501.0			190.8	-429.8			
C ₃ H ₈ O ₂	1,3-Propylene glycol					-480.8				-408.0			-
C ₃ H ₈ O ₂	Ethylene glycol monomethyl ether								171.1				
C ₃ H ₈ O ₂	Dimethoxymethane					-377.8		244.0	162.0	-348.5		-	-
C ₃ H ₈ O ₃	Glycerol					-669.6		206.3	218.9	-577.9			
C ₃ H ₈ S	1-Propanethiol					-99.9		242.5	144.6	-67.8			

			Cryst	al			Liq	uid			Ga	s	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	<i>S</i> ⁰ J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₃ H ₈ S	2-Propanethiol					-105.9		233.5	145.3	-76.2			
C ₃ H ₈ S	Ethyl methyl sulfide					-91.6		239.1	144.6	-59.6			
C ₃ H ₈ S ₂	1,3-Propanedithiol					-79.4				-29.8			
C ₃ H ₉ AI	Trimethyl aluminum					-136.4	-9.9	209.4	155.6	-74.1			
C ₃ H ₉ B	Trimethylborane					-143.1	-32.1	238.9		-124.3	-35.9	314.7	88.5
C ₃ H ₉ BO ₃	Trimethyl borate								189.9				
C ₃ H ₉ CISi	Trimethylchlorosilane					-382.8	-246.4	278.2		-352.8	-243.5	369.1	
C ₃ H ₉ N	Propylamine					-101.5			164.1	-70.1	39.9	325.4	91.2
C ₃ H ₉ N	Isopropylamine					-112.3		218.3	163.8	-83.7	32.2	312.2	
C ₃ H ₉ N	Trimethylamine	2517				-45.7		208.5	137.9	-23.6		287.1	91.8
C ₃ H ₁₀ CIN	Propylamine hydrochloride	-354.7											
C ₃ H ₁₀ CIN	Trimethylamine hydrochloride	-282.9				07.0							
C ₃ H ₁₀ N ₂	1,2-Propanediamine, (±)					-97.8				-53.6		001.0	117.0
C ₃ H ₁₀ Si	Trimethylsilane	440.5	70.7	407.0								331.0	117.9
C ₃ H ₁₂ BN	Trimethylamine borane	-142.5	70.7	187.0									
C ₃ H ₁₂ BN	Aminetrimethylboron	-284.1	-79.3	218.0		04.5							
C ₄ Cl ₆	Hexachloro-1,3-butadiene					-24.5				1540.6			
C ₄ F ₈	Perfluorocyclobutane Perfluorobutane								107.0	-1542.6			
C ₄ F ₁₀		060.0							127.2	240.0			
C ₄ H ₂ N ₂	trans-2-Butenedinitrile Maleic anhydride	268.2 -469.8								340.2 -398.3			
C ₄ H ₂ O ₃										-აყბ.პ			
C ₄ H ₂ O ₄	2-Butynedioic acid	-577.3 -104.1								00.0			
C ₄ H ₃ NO ₃	2-Nitrofuran N-Bromosuccinimide									-28.8			
C ₄ H ₄ BrNO ₂		-335.9											
C ₄ H ₄ CINO ₂	N-Chlorosuccinimide	-357.9		404.0	445.0					000.7			
C ₄ H ₄ N ₂	Succinonitrile	139.7		191.6	145.6					209.7			
C ₄ H ₄ N ₂	Pyrazine	139.8				145.0				196.1			
C ₄ H ₄ N ₂	Pyrimidine					145.9 224.9				195.7 278.3			
C ₄ H ₄ N ₂	Pyridazine Uracil	-429.4			100 5	224.9				-302.9			
$\frac{C_4H_4N_2O_2}{C_4H_4N_2O_3}$	Barbituric acid	-634.7			120.5					-302.9			
$\frac{C_4 \Pi_4 N_2 C_3}{C_4 H_4 O}$	Furan	-034.1				-62.3		177.0	114.8	-34.8		267.2	65.4
$\frac{C_4 H_4 O}{C_4 H_4 O_2}$	Diketene					-233.1		177.0	114.0	-190.3		201.2	
$\frac{O_4 \Pi_4 O_2}{C_4 \Pi_4 O_3}$	Succinic anhydride	-608.6				200.1				-527.9			
$\frac{O_4 \Pi_4 O_3}{C_4 H_4 O_4}$	Maleic acid	-789.4		160.8	137.0					-679.4			
$C_4H_4O_4$	Fumaric acid	-811.7		168.0	142.0					-675.8			
$\frac{G_4H_4G_4}{G_4H_4S}$	Thiophene	011.7		100.0	112.0	80.2		181.2	123.8	114.9	126.1	278.8	72.8
$\frac{G_4 \cdot G_4 \circ}{G_4 H_5 N}$	trans-2-Butenenitrile					95.1				134.3		2.0.0	
C_4H_5N	3-Butenenitrile					117.8				159.7			
C_4H_5N	2-Methylacrylonitrile								126.3				
C_4H_5N	Pyrrole					63.1		156.4	127.7	108.2			
C_4H_5N	Cyclopropanecarbonitrile					140.8				182.8			
$C_4H_5NO_2$	Succinimide	-459.0								-375.4			
C ₄ H ₅ NS	4-Methylthiazole					67.9				111.8			
$C_1H_5N_3O$	Cytosine	-221.3			132.6								
C ₄ H ₆	1,2-Butadiene					138.6				162.3			
C ₄ H ₆	1,3-Butadiene					88.5		199.0	123.6	110.0			
C ₄ H ₆	1-Butyne					141.4				165.2			-
C ₄ H ₆	2-Butyne					119.1				145.7			
C ₄ H ₆	Cyclobutene									156.7			
$C_4H_6N_2O_2$	2,5-Piperazinedione	-446.5											
C_4H_6O	Divinyl ether					-39.8				-13.6			
C_4H_6O	trans-2-Butenal					-138.7				-100.6			
$C_4 H_6 O_2$	trans-2-Butenoic acid												
$C_4 H_6 O_2$	Methacrylic acid								161.1				
C4H6O2	Vinyl acetate					-349.2				-314.4			
$C_4H_6O_2$	Methyl acrylate					-362.2		239.5	158.8	-333.0			
$C_4 H_6 O_2$	γ-Butyrolactone					-420.9			141.4	-366.5			
$C_4 H_6 O_3$	Acetic anhydride					-624.4				-572.5			
$C_4H_6O_3$	Propylene carbonate					-613.2			218.6	-582.5			
C4H6O4	Succinic acid	-940.5		167.3	153.1					-823.0			
C4H6O4	Dimethyl oxalate	-756.3								-708.9			
						52.9				90.7	133.5	303.5	79.8
C ₄ H ₆ S	2,3-Dihydrothiophene												
$\frac{C_4H_6S}{C_4H_6S}$	2,3-Dihydrothiophene 2,5-Dihydrothiophene					47.0				86.9	131.6	297.1	83.3
C ₄ H ₆ S	2,3-Dihydrothiophene												83.3

Name				Cryst	al			Liq	uid			Ga	s	
	Molecular formula	Name			S⁰ J/mol K	C _p J/mol K			S° J/mol K	C _p J/mol K			S° J/mol K	C _p J/mol K
Col. Purple districtationals Size Si	C ₄ H ₇ CIO ₂	3-Chlorobutanoic acid					-556.3							
Mathemativities -5.8 33.6	C ₄ H ₇ CIO ₂	4-Chlorobutanoic acid												
Part	4 / 2													
Aesthee Quandymin	4 /													
PAPPO PAPP											23.4			-
2-Methyl-2-coazaline	_ 7 /													
CHANO Provincement and 492 8											100 5			
Elly introacutate			000.0				-169.5				-130.5			
			-932.6				407 1							
CHM, O	7 / 7		072.2				-407.1							
	4 / 4	-												
QH, total Part Settleme -29.8 (19.9) 127.0 -7.1 QH, total Part Settleme -33.3 (11.4) (11.4) QH, total Part Settleme -37.5 (19.8) (11.4) QH, Settleme -37.5 (19.8) (19.8) (19.8) QH, Settleme -37.5 (19.8) (19.8) (19.8) QH, Settlemen Settlem			200.0				-20.8		227 በ	118.0	n_			
O.H., to below the control of the control														-
									2.0.0					
C A														-
Methylocologoopane	C ₄ H ₈													
1,42 1,2 Obtromobulane	C ₄ H ₈	Methylcyclopropane					1.7							
1,4 1,4 1,4 1,4 1,3 1,4 1,3 1,4 1,4 1,3 1,4	C ₄ H ₈ Br ₂						-142.1				-91.6			
Chiller	C ₄ H ₈ Br ₂	1,3-Dibromobutane					-148.0							
Q.H.Br. 12-Dilbromo-Zmethylpropane -156.6 -113.3 -156.6 -113.3 -156.0 -156.6 -113.3 -156.0 -156.6 -113.3 -156.0 -156.1 -156.0 -156.0 -156.1 -156.0 -156.1 -156.0 -156.1 -156.0 -156.1 -156.0 -156.1 -156.1 -156.0 -156.1 -15	C ₄ H ₈ Br ₂	1,4-Dibromobutane					-140.3				-87.8			
C, H, Co. 1, 3-Dictionorbutane .237,3 .1950 C H, Co. 1, 4-Dictionorbutane .229,8 .183,4 C, H, Lo. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	C ₄ H ₈ Br ₂	2,3-Dibromobutane					-139.6				-102.0			-
C-JC.L. of District Dis	C ₄ H ₈ Br ₂	1,2-Dibromo-2-methylpropane					-156.6				-113.3			
CHILD Bist2-chiroceathyr) after 220.3 CHILD 1.4-Dilodobulane -30.0 CHILD 1.4-Dilodobulane -30.0 CHILD 1.4-Dilodobulane -381.2 CHILD Dimethylglycomine -199.7 CHILD Assparation -788.4 CHILD Assparation -788.4 CHILD Assparation -788.4 CHILD Assparation -788.4 CHILD Discontinuo -237.5 CHILD Discontinuo -237.5 CHILD Ethyl tivingi ether -167.4 -140.8 CHILD Ethyl tivingi ether -168.9 230.9 147.0 CHILD Ethyl discontal -247.3 225.7 225.7 225.7 CHILD Ethyl discontal <th< td=""><td>C₄H₈Cl₂</td><td>1,3-Dichlorobutane</td><td></td><td></td><td></td><td></td><td>-237.3</td><td></td><td></td><td></td><td>-195.0</td><td></td><td></td><td></td></th<>	C ₄ H ₈ Cl ₂	1,3-Dichlorobutane					-237.3				-195.0			
CHILD 1.4-Diladobulane	C ₄ H ₈ Cl ₂	1,4-Dichlorobutane					-229.8				-183.4			
C, H, MQ, Succinamide -5812 C, H, MQ, Dimethylghyoxime -189.7 C, H, MQ, M-Glycylghycine -789.4 C, H, MQ, M-Glycylghycine -747.7 C, H, MQ, M-Glycylghycine -167.4 C, H, MQ, M-Glycylghycine -167.4 C, H, MQ, M-Glycylghycine -167.4 C, H, MQ, D. Hollintrobutane -167.4 C, H, MQ, D. Ethyl will ether -168.9 C, HQ, D. Exposybutane -168.9 C, HQ, D. Exposybutane -239.2 C, HQ, D. Subtanal -247.3 C, HQ, D. Subtanal -246.2 C, HQ, D. Tetrahydrofuran -216.2 C, HQ, D. Subtanal -268.2 C, HQ, D. Subty thileacetate -268.2 C, HQ, D. Subty thileacetate -268.2 C, HQ, D. Propyl formate -503.3 C, HQ, D. Propyl formate -500.3 C, HQ, D. Propyl formate -500.3 C, HQ, D. Subty propanoate -772.2 <td< td=""><td>C₄H₈Cl₂O</td><td>Bis(2-chloroethyl) ether</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>220.9</td><td></td><td></td><td></td><td></td></td<>	C ₄ H ₈ Cl ₂ O	Bis(2-chloroethyl) ether								220.9				
C.H.M.O. Dimethylpyloxome -199.7	C ₄ H ₈ I ₂						-30.0							
CH,NO, PH,NO, PGlycylopice -789.4 CH,NO, PGlyCylopice -747.7 CH,NO, PGlyCylopice -747.7 CH,NO, O, Cylotetramethylenetetraintramine 187.9 568.8 275.5 CH,O 11.67.4 -140.8 275.6 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.0 140.8 275.7 140.8 247.7 140.8 247.7 140.8 247.7 140.8 247.7 140.4 248.2 228.1 228.1 230.1 180.8 230.9 191.7 248.2 275.7 170.8 228.1 228.1 228.1 228.1 228.1 228.1 228.1 228.1 228.1 228.1 228.1 228.1														
C_HN_O	7 0 2 2													
C, H, N, O. Cycloteramethylenetetraintramine 237.5 C, H, N, O. Cycloteramethylenetetraintramine 187.9 568.8 275.5 C, H, O. Ethyl vinyl ether 1.167.4 1.40.8 275.5 C, H, O. Butanal 239.2 246.6 163.7 204.8 343.7 103.4 C, H, O. Butanal 2247.3 201.5 345.7 103.4 C, H, O. Butanal 2247.3 239.1 158.7 238.5 39.9 101.7 C, H, O. Butanal 2247.3 239.1 158.7 238.5 39.9 101.7 C, H, O. Butanal 226.2 204.3 124.0 184.1 302.4 76.3 C, H, O. Butanal 226.2 228.1 185.7 238.5 39.9 101.7 67.6 </td <td></td>														
CHANO Cyclotetramethylenetetranitramine 197.9 568.8 275.5 CHO Ethyl vinyl ether -167.4 -140.8 -140.8 -275.5 CHO 1.2-Epoxybutane -168.9 239.9 147.0 -140.8 -347.0 -347.0 -347.0 -347.0 -348.8 -343.7 103.4 -348.8 -343.7 103.4 -348.8 -343.7 103.4 -348.8 -343.7 103.4 -348.8 -343.7 103.4 -348.7 -348.8 -343.7 103.4 -348.8 -343.7 103.4 -348.8 -339.9 101.7 -348.8 -343.7 103.4 -348.8 -339.9 101.7 -348.8 -348.5 -339.9 101.7 -348.8 -348.5 -339.9 101.7 -348.8 -348.5 -339.9 101.7 -348.8 -348.5 -339.9 101.7 -348.8 -349.9 -348.8 -348.9 -348.8 -349.9 -348.8 -349.9 -348.8 -349.9 -348.8 -348.9 -348.8 -349.9	7 0 2 0		-747.7											
C, H, O Ethyl vinyl ether -167.4 -140.8 C, H, O 1.2-Epoxybutane -166.9 230.9 147.0 C, H, O Butanal -239.2 246.6 163.7 204.8 343.7 103.4 C, H, O Isobutanal -247.3 29.1 158.7 238.5 339.9 101.7 C, H, O 2-Butanone -273.3 239.1 158.7 238.5 39.9 101.7 C, H, O 2-Butanone -273.3 239.1 158.7 238.5 39.9 101.7 C, H, O 2-Butanone -273.3 239.1 158.7 238.5 39.9 101.7 C, H, O 2-Butanone -268.2 203.3 124.0 -184.1 302.4 763.0 C, H, O 2-Buty prophorate -533.8 222.2 178.6 475.9 -281.1 462.7 -281.1 -482.7 -281.1 -483.6 -281.1 -281.2 -281.1 -483.6 -281.2 -281.1 -281.2 -281.2 -		_,					-237.5							075.5
C_H_O	1 0 0 0						407.4						568.8	2/5.5
CH O					,				000.0	147.0	-140.8			
	7 0										204.9		242.7	102.4
C_H_0	7 0								240.0	103.7			343.7	103.4
C, H, O Tetrahydrofuran -216.2 204.3 124.0 -184.1 302.4 76.3 C, H, OS S-Ethyl thioacetate -268.2 -228.1									230.1	158 7			330.0	101.7
C, H, OS S-Ethyl thioacetate -268.2 -228.1 C, H, OS Butanoic acid -533.8 222.2 178.6 -475.9 C, H, OS 2-Methylpropanoic acid 173.0 -462.7	7 0					-								
C, H, Q, 2	7 0								201.0	121.0			002.1	70.0
C, H, O, E, H, O	7 0								222.2	178.6				
C, H, O, E, D, D, O, E, D,		2-Methylpropanoic acid												-
C ₄ H ₉ O ₂ Ethyl acetate -479.3 257.7 170.7 -443.6 C ₄ H ₉ O ₂ Methyl propanoate 171.2	7 0 2						-500.3				-462.7			
C ₄ H ₉ O ₂ Methyl propanoate 171.2 C ₄ H ₉ O ₂ 1.3-Dioxane -379.7 143.9 -340.6 C ₄ H ₉ O ₂ 1.4-Dioxane -353.9 270.2 152.1 -315.3 C ₄ H ₉ O ₂ 2-Methyl-1,3-dioxolane -386.9 -352.0	$\frac{{}^{4}}{{}^{6}} \frac{{}^{6}}{{}^{2}} \frac{{}^{2}}{{}^{6}} \frac{{}^{6}}{{}^{6}} \frac{{}^{6}}{$								257.7	170.7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{4.82}{C_4H_8O_2}$	Methyl propanoate								171.2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₄ H ₈ O ₂	1,3-Dioxane					-379.7			143.9	-340.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_4H_8O_2$	1,4-Dioxane					-353.9		270.2	152.1	-315.3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_4H_8O_2$	2-Methyl-1,3-dioxolane					-386.9				-352.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₈ O ₂ S									180.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₈ S	Tetrahydrothiophene					-72.9							92.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₈ S ₂													110.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₈ S ₂											84.5	326.2	109.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₉ Br													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₄ H ₉ Br													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₉ Br													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₄ H ₉ CI													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
							-335.6				-301.3			
C ₄ H ₉ N Cyclobutanamine 5.6 41.2 C ₄ H ₉ N Pyrrolidine -41.1 204.1 156.6 -3.6 C ₄ H ₉ NO Butanamide -364.8 -282.0							407.5			162.3				
C_4H_9N Pyrrolidine -41.1 204.1 156.6 -3.6														
C ₄ H ₉ NO Butanamide -364.8 -282.0									0044	150.0				
			064.0				-41.1		∠04.1	0.001				
o ₄ ri ₉ wo <i>w</i> -wicinyipiopandilliue 179.0			-304.8							170.0	-202.U			
	U ₄ П ₉ INU	/v-ivietilyipi/opariamide								1/9.0				

$C_4H_{12}Sn$ Tetramethylstannane -52.3 -18.8				Cryst	al			Liq	Juid			Ga	ıs	
Filips Filips		Name			S⁰ J/mol K	C _p J/mol K			S° J/mol K	C _p J/mol K			S° J/mol K	C _ρ J/mol K
CALMON	C ₄ H ₉ NO	2-Methylpropanamide	-368.6								-282.6			
Fig. Fig.		N,N-Dimethylacetamide					-278.3			175.6	-228.0			
C.J.M.D. 2-Notrolocolume		· ·								164.8				
Final	4 3 2												369.9	115.1
\$\frac{\text{\$P_1}\text{\$P_0\$} \qq			550.0				-217.2							
C.J.M.D. 3-Nino 2-bitanel -1980.0														
C M N 2-Methyl-2-drinor-1-propanel -410.1	4 3 2		-581.0				000.0				-441.0			
Cj.M.No. C-Thresonine	7 0 0		410.1				-390.0							
CHM DQ														
CH. Buttane														
GH _A Butane 141/3 1409 125.7 CR H 1504 tab 7.134														
CH_HB Institute of the content of the co			-337.2				-147 3			140 9	-125 7			
EH_HIN_PROPRIZED Deltyl mercury 45.6 3 CH_HIN_O Proprized -45.6 -45.8 -45.					-					140.5				-
CH, H, M, D Piperazine 45.6 CH, H, MO Chrimethylura -330.5 CH, H, MO Chrimethylura -330.5 CH, H, MO Chrimethylura -327.3 225.8 177.2 -274.9 CH, H, MO Chyline Chyline -1062.6 -273.3 225.8 177.2 -274.9						-				182 8				
CH_NIN_OL Primethylures -330.5 CH_NIN_OL CH-Asparagine, monohydrate -106.2 -53.0 CH_NIN_OL C-Asparagine, monohydrate -1086.6			-45.6							.02.0				
CH_NN_QL Abstitediatelysamine 106.2 5.0.0 CH_N_QO 1- Futanel 327.3 225.8 177.2 224.9 CH_N_O 2- Butanel 327.3 225.8 177.2 224.9 CH_N_O 2- Butanel 334.7 214.7 181.5 283.8 CH_O 2- Wethyl-1-propanel 334.7 214.7 181.5 283.8 CH_O 2- Wethyl-1-propanel 339.2 183.3 218.6 212.5 252.1 CH_O 2- Wethyl-1-propanel 359.2 183.3 218.6 212.5 252.1 CH_O 2- Wethyl-1-propanel 2- 266.0 262.9 165.4 283.1 CH_O 2- Butanediol 2- 278.8 233.8 161.9 252.0 CH_O,O 2- Butanediol 3- 501.0 433.2 220.0 420.6 433.2 CH_O,O 2- Butanediol 3- 501.0 420.2 420.6 433.2 CH_O,O 2- Methyl-1-2-propanediol 5- 51.5 221.8 241.8 242.														
CH_H_QOL L-Asparagine, monohydrate 1086 6 CH_QO 2-Ibustneri 327.3 228.8 177.2 274.9 CH_QO 2-Bustneri 342.6 214.9 196.9 292.8 CH_QO 2-Methyl-1-propanol 3342.6 214.9 196.9 292.8 CH_QO 2-Methyl-2-propanol 3389.2 193.3 218.6 412.5 CH_QO 2-Methyl-2-propanol 389.2 193.3 218.6 412.5 CH_QO 10-Methyl propyl ether 266.0 269.0 252.1 172.5 CH_QO 3-Methyl propyl ether 268.0 288.0 252.0 161.9 261.0 266.0 269.0 250.0 250.0 270.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-106.2</td> <td></td> <td></td> <td></td> <td>-53.0</td> <td></td> <td></td> <td>-</td>							-106.2				-53.0			-
CH_O 1-Butanol -327.3 225.8 17.2 274.9 29.8 CH_O 2-Butanol -342.6 21.4 196.9 29.8 CH_O 2-Butanol -334.7 21.4 181.5 -283.8 CH_O 2-Wellyl-1-propanol -334.7 21.4 181.5 -283.8 CH_O 2-Wellyl-1-propanol -334.7 21.4 181.5 -283.8 -252.1 CH_O Chelly chief 2-266.0 262.9 156.4 238.1 -252.1 CH_O Chelly chief 2-266.0 262.9 156.4 238.1 152.0 CH_O Chellyl chief 2-266.0 262.9 156.4 238.1 152.0 CH_O Chellyl chief 2-266.0 262.9 156.4 238.1 151.9 220.0 CH_O 2-20.6 CH_O 2-20.6 CH_O 2-20.6 CH_O 2-20.6 CH_O 2-3.8 CH_O 2-20.6		L-Asparagine, monohydrate	-1086.6											-
CH_10 2-Butanol 342.6 214.9 180.9 292.8 CH_1, O 2-Methyl-2-propanol 334.7 214.7 181.5 283.8 CH_1, O 2-Methyl-2-propanol 339.2 193.3 218.6 312.5 CH_1, O Delthyl bether 2279.5 253.5 172.5 282.1 CH_2, O Blothyl propyl ether 226.8 253.8 161.9 252.0 CH_2, O Slopropyl methyl ether 226.8 253.8 161.9 252.0 CH_3, O Slopropyl methyl ether 226.8 253.8 161.9 252.0 CH_3, O 1.2-Butanestol (e) 4523.6 253.8 161.9 252.0 CH_3, O 1.3-Butanestol (e) 452.3 433.2 433.2 432.2 433.2 432.3 432.3 432.2 433.2 433.2 433.2 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3 442.3							-327.3		225.8	177.2	-274.9			
CH_N_O 2-Methyl-1-propanol 334.7 214.7 181.5 283.8 CH_N_O 2-Methyl-2-propanol 359.2 193.3 218.6 215.5 CH_N_O Diethyl ether 2-266.0 262.9 163.6 228.1 CH_N_O Diethyl propyl ether 2-266.0 262.3 161.9 227.0 CH_N_O 12-Butanetiol (+) 523.6 -205.6 -205.6 -205.6 CH_N_O 1.2-Butanetiol (+) 523.6 -205.6 -433.2 -205.6 CH_N_O 1.2-Butanetiol (+) 501.0 -433.2 -433.2 -206.6 -206.6 -206.6 -206.6 -207.0 -208.0 -433.2 -207.0 -433.2 -207.0 -433.2 -207.0 -208.0 -433.2 -209.6 -208.0 -433.2 -209.0 -209.0 -433.2 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0 -209.0		2-Butanol					-342.6		214.9	196.9	-292.8		359.5	112.7
CH_I_O 2-Methyl-2-propanel -359.2 193.3 218.6 -312.5 CH_I_O Diethyl ether -279.5 253.5 172.5 -283.1 CH_I_O Methyl propyl ether -266.0 262.9 165.4 -238.1 CH_I_O Bisphily sulfoxide -268.0 -262.0 -265.6 CH_I_O 1.2-Butanediol. (+) -523.6		2-Methyl-1-propanol					-334.7		214.7	181.5	-283.8			
CH, O, Diethyl ether -279.5 253.5 172.5 -282.1 CH, O, H, O Methyl proppyl methyl ether -286.0 262.9 165.4 -238.1 CH, O, So Isopropyl methyl ether -278.8 283.8 161.9 -252.0 CH, O, CH, O, CH, O, D, So -288.0 -288.0 -288.0 -205.6 -205.6 CH, O, CH, O, CH, O, D, So -284.0 -888.0		2-Methyl-2-propanol					-359.2		193.3	218.6	-312.5		326.7	113.6
C,H ₀ ,O Methyl propyl ether -266.0 262.9 165.4 -238.1 CH ₀ ,O Ichopoly ethyl ether -278.8 253.8 161.9 -225.0 CH ₀ ,O 1.2 Poutneoidol. (a) -268.6 -205.6 CH ₀ ,O 1.2 Poutneoidol. (a) -652.6 CH ₀ ,O 1.3 Poutneoidol. (a) -650.3 223.4 200.1 -483.2 CH ₀ ,O 2.3 Poutneoidol. (a) -650.3 223.4 200.1 -482.7 CH ₀ ,O 2.3 Poutneoidol. (a) -650.3 223.4 200.1 -482.7 CH ₀ ,O 2.4 Poutneoidol. (a) -650.3 223.4 200.1 -482.7 CH ₀ ,O 2.4 Poutneoidol. (a) -650.7 -482.3 -482.3 -482.3 -482.3 -482.3 -482.3 -482.3 -482.3 -482.3 -483.2 -483.2 -483.7 -483.2 -48		Diethyl ether					-279.5		253.5	172.5	-252.1		342.7	119.5
CH, 0S Diethyl sulfoxide -268.0 -205.6 CH, 0, 0 1.2-Butanediol. (±) -523.8 -523.8 CH, 0, 0 1.3-Butanediol -501.0 -432.2 CH, 0, 0 1.3-Butanediol -505.3 223.4 200.1 -482.7 CH, 0, 0 2.3-Butanediol -501.5 213.0 -482.3 -482.3 CH, 0, 2 Ethylene glycol monoethyl ether -593.7 -700.0 <t< td=""><td></td><td>Methyl propyl ether</td><td></td><td></td><td></td><td></td><td>-266.0</td><td></td><td>262.9</td><td>165.4</td><td>-238.1</td><td></td><td></td><td></td></t<>		Methyl propyl ether					-266.0		262.9	165.4	-238.1			
C,H_0,O_2 1.2-Butanediol (.s) -523.6 -433.2 -433.3 -432.2 -433.2 -433.2 -433.3 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2	C ₄ H ₁₀ O	Isopropyl methyl ether					-278.8		253.8	161.9	-252.0			
C, H ₁ , O ₂ 1.3-Butanediol -501.0 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -433.2 -420.1 -428.7 -428.3 -428.9		Diethyl sulfoxide					-268.0				-205.6			
CH, 0, 0, 1, 4-Butanediol 505.3 223.4 200.1 428.7 CH, 0, 0, 2, 2-Butanediol 5541.5 213.0 482.3 CH, 0, 0, 2, 2-Methyl-1,2-propanediol 539.7 Tender of the policy		1,2-Butanediol, (±)												
C,H ₀ ,O ₂ 2.3-Butanediol 541.5 213.0 -482.3 C,H ₀ ,O ₂ 2-Methyl-1,2-propanediol 5593.7	C4H10O2	1,3-Butanediol					-501.0				-433.2			
C,H ₀ O ₂ 2-Methyl-1,2-propanediol -539.7 C,H ₀ O ₂ Ethylene glycol moneethyl ether -376.6 193.3 C,H ₀ O ₂ Ethylene glycol dimethyl ether -376.6 193.3 C,H ₀ O ₂ Dimethylacetal -420.6 -389.7 C,H ₀ O ₂ Dimethylacetal -420.6 -245.9 C,H ₀ O ₂ Diethyl hydroperoxide -283.6 -245.9 C,H ₀ O ₃ Diethyl sulfite -600.7 -552.2 C,H ₀ O ₃ Diethyl sulfite -600.7 -552.2 C,H ₀ O ₃ Diethyl sulfate -813.2 -756.3 C,H ₀ O ₃ Diethyl sulfate -131.0 -96.9 C,H ₀ O ₃ Diethyl sulfate -131.0 -97.3 C,H ₀ O ₃ Diethyl sulfate -114.5 -109.6 C,H ₀ O ₃ Diethyl sulfate -114.5 -263.1 17.4 -83.5 C,H ₀ O ₃ Diethyl sulfate -118.5 -272.5 171.6 -82.2 -272.2		1,4-Butanediol					-505.3		223.4	200.1				
C, H ₁₀ O ₂ Ethylene glycol monoethyl ether -376.6 193.3 C, H ₁₀ O ₂ Dimethylacetal -420.6 -389.7 C, H ₁₀ O ₂ Dimethylacetal -420.6 -389.7 C, H ₁₀ O ₂ Diethyl hydroperoxide -293.6 -244.8 -571.2 C, H ₁₀ O ₃ Diethylene glycol -628.5 244.8 -571.2 C, H ₁₀ O ₃ Diethyl sulfate -600.7 -555.2 C, H ₁₀ O ₃ Diethyl sulfate -813.2 -756.3 C, H ₁₀ O ₃ Diethyl sulfate -813.2 -756.3 C, H ₁₀ O ₃ Diethyl sulfate -813.2 -756.3 C, H ₁₀ O ₃ Diethyl sulfate -124.7 171.2 -88.0 C, H ₁₀ O ₃ Diethyl sulfate -132.0 -97.3 -96.9 -97.3 C, H ₁₀ O ₃ Diethyl sulfate -118.5 272.5 171.6 -88.2 C, H ₁₀ O ₃ Diethyl sulfate -118.5 272.5 171.6 -88.2 C, H ₁₀ O ₃ Diethyl sulfate -118.5 272.5 <										213.0	-482.3			
C, H ₁₀ C ₂ Ethylene glycol dimethyl ether -376.6 193.3 C, H ₁₀ C ₂ bimethylacetal -420.6 -389.7 C, H ₁₀ C ₂ bert-Butyl hydroperoxide -293.6 -245.9 C, H ₁₀ C ₂ bethylene glycol -628.5 244.8 -571.2 C, H ₁₀ C ₂ S Diethyl sulfite -600.7 -552.2 -553.2 C, H ₁₀ C ₃ S Diethyl sulfite -600.7 -756.3 -756.3 C, H ₁₀ C ₃ S 1-Butanethiol -124.7 171.2 -88.0 C, H ₁₀ S 1-Butanethiol -131.0 -96.9 -96.9 C, H ₁₀ S 2-Butanethiol -131.0 -97.3 -96.9 C, H ₁₀ S 2-Butanethiol -132.0 -97.3 -96.9 C, H ₁₀ S 2-Butanethiol -132.0 -97.3 -97.3 C, H ₁₀ S 2-Butanethiol -132.0 -97.3 -96.9 C, H ₁₀ S Diethyl sulfide -132.0 -97.3 -104.6 C, H ₁₀ S Diethyl sulfide -124.7 263.1 172							-539.7							
C _H H ₀ Q ₂ Dimethylacetal 420.6 -389.7 C _H H ₀ Q ₂ tert-Bulyl hydroperoxide -293.6 -245.9 C _H H ₀ Q ₃ Diethyl sulfide -628.5 244.8 -571.2 C _H H ₀ Q ₃ Diethyl sulfide -600.7 -552.2 C _H D ₀ Q ₃ Diethyl sulfate -813.2 -756.3 C _H H ₀ S Diethyl sulfate -131.0 -96.9 C _H H ₀ S 2-Butanethiol -131.0 -97.3 C _H H ₀ S 2-Methyl-1-propanethiol -132.0 -97.3 C _H H ₀ S 2-Methyl-2-propanethiol -132.0 -97.3 C _{H₀S} S Diethyl sulfide -140.5 -97.3 C _{H₀S} S Diethyl sulfide -118.5 222.5 171.6 -82.2 C _{H₀S} S Methyl propyl sulfide -118.5 272.5 171.6 -82.2 C _{H₀S} S 1,4 ebtanedithiol -105.7 26.5 -50.6 C _{H₀S} S Diethyl disulfide -121.7 269.3 171.4 -79.4 C _{H₁N} S <														
C ₁ H ₁₀ C ₂ tert-Butyl hydroperoxide -293.6 -245.9 C ₁ H ₁₀ O ₂ Diethylene glycol -628.5 244.8 -571.2 C ₂ H ₁₀ O ₃ Diethyl sulfite -600.7 -552.2 C ₂ H ₁₀ O ₃ Diethyl sulfite -600.7 -552.2 C ₂ H ₁₀ O ₃ Diethyl sulfite -600.7 -756.3 C ₂ H ₁₀ S 1-Butanethiol -124.7 171.2 -88.0 C ₂ H ₁₀ S 2-Butanethiol -131.0 -96.9 -96.9 C ₁ H ₁₀ S 2-Methyl-1-propanethiol -132.0 -97.3 -96.9 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 -109.6 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -97.3 -109.6 C ₁ H ₁₀ S Diethyl sulfide -118.5 272.5 171.6 -82.2 C ₁ H ₁₀ S Biopropyl methyl sulfide -118.5 272.5 171.6 -82.2 C ₁ H ₁₀ S Isopropyl methyl sulfide -120.7 263.1 172.4 -90.5 C ₁ H ₁₀ S										193.3				
C ₁ H ₁₀ O ₃ Diethylene glycol -628.5 Diethyl sulfite 244.8 -571.2 Diethyl sulfite -552.2 Diethyl sulfite -756.3														
C ₁ H ₁₀ O ₃ S Diethyl sulfite -600.7 -552.2 C ₁ H ₁₀ O ₅ S Diethyl sulfate -813.2 -756.3 C ₁ H ₁₀ S 1-Butanethiol -124.7 171.2 -88.0 C ₁ H ₁₀ S 2-Butanethiol -131.0 -96.9 C ₁ H ₁₀ S 2-Methyl-1-propanethiol -132.0 -97.3 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₁ H ₁₀ S Diethyl sulfide -118.5 269.3 171.4 -83.5 C ₁ H ₁₀ S Isopropyl methyl sulfide -118.5 272.5 171.6 -82.2 C ₁ H ₁₀ S Isopropyl methyl sulfide -124.7 263.1 172.4 -90.5 C ₁ H ₁₀ S Isopropyl methyl sulfide -124.7 263.1 172.4 -90.5 C ₁ H ₁₀ S Isopropyl methyl sulfide -120.1 269.3 171.4 -79.4 C ₁ H ₁₀ S Diethyl sulfid										044.0				
C ₁ H ₁₀ O ₂ S Diethyl sulfate -813.2 -756.3 C ₁ H ₁₀ S 1-Butanethiol -124.7 171.2 -88.0 C ₁ H ₁₀ S 2-Butanethiol -131.0 -96.9 C ₁ H ₁₀ S 2-Methyl-1-propanethiol -132.0 -97.3 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₁ H ₁₀ S Diethyl sulfide -119.4 269.3 171.4 -83.5 C ₁ H ₁₀ S Diethyl propyl sulfide -119.4 269.3 171.4 -83.5 C ₁ H ₁₀ S Bethyl propyl sulfide -118.5 272.5 171.6 -82.2 C ₁ H ₁₀ S Isopropyl methyl sulfide -124.7 263.1 172.4 -90.5 C ₁ H ₁₀ S Isopropyl methyl sulfide -125.7 263.1 172.4 -90.5 C ₁ H ₁₀ S Diethyl disulfide -121.0 269.3 171.4 -90.5 C ₁ H ₁₀ S Diethyl disulfide -127.6 179.2 -91.9 C ₁ H ₁ N Butyl amine -137.5 -104.6 -127.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>244.8</td> <td></td> <td></td> <td></td> <td></td>										244.8				
C₁H₁₀S 1-Butanethiol -124.7 171.2 -88.0 C₁H₁₀S 2-Butanethiol -131.0 -96.9 C₂H₁₀S 2-Methyl-1-propanethiol -132.0 -97.3 C₂H₁₀S 2-Methyl-2-propanethiol -140.5 -109.6 C₂H₁₀S Diethyl sulfide -119.4 269.3 171.4 -83.5 C₂H₁₀S Methyl propyl sulfide -118.5 272.5 171.6 -82.2 C₂H₁₀S Isopropyl methyl sulfide -118.5 272.5 171.6 -82.2 C₂H₁₀S Isopropyl methyl sulfide -105.7 -50.6 -60.6 C₂H₁₀S Diethyl sulfide -105.7 -50.6 -70.6 C₂H₁₀S Diethyl sulfide -120.1 269.3 171.4 -79.4 C₂H₁₃N sec-Butylamine -127.6 </td <td></td> <td>-</td>														-
C ₁ H ₁₀ S 2-Butanethiol -131.0 -96.9 C ₁ H ₁₀ S 2-Methyl-1-propanethiol -132.0 -97.3 C ₁ H ₁₀ S 2-Methyl-1-propanethiol -140.5 -97.3 C ₁ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₄ H ₁₀ S Diethyl sulfide -118.5 272.5 171.6 -82.2 C ₂ H ₁₀ S Methyl propyl sulfide -124.7 263.1 172.4 -90.5 C ₂ H ₁₀ S Isopropyl methyl sulfide -124.7 263.1 172.4 -90.5 C ₂ H ₁₀ S Isopropyl methyl sulfide -105.7 -50.6 -50.6 C ₄ H ₁₀ S ₂ Diethyl disulfide -105.7 -50.6 -50.6 C ₄ H ₁₀ S ₂ Diethyl disulfide -127.6 179.2 -91.9 C ₄ H ₁₁ N Butylamine -127.6 179.2 -91.9 C ₄ H ₁₁ N sec-Butylamine -137.5 -104.6 -24.1 C ₄ H ₁₁ N tert-Butylamine -132.6 183.2 -98.7 C ₄ H ₁₁ N libitylamine <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>171.0</td> <td></td> <td></td> <td></td> <td></td>										171.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1/1.2				
C ₄ H ₁₀ S 2-Methyl-2-propanethiol -140.5 -109.6 C ₁ H ₁₀ S Diethyl sulfide -119.4 269.3 171.4 -83.5 C ₄ H ₁₀ S Methyl propyl sulfide -118.5 272.5 171.6 -82.2 C ₄ H ₁₀ S Isopropyl methyl sulfide -124.7 263.1 172.4 -90.5 C ₄ H ₁₀ S ₂ Diethyl disulfide -120.1 269.3 171.4 -79.4 C ₄ H ₁₀ N ₂ Diethyl disulfide -120.1 269.3 171.4 -79.4 C ₄ H ₁₁ N ₂ Diethyl disulfide -127.6 179.2 -91.9 C ₄ H ₁₁ N ₁ N ₂ Sec-Butylamine -127.6 179.2 -91.9 C ₄ H ₁₁ N ₁ N ₁ sec-Butylamine -137.5 -104.6 -121.0														-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									269.3	171 4			368.1	117.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													000.1	117.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									200.1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									269.3	171.4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										192.1				-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N,N-Dimethylethanolamine					-253.7				-203.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 11		-493.8			233.5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tris(hydroxymethyl)methylamine	-717.8											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 11 0	Tetramethylammonium bromide	-251.0											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₄ H ₁₂ CIN	Diethylamine hydrochloride	-358.6											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tetramethylammonium chloride	-276.4											
	C ₄ H ₁₂ IN	Tetramethylammonium iodide	-203.9											
$ \frac{C_4 H_{12} Si}{C_4 H_{12} Sn} $	7 12 2	2-Methyl-1,2-propanediamine					-133.9				-90.3			
$C_4H_{12}Sn$ Tetramethylstannane -52.3 -18.8														
4 12								-100.0	277.3	204.1		-99.9	359.0	143.9
C.H. N. Ris(2-aminoethyl)amine 254.0							-52.3				-18.8			
	C ₄ H ₁₃ N ₃	Bis(2-aminoethyl)amine								254.0				
C ₄ N ₂ 2-Butynedinitrile 500.4 529.2	C_4N_2	2-Butynedinitrile					500.4				529.2			

$\begin{tabular}{ll} \hline \textbf{Molecular} \\ \hline \textbf{formula} \\ \hline $C_4 \text{NiO}_4$ \\ \hline $C_5 \text{FeO}_5$ \\ \hline $C_5 \text{H}_2 \text{F}_6 \text{O}_2$ \\ \hline $C_5 \text{H}_3 \text{NO}_5$ \\ \hline $C_5 \text{H}_4 \text{N}_4$ \\ \hline $C_5 \text{H}_4 \text{N}_4 \text{O}_2$ \\ \hline $C_5 \text{H}_4 \text{N}_4 \text{O}_2$ \\ \hline \end{tabular}$	Name Nickel carbonyl Iron pentacarbonyl Hexafluoroacetylacetone 5-Nitro-2-furancarboxylic acid	Δ _ι H° kJ/mol	Cryst Δ _t G° kJ/mol	<i>S</i> ⁰	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _ρ J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p
$\begin{array}{c} \hline C_5 \text{FeO}_5 \\ \hline C_5 H_2 F_6 O_2 \\ \hline C_5 H_3 N O_5 \\ \hline C_5 H_4 N_4 \\ \hline C_5 H_4 N_4 O \\ \hline \end{array}$	Iron pentacarbonyl Hexafluoroacetylacetone											-,	J/IIIUI K
$\begin{array}{c} \hline C_5 H_2 F_6 O_2 \\ \hline C_5 H_3 N O_5 \\ \hline C_5 H_4 N_4 \\ \hline C_5 H_4 N_4 O \\ \hline \end{array}$	Hexafluoroacetylacetone					-633.0	-588.2	313.4	204.6	-602.9	-587.2	410.6	145.2
$ \frac{C_5 H_3 N O_5}{C_5 H_4 N_4} \\ C_5 H_4 N_4 O $		2000 7				-774.0	-705.3	338.1	240.6				
$\frac{C_5H_4N_4}{C_5H_4N_4O}$	5-INITIO-2-TUTATICAT DOXVIIC ACIO	-2286.7 -516.8											
$C_5H_4N_4O$	1 <i>H</i> -Purine	169.4											
3 7 7	Hypoxanthine	-110.8		145.6	134.5								
	Xanthine	-379.6		161.1	151.3								
$C_5H_4N_4O_3$	Uric acid	-618.8		173.2	166.1								
$C_5H_4O_2$	Furfural					-201.6			163.2	-151.0			
C ₅ H ₄ O ₃	2-Furancarboxylic acid	-498.4								-390.0			
C ₅ H ₄ O ₃	3-Methyl-2,5-furandione					-504.5				-447.2			
$\frac{C_5H_5F_3O_2}{C_1H_2N_2}$	1,1,1-Trifluoro-2,4-pentanedione					-1040.2			100.7	-993.3			
$\frac{C_5H_5N}{C_6H_6NO}$	Pyridine 1 <i>H</i> -Pyrrole-2-carboxaldehyde	-106.4				100.2			132.7	140.4			
C_5H_5NO	Adenine	96.9		-	147.0					205.7			
$\frac{O_5 N_5 N_5}{C_5 H_5 N_5 O}$	Guanine	-183.9		-	147.0					200.1			
C ₅ H ₆	cis-3-Penten-1-yne					226.5							
C ₅ H ₆	trans-3-Penten-1-yne					228.2							
C ₅ H ₆	1,3-Cyclopentadiene					105.9				134.3			
$C_5H_6N_2O_2$	Thymine	-462.8			150.8					-328.7			
C ₅ H ₆ O ₂	Furfuryl alcohol					-276.2			204.0	-211.8			
C ₅ H ₆ O ₄	trans-1-Propene-1,2-dicarboxylic acid	-824.4		-									
C₅H ₆ S	2-Methylthiophene					44.6		218.5	149.8	83.5			
$\frac{C_5H_6S}{C_5H_7N}$	3-Methylthiophene trans-3-Pentenenitrile					43.1 80.9				82.5 125.7			
$C_5\Pi_7N$ C_5H_7N	Cyclobutanecarbonitrile					103.0				147.4			
$C_{\epsilon}H_{7}N$	1-Methylpyrrole					62.4			-	103.1			
C _c H ₇ N	2-Methylpyrrole					23.3				74.0			
C ₅ H ₇ N	3-Methylpyrrole					20.5				70.2			
C ₅ H ₇ NO ₂	Ethyl cyanoacetate								220.2				
C ₅ H ₈	1,2-Pentadiene									140.7			
C ₅ H ₈	cis-1,3-Pentadiene									81.4			
C ₅ H ₈	trans-1,3-Pentadiene									76.1			
C₅H ₈	1,4-Pentadiene 2,3-Pentadiene									105.7 133.1			
$\frac{C_5H_8}{C_5H_8}$	3-Methyl-1,2-butadiene			-		101.2				133.1			
$\frac{O_5 \Pi_8}{C_5 H_8}$	2-Methyl-1,3-butadiene					48.2		229.3	152.6	75.5			
C _E H _o	Cyclopentene					4.3		201.2	122.4	34.0			
C ₅ H ₈	Spiropentane					157.5		193.7	134.5	185.2			
C ₅ H ₈	Methylenecyclobutane					93.8				121.6			
C ₅ H ₈ N ₄ O ₁₂	Pentaerythritol tetranitrate	-538.6								-387.0		614.7	294.8
C ₅ H ₈ O	Cyclopentanone					-235.9				-192.1			
C ₅ H ₈ O ₂	4-Pentenoic acid					-430.6							
C ₅ H ₈ O ₂	Allyl acetate					070.0			184.1	0540			
C ₅ H ₈ O ₂ C ₅ H ₈ O ₂	Ethyl acrylate Methyl trans-2-butenoate					-370.6 -382.9				-354.2 -341.9			
$\frac{C_5 \Pi_8 O_2}{C_5 H_8 O_2}$	Methyl methacrylate					-302.9			191.2	-341.9			
$\frac{O_5 \Pi_8 O_2}{C_5 H_8 O_2}$	2,4-Pentanedione			-		-423.8			131.2	-382.0			
C ₅ H ₈ O ₂	Dihydro-4-methyl-2(3 <i>H</i>)-furanone					-461.3				-406.5			
C ₅ H ₈ O ₂	Tetrahydro-2 <i>H</i> -pyran-2-one					-436.7				-379.6			
$C_5H_8O_3$	Methyl acetoacetate					-623.2							
C ₅ H ₈ O ₄	Glutaric acid	-960.0											
C ₅ H ₉ CIO ₂	Propyl chloroacetate					-515.5				-467.0			
C ₅ H ₉ N	Pentanenitrile					-33.1			,_, .	10.5			
C ₅ H ₉ N	2,2-Dimethylpropanenitrile					-39.8		232.0	179.4	-2.3			
C ₅ H ₉ N	1,2,5,6-Tetrahydropyridine	-306.6		-		33.5							
C ₅ H ₉ NO C ₅ H ₉ NO	2-Piperidinone N-Methyl-2-pyrrolidone	-300.6				-262.2			307.8				
C ₅ H ₉ NO ₂	L-Proline	-515.2				202.2			007.0	-366.2			
$\frac{O_5 \Pi_9 NO_2}{C_5 H_9 NO_4}$	D-Glutamic acid	-1005.3								J00.L			
$C_5H_0NO_4$	L-Glutamic acid	-1009.7											
C ₅ H ₁₀	1-Pentene					-46.9		262.6	154.0	-21.1			
C ₅ H ₁₀	cis-2-Pentene					-53.7		258.6	151.7	-27.6			
C ₅ H ₁₀	trans-2-Pentene					-58.2		256.5	157.0	-31.9			
C ₅ H ₁₀	2-Methyl-1-butene					-61.1		254.0	157.2	-35.2			
C ₅ H ₁₀	3-Methyl-1-butene			-		-51.5		253.3	156.1	-27.5			

			Cryst	al			Lio	uid			Ga	s	
Molecular formula	Name	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S⁰	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι <i>G</i> ° kJ/mol	S° J/mol K	C _ρ J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₅ H ₁₀	2-Methyl-2-butene					-68.6		251.0	152.8	-41.7			
C ₅ H ₁₀	Cyclopentane					-105.1		204.5	128.8	-76.4			
C ₅ H ₁₀	Methylcyclobutane Ethylcyclopropane					-44.5 -24.8							
C ₅ H ₁₀ C ₅ H ₁₀	1,1-Dimethylcyclopropane					-33.3				-8.2			
$\frac{C_5\Pi_{10}}{C_5H_{10}}$	cis-1,2-Dimethylcyclopropane					-26.3				-0.2			
C ₅ H ₁₀	trans-1,2-Dimethylcyclopropane					-30.7							
C ₅ H ₁₀ Br ₂	2,3-Dibromo-2-methylbutane									-137.6			
C ₅ H ₁₀ N ₂ O	<i>N</i> -Nitrosopiperidine					-31.1				16.6			
$C_5H_{10}N_2O_2$	<i>N</i> -Nitropiperidine					-93.0				-44.5			
$C_5H_{10}N_2O_3$	L-Glutamine	-826.4											
$C_5H_{10}O$	Cyclopentanol					-300.1		204.1	182.5	-242.5		362.9	
C ₅ H ₁₀ O	Pentanal					-267.2			1011	-228.4			
C ₅ H ₁₀ O	2-Pentanone					-297.3		000.0	184.1	-258.8			
C ₅ H ₁₀ O	3-Pentanone					-296.5		266.0	190.9 179.9	-257.9 -262.6			
$\frac{C_5H_{10}O}{C_5H_{10}O}$	3-Methyl-2-butanone 3,3-Dimethyloxetane					-299.5 -182.2		268.5	179.9	-148.2			
$\frac{C_5 \Pi_{10} O}{C_5 H_{10} O}$	Tetrahydropyran					-258.3				-223.4			
C ₅ H ₁₀ OS	S-Propyl thioacetate					-294.5				-250.4			
C ₅ H ₁₀ O ₂	Pentanoic acid					-559.4		259.8	210.3	-491.9			
C ₅ H ₁₀ O ₂	2-Methylbutanoic acid					-554.5							
C ₅ H ₁₀ O ₂	3-Methylbutanoic acid					-561.6				-510.0			
C ₅ H ₁₀ O ₂	2,2-Dimethylpropanoic acid	-564.5								-491.3			
C ₅ H ₁₀ O ₂	Butyl formate								200.2				
C ₅ H ₁₀ O ₂	Propyl acetate								196.2				
$C_5H_{10}O_2$	Isopropyl acetate					-518.9			199.4	-481.6			
C ₅ H ₁₀ O ₂	Ethyl propanoate			-		-502.7				-463.4			
C ₅ H ₁₀ O ₂	Methyl butanoate					000.5			198.2				
C ₅ H ₁₀ O ₂	(Ethoxymethyl)oxirane					-296.5				276.0			
$\frac{C_5H_{10}O_2}{C_5H_{10}O_2}$	4-Methyl-1,3-dioxane cis-1,2-Cyclopentanediol	-485.0				-416.1				-376.9			
$\frac{C_5 \Pi_{10} C_2}{C_5 \Pi_{10} C_2}$	trans-1,2-Cyclopentanediol	-490.1											
$\frac{O_5 \Pi_{10} O_2}{C_5 \Pi_{10} O_2}$	Tetrahydrofurfuryl alcohol	100.1				-435.7				-369.1			
C ₅ H ₁₀ O ₃	Diethyl carbonate					-681.5				-637.9			
C ₅ H ₁₀ O ₃	Ethylene glycol monomethyl ether acetate								310.0				
C ₅ H ₁₀ O ₃	Ethyl lactate								254.0				
C ₅ H ₁₀ O ₄	Glycerol 1-acetate, (DL)					-909.2							
C ₅ H ₁₀ O ₅	D-Ribose	-1047.2											
C ₅ H ₁₀ O ₅	D-Xylose	-1057.8											
C ₅ H ₁₀ O ₅	α-D-Arabinopyranose	-1057.9				100.0		040.0	100.0	00.5	50.4	000.0	400.7
C ₅ H ₁₀ S	Thiacyclohexane					-106.3 -89.5		218.2 256.9	163.3 165.2	-63.5 -48.1	53.1	323.0	109.7
C ₅ H ₁₀ S C ₅ H ₁₁ Br	Cyclopentanethiol 1-Bromopentane			-		-170.2		230.9	100.2	-128.9			
C ₅ H ₁₁ Cl	1-Chloropentane					-213.2				-174.9			
C ₅ H ₁₁ CI	1-Chloro-3-methylbutane			-		-216.0				-179.7			
C ₅ H ₁₁ CI	2-Chloro-2-methylbutane					-235.7				-202.2			
C ₅ H ₁₁ CI	2-Chloro-3-methylbutane					-226.6				-185.1			
C ₅ H ₁₁ N	Cyclopentylamine					-95.1		241.0	181.2	-54.9			
C ₅ H ₁₁ N	Piperidine					-86.4		210.0	179.9	-47.1			
C ₅ H ₁₁ NO	Pentanamide	-379.5								-290.2			
C ₅ H ₁₁ NO	2,2-Dimethylpropanamide	-399.7								-313.1			
C ₅ H ₁₁ NO ₂	1-Nitropentane					-215.4				-164.4		390.9	137.1
C ₅ H ₁₁ NO ₂	DL-Valine	-628.9								455.4			
C ₅ H ₁₁ NO ₂	L-Valine	-617.9 -604.1								-455.1 -460.0			
C ₅ H ₁₁ NO ₂ C ₅ H ₁₁ NO ₂ S	5-Aminopentanoic acid L-Methionine	-577.5								-413.5			
$\frac{C_5 \Pi_{11} N O_2 S}{C_5 H_{11} N O_4}$	2-Ethyl-2-nitro-1,3-propanediol	-606.4								710.0			
$\frac{O_5 \Pi_{11} \Pi O_4}{C_5 H_{12}}$	Pentane	300.4				-173.5			167.2	-146.9			
C ₅ H ₁₂	Isopentane					-178.4		260.4	164.8	-153.6			
C ₅ H ₁₂	Neopentane					-190.2				-168.0			
C ₅ H ₁₂ N ₂ O	Butylurea	-419.5											
$C_5H_{12}N_2O$	<i>tert</i> -Butylurea	-417.4											
C ₅ H ₁₂ N ₂ O	N, N-Diethylurea	-372.2											
C ₅ H ₁₂ N ₂ O													
	Tetramethylurea					-262.2							
$\frac{C_5 H_{12} N_2 S}{C_5 H_{12} O}$		-38.1				-262.2 -351.6			208.1	44.9			

			Cryst	al			Lic	quid			Ga	ıs	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _ι G° kJ/mol	<i>S</i> ⁰	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₅ H ₁₂ O	2-Pentanol					-365.2				-311.0			
$C_5H_{12}O$	3-Pentanol					-368.9			239.7	-314.9			
C ₅ H ₁₂ O	2-Methyl-1-butanol, (±)					-356.6				-301.4			
C ₅ H ₁₂ O	3-Methyl-1-butanol					-356.4			0.47.4	-300.7			
$\frac{C_5H_{12}O}{C_5H_{12}O}$	2-Methyl-2-butanol 3-Methyl-2-butanol, (±)					-379.5 -366.6			247.1	-329.3 -313.5			
C ₅ H ₁₂ O	2,2-Dimethyl-1-propanol					-300.0				-313.3		-	
$\frac{C_5\Pi_{12}O}{C_5H_{12}O}$	Butyl methyl ether					-290.6		295.3	192.7	-258.1			
$\frac{O_5 \Pi_{12} O}{C_5 H_{12} O}$	Methyl <i>tert</i> -butyl ether					-313.6		265.3	187.5	-283.7		-	
C ₅ H ₁₂ O	Ethyl propyl ether					-303.6		295.0	197.2	-272.0		-	
C ₅ H ₁₂ O ₂	1,5-Pentanediol					-528.8				-450.8			
C ₅ H ₁₂ O ₂	2,2-Dimethyl-1,3-propanediol	-551.2											
C ₅ H ₁₂ O ₂	Diethoxymethane					-450.5				-414.7			
C ₅ H ₁₂ O ₂	1,1-Dimethoxypropane					-443.6							
C ₅ H ₁₂ O ₂	2,2-Dimethoxypropane					-459.4				-429.9			
$C_5H_{12}O_3$	Diethylene glycol monomethyl ether								271.1				
$C_5H_{12}O_3$	2-(Hydroxymethyl)-2-methyl-1,3-propanediol	-744.6											
C ₅ H ₁₂ O ₄	Pentaerythritol	-920.6								-776.7			
C ₅ H ₁₂ O ₅	Xylitol	-1118.5				151.0				1100		-	
C ₅ H ₁₂ S	1-Pentanethiol 2-Methyl-1-butanethiol, (+)					-151.3 -154.4				-110.0 -114.9			
C ₅ H ₁₂ S C ₅ H ₁₂ S	3-Methyl-1-butanethiol					-154.4			-	-114.9			
C ₅ H ₁₂ S	2-Methyl-2-butanethiol					-162.8		290.1	198.1	-127.1			
C ₅ H ₁₂ S	3-Methyl-2-butanethiol					-158.8		250.1	130.1	-121.3			
C ₅ H ₁₂ S	2,2-Dimethyl-1-propanethiol					-165.4				-129.0			
C ₅ H ₁₂ S	Butyl methyl sulfide					-142.9		307.5	200.9	-102.4		-	
C ₅ H ₁₂ S	tert-Butyl methyl sulfide					-157.1		276.1	199.9	-121.3			
C ₅ H ₁₂ S	Ethyl propyl sulfide					-144.8		309.5	198.4	-104.8			
C ₅ H ₁₂ S	Ethyl isopropyl sulfide					-156.1				-118.3			
C ₅ H ₁₃ N	Pentylamine								218.0				
$C_5H_{14}N_2$	N,N,N',N'-Tetramethylmethanediamine					-51.1				-18.2			
C ₆ CIF ₅	Chloropentafluorobenzene	-858.4								-809.3			
C ₆ Cl ₆	Hexachlorobenzene	-127.6		260.2	201.2			200.0		-35.5			
C ₆ F ₆	Hexafluorobenzene					-991.3		280.8	221.6	-955.4			
C ₆ F ₁₀	Perfluorocyclohexene Perfluorocyclohexane					-1963.5 -2406.3				-1932.7 -2370.4		-	
C ₆ F ₁₂ C ₆ HCl ₆ O	Pentachlorophenol	-292.5		253.2	202.0	-2400.3				-2370.4			
C ₆ HF ₅	Pentafluorobenzene	-852.7		200.2		-841.8				-806.5		-	
C ₆ HF ₅ O	Pentafluorophenol	-1024.1				-1007.7				000.0			
$C_6H_2F_4$	1,2,4,5-Tetrafluorobenzene					-683.8							
C ₆ H ₃ Cl ₃	1,2,3-Trichlorobenzene	-70.8								3.8			
C ₆ H ₃ Cl ₃	1,2,4-Trichlorobenzene					-63.1				-8.1			
C ₆ H ₃ Cl ₃	1,3,5-Trichlorobenzene	-78.4								-13.4			
C ₆ H ₃ N ₃ O ₆	1,3,5-Trinitrobenzene	-37.0			214.6								
$C_6H_3N_3O_7$	2,4,6-Trinitrophenol	-217.9			239.7								
C ₆ H ₃ N ₃ O ₈	2,4,6-Trinitro-1,3-benzenediol	-467.5			252.0								
C ₆ H ₄ CINO ₂	1-Chloro-4-nitrobenzene	-48.7			250.2	47.5			100.4	20.0		-	
C ₆ H ₄ Cl ₂	o-Dichlorobenzene m-Dichlorobenzene					-17.5 -20.7			162.4	30.2 25.7		-	
C ₆ H ₄ Cl ₂ C ₆ H ₄ Cl ₂	p-Dichlorobenzene	-42.3		175.4	147.8	-20.7				22.5			
C ₆ H ₄ Cl ₂ O	2,4-Dichlorophenol	-226.4		173.4	147.0					-156.3			
C ₆ H ₄ F ₂	o-Difluorobenzene	220.4		-		-330.0		222.6	159.0	-293.8		-	
C ₆ H ₄ F ₂	<i>m</i> -Difluorobenzene					-343.9		223.8	159.1	-309.2			
C ₆ H ₄ F ₂	<i>p</i> -Difluorobenzene					-342.3			157.5	-306.7			
$\frac{G_6 H_4 H_2}{G_6 H_4 N_2 O_4}$	1,2-Dinitrobenzene	-2.0			200.4								
$\frac{{}^{6} + {}^{4} - {}^{2} + {}^{4}}{{}^{6} + {}^{4} + {}^{1} + {}^{2} + {}^{4}}$	1,3-Dinitrobenzene	-27.0			197.5	-36.0							
$C_6H_4N_2O_4$	1,4-Dinitrobenzene	-38.0			200.0								
$C_6 H_4 N_2 O_5$	2,4-Dinitrophenol	-232.7								-128.1			
$C_6 H_4 O_2$	<i>p</i> -Benzoquinone	-185.7			129.0					-122.9			
C ₆ H ₅ Br	Bromobenzene					60.9		219.2	154.3				
C ₆ H ₅ CI	Chlorobenzene					11.1			150.1	52.0			
C ₆ H ₅ CIO	2-Chlorophenol	000 1				100.0			188.7				
C ₆ H ₅ CIO	3-Chlorophenol	-206.4 -197.7				-189.3 -181.3							
C ₆ H ₅ CIO C ₆ H ₅ CI ₂ N	4-Chlorophenol 3,4-Dichloroaniline	-197.7				-101.3							
C ₆ H ₅ G ₂ N	Fluorobenzene	-03.1				-150.6		205.9	146.4	-115.9			
<u>~62,</u>						100.0		200.0	1 10.7	1.0.0			

			Cryst	al			Lio	uid			Ga	s	
Molecular formula	Name	Δ _i H° kJ/mol	Δ _r G° kJ/mol	<i>S</i> ⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₆ H ₅ I	lodobenzene					117.2		205.4	158.7	164.9			
C ₆ H ₅ NO ₂	Nitrobenzene					12.5			185.8	68.5		348.8	120.4
C ₆ H ₅ NO ₂	3-Pyridinecarboxylic acid	-344.9								-221.5			
C ₆ H ₅ NO ₃	2-Nitrophenol	-202.4											
C ₆ H ₅ N ₃	1 <i>H</i> -Benzotriazole	236.5								335.5			
C ₆ H ₅ N ₃ O ₄	2,3-Dinitroaniline	-11.7											
$C_6H_5N_3O_4$	2,4-Dinitroaniline	-67.8											
C ₆ H ₅ N ₃ O ₄	2,5-Dinitroaniline	-44.3											
C ₆ H ₅ N ₃ O ₄	2,6-Dinitroaniline	-50.6											
C ₆ H ₅ N ₃ O ₄	3,5-Dinitroaniline	-38.9											
C ₆ H ₆	1,5-Hexadiyne					384.2							
C ₆ H ₆	Benzene					49.1	124.5	173.4	136.0	82.9	129.7	269.2	82.4
C ₆ H ₆ CIN	2-Chloroaniline					-4.6							
C ₆ H ₆ CIN	3-Chloroaniline					-20.3			198.7				
C ₆ H ₆ CIN	4-Chloroaniline	-33.3			147.3								
C ₆ H ₆ N ₂ O ₂	2-Nitroaniline	-26.1			166.0	-9.4				63.8			
$C_6H_6N_2O_2$	3-Nitroaniline	-38.3			158.8	-14.4				58.4			
C ₆ H ₆ N ₂ O ₂	4-Nitroaniline	-42.0			167.0	-20.7				58.8			
C ₆ H ₆ O	Phenol	-165.1		144.0	127.4					-96.4			
C.H.O	2-Vinylfuran					-10.3				27.8			
$C_6H_6O_2$	<i>p</i> -Hydroquinone	-364.5			136.0					-265.3			
C ₆ H ₆ O ₂	Pyrocatechol	-354.1								-267.5			
$C_6H_6O_2$	Resorcinol	-368.0								-274.7			
$C_6H_6O_3$	1,2,3-Benzenetriol	-551.1								-434.2			
C ₆ H ₆ O ₃	1,2,4-Benzenetriol	-563.8								-444.0			
C ₆ H ₆ O ₃	1,3,5-Benzenetriol	-584.6								-452.9			
C ₆ H ₆ O ₃	3,4-Dimethyl-2,5-furandione	-581.4								702.0			
C ₆ H ₆ O ₆	cis-1-Propene-1,2,3-tricarboxylic acid	-1224.4											
$C_6H_6O_6$	trans-1-Propene-1,2,3-tricarboxylic acid	-1232.7											
C ₆ H ₆ S	Benzenethiol	1232.1				63.7		222.8	173.2	111.3			
$\frac{C_6\Pi_6S}{C_6H_7N}$	Aniline					31.6		222.0	191.9	87.5	-7.0	317.9	107.9
C_6H_7N	2-Methylpyridine					56.7			158.6	99.2	-7.0	317.9	107.9
0 /						61.9		216.3	158.7	106.4			
C ₆ H ₇ N	3-Methylpyridine												
C ₆ H ₇ N	4-Methylpyridine					59.2		209.1	159.0	103.8			
C ₆ H ₇ N	1-Cyclopentenecarbonitrile					111.5			100.7	156.5			
C ₆ H ₈ N ₂	Adiponitrile	0.0				85.1			128.7	149.5			
C ₆ H ₈ N ₂	1,2-Benzenediamine	-0.3		1515	450.0								
C ₆ H ₈ N ₂	1,3-Benzenediamine	-7.8		154.5	159.6								
C ₆ H ₈ N ₂	1,4-Benzenediamine	3.0											
C ₆ H ₈ N ₂	Phenylhydrazine					141.0			217.0	202.9			
C ₆ H ₈ N ₂ S	Bis(2-cyanoethyl) sulfide					96.3							
C ₆ H ₈ O ₄	Dimethyl maleate								263.2				
C ₆ H ₈ O ₆	L-Ascorbic acid	-1164.6											
$C_6 H_8 O_7$	Citric acid	-1543.8											
C ₆ H ₉ Cl ₃ O ₂	Butyl trichloroacetate					-545.8				-492.3			
$C_6H_9CI_3O_2$	Isobutyl trichloroacetate					-553.4				-500.2			
C ₆ H ₉ N	Cyclopentanecarbonitrile					0.7				44.1			
C ₆ H ₉ N	2,4-Dimethylpyrrole	-422.3											
C_6H_9N	2,5-Dimethylpyrrole					-16.7				39.8			
C ₆ H ₉ NO ₃	Triacetamide					-610.5				-550.1			
C ₆ H ₉ NO ₆	Nitrilotriacetic acid	-1311.9						_					
$\overline{C_6H_9N_3O_2}$	L-Histidine	-466.7		_									
C ₆ H ₁₀	1,5-Hexadiene					54.1				84.2			
C ₆ H ₁₀	3,3-Dimethyl-1-butyne					78.4							
C ₆ H ₁₀	Cyclohexene					-38.5		214.6	148.3	-5.0			
C ₆ H ₁₀	1-Methylcyclopentene					-36.4				-3.8			
C ₆ H ₁₀	3-Methylcyclopentene					-23.7				7.4			
C ₆ H ₁₀	4-Methylcyclopentene					-17.6				14.6			
C ₆ H ₁₀ CI ₂ O ₂	Butyl dichloroacetate					-550.1				-497.8			
$\frac{G_6H_{10}G_2G_2}{G_6H_{10}G}$	Cyclohexanone					-271.2			182.2	-226.1			
C ₆ H ₁₀ O	2-Methylcyclopentanone					-265.2							
C ₆ H ₁₀ O	Mesityl oxide								212.5				
$\frac{O_6 H_{10} O}{C_6 H_{10} O_2}$	Ethyl <i>trans</i> -2-butenoate					-420.0				-375.6			
$\frac{O_6 \Pi_{10} O_2}{C_6 \Pi_{10} O_2}$	Methyl cyclobutanecarboxylate			-		-395.0				-350.2			
$\frac{O_6 \Pi_{10} O_2}{C_6 \Pi_{10} O_3}$	Ethyl acetoacetate					300.0			248.0	300.2			
$\frac{O_6 \Pi_{10} O_3}{C_6 H_{10} O_3}$	Propanoic anhydride					-679.1			2-70.0	-626.5			
O61 10 O3	1 Topanoio annyunuo					013.1				020.0			

			Cryst	al			Lic	quid			Ga	ıs	
Molecular formula	Name	Δ _t H° kJ/mol	Δ _r G° kJ/mol	Sº	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S°	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₆ H ₁₀ O ₄	Adipic acid	-994.3											
C ₆ H ₁₀ O ₄	Diethyl oxalate					-805.5				-742.0			
C ₆ H ₁₀ O ₄	Ethylene glycol diacetate								310.0				
C ₆ H ₁₁ Cl	Chlorocyclohexane					-207.2				-163.7			
C ₆ H ₁₁ CIO ₂ C ₆ H ₁₁ CIO ₂	Ethyl 4-chlorobutanoate Propyl 3-chloropropanoate					-566.5 -537.6				-513.8 -485.7			
C ₆ H ₁₁ ClO ₂	Butyl chloroacetate					-538.4				-487.4			
C ₆ H ₁₁ NO	Caprolactam	-329.4			156.8	-330.4				-239.6			
C ₆ H ₁₁ NO	1-Methyl-2-piperidinone			-		-293.0							
C ₆ H ₁₂	1-Hexene					-74.2		295.2	183.3	-43.5			
C ₆ H ₁₂	cis-2-Hexene					-83.9				-52.3			
C ₆ H ₁₂	trans-2-Hexene					-85.5				-53.9			
C ₆ H ₁₂	cis-3-Hexene					-78.9				-47.6			
C ₆ H ₁₂	trans-3-Hexene					-86.1				-54.4			
$\frac{C_6H_{12}}{C_6H_{12}}$	2-Methyl-1-pentene 3-Methyl-1-pentene					-90.0 -78.2				-59.4 -49.5			
C ₆ H ₁₂	4-Methyl-1-pentene					-80.0				-51.3			
C ₆ H ₁₂	2-Methyl-2-pentene					-98.5				-66.9			
C ₆ H ₁₂	3-Methyl- <i>cis</i> -2-pentene					-94.5				-62.3			
C ₆ H ₁₂	3-Methyl- <i>trans</i> -2-pentene					-94.6				-63.1			
C ₆ H ₁₂	4-Methyl- <i>cis</i> -2-pentene					-87.0			1	-57.5			
C ₆ H ₁₂	4-Methyl- <i>trans</i> -2-pentene					-91.6				-61.5			
C ₆ H ₁₂	2-Ethyl-1-butene					-87.1				-56.0			
C ₆ H ₁₂	2,3-Dimethyl-1-butene					-93.2				-62.4			
C ₆ H ₁₂	3,3-Dimethyl-1-butene					-87.5		070.0		-60.3			
C ₆ H ₁₂	2,3-Dimethyl-2-butene					-101.4 -156.4		270.2	174.7 154.9	-68.1 -123.4			
C ₆ H ₁₂ C ₆ H ₁₂	Cyclohexane Methylcyclopentane					-137.9			104.9	-106.2			
C ₆ H ₁₂	Ethylcyclobutane					-59.0				-27.5			
C ₆ H ₁₂	1,1,2-Trimethylcyclopropane				-	-96.2							
C ₆ H ₁₂ N ₂ O ₄ S ₂	L-Cystine	-1032.7											
$C_6H_{12}N_2S_4$	Thiram	40.2			301.7								
C ₆ H ₁₂ O	Butyl vinyl ether					-218.8			232.0	-182.6			
C ₆ H ₁₂ O	Hexanal							280.3	210.4				
C ₆ H ₁₂ O	2-Hexanone					-322.0		005.0	213.3	-278.9			
C ₆ H ₁₂ O	3-Hexanone 4-Methyl-2-pentanone					-320.2		305.3	216.9	-277.6			
$\frac{C_6H_{12}O}{C_6H_{12}O}$	2-Methyl-3-pentanone					-325.9			213.3	-286.0			
C ₆ H ₁₂ O	3,3-Dimethyl-2-butanone					-328.6				-290.6			
C ₆ H ₁₂ O	Cyclohexanol					-348.2			208.2	-286.2			
C ₆ H ₁₂ O	cis-2-Methylcyclopentanol					-345.5							
C ₆ H ₁₂ O ₂	Hexanoic acid				-	-583.8				-511.9			
C ₆ H ₁₂ O ₂	Butyl acetate					-529.2			227.8	-485.3			
C ₆ H ₁₂ O ₂	tert-Butyl acetate					-554.5			231.0	-516.5			
C ₆ H ₁₂ O ₂	Isobutyl acetate								233.8				
C ₆ H ₁₂ O ₂	Ethyl butanoate					5440			228.0	174 4			
C ₆ H ₁₂ O ₂	Methyl pentanoate Methyl 2,2-dimethylpropanoate					-514.2 -530.0			229.3 257.9	-471.1 -491.2			
$\frac{C_6H_{12}O_2}{C_6H_{12}O_2}$	Diacetone alcohol					-000.0			221.3	-431.2			
$\frac{C_6 \Pi_{12} C_2}{C_6 H_{12} C_3}$	Ethylene glycol monoethyl ether acetate								376.0				
$\frac{O_6 \Pi_{12} O_3}{C_6 \Pi_{12} O_3}$	Paraldehyde					-673.1			0.0.0	-631.7			
C ₆ H ₁₂ O ₆	β-D-Fructose	-1265.6											
C ₆ H ₁₂ O ₆	D-Galactose	-1286.3			-								
C ₆ H ₁₂ O ₆	α-D-Glucose	-1273.3											
C ₆ H ₁₂ O ₆	D-Mannose	-1263.0											
C ₆ H ₁₂ O ₆	L-Sorbose	-1271.5											
C ₆ H ₁₂ S	Thiepane					110 7		055.0	100.0	-65.8	79.4	363.5	131.3
C ₆ H ₁₂ S	Cyclohexanethiol Cyclopentyl methyl sulfide					-140.7 -109.8		255.6	192.6	-96.2 -64.7			
C ₆ H ₁₂ S C ₆ H ₁₃ Br	1-Bromohexane				-	-109.8		453.0	204.0	-148.3			
C ₆ H ₁₃ Cl	2-Chlorohexane					-246.1		403.0	204.0	-204.3			
C ₆ H ₁₃ N	Cyclohexylamine					-147.6				-104.0			
C ₆ H ₁₃ N	2-Methylpiperidine, (±)					-124.9				-84.4			
C ₆ H ₁₃ NO	Hexanamide	-423.0								-324.2			
C ₆ H ₁₃ NO	N-Butylacetamide					-380.9				-305.9			
C ₆ H ₁₃ NO ₂	DL-Leucine	-640.6											

			Cryst	al			Lic	quid			Ga	is	
Molecular formula	Name	Δ _ι <i>H</i> ° kJ/mol	Δ _i G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₆ H ₁₃ NO ₂	D-Leucine	-637.3											
C ₆ H ₁₃ NO ₂	L-Leucine	-637.4			200.1					-486.8			
C ₆ H ₁₃ NO ₂	DL-Isoleucine	-635.3											
C ₆ H ₁₃ NO ₂	L-Isoleucine	-637.8											
C ₆ H ₁₃ NO ₂	L-Norleucine	-639.1											
C ₆ H ₁₃ NO ₂	6-Aminohexanoic acid	-637.3											
C ₆ H ₁₄	Hexane					-198.7			195.6	-166.9			
C ₆ H ₁₄	2-Methylpentane					-204.6		290.6	193.7	-174.6			
C ₆ H ₁₄	3-Methylpentane					-202.4		292.5	190.7	-171.9			
C ₆ H ₁₄	2,2-Dimethylbutane					-213.8		272.5	191.9	-185.9			
C ₆ H ₁₄	2,3-Dimethylbutane					-207.4		287.8	189.7	-178.1			
$C_6H_{14}N_2$	Azopropane					11.5				51.3			
$C_6H_{14}N_2O_2$	<i>DL</i> -Lysine	-678.7											
$C_6H_{14}N_4O_2$	D-Arginine	-623.5		250.6	232.0								
$C_6H_{14}O$	1-Hexanol					-377.5		287.4	240.4	-315.9			
C ₆ H ₁₄ O	2-Hexanol					-392.0				-333.5			
C ₆ H ₁₄ O	3-Hexanol					-392.4			286.2				
C ₆ H ₁₄ O	2-Methyl-1-pentanol								248.0				
$C_6H_{14}O$	3-Methyl-2-pentanol								275.9				
C ₆ H ₁₄ O	4-Methyl-2-pentanol					-394.7			273.0				
C ₆ H ₁₄ O	2-Methyl-3-pentanol					-396.4							
$C_6H_{14}O$	3-Methyl-3-pentanol								293.4				
C ₆ H ₁₄ O	Dipropyl ether					-328.8		323.9	221.6	-293.0			
C ₆ H ₁₄ O	Diisopropyl ether					-351.5			216.8	-319.2			
C ₆ H ₁₄ O	Butyl ethyl ether								159.0				
C ₆ H ₁₄ O	tert-Butyl ethyl ether									-313.9			
C ₆ H ₁₄ OS	Dipropyl sulfoxide					-329.4				-254.9			
C ₆ H ₁₄ O ₂	1,2-Hexanediol					-577.1				-490.1			
$C_6H_{14}O_2$	1,6-Hexanediol	-569.9				-548.6				-461.2			
$C_6H_{14}O_2$	2-Methyl-2,4-pentanediol								336.0				
C ₆ H ₁₄ O ₂	Ethylene glycol monobutyl ether								281.0				
$C_6H_{14}O_2$	1,1-Diethoxyethane					-491.4				-453.5			
$C_6H_{14}O_2$	Ethylene glycol diethyl ether					-451.4			259.4	-408.1			
$C_6H_{14}O_3$	Diethylene glycol monoethyl ether								301.0				
C ₆ H ₁₄ O ₃	Diethylene glycol dimethyl ether								274.1				
C ₆ H ₁₄ O ₃	Trimethylolpropane	-750.9											
C ₆ H ₁₄ O ₄	Triethylene glycol					-804.3				-725.0			
C ₆ H ₁₄ O ₄ S	Dipropyl sulfate					-859.0				-792.0			
C ₆ H ₁₄ O ₆	Galactitol					-1317.0							
C ₆ H ₁₄ O ₆	D-Mannitol					-1314.5							
C ₆ H ₁₄ S	1-Hexanethiol					-175.7				-129.9			
C ₆ H ₁₄ S	2-Methyl-2-pentanethiol					-188.3				-148.3			
C ₆ H ₁₄ S	2,3-Dimethyl-2-butanethiol					-187.1				-147.9			
C ₆ H ₁₄ S	Diisopropyl sulfide					-181.6		313.0	232.0	-142.0			
C ₆ H ₁₄ S	Butyl ethyl sulfide					-172.3				-127.8			
C ₆ H ₁₄ S	Methyl pentyl sulfide					-167.1				-121.8			
C ₆ H ₁₄ S ₂	Dipropyl disulfide					-171.5				-118.3			
C ₆ H ₁₅ B	Triethylborane					-194.6	9.4	336.7	241.2	-157.7	16.1	437.8	
C ₆ H ₁₅ N	Dipropylamine					-156.1				-116.0			
C ₆ H ₁₅ N	Diisopropylamine					-178.5			010.0	-143.8			
C ₆ H ₁₅ N	Triethylamine					-127.7			219.9	-92.7			
C ₆ H ₁₅ NO	2-Diethylaminoethanol	004.0				-305.9							
C ₆ H ₁₅ NO ₃	Triethanolamine	-664.2			389.0					-558.3			
C ₆ H ₁₆ N ₂	1,6-Hexanediamine	-205.0							001.0				
C ₆ H ₁₈ N ₃ OP	Hexamethylphosphoric triamide					045.0		400.0	321.0		F04.5		- 000 -
C ₆ H ₁₈ OSi ₂	Hexamethyldisiloxane	000.0	077 7	005.0	0.40.0	-815.0	-541.5	433.8	311.4	-777.7	-534.5	535.0	238.5
C ₆ MoO ₆	Molybdenum hexacarbonyl	-982.8	-877.7	325.9	242.3				-	-912.1	-856.0	490.0	205.0
C ₆ N ₄	Tetracyanoethene	623.8				10111		055.5	0000	705.0			
C ₇ F ₈	Perfluorotoluene					-1311.1		355.5	262.3	0007.0			
C ₇ F ₁₄	Perfluoromethylcyclohexane					-2931.1		E01.0	353.1	-2897.2			
C ₇ F ₁₆	Perfluoroheptane					-3420.0		561.8	419.0	-3383.6			
C ₇ H ₃ F ₅	2,3,4,5,6-Pentafluorotoluene					-883.8		306.4	225.8	-842.7			
C ₇ H ₄ Cl ₂ O	3-Chlorobenzoyl chloride	400.0				-189.7							
$C_7 H_4 N_2 O_6$	3,5-Dinitrobenzoic acid	-409.8											
CHOIC	Panzoul oblarida					1500				1000			
$\frac{C_7 H_5 CIO}{C_7 H_5 CIO_2}$	Benzoyl chloride 2-Chlorobenzoic acid	-404.5				-158.0				-103.2 -325.0			

			Cryst	al			Lic	luid			Ga	s	
Molecular formula	Name	Δ _ι H° kJ/mol	Δ _r G° kJ/mol	Sº J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	∆ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₇ H ₅ CIO ₂	3-Chlorobenzoic acid	-424.3								-342.3			
C ₇ H ₅ CIO ₂	4-Chlorobenzoic acid	-428.9			163.2					-341.0			
$C_7H_5F_3$	(Trifluoromethyl)benzene								188.4				
C ₇ H ₅ N	Benzonitrile					163.2		209.1	165.2	215.7			
C ₇ H ₅ NO	Benzoxazole	-24.2								44.8			
C ₇ H ₅ NO ₄	2-Nitrobenzoic acid	-378.8											
C ₇ H ₅ NO ₄	3-Nitrobenzoic acid	-394.7											
$C_7H_5NO_4$	4-Nitrobenzoic acid	-392.2											
$C_7H_5N_3O_6$	2,4,6-Trinitrotoluene	-63.2			243.3								
$C_7H_6N_2$	1 <i>H</i> -Benzimidazole	79.5								181.7			
$\frac{C_7H_6N_2}{C_7H_6N_2}$	1 <i>H</i> -Indazole	151.9								243.0			
$\frac{O_7 N_6 N_2}{C_7 H_6 N_2 O_4}$	1-Methyl-2,4-dinitrobenzene	-66.4		,						33.2			
$\frac{O_7 H_6 H_2 O_4}{C_7 H_6 O}$	Benzaldehyde	00.1				-87.0		221.2	172.0	-36.7			
$\frac{O_7 H_6 O}{C_7 H_6 O_2}$	Benzoic acid	-385.2		167.6	146.8			221.2	172.0	-294.0			
	Salicylaldehyde	303.2		107.0	140.0				222.0	234.0			
$\frac{C_7 H_6 O_2}{C_7 H_6 O_2}$		-182.0								-105.9			
	3-(2-Furanyl)-2-propenal												
C ₇ H ₆ O ₃	2-Hydroxybenzoic acid	-589.9				40.0				-494.8			
C ₇ H ₇ Br	4-Bromotoluene					12.0							
C ₇ H ₇ CI	2-Chlorotoluene								166.8				
C ₇ H ₇ CI	(Chloromethyl)benzene					-32.5				18.9			
C ₇ H ₇ F	4-Fluorotoluene					-186.9			171.2	-147.4			
C ₇ H ₇ NO	Benzamide	-202.6								-100.9			
C ₇ H ₇ NO ₂	Aniline-2-carboxylic acid	-401.1								-296.0			
$\overline{C_7H_7NO_9}$	Aniline-3-carboxylic acid	-417.3								-283.6			
$C_7H_7NO_2$	Aniline-4-carboxylic acid	-410.0			177.8					-296.7			
C,H,NO,	2-Nitrotoluene					-9.7							
$C_7H_7NO_2$	3-Nitrotoluene			,		-31.5							
C,H,NO,	4-Nitrotoluene	-48.1			172.3					31.0			
$\frac{C_7H_7NO_2}{C_7H_7NO_2}$	(Nitromethyl)benzene					-22.8				30.7			
C ₇ H ₇ NO ₂	Salicylaldoxime	-183.7											
$\frac{O_7 N_7 NO_2}{C_7 H_8}$	Toluene	100.7				12.4			157.3	50.5			
C ₇ H ₈ N ₂ O	Phenylurea	-218.6				12.4			107.0				
	o-Cresol	-204.6		165.4	154.6					-128.6			
C ₇ H ₈ O		-204.0		100.4	134.0	404.0		040.0	0040				
C ₇ H ₈ O	m-Cresol	100.0		107.0	450.0	-194.0		212.6	224.9	-132.3			
C ₇ H ₈ O	p-Cresol	-199.3		167.3	150.2					-125.4			
C ₇ H ₈ O	Benzyl alcohol					-160.7		216.7	217.9	-100.4			
C ₇ H ₈ O	Anisole					-114.8				-67.9			
C ₇ H ₉ N	Benzylamine					34.2			207.2	94.4			
C ₇ H ₉ N	2-Methylaniline					-6.3				56.4	167.6	351.0	130.2
C ₇ H ₉ N	3-Methylaniline					-8.1				54.6	165.4	352.5	125.5
C ₇ H ₉ N	4-Methylaniline	-23.5								55.3	167.7	347.0	126.2
C ₇ H ₉ N	N-Methylaniline								207.1				
C ₇ H ₉ N	1-Cyclohexenecarbonitrile					48.1				101.6			
C ₇ H _o N	2,3-Dimethylpyridine					19.4		243.7	189.5	67.1			
C_7H_9N	2,4-Dimethylpyridine					16.1		248.5	184.8	63.6			
C ₇ H _o N	2,5-Dimethylpyridine					18.7		248.8	184.7	66.5			
C ₇ H ₉ N	2,6-Dimethylpyridine					12.7		244.2	185.2	58.1			
$\frac{O_7 N_9 N}{C_7 H_9 N}$	3,4-Dimethylpyridine					18.3		240.7	191.8	68.8			
$\frac{O_7 H_9 N}{C_7 H_9 N}$	3,5-Dimethylpyridine					22.5		241.7	184.5	72.0			
$\frac{O_7 H_9 N}{C_7 H_{10} O_2}$	Ethyl 2-pentynoate					-301.8		241.7	104.0	-250.3			
						-242.7				-230.3			
C ₇ H ₁₀ O ₂	Methyl 2-hexynoate									- F00 4			
C ₇ H ₁₁ Cl ₃ O ₂	Isopentyl trichloroacetate					-580.9				-523.1			
C ₇ H ₁₁ N	Cyclohexanecarbonitrile					-47.2				4.8			
C ₇ H ₁₂	Bicyclo[2.2.1]heptane	-95.1			151.0					-54.8			
C ₇ H ₁₂	1-Methylbicyclo(3,1,0)hexane					-33.2				1.7			
C ₇ H ₁₂	Methylenecyclohexane					-61.3				-25.2			
C ₇ H ₁₂	Vinylcyclopentane					-34.8							
C ₇ H ₁₂	1-Ethylcyclopentene					-53.3				-19.8			
C ₇ H ₁₂ O	2-Methylenecyclohexanol					-277.6							
C ₇ H ₁₂ O ₂	Butyl acrylate					-422.6			251.0	-375.3			
C ₇ H ₁₂ O ₄	Diethyl malonate					·			285.0				
						-571.7				-517.3			
U-II. LIIU	BIJIVI 2-CHIOronronanoate					J1 1.1							
C ₇ H ₁₃ CIO ₂ C H CIO	Butyl 2-chloropropanoate					-603 1				-549 6			
C ₇ H ₁₃ CIO ₂	Isobutyl 2-chloropropanoate					-603.1 -557.9				-549.6 -502.3			
$\frac{C_7H_{13CIO_2}}{C_7H_{13CIO_2}}$	Isobutyl 2-chloropropanoate Butyl 3-chloropropanoate					-557.9				-502.3			
C ₇ H ₁₃ CIO ₂	Isobutyl 2-chloropropanoate												

			Cryst	al			Lic	luid			Ga	as	
Molecular formula	Name	Δ _r H° kJ/mol	Δ _r G° kJ/mol	Sº J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol		C _p J/mol K
C ₇ H ₁₃ N	Heptanenitrile					-82.8				-31.0			
C ₇ H ₁₄	1-Heptene					-97.9		327.6	211.8	-62.3			
C ₇ H ₁₄	cis-2-Heptene					-105.1							
C ₇ H ₁₄	trans-2-Heptene					-109.5							
C ₇ H ₁₄	cis-3-Heptene					-104.3							
C ₇ H ₁₄	trans-3-Heptene					-109.3							
C ₇ H ₁₄	5-Methyl-1-hexene					-100.0				-65.7			
C ₇ H ₁₄	cis-3-Methyl-3-hexene					-115.9				-79.4			
C ₇ H ₁₄	trans-3-Methyl-3-hexene					-112.7				-76.8			
C ₇ H ₁₄	2,4-Dimethyl-1-pentene					-117.0				-83.8			
C ₇ H ₁₄	4,4-Dimethyl-1-pentene					-110.6				-81.6			
C ₇ H ₁₄	2,4-Dimethyl-2-pentene					-123.1				-88.7			
C ₇ H ₁₄	cis-4,4-Dimethyl-2-pentene					-105.3				-72.6			
C ₇ H ₁₄	trans-4,4-Dimethyl-2-pentene					-121.7				-88.8			
C ₇ H ₁₄	2-Ethyl-3-methyl-1-butene					-114.1				-79.5			
C ₇ H ₁₄	2,3,3-Trimethyl-1-butene					-117.7				-85.5			
C ₇ H ₁₄	Cycloheptane					-156.6				-118.1			
C ₇ H ₁₄	Methylcyclohexane					-190.1			184.8	-154.7			
C ₇ H ₁₄	Ethylcyclopentane					-163.4		279.9		-126.9			
C ₇ H ₁₄	1,1-Dimethylcyclopentane					-172.1				-138.2			
C ₇ H ₁₄	cis-1,2-Dimethylcyclopentane					-165.3		269.2		-129.5			
C ₇ H ₁₄	trans-1,2-Dimethylcyclopentane					-171.2				-136.6			
C ₇ H ₁₄	cis-1,3-Dimethylcyclopentane					-170.1				-135.8			
C ₇ H ₁₄	trans-1,3-Dimethylcyclopentane					-168.1				-133.6			
C ₇ H ₁₄	1,1,2,2-Tetramethylcyclopropane					-119.8							
$C_7H_{14}Br_2$	1,2-Dibromoheptane					-212.3				-157.9			
C ₇ H ₁₄ O	1-Heptanal					-311.5		335.4	230.1	-263.8			
$C_7 H_{14} O$	2-Heptanone								232.6				
$C_7 H_{14} O$	3-Heptanone									-297.1			
$C_7 H_{14} O$	4-Heptanone									-298.3			
$C_7 H_{14} O$	2,2-Dimethyl-3-pentanone					-356.1				-313.6			
$C_7 H_{14} O$	2,4-Dimethyl-3-pentanone					-352.9		318.0	233.7	-311.3			
$C_7 H_{14} O$	cis-2-Methylcyclohexanol					-390.2				-327.0			
$C_7H_{14}O$	trans-2-Methylcyclohexanol, (±)					-415.7				-352.5			
$C_7 H_{14} O$	cis-3-Methylcyclohexanol, (±)					-416.1				-350.9			
C ₇ H ₁₄ O	trans-3-Methylcyclohexanol, (±)					-394.4				-329.1			
C ₇ H ₁₄ O	cis-4-Methylcyclohexanol					-413.2				-347.5			
$C_7H_{14}O$	trans-4-Methylcyclohexanol					-433.3				-367.2			
C ₇ H ₁₄ O ₂	Heptanoic acid					-610.2			265.4	-536.2			
$C_7 H_{14} O_2$	Pentyl acetate								261.0				
$C_7 H_{14} O_2$	Isopentyl acetate								248.5				
$C_7 H_{14} O_2$	Ethyl pentanoate					-553.0				-505.9			
C ₇ H ₁₄ O ₂	Ethyl 3-methylbutanoate					-571.0				-527.0			
C ₇ H ₁₄ O ₂	Ethyl 2,2-dimethylpropanoate					-577.2				-536.0			
$C_7 H_{14} O_2$	Methyl hexanoate					-540.2				-492.2			
C ₇ H ₁₄ O ₆	α-Methylglucoside	-1233.3	1										
C ₇ H ₁₅ Br	1-Bromoheptane					-218.4				-167.8			
C ₇ H ₁₆	Heptane					-224.2			224.7	-187.6			
C ₇ H ₁₆	2-Methylhexane					-229.5		323.3	222.9	-194.5			
C ₇ H ₁₆	3-Methylhexane					-226.4				-191.3			
C ₇ H ₁₆	3-Ethylpentane					-224.9		314.5	219.6	-189.5			
C ₇ H ₁₆	2,2-Dimethylpentane					-238.3		300.3	221.1	-205.7			
C ₇ H ₁₆	2,3-Dimethylpentane					-233.1				-198.7			
C ₇ H ₁₆	2,4-Dimethylpentane					-234.6		303.2	224.2	-201.6			
C ₇ H ₁₆	3,3-Dimethylpentane					-234.2		202.7	015 -	-201.0			
C ₇ H ₁₆	2,2,3-Trimethylbutane					-236.5		292.2	213.5	-204.4			
C ₇ H ₁₆ O	1-Heptanol					-403.3			272.1	-336.5			
C ₇ H ₁₆ O	tert-Butyl isopropyl ether					-392.8				-358.1			
C ₇ H ₁₆ O ₂	1,7-Heptanediol					-574.2				F00 -			
C ₇ H ₁₆ O ₂	2,2-Diethoxypropane					-538.9				-506.9			
C ₇ H ₁₆ S	1-Heptanethiol					-200.5				-149.9			
C ₈ H ₄ O ₃	Phthalic anhydride	-460.1		180.0	160.0					-371.4			
	1111 1 1 0 0 ::		,										
C ₈ H ₅ NO ₂	1 <i>H</i> -Indole-2,3-dione	-268.2											
C ₈ H ₆ O ₄	Phthalic acid	-782.0)	207.9	188.1		,			0000			
)	207.9	188.1					-696.3 -717.9			

			Cryst	al			Lic	quid			Ga	IS	
Molecular formula	Name	Δ _ι Η° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p
C ₈ H ₆ S	Benzo[b]thiophene	100.6	,	0,		,	,	0,		166.3	,	0,	0,
C ₈ H ₇ N	1 <i>H</i> -Indole	86.6								156.5			
C ₈ H ₈	Styrene					103.8			182.0	147.9			
C ₈ H ₈ O	Phenyl vinyl ether					-26.2				22.7			
C ₈ H ₈ O	Acetophenone	440.5			174.0	-142.5				-86.7			
C ₈ H ₈ O ₂	o-Toluic acid	-416.5			174.9								
C ₈ H ₈ O ₂ C ₈ H ₈ O ₂	m-Toluic acid p-Toluic acid	-426.1 -429.2			163.6								
C ₈ H ₈ O ₂	Methyl benzoate	723.2			103.0	-343.5			221.3	-287.9			
C ₈ H ₈ O ₃	Methyl salicylate					0.0.0			249.0	207.0			
C ₈ H ₉ NO	Acetanilide	-209.4			179.3								
C ₈ H ₁₀	1,7-Octadiyne					334.4							
C ₈ H ₁₀	Ethylbenzene					-12.3			183.2	29.9			
C ₈ H ₁₀	o-Xylene					-24.4			186.1	19.1			
C ₈ H ₁₀	<i>m</i> -Xylene					-25.4			183.0	17.3			
$\frac{C_8H_{10}}{C_8H_{10}O}$	<i>p</i> -Xylene 2-Ethylphenol					-24.4 -208.8			181.5	18.0 -145.2			
$\frac{O_8H_{10}O}{C_8H_{10}O}$	3-Ethylphenol					-214.3				-146.1			
C ₈ H ₁₀ O	4-Ethylphenol	-224.4			206.9					-144.1			
C ₈ H ₁₀ O	2,3-Xylenol	-241.1								-157.2			
C ₈ H ₁₀ O	2,4-Xylenol					-228.7				-163.8			
C ₈ H ₁₀ O	2,5-Xylenol	-246.6								-161.6			
C ₈ H ₁₀ O	2,6-Xylenol	-237.4								-162.1			
C ₈ H ₁₀ O	3,4-Xylenol	-242.3								-157.3			
C ₈ H ₁₀ O	3,5-Xylenol	-244.4							050.0	-162.4			
C ₈ H ₁₀ O	Benzeneethanol Ethoxybenzene					-152.6			252.6 228.5	-101.6			
$\frac{C_8H_{10}O}{C_8H_{10}O_2}$	1,2-Dimethoxybenzene					-290.3			220.0	-223.3			
C ₈ H ₁₁ N	N-Ethylaniline					8.2				56.3			
C ₈ H ₁₁ N	N,N-Dimethylaniline					46.0				100.5			
C ₈ H ₁₁ N	2,4-Dimethylaniline					-39.2							
C ₈ H ₁₁ N	2,5-Dimethylaniline					-38.9							
C ₈ H ₁₁ N	2,6-Dimethylaniline								238.9				
C ₈ H ₁₂	1-Octen-3-yne					140.7							
C ₈ H ₁₂	cis-1,2-Divinylcyclobutane					124.3				166.5			
C ₈ H ₁₂ C ₈ H ₁₂ N ₄	trans-1,2-Divinylcyclobutane 2,2'-Azobis[isobutyronitrile]	246.0			237.6	101.3				143.5			
$\frac{O_8 \Pi_{12} \Pi_4}{C_8 \Pi_{12} O_2}$	2,2,4,4-Tetramethyl-1,3-cyclobutanedione	-379.9			237.0				-	-307.6			
C ₈ H ₁₄	Ethylidenecyclohexane	0,0.0				-103.5				-59.5			
C ₈ H ₁₄	Allylcyclopentane					-64.5				-24.1			
C ₈ H ₁₄ CIN ₅	Atrazine	-125.4											
C ₈ H ₁₄ O ₃	Butanoic anhydride								283.7				
C ₈ H ₁₅ CIO ₂	3-Methylbutyl 2-chloropropanoate					-627.3				-575.0			
C ₈ H ₁₅ CIO ₂	3-Methylbutyl 3-chloropropanoate					-593.4				-539.4			
C ₈ H ₁₅ N	Octanenitrile 1-Octene					-107.3 -124.5			2/1 0	-50.5			
C ₈ H ₁₆ C ₈ H ₁₆	cis-2-Octene					-124.5			241.0	-81.3			
C ₈ H ₁₆	trans-2-Octene			-		-135.7			239.0				
C ₈ H ₁₆	cis-2,2-Dimethyl-3-hexene					-126.4				-89.3			
C ₈ H ₁₆	trans-2,2-Dimethyl-3-hexene					-144.9				-107.7			
C ₈ H ₁₆	3-Ethyl-2-methyl-1-pentene					-137.9				-100.3			
C ₈ H ₁₆	2,4,4-Trimethyl-1-pentene					-145.9				-110.5			
C ₈ H ₁₆	2,4,4-Trimethyl-2-pentene					-142.4				-104.9			
C ₈ H ₁₆	Cyclooctane					-167.7		000.0	044.0	-124.4			
C ₈ H ₁₆	Ethylcyclohexane					-212.1 -218.7		280.9 267.2	211.8	-171.5 -180.9			
C ₈ H ₁₆ C ₈ H ₁₆	1,1-Dimethylcyclohexane cis-1,2-Dimethylcyclohexane					-211.8		274.1	209.2	-172.1			
C ₈ H ₁₆	trans-1,2-Dimethylcyclohexane					-218.2		273.2	209.4	-179.9			
C ₈ H ₁₆	cis-1,3-Dimethylcyclohexane					-222.9		272.6	209.4	-184.6			
C ₈ H ₁₆	trans-1,3-Dimethylcyclohexane			-		-215.7		276.3	212.8	-176.5			
C ₈ H ₁₆	cis-1,4-Dimethylcyclohexane					-215.6		271.1	212.1	-176.6			
C ₈ H ₁₆	trans-1,4-Dimethylcyclohexane					-222.4		268.0	210.2	-184.5			
C ₈ H ₁₆	Propylcyclopentane					-188.8		310.8	216.3	-147.7			
C ₈ H ₁₆	1-Ethyl-1-methylcyclopentane					-193.8							
C ₈ H ₁₆	cis-1-Ethyl-2-methylcyclopentane					-190.8				450.0			
C ₈ H ₁₆	trans-1-Ethyl-2-methylcyclopentane					-195.1				-156.2			

			Crys	al			Lic	luid			Ga	as	
Molecular formula	Name	Δ _i H° kJ/mol	Δ _r G° kJ/mol		C _ρ J/mol K		Δ _ι G° kJ/mol		C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S° J/mol K	C _p J/mol K
C ₈ H ₁₆	cis-1-Ethyl-3-methylcyclopentane					-194.4							
C ₈ H ₁₆	trans-1-Ethyl-3-methylcyclopentane					-196.0							
C ₈ H ₁₆ O	Octanal					040.5				-291.9		365.4	
C ₈ H ₁₆ O	2-Ethylhexanal					-348.5			070.0	-299.6			
C ₈ H ₁₆ O	2-Octanone 2,2,4-Trimethyl-3-pentanone					-381.6			273.3	-338.3			
C ₈ H ₁₆ O	Octanoic acid					-636.0			297.9	-554.3			
$\frac{C_8H_{16}O_2}{C_8H_{16}O_2}$	2-Ethylhexanoic acid					-635.1				-559.5			
$\frac{O_8 \Pi_{16} O_2}{C_8 \Pi_{16} O_2}$	Hexyl acetate					-000.1			282.8	-000.0			
$\frac{G_8 H_{16} G_2}{G_8 H_{16} G_2}$	Isobutyl isobutanoate					-587.4				-542.9			
C ₈ H ₁₆ O ₂	Propyl pentanoate				-	-583.0				-533.6			
C ₈ H ₁₆ O ₂	Isopropyl pentanoate					-592.2				-544.9			
C ₈ H ₁₆ O ₂	Methyl heptanoate					-567.1			285.1	-515.5			
C ₈ H ₁₇ Br	1-Bromooctane					-245.1				-189.3		-	
C ₈ H ₁₇ CI	1-Chlorooctane					-291.3				-238.9			
C ₈ H ₁₇ NO	Octanamide	-473.2								-362.7			
C ₈ H ₁₈	Octane					-250.1			254.6	-208.5			
C ₈ H ₁₈	2-Methylheptane					-255.0		356.4	252.0	-215.3			
C ₈ H ₁₈	3-Methylheptane, (S)					-252.3		362.6	250.2	-212.5			
C ₈ H ₁₈	4-Methylheptane					-251.6			251.1	-211.9			
C ₈ H ₁₈	3-Ethylhexane					-250.4				-210.7			
C ₈ H ₁₈	2,2-Dimethylhexane					-261.9				-224.5			
C ₈ H ₁₈	2,3-Dimethylhexane					-252.6				-213.8			
C ₈ H ₁₈	2,4-Dimethylhexane					-257.0				-219.2			
C ₈ H ₁₈	2,5-Dimethylhexane					-260.4			249.2	-222.5			
C ₈ H ₁₈	3,3-Dimethylhexane					-257.5			246.6	-219.9			
C ₈ H ₁₈	3,4-Dimethylhexane					-251.8				-212.8			
C ₈ H ₁₈	3-Ethyl-2-methylpentane					-249.6 -252.8				-211.0			
C ₈ H ₁₈	3-Ethyl-3-methylpentane 2,2,3-Trimethylpentane					-252.6				-214.8 -220.0			
C ₈ H ₁₈ C ₈ H ₁₈	2,2,4-Trimethylpentane					-259.2			239.1	-224.0			
C ₈ H ₁₈	2,3,3-Trimethylpentane					-253.5			245.6	-216.3			
C ₈ H ₁₈	2,3,4-Trimethylpentane					-255.0		329.3	247.3	-217.3			
C ₈ H ₁₈	2,2,3,3-Tetramethylbutane	-269.0		273.7	239.2					-226.0			
C ₈ H ₁₈ N ₂	Azobutane					-40.1				9.2			
C ₈ H ₁₈ O	1-Octanol					-426.5			305.2	-355.6			
C ₈ H ₁₈ O	2-Octanol								330.1				
C ₈ H ₁₈ O	2-Ethyl-1-hexanol					-432.8		347.0	317.5	-365.3			
C ₈ H ₁₈ O	Dibutyl ether					-377.9			278.2	-332.8			
C ₈ H ₁₈ O	Di- <i>sec</i> -butyl ether					-401.5				-360.6			
C ₈ H ₁₈ O	Di- <i>tert</i> -butyl ether					-399.6			276.1	-362.0			
C ₈ H ₁₈ O	tert-Butyl isobutyl ether					-409.1				-369.0			
C ₈ H ₁₈ O ₂	1,8-Octanediol	-626.6				,							
C ₈ H ₁₈ O ₂	2,5-Dimethyl-2,5-hexanediol	-681.7											
C ₈ H ₁₈ O ₃	Diethylene glycol monobutyl ether								354.9				
C ₈ H ₁₈ O ₃	Diethylene glycol diethyl ether					000 4			341.4	005.0			
C ₈ H ₁₈ O ₃ S	Dibutyl sulfite					-693.1			400.0	-625.3			
C ₈ H ₁₈ O ₅	Tetraethylene glycol Dibutyl sulfide					-981.7 -220.7		405.1	428.8 284.3	-883.0 -167.7			
C ₈ H ₁₈ S C ₈ H ₁₈ S	Dibutyl sulfide Di-sec-butyl sulfide					-220.7		400.1	204.3	-167.7			
C ₈ H ₁₈ S C ₈ H ₁₈ S	Di- <i>sec</i> -butyl sulfide Di- <i>tert</i> -butyl sulfide					-232.6				-188.8			
C ₈ H ₁₈ S	Disobutyl sulfide					-232.0				-180.5			
C ₈ H ₁₈ S ₂	Dibutyl disulfide					-229.2				-160.5			
C ₈ H ₁₈ S ₂	Di- <i>tert</i> -butyl disulfide					-255.2				-201.0			
C ₈ H ₁₈ S ₂	Dibutylamine					-206.0			292.9	-156.6			
C ₈ H ₁₉ N	Diisobutylamine					-218.5				-179.2			
C ₈ H ₂₀ BrN	Tetraethylammonium bromide	-342.7											
C ₈ H ₂₀ O ₄ Si	Ethyl silicate	5.2.7						533.1	364.4				
$C_8H_{20}Pb$	Tetraethyl lead					52.7		464.6	307.4	109.6			
C ₈ H ₂₀ Si	Tetraethylsilane								298.1				
C ₉ H ₆ N ₂ O ₂	Toluene-2,4-diisocyanate								287.8				
C ₉ H ₇ N	Quinoline					141.2				200.5			
C ₉ H ₇ N	Isoquinoline					144.3		216.0	196.2	204.6			
C ₉ H ₇ NO	2-Quinolinol	-144.9								-25.5			
C ₉ H ₇ NO	8-Quinolinol	82.1											
C ₉ H ₈	Indene					110.6		215.3	186.9	163.4			
													_

			Cryst	al			Lie	quid			Ga	ıs	
Molecular formula	Name	Δ _t H° kJ/mol	Δ _ι <i>G</i> ° kJ/mol	Sº	C _p J/mol K	Δ _ι H° kJ/mol	∆ _r G° kJ/mol	S º	C _p J/mol K	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S º	C _p J/mol K
C ₉ H ₈ O ₄	2-(Acetyloxy)benzoic acid	-815.6											
C ₉ H ₁₀	Cyclopropylbenzene					100.3			1000	150.5			
C ₉ H ₁₀	Indan	-329.0				11.5		56.0	190.2	60.3			
$\frac{C_9H_{10}CI_2N_2O}{C_9H_{10}N_2}$	Diuron 2,2'-Dipyrrolylmethane	126.2											
$\frac{O_9 \Pi_{10} \Pi_2}{C_9 \Pi_{10} O_2}$	Ethyl benzoate	120.2							246.0				
$\frac{O_9 \Pi_{10} O_2}{C_9 \Pi_{10} O_2}$	Benzyl acetate								148.5				
C ₉ H ₁₁ NO ₂	L-Phenylalanine	-466.9		213.6	203.0					-312.9			
C ₉ H ₁₁ NO ₃	L-Tyrosine	-685.1		214.0	216.4								
C ₉ H ₁₂	Propylbenzene					-38.3		287.8	214.7	7.9			
C ₉ H ₁₂	Isopropylbenzene					-41.1			210.7	4.0			
C ₉ H ₁₂	2-Ethyltoluene					-46.4				1.3			
C ₉ H ₁₂	3-Ethyltoluene					-48.7				-1.8			
C ₉ H ₁₂	4-Ethyltoluene					-49.8		207.0		-3.2			
C ₉ H ₁₂	1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene					-58.5 -61.8		267.9	216.4	-9.5 -13.8			
C ₉ H ₁₂ C ₉ H ₁₂	1,3,5-Trimethylbenzene					-63.4			209.3	-15.9			
$\frac{C_9\Pi_{12}}{C_9H_{12}O}$	2-Isopropylphenol					-233.7			203.3	-182.2			
C ₉ H ₁₂ O	3-Isopropylphenol					-252.5				-196.0			
C ₀ H ₁₂ O	4-Isopropylphenol	-270.0								-175.3			
C ₉ H ₁₂ O ₂	Isopropylbenzene hydroperoxide					-148.3				-78.4			
C ₉ H ₁₃ NO ₂	Ethyl 3,5-dimethylpyrrole-2-carboxylate	-474.5											
C ₉ H ₁₃ NO ₂	Ethyl 2,4-dimethylpyrrole-3-carboxylate	-463.2											
C ₉ H ₁₃ NO ₂	Ethyl 2,5-dimethylpyrrole-3-carboxylate	-478.7											
C ₉ H ₁₃ NO ₂	Ethyl 4,5-dimethylpyrrole-3-carboxylate	-470.3											
$C_9H_{14}O$	Isophorone								253.5				
C ₉ H ₁₄ O ₆	Triacetin					-1330.8		458.3	384.7	-1245.0			
C ₉ H ₁₅ N	3-Ethyl-2,4,5-trimethylpyrrole	-89.2				10.0				00.0			
C ₉ H ₁₆	1-Nonyne Nonanedioic acid	-1054.3				16.3				62.3			
$\frac{C_9H_{16}O_4}{C_9H_{17}NO}$	2,2,6,6-Tetramethyl-4-piperidinone	-334.2								-273.4			
C ₉ H ₁₈	Propylcyclohexane	004.2				-237.4		311.9	242.0	-192.3			
C ₉ H ₁₈	$1\alpha, 3\alpha, 5\beta$ -1,3,5-Trimethylcyclohexane			-						-212.1			
C ₉ H ₁₈ O	2-Nonanone					-397.2				-340.7			
C ₉ H ₁₈ O	5-Nonanone					-398.2		401.4	303.6	-344.9			
C ₉ H ₁₈ O	2,6-Dimethyl-4-heptanone					-408.5			297.3	-357.6			
$C_9H_{18}O_2$	Nonanoic acid					-659.7			362.4	-577.3			
C ₉ H ₁₈ O ₂	Butyl pentanoate					-613.3				-560.2			
C ₉ H ₁₈ O ₂	sec-Butyl pentanoate					-624.2				-573.2			
C ₉ H ₁₈ O ₂	Isobutyl pentanoate Methyl octanoate					-620.0 -590.3				-568.6 -533.9			
$\frac{C_9H_{18}O_2}{C_9H_{19}N}$	N-Butylpiperidine					-171.8				-000.9			
C ₉ H ₁₉ N	2,2,6,6-Tetramethylpiperidine					-206.9				-159.9			
C ₉ H ₂₀	Nonane			-		-274.7			284.4	-228.2			
C ₉ H ₂₀	2,2-Dimethylheptane					-288.1							
C ₉ H ₂₀	2,2,3-Trimethylhexane					-282.7							
C ₉ H ₂₀	2,2,4-Trimethylhexane					-282.8							
C_9H_{20}	2,2,5-Trimethylhexane					-293.3							
C ₉ H ₂₀	2,3,3-Trimethylhexane					-281.1				0.10.1			
C ₉ H ₂₀	2,3,5-Trimethylhexane					-284.0				-242.6			
C ₉ H ₂₀	2,4,4-Trimethylhexane 3,3,4-Trimethylhexane					-280.2							
C ₉ H ₂₀ C ₉ H ₂₀	3,3,4-irimethylnexane 3,3-Diethylpentane					-277.5 -275.4			278.2	-233.3			
$\frac{C_9 \Pi_{20}}{C_9 H_{20}}$	3-Ethyl-2,2-dimethylpentane					-272.7			210.2	200.0			
$\frac{O_9 \Pi_{20}}{C_9 H_{20}}$	3-Ethyl-2,4-dimethylpentane					-269.7							
$\frac{C_9H_{20}}{C_9H_{20}}$	2,2,3,3-Tetramethylpentane					-278.3			271.5	-237.1			
C ₉ H ₂₀	2,2,3,4-Tetramethylpentane					-277.7				-236.9			
C ₉ H ₂₀	2,2,4,4-Tetramethylpentane					-280.0			266.3	-241.6			
C ₉ H ₂₀	2,3,3,4-Tetramethylpentane					-277.9				-236.1			
$C_9H_{20}N_2O$	Tetraethylurea					-380.0				-316.4			
C ₉ H ₂₀ O	1-Nonanol					-453.4				-376.5			
C ₉ H ₂₀ O ₂	1,9-Nonanediol	-657.6				007 4				101.0			
C ₉ H ₂₁ N	Tripropylamine 2-Quinolinecarbonitrile	246.5		-		-207.1				-161.0			
$\frac{C_{10}H_{6}N_{2}}{C_{10}H_{6}N_{2}}$	3-Quinolinecarbonitrile	240.5											
$\frac{C_{10}H_6N_2}{C_{10}H_6N_2O_4}$	1,5-Dinitronaphthalene	29.8											
10. 6. 2 4	,	20.0											

Name	Δ,H° J/mol 119.8 137.4 233.8 235.1 111.2 150.6 289.1 -30.4 -29.9 132.8 134.3	8 4 4 8 1 1 2 6 6 2 2 6 1 4 4 9 9 8 3 3	ol J/mol K	149.4
C_H_CI 1-Chloronaphthalene 55.4	137.4 233.8 235.1 111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	4		149.4
C _{a,H} Cl 2-Chloronaphthalene 55.4 C _{b,H} 1 1-Jodonaphthalene 144.3 C _{b,H} NQ 1-Nitronaphthalene 42.6 C _{b,H} NQ 1-Nitronaphthalene 42.6 C _{b,H} NQ 1-Nitronaphthalene 42.6 C _{b,H} NQ 1-Nitronaphthalene 78.5 C _{b,H} NQ 1-Naphthalene 77.5 C _{b,H} Q 2-Naphthol -121.5 C _{b,H} N 1-Naphthol -124.1 C _{b,H} N 1-Naphthylamine 67.8 C _{b,H} N 1-Naphthylamine 60.2 C _{b,H} N 1-Naphthylamine 71.6 C _{b,H} N 1-Naphthylamine 71.6 C _{b,H} N 1-Naphthylamine 72.6 C _{b,H} N 1-Naphthylamine 73.6 C _{b,H} N 1	137.4 233.8 235.1 111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	4		149.4
C _{n,H} I. 1-lodonaphthalene 161.5 2 C _{n,H} J.O. 1-Nitronaphthalene 144.3 2 C _{n,H} A. 2-I-Nitronaphthalene 42.6 1 C _{n,H} A. Naphthalene 78.5 201.6 167.4 165.7 1 C _{n,H} A. Azulene 212.3 2 2 C _{n,H} O. 1-Naphthol -121.5 166.9	233.8 235.1 111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	8 8 1 1 2 2 6 22 4 1 1 4 4 9 9 8 8 3 3 9 8 8 4 9 9 9 8 8 4 9 9 9 9 8 9 9 9 9 9		149.4
C _n H ₁ N ₂ 2-lodonaphthalene 144.3 2 C _n H ₁ N ₂ N ₂ 1-Nitronaphthalene 42.6 1 C _n H ₂ Aphthalene 78.5 201.6 167.4 165.7 1 C _n H ₂ 1-Naphthalene 78.5 201.6 167.4 165.7 1 C _n H ₂ 2-Naphthalene 212.3 1 166.9 2 C _n H ₂ 2-Naphthylamine 67.8 1 172.8 1 C _n H ₂ N ₂ 2-Naphthylamine 60.2 1 1 1 171.6 1	235.1 111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	1 2 6 2 1 1 4 4 9 8 8 3 3		149.4
C _u H ₁ NO ₂ 1-Nitronaphthalene 42.6 C _u H ₄ Naphthalene 78.5 201.6 167.4 165.7 1 C _u H ₂ O Aulene 212.3 2 2 C _u H ₂ O 1-Naphthol -121.5 166.9 3 C _u H ₂ O 2-Naphthylamine 67.8 172.8 1 C _u H ₁ O 1.2-Dihydronaphthalene 67.8 1 1 C _u H ₁ O 1.2-Dihydronaphthalene 71.6 5 1 <td< td=""><td>111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0</td><td>22 66 22-1 1 44 99 88 33</td><td></td><td>149.4</td></td<>	111.2 150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	22 66 22-1 1 44 99 88 33		149.4
C _m H _s C _m H _s	150.6 289.1 -30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	6 22-6 1 4 4 9 8 8 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		149.4
C ₁₁ H ₁ A Zulen 212.3 C ₁₀ H ₁ O 1 - Naphthol -121.5 166.9 C ₁₀ H ₁ O 2 - Naphthol -124.1 179.0 172.8 C ₁₁ H ₂ N 2 - Naphthylamine 67.8 1 C ₁₁ H ₂ N 2 - Naphthylamine 60.2 1 C ₁₁ H ₂ N 3 1, 2-Dinydronaphthalene 71.6 -1 C ₁₁ H ₂ N 3 1, 4-Dihydronaphthalene 84.2 -209.6 C ₁₂ H ₂ N 0 1 - Tetralone -209.6 -209.6 C ₂₁ H ₂ N 0 1 - Dimethyl isophthalate -730.9 -730.9 C ₂₂ H ₂ N 0 1 1, 2, 3.4 - Tetrahydronaphthalene -732.6 261.1 C ₂₂ H ₃ N 0 1, 2, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 0 1, 2, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 0 1, 2, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 1 2, 2, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 2 2, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 3 3, 3.4 - Tetrahydronaphthalene -29.2 217.5 C ₂₂ H ₃ N 4 3, 3.4 - Tetrahydronaphthalene -73.6 22.1 C ₂₂	-30.4 -29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	4 99 88 33 00 88 44 00		149.4
C _y H _y O 1-Naphthol -121.5 166.9 C _y H _y N 1-Naphthol -124.1 179.0 172.8 C _y H _y N 1-Naphthylamine 67.8 1 C _y H _y N 2-Naphthylamine 60.2 1 C _y H _y N 1,4-Dihydronaphthalene 71.6	-29.9 132.8 134.3 26.0 -11.8 -18.4 -23.0	9 8 3 3 0 8 4	366.6	
C _m H _s N 1-Naphthylamine 67.8 1 C _m H _s N 2-Naphthylamine 60.2 1 C _m H _s N 1,2-Dihydronaphthalene 71.6 71.6 C _m H _s O 1,4-Dihydronaphthalene 84.2 84.2 C _m H _s O Dimethyl phthalate 303.1 303.1 C _m H _s O Dimethyl sophthalate -730.9 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O Dimethyl terephthalate -732.6 261.1 C _m H _s O 2.0 2.0 2.1 2.2 2.17.5 C _m H _s O 2.0 2.0 2.2 2.17.5 2.2 2.2 2.2 2.	26.0 -11.8 -18.4 -23.0	D B B 4	366.6	3 147.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.0 -11.8 -18.4 -23.0	D 88 44 D D		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.0 -11.8 -18.4 -23.0	D 88 44 D 0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-11.8 -18.4 -23.0	8 4 0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-11.8 -18.4 -23.0	8 4 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.8 -18.4 -23.0	8 4 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.8 -18.4 -23.0	8 4 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.8 -18.4 -23.0	8 4 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.8 -18.4 -23.0	8 4 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.8 -18.4 -23.0	8 4 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-23.0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-21.9	9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-218.5			
	-2.6	6		
$\begin{array}{c c} \hline{C}_{10}H_{16} & \beta\text{-Pinene} & -7.7 \\ \hline\\ \hline{C}_{10}H_{16} & \alpha\text{-Terpinene} \\ \hline\\ \hline{C}_{10}H_{16} & \beta\text{-Myrcene} & 14.5 \\ \hline\\ \hline{C}_{10}H_{16} & \textit{cis, cis-2,6-Dimethyl-2,4,6-octatriene} & -24.0 \\ \hline\\ \hline{C}_{10}H_{16}N_{2}O_{8} & \text{Ethylenediaminetetraacetic acid} & -1759.5 \\ \hline\end{array}$	00.0			
$\begin{array}{c c} \hline{C}_{10} H_{16} & \alpha\text{-Terpinene} \\ \hline C_{10} H_{16} & \beta\text{-Myrcene} \\ \hline C_{10} H_{16} & cis, cis\text{-}2,6\text{-Dimethyl}2,4,6\text{-octatriene} \\ \hline C_{10} H_{16} & cis, cis\text{-}2,6\text{-Dimethyl}2,4,6\text{-octatriene} \\ \hline C_{10} H_{16} N_2 O_8 & \text{Ethylenediaminetetracectic acid} & -1759.5 \\ \hline \end{array}$	28.3			
$\begin{array}{c c} \overline{C}_{10}H_{16} & \beta\text{-Myrcene} & 14.5 \\ \hline C_{10}H_{16} & \textit{cis, cis-}2,6\text{-Dimethyl-}2,4,6\text{-octatriene} & -24.0 \\ \hline C_{10}H_{16}N_{2}O_{8} & \text{Ethylenediaminetetraacetic acid} & -1759.5 \\ \end{array}$	-20.6			
$\frac{\text{C}_{\text{10}}\text{H}_{16}}{\text{C}_{\text{10}}\text{H}_{16}\text{N}_{\text{20}}_{\text{8}}} \begin{array}{c} \textit{cis, cis-2,6-Dimethyl-2,4,6-octatriene} \\ \hline -24.0 \\ \hline \end{array}$	-20.0	J		
$\overline{C}_{10}H_{16}N_2O_8$ Ethylenediaminetetraacetic acid -1759.5				
	-267.5	5		
C ₁₀ H ₁₈ 1,1'-Bicyclopentyl -178.9				
$\overline{C}_{10}H_{18}$ cis-Decahydronaphthalene -219.4 265.0 232.0 -1	-169.2	2		
	-182.1			
10 10 4	-921.9			
10 19	-91.5			
10 20	-123.3	3		
$\frac{C_{10}H_{20}}{C_{\omega}H_{20}}$ cis-1,2-Di-tert-butylethene -163.6 $\frac{C_{\omega}H_{20}}{C_{\omega}H_{20}}$ Butylcyclohexane -263.1 345.0 271.0 -2	-213.7	7		
10 20	-594.9			
10 20 2	-594.9 -554.2			
$\frac{c_{10}H_{20}O_2}{C_{10}H_{21}NO_2}$ 1-Nitrodecane -351.5	JUT.4			
	-249.5	5		-
10 22	-260.2			
	-258.6			
10 22	-396.6			
$\overline{C}_{10}H_{22}O$ Dipentyl ether 250.0				
$C_{10}H_{22}O$ Diisopentyl ether 379.0				
$C_{10}H_{22}O_2$ 1,10-Decanediol -678.9				
C ₁₀ H ₂₂ O ₂ Ethylene glycol dibutyl ether 350.0				
$C_{10}H_{22}S$ 1-Decanethiol -309.9 -276.5 476.1 350.4 -2	-211.5	_		

		Crystal				Lic	quid			Ga	as		
Molecular formula	Name	Δ _t H° kJ/mol	Δ _r G° kJ/mol	S⁰ J/mol K	C _p J/mol K	Δ _f H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _p J/mol K	Δ _r H° kJ/mol	Δ _ι G° kJ/mol	S° J/mol K	C _ρ J/mol K
C ₁₀ H ₂₂ S	Dipentyl sulfide					-266.4				-204.9			
C ₁₀ H ₂₂ S	Diisopentyl sulfide					-281.8				-221.5			
C ₁₀ H ₂₃ N	Octyldimethylamine					-232.8							
C ₁₁ H ₈ O ₂	1-Naphthalenecarboxylic acid	-333.5		,						-223.1			_
C ₁₁ H ₈ O ₂	2-Naphthalenecarboxylic acid	-346.1								-232.5			
C ₁₁ H ₁₀	1-Methylnaphthalene					56.3		254.8	224.4				
C ₁₁ H ₁₀	2-Methylnaphthalene	44.9		220.0	196.0					106.7			
C ₁₁ H ₁₂ N ₂ O ₂	L-Tryptophan	-415.3		251.0	238.1								
C ₁₁ H ₁₄	1,1-Dimethylindan					-53.6				-1.6			
C ₁₁ H ₁₆	1-tert-Butyl-3-methylbenzene					-109.7							
C ₁₁ H ₁₆	1- <i>tert</i> -Butyl-4-methylbenzene					-109.7				-57.0			
C ₁₁ H ₁₆	Pentamethylbenzene	-144.6								-67.2			
C ₁₁ H ₂₀	Spiro[5.5]undecane					-244.5				-188.3			
C ₁₁ H ₂₂	1-Undecene								344.9				
C ₁₁ H ₂₂ O ₂	Methyl decanoate					-640.5				-573.8			
C ₁₁ H ₂₄	Undecane					-327.2			344.9	-270.8			
C ₁₁ H ₂₄	1-Undecanol					-504.8			044.5	210.0			
C ₁₂ F ₂₇ N	Tris(perfluorobutyl)amine				-	304.0			418.4			-	
	Acenaphthylene	186.7			166.4				710.7	259.7			
C ₁₂ H ₈	Phenazine				100.4								
C ₁₂ H ₈ N ₂	Dibenzofuran	237.0 -5.3								328.8 83.4			
C ₁₂ H ₈ O													
C ₁₂ H ₈ S	Dibenzothiophene	120.0								205.1			
C ₁₂ H ₈ S ₂	Thianthrene	182.0								286.0			
C ₁₂ H ₉ N	Carbazole	101.7		100.0	100.4					200.7			
C ₁₂ H ₁₀	Acenaphthene	70.3		188.9	190.4					156.0			
C ₁₂ H ₁₀	Biphenyl	99.4		209.4	198.4					181.4			
$C_{12}H_{10}N_2O$	trans-Azoxybenzene	243.4								342.0			
$C_{12}H_{10}N_2O$	<i>N</i> -Nitrosodiphenylamine	227.2											
C ₁₂ H ₁₀ O	Diphenyl ether	-32.1		233.9	216.6	-14.9				52.0			
$C_{12}H_{10}O_2$	1-Naphthaleneacetic acid	-359.2											
C ₁₂ H ₁₀ O ₂	2-Naphthaleneacetic acid	-371.9											
C ₁₂ H ₁₁ N	Diphenylamine	130.2								219.3			
C ₁₂ H ₁₁ N	2-Aminobiphenyl	93.8								184.4			
$C_{12}H_{11}N$	4-Aminobiphenyl	81.0											
C ₁₂ H ₁₂ N ₂	<i>p</i> -Benzidine	70.7											
C ₁₂ H ₁₄ O ₄	Diethyl phthalate					-776.6		425.1	366.1	-688.4			
C ₁₂ H ₁₆	Cyclohexylbenzene					-76.6				-16.7			
C ₁₂ H ₁₇ NO ₄	Diethyl 3,5-dimethylpyrrole-2,4-dicarboxylate	-916.7											
C ₁₂ H ₁₈	3,9-Dodecadiyne					197.8							
C ₁₂ H ₁₈	5,7-Dodecadiyne					181.5							
C ₁₂ H ₁₈	1-tert-Butyl-3,5-dimethylbenzene					-146.5							
C ₁₂ H ₁₈	Hexamethylbenzene	-162.4		306.3	245.6					-77.4			
C ₁₂ H ₂₂	Cyclohexylcyclohexane					-273.7				-215.7			
C ₁₂ H ₂₂ O ₄	Dodecanedioic acid	-1130.0								-976.9			
C ₁₂ H ₂₂ O ₁₁	Sucrose	-2226.1											
C ₁₂ H ₂₂ O ₁₁	β- <i>D</i> -Lactose	-2236.7											
C ₁₂ H ₂₄	1-Dodecene					-226.2		484.8	360.7	-165.4			
$\frac{O_{12} H_{24}}{C_{12} H_{24} O_2}$	Dodecanoic acid	-774.6			404.3	-737.9		.01.0		-642.0			
$\frac{O_{12}\Pi_{24}O_2}{C_{12}H_{24}O_2}$	Methyl undecanoate	117.0			107.0	-665.2				-593.8			
$\frac{O_{12}\Pi_{24}O_2}{C_{12}H_{24}O_{12}}$	α-Lactose monohydrate	-2484.1				000.2				0.00.0			
	1-Bromododecane	2404.1				-344.7				-269.9			
C ₁₂ H ₂₅ Br													
C ₁₂ H ₂₅ CI	1-Chlorododecane					-392.3			975.0	-321.1			
C ₁₂ H ₂₆	Dodecane 1 Dodecane					-350.9			375.8	-289.4			
C ₁₂ H ₂₆ O	1-Dodecanol					-528.5			438.1	-436.6			
C ₁₂ H ₂₆ O ₃	Diethylene glycol dibutyl ether								452.0				
C ₁₂ H ₂₇ N	Tributylamine					-281.6							
C ₁₂ H ₂₇ O ₄ P	Tributyl phosphate								379.4				
C ₁₃ H ₈ O ₂	Xanthone	-191.5											
$C_{13}H_9N$	Acridine	179.4								273.9			
C ₁₃ H ₉ N	Phenanthridine	141.9								240.5			
$C_{13}H_9N$	Benzo[f]quinoline	150.6								233.7			
C ₁₃ H ₁₀	9 <i>H</i> -Fluorene	89.9		207.3	203.1					175.0			173.1
C ₁₃ H ₁₀ N ₂	9-Acridinamine	159.2											
C ₁₃ H ₁₀ O	Benzophenone	-34.5			224.8					54.9			
C ₁₃ H ₁₁ N	9-Methyl-9 <i>H</i> -carbazole	105.5								201.0			
C ₁₃ H ₁₂	Diphenylmethane	71.5		239.3		89.7				139.0			
10 12	·												

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iame /-Benzylaniline /-A'-Diaminodiphenylmethane ridecanedioic acid -Tridecene Methyl dodecanoate ridecane -Tridecane /-Tridecane /-Tridecane /-Tridecanol /-10-Anthracenedione /-10-Phenanthrenedione /-A-Dihydroxy-9,10-anthracenedione /-Inthracene /-In	-599.4 -188.5 -154.7 -595.8 -129.2 -116.2 -312.4 -153.9 -369.4 -369.4 -369.6 -245.8 -410.0	Δ,G° kJ/mol	\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	270.9 270.9 210.5 220.6 225.9 432.0	-693.0 -693.0 -183.3 -188.8 -260.2 -788.8 -717.9	Δ,G° kJ/mol	S° J/mol K	С _р J/mol K 391.8 406.7	-614.9 -75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1	Δ,G° kJ/mol	S° J/mol K	C _p J/mol K
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#Benzylaniline ###.4'-Diaminodiphenylmethane ridecanedioic acid -Tridecene ##################################	101.4 -1148.3 -599.4 -188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8	KJ/IIIUI	207.5	270.9 210.5 220.6 225.9 432.0	-693.0 183.3 48.7 -188.8 -260.2 -788.8	KJ/IIIUI	J/IIIII K	391.8	-614.9 -75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1	NJ/IIIUI	J/IIIII K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,4'-Diaminodiphenylmethane ridecanedioic acid -Tridecene Methyl dodecanoate ridecane -Tridecane -Tridecanol ,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione inthracene thenanthrene biphenylacetylene terzil terzoyl peroxide tis-Stilbene rars-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene tentetic acid tetradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,5-Di-tert-butyl-4-methylphenol	-1148.3 -599.4 -188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			210.5 220.6 225.9 432.0	183.3 48.7 -188.8 -260.2 -788.8				-75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ridecanedioic acid -Tridecene Methyl dodecanoate ridecane -Tridecane -Tridecanol ,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione inthracene thenanthrene thenanthrene tiphenylacetylene terzoyl peroxide tis-Stilbene rars-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene teradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-599.4 -188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5			220.6 225.9 432.0	183.3 48.7 -188.8 -260.2 -788.8				-75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl dodecanoate ridecane -Tridecanol ,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione inthracene ridenanthrene liphenylacetylene liphenylacetylene liphenyletylene liphenyletylene liphenylethane ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene lettic acid lettradecanoic acid lettyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	183.3 48.7 -188.8 -260.2 -788.8				-75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ridecane -Tridecanol ,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione inthracene rhenanthrene liphenylacetylene elenzil elenzoyl peroxide is-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene elentetic acid etradecaneitrile etradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	183.3 48.7 -188.8 -260.2 -788.8			406.7	-75.7 -46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-Tridecanol ,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione inthracene interiol is-Stilbene is-Stilbene is-Stilbene is-Stilbene is-Stilbene is-Stilbene is-Stilbene is-Stilbene is-Tolphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene ientetic acid ietradecaneitrile ietradecaneitrile ietradecanol ietradecanol ietradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene is-Di-tert-butyl-4-methylphenol	-188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8			406.7	-46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,10-Anthracenedione ,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione mthracene thenanthrene liphenylacetylene tenzil tenzoyl peroxide dis-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene tentetic acid tetradecaneitrile tetradecanoic acid flethyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-188.5 -154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8				-46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,10-Phenanthrenedione ,4-Dihydroxy-9,10-anthracenedione nthracene thenanthrene liphenylacetylene tenzil tenzoyl peroxide is-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,2-Diphenylethane ,4-Di-tert-butylbenzene tentetic acid tetradecaneitrile tetradecaneitrile tetradecanoic dethyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-154.7 -595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8				-46.6 -471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,4-Dihydroxy-9,10-anthracenedione inthracene thenanthrene biphenylacetylene tenzil tenzoyl peroxide tis-Stilbene trans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene tentetic acid tetradecanenitrile tetradecanoic acid tetradecanoic ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-595.8 129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8				-471.7 230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inthracene Interior	129.2 116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8				230.9 207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	chenanthrene biphenylacetylene denzil denzoyl peroxide denzoyl peroxide denzostilbene denzis-Stilbene denzis-Diphenylethane denzis-Diphenylethane denzis-Diphenylethane denzis-Di-tert-butyl-Stephenyl)propane denzis-Stilbene denzis-Benezis-	116.2 312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			220.6 225.9 432.0	-260.2 -788.8				207.5 -55.5 -281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	piphenylacetylene denzil denzoyl peroxide dis-Stilbene denzil denzoyl peroxide dis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Stilbene denzis-Diphenylethane denzis-Diphenylethane denzis-Di-tert-butylbenzene denzis-Di-tert-butylbenzene denzis-Di-tert-butyl-S-methylbenzene denzis-Stilbene denzis-Stilbene denzis-Di-tert-butyl-S-methylbenzene denzis-Di-tert-butyl-S-methylphenol	312.4 -153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8		215.1	225.9	-260.2 -788.8				-55.5 -281.7 252.3 236.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	enzil enzoyl peroxide is-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-153.9 -369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8			432.0	-260.2 -788.8				-281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	enzoyl peroxide is-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-369.4 136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-260.2 -788.8				-281.7 252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	is-Stilbene rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene dentetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	136.9 51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-260.2 -788.8				252.3 236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rans-Stilbene ,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-260.2 -788.8				236.1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,1-Diphenylethane ,2-Diphenylethane ,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	51.5 -212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-188.8 -260.2 -788.8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,2-Diphenylethane ,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-188.8 -260.2 -788.8				142.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,3-Di-tert-butylbenzene ,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-212.0 -2225.2 -833.5 -629.6 -368.6 -245.8				-260.2 -788.8				142.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,4-Di-tert-butylbenzene entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-2225.2 -833.5 -629.6 -368.6 -245.8				-260.2 -788.8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	entetic acid etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di-tert-butyl-5-methylbenzene ,6-Di-tert-butyl-4-methylphenol	-2225.2 -833.5 -629.6 -368.6 -245.8				-788.8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	etradecanenitrile etradecanoic acid Methyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-833.5 -629.6 -368.6 -245.8				-788.8							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	etradecanoic acid flethyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-629.6 -368.6 -245.8				-788.8				-174.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/lethyl tridecanoate -Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-629.6 -368.6 -245.8								-693.7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-Tetradecanol ,2-Bis(4-hydroxyphenyl)propane ,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-368.6 -245.8			200.0					-635.3			
$\begin{array}{c ccccc} \overline{C_{15}H_{16}O_2} & 2,2 \\ \hline C_{15}H_{24} & 1,3 \\ \hline C_{15}H_{24}O & 2,6 \\ \hline C_{15}H_{30}O & Dec \\ \hline C_{15}H_{30}O & Pen \\ \hline C_{15}H_{30}O_2 & Met \\ \hline C_{15}H_{30}O_2 & Met \\ \hline C_{15}H_{30}O_2 & Met \\ \hline C_{15}H_{30}O & 1-P \\ \hline C_{16}H_{10} & Pyr \\ \hline C_{16}H_{22}O_1 & \alpha-D \\ \hline C_{16}H_{22}O_{11} & \alpha-D \\ \hline C_{16}H_{22}O_{11} & \beta-D \\ \hline C_{16}H_{22}O_{11} & \beta-D \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{32}O & Met \\ \hline C_{16}H_{32}O & Hex \\ \hline C_{16}H_{34}O & 1-H \\ \hline C_{16}H_{36}IN & Tetr \\ \hline C_{17}H_{34}O & Hep \\ \hline C_{18}H_{12} & Ben \\ \hline \end{array}$,2-Bis(4-hydroxyphenyl)propane ,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-368.6 -245.8			388 U	-580.6							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,3-Di- <i>tert</i> -butyl-5-methylbenzene ,6-Di- <i>tert</i> -butyl-4-methylphenol	-245.8											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,6-Di- <i>tert</i> -butyl-4-methylphenol												
$\begin{array}{c ccccc} \overline{C_{15}H_{30}} & Dec \\ \overline{C_{15}H_{30}O_2} & Pen \\ \overline{C_{15}H_{30}O_2} & Met \\ \overline{C_{15}H_{30}O_2} & Met \\ \overline{C_{15}H_{32}O} & 1-P \\ \overline{C_{16}H_{10}} & Fluc \\ \overline{C_{16}H_{10}} & Pyr \\ \overline{C_{16}H_{10}} & Pyr \\ \overline{C_{16}H_{22}O_4} & Dib \\ \overline{C_{16}H_{22}O_{11}} & \alpha-D \\ \overline{C_{16}H_{22}O_{11}} & \beta-D \\ \overline{C_{16}H_{22}O_{11}} & \beta-D \\ \overline{C_{16}H_{22}O_{11}} & \beta-D \\ \overline{C_{16}H_{32}O_2} & Met \\ \overline{C_{16}H_{32}O_2} & Met \\ \overline{C_{16}H_{33}D_1} & 1-H \\ \overline{C_{16}H_{33}D_1} & 1-H \\ \overline{C_{16}H_{33}D_1} & 1-H \\ \overline{C_{16}H_{33}D_1} & 1-H \\ \overline{C_{16}H_{34}O_2} & Hex \\ \overline{C_{16}H_{34}O_2} & 1-H \\ \overline{C_{16}H_{34}O_2} & 1-H \\ \overline{C_{16}H_{34}O_2} & 1-H \\ \overline{C_{16}H_{36}O_2} & 1-H \\ \overline{C_{16}H$										-296.9			
$\begin{array}{c cccc} \overline{C_{15}H_{30}O_2} & \text{Pen} \\ \overline{C_{15}H_{30}O_2} & \text{Met} \\ \overline{C_{15}H_{30}O_2} & \text{Met} \\ \overline{C_{15}H_{32}O} & \text{1-P} \\ \overline{C_{16}H_{10}} & \text{Fluc} \\ \overline{C_{16}H_{10}} & \text{Pyr} \\ \overline{C_{16}H_{22}O_4} & \text{Dib} \\ \overline{C_{16}H_{22}O_1} & \alpha\text{-}D \\ \overline{C_{16}H_{22}O_{11}} & \alpha\text{-}D \\ \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D \\ \overline{C_{16}H_{26}} & \text{Dec} \\ \overline{C_{16}H_{32}} & \text{1-H} \\ \overline{C_{16}H_{32}O_2} & \text{Hex} \\ \overline{C_{16}H_{33}D_2} & \text{Hex} \\ \overline{C_{16}H_{33}D_1} & \text{1-H} \\ \overline{C_{16}H_{33}D_1} & \text{1-H} \\ \overline{C_{16}H_{33}D_1} & \text{1-H} \\ \overline{C_{16}H_{33}D_1} & \text{1-H} \\ \overline{C_{16}H_{34}O_2} & \text{Hex} \\ \overline{C_{16}H_{36}O_2} & \text{Hex} \\ \overline$						-367.3							
$\begin{array}{c ccccc} \hline C_{15}H_{30}O_2 & \text{Met} \\ \hline C_{15}H_{30}O & 1-P \\ \hline C_{16}H_{10} & \text{Fluc} \\ \hline C_{16}H_{10} & \text{Pyr} \\ \hline C_{16}H_{22}O_4 & \text{Dib} \\ \hline C_{16}H_{22}O_{11} & \alpha\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{32}O_2 & \text{Hex} \\ \hline C_{16}H_{32}O_2 & \text{Met} \\ \hline C_{16}H_{33}Br & 1\text{-}B \\ \hline C_{16}H_{34} & \text{Hex} \\ \hline C_{16}H_{34}O & 1\text{-}H \\ \hline C_{16}H_{36}IN & \text{Tetr} \\ \hline C_{15}H_{34}O_2 & \text{Hep} \\ \hline C_{15}H_{34}O_2 & \text{Hep} \\ \hline C_{16}H_{36}IN & \text{Tetr} \\ \hline C_{17}H_{34}O_2 & \text{Hep} \\ \hline C_{18}H_{12} & \text{Ben} \\ \hline \end{array}$	'entadecanoic acid	-861.7			443.3	-811.7				-699.0			
$\begin{array}{c ccccc} \overline{C_{15}H_{32}O} & 1-P \\ \overline{C_{16}H_{10}} & Fluce \\ \overline{C_{16}H_{10}} & Pyr \\ \overline{C_{16}H_{22}O_4} & Dib \\ \overline{C_{16}H_{22}O_{11}} & \alpha\text{-}D \\ \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D \\ \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D \\ \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D \\ \overline{C_{16}H_{32}O_2} & \text{Hex} \\ \overline{C_{16}H_{32}O_2} & \text{Met} \\ \overline{C_{16}H_{33}Br} & 1\text{-}B \\ \overline{C_{16}H_{33}Br} & 1\text{-}B \\ \overline{C_{16}H_{34}} & \text{Hex} \\ \overline{C_{16}H_{34}O} & 1\text{-}H \\ \overline{C_{16}H_{36}IN} & \text{Tetr} \\ \overline{C_{17}H_{34}O_2} & \text{Hep} \\ \overline{C_{18}H_{12}} & \text{Ben} \\ \hline \end{array}$	Methyl tetradecanoate					-743.9				-656.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-Pentadecanol	-658.2											
$\begin{array}{c cccc} \hline C_{16}H_{10} & Pyr \\ \hline C_{16}H_{22}O_4 & Dib \\ \hline C_{16}H_{22}O_{11} & \alpha\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{22}O_{11} & \beta\text{-}D \\ \hline C_{16}H_{32} & 1\text{-}H \\ \hline C_{16}H_{32}O_2 & \text{Met} \\ \hline C_{16}H_{33}Br & 1\text{-}B \\ \hline C_{16}H_{33}Br & 1\text{-}B \\ \hline C_{16}H_{34} & \text{Hex} \\ \hline C_{16}H_{34}O & 1\text{-}H \\ \hline C_{16}H_{36}IN & \text{Tetr} \\ \hline C_{17}H_{34}O_2 & \text{Hep} \\ \hline C_{18}H_{12} & \text{Ben} \\ \hline \end{array}$	luoranthene	189.9		230.6	230.2					289.0			
$\begin{array}{cccc} \overline{C_{16}H_{22}O_{11}} & \alpha\text{-}D\\ \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D\\ \overline{C_{16}H_{26}} & \text{Dec}\\ \overline{C_{16}H_{32}} & \text{1-H}\\ \overline{C_{16}H_{32}O_{2}} & \text{Hex}\\ \overline{C_{16}H_{32}O_{2}} & \text{Met}\\ \overline{C_{16}H_{33}Br} & \text{1-B}\\ \overline{C_{16}H_{33}Br} & \text{1-B}\\ \overline{C_{16}H_{34}} & \text{Hex}\\ \overline{C_{16}H_{34}O} & \text{1-H}\\ \overline{C_{16}H_{36}IN} & \text{Tetr}\\ \overline{C_{17}H_{34}O_{2}} & \text{Hep}\\ \overline{C_{18}H_{12}} & \text{Ben} \end{array}$	yrene	125.5		224.9	229.7					225.7			
$\begin{array}{cccc} & \overline{C_{16}H_{22}O_{11}} & \beta\text{-}D\\ \hline C_{16}H_{26} & \text{Dec}\\ \hline C_{16}H_{32} & 1\text{-}H\\ \hline C_{16}H_{32}O_2 & \text{Hex}\\ \hline C_{16}H_{32}O_2 & \text{Met}\\ \hline C_{16}H_{33}Br & 1\text{-}B\\ \hline C_{16}H_{33}Br & 1\text{-}B\\ \hline C_{16}H_{34} & \text{Hex}\\ \hline C_{16}H_{34}O & 1\text{-}H\\ \hline C_{16}H_{36}IN & \text{Tetr}\\ \hline C_{17}H_{34}O_2 & \text{Hep}\\ \hline C_{18}H_{12} & \text{Ben} \end{array}$	libutyl phthalate					-842.6				-750.9			
$\begin{array}{c cccc} \overline{C_{16}H_{26}} & Dec \\ \overline{C_{16}H_{32}} & 1\text{-H} \\ \overline{C_{16}H_{32}O_2} & Hex \\ \overline{C_{16}H_{32}O_2} & Met \\ \overline{C_{16}H_{33}Dr} & 1\text{-B} \\ \overline{C_{16}H_{33}} & Hex \\ \overline{C_{16}H_{34}} & Hex \\ \overline{C_{16}H_{34}O} & 1\text{-H} \\ \overline{C_{16}H_{36}IN} & Tetr \\ \overline{C_{17}H_{34}O_2} & Hep \\ \overline{C_{18}H_{12}} & Ben \\ \hline \end{array}$	-D-Glucose pentaacetate	-2249.4											
$\begin{array}{cccc} \overline{C_{16}H_{32}} & 1\text{-H} \\ \overline{C_{16}H_{32}O_2} & \text{Hex} \\ \overline{C_{16}H_{32}O_2} & \text{Met} \\ \overline{C_{16}H_{33}Br} & 1\text{-B} \\ \overline{C_{16}H_{33}} & \text{Hex} \\ \overline{C_{16}H_{34}} & \text{Hex} \\ \overline{C_{16}H_{34}O} & 1\text{-H} \\ \overline{C_{16}H_{36}IN} & \text{Tetr} \\ \overline{C_{17}H_{34}O_2} & \text{Hep} \\ \overline{C_{18}H_{12}} & \text{Ben} \end{array}$	-D-Glucose pentaacetate	-2232.6											
$\begin{array}{ccc} \frac{C_{16}H_{32}O_2}{C_{16}H_{32}O_2} & \text{Hex} \\ \frac{C_{16}H_{32}O_2}{C_{16}H_{33}Br} & \text{1-B} \\ \frac{C_{16}H_{34}}{C_{16}H_{34}O} & \text{1-H} \\ \frac{C_{16}H_{36}IN}{C_{16}H_{34}O_2} & \text{Hep} \\ \frac{C_{17}H_{34}O_2}{C_{18}H_{12}} & \text{Ben} \end{array}$	Jecylbenzene					-218.3				-138.6			
$\begin{array}{cccc} \overline{O_{16}H_{32}O_2} & \text{Met} \\ \overline{O_{16}H_{33}Br} & 1\text{-B} \\ \overline{O_{16}H_{34}} & \text{Hex} \\ \overline{O_{16}H_{34}} & 1\text{-H} \\ \overline{O_{16}H_{36}IN} & \text{Tetr} \\ \overline{O_{17}H_{34}O_2} & \text{Hep} \\ \overline{O_{18}H_{12}} & \text{Ben} \end{array}$	-Hexadecene					-328.7		587.9	488.9	-248.4			
$\begin{array}{cccc} \overline{C_{16}H_{33}} Br & 1-B \\ \overline{C_{16}H_{34}} & Hex \\ \overline{C_{16}H_{34}} O & 1-H \\ \overline{C_{16}H_{36}} IN & Tetr \\ \overline{C_{17}H_{34}O_2} & Hep \\ \overline{C_{18}H_{12}} & Ben \\ \end{array}$	lexadecanoic acid	-891.5		452.4	460.7	-838.1				-737.1			
$\begin{array}{ccc} C_{16}H_{34} & \text{Hex} \\ \hline C_{16}H_{34}O & \text{1-H} \\ \hline C_{16}H_{36}IN & \text{Tetr} \\ \hline C_{17}H_{34}O_2 & \text{Hep} \\ \hline C_{18}H_{12} & \text{Ben} \end{array}$	Methyl pentadecanoate					-771.0				-680.0			
$\begin{array}{ccc} \hline C_{16} H_{34} O & 1\text{-H} \\ \hline C_{16} H_{36} I N & \text{Tetr} \\ \hline C_{17} H_{34} O_2 & \text{Hep} \\ \hline C_{18} H_{12} & \text{Ben} \end{array}$	-Bromohexadecane					-444.5			F04.0	-350.2			
$\frac{C_{16}H_{36}IN}{C_{17}H_{34}O_2}$ Hep $\frac{C_{18}H_{12}}{C_{18}H_{12}}$ Ben	lexadecane	000.5			400.0	-456.1			501.6	-374.8			
$ \begin{array}{ccc} C_{17}H_{34}O_2 & \text{Hep} \\ C_{18}H_{12} & \text{Ben} \end{array} $	-Hexadecanol	-686.5			422.0					-517.0			
C ₁₈ H ₁₂ Ben	etrabutylammonium iodide leptadecanoic acid	-498.6 -924.4			475.7	-865.6							
	leptadecanoic acid lenz[a]anthracene	170.8			4/0./	-000.0				293.0			
	enzլajantnracene hrysene	170.8								269.8			
10 12	-Terphenyl	140.3		298.8	274.8			337.1	369.1	203.0			
	-Terphenyl	163.0		285.6	278.7			JJ/.1	JUJ. I	279.0			
	riphenylamine	234.7		200.0	210.1	-				326.8			
	riphenyl phosphate	204.1		397.5	356.2					020.0			
	riphenylphosphine			557.5	312.5								
	,3,5-Tri- <i>tert</i> -butylbenzene	-320.0			3.2.0								
	Neic acid	525.5							577.0				
	ndio aviu								619.0				
		-947.7			501.5	-884.7				-781.2			
	ibutyl sebacate tearic acid	-				-544.1				-446.0			
	ibutyl sebacate	-567.4		480.2	485.6					-414.6			
	libutyl sebacate Itearic acid					-433.0							
	ibutyl sebacate tearic acid -Chlorooctadecane												
	ibutyl sebacate tearic acid -Chlorooctadecane Ictadecane	-2.5				-734.5				-649.9			
	olibutyl sebacate itearic acid -Chlorooctadecane lotadecane rihexylamine	-2.5				-737.0							
	olibutyl sebacate Intearic acid -Chlorooctadecane Ictadecane Irihexylamine Iriphenylmethanol	-2.5				-							
C ₂₀ H ₁₂ Ben	olibutyl sebacate Intearic acid -Chlorooctadecane Ictadecane Irihexylamine Iriphenylmethanol Methyl oleate	-2.5 182.8		264.6	274.9								

			Crystal				Liq	Juid		Gas			
Molecular		$\Delta_{t}H^{\circ}$	Δ _f G °	S ⁰	C _p	Δ _t H°	Δ _f <i>G</i> °	S ⁰	C ₀	Δ _f <i>H</i> °	Δ _f G °	S º	C _o
formula	Name	kJ/mol	kJ/mol	J/mol K	J/mól K	kJ/mol	kJ/mol	J/mol K	J/mól K	kJ/mol	kJ/mol	J/mol K	J/mol K
C ₂₀ H ₁₄ O ₄	Diphenyl phthalate	-489.2											
$C_{20}H_{38}O_{2}$	Ethyl oleate					-775.8							
C ₂₀ H ₃₈ O ₂	Ethyl <i>trans</i> -9-octadecenoate					-773.3							
C ₂₀ H ₄₀ O ₂	Eicosanoic acid	-1011.9			545.1	-940.0				-812.4			
$C_{21}H_{21}O_4P$	Tri- <i>o</i> -cresyl phosphate			570.0	578.0								
C ₂₂ H ₁₄	Dibenz[a,h]anthracene												283.9
C ₂₂ H ₄₂ O ₂	trans-13-Docosenoic acid	-960.7											
C ₂₂ H ₄₂ O ₂	Butyl oleate					-816.9							
$C_{22}H_{44}O_{2}$	Butyl stearate												
C ₂₄ H ₃₈ O ₄	Bis(2-ethylhexyl) phthalate								704.7				
C ₂₄ H ₅₁ N	Trioctylamine					-585.0							
C ₂₆ H ₁₈	9,10-Diphenylanthracene	308.7								465.6			
C ₂₆ H ₅₄	5-Butyldocosane					-713.5				-587.6			
C ₂₆ H ₅₄	11-Butyldocosane					-716.0				-593.4			
C ₂₈ H ₁₈	9,9'-Bianthracene	326.2								454.3			
C ₃₁ H ₆₄	11-Decylheneicosane					-848.0				-705.8			
C ₃₂ H ₆₆	Dotriacontane	-968.3								-697.2			
C ₆₀	Carbon (fullerene-C ₆₀)	2327.0	2302.0	426.0	520.0					2502.0	2442.0	544.0	512.0
C ₇₀	Carbon (fullerene-C ₇₀)	2555.0	2537.0	464.0	650.0					2755.0	2692.0	614.0	585.0