LECTURE PLAN

Depastment; Computer Science

clan: 3rd cse'A' r'B'

Subject code: MA2311

Bulgeet: Dûrsete Mathemaliei

Period 1

Unit 4 Algebraic Structures

Definition 1 - Algebraic System

A non-empty set or together with one or more n-ary operations say * is called an algebraic system or algebraic structure or Algebra. is (01,71)

Properties of Binary operation,

(i) closure property ,-

a*b = x & co, for a, b & co.

(ii) Commutativity:

axb= bxa, for all a, b GG

(ii) Amoriativity.

(a*b) * c = a* (b*c), for all a,b, c+0,

(iv) Identity element.

axe = exa = a for all acco

(v) Invense elements.

If a*b=b*a=e, then b is called the inverse of a and is denoted by b=a-1. Sub code a Subject: 442311, Dürsete Mathematici

Period : 2

Semigroups and Monrids ,-

Definition " Semigroup

Ty a non-empty set & together win the binary Operation "* satisfying the following two properties (a) closure property

cbo Associative property.

Deposition Monoid

A semigroup (d,*) with an identity element W.v. to 'x' is called Monord.

Definition - Cycli monoids -

A monoid (m, *) is said to be cyclic,
if every element of m is of the form an arm
and n' is an integer.

ÿ x= a"

such a cyclic monoid (m,+) is said to be generalted by the element 'a'. Here a is called the generaltors of the cyclic monoid.

Sub code & Suggest: MA2311, Directi Mathematici

Period 3

Morphim of subgroupsi-

Depositions Senigroup Homomorphism,

Let (8,*) and (T, s) be any two semigroups with bridgy operation * and s respectively.

Semigerup Monomorphum

A one-one semigioup homomorphism is called a semigioup monomorphism.

Semigeoup Epimorphimis

A on-to semigany homomorphism is called a servigany epimorphism.

Tromorphim 1-

A one-one, onto semigioup homomorphim li called an isomosphim-

Semiginip Tromorphism .

Two semigroups (8,*) and (9,5) are said to be isomosphie, if there exist a semigroup isomosphim between them.

Semigeorep Endominghim of a semigeorep into itself is called a semigeorep endomorphism.

Supert code & Surject: MA 2311 / Dürrete Habrematici
Period 4.

Ciroups 1-

Definition. A non-empty set or ligether win the binds operation *, is (co,*) is caused a group if * ration the pollowing Conditions

- (i) closure property a*ben, for all a, ben
- (i) Associative property: (a*b)*c = a*(b*c), to
 all a, b, c &co
- (ii) Identity property: There exist an element ec called the identity element such that are sera for all aca.
- (iv) Inverse property. These exist an element a^{+} called the inverse of a such that $a*a^{-} = a^{+} *a = e$, for all aeon.

Definitions-

In a group (G,+), if a+b=b x a for all a,b & G then the group (G,+) is called an abelian group.

Eg (Z,+) is an abelian group.

Depinition: Order of a group.

The number of elements in a group G is called the order of the group and is denoted by O(01).

It is denoted by O(01) or (01).

Sur code & Sapper: HARBII / Directe Mathematics unit 4
Period 5

Subgrouper

Let (0,+) be a group. Let e be the identity

Let H be a subset of G. If (14,*) itself is a group then H is called the subgroup of G.

is H is itself a group with the same operation * and the same identity e'.

In otherwords, (H,#) is said to be a ssubgery

- (i) CEH, where e is the identity in is.
- (ii) For any a elt, at EH
- (ii) For a,beH, a *beH.

Theorem

- 1. The necessary and sufficient landed on that a hon empty subset H of a group of to be a subgroup is a, b EH -) a+ 5'EH
- à. The intersection of two subgroups of a george i also a subgroup of the group.

Subcode & Surgest: MA2311/ Directi Mathematicis Morphim of Broupsi-

period 6

Let (01,+) and (H, A) be any two

george.

A mapping f: 9 - H is said to be a

homomorphim if

flaxb)= fla) & flb) for any a, b & ca.

Theorem.

1. Homomorphism processes identilies.

2. Id momorphim preserves inverses

Theosem 1-

Let f: 9 - 101 be a group homomorphism and big a subgroup of bi, there of (H) is a subgroup of to.

Theorem:

Let of be a homomorphism from (01, 4) into (01,*). Let fles) be the homomorphic image of be into be. then - 1 (6) is a sungery of or'.

Sub code & Subject: MARSII/Directe Mathematic Period 7
Kesnel of a Homomorphism 1-

Let $f: G \to G'$ be a group homomorphims. The set of elements of G which are mapped into e' (identity in G') is called the keeped of f and it is denoted by ker(f).

is kuly) = {2601/fix) = e'}, e' (identity in (i').

Example:

1. f: (z,+) -> (z,+) depined by f(z) = 2a.
Then ker(+) = {o}.

2. 1: (R*,) -> (R*, e) defined by flap= {a}

Then ker (4) = [1,-1].

Theorem 1-

The keened of a homomorphism of from a group (01,*) to (01,*) is a subgery of or

(02)

Let f : (6,*) -> (61',*) be a homomorphism. Then pure that knows f is a normal subgroup.

Subcode & Surgeet: MA2311/ Disset Mathematici

Period 8

Teomorphimi-

Definitions- A mapping of from a garup (07,4) to a garup (01,4) is said to be an isomorphism if

(i) f is a homomorphism

b f(a*b) = f(a) & f(b), for all 9, b & co.

(i) of is one-one (injective)

(ii) on-to (Suyertive)

In otherwords a bijective homomorphism is said to be an isomorphism.

Erample,-

Prove that if f: G -> G' is a homomorphism then key = [e] iff f is 1-1.

Theorems

耳 aGH*b then H*a= H*b
and if acb*H then a*H=b*H.

Theorem 1-

Any two sight (on left) corets of H in G are either digaint or identical.

Theorem -

If (H,*) is a subgroup of a group (0,*) and H*a is any sight coret ob H in G, then there exist a one-one Conserpondence (byestive mapping) between the element of H and H*a are equal.

Lagrange's Theorems-

Let G be a finite group of order of H
he any subgroup of G. Then the Order of H
divides the order of G.

is O(H)/O(197)

(DA)

The order of each subgroup of a first group is a divisor of the Order of the george.

Subject code & Subject: M42311/ Directe Mathematicis
Normal Subjections:

Let H be a subgroup of h under *.

There H is said to be a normal subgroup of (1, for every XEOR and for hell

Period 10

4 2* h* x = + + x = C+

Alternatively, a subgroup H of G is called a hormal subgroup of G ig X+h = h+x fox all x 600.

Theorem 1.

The oxcle of any element of a fineli group or divides the oxcle of a.

Theorem 1-

A subgroup to of a group or is normal of $2*h*x^{-1}=4$ for all x tor.

Theorem

The intersection of any two round subgroups of a group is a round subgroup.

Index of HI-

Definition.

The number of distinct left (or right) Coreti of His Gi called the index of His G.

> It is denoted by |(n: H) = I(H) = 0(4)

Natural Homomosphimi -

Let H be a normal surgeoup of a group or. The map f: 07 -> 01/H such that

f(x) = H * x, x cos is called a Natural Homomorp - him of a group or onto the quotient genip G1/4.

Theorem: Fundamental theorem on Humanosphim of gangs.

Every homomosphie image of a group or is Gomosphii to some querient gamp of or.

Support code a subject: MAR311/ Directe Mathematicis Period 12

Algebraic Structures with two Binary operations:

Ring si-

An algerraic system (R,+,) is called a xing if the binary operations + and . satisfies the forming Conditions.

- (1) (a+b)+c = a+(b+c), a,b,c+R
- element such that a to = @ ta = a for ay ack.

Dejirition 1-

The Ying $(R, +, \cdot)$ is called a Commutative Ring, if ab = ba for $a, b \in R$.

If (R,+) is a monoid, then the sing (R,+,0) is called a sing wirm identity or welly.

If a and b are & non zero elements of a suring R such that a.b =0 Then a and b are called dirisors.

Subject Naue / Code: Discrete Mathematics / MA2811

Unit: 5 Period: 1

Lattices And Boolean Algebra.

Partial Ordering:

A bivary relation R in a set P is called a partial order relation or partial ordering in P iff R is reflexive, Antisymmetric and travitive.

Hasse Diagram:

A partial ordering ≤ on a set p can be represented by means of a diagram known as a Flasse diagram.

Ex: Let $P = \{1, 2, 3, 4\}$ and \subseteq be the relation then the Hasse diagram is.

93

Subject Name / Code: DISCRETE MATHEMATICS / MAZZII

Lleit: 5 Period: 2

Poset:

A set P together with a partial ordering R is called a partially ordered set or a poset Ex: Gire a relation which is both a partially ordering relation and an equivalence relation on a set.

Soln: - Equality, similarity of triangles are the examples of relation which is both partially ordering and an equivalence relation.

Ex: - Which elts of the poset of 2,4,5,10,12,20,25 are maximal and which are minual?

Maximal etts: 12,20,25
Minimal etts: 2 & 5

Subject Name/code: DISCRETE MATHEMATICS /MA2311

Unit: 5 Period: 3

Lattices as Posets:

Totally ordered set:

Let (P, X) be a partially ordered set. If for every $x, y \in P$ we have either $x \leq y \vee y \leq x$ then \subseteq is called simple ordering or linear ordering on P and (P, \subseteq) is called a botally ordered or simply ordered or a claim.

Ex: The poset (x, \(\) is totally ordered, since a \(\) b or b \(\) a whenever a \(\) b are integers.

Ex: Let $X = \{2,3,6,12,24,36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Draw the Hasse diagram of (x, \leq)

Subject Nave / Code: DISCRETE MATHEMATICS / MA 2311

Uit: 5

Period: 4

Ex: - Let 5 be a set. Defenue whether there is a greatest elt and a least elt in the paset $(P(s), \subseteq)$.

Soln: - The heast elt is the empty set: \$67 for any subset T of S. The set S is the greatest elt in this poset. Since TES whenever T is a subset of S.

Ex: - Draw the Hasse diagram of the set of partitions of 5.

5 = 5 5 = 2 + 1 + 1 + 1 5 = 4 + 1 5 = 3 + 2 5 = 3 + 1 + 1 5 = 2 + 2 + 1

Subject Name / Code: DISCRETE MATHEMATICS /MAD 311

Wit: 5

Period: 5

Properties of Lattices:

Lattice :

A Lattise in a partially ordered set (L, \leq) in which every pair of elts a, b \(\) that has a greatest Lower bound and a least upper bound.

Property 1: Idempotent Law

Let $(1, \leq)$ be a Lattice. For any $a,b,c\in$ we have $a \times a = a$ and $a \oplus a = a$

Property 2: 5.7 the operation of meet are join on a lattice are associative.

Property 3: S.T the operation of neet and join on a Lattice are commutative Law.

Property 4: Absorption Law ax $(a \oplus b) = a$ and $a \oplus (a * b) = a$.

Subject Name / Code: DISCRETE MATHEMATICS /MAZZII

Wit: 5

Period: 6

Lattices As Algebric Systems:

Theorem 1:

Let (L, \leq) be a Lattice in which * and \oplus denotes the operation of meet and joint for any $a,b \in L$, $a \in b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$

Theorem 2:

Let (L, \leq) be a Lattice. For any cube. the following are equivalent. (i) $a \leq b$ (ii) $a \neq b = a$ (iii) $a \neq b = b$

Theorem 3:

Let (L, =) be a Lattice. For any a, b, c t.
the following inequalities hold,

Distributive

2) Modular.

Theorem 4:

In a Lattice (L, \leq) 5.7 $(iX(a*b)) \oplus c*d$ $\leq (a \oplus c)*(b \oplus d)$ $(ii)(a*b) \oplus (b*c) \oplus (c*a) \leq (a \oplus b)*(b \oplus c)*(c \oplus a)$ $\forall a,b,c \in L$

Subject Name / Code: DISLETTE MATHEMATICS /MAZZII

Lluit: 5

Period: 7

Sublattice:

Let $(L, *, \oplus)$ be a lattice and let $S \subseteq L$ be a subset of L. The algebra $(S, *, \oplus)$ is a sublattice of $(L, *, \oplus)$ iff S is closed under both operations X and X let (L, \leq) be a lattice in which $L = \{a_1, \dots a_8\}$ and S_1, S_2 and S_3 be the sublattices of L given by $S_1 = \{a_1 a_2 a_4 a_6\}$ $S_2 = \{a_3 a_5 a_7 a_8\}$ and $S_3 = \{a_1 a_2 a_4 a_8\}$

Defi: - Let (L, X, \mathbb{H}) & (S, Λ, V) be two Lattices. The algebric system $(L \times S, \cdot, +)$ in which binary operation + and \cdot on $L \times S$ are such that for any (a_1b_1) & (a_2,b_2) in $L \times S$

 $(a_1,b_1) \cdot (a_2,b_2) = (a_1 * a_2, b_1 \wedge b_2)$ $(a_1,b_1) + (a_2,b_2) = (a_1 \oplus a_2, b_1 \vee b_2)$

is called direct product of Lattices (L, x, D) & (S, A, V)

Subject Name / Code: DISLETTE MATHEMATICS /MAZZII

LLit: 5

Period: 8

Lattice Howomorphism:

Let (L, \star, \oplus) and $(3, v, \Lambda)$ be two lattices. A mapping $g:L \to s$ is called a lattice homomorphisms from the Lattice (L, \star, \oplus) to (s, Λ, v) if for any $a, b \in L$ $g(a \star b) = g(a) \wedge g(b)$ to $(s, \Phi) = g(a) \vee g(b)$

A Honomorphism $g:L \to L$ where (L, \star, \oplus) is a lattice is called an Endomorphism.

If a Honomorphism $g: L \rightarrow s$ of two Lattices (L, *, D) and (s, n, v) is bijective then g is called isomorphism.

If $g:L \to L$ is an isomorphism then g is called an automorphism.

If $g: L \to L$ is an endomorphism then the image set of g is a sublattice of L.

Subject Name / Code: DISCRETE MATHEMATICS / MAZZII
Period: 9

Theorem 1: Every chain is a distributive Lattice.

Theorem 2: Let (L, *, D) be a distributive Lattice

For any a, b, c e L

 $(a*b=a*c) \land (a \oplus b=a \oplus c) \Rightarrow b=c$

Theorem 3: Every distributive Lattice is Modular.

Ex: - S.T the Lattices given by the diagram are not distributive.

Here, $a_3 * (a_1 \oplus a_2) = a_3 * 1 = a_3 = (a_3 * a_1) \oplus (a_3 * a_2)$ $a_1 * (a_2 \oplus a_3) = 0 = (a_1 * a_2) \oplus (a_1 * a_3)$ but, $a_2 * (a_1 \oplus a_3) = a_2 * 1 = a_2$

 $(a_2 * a_1) \oplus (a_2 * a_3) = 0 \oplus a_3 = a_3$

-. The Lattice A is not distributive.

Subject Name / Code: DISLETTE MATHEMATILS /MAZZII

Weit: 5

Period: 10

Ix: P.7 the following Lattice is not modular

for this Lattice when $a \leq c$ $a \oplus (b \times c) \neq (a \oplus b) \times c$ $a \oplus (b \times c) = a \oplus 0 = a$ but $(a \oplus b) \times c = 1 \times c = c$ \vdots It is not a modular Lattice.

Theorem: State and prove Isotonicity property in a lattice.

Ex: - If (L, V, Λ) is a complemented distributive Lattice than the De Morgans Law are valid ie) $avb = a \wedge b$ $a \wedge b = a \vee b + a \wedge b \in L$

Theorem: - In a distributive Lattice, 5.7

(a*b) \oplus (b*c) \oplus (c*a) = (a\theta b)*(b\theta c) *(c\theta a)

Subject Name / Code: DISLEGTE MATHEMATUS /MAZZII Period: 11 Weit: 5 Boolean Algebra: A Boolean Algebra is a complemented distributive Lattice. It satisfies the following properties: (B.x.D) is a Lattice in which the operations * and D satisfy the identites: a*a=a $a \oplus a = a$ a*b = b * a aDb = bDa (a*b)*c = a*(b*c) $(a\oplus b)\oplus c = a\oplus (b\oplus c)$ a*(a)b)=a a (a * b) = a (B, *, D) is a distributive Lattice & satisfies! $a*(b\oplus c) = (a*b)\oplus (a*c)$ a D (b*c) = (a D b) * (a D c) (a+b) @ (b*c) @ (c*a) = (a @ b) * (b @ c) * (c @ a) $a*b = a*c & a \oplus b = a \oplus c \Rightarrow b = c$ (B, *, D, 0,1) is a bdd Lattice for any atB the following holds: 0 ≤ a ≤ 1 a * 0 = 0

a *1 = a

Subject Name / Code: Discrete Mathematics

Unit: 5 Period: 12

Theoren:

In a Boolean Lattice, P.T the De-Morgans

Laws.

EX: - S.T (P(A), U, N, C) is a Boolean algebra.

Ex: - 3.7 in any Boolean algebra, (a+b)(a'+c) = ac + a'b + bc

Ex: In any Boolean algebra, s.T a=b

If ab +ab=0

Theorem: P.7 every finite Boolean algebra
(B, V, N, -) has 2" elts for some positive integer 'n'.

[x:- P.7 a D (a'*b) = a Db

Ex:- P.T a* (a'Ab) = a*b

Ex! - 3.7 Every distributive lattice is Modular.

Coletter the converse is true? Justify your claim.