(本试卷中各试题可能存在依赖关系,若某题有一参数未能求出或计算错误,在其他题目中出现该参数时可用符号代替,不再重复扣分。)

有些家用电器如洗衣机等,因绝缘不良而导致外壳漏电,可能造成人身事故。本试卷设计一款漏电报警器,如图 1。

J1 为三孔电源插座,提供有效值 220V 的交流电。家用电器接入相线和零线,外壳接地线。家用电器外壳漏电时,地线和零线之间存在交流电压,泄漏电流从地线经光电耦合器 U1 内部的发光二极管 D1、D2 和 R1 流回零线,构成回路。U1 内部的光电二极管 T1 接收 D1、D2 发出的光,经过放大电路 A 和放大电路 B,点亮发光二极管 D3,进行报警指示。

图 1 漏电报警器

1. (10分)

- (1) 说明晶体管 T2、T3 类型 (JFET/MOS/BJT, P 沟道/N 沟道, 增强型/耗尽型, PNP/NPN)。
- (2) 说明放大电路 A、B 组态 (共射/共集/共基/共源/共漏/共栅)。放大电路的组态是根据 什么判断的?

(2)

2. (10 分) 图 1 中的光电耦合器 U1 型号采用 ACPL-214, 输入端为两个发光二极管反向并联,允许输入交流信号。数据手册上的若干参数如表 1 所示,某特性曲线如图 2、图 3 所示。

Absolute Maximum Ratings

	maximum natings			
ndrž	Parameter	Symbol	ACPL-214	Units
7/11/ 1	Average Forward Current	I _{F(AVG)}	±50	mA
11	Average Forward Current Pulse Forward Current	I _{FSM}	±1	Α
	LED Power Dissipation	PI	65	mW
1	Collector Current	lc	50	mA
). {	Collector-Emitter Voltage	VCEO	80	V
1	Collector Current Collector-Emitter Voltage Emitter-Collector Voltage	V _{ECO}	7	V
	Isolation Voltage (AC for 1min, R.H. 40~60%)	V _{ISO}	3000	V _{RMS}
	Collector Power Dissipation	Pc	150	mW

- (1) 从表 1 中任意选 3 个参数,说明符号及其对应的中文名称。
- (2 图 2、图 3 分别是什么特性曲线??

- $3.(16\,
 m ft)$ 图 1 中光耦输入端电路如图。发生漏电时, v_i 存在 50 Hz 正弦波交流电。根据图 家标准《GB/T 3805-2008 特低电压限值》,在干燥条件下安全电压限值为交流 33 V。对于交流电压,人体感知电流约为交流 1 ImA,摆脱电流约为交流 10 ImA,致命电流约为交流 10 ImA,被应电流约为交流 10 ImA,以便推动后级电路报警。设 D1、D2 用折线模型分析,死区电压 $V_{tt}=1$ V,电阻 $v_D=50$ Ω ,最大正向电流为 50 ImA。若无特别说明,本题中交流电压、电流均指有效值。 1 汉电阻 R1 的取值范围。
- (2) 若 $v_i = 5\sin(2\pi \times 50t)$ V ,对 v_i 分若干区间,分析二极管 D1、D2 导通情况,画出各个区间的等效电路,求出各个区间的 v_D 表达式(不需带入数值)。
- (3)图 1 中为什么没有直接对地线和零线之间的漏电电压进行检测,而使用了光电耦合器?

4. (20 分)图 1 中光耦输出端电路如图(a),内部是一个光电三极管, R_L 是后级放大电路 A 的输入电阻,设 R_L = 1MΩ, R_2 = 1kΩ 。 光电三极管可以等效为光电二极管 D_P 后接三极管 T_1 ,此时图(a)输出端等效为图(b)。若将光电二极管 D_P 的电流用电流源表示,则图(b)可以等效为图(c),其中 i_p 处箭头指示光电流的真实方向。光电二极管 D_P 的等效电路如图(d),电流源 i_r 代表入射光产生的光电流, R_p 代表电流源内阻, R_s 代表引线电阻,D 代表普通二极管, C_I 代表二极管结电容。硅光电二极管 R_p 为数十 MΩ 以上, R_s 为几十 Ω 以下。 R_p 、D 中流过的电流并不反映接收光的强弱。 C_I 和 R_p 的充放电时间常数很大,会影响光电二极管对光变化的快速响应。光耦的光电三极管 T_I 的集电极电流与发光二极管 D_I 、 D_I 发射电流之比称为电流传输比 D_I 以 D_I CTR=100。设 D_I 的 D_I 以 D_I 以

- (1) 光电二极管可工作在零偏置(又称光伏或短路)模式、反向偏置(光导)模式。由图(d),分析光伏和光导模式有什么不同的优缺点?光耦中的光电二极管 Dp 工作于什么模式?
- (2) 图(c)中设 $i_p = 10\mu A$ 为直流电流,求此时的 $I_C \times V_{CE}$ 。判断 T1 工作于什么状态(放大/截止/饱和)?
- (3) 图(c)中,以电流源 ig作为输入,画出交流通路及小信号等效电路。
- (4) 图(c)中,以电流源 i_p 两端作为输入端,求互阻增益 $A_p = \frac{v_2}{i_p}$ 、输入电阻 R_i 、输出电阻 R_o 的表达式 (无需代入数值计算)。

(Y)

$$\begin{array}{c|c}
\hline
V_{1} & 1200200
\end{array}$$

$$\begin{array}{c|c}
\hline
V_{2} & 1200200
\end{array}$$

$$\begin{array}{c|c}
\hline
V_{3} & 1200200
\end{array}$$

$$\begin{array}{c|c}
\hline
V_{2} & 1200200
\end{array}$$

$$\begin{array}{c|c}
\hline
V_{2} & 1200200
\end{array}$$

$$A_{v} = \frac{V_{3}}{V_{2}} = \frac{-g_{m}V_{55}(R_{b}||R_{l})}{V_{gs}} = -g_{m}(R_{6}||R_{l})$$

$$R_{1} = |R_{5}| + (|R_{3}||R_{4})$$

$$R_{3} = \frac{V_{4}}{i_{1}}|_{V_{2}=0,R_{1}=0}$$

$$R_{5} = \frac{V_{5}}{i_{1}}|_{V_{2}=0,R_{1}=0}$$

$$R_{5} = \frac{V_{5}}{i_{1}}|_{V_{2}=0,R_{1}=0}$$

$$R_{5} = \frac{V_{5}}{i_{1}}|_{V_{2}=0,R_{1}=0}$$

 (16分)图1中的放大电路 B 如图, T3 型号为 MMBT5551, 设 V_{BE}= 0.7V, β=100, r_{bb} =200Ω,温度的电压当量 $V_T=26 \mathrm{mV}$,饱和压降 $V_{CES}=0.1 \mathrm{V}$, R_8 =1kΩ, R_{10} =100Ω, C_3 =100 μ F, 电源电压 V_{CC} =5V。发光二极管 D3 采用恒压降模型,正向导通电压 V_{ou} =1.8 V_{ou} 未发生漏电时, $\nu_3=0$,放大电路处于静态,要求此时 $\nu_4=1.5$ V,D3不亮。发生漏电时, ν₄峰值大于 V_{on}, D3 点亮。第(1)、(2)、(3)小题设 D3 截止 (1)设计 Ro的大小。 (2)画出交流通路和小信号等效电路。 (3)求 r_{be} 、增益 A_v 、输入电阻 R_i 、输出电阻 R_o 的表达式 (丕 需代入数值计算)。 (3) $I_{be} = I_{abs} + (H\beta) \frac{V_7}{\bar{I}_{EQ}} \approx 2.0 + (Hloo) \frac{26}{\bar{I}_{CQ}}$ (4) $R_{v} = \frac{V_{4}}{V_{3}} = \frac{P_{8}(l_{c} + i_{B})}{P_{8}(l_{c} + i_{B}) + i_{B}} = \frac{P_{8}(l_{B})}{P_{8}(l_{B}) + i_{B}} = \frac{P_{8}(l_{B})}{P_{8}(l_{B})} = \frac{P_{8}(l_{B})}{P_{8}(l_{B})}$ $\frac{V_{t} - U_{t}^{2}}{V_{t} - U_{t}^{2}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - U_{t}^{2}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_{t}}{r_{se}} + i_{t}] R_{8}}{V_{t} - I_{3} r_{se}} = \frac{[-(4)^{3}) \frac{V_$ 7.

图 1 中的电源电路如图,要求供电电压 $V_{\rm CC}=5{
m V}$,耗电电流在 I_o 在 0~5mA 之间变化。采用 2 节 3V、200mAH 的 CR2032 纽扣锂电池串联成 ${
m V_B}$ 供电,使用过程中电池电压 ${
m V_B}$ 从 6V 最终降至低于 5.2V 则更换电池。电池经稳压管电路产生 ${
m V_{\rm CC}}$ 。稳压管选用最大耗散功率 $P_{\rm ZM}=0.25{
m W}$ 系列,型号 BZX84B5V1,测试电流 $I_{\rm ZT}=5{
m mA}$ 时的稳定电压为 $V_{\rm Z}=5{
m V}$,此处的动态电阻为 $r_{\rm Z}=60\Omega$ 。计算过程中,可将测试电流作为最小稳定电流 $I_{\rm zmin}$ 。

(1)试确定限流电阻 R_{11} 的最大值和最小值(不考虑动态电阻,)。

(2)在 R_{11} 的上述取值范围内<u>选取平均值</u>,求输出电流 I_o =5mA 时,电池电压 5.2V~6V 变化 引起的 Vcc 电压变化量 Δ Vcc (考虑动态电阻,可使用二极管折线模型或小信号模型分析)。根据计算结果,说明此电路设计是否合理。