සියලු ම හිමිකම් ඇවිරිනි /(ψ ඟුට් பුනිට්பුලිකාරාධනා $All\ Rights\ Reserved$

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේක්තුව යික්ෂ පාල්තමේන්තුව විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව මුණාශකසට பල්ටගපණ නිකානාස්සහඟ මුණාශකසට පුළු නිසා සිත්තමේ පිළුත්තමේක්තුව ප්රධානයේ නිසා මුණාශකස්සහඟ මුණාශකසට පළටු නිසා සිත්තමේ Bright B

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கஸ்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரின்ச, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>රසායන විදුනව II</mark> இரசாயனவியல் II Chemistry II

2018.08.17 / 0830 - 1140

විහාග අංකය :

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියචිමි කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිව්මේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

- 🗱 ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වතු වායු නියකය, $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- * ඇවගාඩ්රෝ නියතය, $N_A=6.022 imes 10^{23}~\mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්<mark>ඩ සං</mark>ක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

H—— С— කාණ්ඩය CH₃CH₂ – ලෙස දැක්විය හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- ※ ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිව්ය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - ු B කොටස සහ C කොටස රවනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න ලෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A,B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

පුශ්න අංකය නොවස ලැබූ ලකුණු 1 2 A 3 4 5 R 6 7 8 C 9 10 එකතව පතිශතය

අවසාන ලකුණ

ඉලක්කමෙන් අකුරින්

සංකේත අංක

උත්තර පතු පරීක්ෂක 1

උත්තර පතු පරීක්ෂක 2

පරීක්ෂා කළේ :

අධීක්ෂණය කළේ :

A කොටස - වපුහගත රචනා

පුශ්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්ස

- $oldsymbol{1}$. (a) පහත සඳහන් පුකාශ **සත** $oldsymbol{z}$ ද නැතභොත් **අසතoldsymbol{z}** ද යන බව සඳහන් කරන්න. (හේතු අවශා **නැත**.)
 - (i) විශාලත්වය වැඩිවීමත් සමග හේලයිඩ අයනවල ධුැවණශීලීතාවය වැඩි වේ.
 - (ii) NO_2 හි O-N-O බන්ධන කෝණය NO_2^- හි එම කෝණයට වඩා විශාල වේ.
 - (iii) ${
 m CCI}_4$ අණු අතර ලන්ඩන් අපකිරණ බල ${
 m SO}_3$ අණු අතර ලන්ඩන් අපකිරණ බලවලට වඩා කුඩා වේ.
 - (iv) HSO-් අයනයේ හැඩය නිුයානති ද්විපිරම්ඩාකාර වේ.
 - $({
 m v})$ පරමාණුවක සියලු ම 3d පරමාණුක කාක්ෂික $(n,l,m_l)\,3,2,1$ යන ක්වොන්ටම් අංකවලින් නිරූපණය වේ.
 - (vi) වායුමය පොස්පරස් පරමාණුවකට ඉලෙක්ටුෝනයක් එක් කිරීම තාපදායක කි්යාවලියක් වන අතර වායුමය නයිටුජන් පරමාණුවක් සඳහා එය තාප අවශෝෂක වේ.

(ලකුණු 2.4 යි)

(b) (i) SF_3N අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වාුහය අඳින්න.

(ii) C_3O_2 (කාබන් සබ්ඔක්සයිඩ්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වාූහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වාූහ (සම්පුයුක්ත වාූහ) **දෙකක්** අඳින්<mark>න.</mark>

(සැ. යූ.: අෂ්ටක තියමයට අනුකූල නොවන ලුවිස් වුහුහවලට ලකුණු පුදානය කරනු නොලැබේ.) Ö=C=C=C;

- (iii) පහත සඳහන් ලුවිස් වුෘහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති C , N හා P පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$F - C^{1} - N^{2} - C^{3} - P^{4} - CI$$

		\mathbb{C}^1	N^2	C^3	P ⁴
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය				
III.	හැඩය				
IV.	<u>මුහු</u> ම්කරණය				

	විභාග අංකය :	
L/2018/02-S-II(A)	-3-	
		-

(iv)	ඉහත (iii) කොට පරමාණුක/මුහුම්කා	සහි දෙන ලද ලුවිස් ව පුහ ක්ෂික හඳුනාගන්න. (පරමාද	යෙහි පහත සඳහන් σ බන්ධන සෑදීම් යුවල අංකනය (iii) කොටසෙහි ආකාර	වට සහභාගි වන සියිවක් නො ලියක් රයට වේ.)	śø
	I. F—C ¹	F	C ¹		
	II. C ¹ —N ²	C^1	N ²		
	III. N ² —C ³	N ²	C ³		
	IV. C ³ —P ⁴	C ³	P ⁴		
	V. P ⁴ —Cl	P ⁴	CI		
(v)	ඉහත (iii) කොට පරමාණුක කාක්ෂිස	සහි දෙන ලද ලුවිස් ව <u>ා</u> ුහර ා හඳුනාගන්න. (පරමාණුවල	යෙහි පහත සඳහන් π බන්ධන සෑදී® ; අංකනය (iii) කොටසෙහි ආකාරයර)ට සහභාගි වන ට වේ.)	
	I. N^2 — C^3	N ²	C ³		
	II. C ³ —P ⁴	C ³	P ⁴	(ලකුණු 5.2 යි)	
			හත සඳහන් දෑ සකසන්න. (මෙත්තු අදි)ශා ා නොවේ.)	
(i)	B, Na, P, Be, N (&	ළමුවන අයනීකරණ ශක්තිය	3)		
	< .	<	< <		
(ii)	NH ₃ , NOCl, NO	₂ Cl, NH ₄ ⁺ , F ₃ C–NC (නයි	ටුජන්වල විදසුත් සෘණතාව)		
	< .	<mark> <</mark>	< <	,	\setminus
(iii)	පරමාණුවක ඉලෙස	ත්ටෝනව <mark>ල ක්වොන්</mark> ටම් අංක	(n, l, m_l, m_s)	/	$ \cdot $
	27 ($1, +1, +\frac{1}{2}$), $(3, 2, -1, +\frac{1}{2})$ (ඉලෙක්ම	1/100	$ \Big $
	<	<	< <	 (ලකුණු 2.4 සි)	'
ඔක පහ	iසිකරණ අවස්ථා ද සුවෙන් දුවණය වී	9රාසයක් පෙන්නුම් කරයි. භාස්මික දුාවණයක් ලබා ලෙ	කි. එය ද්විපරමාණුක වායුවක් ලෙස X හි වඩාත් ම සුලහ හයිඩුයිඩය Y දයි. Y ඔක්සිකාරකයක්, ඔක්සිහාරකය හි ද්විපරමාණුක වායුව භාවිත වේ.	පවතී. X පුළුල් වේ. Y ජලයෙහි	
(i)	X සහ Y හඳුනාග	ාන්න.			
	X =	Y = .	.,,		
(ii)	X හි ද්විපරමාණුක	වායුව සාමානාගෙන් නිෂ්ඩ්	බුය යැයි සලකනු ලැබේ. කෙටියෙන්	පහදන්න.	
\. /	• –	-		1	
(iii)	${f X}$ හි ඔක්සයිඩ තුෑ දක්වන්න.	නක රසායනික සූතු ලියා එ	ම එක් එක් සංයෝගයේ ${f X}$ හි ඔක්සි	· ශ්කරණ අවස්ථාව	

(iv)	සමීකරණය බැගින	් දෙන්න.	යාකාරිත්වය පෙන්නුම් කිරීම ස ඳහා		
	I. Y ඔක්සිකාරක	ායක් ලෙස			
	II. Y ඔක්සිහාරස	ායක් ලෙස			

(v) X අඩංගු කාණ්ඩයේ මූලදුවාවල Y ට අනුරූප හයිඩුයිඩ සලකන්න. මෙම හයිඩුයිඩවල (Y ද ඇතුළුව) කිසිය තාපාංක විචලනය වන ආකාරයේ දළ සටහනක් පහත පුස්තාරයේ දක්වන්න. ඔබගේ දළ සටහනන් හයිඩුයිඩ, ඒවායේ රසායනික සූතු භාවිතයෙන් පෙන්නුම් කරන්න. (සැ. යු.: තාපාංකවල අගයයන් අවශා නැත.)
තාපාංකය ^
(vi) ඉහත (v) කොටසෙහි තාපාංකවල විචලනයට හේතු දක්වන්න.
$({ m vii})$ $I.$ $f Y$ හි ජලීය දාවණයකින් වැඩිපුර පුමාණයක් ${ m Al}_2({ m SO}_4)_3$ දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න.
II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණයට හේතු කාරක වන විශේෂයෙහි රසායනික සූතුය ලියන්න.
(viii) Y හඳුනාගැනීමට එක් රසායනික පරීක්ෂාවක් දෙන්න.
පරික්ෂාව:
නිරීක්ෂණය:
(ix) Z යනු X හි ඔක්සො-අම්ලයක් හා පුබල ඔක්සිකාරකයකි.
I. Z හඳුනාගන්න
$ ext{II.}$ සල්ෆර් සමග උණු සාන්දු $ extbf{Z}$ පුතිකිුයා කළ විට ලැබෙන ඵල සඳහන් කරන්න.
(ලකුණු 6.0 යි)
$(C + Q) = 0.0 \mathrm{L}$ $(C + Q) = 0.0 L$
උෂ්ණත්වයේ දී හා වායුගෝලීය පීඩනයේ දී අවර්ණ, ගඳක් නොමැති දුවයක් ලෙස ${f A}$ පවතී. එය වායු හා සන අවස්ථාවන්හි ද දක්නට ලැබේ. ${f A}$ හි සන අවස්ථාව එහි දුව අවස්ථාවට වඩා සනත්වයෙන් අඩු වේ. අයනික හා ධුැවීය සංයෝග පහසුවෙන් ${f A}$ හි දුවණය වේ.
කාමර උෂ්ණත්වයේ දී හා වායුගෝලීය පීඩනයේ දී ${f B}$ අවර්ණ වායුවක් වේ. ලෙඩ් ඇසිටේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් ${f B}$ මගින් පිරියම් කළ විට කළු පැහැයට හැරේ.
(i) \mathbf{A} හා \mathbf{B} හඳුනාගන්න.
$A = \dots B = \dots$

	(ii)	අවශා ස්ථානවල එකසර ඉලෙක්ටුෝන යුගල් පෙන්වා $f A$ හා $f B$ හි හැඩවල දළ සටහන් අඳින්න.	තිරයේ කිපිටක් නො ලියන්න
	(iii)	වඩා විශාල බන්ධන කෝණය ඇත්තේ ${f A}$ ට ද ${f B}$ ට ද යන්න හේතු දක්වමින් සඳහන් කරන්න.	
	(iv)	පහත සඳහන් එක් එක් අවස්ථාවේ දී $f A$ හි කිුිිියාකාරිත්වය පෙන්නුම් කිරීම සඳහා තුලිත රසායනික සමීකරණය බැගින් දෙන්න. I. $f A$ අම්ලයක් ලෙස :	
		II. A භස්මයක් ලෙස :ජීය ලෙඩ ඇසිටේට් සමග B හි පුතිකිුිිියාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.	
		I. A හා B වෙන වෙනම ආම්ලිකෘත BiCl3 දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න. A (වැඩිපුර) සමග:	100
3.	A , 0.10	ලකුණු 4.0 යි.) ⇔ $2C+D$ (දෙදිශාවටම මූලික පුතිකිුයා වේ.) යන පුතිකිුයාව 25 °C හි දී සිදුකරන ලදී. ආරම්භයේ දී mol හා B , 0.10 mol ආසුැත ජලයෙහි දුවණය කිරීමෙන් (මුළු පරිමාව $100.00\mathrm{cm}^3$) පුතිකිුයා මිශුණය සාදන ලය සමග මෙම දුාවණයෙහි A හි සාන්දුණයෙහි වෙනස් වීම පුස්තාරයෙහි දක්වා ඇත.	
	e	සාන්දුණය (mol dm ⁻³)	
		0.5	
	(i) 55£	0.0	

	8/02-S-II(A) - 6 -	
(ii)	මිනිත්තු 4.0 ට පසු ඉදිරි පුතිකියාවෙහි ශීසුතාව පසු පුතිකියාවෙහි ශීසුතාවට වඩා අඩු වේ ද? ඔබගේ පිළිතුර පැහැදිලි කරන්න.	ಶ
(iii)	ඉදිරි පුතිකියාවෙහි ශීඝුතා නියතය ($k_{ m forward}$) $18.57~{ m mol}^{-1}~{ m dm}^3~{ m min}^{-1}$ බව දී ඇත් නම්, ඉදිරි පුතිකියාවෙහි ආරම්භක ශීඝුතාව ගණනය කරන්න.	3
		•
	සමතුලිතතාවයේ දී C හා D හි සාන්දුණ ගණනය කරන්න. කාලය සමග C හා D වල සාන්දුණයන්හි වෙනස් වීම දක්වන අදාළ වකු ඉහත පුස්තාරයෙහි ඇඳ ඒවා නම් කරන්න.	+
(v)	ඉහත පුතිකිුියාවෙහි සමතුලිතතා නියතය $K_{ m C}$ සඳහා පුකාශනය ලියා එහි අගය ගණනය කර <mark>න්න.</mark>	
		•
vi)	පසු පුතිකිුයාව සඳහා ශීඝුතා නියතයෙහි ($k_{ m reverse}$) අගය ගණනය කරන්න.	

(v		සමතුලිතතාවට එළැඹී පසු, ආසුැත ජලය $100.00\mathrm{cm^3}$ එකතු කිරීමෙන් දුාවණයෙහි පරිමාව දෙගුණ කරන ලදී. දුාවණයෙහි පරිමාව දෙගුණ කළ විගස සමස්ත පුතිකිුයාවෙහි දිශාව, සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න.	
(vi	-	ඉහත පරීක්ෂණය $25~^{\circ}\mathrm{C}$ ට අඩු උෂ්ණත්වයක දී සිදු කළේ යැයි සලකන්න. මෙය පසු පුතිකිුිිියාවෙහි ශීඝුතාව කෙරෙහි බලපාන්නේ කෙසේ ද? ඔබගේ පිළිතුර හේතු දක්වමින් පහදන්න.	
			/ \
			100
		(ලකුණු 10.0 යි.)	100
4 . (a	(i)	C ₅ H ₁₀ O අණුක සූතුය සහිත A, B සහ C යන සංයෝග එකිනෙකෙහි වපුහ සමාවයවික වේ. සංයෝග තුනම 2,4-DNP සමග කහ-තැඹිලි අවක්ෂේප ලබා දේ. ඉන් එකක්වත් රිදී කැටපත් පරීක්ෂාවේදී රිදී කැටපතක් නොදේ. A, B සහ C වෙන වෙනම NaBH ₄ සමග පුතිකියා කරවූ විට පිළිවෙළින් D, E සහ F යන සංයෝග ලබා දුනි. E සහ F පමණක් පුකාශ සමාවයවිකතාව පෙන්වයි. B සහ C වෙන වෙනම CH ₃ CH ₂ CH ₂ MgBr සමග පුති <mark>කියා කරවා</mark> , ඉන්පසු ජලව්ච්ඡේදනය කළ විට පිළිවෙළින් G සහ H යන සංයෝග ලබා දුනි. G පමණක් පුකාශ සමාවයවිකතාව පෙන්නුම් කරයි. A, B, C, D, E, F, G සහ H වල වනුහ පහත දී ඇති කොටුතුළ අදින්න. (නිමාන සමාවයවික ආකාර පෙන්වීම අවශා නැත.)	
		D E F	
		G H	
	(ii)) පහත සඳහන් පුතිකිුයාවේ එලයේ වාුුහය අඳින්න.	
		A (1) 2,4 – DNP (2) විජලනය (ලකුණු 4.5 යි.)	

(b) පහත දී ඇති එක් එක් පුතිකුියාවේ **පුධාන** කාබනික **එලයෙහි** ව<u>පු</u>හය අඳින්න.

(ii)
$$C_6H_5$$
-NH₂ $\xrightarrow{Br_2 \xi \omega \sigma}$

(iv)
$$C_6H_5-N_2^{\oplus}Cl^{\ominus}$$
 $\xrightarrow{H_3PO_2}$ $\xrightarrow{\Delta}$

(vi)
$$CH_3CH = CH_2$$
 සාන්දු H_2SO_4

(viii)
$$C_2H_5CO_2H$$
 $\xrightarrow{PCl_5}$

(ix)
$$C_2H_5OH$$
 $H^+/KMnO_4$

(x)
$$C_2H_5COCH_3$$
 HCN

(ලකුණු 3.5 යි)

(c) අාලෝකය හමුවේ දී $\mathrm{CH_4}$ සමග $\mathrm{Cl_2}$ පුතිකිුයාවේ එක් ඵලයක් $\mathrm{CH_3Cl}$ වේ. $\mathrm{CH_3Cl}$ සැදෙන ආකාරය පෙන්වන පුතිකිුයාවේ යන්තුණයේ පියවර ලියන්න. ඉලෙක්ටුෝන සංකුමණය වකු ඊතල/වකු අර්ධ ඊතල CM/CM මගින් දක්වන්න.

(ලකුණු 2.0 යි)

100

තිසිවක් නො ලිය සියලු ම හිමිකම් ඇව්රිනි / (மුழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්**ලේ අඩයින් ලබ්ල්වාගා දෙපාල්පාල්ලන්තුව**මාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව මුහත්කයේ පාර්යාවේ එහාගත්සනාග මුහත්කයේ පාර්යාවේ එහාගත්සනාග මුහත්කයේ පාර්යාවේ එහාගත්සනගේ පාර්යාවේ එහාගත්සනගේ Department of Examinations, Sri Lanka Department o**ලිනාගත්කයෝ**විය <mark>ප්රානාවණය එහින සහගේ සහගේ පාර්යාවේ</mark> දි දෙනා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව

අධ්යයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒக்ஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදාහව II இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩමරෝ නියනය $N_{
m A}=6.022~{
m \times}~10^{23}~{
m mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

(a) පහත සඳහන් ප්‍රතිකියා සලකන්න.

$$M(CO_3)_2.nH_2O(s) \rightarrow M(CO_3)_2(s) + nH_2O(g)$$

$$M(CO_3)_2(s) \rightleftharpoons MO_2(s) + 2 CO_2(g)$$

පරිමාව $0.08314\,\mathrm{m}^3$ වූ රේචනය කරන ලද දෘඪ බඳුනක $\mathrm{M(CO_3)_2 \cdot nH_2O(s)}$ සුළු පුමාණයක් $(0.10~\mathrm{mol})$ ඇත. බඳුනේ උෂ්ණත්වය $400~\mathrm{K}$ දක්වා වැඩි කරන ලදී. මෙම උෂ්ණත්වයේ දී $\mathrm{M(CO_3)_2}$ ලෝහ කාබනේටය වියෝජනය නොවන නමුත් ස්<mark>ඵටිකීකර</mark>ණය <mark>වූ ජල</mark>ය සම්පූර්ණයෙන් වාෂ්පීකරණය වේ. බඳුනෙහි පීඩනය $1.60 \times 10^4~\mathrm{Pa}$ බව මැන ගන්නා ලදී. සන දුවා මගින් අයත් කරගන්නා පරිමාව නොසලකා හැරිය හැකි වේ.

 $M(CO_3)_2 \cdot nH_2O(s)$ සූතුයෙහි ඇ<mark>ති 'n'</mark> හි අගය නිර්ණය කරන්න.

(ලකුණු 2.0 යි.)

- (b) ඉහත පද්ධතියෙහි උෂ්ණත්වය ඉන්පසු $800~{
 m K}$ දක්වා වැඩි කරන ලදී. මෙවිට ඝන ලෝහ කාබනේටයෙන් යම් පුමාණයක් වියෝජනය වී වාසු කලාපය සමග සමතුලිතව ඇති බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි පීඩනය $4.20 \times 10^4~{
 m Pa}$ බව මැනගන්නා ලදී.
 - (i) 800 K හි දී බඳුන තුළ ඇති ජලවාෂ්පයෙහි අාංශික පීඩනය ගණනය කරන්න.
 - (ii) $800 \ {
 m K}$ හි දී බඳුන තුළ ඇති ${
 m CO}_2$ හි අාංශික පීඩනය ගණනය කරන්න.
 - (iii) ${
 m M(CO_3)_2(s)}$ හි වියෝජනයට අදාළ පීඩන සමතුලිකතා නියතය, $K_{
 m P}$ සඳහා පුකාශනයක් ලියන්න. $800~{
 m K}$ හි දී $K_{
 m P}$ ගණනය කරන්න.
 - (iv) 800 K හි දී ලෝහ කාබනේටයෙහි වියෝජනය වූ මවුල පුතිශතය ගණනය කරන්න.
 - (v) ඉහත තත්ත්ව යටතේ ලෝහ කාබතේටයෙහි වියෝජනය සඳහා එන්තැල්පි වෙනස (ΔH) $40.0~{
 m kJ}~{
 m mol}^{-1}$ වේ. අනුරූප එන්ටොපි වෙනස (ΔS) ගණනය කරන්න.
 - $(vi)\ M(CO_3)_2(s)$ හි වියෝජන පුතිකිුයාව ඉදිරි දිශාවට යොමු කිරීම සඳහා කුම **දෙකක්** යෝජනා කරන්න.

(ලකුණු 6.5 යි.)

(c) තාප රසායනික චකු හා වගුවෙහි දී ඇති දත්ත ආධාරයෙන් පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න.

විශේෂය	සම්මත උත්පාදන එන්තැල්පිය $({f \Delta H}_f^\circ)({ m kJmol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

- (i) $MO(g) + \frac{1}{2} O_2(g)$ → $MO_2(g) \Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ බව දී ඇත්නම් MO(g) හි සම්මත උත්පාදන එන්තැල්පිය ගණනය කරන්න.
- (ii) MO(g) හි M—O බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.

- (iii) $\mathrm{MO}_2(\mathrm{g})$ හි $\mathrm{M-O}$ බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.
- (iv) සම්මත තත්ත්ව යටතේ දී හා $2000~{\rm K}$ හි දී ${\rm MO}_2({\rm g}) \to {\rm MO}({\rm g}) + \frac{1}{2}~{\rm O}_2({\rm g})$ පුතිකුියාව ස්වයංසිද්ධ වේ දැයි සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න. මෙම පුතිකුියාවෙහි සම්මත එන්ටොපි වෙනස $30.0~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ වේ. (ලකුණු $6.5~{\rm G}$.)

 ${f 6.}$ ${\it (a)}$ අම්ශු දුව පද්ධතියක් සාදන ජලය ${\it (A)}$ හා කාබනික දාවකයක් ${\it (B)}$ අතර, අයඩීන් ${\it (I_2)}$ හි වහාප්ති සංගුණකය නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී.

 I_2 මවුල 'n' සංඛ $\mathfrak m$ ාවක් අඩංගු $\mathbf B$ හි $20.00~\mathrm{cm}^3$ සමග $\mathbf A$ හි $20.00~\mathrm{cm}^3$ මිශු කර කාමර උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩහරින ලදී.

 ${f A}$ කලාපයෙන් $5.00~{
m cm}^3$ නියැදියක් ඉවත් කර එය $0.005~{
m mol}~{
m dm}^{-3}~{
m Na_2S_2O_3}$ දාවණයක් සමග අනුමාපනය කිරීමෙන් ${f A}$ කලාපයේ ${f I_2}$ සාන්දුණය නිර්ණය කරන ලදී. අන්ත ලක්ෂාය ලබා ගැනීමට අවශා වූ ${
m Na_2S_2O_3}$ පරිමාව ${f 22.00~{
m cm}}^3$ විය. ${f B}$ කලාපයෙහි ${f I_2}$ සාන්දුණය $0.040~{
m mol}~{
m dm}^{-3}$ බව නිර්ණය කරන ලදී.

- (i) $\mathrm{Na_2S_2O_3}$ හා $\mathrm{I_2}$ අතර පුකිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ${f A}$ කලාපයෙහි ${f I}_2$ සාත්දුණය ගණනය කරන්න.
- (iii) වාහාප්ති සංගුණකය K_D හි අගය ගණනය කරන්න. $K_D = \frac{\left[\mathbf{I}_2\right]_{\mathbf{B}}}{\left[\mathbf{I}_2\right]_{\mathbf{A}}}$ වේ.
- (iv) ${f A}$ හා ${f B}$ කලාප දෙකෙහි ඇති මුළු ${f I}_2$ මවුල පුමාණය ගණනය කරන්න.

(ලකුණු 4.5 යි.)

- (b) $\bf A$ කලාපයට $\bf I^-$ අයන එකතු කර, ඉහත පරීක්ෂණය එම තත්ත්ව යටතේ දී ම එනම් එම උෂ්ණත්වයේ දී හා එම $\bf I_2$ පුමාණය හා එම පරිමාව<mark>න් භාවිතයෙ</mark>න් <mark>නැවත</mark> සිදු කරන ලදී. පද්ධතිය හොඳින් කළතා සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. $\bf A$ ක<mark>ලාපයෙහි</mark> $5.00~{\rm cm^3}$ නියැදියක ඇති $\bf I_2$ අනුමාපනය කිරීම සඳහා අවශා වූ $0.005~{\rm mol~dm^{-3}}~{\rm Na_2S_2O_3}$ දාවණ පරිමාව $41.00~{\rm cm^3}$ විය. මෙවිට $\bf B$ කලාපයෙහි $\bf I_2$ සාන්දුණය $0.030~{\rm mol~dm^{-3}}$ බව නිර්ණය කරන ලදී.
 - (i) ${f A}$ හා ${f B}$ කලාප අතර ${f I}_2$ හි වසාප්තිය සඳහා වසාප්ති සංගුණකය පදනම් කර ගනිමින් ${f A}$ කලාපයෙහි $5.00~{
 m cm}^3$ හි තිබිය යුතු යැයි බලාපොරොත්තු වන ${f I}_2$ පු<mark>මා</mark>ණය (මවුල) ගණනය කරන්න.
 - (ii) ඉහත අනුමාපනයේ දී ${
 m Na_2S_2O_3}$ සමග පුතිකියා කරන ලද ${
 m I_2}$ පුමාණය (මවුල) ගණනය කරන්න.
 - (iii) ඉහත (b) (i) හා (b) (ii) කොටස් සඳහා ලබාගත් පිළිතුරු එකිනෙකින් වෙනස් වන්නේ මන්දැයි ${f A}$ කලාපයෙහි ඇති විවිධ අයඩීන් විශේෂ සලකමින් පැහැදිලි කරන්න.

(ලකුණු 3.5 යි.)

(c) \mathbf{X} හා \mathbf{Y} යන දුව රඌල් නියමය අනුගමනය කරන පරිපූර්ණ දුාවණයක් සාදයි.

රූපයේ පෙන්වා ඇති පරිදි රේචනය කරන ලද දෘඪ බඳුනකට මුලින් ${f X}$ දුවය පමණක් ඇතුළු කරන ලදී. දුව මට්ටම l හි පවත්වා ගනිමින් පද්ධතිය $400~{f K}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. බඳුනෙහි පීඩනය $3.00 \times 10^4~{f Pa}$ ලෙස මැන ගන්නා ලදී. දුව මට්ටම l හි ඇති විට වාෂ්ප කලාපයේ පරිමාව $4.157~{f dm}^3$ විය.

ඉන් පසු \mathbf{Y} දුවය බඳුන තුළට ඇතුළු කර \mathbf{X} දුවය සමග මිශු කර පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. දුව මට්ටම l හි පවත්වා ගන්නා ලදී. දුව කලාපයෙහි $\mathbf{X}:\mathbf{Y}$ මවුල අනුපාතය 1:3 බව සොයාගන්නා ලදී. බඳුනෙහි පීඩනය $5.00\times10^4~\mathrm{Pa}$ බව මැනගන්නා ලදී.

- (i) $400~{
 m K}$ හි දී ${
 m X}$ හි සන්තෘප්ත වාෂ්ප පීඩනය කුමක් වේ ද?
- (ii) සමතුලිතතාවයේ දී දුව කලාපයේ ${f X}$ හා ${f Y}$ හි මවුල භාග ගණනය කරන්න.
- (iii) ${f Y}$ එකතු කළ පසු සමතුලිතතාවයේ දී ${f X}$ හි ආංශික පීඩනය ගණනය කරන්න.
- (iv) සමතුලිතතාවයේ දී Y හි ආංශික පීඩනය ගණනය කරන්න.
- (v) Y හි සන්නෘප්ත වාෂ්ප පීඩනය ගණනය කරන්න.
- (vi) වාෂ්ප කලාපයෙහි ඇති X හා Y හි පුමාණ (මවුලවලින්) ගණනය කරන්න.
- (vii) X හා Y දුව මිශුණයක් භාගික ආසවනයට භාජනය කළ විට භාගික ආසවන කුළුණින් කුමන සංයෝගය මුලින් ආසවනය වී පිට වේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 7.0 යි.)

7. (a) ලැයිස්තුවේ දී ඇති රසායන දුවා පමණක් භාවිත කර ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

 $C_2H_5CH_2CHO \longrightarrow C_2H_5COCH_3$

රසායන දුවන ලැයිස්තුව ජලීය NaOH, HBr, මදාසාරීය KOH, NaBH $_4$, ${
m H}^{\dagger}/{
m KMnO}_4$

ඔබගේ පරිවර්තනය පියවර 7 කට වඩා වැඩි නොවිය යුතු ය.

(ලකුණු 6.0 යි.)

(b) පහත සඳහන් පුතිකිුයා පටිපාටිය සම්පූර්ණ කිරීම සඳහා \mathbf{R}_1 — \mathbf{R}_4 සහ \mathbf{X}_1 — \mathbf{X}_4 සහ \mathbf{Y}_1 , \mathbf{Y}_2 හඳුනාගන්න.

(c) (i) පහත සඳහන් පුතිකිුයාවේ යන්තුණය දෙන්න.

(ලකුණු 6.0 යි.)

$$C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$$

- (ii) ඉහත සඳහන් පුතිකිුයාව නාාෂ්ටිකාමී (nucleophilic) ආදේශ පුතිකිුයාවක් ද නැතභොත් ඉලෙක්ටෝනකාමී (electrophilic) ආදේශ පුතිකිුයාවක් ද යන්න සඳහන් කරන්න. අදාළ පරිදි නියුක්ලියොෆයිලය හෝ ඉලෙක්ටොෆයිලය හඳුනාගන්න.
- (iii) පීනෝල් (C_6H_5OH) සහ එතනෝල් (C_2H_5OH) යන සංයෝග දෙක අතරින් වඩා ආම්ලික වන්නේ කුමක් දැයි හේතු දක්වමින් සඳහන් කරන්න. (ලකුණු ${\bf 3.0}$ යි.)

C කොටස — රවනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) P නම් ජලීය දාවණයක කැටායන **දෙකක්** හා ඇනායන **දෙකක්** අඩංගු වේ. මෙම කැටායන හා ඇනායන හඳුනාගැනීම සඳහා පහත සඳහන් පරීක්ෂණ සිදු කරන ලදී.

කැටායන

	පරීක්ෂණය	නිරීක්ෂණය
0	තනුක HCl මගින් ${f P}$ ආම්ලිකෘත කර දුාවණය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
2	$ m H_2S$ සියල්ල ම ඉවත් වන තුරු ඉහත දුාවණය නටවන ලදී. සාන්දු $ m HNO_3$ බිංදු කිහිපයක් එකතු කර දුාවණය තවදුරටත් රත් කරන ලදී. ලැබුණු දාවණය සිසිල් කර, $ m NH_4Cl/NH_4OH$ එකතු කරන ලදී.	දුඹුරු පැහැති අවක්ෂේපයක් (Q) සෑදුණි.
3	${f Q}$ පෙරා ඉවත් කර පෙරනය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	ලා-රෝස පැහැති අවක්ෂේපයක් (R) සෑදුණි.
(4)	${f R}$ පෙරා ඉවත් කර ${ m H_2S}$ සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදී. දුාවණයට ${ m (NH_4)_2CO_3}$ එකතු කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
⑤	P හි අලුත් කොටසක ට තනුක NaOH එකතු කරන ලදී.	කැත-කොළ පැහැති අවක්ෂේපයක් සහ සුදු අවක්ෂේපයක් සෑදුණි.

Q හා R අවක්ෂේප සඳහා ප<mark>රීක්ෂණ:</mark>

	පරීක්ෂණය	නිරික්ෂණය
6	තනුක HNO_3 හි \mathbf{Q} දුවණය කර, සැලිසිලික් අම්ල දුාවණයක් එක් කරන ලදී.	ලා-දම් පැහැති දුාවණයක් ලැබුණි.
Ø	තනුක අම්ලයක \mathbf{R} දුවණය කර, දුාවණයට තනුක \mathbf{NaOH}	සුදු පැහැති අවක්ෂේපයක් සැදුණි. කල් තැබීමේ දී එය දුඹුරු පැහැයට හැරුණි.

ඇනායන

		පරීක්ෂාච	නිරීක්ෂණය				
8	I	BaCl_2 දාවණයක් ${f P}$ වලට එකතු කරන ලදී.	සුදු අවක්ෂේපයක් සෑදුණි.				
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපයට තනුක HCl එක් කරන ලදී.	සුදු අවක්ෂේපය දුවණය නොවුණි.				
9	1 -	II හි පෙරනයෙන් කොටසකට Cl_2 දියරය හා ක්ලෝරෆෝම් තු කර මිශුණය හොඳින් සොලවන ලදී.	ක්ලෝරෆෝම් ස්තරය කහ-දුඹුරු පැහැයට හැරුණි.				

- (i) ${f P}$ දුාවණයෙහි ඇති කැටායන **දෙක** හා ඇනායන **දෙක** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) ${f Q}$ හා ${f R}$ අවක්ෂේපවල රසායනික සූතු ලියන්න.
- (iii) පහත සඳහන් දේවල් සඳහා හේතු දෙන්න:
 - I. කැටායන සඳහා $extbf{Q}$ පරීක්ෂණයේ දී $H_2 S$ ඉවත් කිරීම
 - ${
 m II.}$ කැටායන සඳහා ${
 m f Q}$ පරීක්ෂණයේ දී සාත්දු ${
 m HNO_3}$ සමග රත් කිරීම

(b) ලෙඩ්, කොපර් හා නිෂ්කිය දුවායක් ${f X}$ නියැදියෙහි අඩංගු වේ. ${f X}$ හි ඇති ලෙඩ් හා කොපර් විශ්ලේෂණය කිරීම සඳහා පහත කියාවලිය සිදු කරන ලදී.

කියාචලිය

 ${f X}$ හි 0.285 g ස්කන්ධයක් තනුක ${f HNO_3}$ මඳක් වැඩි පුමාණයක දුවණය කරන ලදී. පැහැදිලි දුාවණයක් ලැබුණි. ලැබුණු පැහැදිලි දුාවණයට ${f NaCl}$ දුාවණයක් එක් කරන ලදී. සුදු අවක්ෂේපයක් ${f (Y)}$ සෑදුණි. අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපය ${f (Y)}$ හා පෙරනය ${f (Z)}$ වෙන වෙනම විශ්ලේෂණය කරන ලදී.

අවක්ෂේපය (\mathbf{Y})

අවක්ෂේපය උණු ජලයෙහි දුවණය කරන ලදී. K_2CrO_4 දාවණයකින් වැඩිපුර එක් කරන ලදී. කහ පැහැති අවක්ෂේපයක් සැදුණි. අවක්ෂේපය පෙරා වෙන් කර තනුක HNO_3 හි දුවණය කරන ලදී. තැඹිලි පැහැති දාවණයක් ලැබුණි. මෙම දාවණයට වැඩිපුර KI එක් කර, පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~mol~dm^{-3}~Na_2S_2O_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ $Na_2S_2O_3$ පරිමාව $27.00~cm^3$ විය. (අනුමාපනයට NO_3^- අයන බාධා **නොකරන** බව උපකල්පනය කරන්න.)

පෙරනය (\mathbf{Z})

පෙරනය උදාසීන කර එයට වැඩිපුර KI එක් කරන ලදී. පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~{
m mol~dm^{-3}}~{
m Na}_2{
m S}_2{
m O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $15.00~{
m cm}^3$ විය.

(**සැ.යූ.**: නිෂ්කිය දවාසය තනුක HNO_3 හි දවණය වේ යැයි හා එය පරීක්ෂණයට බාධා **නොවේ** යැයි උපකල්පනය කරන්න.)

- (i) X හි අඩංගු ලෙඩි හා කො<mark>පර් ස්කන්</mark>ධ පු<mark>තිශන ග</mark>ණනය කරන්න. අදාළ අවස්ථාවන් හි තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) Y අවක්ෂේපය විශ්ලේෂණ<mark>යේ දී කර</mark>න අනුමාපනයෙහි අන්ත ලක්ෂායේ දී ලැබෙන වර්ණ විපර්යාසය කුමක් ද?

(Cu = 63.5, Pb = 207)

(ලකුණු 7.5 යි.)

- $oldsymbol{9}.~(a)$ පහත සඳහන් පුශ්න පරිසරය සහ ඊට අදාළ ගැටලු මත පදනම් වේ.
 - (i) ගෝලීය උණුසුම්කරණයට දායක වන හරිතාගාර වායු **තුනක්** හඳුනාගන්න. ගෝලීය උණුසුම්කරණය නිසා ඇති වන පුතිවිපාක **දෙකක්** සඳහන් කරන්න.
 - (ii) ගල් අඟුරු බලාගාර නිසා ඇති වන ගෝලීය පාරිසරික ගැටලු හොඳින් පුකට වී ඇත. ගංගා සහ ජලාශ වල සමහර ජල තත්ත්ව පරාමිතියන් වෙනස් වීම සඳහා සැලකීය යුතු ලෙස දායක වන එවැනි එක් ගැටලුවක් හඳුනාගන්න.
 - (iii) ඉහත (ii) හි හඳුනාගන්නා ලද පාරිසරික ගැටලුව සඳහා හේතු වන රසායනික විශේෂය නම් කරන්න. මෙම ගැටලුව නිසා බලපෑමට ලක් විය හැකි ජල තත්ත්ව පරාමිතියන් **තූනක්** සඳහන් කරන්න.
 - (iv) වායුගෝලයේ ඕසෝන් මට්ටම වෙනස් කරන (වැඩි කරන හෝ අඩු කරන) පාරිසරික ගැටලු **දෙකක්** හඳුනාගෙන මෙම වෙනස් වීම් සිදුවන්නේ කෙසේ දැයි තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් පැහැදිලි කරන්න.
 - (v) I. "උත්පේරක පරිවර්තක (catalytic converters) මගින් වාහන පිටාර වායුවෙහි ඇති අහිතකර වායු බහුතරයක්, සාපේක්ෂව අහිතකර බවින් අඩු වායු බවට පරිවර්තනය කරනු ලැබේ." මෙම පුකාශය කෙටියෙන් පැහැදිලි කරන්න.
 - II. උත්පේරක පරිවර්තකයක් මගින් අහිතකර බවින් අඩු වායුවක් බවට පරිවර්තනය නොවන අහිතකර වායුව (CO_2 හැර) නම් කරන්න. මෙම අහිතකර වායුව වාහන එන්ජිම තුළ නිපදවෙන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(b) ${f P}_1$ හා ${f P}_2$ යන වැදගත් සංයෝග දෙකක් හා ඒවායින් ව්යුත්පන්න කරනු ලබන ${f P}_3$, ${f P}_4$ හා ${f P}_5$ යන තවත් වැදගත් සංයෝග තුනක් නිපදවන අයුරු පහත දී ඇති ගැලීම් සටහනෙහි දැක්වේ. ${f Na}_2{f CO}_3$ නිෂ්පාදනයේ දී ${f P}_1$ අමුදවායෙක් ලෙස භාවිත වේ. ${f P}_1$ හා ${f P}_2$ අතර පුතිකියාවෙන් ${f P}_3$ නිෂ්පාදනය කළ හැක. ${f P}_3$ පොහොරක් ලෙස හා ස්ඓා්ටකයක් ලෙස භාවිත වේ. බහුල වශයෙන් භාවිත වන පොහොරක් වන ${f P}_4$ නිෂ්පාදනයේ දී ද ${f P}_1$ භාවිත වේ. වැදගත් තාපස්ථාපන බහු අවයවකයක් වන ${f P}_5$ සංශ්ලේෂණයේ දී ${f P}_4$ භාවිත වේ.

 M
 නිෂ්පාදන කි්යාවලිය
 PC
 අමුදුවා ලබා ගැනීම සඳහා
 R
 අමුදුවා

 P
 ඵලය
 S
 අමුදුවා සඳහා පුභවය

ඉහත ගැලීම් සටහන පදනම් කරගනිමින් පහත පුශ්නවලට පිළිතුරු සපයන්න.

- $(i)\ P_1,\ P_2,P_3,P_4$ හා P_5 හඳුනාගන්න.
- (ii) $old R_1, \ old R_2$ හා $old R_3$ හඳුනාගන්න.
- (iii) $\mathbf{X_1},\mathbf{X_2}$ හා $\mathbf{X_3}$ හඳුනාගන්න.
- (iv) S හඳුනාගන්න.
- (v) අදාළ අවස්ථාවලදී තුලික රසායනික සමීකරණ දෙමින් \mathbf{PC}_1 හා \mathbf{PC}_2 හි සිදු වන කියාවලි කෙටියෙන් සඳහන් කරන්න.
- $({
 m vi})$ ${f M}_1,{f M}_2$ හා ${f M}_3$ නිෂ්පාදන කිුයාවලි හඳුනාගන්න. (උදා: ස්පර්ශ කුමය හෝ ${f H}_2{
 m SO}_4$ නිෂ්පාදනය.)
- (vii) ${f M}_1, {f M}_2$ හා ${f M}_3$ හි සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ සුදුසු තත්ත්ව සමග දෙන්න.
- (viii) I. P_1 හා P_2 යන එක් එක් සංයෝගය සඳහා ඉහත සඳහන් කර නොමැති එක් පුයෝජනයක් බැගින් දෙන්න.
 - ${
 m II.}$ අමුදුවා ${
 m g}$ යක් ලෙස භාවිත කිරීම හැර, ${
 m P}_1$ නිෂ්පාදන කිුිිියාවලියෙහි ${
 m R}_1$ හි එක් පුයෝජනයක් දෙන්න.

10.(a) A හා B යනු අෂ්ටතලීය ජනාමිතියක් ඇති **සංකීර්ණ අයන** (එනම්, ලෝහ අයනය හා එයට සංගත වී ඇති ලිගන) වේ. ඒවාට එකම පරමාණුක සංයුතිය වන $\mathrm{MnC_5H_3N_6}$ ඇත. එක් එක් සංකීර්ණ අයනයෙහි ලිගන වර්ග **දෙකක්** ලෝහ අයනයට සංගත වී ඇත. A අඩංගු ජලීය දුාවණයක් පොටැසියම් ලවණයක් සමග පිරියම් කළ විට C සංගත සංයෝගය සැදෙයි. ජලීය දුාවණයේ දී C මගින් අයන හතරක් ලැබේ. B අඩංගු ජලීය දුාවණයක් පොටැසියම් ලවණයක් සමග පිරියම් කළ විට D සංගත සංයෝගය සැදෙයි. ජලීය දුාවණයේ දී D මගින් අයන තුනක් ලැබේ. C හා D දෙකටම අෂ්ටතලීය ජාාමිතියක් ඇත.

(සැ.යූ.: පොටෑසියම් ලවණය සමග පිරියම් කළ විට ${f A}$ හා ${f B}$ හි ඇති මැන්ගනීස් හි ඔක්සිකරණ අවස්ථා වෙනස් නොවේ.)

- (i) ${f A}$ හා ${f B}$ හි මැන්ගනීස්වලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- (ii) A, B, C හා D හි වාපුහ දෙන්න.
- (iii) A හා B හි මැන්ගනීස් අයනයන්හි ඉලෙක්ටෝනික විනාහසයන් ලියන්න.
- (iv) C හා D හි IUPAC නම් ලියන්න.

(ලකුණු 7.5 යි.)

- (b) (i) I. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ ඉලෙක්ටෝඩයට අදාළ ඔක්සිහරණ අර්ධ පුතිකියාව ලියන්න.
 - II. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ හි ඉලෙක්ටුෝඩ විභවය දුාවණයෙහි Ag^+ සාන්දුණය මත රඳාපවතින්නේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුර පැහැදිලි කරන්න.
 - (ii) පහත පුතිකිුයාව සලකන්න.

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \rightarrow Fe^{2+}(aq) + H_{2}O(1)$$

- ඉහත පුතිකිුිිිිියාවට අදාළ ඔක්සිකරණ හා ඔක්සිහරණ අර්ධ පුතිකිුිියා ලියන්න.
- II. ඉහත ප්‍රතිකියාව විද<mark>්‍යුත් රසායනි</mark>ක කෝෂයක කෝෂ ප්‍රතිකියාව බව දී ඇත් නම් එම කෝෂයෙහි සම්මත විද්‍යුත් ගාමක බලය නිර්ණය කරන්න.

$$E_{Fe^{2+}(aq)/Fe(s)}^{\circ} = -0.44V$$
 $E_{H^{+}(aq)/O_{2}(g)/H_{2}O(1)}^{\circ} = 1.23V$

(iii) රූපයේ දැක්වෙන පරිදි $0.10~{
m mol~dm^{-3}~CaBr_2}$ ජලීය දුංවණයක $100.00~{
m cm^3}$ තුළින් $100~{
m mA}$ වූ නියත ධාරාවක් යවන ලදී. පද්ධතියේ උෂ්ණත්වය $25~{
m ^{\circ}C}$ හි පවත්වා ගන්නා ලදී.

- ඉලෙක්ටුෝඩවල සිදු වන ඔක්සිකරණ සහ ඔක්සිහරණ පුතිකියා ලියන්න.
- II. $\operatorname{Ca(OH)}_2(s)$ අවක්ෂේප වීම ආරම්භ වීමට ගත වන කාලය ගණනය කරන්න. $25~^{\circ}\mathrm{C}$ හි දී $\operatorname{Ca(OH)}_2$ හි දුාවානා ගුණිතය $1.0 \times 10^{-5}~\mathrm{mol}^3~\mathrm{dm}^{-9}$ වේ. ජලයෙහි අයනීකරණය නොසලකා හරින්න. ජලීය කලාපයෙහි පරිමාව නියතව පවතින බව උපකල්පනය කරන්න.

ආවර්තිතා වගුව

	r -	1						_										
	1																	2
1	H		-															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	o	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19		21	22	22	24	7.5	26	T	-	Т	T	1	 		1-	 	A
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	_Se	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
ĺ	87	88	Ac-	104	105	106	107	108	109	110	111	112	113			_ ~ -	1 4 4 6	1411
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs		Uun]						

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Pm										
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

