

MECH 10 Fundamentals of Electronics

- Field Effect Transistor
 - Connections
 - Source
 - Sources charge carriers
 - Drain
 - Sinks charge carriers
 - Gate
 - Controls depletion zone size & current channel conduction

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

Field Effect Transistor

- Trans-conductance
 - The change in drain current divided by the change in gate voltage
 - Control response

Where;

 $g_M = conductance (S)$

 ΔI_D = change in drain current

 ΔV_S = change in gate source voltage

 Name
 Unit symbol
 Quantity
 Symbol

 conductance
 S
 siemens
 g_m

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- **FET Types**
 - Junction FET
 - Single PN junction
 - Advantages
 - High trans-conductance
 - High input impedance (1000's Ω)
 - Thermal stability
 - Zero offset voltage
 - Disadvantages
 - Special handling

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- **FET Types**
 - Junction FET
 - Maximum Ratings
 - V_{GS} gate source voltage (30 to 50V typical)
 - V_{GD} gate drain voltage (30 to 50V typical)
 - V_{DS} drain source voltage (30 to 50V typical)

MECH 10 Fundamentals of Electronics

FET Types

- MOSFET
 - Metal-oxide semiconductor
 - Insulated gate FET
 - Depletion Mode reverse gate/source bias
 - Enhancement Mode forward gate/source bias

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

FET Types

- MOSFET
 - Advantages
 - High trans-conductance
 - High input impedance (meg Ω)
 - Zero power consumption
 - Ideally suited for large scale integration
 - Disadvantages
 - Special handling

FET Types • Mosfet • Maximum Ratings • V_{GS} – gate source voltage (30 to 50V typical) • V_{DS} – drain source voltage (30 to 50V typical) • V_{DS} – drain source voltage (30 to 50V typical)

MECH 10 Mechatronics SIERRA COLLEGE **Fundamentals of Electronics** MOSFET Amplifier Lab Test points $V_{GS(th)}$ – threshold voltage 10ΚΩ V_{GS} – gate source voltage I_D – drain current **Transfer Curve** CIRCUIT 1 Trans-conductance Gate-Source Voltage v Drain Current Channel resistance V_{DS} & I_D $g_m = \frac{\Delta I_D}{\Delta V_{GS}}$

MECH 10 Fundamentals of Electronics

- PWM Motor Control
 - 555 timer & RC time constants
 - Voltage controlled output
 - Measure
 - PWM duty cycle
 - I_{DS}

MECH 10 Fundamentals of Electronics

Lab 24 – MOSFET Motor Drive

Learning Objectives

- Build and test; MOSFET amplifier performance
- Measure gate voltage and drain current
- Plot the gate voltage / drain current relationship on a scatter plot
- Interface digital output with a MOSFET motor control

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar)	10
MOSFET Test Circuit	V _{GS(th)} recorded, compared to data sheet; Data table and scatter plot showing drain current and gate voltage; g _{Is} calculated and compared to data sheet; R _{DSon} calculated and compared to data sheet;	10
MOSFET Switch	Circuit function verified	5
Conclusions	Questions answered completely & accurately	10
	Total	45
Motor Control w PWM MOSFET	IDS recorded at 25%, 50%, 75%, and 100% duty cycle; motor speeds noted	10