MC Packet 5 - Integration and FTC

PERIOD: ____

In-Class Together: Problems 1-6

$$\int_{1}^{e} \left(\frac{x^2 - 1}{x} \right) dx =$$

- (A) $e^{-\frac{1}{e}}$ (B) $e^2 e$ (C) $\frac{e^2}{2} e + \frac{1}{2}$ (D) $e^2 2$ (E) $\frac{e^2}{2} \frac{3}{2}$

Given
$$f(x) = \begin{cases} x+1 & \text{for } x < 0, \\ \cos \pi x & \text{for } x \ge 0. \end{cases}$$

$$\int_{-1}^{1} f(x) dx =$$

- (A) $\frac{1}{2} + \frac{1}{\pi}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{2} \frac{1}{\pi}$ (D) $\frac{1}{2}$ (E) $-\frac{1}{2} + \pi$

$$\int_0^3 |x-1| dx =$$

- (A) 0 (B) $\frac{3}{2}$
- (C) 2 (D) $\frac{5}{2}$
 - (E) 6

$$\int \frac{5}{1-x^2} dx =$$

(A)
$$\frac{-10x}{\left(1+x^2\right)^2}+C$$

(B)
$$\frac{5}{2x} \ln(1+x^2) + C$$
 (C) $5x - \frac{5}{x} + C$

(C)
$$5x - \frac{5}{x} + C$$

(D)
$$5 \arctan x + C$$

(E)
$$5\ln(1+x^2)+C$$

(S)

If
$$\int_{0}^{k} (2kx - x^{2}) dx = 18$$
, then $k =$

- (A) -9
- (B) −3
- (C) 3
- (D) 9
- (E) 18

6

If f is a continuous function and if F'(x) = f(x) for all real numbers x, then $\int_{1}^{3} f(2x) dx =$

- (A) 2F(3)-2F(1)
- (B) $\frac{1}{2}F(3) \frac{1}{2}F(1)$
- (C) 2F(6)-2F(2)
- (D) F(6)-F(2)
- (E) $\frac{1}{2}F(6) \frac{1}{2}F(2)$

- The graph of f is shown in the figure above. If $\int_{1}^{3} f(x) dx = 2.3$ and F'(x) = f(x), then (7)F(3) - F(0) =
 - (A) = 0.3
- (B) 1.3
- (C) = 3.3
- (D) 4.3
- (E) = 5.3

- $\int_{1}^{2} x^{-3} dx =$ **(3)**

- (A) $-\frac{7}{8}$ (B) $-\frac{3}{4}$ (C) $\frac{15}{64}$ (D) $\frac{3}{8}$ (E) $\frac{15}{16}$
- 9 If the function f has a continuous derivative on [0, c], then $\int_0^c f'(x) dx =$
 - (A) f(c) f(0)
- (B) |f(c)-f(0)|
- (C) f(c)
- (D) f(x)+c (E) f''(c)-f''(0)

- $\int \frac{x \, dx}{\sqrt{3x^2 + 5}} =$
 - (A) $\frac{1}{9}(3x^2+5)^{\frac{3}{2}}+C$

- (B) $\frac{1}{4}(3x^2+5)^{\frac{3}{2}}+C$ (C) $\frac{1}{12}(3x^2+5)^{\frac{1}{2}}+C$
- (D) $\frac{1}{3}(3x^2+5)^{\frac{1}{2}}+C$
- (E) $\frac{3}{2} \left(3x^2 5\right)^{\frac{1}{2}} + C$

- If f is the continuous, strictly increasing function on the interval $a \le x \le b$ as shown above, which (11) of the following must be true?
 - $I. \int_a^b f(x) dx < f(b)(b-a)$
 - II. $\int_a^b f(x) dx > f(a)(b-a)$
 - III. $\int_a^b f(x) dx = f(c)(b-a)$ for some number c such that a < c < b
 - (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) I. II. and III

- $\int \sec^2 x \, dx =$ (12)
 - (A) $\tan x + C$

(B) $\csc^2 x + C$

(C) $\cos^2 x + C$

(D) $\frac{\sec^3 x}{2} + C$

- (E) $2\sec^2 x \tan x + C$
- If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$ (3)
 - (A) = 0
- (B) 1

- (C) $\frac{ab}{2}$ (D) b-a (E) $\frac{b^2-a^2}{2}$

- (4)
 - (A) 1

- (D) 4
- (E) 6

(5)

Which of the following are antiderivatives of $f(x) = \sin x \cos x$?

- $I. \quad F(x) = \frac{\sin^2 x}{2}$
- II. $F(x) = \frac{\cos^2 x}{2}$
- III. $F(x) = \frac{-\cos(2x)}{4}$
- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

(b)

For all x > 1, if $f(x) = \int_1^x \frac{1}{t} dt$, then f'(x) =

- (A) 1
- (B) $\frac{1}{r}$
- (C) $\ln x 1$
- (D) $\ln x$
- $(E) = e^{x}$

(1)

What are all values of k for which $\int_{-3}^{k} x^2 dx = 0$?

- (A) ~3
- $(B) \quad 0$
- (C) 3
- (D) -3 and 3
- (E) -3, 0, and 3

(8)

Which of the following is equal to ln 4?

- (A) $\ln 3 + \ln 1$

- (C) $\int_{1}^{4} e^{t} dt$ (D) $\int_{1}^{4} \ln x dx$ (E) $\int_{1}^{4} \frac{1}{t} dt$

 $\int_{0}^{1} \sqrt{x^2 - 2x + 1} \ dx$ is (9)

- (A) -1
- (B) $-\frac{1}{2}$
- (C) $\frac{1}{2}$
- (D) 1
- (E) none of the above

 $\int_0^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^2 x} dx \text{ is}$ 0

- (A) = 0
- (B) 1
- (C) e−1
- (D) e
- (E) e+1

If $\int_a^b f(x) dx = a + 2b$, then $\int_a^b (f(x) + 5) dx =$ 2

- (A) a+2b+5
- (B) 5b 5a
- (C) 7b-4a (D) 7b-5a
- (E) 7b 6a

Let f be a continuous function on the closed interval [0,2]. If $2 \le f(x) \le 4$, then the greatest 2 possible value of $\int_0^2 f(x) dx$ is

- (A) = 0
- (B) 2
- (C) 4 (D) 8
- (E) 16

If $\int_{1}^{2} f(x-c) dx = 5$ where c is a constant, then $\int_{1-c}^{2-c} f(x) dx =$

- (A) 5+c
- (B) 5
- (C) 5-c
- (D) c = 5
- (E) -5

$$\int_{0}^{1} (x+1) e^{x^{2}+2x} dx =$$

- (A) $\frac{e^3}{2}$ (B) $\frac{e^3-1}{2}$ (C) $\frac{e^4-e}{2}$ (D) e^3-1 (E) e^4-e

$$\int_{1}^{4} |x-3| dx =$$

- (A) $-\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) $\frac{9}{2}$ (E) 5

$$\text{If } \int_{-1}^{1} e^{-x^2} dx = k \text{, then } \int_{-1}^{0} e^{-x^2} dx =$$

- (A) -2k (B) -k (C) $-\frac{k}{2}$ (D) $\frac{k}{2}$ (E) 2k

$$\frac{d}{dr} \int_{2}^{x} \sqrt{1+t^{2}} dt =$$

(A) $\frac{x}{\sqrt{1+x^2}}$

- (B) $\sqrt{1+x^2} 5$
- (C) $\sqrt{1+x^2}$

- (D) $\frac{x}{\sqrt{1+x^2}} \frac{1}{\sqrt{5}}$
- (E) $\frac{1}{2\sqrt{1+x^2}} \frac{1}{2\sqrt{5}}$

$$\int_{1}^{2} \frac{x-4}{x^2} dx =$$

- (A) $-\frac{1}{2}$ (B) $\ln 2 2$ (C) $\ln 2$ (D) 2 (E) $\ln 2 + 2$

 $\int_{0}^{1} (3x-2)^{2} dx =$

- (A) $-\frac{7}{3}$ (B) $-\frac{7}{9}$ (C) $\frac{1}{9}$

- (D) 1 (E) 3

 $^{(3)}$ $\int_{1}^{2} \frac{x+1}{x^{2}+2x} dx =$

- (A) $\ln 8 \ln 3$ (B) $\frac{\ln 8 \ln 3}{2}$ (C) $\ln 8$ (D) $\frac{3 \ln 2}{2}$ (E) $\frac{3 \ln 2 + 2}{2}$

If $\int_{1}^{10} f(x) dx = 4$ and $\int_{10}^{3} f(x) dx = 7$, then $\int_{1}^{3} f(x) dx = 6$ 3

- (A) -3 (B) 0

- (C) 3 (D) 10 (E) 11

 $\int_0^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}} =$

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{1}{2} \ln 2$ (E) $-\ln 2$

 $=\frac{d}{dx}\int_0^x \cos(2\pi u)du$ is 33

- (A) 0 (B) $\frac{1}{2\pi}\sin x$ (C) $\frac{1}{2\pi}\cos(2\pi x)$ (D) $\cos(2\pi x)$ (E) $2\pi\cos(2\pi x)$