Use Block Ciphers 2: Many time key

仇渝淇

Semantic Security for many-time key

if adv. wants c = E(k, m) it queries with $m_{j,0} = m_{j,1} = m$

Def: E is sem. sec. under CPA if for all "efficient" A:

 $Adv_{CPA}[A,E] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$ is "negligible."

Ciphers insecure under CPA

假设E(k,m)总是为msg m输出相同的密文,则:

攻击者可以知道两个加密的文件是相同的,两个加密的包是相同的,等等。

如果密钥是多次使用的→ 对于相同的明文消息两次,加密必须 产生不同的输出。

E(k,m)为随机化算法:

对同一消息加密两次得到不同的密文 (w.h.p) ⇒ 密文必须比明文长

Roughly speaking: CT-size = PT-size + "# random bits"

nonce n:k a value that changes from msg to msg.

<u>method 1</u>: nonce is a **counter** (e.g. packet counter)

- 当加密器保持状态从msg到msg时使用
- -如果解密器具有相同的状态,则无需将nonce与CT 一起发送

method 2: encryptor chooses a **random nonce** n ← \mathbb{N}

Def: nonce-based $\mathbb E$ is sem. sec. under CPA if for all "efficient" A:

 $Adv_{nCPA}[A,E] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$ is "negligible."

Use Block Ciphers:

Modes of operation: many time key (CBC) Cipher Block Chaining 密码分组链接模式

仇渝淇

Construction 1: CBC with random IV

Let (E,D) be a PRP. $E_{CBC}(k,m)$: choose <u>random</u> IV \subseteq X and do:

Decryption circuit

In symbols: $c[0] = E(k, IV \oplus m[0]) \Rightarrow m[0] = D(k, c[0]) \oplus IV$

CBC: CPA Analysis

CBC定理:

对于任意L>0,如果E是(K,X)上的安全PRP,则E_{CBC}为 (K, XL, XL+1)上的加密算法

特别地,假设有一个攻击者A进行了选择明文的Q次询问,存在一个攻击分组密码PRP的攻击者B以下关系成立:

 $Adv_{CPA}[A, E_{CBC}] \le 2 \cdot Adv_{PRP}[B, E] + 2 q^2 L^2 / |X|$

Note: CBC is only secure as long as q²L² << |X|

An example

 $Adv_{CPA}[A, E_{CBC}] \le 2 \cdot Adv_{PRP}[B, E] + 2 q^2 L^2 / |X|$

q=密文数, L=明文长度

假设我们想要

 $Adv_{CPA} [A, E_{CBC}] \le 1/2^{32} \iff q^2 L^2/|X| < 1/2^{32}$

AES: $|X| = 2^{128} \implies q L < 2^{48}$

所以,在248个AES块之后,必须更改密钥

CBC where attacker can <u>predict</u> the IV is not CPA-secure!!

Suppose given $c \leftarrow E_{CBC}(k,m)$ can predict IV for next message

Use Block Ciphers:

Modes of operation: many time key (CTR) Randomized Counter Mode 随机计数器模式

仇渝淇

rand ctr-mode (rand. IV): CPA analysis

 $Adv_{CPA}[A, E_{CTR}] \le 2 \cdot Adv_{PRF}[B, E] + 2 q^2 L / |X|$

q = # messages encrypted with k , L = length of max message

Suppose we want $Adv_{CPA} [A, E_{CTR}] \le 1/2^{32} \iff q^2 L/|X| < 1/2^{32}$

• AES: $|X| = 2^{128} \implies q L^{1/2} < 2^{48}$

So, after 232 CTs each of len 232, must change key

(total of 2⁶⁴ AES blocks)

Comparison: ctr vs. CBC

	СВС	ctr mode	
uses	PRP	PRF	
parallel processing	No	Yes	
Security of rand. enc.	q^2 L^2 << X	q^2 L << X	
dummy padding block	Yes No		
1 byte msgs (nonce-based)	16x expansion	no expansion	

(对于CBC,可以通过窃取密文来解决虚拟填充块)

Summary

- PRPs和PRFs:块密码的有用抽象。
- 研究了两个安全概念:(防止窃听的安全, 不提供对篡改密文的安全)
 - 1.semantic security against one-time CPA
 - 2. semantic security against many-time CPA 这两种模式都不能确保数据完整性。
- 安全结果总结如下表:

Power	one-time key	Many-time key (CPA)	CPA and integrity
Sem. Sec.	steam-ciphers det. ctr-mode	rand CBC rand ctr-mode	later