CS306 Operating System Project Report 2

Discussion on CPU Scheduling

Presented by:
Anuraag Singh
2015043
Paras Rastogi
2015175

Submitted to: Dr. M. K Bajpai

TABLE OF CONTENTS

SI no	. TOPIC	PageNo
1.	Details Of Paper Implemented	3
2.	Pseudo Code	4
3.	C++ code Using STL	5
1	OLITPLIT Screenshots	11

<u>Implementation of Paper 1</u>

(IJACSA) International Journal of Advanced Computer Science and Applications, Vol.7, No.1, 2016

Link:

https://thesai.org/Downloads/Volume7No1/Paper 30-Performance Analysis of CPU Scheduli ng Algorithms.pdf

<u>Performance Analysis of CPU Scheduling Algorithms with</u> <u>Novel OMDRRS Algorithm</u>

By-Dr. R. B. Garg, Ex-Professor Delhi University, India
Neetu Goel, Research Scholar Department of Computer Science, TMU, India

The Code implementation and the input and output file has been enclosed with the attachment. Here are some details about it.

To implement the OMDRRS Algorithm we have written the following code using C++ Standard Library Function and have properly commented it for better understanding of the implementation

Pseudo Code as give in Paper

First the factor analysis of each process was calculated using the Formulae F= Arrival time * 0.3 + Priority of the process * 0.5 + Burst time * 0.2

Next, the process was shuffled according to the factor of each process in ascending order in the ready queue such that head of the ready queue contains the lowest factor process burst time, arrival time and priority of process. The pseudo-code of the algorithm is discussed below.

```
BEGIN:
```

While(process in ready queue)

LOW=burst value of the first process in the Ready Queue

HIGH=burst value of the last process in the Ready Queue

TQ=(low + high)/2

k=TQ.

//This time Quantum was applied for each process

 $IF(burst\ time\ of\ the\ process < k)$

That process was assigned to the CPU till it terminates.

ELSE IF(Remaining burst time of the process < k/2)

That process was assigned to the CPU again till it terminates.

ELSE

the

The process will occupy the CPU till the time quantum and it is added to

```
ready queue in ascending order according to the remaining burst time for the next round of execution.

TQ= TQ *2

K=TQ

END IF ELSE
```

C++ CODE:

END WHILE

END

```
//OMDRRS ALGORITHM IMPLEMENTATION USING C++ and its Standard Library
Functions
//Anuraag Singh 2015043
//Paras Rastogi 2015175
#include<iostream>
#include<set>
#include<map>
#include<queue>
using namespace std;
// Swap Number used in Selection Sort
void swap(int * a1,int * a2)
{
      *a1=*a1+*a2;
      *a2=*a1-*a2;
      *a1=*a1-*a2;
void sort(int factoranalysis[],int processid[],int arrivaltime[],int bursttime[],int priority[],int
n)
{
      //SELECTION SORT to sort the process according to Factor analysis time
      for(int i=0;i<n;i++)
      int tempind=i;
      for(int j=i+1;j<n;j++)
      {
```

```
// Picking the smallest element each time
       if(factoranalysis[j]<factoranalysis[tempind])
       {
             tempind=j;
       if(tempind!=i)
       // Swapping Index
       swap(&factoranalysis[tempind],&factoranalysis[i]);
       swap(&processid[tempind],&processid[i]);
       swap(&arrivaltime[tempind],&arrivaltime[i]);
       swap(&bursttime[tempind],&bursttime[i]);
       swap(&priority[tempind],&priority[i]);
      }
}
void sort2(int factoranalysis[],int processid[],int arrivaltime[],int bursttime[],int priority[],int
turnaroundtime[],int waitingtime[],int responsetime[],int n,int completiontime[])
{
      //SELECTION SORT to print answer
       for(int i=0;i<n;i++)
       int tempind=i;
       for(int j=i+1;j<n;j++)
       {
      // Picking the smallest element each time
       if(processid[j]<processid[tempind])</pre>
       {
             tempind=j;
       if(tempind!=i)
       // Swapping Index
       swap(&factoranalysis[tempind],&factoranalysis[i]);
       swap(&completiontime[tempind],&completiontime[i]);
       swap(&processid[tempind],&processid[i]);
```

```
swap(&arrivaltime[tempind],&arrivaltime[i]);
       swap(&bursttime[tempind],&bursttime[i]);
       swap(&priority[tempind],&priority[i]);
       swap(&responsetime[tempind],&responsetime[i]);
       swap(&turnaroundtime[tempind],&turnaroundtime[i]);
       swap(&waitingtime[tempind],&waitingtime[i]);
      }
       }
int main()
      // Number of Process
       int n;
       cout<<"Enter Number of Process"<<endl;
       cin>>n:
       cout<<"Enter Details of each process in this order Process ID -> Arrival Time ->
Burst Time -> Priority -> "<<endl;
       int processid[n],arrivaltime[n],bursttime[n],bursttime2[n],priority[n];
       int turnaroundtime[n], waiting time[n], response time[n], completion time[n];
       int factoranalysis[n];
      //Deails of each Process
       for(int i=0;i<n;i++)
      {
       cin>>processid[i];
       cin>>bursttime[i];
       cin>>arrivaltime[i];
       cin>>priority[i];
       completiontime[i]=0;
      }
      //Calculating factoranalysis according to bursttime, arrivaltime, priority time
       for(int i=0;i<n;i++)
       {
       factoranalysis[i]=bursttime[i]*0.2+arrivaltime[i]*0.3+priority[i]*0.5;
       responsetime[i]=0;
      }
```

```
//Sorting the processes according to factoranalysis
       sort(factoranalysis,processid,arrivaltime,bursttime,priority,n);
       map<int,int> mp;
                           //Hashing the process with its id, as it will change after
operation
       for(int i=0;i<n;i++)
       bursttime2[i]=bursttime[i];
       int low=bursttime[0];
       int high=bursttime[n-1];
       int timequantum=(high+low)/2;
       priority queue<pair<int,int> > qq;
      // Min heap for gettint the process with minimum burst time after it is in the ready
queue
       int timer=arrivaltime[0];
 // int temp=factoranalysis[0];
       // Pushing the process in the ready queue as before executinn the first process
they should already be in the queue
       int toggle=0; // To toggle Time Quantum
// Filling ready queue according to factoranalysis
       for(int i=0;i<n;i++)
       {
       responsetime[i]=timer;
       if(timequantum>=bursttime[i])
       {
              timer+=bursttime[i];
              bursttime[i]=0;
              completiontime[i]=timer;
      }
```

```
else
{
      timer+=timequantum;
      // Premptive implementation
      bursttime[i]-=timequantum;
      if(bursttime[i]==0)
      completiontime[i]=timer;
      else
      qq.push(make_pair(bursttime[i],i));
      // Toggling Time Quantum everytime
      if(toggle==0)
      timequantum=timequantum/2;
      toggle=1;
      else
      timequantum=timequantum*2;
      toggle=0;
}
while(qq.size()>0) // Till ready queue is not empty
pair<int,int> p=qq.top();
int id=p.second;//=mp[processid[p.second]];
qq.pop();
if(timequantum>=bursttime[id])
{
      // Process Completed
      timer+=bursttime[id];
      bursttime[id]=0;
      //Completion Time Updated
```

```
completiontime[id]=timer;
}
else
{
      timer+=timequantum;
      // Premptive implementation
      bursttime[id]-=timequantum;
      if(bursttime[id]==0)
      completiontime[id]=timer;
      else
      qq.push(make_pair(bursttime[id],id));
      // Toggling Time Quantum everytime
      if(toggle==0)
      timequantum=timequantum/2;
      toggle=1;
      }
      else
      timequantum=timequantum*2;
      toggle=0;
      }
}
}
// Calculaiting Different Parameters
int totalturnaroundtime=0;
int totalwaitingtime=0;
int totalresponsetime=0;
for(int i=0;i<n;i++)
{
// TurnAroundTime= Completion Time - Arrival Time
turnaroundtime[i]=completiontime[i]-arrivaltime[i];
```

```
// WaitingTime= TurnAround Time - Burst Time
      waitingtime[i]=turnaroundtime[i]-bursttime2[i];
      totalturnaroundtime+=turnaroundtime[i];
      totalwaitingtime+=waitingtime[i];
      totalresponsetime+=responsetime[i];
      }
sort2(factoranalysis,processid,arrivaltime,bursttime2,priority,turnaroundtime,waitingtime,
responsetime,n,completiontime);
      cout<<"\nProcess ID |"<<"Arrival Time |"<<"Burst Time |"<<"Completion Time
|"<<"Turnaround Time |"<<"Waiting Time |"<<"Response Time |"<<endl;
      for(int i=0;i<n;i++)
      {
cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>cout<<pre>completiontime
[i]<<"\t|\t"<<turnaroundtime[i]<<"\t|\t"<<responsetime[i]<<endl;
      }
      float avgwaitingtime=totalwaitingtime/(1.0*n);
      float avgturnaroundtime=totalturnaroundtime/(1.0*n);
      float avgresponsetime=totalresponsetime/(1.0*n);
      cout<<endl<="Average Waiting Time ="<<avgwaitingtime<<endl;
      cout<<endl<="Average Response Time ="<<avgresponsetime<<endl;
      cout<<endl<<"Average TurnAroundTime ="<<avgturnaroundtime<<endl;
      return 0;
}
```

OUTPUT

Output file has been enclosed, here are the screenshots

Input File

OUTPUT

@ .⊕.Ø (-F)	leo ŒditerWieW Open ▼		ls Documents H	lelp									9	≘ En 🕏 🔤 (1009	6) 4 1)) Sat Sep 3	
																Save
			r of Proce				Tr		T-1	. Donat	T-1	. D.d				
	2 Enter	Detai	ts or each	n process	s in thi	s order i	rocess II	-> Arrivat	11me	-> Burst	Time	-> Priority	->			
	A Proce	ec TD	[Arrival	Time IRuu	rct Time	[Complet	tion Time	Turnaround	Time	lWaiting	Time	Response	Time I			
	51	0	23	817	817	794	226	Trainar ound	TIME	IMATETING	Time	[Nesponse i	Tille			
	62	5	34	694	689	655	399									
	73	3	34	678	675	641	442									
	8 4	6	12	187	181	169	175									
'-	95	8	8	89	81	73	81									
	106	4	10	99	95	85	89									
(A)	117	1	31	733	732	701	354									
	128	2	23	812	810	787	381									
	139	3	9	65	62	53	56									
	14 10	6	16	81	75	59	65									
	15 11	5	1	6	1	0	5									
	16 12	8	12	827	819	807	244									
	17 13	2	4	10	8	4	6									
	18 13 19 14	9	15	484 22	475 16	460 10	469 16									
	20 15	2	6 7	22	27	20	22									
	21 16	3	9	38	35	26	29									
	22 17	5	111	322	317	306	311									
	23 18	8	7	433	425	418	426									
	24 19	9	4	161	152	148	157									
	25 20	5	15	114	109	94	99									
	26 21	6	20	755	749	729	302									
	27 22	3	14	175	172	158	161									
	28 23	2	7	121	119	112	114									
	29 24	1	24	802	801	777	187									
	30 25	5	22	720	715	693	433									
	31 26	8	16	354	346	330	338									
	32 27	5	33	796	791	758	556									
	33 28	3	12	830	827	815	205									
	34 29 35 30	b 9	22 19	821 765	815 756	793 737	284 529									
	20.01			cco	/50	/3/	529									
	Loading file	/home/anuraa	g/Documents/OS/	/out.txt'									Plain Text ▼	Tab Width: 4 ▼	Ln 1, Col 1	▼ INS

anuraag@anuraag-Lenovo	-Y50-70: ~/Documents/OS						En \$ ■ (100%) (100%) Sat Sep 30 15:16:59
Process	ID Arrival Time	Burst Time Con	npletion Time T	urnaround Time	Waiting Time	Response Time	
(C) 1	0	23	817	817	794	226	
2	5	34	694	689	655	399	
3	3	34	678	675	641	442	
4	6	12	187	181	169	175	
5	8	8	89	81	73	81	
6	4	10	99	95	85	89	
7	1	31	733	732	701	354	
8	2	23	812	810	787	381	
9	3	9	65	62	53	56	
- 110	6	16	81	75	59	65	
11	5	1	6	1	0	5	
12	8	12	827	819	807	244	<u> </u>
13	2	4	10	8	4	6	
13	9	15	484	475	460	469	
14	6	6	22	16	10	16	
15	2	7	29	27	20	22	
16	3	9	38	35	26	29	
17	5	11	322	317	306	311	
18	8	7	433	425	418	426	
19	9	4	161	152	148	157	
20	5	15	114	109	94	99	
21	6	20	755	749	729	302	
22	3	14	175	172	158	161	
23	2	7	121	119	112	114	
24	1	24	802	801	j 777	187	
25	5	22	720	715	693	433	
26	8	16	354	346	330	338	
27	5	33	796	791	758	556	
28	j 3	12	830	827	815	205	<u> </u>
29	6	22	821	815	793	284	<u> </u>
30	9	19	765	756	737	529	<u> </u>
a 31	5	34	662	657	623	511	L.
32	9	40	707	698	658	538	
33	1	12	226	225	213	214	
34	3	15	136	133	118	121	<u> </u>
35	5	7	143	138	131	136	
36	3	14	157	154	140	143	
37	j 5	16	338	333	317	322	<u> </u>
38	j 2	28	775	773	745	484	<u> </u>