Partial Translation to Japanese Patent Application Publication 11-143372

[0002]

[Description of the Prior Art] A plasma display includes two sets of linear electrodes. The linear electrodes of one set extend in parallel with each other in the horizontal direction along the front surface of a display panel. The linear electrodes of another set extend in parallel with each other in the vertical direction along the front surface of the panel. A pixel is established at the intersection between the horizontal and vertical liner When pulse voltage is applied to the sets of electrodes. linear electrodes, discharge is caused within cells. discharge induces the radiation of ultraviolet light, which excites RGB phosphor so as to cause radiation of visible In this case, the pulse voltage is set at several ten to several hundred voltages. The switching frequency is set at several hundred kHz.

[0003]

When the aforementioned linear electrodes within the plasma display panel are driven based on the application of the pulse voltage, an electric current of a high frequency passes through the linear electrodes. A metallic enclosure is located behind the plasma display panel. Capacitive coupling is established between the linear electrodes within the plasma display panel and the metallic enclosure. This results in the establishment of a current loop between the linear electrodes within the plasma display panel and the driving circuits. According to the current loop, the metallic enclosure serves as an antenna that so electromagnetic radiated. waves are The radiated electromagnetic waves affect other peripheral electronic apparatuses. In order to prevent the radiation of the

electromagnetic waves, metallic front and rear covers are provided so as to shield the entire plasma display panel. The front and rear covers are connected with the metallic enclosure so as to establish the ground. The front cover is made of a transparent electrically-conductive material in order to prevent the radiation of the electromagnetic waves from the front surface of the plasma display panel.

The plasma display is supported on a stand. The stand is coupled to the aforementioned metallic enclosure located behind the plasma display panel. Metallic screws are used for the connection. As described above, the metallic enclosure and the linear electrodes within the plasma display panel in combination establish the current loop based on the capacitive coupling when the plasma display panel is driven. The metallic screws need to be electrically insulated from the stand so as not to act as a radiation source of the electromagnetic waves.

[Problem(s) to be solved by the Invention] Since the ground lines of the driving circuits are coupled to the metallic enclosure, a large amount of the electric current flows in the metallic enclosure when the plasma display panel is driven. The current loop of a high frequency is established among the driving circuits, the linear electrodes within the plasma display panel, and metallic enclosure. This allows the plasma display panel and the metallic enclosure to act as a source of the electromagnetic waves, which can electrically affect other surrounding electronic apparatuses. A metallic plate is employed to shield the driving circuits and a digital signal processing circuit from the radiation of the electromagnetic waves. Since the metallic plate grounded to the metallic enclosure that receives a large

amount of electric current, the effect of the shield is not sufficient as expected.

SHIELDING STRUCTURE FOR PLASMA DISPLAY

Patent number:

JP11143372

Publication date:

1999-05-28

Inventor:

Ġ

1

1

KIKO SHIGEO

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

G09F9/00

- european:

Application number:

JP19970305451 19971107

Priority number(s):

JP19970305451 19971107

Report a data error here

Abstract of **JP11143372**

PROBLEM TO BE SOLVED: To shield interference electromagnetic waves radiated due to the drive of a plasma display. SOLUTION: A metallic casing 4 arranged on the rear of a panel 1 is electrically insulated from an external casing 5 and the casing 5 is grounded to a safety earth to completely shield interference electromagnetic waves radiated from electrodes in the panel 1, a driving circuit 2 and the casing 5. When a stand 7 is connected to the casing 5 by screws 8 consisting of an insulating material, the radiation of interference electromagnetic waves from the stand 7 can be prevented.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-143372

(43)公開日 平成11年(1999)5月28日

(51) Int.Cl.6 G09F 9/00 識別記号 309

FΙ

G09F 9/00

309A

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号

(22)出願日

特願平9-305451

平成9年(1997)11月7日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 木子 茂雄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 プラズマディスプレイのシールド構造

(57)【要約】

【課題】 プラズマディスプレイの駆動により放射され る妨害電磁波をシールドすることを目的とする。

【解決手段】 パネル1の背面の金属筐体4と外装筐体 5を電気的に絶縁し、外装筐体5を安全アースに接地す るととによりパネル1内の電極や駆動回路2、金属筐体 5より放射される妨害電磁波を完全に遮断させることが でき、また、スタンド7を絶縁物でできたビス8により 金属筐体5に接続することによりスタンド7からの妨害 電磁波の放射を防ぐことができる。

5 外装筐体 前面板

スタンド 8 **ビ**ス 9 発导物

(2)

【特許請求の範囲】

【請求項 1 】 プラズマディスプレイパネルの駆動回路のGNDと前記プラズマディスプレイパネルの背面の金属体と、前記プラズマディスプレイパネルの外装の金属筐体とを電気的に分離し、前記外装の金属筐体をアースに接続したことを特徴とするプラズマディスプレイのシールド構造。

1

【請求項2】 プラズマディスプレイパネルの背面の金属筐体と、前記プラズマディスプレイパネルを支えるスタンドを固定するためのビスとの間に絶縁物をはさむこ 10とを特徴とするプラズマディスプレイのシールド構造。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の線状電極を 有するプラズマディスプレイのシールド構造に関するも のである。

[0002]

【従来の技術】プラズマディスプレイでは複数の線状電極が水平方向と垂直方向に配置されており、交点の部分に1つの画素が形成されている。これらの電極間にバル 20 ス電圧を印加することによりセル内で放電が起こり、放電により放射される紫外線によりRGB蛍光体を励起し、発光を行っている。この時、バルス電圧は数十Vから数百Vの電圧であり、スイッチングの周波数は数百kHzになっている。

【0003】このようにパネル内に配置された前記線状電極群にパルス電圧を印加して駆動する際、線状電極群に高周波の電流が流れることになる。また、パネルの背面には金属筐体が容量結合することで、パネル内の電極とを属筐体が容量結合することで、パネル内の電極と駆動回路との間で電流ループを形成しており、この電流ループにより金属筐体自身もアンテナとなって電磁妨害波が放射され、他の電子機器に電磁的な悪影響を及ぼす。このような電磁妨害波を遮断させるためにパネル全体をシールドすることを目的として前面カバーと後面カバーに金属を使用した上で金属筐体に接地し、さらにパネル前面からの輻射を押さえるために前面カバーも透明の導電体を使用することにより、パネルから放射される電磁妨害波を遮断させていた。

【0004】また、プラズマディスプレイパネルを支え 40 るためのスタンドは金属のビスによりパネル背面の前記 金属筐体に接続されていた。このとき、金属筐体はパネル内の線状電極と容量結合することにより、パネルの駆動の際の充放電電流ループの一部となっているため、ビスも妨害電磁波の放射源となることから、スタンドとビスは電気的には絶縁されていた。

[0005]

【発明が解決しようとする課題】このように構成された プラズマディスプレイでは、各駆動回路のGNDを金属 筐体に接続されていたため、パネルの駆動の際の多大な 50

充放電電流が金属筐体を流れていた。この結果、駆動回路とパネル内の電極と金属筐体との間で高周波の電流ループを形成することでパネルと筐体全てが妨害源となっており、この妨害電磁波が他の電子機器に電気的な悪影響を及ぼす恐れがあった。そのためにこの妨害電磁波を遮断すべく、駆動回路及びディジタル信号処理回路を金属体によりシールドしていたが、この金属体を多大な充放電電流が流れている金属筐体に接地していたために、妨害電磁波の遮断効果が薄れていた。

【0006】さらに、プラズマディスプレイパネルを支えるためのスタンドは金属のビスによりパネル背面の金属筐体に接続されていた。このとき、金属筐体はパネル内の線状電極と容量結合することにより電磁波の放射源となっているため、金属のビスにより接続されているスタンドも妨害電磁波の放射源となっていた。また、スタンドとビスを絶縁した場合でもスタンドとビスが容量結合することにより、金属筐体のノイズがスタンドに漏れてくるため、スタンドが妨害電磁波の放射源となっていた。

[0007]

【課題を解決するための手段】上記課題を解決するために、本発明のプラズマディスプレイのシールド構造は、バネル背面の金属筐体と外装筐体とを電気的に絶縁し、外装筐体を安全アースに接地したことを特徴としたものである。 さらに、スタンドをプラズマディスプレイパネル本体に支えるためのビスを絶縁物にするか、もしくはビスとパネル背面の金属筐体との間に絶縁物を挟んだことを特徴とするものである。

[0008] 本発明によれば、バネルの駆動の際の充放 電電流によりバネル背面の金属筐体が妨害電磁波の放射 源となった場合でも、この金属筐体と外装筐体とを電気 的に絶縁した上に、外装筐体を安全アースに接地したこ とにより、外装筐体には充放電電流が流れることがなく 等電位を保つことができるため、妨害電磁波の放射源と なっているバネルや金属筐体を完全にシールドすること ができる。

【0009】さらに、ビスを絶縁物にしたことにより金属筐体とスタンドが容量結合することがなく、スタンドが妨害源になることがなくなる。また、ビスと金属筐体との間に絶縁物を挟んだ場合でも同様に金属筐体とビスが絶縁されるために、このビスによりスタンドを固定したとしてもスタンドが妨害源となることがない。

[0010]

【発明の実施の形態】本発明の請求項1に記載されたプラズマディスプレイのシールド構造は、パネル背面の金属筐体と外装筐体とを電気的に絶縁した上に、前記外装筐体を安全アースに接地したことを特徴としたものであり、妨害源となっている前記金属筐体は前記安全アースにより電気的に等電位に保たれた前記外装筐体により完全にシールドすることができる。

特開平11-143372~~~

3

【0011】次に、本発明の請求項2に記載されたプラ ズマディスプレイのシールド構造はスタンドとプラズマ ディスプレイパネル本体とを接続するビスを絶縁物にし たことを特徴としたものであり、金属筐体のノイズがビ スを伝わりスタンドに流れ込んでくることを防ぐもので ある。

【0012】次に、本発明の請求項3に記載されたプラ ズマディスプレイのシールド構造は、金属筐体とビスの 間に絶縁物を挟み込んだことを特徴としたものであり、 ている充放電電流がスタンドに流れることがなくなる。 【0013】(実施の形態1)以下に本発明の請求項1 および請求項2に記載された発明の実施の形態について 図1を用いて説明する。

【0014】図1はプラズマディスプレイの筐体構造を 示すものである。1はプラズマディスプレイのパネルで あり、2は駆動回路である。駆動回路2の出力端子は3 のフレキシブルケーブルによりパネル 1 内の電極に接続 される。また、パネル1は4の金属筐体に貼り付けられ ている。とのとき、駆動回路2の出力端子より高圧のパ 20 筐体により完全にシールドすることができる。 ルス電圧がパネル内の電極に印加されるため、とのパネ ル内の電極がアンテナとなって妨害電磁波を放射する。 【0015】さらに、パネル1と金属筐体4が容量結合 することによりパネル内の電極は駆動回路2から見ると 容量性負荷となっている。そのため、パネル内の電極に 流れる充放電電流は多大となり、駆動回路2とパネル1 内の電極、さらに金属筐体4のすべてが妨害電磁波の放 射源となっている。そこで、この妨害源を遮断するため に導電性の外装5と導電性の前面板6によりパネル1や 駆動回路2、そして金属筐体4を覆うような構成にし、 この外装5を金属筐体4と絶縁し、前記外装を安全アー スに接地することにより前記外装は等電位に保たれ、完 全に内部の妨害源を遮断することができる。

【0016】また、筐体を支えるスタンド7を筐体に固 定するために金属のビス8により金属筐体4と接続され るが、このときビス8と金属筐体4は電気的に接続され るため、ビス8も妨害源となっている。そこで、スタン ド7とピス8は絶縁物9により絶縁させ、スタンド7が 妨害源となることを防ぐが、ビス8とスタンド7が容量 結合することによりスタンド7にも充放電電流が流れる 40 9、10 絶縁物

ことにより結局妨害源となってしまう。そこでこのビス 8を絶縁のものにすることで、金属筐体4のノイズがス タンド7に流れ込むのを防ぐととができる。

【0017】(実施の形態2)本発明の他の実施例につ いて、図2を用いて説明する。図2はプラズマディスプ レイパネルの金属筐体4とビス8の接続図である。ビス 8はプラズマディスプレイパネルをスタンドに固定する ために使用される。

【0018】本発明の実施の形態例は、スタンド(図示 金属筐体とビスを絶縁したことにより、金属筐体に流れ(10)せず)を金属筐体7に固定するとき、ビス8と金属筐体 4との間に絶縁物10を挟むことにより、金属筐体4に 流れているノイズがピス8に流れ込むのを防ぐことがで きる。従ってスタンドにノイズが流れ込むことを防ぐと とにより、スタンドが妨害源となることを防ぐことがで きる。

 $\{0019\}$

【発明の効果】以上のように本発明によれば、複数の線 状電極を有するプラズマディスプレイの表示パネルから 放射される妨害電磁波を、安全アースに接地された外装

【0020】また、ビスを絶縁物にすることにより金属 筐体からスタンドにノイズが流れ込むことを防ぐことが できる。また、ビスと金属筐体との間に絶縁物を挟むと とにより、同様にスタンドにノイズが流れ込むことを防 ぐことができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1におけるプラズマディス プレイの筐体の構造を示す図

【図2】本発明の実施の形態2におけるビスと金属筐体 との接続図

【符号の説明】

- 1 パネル
- 駆動回路
- フレキシブルケーブル
- 4 金属筐体
- 5 外装筐体
- 6 前面板
- 7 スタンド
- ビス Я

BEST AVAILABLE COPY

(4)

特開平11-143372----

【図1】

1 パネル

- ハイル 2 駆動回路 3 フレキシブルケーブル 4 金属筐体

5 外装筐体

6 前面板 7 スタンド 8 ピス 9 **絶縁物**

【図2】

7 金属筐体 8 ピス 9 絶縁物

