WARSAW MID **IT DAYS**

Scaling to Success: Leveraging KEDA and Kubernetes for Optimal Azure DevOps Pipeline Performance

Wolfgang Ofner

Freelance Cloud Architect, ProgrammingWithWolfgang

Wolfgang Ofner

Freelance Cloud Architect, Perth, Australia Focus on Azure, Kubernetes, DevOps and .NET

https://programmingwithwolfgang.com

https://www.linkedin.com/in/wolfgangofner

https://twitter.com/wolfgang_ofner

Agenda

- Architecture in SW projects
- Introduction to KEDA
- Scaling Azure DevOps Agents in Kubernetes
- KEDA Conclusion

Simplified Architecture History

- Server Client Architecture
- Only few clients
- No redundancy
- No high availability

Simplified Architecture History

- Static load balancing
- New VMs need to be added by hand
- Expensive on-premises hardware

Simplified Architecture History

Automatically adding additional hardware

Pay only what you need

Mostly CPU or RAM based scaling

Modern Architecture

Kubernetes

- Horizontal Pod Autoscaler (HPA)
 - Scaling according to CPU and/or RAM
- Architectures get more and more complex
- Dependencies on external components
- Applications have to react to events
 - Database
 - Service Bus
 - Streams

Horizontal Pod Autoscaler

- Scales Deployments or StatefulSets
- Adds or removes pods
- Scaling based on CPU or RAM usage
- Scaling on custom metrics
 - Query custom metrics from Kubernetes API
 - Prometheus
 - requests per second

Horizontal Pod Autoscaler Configuration

```
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata
 name customerapi
 namespace: customerapi-test
spec
 maxReplicas: 10
 minReplicas 1
  averageCpuUtilization: 50
  scaleTargetRef
    apiVersion apps/v1
    kind Deployment
    name customerapi
```

```
behavior:
  scaleDown:
    policies:
    - type: Pods
      value: 4
      periodSeconds: 60
    - type: Percent
      value: 10
      periodSeconds: 60
    selectPolicy: Min
```

```
scaleUp:
  policies:
  - type: Pods
    value: 5
    periodSeconds: 60
  - type: Percent
    value: 12
    periodSeconds: 60
  selectPolicy: Max
```

Limitation of the HPA

- Black Friday
- Thousands of orders are stored in a queue
- Scaling using CPU or RAM is not sufficient
- No option for scaling in this scenario

KEDA – Kubernetes Event-driven Autoscaling

- Kubernetes Event-driven Autoscaling
- Open source
- CNCF Project
- Maintained by
 - Docplanner Tech
 - Microsoft
 - Red Hat

KEDA

- ~61 built-in Scaler
 - Apache Kafka
 - Azure Blob Storage
 - Azure Monitor
 - Azure Service Bus
 - Elastic Search
 - MongoDB
 - Prometheus
 - Redis Streams

KEDA Use Cases

- Scale according to external events
- Scale to Zero
 - Bring serverless to your datacenter
 - Recreate Azure Functions architecture
 - Better resource usage

KEDA Installation

- Installation via Helm charts
- Namespace: keda

KEDA Installation

kubectl create namespace keda

helm repo add kedacore https://kedacore.github.io/charts

helm repo update

helm install keda kedacore/keda --namespace keda

KEDA Resources

NA po	C:\Users\Wolfgang> kubectl get all -n ME od/keda-operator-5748df494c-mxz9p od/keda-operator-metrics-apiserver-cb649		1/		STATUS Running Running	1000	ΓS AGE 124 124	m <mark> </mark>	
	ME rvice/keda-operator-metrics-apiserver	TYPE Cluster		USTER	R-IP 1.182	EXTERNAL-1		T(S) /TCP,80/TCP	AGE 124m
de	ME ployment.apps/keda-operator ployment.apps/keda-operator-metrics-ap	iserver	READY 1/1 1/1	UP- 1 1	TO-DATE	AVAILABI 1 1	_E AGE 124 124	m	
re	ME plicaset.apps/keda-operator-5748df494c plicaset.apps/keda-operator-metrics-ap:		:b649dd4	1	DESIRED	CURRENT 1 1	READY 1 1	AGE 124m 124m	

KEDA Architecture

- 2 components for KEDA
 - Agent or Operator
 - Metrics Server
- Uses HPA for scaling
- Seamless integration into existing architecture

KEDA Architecture

- 2 components for KEDA
 - Agent
 - Metrics Server
- Uses HPA for scaling
- Seamless integration into existing architecture
- 2 custom K8s resources for scaler
 - ScaledObject
 - TriggerAuthentication

ScaledObject

```
apiVersion:
keda.sh/v1alpha1
kind: ScaledObject
metadata:
   name: kedademoapi-scaler
```

```
spec:
    scaleTargetRef:
    name: kedademoapi
    minReplicaCount: 0
    maxReplicaCount: 10
    pollingInterval: 30
    cooldownPeriod: 30
```

```
triggers:
    type: azure-servicebus
    metadata:
        queueName: KedaDemo
        queueLength: '5'
        authenticationRef:
        name: trigger-
authentication-kedademoapi
```

TriggerAuthentication

```
apiVersion: keda.sh/v1alpha1
kind: TriggerAuthentication
metadata:
   name: trigger-authentication-kedademoapi
spec:
   secretTargetRef:
    parameter: connection
        name kedademoapi-connectionstrings
        key: AzureServiceBus__ConnectionString
```


Kubernetes Secret

```
PS C:\Users\Wolfgang> kubectl get secrets
NAME
                                                      TYPE
                                                                                             DATA
                                                                                                    AGE
default-token-88lzb
                                                      kubernetes.io/service-account-token
                                                                                                    26h
                                                                                             3
kedademoapi-connectionstrings
                                                                                                    26h
                                                      Opaque
kedademoapi-tls
                                                      kubernetes.io/tls
                                                                                                    26h
sh.helm.release.v1.kedademoapi-kedademoapi-test.v1
                                                      helm.sh/release.v1
                                                                                                    26h
sh.helm.release.v1.kedademoapi-kedademoapi-test.v2
                                                      helm.sh/release.v1
                                                                                                    22h
PS C:\Users\Wolfgang> kubectl describe secret kedademoapi-connectionstrings
Name:
              kedademoap1-connectionstrings
              kedademoapi-test
Namespace:
Labels:
              app.kubernetes.io/managed-by=Helm
              meta.helm.sh/release-name: kedademoapi-kedademoapi-test
Annotations:
              meta.helm.sh/release-namespace: kedademoapi-test
Type:
       Opaque
Data
```

165 bytes

AzureServiceBus__ConnectionString:

Kubernetes Secret

```
Namespace Overview > Config and Storage > Secrets > kedademoapi-connectionstrings

kedademoapi-connectionstrings

Summary Metadata Resource Viewer YAML

1 ---
2 apiVersion: v1
3 data:
4 AzureServiceBus_ConnectionString: RW5kcG9pbnQ9c2I6Ly93b2xmZ2FuZ2t1ZGFkZW1vLnN1cr
5 kind: Secret
```


Azure DevOps Agent with KEDA

Demo: Scaling ADO Agent with KEDA

- Azure DevOps preparation
- Build Docker image
- Test locally
- Deploy to Kubernetes
- Apply KEDA scaling

Azure DevOps Limitations

- ADO Pipelines support scale to zero but need at least one agent registered
- ADO Pipelines can not queue a job with an empty agent pool
- Licensing limits parallel jobs

KEDA ADO Scaling Limitations

- Cancelling a pipeline does not stop running pods
- KEDA does not remove completed pods
- Azure DevOps does not remove offline agents from the agent pool

KEDA in Production

- Microsoft uses KEDA for Azure Services
 - Azure Container Apps
 - Azure App Services with Azure Arc
- KEDA 1.0.0 → 17. Nov 2019
- Currently 2.10
- Over 6k GitHub stars

Resources

- Demo Application
 - https://github.com/WolfgangOfner/MicroserviceDemo/tree/master/KedaDemoApi
 - https://github.com/WolfgangOfner/Ado-Agent-Keda
- KEDA
 - https://keda.sh
- KEDA GitHub
 - https://github.com/kedacore/keda
- KEDA Architecture Screenshot
 - https://keda.sh/docs/2.6/concepts/#architecture

Contact

Level Up your Kubernetes Scaling with KEDA Wolfgang Ofner

https://programmingwithwolfgang.com
https://www.linkedin.com/in/wolfgangofner
https://twitter.com/wolfgang_ofner

WARSAW IT DAYS

Thank you for watching!

Remember to rate the presentation and leave your questions in the section below.

31 March - 1 April 2023

