

Komunikacijske mreže

8.

Aplikacijski sloj u Internetu, sustav domenskih imena (DNS).

Ak.g. 2011./2012.

Podsjetimo se...

Referentni model OSI

7 Aplikacijski sloj 6 Prezentacijski sloj 5 Sjednički sloj 4 Transportni sloj 3 Mrežni sloj 2 Sloj podatkovne poveznice 1 Fizički sloj

Referentni model TCP/IP

4 Aplikacijski sloj
3 Transportni sloj
2 Mrežni sloj
1

Internetski model: 4. aplikacijski sloj

4 Aplikacijski sloj
3 Transportni sloj
2 Mrežni/internetski sloj

- aplikacijski protokoli za različite usluge i primjene
- korisnički, npr.:
 - SMTP (Simple Mail Transfer Protocol): elektronička pošta
 - HTTP (Hyper Text Transfer Protocol): WWW
- sustavski, npr.:
 - DNS (*Domain Name System*): sustav imenovanja domena

Sadržaj predavanja

Osnove internetskih usluga

- usluge i aplikacijski protokoli
- modeli izvedbe usluga
- pronalaženje usluga
- programska podrška

Sustav domenskih imena

- prostor domenskih imena
- registracija imena
- organizacija i izvedba sustava DNS

Osnove internetskih usluga

- aplikacijski protokol
 - vrste poruka
 - sintaksa poruka propisani formati poruka
 - semantika poruka značenje polja u poruci
 - pravila kako se poruke razmjenjuju
- model izvedbe usluge
 - najčešći model: klijent/poslužitelj
 - postoje i drugi modeli (o tome kasnije)
- program klijenta
- program poslužitelja

Usluge i aplikacijski protokoli u Internetu

- usluge:
 - prijenos datoteka
 - rad na daljinu
 - elektronička pošta
 - mrežne novosti
 - interaktivne usluge
 - imenička usluga
 - globalni informacijski sustav
 - **-** ...

- aplikacijski protokoli:
 - FTP, ...
 - TELNET, ...
 - SMTP, POP, IMAP, ...
 - NNTP, ...
 - IRC, H.323, ...
 - LDAP, X.500, ...
 - HTTP, ...
 - **...**

Modeli izvedbe usluge

- model klijent-poslužitelj (engl. client-server)
 - više izvedbi: model s jednim poslužiteljem i model s više poslužitelja
 - posebni slučajevi:
 - posrednički (proxy) poslužitelji
 - međuspremnički (caching) poslužitelji
- model s ravnopravnim procesima (engl. peer-to-peer)
 - svaki proces je i "klijent" i "poslužitelj", uloge nisu odvojene
- postoje i druga rješenja:
 - pokretni kôd, pokretni agenti, i dr.

Uz pojmove klijenta i poslužitelja ...

- ovisno o kontekstu, pojmovi klijent, odnosno poslužitelja, mogu se odnositi na:
 - klijentsko računalo ili klijentski proces
 - poslužiteljsko računalo ili poslužiteljski proces
- proces je instanca izvođenja (klijentskog ili poslužiteljskog) programa
- programi klijenta i poslužitelja mogu se izvoditi na istom računalu, ali glavna prednost je u mrežnom radu
- u daljnjim razmatranjima, uglavnom ćemo govoriti o klijentima i poslužiteljima u smislu procesa

Model klijent-poslužitelj

- izvedba usluge u modelu klijent/poslužitelj podijeljena je između programa klijenta i programa poslužitelja
- koristi se u većini internetskih usluga
- komunikacija se temelji na nizu zahtjeva i odgovora:
 - klijent traži uslugu od poslužitelja (slanjem zahtjeva)
 - poslužitelj obrađuje zahtjev i odgovara klijentu šaljući rezultat obrade

Program klijenta

- "program klijenta" je programska podrška koja omogućuje računalu da djeluje kao klijent u opisanom modelu
- proces izvođenja klijentskog programa najčešće pokreće korisnik
- osnovni zadaci:
 - pruža korisničko sučelje koje korisniku omogućuje slanje zahtjeva poslužitelju
 - odgovarajuće formatira zahtjev kako bi ga poslužitelj mogao "razumjeti"
 - odgovarajuće formatira poslužiteljev odgovor kako bi ga korisnik mogao razumjeti

Program poslužitelja

- program poslužitelja je programska podrška koja omogućuje računalu da djeluje kao poslužitelj u opisanom modelu
- proces izvođenja poslužiteljskog programa najčešće se pokreće automatski, prilikom pokretanja operacijskog sustava
- osnovni zadaci:
 - osluškuje i prihvaća zahtjeve klijen(a)ta
 - obrađuje zahtjeve i odgovara šaljući rezultat obrade klijentu(ima)

Način rada poslužitelja

- klasifikacija prema pamćenju stanja može biti:
 - memorijski, čuva (pamti) stanje (engl. statefull)
 - obrada zahtjeva ovisi o rezultatu obrade prethodnih zahtjeva
 - pogodan za obradu niza međusobno povezanih zahtjeva
 - može se modelirati automatom stanja
 - bezmemorijski, ne čuva (ne pamti) stanje (engl. stateless)
 - obrada svakog zahtjeva je neovisna o prethodnima
 - pogodan za obradu pojedinačnih, međusobno neovisnih zahtjeva
 - jednostavan model, samo jedno stanje "obradi i zaboravi"
- klasifikacija prema načinu obrade zahtjeva:
 - iterativan
 - konkurentan

Iterativni poslužitelj

- zahtjevi se obrađuju iterativno, tj. jedan-po-jedan
- poslužiteljski proces obrađuje zahtjeve i šalje odgovore
- jednostavniji; pogodan za zahtjeve s kratkim vremenom obrade

Konkurentni poslužitelj

- zahtjevi se obrađuju konkurentno
- prijamni poslužitelj prima zahtjeve, ali ih ne obrađuje sam, već raspoređuje posao obrade i odgovora na poslužiteljske procese
- složeniji; pogodan za više istovremenih ili dugotrajnijih obrada zahtjeva

Asocijacija klijenta i poslužitelja

- asocijacija: uspostavljen odnos između procesa klijenta i poslužitelja povrh jedne transportne veze (npr. logička TCP-veza) ili povezanosti (npr. UDP-binding)
- za asocijaciju između klijenta i poslužitelja mora se znati:
 - aplikacijski protokol
 - IP-adrese klijenta i poslužitelja
 - transportni protokol (TCP/UDP) i brojeve vrata za klijentski i poslužiteljski proces

pitanje: kako klijent "zna" kamo uputiti zahtjev?

Pronalaženje usluga

- klijent mora <u>unaprijed</u> znati adresu poslužitelja da bi mu pristupio
- na razini cijelog Interneta, unaprijed su definirana dobro-poznata vrata (engl. well-known port) za standardne internetske usluge
- za usluge koje nemaju dobro-poznata vrata, mora postojati neki drugačiji način (npr. imenička usluga)

Neka dobro-poznata vrata

- ♦ dobro-poznata vrata: 0-1023 su "rezervirana" za standardne usluge
- primjeri nekih dobro-poznatih vrata:

Keyword	Decimal	Description
ftp-data	20/tcp	File Transfer [Default Data]
ftp-data	20/udp	File Transfer [Default Data]
ftp	21/tcp	File Transfer [Control]
ftp	21/udp	File Transfer [Control]
ssh	22/tcp	SSH Remote Login Protocol
ssh	22/udp	SSH Remote Login Protocol
telnet	23/tcp	Telnet
telnet	23/udp	Telnet
• • •		
smtp	25/tcp	Simple Mail Transfer
smtp	25/udp	Simple Mail Transfer
• • •		
domain	53/tcp	Domain Name Server
domain	53/udp	Domain Name Server
http	80/tcp	World Wide Web HTTP

Programsko sučelje (socket API)

 socket (priključnica) je programska apstrakcija krajnje točke komunikacije između klijenta i poslužitelja

- ideja: klijent se "priključi" na vrata poslužitelja
- "priključenjem" se stvara asocijacija između procesa to je pretpostavka za daljnju komunikaciju

socket = (IP-adresa, transportni protokol, broj vrata)

primjer: priključnica na strani web-poslužitelja (161.53.19.220, TCP, 80)

Socket API - tipične radnje klijenta i poslužitelja

Gdje usluge mogu biti smještene?

- na poslužitelju (uobičajen slučaj)
 - npr. pretraživači, e-trgovina, poslužitelji sadržaja i drugih usluga vezanih za odredište
- djelomično (i) na klijentu (npr. Java, JavaScript, ActiveX dodaci za Web, AJAX)
 - npr. provjera unesenih podataka na web-obrascu prije slanja zahtjeva
- "negdje između"
 - posrednički poslužitelj (engl. proxy)

Uloge i primjeri posredničkih poslužitelja

- "klasična" posrednička uloga
 - dobavljanje podataka za klijenta od nekog drugog poslužitelja
 - posredovanje pri dohvatu sadržaja (kompresija, filtiranje, anonimizacija, jezično prevođenje, ...)
 - prikupljanje sadržaja s više poslužitelja
- međuspremnička uloga
 - privremeno pohranjivanje sadržaja (engl. caching)
 - pohranjivanjem sadržaja dobiva se brži odziv jer se često traženi podaci uzimaju iz lokalnog spremnika umjesto s udaljenog poslužitelja (primjeri primjene: Web, DNS)
- nadzor i ograničenje pristupa
 - filtriranje prometa (primjer: firewall)
 - ograničenja u dolasku ili odlasku, najčešće na rubu interne poslovne mreže

Sadržaj predavanja

Osnove internetskih usluga

- usluge i aplikacijski protokoli
- modeli izvedbe usluga
- pronalaženje usluga
- programska podrška

Sustav domenskih imena

- prostor domenskih imena
- registracija imena
- organizacija i izvedba sustava DNS

Sustav domenskih imena

- engl. Domain Name System (DNS)
- "imenik Interneta"
- pridružuje razne vrste informacija imenu domene
- najčešća uporaba: pridruživanje numeričke IP adrese lako pamtljivom imenu računala (postoje i druge uporabe)
- primjeri:

```
www.fer.hr\leftrightarrow161.53.72.23www.hakom.hr\leftrightarrow213.149.32.101www.croatiaairlines.hr\leftrightarrow193.47.246.68
```

 DNS je jedna od sustavskih (infrastrukturnih) usluga u Internetu – njome se služe druge internetske usluge, a krajnji korisnici (uglavnom) ne

Imenovanje računala

- IP adrese su od početka namijenjene strojnom adresiranju
- ljudima je lakše pamtiti simbolička imena računala, nego brojeve
- prvo rješenje popis IP adresa i imena svih računala s kojima se komunicira – datoteka hosts.txt
- sredinom 1980.-tih godina javlja se potreba za skalabilnijim rješenjem – uvodi se *Domain Name System*

Skica ARPANET-a iz 1969. godine, 4 čvora http://www.computerhistory.org/internet_history/

Uporaba DNS-a, osnovna ideja

- korisnik pamti i rabi simboličke adrese, npr.:
 - pristupa stranici weba na poslužitelju www.fer.hr
 - piše poruku elektroničke pošte prijatelju na ivo.ivic@fer.hr
- računalni uređaji/procesi rabe IP-adrese
 - aplikacijski program će prvo "u pozadini" pozvati funkciju razlučitelja (engl. resolver) sa simboličkim imenom kao parametrom
 - razlučitelj će poslati upit DNS-poslužitelju i saznati IP-adresu odredišta
 - aplikacija koristi dobivenu IP-adresu za, npr., uspostavu TCP-veze prema web-poslužitelju

Terminologija

- sustav domenskih imena
 - "(...) ideja hijerarhijskog sustava imena, gdje hijerarhija grubo odgovara organizacijskoj strukturi, a za odvajanje razina hijerarhije u imenima koristi se znak '.' (točka)." (RFC 1034)

domena

- skupina (mrežnih sučelja) računalnih uređaja koje (najčešće) karakterizira pripadnost određenoj organizaciji
- može imati pod-domene, na primjer: .hr, .fer.hr, .tel.fer.hr, .zemris.fer.hr
- potpuno kvalificirano domensko ime (engl. Fully Qualified Domain Name, FQDN)
 - daje jedinstvenu identifikaciju krajnjeg računala prelikava se na IP-adresu(e)
 - općeniti oblik: računalo.poddomena.domena
 - primjer: www.fer.hr

Prostor domenskih imena

*TLD - Top Level Domain

Hijerarhija domena

- Vrh hijerarhije (.)
- ◆ Domene najviše razine vršne domene
 - generičke domene najviše razine
 - engl. generic Top Level Domain (gTLD)
 - ima ih samo 20: sedam početnih (.com, .edu, .gov, .int, .mil, .net, .org), te trinaest dodanih kasnije
 - u 2007. postignut dogovor o pravilima za otvaranje novih gTLD
 - domene najviše razine prema kodu države
 - engl. country code Top Level Domain (ccTLD)
 - ima ih više od 250
 - standardne dvoslovne oznake država (popis ISO 3166-1)
 - ccTLD za Hrvatsku oznaka .hr
 - posebna domena .arpa za potrebe internetske infrastrukture
- Poddomene, hijerarhijski organizirane (stablo)

Upravljanje registracijom imena u DNS-u

- hijerarhijom domena upravlja ICANN, odn. IANA
 - odgovornost za domenu delegira se nacionalnim i drugim tijelima (registrarima)
 - u Hrvatskoj: CARNet
 - upravljanje vršnom domenom .hr
 - registracija besplatnih domena unutar domene .hr
 - domene uz naplatu registriraju se putem ovlaštenih registrara (http://www.carnet.hr/dns/administracija/registrari)

CARNet DNS služba http://www.dns.hr/

Vrste zapisa u DNS-u

- podaci:
 - zapisi o domeni i o pojedinim računalima (engl. *Resource Record*)
 - svaki zapis ima postavljen "rok trajanja" (engl. Time To Live)
- vrste zapisa:
 - za razlučivanje IP-adrese krajnjeg računala:

zapis tipa A:

```
quark IN A 161.76.21.4
```

za razlučivanje imena i IP-adrese poslužitelja elektroničke pošte: zapis tipa MX (mail exchange):

```
mail IN MX 161.76.21.10
```

postoje i druge vrste zapisa, definira ih IANA

Organizacija sustava DNS (1/2)

- DNS je organiziran kao hijerarhijska distribuirana baza podataka
 - postoji vrhovni ili "korijenski" DNS-poslužitelj na vrhu hijerarhije
 - niti jedan DNS-poslužitelj nema popis svih domenskih imena!
 - neki DNS-poslužitelji nadležni su za dio prostora domenskih imena – to može biti domena ili zona (= više domena, dio "stabla")

Organizacija sustava DNS (2/2)

- pitanje: podjela "odgovornosti" za točnost podataka?
- DNS-poslužitelj nadležan za domenu (zonu) ima potpun i ispravan popis podataka o toj domeni (zoni)
- ostali DNS-ovi, za upite koji se odnose na tu zonu, djeluju kao posrednici: "pitaju" nadležne i privremeno pohranjuju odgovor, kojeg (dok vrijedi) mogu vraćati na upite za istom adresom

Postupak razlučivanja IP-adrese

logički gledano:

razlučivanje adrese = preslikavanje simboličkog imena u IP-adresu

hijerarhija imena

računalo.poddomena.domena

izvedbeno:

"prolaz" kroz hijerarhiju stabla domenskih imena odgovara nizu upita prema poslužiteljima nadležnima za zonu/domenu

Načini razlučivanja adrese

iterativni način

 klijent uzastopno formira i šalje zahtjeve dok sam ne dođe do poslužitelja koji ima traženu informaciju

rekurzivni način

 poslužitelj vraća traženu informaciju ako je ima; inače "pita dalje" (ponaša se kao klijent – rekurzija)

Način razlučivanja u praksi: rekurzivno + iterativno

razlučitelj
aplikacija

krajnje računalo

upit za www.fer.hr

- rekuzivno: računalo –lokalni DNS
- iterativno: lokalni DNS –
 ostali DNS poslužitelji

Način razlučivanja u praksi: priručna pohrana

razlučitelj spremnik aplikacija

krajnje računalo

upit za www.fer.hr

- priručna pohrana (cache)
 omogućuje pohranjivanje već
 prikupljenih podataka iz odgovora
 (poslužitelj, host, aplikacija)
- postoji "rok trajanja" podataka

Način razlučivanja u praksi: priručna pohrana

- svi ranije pribavljeni podaci pohranjuju se u spremnicima i mogu se (za vrijeme roka važenja) ponovno iskoristiti
- u ovom primjeru to su.:
 - traženi podatak
 - adresa DNA-a za domenu fer.hr
 - adresa DNS-a za domenu .hr
- prednosti priručne pohrane:
 - brži odgovor na upit
 - smanjivanje opterećenja DNS poslužitelja prema vrhu hijerarhije

upit za www.fer.hr

Izvedba "root" poslužitelja DNS

- Vrhovni ili "korijenski" DNS-poslužitelj na vrhu hijerarhije (engl. root DNS server)
 - u praksi, "root server" čini 13 poslužitelja (označenih slovima od a do m, npr. k.root-servers.net) uz više identičnih instalacija širom svijeta

Izvor: Matthäus Wander, 2006. Wikipedia Commons.

Primjer – nslookup (korisnik spojen putem ADSL-a)


```
C:\>nslookup ←
                                                     nslookup – alat za
                                                     postavljanje DNS upita
Default Server: mygateway1.ar7
Address: 192.168.1.1
                                                     primjer 1:
> www.fer.hr <
                                                     upit za ime www.fer.hr
Server: mygateway1.ar7
Address: 192.168.1.1
Non-authoritative answer:
       www.fer.hr
Name:
                                                     tražena IP-adresa
Address: 161.53.72.119
                                                     primjer 2:
> www.zxyyz.hr <-
                                                     upit za nepostojeće ime
Server: mygateway1.ar7
                                                     (ili greška u pisanju ☺)
Address: 192.168.1.1
DNS request timed out.
    timeout was 2 seconds.
*** Request to mygateway1.ar7 timed-out
                                                     neuspješni ishod
>
```

Primjer – upit tipa A za računalo www.fer.hr

Sending DNS query for www.fer.hr...

[70.84.161.11] returned a non-authoritative response in 190 ms:

Primjer – upit tipa MX za domenu fer.hr

NsLookup		Query the DNS for resource records
domain fer.hr	query type	MX - Mail exchange
server 70.84.161.11	query class	IN - Internet
port 53	timeout (ms)	5000
☐ no recursion ☐ advance	ed output	go
user: anonymous [161.53.19.70] balance: 46 units log in account info		Central Ups.net

Sending DNS query for fer.hr...

[70.84.161.11] returned a non-authoritative response in 290 ms:

Answer records

Authority	records
-----------	---------

name	class	type	data	time to live
fer.hr	IN	NS	branka.zesoi.fer.hr	3600s (01:00:00)
fer.hr	IN	NS	labs3.cc.fer.hr	3600s (01:00:00)

domensko ime traženog poslužitelja

Primjer – upit tipa A za računalo www.google.com

