

BACHELOR THESIS Leon Chun Wai Yuen

Entwicklung eines Unterstützungsassistenten durch einen Digitalen Zwilling einer Drohne im MARS Framework

FAKULTÄT TECHNIK UND INFORMATIK Department Informatik

Faculty of Engineering and Computer Science Department Computer Science

Leon Chun Wai Yuen

Entwicklung eines Unterstützungsassistenten durch einen Digitalen Zwilling einer Drohne im MARS Framework

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Bachelor of Science Informatik Technischer Systeme am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas Clemen

Zweitgutachter:

Eingereicht am: PLATZHALTER

Leon Chun Wai Yuen

Thema der Arbeit

Entwicklung eines Unterstützungsassistenten durch einen Digitalen Zwilling einer Drohne im MARS Framework

Stichworte

Digitaler Zwilling, Human-Drone Interaction, Quadrocopter, Unbemanntes Luftfahrzeugt, Menschen mit Sehneinschränkung

Kurzzusammenfassung

PLATZHALTER

Leon Chun Wai Yuen

Title of Thesis

PLATZHALTER

Keywords

Digital Twin, Human-Drone Interaction, Quadrocopter, Unmanned aerial vehicle, Visual impairement

Abstract

PLATZHALTER

Danksagung

Inhaltsverzeichnis

A	Abbildungsverzeichnis vii							
Ta	abelle	enverz	eichnis	viii				
1	Ein	leitung	g	1				
	1.1	Motiv	vation	1				
	1.2	Ziel de	er Arbeit	1				
	1.3	Abgre	enzung	2				
	1.4	$Glied\epsilon$	erung der Arbeit	2				
2	Gru	Grundlagen						
	2.1	Quadr	rocopter	3				
		2.1.1	Definition	3				
		2.1.2	Funktionsweise	3				
	2.2	Digita	aler Zwilling	3				
		2.2.1	Geschichte	3				
		2.2.2	Definition	3				
		2.2.3	Anwendungsgebiete	3				
		2.2.4	MARS	4				
3	Sta	nd der	Technik	5				
4	Anforderungsanalyse							
	4.1	4.1 Funktionale Anforderungen						
	4.2	4.2 Nicht funktionale Anforderungen						
	4.3	Use C	Case	6				
5	Konzeption							
	5.1	Syster	marchitektur	8				
		5.1.1	Quadroter	8				

Inhaltsverzeichnis

		2 Datenabfrage	
6	Implemen		g
7	evaluatio	on	10
	7.1 Code	eevaluation	10
8	Abschlus	SS	11
	8.1 Zusai	ammenfassung	11
	8.2 Disku	cussion	11
	8.3 Ausb	blick	11
\mathbf{Li}	teraturver	erzeichnis	12
\mathbf{A}	Anhang		13
	Selhetetän	ndigkeitserklärung	1/

Abbildungsverzeichnis

Tabellenverzeichnis

4.1	Funktionale Anforderungen	6
4.2	Nicht funktionale Anforderungen	7

1 Einleitung

1.1 Motivation

Seit Jahren sind Unbemannte Luftfahrzeuge (eng. Unmanned Aearial vehicle, UAV) umgangsprachlich als Drohne bezeichnet, nicht mehr nur Speilzeuge der Regierung und dienen militärischen Einsatzzwecken, sodern findet durch die günstigen Bauteile auch Anreize bei vielen Hobbytechnikern, Technikintusiaten oder Menschen, die ein solches Spielzeug einfach mal benutzen wollen [1]. Dadurch werden Drohnen nicht mehr nur von Experten genutzt, sondern auch von Leihen, mit den Unterschliedlichsten Ansprüchen. Einige wollen Lernen mit einer Drohne umzugehen, andere nutzen die Drohne als Assisten im Alltag und wollen sie autonomisieren. Um diese Vielfalt an Anwendungszwecken zu bedienen, braucht man ein modulares Modell um auf einfacher Weise Anforderungen nach den Kriterien der Kunden anpassen zu können. Diese müssen auch in Echtzeit abgearbeitet werden. Darum eignet sich ein Digitaler Zwilling. Ein Digitaler Zwilling kann in Echtzeit Informationen mit der Drohne austauschen. Damit können der Drohne Regeln vorprogrammiert werden, die die Drohne in Echtzeit einhalten muss.

1.2 Ziel der Arbeit

Für die Bachelorarbeit soll ein Digitaler Zwillings für ein Unbemanntes Luftfahrzeug (UAV) im MARS Framework konzeptioniert und entwickelt werden. Der Digitale Zwilling soll das Verhalten des UAV in einer digitale Simulation abbilden und ermöglichen das Fahrzeug durch weitere Funktionalitäten zu erweitern. Dabei soll Architektur des Digitalen Zwillings nicht domänenspezifisch sein.

Die Entwicklung lässt sich in drei Aufgabenteile unterteilen. Im ersten Teil wird ein Datenmodell des UAV entwickelt. Hierfür werden Sensordaten des physikalischen UAV gesammelt und im Datenmodell gespeichert. Diese Informationen werden ausgewertet

und einem Zustand zugeordent.

Der zweite Teil der Aufgabe besteht aus der Entwicklung einer digitalen Entität, die geometrisch und physikalischen den realen UAV darstellt. Hierbei wird eine Visualisierung erstellt, die das Verhalten des UAV animiert.

Im letzten Teil soll ein Anwendungsbeispiel entwickelt werden. Das Beispiel soll das fertige System demonstrieren und dient der Systemevaluation.

1.3 Abgrenzung

1.4 Gliederung der Arbeit

2 Grundlagen

2.1 Quadrocopter

2.1.1 Definition

Unter der Quadrocopter werden Luftfahzeuge bezeichnet, die im Flug von vier Rotoren getragen werden. Anders als ein Flugzeug können Quadrokopter in ihrer Position schweben und präzise im dreidimensionalen Raum navigiert werden.

2.1.2 Funktionsweise

Bestandteile

Steuerung

Bewegung

2.2 Digitaler Zwilling

2.2.1 Geschichte

2.2.2 Definition

2.2.3 Anwendungsgebiete

In den meisten Literaturen werden Digitale Zwillinge nicht konkret definiert

2.2.4 MARS

3 Stand der Technik

4 Anforderungsanalyse

4.1 Funktionale Anforderungen

ID	Begriff
F01	Der DZ fragt in periodischen Abständen den Status des PZ ab.
F02	Der DZ speichert den Status des PZ ab.
F03	Der DZ seinen letzten Zustand wiederherstellen, wenn der Zustand mit
	dem des PZ übereinstimmt.
F04	Endet oder bricht die Kommunikation zwischen dem PZ und dem DZ
	ab, wird der letzte Zustand des UAV gespeichert.
F05	Der DZ alle Operationen des PZ ausführen.
F06	Falls der DZ seinen Zustand wechselt, wird die Aktion als Operation am
	PZ ebenso ausgeführt.
F07	Fall der PZ seinen zustand ändert, passt sich der Zustand des DZ an.
F08	Falls der DZ gestartet wird, verbindet sich das System mit dem physi-
	kalischen UAV
F09	Falls der DZ sich nach 5 Sekunden keine Verbindung zum PZ aufbauen
	kann, wird der Prozess beendet.
F10	Falls die Batterie der PZ bei 10Prozent liegt, wird der UAV automatisch
	gelandet u
F11	Die Statuswerte werden auf der Konsole angezeigt.
F12	Die Videoübertragung des PZ wird auf dem Monitor in Echtzeit über-
	tragen.
F13	Der DZ wird visuell dargestellt.

Tabelle 4.1: Funktionale Anforderungen

4.2 Nicht funktionale Anforderungen

4.3 Use Case

ID	Begriff
NF01	Der Digitale Zwilling verarbeitet nur aktuelle Nachrichten und verwirft
	alte, die außerhalb des validen Zeitraums liegen.
NF02	Der Digitale Zwilling wählt optimale Operationen zum gegebenen Wissen
	aus.
NF03	Das System kann durch verschiedene Funktionalitäten erweitert werden.

Tabelle 4.2: Nicht funktionale Anforderungen

5 Konzeption

- 5.1 Systemarchitektur
- 5.1.1 Quadroter
- 5.1.2 Datenabfrage
- 5.1.3 Datenmodell

6 Implementierung

7 evaluation

7.1 Codeevaluation

Der Quellcode wird mit Unit Testes gestest.

8 Abschluss

- 8.1 Zusammenfassung
- 8.2 Diskussion
- 8.3 Ausblick

Literaturverzeichnis

[1] GADIRAJU, Vinitha; GARCIA, Jérémie; KANE, Shaun; M. BROCK, Anke: "It is Fascinating to Make These Beasts Fly": Understanding Visually Impaired People's Motivations and Needs for Drone Piloting. In: Proceedings of the 23rd International ACM SIGACCESS Conference on Computers and Accessibility. New York, NY, USA: Association for Computing Machinery, 2021 (ASSETS '21). – URL https://doi.org/10.1145/3441852.3471219. – ISBN 9781450383066

A Anhang

Erklärung zur selbstständigen Bearbeitung

	9 9	smittel benutzt habe. Wörtlich oder de Stellen sind unter Angabe der Quellen k	
nach aus anderen v	verken enunommene	Stellell silld uliter Aligabe der Quellell k	CIIIIIIIICII
gemacht.			
Ort	Datum	Unterschrift im Original	