MATHEMATICS FOR COMPUTER SCIENCE LOGIC AND DISCRETE STRUCTURES

Practical Questions Week 5

Question 1: Propositional reasoning

On an island there are knights who always tell the truth and knaves who always lie. You meet three people: A, B, and C.

- A says: "I am a knave and B is a knight."
- B says: "Exactly one of the three of us is a knight."

What are A, B, and C?

Question 2: Logical equivalence

The logical connective NAND is such that:

p NAND q is false if, and only if, p and q are both true.

Prove that p NAND (q NAND r) and (p NAND q) NAND r are not equivalent.

Question 3: De Morgan Laws and distribution laws

Show that the following propositional formulae are tautologies without using truth tables:

- 1. $(\neg q \land (p \Rightarrow q)) \Rightarrow \neg q$
- 2. $((p \lor q) \land \neg p) \Rightarrow q$

Question 4: De Morgan Laws and distribution laws

Show that $(a \lor c) \land (b \Rightarrow c) \land (c \Rightarrow a)$ and $(b \Rightarrow c) \land a$ are logically equivalent without using truth tables.

Question 5: Functional completeness

The logical connective NAND is such that:

p NAND q is false if, and only if, p and q are both true,

and the logical connective NOR is such that:

p NOR q is true if, and only if, p and q are both false.

- 1. Write p NAND q and p NOR q using only \vee , \wedge and \neg .
- 2. Write $p \lor q$, $p \land q$, and $\neg p$ using only NAND and NOR.

(So, the set of connectives {NAND, NOR} is functionally complete.)

Question 6: Functional completeness

Find a propositional formula involving only the logical connective NOR that is logically equivalent to $X \Rightarrow Y$.

Question 7: Conjunctive normal form

Which of the following propositional formulae are satisfiable (that is, are such that there is a satisfying truth assignment)?

$$1. \ (p \vee q \vee \neg r) \wedge (p \vee \neg q \vee \neg s) \wedge (p \vee \neg r \vee \neg s) \wedge (\neg p \vee \neg q \vee \neg s) \wedge (p \vee q \vee \neg s)$$

$$2. \ (\neg p \vee \neg q \vee s) \wedge (\neg p \vee q \vee s) \wedge (p \vee \neg q \vee s) \wedge (\neg p \vee \neg r \vee \neg s) \wedge (p \vee q \vee s) \wedge (p \vee r \vee \neg s) \wedge (p \vee \neg r \vee \neg s) \wedge (\neg p \vee r)$$

3.
$$(p \lor q \lor r) \land (p \lor \neg q \lor \neg s) \land (q \lor \neg r \lor s) \land (\neg p \lor r \lor s) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor s) \land (\neg p \lor \neg r \lor \neg s).$$

Question 8: Conjunctive normal form

Reduce the following formulae φ to conjunctive normal form by first reducing $\neg \varphi$ to disjunctive normal form using truth tables.

1.
$$((p \land \neg q) \lor r) \Rightarrow (\neg p \land \neg r)$$

$$2. ((p \land (q \Rightarrow r)) \Rightarrow s)$$

3.
$$(p_1 \wedge p_2) \vee (p_3 \wedge (p_4 \vee p_5))$$
 (* not so much hard as very messy!)

Question 9: Conjunctive normal form

Reduce the following formulae φ to conjunctive normal form without using truth tables.

- 1. $((p \land \neg q) \lor r) \Rightarrow (\neg p \land \neg r)$
- $2. \ (p \land (q \Rightarrow r)) \Rightarrow s$
- 3. $(p_1 \wedge p_2) \vee (p_3 \wedge (p_4 \vee p_5))$