PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-205180

(43) Date of publication of application: 23.07.2002

(51)Int.CI.

B23K 26/00 B23K 26/04 B28D 5/00 CO3B 33/09 G03F 7/20 // H01L 21/301 B23K101:40

(21)Application number: 2001-278663

(71)Applicant: HAMAMATSU PHOTONICS KK

(22)Date of filing:

13.09.2001

(72)Inventor: FUKUYO FUMITSUGU

FUKUMITSU KENJI

UCHIYAMA NAOKI WAKUTA TOSHIMITSU

(30)Priority

Priority number : 2000278306

Priority date: 13.09.2000

Priority country: JP

(54) METHOD FOR LASER BEAM MACHINING

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for laser beam machining, by which a molten point or a crack deviant from a planned cutting line on a surface of the work to be machined is not generated and the work to be machined is accurately cut.

SOLUTION: A property modification zone is formed inside the work 1 to be machined by irradiating the planned cutting line 5 with a pulse laser beam L by placing the focal point inside the work 1 to be machined under a condition that a multiphoton absorption takes place. By cutting the work 1 to be machined along the planned cutting line 5 originated at the property modification zone, the work 1 to be machined is cut with a comparatively small force. When irradiated with the laser beam L, the pulse laser beam L is scarcely absorbed on the surface 3 of the work 1 to be machined. thus the surface 3 is never melted due to the formation of the property modification zone. By changing the location of the focal point of the laser beam L in the

incident direction of the work 1 to be machined, a plurality of the property modification zones are formed along a line in the direction of the thickness of the work 1 to be machined.

LEGAL STATUS

[Date of request for examination]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-205180 (P2002-205180A)

(43)公開日 平成14年7月23日(2002.7.23)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート*(参考)
B 2 3 K 26/00	3 2 0	B 2 3 K 26/00	320E 2H097
	3 1 0		310W 3C069
26/04		26/04	C 4E068
B 2 8 D 5/00		B 2 8 D 5/00	Z 4G015
C 0 3 B 33/09		C 0 3 B 33/09	
	審査請求	未請求 請求項の数5 OL	(全 14 頁) 最終頁に続く
(21)出顯番号	特願2001-278663(P2001-278663)	(71)出願人 000236436	ス株式会社
(22)出願日	平成13年9月13日(2001.9.13)	静岡県浜松市市野町1126番地の1 (72)発明者 福世 文嗣	
(31)優先権主張番号 (32)優先日	特顧2000-278306 (P2000-278306) 平成12年9月13日 (2000, 9, 13)		市野町1126番地の1
(33)優先権主張国	日本(JP)	(72)発明者 福満 憲志 静岡県浜松市 トニクス株式	市野町1126番地の1 浜松ホ 会社内

(74)代理人 100088155

最終頁に続く

(外2名)

(54) 【発明の名称】 レーザ加工方法

(57)【要約】

【課題】 加工対象物の表面に溶融や切断予定ラインから外れた割れが生じるととなく、かつ精密に加工対象物を切断することができるレーザ加工方法を提供すること

【解決手段】 多光子吸収を起こさせる条件でかつ加工対象物1の内部に集光点を合わせて、パルスレーザ光Lを切断予定ライン5に照射することにより、加工対象物1の内部に改質領域を形成している。改質領域を起点として切断予定ライン5に沿って加工対象物1を割ることにより、比較的小さな力で加工対象物1を切断することができる。レーザ光Lの照射において、加工対象物1の表面3ではパルスレーザ光Lがほとんど吸収されないので、改質領域形成が原因で表面3が溶融することはない。加工対象物1の入射方向におけるレーザ光Lの集光点の位置を変えることにより、複数の改質領域を加工対象物1の厚み方向に沿って並ぶように形成している。

弁理士 長谷川 芳樹

【特許請求の範囲】

【請求項1】 レーザ光の集光点を加工対象物の内部に 合わせて前記加工対象物にレーザ光を照射することによ り、前記加工対象物の切断予定ラインに沿って前記加工 対象物の内部に多光子吸収による改質領域を形成し、か

前記加工対象物に照射されるレーザ光の前記加工対象物 への入射方向におけるレーザ光の集光点の位置を変える ことにより、前記改質領域を前記入射方向に沿って並ぶ ように複数形成する工程を備える、レーザ加工方法。

レーザ光の集光点を加工対象物の内部に 合わせて前記加工対象物にレーザ光を照射することによ り、前記加工対象物の切断予定ラインに沿って前記加工 対象物の内部に改質領域を形成し、かつ、

前記加工対象物に照射されるレーザ光の前記加工対象物 への入射方向におけるレーザ光の集光点の位置を変える ことにより、前記改質領域を前記入射方向に沿って並ぶ ように複数形成する工程を備える、レーザ加工方法。

【請求項3】 レーザ光の集光点におけるピークパワー 密度が $1 \times 10^{\circ}$ (W/cm²) 以上であってバルス幅が 1μ 20 s以下の条件で、レーザ光の集光点を加工対象物の内部 に合わせて前記加工対象物にレーザ光を照射することに より、前記加工対象物の切断予定ラインに沿って前記加 工対象物の内部に改質領域を形成し、かつ、

前記加工対象物に照射されるレーザ光の前記加工対象物 への入射方向におけるレーザ光の集光点の位置を変える ことにより、前記改質領域を前記入射方向に沿って並ぶ ように複数形成する工程を備える、レーザ加工方法。

【請求項4】 前記複数の改質領域は、前記加工対象物 に照射されるレーザ光が入射する前記加工対象物の入射 30 面に対して遠い方から順に形成する、請求項1~3のい ずれかに記載のレーザ加工方法。

【請求項5】 前記改質領域は、前記加工対象物の前記 内部においてクラックが発生した領域であるクラック領 域、前記内部において溶融処理した領域である溶融処理 領域及び前記内部において屈折率が変化した領域である 屈折率変化領域のうち少なくともいずれか一つを含む、 請求項1~4のいずれかに記載のレーザ加工方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体材料基板、 圧電材料基板やガラス基板等の加工対象物の切断に使用 されるレーザ加工方法に関する。

[0002]

【従来の技術】レーザ応用の一つに切断があり、レーザ による一般的な切断は次の通りである。例えば半導体ウ ェハやガラス基板のような加工対象物の切断する箇所 に、加工対象物が吸収する波長のレーザ光を照射し、レ ーザ光の吸収により切断する箇所において加工対象物の を切断する。しかし、この方法では加工対象物の表面の うち切断する箇所となる領域周辺も溶融される。よっ て、加工対象物が半導体ウェハの場合、半導体ウェハの 表面に形成された半導体素子のうち、上記領域付近に位 置する半導体素子が溶融する恐れがある。

[0003]

【発明が解決しようとする課題】加工対象物の表面の溶 融を防止する方法として、例えば、特開2000-21 9528号公報や特開2000-15467号公報に開 10 示されたレーザによる切断方法がある。これらの公報の 切断方法では、加工対象物の切断する箇所をレーザ光に より加熱し、そして加工対象物を冷却することにより、 加工対象物の切断する箇所に熱衝撃を生じさせて加工対 象物を切断する。

【0004】しかし、これらの公報の切断方法では、加 工対象物に生じる熱衝撃が大きいと、加工対象物の表面 に、切断予定ラインから外れた割れやレーザ照射してい ない先の箇所までの割れ等の不必要な割れが発生するこ とがある。よって、これらの切断方法では精密切断をす ることができない。特に、加工対象物が半導体ウェハ、 液晶表示装置が形成されたガラス基板や電極バターンが 形成されたガラス基板の場合、この不必要な割れにより 半導体チップ、液晶表示装置や電極バターンが損傷する ことがある。また、これらの切断方法では平均入力エネ ルギーが大きいので、半導体チップ等に与える熱的ダメ ージも大きい。

【0005】本発明の目的は、加工対象物の表面に不必 要な割れを発生させることなくかつその表面が溶融しな いレーザ加工方法を提供することである。

[0006]

40

【課題を解決するための手段】本発明に係るレーザ加工 方法は、レーザ光の集光点を加工対象物の内部に合わせ て加工対象物にレーザ光を照射することにより、加工対 象物の切断予定ラインに沿って加工対象物の内部に多光 子吸収による改質領域を形成し、かつ、加工対象物に照 射されるレーザ光の加工対象物への入射方向におけるレ ーザ光の集光点の位置を変えることにより、改質領域を 入射方向に沿って並ぶように複数形成する工程を備え る、ことを特徴とする。

【0007】本発明に係るレーザ加工方法によれば、加 工対象物の内部に集光点を合わせてレーザ光を照射しか つ多光子吸収という現象を利用することにより、加工対 象物の内部に改質領域を形成している。加工対象物の切 断する箇所に何らかの起点があると、加工対象物を比較 的小さな力で割って切断することができる。本発明に係 るレーザ加工方法によれば、改質領域を起点として切断 予定ラインに沿って加工対象物が割れることにより、加 工対象物を切断することができる。よって、比較的小さ な力で加工対象物を切断することができるので、加工対 表面から裏面に向けて加熱溶融を進行させて加工対象物 50 象物の表面に切断予定ラインから外れた不必要な割れを

発生させることなく加工対象物の切断が可能となる。な お、集光点とはレーザ光が集光した箇所のことである。 切断予定ラインは加工対象物の表面や内部に実際に引か れた線でもよいし、仮想の線でもよい。

【0008】また、本発明に係るレーザ加工方法によれ は、加工対象物の内部に局所的に多光子吸収を発生させ て改質領域を形成している。よって、加工対象物の表面 ではレーザ光がほとんど吸収されないので、加工対象物 の表面が溶融することはない。

ば、加工対象物に照射されるレーザ光の加工対象物への 入射方向におけるレーザ光の集光点の位置を変えること により、改質領域を入射方向に沿って並ぶように複数形 成している。このため、加工対象物を切断する際に起点 となる箇所を増やすことができる。なお、入射方向とし ては、例えば加工対象物の厚み方向や厚み方向に直交す る方向がある。

【0010】本発明に係るレーザ加工方法は、レーザ光 の集光点を加工対象物の内部に合わせて加工対象物にレ ーザ光を照射することにより、加工対象物の切断予定ラ 20 インに沿って加工対象物の内部に改質領域を形成し、か つ、加工対象物に照射されるレーザ光の加工対象物への 入射方向におけるレーザ光の集光点の位置を変えること により、改質領域を入射方向に沿って並ぶように複数形 成する工程を備える、ことを特徴とする。また、本発明 に係るレーザ加工方法は、レーザ光の集光点におけるビ ークパワー密度が1×10°(w/cm²)以上であってパル ス幅が1 µ s以下の条件で、レーザ光の集光点を加工対 象物の内部に合わせて加工対象物にレーザ光を照射する ことにより、加工対象物の切断予定ラインに沿って加工 30 対象物の内部に改質領域を形成し、かつ、加工対象物に 照射されるレーザ光の加工対象物への入射方向における レーザ光の集光点の位置を変えることにより、改質領域 を入射方向に沿って並ぶように複数形成する工程を備え る、ことを特徴とする。

【0011】これらの本発明に係るレーザ加工方法は、 上記本発明に係るレーザ加工方法と同様の理由により、 加工対象物の表面に不必要な割れを発生させることなく かつその表面が溶融しないレーザ加工ができかつ加工対 象物を切断する際に起点となる箇所を増やすことができ る。但し、改質領域の形成は多光子吸収が原因の場合も あるし、他の原因の場合もある。

【0012】本発明に係るレーザ加工方法には以下の態 様がある。

【0013】複数の改質領域は、加工対象物に照射され るレーザ光が入射する加工対象物の入射面に対して遠い 方から順に形成する、ようにすることができる。これに よれば、入射面とレーザ光の集光点との間に改質領域が ない状態で複数の改質領域を形成できる。よって、レー ザ光が既に形成された改質領域により散乱されることは 50 対象物 l がレーザ光∟を吸収することにより加工対象物

ないので、各改質領域を均一に形成することができる。 【0014】なお、改質領域は、加工対象物の内部にお いてクラックが発生した領域であるクラック領域、内部 において溶融処理した領域である溶融処理領域及び内部 において屈折率が変化した領域である屈折率変化領域の うち少なくともいずれか一つを含む。

[0015]

【発明の実施の形態】以下、本発明の好適な実施形態に ついて図面を用いて説明する。本実施形態に係るレーザ 【0009】また、本発明に係るレーザ加工方法によれ 10 加工方法は、多光子吸収により改質領域を形成してい る。多光子吸収はレーザ光の強度を非常に大きくした場 合に発生する現象である。まず、多光子吸収について簡 単に説明する。

> 【0016】材料の吸収のパンドギャップによりも光子 のエネルギーhvが小さいと光学的に透明となる。よっ て、材料に吸収が生じる条件はhv>Ecである。しか し、光学的に透明でも、レーザ光の強度を非常に大きく するとnhν>E_cの条件(n=2,3,4,···であ る)で材料に吸収が生じる。この現象を多光子吸収とい う。パルス波の場合、レーザ光の強度はレーザ光の集光 点のピークパワー密度(W/cm²)で決まり、例えばピー クパワー密度が1×10°(W/cm²)以上の条件で多光子 吸収が生じる。ビークパワー密度は、(集光点における レーザ光の1パルス当たりのエネルギー)÷(レーザ光 のビームスポット断面積×パルス幅)により求められ る。また、連続波の場合、レーザ光の強度はレーザ光の 集光点の電界強度(W/cm²)で決まる。

> 【0017】このような多光子吸収を利用する本実施形 態に係るレーザ加工の原理について図1~図6を用いて 説明する。図1はレーザ加工中の加工対象物1の平面図 であり、図2は図1に示す加工対象物1のII-II線に沿 った断面図であり、図3はレーザ加工後の加工対象物1 の平面図であり、図4は図3に示す加工対象物1のIV-IV線に沿った断面図であり、図5は図3に示す加工対象 物1のV-V線に沿った断面図であり、図6は切断された 加工対象物1の平面図である。

> 【0018】図1及び図2に示すように、加工対象物1 の表面3には切断予定ライン5がある。切断予定ライン 5は直線状に延びた仮想線である。本実施形態に係るレ ーザ加工は、多光子吸収が生じる条件で加工対象物1の 内部に集光点Pを合わせてレーザ光Lを加工対象物1に照 射して改質領域7を形成する。なお、集光点とはレーザ 光」が集光した箇所のことである。

> 【0019】レーザ光Lを切断予定ライン5に沿って (すなわち矢印A方向に沿って) 相対的に移動させるこ とにより、集光点Pを切断予定ライン5に沿って移動さ せる。これにより、図3~図5に示すように改質領域7 が切断予定ライン5 に沿って加工対象物1の内部にのみ 形成される。本実施形態に係るレーザ加工方法は、加工

10

40

1を発熱させて改質領域7を形成するのではない。加工 対象物1にレーザ光Lを透過させ加工対象物1の内部に 多光子吸収を発生させて改質領域7を形成している。よ って、加工対象物1の表面3ではレーザ光Lがほとんど 吸収されないので、加工対象物1の表面3が溶融するこ とはない。

【0020】加工対象物1の切断において、切断する箇 所に起点があると加工対象物1はその起点から割れるの で、図6に示すように比較的小さな力で加工対象物1を 切断することができる。よって、加工対象物1の表面3 に不必要な割れを発生させることなく加工対象物1の切 断が可能となる。

【0021】なお、改質領域を起点とした加工対象物の 切断は、次の二通りが考えられる。一つは、改質領域形 成後、加工対象物に人為的な力が印加されることによ り、改質領域を起点として加工対象物が割れ、加工対象 物が切断される場合である。これは、例えば加工対象物 の厚みが大きい場合の切断である。人為的な力が印加さ れるとは、例えば、加工対象物の切断予定ラインに沿っ て加工対象物に曲げ応力やせん断応力を加えたり、加工 20 対象物に温度差を与えることにより熱応力を発生させた りすることである。他の一つは、改質領域を形成するこ とにより、改質領域を起点として加工対象物の断面方向 (厚さ方向) に向かって自然に割れ、結果的に加工対象 物が切断される場合である。これは、例えば加工対象物 の厚みが小さい場合、改質領域が1つでも可能であり、 加工対象物の厚みが大きい場合、厚さ方向に複数の改質 領域を形成することで可能となる。なお、この自然に割 れる場合も、切断する箇所の表面上において、改質領域 が形成されていない部分まで割れが先走ることがなく、 改質部を形成した部分のみを割断することができるの で、割断を制御よくすることができる。近年、シリコン ウェハ等の半導体ウェハの厚さは薄くなる傾向にあるの で、このような制御性のよい割断方法は大変有効であ

【0022】さて、本実施形態において多光子吸収によ り形成される改質領域として、次の(1)~(3)があ

【0023】(1) 改質領域が一つ又は複数のクラック を含むクラック領域の場合

レーザ光を加工対象物(例えばガラスやLiTaO₃からなる 圧電材料)の内部に集光点を合わせて、集光点における 電界強度が 1×10°(W/cm²)以上でかつパルス幅が 1 μs以下の条件で照射する。このパルス幅の大きさは、 多光子吸収を生じさせつつ加工対象物表面に余計なダメ ージを与えずに、加工対象物の内部にのみクラック領域 を形成できる条件である。これにより、加工対象物の内 部には多光子吸収による光学的損傷という現象が発生す る。この光学的損傷により加工対象物の内部に熱ひずみ が誘起され、これにより加工対象物の内部にクラック領 50 して切断予定ラインに沿って内部にクラック領域9を形

域が形成される。電界強度の上限値としては、例えば1 ×10¹² (W/cm²) である。パルス幅は例えば1ns~2 00nsが好ましい。なお、多光子吸収によるクラック領 域の形成は、例えば、第45回レーザ熱加工研究会論文 集(1998年. 12月)の第23頁~第28頁の「固 体レーザー高調波によるガラス基板の内部マーキング」 に記載されている。

【0024】本発明者は、電界強度とクラックの大きさ との関係を実験により求めた。実験条件は次ぎの通りで ある。

(A) 加工対象物:パイレックスガラス (厚さ700 μ m)

(B) レーザ

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10⁻⁸cm²

発振形態:Qスイッチパルス 繰り返し周波数:100kHz

パルス幅:30ns

出力:出力く1mJ/パルス

レーザ光品質:TEM。

偏光特性:直線偏光 (c) 集光用レンズ

レーザ光波長に対する透過率:60パーセント

(D) 加工対象物が載置される載置台の移動速度: 10 0 mm/秒

なお、レーザ光品質がTEM。とは、集光性が高くレーザ 光の波長程度まで集光可能を意味する。

【0025】図7は上記実験の結果を示すグラフであ 30 る。横軸はピークパワー密度であり、レーザ光がパルス レーザ光なので電界強度はピークパワー密度で表され る。縦軸は1パルスのレーザ光により加工対象物の内部 に形成されたクラック部分 (クラックスポット) の大き さを示している。クラックスポットが集まりクラック領 域となる。クラックスポットの大きさは、クラックスポ ットの形状のうち最大の長さとなる部分の大きさであ る。グラフ中の黒丸で示すデータは集光用レンズ(C) の倍率が100倍、開口数(NA)が0.80の場合であ る。一方、グラフ中の白丸で示すデータは集光用レンズ (c) の倍率が50倍、開口数(NA)が0.55の場合 である。ピークパワー密度が10¹¹(W/cm²)程度から 加工対象物の内部にクラックスポットが発生し、ピーク パワー密度が大きくなるに従いクラックスポットも大き くなることが分かる。

【0026】次に、本実施形態に係るレーザ加工におい て、クラック領域形成による加工対象物の切断のメカニ ズムについて図8~図11を用いて説明する。図8に示 すように、多光子吸収が生じる条件で加工対象物 1 の内 部に集光点Pを合わせてレーザ光Lを加工対象物1に照射 7

成する。クラック領域9は一つ又は複数のクラックを含む領域である。図9に示すようにクラック領域9を起点としてクラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面21に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。加工対象物の表面と裏面に到達するクラックは自然に成長する場合もあるし、加工対象物に力が印加されることにより成長する場合もある。

【0027】(2)改質領域が溶融処理領域の場合 レーザ光を加工対象物(例えばシリコンのような半導体 10 材料)の内部に集光点を合わせて、集光点における電界 強度が1×10°(W/cm²)以上でかつパルス幅が1µs 以下の条件で照射する。これにより加工対象物の内部は 多光子吸収によって局所的に加熱される。この加熱によ り加工対象物の内部に溶融処理領域が形成される。溶融 処理領域とは一旦溶融後再固化した領域、溶融状態中の 領域及び溶融から再固化する状態中の領域のうち少なく ともいずれか一つを意味する。また、溶融処理領域は相 変化した領域や結晶構造が変化した領域ということもで きる。また、溶融処理領域とは単結晶構造、非晶質構 造、多結晶構造において、ある構造が別の構造に変化し た領域ということもできる。つまり、例えば、単結晶構 造から非晶質構造に変化した領域、単結晶構造から多結 晶構造に変化した領域、単結晶構造から非晶質構造及び 多結晶構造を含む構造に変化した領域を意味する。加工 対象物がシリコン単結晶構造の場合、溶融処理領域は例 えば非晶質シリコン構造である。なお、電界強度の上限 値としては、例えば1×1012(W/cm2)である。パル ス幅は例えばlns~200nsが好ましい。

【0028】本発明者は、シリコンウェハの内部で溶融 30 処理領域が形成されることを実験により確認した。実験 条件は次ぎの通りである。

【0029】(A)加工対象物:シリコンウェハ(厚さ350μm、外径4インチ)

(B) レーザ

光源:半導体レーザ励起Nd:YAGレーザ

波長:1064nm

レーザ光スポット断面積:3.14×10-0cm²

発振形態:Qスイッチバルス 繰り返し周波数:100kHz

バルス幅: 30 ns 出力: 20 μ J/バルス レーザ光品質: TEM。 偏光特性: 直線偏光 (C) 集光用レンズ

倍率:50倍 NA:0.55

レーザ光波長に対する透過率:60パーセント

(D) 加工対象物が載置される載置台の移動速度:100mm/秒

【0030】図12は上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域の厚さ方向の大きさは100μm程度である。

【0031】溶融処理領域 13 が多光子吸収により形成されたことを説明する。図 13 は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚みtが $500\,\mu\text{m}$ 、 $1000\,\mu\text{m}$ 00 $200\,\mu\text{m}$ 00 $200\,\mu\text{m$

【0032】例えば、Nd:YAGレーザの波長である106 4 nmにおいて、シリコン基板の厚みが500 μm以下の 場合、シリコン基板の内部ではレーザ光が80%以上透 過することが分かる。図12に示すシリコンウェハ11 の厚さは350 μmであるので、多光子吸収による溶融 処理領域はシリコンウェハの中心付近、つまり表面から 175μmの部分に形成される。この場合の透過率は、 厚さ200 µmのシリコンウェハを参考にすると、90 %以上なので、レーザ光がシリコンウェハ11の内部で 吸収されるのは僅かであり、ほとんどが透過する。この ことは、シリコンウェハ11の内部でレーザ光が吸収さ れて、溶融処理領域がシリコンウェハ11の内部に形成 (つまりレーザ光による通常の加熱で溶融処理領域が形 成)されたものではなく、溶融処理領域が多光子吸収に より形成されたことを意味する。多光子吸収による溶融 処理領域の形成は、例えば、溶接学会全国大会講演概要 第66集(2000年4月)の第72頁~第73頁の 「ピコ秒パルスレーザによるシリコンの加工特性評価」 に記載されている。

【0033】なお、シリコンウェハは、溶融処理領域を 起点として断面方向に向かって割れを発生させ、その割 れがシリコンウェハの表面と裏面に到達することによ り、結果的に切断される。シリコンウェハの表面と裏面 に到達するこの割れは自然に成長する場合もあるし、加 工対象物に力が印加されることにより成長する場合もあ 40 る。なお、溶融処理領域からシリコンウェハの表面と裏 面に割れが自然に成長するのは、一旦溶融後再固化した 状態となった領域から割れが成長する場合、溶融状態の 領域から割れが成長する場合及び溶融から再固化する状 態の領域から割れが成長する場合のうち少なくともいず れか一つである。いずれの場合も切断後の切断面は図1 2に示すように内部にのみ溶融処理領域が形成される。 加工対象物の内部に溶融処理領域を形成する場合、割断 時、切断予定ラインから外れた不必要な割れが生じにく いので、割断制御が容易となる。

50 【0034】(3) 改質領域が屈折率変化領域の場合

(6)

レーザ光を加工対象物 (例えばガラス) の内部に集光点 を合わせて、集光点における電界強度が1×10°(W/c ㎡)以上でかつパルス幅が1ns以下の条件で照射する。 パルス幅を極めて短くして、多光子吸収を加工対象物の 内部に起こさせると、多光子吸収によるエネルギーが熱 エネルギーに転化せずに、加工対象物の内部にはイオン 価数変化、結晶化又は分極配向等の永続的な構造変化が 誘起されて屈折率変化領域が形成される。電界強度の上 限値としては、例えば1×10¹²(W/cm²)である。パ ルス幅は例えば lns以下が好ましく、lps以下がさらに 10 た、レーザ光の入射方向ならば図 l7 に示すように加工 好ましい。多光子吸収による屈折率変化領域の形成は、 例えば、第42回レーザ熱加工研究会論文集(1997 年. 11月)の第105頁~第111頁の「フェムト秒 レーザー照射によるガラス内部への光誘起構造形成」に 記載されている。

【0035】以上のように本実施形態によれば、改質領 域を多光子吸収により形成している。そして、本実施形 態は加工対象物に照射されるレーザ光の加工対象物への 入射方向におけるレーザ光の集光点の位置を変えること により、改質領域を入射方向に沿って並ぶように複数形 20 成している。

【0036】複数の改質領域形成についてクラック領域 を例に説明する。図14は、本実施形態に係るレーザ加 工方法を用いて加工対象物1の内部に二つのクラック領 域9が形成された加工対象物1の斜視図である。

【0037】二つクラック領域9形成方法について簡単 に説明する。まず、パルスレーザ光Lの集光点を加工対 象物1の内部の裏面21付近に合わし、切断予定ライン 5に沿って集光点を移動させながら加工対象物1にバル スレーザ光Lを照射する。とれにより、クラック領域9 (9A) が切断予定ライン5に沿って加工対象物1の内 部の裏面21付近に形成される。次に、パルスレーザ光 Lの集光点を加工対象物1の内部の表面3付近に合わ し、切断予定ライン5に沿って集光点を移動させながら 加工対象物1にパルスレーザ光」を照射する。この照射 により、クラック領域9 (9B) が切断予定ライン5に 沿って加工対象物1の内部の表面3付近に形成される。 【0038】そして、図15に示すように、クラック領 域9A,98からクラック91が自然に成長する。詳しく はクラック91が、クラック領域9Aから裏面21方 向、クラック領域9A(9B)からクラック領域9B(9 A) 方向、クラック領域9 Bから表面3方向にそれぞれ自 然に成長する。これにより、切断予定ライン5に沿った 加工対象物1の面、すなわち切断面となる面において、 加工対象物1の厚み方向に長く延びたクラック9を形成 することができる。よって、比較的小さな力を人為的に 印加するだけ又は印加することなく自然に加工対象物1 を切断予定ライン5に沿って切断することができる。 【0039】以上のように本実施形態によれば複数のク

する際の起点となる箇所を増やしている。従って、本実 施形態によれば加工対象物 1 の厚みが比較的大きい場合 や加工対象物1の材質がクラック領域9形成後のクラッ ク91が成長しにくい場合等においても、加工対象物1 の切断が可能となる。

10

【0040】なお、二つのクラック領域9だけでは切断 が困難な場合、三つ以上のクラック領域9を形成する。 例えば、図16に示すように、クラック領域9Aとクラ ック領域9Bとの間にクラック領域9Cを形成する。ま 対象物1の厚み方向と直交する方向にも切断することが できる。

【0041】本実施形態において、複数のクラック領域 9は、パルスレーザ光」が入射する加工対象物の入射面 (例えば表面3)に対して遠い方から順に形成するのが 好ましい。例えば図14において、先にクラック領域9 Aを形成し、その後にクラック領域9Bを形成する。入射 面に対して近い方から順にクラック領域9を形成する と、後に形成されるクラック領域9形成時に照射される パルスレーザ光Lが先に形成されたクラック領域9によ り散乱される。これにより、後に形成されるクラック領 域9を構成する1ショットのパルスレーザ光Lで形成さ れるクラック部分(クラックスポット)の寸法にばらつ きが生じる。よって、後に形成されるクラック領域9を 均一に形成することができない。これに対して、入射面 に対して遠い方から順にクラック領域9を形成すると上 記散乱が生じないので、後に形成されるクラック領域9 を均一に形成することができる。

【0042】但し、本実施形態において、複数のクラッ 30 ク領域9の形成順序は上記に限定されず、加工対象物の 入射面に対して近い方から順に形成してもよいし、また ランダムに形成してもよい。ランダムに形成とは、例え ば図16において、まずクラック領域9Cを形成し、次 にクラック領域9Bを形成し、レーザ光の入射方向を反 対にして最後にクラック領域9Aを形成するのである。 【0043】なお、複数の改質領域形成について、クラ ック領域の場合で説明したが、溶融処理領域や屈折率変 化領域でも同様のことが言える。また、パルスレーザ光 について説明したが、連続波レーザ光についても同様の 40 ことが言える。

【0044】次に、本実施形態に係るレーザ加工方法に 使用されるレーザ加工装置の一例について説明する。図 18はこのレーザ加工装置100の概略構成図である。 レーザ加工装置100は、レーザ光Lを発生するレーザ 光源101と、レーザ光Lの出力やパルス幅等を調節す るためにレーザ光源101を制御するレーザ光源制御部 102と、レーザ光Lの反射機能を有しかつレーザ光Lの 光軸の向きを90°変えるように配置されたダイクロイ ックミラー103と、ダイクロイックミラー103で反 ラック領域9を形成することにより加工対象物1を切断 50 射されたレーザ光Lを集光する集光用レンズ105と、

集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1が載置される載置台107と、載置台107をX軸方向に移動させるためのX軸ステージ109と、載置台107をX軸方向に直交するY軸方向に移動させるためのY軸ステージ111と、載置台107をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ113と、これら三つのステージ109,111,113の移動を制御するステージ制御部115と、を備える。

【0045】レーザ光源101はパルスレーザ光を発生 10 するNd:YAGレーザである。レーザ光源101に用いることができるレーザとして、この他、Nd:YVO、レーザやNd: YLFレーザやチタンサファイアレーザがある。クラック領域や溶融処理領域を形成する場合、Nd:YAGレーザ、Nd:YVO、レーザ、Nd:YLFレーザを用いるのが好適である。屈折率変化領域を形成する場合、チタンサファイアレーザを用いるのが好適である。

【0046】集光点POX(Y)軸方向の移動は、加工対象 物1をX(Y)軸ステージ109(111)によりX(Y)軸方 向に移動させることにより行う。Z軸方向は加工対象物 1の表面3と直交する方向なので、加工対象物1に入射 するレーザ光Lの焦点深度の方向となる。よって、Z軸ス テージ113をZ軸方向に移動させることにより、加工 対象物1の内部にレーザ光Lの集光点Pを合わせることが できる。つまり、Z軸ステージ113により加工対象物 1の厚み方向における集光点Pの位置が調節される。と れにより、例えば、集光点Pを加工対象物1の厚み方向 において厚みの半分の位置より入射面(表面3)に近い 位置又は遠い位置に調節したり、厚みの略半分の位置に 調節したりすることができる。なお、集光用レンズ10 5をZ軸方向に移動させることによっても、これらの調 節やレーザ光の集光点を加工対象物の内部に合わせると とができる。

【0047】ここで、Z軸ステージによる加工対象物の 厚み方向における集光点Pの位置の調節について図19 及び図20を用いて説明する。本実施形態では加工対象 物の厚み方向におけるレーザ光の集光点の位置を、加工 対象物の表面(入射面)を基準として加工対象物の内部 の所望の位置に調節している。図19はレーザ光しの集 光点Pが加工対象物1の表面3に位置している状態を示 している。図20に示すように、Z軸ステージを集光用 レンズ105に向けてz移動させると、集光点Pは表面3 から加工対象物1の内部に移動する。集光点Pの加工対 象物1の内部における移動量はNzである(Nはレーザ光L に対する加工対象物1の屈折率である)。よって、レー ザ光Lに対する加工対象物 1 の屈折率を考慮してZ軸ステ ージを移動させることにより、加工対象物1の厚み方向 における集光点Pの位置を制御することができる。つま り、集光点1の加工対象物1の厚み方向における所望の 位置を表面3から加工対象物1の内部までの距離(Nz)

とする。この距離 (Nz) を上記屈折率 (N) で除することにより得られた移動量 (z) だけ、加工対象物 1 を厚み方向に移動させる。これにより、上記所望の位置に集光点Pを合わせることができる。

12

【0048】レーザ加工装置100はさらに、載置台107に載置された加工対象物1を可視光線により照明するために可視光線を発生する観察用光源117と、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された可視光用のビームスプリッタ119と、を備える。ビームスプリッタ119と集光用レンズ105との間にダイクロイックミラー103が配置されている。ビームスプリッタ119は、可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可視光線の光軸の向きを90°変えるように配置されている。観察用光源117から発生した可視光線はビームスプリッタ119で約半分が反射され、この反射された可視光線がダイクロイックミラー103及び集光用レンズ105を透過し、加工対象物1の切断予定ライン5等を含む表面3を照明する。

20 【0049】レーザ加工装置100はさらに、ビームスプリッタ119、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された撮像素子121としては例えばCCD(charge-coupled device)カメラがある。切断予定ライン5等を含む表面3を照明した可視光線の反射光は、集光用レンズ105、ダイクロイックミラー103、ビームスプリッタ119を透過し、結像レンズ123で結像されて撮像素子121で撮像され、撮像データとなる。

【0050】レーザ加工装置100はさらに、撮像素子 **121から出力された撮像データが入力される撮像デー** タ処理部125と、レーザ加工装置100全体を制御す る全体制御部127と、モニタ129と、を備える。撮 像データ処理部125は、撮像データを基にして観察用 光源117で発生した可視光の焦点が表面3上に合わせ るための焦点データを演算する。この焦点データを基に してステージ制御部115がZ軸ステージ113を移動 制御することにより、可視光の焦点が表面3に合うよう にする。よって、撮像データ処理部125はオートフォ ーカスユニットとして機能する。可視光の焦点が表面3 に位置するZ軸ステージ113の位置において、レーザ 光Lの集光点Pも表面3に位置するようにレーザ加工装置 1は調整されている。また、撮像データ処理部125 は、撮像データを基にして表面3の拡大画像等の画像デ ータを演算する。この画像データは全体制御部127に 送られ、全体制御部で各種処理がなされ、モニタ129 に送られる。これにより、モニタ129に拡大画像等が 表示される。

【0051】全体制御部127には、ステージ制御部1 50 15からのデータ、撮像データ処理部125からの画像

データ等が入力し、これらのデータも基にしてレーザ光 源制御部102、観察用光源117及びステージ制御部 115を制御することにより、レーザ加工装置100全 体を制御する。よって、全体制御部127はコンピュー タユニットとして機能する。また、全体制御部127 は、図19及び図20で説明した移動量(z)のデータ が入力され、記憶される。

【0052】次に、図18及び図21を用いて、本実施 形態に係るレーザ加工方法を説明する。図21は、この レーザ加工方法を説明するためのフローチャートであ る。加工対象物1はシリコンウェハである。

【0053】まず、加工対象物1の光吸収特性を図示し ない分光光度計等により測定する。この測定結果に基づ いて、加工対象物1に対して透明な波長又は吸収の少な い波長のレーザ光Lを発生するレーザ光源101を選定 する(S101)。次に、加工対象物1の厚さを測定す る。厚さの測定結果及び加工対象物1の屈折率を基にし て、加工対象物1のZ軸方向の移動量(z)を決定する (S103)。これは、レーザ光Lの集光点Pが加工対象 物1の内部に位置させるために、加工対象物1の表面3 に位置するレーザ光Lの集光点を基準とした加工対象物 1のZ軸方向の移動量である。つまり、加工対象物1の 厚み方向における集光点Pの位置が決定される。集光点P の位置は加工対象物 1 の厚さ、材質等を考慮して決定す る。本実施形態では加工対象物1の内部の裏面付近に集 光点Pを位置させるための第1移動量のデータと表面3 付近に集光点Pを位置させるための第2移動量のデータ が使用される。最初に形成する溶融処理領域は第1移動 量のデータを用いて形成される。次に形成する溶融処理 領域は第2移動量のデータを用いて形成される。これら 30 に沿って曲げることにより、加工対象物1を切断する の移動量のデータは全体制御部127に入力される。

【0054】加工対象物1をレーザ加工装置100の載 置台107に載置する。そして、観察用光源117から 可視光を発生させて加工対象物1を照明する(S10 5)。照明された切断予定ライン5を含む加工対象物1 の表面3を撮像素子121により撮像する。この撮像デ ータは撮像データ処理部125に送られる。この撮像デ ータに基づいて撮像データ処理部125は観察用光源1 17の可視光の焦点が表面3に位置するような焦点デー タを演算する(5107)。

【0055】この焦点データはステージ制御部115に 送られる。ステージ制御部115は、この焦点データを 基にしてZ軸ステージ113をZ軸方向の移動させる(S 109)。これにより、観察用光源117の可視光の焦 点が表面3に位置する。Z軸ステージ113のこの位置 において、パルスレーザ光Lの集光点Pは表面3に位置す ることになる。なお、撮像データ処理部125は撮像デ ータに基づいて、切断予定ライン5を含む加工対象物1 の表面3の拡大画像データを演算する。この拡大画像デ ータは全体制御部127を介してモニタ129に送ら

れ、これによりモニタ129に切断予定ライン5付近の 拡大画像が表示される。

【0056】全体制御部127には予めステップS10 3で決定された第1移動量のデータが入力されており、 この移動量のデータがステージ制御部115に送られ る。ステージ制御部115はこの移動量のデータに基づ いて、レーザ光Lの集光点Pが加工対象物1の内部となる 位置に、Z軸ステージ113により加工対象物1をZ軸方 向に移動させる(S111)。この内部の位置は加工対 10 象物1の裏面付近である。

【0057】次に、レーザ光源101からレーザ光Lを 発生させて、レーザ光Lを加工対象物1の表面3の切断 予定ライン5に照射する。レーザ光Lの集光点Pは加工対 象物1の内部に位置しているので、溶融処理領域は加工 対象物1の内部にのみ形成される。そして、切断予定ラ イン5に沿うようにx軸ステージ109やy軸ステージ1 11を移動させて、溶融処理領域を切断予定ライン5に 沿うように加工対象物1の内部に形成する(S11 3)。溶融処理領域は加工対象物1の内部のうち、裏面 20 付近に形成される。

【0058】次に、ステップS111と同様にして第2 移動量のデータに基づいて、レーザ光Lの集光点Pが加工 対象物1の内部の表面3付近となる位置に、2軸ステー ジ113により加工対象物1をZ軸方向に移動させる(S 115)。そして、ステップS113と同様にして加工 対象物1の内部に溶融処理領域を形成する(511 7)。このステップでは溶融処理領域が加工対象物1の 内部の表面3付近に形成される。

【0059】最後に、加工対象物1を切断予定ライン5 (S119)。これにより、加工対象物1をシリコンチ ップに分割する。

【0060】本実施形態の効果を説明する。本実施形態 によれば多光子吸収を起こさせる条件でかつ加工対象物 1の内部に集光点Pを合わせて、バルスレーザ光Lを切断 予定ライン5に照射している。そして、X軸ステージ1 09やY軸ステージ111を移動させることにより、集 光点Pを切断予定ライン5に沿って移動させている。こ れにより、改質領域(例えばクラック領域、溶融処理領 40 域、屈折率変化領域)を切断予定ライン5に沿うように 加工対象物1の内部に形成している。加工対象物の切断 する箇所に何らかの起点があると、加工対象物を比較的 小さな力で割って切断することができる。よって、改質 領域を起点として切断予定ライン5に沿って加工対象物 1を割ることにより、比較的小さな力で加工対象物1を 切断することができる。これにより、加工対象物1の表 面3に切断予定ライン5から外れた不必要な割れを発生 させることなく加工対象物1を切断することができる。 【0061】また、本実施形態によれば、加工対象物1 50 に多光子吸収を起こさせる条件でかつ加工対象物1の内

部に集光点を合わせて、バルスレーザ光Lを切断予定う イン5に照射している。よって、パルスレーザ光」は加 工対象物1を透過し、加工対象物1の表面3ではパルス レーザ光」がほとんど吸収されないので、改質領域形成 が原因で表面3が溶融等のダメージを受けることはな

【0062】以上説明したように本実施形態によれば、 加工対象物1の表面3に切断予定ライン5から外れた不 必要な割れや溶融が生じることなく、加工対象物1を切 断することができる。よって、加工対象物1が例えば半 10 導体ウェハの場合、半導体チップに切断予定ラインから 外れた不必要な割れや溶融が生じることなく、半導体チ ップを半導体ウェハから切り出すことができる。表面に 電極パターンが形成されている加工対象物や、圧電素子 ウェハや液晶等の表示装置が形成されたガラス基板のよ うに表面に電子デバイスが形成されている加工対象物に ついても同様である。よって、本実施形態によれば、加 工対象物を切断することにより作製される製品 (例えば 半導体チップ、圧電デバイスチップ、液晶等の表示装 置)の歩留まりを向上させることができる。

【0063】また、本実施形態によれば、加工対象物1 の表面3の切断予定ライン5は溶融しないので、切断予 定ライン5の幅(この幅は、例えば半導体ウェハの場 合、半導体チップとなる領域同士の間隔である。)を小 さくできる。これにより、一枚の加工対象物1から作製 される製品の数が増え、製品の生産性を向上させること ができる。

【0064】また、本実施形態によれば、加工対象物1 の切断加工にレーザ光を用いるので、ダイヤモンドカッ タを用いたダイシングよりも複雑な加工が可能となる。 例えば、図23に示すように切断予定ライン5が複雑な 形状であっても、本実施形態によれば切断加工が可能と なる。

【0065】また、本実施形態によれば改質領域を入射 方向に沿って並ぶように複数形成することにより、加工 対象物1を切断する際に起点となる箇所を増やしてい る。例えば、加工対象物1のレーザ光の入射方向の寸法 が比較的大きい場合や、加工対象物1が改質領域からク ラックが成長しにくい材質の場合、切断予定ライン5に 沿った改質領域が一本だけでは加工対象物1の切断が困 40 難である。従って、このような場合、本実施形態のよう に複数の改質領域を形成することにより、加工対象物1 を容易に切断することができる。

[0066]

【発明の効果】本発明に係るレーザ加工方法によれば、 加工対象物の表面に溶融や切断予定ラインから外れた割 れが生じることなく、加工対象物を切断することができ る。よって、加工対象物を切断することにより作製され る製品(例えば、半導体チップ、圧電デバイスチップ、 液晶等の表示装置)の歩留まりや生産性を向上させると 50 している状態を示す図である。

とができる。

(9)

【0067】また、本発明に係るレーザ加工方法によれ ば、複数の改質領域を形成することにより加工対象物を 切断する際の起点となる箇所を増やしている。従って、 加工対象物の厚みが比較的大きい場合等においても、加 工対象物の切断が可能となる。

【図面の簡単な説明】

【図1】本実施形態に係るレーザ加工方法によってレー ザ加工中の加工対象物の平面図である。

【図2】図1に示す加工対象物のII-II線に沿った断面 図である。

【図3】本実施形態に係るレーザ加工方法によるレーザ 加工後の加工対象物の平面図である。

【図4】図3に示す加工対象物のIV-IV線に沿った断面 図である。

【図5】図3に示す加工対象物のV-V線に沿った断面図 である。

【図6】本実施形態に係るレーザ加工方法によって切断 された加工対象物の平面図である。

【図7】本実施形態に係るレーザ加工方法における電界 20 強度とクラックの大きさとの関係を示すグラフである。

【図8】本実施形態に係るレーザ加工方法の第1工程に おける加工対象物の断面図である。

【図9】本実施形態に係るレーザ加工方法の第2工程に おける加工対象物の断面図である。

【図10】本実施形態に係るレーザ加工方法の第3工程 における加工対象物の断面図である。

【図11】本実施形態に係るレーザ加工方法の第4工程 における加工対象物の断面図である。

【図12】本実施形態に係るレーザ加工方法により切断 されたシリコンウェハの一部における断面の写真を表し た図である。

【図13】本実施形態に係るレーザ加工方法におけるレ ーザ光の波長とシリコン基板の内部の透過率との関係を 示すグラフである。

【図14】本実施形態に係るレーザ加工方法を用いて加 工対象物の内部にクラック領域が形成された加工対象物 の一例の斜視図である。

【図15】図14に示すクラック領域から延びたクラッ クが形成された加工対象物の斜視図である。

【図16】本実施形態に係るレーザ加工方法を用いて加 工対象物の内部にクラック領域が形成された加工対象物 の他の例の斜視図である。

【図17】本実施形態に係るレーザ加工方法を用いて加 工対象物の内部にクラック領域が形成された加工対象物 のさらに他の例の斜視図である。

【図18】本実施形態に係るレーザ加工方法に使用でき るレーザ加工装置の一例の概略構成図である。

【図19】レーザ光の集光点が加工対象物の表面に位置

(10)

【図20】レーザ光の集光点が加工対象物の内部に位置している状態を示す図である。

【図21】本実施形態に係るレーザ加工方法を説明するためのフローチャートである。

【図22】本実施形態に係るレーザ加工方法により切断 可能なパターンを説明するための加工対象物の平面図で ある。

【符号の説明】

C

* 1・・・加工対象物、3・・・表面、5・・・切断予定 ライン、7・・・改質領域、9,9A,9B,9C・・・クラック領域、11・・・シリコンウェハ、13・・・溶融 処理領域、100・・・レーザ加工装置、101・・・ レーザ光源、105・・・集光用レンズ、109・・・ ×軸ステージ、111・・・Y軸ステージ、113・・・ Z軸ステージ、P・・・集光点

【図12】

【図18】

フロントページの続き

(51)Int.Cl.'	識別記号	FI	テーマコード(参考)
G03F 7/20	5 0 5	G03F 7/20	505
// HOlL 21/301		B 2 3 K 101:40	
B 2 3 K 101:40		H O 1 L 21/78	В

(72)発明者 内山 直己

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

(72)発明者 和久田 敏光

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

Fターム(参考) 2H097 AA03 BA01 BB01 CA17 LA10

LA20

3C069 AA03 BA08 CA05 CA11 EA02

4E068 AE01 CA02 CA03 DA10 DA11

4G015 FA06 FB01 FB02 FC14