Background

- Received Ph.D. in Economics from the University of Oregon in 2017
 - Focused on industrial organization and econometrics
 - Efficiency analyses (technical and allocative)
 - Structural modeling of pricing and economies of scale
- Experience interning at Pacific Northwest National Laboratory
 - Disease modeling
 - Nuclear proliferation pathway analysis
 - Social media analytics
 - Social network analysis for cyber vulnerabilities

Background

- Have worked at Sandia National Laboratories since August 2017
- Cybersecurity
 - ► Took formal training covering system architectures, common vulnerabilities and attacks, and security measures
 - Þ

Motivating Example

► Suppose we are trying to fit a production frontier, but have little information about its functional form:

$$Y_i = F(X_i)\Delta_i \tilde{\varepsilon}_i$$

- ▶ *Y_i* is *i*th observation of output
- ▶ X_i is ith observation of inputs
- ▶ *F* is (unknown) production function
- $\Delta_i \in [0,1]$ is technical efficiency
- $\tilde{\varepsilon}_i > 0$ is observation error

Motivating Example: Data

Figure: Simulated Data

Motivating Example: Cleaning Data

Common first step: Log-transform:

$$y_i = f(X_i) + \delta_i + \varepsilon_i$$

- $y_i = \log Y_i$
- $f(X_i) = \log F(X_i)$
- $\delta_i = \log \Delta_i \leq 0$
- Make distributional assumptions:
 - $\delta_i \sim N^-(0, \sigma_\delta)$
 - $\varepsilon_i \sim N(0, \sigma_{\varepsilon})$

Motivating Example: Data

Figure: Log Simulated Data

Motivating Example: Functional Forms

- We still need to select a form for f
- ▶ Traditionally, parametric forms of *f* have been used
 - ▶ Log-linear: $f(X_i) = \log(X_i)\beta$
 - Translog: All log-inputs, squared log-inputs, and interactions between log-inputs
- Could also use a non-parametric specification
 - ▶ Du et al. (2013) use kernel smoothing to fit conditional mean of the data, use residuals to fit distributional parameters
- ► How can we select between these functional forms, especially given limited data?
 - Log-linear and translog forms can be compared using many methods
 - Difficult to compare with non-parametric methods

Motivating Example: Functional Forms

Figure: Fitted Frontiers

Model Selection

- Classical methods
 - Based on likelihood values
 - Some methods are restrictive in what models can be compared (e.g., nested models), others like information criteria are general
 - Require moderate to large sample sizes
 - Problems:
 - Kernel smoothing is not likelihood-based
 - Sample sizes may not be large enough
 - Classical methods are unreliable for estimating stochastic frontiers

Model Selection

- Cross-validation
 - ► Fit the model with one sub-sample, test accuracy against another sub-sample
 - Requires large sample sizes and a metric for accuracy
 - ▶ **Problem:** Sample sizes are not large enough

Model Selection

- Bayesian methods
 - Very general model comparison, can estimate the probability a model is correct from a set of exclusive models
 - Accounts for likelihood and numbers of parameters
 - No sample size restrictions in general
 - Difficulties:
 - Need a Bayesian analogue of kernel smoothing (Gaussian processes)
 - Calculating model probabilities is hard in general, existing methods are unsuitable for large models applied to small samples

Bayesian Model Selection

▶ Given a set of exclusive models $\{M_1, ..., M_K\}$, the probability that model M_k is the true model given data y is

$$Pr(M_k|y) = \frac{m(y|M_k)p(M_k)}{\sum_{j=1}^{K} m(y|M_j)p(M_j)}$$

- $m(y|M_k)$ is marginal likelihood of model M_k
- ▶ $p(M_k)$ is prior probability that M_k is the true model
- Marginal likelihoods are difficult to compute in general

Marginal Likelihood Estimation

- Many methods have been developed to compute marginal likelihoods
 - ▶ If Gibbs or Metropolis-Hastings sampling are used, efficient methods developed in Chib (1995) and Chib and Jeliazkov (2001)
 - Laplace's method and Gaussian quadrature perform well for moderately-sized models
 - Bridge sampling is very efficient and is widely applicable (in theory)

Marginal Likelihood Estimation: Problems

- ► Existing methods are not well suited to marginal likelihood estimation for this model and data
 - Model is not of correct form for Gibbs sampling
 - Excessive convergence times for Metropolis-Hastings sampling
 - ► Models have too many parameters relative to sample size for Laplace's method, accuracy is degraded
 - Models have too many parameters for Gaussian quadrature to be computationally feasible
 - Bridge sampling is prone to numerical issues in large models, accuracy is degraded (more on this later)

Numerical Issues With Bridge Sampling

Bridge sampling estimates marginal likelihood with

$$\hat{m}(y) = \frac{\frac{1}{N_2} \sum_{s=1}^{N_2} p\left(y | \theta_g^{[s]}\right) p\left(\theta_g^{[s]}\right) h\left(\theta_g^{[s]}\right)}{\frac{1}{N_1} \sum_{s=1}^{N_1} h\left(\theta_y^{[s]}\right) g\left(\theta_y^{[s]}\right)}$$

- ightharpoonup heta denote parameters
- $p(y|\theta)$ is the likelihood
- $ightharpoonup p(\theta)$ are priors over parameters
- $ightharpoonup g(\theta)$ is the proposal distribution, chosen by the researcher
- $h(\theta) = (r_1 p(y|\theta) p(\theta) + r_2 \hat{m}(y) g(\theta))^{-1}$
- lacktriangledown eta_g are parameter samples taken from g (total of \emph{N}_2 samples)
- θ_y are parameter samples taken from the posterior distribution (total of N_1 samples)

Numerical Issues With Bridge Sampling

$$\hat{m}(y) = \frac{\frac{1}{N_2} \sum_{s=1}^{N_2} p\left(y | \theta_g^{[s]}\right) p\left(\theta_g^{[s]}\right) h\left(\theta_g^{[s]}\right)}{\frac{1}{N_1} \sum_{s=1}^{N_1} h\left(\theta_y^{[s]}\right) g\left(\theta_y^{[s]}\right)}$$

- ▶ For large numbers of parameters, $p(\theta)$ and $g(\theta)$ can be very small positive numbers
- ▶ Thus, $h(\theta)$ can take on very large values
- ► Terms in each sum can be very large or very small, are eventually truncated because of finite machine precision, making numerator and denominator inaccurate
- Inaccuracies are magnified by division of numerator by denominator
- ► Will show an example of biased marginal likelihood estimates that result

▶ The marginal likelihood of model M_k can be written as

$$m(y|M_k) = \frac{f(y|\theta, M_k)p(\theta|M_k)}{p(\theta|y, M_k)}$$

- $f(y|\theta, M_k)$ is the likelihood, defined by model
- $ightharpoonup p(\theta)$ is the prior density, defined by researcher
- $p(\theta|y, M_k)$ is posterior density, must be estimated
- ▶ As noted by Chib (1995), this relationship holds for all θ , only need to estimate at one point θ^* , such as the posterior mean

- Markov Chain Monte Carlo (MCMC) produces samples of $\theta|y,M_k$, could theoretically use these samples to estimate posterior density
- Some problems:
 - Traditional kernel density estimators produce biased density estimates
 - Traditional estimators overestimate in low density regions and underestimate in high density regions
 - Adaptive kernel density estimation corrects for this issue (Portnoy and Koenker, 1989)
 - Kernel density estimation suffers from the curse of dimensionality
 - Traditional estimators are largely infeasible for more than six dimensions
 - Adaptive kernel density estimation is unreliable for more than a few dimensions

- ▶ To address the curse of dimensionality, first denote the parameter vector as $\theta = (\theta_1, \theta_2, ..., \theta_P)'$
- Posterior density can be written as

$$p(\theta|y) = p(\theta_1, ..., \theta_P|y) \tag{1}$$

$$= p(\theta_1|\theta_2,...,\theta_P,y) \times p(\theta_2,...,\theta_P|y)$$
 (2)

$$= p(\theta_1|\theta_2,...,\theta_P,y) \times p(\theta_2|\theta_3,...,\theta_P,y)$$
 (3)

$$\times p(\theta_3,...,\theta_P|y)$$
 (4)

$$= \dots (5)$$

$$= p(\theta_1|\theta_2,...,\theta_P,y) \times p(\theta_2|\theta_3,...,\theta_P,y)$$
 (6)

$$\times ... \times p(\theta_P|y). \tag{7}$$

► The density of a P-dimensional vector is broken into P one-dimensional densities

The iterative kernel density estimator has the following algorithm:

- 1. Draw samples of $\theta|y$ using an MCMC algorithm.
- 2. Choose θ^* from a high-density region of $\theta|y$, such as the sample mean or maximum a posteriori.
- 3. Estimate the log-density of $\theta_P|y$ at θ_P^* using adaptive KDE, denoting that value $\ln \hat{p}(\theta_P^*|y)$.
- 4. For each *i* from P 1, ..., 1:
 - 4.1 Re-estimate the model, setting $(\theta_{i+1},...,\theta_P) = (\theta_{i+1}^*,...,\theta_P^*)$, to obtain draws of $(\theta_1,...,\theta_i)|(\theta_{i+1}^*,...,\theta_P^*)$, y.
 - 4.2 Estimate the log-density of $\theta_i | \theta_{i+1}^*, ..., \theta_P^*, y$ at θ_i^* using adaptive KDE, denoting that value $\ln \hat{p}(\theta_i^* | \theta_{i+1}^*, ..., \theta_P^*, y)$.
- 5. Find the sum of each of the estimated partial log-densities to arrive at an estimate for the overall log-posterior density, denoted $\ln \hat{p}(\theta^*|y)$.

Simulations: Multivariate Normal Linear Model

$$y = X\beta + \varepsilon \tag{8a}$$

$$\varepsilon \sim N(0, \sigma^2 I_{100})$$
 (8b)

(8c)

$$X_1 = \mathbf{1}_{100} \tag{8d}$$

$$X_i \sim U(-10, 10); \quad i = 2, 3$$
 (8e)

$$\beta = (-2, 5, 3)' \tag{8f}$$

$$\sigma = 25 \tag{8g}$$

- Marginal likelihood is estimable via Gibbs sampling and with iterative kernel density estimation
 - Estimate marginal likelihood using Gibbs sampling and iterative kernel density estimation 500 times each
 - Test for equality of means

Simulations: Multivariate Normal Linear Model

				Mean Test
Model	# Trials	Gibbs/Chib	Iterative KDE	<i>p</i> -value
Multivariate Linear	500	-481.353 (0.154) Iter = 5,000	-481.348 (0.078) Iter = 5,000	0.493

Table: Comparison of Gibbs and Iterative KDE

Simulations: Large Multivariate Normal Linear Model

$$y = X\beta + \varepsilon$$
 (9a)
 $\varepsilon \sim N(0, \sigma^2 I_{100})$ (9b)
 $X_1 = \mathbf{1}_{100}$ (9d)
 $X_i \sim U(-10, 10); \quad i = 2, ..., 50$ (9e)
 $\beta_i \sim U(-10, 10); \quad i = 1, ..., 50$ (9f)
 $\sigma = 25$ (9g)

- Large model has potential to bias bridge sampling estimates
- Marginal likelihood estimated with Gibbs sampling, iterative kernel density estimation, and bridge sampling 100 times each

	Iterative		IKDE = Chib	Bridge = Chib
Chib	KDE	Bridge	<i>p</i> -value	<i>p</i> -value
-606.927 (0.195)	-606.88 (0.24)	-607.094 (0.014)	0.125	1.777×10^{-13}

Table: Comparison of Chib, Iterative KDE, and Bridge Sampling

▶ Bias in bridge sampling estimates can result in up to 5% difference in model probabilities

Other Simulation Results

- Simulations also performed for probit models, showing similar results
- Like bridge sampling, Laplace's method, and similar estimators, iterative kernel density estimation is widely applicable
 - Used to distinguish probit from logit models in simulations
 - Used to test different forms of the production function in stochastic frontier model (our motivating example)

Production Function Selection

- Recall the stochastic frontier model:
 - $y_i = \log Y_i$
 - $f(X_i) = \log F(X_i)$
 - $\delta_i = \log \Delta_i \leq 0$
 - $ightharpoonup \varepsilon_i = \log \tilde{\varepsilon}_i$
- Distributional assumptions:
 - $\delta_i \sim N^-(0, \sigma_\delta)$
 - $ightharpoonup \varepsilon_i \sim N(0, \sigma_{\varepsilon})$
- Functional forms for f:
 - Log-linear
 - Translog
 - ► Non-parametric

Production Function Selection: Data

- ► Sample dataset describing cereal production of 29 countries in 2012, from the World Bank
- Output: Metric tons of cereal grains produced
- ▶ Inputs: Area of land used for cereal production, fertilizer consumption, freshwater withdrawals, average rainfall, total number of people working in agriculture

Production Function Selection

- Gibbs sampling can be used to estimate log-linear and translog forms
- Non-parametric (Gaussian process) form must be estimated using another method
- Non-parametric form has many parameters, data are relatively limited
 - ► Iterative kernel density estimation is the only method appropriate for estimating marginal likelihood in this example

Production Function Selection: Results

		Log	Log	Log	Log Marginal
Model	# Parameters	Likelihood	Prior	Posterior	Likelihood
Log-Linear	8	-3.734	-10.225	15.249	-29.208
Translog	23	-0.699	-23.666	44.62	-68.984
GP	37	2.68	-27.937	21.458	-46.716

Table: Marginal Likelihood Estimates