Data Analysis_HB_19042016

Hendrik Bruns 19th April 2016

Descriptive Statistics

Following are relevant aggregated statistics and statistics by each of the 11 treatments for each of three relevant dependent variables. These relevant dependent variables are 1. Donation, which is the amount the subject donated in order to retire emission rights 2. Donated, which is equal to 1 if the subject donated a positive amount, and 0 otherwise 3. Belief, which is the amount the subject thinks other participants in this experiment donated on average (not incentivized)

1. Variable: Donation to retire carbon licenses

Aggregated descriptive statistics

```
summary(df$Donation)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 1.000 1.456 2.000 7.000

sd(df$Donation)
```

[1] 1.585159

Distribution of aggregated donations

Distribution of donations by treatment

```
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 28 1.18 1.16 1.25 1.09 1.78 0 4 4 0.38 -0.95 0.22
## -----
## group: RecNos
 vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: DefNos
## vars n mean sd median trimmed mad min max range skew kurtosis
   1 34 1.42 2.08 0.5 1.05 0.74 0 7 7 1.46 0.93 0.36
## -----
## group: RecNap
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 27 1.24 1.3 1 1.09 1.48 0 5 5 0.91 0.39 0.25
## -----
## group: DefNap
## vars n mean sd median trimmed mad min max range skew kurtosis se
   1 29 1.39 1.13 1.4 1.32 1.33 0 4 4 0.36 -0.8 0.21
## group: RecPol
```

```
## vars n mean sd median trimmed mad min max range skew kurtosis se
## -----
## group: DefPol
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 31 1.55 1.68 1 1.24 1.48 0 7 7 1.55
## -----
## group: RecPar
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 32 1.8 1.88 1 1.52 1.48 0 7 7 1.23
                                 1.1 0.33
## group: DefPar
## vars n mean sd median trimmed mad min max range skew kurtosis se
## -----
## group: RecKno
## vars n mean sd median trimmed mad min max range skew kurtosis se
## group: DefKno
## vars n mean sd median trimmed mad min max range skew kurtosis se
```

Frequency of Donation values by treatment

Donations by treatment (Boxplot)

Red diamonds in boxplots represent the respective means

Donations by aggregated treatment (Boxplot), i.e. Def vs. Rec vs. Control

describeBy(df\$Donation, df\$RecvsDef)

```
## group: Rec
##
    vars
                  sd median trimmed mad min max range skew kurtosis
          n mean
                              1.21 1.48 0
                                                  7 1.25
       1 138 1.41 1.47
                         1
## group: Def
   vars
          n mean sd median trimmed mad min max range skew kurtosis
    1 147 1.55 1.75 1 1.24 1.48
                                         0
                                             7
                                                   7 1.4
```


Donations by Reactance score

The reactance score was constructed by changing each of the 11 rectance-items to a dummy variable equal to 1 if the subject chose 3 or 4 on the respective item, and 0 otherwise. Afterwards, all 11 dummies were added to construct an ordinal Reactance score.

Shows a point plot (not jittered) with Donation amount and the respective Reactance score of each participant. Includes a linear regression line, including the 95% confidence region, of the Reactance score as a predictor for the Donation amount.

Donations by Reactance score per treatment Shows a point plot (not jittered) with Donation amount and the respective Reactance score of each participant, for each treatment. Includes a linear regression line, including the 95% confidence region, of the Reactance score as a predictor for the Donation amount, for each treatment.

Donations by EAI score

The EAI score was constructed by changing each of the 12 EAI-items to a dummy variable equal to 1 if the subject chose 3 or 4 on the respective item, and 0 otherwise. Afterwards, all 12 dummies were added to construct an ordinal EAI score.

Shows a point plot (not jittered) with Donation amount and the respective EAI score of each participant. Includes a linear regression line, including the 95% confidence region, of the EAI score as a predictor for the Donation amount.

Donations by EAI score per treatment Shows a point plot (not jittered) with Donation amount and the respective EAI score of each participant, for each treatment. Includes a linear regression line, including the 95% confidence region, of the EAI score as a predictor for the Donation amount, for each treatment.

2. Variable: Donation dummy (1 if donated, 0 otherwise)

Aggregated descriptive statistics

```
summary(df$Donated)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0000 0.0000 1.0000 0.6901 1.0000 1.0000

Distribution of donation dummy by treatment

describeBy(df\$Donated, df\$treatment)

```
## group: Control

## vars n mean sd median trimmed mad min max range skew kurtosis se

## 1 1 28 0.61 0.5 1 0.62 0 0 1 1 -0.42 -1.89 0.09

## ------

## group: RecNos

## vars n mean sd median trimmed mad min max range skew kurtosis se

## 1 1 28 0.68 0.48 1 0.71 0 0 1 1 -0.72 -1.53 0.09
```

```
## group: DefNos
## vars n mean sd median trimmed mad min max range skew kurtosis se
## -----
## group: RecNap
## vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: DefNap
## vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: RecPol
## vars n mean sd median trimmed mad min max range skew kurtosis se
## -----
## group: DefPol
## vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: RecPar
## vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: DefPar
## vars n mean sd median trimmed mad min max range skew kurtosis
## -----
## group: RecKno
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 25 0.64 0.49 1 0.67 0 0 1 1 -0.55 -1.76 0.1
## -----
## group: DefKno
## vars n mean sd median trimmed mad min max range skew kurtosis
table(df$Donated, df$treatment)
##
##
   Control RecNos DefNos RecNap DefNap RecPol DefPol RecPar DefPar RecKno
  0 11 9 16 9 7 6 7 9 4 9
##
                  22
                      20
                             23
                                22
##
  1
     17
        19
           18
               18
                         24
                                   16
##
##
  DefKno
  0 10
##
  1
     17
```

3. Variable: Beliefs about other participants donations

Aggregated descriptive statistics

summary(df\$belief)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 1.000 2.000 1.928 2.500 5.000
```

Distribution of aggregated donations

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution of beliefs by treatment

```
## group: RecNap
## vars n mean sd median trimmed mad min max range skew kurtosis se
## -----
## group: DefNap
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 29 1.8 0.88 2 1.77 1.48 0.5 4 3.5 0.5
## -----
## group: RecPol
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 26 2.19 0.83 2 2.16 1.11 1 4 3 0.17 -0.8 0.16
## -----
## group: DefPol
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 31 2.15 1.16 2 2.06 1.48 0.2 5 4.8 0.67 -0.39 0.21
## group: RecPar
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 32 2.06 1.1 2 2 1.48 0 4.5 4.5 0.43 -0.46 0.19
## -----
## group: DefPar
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 26 2.27 1.11 2 2.27 1.48 0 4 4 -0.07 -1.07 0.22
## -----
## group: RecKno
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 25 2.03 0.88 2 2 0.74 0.5 4 3.5 0.25 -0.58 0.18
## group: DefKno
## vars n mean sd median trimmed mad min max range skew kurtosis se
```

Frequency of beliefs about others donations by treatment

Beliefs by treatment (Boxplot)

Inferential Statistics

Following are relevant inferential statistics for each of three relevant dependent variables. These relevant dependent variables are 1. Donation, which is the amount the subject donated in order to retire emission rights 2. Donated, which is equal to 1 if the subject donated a positive amount, and 0 otherwise 3. Belief, which is the amount the subject thinks other participants in this experiment donated on average (not incentivized)

1. Variable: Donation to retire carbon licenses

Kruskal-Wallis-Test

The following KW-test tests the null-hypothesis that the median donations in each treatment are the same. The test assumes variance homogeneity and equal distributions of donations in each treatment. It basically tests whether the distributions from the different treatments are shifted.

```
kruskal.test(df$Donation ~ df$treatment)
```

```
##
## Kruskal-Wallis rank sum test
##
## data: df$Donation by df$treatment
```

```
## Kruskal-Wallis chi-squared = 8.9142, df = 10, p-value = 0.5403   
We do not reject the null (p=.05).
```

ANOVA (one-way)

```
## Df Sum Sq Mean Sq F value Pr(>F)
## df$treatment 10 21.7 2.172 0.86 0.571
## Residuals 302 762.3 2.524

We do not reject the null (p = .05).
```

2. Variable: Donation dummy (1 if donated, 0 otherwise)

Chi² Test

The following Chi²-test tests the null-hypothesis that whether or not a participant decides to donate anything to retire emission rights (extensive margin) is independent of the treatments.

```
table(df$Donated, df$treatment)
```

```
##
##
        Control RecNos DefNos RecNap DefNap RecPol DefPol RecPar DefPar RecKno
##
     0
             11
                             16
                                                      6
                                                              7
##
     1
             17
                     19
                             18
                                     18
                                             22
                                                     20
                                                             24
                                                                     23
                                                                             22
                                                                                     16
##
##
       DefKno
##
     0
            10
            17
##
```

```
chisq.test(table(df$Donated, df$treatment))
```

```
##
## Pearson's Chi-squared test
##
## data: table(df$Donated, df$treatment)
## X-squared = 11.354, df = 10, p-value = 0.3306
We fail to reject the null (p = .05)
```

3. Variable: Beliefs about other participants donations

Kruskal-Wallis Test

The following KW-test tests the null-hypothesis that the median beliefs about other participants average donations in each treatment are the same. The test assumes variance homogeneity and equal distributions of donations in each treatment. It basically tests whether the distributions from the different treatments are shifted.

kruskal.test(df\$belief ~ df\$treatment)

```
##
## Kruskal-Wallis rank sum test
##
## data: df$belief by df$treatment
## Kruskal-Wallis chi-squared = 18.703, df = 10, p-value = 0.0442
```

We reject the null (p = .05) in favor of the alternative hypothesis that in at least two treatments do the beliefs about other participants donation amounts differ significantly.

Test of hypotheses from the working paper

H₀a

Mean and median payments to retire carbon licenses in the control condition are close to zero.

H0: Average Donations = 0 HA: Average Donations >< 0

```
t.test(df$Donation, mu = 0)
```

```
##
## One Sample t-test
##
## data: df$Donation
## t = 16.249, df = 312, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 1.279617 1.632204
## sample estimates:
## mean of x
## 1.455911</pre>
```

```
wilcox.test(df$Donation, mu = 0)
```

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: df$Donation
## V = 23436, p-value < 2.2e-16
## alternative hypothesis: true location is not equal to 0</pre>
```

We reject the null that Donations are equal to 0

H0b

The share of subjects whose payments correspond to the recommended, respectively defaulted payment-value (convergence) is higher than in the control condition. Additionally, we expect that the share of subjects converging to the default is higher than the share converging to the recommendation.

Aggregated donations in recommendation treatments > donations in control group

```
describeBy(df$Donation, df$RecvsC)
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis
                           1.09 1.78 0 4
                                              4 0.38
      1 28 1.18 1.16 1.25
                                                      -0.950.22
## -----
## group: Rec
## vars
        n mean sd median trimmed mad min max range skew kurtosis se
                                             7 1.25
## 1
      1.77 0.12
t.test(df$Donation ~ df$RecvsC)
##
## Welch Two Sample t-test
##
## data: df$Donation by df$RecvsC
## t = -0.91455, df = 46.409, p-value = 0.3652
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7389846 0.2771834
## sample estimates:
## mean in group Control mean in group Rec
                               1.413043
##
             1.182143
wilcox.test(df$Donation ~ df$RecvsC)
##
## Wilcoxon rank sum test with continuity correction
## data: df$Donation by df$RecvsC
## W = 1815, p-value = 0.6057
## alternative hypothesis: true location shift is not equal to 0
We cannot reject the null that Donations in recommendation treatments are equal to donations in control
condition.
Aggregated donations in default treatments > donations in control group
describeBy(df$Donation, df$DefvsC)
## group: Control
   vars n mean sd median trimmed mad min max range skew kurtosis
     1 28 1.18 1.16 1.25
                           1.09 1.78 0 4
                                             4 0.38 -0.95 0.22
## -----
## group: Def
   vars n mean sd median trimmed mad min max range skew kurtosis
      1.5 0.14
```

```
t.test(df$Donation ~ df$DefvsC)
##
## Welch Two Sample t-test
## data: df$Donation by df$DefvsC
## t = -1.3936, df = 53.68, p-value = 0.1692
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8929751 0.1606621
## sample estimates:
1.182143
                                 1.548299
wilcox.test(df$Donation ~ df$DefvsC)
##
## Wilcoxon rank sum test with continuity correction
## data: df$Donation by df$DefvsC
## W = 1911, p-value = 0.542
\#\# alternative hypothesis: true location shift is not equal to 0
We cannot reject the null that Donations in default treatments are equal to donations in control condition.
Aggregated donations in default treatments > donations in recommendation treatments
describeBy(df$Donation, df$RecvsDef)
## group: Rec
## vars n mean sd median trimmed mad min max range skew kurtosis
      1.77 0.12
## -----
## group: Def
## vars n mean sd median trimmed mad min max range skew kurtosis
    1 147 1.55 1.75 1
                            1.24 1.48 0 7 7 1.4
t.test(df$Donation ~ df$RecvsDef)
##
## Welch Two Sample t-test
## data: df$Donation by df$RecvsDef
## t = -0.70771, df = 279.44, p-value = 0.4797
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5114663 0.2409546
## sample estimates:
## mean in group Rec mean in group Def
         1.413043
                         1.548299
##
```

```
wilcox.test(df$Donation ~ df$RecvsDef)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df$Donation by df$RecvsDef
## W = 10040, p-value = 0.8803
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that Donations in default treatments are equal to donations in recommendation treatments.

H0c

The share of subjects converging to the recommended, respectively defaulted payment-values in the name and picture condition is higher than in the neutral source-condition.

For Recommendations: Donations in Name and Picture treatments > Donations in No-Source treatments

```
describeBy(df$Donation, df$RecNapvsRecNos)
```

```
## group: RecNap
   vars n mean sd median trimmed mad min max range skew kurtosis
                             1.09 1.48
       1 27 1.24 1.3
                       1
                                       0 5
                                                 5 0.91
                                                            0.39 0.25
## group: RecNos
    vars n mean sd median trimmed mad min max range skew kurtosis
       1 28 1.33 1.43
## 1
                         1
                              1.16 1.48 0
                                            5
                                                  5 1.03
                                                             0.21 0.27
```

t.test(df\$Donation ~ df\$RecNapvsRecNos)

```
##
## Welch Two Sample t-test
##
## data: df$Donation by df$RecNapvsRecNos
## t = -0.23849, df = 52.839, p-value = 0.8124
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8253163  0.6499195
## sample estimates:
## mean in group RecNap mean in group RecNos
## 1.244444  1.332143
```

```
wilcox.test(df$Donation ~ df$RecNapvsRecNos)
```

```
## Warning in wilcox.test.default(x = c(2, 0.5, 0, 2, 1, 2, 3.5, 2, 3, 0, ## 0.5, : cannot compute exact p-value with ties
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df$Donation by df$RecNapvsRecNos
## W = 374, p-value = 0.9514
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that Donations in recommendation treatments informing about the name and picture of the source are equal to donations in recommendation treatments providing no information about the source of the recommendation.

For Defaults: Donations in Name and Picture treatments > Donations in No-Source treatments

```
describeBy(df$Donation, df$DefNapvsDefNos)
## group: DefNap
                    sd median trimmed mad min max range skew kurtosis
     vars n mean
                                                       4 0.36
                                 1.32 1.33
        1 29 1.39 1.13
                         1.4
                                             0
                                                                  -0.80.21
## group: DefNos
     vars n mean sd median trimmed mad min max range skew kurtosis
        1 34 1.42 2.08
                          0.5
                                             0
                                                       7 1.46
                                                                  0.93 0.36
## 1
                                 1.05 0.74
t.test(df$Donation ~ df$DefNapvsDefNos)
##
   Welch Two Sample t-test
##
## data: df$Donation by df$DefNapvsDefNos
## t = -0.073374, df = 52.429, p-value = 0.9418
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.862357 0.801505
## sample estimates:
## mean in group DefNap mean in group DefNos
##
               1.393103
                                    1.423529
wilcox.test(df$Donation ~ df$DefNapvsDefNos)
## Warning in wilcox.test.default(x = c(2, 1, 0.7, 2, 3.5, 1, 0.5, 2, 0, 3, :
## cannot compute exact p-value with ties
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: df$Donation by df$DefNapvsDefNos
## W = 584.5, p-value = 0.1963
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that Donations in default treatments informing about the name and picture of the source are equal to donations in default treatments providing no information about the source of the default.

H1

A subject's reaction towards the respective intervention depends on is predicted by trait reactance.

The following are not rigurous tests of the respective hypotheses, but rather approaches to get an idea about relationships and predictions.

Relation between Donation and Reactance score

conditional on treatment

H1a

A subject that scores high on trait reactance is less likely to converge to the recommended and defaulted payment-values, than a subject scoring low on trait reactance. The following treats the Reactance score as metric.

Relation between Donation and Reactance score

resp. for Rec and Def treatment groups

H1b

A subject that scores high on trait reactance is less likely to converge to the defaulted than to the recommended payment-value.

Relation between Donation and Reactance score

resp. for Rec and Def treatment groups

Left is recommendation group, middle is default group, right is Control.

H2

The share of subjects converging to the recommended, respectively defaulted payment-values in the condition informing about the academic degree of the source is higher than in the name and picture condition.

For Recommendations: Donations in Knowledge treatments > Donations in Name and Picture treatments

sd median trimmed mad min max range skew kurtosis

0

4 1.19

0.66 0.22

0.77 0.74

```
t.test(df$Donation ~ df$RecNapvsRecKno)
```

0.5

n mean

1 25 0.94 1.12

vars

##

1

```
## Welch Two Sample t-test
##
## data: df$Donation by df$RecNapvsRecKno
## t = 0.89547, df = 49.74, p-value = 0.3749
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3735478 0.9744367
## sample estimates:
## mean in group RecNap mean in group RecKno
              1.244444
                                 0.944000
wilcox.test(df$Donation ~ df$RecNapvsRecKno)
## Warning in wilcox.test.default(x = c(2, 0.5, 0, 2, 1, 2, 3.5, 2, 3, 0,
## 0.5, : cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
## data: df$Donation by df$RecNapvsRecKno
## W = 380, p-value = 0.4272
## alternative hypothesis: true location shift is not equal to 0
For Defaults: Donations in Knowledge treatments > Donations in Name and Picture treat-
ments
describeBy(df$Donation, df$DefNapvsDefKno)
## group: DefNap
## vars n mean sd median trimmed mad min max range skew kurtosis
## group: DefKno
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 27 1.49 1.71 1
                              1.31 1.48 0 5 5 0.83 -0.69 0.33
t.test(df$Donation ~ df$DefNapvsDefKno)
##
## Welch Two Sample t-test
## data: df$Donation by df$DefNapvsDefKno
## t = -0.24517, df = 44.667, p-value = 0.8074
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8828438 0.6912729
## sample estimates:
## mean in group DefNap mean in group DefKno
##
              1.393103
                                 1.488889
```

```
wilcox.test(df$Donation ~ df$DefNapvsDefKno)

## Warning in wilcox.test.default(x = c(2, 1, 0.7, 2, 3.5, 1, 0.5, 2, 0, 3, :
## cannot compute exact p-value with ties

##

## Wilcoxon rank sum test with continuity correction
##

## data: df$Donation by df$DefNapvsDefKno
## W = 415, p-value = 0.7
## alternative hypothesis: true location shift is not equal to 0
```

H3-1

The share of subjects converging to the recommended, respectively defaulted payment-values in the condition informing about the political characteristic of the source is lower than in the name and picture condition.

For Recommendations: Donations in Political treatments < Donations in Name and Picture treatments

```
describeBy(df$Donation, df$RecNapvsRecPol)
## group: RecNap
    vars n mean sd median trimmed mad min max range skew kurtosis
                                                5
        1 27 1.24 1.3
                          1
                                1.09 1.48
                                            0
                                                      5 0.91
                                                                 0.39 0.25
## group: RecPol
     vars n mean
                   sd median trimmed mad min max range skew kurtosis
        1 26 1.65 1.33
                         1.75
                                 1.57 1.85
                                                       5 0.41
                                                                 -0.53 0.26
## 1
                                             0
                                                 5
t.test(df$Donation ~ df$RecNapvsRecPol)
##
##
   Welch Two Sample t-test
##
## data: df$Donation by df$RecNapvsRecPol
## t = -1.1316, df = 50.798, p-value = 0.2631
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.1357792 0.3169757
## sample estimates:
## mean in group RecNap mean in group RecPol
               1.244444
                                    1.653846
wilcox.test(df$Donation ~ df$RecNapvsRecPol)
## Warning in wilcox.test.default(x = c(2, 0.5, 0, 2, 1, 2, 3.5, 2, 3, 0,
```

0.5, : cannot compute exact p-value with ties

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: df$Donation by df$RecNapvsRecPol
## W = 289.5, p-value = 0.266
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that Donations in recommendation treatments informing about the political mandate of the source are equal to donations in recommendations treatments providing the name and picture of the source.

For Defaults: Donations in Political treatments < Donations in Name and Picture treatments

```
describeBy(df$Donation, df$DefNapvsDefPol)
## group: DefNap
    vars n mean
                   sd median trimmed mad min max range skew kurtosis
       1 29 1.39 1.13
                       1.4
                                1.32 1.33 0 4
                                                      4 0.36
## group: DefPol
    vars n mean sd median trimmed mad min max range skew kurtosis se
       1 31 1.55 1.68
                           1
                                1.24 1.48
                                            0
                                              7
                                                      7 1.55
                                                                 2.05 0.3
t.test(df$Donation ~ df$DefNapvsDefPol)
##
##
   Welch Two Sample t-test
## data: df$Donation by df$DefNapvsDefPol
## t = -0.42295, df = 52.955, p-value = 0.674
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8917031 0.5811358
## sample estimates:
## mean in group DefNap mean in group DefPol
##
              1.393103
                                   1.548387
wilcox.test(df$Donation ~ df$DefNapvsDefPol)
## Warning in wilcox.test.default(x = c(2, 1, 0.7, 2, 3.5, 1, 0.5, 2, 0, 3, :
## cannot compute exact p-value with ties
##
##
   Wilcoxon rank sum test with continuity correction
## data: df$Donation by df$DefNapvsDefPol
## W = 463.5, p-value = 0.8392
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that donations in default treatments informing about the political mandate of the source are equal to donations in default treatments providing the name and picture of the source.

H3-2

When the source is political the share of subjects converging to the default is lower than the share of subjects converging to the recommendation.

Donations in default treatments informing about the political characteristics of the source < donations in recommendation treatments informing about the political characteristics of the source

```
describeBy(df$Donation, df$RecPolvsDefPol)
## group: 0
                   sd median trimmed mad min max range skew kurtosis
   vars n mean
       1 26 1.65 1.33
                        1.75
                                1.57 1.85
                                            0
                                                5
                                                      5 0.41
## group: 1
                   sd median trimmed mad min max range skew kurtosis se
   vars n mean
       1 31 1.55 1.68
                           1
                                1.24 1.48
                                            0
                                              7
                                                      7 1.55
t.test(df$Donation ~ df$RecPolvsDefPol)
##
##
   Welch Two Sample t-test
## data: df$Donation by df$RecPolvsDefPol
## t = 0.26464, df = 54.867, p-value = 0.7923
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6931841 0.9041022
## sample estimates:
## mean in group 0 mean in group 1
##
          1.653846
                         1.548387
wilcox.test(df$Donation ~ df$RecPolvsDefPol)
## Warning in wilcox.test.default(x = c(3, 1, 0.5, 3.5, 0, 0, 0.5, 0, 2, 1, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
## data: df$Donation by df$RecPolvsDefPol
## W = 449.5, p-value = 0.4547
## alternative hypothesis: true location shift is not equal to 0
```

We cannot reject the null that donations in default treatments informing about the political characteristics of the source are equal to donations in recommendation treatments informing about the political characteristics of the source.

H3a (HERE ALSO INCLUDE PARTY TREATMENTS, NOT JUST POLITICAL?)

A subject that scores high on trust in politics is more likely to converge to the recommended and defaulted payment-values, than a subject scoring low on trust in politics. In treatments informing about the political characteristics of the source.

Relationship between trust in politics dummy and Donation

resp. for RecPol and DefPol treatment groups

Problem is that there are not enough observations with high trust in politics (no observation in Default x Political treatment.

H3b

A subject that values conformity, i.e. doing what the majority does, is more likely to converge to the recommended and defaulted payment-values, than a subject that does not value conformity.

Relationship between conformity dummy and Donation

resp. for RecPol and DefPol treatment groups

Problem is that there are not enough observations with high trust in politics.

H4

The share of subjects converging to the recommended, respectively defaulted payment-values, relative to the political-characteristic condition, is higher for subjects with same party preferences, and lower for subjects with different party preferences. **Hypothesis is possibly phrased wrongly.**

table(df\$party)

##			
##	AfD	Andere	Bündnis90/Grüne
##	9	16	66
##	CDU/CSU	Die Linke	FDP
##	48	56	10
## Ke	ine (Nichtwähler)	Keine Angabe	SPD
##	40	7	61

table(df\$party, df\$treatment)

##									
##		Control	RecNos	${\tt DefNos}$	${\tt RecNap}$	${\tt DefNap}$	${\tt RecPol}$	DefPol	
##	AfD	1	1	0	2	0	0	2	
##	Andere	1	3	1	3	1	1	1	
##	Bündnis90/Grüne	6	5	7	6	7	6	6	

```
CDU/CSU
##
                                 4
                                         6
                                                 4
                                                        1
                                                                5
                                                                               5
##
     Die Linke
                                  7
                                                        3
                                                                6
                                                                               5
                                         4
                                                 6
                                                                        5
     FDP
                                                                               0
##
                                  0
                                                 2
                                                                1
                                                                        0
                                                        1
##
     Keine (Nichtwähler)
                                 5
                                         4
                                                 6
                                                        3
                                                                3
                                                                        1
                                                                               3
                                                                               2
     Keine Angabe
                                                 3
                                                                0
                                                                        0
##
                                  1
                                         0
                                                        0
                                                                               7
##
     SPD
                                  3
                                         4
                                                 5
                                                        8
                                                                6
                                                                        9
##
##
                           RecPar DefPar RecKno DefKno
##
     AfD
                                0
                                        0
     Andere
##
                                2
                                        0
                                                1
                                                       2
                                                       5
##
     Bündnis90/Grüne
                                2
                                       11
                                                5
##
     CDU/CSU
                                6
                                        5
                                                7
                                                       1
##
     Die Linke
                                8
                                        3
                                                5
                                                       4
                                        0
                                                       2
##
     FDP
                                0
                                                3
##
     Keine (Nichtwähler)
                                7
                                        4
                                                1
                                                       3
##
                                        0
     Keine Angabe
                                1
                                                0
                                                       0
##
     SPD
                                        3
```

chisq.test(table(df\$party, df\$treatment))

```
## Warning in chisq.test(table(df$party, df$treatment)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
## data: table(df$party, df$treatment)
## X-squared = 81.971, df = 80, p-value = 0.4179
##
               Control RecNos DefNos RecNap DefNap RecPol DefPol RecPar
##
##
     Not green
                    22
                           23
                                  27
                                         21
                                                 22
                                                        20
                                                               25
                                                                      30
                     6
                            5
                                   7
                                          6
                                                 7
                                                         6
                                                                6
                                                                       2
##
     Green
##
               DefPar RecKno DefKno
##
##
                   15
                          20
     Not green
                           5
                                  5
##
     Green
                   11
```


 ${\it DefPar\ not\ yet\ conducted\ and\ only\ two\ observations\ with\ green\ preferences\ in\ RecPar\ treatment}$