*РОССИЙСКОЙ ФЕДЕРАЦИИ**

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГООБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ» Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ

по лабораторной работе 08

TEMA «Модель конкуренции двух фирм»

Выполнил/ла:

Студент/ка группы: НПИбд-02-21

Студенческий билет No: 1032205421

Студент/ка: Стелина Петрити

Содержание

Содержание Список иллюстраций

Цель работы

Последовательность выполнения работы

Код 1: **1-случай** Код 2: *2-случай*

Вывод

Список иллюстраций

График 1: график изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.

<u>График 2: график изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.</u>

Цель работы

Задача данного исследования заключается в разработке модели компании, специализирующейся на производстве товаров долговременного использования, а также в анализе ее динамики на рынке.

Последовательность выполнения работы

Вариант 52

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$$

Также введена нормировка $t = c_1 \theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М М1 2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \left(\frac{b}{c_1} + 0,00042\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и

$$M_0^1 = 7.9, \ M_0^2 = 9.9,$$
 параметрами: $p_{cr} = 49, N = 50, q = 1$ $au_1 = 35, au_2 = 29,$ $ilde{p}_1 = 9.9, ilde{p}_2 = 11.9$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N - число потребителей производимого продукта.

т - длительность производственного цикла

р - рыночная цена товара

р
– себестоимость продукта, то есть переменные издержки на производство единицы продукции.

q - максимальная потребность одного человека в продукте в единицу времени 1

0=t/c1 - безразмерное время

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Код 1: 1-случай

```
model lab8

parameter Real p_cr=49; //критическая стоимость продукта

parameter Real taul =35;//длительность производственного цикла фирмы 1

parameter Real pl = 9.9;//себестоимость продукта у фирмы 1

parameter Real tau2 = 29;//длительность производственного цикла фирмы 2

parameter Real p2= 11.9;//себестоимость продукта у фирмы 2

parameter Real N = 50; //число потребителей производимого продукта

parameter Real q=1; //максимальная потребность одного человека в продукте в

единицу времени

parameter Real al = p_cr/(taul*taul*pl*pl*N*q);

parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);

parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);

parameter Real c1=(p_cr -p1)/(tau1*p1);

parameter Real c2 = (p_cr -p2)/(tau2*p2);
```

```
parameter Real M0_1 = 7.9;
parameter Real M0_2 = 9.9;
Real M1(start = M0_1);
Real M2(start = M0_2);

equation
der(M1) = M1 -(b/c1)*M1*M2 - (a1/c1)*M1*M1;
der(M2) = (c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end lab8;
```

График 1: график изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.

Код 2: 2-случай

```
model Lab8
parameter Real p_cr=49; //критическая стоимость продукта
parameter Real tau1 =35;//длительность производственного цикла фирмы 1
parameter Real p1 = 9.9; // ceбестоимость продукта у фирмы 1
parameter Real tau2 = 29;//длительность производственного цикла фирмы 2
parameter Real p2= 11.9;//себестоимость продукта у фирмы 2
parameter Real N = 50; //число потребителей производимого продукта
parameter Real q=1; //максимальная потребность одного человека в продукте в
единицу времени
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_cr/(tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1=(p_cr -p1)/(tau1*p1);
parameter Real c2 = (p_cr -p2)/(tau2*p2);
parameter Real M0_1 = 7.9;
parameter Real M0_2 = 9.9;
Real M1(start = M0_1);
Real M2(start = M0_2);
equation
der(M1) = M1 - (b/0.00042)*M1*M2 - (a1/c1)*M1*M1;
der(M2) = (c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end Lab8;
```

График 2: график изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Вывод

Разработанная модель предприятия обеспечивает ценные научные выводы относительно факторов, воздействующих на его устойчивость на рынке. Проведение анализа уравнений позволяет выявить значимость сохранения баланса между постоянными и переменными издержками, а также между объемом производства, ценой продукции и доходами потребителей.