QUALITYING EXAM August, 1979

ALGEBRA - Do 5 problems

- 1. a. Define what it means for a group to be abelian.
 - b. Give an example of an abelian group and an example of a non-abelian group.
 - c. Prove that any group with exactly four elements is abelian.
- 2. a. Define an equivalence relation on a set S.
 - b. Let G be a group and H a subgroup of G. If x, y ϵ G, we say that x and y are "congruent mod H," (written x \equiv y(mod H)) if xy⁻¹ ϵ H. Prove that "congruence mod H" is an equivalence relation on G.
- 3. Let $f:G_1 \to G_2$ be a surjective (i.e. <u>onto</u>)homomorphism from G_1 to G_2 . Assume that $G_2 \neq \{1\}$. Prove, or give a counter-example to each assertion below.
 - a. If G_1 is abelian, then so is G_2 .
 - b. If G_1 is nonabelian, then so is G_2 .
 - c. If G_1 is infinite, then so is G_2 .
- 4. Solve completely the linear system of equations

$$x_1 + x_2 - x_3 = 5$$

 $x_1 + 2x_2 + x_3 = 4$

- 5. Let ${\rm V}_1$ and ${\rm V}_2$ be vector spaces over a field F , and let T be a mapping from ${\rm V}_1$ to ${\rm V}_2$.
 - a. Define what it means for T to be a <u>linear transformation</u>. Give an example of vector spaces V_1 , V_2 over F and a linear transformation $T:V_1 \rightarrow V_2$.
 - b. Assume that dim $V_1 = n < \infty$. State (don't prove) the "rank-nullity" theorem.
- 6. Let R bearing and let $I \subseteq R$. Define what it means for I to be
 - a. a (2-sided) ideal of R.
 - b. a left ideal of R.
 - c. Give an example of a ring $\,R\,$ and a left ideal $\,I\,$ that is not a 2-sided ideal of $\,R\,$.
 - d. If $I \subseteq R$ is a 2-sided ideal, what are the ring operations in the quotient ring R/I? (Continued on page 2)

6. d. (Continued)

That is, given r+I, s+I ϵ R/I how are the "product" and "sum" of these elements defined in terms of the corresponding operations in R? Prove that these operations are well-defined.

7. State (without proof) the "Fundamental Theorem of Arithmetic" for the ring Z of integers.

Give an example of a ring $R \neq \mathbb{Z}$, for which a suitable generalization of the Fundamental Theorem of Arithmetic is valid.

- Let R be a commutative-ring-with-a-one (i.e. R has a multiplicative identity element).
 - a. If $M \subseteq R$ is a maximal ideal in R, describe (don't prove anything) how to obtain a field from R and M.
 - b. Give an example of this construction.
- 9. Let \mathbb{R} , \mathbb{C} be the fields of real and complex numbers, respectively, and let x be an indeterminate over \mathbb{R} . Show how to define an isomorphism between the fields $\mathbb{R}[x]/(x^2+1)$ and \mathbb{C} . Simply construct the mapping; you don't have to show that it affords an isomorphism.

ANALYSIS - Do 5 problems

- 1. Let X and Y be metric spaces and $f:X \to Y$ a function. Define: f is uniformly continuous. Give an example, with $X = Y = \mathbb{R}$, of a continuous function f which is not uniformly continuous.
- 2. Suppose f is a real valued function defined on (0,1), and f' exists and is bounded on (0,1). Prove that
 - a. f is bounded on (0,1).
 - b. $\lim_{n\to+\infty} f(\frac{1}{n})$ exists.
- 3. Suppose f is a continuous function on the closed interval [a,b] and $\int_a^c f(x) dx = 0$ for every rational number c, a < c < b. Prove that f(x) = 0 for all x in [a,b].

- 4. Let $\{f_n\}$ be a sequence of real valued continuous functions defined on a set $S \subseteq \mathbb{R}$. Suppose $\{f_n\}$ converges uniformly to f on S. Prove that f is continuous on S.
- 5. Let $\{[a_i,b_i]\}_{i=1}^{+\infty}$ be a sequence of closed intervals such that $[a_i,b_i] \supset [a_{i+1},b_{i+1}]$ for each $i=1,2,\ldots$ Prove the $\bigcap [a_i,b_i]$ is nonempty. (Hint: Use the least upper bound property)
- 6. Determine the interval of convergence of the power series

$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{2^n n}$$