

X-ray calculating tomographic device - has rotating platform on longitudinal guides to carry holder and cross riders transverse movement

Patent Assignee: CABLE IND ENG RES

Inventors: TURYANSKII A G

Patent Family (1 patent, 1 country)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
SU 1608526	A	19901123	SU 4637491	A	19890113	199142	B

Priority Application Number (Number Kind Date): SU 4637491 A 19890113

Alerting Abstract: SU A

Holder (6) for the test object with rotation drive is set with a movement capability int he radial slot of platform (4), which can be rotated on the shaft of the electric drive. Radiation source (1) with a collimator, the radiation detector and the platform can be moved in a longitudinal direction in the guides of the bearing frame and in a transverse direction in cross-riders.

USE - Checking internal structures of objects and testing measurement channels of tomographs.
Bul. 43/23.11.90 @ (5pp Dwg./No.1/6)@

International Classification (Additional/Secondary): G01N-023/08

Original Publication Data by Authority

Soviet Union

Publication Number: SU 1608526 A (Update 199142 B)

Publication Date: 19901123

Assignee: CABLE IND ENG RES (CABL-R)

Inventor: TURYANSKII A G

Language: RU

Application: SU 4637491 A 19890113 (Local application)

Original IPC: G01N-23/08

Current IPC: G01N-23/08

Derwent World Patents Index

© 2006 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 5696363

BEST AVAILABLE COPY

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (II) 1608526 A1

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(51) G 01 N 23/08

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

В. ЕСОЮЗНАЯ
ПАТЕНТ ТЕХНОЛОГИЧЕСКАЯ
СЛУЖБА

1

(21) 4637491/24-25
(22) 3.01.89
(46) 23.11.90. Бюл. № 43
(71) Всесоюзный научно-исследовательский
проектно-конструкторский и технологиче-
ский институт кабельной промышленности
(72) А.Г. Турьянский
(53) 621.386(088.8)
(56) Турьянский А.Г., Федосеева О.П. Опре-
деление нелинейности преобразования для
детекторов рентгеновского излучения. —
ПТЭ, 1987, № 3, с. 189.

Заявка Великобритании № 2137453,
кл. G 01 N 23/04, 1984.

Патент Великобритании № 1538439,
кл. H 4 F, 1979.

2

(54) РЕНТГЕНОВСКОЕ ВЫЧИСЛИТЕЛЬ-
НОЕ ТОМОГРАФИЧЕСКОЕ УСТРОЙСТВО

(57) Изобретение относится к рентгено-
вской вычислительной топографии и может
использоваться для контроля внутренней
структурой объектов, в частности для тести-
рования измерительных каналов томографа.
Цель изобретения — повышение
достоверности измерений за счет расшире-
ния возможностей позиционирования. Для
этого держатель 6 исследуемого объекта с
электроприводом 5 его поворота установлен
с возможностью перемещения в радиальном
пазу 12 платформы 14, которая
может поворачиваться на валу 9 от электро-
привода 5. Источник 1 излучения, детектор
8 излучения и платформа 4 могут переме-
щаться в продольном направлении по на-
правляющим 17, 18 несущей рамы
устройства и в поперечном направлении по
пазам рейтеров 15, 16 и 19. 6 ил.

(19) SU (II) 1608526 A1

Фиг. 1

Изобретение относится к рентгеновской вычислительной томографии и может использоваться для контроля внутренней структуры объектов, тестируемых измерительных каналов томографа.

Цель изобретения – повышение достоверности измерений за счет расширения возможностей позиционирования.

На фиг. 1 показана рентгенооптическая схема рентгеновского вычислительного томографического устройства; на фиг. 2 – система позиционирования; на фиг. 3 – блок-схема электронных трактов управления и обработки сигналов; на фиг. 4–6 – временные зависимости интенсивности рентгеновского потока.

Рентгеновское вычислительное томографическое устройство содержит рентгеновский источник 1 излучения, дообъектный коллиматор 2, электропривод 3 опорной платформы 4, несущей электропривод 5 держателя 6 исследуемого объекта (не показан), послеобъектный коллиматор 7 и детектор 8 излучения. Вращение к платформе 4 передается с помощью вала 9. При исследовании массивных объектов с нижней стороны платформы 4 устанавливают противовесы 10 и 11. Перемещение держателя 6 совместно с электроприводом 5 относительно оси вала 9 осуществляют вдоль радиального паза 12 на платформе 4. Перемещения источника 1 совместно с коллиматором 2 и детектора 8 совместно с коллиматором 7 по вертикали осуществляют вдоль опорных стоек 13 и 14, установленных на рейтерах 15 и 16, при фиксированном положении корпусов коллиматоров 2 и 7. Перемещения источника 1, детектора 8, электропривода 3, коллиматоров 2 и 7 в горизонтальной плоскости осуществляют вдоль направляющих 17 и 18 в виде оптических скамей и вдоль пазов на рейтерах 15, 16 и 17, перпендикулярных направляющим 17 и 18, которые образуют несущую раму устройства.

Управление движением производится по импульсным сигналам систем позиционирования, расположенных внутри корпусов электроприводов 3 и 4. В состав системы позиционирования электропривода 3 входят направленные источники 20 и 21 света, диск 22, закрепленный на валу 9, и фотодатчики 23 и 24. На диске 22 имеется пять радиальных щелевых зон 25, расположенных с угловым шагом $360^\circ/5$. Площади пяти зон 25 равны S , площадь одной из зон 25 равна $2S$. Электропривод 3, платформа 4, вал 9, электропривод 5 и держатель 6 являются средствами линейного и углового пе-

ремещений. Фотодатчики 23 и 24 служат датчиками угловых перемещений.

Система позиционирования (не показана), расположенная в корпусе электропривода 5, аналогичным образом содержит одну пару источник света – фотодатчики на дисках, связанную с осью держателя 6. На диске имеются пять щелевых зон равной площади ($\pi \cdot r^2 \cdot 10^{-2} - 10^{-3}$). Подача электропитания 10 электроприводу 5 и передача сигналов управления осуществляются с помощью скользящих контактов 26 и 27, проводящих колец 28 и электрического кабеля, проходящего внутри вала 9. Проводящие кольца разделены электроизолирующими кольцами 29.

Сигналы с фотодатчиков системы позиционирования поступают в блок 30 управления перемещениями. Обработка сигнала 20 детектора 8 производится электронным трактом, включающим предусилитель 31, интегратор 32, коммутатор 33, аналого-цифровой преобразователь 34 и ЭВМ 35. Оцифрованные данные измерений и результаты 25 вычислений выводят на дисплей 36. Каждый из блоков 31–34 и детектор 8 выполнены в виде отдельных модулей и подключаются в измерительную цепь с помощью разъемов.

В исходном положении фокус источника 1 и центр детектора 8 совмещены с прямой, которая образует с осью вала 9 прямой угол. Ось держателя 6 параллельна оси вала 9. В системе позиционирования электропривода 5 центр одной из пяти щелевых зон совмещен с осью светового пучка, создаваемого направленным источником. В системе позиционирования электропривода 3 пары источников 20 и 21 света – фотодатчик 23 и 24 установлены диаметрально противоположно. Прямая, пересекающая центры фотодатчиков 23 и 24, образует угол 90° с вертикальной плоскостью, проходящей через центры входного окна детектора 8 и фокусного пятна источника 1. На держателе 45 6 закреплен тест-объект.

По пусковому сигналу, поступающему в блок 30 управления, выдаются команды 50 включения электропривода 3 и открытия затвора (не показан), установленного перед выходным окном источника 1. Через 2–4 с, в течение которых производится разгон и стабилизация скорости вращения платформы 4, в электронные блоки 31–34 и ЭВМ 35 выдается команда готовности к измерениям. Через промежуток времени $\Delta T \approx T/20$ (T – период поворота платформы 4 в установленном режиме) после поступления до фотодатчика 23 импульса с амплитудой 2A при прохождении через световой пучок щелевой зоны площадью $2S$ блоком 30 в блоки

32-34 выдается команда начала измерений. Импульсы амплитудой А, поступающие от фотодатчика 23 при прохождении через световой пучок щелевых зон площадью S, являются запускающими для интегратора 32. Установленное время интегрирования 0,9T/p. После окончания интегрирования в течение промежутка 0,1T/p производятся оцифровка, ввод числа в память ЭВМ 35 и сброс сигнала интегратора 32 до нулевого уровня. Следующие циклы опроса детектора 8 осуществляют аналогично до момента поступления в блок 30 управления импульса амплитудой 2A от фотодатчика 24. После этого входы блоков 32-34 записываются и выдается команда начала движения в электропривод 5. Поворот держателя 6 с тест-объектом производится до момента поступления очередного импульса от системы позиционирования электропривода 5, что соответствует повороту на угол 360°/m. Поступающий в блок 30 управления импульс амплитудой 2A от фотодатчика 23 инициирует повторение сбора при измененном угловом положении тест-объекта. После выдачи в блок 30 управления m-го импульса от системы позиционирования электропривода 5 вырабатывается команда окончания измерений, по которой отключается электропитание электропривода 3, закрывается затвор источника 1 и загираются входы блоков 32-34.

При фиксированных значениях угловой скорости вращения платформы 4 и времени интегрирования T_i с помощью одного тест-объекта (например, цилиндра из оргстекла, содержащего вставку с набором отверстий малого диаметра для определения пространственного разрешения) может быть обеспечено изменение следующих условий сбора данных: 1) линейной скорости сканирования и скважности рентгеновского сигнала (фиг. 4, 5); 2) формы сигнала (имитация объекта с внутренней полостью, фиг. 6); 3) угла падения излучения на входную грань детектора 8 (имитация облучения в аппарате 4-го поколения); 4) динамического диапазона сигнала; 5) отношения расстояний фокус-детектор 8 и фокус-центр тест-объекта.

Для измерений соответственно по пп. 1-4 элементы рентгенооптической схемы размещают следующим образом: фокус источника 1, центр детектора 8, ось вращения платформы 4 совмещены с вертикальной плоскостью, центр тест-объекта находится на расстоянии $R > r$ (R – расстояние от оси платформы 4 до центра тест-объекта, совмещенного с осью держателя 6, r – радиус тест-объекта), тест-объект последовательно

смещают вдоль паза 12; ось вращения платформы 4 смещают на расстояние $S_1 < r$ от вертикальной плоскости, проходящей через центр детектора и фокус, при этом $r + S_1 > R > r$; центр детектора 8 последовательно смещают от вертикальной плоскости, проходящей через фокус и ось вращения платформы 4, на расстояние $S_2 \leq R$; ось вращения платформы 4, фокус и центр детектора совмещены с вертикальной плоскостью, при этом $R > r$.

Изменение отношения расстояний, указанных в п. 5, реализуется во всех случаях при $R > 0$. Перемещения указанных в пп. 1-4 элементов рентгенооптической схемы осуществляют путем сдвига соответствующих опорных элементов вдоль пазов на рейтерах 15 и 16 и платформы 4. При установке дополнительного электропривода на рейтеры 15 и 16 или платформу 4 сдвиг опорных элементов может производиться в процессе сбора данных. В частности, для режима сбора данных по п. 3 движение опорной стойки 14 с детектором 8 может быть начато по позиционному импульсу амплитудой 2A от фотодатчика 23 синхронно с командой начала измерений и окончено по сигналу датчика положения, установленного на расстоянии S_2 от исходного положения. При этом скорость движения стойки $\sim (S_2/T) \times 10^{-2}$.

Обработка собранных данных предусматривает сравнение результатов измерений, полученных с тестируемыми детектором и элементами электронного канала, с расчетными характеристиками для выбранных условий облучения или с данными для эталонного канала. Найденные отклонения вводят в программу реконструкции и определяют характеристики реконструированного изображения: пространственное разрешение при 100%-ном контрасте, разрешение по плотности, однородность по полу изображения и др. Вопрос о пригодности испытываемых элементов измерительного канала (детектора, предусилителя и других) решается по результатам сопоставления характеристик изображения с выбранными критериями.

Ф о р м у л а изобр ет ен и я

Рентгеновское вычислительное томографическое устройство, содержащее источник излучения, дообъектный коллиматор, послеобъектный коллиматор, средства детектирования излучения, поворотный держатель исследуемого объекта, несущую раму с направляющими для линейного перемещения поворотного держателя исследуемого объекта относительно источника излучения и средств детектирования излучения, датчики угловых и

линейных перемещений держателя, средства управления угловыми и линейными перемещениями держателя, вычислительный блок обработки, связанный со средствами детектирования излучения, датчиками перемещений и средствами управления перемещениями держателя, от ли ч а ю щ е е с я тем, что, с целью повышения достоверности измерений за счет расширения возможностей позиционирования, поворотный держатель установлен на дополнительной введенной поворотной платформе с возможностью линейного перемещения в ради-

альном относительно оси поворота платформы направлении, платформа установлена с возможностью линейного перемещения оси ее поворота в направлении, перпендикулярном направляющим несущей рамы, источник излучения и средства детектирования излучения установлены с возможностью линейного перемещения и фиксации на направляющих несущей рамы и возможностью линейного перемещения в направлении, перпендикулярном к направляющим несущей рамы, и фиксации в требуемом положении.

Фиг.2

Фиг.3

Редактор И.Горная

Составитель К.Кононов
Техред М.Моргентал

Корректор Л.Бескид

Заказ 3611

Тираж 493

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.