Data Structure and Algorithms-I

Introduction to Asymptotic Analysis

The Course

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a programming course
 - Not a math course, either

- Textbook: *Introduction to Algorithms* (3rd edition) Cormen, Leiserson, Rivest, and Stein
 - An excellent reference you should own

What is a Data Structure?

- Data is a collection of facts, such as values, numbers, words, measurements, or observations.
- Structure means a set of rules that holds the data together.
- A data structure is a particular way of storing and organizing data in a computer so that it can be used **efficiently**.
 - Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks.
 - Data Structures provide a means to manage huge amount of data efficiently.
 - Usually, efficient data structures are a key to designing efficient algorithms.
 - Data structures can be nested.

Types of Data Structures

- Data structures are classified as either
 - Linear (*e.g*, arrays, linked lists), or
 - Nonlinear (*e.g*, trees, graphs, etc.)
- A data structure is said to be linear if it satisfies the following four conditions
 - There is a unique element called the first
 - There is a unique element called the last
 - Every element, except the last, has a unique successor
 - Every element, except the first, has a unique predecessor
- There are two ways of representing a linear data structure in memory
 - By means of sequential memory locations (arrays)
 - By means of pointers or links (linked lists)

What is an Algorithm?

- An algorithm is a sequence of computational steps that solves a well-specified computational problem.
 - An algorithm is said to be correct if, for every input instance, it halts with the correct output
 - An incorrect algorithm might not halt at all on some input instances, or it might halt with other than the desired output.

What is a Program?

- A program is the expression of an algorithm in a programming language
- A set of instructions which the computer will follow to solve a problem

Define a Problem, and Solve It

• Problem:

Description of Input-Output relationship

• Algorithm:

■ A sequence of computational steps that transform the input into the output.

• Data Structure:

An organized method of storing and retrieving data.

Our Task:

■ Given a problem, design a *correct* and *good* algorithm that solves it.

Define a Problem, and Solve It

Problem: Input is a sequence of integers stored in an array. Output the minimum.

What do we Analyze?

- Correctness
 - Does the input/output relation match algorithm requirement?
- Amount of work done (complexity)
 - Basic operations to do task
- Amount of space used
 - Memory used
- Simplicity, clarity
 - Verification and implementation.
- Optimality
 - Is it impossible to do better?

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time

o
$$y = m * x + b$$

o $c = 5 / 9 * (t - 32)$
o $z = f(x) + g(y)$

• We can be more exact if need to be

Lecturer Saifur Rahman, Dept. of CSE, United International University

6 10 24 36

$$A = \{5, 2, 4, 6, 1, 3\}$$


```
InsertionSort(A, n) {
 for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```

```
InsertionSort(A, n) {
                            How many times will
  for i = 2 to n {
                            this loop execute?
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
```

Analyzing Insertion Sort

Statement	Cost	<u>Times</u>
<pre>InsertionSort(A, n) {</pre>		
for $i = 2$ to $n \{$	\mathbf{c}_1	n
key = A[i]	c_2	(n-1)
j = i - 1;	c_3	(n-1)
while $(j > 0)$ and $(A[j] > key)$ {	c_4	T
A[j+1] = A[j]	c ₅	(T-(n-1))
$j = j - 1$ }	c_6	(T-(n-1))
A[j+1] = key	c ₇	(n-1)
}		
}		

 $T = t_2 + t_3 + ... + t_n$, where t_i is the number of while expression evaluations for the i^{th} for loop iteration

Analyzing Insertion Sort

•
$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 T + c_5 (T - (n-1)) + c_6 (T - (n-1)) + c_7 (n-1)$$

= $c_8 T + c_9 n + c_{10}$

- What can T be?
 - **Best case:** the array is sorted (inner loop body never executed)
 - $\circ t_i = 1 \longrightarrow T = n$
 - \circ T(n) = an + b, a linear function of n
 - Worst case: the array is reverse sorted (inner loop body executed for all previous elements)
 - $ot_i = i \rightarrow T = n(n + 1)/2 1$
 - o $T(n) = an^2 + bn + c$, a quadratic function of n
 - Average case:
 - o ???

Asymptotic Performance

- We care most about *asymptotic performance*
 - How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Bandwidth/power requirements/logic gates/etc.

Asymptotic Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee of required resources
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs
- Best case

Upper Bound Notation

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is in $O(n^2)$
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Formally
 - $O(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0 \}$

Upper Bound Notation

We say g(n) is an asymptotic upper bound for f(n)

Insertion Sort is $O(n^2)$

Proof

- The run-time is $an^2 + bn + c$
 - o If any of a, b, and c are less than 0, replace the constant with its absolute value
- $an^2 + bn + c$ $\leq (a + b + c)n^2 + (a + b + c)n + (a + b + c)$ $\leq 3(a + b + c)n^2$ for $n \geq 1$ Let c' = 3(a + b + c) and let $n_0 = 1$. Then $an^2 + bn + c$ $\leq c' n^2$ for $n \geq 1$ Thus $an^2 + bn + c$ $= O(n^2)$.

Question

- Is InsertionSort $O(n^3)$?
- Is InsertionSort O(n)?

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Suppose run time is an + b
 - Assume a and b are positive
 - $an \le an + b$

Lower Bound Notation

We say g(n) is an asymptotic lower bound for f(n)

Asymptotic Tight Bound

• A function f(n) is $\Theta(g(n))$ if \exists positive constants $c_1, c_2,$ and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$$

- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$
 - Proof:

Asymptotic Tight Bound

We say g(n) is an asymptotic tight bound for f(n)

For large input sizes, constant terms are insignificant

Program A with running time $T_A(n) = 100n$

Program *B* with running time $T_B(n) = 2n^2$

$$- f(n) = n$$

$$- f(n) = log(n)$$

$$- f(n) = n log(n)$$

$$- f(n) = n^2$$

$$- f(n) = n^3$$

$$- f(n) = 2^n$$

Function	Descriptor	Big-Oh
c	Constant	O(1)
logn	Logarithmic	O(log n)
n	Linear	O(n)
n log n	$n \log n$	O(n log n)
n^2	Quadratic	$O(n^2)$
n^3	Cubic	$O(n^3)$
n^k	Polynomial	$O(n^k)$
2^n	Exponential	O(2 ⁿ)
n!	Factorial	O(n!)

Other Asymptotic Notations

• A function f(n) is o(g(n)) if \exists positive constants c and n_0 such that

$$f(n) < c \ g(n) \ \forall \ n \ge n_0$$

• A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that

$$c g(n) < f(n) \forall n \ge n_0$$

- Intuitively,
 - **■** *o*() is like <

 \bullet ω () is like >

 \blacksquare Θ () is like =

■ *O*() is like ≤

 Ω () is like \geq