BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2015-2016

Course Handout for Advanced Chemical Engineering Thermodynamics

Date:

Course No. : CHE G622

Course Title : Advanced Chemical Engineering Thermodynamics

Instructor-in-Charge: I SREEDHAR

1. Course Description: Review of basic undergraduate concepts in thermodynamics including Legendre transformations and Maxwell's relations, Phase equilibria in multi-component and multiphase systems, Chemical Equilibrium, Statistical Thermodynamics

2. Scope & Objective:

The objective of this course is to learn how to apply thermodynamics to phenomena and processes of interest to chemical engineers. The content is advanced and based on prior knowledge of courses taken at the undergraduate level. This course aims to provide further depth with major focus on phase equilibrium thermodynamics. Solving phase equilibria problems involves general computational techniques that have widespread application in other areas of engineering. Another objective of this course is to provide experience in fitting mathematical models to experimental data, using phase equilibria calculations. A small part of the course is devoted to statistical mechanics and its relation to thermodynamics.

3. Text Book (TB):

Stanley I. Sandler, "Chemical, Biochemical and Engineering Thermodynamics", Wiley, 2006, 4th Edition

J. M. Smith, H. C. Van Ness and M. M. Abbott, "Introduction to Chemical Engineering Thermodynamics", MGHFSE, 7th Edition

4. Reference Books: (RB)

RB1: Y. V. C. Rao, "Chemical Engineering Thermodynamics", Universities Press, 1997

RB2: R. P. Rastogi & R. R. Mishra, "An Introduction to Chemical Thermodynamics", Vikas Publishing House Pvt. Ltd., 6th Revised Edition (1995)

RB2: John M. Prausnitz; Rüdiger N. Lichtenthaler; Edmundo Gomes de Azevedo, "Molecular Thermodynamics of Fluid Phase Equilibria", Prentice Hall, 3rd Edition

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Reference
1-2	Introduction	Review of Basics, First Law of Thermodynamics, Second Law of Thermodynamics Entropy, Entropy balance and Reversibility, Third Law of Thermodynamics	Chap. 1,2,3,4 TB/Lecture notes / Chap 1,2, 5 T2
3	Equations of state (EOS),, Generalized Correlations for PVT behaviour	PVT behaviour, Review of Virial Equation, Cubic Equations of State, Generalized correlations for gases and liquids (Review only)	Chap. 6.6, 6.7 TB / Chap 3 T2
4-5	Thermodynamic Properties of Fluids	Fundamental Property relations, Equilibrium, Review of Maxwell equations	Chap. 6 T2
6 – 8	Thermodynamic Potentials	Legendre Transformations, Thermodynamic potentials, Criteria for equilbrium, Energy minimum and maximum principle	Chap. 6 RB1/ Chap 7. TB
9-10	Stability of Thermodynamic systems	Stability criteria, Application of equilibrium and stability criteria to equation of state	Chap. 7 TB / Chap. 10 RB1
11 – 12	Multi-component mixtures	Thermodynamic description of mixtures, review of partial molar property, Chemical potential, Generalized Gibbs-Duhem Equations	Chap. 8 TB / Chap. 9 RB1
13 – 15	Multi-component mixtures	Criteria for phase equilibrium in multi-component systems, Criteria for chemical equilibrium and combined chemical and phase equilibrium	Chap. 8 / TB
16 - 17	Gibbs energy calculations	Review of fugacity and estimation of fugacity and fugacity coefficient for pure gas, Fugacity co-efficient of species in mixture	Chap. 7/9 TB / Chap 9 RB1
18 – 19	Gibbs energy calculations for real gas mixtures	Mixing rules, Estimation of pure component fugacity for real gas mixtures	Chap. 9 TB / Chap 9 RB1
20 – 21	Gibbs energy calculations for solutions	Lewis Randall rule, Excess properties, concept of activity coefficient, Gibbs Duhem relation	Chap. 9 TB / Chap 11 RB1

	Gibbs energy		Chap. 9 TB /
22 – 24	calculations for	Correlative activity coefficient models	•
	solutions		Chap 11 RB1
25 – 26	Vapor-Liquid	Fundamental VLE equation, VLE at low and moderate	Chap. 10 TB /
	Equilibrium	pressures (review only), Azeotropic system	Chap 12 RB1
27 – 28	Vapor-Liquid	Multi-component VLE, Thermodynamic consistency	Chap. 10 TB /
	Equilibrium	test of VLE data, Descriptive VLE	Chap 12 RB1
29 - 30	Other Fluid – Fluid	The solubility of gas in a liquid, Vapour liquid-liquid	Chap. 11 TB/
	equilibria	equilibrium & Liquid-Liquid equilibrium, solid liquid	-
		equilibrium	Chap 14 T2
31	Chemical Reaction	Review of multi-reaction Stoichiometry, standard Gibbs free energy change and Equilibrium constant, vant' Hoff	Chap. 13 TB /
	Equilibria (review)	equation, Relation between equilibrium constants and species activities at equilibrium	Chap 14 RB1
	Chemical Reaction	Homogeneous gas and liquid phase reactions	Chap. 13 TB /
32 – 34		Equilibrium with simultaneous reactions, Heterogeneous	•
	Equilibria	reactions	Chap 14 RB1
	Statistical	Introduction, Quantum mechanical aspects, Role of	Cl. C.D.D.2./
35 – 36		statistical mechanics, Thermodynamic probability,	Chap. 6 RB2 /
	Thermodynamics	Probability and entropy	Lecture notes
37-39	Chatistical		Chap. 6
	Statistical Thermodynamics	Molecular basis of residual entropy, Boltzmann's Distribution Law, Partition function and expressions for	RB2 /Lecture notes
	Statistical	the same	Chan 6 BB2 /
40 – 42	Thermodynamics	Thermodynamic properties in terms of partition	Chap. 6 RB2 /
		functions, Partition functions of polyatomic molecules	Lecture notes

4. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Remarks
Test I	60 min	15%		СВ
Test II	60 min	15%		ОВ
Seminars				
/Projects/Assignments		40%	To be announced	OB
Comprehensive Exam	3 hours	30 %		CB/OB

- **5. Chamber Consultation Hours:** To be announced in the class.
- **6. Notice:** Notices will be put on CMS
- 7. Make-up will be granted for genuine cases only. Prior permission of IC is compulsory.

 Instructor-in-charge CHE G622