Extension 1: Water Source can only Change flow rate every 4 hours.

In this extension, the frequency of water source change flow rate is limited. In order to establish a particular formulation to add this constraint for the SAS architecture, we set a function 'bs' which represents 'binary source' to examine the cycle of source's activity at least 4 hours. The mathematical formulation subject to the constraint is above. The variable 'ns' is not considered in this extension because it would not change and affect the constraint.

$$sources_schedule \Big(h,j\Big) - sources_schedule \Big(h-(h-1)\%4+j\Big) \leq M \cdot bs \Big(j\Big);$$

$$sources_schedule \Big(h-(h-1)\%4+j\Big) - sources_schedule \Big(h,j\Big) \leq M \cdot bs \Big(j\Big);$$

Among them,

$$sources_schedule(h,j) = \begin{cases} sources_schedule(h+j), & h+j \leq 24 \\ sources_schedule(h+j-24), & h+j > 24 \end{cases};$$

$$\sum_{j=0}^{3} bs(j) = 3.$$

$$j = 0, ..., 3$$

The subtraction of two sources' function is used to ensure the schedule can be divided by numeric 4 integrally when it implements the operation of flow rate transform. The right-hand formula determined the feasibility of flow rate change, the situation when the output value of function 'bs' equal zero would be rejected because the difference of two integers which greater than zero on the left hand cannot meet the requirement of inequality. In contrast, both of two reciprocal inequalities are true when 'bs' is one. In another word, only once in four hours for the design of sources schedule can change the flow rate, the sources would keep the same or similar flow rate in four hours which originate from the moment of the latest flow rate change till the next

cycle. With the establishment of this constraint, the optimal solution still stayed in 1910.25 dollars. However, the distribution of source schedule has been changed refer to Figure 1. The flow rates produced by Cornwall WTP were normalized at the same rate in four hours per unit.

S	ources_schedule:	5	sources_schedule:
[1]	sources_schedule	[1]	sources_schedu
1	3500	1	80
2	800	2	8
3	800	3	8
4	3500	4	35
5	800	5	35
6	800	6	35
7	3500	7	35
8	800	8	11
9	800	9	11
10	3500	10	11
11	3500	11	11
12	800	12	35
13	3500	13	35
14	3500	14	35
15	3500	15	35
16	3500	16	20
17	2128	17	20
18	2084	18	20
19	1904	19	20
20	3500	20	35
21	800	21	35
22	3500	22	35
23	3500	23	35
24	3500	24	8

Figure 1. The sources schedule without constraint (left) and the sources schedule with constraint (right).

Extension 2: A pump has to run for at least 2 hours.

The modified problem formulation is built consist of 3 functions which represent three various moments in the pumps' working process in this case. The function 'pumps_schedule' follows the Bernoulli distribution. It directs that '1' for open and '0' for close. The principle of this formulation is to verify if it is opened in all three moments, or closed in the second hour while the switch of pumps is opened either at the first hour of any period within 24 hours or the third hour. The variable 'np' does not vary in the whole process of iteration and will be not included. The specific formulations are as follows.

$$pumps_schedule_1(h) + pumps_schedule_2(h) \ge pumps_schedule_3(h);$$

Among them,

$$pumps_schedule_{2}(h) = \begin{cases} pumps_schedule_{2}(h+2), & h+2 \leq 24 \\ pumps_schedule_{2}(h+2-24), & else \end{cases};$$

$$pumps_schedule_{3}(h) = \begin{cases} pumps_schedule_{3}(h+1), & h+1 \leq 24 \\ pumps_schedule_{3}(h+1-24), & else \end{cases}$$

According to these formulations, the function 'pumps_schedule1' (P1) refers to the status of pumps at the first hour, the same reason can be proved that 'pumps_schedule2' (P2), 'pumps_schedule3' (P3) represents the second and the third hour respectively. The sum of P1 and P2 (max 2) determines that the value of P2 would not be 1 when the left-hand formula is 0. The pumps have to run for not least than two hours based on this formulation and the performance of it illustrates in Figure 2 and 3. All the pumps were running more than two hours after modified and stayed in the same flow rate during its working period.

	pumps_flow_schedule							
	Cornwall_P1	Cornwall_P2	Cornwall_P3	Kingsland_P1	Kingsland_P2	Kingsland_P3		
1	600	600	800	800	800	0		
2	0	600	800	800	800	400		
3	0	600	800	800	800	400		
4	600	600	800	800	800	400		
5	0	0	0	800	0	0		
6	0	0	0	0	0	0		
7	0	0	0	0	0	0		
8	0	0	0	0	0	0		
9	0	0	0	800	0	0		
10	0	0	0	0	800	400		
11	600	0	0	0	0	0		
12	600	600	0	800	0	400		
13	0	0	0	0	0	0		
14	0	600	0	800	800	400		
15	0	600	0	800	800	400		
16	600	0	0	800	800	400		
17	600	600	800	800	0	400		
18	600	600	800	800	0	400		
19	600	600	800	800	800	0		
20	600	0	800	0	800	400		
21	600	600	800	0	0	0		
22	600	600	800	0	0	400		
23	0	0	0	0	800	400		
24	0	600	0	0	0	400		

Figure 2. The performance of pumps before modified.

			pumps_flow	_schedule:		
			pumps_flov	w_schedule		
	Cornwall_P1	Cornwall_P2	Cornwall_P3		Kingsland_P2	Kingsland_P3
1	600	600	800	800	800	l
2	0	0	800	800	800	40
3	600	600	800	800	800	40
4	600	600	800	800	800	40
5	0	0	0	0	800	-1
6	0	0	0	0	0	
7	0	0	0	0	0	
8	0	0	0	0	0	
9	0	0	0	0	800	
10	0	0	0	0	800	
11	600	0	0	0	800	
12	600	0	0	0	800	
13	0	600	0	0	0	
14	0	600	0	800	0	
15	0	600	0	800	800	
16	600	0	0	800	800	
17	600	600	800	800	0	
18	0	600	800	0	0	
19	-0	0	800	800	0	
20	600	600	800	800	0	
21	600	600	800	800	800	
22	600	600	0	0	800	40
23	0	600	0	800	800	40
24	600	600	800	800	800	40

Figure 3. The performance of pumps after modified.

Extension 3: If a valve is open, it has to stay open at the same flow rate for at least 4 hours.

The connection established in this extension includes the decision of valves opening and the flow rate, which is controlled by valves. There are five binary variables set which are 'valves_open' and 'bv'. The function 'valves_open' has been splitted into three variables which represent the situation for valves opening or closing in the first hour, the forth hours after the first hour and the 'j'st hours after the first hour respectively. 'bv' is used to judge if the flow rate at the same level. 'M' is a huge integer number that it is available to expand the effect of function 'bv'. The variable 'nv' is the valve node in the water distribution network, however, it will not be discussed in this extension due to its immutability.

$$valves_open_1(h) + valves_open_2(h) \ge valves_open_3(h,j)$$
:

$$valves_schedule_1(h) \le M \cdot [1 - bv_1(h)]$$

$$valves_schedule_1(h) - valves_schedule_2(h) \le M \cdot bv_2(h)$$
:

$$valves_schedule_1(h) - valves_schedule_1(h) \le M \cdot bv_1(h)$$
;

$$j = 1, ..., 3$$
;

Among them,

$$valves_open_2(h) = \begin{cases} valves_open_2(h+4), & h+4 \le 24 \\ valves_open_2(h+4-24), & else \end{cases}$$

$$valves_open_3(h) = \begin{cases} valves_open_3(h+j), & h+j \le 24 \\ valves_open_3(h+j-24), & else \end{cases}$$

$$valves_schedule_{2}(h) = \begin{cases} valves_schedule_{2}(h+1), & h+1 \leq 24 \\ valves_schedule_{2}(h+1-24), & else \end{cases};$$

$$bv_{2}(h) = \begin{cases} bv_{2}(h+1), & h+1 \le 24 \\ bv_{2}(h+1-24), & else \end{cases}$$

The first formulation indicates that the valves cannot be close between any period in four hours. Subsequently, the flow rate of the first hour is determined not more than 0 if it is closed. Furthermore, the inequality in reversed verification is used to ensure that the flow rate is maintained at the same water level from the first hour it is opened to the next hour. The effect of valves is optimized through this method which illustrates in Figure 4.

valves_schedule:						
	valves schedule					
	EricssonValve	GreenwoodValve				
1	200	1500				
2	0	1500				
3	624	1500				
4	1000	1500				
5	1000	1500				
6	1000	1500				
7	1000	1500				
8	200	1500				
9	0	1500				
10	0	1500				
11	0	1500				
12	0	1500				
13	0	1500				
14	0	1500				
15	0	1500				
16	0	1500				
17	0	1500				
18	0	1350				
19	200	1500				
20	0	1259				
21	0	1500				
22	0	1500				
23	0	1500				
24	1000	1500				

	valves_schedule:						
	valves_schedule						
	EricssonValve						
1	0	1484					
2	0	1484					
3	850	1484					
4	850	1484					
5	850	1484					
6	850	1484					
7	850	1484					
8	850	1484					
9	0	1484					
10	0	1484					
11	0	1484					
12	0	1484					
13	0	1484					
14	0	1484					
15	0	1484					
16	0	1484					
17	0	1484					
18	0	1484					
19	0	1484					
20	281	1484					
21	281	1484					
22	281	1484					
23	281	1484					
24	0	1484					

Figure 4. The flow rate in valves before modified (left) and after modified (right).