Mémento

Équations et inéquations

$\boxed{1} \quad \text{Équation } ax + b = 0 \text{ ; Signe de } ax + b \text{ (} a \neq 0\text{)}$

• Équation ax + b = 0

L'équation ax + b = 0 a une solution unique $x = -\frac{b}{a}$

• Signe de ax + b

 $\boxed{a > 0}$ La fonction $f: x \mapsto ax + b$ est **croissante**

ax + b $ 0$ $+$	

a < 0 La fonction $f: x \mapsto ax + b$ est **décroissante**

x	- ∞		$-\frac{b}{a}$		+ ∞
ax + b		+	0	_	

2 Équation $ax^2 + bx + c = 0$; Signe de $ax^2 + bx + c$ ($a \neq 0$)

 $\Delta = b^2 - 4ac$ est le **discriminant** de l'équation. On distingue trois cas selon la valeur de Δ

 $\Delta > 0$ **L'équation** a deux solutions

L'équation a deux solutions $x_1 = \frac{-b + \sqrt{\Delta}}{2a}; x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

x	_ ∞	x_1		x_2	+ 0
$ax^2 + bx + c$	signe de <i>a</i>	0	signe de (– <i>a</i>)	0	signe de <i>a</i>

Signe de $ax^2 + bx + c$ (on suppose $x_1 < x_2$)

 $\Delta = 0$ **L'équation** a une solution unique :

$$x_0 = -\frac{b}{2a}$$

$$ax^2 + bx + c = a(x - x_0)^2$$

dans R

Signe de $ax^2 + bx + c$

$ax^2 + bx + c$	signe de <i>a</i>	0	signe de <i>a</i>

 $\Delta < 0$ L'équation n'a pas de solution

ution $ax^2 + bx + c$ a, pour tout x réel, le signe de a