Tutoría 1: Manejo de Fundamentos Matemáticos

Ejercicio 1. Realice las siguientes sumas de fracciones

a.
$$\frac{1}{2} + \frac{1}{3}$$

Respuesta: $\frac{5}{6}$

b.
$$\frac{1}{2} - \frac{1}{3}$$

Respuesta: $\frac{1}{6}$

c.
$$\frac{a}{4} + \frac{2}{a}$$

Respuesta: $\frac{a^2+8}{4a}$

Ejercicio 2. Factorice las siguientes funciones polinomiales:

a.
$$f(x) = \alpha x^2 + \beta x + \phi$$
.

Respuesta:
$$f(x) = \alpha(x - x_1)(x - x_2)$$
 con $x_1 = \frac{-\beta + \sqrt{\beta^2 - 4\alpha\phi}}{2\alpha}$, $x_2 = \frac{-\beta - \sqrt{\beta^2 - 4\alpha\phi}}{2\alpha}$

b.
$$f(x) = bx^2 + abx - 2a^2b$$

Respuesta: f(x) = b(x - a)(x + 2a)

c.
$$f(x) = 2x^3 - 4x^2 - 10x + 12$$
, sabiendo que $f(3) = 0$.

Respuesta: f(x) = 2(x-3)(x-1)(x+2)

d.
$$f(x) = bx^3 - 3a^2bx - 2ba^3$$
, sabiendo que $f(-a) = 0$

Respuesta: $f(x) = b(x - 2a)(x + a)^2$

Ejercicio 3. Realice la descomposición en fracciones parciales de las siguientes funciones:

a.
$$f(x) = \frac{(a+2b)x - (a^2+4b)}{x^2 - (a+2)x + 2a}$$

Respuesta:
$$f(x) = \frac{a}{x-2} + \frac{2b}{x-a}$$

b.
$$f(s) = \frac{s^2 + 6s - 1}{s^2 + s - 2}$$

Respuesta:
$$1 + \frac{2}{s-1} + \frac{3}{s+2}$$

c.
$$f(z) = \frac{az - a}{z(z+1)^2}$$

Respuesta:
$$\frac{2a}{(z+1)^2} + \frac{a}{z+1} - \frac{a}{z}$$

Ejercicio 4. Sea f(t) una función de variable real t. Para cualquier definición de f(t) y valores reales positivos τ y α indique qué relación tienen las funciones

1. -f(t)

4. $f(t-\tau)$

7. $f(\alpha t)$

2. f(-t)3. $f(t+\tau)$ 5. $f(t) + \tau$ 6. $\alpha f(t)$

8. $f(\alpha t + \tau)$ 9. $f(\alpha(t - \tau))$

para $\alpha < 1$ y $\alpha > 1$ con dicha función f(t).

Respuesta:

1. -f(t) es una reflexión de la función con respecto al eje horizontal.

2. f(-t) es una reflexión de la función con respecto al eje vertical.

3. $f(t+\tau)$ es un desplazamiento hacia la izquierda en τ .

4. $f(t-\tau)$ es un desplazamiento haciala derecha en τ .

5. $f(t) + \tau$ es un desplazamiento de la función hacia arriba de τ .

6. $\alpha f(t)$ es un escalamiento de cada valor de la función por el factor α .

7. $f(\alpha t)$ es un escalamiento temporal de la función por α . (contracción si $\alpha > 1$ y expansión si $\alpha < 1$).

8. $f(\alpha t + \tau)$ es un escalamiento por α y desplazamiento en τ/α hacia la izquierda.

9. $f(\alpha(t-\tau))$ es un desplazamiento en $\alpha\tau$ hacia la derecha seguido de un escalamiento por α .

Ejercicio 5. Si la integral

$$\int_{-\infty}^{\infty} f(t) \, dt = C$$

indique qué valor tiene la integral

$$\int_{-\infty}^{-\infty} f(-t - \tau) \, dt$$

Respuesta: -C

Ejercicio 6. Dibuje las trazas correspondientes a las siguientes ecuaciones:

a. $y=\tau x+2$ para τ positivos, un caso $\tau<1$ y otro caso $\tau>1.$

Respuesta:

b. $y = \frac{1}{2}x + \beta$ para un caso $\beta < 0$ y otro caso $\beta > 0$.

Respuesta:

c. $(x-1)^2 + y^2 = r^2$ Respuesta:

d. $x^2 + (y - b)^2 = 2$ Respuesta:

Ejercicio 7. Indique las ecuaciones qué corresponden a

a. la recta ilustrada en la figura 1.

Figura 1: Recta para la cual usted debe encontrar una ecuación que la describa.

Respuesta: $y = -\frac{1}{3}x + (b + \frac{1}{3}a)$

Figura 2: Círculo para el cual usted debe encontrar una ecuación que lo describa.

b. el círculo ilustrado en la figura 2. Observe que dicho círculo pasa por el origen.

Respuesta:
$$(x - a\sqrt{3})^2 + (y - a)^2 = 4a^2$$

Ejercicio 8. Considerando la función escalón unitario u(t), dibuje las trazas correspondientes a las siguientes ecuaciones:

a.
$$x(t) = u(t-1) - u(t-2)$$

Respuesta:

b.
$$x(t) = u(t+1)u(-t+1)$$

Respuesta:

c.
$$x(t) = u(t) + u(t-1) - u(t-2) - u(t-3)$$

Respuesta:

d.
$$x(t) = u(-2t+1)$$

Respuesta:

e.
$$x(t) = u(t+1) - 1$$

Respuesta:

