Alexandria University Faculty of Engineering

Signals Report MATLAB Code Analysis

No	Name
44	اسلام ايمن محمد محمد عبدالعال
103	صفاء محمد جمال بکری محمد
106	عبد الرحمن ابراهيم رزق عبدالرحيم
147	ماریهان خلیل ابراهیم خلیل موسی
208	مصطفى محمود خليل حسن خليل
227	هاجر محمد جمال بکری محمد

Submitted to

Eng. Remon

Eng. Noha

MATLAB code:

Experiment 1 General signal generator results:

- 1- After running the code, the user input the following parameters:
 - Sampling frequency of signal
 - Start time
 - End time
 - Number of break points
 - Position of break points
- 2- Then "menu" appeared and the user choose the signal he wants as shown.

- 3- To test the code we generate the signal shown in the "PDF"
- 4- Choose DC signal with amplitude 1 (before the first breakpoint).
- 5- Choose sinusoidal signal with amplitude = 4, frequency = 0.25, phase = 90 shift = 1 (before the second breakpoint).
- 6- Choose DC signal with amplitude 1 (after the second break point till the end).

Output in Time Domain:

In frequency domain:

Experiment 2 LTI channel "impulse response" results:

1- For the previous generated signal convolute it with the impulse response.

(The user will choose "impulse response" or "difference equation" from a "menu"... here we choose impulse response for the second experiment)

2- The user will enter "the impulse response" The impulse response in the PDF is:

This impulse is the result of the following inputs:


```
Enter the value of Fs: 100

Enter the Start of time scale: 0

Enter the End of time scale: 5

Enter the number of break points: 2

Enter the positions of break points (row vector): 1

Enter the positions of break points (row vector): 3

time_axis =

0 1 3 5

slope = 1
intercept = 1

amplitude = 2

amplitude = 2*exp(3)
exponent = -1
Fs=100|
>> |
```

h(t) will be:

h(f) will be:

The output in time domain will be:

The output in frequency domain will be:

3- The user chooses if he wants to add noise or not from this "menu":

4- For example, we choose "noisy channel", the user will enter the standard deviation, for example:

Let standard deviation = 10

The output will be as shown:

Another value, let the standard deviation = 50, the output will be:

Experiment 3 LTI channel "Difference Equations" results:

1- For the previous generated signal (The user will choose "impulse response" or "difference equation" from a "menu"... here we choose Difference Equations for the third experiment)

- 2- To generate the difference equation:
 - The user should enter the numerator and denominator of the transfer function of the system in this figure

$$H(Z) = \frac{1}{1 + 0.5 \, z^{-1} + 0.5 \, z^{-2}}$$

- The user will enter the numerator of the transfer function as a row coefficient vector.
 - Which is equal to 1 in our example.
- The user will enter the denomenator of the transfer function as a row coefficient vector.

Which is [1 0.5 0.5] in our example.

3- h(t) in time domain will be:

h(f) in frequency domain will be:

4- the signal output in time domain :

The output signal in frequency domain:

5- the reverse channel:

This figure will be obtained if calculated by hand

• output of the reverse channel for sure:

It is the exactly the same as the input, so it's correct

Check for stability: (BOUNS)

6- The user chooses if he wants to add noise or not from this "menu":

Let the standard deviation = 60 The output will be:

If the user chooses "non-nosiy channel" the output will be:

Experiment 4 Sound Processing results:

- 1- Input a sound file to MATLAB using sampling frequency
- 2- Plot the sound in time domain

3- Plot the sound in frequency domain.

With impulse response:

4- Output will be as shown in time domain: (BOUNS)

☆

In frequency Domain: (BOUNS)

Comment: There is a delay in the output sound file.

More illustration:

We entered a sine wave instead of taking the signal from the sound.wav file just to illustrate the figures clearly.

The input signal:

Frequency domain:

The output signal in time and frequency domains:

With impulse response:

