

## PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 13

## Aufgabe 51

Sei V ein K-Vektorraum und  $\varphi \colon V \to V$  eine lineare Abbildung. Seien  $\lambda_1, \ldots, \lambda_m \in K$  paarweise verschiedene Elemente und dazu  $v_1, \ldots, v_m \in V \setminus \{0\}$  mit

$$\varphi(v_i) = \lambda_i v_i$$

für alle  $i=1,\ldots,m$ . Zeigen Sie, dass  $v_1,\ldots,v_m$  dann linear unabhängig sind.

Lösung. Nehmen wir an,  $v_1, \ldots, v_m$  seien linear abhängig. Seien  $\alpha_1, \ldots, \alpha_m \in K$ , so dass die kleinst-mögliche Anzahl der  $\alpha_i$  von 0 verschieden ist, und gilt:

$$\alpha_1 v_1 + \ldots + \alpha_m v_m = 0.$$

Da die  $v_i$  alle von dem Nullvektor verschieden sind, müssen mindestens zwei der  $\alpha_i$  von 0 verschieden sein. O.b.d.A. dürfen wir annehmen:  $\alpha_m \neq 0$ . Dann haben wir einerseits

$$\lambda_m \alpha_1 v_1 + \ldots + \lambda_m \alpha_{m-1} v_{m-1} = -\lambda_m \alpha_m v_m$$

(indem wir alles mit  $\lambda_m$  multiplizieren), aber andererseits

$$\lambda_1 \alpha_1 v_1 + \ldots + \lambda_{m-1} \alpha_{m-1} v_{m-1} = -\lambda_m \alpha_m v_m$$

(indem wir die lineare Abbildung  $\varphi$  auf beiden Seiten anwenden). Indem wir die zweite Gleichung von der ersten subtrahieren, erhalten wir

$$(\lambda_m - \lambda_1)\alpha_1 v_1 + \ldots + (\lambda_m - \lambda_{m-1})\alpha_{m-1} v_{m-1} = 0.$$

Die  $\lambda_m - \lambda_i$ ,  $i \in \{1, \dots, m-1\}$ , sind nun alle von 0 verschieden (wegen der Annahme, dass die  $\lambda_i$  ( $i \in \{1, \dots, m\}$ ) alle paarweise verschieden sind). Also haben wir eine Linearkombination der Vektoren  $v_1, \dots, v_m$ , die den Nullvektor ergibt, wo nicht alle Koeffizienten gleich null sind, wo aber die Anzahl der von null verschiedenen Koeffizienten um eins kleiner ist als bei  $\alpha_1, \dots, \alpha_m$  (weil  $\alpha_m$  jetzt fehlt). Der Widerspruch zeigt, dass die Annahme, die  $v_i$  seien linear abhängig, falsch sein muss.

## Aufgabe 52

Gibt es eine  $\mathbb{C}$ -Vektorraumstruktur auf  $\mathbb{R}$ , sodass die skalare Multiplikation

$$\mathbb{C}\times\mathbb{R}\to\mathbb{R}$$

eingeschänkt auf  $\mathbb{R} \times \mathbb{R}$  die übliche Multiplikation auf  $\mathbb{R}$  ist?

*Proof.* Nehmen wir an, es gäbe eine solche Vektorraumstruktur. Die Menge der Skalare ist also  $\mathbb C$ , während  $\mathbb R$  die Menge der Vektoren ist. Dann muss  $i\cdot 1$  ein Vektor, also eine reelle Zahl sein – bezeichnen wir sie mit a. Da i ungleich 0 ist und 1 nicht der Nullvektor ist, folgt  $a\neq 0$  (siehe Blatt 8, Aufgabe 29.c). Nun können wir aber  $a\in \mathbb R\subset \mathbb C$  auch als Skalar betrachten. Es gilt dann

$$(-a+i) \cdot 1 = (-a) \cdot 1 + i \cdot 1 = (-a) + a = 0,$$

wobei wir bei  $(-a) \cdot 1 = -a$  die Annahme verwendet haben, dass die skalare Multiplikation auf  $\mathbb{R} \times \mathbb{R}$  eingeschränkt die übliche Multiplikation auf  $\mathbb{R}$  ist. Ein von 0 verschiedener Skalar mal einem vom Nullvektor verschiedenen Vektor kann aber

1

nicht den Nullvektor ergeben. Der Widerspruch zeigt, dass es eine Vektorraumstruktur mit diesen Eigenschaften nicht geben kann.  $\hfill\Box$