Oscillator Algorithm

Sampling Increment

If SI = 1.0:

freqF =
$$\frac{SR}{L}$$

exp.: 43 Hz = 44100 / 1024

To create a specific target frequency:

$$SI = \frac{freqT}{freqF}$$

exp.: 10.23 = 440.0 / 43

Or:

$$SI = \frac{L * freq.}{SR}$$

Oscillator Stages

Initialization:

PHS = 0 or other initial value

Sample Rate: PHS = (PHS + SI)%L

IPHS = int(PHS)

OUT = WAVE(IPHS)

etc.

General Stages

Initialization: once

Control rate: every n samples

Sample Rate: SR / second

Signal to Noise

Depends on L & method

L	oscillator	interpolated
256	36 dB	84 dB
512	42	96
1024	48	108
2048	54	120

Trade-off

Interpolating Oscillator

 $\begin{aligned} output = & wavetable(M) + \\ & fract^*(wavetable(M+1)-wavetable(M)) \end{aligned}$

Discontinuities in Samples

Sample hold for 2 sampling instances!

Audible Click

SuperCollider

control rate

$$kr = \frac{44100}{64} = 689 \text{ Hz}$$

block rates?

$$\frac{44100}{1024} = 43 \text{ Hz}$$

$$\frac{44100}{512} = 86 \text{ Hz}$$

$$\frac{44100}{128} = 344 \text{ Hz}$$