

Final Project

Thomas Young

Background

- Different types of landing
 - o Broad Jump
 - Countermovement Jump
 - Vertical takeoff and landing
 - Horizontal jump and landing
- Hip Injuries
- Knee Injuries
- Ankle Injuries

Introduction

- Joint kinematics are the significant factors that define good or poor landing technique, the moments that occur in the involved joints directly correlate with landing-technique injuries.
- Single-leg landing and double leg landing.
- With jumping and landing in sports, soft and rigid/stiff landings occur frequently in sports and are a cause of injury along with joint instability

Methods

- One male subject with no history of lower extremity injuries/surgeries
- Nike Pegasus 30 Model Shoe & Russell Compression Shorts
- 32 total markers
- 22 anatomical markers
- Knee Joint Only

Methods

Visual3D

- Set Subject Height: 1.75 m
- Set Subject Mass: 75 kg
- Set Subject Mass: 75 kg * 9.81 (m/(s^2)) = 735.75 N
 - o Condition 1: Countermovement
 - O Condition 2: Broad jump

Results

- Blue is Broad Jump
- Green is Counter movement
- Only look at X for the following
 - o Angle
 - Velocity
 - Moment
 - o Power
- GRF Z has highest significance
 - Red is overlap

Results

Table 1: Broad Jump (BJ) and Countermovement (CM) Trails

Mean and Standard Deviation (SD) for the four measured variables of the Knee Joint

Variable	CM	BJ
ROM - X	-64.14 (5.17)	-76.67 (6.44)
Max Flexion - X	-91.89 (5.29)	-108.88 (9.20)
Max Moment - X	4.38 (1.19)	3.30 (0.22)
Max GRF - Z	2.26 (0.25)	2.90 (0.57)

Discussion

- Higher forces that were exhibited in the countermovement jump
 - o Larger angle of flexion
 - O Higher max velocity
 - O Higher power absorbed

Limitations

- Only had one subject for the study
- Potentially add some statistics
 - O Outside of means and standard deviations
- Landing portion only
- Environmental factors not measured
- Muscles were not measured

$$\lim_{\mathbf{x} \to c} f(\mathbf{x}) = \mathbf{L}$$

Future studies

- Could look at other joints
 - o Ankle and Hip
- Randomize trials
- Other populations
- Other Conditions
 - o C1, C2, C3 (max height)

