Модель эпидемии SIR

Гудиева Мадина Куйраевна, НПИбд-01-19¹ 20 мая, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цель работы

Цель лабораторной работы

Изучаем простейшую модель эпидемии SIR. Для этого мы используем условия из варианты. После задаем начальные условия и коэффициенты в уравнение. Далее нам необходимо построить графики изменения численностей трех групп в двух случаях, которые были представленны в лабораторной работе.

Задание

Задание

- 1. Изучить теоритические сведения о простейшей модели эпидемии SIR.
- 2. Построить графики изменения числа особей в каждой из трех групп для двух случаев используя начальные данные из варианта.
- 3. Рассмотреть, как будет протекать эпидемия в двух случаях: $I(0) \leq I^*, I(0) > I^*$

Процесс выполнения лабораторной работы

Предположим, что некая популяция, состоящая из N особей, подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи - S(t). Вторая группа – это число инфицированных особей, которые также являются распространителями инфекции -I(t). А третья группа R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & \mbox{,если } I(t) > I^* \ 0 & \mbox{,если } I(t) \leq I^* \end{cases}$$

Скорость изменения числа инфекционных особей:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I & \text{,если } I(t) > I^* \\ -\beta I & \text{,если } I(t) \leq I^* \end{cases}$$

Скорость изменения выздоравливающих особей:

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно.

Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

Условие задачи

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=6159) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0) = 173, A число здоровых людей с иммунитетом к болезни R(0) = 61. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0) = N - I(0) - R(0). Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

- 1. $I(0) \leq I^*$
- 2. $I(0) > I^*$

Результаты работы программы в случае $I(0) \leq I^*$

Figure 1: Графики численности в случае $I(0) \leq I^*$

Результаты работы программы в случае $I(0)>I^{st}$

Figure 2: Графики численности в случае $I(0) > I^*$

Выводы

Выводы:

В ходе выполнения лабораторной работы была изучена простейшая модель эпидемии и построены графики для двух случаев: $I(0) \leq I^*$, $I(0) > I^*$.