§ 2. Скалярное поле.

Производная по направлению.

Градиент скалярного поля.

Определение (скалярное поле)

Пусть A множество – множество, принадлежащее $R^{2}(R^{3})$.

Если для всякой точки $M \in A$ ставится в соответствии функция f(M), то говорят, что на множестве A задано *скалярное поле* f(M).

Различают поля стационарные и нестационарные. Если f(M) не зависит от времени, поле называется *стационарным*. Поле называется *нестационарным*, если f(M,t) зависит от времени.

Замечание:

Из определения скалярного поля видно, что это понятие ничем не отличается от понятия функции.

Поверхности (линии) уровня

Множество точек M области $B \subset R^3$, для которого выполняется равенство, что f(M) = C(C = const), называется *поверхностью уровня* или эквипотенциальной поверхностью.

Множество точек M области $B \subset R^2$, для которого выполняется равенство, что f(M) = C(C = const), называется линией уровня или эквипотенциальной линией.

Производная скалярного поля по направлению

Определение (производная скалярного поля в направлении)

Пусть f(M) – скалярное поле для любой точки $M \in A$.

Пусть $M_0 \in A$. и пусть $\bar{l} \uparrow \uparrow \overline{M_0 M}$.

Производной скалярного поля f(M) в точке $M_{\scriptscriptstyle 0}$ в направлении \bar{l} называется

$$\lim_{\left|\overline{M_0M}\right|\to 0}\frac{f(M)-f(M_0)}{\left|\overline{M_0M}\right|}\,.$$

<u>Обозначение</u>: $\frac{\partial f(M_0)}{\partial \bar{l}}$

Замечания:

1) Если $\frac{\partial f(M_0)}{\partial \bar{l}} > 0 \Rightarrow f(M) > f(M_0) \Rightarrow$ скалярное поле f(M) при переходе через точку M_0 возрастает;

если $\frac{\partial f(M_0)}{\partial \bar{l}}$ < $0 \Rightarrow f(M)$ < $f(M_0) \Rightarrow$ скалярное поле f(M) при переходе через точку M_0 убывает.

2) Приведенное выше определение производной скалярного поля по направлению не зависит от выбора системы координат (СК), поэтому его называют инвариантным определением относительно выбора СК.

Теорема (о вычислении производной по направлению в ПДСК)

Пусть в R^3 задана ПДСК.

Пусть скалярное поле f(x, y, z) определено $\forall (x, y, z) \in A \subset \mathbb{R}^3$.

Пусть скалярное поле f(x, y, z) дифференцируемо в точке $(x_0, y_0, z_0) \in A$.

Пусть \bar{l} — направление на множестве A.

Пусть
$$\angle \alpha = \left(\bar{l}; \bar{i}\right), \ \angle \beta = \left(\bar{l}; \bar{j}\right), \ \angle \gamma = \left(\bar{l}; \bar{k}\right).$$

Тогда

$$\frac{\partial f(M_0)}{\partial \bar{l}} = f'_x(x_0, y_0, z_0) \cdot \cos \alpha + f'_y(x_0, y_0, z_0) \cdot \cos \beta + f'_z(x_0, y_0, z_0) \cdot \cos \gamma. \tag{2.1}$$

Доказательство:

По условию скалярное поле f(x,y,z) дифференцируемо в точке $(x_0,y_0,z_0) \in A$.

$$\Delta f = f(M) - f(M_0) = f_x'(M_0) \cdot \Delta x + f_y'(M_0) \cdot \Delta y + f_z'(M_0) \cdot \Delta z + o(\overline{M_0 M}), \tag{2.2}$$

где
$$\lim_{\left|\overline{M_0M}\right|\to 0} \frac{o\left(\left|\overline{M_0M}\right|\right)}{\left|\overline{M_0M}\right|} = 0$$

Разделим (2.2) на $|\overline{M_0M}|$:

$$\frac{f(M) - f(M_0)}{\left|\overline{M_0 M}\right|} = f_x'(M_0) \cdot \frac{\Delta x}{\left|\overline{M_0 M}\right|} + f_y'(M_0) \cdot \frac{\Delta y}{\left|\overline{M_0 M}\right|} + f_z'(M_0) \cdot \frac{\Delta z}{\left|\overline{M_0 M}\right|} + \frac{o\left(\left|\overline{M_0 M}\right|\right)}{\left|\overline{M_0 M}\right|}$$

Перейдем в этом равенстве к $\lim_{|\overline{M_0M}|\to 0}$

$$\underbrace{\lim_{\left|\overline{M_0M}\right|\to 0}\frac{f(M)-f(M_0)}{\left|\overline{M_0M}\right|}}_{\left|\overline{M_0M}\right|\to 0} = \underbrace{\lim_{\left|\overline{M_0M}\right|\to 0}f_x'(M_0)\cdot\cos\alpha}_{\left|\overline{M_0M}\right|\to 0} f_y'(M_0)\cdot\cos\beta + \underbrace{\lim_{\left|\overline{M_0M}\right|\to 0}f_z'(M_0)\cdot\cos\gamma}_{\left|\overline{M_0M}\right|\to 0} + \underbrace{\lim_{\left|\overline{M_0M}\right|\to 0}f_z'(M_0)\cdot\cos\beta}_{\left|\overline{M_0M}\right|}$$

$$\frac{\partial f(M_0)}{\partial \bar{l}} = f'_x(x_0, y_0, z_0) \cdot \cos \alpha + f'_y(x_0, y_0, z_0) \cdot \cos \beta + f'_z(x_0, y_0, z_0) \cdot \cos \gamma$$

Ч.Т.Д.

Пример

Найти производную скалярного поля

$$f(x, y, z) = x^2 + y^2 - 4yz$$

в направлении $\overline{M_0M}$, где $\ M_0(0,1,2)\,,\ M(2,3,3)\,.$

По условию

$$\bar{l} = \overline{M_0 M} = \{2,2,1\}$$
 \Longrightarrow $\cos \alpha = \cos \beta = \frac{2}{3}, \cos \gamma = \frac{1}{3} \Longrightarrow$

$$l_0 = \{\cos\alpha; \cos\beta; \cos\gamma\} = \{\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\}.$$

Тогда

$$\left. \frac{\partial f}{\partial \bar{l}} \right|_{M_0} = 2x|_{M_0} \cdot \frac{2}{3} + \left(2y - 4z\right)_{M_0} \cdot \frac{2}{3} - 4y|_{M_0} \cdot \frac{1}{3} = -\frac{16}{3} < 0 \Rightarrow$$
 скалярное поле $f(x,y,z)$ при переходе через точку M_0 убывает.

Градиент скалярного поля

Определение 1 (градиента скалярного поля)

Градиентом скалярного поля f(M) в точке M_0 называется вектор \overline{c} , направленный из точки M_0 в сторону наибольшего возрастания скалярного поля. Этот вектор имеет длину, равную производной от скалярного поля f(M), вычисленной по этому направлению.

Обозначение:

$$\nabla f(M_0) = \operatorname{grad} f(M_0)$$

Замечания:

- 1) Данное выше определение градиента не зависит от выбора СК, т.е. является инвариантным относительно задания СК.
- 2) Градиент скалярного поля указывает направление наибольшего изменения скалярного поля. Наибольшая скорость изменения скалярного поля равна модулю градиента.

Определение 2 (градиента скалярного поля)

Пусть в R^3 задана ПДСК.

Градиентом скалярного поля f(M) в точке M_0 называется вектор, имеющий координаты $\{f'_{r}(M_0), f'_{r}(M_0), f'_{r}(M_0)\}$.

$$grad f(M_0) = \{f'_x(M_0), f'_y(M_0), f'_z(M_0)\} = f'_x(M_0) \cdot \bar{i} + f'_y(M_0) \cdot \bar{j} + f'_z(M_0) \cdot \bar{k}$$

Замечания (о связи градиента и производной по направлению):

1) Пусть в R^3 задана ПДСК.

Пусть grad
$$f(M_0) = \left\{ f_x'(M_0), f_y'(M_0), f_z'(M_0) \right\}$$
 и $\bar{l}_0 = \frac{\bar{l}}{\left|\bar{l}\right|} = \left\{ \cos \alpha, \cos \beta, \cos \gamma \right\}.$

Тогда

$$\frac{\partial f(M_0)}{\partial \bar{l}} = f'_x(x_0, y_0, z_0) \cdot \cos \alpha + f'_y(x_0, y_0, z_0) \cdot \cos \beta + f'_z(x_0, y_0, z_0) \cdot \cos \gamma = grad \ f(M_0) \cdot \bar{l}_0 = f'_x(x_0, y_0, z_0) \cdot \cos \alpha + f'_y(x_0, y_0, z_0) \cdot \cos \beta + f'_z(x_0, y_0, z_0) \cdot \cos \beta + f'_z(x_0,$$

$$= \Pi p_{\overline{l}_0} \operatorname{grad} f(M_0) = \operatorname{grad} f(M_0) \cdot \frac{\overline{l}}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\overline{l}\right| \cdot \cos(\operatorname{grad} f(M_0)\hat{;}\overline{l})}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\overline{l}\right|}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\operatorname{grad} f(M_0)\right|}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\overline{l}\right|}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\operatorname{grad} f(M_0)\right|}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right| \cdot \left|\operatorname{grad} f(M_0)\right|}{\left|\overline{l}\right|} = \frac{\left|\operatorname{grad} f(M_0)\right|}{\left|\operatorname{grad} f(M_0)\right|} = \frac{\left|\operatorname{grad} f(M_0)\right|}{\left|\operatorname{grad} f(M_0)\right|} = \frac{\left|\operatorname{grad} f(M_0)\right|}{\left|\operatorname{grad} f(M_0)\right|} = \frac{\left|\operatorname{grad} f(M_0)\right|}{\left|\operatorname{grad} f(M_0)} = \frac{\left|\operatorname{grad} f(M_0)\right|}{\left|\operatorname{grad} f(M_0)\right|} = \frac{\left|\operatorname{grad} f(M_0$$

=
$$|grad f(M_0)| \cdot \cos(grad f(M_0); \bar{l})$$

2) из замечания 1) следует, что:

а)
$$\max \left| \frac{\partial f(M_0)}{\partial \bar{l}} \right| = \left| \operatorname{grad} f(M_0) \right| \Leftrightarrow \operatorname{grad} f(M_0)$$
 коллинеарен \bar{l} ;

b)
$$\frac{\partial f(M_0)}{\partial \bar{l}} = 0 \Leftrightarrow \operatorname{grad} f(M_0)$$
 перпендикулярен \bar{l} ;

Во всех остальных случаях производная по напрвленю принимает значения :

$$0 < \left| \frac{\partial f(M_0)}{\partial \bar{l}} \right| < \left| \operatorname{grad} f(M_0) \right|.$$

Свойства градиента скалярного поля

1) $\operatorname{grad} f(M)$ в точке M_0 перпендикулярен поверхности уровня скалярного поля f(M), проходящей через точку M_0 .

Доказательство:

Пусть в R^3 задана ПДСК.

 $f(x,y,z) = f(x_0,y_0,z_0) = C = const$ — уравнение поверхности уровня, проходящей через точку M_0 .

Уравнение плоскости, касательной к этой поверхности в точке M_0 :

$$f'_x(x,y,z)\cdot(x-x_0)+f'_y(x,y,z)\cdot(y-y_0)+f'_z(x,y,z)\cdot(z-z_0)=0$$

Нормаль к этой плоскости имеет координаты $-\overline{n}(f'_x(x,y,z);f'_y(x,y,z);f'_z(x,y,z))$.

Градиент скалярного поля в точке M_0 $\operatorname{grad} f(M_0)$ коллинеарен нормали \overline{n} .

Следовательно $\operatorname{grad} f(M_0)$ перпендикулярен поверхности уровня скалярного поля f(M), проходящей через точку M_0 .

2) grad
$$f(M_0) = \bar{0} \iff f(M_0) = const;$$

3) $grad(\alpha \cdot f(M)) = \alpha \cdot grad f(M)$.

Доказательство:

$$grad\left(\alpha \cdot f(M)\right) = \frac{\partial(\alpha \cdot f(M))}{\partial x} \cdot \bar{i} + \frac{\partial(\alpha \cdot f(M))}{\partial y} \cdot \bar{j} + \frac{\partial(\alpha \cdot f(M))}{\partial z} \cdot \bar{k} =$$

$$= \alpha \cdot \left(\frac{\partial f(M)}{\partial x} \cdot \bar{i} + \frac{\partial f(M)}{\partial y} \cdot \bar{j} + \frac{\partial f(M)}{\partial z} \cdot \bar{k}\right) = \alpha \cdot grad f(M);$$

4) $grad(f(M) \pm g(M)) = grad f(M) \pm grad g(M)$

Доказательство:

$$grad \left(f(M) \pm g(M) \right) = \frac{\partial \left(f(M) \pm g(M) \right)}{\partial x} \cdot \overline{i} + \frac{\partial \left(f(M) \pm g(M) \right)}{\partial y} \cdot \overline{j} + \frac{\partial \left(f(M) \pm g(M) \right)}{\partial z} \cdot \overline{k} =$$

$$= \left(\frac{\partial \left(f(M) \right)}{\partial x} \cdot \overline{i} + \frac{\partial \left(f(M) \right)}{\partial y} \cdot \overline{j} + \frac{\partial \left(f(M) \right)}{\partial z} \cdot \overline{k} \right) \pm \left(\frac{\partial \left(g(M) \right)}{\partial x} \cdot \overline{i} + \frac{\partial \left(g(M) \right)}{\partial y} \cdot \overline{j} + \frac{\partial \left(g(M) \right)}{\partial z} \cdot \overline{k} \right) =$$

$$= grad \ f(M) \pm grad \ g(M)$$

5) $grad(f(M) \cdot g(M)) = g(M) \cdot grad f(M) + f(M) \cdot grad g(M)$

Доказательство:

$$\begin{aligned} & \operatorname{grad}\left(f(M) \cdot g(M)\right) = \frac{\partial \left(f(M) \cdot g(M)\right)}{\partial x} \cdot \overline{i} + \frac{\partial \left(f(M) \cdot g(M)\right)}{\partial y} \cdot \overline{j} + \frac{\partial \left(f(M) \cdot g(M)\right)}{\partial z} \cdot \overline{k} = \\ & = \left[g(M) \cdot \frac{\partial \left(f(M)\right)}{\partial x} + f(M) \cdot \frac{\partial \left(g(M)\right)}{\partial x}\right] \cdot \overline{i} + \left[g(M) \cdot \frac{\partial \left(f(M)\right)}{\partial y} + f(M) \cdot \frac{\partial \left(g(M)\right)}{\partial y}\right] \cdot \overline{j} + \\ & + \left[g(M) \cdot \frac{\partial \left(f(M)\right)}{\partial z} + f(M) \cdot \frac{\partial \left(g(M)\right)}{\partial z}\right] \cdot \overline{k} = g(M) \cdot \operatorname{grad} f(M) + f(M) \cdot \operatorname{grad} g(M) \end{aligned}$$

6)
$$grad\left(\frac{f(M)}{g(M)}\right) = \frac{1}{g^2(M)}\left[g(M) \cdot grad \ f(M) - f(M) \cdot grad \ g(M)\right]$$

Доказательство:

$$\begin{split} & \operatorname{grad}\left(\frac{f(M)}{g(M)}\right) = \frac{\partial \left(\frac{f(M)}{g(M)}\right)}{\partial x} \cdot \bar{i} + \frac{\partial \left(\frac{f(M)}{g(M)}\right)}{\partial y} \cdot \bar{j} + \frac{\partial \left(\frac{f(M)}{g(M)}\right)}{\partial z} \cdot \bar{k} = \\ & = \left[\frac{1}{g^2(M)} \cdot \left(g(M) \cdot \frac{\partial (f(M))}{\partial x} - f(M) \cdot \frac{\partial (g(M))}{\partial x}\right)\right] \cdot \bar{i} + \left[\frac{1}{g^2(M)} \cdot \left(g(M) \cdot \frac{\partial (f(M))}{\partial y} + f(M) \cdot \frac{\partial (g(M))}{\partial y}\right)\right] \cdot \bar{j} + \\ & = \left[\frac{1}{g^2(M)} \cdot \left(g(M) \cdot \frac{\partial (f(M))}{\partial z} - f(M) \cdot \frac{\partial (g(M))}{\partial z}\right)\right] \cdot \bar{k} \end{split}$$

Далее, перегрупперовывая слогаемые, получим:

$$grad\left(\frac{f(M)}{g(M)}\right) = \frac{1}{g^2(M)} \left[g(M) \cdot grad \ f(M) - f(M) \cdot grad \ g(M)\right]$$

7)
$$\operatorname{grad} f(g(M)) = f'_g(M) \cdot \operatorname{grad} g(M)$$

Доказательство:

$$grad \ f(g(M)) = \frac{\partial f(g(M))}{\partial x} \cdot \bar{i} + \frac{\partial f(g(M))}{\partial y} \cdot \bar{j} + \frac{\partial f(g(M))}{\partial z} \cdot \bar{k} = \frac{f'_g \cdot \partial g(M)}{\partial x} \cdot \bar{i} + \frac{f'_g \cdot \partial g(M)}{\partial y} \cdot \bar{j} + \frac{f'_g \cdot \partial g(M)}{\partial z} \cdot \bar{k} = f'_g(M) \cdot grad \ g(M)$$