Parameterizing a Type 1 Diabetes ODE Model¹

Christina Catlett, Daniel Shenker, Rachel Wander, Maya Watanabe

Recap of T1D Model

- 12 state, 53 parameter ODE model of pancreas
- Mouse glucose data available
- <u>Goal:</u> Estimate T1D model parameters using real data

Shtylla et al. 2019. A Mathematical Model for DC Vaccine Treatment of Type 1 Diabetes

Glucose ODE
$$\frac{d}{dt}G = R_o - (G_o + S_I I)G$$

Parameter Estimation Algorithms

Parameter Estimation Algorithms

Particle Swarm Optimization

$$\vec{v}_i^{t+1} = w \vec{v}_i^t + \varphi_1 \vec{U}_1^t (\vec{b}_i^t - \vec{x}_i^t) + \varphi_2 \vec{U}_2^t (\vec{l}_i^t - \vec{x}_i^t)$$

$$\vec{x}_i^{t+1} = \vec{x}_i^t + \vec{v}_i^{t+1}$$

Parameter Estimation Algorithms

Methodology

- Multiple goals
 - Individual mouse
 - Population-level
- Difficulty in constructing population-level parameters
 - 'Fit then average' vs.'Average then fit' approach

Individual

Results: Dual UKF

Mouse Number	RMSE
2	141.074
3	67.4255
4	40.8032
6	50.1488
7	60.4445
8	50.6606
9	62.4348
10	45.3828
11	114.4727

Results: Joint UKF

Mouse Number	RMSE
2	162.2097
3	182.9535
4	51.1009
6	67.1223
7	94.7998
8	64.5717
9	65.7906
10	46.5500
11	109.9000

Mouse 6: Comparison

${f Algorithm}$	\mathbf{RMSE}
PSO	28.2
\mathbf{MCMC}	66.8
Dual UKF	50.2
Joint UKF	67.1

Population-level

Construction of fits

- Techniques play to strengths of algorithms
 - UKF works best for individual data, while MCMC prefers averaged

<u>'Fit then Average':</u> fit all mice, find average parameter set

<u>'Average then Fit':</u> fit to averaged data

Average then Fit

 Determine diabetes onset

<u>Problem:</u> Simple average loses shape

- 2. Align mouse data
- Average time and glucose

4. Position at average onset time

Construction of fits

Results: Average then Fit

Algorithm	\mathbf{RMSE}
PSO	22.75
DRAM MCMC	30.71

Results: Fit then Average

${f Algorithm}$	RMSE
PSO	35.46
Dual UKF	51.06
Joint UKF	52.07

Limitations

Limitations: Biological Checks

- Second situation of interest
 - Without catalyst 'wave' mouse should not become diabetic
- Simulation does not produce expected results
- Change objective/likelihood function to account for this

Christina

Limitations: Parameter Set

- Need to formally identify which parameters to estimate
 - Currently lack consistency across algorithms
 - Informed by sensitivity analysis

Multi-Method Expansions

Combination of UKF and MCMC

- <u>Idea:</u> MCMC is currently operating with uninformative (uniform) prior
- Providing informative prior thought to improve results
- Fit to individual mice using UKF to get prior distributions of parameters

UKF Parameter Distributions

- Fit normal distributions to key parameters
 - o Large assumption
- Use as priors for MCMC

MCMC with an Informative Prior

Prior Function	RMSE
Log-uniform	30.7
Log-normal	58.1

Future Work

- Refining algorithms
- Incorporating new data
- Application to human models, support development and administration of treatments

Acknowledgments

Thank you to our advisors

Prof. de Pillis

Prof. Shtylla (Pomona)

Prof. Edholm (Scripps)

An Do (CGU)

to all the REU coordinators

Prof. Martonosi

DruAnn

and to all of you!

