Lista 2 - PTC-5719 Identificação de Sistemas

Mateus Chiqueto dos Santos

Maio 2025

1

Sabemos que os valores estimados para τ e t_s foram $\tau=10s$ e $t_s=40s$. Deste modo os valores para T_s serão: $T_s=\frac{10}{10}=18s$ e $T_s=\frac{40}{10}=4s$. O melhor período de amostragem para ser escolhido é 1s, pois permite amostrar aproximadamente

O melhor período de amostragem para ser escolhido é 1s, pois permite amostrar aproximadamente 10 vezes durante a constante de tempo e cerca de 40 vezes durante o tempo de acomodação, ao contrário do outro valor em que isso se reduziria em cerca de 4 vezes.

Adiante utilizaremos $T_s = 1s$.

$\mathbf{2}$

O processo é descrito por:

$$A(q)y(t) = \frac{B(q)}{F(q)}u(t) + \frac{C(q)}{D(q)}e(t);$$

e os modelos e as ordens serão:

e os modelos e as ordens serao:				
Estrutura	Polinômios Ativos	Ordem do Modelo		
ARX	A, B	$n_a = 1, n_b = 1, n_k = 5$		
ARMAX	A, B, C	$n_a = 1, n_b = 1, n_c = 2, n_k$		
OE	B, F	$n_b = 1, n_f = 1, n_k = 5$		
BJ	B, F, C, D	$n_b = 1, n_f = 1, n_c = 2, n_d = 2, n_k = 5$		

O BJ é mais indicado, pois pode capturar as perturbações filtradas de 1ª e 2ª ordem.

3

Seguem as simulações realizadas no simulink por 600s.

Processo limpo P. Baixa Intensidade

P. Alta Intensidade

4

No caso, como simularemos o processo limpo, as ordens serão $n_a=1, n_b=1, n_f=1, n_c=0, n_d=0, n_k=5, t_s=42s$. Abaixo temos o código do Matlab para as aproximações

Listing 1: Identificação de modelos com dados limpos

```
%% 1. Prepara o dos dados
y = out.branco; % Sa da limpa (sem ru do)
```

```
_{3}|_{u} = 0.1 * (out.tout >= 275);
                               % Entrada degrau de 0.1
_{4}| Ts = 1;
                                % Per odo de amostragem (1 s)
                                 % Objeto de identifica o
5 data = iddata(y, u, Ts);
7 %% 2. Par metros do sistema
8 \mid nk = 5;
                                 % Atraso de tempo em amostras
9 ts_aprox = 42;
                                % Tempo de acomoda o (ajustar conforme
     necess rio)
10
11 %% 3. Estima o dos modelos
12
13 % FIR (modelo apenas com coeficientes de entrada)
14 modelo_fir = arx(data, [0 ts_aprox nk]);
16 % ARX
modelo_arx = arx(data, [1 1 nk]);
19 % ARMAX
20 modelo_armax = armax(data, [1 1 0 nk]);
22 % OE (Output Error)
23 modelo_oe = oe(data, [1 1 nk]);
25 % BJ (Box-Jenkins)
26 modelo_bj = bj(data, [1 1 0 0 nk]);
28 %% 4. Exibir os modelos e comparar com o modelo real (coloque a G(z) real aqui)
disp('--- Modelos Estimados ---');
disp('FIR:'); present(modelo_fir);
disp('ARX:'); present(modelo_arx);
32 disp('ARMAX:'); present(modelo_armax);
disp('OE:'); present(modelo_oe);
34 disp('BJ:'); present(modelo_bj);
36 % Exemplo para extrair os par metros
getpvec(modelo_fir);
p_arx = getpvec(modelo_arx);
39 % Compare com os coeficientes da fun o de transfer ncia discreta real do
     processo
40
41 %% 5. Simula o com entrada degrau (modo livre, horizonte infinito)
42
43 % Simula o usando sim() para prever sa da sem usar y real (pior caso)
44 y_sim_fir = sim(modelo_fir, u);
45 y_sim_arx = sim(modelo_arx, u);
46 y_sim_armax = sim(modelo_armax, u);
47 y_sim_oe = sim(modelo_oe, u);
48 y_sim_bj = sim(modelo_bj, u);
50 %% 6. Compara o visual com resposta limpa (modo livre)
51 t = data.SamplingInstants;
52
figure;
plot(t, y, 'k', 'LineWidth', 2); hold on;
  plot(t, y_sim_fir, '--c');
56 plot(t, y_sim_arx, '--b');
57 plot(t, y_sim_armax, '--r');
58 plot(t, y_sim_oe, '--g');
59 plot(t, y_sim_bj, '--m');
legend('Sa da real', 'FIR', 'ARX', 'ARMAX', 'OE', 'BJ');
61 title('Simula o com horizonte de predi o infinito (modo livre)');
62 xlabel('Tempo (s)');
63 ylabel('Sa da');
```

```
64 grid on;
 %% 7. C lculo do
                     ndice
                            de ajuste (fit) para cada modelo
68 fit_fir = goodnessOfFit(y_sim_fir, y, 'NRMSE') * 100;
69 fit_arx = goodnessOfFit(y_sim_arx, y, 'NRMSE') * 100;
fit_armax = goodnessOfFit(y_sim_armax, y, 'NRMSE') * 100;
fit_oe = goodnessOfFit(y_sim_oe, y, 'NRMSE') * 100;
 fit_bj = goodnessOfFit(y_sim_bj, y, 'NRMSE') * 100;
 fprintf('\n---
                  ndice de Ajuste (Fit %%) - Horizonte Infinito ---\n');
74
                   : %.2f%%\n', fit_fir);
75
  fprintf('FIR
                   : %.2f%%\n', fit_arx);
  fprintf('ARX
                   : %.2f%%\n', fit_armax);
  fprintf('ARMAX
  fprintf('0E
                     %.2f%%\n', fit_oe);
                   : %.2f%%\n', fit_bj);
  fprintf('BJ
```

Segue as curvas das aproximações:

Curvas referentes às aproximações e a simulação do processo limpo.

Veja os resultados na tabela 1:

Table 1: Índice de ajuste (Fit) dos modelos estimados

Modelo	Fit 1 passo (%)	Fit horizonte infinito (%)
FIR	79.31	20.69
ARX	$\boldsymbol{99.87}$	8.10
ARMAX	$\boldsymbol{99.87}$	8.10
OE	94.16	5.84
BJ	86.01	26.21

Observando os resultados notamos que ARX, ARMAX obtiveram os melhores resultados para 1 passo, mas valores baixos para infinito. E BJ se destacou obtendo os melhores resultados, pois foi mais consistente tanto em 1 passo tanto em infinitos passos.

5

Iremos calcular o ganho estacionário de cada aproximação utilizando os dados do exercício anterior com o código abaixo.

Listing 2: Cálculo do ganho estacionário

```
% Lista de modelos identificados
  modelos = {
      'modelo_fir',
      'modelo_arx',
      'modelo_armax',
      'modelo_oe',
      'modelo_bj'
  };
  % Loop para calcular e mostrar o ganho DC de cada modelo
  fprintf('--- Ganhos Estacion rios (DC Gain) ---\n');
11
12
  for i = 1:length(modelos)
13
      nome = modelos{i};
14
      modelo = eval(nome);
                                                  % Avalia o nome do modelo como
15
          vari vel
      [num, den] = tfdata(modelo, 'v');
                                                  % Extrai os polin mios B(z) e A(z
16
                                                  % G(1) = B(1)/A(1)
17
      Kdc = sum(num) / sum(den);
      fprintf('\%-12s : Kdc = \%.6f\n', nome, Kdc);
18
19
  end
```

Os dados na tabela 2 são resultado da operação realizada pelo código acima. Na tabela é possível notar que os valores do ganho estacionário ficaram próximos a 3 que é o valor de K da simulação, a proximidade dos valores com 3 é guiada pelo fit de 1 passo visto no exercício anterior, onde quanto maior o fit, mais próximo do valor de 3 foi o ganho e quanto pior o fit de 1 passo, mais distante o valor.

Table 2: Ganho estacionário dos modelos estimados

\mathbf{Modelo}	Ganho Estacionário
FIR	2.891365
ARX	3.058531
ARMAX	3.058531
OE	3.015694
BJ	2.848073

Na imagem abaixo vemos as curvas dos coeficientes FIR e a resposta impulsiva real. Veja que os coeficientes estão muito próximos da resposta real. Isso indica como o modelo fir é consistente.

Comparação entre os coeficientes FIR.

7

No código abaixo iremos realizar as aproximações para perturbações de baixa e alta intensidade.

Listing 3: Identificação de modelos com perturbacao

```
%%% Baixa intensidade
  %% 1. Prepara
                    dos dados
  y = out.baixa;
                                  % Sa da limpa (sem ru do)
  u = 0.1 * (out.tout >= 275);
                                 % Entrada degrau de 0.1
  Ts = 1;
                                 % Per odo de amostragem (1 s)
  data = iddata(y, u, Ts);
                                 % Objeto de identifica
  \%\% 2. Par metros do sistema
  nk = 5;
                                  % Atraso de tempo em amostras
  ts_aprox = 42;
                                % Tempo de acomoda o (ajustar conforme
10
     necess rio)
11
  %% 3. Estima
                  o dos modelos
12
13
  \% FIR (modelo apenas com coeficientes de entrada)
 modelo_fir = arx(data, [0 ts_aprox nk]);
```

```
17 % ARX
modelo_arx = arx(data, [1 1 nk]);
20 % ARMAX
21 | modelo_armax = armax(data, [1 1 1 nk]);
23 % OE (Output Error)
24 modelo_oe = oe(data, [1 1 nk]);
26 % BJ (Box-Jenkins)
  modelo_bj = bj(data, [1 1 1 1 nk]);
_{29} %% 4. Exibir os modelos e comparar com o modelo real (coloque a G(z) real aqui)
disp('--- Modelos Estimados ---');
disp('FIR:'); present(modelo_fir);
disp('ARX:'); present(modelo_arx);
disp('ARMAX:'); present(modelo_armax);
disp('OE:'); present(modelo_oe);
disp('BJ:'); present(modelo_bj);
37 % Exemplo para extrair os par metros
38 p_fir = getpvec(modelo_fir);
39 p_arx = getpvec(modelo_arx);
40 % Compare com os coeficientes da fun o de transfer ncia discreta real do
     processo
41
42 %% 5. Simula o com entrada degrau (modo livre, horizonte infinito)
_{44} % Simula o usando sim() para prever sa da sem usar y real (pior caso)
y_sim_fir = sim(modelo_fir, u);
46 y_sim_arx = sim(modelo_arx, u);
  y_sim_armax = sim(modelo_armax, u);
  y_sim_oe = sim(modelo_oe, u);
  y_sim_bj = sim(modelo_bj, u);
49
51 %% 6. Compara o visual com resposta limpa (modo livre)
t = data.SamplingInstants;
54 figure;
55 plot(t, y, 'k', 'LineWidth', 2); hold on;
56 plot(t, y_sim_fir, '--c');
57 plot(t, y_sim_arx, '--b');
plot(t, y_sim_armax, '--r');
59 plot(t, y_sim_oe, '--g');
60 plot(t, y_sim_bj, '--m');
legend('Sa da real', 'FIR', 'ARX', 'ARMAX', 'OE', 'BJ');
62 title('Simula o com horizonte de predi o infinito (modo livre)');
63 xlabel('Tempo (s)');
64 ylabel('Sa da');
65 grid on;
  %% 7. C lculo do
                    ndice de ajuste (fit) para cada modelo
69 fit_fir = goodnessOfFit(y_sim_fir, y, 'NRMSE') * 100;
70 fit_arx = goodnessOfFit(y_sim_arx, y, 'NRMSE') * 100;
71 fit_armax = goodnessOfFit(y_sim_armax, y, 'NRMSE') * 100;
_{72}\big|\:\text{fit\_oe}\:=\:\text{goodnessOfFit(y\_sim\_oe, y, 'NRMSE')}\:*\:100;
fit_bj = goodnessOfFit(y_sim_bj, y, 'NRMSE') * 100;
75 fprintf('\n--- ndice de Ajuste (Fit %%) - Horizonte Infinito ---\n');
76 fprintf('FIR
                   : %.2f%%\n', fit_fir);
77 fprintf('ARX
                   : %.2f%%\n', fit_arx);
```

```
78 fprintf('ARMAX : %.2f%%\n', fit_armax);
                 : %.2f%%\n', fit_oe);
79 fprintf('OE
80 fprintf('BJ
                  : %.2f%%\n', fit_bj);
82 %%% Alta intensidade
83 %% 1. Prepara o dos dados
84 y = out.alta;
                                % Sa da limpa (sem ru do)
u = 0.1 * (out.tout >= 275);
                                 % Entrada degrau de 0.1
86 Ts = 1;
                                 % Per odo de amostragem (1 s)
  data = iddata(y, u, Ts);
                                 % Objeto de identifica
89 %% 2. Par metros do sistema
                                 % Atraso de tempo em amostras
90 | nk = 5;
                                % Tempo de acomoda o (ajustar conforme
91 ts_aprox = 42;
      necess rio)
93 %% 3. Estima o dos modelos
95 % FIR (modelo apenas com coeficientes de entrada)
96 modelo_fir = arx(data, [0 ts_aprox nk]);
98 % ARX
99 modelo_arx = arx(data, [1 1 nk]);
101 % ARMAX
modelo_armax = armax(data, [1 1 2 nk]);
104 % OE (Output Error)
modelo_oe = oe(data, [1 1 nk]);
106
107 % BJ (Box-Jenkins)
modelo_bj = bj(data, [1 1 2 2 nk]);
110 % 4. Exibir os modelos e comparar com o modelo real (coloque a G(z) real aqui)
disp('--- Modelos Estimados ---');
disp('FIR:'); present(modelo_fir);
disp('ARX:'); present(modelo_arx);
disp('ARMAX:'); present(modelo_armax);
disp('OE:'); present(modelo_oe);
disp('BJ:'); present(modelo_bj);
118 % Exemplo para extrair os par metros
p_fir = getpvec(modelo_fir);
120 p_arx = getpvec(modelo_arx);
121 % Compare com os coeficientes da fun o de transfer ncia discreta real do
      processo
123 %% 5. Simula o com entrada degrau (modo livre, horizonte infinito)
125 % Simula o usando sim() para prever sa da sem usar y real (pior caso)
126 y_sim_fir = sim(modelo_fir, u);
127 y_sim_arx = sim(modelo_arx, u);
128 y_sim_armax = sim(modelo_armax, u);
129 y_sim_oe = sim(modelo_oe, u);
130 y_sim_bj = sim(modelo_bj, u);
132 %% 6. Compara o visual com resposta limpa (modo livre)
t = data.SamplingInstants;
135 figure;
plot(t, y, 'k', 'LineWidth', 2); hold on;
plot(t, y_sim_fir, '--c');
138 | plot(t, y_sim_arx, '--b');
```

```
plot(t, y_sim_armax, '--r');
140 plot(t, y_sim_oe, '--g');
  plot(t, y_sim_bj, '--m');
  legend('Sa da real', 'FIR', 'ARX', 'ARMAX', 'OE', 'BJ');
  title('Simula o com horizonte de predi o infinito (modo livre)');
  xlabel('Tempo (s)');
  ylabel('Sa da');
145
  grid on;
146
147
  %% 7. C lculo do
                      ndice
                             de ajuste (fit) para cada modelo
148
149
  fit_fir = goodnessOfFit(y_sim_fir, y, 'NRMSE') * 100;
150
  fit_arx = goodnessOfFit(y_sim_arx, y, 'NRMSE') * 100;
  fit_armax = goodnessOfFit(y_sim_armax, y, 'NRMSE') * 100;
  fit_oe = goodnessOfFit(y_sim_oe, y, 'NRMSE') * 100;
  fit_bj = goodnessOfFit(y_sim_bj, y, 'NRMSE') * 100;
155
                   ndice de Ajuste (Fit %%) - Horizonte Infinito ---\n');
  fprintf('\n---
156
  fprintf('FIR
                    : %.2f%%\n', fit_fir);
157
  fprintf('ARX
                    : %.2f%%\n', fit_arx);
159 fprintf ('ARMAX
                    : %.2f%%\n', fit_armax);
160 fprintf('OE
                    : %.2f%%\n', fit_oe);
161 fprintf('BJ
                    : %.2f%%\n', fit_bj);
```

Abaixo podemos observar as curvas das aproximações e as curvas reais. E na tabela 3 vemos os resultados

Aproximações ao modelo com p. de alta intensidade.

de fit para 1 passo e para infinitos passos.

Table 3: Índice de ajuste (%) dos modelos identificados para diferentes intensidades

Modelo	Intensidade	Fit 1 passo (%)	Fit infinito (%)
FIR	Baixa	78.90	21.10
ARX	Baixa	98.65	8.48
ARMAX	Baixa	98.65	8.48
OE	Baixa	91.68	8.32
BJ	Baixa	98.65	8.39
FIR	Alta	37.81	62.19
ARX	Alta	99.10	106.29
ARMAX	Alta	99.72	84.60
OE	Alta	38.23	61.77
BJ	Alta	99.87	61.56

Na baixa intensidade, modelos como ARX, ARMAX e BJ apresentaram alto valor de fit em 1

passo, mas desempenho fraco para fit infinito, indicando que capturam apenas a resposta imediata, não a dinâmica completa. Já FIR e OE, apesar de menor ajuste em 1 passo, simularam melhor o comportamento do sistema. Na alta intensidade, ARX, ARMAX e BJ tiveram excelente desempenho tanto no ajuste em 1 passo quanto na simulação, refletindo boa capacidade de modelar a dinâmica do sistema ou o modelo está em sobre-ajuste.

8

Com código semelhante ao realizado no exercício 5 foi calculado os ganhos estacionários e são vistos na tabela 4.

Table 4: Ganhos Estacionários dos Modelos

Modelo	Baixa Intensidade	Alta Intensidade
FIR	2.9029	3.1362
ARX	3.0210	62.5678
ARMAX	3.0210	5.6499
OE	3.0215	3.1645
BJ	3.0252	3.0709

Veja que os modelos OE e BJ foram os mais consistentes nas aproximações para as duas simulações, mantendo os ganhos próximos ao real. E o modelo ARX foi instável pois funcionou bem para baixa intensidade, porém teve resultado ruim para alta intensidade.

9

Abaixo temos o código de Matlab para as comparações agora com o medidor:

Listing 4: Estimando com medidor

```
\%\% 1. Par metros do sistema
  Ts = 1;
                        % Per odo de amostragem
 N = 600;
                        % N mero de amostras (600 s)
3
  t = (0:N-1), * Ts;
                        % Vetor de tempo
  % Entrada: degrau a partir de t = 275 s
  u = double(t >= 275) * 0.1;
  %% 2. Gerar el com ru do e perturba
10 rng(1); % para reprodutibilidade
e1 = sqrt(0.001) * randn(N, 1);
                                                  % ru do de excita
                                                  % e1 medida com ru do
|e1_{medida}| = |e1_{medida}| = |e1_{medida}| + |sqrt(1e-6)| * |randn(N, 1);
_{14} % Perturba o v1: e1 passado por FT de 1
                                                 ordem: Gv1(z)
_{15} Gv1 = tf(1, [5 1]);
                               % cont nua
 Gv1d = c2d(Gv1, Ts);
                                 % discreta com ZOH
16
  v1 = lsim(Gv1d, e1, t);
17
18
  % Perturba o v2: outro ru do filtrado (nova semente)
19
 e2 = sqrt(0.001) * randn(N,1);
  Gv2 = tf(2, conv([5 1], [10 1]));
  Gv2d = c2d(Gv2, Ts);
 v2 = lsim(Gv2d, e2, t);
24
26 %% 3. Gerar ru do de medi
 y_noise = sqrt(1e-6) * randn(N, 1);
 %% 4. Sistema principal: G(s)
_{30} Gp = tf(3, [10 1]);
                               % sem atraso
```

```
_{31}|Gd = c2d(Gp, Ts, 'zoh');
                             % discretizado
32 % Incluir atraso de 5s
                             5 \text{ amostras (em Ts = 1s)}
33 Gd.InputDelay = 5;
y_sistema = lsim(Gd, u, t);
 %% 5. Compor a sa da com perturba
                                       es e ru do
37
 y_baixa = y_sistema + v1 + v2 + y_noise;
  \%\% 6. Preparar dados para identifica o com 2 entradas
40
  data_2in = iddata(y_baixa, [u e1_medida], Ts);
41
42
  % Para compara
                   o: identifica o com 1 entrada (s
  data_1in = iddata(y_baixa, u, Ts);
  \%\% 7. Estimar modelos (exemplo com ARX)
46
  na = 2; nb = [2 2]; nk = [1 1];  % para duas entradas
47
 modelo_2in = arx(data_2in, [na nb nk]);
50 nb1 = 2; nk1 = 1; % para entrada nica
 modelo_1in = arx(data_1in, [na nb1 nk1]);
53 %% 8. Comparar os dois modelos
54 figure;
55 compare(data_2in, modelo_2in, modelo_1in);
56 legend('Dados reais', 'Modelo com 2 entradas', 'Modelo com 1 entrada');
57 title('Compara o: modelo com e sem perturba o medida');
  %% 9. Avaliar
                 ndices fit
60 [~, fit2in, ~] = compare(data_2in, modelo_2in);
61 [~, fit1in, ~] = compare(data_2in, modelo_1in);
fprintf('Fit com 2 entradas: %.2f%%\n', fit2in);
63 fprintf('Fit com 1 entrada: %.2f%%\n', fit1in);
```

Deste modo, veja na imagem 1 as curvas e os valores de fit. Veja que o modelo com o medidor obteve melhor resultado em comparação ao com 1 entrada. O modelo com duas entradas é mais preciso porque modela uma fonte adicional de variação da saída, que o modelo com uma entrada não consegue capturar.

10

Abaixo temos o código utilizado para medir os ganhos estacionários.

Listing 5: Ganho estacionário dos modelos estimados

```
K_lin = dcgain(modelo_lin);  % Modelo com 1 entrada (u)
K_lin = dcgain(modelo_lin(l));  % Modelo com 2 entradas (apenas entrada u)
```

Deste modo, tivemos:

- Modelo com 1 entrada: K = 2.9718 (Erro = 0.94%)
- Modelo com 2 entradas: K = 2.9954 (Erro = 0.15%).

Veja que, o modelo com 2 entradas apresenta um erro de estimativa menor que o modelo com 1 entrada. Isso confirma que medir e incluir a perturbação mais relevante (e1) melhora a qualidade da identificação do sistema, tornando a estimativa do ganho estacionário mais precisa.

 $\label{eq:Figure 1:} Figure \ 1: \\ Comparação entre as aproximações.$