Majorana corner modes in triangular superconductor islands

Aidan Winblad

Backgroun

Motivation

Formulation

Results

Summary

Majorana Corner Modes in Triangular Superconductor Islands

Aidan Winblad Hua Chen

Department of Physics

Colorado State University

March 18, 2022

Outline

Aidan Winblad

Backgroun

Motivation

Formulation

Results

Summary

Background:

- Majorana fermions in particle physics
- Majorana fermions in condensed matter

■ Motivation:

- P-wave superconductors and braiding
- 1D wires and T-junctions
- Triangular structures for braiding

■ Formulation:

- Peierls substitution in Kitaev's model
- Results:
 - Topological phase
 - Triangular chain
 - Hollow triangles
- Summary
 - Future work
 - Additional projects

Background

Aidan Winblad

Background

Motivation

Formulation

Results

Summary

Enrico Fermi

Paul Dirac

Ettore Majorana

(Dirac) Fermion

- Fermi statistics
- Complex solution
- Particle \neq Antiparticle : $c \neq c^{\dagger}$
- Charged
- Electron

Majorana Fermion

- Fermi statistics
- Real solution
- Particle = Antiparticle : $c = c^{\dagger}$
- Neutral
- Neutrino? Dark Matter?

Maiorana corner modes in triangular islands

Background superconductor

Aidan Winblad

Background

MAJORANA project: neutrinoless double beta $(0
u\beta\beta)$ decay

- Are neutrinos Majorana fermions?
- If yes, the standard needs revision
- Negative results for Majorana particles

triangular superconductor

Motivation

Aidan Winblad

Backgroun

Motivation

Formulation

Results

Summary

■ P-wave superconductors contain half-quantum vortices.

- Majorana fermions located at core of a vortex.
- Braiding vortices exhibits Non-Abelian statistics.
- 1D p-wave superconductors host Majorana fermions on end points.
 - Possibly measured in real systems: Mourik, Science 336, 1003 (2012)
 Nadj-Perge, Science 346, 602 (2014)
- Quasi-1D T-junction
 - Braiding of Majorana fermions is defined for 2D.
 - In practice challenging to make, but still feasible and seriously pursued.

../../images/t-junction.pdf

Alicea, Nature Phys. 7, 412 (2011)

Motivation

Aidan Winblad

Backgroun

Motivation

Formulation

Results

Summary

 Consider triangular islands, topologically similar to T-junctions.

- Islands of three-fold rotational symmetry occur naturally in epitaxial growth on close-packed metal surfaces.
- Good platform for transition from 2D to 1D topological superconductor.

../../images/triangular-islands.pd

Triangular Co islands on Cu(111).

Pietzsch et al., *PRL* **96**, 237203 (2006)

Majorana corner modes in triangular superconductor islands Aidan Winblad Background

Formulation

Previous Work

/ 12

Kitaev Limit with Vector Potential on a Triangular Island

Aidan Winblad

Backgroun

Motivatio

Formulation

Results

modes in triangular superconductor islands Aidan Winblad

Maiorana corner

Majorana Number of 1D Chain with Vector Potential

Aldali VVIII

Backgrour

Motivatio

Formulation

Results

Summary

 $\phi = -\pi$../images/kitaev-chain-mu_pi.pdf

Triangular Chain

Aidan Winblad

Backgroun

Motivation

Formulation

Results

Hollow Triangle

Aidan Winblad

Backgroun

Motivatio

Formulation

Results

Summary

Aidan Winblad

Backgrour

Motivatio

Formulation

Results

- Introduction of vector potential allows for additional tunability of topology.
- Triangular islands with a gapped interior can be a promising platform for hosting and manipulating MZMs.
- Next steps
 - Search for safe MZMs in hollow triangles outside the Kitaev limit.
 - Develop a robust braiding scheme.

Majorana fermion notation and coupling isolations

Aidan Winblad

The complex fermion operator can be written as a superposition of two Majorana fermions $c_j = \frac{1}{2}(a_j + ib_j)$. Due to the nature of Majorana fermions, $a_j^{\dagger} = a_j$, the creation operator is $c_j^{\dagger} = \frac{1}{2}(a_j - ib_j)$.

$$H = -\frac{i\mu}{4} \sum_{j} (a_j b_j - b_j a_j) - \frac{i}{4} \sum_{\langle j,l \rangle} [(t \sin \phi - \Delta \sin \theta) a_l a_j + (t \sin \phi + \Delta \sin \theta) b_l b_j + (t \cos \phi + \Delta \cos \theta) a_l b_j - (t \cos \phi - \Delta \cos \theta) b_l a_j].$$

$$(t\sin\phi_{j,l} - \Delta\sin\theta_{j,l})a_l a_j,\tag{1}$$

$$(t\sin\phi_{i,l} + \Delta\sin\theta_{i,l})b_lb_i,\tag{2}$$

$$(t\cos\phi_{j,l} + \Delta\cos\theta_{j,l})a_lb_j,\tag{3}$$

$$(t\cos\phi_{i,l} - \Delta\cos\theta_{i,l})b_la_i \tag{4}$$

Triangular chain degeneracy

Aidan Winblad

Hollow triangle degeneracy?

Aidan Winblad

