

Chương 7: Bộ chuyển đối AD

Đặc điểm

- ❖ PIC18F8722 : chọn 1 kênh từ 16 đầu vào cho bộ chuyển đổi.
- Mục đích: Lưu vết biên độ một tín hiệu analog thành các điểm có giá trị tương ứng là một số 10-bit (0-1023) theo thời gian.
- Điện áp tham khảo (Analog reference voltage) được chọn bằng phần mềm.
 - Internal : AVDD và AVSS
 - External: V_{REF+} và V_{REF-}
- ADC là chức năng duy nhất có thể hoạt động ở chế độ SLEEP (sử dụng bộ dao động RC bên trong).
- * Reset: các thanh ghi chuyển về trạng thái reset.
 - ADC : tắt
 - Các quá trình biến đối AD bị bỏ qua.

Các thanh ghi sử dụng

- Module ADC có 5 thanh ghi:
 - ADRESH : A/D Result High Register
 - ADRESL: A/D Result Low Register
 - ADCON0 : A/D Control Register 0
 - ADCON1 : A/D Control Register 1
 - ADCON2 : A/D Control Register 2

Thanh ghi ADCONo

Thanh ghi ADCONO

CHS3:CHS0: Analog Channel Select bits

Ví dụ:

0000 = Channel 0 (AN0)

0001 = Channel 1 (AN1)

. . .

1110 = Channel 14 (AN14)

1111 = Channel 15 (AN15)

GO/DONE: A/D Conversion Status bit

When ADON = 1:

1 = A/D conversion in progress

0 = A/D Idle

ADON: A/D On bit

1 = A/D converter module is enabled

0 = A/D converter module is disabled

Thanh ghi ADCON1

Thanh ghi ADCON1

VCFG1: Voltage Reference Configuration bit, VREFL Source

1 = VREF- (AN2)

0 = AVSSv

PCFG3:PCFG0: A/D Port Configuration **Control bits**

VCFG0: Voltage Reference Configuration bit, **VREFH Source**

1 = VREF + (AN3)

0 = AVDD

Bảng chọn kênh nhập analog/digital

PCFG<3:0>	AN15(1)	AN14(1)	AN13(1)	AN12(1)	AN11	AN10	6NA	AN8	ANA	ANG	ANS	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

Thanh ghi ADCON2

Thanh ghi ADCON2

ACQT2:ACQT0: A/D Acquisition Time Select bits

Ví dụ:

111 = 20 TAD

110 = 16 TAD

101 = 12 TAD

100 = 8 TAD

ADCS1:ADCS0: A/D Conversion Clock Select bits Ví dụ:

111 = FRC (clock derived from A/D RC oscillator)

110 = FOSC/64

101 = FOSC/16

100 = FOSC/4

011 = FRC (clock derived from A/D RC oscillator)

Bộ chuyển đổi A-D

- Điện áp tham khảo (Analog reference voltage) được chọn bằng phần mềm.
- * ADC là chức năng duy nhất có thể hoạt động ở chế độ SLEEP (sử dụng bộ dao động RC bên trong).
- * Reset: các thanh ghi chuyển về trạng thái reset.
 - ADC : tắt
 - Các quá trình biến đổi AD bị bỏ qua.

Sơ đồ khối

Các bước thực hiện chuyển đổi A/D

- Bước 1: Cấu hình cho module A/D
 - Cấu hình các pin analog, điện áp tham khảo(voltage reference)
 và các I/O digital (ADCON1)
 - Chọn các kênh A/D (ADCON0)
 - Chon acquisition time (ADCON2)
 - Chon clock (ADCON2)
 - Bật module A/D (ADCON0)
- * Bước 2: Cấu hình ngắt (interrupt) A/D (nếu cần thiết):
 - Xóa bit ADIF.
 - Set bit ADIE.
 - Set bit GIE.

Các bước thực hiện chuyển đổi A/D

- Bước 3: Đợi yêu cầu acquisition time (nếu có).
- Bước 4: Bắt đầu chuyển đổi
 - Set bit GO/DONE (ADCON0bits.GO).
- Bước 5: Đợi quá trình chuyển đổi hoàn thành bằng một trong 2 cách :
 - Đợi bit GO/DONE (ADCON0bits.DONE) được xóa.
 - Đợi ngắt A/D.
- Bước 6: Đọc kết quả từ thanh ghi (ADRESH:ADRESL). Sau đó xóa bit ADIF nếu có sử dụng ngắt.

Mô hình chân analog

FIGURE 21-3: ANALOG INPUT MODEL

Acquisition time

EQUATION 21-1: ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient

= TAMP + TC + TCOFF
```

EQUATION 21-2: A/D MINIMUM CHARGING TIME

```
VHOLD = (\text{VREF} - (\text{VREF}/2048)) \cdot (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})

or

TC = -(\text{CHOLD})(\text{RIC} + \text{RSS} + \text{RS}) \ln(1/2048)
```

EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

```
TACO
                   TAMP + TC + TCOFF
                 0.2 us
TAMP
TCOFF =
                 (Temp - 25^{\circ}C)(0.02 \,\mu s/^{\circ}C)
                   (85^{\circ}C - 25^{\circ}C)(0.02 \,\mu\text{s}/^{\circ}C)
                   1.2 µs
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, Tcoff = 0 ms.
                   -(CHOLD)(RIC + RSS + RS) \ln(1/2047) µs
TC
                   -(25 \text{ pF}) (1 \text{ k}\Omega + 2 \text{ k}\Omega + 2.5 \text{ k}\Omega) \ln(0.0004883) \text{ µs}
                   1.05 us
            = 0.2 \mu s + 1 \mu s + 1.2 \mu s
TACQ
                   2.4 \, \mu s
```


Hoạt động AD không trì hoãn

Hoạt động AD có trì hoãn

Điện áp tham khảo

- Internal : AVDD và AVSS
- External: V_{REF+} và V_{REF-}

