Zestaw 1 — Teoria mnogości

Część A

1. Niech

$$A = \{x \in \mathbb{R} : (x-1)^2 \le 1\}, \quad B = \{x \in \mathbb{R} : |x-3| > 2\}, \quad C = \{-1, 0\}$$

Wyznacz $(A \cup B) \setminus C$, $(B \setminus C) \cap A$ i $A \setminus (B \setminus C)$, $(A \setminus C) \triangle B$.

- 2. Wyznacz zbiór potęgowy dla zbiorów:
 - a) $\{1, 2, 3, 4\}$,
 - b) ∅,
 - c) $\{\emptyset\}$,
 - d) $\{\emptyset, \{\emptyset\}\}$.
- **3.** Wyznacz iloczyn kartezjański $A \times B$ dla zbiorów:
 - a) $A = \{0, 1\}, B = \{1, 2\},\$
 - b) $A = \{0, 1, 2\}, B = \{2, 3\},\$
 - c) $A = \emptyset, B = \{1, 2, 3\}.$
- **4.** Wyznacz zbiory $A \times (B \times C)$, $(A \times B) \times C$, $A \times B \times C$ dla

$$A = \{0, 1\}, \qquad B = \{1, 2\}, \qquad C = \{2, 3\}.$$

- 5. Naszkicuj na płaszczyźnie zbiory $A \times B$ i $B \times A$ dla:
 - a) $A = \{ y \in \mathbb{R} : -1 < y < 1 \}, B = \{ x \in \mathbb{R} : 0 < x \le 1 \},$
 - b) $A = \mathbb{Z}, B = (1, 2),$
 - c) $A = \{x \in \mathbb{R} : x^2 + x 2 \ge 0\}, B = \{b \in \mathbb{N} : 2^b < 11\}.$
- 6. Podaj warunek równoważny równości

$$A \times B = B \times A$$
.

Część B

- 7. Udowodnij, że dla dowolnych zbiorów $A,\,B,\,C$ i D zachodzą równości:
 - a) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$,
 - b) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$,
 - c) $(A \setminus B) \cup C = [(A \cup C) \setminus B] \cup (B \cap C),$
 - d) $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$.
- 8. Wykaż, że dla dowolnych zbiorów A, B, C i D zachodzą warunki:
 - a) jeśli $(A \subset B \text{ i } C \subset D)$, to $(A \cup C \subset B \cup D)$,
 - b) jeśli $A \subset B$ oraz $C \subset D$, to $A \setminus D \subset B \setminus C$.
- **9.** Udowodnij, że dla dowolnych zbiorów A, B i C zachodzą równości:
 - a) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$,
 - b) $A \setminus B = A \triangle (A \cap B)$,
 - c) $A \triangle B = A^c \triangle B^c$.
- 10. Wykorzystując znane prawa rachunku zbiorów, pokaż, że

$$(A \triangle B) \triangle C = A \triangle (B \triangle C).$$

11. Uzasadnij, że dla dowolnych zbiorów A i B istnieje dokładnie jeden zbiór C, dla którego

$$A \triangle C = B$$
.

- **12.** Pokaż, że dla dowolnych zbiorów A, B i C jeżeli zbiory $A \triangle B$ i $B \triangle C$ są skończone, to skończony jest również zbiór $A \triangle C$.
- 13. Znajdź warunek równoważny równości

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$

wyrażony w terminach własności zbiorów A i B.

- 14. Uzasadnij, że dla dowolnych zbiorów A i B mamy
 - a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$,
- b) $\mathcal{P}(A \cup B) = \{C : C = A_1 \cup B_1 \text{ dla pewnych } A_1 \in \mathcal{P}(A) \text{ i } B_1 \in \mathcal{P}(B)\}.$
- 15 (Alternatywne definicje pary uporządkowanej). Dla dowolnych elementów a i b zdefiniujmy

$$\langle a, b \rangle := \{\{\{a\}, \emptyset\}, \{\{b\}\}\}\}$$

oraz

$$[a,b] := \{ \{a,\emptyset\}, \{b,\{\emptyset\}\} \}.$$

Udowodnij, że są to poprawne definicje pary uporządkowanej, to znaczy

$$\langle a, b \rangle = \langle c, d \rangle$$
 i $[a, b] = [c, d]$

wtedy i tylko wtedy, gdy

$$a=c$$
 i $b=d$.

16. Dla dowolnych elementów a i b określmy

$$(a,b)_1 = \{\{a\},\{b\}\}\$$
 oraz $(a,b)_2 = \{a,\{b\}\}.$

Uzasadnij, podając odpowiednie przykłady, że żadna z powyższych definicji nie określa poprawnie pary uporządkowanej.

17 (Uporządkowana trójka). Dla dowolnych elementów a, b i c określamy

$$(a, b, c) = ((a, b), c).$$

Udowodnij, że

$$(a, b, c) = (d, e, f)$$

wtedy i tylko wtedy, gdy

$$a = d$$
, $b = e$, $c = f$.

- 18. Multizbiorem nazywamy obiekt, który podobnie jak zbiór złożony jest z dowolnych elementów, ale w którym ich krotność ma znaczenie. Multizbiory będziemy zapisywać w podwójnych nawiasach kwadratowych, na przykład $[a_1,\ldots,a_n]$. W szczególności multizbiór [1,2,2] składa się z trzech elementów: jednej 1 i dwóch 2. Jest to inny obiekt niż zbiór $\{1,2,2\}=\{1,2\}$. Zaproponuj definicję multizbioru w oparciu o pojęcia teorii mnogości.
- 19. Udowodnij, że dla dowolnych zbiorów A, B, C i D mamy
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
- b) $(A \cup B) \times (C \cup D) = (A \times C) \cup (A \times D) \cup (B \times C) \cup (B \times D)$,
- c) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.
- **20.** Niech A_1, \ldots, A_n będą dowolnymi zbiorami. Zdefiniujmy \mathcal{A} jako najmniejszy zbiór, dla którego:
 - a) $A_i \in \mathcal{A}$ dla dowolnego $i \in \{1, \ldots, n\}$,
- b) jeżeli $X \in \mathcal{A}$ oraz $Y \in \mathcal{A}$, to ich suma $X \cup Y$ również należy do \mathcal{A} .

Ile maksymalnie elementów ma zbiór A? Podaj przykład takiego zbioru.

Część C

- **21.** Niech A_1, \ldots, A_n będą dowolnymi zbiorami. Zdefiniujmy \mathcal{A} jako najmniejszy zbiór, dla którego:
 - a) $A_i \in \mathcal{A}$ dla dowolnego $i \in \{1, \ldots, n\}$,
- b) jeśli $X \in \mathcal{A}$ oraz $Y \in \mathcal{A}$, to ich suma $X \cup Y$ oraz różnica $X \setminus Y$ również należą do \mathcal{A} . Ile maksymalnie elementów ma zbiór \mathcal{A} ? Podaj przykład takiego zbioru.

Część D

- **22.** Napisz program, który dla zadanej liczy naturalnej n wypisze wszystkie podzbiory zbioru $\{1,2,\ldots,n\}.$
- **23.** Napisz program, który dla zadanej liczby naturalnej n oraz liczby $k \in \{1, ..., n\}$ wypisze wszystkie podzbiory k-elementowe zbiory $\{1, ..., n\}$.
- **24.** Napisz program, który dla zadanej liczby naturalnej n wypisze wszystkie permutacje zbioru $\{1,\ldots,n\}$, to znaczy wszystkie sposoby uporządkowania elementów tego zbioru.