Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination Marking Scheme - Physics (Code 55/1/1)

- 1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weight age.
- 2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
- 4. If a question has parts, please a wardinthe right hand side for each part. Marks a warded for different part of the question should then be totaled up and written in the left hand margin and circled
- 5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
- 6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
- 8. Deduct \(\frac{1}{2}\) mark for writing wrong units, missing units, in the final answer to numerical problems.
- 9. For mul a can be taken as implied from the calculations even if not explicitly written.
- 10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
- 11. Full marks should be a warded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
- 12 In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee from 2012 examination. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
- 13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
- 15. In the past it has been observed that the following are the common types of errors committed by the Exa miners
 - Leaving ans wer or part thereof unassessed in an ans wer script.
 - Giving more marks for an answer than assigned to it or deviation from the marking scheme.
 - Wrong transference of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying
 - Wrong transference to marks from the answer book to a ward list.
 - Ans wer marked as correct () but marks not a warded.
 - Half or part of answer marked correct () and the rest as wrong () but no marks a warded.
- 16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

Delhi SETI Page 1 of 19

MARKI NG SCHEME **SET 55/1/1**

Q No.	Expected Answer / Value Points	Marks	Tot al Marks
1.	Substances, which at room temperature, retain their ferromagnetic property for a long period of time are called permanent magnets. A nico, cobalt, steel and ticonal (any one)	1/2 +1/2	1
2.	Spherical.	1	1
3.	Heat waves, as they are transverse/electromagnetic in nature	1/2 +1/2	1
4.	Magnitude of conduction & displacement currents are zero.	1	1
5.	$A + \delta_m = 2i$	1	1
6.	(1, 3) and (2, 4)	1/2 +1/2	1
7.	$i = \frac{V}{R} = \frac{190}{38} = 5A$ Award full 1 mark if student calculates current directly	1/2 +1/2	1
8.	Because the cell has some finite internal resistance./ Enf is determined when the cell is in open circuit and no current is drawn.	1	1
9.	Conditions Relation (a) i) Ray of light should travel from denser to rarer medium ii) Angle of incidence should be more than the critical angle.	1/2 1/2	
	(b) $\mu = \frac{1}{\sin i_c}$ where i_c is the critical angle	1	2
10.	State ment of lenz law Enf and justification 1/2 +1/2 The polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it. Yes, as the magnetic flux due to vertical component of Earth's magnetic	1 1/2 +1/2	2
11.	keeps on changing as the metallic rod falls down. Det er mi nation of power 1½ Nat ure ½		
	Power of convex lens,	1/2	

	D 1 1	1	1
	Power of concave lens,		
		1/2	
		1/2	
	Po wer of the combination $P=P_1+P_2=-1D$ Nature: Diverging		
12.		1/2	2
124	(i) Value of Shunt Resistance (ii) Combined resistance 1 1		
	(i) Shunt $S = \frac{R_A i_g}{i - i_g}$	1/2	
	$=\frac{08}{50}\frac{10}{10}=02$	1/2	
	(ii) Combined resistance of ammeter and shunt $\frac{1}{R_{total}} = \frac{1}{R_A} + \frac{1}{S}$ $= \frac{1}{0.8} + \frac{1}{0.2}$ $R_{total} = \frac{0.8}{5}$	1/2	
	$\Rightarrow R_{total} = 0.16\Omega$	1/2	2
13.	(i) Effect on Brightness of the bulb and reason $\frac{1}{2} + \frac{1}{2}$ (ii) Effect on volt meter reading and reason $\frac{1}{2} + \frac{1}{2}$		
	(i) Increases. As the value of the base current increases, the collector current will increase proportionately.	1/2	
	(ii) Increases. Due to increase in collector current, voltage drop across lamp will increase.	1/2	2
14.			
	(a) Sketch of propagation (b) Relation 1 ½ ½		

Del hi SET I Page 3 of 19

H NAL Print Draft

11/3/2013

	(a) y or z z or y [NOTE: Accept the alternative choices indicating the correct directions of the oscillating components of Eand B]	1 1/2	
15.	$(b) \frac{E_0}{B_0} = c$ Identification of X and Y $\frac{1}{2} + \frac{1}{2}$	1/2	2
	Function of X and Y X: IF stage Y: Amplifier The carrier frequency is changed to a lower frequency by intermediate frequency (IF) stage preceding the detection. It increases the strength of detected signal	1/2 1/2 1/2	2
16.	Greuit diagram and working Its use to detect the optical signal Greuit diagram of an ill uni nated photodiode: hv p-side n-side		
		1/2	

Del hi SET I Page 4 of 19

H NAL Print Draft

11/3/2013

(hv) greatert hant he ener pairs are generated due to The j unction field sends	gy gap (Eg) of the semicon the absorption of photon the electrons to n-side and to ws through the load whe change in the current with this applied. Thus photodi	d holes to p-side to produ n connected. n change in the radiation	ll e	
	OR			
	oped p-n j uncti on	1 1		
3. The semicondu	eakdown voltages of LED ctor used for fabrication of and gap of 1.8 eV above)	•	1/2 + 1/2	
9 1	o is about 3 eVto 1.8 eV		1	2
I mport ant fact ors justify Diagramshowing, how	ing the need of modulation AM wave is obtained	on 1½ 1½		
1. Practical Size of the an	enna or aerial		1/2	
2. Effective power radiate	d by an antenna		1/2	
3. Maxing up of signals from	om different trans mitters		1/2	
cat of WWW	MWMW.	<u>M</u>	1/2	
m(t) o	\checkmark	<u>/ </u>	1/2	
c _m (t) for AM 0			1/2	3
18. (i) Calculation of poten (ii) Calculation of char	ntial Vand unknown capa ge stored O	citance C 2		
Del hi SET I Page 5 of 1	9 H NAL	Print Draft 11/3/2013	11: 30 a m	

(i) Q=CV	1/2	
	1/2	
	1/2	
Substituting the value of C Potential V= 180 V	1/2	
(ii) Charge stored when voltage is increased by 120 V	1/2 1/2	3
OR		
(i) Cal cul ati on of net electric flux 2 (ii) Cal cul ati on of charge 1		
(i) The magnitude of the electric field at the left face is E=50 NC ¹ Therefore fly by through this face		
120 = 360 = 240	1/2	
Arr Capacitance $C=2$	1/2	
The magnitude of the electric field at the right face is $E=100 \text{ NC}^{-1}$ Therefore flux through this face		
Q = 2 = 600	1/2	
	1/2	
(ii) Char ge enclosed by the cylinder	1/2	
С	1/2	3

Del hi SET I Page 6 of 19

19.	(a) Cause of release of energy 1 (b) Proof for independence of nuclear density on mass number 2		
	(a) Since the total initial mass of nuclei on the left side of reaction is greater than the total final mass of nucleus on the right hand side, this difference of mass appears as the energy released.	1	
		1/2	
	$A_{\mathbf{s}} \mathbf{R} = \mathbf{R}_0 \mathbf{A}^{1/3}$		
		1/2	
		1/2	
		1/2	3
20.	(a) Reasons of failure of wave theory to explain Photoelectric effect. 1 ½ (b) Basic features of Photon picture 1 ½		
	(a) According to wave theory		
	(i) The maximum kinetic energy of the emitted electron should be directly proportional to the intensity of incident radiations but it is not observed experimentally. Also maximum kinetic energy of the emitted electrons should not depend upon incident frequency according to wave theory, but it is not so.	1/2	
	(ii) Electron e mmission should take place at all frequencies of radiations i.e. there should not exist the threshold frequency. This fact contradicts experimental observation	1/2	
	(iii) There should be a time lag in photoelectric emmission but according to observation photoelectric emmission is instantaneous	1/2	
	(b) According to phot on picture	1/	
	(i) Each quant um of radiation has energy $h\nu$	1/2	

Del hi SET I Page 7 of 19

(ii)	In photoelectric effect the electrons in the metal absorbs this quantum of energy (h ν_1)	1/2	
(iii)	When this energy exceeds the minimum energy needed for the	1/2	3
X X X X X X X X X X X X X X X X X T X X X T X T	nation, howem is induced tion of the expression 1 ½ 1½ 1½	1/2 1 1/2 1/2 1/2	3

Del hi SET I Page 8 of 19

H NAL Print Draft

11/3/2013

	T		
	Det er mi nati on of		
	(i) Dyna mic out put resistance $\frac{1}{2} + \frac{1}{2}$		
22.	(ii) d c current gain $\frac{1}{2} + \frac{1}{2}$		
22.	(iii) a c current gain $\frac{1}{2} + \frac{1}{2}$		
	72 1 72		
	(1) Dung mig out nut regist and		
	(1) Dyna mic out put resistance		
	$r_0 = \left(\frac{\Delta V_{CE}}{\Delta I_C}\right) I_{b}$	1/2	
	0.2		
	= 0.2 mA		
	$r_0 == 20 \text{ K}\Omega$	1/2	
	(2) dc current gain, at 10 V, $I_C = 3.6$ mA		
	$\beta = \frac{I_c}{I_b} = \frac{3.6x10^{-3}}{30x10^{-6}} = 120$	1/2 + 1/2	
	(3) ac current gain		
	$\Delta I_b = 40 \ \mu\text{A} - 30 \ \mu\text{A} = 10 \ \mu\text{A}$		
	$\Delta I_c = 4.7 \text{ mA} - 3.6 \text{ mA} = 1.1 \text{ mA}$		
	$\frac{\Delta \mathbf{r}_{c} - \mathbf{r}_{c} + \mathbf{r}_{c}}{2} = \mathbf{r}_{c} + \mathbf$		
	$eta_{ac} = \left(\frac{\Delta I_c}{\Delta I_b} \right)$	1/2	
	From the graph = $\frac{1.1x10^{\circ}12}{10x10^{\circ}3} = \frac{1.1x10^{\circ}12}{10} = \frac{1.1x10^{\circ}12}{1$	1/2	3
	[NOTE Gredit should also be given to candidate who uses the right		
	procedure, but considers the values slightly different from those used above]		
	1		
22			
23.	Derivation of expression for total energy of the electron Energy level diagram for Balmer series 1		
		1/2	
		<u> </u>	<u> </u>

Del hi SET I Page 9 of 19

H NAL Print Draft

11/3/2013

SET I

24.			
21.	(a) Relationship bet ween interference pattern and diffraction from each slit 1 (b) Calculation of separation bet ween the position of first maxima of two wavelengths 2		
	a) In double slit experiment, the pattern on the screen is actually a super position of single slit defraction from each slit and double slit interference pattern. As a result, there appears a broader diffraction peak in which there occur several fringes of smaller widths due to double slit interference.	1	
	b) Distance of first secondary maximum from centre of the screen $x = -\frac{3}{2} \frac{D\lambda}{a}$ Therefore spacing between first secondary maxima on the screen for two	1/2	
	gi ven wa vel engt hs $\Delta x = \frac{3D}{2a} \left(\frac{3}{2} - \lambda_1 \right)$	1/2	
	$= \frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} $	1/2	
	$= \frac{4.5 \times 6 \times 10^{-5}}{4}$ = 6.75× 10 ⁻⁵ m	1/2	3
25.	Plot of variation of current with angular frequency Condition for resonance Value of resistance for sharper resonance Definition of Q-factor and its significance 1 1 1 1 1 1 1 1 1 1 1 1 1		
ı	$ \begin{array}{c} \uparrow \\ \downarrow \\ \downarrow$	1	
	Condition for resonance $X_L = X_C$	1/2	

Del hi SET I Page 11 of 19

	Resonance will be sharper for resistance R ₂ Significance of Qfactor For large Qfactor, resonance will be sharper and therefore circuit will be more selective	1/2 1/2	3
26.	Four parts 1 mark for each part		
	 a) Because during thunder stor mear would act as an electrostatic shield b) Dr. Pat hak displayed values of safety of human life, helpfulness, empathy and scientific temper. (or any other two relevant values) c) Gratefulness, indebtedness (or any other relevant value) d) Example of any similar action 	1 1/2 + 1/2 1 1	4
27.	(a) Ray diagramshowing i mage for mation 1 Derivation of expression for magnification 2 (b) Distinction bet ween myopia and hyper metropia 1 Correction of defects by diagram 1		
	A B' Eyepiece B' B O h' E Objective A'		
	A" ✓ Moderni fication of objective	1	
	Magnification of objective $n_0 = \frac{h'}{h} = \frac{L}{f_0}$	1/2	
	Angular magnification due to eyepiece		
		1/2	
	Total magnification when i mage is for med at infinity		

Del hi SET I Page 12 of 19

m= m ₀ m ₂		1/2	
		1/2	
(1)			
(b) My o pi a	Hy per met ropi a		
1. Distant object arriving at the eye	1. Eyel ens focuses the incoming		
lens get converged at a point in front	light behind retina		
of the retina	6		
2. The eye ball is elongated	2. The eye ball is shortened		
3. Person cannot see distant objects	3. Person cannot see nearby objects		
cl earl y.	d earl y.	1/ + 1/	
		1/2 + 1/2	
(Any t wo or any other correct ans wer)			
5	P		
_			
_			
=			
	\sim		
		1/2 + 1/2	5
My opi a can be corrected by	Hyper metropia can be corrected by		
interposing a concave lens bet ween	interposing a convex lens bet ween		
1	eye and object		
[Award only half mark if diagrams not	drawn, award full mark even if		
explanation is not written]			
Ol	R		
(a) Statement of Huygen's principle	1		
Dagram	1		
Verification of Snell's law	1		
(b) Explanation of (i) and (ii)	1+1		
(a) According to Huygens principle, each	ch point of the wavefront is the source		
of a secondary disturbance and the w	<u>=</u>		
spread out in all directions with the spe		1	
all these wavelets, gives the new position			

Del hi SET I Page 14 of 19

Del hi SET I Page 15 of 19

	R. C. R. J. L.	1/2	
	Inloop ADBA $-I_1 R_1 + 0 + I_2 R_2 = 0$ $=> I_1 R_1 = I_2 R_2$	1/2	
	In loop CBDC $I_2 R_4 + 0 - I_1 R_5 = 0$ $=> I_2 R_4 = I_1 R_5$	1/2	
	$= > \frac{R_1}{R_2} = \frac{R_3}{R_4}$	1/2	
	(b) $\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3}$	1/2	
	$\frac{R_1 + 10}{R_2} = \frac{60}{40} = \frac{3}{2}$	1/2	
	$\frac{R_1}{R_2} + \frac{10}{R_2} = \frac{3}{2}$ $\Rightarrow \frac{2}{3} + \frac{10}{R_2} = \frac{3}{2}$		
	$\begin{vmatrix} 3 & R_2 & 2 \\ => R_2 & = 12\Omega \end{vmatrix}$	1/2	
	Substituting for R_2 and finding the value of R_1 $R_1 = 8 \Omega$	1/2	5
29.	(a) Derivation of the expression for the torque with diagram 3 (b) Depiction of the trajectories 2		

Del hi SET I Page 16 of 19 H NAL Print Draft 11/3/2013 11:30 a m

(a) 1 1/2 The magnetic field exerts no force on the two arms AD and BC of the loop. Force F_1 acts on arm AB directing into the plane. $F_1 = IbB$ 1/2 Force F₂ acts on arm CD directing out of the plane. $F_2 = IbB = F_1$ $\frac{1}{2}$ Hence there is a torque on the loop due to forces F_1 and F_2 1/2 = $IbB\frac{a}{2} + IbB\frac{a}{2} = I(ab)B = IAB$ where A=ab is the area of the loop (b) 1 1 SET I Page 17 of 19 Del hi H NAL Print Draft 11/3/2013 11: 30 a m

Material Downloded From SUPERCOP

(Since the momenta of charged particles are equal and they have equal charge, therefore they will describe circular trajectories of same radius) [If the candidate only mentions that they describe circular trajectories without the diagram, one mark should be a warded]		5
OR		
(a) Execution of SHM of compass needle in magnetic field 2 Derivation of its time period 1 (b) Finding (i) horizontal component of earth's magnetic field (ii) angle of dip 1+1		
(a) Torque acting on the compass needle suspended freely in a unifor m magnetic field		
	1/2	
It will be balanced by the restoring torque		
For small angle $\sin \theta \approx \theta$	1/2	
In equilibirum, the resulting equation of motion		
	1/2	
	1/2	
In an anitude MD sin ()	1/2	
In magnitude = $MB \sin \theta$ =- $MB \sin \theta$	1/2	
[If the student just writes that the needle,		
(i) When $slightl\frac{\overline{\overline{y}}}{\overline{d}} sturbed$ from its stable position experiences a torque due to the magnetic field and		
(ii) writes the expression for this torque,		

Material Downloded From SUPERCOP

Award (1 + 1 = 2) marks]		
	1	
(b) (i) Horizontal component of Earth's magnetic field=0		
(ii) The value of angle of dip at that place $=90^{\circ}$	1	5