## **EMI Filter Optimization Report**

#### **Global Parameters**

Number of stages considered: 2 Ambient temperature: 25°C

Converter switching frequency: 36 kHz

Resulting design frequency: 180 kHz

Desired DM attenuation: 78 dB CM attenuation: 88 dB

Mains voltage: 230.0 V (RMS) Mains frequency: 50 Hz

Scaled converter inductance: 152.5 uH

## **Parasitics and Additional Components**

Lumped stray capacitance Ceq: 600 pF

Lumped stray capacitance Cg: 2000 pF

Total volume is increased by 10% to account for the PCB.

Total volume is increased by 0% and total losses are increased by 0% to account for additional components.

Additional components (max. 10 displayed per category):

| Single DM Additional Components |     |     |           |
|---------------------------------|-----|-----|-----------|
| Name (Unit)                     | Min | Max | Increment |

| Per-Stage DM Additional Components |     |     |           |
|------------------------------------|-----|-----|-----------|
| Name (Unit)                        | Min | Мах | Increment |

| Single CM Additional Components |     |     |           |
|---------------------------------|-----|-----|-----------|
| Name (Unit)                     | Min | Max | Increment |

| Per-Stage CM Additional Components |     |     |           |
|------------------------------------|-----|-----|-----------|
| Name (Unit)                        | Min | Max | Increment |

#### **DM Filter Parameters**

Maximum total DM capacitance per phase: 13 uF

DM attenuation is equally divided amongst the filter stages.

All filter stages are set to have the same range of inductance values.

All filter stages are set to use the same inductor and capacitor design space.

T22

# DM Stage 1

CDM1 is fixed to 2.5 uF

Attenuation of the first stage is not fixed to a separate constant value.

LDM range: 5 to 15 by 5 uH (applies to ALL filter stages)

| Inductor design space single constraints |                     |  |  |
|------------------------------------------|---------------------|--|--|
| Max. volume                              | 1.0 L               |  |  |
| Max. temperature                         | 150.0 C             |  |  |
| Core material                            | Micrometals -14     |  |  |
| Core type                                | R (toroidal)        |  |  |
| Wire material                            | Annealed Copper     |  |  |
| Wire type                                | Round litz wire     |  |  |
| Custom core                              | no                  |  |  |
| Custom wire                              | yes                 |  |  |
| Design approach                          | Parameter Variation |  |  |
| Ignore high freq. effects                | yes                 |  |  |
| Ignore proximity effect                  | yes                 |  |  |
| Ignore leakage inductance                | N/A                 |  |  |

| Number of<br>Stacked<br>Inductor Core | 1.0<br>s | 3.0  | 1.0   |  |  |
|---------------------------------------|----------|------|-------|--|--|
| Cores (max. 40 shown)                 |          |      |       |  |  |
| T106                                  | T124     | T131 | T14   |  |  |
| T150                                  | T16      | T184 | T20   |  |  |
| T22                                   | T32      | T38  | T60-D |  |  |

Max

**Core Parameters** Name (Unit) Min

| Wire Parameters                      |        |        |           |  |
|--------------------------------------|--------|--------|-----------|--|
| Name (Unit)                          | Min    | Max    | Increment |  |
| Inductor fill factor                 | 0.5    | 0.5    | 0.1       |  |
| Strand<br>diameter (<br>bare) di (m) | 0.0002 | 0.0002 | 1.0E-5    |  |

| Extra Wire Parameters |     |
|-----------------------|-----|
| Compact factor        | 1.3 |

| Thermal Properties |          |  |
|--------------------|----------|--|
| Core orientation   | VERTICAL |  |
| Non-exposed sides  | None     |  |

| Capacitor Series (max. 40 shown) |             |           |  |
|----------------------------------|-------------|-----------|--|
| X1 B32911-6                      | X2 B32921-8 | X2 B81130 |  |

#### **CM Filter Parameters**

Maximum leakage current to earth: 3.5 mA

Resulting maximum total CM capacitance: 35.228 nF

CM attenuation is equally divided amongst the filter stages.

All filter stages are set to have the same range of inductance values.

All filter stages are set to use the same inductor and capacitor design space.

## CM Stage 1

CCM1 is not fixed to a constant value.

CCM1 is in series with CDM1.

LCM range: 500 to 1000 by 500 uH (applies to ALL filter stages)

| Inductor design space single constraints |                     |  |  |
|------------------------------------------|---------------------|--|--|
| Max. volume                              | 1.0 L               |  |  |
| Max. temperature                         | 150.0 C             |  |  |
| Core material                            | Vitroperm 500F-18k  |  |  |
| Core type                                | R (toroidal)        |  |  |
| Wire material                            | Annealed Copper     |  |  |
| Wire type                                | Round solid wire    |  |  |
| Custom core                              | no                  |  |  |
| Custom wire                              | yes                 |  |  |
| Design approach                          | Parameter Variation |  |  |
| Ignore high freq. effects                | yes                 |  |  |
| Ignore proximity effect                  | yes                 |  |  |
| Ignore leakage inductance                | yes                 |  |  |

| Core Parameters                        |     |     |           |
|----------------------------------------|-----|-----|-----------|
| Name (Unit)                            | Min | Max | Increment |
| Number of<br>Stacked<br>Inductor Cores | 1.0 | 3.0 | 1.0       |

| Cores (max. 40 shown) |             |              |              |
|-----------------------|-------------|--------------|--------------|
| T60006-               | T60006-     | T60006-      | T60006-      |
| L2020-W450+           | L2025-W451- | - L2040-W452 | + L2040-W45  |
| T60006-               | T60006-     | T60006-      | T60006-      |
| L2045-V101#           | L2050-W565# | L2063-V110   | ‡ L2160-V066 |

| Wire Para            | /ire Parameters |     |           |
|----------------------|-----------------|-----|-----------|
| Name (Unit)          | Min             | Max | Increment |
| Inductor fill factor | 0.4             | 0.4 | 0.1       |

| Extra Wire Parameters |       |
|-----------------------|-------|
| s as % of d           | 0.05  |
| Minimum s (mm)        | 0.001 |

| Thermal Properties |          |
|--------------------|----------|
| Core orientation   | VERTICAL |
| Non-exposed sides  | None     |

| Capacitor Series (max. 40 shown) |           |             |  |  |
|----------------------------------|-----------|-------------|--|--|
|                                  | Y1 B81123 | Y2 B32021-6 |  |  |

### **Optimization Parameters**

Optimization Goal: 0.5

Optimization type: Exhaustive (brute force)

Converter output power: 7.5 kW Converter switching frequency: 36 kHz

### **Optimization Results**

Overall Best Filter Design: 2-Stage Filter

(See the pages for the best 2-stage filter for details)

Total Losses: 13.706 W Efficiency: 99.818%

Total Volume: 0.601 L Power Density: 12.47 kW/L

EMI Filter Pareto-Optimal Designs:



### **Best 2-Stage Filter Design**

Total Losses: 13.706 W

Total Volume: 0.601 L

 Stage 1

 LDM1
 25.62 uH

 CDM1
 2.72 uF

 LCM1
 706.55 uH

 CCM1
 15 nF

| Stage 2 |         |
|---------|---------|
| LDM2    | 7.41 uH |
| CDM2    | 9.4 uF  |
| LCM2    | 8.26 mH |
| CCM2    | 15 nF   |



Efficiency: 99.818%

Power Density: 12.47 kW/L



## Filter Stage 1

#### Differential mode:



### Common mode:



### **DM Capacitor and Inductor Design For Stage 1**

Capacitor: 4 x EPCOS B32922C3684

Capacitance:  $C = 2.72 \mu F$ Rated Voltage: Vr = 305 V0.19 W Volume: 14.652 cm^3

\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*

Toroid-Inductor:  $L = 26.0303 \mu H$ 

Core: T150

Type: R (toroidal) Core Material: Micrometals -14

Number stacked:

Dimensions (mm):

Outer Diameter:
Inner Diameter: do = 38.4di = 21.5Thickness: t = 11.1

\*\*\*\*\*\*\*\*\*\*\*\*\*

Winding: Custom Litz (fill factor)
Type: Round litz wire
Material: Annealed Copper
Number of turns: N = 38

Dimensions (mm):

Dimensions (Mun).

Total diameter: d = 2.466
Strand diameter: di = 0.25
Number of strands: n = 58
yd = 0.0 d = 2.466

\*\*\*\*\*\*\*\*\*\*\*\*\*

Losses (W):

Core Losses: 0.01
Winding losses DC: 2.2618466771159446E-8
Winding losses skin effect: 1.94
Winding losses prox. effect: 0.0 TOTAL: 1.95

Winding temperature: 44.31 C Core Temperature: 44.36 C Inductor Orientation: VERTICAL Convection: NATURAL

Total Boxed Volume: 48.8376 cm^3

### **CM Capacitor and Inductor Design For Stage 1**

1 x EPCOS B32022A3153 Capacitor:

Capacitance:
Rated Voltage: C = 15.0 rVr = 300 V C = 15.0 nFVolume: 1.188 cm^3

\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*

Toroid CM 3ph-Inductor: L = 814.02/  $\mu n$  Ls = 629.376  $\mu H$ 

Core: T60006-L2040-W453+ Type: R (toroidal)

Core Material: Vitroperm 500F-18k

Number stacked:

Dimensions (mm):

Inner Diameter: Thickness: do = 40.0di = 25.0t = 30.0

\*\*\*\*\*\*\*\*\*\*\*\*

Custom SR (fill factor) Type: Round solid wire Material: Annealed Copper

Number of turns:  $3 \times N = 4$ 

Dimensions (mm):

Conductor diameter: d = 3.48
Isolation thickness: s = 0.174 yd = 0.0Wire spacing:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Losses (W):

Core Losses:

Winding losses DC:

Winding losses skin effect:

Winding losses prox. effect:

0.01

1.5164060032857921E-18

0.32

Winding losses prox. effect:

0.0 TOTAL: 0.34

Winding temperature: 28.92 C Core Temperature: 29.02 C Inductor Orientation: VERTICAL Convection: NATURAL

Total Boxed Volume: 85.5221 cm^3

## Filter Stage 2

#### Differential mode:



### Common mode:



### **DM Capacitor and Inductor Design For Stage 2**

2 x EPCOS B32924C3475M Capacitor:

Capacitor:
Capacitance:
Rated Voltage:  $C = 9.4 \mu F$ Vr = 305 V Volume: 37.422 cm^3

\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*

Toroid-Inductor:  $L = 7.5739 \mu H$ 

Core: T124

Type: R (toroidal) Core Material: Micrometals -14

Number stacked:

Dimensions (mm):

Outer Diameter:
Inner Diameter: do = 31.6 di = 18.0 Thickness: t = 7.11

\*\*\*\*\*\*\*\*\*\*\*\*\*

Winding: Custom Litz (fill factor)
Type: Round litz wire
Material: Annealed Copper
Number of turns: N = 26

Dimensions (mm):

Dimensions (Mun).

Total diameter: d = 2.496Strand diameter: di = 0.25Number of strands: n = 59yd = 0.0 d = 2.496

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Losses (W):

Core Losses: 0.0022951423223659157
Winding losses DC: 3.3477543250024525E-8
Winding losses skin effect: 1.05
Winding losses prox. effect: 0.0

TOTAL: 1.05

Winding temperature: 40.25 C Core Temperature: 40.27 C Inductor Orientation: VERTICAL Convection: NATURAL

Total Boxed Volume: 29.5613 cm^3

### **CM Capacitor and Inductor Design For Stage 2**

1 x EPCOS B32022A3153 Capacitor:

Capacitor:
Capacitance:
Rated Voltage: C = 15.0 nFVr = 300 V

7.930311336409095E-8 W

Volume: 1.188 cm^3

\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*

Toroid CM 3ph-Inductor: L = 7.9195  $\mu$ Ls = 5.3858 mH

Core: T60006-L2045-V101# Type: R (toroidal)

Core Material: Vitroperm 500F-18k

Number stacked: 1

Dimensions (mm):

Inner Diameter: Thickness: do = 45.0di = 30.0t = 15.0

\*\*\*\*\*\*\*\*\*\*\*\*

Custom SR (fill factor) Type: Round solid wire Material: Annealed Copper

Number of turns:  $3 \times N = 19$ 

Dimensions (mm):

Conductor diameter: d = 1.939
Isolation thickness: s = 0.097 yd = 0.0Wire spacing:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Losses (W):

Core Losses:

Winding losses DC:

Winding losses skin effect:

Winding losses prox. effect:

0.01

1.2042714641655947E-14

3.73

Winding losses prox. effect:

0.0 TOTAL: 3.74

Winding temperature: 54.42 C Core Temperature: 54.51 C Inductor Orientation: VERTICAL Convection: NATURAL

Total Boxed Volume: 67.4445 cm^3