

Predicting Drafted Quarterbacks

Using Machine Learning

Connor Levenson Mihir Arya Kennard Peters Joe Kinderman

Inspiration

- It is inefficient for sports agents to study every player
- Use NCAA Statistics to determine players most likely to be drafted

35,000 Pass Attempts

Data Gathering

Rk	Player	School	Conf	G	Cmp	Att	Pct	Yds	Y/A	AY/ A	TD	Int	Rate	TDC	Att/Int	Yds/G
1	Baker Mayfield	Oklahoma	Big 12	14	285	404	70.5	4627	11.5	12.9	43	6	198.9	7.5	67.33	330.5
3	Mason Rudolph	Oklahoma State	Big 12	13	318	489	65.0	4904	10.0	10.7	37	9	170.6	4.9	54.33	377.2
5	Logan Woodside	Toledo	MAC	14	264	411	64.2	3882	9.4	9.9	28	8	162.2	4.4	51.37	277.2
9	Danny Etling	LSU	SEC	13	165	275	60.0	2463	9.0	9.8	16	2	153.0	3.5	137.5	189.5
11	Sam Darnold	USC	Pac-12	14	303	480	63.1	4143	8.6	8.5	26	13	148.1	3.4	36.92	295.9

Data Exploration

CFB Interceptions

Data Transformation

- Touchdowns per attempt indicates scoring ability
- Completion percentage signifies consistency
 - How do we combine these into one metric?

$$TDC = \frac{TD * Cmp}{(Att)^2}$$

FEATURE IMPORTANCE

Model Selection

- Decision tree
- Random forest
- K-Nearest Neighbor
- Gradient Boosted Random Forest

Cross-Validation

Classifier	Mean weighted-F1
Decision Tree	0.79
Random Forest	0.83
K Nearest Neighbors	0.83
Gradient Boosting	0.84

Results

Classifier	Average Precision	Average Recall	F1 Score		
Decision Tree	0.79	0.74	0.74		
Random Forest	0.83	0.83	0.82		
K Nearest Neighbors	0.83	0.82	0.82		
Gradient Boosted Random Forest	0.84	0.83	0.83		

2019 Draft

April

25

Player	College			
Drew Lock	Missouri			
Kyler Murray	Oklahoma			
Dwayne Haskins	Ohio State			
Ryan Finley	NC State			
Will Grier	West Virginia			
Brett Rypien	Boise State			
Gardner Minshew	Washington State			
Justice Hansen	Arkansas State			
Jordan Ta'amu	Ole Miss			
David Blough	Purdue			

Questions?

Appendix

Random Forest

- Tried to create a lot of error from different places
- Cross-validation had some wacky results at first
 - Increased number of trees
 - decrease max number of features/depth to try to limit variance
- N_estimators = 20
- $Max_depth = 4$
- Max_features = 3

Gradient Boosted Random Forest

- Uses same bagging technique as random forest
- Does not build all trees in random forest at once
- Uses gradient boosting technique to fit on the errors
- Hyperparameters
 - Early_stopping_rounds = 10
 - Stops boosting after test accuracy decreases and train accuracy increases for 10 rounds
 - Prevents overfitting
 - Validated using manually split data
 - \circ Max_depth = 3
 - More generalized

Yds ≤ 2944.5 gini = 0.34 samples = 710 value = [556, 154] class = D

TDC ≤ 3.239

gini = 0.482

samples = 32

value = [13, 19]

class = UD

TDC ≤ 3.801

gini = 0.459

samples = 14

value = [9, 5]

class = D

Decision Tree

Why Maximize F1?

- Agents have a fixed number of resources (a limit on the number of players they can represent)
- Representing a quarterback that does not get drafted means the opportunity cost of representing that quarterback was the ability to represent a quarterback who did get drafted
- An agent wants to minimize the amount of times he represents a quarterback that does not get drafted (in this case, false positive rate)
- And at the same time maximize the amount of times he represents a quarterback that does get drafted (true positive rate)
- Representing a quarterback who did not get drafted means he missed out on one who did