

\mathbf{M} + СЕМИНАР

НЯКОЛКО ОЛИМПИАДНИ ЗАДАЧИ

д-р Тодор Митев, Русенски университет

В тази статия ще покажем как един елементарен факт (Задача 1) може да се използва при решаването на някои нетривиални задачи.

Задача 1. Нека k, u, v, w са реални числа, за които са изпълнени неравенствата $k \neq 0$ и $S = u + v + w \neq 0$. Да се докаже, че следващите две равенства са еквивалентни:

(1)
$$[(k-3)u+3S][(k-3)v+3S][(k-3)w+3S] = (k^2+3k+9)S^3,$$

(2)
$$u^3 + v^3 + w^3 = kuvw.$$

Решение: Въвеждаме означенията P = uv + vw + wu и Q = uvw. Равенството (1) е еквивалентно последователно със следните равенства:

$$(k-3)^{3}Q+3(k-3)^{2}PS+9(k-3)S^{3}+27S^{3}-(k^{2}+3k+9)S^{3}=0,$$

$$(k-3)^{3}Q+3(k-3)^{2}PS-(k-3)^{2}S^{3}=0.$$

Тъй като $k \neq 3$, последното равенство е еквивалентно с $(k-3)Q+3PS-S^3=0$. Сега използваме известното тъждество:

(3)
$$u^3 + v^3 + w^3 - 3uvw = (u + v + w)(u^2 + v^2 + w^2 - uv - uw - vw) = S^3 - 3SP$$
.
От (3) получаваме, че $(k-3)Q + 3Q - u^3 - v^3 - w^3 = 0$. Това равенство съвпада с (2).

Задача 2. Целите числа a, b и c нямат общ делител, по-голям от 1 и са такива, че $a^3 + b^3 + c^3 = 13abc$. Да се докаже, че:

- а) поне едно от числата M=13a+3b+3c , N=3a+13b+3c и P=3a+3b+13c се дели на 31;
 - б) поне едно от числата A = 2a + b + c, B = a + 2b + c и C = a + b + 2c се дели на 7

Решение: Прилагаме задача 1 при k=13, u=a, v=b и w=c. Получаваме, че $MNP=7.31.(a+b+c)^3$, което доказва а). От последното равенство следва още, че $MNP\equiv 0 \pmod{7}$, т.е. поне едно от числата M, N и P се дели на 7. Освен това са изпълнени сравненията $3A\equiv M \pmod{7}$, $3B\equiv N \pmod{7}$ и $3C\equiv P \pmod{7}$. Следователно $27.ABC\equiv MNP \pmod{7}\equiv 0 \pmod{7}$. Това доказва твърдение 6).

Задача 3. Целите числа a, b и c удовлетворяват равенството $a^3+b^3+c^3+6abc=0$. Да се докаже, че (b+c-2a)(c+a-2b)(a+b-2c) е точна трета степен на цяло число.

Задача 4 (предложена от автора за МОМ през 2014 г.). Да се докаже, че уравнението $x^2y + y^2z - z^2x = 6xyz$ няма решение в множеството на естествените числа.

Peшение: Допускаме противното, т.е. уравнението има решение при някои естествени числа x, y и z. Тогава ще стигнем до противоречие със следните твърдения:

- (*i*) Уравнението $a^3 + b^3 c^3 = 6abc$ има решение в множеството на естествените числа;
- (*ii*) От (*i*) следва, че уравнението $m^3 + n^3 = p^3$ има решение в множеството на естествените числа, което според голямата теорема на Ферма не е вярно.

Доказателство на (i). Можем да предполагаме, че x, y и z нямат общ делител, който е по-голям от 1. Нека (x, y) = d, $x = x_1 d$, $y = y_1 d$, $(x_1, y_1) = 1$. Ясно е, че (z, d) = 1.

От условието следва, че $x_1^2y_1d^2 + y_1^2zd - x_1z^2 = 6x_1y_1zd$. Тогава d/x_1z^2 . Затова според (4) имаме d/x_1 , което означава, че $x_1 = d.x_2$. Оттук заместваме x_1 в предишното равенство и получаваме

(5)
$$x_2^2 y_1 d^3 + y_1^2 z - x_2 z^2 = 6x_2 y_1 z d.$$

Тъй като $(x_2, y_1) = 1$, от (5) следва, че x_2/z . Нека $z_2 = x_2.z_1$. Тогава след заместване в (5) получаваме

(6)
$$x_2 y_1 d^3 + y_1^2 z_1 - x_2^2 z_1^2 = 6x_2 y_1 z_1 d.$$

От (6) следва, че x_2 / z_1 . Нека $z_1 = x_2.z_2$. Заместваме в (6) и получаваме

(7)
$$y_1 d^3 + y_1^2 z_2 - x_2^3 z_2^2 = 6x_2 y_1 z_2 d.$$

От (7) следва, че z_2/y_1d^3 . Тъй като $(z_2,d)=1$, то z_2/y_1 . Нека $y_1=y_2.z_2$. След заместване в (7), както по-горе, получаваме z_2/y_2 . Полагаме $y_2=y_3.z_2$ и получаваме $y_3d^3+y_3^2z_2^3-x_2^3=6x_2y_3z_2d$. Оттук следва, че y_3/x_2^3 . Но от направените полагания следва, че $(x_2,y_3)=1$. Следователно $y_3=1$. Оттук и последното равенство имаме $d^3+z_2^3-x_2^3=6x_2z_2d$. Това означава, че уравнението

(8)
$$a^3 + b^3 - c^3 = 6abc$$

има решение a=d, $b=z_2$, $c=x_2$, което е в множеството на естествените числа.

Доказателство на (ii). Прилагаме задача 1 в (8) при k=-6, u=a, v=b и w=-c. Получаваме

(9)
$$(2a-b+c)(2b-a+c)(a+b+2c) = (a+b-c)^3.$$

Означаваме A=2a-b+c, B=2b-a+c и C=a+b+2c. Ще докажем, че A, B и C са естествени числа. От (8) следва, че $a^3+b^3=6abc+c^3>c^3$. Затова a+b>c. Тогава дясната страна на (9) е положителна. Следователно и лявата страна на (9) е положителна. Тъй като C=a+b+2c>0, то A и B имат еднакви знаци. Но A+B=C=a+b+2c>0. Следователно A и B също са естествени числа. Тъй като A+B=C, то можем да считаме, че числата A, B и C са две по две взаимно прости. Освен това от задача 3 следва, че ABC е куб на естествено число. Следователно съществуват естествени числа m, n и p, при които са изпълнени равенствата $A=m^3$, $B=n^3$ и $C=p^3$. Сега от A+B=C следва, че $m^3+n^3=p^3$. Това противоречи на голямата теорема на Ферма.

Накрая ще направи две забележки.

Забележка 1. Интересно е дали уравнението $k^2 + 3k + 9 = p^3$ има други цели решения освен k = -6, p = 3 и k = 3, p = 3.

Забележка 2. Да разгледаме следната

Задача 5. Нека числата a, b и c са две по две взаимно прости и е изпълнено равенството $a^3 + b^3 + c^3 = 2abc$. Да се докаже, че точно едно от числата A = -a + b + c, B = a - b + c и C = a + b - c се дели на 5.

Ако в тази задача приложим задача 1 при k=2, получаваме делимост на 19, но не и на 5. Нещо повече, за всички цели стойности на k числото k^2+3k+9 не се дели на 5. Следователно задача 5 не следва от задача 1.

Предлагаме последната задача за упражнение (достъпна е за ученици от осми клас).

SEVERAL OLYMPIAD PROBLEMS

Dr. Todor Mitev, University of Rusea

Abstract. If the real numbers k, u, v, w satisfy the conditions $k \ne 0$ and $S = u + v + w \ne 0$, then the following two equations are equivalent:

$$[(k-3)u+3S][(k-3)v+3S][(k-3)w+3S] = (k^2+3k+9)S^3$$
, and $u^3+v^3+w^3=kuvw$.

This fact is applied in the paper in solving several Olympiad problems.