Ejemplo 3.2.7 -3.2.8

Import["https://bit.ly/2Y4o1IH"] In[•]:= PACKAGE: SEDOLP Por: Mat. Óscar Iván de Jesús Munguía y Dr. Jorge Chávez Carlos, (2019) Link de Notas y descarga: https://github.com/NuclearGeorge/Notas_EDO_Lineales Este paquete adquiere resuelve: Sistemas de Ecuaciones Diferenciales Ordinarias Lineales Planas, de la forma: $x_1'=a x_1 + b x_2$, $x_2'=c x_1 + d x_2$, o escrita en forma matricial: $\overline{x}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \overline{x}$ donde {a,b,c,d} son parámetros reales seleccionados por el usuario. El paquete fué cargado exitosamente _____ INP[3, -9, 4, -3]; In[•]:= SIS; EF[-5, 5, -5, 5]

El Sistema de Ecuaciones Diferenciales es: $\overline{x}' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix}$ \overline{x}

El punto crítico es:

Nodo centro

Los valores propios del sistema son: $\left\{ \texttt{3} \; \dot{\texttt{1}} \; \sqrt{\texttt{3}} \; , \; -\texttt{3} \; \dot{\texttt{1}} \; \sqrt{\texttt{3}} \; \right\}$

Forma canónica de la matriz A: $\Lambda = \begin{pmatrix} 0 & -3\sqrt{3} \\ 3\sqrt{3} & 0 \end{pmatrix}$

In[•]:=

SOL; SOLCI[0, 2, -4];

Solución en la base $\overline{x} = \left\{ \left(\frac{3}{4} \cos \left[3\sqrt{3} \ t \right] - \frac{3}{4} \sqrt{3} \, \sin \left[3\sqrt{3} \ t \right] \right) c_1 + \left(-\frac{3}{4} \sqrt{3} \, \cos \left[3\sqrt{3} \ t \right] - \frac{3}{4} \sin \left[3\sqrt{3} \ t \right] \right) c_2$, $\text{Cos}\left[\text{3}\,\sqrt{\text{3}}\text{ t}\right]\,c_{\text{1}}-\text{Sin}\!\left[\text{3}\,\sqrt{\text{3}}\text{ t}\right]\,c_{\text{2}}\right\}$

$$\left\{c_1 \rightarrow -4\text{, } c_2 \rightarrow -\frac{20}{3\sqrt{3}}\right\}$$

In[*]:= EFO[-10, 10, -10, 10, 0, 20]

