

AD-A040 230 HARRY DIAMOND LABS ADELPHI MD F/G 9/5
A STUDY OF FINEBLANKING FOR THE MANUFACTURE OF FLUERIC LAMINAR --ETC(U)
MAY 77 R M PHILLIPPI

UNCLASSIFIED

HDL-TM-77-8

NL

1 OF 1
ADA
040230

END

DATE
FILED
6-77

ADA040230

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-TM-77-8	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A Study of Fineblanking for the Manufacture of Flueric Laminar Proportional Amplifiers		5. TYPE OF REPORT & PERIOD COVERED Technical Memorandum
6. AUTHOR(s) R. Michael Phillipi		6. PERFORMING ORG. REPORT NUMBER
7. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783		8. CONTRACT OR GRANT NUMBER(s) DA: 1T161102AH44
9. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Materiel Development and Readiness Command Alexandria, VA 22333		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 6.11.02.A
11. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		12. REPORT DATE May 1977
13. NUMBER OF PAGES 24		14. SECURITY CLASS. (of this report) UNCLASSIFIED
15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES HDL Project: A44630 DRCMS Code: 61110211H4400		D D C DRAFTED JUN 7 1977 A -
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Flueric Laminar proportional amplifiers Metal etching Fineblanking		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A nonconventional stamping process, known as fineblanking, is investigated for use in high-volume production of flueric laminar proportional amplifiers. The investigation includes the standard deviation of critical dimensions, supply and control flow measurements for a constant pressure, amplifier gain, common-mode rejection ratio (CMRR), and cost breakdown. The present study indicates that fineblanking yields a significant		

DD FORM 1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE

1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

163454 ✓ EHT

CO id

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

improvement over metal photochemical etching (a widely used fabrication technique) in the repeatability of geometric parameters. Typical standard deviations of a nozzle width are less than 0.5 percent. Further, a 61.3-percent improvement of the mean CMRR was observed.

ACCESSION FOR	
NTIS	White Section <input checked="" type="checkbox"/>
DOC	Buff Section <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
JUSTIFICATION.....	
BY.....	
DISTRIBUTION/AVAILABILITY CODES	
BIST.	AVAIL. END/OF SPECIAL
A	

2 **UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
2. THE FINEBLANKING PROCESS	6
3. EXPERIMENTAL RESULTS	7
3.1 Geometric Comparison	7
3.2 Comparison of Amplifier Performance	9
3.2.1 Gain	9
3.2.2 Standard Deviation of Supply and Control Flow for a Constant Pressure	9
3.2.3 Common-Mode Rejection Ratio	11
4. MANUFACTURING COST OF FINEBLANKING VERSUS METAL ETCHING . . .	12
5. SUMMARY AND CONCLUSIONS	13
APPENDIX A.--EXPERIMENTAL SETUP AND CORRESPONDING TEST CONDITIONS	15
DISTRIBUTION	21

FIGURES

1 Simplified fineblanking process	6
2 Die roll and burr	7
3 Critical dimensions inspected	8
A-1 Method for determining gain	16
A-2 Method for determining common-mode transfer ratio	17

TABLES

I Standard Deviation of Critical Dimensions	8
II Standard Deviation of Supply and Control Flows For Constant Pressure	10
III Mean Common-Mode Rejection Ratio (CMRR) and Standard Deviation of CMRR	12

1. INTRODUCTION

Currently, the most widely used process for fabrication of fluidic elements in military applications is metal photochemical etching. This process offers good reproducibility of complex geometries, satisfactory accuracy, good packaging capability, and relatively low cost. Satisfactory accuracy (tolerance of 0.0127 mm or 0.0005 in.), however, can only be achieved by using thin foils of 0.05- to 0.127-mm (0.002- to 0.005-in.) thickness, and thus requires stacking of laminates. Ideally, the number of laminates necessary to form a single component should be small, to minimize the problem of proper sealing.

Fineblanking, a relatively new fabrication technique, is essentially a stamping process with zero clearance between male and female dies. This technique offers many of the advantages of metal etching along with several advantages of its own. The ability of fineblanking to consistently maintain better dimensional tolerances is by far this technique's greatest asset. In addition, thicker sheet stock may be used (0.25 mm or 0.01 in.) greatly alleviating the sealing problems associated with stacked laminates. Although fineblanking has several distinct advantages, the process is not without flaw. The presence of a machining or extrusion burr has been shown to have a direct effect on performance of laminar proportional amplifiers (LPA's). The size of this burr is primarily dependent on the material used. Brass and aluminum yield the worst burr, typically extending about 0.025 mm (0.001 in.) from the surface. However, an approximately 80-percent reduction in burr size can be effected by using stainless steel. It must also be noted that, because of the relatively high initial cost of the die set, this process is economically desirable only where high-volume production of a particular design is required.

This work is intended to evaluate the fineblanking fabrication technique for LPA's by a dimensional and performance comparison with the metal photochemical etching process. Random samples of both methods were selected and the following characteristics were compared.

- (a) Standard deviation of critical dimensions
- (b) Standard deviation of amplifier gain at 10-percent control bias pressure
- (c) Standard deviation of supply and control flow for a given constant pressure
- (d) Common-mode rejection ratio
- (e) Comparative cost breakdown

2. THE FINEBLANKING PROCESS

Conventional blanking or stamping work produces parts with sheared surfaces which are only partially--generally one third--cleanly sheared, the remaining two thirds showing a rough break.¹ In fineblanking, the metal is cleanly sheared over its entire thickness in one single operation. Since the metal thickness is completely sheared, a much better internal surface finish is obtained. It is for this reason that dimensional tolerances are much better than those associated with conventional stamping or blanking. These two qualities cannot be overemphasized when dealing with small fluidic elements since surface finish and geometric variations greatly affect the performance of such elements.

A simplified schematic of the fineblanking process is presented in figure 1. The pressure plate has firmly clamped the material to the die plate in figure 1(a) and the ejector begins applying a counterpressure to the upcoming punch. During the actual shearing, the die plate and pressure plate are stationary and maintain constant pressure on the material. The ejector also continues to maintain a constant

Figure 1. Simplified fineblanking process:
(a) before pressure is applied,
(b) after shearing.

¹*Fine-Blanking Practical Handbook, Ch 1, Feintool AG, Lyss, Switzerland, (1972).*

counterpressure, pressing the material firmly against the face of the punch. In figure 1(b), the piece part is sheared into the die plate. The pressure clamping the material and the ejector pressure are then relieved. The tool is opened, the ejector forces the piece part out of the die plate, and the process continues.

Fineblanking distinguishes itself from conventional stamping in three ways:

- (a) the punch never enters the die (no tolerance between punch and die),
- (b) a constant counterpressure is always maintained on the piece part by the ejector, and
- (c) the die plate has a very small radius.

One drawback to this process is the presence of a burr. Figure 2 depicts the burr and die roll that accompany fineblanking.

Figure 2. Die roll and burr.

This burr has a tendency to make sealing more difficult, particularly if the laminates are stacked. The orientation of stacked laminates relative to each other (for example, facing each other) also has an effect on performance. The effect of these burrs on performance was observed and is presented later in this report.

3. EXPERIMENTAL RESULTS

3.1 Geometric Comparison

The first stage of the evaluation of fineblanking was a statistical comparison of critical dimensions for both fineblanked and metal-etched LPA's. These dimensions are labeled on the amplifier schematic in figure 3 and the key is given in table I.

Figure 3. Critical dimensions inspected
(HDL Model 2-2B LPA).

TABLE I. STANDARD DEVIATION OF CRITICAL DIMENSIONS

Dimensions (key to labels in fig. 3)	Standard Deviation		Nominal dimensions (mm)
	Fineblanked (brass)	Metal etched	
1. Supply-nozzle width	0.38	2.21	0.05
2. Left control edge (distance from center line)	0.49	2.42	0.5
3. Right control edge (distance from center line)	0.42	3.0	0.5
4. Left-receiver width	0.45	0.66	0.76
5. Right-receiver width	0.36	0.84	0.76
6. Nozzle-to-splitter distance	0.22	0.34	4.1

Fineblanking, a prototype fabrication technique for LPA's, can only be as accurate as the accuracy of the punch and die. Since the fineblanked amplifiers tested were a "first run," the chance of under- or oversized elements was good. It must be noted, however, that even if under- or oversized, all elements should be identical. Therefore, the standard deviation of the dimensions was adopted as a means of comparing the processes. Before an actual production run, the punch and die would, of course, be properly inspected to insure correct final dimensions. Table I shows the results for 10 random samples of each fabrication technique.

For every dimension examined, fineblanking had a better repeatability than metal etching, and in most cases a significant improvement can be seen.

3.2 Comparison of Amplifier Performance

3.2.1 Gain

The tests of the LPA gain performance were designed so as to yield quantitative gain data as well as data on the effect of the burr and die roll. Identical tests were performed on brass fineblanked amplifiers composed of two 0.254-mm laminates; the only modification was that the laminates were flipped to change their relative position and produce the desired data on the burr and die roll. It was found that for the worst case--burrs facing each other--the standard deviation of the gain was 6.4 percent. For the optimum orientation--burrs facing away from each other--the standard deviation of the gain was 4.9 percent. At a control bias pressure, P_c , of 10 percent of the supply pressure, P_s , stainless-steel amplifiers exhibited only a 3.3-percent standard deviation in gain, comparable to the 3.7-percent standard deviation in gain for metal-etched amplifiers. This reduced deviation was apparently due to the reduction in burr size associated with the less ductile stainless steel. Stainless-steel fineblanked amplifiers also showed a 13-percent improvement in mean gain over metal-etched amplifiers, although this improvement was due in part to the slightly different aspect ratio. (The experimental test setup and corresponding conditions appear in app A.)

3.2.2 Standard Deviation of Supply and Control Flow for a Constant Pressure

In the following set of tests, which were performed to establish the repeatability of the supply and control channels, the experimental precision was first determined by performing 10 identical tests on the same single-laminate amplifier. The base standard

deviation of the flow divided by the mean flow was then computed. Table II presents these data and the tabulated standard deviations for 10 random samples of single-laminate amplifiers fabricated by both fineblanking and metal etching.

In all cases, fineblanked amplifiers showed better repeatability than the metal-etched amplifier samples. This is an expected result since the dimensional deviation of fineblanked amplifiers is less than that of the metal-etched amplifiers. Fineblanking also yields a better internal surface finish.

TABLE II. STANDARD DEVIATION OF SUPPLY AND CONTROL FLOWS FOR CONSTANT PRESSURE

Test A. Supply flow (Q_s) at constant supply pressure (P_s)

Fabrication technique	P_s (kPa)	Q_s ($\times 10^{-6} \text{ m}^3/\text{s}$)	Standard deviation Mean (%)
Fineblanked (brass)	2.4	5.172	1.2
Metal etched	4.12	4.748	1.5

Note: Experimental precision was 0.5%.

Test B. Control flow (Q_c) at constant supply pressure and control pressure (P_c)

Fabrication technique	P_s (kPa)	P_c	\bar{Q}_c ($\times 10^{-6} \text{ m}^3/\text{s}$)	Standard deviation Mean (%)
Fineblanked (brass)	2.5	10% P_s	1.616	1.4
Metal etched	4.12	10% P_s	1.253	2.1

Note: Experimental precision was 0.9%.

Test C. Control flow at constant control pressure, no supply flow

Fabrication technique	P_s	P_c (kPa)	\bar{Q}_c ($\times 10^{-6} \text{ m}^3/\text{s}$)	Standard deviation Mean (%)
Fineblanked (brass)	0	0.25	3.257	0.7
Metal etched	0	0.412	2.391	2.3

Note: Experimental precision was 0.7%.

3.2.3 Common-Mode Rejection Ratio

Common-mode rejection ratio (CMRR), the measure of symmetry of a device, was measured at P equal to 10-percent P_s for metal-etched laminates and for stainless-steel fineblanched laminates. The mean CMRR and its standard deviation provide information as to the degree of overall geometrical asymmetry and the consistency of such asymmetries between amplifiers. The CMRR is defined as the ratio of the change in output pressure for a change in differential-control pressure to the change in output pressure for a change in common-mode pressure, or

$$CMRR = \frac{G_{\text{amplifier}}}{\frac{G_{\text{common-mode}}}{\text{transfer ratio}}} = \frac{\frac{\delta(\Delta P_{\text{out}})}{\delta(\Delta P_{\text{in}})_D}}{\frac{\delta(\Delta P_{\text{out}})}{\delta(\Delta P_{\text{in}})_C}} \text{ amplifier common mode} ,$$

where

G = gain,

δ = change,

ΔP = differential pressure,

ΔP_{out} = difference between the pressure at the left and right outlets,

ΔP_{in} = difference between the pressure at the left and right inputs,

$\delta(\Delta P_{\text{in}})_D$ = change in the differential control pressure, and

$\delta(\Delta P_{\text{in}})_C$ = change in pressure at the controls with the pressure at both controls being kept equal.

Thus, if the output pressure does not change for a common-mode signal, the device is completely symmetrical and the ratio is infinite. Table III gives the experimentally determined mean and standard deviations of the CMRR.

Appendix A presents a detailed explanation of the experimental method used to determine the CMRR.

TABLE III. MEAN COMMON-MODE REJECTION
RATIO (CMRR) AND STANDARD
DEVIATION OF CMRR

Fabrication technique	Mean CMRR	Standard deviation (%)
Stainless-steel fineblanked	257.5	55.3
Metal etched	157.8	56.8

As expected, because of better dimensional repeatability, the stainless-steel fineblanked amplifiers produced a higher CMRR than did the metal-etched amplifiers. Because of the nature of experimental derivatives, the standard deviation of the CMRR could not be distinguished from the standard deviation of the CMRR of metal-etched amplifiers.

4. MANUFACTURING COST OF FINEBLANKING VERSUS METAL ETCHING

The cost of manufacture by both fineblanking and metal etching is determined primarily by the required number of parts of a particular design. Fineblanking is economical for high-volume (more than 100,000 pieces) production only. Metal etching, on the other hand, has proven to be the most cost-effective technique for quantities of several hundred to tens of thousands.

For fineblanking any given amplifier design, an initial outlay of about \$10,000 is required for the punch and die. Metal etching requires only a \$400 to \$600 initial outlay for the amplifier pattern and associated artwork. Excluding the initial outlay, the cost of manufacture then becomes a function of the number of parts. For large quantities, fineblanking can produce stainless-steel laminates 0.25 mm (0.01 in.) thick at a cost of \$0.19 per laminate. Material cost is approximately \$0.01 per laminate, and an average punch and die resharpening cost of \$0.01 per laminate would also be required, thus bringing the total cost to \$0.21 per laminate. Metal etching can produce stainless-steel laminates 0.1 mm (0.004 in.) thick at a cost of \$0.22 per laminate, material included. Now, amortizing the die cost over, say, 100,000 pieces and adding this to the manufacturing cost, the total cost is \$0.32 per laminate. For any parts made after 100,000, the punch and die are paid for, and hence the cost per laminate drops to \$0.22. Since fineblanked laminates can be 2.5 times the thickness of metal-etched laminates, the metal-etching cost must be multiplied by 2.5, bringing the total cost to \$0.55 per unit fineblanked thickness.

Tool life for the punch and die is difficult to estimate. Resharpening, a half man-day effort, is probably necessary every 20,000 to 30,000 pieces. It can be estimated, however, that the capability of the punch and die is well over a million pieces since only a very small amount (~0.02 mm) must be removed when resharpening, and the punch and die are over 25 mm thick.

Further, relatively little quality control is necessary for fineblanked laminates. If the last laminate in a batch of several hundred is in tolerance, it is safe to assume that all the preceding laminates are dimensionally in tolerance. Metal etching, however, requires that each laminate be inspected individually to insure correct dimensional tolerance.

5. SUMMARY AND CONCLUSIONS

Overall, fineblanking is seen to offer some real advantages over metal photochemical etching for high-volume fabrication of flueric LPA's. The standard deviation of the critical dimensions inspected was 0.39 percent, average, for fineblanking compared with an average of 1.58 percent for metal etching. Fineblanked amplifiers also showed improved performance, although not as markedly, probably because of the burr. It was found that the use of stainless steel as opposed to brass can reduce the standard deviation of the gain from 4.9 to 3.3 percent because of the smaller burr associated with stainless steel. With P equal to 10-percent P_s , stainless-steel fineblanked elements showed^C a slight (11-percent) improvement in the variation of gain over metal-etched elements, and a 13-percent improvement in mean gain. Flow measurements for the supply jet and controls for a constant pressure (tests A, B, and C) consistently produced lower standard deviations for the fineblanked elements than for those that were metal etched. The mean CMRR for metal-etched amplifiers (157.8) was significantly lower than that for fineblanked amplifiers (257.5). Before any volume production could begin, the punch and die would have to be properly sized and made symmetrical. Not only could fineblanking give a higher CMRR, but it could also yield lower standard deviations.

The fact that fineblanking is economical only for high-volume production is considered a drawback. However, if high-volume production is required, fineblanking appears to be the most desirable fabrication technique currently available.

APPENDIX A.--EXPERIMENTAL SETUP AND CORRESPONDING TEST CONDITIONS

A-1. INTRODUCTION

In order to compare the performance of fineblanked and metal photochemically etched laminar proportional amplifiers (LPA's), tests were run on the gain, supply, and control flow for a constant pressure, and on the common-mode rejection ratio (CMRR). A statistical analysis of the results was then performed as a means of comparison.

A-2. GAIN

The gain was determined by applying a push-pull signal at the inputs of the LPA and monitoring the output pressure. The differential output pressure was then recorded as a function of differential input pressure, the slope of the curve being the gain.

Test conditions:

- (1) All amplifiers in this test and subsequent tests were Harry Diamond Laboratories (HDL) model 2-2B.
- (2) The fluidic signal generator (fig. A-1) consisted of a flapper valve driven by a torque motor. The torque motor in turn was driven by an electronic signal generator.
- (3) The resistance load (blocked output) was infinite.
- (4) The aspect ratio of the fineblanked LPA's was 1.0; for the metal-etched LPA's, it was 0.8.
- (5) The modified Reynolds number used was 50 (see sect. A-5).
- (6) The constant dc control bias pressure, P_c , was 10 percent of the supply pressure, P_s .
- (7) The computations were based on 10 random samples of each method. The test setup is shown schematically in figure A-1.

Figure A-1. Method for determining gain.

A-3. STANDARD DEVIATION OF SUPPLY AND CONTROL FLOW FOR A CONSTANT PRESSURE

The standard deviation of supply and control flow for a constant pressure was determined by applying and maintaining a constant pressure and then measuring the resulting flow. The standard deviation for 10 samples of each fabrication technique was then computed.

Test conditions:

- (1) All flows were monitored with a calibrated laminar flowmeter.
- (2) All pressures, including flowmeter differentials, were monitored with electronic pressure transducers with digital display.
- (3) The test items were HDL 2-2B LPA's.

- (4) All tests were run at an identical modified Reynolds number of 50 (see sect. A-5).
- (5) The aspect ratio of the fineblanked LPA's was 0.5 (single laminate); for the metal-etched LPA's, the ratio was 0.375 (single bonded unit).
- (6) Control pressures (tests B and C) were set at 10-percent P_s . Both controls were tested simultaneously.

A-4. COMMON-MODE REJECTION RATIO

First, the amplifier gain at 10-percent P_s control bias pressure was measured as shown in figure A-1. The common-mode transfer ratio, defined here as the change in output-pressure differential per unit common-mode input signal, was then measured (fig. A-2) and the CMMR formed. A pressure of 10-percent P_s was applied common mode and electronically offset to zero. As the gain and common-mode transfer ratio curves crossed the zero differential output line, the control pressure in each test was equal at a value of 10-percent P_s . The gain and common-mode transfer ratio were then measured at this crossing.

Figure A-2. Method for determining common-mode transfer ratio.

Test conditions:

- (1) For gain measurement, conditions were identical to those described in section A-2.
- (2) Stainless-steel fineblanked amplifiers were composed of four 0.127-mm thick laminates yielding an aspect ratio of 1.0. Metal-etched amplifiers were composed of four 0.1-mm thick laminates yielding an aspect ratio of 0.8. In both cases, the laminates were alternately flipped.
- (3) All amplifiers were tested at a modified Reynolds number of 50. The corresponding supply pressures were
 - stainless-steel fineblanked 3.84-mm Hg,
 - metal etched 6.16-mm Hg.
- (4) The common-mode transfer ratio was determined by the arrangement shown in figure A-2. A motor-driven pressure regulator was used to generate the common-mode signal.
- (5) The standard deviation and mean were based on 10 samples of each.

As stated under the test conditions, the laminates were alternately flipped relative to one another. Flipping the laminates has a tendency to "average out" any geometrical asymmetries, thus yielding the highest CMRR.

A-5. DEFINITION OF MODIFIED REYNOLDS NUMBER

The modified Reynolds number is defined by Drzewiecki¹ as:

$$N_{Ra} = \frac{b_s \left(\frac{2P_s}{\rho} \right)^{1/2}}{v} \left[\left(\frac{l_{th}}{b_s} + 1 \right) \left(1 + \frac{1}{\sigma} \right)^2 \right] = \frac{N_R}{\left(\frac{l_{th}}{b_s} + 1 \right) \left(1 + \frac{1}{\sigma} \right)^2}$$

where

N_{Ra} = modified Reynolds number,

b_s = amplifier supply-nozzle width,

¹Tadeusz M. Drzewiecki, A Fluid Amplifier Reynolds Number, II, Proceedings of the 1974 Fluidic State-of-the-Art Symposium (October 1974).

ν = fluid kinematic viscosity,
 P_s = amplifier supply pressure,
 ρ = fluid density,
 l_{th} = amplifier supply-nozzle throat length,
 σ = amplifier supply-nozzle aspect ratio, and
 N_R = Reynolds number.

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA (12 COPIES)	DIRECTOR EUSTIS DIRECTORATE USA AIR MOBILITY RSCH & DEV LAB FORT EUSTIS, VA 23604 ATTN GEORGE W. FOSDICK, SAVDL-EU-SYA	COMMANDER NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PA 18974 ATTN ED SCHMIDT, 30424 ATTN CODE 8134, LOIS GUISE
COMMANDER USA RSCH & STD GP (EUR) BOX 65 FPO NEW YORK 09510 ATTN LTC JAMES M. KENNEDY, JR. CHIEF, PHYSICS & MATH BRANCH	COMMANDER USA MISSILE COMMAND REDSTONE ARSENAL, AL 35809 ATTN REDSTONE SCIENTIFIC INFORMATION CENTER, DRSMI-RBD ATTN DRSMI-RGC, WILLIAM GRIFFITH ATTN DRSMI-RGC, JAMES G. WILLIAMS ATTN DRSMI-RGC, J. C. DUNAWAY ATTN DRCPM-TOE, FRED J. CHEPLEN	COMMANDING OFFICER NAVAL AIR ENGINEERING CENTER LAKEHURST, NY 08733 ATTN ESSD, CODE 9314, HAROLD OTT
COMMANDER US ARMY MATERIEL DEVELOPMENT & READINESS COMMAND 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333 ATTN DRXAM-TL, HQ TECH LIBRARY	COMMANDER USA MOBILITY EQUIPMENT R&D CENTER FORT BELVOIR, VA 22060 ATTN TECHNICAL LIBRARY (VAULT) ATTN DRXFB-EM, R. N. WARE	NAVAL AIR SYSTEMS COMMAND DEPARTMENT OF THE NAVY WASHINGTON, DC 20360 ATTN CODE AIR-52022A, J. BURNS
COMMANDER USA ARMAMENT COMMAND ROCK ISLAND, IL 61201 ATTN DRSTAR-ASF, FUZE DIV ATTN DRSTAR-RDF, SYS DEV DIV - FUZES ATTN DRSTAR-RDG-T, MR. R. SPENCER ATTN DRSTAR-ASF	COMMANDER EDGEWOOD ARSENAL ABERDEEN PROVING GROUND, MD 21010 ATTN SAREA-MT-T, MR. D. PATTON	COMMANDER PACIFIC MISSILE RANGE NAVAL MISSILE CENTER POINT MUGU, CA 93042 ATTN CODE 4121.2, ABE J. GARRETT ATTN CODE 1230, A. ANDERSON
COMMANDER USA MISSILE & MUNITIONS CENTER & SCHOOL REDSTONE ARSENAL, AL 35809 ATTN ATSK-CTD-F	COMMANDER PICATINNY ARSENAL DOVER, NJ 07801 ATTN SARPA-ND-C-C, D. SAMPAR ATTN SARPA-TS-S-#59 ATTN SARPA-ND-C-C, A. E. SCHMIDLIN	COMMANDER NAVAL SHIP ENGINEERING CENTER PHILADELPHIA DIVISION PHILADELPHIA, PA 19112 ATTN CODE 6772, D. KEYSER
COMMANDER IDR&E PENTAGON, ROOM 3D 1089 WASHINGTON, DC 20310 ATTN DR. DAVID A. CHARVONIA	COMMANDER WATERVLIET ARSENAL WATERVLIET ARSENAL, NY 12189 ATTN GARY W. WOODS ATTN SARW-RDT-L ATTN JOHN BARRETT	COMMANDER NAVAL SURFACE WEAPONS CENTER WHITE OAK, MD 20910 ATTN CODE 413, CLAYTON MCKINDRA ATTN CODE WA-33, J. O'STEEN
DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA 12 COPIES	COMMANDER USA TANK AUTOMOTIVE COMMAND ARMOR & COMP DIV, DRDTA-RKT BLDG 215 WARREN, MI 48090 ATTN T. KOZOWYK ATTN M. STEELE	NAVAL POSTGRADUATE SCHOOL MECHANICAL ENGINEERING MONTEREY, CA 93940 ATTN PROF. T. SARPKAYA
OFFICE OF THE DEPUTY CHIEF OF STAFF FOR RESEARCH, DEVELOPMENT & ACQUISITION DEPARTMENT OF THE ARMY WASHINGTON, DC 20310 ATTN DAMA-ARP-P, DR. V. GARBUR ATTN MAJOR P. TATE, ROOM 3D424	COMMANDER WHITE SANDS MISSILE RANGE, NM 88002 ATTN STEWS-AD-L, TECHNICAL LIBRARY	COMMANDER NAVAL SHIP RES & DEV CENTER CODE 5641 BETHESDA, MD 20084
US ARMY R&D GROUP (EUROPE) BOX 15 FPO NEW YORK 09510 ATTN CHIEF, AERONAUTICS BRANCH ATTN CHIEF, ENGINEERING SCIENCES	COMMANDER RODMAN LABORATORIES ROCK ISLAND ARSENAL ROCK ISLAND, IL 61201 ATTN SARRI-LA	NAVAL SEA SYSTEMS COMMAND SEA0331H WASHINGTON, DC 20362 ATTN A. CHAIKIN
US ARMY RESEARCH OFFICE P. O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709 ATTN JAMES J. MURRAY, ENG SCI DTIV	OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY ARLINGTON, VA 22217 ATTN STANLEY W. DOROFF, CODE 438 ATTN D. S. SIEGEL, CODE 211	COMMANDER NAVAL WEAPONS CENTER CHINA LAKE, CA 93555 ATTN CODE 533, LIBRARY DIVISION
BMD ADVANCED TECHNOLOGY CENTER P.O. BOX 1500 HUNTSVILLE, AL 35807 ATTN J. PAPADOPOULOS	DEPARTMENT OF THE NAVY R&D PLANS DIVISION ROOM 5D760, PENTAGON WASHINGTON, DC 20350 ATTN BENJ R. PETRIE, JR. OP-987P4	COMMANDER AF AERO PROPULSION LABORATORY, AFSC WRIGHT-PATTERSON AFB, OH 45433 ATTN LESTER SMALL 1TBC
COMMANDER USA FOREIGN SCIENCE & TECHNOLOGY CENTER FEDERAL OFFICE BUILDING 220 7th STREET, NE CHARLOTTESVILLE, VA 22901 ATTN AMXST-IS3, C. R. MOORE	DIRECTOR AF OFFICE OF SCIENTIFIC RESEARCH 1400 WILSON BLVD ARLINGTON, VA 22209 ATTN NE, MR. GEORGE KNAUSENBERGER	

DISTRIBUTION (Cont'd)

COMMANDER AIR FORCE FLIGHT DYNAMICS LABORATORY WRIGHT-PATTERSON AFB, OH 45433 ATTN AFFDL/FGL, H. SNOWBALL	DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, DC 20234 ATTN GUSTAVE SHAPIRO, 425.00	ENGINEERING SOCIETIES LIBRARY 345 EAST 47TH STREET NEW YORK, NY 10017 ATTN HOWARD GORDON
COMMANDER AF WEAPONS LABORATORY, AFSC KIRTLAND AFB, NM 87117 ATTN SUL, TECHNICAL LIBRARY	NASA AMES RESEARCH CENTER MOFFETT FIELD, CA 94035 ATTN MS 244-13, DEAN CHISEL	FRANKLIN INSTITUTE OF THE STATE OF PENNSYLVANIA 20TH STREET & PARKWAY PHILADELPHIA, PA 19103 ATTN KA-CHEUNG TSUI, ELEC ENGR DIV ATTN C. A. BELSTERLING
COMMANDER ARMAMENT DEVELOPMENT AND TEST CENTER EGLIN AIR FORCE BASE, FL 32542 ATTN ADTC (DLSOL), TECH LIBRARY	NASA Langley RESEARCH CENTER HAMPTON, VA 23665 ATTN MS 494, H. D. GARNER ATTN MS 494, R. R. HELLMBAUM ATTN MS 185, TECHNICAL LIBRARY	IIT RESEARCH INSTITUTE 10 WEST 35th STREET CHICAGO, IL 60616 ATTN DR. K. E. MCKEE
AIR FORCE FLIGHT TEST CENTER 6510 ABG/SSD EDWARDS AFB, CA 93523 ATTN TECHNICAL LIBRARY	NASA LEWIS RESEARCH CENTER 21000 BROOKPARK ROAD CLEVELAND, OH 44135 ATTN VERNON D. GEBBEN	LEHIGH UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING BETHLEHEM, PA 18015 ATTN PROF FORBES T. BROWN
4950th TEST WING (T2HM) WRIGHT-PATTERSON AIR FORCE BASE DAYTON, OH 45424 ATTN MR. MICHAEL COLLINS	NASA SCIENTIFIC & TECH INFO FACILITY P. O. BOX 8657 BALTIMORE/WASHINGTON INTERNATIONAL AIRPORT, MD 21240 ATTN ACQUISITIONS BRANCH	LINDA HALL LIBRARY 5109 CHERRY STREET KANSAS CITY, MO 64110 ATTN DOCUMENTS DIVISION
AF INSTITUTE OF TECHNOLOGY, AU WRIGHT-PATTERSON AFB, OH 45433 ATTN LIBRARY AFIT(LD), BLDG 640, AREA B ATTN AFIT(ENM), MILTON E. FRANKE 3 COPIES	UNIVERSITY OF ALABAMA CIVIL & MINERAL ENGINEERING DEPT. P. O. BOX 1468 UNIVERSITY, AL 35486 ATTN DR. HAROLD R. HENRY	MASSACHUSETTS INSTITUTE OF TECHNOLOGY 77 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02139 ATTN ENGINEERING TECHNICAL REPORTS, RM 10-408 ATTN DAVID WORMLEY, MECH ENGR DEPT., RM 3-146
AEROSPACE MEDICAL DIVISION BROOKS AFB, TX 78235 ATTN AMD/RDN, CPT G. JAMES	ARIZONA STATE UNIVERSITY ENGINEERING CENTER TEMPE, AZ 85281 ATTN PETER K. STEIN, LABORATORY FOR MEASUREMENT SYSTEMS ENGR.	MICHIGAN TECHNOLOGICAL UNIVERSITY LIBRARY, DOCUMENTS DIVISION HOUGHTON, MI 49931 ATTN J. HAWTHORNE
DIV. OF REACTOR RES & DEV F-309 USERDA WASHINGTON, DC 20545 ATTN FRANK C. LEGLER	UNIVERSITY OF ARKANSAS TECHNOLOGY CAMPUS P. O. BOX 3017 LITTLE ROCK, AR 72203 ATTN PAUL C. MCLEOD	UNIVERSITY OF MISSISSIPPI 201 CARRIER HALL, DEPT OF MECH ENGR UNIVERSITY, MS 38677 ATTN DR. JOHN A. FOX
OAK RIDGE NATIONAL LABORATORY CENTRAL RES LIBRARY, BLDG 4500N, RM 175 P. O. BOX X OAK RIDGE, TN 37830 ATTN E. HOWARD	UNIVERSITY OF ARKANSAS MECHANICAL ENGINEERING FAYETTEVILLE, AR 72701 ATTN JACK H. COLE, ASSOC PROF	MISSISSIPPI STATE UNIVERSITY DRAWER ME STATE COLLEGE, MS 39672 ATTN DR. C. J. BELL, MECH ENG DEPT
NATIONAL HEART & LUNG INSTITUTE DIVISION OF LUNG DISEASES BLDG WW, RM 6A03 BETHESDA, MD 20014 ATTN DR. P. J. ZALESKY	CARNEGIE-MELLON UNIVERSITY SCHENLEY PARK PITTSBURGH, PA 15213 ATTN PROF W. T. ROULEAU, MECH ENGR DEPT	UNIVERSITY OF NEBRASKA LIBRARIES ACQUISITIONS DEPT, SERIALS SECTION LINCOLN, NE 68508 ATTN ALAN GOULD
DEPT OF HEW PUBLIC HEALTH SERVICE NATIONAL INSTITUTE OF HEALTH BLDG 13, RM 3W-13 BETHESDA, MD 20014 ATTN C. J. McCARTHY	CASE WESTERN RESERVE UNIVERSITY UNIVERSITY CIRCLE CLEVELAND, OH 44106 ATTN PROF P. A. ORNER	UNIVERSITY OF NEW HAMPSHIRE MECH ENGR DEPT, KINGSBURY HALL DURHAM, NH 03824 ATTN PROF CHARLES TATE 3 COPIES
DEPARTMENT OF COMMERCE BUREAU OF EAST-WEST TRADE OFFICE OF EXPORT ADMINISTRATION WASHINGTON, DC 20230 ATTN WALTER J. RUSNACK	THE CITY COLLEGE OF THE CITY UNIVERSITY OF NY DEPT OF MECH ENGR 139th ST. AT CONVENT AVE NEW YORK, NY 10031 ATTN PROF L. JIJI ATTN PROF G. LOWEN	DEPARTMENT OF MECHANICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING 323 HIGH STREET NEWARK, NJ 07102 ATTN DR. R. A. COMPARI
SCIENTIFIC LIBRARY US PATENT OFFICE WASHINGTON, DC 20231 ATTN MRS. CURETON	DUKE UNIVERSITY COLLEGE OF ENGINEERING DURHAM, NC 27706 ATTN C. M. HARMAN	OHIO STATE UNIVERSITY LIBRARIES SERIAL DIVISION, MAIN LIBRARY 1858 NEIL AVENUE COLUMBUS, OH 43210

DISTRIBUTION (Cont'd)

OKLAHOMA STATE UNIVERSITY SCHOOL OF MECH & AEROSPACE ENGR. STILLWATER, OK 74074 ATTN PROF KARL N. REID	WASHINGTON UNIVERSITY SCHOOL OF ENGINEERING P. O. BOX 1185 ST. LOUIS, MO 63130 ATTN W. M. SWANSON	CONTINENTAL CAN COMPANY TECH CENTER 1350 W. 76TH STREET CHICAGO, IL 60620 ATTN P. A. BAUER
MIAMI UNIVERSITY DEPT OF ENG TECH SCHOOL OF APPLIED SCIENCE OXFORD, OH 45056 ATTN PROF S. B. FRIEDMAN	WEST VIRGINIA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT MORGANTOWN, WV 26505 ATTN DR. RICHARD A. BAJURA	CORDIS CORPORATION P. O. BOX 428 MIAMI, FL 33137 ATTN STEPHEN F. VADAS, K-2
PENNSYLVANIA STATE UNIVERSITY 215 MECHANICAL ENGINEERING BUILDING UNIVERSITY PARK, PA 16802 ATTN DR. J. L. SHEARER	WICHITA STATE UNIVERSITY WICHITA, KS 67208 ATTN DEPT AERO ENGR, E. J. RODGERS	CORNING GLASS WORKS FLUIDIC PRODUCTS HOUGHTON PARK, B-2 CORNING, NY 14830 ATTN MR. W. SCHEMERHORN ATTN V. S. KUMAR
PENNSYLVANIA STATE UNIVERSITY ENGINEERING LIBRARY 201 HAMMOND BLDG UNIVERSITY PARK, PA 16802 ATTN M. BENNETT, ENGINEERING LIBRARIAN	UNIVERSITY OF WISCONSIN MECHANICAL ENGINEERING DEPARTMENT 1513 UNIVERSITY AVENUE MADISON, WI 53706 ATTN FEDERAL REPORTS CENTER ATTN NORMAN H. BEACHLEY, DIR, DESIGN ENGINEERING LABORATORIES	CHRYSLER CORPORATION P.O. BOX 118 CIMS-418-33-22 DETROIT, MI 48231 ATTN MR. L. GAU
FURDUE UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING LAFAYETTE, IN 47907 ATTN PROF. VICTOR W. GOLDSCHMIDT ATTN PROF. ALAN T. MCDONALD	WORCESTER POLYTECHNIC INSTITUTE WORCESTER, MA 01609 ATTN GEORGE C. GORDON LIBRARY (TR) ATTN TECHNICAL REPORTS	EMX ENGINEERING, INC 354 NEWARK-POMPON TURNPIKE WAYNE, NJ 07470 ATTN ANTHONY P. CORRADO, PRESIDENT
ROCK VALLEY COLLEGE 3301 NORTH MULFORD ROAD ROCKFORD, IL 61101 ATTN KEN BARTON	AIRESEARCH P. O. BOX 5217 402 SOUTH 36th STREET PHOENIX, AZ 85034 ATTN DAVID SCHAFER ATTN TREVOR SUTTON ATTN TOM TIPPETTS	FLUIDICS QUARTERLY P. O. BOX 2989 STANFORD, CA 94305 ATTN D. H. TARUMOTO
RUTGERS UNIVERSITY LIBRARY OF SCIENCE & MEDICINE NEW BRUNSWICK, NJ 08903 ATTN GOVERNMENT DOCUMENTS DEPT MS. SANDRA R. LIVINGSTON	AVCO SYSTEMS DIVISION 201 LOWELL STREET WILMINGTON, MA 01887 ATTN W. K. CLARK 2 COPIES	GENERAL ELECTRIC COMPANY SPACE/RESD DIVISIONS P. O. BOX 8555 PHILADELPHIA, PA 19101 ATTN MGR LIBRARIES, LARRY CHASEN
SYRACUSE UNIVERSITY DEPT OF MECH & AEROSPACE ENGINEERING 139 E. A. LINK HALL SYRACUSE, NY 13210 ATTN PROFESSOR D. S. DOSANJH	BELL HELICOPTER COMPANY P. O. BOX 482 FORT WORTH, TX 76101 ATTN MR. R. D. YEARY	GENERAL ELECTRIC COMPANY SPECIALTY FLUIDICS OPERATION BLDG 37, ROOM 523 SCHENECTADY, NY 12345 ATTN F. S. RALBOVSKY, FLUIDIC CONTROL PRODUCTS ENGR ATTN R. C. KUMPITSCH, MANAGER FLUIDIC CONTROLS ATTN C. RINGWALL
UNIVERSITY OF TEXAS AT AUSTIN DEPT OF MECHANICAL ENGINEERING AUSTIN, TX 78712 ATTN DR. A. J. HEALEY	BENDIX CORPORATION ELECTRODYNAMICS DIVISION 11600 SHERMAN WAY N. HOLLYWOOD, CA 90605 ATTN MR. D. COOPER	GENERAL MOTORS CORPORATION DELCO ELECTRONICS DIV MANFRED G. WRIGHT NEW COMMERCIAL PRODUCTS P. O. BOX 1104 KOKOMO, IN 46901 ATTN R. E. SPARKS
THE UNIVERSITY OF TEXAS AT ARLINGTON MECHANICAL ENGINEERING DEPARTMENT ARLINGTON, TX 76019 ATTN DR. ROBERT L. WOODS	BENDIX CORPORATION RESEARCH LABORATORIES DIV. BENDIX CENTER SOUTHFIELD, MI 48075 ATTN ANDREW SELENO ATTN C. J. AHERN	GRUMMAN AEROSPACE CORPORATION TECHNICAL INFORMATION CENTER SOUTH OYSTER BAY ROAD BETHPAGE, L. I., NY 11714 ATTN C. W. TURNER, DOCUMENTS LIBRARIAN
TULANE UNIVERSITY DEPT OF MECHANICAL ENGINEERING NEW ORLEANS, LA 70118 ATTN H. F. HRUBECKY	BOEING COMPANY, THE P. O. BOX 3707 SEATTLE, WA 98124 ATTN HENRIK STRAUB	HONEYWELL, INC. 1625 ZARTHAN AVE MINNEAPOLIS, MI 55413 ATTN DICK EVANS, M. S. S2658
UNION COLLEGE MECHANICAL ENGINEERING SCHENECTADY, NY 12308 ATTN ASSOC PROF W. C. AUBREY MECH ENGR DEPT, STEINMETZ HALL	BOWLES FLUIDICS CORPORATION 9347 FRASER AVENUE SILVER SPRING, MD 20910 ATTN P. B. UER, VICE PRES./ENGR.	
VIRGINIA POLYTECHNIC INSTITUTE OF STATE UNIV MECHANICAL ENGINEERING DEPARTMENT BLACKSBURG, VA 24061 ATTN PROF H. MOSES	DR. RONALD BOWLES 2105 SONORA COURT SILVER SPRING, MD 20904	

DISTRIBUTION (Cont'd)

JOHNSON CONTROLS, INC
507 E. MICHIGAN
MILWAUKEE, WI 53201
ATTN WARREN A. LEDERMAN

MOORE PRODUCTS COMPANY
SPRING HOUSE, PA 19477
ATTN MR. R. ADAMS

MARTIN MARIETTA CORPORATION
AEROSPACE DIVISION
P. O. BOX 5837
ORLANDO, FL 32805
ATTN R. K. BRODERSON, MP 326
ATTN VITO O. BRAVO, MP 326

NATIONAL FLUID POWER ASSOCIATION
3333 NORTH MAYFAIR ROAD
MILWAUKEE, WI 53222
ATTN JOHN R. LUEKE
DIR OF TECH SERVICES

RICHARD WHITE & ASSOCIATES
ELECTRO/MECHANICAL ENGINEERS
77 PELHAM ISLE ROAD
SUDSBURY, MA 01776
ATTN RICHARD P. WHITE

ROCKWELL INTERNATIONAL CORPORATION
COLUMBUS AIRCRAFT DIVISION, P. O. BOX 1259
4P. O. BOX 1259
4300 E. 5TH AVENUE
COLUMBUS, OH 43216
ATTN MR. MARVIN SCHWEIGER

SANDIA CORPORATION
KIRTLAND AFB, EAST
ALBUQUERQUE, NM 87115
ATTN WILLIAM R. LEUENBERGER, DIV 2323

UNITED TECHNOLOGIES RESEARCH CENTER
400 MAIN STREET
E. HARTFORD, CT 06108
ATTN R. E. OLSON, MGR FLUID
DYNAMICS LABORATORY

HARRY DIAMOND LABORATORIES
ATTN MCGREGOR, THOMAS, COL, COMMANDER/
FLYER, I. N./LANDIS, P. E./
SOMMER, H./OSWALD, R. B.
ATTN CARTER, W. W., DR., TECHNICAL
DIRECTOR/MARCUS, S. M.
ATTN KIMMEL, S., PAO
ATTN CHIEF, 0021
ATTN CHIEF, 0022
ATTN CHIEF, LAB 100
ATTN CHIEF, LAB 200
ATTN CHIEF, LAB 300
ATTN CHIEF, LAB 400
ATTN CHIEF, LAB 500
ATTN CHIEF, LAB 600
ATTN CHIEF, DIV 700
ATTN CHIEF, DIV 800
ATTN CHIEF, LAB 900
ATTN CHIEF, LAB 1000
ATTN RECORD COPY, BR 041
ATTN HDL LIBRARY 3 COPIES
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CHIEF, 047
ATTN TECH REPORTS, 013
ATTN PATENT LAW BRANCH, 071
ATTN GIDEP OFFICE, 741
ATTN LANHAM, C., 0021
ATTN CHIEF, 340 (10 COPIES)
ATTN TADEUSZ DRZEWIECKI, 340
ATTN FRANCIS MANION, 340
ATTN PHILLIPPI, R. M., (10 COPIES)