Documentation

collaborative_new.py
collaborative_baseline.py

mean_normalize_movies (matrix): mean normalizes an input matrix along the columns magnitude_normalize_movies (matrix): magnitude normalizes an input matrix along the columns

test_train_split(matrix) : makes a portion of top-left corner to be zeros. This becomes the train

set.

ratings_matrix : Original matrix

temp_ratings: Copy of the ratings_matrix which mean and magnitude normalized

train_matrix: Alias of temp_ratings

similarity_matrix: Movie-movie similarity matrix

predicted_preferred: List of lists. For each user a list of tuples is stored. One tuple is the

(predicted_rating, movie)

preferred movies: List of tuples (as defined earlier) for each user in an iteration

sum_of_scores: Sum of Precision on Top K for all test users

squared_error: Sum of squared errors

number_of_test: Number of valid test set cells

neighbours: Number of neighbours to be considered

global_mean:global mean rating

b_users: Biases for usersb_movies: Biases for movies

SVD.py

mean_normalize_movies (matrix): mean normalizes an input matrix along the columns magnitude_normalize_movies (matrix): magnitude normalizes an input matrix along the columns

test_train_split(matrix) : makes a portion of top-left corner to be zeros. This becomes the train set.

ratings_matrix : Original matrix
debug: For debugging purposes

energy_fraction(s,frac): Returns number of eigenvalues to be retained to retain a frac of total

energy in a singular value matrix s

SVD(matrix): Returns the SVD of the matrix

reconstructed: Reconstructed matrix

CUR.py

a: Original matrix

pr: Probability Matrix for rowscr: Probability Matrix for columns

c: Number of rows/columns to be chosen

rows: R matrix after decompositioncols: C matrix after decompositionu: U matrix after decompositioncur: Reconstructed Matrix

SVD collab.py

mean_normalize_movies (matrix): mean normalizes an input matrix along the columns
magnitude_normalize_movies (matrix): magnitude normalizes an input matrix along the
columns

test_train_split(matrix) : makes a portion of top-left corner to be zeros. This becomes the train set.

ratings_matrix : Original matrix
debug: For debugging purposes

energy_fraction(s,frac): Returns number of eigenvalues to be retained to retain a frac of total

energy in a singular value matrix s

SVD(matrix): Returns the SVD of the matrix

reconstructed: Reconstructed matrix

movie_to_concept: Movie to concept matrix**similarity_matrix**: Movie-movie similarity matrix **predicted_preferred**: List of lists. For each user a list of tuples is stored. One tuple is the (predicted_rating, movie)

preferred_movies: List of tuples (as defined earlier) for each user in an iteration

sum_of_scores: Sum of Precision on Top K for all test users

squared_error: Sum of squared errors

number_of_test: Number of valid test set cells

neighbours: Number of neighbours to be considered

CUR_collab.py

a: Original matrix

pr: Probability Matrix for rowscr: Probability Matrix for columns

c: Number of rows/columns to be chosen

rows: R matrix after decompositioncols: C matrix after decompositionu: U matrix after decompositioncur: Reconstructed Matrix

movie_to_concept: Movie to concept

similarity_matrix: Movie-movie similarity matrix

predicted_preferred: List of lists. For each user a list of tuples is stored. One tuple is the

(predicted_rating, movie)

preferred_movies: List of tuples (as defined earlier) for each user in an iteration

sum_of_scores: Sum of Precision on Top K for all test users

squared_error: Sum of squared errors

number_of_test: Number of valid test set cells

neighbours: Number of neighbours to be considered