Lab 2: Multiple linear regression – Part 1

March 14, 2017

1 Review

This two weeks we began discussing multiple linear regression. The **model** that we fit is an extension of that fit in simple linear regression, and is given by:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i,$$

We **assume** that the observations Y_i s are independent from each other, $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$ and that p < n.

The β_j 's are **interpreted** as the the change in the *expected response* (i.e., E(Y)) per unit change in X_j , holding the other X_i ($i \neq j$) constant.

- 1. What is the multiple linear regression model in matrix form?
- 2. What are each of the pieces of the model representing?
- 3. What is the least squares estimate for $\beta = (\beta_0, \beta_1, ..., \beta_p)'$ in matrix form?

In addition to including multiple covariates, there are several reasons for using a multiple linear regression model. These include:

1. Creating a model with a predictor that is described by several dummy variables

$$E(Y_i) = \beta_0 + \beta_2 I_{i2} + \dots + \beta_5 I_{ip}$$

2. Incorporating nonlinear effects by including polynomial terms of a predictor.

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon_i$$

- 3. Adjusting for confounding.
- 4. Incorporating interactions.

2 Example

The data set contains information from a study of 25 patients with cystic fibrosis. The investigators were interested in assessing predictors of PEmax, a measure of malnutrition. The data set contains a new categorical variable labeled FEV_2 that we will examine more closely this week. The categorical variable FEV_2 has three ordinal levels: 1,2 and 3. The data set named cf2.sas7bdat is posted on course web page in Moodle in the folder "Lab 2" under topic 3.

2.1 multiple linear regression with categorical predictors

We will being by considering the impact of the new variable in the data set, FEV2 on PEmax.

- Create binary indicator variables to represent FEV₂, using level 1 of FEV₂ as the reference level. How many binary indicator variables do you need?
- Write the multiple linear regression model for prediction PEmax from FEV₂, using level 1 of FEV₂ as the reference level.

•	We	will	now	fit	this	model	in	SAS.
---	----	------	-----	----------------------	------	-------	----	------

• Interpret the regression coefficients in this model?

2.2 confounding

We are interested in examining the impact of Age and FEV_2 on PEmax. In this example, our primary interest is with Age, but we also want to investigate if FEV_2 is a confounder.

First we will investigate confounding. There are two ways to do it.

One way by looking at the association between these three variables directly.

- Calculate Pearson correlation coefficient for continuous variables Age and PEmax. Is r significantly different from 0? Is there association between Age and PEmax?
- Investigate the association between FEV₂ and PEmax. Notice that FEV₂ is categorical variable with 3 levels and PEmax is continuous. What test should we use?
- Investigate the association between FEV₂ and Age. What test should we use?
- Assuming that there is no causal relationship between Age and FEV₂, do we think that FEV₂ is a confounder of the relationship between Age and PEmax? Why?

We can also compare the unadjusted β for Age with the adjusted β for Age after controlling for FEV₂ to see if FEV₂ confounds the association between Age and PEmax. Usually, we conclude that FEV₂ is a confounder when we see a change in β of 10% or more.

•	To begin, we fit simple linear regression model with Age alone.
•	Then we fit the multiple linear regression model with both $\tt Age$ and $\tt FEV_2$ included.
•	Assuming that there is no causal relationship between Age and FEV_2 , do we think that FEV_2 is a confounder of the relationship between Age and $PEmax$, after looking at the output from the two above models? Why?
•	What is the expected (or average) PEmax score from someone who is Age 16 and has FEV ₂ score of 1? FEV ₂ score of 2? FEV ₂ score of 3?

2.3 interactions

• Using PEmax as response variable, write out the full model for Age and each level of FEV_2 , as well as interaction terms between Age and FEV_2 .

• We will look at this relationship graphically. What do you notice from the plot?

- We will now fit the model with the interaction terms.
- What do you conclude from the model?
- What is the expected PEmax score from someone who is Age 16 and has FEV_2 score of 1? FEV_2 score of 2? FEV_2 score of 3?

 $\bullet\,$ How does this compare to your previous estimate?