Overview:

This is the review of the Titanic test.csv file for week 1.

Data Preparation

```
In [23]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import numpy as np

from pandas import DataFrame, Series
```

Load the test file

```
In [12]: testdata=pd.read_csv('test.csv')
```

```
In [13]: # Info
         testdata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
         Data columns (total 11 columns):
         PassengerId 418 non-null int64
         Pclass
                        418 non-null int64
                        418 non-null object
         Name
                        418 non-null object
         Sex
                        332 non-null float64
         Age
                        418 non-null int64
         SibSp
         Parch
                        418 non-null int64
         Ticket
                        418 non-null object
                        417 non-null float64
         Fare
         Cabin
                        91 non-null object
                        418 non-null object
         Embarked
         dtypes: float64(2), int64(4), object(5)
         memory usage: 36.0+ KB
In [14]: # Describe
         testdata.describe()
```

Out[14]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309 000000	3 000000	76 000000	8 000000	9 000000	512 329200

In [15]: # Review first five rows
 testdata.head()

Out[15]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

In [16]: # Boxplot for Fare
testdata.boxplot(column='Fare')

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x2a88691a320>


```
In [17]: # Histogram for Fare
testdata['Fare'].hist(bins=20)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x2a8869721d0>


```
In [18]: # Boxplot for Age
testdata.boxplot(column='Age')
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x2a8869fe6a0>


```
In [19]: # Histogram for Age
testdata['Age'].hist(bins=20)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x2a886a48b00>


```
In [52]: # Histogram for Class
testdata["Pclass"].value_counts().plot(kind='bar')
```

Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x2a889c32e80>


```
In [54]: # Calc the correlation between Pclass and Fare
         # Not surpisingly, they're negatively correlated
         testdata['Fare'].corr(testdata['Pclass'])
Out [54]: -0.5771473123362404
In [67]: # How many passengers were loaded at each embarkation point?
         testdata.groupby(['Embarked'])['Fare'].count()
Out[67]: Embarked
         С
              102
               46
         S
              269
         Name: Fare, dtype: int64
In [66]: # Are there any patterns based on embarkation?
         # C embarkation is clearly higher in age fare, and lower in class
         # Q has far more single passengers
         testdata.groupby(['Embarked'])['Age','SibSp','Parch','Pclass','Fare'].mean()
Out[66]:
                             SibSp
                                           Pclass
                                                      Fare
                       Age
                                     Parch
          Embarked
                C 34.737805 0.421569 0.382353 1.794118 66.259765
```

Q 29.318182 0.195652 0.021739 2.869565 10.957700 **S** 28.758772 0.500000 0.459259 2.340741 28.230436