Dæmablað 1: Stærðfræðilegar undirstöður

Tegrun

Dæmi 1. Notið tegurprófið til þess að sýna að ef F er stofnfall fallsins f þá gildir: $\int f(ax+b) \, dx = \frac{1}{a} F(ax+b).$

Dæmi 2. Reiknið óákveðnu tegrin (Æfing 1.1. í Stærðfræði handa 6. bekk)

$$\int \left(2x^2 + 3x - \frac{1}{x\sqrt{x}}\right) dx, \quad \int x^3 \sqrt{x} dx, \quad \int (6-x)^8 dx, \quad \int \cos(5x) dx, \quad \int e^{5-3x} dx.$$

Dæmi 3. Notið tegurprófið til þess að sýna að ef f er diffranlegt og G er stofnfall fallsins g þá gildir að:

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx.$$

Þegar við notum þetta trikk þá segjum við að við séum að hluttegra.

Dæmi 4. Notið hluttegrun til þess að reikna óákveðnu tegrin (Æfing 1.2. í Stærðfræði handa 6. bekk)

$$\int x \cos(x) dx, \quad \int x e^{2x} dx, \quad \int x^{100} \ln(x) dx, \quad \int e^x \sin(x) dx, \quad \int \ln(3 - 2x) dx.$$

 \mathbf{D} æmi 5. Notið tegurprófið til þess að sýna að ef f hefur stofnfall F og g er diffranlegt þá gildir að:

$$\int f(g(x))g'(x)dx = \int f(u)du, \quad \text{par sem } u = g(x).$$

Pegar við notum þetta trikk þá segjum við að við séum að tegra með innsetningu.

Dæmi 6. Reiknið eftirfarandi tegur með innsetningaraðferðinni (Æfing 1.3. í Stærðfræði handa 6. bekk)

$$\int \frac{x \, dx}{\sqrt{x+1}}, \quad \int \frac{dx}{(1-x)^2}, \quad \int \frac{x \, dx}{(x^2+1)^2}, \quad \int \frac{x^2 \, dx}{\sqrt{x^3-1}}, \quad \int \cos^3(x) \sin(x) \, dx, \quad \int \sin(x) \sqrt{\cos(x)} \, dx.$$

Dæmi 7. Reiknið ákveðnu tegrin (Æfing 2.4. í Stærðfræði handa 6. bekk)

$$\int_{0}^{4} e^{x} dx, \quad \int_{2}^{5} \left(\frac{2}{x} - 4\right) dx, \quad \int_{0}^{\pi} \sin(x) dx, \quad \int_{1}^{4} \sqrt{x} dx, \quad \int_{1}^{4} 2^{x} dx.$$

Dæmi 8. Notið innsetningu til þess að reikna ákveðnu tegrin (Æfing 2.4 í Stærðfræði handa 6. bekk)

$$\int_0^{\pi/2} e^{\cos(x)} \sin(x) dx, \quad \int_0^1 \frac{e^x}{1 + 2e^x} dx, \quad \int_0^{\pi/4} \left(\tan^3(x) + \tan(x) \right) dx, \quad \int_0^{\frac{\pi}{2}} \sin^4(x) dx.$$

Dæmi 9. Reiknið eftirfarandi ákveðin tegur:

$$\int_0^{1/2} \frac{x}{\sqrt{1-4x^2}} \, dx, \quad \int_0^4 \sqrt{3x+4} \, dx, \quad \int_{-\pi}^{\pi} \sin(7x+3) \, dx, \quad \int_{-5}^5 \left(3x^3 - \frac{1}{2}x^5\right) dx, \quad \int_{-1}^1 \frac{\tan(x)}{1+x^2+x^4} \, dx.$$

(2)
$$\frac{2}{3}x^3 + \frac{3}{2}x^2 - \ln|x| + k$$
, $\frac{2}{9}x^4\sqrt{x} + k$, $-\frac{1}{9}(6-x)^9 + k$, $\frac{1}{5}\sin(5x) + k$, $-\frac{1}{3}e^{5-x} + k$. (4) $x\sin(x) + \cos(x) + k$, $\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + k$, $\frac{1}{101}\left(x^{101}\ln(x) - \frac{1}{101}x^{101}\right) + k$, $\frac{1}{2}e^x\left(\sin(x) - \cos(x)\right) + k$, $(x - \frac{3}{2})\ln(3 - 2x) - x + k$. (6) $\frac{2}{3}(x+1)\sqrt{x+1} - 2\sqrt{x+1} + k$, $\frac{1}{1-x} + k$, $-\frac{1}{2(x^2+1)} + k$, $\frac{2}{3}\sqrt{x^3 - 1} + k$, $-\frac{1}{4}\cos^4(x) + k$, $-\frac{2}{3}\cos(x)\sqrt{\cos(x)} + k$. (7) $e^4 - 1$, $2\ln(\frac{5}{2}) - 12$, 2 , $\frac{14}{3}$, $\frac{14}{\ln(2)}$. (8) $e - 1$, $\ln(\sqrt{\frac{1+2e}{3}})$, $\frac{1}{2}$, $\frac{3\pi}{16}$.

(9)
$$\frac{1}{4}$$
, $\frac{112}{9}$, 0, 0, 0.

Tvinntölur

- **Dæmi 10.** Reiknið $(-1+3i)^2$.
- **Dæmi 11.** Hverjar eru lausnir annars stigs jöfnunnar $0.5z^2 + (2-i)z + (5.5+i)$?
- **Dæmi 12.** Leysið jöfnuna: (2-3i)z (4-3i) = (5-4i)z + (3+4i).
- **Dæmi 13.** Finnið pólhnitaframsetningu talnanna $z_1 = \sqrt{3} + i$, $z_2 = -1 + i$ og $z_3 = -\sqrt{3} 3i$.
- **Dæmi 14.** Ákvarðið $a, b \in \mathbb{R}$ þannig að $a + ib = (1 + i\sqrt{3})^9$.
- **Dæmi 15.** Sýnið að $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ og að $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.
- **Dæmi 16.** Sýnið að $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ og $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

Svör

(10)
$$-8 - 6i$$
. (11) $z = (-2 + i) \pm (-1 + 3i)$. (12) $z = -2 - i$. (13) $z_1 = 2e^{i\pi/6}$, $z_2 = \sqrt{2}e^{i3\pi/4}$, $z_3 = 2\sqrt{3}e^{i4\pi/3}$. (14) $a = -512, b = 0$.

Diffurjöfnur

Dæmi 17. Leysið eftirfarandi diffurjöfnu (Æfing 8.1.):

$$\frac{dy}{dx} = 4x - 4,$$
 ásamt upphafsskilyrðinu: $y(2) = 1.$

Dæmi 18. Leysið eftirfarandi diffurjöfnur (Æfing 8.2):

$$y' - 5y = 0$$
, $f'(x) = -f(x)$, $y' = xy$, $y' = y^2$, $\frac{dy}{dx} = \frac{y}{\sqrt{x}}$, $y' - 3y = 2x + 1$.

Dæmi 19. Leysið eftirfarandi línulegar annars stigs diffurjöfnur (Æfing 8.3)

$$y'' = 5y$$
, $y'' = -5y$, $y'' - 4y' + 3y = 0$, $y'' - 4y = e^x$,

Dæmi 20. Lítum á hlut sem verður fyrir fastri hröðun $\ddot{x}=a$. Sér í lagi gildir þá að: $\dot{v}=\ddot{x}=a$. Leysið diffurjöfnuna og sýnið að $v(t)=v_0+at$ þar sem $v_0:=v(0)$. Notfærið ykkur síðan að $\dot{x}=v=v_0+at$. Leysið diffurjöfnuna og sýnið að $x(t)=x_0+v_0t+\frac{1}{2}at^2$ þar sem $x_0:=x(0)$.

(17)
$$y(x) = 2x^2 - 4x + 4$$
. (18) $y(x) = Ce^{5x}$, $f(x) = Ce^{-x}$, $y(x) = Ce^{x^2/2}$, $y(x) = 0 \lor y(x) = -\frac{1}{x+k}$, $y(x) = Ce^{2\sqrt{x}}$, $y(x) = Ce^{3x} - \frac{2x}{3} - \frac{5}{9}$. (19) $y(x) = c_1 e^{\sqrt{5}x} + c_2 e^{-\sqrt{5}x} = A\cosh(\sqrt{5}x + \varphi)$, $y(x) = c_1 \cos(\sqrt{5}x) + c_2 \sin(\sqrt{5}x) = A\cos(\sqrt{5}x + \varphi)$, $y(x) = c_1 e^{3x} + c_2 e^x$, $y(x) = c_1 e^{2x} + c_2 e^{-2x} - \frac{1}{3}e^x$.