

ECE 661 COMP ENG ML & DEEP NEURAL NETS 10. ATTENTION MODELS

This lecture

Applying machine learning into the real world

Outline

Lecture 10: Attention-based models and LLM Inference

- Self-attention
- Transformer
- Vision Transformer
- Large Language Models
 - Architecture changes
 - Scaling Up

Issue with recurrent models

- Recurrent models (e.g., LSTM, GRU) are unrolled from left to right
 - Word pairs will have linear interaction distance

Problems:

- Hard to learn long-distance dependencies
 - Gradient vanishing issue
- Hard to parallelize
 - Forward and backward passes have O(sequence length) unparallelizable operations

Credit: Stanford cs224n

Problems with classic Seq2Seq models

- Traditional encoder-decoder systems suffer from information bottleneck:
 - Last hidden state need to capture all the information about the source sentence

Solution: attention mechanism

- Attention mechanism provides a solution to the problem
- Core idea: at each decoding step, focus on different part of the source sequence.

How to compute attention?

- Suppose we have encoder hidden states $e_1, \dots e_N \in \mathbb{R}^h$, step t decoder hidden state $d_t \in \mathbb{R}^h$
- At decoding step t,
 - 1. Compute the attention score

$$s^t = [d_t^T e_1, \dots d_t^T e_N] \in \mathbb{R}^N$$

- 2. Apply softmax to get the attention distribution over source tokens $w^t = softmax(s^t) \in \mathbb{R}^N$
- 3. Compute weighted sum over the encoder hidden states

$$a_t = \sum_{i=1}^N w_i^t e_i \in \mathbb{R}^h$$

4. Concatenate a_t with d_t ,and feed $[a_t; d_t] \in \mathbb{R}^{2h}$ to the decoder

Why attention is so powerful?

- Attention can significantly improve neural machine translation (NMT) performance
 - Allow decoder to focus on different parts of the source
 - Solves the information bottleneck problem
- Attention helps with the vanishing gradient issue
 - Provides shortcut to early source tokens
- Attention provides interpretability
 - Implicitly learn soft alignment between source and target sequence
 - Check the attention distribution for each output token

Attention as a general technique

- Attention is also used in computer vision:
 - Attend to different parts on input image when generating caption

- Attention can also be a basic building block for sequence modeling
 - New sequence models: Transformers, BERT, GPT etc.

Replace recurrent with self-attention

 Remember attention is introduced in Seq2Seq systems to attend different parts of source sentence

- Self-attention: apply attention within a single sentence
 - All words attend to all words in previous layer (most arrows are omitted)

Credit: Stanford cs224n

Self-attention computation

- To compute attention we need queries, keys, and values:
 - Queries: $q_1, q_2, \dots q_T$. Each $q_i \in \mathbb{R}^d$
 - Keys: $k_1, k_2, ... k_T$. Each $k_i \in \mathbb{R}^d$
 - Values: $v_1, v_2, \dots v_T$. Each $v_i \in \mathbb{R}^d$
- In self-attention, the queries, keys and values come from the same source
 - $k_i = Kx_i, q_i = Qx_i, v_i = Vx_i$

where $K, Q, V \in \mathbb{R}^{d \times d}$ are linear transformation used for all x_i

• Self-attention generate new representations as follows:

- score:
$$s_{ij} = q_i^T k_j$$
, attention: $a_{ij} = \frac{\exp(s_{ij})}{\sum_{j} \exp(s_{ij'})}$, output_i = $\sum_j a_{ij} v_j$

Credit: Stanford cs224n

Outline

Lecture 10: Attention-based models and LLM Inference

- Self-attention
- Transformer
- Vision Transformer
- Large Language Models
 - Architecture changes
 - Scaling Up

Transformer

- Transformer structure:
 - Two parts: encoder & decoder (Seq2Seq model)
 - Basic block: self-attention + feed-forward
 - Stacked multiple blocks
 - Bunch of fixes/tricks

Multi-head self-attention

- Previously for each word i, we compute (**one**) attention over the
 - $k_i = Kx_i$, $q_i = Qx_i$, $v_i = Vx_i$ where $K, Q, V \in \mathbb{R}^{d \times d}$
 - score: $s_{ij} = q_i^T k_j$, attention: $a_{ij} = \frac{\exp(s_{ij})}{\sum_{j} \exp(s_{ij})}$, output_i = $\sum_j a_{ij} v_j$
- What if we want multiple attentions for each word?
 - We can define multiple attention "heads" by multiple K, Q, V matrices
 - Each head will look at different things and combine values differently!

- Define K^l , Q^l , $V^l \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads
 - For each head $l: k_i^l = K^l x_i$, $q_i^l = Q^l x_i$, $v_i^l = V^l x_i$
 - Use k_i^l , q_i^l , $v_i^l \in \mathbb{R}^{\frac{d}{h}}$ to compute score, attention and output $i \in \mathbb{R}^{\frac{d}{h}}$
 - Combine all attention head outputs: output_i = W_o [output_i¹; ...; output_i^h] where $W_o \in \mathbb{R}^{d \times d}$

Encode sequence order

- Self-attention operation doesn't consider the order information
- Simple fix: we can represent the **sequence index** as a **vector**
 - Define positional embedding $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., T\}$
- Suppose $e_i \in \mathbb{R}^d$, for $i \in \{1,2,...,T\}$ are the word embeddings, then we can add the positional embedding at layer 0: $x_i^0 = e_i + p_i$
- Options:
 - Sinusoidal position embedding:

- Learned position embedding: Just make all p_i as learnable parameters

Transformer decoder: self-attention

- To use self-attention in decoders, we need to ensure the decoder cannot peek the future
- Simple fix: we can mask the attention to future words by setting attention score as $-\infty$:

$$s_{ij} = \begin{cases} q_i^T k_j, & j < i \\ -\infty, & j \ge i \end{cases}$$

Output

Transformer decoder: encoder-attention

- In self-attention, keys, queries and values come from the same source
- However, on the decoder side, besides selfattention we also want to attend the states from encoder (Seq2Seq model)
- Simple fix: construct keys and values using encoder states
 - Define $x_1, ... x_T \in \mathbb{R}^d$ as the output vectors from the **encoder**
 - Define $h_1, ... h_N \in \mathbb{R}^d$ as the input vectors from the **decoder**
 - Compute key, value, query by: $k_i = Kx_i, v_i = Vx_i, q_i = Qh_i$

Other tricks in Transformer

- Residual connection and layer normalization:
 - Add after multi-head attention and feedforward modules
 - Help models train faster
- Learning rate schedule:
 - warm-up stage: learning rate first increase then decrease
 - Converge to better sub-optimal

Transformer result

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75					
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.8		10^{19}		

Transformer's pros and cons

- Comparison with RNN
 - Decoder training efficiency
 - The training of RNN decoder is processed per token from left to right.
 - In the Transformer decoder training, all tokens are updated in parallel thanks to the attention mask.
 - Scalability
 - Compared to RNNs, Transformers are easier to be scaled to very deep layers (e.g., 12 or 24). Still transformers do not meet convergence plateau.
- Due to the global attention mechanism, extensive computation is required at each layer (e.g., $O(n^2)$ for a sequence of length n).
 - Sparse Transformer
 - https://arxiv.org/abs/1904.10509
 - Linformer
 - Self-Attention with Linear Complexity
 - https://arxiv.org/abs/2006.04768

Transformer Summary

- Transformer becomes the de-facto structure in NLP domain (also getting popularized in vision area)
- Pre-trained models with transformer structure dominate the NLP benchmarks (will discuss soon)

	Rank	(Name	Model	URL	Score	CoLA S	SST-2	MRPC	STS-B	QQP
	1	T5 Team - Google	Т5		89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4
	2	ALBERT-Team Google Languag	eALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5
+	3	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)		89.0	69.2	97.1	93.6/91.5	92.7/92.3	74.4/90.7
	4	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3
	5	Facebook Al	RoBERTa		88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2
	6	XLNet Team	XLNet-Large (ensemble)		88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3
+	7	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9
	8	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4
	9	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9
	10	XLM Systems	XLM (English only)		83.1	62.9	95.6	90.7/87.1	88.8/88.2	73.2/89.8

Outline

Lecture 10: Attention-based models and LLM Inference

- Self-attention
- Transformer
- Vision Transformer
- Large Language Models
 - Architecture changes
 - Scaling Up

Vision Transformer (ViT)

- Use Transformers for vision recognition
- We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
- In order to perform classification, an extra learnable "classification token" is added to the sequence.

Vision Transformer (ViT)

- Performance and total computation (FLOPs) comparison.
- ViT-B/32 uses as similar computation (FLOPs) as ResNet50.
- FLOPs required by ViT-B/16 is four times of that by ViT-B/32 (smaller patch size leads to more patches).

Performance of Axial-Attention based models, in terms of top-1 accuracy on ImageNet 5-shot linear, versus their speed in terms of number of FLOPs (left) and inference time (left).

Implement your model with Hugging Face

- HuggingFace is an AI community aiming to build the future of machine learning. Their platform holds many open-source models and datasets. Almost all models covered today can be found.
- You can easily access with Transformers, Dataset packages in Python.

- Provide many APIs for loading/saving/sharing models, training, evaluating, etc.
- Integrate distributed computation libraries such as "Accelerate", "Deepspeed".
- Take a vital role in large language model development.
- Find more by yourself: https://huggingface.co/

Outline

Lecture 10: Attention-based models and LLM Inference

- Self-attention
- Transformer
- Vision Transformer
- Large Language Models
 - Architecture changes
 - Scaling Up

Encoder – Decoder Transformer Architecture

- Transformer is originally designed for language translation task
 - Encoder takes a sentence in language A
 - Decoder generates a sentence in language B

Encoder - Decoder Transformer Model

- T5 (Text-to-Text Transfer Transformer)
 - Translate text between languages designed by Google in 2019
 - The T5 can be fine-tuned for a wide range of NLP tasks, including language translation, question answering, summarization, and more.

Encoder Transformer Architecture

- Encoder-only Transformers are specifically designed for text classification tasks.
 - Classify a piece of text into one of several predefined categories.
 - Examples: Sentiment Analysis, Topic Classification, Spam Detection

Encoding Process:

- The encoder processes a sequence of tokens from the text.
- It produces a fixed-size vector representation (embedding) of the entire sequence.
- This vector encapsulates the meaning and context of the text.
- The representation is then used for classification by downstream classifiers

Encoder Transformer Model

BERT (Bidirectional Encoder Representations from Transformers)

bidirectionally trained language models can have a deeper sense of language context and flow than single-direction.

- Pre-training Tasks:
 - Masked LM (MLM)
 Predicts the original values of randomly masked tokens within a sequence
 - NSP (Next Sentence Predict)
 Predicts if the second sentence in a pair is the subsequent sentence of the first one

Decoder Transformer Architecture

- Decoder-only Transformers are specifically designed for text generation tasks.
 - Takes a fixed-size vector representation of the context.
 - Generates a sequence of words one at a time.
 - Each word is conditioned on all previously generated words.
- Pre-trained model can be fine-tuned to downstream tasks

Decoder Transformer Model

- GPT (Generative Pre-trained Transformer)
 - Masked Attention

blocking information from tokens that are to the right of the position being calculated.

Outline

Lecture 10: Attention-based models and LLM Inference

- Self-attention
- Transformer
- Vision Transformer
- Large Language Models
 - Architecture changes
 - Scaling Up

Large Language Models (LLM)

Scaling up of LLM

The Rise and Rise of A.I. Size = no. of parameters Open-access Large Language Models (LLMs) their associated bots like ChatGPT

* = parameters undisclosed // see the data