Дифференциальное исчисление функций одной переменной Лекция 1

Производная

Пусть функция y=f(x) определена в некотором интервале (a, b). Возьмем произвольную точку $x_0\in (a,b)$. Для любого $x\in (a,b)$ разность $x-x_0$ называется приращением аргумента x в точке x_0 и обозначается Δx (дельта икс): $\Delta x=x-x_0$. Отсюда $x=x_0+\Delta x$. Разность соответствующих значений функции $f(x)-f(x_0)$ называется приращением функции f(x) в точке x_0 и обозначается Δy (или $\Delta f(x_0)$): $\Delta y=f(x)-f(x_0)$ или $\Delta y=f(x_0+\Delta x)-f(x_0)$.

Определение. *Производной от функции* f(x) в точке х называется предел отношения приращения функции Δy к приращению аргумента Δx , когда приращение аргумента стремится к нулю, если этот предел существует.

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 или (1)

$$y' = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$
 (2)

Производную обозначают y', y'_x , f'(x), $\frac{dy}{dx}$.

Определение. Операция нахождения производной функции называется дифференцированием функции.

Для существования производной от функции f(x)в т. х, необходимо, чтобы функция f(x)была определена в некоторой окрестности х, в точм числе в самой точке х.

Конечно, не для всякой функции, определенной в окрестности точки, существует предел (2).

Например.

$$y = |x|$$
 $x_0 = 0$ $\frac{\Delta y}{\Delta x} = \frac{|\Delta x|}{\Delta x} = \begin{cases} 1, & \Delta x > 0 \\ -1, & \Delta x < 0 \end{cases}$

$$\lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta x > 0 \end{subarray}} \frac{\Delta y}{\Delta x} = 1 \qquad \lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta x < 0 \end{subarray}} \frac{\Delta y}{\Delta x} = -1$$

В т. х=0 функция непрерывна, но не имеет производной.

Теорема (О непрерывности функции, имеющей производную). Функция, имеющая конечную производную в точке х, непрерывна в этой точке.

Геометрический смысл производной

Пусть некоторая непрерывная кривая задана уравнением y = f(x). Необхо-

димо записать уравнение касательной к этой кривой в точке $M_0(x_0,y_0)$. Определение. Касательной к заданной непрерывной кривой в точке M_0 называется предельное положение секущей M_0M_1 , когда точка M_1 неограниченно приближается к точке M_0 вдоль кривой.

Уравнение прямой, проходящей через данную точку в заданном направлении имеет вид $y-y_0=k(x-x_0)$, где $x_0, y_0=f(x_0)$ - координаты точки, через которую проходит касательная, они известны. Неизвестен угловой коэффициент k, который численно равен тангенсу угла наклона прямой относительно положительного направления оси 0x.

Если точка M_1 имеет координаты $(x_0 + \Delta x)$, $(y_0 + \Delta y)$, то из прямоугольного треугольника M_0FM_1 определяем угловой коэффициент для секущей M_0M_1 : $tg\alpha = \frac{\Delta y}{\Delta x}$. Если точка M_1 неограниченно приближается к точке M_0 вдоль кривой y = f(x), то $\Delta x \to 0$. При этом угол наклона секущей $\alpha \to \varphi$, где φ - угол наклона касательной MN (считаем, что касательная не перпендикулярна к оси 0x, т.е.

 $\varphi \neq \frac{\pi}{2}$). Следовательно, $tg\varphi = \lim_{\Delta x \to 0} tg\alpha$, и задача определения уравнения касательной сводится к определению предела

$$k = tg \varphi = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.

Уравнение касательной к кривой в т. $M_0(x_0, y_0)$ имеет вид:

$$y - y_0 = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} (x - x_0)$$

По определению
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

Следовательно, уравнение касательной

$$y - y_0 = f'(x_0)(x - x_0)$$
 (3)

Определение. Нормалью к кривой в ее точке М называется прямая, проходящая через точку М, перпендикулярно касательной к кривой в этой точке. В силу перпендикулярности двух прямых, уравнение нормали будет иметь вид:

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0) \tag{4}$$

Механический смысл производной

Пусть известен закон движения материальной точки M вдоль некоторой прямой (например, оси 0x). Если за x принять абсциссу движущейся точки, а за t - время, то закон движения имеет вид x = f(t). Необходимо найти скорость движущейся точки для любого момента времени.

Пусть в некоторый момент времени t_0 движущаяся точка занимает положение M (рисунок 2), 0M=x. В момент времени $t=t_0+\Delta t$ точка займет положение M_1 , причем $0M_1=x+\Delta x$. Согласно уравнению движения $x+\Delta x=f(t_0+\Delta t)$. Перемещение точки за время Δt равно $\Delta x=f(t_0+\Delta t)-f(t_0)$. Если точка движется в одном направлении, то Δx численно пути, пройденному точкой за время Δt . Отношение $\frac{\Delta x}{\Delta t}$ выражает среднюю скорость движения точки за Δt , т.е. $V_{cpeo}=\frac{\Delta x}{\Delta t}$.

Предел средней скорости при $\Delta t \to 0$ называется скоростью движения в данный момент времени t_0 или мгновенной скоростью движения. Таким образом, задача о скорости движения материальной точки сводится к отысканию предела:

$$V = \lim_{\Delta t \to 0} V_{cpeo} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}.$$

Физический смысл .Если функция описывает какой либо физический процесс, то ее производная есть скорость протекания этого процесса

Производные элементарных функций

$$y = c = const$$
 $y' = c' = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0$

$$y = x$$
 $\Delta y = \Delta x$ $y' = x' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1$

$$y = x^n$$
 $\Delta y = (x + \Delta x)^n - x^n$

$$y' = (x^n)' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^n ((1 + \frac{\Delta x}{x})^n - 1)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{x^{n-1} ((1 + \frac{\Delta x}{x})^n - 1)}{\frac{\Delta x}{x}} = nx^{n-1} \qquad \lim_{x \to 0} \frac{(1 + x)^a - 1}{x} = a$$

$$y = \cos x$$
 $\Delta y = \cos(x + \Delta x) - \cos x$

$$y' = (\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\Delta x} = \lim_$$

$$= \lim_{\Delta x \to 0} \frac{-\sin\frac{\Delta x}{2}\sin(x + \frac{\Delta x}{2})}{\frac{\Delta x}{2}} = -\sin x$$

Аналогично $(\sin x)' = \cos x$

$$y = a^x$$
 $\Delta y = a^{x+\Delta x} - a^x$ $a > 0$ $a \ne 1$

$$y' = (a^x)' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = a^x \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = a^x \operatorname{Lina}$$

$$(e^x)'=e^x$$

$$y = Log_a x$$
 $x > 0$

$$y' = (Log_a x)' = \lim_{\Delta x \to 0} \frac{Log_a (x + \Delta x) - Log_a x}{\Delta x} = \lim_{\Delta x \to 0} \frac{Log_a \frac{x + \Delta x}{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{Log_a x}{\Delta x} = \lim_{\Delta x \to 0} \frac{Lo$$

$$= \lim_{\Delta x \to 0} \frac{Log_a(1 + \frac{\Delta x}{x})}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{x} \frac{Log_a(1 + \frac{\Delta x}{x})}{\frac{\Delta x}{x}} = \frac{1}{x} Log_a e = \frac{1}{xLna}$$

$$(Lnx)' = \frac{1}{x}$$

7) Постоянный множитель выносится за знак производной

$$y = c \cdot U(x)$$
 $y' = c \cdot U'(x)$

8) Производная алгебраической суммы дифференцируемых функций равна алгебраической сумме производных этих функций

$$(U(x)\pm V(x))' = U'(x)\pm V'(x)$$

$$(U \pm V)' = \lim_{\Delta x \to 0} \frac{\Delta(U \pm V)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta U}{\Delta x} \pm \lim_{\Delta x \to 0} \frac{\Delta V}{\Delta x} = U' \pm V'$$

9) Производная произведения двух дифференцируемых функций

$$(U(x)\cdot V(x))' = U'V + UV'$$

$$\Delta y = (U + \Delta U) \cdot (V + \Delta V) - UV = U\Delta V + \Delta UV + \Delta U\Delta V$$

$$(UV)' = \lim_{\Delta x \to 0} \frac{U\Delta V + \Delta UV + \Delta U\Delta V}{\Delta x} = U \lim_{\Delta x \to 0} \frac{\Delta V}{\Delta x} + V \lim_{\Delta x \to 0} \frac{\Delta U}{\Delta x} + \lim_{\Delta x \to 0} \Delta U \lim_{\Delta x \to 0} \frac{\Delta V}{\Delta x} = U'V + UV'$$

10) Производная дроби двух функций $(\frac{U}{V})' = \frac{U'V - UV'}{V^2}$

11)
$$y = tgx$$
 $y' = (\frac{\sin x}{\cos x})' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$

12)
$$y = ctgx$$
 $y' = -\frac{1}{\sin^2 x}$

13)
$$y = shx = \frac{e^x - e^{-x}}{2}$$
 $y' = \frac{e^x + e^{-x}}{2} = chx$

14)
$$y = chx = \frac{e^x + e^{-x}}{2}$$
 $y' = \frac{e^x - e^{-x}}{2} = shx$

15)
$$y = thx$$
 $y' = (\frac{shx}{chx})' = \frac{ch^2x - sh^2x}{ch^2x} = \frac{1}{ch^2x}$

Производная обратной функции.

Непрерывная дифференцируемая функция y = f(x) в интервале монотонности имеет обратную себе функцию $x = \varphi(y)$. Бесконечно малому приращению Δx соответствует бесконечно малое приращение Δy и наоборот: $\Delta x \to 0 \Leftrightarrow \Delta y \to 0$.

Тогда
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{1}{\lim_{\Delta y \to 0} \Delta x/\Delta y}$$
, или $f'(x) = \frac{1}{\varphi'(y)}$.

Формула имеет простой геометрический смысл. Если $f'(x) = y'_x$ —тангенс угла

 α наклона касательной к кривой к оси ох, то β – тангенс угла наклона той же касательной к оси оу

$$\alpha + \beta = \frac{\pi}{2}$$
 (если α и β острые)

$$\alpha + \beta = \frac{3\pi}{2}$$
 (если α и β тупые)

$$tg\alpha = ctg\beta = \frac{1}{tg\beta} \implies y'_x = \frac{1}{x'_y}$$

16) Функция $y = \arcsin x$ имеет себе обратную функцию $x = \sin y$. При этом

$$D(y) = [-1; 1], \ E(y) = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]. \ (\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$$

По правилу дифференцирования обратных функций $f'(x) = \frac{1}{\varphi'(y)}$ имеем:

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}.$$

17)
$$(\arccos x)' = (\frac{\pi}{2} - \arcsin x)' = -\frac{1}{\sqrt{1 - x^2}}$$

18) Функция y = arctgx имеет себе обратную функцию x = tgy. При этом

$$D(y) = R, \ E(y) = (-\frac{\pi}{2}; \frac{\pi}{2}). \ (arctgx)' = \frac{1}{(tgy)'} = \frac{1}{\frac{1}{\cos^2 y}} = \frac{1}{1 + tg^2 y} = \frac{1}{1 + x^2}$$

По правилу дифференцирования обратных функций $f'(x) = \frac{1}{\sigma'(y)}$ имеем:

$$(arctgx)' = \frac{1}{1+x^2}.$$

19)
$$(arcctgx)' = -\frac{1}{1+x^2}$$

Производные основных элементарных функций

1.
$$(x^n)' = n \cdot x^{n-1}, \quad n \neq 0$$
.

2.
$$(e^x)' = e^x$$
.

$$(a^x)' = a^x \cdot \ln a$$

4.
$$(\frac{1}{x})' = -\frac{1}{x^2}$$

$$_{5.}\left(\sqrt{x}\right) ^{\prime }=\frac{1}{2\sqrt{x}}$$

6.
$$(\ln x)' = \frac{1}{x}$$

$$_{7.} (\log_a x)' = \frac{1}{x Lnx}$$

8.
$$(\sin x)' = \cos x$$

9.
$$(\cos x)' = -\sin x$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$
.

$$_{11.} (\text{ctg}x)' = -\frac{1}{\sin^2 x}$$

$$_{12.} \left(\arcsin x \right)' = \frac{1}{\sqrt{1 - x^2}}$$

$$_{12.} \left(\arcsin x \right)' = \frac{1}{\sqrt{1 - x^2}}.$$
 $_{13.} \left(\arccos x \right)' = -\frac{1}{\sqrt{1 - x^2}}.$

$$_{14.} \left(\operatorname{arctg} x \right)' = \frac{1}{1 + x^2}$$

$$_{14.} \left(\operatorname{arctg} x \right)' = \frac{1}{1+x^2}.$$
 $_{15.} \left(\operatorname{arcctg} x \right)' = -\frac{1}{1+x^2}.$