干扰腺病毒构建和包装手册

1. 服务流程	3
2. 仪器与试剂	4
3. 构建实例	5
3.1. 基因干扰腺病毒载体构建:	5
3.1.1. 目的基因	5
3.1.2. 载体信息	5
3.1.3. 干扰载体图谱(NC 序列)	5
3.2. 质粒构建步骤	6
3.2.1. RNA 靶点设计	6
3.2.2. 载体酶切	6
3.2.3. 目的序列合成及退火	6
3.2.4. 退火产物与载体进行连接	7
3.2.5. 转化涂板	7
3.2.6. 阳性克隆摇菌及质粒提取	7
3.2.7. 质粒质控(目的基因测序)	7
3.2.8. 测序引物	8
4. 腺病毒包装	9
4.1. AD293 细胞准备	9
4.2. 腺病毒包装系统转染	9
4.3. 腺病毒收集及浓缩	10
4.4. 病毒质量检测	10

4.4.1.	物理指标检测	. 11
4.4.2.	无菌检测	. 11
443	病毒滴度测定	11

1. 服务流程

2. 仪器与试剂

表 1 主要仪器及生产商

生产厂家
美国 ThermoFisher 公司
美国 ThermoFisher 公司
德国 Eppendorf 公司
新加坡 ESCO 公司
美国 ThermoFisher 公司
德国 Binder 公司
美国 Axygen 公司
美国 Corning 公司
美国 ThermoFisher 公司
北京赛智创业科技有限公司
美国 BioRad 公司

表2主要试剂及生产商

试剂名称	生产厂家
	北京艾德莱生物科技有限公司
限制性内切酶类	美国 NEB 公司/美国 ThermoFisher 公司
DNA Ligase	北京合生基因科技有限公司
腺病毒包装试剂盒	北京合生基因科技有限公司
EpFect Transfection Reagent	北京合生基因科技有限公司
EvaGreen 2× Master Mix	北京合生基因科技有限公司
DMEM 高糖培养基	美国 Gibco 公司
RPMI 1640 培养基	美国 Gibco 公司
胎牛血清	美国 Gibco 公司

3. 构建实例

以 RNAi 阴性对照靶点序列为例描述载体构建及腺病毒包装过程。

3.1.基因干扰腺病毒载体构建:

3.1.1. 目的基因

NC 序列

3.1.2. 载体信息

载体编号	载体元件	原核抗性
XX	ADV-U6-shRNA-EF1α-EGFP	AMP

3.1.3. 干扰载体图谱(NC序列)

干扰腺病毒载体示例

3.2. 质粒构建步骤

3.2.1. RNA 靶点设计

针对目的基因序列,遵循 RNAi 靶点设计原则,设计多个 RNAi 靶点序列,选择最优靶点构建目的载体。除了针对目的基因的靶点序列外,我们也使用一些无义序列作为 RNAi 阴性对照。另外,RNAi 靶点序列也可由客户提供,根据客户的需求构建在相应的载体上。

3.2.2. 载体酶切

酶切骨架载体,对载体酶切产物进行琼脂糖凝胶电泳,回收目的条带:

酶切体系:

10x buffer 2 μL

酶 1 μL

酶 2 1 μL

Plasmid/product 2~3 µL

Add ddH₂O to 20 µL

3.2.3. 目的序列合成及退火

根据目的序列及骨架载体序列,设计引物序列;先合成单链引物序列,然后退火成双链 DNA。

ddH₂O 14 μL

 $10 \times Buffer$ 2 μL

100 μM 正向引物 2 μL

100 μM 反向引物 2 μL

反应程序为:95 ℃ 3 min , 95 ℃ 到 25 ℃ 缓慢冷却,例如 -1 ℃/30 s

3.2.4. 退火产物与载体进行连接

退火产物 1 μL

骨架载体 1 μL

T4 ligase 1 uL

10× T4 ligase Buffer 1 μL

 ddH_2O 6 μL

Total 10 uL

3.2.5. 转化涂板

连接后产物 5-10 μ L 转化至 100 μ L 感受态,42°C金属浴,热激 1 min,冰上迅速预冷 2 min,在超净工作台中,加入 600 μ L 无抗培养基,37°C 摇床振荡培养 1 h,取适量菌液涂布在含有相应抗生素的平板上,在恒温培养箱中倒置培养 12-16 h。

3.2.6. 阳性克隆摇菌及质粒提取

挑选 3-4 个单菌落摇菌,加入相应抗性培养基摇菌过夜(8 mL LB 液体培养基),然后参照质粒抽提试剂盒进行质粒抽提。

3.2.7. 质粒质控(目的基因测序)

完成干扰腺病毒质粒构建后,针对目的基因序列测序,并比对鉴定,以获得构建正确的质粒。

基因干扰腺病毒载体信息

载体编号	shRNA 序列
NC	5' -AAACGTGACACGTTCGGAGAACGAACGTGTCACGTTT -3'

NC 载体测序结果:

图 3.1.1 基因干扰腺病毒质粒测序比对结果

3.2.8. 测序引物

引物名称	序列
NC 质粒	CAGGAAGAGGCCTATTTCCC

4. 腺病毒包装

4.1.AD293 细胞准备

将 $3\sim5\times10^6$ 个 AD293 细胞传代接种至 100 mm 细胞培养皿中,置于 37%,5% CO2 的培养箱中,培养 16 h~24 h。传代过程中需要将细胞充分消化为单细胞悬液,以获得较好的包装效果。

4.2. 腺病毒包装系统转染

- 1) 将腺病毒骨架质粒线性化转染 AD293 细胞
- 2) 观察感染 72h 荧光表达情况。

干扰腺病毒包装过程中荧光表达情况示例

4.3. 腺病毒收集及浓缩

- 1) 7-10 天时观察 AD 293 细胞状态及出毒效率,将上清及细胞全部收集 置于-80℃反复冻融 3 次;
- 2) 将冻融后的病毒悬液依次接种三次,接种量做梯度处理,分别收集 3-5 天细胞病变完全的感染组,置于-80℃反复冻融3次;
- 3) 用适量腺病毒悬液感染 AD 293 15 cm 培养皿 ,3-5 天待细胞病变完全 收集病毒悬液置于-80℃反复冻融 3 次 ;
- 4) 5000 rpm 离心 10 min,弃细胞碎片,收集上清加 PEG 8000 浓缩过夜。12000 rpm 离心上述混合物 20 min,弃上清,将沉淀物悬浮在密度为 1.10 g / mL CsCl 溶液中;
- 5) CsCl 密度梯度离心, 2,0000 rpm 离心 3h, 收集密度在 1.30g / mL 和 1.40g / mL 之间的病毒于透析袋中, 在透析缓冲液中 4℃过夜, 中间换 一次透析液。收集病毒, 测定病毒滴度;

4.4.病毒质量检测

腺病毒的质量控制要点包括物理状态检测、无菌检测及病毒滴度检测。

4.4.1. 物理指标检测

- 1) 颜色判定:通过肉眼判定,腺病毒保存液呈澄清液体状。
- 2) 粘稠度判定:用 20-200 μL 规格移液器缓慢吸取 50 μL 腺病毒保存液体, 无明显粘稠感或吸液滞后现象;

4.4.2. 无菌检测

将病毒加入 293 细胞验证,正常培养 24 h 后镜检,无任何细菌及真菌污染情况,同时参照空细胞组,细胞间隙无明显颗粒存在,培养基澄清透明。

4.4.3. 病毒滴度测定

- 选取状态良好的 AD 293 细胞,使用完全培养及重悬细胞,制备成 2.5 ×10⁵ 个/mL 的细胞悬液,24 孔板每个孔中接种 1mL 细胞,37℃、5%CO₂培养 1 小时。
- 2) 准备好 10 倍梯度稀释的病毒样品,每孔空逐滴加入 30 µL 病毒样品。
- 3) 37℃、5% CO₂培养 2 天。
- 4) 轻轻去除培养液, 艳 24 孔板侧壁缓慢加入预冷的甲醇 0.5mL, -20℃ 固定 10 min。
- 5) 使用500 µL含10% BSA的 PBS 轻轻冲洗细胞3次(切记将细胞冲起)。
- 6) 使用含 10% BSA 的 PBS 稀释 1000 × anti-Hexon 抗体,每孔中添加 250 μL, -37℃ 孵育 1 小时。
- 7) 使用500 µL含10% BSA的 PBS 轻轻冲洗细胞3次(切记将细胞冲起)。
- 8) 使用含 10% BSA 的 PBS 稀释 500 ×辣根过氧化物酶标记的二抗,每孔中添加 250 μL, -37℃孵育 1 小时。
- 9) 使用 500 μL 含 10%BSA 的 PBS 轻轻冲洗细胞 3 次 切记将细胞冲起)。
- 10) 加入 250 µL 新配置的 1 × DAB 工作液至每孔, 室温孵育 10 min。
- 11) 弃去 DAB , 使用使用 1ml 含 10% BSA 的 PBS 轻轻冲洗细胞。
- 12) 每孔随机选择 5 个视野 ,使用光学显微镜 10×物镜下计算阳性细胞个数。

- 13) 计算没孔阳性细胞的平均个数和病毒滴度。
- 14) 计算显微镜下视野中阳性细胞的平均个数。选择一个梯度,此梯度视野中有 5-50 个阳性细胞,随机选择至少 5 个区域计数。
- 15) 计算 24 孔板中每孔视野的个数。对于多数显微镜 标准 $10 \times 10 \times 10 \times 10$ 物镜所观察到的视野直径为 $1.8 \, \text{mm}$,因此每个视野的面积= $3.14 \times 10 \times 10$ (D/2)² = $3.14 \times 0.92 = 2.54 \, \text{mm}^2$ 。
- 16) 对于一个标准 24 孔板,培养面积为 2.0 cm², 因此每孔视野数= 2.0 cm²/2.54 mm² = $2.0 \text{ cm}^2/2.54 \times 10^{-2} \text{ cm}^2 = 79$, 如果您不能确定您的物镜所观察到的视野直径或者您使用的不是 $10 \times 10 \times 10^{-2} \text{ cm}^2 = 10 \times 10^{-2}$ 而球计数板来确定。
- 17) 滴度计算式

18) 本次实验在显微镜下 5 个视野中计算的阳性细胞平均数为 6.6, 此孔病毒稀释了 10⁶倍,根据以上公式得出:

病毒滴度 =
$$\frac{6.6 \times 79 \times 10^6}{0.03}$$
 = 1.73 × 10¹⁰ IFU/mL