UD2. BINARIO

Existen 10 tipos de personas... las que saben binario y las que no.

¿Porqué los seres humanos usamos el sistema decimal?

¿Porqué las máquinas usan el sistema binario?

1. BINARIO A DECIMAL

Video: https://www.youtube.com/watch?v=Ub5L-XrVxUM

2. PASAR DE BINARIO A DECIMAL

2.1. NÚMEROS DE 1 BIT

Como podemos observar, con palabras de 1 bit podemos representar un total de 2¹ (2) números, cuyo rango va de 0 a 1.

2.2. NÚMEROS DE 2 BITS

2 ¹	2 ⁰	
2	1	Decimal
0	0	0
0	1	1
1	0	2
1	1	3

Como podemos observar, con palabras de 2 bits podemos representar un total de 2^2 (4) número, cuyo rango va de 0 a 3.

2.3. NÚMEROS DE 3 BITS

2 ²	2 ¹	2 ⁰	
4	2	1	Decimal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Como podemos observar, con palabras de 3 bits podemos representar un total de 2^3 (8) números, cuyo rango va de 0 a 7.

2.4. NÚMEROS DE 8 BITS (OCTETOS)

	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
	128	64	32	16	8	4	2	1	Suma
Ej. 1	0	0	0	0	1	0	0	1	9
Ej. 2	1	1	0	0	1	1	0	0	204

Como podemos observar, con palabras de 8 bit podemos representar un total de 28 (256) números, cuyo rango va de 0 a 255.

2.5. NÚMEROS DE X BITS

Con palabras de X bits podemos representar un total de 2^{X} números, cuyo rango va de 0 a 2^{X} -1.

3. DECIMAL A BINARIO

Video: https://youtu.be/lpxNHH88HRU

3.1. CONSEJOS PARA EL PASO DE BINARIO A DECIMAL

- Si el bit de menor peso vale 1 nos encontraremos ante un número impar.
- Si añadimos ceros por la izquierda a un número binario, el número no cambia.
- Si añadimos ceros por la derecha a un número binario lo estamos multiplicando por dos.
- Si el número que es todo unos, una forma rápida de calcular su valor es calcular el siguiente número y restarle uno a posteriori. Es decir, si tengo que obtener el valor de 111111, puedo calcular el valor de 1000000 que es 64 y restarle uno obteniendo que (111111)₂ = (63)₁₀.

3.2. NÚMEROS DE 8 BITS (OCTETOS)

Rellena la tabla

¿Se puede representar el número 315 con palabras de 8 bits? ¿Qué ocurre?

¿Qué significa (111)2?

¿Es posible este número :(2)2?

3.3. BINARIO A HEXADECIMAL

Video: https://youtu.be/uQaLpYDCkAA

3.4. HEXADECIMAL A BINARIO

Los valores alfanuméricos en hexadecimal son 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Hexadecimal	Binario	Hexadecimal	Binario
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Video: https://youtu.be/Wx9X14aVfMg

¿Cuáles son todos los símbolos del hexadecimal?

¿De cuántos dígitos en binario está compuesto un símbolo hexadecimal?

¿Cuanto es (10)₁₆ en base 10? ¿Y (10)₁₆ en decimal? ¿Y (FF)₁₆ en decimal? ¿Y (GG)₁₆ en decimal?

4. BIBLIOGRAFÍA

- <u>Direcciones IPv6 Convenciones y Formatos</u>
- Conversor de números decimales a binario
- Conversor de binario a sistema decimal
- BINARY GAME