

CMPT-413: Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 7, 2013

Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

$$VP \rightarrow V NP PP$$
 (1)

$$NP \rightarrow NP PP$$
 (2)

for input: I_{VP} saw I_{NP} the man ... I_{PP} with the telescope I_{NP} , RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)

Structure Based Ambiguity Resolution

- Garden-paths look structural: The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:
 - The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

► Learning Prepositional Phrase Attachment: Annotated Data

V	n1	р	n2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
÷	:	÷	:	:

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Back-off Smoothing

- Let 1 represent noun attachment.
- We want to compute probability of noun attachment: p(1 | v, n1, p, n2).
- ▶ Probability of verb attachment is $1 p(1 \mid v, n1, p, n2)$.

Back-off Smoothing

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.
- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment.
- Modify the PCFG model to be sensitive to words and other context-sensitive features of the input.
- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb.

Some other studies

- Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- Merlo, Crocker and Berthouzoz, 1997:
 test on multiple PPs, generalize disambiguation of 1 PP to 2-3
 PPs

14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank

same model as CB95; but generalized to dealing with upto 3PPs

1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

Note that this is still not the real problem faced in parsing natural language

Probability Models

- \triangleright p(x, y): x = input, y = labels
- ▶ Pick best prob distribution p(x, y) to fit the data
- Max likelihood of the data according to the prob model equivalent to minimizing entropy

Probability Models

- Max likelihood of the data according to the prob model
- Equivalent to picking best parameter values θ such that the data gets highest likelihood:

$$\max_{\theta} p(\theta \mid \text{data}) = \max_{\theta} p(\theta) \cdot p(\text{data} \mid \theta)$$

Advantages of probability models

- parameters can be estimated automatically, while scores have to twiddled by hand
- parameters can be estimated from supervised or unsupervised data
- probabilities can be used to quantify confidence in a particular state and used to compare against other probabilities in a strictly comparable setting
- modularity: p(semantics) · p(syntax | semantics) · p(morphology | syntax) · p(phonology | morphology) · p(sounds | phonology)

Naive Bayes Classifier

- ▶ **x** is the input that can be represented as d independent features f_i , $1 \le j \le d$
- y is the output classification

$$P(y \mid \mathbf{x}) = \frac{P(y) \cdot P(\mathbf{x}|y)}{P(\mathbf{x})}$$

$$P(\mathbf{x} \mid y) = \prod_{i=1}^d P(f_i \mid y)$$

$$P(y \mid \mathbf{x}) = P(y) \cdot \prod_{j=1}^{d} P(f_j \mid y)$$

Using Naive Bayes for Document Classification

- Spam text: Learn how to make \$38.99 into a money making machine that pays ... \$7,000 / month!
- Distinguish spam text from regular email text
- Find useful features to make this distinction

- Useful features
 - 1. contains turn \$AMOUNT into
 - 2. contains \$AMOUNT
 - 3. contains Learn how to
 - 4. contains exclamation mark at end of sentence

- how many times do these features occur?
 - contains: turn \$AMOUNT into in spam text: 50 in normal email: 2 i.e. 25x more likely in spam
 - 2. contains: \$AMOUNT
 in spam text: 90
 in normal email: 10
 i.e. 9x more likely in spam

How likely is it for both features to occur at the same time in a spam message?

1. contains: turn \$AMOUNT into

contains: \$AMOUNT

- Assume we have a new feature, contains: turn \$AMOUNT into and \$AMOUNT
- ► The model predicts that the event that both features occur simultaneously has probability $\frac{140}{152} = 0.92$
- But Naive Bayes assumes that these features are independent and should occur with probability: 0.92 · 0.9 = 0.864

- Naive Bayes needs overlapping but independent features
- How can we use all of the features we want?
 - 1. contains turn \$AMOUNT into
 - contains \$AMOUNT
 - contains Learn how to
 - 4. contains exclamation mark at end of sentence
- how about giving each feature a weight w equal to its log probability: $w = \log p(f, y)$

- each feature gets a score equal to its log probability
- Assign scores to features:
 - 1. $w_1 = +1$ contains turn \$AMOUNT into
 - 2. $w_2 = +5$ contains \$AMOUNT
 - 3. $w_3 = +0.2$ contains Learn how to
 - 4. $w_4 = -2$ contains exclamation mark at end of sentence

- so add the scores and treat it like a log probability
- ▶ log p(spam | feats) = 4.2
- ▶ but then, p(spam | feats) = exp(4.2) = 66.68
- how do we compute keep arbitrary scores and still get probabilities?

- Let there be m features, $f_k(\mathbf{x}, y)$ for k = 1, ..., m
- Define a parameter vector w ∈ R^m
- Each (x, y) pair is mapped to score:

$$s(\mathbf{x},y) = \sum_{k} w_{k} \cdot f_{k}(\mathbf{x},y)$$

Using inner product notation:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y) = \sum_{k} w_{k} \cdot f_{k}(\mathbf{x}, y)$$

 $s(\mathbf{x}, y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$

To get a probability from the score: Renormalize!

$$Pr(y \mid \mathbf{x}, \mathbf{w}) = \frac{exp(s(\mathbf{x}, y))}{\sum_{y'} exp(s(\mathbf{x}, y'))}$$

The name 'log-linear model' comes from:

$$\log \Pr(y \mid \mathbf{x}, \mathbf{w}) = \underbrace{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)}_{\text{linear term}} - \underbrace{\log \sum_{y'} exp\left(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y')\right)}_{\text{normalization term}}$$

- Once the weights are learned, we can perform predictions using these features.
- ► The goal: to find w that maximizes the log likelihood L(w) of the labeled training set containing (x_i, y_i) for i = 1 ... n

$$L(\mathbf{w}) = \sum_{i} \log \Pr(y_{i} \mid \mathbf{x}_{i}, \mathbf{w})$$

$$= \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \log \sum_{y'} \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

Maximize:

$$L(\mathbf{w}) = \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \log \sum_{y'} exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

Calculate gradient:

$$\frac{dL(\mathbf{w})}{d\mathbf{w}}\Big|_{\mathbf{w}}$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \frac{1}{\sum_{y''} \exp(\mathbf{w} \cdot \mathbf{f}(x_{i}, y''))}$$

$$\sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \cdot \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \frac{\exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y'))}{\sum_{y''} \exp(\mathbf{w} \cdot \mathbf{f}(x_{i}, y''))}$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}_{i}, y_{i}) - \sum_{i} \sum_{y'} \mathbf{f}(\mathbf{x}_{i}, y') \Pr(y' \mid \mathbf{x}_{i}, \mathbf{w})$$
Observed counts
$$= \sum_{i} \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}_{i}, y''))$$
Expected counts

- ► Init: $\mathbf{w}^{(0)} = \mathbf{0}$
- ▶ $t \leftarrow 0$
- Iterate until convergence:
 - Calculate: $\Delta = \left. \frac{\mathit{dL}(\mathbf{w})}{\mathit{d}\mathbf{w}} \right|_{\mathbf{w} = \mathbf{w}^{(t)}}$
 - Find $\beta^* = \operatorname{argmax}_{\beta} L(\mathbf{w}^{(t)} + \beta \Delta)$
 - ► Set $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \beta^* \Delta$

Learning the weights: w: Generalized Iterative Scaling

```
f^{\#} = max_{x,y} \sum_{i=1}^{k} f_i(x,y)
For each iteration
      expected[1 .. # of features] \leftarrow 0
      For i = 1 to | training data |
            For each feature f_i
                  expected[i] += f_i(x_i, y_i) \cdot P(y_i \mid x_i)
      For each feature f_i
            observed[j] = f_i(x, y) \cdot \frac{c(x, y)}{\text{training data}}
      For each feature f_i
            W_j \leftarrow W_j \cdot \sqrt[f^{\#}]{\frac{\text{observed[j]}}{\text{expected[i]}}}
cf. Goodman, NIPS '01
```

25/26

Maximum Entropy

- ► The log-linear model has an interpretation as a *maximum* entropy model.
- For observed events, maximize likelihood. For unobserved events, from all consistent models pick the one with maximum entropy.
- The maximum entropy principle: related to Occam's razor and other similar justifications for scientific inquiry
- Make the minimum possible assumptions about unseen data
- Also: Laplace's Principle of Insufficient Reason: when one
 has no information to distinguish between the probability of
 two events, the best strategy is to consider them equally likely