# §7.1 Integration by Parts

**In-class Activity 7.1** 



Dr. Jorge Basilio

gbasilio@pasadena.edu

### **Activity 1:**

Evaluate using IBP:

(a) 
$$\int xe^x dx$$

(b) 
$$\int t^2 \sin(t) dt$$

## **Activity 2:**

Evaluate using IBP:

(a) 
$$\int_{1}^{3} \ln(x) \, dx$$

(b) 
$$\int_0^1 \tan^{-1}(x) dx$$

#### **Activity 3:**

Evaluate using IBP:  $\int \cos(x)e^x dx$ 

In this activity, it feels like you go around in a circle.

You'll do IBPs twice and come back to the original integral. If we set  $I = \int \cos(x)e^x dx$ , then you can re-arrange to get 2I (after 2 IBPs).

So I call this the "2 I -trick."

## **Activity 4:**

Use the reduction formula to evaluate:  $\int \sin^3(x) dx$ 

#### **Activity 5:**

#### Evaluate the following:

(a) 
$$\int_0^{\pi/3} e^{2x} \cos(3x) \, dx$$

(b) 
$$\int x^7 (x^4 + 1)^{2/3} dx$$

(Hint: By taking  $x^3$  and grouping it with the  $(x^4+1)^{2/3}$  term we can pull off the integration using u-sub. So, choose  $dv=(x^4+1)^{2/3}(4x^3)dx$  and  $u=\frac{1}{4}x^4$ )

(c) 
$$\int \frac{x^3 e^{x^2}}{(x^2+1)^2} dx$$