EE5609 Assignment 11

SHANTANU YADAV, EE20MTECH12001

The python solution code is available at

https://github.com/Shantanu2508/Matrix Theory/ blob/master/Assignment 11/assignment11.py

1 Problem

by the vectors $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}$?

2 EXPLANATION

Let

$$S = \left\{ \begin{pmatrix} 2 \\ -1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 9 \\ -5 \end{pmatrix} \right\}$$
 (2.0.1)

If $\begin{vmatrix} -1 \\ 0 \end{vmatrix} \in span(S)$ there exists a unique solution **x** such that

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 3 & 1 & 9 \\ 2 & -9 & -5 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
 (2.0.2)

Using row-reduction on augmented matrix

$$\begin{array}{c} \text{ttps://github.com/Shantanu2508/Matrix_Theory/blob/master/Assignment_11/assignment11.py} \\ & \begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & 1 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{2}} \begin{pmatrix} 1 & -\frac{7}{2} & \frac{7}{2} & \frac{7}{2} \\ -1 & 1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & 1 \end{pmatrix} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Since rank(A) = 2 and rank(A : B) = 3 solution to above system of linear equation does not exist.

Therefore
$$\begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix} \notin span(S)$$
.