Machine Learning

KNN

Dr. Shuang LIANG

Recall: Logistic Regression

Model

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_{i} x_{i} + b\right)$$

Output: between 0 and 1

Loss: Cross Entropy

$$= \sum_{n} - \left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n}) \right) \right]$$

Optimization: Gradient Descent

$$w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n) \right) x_i^n$$

Recall: Sigmoid

Today's Topics

- Type of classifiers
- KNN
- Setting Parameters
- Analysis of KNN

Today's Topics

- Type of classifiers
- KNN
- Setting Parameters
- Analysis of KNN

Types of Classifiers

Model-based

Discriminative

directly estimate a decision rule/boundary

Logistic regression Decision tree Neural network

.....

Generative

build a generative statistical model

Naïve Bayes Bayesian Networks HMM

....

No Model

Instance-based

Use observation directly

KNN

Discriminative

- Only care about estimating the conditional probabilities P(y|x)
- Very good when underlying distribution of data is really complicated (e.g. texts, images, movies)

Generative

- Model observations (x, y) first (P(x, y)), then infer P(y|x)
- Good for missing variables, better diagnostics
- Easy to add prior knowledge about data

Today's Topics

- Type of classifiers
- KNN
- Setting Parameters
- Analysis of KNN

KNN

- A simple, yet surprisingly efficient algorithm
- Requires the definition of a distance function or similarity measures between samples

 Select the class based on the majority vote in the k closest points

Step1: Find nearest neighbors

$$nbh_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$$

 $x \mapsto \{k \text{ elements of } S_{train} \text{ which are the closest to } x\}$

$$nbh_{S_{train},3}(x) = \{x_3, x_4, x_7\}$$

How to define the distance?

Distance Metric

Distance Metric

L1 (Manhattan) distance

$$d_1(I_1, I_2) = \sum_{p} |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_1(I_1, I_2) = \sum_{p} |I_1^p - I_2^p| \qquad d_1(I_1, I_2) = \sqrt{\sum_{p} (I_1^p - I_2^p)^2}$$

Step1: Find nearest neighbors

$$nbh_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$$

 $x \mapsto \{k \text{ elements of } S_{train} \text{ which are the closest to } x\}$

$$nbh_{S_{train},2}(x) = \{x_5, x_8\}$$

It seems that $\{x_5, x_9\}$ and $\{x_8, x_9\}$ work fine as well!

Step1: Find nearest neighbors

$$nbh_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$$

 $x \mapsto \{k \text{ elements of } S_{train} \text{ which are the closest to } x\}$

S_{train}
Testing point

$$nbh_{S_{train},2}(x) = \{x_5, x_8\}$$

Not uniquely defined!
It will depend on the strategy
Often ties are broken randomly

Step2: Select Class

$$f_{S_{train},k}(x) = majority\{y_i : x_i \in nbh_{S_{train},k}(x)\}$$

$$f_{S_{train},1}(x) = 1$$

$$f_{S_{train},3}(x) = ?$$

Step2: Select Class

$$f_{S_{train},k}(x) = majority\{y_i : x_i \in nbh_{S_{train},k}(x)\}$$

$$f_{S_{train},1}(x) = 1$$

$$f_{S_{train},3}(x) = 0$$

Step2: Select Class

$$f_{S_{train},k}(x) = majority\{y_i: x_i \in nbh_{S_{train},k}(x)\}$$

$$f_{S_{train},4}(x) = ?$$

Tie!

For the binary case it is good to pick k to be odd so that there is a clear winner.

KNN

- Summary
- Step1: Find nearest neighbors

L1 (Manhattan) distance

L2 (Euclidean) distance

$$d_1(I_1, I_2) = \sum_{p} |I_1^p - I_2^p|$$

$$d_1(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Step2: Select Class (majority vote)

Today's Topics

- Type of classifiers
- KNN
- Setting Parameters
- Analysis of KNN

Setting Parameters

What do we need to set for KNN?

- What is the best value of k to use?
- What is the best distance to use?

hyperparameters: choices about the algorithm that we set rather than learn.

Very problem-dependent.

Must try them all out and see what works best.

Results in different value of k

Results in different distance metrics

L1 (Manhattan) distance

$$d_1(I_1, I_2) = \sum_{p} |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_1(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!

train validation test

Any better solutions?

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

- Example of 5-fold crossvalidation for the value of k.
- Each point: single outcome.
- The line goes through the mean, bars indicated standard deviation
- Seems that k ~= 7 works best for this data

Run the demo with different hyperparameters

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Today's Topics

- Type of classifiers
- KNN
- Setting Parameters
- Analysis of KNN

Bias-Variance for KNN

Small k

Small bias

Very complex decision boundary **Large variance**Overfitting

K = 15

Large k

Large bias

extreme case: k=n, constant prediction

Small variance

Bias-Variance for KNN

	Training	Prediction
Complexity	O(1)	O(N)

	Training	Prediction
Complexity	O(1)	O(N)
Action	Simply remembers all the training data No explicit training process "Lazy Learning"	For each test sample: Find closest training sample Predict label of nearest sample

	Training	Prediction
Complexity	O(1)	O(N)
Action	Simply remembers all the training data No explicit training process "Lazy Learning"	For each test sample: Find closest training sample Predict label of nearest sample

	Training	Prediction
Complexity	O(1)	O(N)
Action	Simply remembers all the training data No explicit training process "Lazy Learning"	For each test sample: Find closest training sample Predict label of nearest sample

- We want classifiers that are fast at prediction; slow for training is ok.
- ◆ Test time performance is usually much more important in practice.

Can we use KNN on images?

Very slow at test time

Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Can we use KNN on images?

Curse of dimensionality

• In high-dimensional situations, the data samples are sparse and the distance calculation is difficult

Dimensions =
$$3$$

Points = 4^3

Summary

KNN Algorithm

- Step1: Find nearest neighbors
- Step2: Select Class (majority vote)

Setting Hyperparameters

- value of k
- distance metric

Analysis of KNN

- bias and variance
- complexity(train/predict)

Summary

Strength/Weakness of KNN

- ✓ Simple to implement and intuitive to understand
- ✓ Can learn non-linear decision
- ✓ No Training Time
- × High prediction complexity for large datasets
- × Higher prediction complexity with higher dimension
- × KNN Assumes equal importance to all features
- × Sensitive to outliers

When should we use KNN?

- spatial correlation
- e.g. Recommender system: similarity between users can be viewed as distance)
- low dimension
- e.g. Text mining

Practice

• When k=1/3/5, which class will the KNN algorithm discriminate the test sample into?

