Алгебраическое уравнение Риккати в общем виде:

$$E^T \dot{P}E + E^T P A + A^T P E + Q - E^T P B R^{-1} B^T P E = 0$$

Дискретизируем по времени

$$\dot{P}(t) \approx \frac{P_{k+1} - P_k}{\tau}$$

$$E^{T}(P_{k+1} - P_k)E + \tau E^{T}P_{k+1}A + \tau A^{T}P_{k+1}E + \tau Q - \tau E^{T}P_{k+1}BR^{-1}B^{T}P_{k+1}E = 0$$

Упростим

$$E^{T}P_{k+1}BR^{-1}B^{T}P_{k+1}E \approx E^{T}P_{k+1}BR^{-1}B^{T}P_{k}E,$$

так как $P_{k+1} \approx P_k + \delta P$ при малом изменении P_{k+1} относительно P_k

$$E^{T}P_{k+1}E + \tau(E^{T}P_{k+1}A + A^{T}P_{k+1}E - E^{T}P_{k+1}BR^{-1}B^{T}P_{k}E) = E^{T}P_{k}E - \tau Q$$

Разобеьм временные шаг τ на две итерации(два полушага) с помощью параметров $\alpha + \beta = 1$, разделяя смешанные члены $E^T PA$ и $A^T PE$. α — «вес» первого полушага, β — «вес» второго.

$$E^T P_{k+1} E + \tau E^T P_{k+1} A + \tau A^T P_{k+1} E \to (E^T + \alpha \tau A^T) P_{k+\frac{1}{2}} (E + \alpha \tau A) + (E^T + \beta \tau A^T) P_{k+1} (E + \beta \tau A) + (E^T +$$

Соответственно

$$(E^{T} + \alpha \tau A^{T}) P_{k + \frac{1}{2}} (E + \alpha \tau A) = E^{T} P_{k} E - \tau Q + \tau E^{T} P_{k} B R^{-1} B^{T} P_{k} E$$

$$(E^{T} + \beta \tau A^{T})P_{k+1}(E + \beta \tau A) = E^{T}P_{k}E - \tau Q + \tau E^{T}P_{k+\frac{1}{2}}BR^{-1}B^{T}P_{k}E$$

Итерации Арнольда

- 1. Выбрать вектор v_1 с нормой 1(берем просто единичный)
- 2. Перебираем ј от 1 до т
 - (a) $w_j = Av_j$
 - (b) $h_{ij} = (w_j, v_i)$ для і от 1 до ј
 - (c) $w_j = w_j \sum_{i=1}^{j} h_{ij} v_i$
 - (d) $h_{j+1,j} = ||w_j||$
 - (e) $v_{j+1} = \frac{w_j}{h_{j+1,j}}$

Эвристический алгоритм подбора параметра на основе итераций Арнольда

- 1. Считаем матрицу H с искомыми собственными значениями итерациями Арнольда от матрицы A
- 2. Считаем матрицу H с искомыми собственными значениями итерациями Арнольда от матрицы A^{-1}
- 3. Находим параметры $\alpha_i = -\frac{1}{w_i}$ для A и $\alpha_{m+i} = -\frac{1}{w_i}$ для A^{-1}
- 4. Выбираем m наиболее разнесенных значений (обязательно минимальное и максимальное)

Алгоритм решения уравнения Риккати

- 1. Находим параметры сдвига α с помощью эвристического алгоритма
- 2. P_0 нулевая матрица
- 3. Перебираем k от 0 до m и полушагами находим следующие значения Р

$$(E^{T} + \alpha \tau A^{T})P_{k+\frac{1}{2}}(E + \alpha \tau A) = E^{T}P_{k}E - \tau Q + \tau E^{T}P_{k}BR^{-1}B^{T}P_{k}E$$
$$(E^{T} + \beta \tau A^{T})P_{k+1}(E + \beta \tau A) = E^{T}P_{k}E - \tau Q + \tau E^{T}P_{k+\frac{1}{2}}BR^{-1}B^{T}P_{k}E$$