Graduate Research Symposium

Introduction

What is plasmon?

Plasmon is a collective movement of charges ...

Surface Plasmon

Metal-dielectric interface Confined in normal(z) direction

Metal nanostructures E-field enhancement around the nanostructure

Applications

Bio-sensing, photovoltaics, non-linear enhancement, beam shaping, plasmonic laser, etc.

Introduction

Localized Surface Plasmon Resonance (LSPR)

Provide a strong field enhancement in a very confined volume

→ Strong signal enhancement and sensitive to local environment

Why controlling resonance frequency?

To match the applications, working conditions

How?

Particle's size, shape, ...

Material - Particle

Material - Host

Introduction

Localized Surface Plasmon Resonance (LSPR)

Provide a strong field enhancement in a very confined volume

→ Strong signal enhancement and sensitive to local environment

Why controlling resonance frequency?

To match the applications, working conditions

Two film-coupled nanoparticle systems

Gold nanoparticles on an oxidized aluminum

Lumdee et al., ACS Nano 6, 6301 (2012)

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Why gold nanospheres and Al₂O₃?

Gold nanoparticles on an oxidized aluminum

Lumdee et al., ACS Nano 6, 6301 (2012)

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Gold nanosphere and Al₂O₃ are thermally and chemically stable

Gold nanoparticles on an oxidized aluminum

Lumdee et al., ACS Nano 6, 6301 (2012)

Probe the same NP!

Gold nanoparticles on an oxidized aluminum

Lumdee et al., ACS Nano 6, 6301 (2012)

Microscopy images

Ring-shaped scattering?

Scattering spectra

Good: NP-to-NP resonance control

Not quite: small tuning range (585-550 nm)

Problem: the native oxide

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Why a gold film is better than aluminum?

→ No native oxide

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

50x

Getting the NP closer to the film

- → Larger tuning range
- → Add Al₂O₃ when needed

Catch: now the tuning is not on the same NP!

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Microscopy images

HSi-440C Hyperspectral Imaging (Gooch & Housego)

0 nm Al_2O_3 5 μm Not ring-shaped scattering? 1.3 nm 1.5 nm Al₂O₃ 2.2 nm Al₂O₃ 3.4 nm Al₂O₃ λ (nm) 700 600 650

Scattering spectra

Good: Improve tuning range (690-610 nm) But not NP-to-NP tuning

Two film-coupled nanoparticle systems

Gold nanoparticles on an oxidized aluminum

Lumdee et al., ACS Nano 6, 6301 (2012)

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Laser irradiation

Gold nanoparticles on Al₂O₃ coated gold films

Lumdee et al., J. Phys. Chem. C 117, 19127 (2013)

Gold and Al_2O_3 = chemically stable and thermally stable?

To check Indirect verification! 100 W/mm²! polarization Au NP Al_2O_3 Al₂O₃ Gold Gold Glass Glass

for bio-sensing, compare with other works using organic spacer layers

Summary

Localized surface plasmon resonances of metal nanostructures

→ provide confined and high field enhancement

Applications

Bio-sensing, photovoltaics, non-linear enhancement, beam shaping, plasmonic laser, etc.

Film-coupled nanoparticle structure

An easy way to control plasmon resonances of nanoparticles (140 nm tuning) Inorganic spacer layer helps improve stability under laser irradiation

Questions, comments, suggestions? ©