МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

ФАКУЛЬТЕТ ЕЛЕКТРОНІКИ

Кафедра мікроелектроніки

ЗВІТ З ВИКОНАННЯ ПРАКТИЧНОЇ РОБОТИ № 5

3 курсу «Твердотільна електроніка»

На тему: «ВАХ біполярного транзистора»

Виконав: студент 3 курсу групи ДМ-82 Іващук Віталій Перевірив: Любомир Миколайович Королевич

Завдання:

Дано симетричний біполярний транзистор на основі p-n переходів заданих у попередніх практичних роботах. Ефективна ширина бази у рівноважному стані дорівнює 10 мкм. Побудувати вхідні та вихідні ВАХ біполярного транзистора в схемі з загальною базою для всіх (4х) режимів роботи.

Данні за варіантом:

Таблиця 1. Вхідні параметри

Матеріал	Ge
Градієнт концентрації акцепторів $N_A^{'}$, см ⁻⁴	$1,2\cdot 10^{19}$
Градієнт концентрації донорів N_D' , см ⁻⁴	$4.8 \cdot 10^{21}$
Довжина діода L_D , см	0,045
Площа поперечного перерізу S, см ²	0,011
Дифузійна довжина електронів L_n , см	0,005
Дифузійна довжина дірок L_p , см	0,002
Температурний потенціал φ_T , В	0,026
Коефіцієнт дифузії електронів D_n , $\frac{cm^2}{c}$	94
Коефіцієнт дифузії дірок D_p , $\frac{\text{см}^2}{\text{с}}$	44
Час життя носіїв $ au$, с	10^{-5}
Елементарний заряд q, Кл	$1,6 \cdot 10^{-19}$
Концентрація власних носіїв заряду n_i , см $^{-3}$	$2,4\cdot 10^{13}$
Ширина переходу в n -області l_n , см	$0,4147 \cdot 10^{-6}$
Ширина переходу в р-області l_p , см	$8,2941 \cdot 10^{-5}$
Висота потенціального бар'єра φ_0 , В	0,2707
Ефективна ширина бази W_b , см	10^{-4}

Виконання:

Для початку побудови ВАХ біполярного транзистора запишемо формули які описують сім'ї емітерних та колекторних характеристик. Оскільки у нашому випадку база знаходиться в р-області то діркові складові емітерного та колекторного струмів набагато менші за електроні складові і їх можна не враховувати, тоді запишемо формули для сімейств емітерних та колекторних характеристик у нашому випадку:

$$I_{nE} = -q \frac{D_n}{L_n} \frac{n_{p0}}{sh \frac{W_b}{L_n}} S_E \left(\left(e^{\frac{-U_{Eb}}{\varphi_T}} - 1 \right) ch \frac{W_b}{L_n} - \left(e^{\frac{-U_{bK}}{\varphi_T}} - 1 \right) \right)$$

$$I_{nK} = -q \frac{D_n}{L_n} \frac{n_{p0}}{sh \frac{W_b}{L_n}} S_K \left(\left(e^{\frac{-U_{Eb}}{\varphi_T}} - 1 \right) - \left(e^{\frac{-U_{bK}}{\varphi_T}} - 1 \right) ch \frac{W_b}{L_n} \right)$$

$$(1)$$

де S_E , $S_K = S$ — площі емітерного та колекторного переходів; D_n , L_n — коефіцієнт дифузії та довжина дифузії електронів у базі; n_{p0} — це нонцентрація неосновних носіїв заряду в базі — електронів. Її можна розраховувати за формулою:

$$n_{p0} = \frac{n_i^2}{N_A}. (2)$$

де, N_A —концентраця акцепторних домішок.

$$N_A = N_A' \cdot l_p.$$

Знайдемо числове значення:

$$n_{p0} = \frac{(2.4 \cdot 10^{13})}{1.2 \cdot 10^{19} * 8.2941 \cdot 10^{-5}} = 541443671256 \text{ cm}^{-3}$$

Тепер за допомогою рівнянь (1) ми можемо побудувати сім'ї характеристик транзистора у всіх 4 режимах роботи. Оскільки у нас схема зі спільною базою, то вхідна характеристика має вигляд:

$$I_E = f(U_{EE})|_{U_{EE} = const} \tag{3}$$

А вихідна характаристика має вигляд:

$$I_K = f(U_{EK})\Big|_{I_E = const} \tag{4}$$

Побудуємо сімейства вхідних і вихідних характеристик:

Рисунок 1. Вхідна характеристика транзистора

Рисунок 2. Вихідна характеристика транзистора

Побудувавши сімейства характеристик для біполярного транзистора зі загальною базою ми зможемо виділити області на ВАХ для різних режимів роботи.

- \in 4 режими роботи транзистора:
- 1)Режим відсікання ($U_{\it EE} < 0 \; i \; U_{\it EK} < 0$)
- 2)Режим насичення ($U_{\it EE} > 0 \; i \; U_{\it EK} > 0$)
- 3) активний нормальний режим ($U_{\it EE} > 0 \; i \; U_{\it EK} < 0$)

4) активний інверсний режим ($U_{E\!B} < 0 \ i \ U_{B\!K} > 0$)

Відмітимо ці області на вихідній характеристиці і зобразимо на рис. 3:

Рисунок 3. Вихідна характеристика транзистора з відміченими областями режиму роботи.

На рис. 3 цифрою 1 відмічено позначення режиму відсікання; 2 - режим насичення; 3 — активний нормальний режим; 4 — активний інверсивний режим.