Le contenu

I. Unités de mesure des angles : Radian et grade

Soit (C) un cercle de centre O et de rayon R et soient I et M deux points du cercle (C) et α est la mesure de l'angle $I\hat{O}M$:

$$\hat{IOM} = \alpha^{\circ} \text{ et } 0 \leq \alpha \leq 360^{\circ}.$$

 \otimes Déterminons l la longueur de l'arc IM :

On sait que le périmètre du cercle (C) est $2\pi R$.

$$2\pi R \leftrightarrow 360^{\circ}$$

Donc:

$$l \leftrightarrow \alpha^{\circ}$$

Par conséquent:
$$l = \frac{2\alpha\pi R}{360} = \frac{\alpha\pi R}{180}$$
.

Dans tous ce qui suit on s'intéresse à la mesure de l'angle \hat{IOM} , c'est pour cette raison qu'on pose R=1 .

PP Définition :

Soit (C) un cercle de centre O et de rayon R=1 et soient I et M deux points de (C).

La mesure de l'angle géométrique \hat{IOM} en radians est la longueur de l'arc \hat{IM} .

O Remarque:

1 rad est la mesure d'un angle qui intercepte un arc sur le cercle C(O,1) de longueur 1.

Proportionnalité des unités de mesure des angles :

Il existe trois unités de mesure des angles : Degré, Radian et grade.

La mesure d'un angle plat en degrés est $~180^\circ$ et en radians est π et en grades est

$$200gr$$
. C'est-à-dire : $180^{\circ} = \pi rad = 200gr$.

PP Définition:

Si x, y et z sont les mesures respectives d'un angle géométrique en degrés, radians et en

grades, alors:
$$\frac{x}{180} = \frac{y}{\pi} = \frac{z}{200}$$

O Exemple:

Déterminons en radians la mesure d'un angle sa mesure en degrés est : 45° .

On a :
$$\pi \leftrightarrow 180^{\circ}$$

 $a \leftrightarrow 45^{\circ}$

Donc:
$$a = \frac{45\pi}{180} = \frac{\pi}{4} rad$$
.

Application 0:

Compléter le tableau suivant:

Mesure en degrés	0	30	45	60	90		120	
Mesure en radians						$\frac{\pi}{8}$		2π

Remarques

II. Cercle trigonométrique-Abscisses curvilignes d'un point :

1. Cercle trigonométrique:

PP Définition :

Dans le plan muni d'un repère orthonormé $(O,\overrightarrow{OI},\overrightarrow{OJ})$, le cercle trigonométrique

(C) est un cercle de centre O et de rayon 1 et orienté dans le sens *direct* ou *positif* (le sens contraire des aiguilles d'une montre).

Le point I est appelé *l'origine* du cercle (C).

2. Abscisses curvilignes d'un point d'un cercle trigonométrique:

Définition :

Soit (C) un cercle trigonométrique.

Tout réel lpha est représenté sur (C) par un unique point M .

Le nombre α est appelé une abscisse curviligne du point M et on écrit $M(\alpha)$.

O Remarques:

- \otimes Si α est une abscisse curviligne d'un point M, alors tout nombre écrite sous la forme $\alpha+2k\pi$ tel que $k\in\mathbb{Z}$ est aussi une abscisse curviligne de M.
- \otimes Parmi toutes les abscisses curvilignes d'un point M une seule appartient à l'intervalle $]-\pi,\pi]$: c'est l'abscisse curviligne *principale*.

O Exemple:

Déterminons l'abscisse principale du point $M(\frac{37\pi}{3})$.

> Méthode ①:

On a:
$$\frac{37\pi}{3} = \frac{36\pi + \pi}{3} = 12\pi + \frac{\pi}{3}$$
.

Donc l'abscisse principale du point M est $\frac{\pi}{3}$.

Méthode 2:

Soit $lpha_{\scriptscriptstyle 0}\,$ l'abscisse principale du point M .

On a:
$$\frac{37\pi}{3} = \alpha_0 + 2k \pi$$
 tel que $k \in \mathbb{Z}$.

Donc:
$$\alpha_0 = \frac{37\pi}{3} - 2k \pi$$
.

Or
$$-\pi \prec \alpha_0 \leq \pi$$
, alors $-\pi \prec \frac{37\pi}{3} - 2k \pi \leq \pi$.

ذ لعرش عبد الكبير

Par suite : $\frac{34}{6} \le k < \frac{40}{6}$ c-à-d 5,66 $\le k < 6,66$.

Puisque $k \in \mathbb{Z}$, alors : k = 6.

D'où l'abscisse principale du point M est $\alpha_0 = \frac{37\pi}{3} - 2 \times 6\pi = \frac{\pi}{3}$.

Application 2: Exercice D de la série.

Exercice: Exercice

de la série.

O Conséquence:

Si x et y sont deux abscisses curvilignes d'un point M, alors il existe un entier k tel que $: x - y = 2k \pi$.

On écrit dans ce cas : $x \equiv y \left[2\pi \right]$ et on dit que x est **congru** à y **modulo** 2π .

Vérifier si la relation $x \equiv y [2\pi]$ est vraie dans les cas suivants :

$$\bullet \quad x = \frac{43\pi}{12} \quad et \quad y = -\frac{5\pi}{12}$$

$$\bullet \quad x = \frac{-13\pi}{8} \quad et \quad y = \frac{9\pi}{4}$$

III. Angle orienté de deux demi droites ayant même origine- Angle orienté de deux vecteurs :

On considère (P) le plan orienté dans le sens direct rapporté au repère orthonormé $(O,\overrightarrow{OI},\overrightarrow{OJ})$ et soient A et B deux points de (P).

L'angle formé par les demi droites [OA] et [OB] est appelé **angle orienté** de [OA] et [OB] et on le note par (OA,OB).

Cet angle est appelé aussi *angle orienté* de deux vecteurs \overrightarrow{OA} et \overrightarrow{OB} et le note par $(\overrightarrow{OA}, \overrightarrow{OB})$.

O Remarques:

- \otimes Si α est une mesure de l'angle orienté $(\overrightarrow{OA}, \overrightarrow{OB})$, alors tout nombre écrite sous la forme $\alpha + 2k\pi$ tel que $k \in \mathbb{Z}$ est aussi une mesure de cet angle. On écrit $(\overrightarrow{\overrightarrow{OA}}, \overrightarrow{\overrightarrow{OB}}) \equiv \alpha \big[2\pi \big]$.
- \otimes Parmi toutes les mesures de l'angle orienté $(\overrightarrow{OA}, \overrightarrow{OB})$ une seule appartient à l'intervalle $]-\pi,\pi]$: c'est la mesure *principale*.

Propriété : (Relation de Chasles)

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs non nuls du plan orienté. On a :

$$\left(\overrightarrow{u},\overrightarrow{v}\right) + \left(\overrightarrow{v},\overrightarrow{w}\right) \equiv \left(\overrightarrow{u},\overrightarrow{w}\right) \left[2\pi\right]$$

Déterminer une mesure de l'angle $(\overrightarrow{v}, \overrightarrow{w})$ sachant que :

O Conséquence:

Soient $A(\alpha)$ et $B(\beta)$ deux points sur un cercle trigonométrique de centre O et d'origine I. On a : $\left(\overline{\overrightarrow{OA}, \overrightarrow{OB}}\right) \equiv \beta - \alpha \left[2\pi\right]$.

Application

Soit (C) d'un cercle trigonométrique (C) de centre O et soient M et N deux points de (C) d'abscisses curvilignes respectives $-\frac{37\pi}{3}$ et $\frac{65\pi}{6}$.

 $\mathbf{1}$ Trouver les abscisses curvilignes principales de M et N.

Monter que : $(\overrightarrow{\overrightarrow{OM}}, \overrightarrow{ON}) = \frac{\pi}{2} [2\pi]$ puis déduire la nature du triangle OMN.

Propriété : (Relation de Chasles)

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs non nuls. On a :

•
$$(\overrightarrow{u}, \overrightarrow{v}) \equiv -(\overrightarrow{v}, \overrightarrow{u})[2\pi].$$

•
$$\left(-\overrightarrow{u}, -\overrightarrow{v}\right) \equiv \left(\overrightarrow{u}, \overrightarrow{v}\right) [2\pi].$$

•
$$(\overrightarrow{-u}, \overrightarrow{v}) \equiv \pi + (\overrightarrow{u}, \overrightarrow{v}) [2\pi].$$

•
$$(\overrightarrow{u}, -\overrightarrow{v}) \equiv \pi + (\overrightarrow{u}, \overrightarrow{v}) [2\pi].$$

Application®: Exercice @ de la série.

IV. Rapports trigonométriques d'un nombre réel :

Activité 0:

Soit ABC un triangle rectangle en A tel que AB = 3 et BC = 4.

Calculer $\sin \hat{B}$, $\cos \hat{B}$ et $\tan \hat{B}$.

1. Sunus-Cosinus-Tangente d'un nombre réel:

Soient (C) d'un cercle trigonométrique de centre O et d'origine I et J le point de

(C) tel que :
$$(\overline{OI}; \overline{OJ}) \equiv \frac{\pi}{2} [2\pi]$$
.

Soit M un point $\operatorname{de}(C)$ d'abscisse curviligne x et soit (Δ) la droite passante par I et parallèle (OJ).

ذ کوش عبد کبیر

Définition:

- On appelle l'abscisse du point M dans le repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ par *cosinus* du nombre réel x et on le note par : COS(x).
- On appelle l'ordonnée du point M dans le repère orthonormé $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ par sinus du nombre réel x et on le note par : Sin(x).
- ullet On suppose que M différente à J et J ':

L'abscisse du point T d'intersection de (Δ) et (OM) dans le repère (I,P) est appelé tangente du nombre réel x et on le note par : tan(x).

O Exemples:

Déterminons cosinus et sinus des points suivants : I(0), $J(\frac{\pi}{2})$, $I'(\pi)$ et $J'(-\frac{\pi}{2})$.

Dans le repère $\left(\overrightarrow{O,OI},\overrightarrow{OJ}\right)$ on a :

- Les coordonnées du point I sont: (1;0), donc : $\cos(0) = 1$ et $\sin(0) = 0$.
- Les coordonnées du point J sont: (0;1), donc : $\cos(\frac{\pi}{2}) = 0$ et $\sin(\frac{\pi}{2}) = 1$.
- Les coordonnées du point (-1;0) sont: (-1;0), donc : $\cos(\pi) = -1$ et $\sin(\pi) = 0$.
- Les coordonnées du point J 'sont: (0;-1), donc : $\cos(-\frac{\pi}{2}) = 0$ et $\sin(-\frac{\pi}{2}) = -1$.

O Conséquences:

Pour tout réel x on a les conséquences suivantes :

- $\circ -1 \le \cos(x) \le 1 \, et -1 \le \sin(x) \le 1.$
- o D'après le théorème de Pythagore : $\cos^2(x) + \sin^2(x) = 1$.
- Puisque x et $x + 2k \pi / k \in \mathbb{Z}$ deux abscisses curvilignes de même points, alors: $\cos(x + 2k \pi) = \cos(x)$, $\sin(x + 2k \pi) = \sin(x)$ et $\tan(x + 2k \pi) = \tan(x)$.
- o Pour tout réel x différent à $\frac{\pi}{2} + k \pi / k \in \mathbb{Z}$, on a :

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$
 et $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.

Exercice de la série.

2. Signe de cosinus - sinus - tangente d'un nombre réel :

Soit (C) un cercle trigonométrique de centre O et d'origine I et soit M un point de(C) d'abscisse curviligne x.

Signe de cos(x) sur IR

 $\cos(x) \ge 0$ si M est un point de l'arc rouge.

Donc le signe de cos(x) sur $]-\pi,\pi]$:

x	$-\pi$	$-rac{\pi}{2}$	$rac{\pi}{2}$	π
cos(x)	_	O	+ 0	-

Signe de sin(x) sur IR

 $\sin(x) \ge 0$ si M est un point de l'arc rouge.

Donc le signe de tan(x) sur $]-\pi,\pi]$:

	\boldsymbol{x}	$-\pi$		0		π
s	rin(x)		_	o	+	

Signe de tan(x) sur IR tel que $x \neq \frac{\pi}{2} + k \pi / k \in \mathbb{Z}$

 $tan(x) \ge 0$ si M est un point de l'arc rouge.

Donc le signe de tan(x) sur $]-\pi,\pi]$

x	$-\pi$	$-rac{\pi}{2}$		0		$\frac{\pi}{2}$	π
tan(x)	+		_	O	+		- 0

Application®: Exercice @ de la série.

3. Relations entre les rapports trigonométriques :

Pour tout réel X on a les relations suivantes:

La relation entre les rapports trigonométriques de x et de -x

$$\circ \cos(-x) = \cos x$$

ذ کوش عبد کبیر

$$\circ \sin(-x) = -\sin x$$

$$\cot (-x) = -\tan(x)$$
 tel que

$$x \neq \frac{\pi}{2} + k \pi / k \in \mathbb{Z}$$

lacktriangle La relation entre les rapports trigonométriques de x et de x

$$\circ$$
 $\cos(\pi + x) = -\cos x$

$$\circ \sin(\pi + x) = -\sin x$$

$$\circ \tan(\pi + x) = \tan(x) \quad \text{tel que} :$$

$$x \neq \frac{\pi}{2} + k \, \pi \, / \, k \in \mathbb{Z}$$

La relation entre les rapports trigonométriques de x et de $\pi - x$

$$\circ \cos(\pi - x) = -\cos(x)$$

$$\circ \sin(\pi - x) = \sin(x)$$

$$\circ \tan(\pi - x) = -\tan(x) \text{ tel que:}$$

$$x \neq \frac{\pi}{2} + k \pi / k \in \mathbb{Z}$$

La relation entre les rapports trigonométriques de x et de $\frac{\pi}{2}-x$

$$\circ \cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$

$$\circ \sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

$$x \neq \frac{\pi}{2} + k \pi / k \in \mathbb{Z}$$
 et

$$x \neq k \pi/k \in \mathbb{Z}$$

La relation entre les rapports trigonométriques de x et de $\frac{\pi}{2} + x$

$$\circ \cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$$

ذ لوشي عبد هبير

$$\circ \sin\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\cot \left(\frac{\pi}{2} + x\right) = -\frac{1}{\tan(x)} \quad \text{tel que} :$$

$$x \neq \frac{\pi}{2} + k \pi / k \in \mathbb{Z} \text{ et}$$

$$x \neq k \pi/k \in \mathbb{Z}$$

Application 9: Exercice OQ de la série

4. Rapports trigonométriques pour des angles usuels :

On a le tableau suivant :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

Application®:

Calculer
$$\cos\left(\frac{5\pi}{6}\right)$$
, $\sin\left(\frac{65\pi}{4}\right)$ et $\tan\left(\frac{19\pi}{6}\right)$.

V. Equations et inéquations trigonométrique fondamentales:

1. Equations du type cos(x) = a et inéquations $cos(x) \ge aetcos(x) \le a$ Propriété

Soit a un nombre réel.

- Si |a| > 1, alors l'équation $\cos(x) = a$ n'admet pas de solution sur $\mathbb R$.
- Si $|a| \le 1$, alors il existe un réel α tel que $\cos(\alpha) = a$ et par suite les solutions de l'équation $\cos(x) = a$ sont : $\alpha + 2k\pi / k \in \mathbb{Z}$ ou $-\alpha + 2k\pi / k \in \mathbb{Z}$.

O Exemple:

Résoudrons dans $[0,2\pi]$ l'équation $\cos(x) = \frac{1}{2}$ et l'inéquation $\cos(x) \le \frac{1}{2}$.

Application ⊕ ⊕:

Résoudre dans l'intervalle $\it I$ les équations et les inéquations suivantes :

$$\otimes \cos(x) = \frac{\sqrt{2}}{2}$$
 et $\cos(x) \prec \frac{\sqrt{2}}{2}$ avec $I = [-\pi, \pi]$.

$$\otimes 2\cos(x) + \sqrt{3} = 0$$
 et $2\cos(x) + \sqrt{3} \ge 0$ avec $I = [-\pi, 3\pi]$.

2. Equations du type $\sin(x) = a$ et inéquations $\sin(x) \ge a$ et $\sin(x) \le a$.

Propriété

Soit a un nombre réel.

- Si |a| > 1, alors l'équation $\sin(x) = a$ n'admet pas de solution sur \mathbb{R} .
- Si $|a| \le 1$, alors il existe un réel α tel que $\sin(\alpha) = a$ et par suite les solutions de l'équation $\sin(\alpha) = a$ sont : $\alpha + 2k\pi / k \in \mathbb{Z}$ ou $\pi \alpha + 2k\pi / k \in \mathbb{Z}$.

O Exemple:

Résoudrons dans $\left[-\pi,\pi\right]$ l'équation $\sin(x) = \frac{1}{2}$ et l'inéquation $\sin(x) \le \frac{1}{2}$.

Application ①②:

Résoudre dans l'intervalle $\it I$ les équations et les inéquations suivantes :

$$\otimes \sin(x) = \frac{\sqrt{2}}{2}$$
 et $\sin(x) \prec \frac{\sqrt{2}}{2}$ avec $I = [0, 2\pi]$.

$$\otimes 2\sin(x) + \sqrt{3} = 0$$
 et $2\sin(x) + \sqrt{3} \ge 0$ avec $I = [-2\pi, \pi]$.

3. Equations du type tan(x) = a et inéquations $tan(x) \ge a$ et $tan(x) \le a$ Propriété

On considère l'équation tan(x) = a où $a \in \mathbb{R}$.

Soit S son ensemble de solutions.

Il existe un réel α tel que $\tan(\alpha) = a$ et on a $S = \{\alpha + k\pi / k \in \mathbb{Z}\}$.

O Exemple:

Résoudrons dans $[-\pi,\pi]$ l'équation $\tan(x) = \sqrt{3}$ et l'inéquation $\tan(x) \le \sqrt{3}$.

■ Application ①③:

Résoudre dans l'intervalle I les équations et les inéquations suivantes :

$$\otimes$$
 tan(x)=1 et tan(x) \prec 1 avec $I = [0, 2\pi]$.

$$\otimes \tan(x + \frac{\pi}{3}) + \sqrt{3} = 0$$
 et $\tan(x + \frac{\pi}{3}) + \sqrt{3} \ge 0$ avec $I = [-2\pi, \pi]$.

VI. Angles inscrits et quadrilatères inscriptibles :

1. Angles inscrits — Angles au centre:

Soient (C) un cercle de centre O , et igl[ABigr] une corde de (C) et

M un point de (C).

L'angle \widehat{AMB} est appelé **angle inscrit** interceptant la corde $\begin{bmatrix} AB \end{bmatrix}$ sur le cercle (C).

L'angle \widehat{AOB} est appelé **angle au centre** interceptant la corde $\begin{bmatrix} AB \end{bmatrix}$ sur le cercle (C).

On a :
$$\widehat{AOB} = 2\widehat{AMB}$$
.

∠ Application ① ④:

Soit (C) un cercle de diamètre [AB].

Montrer que pour tout C du cercle (C) le triangle ABC est rectangle en C.

Propriété :

Deux angles inscrits dans un cercle interceptant la même corde sont isométriques ou

supplémentaires.

 $\widehat{AMB} = \widehat{ANB}$ Angles isométriques

AMB + ANB = π Angles supplémentaires

2. Les quadrilatères inscriptibles:

Définitions :

Un *quadrilatère inscriptible* est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits *cocycliques*. Le cercle est dit *circonscrit* au quadrilatère.

Propriété :

Soient A, B et C trois points non alignés du plan et soit (C) le cercle circonscrit au triangle ABC et soit D un point du plan.

Le point D appartenant au cercle (C) si et seulement si $\widehat{BAD} + \widehat{BCD} = \pi$ ou $\widehat{BAD} = \widehat{BCD}$.

 $\widehat{BAD} = \widehat{BCD}$

 $\widehat{BAD} + \widehat{BCD} = \pi$

VII. Lois de sinus dans un triangle:

1. Surface d'un triangle:

II Théorème :

Soit ABC un triangle de surface S .

On pose a = BC, b = AC et c = AB. On a:

$$S = \frac{1}{2}ab\sin(C) = \frac{1}{2}ac\sin(B) = \frac{1}{2}bc\sin(A)$$

O Démonstration :

Soit H le projeté orthogonal de A sur (BC).

ذ لعرش عبد الكبير

On sait que :
$$S = \frac{1}{2}BC \times AH$$
.

Or
$$\sin(C) = \frac{AH}{AC}$$
, alors $AH = AC \times \sin(C)$.

Par conséquent :
$$S = \frac{1}{2}BC \times AC \times \sin(C) = \frac{1}{2}ab\sin(C)$$
.

De la même procédure on montre que : $S = \frac{1}{2}ac\sin(B)$ et

$$S = \frac{1}{2}bc\sin(A).$$

Application ⊕ ⑤:

Soit ABC un triangle équilatéral tel que AB = 3.

Calculer la surface de ce triangle.

2. Lois de sinus dans un triangle :

Il Théorème :

Soit ABC un triangle et soit R le rayon de cercle circonscrit au triangle ABC.

On pose a = BC, b = AC et c = AB.

On a:
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} = \frac{1}{2R}.$$

■ Application © ©: Exercice ② © de la série.

Il Théorème :

Soient ABC un triangle et p son périmètre et r est le rayon de cercle inscrit au triangle ABC.

On a:
$$S = \frac{1}{2} pr$$
.

O Démonstration:

On considère la figure ci-contre :

On a:
$$S_{ABC} = S_{AOC} + S_{AOB} + S_{BOC}$$
.

$$= \frac{1}{2}r \times AC + \frac{1}{2}r \times AB + \frac{1}{2}r \times BC$$

$$= \frac{1}{2}r(AB + AC + BC)$$

$$= \frac{1}{2}pr.$$

Exercice @@ de la série.

