Fonction Logarithme décimal

T^{le} STMG

Table des matières

1	Défi	Définition et propriétés de la fonction logarithme décimal										
	1.1	Définition : Logarithme décimal	2									
	1.2	Définition : Fonction Logarithme décimal	3									
	1.3	Propriété : Sens de variation	3									
	1.4	Propriété : Valeurs particulières	3									
	1.5	Propriétés algébriques de la fonction logarithme décimale	3									
	1.6	Méthode : Simplifier une expression contenant des logarithmes	4									
2	Équations et inéquations											
	2.1	Propriétés	6									
	2.2	Méthode : Résoudre une équation ou une inéquation	6									

1 Définition et propriétés de la fonction logarithme décimal

1.1 Définition : Logarithme décimal

Soit la fonction f définie sur \mathbb{R} par $f(x) = 10^x$.

L'équation $10^x = b$, avec b > 0, admet une unique solution dans \mathbb{R} .

Cette solution se note $\log b$.

Exemple:

 $10^x = 14 \Leftrightarrow x = \log 14 \approx 1,146$

PMAT

FIGURE 1 – Calcul de log(14) avec la Casio Graph 85

Graphiquement, on peut trouver ce résultat :

Figure 2 – Représentation de la fonction 10^x

1.2 Définition : Fonction Logarithme décimal

On appelle **logarithme décimal** d'un réel strictement positif b, l'unique solution de l'équation $10^x = b$. On la note $\log b$.

La fonction logarithme décimal, notée log, est la fonction f définie sur $]0; +\infty[$ tel que :

$$f\left(x\right) = \log x$$

Remarques

a) Pour b > 0: $10^x = b$ revient à écrire $x = \log b$

b) $\log 10^x = x$

c) Pour x > 0, on a : $10^{\log x} = x$

1.3 Propriété : Sens de variation

La fonction logarithme décimal, $f(x) = \log x$, est croissante sur $]0; +\infty[$.

FIGURE 3 – Représentation de la fonction $f(x) = \log x$

1.4 Propriété : Valeurs particulières

- a) $\log 1 = 0$
- b) $\log 10 = 1$
- c) $\log\left(\frac{1}{10}\right) = -1$

1.5 Propriétés algébriques de la fonction logarithme décimale

Pour a > 0 et b > 0, on a :

- a) $\log(a \times b) = \log a + \log b$
- b) $\log\left(\frac{a}{b}\right) = \log a \log b$ c) $\log\left(\frac{1}{b}\right) = -\log b$
- d) $\log(a^n) = n \times \log a$ avec n un entier naturel

1.6 Méthode : Simplifier une expression contenant des logarithmes

Simplifier les expressions suivantes :

a) $A = \log(2 - \sqrt{2}) + \log(2 + \sqrt{2})$ b) $B = 2 \times \log(3) + \log(2) - 4 \times \log(3)$

c) $C = \log 10^3 - \log \left(\frac{1}{5}\right)$

(a)

$$A = \log(2 - \sqrt{2}) + \log(2 + \sqrt{2})$$
$$= \log((2 - \sqrt{2}) \times (2 + \sqrt{2}))$$
$$= \log(2^2 - (\sqrt{2})^2)$$
$$= \log(4 - 2) = \log 2$$

(b)

$$B = 2 \times \log(3) + \log(2) - 4 \times \log(3)$$

$$= \log(3^{2}) + \log(2) - \log(3^{4})$$

$$= \log(9) + \log(2) - \log(81)$$

$$= \log(9 \times 2) - \log 81$$

$$= \log(\frac{9 \times 2}{81})$$

$$= \log(\frac{2}{9})$$

(c)

$$C = \log 10^3 - \log \frac{1}{5}$$
$$= 3 \times \log 10 - \log 5$$
$$= 3 \times 1 - \log 5$$
$$= 3 - \log 5$$

1.6.1 Remarque : Transformer un produit en une somme

La première formule permet de transformer un produit en une somme.

Par exemple, si on cherche à effectuer 36×62 , en appliquant cette formule, on a :

 $\log (36 \times 62) = \log 36 + \log 62 \approx 1,5563 + 1,7924$ (voir table ci-dessous)

L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement :

$$\log (36 \times 62) \approx 3,3487$$

En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : $36 \times 62 = 2232$.

Table 1 – Table de logarithmes

\overline{x}	34	35	36	 61	62	63	 2231	2232	2233
$\log(x)$	1,5315	1,5441	1,5563	 1,7853	1,7924	1,7993	 3,3485	3,3487	3,3489

NOMB.	LOGARIT	DIFF.	NOMB.	LOGARIT	DIFF.	NOMB.	LOGARIT	DIFF.	NOMB.	LOGARIT	DIFF.
480	68 124	91	520	71 600	. [560	74 819		600	77 815	
481	68 215	90	521	71 684	84	561	74 896	77 78	601	77 887	72
482	00.000	90	522	71 767	83	562	74 974	77	602	77 960	73 72
483	68 395	90	523	71 850	83	563	75 051	77	603	78 032	72
484	68 485	4.35	524	71 933		564	75 128	30.00	604	78 104	25
485	00 ETA	89	525	72 010	83	FOR	25 205	77	200		72
485	68 574 68 664	90	526	72 016 72 099	83	565 566	75 205 75 282	77	605	78 176	71
487	68 753	89	527	72 181	82	56	75 282 75 358	76	606	78 247 78 319	72
488	68 842	89	528	72 263	82	568	75 435	77	608	78 390	71
489	68 931	89	529	72 346	83	569	75 511	76	609	78 462	72
	00 001	89		12 010	82	000	10 011	76	1000	10 402	71
490	69 020	00	530	72 428		570	75 587		610	78 533	
491	69 108	88	531	72 509	81	574	75 664	77	611	78 604	71
492	69 197	88	532	72 591	82 82	572	75 740	76	612	78 675	71
	69 285	88	533	72 673	81	573	75 815	76	613	78 746	71
494	69 373	1	534	72 754	100	574	75 891		614	78 817	
	00 401	- 88	205	70 005	81	Par	~ 000	76	Lave	** ***	71
495 496	69 461 69 548	87	535 536	72 835 72 916	81	575	75 967	75	615	78 888	70
497	9 636	88	537	72 916 72 997	81	576 577	76 042 76 118	76	616	78 958	71
498	69 723	87	538	73 078	81	578	76 193	75	617	79 029	70
499	69 810	87	539	73 159	81		76 268	75	619	79 169	70
	00 0.0	87	1000	10 100	80	10,0	10 200	75	1010	10 100	70
500	69 897	07	540	73 239		580	76 343		620	79 239	
501	69 984	87	541	73 320	81	581	76 418	75	621	79 309	70
502	70 070	87	542	73 400	80	582	76 492	74	622	79 379	70
503	70 157	86	543	73 480	80	583	76 567	75	623	79 449	70
504	70 243		544	73 560	1	584	76 641		624	79 518	69
EOF	70 990	86	2,2	20 010	80	200	~ ~ ~	75		20 500	70
505 506	70 329 70 415	86	545 546	73 640 73 719	79	585 586	76 716	74	625	79 588	69
507		86	547	73 719 73 799	80	587	76 790 76 864	74	626 627	79 657	70
508	70 586	85	548	73 878	79	588	76 928	74	628	79 727 79 796	69
509	70 672	86	549	73 957	79	589	77 012	74	629	79 796 79 865	69
		85	1000	.0 001	79	1000	" 012	73	1028	19 000	69
510	70 757	85	550	74 036		590	77 085	100	630	79 934	900
511	70 842	85	551	74 115	79 79	591	77 159	74	63	80 003	69
512	70 927	85	552	74 194	79	592	77 232	73	632		69
513	71 012	84	553	74 273	78	593	77 305	74	633	80 140	69
514	71 096		554	74 351		594	77 379	F. 3 7	634	80 209	
	- 101	85			78			73			68
515	71 181	84	555	74 429	78	595	77 452	73	635	80 277	69
516	71 265	84	556	74 507	79	596	77 525	72	636	80 346	68
517	71 349	84	557	74 586	77	597	77 597	73	637	80 414	68

Page extraite de la Table des Logarithmes, PLOMION. (Hatier, édit.).

FIGURE 4 – Extrait d'une table des Logarithmes

2 Équations et inéquations

2.1 Propriétés

Pour a > 0 et b > 0, on a :

- a) $a = b \iff \log a = \log b$
- b) $a < b \iff \log a < \log b$ (la fonction logarithme décimale est strictement croissante sur $]0; +\infty[)$

2.2 Méthode : Résoudre une équation ou une inéquation

- a) Résoudre dans \mathbb{R} l'équation : $6^x = 2$
- b) Résoudre dans $]0; +\infty[$ l'équation : $x^5 < 3$
- c) 8 augmentations successives de t% correspondent à une augmentation globale de 30%. Donner une valeur approchée du taux moyen t.

(a)

$$6^{x} = 2$$
$$\log 6^{x} = \log 2$$
$$x \times \log 6 = \log 2$$
$$x = \frac{\log 2}{\log 6}$$

(b)

$$x^{5} < 3$$

$$\log(x^{5}) < \log 3$$

$$5 \times \log x < \log 3$$

$$\log x < \frac{1}{5} \log 3$$

$$\log x < \log 3^{\frac{1}{5}}$$

$$x < 3^{\frac{1}{5}}$$

L'ensemble solution est $S = \left]0; 3^{\frac{1}{5}}\right[$.

Remarque:

 $3^{\frac{1}{5}}$ se lit "racine cinquième de 3" et peut se noter $\sqrt[5]{3}$.

Une augmentation globale de 30% correspond à un coefficient multiplicateur de 1, 3.

Une augmentation de t% correspond à un coefficient multiplicateur de $1 + \frac{t}{100}$.

Huit augmentations de t% correspond à un coefficient multiplicateur de $\left(1 + \frac{t}{100}\right)^8$.

On doit donc résoudre : $\left(1 + \frac{t}{100}\right)^8 = 1,3$

$$\left(1 + \frac{t}{100}\right)^8 = (1,3)$$

$$\log\left(1 + \frac{t}{100}\right)^8 = \log(1,3)$$

$$8 \times \log\left(1 + \frac{t}{100}\right) = \log(1,3)$$

$$\log\left(1 + \frac{t}{100}\right) = \frac{1}{8} \times \log(1,3)$$

$$\log\left(1 + \frac{t}{100}\right) = \log\left(1,3^{\frac{1}{8}}\right)$$

$$1 + \frac{t}{100} = 1,3^{\frac{1}{8}}$$

$$\frac{t}{100} = 1,3^{\frac{1}{8}} - 1$$

$$t = 100 \times \left(1,3^{\frac{1}{8}} - 1\right)$$

$$t \approx 3,3$$

Une augmentation globale de 30% correspond à 8 augmentations successives d'environ 3,3%.

Remarque

Dans ce dernier exercice, on retrouve la propriété établie dans le chapitre "Fonctions exponentielles" :

si
$$x^n = a$$
 alors $x = a^{\frac{1}{n}}$

si
$$\left(1 + \frac{t}{100}\right)^8 = (1,3)$$
 alors $\left(1 + \frac{t}{100}\right) = (1,3)^{\frac{1}{8}}$