Danuta Szeliga

AGH Kraków

### Spis treści

1 Analiza algorytmów

Złożoność obliczeniowa

3 Przykłady obliczania złożoności

Spis treści

Złożoność obliczeniowa

- Każde wykonanie algorytmu na komputerze wymaga wykonania pewnej pracy obliczeniowej oraz pewnej ilości miejsca w jego pamięci
- Zatem projektując algorytm powinniśmy odpowiedzieć na pytanie:
  - Czy nasz komputer umożliwia stosowanie opracowanego algorytmu dla danych o przewidywanym rozmiarze?
- Okazuje się bowiem, że dla wielu znanych algorytmów czas ich działania rośnie zbyt szybko wraz ze wzrastem rozmiaru danych wejściowych

#### Analiza algorytmu

polega na określeniu zasobów, jakie potrzebne są do jego wykonania

#### Zasoby

- czas obliczeń → złożoność obliczeniowa
- pamięć → złożoność pamięciowa lub wymagania pamięciowe
- szerokość kanału komunikacyjnego
- sprzęt komputerowy

Wszystkie te zasoby są wyrażane jako funkcja rozmiaru danych wejściowych

Czas działania

Zachowanie algorytmu może być różne dla różnych możliwych danych wejściowych  $\rightarrow$  potrzebujemy środków do wyrażania zachowania algorytmów w postaci prostych, łatwych do zrozumienia formuł

- Czas obliczeń mierzy się zazwyczaj liczbą (dominujących)
   operacji elementarnych wykonywanych przez procesor w celu
   rozwiązania danego problemu za pomocą opracowanego
   algorytmu
- Zakłada się, że wykonanie pojedynczej i-tej operacji wymaga czasu ci, który jest stały dla danego komputera

#### Zużycie pamięci

- Zużycie pamięci mierzy się liczbą zmiennych oraz liczbą i rodzajem struktur danych użytych przez dany algorytm (z uwzględnieniem ich rozmiaru)
- Definicja rozmiaru danych wejściowych zależy istotnie od rozważanego problemu
- Z reguły rozmiarem danych wejściowych jest długość (liczba elementów) ciągu wejściowego
- Jednostka: słowo pamięci
- Przykłady definicji rozmiaru problemu
  - sortowanie tablicy: długość tablicy
  - problemy grafowe: ilość węzłów i krawędzi
  - operacje na wielomianach: stopień wielomianu
  - operacje na macierzach: rozmiary macierzy
  - operacje arytmetyczne: całkowita liczba bitów



### Wpływ danych na działanie algorytmu

Założenie: we wszystkich przypadkach rozmiar danych wejściowych jest taki sam

- Przypadek optymistyczny dane wejściowe są takie, że dany algorytm znajduje rozwiązanie w minimalnej liczbie kroków
- Przypadek pesymistyczny dane wejściowe są takie, że dany algorytm znajduje rozwiązanie wykonując największą możliwą dla danego rozmiaru danych liczbę operacji
- Przypadek średni (oczekiwany) statystycznie najbardziej prawdopodobny — dla losowo wybranych danych

Spis treści

#### Złożoność obliczeniowa

Spis treści

- W celu określenia złożoności obliczeniowej algorytmu, wyrażamy ilość operacji potrzebnych do rozwiązania danego problemu przez algorytm zależością matematyczną (np.  $f(n) = an^2 + bn + c$ ).
- W praktyce interesuje nas dominujący składnik we wzorze na f(n) zachowanie asymptotyczne

#### Rząd wielkości funkcji f(n)

to dominujący składnik w f(n) z pominięciem stałych współczynników

- Rząd wielkości funkcji określa, jak szybko rośnie funkcja, gdy rośnie argument  $n \ (n \to \infty)$
- Przeważnie mówimy, że dany algorytm jest lepszy od innego, jeśli jego pesymistyczny czas działania jest funkcją niższego rzędu (ALE: nie musi to być słuszne dla małych rozmiarów danych wejściowych!)

#### Asymptotyczna złożoność algorytmu

to określenie rzędu wielkości czasu działania algorytmu, tzn. określenie szybkości wzrostu czasu działania algorytmu, gdy rozmiar danych dąży do nieskończoności

- $\bullet$  W notacji asymptotycznej czas działania algorytmów opisywany jest przez funkcje określone na zbiorze liczb naturalnych  $\mathcal N$
- Argument funkcji jest najczęściej rozmiarem danych wejściowych

#### Notacja Θ

Dla danej funkcji  $g(n): \mathcal{N} \to \mathcal{R}$  oznaczamy przez  $\Theta(g(n))$  klasę równoważności funkcji:

$$\Theta(g(n)) = \{f(n) : \exists c_1, c_2 > 0 \ \exists n_0 \in N : c_1 g(n) \leqslant f(n) \leqslant c_2 g(n) \ \forall n \geqslant n_0\}$$

- Formalnie zachodzi  $f(n) \in \Theta(g(n))$
- Zazwyczaj piszemy  $f(n) = \Theta(g(n))$
- Notacja Θ jest asymptotycznie dokładnym oszacowaniem: ogranicza funkcję od góry i od dołu



#### Przykład

• Dana jest funkcja

$$f(n) = an^2 + bn + c$$

gdzie a > 0, b i c są stałymi

Odrzucając składniki niższego rzędu otrzymujemy

$$f(n) = \Theta(n^2)$$

• Wynika to z następującego faktu:

$$c_1 = a/4$$
  $c_2 = 7a/4$   $n_0 = 2max(|b|/a, \sqrt{|c|/a})$ 

#### Notacja O

Dla danej funkcji  $g(n): \mathcal{N} \to \mathcal{R}$  oznaczamy przez  $\mathrm{O}(g(n))$  klasę równoważności funkcji:

$$O(g(n)) = \{f(n) : \exists c > 0 \ \exists n_0 \in N : 0 \leqslant f(n) \leqslant cg(n) \ \forall n \geqslant n_0\}$$

- Notacja O jest asymptotyczną granicą górną: szacuje pesymistyczny czas działania algorytmu
- $\Theta(g(n)) \subseteq O(g(n))$



#### Notacja $\Omega$

Dla danej funkcji  $g(n): \mathcal{N} \to \mathcal{R}$  oznaczamy przez  $\Omega(g(n))$  klasę równoważności funkcji:

$$\Omega(g(n)) = \{f(n) : \exists c > 0 \ \exists n_0 \in N : 0 \leqslant cg(n) \leqslant f(n) \ \forall n \geqslant n_0\}$$

- Notacja Ω jest asymptotyczną granicą dolną: szacuje optymistyczny czas działania algorytmu
- $\Theta(g(n)) \subseteq \Omega(g(n))$



Własności

#### Przechodność

$$f(n) = \Theta(g(n)) \quad \wedge \quad g(n) = \Theta(h(n)) \quad \Rightarrow \quad f(n) = \Theta(h(n))$$
  
 $f(n) = O(g(n)) \quad \wedge \quad g(n) = O(h(n)) \quad \Rightarrow \quad f(n) = O(h(n))$   
 $f(n) = \Omega(g(n)) \quad \wedge \quad g(n) = \Omega(h(n)) \quad \Rightarrow \quad f(n) = \Omega(h(n))$ 

#### Zwrotność

$$f(n) = \Theta(f(n))$$
  $f(n) = O(f(n))$   $f(n) = \Omega(f(n))$ 

#### Symetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

#### Symetria transpozycyjna

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

#### Twierdzenie

Dla każdych dwóch funkcji f(n) i g(n) zachodzi

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

#### Twierdzenie

Dla każdego wielomianu  $f(n) \in P_k$  zachodzi

$$f(n) = \Theta(n^k)$$
  $f(n) = O(n^k)$   $f(n) = \Omega(n^k)$ 

#### Twierdzenie

$$O(1) \subset O(\lg n) \subset O(n) \subset O(n \lg n) \subset O(n^2) \subset O(2^n) \subset O(n!) \subset O(n^n)$$

#### Porównanie rzędów wielkości



### Porównanie szybkości wzrostu funkcji

Założenie: operacja dla n=1 wykonuje się w czasie  $0.001 \mu s$ 

| n               | log n         | n             | n log n         | $n^2$           | n <sup>3</sup>      | 2 <sup>n</sup>    |
|-----------------|---------------|---------------|-----------------|-----------------|---------------------|-------------------|
| 10              | $0.003 \mu s$ | $0.01 \mu s$  | $0.033 \mu s$   | $0.10 \mu s$    | $1.0 \mu s$         | $1.02 \mu s$      |
| 20              | $0.004 \mu s$ | $0.02 \mu s$  | $0.086 \mu s$   | 0.40 <i>μs</i>  | 8.0 <i>µs</i>       | 1.048 <i>ms</i>   |
| 30              | $0.005 \mu s$ | $0.03 \mu s$  | $0.147 \mu s$   | 0.90 <i>μs</i>  | $27.0 \mu s$        | 1.07s             |
| 40              | $0.005 \mu s$ | $0.04 \mu s$  | $0.213 \mu s$   | $1.60 \mu s$    | $64.0 \mu s$        | 18.3 <i>min</i>   |
| 50              | $0.006 \mu s$ | $0.05 \mu s$  | 0.282 <i>μs</i> | 2.50 <i>μs</i>  | $125.0 \mu s$       | 13.03 <i>d</i>    |
| 10 <sup>2</sup> | $0.007 \mu s$ | $0.10 \mu s$  | 0.664 <i>μs</i> | $10 \mu s$      | 1.0 <i>ms</i>       | $4 \cdot 10^{13}$ |
| 10 <sup>3</sup> | $0.010 \mu s$ | $1.0 \mu s$   | $9.966 \mu s$   | 1.0 <i>ms</i>   | 1.0 <i>s</i>        |                   |
| 10 <sup>4</sup> | $0.013 \mu s$ | $10.0 \mu s$  | $133 \mu s$     | 100 <i>ms</i>   | 16.7 <i>min</i>     |                   |
| 10 <sup>5</sup> | $0.017 \mu s$ | $100.0 \mu s$ | 1.66 <i>ms</i>  | 10 <i>s</i>     | 11.6 <i>d</i>       |                   |
| 10 <sup>6</sup> | $0.020 \mu s$ | 1.0 <i>ms</i> | 19.93 <i>ms</i> | 16.67 min       | 31.7 <i>d</i>       |                   |
| 10 <sup>7</sup> | $0.023 \mu s$ | 10 <i>ms</i>  | 0.232 <i>s</i>  | 1.16 <i>d</i>   | 31709/              |                   |
| 108             | $0.027 \mu s$ | 100 <i>ms</i> | 2.66 <i>s</i>   | 115.74 <i>d</i> | $3.17 \cdot 10^{7}$ |                   |
| 10 <sup>9</sup> | $0.030 \mu s$ | 1 <i>s</i>    | 29.9 <i>s</i>   | 31.71/          |                     |                   |

Spis treści

algorytmy, w których zadanie o rozmiarze n sprowadzane jest  $\log n$ do zadania rozmiaru n/2, plus pewna stała liczba działań algorytmy, w których dla każdego z n elementów (danych wen jściowych) wykonywana jest stała liczba działań  $n \log n$  algorytmy, w których zadanie o rozmiarze n zostaje sprowadzone do dwóch podzadań rozmiaru n/2, plus pewna liczba działań liniowa względem rozmiaru n, potrzebna do wykonania najpierw podzielenia, a następnie scalenia rozwiązań podzadań rozmiaru n/2 w rozwiązanie rozmiaru n $n^2$ algorytmy, w których jest wykonywana pewna stała liczba dzi-

Złożoność obliczeniowa 00000000000000

- $n^k$ algorytmy o k wzajemnie zagnieżdżonych pętlach
- $2^n$ algorytmy, w których jest wykonywana stała liczba działań dla każdego podzbioru danych wejściowych

ałań dla każdej pary danych wejściowych (podwójna iteracja)

algorytmy, w których jest wykonywana stała liczba działań dla n!każdej permutacji danych wejściowych

### Dolne i górne ograniczenia

- Znalezienie algorytmu rozwiązania danego problemu ustanawia górne ograniczenie dla tego zadania algorytmicznego
- Jeżeli dolne i górne ograniczenia są sobie równe z dokładnością do stałych, to problem w sensie notacji O jest zamknięty
- Jeżeli dolne i górne ograniczenia są różne, to mówimy o istnieniu luki algorytmicznej



#### Przykład problemu, który nie jest zamknięty

- Problem minimalnego drzewa rozpinającego
- Udowodniono, że zadanie to wymaga  $\mathrm{O}(n)$  czasu, gdzie n jest liczbą krawędzi grafu, ale nie ma algorytmu, który realizowałby to zadanie w czasie liniowym

Spis treści

### Zagnieżdżone pętle

Sortowanie bąbelkowe (bubble sort)

Analiza kosztu czasowego algorytmu

- pętla zewnętrzna (1) wykona się N razy
- ullet pętla wewnętrzna (2) wykona się średnio (N-1)/2 razy
- ullet o koszt czasowy wykonania algorytmu jest równy

$$T(N) = N \cdot (N-1)/2 \rightarrow T(N) = O(N^2)$$

#### Sortowanie przez wstawianie (insert sort)

#### Analiza kosztu czasowego algorytmu

- pętla zewnętrzna (1) wykona się N-1 razy
- pętla wewnętrzna (2) wykona się w i-tej iteracji  $t_i \leq i$  razy
- ullet o koszt czasowy wykonania algorytmu jest równy

$$T(N) = (N-1)(c_1+c_2+c_5) + (c_3+c_4)\sum_{i=1}^{N-1} t_i$$

### Zagnieżdżone pętle

Sortowanie przez wstawianie (insert sort) - cd

#### Analiza kosztu czasowego algorytmu

• Przypadek optymistyczny - tablica wstępnie posortowana. Dla każdego i>0 zachodzi t[i-1] <= x  $\rightarrow$   $t_i=1$ , czyli

$$T(N) = (N-1)(c_1 + c_2 + c_5) + (c_3 + c_4) \sum_{i=1}^{N-1} 1$$
  
=  $(N-1)(c_1 + c_2 + c_5) + (N-1)(c_3 + c_4)$   
 $\rightarrow T(N) = O(N)$ 

• Przypadek pesymistyczny - tablica posortowana odwrotnie. Dla każdego i zachodzi t[j] > x dla j od 1 do  $i-1 \rightarrow t_i = i$ , czyli

$$T(N) = (N-1)(c_1 + c_2 + c_5) + (c_3 + c_4) \sum_{i=1}^{N-1} i =$$

$$= (N-1)(c_1 + c_2 + c_5) + (c_3 + c_4)N(N-1)/2$$
 $\rightarrow T(N) = O(N^2)$ 

### Rekurencia

#### Sortowanie przez scalanie (merge-sort)

```
merge sort(<type> t[],
             int p, int k) {
  if(!(p<k)) return;</pre>
  q = (p+k)/2;
  merge_sort(t,p,q);
  merge sort(t,q+1,k);
  merge(t,p,q,k);
```

- Jeżeli rozmiar danych jest wystarczająco mały, n < c, to  $T(n) = \Theta(1)$
- Problem jest podzielony na 2 podproblemy, każdy o rozmiarze n/2

$$T(n) = \begin{cases} \Theta(1) \\ 2T(n/2) + \Theta(1) + \Theta(n) \end{cases}$$



- $D(n) = \Theta(1) \operatorname{czas}$ podziału na podproblemy
- $C(n) = \Theta(n)$  czas scalania  $T(n) = \begin{cases} \Theta(1) & n \le c & \text{rozwiązań podproblemów w} \\ 2T(n/2) + \Theta(1) + \Theta(n) & n > c & \text{pełne rozwiązanie} \end{cases}$

### Twierdzenie o rekurencji uniwersalnej

#### Równanie rekurencyjne

$$T(n) = aT(n/b) + f(n)$$
  $a \ge 1$   $b > 1$   $f(n) > 0$ 

- Algorytm dzieli problem rozmiaru n na a podproblemów, każdy o rozmiarze n/b
- Każdy podproblem jest rozwiązywany rekurencyjnie w czasie T(n/b)
- Koszt dzielenia problemu oraz łączenia wyników częściowych jest opisany funkcją f(n)

#### Twierdzenie o rekurencji uniwersalnej

$$f(n) = O(n^{\log_b a - \varepsilon}) \qquad \Rightarrow T(n) = \Theta(n^{\log_b a})$$

$$f(n) = \Theta(n^{\log_b a}) \qquad \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$$

$$f(n) = \Omega(n^{\log_b a + \varepsilon}) \land af(n/b) \le cf(n) \qquad \Rightarrow T(n) = \Theta(f(n))$$

gdzie  $\varepsilon>0$  , c<1, a ostatni warunek zachodzi dla wszystkich dostatecznie dużych n

# Twierdzenie o rekurencji uniwersalnej

Interpretacja

#### Twierdzenie o rekurencji uniwersalnej

$$\begin{split} f(n) &= \mathrm{O}(n^{\log_b a} - \varepsilon) & \Rightarrow T(n) = \Theta(n^{\log_b a}) \\ f(n) &= \Theta(n^{\log_b a}) & \Rightarrow T(n) = \Theta(n^{\log_b a} \log n) \\ f(n) &= \Omega(n^{\log_b a + \varepsilon}) \wedge \ af(n/b) \leq cf(n) & \Rightarrow T(n) = \Theta(f(n)) \\ \mathrm{gdzie} \ \varepsilon &> 0 \ , \ c < 1 \ , \ \mathrm{a} \ \mathrm{ostatni} \ \mathrm{warunek} \ \mathrm{zachodzi} \ \mathrm{dla} \ \forall n > n_0 \end{split}$$

- ullet W każdym z trzech przypadków porównujemy f(n) z funkcją  $n^{\log_b a}$  większa funkcja decyduje o złożoności algorytmu rekurencyjnego
- ullet W pierwszym przypadku f(n) musi być wielomianowo mniejsza niż  $n^{\log_b a}$
- W trzecim przypadku f(n) musi być wielomianowo większa niż  $n^{\log_b a}$  oraz spełniać warunek regularności af(n/b) < cf(n)
- Jest pewna luka pomiędzy przypadkami 1 i 2 oraz 2 i 3 (funkcje, które nie są wielomianowo mniejsze) — wtedy nie można zastosować twierdzenia o rekurencji uniwersalnej

### Merge sort

#### Złożoność obliczeniowa

Sortowanie przez scalanie

$$T(n) = \begin{cases} \Theta(1) & n \leq c \\ 2T(n/2) + \Theta(1) + \Theta(n) & n > c \end{cases}$$

- Mamy zatem: a = b = 2 oraz f(n) = cn,  $n^{\log_2 2} = n^1 = n$ , czyli  $f(n) = \Theta(n) \Rightarrow$  mamy przypadek drugi
- Zatem

$$T(n) = \Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

### Równania rekurencyjne

- Rozpatrzmy równanie postaci  $T(n) = 2T(n/2) + n^2$
- Równanie jest postaci T(n) = aT(n/b) + f(n)
  - ⇒ korzystamy z twierdzenia o rekurencji uniwersalnej

$$a = b = 2$$
  $\Rightarrow$   $n^{\log_b a} = n^{\log_2 2} = n$   
 $f(n) = n^2$ 

Funkcja  $f(n) = n^2$  jest wielomianowo większa od funkcji n:  $n^2 = \Omega(n^{1+\epsilon})$ 

⇒ 3. przypadek twierdzenia o rekurencji uniwersalnej i sprawdzamy warunek regularności:

$$af(n/b) \le c f(n)$$
  
 
$$2(n/2)^2 \le c n^2 \to 1/2 \le c$$

Istnieje więc stała dodatnia c < 1 taka, że warunek regularności jest spełniony

Zatem rozwiązaniem równania jest  $T(n) = \Theta(n^2)$ 



#### Drzewa rekursji

- Rozpatrzmy równanie postaci  $T(n) = 2T(n/2) + n^2$
- Złożoność obliczeniową można oszacować wykorzystując drzewa rekursji



$$T(n) = n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \dots = n^2 \left( 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \right) \le 2n^2$$

$$\Rightarrow$$

$$T(n) = \Theta(n^2)$$

#### Drzewa rekursji

- Rozpatrzmy równanie postaci T(n) = T(2n/3) + T(n/3) + n
- Szacujemy złożoność obliczeniową wykorzystując drzewa rekursji



Złożoność jest równa  $T(n) = n \cdot h$ 

Wysokość drzewa (najdłuższa ścieżka od korzenia do liścia):

$$n \cdot \underbrace{\frac{2}{3} \cdot \frac{2}{3} \cdot \dots}_{h} = 1 \quad \Rightarrow \quad n \cdot \left(\frac{2}{3}\right)^{h} = 1 \quad \Rightarrow \quad h = \log_{3/2} n$$

$$\Rightarrow T(n) = n \cdot \log_{3/2} n = \Theta(n \mid g \mid n)$$

- Jedno z podstawowych zadań geometrii obliczeniowej (w grafice komputerowej)
- Uwaga: Niech L będzie odcinkiem łączącym dwa punkty. Odcinek L stanowi część powłoki wypukłej wtw gdy wszystkie pozostałe punkty leżą po tej samej stronie przedłużenia odcinka L do prostej



• Algorytm I. Dla n punktów na płaszczyźnie weź każdy potencjalny odcinek i sprawdź, czy wszystkie pozostałe n-2 punkty leżą po tej samej jego stronie

#### Algorytm II

cd

- Znajdź "najniższy" punkt P<sub>1</sub>
- ② Posortuj pozostałe punkty wg kąta, jaki tworzą te punkty połączone z  $P_1$  z linią poziomą. Niech  $P_2 \ldots P_n$  będzie tak powstałą listą
- Zacznij od punktów P<sub>1</sub> i P<sub>2</sub> jako należących do bieżącej powłoki
- 4 Powtarzaj dla  $i = 3 \dots n$ 
  - $\bullet$  Dodaj na próbe punkt  $P_i$  do bieżącej powłoki
  - ② Przejdź wstecz przez odcinki bieżącej powłoki, usuwając punkty  $P_j$ , jeśli dwa punkty  $P_1$  i  $P_i$ , znajdują się po przeciwległych stronach prostej przechodzącej przez  $P_{j-1}$  i  $P_j$  i kończąc proces przechodzenia wstecz w momencie napotkania takiego j, dla którego punktu  $P_i$  nie trzeba usuwać

Działanie algorytmu (1)



Działanie algorytmu (2)



Działanie algorytmu (3)



Działanie algorytmu (4)



Działanie algorytmu (5)



#### Działanie algorytmu (6)



Działanie algorytmu (7)



Działanie algorytmu (8)



Czas działania algorytmów

- Algorytm I
  - Danych jest n punktów, dla których istnieje n²/2 odcinków i z każdym z nich należy sprawdzić n − 2 punkty
     ⇒ całkowity czas działania: O(n³)
- Algorytm II
  - Wyszukiwanie O(n)
  - 2 Sortowanie  $O(n \log n)$
  - **3** O(1)
  - O(n) punkt może być usunięty co najwyżej raz; pętla wewnętrzna zatrzymuje się, gdy napotka punkt, którego nie trzeba usuwać
    - $\Rightarrow$  całkowity czas działania:  $O(n \log n)$