Department of Industrial Engineering & Operations Research

IEOR 162 Linear Programming and Network Flows (Spring 2022)

Dynamic Programming for DAG (Directed Acyclic Graph)

Requirements

The graph has no cycles. Negative costs are allowed.

Concept: Topological ordering

Each node $i \in V$ is assigned a unique number $\ell(i)$ between $1, \ldots, n$, such that $\ell(i) < \ell(j)$ for all $(i, j) \in A$. In other words, "all arcs point to a node with a higher label".

Input

- Graph G = (V, A) with arc cost c_{ij} .
- Source node s.

Output

- d(i): Distance from s to i for all $i \in V$.
- pred(i): Predecessor of node i for all $\in V$.

Steps

- 1. Find topological ordering $\ell(\cdot)$ by assigning each node a unique number between $1, \ldots, n$ where n is the number of nodes. This is the order in which we process the nodes.
- 2. Set d(s) = 0.
- 3. In order of increasing $\ell(i)$, update the distance and predecessor for node i:

$$d(j) = \min_{i:(i,j)\in A} \{d(i) + c_{ij}\}$$
 (Update rule)
$$\operatorname{pred}(i) = \underset{i:(i,j)\in A}{\operatorname{arg \, min}} \{d(i) + c_{ij}\}$$

Example

We want to find the shortest paths from 1 to all other nodes.

Step 1: Topological sort

Iteratively label the node with no incoming arcs from unlabeled nodes with the lowest unused label.

Step 2 & 3: Computing the distances

Record in table:

Node	1	2	3	4
Dist (pred)				

Node 1 : d(1) = 0.

Node 3: $d(3) = \min\{0+5\} = 5$, pred(3) = 1.

Node 2 : $d(2) = \min\{0 + 8, 5 + 2\} = 7$, pred(2) = 3.

Node 4: $d(4) = \min\{7+2, 5+6\} = 9$, pred(4) = 2.