Chapitre: Produit scalaire (1)

Pour les exercices suivants, faire une figure avant de commencer, si nécessaire.

Attention beaucoup de « coquilles » sont présentes dans ce document. La correction en classe est donc prioritaire par rapport à ce document.

Compétence : Produit scalaire avec normes et angle

Exercice 1: Produit scalaire avec normes et angle

Soit deux vecteurs \vec{u} et \vec{v} . On note θ une mesure en radian de l'angle (\vec{u}, \vec{v}) .

Dans chacun des cas suivants, calculer \vec{u} . \vec{v} :

a.
$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = 7$ et $\cos(\vec{u}, \vec{v}) = \frac{\sqrt{2}}{2}$

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v}) = 4 \times 7 \times \frac{\sqrt{2}}{2} = 14\sqrt{2}$$

b.
$$\|\vec{u}\| = 8, \|\vec{v}\| = 5 \text{ et } \cos(\vec{u}, \vec{v}) = \frac{\sqrt{3}}{2}$$

$$\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v}) = 8 \times 5 \times \frac{\sqrt{3}}{2} = 20\sqrt{3}$$

c. $||\vec{u}|| = 2, ||\vec{v}|| = 7$ et $\theta = \frac{\pi}{4}$

c.
$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 7$ et $\theta = \frac{\pi}{4}$

$$\vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos(\vec{u},\vec{v}) = 2 \times 7 \times \cos\left(\frac{\pi}{4}\right) = 7\sqrt{2}$$

d.
$$\|\vec{u}\| = 6$$
, $\|\vec{v}\| = 3$ et $\theta = \frac{\pi}{6}$

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos(\vec{u}, \vec{v}) = 6 \times 3 \times \cos\left(\frac{\pi}{6}\right) = 9\sqrt{3}$$

e.
$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = 10$ et $\theta = -\frac{2\pi}{3}$

$$\vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos(\vec{u},\vec{v}) = 4 \times 10 \times \cos\left(-\frac{2\pi}{3}\right) = -20$$

Exercice 2 : Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \overrightarrow{AB} . \overrightarrow{AC} .

a.
$$AB = 5$$
, $AC = 7$ et $\widehat{BAC} = 0$.

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 5 \times 7 \times \cos(0) = 35$$

b.
$$AB = 10, AC = 4 \text{ et } \widehat{BAC} = \frac{\pi}{2}$$
.

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 10 \times 4 \times \cos(\frac{\pi}{2}) = 0$$

c.
$$AB = 3$$
, $AC = 9$ et $\widehat{BAC} = \frac{\pi}{4}$

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 3 \times 9 \times \cos(\frac{\pi}{4}) = \frac{27}{2}\sqrt{2}$$

Exercice 3: Produit scalaire avec normes et angle

On considère un triangle ABC.

Calculer AB sachant que:

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) \Leftrightarrow AB = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AC \times \cos(\widehat{BAC})}$$

a.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 40$$
, $AC = 8$ et $\widehat{BAC} = 60^{\circ}$.

$$AB = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AC \times \cos(\overrightarrow{BAC})} = \frac{40}{8 \times \cos(60)} = \mathbf{10}$$

b.
$$\overrightarrow{AB}.\overrightarrow{AC} = -10, AC = 4 \text{ et } \widehat{BAC} = \frac{2\pi}{3}.$$

$$AB = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AC \times \cos(\overrightarrow{BAC})} = \frac{-10}{4 \times \cos(\frac{2\pi}{3})} = -\frac{15}{2}$$

Exercice 4: Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \widehat{BAC} au centième de radian près.

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) \Leftrightarrow \cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC}$$

a.
$$AB = 3$$
, $AC = 7$ et \overrightarrow{AB} . $\overrightarrow{AC} = 6$.

$$\cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB\times AC} = \frac{6}{3\times 7} = \frac{2}{7} \text{ ainsi } \widehat{BAC} \approx 1,28 \text{ rad.}$$

b.
$$AB = 4 AC = 2 \text{ et } \overrightarrow{AB}.\overrightarrow{AC} = 7.$$

$$\cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB\times AC} = \frac{7}{4\times 2} = \frac{7}{8} \text{ ainsi } \widehat{BAC} \approx 0,51 \text{ rad.}$$

c.
$$AB = 8$$
, $AC = 3$ et \overrightarrow{AB} . $\overrightarrow{AC} = 12$.

$$\cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC} = \frac{12}{8 \times 3} = \frac{1}{2} \text{ ainsi } \widehat{BAC} = \frac{\pi}{3} \text{ rad.}$$

Exercice 5: Produit scalaire avec normes et angle

En physique, le travail d'une force \vec{F} lors d'un déplacement \vec{AB} est le produit scalaire des vecteurs \vec{F} et \vec{AB} .

Sur un téléski, la perche exerce sur un skieur une force constante \vec{F} d'intensité 400N lors d'un déplacement du point A au point B de longueur 100 m.

Une mesure de l'angle $(\vec{F}, \overrightarrow{AB})$ est 30°.

Quel est le travail de la force \vec{F} durant le déplacement \overrightarrow{AB} ?

$$W = \overrightarrow{F} \cdot \overrightarrow{AB} = \|\overrightarrow{F}\| \times \|\overrightarrow{AB}\| \times \cos(\overrightarrow{F}, \overrightarrow{AB}) = 400 \times 100 \times \frac{\sqrt{3}}{2} = 20000\sqrt{3} \approx 34641$$
 Joules

Compétence : Propriété du produit scalaire

Exercice 6 : Propriété du produit scalaire

Soit deux vecteurs \vec{u} et \vec{v} qui vérifient :

$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 3$ et \vec{u} . $\vec{v} = 5$.

Calculer les réels suivants : $(\vec{u} + \vec{v}) \cdot \vec{v}$; $(\vec{u} + 3\vec{v}) \cdot (2\vec{u} + \vec{v})$ et $(\vec{u} + \vec{v})^2$

$$(\vec{u} + \vec{v}) \cdot \vec{v} = \vec{u} \cdot \vec{v} + \vec{v}^2 = 5 + 3^2 = 14$$

$$(\vec{u} + 3\vec{v}).(2\vec{u} + \vec{v}) = 2\vec{u}^2 + \vec{u}.\vec{v} + 6\vec{v}.\vec{u} + 3\vec{v}^2 = 2 \times 2^2 + 5 + 6 \times 5 + 3 \times 3^2 = 70$$

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2 = 2^2 + 2 \times 5 + 3^2 = 23$$

Exercice supplémentaire : Propriété du produit scalaire

Soit deux vecteurs \vec{u} et \vec{v} qui vérifient :

$$\|\vec{u}\| = 5$$
, $\|\vec{v}\| = 2$ et \vec{u} . $\vec{v} = 4$.

Calculer les réels suivants :

$$(6\vec{u} + 3\vec{v}) \cdot (\vec{u} - 2\vec{v}); (-\vec{u} + 3\vec{v}) \cdot (4\vec{u} + \vec{v}) \text{ et } (2\vec{u} + \vec{v})^2$$

$$(6\overrightarrow{u}+\overrightarrow{3\overrightarrow{v}}).(\overrightarrow{u}-2\overrightarrow{v})=90$$

$$(-\overrightarrow{u}+3\overrightarrow{v}).(4\overrightarrow{u}+\overrightarrow{v})=-44$$

$$(2\vec{u} + \vec{v})^2 = 120$$

Exercice supplémentaire : Propriété du produit scalaire

1. Sachant que \overrightarrow{AB} . $\overrightarrow{AC} = 8$, calculer \overrightarrow{AB} . \overrightarrow{CA} , \overrightarrow{BA} . \overrightarrow{AC} et \overrightarrow{BA} . \overrightarrow{CA} .

$$\overrightarrow{AB}.\overrightarrow{CA} = -\overrightarrow{AB}.\overrightarrow{AC} = -8$$

$$\overrightarrow{BA}.\overrightarrow{AC} = -\overrightarrow{AB}.\overrightarrow{AC} = -8$$

$$\overrightarrow{BA}.\overrightarrow{CA} = \overrightarrow{AB}.\overrightarrow{AC} = 8$$

2. Sachant que \overrightarrow{AB} . $\overrightarrow{AC} = 5$ et \overrightarrow{AB} . $\overrightarrow{CD} = 10$, calculer \overrightarrow{AB} . \overrightarrow{AD} , \overrightarrow{BA} . \overrightarrow{DA} et \overrightarrow{BA} . \overrightarrow{AD} .

$$\overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{AB}.(\overrightarrow{AC} + \overrightarrow{CD}) = \overrightarrow{AB}.\overrightarrow{AC} + \overrightarrow{AB}.\overrightarrow{CD} = 5 + 10 = 15$$

$$\overrightarrow{BA}.\overrightarrow{DA} = \overrightarrow{AB}.\overrightarrow{AD} = 15$$

$$\overrightarrow{BA}.\overrightarrow{AD} = -\overrightarrow{BA}.\overrightarrow{DA} = -15$$

Exercice 7: Propriété du produit scalaire

Soit ABC un triangle, I étant le milieu du côté [BC].

On suppose que BC = 8 et IA = 5.

Calculer \overrightarrow{AB} . \overrightarrow{AC} .

$$\overrightarrow{AB}.\overrightarrow{AC} = (\overrightarrow{AI} + \overrightarrow{IB}).(\overrightarrow{AI} + \overrightarrow{IC}) = AI^2 + \overrightarrow{AI}.\overrightarrow{IC} + \overrightarrow{IB}.\overrightarrow{AI} + \overrightarrow{IB}.\overrightarrow{IC} = AI^2 + \overrightarrow{AI}(\overrightarrow{IC} + \overrightarrow{IB}) - \overrightarrow{IB}^2 = 5^2 + 0 - 4^2 = 9$$

Exercice 8 : Propriété du produit scalaire

Soit trois points A, B et C.

On suppose que \overrightarrow{AB} . $\overrightarrow{AC} = 5$ et \overrightarrow{AB} . $\overrightarrow{BC} = -4$.

Calculer la longueur du segment [AB].

$$\overrightarrow{AB^2} = \overrightarrow{AB}^2 = \overrightarrow{AB} \cdot \left(\overrightarrow{AC} + \overrightarrow{CB}\right) = \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{CB} = \overrightarrow{AB} \cdot \overrightarrow{AC} - \overrightarrow{AB} \cdot \overrightarrow{BC} = 5 + 4 = 9 \text{ ainsi } AB = 3.$$

Exercice 9 : Propriété du produit scalaire

ABCD est un parallélogramme tel que AB = 6, AD = 7 et BD = 10.

1. Calculer \overrightarrow{DA} . \overrightarrow{DC} , puis \overrightarrow{DB} . \overrightarrow{DC} .

$$\overrightarrow{DA}.\overrightarrow{DC} = \frac{1}{2} \left(\left\| \overrightarrow{DA} + \overrightarrow{DC} \right\|^2 - \left\| \overrightarrow{DA} \right\|^2 - \left\| \overrightarrow{DC} \right\|^2 \right) = \frac{1}{2} \left(DB^2 - DA^2 - DC^2 \right) = \frac{1}{2} \left(10^2 - 7^2 - 6^2 \right) = 7,5$$

$$\overrightarrow{DB}.\overrightarrow{DC} = \left(\overrightarrow{DA} + \overrightarrow{AB} \right).\overrightarrow{DC} = \overrightarrow{DA}.\overrightarrow{DC} + \overrightarrow{AB}.\overrightarrow{DC} = 7,5 + 6^2 = 43,5 \text{ (car } \overrightarrow{AB} = \overrightarrow{DC} \text{)}.$$

2. En déduire \overrightarrow{AB} . \overrightarrow{AD}

$$\overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{DC}.\overrightarrow{AD} = \overrightarrow{AD}.\overrightarrow{DC} = -\overrightarrow{DA}.\overrightarrow{DC} = -7.5$$

3. Déterminer alors la longueur de la diagonale [AC]

$$AC^2 = \overrightarrow{AC}^2 = (\overrightarrow{AD} + \overrightarrow{DC}).(\overrightarrow{AD} + \overrightarrow{DC}) = AD^2 + \overrightarrow{AD}.\overrightarrow{DC} + \overrightarrow{DC}.\overrightarrow{AD} + DC^2 = 7^2 + 2 \times (-7, 5) + 6^2 = 70$$
 ainsi $AC = \sqrt{70}$. Remarque: Pour utiliser la question 2 on peut remarquer que: $\overrightarrow{AB}.\overrightarrow{AD} = \frac{1}{2}(AC^2 - AB^2 - AD^2)$ donc $AC = \cdots$

Compétence: Expression analytique du produit scalaire

Exercice 10: Expression analytique du produit scalaire

On considère deux vecteurs \vec{u} et \vec{v} , dans chacun des cas :

1. Calculer \vec{u} . \vec{v} , \vec{u} . \vec{u} , $(\vec{u} + \vec{v})$. \vec{u} et \vec{v}^2 .

a. $\vec{u} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$	b. $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$	c. $\vec{u} \begin{pmatrix} 10 \\ 7 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
$\vec{u}.\vec{v} = 5 \times 2 + 6 \times 4$	$\vec{\boldsymbol{u}}.\vec{\boldsymbol{v}}=(-1)\times 2+3\times 5$	$\vec{u}.\vec{v} = 10 \times 3 + 7 \times 2$
= 10 + 24 = 34	= -2 + 15 = 13	= 30 + 14 = 44
$\vec{u}.\vec{u}=5^2+6^2$	$\vec{\boldsymbol{u}}.\vec{\boldsymbol{u}} = (-1)^2 + 3^2$	$\vec{u}.\vec{u}=10^2+7^2$
= 25 + 36 = 61	= 1 + 9 = 10	= 100 + 49 = 149
$(\vec{u} + \vec{v}) \cdot \vec{u} = 7 \times 5 + 10 \times 6$	$(\overrightarrow{u}+\overrightarrow{v}).\overrightarrow{u}=1\times(-1)+8\times5$	$(\vec{u}+\vec{v}).\vec{u}=13\times10+9\times7$
= 35 + 60 = 95	=-1+40=39	= 130 + 63 = 193
$\vec{v}^2 = 2^2 + 4^2 = 4 + 16 = 20$	$\vec{v}^2 = 2^2 + 5^2 = 4 + 25 = 29$	$\vec{v}^2 = 3^2 + 2^2 = 9 + 4 = 13$

2. Dire si les vecteurs \vec{u} et \vec{v} sont orthogonaux.

a.
$$\vec{u} \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10 \\ 6 \end{pmatrix}$ b. $\vec{u} \begin{pmatrix} 21 \\ -7 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ c. $\vec{u} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 6 \\ 7 \end{pmatrix}$
$$\vec{u} \cdot \vec{v} = 5 \times 10 + 3 \times 6$$

$$\vec{u} \cdot \vec{v} = 21 \times 2 + (-7) \times 6$$

$$\vec{u} \cdot \vec{v} = 8 \times 6 + 1 \times 7$$

$$= 50 + 18 = 68 \neq 0$$

$$\vec{u} \text{ et } \vec{v} \text{ ne sont pas orthogonaux}$$

$$\vec{u} \text{ et } \vec{v} \text{ sont orthogonaux}$$

$$\vec{u} \text{ et } \vec{v} \text{ ne sont pas orthogonaux}$$

3. Déterminer le réel m de telle sorte que les vecteurs \vec{u} et \vec{v} soient orthogonaux.

a.
$$\vec{u} {4 \choose 6} \text{et } \vec{v} {m \choose -5}$$
 b. $\vec{u} {7 \choose -2} \text{et } \vec{v} {9 \choose m}$ c. $\vec{u} {2 \choose m-3} \text{et } \vec{v} {-1 \choose 2m}$
 \vec{u} et \vec{v} sont orthogonaux ssi \vec{u} et \vec{v} sont orthogonaux ssi \vec{u} . $\vec{v} = 0$
 $4m - 30 = 0$
 $m = \frac{30}{4} = \frac{15}{2} = 7, 5.$
 $m = \frac{63}{2} = 31, 5.$
 \vec{u} et \vec{v} sont orthogonaux ssi \vec{u} et \vec{v} sont orthogonaux ssi \vec{u} et \vec{v} sont orthogonaux ssi \vec{v} et \vec{v} et \vec{v} sont orthogonaux ssi \vec{v} et \vec{v}

Exercice 11: Expression analytique

Dans chacun des cas suivants, montrer que les droites (AB) et (CD) sont perpendiculaires.

1. A(1;1), B(2;3), C(-2;1) et D(2;-1)

$$\overline{AB} \begin{pmatrix} 2-1 \\ 3-1 \end{pmatrix} \operatorname{soit} \overline{AB} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \overline{CD} \begin{pmatrix} 2-(-2) \\ -1-1 \end{pmatrix} \operatorname{soit} \overline{CD} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

 \overrightarrow{AB} . $\overrightarrow{CD} = 1 \times 4 + 2 \times (-2) = 4 - 4 = 0$ donc les droites (AB) et (CD) sont perpendiculaires. 2. A(-3; 2), B(6; -1), C(3; 4) et D(1; -2)

$$\overline{AB} \begin{pmatrix} 6 - (-3) \\ -1 - 2 \end{pmatrix} \text{ soit } \overline{AB} \begin{pmatrix} 9 \\ -3 \end{pmatrix}$$

$$\overline{CD} \begin{pmatrix} 1 - 3 \\ -2 - 4 \end{pmatrix} \text{ soit } \overline{CD} \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$

 \overrightarrow{AB} . $\overrightarrow{CD} = 9 \times (-2) + (-3) \times (-6) = -18 + 18 = 0$ donc les droites (AB) et (CD) sont perpendiculaires.

Exercice 12: Expression analytique

Dans chacun des cas suivants, déterminer la nature du triangle EFG.

1. E(8;4), F(4;-2), et G(-2;2)

EF = FG ainsi le triangle EFG est isocèle en F.

 $EG^2 = EF^2 + FG^2$ donc d'après la réciproque du théorème de Pythagore EFG est rectangle en F.

Conclusion : Le triangle EFG est rectangle isocèle en F.

Remarque : Si on place les points sur un repère, on conjecture facilement que EFG est rectangle isocèle en F et montrer que : \overrightarrow{EF} . $\overrightarrow{FG} = 0$ et EF = FG suffit.

2. E(1;2), F(9;-2), et G(13;6)

$$\overrightarrow{EF} \begin{pmatrix} 9-1 \\ -2-2 \end{pmatrix} \operatorname{soit} \overrightarrow{EF} \begin{pmatrix} 8 \\ -4 \end{pmatrix}$$

$$EF = \sqrt{8^2 + (-4)^2}$$

$$= \sqrt{64 + 16} = \sqrt{80}$$

$$\overrightarrow{EG} \begin{pmatrix} 13-1 \\ 6-2 \end{pmatrix} \operatorname{soit} \overrightarrow{CD} \begin{pmatrix} 12 \\ 4 \end{pmatrix}$$

$$EG = \sqrt{12^2 + 4^2}$$

$$= \sqrt{144 + 16} = \sqrt{160}$$

$$\overrightarrow{FG} \begin{pmatrix} 13-9 \\ 6-(-2) \end{pmatrix} \operatorname{soit} \overrightarrow{CD} \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

$$FG = \sqrt{4^2 + 8^2}$$

$$= \sqrt{16 + 64} = \sqrt{80}$$

EF = FG ainsi le triangle EFG est isocèle en F.

 $EG^2 = EF^2 + FG^2$ donc d'après la réciproque du théorème de Pythagore EFG est rectangle en F.

Conclusion: Le triangle EFG est rectangle isocèle en F.

Exercice 13: Expression analytique du produit scalaire

Soit les points A(3;5), B(-3;7), C(-1;1) et D(5;-1).

1. Calculer \overrightarrow{BD} . \overrightarrow{AC} .

2. Montrer que $\overrightarrow{AB} = \overrightarrow{DC}$

$$\overline{AB} \begin{pmatrix} -3 - 3 \\ 7 - 5 \end{pmatrix} \text{ soit } \overline{AB} \begin{pmatrix} -6 \\ 2 \end{pmatrix} \qquad \qquad \overline{DC} \begin{pmatrix} -1 - 5 \\ 1 - (-1) \end{pmatrix} \text{ soit } \overline{BD} \begin{pmatrix} -6 \\ 2 \end{pmatrix}$$

3. En déduire la nature du quadrilatère ABCD.

 $\overrightarrow{AB} = \overrightarrow{DC}$ ainsi le quadrilatère ABCD est un parallélogramme.

De plus ces diagonales sont perpendiculaires ainsi ABCD est un losange.

Attention: Il faut vérifier que ABCD n'est pas un rectangle (il y a plusieurs méthodes).

 $BD = \sqrt{128}$ et $AC = \sqrt{32}$ donc les diagonales ne sont pas égales donc ABCD n'est pas un rectangle donc n'est pas un carré.

Exercice 14: Expression analytique du produit scalaire

Soit les points $A(\frac{3}{2}; -2)$, $B(-\frac{3}{2}; 4)$, C(2; 2) et D(-2; 0).

1. Calculer \overrightarrow{AB} . \overrightarrow{CD} .

$$\overrightarrow{AB} {-3 \choose 6}$$
 $\overrightarrow{CD} {-4 \choose -2}$

 \overrightarrow{AB} . $\overrightarrow{CD} = -3 \times (-4) + 6 \times (-2) = 12 - 12 = 0$ donc les droites (AB) et (CD) sont perpendiculaires.

2. En déduire la nature du quadrilatère ACBD.

Attention : Nous ne pouvons rien conclure pour l'instant. Calculons les coordonnées de \overrightarrow{AC} et \overrightarrow{DB} .

$$\overrightarrow{AC}\begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} \end{pmatrix}$$
 et $\overrightarrow{DB}\begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} \end{pmatrix}$ ainsi $\overrightarrow{AC} = \overrightarrow{DB}$ donc $ACBD$ est un parallélogramme.

De plus ces diagonales sont perpendiculaire donc ACBD est un losange.

 $AB=\sqrt{45}$ et $CD=\sqrt{20}$ donc les diagonales ne sont pas égales, ACBD n'est pas un rectangle donc n'est pas un carré.

Exercice 15: Expression analytique du produit scalaire

Soit les points E(2; 20), F(10; -5) et G(27; 28).

1. Montrer que le triangle *FEG* est rectangle en *E*.

FEG est rectangle en E.

Remarque : On pourrait montrer facilement que EF = EG et donc que le triangle FEG était rectangle isocèle en E.

Calculer les coordonnées du point H tel que EFHG est un rectangle.

Comme
$$(EF)$$
 et (EG) sont perpendiculaires $EFHG$ est un rectangle si $EFHG$ est un parallélogramme. Notons $H(x;y)$. $EFHG$ est un parallélogramme ssi $\overrightarrow{EF} = \overrightarrow{GH}$ ssi $\begin{cases} 8 = x - 27 \\ -25 = y - 28 \end{cases}$ ssi $\begin{cases} x = 35 \\ y = 3 \end{cases}$ ainsi $H(35;3)$.

Exercice 16: Expression analytique du produit scalaire

Soit les points A(5;3) et B(-3;1). Déterminer les coordonnées du point C de sorte que C appartiennent à l'axe des abscisses et que le triangle ABC soit rectangle en A.

Soit C(x;y). C appartiennent à l'axe des abscisses donc C(x;0). $\overrightarrow{AB} \begin{pmatrix} -3-5 \\ 1-3 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} -8 \\ -2 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} x-5 \\ -3 \end{pmatrix}$ ABC est rectangle en A ssi \overrightarrow{AB} . $\overrightarrow{AC} = 0$ ssi $-8(x-5) + (-2) \times (-3) = 0$ ssi -8x + 40 + 6 = 0 ssi $x = \frac{23}{4}$. Ainsi $C\left(\frac{23}{4};0\right)$.

Exercice 17: Produit scalaire avec normes et angle

Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$. On donne les points A, B et C.

Dans chacun des cas suivants, calculer \overrightarrow{AB} . \overrightarrow{AC} , puis $\cos(\overrightarrow{AB}, \overrightarrow{AC})$ et une mesure de l'angle \widehat{BAC} .

1. A(1;2), B(3;-4) et C(1;-1).

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -6 \end{pmatrix} \text{ et } \overrightarrow{AC} \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \times 0 + (-6) \times (-3) = 18$$

$$AB = \sqrt{2^2 + (-6)^2} = \sqrt{40}$$

$$AC = \sqrt{0^2 + (-3)^2} = 3$$

$$\cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC} = \frac{18}{\sqrt{40} \times 3} = \frac{6}{\sqrt{40}}.$$

$$\overrightarrow{BAC} = \cos^{-1} \left(\frac{6}{\sqrt{40}}\right) \approx 0, 32 \text{ rad (ou 18,43°)}.$$

2.
$$A(4;1), B(-3;1) \text{ et } C(1;5)$$
.

$$\overrightarrow{AB} \begin{pmatrix} -7 \\ 0 \end{pmatrix} \text{ et } \overrightarrow{AC} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{AB}. \overrightarrow{AC} = (-7) \times (-3) + 0 \times 4 = 21$$

$$AB = \sqrt{(-7)^2 + 0^2} = 7$$

$$AC = \sqrt{(-3)^2 + 4^2} = 5$$
3. $A(1;2), B(-1;2) \text{ et } C(3;2)$.

$$\overrightarrow{AB} = (-7) \times (-3) \times$$

$$\overrightarrow{AB} \begin{pmatrix} -2 \\ 0 \end{pmatrix} \text{ et } \overrightarrow{AC} \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = (-2) \times 2 + 0 \times 0 = -4$$

$$AB = \sqrt{(-2)^2 + 0^2} = 2$$

$$AC = \sqrt{2^2 + 0^2} = 2$$

$$cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \times AC} = \frac{-4}{2 \times 2} = -1$$

$$\overrightarrow{BAC} = \pi \text{ rad (ou 180°)}.$$

Exercice 18 : Produit scalaire avec normes et angle

Dans le plan rapporté à un repère orthonormé, on considère les points A(1;3), B(-3;2) et C(-5;-2).

1. Calculer \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{BC} . \overrightarrow{BA}

$$|\overrightarrow{AB} \begin{pmatrix} -4 \\ -1 \end{pmatrix} \text{ et } \overrightarrow{AC} \begin{pmatrix} 5 \\ -7 \end{pmatrix} \\ |\overrightarrow{AB} \cdot \overrightarrow{AC}| = -4 \times 5 + (-1) \times (-7) = -20 + 7 = -13$$

$$|\overrightarrow{BC} \begin{pmatrix} 9 \\ -6 \end{pmatrix} \text{ et } |\overrightarrow{BA} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \\ |\overrightarrow{BC} \cdot \overrightarrow{BA}| = 9 \times 4 + (-6) \times 1 = 36 - 6 = 30$$

2. En déduire une valeur approchée des mesures des angles du triangle ABC.

$$AB = \sqrt{16 + 1} = \sqrt{17}; AC = \sqrt{25 + 49} = \sqrt{74}; BC = \sqrt{81 + 36} = \sqrt{117}$$

$$\cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC} = \frac{-13}{\sqrt{17} \times \sqrt{74}} \text{ ainsi } \widehat{BAC} \approx 111, 5^{\circ}$$

$$\cos(\widehat{ABC}) = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{BA \times BC} = \frac{30}{\sqrt{17} \times \sqrt{117}} \text{ ainsi } \widehat{ABC} \approx 47, 7^{\circ}$$

$$\widehat{ACB} = 180^{\circ} - (\widehat{BAC} + \widehat{ABC}) \approx 20, 8^{\circ}$$

Compétence : Produit scalaire et projeté orthogonal

Exercice 19 : Produit scalaire et projeté orthogonal

ABC est un triangle et H est le pied de la hauteur issue de A.

On suppose que AB = 6, BH = 4 et HC = 5. Calculer:

a)
$$\overrightarrow{BA}.\overrightarrow{BC}$$
 b) $\overrightarrow{AB}.\overrightarrow{AH}$ c) $\overrightarrow{AC}.\overrightarrow{AH}$ d) $\overrightarrow{CA}.\overrightarrow{CB}$

Faire un dessin pour s'aider !!! On a $BC = BH + HC = 4 + 5 = 9$.

D'après le théorème de Pythagore dans le, triangle AHB rectangle en H on a :

$$AB^2 = AH^2 + HB^2$$
 ainsi $AH^2 = 6^2 - 4^2 = 20$ donc $AH = \sqrt{20}$.

$$\overrightarrow{BA}.\overrightarrow{BC} = BH \times BC = 4 \times 9 = 36$$

$$\overrightarrow{AB} \cdot \overrightarrow{AH} = AH^2 = 20$$

$$\overrightarrow{AC} \cdot \overrightarrow{AH} = AH^2 = 20$$

$$\overrightarrow{CA}.\overrightarrow{CB} = CH \times CB = 5 \times 9 = 45$$

Exercice 20 : Produit scalaire et projeté orthogonal

ABCD est un carré de côté 5. Calculer :

a)
$$\overrightarrow{AB}.\overrightarrow{AC}$$
 b) $\overrightarrow{BA}.\overrightarrow{BD}$ c) $\overrightarrow{BC}.\overrightarrow{BD}$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = AB^2 = 25$$

$$\overrightarrow{BA} \cdot \overrightarrow{BD} = \overrightarrow{BA} \cdot \overrightarrow{BA} = BA^2 = 25$$

$$\overrightarrow{BC} \cdot \overrightarrow{BD} = \overrightarrow{BC} \cdot \overrightarrow{BC} = BC^2 = 25$$

Exercice 21 : Produit scalaire et projeté orthogonal

ABCD est un trapèze rectangle en A et D tel que : AB = AD = 5 et DC = 7. Calculer :

a)
$$\overrightarrow{AB}.\overrightarrow{AD}$$
 b) $\overrightarrow{CD}.\overrightarrow{AB}$ c) $\overrightarrow{AB}.\overrightarrow{BC}$ d) $\overrightarrow{CA}.\overrightarrow{CD}$

Faire un dessin pour s'aider !!!

 $\overrightarrow{AB}.\overrightarrow{AD} = \mathbf{0}$ car ABCD est un trapèze rectangle en A

$$\overrightarrow{CD}$$
. $\overrightarrow{AB} = -CD \times AB = -7 \times 5 = -35$ car \overrightarrow{CD} et \overrightarrow{AB} sont de sens contraire.

$$\overrightarrow{AB}$$
. $\overrightarrow{BC} = \overrightarrow{AB}$. $\overrightarrow{Bh} = AB \times BH = 5 \times 2 = 10$ où H est le projeté orthogonal de C sur [AB).

$$\overrightarrow{CA} \cdot \overrightarrow{CD} = CD^2 = 7^2 = 49$$

Exercice 22 : Produit scalaire et projeté orthogonal

ABC est un triangle rectangle en B, avec AB = 4 et BC = 6. Calculer:

a)
$$\overrightarrow{AB}$$
, \overrightarrow{AC} b) \overrightarrow{AB} , \overrightarrow{BC} c) \overrightarrow{CA} , \overrightarrow{CB}

Faire un dessin pour s'aider !!!

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = AB^2 = 16$$

 $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$ car \overrightarrow{ABC} est un triangle rectangle en B

$$\overrightarrow{CA}.\overrightarrow{CB} = \overrightarrow{CB}.\overrightarrow{CB} = CB^2 = 6^2 = 36$$

Exercice 23 : Produit scalaire et projeté orthogonal

ABC est un triangle équilatéral de côté 5.

Soit les points I, J et K les milieux respectifs des segments [AB], [BC] et [AC]. Calculer:

a) \overrightarrow{AB} . \overrightarrow{AC}

b) $\overrightarrow{BC}.\overrightarrow{BA}$

c) $\overrightarrow{AB}.\overrightarrow{BC}$ d) $\overrightarrow{BA}.\overrightarrow{AC}$

e) $\overrightarrow{CA}.\overrightarrow{BC}$

Faire un dessin pour s'aider !!!

ABC est un triangle équilatéral ainsi I, I et K sont les projetés orthogonaux respectifs des points C, A et B sur les segments respectifs [AB], [BC] et [AC].

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AI} = AB \times AI = 5 \times \frac{5}{2} = \frac{25}{2}$$

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AI} = AB \times AI = 5 \times \frac{5}{2} = \frac{25}{2}$$

 $\overrightarrow{BC}.\overrightarrow{BA} = \overrightarrow{BI}.\overrightarrow{BA} = BI \times BA = \frac{5}{2} \times 5 = \frac{25}{2}$

$$\overrightarrow{AB}.\overrightarrow{BC} = \overrightarrow{BC}.\overrightarrow{AB} = -\overrightarrow{BC}.\overrightarrow{BA} = -\frac{25}{2}$$

$$\overrightarrow{BA}.\overrightarrow{AC} = -\overrightarrow{AB}.\overrightarrow{AC} = -\frac{25}{2}$$

$$\overrightarrow{CA}.\overrightarrow{BC} = \overrightarrow{CA}.(\overrightarrow{BA} + \overrightarrow{AC})^2 = \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AC} - AC^2 = \frac{25}{2} - 25 = -\frac{25}{2}$$

Exercice 24 : Produit scalaire et projeté orthogonal

ABCD est un losange tel que AC = 8 et BD = 10.

On note O le centre de ce losange.

1. Calculer:

a) \overrightarrow{AC} , \overrightarrow{BD}

b) \overrightarrow{BC} , \overrightarrow{BD}

c) \overrightarrow{AB} , \overrightarrow{AC}

Faire un dessin pour s'aider !!!

 \overrightarrow{AC} . $\overrightarrow{BD} = 0$ car \overrightarrow{ABCD} est un losange et ces diagonales sont perpendiculaires.

 $\overrightarrow{BC} \cdot \overrightarrow{BD} = BO \times BD = 5 \times 10 = 50.$

 $\overrightarrow{AB}.\overrightarrow{AC} = AO.AC = 4 \times 8 = 32$

2. a. Décomposer le vecteur \overrightarrow{AB} en fonction de \overrightarrow{AD} et \overrightarrow{DB} . En déduire \overrightarrow{AB} . \overrightarrow{AD} .

 $\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$

 $\overrightarrow{AB}.\overrightarrow{AD} = (\overrightarrow{AD} + \overrightarrow{DB}).\overrightarrow{AD} = AD^2 + \overrightarrow{DB}.\overrightarrow{AD}$

Or dans le triangle AOD rectangle en O, on a d'après le théorème de Pythagore : $AD^2 = AO^2 + OD^2 = 4^2 + 5^2 = 41$.

 $\overrightarrow{DB} \cdot \overrightarrow{AD} = -DB \times DO = -10 \times 5 = -50.$

Ainsi \overrightarrow{AB} . $\overrightarrow{AD} = 41 - 50 = -9$.

b. De la même façon, calculer \overline{BA} . \overline{BC} .

 $\overrightarrow{BA}.\overrightarrow{BC} = \overrightarrow{BA}.(\overrightarrow{BA} + \overrightarrow{AC}) = BA^2 + \overrightarrow{BA}.\overrightarrow{AC} = BA^2 - \overrightarrow{AB}.\overrightarrow{AC} = 41 - 32 = 9$

Compétence : Produit scalaire avec normes

Exercice 25 : Définition du produit scalaire (avec normes)

On considère deux vecteurs \vec{u} et \vec{v} .

- 1. Dans chacun des cas suivants, calculer \vec{u} . \vec{v} , puis indiquer si les vecteurs \vec{u} et \vec{v} sont orthogonaux.
 - a. $\|\vec{u}\| = 5$, $\|\vec{v}\| = 7$ et $\|\vec{u} + \vec{v}\| = 12$.

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left(\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 \right) = \frac{1}{2} \left(12^2 - 5^2 - 7^2 \right) = 35 \neq 0$$
 donc \vec{u} et \vec{v} ne sont pas orthogonaux.

b.
$$\|\vec{u}\| = 3, \|\vec{v}\| = 4$$
 et $\|\vec{u} + \vec{v}\| = 5$.

$$\overrightarrow{u}.\overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right) = \frac{1}{2} \left(5^2 - 3^2 - 4^2 \right) = 0 \text{ donc } \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux.}$$
2. Dans chacun des cas suivants, calculer $\|\overrightarrow{u} + \overrightarrow{v}\|$.

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2) \Leftrightarrow 2\vec{u} \cdot \vec{v} = \|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 \Leftrightarrow \|\vec{u} + \vec{v}\| = \sqrt{2\vec{u} \cdot \vec{v} + \|\vec{u}\|^2 + \|\vec{v}\|^2}$$
a. $\|\vec{u}\| = 4, \|\vec{v}\| = 2$ et $\vec{u} \cdot \vec{v} = 6$.

$$||\vec{u} + \vec{v}|| = \sqrt{2\vec{u} \cdot \vec{v} + ||\vec{u}||^2 + ||\vec{v}||^2} = \sqrt{2 \times 6 + 4^2 + 2^2} = \sqrt{32}$$
b. $||\vec{u}|| = 2, ||\vec{v}|| = 8 \text{ et } \vec{u} \cdot \vec{v} = -5.$

b.
$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 8$ et \vec{u} . $\vec{v} = -5$.

$$\|\vec{u} + \vec{v}\| = \sqrt{2\vec{u}.\vec{v} + \|\vec{u}\|^2 + \|\vec{v}\|^2} = \sqrt{2 \times (-5) + 2^2 + 8^2} = \sqrt{58}$$

3. Dans chacun des cas suivants, calculer $\|\vec{u}\|$.

$$\vec{u}.\vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2) \Leftrightarrow 2\vec{u}.\vec{v} = \|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 + \|\vec{v}\|^2 + \|\vec{u}\|^2 + \|\vec{v}\|^2 + \|\vec{v$$

$$\begin{aligned} ||\vec{u}|| &= \sqrt{||\vec{u} + \vec{v}||^2 - ||\vec{v}||^2 - 2\vec{u}.\vec{v}} = \sqrt{10^2 - 2^2 - 2 \times 6} = \sqrt{84} \\ \text{b.} \quad ||\vec{u} + \vec{v}|| &= 8, ||\vec{v}|| = 9 \text{ et } \vec{u}.\vec{v} = -11. \end{aligned}$$

$$\|\vec{u}\| = \sqrt{\|\vec{u} + \vec{v}\|^2 - \|\vec{v}\|^2 - 2\vec{u}.\vec{v}} = \sqrt{8^2 - 9^2 - 2 \times (-11)} = \sqrt{5}$$

Exercice 26: Définition du produit scalaire (avec normes)

ABCD est un parallélogramme tel que AB = 5, AC = 9 et AD = 7.

1. Calculer:

a)
$$\overrightarrow{AB}$$
, \overrightarrow{BA}

b)
$$\overrightarrow{AB}$$
. \overrightarrow{CD}

c)
$$\overrightarrow{CA}$$
. \overrightarrow{AB}

a)
$$\overrightarrow{AB} \cdot \overrightarrow{BA}$$
 b) $\overrightarrow{AB} \cdot \overrightarrow{CD}$ c) $\overrightarrow{CA} \cdot \overrightarrow{AB}$
$$\overrightarrow{AB} \cdot \overrightarrow{BA} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 \right) = \frac{1}{2} \left(\left\| \overrightarrow{0} \right\|^2 - AB^2 - BA^2 \right) = \frac{1}{2} \left(0^2 - 5^2 - 5^2 \right) = -25$$

Ou \overrightarrow{AB} . $\overrightarrow{BA} = -AB^2 = -5^2 = -25$ car \overrightarrow{AB} et \overrightarrow{BA} sont opposés.

$$\overrightarrow{AB}.\overrightarrow{CD} = 25$$
 en effet $\overrightarrow{CD} = \overrightarrow{BA}$

$$\overrightarrow{CA}.\overrightarrow{AB} = \frac{1}{2} \left(\left\| \overrightarrow{CA} + \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{CA} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 \right) = \frac{1}{2} \left(CB^2 - CA^2 - AB^2 \right) = \frac{1}{2} \left(7^2 - 9^2 - 5^2 \right) = -28, 5$$

2. a. Justifier l'égalité $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

\overrightarrow{ABCD} est un parallélogramme donc $\overrightarrow{AD} = \overrightarrow{BC}$ et $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)

b. Calculer \overrightarrow{AB} . \overrightarrow{AD} .

$$\overrightarrow{AB}.\overrightarrow{AD} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{AD} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{AD} \right\|^2 \right) = \frac{1}{2} \left(AC^2 - AB^2 - AD^2 \right) = \frac{1}{2} \left(9^2 - 5^2 - 7^2 \right) = 3, 5$$

Exercice 27 : Définition du produit scalaire (avec normes)

ABC est un triangle tel que AB = 6, BC = 3 et AC = 4. Calculer:

a)
$$\overrightarrow{BA}.\overrightarrow{AC}$$

a)
$$\overrightarrow{BA}.\overrightarrow{AC}$$
 b) $\overrightarrow{AB}.\overrightarrow{BC}$ c) $\overrightarrow{CA}.\overrightarrow{BC}$ \overrightarrow{BC} $\overrightarrow{BA}.\overrightarrow{AC} = \frac{1}{2} \left(\left\| \overrightarrow{BA} + \overrightarrow{AC} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{AC} \right\|^2 \right) = \frac{1}{2} \left(BC^2 - BA^2 - AC^2 \right) = \frac{1}{2} \left(3^2 - 6^2 - 4^2 \right) = -\frac{43}{2}$

$$\overrightarrow{AB}.\overrightarrow{BC} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{BC} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{BC} \right\|^2 \right) = \frac{1}{2} \left(AC^2 - AB^2 - BC^2 \right) = \frac{1}{2} \left(4^2 - 6^2 - 3^2 \right) = \frac{29}{2}$$

$$\overrightarrow{CA}.\overrightarrow{BC} = \frac{1}{2} \left(\left\| \overrightarrow{CA} + \overrightarrow{BC} \right\|^2 - \left\| \overrightarrow{CA} \right\|^2 - \left\| \overrightarrow{BC} \right\|^2 \right) = \frac{1}{2} \left(BA^2 - CA^2 - BC^2 \right) = \frac{1}{2} \left(6^2 - 4^2 - 3^2 \right) = \frac{11}{2}$$

Exercice 28 : Définition du produit scalaire (avec normes)

ABCD est un losange tel que AB = 10 et AC = 16.

1. Calculer la longueur de la diagonale [BD]

Notons I, le centre du losange (donc le milieu de diagonales [AC] et [BD]). On a $AI = \frac{AC}{2} = 8$.

Dans un losange les diagonales sont perpendiculaires. Ainsi le triangle AIB est rectangle en I.

Dans ce triangle on utilise le théorème de Pythagore :

$$AB^2 = AI^2 + IB^2$$

$$IB^2 = AB^2 - AI^2$$

$$IB^2 = 100 - 64$$

$$IB^2=36$$

$$IB = 6$$

Ainsi BD = 2IB = 12.

2. Calculer:

a)
$$\overrightarrow{AB}.\overrightarrow{AD}$$
 b) $\overrightarrow{BC}.\overrightarrow{BA}$ c) $\overrightarrow{CD}.\overrightarrow{AD}$ d) $\overrightarrow{CD}.\overrightarrow{AB}$ e) $\overrightarrow{BC}.\overrightarrow{AD}$

$$\overrightarrow{AB}.\overrightarrow{AD} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{AD} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{AD} \right\|^2 \right) = \frac{1}{2} \left(AC^2 - AB^2 - AD^2 \right) = \frac{1}{2} \left(16^2 - 10^2 - 10^2 \right) = 28$$

 $(ABCD \text{ est un parallélogramme donc } \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}).$

$$\overrightarrow{BC}.\overrightarrow{BA} = \frac{1}{2} \left(\left\| \overrightarrow{BC} + \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{BC} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 \right) = \frac{1}{2} \left(BD^2 - BC^2 - BA^2 \right) = \frac{1}{2} \left(12^2 - 10^2 - 10^2 \right) = -28$$

$$\overrightarrow{CD}.\overrightarrow{AD} = \frac{1}{2} \left(\left\| \overrightarrow{CD} \right\|^2 + \left\| \overrightarrow{AD} \right\|^2 - \left\| \overrightarrow{CD} - \overrightarrow{AD} \right\|^2 \right) = \frac{1}{2} \left(CD^2 + AD^2 - CA^2 \right) = \frac{1}{2} \left(10^2 + 10^2 - 16^2 \right) = -28$$

(Remarque : On utilise ici la formule $\vec{u}.\vec{v}=rac{1}{2}ig(ig\|\vec{u}ig\|^2+ig\|\vec{v}ig\|^2-ig\|\vec{u}-\vec{v}ig\|^2ig)$ puisque le calcul de $\vec{u}+\vec{v}$ n'était pas possible, cette formule se démontre facilement en développant $\|\vec{u} - \vec{v}\|^2$.)

$$\overrightarrow{CD}.\overrightarrow{AB} = \frac{1}{2} \left(\left\| \overrightarrow{CD} + \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{CD} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 \right) = \frac{1}{2} \left(\left\| \overrightarrow{0} \right\|^2 - CD^2 - AB^2 \right) = \frac{1}{2} \left(0^2 - 10^2 - 10^2 \right) = -100$$

Ou $\overrightarrow{CD} \cdot \overrightarrow{AB} = -CD \times AB = -10 \times 10$ car \overrightarrow{CD} et \overrightarrow{AB} sont (colinéaires de sens) opposés

 $\overrightarrow{BC} \cdot \overrightarrow{AD} = BC \times AD = 10 \times 10$ car \overrightarrow{BC} et \overrightarrow{AD} sont colinéaires de même sens (égaux).

Exercice 29: Définition du produit scalaire (avec normes)

ABCD est un carré de côté 4.

1. Calculer $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{AC}\|$.

$ ABCD $ est un carré de côté 4 donc $ \overrightarrow{AB} =4$	La diagonale d'un carré de côté a mesure toujours $a\sqrt{2}$ (à	
	démontrer à l'aide du théorème de Pythagore).	
	Ainsi $\ \overrightarrow{AC}\ = 4\sqrt{2}$	

2. Calculer:

a)
$$AB.AD$$

d)
$$AB.BA$$

a) $\overrightarrow{AB}.\overrightarrow{AD}$ b) $\overrightarrow{AB}.\overrightarrow{CD}$ c) $\overrightarrow{AB}.\overrightarrow{CA}$ d) $\overrightarrow{AB}.\overrightarrow{BA}$ e) $\overrightarrow{CB}.\overrightarrow{CD}$ $\overrightarrow{AB}.\overrightarrow{AD}=0$ puisque \overrightarrow{ABCD} est un carré (et donc les droite (\overrightarrow{AB}) et (\overrightarrow{AD}) sont perpendiculaires.

$$\overrightarrow{AB}.\overrightarrow{CD} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{CD} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{CD} \right\|^2 \right) = \frac{1}{2} \left(\left\| \overrightarrow{0} \right\|^2 - AB^2 - CD^2 \right) = \frac{1}{2} \left(0^2 - 4^2 - 4^2 \right) = -16$$

Ou \overrightarrow{AB} . $\overrightarrow{CD} = -AB \times CD = -4 \times 4 = -16$ car \overrightarrow{AB} et \overrightarrow{CD} sont (colinéaires de sens) opposés.

$$\overrightarrow{AB}.\overrightarrow{CA} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{CA} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{CA} \right\|^2 \right) = \frac{1}{2} \left(4^2 - 4^2 - \left(4\sqrt{2} \right)^2 \right) = \frac{1}{2} \left(0^2 - 4^2 - 4^2 \right) = -16$$

$$\overrightarrow{AB}.\overrightarrow{BA} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{BA} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{BA} \right\|^2 \right) = \frac{1}{2} \left(\left\| \overrightarrow{\mathbf{0}} \right\|^2 - AB^2 - BA^2 \right) = \frac{1}{2} \left(\mathbf{0}^2 - \mathbf{4}^2 - \mathbf{4}^2 \right) = -16$$

Ou $\overrightarrow{AB} \cdot \overrightarrow{BA} = -AB \times BA = -4 \times 4 = -16$ car \overrightarrow{AB} et \overrightarrow{BA} sont (colinéaires de sens) opposés.

 \overrightarrow{CB} . $\overrightarrow{CD} = 0$ puisque ABCD est un carré (et donc les droite (CB) et (CD) sont perpendiculaires.

Compétence : Calculs de longueurs, d'aires et d'angles

Exercice 30 : Electricité

Il est conseillé d'avoir un bon $\cos \varphi$, sur une installation électrique.

La figure est issue d'une situation rencontrée en électricité. On donne :

$$\|\overrightarrow{BC}\| = U_1 = 25, \|\overrightarrow{AC}\| = U_2 = 20 \text{ et } (\overrightarrow{CD}, \overrightarrow{CB}) = -72^{\circ}.$$

Dans le triangle ABC, déterminer :

1. La valeur approchée arrondie à 10^{-2} de $U = \|\overrightarrow{AB}\|$

$$U^2 = U_1^2 + U_2^2 - 2U_1U_2\cos(\widehat{C}) \text{ or } \widehat{C} = 180^\circ - 72^\circ = 108^\circ$$

$$U^2 \approx 1334,02$$
 ainsi $U \approx 36,52$.

Remarque : Dans cette formule, j'utilise un angle géométrique, car cos(-a) = cos(a) ainsi l'orientation n'est pas importante.

2. La valeur approchée arrondie à 10^{-2} de la mesure φ en degrés de l'angle orienté $(\overrightarrow{AC}, \overrightarrow{AB})$

$$\frac{u}{\sin(\widehat{c})} = \frac{u_1}{\sin(\widehat{A})} \text{ ainsi } \sin(\widehat{A}) = \frac{u_1 \sin(\widehat{c})}{u} \approx 0,65 \text{ ainsi } \widehat{A} \approx 40,65^{\circ}.$$

$$(\overrightarrow{AC}, \overrightarrow{AB}) \approx -40,65^{\circ}$$

Exercice 31: Parcours d'un avion (En mécanique)

Un avion se déplace dans un plan horizontal à partir d'un point O situé à la verticale de sa base.

Il part en suivant une direction de 30° par rapport au nord, cap nord-est, parcourt 200 km et arrive en point M. Là il change de cap, suit la direction est, sur une distance de 100 km jusqu'au point P.

Quelle distance doit-il parcourir pour revenir au-dessus de sa base?

$$OM = 200$$
 et $MP = 100$. On cherche PO .

On remarque assez facilement que $\hat{M}=180-60^{\circ}=120^{\circ}$.

$$PO^2 = MP^2 + MO^2 - 2MP \times MO \times \cos(\widehat{M})$$

$$PO^2 = 70000$$

$$P0 \approx 264,58$$
 km.

Exercice 32:

On souhaite calcule la somme de deux forces. Soit $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ deux forces s'exerçant sur un même point O d'intensités respectives $F_1=40N$ et $F_2=30N$ en formant un angle de 50° comme l'illustre le schéma ci-contre.

Ces deux forces s'exerçant simultanément sur O peuvent être résumées par une seule force \vec{F} appelée force résultante et obtenue par la relation :

$$\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2}$$

On souhaite déterminer l'intensité et la direction de \vec{F} .

a) Déterminer la mesure de l'angle \widehat{OAS} .

Dans un parallélogramme,

- la somme des mesures des angles fait 360°
- les angles opposés sont égaux

donc
$$\widehat{OAS} = (360 - 2 \times 50) \div 2 = 140^{\circ}$$

b) En déduire la valeur approchée à 0,01 près de la distance OS.

Rappel: Théorème d'Al Kashi

Dans un triangle ABC, on pose a = BC; b = AC et c = AB.

On a:
$$a^2 = b^2 + c^2 - 2bc\cos(\hat{A})$$

Dans le triangle OAS, $OS^2 = OA^2 + AS^2 - 2 \times OA \times AS \times \cos(\widehat{OAS})$

avec
$$OA = F_1 = 40 \ et \ AS = F_2 = 30$$

$$OS^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(140^\circ)$$

$$OS^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(140^\circ)$$

$$OS^2 \approx 4338.51$$

Donc:

$$OS = \sqrt{4338,51} \approx 65,87$$

c) Calculer enfin l'angle \widehat{AOS} à 0,1° près .

On utilise à nouveau le théorème d'Al Kashi dans le triangle OAS

$$AS^2 = OA^2 + OS^2 - 2 \times OA \times OS \times \cos(\widehat{AOS})$$

On isole $\cos(\widehat{AOS})$:

$$2 \times OA \times AS \times \cos(\widehat{AOS}) = OA^2 + OS^2 - AS^2$$

$$\cos(\widehat{AOS}) = \frac{OA^2 + OS^2 - AS^2}{2 \times OA \times OS}$$

$$\cos(\widehat{AOS}) = \frac{40^2 + 65,87^2 - 30^2}{2 \times 40 \times 65,87}$$

$$\cos(\widehat{AOS}) \approx 0,956$$

$$\widehat{AOS} \approx \cos^{-1}(0.956)$$

$$\widehat{AOS} \approx 17.0^{\circ}$$

d) Conclure par rapport au problème posé.

On souhaitait déterminer l'intensité et la direction de \vec{F} .

 \vec{F} pour intensité $F = AS = 65,87 \, N$ et fait un angle de 17° avec la force $\vec{F_1}$.

b) En déduire la valeur approchée à 0,01 près de la distance OS.

Rappel: Théorème d'Al Kashi

Dans un triangle ABC, on pose a = BC; b = AC et c = AB.

On a:
$$a^2 = b^2 + c^2 - 2bc \cos(\hat{A})$$

Dans le triangle OAS, $OS^2 = OA^2 + AS^2 - 2 \times OA \times AS \times \cos(\widehat{OAS})$

avec $OA = F_1 = 40 \ et \ AS = F_2 = 30$

 $OS^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(140^\circ)$ $OS^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(140^\circ)$ $OS^2 \approx 4338,51$

Donc:

$$OS = \sqrt{4338,51} \approx 65,87$$

c) Calculer enfin l'angle \widehat{AOS} à $0,1^{\circ}$ près .

On utilise à nouveau le théorème d'Al Kashi dans le triangle OAS

 $AS^2 = OA^2 + OS^2 - 2 \times OA \times OS \times \cos(\widehat{AOS})$

On isole $cos(\widehat{AOS})$:

$$2 \times OA \times AS \times \cos(\widehat{AOS}) = OA^2 + OS^2 - AS^2$$
$$\cos(\widehat{AOS}) = \frac{OA^2 + OS^2 - AS^2}{2 \times OA \times OS}$$

$$\cos(\widehat{AOS}) = \frac{40^2 + 65,87^2 - 30^2}{2 \times 40 \times 65,87}$$

$$\cos(\widehat{AOS}) \approx 0,956$$

 $\widehat{AOS} \approx \cos^{-1}(0,956)$
 $\widehat{AOS} \approx 17,0^{\circ}$

d) Conclure par rapport au problème posé.