

NLP Text Processing Pipeline

nltk covers POS tagging, phrase chunking Stanford NLP toolkit

- Document → Sections and Paragraphs
- Paragraphs → Sentences (sentence segmentation / extraction)
- Sentences → Tokens
- Tokens → Lemmas or Morphological Variants / Stems
- Tokens → Part-of-speech (POS) Tags
- Tokens, POS Tags → Phrase Chunks (Named entities and Keyphrases)
- Tokens, POS Tags → Parse Trees
- Augment above with coreference, entailment, sentiment, ...

Part-of-speech tagging

A simple but useful form of linguistic analysis

Christopher Manning

Parts of Speech

- Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech
- a.k.a lexical categories, word classes, "tags", POS
- It comes from Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us that there are 8 parts of speech
 - But actually his 8 aren't exactly the ones we are taught today
 - Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
 - School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection

Open vs. Closed classes

- · Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

POS Tagging

- Words often have more than one POS: back
 - The <u>back</u> door = JJ
 - On my <u>back</u> = NN
 - Win the voters <u>back</u> = RB
 - Promised to <u>back</u> the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

Input: Plays well with others
Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Penn Treebank POS tags

Output: Plays/VBZ well/RB with/IN others/NNS

- Uses:
 - · Text-to-speech (how do we pronounce "lead"?)
 - Can write regexps like (Det) Adj* N+ over the output for phrases, etc.
 - As input to or to speed up a full parser
 - If you know the tag, you can back off to it in other tasks

.

S NLP

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - · About 97% currently
 - But baseline is already 90%
 - · Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

Deciding on the correct part of speech can be difficult even for people

- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

.

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know *that* he is honest = IN
 - Yes, that play was nice = DT
 - You can't go that far = RB
- 40% of the word tokens are ambiguous

11

Phrase Chunking and Special Noun Phrases

12

Phrase Chunking

- Find all non-recursive noun phrases (NPs) and verb phrases (VPs) in a sentence.
 - [NP I] [VP ate] [NP the spaghetti] [PP with] [NP meatballs].
 - [NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September]

13

Phrase Chunking as Sequence Labeling

- Tag individual words with one of 3 tags
 - B (Begin) word starts new target phrase
 - I (Inside) word is part of target phrase but not the first word
 - O (Other) word is not part of target phrase
- · Sample for NP chunking
 - He reckons the current account deficit will narrow to only # 1.8 billion in September.

Begin

Inside Other

14

Named Entity Recognition (NER)

- A special class of Proper Noun Phrases
- People: Scott Sanner, President Obama, Madonna
- Places: New York, Madison Square Garden, Millenium Park
- Organizations: New York Times, University of Toronto

15

Keyphrases

- Useful noun phrases, but not necessarily Proper Nouns, e.g.,
 - "machine learning"
 - "support vector machines"
 - "genetically modified organisms"
- A subset of frequent noun phrases (harder to extract than NEs)
 - This paper has the best method I've found so far: "Automatic Recognition of Multi-Word Terms: the C-value/NC-value Method Katerina Frantzly, Sophia Ananiadouy, Hideki Mima" IJODL 2000.

http://personalpages.manchester.ac.uk/staff/sophia.ananiadou/ijodl2000.pd

Statistical Natural Language Parsing

Parsing: Two views of syntactic structure

17

Why parsing?

- "The boy saw the man on the hill with the telescope."
- Who had the telescope?

- Depends on whether you attach "with the telescope" to "I" or "man on the hill"
- · How do you determine attachments? Parsing.
- Some sentences are inherently ambiguous: attachment ambiguity.

1

For fun

- · Who polices the police?
- Police police police.
- Who polices the police police? ©
- Point: we need more than word order / POS to interpret sentences... we need structure.

19

Two views of linguistic structure:

1. Constituency (phrase structure)

- · Phrase structure organizes words into nested constituents.
- What is a constituent?
- Constituent behaves as unit that can appear in different places:
 - John talked [to the children] [about drugs].
 - John talked [about drugs] [to the children].
 - Substitution/expansion/pro-forms:
 - I sat [on the box/right on top of the box/there].
 - Coordination, regular internal structure, no intrusion,

fragments, semantics, ...

Grammars for Parse Tree Production

- Parent \rightarrow Child1 Child2 | Child3 Child4 ... | ...
- $S \rightarrow NP VP \mid ...$
- NP \rightarrow ... NN* ...
- $VP \rightarrow ... VB* ...$
- ADJP \rightarrow ... JJ* ...
- ADVP \rightarrow ... RB* ...
- 22

Two views of linguistic structure:

2. Dependency structure

 Dependency structure shows which words depend on (modify or are arguments of) which other words.

The boy put the tortoise on the rug

23

Two views of linguistic structure:

2. Dependency structure

- Dependency structure shows which words depend on (modify or are arguments of) which other words.
- Can derive dependency tree from parse tree
- · What about reverse?

24

Semantic Language Analysis

Coreference and entailment

25

Coreference

- Discourse (multiple sentences) use coreferring phrases.
- Example:

"John saw a beautiful Acura Integra in the dealership. He showed it to Bob. He bought it."

What do "He" and "it" refer to in the 2nd sentence?

2

Coreference Resolution

 "John saw a beautiful Acura Integra in the dealership. He1 showed it1 to Bob. He2 bought it2."

> Referent John
> Phrases {John, He1, He2}
>
>
> Integra Bob dealership
> {a beautiful Acura Integra, it1, it2}
>
>
> {Bob} dealership}
> {bob}

• Important in processing reviews: "I liked it!"

27

Entailment

- Question: When did the Berlin wall open?
- Text contains: The Berlin wall fell on November 9, 1989.
- Simple entailment? Does "fall" → "open"?
 - · A wall falling is a wall opening
 - A person falling is not a person opening
- Entailment can be highly contextual. But WordNet (in nltk) contains basic entailments, e.g., "snoring" → "sleeping".