notation

Notation

Symbol	Meaning
\overline{s}	the space index
t	the time index
$i:1,2,\cdots,n$	the space index for each individual location
$j:1,2,\cdots,J$	the time index for each individual timestamp
$j^*, m: 0, 1, \cdots, 11$	the time index for indexing time by month
\mathcal{D}_s and \mathcal{D}_t	the parameter space for spatial and temporal
$f_{\phi}(.)$	the function on temporal processing with parameters ϕ
$g_{m{ heta}}^{ au}(.)$	the function on spatial aggregation with parameter θ
h(.)	the function on variable transformation, no parameter
$F_{\eta}(.)$	the PDF to fit the data with parameter η
$\Phi^{-1}(.)$	the quantile (inverse CDF) function

Step	Notation	Notes
Raw data	$\begin{aligned} \mathbf{X}(\mathbf{s}; \mathbf{t}), \\ x_p(s_i; t_j) \end{aligned}$	$\mathbf{s} \in \mathcal{D}_s, \mathcal{D}_s \subseteq \mathbb{R}^2, \mathbf{s} = (s_1, s_2, \cdots, s_n)'$ $t \in \mathcal{D}_t, \mathbf{t} = (t_1, t_2, \cdots, t_J)'$ $\mathbf{X}(\mathbf{s}; \mathbf{t}) = (x_1(\mathbf{s}; \mathbf{t}), x_2(\mathbf{s}; \mathbf{t}), \cdots, x_P(\mathbf{s}; \mathbf{t}))'$ when the pipeline step can be written in univariate case, the data will be referred to as $x(\mathbf{s}; \mathbf{t})$
Variable transfor- mation	$h(x(\mathbf{s};\mathbf{t}))$	TODO: to be filled

Step	Notation	Notes
Temporal	$f_{\phi}(x(\mathbf{s}; \mathbf{t}))$	Special case 1:
processing		aggregate across a time scale of k :
		$f_k(\mathbf{X}(\mathbf{s}; \mathbf{t})) = \sum_{l=t-k+1}^t \mathbf{X}(\mathbf{s}; \mathbf{t})$ [TODO: check again]
		Special case 2:
		aggregate with a kernel weight w_{ij} :
		$f_{w_{ij}}(\mathbf{X}(s_i;t_j)) = \sum_{l=t-k+1}^t w_{ij}\mathbf{X}(s_i;t_j)$
Spatial ag-	$g_{ heta}(x(\mathbf{s}; \mathbf{t}))$	•
gregation		
Normalising $\Phi^{-1}[F_{\eta}($	$\Phi^{-1}[F_n(x(\mathbf{s};\mathbf{t}))]$	Special case:
	- 4	When PDF $F(.)$ is separately fitted for each month:
		$\Phi^{-1}[F_n^m(x(\mathbf{s};t_{j^*}))]$ where j^* is all the indexes that satisfy
		$j^* \mod 12 = m$ for each $m = 0, 1, \dots, 11$

TODO:

 $\bullet\,$ look at how temporal aggregation (processing) is written in journals