7424

BOARD DIPLOMA EXAMINATION, (C-20)

MAY-2023

DCE - FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—III

Time: 3 Hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. Solve $(D^2 1)y = 0$
- **2.** Solve $(D^2 6D + 9)y = 0$
- **3.** Find the particular integral of differential equation $(D^2 + 4D + 4)y = e^{3x}$.
- **4.** Find the particular integral of differential equation $(D^2 + 16)y = \sin 3x$.
- **5.** Find $L\{e^{2t} + t^4 + 2\sin 2t\}$
- **6.** Find $L\{e^{2t} \sin 3t\}$
- 7. Find $L^{-1}\left\{\frac{1}{s-5} + \frac{5}{s^2+4} + \frac{3}{s^2-4}\right\}$
- **8.** Find the value of a_0 in the Fourier expansion of $f(x) = e^x$ in the interval $(0, 2\pi)$.
- **9.** Write the Euler's formula for Fourier series expansion of f(x) in the interval $(c, c + 2\pi)$
- **10.** Find the half-range sine series of f(x) = 1 in the interval $0 < x < \pi$.

Instructions: (1) Answer **all** questions.

- (2) Each question carries eight marks.
- **11.** (a) Solve $(D^3 D^2 D + 1)y = 0$

(OR)

- (b) Solve $(D^2 D 6)y = e^{3x} + e^{-3x}$
- **12.** (a) Solve $(D^2 + D + 1)y = 2\sin 3x$

(OR)

- (b) Solve $(D^2 + 2D + 1)y = 2x^2$
- **13.** (a) Evaluate $L(t^2e^{-3t})$

(OR)

- (b) Evaluate $L\{te^{-2t}\sin 3t\}$
- **14.** (a) Evaluate $L\left\{\frac{e^{at}-\cos bt}{t}\right\}$

(OR)

- (b) Evaluate $L^{-1} \left\{ \frac{s+3}{s^2 + 2s + 9} \right\}$
- **15.** (a) Find $L^{-1}\left\{\frac{s}{(s+1)(s+2)}\right\}$

(OR)

(b) Find $L^{-1}\left\{\frac{1}{s(s^2+4)}\right\}$ by using convolution theorem.

- **Instructions:** (1) Answer the following question.
 - (2) The question carries **ten** marks.
- **16.** Find the half range Fourier cosine and sine series for f(x) = x in the interval $(0, \pi)$.

