Apellidos______ Nombre____

1.-

Suponiendo el modelo lineal del diodo ideal (circuito abierto en corte, y cortocircuito en conducción) para los tres diodos rectificadores, D_1 , D_2 y D_3 , encontrar las corrientes que circulan por cada uno de ellos.

Datos: V_1 = 20V, V_2 = 10V, R_1 = 10K Ω , R_2 = 5K Ω . ¡Atención a las polaridades de las fuentes! (3 puntos).

Obtener la característica de transferencia (v_o en función de v_i , siendo $-\infty \le v_i \le +\infty$) de los dos siguientes circuitos:

2.-

(3 puntos).

3.-

(3 puntos).

De los diodos de los dos últimos circuitos, considerar:

- Para D₁, D₂ y D_z, en directa, un voltaje umbral de conducción V_γ y una resistencia dinámica R_d=0.
- Para D_z, en inversa, un voltaje umbral de conducción inversa (voltaje de zener) V_z y una resistencia de conducción en inversa R_z=0.

En éste último circuito, obtener también la curva característica o curva de regulación (v_o en función de i_o) cuando el diodo zener está en corte y cuando está en conducción inversa. (1 punto).

Sugerencia:

Emplear no más de 15 minutos en la resolución del primer ejercicio, y no más de 20 minutos en cada uno de los dos últimos.