QUIZ SOCOT	
1) Compression Ratio measures the worst performance of greedy algorithm over all the input compared to optimal matching. It divides the worst number of matching of matching is algorithm by the number of matching in optimal	
Compitative Ratio = min all possible ilp [Mophimal]	: : (
2) [I POINT] 2 optimal case = $\{(1, 2), (1, d)\}$ 2 optimal case = $\{(1, a), (2, b), (3, c)\}$ (4,d)3	3
competitive latio = 1/2] [
but matched in amount greedy algorithm. A is the set	17
I Marriedy > A because all in A must already be matched otherwise, they will match with a query is 9 and otherwise, they will match with a query is 9 and	I I
otherwise, they will match with a query of and	
that quity in Q , there not	
Also . A = 12 because for each grown , we have to be at reast one linked ad. Therefore, we have	
to be at reason to be at reason of the grule Mgrudy = A = Q . [[POINT]	İ

Lots says Q' is the set of queries that one matched then [Mgreedy] > 10'1 because all queries in Q' must be matched in [Mgreedy].

Theorefore, $|Moptimal| = |Q| + |Q'| \le |Q| + |Mogreedy|$ and in the worst when |Mogreedy| is as small as possible, it is equal to |Q|, so $|Moptimal| \le 2 \times |Moptimal| \le 2 \times |Mogreedy|$, and the competitive value |Z| = 0.5. [I POINT]

4) (q) (A1)	Az or No Ad)	Remainey Budget for A 1	Budget for A 2
[IPOINT] Al stort	17 JU W	401	50
1st query	A2 (100)	40 en en	4000
2nd query	A	20	240,0
3rd query	A ₂	20	30
4th query	A2	20	20
5th query	A	% 0	20
5th queey	A 2	0	10
I'm queey	A ₂	0	0
8th query			
		12 A N	anch with

5) Suppose we have N advertisers A1, A2 -- , each with budget B, so is the optimal licenario we exhaust all the budget and the revenue is NXB.

In Balance Algorithm, we arright each query to advertisery In Balance Algorithm, we arright budget. For round equally and project those with high budget. For round i, we assign the query equally to advertisers Ai, Airi-... i, we assign the query equally to advertisers Ai, Airi-... because Ai, Az-- Ai-, don't bid for the query anymore

This process stops when $\frac{B}{N} + \frac{B}{N-1} + \frac{B}{N-2} + \cdots + \frac{B}{N-j+1} = B$ $\frac{B}{N} + \frac{B}{N-1} + \frac{B}{N-2} + \cdots + \frac{B}{N-j+1}$ [IPOINT] ((1+1/2+1/3+--+1/N) - (1+1/2+1/3+--++1/N-j) According to Euler, 1+ 1/2+ 1/3+ .-- + 1/N = log N TO T when N is big enough, so the formula above be Converted to $\log N - \log_e^{N-j} \ge 1$, and in the worst (IPOINT) Case when the sign is equal, we can get j = N - N/eSo the approx. revenue is $B(N - \frac{N}{e})$, divided by optimal sevenue BN, we can get compétitive ratio [POINT] and the same and the same of the same the second from the whole of a second about the property when when some the property is recorded

in colin the gray world to construct his day beauty was the following the grant of

1