2021年上海市宝山区中考化学二模试卷

一、选择题(共20分) 1. (1分) 汞的元素符号是() A. Ag B. Hg C. Mg D. He 2. (1分)属于物理变化的是() A. 食物腐败 B. 金属生锈 C. 冰雪消融 D. 酒精燃烧 3. (1分) 灼烧氯化钾时, 火焰呈() A. 紫色 B. 黄色 C. 蓝色 D. 绿色 4. (1分)属于纯净物的是() A. 矿泉水 B. 冰水混合物 C. 河水 D. 自来水 5. (1分)属于有机物的是() A. CO₂ B. CaCO₃ C. H_2CO_3 D. CH_4 6. (1分)下列物质在氧气中燃烧,产生淡蓝色火焰的是() B. 硫 C. 木炭 D. 氢气 7. (1分)碘化银(AgI)常用作人工降雨剂,其中碘元素的化合价是() A. - 1 B. +1 C. +28. (1分) CuSO₄•5H₂O 的俗名是 () B. 胆矾 C. 烧碱 D. 纯碱 A. 石碱 9. (1分)下列液体中滴加紫色石蕊试液,变红的是() A. 柠檬水 B. 食盐水 C. 石灰水 D. 蒸馏水 10. (1分) 与石墨互为同素异形体的是(A. 碳-60 B. 活性炭 C. 炭黑 D. 一氧化碳 11. (1分)有关物质的命名正确的是(A. HNO₃ - - 硝酸氢 B. N₂O₅ - - 氧化氮 C. Fe (OH) 2 - - 氢氧化铁 D. NaHCO3 - - 碳酸氢钠 12. (1分)下列物质可做复合肥的是() A. (NH₄) ₃PO₄ B. NH₄NO₃ C. K₂SO₄ D. CO (NH₂) ₂ 13. (1分)工业上常把液态燃料喷成雾状,从而提高燃料的利用率,其原理是() A. 使可燃物分子变小

- B. 增加空气中的氧气含量
- C. 增大可燃物与氧气的接触面积
- D. 降低可燃物着火点
- 14. (1分)鉴别稀盐酸和稀硫酸,可选用的试剂是()
 - A. 酚酞试液
- B. 锌粒
- C. NaOH 溶液 D. Ba(NO₃)₂

第15~17题,每题有一个或两个正确选项

15. (2分)如图实验设计能实现相应实验目的的是()

选项	A	В	С	D
实验	探究水对铁钉生锈的	探究温度是燃烧的	探究金属活动性	探究催化剂对反
目的	影响	必要条件	强弱	应快
				慢的影响
实验设计	植物油茶馏水	气球 一气球 80℃	10mL10%稀盐酸	3%的
A. A	В. В	C. C	D.	D

- 16. (2分)关于氧化物的说法正确的是()
 - A. 含有氧元素的化合物是氧化物
 - B. 氧化物可分为金属氧化物和非金属氧化物
 - C. 非金属氧化物都是酸性氧化物
 - D. 碱性氧化物有可能不与水反应
- 17. (2分) 某温度时,向一定量的饱和氢氧化钙溶液中加入少量生石灰,再恢复到原温度,

下列各相关的变化图像正确的是()

二、简答题(共30分)

- 18. (8分) 化学是一门研究物质的组成、结构、性质及其变化规律的自然科学。用初中化学的相关知识完成下列填空。
 - ①过氧乙酸(化学式: C₂H₄O₃)在医药工业上常用作消毒剂,过氧乙酸由____种元素组成,其中碳、氢元素的物质的量之比为____,1mol过氧乙酸中约含有_____个氢原子。
 - ②国际空间站的供氧设备,利用航天太阳能面板所发的电进行水的电解。电解水的化学方程式为_____,所得氢气和氧气的体积比约为_____。
 - ③如图为某化学反应的微观模拟图,"○"和"●"表示两种不同的原子:

参加反应的" " 和" " 的分子个数比为____, 其反应基本类型为____。

19. (5分)图1为甲、乙、丙(均不含结晶水)三种固体物质的溶解度曲线。

- ①t4℃时,三种物质溶解度由大到小的顺序是_____;
- ②将 t3℃乙的不饱和溶液变为饱和溶液,可采用的一种方法是_____;
- ③P点的含义是;
- ④现有一包 50g 的甲固体 (混有少量乙),为提纯甲进行了图 2 实验,最终 C 中析出 34g 第 3页 (共 19页)

固体。50g 该固体中含有乙______g, A、B、C 中的溶液为甲的不饱和溶液的是(选填编号)。

20. (9分) 有关气体制备是初中化学重要实验,请回答下列问题:

- ① 实验室用固体氯酸钾和二氧化锰共热制取氧气,反应的化学方程式为_____;可用装置 D 收集氧气,该收集气体方法的名称是____。
- ②已知固体高锰酸钾加热会产生氧气,同时生成固体锰酸钾和二氧化锰。用高锰酸钾固体制取氧气可选用的发生装置是______(选填编号)。
- (4)某兴趣小组分别用 B、C 发生装置制取二氧化碳气体并进行相关实验。

(1) 图一实验中,锥形瓶内反应的化学方程式为,可观察到试管

中的石灰水变浑浊。若锥形瓶内产生 0.01mol 二氧化碳,将其全部通入足量石灰水中,

III.向 II 中上层清液加入______,无明显现象。

【实验结论】该 NaCl 样品中还含有 CaCl2。

②提纯分离样品中的 NaCl 和 CaCl₂。

2021 年上海市宝山区中考化学二模试卷

参考答案与试题解析

	选择题	(#20	141
•	儿拌凼	\ // //	, 7,117

1. (1分) 汞的元素符号是()

	A. Ag	B. Hg	C. Mg	D. He
	【分析】书写元素符	符号时应注意: ①有一	个字母表示的元素符号	要大写;②由两个字母
	表示的元素符号,领	第一个字母大写,第二	个字母小写。	
	【解答】解:书写为	元素符号注意"一大二	小", 汞的元素符号是 I	Hg.
	故选: B。			
	【点评】本题难度为	下大,考查元素符号的	书写方法("一大二小"),熟记常见的元素符号
	是正确解答本题的美	关键。		
2.	(1分)属于物理变	化的是()		
	A. 食物腐败	B. 金属生锈	C. 冰雪消融	D. 酒精燃烧
	【分析】有新物质生	生成的变化叫化学变化	,,食物腐败、金属生锈	、酒精燃烧都属于化学
	变化;没有新物质生	生成的变化叫物理变化	1。化学变化的特征是:	有新物质生成。判断物
	理变化和化学变化的	的依据是:是否有新物	质生成。	
	【解答】解: A、食	(物腐败生成有害物质,	,属于化学变化; 故选」	页错误;
	B、金属生锈,铁锈	是新物质,属于化学	变化; 故选项错误;	
	C、冰雪消融没有新	「物质生成,属于物理 <u>?</u>	变化; 故选项正确;	
	D、酒精燃烧生成二氧化碳和水,属于化学变化;故选项错误;			
	故选: C。			
	【点评】本考点考	查了物理变化和化学变	化的区别,基础性比较	强,只要抓住关键点:
	是否有新物质生成,	问题就很容易解决。	本考点主要出现在选择	题和填空题中。
3.	(1分) 灼烧氯化钾	时,火焰呈()		
	A. 紫色	B. 黄色	C. 蓝色	D. 绿色

【解答】解: 钾元素的焰色反应是紫色, 所以灼烧氯化钾时, 火焰呈紫色, 故选: A。

【点评】本题主要考查了常见元素的焰色反应颜色,难度不大,在平时的学习中加强记

【分析】根据钾元素的焰色反应是紫色进行分析。

忆即可完成。

- 4. (1分)属于纯净物的是()

 - A. 矿泉水 B. 冰水混合物 C. 河水 D. 自来水

【分析】物质分为混合物和纯净物,混合物是由两种或两种以上的物质组成,纯净物是 由一种物质组成。纯净物又分为单质和化合物。由同种元素组成的纯净物叫单质;由两 种或两种以上的元素组成的纯净物叫化合物。氧化物是指由两种元素组成的化合物中, 其中一种元素是氧元素。

【解答】解: A、矿泉水中含有矿物质, 属于混合物: 故选项错误:

- B、冰水混合物只是状态上的混合,属于纯净物;故选项正确;
- C、河水中含有很多杂质以及微生物等,属于混合物: 故选项错误:
- D、自来水中含有消毒剂等,属于混合物;故选项错误;

故选: B。

【点评】本考点考查了物质的分类,要加强记忆混合物、纯净物、单质、化合物等基本 概念,并能够区分应用。本考点的基础性比较强,主要出现在选择题和填空题中。

- 5. (1分)属于有机物的是()
 - A. CO_2
- B. CaCO3
- $C. H_2CO_3$
- D. CH₄

【分析】根据含有碳元素的化合物叫有机化合物,简称有机物;不含碳元素的化合物叫 无机化合物; 碳的氧化物、碳酸盐、碳酸虽含碳元素,但其性质与无机物类似,因此把 它们看作无机物;进行分析判断。

【解答】解: A、二氧化碳是碳的氧化物,由于化学性质与无机物相似,归为无机物,不 属于有机物; 故 A 错;

- B、碳酸钙虽然是含碳的化合物,由于化学性质与无机物相似,归为无机物,不属于有机 物; 故B错;
- C、碳酸虽然是含碳的化合物,由于化学性质与无机物相似,归为无机物,不属于有机物; 故 C 错误;
- D、甲烷由碳、氢两种元素组成,属于有机物,故 D 正确。 故选: D。

【点评】本题难度不大,考查有机物与无机物的判别,抓住有机物与无机物的特征是正 确解答本题的关键。

6. (1分)下列物质在氧气中燃烧,产生淡蓝色火焰的是() 第7页(共19页)

A. 红磷	B.	C. 木炭	D. 氢气
【分析】A、根	据红磷在氧气中燃烧的	的现象进行分析判断.	
B、根据硫在氧	气中燃烧的现象进行分	分析判断.	
C、根据木炭在	氧气中燃烧的现象进行	厅分析判断.	
D、根据氢气在	氧气中燃烧的现象进行	亍分析判断.	
【解答】解: A	、红磷在氧气中燃烧,	产生大量的白烟,故	错误。
B、硫在氧气中	燃烧,发出明亮的蓝紫	紫色火焰,故错误 。	
C、木炭在氧气	中燃烧,发出白光,故	收错误 。	
D、氢气在氧气	中燃烧,淡蓝色火焰,	故正确。	
故选: D。			
【点评】本题难	達度不大,掌握常见物	质燃烧的现象即可正确	解答,在描述物质燃烧的现
象时,需要注意	意光和火焰、烟和雾的[区别.	
7. (1分)碘化银	(AgI) 常用作人工降i	雨剂,其中碘元素的化	合价是 ()
A 1	B. +1	C. +2	D 2
【分析】根据在	E化合物中正负化合价(代数和为零,结合碘化	银的化学式进行解答本题.
【解答】解: 铒	灵元素显+1 价,设碘元	素的化合价是 x,根据	音在化合物中正负化合价代数
和为零,可得:	(+1) +x=0,	- 1 价。	
故选: A。			
【点评】本题难	主度不大,掌握利用化·	合价的原则计算指定元	表的化合价的方法即可正确
解答.			
8. (1分) CuSO ₄ •	5H ₂ O 的俗名是()	
A. 石碱	B. 胆矾	C. 烧碱	D. 纯碱
【分析】根据常	京见化学物质的名称、作	俗称、化学式,进行分	析判断即可。
【解答】解:A	、石碱是十水合碳酸铂	内的俗称,其化学式为:	· Na ₂ CO ₃ •10H ₂ O,故选项错
误。			
B、CuSO4•5H2	O 的俗名胆矾或蓝矾,	故选项正确。	
C、烧碱是氢氧	化钠的俗称,故选项锟	昔误。	
D、纯碱是碳酸	钠的俗称,故选项错误	是 。	
故选· B。			

【点评】本题难度不大,熟练掌握常见化学物质(特别是常见的酸碱盐)的名称、俗称、第8页(共19页)

化学式是正确解答此类题的关键。

- 9. (1分)下列液体中滴加紫色石蕊试液,变红的是()

- A. 柠檬水 B. 食盐水 C. 石灰水 D. 蒸馏水

【分析】石蕊试液遇酸性溶液变红,因此不能使石蕊变红则是溶液不显酸性。

【解答】解: A、柠檬水呈酸性,能使石蕊变红,故正确;

- B、食盐水是氯化钠溶液,呈中性,石蕊不变色,故错误;
- C、石灰水是氢氧化钙溶液,呈碱性,能使石蕊变蓝,故错误;
- B、蒸馏水呈中性,石蕊不变色,故错误:

故选: A。

【点评】本题主要考查溶液的酸碱性和酸碱指示剂的变色情况,属于基础考查。

- 10. (1分) 与石墨互为同素异形体的是(

- A. 碳-60 B. 活性炭 C. 炭黑 D. 一氧化碳

【分析】由同种元素形成的不同种单质互为同素异形体,互为同素异形体的物质要符合 以下两个条件:同种元素形成,不同单质;据此进行分析判断。

【解答】解:判断同素异形体的关键把握两点:①同种元素形成,②不同单质。

石墨、金刚石、碳-60是由碳元素形成的不同单质, 互为同素异形体。

故选: A。

【点评】本题难度不大,判断是否互为同素异形体的关键要把握两点: (1)同种元素形成,

- (2)不同单质,这是解决此类题的关键之所在。
- 11. (1分)有关物质的命名正确的是()

A. HNO₃ - - 硝酸氢

B. N₂O₅ - - 氧化氮

C. Fe (OH) 2 - - 氢氧化铁

D. NaHCO₃ - - 碳酸氢钠

【分析】化合物化学式的读法:一般是从右向左读,读作"某化某"或"某酸某"等, 进行分析判断。

【解答】解: A、HNO3读作硝酸, 故选项说法错误。

- B、N₂O₅ 从右向左读,读作五氧化二氮,故选项说法错误。
- C、Fe (OH) 2 中铁元素显+2 价, 氢氧根显 1 价, 从右向左读, 读作氢氧化亚铁, 故选 项说法错误。
- D、NaHCO3 从右向左读,读作碳酸氢钠,故选项说法正确。

故选: D。

【点评】本题难度不大,掌握化合物化学式的读法是正确解答本题的关键。

12. (1分)下列物质可做复合肥的是()

A. (NH₄) ₃PO₄ B. NH₄NO₃ C. K₂SO₄ D. CO (NH₂) ₂

【分析】含有氮元素的肥料称为氮肥,含有磷元素的肥料称为磷肥,含有钾元素的肥料 称为钾肥,同时含有氮、磷、钾三种元素中的两种或两种以上的肥料称为复合肥。

【解答】解: A、(NH4) 3PO4 中含有磷元素和氮元素,属于复合肥,故选项正确。

- B、NH4NO3中含有氮元素,属于氮肥,故选项错误。
- C、K2SO4中含有钾元素,属于钾肥,故选项错误。
- D、CO(NH₂)₂中含有氮元素,属于氮肥,故选项错误。

故选: A。

【点评】本题难度不大,主要考查化肥的分类方面的知识,确定化肥中营养元素的种类、 化肥的分类方法是正确解答此类题的关键。

- 13. (1分)工业上常把液态燃料喷成雾状,从而提高燃料的利用率,其原理是()
 - A. 使可燃物分子变小
 - B. 增加空气中的氧气含量
 - C. 增大可燃物与氧气的接触面积
 - D. 降低可燃物着火点

【分析】根据物质的变化和使燃料充分燃烧的因素分析有关有关的说法。

【解答】解: A、把液态燃料喷成雾状,可燃物分子的大小没有变化,故 A 错误;

- B、空气中的氧气含量一般不变, 故 B 错误;
- C、把液态燃料喷成雾状,增大可燃物与氧气的接触面积,故 C 正确;
- D、可燃物着火点属于物质的属性,一般不会改变,故 D 错误。

故选: C。

【点评】本题的难度不大,了解物质的变化特征、使燃料充分燃烧的因素即可分析解答。

- 14. (1分) 鉴别稀盐酸和稀硫酸,可选用的试剂是()
 - A. 酚酞试液
- B. 锌粒
- C. NaOH 溶液 D. Ba(NO₃)₂

【分析】根据盐酸与硫酸的不同性质分析回答此题。

【解答】解: A、稀盐酸和稀硫酸都是酸,加入酚酞都不变色,选项 A 不符合题意;

B、锌与盐酸和硫酸都发生反应生成氢气,看到气泡,无法区分两种酸,选项 B 不符合 题意:

- C、稀盐酸和稀硫酸都是酸,与氢氧化钠都发生反应生成盐和水,无明显现象,无法区分两种酸,选项 C 不符合题意:
- D、稀硫酸与硝酸钡反应生成硫酸钡沉淀和硝酸,而稀盐酸与硝酸钡不反应,无明显现象,可以区分两种酸,选项 D 符合题意;

故选: D。

【点评】在解此类题时,首先要将题中的知识认知透,然后结合学过的知识进行解答

第15~17题,每题有一个或两个正确选项

15. (2分)如图实验设计能实现相应实验目的的是()

选项	A	В	С	D
实验	探究水对铁钉生锈的	探究温度是燃烧的	探究金属活动性	探究催化剂对反
目的	影响	必要条件	强弱	应快
				慢的影响
实验设计	植物油菜馏水	气球 气球 80℃ 80℃	10mL10%稀盐酸	3%的_ 5 双氧水 5 二氧化锰

【分析】A、根据两支试管中铁钉锈蚀的情况,进行分析判断。

- B、要注意变量的控制,注意要除探究要素不同之外,其它条件都应该是相同的。
- C、要注意变量的控制,注意要除探究要素不同之外,其它条件都应该是相同的。
- D、根据催化剂的特征,进行分析判断。

【解答】解: A、第一支试管中的铁钉只能与水接触;第二支试管的铁钉只能与干燥的空气接触;一段时间后,两支试管的铁钉均没有生锈,不能用于探究铁生锈条件,故选项不能实现相应实验目的。

- B、图中实验,可燃物的种类不同,不能用于探究温度是燃烧的必要条件,故选项不能实现相应实验目的。
- C、图中实验, 金属的形状不同, 不能探究金属活动性强弱, 故选项不能实现相应实验目的。
- D、图中实验,除了催化剂外,其它的条件均相同,探究催化剂对反应快慢的影响,故选

项能实现相应实验目的。

故选: D。

【点评】本题难度不是很大,化学实验方案的设计是考查学生能力的主要类型,同时也是实验教与学难点,在具体解题时要对其原理透彻理解,可根据物质的物理性质和化学性质结合实验目的进行分析判断。

- 16. (2分)关于氧化物的说法正确的是()
 - A. 含有氧元素的化合物是氧化物
 - B. 氧化物可分为金属氧化物和非金属氧化物
 - C. 非金属氧化物都是酸性氧化物
 - D. 碱性氧化物有可能不与水反应

【分析】物质分为混合物和纯净物,混合物是由两种或两种以上的物质组成;纯净物是由一种物质组成。纯净物又分为单质和化合物。由同种元素组成的纯净物叫单质;由两种或两种以上的元素组成的纯净物叫化合物。氧化物是指由两种元素组成的化合物中,其中一种元素是氧元素;氧化物的分类等。

【解答】解: A、含有氧元素的化合物是氧化物错误,如高锰酸钾不是氧化物;故选项错误:

- B、氧化物可分为金属氧化物和非金属氧化物正确, 故选项正确;
- C、非金属氧化物都是酸性氧化物错误,如一氧化碳不是酸性氧化物; 故选项错误;
- D、碱性氧化物有可能不与水反应正确,如氧化镁与水不反应;故选项正确;故选: BD。

【点评】本考点考查了物质的分类,要加强记忆混合物、纯净物、单质、化合物、氧化物等基本概念,并能够区分应用。本考点的基础性比较强,主要出现在选择题和填空题中。

17. (2分) 某温度时,向一定量的饱和氢氧化钙溶液中加入少量生石灰,再恢复到原温度,下列各相关的变化图像正确的是()

第 12页(共 19页)

【分析】根据氧化钙能与水反应生成氢氧化钙,反应放出大量的热,氢氧化钙的溶解度随着温度的降低而增大,进行分析判断。

【解答】解: A、生石灰与水反应生成氢氧化钙,溶液中溶剂质量减少,至完全反应不再发生改变,故选项图象错误。

B、生石灰与水反应生成氢氧化钙,溶液中溶剂质量减少,有氢氧化钙析出,则溶质质量减少;反应放出大量的热,随着反应结束,温度恢复至室温,氢氧化钙的溶解度随着温度的降低而增大,氢氧化钙的溶解度增大,但溶质质量一定比反应前少,故选项图象正确。

C、生石灰与水反应生成氢氧化钙,溶液中溶剂质量减少,有氢氧化钙析出,所得溶液仍为饱和溶液;反应放出大量的热,温度升高,溶解度减小,溶质质量分数变小;随着反应结束,温度恢复至室温,氢氧化钙的溶解度随着温度的降低而增大,氢氧化钙的溶解度增大,最终恢复到原温度,与反应前溶质质量分数相等,故选项图象正确。

D、由 C 选项的分析,溶解度先变小,后恢复至与反应前相等,故选项图象错误。 故选: BC。

【点评】本题是一道图象坐标与化学知识相结合的综合题,解题的关键是结合所涉及的 化学知识,正确分析各变化的过程,注意分析坐标轴表示的意义、曲线的起点、折点及 变化趋势,进而确定正确的图象。

二、简答题(共30分)

- 18. (8分) 化学是一门研究物质的组成、结构、性质及其变化规律的自然科学。用初中化学的相关知识完成下列填空。
 - ①过氧乙酸(化学式: $C_2H_4O_3$)在医药工业上常用作消毒剂,过氧乙酸由<u>3</u>种元素组成,其中碳、氢元素的物质的量之比为<u>1:2</u>,1mol 过氧乙酸中约含有<u>2.408×10²⁴</u>个氢原子。
 - ②国际空间站的供氧设备,利用航天太阳能面板所发的电进行水的电解。电解水的化学 方程式为 $2H_2O$ 太阳能 $2H_2$ \uparrow $+O_2$ \uparrow ,所得氢气和氧气的体积比约为 2:1 。

③如图为某化学反应的微观模拟图,"○"和"●"表示两种不同的原子:

【分析】①过氧乙酸由碳元素、氢元素、氧元素等 3 种元素组成,其中碳、氢元素的物质的量之比为 1: 2,1mol 过氧乙酸中约含有 $6.02 \times 10^{23} \times 4 = 2.408 \times 10^{24}$ 个氢原子。

- (2)利用太阳能,水分解生成氢气和氧气,所得氢气和氧气的体积比约为2:1。
- ③参加反应的" " 和" " 的分子个数比为 2: 1,两种物质反应生成一种物质,其反应基本类型为化合反应。

【解答】解: ①过氧乙酸由碳元素、氢元素、氧元素等 3 种元素组成,其中碳、氢元素的物质的量之比为 1: 2,1mol 过氧乙酸中约含有 $6.02 \times 10^{23} \times 4 = 2.408 \times 10^{24}$ 个氢原子。故填: 3; 1: 2; 2.408×10^{24} 。

②电解水的化学方程式为: $2H_2O$ <u>太阳能</u> $2H_2 \uparrow + O_2 \uparrow$,所得氢气和氧气的体积比约为 2: 1。

故填: 2H₂O<u>太阳能</u>2H₂↑+O₂↑; 2: 1。

③参加反应的" " 和" " 的分子个数比为 2: 1,两种物质反应生成一种物质,其反应基本类型为化合反应。

故填: 2: 1; 化合反应。

【点评】本题主要考查物质的性质,解答时要根据各种物质的性质,结合各方面条件进行分析、判断,从而得出正确的结论。

19. (5分)图1为甲、乙、丙(均不含结晶水)三种固体物质的溶解度曲线。

- ①t4℃时,三种物质溶解度由大到小的顺序是 甲>乙>丙;
- ②将 t₃℃乙的不饱和溶液变为饱和溶液,可采用的一种方法是<u>增加溶质或减溶剂</u>;
- (3)P点的含义是 t_2 ℃时,甲和丙的溶解度相等 ;
- ④现有一包 50g 的甲固体(混有少量乙),为提纯甲进行了图 2 实验,最终 C 中析出 34g 固体。50g 该固体中含有乙<u>6</u>g,A、B、C 中的溶液为甲的不饱和溶液的是<u>AB</u>(选填编号)。

【分析】根据固体的溶解度曲线,可以查出某物质在一定温度下的溶解度,从而确定溶解度相同时的温度;可以比较不同物质在同一温度下的溶解度大小,从而判断饱和溶液中溶质的质量分数的大小;可以判断物质的溶解度随温度变化的变化情况,从而判断饱和溶液和不饱和溶液相互转化的方法。

【解答】解: ①通过分析溶解度曲线可知, t4℃时, 三种物质溶解度由大到小的顺序是: 甲>乙>丙;

- ②将 t3℃乙的不饱和溶液变为饱和溶液,可采用的一种方法是增加溶质或减溶剂;
- (3)P点的含义是: t2℃时,甲和丙的溶解度相等;
- ④ t_4 ℃时,甲物质的溶解度是 55g,乙物质的溶解度小于 55g, t_3 ℃时,甲、乙物质的溶解度都是 45g, t_1 ℃时,甲物质的溶解度是 10g,乙物质的溶解度大于 10g,为提纯甲进

行了图 2 实验, 最终 C 中析出 34g 固体, 所以 100g 的水中溶解了甲 10g, 析出甲物质 34g, 所以 50g 该固体中含有乙 50g - 10g - 34g=6g, A、B 中溶剂 100g, 溶质 44g, C 中析出 加物质 34g, 属于饱和溶液,所以 A、B、C 中的溶液为甲的不饱和溶液的是 AB。

故答案为: ①甲>乙>丙;

- ②增加溶质或减溶剂;
- (3)t2℃时, 甲和丙的溶解度相等;
- (4)6; AB.

【点评】本题难度不是很大,主要考查了固体的溶解度曲线所表示的意义,及根据固体的溶解度曲线来解决相关的问题,从而培养分析问题、解决问题的能力。

20. (9分) 有关气体制备是初中化学重要实验,请回答下列问题:

① 实验室用固体氯酸钾和二氧化锰共热制取氧气,反应的化学方程式为

 $2KClO_3$ $\frac{MnO_2}{\Delta}$ $2KCl+3O_2$ ↑ ; 可用装置 D 收集氧气,该收集气体方法的名称是 <u>向上排</u> 空气法 。

- ②已知固体高锰酸钾加热会产生氧气,同时生成固体锰酸钾和二氧化锰。用高锰酸钾固体制取氧气可选用的发生装置是 A (选填编号)。
- ③分别加热等质量的 a (混有高锰酸钾的氯酸钾) 和 b (纯净的氯酸钾),则产生氧气的速率 a 大于 b (选填"等于""小于"或"大于")。
- (4)某兴趣小组分别用 B、C 发生装置制取二氧化碳气体并进行相关实验。

- (1) 图一实验中,锥形瓶内反应的化学方程式为<u>CaCO3+2HCl—CaCl2+H2O+CO2</u>↑ ,可观察到试管中的石灰水变浑浊。若锥形瓶内产生 0.01mol 二氧化碳,将其全部通入足量石灰水中,理论上可以得到白色沉淀多少克? 1g (根据化学方程式计算)
- (2)图二实验中,打开分液漏斗的盖子和活塞后,可观察到锥形瓶中产生大量气泡,但 烧杯中没有观察到石灰水变浑浊。
- (3) 为探究图二实验中石灰水变浑浊的原因,在饱和石灰水中放入 pH 传感器重新进行图二实验,测得饱和石灰水在气体进入后的 pH 随时间的变化如图三所示。则 t₁ t₂时间段内溶液 pH 迅速减小的原因是<u>挥发出的氯化氢与石灰水反应使溶液 pH 迅速减小</u>,0 t₁时间段内溶液 pH 几乎不变的原因是<u>先排出的是装置内的空气,不会使溶液的 pH 明显变化</u>。从上述实验可知,在进行二氧化碳性质实验时不宜用浓盐酸制取二氧化碳。【分析】①氯酸钾在二氧化锰催化作用下加热反应生成氯化钾和氧气,据此书写化学方程式;根据装置特点总结收集气体方法;
- ②根据反应物状态和反应条件选择反应装置;
- ③根据高锰酸钾性质分析回答此题;
- ④ (1) 盐酸与碳酸钙反应生成氯化钙、水和二氧化碳,据此书写化学方程式,根据化学方程式计算此题;
- (3) 根据盐酸性质分析回答此题:根据反应特点分析回答此题。
- 【解答】解: ①氯酸钾在二氧化锰催化作用下加热反应生成氯化钾和氧气,书写化学方程式注意配平及气体符号,所以化学方程式为2KClO₃——2KCl+3O₂↑; D 为向上排空气法收集装置,所以采用方法为向上排空气法;

故答案为:
$$2KClO_3$$
 $\frac{MnO_2}{\triangle}$ $2KCl+3O_2$ † ; 向上排空气法。

- ②反应物为固体,且需要加热,故选 A 为发生装置;故答案为: A。
- ③高锰酸钾分解生成二氧化锰,可以加快氯酸钾分解,所以反应速度为 a 大于 b; 故答案为:大于。
- ④ (1) 盐酸与碳酸钙反应生成氯化钙、水和二氧化碳,书写化学方程式注意配平及气体符号,所以化学方程式为 CaCO₃+2HCl—CaCl₂+H₂O+CO₂↑;生成二氧化碳质量= 0.01mol×44g=0.44g,设碳酸钙的质量为 m,

第 17页(共 19页)

CO₂+Ca (OH) ₂=CaCO₃
$$\downarrow$$
 +H₂O
44 100
0.44g m
 $\frac{44}{100} = \frac{0.44g}{m}$ m=1g

故答案为: CaCO₃+2HCl—CaCl₂+H₂O+CO₂↑; 1g。

(3)浓盐酸具有挥发性,挥发出氯化氢,进气澄清石灰水与氢氧化钙反应,溶液碱性减弱,pH减小;氯化氢密度比空气大,从底部向上逸出,则上部的空气先排出,此时排出的是空气,进入溶液不会引起溶液 pH 的变化;

故答案为: 挥发出的氯化氢与石灰水反应使溶液 pH 迅速减小; 先排出的是装置内的空气, 不会使溶液的 pH 明显变化。

【点评】在解此类题时,首先要将题中的知识认知透,然后结合学过的知识进行解答。

- 21. (8分)实验室某 NaCl 样品,其中可能含有 CaCl₂、Na₂SO₄中的一种或两种,现欲提纯并分离 NaCl 样品混合物,实验过程如下:
 - ①检验该样品中可能含有的物质

【实验步骤】

I.取少量该样品,加水配成溶液;

II.向上述溶液中滴加适量 Na₂CO₃ 溶液, 观察到有白色沉淀生成, 写出反应的化学方程式 CaCl₂+Na₂CO₃—CaCO₃ ↓ +2NaCl ;

Ⅲ.向Ⅱ中上层清液加入 氯化钡溶液 , 无明显现象。

【实验结论】该 NaCl 样品中还含有 CaCl2。

②提纯分离样品中的 NaCl 和 CaCl₂。

- (1) 步骤 2 的具体操作是 加入过量 Na₂CO₃ 溶液、过滤 ;
- (2) 步骤 5 加过量稀盐酸的作用是 使 CaCO3 完全反应;
- (3) 白色沉淀 C 表面残留少量溶液,需用蒸馏水多次洗涤,用蒸馏水洗涤的目的是<u>除</u> 去沉淀表面的残留液且不引入新的杂质<u>;</u>证明已洗涤干净的方法是<u>取最后一次洗涤</u>

液,向其中滴加 AgNO3 溶液,无沉淀产生,说明已洗涤干净。

【分析】(1)氯化钙和碳酸钠反应生成白色沉淀碳酸钙和氯化钠。

向Ⅱ中上层清液加入氯化钡溶液,无明显现象,是因为溶液中不含有硫酸钠。

②步骤 2 的具体操作是加入过量 Na_2CO_3 溶液(把氯化钙转化成碳酸钙沉淀)、过滤。 步骤 5 加过量稀盐酸的作用是使 $CaCO_3$ 完全反应。

用蒸馏水洗涤的目的是除去沉淀表面的残留液且不引入新的杂质;

证明已洗涤干净的方法: 取最后一次洗涤液,向其中滴加 AgNO₃ 溶液,无沉淀产生,说明已洗涤干净。

【解答】解: ① II.向上述溶液中滴加适量 Na₂CO₃溶液,观察到有白色沉淀生成,是因为氯化钙和碳酸钠反应生成白色沉淀碳酸钙和氯化钠,反应的化学方程式: CaCl₂+Na₂CO₃—CaCO₃↓+2NaCl。

故填: CaCl₂+Na₂CO₃—CaCO₃ ↓ +2NaCl。

III.向II中上层清液加入氯化钡溶液,无明显现象,是因为溶液中不含有硫酸钠。 故填:氯化钡溶液。

② (1) 步骤 2 的具体操作是加入过量 Na₂CO₃ 溶液 (把氯化钙转化成碳酸钙沉淀)、过滤。

故填:加入过量 Na₂CO₃ 溶液、过滤。

(2) 步骤 5 加过量稀盐酸的作用是使 CaCO3 完全反应。

故填: 使 CaCO3 完全反应。

(3) 白色沉淀 C 表面残留少量溶液,需用蒸馏水多次洗涤,用蒸馏水洗涤的目的是除去沉淀表面的残留液且不引入新的杂质;

证明已洗涤干净的方法: 取最后一次洗涤液,向其中滴加 AgNO3 溶液,无沉淀产生,说明已洗涤干净。

故填:除去沉淀表面的残留液且不引入新的杂质;取最后一次洗涤液,向其中滴加 AgNO₃ 溶液,无沉淀产生,说明已洗涤干净。

【点评】本题主要考查物质的性质,解答时要根据各种物质的性质,结合各方面条件进行分析、判断,从而得出正确的结论。