Difféomorphismes

1. Difféomorphismes

1.1. Définition

Soient U et V des OUVERTS (non vides) de \mathbb{R}^p .

Définition 1 (DIFFEOMORPHISME).

On dit qu'une application $f: U \rightarrow V$ est un difféomorphisme de U sur V si et seulement si

- 1. *f* est une bijection,
- 2. f est de classe \mathscr{C}^1 , c'est à dire continûment différentiable sur U, 3. f^{-1} est de classe \mathscr{C}^1 sur V.

1.2. Difféomorphisme et jacobienne

[[Tout écrire en terme de Jacobienne, aps de différentielle quand à valeur vectorielle]]

Proposition 1 (DIFFEOMORPHISME ET RECIPROQUE).

Si $f: U \rightarrow V$ est un difféomorphisme alors sa différentielle est en tout point de U un isomorphisme (de \mathbb{R}^p dans lui-même) et la différentielle de sa fonction réciproque f^{-1} est liée à celle de f par la formule

$$d(f^{-1})_{y} = (df_{f^{-1}(y)})^{-1}$$
, pour tout $y \in V$.

Preuve. Faite en cours.

Proposition 2 (DIFFEOMORPHISME ET JACOBIENNE).

Si $f: U \to V$ est un difféomorphisme alors sa différentielle est en tout point de U un isomorphisme (de \mathbb{R}^p dans lui-même) et la différentielle de sa fonction réciproque f^{-1} est liée à celle de f par la formule

$$J(f^{-1})_y = (J(f)_{f^{-1}(y)})^{-1}$$
, pour tout $y \in V$.

où $J(f^{-1})_y$ et $(J(f)_{f^{-1}(y)})^{-1}$ sont respectivement la jacobienne de f^{-1} en y et la jacobienne de fen f^{-1} en y.

Preuve. Faite en cours.

1.3. Hanani

Les applications de \mathbb{R}^n dans \mathbb{R}^n qui sont bijectives et de classe \mathscr{C}^1 ainsi que leur réciproque, sont utilisées comme changements de variables. On les appelle des difféomorphismes.

Définition 2.

Soient U et V deux ouverts de \mathbb{R}^n et $\Phi: U \to V$. On dit que f est un \mathscr{C}^1 -difféomorphisme si

- 1. Φ est une bijection de U sur V.
- 2. Φ est de classe \mathscr{C}^1 sur U.
- 3. Φ^{-1} est de classe \mathscr{C}^1 sur V.

Du théorème de composition découle que les différentielles de Φ et Φ^{-1} sont elles aussi réciproques l'une de l'autre. Et donc les matrices jacobiennes, qui sont des matrices carrées $n \times n$, sont inverses l'une de l'autre.

Proposition 3.

Soit $\Phi: U \to V$ un \mathcal{C}^1 -difféomorphisme, $A \in U$ et $B \in V$. Alors

$$[J_{\Phi}(A)]^{-1} = J_{\Phi^{-1}}(\Phi(A))$$
 et $J_{\Phi^{-1}}(B) = [J_{\Phi}(\Phi^{-1}(B))]^{-1}$.

Pour un difféomorphisme, le déterminant de la matrice jacobienne joue un rôle particulier.

Définition 3.

Soient U et V deux ouverts de \mathbb{R}^n et $\Phi: U \to V$ une application de classe \mathscr{C}^1 . On appelle jacobien de Φ au point $A \in U$ le déterminant de la matrice jacobienne de Φ au point A:

$$|J|_{\Phi}(A) = \det(J_{\Phi}(A)).$$

Il est clair que le jacobien d'un difféomorphisme ne s'annule pas, puisque la matrice jacobienne est inversible. La réciproque est donnée par le théorème d'inversion.

Théorème 1 (d'inversion).

Soient U et V deux ouverts de \mathbb{R}^n et $\Phi: U \to V$ une application de classe \mathscr{C}^1 . Si Φ est bijective et si le jacobien de Φ ne s'annule pas sur U, alors Φ est un \mathscr{C}^1 -difféomorphisme de U sur V.

Exemple. Les passages en coordonnées polaires, cylindriques ou sphériques, sont très souvent utilisés. Détaillons le premier qui consiste à remplacer les coordonnées cartésiennes (x, y) d'un point du plan, par le module r et l'argument θ du point dans le plan complexe.

$$\Phi : U = \mathbb{R}^2 \setminus (\mathbb{R}^+ \times \{0\}) \rightarrow V =]0, +\infty[\times]0, 2\pi[$$
$$(x, y) \mapsto (r, \theta).$$

Dans la pratique, on travaille avec la réciproque

$$\Psi : V \to U \\ (r,\theta) \mapsto (x,y) \qquad \text{où } \begin{cases} x = r \cos \theta \\ y = r \sin \theta. \end{cases}$$

Difféomorphismes 1. Difféomorphismes 3

On doit avoir $r = \sqrt{x^2 + y^2}$ et le point (x/r, y/r) est dans le cercle unité privé du point (1, 0). Donc il existe un unique $\theta \in]0, 2\pi[$ tel que

$$x = r \cos \theta$$
 et $y = r \sin \theta$.

Ainsi Ψ est bijective et il est évident qu'elle est de classe \mathscr{C}^1 . Sa matrice jacobienne est

$$J_{\Psi}(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

et son jacobien, qui vaut r, ne s'annule pas sur V. Donc Ψ est un \mathscr{C}^1 -difféomorphisme de V sur U. Pour calculer les dérivées partielles de r et θ , on utilise l'inversion matricielle de la jacobienne. En effet, puisque $\Phi = \Psi^{-1}$,

$$J_{\Phi}(x,y) = \begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} = [J_{\Psi}(r,\theta))]^{-1} = \frac{1}{r} \begin{pmatrix} r\cos\theta & r\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Ce qui nous donne

$$\begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\frac{\sin \theta}{r} & \frac{\cos \theta}{r} \end{pmatrix} = \begin{pmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ \frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{pmatrix}.$$

Considérons maintenant une application $f:(x,y)\mapsto f(x,y)$ de U dans \mathbb{R} . Pour utiliser passer en coordonnées, on doit remplacer les anciennes coordonnées (x,y) par les nouvelles coordonnées (r,θ) , et donc considérer la fonction g de V dans \mathbb{R} qui à (r,θ) associe :

$$g(r,\theta) = f\left(\Phi^{-1}(r,\theta)\right) = f\left(x(r,\theta), y(r,\theta)\right).$$

La formule de dérivation des fonctions composées donne

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= \frac{\partial g}{\partial r}(r,\theta)\frac{\partial r}{\partial x}(x,y) + \frac{\partial g}{\partial \theta}(r,\theta)\frac{\partial \theta}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) &= \frac{\partial g}{\partial r}(r,\theta)\frac{\partial r}{\partial y}(x,y) + \frac{\partial g}{\partial \theta}(r,\theta)\frac{\partial \theta}{\partial x}(x,y). \end{cases}$$

Donc, d'après (*), on aura :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = \cos\theta \cdot \frac{\partial g}{\partial r}(r,\theta) - \frac{\sin\theta}{r} \cdot \frac{\partial g}{\partial \theta}(r,\theta) \\ \frac{\partial f}{\partial y}(x,y) = \sin\theta \cdot \frac{\partial g}{\partial r}(r,\theta) + \frac{\cos\theta}{r} \cdot \frac{\partial g}{\partial \theta}(r,\theta). \end{cases}$$

1.4. Équations aux dérivées partielles

1.5.

1.6. Champs de vecteurs

Les équations aux dérivées partielles sont omniprésentes en physique. Elles relient entre elles les dérivées partielles d'ordre 1 et 2, et font intervenir des combinaisons de dérivées partielles comme le gradient, la divergence ou le rotationnel.

On rappelle que le gradient d'une fonction de deux variables f est le champ de vecteurs de \mathbb{R}^2 défini par

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right).$$

On dispose donc d'un opérateur, noté formellement, $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$ sur les fonctions. De même, le gradient d'une fonction de trois variables f est le champ de vecteurs de \mathbb{R}^3 défini par

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

On dispose à nouveau d'un opérateur, noté formellement, $\nabla := \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.

Définition 4.

Soit U un ouvert de \mathbb{R}^2 . Soit $F:(x,y)\mapsto (P(x,y),Q(x,y))$ une application de classe \mathscr{C}^1 de U dans \mathbb{R}^2 . Une telle application est aussi appelée un champ de vecteurs de \mathbb{R}^2 défini sur U. On définit formellement le rotationnel du champ de vecteurs F comme étant le champ de vecteurs de \mathbb{R} défini sur U par

$$\operatorname{rot}(F)(x,y) = \det(\nabla,F) = \begin{vmatrix} \frac{\partial}{\partial x} & P \\ \frac{\partial}{\partial y} & Q \end{vmatrix} (x,y) = \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y).$$

Un champ de vecteurs sera noté indifféremment F ou \overrightarrow{F} . On vérifiera à partir de cette définiton et le théorème de Schwarz que, $rot(\nabla f) = 0$.

Définition 5.

Soit U un ouvert de \mathbb{R}^3 et $F:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une application de classe \mathscr{C}^1 de U dans \mathbb{R}^3 , appelée aussi champ de vecteurs de \mathbb{R}^3 défini sur U.

1. Le rotationnel de F est le champ de vecteurs de \mathbb{R}^3 donné par

$$rot(F) = \nabla \wedge F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

2. La divergence de F est la fonction $\operatorname{div}(F) = \langle \nabla, F \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.

On vérifiera à partir de ces définitons et le théorème de Schwarz que, $rot(\nabla f) = 0$ et que, pour un champ de vecteurs F de \mathbb{R}^3 , div(rot(F)) = 0.

Définition 6.

Soit F un champ de vecteurs défini sur U. On dit que F dérivé d'un potentiel sur U s'il existe une fonction $f:U\to\mathbb{R}$ telle que $F=\nabla f$ sur U. Dans ce cas, on dira que f est un potentiel de F.

Théorème 2 (Poincaré).

Soit U un ouvert simplement connexe de \mathbb{R}^2 (resp. \mathbb{R}^3) et F un champ de vecteurs de \mathbb{R}^2 (resp. \mathbb{R}^3) de classe \mathscr{C}^1 sur U. Alors F dérive d'un potentiel sur U si, et seulement si, rotF = 0.

Méthode. Lorsqu'un champ de vecteurs \overrightarrow{F} dérive d'un potentiel f, on écrit $\nabla f = \overrightarrow{F}$. En identifiant les coordonnées, on obtient un système d'équations dont la seule inconnue est f. Il faut donc intégrer ce système pour déterminer f.

Exemple. Montrer que le champ de vecteurs $\overrightarrow{F}(x,y) = y^2 \overrightarrow{i} + (2xy-1) \overrightarrow{j}$ dérive d'un potentiel sur \mathbb{R}^2 et déterminer les potentiels dont il dérive.

<u>Solution</u>. Ici $P(x,y)=y^2$, Q(x,y)=2xy-1 et $\frac{\partial P}{\partial y}=2y=\frac{\partial Q}{\partial x}$. Donc rot $\overrightarrow{F}=0$ et, comme \mathbb{R}^2 est simplement connexe, \overrightarrow{F} dérive d'un potentiel f sur \mathbb{R}^2 . On aura :

$$\frac{\partial f}{\partial x}(x,y) = P(x,y) = y^2 \to f(x,y) = xy^2 + K(y)$$

et

$$\frac{\partial f}{\partial y}(x,y) = Q(x,y) = 2xy - 1 \to K'(y) = -1 \to K(y) = -y + C, \quad C \in \mathbb{R}.$$

Les potentiels de \overrightarrow{F} sur \mathbb{R}^2 sont les fonctions f définies par $f(x,y) = xy^2 - y + C$.

1.7. Exemples d'équations aux dérivées partielles

Soit U un ouvert non vide de \mathbb{R}^2 . On note (x_0, y_0) un point de U et U_1 (resp. U_2) la projection de U sur l'axe y = 0 (resp. x = 0).

Proposition 4.

Soit h une fonction de classe \mathscr{C}^0 sur U. On note H la primitive de $h_1: x \mapsto h(x,y)$ sur U_1 qui s'annule en x_0 . Une fonction f de classe \mathscr{C}^1 sur U est une solution de

$$(E_1): \frac{\partial f}{\partial x}(x,y) = h(x,y)$$

si, et seulement si, il existe une fonction k de classe \mathcal{C}^1 sur U_2 telle que

$$\forall (x,y) \in U, \ f(x,y) = H(x,y) + k(y).$$

Démonstration. Si f est une solution de (E_1) la fonction $\varphi: x \mapsto f(x,y) - H(x,y)$ est dérivable et de dérivée nulle. Elle est donc constante :

$$\forall x \in U_1, \ \varphi(x) = \varphi(x_0) \rightarrow f(x, y) = H(x, y) + f(x_0, y)$$

et $k: y \mapsto f(x_0, y)$ est bien une fonction de classe \mathscr{C}^1 sur U_2 . Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_1) .

Proposition 5.

Soit h une fonction de classe \mathscr{C}^0 sur U_1 et H une primitive de h sur U_1 . Une fonction f de classe \mathscr{C}^2 sur U est une solution de

$$(E_2): \frac{\partial^2 f}{\partial x \partial y}(x, y) = h(x)$$

si, et seulement si, il existe une fonction K de classe \mathscr{C}^2 sur U_2 telle que

$$\forall (x, y) \in U, \ f(x, y) = yH(x) + K(y).$$

Démonstration. Si f est une solution de (E_2) la fonction $\frac{\partial f}{\partial y}$ est solution d'une équation du type (E_1) . Donc

$$\forall (x,y) \in U, \ \frac{\partial f}{\partial y}(x,y) = H(x) + k(y)$$

où k est une fonction de classe \mathscr{C}^1 sur U_2 . Ainsi f est une solution d'une équation du type (E_1) . Donc de la forme ci-dessus. Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_2) .

Proposition 6.

Une fonction f de classe C^2 sur U est une solution de

$$(E_3): \frac{\partial^2 f}{\partial x^2}(x,y) = 0$$

si, et seulement si, il existe deux fonctions K et H de classe \mathcal{C}^2 sur U_2 telles que

$$\forall (x,y) \in U, \ f(x,y) = xH(y) + K(y).$$

Démonstration. Si f est une solution de (E_3) la fonction $\frac{\partial f}{\partial x}$ est solution d'une équation du type (E_1) . Donc

$$\forall (x,y) \in U, \ \frac{\partial f}{\partial x}(x,y) = k(y)$$

où k est une fonction de classe \mathscr{C}^1 sur U_2 . Ainsi f est une solution d'une équation du type (E_1) . Donc de la forme ci-dessus. Réciproquement, on vérifie qu'une fonction de cette forme est solution de (E_3) .

Résolution à l'aide d'un difféomorphisme. Pour intégrer une EDP, (E) donnée, on utilise un changement de variables pour se ramener à une EDP plus simple. Soit

$$\Phi : U \to V (x, y) \mapsto (u, v).$$

un \mathscr{C}^1 -difféomorphisme. Pour une fonction f solution de (E), on pose $g = f \circ \Phi^{-1}$. C'est à dire $f = g \circ \Phi$.

- 1. On utilise la formule de dérivation des fonctions composées pour exprimer les dérivées partielles de f en fonction de g, u et u.
- 2. On remplace dans l'équation (E) ce qui donne l'EDP (E') satisfaite par g.

3. On intègre (E') et on en déduit les solutions f de (E).

Exemple. Intégrons dans $U = \{(x, y) \in \mathbb{R}^2 | x > 0\}$ l'EDP suivante :

(E) :
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$$
.

On pose $V =]0, +\infty[\times] - \frac{\pi}{2}, \frac{\pi}{2}[$, et on considère l'application $\Phi: V \to U$ définie par $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$

1. L'application Φ est un \mathscr{C}^1 -difféomorphisme de V sur U, et

$$\forall (x,y) \in U, \ \Phi^{-1}(x,y) = \left(\sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right).$$

2. Soit f une fonction de classe \mathscr{C}^1 solution de (E) sur U. On considère la fonction g définie sur V par

$$g(r, \theta) = f(x, y)$$
 avec $(x, y) = (r \cos \theta, r \sin \theta)$.

- (a) On exprime les dérivées partielles premières de f en fonction de g, r et θ (cf. les relations $(\star\star)$ ci-dessus).
- (b) On reporte dans l'équation (E) ce qui donne :

$$r\frac{\partial g}{\partial r}(r,\theta) = r \Longleftrightarrow \frac{\partial g}{\partial r}(r,\theta) = 1.$$

(c) On voit que g est une solution d'une équation du type (E_1) , donc $g(r,\theta) = r + k(\theta)$ où k est une fonction de classe \mathscr{C}^1 sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. On en déduit que toute solution f de (E) est de la forme :

$$f(x,y) = \sqrt{x^2 + y^2} + k \left(\arctan \frac{y}{x}\right).$$

Mini-exercices.

1

1.8. Introduction

2. Théorème d'inversion locale

- 2.1.
- 2.2.
- 2.3.
- 2.4.

Mini-exercices.

1.

2.5. Pujo: Théorème d'inversion locale

Théorème 3 (THEOREME D'INVERSION LOCALE).

Si

- 1. $f: U \to V$ est de classe \mathscr{C}^1 ,
- 2. $a \in U$ est tel que df_a soit un isomorphisme (de \mathbb{R}^p dans lui-même), alors il existe un voisinage ouvert U_a de a dans U et un voisinage ouvert V_b de b = f(a) dans V tel que la restriction de f à U_a soit un difféomorphisme de U_a sur V_b .

Preuve. Pas faite en cours.

Corollaire 1 (THEOREME D'INVERSION GLOBALE).

Soit $f: U \to \mathbb{R}^p$ une application de classe \mathscr{C}^1 avec U un ouvert non vide. C'est un difféomorphisme de U sur f(U) si et seulement si

- 1. elle est injective, et
- 2. sa différentielle est en tout point de U un isomorphisme (de \mathbb{R}^p dans lui-même).

Preuve. Pas faite en cours.

Corollaire 2 (FORMULATION AVEC JACOBIENNE).

Dimension finie. Soit U un ouvert de \mathbb{R}^p et $f:U\to\mathbb{R}^p$ injective et de classe \mathscr{C}^1 . Alors f est un difféomorphisme si et seulement si le déterminant de sa matrice jacobienne (que l'on appelle jacobien de f) ne s'annule pas sur U.

Preuve. Pas faite en cours.

2.6. Fichou

Soient *U* un ouvert de \mathbb{R}^n , *F* une application de *U* dans \mathbb{R}^n et $V = F(U) \subset \mathbb{R}^n$.

Définition 7.

F est **inversible** sur U s'il existe une application G de V dans \mathbb{R}^n telle que $G \circ F = \mathbf{1}_U$ et $F \circ G = \mathbf{1}_V$.

Définition 8.

F de \mathbb{R}^n dans \mathbb{R}^n est **localement inversible** en $X_0 \in \mathbb{R}^n$ s'il existe des ouverts U et V avec $X_0 \in U$ et $F(X_0) \in V$ et F(U) = V tel que F est inversible sur U.

Exemples

- (1) $f: \mathbb{R} \to \mathbb{R}$ avec $f(x) = x^3$
- (2) $f: \mathbb{R} \to \mathbb{R}$ avec $f(x) = x^2$
- (3) Si $A \in \mathbb{R}^n$, soit F de \mathbb{R}^n dans \mathbb{R}^n avec F(X) = X + A.
- (4) $U = \{(r, \theta) / r > 0, 0 < \theta < \pi\}$ $F(r, \theta) = (r \cos \theta, r \sin \theta)$

Théorème 4.

(d'inversion locale)

Soient F définie sur un domaine D de \mathbb{R}^n à valeurs dans \mathbb{R}^n de classe \mathscr{C}^1 et X_0 un point intérieur à D. Alors si $dF(X_0)$ est inversible (en tant qu'application linéaire) F est localement inversible en F_0 . Si G désigne son inverse locale, G est aussi de classe C^1 et en Y = F(X), pour X proche de X_0 , on a $dG(y) = dF(X)^{-1}$ (l'exposant désigne ici l'opération d'inversion d'une matrice).

Une démonstration de ce théorème est donnée en annexe.

3. Théorème des fonctions implicites

- 3.1.
- 3.2.
- 3.3.
- 3.4.

Mini-exercices.

1

3.5. Pujo: Théorème des fonctions implicites

Le théorème des fonctions implicites concerne la résolution d'équations non-linéaires de la forme

$$f(x,y)=0,$$

et doit son nom au fait que, sous les hypothèses que l'on va préciser, on peut en tirer y comme fonction de x: on dit alors que f(x,y) = 0 définit implicitement y, ou encore y comme fonction implicite de x.

Donnons d'abord une formulation générale (qui peut être utilisée sans passer par les matrices jacobiennes), puis un cas particulier de fonctions de \mathbb{R}^2 à valeurs dans \mathbb{R} pour finalement énoncé le résulat avec les matrices jacobiennes.

Théorème 5 (THEOREME DES FONCTIONS IMPLICITES).

Soient E, F et G, trois espaces de dimension finie. Soit U un ouvert de $E \times F$ et $f: U \to G$ une fonction de classe \mathscr{C}^1 . On suppose qu'il existe $(a,b) \in U$ tel que $f(a,b) = 0_G$ et la différentielle partielle de f par rapport à g, g est telle que g fonction is somorphisme de g sur g. Alors il existe un voisinage ouvert g de g

$$\varphi:W_a\to F$$

telle que

$$((x,y) \in U_{(a,b)} \text{ et } f(x,y) = 0_G) \iff y = \varphi(x).$$

Preuve. Faite en cours.

Proposition 7 (DIFFERENTIELLES FONCTION IMPLICITE).

Sous les hypothèses du théorème des fonctions implicites, et quitte à réduire W_a on a

$$d\varphi_x(h) = -(d_2 f_{(x,\varphi(x))})^{-1} d_1 f_{(x,\varphi(x))}(h)$$

pour tout $x \in W_a$ et pour tout $h \in E$.

Preuve. Faite en cours.

Proposition 8 (FONCTIONS DE $E \subset \mathbb{R}^2 \mapsto \mathbb{R}$).

Soient $U \subset \mathbb{R}^2$, U ouvert et $f: U \to \mathbb{R}$ une application de classe \mathscr{C}^1 sur U. On suppose qu'il existe $(a,b) \in U$ tel que f(a,b) = 0 et que $\frac{\partial f}{\partial y}(a,b) \neq 0$. Alors il existe un voisinage $U_{(a,b)}$ de (a,b) dans U, un voisinage ouvert W_a de a dans U et une fonction de classe $\mathscr{C}^1(W_a,\mathbb{R})$

$$\varphi: W_a \to \mathbb{R}$$
,

telle que

$$((x, y) \in U_{(a,b)} \text{ et } f(x, y) = 0) \iff y = \varphi(x),$$

et quitte à réduire W_a on a

$$\frac{\partial f}{\partial y}(x,\varphi(x)) \neq 0, \text{ et } \varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x,\varphi(x))}{\frac{\partial f}{\partial y}(x,\varphi(x))}$$

Preuve. Pas faite en cours.

Proposition 9 (FONCTIONS DE $U \subset \mathbb{R}^{p+q} \mapsto \mathbb{R}^q$).

Soient $U \subset \mathbb{R}^p \times R^q$, E ouvert et $f: U \to \mathbb{R}^q$ une application de classe \mathscr{C}^1 sur U. On note f_i , i=1,...,q les composantes de f chacune définie de U à valeurs dans \mathbb{R} . On suppose qu'il existe $(a,b) \in U$ tel que f(a,b) = 0 et que la matrice définie par les coefficients $\{(\frac{\partial f_i}{\partial x_{p+j}})(a,b)\}_{1\leqslant i,j\leqslant q}$ est inversible (autrement dit le déterminant de cette matrice est non nul). Alors il existe un voisinage $U_{(a,b)}$ de (a,b) dans U, un voisinage ouvert W_a de a dans \mathbb{R}^p et une fonction de classe $\mathscr{C}^1(W_a,\mathbb{R}^q)$

$$\varphi: W_a \to \mathbb{R}^q$$
,

telle que

$$((x,y) \in U_{(a,b)} \text{ et } f(x,y) = 0) \iff y = \varphi(x),$$

et quitte à réduire W_a on a la jacobienne de φ en $(x_1,...,x_p)$

$$J_{\varphi}(x_1,...,x_p) =$$

$$-\left(\begin{array}{cccc} \frac{\partial f_{1}}{\partial x_{p+1}}(x,\varphi(x)) & \dots & \frac{\partial f_{1}}{\partial x_{p+q}}(x,\varphi(x)) \\ \vdots & & \vdots & \\ \frac{\partial f_{q}}{\partial x_{p+1}}(x,\varphi(x)) & \dots & \frac{\partial f_{q}}{\partial x_{p+q}}(x,\varphi(x)) \end{array}\right)^{-1} \left(\begin{array}{cccc} \frac{\partial f_{1}}{\partial x_{1}}(x,\varphi(x)) & \dots & \frac{\partial f_{1}}{\partial x_{p}}(x,\varphi(x)) \\ \vdots & & \vdots & \\ \frac{\partial f_{q}}{\partial x_{1}}(x,\varphi(x)) & \dots & \frac{\partial f_{q}}{\partial x_{p}}(x,\varphi(x)) \end{array}\right).$$

Preuve. Pas faite en cours.

3.6. Fichou : Fonctions implicites : cas f(x, y) = 0

Soit $f: \mathbb{R}^2 \to \mathbb{R}$. On considère la courbe de niveau $\{f(x, y) = 0\} = N_0$.

Définition 9.

On dit que la fonction $y = \varphi(x)$ est **définie implicitement par** f(x, y) = 0 si $f(x, \varphi(x)) = 0$, c'est-à-dire si $(x, \varphi(x)) \in N_0$.

Alors on dit que $y = \varphi(x)$ est une **fonction implicite** de f(x, y) = 0.

Exemple

$$f(x, y) = \ln(xy) - \sin x$$
 avec $xy > 0$
 $f(x, y) = x^2 + y^2 - 1$. Faire un dessin!

Théorème 6.

(des fonctions implicites)

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 et (x_0, y_0) un point tel que $f(x_0, y_0) = 0$.

Si
$$\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$$
 alors:

- (i) Il existe une fonction implicite $y = \varphi(x)$ de classe \mathscr{C}^1 , définie sur l'intervalle ouvert $B(x_0, \varepsilon)$, tel que pour tout $x \in B(x_0, \epsilon)$ on ait $y_0 = \varphi(x_0)$ et $f(x, \varphi(x)) = 0$.
- (ii) De plus, la dérivée de φ est donnée par $\varphi'(x) = \frac{-\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))}$ en tout point de $B(x_0, \epsilon)$ où $\frac{\partial f}{\partial y}(x, \varphi(x)) \neq 0.$

C'est une conséquence du théorème d'inversion locale. Soit f une fonction C^1 de deux variables et (x_0, y_0) tel que $f(x_0, y_0) = 0$ et $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Considérons la fonction Fdéfinie par

$$F(x,y) = (x, f(x,y)).$$

La matrice jacobienne de F est

$$\begin{pmatrix} 1 & 0 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}.$$

Par hypothèse $\frac{\partial f}{\partial y}$ ne s'annule pas en (x_0, y_0) . La matrice $dF(x_0, y_0)$ est donc inversible et d'après le théorème d'inversion locale, F est localement inversible en (x_0, y_0) : il existe F o tel que Fsoit une bijection de la boule $B = B((x_0, y_0), r)$ sur son image et l'application inverse, appelons la G est C^1 sur l'ouvert F(B). Écrivons $G(s,t) = (g_1(s,t), g_2(s,t))$ les coordonnées de G. Comme G est l'inverse de F on a, pour tout (s, t) dans F(B) (en utilisant la définition de F):

$$(s,t) = F(g_1(s,t), g_2(s,t)) = (g_1(s,t), f(g_1(s,t), g_2(s,t))).$$

On a donc les égalités : $g_1(s,t) = s$ et $f(s,g_2(s,t)) = t$. Les points (x,y) de B pour lesquels f(x,y) = 0 sont les points dont l'image par F est de la forme (x,0). Ce sont donc les points G(x,0)pour (x,0) dans F(B), soit encore, d'après la forme de l'application G, les points $(x,g_2(x,0))$ pour (x,0) dans F(B). Or F(B) est un ouvert contenant $(x_0,0)$. Il existe donc $\alpha > 0$ tel que, pour $x \in]x_0 - \alpha, x_0 + \alpha[, (x, y) \in B, l'équation <math>f(x, y) = 0$ équivaut à $y = g_2(x, 0)$. Il suffit d'écrire $\phi(x) = g_2(x,0)$ pour voir qu'on a bien établi le résultat souhaité.

Exemple

Le cas du cercle.

Étude au point (lambda, 0) de $f(x, y) = x(x^2 + y^2) - \lambda(x^2 - y^2)$.

Remarque : On retrouve ainsi une équation de la tangente aux courbes de niveau.

3.7. Fonctions implicites : cas $f(x_1 \dots x_n) = 0$

L'étude est similaire pour les hypersurfaces de niveau en plusieurs variables, où on va pouvoir exprimer une variable en fonction des autres si la dérivée partielle correspondante n'est pas nulle.

Théorème 7.

Si $f: \mathbb{R}^n \to \mathbb{R}$ est de classe \mathscr{C}^1 et si $\frac{\partial f}{\partial x_n}(X_0) \neq 0$ alors:

(i) La fonction implicite $x_n = \varphi(x_1 \dots x_{n-1})$ existe sur une boule ouverte $B((x_{1,0} \dots x_{n-1,0}), \varepsilon)$ et on $a: f(x_1 \dots x_{n-1}, \varphi(x_1 \dots x_{n-1})) = 0$. (ii) $\frac{\partial \varphi}{\partial x_i} = \frac{-\frac{\partial f}{\partial x_i}(x_1 \dots x_{n-1}, \varphi(x_1 \dots x_{n-1}))}{\frac{\partial f}{\partial x_n}(x_1 \dots x_{n-1}, \varphi(x_1 \dots x_{n-1}))}$

(ii)
$$\frac{\partial \varphi}{\partial x_i} = \frac{-\frac{\partial f}{\partial x_i}(x_1 \dots x_{n-1}, \varphi(x_1 \dots x_{n-1}))}{\frac{\partial f}{\partial x_n}(x_1 \dots x_{n-1}, \varphi(x_1 \dots x_{n-1}))}$$

Auteurs du chapitre

D'après un cours de ...

Revu et augmenté par Arnaud Bodin.

Relu par Stéphanie Bodin et Vianney Combet.