Mole Concept

Actual atomic mass + Mass of 1 atom of

element in grams:

Ex. mass of I s atom = 32 (1) 3 atom

= 32×1-66×10 3 atom

· Molon mass / Gram Atomic mass : mass of 1 mole (6.022×10²³) atoms in grame.

Ex. Molor mass of oxygen atom = 169/mole

Mole Concept

ATOMIC MASS

Relative atomic mass - mass of an atom Relative to C+2.

0 = 16 amy

Actual Atomic mass + mass of an atom

1 gram $0 = 16 \times 1.66 \times 10^{24}$ g /atom

602×10

mass of 1 mole (6022×16²³ oxygen Molos Mack Gram atomic mass $0 = 16 \times 1.66 \times 10^{-24} \times 6.022 \times 10^{23}$

Mole Concept

$$\text{Samu} = \frac{1}{NA}$$

· Relative molecular mass + the mass of 1 molecule.

Mole Concept

Molecular mass: the mass of 1 molecule in grams

$$Ex. = Co_2 = \frac{44}{6 \times 16^3} = 7.2 \times 10^{-23} \text{ Jmolecule}$$

· Molar mass] Gram molecular mass

Mole Concept

· the mass of Imole molecule (6.022x1023)
In gram.

Ex. Molay mass of $co_2 = 44 g/mol$.

Examples + find Relative molecules mass and molasi mass of a molecule in grams and molasi mass of following.

Of following: RMM = $2 \times 10^{10} + 1 \times 320^{10} = 340^{10}$ 1) Has 1 motecule of Has = $\frac{34}{6 \times 10^{23}}$ 5. 66×10 g/ Molecule with mass = 349 mol.

Mole Concept

- $\int RMM = 1 \times 32 amy + 2 \times 16 amy$ = 64 amy.
 - mass of 1 mole cure of so2
 - $= \frac{64}{6 \times 10^{23}} = 10.6 \times 10^{-23} \, \text{g/molecule}$
 - Molon mass = 64 g/mol.

Mole Concept

molecular mass of H20 1s

(a) 18 amu (b) 2.99 x 10 3 / lonoleale (c) 18 8/mol

ud) Au of these

Thso4, HIO4, CeH1206, AgI, Agu, Ag Br, HNO3

H2SO4, H3PO4, C12H22O11. Caco3, MgCo3. Nau KU, KUD3, Vrea (NH2 CONH2),

Relative Atomic Mass (RAM)

Actual weight of 1 atom of Hydrogen = 1.67×10^{-24} g

Actual weight of 1 atom of C-12 Isotope = 19.9×10^{-24} g

Actual weight of 1 atom of O-16 Isotope = 26.6×10^{-24} g

Relative Atomic Mass (RAM)

RAM w.r.t. Hydrogen atom

RAM of an atom =
$$\frac{\text{Actual weight of 1 atom of element}}{\text{Actual weight of 1 atom of Hydrogen}}$$

Weight of $Y = 2 \times (weight of X)$

Weight of $Z = 3 \times (weight of X)$

Relative Atomic Mass (RAM)

Examples

RAM of C-12 isotope =
$$\frac{\text{Actual weight of 1atom of C-12 isotope}}{\text{Actual weight of 1 atom of Hydrogen}}$$
$$= \frac{19.9 \times 10^{-24} \text{ g}}{1.67 \times 10^{-24} \text{ g}} = 12$$

RAM of O-16 isotope =
$$\frac{\text{Actual weight of 1atom of O-16 isotope}}{\text{Actual weight of 1 atom of Hydrogen}}$$
$$= \frac{26.6 \times 10^{-24} \text{g}}{1.67 \times 10^{-24} \text{g}} = 16$$

Relative Atomic Mass (RAM)

RAM w.r.t. O-16 Isotope

RAM of an element =
$$\frac{\text{Actual weight of 1atom of element}}{\frac{1}{16} \times \text{Actual weight of 1 atom of O} - 16 \text{ Isotope}}$$

RAM w.r.t. C-12 Isotope

RAM of an element =
$$\frac{\text{Actual weight of 1atom of element}}{\frac{1}{12}} \times \text{Actual weight of 1 atom of C} - 12 \text{ Isotope}$$

C-12 Isotope \rightarrow 98.75% Abundance

C-13 Isotope \rightarrow 0.75% Abundance

C-14 Isotope \rightarrow 0.50% Abundance

Relative Molecular Mass (RMM)

RMM of molecule =
$$\frac{\text{Actual weight of 1molecule}}{\frac{1}{12} \times \text{Actual weight of 1 atom of C-12 Isotope}}$$

Unit of RAM & RMM

"a.m.u." (Atomic Mass Unit)

OR

'u' (Unified mass)

EXAMPLES

Actual mass of O-16 isotope atom = $16 \times 1.67 \times 10^{-24}$ g

RAM of O = 16 a.m.u.

RAM of N = 14 a.m.u.

RAM of S = 32 a.m.u.

RAM of $CH_4 = 16 a.m.u.$

RAM of $O_2 = 32$ a.m.u.

RAM of $H_2SO_4 = 98$ a.m.u.

RAM of $CO_2 = 44$ a.m.u.

1 a.m.u. = 1.67×10^{-24} g

ILLUSTRATIONS

Question: What is relative mass and actual mass of 1 P atom?

RAM = 31 amy

Actul mass =
$$\frac{21}{6 \times 10^{23}} = 5.1 \times 10^{-23}$$
 Jatom

ILLUSTRATIONS

Question: What is relative mass and actual mass of 1 P atom?

Solution: In P atom

Relative atomic mass = 31 a.m.u.

Actual mass =
$$31 \times 1.67 \times 10^{-24}$$
 g

$$= 5.17 \times 10^{-23} \text{ g}$$

ILLUSTRATIONS

Question: What is relative mass and actual mass of 1 Ca(OH)₂ molecule?

ILLUSTRATIONS

Solution: In Ca(OH)₂

Relative molecular mass = 40 + 2 (16 + 1)

Actual Mass =
$$74 \times 1.67 \times 10^{-24}$$
 g
= 1.23×10^{-22} g

ILLUSTRATIONS

Question: Calculate number of atoms in 108 a.m.u. of Aluminium?

ILLUSTRATIONS

Question: Calculate number of atoms in 108 a.m.u. of Aluminium?

Solution: RAM of Al atom = 27 a.m.u.

No. of Al atoms in 108 a.m.u. =
$$\frac{108}{27}$$

ILLUSTRATIONS

Question: Calculate the number of molecules and number of atoms in 34 a.m.u. of NH₃?

ILLUSTRATIONS

Question: Calculate the number of molecules and number of atoms in 34 a.m.u. of NH₃?

Solution: Relative molecular mass of $NH_3 = 17$ a.m.u.

No. of NH₃ molecules in 34 a.m.u. of NH₃ =
$$\frac{34}{17}$$

= 2

ILLUSTRATIONS

Question: Calculate the relative mass and actual mass of 1 molecule of $C_6H_{12}O_6$ (Glucose)?

ILLUSTRATIONS

Question: Calculate the relative mass and actual mass of $1 \text{ molecule of } C_6H_{12}O_6$ (Glucose)?

Actual mass =
$$180 \times 1.67 \times 10^{-24}$$
 g
= 3×10^{-22} g

AVOGADRO NUMBER (N_A)

Avogadro Number $(N_A) = 6.02 \times 10^{23}$ entities / atoms / molecules / ions / e^- / p / n.

RAM of O-16 isotope = 16 a.m.u.

Actual mass of 1 atom of O-16 isotope = $16 \times 1.67 \times 10^{-24}$ g

Actual mass of 6.02×10^{23} atoms of O-16 isotope

$$= 16 \times 1.67 \times 10^{-24} \times 6.02 \times 10^{23} \text{ g}$$

Actual mass of N_A atoms of O-16 isotope = 16 g

Actual mass of 1 mole of atoms of O-16 isotope = 16 g

$$N_A = \frac{1}{a.m.u.}$$

AVOGADRO NUMBER (N_A)

☐ If in RAM or RMM, 'amu' is replaced by 'gm', it becomes mass of 1 mole.

Example:

RAM of N = 14 a.m.u.

Actual weight of 1 mole of N = 14 a.m.u. \times N_A = 14 g

Mole Concept

relement is 8×10^{-18} gram find its. (NA = 6×10^{-23})

is RAM kii) Actual Atomic mass Isamu 2.5×10²³9 a ciii) Molon mass. 2.5 × 10 23 g atom

15 g/mol.

$$3.2 \times 10^{5}$$
 atom ______ 8×10^{18} g

1 atom ______ 5.8×10^{18} = 2.5×10^{23}
 3.2×10^{5} = 2.5×10^{23}

 $= 2.5 \times 10^{28} \times 6 \times 10^{28} = 15.9 \text{ mol}$ Molar mass

Mole Concept

Ex. The word CHEMISTRY is written by

graphite (c) penuil et has weight 3 x1010 gm find No of curbon atom in this word. 1.5 × 10 atoms.

 ν mass of 1 atom C-12 = $\frac{12}{6 \times 10^{23}}$ Hatom = 2×10²³glatom

~ 2×10²³9 ---1 atom 3×1210 g $= \frac{3 \times 10^{10}}{2 \times 15^{23}} = 1.5 \times 10^{13}$

oncept Ex. 19.7 Kg Gold (Au) recovered from a smuglar how many atoms of gold are recovered from sunuflar (Atomic mass of Au = 197)

Mole Concept

197 6×1023 g _____ latom 19700 9

Mole Concept

Ex. Mass of 1 Brz molecule is 2.65×1029 mokel

find mass of 1 millian Bratom.

Mole Concept Ex. A cylendrical virus of Longth 804° and 7 4° drameter have density 591cm² what

 $= 1153.95 \times 16^{24} \times 591 \text{ Virw}$ $+ 1153.95 \times 16^{24} \times 5 \times 6 \times 16^{24} \times 591 \text{ Virw}$ $+ 1153.95 \times 16^{24} \times 5 \times 6 \times 16^{24} \times 591 \text{ Mol}$

Mass of 1 virus = 1153.95 x10 cm3.x5 7/virus

molous mass of virus.

 $1A \rightarrow cm$ $= \frac{10^{10}}{10^{-2}} = 10^{8} cm$ $V = \frac{10^{10}}{10^{-2}} = 10^{8} cm$ $V = \frac{22}{7} \times 3.5 \times 3.5 \times 10^{-16} \times 30 \times 10^{8}$ $= \frac{22}{7} \times 3.5 \times 3.5 \times 10^{-16} \times 30 \times 10^{8}$

= 1153.95 ×1024 cm3/virus

Mole Concept ·Molan 6.02×1023.

mass means mass of 1 mole

Find the no of co2 molecules in 6 6 gram eample of cox.

Mass of smolecule of
$$c_{02} = \frac{44}{NA}g|_{mol}$$
.

44 a ______ 1molecule

 $\frac{-}{-}$ $= \frac{66}{944} \times NA = 1.5NA$

Mole Concept

Ex. How many atoms of s Collectively weigh 16 kg.

Sofn mass of 1 s atom =
$$\frac{82}{Nn}$$
 Hatom
$$\frac{32}{Nn} g = 1 \text{ atom}$$

32 = 500 NA atoms

$$1 \text{ amy} = \frac{1}{12} \text{ mass of 1 atom c-12}$$

$$1(\text{amy})' = \frac{1}{14} \text{ mass of 1 atom c-14}$$

$$R \text{ Aton Mass of Ca}$$

$$= 40 \text{ amy}$$

$$1(\text{amy})' = \frac{14}{12} = \frac{7}{6} = 40 \text{ amy}$$

$$= 40.67 \text{ amy}$$

Mole Concept

given

$$1amu = \frac{1}{12} \times (x)$$

$$1amu = \frac{1}{12} \times (y)$$

$$1amy = \frac{1}{16} \times (y)$$

$$\frac{1 \text{ qmy}}{1 \text{ qmy}} = \frac{15}{12} \left(\frac{x}{y} \right) = \frac{15 \times 2}{12 \times 3} = \left(\frac{30}{36} \right)$$

$$1 \text{ qmy} = \left(\frac{30}{36} \right) \text{ qmy}$$

$$Relative Atomic mass = 31 \text{ qmy} = \frac{82}{36} \times \frac{30}{36} = \frac{3}{36} \times \frac{3}{36} = \frac{3}{36}$$

Mole Concept

Ex. A mixture of 2x10 molecules ofp and 3×1021 molecules of a how weight 0.6 gram of molecular mass of p = 45, then moleculous of a wir be z.

$$\left(\frac{45}{NA}\right) \times 2 \times 10^{21} + \left(\frac{M}{NA}\right) \times 3 \times 10^{21} = 0.6$$

$$\frac{45 \times 2 \times 10^{21}}{6 \times 10^{23}} + \frac{M \times 3 \times 10^{1}}{6 \times 10^{23}} = 0.6$$

$$M = 90 \text{ army}$$