

- (a) Efficiency = 100-29 = 71%
- (b) For average waiting time ≤ 3 minutes, at least 5 cashiers are needed

For efficiency ≥ 90%, the associated idleness percentage is ≤ 10%. The corresponding number of cashiers is at most of.

Conclusion:

The two conditions cannot be salisfied simultaneously. at least one of the two conditions must be relaxed.

CA = \$18 per Lour

G = \$25 per Lour

Length of queue A = 4 jobs

Length of quene B = .7×4 = 2.8 jobs

Cost of A = \$18 + 4 x \$10 = \$58 per four

Cost of B = \$25 + 2.8 x \$10 = \$53 per Low

Decision:

Select Model B.

				3
	Situation	Customer	Server	# Queueing situation austomore
	abcdef g	Plane Passenger Machinist Letter Student Cases Shopper	Runway Taxi Clerk at tool Crib Clerk Registrar's office Judge Cashier	1 Arrival of orders Orders 2 Processing (single machine) Rush orders 3 Processing (single machine) Regular jobs 4 Processing (Prod. line) Rush jobs 5 Processing (Prod. line) Regular jobs 6 Receipt of completed jobs Completed orders 7 Tools
	h	Car	Parking space	8 Machine breakdown machines
<u>-</u>	Situation	Calling Source	Customers arrival	# Servers Discipline Service Queue Source Foreman Priority Sorting 00 00 time
	a	∞	Individual	2 Machine FIFO Prod. time 00 00
	Ь	Ø	Individual	3 mochine FIFO Rod time as as
	C d	∞	Individual	4 Rod line FIFO Rod time as as
	d	∞	Bulk Individual	5 Rad line F1FO Rad time as as
	e	<i>∞</i> 0		6 Shipping FIFO Loading time finite of facilities
	t a	<i>∞</i> 5	Individual Individual	7 Tool crib Priority Exchange time finite finite
	g h	⊗ A	Individual	8 Repair persons Parouty Repair time finite finite
	Situation	Interarrival t	ime Servicetime	(a) T. (b) T. (c) T.
	a	Probablistic	Time to clear runway	(4) 1. (6) 14
	Ь	Probabilistic	Ride time	(a) None
	c _.	Probabilistic	Time to receive tout	(b) None.
	d	Deterministic	Time to process letter	(c) None
	e	Probabilistic	Time to process registr 1	(d) None
	f	Probabilistic	Trial time	(e) Irckey or balk
	g	Probabilistic	check-out time	(f) None
	$\frac{h}{a(h)}$	Probabilistic	Parking time.	(g) Jockery
	Situation	Queue Capacily	Queue Discipline	(h) None
	a 1	00	FIFO	
	5	Ø	FIFO	
	C	∞	FIFO,	
	d	⊘ \$	Random	
	e e	∞ ~3	FIFO	
	f	∞ <i>∞</i>	FIFO	
	9	0	FIFO None	
	h		,	

(a) Av. interactival time (in time units)

7 = 1 = 20 arrivals/kg

5

arrival rate & (in customers / unit time)

(b) Let I = av interarrival time

(i) 7 = 60 = 6 arrivals/km

I = 10 minutes = 1/2 Lour

(ii) $\lambda = \frac{60}{3} = 20 \text{ arrivals / km}$ $\overline{I} = \frac{6}{3} = 3 \text{ minutes} = \frac{1}{20} k r$

(ii) $\lambda = \frac{10}{20} \times 60 = 20 \text{ arrivals / Ru}$ $\overline{I} = \frac{30}{10} = 3 \text{ minutes} = \frac{1}{20} \text{ hour}$

(iv)) = 1/5 = 2 arrivals / Rour T = 15 Rour

(c) Let 5 = av. service time

(1) M = 60 = 5 services/four 5 = 12 minutes = . 2 hour

(11) M = 60 = 8 services / hr S= 7.5 min = .125 h

(iii) $u = \frac{5}{30} \times 60 = 10$ services/fly 5 = 30 = 6 min = 1/0 hr

(iv) $\mu = \frac{1}{3} = 3.33$ Services/Ar 5 = .3 hour

(a) $\lambda_{R} = .2$ farlures /hr $\lambda_{\text{week}} = .2x24x7 = 33.6 \text{ failures/wh}(b) P\{\frac{2}{60} \le t \le \frac{3}{60}\}$

(b) P{at least one failure in 2 hours} = P} time betn. failures < 2} (c) $P\{t>3hn\}=1-P\{t\leq 3\}=e^{-2x^3}$

(d) P{t \le 1 km} = 1- \vec{e}^{.2\times 1} = .18

(a) $f(t) = \lambda e^{\lambda t}$ $= 20e^{-20t}$

(b) P{t > 15 }= P{t> 25} = .00674

(c) $P\{t \leq \frac{3}{60}\} = P\{t \leq .05\}$ $P\{t > \frac{5}{60}\} = e^{\frac{20 \times 5}{60}} = .189$

(d) t = 45-10 = 35 minutes Av. #garrivals in 35 min. = 20 x 35 = 11.67 arrivals

) = 1/6 arrivals/hr $P\{t > 1\} = e^{1/6 \times 1} = .846$ P{t ≤.5} = 1 - e 1/6x.5

 $= 1 - e^{-1/12} = .08$ (a) $\lambda = \frac{60}{10} = 6 \text{ arrivals / fix}$ (b) $P\{t \ge \frac{15}{60}\} = e^{-6 \times \frac{15}{60}} = .223$ (c) $P\{t \le \frac{20}{60}\} = 1 - e^{-6 \times \frac{20}{60}} = .865$

(a) $P\{t \leq \frac{2}{60}\} = 1 - \epsilon$ = .6886

= P{t = 3/60} - P{t < 2} $= (1 - e^{-35 \times 3/60}) - (1 - e^{-35 \times 2/60})$ $= e^{-70/60} - e^{-105/60} = .1376$

(c) $P\{t > \frac{3}{60}\} = e^{35(3/60)}$.1738

10

Jim's Payoff
$$-2 + 2 + 2$$

Prob. $P\{t \ge 1\}$ $P\{t \le 1\}$

$$= -2 \times \cdot 5134 + 2 \times \cdot 4866$$

Conclusion: Jim will pay Ann an average of 17 cents every 8 krs

Jim's payoff	2	o ,	- 2
Probability	Pft≤13	P{1<+<1.5}	P{+>1;5}
		_	7

$$P\{t \ge 1.5\} = e^{-40(1.5/60)}$$

Jim's expected payoff /8 Rows

$$= [2x.4866 + 0x.1455 - 2x.3679] \times 40x8$$

15 + 51.5 1.55 + 52

$$= .1455$$

$$-40(1.5/60) -40(2/60)$$

$$P\{1.5 \le t \le 2\} = e - e$$

$$P\{t \ge 2\} = e^{-40(2/60)} = .2636$$

$$= 8\times40 (2\times.4866 + 3\times.1455$$

$$= 8 \times 40 (2 \times 1000)$$
 $= -2.22 conto$

Jim payo Ann an average of \$2.22/8 Rours.

(a)
$$\lambda = \frac{60}{6} = 10$$
 customors / fr -10(4/10

$$P\{t \leq 4 \min\} = 1 - e^{-10(4/60)}$$

% discount =
$$\begin{cases} 10\%; & \text{if } t \leq 4 \\ 6\%; & \text{if } q \leq t \leq 5 \\ 2\%; & \text{if } t > 5 \end{cases}$$

$$P\{t \le 4\} = .4866$$

$$-10(4/60) - 0(5/60)$$

$$P\{4 < t \le 5\} = e$$

$$= .0788$$

$$P\{t>5\} = e^{-10(5/60)} =$$

Expected of discount

$$= 10 \times .4866 + 6 \times .0788 + 2 \times .4346$$

$$\lambda = \frac{365 \times 24}{9000} = .973 \text{ failure /yr}$$

$$P\{t \le 1\} = 1 - e$$

$$= .622$$

Lack of memory property applies.

(a) The waiting time for the green bus is exponential with mean 10 minutes:

$$f(t) = 1 e^{-t}, \ t \ge 0$$

(b) The waiting time for the red bus is exponential with mean 7 minutes: $f(t) = \frac{1}{7} e^{-t/7}, \quad t > 0$

$$E\{t\} = \int_{t}^{\infty} \lambda e^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} de^{\lambda t} dt$$

$$= -\int_{t}^{\infty} e^{\lambda t} dt$$

$$E\{t'\} = \lambda \int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t}$$

$$= -\int_{0}^{\infty} t^{2} de^{\lambda t} dt$$

$$= -\int_{0}^{\infty} t^{2} e^{\lambda t} dt$$

$$= -\left[t^{2}e^{\lambda t} - \frac{2}{\lambda}\int t \lambda e^{-\lambda t} dt\right]^{2}$$

$$= +\frac{2}{\lambda^{2}}$$

$$= \lambda^{2} - \left(\frac{1}{\lambda}\right)^{2}$$

$$= \frac{1}{\lambda^{2}}$$

$$= \frac{1}{\lambda^{2}}$$

TORA input = $(5, 0, 0, \infty, \infty)$ $P_{n \ge 5}(t = 1 hr) = 1 - [P_0(1) + \cdots + P_4(1)]$ $= 1 - e^{5}(1 + 5 + \frac{5^{2}}{2!} + \frac{5^{3}}{3!} + \frac{5^{4}}{4!})$ $= 1 - \cdot 44049 = \cdot 55951$

7 = 1 tryp/month

(a) $\lambda t = 3$: Total input = $(3, 0, 0, \infty, \infty)$ $f_0(3) = \frac{(1 \times 3)^0 e^{-1 \times 3}}{0!} = .049787$

(6) $\lambda t = 12$: TORA input = (12, 0, 0, 0, 0, 0) $P(t=12) = P(12) + \cdots + P(12)$ $= \frac{12 \cdot e}{0!} + \frac{12' \cdot e^{-12}}{1!} + \cdots + \frac{12^8 \cdot e^{-12}}{8!}$ = .15503

(c) $f_0(1) = \frac{1^{\circ}e^{-1}}{0!} = e^{-1} = .3679$ TORA inequal = (1, 0, 0, 00, 00)

7 = 2 arrivals/minute

(a) It = 2x5=10 arrivals

(b) $\lambda t = 2x.5 = 1$ TORA input = (1,0,0,00,00) $f_0(t=.5) = e^{-2x.5} = .3679$

(c) 1-10 (t=.5) = 1-.3679 = .6321

(d) $\lambda t = 2 \times 3 = 6$ arrivals $TORA input = (6, 0, 0, \infty, \infty)$ $P_0(t=3) = \frac{(2 \times 3)^0 e^{2 \times 3}}{0!} = .00248$

7 = 1/5 = . 2 arrival / min

(a) $p(t=7) = \frac{(2x7)^2}{2!} = .24167$ TORA input = (14.0.0.00)

TORA input = (1.4, 0, 0, 00, 00) (b) $f(t=5) = \frac{(.2\times5)'e^{-.2\times5}}{1!} = .36788$

7 = 25 books per day

(a) It = 25x30 = 750 books = 75 shelve

(b) 10 bookcases = 10x5x100 = 5000 books

 $P_{n>5000}$ = $1-[P_0(30)+\cdots+P_{5000}(30)]$

(a) $\lambda_{green} = 1 \frac{1}{5} \frac{1}{5} \frac{1}{7} \frac{1}{5} \frac{1}{7} \frac{1}{5} \frac{1}{9} \frac{1}{10} \frac{1}{6}$ $\lambda_{combined} = .1 + \frac{1}{7} = .24286 \frac{1}{5} \frac{1}{10} \frac{1}{10$

and 1R. (b) $P\{t \le 2\} = 1 - e^{-243x^2} = 3849$

 $E\{n|t\} = \sum_{n=1}^{\infty} n \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{(n-1)!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \sum_{n=1}^{\infty} n^2 \frac{(\lambda t)^n e^{\lambda t}}{n!}$ $= \lambda t e^{\lambda t} + \sum_{n=1}^{\infty} \frac{n (\lambda t)^{n-1}}{(n-1)!}$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$ $= \lambda t e^{\lambda t} \frac{\partial}{\partial \lambda t} (\lambda t e^{\lambda t})$

Thus,

3

 $var\{n|t\} = (\lambda t)^{3} + \lambda t - (\lambda t)^{2}$ $= \lambda t$

$$f_{0}'(t) = -\lambda f_{0}(t) \qquad (1)$$

$$f_{n}'(t) = -\lambda f_{n}(t) + \lambda f_{n-1}(t) \qquad (2)$$

$$dP_0(t) = -\lambda P_0(t) dt$$
which yields
 $P_0(t) = A e^{-\lambda t}$

Because
$$f(0)=1 \Rightarrow A=1$$
, $f(t)=\bar{e}^{\lambda t}$
For $n=1$:

$$\gamma'(t) = -\lambda f(t) + \lambda f(t)$$

$$= -\lambda f(t) + \lambda e^{-\lambda t}$$

$$P_{i}(t) + \lambda P_{i}(t) = \lambda e^{-\lambda t}$$
This yields the solution:
$$P(t) = e^{-\int \lambda dt} \left\{ \int \lambda e^{-\lambda t} e^{-\int \lambda dt} dt + c \right\}$$

$$P(t) = e^{\int \lambda dt} \left\{ \int \lambda e^{\lambda t} e^{-\int \lambda dt} dt + c \right\}$$

$$= \lambda t e^{-\lambda t} + C$$

Because
$$f(0) = 0$$
, $C = 0$, and $f(t) = \frac{\lambda t}{1!}$

Fiven
$$P_{i}(t) = \frac{(\lambda t)^{i} e^{\lambda t}}{i!}$$

then
$$p(t) + \lambda p(t) = \lambda \frac{(\lambda t)^{i} - \lambda t}{i!}$$

(1)
$$\begin{cases} P(t) = e^{\int \lambda dt} \left\{ \frac{\lambda(\lambda t)}{i!} e^{-\lambda t} e^{\int \lambda dt} dt + C \right\} \\ = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!} + C \\ Because P(0) = 0, C = 0, and \\ P(t) = \frac{e^{-\lambda t} (\lambda t)}{(i+1)!} \end{cases}$$

M= 3 dozens/day, N=18 TORA input data = (0, Mt, 1, 18, 18)

(a) $\mu = 3x3 = 9$

10(t=3) = .00532 (from TORA)

(b) Mt = 3x2 = 6

Enp(2) = 11.955

(c) This part can be solved using Porsion or exponential distributions.

Youan: Ut = 3x1 = 3

Probability = P(1) + P(1) + ... + P, (1) = . 9502 (from TORA)

Exponential: mean = 1/3 day

Pf purchasing at least one dozen in Iday) = P{ time between purchases \$ 1} $=1-e^{-3x/}=.9502$

(d) Exponential: $P\{t \le .5\} = 1 - e = .7769$ <u>Poisson</u>: $P(.5) + P(.5) + ... + P_{17}(.5) = .7769$

(e) Po(1) = 0 (Mt = 3x1 = 3)

N=40, M=10 Callo/R TORA input (0, Mt, 1, 40,40)

(a) p(t=4) = 1 - p(4)

=1 - .521 = .479

(b) E{n|t=4} = \int n p(4) \sim 2.5 blocks

N=48, M = 4x10 = 5 cano/h

ut = 5 x 4 = 20 cans

10(4) = .000005 (from TORA) N=48, ME=5x8=40, P(8)=.11958

N = 1/1 = 1 withdrawl/week

N=5, Mt=4

P(4) = · 37116

N=80 items, M=5 items/day

(a) Mt = 5x2 = 10 lims

P(2) = .1251

(b) Mt = 5 x4 = 20 items P(4) = .00001

(c) Mt = 5x4 = 20 items

E{n/4days} = \(\int np(4) \(\sigma \) 60 items

Av. # of withdrawls = 80-60 = 20 items

M = 1/1 = 1 breakdown /day N=10, Mt=1x2=2

From TORA, PO(2) = .00005

(a) N=25, M = 3/day t = 6 days, Mt = 18

Av. Stock remaining after 6 days $= E\{n|t=6\} = 7.11$

Av. order size = 25-7.11 ~ 18 dems

(b) t=4, $\mu t=3x4=12$ P(4) = .00069

(c) t = 6, $\mu t = 3x6 = 18$ $p(6) = p(6) + \dots + p(6) = .9696$

P{time betn. departures > T}

= P{ no departures during T} = P{N left after time T}

 $= f_{ij}(T)$ $P\{t>T\} = P_N(T) = \frac{MT)^0 e^{-MT}}{\sigma I}$

$$P_{N}'(t) = -M P_{N}(t)$$

$$P_{N}'(t) = -M P_{N}(t) + M P_{N+1}(t), \quad 0 \le n < N$$

$$P_{N}'(t) = C e$$

$$P_{N}(t) = C e$$

$$Given \quad P_{N}(0) = 1, \quad \text{then } c = 1 \text{ and}$$

$$P_{N}(t) = e$$

$$Next, \quad \text{consider } (2) \text{ for } n = N - 1$$

$$P_{N-1}'(t) = -M P_{N}(t) + M P_{N}(t)$$

$$= -M P_{N-1}(t) + M e$$

$$Thus, \quad P_{N-1}(t) = e$$

$$P_{N-1}(t) = e$$

$$P_{N-1}(t)$$

(a) P{0 counter open} = P_0 =
$$\frac{1}{55}$$

P{1 counter open} = P_1 + P_2 + P_3

= $\frac{1}{55}$ (2+ +8) = $\frac{14}{55}$

P{2 counters open} = P_4 + P_5 + P_6

= $\frac{1}{55}$ (8+8+8) = $\frac{24}{55}$

$$P\{3 \text{ counters open}\} = P_7 + P_8 + \cdots$$

$$= 1 - (P_0 + \cdots + P_6)$$

$$= 1 - (\frac{1}{55} + \frac{14}{55} + \frac{24}{55}) = \frac{16}{55}$$

(b) Av. # busy counters
=
$$0 \times \frac{1}{55} + 1 \times \frac{14}{55} + 2 \times \frac{24}{55} + 3 \times \frac{16}{55}$$

= 2 counters

(a)
$$M = \begin{cases} 5 \text{ customers } / h_1, & n = 0, 1, 2 \\ 10 \text{ customers } / h_1, & n = 3, 4 \\ 15 \text{ customers } / k_1, & n = 5, 6 \\ 20 \text{ customers } / h_1, & n \ge 7 \end{cases}$$

$$P_{1} = \frac{12}{5}P_{0} = 2.4P_{0}$$

$$P_{2}^{2} = (\frac{12}{5})^{2}P_{0} = 5.76P_{0}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{10})P_{0} = 6.912P_{0}$$

$$P_{4} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}P_{0} = 8.2944P_{0}$$

$$P_{5} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})P_{0} = 6.63552P_{0}$$

$$P_{6} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}P_{0} = 5.308416P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{20})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{10})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{10})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = 5.308416(6)P_{0}$$

$$P_{1} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{2} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{10})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})^{2}(\frac{12}{15})P_{0} = \frac{1}{5.308416(6)P_{0}}$$

$$P_{3} = (\frac{12}{5})^{2}(\frac{12}{15})^{$$

$$f_{n\geq 7} = \cdot 1199 (.6)^{n-6}$$
(6) $f_{n\geq 7} = 1 - (E + P_1 + \dots + P_r) = .8$

$$\mathcal{L}_{n} = \begin{cases} 5n, & n = 1,2 \\ 15, & n = 3,4, \dots \end{cases}$$

$$\mathcal{L}_{1} = \left(\frac{10}{5}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{2} = \left(\frac{10}{5}\right) \left(\frac{10}{10}\right) \mathcal{L}_{0} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} = \left(\frac{10}{5}\right) \mathcal{L}_{n} = 2 \mathcal{L}_{0}$$

$$\mathcal{L}_{n} =$$

(b)
$$P_{n \leq 2} = P_0 + P_1 + P_2 = .5555$$

$$\lambda_n = \begin{cases} 12 & \text{cars } / - k_1, \ n = 0, 1, ..., 10 \end{cases}$$

$$M_n = \begin{cases} 60/6 = 10 & \text{cars } / - k_1 \end{cases}$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{12}{10}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

$$P_n = \left(\frac{1}{12}\right)^n P_0, \quad n = \frac{1}{2}, ..., 10$$

 $P_0(1+1.2+1.2^2+...+1.2^{10})=P_0\frac{1-1.2^{10}}{1-1.2}$ Thus, $P_0=.0311$

Continued..

(9)	Po=	(12)10g	2 = .	. 19	259

0.148578

0.222866

0.10029

2 0.222866

9 0.010831

10 0.005416

(b) $f_{n>1} = 1 - f_0 = 1 - .0311 = .9689$

(c) Av. length of the lane
=
$$0P_0 + 1P_1 + \cdots + 10P_{10}$$

= $1 \times 03732 + 2 \times 04479$

= 1x.03732 + 2x.04479 + 3x.05375 + 4x ·0645+5×·0774+6×-09288 +7x.11145+8x.13374+9x.16049 $+10 \times .19259 = 6.71071$

$$\lambda_n = 6 \text{ arrivalo/fi, } n = 0,1,...,8$$
 5 $M_n = \frac{60}{15} = 4 \text{ customers/fi}$
= 5 arrivalo/fi, $n = 9,10,...11,12$ (a) $f = \frac{4}{4}p$

$$M_n = \frac{n}{5} = \frac{2n}{6}, n = 1, 23, 4$$

= $10/2, n > 5$

$$P_4 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} P_8 = 3.375 P_8$$

$$P_7 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} \cdot \frac{6}{10} = .729 P_0$$

$$P_8 = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \cdot \frac{(6)^4}{(70)^4} P_0 = .4374 P_0$$

$$P_{n \geq 9} = \frac{6}{2} \cdot \frac{6}{4} \cdot \frac{6}{6} \cdot \frac{6}{8} \left(\frac{6}{10}\right)^{4} \left(\frac{5}{10}\right)^{n-8} = .4374(5)^{n-8}$$

(b)
$$f_{n \geq 5}^{p} = 1 - (f_0 + f_1 + \dots + f_4^p) = .2385$$

= 1x.0662 + 2x.0361 + 3x.0217 +4x.0108 +5x.0054 + 6x.0027 + 7x.00135

λ= 4 customers/ha

$$n = 0, 1, \dots$$

$$\lambda_{n} = \begin{cases} 4, & n = 0, 1, \dots, 4 \\ 0, & n \ge 5 \end{cases}$$

$$M_n = \frac{60}{15} = 4$$
 customers / La

$$P_{3} = (\frac{4}{4})^{3} P_{0}$$

$$=\frac{1}{5}(1+2+3+4)=2$$

(c)
$$f_4 = .2$$

$$(a) M P_1 = \lambda P_0$$

$$P_1 = \frac{\lambda}{M} P_0$$

(b)
$$f_0 + \frac{\lambda}{\mu} p_0 = 1$$

 $f_0 = \frac{1}{1+p}$, $f = \frac{\lambda}{\mu}$
 $f_1 = \frac{\rho}{1+p}$

(c)
$$L_s = op + ip = \frac{p}{1+p}$$

(c)
$$W_q = \frac{L_s}{\lambda_{cff}} - \frac{1}{M}$$

$$= \frac{P/(1+P)}{\lambda/(1+P)} - \frac{1}{M} = 0$$

$$\lambda_{n-1} P_{n-1} + M_{n+1} P_{n+1} = \lambda_{n-1} \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \cdot \frac{\lambda_{n-2}}{M_{n-1}} \right) + M_{n+1} \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \cdot \cdot \frac{\lambda_n}{M_{n+1}} \right) = M_n \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \cdot \cdot \cdot \frac{\lambda_{n-1}}{M_n} \right) + \lambda_n \left(\frac{\lambda_0}{M_1} \cdot \frac{\lambda_1}{M_2} \cdot \cdot \cdot \cdot \frac{\lambda_{n-1}}{M_n} \right) = M_n P_n + \lambda_n P_n$$

$$= \left(M_n + \lambda_n \right) P_n$$

(a)
$$L_q = \sum_{n=6}^{8} (n-5) P_n$$

= $17_6^0 + 2P_7 + 3P_8$
= $1 \times .05847 + 2 \times .03508 + 3 \times .02105$
= $.19177$

(b)
$$W_q = \frac{L_q}{\lambda_{eff}}$$

= $\frac{.19/7}{5.8737} = .03265$ from $W_s = W_q + \frac{1}{M}$

$$= .03264 + \frac{1}{2} = .53265 \text{ four}$$

(c)
$$\lambda_{lost} = \lambda P_g$$

= $6 \times .02105 = .1263$ car/fn

(d) Average number of empty spaces
$$= C - (L_S - L_g)$$

$$= C - \sum_{n=0}^{g} np + \sum_{n=c+1}^{g} (n-c)p$$

$$= \left(C \sum_{n=0}^{g} f_n - C \sum_{n=c+1}^{g} p_n\right)$$

$$= \left(\sum_{n=0}^{g} p_n - \sum_{n=c+1}^{g} np\right)$$

$$= C \sum_{n=0}^{g} p - \sum_{n=0}^{g} np$$

$$= \sum_{n=0}^{g} (c-n) p_n$$

$$\lambda_{n} = 6 \text{ cavs / h, } n = 0, 1, ..., 6$$

$$M_{n} = \begin{cases} (\frac{4}{3})n, & n = 1, 2, ..., 6 \\ 8, & n = 7, 8, 9, 10 \end{cases}$$

$$P_{n} = \begin{pmatrix} \frac{6}{413} & \frac{1}{n!} & P_{0}, n = 0, 1, ..., 6 \\ & & \text{continued...} \end{cases}$$
continued...

-	1 1 1 1		1 10 110 110
	(<u>6</u>)n		2.continued
-	$f_n = \frac{(4/3)}{(1/(n-6))}$	P, n=7,8,9	טוקי
	6.6.	$(9/2)^3 (9/2)^4$	1915 1915
	$f_0\left(1+\frac{9/2}{1!}+\frac{(9/2)^2}{2!}+\right)$	$\frac{70}{3!} + \frac{70}{4!} +$	51 + (18)
	$+\frac{(9/2)^{7}}{6!6^{2}}+\frac{(9/2)^{9}}{6!6^{2}}$	$+\frac{(9/2)^3}{1}+\frac{(9/2)^3}{1}$	$\left(\frac{1}{2}\right)^{10} = 1$
	616 6162	6!63 6!	64.1
	Thus. +0 = .0004	•	

$$n$$
 f_n n f_n

1 .00304 6 .10627

2 .01141 7 .12539

3 .02852 8 .15667

4 .05348 9 .19584

5 .08022 10 .24480

(b)
$$\lambda_{eff} = \lambda (1 - p_0) = 10 (1 - 2448)$$

= 7.552 cars/k

(d)
$$W_s = \frac{L_s}{2eff} = \frac{7.694}{7.552} = 1.0155 \text{ ans}$$

 $W_q = 1.0155 - \frac{1}{4/3} = .2655$

Average number of occupied
spaces =
$$L_S$$
- L_Q
= 7.6941 - 2.005
= 5.6891 spaces

(a) of utiliza	hon = 100 (1-p)	
	= 100 2	
	$= 100 \left(\frac{4}{6}\right) =$	66.67%

(b)
$$p_{n\geq 1} = 1 - p_0 = \frac{\lambda}{M} = \frac{4}{6} = .6667$$

(c)
$$f_{n \le 7} = f_0 + f_1 + \dots + f_7$$

= $1 - \left(\frac{\lambda}{4}\right)^8 = 1 - \left(\frac{4}{6}\right)^8 = .961$

From Figure 17-6, K = 11Also, we can determine K from $1-f^{K+1} \ge .99$

$$(K+1) \ge \frac{ln \cdot 01}{ln (4/6)} = 11.$$

K ≥ 11.350-1 = 10.358

Thus, K ≥ 11

Note that the desired number of parking spaces is almost doubled (from 5 to 11) to accommodate the increase in the acceptance percentage from 90% to 99%.

(a)
$$P_0 = .2$$

= 50x.25x30 =\$375

			·				Salar Salar France
Lambda Lambda	1 = 1 eff =	0.20000 0.20000	Mu = Rho/c =	0.25000 0.80000		1.	*
Ls = Ws =		0000 00000	Lq = Wq =	3.20000 16.00000			
			· .				a law and
	n	Probability, pn	Cumulative,	Pn	n	Probability, pn	Cumulative, Pn
	0	0.20000	0.200	00 -	23	0.00118	0.99528
	. 1	0.16000	0.360	00	24	0.00094	0.99622
	` 2	0.12800	0.488		25	0.00076	0.99698
	3	0.10240	0.590		26	0.00069	0.99758
	2 3 4 5	0.08192	0.672		27	0.00048	0.99807
	5	0.06554	0.737	86	28	0.00039	0.99845
	6	0.05243	0,790	28	29	0.00031	0.99876
	6 7 8	0.04194	0.832		30	0.00025	0.99901
	8	0.03355			31	0.00020	0.99921
	9	0.02684	0.892		32	0.00016	0.99937
	10	0.02147	0.914	10 .	33	0.00013	0.99949
	11	0.01718	0.931		34	0.00010	0:99959
	12	0.01374	0.945		35	0.00008	0,99968
	13	0.01100	0.956		36	0.00006	0.99974
	14	0.00880	0.964		37	0.00005	0.99979
	15	0.00704	0.971	85	38	0.00004	0.99983
	16	0.00563	0.977		39	0.00003	0.99987
	17	0.00450	0.981		40	0.00003	0.99989
	18	0.00360	0.985		41	0.00002	0.99991
	19	0.00288	0.988		42	0.00002	0.99993
	20	0.00231	0.990	78	43	0.00001	0.99995
	21	0.00184	0.992	62	44	0.00001	0.99996
	22	0.00148				3.0000	3.35550

7 = 1/4 = .25 case/wk N=1/1.5 = .66667 case/wk

	M/M/c/GD/N/K Q	ueveing Model	
	Input	Data	
λ=	0.25		0.66667
c =	1		
Sys. Lim., N≍		urce limit, K =	infinity
	Output F	lesults	
$\lambda_{ij} =$	0.2500		0.3750
` Ls =	0.6000	Lq =	0.2250
Ws =	2.4000	Wq =	0.9000
n	Pn	CPn	1-CPn
0	0.625002	0.625002	0.374998
1	0.234375	0.859376	0.140624
. 2	0.087890	0.947266	0.052734
3	0.032959	0.980225	0.019775
4	0.012359	0.992584	0.007416
5	0.004635	0.997219	0.002781
6	0.001738	0.998957	0.001043
7.	0.000652	0.999609	0.000391
8	0.000244	0.999853	0.000147
9	0.000092	0.999945	0.000055
10	0.000034	0.999979	0.000021
11	0.000013	0.999992	0.000008
12	0.000005	0.999997	0.000003
13	0.000002	0.999999	0.000001
14	0.000001	1.000000	0.000000

(a) Lq = .225 case (b) 1-B = 1-.625 = .375 or 37.5% (c) Ws = 2.4 weeks

Present setuation:

 $\lambda = 90 \text{ cars/hr}$ $M = \frac{3600}{39} = 94.7368 \text{ cars/hr}$

New situation:

7 = 90 cars per hour

M = 3600 = 120 caro per hour

Continued..

Lambda Lambda	eff =	0.40000 0.40000	Mu = Rho/c =	0.66667 0.60000			
Ls = Ws =	1.49 3.7	998 4995	Lq = Wq =	0.89998 2.24996			
	n	Probability, pn	Cumulative, F	on o	ņ	Probability, pn	Cumulative, Pn
	0	0.40000	0.4000	00	11	0.00145	0,99782
	1	0.24000	0.6400		12	0.00087	0.99869
	2	0.14400	0.7840	30	13	0.00052	0.99922
	3	0.08640	0.8704	10	14	0.00031	0.99953
	1 2 3 4	0.05184	0.9222		15	0.00019	0.99972
	5	0.03110	0,9533		16	0.00011	0.99983
	6	0.01866	0.9720		17	0.00007	0,99990
	7	0.01120	0.9832	20	18	0.00004	0.99994
	8	0.00672	0,9899		19	0.00002	0.99996
	8 9 10	0.00403	0.9939	95	20	0.00001	0.99998
	10	0.00242	0.9963	37			2,000,000
		4					
1) 7	0	- 7					
> 4	/_	- 9	CAL				* :
, ,	-q.	/	UUL				•
٠.	,,	_ 9	9 ~ >~.	inuli	7		.0036
) W	9	= ~	23 ""		~		
							~ ~

1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00004 0.9 3 0.09648 0.51775 30 0.00007 0.9 4 0.00548 0.51775 32 0.00004 0.9 5 0.06698 0.66510 32 0.00004 0.9 6 0.05502 0.72092 33 0.00004 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03876 0.06510 35 0.00026 0.9 9 0.03220 0.33849 36 0.00024 0.9 10 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.66541 37 0.00002 0.9 11 0.02692 0.46591 40 0.00016 0.9 12 0.01869 0.00524 49 0.00016 0.9 13 0.01555 0.00524 40 0.00016 0.9 14 0.01288 0.03509 41 0.00009 0.9 15 0.00001 0.95493 43 0.00007 0.9 16 0.0001 0.95493 43 0.00007 0.9 17 0.00751 0.95493 43 0.00007 0.9 18 0.00752 0.96570 45 0.00009 0.9 19 0.00525 0.96570 45 0.00009 0.9 19 0.00525 0.96670 45 0.00005 0.9 19 0.00525 0.96670 45 0.00000 0.9 20 0.00435 0.97392 45 0.00005 0.9 21 0.00362 0.98491 49 0.00005 0.9 22 0.00362 0.98491 49 0.00005 0.9 22 0.00362 0.98491 49 0.00005 0.9 24 0.00362 0.98491 49 0.00003 0.9	a = 10.00000 a eff = 10.00000	Mu = 12.00000 Rho/c = 0.83333			
0 0.16667 0.16667 27 0.00121 0.9 1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00004 0.9 3 0.11574 0.42130 29 0.00004 0.9 4 0.08036 0.68512 31 0.00079 0.9 5 0.06698 0.66510 32 0.00049 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.44651 0.76743 34 0.00034 0.9 9 0.03220 0.83849 36 0.00024 0.9 10 0.02682 0.96541 37 0.00024 0.9 11 0.02243 0.88784 38 0.0016 0.9 12 0.01868 0.90554 39 0.0014 0.9 13 0.01558 0.92211 40 0.00011 0.9 14 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
0 0.16667 0.16667 27 0.00121 0.9 1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.05004 0.9 3 0.11574 0.42130 29 0.05004 0.9 4 0.08038 0.68612 31 0.00079 0.9 5 0.06698 0.68510 32 0.00049 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.04681 0.76743 34 0.0034 0.9 9 0.03230 0.83849 38 0.00024 0.9 10 0.02682 0.86541 37 0.00024 0.9 11 0.02243 0.88784 38 0.0016 0.9 42 0.01869 0.90554 39 0.0014 0.9 13 0.01558 0.92211 40 0.00011 0.9 14					
1 0.13889 0.30556 28 0.00101 0.9 2 0.11574 0.42130 29 0.00084 0.9 3 0.00845 0.51775 30 0.00070 0.9 4 0.08038 0.58612 31 0.00059 0.5 5 0.06698 0.66510 32 0.00044 0.9 6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00000 0.9 11 0.02692 0.86541 39 0.00016 0.9 12 0.013696 0.90251 49 0.00014 0.9 13 0.01558 0.92211 49 0.00011 0.9 14 0.01258 0.93509 41 0.00001 0.9 15 0.01258 0.93509 41 0.00009 0.9 16 0.00901 0.95493 43 0.00009 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00756 0.95243 44 0.00000 0.9 16 0.00756 0.95243 43 0.00007 0.9	n Probability, pn Cu	mulative, Pn	n	Probability, pn	Cumulative, Pn
2 0.11574 0.42130 29 0.00004 0.9 3 0.09645 0.51775 30 0.000070 0.9 4 0.08038 0.58612 31 0.00059 0.9 5 0.06598 0.56510 32 0.000049 0.9 6 0.05582 0.72092 33 0.000041 0.9 7 0.04681 0.72092 33 0.000041 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00020 0.9 12 0.01889 0.80519 35 0.0016 0.9 13 0.01558 0.92541 30 0.0016 0.9 14 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.93509 41 0.00001 0.9 15 0.01288 0.93509 41 0.00001 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00756 0.95244 44 0.00009 0.9 18 0.00576 0.95249 44 0.00009 0.9 19 0.00576 0.95252 45 0.00000 0.9 19 0.00552 0.95552 45 0.00000 0.9	0 0.16667	0.16667	27	0.00121	0.99393
2 0.11574 0.42130 29 0.00004 0.9 3 0.09645 0.51775 30 0.000070 0.9 4 0.08038 0.58612 31 0.00059 0.9 5 0.06598 0.56510 32 0.000049 0.9 6 0.05582 0.72092 33 0.000041 0.9 7 0.04681 0.72092 33 0.000041 0.9 8 0.03876 0.80619 35 0.00028 0.9 9 0.03230 0.83849 36 0.00024 0.9 10 0.02692 0.86541 37 0.00020 0.9 11 0.02692 0.86541 37 0.00020 0.9 12 0.01889 0.80519 35 0.0016 0.9 13 0.01558 0.92541 30 0.0016 0.9 14 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.92541 40 0.00011 0.9 15 0.01288 0.93509 41 0.00001 0.9 15 0.01288 0.93509 41 0.00001 0.9 16 0.00901 0.95493 43 0.00007 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00756 0.95244 44 0.00009 0.9 18 0.00576 0.95249 44 0.00009 0.9 19 0.00576 0.95252 45 0.00000 0.9 19 0.00552 0.95552 45 0.00000 0.9	1 0.13889	0.30556	28	0.00101	0.99494
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03576 0.80519 35 0.00026 0.9 9 0.03280 0.80541 37 0.00026 0.9 10 0.02282 0.86541 37 0.00020 0.9 11 0.02243 0.86541 38 0.00014 0.9 12 0.01589 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.01589 0.90551 39 0.0014 0.9 15 0.01589 0.90551 0.90000 0.9 16 0.00000 0.9 17 0.00000 0.9 18 0.00000 0.9 18 0.00000 0.9 19 0.00000 0.9	2 0.11574		29		0.99579
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03576 0.80519 35 0.00026 0.9 9 0.03280 0.80541 37 0.00026 0.9 10 0.02282 0.86541 37 0.00020 0.9 11 0.02243 0.86541 38 0.00014 0.9 12 0.01589 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.01589 0.90551 39 0.0014 0.9 15 0.01589 0.90551 0.90000 0.9 16 0.00000 0.9 17 0.00000 0.9 18 0.00000 0.9 18 0.00000 0.9 19 0.00000 0.9	3 0.09645	0.51775	30	0.00070	0.99649
6 0.05582 0.72092 33 0.00041 0.9 7 0.04651 0.76743 34 0.00034 0.9 8 0.03370 0.50549 35 0.00026 0.9 10 0.02582 0.86841 37 0.00026 0.9 11 0.02243 0.86844 38 0.00014 0.9 12 0.0389 0.90551 39 0.0014 0.9 13 0.01589 0.90551 39 0.0014 0.9 14 0.00026 0.9 15 0.01589 0.90551 40 0.00014 0.9 16 0.00010 0.95493 43 0.00007 0.9 17 0.00761 0.95493 43 0.00007 0.9 18 0.0052 0.95493 43 0.00007 0.9 19 0.0052 0.95493 44 0.00005 0.9 17 0.00761 0.95493 43 0.00007 0.9 18 0.0052 0.95493 44 0.00005 0.9 19 0.0052 0.95493 45 0.00005 0.9 19 0.0052 0.95493 46 0.00005 0.9 19 0.0052 0.95493 47 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0052 0.95492 46 0.00005 0.9 19 0.0053 0.97326 47 0.00005 0.9	4 0.08038				0.99707
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	5 0.06698	0.66510	32		0.99756
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	6 0.05582				0.99797
11 0.02243 0.88784 38 0.00016 0.99 12 0.01869 0.90654 39 0.00014 0.99 13 0.01558 0.92211 40 0.00011 0.99 14 0.01298 0.93509 41 0.00000 0.99 15 0.01082 0.94591 42 0.00008 0.99 16 0.00901 0.95493 43 0.00007 0.99 17 0.00751 0.95244 44 0.00006 0.99 18 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.95870 45 0.00006 0.99 19 0.00626 0.97392 46 0.00006 0.99 20 0.00435 0.97826 47 0.00003 0.99	7 0.04651		34		0.99831
11 0.02243 0.88784 38 0.00016 0.91 12 0.01869 0.90654 39 0.00014 0.91 13 0.01558 0.92211 40 0.00011 0.91 14 0.01298 0.93509 41 0.00000 0.91 15 0.01082 0.94591 42 0.00008 0.91 16 0.00901 0.95493 43 0.00007 0.91 17 0.00751 0.95244 44 0.00006 0.91 18 0.00626 0.96870 45 0.00006 0.91 19 0.00525 0.97392 46 0.00006 0.93 20 0.00435 0.97826 47 0.00003 0.93	8 0.03876				0.99859
11 0.02243 0.88784 38 0.00016 0.91 12 0.01869 0.90654 39 0.00014 0.91 13 0.01558 0.92211 40 0.00011 0.91 14 0.01298 0.93509 41 0.00000 0.91 15 0.01082 0.94591 42 0.00008 0.91 16 0.00901 0.95493 43 0.00007 0.91 17 0.00751 0.95244 44 0.00006 0.91 18 0.00626 0.96870 45 0.00006 0.91 19 0.00525 0.97392 46 0.00006 0.93 20 0.00435 0.97826 47 0.00003 0.93	9 0.03230			0.00024	0.99882
	10 0.02692	0.86541	37	0.00020	0.99902
19 0.01558 0.92211 40 0.00011 0.9 14 0.01238 0.93509 41 0.00009 0.9 15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95493 43 0.00007 0.9 17 0.00751 0.96244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	11 0.02243				0.99918
15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95243 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	12 0.01869				0.99932
15 0.01082 0.94591 42 0.00008 0.9 16 0.00901 0.95243 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96870 45 0.00005 0.9 19 0.00622 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	19 0.01558				0.99943
16 0.00901 0.95493 43 0.00007 0.9 17 0.00751 0.95244 44 0.00005 0.9 18 0.00625 0.96670 45 0.00005 0.9 19 0.00625 0.97522 46 0.00004 0.9 20 0.00435 0.97526 47 0.00003 0.9	14 0.01298		41		0.99953
17 0.00751 0.98244 44 0.00005 0.9 18 0.00652 0.96870 45 0.00005 0.9 19 0.0052 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9				0.00008	0.99961
17 0.00751 0.96244 44 0.00005 0.8 18 0.00625 0.96870 45 0.00005 0.9 19 0.00522 0.97392 46 0.00004 0.9 20 0.00435 0.97826 47 0.00003 0.9	16 0.00901		43	0.00007	0.99967
20 0.00435 0.97826 47 0.00003 0.9	17 0.00751		44	0.00005	0.99973
20 0.00435 0.97826 47 0.00003 0.9	18 0.00626		45	0.00005	0,99977
20 0.00435 0.97826 47 0.00003 0.9	19 0.00522		46	0.00004	0.99981
21 0.00362 0.98189 48 0.00003 0.91 22 0.00302 0.98491 49 0.00002 0.91	20 0.00435	0.97826	47	0.00003	0.99984
22 0.00302 0.98491 49 0.00002 6.98	21 0.00362	0.98189	48		0.99987
	22 0.00302	0.98491	49	0.00002	0.99989
23 9.99252 0.98742 50 0.00002 0.9	23 0.00252	0.98742	50 51	0.00002	0.99991
24 0.00210 0.98952 51 0.00002 0.9	24 0.00210		51	0.00002	0.99992
and the second s		0.99126	52	0.00001	0.99994
26 0.00146 0.99272 53 0.00001 0.99	26 0.00146	0.99272	53	0.00001	0.99995

(b) $1-CP_2=1-4213=.5787$ (c) Wq=.417 hour

(d) Let N= spaces (including car being served) $CP_{N-1} \ge .9$ Because $CP_1=.88784$ and $CP_1=.90659$, $N-1 \ge 12 \implies N \ge 13$.

In general, $L_S < Lq + 1$. The reason 7

is that P>0, usually. Consider $L_q=\sum_{n=1}^{\infty}(n-1)P_n$ $=\sum_{n=1}^{\infty}(n-1)P_n$ $=L_S-(1-P_0)$ The closer P is to zero, the more likely $L_S \cong L_q + 1$ will hold.

Consider

Consider $L_q = \sum_{n=1}^{\infty} (n-1) f_n$ $= \sum_{n=1}^{\infty} (n-1) (1-p) f^n$ $= (1-p) f^2 \frac{d}{dp} \left(\sum_{n=1}^{\infty} f^{n-1} \right)$ $= (1-p) f^2 \frac{d}{dp} \sum_{n=0}^{\infty} f^n$ $= (1-p) f^2 \frac{d}{dp} \left(\frac{1}{1-p} \right)$ $= f^2 (1-p) \frac{1}{(1-p)^2}$ $= \frac{p^2}{1-p}$

9

(a)
$$P\{j \text{ in queue} | j = i\}$$

$$= p\{n \text{ in system} | n \ge 2\}$$

$$= \frac{r_n}{\sum_{j=2}^{\infty} p_j}$$

Thus,
expected number =
$$\sum_{n=2}^{\infty} (n-1) \frac{f_n}{\sum_{j=2}^{\infty} f_j}$$

= $\sum_{n=2}^{\infty} np - \sum_{n=2}^{\infty} f_n$
 $\sum_{n=2}^{\infty} f_n$

$$= \frac{\sum_{n=1}^{\infty} n\rho_{n} - \rho_{n}}{\sum_{n=2}^{\infty} \rho_{n}}$$

$$= \frac{f}{1-f} - f(1-f)$$

$$= \frac{1}{1-f}$$

(b) Exp. number in queue given

the system is not empty

$$= \sum_{n=1}^{\infty} (n-1) \left(\frac{f_n}{s^2} + f_n \right)$$

$$= \sum_{n=1}^{\infty} n \rho_n - \sum_{n=1}^{\infty} f_n$$

$$= \frac{f_n}{f_n}$$

$$= \frac{f_n}{f_n}$$

Thus,

Exp. waiting time in quew for

Shose who must want

= \frac{f(1-5)}{\chi}

= \frac{1}{-1}

$\omega(\tau) = (M-\lambda)e^{-(M-\lambda)\tau}$
7 = 1/4 = .25/wh } (M-7)=41
$f = \lambda/\mu = \frac{1.5}{2} = .375$
$W(T) = .417e^{417T}, T>0$ $P\{T>1\} = e^{417\times 1} = .659$
1 (1) 1 - E = :634

(a) Standard deviation = $\frac{1}{M-7} = \frac{1}{6-4} = .5$ 2 g(t,n) = jointer polition to the political to the

 $W_s \le 10$ minutes $\lambda = 4/h$ $\frac{1}{(M-\lambda)} \le \frac{10}{60} \text{ hr}$ or $M-\lambda \ge 6$ or $M \ge 6+\lambda = 10/h$

 $P\{c>\frac{10}{60}\}\leq 1$, or $-\frac{1}{6}(M-4)$ ≤ 1 $M-4 \geq 13.8$ $M \geq 17.8/m$

 $P\{T>5\} = e^{(M-\lambda)t} = .267x5$ where $\lambda = .4/min$, M = .667/minExp. # customers in a 12-hr day $= \lambda \times 12 \times 60 = .4 \times 12 \times 60 = 288$ aust.

Exp. cost = 288 x. 2636 x.5 = \$37.95

Wn+(t/n) = conditional pdf for waiting in queue given there are nawstomers ahead = n-fold convolution of the exponential pd/ $=\frac{u(ut)^{n-1}e^{-\mu t}}{(n-1)!}$ W(t) = absolute pdf of waiting time in queve = <u>u(nt)"-1ent</u> f"(1-9) (a) For t>0 $\omega(t) = \frac{8}{2} g(t,n)$ = MPe-Mt (1-9) = (MPt) e MPt = Mg(1-f) = M(1-f)t t.>0 For t=0, W(0) = Po = (1-9) $\omega(t) = \begin{cases} 1-\beta, t=0 \\ \mu \rho(1-\beta)e^{-\mu(1-\beta)t}, t>0 \end{cases}$ (b) Wq = E { + }

b)
$$W_q = E\{t\}$$

$$= \int_0^\infty t \, \omega(t) \, dt$$

$$= \int_0^\infty \omega(0) + \int_0^\infty t \, \omega(t) \, dt$$

$$= \int_0^\infty u(1-p) \, e^{-u(1-p)t} \, dt$$

$$= \frac{p}{u(1-p)}$$

(c) Average number of empty
spaces =
$$4-L_g$$

= $4-.788$

$$= 3.2/2$$
 Spaces (d) $+0 = .048/2$

5	1 4.00000 1 4.00000	9.00000 10.00000	3,93651 3,96116 3,97532	0,50794 0,55987 0.60247	0.90476 0.75340 0.64199	0.41270 0.31327 0.24446	0.22984 0.19020 0.16149	0.10484 0.07908 0.06149
м	(cars/	(L)	,	V5 (hrs)	١	Ws	(min)
	6			.37	736		S	2.4
	7			. 28	77		17	1.16
	8			. z	3		13	.80
_	9			.19	•			40
-	(0)			16	-			70

Beained service rate = 10 cars/for Thus, the service time must be reduced from 60 = 10 minutes to 60 = 6 minutes to 60 = 6 minutes. a 40% reduction

m = number of parking spaces An arriving car will <u>not</u> find a space if there are m+1 cars in the system Thus, find m such that $f_{m+1} \leq .01$ TORA input = $(4,6,1,m+1,\infty)$

233	N=m+1	PN
4	5	.04812
5	6	.0311
6	7	.0203
7	8	.01335
8	9	(.009)

Lebect the number of parking spaces m ≥ 8

m = number of reats.			
The $N=m+1$, and		* * * .	-
For the second s	Cus	tomera	/Ry
TORA imput = (6,5,)	_		

emario c Lambda Mu L'da eff po La t.g Wa Mug 1 1 6.00000 5.00000 3.65037 0.27473 1.12088 0.35500 0.36908 0.10000 2 1 6.00000 5.00000 4.25010 0.1301 1.1208 0.35500 0.36908 0.10000 3 1 6.00000 5.00000 4.25210 0.1348 2.35340 4.1349 0.42419 0.22418 4 1 6.00000 5.00000 4.36617 0.10074 2.35400 0.7712 2.12188 0.67150 0.7712 5 1 6.00000 5.00000 4.9667 0.10074 3.02117 2.12188 0.67150 0.37

_m	N=m+1	Arff (austomers/ fn)
1	Z	3.63
Z	3	(4.07)

Use two reals or less

Title: 17.6d-4 Scenario 1-- (M/M/1):(GD/8/Infinity)

: •	Lambda		10.00000 3.99843	Mu = Rho/c =	4.00000 = 2.50000		``.	
_	Ls = Ws =		3569 33464	Lq = Wq =	6.33609 1.58464			
		п	Probability, pn	Cumulative,	, Pn	п	Probability, pn	Cumulative
		0	0.00039	0.00	039	5	0.03841	0.063

- (a) P = .6
- (b) Lq = 6.34 generators
- (c) Let C = belt capacity. Thus,

 N = C + 1. The assembly department
 is kept in operation so long as
 at least one empty space remains
 on the belt; that is,

$$P\{empty space on belt\} = p + p + \dots + p$$

$$= \frac{1-p}{1-p^{c+2}} \sum_{n=0}^{\infty} p^n$$

$$= \frac{1-p}{1-p^{c+2}} \cdot \frac{1-p^{c+1}}{1-p}$$

$$= \frac{1-p^{c+1}}{1-p^{c+2}}$$

Continued..

$$\lim_{C \to \infty} \frac{1 - \beta^{c+1}}{1 - \beta^{c+2}} = \lim_{C \to \infty} \frac{-(c+1)\beta^{c}}{-(c+2)\beta^{c+1}}$$

$$= \lim_{C \to \infty} \frac{C+1}{(c+2)\beta}$$

$$= \lim_{C \to \infty} \left(\frac{1 + \frac{1}{c}}{1 + \frac{2}{c}}\right) \frac{1}{\beta}$$

$$= \frac{1}{\beta}$$

In the peresent example, f = 10/4 and 1/p = .4. Thus,

lim (p+p+...+p) = 1/p = .4

This result means that regardless of how large the left is, the probability of finding an empty space cannot exceed 4. Threes, achieving a 95% utilization for the assembly depting in impossible.

The result makes sense because the arrival rate λ (=10/hr) is 2½ times larger than the service rate (= 4). He only way we can accomplish the desired result is to reduce λ and/or increase M.

(b)
$$P\{\text{wish is not fulfilled}\}$$

= $P\{48 \text{ or more in restarant}\}$
= $P_{48} + P_{49} + P_{50}$
= $I - (P_1 + P_2 + \cdots + P_{47})$

= 1 - .99993

= · 00007

TORI	9 6	mput = (10,12,1,5	0,-0)	
Lambda Lambda		10.00000 9.99982	Mu = 12.0000 Rho/c = 0.83333	9		
Ls = Ws =		9533 19954	Lq = 4.16201 Wq = 0.41621			
	n	Probability, pn (Cumulative, Pn	n	Probability, pn	Cumulative, P
	0	0.16668	0.16668	26	0.00146	0.9928
	1	0.13890	0.30558	27	0.00121	0.9940
	2	0.11575	0.42133	28	0.00101	0.9950
***	3	0.09646 0.08038	0.51779	29	0.00084	0.9958
	2 3 4 5	0.06699	0.59818 0.66516	30 31	0.00070 0.00059	0:9965 0:9971
	6	0.05582	0.72098	32	0.00049	0.9976
	7 8 9	0.04652	0.76750	33	0.00041	0.9980
	8	0.03876	0.80627	34	0.00034	0.9984
	10	0.03230 0.02692	0.83857 0.86549	. 35 36	0.00028 0.00024	0,9986 0,9989
	11	0.02243	0.88792	37	0.00020	0.9991
	12	0.01869	0.90662	38	0.00016	0.9992
	13	0.01558	0.92220	39	0.00014	0.9994
	14 15	0.01298 0.01082	0.93518 0.94600	40 41	0.00011 0.00009	0.9995 0.9996
	16	0.00902	0.95501	42	0.00008	0.9997
	17	0.00751	0.96253	43	0.00007	0.9997
	18 19	0.00626	0.96879	44	0.00005	0.9998
	20	0.00522 0.00435	0.97401 0.97835	45 46	0.00005 0.00004	0.9998 0.9999
	21	0.00362	0.98198	47	0.00003	0.9999
	22	0.00302	0.98500	48	0.00003	0.9999
	23	0.00252	0.98751	49	0.00002	0.9999
	24 25	0.00210 0.00175	0.98961 0.99136	50	0.00002	1.0000

ORAMP Title: 17.6d-6 Scenario 1- (M/I	•	ty)	5, 40)		
Lambda = Lambda eff =	20,00000 7.50000		50000 .66667		
	40000 92000		.40000 78667		
n	Probability, pn	Cumulative, Pn	n	Probability, pn	Cumulative, Pn
0	0.00000	0.00000	8	0.00065	0.00104
1 2 3 4 5	0.00000 0.00000 0.00000 0.00001 0.00003	0.00000 0.00000 0.00001 0.00002 0.00005	9 10 11 12 13	0.00174 0.00463 0.01236 0.03296 0.08789	0.00278 0.00742 0.01978 0.05273 0.14062
6 7	0.00009 0.00024	0.00015 0.00039	14 15	0.23438 0.62500	0:37500 1.00000

(a)
$$P_{n \le 4} = P_0 + P_1 + \dots + P_4$$

= .962

(b)
$$\lambda_{lost} = \lambda P_s$$

= $5 \times .038 = .19$ cust./flx

(r)
$$L_s = 0 \times .399 + 1 \times .249 + 2 \times .156$$

+ $3 \times .097 + 4 \times .061$
+ $5 \times .038$
= 1.286

continued.

(d)
$$W_q = W_s - \frac{1}{\mu}$$
 $\lambda_{eff} = 5(1 - .038) = 4.81 \text{ cmother}$
 $W_s = \frac{L_s}{\lambda_{eff}}$
 $= \frac{1.286}{4.81}$
 $= .2675 \text{ how}$
 $W_q = .2675 - \frac{1}{8}$
 $= .1424 \text{ how}$

$$f_{n} = \frac{(1-p) p^{n}}{1-p^{n+1}}$$

$$\lim_{S \to 1} f_{n} = \lim_{S \to 1} \frac{f^{n} - f^{n+1}}{1-p^{n+1}}$$

$$= \lim_{S \to 1} \frac{n p^{n-1} (n+1) p^{n}}{-(N+1) p^{n}}$$

$$= \frac{1}{N+1}$$
Thuo,
$$L_{S} = \sum_{n=0}^{N} n p_{n}$$

$$= \frac{1}{N+1} \sum_{n=0}^{N} n$$

$$= \frac{N(N+1)}{2(N+1)} = \frac{N}{2}$$

Ws = Wq +
$$\frac{1}{M}$$

Thus,

 $Ls = Lq + \frac{2eff}{M}$

on

 $2eff = M(Ls - Lq)$

TORA input = (8,5,2,00,00)	(b) Tile: 17.5e-1
Title: 17-56-1 Scenario 1- (MM/2):(GD/infinity/infinity)	Title: 17.5e-1 Comparative Analysis
Guerrano 1- (www.z); (GD/mtinity/infinity)	Scenario c Lambda Mu L'da eff p0 La Lq Ws 1 4 16.00000 5.000000 18.00000 0.02730 5.59573 2.38573 0.34951 0
Lambda = 8.00000 Mu = 5.00000 Lambda eff = 8.00000 Rho/c = 0.80000	3 8 16.00000 5.00000 16.00000 0.03977 3.34526 0.14528 0.20908 0.
Ls = 4.44444	For C = 5, Wq = .032 hour = 2 min C = 4, Wq = .149 hour = 9 min
n Probability, pn Cumulative, Pn n Probability pn Cumulative Pn	6=4, Wq = .149 hour ~ 9 min
0 0.11111 0.11111 23 0.00131 0.99475	Select C = 5
1 0.17778 0.28889 24 0.00105 0.99580 2 0.14222 0.43111 25 0.00084 0.99664 3 0.11378 0.54489 25 0.00067 0.99731	C=2: 7 = 8 callo/b
5 0.07282 0.70873 28 0.00043 0.99828	M = 60 = 4.1379 Calls/th
7 0.04660 0.81359 30 0.00028 0.99890 0.05028 0.99890 0.02983 0.88070 31 0.00022 0.99912	C=4: 7 = 16 calls/An
10 0.02386 0.90456 33 0.00014 0.99934 11 0.01909 0.92365 34 0.00014 0.99934	M = 4.1379 callo per hour
13 0.01227 0.95092 35 0.00009 0.99964 14 0.00977 0.96091 37 0.00007 0.99977 15 0.00007 0.99977	utilization = 7/UC = . 967
16 0.00625 0.97498 39 0.00004 0.99982 17 0.00500 0.97998 40 0.00004	Title: Ga-2 Comparative Analysis
18	Scenario c Lambda Mu L'da eff p0
21 0.00205 0.99180 44 0.00001 0.99995 22 0.00164 0.99344	1 2 8.00000 4.13790 8.00000 6.01686 29.49805 27.58471 3.89728 3.44559 4 16.09000 4.13790 16.09000 0.00332 36.72867 28.69167 1.32241 1.38672
10RA input = (16,5,4,0)	1.1 13.446 Rours for C=2
i me: 17.56-1 Scenario 2- (M/M/4):(GD/infinity/infinity)	Wg = { 3.446 hours for C = 2 1.681 hours for C = 4
Lambda = 16.00000 Mu = 5.00000 Lambda eff = 16.00000 Rho/c = 0.80000	Consolidation reduces the waiting time
Ls = 5.58573	by more than 51%.
0 0.02730 0.02730 24 0.00138 0.99450	(a) $\lambda = \frac{60}{5} = 12$ per hour 3
1 0.08737 0.11467 25 0.00110 0.99560 2 0.13979 0.25446 26 0.00088 0.99648 3 0.14911 0.40357 27 0.00070 0.99718 4 0.11929 0.52285 28 0.00056 0.99775	M = 10 per Lour
5 0.09543 0.61828 29 0.00045 0.99820 6 0.07634 0.69463 30 0.00036 0.99856	$C > \frac{\lambda}{\lambda 1} = 1.2 \implies C \ge 2$
7 0.08107 0.75570 31 0.00029 0.99885 8 0.04886 0.80455 32 0.00023 0.99908 9 0.03909 0.84365 33 0.00018 0.99928	1
11 0.02502 0.89994 35 0.00012 0.99953 12 0.02001 0.91995 36 0.00009 0.91962	(b) $\gamma = \frac{60}{2} = 30 \text{ per kom}$
13 0.01601 0.93596 37 0.00008 0.99970 14 0.01281 0.94877 38 0.00006 0.99976 15 0.01025 0.95901 39 0.00005 0.99981	$u = \frac{60}{6} = 10 \text{ per how}$
16 0.00820 0.96721 40 0.00004 0.99985 17 0.00856 0.97377 41 0.0003 0.99988 18 0.00925 0.97901 42 0.00002 0.99990	$c > \frac{\lambda}{M} = \frac{30}{10} = 3 \implies c \ge 4$
19 0.00420 0.98321 43 0.00002 0.99992 20 0.00336 0.98657 44 0.00002 0.99994	
21 0.00269 0.98926 45 0.00001 0.99995 22 0.00215 0.99140 46 0.00001 0.99996 23 0.00172 0.99312	(c)) = 30 per Lour, 1=40 per h
$\frac{a}{C} = 2$	C> 30 = ·75 ⇒ C>1
$P[allservers are busy] = (10)^{2}$	40
= (1-,47)	7 = 45 customers/fr
C=4: = .504	11 = 60 = 12 customers/h
$\frac{C=4:}{P\{all \text{ servers are busy}\}} = 1 - P_{n \leq 3}$ $= 1 - 404$	
= 1 404	$C > \frac{45}{12}$ or $C \ge 4$
±·59 6	Secured Way = 30 seconds = .0083 hr
Canada las in I little that	Scenario c Lambda Me L'da aff ed la la Wa
C=4 yields a higher probability that	1 4 45,00000 12,00000 45,00000 0,0055 16,72545 12,97545 0,37158 0,28834 2 5 45,00000 12,00000 45,00000 0,01655 5,15575 13,8537 0,11412 0,03075 4 5,00000 12,00000 45,00000 0,01655 5,15575 13,8537 0,11412 0,03075 4 5,00000 12,00000 45,00000 0,02584 6,00000 0,02584 6,00000 12,00000 45,00000 0,02584 6,00000 0,02585 6,02589 3,04673 0,01673 0,08587 0,002584
all servers are busy.	7 45.00000 12.00000 45.00000 0.02309 3.66873 0.11875 0.08597 0.00264 Select C≥ 7.
Continued	

	Set 15.6e
TOKA input: (20,12,3,00,0) Itle: 1766-5 cenare 1- (M/M/3): (GD/infinity)	7 = 25 x 60 = 100 jobs / Rour 7
, and the same of	M = 60 = 30 jobs/ Rom, C=4
Lambda = 20.0000 Mu = 12.00000 Lambda eff = 20.00000 Rho/c = 0.55556	Title: 6e-7
Ls = 2.04137	Senario 1 (M/M/4):(GDfinfinity/infinity)
0.01014	Lambda = 100.00000 Mu = 30.00000 Lambda eff = 100.00000 Rho/c = 0.83333
n Probability, pn Cumulative, Pn n Probability, pn Cumulative, P	, , , , , , , , , , , , , , , , , , , ,
1 0.28777 0.46043 11 0.0021 0.0021	8
3 0.13323 0.83347 13 0.00037 0.9991 4 0.07401 0.90748 14 0.00037 0.9995	n Probability, pn Cumulative, Pn n Probability, pn Cumulative, Pn
6 0.02284 0.97144 16 0.00000 0.99984	6 1 0.07103 0.09234 29 0.00115 0.99425
7 0.01269 0.98414 17 0.00004 0.33534 8 0.00705 0.99119 18 0.00002 0.99394	3 0.13154 0.34228 31 0.00080 0.99604 4 0.10962 0.45190 32 0.00066 0.99668
0.00001 0.99998	6 0.07613 0.61937 34 0.00046 0.99789 7 0.06344 0.68281 35 0.00038
p waing room.	8 0.05286 0.73568 36 0.00032 0.98840 9 0.04405 0.77973 37 0.00027 0.99840 10 0.03671 0.81644 38 0.00022 0.99889
$m = \text{size } g \text{ waiting room.}$ $f_0 + f_1 + \dots + f_{m+2} \ge .999 \Rightarrow m \ge 10$	11 0.03059 0.84703 39 0.00019 0.95907
C=2, Twindows = . 8 x 60 = 16 /h 6	15 0.62152 0.89377 41 0.00015 6.99928 14 0.01770 0.91148 42 0.0001 0.99936 15 0.01475 0.92623 43 0.00009 0.999365
	16 0.01229 0.93853 44 0.00007 0.99953
u = 60 = 12 per Rom	17 0.01025 0.94877 45 0.00006 0.9995 18 0.00854 0.95731 46 0.00005 0.99978 19 0.00711 0.96443 47 0.0004 0.99978 20 0.00593 0.97035 48 0.00004 0.99882
Title: 6e-6 Scenario 1 (M/M/2):(GD/infinity/infinity)	21 0.00494 0.97530 49 0.00003 0.99985 22 0.00412 0.97941 50 0.0002 0.99985 23 0.00345 0.98284 50 0.00002 0.99985 24 0.00286 0.98670 57 0.00002 0.999890
Lambda = 16,00000 Mu.= 12,0000	25 0.00238 0.98809 53 0.00001 0.98993
Lambda eff = 16.00000 Rho/c = 0.66667	26 0.00199 0.99007 54 0.00001 0.99994 27 0.00165 0.99173 55 0.00001 0.99995
Ls = 2.40000	$(a) \int_{n=4}^{p} = 1 - C\rho$
n Probability, pn Cumulative, Pn n Probability, pn Cumulative, Pn	=134228 = .65772
0 0.20000 0.20000 14 0.00137 0.99726 1 0.26667 0.46667 15 0.0003	
2 0.17778 0.64444 16 0.00061 0.99878 3 0.11852 0.76296 17 0.00061 0.99878 4 0.07901 0.84198 18 0.0072	(b) Ws = .06622 Kow
0.09267 0.89465 19 0.00018 0.99964	(c) Lq = 3.29 jobs (d) p = .021 => 2.1% ideners
8 0.01561 0.96879 21 0.00008 0.99984	(d) p = .021 => 2.1% idener
11 0.00462 0.00075	(e) Av # of idle computers = 4-(Ls-Lq)
13 0.00206 0.99589 26 0.00001 0.99998	(e) Av. # of idle computers = 4-(Ls-Lq) = 4-(6.62-3.29)=.67
(a) B=2 = 1- (B+P)	7= 15+10+20= 45 customers / Kour
=146667	20 - 6 = 10 sacriment/ Notes
= . 5 3 3 3	C>45/10=4.5 => C>5
	I ner, op-5 Comparative Analysis
b) R = ·2	Scenario c Lambda Mu Lida eff p0 Ls Lq Ws Wdg
c) Lg = 1.067	1 5 45.00000 10.000000 45.000000 0.00466 11.36224 6.86244 0.22550 0.15250 2 8 45.00000 10.050000 45.00000 0.00414 5.76456 1.26456 0.72611 0.22511 0.2251 3 7 45.00000 10.00000 45.00000 0.01685 4.89100 0.339100 0.16850 0.00869-
_	(a) W ₅ ≤ 15/60 = .25 hour => C ≥ 6
d) NO, because I > M. The	(b) % idle = C-(Ls-Lq) x 100
mine num number of windows	C Ls Lq C-(Ls-Lq) % idle 5 11.362 6.862 .5 10% 6 5.765 1.265 1.5 25%
minimum numba of windows	6 5.765 1.265 1.5
should $\geq \frac{\lambda}{\mu} = \frac{16}{12} = 1.33$	Select C = 5
, =	1
Number of windows ≥ 2	(c) C 5 6 7 Po .00496 .00914 .01046
I	Select C \le 6
	January C = 16

1. Timited Space inside a bank or a grocery store

2. Multiple queues appear to offer more corteous service.

For C parallel servers:

$$Lq = \frac{f}{c-f}$$
, provided $\frac{f}{c} \rightarrow 1$

$$W_{\mathcal{L}} = \frac{1}{\lambda_{c}} \frac{\rho}{c - \rho} = \frac{1}{(c\mu - \lambda_{c})}$$

For a single server

$$W_{q} = \frac{\lambda_1}{M(M-\lambda_1)}$$

Because $\lambda_c = c \lambda_i$, we have

$$\frac{Wq_{c}}{Wq_{i}} = \left(\frac{\frac{1}{C(\mu - \lambda_{i})}}{\frac{\lambda_{i}}{M(\mu - \lambda_{i})}}\right) = \frac{1}{C(\frac{\lambda_{i}}{M})}$$

$$= \frac{1}{c\left(\frac{\lambda c/\mu}{c}\right)}$$

$$= \frac{1}{c\left(\frac{\beta}{c}\right)}$$

11

Setermination of pinvolves
She finite series sum
$$\infty$$

 $\sum_{n=c}^{\infty} \left(\frac{\rho}{c}\right)^{n-c} = \sum_{j=0}^{\infty} \left(\frac{\lambda}{\mu c}\right)^{j}$

The series will diverge if 7 ≥ MC. The condition requires that customers le serviced at a rate faster Han the rate at which they arrive at the facility. Else, the queue will build up to infinity.

$$L_{q} = \sum_{n=c}^{\infty} (n-c) p_{n}$$

$$= \sum_{n=c}^{\infty} n p_{n} - c \sum_{n=c}^{\infty} p_{n} + \sum_{n=o}^{c-1} n p_{n}$$

$$= \sum_{n=o}^{c-1} n p_{n} + (\sum_{n=o}^{c-1} p_{n} - c \sum_{n=o}^{c-1} p_{n} + \sum_{n=o}^{c-1} (c-n) p_{n}$$

$$= \sum_{n=o}^{\infty} n p_{n} - c \sum_{n=o}^{c} p_{n} + \sum_{n=o}^{c-1} (c-n) p_{n}$$

$$= L_{s} - c + (number of idle servers)$$

Now, by definition $L_s = L_q + \frac{\lambda eff}{h}$

 $= L_S - \overline{C}$

It follows that c = noth

$$p = \begin{cases} \frac{\lambda^n}{n! \, \mu^n} \, f_o, & n \leq c \\ \frac{\lambda^n}{c! \, c^{n-c} \, \mu^n} \, f_o, & n \geq c \end{cases}$$

$$f_n = \begin{cases} \frac{\lambda}{m} f_0 & n = 1 \\ \left(\frac{\lambda}{m}\right)^n f_0 & n \ge 1 \end{cases}$$

$$f_n = \left(\frac{\lambda}{\omega}\right)^n f_0$$
, $n = 1, 2, \dots$

$$\mathcal{L}_{q} = \int_{0}^{1} \frac{\sum_{n=c+1}^{\infty} (n-c) \frac{(\lambda/m)^{n}}{C^{n-c}}}{C^{n-c}}$$

$$= \int_{0}^{0} \frac{(\lambda/m)^{c}}{C!} \sum_{n=c+1}^{\infty} (n-c) \frac{(\lambda}{Mc})^{n-c}$$

$$= \int_{0}^{0} \frac{(\lambda/m)^{c}}{C!} \sum_{j=1}^{\infty} \frac{(\lambda/m)^{j}}{Mc}$$

$$= \int_{0}^{\infty} \frac{(\lambda/m)^{c}}{C!} \frac{\lambda}{Mc} \frac{d}{d(\frac{\lambda}{Mc})} \sum_{j=0}^{\infty} \frac{(\lambda/m)^{j}}{Mc}$$

$$= \int_0^\infty \frac{(\lambda/\mu)^c}{c!} \left\{ \frac{\lambda/\mu c}{(1-\lambda/\mu c)^2} \right\}$$

$$= \int_{C} \frac{S/C}{(1-S/C)^{2}} = \frac{S}{(C-S)^{2}} \int_{C}$$

(a)
$$P \left\{ a \text{ customen is latenting } \right\}$$

$$= P \left\{ at \text{ least } c+1 \text{ in system } \right\}$$

$$= \sum_{n=c+1}^{\infty} f_n - f_c$$

$$= \int_0^{\infty} \frac{1}{c!} - \frac{1}{c!}$$

$$= \int_0^{\infty} \frac{1}{c!} - \frac{1}{c!}$$

$$= \int_0^{\infty} \left(\frac{1}{c-s} \right)$$

(b) Expected number in quene given the greene is not empty

$$= \sum_{i=c+1}^{\infty} \left(i-c \right) \frac{1}{c!} + \frac{1}{c$$

Set 15.6e First convert the c-channel. case into an equivalent single channel. Let the customer just arriving be the jth in queue . Because there are c channels in parallel, the service time, t, of each of the other j-1 customers and the (one) customer in service are determined as follows: Let t, t, ..., to be the actual service times in the c channels. Then, P{t>T} = P{min ti >T} = (e-MT) = e-MCT This is true because if min>T, then every to must be >T NOW. F_(T) = 1- P{t>T} =1-e-MCT, T>0 $f(T) = \frac{\partial F_{\epsilon}(T)}{\partial T} = \mu c e^{-\mu cT}$ which is exponential with mean wo

The c channels can be converted into an equivalent single channel as Customers

j-1 customers Equivalent single & O O ... O O Channel I services take place before customer j Starts service

Before customer , otarto service , , other customers each with a service time T must be processed first.

The assumption here is that all c channels are busy. If there are any idle servers, arriving austoner I will have zero waiting time in queue and the special case is treated separately. Let The the waiting time in queue guen there are I other customer yet to be serviced. Hen $C = T_1 + T_2 + \cdots + T_r$

Where Ti, To, ..., To are exponential with mean Yuc . T, represents the remaining service time for the customer already in service. The lack of memory property indicate that Ti've also exponential with mean YMC. Thus, Wa (2/j) = NC (NC 2) 1-1 @ MCT, 2>0 Let Wq (?) be the aboute pdf,

Wa (8) = 5 Wa (7/1) 9. Where

Hen

$$q_{j} = \begin{cases} \frac{c-1}{k} & c \\ \frac{c}{k} & c \end{cases}, \quad j = 0$$

Hence, for T>0

$$W_{q}(\tau) = \sum_{j=1}^{\infty} \frac{\mu_{c}(\mu_{c}\tau)^{j-1} - \mu_{c}\tau}{(j-1)!} \frac{\rho^{+j-1}}{c!} \frac{\rho^{+j-1}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{j!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{j!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{\rho^{-j}} \frac{\rho^{-j}}{c!} \frac{\rho^{-j}}{c!}$$

For ~=0, the corresponding probability is 5-1 p, or $1 - \sum_{k=c}^{\infty} f_k = 1 - \sum_{j=0}^{\infty} f_{c+j}^{j}$ = 1 - 2 pc+1 to $= I - \frac{f^{c}}{c!} \left(\frac{f_{o}}{I - \frac{f}{2}} \right)$ $= 1 - \left\{ \frac{p^{c} p_{o}}{(c-1)!(c-p)} \right\}$ Hence, 1- pc Po (c-1)/(c-p), ~= 0 Wa(2)=

P{T>y}= Sug(T)dT $= \frac{CMS^{c}P_{o}}{c!} \int_{e}^{e} \frac{-(c\mu-\lambda)T}{dT}$ $= \frac{S^{c}M}{c!(c\mu-\lambda)} = \frac{-(c\mu-\lambda)y}{f_{o}}$ $=\frac{p^{c} P_{o}}{c! \left(1-\frac{p}{c}\right)} - \frac{e^{(c\mu-\lambda)} y}{e}$ = P{T>0} = (CM-X)7 ashere P(T>0} = 1-P{7=0}

From Problem 16, the waiting time 18 in the system is computed as $T = T_1 + T_2 + \dots + T_r + t_r'$

culere

t; = actual service time for customer j.

t; is exponential with mean / H.
Thus, T is the convolution of the

waiting time in queue and its actual service time of customer j. This means that w (T) is the

convolution of way (2) and g(t);

 $\omega(\tau) = \omega_{\overline{q}}(\tau) * g(t)$

Where

g(t) = Me-ut, t>0

 $w(T) = w_{\overline{q}}(0)g(T)$ $+ \int w_{\overline{q}}(\overline{r})g(T-\overline{r})d$

+ \int_{\cup(\tau)}g(T-\tau)d\tau

 $= \left(1 - \frac{9^{c} R}{(c-1)! (c-f)}\right) M e^{-MT}$

+P. J. M.S. e. M(C-S)T -M(T-T) +P. J. M.S. e. M(C-S)T -M(T-T) (C-1)! HE dT

= (1- \frac{\rho^c f_0}{(c-0)!(c-p)}) Me^{-MT}

+ Mge-MT + (C-1)!(C-1-9) To {1-e

= Me - P P, Ne MT (C-9-1)

1 MPENTR _MFE-MT-M(C-1-9)T (C-1)!(C-1-9) (C-1)!(C-1-9)

nued...

Set 15.6f

(a) $C - (L_S - L_q) = 4 - (4.24 - 1.54)$

= 1.3 Cabs

- (b) 19 = . 04468
- (C) Title: 6f-1 Comparative Anal

ario	c	Lambda	Mυ	L'da eff	p0	Ls	Lq	Ws	Wg
1 2 3 4 5	4 4 4 4	16,00000 16,00000 16,00000 16,00000	5.00000 5.00000 5.00000 5.00000 5.00000	15.42815 15.25869 15.02834 14.70690 14.24151	0.03121 0.03236 0.03393 0.03613 0.03931	4.23984 4.02634 3.78470 3.51216 3.20550	1.15421 0.97460 0.77903 0.57078 0.35719	0.27481 0.26387 0.25164 0.23881 0.22508	0.07481 0.06387 0.05184 0.03881 0.02508

m = length of wanting list

m	\sim	Wa(hr)	Wa (min
6	10	.075	4.5
5	9	.064	3.83
4	8	.052	3.12
3 2	7	.039	2.33
' ~	6	.025	1.5

Illect m≤3

(c) % uhlization =
$$100\left(\frac{L_s - L_q}{c}\right)$$

= $\frac{2.727 - 1.091}{3} \times 100$

N = 10 spaces (including the pumps)

$$\lambda = 60/10 = 6/h$$

$$= C - (L_S - L_{q'})$$

= 3 - (9.54 - 6.71) = .17

(c)
$$p_{n \leq 17} = p_0 + p_1 + \dots + p_{17}$$

$$= .9441$$

$$(f) \frac{L_5 - L_9}{c} = \frac{9.59 - 6.71}{3} = .944$$

(a)
$$p_{40} = .00014$$

continued.

continued...

No. of students who cannot park during an 8-hr period = 20x.02467x8

$$I = P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \sum_{n=c}^{N} \left(\frac{f}{c} \right)^{n-c} \right\}$$

$$= P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \frac{1 - (f/c)^{N-c+1}}{(1 - f/c)} \right\}$$

$$= P_0 \left\{ \sum_{n=0}^{c-1} \frac{f^n}{n!} + \frac{f^c}{c!} \left(\frac{1 - (f/c)^{N-c+1}}{1 - f/c} \right) \right\}$$

$$\overline{c} = L_s - L_q$$

$$= \lambda_{eff} (W_s - W_q)$$

$$= \lambda_{eff} (\frac{l}{M})$$

$$I = \frac{p_{0}}{c!} \sum_{n=c}^{N} \frac{p^{n}}{c^{n-c}} + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

$$= \frac{p_{0} p^{0}}{c!} \sum_{n=o}^{N-c} (\frac{p}{c})^{n} + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

$$= \frac{p_{0} p^{0}}{c!} (N-c+i) + p_{0}^{0} \sum_{n=o}^{c-1} \frac{p^{n}}{n!}$$

Thue,
$$P_{0} = \left\{ \sum_{n=0}^{c-1} \frac{p^{n}}{n!} + \frac{p^{c}}{c!} (N-c+1) \right\}^{-1}$$

$$Lq = \sum_{n=c}^{N-c} (n-c) \cdot p_{n}$$

$$= \sum_{j=0}^{N-c} j \cdot p_{j} \cdot p_{j}$$

$$= \frac{p}{c!} \sum_{j=0}^{N-c} j \cdot p_{j} \cdot p_{j}$$

$$= \frac{\int_{C}^{C} \frac{N-c}{c!} \int_{J=0}^{J=0} \int_{0}^{J=0} \left(\frac{hcause S}{c} = 1 \right)}{\frac{C!}{c!} \frac{(N-c)(N-c+1)}{2} \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c}{c} \right) \left(\frac{N-c}{c} \right) \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{c!} \left(\frac{N-c+1}{2} \right) \int_{0}^{L} \frac{f^{2}}{$$

$$\lambda_n = \begin{cases} \lambda, n = 0, 1, 2, ..., C-1 \\ 0, n = C \end{cases}$$

$$p_n = \frac{p^n}{n!} p_0, n = 0, 1, 2, ..., c$$

$$\sum_{n=0}^{c} f_n = \sum_{n=0}^{c} \frac{p^n}{n!} f_0 = 1$$

$$y_0 = \left\{ \sum_{n=0}^{c} \frac{p^n}{n!} \right\}^{-1}$$

(c)
$$f_{n \le 40} - f_{n \le 29} = .7771 - .13787$$

= .63923

(d)
$$L_S = 36$$

$$N = \frac{60}{30} = 2/h$$

(b)
$$f_{n \geq 8} = 1 - (f_0 + f_1 + \dots + f_7)$$

(c)
$$P_0 = .00193$$

- 1. For very small $f_{g}(M/M/\infty)$: (GD/ ∞/ω) provides reliable estimates for (M/M/c): (GD/ ∞/∞).
- (M/M/c): (GD/00/00). 2. For large P. (M/M/00) gives rebable estimates only if C is large

(9)
$$R = 1$$
: $\lambda_{eff} = \lambda(22-L_S)$
= $.5(22-12.004)$
= 4.998
 $R = 4$: $\lambda_{eff} = .5(22-2.1) = 9.95$

(d)
$$R = 3$$
:
 $P\{2 \text{ or } 3 \text{ are idle}\} = 70 + 7$

$$= .34492$$

Lambda = 0.50000 Lambda eff = 9.76696		Mu = Rho/c =	5.00000 0.03333				
Ls = Ws =		6596 25248	Lq = Wq =	0.51257 0.05248			
	n	Probability, pn	Cumulative, F	'n	n	Probability, pn	Cumulațive, i
	0	0.10779	0.1077	79	8	0,00953	0.992
	1 2 3	0.23713 0.24899 0.16599	0.3449 0.5939 0.7599	90	9 10 11	0.00445 0.00193 0.00077	0.996 0.998 0.999
	4	0.10513 0.06308	0.8650 0.9281		12 13	0.00028 0.00009	0.999 0.999
	8	0.03574 0.01906	0.9638 0.9829		14	0.00003	0.999

Productivity of repair persons

= Av. # Leway repair persons

R

= \frac{L_s - Lq}{R}

R

Repair prod. Shop prod.

R	Repair prod.	Shop prod
1	100%	45.44%
2	88.2%	80.15 %
3	65.1%	88.7 %
4	49.7%	90.45%

R=2 yield 80.15% shop producting and also maintain repair producting at 88.2%

Increasing R, in effect, increases 3
The number of machines that
remain operative, and hence the
chance of additional breakdowns.
Stated differently, if all machines
remain broken, there will be no
new calls for upair service, and
heff = 0

$$\lambda = \frac{60}{45} = 1.33$$
 machines /h
 $M = \frac{60}{8} = 7.5$ machines /h
 $R = 1$, $K = 5$

Title: 6h-4 Scenario 1	(M/M	/1):(GD/5/5)					
Lambda Lambda		.33333 1.99939	Mu = Rho/c =	7:50000 0.17778			
Ls = Ws =	1.25 0.25	045 5012	Lq= Wq=	0.58386 0.11679		` ` `	
4.							
	n	Probability, pn	Cumulative, F	Pn Pn	п	Probability, pn	Eumulative, Pn
	0	0.33341	0.3334	и	3	0.11240	0.95293
	1 2	0.29637 0.21075	0.6297 0.8405		4 5	0.03996 0.00710	0.99290
(a) L	,	= 1.25	- ma	R			,
	3	- 1 - 0	* * * * * * * * * * * * * * * * * * * *	un	es		
(b) y	Ø :	= . 33,	34/				
(c) V	vs .	= . 25	Lou	~			

7=	60/45	=	1.33/h
Ju =	60/20	=	3/Kr
-		K=	4
Title: 6h-5	(M/M/4):(GD/4/-	4)	

	Lambda Lambda		1.33333 3.69230	Mu = Rho/c =	3.00000 0.11111			
_	Ls = Ws =		3077 3333	Lq = Wq =	0.00000			
		n	Probability, pn	Cumulative, i	วก	n	Probability, pn	Cumulative, Pn
		0	0.22972	0.229	72	3	0.08067	0.99104
		1 2	0.40839 0.27226	0.638 0.910		4	0.00896	1.00000

Set 15.6h

$\lambda = \frac{60}{30} = 2 \text{ calls/h/baby}$	
$\mu = \frac{60}{120} = .5 / \text{R}$	
R=5, $K=5$	

Title: 6h-6 Scenario 1-- (M/M/5):/GD/5/5

Lambda	a = 2.00000	Mu = 0.5000	
Lambda	a eff = 2.00000	Rho/c = 0.800	
Lş≃	4.00000	Lq =	0.00000
Ws≃	2.00000	Wq =	0.00000

 n
 Probability, pn
 Cumulative, Pn
 n
 Probability, pn
 Cumulative, Pn

 0
 0.00032
 0.00032
 3
 0.20480
 0.26272

 1
 0.00640
 0.00672
 4
 0.40960
 0.67232

 2
 0.05120
 0.05792
 5
 0.32768
 1.06060

(a) No. "awake" babies = 5-L_S = 5-4=1 baby (b) p = .32768

(c) Pn=2 = 10+1,+P==.05792

$$P_{n} = \begin{cases} \frac{K\lambda}{M} \frac{(K-1)\lambda}{2\mu} \cdots \frac{(K-n)\lambda}{n\mu} & P_{0}, 0 \leq n \leq R \\ \frac{K\lambda}{M} \frac{(K-1)\lambda}{2\mu} \cdots \frac{(K-R)\lambda}{R\mu} \cdots \frac{K-n}{R\mu} & R \leq n \leq K \end{cases}$$

Thus,

$$P_{n} = \begin{cases} \frac{K(K-1)\cdots(K-n)}{I\times 2\times\cdots\times n} \left(\frac{\lambda}{N}\right)^{n} P_{0}, 0 \le n \le R \\ \frac{C_{n}^{k} n!}{R! R^{n-R}} \left(\frac{\lambda}{N}\right)^{n} P_{0}, R \le n \le K \end{cases}$$

$$= \begin{cases} C_{n}^{k} S^{n} P_{0}, & 0 \le n \le R \\ C_{n}^{k} S^{n} P_{0}, & 0 \le n \le R \end{cases}$$

$$C_{n}^{k} \frac{n! p^{n}}{n! n^{n-R}} P_{0}, R \le n \le K$$

R= Ls-Lq = reff (Ws-Wq) = reff (L) hence reff = MR

 $P_{n} = \begin{cases} C_{n}^{k} \rho^{n} n! \, \rho_{0}, \, n = 0, 1 \\ C_{n}^{k} n! \, \rho^{n} \rho_{0}, \, n = 1, 2, \dots, K \end{cases}$ $= \frac{K!}{(K-n)!} \rho^{n} \rho_{0}, \, n = 0, 1, 2, \dots, K$ $L_{S} = \sum_{n=0}^{K} n \rho_{n} = \rho_{K}! \sum_{n=0}^{K} \frac{n \rho^{n}}{(K-n)!}$ $= K - \left(\frac{1-\rho_{0}}{\rho}\right)$

% idle =
$$\frac{1 - (L_S - L_q)}{1} \times 100$$

= $\left[1 - (L_S - L_q)\right] \times 100$
= $\left(1 - 1.333 + .667\right) \times 100$
= 33.3%

(a)
$$E\{t\} = 14 \text{ min}$$
 $Var\{t\} = \frac{(20-8)^2}{1^2} = 12 \text{ min}^2$
 $\lambda = 4/Rr = .0667/\text{min}$
 $L_S = 7.867 \text{ cars}$
 $W_S = 118 \text{ min} = 1.967 \text{ fours}$
 $L_Q = 6.933 \text{ cars}$
 $W_Q = 104 \text{ min} = 1.733 \text{ fours}$

(b) $E\{t\} = 12 \text{ min}$

$$Var\{t\} = 9 min^2$$

 $\lambda = .0667 / min$
 $L_S = 2.5 cars$
 $Ws = 37.5 min = .625 hour$
 $L_S = 1.7 cars$
 $L_S = 25.5 min = .425 hour$

(c)
$$E\{t\} = 4x \cdot 2 + 8x \cdot 6 + 15x \cdot 2 = 8.6 \text{ min}$$

 $Var\{t\} = (4 - 8.6)^{2}(\cdot 2) + (8 - 8.6)^{2}(\cdot 6)$
 $+(15 - 8.6)^{2}(\cdot 2) = 12.64 \text{ min}^{2}$
(c) $W_{S} = 74.78 \text{ min}^{2}$

$$L_S = 1.0244$$
 cars
 $W_S = 15.3657$ min = .256 kr
 $L_Q = .451$ car
 $W_Q = 6.765$ min = .113 kr

$$\lambda = .3 \text{ job/day}$$

Service time distribution:
 $f(t) = .5$, $2 \le t \le 4$ days
 $E\{t\} = 3 \text{ days}$
 $\text{Var}\{t\} = \frac{4}{12} = .333 \text{ days}^2$
(a) $L_q = 4.2$ Lomes

(b)
$$W_S = 17$$
 days
(c) $E\{t\} = 1.5$, $Var\{t\} = \frac{1}{12} = .0833$
 $Lq = .191$ frome
 $W_S = 2.14$ days

$$\lambda = \frac{30}{8\times60} = .0625 \text{ prescr./min}$$

$$E\{t\} = 12 + 3 = 15 \text{ min}$$

$$Var\{t\} = 9 + \frac{(4-2)^2}{12} = 9.333 \text{ min}^2$$
(a) $\rho = .0625$

$$\lambda = \frac{45}{mn} = .0222 / min$$
 5

$$E\{t\} = 28 + 4.5 = 32.5 min$$

$$Var\{t\} = \frac{(6-3)^2}{12} = .75$$
(a) $L_q = .9395$ item
(b) $p_0 = .278$

$$L_{S} = \lambda E\{t\} + \frac{\lambda(E'(t) + Van\{t\})}{2(1 - \lambda E\{t\})}$$

$$= \lambda E\{t\} + \frac{(\lambda E\{t\})^{2}}{2(1 - \lambda E\{t\})}$$

$$= \beta + \frac{\beta^{2}}{2(1 - \beta)}$$

$$E\{t\} = \frac{1}{M}, Var\{t\} = \frac{1}{M^2}$$

$$L_S = \frac{\lambda}{M} + \frac{\lambda^2 \left(\frac{1}{M^2} + \frac{1}{M^2}\right)}{2\left(1 - \frac{\lambda}{M}\right)}$$

$$= f + \frac{f^2}{1 - f}$$

$$= \frac{g}{1 - f}$$

receives every ct customer and the interarrival time at the channel is exponential with mean /2, the interarrival time at each server is the convolution of c exponential distributions each with mean 1. This means that the interarrival time is gamma with mean c/2 and variance c/2:

(b) The interarrival time at the it server is exponential with mean at the its server is exponential with mean at the original at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is exponential with the arrivals at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at server is in Porsson with mean at the interarrival at the inter

(a)	$M_2 = \frac{24}{(1000)} = 5.184 \text{ jobs /day}$
/	$M_3 = \frac{24}{\frac{1000}{50} \times \frac{1}{60}} = 7-2 \text{ jobs /day}$
	$M = \frac{24}{(\frac{1000}{66}) \times \frac{1}{60}} = 9.5 \text{ jobs /day}$
(6)	ETC = 24 C1: +80 Lq:
i	hi Mi Lqi Ci ETCi
1	4 4.32 11.57 \$15 \$1285.60
2	4 5.18 2.62 20 689.60 4 7.20 .69 24 631.20
4	4 9.50 .31 27 672.80
_ Sel	ect model 3.
, ג	= 3/h
	1=5/h, G=\$15
ىر	1 = 8/h, C2 = \$20
Co	ot/Broken machine = \$50/hr
M/	M/1) : (GD/10/10) :
(2.1	$\lambda = 3$, $\mu = 5 \implies L_S = 8.33$
(M/N	1/1):(GD/10/10): \(\tau = 3, \mu = 8 \infty \tau_{S_2} = 7.33
TC	= 50/ ₅ , +15 =50x8.33+15
	= \$431.30/M
7C,	$= 50L_{S_2} + 20 = 50x7.33 + 70$
Her	= \$386.50 /hr e second repair person.
1 _	10/hr = . 167/min 3
1	nner A:
	wice time dishibition:
f _A	$(t) = \frac{1}{\frac{35}{10} - \frac{25}{10}} = 1, 2.5 \le t \le 3.5$ Continued
L	Continueu

E_{{t}} = 3 min Vary [+] = 1/2 min2 Scanner B: $\frac{5}{f_{B}(t)} = \frac{35}{15} = 1.5, \frac{5}{3} \le t \le \frac{7}{3}$ Ep[t] = 2 min $Var_{g}\{t\} = \frac{(2/3)^{2}}{12} = \frac{1}{27} \min^{2}$ PK Formula. XIS, From Excel file $L_{S_A} = .755$ customer $L_{S_B} = .419$ customer $TC_A = .2L_{SA} + C_A = (.2x.755 + \frac{10}{10x60}) \times 60 = 10.06 / R$ TC = . 2 LSB + CB = (.2x.419+ \$15)x60 = \$6.53/h Select scanner B M = number of filled orders / hr 7 = number of requested orders/h. C, = cost/unit increase in production rate C2 = cost of waiting / unit waiting time / cust. TC(M) = Total cost/unit waiting time
given u = C, M + C, Ls = C, M + C, A $\frac{\partial TC(\mu)}{\partial \mu} = C_1 - C_2 \frac{\lambda}{(\mu - \lambda)^2}$ $\mu = \lambda + \sqrt{\frac{C_2}{C_1}} \lambda$ (c) $\lambda = 3$, $G = -1 \times 500 = 50$, $C_2 = 100$ $M = 3 + \sqrt{\frac{100}{50}} \times 3 = 5.45$ orders/h Optimism production rate

= 500 x 5.45 = 2725 pieces/&

 $\lambda = 80 \text{ jobo/wk}$ $C_1 = $250/\text{wk}$ $C_2 = $500/\text{job/wk}$ $M = \lambda + \sqrt{\frac{C_2}{C_1}}$ $= 80 + \sqrt{\frac{500}{250}} \times 80 = 92.65 \text{ jobo/wk}$

Descripto/h.

Model A: μ = 26/h, N = 20

Operating cost C_A = \$12000 /month

From TORA: P₂₀ = .03/28

Lq = 7.65 groups

Cost/h = operating cost/h + waiting cost/h

+ cost glost customers/h

= CA/30×10 + 10Lq + λ P_N × 15

= 12000 + 10×7.65 + 25×.03128×15

= \$128.23/h

Model B: M = 29/h, N = 30 $G_B = $16000/month$ From $TORA: P_3 = .0016$ $L_q = 5.07$ groups $G_{OO} + 1000$

C3 = cost/unit time / additional capacity unit.
The cost model in Problem 6 is modified by adding the term C3 N to the cost equation.

Let

5 % is the probability of running out of stock. Thus, Cost of lost sales per how = C, 7 Po E{cot}/unittime = E{lost sales cost}/unit time + E{ holding cost} / unit time = C, 2P + Cz Ls For (M/M/1): (GD/00/0) Po = (1-P) $L_S = \frac{f}{1-p}$ Thus, E{(0)}/unittime = C, 2(1-1)+(2) $\frac{\partial E\{\omega t\}}{\partial \rho} = -C_1 \lambda + \frac{C_2}{(1-f)^2} = 0$ Thus, $\beta = 1 \pm \sqrt{\frac{C_i \lambda}{C}}$ Under steady state of must be less Kan I. Thus, $P = 1 - \sqrt{\frac{c_i \lambda}{c}}$ The Solution sequires [C,] </ in order for p not to assume angative value. Note that $P = \frac{\lambda}{M}$, where λ is a constant. This means that u is the actual

optimization variable.

C, = \$20, C2 = \$45, TORA input: 2 = 17.5/h, N = 10/h R=1: (2,80,1,100,100) R=2: (2,80,2,100,100) ETC(c) = 20c + 45 Lc Ls (c) ETC(c) (a) NO WATS: 7.467 20x2+45x7.467= 376.03 Cost/month = (2 callo /8 hrs /cxec) x 2.217 20x3+45x2.217=\$159.77 (100 exec) x (6 min/call) x 20x4+45x1.842=\$162.89 1.842 (50 \$ /min) x (200 hrs /month) 1.770 20x5+45x1.770=\$179.65 =\$15000 /month Use three clerks One WATS Line: Lq=59 Cost/kn = GLS+C2C Cost/month = cost of WATS line + C, = \$30, Cz = \$18 (M/M/c):(GD/10/10): 7 = 1/20 = 0.05/h = \$2000/month +59(14x60x200) M=1/3=0.333/h = \$ 9080 2 0.05000 0.33300 0.41603 0.21439 1.67942 0.43010 4.03683 1.03383 0.05000 0.33300 0.43167 0.24268 1.36246 0.06554 3.15476 0.15175 Savings = 15,000-9080 (Cost/In for c=2) = 30x1.68+18x2=\$86.40 = \$5920 /month (cot/h fn C=3) = 30x1.36+183 = \$94.80 (b) Two WATS lines: Lg=18.4 (a) No, because the cost is higher Cost/month = 2 x 2000 + (b) Schedule loss/breakdown = C, Ws 18.4(14 x 200 x 60) C=2: Ws = 4.037 Lours Schedule loss = 30x4.037 = \$121.11 = \$6200 C=3: Ws = 3.155 Rours Schedule loss = 30 x 3.155 = 94.65 Additional savings = 9080-6200 = \$2880 The problem is similar to the 5 Lease a second WATS line machine repair model. The execution are the machines and the WATS line is the "server" arrival rate / executive = 2 calls / day Service rate = 480 = 80 calls /day
Continued

Rate of breakdown machine, 7	4
$= \frac{57.8}{8 \times 20} = .36/25 / \text{Rm}$	
$M = \frac{60}{6} = 10 / h$	
TORA model: (M/M/3): (GD/20/20)	
Ws = lost time per breakdown	
7 = member of breakdowns /he/mach	P
lost time pen mach /h= > W5	
From TORA, Ws = . 10118 h	
Lost revenue /machine / hr	
$= 25 \times (.36125 \times .10118) \times^{4} 2$	
≒ 1.85	
Lost revenue for all machines	

$$TC(c) = CC_1 + C_2 L_S(c)$$
 $TC(c-1) = (c-1)C_1 + C_2 L_S(c-1)$
 $TC(c+1) = (c+1)C_1 + C_2 L_S(c+1)$
 $TC(c-1) - TC(c)$
 $= -C_1 + C_2 \{L_S(c-1) - L_S(c)\}$
 $TC(c+1) - TC(c)$
 $= C_1 - C_2 \{L_S(c) - L_S(c+1)\}$

At a minimum point, we must have

 $TC(c-1) \ge TC(c)$

$$TC((+1) \ge TC(c)$$
 $Thus,$
 $L_s(c-1) - L_s(c) \ge \frac{C_1}{C_2}$
 $L_s(c) - L_s(c+1) \le \frac{C_1}{C_2}$

on 	۔ رح (در)-Ls(c+1) =	C, ≤ Ls(c-1)-Ls(c)
•		$= \frac{12}{50} =$	
		•	Ls(c)-Ls(C+1)
	2	L _s (c) 7.467	
	3	2.217	5.25
	4	1.842	·375
<u>}</u> -	5	1.764	$ \begin{array}{c} \cdot 375 \\ \leftarrow \frac{C_1}{C_2} = \cdot 24 \\ \cdot 078 \end{array} $

Ç*= 4

7 = 1/7 = .1428 breakdown/ki

M = . 35 repair per Lour

TORA model: (M/M/R): (GD/10/10)

(a) From TORA's output L₅ < 4 ⇒ R ≥ 5

(b) From TORA's output

$$W_q < 1 \implies R \ge 4$$

$$C_{i} = $12$$

C	Ls
2	7.467
3	2.217
4	1.842

 $2.217 - 1.842 \le \frac{12}{C_2} \le 7.467 - 2.217$

$$375 \le \frac{12}{C_2} \le 5.25$$