Modele ze zmienną czasową

Sezonowość, to okresowy składnik w modelu zależności badanej cechy statystycznej od czasu.

Modele dynamiczne, w których rolę zmiennej objaśniającej pełni czas, formalnie oznaczamy w postaci y=f(t).

Metody wyodrębniania trendu

Do najprostszych metod wyodrębnienia trendu z szeregu czasowego można zaliczyć **metodę analityczną**, w której trend wyznaczany jest za pomocą **funkcji trendu** (np. liniowej, wykładniczej, wielomianowej lub innej) oraz **metodę mechaniczną**, w której trend wyznaczany jest za pomocą **średniej ruchomej**.

Metody wyodrębniania trendu

Prostoliniową funkcję trendu przedstawia się w postaci równania:

$$y_t = \square_0 + \square_1 t$$

gdzie:

∠ – wyraz wolny równania;

∠ – współczynnik trendu

Metody wyodrębniania trendu

Parametry tego równania można wyznaczyć przy użyciu metody najmniejszych kwadratów (MNK), rozwiązując układ równań:

$$y_t = n\alpha_0 + \alpha_1 \ \ t$$

$$y_t = \alpha_0 \ \ t + \alpha_1 \ \ t$$

Równanie trendu pokazuje długookresowy kierunek, w którym podąża badane zjawisko.

W sytuacji, gdy zjawisko zmienia się średnio o stały iloraz stosujemy model wykładniczy.

Średnia ruchoma, średnia krocząca – metoda statystyczna używana do analizy szeregów czasowych. Znajduje zastosowanie w finansach, zwłaszcza w analizie technicznej.

Średnia ruchoma pozwala na uchwycenie długookresowego kierunku oraz jednoczesną eliminację części wahań przypadkowych. Jej wadą jest jednak to, że szereg po jej zastosowaniu jest krótszy od wyjściowego, co utrudnia prognozowanie.

Średnia ruchoma

- Średnia krocząca jest wskaźnikiem, który podąża za trendem bazując na przeszłych cenach
- Średnia krocząca jest liczona poprzez wybranie określonego okresu i podzielenie go przez liczbę okresów
- Średnia krocząca pomaga wygładzić zachowanie ceny
- Srednie kroczące są wykorzystywane nie tylko do identyfikowania kierunku rynku, ale również jako określenie miejsca do zajęcia pozycji inwestycyjnej

- Sygnały kupna występują, gdy:
- średnia ruchoma przyjmuje formę horyzontalną lub rosnącą i kurs akcji "przebija" ją od dołu;
- cena akcji spada i równocześnie średnia ruchoma rośnie;
- cena akcji zbliża się od góry do rosnącej lub horyzontalnej średniej i rośnie ponownie;
- cena akcji gwałtownie spada poniżej średniej.
 - Sygnały sprzedaży występują, gdy:
- kurs akcji "przebija" od góry średnią horyzontalną lub opadającą;
- cena akcji zwyżkuje i średnia opada;
- kurs zbliża się od dołu do średniej opadającej i nie "przebija" jej;
- kurs gwałtownie zwyżkuje powyżej średniej

W przypadku wahań sezonowanych miesięcznych zastosowanie znajdzie średnia ruchoma dwunastookresowa:

$$y'_{t+6} = \frac{1_{2}y_{t} + y_{t+1} + \cdots + y_{t+6} + \cdots + y_{t+11} + 1_{2}y_{t+12}}{12}$$

a w przypadku wahań sezonowych kwartalnych średnia ruchoma czterookresowa:

$$y'_{t+2} = \frac{1_{2}y_{t} + y_{t+1} + y_{t+2} + y_{t+3} + 1_{2}y_{t+4}}{4}$$

Wahania okresowe eliminowane są z wyjściowego szeregu danych za pomocą różnicy wartości rzeczywistych i wartości wynikających z trendu (w modelu addytywnym), albo ilorazu wartości rzeczywistych i wartości wynikających z trendu (w modelu multiplikatywnym). Otrzymuje się w ten sposób indywidualne wskaźniki sezonowości. Dla modelu addytywnego zastosowanie, znajduje wzór: $s_t = y_t - y_t$

a dla modelu multiplikatywnego:

$$s_t = y_t / y_t^{'}$$
 (10)

gdzie:

 y_t – rzeczywista wartość zmiennej y w okresie t,

 y_t' – teoretyczna wartość zmiennej y wynikająca z trendu w okresie t.

Na podstawie wskaźników indywidualnych określane są wskaźniki surowe dla poszczególnych podokresów s_d jako proste średnie arytmetyczne: , ${\rm dla}$.

gdzie:

I = 1,2,...,d,

d - jest liczbą podokresów w cyku, np. dla danych miesięcznych d=12.

 N_t – zbiór jednoimiennych podokresów.

Wskaźniki te koryguje się za pomocą współczynnika korygującego, będącego średnią arytmetyczną wskaźników surowych:

$$k = \overline{s_i}$$

w ten sposób, aby suma wskaźników dla modelu addytywnego wynosiła 0, a dla modelu multiplikatywnego *d*.

Oczyszczone wskaźniki sezonowości w modelu addytywnym są różnicą wskaźników surowych i współczynnika korygującego:

a w modelu multiplikatywnym są one ilorazem wskaźników surowych i współczynnika korygującego:

$$o_i = s_i/k$$