Metody odtwarzania jakości zdjęć Plan pracy nad projektem

Maciej Grzybacz Michał Hemperek

11.05.2024

Wstęp

Poprawa jakości obrazów stanowi kluczowe wyzwanie w dziedzinie przetwarzania obrazów cyfrowych. Zastosowanie efektywnych metod rekonstrukcji obrazów ma znaczący wpływ na takie dziedziny jak fotografia cyfrowa, diagnostyka medyczna, systemy bezpieczeństwa oraz analiza obrazów satelitarnych. Wraz z postępem technologicznym, pojawiają się coraz bardziej zaawansowane techniki, które umożliwiają uzyskanie obrazów o wyższej jakości, nawet z niskiej rozdzielczości lub zniekształconych źródeł. Projekt ten ma na celu poznanie oraz ocenę różnych metod poprawy jakości obrazów, zarówno tych tradycyjnych, jak i nowoczesnych, opartych na głębokich sieciach neuronowych.

Cel projektu

Celem projektu jest zbadanie i porównanie różnych metod poprawy jakości obrazów, w tym tradycyjnych technik interpolacji oraz zaawansowanych metod opartych na głębokich sieciach neuronowych. Planowane jest przeprowadzenie analizy teoretycznej i eksperymentalnej różnych algorytmów poprawy jakości obrazów, w celu zrozumienia ich działania, zalet i wad oraz zidentyfikowania najlepszych praktyk i optymalnych zastosowań dla różnych potrzeb użytkowników i aplikacji.

Harmonogram pracy

- 07 maja 14 maja: Opracowanie planu pracy.
- 14 maja 21 maja: Przegląd literatury i opracowanie teoretyczne.
- 21 maja 28 maja: Przeprowadzenie eksperymentów i analiza wyników oraz przygotowanie raportu końcowego.
- 28 maja 11 czerwca: Przygotowanie prezentacji i końcowe poprawki.

Opracowanie teoretyczne

Opracowanie teoretyczne będzie koncentrować się na zrozumieniu i analizie różnych metod poprawy jakości obrazów, w tym zarówno tradycyjnych technik interpolacji, jak i bardziej zaawansowanych metod opartych na głębokich sieciach neuronowych. W szczególności planujemy skupić się na następujących zagadnieniach:

- Tradycyjne techniki poprawy jakości obrazu: Przegląd tradycyjnych technik poprawy jakości obrazu, takich jak interpolacja dwuliniowa i dwusześcienna wraz z analiza ich zalet i wad.
- Poprawa jakości obrazów oparta na sieciach neuronowych: Przegląd najnowszych metod poprawy jakości obrazów, takich jak VDSR, EDSR, SRGAN oraz RDN, wraz z analizą ich architektury i zastosowań.
- Miary oceny: Przegląd popularnych metryk oceny jakości obrazu, takich jak PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index) oraz MAE (Mean Absolute Error), wraz z analizą ich zastosowań w kontekście poprawy jakości obrazów.
- Eksperymenty: Przegląd różnych eksperymentów i testów, które można przeprowadzić w celu porównania i oceny skuteczności różnych metod poprawy jakości obrazów, w celu wyboru najlepszej metody dla konkretnego zastosowania.
- Zastosowania: Analiza praktycznych zastosowań poprawy jakości obrazów w różnych dziedzinach, takich jak medycyna, fotografia i przetwarzanie obrazów.

Wybrane algorytmy

W ramach projektu planujemy przeanalizować i porównać następujące algorytmy poprawy jakości obrazów:

- Interpolacja dwuliniowa: Prosta technika interpolacji, która oblicza nową wartość piksela na podstawie otaczających go czterech pikseli.
- Interpolacja dwusześcienna: Metoda interpolacji, która uwzględnia wartości pikseli w większym otoczeniu niż interpolacja dwuliniowa, co może prowadzić do uzyskania bardziej gładkich obrazów.
- VDSR (Very Deep Super-Resolution): Głęboka sieć konwolucyjna zaprojektowana do zadania super-rozdzielczości.
- EDSR (Enhanced Deep Super-Resolution): Rozbudowana wersja VDSR, która wprowadza dodatkowe mechanizmy w celu poprawy jakości obrazu.
- SRGAN (Super-Resolution Generative Adversarial Network): Sieć neuronowa, która wykorzystuje mechanizm adversarialny do generowania bardziej realistycznych obrazów.
- RDN (Residual Dense Network): Sieć neuronowa oparta na blokach gęstych, która wykorzystuje mechanizm resztkowy do generowania obrazów o wysokiej rozdzielczości.

Metryki oceny jakości obrazu

W celu oceny jakości obrazów planujemy wykorzystać następujące metryki:

- PSNR (Peak Signal-to-Noise Ratio): Metryka oceny jakości obrazu, która oblicza stosunek sygnału do szumu między dwoma obrazami, co pozwala określić, jak dobrze obraz testowy odwzorowuje obraz referencyjny.
- SSIM (Structural Similarity Index): Metryka oceny jakości obrazu, która oblicza podobieństwo strukturalne między dwoma obrazami, co pozwala określić, jak dobrze obraz testowy odwzorowuje obraz referencyjny pod względem struktury.
- MAE (Mean Absolute Error): Metryka oceny jakości obrazu, która oblicza średni błąd bezwzględny między dwoma obrazami, co pozwala określić, jak dobrze obraz testowy odwzorowuje obraz referencyjny pod względem wartości pikseli.

Propozycje eksperymentów

Planujemy przeprowadzić następujące eksperymenty w celu porównania i oceny różnych metod poprawy jakości obrazów:

- **Porównanie jakości obrazu:** Porównanie jakości obrazu generowanego przez różne metody poprawy jakości obrazów.
- Analiza wydajności obliczeniowej: Ocena czasu przetwarzania i wydajności obliczeniowej każdego algorytmu na tej samej platformie sprzętowej przy użyciu GPU oraz CPU.
- Testy na obrazach rzeczywistych: Ocena zdolności algorytmów do radzenia sobie z rzeczywistymi, niedoskonałymi obrazami, które mogą zawierać różnego rodzaju szumy i artefakty.

Eksperymenty te pozwolą na zrozumienie możliwości i ograniczeń poszczególnych algorytmów poprawy jakości obrazów, a także na identyfikację najlepszych praktyk i optymalnych zastosowań dla różnych potrzeb użytkowników i aplikacji.

Zastosowania algorytmów poprawy jakości obrazów

Planujemy przeanalizować zastosowania różnych algorytmów poprawy jakości obrazów, takich jak:

- Nvidia DLSS (Deep Learning Super Sampling): Technologia stosowana w grach komputerowych, która wykorzystuje sieci neuronowe do generowania obrazów o wyższej rozdzielczości, jednocześnie zwiększając wydajność.
- Analiza obrazów satelitarnych: Poprawa jakości obrazów pozwala uzyskać bardziej szczegółowe obrazy z danych satelitarnych, co jest przydatne w celach badawczych, nawigacyjnych, militarnych itp.
- Poprawa jakości obrazów w diagnostyce medycznej: W dziedzinie medycyny poprawa jakości obrazów jest wykorzystywana do uzyskiwania wyraźniejszych obrazów diagnostycznych z obrazowania medycznego, co umożliwia dokładniejsze diagnozy i leczenie.
- Analiza obrazów CCTV: W dziedzinie bezpieczeństwa poprawa jakości obrazów jest używana do poprawy jakości i szczegółowości obrazów z kamer monitoringu, co umożliwia lepszą identyfikację osób i obiektów.
- Zachowanie dziedzictwa kulturowego: W dziedzinie kultury i sztuki poprawa jakości obrazów jest stosowana do przywracania i poprawiania jakości starych i zniszczonych obrazów, co pomaga w zachowaniu dziedzictwa kulturowego.