EX. NO: 06

DATE : 11/10/2024

RANDOM ACCESS MEMORY

AIM: To design and Implement the RAM with 1 Kbyte of memory using Verilog HDL.

SOFTWARE USED: Xilinx Vivado

HARDWARE USED: Basys3 FPGA Board

RAM:

```
Verilog HDL Code:
```

```
module ram(
    input clk,
    input write_enable,
    input [9:0] address,
    input [7:0] data_in,
    output reg [7:0] data_out
);
reg [7:0] ram_block[0:1023];
always @(posedge clk) begin
    if (write_enable) begin
        ram_block[address] <= data_in; // Write data to RAM
    end else begin
        data_out <= ram_block[address]; // Read data from RAM
    end
end
end
end
```

Test bench for RAM:

```
module tb ram;
  reg clk;
  reg write enable;
  reg [9:0] address;
  reg [7:0] data in;
  wire [7:0] data out;
  ram AA(
     .clk(clk),
     .write enable(write enable),
     .address(address),
     .data in(data in),
     .data out(data out)
  );
     always #5 clk = \simclk;
  initial begin
     clk = 1;
```

```
write enable = 0;
    address = 0;
    data in = 0;
    #10 write enable = 1; address = 10; data in = 8'hAA;
    #10 write enable = 0; address = 10;
    #10 if (data out !== 8'hAA) $display("Error: data out = %h", data out);
    #10 write enable = 1; address = 20; data in = 8'hBB;
    #10 write enable = 0; address = 20;
    #10 if (data out !== 8'hBB) $display("Error: data out = %h", data out);
    #10 write enable = 1; address = 30; data in = 8'hCC;
    #10 write enable = 0; address = 30;
    #10 if (data out !== 8'hCC) $display("Error: data out = %h", data out);
    #10 $finish;
  end
  initial begin
  $monitor("clk=%b,write enable=%b,address=%b,data in=%b,data out=%b",
clk, write enable, address, data in, data out);
  end
endmodule
```

SIMULATION WAVEFORM:

HARDWARE OUTPUT: I/O ports:

Inputs:

ւուբաւչ.	
data_in[7]: T1	address[9]: W14
data_in[6]: U1	address[8]: V15
data_in[5]: W2	address[7]: W15
data_in[4]: R3	address[6]: W17
data_in[3]: T2	address[5]: W16
data_in[2]: T3	address[4]: V16
data_in[1]: V2	address[3]: V17
data_in[0]: W13	address[2]: T18
clk: W5	address[1]: T17
write_enable: R2	address[0]: U18

Outnuts:

Outputs:
data_out[7]: L1
data_out [6]: P1
data_out [5]: N3
data_out [4]: P3
data_out [3]: U3
data_out [2]: W3
data_out [1]: V3
data_out [0]: V13

For	$data_in[7] = 1$	address[9] = 0
	$data_in[6] = 1$	address[8] = 0
	$data_in[5] = 1$	address[7] = 0
	$data_in[4] = 0$	address[6] = 0
	data in[3] = 0	address[5] = 1
	$data_{in}[2] = 0$	address[4] = 1
	data in[1] = 0	address[3] = 1
	data in[0] = 0	address[2] = 0
	clk = 1	address[1] = 0
	write enable = 1	address[0] = 0

Output:

Previously stored data as output(since wirte_enable is in active state): data_out [7]=1, data_out [6]=1, data_out [5]=1, data_out [4]=1, data_out [3]=0, data_out [2]=0, data_out [1]=0, data_out [0]=0

CIRCUIT DIAGRAM:

RESULT:

The RAM has been successfully designed and implemented using Verilog HDL, and its functionalities have been thoroughly verified through simulation with Xilinx Vivado software on the Basys3 FPGA board.