

Hypothesis Testing

Nonstatistical Hypothesis Testing...

In a trial a jury must decide between two hypotheses.

- H₀: The null hypothesis The defendant is innocent
- H₁: The alternative hypothesis -The defendant is guilty

The jury does not know which hypothesis is true. They must make a decision on the basis of evidence presented.

Research Hypothesis Testing...

The FDA or "science" needs to decide on a new theory, drug, treatment...

■H₀: The null hypothesis - the current theory, drug, treatment, is as good or better

evidence presented.

■H₁: The alternative hypothesis - the new theory, drug, treatment, should replace the old one Researchers do not know which hypothesis is true. They must make a decision on the basis of

Hypothesis Testing Terms

- Convicting the defendant is rejecting the null hypothesis in favor of the alternative hypothesis.
- There is enough evidence to conclude that the defendant is guilty (i.e., there is enough evidence to support the alternative hypothesis).
- If the jury acquits it is stating that there is not enough evidence to support the alternative hypothesis.
- The jury is not saying that the defendant is innocent, only that there is not enough to convict.
- We don't accept the null hypothesis, we just don't have sufficient evidence to reject it.

Hypothesis Testing...

- Two hypotheses, the null and the alternative
- Begins with the assumption that the null hypothesis is true.
- Is there enough evidence to infer that the alternative hypothesis is true, or the null is not likely to be true.
- There are two possible decisions:
 - Enough evidence to support the alternative hypothesis. Reject the null.
 - Not enough evidence to support the alternative hypothesis. Fail to reject the null.

Example: Is the Coin Biased?

- Flip a coin 10 times and get 2 HEAds
- Flip a coin 100 times and get 20 HEAds
- Flip a coin 100 times and get 37 HEAds
- Flip a coin 100 times and get 47 HEAds

We reject the prior assumption that the coin is unbiased if the number of HEADs is very unlikely under that assumption

Example: Is the Coin Biased?

- H_0 : Probability of HEAD = $\frac{1}{2}$
- Possible alternatives:
 - H_1 : Probability of HEAD $\neq \frac{1}{2}$
 - H_1 : Probability of HEAD is $> \frac{1}{2}$
 - H_1 : Probability of HEAD is $< \frac{1}{2}$

Example: Is the Coin Biased?

Number of HEADs in 100 flipd

If it is unlikely that we get this value

- - -

... if in fact the coin was unbiased..

... Therefore we reject the null hypothesis that the coin is unbiased

Level of Significance and the Rejection Region

Level of significance = α

 H_0 : $\mu = 1/2$

 H_1 : $\mu \neq 1/2$

Two-tail test

Represents critical value

Rejection region is shaded

$$H_0$$
: $\mu \le 1/2$

 H_1 : $\mu > 1/2$

Upper-tail test

$$H_0$$
: $\mu \ge 1/2$

 H_1 : $\mu < 1/2$

Lower-tail test

What is a Hypothesis?

 A hypothesis is a claim (fact, model, parameter) that can be tested.

population mean

Example: The mean monthly cell phone bill of this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is p = .68

The Null Hypothesis, H₀

 States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. Homes is equal to three $(H_0: \mu = 3)$

 Is always about a model, not about a sample statistic

$$H_0: \mu = 3$$

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

 H_0 : $\mu = 50$)

Population

Now select a random sample

Is $\overline{X}=20$ likely if $\mu = 50$?

If not likely,

REJECT Null Hypothesis

Suppose the sample mean age

is 20: $\overline{X} = 20$

Reason for Rejecting H₀

Sampling Distribution of \overline{X}

If it is unlikely that we would get a sample mean of this value ...

... if in fact this were the population mean...

... then we reject the null hypothesis that $\mu = 50$.

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are .01, .05, or .10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Level of significance = α

 H_0 : $\mu = 3$

 H_1 : µ ≠ 3

Two-tail test

Represents critical value

Rejection region is shaded

$$H_0$$
: $\mu \leq 3$

$$H_1$$
: $\mu > 3$

Upper-tail test

$$H_0$$
: µ ≥ 3

$$H_1$$
: µ < 3

 α

Lower-tail test

Errors in Making Decisions

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions

(continued)

- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation					
Decision	H ₀ True	H ₀ False				
Do Not Reject H ₀	No error $(1 - \alpha)$	Type II Error (β)				
Reject H ₀	Type I Error (α)	No Error (1-β)				

Key:
Outcome
(Probability)

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α) \uparrow , then Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
 - β when the difference between hypothesized parameter and its true value

- β when α
- β when σ
- β when n

Power of the Test

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., Power = $P(Reject H_0 | H_1 is true)$
 - Power of the test increases as the sample size increases

Select your test

- Testing is a bit like finding the right recipe based on these ingredients:
 - Question
 - Data type
 - Sample size
 - Variance known? Variance of several groups equal?
- Good news: Plenty of tables available, e.g.,
 - http://www.ats.ucla.edu/stat/mult_pkg/whatstat/de fault.htm (with examples in R, SAS, Stata, SPSS)
 - http://sites.stat.psu.edu/~ajw13/stat500_su_res/not es/lesson14/images/summary_table.pdf

Example of a table of tests

Summary Table for Statistical Techniques

	Inference	Parameter	Statistic	Type of Data	Examples	Analysis	Minitab Command	Conditions
1	Estimating a Mean	One Population Mean µ	Sample mean $\overline{\overline{y}}$	Numerical	What is the average weight of adults? What is the average cholesterol level of adult females?	1-sample t-interval $\overline{y} \pm t_{\text{er}2} \frac{s}{\sqrt{n}}$	Stat >Basic statistics >1-sample t	 data approximately normal or have a large sample size (n ≥ 30)
2	Test about a Mean	One Population Mean µ	Sample mean y	Numerical	Is the average GPA of juniors at Penn State higher than 3.0? Is the average Winter temperature in State College less than 42° F?	$H_a: \mu \neq \mu_o$ or $H_a: \mu > \mu_o$ or $H_a: \mu < \mu_o$ The one sample t test:	Stat >Basic statistics >1-sample t	 data approximately normal or have a large sample size (n ≥ 30)
3	Estimating a Proportion	One Population Proportion π	Sample Proportion π̂	Categorical (Binary)	What is the proportion of males in the world? What is the proportion of students that smoke?	1-proportion Z-interval $\hat{\pi} \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$	Stat >Basic statistics >1-sample proportion	have at least 5 in each category
4	Test about a Proportion	One Population Proportion π	Sample Proportion π̂	Categorical (Binary)	Is the proportion of females different from 0.5? Is the proportion of students who fail Stat 500 less than 0.1?	The one proportion Z-test:	Stat >Basic statistics >1-sample proportion	• $n \pi_o \ge 5$ and $n (1-\pi_o) \ge 5$

A common test: One-sample ttest

- When: Estimating a mean, comparing mean to a hypothetical value
- Requirements: Data approx. normal or sample size >
 30

Setup:

$$|H_0: \mu \le \mu_0 \atop |H_1: \mu > \mu_0 | \qquad |H_0: \mu = \mu_0 \atop |H_1: \mu \ne \mu_0 \qquad |H_1: \mu \le \mu_0 \atop |H_1: \mu < \mu_0$$

$$|T = \sqrt{n} \frac{\bar{X} - \mu_0}{S} \sim t_{n-1}$$

$$|T = \sqrt{n} \frac{\bar{x} - \mu_0}{S} \sim \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 Evaluation: Compare t-statistic (table, excel) to your value and accept / reject null hypothesis

Hypothesis Tests for the Mean

Test of Hypothesis for the Mean (σ Known)

Convert sample result (X) to a z value

Hypothesis Tests for μ

σ Known

σ Unknown

Consider the test

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

(Assume the population is normal)

The decision rule is:

Reject
$$H_0$$
 if $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$

Decision Rule

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu > \mu_0$

Reject H_0 if $\overline{X} > \mu_0 + Z_{\alpha} \sigma / \sqrt{n}$

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme (≤ or ≥) than the observed sample value given H₀ is true
 - Also called observed level of significance
 - Smallest value of α for which H₀ can be rejected

p-Value Approach to Testing

(continued)

- Convert sample result (e.g., \bar{x}) to test statistic (e.g., z statistic)
- Obtain the p-value
 - For an upper tail test:

p-value = P(Z >
$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
, given that H₀ is true)

$$= P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \mid \mu = \mu_0)$$

- **Decision rule:** compare the p-value to α

 - If p-value < α, reject H₀
 If p-value ≥ α, do not reject H₀

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

 H_0 : $\mu \le 52$ the average is not over \$52 per month H_1 : $\mu > 52$ the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

(continued)

• Suppose that α = .10 is chosen for this test

Example: Sample Results

(continued)

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, $\bar{x} = 53.1$ ($\sigma = 10$ was assumed known)

Using the sample results,

$$z = \frac{\bar{x} - \mu_0}{\sigma} = \frac{53.1 - 52}{10} = 0.88$$

Example: Decision

(continued)

Reach a decision and interpret the result:

Do not reject H_0 since z = 0.88 < 1.28

i.e.: there is not sufficient evidence that the mean bill is over \$52

Example: p-Value Solution

(continued)

Calculate the p-value and compare to α

(assuming that $\mu = 52.0$)

$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

$$=P\left(z \ge \frac{53.1-52.0}{10/\sqrt{64}}\right)$$

$$=P(z \ge 0.88) = 1-.8106$$

Do not reject H_0 since p-value = .1894 > α = .10

One-Tail Tests

In many cases, the alternative hypothesis focuses on one particular direction

$$H_0$$
: $\mu \leq 3$

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

$$H_0$$
: $\mu \ge 3$

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

Lower-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

Two-Tail Tests

 In some settings, the alternative hypothesis does not specify a unique direction

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

 There are two critical values, defining the two regions of rejection

Test the claim that the true mean # of TV sets in US homes is equal to 3.

(Assume $\sigma = 0.8$)

- State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
 - Suppose that α = .05 is chosen for this test
- Choose a sample size
 - Suppose a sample of size n = 100 is selected

(continued)

- Determine the appropriate technique
 - σ is known so this is a z test
- Set up the critical values
 - For $\alpha = .05$ the critical z values are ± 1.96
- Collect the data and compute the test statistic
 - Suppose the sample results are

n = 100,
$$\overline{x}$$
 = 2.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

(continued)

Is the test statistic in the rejection region?

Reject H_0 if z < -1.96 or z > 1.96; otherwise do not reject H_0

Chap 10-42

(continued)

Reach a decision and interpret the result

Since z = -2.0 < -1.96, we <u>reject the null hypothesis</u> and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example: p-Value

Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu = 3.0$?

 \overline{x} = 2.84 is translated to a z score of z = -2.0

$$P(z < -2.0) = .0228$$

$$P(z > 2.0) = .0228$$

Example: p-Value

(continued)

- Compare the p-value with α
 - If p-value $< \alpha$, reject H_0
 - If p-value \geq α, do not reject H₀

Here: p-value = .0456 α = .05

Since .0456 < .05, we reject the null hypothesis

An Alternative Way

Beer Consumption Human Attractiveness to Malaria Mosquitoes

Beer (25):

27 20 21 26 27 31 24 21 20 19 23 24 28 19 24 29 18 20 17 31 20 25 28 21 27

Mean: 23.6

Water (18):

21 22 15 12 21 16 19 15 22 24 19 23 13 22 20 24 18 20

Mean: 19.2

Is a difference of 4.4 significant?

Difference: 4.4

Beer (25) Water (18)

Beer (25) Water (18)

t Test of Hypothesis for the Mean (σ Unknown)

Convert sample result (x̄) to a t test statistic

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

(Assume the population is normal)

The decision rule is:

Reject H₀ if
$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1,\alpha}$$

t Test of Hypothesis for the Mean (σ Unknown)

(continued)

For a two-tailed test:

Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

(Assume the population is normal, and the population variance is unknown)

The decision rule is:

Reject
$$H_0$$
 if $\left| t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} < -t_{n-1, \alpha/2} \right|$ or if $\left| t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \alpha/2} \right|$

$$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} > t_{n-1, \alpha/2}$$

What is a T-distribution?

- A t-distribution is like a Z distribution, except has slightly fatter tails to reflect the uncertainty added by estimating σ.
- The bigger the sample size (i.e., the bigger the sample size used to estimate σ), then the closer t becomes to Z.
- If n>100, t approaches Z.

The T probability density function

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu\pi}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

Where:

v is the degrees of freedom (gamma) is the Gamma function is the constant Pi (3.14...)

Student's t Distribution

Note: t→ Z as n increases

Student's t Table

	Upper Tail Area			
df	.25	.10	.05	
1	1.000	3.078	6.314	
2	0.817	1.886	2.920	
3	0.765	1.638	2.353	

The body of the table contains t values, not probabilities

Let: n = 3
df =
$$n$$
 - 1 = 2
 α = .10
 $\alpha/2$ = .05

t distribution values

With comparison to the Z value

Confiden Level	ce t <u>(10 d.f.)</u>	t (20 d.f.)	t (30 d.f.)	Z
.80	1.372	1.325	1.310	1.28
.90	1.812	1.725	1.697	1.64
.95	2.228	2.086	2.042	1.96
.99	3.169	2.845	2.750	2.58

Note: $t \rightarrow Z$ as n increases

Summary: Single population mean (small n, normality)

Hypothesis test:

$$t_{n-1} = \frac{\text{observed mean} - \text{null mean}}{\frac{S_x}{\sqrt{n}}}$$

Confidence Interval

confidence interval = observed mean $\pm t_{n-1,\alpha/2} * (\frac{S_x}{\sqrt{n}})$

Summary: Single population mean (large n)

Hypothesis test:

$$Z \cong t_{n-1} = \frac{\text{observed mean} - \text{null mean}}{\frac{S_x}{\sqrt{n}}}$$

Confidence Interval

confidence interval = observed mean $\pm [t_{n-1,\alpha/2} \cong Z_{\alpha/2}] * (\frac{S_x}{\sqrt{n}})$

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in $\bar{x} = \$172.50$ and

s = \$15.40. Test at the

 $\alpha = 0.05$ level.

(Assume the population distribution is normal)

 H_0 : $\mu = 168$

 H_1 : $\mu \neq 168$

Example Solution: Two-Tail Test

$$H_0$$
: $\mu = 168$

 H_1 : µ ≠ 168

$$\alpha = 0.05$$

- n = 25
- σ is unknown, so use a t statistic
- Critical Value:

$$t_{24,.025} = \pm 2.0639$$

$$t_{n-1} = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$$

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168

Tests of the Population Proportion

- Involves categorical variables
- Two possible outcomes
 - "Success" (a certain characteristic is present)
 - "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by P
- Assume sample size is large

Proportions

(continued)

 Sample proportion in the success category is denoted by p̂

$$\hat{p} = \frac{x}{n} = \frac{\text{number of successes in sample}}{\text{sample size}}$$

 When nP(1 – P) > 9, p̂ can be approximated by a normal distribution with mean and standard deviation

$$\mu_{\hat{p}} = P$$

$$\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$$

Hypothesis Tests for Proportions

The sampling distribution of p̂ is approximately normal, so the test statistic is a z value:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}}$$

Example: Z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the $\alpha = .05$ significance level.

Check:

Our approximation for P is $\hat{p} = 25/500 = .05$

$$nP(1 - P) = (500)(.05)(.95)$$

= 23.75 > 9

Z Test for Proportion: Solution

$$H_0$$
: P = .08

 $H_1: P \neq .08$

$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Test Statistic:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = \frac{-2.47}{1.08}$$

Critical Values: ±

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

p-Value Solution

(continued)

Calculate the p-value and compare to α

(For a two sided test the p-value is always two sided)

Reject H_0 since p-value = .0136 < α = .05

Power of the Test

Recall the possible hypothesis test outcomes:

Key:
Outcome
(Probability)

	Actual Situation		
Decision	H ₀ True	H ₀ False	
Do Not Reject H ₀	No error (1 - α)	Type II Error (β)	
Reject H ₀	Type I Error (α)	No Error (1-β)	

- β denotes the probability of Type II Error
- 1β is defined as the power of the test

Power = $1 - \beta$ = the probability that a false null hypothesis is rejected

Type II Error

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

The decision rule is:

Reject H₀ if
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha}$$
 or Reject H₀ if $\overline{x} = \overline{x}_c > \mu_0 + Z_{\alpha} \sigma / \sqrt{n}$

If the null hypothesis is false and the true mean is μ^* , then the probability of type II error is

$$\beta = P(\overline{x} < \overline{x}_c \mid \mu = \mu^*) = P\left(z < \frac{\overline{x}_c - \mu^*}{\sigma / \sqrt{n}}\right)$$

Type II Error Example

Type II error is the probability of failing to reject a false H₀

Suppose we fail to reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu^* = 50$

Type II Error Example

(continued)

Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50

Type II Error Example

(continued)

Suppose we do not reject H₀: µ ≥ 52 when in fact the true mean is µ* = 50

Calculating B

• Suppose n = 64 , σ = 6 , and α = .05

Calculating B

(continued)

• Suppose n = 64 , σ = 6 , and α = .05

Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error = β = 0.1539
- The power of the test = $1 \beta = 1 0.1539 = 0.8461$

Key:
Outcome
(Probability)

	Actual Situation		
Decision	H ₀ True	H ₀ False	
Do Not Reject H ₀	No error $1 - \alpha = 0.95$	Type II Error β = 0.1539	
Reject H ₀	Type I Error $\alpha = 0.05$	No Error 1 - β = 0.8461	

(The value of β and the power will be different for each μ^*)