

Recommender Systems Learning to Rank

Professor Robin Burke Spring 2019

Thanks to Alexandros Karatzoglou, Linas Baltrunas, Yue Shi for some materials

Learning to Rank

- Fundamental question for factorization models
 - Why are we optimizing $||R-\check{R}||^2$
 - If what we are really trying to do is get good lists
- Rating-oriented loss
 - Cares just as much about low ratings as high ratings
 - May correlate poorly with "good" lists
- If we measure a ranking metric (MAP or NDCG)
 - It makes sense to try to optimize such metrics
 - Can get big gains (up to 30%) by optimizing directly

Example: MAP

$$\blacksquare MAP = \frac{\sum_{k=1}^{|S|} P(k)}{|S|}$$

- But this is not a continuous function
 - When items change rank, that makes a discontinuous change in the objective
 - Discontinuity = no gradient at those points

Example: 1 latent factor dim 2

- Change the values of the factor
- Get different MAP values
- Compare with equivalent for RMSE
- Cannot apply gradient descent

Alternate formulation of MAP

- Average precision at the rank of each item
 - For all the items that are "relevant" (= rated)
- Sort all the items
 - Each relevant item has some rank
- For each item
 - Compute the precision of the smallest list containing that item
 - 8 items but only three relevant ones
 - \blacksquare (P@1 + P@2 + P@4) / 3
- Think about this in one pass over all items
 - Start from the bottom
 - We don't do any thing with ranks 5-8 (no relevant items)
 - When we get to item with rank 4, we count the items with lower or equal rank
 - Divide by the rank of i = precision at i's rank

Decompose the objective

- $y_{ui} = 1$ if the item i is relevant to user u
- \bullet s_{ui} = the rank of item i
- \mathcal{I} is the indicator function 1 if $s_{uj} \le s_{ui}$

$$\blacksquare MAP_{u} = \frac{1}{\sum_{i=1}^{N} y_{ui}} \sum_{i=1}^{N} \frac{y_{ui}}{r_{ui}} \sum_{j=1}^{N} y_{uj} \mathcal{I}(s_{uj} \le s_{ui})$$

■ Discontinuous because of the indicator function and 1/s_{ui}

Getting continuity

- Goal: a continuous function of the predicted rating p
- Continuous version of 1/s_{ui}
- As the score of an item goes up
 - Its 1/rank will also go up
 - But the score has no inherent limits and the 1/rank has a minimum and maximum
- Good candidate = logistic function
 - $g_1 = 1/(1+e^{-p})$

Getting continuity, part 2

- Continuous version of $I(s_{mj} \le s_{mi})$
- \blacksquare s_j will have lower rank than s_i
 - if s_j has a higher predicted rating p_j , than s_i (p_i)
- \blacksquare This is like a step function that depends on the difference between p_j and p_i
- Again logistic function is useful
 - $g_2 = 1/(1 + e^{-(pj-pi)})$

New objective

$$MAP_{u} = \frac{1}{\sum_{i=1}^{N} y_{ui}} \sum_{i=1}^{N} y_{ui} g_{1}(p(i)) \sum_{j=1}^{N} y_{uj} g_{2}(p(i), p(j))$$

■ Where p(i) is the predicted rating of item i

+ Caution

- Approximation is not always good
- Reason 1
 - Factorization is low-rank
 - May fail to capture important distinctions if the number of factors is too small
- Reason 2
 - Possible for the function approximations to give results not consistent with the approximated expressions
 - \blacksquare A > B and B > C but C > A

General strategy

- Take the ranking-oriented objective O
 - Inherently discontinuous because ranking creates discrete answer sets
- Find some continuous approximation C that is a function of the predicted rating
- Use C to create a continuous loss function over R
- Use factorization to create a prediction function that optimizes for C

Basic approaches

- $f(user,item) \Rightarrow score$
- Convert ranking to regression, classification, ordinal regression, etc.
- Pair-wise approach
 - $f(user, item1, item2) \Rightarrow score$
 - Convert ranking to pair-wise classification
 - Is item1 ranked higher than item2?
- List-wise approach
 - $f(user, item1, item2, ..., itemn) \Rightarrow score$
 - Direct optimization of the ranking metric over the list

Examples

- MAP optimization (originally proposed for context-aware recommendation as TFMAP)
 - List-wise approach optimizing MAP
- BPR and RankALS
 - Pair-wise approaches
 - Different optimization criteria