奥数平面几何部分 ——面积法之三(教师)

教学目标

- 1. 熟练掌握五大面积模型(等积模型,蝴蝶模型,鸟头模型,燕尾模型,相似模型)特殊的梯形蝴蝶模型,金字塔模型 ,沙漏模型,三角形中位线定理
- 2. 掌握五大面积模型的各种变形
- 3. 塞瓦定理

知识点拨

例 1. 如图,设 BD: DC=p,CE: EA=q,AF: FB=r,试用 p, q, r 表示 $S_{\Delta PQR}: S_{\Delta ABC}$

例 1. 解:连接 BQ,由燕尾定理的面积法得到

$$\frac{S_{_{\Delta ABQ}}}{S_{_{\Delta AOC}}} = \frac{BD}{DC} = \frac{p}{1} = \frac{pr}{r} \; , \; \; \frac{S_{_{\Delta AQC}}}{S_{_{\Delta BOC}}} = \frac{AF}{FB} = \frac{r}{1}$$

即 $\triangle ABC$ 被 Q 点分成了三个 \triangle ,且

 $S_{\triangle ABQ}$: $S_{\triangle AQC}$: $S_{\triangle BQC}$ =pr:r:1

总份数为 pr+r+1,

由等积变形得到

$$\frac{S_{\triangle ABD}}{S_{\triangle ADC}} = \frac{BD}{DC} = p$$
, $\triangle ABC$ 被分成两个 \triangle ,总份数为 $p+1$,故有

$$S_{\triangle ABD} = \frac{p}{p+1} S_{\triangle ABC}, \qquad S_{\triangle ADC} = \frac{1}{p+1} S_{\triangle ABC}$$

$$\frac{DQ}{QA} = \frac{S_{\Delta DQC}}{S_{\Delta AQC}} = \frac{S_{\Delta BQC} - S_{\Delta BQD}}{S_{\Delta AQC}}$$

$$=\frac{1}{r}-\frac{S_{_{\Delta ABD}}-S_{_{\Delta ABQ}}}{S_{_{\Delta AQC}}}=\frac{1}{r}+p-\frac{S_{_{\Delta ABD}}}{S_{_{\Delta AQC}}}$$

$$= \frac{1}{r} + p - \frac{p}{r(p+1)(pr+r+1)} = \frac{1}{r(p+1)}$$

$$\therefore \frac{DQ}{QA} = \frac{1}{r(p+1)}$$

同理可以计算:
$$\frac{ER}{RB} = \frac{1}{p(q+1)}$$
, $\frac{FP}{PC} = \frac{1}{q(r+1)}$

由此计算出围绕△PQR周边的三个三角形面积。

$$S_{\triangle AQC} = rac{r}{pr+r+1} \, S_{\triangle ABC}$$
 , $S_{\triangle ABR} = rac{p}{qp+p+1} \, S_{\triangle ABC}$, $S_{\triangle BPC} = rac{q}{rq+q+1} \, S_{\triangle ABC}$

$$S_{\Delta PQR} = 1 - \frac{r}{pr + r + 1} - \frac{p}{qp + p + 1} - \frac{q}{rq + q + 1}$$

$$=\frac{(pqr-1)^2}{(pr+r+1)(qp+p+1)(rq+q+1)}$$

例 2. 如图,以正方形的边 AB 为斜边在正方形内作直角三角形 ABE, $\angle AEB=90^{\circ}$,AC、BD 交于 O, 已知 AE、BE 的长分别为 3 cm、5 cm,求三角形 OBE 的面积.

例 2 解:如图,连接 DE,以 A 点为中心,将 Δ ADE 顺时针旋转 90° 到 Δ ABF 的位置.

那么 $\angle EAF = \angle EAB + \angle BAF = \angle EAB + \angle DAE = 90^\circ$,而 $\angle AEB$ 也是 90°,所以四边形 AFBE 是直角梯形,且 AF=AE=3,所以梯形 AFBE 的面积为: $(3+5)\times 3\times \frac{1}{2}=12$ (cm²).

又因为 Δ ABE 是直角三角形,根据勾股定理, $AB^2 = AE^2 + BE^2 = 3^2 + 5^2 = 34$,

所以 $S_{ABCD} = AB^2 = 34$, $S_{\triangle ABD} = 0.5 S_{ABCD} = 17$ (cm²).

那么 $S_{\Delta BDE} = S_{\Delta ABD} - (S_{\Delta ABE} + S_{\Delta ADE}) = S_{\Delta ABD} - S_{\Delta AFBE} = 17-12=5 \text{ (cm}^2),$

所以 $S_{\Delta OBE} = 0.5 S_{\Delta BDE} = 2.5 \text{ (cm}^2$).

例 3. 如下图,六边形 ABCDEF 中,AB=ED,AF=CD,BC=EF,且有 AB 平行于 ED,AF 平行于 CD,BC 平行于 EF,对角线 FD 垂直于 BD,已知 FD=24 厘米,BD=18 厘米,请问六边形 ABCDEF 的面积是多少平方厘米?

例 3 解:如图,我们将ΔBCD 平移使得 CD 与 AF 重合,将ΔDEF 平移使得 ED 与 AB 重合,这样 EF、BC 都重合到图中的 AG,得到一个长方形 BGFD,它的面积与原六边形的面积相等,显然长方形 BGFD 的面积为 $24 \times 18 = 432$ 平方厘米,所以六边形 ABCDEF 的面积为 432 平方厘米.

例 4. 如图,正方形 ABCD 面积为 3 平方厘米,M 是 AD 边上的中点,对角线 AC 与 BM 交于点 G. 求图中阴影部分的面积.

例 4. 解 因为 $M \in AD$ 边上的中点,所以 AM: BC=1:2,根据梯形蝴蝶定理可以知道

 $S_{\Delta AMG}$: $S_{\Delta ABG}$: $S_{\Delta MCG}$: $S_{\Delta BGC} = 1^2$: (1×2) : (1×2) : $2^2 = 1:2:2:4$, 设 $S_{\Delta AMG} = 1$ 份,则 $S_{\Delta MCD} = 1+2=3$ 份,

所以正方形的面积为 1+2+2+4+3=12 份,

 $S_{B} = 2 + 2 = 4$ 份,

所以 S 网影: S 正方形 =4:12=1:3,

所以 S 剛和 平方厘米.

例 5. 如图, $\triangle ABC$ 是等腰直角三角形, $\angle BAC=90^\circ$,正方形 DEFG 的 EF 边在 BC 上,线段 AB 与 CD 相交于 K 点.已知正方形 DEFG 的面积 48,AK:KB=1:3,则 $\triangle BKD$ 的面积是多少?

例 5 解 由于 DEFG 是正方形,所以 DA 与 BC 平行,那么四边形 ADBC 是梯形.在梯形 ADBC 中, ΔBKD 和 ΔACK 的面积是相等的.

而 AK: KB=1:3,所以 ΔACK 的面积是 ΔABC 面积的 $\frac{1}{1+3} = \frac{1}{4}$,那么 ΔBKD 的面积也是 ΔABC 面积的 $\frac{1}{4}$.

由于 $\triangle ABC$ 是等腰直角三角形,如果过 A 作 BC 的垂线,M 为垂足,那么 M 是 BC 的中点,而且 AM=DE,可见 $\triangle ABM$ 和 $\triangle ACM$ 的面积都等于正方形 DEFG 面积的一半,所以 $\triangle ABC$ 的面积与正方形 DEFG 的面积相等,为 48.

那么 ΔBKD 的面积为 $48 \times \frac{1}{4} = 12$.

例 6. 下图中,两个四边形都是边长为 1 的正方形 ABCD,E、F、G、H 分别是 AB、BC、CD、DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数 $\frac{m}{n}$,那么,(m+n) 的值等于_____.

例 6 解 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积。

如下图所示,在左图中连接 EG. 设 AG 与 DE 的交点为 M.

左图中 *AEGD* 为长方形,可知Δ*AMD* 的面积为长方形 *AEGD* 面积的 $\frac{1}{4}$,所以Δ*AMD* 的面积为 $1^2 \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$. 又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为 $1 - \frac{1}{8} \times 4 = \frac{1}{2}$.

如上图所示,在右图中连接AC、EF. 设AF、EC 的交点为N.

可知 EF//AC 且 AC=2EF. 那么 ΔBEF 的面积为 ΔABC 面积的 $\frac{1}{4}$,所以 ΔBEF 的面积为 $1^2 \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$, 梯形 AEFC 的面积为 $\frac{1}{2} - \frac{1}{8} = \frac{3}{8}$.

在梯形 AEFC 中, 由于 EF:AC=1:2, 根据梯形蝴蝶定理, 其四部分的面积比为:

 $1^2:1\times2:1\times2:2^2=1:2:2:4$,所以三角形 EFN 的面积为 $\frac{3}{8}\times\frac{1}{1+2+2+4}=\frac{1}{24}$,那么四边形 BENF 的面积为 $\frac{1}{8}+\frac{1}{24}=\frac{1}{6}$. 而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为 $1-\frac{1}{6}\times4=\frac{1}{3}$. 那么左图中阴影部分面积与右图中阴影部分面积之比为 $\frac{1}{2}:\frac{1}{3}=3:2$,即 $\frac{m}{n}=\frac{3}{2}$,那么 m+n=3+2=5.

例 7 解 1 设 $S_{\Delta ADE}=1$ 份,根据相似三角形面积比等于相似比的平方,

所以 $S_{\triangle ADE}$: $S_{\triangle AFG} = AD^2$: $AF^2 = 1:4$, $S_{\triangle ADE}$: $S_{\triangle ABC} = AD^2$: $AB^2 = 1:9$,

因此 $S_{\Delta AFG}$ = 4 份, $S_{\Delta ABC}$ =9 份,故有 S_{DEFG} =4-1=3 份, S_{FGCB} =9-4=5 份,

所以 $S_{\Delta ADE}$: S_{DEFG} : $S_{FGCB} = 1:3:5$

解 2 如图将 ΔABC 剖分成全等的小三角形,根据三角形个数也可以判断。

例 8. 如图,已知正方形 ABCD 的边长为 4,F 是 BC 边的中点,E 是 DC 边上的点,且 DE: EC=1:3,AF 与 BE 相交于点 G,求 $S_{\Delta ABG}$

例 8 解 方法一: 连接 AE, 延长 AF 和 DC, 两条延长线交于点 M, 构造出两个沙漏,所以有 AB: CM=BF: FC=1:1,因此 CM=4,根据题意有 CE=3,

再根据另一个沙漏有 *GB*: *GE=AB*: *EM=*4:7,所以 $S_{\Delta ABG} = \frac{4}{4+7}$ $S_{\Delta ABE} = \frac{4}{11} \times (4 \times 4 \div 2) = \frac{32}{11}$.

方法二:连接 AE、EF,分别求得 $S_{\Delta ABF}=4\times2\div2=4$, $S_{\Delta AEF}=4\times4-4\times1\div2-3\times2\div2-4=7$,根据蝴蝶定理 $S_{\Delta ABF}:S_{\Delta AEF}=4:7=BG:GE$,

所以 $S_{\triangle ABG} = \frac{4}{4+7}$ $S_{\triangle ABE} = \frac{4}{11} \times (4 \times 4 \div 2) = \frac{32}{11}$.

例 9. 如图所示,已知平行四边形 ABCD 的面积是 1, $E \setminus F$ 是 $AB \setminus AD$ 的中点,BF 交 EC 于点 M,求 ΔBMG 的面积.

例 9 解法一:由题意可得, *E、F*是 *AB、AD* 的中点,得 *EF//BD*,而 *FD: BC=FH: HC*=1:2, *EB: CD=BG: GD*=1:2 所以 *CH: CF=GH: EF*=2:3,并得 *G、H* 是 *BD* 的三等分点, 所以 *BG=GH=HD*,

所以
$$BG: EF=BM: MF=2:3$$
,所以 $BM=\frac{2}{5}BF$, $S_{\Delta BDF}=\frac{1}{2}S_{\Delta BDF}=\frac{1}{2}\times\frac{1}{2}S_{ABCD}=\frac{1}{4}$;
又因为 $BG=\frac{1}{3}BD$,所以 $S_{\Delta BMG}=\frac{2}{5}\times\frac{1}{3}S_{\Delta BDF}=\frac{2}{5}\times\frac{1}{3}\times\frac{1}{4}S_{ABCD}=\frac{1}{30}$.

解法二:延长 CE 交 DA 于 I,如右图,

可得, AI: BC=AE: EB=1:1, 从而可以确定 M 点的位置, 沙漏模型 BM: MF=BC: IF=2:3, BG: GD=BC: DI=1:2

∴
$$BM = \frac{2}{5}BF$$
, $BG = \frac{1}{3}BD$ (两个沙漏模型)

由共角鸟头定理得到

$$S_{\Delta BMG} = \frac{2}{5} \times \frac{1}{3} \quad S_{\Delta BDF} = \quad \frac{2}{5} \times \frac{1}{3} \times \frac{1}{4} \quad S_{ABCD} = \frac{1}{30}$$

【例 1】 如图,ABCD为正方形, $AM = NB = DE = FC = 1 \text{ cm} \perp MN = 2 \text{ cm}$,请问四边形 PQRS 的面积为多少?

【解析】(法1)由 AB//CD,有 $\frac{MP}{MN} = \frac{PC}{DC}$,所以 PC = 2PM,又 $\frac{MQ}{OC} = \frac{MB}{EC}$,所以

$$MQ = QC = \frac{1}{2}MC$$
,所以 $PQ = \frac{1}{2}MC - \frac{1}{3}MC = \frac{1}{6}MC$,所以 S_{SPQR} 占 S_{AMCF} 的 $\frac{1}{6}$,

所以
$$S_{SPQR} = \frac{1}{6} \times 1 \times (1 + 1 + 2) = \frac{2}{3} \text{ (cm}^2)$$
.

(法2)如图,连结 AE,则 $S_{\triangle ABE} = \frac{1}{2} \times 4 \times 4 = 8 \text{ (cm}^2)$,

$$\overrightarrow{\text{TIT}}\,\frac{RB}{AB} = \frac{ER}{EF}\,\,,\quad \overrightarrow{\text{PIT}}\,\, \ \ \, \bigcup \, \frac{RB}{EF} = \frac{AB}{EF} = 2\,\,,\quad \, S_{\triangle\!ABR} = \frac{2}{3}\,S_{\triangle\!ABE} = \frac{2}{3}\times 8 = \frac{16}{3}\,(\text{cm}^2)\,.$$

丽
$$S_{\Delta MBQ} = S_{\Delta ANS} = \frac{1}{2} \times 3 \times 4 \times \frac{1}{2} = 3 \text{ (cm}^2)$$
,因为 $\frac{MN}{DC} = \frac{MP}{PC}$,

所以 $MP = \frac{1}{3}MC$,则 $S_{\Delta MNP} = \frac{1}{2} \times 2 \times 4 \times \frac{1}{3} = \frac{4}{3}$ (cm²),阴影部分面积等于

$$S_{\Delta ABR} - S_{\Delta ANS} - S_{\Delta MBQ} + S_{\Delta MNP} = \frac{16}{3} - 3 - 3 + \frac{4}{3} = \frac{2}{3} \text{ (cm}^2\text{)}.$$

【例 2】 如图,三角形 ABC 的面积是1, BD = DE = EC , CF = FG = GA ,三角形 ABC 被分成9 部分,请写出这9 部分的面积各是多少?

【解析】设 BG与 AD 交于点 P, BG与 AE 交于点 Q, BF与 AD 交于点 M, BF与 AE 交于点 N. 连接 CP, CQ, CM, CN.

根据燕尾定理, $S_{\triangle ABP}: S_{\triangle CBP} = AG: GC = 1:2$, $S_{\triangle ABP}: S_{\triangle ACP} = BD: CD = 1:2$,设 $S_{\triangle ABP} = 1$ (份),

则
$$S_{\triangle ABC} = 1 + 2 + 2 = 5$$
 (份),所以 $S_{\triangle ABP} = \frac{1}{5}$

同理可得, $S_{\triangle ABQ} = \frac{2}{7}$, $S_{\triangle ABN} = \frac{1}{2}$,而 $S_{\triangle ABG} = \frac{1}{3}$,所以 $S_{\triangle APQ} = \frac{2}{7} - \frac{1}{5} = \frac{3}{35}$, $S_{\triangle AQG} = \frac{1}{3} - \frac{2}{7} = \frac{1}{21}$.

同理, $S_{\triangle BPM} = \frac{3}{35} S_{\triangle BDM} = \frac{1}{21}$,所以 $S_{\square \exists \mathbb{R}PQMN} = \frac{1}{2} - \frac{2}{7} - \frac{3}{35} = \frac{9}{70}$, $S_{\square \exists \mathbb{R}MNED} = \frac{1}{3} - \frac{3}{35} - \frac{9}{70} = \frac{5}{42}$,

$$S_{$$
四边形 $NFCE}=rac{1}{3}-rac{1}{21}-rac{5}{42}=rac{1}{6}$, $S_{$ 四边形 $GFNQ}=rac{1}{3}-rac{1}{21}-rac{1}{6}=rac{5}{42}$

【巩固】如图, $\triangle ABC$ 的面积为 1,点 D 、 E 是 BC 边的三等分点,点 F 、 G 是 AC 边的三等分点,那么

四边形 JKIH 的面积是多少?

【解析】连接 $CK \times CI \times CJ$.

根据燕尾定理,
$$S_{\Delta ACK}: S_{\Delta ABK} = CD: BD = 1:2$$
, $S_{\Delta ABK}: S_{\Delta CBK} = AG: CG = 1:2$, 所以 $S_{\Delta ACK}: S_{\Delta ABK}: S_{\Delta CBK} = 1:2:4$,那么 $S_{\Delta ACK} = \frac{1}{1+2+4} = \frac{1}{7}$, $S_{\Delta ACK} = \frac{1}{3}S_{\Delta ACK} = \frac{1}{21}$.

类似分析可得 $S_{\Delta AGI} = \frac{2}{15}$.

又
$$S_{\triangle ABJ}: S_{\triangle CBJ} = AF: CF = 2:1$$
, $S_{\triangle ABJ}: S_{\triangle ACJ} = BD: CD = 2:1$, 可得 $S_{\triangle ACJ} = \frac{1}{4}$.

那么,
$$S_{CGKJ} = \frac{1}{4} - \frac{1}{21} = \frac{17}{84}$$
.

根据对称性,可知四边形 CEHJ 的面积也为 $\frac{17}{84}$,那么四边形 JKIH 周围的图形的面积之和为

$$S_{CGKJ} \times 2 + S_{\Delta AGI} + S_{\Delta ABE} = \frac{17}{84} \times 2 + \frac{2}{15} + \frac{1}{3} = \frac{61}{70}$$
,所以四边形 *JKIH* 的面积为 $1 - \frac{61}{70} = \frac{9}{70}$.

【例 3】 右图, $\triangle ABC$ 中,G是 AC 的中点,D、E、F是 BC边上的四等分点,AD与 BG 交于 M , AF 与 BG 交于 N ,已知 $\triangle ABM$ 的面积比四边形 FCGN 的面积大 7.2 平方厘米,则 $\triangle ABC$ 的面 积是多少平方厘米?

【解析】连接 $CM \cdot CN$.

根据燕尾定理, $S_{\triangle ABM}: S_{\triangle CBM} = AG: GC = 1:1$, $S_{\triangle ABM}: S_{\triangle ACM} = BD: CD = 1:3$,所以

$$S_{\triangle ABM} = \frac{1}{5} S_{\triangle ABC}$$
 ;

再根据燕尾定理, $S_{\triangle ABN}: S_{\triangle CBN} = AG: GC = 1:1$,所以 $S_{\triangle ABN}: S_{\triangle FBN} = S_{\triangle CBN}: S_{\triangle FBN} = 4:3$,所以

根据题意,有 $\frac{1}{5}S_{\triangle ABC} - \frac{5}{28}S_{\triangle ABC} = 7.2$,可得 $S_{\triangle ABC} = 336$ (平方厘米)

【例 4】 如图,面积为 1 的三角形 ABC 中,D、E、F、G、H、I 分别是 AB、BC、CA 的三等分点,求 阴影部分面积.

7

【解析】三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!

令 BI 与 CD 的交点为 M, AF 与 CD 的交点为 N, BI 与 AF 的交点为 P, BI 与 CE 的交点为 Q, 连接 AM、BN、CP

(1)求 S_{minifadm} :在 $\triangle ABC$ 中,根据燕尾定理, $S_{\triangle ABM}: S_{\triangle CBM} = AI: CI = 1:2$

 $S_{\triangle ACM}: S_{\triangle CBM} = AD: BD = 1:2$

设 $S_{\triangle ABM}=1$ (份),则 $S_{\triangle CBM}=2$ (份), $S_{\triangle ACM}=1$ (份), $S_{\triangle ABC}=4$ (份),

所以 $S_{\triangle ABM} = S_{\triangle ACM} = \frac{1}{4}S_{\triangle ABC}$,所以 $S_{\triangle ADM} = \frac{1}{3}S_{\triangle ABM} = \frac{1}{12}S_{\triangle ABC}$, $S_{\triangle ABM} = \frac{1}{12}S_{\triangle ABC}$,

所以 $S_{\text{四边形}ADMI} = (\frac{1}{12} + \frac{1}{12}) S_{\triangle ABC} = \frac{1}{6} S_{\triangle ABC}$,

同理可得另外两个顶点的四边形面积也分别是 $\triangle ABC$ 面积的 $\frac{1}{6}$

(2)求 $S_{\pm b \mp DNPQE}$: 在 $\triangle ABC$ 中,根据燕尾定理 $S_{\triangle ABN}$: $S_{\triangle ACN} = BF$:CF = 1:2

 $S_{\triangle ACN}: S_{\triangle BCN} = AD: BD = 1:2$,

所以 $S_{\triangle ADN} = \frac{1}{3} S_{\triangle ABN} = \frac{1}{3} \times \frac{1}{7} S_{\triangle ABC} = \frac{1}{21} S_{\triangle ABC}$, 同理 $S_{\triangle BEQ} = \frac{1}{21} S_{\triangle ABC}$

在 $\triangle ABC$ 中,根据燕尾定理 $S_{\triangle ABP}: S_{\triangle ACP} = BF: CF = 1:2$, $S_{\triangle ABP}: S_{\triangle CBP} = AI: CI = 1:2$

所以 $S_{\triangle ABP} = \frac{1}{5} S_{\triangle ABC}$,所以 $S_{\pm 边形DNPQE} = S_{\triangle ABP} - S_{\triangle ADN} - S_{\triangle BEP} = \left(\frac{1}{5} - \frac{1}{21} - \frac{1}{21}\right) S_{\triangle ABC} = \frac{11}{105} S_{\triangle ABC}$

同理另外两个五边形面积是 $\triangle ABC$ 面积的 $\frac{11}{105}$,所以 $S_{\text{\tiny FH}} = 1 - \frac{1}{6} \times 3 - \frac{11}{105} \times 3 = \frac{13}{70}$

【例 5】 如图,面积为 1 的三角形 ABC 中,D、E、F、G、H、I 分别是 AB、BC、CA 的三等分点,求中心六边形面积.

【解析】设深黑色六个三角形的顶点分别为 N、R、P、S、M、Q,连接 CR 在 $\triangle ABC$ 中根据燕尾定理, $S_{\triangle ABR}$: $S_{\triangle ACR}$ = BG : CG . = 2:1,

$$S_{\triangle ABR}: S_{\triangle CBR} = AI: CI = 1:2$$

所以 $S_{\triangle ABR} = \frac{2}{7} S_{\triangle ABC}$, 同理 $S_{\triangle ACS} = \frac{2}{7} S_{\triangle ABC}$, $S_{\triangle CQB} = \frac{2}{7} S_{\triangle ABC}$

所以 $S_{\triangle RQS} = 1 - \frac{2}{7} - \frac{2}{7} - \frac{2}{7} = \frac{1}{7}$,同理 $S_{\triangle MNP} = \frac{1}{7}$

根据容斥原理,和上题结果 $S_{\text{right}} = \frac{1}{7} + \frac{1}{7} - \frac{13}{70} = \frac{1}{10}$

课后练习(面积法三):

1. 在下图的正方形 ABCD中, $E \in BC$ 边的中点,AE = BD 相交于 F 点,三角形 BEF 的面积为 1 平方厘米,那么正方形 ABCD 面积是 平方厘米.

- 1. 解 连接 DE,根据题意可知 BE: AD=1:2,根据蝴蝶定理得 $S_{\text{梯形}}=(1+2)^2=9$ (平方厘米), $S_{\triangle ECD}=3$ (平方厘米),那么 $S_{\square ABCD}=12$ (平方厘米).
- **2.** 如图, DE 平行 BC, 且 AD=2, AB=5, AE=4, 求 AC 的长.

- 2. 解由金字塔模型得 AD: AB = AE: AC = DE: BC = 2:5, 所以 AC = 4 ÷ 2×5 = 10
- 3. 如图, $\triangle ABC$ 中, DE , FG , MN , PQ , BC 互相平行, AD = DF = FM = MP = PB ,则 $S_{\triangle ADE}: S_{\square \beth EDEGF}: S_{\square \beth EFGNM}: S_{\square \beth EMNOP}: S_{\square \beth EPOCB} = \underline{\hspace{1cm}}$
- 3. 解设 $S_{\triangle ADE}=1$ 份, $S_{\triangle ADE}:S_{\triangle AFG}=AD^2:AF^2=1:4$, 因此 $S_{\triangle AFG}=4$ 份,进而有 $S_{\square \dot{\cup} EDEGF}=3$ 份,同理有 $S_{\square \dot{\cup} EDEGF}=5$ 份, $S_{\square \dot{\cup} EDEGF}=5$ 份,

~ 所以有

 $S_{\triangle ADE}: S_{\square \beth \Vdash NDEGF}: S_{\square \beth \Vdash FGNM}: S_{\square \beth \Vdash MNQP}: S_{\square \beth \Vdash PQCB} = \overset{B}{1}: 3: 5: 7: 9$

4. 解 将三角形 ABC 绕 A 点和 C 点分别顺时针和逆时针旋转 90° ,构成三角形 AEC' 和 A'DC,再连接 A'C',显然 $AC \perp AC'$, $AC \perp A'C$, AC = A'C = AC',所以 ACA'C'是正方形. 三角形 AEC'和三角形 A'DC 关于正方形的中心 O 中心对称,在中心对称图形 ACA'C'中有如下等量关系:

$$\begin{split} S_{\Delta\!A\!E\!C} &= S_{\Delta\!A'D\!C'}\,; \quad S_{\Delta\!A\!E\!C'} = S_{\Delta\!A'D\!C}\,; \quad S_{\Delta\!C\!E\!D} = S_{\Delta\!C'D\!E}\,. \\ \text{Fig.} S_{\Delta\!A\!B\!C} + S_{\Delta\!A\!C\!E} + S_{\Delta\!C\!D\!E} = S_{\Delta\!A\!E\!C'} + S_{\Delta\!A\!C\!E} + S_{\Delta\!C\!D\!E} = \frac{1}{2}\,S_{\Box A\!C\!A'C'} = \frac{1}{2} \times 10 \times 10 = 50 \text{cm}^2 \;. \end{split}$$

5. 如图,正方形 ABCD 的面积是 120 平方厘米, E 是 AB 的中点, F 是 BC 的中点,四边形 BGHF 的面积 是_____ 平方厘米.

5. 解 连接 BH,根据沙漏模型得 BG:GD=1:2,设 $S_{\triangle BHC}=1$ 份,根据燕尾定理 $S_{\triangle CHD}=2$ 份, $S_{\triangle BHD}=2$ 份,因此 $S_{\mathbb{E} 5 \mathbb{H}}=(1+2+2)\times 2=10$ 份, $S_{BFHG}=\frac{1}{2}+\frac{2}{3}=\frac{7}{6}$,所以 $S_{BFHG}=120\div 10\times \frac{7}{6}=14$ (平方厘米).

6. 如图, $\triangle ABC$ 中,点 D 是边 AC 的中点,点 E 、 F 是边 BC 的三等分点,若 $\triangle ABC$ 的面积为 1,那么四 边形 CDMF 的面积是______.

6. 解由于点D是边AC的中点,点E、F是边BC的三等分点,如果能求出BN、NM、MD三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF的面积.

连接 CM、 CN.

根据燕尾定理, $S_{\Delta ACM}=BF:CF=2:1$,而 $S_{\Delta ACM}=2S_{\Delta ADM}$,所以 $S_{\Delta ABM}=2S_{\Delta ACM}=4S_{\Delta ADM}$,那么BM=4DM,即 $BM=\frac{4}{5}BD$.

那么
$$S_{\Delta BMF} = \frac{BM}{BD} \times \frac{BF}{BC} \times S_{\Delta BCD} = \frac{4}{5} \times \frac{2}{3} \times \frac{1}{2} = \frac{4}{15}$$
, $S_{\text{四边形CDMF}} = \frac{1}{2} - \frac{4}{15} = \frac{7}{30}$.

另解:得出
$$S_{\triangle ABM} = 2S_{\triangle ACM} = 4S_{\triangle ADM}$$
后,可得 $S_{\triangle ADM} = \frac{1}{5}S_{\triangle ABD} = \frac{1}{5} \times \frac{1}{2} = \frac{1}{10}$,

则
$$S_{\text{四边形CDMF}} = S_{\Delta ACF} - S_{\Delta ADM} = \frac{1}{3} - \frac{1}{10} = \frac{7}{30}$$
.

7. 如右图,三角形 ABC 中, AF:FB=BD:DC=CE:AE=4:3,且三角形 ABC 的面积是 74,求角形 GHI 的面积.

7. 解 连接 BG, $S_{\triangle AGC} = 12$ 份

根据燕尾定理, $S_{\triangle AGC}: S_{\triangle BGC} = AF: FB = 4:3=12:9$, $S_{\triangle ABG}: S_{\triangle AGC} = BD: DC = 4:3=16:12$ 得 $S_{\triangle BGC} = 9$ (份), $S_{\triangle ABG} = 16$ (份),则 $S_{\triangle ABC} = 9+12+16=37$ (份),因此 $\frac{S_{\triangle AGC}}{S_{\triangle ABC}} = \frac{12}{37}$,

同理连接 AI、CH 得 $\frac{S_{\triangle ABH}}{S_{\triangle ABC}} = \frac{12}{37}$, $\frac{S_{\triangle BIC}}{S_{\triangle ABC}} = \frac{12}{37}$, 所以 $\frac{S_{\triangle GHI}}{S_{\triangle ABC}} = \frac{37 - 12 - 12 - 12}{37} = \frac{1}{37}$

三角形 ABC 的面积是 74,所以三角形 GHI 的面积是 $74 \times \frac{1}{37} = 2$

8. 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形. 已知甲三角形两条直角边分别为 2cm 和 4cm, 乙三角形两条直角边分别为 3cm 和 6cm, 求图中阴影部分的面积.

- 8. 解 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和. 所以阴影部分面积为: $3\times4+6\times2-(3\times6\div2+4\times2\div2)=11(cm^2)$
- 9. 如图所示,矩形 ABCD 的面积为 36 平方厘米,四边形 PMON 的面积是 3 平方厘米,则阴影部分的面积是______平方厘米。
- 9. 解 因为三角形 ABP 面积为矩形 ABCD 的面积的一半,即 18 平方厘米,三角形 ABO 面积为矩形 ABCD 的面积的 $\frac{1}{4}$,即 9 平方厘米,又四边形 PMON 的面积为 3 平方厘米,所以三角形 AMO 与三角形 BNO 的面积之和是 18-9-3=6 平方厘米.

又三角形 *ADO* 与三角形 *BCO* 的面积之和是矩形 *ABCD* 的面积的一半,即 18 平方厘米,所以阴影部分面积为 18-6=12 (平方厘米).

10. 如图,已知 BD=3DC,EC=2AE,BE与 CD相交于点 O,则 $\triangle ABC$ 被分成的 4 部分面积各占 $\triangle ABC$ 面积的几分之几?

10. 解 连接 CO,设 $S_{\triangle AEO}=1$ 份,则其他部分的面积如图所示,所以 $S_{\triangle ABC}=1+2+9+18=30$ 份,所以四

部分按从小到大各占 $\triangle ABC$ 面积的 $\frac{1}{30}$, $\frac{2+4.5}{30} = \frac{13}{60}$, $\frac{9}{30} = \frac{3}{10}$, $\frac{13.5}{30} = \frac{9}{20}$

11. 如图,在 $\triangle ABC$ 中,延长 $AB \cong D$,使 BD = AB ,延长 $BC \cong E$,使 $CE = \frac{1}{2}BC$, $F \in AC$ 的中点,若 $\triangle ABC$ 的面积是 2,则 $\triangle DEF$ 的面积是多少?

11. 解 :在 $\triangle ABC$ 和 $\triangle CFE$ 中, $\angle ACB$ 与 $\angle FCE$ 互补,

$$\therefore \frac{S_{\triangle ABC}}{S_{\triangle FCE}} = \frac{AC \cdot BC}{FC \cdot CE} = \frac{2 \times 2}{1 \times 1} = \frac{4}{1}.$$

又 $S_{\triangle ABC} = 2$,所以 $S_{\triangle FCE} = 0.5$.

同理可得 $S_{\triangle ADF} = 2$, $S_{\triangle BDE} = 3$.

所以
$$S_{\triangle DEF} = S_{\triangle ABC} + S_{\triangle CEF} + S_{\triangle DEB} - S_{\triangle ADF} = 2 + 0.5 + 3 - 2 = 3.5$$

12. 如图, BD:DC=2:3, AE:CE=5:3, 则AF:BF=_____

12. 解 根据燕尾定理有 $S_{\triangle ABG}$: $S_{\triangle ACG}$ = 2:3 = 10:15, $S_{\triangle ABG}$: $S_{\triangle BCG}$ = 5:3 = 10:6,所以 $S_{\triangle ACG}$: $S_{\triangle BCG}$ = 15:6 = 5:2 = AF : BF

13. 如图在 $\triangle ABC$ 中, $\frac{DC}{DB} = \frac{EA}{EC} = \frac{FB}{FA} = \frac{1}{3}$,求 $\frac{\triangle GHI$ 的面积 的值.

13. 解 连接 BG,设 $S_{\triangle BGC} = 1$ 份,根据燕尾定理 $S_{\triangle AGC}: S_{\triangle BGC} = AF: FB = 3:1$, $S_{\triangle ABG}: S_{\triangle AGC} = BD: DC = 3:1$,得 $S_{\triangle AGC} = 3$ (份), $S_{\triangle ABG} = 9$ (份),则 $S_{\triangle ABC} = 13$ (份),因此 $\frac{S_{\triangle AGC}}{S_{\triangle ABC}} = \frac{3}{13}$, 同理连接 AI、CH 得 $\frac{S_{\triangle ABH}}{S_{\triangle ABC}} = 13$, $\frac{S_{\triangle BIC}}{S_{\triangle ABC}} = \frac{3}{13}$,所以 $\frac{S_{\triangle GHI}}{S_{\triangle ABC}} = \frac{13 - 3 - 3 - 3}{13} = \frac{4}{13}$