Essentials of Linux Systems Administration for Bioinformatics

José Héctor Gálvez

MonBUG March 29, 2017

Identifying your role and responsibilities are the first steps when interacting with a new system

	Regular User	System Administrator
Security	√	\checkmark
Backups	\checkmark	\checkmark
Troubleshooting	√	√
Software installation	*	√
User management	*	√
System updates	×	√

You might be the de facto system administrator of your lab's workstation!

Security should be the No. 1 concern of both users and system administrators

Physical access

Local users

Remote access

No system is 100% secure

- The human factor is the weakest link
- Having a security policy will help prevent exploits

- passwd
- chmod

Linux Security Modules:

selinux

In bioinformatics and scientific computing regular backups are especially important

What to back up?

Raw data	/ / /
User files (/home)	√ ✓
System configuration files	√ ✓
Log files	√
Software	*
/tmp	×
Pseudo-filesystems/swap	×

Treat data as *read-only*:

- Only allow programs to read data and create new, separate files of results
- Always make back-ups

- rsync
- tar,dd,dump,restore
- RAID arrays (fdisk)

All users should know the basics of troubleshooting and ask for assistance when necessary

- 1. Characterize the problem
- 2. Reproduce the problem
- 3. Always try easy things first
- **4. Eliminate** possible causes, one at a time
- 5. Check system logs
 - /var/log/messages
 - /var/log/secure

Keep a checklist

For example:

- Check exit status
- Check man pages
- Check file permissions...

- kill, killall, pkill
- nice, unice
- ps,top,iostat

Bioinformatics requires the use of custom software, so having an installation policy is a good idea

- Package managers offer advantages
 - Automation
 - Scalability
 - Repeatability
 - Security
 - Auditing
- Other online repositories (github, bitbucket) can provide similar advantages

- yum, APT
- make
- git clone

Systems with several users require constant monitoring and limited permissions

- For regular users, consider:
 - Expiry dates
 - Memory quota/limited priority
 - Periodic password changes
 - Lock or disable inactive accounts
- Create user groups to manage several users at once
- Use the root account (or sudo) only when absolutely necessary

Never edit these files directly!

- /etc/passwd
- /etc/group
- /etc/shadow

- useradd, groupadd
- usermod, groupmod
- passwd, chage
- chmod, chown

An out-of-date system is less secure and might run slower than one that is regularly updated

- Regular schedule for updates
- Never skip security updates
- Package Management Systems:
 - Regular updates
 - "Smart-upgrade"
 - Verify package integrity
 - Remove packages
 - Clean cache

- APT, yum
- RPM, DPKG

A well-administered system is key for system reliability and research reproducibility

Further resources:

