

Per Link Data-driven Network Replication Towards Self-Adaptive Digital Twins

MSWiM 2025 Universitat Politècnica de Catalunya (UPC)

Samir SI-MOHAMMED, Fabrice THÉOLEYRE

Associate Professor at University of Lorraine, France CRAN/Polytech Nancy

samir.si-mohammed@univ-lorraine.fr

Problem Statement

Case Study:

- Network architect deploying IoT solutions
- Industrial deployment on the experimental platform FIT IoT-Lab [1]
 - Smart metering in an indoor environment

- 9 nodes on the Grenoble site, 24 hours deployment
- Communication technology: 802.15.4, on Contiki-NG
- Trafic: Broadcast, periodic (1 packet/s)
- Objective: Reproduce and predict the evolution of the PDR (Packet Delivery Ratio)

[1] Adjih, Cedric, et al. "FIT IoT-LAB: A large scale open experimental IoT testbed." 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015.

 P_{Tx}

 P_{Rx}

Problem Statement

Compare between the PDR evolution:

- From real measures
- From the Cooja simulator [2] :
 - Calibrated with an average PDR value per link (fixed)

^[2] Osterlind, Fredrik, et al. "Cross-level sensor network simulation with cooja." Proceedings. 2006 31st IEEE conference on local computer networks. IEEE, 2006.

 P_{Tx}

 P_{Rx}

Problem Statement

Compare between the PDR evolution:

- From real measures
- From the Cooja simulator [2] :
 - Calibrated with an average PDR value per link (fixed)

^[2] Osterlind, Fredrik, et al. "Cross-level sensor network simulation with cooja." Proceedings. 2006 31st IEEE conference on local computer networks. IEEE, 2006.

Problem Statement

Compare between the PDR evolution:

- From real measures
- From the Cooja simulator [2]:
 - Calibrated with an average PDR value per link (fixed)
- \triangleright Classification according to the mean PDR: 0% 20% 60% 75% 100%

 P_{Tx}

 P_{Rx}

[2] Osterlind, Fredrik, et al. "Cross-level sensor network simulation with cooja." Proceedings. 2006 31st IEEE conference on local computer networks. IEEE, 2006.

 P_{Tx}

 P_{Rx}

Problem Statement

Compare between the PDR evolution:

- From real measures
- From the Cooja simulator [2]:
 - Calibrated with an average PDR value per link (fixed)
- Classification according to the mean PDR: 0% 20% 60% 75% 100%

[2] Osterlind, Fredrik, et al. "Cross-level sensor network simulation with cooja." Proceedings. 2006 31st IEEE conference on local computer networks. IEEE, 2006.

Problem Statement

How to accurately predict the evolution of a KPI (PDR) in a network?

State of the Art:

- Ray-tracing approaches [3];
- Empirical studies [4, 5] to generate propagation models;
- ML-based heuristics [6, 7] for predicting performances.

Limits:

- Ignoring the links heterogeneity Modeling the network as a whole
- Absence of adaptivity in the modeling.

^[3] Ruah, C. et al., (2024). Calibrating wireless ray tracing for digital twinning using local phase error estimates. IEEE Transactions on Machine Learning in Communications and Networking.

^[4] Brun-Laguna, K., Minet, P., Watteyne, T., & Gomes, P. H. (2019). Moving beyond testbeds? Lessons (we) learned about connectivity. IEEE Pervasive Computing, 17(4), 15-27.

^[5] Baccour, N. et al., (2012). Radio link quality estimation in wireless sensor networks: A survey. ACM Transactions on Sensor Networks (TOSN), 8(4), 1-33.

^[6] Sindjoung, M. L. F., & Minet, P. (2019, November). Wireless link quality prediction in iot networks. In 2019 PEMWN (pp. 1-6). IEEE.

^[7] Benadji, H., Zitoune, L., & Vèque, V. (2023, December). Predictive modeling of loss ratio for congestion control in IoT networks using deep learning. In GLOBECOM 2023. IEEE.

Proposed Solution

Contribution: Data-driven approach

- 1. Replace the physical layer simulation by measurements
- 2. Separately model each radio link
- 3. Continuously select the best model for each link

Interest:

- Flexibility
- Temporality (anomaly Detection, etc.)

Samir Si-Mohammed MSWiM - Session 3 28 October 2025

5/13

Proposed Solution - One Step

- * Fixed Model: For each model:
 - Split between Training and Testing data
 - Create sliding windows for the regression
 - Select the best model to use for predictions

Proposed Solution - One Step

* Adaptive Model:

7/13

MSWiM - Session 3

Proposed Solution - Multi-Step

- Multi-step prediction:
 - Distinguish between the steps predictions for the evaluation

Proposed Solution – Multi-Step

- Multi-step prediction:
 - Distinguish between the steps predictions for the evaluation

Proposed Solution - Multi-Step

- **Error computing for the Adaptive approach:**
 - At each interval, compute the error for the last q (e.g., q=4) predictions, according to the different steps errors of each model:

Choose Best Model = $argmin(Error_{model})$ for the next prediction

Short-term predictions (p=1):

Mid-term predictions (p>1):

Mid-term predictions (p>1):

Contributions

- Individual link modeling
 - Captures radio links heterogeneity
 - Uses lightweight models
- Adaptive algorithm for model selection
 - Captures radio links dynamics
 - > Showcases tradeoff between accuracy and complexity
- Completely reproducible experiments and results: https://github.com/SamirSim/Wireless-Link-Quality-Prediction

Takeaways & Perspectives

Takeaways:

- Importance of deployment conditions
 - Need for reproducible experimental data
- Network heterogeneity and dynamics
 - Need for per-link modeling in network performance evaluation
 - Need for adaptive approaches

Perspectives:

- Metrology with a dynamic traffic?
- Scalability?
- Generalization capabilities?

Takeaways & Perspectives

Takeaways:

- Importance of deployment conditions
 - Need for reproducible experimental data
- Network heterogeneity and dynamics
 - Need for per-link modeling in network performance evaluation
 - Need for adaptive approaches

Perspectives:

- Metrology with a dynamic traffic?
- Scalability?
- Generalization capabilities?

Thank you for your attention!