Követelmények

Nehézségi fokozatok és érdemjegyek

A kötelező programok három *nehézségi fokozatban* teljesíthetők. A *nehézségi fok* meghatározza a **legjobb** érdemjegyet, amely a teljesítéséért kapható!

Nehézségi fok	Legjobb megszerezhető érdemjegy
Basic	3
Advanced	4
Epic	5

Tip

A feladatok úgy vannak megadva, hogy érdemes a ${f Basic}$ szinttel kezdeni, és onnan fokozatosan építkezni az ${f Epic}$ szintig.

A kötelező programok a következő szempontok szerint kerülnek értékelésre:

- Bizonyítottan saját munka
- Értékelhető eredményeket produkáljon
- Verziókövetés használata, feltöltés GitHub/GitLab/egyéb repoba
- Értékelési szempontok:
 - a megoldás teljessége
 - megfelelő ROS kommunikáció alkalmazása
 - program célszerű szerkezete
 - az implementáció minősége
 - a kód dokumentálása

Ütemezés

Okt. hét	Dátum	Számonkérés
2.	február 14	Kötelező programok ismertetése.
4.	február 28	Kötelező programok választása.
9	április 4	Kötelező program mérföldkő.
14.	május 9	Kötelező programok bemutatása.

Évközi jegy

A félév elfogadásának feltétele, hogy mind a két ZH, mind a kötelező program értékelése legalább elégséges. A két ZH közül az egyik az utolsó óra alkalmával pótolható.

 $(Jegy = (ZH1 + ZH2 + 2 \times K\"{o}tProg) / 4)$

Témaválasztás

• A 4. heti órán (február 28.) konzultálunk a kötelező programokról

A választott témáját mindenki küldje el emailben **február 28. 19:00-ig** erre az email címre: tamas.daniel.nagy@irob.uni-obuda.hu . Az email tárgya legyen **ROS_kötprog_2022_tavasz**.

Kötelező program témák

1. PlatypOUs

1.1. PlatypOUs pályakövetés

- Basic: Szimulátor élesztése, SLAM tesztelése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása pályakövetésre szimulált környezetben bármely szenzor felhasználásával(pl. fal mellett haladás adott távolságra LIDAR segítségével).
- Epic: Implementáció és tesztelés a valós hardware-en és/vagy nyűgözz le!

1.2. PlatypOUs akadály elkerülés

- **Basic:** Szimulátor élesztése, SLAM tesztelése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása akadály felismerésére és az akadályt kikerülő trajektória tervezésére és megvalósítására szimulált környezetben bármely szenzor felhasználásával.
- Epic: Implementáció és tesztelés a valós hardware-en és/vagy nyűgözz le!

1.3. PlatypOUs objektum követés

- Basic: Szimulátor élesztése, SLAM tesztelése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása objektum megkeresésére/ felismerésére és követésére/megközelítésére szimulált környezetben bármely szenzor felhasználásával (pl. visual servoing).
- Epic: Implementáció és tesztelés a valós hardware-en és/vagy nyűgözz le!

1.4. PlatypOUs action library

- Basic: Szimulátor élesztése, SLAM tesztelése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: Egyszerű műveleteket tartalmazó, ROS action alapú könyvtár és ezeket végrehajtó rendszer implementálása (pl. push object, move to object, turn around).
- Epic: Implementáció és tesztelés a valós hardware-en és/vagy nyűgözz le!

2. AMBF

2.1. da Vinci sebészrobot ROS integrációja AMBF szimulátorban

• **Basic:** Szimulátor élesztése, robot vezérlése joint space-ben és task space-ben (IK már implementálva AMBF-ben) ROS-ból CRTK szerinti topic-okon keresztül

- Advanced: Objektumok detektálása Peg transfer puzzle-ben
- **Epic:** Autonóm manipuláció *Peg transfer*-en és/vagy nyűgözz le!

2.2. KUKA robotkar ROS integrációja AMBF szimulátorban

• Basic: Szimulátor élesztése, robot vezérlése joint space-ben ROS-ból

• Advanced: Robot vezérlése task space-ben, IK?

• **Epic:** Trajektóriatervezés

2.3. PR2 humanoid robot ROS integrációja AMBF szimulátorban

- Basic: Szimulátor élesztése, robot vezérlése joint space-ben ROS-ból
- Advanced: Robot vezérlése task space-ben, IK?
- Epic: Trajektóriatervezés/Navigáció/Manipuláció

X. Saját téma

Megegyezés alapján.

Hasznos linkek

- Gazebo ROS packages
- PlatypOUs
- AMBF
- My fork of AMBF
- CRTK topics
- Navigation stack
- Paper on LiDAR SLAM
- Paper on vSLAM

• Paper on Visual Servoing Mobile Robot