Correction contrôle n°1 CPI2: Groupe1

Exercice n°1

$$R_{AB} = \frac{8R}{13}$$

Exercice n°2

$$U = \frac{E}{8}$$

Exercice n°3

$\underline{Y}_{AB} = \frac{G_0}{2} + j \left(C\omega - \frac{1}{L\omega} \right)$		$Y_{AB} = \sqrt{\left(\frac{G_0}{3}\right)^2 + \left(C\omega - \frac{1}{L\omega}\right)^2}$	
$\psi = arctg \left(\frac{C\omega - \frac{1}{L\omega}}{\frac{G_0}{2}} \right)$	$G = \frac{G_0}{2}$	$B = C\omega - \frac{1}{L\omega}$	

Exercice n°4

$$(\underline{a}_i) = \begin{pmatrix} 2 & 3R \\ \frac{1}{R} & 2 \end{pmatrix} \qquad (\underline{g}) = \begin{pmatrix} \frac{1}{2R} & -\frac{1}{2} \\ \frac{1}{2} & \frac{3R}{2} \end{pmatrix}$$

Exercice n°5

$\underline{A}_{v} = \frac{1}{3}$	$\underline{A}_i = -\frac{1}{2}$	$\frac{1}{5}$ A	$_{p}=\frac{1}{15}$
$\underline{Z}_E = \frac{3R}{5}$	$\underline{Z}_S = \frac{3R}{5}$	Z_{0}	$_{C}=\frac{R}{\sqrt{3}}$
$\underline{Z}_{TD} = \frac{R}{5}$	$Z_{TI} = -3R$	$\underline{Y}_{TD} = -\frac{1}{3R} = -\frac{G}{3}$	$\frac{Y}{R} = \frac{5}{R} = 5G$

Pr. A. BAGHDAD Correction «Électronique » 1/4

Correction contrôle n°1 CPI2: Groupe2

Exercice n°1

$$R_{CD} = \frac{5R}{13}$$

Exercice n°2

$$I = \frac{I_G}{8}$$

Exercice n°3

$\underline{Z}_{AB} = \frac{R_0}{2} + j \left(L\omega - \frac{1}{C\omega} \right)$		$Z_{AB} = \sqrt{\left(\frac{R_0}{2}\right)^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$	
$\varphi = arctg \left(\frac{L\omega - \frac{1}{C\omega}}{\frac{R_0}{2}} \right)$	$R = \frac{R_0}{2}$	$X = L\omega - \frac{1}{C\omega}$	

Exercice n°4

$$(\underline{y}) = \begin{pmatrix} \frac{2}{R} & -\frac{1}{R} \\ -\frac{1}{R} & \frac{2}{R} \end{pmatrix} \quad (\underline{g}) = \begin{pmatrix} \frac{3}{2R} & -\frac{1}{2} \\ \frac{1}{2} & \frac{R}{2} \end{pmatrix}$$

Exercice n°5

$\underline{A}_{v} = \frac{1}{5}$	$\underline{A}_i = -\frac{1}{3}$	$A_p = \frac{1}{15}$
$\underline{Z}_E = \frac{5R}{3}$	$Z_S = \frac{5R}{3}$	$Z_C = \sqrt{3} \cdot R$
$\underline{Z}_{TD} = \frac{R}{3}$	$Z_{TI} = -5R$ Y	$T_{TD} = -\frac{1}{5R} = -\frac{G}{5}$ $Y_{TI} = \frac{3}{R} = 3G$

Correction contrôle n°2 CPI2

Exercice n°1

$$(a) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (a) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad (a) = \begin{pmatrix} 1 & 2R \\ 0 & 1 \end{pmatrix} \quad (a) = \begin{pmatrix} -1 & -2R \\ 0 & -1 \end{pmatrix}$$

Exercice n°2

$\underline{A}_{v} = \frac{1}{3}$	$\underline{A}_i = -\frac{1}{2}$	$\frac{1}{2}$ A_{μ}	$r_{0}=\frac{1}{6}$
$\underline{Z}_E = \frac{3R}{2}$	$\underline{Z}_S = \frac{2F}{3}$	Z_{C}	$=\sqrt{2}\cdot R$
$Z_{TD} = \frac{R}{2}$	$Z_{TI} = -3R$	$\underline{Y}_{TD} = -\frac{1}{3R} = -\frac{G}{3}$	$\underline{Y}_{TI} = \frac{2}{R} = 2G$

Exercice $n^{\circ}3$:

 $Si V_e > E_0$ alors $V_s = E_0$ $Si V_e < E_0$ alors $V_s = V_e$

Exercice n°4:

$$I = \frac{2E}{3R_0}$$
 et $I_d = \frac{E}{3R_0}$ $I_d = \frac{E}{2R_0}$ et $I_d = 0$

Exercice n°5:

Tension V _e	État de D1	État de D2	Tension V _s
$V_e > E_2 > E_1$	В	P	$V_s = E_2$
$E_1 < V_e < E_2$	В	В	$V_s = V_e$
$V_e < E_1 < E_2$	P	В	$V_s = E_1$

Un montage limiteur

Correction Examen final CPI2

Exercice n°1 : Dipôles

$\underline{Z}_{AB} = \frac{R_0}{3} + j \left(L\omega - \frac{1}{2C\omega} \right)$	$Z_{AB} = \sqrt{\left(\frac{R_0}{3}\right)^2 + \left(L\omega - \frac{1}{2C\omega}\right)^2}$	
$\varphi = arctg \left(\frac{L\omega - \frac{1}{2C\omega}}{\frac{R_0}{3}} \right) \qquad R = \frac{R_0}{3}$	$X = L\omega - \frac{1}{2C\omega}$	

Exercice $n^{\circ}2$: Quadripôles

$$(\underline{a}) = \begin{pmatrix} 1 & R \\ 1/R & 2 \end{pmatrix} \qquad (\underline{z}) = \begin{pmatrix} R & R \\ R & 2R \end{pmatrix} \qquad (\underline{y}) = \begin{pmatrix} 2/R & -1/R \\ -1/R & 1/R \end{pmatrix} \qquad (\underline{h}) = \begin{pmatrix} R/2 & 1/2 \\ -1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\underline{A}_{v} = \frac{1}{2}$$

$$\underline{A}_{i} = -\frac{1}{3}$$

$$A_{p} = \frac{1}{6}$$

$$\underline{Z}_{E} = \frac{2R}{3}$$

$$\underline{Z}_{S} = \frac{3R}{2}$$

$$Z_{C} = \frac{R}{\sqrt{2}}$$

$$Z_{TD} = \frac{R}{3}$$

$$Z_{TD} = -2R$$

$$Y_{TD} = -\frac{1}{3} = -\frac{G}{3}$$

$$Y_{TD} = -\frac{1}{3} = -\frac{G}{3}$$

$$Y_{TD} = \frac{3}{3} = 3G$$

$\underline{Z}_{TD} = \frac{R}{3} \qquad \underline{Z}_{TI} = -2R$	$\underline{Y}_{TD} = -\frac{1}{2R} = -\frac{G}{2}$	$\underline{Y}_{TI} = \frac{3}{R} = 3G$
--	---	---

Exercice n°3: Diodes

V_e	D_1	D_2	D_3	D_4	V _s
$V_e > 0$	В	P	В	P	$V_s = V_e$
$V_e < O$	P	В	P	В	$\mathbf{V}_s = + \mathbf{V}_e$

Un redressement double alternance

Exercice n°4 : Diodes

$$I = \frac{2E}{R}$$
 et $I_d = \frac{E}{R}$ 2° , $I = \frac{3E}{2R}$ et $I_d = 0$

Exercice n°5 : Amplificateur opérationnel

19
$$V_s = \frac{V_1 + V_1 + V_1}{3}$$
 2°) Moyenneur