ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЫСОКОТЕХНОЛОГИЧНЫХ СИСТЕМ

Материалы Всероссийской конференции с международным участием

Москва, РУДН, 18-22 апреля 2016 года

УДК 004:007(063) ББК 32.81

И74

Организатор конференции: Российский университет дружбы народов Соорганизаторы конференции:

Московский технический университет связи и информатики (МТУСИ)

Институт проблем управления им. В. А. Трапезникова Российской академии наук (ИПУ РАН)

Лаборатория информационных технологий Объединенного института ядерных исследований (ЛИТ ОИЯИ) Федеральный исследовательский центр «Информатика и управление» Российской академии наук (ФИП ИУ

Программный комитет: Самуйлов К. Е., д.т.н., проф., РУДН — председатель программного комитета; Севастьянов Л. А., д.ф.-м.н., проф., РУДН — сопредседатель программного комитета; Толмачев И. Л., к.ф.м.н., проф., РУДН — сопредседатель программного комитета; Гудкова И. А., к.ф.-м.н., доцент, РУДН секретарь программного комитета; Андреев С. Д., к.т.н., РУДН, Tampere University of Technology, г. Тампере, Финляндия, Башарин Г. П., д.т.н., проф., РУДН; Боголюбов А. Н., д.ф.-м.н., проф., МГУ; Виницкий С. И., д.ф.-м.н., проф., ЛТФ ОИЯИ; Вишневский В. М., д.т.н., проф., ИПУ РАН; Гайдамака Ю. В., к.ф.-м.н., доцент, РУДН; Гнатич М. М., проф., Pavol Jozef Šafárik University in Košice, Словакия; Гольдштейн Б. С., д.т.н., проф., СПб ГУТ; Горшенин А. К., к.ф.-м.н., доцент, ФИЦ ИУ РАН; Дружинина О. В., д.ф.-м.н., проф., ФИЦ ИУ РАН; Ефимушкин В. А., к.ф.-м.н., доцент, ОАО «Интеллект Телеком»; Ибрагимов Б. Г., д.т.н., проф., Азербайджанский технический университет (АзТУ), г. Баку, Азербайджан; Кореньков В.В., д.т.н., проф., ЛИТ ОИЯИ; Крянев А. В., д.ф.-м.н., проф., НИЯУ «МИФИ»; Кулябов Д. С., к.ф.-м.н., доцент, РУДН; Кучерявый А. Е., д.т.н., проф., СПб ГУТ; Кучерявый Е. А., к.т.н., проф., НИУ ВШЭ, Tampere University of Technology, г. Тампере, Финляндия; Ланеев Е. Б., д.ф.-м.н., проф., РУДН; Мартикайнен О. Е., проф., Service Innovation Research Institute, г. Хельсинки, Финляндия; Назаров А. А., д.т.н., проф., ТГУ; Наумов В. А., проф., Service Innovation Research Institute, г. Хельсинки, Финляндия; Осипов Г. С., д.ф.-м.н., проф., ФИЦ ИУ РАН; Пузынин И. В., дф.-м.н., проф., ЛИТ ОИЯИ; Пшеничников А. П., кт.н., проф., МТУСИ; Ромашкова О. Н., дт.н., проф., МГПУ; Севастьянов А. Л., к.ф.-м.н., доцент, РУДН; Степанов С. Н., дт.н., проф., МТУСИ; Стрельцова О. И., к.ф.-м.н., с.н.с., ЛИТ ОИЯИ; Сущенко С. П., д.т.н., проф., ТГУ; Хачумов В. М., д.т.н., проф., ФИЦ ИУ РАН; Цирулев А. Н., д.ф.-м.н., проф., ТвГУ; Цитович И. И., д.ф.-м.н., доцент, ИППИ РАН; Шоргин С. Я., д.ф.-м.н., проф., ФИЦ ИУ РАН; Щетинин Е. Ю., д.ф.-м.н., проф., СТАНКИН.

Оргкомитет:

Председатель: Самуйлов К. Е., д.т.н., профессор, РУДН.

Сопредседатели: Севастьянов Л. А., д.ф.-м.н., проф., РУДН; Толмачёв И. Л., к.ф.-м.н., профессор, РУДН. Секретарь: Диваков Д. В., РУДН.

Члены оргкомитета: Гудкова И. А., к.ф.-м.н., доцент, РУДН; Никитина Е. В., к.х.н., зам. декана по науке, РУДН; Королькова А. В., к.ф.-м.н., доцент, РУДН; Соченков И. В., к.ф.-м.н., РУДН; Демидова А. В., к.ф.м.н., РУДН; Острикова Д. Ю., РУДН; Таланова М. О., РУДН; Тютюнник А. А., РУДН.

Теория телетрафика и ее применения

Сопредседатели: д.т.н., проф. Башарин Г. П. (РУДН), к.т.н., проф. Пшеничников А. П. (МТУСИ), к.ф.-м.н. доцент Гудкова И. А. (РУДН).

Секретарь: Острикова Л.Ю. (РУЛН).

Сети связи следующего поколения: управление, качество, архитектура

Сопредседатели: д.т.н., проф. Самуйлов К. Е. (РУДН), д.т.н., проф. Вишневский В. М. (ИПУ РАН), к.ф.-м.н., доцент Гайдамака Ю. В. (РУДН).

Секретарь: Таланова М. О. (РУЛН).

Прикладные информационные системы

Сопредседатели: л.ф.-м.н., проф. Осипов Г. С. (ФИЦ ИУ РАН), проф. Толмачев И. Л. (РУЛН).

Секретарь: к.ф.-м.н. Соченков И.В. (РУЛН).

Высокопроизводительные технологии распределенных вычислений

Сопредседатели: д.т.н., проф. Кореньков В. В. (ЛИТ ОИЯИ), к.ф.-м.н., доцент Кулябов Д. С. (РУДН). Секретарь: к.ф.-м.н., доцент Королькова А. В. (РУДН).

Математическое моделирование

Сопредседатели: д.ф.-м.н., проф. Севастьянов Л. А. (РУДН), д.ф.-м.н., проф. Крянев А. В. (НИЯУ «МИ-ФИ»), д.ф.-м.н., проф. Дружинина О. В. (ФИЦ ИУ РАН). Секретарь: к.ф.-м.н. Демидова А. В. (РУДН).

И74 Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем: материалы Всероссийской конференции с международным участием. Москва, РУДН, 18-22 апреля 2016 г. — Москва: РУДН, 2016. — 349 с.: ил.

> УДК 004:007(063) **ББК 32.81**

- ISBN 978-5-209-07163-1 © Коллектив авторов, 2016
- © Российский университет дружбы народов, Издательство, 2016

Содержание

Теория телетрафика и её применения

намическим распределением канального ресурса	10
Дараселия А.В., Сопин Э.С. К вопросу энергоэффективности облачной системы.	13
Ибрагимов Б.Г., Гасанов А.Г. Исследование качества функционирования сетей NGN/IMS при установлении мультимедийной сессии	16
Ибрагимов Б. Г., Гумбатов Р. Т., Ибрагимов Р. Ф. К анализу показателей качества обслуживания в мультисервисных сетях связи	19
Кутбитдинов С.Ш., Лохмотко В.В., Рудинская С.Р. Модель оценки гарантированной битовой скорости для мультимедийных приложений IMS	22
Лившиц К. И., Ульянова Е. С. Релейно-гистерезисное управление скоростью производства скоропортящейся продукции	25
Лисовская Е.Ю., Монсеева С.П. Исследование суммарного объема требований в бесконечнолинейной системе массового обслуживания вида $M GI $ ∞	28
Мамедов Г. А., Ибрагимов Б. Г., Исаев Я. С. Построение и анализ модели сетей NGN/IMS с учетом свойств самоподобия сигнального трафика	31
Маркова Е. В., Полуэктов Д. С. Рекуррентный алгоритм расчета стационарного распределения вероятностей состояний модели с прерыванием обслуживания для не толерантного к задержкам трафика в сети 3GPP LTE с поддержкой LSA	34
Мацкевич И.А. Вероятностно-временные характеристики системы массового обслуживания с обобщенным обновлением и повторным обслуживанием	37
Назаров А. А., Бронер В. И. Метод R-аппроксимации для системы управления запасами с релейным управлением	40
Назаров А. А., Измайлова Я. Е. Исследование RQ-системы M GI 1 с неэкспоненциальной задержкой заявок в ИПВ и вытеснением заявок	43
Назаров А. А., Пауль С. В. Аппроксимация распределения неотрицательной случайной величины PH-распределением	46
Панкратова Е.В., Убонова Е.Г., Моисеева С.П. Исследование бесконечнолинейной СМО с разнотипным обслуживанием и входящим потоком марковского восстановления	49
Поморцева Н. А., Назаров А. А. Асимптотический анализ RQ-системы с конфликтами и дообслуживанием заявок	52
Романов А. М. Математическая модель обслуживания трафика реального времени от конечной группы источников и трафика данных с динамическим распределением ресурса сети	55
Сопин Э.С., Растрига Р.В. Анализ характеристик времени отклика системы облачных вычислений.	59
Федуро А. А., Маркова Е. В., Гудкова И. А. Модель схемы совместного использования ресурсов LSA со снижением скорости и прерыванием обслуживания в сети 3GPP LTE	62

Фёдорова Е. А. Исследование RQ-системы $M M N$ в условии большой загрузки	65
Филипова В. Р., Маркова Е. В., Мариняк Б. В., Гудкова И. А. К сравнительному анализу схем совместного использования ресурсов LSA с прерыванием обслуживания	
в сети 3GPP LTE	68
Сети связи следующего поколения: управление, качество, архитектура	
Абаев П.О., Бесчастный В.А. К анализу плотности распределения устройств D2D-сети	71
Абаев П. О., Бесчастный В. А., Царев А. С. Построение модели и анализ показателей эффективности IMS сервера конференцсвязи	74
Балыка Е.И., Ботвинко А.Ю., Зарипова Э.Р., Саитов Д.А. Влияние межсетевого экрана на среднее время установления сессии	77
Бегишев В.О., Бутурлин И.А., Тен В.О., Чукарин А.В. Разработка симулятора радиоканала случайного доступа с процедурой запрета классов доступа для трафика межмашинного взаимодействия	79
Бегишев В.О., Бутурлин И.А., Исаев Ю.Д. Построение модели радиоканала случайного доступа с предварительной синхронизацией D2D-устройств	82
Безкостая А. В., Поповская Н. О., Шипунов С. П., Гайдамака Ю. В. Пример построения модели деятельности телекоммуникационной компании в виде сети массового обслуживания	85
Вишневский В. М., Иванов Р. Е., Ларионов А. А. Способы построения опорной сети миллиметрового Е-диапазона для сетей 5G	88
Горшенин А. К., Королев В. Ю. Статистический подход для определения экстремальных пороговых значений	90
Ермакова Т. Н., Ромашкова О. Н. Математическая модель оценки финансовых по-казателей средней общеобразовательной организации	93
Зарипова Э.Р., Чухно О.В., Чухно Н.В. Оптимизация показателей эффективности бизнес-процесса «ввод в эксплуатацию» с помощью симплекс-метода	96
Князева А. Н. Анализ социально-экономических и психологических данных в пакете SPSS	99
Краденых А.А. Построение математической модели системы облачных вычислений .	101
Медведева Е. Г., Гайдамака Ю. В. Пример расчета показателей качества P2PTV-сети при схеме с разделением данных на поток для просмотра и поток для раздачи пользователями	104
Обжерин Ю. Е., Бойко Е. Г., Сидоров С. М. Производительность технологической ячейки с мгновенно пополняемым резервом времени	107
Осипов О. А., Тананко И. Е. Моделирование сетей передачи данных с многопутевой маршрутизацией сетями массового обслуживания с делением и слиянием требований .	110
Острикова Д.Ю., Гудкова И.А. К анализу средней скорости передачи данных по технологии мультивещания устройствами межмашинного взаимодействия в беспроводной сети	113
Пяткина Д. А. Прогнозированние временного ряда пользователей INTERNET в России средствами EVIEWS	116

Ориентирование группы мобильных роботов
Тихомирова В.С., Гудкова И.А. К анализу среднего времени выполнения бизнеспроцессов поддержки беспроводных межмашинных взаимодействий для управления городской инфраструктурой
Япо ГиС., Зарядов И.С. Интервальные оценки характеристик системы с оптималь-
ным выбором
Прикладные информационные системы и технологии
Азофейфа Э.Х. Математический аппарат для анализа диаграмм состояний бизнеспроцессов
Андрейчук А.А. Методы планирования совокупности траекторий для коалиции интеллектуальных агентов
Боковой А. В. Совмещение границ в методах одновременного картирования и локализации по видеопотоку, полученному с единственной камеры
Власова Е. Д., Новикова Г. М., Полевая О. М. Типы противоречий при формировании стратегии предприятия
Дульнева А.С., Жуков В.В., Новикова Г.М. Использование нормативно-правового контента для повышения эффективности работы CRM-системы
Зубрихина М.О., Новикова Г.М., Лутфалла Ф.А. Проектирование базы данных для работы с бизнес-процессами в прикладных системах
Иванов А. Е. Методы анализа стереоизображений в задаче распознавания параметров трехмерных сцен
Исаков В. А. Приложение для просмотра текстовых заимствований
Каменская М.А. Модель дискурса научно-технического текста в задаче извлечения информации
Кобозева М.В. Принципы риторической разметки текстов на русском языке 15
Нгуен Зуй Тхань Анализ инвариантных моментов в задачах масштабирования и вращения изображений
Новикова Г.М., Янгутова С. Ч. Разработка и систематизация информационного контента для системы предоставления электронных услуг
Резаиан Н., Новикова Г.М. Система автоматического реферирования текста на персидском языке
Осипенко М. А. Разработка и исследование метода сбора и структурирования информации для создания мультиязычного тезауруса на основе энциклопедии Wikipedia 10
Пальчевский А. И. Выбор модели освещения при построении изображения с использованием метода Фонга
Руденкова Ю. С. Применение OLAP-технологий при анализе эффективности проведения судебных экспертиз
Салпагаров С. И., Маркина Ю. Р. Поиск оптимальной стратегии распределения ресурсов

Соченкова А. С. Разработка метода индексации коллекций изображений для идентификации персон	178
Стефанюк В. Л., Алхуссайн А. Х. Криптография и кодирование как методы защиты информации	181
Стихуров В. В., Фомин М. Б. Построение схем разреженности многомерных кубов данных	183
Хейдари М. Использование OLAP технологии и многомерных данных для принятия управленческих решений	186
Храбров Р. Н. Операторы HDR Tone Mapping для повышения реалистичности изображения.	189
Ягло М. Д. Применение технологии оперативной аналитической обработки данных в задачах здравоохранения	191
Ядринцев В.В. Разработка морфологического анализатора русского и английского языка	194
Высокопроизводительные технологии распределённых вычислени	тй
Адам Г., Беляков Д.В., Валя М., Зрелов П.В., Матвеев М.А., Подгайный Д.В., Стрельцова О.И. Особенности программно-аппаратной среды гетерогенного вычислительного кластера HybriLIT	197
Адам Г., Вальова Л., Валя М., Заикина Т. Н., Киракосян М. Х., Торосян Ш. Г. Информационная среда гетерогенного кластера Hybrilit	199
Валя М., Майоров А. В., Бутенко Ю. А., Подолян Г. П., Булатов А. С. Веб-сервис мониторинга гетерогенного кластера Hybrilit.	201
Зуев М.И., Адам Г., Беляков Д.В., Валя М., Матвеев М.А., Подгайный Д.В., Стрельнова О.И. Разработка и поддержка проекта «Paralleling features» в системе GitLab в рамках сервисов, предоставляемых пользователям кластера HybriLIT	204
Кадочников И.С., Пелеванюк И.С. Мониторинг сервисов TIER1 в ОИЯИ	206
Максимов А. А. Анализ производительности пакета Geant4 на архитектуре HybriLIT .	209
Математическое моделирование	
Айриян А. С. Алгоритм и моделирование процесса теплопроводности для проектирования тонкого многослойного технического устройства	213
Аль-Натор М. С. О выборе оптимального протфеля с комиссией в модели Марковица.	214
Аль-Натор М. С., Аль-Натор С. В. Анализ двумерных портфелей с комиссией в условиях неопределенности	217
Аль-Натор М. С., Власова М. А. Нахождение оптимального размера заемного капитала при требуемом уровне риска на основе модели Модильяни-Миллера с корпоративными налогами	220
Амирханов И. В., Саркар Н. Р., Сархадов И., Тухлиев З. К. Численное моделирование квазистационарных состояний в открытых системах	223
Амирханов И. В., Саркар Н. Р., Сархадов И., Тухлиев З. К., Шарипов З. А. Моделирование тепловых процессов в металлах при облучении импульсными пучками ионов	226

тивных портфелей на рынках перестрахования	229
Болотова Г.О., Миронова В.А. Построение экономико-математической модели ценообразования на услуги контент-провайдеров	232
Будочкина С. А. Ви-гамильтоновы и Гамильтона-допустимые уравнения в механике бесконечномерных систем	233
Будочкина С. А. Операторное уравнение с первой производной по времени и классические уравнения Биркгофа	236
Васильев С. А., Болотова Г. О. Моделирование неоднородных счетных цепей Маркова на основе систем нелинейных дифференциальных уравнений бесконечного порядка с малым параметром	239
Васильев С. А., Канзитдинов С. К. Построение методов прогнозирования динамики сложных систем с использованием нейронных сетей с бесконечным числом ячеек	240
Васильев С.А., Коршок Е.О. Построение асимптотических решений сингулярно возмущенного стохастического дифференциального уравнения бесконечного порядка .	242
Васильев С. А., Урусова Д. А. Исследование существования, единственности и устойчивости равновесия в экономико-математической модели рынка телекоммуникаций в случае олигополии	244
Васильев С. А., Харун Х. С. Построение модели ценообразования в телекоммуникациях в условиях перегрузок в сетях	247
Велиева Т. Р., Королькова А. В. Разработка гибридной имитационной модели модуля активного управления трафиком	248
Герасимова А. В., Ланеев Е. Б., Муратов М. Н. Использование составных стабилизаторов в функционале Тихонова при решении одной обратной задачи физики плазмы .	251
Герасимова А.В., Ланеев Е.Б., Муратов М.Н. Приближенное устойчивое численное решение интегрального уравнения первого рода с использованием весовых функций в стабилизаторе функционала Тихонова	253
Гусев А. А., Хай Л. Л., Виницкий С. И., Очбадрах Ч. Решение задачи на собственные значения с кусочно-постоянными потенциалами	255
Дашицыренов Г. Д. Устойчивый алгоритм построения дисперсионных кривых многослойного диэлектрического планарного волновода	258
Диваков Д. В. Неполный метод Галеркина в задаче моделирования направляемых мод открытых нерегулярных волноводов	261
Диваков Д. В., Чупритский В. К. Решение задачи теплопроводности для прогнозирования температуры зданий	264
Дружинина О.В., Масина О. Н. Условия устойчивости модели динамики популяций на основе детерминированного и стохастического подходов	267
Ершов Н.М., Полуян С.В. Улучшение сходимости роевых и эволюционных алгоритмов оптимизации на основе моделирования поведения рыбных стай	271
Еферина Е. Г., Кулябов Д. С. Основное кинетическое уравнение в представлении чисел заполнения	274

Зюбина М. В., Самойлов С. Н., Дикова Е. В., Рыбка В. С., Крылов А. И. Математическое моделирование нестационарных волн напряжений в консоли при воздействии воздушной ударной волны на консоль с основанием (упругая полуплоскость) используя численный метод, алгоритм и комплекс программ Мусаева В.К.	277
Карамышева А. В., Шипова Е. П. Прогнозирование численности населения России с помощью стандартной демографической модели	280
Карпухин С.А. Оптимальное геометрическое размещение методом растеризации сумм минковского	283
Крянев А.В., Синицын А.Е. Формирование эффективных инвестиционных портфелей на основе многокритериальной постановки	286
Кулябов Д.С., Геворкян М.Н., Мачука Х.Р., Диаррассуба Калилу, Дали Джерейе Тьерри Ги Численное и имитационное моделирование дисциплин обслуживания очередей типа RED на маршрутизаторе	289
Кузьмина Л.К. О некоторых подходах в проблемах математического моделирования .	292
Любин П.Г., Щетинин Е.Ю. Эффективное сглаживание двумерной поверхности	296
Матюшенко С. И., Дубе Н. Классификация стран Африки по социально- экономическим показателям с помощью кластерного анализа	299
Матюшенко С.И., Нибасумба Э. Исследование платежеспособности клиентов кредитных организаций с помощью дискриминантного анализа	302
Матюшенко С. И., Перес Д. Применение многослойного имитационного моделирования для оценки инвестиционного проекта	306
Михеев А.В. Методы и принципы оценки стоимости финансовых инструментов и контрактов страхования	309
Мусаев В.К. Математическое моделирование стоячих волн напряжений в горизонтальной бесконечной полосе при воздействии в виде дельта функции и функции Хевисайда	312
Осокин Л. А. Моделирование работы прачечной многоквартирного арендного дома .	315
Петров В. А., Савин А. С., Хохлов А. А., Четов А. И. Анализ временных рядов методом SSA в приложении к изучению поведения покупателей	318
Полуян С.В., Ершов Н.М. Эволюционные алгоритмы оптимизации в задаче предсказания вторичной структуры белка	321
Севастьянов Л. А., Васильев С. А., Блинов А. И. Математическое моделирование транспортных систем с использованием нейронных сетей	324
Сингх Л., Сподарев А. А., Ланеев Е. Б., Муратов М. Н. Продолжение потенциального поля с поверхности общего вида.	325
Сподарев А. А., Сингх Л., Ланеев Е. Б., Муратов М. Н. Об одной задаче продолжения потенциального поля	327
Тарасенко А.А., Стародубцев В.В., Мусаев А.В., Крылов А.И., Рыбка В.С. Численное моделирование внешнего ударного воздействия на несущие конструкции технических систем с помощью численного метода, алгоритма и комплекса программ Мусаева В.К	328
Тютюнник А.А. Расчетная модель коэффициентных функций метода волноводов сравнения для открытых плавно-нерегулярных волноводов	331

Хай Л.Л., Гусев А.А., Виницкий С.И., Очбадрах Ч. Решение многоканальной задачи рассеяния с кусочно-постоянными потенциалами	334
Шарапова А.А. Метод полного и рассеянного поля для моделирования удаленного источника плоской волны	338
Шибашова А. Г., Стадник А. В. Разработка алгоритма детектирования возгорания и задымления на основе анализа видеопотока	340
Щербаков А.В. Качественный анализ моделей популяционной динамики, учитывающих конкурентные и симбиотические отношения	343
Авторский указатель	346

ОСНОВНОЕ КИНЕТИЧЕСКОЕ УРАВНЕНИЕ В ПРЕДСТАВЛЕНИИ ЧИСЕЛ ЗАПОЛНЕНИЯ

Еферина Е.Г., Кулябов Д.С.

Российский университет дружбы народов, eg.eferina@mail.com, ds@sci.pfu.edu.ru

Получено основное кинетическое уравнение в операторном виде. Применены комбинаторный и операторный методы к модели Ферхюльста.

Ключевые слова: стохастические дифференциальные уравнения; основное кинетическое уравнения; уравнение Фоккера-Планка; популяционные модели.

Работа частично поддержана грантами РФФИ № 14-01-00628, 15-07-08795, 16-07-00556.

Введение

Для построения стохастических моделей одношаговых процессов (процессов рождения гибели) была описана комбинаторная методика на основе идеологии Н. Г. ван Кампена и К. В. Гардинера. В рамках данной методики из схем взаимодействия строится основное кинетическое уравнение. Само основное кинетическое уравнение не исследуется, а, вместо этого, преобразуется к уравнению Фоккера—Планка путём разложения в формальный ряд (разложение Крамерса—Мойала)[1-2]. Однако возникает необходимость обоснования возможности применения данного разложения для каждого типа процессов. Таким образом, необходимо как исследование самого основного кинетического уравнения, так и обоснование его разложения. Предполагается, что наилучшим образом этим требованиям отвечает квантовая теория возмущений.

Была поставлена задача, изложить методику применения операторного метода, записать основное кинетическое уравнение в представлении чисел заполнения. Сравнить методики, применив их к модели Ферхюльста.

Основное кинетическое уравнение

Для того чтобы записать основное кинетическое уравнение, введем операторы рождения и уничтожения:

$$\pi|n\rangle = |n+1\rangle,$$

$$a|n\rangle = n|n-1\rangle.$$
(1)

С коммутационным соотношением:

$$[a, \pi] = 1 \tag{2}$$

Из (2) видно, что при выборе скалярного произведения в виде система описывается статистикой Бозе—Эйнштейна.

Таким образом,

$$a^{\dagger} = \pi$$
.

Далее запишем уравнение Лиувилля:

$$\frac{\partial}{\partial t}|\varphi(t)\rangle = L|\varphi(t)\rangle. \tag{3}$$

Оператор Лиувилля *L* удовлетворяет соотношению:

$$0|L = 0.$$

Тогда:

$$\frac{\partial p_n}{\partial t} = \frac{1}{n!} \left\langle n \left| \frac{\partial}{\partial t} \right| \varphi \right\rangle = \frac{1}{n!} \left\langle n | L | \varphi \right\rangle = \sum_m [w_{nm} p_m - w_{mn} p_n], \tag{4}$$

то есть уравнение Лиувилля (3) в форме одного уравнения записывает набор основных кинетических уравнений для разных значений n.

Оператор Лиувилля на основе схем взаимодействия:

$$L = \sum_{\alpha,i} \left[{}^{+}k_{\alpha} \left((\pi_{i})^{F^{i\alpha}} - (\pi_{i})^{I^{i\alpha}} \right) (a_{i})^{I^{i\alpha}} + {}^{-}k_{\alpha} \left((\pi_{i})^{I^{i\alpha}} - (\pi_{i})^{F^{i\alpha}} \right) (a_{i})^{F^{i\alpha}} \right]$$
 (5)

Модель Ферхюльста

Рассмотрим модель Ферхюльста, описывающую ограниченный рост[3]. Изначально эта модель описывается следующим дифференциальным уравнением:

$$\frac{d\varphi}{dt} = \lambda \varphi - \beta \varphi - \gamma \varphi^2.$$

Здесь λ — коэффициент интенсивности размножения, β — коэффициент интенсивности вымирания, γ — коэффициент интенсивности уменьшения популяции (обычно рассматривается соперничество особей).

Построим стохастический вариант данной модели. Запишем схемы взаимодействия:

$$\varphi \xrightarrow{\lambda} 2\varphi, I^{i\alpha} = (1 1),$$

$$\varphi \xrightarrow{\beta} 0. F^{i\alpha} = (2 0).$$

$$r^{i\alpha} = (1 - 1).$$

Первое соотношение означает, что индивидуум, который съедает единицу пищи, немедленно репродуцируется, в обратную сторону – соперничество между индивидуумами. Второе — смерть индивидуума.

Для того чтобы получить основное кинетическое уравнение по комбинаторному методу, определим интенсивности перехода:

$$\begin{array}{ll} ^+s_1=\lambda\varphi, & f_p^+s_1=\lambda\varphi, \\ ^-s_1=\gamma\varphi(\varphi-1), & f_p^-s_1=\gamma\varphi^2, \\ ^+s_2=\beta\varphi. & f_p^+s_2=\beta\varphi. \end{array}$$

Тогда основное кинетическое уравнение примет следующий вид:

$$\frac{\partial p(\varphi,t)}{\partial t} = -[\lambda \varphi + \beta \varphi + \gamma \varphi(\varphi - 1)]p(\varphi,t) + [\beta(\varphi + 1) + \gamma(\varphi + 1)\varphi]p(\varphi + 1,t) + \lambda(\varphi - 1)p(\varphi - 1,t). \tag{6}$$

На основании (4) и (5) получаем оператор Лиувилля:

$$L = \lambda(\pi^{2} - \pi)a + \gamma(\pi^{2} - \pi)a^{2} + \beta(1 - \pi)a = \lambda((a^{\dagger})^{2} - a^{\dagger})a + \gamma(a^{\dagger} - (a^{\dagger})^{2})a^{2} + \beta(1 - a^{\dagger})a = \lambda(a^{\dagger} - 1)a^{\dagger}a + \beta(1 - a^{\dagger})a + \gamma(1 - a^{\dagger})a^{\dagger}a^{2}.$$

Запишем основное кинетическое уравнение через оператор Лиувилля:

$$\begin{split} \frac{\partial p_n(t)}{\partial t} &= \frac{1}{n!} \langle n|L|\varphi \rangle = \frac{1}{n!} \langle n| - [\lambda a^\dagger a + \beta a^\dagger a + \gamma a^\dagger a^\dagger a a] + [\beta a + \gamma a^\dagger a a] + \\ &+ \lambda a^\dagger a^\dagger a |\varphi \rangle = - [\lambda n + \beta n + \gamma n (n-1)] \langle n|\varphi \rangle + [\beta (n+1) + \gamma (n+1)n] \langle n+1|\varphi \rangle + \\ &+ \lambda (n-1) \langle n-1|\varphi \rangle = - [\lambda n + \beta n + \gamma n (n-1)] p_n(t) + \\ [\beta (n+1) + \gamma (n+1)n] p_{n+1}(t) + \lambda (n-1) p_{n-1}(t). \end{split}$$

Уравнения (6) и (7) полученные комбинаторным и операторным методом полностью эквивалентны.

Выволы

Получено основное кинетическое уравнение в представлении чисел заполнения. Приведено сравнение операторного метода с комбинаторным методом стохастизации одношаговых процессов. Сравнение показало их полную эквивалентность.

Литература

- 1. Eferina E. G., Korolkova A. V., Gevorkyan M. N. et al. One-Step Stochastic Processes Simulation Software Package // Bulletin of Peoples' Friendship University of Russia. Series "Mathematics. Information Sciences. Physics". 2014. no. 3. P. 46–59. 1503.07342.
- 2. Eferina E. G., Korolkova A. V., Gevorkyan M. N. et al. One-Step Stochastic Processes Simulation Software Package // Bulletin of Peoples' Friendship University of Russia. Series "Mathematics. Information Sciences. Physics". 2014. no. 3. P. 46–59. 1503.07342.
- 3. *Гнатич М., Хонконен Ю., Лучивянски Т.* Теоретико-полевой подход к описанию кинетических реакций. Роль случайных источников и стоков // Теоретическая и математическая физика.— 2011.— Т. 169, № 1.— С. 146–157.

OCCUPATION NUMBERS REPRESENTATION OF MASTER EQUATION

Eferina E.G., Kulyabov D.S.

Peoples' Friendship University of Russia, eg.eferina@mail.com, ds@sci.pfu.edu.ru

Obtained a master equation in operator form. Combinatorial and operator methods to Verhulst model was applied.

Key words: stochastic differential equations; a master equation; Fokker-Planck equation; population models.