Geometría Básica

Soluciones exámenes Junio 2020

Los enunciados y soluciones se presentan sin usar fórmulas para reproducir las circunstancias de los exámenes en el aula virtual de exámenes.

Nota: Para algunos ejercicios ha habido varios métodos distintos presentados por estudiantes, algunos de ellos válidos, y, por supuesto, puntuados en su justa medida.

PRIMERA SEMANA

Ejercicio 1.

Opción A.

Sea (A,B,C,D) un cuadrado.

- a) Sea M_AB el punto medio del lado [A,B], M_BC el punto medio del lado [B,C], M_CD el punto medio del lado [C,D], M_DA el punto medio del lado [D,A]. ¿El cuadrilátero S=(M_AB, M_BC, M_CD, M_DA) es un rombo? ¿un cuadrado?
- b) Sea M un punto interior a (A,B,C,D) y consideramos los cuatro triángulos que tienen como uno de sus vértices a M y dos vértices adyacentes del cuadrado (A,B,C,D), es decir T_1={M,A,B},T_2={M,B,C},T_3={M,C,D},T_4={M,D,A}. Sea B_i el baricentro del triángulo T_i, i=1,2,3,4. ¿Existe una semejanza que lleva M_AB en B_1, M_BC en B_2, M_CD en B 3, M DA en B 4?
- c) ¿Es el cuadrilátero Q=(B_1, B_2, B_3, B_4) un rectángulo? ¿un rombo? ¿un cuadrado?

Justifique cada una de sus respuestas brevemente.

Calificación máxima 6 puntos.

a) Es un cuadrado y por tanto también un rombo. Justificación: por ser cuadrado (A,B,C,D) tiene una simetría que es una rotación de ángulo pi/2. Esta rotación, al ser isometría lleva puntos medios de segmentos a puntos medios de segmentos y por tanto también es también simetría de S. Entonces S tiene los cuatro lados de igual longitud y los cuatro ángulos de la misma medida. Como la suma de las

- medidas de los ángulos de un cuadrilátero es 2pi, se tiene que los cuatro ángulos de S son rectos y que es un cuadrado.
- b) Existe tal semejanza que es la homotecia con centro M y razón 2/3. La razón es que hay un teorema que dice que el baricentro se encuentra en el segmento que une un vértice V con el punto medio del lado opuesto y la razón de la distancia del vértice al baricentro sobre la distancia del vértice al punto medio es 2/3.
- c) Al ser el cuadrilátero Q semejante a R y las semejanzas conservar ángulos y razones entre longitudes de pares de segmentos, el cuadrilátero Q tiene todos los ángulos rectos y de igual longitud, luego Q es un cuadrado (y por tanto también un rectángulo y un rombo).

Opción B

Sea (A,B,C,D) un rectángulo.

- a) Sea M_AB el punto medio del lado [A,B], M_BC el punto medio del lado [B,C], M_CD el punto medio del lado [C,D], M_DA el punto medio del lado [D,A]. ¿El cuadrilátero S=(M_AB, M_BC, M_CD, M_DA) es un paralelogramo? ¿un rectángulo? ¿un rombo?
- b) Sea M un punto interior a (A,B,C,D) y consideramos los cuatro triángulos que tienen como uno de sus vértices a M y dos vértices adyacentes del rectángulo (A,B,C,D), es decir T_1={M,A,B},T_2={M,B,C},T_3={M,C,D},T_4={M,D,A}. Sea B_i el baricentro del triángulo T_i, i=1,2,3,4. ¿Existe una semejanza que lleva M_AB en B_1, M_BC en B_2, M_CD en B_3, M_DA en B_4?
- c) ¿Es el cuadrilátero Q=(B_1, B_2, B_3, B_4) un rectángulo? ¿un rombo? ¿un cuadrado?

Justifique cada una de sus respuestas brevemente.

Calificación máxima 6 puntos.

a) S es un rombo. Todos los lados tienen la misma longitud por aplicación del teorema de Pitágoras a los triángulos formados por un vértice de (A,B,C,D) y la mitad de los dos lados de S que se cortan en dicho vértice. Todos estos triángulos rectángulos S_i son congruentes. S no siempre es un cuadrado, basta

que (A,B,C,D) tenga lados desiguales para que S no sea un rectángulo: cada ángulo de S tiene como medida pi -2 x, donde x es la medida de uno de los ángulos agudos de S_i, y para que este ángulo valga pi/4 necesariamente S_i tiene que ser isósceles.

- b) Existe tal semejanza que es la homotecia con centro M y razón 2/3. La razón es que hay un teorema que dice que el baricentro se encuentra en el segmento que une un vértice V con el punto medio del lado opuesto y la razón de la distancia del vértice al baricentro sobre la distancia del vértice al punto medio es 2/3.
- c) Las semejanzas llevan pares de segmentos iguales a pares de segmentos iguales. Al ser el cuadrilátero Q semejante a R, entonces Q es también un rombo. En general no es un rectángulo pues las semejanzas conservan ángulos, y por tanto tampoco un cuadrado.

Ejercicio 2

Opción A.

- a) Sea r una recta paralela a un plano p. Llamamos f a la rotación de ángulo pi (180º) cuyo eje es r y g a la reflexión de base p. De acuerdo con la clasificación de isometrías del espacio, ¿qué tipo de isometría es f o g?
- b) Sea h la reflexión central con centro en un punto P que no está en r. ¿Qué tipo de isometría es h o f?

Justifique brevemente sus respuestas.

Calificación máxima 4 puntos.

a) Es una reflexión con deslizamiento. La rotación $f = s_1 o s_2 donde s_1 es una reflexión respecto a un plano <math>p_1$ perpendicular a $p y s_2 una reflexión sobre un plano paralelo a <math>p$. Entonces $f o g = s_1 o s_2 o g = s_1 o (s_2 o g)$, $y como s_2 o g es una traslación paralela al plano <math>p_1$, se tiene que f o g es una reflexión con deslizamiento.

b) Es otra vez una reflexión con deslizamiento. Podemos expresar $f = s_1 o s_2 y h$ = $s_4 o s_3 o s_1 y$ donde además $s_2 y s_3$ son reflexiones respecto de planos paralelos. Entonces h o $f = s_4 o (s_3 o s_2)$, con $s_3 o s_2$ traslación paralela al plano de reflexión de s 4.

Opción B.

- a) Sea r una recta paralela a un plano p. Llamamos f a la rotación de ángulo pi (180º) cuyo eje es r y g a la reflexión de base p. ¿Qué tipo de isometría es f o g?
- b) Sea h la reflexión central con centro en un punto P que no está en p. ¿Qué tipo de isometría es h o g?

Justifique brevemente sus respuestas.

Calificación máxima 4 puntos

- a) Es una reflexión con deslizamiento. La rotación $f = s_1 o s_2$ donde $s_1 es una$ reflexión respecto a un plano p_1 perpendicular a p y s_2 un plano paralelo a p. Entonces $f o g = s_1 o s_2 o g = s_1 o (s_2 o g)$, y como $s_2 o g$ es una traslación paralela al plano p_1 , se tiene que f o g es una reflexión con deslizamiento.
- b) Es un movimiento helicoidal. Podemos expresar h = s_5 o s_4 o s_3, donde s_3 es una reflexión sobre un plano paralelo a p. Entonces h o g = (s_5 o s_4) o (s_3 o g) y s_5 o s_4 es una rotación de ángulo pi y s_3 o g es una traslación paralela al eje de s_5 o s_4. Luego h o g es movimiento helicoidal.

SEGUNDA SEMANA

Ejercicio 1.

Opción A.

Sea W=(A,B,C,D) un rectángulo y M,N,P,Q puntos en los lados. Concretamente M en [A,B] - $\{A,B\}$, N en [B,C] - $\{B,C\}$, P en [C,D] - $\{C,D\}$, Q en [D,A] - $\{D,A\}$, con MA = PC y NB = QD.

Sea U el punto de corte de [A,N] con [M,D], R el punto de corte de [B,P] con [A,N], S el punto de corte de [C,Q] con [B,P] y T el punto donde se cortan [M,D] y [C,Q].

- a) ¿Existe una rotación que lleve U a S y R a T?
- b) ¿El cuadrilátero L=(U,R,S,T) es un paralelogramo?
- c) Si BC = 2AB y N = medio(B,C) ¿Existe una semejanza de W en L?

Justifique brevemente sus respuestas.

Calificación máxima 6 puntos.

- a) Sea O el centro del rectángulo W, es decir el punto de corte de sus diagonales. Sea r la rotación de ángulo pi (media vuelta) con centro en O. La rotación r es una simetría de W, luego lleva el lado [A,B] en el [C,D], r(A) = C, r(C) = A. Como MA = PC y por ser isometría, r lleva M en P y P en M. Del mismo modo lleva N en Q y Q en N. Otra vez por ser r isometría, lleva segmentos a segmentos y puntos de corte en puntos de corte, luego lleva U a S y R a T.
- b) Sí, pues tiene una simetría que es la media vuelta r, luego medio[U,S]=medio[R,T]=O.
- c) No, si existiera tal semejanza L debería ser tener todos los ángulos rectos, pues las semejanzas conservan los ángulos, pero L no es un rectángulo. El ángulo con vértice en A del triángulo {A,B,N} es pi/4, pues es un triángulo rectángulo e isósceles. Si suponemos que L tiene todos los ángulos rectos T={A,M,U} debería ser isósceles rectángulo (el ángulo en U de T es recto, pues es opuesto por el vértice a uno de los ángulos de L). Entonces también sería isósceles (y rectángulo) el triángulo {A,D,M}, pero esto es imposible pues AM<AB=AD/2<AD.

Opción B

Sea W=(A,B,C,D) un rectángulo y M,N,P,Q puntos en los lados. Concretamente M en [A,B] - $\{A,B\}$, N en [B,C] - $\{B,C\}$, P en [C,D] - $\{C,D\}$, Q en [D,A] - $\{D,A\}$, con MA = PC y NB = QD.

Sea U el punto de corte de [A,N] con [M,D], R el punto de corte de [B,P] con [A,N], S el punto de corte de [C,Q] con [B,P] y T el punto donde se cortan [M,D] y [C,Q].

- a) ¿Existe una rotación que lleve U a S y R a T?
- b) ¿El cuadrilátero L=(U,R,S,T) es un paralelogramo?

c) Si W fuera simplemente un paralelogramo, sin ser necesariamente rectángulo, ¿se podría afirmar que L es un paralelogramo?

Justifique brevemente sus respuestas.

Calificación máxima 6 puntos.

- a) Sea O el centro del rectángulo W, es decir el punto de corte de sus diagonales. Sea r la rotación de ángulo pi (media vuelta) con centro en O. La rotación r es una simetría de W, luego lleva el lado [A,B] en el [C,D], r(A) = C, r(C) = A. Como MA = PC y por ser isometría, r lleva M en P y P en M. Del mismo modo lleva N en Q y Q en N. Otra vez por ser r isometría, lleva segmentos a segmentos y puntos de corte en puntos de corte, luego lleva U a S y R a T.
- b) Sí, pues tiene una simetría que es la media vuelta r.
- c) Sí, al ser W paralelogramo posee una simetría que es media vuelta con centro el punto de corte de las diagonales y se puede repetir el argumento del apartado a).

Ejercicio 2

Opción A.

Sean r y s dos rectas paralelas del espacio. Llamamos f_r,pi/2 y f_s,pi/2 a dos rotaciones cuyos ejes son r y s respectivamente y sus ángulos de rotación son pi/2 (90°).

a) ¿La composición

puede ser una rotación? ¿En caso afirmativo de qué ángulo?

b) Si t y t' son dos traslaciones paralelas a las rectas r y s, ¿la composición de movimientos helicoidales

puede ser una rotación?

Justifique brevemente cada respuesta.

Calificación máxima 4 puntos.

a) Sí, una rotación de ángulo pi. Suponemos que f_r,pi/2 = s_1 o s_2 donde s_1 y s_2 son dos reflexiones sobre planos que se cortan formando un ángulo pi/4 y además tomamos que la reflexión s_2 tiene por base el plano que contiene a r y s (o, en el caso r=s, un plano que contiene a r=s). Entonces f_s,pi/2 = s_2 o s_3, donde la base de s_3 forma un ángulo también de ángulo pi/4 con la base de s_2. Calculamos la

composición: $f_r,pi/2$ o $f_s,pi/2$ = $(s_1 o s_2)$ o $(s_2 o s_3)$ = $s_1 o (s_2 o s_2)$ o s_3 = $s_1 o s_3$. Los planos base de s_1 y s_3 pueden formar un ángulo pi/2 o ser paralelos. En el primer caso la composición pedida es una rotación de ángulo pi.

Obsérvese que al cortar por un plano perpendicular a los planos base de s_1, s_2 y s_3 se obtienen tres rectas que forman r_1, r_2 y r_3. Las rectas r_1 y r_3 forman con r_2 un ángulo de pi/4, por lo que hay dos posibilidades: o que r_1 y r_2 son paralelas o bien r_1 y r_3 son ortogonales.

Sí basta tomar que t' = t^(-1), entonces:
 (t o f_r,pi/2) o (t' o f_s,pi/2) = (f_r,pi/2 o t) o (t' o f_s,pi/2) = f_r,pi/2 o f_s,pi/2
 (recuérdese que t o f_r,pi/2 = f_r,pi/2 o t, ver ejemplo 12.21, donde se define movimiento helicoidal)
 Y aplicamos a).

Opción B.

Sean r y s dos rectas paralelas del espacio. Llamamos f_r,pi/2, f_s,pi/2 a dos rotaciones cuyos ejes son r y s respectivamente y sus ángulos de rotación son pi/2 (90º).

a) ¿La composición

puede ser una traslación?

b) Si t y t' son dos traslaciones paralelas a las rectas r y s, ¿la composición de movimientos helicoidales

$$(t \circ f_r,pi/2) \circ (t' \circ f_s,pi/2)$$

puede ser una traslación?

Justifique brevemente cada respuesta.

Calificación máxima 4 puntos.

- a) Sí, las rectas r y s tienen que ser distintas para que la composición no tenga puntos fijos. Suponemos que f_r,pi/2 = s_1 o s_2 donde s_1 y s_2 son dos reflexiones sobre planos que se cortan formando un ángulo pi/4 y además tomamos que la reflexión s_2 tiene por base el plano que contiene a r y s. Entonces f_s,pi/2 = s_2 o s_3, donde la base de s_3 forma un ángulo también de ángulo pi/4 con la base de s_2. Calculamos la composición: f_r,pi/2 o f_s,pi/2 = (s_1 o s_2) o (s_2 o s_3) = s_1 o (s_2 o s_2) o s_3 = s_1 o s_3. Los planos base de s_1 y s_3 pueden formar un ángulo pi/2 o ser paralelos. En el segundo caso la composición pedida es una rotación de ángulo pi.

 Obsérvese que al cortar por un plano perpendicular a los planos base de s_1, s_2 y s_3 se obtienen tres rectas que forman r_1, r_2 y r_3. Las rectas r_1 y r_3 forman con r_2 un ángulo de pi/4, por lo que hay dos posibilidades: o que r_1 y r_2 son paralelas o bien r_1 y r_3 son ortogonales.
- b) Como t y t' conmutan con f_r,pi/2 y f_s,pi/2 (ver ejemplo 12.21, donde se define movimiento helicoidal):
 (t o f_r,pi/2) o (t' o f_s,pi/2) = (t o t') o (f_r,pi/2 o f_s,pi/2)
 Si ahora suponemos que estamos en el caso descrito en a), f_r,pi/2 o f_s,pi/2 es una traslación t" y t o t" o t" es una traslación (obsérvese además que t" es una traslación paralela a rectas que son ortogonales a r y s y por tanto t o t" o t" no es la identidad).