Kapitel 4.

Tangentialbündel und Vektorfelder

Definition 4.1 (Tangentialbündel) Es sei M eine glatte Mannigfaltigkeit. Die Menge $TM = \dot{\bigcup}_{p \in M} T_p M$ zusammen mit der sogenannten kanonischen Projektion $\pi \colon TM \to M, T_p M \ni X_p \mapsto p$ heißt das **Tangentialbündel** von M.

1. Das Tangentialbündel als glatte Mannigfaltigkeit

Es sei (φ, U) eine Karte von M. Setzt man $TM|_{U} = \pi^{-1}(U) = \dot{\bigcup}_{p \in U} T_p M$, so ist nach Satz 2.9 die Abbildung

$$\overline{\varphi}: TM|_{U} \to \underbrace{\varphi(U) \times \mathbb{R}^{m}}_{\subset \mathbb{R}^{2m}} \qquad \underbrace{\sum_{X_{p} \in T_{p}M}}_{=X_{p} \in T_{p}M} \mapsto (\varphi(p), \xi)$$

bijektiv. Es sei eine Topologie auf TM dadurch erklärt, dass eine Menge $V \subset TM$ genau dann offen ist, wenn für alle Karten (φ, U) die Menge $\overline{\varphi}(V \cap TM|_U)$ offen in \mathbb{R}^{2m} ist. Diese Topologie ist hausdorffsch und besitzt eine abzählbare Basis, da dies für M und \mathbb{R}^m gilt. Nach Konstruktion sind alle $\overline{\varphi}$ Homöomorphismen. Ist $\mathcal{A} = \{(\varphi, U)\}$ ein C^{∞} -Atlas von M, so definiert

$$\overline{A} = \{ (\overline{\varphi}, TM|_U) \mid (\varphi, U) \in \mathcal{A} \}$$

eine glatte Struktur auf TM. Für Karten $(\varphi, U), (\psi, V)$ von M ist der Kartenwechsel $X_p = \sum \xi^i \frac{\partial}{\partial x^i}\Big|_{p}$

$$\overline{\psi} \circ \overline{\varphi}^{-1} \colon \varphi(U \cap V) \times \mathbb{R}^m \to \psi(U \cap V) \times \mathbb{R}^m$$
$$(x, \xi) \mapsto (\psi \circ \varphi^{-1}(x), D(\psi \circ \varphi^{-1}|_x \xi),$$

glatt. Damit trägt TM in kanonischer Weise eine glatte Struktur. Darüber hinaus ist die kanonische Projektion $\pi\colon TM\to M$ bezüglich dieser glatten Struktur eine Submersion. (Beweis als Übungsaufgabe)

Ist N eine weitere glatte Mannigfaltigkeit und $\Phi: M \to N$ glatt, so ist $\Phi_*: TM \to TN$, $X_p \mapsto \Phi_{*p}X_p$ eine glatte Abbildung (ebensfalls Übungsaufgabe).

Definition 4.2 Eine stetige Abbildung $X: M \to TM$ mit $\pi \circ X = \mathrm{id}_M$ heißt **Vektorfeld** auf M. Ist X glatt (als Abbildung zwischen glatten Mannigfaltigkeiten), so heißt X ein glattes **Vektorfeld**.

Bemerkung Ist (φ, U) eine Karte von M, so sind die Abbildungen $U \to T M|_U$, $p \mapsto \frac{\partial}{\partial x^i}|_p$ glatte Vektorfelder (in der Karte $\overline{\varphi}$ sind diese genau die Abbildungen (x, e_i)). Ist X ein glattes Vektorfeld, so gilt für jedes $u \in U$:

$$X_u = \sum \xi^i(u) \left. \frac{\partial}{\partial x^i} \right|_u,$$

wobei $\xi(u) = (\xi^1(u), \dots, \xi^m(u))$ eine glatte Abbildung $U \to \mathbb{R}^m$ ist. Ein Vektorfeld ist genau dann glatt, wenn für jede Karte (φ, U) die Koeffizientenfunktionen $\xi^i(u)$ von $X_u = \sum \xi^i(u) \frac{\partial}{\partial x^i}\Big|_{u}$ glatte Funktionen sind.

Beispiel Betrachte die n-Sphäre $S^n \subset \mathbb{R}^{n+1}$ und deren Tangentialraum $T_p S^n = p^{\perp}$. Ein glattes Vektorfeld auf S^n ist also eine glatte Abbildung $X \colon S^n \to \mathbb{R}^{n+1}$ mit $X_p \perp p$. Es sei n = 2k - 1, dann ist

$$X: S^n \to \mathbb{R}^{n+1}$$
 $(x^1, y^1, \dots, x^k, y^k) \mapsto (-y^1, x^1, \dots, -y^k, x^k)$

ein glattes Vektorfeld auf S^n ohne eine Nullstelle.

Bemerkung Der Satz vom Igel besagt gerade: Jedes glatte Vektorfeld auf einer Sphäre gerader Dimension hat eine Nullstelle.

Bemerkung Es bezeichne $\mathcal{V}(M)$ die Menge aller glatten Vektorfelder auf der Mannigfaltigkeit M. Der sogenannte **Nullschnitt**:

$$\sigma \colon M \to TM$$
 $p \mapsto 0_p \in T_p M$

ist ein glattes Vektorfeld auf M.

Übungsaufgabe: Zeige dass der Nullschnitt eine Einbettung ist.

Bemerkung Sind $X, Y \in \mathcal{V}(M)$ und ist $g \in \mathbb{C}^{\infty}(M)$, so sind die punktweise Summe X+Y und das Produkt gX wieder glatte Vektorfelder auf M. Damit ist $\mathcal{V}(M)$ ein \mathbb{R} -Vektorraum beziehungsweise $C^{\infty}(M)$ -Modul. Jedes Vektorfeld X ist eine Derivation von $C^{\infty}(M)$:

$$X(fg)(p) = X(f)(p)g(p) + f(p)X(g)(p) = (gX(f) + fX(g))(p).$$

Es seien $X, Y \in \mathcal{V}(M)$ glatte Vektorfelder. Die **Lieklammer** [X, Y] von X und Y ist dann durch den folgenden Ausdruck definiert:

$$[X, Y](f)(p) = X_p(Yf) - Y_p(Xf).$$

Lemma 4.3 Die Lieklammer ist eine schiefsymmetrische \mathbb{R} -bilineare Abbildung $\mathcal{V}(M) \times \mathcal{V}(M) \to \mathcal{V}(M)$. Es gilt die sogenannte **Jacobildentität**:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Beweis Es seien $X, Y \in \mathcal{V}(M), f, g \in \mathbb{C}^{\infty}(M)$ und $p \in M$. Dann gilt:

$$\begin{split} [X,Y](fg)[p] &= X_p(Y(f)g + fY(g)) - Y_p(X(f)g + fX(g)) \\ &= X_p(Y(f))g(p) + Y_p(f)X_p(g) + X_p(f)Y(g)(p) + f(p)X_p(Y(g)) \\ &- Y_p(X(f))g(p) - X_p(f)Y_p(g) - Y_p(f)X(g)(p) - f(p)Y_p(X(g)) \\ &= (X_p(Y(f)) - Y_p(X(f))g(p) + f(p)(X_p(Y(g)) - Y_p(X(g)) \\ &= [X,Y]_p(f)g(p) + f(p)[X,Y]_p(g). \end{split}$$

Damit gilt $[X,Y] \in \mathcal{V}(M)$. Schiefsymmetrie und \mathbb{R} -Linearität gelten offensichtlich. Die Jacobiidentität sei als Übungsaufgabe überlassen (Nachrechnen!).

Lemma 4.4 Es seien $X, Y \in \mathcal{V}(M)$ glatte Vektorfelder und (φ, U) eine Karte von M. Sind dann $X|_U = \sum \xi^i \frac{\partial}{\partial x^i}$, $Y|_U = \sum \eta^i \frac{\partial}{\partial x^i}$ und $[X, Y]|_U = \sum \zeta^i \frac{\partial}{\partial x^i}$ die ensprechenden lokalen Darstellungen, so gilt:

$$\zeta^{j} = \sum \left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{i}} - \eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}} \right).$$

Der Beweis ist als Übung überlassen.

2. Flüsse

Was haben Vektorfelder mit Differentialgleichungen zu tun? Jedes glatte Vektorfeld X definiert ein Anfangswertproblem

$$\begin{cases} \dot{\gamma}(t) = X_{\gamma(t)} \\ \gamma(0) = p \end{cases},$$

oder in lokalen Koordinaten:

$$\begin{cases} \dot{\gamma}(t) = \xi(\tilde{\gamma}(t)) \\ \tilde{\gamma}(0) = 0, \text{ falls } \varphi(p) = 0, \end{cases}$$

mit $\tilde{\gamma}=\varphi\circ\gamma$ für eine Karte (φ,U) um p und $X|_U=\sum \xi^i\frac{\partial}{\partial x^i}.$

Definition 4.5 Es sei $X \in \mathcal{V}(M)$ ein glattes Vektorfeld und $p \in M$, sowie $\mathcal{I} \subset \mathbb{R}$ ein offenes, zusammenhängendes Intervall um 0. Eine glatte Kurve $\gamma \colon \mathcal{I} \to M$ mit

$$\dot{\gamma}(t) = X_{\gamma(t)} \qquad \qquad \gamma(0) = p$$

heißt Integralkurve oder Trajektorie von X durch p.

Bemerkung Eine Kurve γ ist genau dann Integralkurve von X durch p, wenn für jede Karte (φ,U) die Kurve $\tilde{\gamma}=\varphi\circ\gamma$ eine Lösung des (autonomen) Anfangswertproblems

$$\dot{\tilde{\gamma}} = \xi(\gamma(t)) \qquad \qquad \tilde{\gamma}(0) = \varphi(p)$$

ist, wobei $X|_U = \sum \xi^i \frac{\partial}{\partial x^i}$ gelte.

Für jedes $p \in M$ ist somit (lokal) ein Anfangswertproblem gestellt. Gesucht ist eine "simultane" Lösung all dieser Anfangswertprobleme, also eine Abbildung $(t,p) \mapsto \gamma(t,p) = \gamma^t(p)$ mit

$$\begin{cases} \dot{\gamma}^t(p) = X_{\gamma^t(p)} \\ \gamma^0(p) = p \end{cases} .$$

Satz 4.6 (Lokale Existenz und Eindeutigkeit) Es sei $U \subseteq \mathbb{R}^n$ offen und $\mathcal{I}_{\varepsilon} = (-\varepsilon, \varepsilon)$ und $F \colon \mathcal{I}_{\varepsilon} \times \mathbb{R}^n \to \mathbb{R}^n$ C^k -differenzierbar. Dann existiert für alle $x \in U$ eine Umgebung V von x in U und ein $\delta > 0$, so dass gilt:

- (i) Für alle $x \in V$ existiert eine C^{k+1} -Lösung $\gamma_x \colon \mathcal{I}_{\delta} \to V$, von $\gamma'_x(t) = F(t, \gamma(t))$ und $\gamma_x(0) = x$.
- (ii) Diese Lösung ist lokal eindeutig, das heißt falls $\tilde{\gamma}_x$ eine weitere Lösung auf $\mathcal{I}_{\tilde{\delta}}$ ist, so gilt

$$\gamma_x(t) = \tilde{\gamma}_x(t)$$

(für alle $|t| \leq \min\{\delta, \tilde{\delta}\}$)

(iii) Die Abbildung

$$\gamma \colon \mathcal{I}_{\delta} \times V \to U$$
 $(t, x) \mapsto \gamma_x(t)$

ist C^k -differenzierbar.

Zum Beweis siehe Lang: "Differential and Riemannian Manifolds", 3. Auflage, 1995, Chapter IV.1, p.65[5].

Korollar 4.7 Es sei $X \in \mathcal{V}(M)$ und $p \in M$. Dann existiert eine offene Umgebung U von p, ein $\varepsilon > 0$ und eine glatte Abbildung:

$$\gamma \colon (-\varepsilon, \varepsilon) \times U \to M$$

so dass $t \mapsto \gamma^t(p)$ eine Integralkurve von X durch p ist. (Setze dann $F(t,x) = \xi(\varphi^{-1}(x))$)

Korollar 4.8 Sind $\gamma_1: \mathcal{J}_1 \to M$, $\gamma_2: \mathcal{J}_2 \to M$ Integralkurven eines Vektorfeldes $X \in \mathcal{V}(M)$ durch p, dann gilt $0 \in \mathcal{J}_1 \cap \mathcal{J}_2$ und $\gamma_1(0) = p = \gamma_2(0)$. Nach Satz 4.6 (ii) gilt dann $\gamma_1(t) = \gamma_2(t)$ für alle $t \in \mathcal{J}_1 \cap \mathcal{J}_2$. Damit ist

$$\gamma \colon \mathcal{J}_1 \cup \mathcal{J}_2 \to M \qquad \qquad t \mapsto \begin{cases} \gamma_1(t) & t \in \mathcal{J}_1 \\ \gamma_2(t) & t \in \mathcal{J}_2 \end{cases}$$

eine Integralkurve von X durch p. Also existiert für jedes $p \in M$ ein maximaler Definitionsbereich \mathcal{I}_p für Integralkurven von X durch p; dieser ist offen.

Definition Für $X \in \mathcal{V}(M)$ heißt die, wie im vorigen Korollar definierte, Familie maximaler Integralkurven

$$\gamma(t,p) = \gamma^t(p) \tag{t \in \mathcal{I}_p}$$

der Fluss des Vektorfeldes X. Seinen Definitionsbereich notiert man mit:

$$\mathcal{D}_X = \{(t, p) \in \mathbb{R} \times M \mid t \in \mathcal{I}_p\}.$$

Satz 4.9 Ist $X \in \mathcal{V}(M)$ ein glattes Vektorfeld mit Fluss γ , so ist \mathcal{D}_X eine offene Menge und sein Fluss $\gamma \colon \mathcal{D}_X \to M$ glatt.

Bemerkung Es gilt: $\gamma^0 = \mathrm{id}_M$. Ist $(s, p) \in \mathcal{D}_X$, so gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(t \mapsto \gamma^{t+s}(p)\right) = X_{\gamma^s(p)},$$

also ist $t \mapsto \gamma^{t+s}(p)$ eine Integralkurve von X durch $q = \gamma^s(p)$. Aus der Eindeutigkeit folgt damit:

$$\gamma^{t+s}(p) = \gamma^t(\gamma^s(p))$$

für alle $s, t, s + t \in \mathcal{I}_p$, ferner gilt $\mathcal{I}_q = \mathcal{I}_p - s$. Kurz geschrieben: $\gamma^{t+s} = \gamma^t \circ \gamma^s$. Für alle t ist dann $\mathcal{D}_t = \{ p \in M \mid (t, p) \in \mathcal{D}_X \}$ offen und γ^t ein Diffeomorphismus von \mathcal{D}_t auf \mathcal{D}_{-t} , denn $\gamma^{-t} \circ \gamma^t = \gamma^{-t+t} = \gamma^0 = \mathrm{id}_M = \gamma^t \circ \gamma^{-t}$. So definiert γ einen "lokalen Gruppenhomomorphismus" von \mathbb{R} in M^M .

Beweis (von Satz 4.9) Es sei $p \in M$ und \mathcal{J}_p^+ die Menge aller $t \geq 0$, für welche eine offene Umgebung U von $[0, t] \times \{p\}$ in $\mathbb{R} \times M$ existiert, so dass γ auf U glatt ist.

- \mathcal{J}_p^+ ist ein Intervall,
- $\bullet \ \mathcal{J}_p^+ \subseteq \mathcal{J}_p \cap \mathbb{R}_{\geq 0}$
- $0 \in \mathcal{J}_p^+$
- \mathcal{J}_p^+ ist offen in $\mathbb{R}_{\geq 0}$.

Es bleibt zu zeigen, dass \mathcal{J}_p^+ abgeschlossen ist.

Es sei $s \in \overline{\mathcal{J}}_p^+ \cap (\mathcal{J}_p \cap \mathbb{R}_{\geq 0})$ und $q = \gamma^s(p)$. Dann existieren $\varepsilon > 0$ und eine Umgebung U von q, so dass γ auf $(-\varepsilon, \varepsilon) \times U$ glatt ist. Es sei $t \in \mathcal{J}_p^+$ mit $|s - t| < \varepsilon$ und $\gamma^t(p) \in U$. Nach Definition von \mathcal{J}_p^+ existiert eine offene Umgebung V von p in M und $\delta > 0$, so dass $(-\delta, t + \delta) \times V \subseteq \mathcal{D}_X$ gilt und darauf γ glatt ist. Dann ist $V' = (\gamma^t|_V)^{-1}(U) = \{p' \in V \mid \gamma^t(p') \in U\}$ eine offene Umgebung von p. Für alle $p' \in V'$ ist

$$r \mapsto \begin{cases} \gamma^r(p') & \text{falls } r < t + \delta \\ \gamma^{r-t}(\gamma^t(p')) & \text{falls } r \in (t, t + \varepsilon) \end{cases}$$

eine Integralkurve von X durch p' (die Flüsse γ^r und $\gamma^{r-t} \circ \gamma^t$ existieren für die angegebenen Zeiten und stimmen auf dem Schnitt der Intervalle, $(t, t + \delta)$, überein). Es gilt also $(-\delta, t + \varepsilon) \subseteq \mathcal{J}_{p'}$ für alle $p' \in V'$ und somit $(-\delta, t + \varepsilon) \times V' \subset \mathcal{D}_X$. An der obigen Darstellung sieht man, dass γ auf dieser offenen Umgebung von $[0, s] \times \{p\}$ glatt ist. Also gilt $s \in \mathcal{J}_p^+$. Analog argumentiert man für \mathcal{J}_p^- .

Definition 4.10 (vollständiges Vektorfeld) Ein Vektorfeld auf M heißt vollständig, wenn der Definitionsbereich seines Flusses gleich $\mathbb{R} \times M$ ist.

Bemerkung Dies ist genau dann der Fall, wenn alle Integralkurven für alle Zeiten existieren. Ist $X \in \mathcal{V}(M)$ vollständig und bezeichnet γ seinen Fluss, so ist jede γ^t ein Diffeomorphismus von M mit Inversen γ^{-t} .

Lemma 4.11 Es sei $c: \mathcal{I} \to M$ eine Integralkurve von $X \in \mathcal{V}(M)$ durch p und $t_n \in \mathcal{I}$ eine Folge, so dass die Grenzwerte $t_n \xrightarrow{n \to \infty} t_\infty \in \mathbb{R}$ und $c(t_n) \to q \in M$ existieren.

Dann gilt $t_{\infty} \in \mathcal{I}_p$ und $\gamma^{t_{\infty}}(p) = q$.

Beweis Nach Korollar 4.7 existiert eine Umgebung U von q und $\varepsilon > 0$, so dass auf $(-\varepsilon, \varepsilon) \times U$ ein lokaler Fluss von X definiert ist.

Wählt man k so groß, dass $t_{\infty} - t_k < \varepsilon$ gilt, so ist für $\overline{q} = c(t_k)$ und t mit $|t - t_k| < \varepsilon$ der Fluss $t \mapsto \gamma^{t-t_k}(\overline{q})$ erklärt. Aus Korollar 4.8 folgt, dass $\gamma^{t_k}(p) = c(t_k) = \overline{q}$ gilt. Damit ist die Kurve

$$\overline{c}(t) = \begin{cases} c(t) & \text{für } t < t_{\infty} \\ \gamma^{t - t_k}(\overline{q}) & \text{falls } |t - t_k| < \varepsilon \end{cases}$$

eine glatte Fortsetzung von c und eine Integralkurve von X durch p. Insbesondere gilt $t_{\infty} < t_k + \varepsilon$, also $t_{\infty} \in \mathcal{I}_p$ und

$$\gamma^{t_{\infty}}(p) = \gamma^{t_{\infty} - t_k}(\gamma^{t_k}(p)) = \overline{c}(t_{\infty}) = \lim_{t \to t_{\infty}} c(t) = q.$$

Bemerkung 4.12 (Moral des obigen Lemmas) Integralkurven existieren für alle Zeiten oder aber sie verlassen jedes Kompaktum.

Korollar 4.13 Hat $X \in \mathcal{V}(M)$ kompakten Träger, so ist X vollständig. Ist M kompakt, so ist jedes glatte Vektorfeld vollständig.

Beispiel Das Vektorfeld $X: \mathbb{R} \to T\mathbb{R}, t \mapsto t^2 \frac{\partial}{\partial t}$ ist nicht vollständig, denn $c(t) = (1-t)^{-1}$ ist die Integralkurve von X durch 1.

Ist $\Phi: M \to N$ glatt, so ist $\Phi_*: TM \to TN$ glatt. Ist Φ ein Diffeomorphismus, so ist Φ^{-1} glatt und $q \mapsto (\Phi_*X)_q = \Phi_{*\Phi^{-1}(q)}X_{\Phi^{-1}(q)}$ ist ein glattes Vektorfeld auf N. Es gilt für $f \in C^{\infty}(N)$:

$$(\Phi_* X)(f)(q) = X_{\Phi^{-1}(q)}(f \circ \Phi).$$

Lemma 4.14 Es sei $X \in \mathcal{V}(M)$, $\Phi \colon M \to N$ ein Diffeomorphismus und es bezeichne γ den Fluss von X und \mathcal{D}_X seinen (maximalen) Definitionsbereich. Dann ist

$$\{(t,q) \mid (t,\Phi^{-1}(q)) \in \mathcal{D}_X\} \to N$$
 $(t,q) \mapsto \Phi \circ \gamma^t \circ \Phi^{-1}(q)$

der Fluss von Φ_*X .

Beweis Für $f \in \mathbb{C}^{\infty}(N)$ und $q \in N$ gilt

$$\begin{split} (\Phi_*X)(f)(q) &= X_{\Phi^{-1}(q)}(f \circ \Phi) \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (f \circ \Phi)(\gamma^t(\Phi^{-1}(q))) \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} f(\Phi \circ \gamma^t \circ \Phi^{-1}(q)). \end{split}$$

Erinnerung: $\frac{1}{t}(F(x+tv)-F(x))$ oder für c mit $c(0)=x, \dot{c}(0)=v$: $\frac{1}{t}(F(c(t))-F(x))$. Nun seien $X,Y\in\mathcal{V}(M)$.

Im Allgemeinen liegen $Y_{\gamma^t(p)}$ und Y_p in unterschiedlichen Tangentialräumen. Da aber γ^t (für kleine Zeiten) ein (lokaler) Diffeomorphismus ist, gilt

$$(\gamma_*^{-t}Y)_p := \gamma_{*\gamma^t(p)}^{-t}(Y_{\gamma^t(p)}) = \in T_p M.$$

Die Differenz $(\gamma_*^{-t}Y)_p - Y_p$ ist also wohldefiniert.

Definition 4.15 Es seien $X, Y \in \mathcal{V}(M)$ und γ der Fluss von X. Das durch

$$p \mapsto \lim_{t \to 0} \frac{1}{t} \left(\left(\gamma_*^{-t} Y \right)_p - Y_p \right)$$

definierte glatte Vektorfeld heißt **Lieableitung** von Y längs X. Man schreibt $\mathcal{L}_X Y$.

Die Kurve $(\gamma_*^{-t}Y)_p$ in $T_p M$ ist glatt und $(\mathcal{L}_X Y)_p = \frac{d}{dt}\Big|_{t=0} (\gamma_*^{-t}Y)_p$. Dass $\mathcal{L}_X Y$ glatt ist, rechnet man entweder in lokalen Koordinaten nach oder benutzt den folgenden Satz.

Satz 4.16 Für $X, Y \in \mathcal{V}(M)$ gilt:

$$\mathcal{L}_X Y = [X, Y].$$

Beweis Es seinen $X, Y \in \mathcal{V}(M), f \in \mathbb{C}^{\infty}(M)$ und γ der Fluss von X. Es ist zu zeigen: $[X, Y]_p(f) = \lim_{t \to \infty} \frac{1}{t} \left((\gamma_*^{-t} Y)_p(f) - Y_p(f) \right)$. Dazu sei (um (0, p))

$$h(t,q) = f(\gamma^{-t}(q)) - f(q)$$
 und $g_t(q) = \int_0^1 h'(ts,q)ds$.

Dann gilt:

$$tg_t(q) = \int_0^1 h'(ts,q)(t)ds = \int_0^t h' = h(t,q) - h(0,q) = f(\gamma^{-t}(q)) - f(q)$$

also $f \circ \gamma^t = f + tg_t$ und

$$g_0(q) = \lim_{t \to 0} \frac{tg_t(q)}{t} = \lim_{t \to 0} \frac{1}{t} \left(f(\gamma^{-t}(q)) - f(q) \right) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \left(f \circ \gamma^{-t} \right) (q) = -X_q(f)$$

Betrachte:

$$\left(\gamma_*^{-t}Y\right)_p(f) = Y\left(f \circ \gamma^{-t}\right)\left(\gamma^t(p)\right) = Y(f)\left(\gamma^t(p)\right) + tY_{g_t}\left(\gamma^t(p)\right).$$

Es folgt:

$$(\mathcal{L}_X Y)_q(f) = \lim \frac{1}{t} \left((\gamma_*^{-t} Y)_p(f) - Y_p(f) \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left(Y f(\gamma^t(p)) - Y_p(f) \right) + \lim_{t \to 0} Y_{g_t} \left(\gamma^t(p) \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(Y f \circ \gamma^t \right) (p) + Y g_0(p)$$

$$= X_p(Y f) - Y_p(X f) = [X, Y]_p(f).$$

Satz 4.17 Die Lieklammer [X,Y] zweier Vektorfelder $X,Y \in \mathcal{V}(M)$ verschwindet genau dann, wenn ihre Flüsse (lokal) kommutieren, i.e.

$$\gamma_X^s \circ \gamma_Y^t = \gamma_Y^t \circ \gamma_X^s.$$

Der Beweis sei als Übungsaufgabe überlassen.

Es seien $X,Y\in\mathcal{V}(M)$ und $\Phi\colon M\to N$. Bezeichnet γ den Fluss von X, so gilt

$$\begin{split} [\Phi_*X, \Phi_*Y] &= \mathcal{L}_{\Phi_*X}\Phi_*Y \\ &= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\Phi_* \circ \gamma_*^{-t} \circ \Phi_*^{-1}(\Phi_*Y)\right) \\ &= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\Phi_* \circ \gamma_*^{-t}Y\right) = \Phi_* \left(\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma_*^{-t}Y\right) \\ &= \Phi_*(\mathcal{L}_XY) = \Phi_*[X, Y]. \end{split}$$

Man erhält einen alternativen Beweis der Jacobiidentität.

Beweis Es seien $X, Y, Z \in \mathcal{V}(M)$ und γ der Fluss von X. Dann gilt:

$$[X, [Y, Z]] = \mathcal{L}_X[Y, Z] = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\gamma_*^{-t}[Y, Z]\right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left[\gamma_*^{-t}Y, \gamma_*^{-t}Z\right]$$

$$= \left[\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma_*^{-t}Y, Z\right] + \left[Y, \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma_*^{-t}Z\right]$$

$$= [\mathcal{L}_XY, Z] + [Y, \mathcal{L}_XZ]$$

$$= [[X, Y], Z] + [Y, [X, Z]]$$

$$= -[Z, [X, Y]] - [Y, [Z, X]].$$