Procesamiento del Lenguaje Natural mediante Redes Neuronales

Día 5: Transformers

Germán Kruszewski Facebook Al Research "Young man, in mathematics you don't understand things. You just get used to them."

- John von Neumann

Redes neuronales como funciones

Función Bag of Words/Embeddings

Función Red Neuronal Recurrente

Función Red Neuronal Recurrente con estados agregados

Función Red Neuronal Recurrente con atención

Función de transformación

Función de transformación

Multi-head attention

Feed-forward NN

Multi-head attention

Feed-forward

Feed-forward

Feed-forward

Función de transformación

Multi-head attention

Feed-forward NN

Función de transformación

Positional embeddings

Entrenamiento por predicción *Cloze* Devlin et al. (2018)

Entrenamiento por predicción *Cloze* Devlin et al. (2018)

Entrenamiento por predicción de la siguiente oración Devlin et al. (2018)

GLUE: Evaluando un modelo para todo Wang et al. (2019)

- Clasificación de oraciones:
 - Aceptabilidad gramatical
 - Sentiment analysis
- Similitud y parafrases

Inferencia

Aplicando BERT

Devlin et al. (2018)

Resultados de BERT

Devlin et al. (2018)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Modelos basados en Transformers

 Vanilla Transformer: Vaswani et al. (2017). Attention is All you Need. https://arxiv.org/abs/1706.03762

• GPT/GPT-2: Radford et al. (2018). Improving Language Understanding by Generative Pre-Training. https://openai.com/blog/language-unsupervised/

 BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/pdf/1810.04805.pdf

 Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. https://arxiv.org/abs/1901.02860

Herramientas

- Clasificador rápido: https://fasttext.cc/
- Vectores pre-entrenados: https://fasttext.cc/docs/en/crawl-vectors.html
- Librerías para deep learning:
 - Pytorch https://pytorch.org
 - Chainer https://chainer.org/
 - TensorFlow http://tensorflow.org/
 - Dynet https://github.com/clab/dynet
- Librería para Seq2seq: https://github.com/IBM/pytorch-seq2seq
- Librería para transformers: https://github.com/huggingface/pytorch-transformers

Repaso y concusiones

- Una red neuronal es una función con parámetros ajustables.
- Como producto del entrenamiento, la red aprende representaciones de la entrada que no fueron explícitamente programadas.
- Sin embargo, puedo dotar a la red de mecanismos que mejoran su capacidad de descubrir buenas representaciones.

Repaso y concusiones

- Marco general de un problema de Machine Learning
 - Reconocer mis datos
 - Plantear un modelo (lo más simple posible)
 - Entender qué falta. Iterar.
- Consideraciones al trabajar con lenguaje natural
 - El lenguaje natural es complejo.
 - Podemos encontrar atajos para resolver muchos problemas prácticos.
- Consideraciones al trabajar con redes neuronales
 - Algunos modelos requieren enormes cantidades de cómputo (GPU servers, etc.)
 - Pero también, modelos simples pueden correr sin problemas en CPUs (p. ej. Fasttext)

Desafíos y problemas abiertos

Cantidad de datos.

- Composicionalidad sistemática.
- Reconciliación entre la práctica y la teoría lingüística.
- Eficiencia.

Aprendizaje basado en la comunicación.