

FINAL TECHNICAL REPORT TO THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

bу

The Regents of the University of California
University of California, Santa Cruz
Santa Cruz, California, 95064

"Summer Workshop in Astronomy & Astrophysics"

(High Energy Transients: July 11-22, 1983)

NASA Grant No;

NAGW-475

Award Amount:

\$10,639

Effective date:

July 1, 1983

Termination date:

June 30, 1984

Principal Investigator:

Name:

Stanford E. Woosley

Signature:

Stanford E. Woodly

Title:

Professor

Telephone:

(408) 429-2976

Date:

Schtenber 24 1984

SUMMARY OF COMPLETED PROJECT

High energy transients are the emissions of compact astronomical objects that exhibit rapid time variations in the X-ray and Y-ray band. More specifically the term is used to denote a generic class of high energy phenomena arising from the release of either gravitational or nuclear energy near the surface of an accreting neutron star. The time variation may be as rapid as a fraction of a millisecond, as in the case of some γ -ray bursters, or as long as several months in X-ray transients. Though studies of the various categories of high energy transients: X-ray transients, X-ray pulsars, X-ray bursts, and γ -ray bursts, have generally been carried out by diverse groups and instrumentation, sometimes having only peripheral contact, it is expected that similar physical processes may underlie all four phenomena. Thus, it was desirable to bring together experts, both observers and theoreticians, in all of these subjects to discuss recent progress in our understanding of high energy transients and to plan scientific strategy for the future. Since solar transient emissions in the X-ray and γ -ray band are also frequently studied with the same instrumentation and by some of the same scientists, they too were considered an appropriate topic for discussion. Accordingly, a meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning "review" sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon "workshops" were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transients and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined.

The scientific results of the meeting, too diverse for summary here, are reported in a 714 page volume, <u>High Energy Transients</u> published by the American Institute of Physics. In lieu of a final technical summary, we append the table of contents from that volume.

TABLE OF CONTENTS

FOREWORD
I. EVOLUTION OF STELLAR SYSTEMS INTO TRANSIENT SOURCES
Evolution of Binary Systems into Transient Sources
The Evolution of Binaries of Moderate Primordial Mass (≤ 10 M _☉) and the Formation of Transient and Explosive Objects due to Accumulation Instabilities in such Binaries
II. RECURRENT X-RAY TRANSIENTS
The Spectra of X-Ray Transients
A Comparison of Soft X-Ray Transients and Dwarf Novae49 Jan van Paradijs and Frank Verbunt
X-Ray Properties of the Galactic Bulge Sources
Hard X-Ray Recurrent Transients
The A-1 Survey of Fast X-Ray Transients
Ten Years of Vela X-Ray Observations
Erratic Variability in MXB 1918-05
On the Structure, Stability and Evolution of Accretion Disks in Soft X-Ray Transient Sources

III. OBSERVATIONS OF X-RAY PULSARS AND X-RAY BURSTERS
Recent Observations of Transient and Variable X-Ray Sources with Satellites "HAKUCHO" and "TENMA"
Early Results from the X-Ray Astronomy Satellite "TENMA"121 Hajime Inoue
X-Ray Pulsars Observed with HAKUCHO and TENMA
Discovery of Eclipses from the X-Ray Burst Source MXB 1659-29139 Lynn R. Cominsky and Kent S. Wood
Binary Period Decrease by Unstable Orbit
Joint Timing Analysis of A0535+26 at 1980 Outburst
SMC X-1: Another Tilted Precessing Accretion Disk?
The Occasional Disappearance of GX301-2 Pulses
Steady Emission from Recurrent Transient Pulsar 0535+25
IV. THEORY OF ACCRETING MAGNETIC NEUTRON STARS
Theories of Accreting X-Ray Pulsars
Accretion by Magnetic Neutron Stars
Accretion onto Magnetized Neutron Stars: Magnetospheric Structure and Stability
Two-Dimensional Gas Dynamic Models of Polar Cap Accretion onto Magnetized Neutron Stars

Spin-Reversed Accretion onto Neutron Stars and Period Fluctuation of X-Ray Pulsars
Self-Consistent Description of Axially Symmetric Magnetospheres of Accreting Neutron Stars
V. THEORY AND PHYSICS OF X-RAY BURSTS
Some Remarks about X-Ray Burst Sources
A Precursor in a Large X-Ray Burst and the Expanding Envelope of the Neutron Star
The Thermonuclear Flash Model for X-Ray Bursts
Repeated Thermonuclear Flashes on an Accreting Neutron Star273 S.E. Woosley and Thomas A. Weaver
A Theoretical Calculation of Rapid X-Ray Transients and Radius Expansion
Shell Flashes Interacting with the Core of Neutron Stars
Globular Cluster Origin of X-Ray Bursters
Nuclear Physics Problems for Accreting Neutron Stars
Emission Region of X-Ray Bursters
Quasi-Static Winds from Neutron Stars

VI. OBSERVATIONS OF GAMMA-RAY BURSTS
Gamma-Ray Bursts: A 1983 Overview
Gamma-Ray Bursts: Recent Soviet and Franco-Soviet Results, and Observational Overview
The Spectral Properties of Gamma-Ray Bursts: A Review of Recent Developments
Frequency of Fast, Narrow Gamma-Ray Bursts and Burst Classification
J.P. Norris, T.L. Cline, U.D. Desai and B.J. Teegarden
Observation of an Absorption Feature in a Gamma-Ray Burst Spectrum
Geoffrey J. Hueter
3-10 keV and 0.1 to 2 MeV Observations of Four Gamma-Ray Bursts
J.G. Laros, W.D. Evans, E.E. Fenimore, R.W. Klebesadel, S. Shulman and G. Fritz
Observation of a Cosmic Gamma-Ray Burst on HAKUCHO390 M. Katoh, T. Murakami, J. Nishimura, T. Yamagami, M. Fujii and M. Itoh
High-Energy Emission from Gamma-Ray Bursts
Are There Nuclear Contributions to Gamma-Ray Burst Spectra?403 S.M. Matz, E.L. Chupp, D.J. Forrest, G.H. Share, P.L. Nolan and E. Rieger
Implications of the Three GRB Optical Flashes
Periodicities in Gamma-Ray Bursts
The Gamma-Ray Burst Spatial Distribution Log N(>S) ve Log S and N(>S,1'', b'') vs S
Measurement of the Rate of Weak Gamma-Ray Bursts

The Intrinsic Gamma Ray Burst Luminosity Function from Observational Data Analysis
Log N-Log S is Inconclusive
VII. CATALOG AND BIBLIOGRAPHY OF GAMMA RAY BURSTS434 W.A. Baity, G.J. Hueter and R.E. Lingenfelter
VIII. THEORY AND PHYSICS OF GAMMA-RAY BURSTS
The Theory of Gamma-Ray Bursts
Physics of Gamma-Ray Burst Spectra
Gamma Burst Emission from Neutron Star Accretion
The Formation of Planetesimals in Highly Compact Binary Stellar Systems and the Nature of Cosmic Gamma-Ray Bursts
Gamma Ray Burst Emission: A Jet and Fireball Model
Size-Frequency Distribution of Gamma Ray Bursts from Thermonuclear Runaway on Neutron Stars Accreting Interstellar Gas
Gamma-Ray Bursts - The Roundabout Way?
Theory of Optical Flashes
Inverse Comptonization vs. Thermal Synchrotron
Physics of the Synchrotron Model of Cosmic Gamma Ray Bursts 597 E.P. Liang
Spectral Models of Bursting Neutron Stars

Non-Thermal Synchrotron Radiation in a Strong Magnetic Field611 R.W. Bussard
Equilibria in Strongly Magnetized Pair Plasmas
IX. SOLAR HIGH ENERGY TRANSIENTS
Measurements of Solar Hard X-Ray Bursts with High Spectral Resolution and Sensitivity
Neutrons and Gamma Rays from Solar Flares
High Energy Transients from the Sun
X. INSTRUMENTATION OF THE FUTURE
The X-Ray Timing Explorer
BATSE/GRO Observational Capabilities
Monte Carlo Simulation of Atmospheric Gamma-Ray Scattering665 D.J. Morris
The Explosive Transient Camera (ETC): An Instrument for the Detection of Gamma-Ray Burst Optical Counterparts
The Papidly Moving Telescope: An Instrument for the Precise Study of Optical Transients
All Sky High Resolution Cameras for Hard and Soft X-Rays694 Paul Gorenstein and Christopher W. Mauche
XI. THE HIGH ENERGY TRANSIENT EXPLORER (HETE)709 S.E. Woosley et al.