Practice Problems 9 - Solutions: Complete Spaces

COMPLETE SPACES

- 1. * Suppose a sequence satisfies that $|x_{n+1} x_n| \to 0$ as $n \to \infty$. Is it a Cauchy sequence? **Answer:** No, consider $x_n = \log(n)$ for all $n \in \mathbb{N}$, then $|x_{n+1} x_n| = |\log(n+1) \log(n)| = |\log((n+1)/n)| \to 0$. However, x_n do not converge.
- 2. Note that the number $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. Use this to argue that \mathbb{Q} is not complete. **Answer:** The sequence converges in \mathbb{R} , so it must be a Cauchy sequence. Note that $x_n \in \mathbb{Q}$ for all n. This is, then, a Cauchy sequence in \mathbb{Q} that does not converge in \mathbb{Q} , its limit point lives in $\mathbb{R} \setminus \mathbb{R}$.
- 3. * Consider the metric $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$, and the metric space (\mathbb{R},ρ) . Is this a complete space?

Answer: Yes, Consider a ball of radius ϵ with the new metric around a point $x \in X$:

$$B^{\rho}(x,\epsilon) = \left\{ y \in \mathbb{R} : \frac{|x-y|}{1+|x-y|} < \epsilon \right\}$$
$$= \left\{ y \in \mathbb{R} : |x-y| < \frac{\epsilon}{1-\epsilon} \right\}$$
$$= B\left(x, \frac{\epsilon}{1-\epsilon}\right)$$

where $B\left(x,\frac{\epsilon}{1-\epsilon}\right)$ is a ball of radius $\epsilon/(1-\epsilon)$ with the euclidean metric. We know that \mathbb{R} is complete with the euclidean metric and we have shown that the two metrics are equivalent in that a ball in one metric with radius less than 1 is identical to a ball under the other metric. Therefore, if a sequence is cauchy under one metric it is also cauchy under the other metric and because the space is the same, if it fails to converge under ρ it will necessarily fail to converge under the euclidean metric. The space is thus complete.

- 4. Exercises 3.6 from Stokey and Lucas
 - (a) Show that the following metric spaces are complete:
 - i. * (3.3a) Let S be the set of integers with metric $\rho(x,y) = |x-y|$ Answer: Take any cauchy sequence and let $\epsilon < 1$. We see that the sequence must eventually be constant because any two different integers are at least 1 unid distance apart, and constant (or eventually constant) sequences converge.
 - ii. (3.3b) Let S be the set of integers with metric $\rho(x,y) = \mathbb{1}\{x \neq y\}$ Answer: The same reasoning as the previous case applies here: any cauchy sequence is eventually constant, thus converges.

iii. * (3,4a) Let $S = \mathbb{R}^n$ with $||x|| = (\sum_{i=1}^n x_i^2)^{1/2}$.

Answer: Let $\{x_n\}$ be any cauchy sequence and $\epsilon > 0$, then eventually, i.e. for $n, m \geq N$ for some $N \in \mathbb{N}$, $\epsilon > d(x_n - x_m) = \left(\sum_{i=1}^n (x_n^i - x_m^i)^2\right)^{1/2}$, where x_n^i is the i-th coordinate if the x_n element of the sequence. Note that the RHS is a sum of positive numbers, so each of them must be bounded by ϵ , i.e. $|x_n^i - x_m^i| < \epsilon$ for all i. We conclude that for a sequence to be Cauchy in \mathbb{R}^n under this metric, each coordinate must define a Cauchy sequence in \mathbb{R} with the euclidean metric, so each coordinate must converge, thus $\{x_n\}$ converges as well.

iv. (3.4b) Let $S = \mathbb{R}^n$ with $||x|| = \max_i |x_i|$.

Answer: The logic is similar here, if a sequence is cauchy in \mathbb{R}^n , every coordinate, x_i , of the sequence must be a cauchy sequence in \mathbb{R} with the euclidean metric, so it must converge, asserting the convergence of such sequence under this metric in \mathbb{R}^n .

v. (3.4d) Let S be the set of all bounded real sequences $(x_1, x_2, ...)$ with $||x|| = \sup_n |x_n|$.

Answer: Let $\{x_n\}$ be any cauchy sequence in S, note that the element x_n is a bounded sequence, thus $\{x_n\}$ is a sequence of bounded sequences. Denote by x_n^k the k-th element of the sequence x_n . Note that $x_m - x_n$ is a sequence itself, so we can define the distance between x_n and x_m as the norm of its difference, and apply de norm function we have for sequences which "maximizes" over the elements of the sequence. Then $\|x_n - x_m\| = \sup_k |x_n^k - x_m^k| \ge |x_n^k - x_m^k|$ for all k. We conclude that $\|x_n - x_m\| \to 0$ implies $|x_n^k - x_m^k| \to 0$ for all $k \in \mathbb{N}$. So the sequence of real numbers $\{x_n^k\}$ are Cauchy under the euclidean norm, so there is a real number x^k such that $x_n^k \to x^k$ as $n \to \infty$. Remains to show that the sequence $x = \{x^k\}$ is bounded, but It is because we know $\{x_n\}$ is bounded, so $\{x_n^k\}$ is as well for all k, and so x^k being the limit point of a bounded sequence, must be bounded itself, and we have that $x_n \to x$.

vi. (3.4e) Let S be the set of all continuous functions on [a, b], with $||x|| = \sup_{a \le t \le b} |x(t)|$. Answer: Let $\{x_n\}$ be a Cauchy sequence of continuous functions in C([a, b]), $\epsilon > 0$ and fix $t \in [a, b]$. Then $|x_n(t) - x_m(t)| \le \sup_{a \le t \le b} |x_n(t) - x_m(t)| = ||x_n - x_m||$ so for each t, the sequence $\{x_n(t)\}$ must be cauchy. By the completeness of the reals there exist a real x(t) such that $x_n(t) \to x(t)$ for all $t \in [a, b]$. Lets define a function $x : [a, b] \to \mathbb{R}$ with the limiting values for each t: i.e. x(t) as our candidate function where the sequence converges, we need to show that $||x_n(t) - x(t)|| \to 0$ and that x(t) lives int he space. For any t we have

$$|x_n(t) - x(t)| \le |x_n(t) - x_m(t)| + |x_m(t) - x(t)|$$

$$\le \sup_{a \le t \le b} |x_n(t) - x_m(t)| + |x_m(t) - x(t)|$$

$$= ||x_n - x_m|| + |x_m(t) - x(t)|$$

because both elements on the RHS satisfy the cauchy criterion, for n, m large enough they can be bounded by $\epsilon/2$. Taking supremum over $t \in [a, b]$ on the

LHS, we have $\sup_{a \le t \le b} |x_n(t) - x(t)| < \epsilon$. Remains to show that x(t) is continuous.

Let $\epsilon > 0$, by the triangle inequality applied twice: $|x(t) - x(s)| \le |x(t) - x_n(t)| + |x_n(t) - x_n(s)| + |x_n(s) - x(s)|$ for all $n \in \mathbb{N}$ and $t, s \in [a, b]$. Since $x_n(t) \to x(t)$ for all t, the first and third elements of the RHS can be controlled, i.e. There exist N such that $n \ge N$ implies them being less than $\epsilon/3$. The second term is controlled by continuity. Because we know that $x_n(t)$ is a continuous function, there exist a δ such that $|t-s| < \delta$ implies $|x_n(t) - x_n(s)| < \epsilon/3$. So we conclude that for such delta, $|t-s| < \delta$ implies $|x(t) - x(s)| < \epsilon$, so the function is continuous.

- (b) Show that the following metric spaces are not complete
 - i. (3.3c) Let S be the set of all continuous strictly increasing functions on [a, b], with $\rho(x, y) = \max_{a \le t \le b} |x(t) y(t)|$.

Answer: To show it is not complete, suffices to give a cauchy sequence in the space that does not converge on it. Consider the sequence $x_n(t) = t/n$ for $t \in [a, b]$. To see it is cauchy, pick arbitrary m, n, with n < m wlog and $\epsilon > 0$. Then

$$\rho(x_n(t), x_m(t)) = \max_{a \le t \le b} \left| \frac{t}{n} - \frac{t}{m} \right|$$
$$= \max_{a \le t \le b} \left| \frac{t}{n} \right|$$
$$= \left| \frac{b}{n} \right| \le \epsilon$$

whew the last inequality is true as long as $m, n \ge N$ for some $N \in \mathbb{N}$. However, the limit point of the sequence is x(t) = 0, a constant function, so it is not in the space.

- ii. * (3.4f) Let S be the set of all continuous functions on [a, b] with $||x|| = \int_a^b |x(t)| dt$ **Answer:** Consider the sequence $x_n(t) = \left(\frac{t-a}{b-a}\right)^n$, it is a Cauchy sequence such that $x_n(t) \to 0$ for $a \le t < b$ and $x_n(b) \to 1$ For simplicity let a = 0 and b = 1 and m > n to see that $||x_n(t) x_m(t)|| = \int_0^1 (t^n t^m) dt \le \int_0^1 t^n dt \to 0$, so it is Cauchy as claimed.
- (c) Show that if (S, ρ) is a complete metric space and S' is a closed subset of S, then (S', ρ) is a complete metric space.

Answer: Consider a Cauchy sequence in S', a closed set, so the limit point of the sequence is a limit point of the set S', which must be in the set because it is closed, hence the sequence converges.