HYDROPHOBIC COMPOUND WITH EXCLUDED VOLUME EFFECT

Publication number: JP2002020363 (A)

Publication date: 2002-01-23

Inventor(s): ICHIHASHI MITSUYOSHI; KAWADA KEN; MATSUOKA MITSUYUKI; TAKEUCHI

HIROSHI

Applicant(s): FUJI PHOTO FILM CO LTD

Classification:

- international: G02B5/30; C07C311/09; C07D239/50; C07D251/24; C07D251/34; C07D251/38;

C07D251/70; C07D307/42; C07D339/08; C07D401/14; C07D403/14; C07D417/14; G02B1/04; G02F1/13363; G02F1/1337; G02B5/30; C07C311/00; C07D239/00; C07D251/00; C07D307/00; C07D339/00; C07D401/00; C07D403/00; C07D417/00;

G02B1/04; G02F1/13; (IPC1-7); C07C311/09; C07D239/50; C07D251/24;

C07D251/34; C07D251/38; C07D251/70; C07D307/42; C07D339/08; C07D401/14;

C07D403/14; C07D417/14; G02B1/04; G02B5/30; G02F1/1337

- European:

Application number: JP20000205710 20000706 Priority number(s): JP20000205710 20000706

Abstract of JP 2002020363 (A)

heterocyclic group).

PROBLEM TO BE SOLVED: To obtain a hydrophobic compound effective for the orientation control of liquid crystalline molecules. SOLUTION: This hydrophobic compound with excluded volume effect is obtained by binding hydrophobic groups and cyclic groups to each other as shown by the formula (I): (Hb-L1-Cy1-L2-)nCy2 (wherein, Hb is a 6-40C aliphatic group or 6-40C aliphatic-substituted siloxanoxy group; L1 is a single bond, alkylene, fluorine-substituted alkylene, O, S, CO, NR, SO2 or a combination thereof; Cy1 is a bivalent aromatic group or bivalent heterocyclic group; L2 is a single bond, alkylene, alkenylene, alkynylene, O, S, CO, NR, SO2 or a combination thereof; n is 2, 3 or 4; and Cy2 is an n-valent aromatic group or n-valent

Data supplied from the *esp@cenet* database — Worldwide

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-20363 (P2002-20363A)

(43)公開日 平成14年1月23日(2002.1.23)

(51) Int.Cl. ⁷	識別記号	FΙ				テーマコート*(参考)
C 0 7 C 311/09		C 0 7 C 311/09				2 H 0 4 9
C 0 7 D 239/50		C 0 7 D 239/50				2H090
251/24		25	1/24			4 C 0 2 3
251/34		25	1/34		I	2 4C037
251/38		251/38			(C 4C063
	審査請求	未請求 請求項	頁の数10	OL	(全 35]	頁) 最終頁に続く
(21)出顧番号	特願2000-205710(P2000-205710)	(71)出願人	00000520	01		
			富士写真	[フイ	ルム株式会	ὲ社
(22)出顧日	平成12年7月6日(2000.7.6)		神奈川県	南足	柄市!中沼?	10番地
		(72)発明者	市橋 光	芳		
			静岡県富	士宫	市大中里2	00番地 富士写真
			フイルム	株式	会社内	
		(72)発明者	河田 憲	ŧ		
			神奈川県	南足	柄市中沼2	10番地 富士写真
			フイルム	株式	会社内	
		(74)代理人	10007467	75		
			弁理士	柳川	泰男	
						最終頁に続く

(54) 【発明の名称】 疎水性排除体積効果化合物

(57)【要約】

【課題】 液晶性分子の配向制御に有効な疎水性化合物 を得る。

【解決手段】 疎水性基と環状基とを下記式(I)で表 されるように連結する。

(I) $(Hb-L^1-Cy^1-L^2-)_n Cy^2$ 式中、Hbは、炭素原子数が6乃至40の脂肪族基また は炭素原子数が6乃至40の脂肪族置換シロキサノキシ 基であり; L1 は、単結合または-アルキレン基-、-フッ素置換アルキレン基一、-O-、-S-、-CO -、-NR-、-SO2 -あるいはそれらの組み合わせ であり; Cy1 は、二価の芳香族基または二価の複素環 基であり; L² は、単結合または一アルキレン基一、一 アルケニレン基ー、-アルキニレン基-、-O-、-S -、-CO-、-NR-、-SO $_2$ -あるいはそれらの 組み合わせであり; nは、2、3または4であり; そし て、Cy²は、n価の芳香族基またはn価の複素環基で ある。

【特許請求の範囲】

【請求項1】 下記式(I)で表される疎水性排除体積効果化合物:

(I) $(Hb-L^1-Cy^1-L^2-)_n Cy^2$

[式中、Hbは、炭素原子数が6乃至40の脂肪族基ま たは炭素原子数が6乃至40の脂肪族置換シロキサノキ シ基であり; L1 は、単結合または-アルキレン基-、 -フッ素置換アルキレン基-、-O-、-S-、-CO −、−NR−、−SO。−およびそれらの組み合わせか らなる群より選ばれる二価の連結基であって、Rは、水 素原子または炭素原子数が1乃至30のアルキル基であ る単結合または二価の連結基であり; C y¹ は、二価の 芳香族基または二価の複素環基であり; L2 は、単結合 または一アルキレン基一、一アルケニレン基一、一アル キニレン基-、-O-、-S-、-CO-、-NR-、 -SO2 -およびそれらの組み合わせからなる群より選 ばれる二価の連結基であって、Rは、水素原子または炭 素原子数が1乃至30のアルキル基であり;nは、2、 3または4であり;そして、Cy²は、n価の芳香族基 または n 価の複素環基である]。

【請求項2】 式(I)において、Hbが、炭素原子数が6乃至40のフッ素置換脂肪族基である請求項1に記載の疎水性排除体積効果化合物。

【請求項3】 式(I)において、Hbが、炭素原子数が6乃至40の分岐を有する脂肪族基である請求項1に記載の疎水性排除体積効果化合物。

【請求項4】 式(I)において、 L^1 が、-アルキレン基-、-O-、-S-、-CO-、-NR-、-SO $_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であり、Rが、水素原子または炭素原子数が1乃至20のアルキル基である請求項1に記載の疎水性排除体積効果化合物。

【請求項5】 式(I)において、C y¹ が、二価の芳 香族基である請求項1に記載の疎水性排除体積効果化合 物

【請求項6】 Cy¹ の二価の芳香族基に、別の芳香族環が単結合、ビニレン結合またはエチニレン結合を介して結合している請求項5に記載の疎水性排除体積効果化合物。

【請求項7】 Cy¹ およびCy² の環状構造が全体として、平面構造を形成している請求項1に記載の疎水性排除体積効果化合物。

【請求項8】 式(I)において、 L^2 が、-O-、-S-、-CO-、-NR-、 $-SO_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であり、Rが、水素原子または炭素原子数が1乃至20のアルキル基である請求項1に記載の疎水性排除体積効果化合物。

【請求項9】 式(I)において、nが、3または4である請求項1に記載の疎水性排除体積効果化合物。

【請求項10】 式(I)において、C y² が、n価のベンゼン環残基またはn価の芳香族性複素環残基である請求項1に記載の疎水性排除体積効果化合物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、疎水性基と排除体 積効果を有する複数の環状基とを連結した分子構造を有 する化合物に関する。特に本発明は、液晶の配向制御ま たは金属表面の処理に有効な疎水性化合物に関する。

[0002]

【従来の技術】透過型液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。反射型液晶表示装置は、反射板、液晶セル、そして一枚の偏光板が、この順序で積層されている。液晶セルは、棒状液晶性分子、それを封入するための二枚の基板および棒状液晶性分子に電圧を加えるための電極層からなる。棒状液晶性分子は、二枚の基板に、それぞれ設けられている配向膜によって配向させる。二枚の配向膜の間隙に棒状液晶性分子が注入された状態であるため、棒状液晶性分子の配向状態は二枚の配向膜によって比較的容易に制御することができる。

【0003】液晶表示装置の視野角拡大、あるいは着色の解消を目的として、液晶セルと偏光板との間に、光学補償シート(位相差板)を配置する場合が多い。光学補償シートとしては、延伸複屈折フイルムが従来から使用されている。ただし、延伸複屈折フイルムからなる光学補償シートに代えて、透明支持体上に液晶性分子から形成した光学的異方性層を有する光学補償シートを使用することも提案されている。光学的異方性層は、液晶性分子を配向させ、その配向状態を固定することにより形成する。液晶性分子の配向状態は、透明支持体と光学的異方性層との間に設けられる一枚の配向膜によって配向させる。

[0004]

【発明が解決しようとする課題】一枚の配向膜では、液晶性分子を配向膜界面から空気界面まで均一に配向(モノドメイン配向)させることが難しい。液晶性分子が均一に配向していないと、ディスクリネーションによる光散乱が生じる。本発明の目的は、液晶性分子の配向制御に有効な疎水性化合物を提供することである。本発明の別の目的は、金属表面処理剤として有用な疎水性化合物を提供することである。

[0005]

【課題を解決するための手段】本発明の目的は、下記 (1)~(10)の疎水性排除体積効果化合物により達成された。

(1)下記式(I)で表される疎水性排除体積効果化合物・

(I) (Hb−L¹ −Cy¹ −L² −)_n Cy² 「式中、Hbは、炭素原子数が6乃至40の脂肪族基ま たは炭素原子数が6乃至40の脂肪族置換シロキサノキシ基であり; L^1 は、単結合または-アルキレン基-、-フッ素置換アルキレン基-、-O-、-S-、-CO-、-NR-、-SO $_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であって、Rは、水素原子または炭素原子数が1乃至30のアルキル基である単結合または二価の複素環基であり;C y^1 は、二価の芳香族基または二価の複素環基であり; L^2 は、単結合または-アルキレン基-、-アルケニレン基-、-アルキニレン基-、-O-、-S-、-CO- 、-NR-、-SO $_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であって、Rは、水素原子または炭素原子数が1乃至30のアルキル基であり;nは、2、3または4であり;そして、C y^2 は、n 価の芳香族基またはn 価の複素環基である n 。

【0006】(2)式(I)において、Hbが、炭素原子数が6乃至40のフッ素置換脂肪族基である(1)に記載の疎水性排除体積効果化合物。

(3)式(I)において、Hbが、炭素原子数が6乃至40の分岐を有する脂肪族基である(1)に記載の疎水性排除体積効果化合物。

(4) 式(I)において、 L^1 が、-アルキレン基-、-O-、-S-、-CO-、-NR-、-SO $_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であり、Rが、水素原子または炭素原子数が1 乃至20のアルキル基である(1)に記載の疎水性排除体積効果化合物。

(5)式(I)において、 Cy^1 が、二価の芳香族基である(I)に記載の疎水性排除体積効果化合物。

(6) Cy¹ の二価の芳香族基に、別の芳香族環が単結 合、ビニレン結合またはエチニレン結合を介して結合し ている(5)に記載の疎水性排除体積効果化合物。

【0007】(7) Cy¹ およびCy² の環状構造が全体として、平面構造を形成している(1) に記載の疎水性排除体積効果化合物。

(8)式(I)において、 L^2 が、-O-、-S-、-CO-、-NR-、 $-SO_2$ -およびそれらの組み合わせからなる群より選ばれる二価の連結基であり、Rが、水素原子または炭素原子数が1乃至20のアルキル基である(1)に記載の疎水性排除体積効果化合物。

(9)式(I)において、nが、3または4である

(1) に記載の疎水性排除体積効果化合物。

(10)式(I)において、 Cy^2 が、n価のベンゼン環残基またはn価の芳香族性複素環残基である(1)に記載の疎水性排除体積効果化合物。

[0008]

【発明の効果】本発明者の研究の結果、前記式(I)で 定義されるように、疎水性基(Hb)と排除体積効果を 示す複数の環状構造(Cy¹ およびCy²)とを連結し た化合物は、液晶性分子、特に一枚の配向膜を用いた場 合の空気界面側液晶性分子の配向状態を制御する機能を有することが判明した。従って、式(I)で表される疎水性排除体積効果化合物を液晶配向促進剤として用いると、配向膜が設けられていない自由界面においても、液晶性分子を均一に配向させることができる。さらに、本発明者が研究を進めたところ、前記式(I)で定義されるように疎水性基(Hb)と排除体積効果を示す複数の環状構造(Cy¹およびCy²)とを連結した化合物が、金属材料に低表面エネルギー表面を付与する機能を有していることも判明した。従って、式(I)で表される疎水性排除体積効果化合物を金属表面処理剤として用いると、金属表面に、非粘着性、焼水性、防湿性、防汚性、防錆性、着氷雪防止性、離型性、耐候性、低摩擦性あるいは耐摩擦性を付与することができる。

[0009]

【発明の実施の形態】 [疎水性排除体積効果化合物] 疎水性排除体積効果化合物は、下記式(I)で表される。

(I) $(Hb-L^1-Cy^1-L^2-)_n Cy^2$ 式(I)において、Hbは、炭素原子数が6乃至40の 脂肪族基または炭素原子数が6乃至40の脂肪族置換シ ロキサノキシ基である。Hbは、炭素原子数が6乃至4 ○の脂肪族基であることが好ましく、炭素原子数が6万 至40のフッ素置換脂肪族基または炭素原子数が6乃至 40の分岐を有する脂肪族基であることがさらに好まし く、炭素原子数が6乃至40のフッ素置換アルキル基ま たは炭素原子数が6乃至40の分岐を有するアルキル基 であることが最も好ましい。Hbが分岐を有する脂肪族 基であると、化合物の金属表面処理機能が改善される。 金属表面処理剤として使用する化合物は、常温かつ常圧 (金属表面処理剤として使用する条件) において液体で あることが好ましい。従って、金属表面処理剤として使 用する化合物は、適当な融点および沸点を有することが 好ましい。融点および沸点は、二種類以上の化合物を混 合することにより調節することができるが、金属表面処 理機能を考慮すると、なるべく単一の化合物で液体であ ることが好ましい。Hbが分岐を有する脂肪族基である と、金属表面処理機能を低下させることなく、比較的容 易に適当な沸点および融点を有する化合物を得ることが できる。すなわち、金属表面処理機能を得るためには、 Hbの疎水性基としての機能が重要である。Hbを疎水 性基として機能させるため、炭素原子数を増加させると 化合物の融点が上昇する。Hbが分岐を有すると、同じ 炭素原子数であっても、融点が低い化合物が得られる。 【〇〇10】脂肪族基は、環状脂肪族基よりも鎖状脂肪 族基の方が好ましい。鎖状脂肪族基は分岐を有していて もよい。脂肪族基の炭素原子数は、7乃至35であるこ とが好ましく、8乃至30であることがより好ましく、 9乃至25であることがさらに好ましく、10乃至20 であることが最も好ましい。脂肪族基には、アルキル

基、置換アルキル基、アルケニル基、置換アルケニル 基、アルキニル基および置換アルキニル基が含まれる。 アルキル基、置換アルキル基、アルケニル基および置換 アルケニル基が好ましく、アルキル基および置換アルキ ル基がさらに好ましい。脂肪族基の置換基の例には、ハ ロゲン原子、ヒドロキシル、シアノ、ニトロ、アルキル 基(好ましくは、炭素原子数が1乃至5のアルキル 基)、アルコキシ基、置換アルコキシ基(例えば、オリ ゴアルコキシ基)、アルケニルオキシ基(例、ビニルオ キシ)、アシル基(例、アクリロイル、メタクリロイ ル)、アシルオキシ基(例、アクリロイルオキシ、ベン ゾイルオキシ〉、スルファモイル、脂肪族置換スルファ モイル基およびエポキシ基(例、エポキシエチル)が含 まれる。置換基としては、ハロゲン原子が好ましく、フ ッ素原子がさらに好ましい。フッ素置換脂肪族基におい て、フッ素原子が脂肪族基の水素原子を置換している割 合は、50乃至100%であることが好ましく、60乃 至100%であることがより好ましく、70乃至100 %であることがさらに好ましく、80乃至100%であ ることがさらにまた好ましく、85乃至100%である ことが最も好ましい。

【0011】脂肪族置換シロキサノキシ基の炭素原子数は、7乃至35であることが好ましく、8乃至30であることがより好ましく、9乃至25であることがさらに好ましく、10乃至20であることが最も好ましい。脂肪族置換シロキサノキシ基は、下記式で表される。

 $R^{1} - (SiR^{2}_{2} - O)_{\sigma} -$

式中、R1 は、水素原子、ヒドロキシルまたは脂肪族基 であり; R² は、水素原子、脂肪族基またはアルコキシ 基であり;そして、qは、1乃至12の整数である。上 記脂肪族基は、環状脂肪族基よりも鎖状脂肪族基の方が 好ましい。鎖状脂肪族基は分岐を有していてもよい。脂 肪族基の炭素原子数は、1乃至12であることが好まし く、1乃至8であることがより好ましく、1乃至6であ ることがさらに好ましく、1乃至4であることがさらに また好ましい。脂肪族基には、アルキル基、置換アルキ ル基、アルケニル基、置換アルケニル基、アルキニル基 および置換アルキニル基が含まれる。アルキル基、置換 アルキル基、アルケニル基および置換アルケニル基が好 ましく、アルキル基および置換アルキル基がさらに好ま しい。脂肪族基の置換基の例には、ハロゲン原子、ヒド ロキシル、シアノ、ニトロ、アルコキシ基、置換アルコ キシ基(例えば、オリゴアルコキシ基)、アルケニルオ キシ基(例、ビニルオキシ)、アシル基(例、アクリロ イル、メタクリロイル)、アシルオキシ基(例、アクリ ロイルオキシ、ベンゾイルオキシ)、スルファモイル、 脂肪族置換スルファモイル基およびエポキシ基(例、エ ポキシエチル)が含まれる。上記アルコキシ基は、環状 構造あるいは分岐を有していてもよい。アルコキシ基の 炭素原子数は、1乃至12であることが好ましく、1乃 至8であることがより好ましく、1 乃至6であることが さらに好ましく、1 乃至4であることがさらにまた好ま しい。以下に、H b の例を示す。

```
[0012]
```

 $Hb1: n-C_{16}H_{33}-$

 $Hb2: n-C_{20}H_{41}-$

 $Hb\ 3: n-C_6\ H_{13}-CH\ (n-C_4\ H_9\)-CH_2$

 $-CH_2$ -

 $Hb4: n-C_{12}H_{25}-$

 $Hb5: n-C_{18}H_{37}-$

 $Hb6: n-C_{14}H_{29}-$

 $H b 7 : n - C_{15} H_{31} -$

 $\begin{array}{l} {\ \, H\,b\,8}:\, n\,{-}\,C_{1\,0}H_{2\,1}\,{-} \\ {\ \, H\,b\,9}:\, n\,{-}\,C_{1\,0}H_{2\,1}\,{-}\,C\,H\,\left(\,n\,{-}\,C_4\,\,H_9\,\,\right)\,{-}\,C\,H_2 \end{array}$

Hb10: n-C₈ F₁₇-

[0013]

 $-CH_2-$

 $Hb11: n-C_8 H_{17}-$

Hb12:CH(CH₃)₂ - {C₃ H₆ -CH(CH₃)}₃ - C₂ H₄ -

Hb13:CH(CH₃)₂ - {C₃ H₆ - CH(CH₃) } - C₃ H₆ - CH(CH₃) + CH - CH₂ -

 $H\,b\,1\,4:\,n\,-\,C_{8}\,H_{17}\,-\,C\,H$ ($n\,-\,C_{6}\,H_{13}$) $-\,C\,H_{2}\,-\,C\,H_{2}\,-$

Hb 15: $n-C_6$ H₁₃-CH (C_2 H₅) -CH₂ - CH₂ -

 $Hb16: n-C_8 F_{17}-CH (n-C_4 F_9)-CH_2$

<code>Hb17: n-C_8 F_{17}-CF (n-C_6 F_{13})-CF_2 -CF_2 -</code>

 $\mbox{H\,b\,1\,8}:\,\mbox{n\,-C}_{3}\mbox{ }\mbox{F}_{7}\mbox{ }-\mbox{C\,F}\mbox{ }(\,\mbox{C\,F}_{3}\mbox{ })\mbox{ }-\mbox{C\,F}_{2}\mbox{ }-\mbox{}$

 $Hb19: Si (CH_3)_3 - {Si (CH_3)_2 - O}_6 - O -$

 $\mbox{Hb20}: \mbox{Si} \mbox{ (OC}_3 \mbox{ H}_7$) (C $_{16} \, \mbox{F}_{33}$) (C $_2 \, \mbox{ H}_4$ $-\, \mbox{SO}_2 \, - \mbox{NH} - \mbox{C}_8 \, \mbox{ F}_{17}$) $- \mbox{O} -$

【0014】式(I)において、L¹は、単結合または - アルキレン基-、- フッ素置換アルキレン基-、- O - 、- S-、- CO-、- NR-、- SO₂ - およびそ れらの組み合わせからなる群より選ばれる二価の連結基 である。Rは、水素原子または炭素原子数が1乃至20のアルキル基である。L¹は、- アルキレン基-、- O - 、- S-、- CO-、- NR-、- SO₂ - およびそ れらの組み合わせからなる群より選ばれる二価の連結基 であることが好ましい。Rは、水素原子または炭素原子数が1乃至20のアルキル基であることが好ましく、水素原子または炭素原子数が1乃至15のアルキル基であることが好ましく、水素原子または炭素原子数が1乃至12のアルキル基であることが最も好ましい。上記アルキレン基またはフッ素置換アルキレン基の炭素原子数は、1乃至40であることが好ましく、1乃至30

であることがより好ましく、1万至20であることがさらに好ましく、1万至15であることがさらにまた好ましく、1万至12であることが最も好ましい。以下に、 L^1 の例を示す。左側がHbに結合し、右側が Cy^1 に結合する。

[0015]

L10:単結合

L11:-O-

L12:-O-CO-

 $L\; 1\; 3\; : \; -O\!-\!C_4\;\; H_8\;\; -C\; O\!-\!\;$

 $L14:-O-C_2$ H_4 $-O-C_2$ H_4 -O-

L15:-S-

 $L16:-N(n-C_{12}H_{25})-$

L17: $-O-CH_2$ CH_2 -N $(n-C_3$ H_7) -S

 $L18:-CF(CF_3)-\{O-CF_2-CF(CF_3)\}_3-O-$

【0016】式(I)において、Cy¹ は、二価の芳香 族基または二価の複素環基である。Cy1 は、二価の芳 香族基であることが好ましい。二価の芳香族基は、アリ ーレン基および置換アリーレン基を意味する。アリーレ ン基の例には、フェニレン、インデニレン、ナフチレ ン、フルオレニレン、フェナントレニレン、アントラセ ニレンおよびピレニレンが含まれる。フェニレンおよび ナフチレンが好ましい。置換アリーレン基の置換基の例 には、脂肪族基、芳香族基、複素環基、ハロゲン原子、 アルコキシ基(例、メトキシ、エトキシ、メトキシエト キシ)、アリールオキシ基(例、、フェノキシ)、アリ ールアゾ基(例、フェニルアゾ)、アルキルチオ基 (例、メチルチオ、エチルチオ、プロピルチオ)、アル キルアミノ基(例、メチルアミノ、プロピルアミノ)、 アシル基(例、アセチル、プロパノイル、オクタノイ ル、ベンゾイル)、アシルオキシ基(例、アセトキシ、 ピバロイルオキシ、ベンゾイルオキシ)、ヒドロキシ ル、メルカプト、アミノ、カルボキシル、スルホ、カル バモイル、スルファモイルおよびウレイドが含まれる。 二価の芳香族基に、別の芳香族環が単結合、ビニレン結 合またはエチニレン結合を介して置換基として結合して いると、後述するように特定の液晶配向促進機能が得ら れる。また、Hb-L1-に相当する基を、置換基とし て有してもよい。

【0017】二価の複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫

黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリジス環、ピラゾリシス環、ピラゾール環、ピラジン環、ピラジン環、ピリジン環、オキサジン環、チイン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピカジン環、ピアジン環が含まれる。

【0018】複素環に、他の複素環、脂肪族環または芳 香族環が縮合していてもよい。縮合複素環の例には、ベ ンゾフラン環、イソベンゾフラン環、ベンゾチオフェン 環、インドール環、インドリン環、イソインドール環、 ベンゾオキサゾール環、ベンゾチアゾール環、インダゾ ール環、ベンゾイミダゾール環、クロメン環、クロマン 環、イソクロマン環、キノリン環、イソキノリン環、シ ンノリン環、フタラジン環、キナゾリン環、キノキサリ ン環、ジベンゾフラン環、カルバゾール環、キサンテン 環、アクリジン環、フェナントリジン環、フェナントロ リン環、フェナジン環、フェノキサジン環、チアントレ ン環、インドリジン環、キノリジン環、キヌクリジン 環、ナフチリジン環、プリン環およびプテリジン環が含 まれる。二価の複素環基は、置換基を有していてもよ い。置換基の例は、置換アリーレン基の置換基の例と同 様である。二価の複素環基は、複素原子(例えば、ピペ リジン環の窒素原子)で、L1 または(L1 が単結合の 場合)分子中心の環状基(Су²)と結合してもよい。 また、結合する複素原子がオニウム塩(例、オキソニウ ム塩、スルホニウム塩、アンモニウム塩)を形成してい もよい。Cy1 および後述するCy2 の環状構造が、全 体として平面構造を形成してもよい。環状構造が全体と して平面構造(すなわち円盤状構造)を形成している と、後述するように特定の液晶配向促進機能が得られ る。以下に、Cy¹の例を示す。複数のHb-L¹ーに 相当する基が二価の芳香族基または二価の複素環基に結 合している場合、いずれか一つが式(I)で定義するH b-L1 -であって、残りは二価の芳香族基または二価 の複素環基の置換基である。

[0019]

【化1】

【0025】 【化7】

【0026】式(I)において、L²は、単結合または -アルキレン基-、-アルケニレン基-、-アルキニレ ン基一、一〇一、一S一、一〇〇一、一NR一、一S〇 2 一およびそれらの組み合わせからなる群より選ばれる 二価の連結基である。Rは、水素原子または炭素原子数 が1乃至30のアルキル基である。L2 は、-O-、-S-、-CO-、-NR-、-SO2 -およびそれらの 組み合わせからなる群より選ばれる二価の連結基である ことが好ましい。Rは、水素原子または炭素原子数が1 乃至20のアルキル基であることが好ましく、水素原子 または炭素原子数が1乃至15のアルキル基であること がさらに好ましく、水素原子または炭素原子数が1乃至 12のアルキル基であることが最も好ましい。上記アル キレン基の炭素原子数は、1乃至40であることが好ま しく、1乃至30であることがより好ましく、1乃至2 0であることがさらに好ましく、1乃至15であること がさらにまた好ましく、1乃至12であることが最も好 ましい。上記アルケニレン基またはアルキニレン基の炭 素原子数は、2乃至40であることが好ましく、2乃至 30であることがより好ましく、2乃至20であること がさらに好ましく、2乃至15であることがさらにまた 好ましく、2乃至12であることが最も好ましい。以下 に、 L^2 の例を示す。左側が Cy^1 に結合し、右側がCy² に結合する。

[0027]

L20:単結合 L21:-S-L22:-NH-

 $L23:-NH-SO_2-NH-$

L24 : -NH-CO-NH-

 $L25:-SO_{2}$ -

L26:-O-NH-

 $L27:-C\equiv C-$

L28:-CH=CH-S-

 $\text{L29:-CH}_2 \ -\text{O-}$

 $L30:-N(CH_3)-$

L31:-CO-O-

【0028】式(I)において、nは、2、3または4 である。 n は、3または4であることが好ましい。式 (I)において、Cy² は、n価の芳香族基またはn価 の複素環基である。芳香族基の芳香族環の例には、ベン ゼン環、インデン環、ナフタレン環、フルオレン環、フ ェナントレン環、アントラセン環およびピレン環が含ま れる。ベンゼン環およびナフタレン環が好ましく、ベン ゼン環が特に好ましい。芳香族基は置換基を有していて もよい。置換基の例には、脂肪族基、芳香族基、複素環 基、ハロゲン原子、アルコキシ基(例、メトキシ、エト キシ、メトキシエトキシ)、アリールオキシ基(例、、 フェノキシ)、アリールアゾ基(例、フェニルアゾ)、 アルキルチオ基(例、メチルチオ、エチルチオ、プロピ ルチオ)、アルキルアミノ基(例、メチルアミノ、プロ ピルアミノ)、アリールアミノ基(例、フェニルアミ ノ)、アシル基(例、アセチル、プロパノイル、オクタ ノイル、ベンゾイル)、アシルオキシ基(例、アセトキ シ、ピバロイルオキシ、ベンゾイルオキシ)、ヒドロキ シル、メルカプト、アミノ、カルボキシル、スルホ、カ ルバモイル、スルファモイルおよびウレイドが含まれ る。

【0029】複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好まし

い。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾリン環、イミダゾリン環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン

環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。トリアジン環が好ましく、1,3,5ートリアジン環が特に好ましい。複素環に他の複素環、脂肪族環または芳香族環が縮合していてもよい。ただし、単環式複素環が好ましい。以下に、Cy²の例を示す。

【0030】 【化8】

【化13】

【0034】疎水性排除体積効果化合物は、以上述べた 疎水性基(Hb)、連結基(L^1 、 L^2)および環状基(Cy^1 、 Cy^2)を組み合わせた化合物である。これ らの組み合わせについて、特に制限はない。以下に、式(I)で表される疎水性排除体積効果化合物の例を示す。

[0035]

【化12】

(1)

【0037】 【化14】

$$(3) \\ \begin{array}{c} n^{-C_4H_9} \\ CH^{-}CH_2 - CH_2 - O \\ n^{-C_6H_{13}} \end{array} \\ \begin{array}{c} O^{-}CH_2 - CH_2 -$$

[0038] [化15] (4)
$$n-C_{12}H_{25}-O-CO$$
 — $N-C_{12}H_{25}$ — $N-C_{12}H_{25}$

【0039】 【化16】

$$(13) \\ n-C_{12}H_{25}-O \longrightarrow CH=CH \longrightarrow CH=CH \longrightarrow O-n-C_{12}H_{25} \\ n-C_{12}H_{25}-O \longrightarrow CH=CH \longrightarrow O-n-C_{12}H_{25} \\ O-n-C_{12}H_{25} \longrightarrow O-n-C_{12}H_{27} \\ O-n-C_{12}H_{27} \longrightarrow O-n-C_{12}H_{27} \\$$

-O−n-C₁₂H₂₅

[0052] 【化29】 (18)ņ-C₁₂H₂₅ ή-C₁₂H₂₅ Q-n-C₁₂H₂₅ CH2-CH2-O-CH2-Q=n-C₁₂H₂₅ CH2=CH2=O-CH2=CH2 CH2.

[
$$(19)$$
 (19)

n-C₁₂H₂₅-O-CH₂

[
$$0.054$$
] (21)
$$\begin{array}{c} \text{n-C}_{18}\text{H}_{33} \\ \text{O-C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O-C}_2\text{H}_5 \\ \text{CH}_3 \\ \text{HN} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O-C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_2\text{H}_5 \\ \text{C}_1\text{H}_3 \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_1\text{H}_3 \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_1\text{H}_3 \\ \text{C}_2\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O} \\ \text{C}_1\text{H}_4 - \text{O-C}_2\text{H}_4 - \text{O-C}_2\text{$$

【0060】 【化37】

$$(26) \qquad (-C_{12}H_{25} \qquad (-0.6.1.1)$$

$$(-0.6.1.1) \qquad (-0.6.1.1)$$

$$(-0.6.1.$$

[0064]

【化41】

[
$$0.065$$
] [$4 2$] [

【化44】

[0067]

[
$$0.068$$
] [(1.45)]

(34)

 0.068]

(34)

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068]

 0.068

$$(36) \qquad \bigcap_{P \leftarrow C_8 H_7} C_8 H_7 - C_{H_2} - C$$

[0073]

【化50】

(39)
$$C_{0}$$
 C_{0}
 C_{0}

【0074】 【化51】

【0075】 【化52】

(41)
$$n-C_{12}H_{25}=0$$
 $n-C_{12}H_{25}=0$ $n-C_{12}H_{25}=0$ $n-C_{12}H_{25}=0$ $n-C_{12}H_{25}=0$

【0076】 【化53】

(42)
$$C_{12}H_{25} = 0$$
 $C_{12}H_{25} = 0$ $C_{12}H_{25} = 0$

【化54】

[0078] 【化55】

[0079]

【化56】

【0081】「液晶配向促進機能]式(Ⅰ)で表される 化合物は、液晶と混合して塗布した後に空気界面側に偏 在することができる。空気界面側に偏在するためには、 液晶と不相溶であること、すなわち液晶と相分離する必 要がある。式(I)で表される化合物では、疎水性基 (Hb)が機能して、液晶との相分離が起こる。なお、 疎水性基(Hb)がフッ素置換脂肪族基であると、明確 な相分離が起こる。さらに、液晶の配向を促進するため には、比較的剛直で液晶の分子分極特性に近い性質を有 する部分構造が必要である。排除体積効果を有する複数 の環状構造(Су¹ およびСу²)は、上記のような部 分構造に該当する。本発明者は、式(I)で表される化 合物が空気界面近傍で、疎水性基(Hb)を空気側に向 け、排除体積効果を有する環状構造(Су1 およびСу 2)を液晶側に向けて存在していると推定している。排 除体積効果を有する環状構造 (Су¹ およびСу²) は、全体として平面構造を形成する場合と、一部の環状 構造が液晶側に杭のように突き出した構造を有する場合 (例えば、少なくとも二つの環を、単結合、ビニレン結 合またはエチニレン結合により結合した構造を含む場 合)とがある。

【 0 0 8 2 】環状構造が全体として平面構造を形成する場合、式(I)で表される化合物は棒状液晶に対して、水平配向効果を示す。環状構造が全体として平面構造を形成する場合、ディスコティック液晶に対しては、排除体積効果を有する環状構造(Cy¹ およびCy²)が親

水性であるか疎水性であるかの違いに応じて、水平配向 効果または垂直配向効果を示す。一部の環状構造が液晶 側に杭のように突き出した構造を有する場合は、棒状液 晶とディスコティック液晶の双方に対して、垂直配向効果を示す。以上のように、液晶と式(I)で表される化合物との間の静電気的な分子間の引力と排除体積効果をよる斥力を、化合物の分子構造、特に排除体積効果を有する環状構造(Cy¹ およびCy²)を変化させることで自由に制御するできる。すなわち、式(I)で表される化合物の種類を適切に選択することによって、空気界面側での液晶性分子の傾斜角を、液晶性分子の種類に限定されることなく、任意に制御できる。液晶配向促進剤として用いる化合物は、液晶の量の0.01乃至20質量%の量で使用することがざらに好ましく。0.1乃至5質量%の量で使用することがさらに好ましい。

【0083】[金属表面処理機能]式(I)で表される化合物の疎水性基(Hb)には、金属材料に低表面エネルギー表面を付与する機能もある。従って、式(I)で表される化合物で金属表面を処理すると、非粘着性、焼水性、防湿性、防汚性、防錆性、着氷雪防止性、離型性、耐候性、低摩擦性や耐摩擦性のような複合機能をより効果的に発現させることができる。従来の金属表面処理剤は、金属表面の処理剤の被膜が剥離または破壊されやすいとの問題があった。式(I)で表される化合物の環状構造(Cy¹、Cy²)は、排除体積効果を有し、金属表面との親和性が優れている。そのため、金属表面に形成される処理剤(式(I)で表される化合物)の皮膜の強度も、従来の金属表面処理剤と比較して優れている。

[0084]

【実施例】[実施例1]

[0085]

【化58】

$$\begin{array}{c} & \text{η-C_3H}_7\\ & \text{η-C_8F}_{17}-\text{$SO}_2\text{ -N -$C$H}_2-\text{$C$H}_2-\text{$O$H}\\ & & \downarrow \text{CH}_3\text{$SO}_2\text{$C$I}\\ & & & \text{$\eta$-$C}_3\text{$H}_7\\ & & \text{$(A)$ η-C_8$:1_1/-$SO}_2-\text{N-CH}_2-\text{CH}_2-\text{CH}_2-\text{O-$SO}_2-\text{$C$H}_3} \end{array}$$

【0086】(化合物(A)の合成)攪拌器を装着した200m1三ツロフラスコに、フッ素系界面活性剤(メガファックF-104、大日本インキ化学工業(株)製)34.9g(0.06モル)、テトラヒドロフラン50m1およびトリエチルアミン8.37m1(0.06モル)を加え、攪拌して溶液を得た。溶液を-5℃に冷却し、メタンスルホニルクロリド4.64m1(0.06モル)をテトラヒドロフラン50m1に溶解した溶液を、攪拌しながら滴下した。滴下終了後、室温下で1時間攪拌した。酢酸エチル/飽和食塩水で抽出、洗浄した後、酢酸エチル相を分取し、無水硫酸ナトリウムで乾燥した。酢酸エチルを減圧留去し、39.3gの化合物(A)を得た(収率99%)。化合物(A)は精製せず、このまま次工程に用いた。

【0087】 【化59】

$$(A) \quad \text{n-C}_8 F_{17} - \text{SO}_2 - \text{N-CH}_2 - \text{CH}_2 - \text{O} - \text{SO}_2 - \text{CH}_3$$

$$\downarrow \quad \text{HO} - \text{NO}_2$$

$$(B) \quad \text{n-C}_8 F_{17} - \text{SO}_2 - \text{N-CH}_2 - \text{CH}_2 - \text{O} - \text{NO}_2$$

【0088】(化合物(B)の合成) 攪拌器を装着した200m1三ツロフラスコに、pーニトロフェノール7.4g(0.053モル)、得られた化合物(A)39.3g(0.059モル) およびN, Nージメチルホルムアミド100mlを加え、攪拌して溶液を得た。炭酸カリウム29.5g(0.21モル)を加え、130℃に加熱して30分間攪拌した。室温に冷却後、酢酸エチル/飽和食塩水で抽出、洗浄し、酢酸エチル相を分液採取し、無水硫酸ナトリウムで乾燥した。酢酸エチルを減圧留去し、メタノール300m1で攪拌洗浄して、化合物(B)26.9g(収率71%)を得た。

【0089】 【化60】

【0090】(化合物(C)の合成)攪拌器と還流冷却器とを装着した300m1三ツロフラスコに、還元鉄

8. 48g(0.152 + N)、イソプロピルアルコール 150m1、水60m1 および塩化アンモニウム0.30g(5.7 + N) を加え、90 でに加熱攪拌し、還流させた。この中に、得られた化合物(B) 26.8g(0.038 + N) を徐々に添加し、そのまま2時間加熱攪拌を続けた。加熱状態のまま、テトラヒドロフラン 100m1 を添加して、セライト沪過した。沪液を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した。酢酸エチルを減圧留去し、ハルツ状(粘稠液状)の化合物(C) 20.5g(収率80%)を得た。

[0091]

【化61】

(C)
$$n-C_8F_{17}-SO_2 -N-CH_2-CH_2-O-NH_2$$

$$CI -N-CI -N-CI$$

【0092】(化合物(28)の合成) 攪拌器と還流冷却器とを装着した500m1三ツロフラスコに、得られた化合物(C)20.4g、メチルエチルケトン200m1、シアヌルクロライド2.03g(0.011モル)および炭酸カリウム13.8g(0.10モル)を加え、窒素気流下100℃で6時間加熱攪拌した。室温に冷却後、酢酸エチル/飽和食塩水で抽出、洗浄し、酢酸エチル相を分取した。無水硫酸ナトリウムで乾燥し、酢酸エチルを減圧留去したのち、アセトン110m1とイソプロピルアルコール330m1とで再結晶した。収量7.28g(収率38%)、融点227℃。CDC13を溶媒とする「H-NMR:1.0ppm. triplet,3H;1.3ppm. multiplet,2H;3.4~4.0ppm. multiplet,4H;4.2ppm. triplet,2H;6.9ppm. doublet,2H

【0093】[実施例2]

[0094]

【化62】

【0095】(化合物(D)の合成)実施例1で得られた化合物(A)およびニトロカテコールを用い、実施例

1の化合物(B)の合成と同様にして、化合物(D)を 合成した(収率84%)。

[0096]

【化63】

$$(D) \quad n - C_8 F_{17} - SO_2 - N - CH_2 - CH_2 - CH_2 - O - NO_2$$

$$n - C_8 F_{17} - SO_2 - N - CH_2 - CH_2 - CH_2 - O - NO_2$$

$$n - C_3 H_7$$

$$n - C_3 H_7$$

$$n - C_3 H_7 - CH_2 - CH_2 - CH_2 - O - NH_2$$

$$n - C_8 F_{17} - SO_2 - N - CH_2 - CH_2 - O - NH_2$$

$$n - C_8 F_{17} - SO_2 - N - CH_2 - CH_2 - O - NH_2$$

【0097】(化合物(E)の合成)得られた化合物(D)を用い、実施例1の化合物(C)の合成と同様にして、化合物(E)を合成した(収率88%)。

[0098]

【化64】

(E)
$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-CH_2-O$$

$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-O$$

$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-O$$

$$n-C_8H_7$$

$$CI \qquad N \qquad CI$$

$$N \qquad N$$

$$CI \qquad N \qquad N$$

【0102】(化合物(F)の合成)3ーヒドロキシー2ーナフト工酸20g(0.11モル)およびpートルエンスルホン酸19g(0.1モル)をエタノール400m1に溶解し、3時間加熱還流した。反応液を水1リットルにあけ、酢酸エチル1リットルで抽出した。有機相を減圧下にて濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=20/1)で精製し、化合物(F)を17g(0.079モル)得た。

[0103]

【化66】

【0099】(化合物(30)の合成)得られた化合物(E)と塩化シアヌルを用い、実施例1の化合物(28)の合成と同様にして、化合物(30)を合成した。精製はシリカゲルを固定相、ヘキザン/酢酸エチル(2/1)を展開相とするカラムクロマトグラフィーを用いた。収率33%、融点81~83℃。CDC1。を溶媒とする ¹H-NMR:0.9ppm.triplet,6H;1.6~1.8ppm.multiplet,4H;3.4~3.6ppm.multiplet,8H;4.2ppm.triplet,4H;6.8~7.4ppm.multiplet,3H

【0100】[実施例3]

[0101]

【化65】

$$\eta$$
-C₃H₇
(A) η -C₃i: $_{17}$ -SO₂-N-CH₂-CH₂-O -SO₂-CH₈
【0104】(化合物(A)の合成)フッ素系界面活性 剤(メガファックF-104、大日本インキ化学工業 (株)製)29g(0.05モル)およびトリエチルアミン7.1 η 1をテトラヒドロフラン150 η 1に溶解し、溶液を-5 η 0以下に冷却した。メタンスルホニルクロリド4 η 1(0.05モル)をテトラヒドロフラン50 η 1に溶解した溶液を、反応液の温度が5 η 0以上にならない速度で滴下した。滴下後、反応液を室温にて1時

間攪拌した。反応液を水1リットルにあけ、酢酸エチル 1リットルで抽出した。有機相を減圧下にて濃縮し、化

n-C₃H₇

N -CH2-CH2-OH

合物(A)を油状物として得た。化合物(A)は精製せず、このまま次工程に用いた。

[0105]

【化67】

(A)
$$n-C_8i^{-1}_{1/}-SO_2-N-CH_2-CH_2-C-SO_2-CH_3$$

$$V (F) V (F) C_2H_5OOC$$
(G) $n-C_8F_{17}-SO_2-N-CH_2-CH_2-O$

$$C_2H_5OOC$$

【0106】(化合物(G)の合成)得られた化合物(A)および化合物(F)10g(0.046モル)をN,Nージメチルホルムアミド100m1に溶解し、炭酸カリウム30g(0.21モル)を加えて120℃にて3時間加熱攪拌した。反応液を水1リットルにあけ、酢酸エチル1リットルで抽出した。有機相を4%希塩酸で洗い、有機相を減圧下にて濃縮し、濃縮物をシリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=10/1)で精製し、化合物(G)を29g(0.037モル)得た。

【0107】 【化68】

(G)
$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-O$$

$$\downarrow C_2H_5OOC$$
(H) $n-C_8F_{17}-SO_2-N-CH_2-CH_2-O$

$$\downarrow C_2H_5OOC$$

$$\uparrow -C_3H_7$$

$$\downarrow HOOC$$

【0108】(化合物(H)の合成)得られた化合物(G)29g(0.037モル)をエタノール100m1に溶解し、その溶液に水酸化ナトリウム3g(0.074モル)を水100m1に溶解したアルカリ水溶液を加え、80℃にて1時間加熱攪拌した。反応液を冷却後、反応液に1モル/リットル塩酸100m1を加えて、酢酸エチル500m1で抽出した。有機相を減圧下にて濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=4/1)で精製し、化合物(H)を26g(0.035モル)得た。

[0109]

【化69】

【0110】(化合物(34)の合成)メタンスルホニ ルクロリド1.16m1(0.015モル)をテトラヒ ドロフラン20m1に溶解し、-5℃以下に冷却した。 溶液に、得られた化合物(H)11.3g(O.015 モル)とエチルジイソプロピルアミン2.8m1(0. 015モル)をテトラヒドロフラン10m1に溶解した 溶液を反応液の温度が5℃以上にならない速度で滴下し た。滴下後、室温にて30分間攪拌した。反応液を5℃ 以下に冷却し、エチルジイソプロピルアミン2.8m1 (0.015モル) および4-N, N-ジメチルアミノ ピリジン0.3g(2.4ミリモル)を加え、続いて 1,3,5-トリヒドロキシベンゼン二水和物0.74 g(4.6ミリモル)を硫酸ナトリウムで脱水したテト ラヒドロキシフラン溶液10m1を滴下した。滴下後、 反応液を室温で3時間撹拌した後、反応液を水200m 1にあけ、酢酸エチル200m1で抽出した。有機相を 減圧下にて濃縮し、濃縮物をシリカゲルカラムクロマト グラフィー(溶出液:ヘキサン/酢酸エチル=6/1) で精製し、化合物(34)を8.2g(3.4ミリモ ル) 得た。 融点は、 113~116℃であった。 CDC 1。を溶媒とする ¹H-NMR (TMS=Oppm.): 8. 25 (d、3H); 7. 73 (d、3H); 7. 5 0 (d, 6H); 7.35 (d, 6H); 7.27 (S, 3H) : 7.10(S, 3H) : 7.00(d, 3H)3H); 4.33 (bs, 6H); 3.40 \sim 4.20 $(m, 12H); 1.50\sim1.90 (m, 6H);$ 0.88(t,9H)

【0111】[実施例4]

[0112]

【化70】

HO Br
$$\frac{HC(OC_{2}H_{5})_{3}}{}$$
 (I) HO Br $C_{2}H_{5}OOC$

【0113】(化合物(I)の合成)5-ブロモサリチル酸56g(0.26モル)とオルト蟻酸エチル100m1とを混合し、140℃で3時間加熱攪拌した。反応液を減圧下で加熱しながら濃縮し、化合物(I)63g(0.26モル)を得た。

[0114]

【0115】(化合物(J)の合成)実施例3で得られ

【化71】

【 0 1 1 7 】 (化合物 (K) の合成) 得られた化合物 (J) 38.4 g (0.047モル) とフェニルアセチレン5.2 g (0.051モル) とをトリエチルアミン 30 m 1 に加え、攪拌して溶解した。得られた溶液に、ビストリフェニルホスフィンジクロロパラジウム 0.1 g、ヨウ化銅 0.0 1 g、トリフェニルホスフィン 0.2 gを加えて、120℃で3時間加熱攪拌した。反応液

を水500m1にあけ、濃塩酸20m1を加えて酢酸エチル500m1で抽出し、有機相を減圧下で乾燥し、化合物(K)を油状物として得た。化合物(K)は精製せず、このまま次工程に用いた。

【0118】 【化73】

HOOC

【 0 1 1 9 】 (化合物 (L) の合成) 得られた化合物 (K) をエタノール 2 0 0 m 1 に溶解し、その溶液に水酸化ナトリウム 1 2 g (0.3モル)を水 2 0 0 m 1 に溶解したアルカリ水溶液を加え、80℃にて 1 時間加熱 攪拌した。反応液を冷却後、反応液に水 2 0 0 m 1 および濃塩酸 3 0 m 1 を加えて、酢酸エチル 5 0 0 m 1 で抽

出した。有機相を減圧下にて濃縮し、濃縮物をシリカゲルカラムクロマトグラフィー(溶出液: ヘキサン/酢酸エチル=4/1)で精製し、化合物(L)を28g(0.035モル)得た。

[0120]

【化74】

(L)
$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-O-C=C$$

HOOC

HO

OH

【0121】(化合物(33)の合成)メタンスルホニ ルクロリド1.16m1(0.015モル)をテトラヒ ドロフラン20m1に溶解し、-5℃以下に冷却した。 溶液に、得られた化合物(L)12.1g(0.015 モル)とエチルジイソプロピルアミン2.8m1(0. 015モル)をテトラヒドロフラン10m1に溶解した 溶液を反応液の温度が5℃以上にならない速度で滴下し た。滴下後、室温にて30分間攪拌した。反応液を5℃ 以下に冷却し、エチルジイソプロピルアミン2.8m1 (0.015 ± 1) および4 - N, N - ジメチルアミノピリジン0.3g(2.4ミリモル)を加え、続いて 1,3,5-トリヒドロキシベンゼン二水和物0.74 g(4.6ミリモル)を硫酸ナトリウムで脱水したテト ラヒドロキシフラン溶液10mlを滴下した。滴下後、 反応液を室温で3時間攪拌した後、反応液を水200m 1にあけ、酢酸エチル200m1で抽出した。有機相を 減圧下にて濃縮し、濃縮物をシリカゲルカラムクロマト グラフィー(溶出液:ヘキサン/酢酸エチル=6/1) で精製し、化合物(33)を8g(3.3ミリモル)得 た。融点は、148℃であった。CDC1。を溶媒とす る ¹H-NMR (TMS=Oppm.):8.60(s、3 H); 7. 95 (d, 3H); 7. 85 (d, 3H); 7. 60 (t, 3H); 7. $40 \sim 7$. 52 (m, 6 H); 7. 27(s, 3H); 4. 40(bs, 6 H); 3. $72\sim4.10$ (m, 6H); 3. 56 $(t, 6H); 1.50\sim1.90 (m, 6H); 0.$

80 (t、9H) 【0122】[実施例5] 【0123】

【化75】

$$\begin{array}{c} \text{n-C}_{3}\text{H}_{7} \\ \text{n-C}_{8}\text{F}_{17} - \text{SO}_{2} - \text{N-CH}_{2} - \text{Cit}_{2} - \text{OH} \\ & \downarrow \text{CH}_{3}\text{SO}_{2}\text{CI} \\ & \text{n-C}_{3}\text{H}_{7} \\ \text{(A)} \quad \text{n-C}_{8}\text{i-}_{17} - \text{SO}_{2} - \text{N-CH}_{2} - \text{CH}_{2} - \text{O} - \text{SO}_{2} - \text{CH}_{3} \end{array}$$

【0124】(化合物(A)の合成)フッ素系界面活性剤(メガファックF-104、大日本インキ化学工業(株)製)58.6g(とトリエチルアミン12.14gとをテトラヒドロフラン20mlに溶解し、氷冷下、攪拌した。メタンスルホニルクロリド12.6gを約23分かけて滴下したところ、白沈が生じ、若干発熱した。滴下終了後、氷冷下にて50分環、室温にて15分間攪拌した。TLCにて反応の終了を確認した後、反応液を希塩酸一酢酸エチル中に注いだ。抽出および分液の後、有機相を飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮したところ、目的とする化合物(A)を無色のワックス状固体として得た。収量は66.57g、収率はほぼ定量的であった。構造は、NMRと質量スペクトルで確認した。

【0125】 【化76】

(A)
$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-O-SO_2-CH_3$$

 $HO \longrightarrow O_2N$
 $p-C_3H_7$
(M) $n-C_8F_{17}-SO_2-N-CH_2-CH_2-O \longrightarrow O_2N$

【0126】(化合物(M)の合成)2-二トロ-4-フェニルフェノール8.61g、得られた化合物(A)31.84gおよび炭酸カリウム8.9gに、ジメチルホルムアミド150m1を加え、100℃にて5時間加熱した。TLCにて反応の終了を確認した後、反応液を希塩酸一酢酸エチル中に注いだ。抽出、分液の後、有機

相を飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮し、アセトニトリルにて再結晶したところ、目的とする化合物(M)を淡黄色結晶として得た。収量は27. 29g、収率は87%であった。構造はNMRおよび質量スペクトルで確認した。

[0127]

【化77】

【0128】(化合物(N)の合成)還元鉄16g、塩化アンモニウム1.6g、水20m1、イソプロピルアルコール200m1を蒸気浴上にて加熱還流しながら攪拌し、その中に得られた化合物(M)を少しずつ加えた。2.5時間加熱還流し、TLCにて反応の終了を確認した後、反応液を熱いままセライトにて沪過し、テト

ラヒドロフランにて洗浄した。これを濃縮したところ、 目的とする化合物(N)を灰色結晶として得た。収量は 16.56gであった。化合物(N)は精製せず、この まま次工程に用いた。

[0129]

【化78】

(N)
$$n-C_8F_{17} -SO_2 - N-CH_2 - CH_2 - CH$$

【0130】(化合物(29)の合成)得られた化合物(N)、炭酸カリウム3.59gおよび塩化シアヌル1.11gにメチルエチルケトン100mlを加え、3時間加熱還流した。TLCにて反応の終了を確認した後、反応液を希塩酸一酢酸エチル中に注いだ。抽出、分液の後、有機相を飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮し、シリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=2/1)で精製したところ、目的とする化合物(29)を粘稠な油状物として得た。収量は8.79gであった。構造は質量スペクトルで確認した。

【0131】「実施例6]

[0132]

【化79】

【0133】(5-フェニルサリチル酸の合成)5-ブロモサリチル酸21.7g、フェニル硼酸13.41gおよび炭酸カリウム15.2gを水400m1に溶解し、40分間室温にて攪拌した。TLCにて反応の終了を確認した後、反応液を希塩酸一酢酸エチル中に注いだ。抽出、分液の後、有機相を飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮し、アセトニトリルにて再結晶したところ、目的とする4-フェニルサリチル酸を無色結晶として得た。収量は18.58g、収率は87%であった。構造は質量スペクトルで確認した。

【0134】 【化80】

【0135】(5ーフェニルサリチル酸エチルの合成) 5ーフェニルサリチル酸18.58gに、エタノール3 50ml、トルエン100mlおよび濃硫酸42mlを加え、14時間加熱還流した。TLCにて原料が大半消失したことを確認した後、反応液を希塩酸-酢酸エチル 中に注いだ。抽出、分液の後、有機相を水および飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮し、エタノールにて再結晶したところ、目的とする5-フェニルサリチル酸エチルを無色結晶として得た。収量は11.53g、収率は55%であった。構造

は、NMRおよび質量スペクトルで確認した。 【0136】

【化81】

(A)
$$n-C_8F_{17}-SO_2-N-CH_2-CH_2-C-SO_2-CH_3$$

 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$
 $+10$

【0137】(化合物(O)の合成)5-フェニルサリチル酸エチル11.46g、実施例5で得た化合物(A)34.03g、炭酸カリウム11.2gおよびジメチルホルムアミド150m1を100℃にて加熱攪拌した。TLCにて反応の終了を確認した後、反応液を希塩酸一酢酸エチル中に注いだ。抽出、分液の後、有機相を飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥し

た。これを濃縮し、アセトニトリルにて再結晶したところ、目的とする化合物(O)を無色結晶として得た。収量は33.10g、収率は86%であった。構造は、NMRおよび質量スペクトルで確認した。

【0138】 【化82】

$$(O) \ \, \text{n-C}_8 F_{17} - \text{SO}_2 - N - \text{Ci-H}_2 - \text{CH}_2 - \text{O} - \text{Co-H}_5 \text{OOC} \\ \\ (P) \ \, \text{n-C}_8 F_{17} - \text{SO}_2 - N - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{Co-H}_2 - \text{CH}_2 - \text{O} - \text{Co-H}_2 - \text{CH}_2 - \text{CO-H}_2 - \text{CO-H}_2$$

【0139】(化合物(P)の合成)化合物(O)1 5.8gを20m1のテトラヒドロフランに溶解し、氷冷下、攪拌した。この中に20m1の水に溶解した4.0gの水酸化ナトリウムを加えた。反応液を60℃に加熱し、2時間攪拌した。TCLにて反応の終了を確認し た後、反応液中に希塩酸を滴下した。析出した白色結晶を沪過し、水洗した。終了は1。27g、収率は定量的であった。

[0140]

【化83】

【0141】(化合物(32)の合成)化合物(P)7.03gを塩化メチレン60m1に溶解し、ジメチルホルムアミドを一滴加え、窒素気流にて室温下、オキサリルクロリド1.2m1を滴下した。反応液を2.5時間加熱還流した。TLCにて反応の終了を確認した後、60℃にて塩化メチレンを減圧留去した。得られた白色固体をテトラヒドロフラン80m1に溶解し、1,3,5ートリヒドロキシベンゼン0.38gおよびピリジン5m1を加え、60℃にて6時間攪拌した。反応液を希塩酸一酢酸エチル中に注ぎ、抽出、分液の後、有機相を

飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥した。これを濃縮し、シリカゲルクロマトグラフィー(溶出液:クロロホルム/ヘキサン=4/3)にて精製後、アセトニトリルにて再結晶したところ、目的とする化合物(32)を無色結晶として得た。収量は3.24g、収率は45%であった。構造は、NMRおよび質量スペクトルで確認した。

【0142】 [応用例1] ガラス基板上に、ポリイミド配向膜(LX-1400、日立化成デュポン社製)を形成して、ラビング処理した。下記の棒状液晶性分子

[0144]

【表1】

(Q)に、化合物(27)を第1表に示す濃度となるように添加した。混合物をクロロホルムで約15重量%に希釈した。希釈液を配向膜の上に滴下して、第1表に示す回転速度でスピンコートした。120℃のホットステージに乗せて、直ちに棒状液晶性分子の配向状態(初期配向)を偏光顕微鏡で観察した。棒状液晶性分子(Q)のみでは、107~166℃の温度範囲でネマティック相を示す。次に、混合物が等方性相となる温度(iso点)を測定した。そして、混合物をiso点以上に加熱してから、120℃における棒状液晶性分子の配向状態(加熱後配向)を偏光顕微鏡で観察した。以上の結果を第1表に示す。

[0143]

【化84】

第1表

化合物(27)	iso	回転速度1	000rpm_	回転速度	300rpm
の濃度(%)	点(℃)	初期配向	加熱後配向	初期配向	加熱後配向
なし	164.9	デュアル	デュアル	_	_
0.023	164.9	デュアル	モノ	海島	モノ
0.047	165.0	デュアル*	モノ	モノ	モノ
0.17	164.7	モノ**	モノ**	_	_
0.49	164.2	モノ**	モノ**	_	_
0.98	163.5	モノ***	モノ***	_	_
4.96	163.5	モノ***	モノ***	_	_
11.2	163.4	モノ***	モノ***	_	_

(註)

-: 実施せず

デュアル: デュアルドメイン (海島状のリバースチルトドメイン) が発生し、空気界面側で傾斜して、厚み方向にハイブリッド配向している状態

モノ: リバースチルトドメインの発生が全く無く、空気界面側で水平配向して、厚み方向にもホモジニアス(モノドメイン)配向している状態

*: 部分的にモノドメインに変化

**: 濡性変化(高温側で濡れの良化)が発生

***: 丸状相分離(直径20~300μmの円形等方性領域)の発生

【0145】[応用例2]応用例1で用いた棒状液晶性分子(Q)に、化合物(28)、(29)、(30)、(31)、(32)、(33)、(34)、(35)または(36)を、1重量%添加した。混合物をクロロホルムで約15重量%に希釈した。希釈液を応用例1で作製した配向膜の上に滴下して、1000rpmの回転速度でスピンコートした。120℃で1分間加熱し、120℃の状態で棒状液晶性分子の配向状態を偏光顕微鏡で観察した。いずれの化合物を添加した場合においても、リバースチルトドメインが全く発生しておらず、空気界面側で水平配向して、厚み方向にもホモジニアス(モノドメイン)に配向していた。また、化合物を添加しない状態と比較して、塗布適性の改善も認められた。

【0146】[参考例1]応用例1で用いた棒状液晶性 分子(Q)に、下記の比較化合物(R)、(S)、

(T)、(U)または(V)を、1重量%添加した。混合物をクロロホルムで約15重量%に希釈した。希釈液を応用例1で作製した配向膜の上に滴下して、1000 rpmの回転速度でスピンコートした。120Cで1分間加熱し、120Cの状態で棒状液晶性分子の配向状態

を偏光顕微鏡で観察した。いずれの化合物を添加した場合においても、海島状のリバースチルトドメインが多数発生しており、配向促進効果が認められなかった。また、化合物を添加しない状態と比較して、塗布適性も劣化していた。

[0147]

【化85】

$$\begin{array}{cccc} (R) & C_9F_{19} & N & C_9F_{18} \\ & & N & N & \\ & & C_9F_{19} & \end{array}$$

[0148]

【化86】

(S)
$$_{\text{n-C}_{9}\text{F}_{19}}$$
 $_{\text{-CO}}^{\text{rl-C}_{3}\text{H}_{7}}$ $_{\text{\oplus }}^{\text{CH}_{3}}$ $_{\text{-CH}_{2}}^{\text{CH}_{3}}$ $_{\text{-CH}_{3}}^{\text{CO}}$

【0149】 【化87】

$$(T) \qquad \text{η-C_3H$_{$\prime$}$} \\ \text{n-C_8F$_{17}$-SO_2$-$N$-$CH_2$-$CH_2$-$CH_2$)$_{16}$-$OH}$$

$$[0\ 1\ 5\ 0\] \qquad \qquad [4\&8\ 8\]$$

$$(U) \qquad -(CH_2$-$C_1H_1$_2$-C_1-C_2-N-SO_2$-$n$-$C_8F_{17}$-$CO$-$O$-$CH$_2$-C1$-$O$_3$-C_4$_3$ (x/y=$40/60)$
$$[0\ 1\ 5\ 1\] \qquad \qquad [4\&8\ 9\]$$

$$(V) \qquad -(CH_2$-$C_1H_3$_2$-N-CO_2$-$n$-$C_8F_{17}$} \\ \text{$CO$-$O$-$CH$_2$-CH$_2$-N-SO_2$-$n$-$C_8F_{17}$}$$$$

~-(CH₂*~*ÇH)_v —

【0152】[応用例3]応用例1において、化合物 (27)を添加しなかったサンプルについて、波長546 nmにおけるレターデーションをセナルモン法により 測定したところ、274nmであった。応用例1で用いた棒状液晶性分子(Q)に、化合物(27)を、1重量%添加した。混合物をクロロホルムで約15重量%に希釈した。希釈液を応用例1で作製した配向膜の上に満下して、1000rpmの回転速度でスピンコートした。120℃で1分間加熱し、120℃の状態で棒状液晶性分子の配向状態を偏光顕微鏡で観察した。その結果、リバースチルトドメインが全く発生しておらず、空気界面側で水平配向して、厚み方向にもホモジニアス(モノドメイン)に配向していた。波長546nmにおけるレターデーションを測定したところ、388nmであった。

また、化合物を添加しない状態と比較して、塗布適性の改善も認められた。別に、応用例1で用いた棒状液晶性分子(Q)に、化合物(45)を、1重量%添加した。混合物をクロロホルムで約15重量%に希釈した。希釈液を応用例1で作製した配向膜の上に滴下して、1000rpmの回転速度でスピンコートした。120℃で1分間加熱し、120℃の状態で棒状液晶性分子の配向状態を偏光顕微鏡で観察した。その結果、リバースチルトドメインが全く発生しておらず、空気界面側で水平配向して、厚み方向にもホモジニアス(モノドメイン)に配向していた。波長546nmにおけるレターデーションを測定したところ、197nmであった。また、化合物を添加しない状態と比較して、塗布適性の改善も認められた。

(x/y=20/80)

【0153】「応用例4〕市販の非重合性液晶組成物 (Z L I − 1 1 3 2 、メルク社製)を応用例1で作製し た配向膜の上に滴下して、2000rpmの回転速度で スピンコートした。室温での配向状態を偏光顕微鏡で観 察したところ、海島状のリバースチルトドメイン)が多 数発生し、空気界面側で傾斜して、厚み方向にハイブリ ッド配向していた。次に、非重合性液晶組成物に化合物 (27)、(29)、(31)、(34)または(3 6)を1重量%添加した。混合物をを応用例1で作製し た配向膜の上に滴下して、2000rpmの回転速度で スピンコートした。室温での配向状態を偏光顕微鏡で観 察した。いずれの化合物を添加した場合においても、リ バースチルトドメインが全く発生しておらず、空気界面 側で水平配向して、厚み方向にもホモジニアス(モノド メイン) に配向していた。また、化合物を添加しない状 態と比較して、塗布適性の改善も認められた。

【0154】[応用例5]応用例1で用いた棒状液晶性 分子(Q)に、化合物(30)を0.2重量%、さらに 重合開始剤(イルガキュア907、チバガイギー社製) を3重量%添加した。混合物をクロロホルムで約10重 量%に希釈した。希釈液を応用例1で作製した配向膜の 上に滴下して、2500rpmの回転速度でスピンコー トした。120℃で1分間加熱し、120℃の状態で棒 状液晶性分子の配向状態を偏光顕微鏡で観察した。その 結果、リバースチルトドメインが全く発生しておらず、 空気界面側で水平配向して、厚み方向にもホモジニアス (モノドメイン)に配向していた。120℃のまま、窒 素雰囲気下で高圧水銀灯を用い、300mJ/cm²の 照射量で紫外線を照射し、棒状液晶性分子を重合させ た。作製した光学異方性素子について、レターデション の角度依存性を調べた。結果を図1に示す。図1のX軸 は基板法線方向をO°とする光入射角度であり、Y軸は 波長546nmで測定したレターデーション(nm)で ある。図1において、黒四角(■)は、回転軸が基板面 内にあり、かつラビング方向に垂直な方向の測定値であ る。白丸(○)は、回転軸が基板面内にあり、かつラビ ング方向に平行な方向の測定値である。図1に示される 結果から明らかなように、作製した光学異方性素子で は、光軸が、基板面内でラビング方向に平行である。こ れは、固定された液晶性分子がホモジニアス配向してい ることを示している。

【0155】[応用例6]下記の棒状液晶性分子(W)に、化合物(30)を0.2重量%、さらに重合開始剤(イルガキュア907、チバガイギー社製)を3重量%添加した。混合物をクロロホルムで約10重量%に希釈した。希釈液を応用例1で作製した配向膜の上に滴下して、2500rpmの回転速度でスピンコートした。140℃で1分間加熱し、140℃の状態で棒状液晶性分子の配向状態を偏光顕微鏡で観察した。その結果、リバースチルトドメインが全く発生しておらず、空気界面側

で水平配向して、厚み方向にもホモジニアス(モノドメイン)に配向していた。なお、棒状液晶性分子(W)のみでは、131~235℃の温度範囲でネマティック相を示す。

[0156]

【化90】

【0157】140℃のまま、窒素雰囲気下で高圧水銀灯を用い、300mJ/cm²の照射量で紫外線を照射し、棒状液晶性分子を重合させた。作製した光学異方性素子について、レターデションの角度依存性を調べた。結果を図2に示す。図2のX軸は基板法線方向を0°とする光入射角度であり、Y軸は波長546nmで測定したレターデーション(nm)である。図2において、黒四角(■)は、回転軸が基板面内にあり、かつラビング方向に垂直な方向の測定値である。白丸(○)は、回転軸が基板面内にあり、かつラビング方向に平行な方向の測定値である。図2に示される結果から明らかなように、作製した光学異方性素子では、光軸が、基板面内でラビング方向に平行である。これは、固定された液晶性分子がホモジニアス配向していることを示している。

【0158】[参考例2]応用例1で用いた棒状液晶性分子(Q)に、重合開始剤(イルガキュア907、チバガイギー社製)を3重量%添加した。混合物をクロロホルムで約10重量%に希釈した。希釈液を応用例1で作製した配向膜の上に滴下して、1000rpmの回転速度でスピンコートした。120℃で1分間加熱し、120℃の状態で棒状液晶性分子の配向状態を偏光顕微鏡で観察した。その結果、リバースチルトドメインが発生していた。120℃のまま、窒素雰囲気下で高圧水銀灯を用い、300mJ/cm²の照射量で紫外線を照射し、棒状液晶性分子を重合させた。作製した光学異方性素子について、レターデションの角度依存性を調べた。結果を図3に示す。図3のX軸は基板法線方向を0°とする光入射角度であり、Y軸は波長546nmで測定したレ

ターデーション (nm) である。回転軸は、基板面内に あり、かつラビング方向に垂直であった。図3におい て、黒四角(■)と白丸(○)とは、それぞれ傾斜方向 が異なるドメインごとの測定値である。図3に示される 結果から明らかなように、作製した光学異方性素子で は、固定された液晶性分子がドメイン毎に傾斜方向が異 なるハイブリッド配向をしている。

【0159】[応用例7]下記の液晶性組成物を加温し

て調製した。液晶性組成物を応用例1で作製した配向膜 の上に滴下して、500rpmの回転速度でスピンコー トした。130℃で1分間加熱し、130℃の状態で棒 状液晶性分子の配向状態を偏光顕微鏡で観察した。その 結果、リバースチルトドメインが全く発生しておらず、 均一にねじれ配向していた。

[0160]

液晶性組成物組成

クロロホルム

下記の棒状液晶性分子(X) 応用例1で用いた棒状液晶性分子(Q) 応用例6で用いた棒状液晶性分子(W) 化合物(30)

重合開始剤(イルガキュア907、チバガイギー社製)

0.32重量部

50重量部 50重量部

0.2重量部

3重量部

400重量部

【0162】130℃のまま、窒素雰囲気下で高圧水銀 灯を用い、300mJ/cm²の照射量で紫外線を照射 し、棒状液晶性分子を重合させた。作製した光学異方性 素子の液晶層の厚さは5.3 μmであり、波長550 n mで測定したレターデーションは860 nmであった。 また、液晶性分子の捻れ角は240度であった。

O=(C;1₂)₄=O=CO=CH=CH₂

【0163】[応用例8]厚さ100μm、サイズ27

0mm×100mmのトリアセチルセルロースフイルム (フジタック、富士写真フイルム(株)製)を透明支持 体として用いた。下記の繰り替えし単位(Y)からなる ポリイミドを、N-メチル-2-ピロリドンおよび2-ブタノンの混合溶媒に溶解して5重量%溶液を調製し た。得られた溶液を、バーコーターを用いて透明支持体 の上に塗布した。塗布層を、80℃の温風で10分間乾 燥し、表面をラビング処理して、配向膜を形成した。

[0164] 【化92】

(Y)

【0165】配向膜の上に、以下の組成の塗布液をエク ストルージョン法により塗布し、130℃に加熱して、 ディスコティック液晶性化合物を配向させた。

[0166]

液晶層塗布液

下記のディスコティック液晶性分子(乙) 化合物(32)

100重量部

5. () 重量部

光重合開始剤(イルガキュア907、日本チバガイギー(株)製)

0.2重量部

2ーブタノン

185重量部

[0167]

【化93】

【0168】塗布層を130℃に加熱した状態で、4秒間紫外線を照射し、ディスコティック液晶性化合物の末端ビニル基を重合させ、配向状態を固定した。このようにして、光学異方性素子を作製した。光学異方性素子の面内レターデーションを測定し、その角度依存性からディスコティック液晶性分子の平均傾斜角を求めたところ、89°であった。また、ディスコティック液晶性分子の配向状態を偏光顕微鏡で確認したところ、全ての分子が均一に配向(モノドメイン配向)しており、配向欠陥は全く認められなかった。

【0169】 [応用例9] クロロホルム1リットルに、化合物(20)0.1gを添加して、充分に混合して、溶解させた。得られた溶液に小サイズの鉄板を5分間浸漬し、引き上げた後で風乾した。試料鉄板に対する金属表面処理効果を評価するため、定法により水に対する接触角(濡れ性)を測定した。さらに、温度80 $^{\circ}$ 、相対湿度90 $^{\circ}$ で500時間放置(強制試験)したのち、同様に水に対する接触角(濡れ性)を測定した。次のような結果が得られた。

金属表面処理前の試料鉄板表面の接触角: 8°金属表面処理後の試料鉄板表面の接触角: 81°強制試験後の試料鉄板表面の接触角: 79°

【0170】ついで、試料表面の非粘着性を評価するために、未硬化のエポキシ樹脂を二枚の試料鉄板の間にサンドウィッチし、エポキシ樹脂の硬化が完了した後に試料鉄板を剥離した。さらに、その剥離後の試料鉄板二枚の間にエポキシ樹脂をサンドウィッチし、硬化後剥離するという処理を5回連続して行った。次のような結果が得られた。

金属表面処理前の試料鉄板の剥離:不可 金属表面処理後の試料鉄板の剥離:容易 5回連続処理後の試料鉄板の剥離:容易

【0171】以上の結果から明らかなように、金属表面 処理剤の適用が容易であり、また、優れた揺水性ばかり でなく、優れた非粘着性も達成されている。さらに、金 属表面処理剤としての性能の耐久性も優れている。

【0172】[応用例10]応用例9と同様に調製した処理液を、光ディスク複製用金型に適用した。金型を処理液に浸漬したところ、金属表面処理剤が金型の表面に強固に結合し、かつ金型表面の非常に微細な凹凸にも悪影響を与えない極めて薄い金属表面処理剤からなる被膜が形成された。この金型を使用して、繰り返し光ディスクを複製したところ、金型からの光ディスクの離型が良好であった。

【0173】 [応用例11] 応用例9と同様に調製した処理液を、インクジェットプリンタのノズル面に適用した。プリンタのノズルを処理液に浸漬し、窒素ガスを軽く流しながら乾燥したのち印字を行った。その結果、ノズル面の濡れが減少し、インクの噴射方向が安定し、ドットの形成も良好であった。

【図面の簡単な説明】

【図1】応用例5で作製した光学異方性素子について、 レターデションの角度依存性を調べた結果を示すグラフ である。

【図2】応用例6で作製した光学異方性素子について、 レターデションの角度依存性を調べた結果を示すグラフ である。

【図3】参考例2で作製した光学異方性素子について、 レターデションの角度依存性を調べた結果を示すグラフ である。

【符号の説明】

X 基板法線方向をO°とする光入射角度

Y 波長546nmで測定したレターデーション(nm)

- 回転軸が基板面内にあり、かつラビング方向に垂直 な方向の測定値(図1および図2)または傾斜方向が異 なるドメインごとの測定値(図3)
- 回転軸が基板面内にあり、かつラビング方向に平行 な方向の測定値(図1および図2)または傾斜方向が異 なるドメインごとの測定値(図3)

【図2】

【図3】

フロントページの続き

(51) Int. Cl. ⁷	識別記号	FΙ	(参考)	
CO7D 251/70		C O 7 D 251/70	Z 4H006	
307/42		307/42		
339/08		339/08		
401/14		401/14		
403/14		403/14		
417/14		417/14		
G02B 1/04		G O 2 B 1/04		
5/30		5/30		
G02F 1/133	7 520	G 0 2 F 1/1337	520	

(72)発明者 松岡 光進

神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 (72) 発明者 竹内 寛

神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 Fターム(参考) 2H049 BA46 BC09 BC22

2H090 HB07Y HB13Y HB15Y HC05

HC08 HC13 MB01

4C023 PA07

4C037 HA13

4C063 AA05 CC34 CC43 CC62 CC67

DD07 DD12 DD43 EE10

4H006 AA01 AB64