CS 170 Dis 1

Released on 2017-01-27

1 $(\bigstar \bigstar)$ Recurrence Relations

- (a) T(n) = 4T(n/2) + 42n
- (b) $T(n) = 4T(n/3) + n^2$
- (c) $T(n) = 2T(2n/3) + T(n/3) + n^2$
- (d) $T(n) = 3T(n/4) + n \log n$

2 (★★) Sorted Array

Given a sorted array A of n (possibly negative) distinct integers, you want to find out whether there is an index i for which A[i] = i. Give a divide-and-conquer algorithm that runs in time $O(\log n)$. Provide only the main idea and the runtime analysis.

$3 \pmod{\star}$ Counting inversions

This problem arises in the analysis of rankings. Consider comparing two rankings. One way is to label the elements (books, movies, etc.) from 1 to n according to one of the rankings, then order these labels according to the other ranking, and see how many pairs are "out of order".

We are given a sequence of n distinct numbers a_1, \dots, a_n . We say that two indices i < j form an inversion if $a_i > a_j$ that is if the two elements a_i and a_j are "out of order". Provide a divide and conquer algorithm to determine the number of inversions in the sequence a_1, \dots, a_n in time $O(n \log n)$ (*Hint:* Modify merge sort to count during merging)

4 (\bigstar) Complex numbers review

Briefly justify your answers to parts (b) and (c).

- (a) Write each of the following numbers in the form $\rho(\cos\theta + i\sin\theta)$ (for real ρ and θ):
 - (i) $-\sqrt{3} + i$
 - (ii) The three 3-rd roots of unity
 - (iii) The sum of your answers to the previous item
- (b) Let sqrt(x) represent one of the complex square roots of x, so that $sqrt(x) = \pm \sqrt{x}$. What are the possible values of sqrt(sqrt(-1))?

You can use any notation for complex numbers, e.g., rectangular, polar, or complex exponential notation.