Experimento movimento de um projétil

Marcella Idalyne da Costa Silva¹, Melissa Valim de Oliveira², Monica Akemi Rodrigues Kyomen³, Mykaell Max Borges Pinto⁴

```
Correção - Relatório Científico
Prof. Jader S. Cabral

Descrição Metodológica (20 pontos): 20
Apresentação dos dados (25 pontos): 25
Tratamento (Análise) (30 pontos): 30
Discussão/Argumentação (25 pontos): 25
```

Parábens!!!

Nota: 100

Laboratório de Física Básica 1 Universidade Federal de Uberlândia

¹e-mail: marcella.idalyne@ufu.br

²e-mail: melissavalim@ufu.br

³e-mail: monicakyomen@ufu.br

⁴e-mail: <u>mykaell.max@ufu.br</u>

1. Procedimento experimental Boa descrição experimental!

Para o experimento, com o auxílio de uma trena, foi marcado na parede com fita adesiva de 10cm em 10cm, o espaço de 70 centímetros no eixo vertical (y) e no eixo horizontal (x). O objeto escolhido foi uma bolinha de gude, que foi posicionada na prancheta, que estava em uma posição fixa e inclinada poucos centímetros antes da primeira da marcação, sendo solta sempre da mesma altura, e quando saía para fora da mesa, realizava o movimento de um projétil, lançado na horizontal. Foram gravados três vídeos com o objeto para análise de seu comportamento ao longo da trajetória marcada, considerando o erro do tempo (0,02 s) obtido de acordo com a capacidade de marcação de tempo entre frames, e do espaço (0,0005 m) obtido de acordo com a metade da menor medida possível da trena.

Figura 1Movimento da bolinha sendo arremessada.

Na análise de vídeo do experimento, utilizamos o Tracker como ferramenta de captura de dados. E, a fim de plotar os gráficos e ajustar as funções, utilizamos o software SciDAVis.

Figura 2 - Movimento da bolinha sendo analisada no software Tracker.

Como se pode notar na figura, os bastões de medição estão desalinhados com a escala marcada. Entretanto, este efeito decorre da lente da câmera, e além disso, como o eixo vertical está alinhado com as pernas da mesa, o bastão horizontal foi calibrado de acordo com o eixo vertical (por ser mais preciso).

Também é possível notar na imagem a trajetória do objeto, que lembra a metade de uma parábola voltada para baixo.

2. Resultados e discussão

Como o movimento é bidimensional, ou seja, ocorre em duas dimensões simultaneamente, decidiu-se analisar 3 casos separadamente: **(a)** a variação da posição X (horizontal) em relação ao tempo; **(b)** a variação da posição Y (vertical) em relação ao tempo; **(c)** a variação da posição Y em relação a posição X.

(a) - Posição X em relação ao tempo

Devido ao fato do objeto não conseguir cobrir todo o caminho demarcado (70 cm) como na *figura 3*, optou-se por pegar os tempos correspondentes a cada 5 cm a partir da origem.

Os resultados obtidos experimentalmente foram organizados nesta tabela:

Medida n°	x (m) ± 0,0005m	t1 (s) ± 0,02s	t2 (s) ± 0,02s	t3 (s) ± 0,02s	$\bar{t} \pm \Delta t_{total}$
1	0,0000	0,00	0,00	0,00	0
2	0,0500	0,07	0,07	0,07	0,07 ± 0,02 s
3	0,1000	0,12	0,12	0,12	0,12 ± 0,02 s
4	0,1500	0,17	0,18	0,17	0,17 ± 0,02 s
5	0,2000	0,23	0,25	0,23	0,24 ± 0,02 s
6	0,2500	0,28	0,28	0,28	0,28 ± 0,02 s

Tabela 1 - tabela dos dados obtidos (x)

Observa-se que os dados obtidos não apresentam um caráter perfeitamente linear quando representados em um gráfico. A fim de facilitar as

observações dos resultados, propôs-se uma equação geral para representar o comportamento do espaço percorrido pela bolinha em função do tempo:

$$X = Kt^n$$
 Equação (1)

Onde "x" representa o espaço e "t" o tempo.

A Equação (1) é linearizada aplicando-se o logaritmo natural dos termos e considerando suas incertezas $(Ln(X) \pm \Delta Ln(X); Ln(t) \pm \Delta Ln(t))$ representadas na Tabela (2), obtém-se:

$$Ln(X) = Ln(K) + nLn(t)$$
 Equação (2)

Para encontrar as respectivas incertezas ($\Delta Ln(X)$ e $\Delta Ln(t)$), foi utilizado o método de propagação de incerteza:

$$f(x) \pm \Delta f(x)$$

Onde,

$$\Delta f(x) = f(x)' \cdot \Delta x$$

Aplicando para o caso do Ln, temos:

$$\Delta Ln(x) = (Ln(x))' \cdot \Delta x$$

$$\Delta Ln(x) = \frac{1}{x} \cdot \Delta x$$

$$\Delta Ln(x) = \frac{\Delta x}{x}$$

Por fim, obtemos a seguinte tabela:

$Ln(x) \pm \Delta Ln(x)$	$Ln(t) \pm \Delta Ln(t)$	
-3,00 ± 0,01 m	-2,7 ± 0,3 s	
-2,303 ± 0,005 m	-2,1 ± 0,2 s	
-1,897 ± 0,003 m	-1,8 ± 0,1 s	
-1,609 ± 0,003 m	-1,43 ± 0,08 s	
-1,386 ± 0,002 m	-1,27 ± 0,07 s	

Tabela 2 - tabela dos dados obtidos Ln(x) e Ln(t)

A partir da Tabela 2, elabora-se o seguinte gráfico para descrever o movimento dos objetos, visando uma descrição do espaço percorrido em função do tempo:

Gráfico 1 - Movimento da bolinha de gude linearizado (x)

O gráfico obtido com a linearização, obedece a seguinte equação:

$$Ln(X) = (-0.047 \pm 0.007) + (1.059 \pm 0.004) * x$$
 Equação (3).

Sendo "X" a distância percorrida e "x" o Ln(t), pelo gráfico.

Portanto, a partir da equação, é possível obter os seguintes dados: coeficiente linear = -0.047 ± 0.007 e coeficiente angular = 1.059 ± 0.004 . Substituindo na Equação (2), temos:

coeficiente linear =
$$-0.047 \pm 0.007 = ln(K) \Leftrightarrow K = e^{-0.047} \pm \Delta e^{-0.047} = 0.954 \pm 0.007$$

Equação (4).

Onde
$$\Delta e^{-0.047} = (e^{-0.047})'$$
. $0.007 = 0.006678 = 0.007$

coeficiente angular =
$$n = 1,059 \pm 0,004$$
 Equação (5).

Substituindo na Equação (1), proposta inicialmente:

$$X = (0,954 \pm 0,007) * t^{1,059 \pm 0,004}$$
 Equação (6).

Observa-se, a partir da Equação(6), que o expoente n ao qual t está elevado é aproximadamente 1. Portanto, como argumentado anteriormente, o espaço varia linearmente com o tempo (não há aceleração). E como deduzido e argumentado no relatório de movimento retilíneo, o K da equação(1) representa a velocidade do objeto, que neste caso é 0,954 m/s. É isso!!!

(b)- Posição Y em relação ao tempo

Os resultados obtidos experimentalmente foram organizados nesta tabela:

Medida n°	y (m) ± 0,0005m	t1 (s) ± 0,02s	t2 (s) ± 0,02s	t3 (s) ± 0,02s	$\overline{t} \pm \Delta t_{total}$
1	0,0000	0,00	0,00	0,00	0
2	0,1000	0,08	0,08	0,07	0,08 ± 0,02 s
3	0,2000	0,13	0,13	0,12	0,13 ± 0,02 s
4	0,3000	0,17	0,17	0,15	0,16 ± 0,02 s
5	0,4000	0,20	0,20	0,18	0,19 ± 0,02 s
6	0,5000	0,23	0,23	0,22	0,22 ± 0,02 s
7	0,6000	0,27	0,25	0,25	0,26 ± 0,02 s
8	0,7000	0,28	0,28	0,28	0,28 ± 0,02 s

Tabela 3 - tabela dos dados obtidos (y)

Como os procedimentos a seguir são os mesmos da seção anterior (a), será mostrado apenas os resultados importantes extraídos dessa tabela de dados.

A começar pela tabela dos valores linearizados:

$Ln(y) \pm \Delta Ln(y)$	$Ln(t) \pm \Delta Ln(t)$	
-2,303 ± 0,005 m	-2,5 ± 0,3 s	
-1,609 ± 0,003 m	-2,0 ± 0,2 s	
-1,204 ± 0,002 m	-1,8 ± 0,1 s	
-0,916 ± 0,001 m	-1,7 ± 0,1 s	
-0,693 ± 0,001 m	-1,51 ± 0,09 s	
-0,5108 ± 0,0008 m	-1,35 ± 0,08 s	
-0,3567 ± 0,0007 m	-1,27 ± 0,07 s	

Tabela 4 - tabela dos dados obtidos Ln(y) e Ln(t)

E o respectivo gráfico: **Pontos**

Gráfico 2 - Movimento da bolinha de gude linearizado (y)

E então, a equação correspondente do movimento:

$$y = (4,93 \pm 0,01) * t^{1,862 \pm 0,002}$$
 Equação (7).

Entretanto, a fim de verificar a natureza do termo k (4,93) seguiu-se pela análise dimensional da equação.

Para a análise, considere a seguinte aproximação: 1,862 ⇒ 2

Sabemos que y (a saída da função) tem dimensão de espaço, portanto a igualdade deve se manter, e a mesma dimensão resultante deve ser encontrada do outro lado da equação. Denotemos dimensão de espaço por "S" e de tempo por "T".

Temos conhecimento de que:

$$[y] = S$$

$$[t^2] = T^2$$

$$[k] = ?$$

E como mencionado anteriormente, temos de ter igualdade na seguinte equação:

$$S = [k] * T^2$$

A fim de manter a igualdade, a única possibilidade para a dimensão de k é:

$$[k] = \frac{S}{T^2}$$

O que nos leva a concluir que k corresponde à uma aceleração (no experimento corresponde a m/s²). E essa mesma aceleração do objeto é causada pela força da gravidade atuando sobre o objeto, fazendo alterar sua velocidade a cada instante. Contudo, os dados obtidos ainda devem ser contestados com uma análise mais precisa em um ambiente mais controlado e livre de quaisquer forças externas, o que nesse caso não foi possível por conta da resistência do ar. ok

(c) - Posição Y em relação a posição X

Por fim, analisou-se a posição Y em relação a posição X a fim de estudar o comportamento do movimento em relação às duas coordenadas.

Os resultados obtidos experimentalmente foram organizados nesta tabela:

Medida n°	y (m) ± 0,0005m	x1 (m) ± 0,0005m	x2 (m) ± 0,0005m	x3 (m) ± 0,0005m	$\frac{-}{x} \pm \Delta x_{total}$
1	0,0000	0,0000	0,0000	0,0000	0
2	0,1000	0,0749	0,0962	0,0585	0,08 ± 0,01 m
3	0,2000	0,1194	0,1116	0,1013	0,111 ± 0,005 m
4	0,3000	0,1493	0,1365	0,1472	0,144 ± 0,004 m
5	0,4000	0,1793	0,1669	0,1619	0,169 ± 0,005 m
6	0,5000	0,2073	0,1945	0,1899	0,197 ± 0,005 m
7	0,6000	0,2360	0,2068	0,2178	0,220 ± 0,009 m
8	0,7000	0,2472	0,2326	0,2389	0,240 ± 0,004 m

Tabela 5 - tabela dos dados obtidos (y e x)

Como os procedimentos a seguir são os mesmos da seção anterior (a), será mostrado apenas os resultados importantes extraídos dessa tabela de dados.

A começar pela tabela dos valores linearizados:

$Ln(y) \pm \Delta Ln(y)$	$Ln(x) \pm \Delta Ln(x)$	
-2,303 ± 0,005 m	-2,5 ± 0,1 m	
-1,609 ± 0,003 m	-2,19 ± 0,05 m	
-1,204 ± 0,002 m	-1,94 ± 0,03 m	
-0,916 ± 0,001 m	-1,78 ± 0,03 m	
-0,693 ± 0,001 m	-1,62 ± 0,03 m	
-0,5108 ± 0,0008 m	-1,51 ± 0,04 m	
-0,3567 ± 0,0007 m	-1,43 ± 0,02 m	

Tabela 6 - tabela dos dados obtidos Ln(y) e Ln(x)

E o respectivo gráfico:

Gráfico 3 - Movimento da bolinha de gude linearizado (y e x)

E então, a equação correspondente do movimento:

$$y = (7,46 \pm 0,03) * x^{1,659 \pm 0,002}$$
 Equação (8).

Note que essa equação relaciona ambos os movimentos em uma equação que satisfaz ambos ao mesmo tempo. Poderíamos, por exemplo, determinar a posição horizontal com base em uma posição conhecida na vertical.

Discutir mais sobre a parábola e o valor de k.

3. Conclusão

Após a análise dos dados apresentados, é possível notar uma mudança na variação do movimento no eixo "X" conforme o corpo ganha velocidade no eixo "Y", sendo esta caracterizada por uma parábola.

Ademais, podemos concluir algo interessante sobre esse tipo de movimento: a força gravitacional que atua sobre a bolinha pode ser percebida apenas no movimento vertical do objeto. O que nos leva a concluir que o movimento estudado pode ser compreendido como dois movimentos separados que o objeto executa, sendo eles um movimento acelerado na direção vertical por conta da força gravitacional, e o outro um movimento uniforme na direção horizontal que não é afetado pela força gravitacional e portanto não sofre variação na sua velocidade (não há aceleração).