

Transformers and RNN for sequence analysis

D. Malchiodi, 08/04/2024

Who am I?

dario.malchiodi@unimi.it https://malchiodi.di.unimi.it

TEACHING

Associate professor @unimi (statistics & data analysis, algorithms for massive datasets)

RESEARCH

Data-driven induction of non-classical sets, compression of ML models, negative example selection, application of ML to medicine, veterinary, forensics & cultural heritage. Visiting scientist @uca @inria

POPULARIZATION OF COMPUTING

Italian National Science and Technology museum, RadioPopolare, ALaDDIn

Sequence analysis

It might mean a lot of things:

- analysis of generated sequences
- sequence classification
- token classification
- sequence translation
- sequence summarization
- question answering

It can be done with several tools, among which:

- RNNs
- Transformers

Sequence generation

- Natural language
- Proteins
- Code
- Audio, music notation, ...

Certainly! Here is a list of ...

```
#include ux/buffer head.h>
#include <linux/module.h>
#include <linux/fs.h>
#include "efs.h"
#include <linux/efs_fs_sb.h>
static int efs_read_folio(struct file *file, struct folio *folio)
       return block_read_full_folio(folio, efs_get_block);
static sector_t _efs_bmap(struct address_space *mapping, sector_t block)
       return generic block bmap(mapping, block, efs_get_block);
```


RNNs: a quick recap

- Now with intra-layer self-loops.
- Add «state» to neurons.
- Exist in several flavours.
- We will use the «Long **Short-Term Memory»** architecture.

Teacher forcing

4eu+ UNIVERSITY ALLIANCE

«Correct» possible errors of the model while feeding back the generated sequence:

for $i=1,\dots n$ feed the correct symbols $x_1\cdots x_{i-1}$ generate symbol \widehat{x}_i

Seq. generation: hallucinated Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

3-layer RNN, each with 512 hidden nodes learning: a few hours

== External links==

*[[French Writings]]

''www.e-complete''.

== See also ==

*[[Anti-autism]]

{ { cite journal | id=Cerling Nonforest

Department|format=Newlymeslated|none } }

'''See also''': [[List of ethical

*[[Iender dome of the ED]]

===[[Religion|Religion]]===

* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==

* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Seq. generation: hallucinated Wikipedia

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } } www.e-complete.

See also: List of ethical consent processing

See also

- lender dome of the ED.
- Anti-autism

Religion

- French Writings
- Maria
- Revelation
- Mount Agamul

External links

Double "Externa Website of the World Festival. The Jak ats at the Ripper of California Road.

External links

· Constitution of the Nether ompetition for Bilabial and Commonwealth Industry (Republican Constitution o the Netherlands) [2]

learning: overnight

Hallucinated LaTeX

\begin{proof}

We may assume that $\mathrm{mathcal}\{I\}$ is an abelian sheaf on \$\mathcal{C}\$.

\item Given a morphism \$\Delta : \mathcal{F} \to \mathcal{I}\$

is an injective and let \$\mathfrak q\$ be an abelian sheaf on \$X\$.

Let \$\mathcal{F}\$ be a fibered complex. Let \$\mathcal{F}\$ be a category.

\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma} \label{lemma-characterize-quasi-finite}

Let \$\mathcal{F}\$ be an abelian quasi-coherent sheaf on \$\mathcal{C}\$.

Let \$\mathcal{F}\$ be a coherent \$\mathcal{0} X\$-module. Then

\$\mathcal{F}\$ is an abelian catenary over \$\mathcal{C}\$.

\item The following are equivalent

\begin{enumerate}

\item \$\mathcal{F}\$ is an \$\mathcal{O} X\$-module.

\end{lemma}

For $\bigoplus_{n=1,\ldots,m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\prod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $GL_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_n exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows =
$$(Sch/S)_{fppf}^{opp}$$
, $(Sch$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto U$$

is an open subset of X. Thus U is affine. Th map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example??. It may replace S by $X_{spaces,\acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Seq. generation: hallucinated Linux kernel

```
* Increment the size file of the new incorrect
UI FILTER group information
* of the size generatively.
static int indicate policy(void)
 int error:
 if (fd == MARN EPT) {
     * The kernel blank will coeld it to userspace.
    if (ss->segment < mem total)</pre>
      unblock graph and set blocked();
    else
      ret = 1;
    goto bail;
```

```
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
        current = blocked;
    }
}
rw->name = "Getjbbregs";
bprm_self_clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] |
PFMR_CLOBATHINC_SECONDS << 12;
return segtable;
}</pre>
```

3-layer RNN, each with 512 hidden nodes

learning: a few days

CHARLES

Peeking into RNNs

Peeking into RNNs

This neuron apparently recognizes relative positions within URLs

hidden neuron activation fading in

top-5 guesses for next char

	•		[[е	r	ι	S	a	ı	E	r	n	F	₹ 6	; F	0	r	t]	1	•			1	h	t	t	р	. 1	1	V	/ w	w		j	r	e į	р.	. (; c	m	1]		L	e f	t	-	0	f	- c	e	n	t	е	r	E	Er
*	1	[h	1	T	a	u	S	а	I		r	n	a	a) (J	ı	t]					(h	t	t	p			V	V	/ w		b	s	i	n i	(0	n	n/			-	i	a t		a	f		t e	n	t	е	r		(r	1 0
		'	[(C	S	S	n	n e	n	E	,]	E	3 6	9 8	9 0	r	C	1 5	3		s		а	[а		d		;	k r	n e		w	а	а	а	a	0	c a	1.		s		&	a t	C) -	-	n	f	h r	1	s	u	m	- (o l	1 0
	S		n	n F	F	r	n	1	s		i	a	a (e	t	a	1	1	S	a	a		:	:	,	i	'	С	d	w	-	2 t	p	i	i	i	s	0	е	g .	. 6	e r	1		а]	(0 5	5 6	s	W	r	-	c i	d	d	r	s	I	[n	n t
:	:	A	4 0	1	D	r	е	b	i	u	t	r	1	(Ci	k	r	e	•	6	9	,			b	1	е	m	r		9 :	a	h	b	-	n	p	u	mι	u (g l	n	m	р)	Т	e i	r	е	t	u	:	e c	S	е	0	d	S	a I	C
#	T 8	k T	f	3	Si	V	v r	p		е]]	a	ı	ι	1 /	1 6	1	r	ι	J,	s		:	-	m	p	r	t	S	<	🏟 r	n o	a	2	d	е	у	s	n i		r]	С		Α	u g	g I	,	1	p	,	a	r	С			: 1	fa	1 6
	1,10	2000																ray r														10	10.19							7,111			- 50						-01											
g	i	S	h	1	I	[V	/ e	е	k	1)	/	r	1 6) V	V	p	a	ı) E	r	1	1		*			[[ΥI	Nε	t	N	е	w	s]	1	ı		[h	t	t	р	: 1		W	W	w		y r	ı e	t	n	е	w s	s .	C
1	S	h	1		9	C	a	a	k	1	У	/]	C	2	a v	v s	F) 3	p	0 6	r]	1		*			[h	T	a /	4		а	t			1			(h	t	t	p			V	v v	w		b	a c	a	h	е	t	s .	. 0	C
i i	a c	i	-	I	ŀ	1 5	0	i	p]	i		S	6	9 0	;]	e	r	ı	0]	s				'		•	[С	0	*	V	/ e	s	s]		5	3	á] [а		d		:)	x r	ı e		w	а	e a	1 .		а	w	a t	t) a
е	e n	ı a	1,	F	0	C	i	e	t	n	E	9 0	i I	C	x	[]	Ç	ji	C	i	1	1		s	•	[s	Α	m	F	e S	Sa	h	0	n]	t		: :	,	, i	n	n o	m	w	-	2	© p	i	i	i	s	0 6	s	s	i	s	. /	/ e	r
s	/ Z			5	s f	p	е	r	n		а	1	r	ı	ı e	9 1	1	r	r	a	a				#	*	:		0	D	u I	r	е	i	u	е	p		,		t	1	е	d	r		< :	a	h	b	-	n	p t	W	/ t		х	i	Q	j t
а	- 3	l p				100	-3	200	7	11				100				1 100		7 2			100			100	100	100		A	1			S										s	2		- 9			a	15200	-				12		-		1 8

Peeking into RNNs

```
Duplicate LSM field information.
  re-initialized. */
static inline int audit_dupe_lsm_field(struct audit_field *df,
        struct audit_field *sf)
int ret = 0;
char *lsm_str;
/ * our own copy of lsm_str */
lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
if (unlikely(!lsm_str))
 return - ENOMEM;
df->lsm_str = lsm_str;
/* our own (refreshed) copy of lsm_rule */
ret = security_audit_rule_init(df->type, df->op,
            (void **)&df->lsm_rule);

    keep currently invalid fields around in case they

 * become valid after a policy reload. */
 if (ret == -EINVAL) {
  pr_warn("audit rule for LSM \'%s\' is invalid\n",
   df->lsm_str);
  ret = 0;
 return ret;
```

This neuron apparently detects comments and strings.

Measuring validity of generated sequences

- Soft accuracy
- Perplexity

Accuracy

+**en**+

Actual sequence $\mathbf{x} | x_1 \cdots x_n$ Predicted sequence $\widehat{\mathbf{x}}$ $\widehat{x}_1 \cdots \widehat{x}_n$

$$\mathrm{acc}(\mathbf{x},\widehat{\mathbf{x}}) = \sum_{i=1}^n \delta(x_i,\widehat{x}_i)$$

$$\delta(x_i, \widehat{x}_i) = \left\{egin{array}{ll} 1 & ext{if } x_i = \widehat{x}_i, \ 0 & ext{otherwise.} \end{array}
ight.$$

Test set
$$\mathbf{x}^1, \dots, \mathbf{x}^m$$
 $\overline{\mathrm{acc}} = \frac{1}{m} \sum_{j=1}^m \mathrm{acc}(\mathbf{x}^j, \widehat{\mathbf{x}}^j)$

$$\sigma_{
m acc} = \sqrt{rac{1}{m-1}\sum_{j=1}^m \left({
m acc}({f x}^j, \widehat{f x}^j) - \overline{
m acc}
ight)^2}$$

+en+

Soft accuracy

Actual sequence

$$\mathbf{x} \mid x_1 \cdot \cdot \cdot x_n$$

$$\operatorname{softacc}(\mathbf{x},\widehat{\mathbf{x}}) = \sum_{i=1}^n ilde{\delta}(x_i,\widehat{x}_i)$$

Predicted sequence $\widehat{\mathbf{x}}$ $\widehat{x}_1 \cdots \widehat{x}_n$

$$\widehat{\mathbf{x}} \widehat{x}_1 \cdots \widehat{x}_n$$

$$ilde{\delta}(x_i,\widehat{x}_i) = \left\{egin{array}{ll} 1 & ext{if } x_i pprox \widehat{x}_i, \ 0 & ext{otherwise.} \end{array}
ight.$$

$$x_ipprox\widehat{x}_i$$

If the prediction is a «good» match

Soft accuracy

Examples of a «good match»:

synonyms in text generation

We believe the President was fair/objective/impartial

similarities via BLOSUM score in protein generation

9						D	Е	Q	N	Н	R	K	M	Ι	L	V	W	Υ	F	ı
-1																				С
	4																			S
-1	1	5																		Т
0	1	0	4																	Α
- 3	0	-2	0	6																G
	- 1	-1	- 1	-2	7															Р
- 3	0	- 1	- 2	-1	-1	6														D
-4	0	- 1	-1	-2	-1	2	5													Е
	0	- 1	- 1	-2	-1	0	2	5												Q
	1	0	-2	0	-2	1	0	0	6											N
	-1	-2	-2	-2	_	_	_		_	8							-			Н
	-1	-1	- 1	-2			0	1		0	5									R
	0	- 1	- 1	-2			1	1		- 1	2	5								K
_	-1	-1	-1	- 3			-2	0			-1		5							М
	-2	- 1	- 1	- 4				-3			-3			4						Ι
_	-2	- 1	- 1	-4			-3			-	- 2		_		4					L
	_	0	0	-3			-2				-3					4				v
_			_			_	- 3		_								11			W
			-2	_			- 2	-1		2	-2		- 1	- 1	-1			7		Ÿ
	_	_	_	_			-3	-		_	_	_	-	0	0	_			6	F
						_			_				-	_	ī	_	_			÷
	-3 -3	0 1 -3 0 -3 -1 -3 0 -4 0 -3 0 -3 1 -3 -1 -3 -1 -3 -1 -1 -1 -1 -2 -1 -2 -1 -2 -1 -2 -2 -2 -2 -2	0 1 0 -2 -3 0 -2 -3 -1 -1 -3 0 -1 -1 -3 -3 -1 -1 -3 0 -1 -1 -1 -1 -1 -1 -2 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	0 1 0 4 -3 0 -2 0 -3 -1 -1 -1 -3 0 -1 -2 -4 0 -1 -1 -3 0 -1 -1 -3 1 0 -2 -3 -1 -1 -1 -3 0 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -3 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -3 -2 0 -2 -3 -2 -3 -3 -3 -3 -4 -1 -4 -2 -5 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	0 1 0 4 6 7 3 0 -2 0 6 6 7 3 -1 -1 -1 -2 1 -2 3 0 -1 -1 -2 -2 -2 -3 -1 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4	0 1 0 4 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 1 0 4	0 1 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 1 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y is a good match for F I is a good match for V E is a good match for Q

Image source: user ppgardne on Wikimedia (CC-BY-SA 4.0) (©)

ON DepLear

Perplexity

- Sequence $x_1 \cdots x_n$
- Learnt probability distribution $p_{ heta}$

$$ext{perplexity}(x_1\cdots x_n) = \left(rac{1}{p_{ heta}(x_1\cdots x_n)}
ight)^{-n} = \left(\prod_i rac{1}{p_{ heta}(x_i|x_{< i})}
ight)^{-n}$$

Log perplexity = cross-entropy

$$egin{aligned} \log \operatorname{perplexity}(x_1 \cdots x_n) &= -rac{1}{n} \sum_i \log p_{ heta}(x_i \mid x_{< i}) = \widetilde{H}_{ heta}(x_1 \cdots x_n) \ \end{aligned}$$
 $\operatorname{perplexity}(x_1 \cdots x_n) = 2^{\widetilde{H}_{ heta}(x_1 \cdots x_n)}$

- Cross-entropy: average # bits to represent the sequence elements using the learnt model.
- Note that cross-entropy is minimized when the learnt distribution equals the actual one (which we don't know).

Geometric mean, i-th term low if small

producing i-th sequence

uncertainty in

element.

- **⊹en**+
- OF WARSAW DEGLI STUDI

Perplexity

- If each element of the sequence is emitted without uncertainty $p_{ heta}(x_i \mid x_{< i}) = 1$
 - thus the perplexity is 1 (each log nullifies).
- The classical definition of perplexity requires logarithms in base 2 (cross-entropy measured in bits).
- Pytorch used natural logarithms (cross-entropy measured in nats), thus perplexity becomes

$$\operatorname{perplexity}(x_1\cdots x_n)=\mathrm{e}^{\widetilde{H}_{\, heta}(x_1\cdots x_n)}$$

Computing perplexity in LLMs

Split the generated sequence using a sliding window

Hugging Face is a startup based in NY and Paris $p_{ heta}(x_1)$

Hugging Face is a startup based in NY and Paris $p_{ heta}(x_2 \mid x_{<2})$

Hugging Face is a startup based in NY and Paris $p_{ heta}(x_3 \mid x_{<3})$

Hugging Face is a startup based in NY and Paris $p_{ heta}(x_3 \mid x_{<3})$

Hugging Face is a startup based in NY and Paris $p_{ heta}(x_4 \mid x_{<4})$

Compute log cross-entropy each time, average, and compute exponentiation.

Example from practical part

```
max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
prev end loc = 0
for begin loc in tqdm(range(0, seq len, stride)):
   end loc = min(begin loc + max length, seq len)
   trg len = end loc - prev end loc # may be different from stride on last loop
  input ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
  target ids = input ids.clone()
   target ids[:, :-trg len] = -100
  with torch.no grad():
       outputs = model(input ids, labels=target ids)
       # loss is calculated using CrossEntropyLoss which averages over valid labels
       # N.B. the model only calculates loss over trg len - 1 labels, because it internally shifts the labels
       # to the left by 1.
       neg_log_likelihood = outputs.loss
   nlls.append(neg log likelihood)
   prev_end_loc = end_loc
  if end_loc == seq_len:
       break
ppl = torch.exp(torch.stack(nlls).mean())
```

Conditional generation (NLP)

- In a nutshell: prepend «control codes» to sentences, to add information about
- style (review, horror, …)
- source (e.g., subreddits)

Most known attempt (so far): CTRL [3]

Technically speaking: now we learn the probability of a sequence conditioned on the control codes:

$$p_{ heta}(x \mid c) = \prod_{i} p_{ heta}(x_i \mid x_{< i}, c)$$

Conditional generation (proteins)

Can be done also outsides NLP: ProGen [4] uses a similar approach in protein generation, using as control codes

 keyword tags (cellular component, biological process, and molecular function terms)

taxonomic tags

Table 1 from [4]

MODEL	PPL	HARD ACC.
UNIFORM BASELINE	25	4
EMPIRICAL BASELINE	18.14	6
ProGen	8.56	45
ID-TEST	8.17	45
OOD-TEST	13.34	22
OOD-TEST-20 (RAND. INIT.)	17.78	9
OOD-TEST-20 (FINE-TUNED)	7.45	50

Sequence classification

Running example: sentiment analysis of tweets

DistilBERT

- Recall BERT?
- Distilbert is a thinner version.
- Half of the encoder blocks + various magics.
- 60% of the original size, 60% faster, 97% of original performances.

BERT

DistilBERT

You know the basics

- Tokenization, positional encoding, and so on.
- Just to make a connection

'i do feel that running is a divine experience and that i can expect to have some type of spiritual encounter'

is tokenized as

['[CLS]', 'i', 'do', 'feel', 'that', 'running', 'is', 'a', 'divine', 'experience', 'and', 'that', 'i',
'can', 'expect', 'to', 'have', 'some', 'type', 'of', 'spiritual', 'encounter', '[SEP]']

Use DistilBERT as a powerful feature extractor

Just remove last FFNN with softmax activation.

You get 768 features.

- «Attach» a suitable classification head
- Can be based on any model obtained via supervised ML

- «Attach» a suitable classification head
- Can be based on any model obtained via supervised ML
 - first option: «freeze» the LLM and add a non-differentiable model (e.g., a decision tree)
 - train the model on the extracted features

- «Attach» a suitable classification head
- Can be based on any model obtained via supervised ML
 - first option: «freeze» the LLM and add a non-differentiable model (e.g., a decision tree)
 - train this model on the extracted features
 - second option: add a differentiable model (e.g., a dense+softmax layer) and train the whole system starting from
 - random weights for the head
 - existing weights for the rest

First option: «frozen LLM»

```
tokenized as
from transformers import AutoModel
                                                                                       [CLS] this is a test [SEP]'
model ckpt = 'distilbert-base-uncased'
device = torch.device('cuda' if torch.cuda.is available() else 'cpu')
model = AutoModel.from pretrained(model ckpt).to(device)
text = 'this is a test'
inputs = tokenizer(text, return tensors='pt')
inputs = {k:v.to(device) for k,v in inputs.items()}
with torch.no grad():
    outputs = model(**inputs)
print(outputs.last hidden state)
tensor([[[-0.1565, -0.1862, 0.0528, ..., -0.1188, 0.0662, 0.5470],
                                                                           ——→ [CLS]
         [-0.3575, -0.6484, -0.0618, \ldots, -0.3040, 0.3508, 0.5221],
                                                                            ——→ this
         [-0.2772, -0.4459, 0.1818, \ldots, -0.0948, -0.0076, 0.9958],
                                                                            ——→ is
         [-0.2841, -0.3917, 0.3753, \ldots, -0.2151, -0.1173, 1.0526],
         [ 0.2661, -0.5094, -0.3180, ..., -0.4203, 0.0144, -0.2149],
                                                                            ----> test
         [0.9441, 0.0112, -0.4714, \ldots, 0.1439, -0.7288, -0.1619]]]
                                                                           —→ [SEP]
       device='cuda:0')
```

First option: «frozen LLM»

```
from transformers import AutoModel

model_ckpt = 'distilbert-base-uncased'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AutoModel.from_pretrained(model_ckpt).to(device)

text = 'this is a test'
inputs = tokenizer(text, return_tensors='pt')

inputs = {k:v.to(device) for k,v in inputs.items()}
with torch.no_grad():
    outputs = model(**inputs)
print(outputs.last_hidden_state)
```

tokenized as

*'[CLS] this is a test [SEP]'

Common choice: retain only hidden state for [CLS] as feature.

From strings to vectors

- i feel romantic too
- i am feeling grouchy
- i become overwhelmed and feel defeated

tensor([...])

tensor([...])

tensor([...])

From vectors to models

Second option: extend LLM

- No need to manually add a gradient-based classification head
- AutoModelForSequenceClassification does that for us

```
Note: 6 is the number of different labels.
num\ labels = 6
model = (AutoModelForSequenceClassification
         .from pretrained(model ckpt, num labels=num labels)
         .to(device))
```

Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre classifier.bias', 'pre classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

The Accelerate library

- Adds an abstraction layer to the training process
- Automatically handles parallel hardware

The Trainer class

- Allows to easily organize all the learning process
- Uses the accelerate library under the hood

```
from transformers import Trainer, TrainingArguments
from sklearn.metrics import accuracy score, f1 score
batch size = 64
logging steps = len(emotions encoded['train']) // batch size
model name = f'{model ckpt}-finetuned-emotion'
training args = TrainingArguments(output_dir=model_name, num_train_epochs=2,
                                  learning rate=2e-5, per device train batch size=batch size,
                                  per device eval batch size=batch size, weight decay=0.01,
                                  evaluation_strategy='epoch', disable_tqdm=False,
                                  logging_steps=logging_steps,
                                  log level='error')
```

The Trainer class

- Allows to easily organize all the learning process
- Uses the accelerate library under the hood

```
def compute metrics(pred):
   labels = pred.label ids
   preds = pred.predictions.argmax(-1)
   f1 = f1_score(labels, preds, average='weighted')
   acc = accuracy score(labels, preds)
   return {'accuracy': acc, 'f1': f1}
trainer = Trainer(model=model, args=training args,
                 compute metrics=compute metrics,
                 train_dataset=emotions_encoded['train'],
                 eval dataset=emotions encoded['validation'],
                 tokenizer=tokenizer)
trainer.train()
```


UNIVERSITÀ
DEGLI STUDI
DI MILANO

* UNIVERSITY OF WARSAW

Second option: extend LLM

Fine-tuning results

AutoModel classes

- AutoModelForSequenceClassification
- AutoModelForSummarization
- AutoModelForQuestionAnswering
- AutoModelForSeq2SeqLM
- AutoModelForMaskedLM
- and others

LLM for text summarization

Typically done via encoder-decoder transformers

source

It is reported that on April, 23rd a lunar eclipse will be visible between 10PM and 11PM in the surroundings of Athens.

summary

A lunar eclipse will be visible around Athens during the night of April, 23rd.

Precision-based: fraction of terms in the summary which also appear in the source.

source It is reported that on April, 23rd a lunar eclipse will be visible between 10PM and 11PM in the surroundings of Athens.

summary A lunar eclipse will be visible around Athens during the night of April, 23rd.

Precision-based: fraction of terms in the summary which also appear in the source.

source

It is reported that on April, 23rd a lunar eclipse will be visible between 10PM and 11PM in the surroundings of Athens.

summary

A lunar eclipse will be visible around Athens during the night of April, 23rd.

precision 9/14

Several issues: synonyms not accounted, false positives, ...

UNIVERSITÀ DEGLI STUDI DI MILANO

Evaluating summaries: BLEU score

Precision-based: fraction of terms in the summary which also appear in the source.

source It is reported that on April, 23rd a lunar eclipse will be visible between 10PM and 11PM in the surroundings of Athens.

summary Athens Athens Athens Athens Athens.

precision 1

GUROPEAN UNIVERSITY ALLIANCE

Evaluating summaries: BLEU score

Precision-based: fraction of terms in the summary which also appear in the source.

source It is reported that on April, 23rd a lunar eclipse will be visible between 10PM and 11PM in the surroundings of Athens.

summary Athens Athens Athens Athens Athens.

precision $1 \rightarrow 1/6$

4european

In general, BLEU score accounts for adjusted precision of all n-grams:

$$p_n = rac{\sum_{t \in ext{source}} ext{count}(t)}{\sum_{t \in ext{summary}} ext{count}(t)}$$

UNIVERSITÀ DEGLI STUDI DI MILANO

A penalty term is used to compensate the implicit gain of short summaries:

$$ext{BR} = \min \left(1, ext{e}^{1 - rac{ ext{len(source)}}{ ext{len(summary)}}}
ight)$$

Summing up:

'sys_len': 16, 'ref len': 26}

$$ext{BLEU}_N = ext{BR} \Big(\prod_{n=1}^N p_n \Big)^{rac{1}{N}}$$

```
from datasets import load metric
source = 'It is reported that on April, 23rd a lunar eclipse will be visible between'
         ' 10 PM and 11 PM in the surroundings of Athens.'
summary = 'A lunar eclipse will be visible around Athens during the night of April, 23rd.'
bleu = load metric('sacrebleu', trust remote code=True)
bleu.add(prediction=summary, reference=[source])
bleu.compute(smooth method='floor', smooth value=0)
{'score': 18.138480908818533,
                                                                                 \mathrm{BLEU}_{4}
 'counts': [12, 6, 4, 2],
 'totals': [16, 15, 14, 13],
 'precisions': [75.0, 40.0, 28.571428571428573, 15.384615384615385], \longrightarrow [p_1, \ldots, p_4]
 'bp': 0.5352614285189903,
```

Evaluating summaries: ROUGE score

A more complex score also accounting for recall.

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation

```
rouge = load_metric('rouge', trust_remote_code=True)
rouge.add(prediction=summary, reference=[source])
result = rouge.compute()
{k: result[k].mid.fmeasure for k in result}
```


Materials

- [1] A. Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks. 2015. https://karpathy.github.io/2015/05/21/rnn-effectiveness/
- [2] The Gradient. Evaluation Metrics for Language Modeling. 2019. https://thegradient.pub/understanding-evaluation-metrics-for-language-models/
- [3] N. Keskar et al. CTRL: A Conditional Transformer Language Model for Controllable Generation. 2019. https://arxiv.org/abs/1909.05858
- [4] A. Madani et al. ProGen: Language Modeling for Protein Generation. 2020. https://arxiv.org/abs/2004.03497

⊹en+

The lab

- Generate text using RNNs.
- Compute the perplexity of sequences generated via LLMs.
- Wrangle data from a NLP dataset for emotion detection.
- Solve the emotion detection problem using
 - -features extracted via a LLM,
 - -fine-tuning a LLM with an attached classification head.
- Compute the BLUE and ROUGE scores of summaries.

Thanks!

dario.malchiodi@unimi.it

https://malchiodi.di.unimi.it

Assets:

- Google fonts and Material icons, https://fonts.google.com
- Font awesome, https://fontawesome.com

