Linear Regression

Convex Optimization

Hu SiXing, Hakki Can Karaimer, Pan An, Philipp Keck

National University of Singapore

January 27, 2016

Linear Regression Example

There should be a picture here.

Ordinary Least Squares

Input: points (x_i, y_i)

Regression line: y = mx + b

Objective:

 $\min_{m,b} \blacksquare_i (y_i - mx_i - b)^2$

$$(\vec{x_i}, y_i)$$

 $y = \vec{w}\dot{x} + b$
 $\min_{\vec{w}} \blacksquare_i (y_i - \vec{w}\dot{x}_i - b)^2$

Image Processing — Lucas-Kanade

Classic examples are optical flow techniques like Lucas-Kanade (VideoTracking), Horn-Schunck.

Goal of Lucas-Kanade

Minimize the sum of squared error between two images.

Assumption

The displacement of the image contents between two nearby instants (frames) is small and approximately constant within a neighborhood of the point p under consideration.

Optical Flow Equation (2 Dementional)

For a pixel location (x, y, t), the intensity has moved by $\blacksquare x, \blacksquare y, \blacksquare t$, the basic assumption can be represented as:

$$I(x,y,t)=I(x+\blacksquare x,y+\blacksquare y,t+\blacksquare t)$$

Optical Flow Effect:

For all pixels within a window centered at p:

$$I_X(q_i)V_X + I_Y(q_i)V_Y = -I_t(q_i)$$

Where i = 1, 2, 3...n.

Abbreviations:

$$A = [I_X(q_i)^T, I_Y(q_i)^T]$$

$$V = [v_X, v_Y]^T$$

$$b = [-I_t(q_i)]^T$$

Lucas-Kanade Method Abstraction:

LK method tries to solve 2×2 system:

$$A^TAV = A^Tb$$

A.K.A:

$$V = (A^T A)^{-1} A^T b$$

Notice:

 $V = [v_x, v_y]^T$ is variable. Which means that the system does not know the actual velocity of the system.

Goal of Lucas-Kanade Method:

To minimize $||A^TV - b||^2$.

Basic LK Derivation for Models(Stuff to be Tracked):

$$E[v_X, v_Y] = \blacksquare [I(x + v_X, y + v_Y) - T(x, y)]^2$$

Where v_x, v_y is the hypothesized location of the model(s) to be tracked, and T(x, y) model.

Key Step for Implementation of GD (Step 1):

Generalizing LK approach by introducing warp function W:

$$E[v_X, v_Y] = \blacksquare [I(W(x, y); P) - T(x, y)]^2$$

Generalizing is used to solve the problem where the constant flow of larger picture frames for a long time is a total waste of calculation power. Warp function examples are Affine and Projective.

The warping function are the convergence factor for steepest descent algorithm.

Key Step for Implementation of GD (Step 2):

The key to the derivation is Taylor series approximation:

$$I(W(x,y); P + \blacksquare P) \approx I(W([x,y]; P)) + \nabla I \frac{\partial W}{\partial P} \blacksquare P$$

- The approximation equation is actually the abstract of the basic assumption of optical flow described in the slides before.
- Derivation of this equation can be discussed in forum (Too long for slides).

Some Explainations:

- Gradient image ∇I
- Image error $I_E = T(x, y) I(W[x, y]; P)$
- Jacobian matrix $\frac{\partial W}{\partial P}$
- Steepest image $I_S = \nabla I \frac{\partial W}{\partial P}$
- Hessian Matrix $\blacksquare (\nabla I \frac{\partial W}{\partial P})^T (\nabla I \frac{\partial W}{\partial P})$
- \bullet Iteration step $\blacksquare P = \blacksquare I_S^T I_E$

Linear Regression

Algorithms:

- Warp image and get I(W[x, y]; P);
- Get image error I_E ;
- Warp gradient image ∇I ;
- Evaluate Jacobian;
- Compute steepest descent image $I_{\mathcal{S}} = \nabla I \frac{\partial W}{\partial P}$;
- Compute Hessian matrix $\blacksquare I_S^T I_S$;
- Get warping step $\blacksquare P = I_S I_E$;
- Update warping parameter $P = P + \blacksquare P$;
- Repeat until $\blacksquare P$ is negligible.

APPLICATIONS – MACHINE LEARNING

Generalized Utilization of Convex: Delta Rule

- The delta rule is derived by attempting to minimize the error in the output of the neural network through gradient descent.
- Gradient Descent optimization is the most basic principle for training neurons even with different activation functions.
- Delta rule, can also be modified, if possible, with steepest descent method.

APPLICATIONS – MACHINE LEARNING

Delta Rule:

$$\blacksquare w_{ii} = \alpha(t_i - y_i)g'(h_i)x_i$$

Where α is the learning rate, g(x) is the neuron's activation function. t_j and y_j is the target and actual output of the neuron. h_j is the weighted sum of the neuron's inputs. And x_i is the i_{th} input.

The above equation holds the following:

$$h_j = \blacksquare x_i w_{ji}$$

$$y_j = g(h_j)$$

Goal of Inverse Kinematics

Given a position in the space, calculate a way for a robot hand to reach a place.

Problem Abstract:

$$\vec{e} = R_1 T_1 R_2 T_2 R_3 T_3 R_4 T_4 \vec{e_0}$$

Where T_i is a series of translation transformation and R_i is a series of rotation translation.

Abstraction for Convex Optimization:

$$\mathbf{n}\vec{\theta} = \alpha \mathbf{J}^T \vec{\mathbf{e}}$$

The target for the optimization is to achieve $|\vec{e_p} - \vec{e_t}| = 0$, where $\vec{e_p}$ is the original position of the tip of the robotic arm and $\vec{e_t}$ is the target position. J is the jacobian matrix in terms of $\vec{\theta}$, which is the vector of all the spatial angles of all joints. α is the convergence rate and \vec{e} is the position derivation (step size).

About Inverse Kinematics

- Jacobian transpose is the implementation of gradient descent in the real physical world.
- It can actually achieve near linear solution for robotic arms with a fast convergence rate.