Clase 25

Recordemos, antes de comenzar esta sesión, la definición de continuidad en un intervalo:

Definición 1 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función. Diremos que f es continua en [a,b] si f es continua en cada $c \in (a,b)$ y además

$$\lim_{x\to a^+} f(x) = f(a) \qquad y \qquad \lim_{x\to b^-} f(x) = f(b).$$

También conviene recordar el siguiente ejercicio:

Ejercicio 2 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b]. Muestre que si f(a) > 0 (f(b) > 0), entonces existe $\delta > 0$ tal que f(x) > 0 para todo $x \in [a,a+\delta)$ (para todo $x \in (b-\delta,b]$).

En esta sesión notaremos la "fuerza" que adquiere la continuidad cuando se tiene en todo un intervalo cerrado.

Teorema del Valor Intermedio

Figura 1: Si f es una función continua en el intervalo [a,b] y en los extremos de dicho intervalo toma valores con signos distintos, entonces la gráfica "cruza" el eje X y puede hacerlo en varias ocasiones.

Teorema 3 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b]. Si f(a)f(b) < 0, entonces existe $\alpha \in (a,b)$ tal que $f(\alpha) = 0$.

Demostración. Supongamos que f(a) < 0 < f(b), vea figura 1a. Ahora, consideremos el conjunto

$$A = \left\{ x \in [a, b] \mid f(y) < 0 \text{ para todo } y \in [a, x] \right\}.$$

Note que $A \neq \emptyset$, pues $a \in A$ y como $A \subseteq [a, b]$, entonces A es un conjunto acotado, en particular es un conjunto acotado superiormente. Sea entonces $\alpha = \sup A$.

Como f(a) < 0 < f(b), existe $\delta > 0$, de tal manera que:

- (I) f(x) < 0 para todo $x \in [a, a + \delta)$ y
- (II) f(x) > 0 para todo $x \in (b \delta, b]$.

De (I), se sigue que si $x \in (a, a + \delta)$, entonces $x \in A$ y de aquí que

$$a < x \le \alpha. \tag{1}$$

Ahora, de (II), se tiene que si $x \in (b - \delta, b)$, entonces x es cota superior de A, por lo que

$$\alpha \le x < b. \tag{2}$$

Así, de (1) y (2), tenemos que $a < \alpha < b$, es decir, $\alpha \in (a, b)$.

Veamos ahora que $f(\alpha) = 0$ y para ello descartaremos que $f(\alpha) < 0$ y que $f(\alpha) > 0$. Supongamos primero que $f(\alpha) < 0$. En este caso, por el Ejercicio 2, existe $\delta > 0$ tal que para todo $x \in (\alpha - \delta, \alpha + \delta)$ se tiene que f(x) < 0.

Luego, por ser $\alpha = \sup A$, existe $x_0 \in A$ tal que $\alpha - \delta < x_0 < \alpha$. Se sigue, de la definición del conjunto A, que f(x) < 0 para todo $x \in [a, x_0]$.

Por otro lado, si $x_1 \in (\alpha, \alpha + \delta)$, entonces f(x) < 0, para todo $x \in [x_0, x_1]$, de donde f(x) < 0, para todo $x \in [a, x_1]$. Esto es, $x_1 \in A$, pero esto contradice el hecho de que $\alpha = \sup A$. Así, $f(\alpha) \ge 0$.

Supongamos ahora que $f(\alpha) > 0$. En este caso, por el Ejercicio 2, tenemos que existe $\delta > 0$ tal que para todo $x \in (\alpha - \delta, \alpha + \delta), f(x) > 0$.

Luego, por ser $\alpha = \sup A$, existe $x_0 \in A$ tal que $\alpha - \delta < x_0 < \alpha$, de donde f(x) < 0 para todo $x \in [a, x_0]$, lo que contradice el hecho de que f(x) > 0 para todo $x \in (\alpha - \delta, \alpha + \delta)$. Concluimos entonces que $f(\alpha) = 0$.

El caso en que que f(b) < 0 < f(a), vea figura 1b, se demuestra de manera simétrica.

Figura 2: Si f es una función continua en el intervalo [a,b] y c es un número entre f(a) y f(b), entonces f lo "alcanza", es decir, existe $\alpha \in (a,b)$ tal que $f(\alpha) = c$.

Corolario 4 Sean $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b] y $c \in \mathbb{R}$. Si f(a) < c < f(b), entonces existe $\alpha \in (a,b)$ tal que $f(\alpha) = c$, vea figura 2a.

Demostración. Sea $g:[a,b] \longrightarrow \mathbb{R}$ la función dada por g(x)=f(x)-c. Note que g es una función continua en [a,b], además g(a) < 0 < g(b). Así, por el teorema anterior, se tiene que existe $\alpha \in (a,b)$ tal que $g(\alpha)=0$, es decir, $f(\alpha)=c$.

Corolario 5 Sean $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b] y $c \in \mathbb{R}$. Si f(a) > c > f(b), entonces existe $\alpha \in (a,b)$ tal que $f(\alpha) = c$, vea figura $\frac{2b}{a}$

Demostración. Sea $g:[a,b] \to \mathbb{R}$ la función dada por g(x) = -f(x). Note que g es una función continua en [a,b], además g(a) < -c < g(b). Así, por el corolario anterior, se tiene que existe $\alpha \in (a,b)$ tal que $g(\alpha) = -c$, es decir, $f(\alpha) = c$.

Corolario 6 (Teorema del Valor Intermedio) Sean $f : [a,b] \longrightarrow \mathbb{R}$ una función $y \ d, e \in [a,b]$, con d < e. Si f es continua en [a,b], entonces f toma cualquier valor entre f(d) y f(e), vea figura g.

Demostración. Como f es continua en [a,b], entonces f es continua en [d,e]. Así, si f(d) < f(e) y $c \in \mathbb{R}$ cumple que f(d) < c < f(e), por el Corolario 4 aplicado a f en [d,e], tenemos que existe $\alpha \in (d,e)$ tal que $f(\alpha) = c$. Ahora, si ocurre que f(d) > f(e) y $c \in \mathbb{R}$ cumple que f(d) > c > f(e), por el Corolario 5 aplicado a f en [d,e], se tiene que existe $\alpha \in (d,e)$ tal que $f(\alpha) = c$. Finalmente si f(d) = f(e), es claro que f toma dicho valor. En cualquier caso, f toma cualquier valor entre f(d) y f(e).

Figura 3: Teorema del Valor Intermedio.