Dada represendation ?

> Text - I for matted

-> Audio -> Signal

-> Image -> Pixel

→ Vedio → Sequence of images

when multiple data are required in one device it's called multimedia.

classification of medium?

-> Perception -> Presentation -> Transmission

-> Representation -> Storage -> Information exchange

> Sea, hear > Perception

Imped - Commerce Commerce, Keyboard Hickophone Output > Prienter. Speaker. touch sereen

Presontation +

Tilkotil

RALINIT

- >> Hand driene, Hemory cared >> Storage 2
- > Tend > ASCII, EBSIDIC

Audio -> MP3, MP4

Image - JPG, PNG

Vedio > MPEG

Animation - GIA

- -> Wire, Wireles cable -> Trammission
- > Email > Information exchange.
- # Cristèrie of medéa:
- -> Space:
- -> Values;
- → Dimensions: Time depended → Audio, text
 Time independed → Vedeo, image.

Representation

Proponties of multimedia system:

- -> Buslitatine reather than Quantatine
- -> Combination of media.
 - > level of independence.
 - -> Computer supported integration.
 - > communication gystem.
- # Data Stream classification:
 - > Transmission mode

- Synchronous · [fixed time] - other met

> Asynchronous. [changeable] - fimael

→ Isochronous. -> Ve de o tramsfer.

RADANT

→ Time	internal of	consecutiv	e packel 4
	> Weakly	parciodic.	> TV treammiss > Email / Sms tream fer Streaming.
	> Apenio de	. → lêne	Streaming.

> Variation of packet amount

→ Shrongly regular.

→ Weakly regular.

→ iruregular data stream.

→ contigious packets

→ Continuous. → Diserute. [Advamtage & Disaduantage]

Sound/ Audio_

- # Basic terms of sound:
 - → Period.
 - > Frequency
 - → Amplitude.
- # Computer representation of sound.
- → Buantization
- Sound handware
- # Music:
- > Husic Instrument Digital interface: [characteration
 - -> doesn't descrébe, Just command.
 - -> not a language
 - -> maintain data communication prevtocal.

KALL ANT

- → dégital interrface, electrical connectors. 6 → generales and transmids manage among imtruments. -> relates computer and musec. # Component: → MIDI Handware - HIDI Cable MIDI Ponds -> Serieal -treamfer -> fine pin DIN connec - slow in bed treammession → Three pen asable 31, DEO bit 13 → Both ends aree same → tool slow in sample tra-ന്നും ടട്ട് സ LHIDI IU FHIDI Out L MIDI Thru ⇒ Data Frommas -> Encodes treavalling sound signal into a tormal contain - basic traquency level. - Sound volume.
 - Scanned by CamScanner

-> easy to modify and manipulate.

-> Wide choice of musical instruments.

-> Use dégétaly sampled sound only.

11.03.19

HIDI Standened:

Proponties:

-> Specifier 16 charmel

-> A HIDI Device mapped to a charmel.

→ identifies 128 instruments with uneque numbers.

-> Hain property is to allow each synthesizer

to receive max notes per channel.

-> 3-6 notes per channel.

Reception Hodes:

-> Omeni On/Poly.

RADIANT

→ Donne On/mono	8
→ Omni off [Poly	
→ Omné off/mono	
⇒ Omné on/off	
> Poly /mono.	
# HIDI Devices:	
→ Sound generator	
-> Micko processon.	
-> keyboard.	
-> Contral panel.	
→ Auxéliary control panel.	
-> Hemoray	
-> Augmended De viers.	
# MIDI Hessage Format:	
Status byte Data bytes	_

MIDI Hessage [specifie instrumi] Voice
Specifie instrument Hode
- Real time
System Common
[to all device] - Real time Common exclusive
and,
#HIDI Software:
Husic recording & personnance application.
> Husical notation and preinting application.
> Synthesizer patch editor and librarian.
January Line
> Husic education application.
18.03.19
Speech:
-> perceived / understood.
-> produced by human/machine.
> Perio dèc behaviour during certain time interval
* ALZ ANT Tilkotil

> Specturem audio signal shows characterestic maxima for mato. # Speech processing system: -> speech generation → recognition → Von Kempelens speaking machine (1791) → VODER (1939) [Voice Operation Demonstrator basée une ts/ Freatures speech - Fundamental frequency -> real time > Phone -> understandable -> Allophone -> matural -> Morph -> Sound - Voiced Sound Unvoicedsound

- # Reproduced speech output preoblems:
- → Time dependent sound concade nation;
- > Phone sound concate nation World crumb.
 - → ao ardiculation
 - -> Preosody.
- Syllable sound concalenation - constitutes diaphone
- → World sound concadenation - co-articulation
- # Frequency de per dent sound concade nation;
 - -> Frommant syndhesis -> speech synthesis system
 - -> Preosody.
- -> co- articulation.

PALX ANT

speech synthesis system: 12 > Tramerciption → Synthesis Y rules to transfer word to phone and exceptions Text > [transcription] > [synthesis] -> speech fig: Format [speech Synthesis system] =) Speech analysis system Hodification reception under store ding

speech Reorgnition system;

-> Speech Analysis

- Data extracted from speech element.

-> Speech recognition

- Comparison of speech element with

reference library

→ two types of recognition are:

→ Speaker dependent recognition [25,000 worlds]

Advanced training

-> Speaker independent recognition [500 words]

Problems in speech recognition:

-> environmental noise.

-> Are determination of word boundary

-> time normalization.

RAIX'ANT

>Image: [Processing] self

Hixel:

:Image format

>1 colon [gray scalevalue]
>3 calon [RGB dried value]
>4 colon [RGB tried value
+ gray scale value/
opece ty]

> Bifusto

-> lin compressed

→ 3 dimensional avoray

- hightx width x 24 (8 for each colon)

-> Simple

- wide acceptance in windows application

Flit. / fit., gard. 4

- > JPG/JPEG (Joint Photographic expects group);
- -> for continuous tone image.
- → 8 bits per colon.
- → 16 million of colon.
- → uses lossy compression.
- -> Generational degration after respected
- ⇒ GIF (incaphical interchange format).
- -> From large arreas of same colore.
- -> moderate level of délails.
- -> supportes upto 256 colors.
- -> Supports animation and image animation
- -> uses loseles compression.
- -> in effective for detailed image on ditherced image.

RAD ANT

- = PNtr (Pontable medwork Graphical): "
- -> fræ, open source successor of GIF.
- loselen, portable and well comprensed.

25.03.<u>1</u>9

- # Graphico?
- → Pictorial synthesis of a new on imaginamy object using computer aided models.
- -> graphical primitives [Point, vendex, line ledge, ragion
 - attributes
- -> no pixel representated.
- -> dérect manipulation is possible.
- # Dynamecos
- + Object moves in neapect to other object.

- → Progressive scanning
- > Interface scanning
- # Dithering:
- # Rasten display: [Book]
- # Image reoggnation?
- → Image analysis
- = 2mage recognition

source image - tournating

Conditioning Labeling

Grouping

enget image Extracting

Scanned by CamScanner

型 可Ebi Compression:

- -> Joint photographic Expents Greenp.
- -> Lossy compression.
- -> 24 bit colon image.
- > Encoding: (step)
 - 1. RGB to TUV model.
 - 2. Diride into 8x8 blocks.
 - 3. DCT.
 - 9. Quantization.
 - 5. Encoding.

→ Luminance → Light stred Chrominance → color

YUV model

Luminance -> how (colon variable)

Luminance -> Saturation

5tep: 1 →

1(a): d=0.2991 R+0.587 * 61+0.114 * B U=0.1687* R-0.3313 * 61+0.5 * B+128 V=0.6 * R-0.4187 * 61-0.813 * B+128

1(6):

chrominance down Sampling

Joseph variation mistant enough down sampling

Step:2>

21

Devide into 8x8 blocks [8x8=646;1]

240×320

= 76800 1 /64

= 1200 blocks

→ DGI deals auch erift reft deals sta.

$$T(u,v) = \sum_{x=0}^{N} \sum_{y=0}^{N} \{(x,y)\} \{(x,y,u,v)\}$$

RADIANT NAN

NXN

$$g(x,y,u,v) = \alpha(u)\alpha(v) \frac{2x}{2n} \frac{(2x+1)ux}{2n} \cos \frac{(2x+1)ux}{2n}$$

$$\alpha(x) = \frac{1}{\sqrt{n}} x = 0$$

$$\sqrt{2} x = 1 \dots n$$

> Sampling fraquency generale rapid vis Det

- # Veden:
- -> Visual representation.
- > Trammission.
- → Digitalization.
- -> Video formats.
 - # Characteresties:
 - 1. Visual representation:
 - -> Ventical detail [Viewing distance]
 - -> Horizontal detail [Picture width]
 - > Total detail contend
 - > Perception of depth
 - -> Luminance & Chrominance.
 - ⇒ Temporal aspects:
 - -> Motion resolution.
 - -> Continuity of motion [15 there in 15]
 - -> Flicker
 - -> Video bandwidth selection

3. Digitalization:

Two steps aree: 1. Sampling 2. Quantization.

4. Vedeo formals:

RAINAT

1		The second second second		1.2
CGA	EGA	VGA	25 85.14/A display adapter	XGA
1. Colon graphic adapten	Emhanco d greaphoiso adapten	Vodeo graphie adapter		Extended graphies applica
-अ- ३२०x२०० हेन्ना	640×350 pixel	640x480 pix	6 1024x 768 pixelo	CHOX COO FIXE
-3. 4 colon	16 colon	266 colon	286 color	65000 alon
4. Storage capa	Herenge expecit	Storage experi	Storage capacity	Storage Capacity
32000 X 2 byte Pixel X 8	640x350x4x8	४४८४४४०२ १८४४ ४	he	
				ه اد

SVGA

1. Super V61 A

2.1024x768 pixel

3. Qubiteolon

4. Storage sapacity

Television and Animation

- => Television Standards:
- → Analog Tv: → NTSC
 - -> SECAM
 - → PAL
- =>NTSC:
- > National Telexision Standard Commettee
- = > Widely used in Japan and mostly other asian
- countries, south and north america
 - -> uses BAH
- > 4.429/3.57 MH≥ (BW), for motion frequency 30Hz
- € → Picture coments 625 lines (486 is résible)
- €> 4.2HHz for luminance and 1.5 MHz chrominano
- -> Hanual color correction.
 - => resolution 70 K480
 - > refresh rade 60Hz
 - > > 30 frame |S

- -> Sequendial couleur Avec Memoire (sequential aslow with memory)
- > Uses in France, este cardern europe.
- → Uses FiH.
- > Motion frequency 25 H2
- → 625 lines, 576 wisible
- -> auto colon correction
- > refresh rate 50H2
- > 1/2 the resolution after trammession.
- → 25 frame /s.
- ⇒ PAL:
- → Phase Alternating line → Uner in Western Europe (UK, sweden) Auntralia.
- -> Uses BAM
- -> automatic colon convection
- 7 625 lines, 576 is visible
- -> refresh rate 50H2

- = > Digital TV:
 - > IDTV
 - -> D2HAC
 - ⇒ IDIV:
 - > Improved definition television
- => improved version of NTSC
- => Doubles line from 520 to 1050.
 - > Doubles bandwidth to treamment data.
- > D2HAC: (improved version of PAL)
- > Due Binary Hultiplexed Analogue components.
- > data rate is 10.125 Hbit/s
- -> reduced vision bandwidth using DMAC algorie-
 - -> BAH + FH.
 - ⇒HDTV:
- > High definitision Television System.

RALPATOT

- => Resolution-Twice of conventional system.
 - In creament Ventical definition added new 1000 lines.
 - Luminance details by employing 5th trimes of BW of conventional system
 - Additional BW applies to maintain colors quality.
- -> Aspect ratio: 16/9: 1.777 ...
- > Viewing distance is closer than conventional system.
- . > Digital Coding:
 - -> Composite coding:
- -> Simples in digitizing video signal.
- -> combiner all apparate components.
 - One luminance - two chrominance

- => crosstalk between elements.
- = > depends on television standends.
- => Data reduction can be allocated.
- => Bw allocation is not sufficient.
- => Component coding:
- separate dégitiention of each component.
- => transmit togather through multiplexing.
- -> luminance sampled with 13.5 MH2.
- € -> Chrominance 6.75 Hz
- => computer based animation!
 - > Full explicit control.
 - > Procedural control.
 - -> Compraint based control.
 - > Tracking line Action | Rotoscoping.
 - > Kinetics & Dynamics.

Dada Compression:

-> JPEG - image

→ H. 261 - Vedio

-> MPEG - Video + audio

-> DD DVI - image + audio + Video

=> Coding requer mento:

Text:

→ Spates

+ 8x8 pixeh.

> Image: (Vector Array)

> 500 lines - horizontal details

- Vertical defails

- 8 bit attribute field

PAD ANT -> Horizontal azis (10 bites)

Ventical axis (9bit's)

-> 1 byteo/ pixel - 266 celors

-> Audio:

→ Sample Hate 44.1 KH2

-> Quantipation reale 16 bid / sample

> Storage (94.1×16) 6 × 103 x bit

> BW (44.1×16) ×103 HZ

→ Video:

> Image resolution 640 * 480

> 3 bytes per pixel (luminance 1 Chrominance 2)

> Storage: 9,21,000 bytes

> refresh rade 26 frame /3

→ Dialoque Mode:

> Human to human conversation.

→ Hylorid Coding

DPCH

Frediction — DH

FINT

FROM Transfor mation — Det

Det

Sub Sampling

Sub band coding

Sub band coding

⇒ Entropy — Run length Huffman → Areithmatic

RADIANT

Compression steps: [transding]

Decompression:

> Symmetrical Decompression:

-> Same cost

-> Jossy doda

Asymmetrical decompression:

36

→ losslen data

→ Cost Righer

09.05.19

=> H.261 Video compression standard:

-> Published by ITU-1 in 1990.

> internation video compression standend.

> used for conjuction with other control and traming standends.

desercibes only video comprension ien a audéo isual serrice.

> Targeted for circuit switched network.

-> two imge formal -CIF (352x 288)

- BOIF (176x 244)

RADIANT

-Combination of

- inter picture prediction [temporal redundants

-transform coding [spatial redundancy]
- motion vectores [motion compensation]

-> based on IPEbr.

⇒ Design detreb:

-> yeben format.

-> must be able to compries OCIF formal, CIF

es optional.

→ Source image contain 16×16 macroblocks.

-> each macroblocks contains 8x8 block.

-) each block contains exa pixel for yeber waln.

-> main elements

- Predictor [inter frame | intra frame]

- Block treamformation [DRCH / DCT]

- Quantization and Entropy encoding.

+ ITU-T, ISDN "CIF, BOIF, DPCH, DCT ... inder trame Motion Prediction companition loop filler ەس significan block treams formation Yes Quantization Emproba escogiad bit Shring > Difference between intenframe and intraframe! > I- Forame - inter midiate frame (back ground) -> P-Frame Della frame. (difference creati Tilkotil

> Entropy Encoding:

-> Run length Encoding.

-> Huffman Encoding.

-> Ariethmetic Encoding

-> Run length timeoding: (4-259) -> 3bits

aaff bbb cececeddaff lfixed longth aaff bbbc16ddaff storag]

-> Huffman Erading? | * Varciable length stonage

a a ff bbb ceaccedda ff

a = 101 S = 100 01

c = 11

d = 100

-> Anith matic Encoding: aa ff bbb cccccc dd aff

K= 5

[next sunday]

1. Digital image precassing [9 step detail]

Assignment: [mext sunday]

1. Digital image processing [9 step

2. 051 7 layer effects on BHS.

et-2: Graphico + Vedio formats *

28.03.19 - 08.04.19 eT-2: Graphics + Vedio formats and 3.

1111	IN MPEG	Sunday)
777	Audio + video Encoding: Vedio Encoding: 1 -> Jequence Layer	
•	→ Grop Layer	* Difference between JPEG & MPEG
אווווווווווווווו	→ Picture layer → Slice layer	0.2
	-> Macro block layer	
443	-> block layer -> Vcb Cr model	
•	-> Three frames	
	- p mane prese	Quantization > 2:13
	BAS STOCK -> De	- Quantization -> 2.98
		(P.T.0)

RoCal-D

Ø

RoCal-D VITA