Worksheet 6.1: Basic CPU Scheduling

(a) Schedule the following input using **Preemptive Priority Scheduling**. Assume that a smaller number indicates higher priority. First give the output in the form of a **Gantt chart**, and then compute the <u>average waiting time</u>. Show your work.

Process	Arrival Time	CPU Burst	Priority
P_1	0	5	3
P_2	1	3	4
P_3	3	2	1
P_4	6	4	2

Gantt Chart:

Time: 0 3 5 6 10 11 Process: P_1 P_3 P_1 P_4 P_1 P_2

 P_1 waiting time = 2+4 = 6

 P_2 waiting time = 11-1 = 10

 P_3 waiting time = 3-3=0

 P_4 waiting time = 6-6 = 0

Average waiting time = (6+10) / 4 = 4

(b) Schedule the following input using **Round Robin Scheduling** with a time quantum of **5**. Assume that all processes arrive at time 0 but assign time quanta in the given order (P_1, P_2, P_3, P_4) . First give the output in the form of a **Gantt chart**, and then compute the <u>average waiting time</u>. Show your work.

Process CPU Burst
P₁ 8
P₂ 3
P₃ 12
P₄ 6

Gantt Chart:

Time: 0 5 8 13 18 21 26 27 Process: P₁ P₂ P₃ P₄ P₁ P₃ P₄ P₃

 P_1 waiting time = 18-5 = 13

 P_2 waiting time = 5

 P_3 waiting time = 8 + (21-13) + 1 = 8 + 8 + 1 = 17

 P_4 waiting time = 13 + 26 - 18 = 13 + 8 = 21

Average waiting time = (13 + 5 + 17 + 21) / 4 = 56/4 = 14