Análisis Numérico

Nombres: Arcos Hernández Raúl

Gómez Luna Alejandro

Numero de lista: 3, 11

Grupo: 11 Trabajo: 3 Fecha: 8/05/2020

Instrucciones: Es importante que su respuesta sea lo más clara posible.

- Por medio de la interpolación de Newton calcule, para la siguiente función tabulada:
- x Y=f(x) a) b)
- -3 -51 -1 -11 1 -11 3 -3

61

- a) El valor de y para x=0.5
- b) El valor de y para x=4
- c) El valor de y para x=-3.4
- d) El polinomio al cual corresponde la función tabular

Desarrollo

х	f(x)	PD	SD	TD
		264		48
-5	-179		-136	
-3.4		128		48
-3	-51		-88	
		40		48
-1	-11		-40	
0.5		0		48
1	-11		8	
		8		48
3	-3		56	
4		64		48
5	61		104	
		168		48
			152	
		320		48

a)
$$x = 0.5$$

Ecuación interpolante

$$y_k = y_o + k\Delta y_o + \frac{k(k-1)}{2!}\Delta y_o^2 + \frac{k(k-1)(k-2)}{3!}\Delta y_o^3$$

$$k = \frac{x_k - x_0}{h}$$

Sustituyendo valores obtenidos a partir de la tabla de diferencias de Excel

$$k = \frac{0.5 - (-1)}{2} = 0.75$$
$$y_{0.5} = -11 + (0.75) * 0 + \frac{0.75(0.75 - 1)}{2!} 8 + \frac{0.75(0.75 - 1)(0.75 - 2)}{3!} 48 = -9.875$$

0	.5
x_k	0.5
x_0	-1
h	2
k	0.75
y_0	-11
PD	0
SD	8
TD	48
y_k	-9.875

Conclusión inciso a

El valor de y para x = 0.5, es y = -9.875

b) x = 4

Ecuación interpolante

$$y_k = y_o + k\Delta y_o + \frac{k(k-1)}{2!} \Delta y_o^2 + \frac{k(k-1)(k-2)}{3!} \Delta y_o^3$$
$$k = \frac{x_k - x_0}{h}$$

Sustituyendo valores obtenidos a partir de la tabla de diferencias de Excel

$$k = \frac{4-3}{2} = 0.5$$

$$y_{0.5} = -3 + (0.5) * 64 + \frac{0.5(0.5-1)}{2!} 104 + \frac{0.5(0.5-1)(0.5-2)}{3!} 48 = 19$$

4	4								
x_k	4								
x_0	3								
h	2								
k	0.5								
y_0	-3								
PD	64								
SD	104								
TD	48								
y_k	19								

Conclusión inciso b

El valor de y para x = 4, es y = 19

c) x = -3.4

Ya que en la función tabular no hay un valor registrado antes de -3, se tiene que *extrapolar* un valor de un espaciamiento anterior a -3 a partir de las primeras, segundas y terceras diferencias. A partir de esto se obtiene un nuevo valor para la función tabular de x = -5 y f(x) = -179

$$y_k = y_o + k\Delta y_o + \frac{k(k-1)}{2!} \Delta y_o^2 + \frac{k(k-1)(k-2)}{3!} \Delta y_o^3$$
$$k = \frac{x_k - x_0}{h}$$

Sustituyendo valores obtenidos a partir de la tabla de diferencias de Excel

$$k = \frac{-3.4 - (-5)}{2} = 0.8$$

$$y_{0.5} = -179 + (0.8) * 128 + \frac{0.8(0.8 - 1)}{2!} 104 + \frac{0.8(0.8 - 1)(0.8 - 2)}{3!} 48$$

$$= -68.024$$

Conclusión inciso c

El valor de y para x = -3.4, es y = -68.024

d) Polinomio

Desarrollo

$$k = \frac{x - (-1)}{2} = \frac{x + 1}{2}$$

$$y = -11 + \left(\frac{x+1}{2}\right)(0) + \frac{\frac{x+1}{2}\left(\frac{x+1}{2} - 1\right)}{2!}(8) + \frac{\frac{x+1}{2}\left(\frac{x+1}{2} - 1\right)\left(\frac{x+1}{2} - 2\right)}{3!}48$$

Simplificando

$$y = x^3 - 2x^2 - x - 9$$

Conclusión inciso d

El polinomio interpolante es $y = x^3 - 2x^2 - x - 9$

 En un laboratorio se hicieron mediciones de las coordenadas (x,y) de la posición de un proyectil que describió una trayectoria parabólica.

x (m)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
v(m)	0	8.1	15.1	21.1	25.9	29.7	32.3	34.4	33.7	33.7	32.1	29.9	25.4	20.5	14.4	7.3	-0.96	-10.3

Obtener:

- a) La ordenada "Y" del proyectil cuando x=42.3m
- b) El máximo alcance horizontal "X" (ocurre cuando Y=0)

Desarrollo

a) X = 42.3

	X	Y	1	(2	$(-x_1)(x-x_2)$	$(x - x_3)(x -$	x4)												
0	0	0			$-x_1)(x_0-x_2)$														
1	5	8.1			()				1			1	6			1	7	
2	10	15.1		Num	erador	Deno	minador	Nume	erador	Denor	ninador	Num	erador	Deno	minador	Nume	erador	Deno	minador
3	15	21.1		×	42.3	x_0	0	8	42.3	x_0	5	8	42.3	x_0	80	8	42.3	x_0	85
4	20	25.9		x_1	5	x_1	5	x_1	0	x_1	0	x_1	0	x_1	0	x_1	0	x_1	0
5	25	29.7		x_2	10	x_2	10	x_2	10	x_2	10	x_2	5	x_2	5	x_2	5	x_2	5
6	30	32.3		x_3	15	x_3	15	x_3	15	x_3	15	x_3	10	x_3	10	x_3	10	x_3	10
7	35	33.9		×_4	20	x_4	20	x_4	20	x_4	20	×_4	15	x_4	15	x_4	15	×_4	15
8	40	34.4		x_5	25	x_5	25	x_5	25	x_5	25	x_5	20	x_5	20	x_5	20	x_5	20
9	45	33.7		x_6	30	x_6	30	x_6	30	x_6	30	x_6	25	x_6	25	x_6	25	x_6	25
10	50	32.1		x_7	35	x_7	35	x_7	35	x_7	35	x_7	30	x_7	30	s_7	30	x_7	30
11	55	29.9		x_8	40	x_8	40	x_8	40	x_8	40	x_8	35	x_8	35	x_8	35	x_8	35
12	60	25.4		x_9	45	x_9	45	x_9	45	x_9	45	x_9	40	x_9	40	x_9	40	x_9	40
13	65	20.5		x_10	50	x_10	50	x_10	50	x_10	50	x_10	45	x_10	45	x_10	45	x_10	45
14	70	14.4		x_11	55	x_11	55	x_11	55	x_11	55	x_11	50	x_11	50	x_11	50	x_11	50
15	75	7.3		x_12	60	x_12	60	x_12	60	x_12	60	x_12	55	x_12	55	x_12	55	x_12	55
16	80	-0.96		x_13	65	x_13	65	x_13	65	x_13	65	x_13	60	x_13	60	x_13	60	x_13	60
17	85	-10.3		x_14	70	x_14	70	x_14	70	x_14	70	x_14	65	x_14	65	x_14	65	x_14	65
				x_15	75	x_15	75	x_15	75	x_15	75	x_15	70	x_15	70	x_15	70	x_15	70
				x_16	80	x_16	80	x_16	80	x_16	80	x_16	75	x_16	75	x_16	75	x_16	75
				x_17	85	x_17	85	x_17	85	x_17	85	×_17	85	x_17	85	s_17	80	x_17	80
				Res	-4.05E+20	Res	-2.71E+26	Res	-4.6E+20	Res	1.6E+25	Res	4.55E+20	Res	-1.6E+25	Res	4.02E+20	Res	2.71E+26
				0					-0.000	233261			2.7352	4E-05			-1.524	14E-05	
				Y_k=	34.239372														

Conclusión inciso a

Para x = 42.3, y es igual a 34.23937201

b) Y = 0

				0					1		4			
	У	X	Num	nerador	Deno	minador	Num	erador	Denon	ninador	Nume	erador	Denon	ninador
0	20.5	65	у	0	y_0	20.5	у	0	y_0	14.4	у	0	y_0	-10.3
1	14.4	70	y_1	14.4	y_1	14.4	y_1	20.5	y_1	20.5	y_1	20.5	y_1	20.5
2	7.3	75	y_2	7.3	y_2	7.3	y_2	7.3	y_2	7.3	y_2	14.4	y_2	14.4
3	-0.96	80	y_3	-0.96	y_3	-0.96	y_3	-0.96	y_3	-0.96	y_3	7.3	y_3	7.3
4	-10.3	85	y_4	-10.3	y_4	-10.3	y_4	-10.3	y_4	-10.3	y_4	-0.96	y_4	-0.96
			Res	1039.42656	Res	53221.14336	Res	1479.7392	Res	-16431.468	Res	-2068.7616	Res	125056.772
				1.2694	71532		-6.303864452					-1.406	6119264	
			Y_k =	79.45368603										

Conclusión inciso b

Para y = 0, x tiene valor de 79.45368603

Γ	3. Dada la función tabular:										
ш	х	0	0.24	0.9	1.3	1.75	2.02	2.54			
ш	f(x)	-2	-1.3950	-0.3886	3.3468	25.8479	63.8365	261.2527			
L											

Desarrollo

a) X = 0.5

Usando método de Lagrange

			$y_k = \frac{(x_k)^2}{(x_k)^2}$	$y_k = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} y_0$										
			(10	x ₁)(x ₀ x ₂		~0 ~4)	1				6			
			Numerador Denominador		Num	erador	Denominador		Numerador		Denoi	minador		
	X	Υ	х	0.5	x_0	0	x	0.5	x_0	0.24	x	0.5	x_0	2.54
0	0	-2	x_1	0.24	x_1	0.24	x_1	0	x_1	0	x_1	0	x_1	0
1	0.24	-1.395	x_2	0.9	x_2	0.9	x_2	0.9	x_2	0.9	x_2	0.24	x_2	0.24
2	0.9	-0.3886	x_3	1.3	x_3	1.3	x_3	1.3	x_3	1.3	x_3	0.9	x_3	0.9
3	1.3	3.3468	x_4	1.75	x_4	1.75	x_4	1.75	x_4	1.75	x_4	1.3	x_4	1.3
4	1.75	25.8479	x_5	2.02	x_5	2.02	x_5	2.02	x_5	2.02	x_5	1.75	x_5	1.75
5	2.02	63.8365	x_6	2.54	x_6	2.54	x_6	2.54	x_6	2.54	x_6	2.02	x_6	2.02
6	2.54	261.2527	Res	-0.3224832	Res	2.52127512	Res	-0.62016	Res	-1.03797245	Res	0.07904	Res	4.88042362
				0.255809608				-0.833	474142			4.2310	069881	
					•									
			Y_k =	-0.98440844										

Conclusión inciso a

El valor de f(x) para x = 0.5, es -0.9844

b) X = 1.5

Usando método de Lagrange

Conclusión inciso b

El valor de f(x) para x = 0.5, es 9.3906

$\mathbf{c)} \quad \mathbf{X} = \mathbf{2}$

Usando método de Lagrange

Conclusión inciso c

El valor de f(x) para x = 0.5, es 60.00000882

d) Polinomio

$$\begin{split} y_k \\ &= \left(\frac{[(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)(x-2.54)]}{[(0-0.24)(0-0.9)(0-1.3)(0-1.75)(0-2.02)(0-2.54)]}\right)(-2) \\ &+ \left(\frac{[(x-0)(x-0.9)(x-1.3)(x-1.75)(x-2.02)(x-2.54)]}{[(0.24-0)(0.24-0.9)(0.24-1.3)(0.24-1.75)(0.24-2.02)(0.24-2.54)]}\right)(-1.395) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-1.3)(x-1.75)(x-2.02)(x-2.54)]}{[(0.9-0)(0.9-0.24)(0.9-1.3)(0.9-1.75)(0.9-2.02)(0.9-2.54)]}\right)(-0.3886) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.75)(x-2.02)(x-2.54)]}{[(1.3-0)(1.3-0.24)(1.3-0.9)(1.3-1.75)(1.3-2.02)(1.3-2.54)]}\right)(3.3468) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-2.02)(x-2.54)]}{[(1.75-0)(1.75-0.24)(1.75-0.9)(1.75-1.3)(1.75-2.02)(1.75-2.54)]}\right)(25.8479) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.54)]}{[(2.02-0)(2.02-0.24)(2.02-0.9)(2.02-1.3)(2.02-1.75)(2.02-2.54)]}\right)(63.8365) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.02-0)(2.02-0.24)(2.02-0.9)(2.02-1.3)(2.02-1.75)(2.02-2.54)]}\right)(25.8479) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.02-0)(2.02-0.24)(2.02-0.9)(2.02-1.3)(2.02-1.75)(2.02-2.54)]}\right)(25.827) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0)(2.54-0.24)(2.54-0.9)(2.54-1.3)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0)(2.54-0.24)(2.54-0.9)(2.54-1.3)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0)(2.54-0.24)(2.54-0.9)(2.54-1.3)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0.24)(2.54-0.9)(2.54-0.9)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0.24)(2.54-0.9)(2.54-0.9)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0.24)(2.54-0.9)(2.54-0.9)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)]}{[(2.54-0.24)(2.54-0.9)(2.54-0.9)(2.54-1.75)(2.54-2.02)]}\right)(261.2527) \\ &+ \left(\frac{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)(x-2.54)]}{[(x-0)(x-0.24)(x-0.9)(x-1.3)(x-1.75)(x-2.02)(x-$$

$$y_k = x^6 - 0.0007x^5 - 0.0024x^4 + 0.0031x^3 - 2.002x^2 + 3.0002x - 2$$

Conclusión inciso d

El polinomio interpolante es $y_k = x^6 - 0.0007x^5 - 0.0024x^4 + 0.0031x^3 - 2.002x^2 + 3.0002x - 2$

Dada la siguiente función tabular										
	x 0 1 2 3 4									
ı	f(x) -3 -1.28172 3.38906 16.08554 50.59815									
Calcular el valor x, cuando el valor de f(x)= 15										

Desarrollo

Usando método de Lagrange

			$y_k = \frac{(x_0)^{-1}}{(x_0)^{-1}}$	$(-x_1)(x-x_2)(x_0-x_1)(x_0-x_2)$	$(x - x_3)(x - x_3)($	$\frac{-x_4)}{x_0-x_4)}y_0$							
				C)		4						
	Y	x	Nume	erador	Denon	ninador	Nume	erador	Denominador				
0	-3	0	у	15	y_0	-3	у	15	y_0	50.59815			
1	-1.28172	1	y_1	-1.28172	y_1	-1.28172	y_1	-3	y_1	-3			
2	3.38906	2	y_2	3.38906	y_2	3.38906	y_2	-1.28172	y_2	-1.28172			
3	16.08554	3	y_3	16.08554	y_3	16.08554	y_3	3.38906	y_3	3.38906			
4	50.59815	4	y_4	50.59815	y_4	50.59815	y_4	16.08554	y_4	16.08554			
			Res	7305.34823	Res	11230.1396	Res	-3693.90735	Res	4530562.35			
				C)			-0.0032	261323				
			Y_k =	2.64821516									

Conclusión

El valor para f(x) = 15 es x = 2.64821516

5. Para la función definida por la siguiente tabla:

ı	Х	Y=f(x)
ı	0.2	0.938
ı	0.4	0.864
ı	0.6	0.832
ı	0.8	0.867
ı	1.0	1.000
ı	1.2	1.300

- Calcular la primera derivada en el punto x=0.2, utilizando fórmulas de derivación limitadas a primeras, segundas y terceras derivadas.
- b. Calcular la segunda derivada en el punto x=0.6, utilizando fórmulas de derivación limitadas a terceras diferencias.
- c. Compare los resultados obtenidos en los incisos anteriores al derivar directamente la función.

$$f(x) = x^{x^2}$$

Desarrollo

X	у	a)	Y' = 1/6h [<u>-11</u> , 18, -9, 2] -
0.2	0.938			
0.4	0.864		y' =	-0.4333333
0.6	0.832			
0.8	0.867	b)	Y' = 1/6h [-2, <u>-3</u> , 6 , -1]	
1	1			
1.2	1.3		y' =	-0.0183333
h =	0.2			

Conclusión inciso a

La derivada en x = 0.2 es y' = -0.4333

Conclusión inciso b

La derivada en x = 0.6 es y' = -0.0183

Conclusión inciso c

Como se observa, la diferencia entre la derivada real y la derivada obtenida, es pequeña.

$$ln[2]:= f[x_] = x^(x^2)$$

Out[4]= -0.0108086

 En la siguiente tabla se muestran los valores de la velocidad de un tren que frena al llegar a una estación. Calcule la aceleración para los tiempos t=15 y t=20 segundos.

X[s]	Y=v(t) [m/s]
5	6.6328
10	4.7590
15	3.6741
20	2.9164
25	2.3412
30	1.8842

Desarrollo

Partiendo de un polinomio interpolante de grado tres y un h = 3, que es el espaciamiento, tenemos que para t=15 segundos:

x[s]	y=v(t) [m/s]
5	6.6328
10	4.759
15	3.6741
20	2.9164
25	2.3412
30	1.8842

$$y' = \frac{1}{6*5} ((-2)*(4.759) + (-3)*(3.6741) + (6)*(2.9146) + (-1)*(2.3412))$$

= -0.1794367

Para t=20 segundos:

x[s]	y=v(t) [m/s]
5	6.6328
10	4.759
15	3.6741
20	2.9164
25	2.3412
30	1.8842

$$y' = \frac{1}{6*5} ((1)*(4.759) + (-6)*(3.6741) + (3)*(2.9146) + (2)*(2.3412))$$

= -0.1284667

Para t = 15 segundos, el valor de la aceleración es de -0.1794367 $\left[\frac{m}{s^2}\right]$ y, para un t = 20 segundos, el valor de la aceleración es de -0.1284667 $\left[\frac{m}{s^2}\right]$

7. Valúe las siguientes integrales utilizando la fórmula de integración trapecial.

a.
$$\int_{3}^{7} x^{2} \log(x) dx$$

Desarrollo

- Calculando el valor del espaciamiento h, con b = 7, a = 3 y n = 8

$$h = \frac{b-a}{n} \rightarrow h = \frac{7-3}{8} = 0.5$$

n	X	f(x)	
0	3	4.29409129	y0
1	3.5	6.66483354	y1
2	4	9.63295986	y2
3	4.5	13.2275534	у3
4	5	17.4742501	y4
5	5.5	22.3959714	у5
6	6	28.013445	у6
7	6.5	34.3455893	y7
8	7	41.409804	y8

- Ahora, utilizaremos la fórmula de integración trapecial.

$$A_T = h/2 [Y_0 + Y_n + 2 \sum resto de ordenadas]$$

$$\int_{3}^{7} x^{2} \log(x) dx$$

$$= \frac{0.5}{2} [4.29409129 + 41.409804 + 2(9.63295986 + 17.4742501 + 28.013445 + 6.66483354 + 13.2275534 + 22.3959714 + 34.3455893)] = 77.3032751$$

El valor de la integral, de 3 a 7 con la fórmula de integración trapecial y un espaciamiento de 0.5 es de 77.3032751

Desarrollo

- Calculando el valor del espaciamiento h, con b = $\frac{3\pi}{2}$, a = $\frac{\pi}{2}$ y n = 8

$$h = \frac{b-a}{n} \to h = \frac{\frac{3\pi}{2} - \frac{\pi}{2}}{8} = \frac{\pi}{8}$$

n	Х	f(x)	
0	1.57079633	0.63661977	y0
1	1.96349541	0.47052798	у1
2	2.35619449	0.30010544	у2
3	2.74889357	0.13921362	уЗ
4	3.14159265	3.8998E-17	у4
5	3.53429174	-0.1082773	у5
6	3.92699082	-0.1800633	у6
7	4.3196899	-0.2138764	у7
8	4.71238898	-0.2122066	у8

- Ahora, utilizaremos la fórmula de integración trapecial.

$$A_T = h/2 [Y_0 + Y_n + 2 \sum resto de ordenadas]$$

$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{sen(x)}{x} dx$$

$$= \frac{\pi}{16} [0.63661977 - 0.2122066 + 2(0.47052798 + 0.30010544 + 0.13921362 + 3.8998E^{-17} - 0.1082773 - 0.1800633 - 0.2138764)] = 0.24340932$$

El valor de la integral, de $\frac{\pi}{2}$ a $\frac{3\pi}{2}$ con la fórmula de integración trapecial y un espaciamiento de $\frac{\pi}{8}$ es de 0.24340932

8. Valúe la integral de probabilidad
$$\int\limits_{-3}^{3} \frac{1}{\sqrt{2\pi}} e^{-0.5x^2} dx$$

Desarrollo

Calculando el valor del espaciamiento h, con b = 3, a = -3 y n = 8

$$h = \frac{b-a}{n} \to h = \frac{3-(-3)}{8} = \frac{6}{8} = \frac{3}{4}$$

n	X	f(x)	
0	-3	0.00443185	y0
1	-2.25	0.03173965	у1
2	-1.5	0.1295176	у2
3	-0.75	0.30113743	у3
4	0	0.39894228	у4
5	0.75	0.30113743	у5
6	1.5	0.1295176	у6
7	2.25	0.03173965	у7
8	3	0.00443185	у8

- Ahora, utilizaremos la fórmula de integración Simpson 1/3, ya que el valor de n es par. Cabe aclarar que también se puede utilizar la fórmula de integración trapecial.

 $A_{1/3} = h/3 [Y_0 + Y_n + 2 \sum ordenadas de orden par + 4 \sum ordenadas de orden impar]$

$$\int_{-3}^{3} \frac{1}{\sqrt{2\pi}} e^{-0.5x^2}$$

$$= \frac{0.75}{3} [0.00443185 + 0.00443185$$

$$+ 2(0.1295176 + 0.39894228 + 0.1295176)$$

$$+ 4(0.03173965 + 0.30113743 + 0.30113743 + 0.03173965)]$$

$$= 0.996958828$$

El valor de la integral, de -3 a 3 con la fórmula de integración Simpson 1/3 y un espaciamiento de 0.75 es de 0.996958828

 Evalúe las integrales siguientes utilizando las formulas de cuadratura gaussiana de dos términos.

$$a) \int_{1}^{5} \frac{2xe^{x}}{6x^{3} - 4} dx$$

Desarrollo

El método de cuadratura de Gauss menciona que es válido siempre y cuando los límites de integración sean de -1 a 1.

$$\int_{-1}^{1} f(x)dx = C_0 f(x_0) + C_1 f(x_1)$$

En el caso de nuestra integral original vemos que los límites no van de -1 a 1. Por lo tanto, tendremos que realizar un cambio de variable.

$$x = \frac{b+a}{2} + \frac{b-a}{2}x_d$$

$$dx = \frac{b-a}{2}dx_d$$

$$\int_{1}^{5} \frac{2xe^x}{6x^3 - 4}dx$$

$$x = \frac{5+1}{2} + \frac{5-1}{2}x_d = 3 + 2x_d$$

$$dx = \frac{5-1}{2}dx_d = 2dx_d$$

$$\int_{-1}^{1} \frac{2(3+2x_d)e^{(3+2x_d)}}{6(3+2x_d)^3-4} * 2dx_d = C_0 f(x_0) + C_1 f(x_1)$$
$$f(x) = \frac{2(3+2x_d)e^{(3+2x_d)}}{6(3+2x_d)^3-4} * 2$$

Datos

$$C_0 = C_1 = 1$$

 $x_0 = -0.577350269$
 $x_1 = 0.577350269$

Evaluando f(x)

$$f(-0.577350269) = \frac{2(3 + 2(-0.577350269))e^{(3+2(-0.577350269))}}{6(3 + 2(-0.577350269))^3 - 4} * 2 = 1.386400198$$

$$f(0.577350269) = \frac{2(3 + 2(0.577350269))e^{(3+2(0.577350269))}}{6(3 + 2(0.577350269))^3 - 4} * 2 = 2.484556219$$

$$\int_{-1}^{1} \frac{2(3+2x_d)e^{(3+2x_d)}}{6(3+2x_d)^3-4} * 2dx_d = 6.596513451 + 1223137.8 = 3.870956417$$

Conclusión

$$\int_{1}^{5} \frac{2xe^{x}}{6x^{3} - 4} dx = 3.870956417$$

Desarrollo

El método de cuadratura de Gauss menciona que es válido siempre y cuando los límites de integración sean de -1 a 1.

$$\int_{-1}^{1} f(x)dx = C_0 f(x_0) + C_1 f(x_1)$$

En el caso de nuestra integral original vemos que los límites no van de -1 a 1. Por lo tanto, tendremos que realizar un cambio de variable.

$$x = \frac{b+a}{2} + \frac{b-a}{2}x_d$$

$$dx = \frac{b-a}{2}dx_d$$

$$\int_{-\sqrt{3}}^{\sqrt{3}} \frac{4x}{\sqrt{x^2+1}}dx$$

$$x = \frac{\sqrt{3}-\sqrt{3}}{2} + \frac{\sqrt{3}-(-\sqrt{3})}{2}x_d = \sqrt{3}x_d$$

$$dx = \frac{\sqrt{3}-(-\sqrt{3})}{2}dx_d = \sqrt{3}dx_d$$

$$\int_{-1}^{1} \frac{4(\sqrt{3}x_d)}{\sqrt{(\sqrt{3}x_d)^2+1}} * \sqrt{3}dx_d = C_0f(x_0) + C_1f(x_1)$$

Datos

$$C_0 = C_1 = 1$$

 $x_0 = -0.577350269$
 $x_1 = 0.577350269$

Evaluando f(x)

$$f(-0.577350269) = \frac{4(\sqrt{3}(-0.577350269))}{\sqrt{(\sqrt{3}(-0.577350269))^2 + 1}} * \sqrt{3} = -6.92820323$$

$$f(0.577350269) = \frac{4(\sqrt{3}(0.577350269))}{\sqrt{(\sqrt{3}(0.577350269))^2 + 1}} * \sqrt{3} = 6.92820323$$

$$\int_{-1}^{1} \frac{4(\sqrt{3}x_d)}{\sqrt{(\sqrt{3}x_d)^2 + 1}} * \sqrt{3}dx_d = -6.92820323 + 6.92820323 = 0$$

Conclusión

$$\int_{-\sqrt{3}}^{\sqrt{3}} \frac{4x}{\sqrt{x^2 + 1}} dx = 0$$

Desarrollo

El método de cuadratura de Gauss menciona que es válido siempre y cuando los límites de integración sean de -1 a 1.

$$\int_{-1}^{1} f(x)dx = C_0 f(x_0) + C_1 f(x_1)$$

En nuestro caso, la integral ya tiene los límites de integración de -1 a 1, por lo tanto no es necesario realizar algún cambio de variable.

$$\int_{-1}^{1} \cos(x+\pi) dx = C_0 f(x_0) + C_1 f(x_1)$$

Datos

$$C_0 = C_1 = 1$$

 $x_0 = -0.577350269$
 $x_1 = 0.577350269$

Evaluando f(x)

$$f(-0.577350269) = \cos((-0.577350269) + \pi) = -0.837911828$$
$$f(0.577350269) = \cos((0.577350269) + \pi) = -0.837911828$$
$$\int_{-1}^{1} \cos(x + \pi) dx = -0.837911828 - 0.837911828 = -1.675823656$$

Conclusión

$$\int_{-1}^{1} \cos{(x+\pi)} dx = -1.675823656$$