

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alcassedan, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/595,827	06/07/2007	Jorg Habetha	DE030389	7357
24737 7590 127227310 PHILIPS INTELLECTUAL PROPERTY & STANDARDS P.O. BOX 3001 BRIARCLIFF MANOR, NY 10510			EXAMINER	
			ELLIOTT IV, BENJAMIN H	
			ART UNIT	PAPER NUMBER
			2474	
			MAIL DATE	DELIVERY MODE
			12/22/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary

Application No.	Applicant(s)				
10/595,827	HABETHA ET AL				
Examiner	Art Unit				
BENJAMIN ELLIOTT	2474				

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS.

- WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed
 - after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).
Status
1) Responsive to communication(s) filed on 19 October 2010.
2a) ☐ This action is FINAL . 2b) ☐ This action is non-final.
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims
4)⊠ Claim(s) 1 and 3-19 is/are pending in the application.
(a) Of the above claim(s) in/are withdrawn from consideration

- Claim(s) _____ is/are allowed.
- 6) Claim(s) 1 and 3-19 is/are rejected. 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on _____ is/are: a) ☐ accepted or b) ☐ objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of:
 - 1. Certified copies of the priority documents have been received.
 - 2. Certified copies of the priority documents have been received in Application No.
 - 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
 - * See the attached detailed Office action for a list of the certified copies not received.

Attaciment(s)		
Notice of References Cited (PTO-892)	4) Interview Summary (PTO-413)	
2) Notice of Draftsporson's Fatent Drawing Review (PTC-942)	Paper No/s //Mail Date.	
Information Disclosure Statement(s) (PTO/SB/08)	 Notice of Informal Patent Application 	

Art Unit: 2474

DETAILED ACTION

Claims 1 and 3-19 have been examined and are pending.

Response to Arguments

2. Applicant's arguments filed 10/19/2010 have been fully considered but they are not persuasive. Applicant argues Examiner's interpretation of independent Claims 1, 6, and 11 and further argues United States Patent 7,321,762 B2 to Hoeben (hereinafter "Hoeben"), United States Patent 4,704,716 to Bowers et al. (hereinafter "Bowers"), and IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" (hereinafter "802.11-1999") all fail to disclose determining on each channel of the at least two channels that are an object of channel grouping whether each channel is one of either idle or that a back-off by the multi-channel device is underway. Examiner respectfully disagrees for at least the following reasons.

Applicant states the Office considers the above recited limitation is an alternative limitation under as described in MPEP 2173.05(h) wherein the feature of "determining" can not be interpreted to encompass the same meaning as "selecting". In the analysis of the claims, the claims are given the broadest reasonable interpretation consistent with the specification. See *In re Morris*, 127 F.3d 1048, 44 USPQ2d 1023 (fed. Cir. 1997). The court held that the PTO is not

Art Unit: 2474

required, in the course of prosecution, to interpret claims in applications in the same manner as a court would interpret claims in an infringement suit. Rather, the "PTO applies to verbiage of the proposed claims the broadest reasonable meaning of the words in their ordinary usage as they would be understood by one of ordinary skill in the art, taking into account whatever enlightenment by way of definitions or otherwise that may be afforded by the written description contained in applicant's specification.". See MPEP 2111. Specifically to this claim element, Examiner must interpret the claim to read on either an idle or a back-off is underway, as the claim recites "whether each channel is one of either idle or that a back-off by the multi-channel is underway". To "determine" is to recognize, and to fulfill the determining step is to recognize either one state or another state. The claim only requires recognizing one state. If the claim recited determining both of either an idle state or a back-off being underway, and further determining if the channel was in one of either of the states, the claim may then be construed as recognizing both states and whether or not the channel was in one of the two states.

Claim Rejections - 35 USC § 103

 The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made. Application/Control Number: 10/595,827 Page 4

Art Unit: 2474

The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1,
 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- Determining the scope and contents of the prior art.
- Ascertaining the differences between the prior art and the claims at issue.
- Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.
- 5. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 6. Claims 1, 3-10, and 17-18 are rejected under 35 U.S.C. 103(a) as being unpatentable over United States Patent 7,321,762 B2 to Hoeben (hereinafter "Hoeben"), in view of United States Patent 4,704,716 to Bowers et al. (hereinafter "Bowers"), and IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" (hereinafter "802.11-1999").

Art Unit: 2474

Regarding Claim 1, Hoeben discloses a method for accessing a medium by a multi-channel device (Hoeben: Figure 2, Col.3, lines 43-49; enhanced access point), in which the medium comprises a transmission system having at least two channels (Hoeben: Figure 2; 203-1 through 203-K), the method comprising:

transmitting a message on each channel (Hoeben: Col. 6, lines 13-29.

Reservation messages (RTS) are sent sequentially across each of the channels.

Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS) that are an object of channel grouping to reserve the at least two channels (Hoeben: Col. 3, lines 31-39. High-bandwidth signaling covers at least two shared channels. See Also Figure 5. Wide bandwidth signal covers channels 203-1 and 203-2. Col. 6, lines 13-29; RTS messages.), such that a single channel device detects the preamble and header and performs a process according to control information included in the control section (Hoeben: Col. 6, lines 20-27. Legacy stations are able to recognize the control messages.).

Hoeben does not expressly disclose determining of the two channels which are in an idle or back-off.

Bowers establishes a wideband channel by combining a group of narrowband time multiplexed channels having a total bandwidth at least equal to the desired wideband channel (Bowers: Col. 2, lines 4-18). Bowers discloses determining on each channel of the at least two channels that are an object of channel grouping whether each channel is one of either idle or that a back-off by the multi-channel device is underway (Bowers: Col. 8, line 61

Art Unit: 2474

through Col. 9, line 29; a customer first selects a bandwidth option. Processor then determines the state of each channel in the group to determine if each channel (which channel) is in the idle state.). Bowers further discloses transmitting a message including a control section on the channel determined to be idle to the customer interface denying access to the channel because the channel is not idling (Bowers: Col. 9. lines 3-7).

Hoeben in view of Bowers does not expressly disclose preambles and headers.

The 802.11-1999 standard discloses the Physical Layer Convergence Protocol (PLCP) wherein the use of PLCP defines a mapping of the PHY sublayer service data units (PSDU) into a format for relating data information and management information between two or more stations in a network (802.11-1999 section 17.1.1). The PLCP comprises a preamble field (802.11-1999 section 17.3.3) and a header field (802.11-1999 section 17.3.11). The PLCP preamble and header fields are followed by the SIGNAL (control) field and DATA field (802.11-1999 section 17.3.3). The SIGNAL field contains information regarding the transmission rate (802.11-1999).

Providing the method of Hoeben and Bowers with necessary preambles and headers would have been obvious to one having ordinary skill in the art, in view of the teachings of 802.11-1999, since all claimed elements were known in the prior art and one skilled in the art could have combined the elements as claimed by known methods (preambles and headers followed by control sections) with no change in their respective functions, and the combination would

Art Unit: 2474

have yielded nothing more than predictable results to one having ordinary skill in the art at the time of the invention, i.e., one skilled in the art would have applied the necessary standards set forth in IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" for allowing terminals to distinguish data packets from control packets.

Regarding Claim 3, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 1, wherein the message is one of a request-to-send (RTS), clear-to-send (CTS), or acknowledgement (ACK) type (Hoeben: Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS).

Regarding Claim 4, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 1, wherein the multi-channel device operates in compliance with IEEE 802.11 standard (Hoeben: Col. 2, lines 34-39) and a medium access control (MAC) protocol (Hoeben: Col. 2, lines 20-25), the method further comprises repeating information belonging to the MAC protocol on the at least two channels (Hoeben: Col. 3, lines 31-39 and Figures 5-8).

Regarding Claim 5, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 1, wherein access to the medium takes place under IEEE 802.11 standard (Hoeben: Col. 2, lines 34-39), the method further comprising transmitting RTS, CTS (Hoeben: Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS) and ACK

Art Unit: 2474

control frames (Hoeben: Col. 10, lines 57-61) on the at least two channels (Hoeben: Col. 6, lines 13-29. Reservation messages (RTS) are sent sequentially across each of the channels.), and setting network allocation vectors (NAVs), by single channel devices (Hoeben: Col. 6, lines 41-44), based on information in the RTS/CTS control frames data packets (Hoeben: Col. 10, lines 49-52).

Regarding Claim 6, Hoeben discloses a method for accessing a

medium by a multi-channel device (Hoeben: Figure 2, Col.3, lines 43-49; enhanced access point), the medium including a transmission system having at least two channels that the multi-channel device intends to call upon for transmission (Hoeben: Figure 2; 203-1 through 203-K), the method comprising:

scanning, by the multi-channel device, the at least two channels to be called upon for transmission (Hoeben: Col. 10, lines 31-32 and Figure 8.

Station 202-j monitors channel 203-1.), such that a single channel device performs a process according to control information included in the control section (Hoeben: Col. 6, lines 20-27. Legacy stations are able to recognize the control messages.), further scanning the other channels to be called upon for transmission (Hoeben: Col. 10, lines 31-32 and Figure 8.

Station 202-j also monitors channels 203-2.).

Hoeben does not expressly disclose determining of the two channels which are in an idle or back-off.

Art Unit: 2474

Bowers establishes a wideband channel by combining a group of narrowband time multiplexed channels having a total bandwidth at least equal to the desired wideband channel (Bowers: Col. 2, lines 4-18). Bowers discloses determining that a single one of the scanned channels is one of either idle or that a back-off by the multi-channel device is underway on the channel, blocking the single channel determined to be one of either idle or having the back-off underway to other devices by the multi-channel device (Bowers: Col. 8, line 61 through Col. 9, line 29; a customer first selects a bandwidth option. Processor then determines the state of each channel in the group to determine if each channel (which channel) is in the idle state.). Bowers further discloses transmitting a message including a control section on the channel determined to be idle to the customer interface denying access to the channel because the channel is not idling (Bowers: Col. 9, lines 3-7). Bowers also discloses blocking or reserving the other channels on determining that the channel concerned is one of either idle or that a back-off is underway by transmitting another message on the channel concerned (Bowers: Col. 11, lines 31-59; channels are monitored for disconnect message to return a reserved channel to an idle state to further reserve the channel for other requests from terminals.).

Hoeben in view of Bowers does not expressly disclose preambles and headers.

The 802.11-1999 standard discloses the Physical Layer Convergence Protocol (PLCP) wherein the use of PLCP defines a mapping of the PHY

Art Unit: 2474

sublayer service data units (PSDU) into a format for relating data information and management information between two or more stations in a network (802.11-1999 section 17.1.1). The PLCP comprises a preamble field (802.11-1999 section 17.3.3) and a header field (802.11-1999 section 17.3.11). The PLCP preamble and header fields are followed by the SIGNAL (control) field and DATA field (802.11-1999 section 17.3.3). The SIGNAL field contains information regarding the transmission rate (802.11-1999).

Providing the method of Hoeben and Bowers with necessary preambles and headers would have been obvious to one having ordinary skill in the art, in view of the teachings of 802.11-1999, since all claimed elements were known in the prior art and one skilled in the art could have combined the elements as claimed by known methods (preambles and headers followed by control sections) with no change in their respective functions, and the combination would have yielded nothing more than predictable results to one having ordinary skill in the art at the time of the invention, i.e., one skilled in the art would have applied the necessary standards set forth in IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" for allowing terminals to distinguish data packets from control packets.

Regarding Claim 7, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 6, further comprising: blocking the channel by the multi-channel device (Hoeben: Figure 2, enhanced access point) and a receiving device (Hoeben: Figure 2, enhanced

Art Unit: 2474

station), each of the devices emitting the message (Hoeben: Col. 4, lines 40-45 and Col. 5, lines 49-54).

Regarding Claim 8, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 7, wherein the message is implemented in the form of RTS and CTS frames (Hoeben: Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS), the method further comprising:

transmitting an RTS frame on a free channel by the multi-channel device, so that devices in the area surrounding the multi-channel device that is transmitting will set their network allocation vectors (NAVs) (Hoeben: Col. 6, lines 41-44), and transmitting a CTS frame on the free channel by the receiving device, so that stations in the area surrounding the receiving station will set their NAVs (Hoeben: Col. 10, lines 46-53).

Regarding Claim 9, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 7, further comprising transmitting with channel grouping, by the multi-channel device, on all channels that it has previously blocked (Hoeben: Col. 10, lines 31-42; During the reservation duration, stations refrain from transmitting. Col. 10, lines 43-45. The station transmits over the two stations.).

Regarding Claim 10, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 6, further comprising blocking a channel by starting the transmission by the multi-channel station on the single channel (Hoeben: Col. 10, lines 39-42. Stations refrain from transmitting

Art Unit: 2474

on the channel during reservation duration.), wherein the transmission can be made with or without an RTS-CTS mechanism (802.11-1999. Operating on the earlier standard, RTS/CTS is not disclosed. However, transmission is still operable (section 17.2.2.1).

Providing the method of Hoeben and Bowers with necessary elements to transmit messages would have been obvious to one having ordinary skill in the art, in view of the teachings of 802.11-1999, since all claimed elements were known in the prior art and one skilled in the art could have combined the elements as claimed by known methods (transmission of messages) with no change in their respective functions, and the combination would have yielded nothing more than predictable results to one having ordinary skill in the art at the time of the invention, i.e., one skilled in the art would have applied the necessary standards set forth in IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" for sequenced receipt of control messages.

Regarding Claim 17, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses a multi-channel device for accessing a medium (Hoeben: Figure 2, enhanced access point), the medium comprises a transmission system having at least two channels, the multi-channel device performing the method of claim 1 for accessing the medium (See rejection, Claim 1.).

Art Unit: 2474

Regarding Claim 18, Hoeben in view of Bowers, and further in view of 802.11-1999 discloses a wireless network comprising a transmission system having at least two channels (Hoeben: Figure 2; 203-1 through 203-K) and at least one multi-channel device as claimed in claim 17 (Hoeben: Col. 2, lines 11-14; Figure 2, enhanced station, and rejections for Claim 1 and 17).

 Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hoeben, in view of Bowers and 802.11-1999, and further in view of US Patent 7,415,046 B2 to Beckman et al. (hereinafter "Beckman").

Regarding Claim 16, Hoeben, in view of Bowers, and further in view of 802.11-1999 discloses the method of claim 1, but is silent on the transmission system using UMTS (Universal Mobile Telecommunication System).

However, Beckman discloses employing the Standard Universal

Mobile Telecommunication System (UMTS) (Beckman: Col. 9, lines 61-63.

Data is transmitted through channels over an air interface using UMTS.).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the teachings of Hoeben, Bowers, and 802.11-1999 to include transmitting information based on UMTS as taught by Beckman to easily establish a point-to-point connection between layer 1 and layer 2 devices, as UMTS utilizes the air interface comprising layer 1 and layer 2 (of the OSI model). This recognizes the use of UMTS along side the medium access control (MAC) of the claimed invention (Beckman: Col. 1, lines 30-58).

Art Unit: 2474

Claim 19 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Hoeben, in view of Bowers and 802.11-1999, and further in view of United States
 Patent 7.272.156 B2 to Shoemake et al (hereinafter "Shoemake").

Regarding Claim 19, Hoeben in view of 802.11-1999 discloses the method as claimed in claim 1, but does not expressly define that the preamble and header are repeated in parallel over the plurality of channels.

Shoemake discloses a wireless station capable of calculating multiple decisions without the need of additional hardware (Shoemake: Col. 1, lines 37-42). The device is located in an environment of 802.11(e) (Shoemake: Col. 2, lines 65-67). Shoemake discloses the utilization of PLCP headers and preambles transmitted in frames based on the 802.11(e) standard (Shoemake: Col. 2, lines 2-5). Shoemake discloses the preamble and header (PR) are repeated in parallel on the at least two channels (Shoemake: Col. 2, lines 13-17. The preamble and header portions of the PLCP frame are transmitted in parallel along with calculations of parameters as needed for the MPDU (MAC protocol data unit).).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the method of Hoeben, Bowers, and 802.11-1999 to transmit preambles and headers in parallel on a plurality of channels as disclosed by Shoemake. This benefits the method by reducing the amount of calculations of transmission parameters before the actual transmission (Shoemake: Col. 1, lines 17-33).

Art Unit: 2474

 Claims 11-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hoeben, in view of Bowers and 802.11-1999, and further in view of United States Patent 7,289,529 B2 to Sherman (hereinafter "Sherman").

Regarding Claim 11, Hoeben discloses a method for accessing a medium by a multi-channel device (Hoeben: Figure 2, Col.3, lines 43-49; enhanced access point), the medium comprises a transmission system having at least two channels that the multi-channel device intends to call upon for transmission (Hoeben: Figure 2; 203-1 through 203-K), wherein a message to be transmitted on the medium comprises at least one of a succeeding control section or data section (Hoeben: Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS), the method comprising:

scanning the at least two channels to be called upon for transmission (Hoeben: Col. 10, lines 31-32 and Figure 8. Station 202-j monitors channel 203-1.), repeating the message in on all channels (Hoeben: Col. 6, lines 13-29. Reservation messages (RTS) are sent sequentially across each of the channels. Col. 6, lines 20-28 and Col. 10, lines 46-53; control section inherent to CTS and RTS. Also see Figure 5 for reservation message 202 on channels 203-1 and 203-2. Col. 3, lines 31-39. High-bandwidth signaling covers at least two shared channels. See Also Figure 5. Wide bandwidth signal covers channels 203-1 and 203-2.).

Hoeben does not expressly disclose determining idle and back-off states.

Art Unit: 2474

Bowers establishes a wideband channel by combining a group of narrowband time multiplexed channels having a total bandwidth at least equal to the desired wideband channel (Bowers: Col. 2, lines 4-18). Bowers discloses determining on each channel of the at least two channels that are an object of channel grouping whether each channel is one of either idle or that a back-off by the multi-channel device is underway (Bowers: Col. 8, line 61 through Col. 9, line 29; a customer first selects a bandwidth option. Processor then determines the state of each channel in the group to determine if each channel (which channel) is in the idle state.). Bowers further discloses transmitting a message including a control section on the channel determined to be idle to the customer interface denying access to the channel because the channel is not idling (Bowers: Col. 9, lines 3-7).

The 802.11-1999 standard discloses the Physical Layer Convergence Protocol (PLCP) wherein the use of PLCP defines a mapping of the PHY sublayer service data units (PSDU) into a format for relating data information and management information between two or more stations in a network (802.11-1999 section 17.1.1). The PLCP comprises a preamble field (802.11-1999 section 17.3.3) and a header field (802.11-1999 section 17.3.11). The PLCP preamble and header fields are followed by the SIGNAL (control) field and DATA field (802.11-1999 section 17.3.3). The SIGNAL field contains information regarding the transmission rate (802.11-1999).

Providing the method of Hoeben with necessary preambles and headers would have been obvious to one having ordinary skill in the art, in view of the

Art Unit: 2474

teachings of 802.11-1999, since all claimed elements were known in the prior art and one skilled in the art could have combined the elements as claimed by known methods (preambles and headers followed by control sections) with no change in their respective functions, and the combination would have yielded nothing more than predictable results to one having ordinary skill in the art at the time of the invention, i.e., one skilled in the art would have applied the necessary standards set forth in IEEE Standard for Information Technology 802.11 (1999) "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band" for allowing terminals to distinguish data packets from control packets.

Hoeben, in view of Bowers, and further in view of 802.11-1999 does not expressly disclose reserving or blocking by a third device.

However, Sherman discloses reserving or blocking, by a third device independent of a transmitter and receiver of the message, the channels in the channel group for the multi-channel device that intends to transmit, such that a single channel device detects the preamble and header and performs a waiting process (Sherman: Col. 6, lines 21-40. A point coordination function or hybrid coordination function work as part of the reserve protocol for contending transmissions to gain access to the wireless medium (by way of the CSMA protocol).).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the teachings of Hoeben and 802.11-1999 to include a third device for reserving channels as taught by Sherman to

Art Unit: 2474

optimize performance by the hybrid coordinator for efficient use of the medium (Sherman: Col. 2, lines 14-20).

Regarding Claim 12, Hoeben, in view of Bowers, in view of 802.11-1999, and further in view of Sherman discloses the method of claim 11, further comprising:

coordinating, by the third device, access to the medium for a plurality of channels (Sherman: Col. 4, lines 43-44. The PCF (point coordination function) makes use of PIFS (PCF interframe space) to seize and maintain control of the medium.).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the teachings of Hoeben, Bowers, and 802.11-1999 to include a third device for reserving channels as taught by Sherman to optimize performance by the hybrid coordinator for efficient use of the medium (Sherman: Col. 2, lines 14-20).

Regarding Claim 13, Hoeben, in view of Bowers, in view of 802.11-1999, and further in view of Sherman discloses the method of claim 11, wherein in the event of individual channels in the channel group not becoming free simultaneously, the third device causes, alternatively, blocking one channel or individual channels until such time as all the channels in the channel group have become free (Sherman: Col. 6, lines 21-40. The superframe of the control contention/resource reservation protocol comprises both a contention period and a contention-free period on all channels (Figure 2A

Art Unit: 2474

in conjunction with Figure 1, multiple channels).), or assigning a channel that has become free immediately to the multi- channel device that intends to transmit.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the teachings of Hoeben, Bowers, and 802.11-1999 to include a third device for reserving channels as taught by Sherman to optimize performance by the hybrid coordinator for efficient use of the medium (Sherman: Col. 2, lines 14-20).

Regarding Claim 14, Hoeben, in view of Bowers, in view of 802.11-1999, and further in view of Sherman discloses the method of claim 11, wherein the third device is a hybrid coordinator or point coordinator (Sherman: Col. 6, lines 21-40. A point coordination function or hybrid coordination function work as part of the reserve protocol for contending transmissions to gain access to the wireless medium (by way of the CSMA protocol).), the method performing the medium access under standard IEEE 802.11 (Sherman: Abstract and Col. 4, lines 3-13)

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the teachings of Hoeben, Bowers, and 802.11-1999 to include a third device for reserving channels as taught by Sherman to optimize performance by the hybrid coordinator for efficient use of the medium (Sherman: Col. 2, lines 14-20).

Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Hoeben and 802.11-1999, in view of Sherman, and further in view of United

Art Unit: 2474

States Patent Application Publication 2005/0111402 A1 to Sawada et al (hereinafter "Sawada").

Regarding Claim 15, Hoeben, in view of Bowers, in view of 802.11-1999, and further in view of Sherman discloses the method of claim 14 further comprising:

transmitting by the point coordinator or hybrid coordinator, beacons on all the channels (Sherman: Col. 4, lines 57-59).

Sherman does not explicitly recite the beacons are sent in parallel.

Sawada discloses sending the beacons in parallel over a plurality of channels (Sawada:[0009]).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the method of Hoeben, in view of Bowers, in view of 802.11-1999, and further in view of Sherman to include sending beacons in parallel as taught by Sawada. This benefits the method by allowing registration and authentication of two or more communication stations at the same time in a master/slave environment (Sawada: [0010]).

Conclusion

 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire

THREE MONTHS from the mailing date of this action. In the event a first reply is

filed within TWO MONTHS of the mailing date of this final action and the advisory

Art Unit: 2474

action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to BENJAMIN ELLIOTT whose telephone number is (571)270-7163. The examiner can normally be reached on Monday thru Friday, 8:00 AM to 4:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Aung Moe can be reached on (571)272-7314. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/595,827 Art Unit: 2474

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Aung S. Moe/ Supervisory Patent Examiner, Art Unit 2474 BENJAMIN ELLIOTT Examiner Art Unit 2474