2024 学年第一学期初三数学教学质量调研试卷

(考试时间: 100 分钟 满分: 150 分)

考生注意:

- 1、本试卷含三个大题, 共25题. 答题时, 考生务必按答题要求在答题纸规定的位置上作答, 在草稿纸、本 调研卷上答题一律无效.
- 2. 除第一、二大题外, 其余各题如无特别说明, 都必须在答题纸相应位置上写出证明或计算的主要步骤,
- 一、选择题(本大题共6题, 每题4分, 满分24分)

【每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂】

- 1. 如果将一个 $\triangle ABC$ 的三边长都扩大为原来的3倍,那么新三角形的面积

 - (A) 扩大为原来的3倍; (B) 扩大为原来的9倍;
 - (C)没有变化:
- (D) 无法确定.
- 2. 在直角坐标平面 xOy 内有一点 A(3,4),那么射线 OA 与 x 轴正半轴的夹角的正弦值等于
 - (A) $\frac{4}{5}$; (B) $\frac{3}{5}$; (C) $\frac{3}{4}$; (D) $\frac{4}{3}$.

- 3. 如果两个非零向量 \vec{a} 、 \vec{b} 方向相反,且 $|\vec{a}|=2|\vec{b}|$,那么下列说法正确的是
 - (A) $\vec{a} + 2\vec{b} = 0$: (B) $\vec{a} 2\vec{b} = 0$: (C) $\vec{a} = 2\vec{b}$: (D) $\vec{a} = -2\vec{b}$.

- 4. 已知二次函数 $y = -x^2 + 2x + 2$ 的图像上有两点 $A(x_1, y_1) \setminus B(x_2, y_2)$,如果 $x_1 < x_2 < 0$,那么 $y_1 \setminus y_2$ 的大小关系是
 - (A) $y_1 < y_2$; (B) $y_1 > y_2$; (C) $y_1 = y_2$; (D) 无法确定.

- 5. 二次函数 $y = (a^2 + 1)x^2 3x + 1$ 的图像一定不经过

 - (A) 第一象限: (B) 第二象限: (C) 第三象限: (D) 第四象限.
- 6. 在四边形 ABCD 中,对角线 AC 与 BD 交于点 O,下列说法正确的是

 - (A) 如果 $OA \cdot BD = OD \cdot AC$, 那么 AB//CD; (B) 如果 $OA \cdot OC = OD \cdot OB$, 那么 AB//CD;

 - (C) 如果 $OA \cdot OB = OD \cdot OC$, 那么 AB//CD; (D) 如果 $OA \cdot OD = OB \cdot OC$, 那么 AB//CD.
- 二、填空题(本大题共12题,每题4分,满分48分)
- 8. 已知线段a=3, b=6, 线段c 是线段a、b 的比例中项, 那么线段c 的长是_____

- 9. 计算: $2(\vec{a}-3\vec{b})+5\vec{b}=$ _____.
- 10. 已知抛物线 $y = (k+2)x^2 + 6x 5$ 的开口向下,那么 k 的取值范围是______.
- 11. 如果两个相似三角形的对应中线之比为 2:3, 那么它们的对应高之比为____▲
- 12. 已知点 $D \setminus E$ 分别在 $\triangle ABC$ 的边 $AB \setminus AC$ 上,如果 $\frac{AD}{AB} = \frac{1}{2}$, 那么 $\frac{AE}{EC}$ 的值为____时,DE//BC.
- 13. 如图, AB / /CD / /EF, 如果 AD = 2, DF = 1.5, BC = 2.4, 那么 BE 的长是 \triangle .

- 16. 如图,已知在 $\triangle ABC$ 中,高 AD、BE 相交于点 F , $\tan C = \frac{3}{2}$, BD = CE = 6 , 那么 EF 的长为 ▲
- 17. 如图, 在矩形 *ABCD* 中, *AB=4*, *BC=6*. 点 *E* 在边 *AD* 上, 联结 *BE*, 将 $\triangle ABE$ 沿着 BE 翻折,点 A 的对应点是点 F,联结 FD.如果 FD//BE,
- 18. 如图,在一副三角尺中,∠BAC=∠EDF=90°, ∠B=30°, ∠E=45°, AB=EF, 分别过点 A、点 D 画 AG、DH 交边 BC、边 EF 于点 G、点 H, 如果 AG 分割 △ABC 得到的两个三角形与 DH 分割 △DEF 得到的两个

第13题图

第14题图

第16题图

第17题图

В

В

三、解答题(本大题共7题,满分78分)

【将下列各题的解答过程,做在答题纸的相应位置上】

19. (本题满分 10 分)

计算:
$$\frac{1}{6} \cot 30^\circ + \frac{\tan 30^\circ + \sin 60^\circ}{2 \cos^2 45^\circ}$$
.

20. (本题满分10分, 第(1)小题6分, 第(2)小题4分)

如图,已知在 $\triangle ABC$ 中,中线AD、BE 交于点G, EF//BC 交AD 于点F.

- (1) 如果 FG=1, 求 GD 和 AF 的长:
- (2) 如果 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$,

那么 $\overline{EF} = \underline{\quad }$. (用含向量 \overline{a} 、 \overline{b} 的式子表示)

21. (本题满分10分,第(1)小题6分,第(2)小题4分)

如果一个锐角的正弦值等于黄金分割数,那么我们称这个角叫做黄金角.

如图,在 $Rt\triangle ABC$ 中, $\angle ABC$ =90°, $\angle A$ 是黄金角,点 D 在边 AC 上,

且
$$\frac{CD}{AD} = \frac{AD}{AC}$$
,联结 BD.

- (1) 找出图中相等的线段并说明理由;
- (2) 如果 AB=6, 求 BD 的长.

22. (本题满分 10 分, 第 (1) 小题 7 分, 第 (2) 小题 3 分)

如图是某地下车库的剖面图,某综合实践小组将无人机放在坡道起点 A 处,让无人机飞到点 D 处,AD 与底板 BR 平行,测得 AD=11.6 米,此时在点 D 处又测得坡道 AB 上的点 C 的俯角为 26.6°.接着让无人机飞到点 E 处, $DE \perp AD$, CE 与底板 BR 平行,测得 DE=1.8 米.

- (1) 求坡道 AB 的坡度;
- (2) 已知地面 QA、地下车库的顶板 FG 都与底板 BR 平行且它们到底 板 BR 的距离相等,无人机从点 A 飞到点 P 处, AP \ AD, 测得 AP = 16.4 米, 此时在点 P 处测得 点 F 的俯角为 45°,在不考虑其 他因素的前提下,有一辆高度为 3 米的货车能否进入该地下车 库?请说明理由,

(参考数据: sin26.6°≈0.45, cos26.6°≈0.89, tan26.6°≈0.5)

23. (本题满分 12 分, 第 (1) 小题 6 分, 第 (2) 小题 6 分)

如图,在 $\triangle ABC$ 中,点D、E分别在边AB、BC上,联结CD、AE交于点F,

AF=FC, $\angle ADC=\angle ACB$.

- (1) 求证: $AC^2 = CD \cdot AE$:
- (2) 如果点 E 是边 BC 的中点,求证: $BC^2 = 2AD \cdot AB$.

24. (本题满分 12 分, 第 (1) 小题 4 分, 第 (2) 小题 8 分)

如图,在直角坐标平面 xOy 内,以点 C 为顶点的抛物线 $y = x^2 + bx + c$ 经过点 A(4,3),

且与y轴交于点B,对称轴为直线x=2.

- (1) 求抛物线的表达式;
- (2) 平移上述抛物线,所得的新抛物线的对称轴为直线 x=t ,顶点为点 P.
 - ①联结 AB,如果点 P 在 x 轴上且新抛物线与线段 AB 有公共点,

求 t 的取值范围; ②设新抛物线与直线 x=2 交

- ②设新抛物线与直线 x=2 交于点 D,如果点 P 在原抛物线 $y=x^2+bx+c$ 上,且在直线 x=2 的右侧, $\angle CPD=2\angle CBO$, 求点 P 的坐标.
- 25. (本题满分 14 分, 第 (1) 小题 4 分, 第 (2) 小题 5 分, 第 (3) 小题 5 分)

已知在 $\triangle ABC$ 中,AC=BC,点 D、E、F分别在边 AB、AC、BC上,且 $\angle ADE=\angle BDF$,联结 EF.

- (1) 如图 1, 如果 $BD = \frac{4}{7}AB$, $DE \perp EF$, 求 $\angle EDF$ 的余切值;
- (2) 如图 2, 联结 CD 交 EF 于点 G, 如果 $\frac{AE}{BF} = \frac{2EG}{3GF}$, 求 $\frac{EC}{FC}$ 的值;
- (3) 如果 AE=2, EC=1, $\angle CEF=\angle AED$, $\triangle ADE$ 与 $\triangle EFC$ 相似,求 AD 的长、

初三数学试卷 共4页 第4页