Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра информатики и прикладной математики

Сети ЭВМ и Телекоммуникации

Лабораторная работа 4

Старался: Шкаруба Н.Е.

Группа: Р3318

2017

Цель работы:

Изучить эффективность приоритезации трафика для управления качеством обслуживания (Quality of Service, QoS) в компьютерных сетях

Вариант:

```
Размер буфера = S = "Шкаруба".length = 7 (Кб)
Скорость = N = "Никита".length = 6 (Мб)
Соотношение приоритетов WFQ = K = 2 + (S+N) mod 7 = 8 = 8 / 1 = 0.875 / 0.125
```

Характеристики Skype(<u>Ссылка на источник</u>):

- Средняя задержка между пакетами 20мс
- Размер одного пакета 64000 бит/ $c * 2 * 10^{-2} c$ = 1280 бит
- При равномерном распределении (размер пакета):
 - Мин = 1000 бит = 125 байт
 - o Maкc = 1560 бит = 195 байт
- При экспоненциальном распределении (интервал)
 - Мин интервал = 10 мс
 - \circ $\lambda = 1 / 10 \text{ MC}$

Характеристики "Видео по запросу" - ВПЗ (twit) (Ссылка на источник)

- Средняя задержка между пакетами 5 мс
- Размер одного пакета 1,5 * 106 бит/c * 5 * 10⁻³ c = 7,5 * 10³ бит
- При равномерном распределении (размер пакета):
 - Мин = 7*103 бит= 875 байт
 - Макс = 8*103 бит=1000 байт
- При экспоненциальном распределении (интервал):
 - Мин = 2 мс
 - \circ $\lambda = 1/3 \text{ MC}$

Начальное:

Параметры

закон распределения интервалов между поступлениями пакетов

М, мин=10.0 мс, λ=0.1 1/мс М, мин=2.0 мс, λ=0.33 1/мс

закон распределения размеров пакетов

U, мин=125, макс=195 байт U, мин=875, макс=1000 байт

пропускная способность канала связи С, Кбит/с 6,000

дисциплина обслуживания ДО \Box П

емкость накопителя E, байт 6,000

Выполнение FIFO:

	6000	4000	3000	2000	1650	1500
FIFO	кбит/с	кбит/с	кбит/с	кбит/с	кбит/с	кбит/с
Skype - время пребывания, мс	0.03	0.07	1.02	1.37	8.2	18.5
Skype- вероятность потери	0	0	0	0	0	0.01
ВПЗ - время пребывания, мс	1	1.6	3.5	4.5	10	22.7
ВПЗ- вероятность потери	0	0	0	0	0	0.01

Выполнение PQ:

		4000	3000			
PQ	6000 кбит/с	кбит/с	кбит/с	2000 кбит/с	1650 кбит/с	1500 кбит/с
Skype - время пребывания, мс	0.4	0.62	1.1	2	2.6	3.4
Skype- вероятность потери	0	0	0	0	0	0.01
ВПЗ - время пребывания, мс	1.2	1.9	4.1	7.9	11.5	25
ВПЗ- вероятность потери	0	0	0	0	0.01	0.07

		4000	3000	2000	1650	1500
WFQ	6000 кбит/с	кбит/с	кбит/с	кбит/с	кбит/с	кбит/с
Skype - время пребывания, мс	0.4	0.6	1.3	2	2.7	3.4
Skype- вероятность потери	0	0	0	0	0	0
ВПЗ - время пребывания, мс	1.3	1.9	3.7	8.4	9.8	16.1
ВПЗ- вероятность потери	0	0	0	0	0.017	0.03

Вывод по работе:

Понятно, что оптимальные значения W1 - 0.7 и W2 - 0.3, т.к. именно при таких значениях вероятность потери трафика ВПЗ при 1650 кбит/с становится 0,008, а при скорости 1500 кбит/с - 0,02.

И wpq - самый лучший способ, потом идет pq, потом fifo.