

ANDERSON & BUBLITZ

Influence of Temperature upon the
Strength of Concrete

Civil Engineering

B. S.

1914

UNIV OF
ILLINOIS
LIBRARY

THE UNIVERSITY
OF ILLINOIS
LIBRARY
1914
An 22

63
74

**INFLUENCE OF TEMPERATURE
UPON THE
STRENGTH OF CONCRETE**

BY

J. ALBERT ANDERSON

AND

WALTER JOHN BUBLITZ

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

1914

1914
Anaa

UNIVERSITY OF ILLINOIS
COLLEGE OF ENGINEERING

May 25, 1914.

I hereby recommend that the thesis prepared under my direction by J. ALBERT ANDERSON and WALTER JOHN BUBLITZ entitled INFLUENCE OF TEMPERATURE UPON THE STRENGTH OF CONCRETE be accepted as fulfilling this part of the requirements for the degree of Bachelor of Science in Civil Engineering.

A. B. McDaniel
Assistant Professor of Civil
Engineering.

Recommendation concurred in:

Dr. O. Baker

Head of the Department of
Civil Engineering.

290366

TABLE OF CONTENTS.

I. INTRODUCTION.

	Page
1. Preliminary	1
2. Scope of Investigation	1

II. PROCEDURE IN TESTING.

3. Materials	2
4. Test of Specimens	3

III. DISCUSSION OF EXPERIMENTS ON CYLINDERS.

5. Explanation of Diagrams	6
6. Effect of Temperature	7

IV. DISCUSSION OF EXPERIMENTS ON CUBES.

7. Explanation of Diagrams	8
8. Effect of Temperature	10

V. DETAILS OF OBSERVED DATA.

9. Tests of Materials	29
10. Tests of Cylinders	33
11. Tests of Cubes	39

LIST OF TABLES.

LIST OF TABLES (Cont'd.)

	Page
27. Daily Temperatures of Set D - Cubes	39
28. Molding Data of Set D - Cubes	40
29. Molding Data of Set E - Cubes	41
30. Daily Temperatures of Set E - Cubes	42
31. Molding Data of Set F - Cubes	43
32. Daily Temperatures of Set F - Cubes	44
33. Four Day Crushing Tests - Cubes.....	45
34. Seven Day Crushing Tests - Cubes.....	45
35. Eleven Day Crushing Tests - Cubes.....	46
36. Fourteen Day Crushing Tests - Cubes.....	46
37. Twenty-eight Day Crushing Tests - Cubes.....	47
38. Forty-four Day Crushing Tests - Cubes.....	47

LIST OF FIGURES.

	Page
1. Mechanical Analysis of Sand Curve	18
2. Mechanical Analysis of Stone Curve	19
3. Combined Mechanical Analysis Curve	20
4. Temperature and Strength Curves for Set A	21
5. Temperature and Strength Curves for Set B	22
6. Temperature and Strength Curves for Set C	23
7. Temperature and Strength Curves for Set D	24
8. Temperature and Strength Curves for Set E	25
9. Temperature and Strength Curves for Set F	26
10. Constants in Equation $y = ax + bx^2 + cx^3$	27

INFLUENCE OF TEMPERATURE ON THE STRENGTH OF CONCRETE.

I. INTRODUCTION.

1. PRELIMINARY.

A large number of concrete structures are built during the late fall and early spring when the temperatures are low and usually varied. Very little information exists regarding the effect of variations of temperature upon the setting action of concrete. Such information would be of the greatest value to contractors, for with it the time can be determined when the concrete will have gained sufficient strength to warrant the removal of the forms. Many of the concrete failures of the past have been attributed to the existing temperature conditions and the lack of knowledge due to them.

This thesis has been prepared for the purpose of furnishing some information of the relationship existing between the temperature, and the age and strength of concrete.

2. SCOPE OF INVESTIGATION.

It was first planned to mold a series of concrete specimens which could be stored in available places at different ranges of temperature and then tested at different ages in a standard compression testing machine to determine the effect of age and temperature upon the strength of concrete. After the first series of specimens were made, a failure of a reinforced concrete building occurred at Cedar Rapids, Iowa. This building had been in process of construction for six weeks and it was believed as a result of field investigations that its failure was due to cold weather conditions. Hence it was deemed desirable to test a second series of

specimens, for the purpose of securing data which might throw some light upon the cause of the above failure.

II. PROCEDURE IN TESTING.

3. MATERIALS.

Cement. All the concrete used in the tests was made with Universal portland cement. The cement was taken from bags in the laboratory of the Engineering Experiment Station and stored in a covered metal can in the Road Laboratory. A sample was taken from the storage can and tested for normal plasticity, fineness, soundness and tensile strength. The results of the test to determine normal plasticity are given in Table 13, page 29, and indicate 23% water as the proper amount. Sieve analysis showed 16% retained on a No. 200 sieve and 2.9% retained on a No.100 sieve. See Table 14, page 29. Pats were made at the time of molding the briquettes and were examined after being stored one day in the moist closet; and then half were stored in air and half in water for 28 days. They showed no signs of cracks, discoloration or distortion. Sixteen briquettes were made and stored for one day in the moist closet, and then were placed in water. Eight briquettes were broken at the age of seven days and eight at the age of twenty-eight days. The average result for each test exceeded the minimum requirements of the Standard Specifications of the American Soceity for Testing Materials.

Sand. The sand used came from a deposit of glacial drift near the Wabash river at Attica, Indiana. Nearly all of the clay, loam and other impurities had been removed by washing at the pit. A covered box in the Road Laboratory was used for the storage of the sand. A sample was tested for fineness. The results of this test

are given in Table 15, page 30 ; and are shown graphically in Fig. 1, page 18.

Stone. The crushed limestone came from Kankakee, Illinois. This material had been screened through a 1-inch screen and over a $\frac{1}{4}$ -inch screen at the crusher plant. A sample was taken from the supply stored in a covered box in the Road Laboratory and tested for mechanical analysis. The results of this test are given in Table 16, page 31 and are graphically represented in Fig. 2, page 19.

Concrete. All the concrete was composed of 1 part cement, 2 parts sand, and 4 parts broken stone; and was proportioned by loose volume. The three constituent materials were weighed separately so that the total amount would be slightly in excess of that required for one specimen.

The mixing was done with a steel trowel and in a large galvanized iron pan. The cement and sand were first mixed dry to a uniform color and spread out in a layer of uniform thickness over the bottom of the pan. The stone was then added, and the whole mass given four complete turnings to secure thorough incorporation of the dry materials. Water was added, and the material turned until thoroughly mixed. The concrete was gathered together in a compact mass in one end of the mixing pan so as to reduce evaporation losses to a minimum. The time of mixing for each specimen was kept as nearly constant as possible. Tables 18, 20, 22, 28, 29, and 31 on pages 33, 34, 35, 40, 41, and 43 respectively, give the total weight of dry materials, and the temperatures of the water and of the air in the room at the mixing table.

4. TEST SPECIMENS.

Molding. All the specimens of the first series, hereafter

referred to as Sets A, B and C, were molded in the storage rooms, while those of the second series, hereafter referred to as Sets D, E and F, were molded in the Road Laboratory and moved to their respective storage rooms after a set of six hours.

The concrete was tamped by hand into the molds in layers about one and one-half inches in depth. The time of molding of each specimen was recorded and an effort made to keep this as nearly constant as possible for each type of specimen. After each specimen was molded, the weight of the residue in the mixing pan was determined and deducted from the total weight of the materials used, to ascertain the net weight. Values of the time of molding, weight of residue, and net weight for each specimen are given in Tables 18, 20, 22, 28, 29, and 31 on pages 33, 34, 35, 40, 41 and 43 respectively.

Forms. The forms used for the first series of specimens were made of galvanized sheet-steel bent into the shape of cylinders 6 inches in diameter and 6 inches high. Two adjustable, circum-scribing circular bands held each form together.

The second series of specimens were molded in cube forms which were composed of two 6-inch channels, held 6 inches apart by means of four steel plates spaced 6 inches apart, making three forms for a 6-inch cube in each mold.

Storage. The first series of specimens comprised forty-five cylinders, 6 inches in diameter and 6 inches in height. This series was divided into three sets of fifteen specimens each, designated as Set A, Set B, and Set C. Set A was stored in the ice-storage room of the plant of the Smith Ice Company in Urbana, at an average temperature of 30° F. Set B was stored in the meat storage room of the plant of the Smith Ice Company in Urbana, at an average

temperature of 48.5° F. Set C was stored in the Cement Laboratory at an average temperature of 72.8° F.

The second series of specimens comprised fifty-one 6-inch cubes. This series was divided into three sets, Set D with fifteen specimens, Set E with eighteen specimens, and Set F with eighteen specimens. Set D was stored in the Cement Laboratory at an average temperature of 68° F. Set E was stored in the ice chest of the Dairy Department of the University at an average temperature of 35.5° F. Set F was stored in the ice-storage room of the plant of the Twin City Ice Company, at an average temperature of 27.1° F.

The above temperatures represent the averages of the readings of maximum and minimum thermometers for each day of storage. See Tables 19, 21, 23, 27, 30, and 32, on pages 33, 34, 35, 39, 42 and 44 respectively.

All the specimens while in storage were covered with several layers of moist sacking, which was kept in a uniformly damp condition. Every precaution was taken to keep the moisture content of the specimens uniform.

Testing. All the specimens of the first series, Sets A, B and C, were taken from their respective storage places to the Theoretical and Applied Mechanics Laboratory one day before they were tested. They were weighed, their bearing surfaces coated with plaster of paris, and then were stored in the open air of the laboratory for about twenty hours under an average temperature of about 75° F.

All the specimens of the second series, Sets D, E and F, were tested in about one hour from the time of their removal from the storage rooms. Two specimens of Set F, designated F 17 and F 18, after being stored under an average mean daily temperature of

27.1° F. for forty-four days, were stored in the testing laboratory under an average daily temperature of about 70° F. for seven and twenty-one days, respectively, in order to gain sufficient strength to permit testing.

All the specimens were tested in compression in a Riehle testing machine of 100,000 pounds capacity. The load was applied in each test through a ball and bearing socket head at a speed of 0.10 inch per minute.

In the first series, five specimens each of Sets A, B and C were tested at an age of seven days, five specimens of each set at an age of fourteen days and five specimens of each set at an age of twenty-eight days. The results of these tests are given in Tables 24, 25 and 26 on pages 36, 37 and 38 respectively.

In the second series, three specimens each of Sets D, E and F were tested at an age of four, seven, eleven, fourteen, twenty-eight and forty-four days, respectively; and one specimen of Set F at forty-four days, one at fifty-one days and one at sixty-five days. The results of these tests are given in Tables 33, 34, 35, 36, 37, and 38, on pages 45, 46 and 47 respectively.

III. DISCUSSION OF EXPERIMENTS ON CYLINDERS.

5. EXPLANATION OF DIAGRAMS.

The individual unit ultimate strengths in pounds per square inch as given in Tables 24, 25, and 26, on pages 36, 37 and 38 together with their average values, were plotted in Fig. 4, 5, and 6, on pages 21, 22 and 23 respectively.

To find a continuous curve representing for each set of experiments the relation between the crushing strength and the age,

the average strength was first determined for each of the three ages; and then it was assumed that the curve sought would have the form $y = ax + bx^2 + cx^3$, in which y is the average strength in pounds per square inch for each age, x the age in days, and a , b , and c are constants to be determined. The average strength for each age gives a value for y , and the age for each group gives a value for x ; and therefore we have three equations with three unknown quantities. Solving these three equations for Set A, page 21, gives $a = +187.2$, $b = -9.74$ and $c = +0.174$. Substituting these values in the above equation gives the numerical equation stated on page 21, and represented by the — — line.

By a similar process the corresponding equations were obtained for Sets B and C, as shown on pages 22 and 23 respectively.

The numerical values of the constants a , b , and c in the above equation for the three sets A, B, and C, are plotted as shown in Fig. 10 on page 27, and a continuous curve was sketched through each of the three groups of points.

6. EFFECT OF TEMPERATURE.

Tables 1 to 3 inclusive, on page 11, show the relationship between strength and temperature at the different ages. For example, Table 1 shows that if the strength at an age of seven days for a mean temperature of 72° be represented by 100% then the strength at 48° is 91.7% and the strength at 30° is 74.4%. Similarly for Tables 2 and 3. The average of these tables for the three ages of seven, fourteen and twenty-eight days is that the strength at 48° is 92.5%, and at 30° is 71.6%.

To determine the relation between temperature and age, we

proceeded as follows: From Fig. 4 on page 21 the increments for each successive day were read from the curve and tabulated opposite 30° in Table 11 on page 15. Similarly from Fig. 5, page 22, the increments for a mean temperature of 48.5° was determined, and by interpolation the corresponding increments for 48° were determined and written opposite 48 in Table 11, page 15, and similarly in Fig. 6 on page 23, the increments for 72.8° were determined and by interpolation from these the increments for 72° were found and these were written opposite 72° in Table 11 on page 15. Then by interpolation between the several results for 30° and those for 48° , the intermediate values for each of several ages and temperatures were determined, and similarly results were interpolated between 48° and 72° .

IV. DISCUSSION OF EXPERIMENTS ON CUBES.

7. EXPLANATION OF DIAGRAMS.

To find a continuous curve for Set D to represent the relation between the crushing strength and the age, the average strength was first determined for each of the five ages; and then it was assumed that the curve sought would have the form $y = ax + bx^2 + cx^3 + dx^4 + ex^5$, in which y is the average strength in pounds per square inch for each age, x the age in days, and a , b , c , d , and e are constants to be determined. The average strength of each group gives a value for y , and the age for each group gives a value of x ; and therefore we have five equations with five unknown quantities. Solving these five equations for Set D, page 24 gives $a = +384.91608$, $b = -73.193729$, $c = +7.685873$, $d = -0.355945$, and $e = +0.005724$. Substituting these values in the above general equation gives the numerical equation stated on page 24, and represented by the ——— line.

By a similar process the corresponding equation for Set E was determined. Since there were six ages of testing in this set, the general equation took the form $y = ax + bx^2 + cx^3 + dx^4 + ex^5 + fx^6$ and the six constants, a, b, c, d, e, and f were determined as for Set D.

The results for Set F are plotted in Fig. 9, page 26. The average temperature for this set is 27.1° F., the minimum being 18° F. and the maximum 42° F. The details of the range of temperatures are shown by the curves at the top of page 26. The range was so great and so erratic that no satisfactory results can be obtained from this set of experiments. For example, the first seven days under an average temperature of about 29° deg., the concrete showed a nearly uniform gain in strength. The temperatures for the next four days fell several degrees, and a slight drop in strength showed in the eleven day test. The strength at the end of fourteen days shows a decided increase owing to the high temperatures of the twelfth, thirteenth and fourteenth days. In all probability a slight thaw started during these high temperatures, and when the low temperatures of the succeeding days again set in, freezing took place.

Fig. 9, shows the results of the tests of sixteen cubes. The two remaining cubes of the series, i.e., F 17 and F 18, were badly disintegrated when taken out of storage, and were also so soft as not to make it worth while to test them; and therefore they were allowed to remain in the open air in the Materials Testing Laboratory under a temperature of about 70 F. for seven and twenty-one days respectively, when they were tested. This experiment shows conclusively that low temperatures merely retard the setting

action of concrete, and that alternating high and low temperatures cause disintegration and crumbling.

No attempt was made to derive a mathematical relation between the age and strength for Set F because of the inconsistency of the results.

8. EFFECT OF TEMPERATURE.

Tables 4 to 10 inclusive on pages 12, 13 and 14 show relative strength for different temperatures at different ages. For example, Table 4, page 12 shows that if the strength at 68° be considered 100%, then the strength at 35.5° is 57.3% and that at 27° is 49.6%, and similarly for Tables 5, 6, 7 and 8. Tables 9 and 10 show the percentage of strength of the different results in comparison with the strength at seven and twenty-eight days respectively.

Table 12, pages 16 and 17, gives the daily increment in strength due to a variation in temperature and age. This table was deduced in a manner exactly similar to that described for Table 11 on page 15, except that in the case of Table 12 the interpolation is between 35° and 68° .

Table No. 1.

Relation of Strength and Temperature at 7 Days - Cylinders.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of C
C	72°	7	1200	100.0
B	48°	7	1101	91.7
A	30°	7	893	74.4

Table No. 2.

Relation of Strength and Temperature at 14 Days -Cylinders.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of C
C	72°	14	1658	100.0
B	48°	14	1544	93.2
A	30°	14	1192	71.9

Table No. 3.

Relation of Strength and Temperature at 28 Days -Cylinders.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of C
C	72°	28	2093	100.0
B	48°	28	1937	92.5
A	30°	28	1429	68.4

Table No. 4.

Relation of Strength and Temperature at 4 Days - Cubes.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of D
D	68°	4	777	100.0
E	35.5°	4	445	57.3
F	27°	4	386	49.6

Table No. 5.

Relation of Strength and Temperature at 7 Days - Cubes.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of D
D	68°	7	985	100.0
E	35.5°	7	472	48.0
F	27°	7	563	57.2

Table No. 6.

Relation of Strength and Temperature at 11 Days - Cubes.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of D
D	68°	11	1322	100.0
E	35.5°	11	920	69.5
F	27°	11	505	38.2

Table No. 7.

Relation of Strength and Temperature of Cubes at 14 Days.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of D
D	68°	14	1545	100.0
E	35.5°	14	1103	71.5
F	27°	14	638	41.3

Table No. 8.

Relation of Strength and Temperature of Cubes at 28 Days.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of D
D	68°	28	1848	100.0
E	35.5°	28	1548	83.7
F	27°	28	440	43.8

Table No. 9.

Comparison of Strength and Temperature of Cubes.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of 7 Day same class
D	68°	4	777	79.0
D	68°	11	1322	134.5
D	68°	14	1545	157.0
D	68°	28	1848	187.5
E*	35.5°	4	445	94.5
E	35.5°	11	920	195.0
E	35.5°	14	1103	234.0
E	35.5°	28	1548	328.0
F	27°	4	386	68.5
F	27°	11	505	89.7
F	27°	14	638	113.5
F	27°	28	440	78.0
F	27°	42	423	75.3

* In all probability setting action was retarded first seven days, consequently high percentages of increase in this set.

Table No. 10.

Relation of Strength and Temperature - Comparison of all Ages.

Class	Mean Temp.	Age Days	Ult. Strength lbs./sq.in.	% of 28 day same class.
D	68°	4	777	42.2
D	68°	7	985	53.5
D	68°	11	1322	71.7
D	68°	14	1545	83.7
E	35.5°	4	445	28.7
E	35.5°	7	472	30.5
E	35.5°	11	920	59.4
E	35.5°	14	1103	73.5
F *	27°	4	386	88.0
F	27°	7	565	128.0
F	27°	11	505	114.7
F	27°	14	638	145.0

Specimens were 6-inch Cubes.

* Decrease in strength due to freezing and final thaw of specimens.

Table No. 11.

Daily Strength Increments based on Curve $y = ax + bx^2 + cx^3$.
Cylinders.

Temp. Deg. F	Age in Days.													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
30	190	160	130	120	110	100	85	75	60	50	30	30	30	20
32	198	162	133	121	112	102	89	77	63	51	32	32	32	23
34	206	164	136	122	114	104	93	80	66	52	34	34	34	27
36	214	166	139	123	116	106	97	83	69	53	36	36	36	30
38	222	169	143	124	119	109	101	86	73	54	39	39	39	32
40	230	171	147	126	121	111	105	89	77	56	41	41	41	34
42	236	174	151	127	124	114	108	92	81	57	44	44	44	36
44	244	176	154	128	126	116	112	95	84	58	46	46	46	39
46	252	178	157	129	128	118	116	98	87	59	48	48	48	42
48	260	180	160	130	130	120	120	100	90	60	50	50	50	45
50	264	182	162	134	131	120	120	100	90	62	51	50	50	45
52	268	184	165	138	132	120	120	100	90	64	52	50	50	45
54	272	185	167	142	133	120	120	100	90	66	53	50	50	45
56	275	187	170	145	134	120	120	100	90	67	54	50	50	45
58	277	189	172	147	134	120	120	100	90	69	54	50	50	45
60	280	190	175	150	135	120	120	100	90	70	55	50	50	45
62	283	191	177	153	136	120	120	100	90	71	56	50	50	45
64	285	193	180	155	136	120	120	100	90	73	56	50	50	45
66	288	195	182	158	157	120	120	100	90	74	57	50	50	45
68	292	196	185	162	138	120	120	100	90	76	58	50	50	45
70	296	198	187	166	139	120	120	100	90	78	59	50	50	45
72	300	200	190	170	140	120	120	100	90	80	60	50	50	45

Table No. 12.

Daily Strength Increments (lbs./sq.in.) - Cubes.
 Curve $y = ax + bx^2 + cx^3 + dx^4 + ex^5 + fx^6$.

Temp. Deg.F	Age in Days.									
	1	2	3	4	5	6	7	8	9	10
- 35	140	110	95	95	80	75	70	70	65	65
36	144.5	112.5	96.7	96.2	79.8	75.3	70.3	70.3	65.6	65.6
38	153.6	117.6	100.0	98.6	79.5	75.6	70.9	70.9	66.5	66.5
40	162.7	122.7	103.4	101.0	79.3	75.9	71.5	71.5	67.4	67.4
42	171.8	127.8	106.7	103.4	78.9	76.2	72.1	72.1	68.3	68.3
44	180.9	132.9	110.1	105.8	78.6	76.5	72.7	72.7	69.2	69.2
46	190.0	138.0	113.4	108.2	78.3	76.8	73.3	73.3	70.1	70.1
48	199.1	143.1	116.8	110.6	78.0	77.1	73.9	73.9	71.0	71.0
50	208.2	148.2	120.1	113.0	77.7	77.4	74.5	74.5	71.9	71.9
52	217.3	153.3	123.5	115.4	77.4	77.7	75.1	75.1	72.8	72.8
54	226.4	158.4	126.8	117.8	77.1	78.0	75.7	75.7	73.7	73.7
56	235.5	163.5	130.2	120.2	76.8	76.3	76.3	76.3	74.6	74.6
58	244.6	168.6	133.5	122.6	76.5	78.6	76.9	76.9	75.5	75.5
60	253.7	173.7	137.9	125.0	76.2	78.9	77.5	77.5	76.4	76.4
62	262.8	178.8	141.2	127.4	75.9	79.2	78.1	78.1	77.3	77.3
64	271.9	183.9	144.6	129.8	75.6	79.5	78.7	78.7	78.2	78.2
66	281.0	189.0	147.9	132.2	75.3	79.8	79.3	79.3	79.1	79.1
- 68	290	195	150	135	75	80	80	80	80	80

Temp. Deg.F	Age in Days.									
	11	12	13	14	15	16	17	18	19	20
35	60	60	60	55	50	50	40	40	30	30
36	60.6	60.6	60.3	55.2	50	49.6	39.8	39.8	29.8	29.8
38	61.8	61.5	60.9	55.5	50	49.0	39.5	39.5	29.5	29.5
40	63.0	62.4	61.5	55.8	50	48.4	39.2	39.2	29.2	29.2
42	64.2	63.3	62.1	56.1	50	47.8	38.9	38.9	28.9	28.9
44	65.4	64.2	62.7	56.4	50	47.2	38.6	38.6	28.6	28.6
46	66.6	65.1	63.3	56.7	50	46.6	38.3	38.3	28.3	28.3
48	67.8	66.0	63.9	57.0	50	46.0	38.0	38.0	28.0	28.0
50	69.0	66.9	64.5	57.3	50	45.4	37.7	37.7	27.7	27.7
52	70.2	67.8	65.1	57.6	50	44.8	37.4	37.4	27.4	27.4
54	71.4	68.7	65.7	57.9	50	44.2	37.1	37.1	27.1	27.1
56	72.6	69.6	66.3	58.2	50	43.6	36.8	36.8	26.8	26.8
58	73.8	70.5	66.9	58.5	50	43.0	36.5	36.5	26.5	26.5
60	75.0	71.2	67.5	58.8	50	42.4	36.2	36.2	26.2	26.2
62	76.2	72.3	68.1	59.1	50	41.8	35.9	35.9	25.9	25.9
64	77.4	73.2	68.7	59.4	50	41.2	35.6	35.6	25.6	25.6
66	78.6	74.1	69.3	59.7	50	40.6	35.3	35.3	25.3	25.3
68	80	75	70	60	50	40	35	35	25	25

Table No. 12 (Continued)

Daily Strength Increments (lbs./sq.in.) - Cubes.

Temp. (Deg.F)	Age in Days.							
	21	22	23	24	25	26	27	28
35	30	30	25	25	25	25	25	20
36	29.6	29.6	24.6	24.6	24.4	24.4	24.2	19.4
38	29.0	29.0	24.0	24.0	23.5	23.5	23.0	18.5
40	28.4	28.4	23.4	23.4	22.6	22.6	21.8	17.6
42	27.8	27.8	22.8	22.8	21.7	21.7	20.6	16.7
44	27.2	27.2	22.2	22.2	20.8	20.8	19.4	15.8
46	26.6	26.6	21.1	21.1	19.9	19.9	18.2	14.9
48	26.0	26.0	21.0	21.0	19.0	19.0	17.0	14.0
50	25.4	25.4	20.4	20.4	18.1	18.1	15.8	13.1
52	24.8	24.8	19.8	19.8	17.2	17.2	14.6	12.2
54	24.2	24.2	19.2	19.2	16.3	16.3	13.4	11.3
56	23.6	23.6	18.6	18.6	15.4	15.4	12.2	10.4
58	23.0	23.0	18.0	18.0	14.5	14.5	11.0	9.5
60	22.4	22.4	17.4	17.4	13.6	13.6	9.8	8.6
62	21.8	21.8	16.8	16.8	12.7	12.7	8.6	7.7
64	21.2	21.2	16.2	16.2	11.8	11.8	7.4	6.8
66	20.6	20.6	15.6	15.6	10.9	10.9	6.2	5.9
68	20	20	15	15	10.	10	5.0	5

MECHANICAL ANALYSIS OF SAND

Percent
Passing

FIG. 1

18

TURNE D'ERZGEN CO CH CAO NEW YORK NO 345

WICHITA MARYLAND

18

MECHANICAL ANALYSIS OF STONE

Per Cent
Passing

100

90

80

70

60

50

40

30

20

10

.50

20

15

10

.50

.35

.30

.25

.20

.15

.10

.05

.00

Actual

Ideal

FIG. 2

193

EUGENE OETZGEN CO CHICAGO-NEW YORK NO 346

MECHANICAL WORK DONE

INDIRECT
POWER

TRA

COMBINED MECHANICAL ANALYSIS CURVE

Percent
Passing

COMBINED MECHANICAL AND ELECTRICAL

DATA

TS

1950
1960

A-T32

AVERAGE RELATIVITY

WATER VAPOR PRESSURE (mm Hg)

CLOUDS + DROPS
PRECIPITATION

2000

1000

500

250

100

50

25

10

5

2

1

STRENGTHS

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

SET-B

Crushing Strength
lbs per sq in

Cylinder 2-1000
112.500000

85

TEST
F 1

20

18

16

14

12

10

8

6

4

2

0

SET-C

TEMPERATURE

10/10/1961 10:00 AM W.M.W.

(100% RH 78.5°C 11.1°C 14.4°C)

C1 Sprinkler System + H

10/29/61 10:00 AM

2040

ADDS

DHS

0513X

1513X

RHS

1500

0000

2000

2500

3000

3500

4000

4500

5000

STRENGTHS

EXPT-1A

W.E.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Temp
Deg. F.

EUGENE QUETZEN CO CHICAGO NEW YORK NO 346

SET-D

TEMPERATURES

----- Maximum and Minimum
— Mean (68°F for the 27 days)

Crushing Strength
lbs. per sq. in.

FIG. 7

42

2000
3000

1000

200

300

400

TEMPERATURE

Temperature (°C) = 1000 + 3000 + 2000 + 3000 + 4000

—
—

4000
3000
2000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

STRENGTH

2000

10000 10000 10000 10000 10000

10000 10000 10000 10000 10000

SET-E

Temp
Deg F.

TEMPERATURES

Maximum and Minimum

Mean (35.5°F for the 44 days)

Crushing Strength
lbs. per sq. in.

20000
10000

3000

2000

30000

COMMUNALISM

Communalism
is a political movement
which aims at creating
a separate state for
the Hindus.

Majority Hindus
are against it.

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

220000

230000

240000

250000

260000

270000

280000

290000

300000

310000

320000

330000

340000

350000

360000

370000

380000

390000

400000

410000

420000

430000

440000

450000

460000

470000

480000

490000

500000

510000

520000

530000

540000

550000

560000

570000

580000

590000

600000

610000

620000

630000

640000

650000

660000

670000

680000

690000

700000

710000

720000

730000

740000

750000

760000

770000

780000

790000

800000

810000

820000

830000

840000

850000

860000

870000

880000

890000

900000

910000

920000

930000

940000

950000

960000

970000

980000

990000

1000000

1010000

1020000

1030000

1040000

1050000

1060000

1070000

1080000

1090000

1100000

1110000

1120000

1130000

1140000

1150000

1160000

1170000

1180000

1190000

1200000

1210000

1220000

1230000

1240000

1250000

1260000

1270000

1280000

1290000

1300000

1310000

1320000

1330000

1340000

1350000

1360000

1370000

1380000

1390000

1400000

1410000

1420000

1430000

1440000

1450000

1460000

1470000

1480000

1490000

1500000

1510000

1520000

1530000

1540000

1550000

1560000

1570000

1580000

1590000

1600000

1610000

1620000

1630000

1640000

1650000

1660000

1670000

1680000

1690000

1700000

1710000

1720000

1730000

1740000

1750000

1760000

1770000

1780000

1790000

1800000

1810000

1820000

1830000

1840000

1850000

1860000

1870000

1880000

1890000

1900000

1910000

1920000

1930000

1940000

1950000

1960000

1970000

1980000

1990000

2000000

2010000

2020000

2030000

2040000

2050000

2060000

2070000

2080000

2090000

2100000

2110000

2120000

2130000

2140000

2150000

2160000

2170000

2180000

2190000

2200000

2210000

2220000

2230000

2240000

2250000

2260000

2270000

2280000

2290000

2300000

2310000

2320000

2330000

2340000

2350000

2360000

2370000

2380000

2390000

2400000

2410000

2420000

2430000

2440000

2450000

2460000

2470000

2480000

2490000

2500000

2510000

2520000

2530000

2540000

2550000

2560000

2570000

2580000

2590000

2600000

2610000

2620000

2630000

2640000

2650000

2660000

2670000

2680000

2690000

2700000

2710000

2720000

2730000

2740000

2750000

2760000

2770000

2780000

2790000

2800000

2810000

2820

SET-F

Temp
Deg. F.40
30
20
10

TEMPERATURES

— Maximum and Minimum
— Mean (27.1°F for the 42 days)

Compressive
Strength
lbs. per sq. in.

800
700
600
500
400
300
200
100

FIG. 9

STRENGTHS

Age - days

4 7 11 14 20 28 35 40 45

2000
15002000
1500

2000

2000

2000
1500
1000

2000

2000

2000

2000

2000

2000

2000

E

E

E

E

E

E

E

2000

2000

E

E

E

E

E

2000

E

E

E

E

E

E

2000

CONSTANTS $a, b, \& c$ IN EQUATION

$$y = ax + bx^2 + cx^3$$

Values of "a"

Values of "b"

Values of "c"

FIG. 10

WATER SUPPLY AND SANITATION
IN A TROPICAL CITY

RESULTS

1.000

900

800

700

600

500

400

300

200

100

0

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

13.000

14.000

15.000

16.000

17.000

18.000

19.000

20.000

21.000

22.000

23.000

24.000

25.000

26.000

27.000

28.000

29.000

30.000

31.000

32.000

33.000

34.000

35.000

36.000

37.000

38.000

39.000

40.000

41.000

42.000

43.000

44.000

45.000

46.000

47.000

48.000

49.000

50.000

51.000

52.000

53.000

54.000

55.000

56.000

57.000

58.000

59.000

60.000

61.000

62.000

63.000

64.000

65.000

66.000

67.000

68.000

69.000

70.000

71.000

72.000

73.000

74.000

75.000

76.000

77.000

78.000

79.000

80.000

81.000

82.000

83.000

84.000

85.000

86.000

87.000

88.000

89.000

90.000

91.000

92.000

93.000

94.000

95.000

96.000

97.000

98.000

99.000

100.000

101.000

102.000

103.000

104.000

105.000

106.000

107.000

108.000

109.000

110.000

111.000

112.000

113.000

114.000

115.000

116.000

117.000

118.000

119.000

120.000

121.000

122.000

123.000

124.000

125.000

126.000

127.000

128.000

129.000

130.000

131.000

132.000

133.000

134.000

135.000

136.000

137.000

138.000

139.000

140.000

141.000

142.000

143.000

144.000

145.000

146.000

147.000

148.000

149.000

150.000

151.000

152.000

153.000

154.000

155.000

156.000

157.000

158.000

159.000

160.000

161.000

162.000

163.000

164.000

165.000

166.000

167.000

168.000

169.000

170.000

171.000

172.000

173.000

174.000

175.000

176.000

177.000

178.000

179.000

180.000

181.000

182.000

183.000

184.000

185.000

186.000

187.000

188.000

189.000

190.000

191.000

192.000

193.000

194.000

195.000

196.000

197.000

198.000

199.000

200.000

201.000

202.000

203.000

204.000

205.000

206.000

207.000

208.000

209.000

210.000

211.000

212.000

213.000

214.000

215.000

216.000

217.000

218.000

219.000

220.000

221.000

222.000

223.000

224.000

225.000

226.000

227.000

228.000

V. DETAILS OF OBSERVED DATA.

9. TESTS OF MATERIALS.

29

CEMENT TESTS.

Plasticity: by Penetration Method.

Table No. 13.

Trial No.	Gms. Cement	Percent H ₂ O	Penetration mm.	Time sec.
1	500	23.0	0.2	30
2	500	23.5	17.2	30
3	500	23.0	12.0	30
4	500	22.5	7.0	30

23% water gave best results.

Fineness: Sample of 1000 units used.

Table No. 14.

No. of Sieve	Units Retained	retained on sieve.
200	160	16
100	29	2.9

TEST OF SAND:-

The sand used was placed in a dryer for thirty-six hours and then a sample of 1000 grams was placed upon a nest of standard sieves and sifted for forty minutes.

Results.

Table No. 15.

No. of Sieve	Size of Mesh	Grams Retained	% Passing
$\frac{1}{4}$.20	4.4	99.99
5	.10	113.7	99.55
10	.073	150.1	88.13
20	.034	215.8	73.17
40	.015	212.2	51.59
60	.009	221.2	30.34
74	.0078	27.4	5.22
100	.0045	20.8	4.48
150	.0033	10.5	2.30
200	.0027	3.9	1.75
Passing 100		13.0	1.30
Total =		999.9	

TEST OF STONE:-

The stone, like the sand, was placed upon the dryer for thirty-six hours and a sample of 2500 grams was placed upon a nest of standard sieves and sifted for forty minutes.

Results.

Table No. 16.

No. of Sieve	Size of Mesh	Grams Retained	% Passing
1/2	0.5	323.0	99.99
1/4	0.20	1008.0	86.8
5	0.16	615.0	46.5
8	0.0955	100.6	22.1
10	0.073	58.0	18.5
16	0.042	105.4	15.75
20	0.034	15.0	11.5
30	0.022	21.1	10.95
40	0.015	10.5	10.1
60	0.009	67.0	9.7
74	0.0078	12.1	7.0
100	0.0045	19.8	6.52
150	0.0033	22.3	4.73
200	0.0027	8.5	4.82
Passing 200		112.1	4.48
	Total =	998.4	

COMBINATION OF STONE AND SAND CURVES:-

The stone and sand curves were combined in order that the curve for aggregate might be compared with the ideal curve, a parabola. In combining the curves, 3500 grams (the combined weight of stone and sand) was used as 100% and the amounts of sand and stone passing the same sieve were added and the percentage passing calculated.

Table No. 17.

No. of Sieve	Size of Mesh	Amount of sand retained	Amount of stone ret'd	Total	% passing
$\frac{1}{2}$.50		323.0	323	99.99
$\frac{1}{4}$.20	4.4	1008.0	1012.4	91.2
5	.16	113.7	615.0	748.7	62.4
8	.0955		100.6	100.6	41.0
10	.073	150.1	58.0	208.1	38.1
16	.042		105.4	105.4	32.1
20	.034	215.8	15.0	230.8	29.1
30	.022		21.1	21.1	22.5
40	.015	212.5	10.5	222.5	21.9
60	.009	221.5	67.0	288.2	15.6
74	.0078	27.4	12.1	39.5	7.3
100	.0045	26.8	19.8	46.6	6.2
150	.0033	10.5	22.3	32.8	4.9
200	.0027	3.9	8.5	12.4	3.9
passing 200		13.6	112.1	125.7	3.6

From the combined curve it can be seen that there was an excess of large material. This is undoubtedly the cause of the visible voids which reduced the area and thereby weakened some of the specimens. No efforts were made to make the combined curve take the direction of the ideal as it was the authors' idea to make the investigation as practical as possible.

10. TESTS OF CYLINDERS.

33

Table No. 18.

Moulding of Set A.

Number Specimen	* Time Moulding Min.	Total Wgt. lbs.	Wgt. Residue lbs.	Net Wgt. lbs.	Cylinders		Per cent Water
					Air Deg. C	Water Deg. C	
A 1		16.63	1.13	15.50	0°	21	10
A 2	"	1.60	15.03	"	"	"	"
A 3	"	1.29	15.34	"	"	"	"
A 4	"	0.98	15.65	"	"	"	"
A 5	"	1.39	15.24	"	"	"	"
A 6	"	1.54	15.09	"	16	"	"
A 7	"	1.21	15.42	"	21	"	"
A 8	"	0.97	15.66	"	"	"	"
A 9	"	1.40	15.23	"	"	"	"
A 10	"	1.50	15.13	"	"	"	"
A 11	"	0.95	15.68	"	-1.5	"	"
A 12	"	1.32	15.31	"	"	"	"
A 13	"	1.24	15.39	"	"	"	"
A 14	"	1.81	14.82	"	"	"	"
A 15	"	1.16	15.47	-3.2°	20.2	"	"

* Time not taken.

Table 10.19.
Daily Temperatures of Set A.

Day	Maximum	Mean	Minimum
1	34	31.0	26
2	32	28.0	24
3	35	31.5	28
4	32	29.0	26
5	29	27.5	26
6	30	28.0	26
7	34	29.0	24
8	32	28.5	25
9	32	31.0	30
10	32	30.5	29
11	32	30.5	29
12	32	31.0	30
13	30	30.0	30
14	35	32.0	29
15	32	30.5	29
16			
17	28	28.0	28
18	34	30.0	26
19	28	27.0	26
20	28	28.0	28
21	32	30.0	28
22	32	30.0	28
23	30	29.0	28
24	36	34.0	32
25	34	31.0	28
26	50	39.0	28
27	30	29.0	28
28	26	25.0	24
Average Mean		30.0	

Table No. 20.

Number Specimen	Time Moulding Min.	Total Wgt. lbs.	Wgt. Residue lbs.	Net Wgt. lbs.	Temperature		Per cent Water
					Air Deg.C	Water Deg.C	
B 1	9	16.63	1.18	15.45	17.5	23	10
B 2	8	"	1.29	15.34	"	"	"
B 3	3	"	1.37	15.26	"	"	"
B 4	6	"	1.30	15.33	18	21	"
B 5	8	"	1.31	15.32	"	"	"
B 6	8	"	1.31	15.32	"	"	"
B 7	9	"	1.28	15.35	"	"	"
B 8	8	"	1.15	15.48	17.5	22	"
B 9	7	"	1.42	15.21	"	"	"
B 10	8	"	1.59	15.04	"	"	"
B 11	8	"	1.10	15.53	19.6	21.2	
B 12	6	"	1.06	15.57	"	"	"
B 13	6	"	1.51	15.12	"	"	"
B 14	7	"	1.19	15.44	19	20	"
B 15	6	"	1.60	15.03	"	"	"

Table No. 21.

Daily Temperatures of Set B.

Day	Maximum	Mean	Minimum
1	60	59.5	59
2	60	56.0	52
3	58	55.0	52
4	60	56.5	53
5	60	55.0	50
6	50	55.0	40
7	46	42.5	39
8	54	46.5	39
9			
10	55	51.0	47
11	60	57.0	54
12	52	54.0	56
13	56	52.5	49
14	50	49.0	48
15	50	45.0	40
16	48	47.0	46
17	50	47.0	44
18	46	45.0	44
19	48	43.0	38
20	58	35.0	32

Average Mean = 48.0

Table No. 22.

Moulding of Set C.

Cylinders

Number Specimen	Time Moulding Min.	Total Wgt. lbs.	Wgt. Residue lbs.	Net Wgt. lbs.	Temperature		Per cent water
					Air Deg.C	Water Deg.C	
C 1		16.63	1.72	14.91	29	22	10
C 2		"	2.23	14.40	"	20.5	"
C 3		"	1.84	14.79	"	"	"
C 4		"	1.60	15.03	"	"	"
C 5	9	"	1.52	15.11	"	"	"
C 6	8.5	"	1.82	14.81	"	"	"
C 7	8.5	"	2.12	14.51	"	22	"
C 8	8.5	"	1.81	14.82	"	"	"
C 9	8.5	"	1.87	14.76	"	"	"
C 10	8.5	"	1.66	14.97	"	"	"
C 11	8.5	"	1.17	15.46	"	"	"
C 12	8.5	"	2.35	14.28	"	"	"
C 13	8.75	"	1.91	14.72	"	"	"
C 14	8.75	"	1.74	14.89	"	23	"
C 15			1.44	15.19	30.4	"	"

Table No. 23.

Daily Temperatures of Set C.

Day	Maximum	Mean	Minimum
1	79	73.5	68
2	78	76.0	74
3	75	74.0	73
4	74	73.0	72
5	73	70.5	68
6	74	68.0	62
7	75	74.0	73
8	78	75.5	73
9	87	83.0	79
10	78	76.0	74
11	74	70.0	66
12	74	74.0	74
13	80	75.0	70
14	82	73.5	65
15	78	74.0	70
16	78	73.0	68
17	80	76.0	72
18			
19	74	71.0	69
20	77	73.5	70
21			
22	80	73.5	67
23	71	68.0	65
24	73	68.5	64
25	72	67.0	62
26	72	65.0	58
27	71	66.5	62
28			
Average		Mean	72.

Table No. 24.

7 Day Crushing Tests. Cylinders.

No.	Average Specimen Diameter	Area sq.in.	Crushing Strength (lbs.)	Strength lbs./sq.in.	Average Strength lbs./sq.in.	Remarks
<i>Set A</i>	1	6.0	28.25	29240	1034	
	4	6.187	29.95	27670	926	
	7	6.063	28.70	24890	868	
	10	6.063	28.70	22450	782	
	13	6.063	28.70	24450	853	Cracked uniformly around circumferential area.
<i>Set B</i>	1	6.125	29.25	36130	1235	Cracked uni.
	4	6.00	28.25	34770	1230	"
	7	6.00	28.25	31660	1120	"
	10	5.875	27.10	25030	925	Skewed.
	13	5.875	27.10	26950	995	"
<i>Set C</i>	1	5.875	27.10	27080	997	
	4	5.813	26.50	35850	1350	
	7	5.940	27.60	37660	1365	
	10	5.875	27.10	51140	1150	
	13	6.000	28.25	32250	1140	Visible voids.

Specimens were six-inch cylinders.

Table No. 25.

14 Day Crushing Tests.

No.	Average Specimen Diameter	Area sq.in.	Crushing Strength (lbs.)	Strength lbs./sq.in.	Average Strength lbs./sq.in.	Remarks
<i>Set A</i>	2	6.0	28.25	38020	1340	Cracked uniformly around circumferential area.
	6	6.125	29.25	33340	1140	
	8	6.0	28.25	39220	1387	
	11	6.0	28.25	31390	1110	
	14	5.875	27.10	26700	985	
<i>Set B</i>	2	6.00	28.25	47090	1665	Cracked uni. " ." Badly skewed Slightly "
	5	5.940	27.60	50460	1825	
	8	5.970	27.90	45850	1642	
	11	5.940	27.60	30000	1090	
	14	5.875	27.10	40640	1500	
<i>Set C</i>	2	5.875	27.10	46170	1700	Uniform throughout.
	5	6.00	28.25	50000	1770	
	8	6.125	29.25	44190	1510	
	11	6.00	28.25	44420	1570	
	14	5.875	27.10	47100	1740	

Specimens were six-inch cylinders.

Table No. 26.
28 Day Crushing Tests.

No.	Specimen	Average Diameter	Area sq.in.	Crushing Strength (lbs.)	Strength lbs./sq.in.	Average Strength lbs./sq.in.	Remarks
Set A	3	6.063	28.70	39340	1370	1429	All uniform.
	5	6.063	28.70	37730	1315		
	9	5.940	27.60	48450	1750		
	12	6.125	29.25	37660	1285		
	15	6.000	28.25	40300	1425		
Set B	3	6.063	28.70	56240	1960	1937	Area reduced by visible voids.
	6	6.00	28.25	55000	1947		
	9	6.063	28.70	54600	1905		
	12	6.00	28.25	34670	1230*		
	15	6.00	28.25	40000	1415*		
Set C	3	5.97	27.90	55720	2000	2093	Slightly skewed. Badly skewed.
	6	5.94	27.60	63650	2310		
	9	5.875	27.10	60260	2225		
	12	5.875	27.10	49760	1835		
	15	6.00	28.25	40390	1430*		

*Not used in calculating average strength.

Specimens were six-inch cylinders.

Table No. 27.

Daily Temperatures Set D.

Degrees Fahrenheit

Day	Maximum	Mean	Minimum
1	64	63.0	62
2	78	69.0	60
3	80	74.0	68
4	78	77.0	76
5	74	73.0	72
6	78	76.0	74
7	81	72.5	64
8	81	72.0	63
9	70	65.5	61
10	78	72.5	67
11	80	76.5	73
12	76	73.0	70
13	76	70.5	65
14	68	65.0	62
15	70	67.0	64
16	69	64.5	60
17	70	66.5	65
18	70	66.0	62
19	66	65.0	64
20	67	63.5	60
21	68	64.5	61
22	69	64.0	59
23	70	66.0	62
24	67	66.0	65
25	65	64.5	64
26	65	62.0	59
27	66	62.0	58
28	64	62.0	60
Average Mean		68.0	

Table No. 28.

Molding of Set D.

Number Specimen	Time Molding (min.)	Total Weight (lbs.)	Weight Residue (lbs.)	Net Weight (lbs.)	Temperatures		Per Cent Water
					Air (Deg.C)	Water (Deg.C)	
1	7.0	20.35	1.48	18.87	25.6	21.0	10
2	"	"	1.12	19.23	"	"	"
3	"	"	1.18	19.17	"	"	"
4	"	"	1.23	19.12	25.4	21.4	"
5	"	"	1.14	19.21	"	"	"
6	"	"	0.95	19.40	"	"	"
7	"	"	1.07	19.28	"	"	"
8	"	"	0.82	19.53	"	21.0	"
9	"	"	1.23	19.12	"	"	"
10	"	"	0.82	19.53	"	"	"
11	"	"	1.25	19.62	25.0	21.5	"
12	"	"	0.82	19.53	"	"	"
13	"	"	0.79	19.56	"	"	"
14	"	"	0.82	19.53	"	"	"
15	"	"	0.84	19.51	"	"	"

Specimens were 6-inch Cubes.

Table No. 29.
Molding of Set E.

Number Specimen	Time Molding (min.)	Total Weight (lbs.)	Weight Residue (lbs.)	Net Weight (lbs.)	Temperatures		Per cent Water
					Air (Deg.C)	Water (Deg.C)	
1	9.0	20.35	1.08	19.27	24.0	21.0	10.0
2	9.0	"	1.19	19.16	"	"	"
3	8.0	21.10	2.00	19.10	"	"	12.0
4	7.5	21.00	1.10	19.90	"	"	11.0
5	7.0	"	1.36	19.64	"	"	"
6	7.0	"	1.29	19.71	"	"	"
7	7.0	20.35	1.01	19.34	"	22.0	10.0
8	7.5	21.00	1.39	19.61	"	"	11.0
9	7.0	"	1.19	19.81	"	"	"
10	7.0	"	0.95	20.05	"	"	"
11	7.0	"	0.97	20.03	"	"	"
12	7.0	"	0.96	20.04	"	"	"
13	7.0	"	1.36	19.64	"	"	"
14	7.0	"	1.47	19.53	"	"	"
15	7.0	"	1.34	19.66	24.5	21.0	"
16	7.0	"	1.25	19.75	"	"	"
17	7.0	"	1.00	20.00	"	"	"
18	7.0	"	0.90	20.10	"	"	"

Specimens were 6-inch Cubes.

Table No. 30.

Daily Temperatures Set E.

Degrees Fahrenheit.

Day	Maximum	Mean	Minimum
1	36	36.0	36
2			
3	38	36.5	35
4	38	35.0	32
5	37	34.5	32
6	35	33.5	32
7	35	32.5	30
8	37	34.0	31
9	39	37.5	36
10	37	36.0	35
11	36	34.0	32
12	36	34.5	33
13	39	37.0	35
14	36	35.0	34
15	37	36.0	35
16	39	38.0	37
17	37	36.0	35
18	35	34.0	33
19	37	35.5	34
20	38	36.0	34
21	38	36.5	35
22	38	36.5	35
23	38	37.0	36
24	36	35.5	35
25	36	35.0	34
26	36	35.5	35
27	36	37.5	37
28	37	35.5	34
29	36	35.0	34
30	37	35.5	34
31	36	35.0	34
32	35	33.5	32
33	36	34.0	32
34	37	36.5	36
35	37	36.5	36
36	38	36.5	35
37	39	38.0	37
38	37	36.5	36
39	35	34.5	34
40	37	36.0	35
41	38	36.5	35
42	38	36.0	34
43	35	34.0	35
44	36	35.5	35
45	35	34.5	34
Average Mean =		35.5	

Table No. 31.
Molding of Set F.

Number Specimen	Time Molding (min.)	Total Weight (lbs.)	Weight Residue (lbs.)	Net Weight (lbs.)	Temperatures		Per cent Water
					Air (Deg.C)	Water (Deg.C)	
1	7.0	20.35	0.45	19.90	27.4	20.0	10
2	"	"	0.40	19.95	"	"	"
3	"	"	0.60	19.75	"	"	"
4	"	"	0.66	19.69	"	"	"
5	"	"	0.44	19.91	"	20.6	"
6	"	"	0.57	19.78	"	"	"
7	"	"	0.92	19.43	27.6	20.8	"
8	"	"	0.54	19.81	"	"	"
9	"	"	0.79	19.56	"	19.8	"
10	"	"	0.90	19.46	"	"	"
11	"	"	1.03	19.32	"	"	"
12	"	"	0.92	19.43	"	"	"
13	"	"	0.97	19.38	26.2	20.4	"
14	"	"	0.99	19.36	"	"	"
15	"	"	1.01	19.34	27.0	20.6	"
16	"	"	0.66	19.69	"	"	"
17	"	"	1.08	19.27	"	"	"
18	"	"	1.06	19.29	26.0	20.8	"

Specimens were 6-inch Cubes.

Table No. 32.
Daily Temperatures Set F.
Degrees Fahrenheit.

Day	Maximum	Mean	Minimum
1	31	31.0	31
2	36	30.5	25
3	28	25.0	22
4	34	31.0	28
5	34	30.5	27
6	34	29.0	24
7	34	30.0	26
8	30	26.0	22
9	30	26.0	22
10	30	26.0	22
11	34	29.0	24
12	36	30.0	24
13	42	34.5	27
14	36	32.0	30
15	42	32.0	22
16	42	32.0	22
17	24	23.0	22
18	24	23.0	22
19	24	21.0	18
20	24	22.0	20
21	28	25.0	22
22	28	23.5	19
23	28	23.5	19
24	28	23.5	19
25	28	25.0	22
26	29	23.5	18
27	28	25.0	22
28	30	30.0	30
29	30	30.0	30
30	30	29.0	28
31	30	29.0	28
32	32	32.0	32
33	32	31.0	30
34	34	29.0	24
35	32	31.0	30
36	32	31.0	30
37	32	31.0	30
38	32	28.0	24
39	24	23.0	22
40	22	21.0	20
41	22	21.0	20
42	21	19.5	18
43	20	19.5	19
Average Mean =		27.1	

Table No. 33.
4 Day Crushing Tests. - 6" Cubes

				Crushing Strength	Average	
Number	Weight (lbs.)	Size (in.)	Area sq.in.	Strength (lbs.)	Strength sq. in.)	Remarks
<i>Set D.</i>	D ₁ 18.50	6x6x6	36	28400	790	
	D ₂ 18.50	"	"	22450	623	777
	D ₃ 18.50	"	"	33040	920	
<i>Set E.</i>	E ₁ 19.00	"	"	16690	465	
	E ₂ 19.00	"	"	10000	278	445
	E ₃ 18.75	"	"	21300	592	
<i>Set F.</i>	F ₁ 18.75	"	"	15680	435	
	F ₂ 18.75	"	"	18050	563	386
	F ₃ 18.75	"	"	13000	361	Slight coating of frost but all had uni- form break.

Table No. 34.
7 Day Crushing Tests. 6" Cubes.

				Crushing Strength	Average	
Number	Weight (lbs.)	Size (in.)	Area sq.in.	Strength (lbs.)	Strength sq. in.)	Remarks
<i>Set D.</i>	D ₄ 18.75	6x6x6	36	59390	1095	
	D ₅ 19.00	"	"	35930	1000	985
	D ₆ 18.75	"	"	31000	861	
<i>Set E.</i>	E ₄ "	"	"	17100	475	
	E ₅ "	"	"	19820	551	472
	E ₆ "	"	"	14060	390	Broke uni- formly. "
<i>Set F.</i>	F ₄ 18.50	"	"	20880	580	
	F ₅ 18.75	"	"	19250	534	563
	F ₆ 18.75	"	"	20760	576	

Table No. 35.

11 Day Crushing Tests.

6" Cubes.

Number	Weight (lbs.)	Size (in.)	Area sq.in.	Crushing Strength (lbs./ sq. in.)	Average Strength lbs/sq. in.	Remarks
Set D	D ₇ 18.75	6x6x6	36	43420	1205	
	D ₈ 18.75	"	"	52440	1455	1322
	D ₉ 18.75	"	"	47000	1305	
Set E	E ₇ 19.00	"	"	42310	1175	
	E ₈ 19.00	"	"	31060	863	920
	E ₉ 18.75	"	"	26000	723	Visible voids Broke at one corner.
Set F	F ₇ 18.75	"	"	15080	418	
	F ₈ 18.75	"	"	17760	494	505
	F ₉ 18.75	"	"	21820	605	

Table No. 36.

14 Day Crushing Tests.

6" Cubes.

Number	Weight (lbs.)	Size (in.)	Area sq.in.	Crushing Strength (lbs./ sq. in.)	Average Strength lbs/sq. in.	Remarks
Set D	D ₁₀ 19.00	6x6x6	36	58710	1630	
	D ₁₁ 19.00	"	"	62810	1740	1545
	D ₁₂ 18.75	"	"	45530	1265	
Set E	E ₁₀ "	"	"	38630	1070	
	E ₁₁ "	"	"	40300	1120	1103
	E ₁₂ "	"	"	40280	1119	
Set F	F ₁₀ 18.75	"	"	19330	537	
	F ₁₁ 18.75	"	"	26350	732	638
	F ₁₂ 18.75	"	"	22900	646	

Table No. 37.

28 Day Crushing Test.

6" Cubes.

Number	Weight (lbs.)	Size (in.)	Area sq.in.	Crushing Strength		Average Strength sq.in.)	Remarks lbs/sq.in.
				Strength (lbs.)	Strength sq.in.)		
D ₁₃	19.00	6x6x6	36	64000	1775		
D ₁₄	19.00	"	"	67460	1870	1848	
D ₁₅	19.00	"	"	68440	1900		
<i>Set D.</i>							
E ₁₃	18.75	"	"	52590	1462		
E ₁₄	18.75	"	"	58270	1618	1548	
E ₁₅	18.75	"	"	56350	1564		
<i>Set E.</i>							
F ₁₃	19.00	"	"	16540	459		
F ₁₄	19.00	"	"	15160	421	440	
F ₁₅	18.75	"	"	10400	289		

Table No. 38.

44 Day Crushing Test.

6" Cubes.

Number	Weight (lbs.)	Size (in.)	Area sq.in.	Crushing Strength		Average Strength sq.in.)	Remarks lbs/sq.in.
				Strength (lbs.)	Strength sq.in.)		
E ₁₆	18.75	6x6x6	36	66710	1850		Broke uniform.
E ₁₇	18.75	"	"	62880	1745	1778	1 corner broke.
E ₁₈	18.75	"	"	62240	1738		Slight. skewed

