Nome e Cognome:

Matricola:

Ricerca dell'Informazione nel Web

Compito di esame, tempo a disposizione: 90 minuti 5 punti/problema

Problema 1

- 1. Are the following statements true or false? Briefly explain your answers.
 - (a) In a Boolean retrieval system, stemming never lowers precision.
 - (b) In a Boolean retrieval system, stemming never lowers recall.
 - (c) Stemming increases the size of the vocabulary.
 - (d) Stemming should be invoked at indexing time but not while processing a query.
- 2. Why are skip pointers not useful for queries of the form x OR y?
- 3. Assume a biword index. Give an example of a document which will be returned for a query of New York University but is actually a false positive which should not be returned.

Problema 2

- 1. Show that for normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure.
- 2. Is this true for non-normalized vectors? Prove or disprove.

Problema 3

- 1. We are given the following graph. Write down all the necessary equations needed to calculate the pagerank, for a general teleporting probability α .
- 2. Compute the pagerank of each node for teleporting probability $\alpha = 1/2$.
- 3. Prove that for any graph the pagerank of each node is at least α/N .

Problema 4

- 1. Explain briefly how the k-NN algorithm works.
- 2. Explain briefly how we can perform k-NN classification in the vector-space model using the inverted-list data structure.

3. Explain briefly how the k -means algorithm works. Write the algorithm.			
4.	4. You are given the following example. Show that if the initial cluster assignment is unlucky the k -means solution might be bad.		
	v_1	ν_3	
	ν_2	$ u_4$ \bigcirc	