${\rm COMP9020}$ - Assignment 2

Jack Jiang (z5129432)

 $24 \ {\rm September} \ 2017$

Question 1

(a) For graph G = (E, V) as follows:

For every $e = (v, w) \in E$

$$c(v) \neq c(w)$$

The minimum number of colors to sufficient effect such a mapping, denoted:

$$\chi(G)$$

(b) The minimum number of colors is 2, as follows:

(c) The connection of the graph changes, as follows:

Because v2 connect to v3, so they must be different colours, $c(v2) \neq c(v3)$ v2 and v3 connect to all other vertex, so other vertex must use different colours other than c(v2) and c(v3)

$$c(v1) \neq c(v2) \neq c(v3)$$

also, v1 connect to v4, so $c(v1) \neq c(v4)$, at lease we should use 4 different colors Because I can use 4 different colors as shows in graph, therefore:

$$\chi(G) = 4$$

Question 2

- (a) $\{A_v : \sum_{c \in C} P_{v,c}\}$
- (b) $\{B_v : \forall c, d \in C, \neg (P_{v,c} \land P_{v,d})\}$
- (c) $\{C_{u,v}: \forall c \in C, \neg(P_{v,c} \land P_{u,c})\}$
- (d) $\{\varphi_G: \forall (u,v) \in E, \neg (P_{v,c} \land P_{u,c}) \text{ and } \forall c,d,e \in C, \sum_{v \in V} (P_{v,c} \lor P_{v,d} \lor P_{v,e}) \}$

Question 3

$$x \lor x = x \implies x \sqsubseteq x \text{ for all } x \in S$$

(AS):

$$x\sqsubseteq y \implies x\vee y=y$$

$$y \sqsubseteq x \implies y \vee x = x$$

$$\therefore x \lor y = y \lor x$$

$$\therefore x = y$$

(T):

$$x \sqsubseteq y \implies x \lor y = y$$

$$y \sqsubseteq z \implies y \lor z = z$$

$$x \lor z = x \lor (y \lor z) = (x \ lory) \lor z = y \lor z = z$$

$$\therefore x \sqsubseteq z$$

(L): not satisfied for x, y are not empty, if x $\lor y = \emptyset$, then: neither $x \sqsubseteq y$, nor $y \sqsubseteq x$

(b) \sqsubseteq is corresponse to \subseteq

$$x \subseteq y \iff x \cup y = y$$

(c) Draw a trueth table:

X	У	$x \vee y$	$(x \lor y) \rightleftarrows y$
T	Т	Τ	Т
T	F	Т	F
F	Т	Т	Т
F	F	F	T

Therefore, the logic equivilence is:

$$xy + \overline{x}y + \overline{x}\overline{y} = y + \overline{x}\overline{y}$$

Question 4

- (a) assume that add(0, n) = nfor n=0, add(0, 0) = 0for n>0, add(0, n+1) = add(0, n) + 1 = n + 1therefore, for $n \in N$, add(0, n) = nbecause add(n, 0) = ntherefore, P(n) holds for all $n \in N$
- (b) $a+b=n \implies b=n-a$ assume that add(a, n-a)=n for n=a, add(a, n-a)=add(a, 0)+0=a=n for n a, add(a, n-a+1)=add(a, n-a)+1=n+1 therefore, add(a, n-a)=n follow similar steps, we can prove that: add(b, n-b)=n Therefore add(a, b)=add(b, a)=a+b=n

Question 5

(a) $rec_a(n)$: ifn < 2 : return n

else:

$$x := rec_a(n-1) --> T(n-1)$$

$$y := rec_a(n-2) --> T(n-2)$$

$$return5x - 6y --> 1$$

The total cost is T(n-1) + T(n-2) + 1

$$T(1) = 0$$

$$T(2) = 0$$

$$T(n) = T(n-1) + T(n-2) + 1$$

Where T(n+1) is a fibonacci number

 $according to \ Binet's \ Formula (http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html) according to Binet's FibonacciNumberFormula.html (http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html) according to Binet's FibonacciNumberFormula.html (http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html) according to BinetsFibonacciNumberFormula.html (http://mathworld.wolfram.html) according to BinetsFibonacciNumberFibon$

$$T(n+1) = \frac{\phi^n - (-\phi^{-n})}{\sqrt{5}}$$

where ϕ is golden ratio

therefore the upper bound for $rec_{-}a(n)$ is ϕ^{n} where $\phi = 1.618$

 $iter_a(n)$:

ifn < 2 : return n

else:

x := 1

y := 0

$$i := 1 --> 3$$

while i < n:

i := x

x := 5x - 6y

y := t

$$i := i + 1 - - > 4n$$

return x

The total cost is 4n + 4

The upper bound for $iter_{-}a(n)$ is n

(b) draw a table

n	a_n	$a_n + 2^n$
0	0	1
1	1	3
2	5	9
3	19	27
4	65	81
5	211	243
6	665	729
7	2059	2187

Guess $a_n = 3^n - 2^n$

for
$$n = 0$$
, $a_n = 0$ holds

for
$$n = 1$$
, $a_n = 3 - 2 = 1$ holds

assume $a_n = 3^n - 2^n$ holds for some n > 1

 $a_n = 5 * a_{n-1} - 6a_{n-2}$

$$= 5 * (3^{n-1} - 2^{n-1}) - 6 * (3^{n-2} - 2^{n-2})$$

$$= 5 * (3 * 3^{n-2} - 2 * 2^{n-2}) - 6 * (3^{n-2} - 2^{n-2})$$

$$= 15 * 3^{n-2} - 10 * 2^{n-2} - 6^{n-2} + 6 * 2^{n-2}$$

$$= 9 * 3^{n-2} - 4 * 2^{n-2}$$

$$= 3^n - 2^n \text{ holds for all } n \in \mathbb{N}$$

(c) $calc_a(n)$: return 3**n-2**n the upper bound of $calc_a(n)$ is 1, so it is more efficient