LimeSDR Mini v2.4 Board

Introduction %

LimeSDR Mini v2.4 Board Key Features

The LimeSDR-Mini is low-cost software defined radio board. LimeSDR-Mini development board provides a hardware platform for developing and prototyping high-performance and logic-intensive digital and RF designs based on Lattice Semiconductor's ECP5 FPGA and Lime Microsystems transceiver.

Figure 1: LimeSDR Mini v2.4 board top view

Figure 2: LimeSDR Mini v2.4 board bottom view

LimeSDR Mini board features:

• RF and BB parameters:

 Configuration: SISO (1x TX, 1x RX) • Frequency range: 10 MHz - 3.5 GHz

• Bandwidth: 30.72 MHz • Sample depth: 12 bit

- Sample rate: 30.72 MSPS
- Transmit power: max 10 dBm (depending on frequency)
- USB 3.0 controller: FTDI FT601
- FPGA: board is designed for Lattice ECP5 family LFE5U-25F/LFE5U-45F/LFE5U-85F FPGAs in 285-ball csfBGA package. By default board is assembled with LFE5U-45F-MG285 FPGA. Lattice ECP5 LFE5U-45F features:
 - 285-pin csfBGA package (10 x 10 mm, 0.5 mm)
 - 44 K LUTs logic capacity
 - 108 sysMEM Blocks (18 Kb)
 - 1944 Kb Embedded Memory
 - 351 Kb distributed RAM
 - 72x 18x18-bit multipliers
 - 4x PLLs and 4x DLLs
 - 118 IOs
 - FPGA configuration via JTAG
- RF transceiver: Lime Microsystems LMS7002M
- EEPROM Memory: 2x 128Kb EEPROMs for LMS MCU firmware and FPGA data (optional)
- FLASH Memory: 128Mb Flash memory for FPGA configuration
- Temperature sensor: LM75
- General user inputs/outputs:
 - 3x Dual colour (RG) LEDs
 - 8x + 2x FPGA GPIO pinheaders (3.3V) (optional)
- Connections:
 - USB 3.0 (type A) plug
 - Coaxial RF (SMA female) connectors
 - FPGA GPIO headers (unpopulated)
 - FPGA JTAG connector (unpopulated)
 - FAN (5V default or 3.3V) connector
- Clock system:
 - 40.00MHz on board VCTCXO
 - VCTCXO can be tuned by onboard DAC
 - Reference clock input and output connectors (U.FL)
 - Analog switch for clock source selection
- Board size: 69mm x 31.4mm
- Board power source: USB connector (5V)

For more information on the following topics, refer to the corresponding documents:

- FTDI FT601 USB 3.0 to FIFO Bridge datasheet
- Lattice ECP5 and ECP5-5G Family data sheet
- Lime Microsystems LMS7002M transceiver datasheet

Board Overview

The heart of the LimeSDR-Mini board is Lattice ECP5 (LFE5U-45F) FPGA. It's main function is to transfer digital data between the PC through a USB 3.0 connector. The block diagram for LimeSDR-Mini board is presented in the Figure 3.

Figure 3: LimeSDR Mini v2.4 Development Board Block Diagram

This section contains component location description on the board. LimeSDR-Mini board picture with highlighted connectors and main components is presented in Figure 4 and Figure 5.

Figure 4: LimeSDR Mini v2.4 board top connectors and main components

Figure 5: LimeSDR Mini v2.4 board bottom connectors and main components

Description of board components is given in the Table 1.

Table 1. Board components

Featured Devices				
Board Reference	Туре	Description		
IC1	RF transceiver	Lime Microsystems LMS7002M		
IC7	FPGA	Lattice Semiconductor's LFE5U (LFE5U-45F)		
IC8	USB 3.0 microcontroller	FTDI USB 3.0 to FIFO interface bridge chip FT6		
Miscellaneous device	s			
IC10	IC	Temperature sensor LM75		
Configuration, Status and Setup Elements				
J5	JTAG chain connector	FPGA programming pin header on the board ed		
LED1, LED2, LED3	Red-green status LEDs	User defined FPGA indication LED.		
General User Input/C	Output			
J3	Pin header	8x FPGA GPIOs, 3.3V, 0.05" pitch		
J4	Pin header	2x FPGA GPIOs on the board edge, 3.3V, 0.1" p		
J9	Pin header	5V (3.3V voltage can be chosen by resistors) fan		
Memory Devices				
IC2	IC	I ² C EEPROM Memory 128Kb (16 x 8), connecte		

IC12	IC	I ² C EEPROM Memory 128Kb (16K x 8), connec
IC15	IC	Quad SPI Flash Memory 128 Mb (16M x 8) con
Communication Ports	5	
J6	USB 3.0 connector	USB 3.0 (type A) plug
Clock Circuitry		
XO1	VCTCXO	40.00 MHz Voltage Controlled Temperature Coi
IC11	IC	10 bit DAC for TCXO (XT4) frequency tuning (de
IC16	IC	16 bit DAC for TCXO (XT4) frequency tuning (u
IC17	IC	Voltage reference (unpopulated)
IC9	IC	Clock buffer
IC20	IC	Analog switch
J8	U.FL connector	Reference clock input
J7	U.FL connector	Reference clock output
Power Supply		
IC14	IC	Switching regulator LMZ20501 (1.8V rail)
IC19	IC	Switching regulator LMZ20501 (3.3V rail)
IC13	IC	Linear regulator LD39100PUR (1.1V rail)
IC5	IC	Linear regulator LD39100PUR (1.25V rail)
IC6	IC	Linear regulator LD39100PUR (1.4V rail)
IC18	IC.	Linear regulator LD39100PUR (2.5V rail)

Board Description

More detailed description of LimeSDR-Mini board components and interconnections is given in the sections of this chapter.

RF transceiver digital connectivity

The interface and control signals are described below:

Digital Interface Signals: LENS7002 is using data bus LIMNS_DIQ1_D[11:0] and LMS_DIQ2_D[11:0], LMS_EN_IQSEL1 and LMS_EN_IQSEL2, LMS_FCLK1 and LMS_FCLK2, LMS_MCLK1 and LMS_MCLK2 signals to transfer data to/from FPGA. Indexes 1 and 2 indicate transceiver digital data PORT-1 or PORT-2. Any of these ports can be used to transmit or receive data. By default PORT-1 is selected as transmit port and PORT-2 is selected as receiver port. The FCLK# is input clock and MCLK# is output clock for LMS7002M transceiver. TXNRX signals sets ports directions. For LMS7002M interface timing details refer to LMS7002M transceiver datasheet page 12-13.

- LMS Control Signals: these signals are used for optional functionality:
 - LMS_RXEN, LMS_TXEN receiver and transmitter enable/disable signals connected to FPGA Bank 8 (VDIO_LMS_FPGA; 2.5V).
 - LMS_RESET LMS7002M reset connected to FPGA Bank 3 (VDIO_LMS_FPGA;
 2.5V).
- SPI Interface: LMS7002M transceiver is configured via 4-wire SPI interface;
 FPGA_SPI_SCLK, FPGA_SPI_MOSI, FPGA_SPI_MISO, FPGA_SPI_LMS_SS. The SPI interface controlled from FPGA Bank 3 (VDIO_LMS_FPGA; 2.5V).
- LMS I2C Interface: can be used for LMS EEPROM content modifying or for debug purposes. The signals LMS_I2C_SCL, LMS_I2C_DATA connected to EEPROM.

Table 2. RF transceiver (LMS7002) digital interface pins

		,	, 0	,
Chip pin (IC1)	Chip reference (IC1)	Schematic signal name	FPGA pin	FPGA I/O sta
E5	xoscin_tx	TxPLL_CLK		
AB34	MCLK1	LMS_MCLK1	H4	2.5V/3.3V
AA33	FCLK1	LMS_FCLK1	H3	2.5V/3.3V
V32	TXNRX1	LMS_TXNRX1	F1	2.5V/3.3V
U29	TXEN	LMS_TXEN	B7	2.5V/3.3V
1Y32	ENABLE_IQSEL1	LMS_EN_IQSEL1	F3	2.5V/3.3V
AG31	DIQ1_D0	LMS_DIQ1_D0	J2	2.5V/3.3V
AF30	DIQ1_D1	LMS_DIQ1_D1	L1	2.5V/3.3V
AF34	DIQ1_D2	LMS_DIQ1_D2	K1	2.5V/3.3V
AE31	DIQ1_D3	LMS_DIQ1_D3	K4	2.5V/3.3V
AD30	DIQ1_D4	LMS_DIQ1_D4	G3	2.5V/3.3V
AC29	DIQ1_D5	LMS_DIQ1_D5	F4	2.5V/3.3V
AE33	DIQ1_D6	LMS_DIQ1_D6	J1	2.5V/3.3V
AD32	DIQ1_D7	LMS_DIQ1_D7	H1	2.5V/3.3V
AC31	DIQ1_D8	LMS_DIQ1_D8	G4	2.5V/3.3V
AC33	DIQ1_D9	LMS_DIQ1_D9	F2	2.5V/3.3V
AB30	DIQ1_D10	LMS_DIQ1_D10	G1	2.5V/3.3V
AB32	DIQ1_D11	LMS_DIQ1_D11	H2	2.5V/3.3V
AM24	xoscin_rx	RxPLL_CLK		
P34	MCLK2	LMS_MCLK2	D2	2.5V/3.3V
R29	FCLK2	LMS_FCLK2	D1	2.5V/3.3V
U31	TXNRX2	LMS_TXNRX2		

V34	RXEN	LMS_RXEN	D6	2.5V/3.3V
R33	ENABLE_IQSEL2	LMS_EN_IQSEL2	C4	2.5V/3.3V
H30	DIQ2_D0	LMS_DIQ2_D0	A3	2.5V/3.3V
J31	DIQ2_D1	LMS_DIQ2_D1	C2	2.5V/3.3V
K30	DIQ2_D2	LMS_DIQ2_D2	A2	2.5V/3.3V
K32	DIQ2_D3	LMS_DIQ2_D3	B4	2.5V/3.3V
L31	DIQ2_D4	LMS_DIQ2_D4	C3	2.5V/3.3V
K34	DIQ2_D5	LMS_DIQ2_D5	B2	2.5V/3.3V
M30	DIQ2_D6	LMS_DIQ2_D6	D3	2.5V/3.3V
M32	DIQ2_D7	LMS_DIQ2_D7	B1	2.5V/3.3V
N31	DIQ2_D8	LMS_DIQ2_D8	A4	2.5V/3.3V
N33	DIQ2_D9	LMS_DIQ2_D9	C1	2.5V/3.3V
P30	DIQ2_D10	LMS_DIQ2_D10	C7	2.5V/3.3V
P32	DIQ2_D11	LMS_DIQ2_D11	A6	2.5V/3.3V
U33	CORE_LDO_EN	LMS_CORE_LDO_EN	C6	2.5V/3.3V
E27	RESET	LMS_RESET	A7	2.5V/3.3V
D28	SEN	FPGA_SPI_LMS_SS	N3	2.5V/3.3V
C29	SCLK	FPGA_SPI_SCLK	M3	2.5V/3.3V
F30	SDIO	FPGA_SPI_MOSI	L3	2.5V/3.3V
F28	SDO	FPGA_SPI_MISO	К3	2.5V/3.3V
D26	SDA	LMS_I2C_SDA		
C27	SCI	LMS 12C SCI		

RF path and control signals

LimeSDR-Mini RF path contains matching networks, RF switches, loopback variable attenuator and 2 SMA connectors (J1 - TX and J2 - RX) as shown in Figure 6.

Figure 6: LimeSDR Mini v2.4 RF diagram

RF transceiver TX and RX ports has its dedicated matching network which together determines the working frequency range. More detailed information about RF transceiver ports and matching network frequency ranges is listed in the Table 3.

Table 3. RF transceiver ports and matching networks frequency ranges

RF transceiver port	Frequency range
TX1_1	2 GHz - 2.6 GHz
TX1_2	30 MHz - 1.9 GHz
RX1_H	2 GHz - 2.6 GHz
RX1_W	700 MHz - 900 MHz

RF path control signals are described in the Table 4.

Table 4. RF path control signals

Component	Schematic signal name	I/O standard	FPGA pin	Descripti
RFSW_TX (SKY13411-374LF - IC3)	RFSW_TX_V1	3.3V	B10	V1 – higł
	RFSW_TX_V2	3.3V	C9	V1 - low
RFSW_RX	RFSW_RX_V1	3.3V	C11	V1 – higł
(SKY13411-374LF - IC3)	RFSW_RX_V2	3.3V	B11	V1 - low

Component	Schematic signal name	I/O standard	FPGA pin	Descripti
Variable attenuator	TX_LB_AT	3.3V	C8	High4
variable attenuator	TX IB SH	3 3V	B8	Attenuat

USB 3.0 controller

Software controls LimeSDR Mini board via the USB 3.0 controller (FTDI USB 3.0 to FIFO interface bridge chip FT601). The controller signals description showed below:

- FT_D[31:0] FTDI 32-bit data interface is connected to FPGA.
- FT_TXEn, FT_RXFn, FT_SIWUn, FT_WRn, FT_RDn, FT_OEn, FT_BE[3:0] FTDI interface control signals.
- FT_CLK FTDI interface clock. Clock from FTDI is fed to FPGA.

More information about USB 3.0 controller (FTDI) pins, schematic signal names, FPGA interconnections and I/O standards is given in Table 5.

Table 5. USB 3.0 controller (FTDI) pins

Chip pin (IC6)	Chip reference (IC6)	Schematic signal name	FPGA pin	I/O standard
40	DATA_0	FT_D0	A13	3.3V
41	DATA_1	FT_D1	B12	3.3V
42	DATA_2	FT_D2	B15	3.3V
43	DATA_3	FT_D3	C12	3.3V
44	DATA_4	FT_D4	A16	3.3V
45	DATA_5	FT_D5	A12	3.3V
46	DATA_6	FT_D6	D18	3.3V
47	DATA_7	FT_D7	B17	3.3V
50	DATA_8	FT_D8	F15	3.3V
51	DATA_9	FT_D9	D16	3.3V
52	DATA_10	FT_D10	D15	3.3V
53	DATA_11	FT_D11	C13	3.3V
54	DATA_12	FT_D12	H18	3.3V
55	DATA_13	FT_D13	B13	3.3V
56	DATA_14	FT_D14	J18	3.3V
57	DATA_15	FT_D15	A15	3.3V
60	DATA_16	FT_D16	B18	3.3V
61	DATA_17	FT_D17	C18	3.3V

Chip pin (IC6)	Chip reference (IC6)	Schematic signal name	FPGA pin	I/O standard
62	DATA_18	FT_D18	A17	3.3V
63	DATA_19	FT_D19	K18	3.3V
64	DATA_20	FT_D20	C15	3.3V
65	DATA_21	FT_D21	L18	3.3V
66	DATA_22	FT_D22	F18	3.3V
67	DATA_23	FT_D23	C16	3.3V
69	DATA_24	FT_D24	G16	3.3V
70	DATA_25	FT_D25	D13	3.3V
71	DATA_26	FT_D26	G18	3.3V
72	DATA_27	FT_D27	F16	3.3V
73	DATA_28	FT_D28	C17	3.3V
74	DATA_29	FT_D29	F17	3.3V
75	DATA_30	FT_D30	K15	3.3V
76	DATA_31	FT_D31	K17	3.3V
58	CLK	FT_CLK	D17	3.3V
4	BE_O	FT_BEO	L15	3.3V
5	BE_1	FT_BE1	J17	3.3V
6	BE_2	FT_BE2	K16	3.3V
7	BE_3	FT_BE3	H17	3.3V
8	TXE_N	FT_TXEn	M16	3.3V
9	RXF_N	FT_RXFn	H16	3.3V
10	SIWU_N	FT_SIWUn		3.3V
11	WR_N	FT_WRn	J16	3.3V
12	RD_N	FT_RDn	H15	3.3V
13	OE_N	FT_OEn	L16	3.3V
15	RESET_N	FT_RESETn	M17	3.3V
16	WAKFP N	FT WAKFIJPn	G15	3 3V

Indication LEDs

LimeSDR Mini board comes with three dual colour (red and green (RG)) indication LEDs. These LEDs are soldered on the top of the board near RF connectors.

Figure 7: LimeSDR Mini v2.4 indication LEDs (top and bottom)

LEDs are connected to FPGA and their function may be programmed according to the user requirements. Default function of LEDs and related information is listed in Table 6.

Table 6. Default LED functions

Board reference	Schematic name	Board label	FPGA pin	Comment
LED1	FPGA_LED1_R	LED1	V17	Board status: Blinking green = LMI
LEDI	FPGA_LED1_G		R16	Red = USB control p
LED2	FPGA_LED2_R	LED2	R18 (FPGA_GPIO5)	RX status: Green = DIQ data re
LED2	FPGA_LED2_G		M18 (FPGA_GPIO4)	Off = DIQ data rece Shared with FPGA_
LED3	FPGA_LED3_R	LED3	R17 (FPGA_GPIO7)	TX status: Red = transmitting D
LEDS	FPGA_LED3_G		T17 (FPGA_GPIO6)	Off = no activity. Shared with FPGA_C

Low speed interfaces

In Table 7, Table 8 and Table 9 are listed FPGA_SPI pins, schematic signal names, FPGA interconnections and I/O standards.

Table 7. FPGA_SPI interface pins

Schematic signal name	FPGA pin	I/O standard	Comment
FPGA_SPI_SCLK	M3	2.5V /3.3V	Serial Clock (FPGA output)
FPGA_SPI_MOSI	L3	2.5V /3.3V	Data (FPGA output)
FPGA_SPI_MISO	K3	2.5V /3.3V	Data (FPGA input)
FPGA_SPI_LMS_SS	N3	2.5V /3.3V	IC1 (LMS7002) SPI slave select (FPGA
FPGA_SPI_DAC_SS	L4	2.5V /3.3V	IC11 SPI slave select (FPGA output)

In the table below are listed FPGA_CFG_SPI pins, schematic signal names, FPGA interconnections and I/O standards.

Table 8. FPGA_CFG_SPI interface pins

Schematic signal name	FPGA pin	I/O standard	Comment
FPGA_CFG_SPI_SCLK	U16	3.3V	Serial Clock (FPGA output)
FPGA_CFG_SPI_MOSI	U18	3.3V	
FPGA_CFG_SPI_MISO	T18	3.3V	
FPGA_CFG_SPI_SS	U17	3.3V	IC15 SPI slave select (FPGA output)

In the table below are listed FPGA_I2C interface slave devices and their other information.

Table 9. FPGA_I2C interface pins

I2C slave device	Slave device	I2C address	I/O standard	Comment
IC10	Temperature sensor	1001000RW	3.3V	LM75
IC12	EEPROM	1010000RW	3.3V	M24128

GPIO connectors

8 GPIOs from FPGA are connected to 10 pin 0.05" header. Additional 2 pins are dedicated for power. FPGA_GPIO[7:4] are shared with TX and RX LEDs. Remove solder from solder bridges to disconnect LEDs from GPIOs lines. In Table 10 is listed FPGA_GPIO (J3) information.

Table 10. FPGA GPIO connector (J3) pins

Connector pin	Schematic signal name	FPGA pin	I/O standard	Comment
1	FPGA_GPIO0	N15	3.3V	
2	FPGA_GPIO1	N18	3.3V	
3	FPGA_GPIO2	N16	3.3V	
4	FPGA_GPIO3	N17	3.3V	
5	FPGA_GPIO4	M18	3.3V	Shared with FPGA_I
6	FPGA_GPIO5	R18	3.3V	Shared with FPGA_I
7	FPGA_GPIO6	T17	3.3V	Shared with FPGA_I
8	FPGA_GPIO7	R17	3.3V	Shared with FPGA_I
9	GND			Ground pin
10				Selectable power ne

Another 2 GPIOs are connected to 5 header on the board edge. In Table 11 is listed FPGA_EGPIO (J4) information.

Table 11. FPGA EGPIO connector (J4) pins

Connector pin	Schematic signal name	FPGA pin	I/O standard	Comment
1	GND			Ground pin
2	FPGA_EGPIO0	A10	3.3V	
3	FPGA_EGPIO1	A8	3.3V	
4	VCC3P3		3.3V	Power net (3.3V)
5	VCC5P0		5.0V	Power net (5.0V)

JTAG interface

To debug FPGA design, flash bitstream to FPGA and/or Flash memory JTAG is used. It is located on the PCB top side (see Figure 4: LimeSDR Mini v2.4 board top connectors and main components) and attaches to the programmer using 7-pin, 0.1" spaced JTAG connector J5. JTAG connector pins, schematic signal names, FPGA interconnections and I/O standards are listed in Table 12.

Table 12. JTAG connector J5 pins

Connector pin	Schematic signal name	FPGA pin	I/O standard	Comment
1	GND			Ground
2	TCK	U13	3.3V	Test Clock
3	TDO	V14	3.3V	Test Data Out
4	TMS	V13	3.3V	Test Mode Select
5	TDI	T13	3.3V	Test Data In
6	VCC3P3			Power (3.3V)
7	VCC5P0			Power (5.0V)

More information about JTAG programming can be found in JTAG Programming.

Board temperature control

LimeSDR-Mini has integrated temperature sensor which controls FAN to keep board in operating temperature range. FAN must be connected to J9 (0.1" pitch) connector. FAN control voltage y default is 5V, but it can be changed to 3.3V by resistors.

Fan will be turned on if board will heat up to 55°C and FAN will be turned off if board will cool down to 45°C.

Figure 8: FAN control temperature hysteresis

Clock distribution

LimeSDR-Mini board clock distribution block diagram is presented in Figure 9. LimeSDR-Mini board has onboard 40.00 MHz VCTCXO that is reference clock for RF transceiver and FPGA PLLs. Board clock distribution block diagram is presented in Figure 9.

Figure 9: LimeSDR Mini v2.4 board clock distribution block diagram

Rakon E7355LF 40 MHz voltage controlled temperature compensated crystal oscillator (VCTCXO) is main board clock source. VCTCXO frequency can be tuned by using DAC (IC11 10 bit or IC16 16 bit (unpopulated)). Main VCTCXO parameters are listed in Table 13.

Table 13. Rakon E7355LF VCTCXO main parameters

Frequency parameter	Value
Calibration (25°C ± 1°C)	± 1 ppm max
Stability (-40 to 85 °C)	± 0.5 max

Frequency parameter	Value	
Long term stability (1 year, 10 years)	± 2 ppm max, ± 4 ppm max	
Control voltage range	0.5V 2.5V	
Frequency tuning	± 7 ppm min, ± 15 ppm max	
Slope	+9 ppm/V	

VCTCXO clock and external reference clock connector J8 (REF_CLK_IN) are connected to analog switch for clock source selection. Selected clock source is fed to clock buffer IC9. Buffered clock is connected to RF transceiver and FPGA. Buffered clock is also connected to connector J7 (REF_CLK_OUT) and can be fed to external hardware for synchronisation.

Main board clock lines and other related information are listed in Table 14

Table 14. LimeSDR Mini v2.4 main clock lines

Source	Schematic signal name	I/O standard	FPGA pin	Descriptio
External	REF_CLK_IN	2.5V/3.3V		External re
Clock buffer (IC9)	REF_CLK_OUT	3.3V		Reference
Clock buffer (IC9)	LMK_CLK	3.3V	A9	Reference
	RxPLL_CLK	1.8V		Reference
	TxPLL_CLK	1.8V		Reference
RF transceiver (IC1)	LMS_MCLK1	2.5V/3.3V	H4	
N transceiver (IC1)	LMS_FCLK1	2.5V/3.3V	H3	
	LMS_MCLK2	2.5V/3.3V	D2	
	LMS_FCLK2	2.5V/3.3V	D1	
USB 3.0 controller (IC8)	FT_CLK	3.3V	D17	Clock outp
4				•

Power distribution

LimeSDR-Mini board is powered from USB port (5V). LimeSDR-Mini board power delivery network consists of different power rails with different voltages, filters, power sequences. LimeSDR-Mini board power distribution block diagram is presented in Figure 10.

Figure 12: LimeSDR Mini v2.4 board power distribution block diagram