

tema-15.pdf Apuntes completos

- 2° Algorítmica
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

Teoría de Algoritmos

Capítulo 5: Programación Dinámica

Tema 15: Algoritmos basados en P.D.

- El Problema de la Mochila
- •El Problema del Camino Mínimo:
- Algoritmo de Floyd
- •El Problema del Viajante de Comercio
- Otros ejemplos.

Aplicación de la P.D. al Diseño de Algoritmos

PD se aplica en cuatro fases

- Naturaleza n-etápica del problema
- Verificación del POB
- Planteamiento de una recurrencia
- Cálculo de la solución (enfoque adelantado o atrasado)

Las desarrollaremos sobre

- Problema del Camino Mínimo
- Problema de la Mochila
- El Problema del Viajante

A

90

m

0

S

El Problema de la Mochila

a

1. Naturaleza n-etápica: El Problema de la Mochila

- · El Problema de la Mochila es un ejemplo clásico de problema n-etápico, y por tanto de PD
- · En el PM su solución puede verse como el resultado de una sucesión de decisiones:
 - Tenemos que decidir los valores de x_i , $1 \le i \le n$.
- Así, primero tomaríamos una decisión sobre x_1 , luego sobre x_2 , después sobre x_3 , etc.
- · Una sucesión optimal de decisiones, verificando las restricciones del problema, será aquella que maximice la función objetivo.

0

2. Comprobación del P.O.B.: Problema de la Mochila 0-1

· Notamos M(1,j,Y) al siguiente problema,

Max:
$$\sum_{1 \le i \le j} p_i x_i$$

Sujeto a: $\sum_{1 \le i \le j} w_i x_i \le y$
 $x_i = 0, 1; 1 \le i \le j$

el problema de la mochila 0-1 se representa por M(1,n,M).

- Sea y_1 , y_2 , ..., y_n una sucesión optimal de valores 0-1 para x_1 , x_2 , ..., x_n .
- Si $y_1 = 0$, entonces $y_2, ..., y_n$ debe ser una sucesión optimal para el problema M(2,n,M).
- Si no lo es: $y_1, y_2, ..., y_n$ no es una sucesión optimal de M(1, n, M).

0

2. Comprobación del P.O.B.: Problema de la Mochila 0-1

- Si $y_1 = 1$, entonces y_2 , ..., y_n debe ser una sucesión optimal para $M(2,n, M-w_1)$.
- Si no lo fuera, habría otra sucesión 0-1, z₂,
 z₃, ..., z_n tal que

$$\textstyle \sum_{2 \leq i \leq n} \, w_i z_i \leq M - w_1 \ y \, \sum_{2 \leq i \leq n} \, p_i z_i \, > \sum_{2 \leq i \leq n} \, p_i y_i$$

- y por tanto la sucesión $y_1, z_2, z_3, ..., z_n$ es una sucesión para el problema de partida con mayor valor.
- Por tanto puede aplicarse el POB

3. Construcción de una ecuación recurrente: Problema de la Mochila

- Consideremos ahora el Problema de la Mochila 0-1.
- Sea f_j(y) el valor de una solución optimal del problema Mochila (j+1, n, y).
- Claramente $f_0(M)$ es el valor de una solución optimal de Mochila (1,n,M).
- Las posibles decisiones para x_1 son 0 o 1 $(D_1 = \{0,1\})$.
- A partir del POB se sigue que $f_0(M) = Max \{f_1(M), f_1(M-w_1) + p_1\}$

Existen muchisimos algoritmos para resolver este problema, pero es NP completo

Los algoritmos conocidos que lo resuelven son exponenciales. No se conocen algoritmos polinomiales que lo resuelvan

- Podemos obtener una solución para el problema de la mochila tomando una sucesión de decisiones sobre las variables $x_1, ..., x_n$.
- Una decisión sobre la variable x_i supone decidir que valor (0 o 1) ha de tomar.
- Supongamos que las decisiones sobre las x_i se hacen en el orden $x_n, ..., x_1$.
- Tras una decisión sobre x_n nos podemos encontrar ante una de estas dos posibilidades:
 - la capacidad restante de la mochila es M, y no se ha producido incremento de beneficio, o bien
 - la capacidad restante es M w_n y hemos aumentado el beneficio en p_n .

Un enfoque de solución para el Problema de la Mochila

 Sea f_j(X) el valor de una solución optimal del problema Mochila(1,j,X). Como se verifica el Principio de Optimalidad, obtenemos,

 $f_n(M) = Max \{f_{n-1}(M), f_{n-1}(M-w_n) + p_n \}$ que para i > 0 arbitrario, se generaliza a, $f_i(X) = Max \{f_{i-1}(X), f_{i-1}(X-w_i) + p_i \}$

• Esta ecuación puede resolverse para $f_n(M)$ teniendo en cuenta que $f_0(X) = 0$ para todo X, y que $f_i(x) = \infty$, x < 0. Entonces se pueden calcular sucesivamente f_1 , f_2 , ..., f_n .

n

m

a

Ejemplo:

$$n=3$$
 $C=15$
 $(b_1,b_2,b_3)=(38,40,24)$
 $(p_1,p_2,p_3)=(9,6,5)$

Recordar la estrategia voraz:

- Tomar siempre el objeto que proporcione mayor beneficio por unidad de peso.
- Se obtiene la solución:

$$(x_1, x_2, x_3) = (0,1,1)$$
, con beneficio 64

- Sin embargo, la solución óptima es:

$$(x_{1}, x_{2}, x_{3}) = (1, 1, 0)$$
, con beneficio 78

Por tanto, la estrategia voraz no calcula la solución óptima del problema de la mochila 0-1.

- Para evitar la repetición de cálculos, las soluciones de los subproblemas se deben almacenan en una tabla.
 - Matriz $n \times C$ cuyo elemento (j,c) almacena $\bar{g}_j(c)$
 - Para el ejemplo anterior:

$$n=3$$
 $C=15$
 $(b_1,b_2,b_3)=(38,40,24)$
 $(p_1,p_2,p_3)=(9,6,5)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$p_1 = 9$		_			$\overline{}$											
$p_2 = 6$																
$p_3 = 5$	0	0	0	0	0	24	40	40	40	40	40	64	64	64	64	78

$$\tilde{g}_j(c) = \max\left\{\tilde{g}_{j-1}(c), \ \tilde{g}_{j-1}(c-p_j) + b_j\right\}$$

Programación os

El Problema del Camino Mínimo

Algoritmo de Floyd

Di námi ca

WUOLAH

1. Naturaleza n-etápica: El Problema del Camino Mínimo

- El Problema del Camino Mínimo es otro ejemplo clásico de problema de PD
- En este caso, para encontrar ese camino desde un vértice i a otro j en un grafo G, veríamos que vértice debe ser el segundo, cual el tercero, etc. hasta alcanzar el j.
- Una sucesión optimal de decisiones proporcionará entonces el camino de longitud mínima.

Por tanto, ambos problemas tienen una clara naturaleza n-etápica

2. Comprobación del P.O.B.: Problema del Camino mínimo

- · Sea i, i₁, ... i_k, j el camino mínimo desde i hasta j.
- Comenzando con el vértice inicial i, se ha tomado la decisión de ir al vértice i₁.
- Como resultado, ahora el estado del problema esta definido por el vértice i₁, y lo que se necesita es encontrar un camino desde i₁ hasta j.
- Está claro que la sucesión i₁, i₂, ...ik, j debe constituir un camino mínimo entre i₁ y j. Si no:
- Sea $i_1, r_1, ..., r_q$, j un camino más corto entre i_1 y j
- Entonces i, i_1 , r_1 , r_2 , ... r_q , j es un camino entre i y j que es más corto que el camino i, i_1 , i_2 , ... i_k , j.
- Por tanto el POB también puede aplicarse a este problema.

3. Construcción de una ecuación recurrente: Caminos Mínimos

- Sea A_i el conjunto de los vértices adyacentes al vértice i.
- Para cada vértice k∈A_i sea Γ_k el camino mínimo desde k hasta j.
- Entonces el camino más corto desde i hasta j es el más corto de los caminos del conjunto $\{i, \Gamma_k / k \in A_i \}$
- · La recurrencia es trivial en este caso:

$$D_{k}(i,j) = Min \{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j)\}$$

4. Caminos mínimos: Algoritmo de Floyd

- Sea G = (N,A) un grafo dirigido en el que N es su conjunto de nodos y A el de sus arcos. Cada arco tiene asociada una longitud, no negativa.
- El problema consiste en determinar el camino de longitud mínima que una cualquier par de nodos del grafo.
- Supondremos que los nodos están numerados de 1 a n, N = {1,2,...,n} y que la matriz L da la longitud de cada arco, de modo que L(i,i) = 0, L(i,j) \geq 0 si i es distinto de j, y L(i,j) = ∞ si no existe el arco (i,j).
- El POB se aplica del siguiente modo:
 - Si k es un nodo en el camino mínimo que une i con j, entonces la parte de ese camino que va de i hasta k, y la del que va de k hasta j, es también optimal.

4. Caminos mínimos: Algoritmo de Floyd

- · El Algoritmo consiste en lo siguiente.
- Construimos una matriz D que da la longitud del camino mínimo entre cada par de nodos.
- · El algoritmo comienza asignando a D, L y, entonces, realiza n iteraciones.
- Tras la iteración k, D da la longitud de los caminos mínimos que solo usan como nodos intermedios los del conjunto {1,2,...,k}.
- Después de n iteraciones tendremos, por tanto la solución buscada.

4. Caminos mínimos: Algoritmo de Floyd

- En la iteración k, el algoritmo tiene que chequear, para cada par de nodos (i,j), si existe o no un camino que pase a través de k que sea mejor que el actual camino minimal que solo pasa a través de los nodos {1,2,...,k-1}.
- Sea D la matriz después de la k-ésima iteración. El chequeo puede expresarse como,

$$D_k(i,j) = Min \{D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j)\}$$

 donde hemos hecho uso del POB para calcular la longitud del camino más corto que pasa a través de k.

0

a

4. Caminos mínimos: Algoritmo de Floyd

```
Procedimiento Floyd
Begin
       For i := 1 to n do
           For j := 1 to n do
              D[i,j] := L[i,j];
       For i := 1 to n do
              D[i,i] := 0;
       For k := 1 to n do
         For i := 1 to n do
            For j := 1 to n do
                     If D[i,k] + D[k,j] < D[i,j]
                     Then D[i,j] := D[i,k] + D[k,j]
 End;
```

- El algoritmo consume un tiempo $O(n^3)$.
- También podemos usar el algoritmo de Dijkstra, entonces aplicaríamos ese algoritmo n veces, eligiendo un nodo diferente como origen cada vez.
- Si queremos usar la versión de Dijkstra que trabaja con una matriz de distancias, el tiempo de cálculo total está en $n \times O(n^2)$, es decir en $O(n^3)$.
- El orden es el mismo que para el algoritmo de Floyd, pero la simplicidad de este supone que, en la práctica, probablemente sea más rápido.

0

m

0

S

4. Caminos mínimos: Algoritmo de Floyd

Si queremos saber por donde va el camino más corto

```
Procedimiento Floyd-Warshall
Begin
                                                     Procedimiento Camino
   For i := 1 to n do
                                                     Begin
                                                       k := P[i,j];
         For j := 1 to n do begin
                                                       If k = 0 then Return;
             D[i,j] := L[i,j];
                                                       Path (i,k);
             P[i,j] := 0
                                                       Writeln (k);
         End;
                                                       Path (k,j)
                                                     End:
   For i := 1 to n do
         D[i,i] := 0;
   For k := 1 to n do
        For i := 1 to n do
          For j := 1 to n do
               If D[i,k] + D[k,j] < D[i,j] then begin
                   D[i,j] := D[i,k] + D[k,j];
                 P[i,j] := k
              End
End;
```

0

m

0

S

a

El Problema del Viajante de Comercio

El Problema del Viajante de Comercio

- Dado un grafo con longitudes no negativas asociadas a sus arcos, queremos encontrar el circuito más corto posible que comience y termine en un mismo nodo, es decir, un camino cerrado que recorra todos los nodos una y solo una vez y que tenga longitud minimal (el circuito hamiltoniano minimal)
- Sea G = (N,A) un grafo dirigido, $N = \{1,2,...,n\}$, y L_{ij} la matriz de distancia,
 - L(i,i) = 0,
 - $L(i,j) \ge 0$ si i es distinto de j, y
 - $L(i,j) = \infty$ si no existe el arco (i,j).

a

El Problema del Viajante de Comercio

- Suponemos, sin pérdida de generalidad, que el circuito comienza y termina en el nodo 1. El problema es claramente n-etápico
- El circuito, está constituido por un arco (1, j), seguido de un camino de j a 1 que pasa exactamente una vez a través de cada nodo de N {1, ,j}.
- Si el circuito es optimal, es decir, de longitud mínima, entonces ese es el camino de j a 1 y vale el principio de Optimalidad.

El Problema del Viajante de Comercio

- Sea $S \subseteq N \{1\}$ un conjunto de nodos y consideremos un nodo más $i \in N S$
- Está permitido que i = 1 solo si S = N {1}.
- Definimos el valor g(i,S) para cada índice i, como la longitud del camino más corto desde el nodo i al nodo 1 que pasa exactamente una vez a través de cada nodo de S.
- Usando esta definición,
 g(1, N {1})
- · es la longitud de un circuito optimal.

El Problema del Viajante de Comercio

· Por el POB vemos que

$$g(1, N-\{1\}) = Min_{2 \le j \le n} [L_{1j} + g(j, N - \{1,j\})]$$

 Mas generalmente, si i no es igual a 1, el conjunto S no es vacío y además es distinto de N - {1} e i∉S,

$$g(i,S) = Min_{j \in S} [L_{ij} + g(j, S - \{j\})]$$

- · Además,
- $g(i,\varnothing) = L_{i1}$, i = 2,3,...n
- Por tanto, los valores de g(i,S) se conocen cuando S es vacío

El Problema del Viajante de Comercio: Solución operativa

· Podemos aplicar

$$g(i,S) = Min_{j \in S} [L_{ij} + g(j, S - \{j\})]$$

para calcular g en todos los conjuntos S que
contienen exactamente un nodo (que no es el 1).

- Luego aplicamos la misma fórmula para calcular g en todos los conjuntos S que contienen dos nodos (distintos del 1), y así sucesivamente.
- Cuando se conoce el valor de g[j,N {1,j}] para todos los nodos j, excepto para 1, utilizamos g(1, N-{1}) = Min $_{2 \le j \le n}$ [L $_{1j}$ + g(j, N {1,,j})]
- para calcular $g(1,N \{1\})$, y definitivamente resolver el problema

El Problema del Viajante de Comercio: Tiempo de ejecución

- · El tiempo que consumirá este algoritmo se hallará a partir de las expresiones anteriores.
- Para calcular $g(j,\emptyset)$ hay que hacer n-1 consultas de una tabla.
- Para calcular q(i,S)
- $g(i,S) = Min_{j \in S} [L_{ij} + g(j, S \{j\})]$ Hay qye calcular todas las g(i,S) tales que $1 \le |S| = k \le n-2$, lo que supone realizar,

$$(n-1) \times C_{n-2,k} \times k$$

adiciones.

De ellas.

a

El Problema del Viajante de Comercio: Tiempo de ejecución

- De esas $(n-1) \times C_{n-2,k} \times k$ adiciones,
 - n-1 corresponden a los posibles valores que puede tomar la variable i,
 - k provienen de los valores que puede tomar la variable j,
 - y las combinaciones restantes son todos los conjuntos que podemos formar de n-2 elementos tomados de k en k.
- Calcular g(1, N-{1}) implica n-1 adiciones.
- Estas operaciones pueden usarse como referencia para calcular la eficiencia del algoritmo., y así el tiempo que se lleva el algoritmo en cálculos es,

$$O[2(n-1) + \sum_{k=1..(n-2)} (n-1) \times k \times C_{n-2,k}] = O(n^2 2^n)$$

ya que

$$\sum_{k=1..r} k \times C_{r,k} = r2^{r-1}$$

El Problema del Viajante de Comercio: Tiempo de ejecución

Ese tiempo es bastante considerable, pero mejor que O(n!) que es el que proporciona la fuerza bruta.

	Tiempo	Tiempo			
N	Método directo	PD			
	n!	n²2n			
5	120	800			
10	3.628.800	102.400			
15	1.31x10 ¹²	7.372.800			
20	2.43x10 ¹⁸	419.430.400			

Por ejemplo, 20^22^{20} microsegundos es menos de siete minutos, mientras que 20! microsegundos supera las 77 mil años.

El Problema del Viajante de Comercio: Ejemplo

· Consideremos el grafo

$$g(2,\varnothing)=c_{21}=5; g(3,\varnothing)=c_{31}=6; g(4,\varnothing)=c_{41}=8$$

Y luego,

$$g(2,{3}) = c_{23} + g(3,\varnothing) = 15;$$
 $g(2,{4}) = 18$

$$g(3,\{2\}) = 18;$$
 $g(3,\{4\}) = 20$

$$g(4,\{2\}) = 13;$$
 $g(4,\{3\}) = 15$

El Problema del Viajante de Comercio: Ejemplo

• Calculamos g(i,S) para conjuntos S de cardinal 2, $i \neq 1, 1 \notin S$ e $i \notin S$:

$$g(2, \{3,4\}) = Min [c_{23} + g(3,\{4\}), c_{24} + g(4,\{3\})] = 25$$

 $g(3, \{2,4\}) = Min [c_{32} + g(2,\{4\}), c_{34} + g(4,\{2\})] = 25$
 $g(4, \{2,3\}) = Min [c_{42} + g(2,\{3\}), c_{43} + g(3,\{2\})] = 23$
• y finalmente,

$$g(1,\{2,3,4\}) = Min [c_{12} + g(2,\{3,4\}), c_{13} + g(3,\{2,4\}), c_{21} + g(4,\{2,3\})] =$$

$$= Min \{35,40,43\} = 35$$

que es la longitud del circuito buscado.

0

m

0

S

a

El Problema del Viajante de Comercio: otro ejemplo

0

S

El Problema del Viajante de Comercio: otro ejemplo

Sea k = 3. g(3,{1,2,3,4}-{3,1}) es el camino más corto de 3 a 1 que pasa por 2 y 4

Y cual es ese camino?

Simplemente es el más corto de los posibles: $c_{3i}+g(i,V-\{3,1,i\})$ con i=2 y 4.

0

m

0

S

a

El Problema del Viajante de Comercio: otro ejemplo

Así,

$$c_{32} + g(2,\{4\}) =$$

 $= 12 + (9+10)$
 $= 31$
o
 $c_{34} + g(4,\{2\}) =$
 $= 16 + (17+15)$
 $= 48$
Luego
 $g(3,\{2,4\}) = 31$.

r o g r a m a c i ó n

D

n á

m

a

El Problema del Viajante de Comercio: otro ejemplo

Así $g(1,\{1,2,3,4\}-1)$ podría ser

$$c_{13} + g(3,{2,4}) =$$
= 8 + 31
= 39.

Pero para resolver el problema necesitamos encontrar tambien g(2,{3,4}) y g(4,{2,3}) y escoger el menor.

0

m

0

S

a

El Problema del Viajante de Comercio: otro ejemplo

Definitivamente, la solución es:

$$g(1,{2,3,4}) = c_{12} + g(2,{3,4})$$

= 6 + 27
= 33.

0

El Problema del Viajante de Comercio: otro ejemplo

a

inversiones

D

n

m

a

Se quieren asignar 12 personas a 3 tareas. La asignación de m personas a la tarea i produce f_i(m) según la siguiente tabla,

m	f ₁ (m)	f ₂ (m)	f ₃ (m)		
0	0	0	0		
1	3	2	2		
2	5	4	3		
3	6	5	5		
4	7	7	6		
5 ó más	7	8	6		

¿Como debería realizarse la asignación para que lo producido sea máximo?.

Tenemos que, $F_{3}(12) = \text{Max}_{y \leq 12} \left\{ f_{3}(y) + F_{2}(12 - y) \right\}$ $F_{2}(n) = \text{Max}_{y \leq n} \left\{ f_{2}(y) + f_{1}(n - y) \right\}$ donde n puede valer 12, 11, 10, etc. Asi, por ejemplo, $F_{2}(8) = \text{Max}_{y \leq 8} \left\{ 2 + 7, 4 + 7, 5 + 8, 7 + 7, 8 + 6, 7 + 5, \ldots \right\}$ Con lo que,

N	12	11	10	9	8	7	6
F ₂ (n)	15	15	15	15	14	13	12

 $F_3(12) = Max \{15, 15+2, 15+3, 15+5, 14+6, 13+6, ...\} = 20$ Así la solución optimal se alcanza al asignar 4,5,3 o 3,5,4 o 4,4,4; produciéndose en todos los casos un beneficio de 20.

D