iHeartB

Daniel Tavera - Brayan Rojas Team IA1

EKG signal processing for heart disease classification

What's an EKG?

Electrocardiogram (ECG or EKG)

What do people die from? Causes of death globally in 2019

Our World in Data

The size of the entire visualization represents the total number of deaths in 2019: 55 million. Each rectangle within it is proportional to the share of deaths due to a particular cause.

74% died from noncommunicable diseases

14% died from infectious diseases

33% died from heart diseases

Heart attacks, strokes, and other cardiovascular diseases.

Per year: 18.5 million deaths Per average day: 50,850 deaths

Per year: 10 million deaths

and others

7% Chronic respiratory diseases COPD, Asthma, and others

4.5% Digestive diseases

Cirrhosis and others

5.7% Other noncommunicable diseases

18% Cancers

Per average day: 27,600 deaths

2.7% Diabetes

3.9% Neurological diseases Alzheimer's, Parkinson's, epilepsy,

4.4% Pneumonia

and other lower respiratory diseases

Per year: 2.5 million deaths Per average day: 6800 deaths

2.7% Diarrheal diseases

Per year: 1.5 million deaths Per average day: 4200 deaths

2% Tuberculosis

1.5% HIV/AIDS

1.1% Malaria

2.1% other infectious diseases

3.3% Neonatal deaths

babies who died within the first 28 days of life

0.4% Maternal deaths

0.4% Nutritional deficiencies

2.3% Transport accidents

Per year: 1.3 million deaths Per average day: 3500 deaths

3.1% Other accidents ncluding falls, drownings, and fires.

1.3% Suicides Per year: 760,000 de

0.7% Homicides Per year: 415,000 deaths

0.2% War battle deaths

0.05% Terrorism

Why?

Less than 1% died due to interpersonal violence

Clasificar 14 tipos de arritmias cardiacas a partir de beats en señales de EKGs

PTB Diagnostic ECG Database

PhysioNet
The Research Resource for Complex Physiologic Signals

Data Software Challenges Tutorials

549 recordings 290 patients

0	Bundle branch block	
1	Cardiomyopathy	
2	Dysrhythmia	
3	Healthy control	
4	Heart failure (NYHA 2)	
5	Heart failure (NYHA 3)	
6	Heart failure (NYHA 4)	
7	Hypertrophy	
8	Myocardial infarction	
9	Myocarditis	
10	Palpitation	
11	Stable angina	
12	Unstable angina	
13	Valvular heart disease	
14	n/a	

Beat (512 vals)

Architecture Model

D N N

Results

Ephoc	48	10
Loss	0.9901	0.4595
Val Loss	1.0304	0.8605
Accuracy	0.6571	0.84
Val Accuracy	0.666	0.729
	DNN	CNN

DNN

CNN

CNN

Forward

- Mejoramiento de la presicion del modelo
- Coneccion con otros datos médicos
- Integracion con dispositivos wearbles

Referencias

Ge D, Srinivasan N, Krishnan SM. Cardiac arrhythmia classification using autoregressive modeling. Biomed Eng Online. 2002 Nov 13;1:5. doi: 10.1186/1475-925x-1-5. PMID: 12473180; PMCID: PMC149374.

Bousseljot R, Kreiseler D, Schnabel, A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Technik, Band 40, Ergänzungsband 1 (1995) S 317

Thanks!

Anexos

CNN

Anexos

DNN

Comparison results with the state of the art. Authors Class Feature Method Performance results (%) Sens. Spec. Pre. Acc. Rajkumar, Ganesan & Lavanya (2019) rhythm 1D-CNN 93.60 rhythm <u>Yıldırım, Pławiak & Rajendra Acharya</u> 17 1D-CNN 91.30 83.90 85.4 (2018) Nannavecchia et al. (2021) beat 1D-CNN 89.51 87.79 86.78 21

Our Model Accuracy 72.9