Assignment: ECO764A(Financial Econometrics)

Team Members

Apoorv Chauhan	180129
Dwaipayan Karak	180257
Himank Kothari	180291
Krishn Kumar Maddhesiya	180361
Rakesh Kumar Parewa	180587
Rohit Kumar	180624
Shivani Jha	180727
Vineet Kumar	180867
Vishvajeet Kumar Gond	180875

ABSTRACT

Our aim is to calculate and analyse the Capital Asset Pricing Model and Fama and French 3 factor model and Carhart four-factor model for A proper understanding of the working of above thre models is necessary to our assessment and final results. Later, we will also examine the results obtain from various models and how they are relevant to our analysis.

Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM) describes the relationship between systematic risk and expected return for assets, particularly stocks. It is widely used throughout finance for pricing risky securities and generating expected returns for assets given the risk of those assets and cost of capital

$$R_{it} - R_{ft} = \alpha_p + \beta_{mkt}(R_{mt} - R_{ft})$$
 where,

 $(R_{it} - R_{ft})$ = expected return of investment,

 α_{it} = risk-free rate

 β_{mkt} = beta of the investment

 $(R_{mt} - R_{ft}) = market risk premium$

Fama and French Three Factor Model

The Fama and French Three-Factor Model (or the Fama French Model for short) is an asset pricing model developed in 1992 that expands on the capital asset pricing model (CAPM) by adding size risk value risk factors to the market risk factor in CAPM. This model considers the fact that value and small-cap stocks outperform markets on a regular basis. By including these two additional factors, to model adjusts for this outperforming tendency, which is thought to make it a better tool for evaluate manager performance. The formula for the Fama French model is

$$R_{it} - R_{ft} = \alpha_p + \beta_{mkt}(R_{mt} - R_{ft}) + \beta_{SMT}(SMB) + \beta_{HML}(HML) \ where,$$

R_{it} = Total return of a stock or portfolio i at time t

R_{ft}= risk free rate of return at time t

R_{mt}= total market portfolio return at time t

 $(R_{pt} - R_{ft})$ = expected excess return

 $(R_{mt} - R_{ft})$ = excess return on the market portfolio (index)

SMB= size premium (small minus big)

HML= value premium (high minus low)

Carhart Four Factor model

The Carhart four-factor model is an extra factor addition in the Fama-French three-factor model including a momentum factor for asset pricing of stocks, proposed by Mark Carhart. Momentum in stock is described as the tendency for the stock price to continue rising if it is going up and to contideclining if it is going down.

$$R_{it} - R_{ft} = \alpha_p + \beta_{mkt}(R_{mt} - R_{ft}) + \beta_{SMT}(SMB) + \beta_{HML}(HML) + \beta_{MOM}(MOM) \ where,$$

 $(R_{it} - R_{ft})$ = expected excess return

 $(R_{mt} - R_{ft})$ = excess return on the market portfolio (index)

SMB= size premium (small minus big)

HML= value premium (high minus low)

MOM= Momentum (average return on the two high prior return portfolios minus the average return on the two low prior return portfolios)

Data Analysis Steps:

We can construct SMB, HML and MOM factors following the steps:

- (i) Calculate the excess returns, i.e. $R_{it} R_{ft}$
- (ii) Sort the excess returns on Size (market capitalization, denoted as S) and then on value (ROE).
- (vii) Use the formula to calculate SMB:

```
SMB = 1/3 (small value + small neutral + small growth) – 1/3 (big value + big neutral +big growth) 
SMB = 1/3(S_1V11 + S1V2 + S1V3) - 1/3 (S3V1 + S3V2 + S3V3)
```

Code -

impor
t

```
panda
s as
pd
        from pandas import ExcelWriter
        from pandas import ExcelFile
        import numpy as np
        from sklearn.linear_model import LinearRegression
        import matplotlib.pyplot as plt
        import random as rand
        from datetime import datetime
        import sys
        eps = 1
        r f = 0.5
        if(len(sys.argv)!=2 or (sys.argv[1] == "help")):
               # Inp format
               print("python3 solver.py help : For help")
               print("python3 solver.py plot : Generate plots")
               print("python3 solver.py appendix : Generate tables")
               exit(1)
```

```
def checkifnan(num):
      if num is np.nan:
             return 0
      else:
             return num
def calculateWeightedParam(companies,listofcompanies,x):
      totalsum = 0.0
      capsum = 0.0
      for company_name in listofcompanies:
             totalsum +=
companies[company_name]['CAP'][x]*companies[company_name]['PIreturn'][x]
             capsum += companies[company_name]['CAP'][x]
      if capsum == 0:
             return 0
      return (totalsum/(capsum))
df = pd.read_excel('Canada50.xlsx')
columns = list(df.loc[2])[1:]
row_count = df.shape[0] - 5
companies = dict()
j = 0
company_name = ""
prev_err = False
date=[]
l=df.iloc[4:(4+row count),0].tolist()
```

```
for x in range(row_count):
      date.append(str(l[x]).split()[0])
for i,col in enumerate(columns):
      idx = i + 1
      if(col == "#ERROR"):
             prev_err = True
             j = (j+1) %3
             continue
      elif(j == 0):
             company name = col.split('-')[0].strip()
             companies[company name] = dict()
             # CAP
             a = np.nan_to_num(np.array(df.iloc[4:(4+row_count),idx]).astype(float))
             companies[company_name]['CAP'] = a
      elif(j == 1):
             # ROI
             if(prev err == True):
                    company_name = col.split('-')[0].strip()
                    if(company_name not in companies):
                           companies[company_name] = dict()
             a = np.nan to num(np.array(df.iloc[4:(4+row count),idx]).astype(float))
             companies[company_name]['ROI'] = a
      elif(j == 2):
             # PI
             if(prev_err == True):
                    company_name = col.split('-')[0].strip()
                    if (company name not in companies):
                           companies[company name] = dict()
```

```
a = np.nan_to_num(np.array(df.iloc[4:(4+row_count),idx]).astype(float))
             companies[company name]['PI'] = a
      j = (j+1) %3
      prev err = False
for company_name in companies:
      if 'PI' not in companies[company name]:
             companies[company name]['PI'] = np.array([0.]*row count)
      if 'ROI' not in companies[company_name]:
             companies[company name]['ROI'] = np.array([0.]*row count)
      if 'CAP' not in companies[company name]:
             # print(company_name)
             companies[company_name]['CAP'] = np.array([0.]*row_count)
marketcaparr = []
priceindexarr = []
growtharr = []
booktomarketarr = []
companylist =[]
smblist = []
hmllist = []
flist=[]
momlist=[]
t=[]
y r=[]
for company_name in companies:
      companies[company_name]['YR'] = []
      for x in range(row count):
             companies[company_name]['YR'].append(0.0)
```

```
for x in range (0, row count, 12):
      for company name in companies:
             # companies[company name]['YR'] = []
             # for iters in range(0, row count):
                    companies[company_name]['YR'].append(0.0)
             for y in range (12):
                    if y == 0:
                          if x == 0:
                                  if companies[company name]['PI'][x] > 0:
                                        companies[company name]['YR'][x+y] =
100.00*(companies[company name]['PI'][x+11]-companies[company name]['PI'][x])/(companies
[company name]['PI'][x])
                           elif x > 0:
                                  if companies[company name]['PI'][x-11] > 0:
                                        companies[company name]['YR'][x+y] =
100.00*(companies[company name]['PI'][x]-companies[company name]['PI'][x-11])/(companies
[company_name]['PI'][x-11])
                    elif v > 0:
                           if x == 0:
                                  if companies[company_name]['PI'][x] > 0:
                                        companies[company name]['YR'][x+y] =
100.00*(companies[company_name]['PI'][x+11]-companies[company_name]['PI'][x])/(companies
[company name]['PI'][x])
                           elif x > 0:
                                  if companies[company_name]['PI'][x-11] > 0:
                                        companies[company name]['YR'][x+y] =
100.00*(companies[company name]['PI'][x]-companies[company name]['PI'][x-11])/(companies
[company name]['PI'][x-11])
```

```
companylist.append(company_name)
```

```
three factors = []
four factors = []
new mom = []
capm=[]
# print(row_count)
for x in range(row_count):
      marketcap = []
      priceindex = []
      growth = []
      booktomarket = []
      pireturnarr = []
      new_mom_arr = []
      for company name in companies:
             if(x == 0):
                    companies[company_name]['PIreturn'] = []
                    companies[company name]['PIreturn'].append(0.0)
             marketcap.append(companies[company name]['CAP'][x])
             growth.append(companies[company_name]['ROI'][x])
             if x > 0:
                    if companies[company_name]['PI'][x-1] ==0:
                           pireturn=0
                    else:
                          pireturn =
100.00*(companies[company_name]['PI'][x]-companies[company_name]['PI'][x-1])/(companies[
company name]['PI'][x-1])
                    companies[company name]['PIreturn'].append(pireturn)
```

```
pireturnarr.append(companies[company_name]['PIreturn'][x])
      booktomarket.append(companies[company name]['ROI'][x])
      new mom arr.append(companies[company name]['YR'][x])
high = np.percentile(booktomarket,70)
low = np.percentile(booktomarket,30)
small = np.percentile(marketcap, 30)
big = np.percentile(marketcap,70)
win = np.percentile(new_mom_arr,70)
lose = np.percentile(new mom arr, 30)
valuefirm = []
growthfirm = []
neutralfirm = []
smallfirm = []
bigfirm = []
winnerfirm = []
loserfirm = []
for y in range(len(companylist)):
      if marketcap[y] > big:
             bigfirm.append(companylist[y])
       elif marketcap[y] < small:</pre>
              smallfirm.append(companylist[y])
      if booktomarket[y] < low:</pre>
              growthfirm.append(companylist[y])
       elif booktomarket[y] > low and booktomarket[y] < high:</pre>
              neutralfirm.append(companylist[y])
```

```
valuefirm.append(companylist[y])
       if new mom arr[y] > win:
             winnerfirm.append(companylist[y])
       elif new_mom_arr[y] < lose:</pre>
             loserfirm.append(companylist[y])
BV = list(set(bigfirm) & set(valuefirm))
BN = list(set(bigfirm) & set(neutralfirm))
BG = list(set(bigfirm) & set(growthfirm))
SV = list(set(smallfirm) & set(valuefirm))
SN = list(set(smallfirm) & set(neutralfirm))
SG = list(set(smallfirm) & set(growthfirm))
WB = list(set(winnerfirm) & set(bigfirm))
WS = list(set(winnerfirm) & set(smallfirm))
LB = list(set(loserfirm) & set(bigfirm))
LS = list(set(loserfirm) & set(smallfirm))
if len(BV) > 0:
      bvreturn = calculateWeightedParam(companies,BV,x)
else:
      bvreturn = 0
if len(BN) > 0:
       bnreturn = calculateWeightedParam(companies,BN,x)
else:
      bnreturn = 0
if len(BG) > 0:
```

elif booktomarket[y] > high:

```
bgreturn = calculateWeightedParam(companies,BG,x)
else:
      bgreturn = 0
if len(SV) > 0:
      svreturn = calculateWeightedParam(companies,SV,x)
else:
      svreturn = 0
if len(SN) > 0:
      snreturn = calculateWeightedParam(companies,SN,x)
else:
      snreturn = 0
if len(SG) > 0:
      sgreturn = calculateWeightedParam(companies,SG,x)
else:
      sgreturn = 0
if len(WB)>0:
      wbreturn = calculateWeightedParam(companies, WB, x)
else:
      wbreturn = 0
if len(WS)>0:
      wsreturn = calculateWeightedParam(companies,WS,x)
else:
      wsreturn = 0
```

```
if len(LB)>0:
      lbreturn = calculateWeightedParam(companies,LB,x)
else:
      lbreturn = 0
if len(LS)>0:
      lsreturn = calculateWeightedParam(companies,LS,x)
else:
      lsreturn = 0
smb = (svreturn+snreturn+sgreturn)/3 - (bvreturn+bnreturn+bgreturn)/3
smblist.append(smb)
hml = (svreturn+bvreturn)/2 - (sgreturn+bgreturn)/2
hmllist.append(hml)
f = calculateWeightedParam(companies,companylist,x)
flist.append(f)
mom = (wsreturn+wbreturn)/2 - (lsreturn+lbreturn)/2
momlist.append(mom)
three factors.append([f-r f,hml,smb])
capm.append([f-r_f])
four_factors.append([f-r_f,hml,smb,mom])
t.append(x)
```

```
C = np.array(capm, np.float32)
Z = np.array(four factors, np.float32)
X = np.array(three_factors, np.float32)
smblist[0]=1
for i in range(1,len(smblist)):
      smblist[i]=smblist[i]/100+smblist[i-1]
hmllist[0]=1
for i in range(1,len(hmllist)):
      hmllist[i]=hmllist[i]/100+hmllist[i-1]
flist[0]=1
for i in range(1,len(flist)):
      flist[i]=flist[i]/100+flist[i-1]
momlist[0]=1
for i in range(1,len(momlist)):
      momlist[i]=momlist[i]/100+momlist[i-1]
for i in range(len(date)):
      date[i] = datetime.strptime(date[i], '%Y-%m-%d')
#print(date)
if(sys.argv[1] == "plot"):
      plt.plot(date, smblist, label='SMB')
      plt.plot(date,hmllist,label='HML')
      plt.plot(date,flist,label='F')
```

```
plt.title('SMB+HML+F vs date')
      plt.xlabel('Date')
      plt.ylabel('Commulative return')
      plt.locator params(axis='x', nbins=10)
      plt.legend(loc=2)
      plt.show()
if(sys.argv[1] == "appendix"):
      file w = open("FF3factor.txt", "w")
      for company name in companies:
             y = np.array(companies[company name]['PIreturn'])
             y = y - r f
             # print(y)
             model = LinearRegression().fit(X, y)
             r sq = model.score(X, y)
             file w.write(company name+" & "+str(round(model.intercept ,3))+" &
"+str(round(model.coef [0],3))+" & "+str(round(model.coef [1],3))+" &
"+str(round(model.coef [2],3))+" \\\ \n")
      print("Latex Table stored for FamaFench 3 factor model in FF3factor.txt ...")
      file w.close()
      file_w = open("C4factor.txt", "w")
      for company name in companies:
             y = np.array(companies[company name]['PIreturn'])
             y = y - r f
             model = LinearRegression().fit(Z, y)
             r sq = model.score(Z, y)
             file_w.write(company_name+" & "+str(round(model.intercept_,3))+" &
"+str(round(model.coef [0],3))+" & "+str(round(model.coef [1],3))+" &
"+str(round(model.coef [2],3))+" & "+str(round(model.coef [3],3))+" \\\ \n")
      print("Latex Table stored for Carhart 4 factor model in C4factor.txt ...")
```

```
file_w.close()
file_w = open("CAPM1factor.txt", "w")
for company_name in companies:
    y = np.array(companies[company_name]['PIreturn'])
    y = y - r_f
    # print(y)
    model = LinearRegression().fit(C, y)
    r_sq = model.score(C, y)
    file_w.write(company_name+" & "+str(round(model.intercept_,3))+" &
"+str(round(model.coef_[0],3))+" \\\ \n")
    print("Latex Table stored for CAPM 1 factor model in CAPM1factor.txt ...")
file_w.close()
```

	Market Return (Rm)	Avg Portfolio Return (Rp)	Rf	Rp-Rf	Rm-Rf	SMB	HML	МОМ
Sept' 18	-1.387509202	-2.23422	2.3 6	-4.5942 2	-3.747509 202	2.121002	-12.13213 52	-9.153465 135
Oct'1 8	-0.899606647	-1.75044	2.4 6	-4.2104 4	-3.359606 647	0.144664	-33.3455	-7.52346
Nov' 18	-3.761667439	-1.86314	2.4 7	-4.3331 4	-6.231667 439	0.736324	-27.4682	1.009602
Dec' 18	-3.730392805	-1.57844	2.3 9	-3.9684 4	-6.120392 805	15.45562	-23.3605	11.7178
Jan'1 9	-1.292386632	0.583904	2.1 2	-1.5370 96	-3.413386 632	1.208663	-8.69164	5.921234
Feb' 19	6.803096732	6.255241	2.11	4.1452 41	4.693096 732	0.271638	44.99327	4.320739
Mar' 19	2.294664562	2.101445	2.0 4	0.0614 45	0.254664 562	0.845132	-1.254634 3	-0.759896 5
Apr'1 9	2.537392908	2.88603	1.9 6	0.9260 3	0.577392 908	1.005692 394	-2.141460 708	-1.812966 722
may'	-0.060296258	0.038436	1.8	-1.7615	-1.860296	6.914602	-12.22360	-10.65732

19 64 258 156 922	028 -5.036550
	-5.036550
June' -1.020225618 0.234454 1.6 -1.4455 -2.700225 0.910448 -8.412954 19 8 46 618 373 022	115
july'1 1.419187205 1.549995 1.7 -0.1500 -0.280812 -0.086452 0.105774 05 795 818 731	-5.100704 992
Aug' -0.355488535 -1.17091 1.4 -2.5709 -1.755488 -4.835486 -18.80012 19 1 535 649 967	2.866927 452
Sept' 0.79417877 1.316728 1.5 -0.1832 -0.705821 -0.040128 0.355350 19 72 23 601 931	1.983224 189
Oct'1 -1.470543063 -0.79563 1.6 -2.4456 -3.120543 1.706027 -1.911576 9 5 3 063 848 242	3.483679 979

CURRENCY	C\$	Market Return (Rm)
2/8/2016	12535.4	
3/8/2016	13311.05	6.00378756
4/8/2016	13396.7 3	0.641612998
5/8/2016	13701.4 7	2.249247902
6/8/2016	14313.1	4.367207549
7/8/2016	14259.8 4	-0.372800711
8/8/2016	14755.6 2	3.417683244
9/8/2016	14803.2 6	0.322339962
10/8/2016	14566.2 6	-1.613953136
11/8/2016	14656.8	0.619922528

12/8/2016	15295.2	4.263193299
1/8/2017	15496.0 5	1.304609905
2/8/2017	15554.0 4	0.373525922
3/8/2017	15496.9 8	-0.367524572
4/8/2017	15667.1 3	1.091972084
5/8/2017	15652.0 8	-0.096107157
6/8/2017	15423.0 9	-1.473807834
7/8/2017	15027.1 6	-2.600650668
8/8/2017	15256.3 5	1.513657934
9/8/2017	14985.3 2	-1.79247546
10/8/2017	15728.3 2	4.839185385
11/8/2017	16105.3 5	2.368860585
12/8/2017	16096.0 7	-0.057637211
1/8/2018	16317.6 5	1.367220126
2/8/2018	15065.6 1	-7.98326811
3/8/2018	15538.7	3.091902339

15207.4 1	-2.155087729
15842.7 1	4.092664855
16202.6 9	2.246782023
16371.7 8	1.038184313
16315.0 8	-0.346928747
16090.2 7	-1.387509202
15946.1 7	-0.899606647
15357.4 7	-3.761667439
14795.1 3	-3.730392805
14605.1 5	-1.292386632
15633.3 3	6.803096732
15996.2 1	2.294664562
16407.2 9	2.537392908
16397.4	-0.060296258
16230.9 6	-1.020225618
16462.9 5	1.419187205
16404.5	-0.355488535
	1 15842.7 1 16202.6 9 16371.7 8 16315.0 8 16090.2 7 15946.1 7 15357.4 7 14795.1 3 14605.1 5 15633.3 3 15996.2 1 16407.2 9 16397.4 16230.9 6 16462.9 5

\sim
٠.
J

9/8/2019	16535.3 3	0.79417877
10/8/2019	16293.9 5	-1.470543063
11/8/2019	16877.4 2	3.518276061
12/8/2019	16996.9 7	0.705845899
1/8/2020	17167.8 2	1.000160833
2/8/2020	17655.4 9	2.801008196
3/8/2020	16175.0 2	-8.757870631
4/8/2020	13925.7 1	-14.97313049
5/8/2020	14966.5 6	7.208160716
6/8/2020	15974.9 1	6.520098734
7/8/2020	15629.1 9	-2.187904677
8/8/2020	16544.4 8	5.691219177
9/8/2020	16099.5 2	-2.726305356
10/8/2020	16534.5 4	2.666206839
11/8/2020	16282.8 3	-1.534034788
12/8/2020	17639	8.000118124

	7					
2/8/2021	18330.2 6	1.58469930	9			
SUMMARY OUTPUT						
Regression Sta	atistics					
Multiple R	0.93219 9702					
R Square	0.86899 6284					
Adjusted R Square	0.85807 9308					
Standard Error	0.91578 4278					
Observations	14					
ANOVA						
	df	SS	MS	F	Significan ce F	
Regression	1	66.75778 505	66.7577 8505	79.6004 5534	1.21041E -06	
Residual	12	10.06393 013	0.83866 0844			
Total	13	76.82171 518				

Upper

95%

Lower

95.0%

Upper

95.0%

1/8/2021

18042.0 2.259389343

Coefficie

nts

Standard

Error

t Stat

P-value

Lower

95%

Intercept	0.00721 3949	0.302330 569	0.02386 113	0.98135 5574	-0.65150 7773	0.665935 671	-0.65150 7773	0.665935 671
Rm-Rf	0.79827 3911	0.089473 445	8.92190 8728	1.21041 E-06	0.603328 021	0.993219 801	0.603328 021	0.993219 801
SUMMARY OUTPUT								
Regression Sta	atistics							
Multiple R	0.95499 4753							
R Square	0.91201 4979							
Adjusted R Square	0.88561 9473							
Standard Error	0.82214 1121							
Observations	14							
ANOVA								

	df	SS	MS	F	Significan ce F
Regression	3	70.06255 494	23.35418 498	34.5519 0316	1.37402E -05
Residual	10	6.759160 233	0.675916 023		
Total	13	76.82171 518			

Coefficie	Standard	t Stat	P-value	Lower	Unner	Lower	Llnner
COGINCIE	Stariuaru	ı Olal	r-value	LOWEI	Oppei	LOWEI	Oppei

	nts	Error			95%	95%	95.0%	95.0%
Intercept	-0.17920	0.285606	-0.62746	0.54441	-0.81558	0.45716	-0.81558	0.45716
	896	983	7011	3612	0976	3056	0976	3056
Rm-Rf	0.58033	0.179067	3.240898	0.00885	0.181351	0.97932	0.181351	0.97932
	8049	01	758	5926	888	4211	888	4211
SMB	0.04315	0.057848	0.746010	0.47283	-0.08573	0.17205	-0.08573	0.17205
	5565	489	242	3469	89	003	89	003
HML	0.04391	0.025518	1.720902	0.116003	-0.01294	0.10077	-0.01294	0.10077
	4678	401	386	621	3864	3219	3864	3219

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.963669

302

R Square 0.928658

524

Adjusted R 0.896951

Square

201

Standard 0.780354

Error 232

Observations 14

ANOVA

	df	SS	MS	F	Significa nce F
Regression	4	51.34114	17.83528	29.2884	3.58329E

		063	516	5601	-05			
Residual	9	5.480574 543	0.608952 727					
Total	13	76.82171 518						
	Coefficie nts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0.05718	0.283868	-0.20145	0.84482	-0.69934	0.58496	-0.69934	0.58496
	7019	633	5927	1694	248	8443	248	8443
Rm-Rf	0.677182	0.182633	3.707866	0.00486	0.264035	1.09032	0.264035	1.09032
	028	859	83	1002	535	852	535	852
SMB	0.034116	0.055261	0.617370	0.55228	-0.09089	0.15912	-0.09089	0.15912
	768	423	424	7954	3255	6792	3255	6792
HML	0.027468	0.026748	1.026885	0.33128	-0.03304	0.08797	-0.03304	0.08797
	043	879	752	1002	2126	8211	2126	8211
MOM	0.056724	0.039146	1.449015	0.18126	-0.03183	0.14528	-0.03183	0.14528
	253	745	83	3714	1836	0341	1836	0341