불량 발생 원인 파악 및 결과 해석

Scale 불량 발생 증가 문제 개선 기회 도출

INDEX

○ 과제 정의

4 모델링

1 잠재 인자 설정

5 분석 결과

2 데이터 처리

6 소감

3 탐색적 분석

분석 배경

00공장에의 고객사에서 최근 들어 :Scale 불량 발생 증가"라는 이슈가 발생했다. 그 원인을 분석해 본 결과 압연 공정에서 Scale 불량이 급증한 것을 확인할 수 있었다.

그래서, 데이터를 수집하여 다양한 분석을 통해 불량 발생의 근본 원인을 찾고 결과를 해석하여 개선 기회를 도출한다.

1 잠재 인자 설정

- 1 가열로 가열대 온도(FUR_HZ_TEMP): `저 고`
- 2 가열로 균열대 온도(FUR_SZ_TEMP): `저 고`
- 3 가열로 추출 온도(FUR_EXTEMP) : `저 고`
- 4 Hot Scale Breaker(HSB) : `적용 미적용`
- 5 사상 압연 온도(ROLLING_TEMP_T5): `저 고`
- 6 압연간 Descaling 횟수(ROLLING_DESCALING) : `증가 감소`
- 7 판두께(PT_THICK) : `후 박`

Scale 발생: `없음 - 발생`

데이터 처리 – 결측치, 데이터 타입 확인

	PLATE_NO	ROLLING_DATE	SCALE	SPEC	STEEL_KIND	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO		FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_T
0	PB562774	2008-08- 01:00:00:15	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기		1144	116	
1	PB562775	2008-08- 01:00:00:16	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기		1144	122	
2	PB562776	2008-08- 01:00:00:59	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기		1129	116	
3	PB562777	2008-08- 01:00:01:24	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기		1152	125	
4	PB562778	2008-08- 01:00:01:44	양품	BV-EH36- TM	Т8	38.33	3098	13334	12430	3호기		1140	134	
5 rows × 21 columns				0		<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 720 entries, 0 to 719</class></pre>								

SCALE SPEC STEEL KIND PT_THK PT_WDTH PT LTH PT WGT FUR NO FUR NO ROW FUR_HZ_TEMP FUR HZ TIME FUR SZ TEMP FUR_SZ_TIME FUR TIME FUR EXTEMP ROLLING TEMP T5 HSB ROLLING_DESCALING 0 WORK GR dtype: int64

Data columns (total 19 columns):

memory usage: 107.0+ KB

#	Column	Non-Null Count	Dtype				
0	SCALE	720 non-null	object				
1	SPEC	720 non-null	object				
2	STEEL_KIND	720 non-null	object				
3	PT_THK	720 non-null	float64				
4	PT_WDTH	720 non-null	int64				
5	PT_LTH	720 non-null	int64				
6	PT_WGT	720 non-null	int64				
7	FUR_NO	720 non-null	object				
8	FUR_NO_ROW	720 non-null	int64				
9	FUR_HZ_TEMP	720 non-null	int64				
10	FUR_HZ_TIME	720 non-null	int64				
11	FUR_SZ_TEMP	720 non-null	int64				
12	FUR_SZ_TIME	720 non-null	int64				
13	FUR_TIME	720 non-null	int64				
14	FUR_EXTEMP	720 non-null	int64				
15	ROLLING_TEMP_T5	720 non-null	int64				
16	HSB	720 non-null	object				
17	ROLLING_DESCALING	720 non-null	int64				
18	WORK_GR	720 non-null	object				
dtyp	dtypes: float64(1), int64(12), object(6)						

: Dtype이 object인데, int 형으로 되어있는 자료형이 있다. 이는 이후 데이터 전처리 과정에서 처리할 예정이다.

2 데이터 처리 – 결측치, 데이터 타입 확인

```
In [6]: 1 len(list(df_raw["SPEC"].unique()))
Out[6]: 66
```

: 66 종류의 제품 규격이 존재한다. (너무 많은 카테고리는 분류에 방해가 될 수 있으므로 삭제하는 것을 고려해야한다.)

2

데이터 처리 – 이상치 확인

ROLLING_TEMP_T5 < 200 인 부분에 6개의 이상치가 존재했다. → 제거

이상치라 판단한 이유?

: 자료를 조사해 본 결과, "사상압연의 경우는 일반적으로 850~870℃정도이며, 탄소량이 낮은 냉연재의 경우는 900℃ 이상에서 사상압연을 완료해야 한다."라는 내용을 확인할 수 있었다. 따라서 사상압연의 온도가 200도 보다 낮으므로 이상치로 판단할 수 있었다.

2 데이터 처리 – 이상치 확인

→ 제거 2. 데이터 타입을 object 로 변경해야하는 변수가 존재한다.

3 탐색적 분석 : 연속형 변수

히스토그램 (연속형 변수)

3 탐색적 분석 – 연속형 변수 : 가설 검증

- 1 가열로 가열대 온도(FUR_HZ_TEMP): `저 고`. (**가설 0**)
- 2 가열로 균열대 온도(FUR_SZ_TEMP): `저 고` (가설 O)
- 3 가열로 추출 온도(FUR_EXTEMP) : `저 고` (가설 0)
- 4 Hot Scale Breaker(HSB) : `적용 미적용` 다음과정에서 확인 Scale 발생: `없음 발생`
- 5 사상 압연 온도(ROLLING_TEMP_T5) : `저 고` (가설 0)
- 6 압연간 Descaling 횟수(ROLLING_DESCALING) : `증가 감소` (가설과 차이 존재)
- 7 판두께(PT_THICK) : `후 박` (가설 0)

탐색적 분석 - 연속형 변수 : 가설 검증

8

기타 설명변수

: PT_WIDTH 가 작을수록 불량률이 증가하는 추세를 확인할 수 있었다.

: PT_LTH 가 중간 크기일 때, 가장 큰 불량률을 보이는 추세를 확인할 수 있었다.

: PT_WGT 가 클수록, 불량률이 증가하는 추세를 확인할 수 있었다.

: FUR_NO_ROW 는 1,2,3호기를 뜻하는 범주형 변수로, 불량률은 매우 유사하다.

: FUR_HZ_TIME 이 170을 넘어가는 순간, 불량률이 크게 증가하는 추세를 확인할 수 있었다.

: FUR_SZ_TIME 의 불량률은 70에서 최대값을 보인다.

: FUR_TIME 가 중간 크기일 떄, 가장 큰 불량률을 보이는 추세를 확인할 수 있었다.

1. STEEL KIND

```
1 fun print_crosstab(df_raw, "STEEL KIND")
STEEL KIND
SCALE
           289 0
           212
STEEL KIND
              C0
                 C1
                         C3
                                           т3
                                                 Т5
                                                        Т7
                                                              т8
SCALE
                     0.857
                            0.867
                                   0.889 1.0 0.951
           0.423 1.0 0.143
                            0.133 0.111 0.0 0.049
                                                     0.171 0.053
```

: 강종에 따라 불량률에 차이가 크게 나타났지만, C0의 표본 수에 비해 나머지 강종의 표본 수가 너무 작아서 의미있는 결과를 도출해내기 힘들었다.

2. FUR_NO

```
1 fun_print_crosstab(df_raw, "FUR_NO")

FUR_NO 1호기 2호기 3호기

SCALE
0 166 166 151
1 73 70 88

FUR_NO 1호기 2호기 3호기

SCALE
0 0.695 0.703 0.632
1 0.305 0.297 0.368
```

: 1, 2, 3호기 사이에 불량률에 차이가 나타났지만, 크지 않기에 유의미하다고 보기 힘들었다.

3. HSB

0

0.0 0.709

1.0 0.291

```
1 fun_print_crosstab(df_raw, "HSB")

HSB 미적용 적용

SCALE

0 0 483
1 33 198

HSB 미적용 적용

SCALE
```

: 미적용되는 경우에는 100% 불량으로, 적용되는 경우와 큰 차이를 보이기에 주요한 설명변수라고 판단할 수 있었다.

2.0 완벽히 일치하는 데이터 비교 및 확인

```
1 # df_raw["FUR_SZ_TEMP"] == df_raw["FUR_EXTEMP"] 인 경우가 많이 관찰되어 모든 데이터를 대상으로 테스트한 결과,
2
3 (df_raw["FUR_SZ_TEMP"] == df_raw["FUR_EXTEMP"]).value_counts()
4
5 # "FUR_SZ_TEMP"와 FUR_EXTEMP는 완벽히 일치하는 것을 알 수 있다.
```

True 714 dtype: int64

: 완벽히 일치하는 데이터를 가진 Column을 발견 > 다중공선성을 가지므로 하나의 변수를 제거.

2.0 완벽히 일치하는 데이터 비교 및 확인

```
1 # df_raw["FUR_SZ_TEMP"] == df_raw["FUR_EXTEMP"] 인 경우가 많이 관찰되어 모든 데이터를 대상으로 테스트한 결과,
2
3 (df_raw["FUR_SZ_TEMP"] == df_raw["FUR_EXTEMP"]).value_counts()
4
5 # "FUR_SZ_TEMP"와 FUR_EXTEMP는 완벽히 일치하는 것을 알 수 있다.
```

True 714 dtype: int64

: 완벽히 일치하는 데이터를 가진 Column을 발견 > 다중공선성을 가지므로 하나의 변수를 제거.

4 모델링

4

모델링 – 01. 로지스틱 선형 회귀

Logit Regression Results

=======================================					=====	
Dep. Variable:	SCALE	No. Observ	ations:		499	
Model:	Logit	Df Residua	als:		476	
Method:	MLE	Df Model:			22	
Date: Wed,	25 Nov 2020	Pseudo R-s	squ.:		0.7749	
Time:	04:46:23	Log-Likeli	ihood:	_	70.461	
converged:	False	LL-Null:		-	313.05	
Covariance Type:	nonrobust	LLR p-valu	ie:	8.970e-89		
=======================================	coef	std err	z	P> z	[0.025	0.975]
Intercept	-164.5071	4.55e+04	-0.004	0.997	-8.93e+04	8.9e+04
C(FUR NO)[T.2호기]	-0.8145	0.553	-1.474	0.140	-1.897	0.269
C(FUR NO)[T.3호기]	0.2604	0.586	0.444	0.657	-0.889	1.409
C(FUR NO ROW)[T.2]	0.0884	0.476	0.186		-0.845	1.021
C(HSB)[T.적용]	-35.3681	2.76e+04	-0.001	0.999	-5.41e+04	5.41e+04
C(ROLLING_DESCALING)[T.6]	-42.1367	3.62e+04	-0.001	0.999		7.08e+04
C(ROLLING DESCALING)[T.7]	-1.4370	8.2e+06	-1.75e-07	1.000	-1.61e+07	1.61e+07
C(ROLLING_DESCALING)[T.8]	-38.3731	3.62e+04	-0.001	0.999	-7.09e+04	7.08e+04
C(ROLLING_DESCALING)[T.9]	1.8885	1.89e+06	9.97e-07	1.000	-3.71e+06	3.71e+06
C(ROLLING_DESCALING)[T.10]	-38.5217	3.62e+04	-0.001	0.999	-7.09e+04	7.08e+04
C(WORK_GR)[T.2조]	-0.7646	0.627	-1.219	0.223	-1.994	0.465
C(WORK_GR)[T.3조]	-1.1117	0.708	-1.570	0.117	-2.500	0.276
C(WORK_GR)[T.4조]	-0.8144	0.636	-1.280	0.200	-2.061	0.432
PT_THK	0.1521	0.093	1.632	0.103	-0.031	0.335
PT_WDTH	-0.0024	0.001	-3.030	0.002	-0.004	-0.001
PT_LTH	-5.69e-05	4.52e-05	-1.258	0.208	-0.000	3.17e-05
PT_WGT	-1.268e-05	1.05e-05	-1.205	0.228	-3.33e-05	7.95e-06
FUR_HZ_TEMP	0.0241	0.032	0.761	0.446	-0.038	0.086
FUR_HZ_TIME	0.0089	0.007	1.227	0.220	-0.005	0.023
FUR_SZ_TEMP	0.1332	0.065	2.051	0.040	0.006	0.260
FUR_SZ_TIME	-0.0302	0.020	-1.522	0.128	-0.069	0.009
FUR_TIME	-0.0038	0.007	-0.538	0.590	-0.018	0.010
ROLLING_TEMP_T5	0.0653	0.012	5.612	0.000	0.043	0.088

다중 회귀분석 결과,

- 위 결과를 분석해보면, p-value를 고려해보았을 때, "PT_WDTH", "FUR_SZ_TEMP", "ROLLING_TEMP_T5" 의 3가지 요인이 SCALE 발생여부에 영향을 주는 것으로 판단할 수 있다.
- PT_WDTH와는 <u>음의 상관관계</u>, 그리고 FUR_SZ_TEMP, ROLLING_TE MP_T5와는 <u>양의 상관관계</u>가 나타난다.

4 모델링 - 01. 로지스틱 선형 회귀

Coefficient 값을 구해보았을 때, 유효한 값은 다음의 세 개 뿐이었다.

: 로지스틱 선형회귀를 하였을 때, FUR_SZ_TEMP, ROLLING_TEMP_ T5, PT_WIDTH 순서로 영향을 미치는 것을 확인할 수 있었다.

: 우리가 제조공정에서 변화를 줄 수 있는 변수는 FUR_SZ_TEMP, ROLLING_TEMP_T5로, 이 두가지가 Vital Few(VF) 라고 판단할 수 있다.

4 모델링 - 02. 의사결정나무

Score on training set: 0.978
Score on test set: 0.953
Confusion matrix:
[[144 0]
[10 61]]

	Feature	Importance
10	ROLLING_TEMP_T5	0.626
24	HSB_미적용	0.193
7	FUR_SZ_TEMP	0.125
11	ROLLING_DESCALING	0.047
8	FUR_SZ_TIME	0.010
19	STEEL_KIND_T7	0.000
20	STEEL_KIND_T8	0.000
21	FUR_NO_1호기	0.000
22	FUR_NO_2호기	0.000

- 1. Training Set: 0.978(97.8%) / Test Set: 0.953(95.3%)
- 2. Importance (트리를 만들 때의) : FUR_SZ_TEMP < HSB < ROLLING_TEMP_T5

4 모델링 - 02. 의사결정나무

1 "ROLLING_TEMP_T5" < 1000.5

2 HSB_미적용 = 0

3 FUR_SZ_TEMP <= 1175.5

→ 위 조건들을 통과해야 한다.

4 모델링 - 03. 그래디언트 부스팅

Accuracy on training set: 1.000
Accuracy on test set: 0.972
Confusion matrix:
[[144 0]
[6 65]]

		Feature	Importance
	10	ROLLING_TEMP_T5	0.580
	7	FUR_SZ_TEMP	0.120
	25	HSB_적용	0.095
	24	HSB_미적용	0.084
	11	ROLLING_DESCALING	0.051

- 1. Training Set: 1.000(100.0%) / Test Set: 0.972(97.2%)
- 2. Importance (트리를 만들 때의) : HSB < FUR_SZ_TEMP < ROLLING_TEMP_T5

데이터 분석을 하며,

데이터에서 이상치를 이상치라 판단하고, 데이터에서 통찰을 얻는 것은 Domain 지식을 바탕으로 얻을 수 있는 역량임을 더 깊이 깨달았습니다.

데이터 분석 역량 뿐 아니라, 현재 가지고 있는 기계공학 전공 지식 역량을 꾸준히 발전시켜야겠다고 다시 한번 다짐하게 되었습니다.