

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Отчет по выполнению практического задания 8-1

Тема: «Алгоритмы кодирования и сжатия данных»

Дисциплина: Структуры и алгоритмы обработки данных

Выполнил студент <u>Фамилия И. О.</u> Группа <u>АААА-00-00</u>

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	3
1.1 Постановка задачи	
1.2 Индивидуальный вариант	
ЗАДАНИЕ 1	
2.1 Метод Шеннона-Фано	5
2.2 Метод Лемпеля–Зива LZ77	6
2.3 Метод Лемпеля–Зива LZ78	7
ЗАДАНИЕ 2	8
3.1 Программа Шеннона-Фано.	8
3.2 Программа Хаффмана	9
4 ВЫВОД	10
5 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	11

1 ВВЕДЕНИЕ

1.1 Постановка задачи

Задание 1 Исследование алгоритмов сжатия на примерах

- 1) Выполнить каждую задачу варианта, представив алгоритм решения в виде таблицы и указав результат сжатия. Примеры оформления решения представлены в Приложении 1 этого документа.
 - 2) Описать процесс восстановления сжатого текста.
- 3) Сформировать отчет, включив задание, вариант задания, результаты выполнения задания варианта.

Задание 2 Разработать программы сжатия и восстановления текста методами Хаффмана и Шеннона – Фано.

- 1) Реализовать и отладить программы.
- 2) Сформировать отчет по разработке каждой программы в соответствии с требованиями.
- По методу Шеннона-Фано привести: постановку задачи, описать алгоритм формирования префиксного дерева и алгоритм кодирования, декодирования, код и результаты тестирования. Рассчитать коэффициент сжатия. Сравнить с результат сжатия вашим алгоритмом с результатом людого архиватора.
- по методу Хаффмана выполнить и отобразить результаты выполнения всех требований, предъявленных в задании и оформить разработку программы: постановка, подход к решению, код, результаты тестирования.

1.2 Индивидуальный вариант

Таблица 1 — Индивидуальный вариант

Вари ант	Закодировать фразу методами Шеннона— Фано	Сжатие данных по методу Лемпеля— Зива LZ77 Используя двухсимвольный алфавит (0, 1) закодировать следующую фразу:	Закодировать следующую фразу, используя код LZ78
19	Перводан, другодан, На колоде барабан; Свистель, коростель, Пятерка, шестерка, утюг.	0001000010101001101	comconcomconacom

ЗАДАНИЕ 1

2.1 Метод Шеннона-Фано

Оформим таблицу символов для заданной фразы: «Перводан, другодан, На колоде барабан; Свистель, коростель, Пятерка, шестерка, утюг.». Результат представлен в таблице 1.

Таблица 1 - Кодирование символов

Сим вол	K/o	1-я цифра	2-я цифра	3-я цифра	4-я цифра	5-я цифра	6-я цифра	7-я цифра	Код	К/о бит
Про бел	9	0	0	0			- Sight	- Sirype	000	27
a	8	0	0	1	0				0010	32
e	7	0	0	1	1				0011	28
,	6	0	1	0					010	18
О	6	0	1	1	0				0110	24
p	6	0	1	1	1				0111	24
Т	5	1	0	0	0				1000	20
c	4	1	0	0	1				1001	16
К	4	1	0	1	0				1010	16
Н	4	1	0	1	1	0			10110	20
Д	4	1	0	1	1	1			10111	20
Л	3	1	1	0	0	0			11000	15
Ь	2	1	1	0	0	1			11001	10
б	2	1	1	0	1	0			11010	10
Γ	2	1	1	0	1	1	0		110110	12
у	2	1	1	0	1	1	1		110111	12
В	2	1	1	1	0	0			11100	10
П	2	1	1	1	0	1	0		111010	12
	1	1	1	1	0	1	1		111011	6
Ю	1	1	1	1	1	0			11110	5
Ш	1	1	1	1	1	0			11110	5
Я	1	1	1	1	1	1	0		111110	6
И	1	1	1	1	1	1	1	0	1111110	7
•	1	1	1	1	1	1	1	1	1111111	7

Незакодированная фраза — 84*8 бит = 672 бит.

Закодированная фраза –362 бит.

2.2 Метод Лемпеля–Зива LZ77

Фраза: «110101011001100001001». Алфавит: 0, 1.

Таблица 2 - Последовательное кодирование подпоследовательностей

Содержимое окна	Содержимое	Код назначенный
(сжимаемый) текст	управляющего буфера	последовательности
	110101011001100001001	
1	10101011001100001001	1
10	101011001100001001	10
101	011001100001001	11
01	1001100001001	100
100	1100001001	101
11	00001001	110
00	001001	111
001	001	1000
001		001

Таблица 3 - Результат кодирования

Исходный текст	110101011001100001001
	1.10.101.01.100.11.00.001.001
LZ-код	1.10.101.01.100.11.00.1111.1111
R	2 3 4
Вводимые коды	- 10 11 100 101 110 111 1000 1001

2.3 Метод Лемпеля–Зива LZ78

 Φ раза: «comconcomconacom».

Таблица 4 - Кодирование подпоследовательностей

Словарь	Считываемое содержимое	Код
	c	<0, c>
c = 1	o	<0, 0>
c = 1 $o = 2$	m	<0, m>
c = 1 o = 2 m = 3	co	<1, 0>
c = 1 o = 2 m = 3 co = 4	n	<0, n>
c = 1 $o = 2$ $m = 3$ $co = 4n = 5$	com	<4, m>
c = 1 $o = 2$ $m = 3$ $co = 4n = 5$ $com = 6$	con	<4, n>
c = 1 $o = 2$ $m = 3$ $co = 4n = 5$ $com = 6$ $con = 7$	a	<0, a>
c = 1 $o = 2$ $m = 3$ $co = 4n = 5$ $com = 6$ $con = 7a = 8$	com	<6, EOF>

Результат кодирования:

ЗАДАНИЕ 2

3.1 Программа Шеннона-Фано

Необходимо реализовать программу сжатия и восстановления текста методом Шеннона-Фано.

Первым шагом определяются вероятности символов в строке. Формируется список структур символов с самим символом, его кодом и вероятностью, и сортируется по вероятности.

Далее используется рекурсивная функция формирования кодов символов. Каждый этап рекурсии функция определяет точку разрыва в текущем списке по сумме вероятностей и добавляет код символу в зависимости от нахождения в нужной половине списка.

Далее, из полученных кодов формируется словарь символов с и их кодами, и полученный код записывается в файл. Для дешифровки происходит чтение файла и дешифруется в соответствии с таблицей кодов.

Результаты сравнения представлены в таблице 5. Результаты тестирования на рис. 2.

Таблица 5 - Сравнительная таблица

Метод	Исходная строка	Шеннона-фано	zip	tar.gz
Размер	38 Байт	17 байт	38 байт	153 байт
Коэф. Сжатия	1	2.23	1	0.25

Рисунок 1 - Результаты тестироваания

3.2 Программа Хаффмана

Необходимо реализовать программу сжатия и восстановления текста методом Хаффмана. Реализуемый алгоритм похож на предыдущий построением таблицы частот. Однако построение дерева кодов начинается с листьев, в отличие от корня. Для построения дерева используется приоритетная очередь, с приоритетом по частоте. И также используется рекурсивный алгоритм для построения дерева Хаффмана и формировании кодов.

Сравнительная таблица представлена в таблице 6. Результаты тестирования на рис. 2.

Таблица 6 - Сравнительная таблица

Метод	Исходная строка	Хаффмана
Размер	38 Байт	17 байт

Рисунок 2 - Результаты тестирования

4 ВЫВОД

Были изучены алгоритмы сжатия данных LZ77, LZ78, Шеннона-Фано и Хаффмана. Алгоритмы были использованы для сжатия тестовых данных.

Для алгоритмов Шеннона-Фано и Хаффмана были написаны программмы на языке программирования C++.

5 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

1. Структуры и алгоритмы обработки данных (часть 2): Лекционные материалы / Рысин М. Л. МИРЭА — Российский технологический университет, 2022/23. – 82 с.