•∞ Exercice 134.

1. Vérifier que : $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$.

2. En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$.

• ∞ Exercice 135.

1. Calculer $\frac{\pi}{4} - \frac{\pi}{6}$.

2. En déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

• co Exercice 136.

a désigne un réel. Simplifier l'expression suivantes :

$$A = (e^{ia} - e^{-ia})^2 + (e^{ia} + e^{-ia})^2.$$

●○○ Exercice 137.

1. Exprimer, pour tout réel a, le nombre $\cos^2(a)$ en fonction de $\cos(2a)$.

2. En déduire la valeur exacte de $\cos\left(\frac{\pi}{8}\right)$.

••o Exercice 138.

1. Exprimer, pour tout réel a, le nombre $\sin^2(a)$ en fonction de $\cos(2a)$.

2. En déduire la valeur exacte de $\sin\left(\frac{5\pi}{12}\right)$.

3. À l'aide de la question 1., déterminer la valeur exacte de $\sin\left(\frac{11\pi}{8}\right)$.

$\bullet \infty$ Exercice 139.

Écrire sous forme algébrique les nombres complexes suivants :

1. $e^{-i\pi}$

2. $e^{i\frac{\pi}{3}}$

3. $e^{i\frac{3\pi}{4}}$

• ∞ Exercice 140.

Démontrer que les nombres suivants peuvent s'écrire sous la forme $e^{i\theta}$:

1. a = i

2. b = -1

3. $c = \frac{1}{2} + i \frac{\sqrt{3}}{2}$

4. $d = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$

••o Exercice 141.

Soit x un nombre réel.

1. Écrire sous forme algébrique $z = e^{i(x + \frac{\pi}{3})}$.

2. En écrivant $e^{i(x+\frac{\pi}{3})}$ comme un produit d'exponentielles complexes, trouver une autre expression du nombre z.

3. En déduire les solutions sur \mathbb{R} de :

(a) $\cos(x) - \sqrt{3}\sin(x) = \sqrt{2}$.

(b) $\sqrt{3}\cos(x) + \sin(x) = \sqrt{2}$.

●○○ Exercice 142.

Écrire sous forme exponentielle les nombres complexes suivants :

1. $a = -\frac{2}{7}i$

2. b = -10

3. c = 4i

4. d = 1 + i

• co Exercice 143.

Écrire sous forme exponentielle les nombres complexes suivants :

1. $a = 1 + i\sqrt{3}$

2. $b = -\frac{5}{2} + \frac{5i}{2}$

3. c = 2 - 2i

4. $d = -\sqrt{2} - i\sqrt{2}$

●○○ Exercice 144.

Écrire sous forme algébrique les nombres complexes suivants :

1. $a = 3e^{-i\frac{\pi}{3}}$

2. $b = 5e^{-i\frac{\pi}{4}}$

3. $c = 6e^{i\frac{3\pi}{4}}$

4. $d = 7e^{-i\frac{\pi}{2}}$

●○○ Exercice 145.

Écrire sous forme exponentielle les nombres complexes suivants :

1. $a = 3e^{i\frac{\pi}{4}} \times e^{-i\frac{5\pi}{6}}$

2. $b = (e^{i\frac{\pi}{4}})^5$

3. $c = \frac{1}{e^{i\frac{\pi}{5}}}$

4. $d = -e^{i\frac{\pi}{3}}$

$\bullet \circ \circ$ Exercice 146.

Placer l'image des nombres complexes suivants dans le plan complexe muni d'un repère :

1. $a = 3e^{-i\frac{\pi}{2}}$

2. $b = \sqrt{2}e^{-i\frac{3\pi}{4}}$

3. $c = 4e^{i\frac{\pi}{3}}$

4. $d = e^{-i\frac{\pi}{6}}$

• ∞ Exercice 147.

Écrire sous forme exponentielle les nombres complexes suivants :

1. $a = \frac{8i}{e^{-i\frac{\pi}{4}}}$

2. $b = -5e^{-i\frac{\pi}{3}}$

3. $c = 2 \frac{e^{i\frac{\pi}{3}}}{e^{-i\frac{\pi}{7}}}$

4. $d = \frac{\left(e^{i\frac{\pi}{3}}\right)^5}{\left(e^{-i\frac{\pi}{4}}\right)^2}$

●∞ Exercice 148.

Écrire sous forme exponentielle les nombres complexes suivants :

1.
$$a = \sqrt{3} - i$$

2.
$$b = \frac{2 - 2i}{1 + i}$$

$$3. \ c = \left(\frac{\mathrm{i}}{2}\right)^{18}$$

4.
$$d = (1 + i)^{13}$$

••o Exercice 149.

Soit $z = 3 - i\sqrt{3}$.

- 1. Déterminer la forme exponentielle de z.
- 2. En déduire la forme exponentielle des nombres complexes suivants :
 - (a) 4z
 - (b) 3iz
 - (c) \overline{iz}
 - (d) -5z

••o Exercice 150.

Soit α un nombre réel. Déterminer la forme exponentielle des nombres suivants :

- 1. $\cos(\alpha) + i\sin(\alpha)$
- 2. $\cos(\alpha) i\sin(\alpha)$
- 3. $-\cos(\alpha) + i\sin(\alpha)$
- 4. $-\cos(\alpha) i\sin(\alpha)$

••o Exercice 151.

Soit le nombre complexe z = -1 + i.

- 1. Écrire z sous forme exponentielle.
- 2. En déduire la forme algébrique de z^{10} .

••o Exercice 152.

On considère les nombres complexes z_1 et z_2 définis par :

$$z_1 = 2\sqrt{3} - 2i$$
 et $z_2 = 1 - i$.

- 1. Écrire z_1 et z_2 sous forme exponentielle.
- 2. En déduire celles de :
 - (a) $z_1 z_2$
 - (b) $\frac{z_1}{z_2}$
 - (c) $\frac{z_1^3}{z_2^2}$

●●○ Exercice 153.

Soit x un nombre réel appartenant à l'intervalle $]0\,;\,\pi[.$

- 1. En factorisant par $e^{i\frac{x}{2}}$, déterminer le module et un argument de $a=1+e^{ix}$ et de $b=1-e^{ix}$.
- 2. Montrer que $\frac{a}{b}$ est un nombre imaginaire pur.

••• Exercice 154.

Soit x un nombre réel.

On pose $z = \cos(x) + i\sin(x)$.

1. Démontrer que pour tout entier naturel n,

$$z^n - \frac{1}{z^n} = 2i\sin(nx).$$

2. Trouver une expression analogue pour $z^n + \frac{1}{z^n}$.

••• Exercice 155.

Soit x un nombre réel. Écrire sous forme algébrique les nombres complexes suivants :

- 1. $a = e^{ix} + e^{-ix}$
- 2. $b = e^{ix} e^{-ix}$
- 3. $c = e^{4ix} + e^{-4ix}$
- 4. $d = e^{-5ix} e^{5ix}$

••• Exercice 156.

- 1. Développer $(a+b)^4$.
- 2. En utilisant une formule d'Euler, prouver que :

$$\sin^4(x) = \frac{1}{8}(\cos(4x) - 4\cos(2x) + 3).$$

••• Exercice 157.

- 1. À l'aide des formules d'Euler, démontrer que $\cos^3 x = \frac{3\cos x + \cos(3x)}{4}$.
- 2. En déduire $I = \int_0^{\frac{\pi}{2}} \cos^3 x \, dx$.

••o Exercice 158.

On donne les complexes $z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et $z_2 = 1 - i$.

- 1. Écrire sous forme exponentielle z_1 et z_2 puis $\frac{z_1}{z_2}$.
- 2. Écrire $\frac{z_1}{z_2}$ sous forme algébrique.
- 3. En déduire que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} \sqrt{2}}{4}$.