

第四部分: 完全可观察环境 中的概率规划系统

章宗长 2020年4月28日

内容安排

抓划

马尔科夫决策过程

精确动态规划

近似动态规划

在线规划

直接策略搜索

2021/4/23

2

马尔科夫决策过程

- 定义
- 例子
- 策略和值函数
- 最优策略和最优值函数

最优策略

- 策略的偏序关系: 对于两个策略 π 和 π' ,如果对任意 $s \in S$,都有 $U^{\pi}(s) \leq U^{\pi'}(s)$,则称策略 π 小于等于 π' ,记作 $\pi \leq \pi'$
- 最优策略 π^* : 对于一个动力函数而言,总是存在着一个策略 π^* , 使得所有的策略都小于等于这个策略
- 最优策略 $\pi^*(a \mid s)$ 满足:

$$\pi^*(a \mid s) = \begin{cases} 1, & a \in \arg\max_{a' \in \mathcal{A}} Q^*(s, a') \\ 0, & 其他 \end{cases}$$

- 对于一个动力函数而言,可能存在多个最优策略
- 最优的确定性策略
 - □ 对所有 $s \in S$, $\pi^*(s) \in \arg \max_{a' \in A} Q^*(s, a')$
 - \square 如果有多个行动a使得 $Q^*(s,a)$ 取最大值,则任选一个行动即可

最优状态值函数

■ 最优状态值函数 $U^*(s)$: 从状态s起,执行最优策略 π^* 的期望回报 $U^*(s) \doteq \max_{\pi} U^{\pi}(s), \quad \text{for all } s \in \mathbb{S}$

■ Bellman最优方程

$$U^{*}(s) = \max_{a \in \mathcal{A}(s)} Q^{*}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t} + \gamma U^{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma U^{*}(s')]$$

$$R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) U^{*}(s')$$

最优状态值函数的备份图

$$U^*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma U^*(s')]$$

 $Q^*(s,a)$

最优状态值函数 $U^*(s)$ 的备份图

$$U^*(s) = \max_{a \in \mathcal{A}(s)} Q^*(s, a)$$

$$Q^{*}(s, a) = \sum_{s', r} p(s', r | s, a) [r + \gamma U^{*}(s')]$$

最优行动值函数

■ 最优行动值函数 $Q^*(s,a)$: 在状态s采取行动a后,执行最优策略 π^* 的期望回报

$$Q^*(s, a) \doteq \max_{\pi} Q^{\pi}(s, a)$$
, for all $s \in S$ and $a \in A(s)$

■ Bellman最优方程

$$Q^{*}(s, a) = \mathbb{E}[R_{t} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}\Big[R_{t} + \gamma \max_{a'} Q^{*}(S_{t+1}, a') \mid S_{t} = s, A_{t} = a\Big]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma \max_{a'} Q^{*}(s', a')\Big]$$

最优行动值函数的备份图

$$Q^*(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

 $U^*(s)$

最优行动值函数 $Q^*(s,a)$ 的备份图

$$Q^*(s,a) = \sum_{s',r} p(s',r|s,a) [r + \gamma U^*(s')]$$

s, a

例子: 5×5栅格世界

■ 最优状态值函数 U^* 和最优策略 π^*

Gridworld

 U^*

 π^*

- 如何计算状态A处的最优值?
 - □ 最优策略: 在状态A执行任意行动到达状态A', 连续执行4次向上的行动回到状态A, 如此循环

$$U^*(s_A) = 10 + 10 \times 0.9^5 + 10 \times 0.9^{5 \times 2} + \dots = \frac{10}{1 - 0.9^5} \approx 24.4$$

小结: 马尔科夫决策过程

- 定义
 - □ 马尔科夫假设、动力函数、稳态MDPs、决策网络表示
- 例子
 - □ 吸尘机器人、栅格世界、2048、小车上山、飞机避碰
- 策略和值函数
 - □ 随机性策略、确定性策略
 - □ 状态值函数、行动值函数、Bellman期望方程、备份图
- 最优策略和最优值函数
 - □ 最优策略、最优的确定性策略
 - □ 最优状态值函数、最优行动值函数、Bellman最优方程、备份图

内容安排

精确动态规划

- 策略迭代
- 值迭代
- 结构化表示
- 线性表示

动态规划与Bellman方程

- 动态规划的要素
 - □ 最优子结构: 把原问题分解成多个子问题
 - □ 重叠子问题: 重复利用子问题的解
- Bellman期望方程

$$U^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U^{\pi}(s')$$

■ Bellman最优方程

$$U^*(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U^*(s') \right)$$

- MDPs: (最优子结构) Bellman方程提供了递归地分解问题的方法, (重叠子问题) 值函数存储的数据可以被重复使用
 - □ 策略迭代: 用迭代的方式求解Bellman期望方程
 - □ **值迭代**:用迭代的方式求解Bellman最优方程

策略评价

- 策略评价: 计算一个策略的期望回报
- 可以用动态规划计算一个策略 π 的t步回报:
 - □ 如果不执行策略 π ,则 $U_0^{\pi}(s) = 0$
 - \square 如果执行策略 π 一步,则 $U_1^{\pi}(s) = R(s, \pi(s))$
 - □ 假设已知策略 π 的t-1步回报,则可以计算策略 π 的t步回报:

$$U_{t}^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U_{t-1}^{\pi}(s')$$

Algorithm 4.1 Iterative policy evaluation

逐次逼近(successive approximation)

- 1: **function** IterativePolicyEvaluation(π , n)
- 2: $U_0^{\pi}(s) \leftarrow 0 \text{ for all } s$
- 3: for $t \leftarrow 1$ to n
- 4: $U_t^{\pi}(s) \leftarrow R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U_{t-1}^{\pi}(s') \text{ for all } s$
- 5: return U_n^{π}

迭代地计算一个 策略的n步回报

策略评价 (续)

■ 对带折扣奖赏的无限步数决策问题:

$$U^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U^{\pi}(s')$$

■ 解法一: 用算法4.1, 当 γ < 1且n足够大时,用 U_n^{π} 近似 U^{π}

$$U_t^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U_{t-1}^{\pi}(s')$$

证明:
$$\|U_t^{\pi} - U^{\pi}\|_{\infty} = \max_{s} \gamma \sum_{s'} T(s' \mid s, \pi(s)) |U_{t-1}^{\pi}(s') - U^{\pi}(s')|$$

$$\leq \gamma \max_{s} \sum_{s'} T(s' \mid s, \pi(s)) \max_{s'} |U_{t-1}^{\pi}(s') - U^{\pi}(s')|$$

$$= \gamma \max_{s'} |U_{t-1}^{\pi}(s') - U^{\pi}(s')| = \gamma \|U_{t-1}^{\pi} - U^{\pi}\|_{\infty}$$

从而有: $||U_n^{\pi} - U^{\pi}||_{\infty} \leq \gamma^n ||U_0^{\pi} - U^{\pi}||_{\infty}$

策略评价 (续)

■ 对带折扣奖赏的无限步数决策问题:

$$U^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s' \mid s, \pi(s)) U^{\pi}(s')$$

■ 解法二: 求解有n个线性方程的系统(n为状态数)

$$\mathbf{U}^{\pi} = \mathbf{R}^{\pi} + \gamma \mathbf{T}^{\pi} \mathbf{U}^{\pi}$$

n维向量,分别表示状态值函数和奖赏函数

 $n \times n$ 矩阵,表示 状态转移概率

$$\mathbf{U}^{\pi} - \gamma \mathbf{T}^{\pi} \mathbf{U}^{\pi} = \mathbf{R}^{\pi} \implies (\mathbf{I} - \gamma \mathbf{T}^{\pi}) \mathbf{U}^{\pi} = \mathbf{R}^{\pi} \implies \mathbf{U}^{\pi} = (\mathbf{I} - \gamma \mathbf{T}^{\pi})^{-1} \mathbf{R}^{\pi}$$

计算复杂度 $O(n^3)$

策略改进

■ 策略改进定理: 对于两个确定性的策略 π 和 π' , 如果

对于任意
$$s \in S$$
,有 $U^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$

则 $\pi \leq \pi'$,即对于任意 $s \in S$,有 $U^{\pi}(s) \leq U^{\pi'}(s)$

- 在此基础上,如果存在状态 $s \in S$,有 $U^{\pi}(s) < Q^{\pi}(s,\pi'(s))$,则存在状态 $s \in S$,有 $U^{\pi}(s) < U^{\pi'}(s)$
- $\Rightarrow \pi'(s) = \pi_{k+1}(s) = \arg\max_{a} Q^{\pi_k}(s, a), \quad \forall U^{\pi_k}(s) \leq U^{\pi_{k+1}}(s)$
- = 当 $\pi_{k+1} = \pi_k$ 时, $\pi_{k+1}(s) = \pi_k(s) = \arg\max_a Q^{\pi_k}(s,a)$, 进 而 $U^{\pi_k}(s) = \max_a Q^{\pi_k}(s,a)$,满足Bellman最优方程, π_k 是最优策略

策略迭代

- 从任一策略π₀开始,重复以下两个步骤,直到策略不再有 改进:
 - **章 策略评价**:给定当前策略 π_k ,计算 U^{π_k}
 - \square **策略改进**: 使用 U^{π_k} ,用算法4.2的**第5行**计算一个新策略

Algorithm 4.2 Policy iteration

```
1: function PolicyIteration(\pi_0)
2: k \leftarrow 0
3: repeat
4: Compute U^{\pi_k}
5: \pi_{k+1}(s) = \arg\max_a (R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U^{\pi_k}(s')) for all states s \in k \leftarrow k+1
7: until \pi_k = \pi_{k-1}
8: return \pi_k
```

- 策略迭代总能找到最优解
 - □ 终止前,每一轮迭代都有策略改进,且策略的总数有限

图说策略迭代

E: 策略评价

I: 策略改进

$$\pi_0 \xrightarrow{\mathrm{E}} U^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} U^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} U^*$$

例子: 4×4栅格世界

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1$ on all transitions

 $U_{\it k}$ for the Random Policy

Greedy Policy w.r.t. U_k

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

random policy

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	J	J	$ \Longleftrightarrow $
†	T,	\bigoplus	ţ
†	$ \Longleftrightarrow $	Ļ	↓
$ \Longleftrightarrow $	\rightarrow	\rightarrow	

例子: 4×4栅格世界(续)

例子: 汽车租赁问题

停车场2

停车场1

如何在两个停车场之间调 度车辆,使得回报最大?

- 状态:两个停车场的车子数,每个地方最多20辆车
- 行动: 车辆调度,一次最多调度5辆车
- 状态转移函数
 - \Box 两个停车场每天被租用和被还回的车辆数n服从均值分别为 λ_{rent} 和 λ_{return} 的泊松分布 $p(n) = \frac{e^{\lambda}}{n!}e^{-\lambda}$
- 期望奖赏函数
 - □ 每出租一辆车,有\$10的奖赏 停车场2: $\lambda_{\text{rent}} = 4 \pi \lambda_{\text{return}} = 2$
 - □ 每调度一辆车,有\$2的成本
- 折扣因子 $\gamma = 0.9$

停车场1: $\lambda_{\text{rent}} = 3 \pi \lambda_{\text{return}} = 3$

例子: 汽车租赁问题(续)

精确动态规划

- 策略迭代
- 值迭代
- 结构化表示
- 线性表示

值迭代

■ 对无限步数的问题,一个最优策略的值满足Bellman最优

方程: $U^*(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U^*(s') \right)$

- 计算带折扣的n步最优值函数 U_n :
 - □ 如果n=0,则对所有 $s: U_0(s) \leftarrow 0$
 - □ 迭代地计算 U_n : $U_n(s) \leftarrow \max_a \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U_{n-1}(s') \right)$

Algorithm 4.3 Value iteration

```
1: function ValueIteration
2: k \leftarrow 0
3: U_0(s) \leftarrow 0 for all states s
4: repeat
5: U_{k+1}(s) \leftarrow \max_a \left[ R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U_k(s') \right] for all states s
6: k \leftarrow k+1
7: until convergence 第5行: 通过迭代地更新U^*的估计来逼近U^*
```

7: **until** convergence 8: **return** U_{k}

值迭代(续)

■ 一旦知道了 U^* ,就可以提取一个最优策略:

$$\pi(s) \leftarrow \arg\max_{a} \left(R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) U^*(s') \right)$$

- 初始化
 - □可以是任一有界的初始值
 - □ 好的初始值能加速收敛

■ 收敛条件

$$||U_k - U_{k-1}||_{\infty} < \delta$$

Bellman残差

- $\quad = \quad \exists \|U_k U_{k-1}\|_{\infty} < \delta, \quad \delta = \frac{\epsilon(1-\gamma)}{\gamma} \text{时}, \quad \|U^* U_k\|_{\infty} < \epsilon$
 - \square 当 $\gamma \rightarrow 1$, δ 越小,意味着收敛更慢

例子: 1×4栅格世界

\mathbf{s}_{1}	\mathbf{s}_2	\mathbf{s}_3	S ₄
------------------	----------------	----------------	----------------

- 考虑右上角的栅格世界。Agent能向左或向右移动,向左移动到左边相邻的格子中,向右移动到右边相邻的格子中。在 s_1 向左移动将得到奖赏100,游戏结束;在 s_4 向右移动将得到奖赏0,游戏结束。假设折扣因子为0.9,初始化各状态的折扣回报为0。用值迭代算法计算最优值函数 U^* 。
- 状态空间 $S = \{s_1, s_2, s_3, s_4\}$
- 行动空间 $\mathcal{A} = \{ \text{left, right} \}$
- 状态转移函数
 - $T(s_{\text{sh}} | s_1, \text{left}) = 1, T(s_{\text{sh}} | s_4, \text{right}) = 1$
 - $T(s_i | s_{i+1}, left) = 1, i = \{2, 3, 4\}$
 - $T(s_{i+1} \mid s_i, right) = 1, i = \{1, 2, 3\}$
 - □ 其余状态转移概率为0

例子: 1×4栅格世界(续)

- 期望奖赏函数
 - □ $R(s_1, \text{left}) = 100$,其余为0
- $U_0(s_i) = 0, i = \{1, 2, 3, 4\}$
- 由值迭代公式 $U_n(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U_{n-1}(s') \right)$
- $U_1(s_1) = \max \{R(s_1, \text{left}) + \gamma U_0(s_{\text{th}}), R(s_1, \text{right}) + \gamma U_0(s_2)\}$ = $\max \{100, 0\} = 100$
- 类似地, $U_1(s_i) = 0$, $i = \{2, 3, 4\}$
- $U_2 = [100, 90, 0, 0], U_3 = [100, 90, 81, 0]$
- $U_4 = [100, 90, 81, 72.9], U_5 = U_4$ $U^* = [100, 90, 81, 72.9]$

例子: 10×10栅格世界

- 10×10的栅格世界
 - □ 每个格子表示一个状态
 - □ 行动:上、下、左、右
 - □ 行动的效果是随机的
 - 朝指定方向移动的概率为0.7,朝 其余3个方向移动的概率各为0.1
 - □ 若与墙碰撞,则原地不动
 - □ 与墙碰撞的惩罚为1
 - □ 进入格子(8,9)和(3,8)后执行任 一行动的奖赏分别为+10和+3, 随后转移到终止状态,情节结束
 - □ 进入格子(5,4)和(8,4)后执行任 一行动的奖赏分别为-5和-10

第**1**轮值迭代的结果 $(折扣因子\gamma = 0.9)$

- 与墙不相邻的格子
 - 所有行动都是最优行动
- 与墙相邻的格子
 - □ 最优行动是远离墙

例子: 10×10栅格世界(续)

■ 第2轮值迭代的结果(折扣因子 γ = 0.9)

- 有非0奖赏的吸收格子的 值保持不变,但值扩散 到了相邻格子
- 格子的值: 两步的期望 折扣回报
- 离吸收格子或边界格子 不止一步的格子,值为0
- 离吸收格子或边界格子 最多一步的格子,最优 行动集合会更新
 - □ 向正奖赏格子靠近
 - □ 远离负奖赏格子

例子: 10×10栅格世界(续)

■ 第3轮(左)、第4轮(右)值迭代的结果(折扣因子 γ = 0.9)

			-						
-0.35	-0.16	-0.14	-0.14	-0.14	-0.14	-0.14	1.05	-0.16	-0.35
-0.16	-0.03	-0.01	-0.01	-0.01	-0.01	1.35	1.88	1.33	-0.16
	,								
-0.14	-0.01	-0	-0.04	-0	1.19	1.89	3	1.88	1.05
-0.14	-0.01	-0.08	-0.45	-0.08	0	1.36	1.89	1.35	-0.14
				0.00				-100	0111
-0.14	-0.06	-0.45	-5.4	-0.45	-0.04	0	1.19	-0.01	-0.14
-0.14	-0,00	-0143		-0,49	-0.04	U	1.17	-0.01	-0.14
		v			+	+		L	
-0.14	-0.01	-0.08	-0.53	-0.08	0	0	-0	3.95	-0.14
_		1			+	+			
-0.14	-0.01	-0.16	-0.94	-0.16	0	0	4.54	6.29	4.4
-0.14	-0.1	-0.9	-10.81	-0.9	-0.08	3.97	6.3	10	6.73
-0.16	-0.03	-0.19	-0.92	-0.18	-0.01	-0.01	4.52	6.27	4.37
-0.35	-0.16	-0.14	-0.28	-0.14	-0.14	-0.14	-0.14	3.81	-0.35
-0.35	-0.16	-0.14	-0.28	-0.14	-0.14	-0.14	-0.14	3.81	-0.35

例子: 10×10栅格世界(续)

- 收敛时的值函数和策略(左: γ = 0.9, 右: γ = 0.5)
 - □ 不同折扣因子会影响值函数和策略

0.41	0.74	0.96	1.18	1.43	1.71	1.98	2.11	2.39	2.09
0.74	 1.04	1.27	1.52	1.81	2.15	2.47	2.58	3.02	2.69
0.86	1.18	1.45	1.76	2.15	2.55	2.97	3	3.69	3.32
0.84	1.11	1.31	1.55	2.45	3.01	3.56	4.1	4.53	4.04
0.91	1.2	1.09	-3	2.48	3.53	4.21	4.93	5.5	4.88
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5.85	6.68	5.84
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6.94
0.92	1.18	0.7	- 7.39	3.43	5.39	6.67	8.15	10	8.19
						5.0/			
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82

(a) $\gamma = 0.9$ (b) $\gamma = 0.5$

异步值迭代

- \blacksquare 值迭代:在每一轮迭代,基于 U_k ,对所有状态计算 U_{k+1}
- 异步值迭代: 在每一轮迭代, 仅更新状态空间的一个子集
- 高斯-赛德尔(Gauss-Seidel)值迭代
 - □ 只保存一份状态值,对值就地(in place)更新:

$$U(s) \leftarrow \max_{a} \left(R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) U(s') \right)$$

- □ 通常能更快收敛(vs. 值迭代)
- □ 只要值函数在每个状态上的更新次数无限多,就能收敛到最 优值函数

例子: 1×4栅格世界(续)

 \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3 \mathbf{s}_4

■ 应用高斯-赛德尔值迭代求解 1×4 栅格世界问题,状态的更新顺序为 s_1, s_2, s_3, s_4 。问:需要多少轮迭代可以收敛到 U^* ?

- $U_0(s_i) = 0, i = \{1, 2, 3, 4\}$
- 由高斯-塞德尔值迭代公式 $U(s) \leftarrow \max_{a} \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U(s') \right)$
- $U_1(s_1) = \max \{R(s_1, \text{left}) + \gamma U_0(s_{\text{th}}), R(s_1, \text{right}) + \gamma U_0(s_2)\}$ = $\max \{100, 0\} = 100$
- $U_1(s_2) = \max \{R(s_2, \text{left}) + \gamma U_1(s_1), R(s_1, \text{right}) + \gamma U_0(s_2)\}$ $= \max \{90, 0\} = 90$
- 类似地, $U_1(s_3) = 81, U_1(s_4) = 72.9$

只需要1轮迭代!

■ 考虑一个无限步数的MDP(如下图所示)。该MDP仅需在顶部状态做决策,有left和right两个行动可供选择。每次行动后会得到确定性的奖赏。有两个确定性策略: π_{left} 和 π_{right} 。请问,当 γ 分别为0、0.5和0.9时,哪个策略最优?

■ 用h和l表示状态high和low,用s、w和re表示search、wait和recharge。写出吸尘机器人MDP的最优状态值函数的Bellman最优方程。

■ 考虑图(a)中的3×3 世界,每个格子中的数值表示的是*R*(*s*),即状态*s*的立即奖赏,右上角含有+10的格子是终止状态(进入终止状态得到+10的奖赏后,采取任意行动都会导致情节结束)。转移模型如图(b)所示,它表示的含义是:以0.8的概率向选择的方向移动,各以0.1的概率向与它垂直的两个方向移动。假设Agent的可选行动为上(U)、下(D)、左(L)、右(R),使用折扣因子为0.99的折扣奖赏定义效用(即回报)。对于下面的每种情况,计算最优策略。

$$(1) r = 100$$

$$(2) r = -3$$

$$(3) r = 0$$

$$(4) r = 3$$

(b)

■ 己知Bellman最优方程:

$$U^{*}(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s'} T(s' \mid s, a) U^{*}(s') \right)$$

和值迭代的更新公式:

$$U_{k+1}(s) \leftarrow \max_{a} \left[R(s,a) + \gamma \sum_{s'} T(s' \mid s, a) U_k(s') \right]$$

试证明: 当
$$\|U_k - U_{k-1}\|_{\infty} < \delta$$
, $\delta = \frac{\epsilon(1-\gamma)}{\gamma}$ 时, $\|U^* - U_k\|_{\infty} < \epsilon$

编程作业1

- (1) 实现值迭代算法。复现值迭代算法在10×10栅格世界问题上的实验结果。
- (2)实现高斯-赛德尔值迭代算法、策略迭代算法,在 10×10栅格世界问题上这3个算法的实验结果。

提交代码(用Python或者C++实现)和实验报告。

截止时间为: 2021年5月12日

本科生班的同学把作业发给徐峰: xufeng@lamda.nju.edu.cn

研究生班的同学把作业发给刘旭辉: <u>liuxh@lamda.nju.edu.cn</u>

