Overview of CMOS & Logic Gates

- ☐ Introduction to CMOS circuits
- ☐ MOS transistor theory, processing technology
- CMOS circuit and logic design

Transistor Types

- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration
- ☐ Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors

nMOS Transistor

- ☐ Four terminals: gate, source, drain, body
- ☐ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain

n+

p

Even though gate is no longer made of metal

Polysilicon

SiO2

n+

bulk Si

nMOS Operation

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

- ☐ When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- ☐ Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- \Box GND = 0 V
- \Box In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- \square $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- □ Voltage at gate controls path from source to drain

CMOS Inverter

CMOS Inverter

CMOS Inverter

А	Υ	
0	1	
1	0	

Α		В		Υ
0		0		
0		1		
1		0		
1		1		

Α	В		Υ
0	0		1
0	1		
1	0		
1	1		

Α	В		Υ
0	0		1
0	1		1
1	0		
1	1		

Α	В		Υ	
0	0		1	
0	1		1	
1	0		1	
1	1			

1	1	0
1	0	1
0	1	1
0	0	1
Α	В	Υ

CMOS NOR Gate

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- ☐ Y pulls high if ANY input is 0

Example: O3AI

$$\square Y = \overline{(A+B+C)\square D}$$

CMOS Fabrication

- ☐ CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- □ Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection (used for Schottky Diode)
- ☐ Use heavily doped well and substrate contacts / taps

