Logica

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Ripasso di matematica	3
	1.1 Relazioni	3
	1.2 Sottoinsieme delle parti	3
2	Introduzione	3
3	Sintassi della logica proposizionale	3
	3.1 Connettivi	3
	3.2 Ausiliari	4
	3.3 Simboli proposizionali	4
	3.4 Altri simboli	4
4	Principio di induzione	4
•	4.1 Definizione induttiva formale dell'insieme <i>PROP</i>	5
	1.1 Definizione indutiva formate dell'insieme 1 1601	0
5	Proprietà su un insieme	5
	5.1 Principio di induzione sui numeri naturali \mathbb{N}	6
6	Teorema del principio di induzione delle proprietà su $PROP$	6
7		-
1	Definizione ricorsiva di funzioni su PROP 7.1 Definizione più precisa dell'esercizio 6.1	7
	7.1 Definizione più precisa den esercizio 0.1	O
8	Dimostrazione ricorsiva di rango e sottoformula	9
	8.1 Applicazione della definizione di sottoformula	9
9	Semantica delle formule proposizionali	10
J	9.1 Valutazione delle formule logiche	10
	9.2 Valutazione atomica	11
	9.3 Tavole di verità	11
	9.3.1 Tavola di verità per \vee	11
	9.3.2 Tavola di verità per \wedge	12
	9.3.3 Tavola di verità per \rightarrow	12
	9.4 Esempi di tabelle di verità	12
	9.5 Formule privilegiate	12
10	Struttura esercizi di semantica	13
	10.1 Prova con il contromodello	14
11	Soddisfacibilità della formula	15
12	2 Conseguenza logica	15
13	3 Convenzioni	18
	13.1 Rimozione della parentesi nella sintassi	18 18

14 Definizione di sostituzione	19
15 Connettivi derivati	19
16 Relazione di equivalenza	20
17 Tautologie notevoli	21
18 RAA (Reductio ad absurdum)	23

1 Ripasso di matematica

1.1 Relazioni

Prendendo in considerazione 2 insiemi A, B e una relazione $f \subseteq A \times B$ si definisce **dominio** l'insieme A e **codominio** l'insieme B. Il prodotto cartesiano è definito nel seguente modo:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Ciò significa che si prende in considerazione una coppia ordinata di elementi formata da un elemento di A e uno di B. La relazione f è una funzione sse (se e solo se) $\forall a \in A \exists$ unico $b \in B$ si dice che: $(a,b) \in f$, oppure f(a) = b.

1.2 Sottoinsieme delle parti

Dato un insieme A si definisce sottoinsieme delle parti (scritto $\mathcal{P}(A)$ o 2^A) l'insieme di tutti i sottoinsiemi di A, cioè $2^A = x | x \subseteq A$.

Un esempio è il seguente:

$$A = \{3,5\}$$

$$2^A = \{\emptyset, \{3\}, \{5\}, \{3,5\}\}$$

 \emptyset è l'insieme vuoto, cio
è l'insieme che non contiene nessun elemento.

2 Introduzione

La logica ha lo scopo di formalizzare il ragionamento matematico che è caratterizzato dal concetto di dimostrazione senza ambiguità

3 Sintassi della logica proposizionale

La logica proposizionale è formata da simboli formali ben definiti e sono divisi in:

3.1 Connettivi

- ∨ Congiunzione, And logico
- \(\lambda\) Disgiunzione, Or logico
- $\bullet\,$ \neg Negazione, Not logico (non connette niente, è solo una costante logica che equivale a 0 nella logica booleana)
- \perp Falso, Bottom, Assurdo
- $\bullet \rightarrow$ Implicazione, If-then

3.2 Ausiliari

• () Le parentesi non fanno parte della proposizione, ma servono solo a costruire il linguaggio

3.3 Simboli proposizionali

• p_n, q_n, ψ_n, \ldots Le lettere minuscole indicizzate vengono usate per indicare una proposizione (sono infiniti simboli numerabili)

3.4 Altri simboli

- | Tale che
- $\bullet \leftrightarrow Se e solo se$

Definizioni utili 3.1

- 1. Stringa: Una sequenza finita di simboli o caratteri
- 2. Infinito numerabile: Un insieme è infinito numerabile se è il più piccolo infinito possibile, cioè se è in corrispondenza biunivoca con l'insieme N

4 Principio di induzione

Il principio di induzione è un principio logico che permette di dimostrare che una proprietà è vera per tutti gli elementi di un insieme infinito numerabile.

Una prima definizione induttiva fatta in modo non formale, ma con frasi in italiano è la seguente:

L'insieme di proposizioni PROP è così definito induttivamente:

- 1. $\perp \rightarrow PROP$
- 2. se p è un simbolo proposizionale allora $p \in PROP$
- 3. (Caso induttivo) se $\alpha, \beta \in PROP$ allora $(\alpha \land \beta) \in PROP, (\alpha \lor \beta) \in PROP, (\alpha \to \beta) \in PROP, (\neg \alpha) \in PROP$
- 4. nient'altro appartiene a PROP

In questo modo è stato creato l'insieme PROP che contiene tutte le proposizioni che possono essere create usando gli unici simboli che abbiamo definito $(\wedge, \vee, \rightarrow, \neg)$.

Esempi di proposizioni corrette e scorrette:

•
$$(p_7 \rightarrow p_0) \in PROP$$

- $p_7 \rightarrow p_0 \notin PROP$ (mancano le parentesi)
- $((\bot \lor p_{32}) \land (\neg p_2)) \in PROP$
- $((\rightarrow \land \notin PROP)$
- $\neg\neg\bot\notin PROP$

4.1 Definizione induttiva formale dell'insieme PROP

Adesso l'insieme PROP viene definito in modo formale usando i simboli proposizionali.

Definizione 4.1

L'insieme PROP è il più piccolo insieme X di stringhe tale che:

- 1. $\perp \in X$
- 2. $p \in X$ (Perchè è un simbolo proposizionale)
- 3. se $\alpha, \beta \in X$ allora $(\alpha \to \beta) \in X, (\alpha \lor \beta) \in X, (\alpha \land \beta) \in X, (\neg \alpha) \in X$

 p, α, β, \dots sono elementi proposizionali generici

AT= simboli proposizionali + \perp è l'insieme di tutte le proposizioni atomiche, cioè quelle che non contengono connettivi, sono quindi la più piccola parte non ulteriormente scomponibile

5 Proprietà su un insieme

Definito P un insieme di proprietà assunte da un insieme A si ha che:

- \bullet $P \subseteq A$
- $a \in A$ dove a è un elemento generico dell'insieme A

Si dice che a gode della proprietà P se $a \in P$.

Altri modi per dire che a gode della proprietà P sono:

- *P*(*a*)
- P[a] (per non creare confusione con le parentesi tonde che sono usate come simboli ausiliari per costruire il linguaggio)

$$P \subseteq PROP \quad \forall \alpha \in PROP . P(\alpha)$$

(il punto mette in evidenza ciè che viene dopo di esso e può anche essere omesso)

Esempio 5.1

Esempio di una proprietà sull'insieme \mathbb{N} :

 $P=\{n|n\in\mathbb{N}\ ed\ e\ pari\ \}\ essendo\ n\ un\ numero\ generico\ indica\ la\ proprietà\ di\ essere\ pari.$

$$\begin{array}{c} P[5] \times \\ P[4] \sqrt{\end{array}$$

5.1 Principio di induzione sui numeri naturali $\mathbb N$

 $P\subseteq \mathbb{N}$

- 1. Caso base: se P[0] e
- 2. Passo induttivo: se $\forall n \in \mathbb{N}(P[n] \Rightarrow P[n+1])$ allora $\forall n \in \mathbb{N}$. P[n]

Se si dimostra la proprietà per n e per il successivo (n+1), allora si dimostra che la proprietà è vera per tutti i numeri naturali. Si sfrutta il fatto che esiste un minimo a cui prima o poi si arriva.

Esercizio 5.1

Dimostra per induzione che:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

6 Teorema del principio di induzione delle proprietà su PROP

Definizione 6.1 $P \subseteq PROP$

- 1. Se $P[\alpha], \alpha \in AT$ e
- 2. Se $P[\alpha] \Rightarrow P[(\neg \alpha)] e$
- 3. se $P[\alpha]$ e $P[\beta] \Rightarrow P[(\alpha \land \beta)], P[(\alpha \lor \beta)P[(\alpha \to \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

Con questo teorema si possono dimostrare intere proposizioni complesse dimostrando i pezzi più piccoli (sottoformule) come mostrato nella figura 1.

Figura 1: Dimostrazione di una formula complessa

Esercizio 6.1

Dimostra che ogni $\psi \in PROP$ ha un numero pari di parentesi usando il principio di induzione per dimostrare proprietà sintattiche sulla struttura delle formule.

 $P[\psi] \equiv \psi$ ha un numero pari di parentesi

- 1. Caso base $\psi \in AT$ quindi ψ ha 0 parentesi e quindi è pari: $P[\psi] \sqrt{}$
- 2. **Ipotesi induttiva** $\alpha, \beta \in PROP, P[\alpha], P[\beta]$? $P[(\alpha \rightarrow \beta)]$ (per α vale e per β vale, si sono aggiunte due parentesi, quindi la formula è ancora pari)
- 3. Passo induttivo $P[\alpha], P[\beta] \Rightarrow P[(\alpha \rightarrow \beta)], P[(\alpha \lor \beta)], P[(\alpha \land \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

7 Definizione ricorsiva di funzioni su PROP

Definizione 7.1

Riprendendo l'esercizio 6.1 si definisce la funzione π che associa ad ogni formula proposizionale (equivalente di un input nell'informatica) un numero naturale (equivalente di un output nell'informatica). La funzione π quindi dopo aver dato in input un argomento (qualsiasi formula proposizionale atomica o complessa) restituisce in output il numero di parentesi che contiene la formula in input.

$$\pi: PROP \to \mathbb{N}$$

- 1. Caso base $\pi[\alpha] = 0$ se $\alpha \in AT$
- 2. **Ipotesi induttiva** $\pi[(\neg \alpha)] = \pi[\alpha] + 2$ In questo passaggio viene chiamata la funzione π dentro la funzione π stessa, quindi è una defini-

zione ricorsiva. In questo caso si aggiungono 2 parentesi al numero di parentesi di α $\pi[\alpha]$

3. Passo induttivo $\pi[(\alpha \to \beta)] = \pi[(\alpha \lor \beta)] = \pi[(\alpha \land \beta)] = \pi[\alpha] + \pi[\beta] + 2$ dove $\pi[\alpha]$ e $\pi[\beta]$ sono il numero di parentesi di α e β e si aggiungono 2 parentesi per il connettivo.

Di seguito ci sono 2 esempi in cui viene messa in pratica la funzione π definita sopra in modo da capire meglio come funziona.

Esempio 7.1

$$\pi[(p_2 \to p_1)] \stackrel{caso 3}{=} \pi[p_2] + \pi[p_1] + 2 \stackrel{caso 1}{=} 0 + 0 + 2 = 2$$

Esempio 7.2

$$\pi[(p_1 \vee (p_2 \vee p_1))] = (\pi[p_2] + \pi[p_1] + 2) + \pi[p_1] + 2 = (0 + 0 + 2) + 0 + 2 = 4$$

Tutte le funzioni definite ricorsivamente sono funzioni, ma non tutte le funzioni possono essere definite ricorsivamente.

7.1 Definizione più precisa dell'esercizio 6.1

Ogni $\alpha \in PROP$ ha un numero pari di parentesi: $\forall \alpha \in PROP \ P[\alpha] \stackrel{sse}{\Leftrightarrow} \pi[\alpha]$ è pari

- 1. $P[\alpha] \ \alpha \in AT$ se $\alpha \in AT \ \pi[\alpha] \stackrel{def}{=} 0$ quindi $\sqrt{}$
- 2. Suppongo che valga $P[\alpha]$, $P[(\neg \alpha)]$?

 $P[\alpha] \Leftrightarrow \pi[\alpha]pari$ è pari perchè lo abbiamo supposto prima (consideriamo 0 come pari)

$$\pi[(\neg \alpha)] = \pi[\alpha] + 2$$
 è pari quindi $P[(\neg \alpha)] \checkmark$

Si può definire un simbolo nuovo che non vuole dire niente nel linguaggio proposizionale e gli si assegnano i connettivi possibili per non doverli più scrivere ogni volta. Per questo esercizio prendiamo in considerazione

$$\circ \in \{\rightarrow, \lor, \land\}$$

3.
$$(\alpha \circ \beta)$$

suppongo $P[\alpha], P[\beta]$
allora $\pi[\alpha]$ e $\pi[\beta]$ sono pari
quindi $\pi[(\alpha \circ \beta)] = \pi[\alpha] + \pi[\beta] + 2$ (è pari)

Ho dimostrato per induzione che $\forall \psi \in PROP \ P[\psi] \ \Box$ (\Box è un simbolo che indica la fine della dimostrazione.)

8 Dimostrazione ricorsiva di rango e sottoformula

Il rango di una formula è il numero di connettivi che contiene.

3. $r[(\psi \circ \gamma)] = 1 + max(r[\psi], r[\gamma]) \quad \circ \in \{ \lor, \land, \to \}$

Definizione 8.1 Considerato r il rango di una proposizione $r: PROP \to \mathbb{N}$ 1. $r[\psi] = 0$ se $\psi \in AT$ 2. $r[(\neg \psi)] = 1 + r[\psi]$

La sottoformula è una formula che è contenuta in un'altra formula più grande.

```
Definizione 8.2
Considerata sub la sottoformula di una proposizione sub: PROP \rightarrow 2^{PROP}

1. sub[\alpha] \ \alpha = ((p_2 \lor p_1) \lor p_0)
2. sub[\alpha] = \{\alpha, p_2, p_0, (p_2 \lor p_1)\}
```

8.1 Applicazione della definizione di sottoformula

- 1. $sub[\psi] = {\psi}$ se $\psi \in AT$
- 2. $sub[(\neg \psi)] = \{(\neg \psi)\} \cup sub[\psi]$
- 3. $sub[(\psi \to \gamma)] = \{(\psi \circ \gamma)\} \cup sub[\psi] \cup sub[\gamma]$

Teorema 1 Vogliamo dimostrare per induzione su β :

Se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ (dove α è una sottoformula propria, cioè vengono considerate tutte le sottoformule di β tranne β stessa) allora $r[\alpha] < r[\beta]$

- 1. Caso base $\beta \in AT$ β non ha sottoformule proprie, quindi α non può essere una sottoformula propria di β . Essendo falsa la premessa la tesi è vera.
- 2. Se $\beta = (\neg \beta_1)$: se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ e si dimostra $r[\alpha] \leq r[\beta_1]$ (ipotesi induttiva)

(a)
$$\alpha \in sub[\beta_1]$$
 e $\alpha \neq \beta_1$ per ipotesi induttiva $r[\alpha] < r[\beta_1]$

(b)
$$\alpha = \beta_1 \ r[\alpha] = r[\beta_1]$$

 $r[\alpha] \le r[\beta_1]$

Quindi

$$r[(\neg \overset{\beta}{\beta_1})] \stackrel{def}{=} {}^r 1 + r[\beta_1] \ge 1 + r[\alpha] > r[\alpha]$$

Quindi

$$r[\alpha] < r[\beta]$$

3. Caso induttivo

 $\beta = (\beta_1 \rightarrow \beta_2)$ se α è sottoformula di β e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ o $\alpha \in sub[\beta_2]$

(a) se $\alpha \in sub[\beta_1]$ (ipotesi induttiva)

i. Se
$$\alpha \neq \beta_1 \Rightarrow r[\alpha] \leq r[\beta_1]$$

ii. Se $\alpha = \beta_1 \Rightarrow r[\alpha] = r[\beta_1]$

ii. Se
$$\alpha = \beta_1 \Rightarrow r[\alpha] = r[\beta_1]$$

Da 3(a)i e 3(a)ii si ricava $r[\alpha] \leq r[\beta_1]$

(b) se $\alpha \in sub[\beta_2]$

i. Se
$$\alpha \neq \beta_2 \Rightarrow r[\alpha] \leq r[\beta_2]$$

ii. Se $\alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$

ii. Se
$$\alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$$

Da 3(b)i e 3(b)ii si ricava $r[\alpha] \leq r[\beta_2]$

$$r[(\beta_1 \overset{\beta}{\to} \beta_2)] = 1 + \max\{r[\beta_1], r[\beta_2]\} \geq 1 + \max\{r[\alpha], r[\alpha]\} \geq 1 + r[\alpha] > r[\alpha]$$

Semantica delle formule proposizionali 9

Considerando una formula α si associano 2 possibli valori:

- Vero (1)
- Falso (0)

Valutazione delle formule logiche

$$V: PROP \to \{0, 1\}$$

 $V(p_1) = ? 0 \text{ o } 1$

Esempio 9.1

Le seguenti funzioni non sono valide:

- $V(\alpha) = V(\neg \alpha)$
- $V(\alpha) = 0 \ \forall \alpha$

 $V: PROP \rightarrow \{0,1\}$ è una valutazione se:

1.
$$V(\alpha \wedge \beta) = 1 \leftrightarrow V(\alpha) = 1 \& V(\beta) = 1$$

2.
$$V(\alpha \vee \beta) = 1 \leftrightarrow V(\alpha) = 1 \text{ or } V(\beta) = 1$$

3.
$$V(\neg \alpha) = 1$$

4.
$$V(\bot) = 0$$

5.
$$V(\alpha \to \beta) = 1 \leftrightarrow [V(\alpha) = 1 \Rightarrow V(\beta) = 1]$$

5.2
$$V(\alpha \to \beta) = 1 \leftrightarrow V(\alpha) = 0 \text{ or } V(\beta) = 1$$

9.2 Valutazione atomica

v è detta valutazione (atomica) se:

$$v: AT \to \{0,1\} \ \mathrm{e} \ v(\bot) = 0$$

Definizione 9.1

Teorema:

Data una valutazione atomica v esiste ed è unica una valutazione

$$[|\cdot|]_v{}^a: PROP \rightarrow \{0,1\}$$

tale che:

$$[|\alpha|]_v = V(\alpha) \ per \ \alpha \in AT$$

9.3 Tavole di verità

Il valore di verità di una formula è determinato (universalmente) dal valore dei suoi atomi.

9.3.1 Tavola di verità per \lor

$$[|(\alpha \vee \beta)]_v = 1 \leftrightarrow [|\alpha|]_v = 1 \text{ or } [|\beta|]_v = 1$$

α	β	$\alpha \vee \beta$
0	0	0
0	1	1
1	0	1
1	1	1

 $[^]a[|\cdot|]$ sono parentesi denotazionali, cioè indicano che stiamo valutando il valore della valutazione, quindi della semantica

9.3.2 Tavola di verità per \wedge

$$\begin{array}{c|c|c} \alpha & \beta & \alpha \wedge \beta \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

9.3.3 Tavola di verità per ightarrow

$$\begin{array}{c|cccc} \alpha & \beta & \alpha \to \beta \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

9.4 Esempi di tabelle di verità

Esempio 9.2

$$\alpha = ((p_2 \to p_1) \lor p_2)$$

p_1	p_2	$(p_1 \to p_2)$	$((p_2 \to p_1) \lor p_2)$		
0	0	1	1		
0	1	0	1		
1	0	1	1		
1	1	1	1		

A ogni riga corrisponde una valutazione atomica: $v_1[p_1] = 0, v_1[p_2] = 0$ ecc...

Esercizio 9.1

 $Valutare: [|\alpha|]_{v_1} \ dell'esercizio \ precedente:$

$$[|(p_2 \to p_1)|]_{v_1} = 1 \leftrightarrow [|p_2|]_{v_1} \overset{punto 5.2}{=} 0 \ or \ [|p_1|]_{v_1} = 1$$

$$[|((p_2 \to p_1) \lor p_2)|]_{v_1} = 1 \leftrightarrow [|(p_2 \to p_1)|]_{v_1} = 1; \ or \ [|p_2|]_{v_1} = 1$$

Esercizio 9.2 (A casa)

 $Valutare [|\alpha|]_{v_2}$

9.5 Formule privilegiate

Teorema 2 $\phi \in PROP$ sia $\phi^{AT} = \{p | p \in AT \& p \ \grave{e} \ in \ \phi\}$ Siano v_1 e v_2 valutazioni atomiche

tali che: $\forall p \in \phi^{AT} \ v_1[p] = v_2[p]$ allora $[|\phi|]_{v_1} = [|\phi|]_{v_2}$

Definizione 9.2

 $\alpha \in PROP$ è detta **tautologia** se per ogni valutazione v: $[|\alpha|]_v = 1$ $\models \phi$ indica una formula privilegiata (di cui fa parte la tautologia)

 $\forall v[|\alpha|]_v=1$ è una formula privilegiata? |= α

- Sì \Rightarrow dimostro **per ogni** v che $[|\alpha|]_v = 1 \ (\forall^1)$
- No \Rightarrow esibisco una specifica valutazione tale che $[|\alpha|]_v=0~(\exists^2)$

10 Struttura esercizi di semantica

Esercizio 10.1

Vogliamo dimostrare una formula che implica se stessa:

$$\models (\alpha \to \alpha)$$

$$\forall v \cdot [|(\alpha \to \alpha)]_v = 1$$

$$[|(\alpha \to \alpha)]_v = 1 \stackrel{def}{\Leftrightarrow} [|\alpha|]_v = 0 \text{ or } [|\alpha|]_v = 1$$

Esercizio 10.2

Vogliamo dimostrare:

$$\begin{split} & \models ((\alpha \land \beta) \to \alpha) \\ \forall v \cdot [|((\alpha \land \beta) \to \alpha|)]_v = 1 \Leftrightarrow \\ & [|(\alpha \land \beta)]_v = 0 \ or \ [|\alpha|]_v = 1 \Leftrightarrow \\ & ([|\alpha|]_v = 0 \ or \ [|\beta|]_v = 0) \ or \ [|\alpha|]_v = 1 \end{split}$$

 $^{^{1}\}mathrm{Per}$ far si che sia vero dobbiamo dimostrare che sia vero per ogni elemento

 $^{^2\}mathrm{Per}$ far si che sia falso dobbiamo dismostrare che almeno una valutazione sia falsa (controesempio)

Esercizio 10.3

Vogliamo dimostrare:

$$\models (\alpha \to (\beta \to \alpha))$$

$$\forall v \cdot [|(\alpha \to (\beta \to \alpha))]_v = 1 \Leftrightarrow$$

$$[|\alpha|]_v = 0 \text{ or } [|(\beta \to \alpha)|] = 1 \Leftrightarrow$$

$$[|\alpha|]_v = 0 \text{ or } ([|\beta|]_v = 0 \text{ or } [|\alpha|]_v = 1)$$

Ho tutte le possibilità per α ([$|\alpha|$] $_v=0$, [$|\alpha|$] $_v=1$), quindi la formula è vera

10.1 Prova con il contromodello

Esercizio 10.4

È vero che la seguente formula è una tautologia? NO Ragiona sullo stesso esercizio, ma se ci fosse \lor

$$\models (\alpha \to (\alpha \land \beta))$$

Bisogna trovare un'istanza di α e β e una valutazione v. Assumo che α sia p_0 e β sia p_1

$$\exists v \ t.c. \ [|p_0 \to (p_0 \land p_1)|_v = 0$$

Per assegnare i valori a p_0 e p_1 si può anche usare la tabella di verità della formula intera.

$$v[p_0] = 1 \ v[p_1] = 0$$

(Contromodello) 1 non può implicare 0

Verifichiamo che sia vero che esca il contromodello

$$[|(p_0 \to (p_0 \land p_1))|]_v = 0 \Leftrightarrow$$

$$p_0 = \delta \quad (p_0 \land p_1) = \gamma$$

$$(|\delta \to \gamma) = 0$$

$$[|p_0|]_v = 1 \& [|(p_0 \land p_1)|]_v = 0 \Leftrightarrow$$

$$[|p_0|]_v = 1 \& ([|p_0|]_v = 0 \text{ or } [|p_1|]_v = 0)$$

 $[|p_0|]_v = 1$ è vero e anche il pezzo dopo \mathcal{E} , quindi è tutto vero.

11 Soddisfacibilità della formula

Si definisce:

• $\alpha \in PROP$ è soddisfacibile se esiste v:

$$[|\alpha|]_v = 1$$

 $\bullet \ \alpha$ non è soddisfacibile quando non esiste:

$$\not\exists v \ t.c. \ [|\alpha|]_v = 1$$

 Γ insieme formule proposizionali Γ è soddisfacibile quando:

$$\exists v \ t.c. \ \forall \phi \in \Gamma \ [|\phi|]_v = 1$$

12 Conseguenza logica

 $\mathrm{Ipotesi} \to \mathrm{tesi}$

 Γ, E, Δ Insiemi arbitrari di formule α, β, γ

$$\Gamma \models^{tesi} \alpha$$

Si può leggere in più modi:

- Da Γ segue semanticamente α
- α è conseguenza logica/semantica di Γ

Definizione 12.1

La verità dell'ipotesi fa conseguire la verità della tesi.

$$\Gamma \models \alpha \ sse \ \forall v \ se \ \forall \phi \in \Gamma \ allora \ [|\phi|]_v = 1 \ allora \ [|\alpha|]_v = 1$$

Le denotazione dell'insieme vuol dire che tutte le formule dell'insieme sono vere.

$$[|\Gamma|]_v = 1 \Leftrightarrow \forall \alpha \in \Gamma \; [|\alpha|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

$$\Gamma \models \alpha \Leftrightarrow \forall v \ [|\Gamma|]_v = 1 \ allora [|\alpha|]_v = 1$$

La seguente formula vuol dire che esiste almeno una formula falsa nell'insieme Γ

$$[|\Gamma|]_v \neq 1$$

Che è diverso dal dire:

$$[|\Gamma|]_v = 0$$

Che significa che tutte le formule di Γ valgono 0.

Esercizio 12.1 (easy)

Vogliamo provare:

$$(\alpha \wedge \beta) \models \alpha$$

Applico la definizione e prendo una valutazione generica

$$[|(\alpha \wedge \beta)|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

Usiamo le definizioni semantiche dei connettivi per valutare la prima parte dell'espressione

$$[|(\alpha \wedge \beta)|]_v = 1 \Leftrightarrow [|\alpha|]_v = 1 \& [|\beta|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

Esercizio 12.2

Definiamo un insieme separando con la virgola le formule che lo compongono a

$$(\alpha \to \beta), \ \alpha \models \beta$$

$$\forall v. \ [|(\alpha \to \beta), \ \alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$[|(\alpha \to \beta), \alpha|]_v = 1 \Leftrightarrow$$

$$[|\alpha \to \beta|]_v = 1 \& \ [|\alpha|]_v = 1 \Leftrightarrow$$

$$([|\alpha|]_v = 0 \ or \ [|\beta|]_v = 1) \& \ [|\alpha|]_v = 1 \Rightarrow$$

$$[|\beta|]_v = 1$$

Esercizio 12.3 (a casa)

$$\Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$

$$\Gamma, \alpha \models \beta \stackrel{def}{\Leftrightarrow} \forall v. \ [|(\Gamma, \alpha)|]_v = 1 \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

Per la definizione di implicazione:

$$\forall v. [|\Gamma, \alpha|]_v \neq 1 \ opure [|\beta|]_v = 1 \Leftrightarrow$$

$$\forall v. \ [|\Gamma|]_v \neq 1 \ oppure \ [|\alpha|] = 0 \ oppure \ [|\beta|]_v = 1 \Leftrightarrow$$

Non a o b è la definizione dell'implica:

$$\forall v. [|\Gamma|]_v \neq 1 \text{ or } [|\alpha \rightarrow \beta|]_v = 1 \Leftrightarrow$$

^aEquivale a dire: $\Gamma = \{\beta_1, \beta_2, \ldots\}$ la virgola vuol dire $\Gamma \cup \Delta \models \alpha$ o $\alpha \wedge \beta$

 $Applicando\ di\ nuovo\ la\ definizione\ di\ implicazione:$

$$\forall v. [|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1 \stackrel{def}{\Leftrightarrow}$$

Quest'ultima è la definizione di conseguenza logica:

$$\Gamma \models \alpha \to \beta$$

Esercizio 12.4 (a casa)

$$\phi \models \psi \vee \phi$$

Esercizio 12.5 (a casa)

Risolvi con tavole di verità:

$$\models (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

p q r	$q \rightarrow r$	$p \rightarrow q$	$p \rightarrow r$	$p \to (q \to r)$	$(p \to q) \to (p \to r)$
$0 \ 0 \ 0$	1	1	1	0	1
$0 \ 0 \ 1$	0	1	0	1	1
$0 \ 1 \ 0$	1	0	1	0	0
0 1 1	1	0	0	0	1
1 0 0	1	1	1	1	1
1 0 1	0	1	1	1	1
1 1 0	1	1	1	1	1
1 1 1	1	1	1	1	1
	'	' ,	' \\		' \\

$$(p \to (q \xrightarrow{r} r)) \to ((p \to q) \to (p \xrightarrow{r} r))$$
0
1

La valutazione sulla formula finale non è sempre vera, quindi la formula non è una tautologia.

Esercizio 12.6

$$\Gamma, \alpha, \beta \models \alpha \land \beta$$

Prendiamo una v generica

$$\begin{split} \forall v.([|\Gamma,\alpha,\beta|]_v &= 1 \Rightarrow [|\alpha \wedge \beta|]_v = 1) \\ ([|\Gamma|]_v &= 1 \& [|\alpha|]_v = 1 \& [|\beta|]_v = 1) \Rightarrow \\ ([|\Gamma|]_v &= 1 \& [|(\alpha \wedge \beta)|]_v = 1) \Rightarrow [|\alpha \wedge \beta|]_v = 1 \end{split}$$

13 Convenzioni

13.1 Rimozione della parentesi nella sintassi

Le parentesi possono essere omesse per rendere più leggibile la formula senza cambiare la sintassi.

- 1. Omettiamo, quando possibile (ovvero quando non c'è ambiguità sintattica), alcune parentesi: $(\alpha \to \beta) \Rightarrow \alpha \to \beta$
- 2. Per ripristinare le parentesi servono precedenze tra i connettivi.
 - ¬ ha la precedenza più alta
 - \bullet Dopo la negazione vengono: \wedge e \vee :

$$\alpha \vee \beta \wedge \gamma$$

$$(\alpha \vee \beta) \wedge \gamma \neq \alpha \vee (\beta \wedge \gamma)$$

Bisogna quindi specificare la struttura della formula quando si usano \vee e \wedge .

• Poi viene \rightarrow , che associa a destra, cioè:

$$\alpha_1 \to \alpha_2 \to \alpha_3 == \alpha_1 \to (\alpha_2 \to \alpha_3)$$

13.1.1 Esempi

$$\gamma \to \neg \alpha \lor \beta$$

Diventa:

$$\gamma \to (\neg \alpha) \lor \beta$$

Diventa:

$$\gamma \to ((\neg \alpha) \lor \beta)$$

Diventa:

$$(\gamma \to ((\neg \alpha) \vee \beta))$$

14 Definizione di sostituzione

Definizione 14.1

$$\phi \in PROP \ \phi[\psi/p] \ \psi \in PROP$$

 $p \ \dot{e} \ un \ simbolo \ proposizionale \ che \ {\it occorre}^a \ in \ \phi$

- $\phi[\psi/p] = \bot$ se $\phi = \bot$
- $\phi[\psi/p] = \phi$ se $\phi \in AT$ e $\phi \neq p$ (non c'è la p, quindi non sostituisco niente)
- $\phi[\psi/p] = \psi \ \phi = p$
- $(\neg \phi)[\psi/p] = \neg(\phi[\psi/p])$
- $(\phi_1 \circ \phi_2)[\psi/p] = (\phi_1[\psi/p] \circ \phi_2[\psi/p]) \circ \in \{\land, \lor, \to\}$

^aL' **occorrenza** è il numero di volte in cui appare una formula:

$$\phi = ((p_1 \to (p_5 \lor p_1)) \land p_3)$$

Per osservare le occorrenze scrivo il simbolo + la posizione in cui appare (il numero del carattere ad esempio):

$$(p_1,2),(p_1,7)$$

Quindi se si vuole sostituire p_1 :

$$\phi[\psi/p_1] = ((\psi \to (p_5 \lor \psi)) \land p_3))$$

15 Connettivi derivati

Deriviamo \leftrightarrow che finora abbiamo usato semanticamente come \Leftrightarrow

$$\alpha \leftrightarrow \beta = (\alpha \to \beta) \land (\beta \to \alpha)$$

Teorema 3 Due formule equivalenti si comportano nello stesso modo davanti alla sostituzione:

$$se \models \phi_1 \leftrightarrow \phi_2 = (\models (\phi_1 \rightarrow \phi_2) \land (\models (\phi_2 \rightarrow \phi_1)))$$

allora

$$\models \psi[\phi_1/p] \leftrightarrow \psi[\phi_2/p]$$

.

$$\models \alpha \leftrightarrow \beta$$

Vuol dire che

$$\alpha \approx \beta$$

Esercizio 15.1 (a casa)

(basta fare l'unfolding di \leftrightarrow) Lemma che va a sancire la semantica del se e solo se

$$[|\phi \leftrightarrow \psi|]_v = 1 \Leftrightarrow [|\phi|]_v = [|\psi|]_v$$

La semantica di \leftrightarrow è vera quando entrambi gli elementi sono uguali.

$$[|\phi \to \psi|]_v = 1\&[|\psi \to \phi|]_v \Leftrightarrow$$

$$([|\phi|]_v = 0 \text{ or } [|\psi|]_v = 1) \& ([|\psi|]_v = 0 \text{ or } [|\phi|]_v = 1)$$

Vero quando ϕ e ψ valutano allo stesso valore.

16 Relazione di equivalenza

Una relazione è di equivalenza quando si impongono delle proprietà.

- 1. $\forall x \in A \quad xRx \text{ (riflessività)}$
- 2. $\forall a, b, c \in A \quad (aRb \& bRc) \text{ (transitività)}$
- 3. $\forall a, b \in A \quad aRb \Rightarrow bRa \text{ (simmetria)}$

$$A \quad R \subseteq A \times A$$

R è detta relazione di equivalenza sse: $(x,y) \in R$, si può scrivere anche xRy

$$\approx \subseteq PROP \times PROP$$

$$\phi \approx \psi \stackrel{def}{\Leftrightarrow} \models \phi \leftrightarrow \psi$$

Teorema 4 Si può dimostrare che \approx è una relazione di equivalenza

1. Riflessività:

$$\begin{split} \forall \phi \in PROP \quad \phi \; \approx \; \phi \\ \models \phi \leftrightarrow \phi \Leftrightarrow \forall v. \; [|(\phi \rightarrow \phi) \land (\phi \rightarrow \phi)|]_v = 1 \\ \Leftrightarrow \forall v. \; [|\phi \rightarrow \phi|]_v = 1 \Leftrightarrow \\ \forall v. \; ([|\phi|]_v = 0 \; or \; [|\phi|]_v = 1) \end{split}$$

2. Simmetria:

$$\forall \phi, \psi \in PROP \quad \phi \approx \psi \Rightarrow \psi \approx \phi$$

Presa una v generica:

$$[|\phi \leftrightarrow \psi|]_v = 1 \Leftrightarrow [|(\phi \to \psi) \land (\psi \to \phi|)]_v = 1 \Leftrightarrow$$
$$[|(\phi \to \psi)|]_v = 1 \& [|\psi \to \phi|]_v = 1 \Leftrightarrow$$
$$[|(\psi \to \phi) \land (\phi \to \psi)|]_v = 1 \Leftrightarrow \psi \approx \phi$$

3. Transitività:

$$\forall \phi, \psi, \gamma((\phi \approx \psi \& \psi \approx \gamma) \to (\phi \approx \gamma))$$

$$\forall v. [|\phi \leftrightarrow \psi|]_v = 1 \ \& \ [|\psi \leftrightarrow \gamma|]_v = 1 \Rightarrow [|\phi \to \gamma|]_v = 1$$

Il risultato segue dal lemma: $[|\alpha \leftrightarrow \beta|]_v = 1 \Leftrightarrow [|\alpha|]_v = [|\beta|]_v$ A casa applica il lemma.

17 Tautologie notevoli

- 1. $\models \neg(\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi)$ Prima legge di **De Morgan**
- 2. $\models \neg(\phi \lor \psi) \leftrightarrow (\neg \phi \land \neg \psi)$ Seconda legge di **De Morgan**
- 3. $\models \phi \leftrightarrow \neg \neg \phi$ Negazione involutiva
- 4. $\models (\phi \land \psi) \leftrightarrow (\psi \land \phi)$ Commutatività
- 5. $\models (\phi \lor \psi) \leftrightarrow (\psi \lor \phi)$ Commutatività
- 6. $\models \phi \land (\psi \lor \gamma) \leftrightarrow ((\phi \land \psi) \lor (\phi \land \gamma))$ Distributività
- 7. $\models \phi \lor (\psi \land \gamma) \leftrightarrow ((\phi \lor \psi) \land (\phi \lor \gamma))$ Distributività
- 8. $\models \phi \lor (\psi \lor \gamma) \leftrightarrow (\phi \lor \psi) \lor \gamma$ Associatività per AND
- 9. $\models \phi \land (\psi \land \gamma) \leftrightarrow (\phi \land \psi) \land \gamma$ Associatività per OR

Esercizio 17.1

Dimostrazione della seconda legge di De Morgan:

$$\models \neg(\phi \lor \psi) \to (\neg \phi \land \neg \psi)$$

$$\forall v. [| \neg (\phi \lor \psi) \to (\neg \phi \land \neg \psi) |]_v = 1 \Leftrightarrow$$

$$([\neg(\phi \lor \psi)])_v = 0 \text{ or } [\neg\phi \land \neg\psi]_v = 1) \Leftrightarrow$$

$$([|\phi \lor \psi|]_v = 1 \text{ or } ([|\neg \phi]_v = 1 \& [|\neg \psi|]_v = 1)) \Leftrightarrow$$

$$([|\phi|]_v = 1 \text{ or } [|\psi|]_v = 1 \text{ or } ([|\phi|]_v = 0 \& [|\psi|]_v = 0)) \Leftrightarrow$$

 $Tutti\ i\ casi \Rightarrow\ OK\ \square$

Esercizio 17.2

Esercizio 17.3

Modulus Ponens

$$(\underbrace{\Gamma \models \alpha \to \beta}_{1} \& \underbrace{\Gamma \models \alpha}_{2}) \Rightarrow \Gamma \models \beta$$

Per la definizione di conseguenza logica:

1.

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1) \&$$

2.

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\gamma|]_v = 1)$$

1.

$$\Leftrightarrow \forall v. ([|\Gamma|]_v = 1 \Rightarrow ([|\alpha|]_v = 1 \Rightarrow [|\beta|]_v = 1)) \Leftrightarrow$$

Definizioni utili 17.1

$$a \Rightarrow b \Rightarrow c$$

È uguale a dire:

$$(a \wedge b) \Rightarrow c$$

$$\forall v. ([|\Gamma|]_v = 1 \& [|\alpha|]_v = 1) \Rightarrow [|\beta|]_v = 1 \Leftrightarrow$$

1.

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\alpha|]_v = 0) \text{ or } [|\beta|]_v = 1 \Leftrightarrow$$

2.

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\gamma|]_v = 1) \Leftrightarrow$$

2.

$$\forall v. ([|\Gamma|]_v \neq 1 \text{ or } [|\gamma|]_v = 1)$$

Si mettono insieme $\forall v. 1 \& 2$

$$\forall v. \; ([|\Gamma|]_v \neq 1 \; or \; [|\alpha|]_v = 1) \; \& \; ([|\Gamma|]_v \neq 1 \; or \; [|\gamma|]_v = 0 \; or \; [|\beta|]_v = 1)$$

$$\forall v.([|\Gamma|]_v \neq 1 \text{ or } [|\beta|]_v = 1)])$$

È la definizione di conseguenza logica ($\neg \alpha \lor \beta$), quindi:

$$\forall v. [|\Gamma|]_v = 1 \Rightarrow [|\beta|]_v = 1$$

$$\Gamma \models \beta$$

18 RAA (Reductio ad absurdum)

È un principio di tecnica di dimostrazione, cioè quella per assurdo.

$$\Gamma, \neg \alpha \models \bot \Rightarrow \Gamma \models \alpha$$

Prendiamo un insieme generico Δ

$$\Delta \models \neg \qquad [|\neg|]_v = 0$$

$$\forall v. \ [|\Delta|]_v = 1 \Rightarrow [|\bot|]_v = 1 \Leftrightarrow$$

$$\underbrace{[|\Delta|]_v \neq 1}_{\forall v. \ \exists \gamma \in \Delta \ t.c. \ [|\gamma|]_v = 0} or \ \underbrace{[|\bot|]_v = 1}_{\times}$$

Se un insieme è falso, vuol dire che è insoddisfacibile:

$$\Delta \models \bot$$

Δ è insoddisfacibile

Se $\Gamma \cup \{\neg \alpha\}$ insoddisfacibile allora $\Gamma \models \alpha$

Definizione 18.1

Si può interpretare la negazione di una formula nel seguente modo:

$$\neg \alpha \stackrel{def}{\Leftrightarrow} \alpha \to \bot$$

$$(*): \Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \rightarrow \beta$$

$$\Gamma, \neg \alpha \models \bot \stackrel{(*)}{\Rightarrow} \Gamma \models \neg \alpha \to \bot$$

Per definizione di negazione:

$$\underbrace{(\alpha \to \bot)}_{\neg \alpha} \to \bot$$

Quindi:

$$\Gamma \models \neg \neg \alpha$$

Per la definizione di conseguenza logica:

$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\neg \neg \alpha|]_v = 1)$$
$$[|\neg \neg \alpha|]_v = [|\alpha|]_v$$
$$\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1)$$
$$\Gamma \models \alpha$$