関数解析後期メモ

百合川

2018年1月19日

目次

第1章	ノルム空間	1
1.1	ノルム空間と次元	1
1.2	商ノルム空間	4
第2章	共役作用素	7
2.1	ノルム空間の共役作用素	7
第3章	コンパクト作用素	15
3.1	コンパクト作用素の性質	15
3.2	Fredholm 性	21
3.3	直交射影	26
第4章	自己共役作用素のスペクトル分解	27
4.1	複素測度	27
4.2	複素測度に関する積分	33
4.3	複素測度の Riesz の表現定理	38
4.4	スペクトル測度	39
付録 A	弱収束	49
Δ 1	ノルム空間における弱収 車	4 0

第1章

ノルム空間

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. \mathbb{K} 上のノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し、X にノルム位相を導入する.

1.1 ノルム空間と次元

定理 1.1.1 (有限次元空間は完備).

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とし,X を \mathbb{K} 上のノルム空間とする. $\dim X < \infty$ ならばX は Banach 空間である.

証明. X の次元数 n による帰納法で証明する.

第一段 n=1 のとき X の基底を u_1 とすれば、X の任意の Cauchy 列は $(\alpha_m u_1)_{m=1}^\infty$ $(\alpha_m \in \mathbb{K}, \ m=1,2,\cdots)$ と表せる.

$$|\alpha_n - \alpha_m| \|u_1\|_X = \|\alpha_n u_1 - \alpha_m u_1\|_X \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから $(\alpha_m)_{m=1}^\infty$ は Cauchy 列であり、 $\mathbb K$ の完備性より或る $\alpha \in \mathbb K$ が存在して

$$\left|\alpha_{m_k} - \alpha\right| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

を満たし

$$\|\alpha_{m_k}u_1 - \alpha u_1\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従う.

第二段 n=k のとき定理の主張が成り立つと仮定し,n=k+1 として X の基底を u_1,\cdots,u_{k+1} と表す.X から任意に Cauchy 列 $(x_j)_{i=1}^\infty$ を取れば,各 x_j は

$$x_i = y_i + \beta_i u_{k+1} \quad (y_i \in \text{L.h.} [\{u_1, \dots, u_k\}], \beta_i \in \mathbb{K})$$

として一意に表示される. $(\beta_j)_{j=1}^\infty$ が有界列でないと仮定すると $\beta_{j_s} \geq s$ $(j_s < j_{s+1}, s=1,2,\cdots)$ を満たす部分列 $\left(\beta_{j_s}\right)_{s=1}^\infty$ が存在し, $(x_j)_{j=1}^\infty$ の有界性と併せて

$$\left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} \right\|_{Y} \le \left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} - \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} + \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} = \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} \longrightarrow 0 \quad (s \longrightarrow \infty)$$

が成り立つが、帰納法の仮定より $u_{k+1}\in \text{L.h.}\left[\{u_1,\cdots,u_k\}\right]$ が従い矛盾が生じる.よって $(\beta_j)_{j=1}^\infty$ は $\mathbb K$ の有界列 でなくてはならず、Bolzano-Weierstrass の定理より部分列 $\left(\beta_{j_\nu}\right)_{\nu=1}^\infty$ と $\beta\in\mathbb K$ が存在して

$$\left|\beta_{j_v} - \beta\right| \longrightarrow 0 \quad (v \longrightarrow \infty)$$

第1章 ノルム空間 **2**

を満たす.また $\left(x_{j_v}\right)_{v=1}^\infty$ と $\left(\beta_{j_v}u_{k+1}\right)_{v=1}^\infty$ が共に Cauchy 列であるから $\left(y_{j_v}\right)_{v=1}^\infty$ も Cauchy 列であり,帰納法の仮定より或る $y\in L.h.$ [$\{u_1,\cdots,u_k\}$] が存在して

$$\|y_{j_v} - y\|_{Y} \longrightarrow 0 \quad (v \longrightarrow \infty)$$

を満たす. よって

$$\|x_{j_{v}} - (y + \beta u_{k+1})\|_{Y} \le \|y_{j_{v}} - y\|_{X} + |\beta_{j_{v}} - \beta| \|u_{k+1}\|_{X} \longrightarrow 0 \quad (v \longrightarrow \infty)$$

が成り立ち、部分列の収束から $x_i \to y + \beta u_{k+1} (j \to \infty)$ が従う.

定理 1.1.2 (有限次元空間における有界点列の収束 (局所コンパクト性)).

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とし、 X を \mathbb{K} 上のノルム空間とする。 $\dim X < \infty$ ならば X の任意の有界点列は収束部分列を含む.

証明. X の次元数 n による帰納法で証明する.

第一段 n=1 のとき X の基底を u_1 とすれば,X の任意の有界点列は $(\alpha_m u_1)_{m=1}^\infty$ $(\alpha_m \in \mathbb{K}, m=1,2,\cdots)$ と表せる. $(\alpha_m)_{m=1}^\infty$ は有界列であるから,Bolzano-Weierstrass の定理より部分列 $(\alpha_{m_k})_{k=1}^\infty$ と $\alpha \in \mathbb{K}$ が存在して

$$\left|\alpha_{m_k} - \alpha\right| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

を満たし

$$\|\alpha_{m_k}u_1 - \alpha u_1\|_{Y} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従う.

第二段 n=k のとき定理の主張が成り立つと仮定し、n=k+1 として X の基底を u_1,\cdots,u_{k+1} と表す。X から任意に 有界列 $(x_j)_{j=1}^\infty$ を取れば、各 x_j は

$$x_{j} = y_{j} + \beta_{j} u_{k+1} \quad (y_{j} \in L.h. [\{u_{1}, \dots, u_{k}\}], \beta_{j} \in \mathbb{K})$$

として一意に表示される. $(\beta_j)_{j=1}^\infty$ が有界でないと仮定すると $\beta_{j_s} \geq s$ $(j_s < j_{s+1}, s=1,2,\cdots)$ を満たす部分列 $\left(\beta_{j_s}\right)_{s=1}^\infty$ が存在し, $(x_j)_{j=1}^\infty$ の有界性と併せて

$$\left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} \right\|_{Y} \le \left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} - \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} + \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} = \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} \longrightarrow 0 \quad (s \longrightarrow \infty)$$

が成り立つが、定理 1.1.1 より $u_{k+1} \in \text{L.h.}\left[\{u_1,\cdots,u_k\}\right]$ が従い矛盾が生じる.よって $(\beta_j)_{j=1}^\infty$ は \mathbb{K} の有界列でなくてはならず、Bolzano-Weierstrass の定理より部分列 $\left(\beta_{j(1,i)}\right)_{i=1}^\infty$ と $\beta \in \mathbb{K}$ が存在して

$$\left|\beta_{i(1,i)} - \beta\right| \longrightarrow 0 \quad (i \longrightarrow \infty)$$

を満たす.また $\left(y_{j(1,i)}\right)_{i=1}^{\infty}$ も有界列となるから,或る $y\in \mathrm{L.h.}\left[\left\{u_1,\cdots,u_k\right\}\right]$ と部分列 $\left(y_{j(2,i)}\right)_{i=1}^{\infty}$ が存在して

$$\|y_{j(2,i)} - y\|_X \longrightarrow 0 \quad (i \longrightarrow \infty)$$

を満たす. 従って

$$\|x_{j(2,i)} - (y + \beta u_{k+1})\|_{Y} \le \|y_{j(2,i)} - y\|_{Y} + |\beta_{j(1,i)} - \beta| \|u_{k+1}\|_{X} \longrightarrow 0 \quad (i \longrightarrow \infty)$$

が成り立つ.

第 1 章 ノルム空間 3

定理 1.1.3 (閉部分空間との点の距離). X をノルム空間, $L \subseteq X$ を閉部分空間とする. このとき任意の $1 > \epsilon > 0$ に対して或る $e \in X$ が存在し, $||e||_X = 1$ かつ次を満たす:

$$\inf_{x \in L} \|e - x\|_X > 1 - \epsilon.$$

証明. 任意に $y \in X \setminus L$ を取れば、L は閉であるから

$$\delta := \inf_{y \in I} \|y - x\|_X > 0$$

となる.

$$\lim_{n \to \infty} \|y - x_n\|_X = \delta \tag{1.1}$$

を満たすように点列 $x_n \in L(n = 1, 2, \cdots)$ を取り

$$e_n := \frac{1}{\|y - x_n\|_X} (y - x_n) \quad (n = 1, 2, \dots)$$

とおけば、 $\|e_n\|_X = 1$ 且つ任意の $x \in L$ に対して

$$\|e_n - x\|_X = \frac{1}{\|y - x_n\|_Y} \|y - x_n - \|y - x_n\|_X x\|_X \ge \frac{\delta}{\|y - x_n\|_Y}$$

が成り立つから

$$\inf_{x \in L} \|e_n - x\|_X \ge \frac{\delta}{\|y - x_n\|_X} \tag{1.2}$$

が従う. (1.1) より

$$\frac{\delta}{\|y-x_n\|_X}\longrightarrow 1 \quad (n\longrightarrow \infty)$$

であるから、任意の $1 > \epsilon > 0$ に対し $(1 - \epsilon) \|y - x_n\|_X < \delta$ となる n を取れば (1.2) より

$$\inf_{x \in L} \|e_n - x\|_X > 1 - \epsilon$$

が成り立つ.

定理 1.1.4 (単位球面がコンパクトなら有限次元). X をノルム空間, S を X の単位球面とする. S がコンパクトならば $\dim X < \infty$ である.

証明. 対偶を証明する. 距離空間のコンパクト性についての一般論より, S がコンパクトであることと S の任意の点列が S で収束する部分列を含むことは同値である. $\dim X = \infty$ と仮定する. 任意に一つ $e_1 \in S$ を取り $L_1 := \text{L.h.}[\{e_1\}]$ とおけば, L_1 は X の閉部分空間であるから定理 1.1.3 より或る $e_2 \in S$ が存在して

$$\inf_{x \in L_1} \|e_2 - x\|_X > \frac{1}{2}$$

第1章 ノルム空間 **4**

を満たす. $L_2\coloneqq \text{L.h.}[\{e_1,e_2\}]$ も X の閉部分空間であるから或る $e_3\in S$ が存在して

$$\inf_{x \in L_2} \|e_3 - x\|_X > \frac{1}{2}$$

を満たす. この操作を繰り返してSの点列 e_1,e_2,\cdots を構成すれば,

$$||e_n - e_m||_X > \frac{1}{2} \quad (\forall n, m \in \mathbb{N}, \ n \neq m)$$

が成り立ち $(e_n)_{n=1}^{\infty}$ は収束部分列を含みえない.

1.2 商ノルム空間

ノルム空間 X の閉部分空間 Y に対し

$$x \sim y \stackrel{\text{def}}{\Leftrightarrow} x - y \in Y \quad (\forall x, y \in X)$$

として X における同値関係 ~ を定める *1 . 以降,関係 ~ による $x \in X$ の同値類を [x] と表し,商集合を X/Y と表す.

定理 1.2.1 (商集合における線型演算). X/Y において

$$[x] + [y] := [x + y], \quad \alpha[x] := [\alpha x] \quad (\forall [x], [y] \in X/Y, \ \alpha \in \mathbb{K})$$

$$(1.3)$$

として演算を定義すれば、X/Y はこれを線型演算として線形空間となる.

証明.

well-defined 先ず (1.3) の定義が well-defined であることを示す. 任意に $u \in [x], v \in [v], \alpha \in \mathbb{K}$ を取り

$$[u+v] = [x+y], \quad [\alpha u] = [\alpha x]$$

が成り立つことをいえばよい. 実際 $x \sim u$ かつ $v \sim v$ であるから

$$(x + y) - (u + v) = (x - u) + (y - v) \in Y, \quad \alpha x - \alpha v = \alpha (x - u) \in Y$$

が成り立ち (1.3) が従う.

X が線形空間であるから X/Y は (1.3) の演算で閉じている. よってあとは以下の事項を確認すればよい.

加法 X/Y が加法について可換群をなすことを示す. 任意に $[x],[y],[z] \in X/Y$ を取れば

$$([x] + [y]) + [z] = [x + y] + [z] = [(x + y) + z] = [x + (y + z)] = [x] + [y + z] = [x] + ([y] + [z])$$

が成り立ち結合律が従う. 可換性は

$$[x] + [y] = [x + y] = [y + x] = [y] + [x]$$

により従い,また [x] の逆元は $(-1)[x]^{*2}$, X/Y の零元は Y = [0] である.

^{*1} $x,y,z \in X$ を取る. Y は線形空間であるから,反射率は $x-x=0 \in Y$ により従い,対称律は $x-y \in Y$ なら $y-x=-(x-y) \in Y$ が成り立つことにより従う.推移律についても, $x \sim y$ かつ $y \sim z$ が満たされているなら $x-z=(x-y)+(y-z) \in Y$ が成り立ち $x \sim z$ が従う.

 $^{*^{2}}$ [x] + (-1)[y] は [x] - [y] と表す.

第 1 章 ノルム空間 **5**

スカラ倍 任意に $[x],[y] \in X/Y$ と $\alpha,\beta \in \mathbb{K}$ を取れば以下が成り立つ:

- (1) $(\alpha\beta)[x] = [(\alpha\beta)x] = [\alpha(\beta x)] = \alpha[\beta x] = \alpha(\beta[x]),$
- (2) $(\alpha + \beta)[x] = [(\alpha + \beta)x] = [\alpha x + \beta x] = [\alpha x] + [\beta x] = \alpha[x] + \beta[x],$
- (3) $\alpha([x] + [y]) = \alpha[x + y] = [\alpha(x + y)] = [\alpha x + \alpha y] = [\alpha x] + [\alpha y] = \alpha[x] + \alpha[y],$
- (4) 1[x] = [x].

補助定理 1.2.2 (同値類は閉集合). 任意の $[x] \in X/Y$ は X において閉集合となる.

証明. 任意に $[x] \in X/Y$ を取る. 距離空間の一般論より $u_n \in [x]$ $(n = 1, 2, \cdots)$ が或る $u \in X$ に収束するとき $u \in [x]$ が成り立つことを示せばよい. 各 $n \in \mathbb{N}$ について $u_n - x \in Y$ であり、かつ

$$\|(u_n - x) - (u - x)\|_{\mathcal{X}} = \|u_n - u\|_{\mathcal{X}} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから、Y が閉であることにより $u-x \in Y$ が従う.

定理 1.2.3 (商空間におけるノルムの定義). X/Y において

$$\| [x] \|_{X/Y} := \inf_{u \in [x]} \| u \|_{X} \quad (\forall [x] \in X/Y)$$
 (1.4)

として $\|\cdot\|_{X/Y}: X/Y \to \mathbb{R}$ を定めれば、これはノルムとなる.

証明.

正値性 $\|\cdot\|_{X/Y}$ が非負値であることは定義式 (1.4) 右辺の非負性による. また [x]=[0] である場合,

$$\inf_{u \in [x]} ||u||_X = ||0||_X = 0$$

が成り立ち $\|[x]\|_{X/Y} = 0$ が従う. 逆に $\|[x]\|_{X/Y} = 0$ である場合,

$$||u_n||_X \le \frac{1}{n} \quad (n = 1, 2, \cdots)$$

を満たす点列 $u_n \in [x]$ $(n=1,2,\cdots)$ が存在する. すなわち $u_n \longrightarrow 0$ $(n \longrightarrow \infty)$ であるから、補助定理 1.2.2 により $0 \in [x]$ が成り立ち [x] = [0] が従う.

同次性 任意に $[x] \in X/Y$ と $\alpha \in \mathbb{K}$ を取る. $\alpha = 0$ の場合は

$$||0[x]||_{X/Y} = ||[0]||_{X/Y} = 0 = 0 ||[x]||_{X/Y}$$

が成り立つ. $\alpha \neq 0$ の場合は

$$u \in [\alpha x] \quad \Leftrightarrow \quad \frac{1}{\alpha} u \in [x]$$

が成り立つから

$$\|\alpha[x]\|_{X/Y} = \|[\alpha x]\|_{X/Y} = \inf_{u \in [\alpha x]} \|u\|_X = |\alpha| \inf_{u \in [\alpha x]} \|(1/\alpha)u\|_X = |\alpha| \inf_{v \in [x]} \|v\|_X = |\alpha| \|[x]\|_{X/Y}$$

が従う.

第1章 ノルム空間 **6**

劣加法性 任意に $[x],[y] \in X/Y$ を取り

$$L \coloneqq \{\; u+v \; ; \quad u \in [x], \; v \in [y] \; \}$$

とおけば、任意の $u+v\in L$ に対し $(u+v)-(x+y)\in Y$ となるから $L\subset [x+y]$ が成り立つ. また

$$||u + v||_X \le ||u||_X + ||v||_X$$

により

$$\inf_{u'+v' \in I} \|u'+v'\|_{X} \le \|u\|_{X} + \|v\|_{X} \quad (\forall u \in [x], \ v \in [y])$$

が成り立つから,

$$\inf_{u'+v'\in L} \left\| \left. u'+v' \right\|_X \leq \inf_{u\in [x]} \left\| \left. u \right\|_X + \inf_{v\in [y]} \left\| \left. v \right\|_X = \left\| \left[x \right] \right\|_{X/Y} + \left\| \left[y \right] \right\|_{X/Y}$$

が従い

$$\| \left[x \right] + \left[y \right] \|_{X/Y} = \| \left[x + y \right] \|_{X/Y} = \inf_{w \in [x + y]} \| \, w \, \|_X \leq \inf_{u + v \in L} \| \, u + v \, \|_X \leq \| \left[x \right] \|_{X/Y} + \| \left[y \right] \|_{X/Y}$$

を得る.

定理 1.2.4 (商空間の完備性). X が Banach 空間ならば X/Y も Banach 空間である.

証明. 任意に X/Y から Cauchy 列 $([x_n])_{n=1}^{\infty}$ を取る.

$$\|[x_{n_k}] - [x_{n_{k+1}}]\|_{X/Y} < \frac{1}{2^k} \quad (k = 1, 2, \cdots)$$

を満たす部分列 $([x_{n_k}])_{k=1}^\infty$ を抜き取り、また $u_k \in [x_{n_{k+1}}-x_{n_k}]$ $(k=1,2,\cdots)$ を

$$||u_k||_X \le ||[x_{n_{k+1}} - x_{n_k}]||_{X/Y} + \frac{1}{2^k}$$

を満たすように取り

$$S_0 = 0$$
, $S_v := \sum_{k=1}^{v} u_k$ $(v = 1, 2, \dots)$

とおく. X が Banach 空間であるから $(S_{\nu})_{\nu=1}^{\infty}$ は X で収束し、かつ

$$[x_{n_k}] = [x_{n_1}] + \sum_{j=1}^{k-1} [x_{n_{j+1}} - x_{n_j}] = [x_{n_1}] + \sum_{j=1}^{k-1} [u_j] = [x_{n_1}] + [S_{k-1}] \quad (k = 1, 2, \dots)$$

を満たすから,

$$S := \lim_{v \to \infty} S_v \in X$$

とおけば

$$\|[x_{n_1} + S] - [x_{n_k}]\|_{X/Y} = \|[S - S_{k-1}]\|_{X/Y} \le \|S - S_{k-1}\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つ. 部分列の収束により $[x_n] \longrightarrow [x_{n_1} + S] (n \longrightarrow \infty)$ が従う.

第2章

共役作用素

2.1 ノルム空間の共役作用素

係数体を \mathbb{K} とする. 以下ではノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し、位相はこのノルムにより導入されるものと考える.

定義 2.1.1 (共役作用素). X,Y をノルム空間, T を $X\to Y$ の線型作用素とする. T の定義域 $\mathcal{D}(T)$ が X で稠密であるとき, $g\in Y^*$ に対し

$$f(x) = g(Tx) \quad (\forall x \in \mathcal{D}(T)) \tag{2.1}$$

を満たす $f \in X^*$ が存在すれば、f の存在はg に対して唯一つであり *1 この対応を

$$T^*: g \longmapsto f$$

で表す. $T^*: Y^* \to X^*$ を T の共役作用素という.

上の定義でTが零作用素の場合,Tの定義域はX全体であるが(2.1)を満たすようなfは零作用素のみであり,一方でgとしては何を取っても成り立つから,共役作用素もまた零作用素となる.

定理 2.1.2 (共役作用素は閉線型). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. $\mathcal{D}(T)$ が X で稠密であるとき, T^* は閉線型作用素である.

この定理を証明するために以下にいくつか準備をする. $x \in X$ と $f \in X^*$ に対して f(x) を次の形式で表現する:

$$f(x) = \langle x, f \rangle_{XX^*}$$
.

$$\langle x, f \rangle_{X,X^*} = \langle Tx, g \rangle_{Y,Y^*} \quad (\forall x \in \mathcal{D}(T))$$

$$f(x) = f'(x) \quad (\forall x \in \mathcal{D}(T))$$

が成り立つ. $\mathcal{D}(T)$ は X で稠密であるから f, f' の連続性より f = f' が従う.

 $^{^{*1}}$ g に対し f とは別に (2.1) を満たす $f' \in X^*$ が存在すれば

第2章 共役作用素 8

と表現できる. また $A \subset X$, $B \subset X^*$ に対して

$$A^{\perp} \coloneqq \left\{ \, f \in X^* \, \; ; \quad \forall x \in A, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}, \quad {}^{\perp}B \coloneqq \left\{ \, x \in X \, \; ; \quad \forall f \in B, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}$$

と表記を定める. 例えばBに対して B^{\perp} と書いたらこれは X^{**} の部分集合を表す.

補助定理 2.1.3. $A \subset X$ に対し A^{\perp} は X^* において閉部分空間となる.

証明. A^{\perp} が X^* において完備部分空間であることを示せばよい.

線型性 任意の $f_1, f_2 \in A^{\perp}$ と $\alpha \in \mathbb{K}$ に対し

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = 0, \quad (\alpha f_1)(x) = \alpha f_1(x) = 0, \quad (\forall x \in A)$$

が成り立つ.

完備性 $f_n \in A^\perp$ が収束列であるとすれば X^* の完備性から $(f_n)_{n=1}^\infty$ は或る $f \in X^*$ に (作用素ノルムで) 収束する. 任意 の $x \in A$ に対して

$$|f(x)| = |f(x) - f_n(x)| \le ||f - f_n||_{X^*} ||x||_X \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $f \in A^{\perp}$ となる.

補助定理について補足 実際はさらに

$$^{\perp}(A^{\perp}) = \overline{\text{L.h.}[A]}$$

が成り立つ. $A \subset {}^{\perp}(A^{\perp})$ かつ ${}^{\perp}(A^{\perp})$ は X の閉部分空間であるから $\overline{\mathrm{L.h.}\,[A]} \subset {}^{\perp}(A^{\perp})$ が先ず判る. 逆向きの包含 関係について, $X = \overline{\mathrm{L.h.}\,[A]}$ の場合は成り立つが,そうでない場合は次のように考える. Hahn-Banach の定理の系によれば任意の $x_0 \in X \setminus \overline{\mathrm{L.h.}\,[A]}$ を一つ取って

$$f_0(x) = \begin{cases} 0 & (x \in \overline{\text{L.h.} [A]}) \\ f_0(x_0) \neq 0 & (x = x_0) \end{cases}$$

を満たす $f_0 \in X^*$ が存在する. $f_0 \in A^\perp$ であるが $x_0 \notin {}^\perp(A^\perp)$ となり ${}^\perp(A^\perp) \subset \overline{\text{L.h.}[A]}$ が従う.

二つのノルム空間 X,Y の直積空間 $X\times Y$ における直積ノルムを

$$\| \, [x,y] \, \|_{X \times Y} = \| \, x \, \|_X + \| \, y \, \|_Y \quad (\forall [x,y] \in X \times Y)$$

と表すことにする. $Y \times X$ の共役空間 $(Y \times X)^*$ の任意の元 F に対し

$$F_Y(y) := F[y, 0] \quad (y \in Y)$$

$$F_X(x) := F[0, x] \quad (x \in X)$$
 (2.2)

として F_Y , F_X を定義すれば,F の線型性,有界性から $F_Y \in Y^*$, $F_X \in X^*$ となり,特に $F[y,x] = F_Y(y) + F_X(x)$ が成り立つ.逆に $g \in Y^*$ と $f \in X^*$ に対し

$$F[y, x] = g(y) + f(x) \quad (\forall [y, x] \in Y \times X)$$

と定義すれば $F \in (Y \times X)^*$ となり、従って対応 $(Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$ は全単射である.

補助定理 2.1.4. 次の写像

$$\varphi: (Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$$

は線形, 同相である.

証明.

線型性 対応のさせ方 (2.2) に基づけば,任意の $[y,x] \in Y \times X$ と $F_1,F_2 \in (Y \times X)^*$, $\alpha \in \mathbb{K}$ に対して

$$\varphi(F_1 + F_2)[y, x] = (F_1 + F_2)[y, 0] + (F_1 + F_2)[0, x] = \varphi(F_1)[y, x] + \varphi(F_2)[y, x]$$
$$\varphi(\alpha F_1)[y, x] = (\alpha F_1)[y, 0] + (\alpha F_1)[0, x] = \alpha \varphi(F_1)[y, x]$$

が成り立つ.

同相 φ は Banach 空間から Banach 空間への線型全単射であるから, φ^{-1} が有界であるなら値域定理より φ も線型有界となり, 従って φ は同相写像となる. 実際

$$||[F_Y, F_X]||_{Y^* \times X^*} = ||F_Y||_{Y^*} + ||F_X||_{X^*}$$

であることと

$$\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*} = \sup_{\substack{[y, x] \in Y \times X \\ [y, x] \neq [0, 0]}} \frac{|F_Y(y) + F_X(x)|}{\| [y, x] \|_{Y \times X}} \le \| F_Y \|_{Y^*} + \| F_X \|_{X^*}$$

により

$$\sup_{\substack{[F_Y, F_X] \in Y^* \times X^* \\ [F_Y, F_Y] \neq [0, 0]}} \frac{\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*}}{\left\| [F_Y, F_X] \right\|_{Y^* \times X^*}} \leq 1$$

が成り立つ.

証明 (定理 2.1.2).

$$U: X \times Y \ni [x, y] \longmapsto [y, -x] \in Y \times X$$

として写像 U(等長,全単射)を定義する. T^* のグラフ $\mathcal{G}(T^*)$ は

$$\mathcal{G}(T^*) = \left\{ [g, T^*g] \in Y^* \times X^* ; \quad \forall [x, Tx] \in \mathcal{G}(T), \quad \langle Tx, g \rangle_{Y,Y^*} = \langle x, T^*g \rangle_{X,X^*} \right\}$$

で表される. 補助定理 2.1.4 により $[g, T^*g]$ に対応する $F_g \in (Y \times X)^*$ がただ一つ存在して

$$\langle Tx, g \rangle_{YY^*} - \langle x, T^*g \rangle_{XX^*} = F_g[Tx, -x] = F_gU[x, Tx], \quad ([x, Tx] \in \mathcal{G}(T))$$

と書き直せるから、補助定理 2.1.4 の同相写像 φ により

$$[U\mathcal{G}(T)]^{\perp} = \{ F \in (Y \times X)^* ; \quad \forall [x, Tx] \in \mathcal{G}(T), \quad FU[x, Tx] = 0 \} = \varphi^{-1}\mathcal{G}(T^*)$$
 (2.3)

が成り立つ. 補助定理 2.1.3 より $[U\mathcal{G}(T)]^{\perp}$ が $Y^* \times X^*$ の閉部分空間であるから, $\mathcal{G}(T^*) = \varphi[U\mathcal{G}(T)]^{\perp}$ は $(Y \times X)^*$ において閉部分空間となり,従って T^* が閉線型作用素であると示された.

定理 2.1.5 (閉拡張の共役作用素は元の共役作用素に一致する).

X,Y をノルム空間, T を $X\to Y$ の線型作用素とし, $\mathcal{D}(T)$ が X で稠密でかつ T が可閉であるとする. このとき次が成り立つ:

$$\mathcal{G}(\overline{T}^*) = \mathcal{G}(T^*).$$

証明. (2.3) より $\mathcal{G}(\overline{T}^*) = \varphi \left[U \mathcal{G}(\overline{T}) \right]^{\perp}$ が成り立っているから,

$$\left[U\mathcal{G}(\overline{T})\right]^{\perp} = \left[U\mathcal{G}(T)\right]^{\perp}$$

を示せばよい.

 \subset について 任意の $[g,f] \in \left[U\mathcal{G}(\overline{T})\right]^{\perp}$ に対して

$$\langle \overline{T}x, g \rangle_{YY^*} = \langle x, f \rangle_{X,X^*} \quad (\forall [x, \overline{T}x] \in \mathcal{G}(\overline{T}))$$

が成り立っている.

$$G(T) \subset \overline{G(T)} = G(\overline{T})$$

より

$$\langle Tx, g \rangle_{YY^*} = \langle x, f \rangle_{XX^*} \quad (\forall [x, Tx] \in \mathcal{G}(T))$$

が従い $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ が成り立つ.

⊃ について 任意に $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ を取る. 任意の $[x,y] \in \mathcal{G}(\overline{T})$ に対して $[x_n,Tx_n] \in \mathcal{G}(T)$ を取り

$$\|\,x_n-x\,\|_X\longrightarrow 0,\quad \|\,Tx_n-y\,\|_Y\longrightarrow 0\quad (n\longrightarrow \infty)$$

が成り立つようにできるから,

$$\left| \langle y, g \rangle_{Y,Y^*} - \langle x, f \rangle_{X,X^*} \right| \le \left| \langle y, g \rangle_{Y,Y^*} - \langle T x_n, g \rangle_{Y,Y^*} \right| + \left| \langle x_n, f \rangle_{X,X^*} - \langle x, f \rangle_{X,X^*} \right| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち

$$[g,f]\in \left[U\mathcal{G}(\overline{T})\right]^{\perp}$$

が従う.

補助定理 2.1.6 (定義域が稠密となるための条件). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. このとき $\mathcal{D}(T)$ が X で稠密であるための必要十分条件は, $[0,f] \in \varphi[U\mathcal{G}(T)]^{\perp}$ ならば f=0 となることである.

証明.

必要性 (2.3) より, $\overline{\mathcal{D}(T)} = X$ ならば T^* が存在して $\mathcal{G}(T^*) = \varphi [U\mathcal{G}(T)]^{\perp}$ を満たすから f = 0 となる. 十分性 $\varphi[0,f] \in [U\mathcal{G}(T)]^{\perp}$ なら

$$(\varphi[0,f])[Tx,-x] = -f(x) = 0 \quad (\forall [x,Tx] \in \mathcal{G}(T))$$

が成り立つ、そして

$$f(x) = 0$$
 ($\forall x \in \mathcal{D}(T)$) ならば $f = 0$ \Leftrightarrow $\overline{\mathcal{D}(T)} = X$

により $\overline{\mathcal{D}(T)} = X$ となる.実際 $\overline{\mathcal{D}(T)} \subsetneq X$ である場合,Hahn-Banach の定理の系より $f \neq 0$ なる $f \in X^*$ で f(x) = 0 ($\forall x \in \mathcal{D}(T)$) を満たすものが存在する.逆に $\overline{\mathcal{D}(T)} = X$ であるなら, $f \in X^*$ の連続性より f(x) = 0 ($\forall x \in \mathcal{D}(T)$) ならば f = 0 が従う.

ノルム空間 X,Y の第二共役空間 X^{**},Y^{**} への自然な単射を J_X,J_Y と表す。そして

$$J: [X, Y] \ni [x, y] \longmapsto [J_X x, J_Y y] \in [X^{**}, Y^{**}]$$

としてJを定めればJは等長かつ線型単射となる.

定理 2.1.7. X,Y をノルム空間, T を $X \to Y$ の線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする.

(1) $\overline{\mathcal{D}(T^*)} = Y^*$ ならば T は可閉であり

$$JG(\overline{T}) \subset G(T^{**})$$

が成り立つ.

(2) Y が反射的 Banach 空間なら、T が可閉であることと $\overline{D}(T^*) = Y^*$ であることは同値となり

$$T^{**}J_X = J_Y \overline{T}$$

が成り立つ.

証明.(1) $\overline{\mathcal{D}(T^*)} = Y^*$ ならば T^* の共役作用素 $T^{**}: X^{**} o Y^{**}$ が定義される.任意の $x \in \mathcal{D}(T)$ に対し

$$\langle T^*g, J_X x \rangle_{X^*X^{**}} = \langle x, T^*g \rangle_{XX^*} = \langle Tx, g \rangle_{YY^*} = \langle g, J_Y Tx \rangle_{Y^*Y^{**}} \quad (\forall [g, T^*g] \in \mathcal{G}(T^*))$$

が成り立つから、 $J_X x \in \mathcal{D}(T^{**})$) かつ

$$T^{**}J_Xx = J_YTx \quad (\forall [x, Tx] \in \mathcal{G}(T))$$

が従う. すなわち

$$JG(T) \subset G(T^{**})$$

が成り立つ. また

$$J\overline{\mathcal{G}(T)} \subset \overline{J\mathcal{G}(T)} \subset \mathcal{G}(T^{**})$$
 (2.4)

が成り立つ. 実際定理 2.1.2 より T^{**} は閉線型であるから二番目の不等式は成り立つ. だから初めの不等式を示せばよい. 任意に $[J_{XX},J_{YY}]\in J\overline{G(T)}$ を取れば, $[x_n,Tx_n]\in G(T)$ を取り

$$||x_n - x||_X \longrightarrow 0$$
, $||Tx_n - y||_Y \longrightarrow 0$ $(n \longrightarrow \infty)$

が成り立つようにできる. J_X, J_Y の等長性より

$$||J_X x_n - J_X x||_{X^{**}} \longrightarrow 0, \quad ||J_Y T x_n - J_Y y||_{Y^{**}} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

となり $[J_Xx,J_Yy] \in \overline{J\mathcal{G}(T)}$ が判る. (2.4) より $[0,y] \in \overline{\mathcal{G}(T)}$ ならば $[0,J_Yy] \in \mathcal{G}(T^{**})$ が従い $J_Yy = 0$ となる. J_Y は単射であるから y = 0 となり $\overline{\mathcal{G}(T)}$ がグラフとなるから T は可閉である.

定理 2.1.8 (共役作用素の有界性). X,Y をノルム空間, $T:X\to Y$ を線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする. T が有界なら T^* も有界で

$$||T^*||_{\mathcal{D}(T^*)} \le ||T||_{\mathcal{D}(T)}$$

が成り立ち、特に $T \in \mathbf{B}(X,Y)$ ならば $T^* \in \mathbf{B}(Y^*,X^*)$ かつ $\|T^*\|_{\mathbf{B}(Y^*,X^*)} = \|T\|_{\mathbf{B}(X,Y)}$ を満たす. *2

証明. 任意の $[x,Tx] \in \mathcal{G}(T)$ と $[g,T^*g] \in \mathcal{G}(T^*)$ に対して

$$\left| \langle x, T^* g \rangle_{X,X^*} \right| = \left| \langle Tx, g \rangle_{Y,Y^*} \right| \le \| T \|_{\mathcal{D}(T)} \| g \|_{Y^*} \| x \|_{X}$$

が成り立つから

$$||T^*g||_{X^*} = \sup_{0 \neq x \in X} \frac{\left|\langle x, T^*g \rangle_{X,X^*}\right|}{||x||_X} \le ||T||_{\mathcal{D}(T)} ||g||_{Y^*}$$

となる. 従って $\|T^*\|_{\mathcal{D}(T^*)} \leq \|T\|_{\mathcal{D}(T)}$ を得る. $T \in \mathbf{B}(X,Y)$ である場合, 任意の $g \in Y^*$ に対して

$$f: X \ni x \longmapsto g(Tx)$$

と定義すれば、 $f \in X^*$ となり (2.1) を満たすから $T^* \in \mathbf{B}(Y^*, X^*)$ が成り立つ. また

$$\|\,Tx\,\|_{Y} = \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} |g(Tx)| = \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} |T^{*}g(x)| \leq \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} \|\,T^{*}g\,\|_{X^{*}} \,\|\,x\,\|_{X} \leq \|\,T^{*}\,\|_{\mathrm{B}(Y^{*},X^{*})} \,\|\,x\,\|_{X}$$

が成り立つから $\|T^*\|_{\mathbf{B}(Y^*,X^*)} = \|T\|_{\mathbf{B}(X,Y)}$ が従う.

定理 2.1.9 (共役作用素の合成). X,Y,Z をノルム空間, $T:X\to Y, U:Y\to Z$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$ 、 $\overline{\mathcal{D}(U)}=Y$ 、 $\overline{\mathcal{D}(UT)}=X$ を満たすとする. このとき

$$T^*U^* \subset (UT)^*$$

が成り立ち、特に $U \in B(Y,Z)$ である場合は $T^*U^* = (UT)^*$ となる.

 $^{\|\}cdot\|_{\mathcal{D}(T)}, \|\cdot\|_{\mathcal{D}(T^*)}$ および $\|\cdot\|_{\mathcal{B}(X,Y)}, \|\cdot\|_{\mathcal{B}(Y^*,X^*)}$ は作用素ノルムを表す.

証明. 任意の $h \in \mathcal{D}(T^*U^*)$) に対して

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle Tx, U^*h \rangle_{Y,Y^*} = \langle x, T^*U^*h \rangle_{X,X^*} \quad (\forall [x, Tx] \in \mathcal{G}(UT))$$

が成り立つから, $h \in \mathcal{D}((UT)^*)$ かつ $(UT)^*h = T^*U^*h$ を満たす *3 . ゆえに

$$T^*U^* \subset (UT)^*$$

となる. $U \in \mathbf{B}(Y,Z)$ の場合, $\mathcal{D}(UT) = \mathcal{D}(T)$ と $U^* \in \mathbf{B}(Z^*,Y^*)$ (定理 2.1.8) が従うから, 任意の $h \in \mathcal{D}((UT)^*)$ に対して

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle x, (UT)^*h \rangle_{X,X^*} \quad (\forall x \in \mathcal{G}(T))$$

かつ

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle Tx, U^*h \rangle_{Y,Y^*} \quad (\forall x \in \mathcal{G}(T))$$

より $U^*h \in \mathcal{D}(T^*)$ となり $T^*U^*h = (UT)^*h$ を満たす. 従って $(UT)^* \subset T^*U^*$ が成り立ち

$$(UT)^* = T^*U^*$$

を得る.

定理 2.1.10 (共役作用素の和). X,Y をノルム空間, $T:X\to Y$, $U:X\to Y$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$, $\overline{\mathcal{D}(U)}=X$, $\overline{\mathcal{D}(T+U)}=X$ を満たすとする. このとき

$$T^* + U^* \subset (T + U)^*$$

が成り立ち、特に $T, U \in B(X, Y)$ である場合は $T^* + U^* = (T + U)^*$ となる.

証明. 任意の $g \in \mathcal{D}(T^* + U^*)$ に対し,

$$\langle (T+U)x,g\rangle_{YY^*} = \langle Tx,g\rangle_{YY^*} + \langle Ux,g\rangle_{YY^*} = \langle x,T^*g\rangle_{XX^*} + \langle x,U^*g\rangle_{XX^*} \\ ^{*4} = \langle x,(T^*+U^*)g\rangle_{XX^*} \quad (\forall x\in\mathcal{D}(T+U))$$

が成り立つ. 従って $g\in\mathcal{D}((T+U)^*)$ かつ $(T+U)^*g=(T^*+U^*)g$ を満たす.特に $T,U\in B(X,Y)$ のとき,任意の $g\in\mathcal{D}((T+U)^*)$ に対し

$$\langle (T+U)x, g \rangle_{YY^*} = \langle x, (T+U)^*g \rangle_{XX^*} \quad (\forall x \in X)$$

かつ

$$\langle (T+U)x,g\rangle_{Y,Y^*} = \langle Tx,g\rangle_{Y,Y^*} + \langle Ux,g\rangle_{Y,Y^*} = \langle x,(T^*+U^*)g\rangle_{X,X^*} \quad (\forall x\in X)$$

が成り立つから $g \in \mathcal{D}(T^* + U^*)$ かつ $(T + U)^* = (T^* + U^*)$ が従う.

 $^{^{*3}}$ G(UT) は X で稠密であるから $(UT)^*h = T^*U^*h$ でなくてはならない.

^{*} 4 $\mathcal{D}(T+U)\subset\mathcal{D}(T),\mathcal{D}(U)$ である.

定理 2.1.11 (共役作用素のスカラ倍). X,Y をノルム空間, $T:X\to Y$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$ を満たすとする. 任意の $\lambda\in\mathbb{K}$ に対し次が成り立つ.

$$(\lambda T)^* = \lambda T^*.$$

証明. $\lambda=0$ の場合,零作用素の共役作用素もまた零作用素となるから $(\lambda T)^*=\lambda T^*$ が成り立つ. $\lambda\neq0$ の場合,任意の $g\in\mathcal{D}((\lambda T)^*)$ に対して

$$\langle x, (\lambda T)^*g\rangle_{X,X^*} = \langle (\lambda T)x, g\rangle_{Y,Y^*} = \lambda\,\langle Tx, g\rangle_{Y,Y^*} = \lambda\,\langle x, T^*g\rangle_{X,X^*} \quad (\forall x\in\mathcal{D}(T))$$

が成り立つから $g \in \mathcal{D}(T^*)$ かつ

$$(\lambda T)^* g = \lambda T^* g$$

が成り立つ. 一方 $g \in \mathcal{D}(T^*)$ に対して

$$\langle (\lambda T) x, g \rangle_{Y,Y^*} = \lambda \, \langle x, T^* \rangle_{X,X^*} \quad (\forall x \in \mathcal{D}(T))$$

も成り立ち、 $g \in \mathcal{D}((\lambda T)^*)$ かつ

$$(\lambda T)^*g = \lambda T^*g$$

を満たす.

第3章

コンパクト作用素

3.1 コンパクト作用素の性質

係数体を \mathbb{C} , X,Y をノルム空間とし, K を X から Y への線型作用素とする. また X,Y 及び共役空間 X^*,Y^* におけるノルムを $\|\cdot\|_{Y}$, $\|\cdot$

定義 3.1.1 (コンパクト作用素). K がコンパクト作用素 (compact operator) であるということを次で定義する:

• $\mathcal{D}(K) = X$ を満たし、かつ X の任意の有界部分集合 B に対して KB が相対コンパクト (KB の閉包 \overline{KB} がコンパクト) となる.

補助定理 3.1.2 (コンパクト作用素となるための十分条件の一つ). $\mathcal{D}(K) = X$ とする. $B_1 \coloneqq \{x \in X \; | \; \|x\|_X < 1\}$ に対して $\overline{KB_1}$ がコンパクトであるなら K はコンパクト作用素となる.

証明. $B \subset X$ が有界集合なら或る $\lambda > 0$ が存在して $B \subset \lambda B_1$ (= $\{\lambda x; x \in B_1\}$) が成り立つ. $\overline{K(\lambda B_1)}$ がコンパクトとなるならその閉部分集合である \overline{KB} もコンパクトとなるから, $\overline{K(\lambda B_1)}$ がコンパクトとなることを示せばよい. 先ず

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$$

が成り立つことを示す。 $x \in \overline{K(\lambda B_1)}$ に対しては点列 $(x_n)_{n=1}^{\infty} \subset K(\lambda B_1)$ が取れて $\|x_n - x\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $y_n \coloneqq x_n/\lambda$ とおけば K の線型性により $y_n \in KB_1$ となり, $\|y_n - x/\lambda\|_X = \|x_n - x\|_X/\lambda \longrightarrow 0$ $(n \longrightarrow \infty)$ となるから $x/\lambda \in \overline{KB_1}$,すなわち $x \in \lambda \overline{KB_1}$ である。逆に $x \in \lambda \overline{KB_1}$ に対しては $x/\lambda \in \overline{KB_1}$ となるから,或る点列 $(t_n)_{n=1}^{\infty} \subset KB_1$ が存在して $\|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $s_n = \lambda t_n$ とおけば K の線型性により $s_n \in K(\lambda B_1)$ となり, $\|s_n - x\|_X = \lambda \|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ が成り立つから $x \in \overline{K(\lambda B_1)}$ である。以上で $\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$ が示された。 $\overline{K(\lambda B_1)}$ を覆う任意の開被覆 $\cup_{u \in M} O_u$ (M は任意濃度) に対し

$$\overline{KB_1} \subset \bigcup_{\mu \in M} \frac{1}{\lambda} O_{\mu}$$

が成り立ち *1 , 仮定より $\overline{KB_1}$ はコンパクトであるから,M から有限個の添数 μ_i ($i=1,\cdots,n$) を取り出して

$$\overline{KB_1} \subset \bigcup_{i=1}^n \frac{1}{\lambda} O_{\mu_i}$$

 $^{^{*1}}$ 開集合 O_{μ} は $1/\lambda$ でスケールを変えてもまた開集合となる.

第3章 コンパクト作用素

16

となる.

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1} \subset \bigcup_{i=1}^n O_{\mu_i}$$

が従うから $\overline{K(\lambda B_1)}$ はコンパクトである.

補助定理 3.1.3 (コンパクト作用素であることの同値条件). $\mathcal{D}(K)=X$ とする. (1)K がコンパクトであることと, (2)X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対し点列 $(Tx_n)_{n=1}^\infty$ で収束する部分列を含むことは同値である.

証明.

- (1) \Rightarrow (2) $(x_n)_{n=1}^{\infty}$ は X において有界集合であるから $(Kx_n)_{n=1}^{\infty}$ は相対コンパクトである. 距離空間におけるコンパクト性の一般論により $\overline{(Kx_n)_{n=1}^{\infty}}$ は点列コンパクトとなり (2) が従う.
- (2) \Rightarrow (1) 距離空間の一般論より、任意の有界集合 $B \subset X$ に対して \overline{TB} がコンパクトとなることと \overline{TB} が点列コンパクトとなることは同値である。従って次の主張

主張(※)

TB の任意の点列が \overline{TB} で収束する部分列を含むなら \overline{TB} は点列コンパクトである.

を示せばよい。実際 (※) が示されたとする。TB から任意に点列 $(y_n)_{n=1}^{\infty}$ を取れば,これに対し或る $(x_n)_{n=1}^{\infty} \subset B$ が対応して $y_n = Tx_n$ $(n=1,2,\cdots)$ と表現され,(2) の仮定より $(y_n)_{n=1}^{\infty}$ は $\overline{(y_n)_{n=1}^{\infty}}$ で収束する部分列を持つ。 よって (※) と上の一般論により \overline{TB} はコンパクトとなる。(※) を示す。 \overline{TB} の任意の点列 $(y_n)_{n=1}^{\infty}$ に対して $\|y_n - z_n\|_Y < 1/n$ $(n=1,2,\cdots)$ を満たす $(z_n)_{n=1}^{\infty} \subset TB$ が存在する。部分列 $(z_{n_k})_{k=1}^{\infty}$ が $y \in \overline{TB}$ に収束するなら,任意の $\epsilon > 0$ に対し或る $K_1 \in \mathbb{N}$ が取れて $k \geq K_1$ ならば $\|y - z_{n_k}\|_Y < \epsilon/2$ を満たす。更に或る $K_2 \in \mathbb{N}$ が取れて $k \geq K_2$ なら $1/n_k < \epsilon/2$ も満たされるから,全ての $k \geq \max\{K_1, K_2\}$ に対して

$$\|y - y_{n_k}\|_{Y} \le \|y - z_{n_k}\|_{Y} + \|z_{n_k} - y_{n_k}\|_{Y} < \epsilon$$

が成り立つ.

定義 3.1.4 (コンパクト作用素の空間). ここで新しく次の表記を導入する:

 $B_c(X,Y) := \{ K : X \to Y ; K はコンパクト作用素 \}.$

Y = X の場合は $B_c(X, X) = B_c(X)$ と表記する. 有界作用素の空間に似た表記をしているが、定義右辺では作用素の有界性を要件に入れていない. しかし実際コンパクト作用素は有界である (命題 3.1.5).

第 3 章 コンパクト作用素 17

命題 3.1.5 (コンパクト作用素の有界性・コンパクト作用素の合成のコンパクト性).

- (1) $B_c(X,Y)$ は B(X,Y) の線型部分空間となる.
- (2) Z をノルム空間とする. $A \in B(X,Y)$ と $B \in B(Y,Z)$ に対して A 又は B がコンパクト作用素なら BA もまた コンパクト作用素となる.

証明.

(1) 任意に $K \in B_c(X,Y)$ を取れば、コンパクト作用素の定義より $\mathcal{D}(K) = X$ が満たされている。また $B_1 := \{x \in X \; ; \; \|x\|_X \le 1\}$ とおけば、 $\overline{KB_1}$ のコンパクト性により KB_1 は有界であるから

$$\sup_{0<\|x\|_{X}\leq 1}\|Kx\|_{Y}=\sup_{x\in B_{1}\setminus\{0\}}\|Kx\|_{Y}<\infty$$

となり $K \in \mathbf{B}(X,Y)$ が従う。次に $\mathbf{B}_c(X,Y)$ が線形空間であることを示す。 $K_1,K_2 \in \mathbf{B}_c(X,Y)$ と $\alpha \in \mathbb{C}$ を任意に取る。補助定理 3.1.3 より,X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対して $((K_1+K_2)(x_n))_{n=1}^\infty$ と $((\alpha K_1)(x_n))_{n=1}^\infty$ が収束部分列を含むことを示せばよい。補助定理 3.1.3 により, $(K_1x_n)_{n=1}^\infty$ は $\overline{(K_1x_n)_{n=1}^\infty}$ で収束する部分列 $(K_1x_{n(1,k)})_{k=1}^\infty$ を持つ。また $(K_2x_{n(1,k)})_{k=1}^\infty$ で収束する部分列 $(K_2x_{n(2,k)})_{k=1}^\infty$ を持ち,更に $(K_1x_{n(2,k)})_{k=1}^\infty$ は収束列 $(K_1x_{n(1,k)})_{k=1}^\infty$ の部分列となるから, $((K_1+K_2)(x_{n(2,k)}))_{k=1}^\infty$ が収束列となり $K_1+K_2 \in \mathbf{B}_c(X,Y)$ が従う。 $(\alpha K_1x_{n(1,k)})_{k=1}^\infty$ もまた収束列であるから $\alpha K_1 \in \mathbf{B}_c(X,Y)$ も従う。以上より $\mathbf{B}_c(X,Y)$ は線形空間である。

(2) A がコンパクト作用素である場合 補助定理 3.1.3 により,X の任意の点列 $(x_n)_{n=1}^{\infty}$ に対し $(Ax_n)_{n=1}^{\infty}$ は収束部分列 $(Ax_{n_k})_{k=1}^{\infty}$ を持つ。B の連続性により $(BAx_{n_k})_{k=1}^{\infty}$ も収束列となるから,補助定理 3.1.3 より BA はコンパクト作用素である.

B がコンパクト作用素である場合 任意の有界集合 $S \subset X$ に対して、A の有界性と併せて AS は有界となる. 従って \overline{BAS} がコンパクトとなるから BA はコンパクト作用素である.

命題 3.1.6 (Y が完備なら $B_c(X,Y)$ は閉). Y が Banach 空間ならば $B_c(X,Y)$ は B(X,Y) の閉部分空間である.

証明. Y が Banach 空間ならば B(X,Y) は作用素ノルム $\|\cdot\|_{B(X,Y)}$ について Banach 空間となるから, $B_c(X,Y)$ の任意の Cauchy 列は少なくとも B(X,Y) で収束する.よって次を示せば補助定理 3.1.3 により定理の主張が従う.

• $A_n \in B_c(X,Y)$ $(n=1,2,\cdots)$ が Cauchy 列をなし $A \in B(X,Y)$ に収束するとき,X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対して $(Ax_n)_{n=1}^\infty$ が Y で収束する部分列を持つ.

証明には対角線論法を使う。先ず A_1 について,補助定理 3.1.3 により $(A_1x_n)_{n=1}^\infty$ の或る部分列 $\left(A_1x_{k(1,j)}\right)_{j=1}^\infty$ は収束する。 A_2 についても $\left(A_2x_{k(1,j)}\right)_{j=1}^\infty$ の或る部分列 $\left(A_2x_{k(2,j)}\right)_{j=1}^\infty$ は収束する。以下収束部分列を抜き取る操作を繰り返し,一般の A_n に対して $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ が収束列となるようにできる。ここで $x_{k_j}:=x_{k(j,j)}$ $(j=1,2,\cdots)$ として点列 $(x_{k_j})_{j=1}^\infty$ を定めれば,これは $(x_n)_{n=1}^\infty$ の部分列であり,また全ての $n=1,2,\cdots$ に対して $\left(A_nx_{k_j}\right)_{j=n}^\infty$ は収束列 $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ の部分列となるから $\left(A_nx_{k_j}\right)_{j=1}^\infty$ は収束列である。この $\left(x_{k_j}\right)_{j=1}^\infty$ に対して $\left(Ax_{k_j}\right)_{j=1}^\infty$ が Cauchy 列をなすならば A のコンパクト性が

従う*2. $A_n \to A$ を書き直せば、任意の $\epsilon > 0$ に対して或る $N = N(\epsilon) \in \mathbb{N}$ が存在し、n > N なら $\|A_n - A\|_{\mathbf{B}(X,Y)} < \epsilon$ となる.また n > N を満たす n を一つ取れば、 $\left(A_n x_{k_j}\right)_{j=1}^{\infty}$ は収束列であるから或る $J = J(n,\epsilon) \in \mathbb{N}$ が存在し全ての $j_1, j_2 > J$ に対して $\left\|A_n x_{k_{j_1}} - A_n x_{k_{j_2}}\right\|_Y < \epsilon$ が成り立つ. $M \coloneqq \sup_{n \in \mathbb{N}} \|x_n\|_X < \infty$ とおけば、全ての $j_1, j_2 > J$ に対して

$$\left\|Ax_{k_{j_{1}}}-Ax_{k_{j_{2}}}\right\|_{Y}\leq M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}+\left\|A_{n}x_{k_{j_{1}}}-A_{n}x_{k_{j_{2}}}\right\|_{Y}+M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}<(2M+1)\epsilon$$

が従うから、 $\left(Ax_{k_{j}}\right)_{j=1}^{\infty}$ は Cauchy 列すなわち収束列である.

定理 3.1.7 (コンパクト作用素の共役作用素のコンパクト性).

- (1) $A \in B_c(X,Y) \Rightarrow A^* \in B_c(Y^*,X^*)$ が成り立つ.
- (2) Y が Banach 空間ならば、任意の $A \in B(X,Y)$ に対し $A^* \in B_c(Y^*,X^*) \Rightarrow A \in B_c(X,Y)$ が成り立つ.

証明.

(1) 定理 2.1.8 より $A \in B(X, Y)$ なら $A^* \in B(Y^*, X^*)$ が成り立つ.

$$S_1 := \{ \; x \in X \; ; \quad 0 < || \, x \, ||_X \le 1 \; \}$$

とおけば仮定より $L:=\overline{AS}$ は Y のコンパクト部分集合であり、任意に有界点列 $(y_n^*)_{n=1}^\infty\subset Y^*$ を取り

$$f_n: L \ni y \longmapsto y_n^*(y) \in \mathbb{C} \quad (n = 1, 2, \cdots)$$

と定める. 関数族 $(f_n)_{n=1}^\infty$ は正規族となる*3 から、Ascoli-Arzela の定理により L 上の連続関数の全体 C(L) において収束する部分列 $(f_{n_k})_{k=1}^\infty$ を含む.

同等連続性 $(y_n^*)_{n=1}^\infty$ は有界であるから, $M\coloneqq\sup_{n\in\mathbb{N}}\left\|y_n^*\right\|_{Y^*}$ とおけば

$$|f_n(y_1) - f_n(y_2)| = |y_n^*(y_1) - y_n^*(y_2)| \le M ||y_1 - y_2||_Y \quad (\forall y_1, y_2 \in L, \ n = 1, 2, \cdots)$$

が成り立ち同等連続性が従う.

各点で有界 上で定めた M に対し

$$|f_n(y)| \le M ||y||_Y \quad (\forall y \in L, \ n = 1, 2, \cdots)$$

が成り立つ.

 $^{^{*2}}$ Y が f Banach 空間であるから f Cauchy 列であることと収束列であることは同値である.

^{*3} 関数族 $(f_n)_{n=1}^\infty$ の同等連続性と各点での有界性を示す.

第3章 コンパクト作用素

が成り立つ. $(f_{n_k})_{k=1}^{\infty}$ が sup-norm について Cauchy 列をなすから $\left(A^*y_{n_k}^*\right)_{k=1}^{\infty}$ も Cauchy 列となり, X^* の完備性と補助定理 3.1.3 より $A^* \in \mathbf{B}_c(Y^*,X^*)$ が従う.

(2) 証明 1 $J_X: X \longrightarrow X^{**}, J_Y: Y \longrightarrow Y^{**}$ を自然な等長埋め込みとする. 任意に $x \in X$ を取れば

$$\langle A^*y^*,J_Xx\rangle_{X^*,X^{**}}=\langle x,A^*y^*\rangle_{X,X^*}=\langle Ax,y^*\rangle_{Y,Y^*}=\langle y^*,J_YAx\rangle_{Y^*,Y^{**}}\quad (\forall y^*\in Y^*=\mathcal{D}(A^*))$$

が成り立ち、 $\mathcal{D}(A^*) = Y^*$ であるから A^{**} が定義され

$$A^{**}J_X x = J_Y A x \quad (\forall x \in X) \tag{3.1}$$

が従う.また前段の結果と A^* のコンパクト性から A^{**} もコンパクト作用素となる.X から任意に有界点列 $(x_n)_{n=1}^\infty$ を取れば, J_X の等長性より $(J_Xx_n)_{n=1}^\infty$ も X^{**} において有界となり,補助定理 3.1.3 により $(A^{**}J_Xx_n)_{n=1}^\infty$ の或る部分列 $(A^{**}J_Xx_{n_k})_{k=1}^\infty$ は Cauchy 列となる.(3.1) より $(J_YAx_{n_k})_{k=1}^\infty$ も Cauchy 列となるから, J_Y の等長性より $(Ax_{n_k})_{k=1}^\infty$ は Banach 空間 Y で収束し $A \in B_c(X,Y)$ が従う.

証明 2 X の任意の有界点列 $(x_n)_{n=1}^{\infty}$ に対して

$$||Ax_n||_Y = \sup_{\|y^*\|_{Y^*} \le 1} |y^*(Ax_n)| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle y^*, Ax_n \rangle_{Y^*, Y}| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle A^*y^*, x_n \rangle_{X^*, X}| = \sup_{x^* \in V} |\langle x^*, x_n \rangle_{X^*, X}|$$

が成り立つ. ただし $V := \overline{\{A^*y^* \mid \|y^*\|_{Y^*} \le 1\}}$ としていて,また第1の等号は

$$||y||_{Y} = \sup_{\substack{0 \neq g \in Y^{*} \\ ||g||_{1/2} < 1}} \frac{|g(y)|}{||g||_{Y^{*}}} = \sup_{||g||_{Y^{*}} = 1} |g(y)| = \sup_{||g||_{Y^{*}} \le 1} |g(y)|$$

の関係を使った*⁴. A^* がコンパクトだから V が X^* のコンパクト集合となるから $M:=\sup_{x^*\in V}\|x^*\|_{X^*}$ とおけば $M<\infty$ である. また $(\|x_n\|_X)_{n=1}^\infty$ は $\mathbb R$ において有界列となるから収束する部分列 $(\|x_{n_k}\|_X)_{k=1}^\infty$ を取ることができる. この部分列と全ての $x^*\in V$ に対して

$$|x^*(x_{n_k}) - x^*(x_{n_j})| \le M \|x_{n_k} - x_{n_j}\|_X \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が成り立つから,

$$\left\|Ax_{n_k} - Ax_{n_j}\right\|_{Y} = \sup_{x^* \in V} \left|\left\langle x^*, x_{n_k} - x_{n_j}\right\rangle_{X^*, X}\right| \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が従い $A \in B_c(X,Y)$ が判明する.

定理 3.1.8 (反射的 Banach 空間の弱点列コンパクト性).

X が反射的 Banach 空間なら,X の任意の有界点列は弱収束する部分列を含む.

定理 3.1.9 (有限次元空間における有界点列の収束). $A \in B(X,Y)$ に対し $\mathrm{rank}\,A = \dim \mathcal{R}(A) < \infty$ ならば $A \in B_c(X,Y)$ が成り立つ. また X,Y が Hilbert 空間であるなら逆が成立する.

証明. $\mathcal{R}(A) = AX$ は有限次元空間となるから主張の前半は定理 1.1.2 により従う. A コンパクト作用素なら AX は可分, \overline{AX} は Hilbert より完全正規直交系存在.

 $^{^{*4}}$ Hahn-Banach の定理の系を参照. 始めの \sup は $\|g\|_{Y^*} \le 1$ の範囲で制限しているが,等号成立する g のノルムが 1 であるから問題ない.

第3章 コンパクト作用素

定理 3.1.10 (恒等写像がコンパクト作用素なら有限次元). X をノルム空間とする. X の恒等写像 I がコンパクト作用素であるなら $\dim X < \infty$ が成り立つ.

証明. X の単位球面を S と表す. S は X の閉集合である. 実際点列 $x_n \in S$ $(n=1,2,\cdots)$ が $x_n \to x \in X$ となるとき,

$$|\|x\|_{X} - \|x_n\|_{X}| \le \|x - x_n\|_{X} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

より $x \in S$ が従う. $I \in B_c(X)$ より $\overline{IS} = \overline{S} = S$ は点列コンパクトとなるから, 定理 1.1.4 より $\dim X < \infty$ となる.

定理 3.1.11 (コンパクト作用素は弱収束列を強収束列に写す).

X,Y をノルム空間とし、任意に $A \in B(X,Y)$ を取る.

- (1) $A \in B_c(X,Y)$ なら A は X の任意の弱収束列を強収束列に写す.
- (2) X が反射的 Banach 空間なら (1) の逆が成り立つ.
- 証明. (1) X から任意に弱収束列 $(x_n)_{n=1}^\infty$ を取り弱極限を $x \in X$ とする. このとき $(Ax_n)_{n=1}^\infty$ の任意の部分列が強収束する部分列を含み,且つその収束先が全て Ax であるならば,距離空間における点列の収束の一般論*5 により (1) の主張が従う. $(Ax_n)_{n=1}^\infty$ から任意に部分列 $(Ax_{n(1,k)})_{k=1}^\infty$ を取る. 定理 A.1.6 より $(x_{n(1,k)})_{k=1}^\infty$ は有界列であるから,定理 3.1.3 より部分列 $(Ax_{n(2,k)})_{k=1}^\infty$ が或る $y \in \overline{(Ax_{n(1,k)})_{k=1}^\infty}$ に強収束する. 定理 2.1.8 より A^* が存在して $Y^* = \mathcal{D}(Y^*)$ を満たすから,任意に $g \in Y^*$ を取れば

$$\langle x_{n(2,k)}, A^* g \rangle_{X,X^*} = \langle A x_{n(2,k)}, g \rangle_{Y,Y^*}$$

が成り立つ. 左辺は w- $\lim_{n\to\infty} x_n = x$ の仮定より

$$\langle x_{n(2,k)}, A^*g \rangle_{XX^*} \longrightarrow \langle x, A^*g \rangle_{XX^*} = \langle Ax, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たし、一方で右辺は $\lim_{k\to\infty} Ax_{n(2,k)} = y$ より

$$\langle Ax_{n(2,k)}, g \rangle_{YY^*} \longrightarrow \langle y, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たすから

$$\langle Ax, g \rangle_{Y,Y^*} = \langle y, g \rangle_{Y,Y^*} \quad (\forall g \in Y^*)$$

が成り立ち Ax = y が従う.

(2) X が反射的 Banach 空間ならば X の任意の有界点列は弱収束する部分列を含む. (2) の仮定よりその部分列を A で写せば Y で強収束するから,定理 3.1.3 より A のコンパクト性が従う.

$$d(s_{n_k}, s) \ge \epsilon \quad (\forall k = 1, 2, \cdots)$$

を満たすから、 $\left(s_{n_k}\right)_{k=1}^{\infty}$ のいかなる部分列も s には収束し得ない.

^{*&}lt;sup>5</sup> (S,d) を距離空間とし,S の点 S と点列 $(s_n)_{n=1}^{\infty}$ を取る.このとき $(s_n)_{n=1}^{\infty}$ 任意の部分列が S に収束する部分列を含むなら, $(s_n)_{n=1}^{\infty}$ は S に収束する.実際もし $(s_n)_{n=1}^{\infty}$ が S に収束しないとすれば,或る S のに対し部分列 $(S_n)_{k=1}^{\infty}$ が存在して

3.2 Fredholm 性

補助定理 3.2.1 (商空間のコンパクト作用素). X を複素ノルム空間, Y を X の閉部分空間とする. $A \in \mathbf{B}_c(X)$ が $AY \subset Y$ を満たすとき次が成り立つ:

- (1) $A_1: Y \ni y \mapsto Ay \in Y$ として A_1 を定めれば $A_1 \in B_c(Y)$ が成り立つ.
- (2) $A_2: X/Y \ni [x] \mapsto [Ax] \in X/Y$ として A_2 を定めれば $A_2 \in B_c(X/Y)$ が成り立つ.

証明.

- 任意に Y から有界点列 $(x_n)_{n=1}^\infty$ を取る。補助定理 3.1.3 より $(Ax_n)_{n=1}^\infty$ の部分列 $(Ax_{n_k})_{k=1}^\infty$ は或る $y \in X$ に収束し、Y が閉であるから $y \in Y$ を満たす。 $A_1x_{n_k} = Ax_{n_k}$ $(k=1,2,\cdots)$ より $A_1x_{n_k} \longrightarrow y$ $(k \longrightarrow \infty)$ が従い、補助定理 3.1.3 より $A_1 \in B_c(Y)$ が成り立つ。
- (2) well-defined A_2 の定義は well-defined である. つまり同値類の表示の仕方に依らない. 実際 [x] = [x'] なら

$$Ax - Ax' = A(x - x') \in Y$$

が成り立つから $A_2[x]=[Ax]=[Ax']=A_2[x']$ が従う. また $[x],[y]\in X/Y$ と $\alpha,\beta\in\mathbb{K}$ に対し

$$A_2(\alpha[x] + \beta[y]) = A_2[\alpha x + \beta y] = [A(\alpha x + \beta y)] = [\alpha Ax + \beta Ay] = \alpha[Ax] + \beta[Ay] = \alpha A_2[x] + \beta A_2[y]$$

が成り立つから A_2 は線型作用素である.

コンパクト性 B を X/Y の単位開球とする。B から任意に取った点列 $([x_n])_{n=1}^\infty$ に対して $(A_2[x_n])_{n=1}^\infty$ が X/Y で 収束する部分列を含むなら,定理 3.1.3 の証明中の (※) の主張により A_2B は相対コンパクトとなり,定理 3.1.2 により A のコンパクト性が従う。各 $n \in \mathbb{N}$ について $\|[x_n]\|_{X/Y} < 1$ であるから $\|u_n\|_X \le 2$ を満たす $u_n \in [x_n]$ が存在する。定理 3.1.3 より $(Au_n)_{n=1}^\infty$ の或る部分列 $(Au_{n_k})_{k=1}^\infty$ は或る $y \in Y$ に収束するから

$$||A_2[x_{n_k}] - [y]||_{X/Y} = ||[Ax_{n_k} - y]||_{X/Y} \le ||Ax_{n_k} - y||_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つ.

定理 3.2.2 (複素 Banach 空間上のコンパクト作用素の値域の余次元,核の次元).

X を複素 Banach 空間, I を X 上の恒等写像とし, $0 \neq \lambda \in \mathbb{C}$ と $A \in B_c(X)$ に対して $T := \lambda I - A$ とおく. このとき $\mathcal{R}(T)$ は X の閉部分空間であり, $\dim \mathcal{N}(T) < \infty$ かつ $\operatorname{codim} \mathcal{R}(T) < \infty^{*6}$ が成り立つ.

証明.

 $\mathcal{R}(T)$ が閉となること

 $\hat{T}: X/\mathcal{N}(T) \ni [x] \longmapsto Tx \in \mathcal{R}(T)$

^{*6} $\operatorname{codim} \mathcal{R}(T) = \dim X / \mathcal{R}(T)$ である.

と定めれば \hat{T} は線型同型かつ連続となる:

全単射 \hat{T} が単射であることは,T[x] = T[x'] ならば $x - x' \in N(T)$ より [x] = [x'] が従い,また任意の $y \in \mathcal{R}(T)$ に対して,y = Tx を満たす $x \in X$ の同値類 $[x] \in X/N(T)$ が $\hat{T}[x] = y$ を満たすから \hat{T} は全射である.

線型性 任意に $[x],[y] \in X/N(T)$ と $\alpha,\beta \in \mathbb{C}$ を取れば

$$\hat{T}(\alpha[x] + \beta[y]) = \hat{T}([\alpha x] + [\beta y]) = T(\alpha x + \beta y) = \alpha Tx + \beta Ty = \alpha \hat{T}[x] + \beta \hat{T}[y]$$

が成立する.

連続性 定理 3.1.5 より A は有界であるから

$$||T||_{B(X)} = ||\lambda I - A||_{B(X)} \le |\lambda| + ||A||_{B(X)} < \infty$$

が成り立ち、任意の $[x] \in X/N(T)$ に対して

$$\|\hat{T}[x]\|_{Y} = \|Tx\|_{X} \le \|T\|_{B(X)} \|x\|_{X}$$

が従うから \hat{T} は連続である.

 $\mathcal{R}(T) = \mathcal{R}(\hat{T})$ であるから $\mathcal{R}(\hat{T})$ が X の閉部分空間となることを示せばよい. まず或る C > 0 が存在して

$$C \|\hat{T}[x]\|_{Y} \ge \|[x]\|_{X/\mathcal{N}(T)} \quad (\forall x \in X)$$

$$(3.2)$$

を満たすことを示す.

(3.2) の証明 このような C が存在しないなら

$$\|\hat{T}[x_n]\|_X < \frac{1}{n} \|[x_n]\|_{X/\mathcal{N}(T)} \quad (n = 1, 2, \cdots)$$
 (3.3)

を満たす X/N(T) の点列 $([x_n])_{n=1}^{\infty}$ が存在する.

$$[y_n] := \frac{1}{\|[x_n]\|_{X/N(T)}} [x_n] \quad (n = 1, 2, \dots)$$

とおけば $([y_n])_{n=1}^\infty$ も (3.3) を満たし、かつ $\hat{T}[y_n] = \hat{T}[u_n] = Tu_n$ であるから

$$||Tu_n||_X = ||\hat{T}[y_n]||_X < \frac{1}{n} \longrightarrow 0 \quad (n \longrightarrow \infty)$$
(3.4)

が成立する. $\|[y_n]\|_{X/N(T)}=1$ であるからノルムの定義 (1.4) より $\|u_n\|_X\leq 2$ となる $u_n\in [y_n]$ が存在し,定理 3.1.3 より $(Au_n)_{n=1}^\infty$ の或る部分列 $(Au_{n_k})_{k=1}^\infty$ は或る $y\in X$ に収束するから

$$\left\| y - \lambda u_{n_k} \right\|_X = \left\| y - A u_{n_k} - T u_{n_k} \right\|_X \le \left\| y - A u_{n_k} \right\|_X + \left\| T u_{n_k} \right\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立ち, 更に T の有界性と (3.4) より

$$\left|\left|\left|Ty\right|\right|_{X} \leq \left|\left|\left|Ty - \lambda Tu_{n_{k}}\right|\right|_{X} + \left|\lambda\right| \left|\left|\left|Tu_{n_{k}}\right|\right|_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

となり $y \in \mathcal{N}(T)$ が従う. 一方で

$$\left| \left\| \left[y \right] \right\|_{X/\mathcal{N}(T)} - \left\| \lambda \left[y_{n_k} \right] \right\|_{X/\mathcal{N}(T)} \right| \le \left\| \left[y \right] - \lambda \left[y_{n_k} \right] \right\|_{X/\mathcal{N}(T)} \le \left\| y - \lambda u_{n_k} \right\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つから $\|[y]\|_{X/N(T)} = |\lambda| > 0$ が従い $y \in N(T)$ に矛盾する.

 $\mathcal{R}(\hat{T})$ の点列 $\left(\hat{T}[v_n]\right)_{n=1}^{\infty}$ が $\hat{T}[v_n] \to x \in X$ を満たすなら、(3.2) より

$$\| [v_n] - [v_m] \|_{X/\mathcal{N}(T)} \le C \| \hat{T}[v_n] - \hat{T}[v_m] \|_{Y} \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立ち、定理 1.2.4 より $([\nu_n])_{n=1}^\infty$ は或る $[\nu] \in X/N(T)$ に収束する. よって \hat{T} の連続性から

$$\left\| x - \hat{T}[v] \right\|_{Y} \le \left\| x - \hat{T}[v_n] \right\|_{Y} + \left\| \hat{T} \right\|_{\mathbb{R}(\hat{T})} \left\| [v_n] - [v] \right\|_{X} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $x = \hat{T}[v] \in \mathcal{R}(\hat{T})$ が従う.

 $\dim \mathcal{N}(T) < \infty$ となること $T = \lambda I - A$ より

$$\lambda x = Ax \quad (\forall x \in \mathcal{N}(T)) \tag{3.5}$$

が成り立つから

$$TAx = T\lambda x = \lambda Tx = 0 \quad (\forall x \in \mathcal{N}(T))$$

となり $AN(T) \subset N(T)$ が従う. よって N(T) から任意に有界点列 $(x_n)_{n=1}^\infty$ を取れば $(Ax_n)_{n=1}^\infty$ は閉部分空間 N(T) に含まれ,定理 3.1.3 より或る部分列 $(Ax_{n_k})_{k=1}^\infty$ は或る $x \in N(T)$ に収束する. そして (3.5) より

$$\left\| \frac{1}{\lambda} x - x_{n_k} \right\|_{X} = \frac{1}{|\lambda|} \left\| x - \lambda x_{n_k} \right\|_{X} = \frac{1}{|\lambda|} \left\| x - A x_{n_k} \right\|_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つから、定理 3.1.10 より $\dim X < \infty$ が従う.

 $\operatorname{codim} \mathcal{R}(T) < \infty$ となること $\mathcal{R}(T)$ は X の閉部分空間であるから商ノルム空間 $X/\mathcal{R}(T)$ を定義できる.

$$U: X/\mathcal{R}(T) \ni [x] \longmapsto [Ax] \in X/\mathcal{R}(T)$$

と定めれば定理 3.2.1 より U はコンパクト作用素である.

$$[0] = [Tx] = [\lambda x - Ax] = \lambda[x] - [Ax] = \lambda[x] - U[x] \quad (\forall x \in X)$$

が成り立つから、定理 3.1.10 より $\dim X/\mathcal{R}(T) < \infty$ が従う、

定理 3.2.3 (Fredholm の交代定理).

補助定理 3.2.4. E を複素ノルム空間, E_1, E_2 を E の線型部分空間とし $E = E_1 + E_2$ が成り立っているとする *7 . また $E, E_1 \times E_2$ におけるノルムをそれぞれ $\|\cdot\|_{E, \times E_2}$ としてノルム位相を導入し

$$\Phi: E \ni x \longmapsto [x_1, x_2] \in E_1 \times E_2 \quad (x = x_1 + x_2)$$

を定める. このとき次が成り立つ:

- (1) Φ は全単射かつ閉線型である.
- (2) Φ^{-1} は連続である.
- (3) Φ が連続ならば E_1, E_2 は閉部分空間である.
- (4) E が Banach 空間で E_1, E_2 が閉部分空間ならば Φ は線型同型かつ同相である.
- (5) $\dim E_1 < \infty$ かつ E_2 が閉ならば Φ は線型同型かつ同相である.

 $^{^{*7}}$ つまり $E_1\cap E_2=\{0\}$ であり、かつ E の任意の元 x は或る $x_1\in E_1, x_2\in E_2$ によって $x=x_1+x_2$ と一意に表される.一意性について,

証明.

(1) 全単射であること 任意に $[x_1, x_2] \in E_1 \times E_2$ を取れば $x_1 + x_2 \in E$ を満たすから Φ は全射である.また $E_1 \times E_2$ の二元が $[x_1, x_2] = [y_1, y_2]$ を満たせば $x_1 = y_1$ かつ $x_2 = y_2$ となるから Φ は単射である.

閉線型であること $x, y \in E, \alpha \in \mathbb{C}$ を任意に取り $\Phi x = [x_1, x_2], \Phi y = [y_1, y_2]$ とすれば、

$$\Phi(x+y) = [x_1 + y_1, x_2 + y_2] = [x_1, x_2] + [y_1, y_2] = \Phi x + \Phi y,$$

$$\Phi(\alpha x) = [\alpha x_1, \alpha x_2] = \alpha [x_1, x_2] = \alpha \Phi x$$

より Φ の線型性が従う. また $(x_n)_{n-1}^{\infty} \subset E$ が $x_n \to u \in X$ かつ $\Phi x_n \to [u_1, u_2] \in E_1 \times E_2$ を満たす場合,

$$||u - (u_1 + u_2)||_E \le ||u - x_n||_E + ||\Phi x_n - [u_1, u_2]||_{E_1 \times E_2} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $\Phi u = [u_1, u_2]$ が従うから Φ は閉作用素である.

(2) (1) より逆写像 $\Phi^{-1}: E_1 \times E_2 \to E$ (線形全単射) が存在し、任意の $[0,0] \neq [x_1,x_2] \in E_1 \times E_2$ に対して

$$\frac{\left\|\Phi^{-1}[x_1, x_2]\right\|_E}{\|[x_1, x_2]\|_{E_1 \times E_2}} = \frac{\|x_1 + x_2\|_E}{\|x_1\|_E + \|x_2\|_E} \le 1$$

を満たす.

- (3) ノルム空間において一点集合 $\{0\}$ は閉であるから,直積位相において $E_1 \times \{0\}$ 及び $\{0\} \times E_2$ は閉集合である. 従って Φ の連続性と $E_1 = \Phi^{-1}(E_1 \times \{0\})$ 及び $E_2 = \Phi^{-1}(\{0\} \times E_2)$ が成り立つことから E_1, E_2 は閉集合となる.
- (4) $E, E_1 \times E_2$ は Banach 空間でありかつ $\mathcal{D}(\Phi) = E$ が満たされているから,閉グラフ定理より Φ は有界となる. (1)(2) と併せれば Φ, Φ^{-1} は共に連続且つ線型全単射であるから主張が従う.
- (5) $E \rightarrow E$ の恒等写像を I と表す. また

$$p_1: E \ni x \longmapsto [x] \in E/E_2, \quad p_2: E/E_2 \ni [x] \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

と定めれば p_1 は線型連続であり p_2 は線型同型かつ連続である:

 p_1 について 任意に $x, y \in E$ と $\alpha, \beta \in \mathbb{C}$ を取れば

$$p_1(\alpha x + \beta y) = [\alpha x + \beta y] = [\alpha x] + [\beta y] = \alpha [x] + \beta [y] = \alpha p_1 x + \beta p_1 y$$

が成り立ち p_1 の線型性が従う. また $x \in E$, $x \neq 0$ に対して

$$\frac{\|\,p_1x\,\|_{E/E_2}}{\|\,x\,\|_{E}} = \frac{\|\,[x]\,\|_{E/E_2}}{\|\,x\,\|_{E}} \leq \frac{\|\,x\,\|_{E}}{\|\,x\,\|_{E}} = 1$$

となるから p_1 は連続である.

 p_2 について E から E_1 への線型準同型を

$$p: E \ni x \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

$$E_1 \ni x_1 - y_1 = y_2 - x_2 \in E_2$$

 $x = y_1 + y_2 \ (y_1 \in E_1, y_2 \in E_2)$ が同時に成り立っているとすれば

第 3 章 コンパクト作用素 **25**

で定める. $\mathcal{R}(p)=E_1$ かつ $\mathcal{N}(p)=E_2$ であるから,準同型定理より p_2 は線型同型となる.また $\dim E_1<\infty$ であるから $\dim E/E_2=\dim E_1<\infty$ となり*8 p_2 の連続性が従う.

 Φ は p_1, p_2 を用いて

$$\Phi x = [p_2 p_1 x, (I - p_2 p_1) x] \quad (\forall x \in E)$$

と表現できるから

$$\|\Phi x\|_{E_1 \times E_2} = \|p_2 p_1 x\|_E + \|(I - p_2 p_1)x\|_E$$

により Φ の連続性が従い、(1)(2) と併せて主張を得る.

補助定理 3.2.5 (T が単射なら全射). X を複素 Banach 空間, I を X 上の恒等写像とし, $0 \neq \lambda \in \mathbb{C}$ と $A \in B_c(X)$ に対して $T := \lambda I - A$ とおく. このとき T が単射ならば T は全射である.

証明. 背理法で示す. 今Tが単射であり全射ではないとする. このとき

$$\mathcal{R}(T^k) \supseteq \mathcal{R}(T^{k+1}) \quad (k = 1, 2, \cdots)$$

が成り立つ *9 . 実際或る $k \in \mathbb{N}$ で $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1})$ が成り立つなら、任意の $y \in X$ に対し或る $x \in X$ が存在して

$$T^k y = T^{k+1} x = T^k T x$$

を満たすが、 T^k が単射であるから y = Tx が従い T が全射でないという仮定に反する.

$$X_k := \mathcal{R}(T^k) \quad (k = 1, 2, \cdots)$$

と簡単に表せば、定理 3.2.2 より X_k は X の閉部分空間であり、定理 1.1.3 より

$$||x_k||_X = 1, \quad \inf_{x \in X_k} ||x_k - x||_X > \frac{1}{2}$$
 (3.6)

を満たす $x_k \in X_k \setminus X_{k+1}$ $(k = 1, 2, \dots)$ が存在する. n < m となる $n, m \in \mathbb{N}$ を取れば

$$Tx_n + Ax_m = Tx_n + \lambda x_m - Tx_m \in X_{n+1}$$

が成り立つから、(3.6)より

$$||Ax_n - Ax_m||_X = ||\lambda x_n - Tx_n - Ax_m||_X > \frac{|\lambda|}{2}$$

が従い $(Ax_k)_{k=1}^{\infty}$ は収束部分列を含み得ないが、これは定理 3.1.3 に矛盾する.

$$\alpha_1 f(x_1) + \dots + \alpha_k f(x_k) = 0$$

が成り立っている場合, f が線型かつ単射であるから

$$\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$$

となり $f(x_1), \cdots, f(x_k)$ の線型独立性が従う。また任意に $y \in Y$ を取れば或る $x \in X$ が対応し f(x) = y を満たすから、

$$y = f(x) = f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha f(x_1) + \dots + \alpha f(x_k)$$

が成り立ち $Y = \text{L.h.}[\{f(x_1), \dots, f(x_k)\}]$ が従う.

^{*8} 一般の線形空間 X,Y に対し、 $\dim X=k<\infty$ 且つ線型同型 $f:X\to Y$ が存在するなら $\dim Y=k$ が成り立つ。実際 X の基底を x_1,\cdots,x_k と すれば $f(x_1),\cdots,f(x_k)$ は Y の基底となる。 $\alpha_1,\cdots,\alpha_k\in\mathbb{C}$ に対し

 $^{*^9}$ 写像の性質より $\mathcal{R}(T^k)$ $\supset \mathcal{R}(T^{k+1})$ は既に成り立っている.実際任意の $x \in X$ に対し $T^{k+1}x = T^kTx \in T^kX$ が成り立つ.

第3章 コンパクト作用素

3.3 直交射影

定義 3.3.1 (直交射影). H を複素 Hilbert 空間とする. $p: H \to H$ が直交射影であるとは, p に対して或る H の閉部分空間 H_0 が存在し, $x \in H$ とその直交分解 $x = x_1 + x_2$ ($x_1 \in H_0$, $x_2 \in H_0^{\perp}$) に対し次を満たすことをいう*10:

$$p: H \ni x \longmapsto x_1.$$

またH上の直交射影全体をProj(H)と書く.

命題 3.3.2 (直交射影の存在). H を複素 Hilbert 空間とする. H の任意の閉部分空間 L に対し或る $p \in \text{Proj}(H)$ が存在して $p: H \to L$ を満たす. 特に $\mathcal{R}(p) = L$ が成り立つ.

命題 3.3.3 (直交射影は冪等・自己共役). H を複素 Hilbert 空間とする. 任意の $p:H\to H$ に対し次は同値である:

- (1) $p \in \text{Proj}(H)$.
- (2) p は有界で $p^2 = p$ と $p^* = p$ を満たす.

命題 3.3.4 (直交射影の積・和の性質). H を複素 Hilbert 空間とする.

(1) $p, q \in \text{Proj}(H)$ に対し次が成り立つ:

$$\mathcal{R}(p) \perp \mathcal{R}(q) \Leftrightarrow pq = 0 \Leftrightarrow qp = 0.$$

(2) $p_1, \dots, p_n \in \text{Proj}(H)$ が $p_i \neq p_j$ $(i \neq j)$ を満たすなら, $p \coloneqq \sum_{i=1}^n p_i$ とおいて次が成り立つ:

$$p \in \text{Proj}(H) \iff p_i p_j = \delta_{ij} p_j \quad (i, j = 1, \dots, n).$$

ただし δ_{ij} は Kronecker のデルタである.

(3) $p_1, p_2, \dots \in \text{Proj}(H)$ が $p_i p_j = \delta_{ij} p_j \ (\forall i, j \in \mathbb{N})$ を満たすとして

$$H_0 := \overline{\text{L.h.}\left[\bigcup_{i=1}^{\infty} \mathcal{R}(p_i)\right]}$$

とおく. $p \in \text{Proj}(H)$ が $\mathcal{R}(p) = H_0$ であるとき次が成り立つ:

$$px = \sum_{i=1}^{\infty} p_i x \quad (\forall x \in H).$$

 $^{^{*10}}$ 射影定理より $x \in H$ の直交分解は一意に定まるから,p は写像として well-defined である.

第4章

自己共役作用素のスペクトル分解

4.1 複素測度

定義 4.1.1 (複素測度). (X, M) を可測空間とする. $\lambda: M \to \mathbb{C}$ が任意の互いに素な集合列 $E_i \in M$ $(i=1,2,\cdots)$ と $E:=\sum_{i=1}^{\infty} E_i$ に対して

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_i)$$
 (4.1)

を満たすとき, λを複素測度 (complex measure) という.

 λ は複素数値であるから任意の $E \in M$ に対して $|\lambda(E)| < \infty$ を満たす.従って (4.1) において右辺の級数は収束していなくてはならない. $\sigma: \mathbb{N} \to \mathbb{N}$ を任意の並び替え*1とすれば

$$E = \sum_{i=1}^{\infty} E_{\sigma(i)}$$

が成り立つから

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_{\sigma(i)})$$

を得る. 従って複素数列 $(\lambda(E_i))_{i=1}^\infty$ は無条件に $\lambda(E)$ に収束し、Riemann の級数定理より $(\lambda(E_i))_{i=1}^\infty$ は絶対収束する:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| < \infty.$$

今、 λ を支配するような或る M 上の測度 μ 、つまり

$$|\lambda(E)| \le \mu(E) \quad (\forall E \in \mathcal{M})$$
 (4.2)

を満たすものを、できるだけ小さいものとして取ろうと考える *2 . このような μ は次を満たすことになる:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| \le \sum_{i=1}^{\infty} \mu(E_i) = \mu(E).$$

$$\mu(E) \le \mu'(E) \quad (\forall E \in \mathcal{M})$$

を満たすものを選べるかどうかを考える.

^{*1} σ は N から N への全単射である

 $^{^{*2}}$ つまり (4.2) を満たす μ のうちから,同様に (4.2) を満たす任意の測度 μ' に対し

ゆえに

$$\mu(E) \ge \sup_{i=1}^{\infty} |\lambda(E_i)| \tag{4.3}$$

でなくてはならず (上限は E のあらゆる分割 $E = \sum_i E_i$ に対して取るものである), ここで M 上の関数を

$$|\lambda|(E) := \sup \sum_{i=1}^{\infty} |\lambda(E_i)| \quad (\forall E \in \mathcal{M})$$
 (4.4)

として定義してみれば、E 自体がE の一つの分割であるから (4.4) より $|\lambda|$ は λ を支配し、更に、後述することであるが、 $|\lambda|$ は M 上の測度でもあり (4.3) と併せて当座の問題の解となる.

定義 4.1.2 (総変動・総変動測度). 可測空間 (X, M) 上の複素測度 λ に対し、(4.4) で定めた $|\lambda|: M \longrightarrow [0, \infty)$ を λ の総変動測度 (total variation measure) といい、 $|\lambda|(X)$ を λ の総変動 (total variation) という.特に λ が正値有限測度である場合は $\lambda = |\lambda|$ が成り立つ. *3

以降で | λ| の性質

- (1) |\(\lambda\) は測度である.
- (2) $|\lambda|(X) < \infty$ が成り立つ.

を証明する. 特に (2) により任意の $E \in M$ に対し

$$|\lambda(E)| \le |\lambda|(E) \le |\lambda|(X) < \infty$$

が従うから、複素測度は有界であると判明する.

定理 4.1.3 ($|\lambda|$ は測度). 可測空間 (X, M) 上の複素測度 λ に対して、(4.4) で定義する $|\lambda|$ は測度である.

証明. (4.4) により $|\lambda|$ は正値であるから,以下では $|\lambda|$ の完全加法性を示す.任意に $\epsilon>0$ とどの二つも互いに素な集合列 $E_i\in\mathcal{M}$ $(i=1,2,\cdots)$ を取る.示すことは $E:=\sum_{i=1}^\infty E_i$ に対して

$$|\lambda|(E) = \sum_{i=1}^{\infty} |\lambda|(E_i)$$

が成り立つことである. (4.4) により E_i の分割 $(A_{ij})_{i=1}^{\infty} \subset M$ を

$$|\lambda|(E_i) \ge \sum_{i=1}^{\infty} |\lambda(A_{ij})| > |\lambda|(E_i) - \epsilon/2^i$$

$$|\lambda|(E) = \sup \sum_{i=1}^{\infty} |\lambda(E_i)| = \sup \sum_{i=1}^{\infty} \lambda(E_i) = \sup \lambda(E) = \lambda(E)$$

が成り立つ.

^{*3} 複素測度の虚部が 0 であるものとして考えれば $0 \le \lambda(E) \le \lambda(X) < \infty$ ($\forall E \in \mathcal{M}$) が成り立つ. また実際任意の $E \in \mathcal{M}$ とその分割 $(E_i)_{i=1}^\infty$ に対して

を満たすように取ることができる.また $E = \sum_{i,j=1}^{\infty} A_{ij}$ でもあるから

$$|\lambda|(E) \ge \sum_{i,j=1}^{\infty} |\lambda(A_{ij})| \ge \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda(A_{ij})| > \sum_{i=1}^{\infty} |\lambda|(E_i) - \epsilon$$

が成り立つ. $\epsilon > 0$ は任意であるから

$$|\lambda|(E) \ge \sum_{j=1}^{\infty} |\lambda|(E_j)$$

が従う.一方で E の任意の分割 $(A_j)_{j=1}^\infty \subset M$ に対し

$$\sum_{j=1}^{\infty} |\lambda(A_j)| = \sum_{j=1}^{\infty} \left| \sum_{i=1}^{\infty} \lambda(A_j \cap E_i) \right| \le \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| \le \sum_{i=1}^{\infty} |\lambda| (E_i)^{*4}$$

が成り立つから, 左辺の上限を取って

$$|\lambda|(E) \le \sum_{i=1} |\lambda|(E_i)$$

を得る.

定理 4.1.4 (総変動測度は有界). 可測空間 (X, M) 上の複素測度 λ の総変動測度 $|\lambda|$ について次が成り立つ:

$$|\lambda|(X) < \infty$$
.

先ずは次の補題を示す.

補助定理 4.1.5. z_1, \dots, z_N を複素数とする. 添数集合の或る部分 $S \subset \{1, \dots, N\}$ を抜き取れば次が成り立つ:

$$\left| \sum_{k \in S} z_k \right| \ge \frac{1}{2\pi} \sum_{k=1}^N |z_k|.$$

証明 (補題). $z_k = |z_k|e^{i\alpha_k}$ $(-\pi \le \alpha_k < \pi, \ k=1,\cdots,N)$ となるように α_1,\cdots,α_N を取る. ここで i は虚数単位である. また $-\pi \le \theta \le \pi$ に対し

$$S(\theta) := \{ k \in \{1, \dots, N\} ; \cos(\alpha_k - \theta) > 0 \}$$

$$\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)|$$

が成り立つ. これと (4.4) を併せれば最後の不等号が従う.

^{*4} 正項級数は和の順序に依らないから

とおく. このとき

$$\left| \sum_{k \in S(\theta)} z_k \right| = |e^{-i\theta}| \left| \sum_{k \in S(\theta)} z_k \right| = \left| \sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right|$$

$$\geq \text{Re}\left[\sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right] = \sum_{k \in S(\theta)} |z_k| \cos(\alpha_k - \theta) = \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta)^{*5}$$

が成り立ち、最右辺は θ に関して連続となるから $[-\pi,\pi]$ 上で最大値を達成する θ_0 が存在する. $S\coloneqq S(\theta_0)$ とすれば

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta_0) \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta) \quad (\forall \theta \in [-\pi, \pi])$$

が成り立つから, 左辺右辺を積分して

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \frac{1}{2\pi} \int_{[-\pi,\pi]} \cos^+(\alpha_k - \theta) \, d\theta = \frac{1}{2\pi} \sum_{k=1}^N |z_k|$$

が成り立つ*6.

証明 (定理 4.1.4).

第一段 或る $E \in \mathcal{M}$ に対し $|\lambda|(E) = \infty$ が成り立っていると仮定する。 $t := 2\pi(1 + |\lambda(E)|)$ とおけば (複素測度であるから $|\lambda(E)| < \infty$) $|\lambda|(E) > t$ となるから,(4.4) より E の分割 $(E_i)_{i=1}^\infty$ を

$$\sum_{i=1}^{\infty} |\lambda(E_i)| > t$$

となるように取ることができる. 従って或る $N \in \mathbb{N}$ を取れば

$$\sum_{i=1}^{N} |\lambda(E_i)| > t$$

が成り立つ. $z_i \coloneqq \lambda(E_i)$ $(i=1,\cdots,N)$ として補題 4.1.5 を使えば、或る $S \subset \{1,\cdots,N\}$ に対し

$$\left| \sum_{k \in S} \lambda(E_k) \right| \ge \frac{1}{2\pi} \sum_{k=1}^{N} |\lambda(E_k)| > \frac{t}{2\pi} > 1$$

となる. $A := \sum_{k \in S} E_k$ とおいて B := E - A とすれば

$$|\lambda(B)| = |\lambda(E) - \lambda(A)| \ge |\lambda(A)| - |\lambda(E)| > \frac{t}{2\pi} - |\lambda(E)| = 1$$

が成り立つから、つまり $|\lambda|(E) = \infty$ の場合、E の直和分割 A, B で

$$|\lambda(A)| > 1$$
, $|\lambda(B)| > 1$

$$\int_{[-\pi,\pi]} \cos^+(\alpha-\theta) \ d\theta = \int_{[\alpha-\pi,\alpha+\pi]} \cos^+\theta \ d\theta = \int_{[-\pi,\pi]} \cos^+\theta \ d\theta = 1$$

が成り立つ.

^{*5} $\cos^+ x = 0 \lor \cos x \ (x \in \mathbb{R})$ である.

 $^{^{*6}}$ 三角関数の周期性を使えば任意の $lpha \in \mathbb{R}$ に対して

を満たすものが取れると示された. そして |\(\alpha\)| の加法性から

$$|\lambda|(E) = |\lambda|(A) + |\lambda|(B)$$

も成り立つから、この場合右辺の少なくとも一方は∞となる.

第二段 背理法により定理の主張することを証明する。 今 $|\lambda|(X)=\infty$ と仮定すると、前段の結果より X の或る直和分割 A_1,B_1 で

$$|\lambda|(B_1) = \infty$$
, $|\lambda(A_1)| > 1$, $|\lambda(B_1)| > 1$

を満たすものが取れる. B_1 についてもその直和分割 A_2 , B_2 で

$$|\lambda|(B_2) = \infty$$
, $|\lambda(A_2)| > 1$, $|\lambda(B_2)| > 1$

を満たすものが取れる.この操作を繰り返せば,どの二つも互いに素な集合列 $(A_j)_{j=1}^\infty$ で $|\lambda(A_j)| > 1$ $(j=1,2,\cdots)$ を満たすものを構成できる. $A:=\sum_{j=1}^\infty$ について, $|\lambda(A)|<\infty$ でなくてはならないから,Riemann の級数定理より

$$\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_i)$$

の右辺は絶対収束する.従って $0<\epsilon<1$ に対し或る $N\in\mathbb{N}$ が存在してn>Nなら $|\lambda(A_n)|<\epsilon$ が成り立つはずであるが,これは $|\lambda(A_n)|>1$ であることに矛盾する.背理法により $|\lambda|(X)<\infty$ であることが示された.

定理 4.1.6 (複素測度の空間・ノルムの定義). 可測空間 (X, M) 上の複素測度の全体を $Meas_{\mathbb{C}}$ と表す. $\lambda, \mu \in Meas_{\mathbb{C}}$, $c \in \mathbb{C}$, $E \in M$ に対し

$$(\lambda + \mu)(E) := \lambda(E) + \mu(E),$$

$$(c\lambda)(E) := c\lambda(E)$$
(4.5)

を線型演算として $Meas_{\mathbb{C}}$ は線形空間となり、特に定理 4.1.4 により $\lambda \in Meas_{\mathbb{C}}$ に対して $|\lambda| \in Meas_{\mathbb{C}}$ が成り立つ。また $\|\cdot\|: Meas_{\mathbb{C}} \to \mathbb{R}$ を

$$\|\lambda\| := |\lambda|(X) \quad (\lambda \in \text{Meas}_{\mathbb{C}})$$

と定義すればこれは Meas_C においてノルムとなり、(Meas_C, $\|\cdot\|$) は Banach 空間となる.

証明. 総変動の正値性からノルムの正値性が従うから、以下では同次性と三角不等式が成り立つことを示す.

同次性 総変動測度の定義 (4.4) とスカラ倍の定義 (4.5) より、任意の $\lambda \in Meas_{\mathbb{C}}$ と $c \in \mathbb{C}$ に対し

$$||c\lambda|| = \sup \sum_{i} |(c\lambda)(E_i)| = \sup \sum_{i} |c\lambda(E_i)| = |c| \sup \sum_{i} |\lambda(E_i)| = |c| ||\lambda||$$

が成り立つ.

三角不等式 任意の $\lambda, \mu \in \text{Meas}_{\mathbb{C}}$ に対し

$$||\lambda + \mu|| = |\lambda + \mu|(X) = \sup \sum_{i} |(\lambda + \mu)(E_i)| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)|$$

となるが,ここで

$$\sum_{i} |\lambda(E_i) + \mu(E_i)| \le \sum_{i} |\lambda(E_i)| + \sum_{i} |\mu(E_i)| \le ||\lambda|| + ||\mu||$$

が成り立つから

$$\|\lambda + \mu\| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)| \le \|\lambda\| + \|\mu\|$$

が従う.

可測空間 (X, M) において,実数にしか値を取らない複素測度を符号付き測度 (signed measure) という.

定義 4.1.7 (正変動と負変動・Jordan の分解). (X, M) を可測空間とする. (X, M) 上の符号付き測度 μ を取り

$$\mu^+ := \frac{1}{2}(|\mu| + \mu), \quad \mu^- := \frac{1}{2}(|\mu| - \mu)$$

として μ^+,μ^- を定めれば、どちらも正値有限測度となる*⁷.この μ^+ を μ の正変動 (positive variation) といい μ^- を μ の負変動 (negative variation) という.また

$$\mu = \mu^+ - \mu^-, \quad |\mu| = \mu^+ + \mu^-$$

が成り立ち、上の表現を符号付き測度 μ の Jordan 分解という.

定義 4.1.8 (絶対連続・特異). (X, M) を可測空間, μ を M 上の正値測度 *8 , $\lambda, \lambda_1, \lambda_2$ を M 上の任意の測度とする.

• λ が μ に関して絶対連続である (absolutely continuous) とは $\mu(E)=0$ となる全ての $E\in \mathcal{M}$ について $\lambda(E)=0$ が成り立つことを指し,

$$\lambda \ll \mu$$

と表記する.

• 或る $A \in M$ が存在して $\lambda(E) = \lambda(A \cap E)$ ($\forall E \in M$) が成り立つとき, λ は A に集中している (concentrated on A) という. λ_1, λ_2 に対し或る $A_1, A_2 \in M$ が存在し, λ_1 が A_1 に, λ_2 が A_2 に集中しかつ $A_1 \cap A_2 = \emptyset$ が満たされているとき, λ_1, λ_2 は互いに特異である (mutually singular) といい

$$\lambda_1 \perp \lambda_2$$

と表記する.

^{*&}lt;sup>7</sup> M上で $|\mu|(E) \ge |\mu(E)|$ であることと定理 4.1.4 による.

 $^{^{*8}}$ 正値測度という場合は ∞ も取りうる.従って正値測度は複素測度の範疇にはない. μ として例えば k 次元 Lebesgue 測度を想定している.

命題 4.1.9 (絶対連続性と特異性に関する性質). (X, M) を可測空間, μ を M 上の正値測度, $\lambda, \lambda_1, \lambda_2$ を M 上の複素測度とする. このとき以下に羅列する事柄が成り立つ.

- (1) λ が $A \in M$ に集中しているなら $|\lambda|$ も A に集中している.
- (3) $\lambda_1 \perp \mu \text{ bol } \lambda_2 \perp \mu \text{ abolit } \lambda_1 + \lambda_2 \perp \mu.$
- (4) $\lambda_1 \ll \mu \text{ in } \lambda_2 \ll \mu \text{ to if } \lambda_1 + \lambda_2 \ll \mu.$
- (5) $\lambda \ll \mu \text{ coid } |\lambda| \ll \mu.$
- (6) $\lambda_1 \ll \mu \text{ bol} \lambda_2 \perp \mu \text{ cold } \lambda_1 \perp \lambda_2.$

4.2 複素測度に関する積分

定理 4.2.1 (複素数値可測関数). (X, M) を可測空間とする. $f: X \to \mathbb{C}$ について次が成り立つ:

- (1) f が可測 $M/\mathfrak{B}(\mathbb{C})$ であることと f の実部虚部がそれぞれ可測 $M/\mathfrak{B}(\mathbb{R})$ であることは同値である.
- (2) $M/\mathfrak{B}(\mathbb{C})$ -可測関数列 $(f_n)_{n=1}^{\infty}$ が f に各点収束するなら f もまた可測 $M/\mathfrak{B}(\mathbb{C})$ となる.

定義 4.2.2 (積分の定義). (X, M) を可測空間とし、 μ を (X, M) 上の複素測度とする. μ の総変動測度 $|\mu|$ に関して可積分となる関数 $f: X \to \mathbb{C}$ について、f の μ に関する積分を次で定める:

f が可測単関数の場合 有限個の複素数 $\alpha_1, \cdots, \alpha_k$ と集合 $A_1, \cdots, A_k \in M$ によって

$$f = \sum_{i=1}^{k} \alpha_i \mathbf{1}_{A_i} \tag{4.6}$$

と表されるとき *9 , f の μ に関する積分を

$$\int_{X} f(x) \,\mu(dx) := \sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) \tag{4.7}$$

で定める.

fが一般の可測関数の場合

$$\int_{X} f_n(x) |\mu|(dx) \longrightarrow \int_{X} f(x) |\mu|(dx)$$
(4.8)

を満たす f の可測単関数近似列 $(f_n)_{n=1}^\infty$ を取り、f の μ に関する積分を

$$\int_{X} f(x) \,\mu(dx) \coloneqq \lim_{n \to \infty} \int_{X} f_n(x) \,\mu(dx) \tag{4.9}$$

で定める.

定理 4.2.3 (積分の定義は well-defined). 定義 4.2.2 において, (4.7) は (4.6) の表示の仕方に依らずに定まり, (4.9) も (4.8) を満たす単関数近似列の選び方に依らずに定まる. 更に次が成り立つ:

$$\left| \int_X f(x) \, \mu(dx) \right| \le \int_X |f(x)| \, |\mu|(dx). \tag{4.10}$$

証明.

f が可測単関数の場合 f が (4.6) の表示とは別に

$$f = \sum_{j=1}^{m} \beta_j \mathbb{1}_{B_j} \quad (\beta_j \in \mathbb{C}, \ B_j \in \mathcal{M}, \ X = \sum_{j=1}^{m} B_j)$$

と表現できるとしても

$$\sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) = \sum_{i=1}^{k} \sum_{j=1}^{m} \alpha_{i} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} \sum_{i=1}^{k} \beta_{j} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} \beta_{j} \mu(B_{j})$$

 $^{^{*9}}$ A_1, \cdots, A_k は互いに素であり $X = \sum_{i=1}^k A_i$ を満たす.

が成り立つ. また (4.4) より

$$\left| \int_{X} f(x) \, \mu(dx) \right| = \left| \sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) \right| \le \sum_{i=1}^{k} |\alpha_{i}| \, |\mu|(A_{i}) = \int_{X} |f(x)| \, |\mu|(dx) \tag{4.11}$$

も成り立つ.

f が一般の可測関数の場合 (4.9) は有限確定している. 実際 (4.8) を満たす単関数近似列 $(f_n)_{n=1}^\infty$ に対して (4.11) より

$$\left| \int_X f_n(x) \, \mu(dx) - \int_X f_m(x) \, \mu(dx) \right| \le \int_X |f_n(x) - f_m(x)| \, |\mu|(dx) \quad (\forall n, m \in \mathbb{N})$$

が成り立つから, $\left(\int_X f_n(x) \mu(dx)\right)_{n=1}^\infty$ は $\mathbb C$ において Cauchy 列をなし極限が存在する. $(f_n)_{n=1}^\infty$ とは別に (4.8) を満たす f の単関数近似列 $(g_n)_{n=1}^\infty$ が存在しても

$$\left| \int_{X} f_{n}(x) \, \mu(dx) - \int_{X} g_{m}(x) \, \mu(dx) \right| \leq \int_{X} |f_{n}(x) - g_{m}(x)| \, |\mu|(dx)$$

$$\leq \int_{X} |f_{n}(x) - f(x)| \, |\mu|(dx) + \int_{X} |f(x) - g_{m}(x)| \, |\mu|(dx) \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから,

$$\alpha := \lim_{n \to \infty} \int_X f_n(x) \, \mu(dx), \quad \beta := \lim_{n \to \infty} \int_X g_n(x) \, \mu(dx)$$

とおけば

$$|\alpha - \beta| \le \left| \alpha - \int_X f_n(x) \, \mu(dx) \right| + \left| \int_X f_n(x) \, \mu(dx) - \int_X g_m(x) \, \mu(dx) \right| + \left| \int_X g_m(x) \, \mu(dx) - \beta \right|$$

$$\longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が従い $\alpha = \beta$ を得る. また (4.11) より

$$\left| \int_X f_n(x) \, \mu(dx) \right| \le \int_X |f_n(x)| \, |\mu|(dx) \quad (n=1,2,\cdots)$$

が満たされているから、両辺で $n \longrightarrow \infty$ として (4.10) を得る.

定義 4.2.2 において,(4.9) は (4.7) の拡張となっている.実際 f が可測単関数の場合,(4.8) を満たす単関数近似列として f 自身を選べばよい.定理 4.2.3 より (4.9) による f の積分は一意に確定し (4.7) の左辺に一致する.

定理 4.2.4 (積分の線型性). 定義 4.2.2 で定めた積分について,任意の $f,g\in \mathcal{L}^1(X,\mathcal{M},|\mu|)$ と $\alpha,\beta\in\mathbb{C}$ に対し

$$\int_{Y} \alpha f(x) + \beta g(x) \, \mu(dx) = \alpha \int_{Y} f(x) \, \mu(dx) + \beta \int_{Y} g(x) \, \mu(dx)$$

が成り立つ.

証明.

第一段 f,g が可測単関数の場合、(4.7) で定める積分が線型性を持つことを示す。 $u_1,\cdots,u_k,v_1,\cdots,v_r\in\mathbb{C}$ と $A_1,\cdots,A_k,B_1,\cdots,B_r\in\mathcal{M}$ $(X=\sum_{i=1}^kA_i=\sum_{j=1}^rB_j)$ によって

$$f = \sum_{i=1}^{k} u_i \, \mathbb{1}_{A_i}, \quad g = \sum_{i=1}^{r} v_i \, \mathbb{1}_{B_j}$$

と表示されているとき,

$$\alpha f + \beta g = \sum_{i=1}^{k} \sum_{i=1}^{r} (\alpha u_i + \beta v_j) \mathbb{1}_{A_i \cap B_j}$$

と表現できるから

$$\int_X \alpha f(x) + \beta g(x) \mu(dx) = \sum_{i=1}^k \sum_{j=1}^r (\alpha u_i + \beta v_j) \mu(A_i \cap B_j)$$

$$= \alpha \sum_{i=1}^k u_i \mu(A_i) + \beta \sum_{i=1}^r v_j \mu(B_j) = \alpha \int_X f(x) \mu(dx) + \beta \int_X g(x) \mu(dx)$$

が成り立つ.

第二段 f,g を一般の可測関数とし、f,g それぞれについて (4.8) を満たす単関数近似列 $(f_n)_{n=1}^\infty, (g_n)_{n=1}^\infty$ を一つ選ぶ.

$$\int_{X} |(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \ |\mu|(dx)$$

$$\leq |\alpha| \int_{X} |f_n(x) - f(x)| \ |\mu|(dx) + |\beta| \int_{X} |g_n(x) - g(x)| \ |\mu|(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから $\alpha f + \beta g$ の μ に関する積分は

$$\int_X \alpha f(x) + \beta g(x) \,\mu(dx) := \lim_{n \to \infty} \int_X \alpha f_n(x) + \beta g_n(x) \,\mu(dx)$$

で定義され, 前段の結果より

$$\begin{split} &\left| \int_{X} \alpha f(x) + \beta g(x) \, \mu(dx) - \alpha \, \int_{X} f(x) \, \mu(dx) - \beta \, \int_{X} g(x) \, \mu(dx) \right| \\ & \leq \left| \int_{X} \alpha f(x) + \beta g(x) \, \mu(dx) - \int_{X} \alpha f_{n}(x) + \beta g_{n}(x) \, \mu(dx) \right| \\ & + \left| \alpha \, \int_{X} f_{n}(x) \, \mu(dx) + \beta \, \int_{X} g_{n}(x) \, \mu(dx) - \alpha \, \int_{X} f(x) \, \mu(dx) - \beta \, \int_{X} g(x) \, \mu(dx) \right| \\ & \longrightarrow 0 \quad (n \longrightarrow \infty) \end{split}$$

が従う.

定理 4.2.5 (積分の測度に関する線型性). (X, M) を可測空間, μ, ν をこの上の複素測度とする. $f: X \to \mathbb{C}$ が $|\mu|$ と $|\nu|$ について可積分であるなら, $\alpha, \beta \in \mathbb{C}$ に対し $|\alpha\mu|$, $|\beta\nu|$, $|\alpha\mu + \beta\nu|$ についても可積分であり, 更に次が成り立つ:

$$\int_X f(x) \, (\alpha \mu + \beta \nu)(dx) = \alpha \, \int_X f(x) \, \mu(dx) + \beta \int_X f(x) \, \nu(dx).$$

証明. 第一段 f が可測単関数の場合について証明する. $a_i \in \mathbb{C}, A_i \in \mathcal{M} (i=1,\cdots,n, \sum_{i=1}^n A_i = X)$ を用いて

$$f = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i}$$

と表されている場合,

$$\int_X f(x) (\alpha \mu + \beta \nu)(dx) = \sum_{i=1}^n a_i (\alpha \mu + \beta \nu)(A_i)$$

$$= \alpha \sum_{i=1}^n a_i \mu(A_i) + \beta \sum_{i=1}^n a_i \nu(A_i) = \alpha \int_X f(x) \mu(dx) + \beta \int_X f(x) \nu(dx)$$

が成り立つ.

第二段 f が一般の可測関数の場合について証明する. 任意の $A \in M$ に対して

$$|(\alpha\mu+\beta\nu)(A)| \leq |\alpha||\mu(A)| + |\beta||\nu(A)| \leq |\alpha||\mu|(A) + |\beta||\nu|(A)$$

が成り立つから、左辺で A を任意に分割しても右辺との大小関係は変わらず

$$|\alpha\mu + \beta\nu|(A) \le |\alpha||\mu|(A) + |\beta||\nu|(A)$$

となる. 従って f が $|\mu|$ と $|\nu|$ について可積分であるなら

$$\int_X |f(x)| \, |\alpha \mu + \beta \nu| (dx) \leq |\alpha| \int_X |f(x)| \, |\mu| (dx) + |\beta| \int_X |f(x)| \, |\nu| (dx) < \infty$$

が成り立ち前半の主張を得る. f の単関数近似列 $(f_n)_{n=1}^\infty$ を取れば、前段の結果と積分の定義より

$$\begin{split} \left| \int_{X} f(x) \left(\alpha \mu + \beta \nu \right) (dx) - \alpha \int_{X} f(x) \, \mu(dx) - \beta \int_{X} f(x) \, \nu(dx) \right| \\ & \leq \left| \int_{X} f(x) \left(\alpha \mu + \beta \nu \right) (dx) - \int_{X} f_{n}(x) \, \left(\alpha \mu + \beta \nu \right) (dx) \right| \\ & + |\alpha| \left| \int_{X} f(x) \, \mu(dx) - \int_{X} f_{n}(x) \, \mu(dx) \right| + |\beta| \left| \int_{X} f(x) \, \nu(dx) - \int_{X} f_{n}(x) \, \nu(dx) \right| \\ & \longrightarrow 0 \quad (n \longrightarrow \infty) \end{split}$$

が成り立ち後半の主張が従う.

定理 4.2.6 (収束定理). (X, M) を可測空間, μ をこの上の複素測度とする. $M/\mathfrak{B}(C)$ -可測関数列 $(f_n)_{n=1}^{\infty}$ が各点で収束し、かつ或る $g \in \mathscr{L}^1(X, M, |\mu|)$ が存在して $|f_n| \leq |g|$ $(n=1,2,\cdots)$ を満たすとき、次が成り立つ:

$$\int_{X} \lim_{n \to \infty} f_n(x) \, \mu(dx) = \lim_{n \to \infty} \int_{X} f_n(x) \, \mu(dx).$$

証明.

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (\forall x \in X)$$

とおく. Lebesgue の収束定理より $f \in \mathcal{L}^1(X, \mathcal{M}, |\mu|)$ かつ

$$\int_X f(x) |\mu|(dx) = \lim_{n \to \infty} \int_X f_n(x) |\mu|(dx)$$

が成り立つから、定理 4.2.4 及び定理 4.2.3 より

$$\left| \int_{V} f(x) \, \mu(dx) - \int_{V} f_n(x) \, \mu(dx) \right| \le \int_{V} |f(x) - f_n(x)| \, |\mu|(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う.

定理 4.2.7 (順序交換定理).

証明. $|\mu| \times |\nu| \le |\mu \times \nu|$ より $|\mu|, |\nu|, |\mu \times \nu|$ に Fubini の定理を適用.

$$\int_X \int_Y f_n(x,y) \ \nu(dy) \ \mu(dx) = \int_{X \times Y} f_n(x,y) \ (\mu \times \nu) (dx \times dy) = \int_Y \int_X f_n(x,y) \ \mu(dy) \ \nu(dx)$$

f が $|\mu \times \nu|$ に関して可積分なら

$$\int_{X\times Y} f(x,y) (\mu \times \nu) (dx \times dy)$$

が定義され, 更に

$$\int_{Y} |f(x,y)| \, |\nu|(dy) < \infty$$

だから

$$\int_{V} f(x, y) \, \nu(dy)$$

も定義される.

$$\left|\int_Y f(x,y)\;\nu(dy)\right|\leq \int_Y |f(x,y)|\,|\nu|(dy)$$

が |μ| について可積分であるから

$$\int_{Y} \int_{Y} f(x, y) \, \nu(dy) \, \mu(dx)$$

も定義される.

4.3 複素測度の Riesz の表現定理

定義 4.3.1 (空間 C_∞). 局所コンパクトな Hausdorff 空間 X に対し $C(X) := \{f: X \to \mathbb{C} ; 連続 \}$ とおく.

$$C_{\infty}(X) := \{ f \in C(X) ;$$
 任意の $\epsilon > 0$ に対して $\{ x \in X ; |f(x)| \ge \epsilon \}$ がコンパクト. $\}$

として $C_{\infty}(X)$ を定め、またコンパクトな台を持つ $f \in C(X)$ の全体を $C_{c}(X)$ と表す.

 $f \in C_{\infty}(X)$ は遠方で 0 になる関数である. 特に $X = \mathbb{R}^d$ の場合は

$$C_{\infty}(\mathbb{R}^d) = \left\{ f : \mathbb{R}^d \to \mathbb{C} ; \lim_{|x| \to \infty} |f(x)| = 0 \right\}$$

が成り立つ.

定理 4.3.2 (C_c は C_∞ で稠密).

4.4 スペクトル測度

 $H \neq \{0\}$ を複素 Hilbert 空間としノルム位相を導入する. H 上の直交射影全体を Proj(H) とし, H における内積とノルムをそれぞれ $\langle \cdot, \cdot \rangle$, $\|\cdot\|$ で表す. また (X, M) を可測空間とする.

定義 4.4.1 (スペクトル測度). I を H 上の恒等写像とする. $E: M \to \text{Proj}(H)$ がスペクトル測度 (spectral measure) であるとは, E(X) = I かつ, 互いに素な列 $A_n \in M$ ($n = 1, 2, \cdots$) に対して次を満たすことをいう:

$$E(A_n) \neq E(A_m) \quad (n \neq m, \ A_n, A_m \neq \emptyset), \quad \sum_{n=1}^{\infty} E(A_n)u = E(\sum_{n=1}^{\infty} A_n)u \quad (\forall u \in H).$$
 (4.12)

補助定理 4.4.2 (スペクトル測度の積). M から Proj(H) へのスペクトル測度 H は次を満たす:

- $(1) E(\emptyset) = 0.$
- (2) $A, B \in \mathcal{M}$ に対し $E(A)E(B) = E(A \cap B)$.

証明.

$$E(\emptyset) = \sum_{n=1}^{\infty} E(\emptyset) = E(\emptyset) + \sum_{n=2}^{\infty} E(\emptyset)$$

が成り立ち*10

$$\sum_{n=2}^{\infty} E(\emptyset) = 0$$

が従う.

$$S := \sum_{0}^{\infty} E(\emptyset), \quad S_N := \sum_{0}^{N} E(\emptyset) \quad (N = 1, 2, \cdots)$$

とおけば、 $(S_N)_{N=2}^{\infty}$ は S にノルム収束するから Cauchy 列であり、

$$||S_{N+1} - S_N|| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

より $E(\emptyset) = 0$ が得られる.

*10

$$a := \sum_{n=1}^{\infty} E(\emptyset), \quad a' := \sum_{n=2}^{\infty} E(\emptyset), \quad a_N := \sum_{n=1}^{N} E(\emptyset), \quad a'_N := \sum_{n=2}^{N} E(\emptyset)$$

とおけば

$$\left\| a - \left(E(\emptyset) - a' \right) \right\| \le \left\| a - a_N \right\| + \left\| a_N - \left(E(\emptyset) - a'_N \right) \right\| + \left\| a'_N - a' \right\| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

が成り立つ.

(2) $F \cap G = \emptyset$ となる $F,G \in M$ に対し、F 又は G が \emptyset なら (1) より E(F)E(G) = 0、そうでない場合は (4.12) より

$$E(F) \neq E(G)$$
, $E(F) + E(G) = E(F + G) \in Proj(H)$

が成り立つから、命題 3.3.4 より E(F)E(G)=0 が従う. これと命題 3.3.3 より、 $A,B\in\mathcal{M}$ に対し

$$E(A)E(B) = (E(A \cap B) + E(A \cap B^c))(E(A \cap B) + E(B \cap A^c)) = E(A \cap B)$$

が得られる.

補助定理 4.4.3 (スペクトル測度で導入する複素測度). $E: \mathcal{M} \to \operatorname{Proj}(H)$ をスペクトル測度とする. 各 $u, v \in H$ に 対し $\mu_{u,v}: \mathcal{M} \to \mathbb{C}$ と $\mu_u: \mathcal{M} \to [0,\infty)$ を次で定める:

$$\mu_{u,v}(\Lambda) := \langle E(\Lambda)u, v \rangle \quad (\forall \Lambda \in \mathcal{M}), \quad \mu_u := \mu_{u,u}$$
 (4.13)

- (1) μ_{uv} は (X, M) 上の複素測度であり、 μ_{u} は (X, M) 上の実数値有限測度である.
- (2) 任意の $\Lambda \in M$ に対し次が成り立つ:

$$|\mu_{u,v}(\Lambda)| \le \mu_u(\Lambda)^{\frac{1}{2}} \mu_v(\Lambda)^{\frac{1}{2}}.$$
 (4.14)

(3) $M/\mathfrak{B}([0,\infty))$ -可測関数 f,g に対して次が成り立つ:

$$\int_X f(x)g(x) \; |\mu_{u,v}|(dx) \leq \left(\int_X |f(x)|^2 \; \mu_u(dx)\right)^{\frac{1}{2}} \left(\int_X |g(x)|^2 \; \mu_v(dx)\right)^{\frac{1}{2}}.$$

証明.

(1) (4.13) より $\mu_{\mu\nu}$ は複素数値である. また命題 3.3.3 より

$$\langle E(\Lambda)u, v \rangle = \langle E(\Lambda)^2 u, v \rangle = \langle E(\Lambda)u, E(\Lambda)^* v \rangle = \langle E(\Lambda)u, E(\Lambda)v \rangle \tag{4.15}$$

が成り立つから $\mu_u(\Lambda) = ||E(\Lambda)u||^2$ を得る. 互いに素な列 $A_1, A_2, \dots \in M$ を取れば, (4.12) より

$$\left|\left\langle \sum_{n=1}^{\infty} E(A_n)u, v \right\rangle - \left\langle \sum_{n=1}^{N} E(A_n)u, v \right\rangle \right| \le \left\| \sum_{n=1}^{\infty} E(A_n)u - \sum_{n=1}^{N} E(A_n)u \right\| \|v\| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

が成り立つから,

$$\left\langle \sum_{n=1}^{N} E(A_n)u, v \right\rangle = \sum_{n=1}^{N} \left\langle E(A_n)u, v \right\rangle$$

の右辺も収束し

$$\left\langle \sum_{n=1}^{\infty} E(A_n)u, v \right\rangle = \sum_{n=1}^{\infty} \left\langle E(A_n)u, v \right\rangle$$

が得られ $\mu_{u,v}$ の完全加法性が従う.

(2) (4.15) より

$$|\mu_{u,v}(A)| = |\langle E(A)u, E(A)v \rangle| \le ||E(A)u|| ||E(A)v|| = \mu_u(A)^{\frac{1}{2}} \mu_v(A)^{\frac{1}{2}} \quad (\forall A \in \mathcal{M})$$

が成り立つから、任意の $\Lambda \in M$ とその有限分割 $\Lambda = \sum_{i=1}^n A_i \ (A_i \in M)$ に対し

$$\sum_{i=1}^{n} \left| \mu_{u,v}(A_i) \right| \leq \sum_{i=1}^{n} \mu_u(A_i)^{\frac{1}{2}} \mu_v(A_i)^{\frac{1}{2}} \leq \left(\sum_{i=1}^{n} \mu_u(A_i) \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} \mu_v(A_i) \right)^{\frac{1}{2}} = \mu_u(\Lambda)^{\frac{1}{2}} \mu_v(\Lambda)^{\frac{1}{2}}$$

が得られ、左辺で分割の取り方の上限を取り (4.14) が従う.

(3) f,g が可測単関数の場合,

$$f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}}, \quad g = \sum_{i=1}^{n} \beta_{i} \mathbb{1}_{A_{i}} \quad (\alpha_{i}, \beta_{i} \in [0, \infty), \sum_{i=1}^{n} A_{i} = X)$$

と表されているとして

$$\int_{X} f(x)g(x) |\mu_{u,v}|(dx) = \sum_{i=1}^{n} \alpha_{i}\beta_{i}|\mu_{u,v}|(A_{i})$$

$$\leq \sum_{i=1}^{n} \alpha_{i}\mu_{u}(A_{i})^{\frac{1}{2}}\beta_{i}\mu_{v}(A_{i})^{\frac{1}{2}} = \left(\int_{X} |f(x)|^{2} \mu_{u}(dx)\right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} \mu_{v}(dx)\right)^{\frac{1}{2}}$$

が成り立つ.一般の可測関数については、単関数近似と単調収束定理より主張が従う.

以後は $E: \mathcal{M} \to \text{Proj}(H)$ をスペクトル測度とし、次の記号を定める:

$$MF = MF(X, \mathcal{M}) := \{ f : X \to \mathbb{C} ; f は \mathcal{M}/\mathfrak{B}(\mathbb{C})$$
-可測関数. $\},$ $MSF = MSF(X, \mathcal{M}) := \{ f : X \to \mathbb{C} ; f は \mathcal{M}/\mathfrak{B}(\mathbb{C})$ -可測単関数. $\}.$

定義 4.4.4 (MSF-近似列). $f \in MF$ に対し $\lim_{n\to\infty} f_n(x) = f(x)$ ($\forall x \in X$) かつ $|f_n| \le |f|$ ($n=1,2,\cdots$) を満たす $f_n \in MSF$ ($n=1,2,\cdots$) を f の MSF-近似列と呼び,特に $(|f_n|)_{n=1}^\infty$ が単調増加なら MSF-単調近似列と呼ぶ.

命題 4.4.5 (MSF-単調近似列の存在). 任意の $f \in MF$ に対して MSF-単調近似列が存在する.

証明. 任意に $f \in MF$ を取り、f の実部と虚部をそれぞれ g,h と表す。 $g^+ \coloneqq g \mathbb{1}_{\{g \ge 0\}}, g^- \coloneqq g^+ - g$ と定め、同様に h^+,h^- を定めれば、 g^+,g^-,h^+,h^- はそれぞれ非負で可測 $M/\mathfrak{B}(\mathbb{R})$ であるから MSF-単調近似列 $(g_n^+)_{n=1}^\infty$ が存在する。

$$|g_n|^2 = |g_n^+|^2 + |g_n^-|^2 \le |g^+|^2 + |g^-|^2 = |g|^2$$

が成り立つから,

$$f_n := g_n^+ - g_n^- + i(h_n^+ - h_n^-) \quad (n = 1, 2, \cdots)$$

とおけば

$$|f_n|^2 = |g_n^+ - g_n^-|^2 + |h_n^+ - h_n^-|^2 \le |g|^2 + |h|^2 = |f|^2$$

が得られる.

定義 4.4.6 (可測関数で導入する作用素). $f \in MF$ に対し、H 上の作用素 T_f を次で定義する:

f が可測単関数の場合 $\alpha_i \in \mathbb{C}$ と $A_i \in \mathcal{M}, \sum_{i=1}^n A_i = X$ によって

$$f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$$

と表示されているとき,

$$\mathcal{D}(T_f) := H, \quad T_f := \sum_{i=1}^n \alpha_i E(A_i)$$
 (4.16)

と定める.

f が一般の可測関数の場合 f の MSF-近似列 $(f_n)_{n=1}^\infty$ を一つ取り

$$\mathcal{D}(T_f) := \left\{ u \in H \; ; \quad \int_X |f(x)|^2 \, \mu_u(dx) < \infty \right\}, \tag{4.17}$$

$$T_f u := \lim_{n \to \infty} T_{f_n} u \quad (\forall u \in \mathcal{D}(T_f)) \tag{4.18}$$

$$T_f u := \lim_{n \to \infty} T_{f_n} u \quad (\forall u \in \mathcal{D}(T_f))$$
(4.18)

と定める.

作用素の線型演算 $f,g \in MF$ に対して

$$(T_f + T_g)u := T_f u + T_g u \quad (u \in \mathcal{D}(T_f) \cap \mathcal{D}(T_g)),$$
$$(\lambda T_f)u := \lambda T_f u \quad (u \in \mathcal{D}(T_f))$$

として線型演算を定める. また上式の通り $\mathcal{D}(T_f + T_g) = \mathcal{D}(T_f) \cap \mathcal{D}(T_g)$, $\mathcal{D}(\lambda T_f) = \mathcal{D}(T_f)$ である.

補助定理 4.4.7. (4.16) による T_f の定義は f の表示に依らない.

証明. $\alpha_i, \beta_j \in \mathbb{C} \ \ \ \ \ A_i, B_j \in \mathcal{M}, \ \sum_{i=1}^n A_i = \sum_{j=1}^m B_j = X$ によって

$$f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}} = \sum_{i=1}^{m} \beta_{i} \mathbb{1}_{B_{i}}$$

と表示されているとき,

$$\sum_{i=1}^{n} \alpha_{i} E(A_{i}) = \sum_{i=1}^{n} \sum_{i=1}^{m} \alpha_{i} E(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{j} E(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \beta_{j} E(B_{j})$$

が成り立つ.

補助定理 4.4.8. $f,g \in MSF$, $\alpha,\beta \in \mathbb{C}$, $u,v \in H$ に対して次が成り立つ:

- $(1) \qquad T_{\alpha f+\beta g}=\alpha T_f+\beta T_f, \quad T_fT_g=T_{fg}, \quad T_f^*=T_{\overline{f}}, \quad T_{{1\hspace{-.1em}\rule{0.1em}{1.5em}\rule{0.1em}\rule0.1em}\rule{0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em}\rule0.1em\rule0.1em}\rule0.1em\rule0.1em}\rule0.1em\rule0.1em}\rule0.1em\rule0.1em}\rule0.1em\rule0.1em\rule0.1em\rule0.1em}\rule0.1em\rule0.1em\rule0.1em}\rule0.1em\rule0.1em\rule0.1em\rule0.1em}\rule0.1em\rule0.1em\rule0.1em\rule0.1em}\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\rule0.1em\hspace0.1em}\rule0.1em\hspace0.1em\rule0.1em\rule0.1em\hspace0.1em\rule0.1em\rule0.1em\rule0.1em\hspace0.1em\hspace0.1em\rule0.1em\hspace0.1em\rule0.1em\hspace0.1em\hspace0.1em\hspace0.1em\hspace0.1em}\rule0.1em\hspace0$
- (2) $\langle T_f u, T_g v \rangle = \int_V f(x) \overline{g(x)} \, \mu_{u,v}(dx).$

証明.

(1) $a_i, b_i \in \mathbb{C}, A_i \in \mathcal{M} \sum_{i=1}^n A_i = X \bowtie 10^n$

$$f = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i}, \quad g = \sum_{i=1}^{n} b_i \mathbb{I}_{A_i}$$

と表示されているとする. 先ず

$$T_{\alpha f + \beta g} = \sum_{i=1}^{n} (\alpha a_i + \beta b_i) E(A_i) = \alpha \sum_{i=1}^{n} a_i E(A_i) + \beta \sum_{i=1}^{n} b_i E(A_i) = \alpha T_f + \beta T_f$$

が成り立つ. また補題 4.4.2 より

$$T_f T_g = \sum_{i=1} a_i b_i E(A_i) = T_{fg}$$

が従い, また命題 3.3.3 より

$$T_f^* = \left(\sum_{i=1}^n a_i E(A_i)\right)^* = \sum_{i=1}^n \overline{a_i} E(A_i)^* = T_{\overline{f}}$$

も得られる. $T_{\parallel_A} = E(A)$ は (4.16) による.

(2) 命題 3.3.3 と命題 4.4.2 より $\mathcal{R}(E(A_i))$ $\perp \mathcal{R}(E(A_k))$ $(j \neq k)$ が成り立つから、(4.15) より

$$\left\langle T_f u, T_g v \right\rangle = \sum_{i=1}^n a_i \overline{b_i} \left\langle E(A_i) u, E(A_i) v \right\rangle = \sum_{i=1}^n a_i \overline{b_i} \left\langle E(A_i) u, v \right\rangle = \int_X f(x) \overline{g(x)} \, \mu_{u,v}(dx)$$

を得る.

定理 4.4.9. (4.18) で定める T_f は well-defined であり、特に (4.16) による定義の拡張となっている.

証明

第一段 (4.18) の極限が存在することを示す. $f \in MF$ に対し MSF-近似列 $(f_n)_{n=1}^{\infty}$ を取れば

$$||T_{f_n}u - T_{f_m}u|| = ||T_{f_n - f_m}u|| = \int_{Y} |f_n(x) - f_m(x)|^2 \mu_u(dx) \quad (\forall u \in \mathcal{D}(T_f))$$

が成り立つ. $|f_n - f| \le 2|f|$ かつ各点で $|f_n(x) - f(x)| \longrightarrow 0$ となるから、Lebesgue の収束定理より

$$\int_{X} |f_{n}(x) - f_{m}(x)|^{2} \mu_{u}(dx) \leq 2 \int_{X} |f_{n}(x) - f(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |f_{m}(x) - f(x)|^{2} \mu_{u}(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が得られる. 従って $\left(T_{f_n}u\right)_{n=1}^{\infty}$ は Hilbert 空間 H において Cauchy 列であり極限が存在する.

第二段 (4.18) の極限が近似列に依存しないことを示す。前段の f に対し別の MSF-近似列 $(g_m)_{m=1}^\infty$ を取り

$$T_1u := \lim_{n \to \infty} T_{f_n}u, \quad T_2u := \lim_{m \to \infty} T_{g_m}u \quad \Big(\forall u \in \mathcal{D}(T_f) \Big)$$

とおく. 各 $u \in \mathcal{D}(T_f)$ に対し

$$\|T_{f_n}u - T_{g_m}u\|^2 = \int_X |f_n(x) - g_m(x)|^2 \ \mu_u(dx)$$

$$\leq 2 \int_X |f_n(x) - f(x)|^2 \ \mu_u(dx) + 2 \int_X |f(x) - g_m(x)|^2 \ \mu_u(dx) \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから

$$||T_1u - T_2u|| \le ||T_1u - T_{f_n}u|| + ||T_{f_n}u - T_{g_m}u|| + ||T_{g_m}u - T_2u|| \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が従い極限の一意性を得る. $f \in MSF$ の場合は $f_n = f$ を MSF-近似列とすれば後半の主張が得られる.

補助定理 4.4.10 ($\mathcal{D}(T_f)$ は線型・稠密). (4.17) で定めた $\mathcal{D}(T_f)$ は H の線型部分空間で $\overline{\mathcal{D}(T_f)} = H$ を満たす.

証明.

線型性 $u, v \in \mathcal{D}(T_f)$ に対して

$$\int_X |f(x)|^2 \, \mu_u(dx) < \infty, \quad \int_X |f(x)|^2 \, \mu_v(dx) < \infty$$

が満たされている. (4.15) より任意の $\Lambda \in M$ に対して

$$\mu_{u+v}(\Lambda) = \|E(\Lambda)(u+v)\|^2 \le 2 \|E(\Lambda)u\|^2 + 2 \|E(\Lambda)v\|^2 = 2\mu_u(\Lambda) + 2\mu_v(\Lambda)$$

が成り立つから

$$\int_X |f(x)|^2 \, \mu_{u+v}(dx) \le 2 \int_X |f(x)|^2 \, \mu_u(dx) + 2 \int_X |f(x)|^2 \, \mu_v(dx) < \infty$$

が従い $u+v\in\mathcal{D}(T_f)$ を得る. また任意に $\lambda\in\mathbb{C}$ を取れば

$$\mu_{\lambda u}(\Lambda) = ||\lambda E(\Lambda)u||^2 = |\lambda|^2 \mu_u(\Lambda)$$

が成り立ち $\lambda u \in \mathcal{D}(T_f)$ も従う.

稠密性 任意に $u \in H$ を取る.

$$A_k := \{ x \in X ; |f(x)| \le k \} (k = 1, 2, \dots)$$

に対して $u_k \coloneqq E(A_k)u$ とおけば, $(A_k)_{k=1}^{\infty}$ は単調に増加し X に収束するから

$$||u - u_k|| = ||E(X)u - E(A_k)u|| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

$$(4.19)$$

が成り立つ. 一方で任意の $\Lambda \in M$ に対して, 命題 4.4.2 と (4.15) より

$$\mu_{u_k}(\Lambda) = \langle E(\Lambda)E(A_k)u, E(A_k)u \rangle = \langle E(\Lambda \cap A_k)u, u \rangle = \mu_u(\Lambda \cap A_k)$$

と表せるから μ_{u_k} は A_k に集中している. よって

$$\int_X |f(x)|^2 \, \mu_{u_k}(dx) = \int_{A_k} |f(x)|^2 \, \mu_{u_k}(dx) \le k^2 \mu_u(A_k) < \infty$$

が成り立ち $u_k \in \mathcal{D}(T_f)$ が従い, (4.19) より主張を得る.

定理 4.4.11 (T_f の定義域は 0 ではない). 任意の $f \in MF$ に対し $\mathcal{D}(T_f) \neq \{0\}$ が成り立つ.

証明. Hausdorff 位相空間において一点集合は閉だから, $\mathcal{D}(T_f)$ = $\{0\}$ なら H = $\{0\}$ が従い本章の仮定に反する.

定理 4.4.12 (T の性質). $f,g \in MF$ とする.

- (1) T_f は H から H への線型作用素である.
- (2) $u \in \mathcal{D}(T_f), v \in \mathcal{D}(T_g)$ ならば次が成り立つ:

$$\int_X \left| f(x) \overline{g(x)} \right| \ |\mu_{u,v}|(dx) \leq \|f\|_{\mathrm{L}^2(\mu_u)} \, \|g\|_{\mathrm{L}^2(\mu_v)} \,, \quad \int_X f(x) \overline{g(x)} \, \mu_{u,v}(dx) = \left\langle T_f u, T_g v \right\rangle.$$

- (3) $T_f + T_g \subset T_{f+g}$ が成り立ち、特に g が有界なら等号が成立する.
- (4) $T_f T_g \subset T_{fg}$ が成り立ち、特に g が有界なら等号が成立する.
- (5) $T_f^* = T_{\overline{f}}$ が成り立つ. 特に T_f は閉作用素であり、また f が $\mathbb R$ 値なら T_f は自己共役である.
- (6) $\lambda \in \mathbb{C}$ が $\lambda \neq 0$ なら $T_{\lambda f} = \lambda T_f$ が成り立つ.

証明.

(1) 補題 4.4.10 より T_f の定義域は線形空間であるから,後は T_f が線型演算を満たすことを示せばよい. f の MSF-近似列 $(f_n)_{n=1}^\infty$ を取れば,定義式 (4.16) より T_{f_n} は線型作用素であるから

$$\left\| T_{f}(\alpha u + \beta v) - \alpha T_{f}u - \beta T_{f}v \right\| \leq \left\| T_{f}(\alpha u + \beta v) - T_{f_{n}}(\alpha u + \beta v) \right\| + |\alpha| \left\| T_{f}u - T_{f_{n}}u \right\| + |\beta| \left\| T_{f}v - T_{f_{n}}v \right\|$$

$$\longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つ.

(2) $f,g \in MSF$ のとき、任意の $u,v \in H$ に対して

$$\int_{X} \left| f(x)\overline{g(x)} \right| \, \left| \mu_{u,v} \right| (dx) \le \left\| f \right\|_{\mathsf{L}^{2}(\mu_{u})} \left\| g \right\|_{\mathsf{L}^{2}(\mu_{v})}, \quad \left\langle T_{f}u, T_{g}v \right\rangle = \int_{X} f(x)\overline{g(x)} \, \mu_{u,v}(dx)$$

が成り立つ. 第二式は補題 (4.4.8) による. 第一式について,

$$f = \sum_{i=1}^{n} \alpha_i \mathbb{I}_{A_i}, \quad g = \sum_{i=1}^{n} \beta_i \mathbb{I}_{A_i}$$

と表示されているとして

$$\int_{X} \left| f(x) \overline{g(x)} \right| \ |\mu_{u,v}|(dx) = \sum_{i=1}^{n} |\alpha_{i}| |\beta_{i}| |\mu_{u,v}|(A_{i}) \le \sum_{i=1}^{n} |\alpha_{i}| |\beta_{i}| |\mu_{u}(A_{i})^{\frac{1}{2}} \mu_{v}(A_{i})^{\frac{1}{2}} \le \left(\int_{X} |f(x)|^{2} \ \mu_{u}(dx) \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} \ \mu_{v}(dx) \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} \ \mu_{v}(dx)$$

が成り立つ. 一般の $f,g \in MF$ については、MSF-近似列と Fatou の補題より従う.

(3) $\mathcal{D}(T_f + T_g) = \mathcal{D}(T_f) \cap \mathcal{D}(T_g)$ であるから、任意の $u \in \mathcal{D}(T_f + T_g)$ に対して

$$\int_X |f(x)|^2 \,\mu_u(dx) < \infty, \quad \int_X |g(x)|^2 \,\mu_u(dx) < \infty$$

が満たされ

$$\int_{X} |f(x) + g(x)|^{2} \mu_{u}(dx) \le 2 \int_{X} |f(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |g(x)|^{2} \mu_{u}(dx) < \infty$$

が従い $u \in \mathcal{D}(T_{f+g})$ が成り立つ. また任意の $u \in \mathcal{D}(T_f + T_g)$ に対して、内積を展開し (2) の結果を適用すれば

$$\|T_{f+g}u - T_{f}u - T_{g}u\|^{2} = \int_{X} |f + g|^{2} d\mu_{u} + \int_{X} |f|^{2} d\mu_{u} + \int_{X} |g|^{2} \mu_{u}$$

$$-2 \int_{X} \operatorname{Re}[(f + g)f] d\mu_{u} - 2 \int_{X} \operatorname{Re}[(f + g)g] d\mu_{u} + 2 \int_{X} \operatorname{Re}[fg] d\mu_{u} = 0$$

が成り立ち $T_f+T_g\subset T_{f+g}$ が従う. g が有界な場合、補題 4.4.3 より全ての $u\in H$ に対して μ_u が有限測度であるから、 $\mathcal{D}(T_g)$ は H に一致し $\mathcal{D}(T_f+T_g)=\mathcal{D}(T_f)$ が成り立つ. また任意の $u\in \mathcal{D}(T_{f+g})$ に対して

$$\int_{X} |f(x)|^{2} \mu_{u}(dx) \leq 2 \int_{X} |f(x) + g(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |g(x)|^{2} \mu_{u}(dx) < \infty$$

となり $u \in \mathcal{D}(T_f + T_g)$ が従うから、前半の結果と併せて $T_f + T_g = T_{f+g}$ が得られる.

(4)

(5) 補題 4.4.10 より $\mathcal{D}(T_f)$ が H で稠密であるから T_f^* が定義される. (2) の結果より

$$\langle T_f u, v \rangle = \int_X f(x) \, \mu_{u,v}(dx) = \langle u, T_{\overline{f}} v \rangle \quad (\forall u, v \in \mathcal{D}(T_f) = \mathcal{D}(T_{\overline{f}}))$$
 (4.20)

が成り立ち、先ず $T_{\overline{f}} \subset T_f^*$ が従う. 後は $\mathcal{D}(T_f^*) = \mathcal{D}(T_{\overline{f}})$ が成り立つことを示せばよい.

$$A_k := \{ x \in X ; |f(x)| \le k \} (k = 1, 2, \cdots)$$

とおいて、任意に $v \in \mathcal{D}(T_f^*)$ を取り

$$v_k := T_{\overline{f}} \mathbf{1}_{A_k} v \quad (k = 1, 2, \cdots)$$

とすれば、各 $k \in \mathbb{N}$ について

$$\|T_f v_k\| = \|T_f T_{\overline{f}}\|_{A_k} v\|^2 = \int_{A_k} |f(x)|^4 \mu_v(dx) < k^4 \mu_v(A_k) < \infty$$

が成り立つから $v_k \in \mathcal{D}(T_f)$ である. (4.20) と同様にすれば

$$\| v_k \|^2 = \left\langle T_{\overline{f} \, 1\!\!1_{A_k}} v, T_{\overline{f} \, 1\!\!1_{A_k}} v \right\rangle = \left\langle T_{f \, 1\!\!1_{A_k}} T_{\overline{f} \, 1\!\!1_{A_k}} v, v \right\rangle = \left\langle T_f v_k, v \right\rangle = \left\langle v_k, T_f^* v \right\rangle$$

となり、Schwartz の不等式より

$$\|v_k\| \le \|T_f^*v\| \tag{4.21}$$

が得られる. 一方で

$$\|v_k\|^2 = \|T_{\overline{f}}\|_{A_k} v\|^2 = \int_{A_k} |f(x)|^2 \mu_v(dx)$$

が成り立つから、(4.21) と併せて

$$\int_{A} |f(x)|^2 \, \mu_{\nu}(dx) \le \left\| T_f^* v \right\|^2$$

が従う. $(A_k)_{k=1}^\infty$ は単調増大列で $\cup_{k=1}^\infty A_k = X$ を満たすから,単調収束定理より

$$\int_{Y} |f(x)|^2 \, \mu_{\nu}(dx) \le \left\| T_f^* v \right\|^2$$

となり $v \in \mathcal{D}(T_f)$ が得られる. 特に $T_f = T_{\overline{f}}^*$ が従い、共役作用素が閉線型であるから T_f も閉作用素である.

(6) $\lambda=0$ の場合は, $\mathcal{D}(T_{\lambda f})=\mathcal{D}(T_0)=H$ であるが $\mathcal{D}(T_f)=H$ とは限らないから主張が従わない. $\lambda\neq0$ の場合

$$\int_{X} |\lambda f(x)|^{2} \, \mu_{u}(dx) < \infty \quad \Leftrightarrow \quad \int_{X} |f(x)|^{2} \, \mu_{u}(dx) < \infty$$

が成り立つから $\mathcal{D}(T_{\lambda f})=\mathcal{D}(T_f)=\mathcal{D}(\lambda T_f)$ である.また f の MSF-近似列 $(f_n)_{n=1}^\infty$ については補題 4.4.8 より

$$T_{\lambda f_n}u = \lambda T_{f_n}u \quad (u \in \mathcal{D}(T_{\lambda f}))$$

が満たされているから、任意の $u \in \mathcal{D}(T_{\lambda f})$ に対して

$$\left\| T_{\lambda f} u - \lambda T_{f} u \right\| \leq \left\| T_{\lambda f} u - T_{\lambda f_{n}} u \right\| + |\lambda| \left\| T_{f} u - T_{f_{n}} u \right\| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う.

系 4.4.13. $f,g \in MF$ とする.

- (1) $T_f = T_g$ であることと $E(\{x \in X; f(x) \neq g(x)\}) = 0$ (零写像) であることは同値である.
- (2) f が有界ならば $T_f \in \mathbf{B}(H)$ であり $\|T_f\|_{\mathbf{B}(H)} \le \sup_{x \in X} |f(x)|$ が成り立つ.
- (3) 或る L > 0 に対し $E(\{x \in X; |f(x)| > L\}) = 0$ が成り立つとき、 $T_f \in B(H)$ であり次が成り立つ:

$$||T_f||_{B(H)} = \inf\{L > 0 ; E(\{x \in X ; |f(x)| > L\}) = 0\}.$$

(4) $\lambda \in \mathbb{C}, \epsilon > 0$ に対し $U_{\epsilon}(\lambda) \coloneqq \{z \in \mathbb{C} ; |z - \lambda| < \epsilon \}$ とおく. T_f のレゾルベント集合*¹¹は

$$\rho(T_f) = \left\{ \lambda \in \mathbb{C} ; \quad 或る \epsilon > 0 \text{ が存在して } E\left(f^{-1}(U_{\epsilon}(\lambda))\right) = 0 \text{ を満たす.} \right\}$$

で与えられ, さらに $\lambda \in \rho(T_f)$ に対して $\epsilon > 0$ が $E\left(f^{-1}(U_{\epsilon}(\lambda))\right) = 0$ を満たすとすれば

$$\left(\lambda I - T_f\right)^{-1} = T_{\frac{1}{\lambda - f}} \mathbf{1}_{X \setminus f^{-1}(U_f(\lambda))}$$

が成り立つ.

証明.

(1) $今 N \coloneqq \{x \in X; f(x) \neq g(x)\}$ とおく、 $T_f = T_g$ が成り立っているとすると、 $u \in \mathcal{D}(T_f)$ に対し

$$0 = \|T_f u - T_g u\|^2 = \|T_{f-g} u\|^2 = \int_X |f(x) - g(x)|^2 \mu_u(dx)$$
 (4.22)

が従い $\mu_u(N) = \|E(N)u\|^2 = 0$ となる。 $\mathcal{D}(T_f)$ の稠密性と直交射影 E(N) の連続性より E(N) = 0 を得る。逆に E(N) = 0 の場合,任意の $u \in \mathcal{D}(T_f)$ に対して $\mu_u(N) = \|E(N)u\|^2 = 0$ が成り立つから

$$\int_{X} |g(x)|^{2} \mu_{u}(dx) \leq 2 \int_{X} |f(x) - g(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |f(x)|^{2} \mu_{u}(dx) = 2 \int_{X} |f(x)|^{2} \mu_{u}(dx) < \infty$$

となり、(4.22) と併せて $T_f \subset T_g$ が従う。 同様に $T_g \subset T_f$ も成り立つから $T_f = T_g$ を得る。

 $^{^{*11}}$ 定理 4.4.12 より T_f は閉作用素であるからレゾルベントを考察できる.

(3) $E(\{x \in X; |f(x)| > L\}) = 0$ を満たす L > 0 に対し

$$A_L := \{ x \in X ; |f(x)| \le L \}$$

とおけば、任意の $u \in H$ に対し

$$\mu_u(\Lambda) = \langle E(\Lambda)u, u \rangle = \langle E(\Lambda \cap A_L)u, u \rangle = \mu_u(\Lambda \cap A_L)$$

が成り立つから μ_u は A_L に集中している。 従って定理 4.4.12(2) と μ_u の定義 (4.13) より

$$\left\|\,T_f u\,\right\|^2 = \int_X |f(x)|^2\,\mu_u(dx) = \int_{A_L} |f(x)|^2\,\mu_u(dx) \le L^2 \mu_u(X) = L^2 \,\|\,u\,\|^2 < \infty$$

となるから、 $\mathcal{D}(T_f) = H$ 且つ $\|T_f\|_{\mathbf{B}(H)} \le L$ を得る. これにより $T_f \in \mathbf{B}(H)$ と

$$||T_f||_{B(H)} \le \inf\{L > 0 ; E(\{x \in X ; |f(x)| > L\}) = 0\}$$

が成り立つ.ここで $\|T_f\|_{\mathbf{B}(H)} < \inf\{L>0 \; ; \quad E(\{x\in X\; ; \quad |f(x)|>L\})=0\}$ が成り立つとすると (4) $\lambda\in\mathbb{C}$ を固定する.任意の $\epsilon>0$ に対し $V_\epsilon:=f^{-1}(U_\epsilon(\lambda))$ とおけば f の可測性から $V_\epsilon\in M$ であり,また

$$x \in V_{\epsilon} \quad \Leftrightarrow \quad |\lambda - f(x)| < \epsilon$$

が成り立つから、 $X \setminus V_{\epsilon}$ 上で $1/(\lambda - f) \le 1/\epsilon$ が満たされる.

第一段 $E(V_{\epsilon}) = 0$ を満たす ϵ が存在しない場合,

系 4.4.14. $(X, \mathcal{M}) = (\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$ の場合,

$$\operatorname{supp} E \coloneqq \left\{ x \in \mathbb{R}^d ; \quad x \text{ の任意の開近傍 } V \text{ に対して } E(V) = 0 \text{ が成り立つ.} \right\}$$

として E の台を定める. このとき任意の連続写像 $f: \mathbb{R}^d \to \mathbb{C}$ について

$$\sigma(T_f) = \overline{f(\operatorname{supp} E)}$$

が成り立つ. 特に $\operatorname{supp} E$ がコンパクトなら $\sigma(T_f) = f(\operatorname{supp} E)$ となる.

証明. 任意に $x \in \operatorname{supp} E$ を取る. f(x) の任意の ϵ 近傍 $U_{\epsilon} = U_{\epsilon}(f(x))$ に対し,f の連続性から $f^{-1}(U_{\epsilon})$ は x の開近傍となるから, $E(f^{-1}(U_{\epsilon})) = 0$ が成り立ち $f(x) \in \sigma(T_f)$ が従う。 $\sigma(T_f)$ は閉集合であるから $\overline{f(\operatorname{supp} E)} \subset \sigma(T_f)$ を得る.逆に任意に $\lambda \in \overline{f(\operatorname{supp} E)}$ を取れば,或る $\epsilon > 0$ が存在して $U_{\epsilon}(\lambda) \cap \overline{f(\operatorname{supp} E)} = \emptyset$ を満たすから $f^{-1}(U_{\epsilon}(\lambda)) \cap \operatorname{supp} E = \emptyset$ が成り立つ。 $f^{-1}(U_{\epsilon}(\lambda))$ に属する \mathbb{R}^d の有理点全体を \mathbb{Q}_f と表せば,各 $r \in \mathbb{Q}_f$ に対し或る開近傍 V_r が存在して $E(V_r) = 0$ を満たすから $E\left(V_r \cap f^{-1}(U_{\epsilon}(\lambda))\right) = 0$ ($\forall r \in \mathbb{Q}_f$) が従う。 \mathbb{Q}_f は可付番だから添数を変えれば

$$f^{-1}(U_{\epsilon}(\lambda)) = \bigcup_{n \in \mathbb{N}} V_n \cap f^{-1}(U_{\epsilon}(\lambda))$$

と表されるから、任意の $u \in H$ に対し

$$E\left(f^{-1}(U_{\epsilon}(\lambda))\right)u = \lim_{N \to \infty} E\left(\bigcup_{n=1}^{N} V_n \cap f^{-1}(U_{\epsilon}(\lambda))\right)u = 0$$

が成り立ち $\lambda \in \rho(E)$ となる.

定理 4.4.15.

付録A

弱収束

A.1 ノルム空間における弱収束

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. ノルム空間 X のノルムを $\|\cdot\|_X$ と表記し、また $J_X:X\to X^{**}$ を自然な等長単射とする.

定義 A.1.1 (弱収束). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとは

$$\lim_{n \to \infty} f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことを言い、w- $\lim_{n\to\infty} x_n = x$ と表記する.

定義 A.1.2 (汎弱収束). X を \mathbb{K} 上のノルム空間とする. X^* の列 $(f_n)_{n=1}^\infty$ が $f \in X^*$ に汎弱収束するとは

$$\lim_{x \to \infty} f_n(x) = f(x) \quad (\forall x \in X)$$

が成り立つことを言い、*w- $\lim_{n\to\infty} f_n = f$ と表記する.

定理 A.1.3 (弱収束及び汎弱収束極限の一意性). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $u,v\in X$ に弱収束するなら u=v が従い, X^* の列 $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するなら f=g が従う.

証明. $(x_n)_{n=1}^{\infty}$ が $u,v \in X$ に弱収束するとき,任意の $f \in X^*$ に対して

$$|f(u) - f(v)| \le |f(u) - f(x_n)| + |f(x_n) - f(v)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち、Hahn-Banach の定理の系より u=v が従う.また $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するとき,任意の $x\in X$ に対して

$$|f(x) - g(x)| \le |f(x) - f_n(x)| + |f_n(x) - g(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち f = g が従う.

定理 A.1.4 (弱収束と自然な等長単射の関係). X を \mathbb{K} 上のノルム空間とする. $x_n \in X$ $(n=1,2,\cdots)$ が $x \in X$ に弱収束することと $J_X x_n \in X^{**}$ $(n=1,2,\cdots)$ が $J_X x \in X^{**}$ に汎弱収束することは同値である.

付録 A 弱収束 51

証明. 自然な等長単射の定義より任意の $f \in X^*$ について $f(x_n) = J_X x_n(f)$ であるから,

$$\lim_{n \to \infty} f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことと

$$\lim_{n \to \infty} J_X x_n(f) = J_X x(f) \quad (\forall f \in X^*)$$

が成り立つことは同じである.

定理 A.1.5 (汎弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X^* の列 $(f_n)_{n=1}^\infty$ が各点 $x \in X$ で Cauchy 列をなすとき, $(f_n)_{n=1}^\infty$ は有界となりさらに汎弱収束極限 $f \in X^*$ が存在して次が成り立つ *1 :

$$||f||_{X^*} \leq \liminf_{n\to\infty} ||f_n||_{X^*}.$$

証明. 任意の $x \in X$ に対して $(f_n(x))_{n=1}^\infty$ は有界であるから、一様有界性の原理より $(\|f_n\|_{X^*})_{n=1}^\infty$ が有界となる. また

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (\forall x \in X)$$
 (A.1)

として $f: X \to \mathbb{K}$ を定めれば、f は X^* に属する:

線型性 任意に $x, x_1, x_2 \in X$ と $\alpha \in \mathbb{K}$ を取れば

$$|f(x_1 + x_2) - f(x_1) - f(x_2)| \le |f(x_1 + x_2) - f_n(x_1 + x_2)| + |f(x_1) - f_n(x_1)| + |f(x_2) - f_n(x_2)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

$$|f(\alpha x) - \alpha f(x)| \le |f(\alpha x) - f_n(\alpha x)| + |\alpha| |f(x) - f_n(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つ.

有界性 絶対値の連続性より

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le \liminf_{n \to \infty} ||f_n||_{X^*} ||x||_X$$

が成り立ち、特に $||x||_X = 1$ として

$$\sup_{\|x\|_{X}=1} |f(x)| \le \liminf_{n \to \infty} \|f_n\|_{X^*} < \infty$$

が従う.

f が f_n の汎弱収束極限であることは (A.1) より従う.

$$\inf_{v \ge n} \|f_n\|_{X^*} \le \sup_{n \in \mathbb{N}} \|f_n\|_{X^*} = M$$

が成り立つから

$$\liminf_{n\to\infty} \|f_n\|_{X^*} \leq M$$

が従う.

 $^{^{*1}}$ 右辺は有限確定する.実際 $(f_n)_{n=1}^\infty$ が有界であるとして $M:=\sup_{n\in\mathbb{N}}\|f_n\|_{X^*}$ とおけば,任意の $n\in\mathbb{N}$ に対し

付録 A 弱収束 52

定理 A.1.6 (弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X の列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとき, $(x_n)_{n=1}^\infty$ は有界列であり次が成り立つ:

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X.$$

証明. 定理 A.1.4 より $(J_X x_n)_{n=1}^\infty$ が $J_X x \in X^{**}$ に汎弱収束するから,定理 A.1.5 より $(J_X x_n)_{n=1}^\infty$ は有界列で

$$||J_X x||_{X^{**}} \le \liminf_{n \to \infty} ||J_X x_n||_{X^{**}}$$

が成り立つ. J_X は等長であるから定理の主張が従う.

定理 A.1.7 (反射的 Banach 空間の点列が弱収束するための十分条件). X を \mathbb{K} 上の反射的 Banach 空間として点列 $(x_n)_{n=1}^\infty$ を取る。任意の $f \in X^*$ に対して $(f(x_n))_{n=1}^\infty$ が Cauchy 列となるなら, $(x_n)_{n=1}^\infty$ は或る $x \in X$ に弱収束する.

証明. $f(x_n) = J_X x_n(f)$ であることと定理の仮定より、任意の $f \in X^*$ で $(J_X x_n(f))_{n=1}^\infty$ は $\mathbb K$ の Cauchy 列をなすから、

$$J(f) := \lim_{n \to \infty} J_X x_n(f) \quad (\forall f \in X^*)$$

として $J:X^* \to \mathbb{K}$ を定めれば定理 A.1.5 より $J \in X^{**}$ が成り立つ. X の反射性から J に対し或る $x \in X$ が存在して $J=J_{XX}$ を満たし,定理 A.1.4 より定理の主張を得る.