A Note on the Level Sets of a Matrix Polynomial and Its Numerical Range

Panayiotis J. Psarrakos

Dedicated with admiration to my teacher and friend Peter Lancaster on the occasion of his 70th birthday.

Abstract. Let $P(\lambda)$ be an $n \times n$ matrix polynomial with bounded numerical range W(P) and let n > 2. If Ω is a connected subset of W(P), then the set

$$\bigcup_{\omega \in \Omega} \{ x \in \mathbb{C}^n : x^* P(\omega) x = 0, \ x^* x = 1 \}$$

is also connected. As a consequence, if $P(\lambda)$ is selfadjoint, then every $\omega \in (\overline{W(P)\backslash \mathbb{R}}) \cap \mathbb{R}$ is a multiple root of the equation $x_{\omega}^* P(\lambda) x_{\omega} = 0$ for some unit $x_{\omega} \in \mathbb{C}^n$.

1. Introduction

Consider the $n \times n$ matrix polynomial

$$P(\lambda) = A_m \lambda^m + \dots + A_1 \lambda + A_0, \tag{1.1}$$

where A_j (j = 0, 1, ..., m) are $n \times n$ matrices, with $A_m \neq 0$, and λ is a complex variable. If $A_m = I$, then $P(\lambda)$ is called *monic* and if the coefficients A_j (j = 0, 1, ..., m) are Hermitian matrices, then $P(\lambda)$ is called *selfadjoint*.

The numerical range of $P(\lambda)$ is defined by

$$W(P) = \{ \lambda \in \mathbb{C} : x^* P(\lambda) x = 0 \text{ for some nonzero } x \in \mathbb{C}^n \}.$$
 (1.2)

Evidently, W(P) is always closed and it contains the spectrum $\sigma(P) = \{\lambda \in \mathbb{C} : \det P(\lambda) = 0\}$ of $P(\lambda)$. For $P(\lambda) = I\lambda - A$, W(P) coincides with the classical numerical range (field of values) of the matrix A,

$$F(A) = \{x^* A x \in \mathbb{C} : x \in \mathcal{S}\},\$$

where $S = \{x \in \mathbb{C}^n : x^*x = 1\}$ is the unit sphere in \mathbb{C}^n . It is known that W(P) is bounded if and only if $0 \notin F(A_m)$, [2]. Moreover, if W(P) is bounded, then it has no more than m connected components. If W(P) is unbounded, then it may have as many as 2m connected components. The closure and the interior of W(P) are denoted by $\overline{W(P)}$ and IntW(P), respectively.

If n > 2, then for every $\omega \in W(P)$, the corresponding level set

$$\mathcal{L}(\omega) = \{ x \in \mathcal{S} : x^* P(\omega) x = 0 \}$$

is path-connected (see Main Theorem in [4]). In this paper we continue the study of this subject working on connected subsets of W(P). An interesting result on selfadjoint matrix polynomials is also obtained.

2. Connectivity of level sets

Let $P(\lambda)$ be an $n \times n$ matrix polynomial, as in (1.1), and assume that the numerical range W(P) in (1.2) is bounded and n > 2. If we consider a connected subset of W(P), then it follows that the union of the corresponding level sets is also connected.

Theorem 2.1. Let $P(\lambda)$ be an $n \times n$ matrix polynomial with bounded numerical range and n > 2. If Ω is a connected subset of W(P), then the set $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ is a connected subset of S.

Proof. Assume that $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ is not connected. Then there exist two disjoint open sets $\mathcal{A}, \mathcal{B} \subset \mathcal{S}$ such that

$$\mathcal{A} \cap [\cup_{\omega \in \Omega} \mathcal{L}(\omega)] \neq \emptyset, \ \mathcal{B} \cap [\cup_{\omega \in \Omega} \mathcal{L}(\omega)] \neq \emptyset$$

and

$$\cup_{\omega\in\Omega}\mathcal{L}(\omega)\subseteq\mathcal{A}\cup\mathcal{B}.$$

For every $\omega \in \Omega$, the level set $\mathcal{L}(\omega)$ is path-connected and thus,

$$\mathcal{L}(\omega) \subset \mathcal{A}$$
 or $\mathcal{L}(\omega) \subset \mathcal{B}$.

Moreover, consider the sets

$$\Omega_{\mathcal{A}} = \{ \omega \in \Omega : \mathcal{L}(\omega) \subseteq \mathcal{A} \} = \Omega \cap \{ \omega \in W(P) : \mathcal{L}(\omega) \subseteq \mathcal{A} \}$$

and

$$\Omega_{\mathcal{B}} = \{ \omega \in \Omega : \mathcal{L}(\omega) \subseteq \mathcal{B} \} = \Omega \cap \{ \omega \in W(P) : \mathcal{L}(\omega) \subseteq \mathcal{B} \},$$

which are open in the relative topology of Ω . Then it follows that

$$\Omega \cap \Omega_A \neq \emptyset, \ \Omega \cap \Omega_B \neq \emptyset$$

and

$$\Omega = \Omega_A \cup \Omega_B$$
.

Since $A \cap B = \emptyset$, we have that $\Omega_A \cap \Omega_B = \emptyset$ and consequently, Ω is not connected, that is a contradiction.

Assume that Ω is an open subset of W(P). For any $x_0 \in \bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$, there exists an $\omega_0 \in \Omega$ satisfying the equation $x_0^*P(\omega_0)x_0 = 0$. Since Ω is open, there is a real $\varepsilon > 0$ such that the disk $S(\omega_0, \varepsilon)$, with centre ω_0 and radius ε , belongs to Ω . By the continuous dependence of the roots of polynomials on their coefficients, [6], there exists an r > 0 such that for every $x \in S(x_0, r)$, the equation $x^*P(\lambda)x = 0$ has a root in $S(\omega_0, \varepsilon) \subset \Omega$. Thus, $S(x_0, r) \subset \bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ and $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ is an open

subset of S. It is also easy to verify that if Ω is a closed subset of W(P), then $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ is a closed subset of S.

Corollary 2.2. Suppose that $P(\lambda)$ is an $n \times n$ matrix polynomial with bounded numerical range and n > 2. If Ω is an open path-connected subset of W(P), then the set $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ is an open path-connected subset of \mathcal{S} .

Proof. Since the sets $\bigcup_{\omega \in \Omega} \mathcal{L}(\omega)$ and Ω are both open (see the discussion above), the notions of connectivity and path-connectivity are equivalent (see Corollary 26.7 in [7]).

Proposition 2.3. Let $u(t): [0,1] \to \mathbb{C}$ be a continuous rectifiable curve in the interior of W(P) and let δ be any positive real number. Then there exist a continuous vector-curve $y_{\delta}(t): [0,1] \to \mathcal{S}$ and a continuous curve $u_{\delta}(t): [0,1] \to \operatorname{Int}W(P)$ such that $u(0) = u_{\delta}(0)$, $u(1) = u_{\delta}(1)$ and for every $s \in [0,1]$,

$$y_{\delta}(s)^* P(u_{\delta}(s)) y_{\delta}(s) = 0$$
 and $\min\{|u_{\delta}(s) - u(t)| : t \in [0, 1]\} < \delta$.

Proof. Let $\Gamma \subset \text{Int}W(P)$ be the image of u(t). For any $\varepsilon > 0$, there exists a finite number of points $\omega_1, \omega_2, \ldots, \omega_k \in \Gamma$ such that

$$\Omega_{arepsilon} = \bigcup_{j=1}^k \mathrm{Int} S(\omega_j, arepsilon)$$

is an open covering of Γ . The set Ω_{ε} is path-connected, and for ε sufficiently small, Ω_{ε} lies in the interior of W(P). Moreover, by Corollary 2.2, the set $\bigcup_{\omega \in \Omega_{\varepsilon}} \mathcal{L}(\omega)$ is also path-connected. Hence, there is a vector-curve $y_{\varepsilon}(t) : [0,1] \to \bigcup_{\omega \in \Omega_{\varepsilon}} \mathcal{L}(\omega)$ such that $y_{\varepsilon}(0)^* P(u_{\varepsilon}(0)) y_{\varepsilon}(0) = y_{\varepsilon}(1)^* P(u_{\varepsilon}(1)) y_{\varepsilon}(1) = 0$. Thus, by the continuous dependence of the roots of the equation $y_{\varepsilon}(t)^* P(\lambda) y_{\varepsilon}(t) = 0$ on $t \in [0,1]$, the proof is complete. \square

3. Selfadjoint matrix polynomials

Let $P(\lambda) = A_m \lambda^m + \cdots + A_1 \lambda + A_0$ be an $n \times n$ selfadjoint matrix polynomial. It is easy to see that the numerical range W(P) is symmetric with respect to the real axis. As a consequence, the points of $(\overline{W(P)} \setminus \mathbb{R}) \cap \mathbb{R}$ are of particular interest (see [1] and [5]). The results of the previous section yield a generalization of Proposition 4 in [1] and Theorem 3.1 in [5].

Theorem 3.1. Let $P(\lambda) = A_m \lambda^m + \cdots + A_1 \lambda + A_0$ be an $n \times n$ selfadjoint matrix polynomial with bounded numerical range W(P) and assume that n > 2. For every $\omega \in (\overline{W(P) \backslash \mathbb{R}}) \cap \mathbb{R}$, there exists a vector $x_\omega \in \mathcal{S}$ such that ω is a multiple root of the equation $x_\omega^* P(\lambda) x_\omega = 0$.

Proof. Suppose that $\omega \in (\overline{W(P)\backslash \mathbb{R}}) \cap \mathbb{R}$.

If ω is an isolated point of $(\overline{W(P)\backslash\mathbb{R}})\cap\mathbb{R}$, then by Theorem 3.1 (and its proof) in [5], there exists a vector $x_{\omega}\in\mathcal{S}$ such that ω is a multiple root of the equation $x_{\omega}^*P(\lambda)x_{\omega}=0$.

If ω is not an isolated point of $(\overline{W(P)\backslash \mathbb{R}})\cap \mathbb{R}$, then consider the set

$$T_0 = \{ \lambda \in W(P) : x^*P(\lambda)x = x^*P'(\lambda)x = 0 \text{ for some } x \in \mathcal{S} \},$$

where $P'(\lambda)$ is the derivative of $P(\lambda)$. Since the sets $(\overline{W(P)}\backslash\mathbb{R})\cap\mathbb{R}$ and T_0 are both closed, it is enough to show that $T_0\cap(\overline{W(P)}\backslash\mathbb{R})\cap\mathbb{R}$ is dense in $(\overline{W(P)}\backslash\mathbb{R})\cap\mathbb{R}$. By the symmetry of W(P) with respect to the real axis, it follows that for every real r>0, $S(\omega,r)\cap \mathrm{Int}W(P)\cap\mathbb{R}\neq\emptyset$. Hence, without lost of generality assume that $\omega\in(\overline{W(P)}\backslash\mathbb{R})\cap\mathbb{R}\cap\mathrm{Int}W(P)$. Then there is a continuous rectifiable curve

$$u(t): [0,1] \to \{\lambda \in W(P): \operatorname{Im}\lambda \geq 0\} \cap \operatorname{Int}W(P)$$

such that $u(1) = \omega$ and $\operatorname{Im} u(t) > 0$ for every $t \in [0,1)$. For any $\delta > 0$, by Proposition 2.3, there exist a continuous vector-curve $y_{\delta}(t) : [0,1] \to \mathcal{S}$ and a continuous curve $u_{\delta}(t) : [0,1] \to \operatorname{Int} W(P)$ such that $u(0) = u_{\delta}(0)$, $u(1) = u_{\delta}(1)$ and for every $s \in [0,1]$,

$$y_{\delta}(s)^*P(u_{\delta}(s))y_{\delta}(s)=0$$

and

$$\min\{|u_{\delta}(s) - u(t)| : t \in [0, 1]\} < \delta.$$

Moreover, there exists a $s_0 \in [0,1]$ such that $u_{\delta}(s_0) \in \mathbb{R}$ and for every $s \in [0,s_0)$, $u_{\delta}(s) \notin \mathbb{R}$. Thus, for every $s \in [0,s_0)$, the polynomial $y_{\delta}(s)^* P(\lambda) y_{\delta}(s)$ is written in the form $y_{\delta}(s)^* P(\lambda) y_{\delta}(s) = (\lambda - u_{\delta}(s))(\lambda - \overline{u_{\delta}(s)}) g_s(\lambda)$, where $g_s(\lambda)$ is a polynomial of (m-2)-th degree and its coefficients are continuous on s. By the continuity of the root $u_{\delta}(s)$ on s, we have

$$\lim_{s \to s_0} u_{\delta}(s) = \lim_{s \to s_0} \overline{u_{\delta}(s)} = \omega_{\delta},$$

where $|\omega - \omega_{\delta}| < \delta$. Hence, the set $T_0 \cap (\overline{W(P) \setminus \mathbb{R}}) \cap \mathbb{R}$ is dense in $(\overline{W(P) \setminus \mathbb{R}}) \cap \mathbb{R}$ and the proof is complete.

Corollary 3.2. Let $P(\lambda)$ be an $n \times n$ (n > 2) selfadjoint matrix polynomial with bounded numerical range W(P) and suppose that for every unit vector $x \in \mathbb{C}^n$, the equation $x^*P(\lambda)x = 0$ has m distinct roots. Then every connected component of W(P) either has no real points or it is a closed real interval.

(The above corollary follows also from [3, Theorem 1] and the symmetry of W(P).)

Corollary 3.3. Suppose that $P(\lambda)$ is an $n \times n$ (n > 2) selfadjoint matrix polynomial with bounded numerical range W(P), and for any $n \times n$ matrix B consider the matrix polynomial $Q_B(\lambda) = P(\lambda) + B$. Then

$$(\overline{W(Q_B)\backslash\mathbb{R}})\cap\mathbb{R}\subset W(P')\cap\mathbb{R}.$$

Note that if $P(\lambda) = A_2\lambda^2 + A_1\lambda + A_0$ is a quadratic selfadjoint matrix polynomial, such that the numerical range of the derivative $P'(\lambda)$ does not coincide with \mathbb{C} , then $W(P') = \{-(x^*A_1x)/(2x^*A_2x) \in \mathbb{C} : x \in \mathbb{C}^n, \text{ with } x^*A_2x \neq 0\} \subseteq \mathbb{R}$. In this case,

$$(\overline{W(P)\backslash \mathbb{R}})\cap \mathbb{R} \subseteq \overline{\operatorname{Re}(W(P)\backslash \mathbb{R})} \subset W(P').$$

References

- [1] Lancaster, P., Psarrakos, P., The numerical range of selfadjoint quadratic matrix polynomials, preprint (2000).
- [2] Li, C.-K., Rodman, L., Numerical range of matrix polynomials, SIAM J. Matrix Anal. Applic. 15 (1994), 1256–1265.
- [3] Lyubich, Y., Separation of roots of matrix and operator polynomials, *Integral Equations and Operator Theory* **29** (1998), 52–62.
- [4] Lyubich, Y., Markus, A.S., Connectivity of level sets of quadratic forms and Hausdorff-Toeplitz type theorems, *Positivity* 1 (1997), 239–254.
- [5] Maroulas, J., Psarrakos, P., A connection between numerical ranges of selfadjoint matrix polynomials, *Linear and Multilinear Algebra* 44 (1998), 327–340.
- [6] Ostrowski, A.M., Solutions of equations in Euclidean and Banach spaces, Academic Press, New York 1973.
- [7] Willard, S., General Topology, Addison-Wesley Publ. Company 1970.

Department of Mathematics and Statistics University of Regina Regina, Saskatchewan, S4S 0A2 CANADA

Email: panos@math.uregina.ca

1991 Mathematics Subject Classification. Primary 15A60; Secondary 47A12 Received May 10, 2000