This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

AGE BLANK (USPTO)

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C07D 211/64, A61K 31/495, C07D
211/52, 211/16, 211/32

(11) Numéro de publication internationale: WO 98/31669

(43) Date de publication internationale: 23 juillet 1998 (23.07.98)

(21) Numéro de la demande internationale: PCT/FR98/00068 (81) Etats désignés: AU, BR, CA, CN, JP, KR, MX, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE,

(22) Date de dépôt international: 15 janvier 1998 (15.01.98) IT, LU, MC, NL, PT, SE).

Publiée

(30) Données relatives à la priorité:

97/00336 15 janvier 1997 (15.01.97) FR Avec rapport de recherche internationale.

(71) Déposant (pour tous les Etats désignés sauf US): PIERRE FABRE MEDICAMENT [FR/FR]; 45, place Abel Gance, F-92100 Boulogne-Billancourt (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): HALAZY, Serge [BE/FR]; 1, place des Barrys, F-81090 Lagarrigue (FR).

LAMOTHE, Marie [FR/FR]; Chemin du Corporal, F-81100 Castres (FR). JORAND-LEBRUN, Catherine [FR/FR]; 10, place de l'Albinque, F-81100 Castres (FR).

(74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(54) Title: NOVEL ARYLPIPERAZINE DERIVED FROM PIPERIDINE AS ANTIDEPRESSANT MEDICINES

(54) Titre: NOUVELLES ARYLPIPERAZINES DERIVEES DE PIPERIDINE COMME MEDICAMENTS ANTIDEPRESSEURS

(57) Abstract

The invention concerns compounds of formula (I) in which in particular, R₁ represents R'₁, OR'₁, SR'₁, NHR'₁, COR'₁, CHOHR'₁, CH₂R'₁, in which R'₁ represents an aryl radical selected among a phenyl, a naphthyl or a pyridyl; R₂ represents a halogen (Cl, F,

$$R_1$$
 $N-Z-Ar-N$
 $N-R_3$ (1)

Br), OH, NH₂, CN, NO₂, R'₂, OR'₂, SR'₂, NHR'₂, COR'₂, CHOHR'₂, COOR'₂, NHCOR'₂, NHCOR'₂, NHSO₂R'₂, OCONHR'₂, in which R'₂ represents an alkyl chain linear or branched, an aryl or an arylalkyl; Z represents CO-(CH₂)_m-O, CO-(CH₂)_m-NH, (CH₂)_m-O, (CH₂)_m-NH, CO-(CH₂)_p-CONH-, (CH₂)_p-CONH-, (CH₂)_p-NHCONH-, (CH₂)_p-NHCONH-, (CH₂)_p-OCONH-, (CH₂)_m-NHCOO, (CH₂)_p-NHCOO, in which n represents zero or a whole number ranging between 1 and 8, m represents a whole number ranging between 2 and 8 and p represents a whole number ranging between 1 and 8; Ar represents an aromatic radical such as a phenyl or a naphthyl; R₃ represents an alkyl radical linear or branched containing 1 to 6 carbon atoms: These compounds are particularly useful as antidepressant drugs.

(57) Abrégé

La présente invention concerne les composés de formule (I) dans laquelle notamment, R₁ représente R'₁, OR'₁, SR'₁, NHR'₁, COR'₁, CHOHR'₁, CH₂R'₁, dans lesquels R'₁ represente un reste aryle choisi parmi un phényle, un naphtyle ou un pyridyle; R₂ représente un halogène (Cl, F, Br), OH, NH₂, CN, NO₂, R'₂, OR'₂, SR'₂, NHR'₂, COR'₂, CHOHR'₂, COOR'₂, NHCOR'₂, NHCOR'₂, NHSO₂R'₂, OCONHR'₂, dans lesquels R'₂ représente une chaîne alkyle linéaire ou ramifiée, un aryle ou un alkylaryle; Z représente CO-(CH₂)_n-O, CO-(CH₂)_n-NH, (CH₂)_m-NH, CO-(CH₂)_p-CONH-, (CH₂)_p-CONH, CO-(CH₂)_p-NHCONH-, (CH₂)_m-NHCONH, -CO(CH₂)_p-NHCONH-, CO(CH₂)_p-NHCOO-, (CH₂)_m-NHCOO, dans lesquels n représente zéro ou un nombre entier compris entre 1 et 8, m représente un nombre entier compris entre 2 et 8 et p représente un nombre entier compris entre 1 et 8; Ar représente un radical aromatique tel qu'un phényle ou un naphtyle; R₃ représente un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone. Ces composés sont notamment utiles comme médicaments antidépresseurs.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgaric	HU	Hongric	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	le.	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	[sraē]	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italic	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Roumanie -		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	น	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

15

20

25

30

35

NOUVELLES ARYLPIPERAZINES DERIVEES DE PIPERIDINE COMME MEDICAMENTS ANTIDEPRESSEURS

La présente invention se rapporte à de nouvelles pipéridines disubstituées dérivées d'aryl pipérazine, ainsi qu'à leur procédé de préparation, les compositions pharmaceutiques les contenant et leur utilisation comme médicaments.

La sérotonine ou 5-hydroxytryptamine (5-HT) est un neurotransmetteur et un neuromodulateur du système nerveux central impliqué dans de nombreux processus physiologiques et pathologiques. La sérotonine joue un rôle important tant au niveau du système nerveux qu'au niveau des systèmes cardiovasculaires et gastrointestinaux. Au niveau central, la sérotonine contrôle des fonctions aussi variées que le sommeil, la locomotion, la prise de nourriture, l'apprentissage et la mémoire, les modulations endocriniennes, le comportement sexuel, la thermorégulation. Dans la moelle, la sérotonine joue un rôle important dans les systèmes de contrôle des afférentes nociceptives périphériques (cf. A. Moulignier, Rev. Neurol. (Paris), 150, 3-15,1994).

La sérotonine peut jouer un rôle important dans divers types de conditions pathologiques tels que certains désordres psychiatriques (anxiété, dépression, agressivité, attaques de panique, désordres compulsifs obsessionnels, schizophrénie, tendance au suicide), certains désordres neurodégénératifs (démence de type Alzheimer, Parkinsonisme, chorée de Huntington), l'anorexie, la boulimie, les troubles liés à l'alcoolisme, les accidents vasculaires cérébraux, la douleur, la migraine ou encore les céphalées diverses (R. Glennon, Neurosci. Biobehavioral Reviews, 14, 35, 1990).

De nombreuses études pharmacologiques récentes ont mis en évidence la diversité des récepteurs de la sérotonine ainsi que leur implication respective dans ses divers modes d'action (cf. E. Zifa, G. Fillion, Pharm Reviews, 44, 401, 1992; S. Langer, N. Brunello, G. Racagni, J. Mendlecvicz, "Serotonin receptor subtypes: pharmacological significance and clinical implications", Karger Ed. (1992); B.E. Leonard, Int. Clin. Psycho-pharmacology, 7, 13-21 (1992); R.W. Fuller, J. Clin. Psychiatry, 53, 36-45 (1992); D.G. Grahame-Smith, Int. Clin. Psychopharmacology, 6, suppl.4, 6-13, (1992). Ces récepteurs sont subdivisés principalement en 4 grandes classes (5HT₁, 5HT₂, 5HT₃ et 5HT₄) qui comportent elles-mêmes des sous-classes telles que pour les récepteurs 5HT₁ qui sont divisés principalement en 5HT₁A, 5HT₁B, 5HT₁D (cf. G.R. Martin, P.A. Humphrey, Neuropharmacol., 33, 261, 1994; P.R. Saxena, Exp. Opin. Invest. Drugs, 3(5), 513, 1994).

Les récepteurs 5HT_{1D} renferment eux-mêmes plusieurs sous-types de récepteurs; c'est ainsi que les récepteurs 5HT_{1Da} et 5HT_{1Db} ont été clonés puis identifiés chez l'homme (cf. par exemple E. Hamel et coll., Mol. Pharmacol., <u>44</u>, 242, 1993; G.W. Rebeck et coll., Proc. Natl. Acad. Sci. USA, <u>91</u>, 3666,1994). Par ailleurs, il a été démontré récemment que les auto-récepteurs 5HT_{1B} chez les rongeurs et 5HT_{1D} chez les autres espèces étaient capables de contrôler la libération de sérotonine dans les terminaisons nerveuses (cf. M. Briley, C. Moret, Cl. Neuropharm. 16, 387, 1993; B.E. Léonard, Int. Clin. Psychopharmacol., 9,7, 1994) ainsi que la libération d'autres neurotransmetteurs tels que la norépinéphrine, la dopamine ou l'acétylcholine (M. Harrigton, J. Clin. Psychiatry, 53, 10, 1992).

Les composés ayant une activité antagoniste sélective au niveau des récepteurs 5HT_{1D/1B} centraux tels que les composés nouveaux décrits dans la présente invention peuvent donc exercer un effet bénéfique sur des sujets souffrant de troubles du système nerveux central. En particulier, de tels composés trouvent leur utilité dans le traitement des troubles de la locomotion, de la dépression, de l'anxiété, des attaques de panique, l'agoraphobie, les désordres compulsifs obsessionnels, les désordres de la mémoire incluant la démence, l'amnésie, et les troubles de l'appétit, les dysfonctionnements sexuels, la maladie d'Alzheimer, la maladie de Parkinson.

20

15

10

Les antagonistes 5HT_{1D/1B} trouvent également leur utilité dans le traitement des désordres endocriniens tels que l'hyperprolactinémie, le traitement des vasospasmes, de l'hypertension et des désordres gastro-intestinaux dans lesquels interviennent des changements au niveau de la motilité et de la sécrétion.

25

30

35

Les composés selon la présente invention sont des antagonistes puissants et sélectifs des récepteurs 5HT_{1D} et 5-HT_{1B} humains et de ce fait trouvent leur utilité, seuls ou en association avec d'autres molécules, comme médicaments et plus particulièrement comme moyens thérapeutiques pour le traitement tant curatif que préventif de désordres liés à la sérotonine.

L'état antérieur de la technique dans ce domaine est illustré notamment par les brevets EP-0533266, EP-0533267 et EP-0533268, GB-2273930, WO-9415920, GB-2276160, GB-2276161, GB-2276162, GB-2276163, GB-2276164, GB-2276165, WO-9504729, WO-9506044, WO-9506637, WO-9511243 et F 9408981 qui décrivent des dérivés aromatiques comme antagonistes 5HT_{1D} et les publications récentes qui décrivent le GR127,935 comme un antagoniste 5HT_{1D} (cf. M. Skingle

et coll., J. of Psychopharm. <u>8</u>(1), 14, 1994; S. Starkey, M. Skingle, Neuropharmacol., <u>33</u>, 393, 1994).

Les dérivés de la présente invention se distinguent de l'art anterieur non seulement par leur structure chimique qui les différencie sans ambiguité des dérivés précédemment décrits mais également par leur profil biologique original, en particulier en ce qui concerne leur sélectivité pour les sous-types de récepteurs de la sérotonine et en ce qui concerne leur activité antagoniste en particulier au niveau des récepteurs connus sous le nom de 5-HT_{1Db} ou 5-HT_{1B} humains.

10

15

5

La présente invention concerne des dérivés de formule générale (I)

$$R_1$$
 $N-Z-Ar-N$
 $N-R_2$

(I)

dans laquelle,

20

R₁ représente R'₁, OR'₁, SR'₁, NHR'₁, COR'₁, CHOHR'₁, CH₂R'₁, dans lesquels R'₁ représente un reste aryle choisi parmi un phényle, un naphtyle ou un pyridyle pouvant éventuellement être substitués par un ou plusieurs groupes choisis parmi un alkyle linéaire ou ramifié comprenant de 1 à 5 atomes de carbone, un halogène (Cl, F, Br ou I), OH, OR₄, SR₄, CF₃, CH₂CF₃, NO₂, CN, COR₄, COOR₄, NHR₄, NHCOR₄, NHCOOR₄, NHSO₂R₄, SO₂R₄ dans lesquels R₄ représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone;

30

35

25

R₂ représente un halogène (Cl, F, Br), OH, NH₂, CN, NO₂, R'₂, OR'₂, SR'₂, NHR'₂, COR'₂, CHOHR'₂, COOR'₂, NHCOR'₂, NHCOOR'₂, NHCOOR'₂, NHSO₂R'₂, OCONHR'₂, dans lesquels R'₂ représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone, un aryl ou un alkylaryl dans lesquels le reste aryle est choisi parmi un phényle, un naphtyle ou un pyridyle pouvant éventuellement être substitués par un ou plusieurs groupes choisis parmi un alkyle linéaire ou ramifié comprenant de 1 à 5 atomes de carbone, un halogène (Cl, F, Br ou I), OH, OR'₄, SR'₄, CF₃, CH₂CF₃, NO₂, CN, COR'₄, COOR'₄, NHR'₄, NHCOR'₄, NHCOOR'₄,

NHSO₂R'₄, SO₂R'₄ dans lesquels R'₄ représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone, étant entendu que lorsque R₁ représente OR'₁, SR'₁ ou NHR'₁ alors R₂ représente obligatoirement R'₂, COOR'₂, COR'₂ ou CHOHR'₂;

5

10

15

Z représente CO-(CH₂)_n-O, CO-(CH₂)_n-NH, (CH₂)_m-O, (CH₂)_m-NH, CO-(CH₂)_p-CONH-, (CH₂)_p-CONH, CO-(CH₂)_p-NHCONH-, (CH₂)_m-NHCONH, -CO(CH₂)_p-NHCOO-, (CH₂)_m-NHCOO, dans lesquels n représente zéro ou un nombre entier compris entre 1 et 8, m représente un nombre entier compris entre 2 et 8 et p représente un nombre entier compris entre 1 et 8; Ar représente un radical aromatique tel qu'un phényle ou un naphtyle auquel Z et la pipérazine sont attachés sur des carbones différents et pouvant lui-même être diversement substitué par un ou plusieurs substituants choisis parmi un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, un alkoxy (OR₅ dans lequel R₅ représente un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone), ou un halogène (Cl, Br, F ou I);

R₃ représente un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone,

20 -

et leurs sels hydrates, solvates et bioprécurseurs physiologiquement acceptables pour l'usage thérapeutique.

Les isomères géométriques et optiques des composés de formule générale (I) font 25 également partie de la présente invention ainsi que leur mélange sous forme racémique.

Parmi les sels physiologiquement acceptables des composés de formule générale (I) sont inclus les sels obtenus par addition d'acides organiques ou inorganiques tels que les chlorohydrates, bromhydrates, sulfates, phosphates, benzoates, acétates, naphtoates, p-toluènesulfonates, méthanesulfonates, sulphamates, ascorbates, tartrates, citrates, oxalates, maléates, salicylates, fumarates, succinates, lactates, glutarates, glutaconates.

35

30

L'expression "bioprécurseurs" telle qu'elle est utilisée dans la présente invention s'applique à des composés dont la structure diffère de celle des composés de formule (I) mais qui, administrés à un animal ou à un être humain sont convertis dans l'organisme en un composé de formule (I).

Une classe particulièrement appréciée de composés de formule (I) correspond aux composés de formule (Ia)

$$R_1$$
 R_2
 $N-Z$
 R'_5
(Ia)

10

5

dans laquelle R_1 , R_2 et Z sont définis comme précédemment et R'_5 représente préférentiellement H, R_5 , OR_5 ou Cl dans lesquels R_5 est défini comme précédemment.

Une autre classe également particulièrement appréciée de composés de formule (I) correspond aux composés de formule (Ib)

$$\begin{array}{c} R_1 \\ R_2 \end{array} N-Z$$

25

(Ib)

dans laquelle R₁, R₂ et Z sont définis comme précédemment.

Les composés de formule générale (I) faisant partie de la présente invention sont préparés par une méthode générale qui consiste à condenser une pipéridine de formule générale (II)

(II)

35

30

20

25

30

35

dans laquelle R₁ et R₂ sont définis comme dans la formule (I), avec un électrophile de formule générale (III)

$$Z'-Ar-N N-R_3$$
(III)

dans laquelle Ar et R₃ sont définis comme précèdemment alors que Z' représente un reste précurseur de Z tel que défini dans la formule (I). Le choix des techniques, méthodes, conditions expérimentales, réactifs à mettre en oeuvre pour la préparation des produits de formule générale (I) par condensation des amines de formule (II) avec des électrophiles de formule (III), ainsi que le choix de Z' vont dépendre essentiellement de la nature de Z dans la définition de la formule (I).

C'est ainsi que lorsque Z représente CO(CH₂)_nO, CO(CH₂)_nNH, CO(CH₂)_pCONH, CO(CH₂)_pNHCONH, CO(CH₂)_pOCONH ou CO(CH₂)_pNHCOO (dans lesquels n est différent de 0), les composés de formule (I) sont préparés par formation d'un amide par condensation d'une amine de formule (II) avec un dérivé d'acide carboxylique de formule (III) dans laquelle Z' représente respectivement, LCO(CH₂)_nO, LCO(CH₂)_nNH, LCO(CH₂)_pCONH, LCO(CH₂)_pNHCONH, LCO(CH₂)_pOCONH ou LCO(CH₂)_pNHCOO, dans lesquels n et p sont des nombres entiers compris entre 1 et 8, et L représente OH, Cl, ou encore le groupe "LCO" représente une forme activée d'un acide carboxylique propice à la formation d'un amide par condensation avec une amine.

Cette condensation sera réalisée par les méthodes et techniques bien connues de l'homme de l'art pour préparer un amide à partir d'une amine et d'un dérivé d'acide carboxylique. Le choix des méthodes parmi les très nombreuses préalablement décrites sera orienté par la nature des réactifs (II) et (III) en présence.

C'est ainsi, que, à titre d'exemple, cette réaction peut être réalisée par condensation d'une amine de formule (II) avec un dérivé d'acide carboxylique de formule (III) dans laquelle L (qui entre dans la définition de Z') représente un chlore, en présence d'une base organique ou inorganique telle que la pyridine, la DIPEA, la 4-DMAP, le DBU, K₂CO₃, Cs₂CO₃ dans un solvant anhydre aprotique polaire tel que le THF, la DME, le dichlorométhane à une température comprise entre - 20°C et 40°C.

10

15

20

25

30

Une autre méthode particulièrement appréciée de préparation des composés de formule (I) dans laquelle la liaison N-Z représente un amide où Z est défini tel que cidessus, consiste à condenser une amine de formule générale (II) avec un acide carboxylique de formule (III) dans laquelle Z' est défini comme précédemment (étant entendu que L représente OH) en mettant en oeuvre des réactifs bien connus pour ce type de condensation tels que par exemple DCC, EDCI, PyBOP, HOBT, dans un solvant anhydre polaire tel que le THF, le dichlorométhane, la DME, le dichloroéthane, en présence d'une base en quantités stoechiométriques telle que par exemple la triéthylamine éventuellement en présence d'une base en quantités catalytiques telle que par exemple la 4-DMAP.

Les dérivés de formule générale (I) dans laquelle Z représente (CH₂)_mO, (CH₂)_mNH, (CH₂)_pCONH, (CH₂)_mNHCONH, (CH₂)_mOCONH ou (CH₂)_mNHCOO sont préparés par condensation d'une amine de formule générale (II) avec un électrophile de formule générale (III) dans laquelle Z' représente X-Z dans laquelle X représente un groupe partant tel qu'un halogène (chlore, brome ou iode), un O-tosyle, un O-mésyle ou un O-trifluorométhanesulfonyle.

Cette réaction de substitution nucléophile est réalisée par les méthodes et techniques bien connues de l'homme de l'art pour réaliser ce type de transformation mettant en oeuvre une amine cyclique comme nucléophile. Par exemple, cette réaction peut être réalisée en présence d'une base organique ou inorganique telle que NaH, t-BuOK, une amine tertiaire (Et₃N, DiPEA, DBU ou 4-DMAP), K₂CO₃, Cs₂CO₃, dans un solvant aprotique polaire tel que le THF, le DME, le DMF ou le DMSO, à une température comprise entre 0°C et 80°C en présence ou non de catalyseur tel que NaI, KI ou Bu₄NI.

Dans le cas particulier des composés de formule générale (I) dans laquelle Z représente CONH ou CO₂, une méthode de préparation particulièrement appréciée consiste à condenser une amine de formule générale (II) définie comme précédemment et un dérivé de pipérazine aromatique de formule générale (IV)

$$HY-Ar-N N-R_3$$
(IV)

dans laquelle R₃ et Ar sont définis comme dans la formule générale (I) alors que Y représente O ou NH, avec un électrophile de formule générale (V)

$$X_1$$
 X_2

5

10

15

20

25

30

(V.)

dans laquelle X₁ et X₂, identiques ou différentes, représentent chacun un groupe partant tel qu'un halogène (en particulier le chlore), un groupe O-alkyle (en particulier le groupe OCCl₃), un groupe O-aryle (en particulier les groupes O-pyridyle ou O-phényle substitué par exemple par un reste nitro), un groupe succinimide, phtalimide ou imidazolyle.

Les méthodes et techniques choisies pour la mise en oeuvre de la préparation des composés de formule (I) dans laquelle Z représente CONH ou COO par condensation des pipéridines de formule générale (II) et des dérivés aromatiques de formule générale (IV) avec un électrophile de formule générale (V) telles que le choix de l'ordre de la mise en contact des réactifs, les temps de réaction, l'isolation et/ou la purification des intermédiaires, la température des réactions à différentes étapes de la condensation, la nature du ou des solvants, la présence de co-réactifs (tels qu'une base organique comme par exemple une amine tertiaire telle que la triéthylamine) ou de catalyseurs et le choix du réactif (V) (nature de X₁ et X₂) seront déterminés essentiellement par la nature de (IV) et plus particulièrement par la définition de Y.

C'est ainsi que, une méthode particulièrement appréciée pour la préparation de dérivés de formule (I) dans laquelle Z représente CONH consiste à faire réagir une pipérazine aromatique de formule (IV) dans laquelle Ar et R₃ sont définis comme précédemment et Y représente NH avec du triphosgène, en présence d'une base telle que la triéthylamine dans un solvant anhydre aprotique tel que le dichlorométhane, et ajouter ensuite un composé de formule (II) dans laquelle R₁ et R₂ sont définis comme dans la formule (I).

Dans le cas de la préparation de composés de formule (I) dans laquelle Z représente COO, une méthode plus particulièrement appréciée consiste à condenser tout d'abord

10

15

25

dans un solvant tel que le dichlorométhane et d'isoler l'intermédiaire ainsi formé de formule générale (VI).

$$R_1$$
 R_2
 N
 O
 O

avant de le condenser avec un nucléophile de formule générale (IV) dans laquelle Y représente un oxygène, en présence d'une base organique ou inorganique telle que NaH, KH, tBuOK, dans un solvant aprotique polaire tel que le THF ou le DMF.

Dans le cas particulier des composés de formule générale (I) dans laquelle R₁, R₂, Ar et R₃ sont définis comme précédemment mais Z représente (CH₂)₂-CONH, une méthode de préparation alternative mais particulièrement appréciée consiste à condenser dans un premier temps une amine cyclique de formule générale (II) avec un accepteur de Michaël répondant à la formule (VII)

dans laquelle R représente un reste alkyle tel q'un éthyle, suivi de l'hydrolyse de la fonction ester de l'intermédiaire ainsi formé (par les méthodes bien connues de l'homme de métier pour hydrolyser un ester en acide tel que par exemple l'utilisation de NaOH ou de LiOH) pour conduire à un dérivé d'acide carboxylique de formule générale (VIII).

$$R_1$$
 N
 O
 OH

(VIII)

35

30

La condensation d'une amine aromatique de formule générale (IV) dans laquelle Ar et R₃ sont définis comme précédemment mais Y représente NH avec un dérivé activé de l'acide carboxylique (VIII), selon les méthodes et techniques bien connues de l'homme de métier pour réaliser la synthèse d'une amide par condensation d'un acide carboxylique avec une amine telles que celles qui ont été décrites précédemment conduit aux composés de formule (I) dans laquelle Z représente (CH₂)₂CONH.

Les intermédiaires de synthèse de formule générale (III) sont préparés à partir des pipérazines aromatiques de formule générale (IV) par diverses méthodes et techniques dont le choix dépendra essentiellement de la nature de Z' et qui sont résumées dans le tableau ci-dessous.

10

5

Préparation des intermédiaires de formule (III) par condensation d'une pipérazine de formule (IV) avec un électrophile

Intermédiaire (III)	Réactif (IV)	Electrophile	Conditions de la	Etape
nature de Z'	nature de Y		Condensation	complémentaire
HOOC — (CH ₂) _n — 0	0	$ROOC - (CH_2)_n - L'$	NaH ou Cs ₂ CO ₃ , DMF	¥
HOOC—(CH ₂),—NH	NBOC	$ROOC - (CH_2)_n - L$ (n > 0)	NaH, DMF	A, C
X—(CH ₂) _m —0	0	P-(CH ₂)_m-L'	NaH ou Cs ₂ CO ₃ , DMF	æ
X-(CH ₂)_m-NH	NBOC	P—(CH ₂)——L'	NaH, DMF	B, C
H00С—(СН ₂)—СОИН	HN	$\frac{\partial}{\partial C} \left(\frac{\partial}{\partial C} \right)^{-1} \int_{C}^{C} \frac{\partial}{\partial C} \left(\frac{\partial}{\partial C} \right)^{-1} dC$	EDCI, CH ₂ Cl ₂ , TEA, 4- DMAP (L=OH) CH ₂ Cl ₂ , TEA (anhydride, ou L=Cl)	¥.

X-(CH ₂)CONH	HN	$P-(CH_2)_p \stackrel{O}{\longleftarrow}_L$	EDCI, CH ₂ Cl ₂ , TEA, 4- DMAP (L=OH) CH ₂ Cl ₂ , TEA (L=Cl)	В
H00С-(СН ₂),—NHCONH	HN	$ROOC-(CH_2)_p$ -NH ₂ + X ₁ COX ₂	CH ₂ Cl ₂ , pyridine ou TEA	¥
X – (CH ₂) – NHCONH	HN	$P-(CH_2)_m-NH_2+X_1COX_2$	CH ₂ Cl ₂ , pyridine ou TEA	æ ·
ноос—(сн ₂)—осоин	HN	ROOC-(CH ₂)p-OH + X ₁ COX ₂	CH ₂ Cl ₂ , pyridine ou TEA	A
X-(CH ₂)_m-OCONH	HN	P-(CH ₂)_m-OH + X ₁ COX ₂	CH ₂ Cl ₂ , pyridine ou TEA	В
ноос—(сн ₂)——инсоо	0	$ROOC-(CH_2)_p-NH_2+X_1COX_2$	CH2Cl2, pyridine ou TEA	Ą
X – (CH ₂),—NHC00	0	$P-(CH_2)_m-NH_2+X_1COX_2$	CH ₂ Cl ₂ , pyridine ou TEA	В

15

20

25

30

dans ce tableau, P représente une forme protégée précurseur du groupe partant X alors que p et m sont définis comme dans la formule générale (I) et n est un nombre entier compris entre 1 et 8, X et L' représentent un groupe partant tel qu'un halogène (Cl, Br ou I), un tosylate, un mésylate ou un triflate, L représente OH, Cl ou, le groupe "COL" représente la forme activée d'un acide carboxylique tel que décrit précédemment, X₁, X₂ sont définis comme dans la formule (V) et R représente un reste alkyle (par exemple méthyle, éthyle, t-butyle), aryle ou arylalkyle (par exemple benzyle). L'étape complémentaire "A" symbolise la mise en oeuvre, après le couplage de la pipérazine aromatique (IV) avec l'électrophile, d'une réaction d'hydrolyse de la fonction ester par les méthodes et techniques bien connues de l'homme de métier pour ce type de transformation alors que l'étape complémentaire symbolisée par "B" met en oeuvre la transformation du groupe protecteur P (dans le produit de condensation entre (IV) et l'électrophile) en groupe partant X qui sera réalisée par différentes techniques et méthodes dépendant de la nature de P et de X. C'est ainsi que, lorsque P représente O-benzyl, la condensation de la pipérazine aromatique (IV) avec l'électrophile sera suivie d'une réaction de coupure du groupe benzyle (par exemple par hydrogénation en présence de palladium sur charbon) et d'une réaction de transformation de l'alcool ainsi formé en groupe partant X. Si ce groupe partant est un halogène, cette transformation sera réalisée en utilisant des réactifs et méthodes bien connues pour transformer un alcool en halogène telles que par exemple l'utilisation de SOCl₂, POCl₃, PCl₅, PBr₃, SOBr₂, Ph₃Br₂, Ph₃I₂, PI₃, P2I4. Si le groupe partant souhaité est un mésylate, un tosylate ou un triflate, celui-ci sera obtenu par réaction de l'alcool intermédiaire avec respectivement le chlorure de mésyle, le chlorure de tosyle ou l'anhydride triflique en présence d'une base telle qu'une amine tertiaire, la pyridine ou la 4-DMAP. Si nécessaire, les électrophiles mis en oeuvre pour la préparation des intermédiaires de formule (III) par réaction avec un dérivé de formule (IV) comportant un substituant P peuvent également comprendre des dérivés dans lesquels P représente toute autre forme protégée d'un alcool bien connue de l'homme de l'art et qui sera transformée en alcool libre après la condensation, suivi de la transformation de cet alcool en groupe partant par les méthodes décrites précédemment. L'étape complémentaire "C" symbolise la coupure du reste tert-butoxycarbonyle en milieu acide (par exemple HCl ou TFA dans l'éther éthylique, le méthanol ou le dichlorométhane).

Les intermédiaires de formule (IV) sont préparés par différentes méthodes et techniques décrites telles que par exemple dans les demandes de brevet de la Demanderesse (FR-2 722 788 et FR 9512218).

Les pipéridines 4,4-disubstituées de formule générale (II) dans laquelle R₁ et R₂ sont définis comme dans la formule générale (I) sont préparées pour la plupart par différentes méthodes et techniques préalablement décrites dans des publications telles que par exemple J. Pharm. Sci. <u>61</u>, 1316 (1972), J. Heterocyl. Chem. <u>23</u>, 73 (1986), Tetrahedron Lett. <u>37</u> (8), 1297 (1996), Yaoxue Xuebao <u>26</u>, 493 (1991) ou dans des demandes de brevets telles que par exemple les 4-benzyl-4-hydroxypipéridines décrites dans le brevet WO 9117156, les 4-anilinopipéridines décrites dans le brevet US 5106983, les 4,4-diarylpipéridines décrites dans le brevet WO 9410989 et les méthodes générales décrites dans les brevets WO 9113872 et WO 9606609.

10

. 15

20

25

30

35

Dans le cas particulier des intermédiaires de formule (II) dans laquelle R₁ représente R'1, COR'1 ou CH2R'1 et R2 représente un halogène, une méthode de synthèse particulièrement appréciée consiste à traiter un dérivé de formule (II) dans laquelle R₁ représente R'₁, COR'₁ ou CH₂R'₁ et R₂ représente OH avec un réactif approprié tel que par exemple le DAST (diethylaminosulfur trifluoride) si R2 représente F dans le produit souhaité (cette réaction sera réalisée dans un solvant polaire aprotique tel que le dichlorométhane, à une température comprise entre - 20°C et 60°C, en présence éventuelle d'une base telle qu'une amine tertiaire). De même, un dérivé chloré de formule (II) dans laquelle R2 représente Cl peut être préparé par réaction d'un alcool correspondant de formule (III) dans laquelle R2 représente OH avec SOCl₂, POCl₃ ou (COCl₂)₂; un dérivé bromé analogue (de formule (II), dans laquelle R₂ = Br) sera préparé par réaction du même alcool avec PBr₃. Les intermédiaires de formule (II) dans laquelle R1 représente CHOHR'1 sont préparés par réduction, à l'aide d'un hydrure de bore ou d'aluminium (par exemple LiAlII4 ou NaBH₄) d'un dérivé de formule (II) dans laquelle R₁ représente COR'₁, et, de même, les dérivés de formule (II) dans laquelle R2 représente CH2R'1 sont accessibles à partir de composés de formule (II) dans laquelle R2 représente COR'1 ou CHOHR'1 par réduction au moyen de méthodes et techniques bien connues de l'homme de l'art pour réaliser ce type de transformation telles que par exemple la réduction de Wolf-Kishner ou la méthode de Barton faisant appel à la réduction de thioesters par Bu₃SnH

Les intermédiaires de formule (II) dans laquelle R₁ représente R'₁ ou CH₂R'₁ et R₂ représente NHR'₂, sont également accessibles par formation initiale d'une imine entre la 4-pipéridinone comportant un groupe protecteur sur l'azote (tel qu'un BOC par exemple) suivie de la réaction de cet intermédiaire avec un nucléophile organométallique (R'₁Li, R'₁MgBr, R'₁CH₂Li ou R'₁CH₂MgBr par exemple).

Une méthode alternative de préparation des pipéridines de formule (II) particulièrement appréciée lorsque R₂ représente CN, NO₂, COR'₂ ou CO₂R'₂ consiste à condenser un intermédiaire de formule (IX)

$$R_1 R_2$$

dans laquelle R₁ représente préférentiellement R'₁, OR'₁, SR'₁ COR'₁ et R₂ représente CN, NO₂, COR'₂ ou CO₂R'₂ avec un électrophile bivalent de formule (X)

(X)

dans laquelle P représente un groupe protecteur d'une amine tel que par exemple un BOC ou un TOS qui sera hydrolysé après la condensation. La condensation des intermédiaires de formule (IX) avec les électrophiles de formule (X) sera réalisée de préférence en présence d'une base, organique ou inorganique, dépendant essentiellement de la nature de R₁ et R₂, dans un solvant aprotique anhydre tel que l'éther, le THF, la DME, le DMF ou le DMSO, en condition de transfert de phase à une température entre - 40° et 60°C.

25

15

20

Doivent également être considérées comme faisant partie de la présente invention toutes les méthodes qui permettent de transformer un dérivé de formule (I) en un autre dérivé de formule (I) dans laquelle au moins un des substituants R₁, R₂, Z ou R₃ sont différents, par les techniques et méthodes bien connues de l'homme de l'art.

30

35

C'est ainsi et à titre d'exemple, que les dérivés de formule générale (I) dans laquelle R₂ représente NO₂ ou encore dans laquelle un noyau aromatique est substitué par un reste NO₂ peuvent être transformés en dérivés de formule (I) dans laquelle respectivement R₂ représente NH₂ ou encore un noyau aromatique est substitué par un reste NH₂ en même position, par les méthodes et techniques bien connues pour ce type de réduction telles que décrites par exemple dans "Comprehensive Organic Transformation", p. 412; R. C. Larock, VCH, 1989, parmi lesquelles on peut citer l'hydrogénation atmosphérique catalysée au palladium sur charbon, l'utilisation du

SnCl₂, de zinc, de Ni de Raney ou encore de catalyseur au rhodium en présence d'hydrazine. De même, les dérivés de formule (I) dans laquelle R₂ représente NH₂ ou encore dans laquelle un noyau aromatique est substitué par un reste NH₂ peuvent être transformé en dérivés de formule (I) dans laquelle respectivement NHR'₂, NHCOR'₂, NHCO₂R', NHSO₂R'₂ ou un noyau aromatique est substitué par NHR₄, NHCOR₄, NHCO₂R'₄, NHSO₂R₄ par les méthodes bien connues pour alkyler une amine primaire ou pour transformer une amine en amide, carbonate, urée ou sulfonamide.

On comprendra que dans certaines réactions ou suites de réactions chimiques qui conduisent à la préparation de composés de formule générale (I) il soit nécessaire ou souhaitable de protéger des groupes sensibles éventuels dans les intermédiaires de synthèse afin d'éviter des réactions secondaires indésirables. Ceci peut être réalisé par l'utilisation (introduction et déprotection) des groupes protecteurs conventionnels tels que ceux décrits dans "Protective groups in Organic Synthesis", T.W. Greene, John Wiley & Sons, 1981 et "Protecting Groups", P.J. Kocienski, Thieme Verlag, 1994. Les groupes protecteurs appropriés seront donc introduits et enlevés lors de l'étape la plus appropriée pour ce faire et en utilisant les méthodes et techniques décrites dans les références citées précédemment.

20

Lorsque l'on désire isoler un composé selon l'invention à l'état de sel, par exemple de sel par addition avec un acide, on peut y parvenir en traitant la base libre de formule générale (I) par un acide approprié de préférence en quantité équivalente, ou par le sulfate de créatinine dans un solvant approprié.

25

Lorsque les procédés décrits ci-dessus pour préparer les composés de l'invention donnent des mélanges de stéréoisomères, ces isomères peuvent être séparés par des méthodes conventionnelles telles que la chromatographie préparative.

Lorsque les nouveaux composés de formule générale (I) possèdent un ou plusieurs centres asymétriques, ils peuvent être préparés sous forme de mélange racémique ou sous forme d'énantiomères que ce soit par synthèse enantionsélective ou par résolution. Les composés de formule (I) possèdant au moins un centre asymétrique peuvent par exemple être séparés en leurs énantiomères par les techniques habituelles telles que la formation de paires diastéréomériques par formation d'un sel avec un acide optiquement actif tel que l'acide (+)-di-p-toluoyl-l-tartrique, l'acide (+)-camphorsulfonique, l'acide (-)-camphorsulfonique, l'acide (+)-phénylpropionique, l'acide (-)-phénylpropionique, suivie par cristallisation fractionnée et régénération de

la base libre. Les composés de formule (I) dans lesquels R₃ est un hydrogène comprenant au moins un centre asymétrique peuvent également être résolus par formation d'amides diastéréomériques qui sont séparés par chromatographie et hydrolysés pour libérer l'auxiliaire chiral.

5

Les exemples qui suivent illustrent l'invention sans toutefois en limiter la portée.

EXEMPLE 1

Le fumarate de la (4-cyano-4-phénylpipéridin-1-yl)-N-[4-méthoxy-3-(4-méthylpipérazin-1-yl)phényl]amide (1)

15 <u>1</u>: Une solution de triphosgène (240 mg, 0.8 mmole) dans le dichlorométhane (30 ml) est canulée sur une solution de 4-méthoxy-3-(4-méthylpipérazin-1-yl)aniline (brevet européen 0533266-A1, 491 mg, 2.2 mmole) et de pyridine (200 ml, 2.4 mmole) dans le dichlorométhane (20 ml) sous atmosphère d'azote et à 0°C. Le bain froid est retiré et le mélange réactionnel est agité pendant 30 minutes à température ambiante. Une solution de 4-cyano-4-phénylpipéridine (A, 413 mg, 2.2 mmole) et de pyridine (200 ml, 2.4 mmole) dans le dichlorométhane (10 ml) est ensuite ajoutée. La réaction est agitée 12 heures à température ambiante, puis successivement diluée dans du dichlorométhane, lavée avec de l'eau, séchée sur sulfate de magnésium et concentrée. Le dérivé <u>1</u> est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (95-5-1 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 558 mg (61%)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ: 8.41 (s, 1H); 7.35-7.57 (m, 5H); 7.15-6.95 (m, 5H); 6.78 (d, 1H, 8.7Hz); 6.54 (s, fumarate); 4.34 (brd, 2H); 3.70 (s, 3H); 3.15-2.8 (m, 6H); 2.61 (brs, 4H); 2.31 (s, 3H); 2.35-2.10 (m, 2H); 2.05-1.80 (brt, 2H).

Analyse élémentaire: C25H31N5O2; C4H4O4

<u>Calculée</u>: C = 63.37; H = 6.42; N = 12.74

10 <u>Trouvée</u>: C = 63.45; H = 6.46; N = 12.56

IR (KBr): 3800-2400, 1689, 1642, 1521, 1514

Masse (DCI, NH₃): 434 (MH+)

15

30

<u>Rf</u>: 0.5 (1-10-90 = NH₄OH-MeOH-CH₂Cl₂)

EXEMPLE 2

20 Le fumarate de la 1-[3-chloro-2-(4-méthylpipérazin-1-yl)phényl]-3-[2-oxo-2-(4-cyano-4-phénylpipéridin-1-yl)éthyl]uréylène (2)

25 <u>2A</u>: le 2-tertbutoxycarbonylamino-1-(4-cyano-4-phénylpipéridin-1-yl)ethan-1-one

La *N-tert*-butoxycarbonylglycine (1.8 g, 10.2 mmole) est dissoute dans du dichlorométhane (35 ml) sous atmosphère d'azote en présence du chlorhydrate de <u>A</u> (2.74 g; 12.3 mmole), de triéthylamine (1.57 ml; 11.3 mmole), de chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (2.16 g; 11.3 mmole) et de 4-*N*, *N*-diméthylaminopyridine (30 mg). Le mélange réactionnel est agité 24 heures à température ambiante, puis dilué dans du dichlorométhane, lavé deux fois avec de

l'eau et une fois avec une solution aqueuse saturée en bicarbonate de sodium, séché sur sulfate de magnésium et concentré. Le dérivé <u>2A</u> est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

5

Masse obtenue: 3.24 g (92%)

1H-RMN (200 MHz, dmso-d₆) δ: 7.7-7.3 (m, 5H); 6.78 (t, 1H, 5.5Hz); 4.55 (brd, 1H); 4.0 (brd, 1H); 3.86 (t, 2H, 5Hz); 3.28 (brt, 1H); 2.86 (brt, 1H); 2.25-1.75 (m, 4H); 1.39 (s, 9H).

Analyse élémentaire: C19H25N3O3

Calculée: C = 66.45; H = 7.34; N = 12.24

<u>Trouvée</u>: C = 66.13; H = 7.12; N = 12.05

15

20

2B: le 2-amino-1-(4-cyano-4-phénylpipéridin-1-yl)ethan-1-one

Le dérivé <u>2A</u> est dissous dans du dichlorométhane (270 ml) sous atmosphère d'azote et l'acide trifluoroacétique (46 ml) est ajouté. La solution est agitée 3 heures à température ambiante, puis le solvant et l'acide sont évaporés. Le résidu huileux est repris dans du dichlorométhane et lavé à l'eau. La phase aqueuse est extraite 3 fois avec du dichlorométhane. Les phases organiques sont combinées, séchées sur MgSO₄ et concentrées. Le dérivé <u>2B</u> est utilisé sans autre purification.

Masse obtenue: 1.96 g (84 %)

25

30

 $\frac{1}{\text{H-RMN}}$ (200 MHz, dmso-d₆) δ : 7.7-7.35 (m, 5H); 4.60 (brd, 1H); 3.95 (brd, 1H); 3.6-3.1 (m, 3H); 2.86 (brt, 1H); 2.3-1.75 (m, 4H); 1.65 (brs, 2H).

Analyse élémentaire: C₁₄H₁₇N₃O; 0.4 H₂O

Calculée: C = 67.12; H = 7.16; N = 16.77

<u>Trouvée</u>: C = 66.97; H = 7.27; N = 16.37

2: La 3-chloro-2-(4-méthylpipérazin-1-yl)aniline (Brevet Français n° 9512218; 500 mg; 2.2 mmole) dissoute dans le dichlorométhane (5 ml) en présence de pyridine
35 (178ml; 2.2 mmole) est canulée sur une solution refroidie à 0°C de triphosgène (216 mg; 0.72 mmole) dans le dichlorométhane (5 ml). Le mélange réactionnel est agité 20 minutes puis le dérivé 2B (760 mg; 3.1 mmole) dilué dans le dichlorométhane (5 ml) en présence de pyridine (178ml; 2.2 mmole) est ajouté goutte à goutte. La réaction

n'évolue plus aprés quelques heures d'agitation à 0°C. Elle est ensuite diluée dans du dichlorométhane, lavée avec une solution aqueuse saturée en bicarbonate de sodium, séchée sur sulfate de magnésium et filtrée. Le solvant est évaporé et le dérivé 2 est isolé par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 547 mg (50 %)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

<u>1H-RMN</u> (200 MHz, dmso-d₆) δ : 8.32 (s, 1H); 8.02 (dd, 1H, 1.3 et 8Hz); 7.64 (brs, 1H); 7.6-7.3 (m, 5H); 7.07 (t, 1H, 8Hz); 6.88 (dd, 1H, 1.3 et 8Hz); 6.56 (s, fumarate); 4.56 (brd, 1H); 4.05 (brs, 3H); 3.54 (brt, 2H); 3.32 (m, 1H); 3.0-2.55 (m, 8H); 2.38 (s, 3H); 2.3-1.75 (m, 3H).

<u>Analyse élémentaire</u>: $C_{26}H_{31}CIN_{6}O_{2}$; 1.3 $C_{4}H_{4}O_{4}$; 0.3 $H_{2}O$; 0.42 $Et_{2}O$

<u>Calculée</u>: C = 58.33; H = 6.01; N = 12.41

<u>Trouvée</u>: C = 58.44; H = 6.03; N = 12.75

20

30

15

IR (KBr): 3700-2300, 1700, 1642, 1580, 1500, 1450.

<u>Rf</u>: $0.2 (1-3-97 = NH_4OH-MeOH-CH_2Cl_2)$

25 Masse (DCI, NH₃): 495 (MH⁺)

EXEMPLE 3

Le fumarate de la 5-[3-chloro-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4cyano-4-phénylpipéridin-1-yl)pentan-1-one (3)

3A: La 5-bromo-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one

<u>A</u> (2.1 g; 11.3 mmole) est dissous dans le dichlorométhane (23 ml) en présence de triéthylamine (2.35 ml; 17 mmole) sous atmosphère d'azote. La solution est refroidie à 0°C puis le chlorure de 5-bromopentanoyle (1.8 ml; 13.5 mmole) est ajouté. La réaction est immédiate. La solution est diluée dans du dichlorométhane lavée avec une solution demi-saturée en bicarbonate de sodium et séchée sur sulfate de magnésium. Le dérivé <u>3A</u> est purifié par chromatographie-éclair avec un mélange 1-5-95 (NH₄OH-MeOH-CH₂Cl₂).

10 Masse obtenue: 3.58 g (90 %)

<u>1H-RMN</u> (200 MHz; dmso-d₆) δ : 7.7-7.2 (m, 5H); 4.60 (brd, 1H); 4.07 (brd, 1H); 3.56 (t, 2H, 6.7Hz); 3.29 (brt, 1H); 2.80 (brt, 1H); 2.41 (t, 2H, 6.7Hz); 2.3-1.5 (m, 8H).

15

20

25

<u>3B</u>: la *N-tert*butoxycarbonyl-5-[3-chloro-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one

La N-tertbutoxycarbonyl-3-chloro-2-(4-méthylpipérazin-1-yl)aniline (475 mg; 1.45 mmole) est dissoute dans du DMF (6 ml) à 0°C en présence d'hydrure de sodium (60% dans l'huile; 138 mg; 1.7 mmole) sous atmosphère d'azote. Une solution de <u>3A</u> (615 mg; 1.75 mmole) dans le DMF (5 ml) est ajoutée goutte à goutte. Le mélange réactionnel est agité 24 heures à température ambiante puis neutralisé avec quelques gouttes d'eau. Le solvant est évaporé. Le résidu huileux est repris dans de l'acétate d'éthyle et lavé deux fois avec de l'eau. La solution est séchée sur sulfate de magnésium, filtrée puis concentrée. Le dérivé <u>3B</u> est purifié par chromatographie-éclair avec un mélange d'éluants (1-7-93 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 718 mg (83 %)

30 <u>1H-RMN</u> (200 MHz, dmso-d₆) δ: 8.41 (imp); 7.65-7.2 (m, 7H); 7.12 (t, 1H, 8Hz); 7.08(imp); 4.61 (brd, 1H); 4.06 (brs, 1H); 4.1-3.7 (m, 1H); 3.5-2.6 (m, 7H); 2.90 et 2.74 (s, dmf); 2.38 (bs, 6H); 2.25-1.7 (m, 7H); 1.65-1.2 (m, 13H).

Masse (DCI, NH₃): 594 (MH⁺)

35

3: Le dérivé 3 est préparé selon la méthode utilisée pour 2B à partir des réactifs suivants: 3B (683 mg; 1.1 mmole); acide trifluoroacétique (5.2 ml) dans le

dichlorométhane (31 ml). Le dérivé <u>3</u> est purifié par chromatographie-éclair avec un mélange 1-3-97 (NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 363 mg (64 %)

5 Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ: 7.65-7.3 (m, 5H); 6.97 (t, 1H, 8Hz); 6.59 (s, fumarate); 6.50(t, 2H, 7Hz); 5.62 (brs, 1H); 4.62 (brd, 1H); 4.09 (brs, 1H); 3.55 (brt, 2H); 3.3 (brt, 1H); 3.11 (brs, 2H); 3.0-2.7 (m, 3H); 2.62 (brd, 2H); 2.6-2.3 (m, 7H); 2.25-1.7 (m, 4H); 1.60 (brs, 4H).

Analyse élémentaire: C₂₈H₃₆ClN₅O; C₄H₄O₄; 0.07 H₂O

<u>Calculée</u>: C = 62.99; H = 6.61; N = 11.48

15 <u>Trouvée</u>: C = 63.27; H = 6.61; N = 11.36

IR (KBr): 3700-2400, 1716, 1680, 1588

<u>Rf</u>: $0.4 (1-5-95 = NH_4OH-MeOH-CH_2Cl_2)$

20

Masse (DCI, NH₃): 494 (MH+)

EXEMPLE 4

25 Le fumarate de la 1-(4-cyano-4-phénylpipéridin-1-yl)-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (4)

4: Le dérivé 4 est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (1.36 g; 3.9 mmole); DMF (19 ml); NaH (50%, 187 mg, 3.9 mmole); 2-(4-méthylpipérazin-1-yl)phénol (Brevet Français n° 9408981, 500 mg, 2.6 mmole).

Le dérivé 4 est isolé sous forme de base libre après purification par chromatographieéclair avec un mélange d'éluants 1-5-95 (NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 889 mg (74 %)

5

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ : 7.6-7.25 (m, 5H); 7.0-6.8 (m, 4H); 4.62 (brd, 1H); 4.10 (brd, 1H); 2.97 (brt, 2H); 3.31 (brt, 1H); 3.02 (brs, 4H); 2.82 (brt, 1H); 2.64 (brs, 4H); 2.50(brt, 2H); 2.34 (s, 3H); 2.3-1.6 (m, 8H).

Analyse élémentaire: C28H36N4O2; 0.85C4H4O4; 0.76 H2O

<u>Calculée</u>: C = 66.35; H = 6.95; N = 9.60

15 <u>Trouvée</u>: C = 66.07; H = 7.04; N = 9.46

IR (KBr): 3415, 2932, 2871, 1710, 1637.

Masse (DCI, NH₃): 461 (MH+)

20

<u>Rf</u>: 0.25 (1-5-95 = NH₄OH-MeOH-CH₂Cl₂)

EXEMPLE 5

Le fumarate de la 1-(4-cyano-4-phénylpipéridin-1-yl)-5-[3-méthyl-2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (5)

5: Le dérivé 5 est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (1.27 g; 3.6 mmole); DMF (15 ml); NaH (60%, 145 mg, 3.6 mmole); 3-méthyl-2-(4-méthylpipérazin-1-yl)phénol (Brevet Français n° 9512218, 500 mg, 2.4 mmole). Le dérivé 5 est isolé sous forme de base libre après purification par

chromatographie-éclair avec un mélange d'éluants (1-3-97 = $NH_4OH-MeOH-CH_2Cl_2$).

Masse obtenue: 479 mg (41 %)

5

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ: 7.6-7.3 (m, 5H); 6.99 (t, 1H, 8Hz); 6.79 (brt, 2H, 9Hz); 6.59 (s, fumarate); 4.62 (brd, 1H); 4.09 (brd, 1H); 3.95 (t, 2H, 6Hz); 3.7-3.1 (m, 2H); 3.0-2.5 (m, 4H); 2.47 (t, 2H, 6Hz); 2.38 (s, 3H); 2.25 (s, 3H); 2.5-1.5 (m, 12H).

Analyse élémentaire: C29H38N4O2; C4H4O4; 0.07 H2O

15 <u>Calculée</u>: C = 67.10; H = 7.17; N = 9.48

<u>Trouvée</u>: C = 66.92; H = 7.18; N = 9.33

IR (KBr): 3200-2200, 1716, 1649, 1580

20 Masse (DCI, NH₃): 475 (MH⁺)

<u>Rf</u>: $0.2 (1-4-96 = NH_4OH-MeOH-CH_2Cl_2)$

EXEMPLE 6

25

Le fumarate de la 1-(4-cyano-4-phénylpipéridin-1-yl)-6-[2-(4-méthylpipérazin-1-yl)phénoxy]hexan-1-one (6)

6A: La 6-bromo-1-(4-cyano-4-phénylpipéridin-1-yl)hexan-1-one

Le dérivé <u>6A</u> est préparé selon la méthode utilisée pour <u>3A</u> à partir des réactifs suivants: <u>A</u> (667 mg; 3.6 mmole); triéthylamine (748 ml; 5.3 mmole); chlorure de 6-bromohexanoyle (657 ml; 4.3 mmole) dans le dichlorométhane (10ml). Le dérivé <u>6A</u> est purifié par chromatographie-éclair avec un mélange 30-70 (EtOAc-EDP).

Masse obtenue: 1.21 g (93 %)

 $\frac{1 \text{H-RMN}}{10}$ (200 MHz; dmso-d₆) δ : 7.2-7.3 (m, 5H); 4.60 (brd, 1H); 4.07 (brd, 1H); 3.53 (t, 2H, 6.7Hz); 3.28 (brt, 1H); 2.80 (brt, 1H); 2.38 (t, 2H, 6.7Hz); 2.3-1.3 (m, 10H).

6: Le dérivé 6 est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 6A (1.16 g; 3.2 mmole); DMF (15 ml); NaH (50%, 152 mg, 3.2 mmole);
2-(4-méthylpipérazin-1-yl)phénol (Brevet Français n° 9408981, 407 mg, 2.1 mmole). Le dérivé 6 est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 497 mg (49 %)

20

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ : 7.6-7.2 (m, 5H); 7.0-6.7 (m, 4H); 6.56 (s, fumarate); 4.57 (brd, 1H); 4.05 (brd, 1H); 3.93 (t, 2H, 6Hz); 3.34 (brt, 1H); 3.00 (brs, 4H); 2.9-2.5 (m, 5H); 2.5-2.25 (m, 5H); 2.2-1.3 (m, 10H).

Analyse élémentaire: C29H38N4O2; 1.15C4H4O4; 0.34 H2O

<u>Calculée</u>: C = 66.36; H = 7.06; N = 9.21

30 <u>Trouvée</u>: C = 66.27; H = 7.21; N = 9.34

IR (KBr): 3700-2300, 1709, 1620, 1500, 1450.

Masse (DCI, NH₃): 475 (MH⁺)

35

<u>Rf</u>: 0.3 (1-5-95 = NH₄OH-MeOH-CH₂Cl₂)

EXEMPLE 7

Le fumarate de la 1-[4-hydroxy-4-(4-bromophényl)pipéridin-1-yl]-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (7)

5

7: Le dérivé 7 est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: l'acide 5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentanoïque (Brevet Français n° 9512218, 390 mg; 1.25 mmole); la 4-hydroxy-4-(4-bromophényl)pipéridine (408 mg, 1.6 mmolee); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (280 mg; 1.46 mmolee); la triéthylamine (203 ml; 1.46 mmolee); la 4-N,N-diméthylaminopyridine (10 mg) dans le dichlorométhane (15 ml). Le dérivé 7 est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-7-93 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 271 mg (40%)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

<u>1H-RMN</u> (200 MHz, dmso-d₆) δ : 7.55-7.35 (m, 4H); 7.0-6.75 (m, 4H); 6.56 (s, fumarate); 4.32 (brd, 1H); 3.94 (brt, 2H); 3.77 (brd, 1H); 3.37 (brt, 1H); 2.99 (brs, 4H); 2.88 (brt, 1H); 2.59 (brs, 4H); 2.40 (brt, 2H); 2.30 (s, 3H); 2.0-1.45 (m, 8H).

25

15

Analyse élémentaire: C27H36N3O3; C4H4O4

<u>Calculée</u>: C = 57.59; H = 6.24; N = 6.50

<u>Trouvée</u>: C = 57.44; H = 6.24; N = 6.36

30 <u>IR (KBr)</u>: 3700-2300, 1700, 1610, 1500, 1450

Masse (DCI, NH₃): 530, 532 (MH+)

<u>Rf</u>: 0.3 (1-7-93 = $NH_4OH-MeOH-CH_2Cl_2$)

EXEMPLE 8

5 Le fumarate de la 1-(4,4-diphénylpipéridin-1-yl)-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (8)

8: Le dérivé 8 est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: l'acide 5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentanoïque (Brevet Français n° 9512218, 400 mg; 1.28 mmole); le chlorhydrate de la 4,4-diphénylpipéridine (446 mg, 1.6 mmole); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (286 mg; 1.49 mmole); la triéthylamine (208 ml; 1.49 mmole); la 4-N,N-diméthylaminopyridine (15 mg) dans le dichlorométhane (20 ml). Le dérivé 8 est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH4OH-MeOH-CH2Cl2).

Masse obtenue: 330 mg (60%)

20

30

.

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

 $\frac{1 \text{H-RMN}}{1}$ (200 MHz, dmso-d₆) δ : 7.5-7.1 (m, 10H); 7.0-6.8 (m, 4H); 6.58 (s, fumarate); 3.94 (brt, 2H); 3.45 (brs, 4H); 3.00 (brs, 4H); 2.60 (brs, 4H); 2.5-2.2 (m, 9H); 1.71 (brs, 4H).

Analyse élémentaire: C33H41N3O2; C4H4O4; 0.75 H2O; 0.15 CH2Cl2

<u>Calculée</u>: C = 68.19; H = 7.06; N = 6.42<u>Trouvée</u>: C = 68.22; H = 7.21; N = 6.42

IR (KBr): 3600-2300, 1700, 1640, 18500, 1450

Masse (DCI, NH₃): 512 (MH⁺)

<u>Rf</u>: $0.4 (1-6-94 = NH_4OH-MeOH-CH_2Cl_2)$

5

EXEMPLE 9

Le fumarate de la 1-(4-hydroxy-4-benzylpipéridin-1-yl)-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (9)

10

15

9: Le dérivé 9 est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: l'acide 5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentanoïque (Brevet Français n° 9512218, 449 mg; 1.53 mmole); la 4-hydroxy-4-benzylpipéridine (350 mg, 1.8 mmole); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (322 mg; 1.7 mmole); la triéthylamine (234 ml; 1.7 mmole); la 4-N,N-diméthylaminopyridine (15 mg) dans le dichlorométhane (20 ml). Le dérivé 9 est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-8-92 = NH₄OH-MeOH-CH₂Cl₂).

20

Masse obtenue: 386 mg (54%)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

25

 $\frac{1}{\text{H-RMN}}$ (200 MHz, dmso-d₆) δ : 7.4-7.1 (m, 5H); 7.1-6.8 (m, 4H); 6.60 (s, fumarate); 4.08 (brd, 1H); 3.95 (brt, 2H); 3.61 (brd, 1H); 3.4-3.15 (m, 1H); 3.06 (brs. 4H); 3.1-2.6 (m, 5H); 2.68 (s, 2H); 2.42 (s, 3H); 2.36 (brt, 2H); 1.70 (brs, 4H); 1.37 (brs, 4H).

30

Analyse élémentaire: C28H39N3O3; C4H4O4; 1.2 H2O

<u>Calculée</u>: C = 63.71; H = 7.39; N = 6.89<u>Trouvée</u>: C = 63.71; H = 7.58; N = 6.96

15

20

30

IR (KBr): 3600-2300, 1700, 1610, 1520, 1490, 1237

Masse (DCI, NH₃): 466 (MH⁺)

5 Rf: $0.4 (1-8-92 = NH_4OH-MeOH-CH_2Cl_2)$

EXEMPLE 10

Le fumarate de la 1-[4-(4-fluorobenzoyl)-4-méthylpipéridin-1-yl]-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentan-1-one (10)

10: Le dérivé 10 est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: l'acide 5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentanoïque (Brevet Français n° 9512218, 400 mg; 1.28 mmole); le chlorhydrate de la 4-(4-fluorobenzoyl)-4-méthylpipéridine (Brevet Français n° 95 06825, 420 mg, 1.6 mmole); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (286 mg; 1.5 mmole); la triéthylamine (208 ml; 1.5 mmole); la 4-N,N-diméthylaminopyridine (15 mg) dans le dichlorométhane (25 ml). Le dérivé 10 est purifié sous forme de base libre par chromatographie-éclair (1-7-93 = NH40H-MeOH-CH₂Cl₂).

Masse obtenue: 468 mg (73%)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

<u>1H-RMN</u> (200 MHz, dmso-d₆) δ : 7.81 (dd, 2H, 5.6 et 8.7Hz); 7.27 (t, 2H, 8.8Hz); 7.0-6.8 (m, 4H); 6.56 (s, fumarate); 3.92 (brt, 2H); 3.75-3.4 (m, 2H); 3.3-3.0 (m, 2H); 2.98 (brs, 4H); 2.59 (brs, 4H); 2.33 (brt, 2H); 2.30 (s, 3H); 2.2-1.9 (m, 2H); 1.8-1.3 (m, 6H); 1.37 (s, 3H).

Analyse élémentaire: C29H38FN3O2; C4H4O4; H2O

<u>Calculée</u>: C = 62.91; H = 6.95; N = 6.53 <u>Trouvée</u>: C = 62.94; H = 7.04; N = 6.67

IR (KBr): 3600-2300, 1650, 1600, 1500, 1450

Masse (DCI, NH3): 496 (MH+)

<u>Rf</u>: 0.3 (1-7-93 = NH₄OH-MeOH-CH₂Cl₂)

10

5

EXEMPLE 11

Le fumarate du 1-[4-hydroxy-4-phénylpipéridin-1-yl]-5-[2-(4-méthylpipérazin-1-yl)phénoxy]pentane (11)

15

20

25

Le dérivé 7 (607 mg; 1.1 mmole) est dissous dans du THF (6 ml) à température ambiante et sous atmosphère d'azote. Le LAH (1M/THF; 2.28 ml; 2.28 mmole) est ajouté, et la suspension est agitée 6 heures. Du LAH (1.15ml; 1.15 mmole) est ajouté et la réaction est agitée pendant 4 jours. Le mélange réactionnel est neutralisé par ajout successif de 105 ml d'eau, 105 ml de NaOH (15% dans l'eau) et 320 ml d'eau. Le précipité blanc est filtré, puis le filtrat est concentré. Le résidu huileux est à nouveau traité avec du LAH (2.28 ml, 2.28 mmole) dans du THF (6 ml) sous atmosphère d'azote et chauffé à 63°C pendant 48 heures, puis neutralisé par ajout successif de 70 ml d'eau, 70 ml de NaOH (15% dans l'eau) et 220 ml d'eau. Le précipité blanc est filtré, puis le filtrat concentré. Le dérivé 11 est purifié sous forme de base libre par chromatographie-éclair avec un mélange d'éluants (1-4.5-95.5 = NH4OH-MeOH-CH2Cl2).

30 Masse obtenue: 220 mg (43%)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 7.47 (d, 2H, 7.5Hz); 7.33 (t, 2H, 7.5Hz); 7.22 (t, 1H, 7Hz); 6.90 (brs, 2H); 6.86 (brs, 2H); 6.53 (s, fumarate); 5.03 (brs, 1H, OH); 3.96 (brs, 2H); 2.98 (brs, 6H); 2.8-2.6 (m, 4H); 2.50 (brs, 4H); 2.24 (s, 3H); 2.08 (brt, 2H); 1.75 (brs, 2H); 1.69-1.62 (m, 4H); 1.49 (brs, 2H).

5

Analyse élémentaire: C27H39N3O2; C4H4O4; 0.54 H2O

<u>Calculée</u>: C = 66.98; H = 7.78; N = 7.51 <u>Trouvée</u>: C = 66.88; H = 7.96; N = 7.70

C = 60.88, H = 7.90, N = 7.70

10 <u>Rf</u>

15

<u>Rf</u>: 0.3 (1-6-94 = $NH_4OH-MeOH-CH_2Cl_2$)

EXEMPLE 12

Le fumarate de la 1-(4-cyano-4-phénylpipéridin-1-yl)-5-[2-(4-méthylpipérazin-1-yl)phénylamino]pentan-1-one (12)

12A: le *N-tert*butoxycarbonyl-5-[2-(4-méthylpipérazin-1-yl)phénylamino]pentanoate d'éthyle

La N-tertbutoxycarbonyl-2-(4-méthylpipérazin-1-yl)aniline (Brevet Français n° 95012218, 1.92 g, 6.2 mmole) est dissoute dans du DMF (20 ml) à 0°C sous atmosphère d'azote en présence d'hydrure de sodium (50% dans l'huile; 449 mg; 9.4 mmole). Le 5-bromo-pentanoate d'éthyle (1.28 ml, 8.1 mmole) dilué dans du DMF (10 ml) est ajouté goutte à goutte à 0°C. Le bain froid est retiré et la réaction est agitée 5 heures à température ambiante. La suspension est neutralisée avec quelques gouttes d'eau, concentrée puis diluée dans de l'acétate d'éthyle, lavée une fois avec de l'eau et une fois avec une solution aqueuse saturée en NaCl, séchée sur sulfate de magnésium, filtrée et concentrée. Le dérivé 12A est purifié par chromatographieéclair avec un mélange d'éluants (NH4OH-MeOH-CH₂Cl₂ = 0.5-2.5-97.5).

30

Masse obtenue: 1.91 g (73 %)

 $\frac{1}{1}$ H-RMN (200 MHz, dmso-d₆) δ : 7.21 (brs, 1H); 7.15-6.95 (m, 3H); 4.05 (brs, 2H); 3.85-3.6 (m, 1H); 3.30 (brs, 1H); 3.02 (brs, 2H); 2.70 (brs, 2H); 2.45 (brs, 2H); 2.40 (brs, 2H); 2.25 (brs, 2H); 2.21 (s, 3H); 1.70-1.1 (m, 16H).

5 <u>12B</u>: l'acide *N-tert*butoxycarbonyl-5-[2-(4-méthylpipérazin-1-yl)phénylamino] pentanoique.

Le dérivé 12A (3.1 g, 7.4 mmole) est dissous dans du THF (8 ml). Une solution de soude (1M dans l'eau, 8.1 ml, 8.1 mmole) est ajoutée et la réaction est chauffée à 50°C pendant 3 heures. Le mélange réactionnel est refroidi à température ambiante puis neutralisé par ajout d'acide chlorhydrique (1N dans l'eau, 8.1 ml, 8.1 mmole). Les solvants sont évaporés. Le résidu semi-solide est trituré dans un peu d'éthanol et filtré. Le filtrat est concentré pour donner une mousse. Le dérivé 12B est utilisé sans autre purification pour la suite des synthèses.

15 Masse obtenue: 2.88 g

 $\frac{1 \text{H-RMN}}{1}$ (200 MHz, dmso-d₆) δ : 7.21 (brs, 1H); 7.15-6.95 (m, 3H); 3.9-3.1 (m, 3H); 3.02 (brs, 2H); 2.70 (brs, 2H); 2.45 (brs, 2H); 2.40 (brs, 2H); 2.21 (s, 3H); 2.15 (brs, 2H); 1.6-1.2 (m, 13H).

20

25

10

12C: La *N-tert*butoxycarbonyl-1-(4-cyano-4-phénylpipéridin-1-yl)-5-[2-(4-méthylpipérazin-1-yl)phénylamino]pentan-1-one

Le dérivé 12C est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: 12B (600mg; 1.5 mmole); le chlorhydrate de A (408 mg, 1.8 mmole); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (322 mg; 1.7 mmole); la triéthylamine (234 ml; 1.7 mmole); la 4-N,N-diméthylaminopyridine (10 mg) dans le dichlorométhane (21 ml). Le dérivé 12C est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-4-96 = NH4OH-MeOH-CH₂Cl₂).

30

Masse obtenue: 892 mg

<u>1H-RMN</u> (200 MHz, dmso-d₆) δ : 7.6-7.3 (m, 6H); 7.20 (brs, 1H); 7.15-6.9 (m, 2H); 4.59 (brd, 1H); 4.03 (brd, 1H); 3.85-3.6 (m, 1H); 3.45-3.15 (m, 1H); 3.03 (brs, 3H); 2.85-2.7 (m, 3H); 2.5-2.2 (m, 6H); 2.21 (s, 3H); 2.25-2.05 (m, 2H); 2.05-1.9 (m, 2H); 1.9-1.75 (m, 2H); 1.6-1.2 (m, 11H).

12: Le dérivé 12C (890 mg; 1.6 mmole) est dissous dans le dichlorométhane (44 ml) à 0°C sous atmosphère d'azote. L'acide trifluoroacétique (7.5 ml) est ajouté, le bain froid est retiré et le mélange réactionnel est agité jusqu'à disparition du produit de départ. La solution est neutralisée avec de la soude (1 M dans l'eau) puis ramenée à pH légèrement basique (environ 8). La phase aqueuse est extraite deux fois avec du dichlorométhane. Les phases organiques sont combinées, séchées sur sulfate de magnésium et le solvant est évaporé. Le résidu huileux est purifié par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

10

25

5

Masse obtenue: 623 mg (85 %)

1H-RMN (200 MHz, dmso-d₆) δ: 7.65-7.3 (m, 5H); 7.0-6.85 (m, 2H); 6.6-6.5 (m, 2H); 4.73 (brs, 1H); 4.62 (brd, 1H); 4.08 (brd, 1H); 3.4-3.2 (m, 1H); 3.15-3.0 (m, 2H);
2.85-2.7 (m, 3H); 2.6-2.3 (m, 6H); 2.21 (s, 3H); 2.14 (brd, 2H); 2.01 (brt, 2H); 1.86 (brt, 2H); 1.61 (brs, 4H).

<u>Analyse élémentaire</u>: C₂₈H₃₇N₅O; 0.3 H₂O <u>Calculée</u>: C = 72.32; H = 8.15; N = 15.06 20 <u>Trouvée</u>: C = 72.46; H = 8.11; N = 14.74

EXEMPLE 13

Le fumarate du 4-cyano-4-phénylpipéridin-1-yloate de 8-(4-méthylpipérazin-1-yl)naphtalèn-2-yle (13)

13A: la 1-chloroformyl-4-cyano-4-phénylpipéridine

Le triphosgène (829 mg, 2.8 mmole) est dissous à 0°C sous atmosphère d'azote dans le dichlorométhane (26 ml). L'amine A dissoute dans du dichlorométhane (26 ml) en présence de triéthylamine (1.18 ml, 8.5 mmole) est ajoutée goutte à goutte pendant 40 minutes. La réaction est agitée 2 heures puis diluée dans du dichlorométhane,

lavée trois fois avec de l'eau, séchée sur sulfate de sodium et concentrée. Le dérivé 13A est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (6-94 = EDP-EtOAc).

5 <u>Masse obtenue</u>: 513 mg (24%)

<u>1H-RMN</u> (200 MHz, dmso-d₆) δ: 7.65-7.3 (m, 5H); 4.45-4.25 (m, 1H); 3.55-3.4 (m, 1H); 3.4-3.15 (m, 1H); 3.15-3.0 (m, 1H); 2.45-2.25 (m, 1H); 2.25-2.05 (m, 3H).

13: Le 8-(4-méthylpipérazin-1-yl)naphtalèn-2-ol (Brevet Européen n° 05 33266-A1, 332 mg, 1.37 mmole) est dissous dans du THF (20 ml) à 0°C sous atmosphère d'azote en présence d'hydrure de sodium (50% dans l'huile; 109 mg; 2.7 mmole). Le dérivé 13A (513 mg, 2.06 mmole) dilué dans du THF (10 ml) est ajouté goutte à goutte à 0°C. Le bain froid est retiré et la réaction est agitée 4 heures à température ambiante. La suspension est neutralisée avec quelques gouttes d'eau, concentrée puis diluée dans de l'acétate d'éthyle, lavée une fois avec de l'eau et une fois avec une solution saturée de NaCl, séchée sur sulfate de magnésium, filtrée et concentrée. Le dérivé 13 est purifié par chromatographie-éclair avec un mélange d'éluants (NH₄OH-MeOH-CH₂Cl₂ = 1-5-95).

20

Masse obtenue: 512 mg (82 %)

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

25

 $\frac{1}{1}$ H-RMN (200 MHz, dmso-d₆) δ : 7.93 (d, 1H, 8.8Hz); 7.79 (d, 1H, 1.7Hz); 7.63 (brt, 3H); 7.49 (t, 2H, 7.8 Hz); 7.43 (brt, 2H); 7.37 (dd, 1H, 2.3 et 8.9 Hz); 7.18 (d, 1H, 7.4 Hz); 6.60 (s, fumarate); 4.47 (brd, 1H); 4.27 (brd, 1H); 3.39 (brs, 1H); 3.22 (brs, 1H); 3.04 (brs, 4H); 2.74 (brs, 4H); 2.38 (s, 3H); 2.25-2.0 (m, 4H).

30

Analyse élémentaire: C28H30N4O2; C4H4O4

<u>Calculée</u>: C = 67.35; H = 6.01; N = 9.80<u>Trouvée</u>: C = 67.45; H = 6.11; N = 9.82

35 <u>IR (KBr)</u>: 3600-2300, 1703, 1550, 1540, 1490, 1470, 1400.

<u>Rf</u>: 0.5 (1-10-90 = NH_4OH -MeOH-CH₂Cl₂)

EXEMPLE 14

Le fumarate de la 1-(4-cyano-4-phénylpipéridin-1-yl)-2-[8-(4-méthylpipérazin-1-yl)naphtalèn-2-yloxy]éthanone (14)

5

14A: la 2-chloro-1-(4-cyano-4-phénylpipéridin-1-yl)éthanone

Le chlorhydrate de A (1.5 g, 6.7 mmole) est dissous dans de la méthy éthyl cétone (25 ml) sous atmosphère d'azote à 0°C en présence carbonate de calcium (2.02 g, 20.2 mmole). Le chlorure de 2-chloroéthanoyle (536 ml; 6.7 mmole) est ajouté goutte à goutte. Le mélange est agité 2 heures à température ambiante, puis filtré et concentré. Le dérivé 14A est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (60-40 = EDP-EtOAc).

15

20

25

10

Masse obtenue: 887 mg (50%)

 $\frac{1 \text{H-RMN}}{1 \text{H-RMN}}$ (200 MHz, dmso-d₆) δ : 7.55 (d, 2H, 9Hz); 7.46 (t, 2H, 7.5Hz); 7.39 (t, 1H, 7.5Hz); 4.55 (brd, 1H); 4.48 (s, 2H); 4.04 (brd, 1H); 3.35 (brt, 1H); 2.91 (brt, 1H); 2.25-1.85 (m, 4H).

14: Le 8-(4-méthylpipérazin-1-yl)naphtalèn-2-ol (Brevet Européen n° 05 33266-A1, 392 mg, 1.62 mmole) est dissous dans du DMF (8 ml) en présence de chlorure de 14A (426 mg; 1.62 mmole) et de carbonate de césium (1.3 g; 2.5 mmole) sous atmosphère d'azote. Le mélange est agité 24 heures à température ambiante, puis dilué dans de l'acétate d'éthyle, lavé trois fois avec de l'eau, séché sur sulfate de magnésium et concentré. Le dérivé 14 est isolé sous forme de base libre après purification par chromatographie-éclair avec un mélange d'éluants (1-7-93 = NH4OH-MeOH-CH₂Cl₂).

30

Masse obtenue: 618 mg (81 %)

30

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

1H-RMN (200 MHz, dmso-d₆) δ: 7.82 (d, 1H, 9.0Hz); 7.54 (d, 1H, 8.2Hz); 7.51 (d, 2H, 7.6Hz); 7.44 (t, 2H, 7.5Hz); 7.38 (t, 1H, 7.2Hz); 7.31 (d, 1H, 2.3Hz); 7.28 (t, 1H, 7.8Hz); 7.21 (dd, 1H, 2.5 et 8.9Hz); 7.09 (d, 1H, 7.3Hz); 6.60 (s, fumarate); 5.08 (s, 2H); 4.75 (brd, 1H); 4.58 (brd, 1H); 3.42 (brt, 1H); 3.1-2.85 (m, 5H); 2.85-2.55 (m, 4H); 2.32 (s, 3H); 2.23 (brt, 2H); 2.12 (brt, 1H); 1.88 (brt, 1H).

10 Analyse élémentaire: C₂₉H₃₂N₄O₂; 1.2C₄H₄O₄; 0.3 H₂O

<u>Calculée</u>: C = 66.20; H = 6.15; N = 9.14<u>Trouvée</u>: C = 65.97; H = 6.29; N = 9.25

IR (KBr): 3600-2300, 1670, 1650, 1600, 1500, 1450.

Rf: $0.5 (1-10-90 = NH_4OH-MeOH-CH_2Cl_2)$

EXEMPLE 15

Le fumarate de la 2-[2-(4-méthylpipérazin-1-yl)phénoxy]-1-(4-cyano-4-phénylpipéridin-1-yl)ethan-1-one (15)

25 <u>15A</u>: le 2-[2-(4-méthylpipérazin-1-yl)phénoxy]ethanoate d'éthyle

Le dérivé <u>15A</u> est préparé selon la méthode utilisée pour <u>3B</u> à partir des réactifs suivants: 2-chloroéthanoate d'éthyle (3.39 g, 27.7 mmol); DMF (130 ml); NaH (60%, 1.27 g, 32.0 mmol); 3-méthyl-2-(4-méthylpipérazin-1-yl)phénol (Brevet Français n° 9512218, 4.1 g, 21.3 mmol). Le dérivé <u>15A</u> est purifié par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 3.20 g (53 %)

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 7.0-6.75 (m, 4H); 4.75 (s, 2H); 4.17 (q, 2H, 6.8Hz); 3.00 (brs, 4H); 2.45 (brs, 4H); 2.21 (s, 3H); 1.22 (t, 3H, 6.8Hz).

5

15B: l'acide 2-[2-(4-méthylpipérazin-1-yl)phénoxy]éthanoïque

Le dérivé <u>15B</u> est préparé selon la méthode utilisée pour <u>12B</u> à partir des réactifs suivants: la soude (1M dans l'eau, 19 ml, 19 mmol); <u>15A</u> (4.81 g, 17.3 mmol); THF (19 ml).

10

Masse obtenue: 4.25 g (90 %)

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 7.0-6.75 (m, 4H); 4.58 (s, 2H); 3.07 (brs, 4H); 2.66 (brs, 4H); 2.32 (s, 3H).

15

20

15: Le dérivé 15 est préparé selon la méthode utilisée pour 2A à partir des réactifs suivants: 15B (400mg; 1.59 mmol); le chlorhydrate de A (424 mg, 1.9 mmol); le chlorhydrate de la 1-(3-dimethylaminopropyl)-3-éthylcarbodiimide (335 mg; 1.74 mmol); la triéthylamine (243 μl; 1.74 mmol); la 4-N,N-diméthylaminopyridine (10 mg) dans le dichlorométhane (22 ml). Le dérivé 15 est isolé sous forme de base libre après purification par chromatographie-éclair (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 500 mg (75 %)

Masso obtende. 300 mg (13 70

25 Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

 $\frac{1}{\text{H-RMN}}$ (400 MHz, dmso-d₆) δ : 7.6-7.3 (m, 5H); 6.90 (brs, 4H); 6.57 (s, fumarate); 4.89 (AB, 2H); 4.56 (brd, 1H); 4.05 (brd, 1H); 3.37 (brt, 1H); 3.04 (brs, 4H); 2.90 (brt, 1H); 2.54 (brs, 4H); 2.26 (s, 3H); 2.35-2.1 (m, 3H); 1.90 (brt, 1H).

Analyse élémentaire: C25H30N4O2; 1.2 C4H4O4; 0.19 H2O

<u>Calculée</u>: C = 64.16; H = 6.29; N = 10.04

<u>Trouvée</u>: C = 64.18; H = 6.38; N = 10.19

35

30

Masse (DCI, NH₃): 419 (MH⁺)

<u>Rf</u>: $0.2 (1-5-95 = NH_4OH-MeOH-CH_2Cl_2)$

EXEMPLE 16

Le fumarate de la 5-[5-méthoxy-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4cyano-4-phénylpipéridin-1-yl)pentan-1-one (16)

5

10

15

16A: La 4-(4-méthylpipérazin-1-yl)-3-nitroanisole

Le 4-chloro-3-nitroanisole (5 g, 26.7 mmol) est chauffé à 100°C sous atmosphère d'azote dans le DMF (8 ml) en présence de carbonate de potassium (4.42 g, 32 mmol) et 1-méthylpipérazine (3.5 ml, 32 mmol) pendant 30 heures. Le milieu réactionnel est refroidi, dilué dans du dichlorométhane et lavé deux fois à l'eau. Le dérivé 16A est extrait de la phase organique avec 100 ml d'acide chlorhydrique 1N, la phase aqueuse est lavée deux fois avec de l'acétate d'éthyle puis 30 ml de soude à 30% dans l'eau sont ajoutés. Le dérivé 16A est extrait de la phase aqueuse avec de l'acétate d'éthyle. La solution est séchée sur sulfate de magnésium, filtrée et concentrée.

Masse obtenue: 2.70 g (40 %)

20 <u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 7.35-7.4 (m, 2H); 7.19 (dd, 1H, 3 et 9 Hz); 3.78 (s, 3H); 2.88 (brt, 4H); 2.39 (brs, 4H); 2.20 (s, 3H).

16B: La 5-méthoxy-2-(4-méthylpipérazin-1-yl)aniline

Dans un flacon de Pair, le composé <u>16A</u> (4.77 g, 19 mmol) est dissous dans de l'éthanol (150 ml) en présence de palladium (5% dans le charbon, 2 g, 0.95 mmol). Le mélange est agité pendant 30 min sous une pression initiale de 30 Psi. La réaction est filtrée sur célite et concentrée sous pression réduite.

Masse obtenue: 3.74 g (89%)

25

 $\frac{1 \text{H-RMN}}{1 \text{H-RMN}}$ (400 MHz, dmso-d₆) δ : 6.80 (d, 1H, 8.5 Hz); 6.25 (d, 1H, 2.9 Hz); 6.09 (dd, 1H, 2.9 et 8.5 Hz); 4.76 (s, 2H); 3.62 (s, 3H); 2.71 (brt, 4H); 2.45 (brs, 4H); 2.22 (s, 3H).

5 <u>16C</u>: La N-tert-butoxycarbonyl-5-méthoxy-2-(4-méthylpipérazin-1-yl)aniline Le dérivé <u>16B</u> (3.74 g; 17 mmol) est dissous dans le toluène (60 ml) sous atmosphère d'azote en présence de di tert-butyldicarbonate (4.43 g; 20 mmol) et chauffé à 100°C pendant 20 heures. Le solvant est évaporé et le dérivé <u>16C</u> est purifié par chromatographie-éclair avec un mélange d'éluants (0.3-3-97 = NH₄OH-10 MeOH-CH₂Cl₂).

Masse obtenue: 4.46 g (85%)

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ : 7.85 (s, 1H); 7.53 (d, 1H, 2.7 Hz); 7.15 (d, 1H, 8.7 Hz); 6.55 (dd, 1H, 2.7 et 8.7 Hz); 3.70 (s, 3H); 2.71 (brt, 4H); 2.45 (brs, 4H); 2.23 (s, 3H); 1.48 (s, 9H).

16D: la 5-[*N-tert*-butoxycarbonyl-5-méthoxy-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one

20 Le dérivé 16D est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (652 mg; 1.87 mmol); DMF (8 ml); NaH (50%, 125 mg, 3.11 mmol); 16C (500 mg, 1.56 mmol). Le dérivé 16D est purifié par chromatographie-éclair (0.5-5-95 = NH₄OH-MeOH-CH₂Cl₂).

25 <u>Masse obtenue</u>: 948 mg (86 %)

30

16: Le dérivé 16 est préparé selon la méthode utilisée pour 12 à partir des réactifs suivants: 16D (945 mg; 1.33 mmol); dichlorométhane (9 ml); Acide trifluoroacétique (4.5 ml). Le dérivé 16 est purifié par chromatographie-éclair (0.4-4-96 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 778 mg (96%)

Ce composé est dissous dans le méthanol et traité avec de l'acide chlorhydrique pour donner le chlorhydrate correspondant.

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 10.70 (brs, 1H); 7.54 (d, 2H, 7.6 Hz); 7.46 (t, 2H, 7.4 Hz); 7.38 (t, 1H, 7.2Hz); 7.00 (brs, 1H); 6.35 (brs, 2H); 4.61 (brd, 1H); 4.08

(brd, 1H); 3.70 (s, 3H); 3.49 (brd, 2H); 3.35-3.15 (m, 3H); 3.21 (brs, 2H); 3.00 (brd, 4H); 2.9-2.85 (m, 4H); 2.43 (brs, 2H); 2.15 (brd, 2H); 2.02 (brt, 1H); 1.85 (brt, 1H); 1.62 (brs, 4H).

5 Analyse élémentaire: C₂₉H₃₉N₅O₂; 1.8 HCl; 0.65 CF₃CO₂H; 0.43 H₂O

<u>Calculée</u>: $\dot{C} = 57.82$; H = 6.64; N = 11.13; Cl = 10.14<u>Trouvée</u>: C = 57.65; H = 6.90; N = 11.13; Cl = 10.23

Masse (DCI, NH3): 490 (MH+)

10

EXEMPLE 17

Le fumarate de la 5-[5-méthyl-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one (17)

15

17A: Le 4-(4-méthylpipérazin-1-yl)-3-nitrotoluène

Le 4-fluoro-3-nitrotoluène (7 g, 45 mmol) est dilué sous atmosphère d'azote dans le

DMF (13 ml) en présence de carbonate de potassium (7.46 g, 54 mmol) et 1méthylpipérazine (6 ml, 54 mmol) pendant 3 heures. Le milieu réactionnel est dilué
dans du dichlorométhane et lavé deux fois à l'eau. Le dérivé 17A est extrait de la
phase organique avec de l'acide chlorhydrique 1N, la phase aqueuse est lavée deux
fois avec de l'acétate d'éthyle puis de la soude à 30% dans l'eau est ajoutée. Le dérivé

17A est extrait de la phase aqueuse avec de l'acétate d'éthyle. La solution est séchée
sur sulfate de magnésium, filtrée et concentrée.

Masse obtenue: 8.64 g (81 %)

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ : 7.60 (brs, 1H); 7.40 (dd, 1H, 1.6 et 8.4 Hz); 7.23 (d, 1H, 8.4Hz); 2.92 (brt, 4H); 2.40 (brt, 4H); 2.25 (s, 3H); 2.20 (s, 3H).

17B: La 5-méthyl-2-(4-méthylpipérazin-1-yl)aniline

Dans un flacon de Parr, le composé <u>17A</u> (4.29 g, 18.2 mmol) est dissous dans du méthanol (200 ml) en présence de palladium (10% dans le charbon, 0.97g, 0.91 mmol). Le mélange est agité pendant 30 min sous une pression initiale de 30 Psi. La réaction est filtrée sur célite et concentrée sous pression réduite.

Masse obtenue: 3.47 g (93%)

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ : 6.95 (d, 1H, 8 Hz); 6.47 (d, 1H, 1.4 Hz); 6.09 (dd, 1H, 1.4 et 8 Hz); 4.60 (brs, 2H); 2.73 (brs, 4H); 2.45 (brs, 4H); 2.21 (s, 3H); 2.12 (s, 3H).

17C: La N-tert-butoxycarbonyl-5-méthyl-2-(4-méthylpipérazin-1-yl)aniline

Le dérivé 17B (6.63 g; 32 mmol) est dissous dans le toluène (800 ml) sous atmosphère d'azote en présence de di tert-butyldicarbonate (10.74 g; 48 mmol) et chauffé à 80°C pendant 20 heures. Le solvant est évaporé et le dérivé 17C est purifié par chromatographie-éclair avec un mélange d'éluants (1-5-95 = NH₄OH-MeOH-CH₂Cl₂).

20 <u>Masse obtenue</u>: 9.09 g (92%)

25

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ : 7.73 (s, 1H); 7.68 (s, 1H); 7.07 (d, 1H, 8 Hz); 6.80 (d, 1H, 8 Hz); 2.73 (brt, 4H); 2.46 (brs, 4H); 2.24 (s, 3H); 2.23 (s, 3H); 1.47 (s, 9H).

17D: la 5-[N-tert-butoxycarbonyl-5-méthyl-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one

Le dérivé 17D est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (766 mg; 2.19 mmol); DMF (55 ml); NaH (60%, 130 mg, 3.26 mmol);

30 <u>17C</u> (500 mg, 1.63 mmol). Le dérivé <u>17D</u> est purifié par chromatographie-éclair (1-4-96 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 842 mg (90 %)

35 <u>17</u>: Le dérivé <u>17</u> est préparé selon la méthode utilisée pour <u>12</u> à partir des réactifs suivants: <u>17D</u> (834 mg; 1.45 mmol); dichlorométhane (40 ml); Acide trifluoroacétique (6.8 ml). Le dérivé <u>17</u> est purifié par chromatographie-éclair (1-3-97 = NH₄OH-MeOH-CH₂Cl₂).

10

15

30

Masse obtenue: 575 mg (83%)

Ce composé est dissous dans le méthanol et traité avec de l'acide trifluoroacétique pour donner le trifluoroacétate correspondant.

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ: 9.69 (brs, 1H); 7.54 (d, 2H, 7.6 Hz); 7.46 (t, 2H, 7.4 Hz); 7.38 (t, 1H, 7.2Hz); 6.86 (d, 1H, 7.8Hz); 6.45 (s, 1H); 6.42 (d, 1H, 7.8Hz); 4.61 (brd, 1H); 4.08 (brd, 1H); 3.48 (brd, 2H); 3.35-3.15 (m, 3H); 3.15-2.95 (m, 4H); 2.95-2.75 (m, 6H); 2.43 (brs, 2H); 2.19 (s, 3H); 2.15 (brd, 2H); 2.02 (brt, 1H); 1.85 (brt, 1H); 1.62 (brs, 4H).

EXEMPLE 18

Le fumarate de la 5-[5-fluoro-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4cyano-4-phénylpipéridin-1-yl)pentan-1-one (18)

18A: Le 5-fluoro-2-(4-méthylpipérazin-1-yl)nitrobenzène

20 Le 2,5-difluoronitrobenzène (4.37 g, 27.5 mmol) est dilué sous atmosphère d'azote et à 0°C dans le DMF (8 ml) en présence de carbonate de potassium (4.55 g, 33.0 mmol) et 1-méthylpipérazine (3.65 ml, 33.0 mmol) pendant 20 minutes. Le milieu réactionnel est dilué dans du dichlorométhane et lavé deux fois à l'eau. Le dérivé 18A est extrait de la phase organique avec de l'acide chlorhydrique 1N, la phase aqueuse est lavée deux fois avec de l'acétate d'éthyle puis de la soude à 30% dans l'eau est ajoutée. Le dérivé 18A est extrait de la phase aqueuse avec de l'acétate d'éthyle. La solution est séchée sur sulfate de magnésium, filtrée et concentrée.

Masse obtenue: 5.06 g (77 %)

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ: 7.80 (dd, 1H, 3 et 8.4 Hz); 7.51 (ddd, 1H, 3 et 8 et 9 Hz Hz); 7.43 (dd, 1H, 5 et 9 Hz); 2.93 (brt, 4H); 2.40 (brt, 4H); 2.20 (s, 3H).

18B: La 5-fluoro-2-(4-méthylpipérazin-1-yl)aniline

Dans un flacon de Parr, le composé <u>18A</u> (5.06 g, 21.1 mmol) est dissous dans du méthanol (150ml) en présence de palladium (10% dans le charbon, 1.12 g, 1.05 mmol). Le mélange est agité pendant 30 minutes sous une pression initiale de 30 Psi. La réaction est filtrée sur célite et concentrée sous pression réduite.

Masse obtenue: 4.01 g (90%)

10 <u>1H-RMN</u> (400 MHz, dmso-d₆) δ: 6.87 (dd, 1H, 6.1 et 8.6 Hz); 6.43 (dd, 1H, 3.0 et 11.1 Hz); 6.27 (td, 1H, 2.9 et 8.7 Hz); 5.00 (brs, 2H); 2.74 (brs, 4H); 2.46 (brs, 4H); 2.22 (s, 3H).

18C: La N-tert-butoxycarbonyl-5-fluoro-2-(4-méthylpipérazin-1-yl)aniline

- Le dérivé <u>18B</u> (1.94 g ; 9.27 mmol) est dissous dans le toluène (230 ml) sous atmosphère d'azote en présence de di *tert*-butyldicarbonate (2.42 g; 11.1 mmol) et chauffé à 80°C pendant 48 heures. Le solvant est évaporé et le dérivé <u>18C</u> est purifié par chromatographie-éclair (1-3-97 = NH₄OH-MeOH-CH₂Cl₂).
- 20 Masse obtenue: 1.22 g (42%)

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 7.90 (s, 1H); 7.69 (dd, 1H, 2.9 et 11.2 Hz); 7.26 (dd, 1H, 6.0 et 8.8 Hz); 6.81 (td, 1H, 3 et 5.6 Hz); 2.75 (brt, 4H); 2.48 (brs, 4H); 2.24 (s, 3H); 1.48 (s, 9H).

25

30

18D: la 5-[N-tert-butoxycarbonyl-5-méthyl-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one

Le dérivé 18D est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (699 mg; 2.00 mmol); DMF (50 ml); NaH (60%, 123 mg, 2.00 mmol); 18C (477 mg, 1.54 mmol). Le dérivé 18D est purifié par chromatographie-éclair (1-3-97 = NH4OH-MeOH-CH₂Cl₂).

Masse obtenue: 227 mg (25 %)

18: Le dérivé 18 est préparé selon la méthode utilisée pour 12 à partir des réactifs suivants: 18D (220 mg; 0.38 mmol); dichlorométhane (10 ml); Acide trifluoroacétique (1.7 ml). Le dérivé 18 est purifié par chromatographie-éclair (0.5-3-97 = NH4OH-MeOH-CH₂Cl₂).

Masse obtenue: 129 mg (71%)

 $\frac{1_{H-RMN}}{1_{H-RMN}}$ (400 MHz, dmso-d₆) δ : 7.54 (d, 2H, 7.7Hz); 7.4 (t, 2H, 7.8 Hz); 7.38 (t, 1H, 7.2 Hz); 6.93 (dd, 1H, 6.2 et 8.5 Hz); 6.34 (dd, 1H, 2.8 et 11.8 Hz); 6.27 (td, 1H, 2.8 et 8.6 Hz); 5.07 (brt, 1H); 4.62 (brd, 1H); 4.08 (brd, 1H); 3.30 (brt, 1H); 3.09 (brs, 2H); 2.81 (brt, 1H); 2.67 (brs, 4H); 2.50 (brs, 2H); 2.43 (brs, 4H); 2.21 (s, 3H); 2.15 (brd, 2H); 2.02 (brt, 1H); 1.85 (brt, 1H); 1.60 (brs, 4H).

EXEMPLE 19

10

Le fumarate de la 5-[4-méthyl-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one (19)

15

19A: Le 3-(4-méthylpipérazin-1-yl)-4-nitrotoluène

Le 3-fluoro-4-nitrotoluène (5.0 g, 32 mmol) est dilué sous atmosphère d'azote dans le DMF (10 ml) en présence de carbonate de potassium (5.34 g, 39 mmol) et 1-méthylpipérazine (4.3 ml, 39 mmol) pendant 5 minutes. Le milieu réactionnel est dilué dans du dichlorométhane et lavé deux fois à l'eau. Le dérivé 19A est extrait de la phase organique avec de l'acide chlorhydrique 1N, la phase aqueuse est lavée deux fois avec de l'acétate d'éthyle puis de la soude à 30% dans l'eau est ajoutée. Le dérivé 19A est extrait de la phase aqueuse avec de l'acétate d'éthyle. La solution est séchée sur sulfate de magnésium, filtrée et concentrée.

25

20

Masse obtenue: 6.89 g (90 %)

 $\frac{1 \text{H-RMN}}{8.4 \text{ Hz}}$ (400 MHz, dmso-d₆) δ : 7.71 (d, 1H, 8.3 Hz); 7.10 (s, 1H); 6.89 (d, 1H, 8.4 Hz); 2.97 (brt, 4H); 2.42 (brt, 4H); 2.35 (s, 3H); 2.21 (s, 3H).

30

19B: La 4-méthyl-2-(4-méthylpipérazin-1-yl)aniline

Dans un flacon de Parr, le composé 19A (6.8 g, 29 mmol) est dissous dans du méthanol (220 ml) en présence de palladium (10% dans le charbon, 1.53 g, 1.44

mmol). Le mélange est agité pendant 30 min sous une pression initiale de 30 Psi. La réaction est filtrée sur célite et concentrée sous pression réduite.

Masse obtenue: 5.59 g (94%)

5

 $\frac{1}{1}$ H-RMN (400 MHz, dmso-d₆) δ : 6.69 (s, 2H); 6.65-6.50 (m, 3H); 4.45 (brs, 2H); 2.77 (brs, 4H); 2.46 (brs, 4H); 2.22 (s, 3H); 2.14 (s, 3H).

19C: La N-tert-butoxycarbonyl-4-méthyl-2-(4-méthylpipérazin-1-yl)aniline

10 Le dérivé <u>19B</u> (5.0 g ; 24 mmol) est dissous dans le toluène (600 ml) sous atmosphère d'azote en présence de di *tert*-butyldicarbonate (8.0 g; 37 mmol) et chauffé à 80°C pendant 20 heures. Le solvant est évaporé et le dérivé <u>19C</u> est purifié par chromatographie-éclair (1-3-97 = NH₄OH-MeOH-CH₂Cl₂).

15 <u>Masse obtenue</u>: 7.07 g (93%)

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ : 6.7-6.6 (m, 2H); 7.01 (s, 1H); 6.86 (d, 1H, 8 Hz); 2.76 (brt, 4H); 2.47 (brs, 4H); 2.23 (s, 6H); 1.46 (s, 9H).

19D: la 5-[N-tert-butoxycarbonyl-4-méthyl-2-(4-méthylpipérazin-1-yl)phénylamino]-1-(4-cyano-4-phénylpipéridin-1-yl)pentan-1-one
Le dérivé 19D est préparé selon la méthode utilisée pour 3B à partir des réactifs suivants: 3A (740 mg; 2.11 mmol); DMF (54 ml); NaH (60%, 65 mg, 1.6 mmol); 19C (500 mg, 1.63 mmol). Le dérivé 19D est purifié par chromatographie-éclair (0.75-3-97 = NH4OH-MeOH-CH₂Cl₂).

Masse obtenue: 606 mg (65 %)

19: Le dérivé 19 est préparé selon la méthode utilisée pour 12 à partir des réactifs
 suivants: 19D (589 mg; 1.02 mmol); dichlorométhane (30 ml); Acide trifluoroacétique (5.1 ml). Le dérivé 19 est purifié par chromatographie-éclair (1-3-97 = NH₄OH-MeOH-CH₂Cl₂).

Masse obtenue: 426 mg (88%)

35

Ce composé est dissous dans le méthanol et traité avec de l'acide fumarique pour donner le fumarate correspondant.

<u>1H-RMN</u> (400 MHz, dmso-d₆) δ: 7.54 (d, 2H, 7.6 Hz); 7.45 (t, 2H, 7.2 Hz); 7.37 (t, 1H, 7.2 Hz); 6.80-6.65 (m, 2H); 6.59 (s, fumarate); 6.48 (d, 1H, 8 Hz); 4.61 (brd, 1H); 4.08 (brd, 1H); 3.29 (brt, 1H); 3.04 (brs, 2H); 2.79 (brs, 5H); 2.63 (brs, 3H); 2.50 (brs, 2H); 2.42 (brs, 2H); 2.31 (s, 3H); 2.15 (s, 3H); 2.2-2.05 (m, 2H); 2.00 (brt, 1H); 1.88 (brt, 1H); 1.59 (brs, 4H).

Analyse élémentaire: C29H39N5O; 1.1 C4H4O4; 0.34 H2O

<u>Calculée</u>: C = 66.71; H = 7.27; N = 11.65<u>Trouvée</u>: C = 66.96; H = 7.25; N = 11.70

10

Rf: 0.41 (1-6-94 = NH₄OH-MeOH-CH₂Cl₂)

Les dérivés de la présente invention sont des antagonistes des récepteurs 5HT_{1B/1D} comme le montrent les études de liaison et les études d'antagonisme de l'inhibition de l'adénylate cyclase (stimulée par la forskoline) par un agoniste tel que la sérotonine, le sumatriptan ou la 5-CT, études qui ont été réalisées au niveau des récepteurs humains clonés 5HT_{1B/1D}. Ces récepteurs humains ont été clonés selon les sequences publiées par M. Hamblin et M. Metcalf, Mol. Pharmacol., 40,143 (1991) et Weinshenk et coll., Proc. Natl. Acad. Sci 89,3630 (1992).

La transfection transitoire et la transfection permanente des gènes de ces récepteurs a été réalisée dans des lignées cellulaires Cos-7 et CHO-K₁ en utilisant un électroporateur.

La lignée cellulaire HeLa HA7 exprimant le récepteur 5HT_{1A} humain a été obtenue de Tulco (Duke Univ., Durham, N.C., USA) et cultivée selon la méthode de Fargin et coll., J. Biol. Chem. <u>264</u>,14848 (1989).

30

25

L'étude de la liaison des dérivés de la présente invention avec les récepteurs 5HT_{1B} et 5HT_{1D} et 5HT_{1A} humains a été réalisée selon la méthode décrite par P. Pauwels et C. Palmier (Neuropharmacology, <u>33</u>,67,1994).

Les milieux d'incubation pour ces mesures de liaison comprennent 0.4 ml de préparation de membrane cellulaire, 0.05 ml d'un ligand tritié [3H]-8OH-DPAT (concentration finale : 1 nM) pour le récepteur 5HT_{1A} et 0.05 ml de la molécule à tester (concentrations finales de 0.1 nM à 1 000 nM) ou 10 μM (concentration finale)

de sérotonine (5HT_{1B} et 5HT_{1D}) ou 1 μ M (concentration finale) de spiroxatrine (5HT_{1A}).

L'étude de l'inhibition de la formation d'AMP cyclique (stimulée par la forskoline) médiée par les récepteurs 5HT_{1B} et 5HT_{1D} humains a été réalisée dans des cellules transfectées par le récepteur selon une technique décrite préalablement (P. Pauwels et C. Palmier, Neuropharmacology, <u>33</u>,67,1994; Cell. Pharmacol. <u>2</u>,183,1995; Cell. Pharmacol. <u>2</u>,49,1995; Eur. J. of Pharmacol. (Mol. Pharm.) <u>290</u>,95,1995).

Les nouveaux composés dérivés de pipéridines di-substituées faisant partie de la présente invention sont des antagonistes puissants et sélectifs des récepteurs 5HT_{1B/1D} et présentent l'avantage d'être particulièrement sélectifs pour les récepteurs 5HT_{1B/1D} humains en particulier par rapport aux récepteurs 5HT_{1A}, 5HT_{1C}, 5HT₂, α₁, α₂ et D₂.

15

20

35

5

Les dérivés de la présente invention sont en outre capables d'inhiber la contraction induite par la 5-hydroxytryptamine dans les anneaux de veine saphène de lapin et d'antagoniser l'inhibition induite par la 5-carboxamidotryptamine (5CT) au niveau de la libération de sérotonine dans les tranches de cerveau de cobaye. Ces deux modèles pharmacologiques sont généralement reconnus comme particulièrement pertinents dans la caractérisation fonctionnelle des récepteurs 5HT_{1D/1B} et, dans le cas des produits de la présente invention, permettent de mettre en évidence leur activité antagoniste au niveau de ces récepteurs.

Ces propriétés des antagonistes 5HT_{1D/1B} revendiqués dans la présente invention les rendent particulièrement intéressants et utiles pour le traitement des patients souffrant de désordres au niveau du système nerveux central. De ce fait, la présente invention comprend également une méthode pour traiter de tels patients, méthode qui met en oeuvre l'administration d'une dose active d'un composé répondant à la formule générale (I).

Par ailleurs, les dérivés de la présente invention sont également capables de contrôler la croissance et la prolifération de cellules gliales de type C₆ transfectées par le gène du récepteur 5HT_{1D} et par le gène du récepteur 5HT_{1B} stimulées par un médiateur hormonal tei que la sérotonine. A titre d'exemple, les exemples de la présente invention inhibent l'incorporation de thymidine marquée (stimulée par 0.1µM de sumatriptan) avec une CI₅₀ de 10 à 1000 nM (méthode décrite par P. Pauwels et coll., Naunyn-Schmiedeberg's Arch. Pharmacol., 354,136,1996). A ce titre, les

15

20

25

30

35

dérivés de la présente invention trouvent donc également leur utilité dans le traitement de cancers et autres désordres liés à la prolifération cellulaire.

Doivent également être considérées comme faisant partie de la présente invention les compositions pharmaceutiques contenant à titre d'ingrédients actifs, un composé de formule générale (I) ou un sel physiologiquement acceptable d'un composé de formule (I) associé à un ou plusieurs agents thérapeutiques, tels que, par exemple des agents antidépresseurs comme les antidépresseurs tricycliques (par exemple amitryptyline, clomipramine, desipramine, imipramine), les inhibiteurs de mono-amine oxydase (par exemple isocarboxazide, moclobemide, phenelzine ou tranylcyclopramine), les inhibiteurs de re-uptake de sérotonine (par exemple fluvoxamine, sertraline, fluoxetine, paroxetine ou citalopram), les inhibiteurs de re-uptake de sérotonine et nor-adrénaline (par exemple le milnacipran), ou les antagonistes a₂ (par exemple mianserine, mirtazapine, setiptiline, idazoxan, effaroxan, fluparoxan).

Les dérivés de la présente invention ou leurs sels physiologiquement acceptables peuvent également être administrés sous forme de compositions pharmaceutiques, en association avec un antagoniste du récepteur 5-HT_{1A} (tel que, par exemple le pindolol, le WAY 100135, le UH-301 ou le WAY 100635). Cette association fait également partie de la présente invention.

La présente invention a également pour objet les compositions pharmaceutiques contenant comme principe actif un composé de formule générale (I) ou un de ses sels acceptables pour l'usage pharmaceutique, mélangé ou associé à un excipient approprié. Ces compositions peuvent revêtir, par exemple, la forme de compositions solides, liquides, d'émulsions, lotions ou crèmes.

Comme compositions solides pour administration orale, peuvent être utilisés des comprimés, des pilules, des poudres (capsules de gélatine, cachets) ou des granulés. Dans ces compositions, le principe actif selon l'invention est mélangé à un ou plusieurs diluants inertes, tels que amidon, cellulose, saccharose, lactose ou silice, sous courant d'argon. Ces compositions peuvent également comprendre des substances autres que les diluants, par exemple un ou plusieurs lubrifiants tels que le stéarate de magnésium ou le talc, un colorant, un enrobage (dragées) ou un vernis.

Comme compositions liquides pour administration orale, on peut utiliser des solutions, des suspensions, des émulsions, des sirops et des élixirs

pharmaceutiquement acceptables contenant des diluants inertes tels que l'eau, l'éthanol, le glycérol, les huiles végétales ou l'huile de paraffine. Ces compositions peuvent comprendre des substances autres que les diluants, par exemple des produits mouillants, édulcorants, épaississants, aromatisants ou stabilisants.

5

10

15

Les compositions stériles pour administration parentérale, peuvent être de préférence des solutions aqueuses ou non aqueuses, des suspensions ou des émulsions. Comme solvant ou véhicule, on peut employer l'eau, le propylèneglycol, un polyéthylèneglycol, des huiles végétales, en particulier l'huile d'olive, des esters organiques injectables, par exemple l'oléate d'éthyle ou autres solvants organiques convenables. Ces compositions peuvent également contenir des adjuvants, en particulier des agents mouillants, isotonisants, émulsifiants, dispersants et stabilisants. La stérilisation peut se faire de plusieurs façons, par exemple par filtration aseptisante, en incorporant à la composition des agents stérilisants, par irradiation ou par chauffage. Elles peuvent également être préparées sous forme de compositions solides stériles qui peuvent être dissoutes au moment de l'emploi dans de l'eau stérile ou tout autre milieu stérile injectable.

Les compositions pour administration rectale sont les suppositoires ou les capsules rectales qui contiennent, outre le produit actif, des excipients tels que le beurre de cacao, des glycérides semi-synthétiques ou des polyéthylèneglycols.

Les compositions pour administration topique peuvent être par exemple des crèmes, lotions, collyres, collutoires, gouttes nasales ou aérosols.

25

30

35

Les doses dépendent de l'effet recherché, de la durée du traitement et de la voie d'administration utilisée; elles sont généralement comprises entre 0,001 g et 1 g (de préférence comprises entre 0,005 g et 0,25 g) par jour de préférence par voie orale pour un adulte avec des doses unitaires allant de 0,1 mg à 500 mg de substance active, de préférence de 1 mg à 50 mg.

D'une façon générale, le médecin déterminera la posologie appropriée en fonction de l'âge, du poids et de tous les autres facteurs propres au sujet à traiter. Les exemples suivants illustrent des compositions selon l'invention [dans ces exemples, le terme "composant actif" désigne un ou plusieurs (généralement un) des composés de formule (I) selon la présente invention]:

Comprimés

On peut les préparer par compression directe ou en passant par une granulation au mouillé. Le mode opératoire par compression directe est préféré mais il peut ne pas convenir dans tous les cas selon les doses et les propriétés physiques du composant actif.

A - Par compression directe

10		mg pour 1 comprimé
	composant actif	10,0
	cellulose microcristalline B.P.C.	89,5
	stéarate de magnésium	<u>0,5</u>
		100,0

15

On passe le composant actif au travers d'un tamis à ouverture de maille de 250 µm de côté, on mélange avec les excipients et on comprime à l'aide de poinçons de 6,0 mm. On peut préparer des comprimés présentant d'autres résistances mécaniques en modifiant le poids de compression avec utilisation de poinçons appropriés.

20

25

B - Granulation au mouillé

	mg pour un comprime
composant actif	10,0
lactose Codex	74,5
amidon Codex	10,0
amidon de maïs prégélatinisé Codes	x 5,0
stéarate de magnésium	0,5
Poids à la compression	100,0

On fait passer le composant actif au travers d'un tamis à ouverture de maille de 250 µm et on mélange avec le lactose, l'amidon et l'amidon prégélatinisé. On humidifie les poudres mélangées par de l'eau purifiée, on met à l'état de granulés, on sèche, on tamise et on mélange avec le stéarate de magnésium. Les granulés lubrifiés sont mis en comprimés comme pour les formules par compression directe. On peut appliquer sur les comprimés une pellicule de revêtement au moyen de matières filmogènes appropriées, par exemple la méthylcellulose ou l'hydroxy-propyl-méthyl-cellulose, selon des techniques classiques. On peut également revêtir les comprimés de sucre.

Capsules

		mg pour une capsule
	composant actif	10,0
5	*amidon 1500	89,5
	stéarate de magnésium Codex	<u>0.5</u>
	Poids de remplissage	100,0

^{*}une forme d'amidon directement compressible provenant de la firme Colorcon Ltd, Orpington, Kent, Royaume Uni.

10

15

30

On fait passer le composant actif au travers d'un tamis à ouverture de maille de 250 µm et on mélange avec les autres substances. On introduit le mélange dans des capsules de gélatine dure n°2 sur une machine à remplir appropriée. On peut préparer d'autres unités de dosage en modifiant le poids de remplissage et, lorsque c'est nécessaire, en changeant la dimension de la capsule.

Sirop

			mg par dose de 5 ml
C	omposant actif		10,0
20 s	accharose Codex		2750,0
g	lycérine Codex		500,0
ta	ampon)	
a	rôme)	
C	olorant)	q.s.
25 p	réservateur)	
е	au distillée		5,0

On dissout le composant actif, le tampon, l'arôme, le colorant et le préservateur dans une partie de l'eau et on ajoute la glycérine. On chauffe le restant de l'eau à 80°C et on y dissout le saccharose puis on refroidit. On combine les deux solutions, on règle le volume et on mélange. Le sirop obtenu est clarifié par filtration.

Suppositoires

Composant actif

10,0 mg

*Witepsol H15 complément à

1,0 g

5 *Marque commercialisée pour Adeps Solidus de la Pharmacopée Européenne.

On prépare une suspension du composant actif dans le Witepsol H15 et on l'introduit dans une machine appropriée avec moules à suppositoires de 1 g.

10 Liquide pour administration par injection intraveineuse

composant actif 2,0
eau pour injection Codex complément à 1000,0

On peut ajouter du chlorure de sodium pour régler la tonicité de la solution et régler le pH à la stabilité maximale et/ou pour faciliter la dissolution du composant actif au moyen d'un acide ou d'un alcali dilué ou en ajoutant des sels tampons appropriés. On prépare la solution, on la clarifie et on l'introduit dans des ampoules de dimension appropriée qu'on scelle par fusion du verre. On peut également stériliser le liquide pour injection par chauffage à l'autoclave selon l'un des cycles acceptables. On peut également stériliser la solution par filtration et introduire en ampoule stérile dans des conditions aseptiques. La solution peut être introduite dans les ampoules en atmosphère gazeuse.

25 Cartouches pour inhalation

g/cartouche

composant actif micronisé

1,0

lactose Codex

39,0

Le composant actif est micronisé dans un broyeur à énergie de fluide et mis à l'état de fines particules avant mélange avec du lactose pour comprimés dans un mélangeur à haute énergie. Le mélange pulvérulent est introduit en capsules de gélatine dure n°3 sur une machine à encapsuler appropriée. Le contenu des cartouches est administré à l'aide d'un inhalateur à poudre.

Aérosol sous pression à valve doseuse	<u>Aérosol</u>	sous	pression	à	va	ve	doseuse
---------------------------------------	----------------	------	----------	---	----	----	---------

		mg/dose	pour 1 boite
	composant actif micronisé	0,500	120 mg
	acide oléique Codex	0,050	12 mg
5	trichlorofluorométhane pour usage		
	pharmaceutique	22,25	5,34 g
	dichlorodifluorométhane		
	pour usage pharmaceutique	60,90	14,62 g

Le composant actif est micronisé dans un broyeur à énergie de fluide et mis à l'état de fines particules. On mélange l'acide oléique avec le trichlorofluorométhane à une température de 10-15°C et on introduit dans la solution à l'aide d'un mélangeur à haut effet de cisaillement le médicament micronisé. La suspension est introduite en quantité mesurée dans des boîtes aérosol en aluminium sur lesquelles on fixe des valves doseuses appropriées délivrant une dose de 85 mg de la suspension ; le dichlorodifluorométhane est introduit dans les boites par injection au travers des valves.

10

15

35

REVENDICATIONS

1. Composés répondant à la formule générale (I);

$$R_1$$
 $N-Z-Ar-N$
 $N-R_3$
(I)

dans laquelle,

R₁ représente R'₁, OR'₁, SR'₁, NHR'₁, COR'₁, CHOHR'₁, CH₂R'₁, dans lesquels R'₁ représente un reste aryle choisi parmi un phényle, un naphtyle ou un pyridyle pouvant éventuellement être substitués par un ou plusieurs groupes choisis parmi un alkyle linéaire ou ramifié comprenant de 1 à 5 atomes de carbone, un halogène (Cl, F, Br ou I), OH, OR₄, SR₄, CF₃, CH₂CF₃, NO₂, CN, COR₄, COOR₄, NHR₄, NHCOR₄, NHCOOR₄, NHSO₂R₄, SO₂R₄ dans lesquels R₄ représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone;

R2 représente un halogène (Cl, F, Br), OH, NH2, CN, NO2, R'2, OR'2, SR'2, NHR'2, COR'2, CHOHR'2, COOR'2, NHCOR'2, NHCOOR'2, NHSO2R'2, OCONHR'2, dans lesquels R'2 représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone, un aryl ou un alkylaryl dans lesquels le reste aryle est choisi parmi un phényle, un naphtyle ou un pyridyle pouvant éventuellement être substitués par un ou plusieurs groupes choisis parmi un alkyle linéaire ou ramifié comprenant de 1 à 5 atomes de carbone, un halogène (Cl, F, Br ou I), OH, OR'4, SR'4, CF3, CH2CF3, NO2, CN, COR'4, COOR'4, NHR'4, NHCOR'4, NHCOOR'4, NHSO2R'4, SO2R'4 dans lesquels R'4 représente une chaîne alkyle linéaire ou ramifiée comprenant de 1 à 5 atomes de carbone, étant entendu que lorsque R1 représente OR'1, SR'1 ou NHR'1 alors R2 représente obligatoirement R'2, COOR'2, COR'2 ou CHOHR'2;

Z représente CO-(CH₂)_n-O, CO-(CH₂)_n-NH, (CH₂)_m-O, (CH₂)_m-NH, CO-(CH₂)_p-CONH-, (CH₂)_p-CONH, CO-(CH₂)_p-NHCONH-, (CH₂)_m-NHCONH, -CO(CH₂)_p-NHCOO-, (CH₂)_m-NHCOO, dans lesquels n représente zer ou un nombre entier compris entre 1 et 8, m représente un nombre entier compris entre 2 et 8 et p représente un nombre entier c mpris entre 1 et 8; Ar représente un radical aromatique tel qu'un phényle

10

15

20

25

35

ou un naphtyle auquel Z et la pipérazine sont attachés sur des carbones différents et pouvant lui-même être diversement substitué par un ou plusieurs substituants choisis parmi un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, un alkoxy (OR5 dans lequel R5 représente un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone), ou un halogène (Cl, Br, F ou I);

R₃ représente un radical alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone,

et leurs sels hydrates, solvates et bioprécurseurs physiologiquement acceptables pour l'usage thérapeutique,

Les isomères géométriques et optiques des composés de formule générale (I) faisant également partie de la présente invention ainsi que leurs mélanges en particulier sous forme racémique.

2. Composés selon la revendication 1 caractérisés en ce qu'ils correspondent à la formule (Ia)

$$R_1$$
 $N-Z$
 R_2
 R'_5
(Ia)

dans laquelle R₁, R₂ et Z sont définis comme dans la formule (I) et R'5 représente H, OCH₃, CH₃ ou Cl.

 Composés selon la revendication 1 caractérisés en ce qu'ils correspondent à la formule (Ib)

$$R_1$$
 R_2
 $N-Z$

5

(Ib)

dans laquelle R₁, R₂ et Z sont définis comme dans la formule générale (I).

- Composés selon l'une des revendications 1 a 3, caractérisés en ce que R₃
 représente un méthyle.
 - 5. Composés selon l'une des revendications 1 à 4, caractérisés en ce que Z représente CO(CH₂)_nO ou CO(CH₂)_nNH.
- Composés selon l'une des revendications 1 à 4, caractérisés en ce que Z représente (CH₂)_mO ou (CH₂)_mNH.
 - 7. Composés selon l'une des revendications 5 à 6, caractérisés en ce que R₁ représente R'₁ ou CH₂R'₁.

25

35

- 8. Composés selon l'une des revendications 6 à 7, caractérisés en ce que R₂ représente CN, OH, OR'₂ ou R'₂.
- Composés selon l'une des revendications 1 à 7, caractérisés en ce que R₂
 représente NH₂ ou NHR'₂.
 - 10. Composés selon l'une des revendications 1 à 9 à l'état de sels acceptables pour l'usage thérapeutique caractérisés en ce que ces sels sont des chlorhydrates, bromhydrates, sulfates, méthanesulfonates, fumarates, maléates, succinates, phosphates, acétates, benzoates, naphtoates, p-toluenesulfonates, sulfamates, ascorbates, tartrates, citrates, salicylates, lactates, glutarates ou glutaconates.

10

15

20

25

30

35

11. Procédé de préparation des composés de formule (I) dans laquelle Z représente CO(CH₂)_nO, CO(CH₂)_nNH, CO(CH₂)_pCONH, CO(CH₂)_pNHCONH, CO(CH₂)_pOCONH ou CO(CH₂)_pNHCOO (dans lesquels n est different de zéro) selon la revendication 1, caractérisé en ce que l'on condense une pipéridine de formule générale (II)

$$R_1$$
 NH R_2 (II)

dans laquelle R₁ et R₂ sont définis comme dans la formule générale (I), avec un électrophile de formule générale (III)

$$Z'-Ar-N$$
 $N-R_3$

(III)

dans laquelle Ar et R₃ sont définis comme dans la formule générale (I) et Z' représente respectivement soit LCO(CH₂)_nO, LCO(CH₂)_nNH, LCO(CH₂)_pCONH, LCO(CH₂)_pNHCONH, LCO(CH₂)_pOCONH ou LCO(CH₂)_pNHCOO dans lesquels n et p sont des nombres entiers compris entre 1 et 8, et L représente OH, Cl ou encore le groupe "LCO" représente une forme activée d'un acide carboxylique, pour préparer un amide par condensation d'une amine avec un acide carboxylique ou un de ses dérivés.

12. Procédé de préparation des composés de formule (I) dans laquelle Z représente (CH₂)_mO, (CH₂)_mNH, (CH₂)_pCONH, (CH₂)_mNHCONH, (CH₂)_mOCONH ou (CH₂)_mNHCOO caractérisé en ce que l'on condense une pipéridine de formule (II) telle que définie dans la revendication 11 avec un électrophile de formule (III) dans laquelle Ar et R₃ sont définis comme dans la revendication 1 et Z' représente X-Z dans laquelle X représente un groupe partant tel qu'un halogène (chlore, brome ou iode), un O-tosyle, un O-mésyle ou un O-

20

35

trifluorométhanesulfonyle, en présence d'une base organique ou inorganique dans un solvant aprotique polaire.

13. Procédé de préparation d'un composé de formule (I) dans laquelle Z représente

COO ou CONH caractérisé en ce que l'on condense une pipéridine de formule

(II) telle que définie dans la revendication 11 et un dérivé de pipérazine aromatique de formule générale (IV)

$$10 HY-Ar-N N-R_3$$

(IV)

dans laquelle R₃ et Ar sont définis comme dans la revendication 1 alors que Y représente O ou NH, avec un électrophile de formule générale (V)

(V)

- dans laquelle X₁ et X₂ représentent un groupe partant tel que par exemple Cl ou OCCl₃, en présence éventuelle d'une base inorganique ou organique telle qu'une amine tertiaire, dans un solvant aprotique polaire.
- 14. Compositions pharmaceutiques contenant à titre d'ingrédients actifs, un composé selon l'une des revendications 1 à 10, en combinaison avec un véhicule pharmaceutiquement acceptable.
 - 15. Compositions pharmaceutiques selon la revendication 14, pour le traitement tant curatif que préventif de la dépression et des désordres ou troubles compulsifs obsessionnels.
 - 16. Compositions pharmaceutiques selon la revendication 14, pour le traitement tant curatif que préventif de l'anxiété et des attaques de panique, de la schizophrénie,

de l'agressivité, de la boulimie, de l'alcoolisme, de la douleur et des maladies neurodégénératives comme les maladies de Parkinson ou d'Alzheimer.

- 17. Compositions selon la revendication 14, pour le traitement tant curatif que préventif des cancers.
 - 18. Compositions pharmaceutiques selon l'une des revendications 14 à 17, caractérisées en ce qu'elles contiennent, en outre, au moins un second principe actif associé, doté de propriétés antidépressives, en particulier, le MILNACIPRAN et/ou un antagoniste 5HT_{1A}.

INTERNATIONAL SEARCH REPORT

Inter Inal Application No PCT/FR 98/00068

		1 1017	FR 98/0008
A. CLASS	IFICATION OF SUBJECT MATTER C07D211/64 A61K31/495 C07D21	1/52 C07D211/16	C07D211/32
According t	io International Patent Classification(IPC) or to both national classi	ification and IPC	
	SEARCHED		
Minimum di IPC 6	ocumentation searched (classification system followed by classific $C07D-A61K$	ation symbols)	
Documenta	tion searched other than minimum documentation to the extent tha	t such documents are included in th	e fields searched
Electronic d	lata base consulted during the international search (name of data	base and, where practical, search to	arms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
A	WO 96 02525 A (PF MEDICAMENT ;H (FR); JORAND CATHERINE (FR); PAI February 1996 see claims & FR 9 408 981 A cited in the application	ALAZY SERGE UWELS P) 1	1-18
P,X	WO 97 14689 A (PF MEDICAMENT ;HA (FR); LAMOTHE MARIE (FR)) 24 Apo see the whole document	ALAZY SERGE ril 1997	1-18
P,X	WO 97 28140 A (PF MEDICAMENT ;H/ (FR); JORAND LEBRUN CATHERINE (I August 1997 see the whole document 	ALAZY SERGE FR); PA) 7	1-18
Furth	ner documents are listed in the continuation of box C.	χ Patent family members a	are listed in soney
<u> </u>	legories of cited documents :		
"A" docume consid "E" earlier of fliting d. "L" docume which is catation "O" docume other n "P" docume later th	ant defining the general state of the art which is not ered to be of particular relevance focument but published on or after the international ate in which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) and referring to an oral disclosure, use, exhibition or means and published prior to the international filing date but an the priority date claimed	cited to understand the print invention "X" document of particular releva cannot be considered novel involve an inventive step wh "Y" document of particular releva cannot be considered to inv document is combined with	inflict with the application but ciple or theory underlying the ince; the claimed invention or cannot be considered to en the document is taken alone nee; the claimed invention olve an inventive step when the one or more other such docuing obvious to a person skilled
	actual completion of theinternational search	Date of mailing of the interna	tional search report
	April 1998	08/04/1998	
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nt, Fax: (+31-70) 340-3016	Authorized officer De Jona B	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter mal Application No PCT/FR 98/00068

		1	,
Patent document ited in search report	Publication date	Patent family member(s)	Publication date
NO 9602525 A	01-02-96	FR 2722788 A AU 3080895 A CA 2195427 A EP 0773937 A	26-01-96 16-02-96 01-02-96 21-05-97
NO 9714689 A	24-04-97	FR 2740134 A AU 7306096 A	25-04-97 07-05-97
NO 9728140 A	07-08-97	FR 2744448 A AU 1607097 A	08-08-97 22-08-97

RAPPORT DE RECHERCHE INTERNATIONALE

Den # Internationale No PCT/FR 98/00068

		PCI/FR 9	8/ 0008
CIB 6	EMENT DE L'OBJET DE LA DEMANDE CO7D211/64 A61K31/495 CO7D211/	'52 C07D211/16 C07	D211/32
Selon la cla	assification internationale des brevets (CIB) ou à la lois selon la classif	ication nationale et la CIB	
B. DOMAI	NES SUR LESQUELS LA RECHERCHE A PORTE		
CIB 6	tion minimale consultée (système de classification suivi des symboles CO7D A61K	de classement)	
Documente	ition consultée autre que la documentationminimale dans la mesure of	ù ces documents relèvent des domaines :	SUI lesquels a nodé la rechamba
utilisés)	nnées électronique consultée au cours de la recherche internationale	(nom de la base de données, et si cela es	t réalisable, termes de recherche
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication	des passages pertinents	no. des revendications visées
A	WO 96 02525 A (PF MEDICAMENT ;HAL (FR); JORAND CATHERINE (FR); PAUW février 1996 voir revendications & FR 9 408 981 A	AZY SERGE ELS P) 1	1-18
	cité dans la demande		
Ρ,Χ	WO 97 14689 A (PF MEDICAMENT ;HAL (FR); LAMOTHE MARIE (FR)) 24 avri voir le document en entier	AZY SERGE 1 1997	1-18
P,X	WO 97 28140 A (PF MEDICAMENT ;HALA (FR); JORAND LEBRUN CATHERINE (FR août 1997 voir le document en entier 	AZY SERGE); PA) 7	1-18
Voir	la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de bre	vets sont indiqués en annexe
° Catégories	spéciales de documents cités:	l' document ultérieur publié après la date	do do di international anti-
"E" docume	nt delinissant fétat général de latechnique, non éré comme particulièrement pertinent nt antérieur, mais publié à la date dedénét international	technique pertinent, mais cité pour co ou la théorie constituent la base de l'i	is à l'état de la mprendre le principe nvention
"L" docume	es cette date 7 if pouvant jeter un doute sur une revendcation de 7 Ou cité pour déterminer la dete depuisser le mais de 1	K" document particulièrement pertinent; l' être considérée comme nouvelle ou c inventive par rapport au document co document particulièrement pertinent; l' document particulièrement pertinent; l'	omme impliquant une activité nsidéré isolément
"P" docume	nt se référant à une divulgation orale, à un usage, à position ou tous autres moyens nt publié avant la date de dépôtinternational, mais	ne peut être considérée comme impli lorsque le document est associé à un documents de même nature, cette co pour une personne du mélier	quant une activité inventive ou plusieure autres mbinaison étant évidente
	Ille la recherche internationale a étéeffectivement achevée	Cate d'expedition du présent rapport	
	avril 1998	Date d'expedition du présent rapport d 08/04/1998	e recherche internationale
Nom et adres	ose postale de l'administrationchargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Fonctionnaire autorisé	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nt, Fax: (+31-70) 340-3016	De Jong, B	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifsx membres de familles de brevets

Der a Internationale No - PCT/FR 98/00068

Document brevet cité u rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9602525 A	01-02-96	FR 2722788 A AU 3080895 A CA 2195427 A EP 0773937 A	26-01-96 16-02-96 01-02-96 21-05-97
WO 9714689 A	24-04-97	FR 2740134 A AU 7306096 A	25-04-97 07-05-97
WO 9728140 A	07-08-97	FR 2744448 A AU 1607097 A	08-08-97 22-08-97

THIS PAGE BLANK (USPTO)