Chương 5

Bộ xử lý trung tâm CPU (Central Processing Unit)

Nội dung

- 1. Tổ chức của CPU
- 2. Hoạt động của chu trình lệnh
- 3. Đơn vị điều khiển
- 4. Kỹ thuật đường ống lệnh
- 5. Cấu trúc bộ xử lý tiên tiến

Phần 1: Tổ chức của CPU

* Cấu trúc cơ bản của CPU:

- Đơn vị điều khiển vị điều khiển (Control Unit CU): điều khiển hoạt động của máy tính theo chương trình đã định sẵn.
- Đơn vị số học và logic (Arithmetic and Logic Unit ALU): thực hiện các phép toán số học và phép toán logic.
- Tập thanh ghi (Register File RF): lưu giữ các thông tin tạm thời phục vụ cho hoat đông của CPU.
- Đơn vị nối ghép bus (Bus Interface Unit BIU): kết nối và trao đổi thông tin giữa bus bên trong (internal bus) và bus bên ngoài (external bus).

* Đơn vị số học và luận lý ALU:

- Thực hiện các phép toán số học và phép toán luận lý:
- Số học: C ộng, trừ, nhân, chia, tăng, giảm, đảo dấu
- Luận lý: AND, OR, XOR, NOT, phép dịch bit,...

* Đơn vị điều khiển CU:

- Điều khiển nhận lệnh từ bộ nhớ đưa vào thanh ghi lệnh
- Tăng nội dung của PC để trỏ sang lệnh kế tiếp
- Giải mã lệnh đã được nhận để xác định thao tác mà lệnh yêu cầu
- Phát ra các tín hiệu điều khiển thực hiện lệnh
- Nhận các tín hiệu yêu cầu từ bus hệ thống và đáp ứng với các yêu cầu đó.

* Các tín hiệu đưa đến đơn vị điều khiển

- Clock: tín hiệu xung nhịp từ mạch tạo dao động bên ngoài.
- Mã lệnh từ thanh ghi lệnh đưa đến để giải mã.
- Các cờ từ thanh ghi cờ cho biết trạng thái của CPU.
- Các tín hiệu yêu cầu từ bus điều khiển

* Các tín hiệu phát ra từ đơn vị điều khiển

- Các tín hiệu điều khiển bên trong CPU:
 - Điều khiển các thanh ghi
 - Điều khiển ALU
- Các tín hiệu điều khiển bên ngoài CPU:
 - Điều khiển bộ nhớ
 - Điều khiển các mô đun nhập xuất

Phần 2: Hoạt động của chu trình lệnh

* Chu trình lệnh

- Nhận lệnh (Fetch Instruction FI)
- Giải mã lệnh (Decode Instruction DI)
- Nhận toán hạng (Fetch Operands FO)
- Thực hiện lệnh (Execute Instruction EI)
- Cất toán hạng (Write Operands WO)
- Ngắt (Interrupt Instruction II)

* Nhận lệnh (Fetch):

- CPU đưa địa chỉ của lệnh cần nhận từ bộ đếm chương trình PC ra bus địa chỉ
- CPU phát tín hiệu điều khiển đọc bộ nhớ
- Lệnh từ bộ nhớ được đặt lên bus dữ liệu và được CPU chép vào thanh ghi lệnh IR
- CPU tăng nội dung PC để trỏ sang lệnh kế tiếp

* Giải mã lệnh (Decode)

- Lệnh từ thanh ghi lệnh IR được đưa đến đơn vị điều khiển
- Đơn vị điều khiển tiến hành giải mã lệnh để xác định thao tác phải thực hiện
- Giải mã lệnh xảy ra bên trong CPU

* Nhận dữ liệu (Fetch Operand)

- CPU đưa địa chỉ của toán hạng ra bus địa chỉ
- CPU phát tín hiệu điều khiển đọc
- Toán hạng được đọc vào CPU
- Tương tự như nhận lệnh

* Nhận dữ liệu gián tiếp

- CPU đưa địa chỉ ra bus địa chỉ
- CPU phát tín hiệu điều khiển đọc
- Nội dung ngăn nhớ được đọc vào CPU, đó chính là địa chỉ của toán hạng
- Địa chỉ này được CPU phát ra bus địa chỉ để tìm ra toán hạng
- CPU phát tín hiệu điều khiển đọc
- Toán hạng được đọc vào CPU

* Thực hiện lệnh (Execute)

- Có nhiều dạng tuỳ thuộc vào lệnh
- Có thể là:
- + Đọc/Ghi bộ nhớ
- + Nhập/ xuất
- + Chuyển dữ liệu giữa các thanh ghi với nhau
- + Chuyển dữ liệu giữa thanh ghi và bộ nhớ
- + Thao tác số học/logic
- + Chuyển điều khiển (rẽ nhánh)
- + Ngắt

+ ...

* Ghi toán hạng (Write)

- CPU đưa địa chỉ ra bus địa chỉ
- CPU đưa dữ liệu cần ghi ra bus dữ liệu
- CPU phát tín hiệu điều khiển ghi
- Dữ liệu trên bus dữ liệu được chép đến vị trí xác định

* Ngắt (Interrupt)

- Nội dung của bộ đếm chương trình PC (địa chỉ trở về sau khi ngắt) được đưa ra bus dữ liệu
- CPU đưa địa chỉ (thường được lấy từ con trỏ ngăn xếp SP) ra bus địa chỉ
- CPU phát tín hiệu điều khiển ghi bộ nhớ
- Địa chỉ trở về trên bus dữ liệu được ghi ra vị trí xác định (ở ngăn xếp)
- Địa chỉ lệnh đầu tiên của chương trình con điều khiển ngắt được nạp vào PC

Phần 3: Đơn vị điều khiển

* Gồm 2 loại:

- Đơn vị điều khiển vi chương trình (Microprogrammed Control Unit)
- Đơn vị điều khiển phần cứng (Hardwired Control Unit)

* Đơn vị điều khiển vi chương trình

- Bộ nhớ vi chương trình (ROM) lưu trữ các vi chương trình (microprogram)
- Một vi chương trình bao gồm các vi lệnh (microinstruction)
- Mỗi vi lệnh mã hoá cho một vi thao tác (microoperation)
- Để hoàn thành một lệnh cần thực hiện một hoặc một vài vi chương trình
- Tốc đô châm

* Đơn vị điều khiển phần cứng

- Sử dụng vi mạch phần cứng để giải mã và tạo các tín hiệu điều khiển thực hiện lệnh
- Tốc đô nhanh
- Đơn vị điều khiển phức tạp

Phần 4: Kỹ thuật đường ống lệnh

* Khái niệm

- Mỗi chu trình lệnh cần thực hiện bằng nhiều thao tác
- Kỹ thuật đơn hướng (Scalar): Thực hiện tuần tự từng thao tác cho mỗi lệnh
- => Chậm
- Kỹ thuật đường ống (Pipeline): Thực hiện song song các thao tác cho nhiều lệnh đồng thời => nhanh hơn
- Ví dụ chu trình 1 lệnh gồm 5 bước:
 - Nhận lệnh (I)
 - Giải mã lệnh (D)
 - Nhận toán hạng (F)
 - Thực hiện lệnh (E)
 - Cất toán hạng (W)

* So sánh scalar và pipeline

- Scalar: Nhiều chu kỳ máy cho 1 lệnh

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2						Ι	D	F	E	W					
Lệnh 3											Ι	D	F	E	W

- Pipeline: Mỗi chu kỳ máy thực hiện xong 1 lệnh

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2		Ι	D	F	E	W									
Lệnh 3			Ι	D	F	E	W								
Lệnh 4				Ι	D	F	E	W							
Lệnh 5					Ι	D	F	E	W						
Lệnh 6						I	D	F	E	W					
Lệnh 7							Ι	D	F	E	W				
Lệnh 8								I	D	F	E	W			
Lệnh 9									I	D	F	E	W		
Lệnh 10										Ι	D	F	E	W	
Lệnh 11											Ι	D	F	E	W

* Các trở ngại của đường ống lệnh

- Thực tế không thể luôn đạt 1 chu kỳ máy/lệnh do các trở ngại dẫn đến sự gián đoạn của ống lệnh
- Trở ngại cấu trúc: do nhiều công đoạn dùng chung một tài nguyên
- Trở ngại dữ liệu: lệnh sau sử dụng dữ liệu kết quả của lệnh trước
- Trở ngại điều khiển: do các lệnh rẽ nhánh gây ra

* Trở ngại về cấu trúc

- Nguyên nhân: Dùng chung tài nguyên
- Khắc phục:
 - + Nhân tài nguyên để tránh xung đột
 - + Làm trễ
- Ví dụ 1: Bus dữ liệu truyền lệnh và dữ liệu □ Bus lệnh riêng, bus dữ liệu riêng (cache lệnh và cache dữ liệu)
- Ví dụ 2: Lệnh nhân cần nhiều chu kỳ thực thi (E)

* Trở ngại về dữ liệu

- Nguyên nhân: Lệnh sau sử dụng dữ liệu kết quả của lệnh trước
- Các dạng:

RAW	ADD A,B,C	Write-A must be earlier than
	ADD E, <mark>A</mark> ,D	Read-A
WAR	ADD A,B,C	Read-B must be earlier than
	ADD B,D,E	Write-B
WAW	ADD A,B,C	First Write-A must be earlier
VVAVV	ADD A,D,E	Than second Write-A
	,,D, , ,D,L	

- RAW

* Trở ngại về điều khiển

- Do lệnh rẽ nhánh gây ra
- Đây là dạng trở ngại gây thiệt hại nhiều nhất cho ống lệnh: toàn bộ các lệnh đang thực thi trong ống phải huỷ

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2		Ι	D	F	E				BR	RA 2	5 IF	Zei	.0	I	
Lệnh 3			I	D	F										
Lệnh 4				I	D										
Lệnh 5					I										
Lệnh 25						Ι	D	F	E	W					
Lệnh 26							Ι	D	F	E	W				
Lệnh 27								Ι	D	F	E	W			

Phần 5: Cấu trúc bộ xử lý tiên tiến

* Các đơn vị xử lý dữ liệu chuyên dụng

- Các đơn vị số nguyên (ALU)
- Các đơn vị số dấu chấm động (FPU)
- Các đơn vị chức năng đặc biệt (SFU)
 - + Đơn vị xử lý dữ liệu âm thanh
 - + Đơn vị xử lý dữ liệu hình ảnh
 - + Đơn vị xử lý dữ liệu vector
- * Mục đích: Tăng khả năng xử lý các chức năng chuyên biệt

* Bộ nhớ cache:

- Được tích hợp trên chip vi xử lý
- Bao gồm hai đến ba mức cache
- Cache L1 gồm hai phần tách rời:
 - + Cache lệnh (Instruction cache)
 - + Cache dữ liệu (Data cache)
 - => Giải quyết xung đột khi nhận lệnh và dữ liệu
- Cache L2 và L3: chung cho lệnh và dữ liệu
- * Mục đích: Tăng hiệu suất truy cập bộ nhớ chính

* Đơn vị quản lý bộ nhớ

- Thường gọi là đơn vị MMU (Memory Management Unit) dùng để quản lý bộ nhớ ảo
- Chuyển đổi địa chỉ ảo (trong chương trình) thành địa chỉ vật lý (trong bộ nhớ)
- Cung cấp cơ chế phân trang/phân đoạn
- Cung cấp chế độ bảo vệ bộ nhớ
- * Mục đích: Tăng dung lượng bộ nhớ chính bằng cách sử dụng bộ nhớ phụ

* Các kiến trúc máy tính song song:

- Nhu cầu giải các bài toán lớn ngày càng nhiều, cần những máy tính cực mạnh có khả năng xử lý tốc độ cao
- Kiến trúc máy tính tuần tự (Von-Neumann) tiến đến giới hạn tốc độ, một bộ xử lý duy nhất khó nâng cao hơn nữa khả năng xử lý
- Các kiến trúc máy tính song song giúp tăng hiệu suất tính toán cho máy tính:
- + Kiến trúc song song mức lệnh IPL (Instruction-level parallelism) : Tăng số lượng lệnh thi hành được trên cùng 1 đơn vị thời gian
- + Kiến trúc song song mức xử lý (Machine parallelism) : Tăng số lượng đơn vị xử lý phần cứng
- Cần kết hợp cả 2 kiến trúc song song để tạo ra các máy tính có hiệu suất cao

* Kiến trúc song song mức lệnh

- Siêu đường ống (Superpipeline)
 - + Chia mỗi thao tác trong chu trình lệnh ra n bước nhỏ => ống lệnh dài hơn
 - + Cần 1/n chu kỳ máy cho mỗi thao tác
- Siêu hướng (Superscalar)
- + Sử dụng nhiều ống lệnh => CPU gồm nhiều đơn vị chức năng, cho phép thi hành nhiều lệnh đồng thời
 - + Mỗi chu kỳ máy thực hiện được nhiều lệnh
- VLIW (Very Long Instruction Word)
 - + Ghép nhiều lệnh đơn vào 1 từ máy để thực hiện đồng thời
- + Ví dụ: CPU Itanium họ IA-64 của Intel cho phép ghép 3 lệnh/từ máy gọi là bundle gồm 128 bit

* Super-pipeline:

Chu kỳ	1		2		3		4		5		6		7	
Lệnh 1	I1	I2	D1	D2	F1	F2	E 1	E2	W1	W2				
Lệnh 2		I1	I2	D1	D2	F1	F2	E 1	E2	W1	W2			
Lệnh 3		1	I1	I2	D1	D2	F1	F2	E1	E2	W1	W2		
Lệnh 4				I1	I2	D1	D2	F1	F2	E 1	E2	W1	W2	
Lệnh 5					I1	I2	D1	D2	F1	F2	E 1	E2	W1	W2

* Super-scalar:

Chu kỳ	1	2	3	4	5	6	7	8	9
Lệnh 1	I	D	F	E	W				
Lệnh 2	I	D	F	E	W				
Lệnh 3		Ι	D	F	E	W			
Lệnh 4		Ι	D	F	E	W			
Lệnh 5			Ι	D	F	E	W		
Lệnh 6			Ι	D	F	E	W		
Lệnh 7				I	D	F	E	W	
Lệnh 8				I	D	F	E	W	
Lệnh 9					I	D	F	E	W
Lệnh 10					I	D	F	E	W

* VLIW

* Ví dụ: Khuôn dạng lệnh của CPU Intel Itanium

* Kiến trúc song song mức xử lý

- Tích hợp nhiều bộ xử lý đồng thời để tăng khả năng thi hành chương trình
- Các xu hướng phát triển:
 - + Da chương (multi-programming)
 - + Đa luồng (multi-threading)
 - + Đa nhân (multi-core)
 - + Đa xử lý (multi-processing)
 - + Đa máy tính (multi-computer)

* Multi-core

* Ví dụ: CPU Intel Core i7 gồm 4 nhân

* Multi-processor:

- Sử dụng bus chung hoặc switch
- Sử dụng bộ nhớ chung hoặc riêng biệt

Sơ đồ UMA (Uniform Memory Access) dùng bus chung và bộ nhớ chung

- Sơ đồ NUMA (Non-Uniform Memory Access) dùng bus chung và bộ nhớ riêng

- Sơ đồ UMA (Uniform Memory Access) dùng switch và bộ nhớ riêng
- Còn gọi là hệ thống đa xử lý đối xứng SMP (Symmetric Multi-Processors)

- Sơ đồ multi-processor dùng bộ nhớ chung

* Ví dụ: Hệ thống SUN E25K (NUMA multi-processor)

* Multi-computer

- Phân loại theo Flynn (1966): Căn cứ vào số lượng lệnh và số lượng dữ liệu có thể xử lý là 1 hay nhiều
 - + Single instruction, single data stream **SISD**
 - + Single instruction, multiple data stream SIMD
 - + Multiple instruction, single data stream **MISD**
 - + Multiple instruction, multiple data stream- MIMD

* Sơ đồ phân loại Flynn

* Ví dụ về SIMID

			Α	DD R3 +	– R1, R2	2		
R1	a7	a6	a5	a4	аЗ	a2	a1	a0
	+	+	+	+	+	+	+	+
R2	b7	b6	b5	b4	b3	b2	b1	b0
	=	=	=	=	=	=	=	=
R3	a7+b7	a6+b6	a5+b5	a4+b4	a3+b3	a2+b2	a1+b1	a0+b0
			MUI	LADD R	3 ← R1,	R2		
R1	a7	a6	а5	-4	·			
- 1			ao	a4	a3	a2	a1	a0
	×&+	×&+	×&+	24 ×&+	a3 ×&+	a2 ×&+	a1 ×&+	a0 ×&+
R2	×&+ b7							
R2		×&+	×&+	×&+	×&+	×&+	×&+	×&+

* Cluster

- Là 1 dạng máy tính loại MIMD gồm nhiều máy tính độc lập kết nối qua mạng tốc độ cao, mỗi máy có CPU, BN và IO riêng
- Dùng phương pháp truyền thông báo (Message Passing) để trao đổi thông tin (bằng phần mềm)
 - + MPI (Message Passing Interface)
 - + PVM (Parallel Virtual Machine)
- Gồm 2 loại:
- + NOW (Network of Workstations) hoặc COW (Cluster of Workstations): Kết nối qua LAN
 - + Grid : Kết nối qua Internet

* Message-passing multi-computer

* Ví dụ: Siêu máy tính Bluegen của IBM

* Ví dụ: Siêu máy tính Red Storm của Cray

* So sánh 2 siêu máy tính Bluegen & Red Storm:

Item	BlueGene/L	Red Storm
CPU	32-Bit PowerPC	64-Bit Opteron
Clock	700 MHz	2 GHz
Compute CPUs	65,536	10,368
CPUs/board	32	4
CPUs/cabinet	1024	96
Compute cabinets	64	108
Teraflops/sec	71	41
Memory/CPU	512 MB	2–4 GB
Total memory	32 TB	10 TB
Router	PowerPC	Seastar
Number of routers	65,536	10,368
Interconnect	3D torus 64 × 32 × 32	3D torus 27 × 16 × 24
Other networks	Gigabit Ethernet	Fast Ethernet
Partitionable	No	Yes
Compute OS	Custom	Custom
I/O OS	Linux	Linux
Vendor	IBM	Cray Research
Expensive	Yes	Yes

* Top 10 siêu máy tính 06/2010 trên trang top500.org

Rank	Site	Computer
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz Cray Inc.
2	National Supercomputing Centre in Shenzhen China (Thâm Quyến)	Nebulae (Tinh Vân) - Dawning TC3600 Blade, Intel X5650 Dawning
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz Cray Inc.
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution IBM
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0 Ghz SGI
7	National SuperComputer Center in Tianjin/NUDT China (Thiên Tân)	Tianhe-1 (Tinh Hà) - NUDT TH-1 Cluster, Xeon E5540/E5450 NUDT
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution IBM
10	National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband Sun

* Top 10 siêu máy tính 06/2011 trên trang top500.org

Rank	Site	Computer
1	RIKEN Advanced Institute for Computational Science - Japan	K computer, SPARC64 VIIIfx 2.0GHz Fujitsu
2	National Supercomputing Center in Tianjin (Thiên Tân) – China	Tianhe-1A (Tinh Hà) X5670 2.93Ghz 6C, NVIDIA GPU NUDT
3	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.
4	National Supercomputing Centre in Shenzhen (Thâm Quyến) – China	Nebulae (Tinh Vân) Intel X5650, NVidia Tesla C2050 GPU Dawning
5	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 G7 Xeon 6C X5670, Nvidia GPU, NEC/HP
6	DOE/NNSA/LANL/SNL United States	Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.
7	NASA/Ames Research Center/NAS United States	Pleiades Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz SGI
8	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.
9	Commissariat a l'Energie Atomique (CEA) France	Tera-100 - Bull bullx super-node S6010/S6030 Bull SA
10	DOE/NNSA/LANL United States	Roadrunner - PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz IBM

* Top 10 siêu máy tính 06/2012 trên trang top500.org

Rank	Site	Computer
1	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM
2	RIKEN Advanced Institute for Computational Science_Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM
4	<u>Leibniz Rechenzentrum</u> Germany	SuperMUC - <u>iDataPlex DX360M4, Xeon E5-2680 8C</u> 2.70GHz, Infiniband FDR IBM
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 NUDT
6	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA 2090 Cray Inc.
7	<u>CINECA</u> Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM
8	Forschungszentrum Juelich (FZJ) Germany	JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM
9	CEA/TGCC-GENCI France	Curie thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz, Infiniband QDR Bull
10	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050 Dawning