QuantumGates

Generated by Doxygen 1.8.17

1 Class Index 1

1 Class Index	1
1.1 Class List	1
2 File Index	2
2.1 File List	2
3 Namespace Documentation	2
3.1 quantum Namespace Reference	2
4 Class Documentation	2
4.1 quantum::QuantumComputer Struct Reference	2
4.1.1 Detailed Description	3
4.1.2 Constructor & Destructor Documentation	3
4.1.3 Member Function Documentation	3
4.1.4 Member Data Documentation	5
5 File Documentation	5
5.1 matrixOperation.h File Reference	5
5.1.1 Typedef Documentation	6
5.1.2 Function Documentation	6
5.2 quantumComputer.h File Reference	7
5.3 quantumGate.h File Reference	7
5.3.1 Typedef Documentation	8
5.3.2 Function Documentation	8
5.3.3 Variable Documentation	16
5.4 quantumGateOperation.h File Reference	16
	17
	17
	19
	19
•	20
	21
Index	23

1 Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

quantum::QuantumComputer
QuantumComputer structure

2

2 File Index

2.1 File List

Here is a list of all files with brief descriptions:

matrixOperation.h	5
quantumComputer.h	7
quantumGate.h	7
quantumGateOperation.h	16
qubitOperation.h	19

3 Namespace Documentation

3.1 quantum Namespace Reference

Classes

• struct QuantumComputer QuantumComputer structure.

4 Class Documentation

4.1 quantum::QuantumComputer Struct Reference

QuantumComputer structure.

```
#include <quantumComputer.h>
```

Public Member Functions

- QuantumComputer (int regSize, double probability[], int arrSize)
- void countNonZeroBaseVector ()
- void resetState ()
- void viewProbability ()

Used to show probabilities of base vector.

- void viewQubitsInMathExpression ()
- void validateProbability ()
- void normalizeRegister ()

Used to normalize probabilities of base vector (register)

• void measure ()

Used to measure probabilities of base vector (not implemented yet)

vector< double > getBaseVector ()

Static Public Member Functions

• static void validateArraySize (int arrSize, int regSize)

Public Attributes

- int registerSize
- int baseVectorsCount
- bool isNormalize
- bool isMeasured
- vector< double > baseVector

4.1.1 Detailed Description

QuantumComputer structure.

4.1.2 Constructor & Destructor Documentation

QuantumComputer constructor

Parameters

registerSize	int
probabilities	double[]
arraysize	int

4.1.3 Member Function Documentation

4.1.3.1 countNonZeroBaseVector() void quantum::QuantumComputer::countNonZeroBaseVector ()

Used to count elements of vector where element not equal zero

 $\textbf{4.1.3.2} \quad \textbf{getBaseVector()} \quad \texttt{vector} < \texttt{double} > \; \texttt{quantum::} \\ \texttt{QuantumComputer::} \\ \texttt{getBaseVector ()} \\$

Used to get created base vector

```
Returns
```

base vector

```
4.1.3.3 measure() void quantum::QuantumComputer::measure ( )
```

Used to measure probabilities of base vector (not implemented yet)

```
4.1.3.4 normalizeRegister() void quantum::QuantumComputer::normalizeRegister ( )
```

Used to normalize probabilities of base vector (register)

```
4.1.3.5 resetState() void quantum::QuantumComputer::resetState ( )
```

Used to reset state of base vector.

First element of vector is set to one, other elements are set to 0.

```
4.1.3.6 validateArraySize() static void quantum::QuantumComputer::validateArraySize ( int arrSize, int regSize ) [static]
```

Used to check register size and array size from input

Parameters

arraySize	int
registerSize	int

$\textbf{4.1.3.7} \quad \textbf{validateProbability()} \quad \texttt{void quantum::QuantumComputer::validateProbability ()} \\$

Used to check probabilities of base vector.

If sum of square probabilities is not equal one, normalizeRegister() and resetState() is executed.

```
4.1.3.8 viewProbability() void quantum::QuantumComputer::viewProbability ( )
```

Used to show probabilities of base vector.

5 File Documentation 5

```
4.1.4.3 viewQubitsInMathExpression() void quantum::QuantumComputer::viewQubitsInMathExpression eg. for qubit 0 - |0>

4.1.4 Member Data Documentation

4.1.4.1 baseVector vector<double> quantum::QuantumComputer::baseVector

4.1.4.2 baseVectorsCount int quantum::QuantumComputer::baseVectorsCount

4.1.4.3 isMeasured bool quantum::QuantumComputer::isMeasured

4.1.4.4 isNormalize bool quantum::QuantumComputer::isNormalize
```

5 File Documentation

5.1 matrixOperation.h File Reference

```
#include <complex>
```

Typedefs

typedef vector< vector< complex< double >> > vector2d
 Used as alias for declaration of two dimensional vector.

Functions

- vector2d getPreparedVectorForHermitianMatrix (int dimension)
- vector2d getRandomHermitianMatrix (int dimension)
- vector2d makeConjugateTranspose (vector2d matrix)
- void showMatrix (vector2d matrix)

5.1.1 Typedef Documentation

5.1.1.1 vector2d typedef vector<vector<complex<double>>> vector2d

Used as alias for declaration of two dimensional vector.

5.1.2 Function Documentation

5.1.2.1 getPreparedVectorForHermitianMatrix() vector2d getPreparedVectorForHermitianMatrix (int *dimension*)

Used to get defined vector for declared dimension

Parameters

dimension int

Returns

defined matrix as two dimensional vector

5.1.2.2 getRandomHermitianMatrix() vector2d getRandomHermitianMatrix (int *dimension*)

Used to get random hermitian matrix.

Hermitian matrix - https://pl.wikipedia.org/wiki/Macierz_hermitowska

Parameters

dimension int

Returns

hermitian matrix as two dimensional vector

Used to make conjugate transpose of matrix.

Conjugate transpose - https://en.wikipedia.org/wiki/Conjugate_transpose#Example

Returns

conjugate transposed matrix as two dimensional vector

Used to show all elements of matrix

Parameters

matrix	vector2d
dimension	int

5.2 quantumComputer.h File Reference

```
#include <vector>
```

Classes

• struct quantum::QuantumComputer QuantumComputer structure.

Namespaces

quantum

5.3 quantumGate.h File Reference

```
#include <complex>
#include <vector>
```

Typedefs

typedef vector< vector< complex< double >>> vector2d
 Used as alias for declaration of two dimensional vector.

Functions

- vector2d getPreparedContainerForQuantumGate (int dimension)
- vector2d makeNotOnQubit (vector2d qubit)
- vector2d makeSqrtNotOnQubit (vector2d)
- vector2d makeCnotOnQubit (vector2d qubit)
- vector2d makeSwapOnQubit (vector2d qubit)
- vector2d makeFredkinOnQubit (vector2d qubit)
- vector2d makeToffoliOnQubit (vector2d qubit)
- vector2d makeHadamardOnQubit (vector2d qubit)
- vector2d makePhaseShiftOnQubit (vector2d qubit, double angle)
- vector2d makePauliXOnQubit (vector2d qubit)
- vector2d makePauliYOnQubit (vector2d qubit)
- vector2d makePauliZOnQubit (vector2d qubit)
- vector2d getNotGate ()
- vector2d getSqrtNotGate ()
- vector2d getCnotGate ()
- · vector2d getSwapGate ()
- vector2d getFredkinGate ()
- vector2d getToffoliGate ()
- vector2d getHadamardGate ()
- vector2d getMultidimensionalHadamardGate (int indexNumber)
- vector2d getPhaseShiftGate (double angle)
- vector2d getPauliXGate ()
- · vector2d getPauliYGate ()
- vector2d getPauliZGate ()
- void showQuantumGate (vector2d quantumGate)
- · void showPhaseShiftQuantumGate (vector2d phaseShiftGate)

Variables

- const int ONE_ARGUMENT_GATE_SIZE = 2
- const int TWO_ARGUMENTS_GATE_SIZE = 4
- const int THREE_ARGUMENTS_GATE_SIZE = 8

5.3.1 Typedef Documentation

5.3.1.1 vector2d typedef vector<vector<complex<double>>> vector2d

Used as alias for declaration of two dimensional vector.

5.3.2 Function Documentation

```
5.3.2.1 getCnotGate() vector2d getCnotGate ( )
Used to get CNOT quantum gate
Returns
     CNOT quantum gate
5.3.2.2 getFredkinGate() vector2d getFredkinGate ()
Used to get FREDKIN quantum gate
Returns
     FREDKIN quantum gate
5.3.2.3 getHadamardGate() vector2d getHadamardGate ()
Used to get HADAMARD quantum gate
Returns
     HADAMARD quantum gate
5.3.2.4 getMultidimensionalHadamardGate() vector2d getMultidimensionalHadamardGate (
             int indexNumber )
Used to get multidimensional HADAMARD quantum gate
Parameters
 indexNumber
               int
Returns
     multidimensional HADAMARD quantum gate
```

Generated by Doxygen

Used to get NOT quantum gate

5.3.2.5 getNotGate() vector2d getNotGate ()

```
Returns
```

NOT quantum gate

```
5.3.2.6 getPauliXGate() vector2d getPauliXGate ( )
```

Used to get PAULI X quantum gate

Returns

PAULI X quantum gate

```
5.3.2.7 getPauliYGate() vector2d getPauliYGate ()
```

Used to get PAULI Y quantum gate

Returns

PAULI Y quantum gate

```
5.3.2.8 getPauliZGate() vector2d getPauliZGate ()
```

Used to get PAULI Z quantum gate

Returns

PAULI Z quantum gate

Used to get PHASE SHIFT quantum gate

Parameters

```
angle double - angle as value eg. PI or -PI
```

Returns

PHASE SHIFT quantum gate

```
5.3.2.10 getPreparedContainerForQuantumGate() vector2d getPreparedContainerForQuantumGate ( int dimension )
```

Used to generate and get quantum gate for declared dimensions

Parameters

```
dimension int
```

```
5.3.2.11 getSqrtNotGate() vector2d getSqrtNotGate ()
```

Used to get SQRT(NOT) quantum gate

Returns

SQRT(NOT) quantum gate

```
5.3.2.12 getSwapGate() vector2d getSwapGate ( )
```

Used to get SWAP quantum gate

Returns

SWAP quantum gate

```
5.3.2.13 getToffoliGate() vector2d getToffoliGate ()
```

Used to get TOFFOLI quantum gate

Returns

TOFFOLI quantum gate

```
5.3.2.14 makeCnotOnQubit() vector2d makeCnotOnQubit ( vector2d qubit )
```

Used to make CNOT quantum gate on qubit

Da					
ra	ra	m	eı	œ	rs

```
qubit vector2d
```

Returns

updated qubit

Used to make FREDKIN quantum gate on qubit

Parameters

```
qubit vector2d
```

Returns

updated qubit

5.3.2.16 makeHadamardOnQubit() vector2d makeHadamardOnQubit (vector2d qubit)

Used to make HADAMARD quantum gate on qubit

Parameters

```
qubit vector2d
```

Returns

updated qubit

5.3.2.17 makeMultidimensionalHadamardOnQubit() vector2d makeMultidimensionalHadamardOnQubit (

```
vector2d qubit,
vector2d hadamardGate,
int indexNumber )
```

Used to make multidimensional HADAMARD quantum gate on qubit

qubit	vector2d
hadamardGate	vector2d
indexNumber	int

Returns

updated qubit

5.3.2.18 makeNotOnQubit() vector2d makeNotOnQubit (vector2d qubit)

Used to make NOT quantum gate on qubit

Parameters

qubit

Returns

updated qubit

5.3.2.19 makePauliXOnQubit() vector2d makePauliXOnQubit (vector2d qubit)

Used to make PAULI X quantum gate on qubit

Parameters

```
qubit vector2d
```

Returns

updated qubit

5.3.2.20 makePauliYOnQubit() vector2d makePauliYOnQubit (vector2d qubit)

Used to make PAULI Y quantum gate on qubit

qubit	vector2d
-------	----------

Returns

updated qubit

5.3.2.21 makePauliZOnQubit() vector2d makePauliZOnQubit (vector2d qubit)

Used to make PAULI Z quantum gate on qubit

Parameters

```
qubit vector2d
```

Returns

updated qubit

Used to make PHASE SHIFT quantum gate on qubit

Parameters

qubit	vector2d
angle	double - angle as value eg. PI or -PI

Returns

updated qubit

5.3.2.23 makeSqrtNotOnQubit() vector2d makeSqrtNotOnQubit (vector2d)

Used to make SQRT(NOT) quantum gate on qubit

qubit	vector2d
-------	----------

Returns

updated qubit

5.3.2.24 makeSwapOnQubit() vector2d makeSwapOnQubit (vector2d qubit)

Used to make SWAP quantum gate on qubit

Parameters

```
qubit vector2d
```

Returns

updated qubit

5.3.2.25 makeToffoliOnQubit() vector2d makeToffoliOnQubit (vector2d qubit)

Used to make TOFFOLI quantum gate on qubit

Parameters

qubit	vector2d

Returns

updated qubit

5.3.2.26 showPhaseShiftQuantumGate() void showPhaseShiftQuantumGate (vector2d phaseShiftGate)

Used to show all elements of PHASE SHIFT quantum gate

Parameters

phaseShiftGate	vector2d
gateSize	const int

Generated by Doxygen

```
5.3.2.27 showQuantumGate() void showQuantumGate ( vector2d quantumGate )
```

Used to show all elements of quantum gate

Parameters

quantumGate	vector2d
gateSize	const int

5.3.3 Variable Documentation

5.3.3.1 ONE_ARGUMENT_GATE_SIZE const int ONE_ARGUMENT_GATE_SIZE = 2

Parameters

- size of one argument quantum gates

5.3.3.2 THREE_ARGUMENTS_GATE_SIZE const int THREE_ARGUMENTS_GATE_SIZE = 8

Parameters

- size of three argument quantum gates

5.3.3.3 TWO_ARGUMENTS_GATE_SIZE const int TWO_ARGUMENTS_GATE_SIZE = 4

Parameters

- size of two argument quantum gates

5.4 quantumGateOperation.h File Reference

```
#include <complex>
#include <vector>
```

Typedefs

typedef vector< vector< complex< double >>> vector2d
 Used as alias for declaration of two dimensional vector.

Functions

- vector2d composeQuantumGates (vector2d firstGate, vector2d secondGate)
- vector2d getIdentityMatrix (int gateSize)
- bool isIdentityMatrixAndComposedGatesAreEqual (vector2d identityMatrix, vector2d composedGates)
- bool isComposeOfGatesGivesIdentityMatrix (vector2d firstGate, vector2d secondGate)
- bool isMatrixUnitary (vector2d quantumGate, vector2d conjugateTransposedQuantumGate)

5.4.1 Typedef Documentation

```
5.4.1.1 vector2d typedef vector<vector<complex<double>>> vector2d
```

Used as alias for declaration of two dimensional vector.

5.4.2 Function Documentation

```
5.4.2.1 composeQuantumGates() vector2d composeQuantumGates ( vector2d firstGate, vector2d secondGate )
```

Used to compose two quantum gates.

Compose - multiplication of values from two matrices, at the same indexes

Parameters

firstGate	vector2d
secondGate	vector2d

Returns

composed quantum gates

```
5.4.2.2 getIdentityMatrix() vector2d getIdentityMatrix ( int gateSize )
```

Used to get identity matrix for defined size.

Identity matrix - https://en.wikipedia.org/wiki/Identity_matrix

D _o			- 4		
Pа	ra	m	eı	e	rs

<i>gateSize</i> ∣ i	nt
---------------------	----

Returns

identity matrix

$\textbf{5.4.2.3} \quad \textbf{isComposeOfGatesGivesIdentityMatrix()} \quad \texttt{bool isComposeOfGatesGivesIdentityMatrix} \quad \textbf{(}$

```
vector2d firstGate,
vector2d secondGate )
```

Used to check

if composed gates gives identity matrix.

Parameters

firstGate	vector2d
secondGate	vector2d

Returns

true or false

$\textbf{5.4.2.4} \quad \textbf{isIdentityMatrixAndComposedGatesAreEqual()} \quad \texttt{bool isIdentityMatrixAndComposedGatesAre} \leftarrow \\$

Used to check

if identity matrix are the same as composed gates.

Parameters

identityMatrix	vector2d
composedGates	vector2d

Returns

true or false

Used to check if matrix is unitary.

Unitary matrix - https://en.wikipedia.org/wiki/Unitary_matrix

Parameters

quantumGate	vector2d
conjugateTransposedQuantumGate	vector2d

Returns

true or false

5.5 qubitOperation.h File Reference

```
#include <complex>
#include <vector>
```

Typedefs

typedef vector< vector< complex< double >> > vector2d
 Used as alias for declaration of two dimensional vector.

Functions

- vector2d getPreparedContainerForQubit (int qubitRows)
- vector2d makeDotProductOfQubits (vector2d firstQubit, vector2d secondQubit)
- vector2d getQubitRepresentation (vector< double > baseVector)
- void showQubit (vector2d qubit)
- void showDotProduct (vector2d dotProduct)

Variables

- const int SINGLE_QUBIT_NUMBER_OF_ROWS = 2
- const int TWO_QUBITS_NUMBER_OF_ROWS = 4
- const int THREE_QUBITS_NUMBER_OF_ROWS = 8
- const int QUBIT_NUMBER_OF_COLUMNS = 1

5.5.1 Typedef Documentation

$\textbf{5.5.1.1} \quad \textbf{vector2d} \quad \texttt{typedef vector} < \texttt{vector} < \texttt{complex} < \texttt{double} > \ > \ \texttt{vector2d}$

Used as alias for declaration of two dimensional vector.

5.5.2 Function Documentation

5.5.2.1 getPreparedContainerForQubit() vector2d **getPreparedContainerForQubit** (int *qubitRows*)

Used to get defined qubit for declared dimension

Parameters

Returns

allocated qubit

$\textbf{5.5.2.2} \quad \textbf{getQubitRepresentation()} \quad \textbf{vector2d getQubitRepresentation (} \\ \quad \textbf{vector< double} \ > \textit{baseVector} \)$

Used to get qubit as complex type 2D array

Parameters

```
baseVector vector<double>
```

Returns

qubit

Used to make dot product of two qubits.

Dot product - https://en.wikipedia.org/wiki/Dot_product#Algebraic_definition

Parameters

firstQubit	vector2d
secondQubit	vector2d

Returns

dot product of qubits

```
5.5.2.4 showDotProduct() void showDotProduct ( vector2d dotProduct )
```

Used to show dot product

Parameters

dotProduct | vector2d

```
5.5.2.5 showQubit() void showQubit ( \begin{array}{c} \text{vector2d } \textit{qubit} \ ) \end{array}
```

Used to show all elements of qubit (2D array)

Parameters

qubit vector2d

5.5.3 Variable Documentation

5.5.3.1 QUBIT_NUMBER_OF_COLUMNS const int QUBIT_NUMBER_OF_COLUMNS = 1

Parameters

- constant qubit column

5.5.3.2 SINGLE_QUBIT_NUMBER_OF_ROWS const int SINGLE_QUBIT_NUMBER_OF_ROWS = 2

Parameters

constant single qubit rows

5.5.3.3 THREE_QUBITS_NUMBER_OF_ROWS const int THREE_QUBITS_NUMBER_OF_ROWS = 8

Parameters

- constant three qubits rows

5.5.3.4 TWO_QUBITS_NUMBER_OF_ROWS const int TWO_QUBITS_NUMBER_OF_ROWS = 4

Parameters

- constant two qubits rows

Index

baseVector	quantum::QuantumComputer, 5
quantum::QuantumComputer, 5	isNormalize
baseVectorsCount	quantum::QuantumComputer, 5
quantum::QuantumComputer, 5	
	makeCnotOnQubit
composeQuantumGates	quantumGate.h, 11
quantumGateOperation.h, 17	makeConjugateTranspose
countNonZeroBaseVector	matrixOperation.h, 6
quantum::QuantumComputer, 3	makeDotProductOfQubits
	qubitOperation.h, 20
getBaseVector	makeFredkinOnQubit
quantum::QuantumComputer, 3	quantumGate.h, 12
getCnotGate	makeHadamardOnQubit
quantumGate.h, 8	quantumGate.h, 12
getFredkinGate	makeMultidimensionalHadamardOnQubit
quantumGate.h, 9	quantumGate.h, 12
getHadamardGate	makeNotOnQubit
quantumGate.h, 9	quantumGate.h, 13
getIdentityMatrix	makePauliXOnQubit
quantumGateOperation.h, 17	quantumGate.h, 13
getMultidimensionalHadamardGate	makePauliYOnQubit
quantumGate.h, 9	quantumGate.h, 13
getNotGate	makePauliZOnQubit
quantumGate.h, 9	quantumGate.h, 14
getPauliXGate	makePhaseShiftOnQubit
quantumGate.h, 10	quantumGate.h, 14
getPauliYGate	makeSqrtNotOnQubit
quantumGate.h, 10	quantumGate.h, 14
getPauliZGate	makeSwapOnQubit
quantumGate.h, 10	quantumGate.h, 15
getPhaseShiftGate	makeToffoliOnQubit
quantumGate.h, 10	quantumGate.h, 15
getPreparedContainerForQuantumGate	matrixOperation.h, 5
quantumGate.h, 11	getPreparedVectorForHermitianMatrix, 6
getPreparedContainerForQubit	getRandomHermitianMatrix, 6
qubitOperation.h, 20	•
getPreparedVectorForHermitianMatrix	makeConjugateTranspose, 6
matrixOperation.h, 6	showMatrix, 7
getQubitRepresentation	vector2d, 6
qubitOperation.h, 20	measure
getRandomHermitianMatrix	quantum::QuantumComputer, 4
matrixOperation.h, 6	normaliza Dogistor
getSqrtNotGate	normalizeRegister
- ,	quantum::QuantumComputer, 4
quantumGate.h, 11	ONE_ARGUMENT_GATE_SIZE
getSwapGate	
quantumGate.h, 11	quantumGate.h, 16
getToffoliGate	quantum, 2
quantumGate.h, 11	quantum::QuantumComputer, 2
isComposeOfGatosGivesIdentityMatrix	baseVector, 5
isComposeOfGatesGivesIdentityMatrix	
quantumGateOperation.h, 18	baseVectorsCount, 5
isIdentityMatrixAndComposedGatesAreEqual	countNonZeroBaseVector, 3
quantumGateOperation.h, 18	getBaseVector, 3
isMatrixUnitary	isMeasured, 5
quantumGateOperation.h, 18	isNormalize, 5
isMeasured	measure, 4

24 INDEX

normalizeRegister, 4	showQubit, 21
QuantumComputer, 3	SINGLE_QUBIT_NUMBER_OF_ROWS, 21
registerSize, 5	THREE_QUBITS_NUMBER_OF_ROWS, 21
resetState, 4	TWO_QUBITS_NUMBER_OF_ROWS, 22
validateArraySize, 4	vector2d, 19
validateProbability, 4	
viewProbability, 4	registerSize
viewQubitsInMathExpression, 4	quantum::QuantumComputer, 5
QuantumComputer	resetState
quantum::QuantumComputer, 3	quantum::QuantumComputer, 4
quantumComputer.h, 7	
quantumGate.h, 7	showDotProduct
getCnotGate, 8	qubitOperation.h, 21
getFredkinGate, 9	showMatrix
getHadamardGate, 9	matrixOperation.h, 7
getMultidimensionalHadamardGate, 9	showPhaseShiftQuantumGate
getNotGate, 9	quantumGate.h, 15
getPauliXGate, 10	showQuantumGate
getPauliYGate, 10	quantumGate.h, 16
getPauliZGate, 10	showQubit
getPhaseShiftGate, 10	qubitOperation.h, 21
getPreparedContainerForQuantumGate, 11	SINGLE_QUBIT_NUMBER_OF_ROWS
getSqrtNotGate, 11	qubitOperation.h, 21
getSwapGate, 11	THREE_ARGUMENTS_GATE_SIZE
getToffoliGate, 11	quantumGate.h, 16
makeCnotOnQubit, 11	THREE_QUBITS_NUMBER_OF_ROWS
makeFredkinOnQubit, 12	qubitOperation.h, 21
makeHadamardOnQubit, 12	TWO_ARGUMENTS_GATE_SIZE
makeMultidimensionalHadamardOnQubit, 12	quantumGate.h, 16
makeNotOnQubit, 13	TWO_QUBITS_NUMBER_OF_ROWS
makePauliXOnQubit, 13	qubitOperation.h, 22
makePauliYOnQubit, 13	qubitOperation.n, 22
makePauliZOnQubit, 14	validateArraySize
makePhaseShiftOnQubit, 14	quantum::QuantumComputer, 4
makeSqrtNotOnQubit, 14	validateProbability
makeSwapOnQubit, 15	quantum::QuantumComputer, 4
makeToffoliOnQubit, 15	vector2d
ONE ARGUMENT GATE SIZE, 16	matrixOperation.h, 6
showPhaseShiftQuantumGate, 15	quantumGate.h, 8
showQuantumGate, 16	quantumGateOperation.h, 17
THREE ARGUMENTS GATE SIZE, 16	qubitOperation.h, 19
TWO ARGUMENTS GATE SIZE, 16	viewProbability
vector2d, 8	quantum::QuantumComputer, 4
quantumGateOperation.h, 16	viewQubitsInMathExpression
composeQuantumGates, 17	quantum::QuantumComputer, 4
getIdentityMatrix, 17	
isComposeOfGatesGivesIdentityMatrix, 18	
isIdentityMatrixAndComposedGatesAreEqual, 18	
isMatrixUnitary, 18	
vector2d, 17	
QUBIT_NUMBER_OF_COLUMNS	
qubitOperation.h, 21	
qubitOperation.h, 19	
getPreparedContainerForQubit, 20	
getQubitRepresentation, 20	
makeDotProductOfQubits, 20	
QUBIT_NUMBER_OF_COLUMNS, 21	
showDotProduct, 21	