CSEE 3827: Fundamentals of Computer Systems

Project #3

Huffman Decoder

Due 11/7/17 at 11:59PM

1 Background

Huffman Coding. Huffman codes are a variable-length character code that encodes characters based on their frequency. Frequently seen characters are given short codewords, while rare characters have longer code bits. Overall this tends to compress the data. See Wikipedia for more background on the topic: https://en.wikipedia.org/wiki/Huffman_coding

Our Huffman Tree Decoding Huffman codes entails traversing a binary tree according to the sequence of code word bits until a leaf node containing a character is found. When the code bit is 0, one traverses the left subtree; when it is 1, one traverses the right subtree.

Our Huffman tree is encoded with 17-bit values. The most significant bit indicates whether or not the node is a leaf.

Non-leaves are represented as:

```
node_{16} 0

node_{15:8} address of left child

node_{7:0} address of right child
```

Leaves are represented as:

```
node_{16} 1 node_{7:0} ASCII character code
```

For your reference, we have provided both the code table and tree at the end of this document. You will also find the tree encoded, as described in a ROM in the scaffolding. The root of our tree is found at address zero.

2 Function

Your HUFFDEC module should performs this decoding traversal. It accepts a sequence of bits, transferred via the same handshaking protocol as in the last assignment. For each sequence of bits that represents a character your module should output the corresponding 8-bit ASCII character.

[Update 10/23/17: For this assignment, you are free to use any of the components available in Logisim.]

3 Quality

There is no quality score for this assignment.

4 Scaffolding

The test harness works as in the previous assignment. It decodes all 95 characters in random order.

5 Rules and Regulations

- Do not change the name or appearance of the HUFFDEC module.
- Simulation of the test harness must halt without error (e.g., oscillations or undefined wire values). Incorrect results $(NUM_FAIL > 0)$ are fine.
- Submissions must be made via courseworks.
- Upload a <u>single</u> .circ file, [Update 10/30/17: whose names contains only alpha-numeric characters, hyphens, or underscores (no spaces, parenthesis, etc.)]. Do not upload lib3827.circ.
- The uploaded file should have no external libraries loaded (i.e., external dependencies) except for lib3827.

6 Scoring Rubric

To be graded, your submussion must adhere to all rules and regulations. We will test your submission by attempting to decode all 95 characters, but in a different random order from the scaffolding.

	Total	Formula
Function	100 pts	If $NUM_PASS == 0$, decodes nothing, 0
		If $NUM_PASS == 1$, decodes one character only, 40
		If $NUM_PASS > 1$, $40 + \lceil 60 \times \frac{NUM_PASS}{95} \rceil$
Style	$10 \mathrm{~pts}$	If fully functional, extra credit to ten (or more) most beautiful schematics.

7 Our Huffman Code

```
0010 \\ 0011 \\ 0110
                                  1001
1011
                                00000
00001
00010
                                01000
                                01001 \\ 01010
                                                  0
d
                                01110
                                01111 \\ 10101
                              11001 \\ 000110
                              000111
                              010111
100000
                              100001
                              \begin{array}{c} 100011 \\ 101000 \end{array}
                              101001
                              110000 \\ 110001
                              110100
                           0101100
1000100
                         1000100
1000101
01011011
11010110
                                                  _{\rm M}^{\rm x}
                     0101101000
0101101001
0101101010
                                                 T
B
R
E
S
                     \frac{1101010000}{1101010010}
                      1101010100
                   \begin{array}{c} 1101010111\\ 01011010111\end{array}
                   11010100010
11010100111
                                                 K
G
H
                   11010101010
                   \frac{11010111000}{11010111001}
                                                  _{\mathrm{D}}^{\mathrm{C}}
                   11010111010
                                                 I
O
P
N
L
                   \frac{110101111100}{110101111101}
                   11010111110
                 11010111111
010110101101
                 110101000110
                 110101000111
110101001100
                 110101010110
                 110101011000
110101011001
                 110101011010
                 110101110110
                 110101110111
              \begin{array}{c} 0101101011001 \\ 1101010011010 \end{array}
               11010101011110
               \begin{array}{c} 11010101011111 \\ 1101010111111 \end{array}
          11010101101101
010110101100010
           110101001101101
        110101001101110
0101101011000000
        0101101011000001\\
        0101101011000010
0101101011000011
        0101101011000111
                                                  &
        1101010011011000
1101010011011001
        11010100110111110
        \begin{array}{c} 11010100110111111 \\ 11010101110110001 \end{array}
        1101010110110010\\
      \begin{array}{c} 1101010110110011 \\ 010110101110001100 \end{array}
      11010101101100001\\
   \begin{array}{c} 010110101100011011 \\ 1101010110110100000 \end{array}
 \begin{array}{c} 0101101011000110100 \\ 0101101011000110101 \end{array}
                                                  double quote
 1101010110110000010
\begin{array}{c} 11010101101100000110 \\ 1101010110110100000111 \end{array}
```

8 Contents of Tree ROM

$\underline{\mathrm{Addr}}$	$node_{16}$	$node_{15:8}$	$node_{7:0}$	$\underline{\mathrm{Addr}}$	$node_{16}$	$node_{15:8}$	$node_{7:0}$
0:	0	187	188	96:	0	24	26
$\frac{\overline{1:}}{2\cdot}$	1 1		32 36	97: 98:	0 0	47 55	48 96
<u>2:</u> 3:	1		40	99:	0	97	3
4:	1		44	100:	0	8	98
$\frac{5:}{e}$	1 1		48	$\frac{101:}{100:}$	0	54 100	99
4: 5: 6: 7: 8: 9:	1		52 56	$\frac{102:}{103:}$	0	39	87 16
8:	1		60	104:	0	74	17
1 0:	1 1		64	105:	0	101 79	49
11:	1		68 72	$\frac{106:}{107:}$	0	73	71 1
12:	1		76	108:	0	102	63
13: 14:	1 1		80 84	$\frac{109:}{110:}$	0	31 103	$\frac{32}{104}$
15:	1		88	$\frac{110.}{111:}$	0	27	105
16:	1		92	112:	0	106	28
$\frac{17:}{18:}$	1 1		96 100	$\frac{113:}{114:}$	0	4 108	$\frac{107}{109}$
19:	1		104	$\frac{114.}{115:}$	0	110	111
20:	1		108	116:	0	112	113
$\frac{\overline{21:}}{22:}$	1 1		$\frac{112}{116}$	$\frac{117:}{118:}$	0	$\frac{114}{115}$	$\frac{25}{2}$
23:	1		120	119:	0	40	116
24:	1 1		124	120:	0	15	84
$\frac{\overline{25:}}{26:}$	1		35 39	$\frac{121:}{122:}$	0	117 118	62 75
27:	1		43	123:	0	61	9
28: 29:	1 1		47 51	$\frac{124:}{125:}$	0	50 86	119 120
$\frac{29.}{30:}$	1		55	$\frac{125.}{126:}$	0	72	51
31:	1		59	127:	0	38	121
32: 33:	1 1		63 67	$\frac{128:}{129:}$	0	$85 \\ 122$	58 57
34:	1		71	130:	0	35	123
35:	1		75 70	131:	0	124	34
$\frac{36:}{37:}$	1 1		79 83	$\frac{132:}{133:}$	0	$\frac{11}{126}$	$\frac{125}{127}$
38:	1		87	134:	0	33	10
$\frac{39:}{40:}$	1 1		91 95	$\frac{135:}{136:}$	0	82 36	128 13
$\frac{40.}{41:}$	1		99	$\frac{130:}{137:}$	0	59	12
42:	1 1		103	138:	0	83	14
<u>43:</u> 44:	1		$\frac{107}{111}$	$\frac{139:}{140:}$	0	56 60	129 130
45:	1		115	141:	0	81	131
$\frac{46:}{47:}$	1 1		119 123	$\frac{142:}{143:}$	0	37 133	132 80
48:	1		34	$\frac{143.}{144:}$	0	134	135
49:	1		38	145:	0	136	137
50: 51:	1 1		42 46	$\frac{146:}{147:}$	0	138 140	139 141
52:	1		50	148:	0	142	143
53: 54:	1 1		54 58	$\frac{149:}{150:}$	0	$\frac{144}{146}$	$\frac{145}{92}$
55:	1		62	$\frac{150:}{151:}$	0	147	148
<u>56:</u>	1		66	$\frac{152:}{152:}$	0	23	149
$\frac{57:}{58:}$	1 1		$\frac{70}{74}$	$\frac{153:}{154:}$	0	70 69	150 66
59:	1		78	155:	0	151	152
$\frac{60:}{61:}$	1 1		82 86	$\frac{156:}{157:}$	0	$\frac{46}{153}$	65 94
62:	1		90	158:	ő	30	7
63: 64:	1 1		94 98	159: 160:	0	154 78	53 42
65:	1		102	$\frac{160.}{161:}$	0	77	6
66:	1		106	162:	0	43	155
67: 68:	1 1		$\frac{110}{114}$	$\frac{163:}{164:}$	0	93 19	64 29
69:	1		118	165:	0	21	156
$\frac{70:}{71:}$	1 1		122 126	$\frac{166:}{167:}$	0	41 18	5 157
$\frac{71.}{72:}$	1		33	$\frac{167.}{168:}$	0	91	52
73:	1		37	169:	0	158	159
$\frac{74:}{75:}$	1 1		41 45	$\frac{170:}{171:}$	0	160 161	$\frac{20}{22}$
76:	1		49	172:	0	162	76
77: 78:	1 1		53 57	$\frac{173:}{174:}$	0	$\frac{163}{45}$	67 90
79:	1		61	$\frac{174.}{175:}$	0	164	165
80:	1		65	176:	0	68	44
$\frac{81:}{82:}$	1 1		69 73	$\frac{177:}{178:}$	0	166 95	167 168
83:	1		77	179:	0	169	89
84: 85:	1 1		81 85	180: 181:	0	$\frac{170}{171}$	88 172
86:	1		89	182:	0	173	174
87:	1		93	183:	0	175	176
88: 89:	1 1		97 101	$\frac{184:}{185:}$	0	$\frac{177}{179}$	178 180
90:	1		105	186:	0	181	182
$\frac{91:}{92:}$	1 1		109 113	$\frac{187:}{188:}$	0	183 185	184 186
93:	1		117	100.	~	100	100
94:	1 1		121				
<u>95:</u>	1		125			-	