Frühjahr 13 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Für welche $a,b\in\mathbb{R}$ ist das Polynom $u(x,y)=x^2+2axy+by^2$ der Realteil einer holomorphen Funktion auf \mathbb{C} ?
- b) Bestimmen Sie für jedes solche Paar (a,b) den Imaginärteil aller zugehörigen holomorphen Funktionen.

Lösungsvorschlag:

- a) Damit u Realteil einer holomorphen Funktion ist, muss u harmonisch sein, also 2+2b=0 erfüllen. Dies liefert b=-1. Für jedes Paar (a,-1) mit $a\in\mathbb{R}$ ist das Polynom $v(x,y)=ay^2+2xy-ax^2$ eine mögliche Wahl für den Imaginärteil, weil dann $\partial_x u(x,y)=2x+2ay=\partial_y v(x,y)$ und $\partial_y u(x,y)=2ax-2y=-\partial_x v(x,y)$ ist, die Cauchy-Riemannschen Differentialgleichungen also erfüllt sind. Also lautet die Antwort für alle $a\in\mathbb{R}$ und b=-1 und für keine anderen Werte für b.
- b) Ein Beispiel für den Imaginärteil haben wir in b) gesehen. Alle anderen erhält man durch Addition einer reellen Konstante. Ist nämlich z(x,y) eine weitere Wahl, also ist u(x,y)+iz(x,y) holomorph, so folgt, dass u(x,y)+iv(x,y)-(u(x,y)+iz(x,y))=i(v-z)(x,y) holomorph ist. Weil der Realteil konstant ist, kann dies nur möglich sein, wenn auch die Funktion und damit der Imaginärteil konstant ist, d. h. wenn $v-z\equiv c$ für ein $c\in\mathbb{R}$ gilt. Damit sind die gesuchten Imaginärteile für $a\in\mathbb{R}$ und b=-1 genau die Funktionen $v_c(x,y)=ay^2+2xy-ax^2+c$, wobei $c\in\mathbb{R}$ ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$