Weekly logs of Master thesis

Zhang Leyi¹

 $^1\mathrm{MSc}$ in BiRC, Aarhus University, Aarhus, Denmark

2023-02

Contents

1	Wee	ek 1	4
	1.1	Software Download	4
	1.2	QC	4
	1.3	Plink	4
	1.4	REGENIE for association study	5
	1.5	GEMMA	6
	1.6	fastGWA	7
	1.7	Bolt-lmm	8
	1.8	Question	8
2	Wee	ek 2	9
	2.1	fastGWA, 1000g	9
	2.2	PCA	9
	2.3	PCA for population prediction, K-means	10
	2.4	Simulate Binary Phenotype with LDAK	11
	2.5	Regenie for UKBB, binary	11
	2.6	Bolt-LMM, 1000g	12
	2.7	Ancestry Inference	13
	2.8	Week 2 Conclusion	13
3	Wee	ek 3	14
	3.1	Bolt-lmm, UKBB Binary	14
	3.2	On batch	15
	2 2	LDAK ukhh	15

3.4	Region 1	15
3.5	UKBB, Whole, Height	16
3.6	Binary	17
3.7	Type 1 error	18
3.8	Plan	20

1 Week 1

Date: 2023/2/8

1.1 Software Download

REGENIE: Stacked block ridge regression method for Mixed Linear Model.

Advantages:

- 1. Fast and Memory friendly.
- 2. Can process both quantitative and binary traits.
- 3. When Case-control unbalanced, h_{SNP}^2 will get too high due to the too low MAC(minor allele count). REGENIE can fix this.

Plink

Bolt-LMM

GEMMA

 $\mathbf{SAIGE} \text{ problems occur}$

1.2 QC

Filter out SNPs with genotype missingness > 10%, samples with > 10% missingness, MAF < 5%, minor allele count(MAC) < 100.

Cmd:

```
./software/plink — bfile data — geno 0.1 — mind 0.1 — maf 0.05 — mac 100 \ — make—bed — out data_qc
```

Output: $data_qc$

1.3 Plink

Worst result ever.

 $\operatorname{Cmd} :$

```
./software/plink — bfile data_qc — linear — pheno height.pheno — allow-no-sex\
—out data_plink_height
```

Q-Q plot: Figure 1

(a) Manhattan plot of REGENIE on height

Figure 1: **QQ plot of plink**

1.4 REGENIE for association study

I took height as the phenotype.

Step 1:

Input files: data_qc(3 files), covar1.covars, height1.pheno. Since REGENIE required labels in each column, I modified covar.covars and height.pheno with labels.

Cmd:

```
regenie \
—step 1 \
—bed data_qc \
—covarFile covar1.covars \
—phenoFile height1.pheno \
—bsize 100 \
—out data_regenie_out
```

Output: A predicting matrix W for h_{SNP}^2 , in file: data_regenie_out_pred.list

Step 2: Association test and LRT

Cmd:

```
regenie \
---step 2 \
---bgen data_qc.bgen \
```

```
—covarFile covar1.covars \
—phenoFile height1.pheno \
—bsize 200 \
—qt \
—firth —approx \
—pThresh 0.01 \
—pred data_regenie_out_pred.list \
—out data_regenie_out_firth
```

 $Output: \ data_regenie_out_firth_Phenotype.regenie$

The result can be seen in Figure 2

Figure 2: GWAS results from REGENIE on height(a)Manhattan plot. (b)QQ plot.

Benchmark:

See in Table 1

Method	Step	CPU time	Elapsed time(s)	Memory usage(GB)
REGENIE(null)	1		1492.8	10
REGENIE-Firth	2		4992.47	0.289

Table 1: Computational performance of REGENIE-Firth

Refer to: Mbatchou et al. (2021)

1.5 **GEMMA**

- 1. Before using GEMMA, the 6th column of .fam should be replaced by real phenotypes.
- 2. Calculate Kinship Matrix

```
gemma -bfile data_qc -gk 2 -o data_gemma_height
```

While it stuck here for hours, as in Figure 3

(a) Problem with GEMMA

Figure 3: Problem with GEMMA

1.6 fastGWA

- 1. After download, see: gcta in ./software folder
- 2. GCTA-GRM: calculating the genetic relationship matrix (GRM) from all the autosomal SNPs:

```
./software/gcta — bfile data_qc — chr 1 — maf 0.01 — make-grm \
—out data_qc_chr1 — thread-num 10
./software/gcta — bfile data_qc — chr 2 — maf 0.01 — make-grm \
—out data_qc_chr2 — thread-num 10
...
./software/gcta — bfile data_qc — chr 22 — maf 0.01 — make-grm \
—out data_qc_chr22 — thread-num 10
```

Output: .grm.bin, .grm.N.bin, .grm.id

3. To generate a sparse GRM from SNP data:

```
./software/gcta — bfile data_qc — autosome — maf 0.01 — make—grm \ — out data_qc_gcta — thread—num 10 ./software/gcta — grm data_qc_gcta — make—bK—sparse 0.05 \ — out sp_grm_gcta
```

4. Association study

I didn't use PCs

```
./software/gcta — bfile data_qc —grm-sparse sp_grm_gcta \
—fastGWA-mlm —pheno height.pheno —qcovar covar.covars \
—thread-num 10 —out data_fastgwa_height
```

Problem comes from step 4, Figure 4:

```
Reading the sparse GRM file from [sp_grm_gcta]...
After matching all the files, 66151 individuals to be included in the analysis.
Estimating the genetic variance (Vg) by fastGWA-REML (grid search)...
```

(a) Problem with GEMMA

Figure 4: Problem with fastGWA

It is stuck here also for hours, is it normal? I'll open the computer for the night and see.

Still stuck there in the morning...

1.7 Bolt-lmm

```
./\operatorname{software/BOLT-LMM\_v2.4/bolt} -- \operatorname{bfile=data\_qc} -- \operatorname{phenoFile=height1.pheno} -- \operatorname{phenoCol=lowerFile=covar1.covars} -- \operatorname{qCovarCol} -- \operatorname{lmmForceNonInf} -- \operatorname{statsFile=data\_bolt\_height}
```

The problem occurs at Figure 5.

```
Reading bed file #1: data_qc.bed

Expecting 6117025826 (+3) bytes for 66151 indivs, 369877 snps

ERROR: Wrong file size or reading error_for bed file: data_qc.bed

(a) Problem
```

Figure 5: **Problem with Bolt-LMM**

1.8 Question

- 1. What should I do with CV and LOOCV? What for?
- 2. How can I detect the Type I errors? By prediction? 3. When I tried SAIGE, I found it need me to use Rscript, how to do?

```
Rscript createSparseGRM.R

—plinkFile=${LD pruned PLINK file} \
—nThreads=72 \
—outputPrefix=${OUINAME} \
—numRandomMarkerforSparseKin=5000 \
—relatednessCutoff=0.05
```

2 Week 2

2.20 - 2.23

Since there are a lot problems occuring with UKBB data, I use 1000g as a demo. If it can work, I'll run on UKBB.

See in $commands_Week2.md$

2.1 fastGWA, 1000g

(a) Manhattan plot of fastGWA on 1000g, qt

Figure 6: fastGWA on 1000g

2.2 PCA

 $\label{eq:Figure 7: GWAS results from REGENIE on height}$

2.3 PCA for population prediction, K-means

y < - > PC1 + PC2

Figure 8: K-means clustering on PCA

Problem: I cannot evaluate the result.

2.4 Simulate Binary Phenotype with LDAK

(a) ukbb, simulation

Figure 9: Binary Phenotypes UKBB simulation

2.5 Regenie for UKBB, binary

Figure 10: Regenie results of UKBB on binary traits

$2.6 \quad \text{Bolt-LMM}, \, 1000 \text{g}$

(a) CV processing

Figure 11: Bolt result awaiting

The code has run for 24 hours, not consistent with the brilliant result from the paper, Loh et al. (2015).

Update: 2023/2/23

SNP Number: 6M

Time elapsed: 97449.4 sec

(a) Bolt result manhattan

(b) Bolt time elapsed

Figure 12: Bolt result and performance

2.7 Ancestry Inference

- 1. as shown in the section 2.3 [PCA for population prediction, K-means].
- $2.\ Using\ software:\ ADMIXTURE\ and\ fastSTRUCTURE\ for\ clustering.$
- 3. Finished: extract Region 1 out from .fam., as file: data_region1
- 4. processing: Do Regenie based on ukbb data: data_region1 and binary traits.

2.8 Week 2 Conclusion

- 1. Manhattan from ukbb are not very ideal, as the P value thresholds are almost close to 10^{-5} as shown in the blue lines. While the result from Bolt-lmm + 1000g is good, the threshold is 10^{-7} .
- 2. I'll take a look on the data after ancestry inference, to see if it's due to cryptic relatedness. But I am also questioning this inference because the 1000g data also has population structure confounding.

3 Week 3

2/24 - 3/01

3.1 Bolt-lmm, UKBB Binary

 ${\it Time elapsed: 76193.3 sec}$

(a) Bolt result manhattan

(b) Bolt result QQ-plot

```
Increasing --maxIters may improve phenotype model and statistical power
  Time breakdown: dgemm = 74.6%, memory/overhead = 25.4%
Filtering to SNPs with chisq stats, LD Scores, and MAF > 0.01
 of SNPs passing filters before outlier removal: 369877/369877
Masking windows around outlier snps (chisq > 66.7)
 of SNPs remaining after outlier window removal: 354065/369877
Intercept of LD Score regression for ref stats: 1.232 (0.016)
Estimated attenuation: 1.516 (0.265)
Intercept of LD Score regression for cur stats: 0.978 (0.044)
Calibration factor (ref/cur) to multiply by:
                                                  1.260 (0.044)
 ime for computing Bayesian mixed model assoc stats = 43535.6 sec
Calibration stats: mean and lambdaGC (over SNPs used in GRM)
 (note that both should be >1 because of polygenicity)
 lean BOLT_LMM_INF: 1.29132 (369877 good SNPs) lambdaGC: 1.13876
Mean BOLT_LMM: 1.41723 (369877 good SNPs) lambdaGC: 1.23414
  = Streaming genotypes to compute and write assoc stats at all SNPs ===
Time for streaming genotypes and writing output = 272.409 sec
Total elapsed time for analysis = 76193.3 sec
```

(c) Bolt result time elapsed

Figure 13: UKBB, binary, Bolt result and performance

Comment: Bad result, in qq-plot the black points are far from the red line. And in Manhattan plot, there are also a lot significant associated SNPs.

3.2 On batch

See leyi_week3.txt ukbb_whole_height: fastGWA, regenie, bolt

Results:

ADMIXTURE: Ran for 3 days, and stopped by system...

3.3 LDAK, ukbb

60 K inds in whole ukbb.

Binary

Height: Figure 14

Figure 14: LDAK performance on UKBB, Height.

Comment: I guess I used a wrong method in LDAK? It's more like the basic Plink?

3.4 Region 1

10 K inds in region 1.

Binary

Height: bolt, fastGWA, regenie

Results are shown below: Figure 15:

Figure 15: Different software performance on UKBB region 1.

In the next subsection, I'll compare results from region 1 with the whole UKBB data.

3.5 UKBB, Whole, Height

fastGWA is still awaiting. Only results from Bolt and Regenie now.

Results are shown below: Figure 16:

Figure 16: Results from UKBB, height: Bolt and Regenie.

3.6 Binary

 $60~\mathrm{K}$ inds.

Binary

Results are shown below: Figure 17:

Figure 17: LDAK and Bolt performance on UKBB, Binary.

3.7 Type 1 error

- 1. To generate complete non-genetic traits, Sabourin et al. (2019).
- 2. Calculate the proportion of P-value below a threshold, Berrandou, Balding, and Speed (2023).

The phenotypes simulated look as shown in Figure 18.

(a) Distribution of the traits

Figure 18: UKBB, non-genetic traits, quantitative, by LDAK

I chose the softwares above: Plink, fastGWA, LDAK, Bolt, Regenie, to test the performance. The distribution of P value in each software shows in Figure 19.

Figure 19: Distribution of P values of each software.

After getting the results, I did the bonferroni correction for p-value. Or by using X2?

Should I test them with permutation?

I tested the performance and proportion of P value < 0.01 and P value $< 5 \times 10^{-5}$ from each software,

Table 2. UNFINISHED

Software	Time	Memory(G)	P<0.01	P<5e-5
fastGWA_step1	9:08:01	41.78	NA	NA
fastGWA_step2	0:02:50	1.1	NA	NA
fastGWA_step3				
Regenie_Step1	7:00:06	35.67	NA	NA
Regenie_Step2	2:18:15	0.513	0.007294	3.51E=05
Bolt	2:15:37	6.21	0.009798	4.05E-05
LDAK	5:50:00	2.57	0.010101	4.86E-05
Plink	0:09:17	0.0413	0.008476	4.05E-05

Table 2: Performance to Type I error.

3.8 Plan

In the contract: This project will compare strategies for analyzing multi-ancestry datasets. In particular, it will quantify the power increase (or decrease) of MMAA (analyzing all individuals together) with perancestry analyses (e.g., analyze European, African and Asian separately, then meta-analyse the three sets of results). In particular, it will investigate whether the optimum strategy depends on consistency of genetic architecture across ancestries.

- 1. Today and tomorrow: meta-analysis
- 2. METAL software for meta-analysis. Khunsriraksakul et al. (2023), Willer, Li, and Abecasis (2010)
- 3. Question: can I use some software I have used to do a meta-analysis, otherwise should I also test for the performance of METAL?

References

- Berrandou, T.-E., Balding, D., & Speed, D. (2023, 1). Ldak-gbat: Fast and powerful gene-based association testing using summary statistics. *The American Journal of Human Genetics*, 110, 23-29. DOI: 10.1016/j.ajhg.2022.11.010
- Khunsriraksakul, C., Li, Q., Markus, H., Patrick, M. T., Sauteraud, R., McGuire, D., . . . Liu, D. J. (2023, 2). Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus. *Nature Communications*, 14, 668. DOI: 10.1038/s41467-023-36306-5
- Loh, P.-R., Tucker, G., Bulik-Sullivan, B. K., Vilhjálmsson, B. J., Finucane, H. K., Salem, R. M., ... Price, A. L. (2015, 3). Efficient bayesian mixed-model analysis increases association power in large cohorts. *Nature Genetics*, 47, 284-290. DOI: 10.1038/ng.3190
- Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J. A., Ziyatdinov, A., ... Marchini, J. (2021, 7). Computationally efficient whole-genome regression for quantitative and binary traits.

 Nature Genetics, 53, 1097-1103. DOI: 10.1038/s41588-021-00870-7
- Sabourin, J. A., Cropp, C. D., Sung, H., Brody, L. C., Bailey-Wilson, J. E., & Wilson, A. F. (2019,
 2). Compass-gwas: A method to reduce type i error in genome-wide association studies when replication data are not available. Genetic Epidemiology, 43, 102-111. DOI: 10.1002/gepi.22168
- Willer, C. J., Li, Y., & Abecasis, G. R. (2010, 9). Metal: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics*, 26, 2190-2191. DOI: 10.1093/bioinformatics/btq340