APLIKASI SMART FISH POND BERBASIS SENSOR OPTIK MENGGUNAKAN IOT DAN ANDROID

Optical Sensor Based Smart Fish Pond Application Using IoT and Android

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

KIKI NUGRAHENI 6705181018

D3 TEKNIK TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Ikan merupakan salah satu sumber protein hewani yang banyak dikonsumsi oleh masyarakat karena harganya yang terjangkau dan masyarakat Indonesia sebagian besar memiliki pencaharian sebagai nelayan. Seiring meningkatnya jumlah penduduk maka kebutuhan pangan dan gizi semakin meningkat membuat permintaan ikan semakin tinggi juga.

Di era yang serba maju ini banyak teknologi yang dijumpai semua sudah serba digital, dimana dalam ini memungkinkan untuk dapat menjamin efisiensi waktu. Kasus ikan yang mati karena kualitas air yang buruk. Ikan harus memenuhi beberapa kriteria paremeter yang mendukung kualitas air contohnya dilihat dari kekeruhan kondisi kolam, pemberian pakan tepat waktu dan parameter air merupakan aspek penting dalam budidaya ikan. Keterlambatan pemberian pakan ikan apabila ditinggal berpergian petaninya dalam waktu yang lama, menyebabkan pertumbuhan dan daya tahan ikan berkurang sehingga hasil produksi tidak memuaskan serta panen menjadi terlambat, dan juga perhitungan pada saat jual beli ikan masih dalam manual kurang efisien dan banyak memakan waktu lama.

Kolam ikan adalah sebuah *reservoir* air yang digunakan untuk memelihara sejumlah ikan untuk aktivitas budi daya ikan, tempat habitat hewan seperti ikan dan hewan amfibia lainnya. Namun pada saat ini, masih menggunakan kolam ikan manual. *Smart Fish Pond* ini merupakan kolam ikan untuk aktivitas budidaya ikan yang ditunjang dengan kemajuan teknologi yang terintegrasi dengan mikrokontroller menggunakan sensor optik serta aplikasi android secara *realtime*. Sensor optik adalah mengubah sinar cahaya menjadi sinyal elektronik. Tujuan dari sensor optik adalah untuk mengukur kuantitas fisik cahaya dan, tergantung pada jenis sensor, kemudian menerjemahkannya ke dalam bentuk yang dapat dibaca oleh alat pengukur terintegrasi.

Untuk mengatasi permasalahan pada budidaya ikan tersebut maka dibuatlah aplikasi *Smart Fish Pond* dimana *hardware* terkoneksi ke internet secara *realtime* menggunakan Firebase lalu data yang diterima dari *hardware* kemudian akan diolah di database lalu akan ditampilkan di Aplikasi Android. Kemudian data tersebut akan ditampilkan pada user yang akan mendapatkan informasi kekeruhan air, pemberi makan secara otomatis, dan monitoring penghitung ikan secara otomatis dengan menggunakan *smartphone*.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Aplikasi Pemberi Pakan Ikan Otomatis	2018	Pada penelitian ini penulis membuat Aplikasi Web menggunakan bahasa
	Menggunakan Mikrokontroler ESP8266		pemprograman Hypertext Preprocessor (PHP) sedangkan pada Proyek
	Berbasis Web". [1]		Akhir yang akan dibuat adalah Aplikasi Android menggunakan Bahasa
			pemrograman JavaScript.
2.	Rancang Bangun Sistem Monitoring	2018	Pada penelitian ini penulis membuat Aplikasi untuk Monitoring air, PH, dan
	Kolam Renang Berbasis Web dengan IoT.		suhu pada Kolam Renang berbasis Web. Perbedaan pada Proyek Akhir
	[2]		yang akan dibuat yaitu Aplikasi untuk Monitoring penghitung ikan,
			kekeruhan air dan Controlling remote pemberi pakan ikan pada Kolam Ikan
			Pintar (Smart Fish Pond) berbasis Android.
3.	Pengembangan Alat Pemberi Makan Ikan	2018	Pada penelitian ini penulis membuat Aplikasi dengan menggunakan
	Otomatis Menggunakan Arduino		database tidak Realtime. Perbedaan pada Proyek Akhir yang akan dibuat
	Terintegrasi Berbasis IOT. [3]		yaitu aplikasi dengan menggunakan Firebase database secara Realtime.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan aplikasi *Smart Fish Pond* berbasis Android dapat bekerja dengan data *realtime* menggunakan *software Visual Studio Code* dan *Android Studio*. Adapun perancangan sistem dari aplikasi android ini adalah sebagai berikut:

Gambar 1. Model Sistem Perancangan Aplikasi Smart Fish Pond

Bahwa aplikasi yang dibuat akan terintegrasi dengan sebuah *hardware yaitu Smart* Fish Pond yang akan dikerjakan pada penelitian ini dan fokus Proyek Akhir ini hanya pada software. Hardware akan mengirim data yang diterima ke Firebase Realtime Database, lalu data dari Firebase tersebut diteruskan ke Aplikasi Android yang sudah terkoneksi dengan sistem Firebase Realtime Database yang sudah dibuat.

Aplikasi Android yang dibuat adalah aplikasi yang ditujukan untuk memonitoring kualitas air dilihat dari kekeruhan air pada kolam ikan lalu fitur yang kedua adalah monitoring penghitung ikan secara otomatis. Pada aplikasi ini juga terdapat menu controlling ditujukan untuk remote pemberi makan ikan otomatis pada jarak jauh. Aplikasi ini dilengkapi dengan fitur data secara realtime. Tujuannya agar user dapat memperoleh data kekeruhan air sehingga dapat mengetahui baik atau tidaknya kualitas air ada dikolam, membantu penghitungan ikan saat jual beli dan dapat memberi ikan otomatis. Sehinga user dapat melihat melalui smartphone yang sudah mempunyai akses terhadap alat yang dipasang.

Referensi

- [1] R. Saputra, "APLIKASI PEMBERI PAKAN IKAN OTOMATIS MENGGUNAKAN MIKROKONTROLER ESP8266 BERBASIS WEB," *SKANIKA*, vol. 1, 2018.
- [2] I. N. Putra, ""RANCANG BANGUN SISTEM MONITORING KOLAM RENANG BERBASIS WEB DENGAN IOT."," *Jurnal Mahasiswa Teknik Informatika*, pp. 116-121, 2018.
- [3] H. &. Y. F. M. Himawan, "PENGEMBANGAN ALAT PEMBERI MAKAN IKAN OTOMATIS MENGGUNAKAN ARDUINO TERINTEGRASI BERBASIS IOT," *TELEMATIKA*, pp. 87-98, 2018.

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2020/2021

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : TND

Nama : Tri Nopianti Damayanti, S.T., M.T.

CALON PEMBIMBING 2

Kode

Nama

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705181018

Nama : Kiki Nugraheni

Prodi / Peminatan : D3TT/IoT (Internet of Things)

Calon Judul PA : Aplikasi Smart Fish Pond Berbasis Sensor Optik Menggunakan IoT dan Android

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

(Tri Nopianti Damayanti, S.T., M

Calon Pembimbing 2

CATATAN:

- Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705181018

Dosen Wali

: DUM / DADAN NUR RAMADAN

Nama

: KIKI NUGRAHENI

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1D3	RANGKAIAN LISTRIK ELECTRICAL CIRCUITS		3	С
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	ВС
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	АВ
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	А
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
	83	3.36			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	ВС
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	AB
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
Jumlah SKS				83	3.36

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
Jumlah SKS				13	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3E1	HEI	HEI	1	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
Jumlah SKS				13	

Tingkat I	: 41 SKS	Belum Lulus	IPK : 3.12
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.34
Tingkat III	: 83 SKS	Belum Lulus	IPK : 3.36
Jumlah SKS	: 83 SKS		IPK : 3.36

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 06 Oktober 2020 17:22:21 oleh KIKI NUGRAHENI