Section spéciale — Lagrangien du modèle VLCC, version 2

Intégration de l'hypothèse du temps matière intriqué

Auteur : Frédérick Vronsky

Collaboration analytique: L.Caelum (OpenAI)

Introduction

Le modèle cosmologique spéculatif VLCC (Vronsky Light Curved Continuum) repose sur une architecture différenciée de l'espace-temps, dans laquelle la lumière (y compris ses états non observables comme les photons noirs) est le socle des structures physiques fondamentales.

Dans une perspective de raffinement, cette version 2 du Lagrangien du modèle propose une avancée conceptuelle majeure : la prise en compte du temps matière comme entité intriquée, c'est-à-dire structurée par des composantes temporelles interdépendantes.

L'hypothèse repose sur l'idée que le temps n'est pas une simple dimension linéaire, mais un champ matière constitué de photons noirs à fréquence nulle. Ces photons, inertes, porteraient les propriétés physiques du temps — compression, expansion, glissement — mais pourraient aussi être intriqués, à la manière d'un phénomène quantique, entre un passé compressé et un futur dilaté, définissant ainsi un présent dynamique.

Fondements du lagrangien v2 du modèle VLCC

Nous rappelons que dans le formalisme lagrangien, la dynamique d'un système physique est décrite par une fonction $L\setminus L \subseteq L$ le Lagrangien — qui exprime la différence entre l'énergie cinétique et l'énergie potentielle.

1. Variables fondamentales du VLCC:

- fff : fréquence du photon
- $v \rightarrow 0 \ln to 0v \rightarrow 0$: fréquence du photon noir
- TTT: temps considéré comme champ matière
- xµx^\muxµ : coordonnées spatio-temporelles
- ΦT\Phi_TΦT : potentiel temporel (champ scalaire associé au temps matière)
- τ\tauτ : coordonnée propre du champ de temps
- $\psi(t)$ \psi(t) $\psi(t)$: état temporel intriqué

2. Lagrangien général du modèle VLCC v2:

Nous proposons le Lagrangien suivant :

 $L=12\partial\mu\Phi T\ \partial\mu\Phi T-V(\Phi T)+\lambda|\psi(t)|2\operatorname{L}=\frac{1}{2} \operatorname{L}-\mu \ \Phi T-V(\Phi T)+\lambda|\psi(t)|2\operatorname{L}=21\partial\mu\Phi T\partial\mu\Phi T-V(\Phi T)+\lambda|\psi(t)|2$

Avec:

- ΦT\Phi TΦT : champ du temps matière
- $V(\Phi T)=12mT2\Phi T2+\alpha 4\Phi T4V(Phi_T)=\frac{1}{2} m_T^2 Phi_T^2 + \frac{1}{4} Phi_T^4V(\Phi T)=21mT2\Phi T2+4\alpha\Phi T4: potential temporal$
- $\psi(t)=a(tpasse')+b(tfutur)\cdot psi(t)=a(t_{\text{passe'}})+b(t_{\text{futur}})\cdot \psi(t)=a(tpasse')+b(tfutur):$ superposition linéaire des composantes temporelles
- λ\lambdaλ : constante d'intrication temporelle

3. Hypothèse de superposition temporelle

La structure intriquée du temps est interprétée comme suit :

```
\psi(t)=a|t-\rangle+b|t+\rangle\rangle = a|t_{-}\rangle + b|t_{+}\rangle + b|t-\rangle+b|t+\rangle
```

- $|t-\rangle|t_{-}\rangle$: état temporel passé
- |t+>|t_{+}\rangle|t+>: état temporel futur
 La présence est donc une interférence dynamique entre ces deux états.

4. Action associée au Lagrangien

 $S = \int d4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu}\Phi T - V(\Phi T) + \lambda|\psi(t)|^2\right] S = \int d^4x \left[12\partial_{\mu}\Phi T \partial_{\mu}\Phi T \partial_{\mu$

Cette action permet de décrire :

- les modulations locales du champ temps
- l'émergence d'une dynamique temporelle intriquée
- une résilience du champ temps matière à travers les phases de l'expansion cosmique

5. Interprétation physique

- Les photons noirs ne se propagent pas à proprement parler mais fluctuent localement sous l'effet de l'intrication des états temporels.
- L'effet gravitationnel devient une ondulation du champ temps, et les perturbations du champ ΦΤ\Phi_TΦΤ s'apparentent à des ondes gravitationnelles stationnaires dans certains cas limites.
- Le présent n'est plus une coordonnée mais un état composite, issu d'une cohérence de phase entre passé et futur.

Conclusion

Ce Lagrangien version 2 enrichit le modèle VLCC par une conceptualisation du temps matière intriqué :

- Il associe une dynamique scalaire au champ temporel
- Il relie cette dynamique à des principes quantiques
- Et permet d'envisager une variabilité du temps en fonction de son environnement

Il ouvre des perspectives de falsifiabilité — en particulier dans le cadre des tests d'ondes gravitationnelles lentes ou figées — et pose les premières pierres d'une quantification du temps dans un univers spéculatif où tout est lumière, même noire.