Survey Data Analysis with R (1)

Chia-hung Tsai

Aug. 13, 2018

Goals

- ▶ Using R to analyze survey data in SPSS format
- Using weight
- Frequency tables
- Cross-table
- Descriptive statistics

Preparation

- ► Install R from here
- Install RStudio IDE
- Install survey, foreign, car packages

Dataset

We will run a survey data to show how R works, so you should download **TEDS2016_indQ.sav** file to your working directory

Data

You can import dataset from RStudio's **File** and **Import Dataset**. The codes will looks like the following:

```
library(haven)
TEDS2016_indQ <- read_sav("TEDS2016_indQ.sav")</pre>
```

Or you can use library **foreign** to read the data:

Use survey package

Before we weight the data, let's look at the frequencies of sex and eduation.

```
prop.table(table(df$Sex))
##
##
## 0.514 0.486
prop.table(table(df$Age))
##
      1 2 3
##
  0.156 0.167 0.188 0.199 0.290
```

Comparing SPSS and R

We can compare the results with SPSS output.

性別

		次數	百分比	有效百分比	累積百分比
有效的	男性	868	51.4	51.4	51.4
	女性	822	48.6	48.6	100.0
	總和	1690	100.0	100.0	

年齡						
		次數	百分比	有效百分比	累積百分比	
有效的	20至29歳	264	15.6	15.6	15.6	
	30至39歲	282	16.7	16.7	32.3	
	40至49歳	317	18.8	18.8	51.1	
	50至59歳	337	19.9	19.9	71.0	
	60歲及以上	490	29.0	29.0	100.0	
	總和	1690	100.0	100.0		

Using weight

We weight the data as follows.

```
library(survey)
dfw <- svydesign(ids = ~1, data = df, weights = df$w)</pre>
```

We can check the frequencies

```
prop.table(svytable(~Sex, design=dfw))
```

```
## 1 2
## 0.493 0.507
```

Sex

```
prop.table(svytable(~Age, design=dfw))
```

```
## Age
## 1 2 3 4 5
## 0.170 0.209 0.192 0.192 0.237
```

Comparing SPSS and R

We can compare the results with SPSS output.

性別

		次數	百分比	有效百分比	累積百分比
有效的	男性	833	49.3	49.3	49.3
l	女性	857	50.7	50.7	100.0
	總和	1690	100.0	100.0	

年齡						
		次數	百分比	有效百分比	累積百分比	
有效的	20至29歳	287	17.0	17.0	17.0	
	30至39歲	353	20.9	20.9	37.8	
	40至49歲	325	19.2	19.2	57.1	
	50至59歳	324	19.2	19.2	76.3	
	60歲及以上	401	23.7	23.7	100.0	
	總和	1690	100.0	100.0		

Data cleaning

Recode "Don't Know"

```
prop.table(svytable(~Edu, design=dfw))
```

```
## Edu
## 1 2 3 4 5 9
## 0.14757 0.12761 0.27894 0.12265 0.31741 0.00582
```

■ After recoding, be sure to weight your data. Otherwise you cannnot find the new weighted variable

```
library(car)
df$Edu.5<-recode(df$Edu, "9=NA")
dfw <- svydesign(ids = ~1, data = df, weights = df$w)</pre>
```

prop.table(svytable(~Edu.5, design=dfw))

```
## 1 2 3 4 5
## 0.148 0.128 0.281 0.123 0.319
```

Edu.5

Reducing the number of categories

```
df$Edu.3<-recode(df$Edu, "1:2=1; 3=2; 4:5=3; 9=NA")
dfw <- svydesign(ids = ~1, data = df, weights = df$w)
prop.table(svytable(~Edu.3, design=dfw))</pre>
```

```
## 1 2 3
## 0.277 0.281 0.443
```

Edu.3