

SCARA Robot 800

Dr. Mohamed El Gamil

- 1.Menna Allah Ahmed Ali
- 2. Radwa Ahmed Mohamed Kamel
 - 3.Reem Emad Ramadan
 - 4. Esraa Gamal Saad Ahmed
- 5. Basant Abd-Elazim Mohammed

SCARA Robot (eCobra 800 Lite)

Specifications:

Product name		eCobra	eCobra			
	Size	800				
	Туре	800 Lite				
	Cleanroom/IP	Standard	Cleanroom	IP65		
Part Number		17010- 18000	17010- 18010	17010- 18030		
Number of axes		4	4			
Mounting		table/floor	table/floor			
Reach		800 mm	800 mm			
Maximum Payload		5.5 kg	5.5 kg			
	XY	±0.017 mm	±0.017 mm			
Repeatability	Z	±0.003 mm	±0.003 mm			
	Theta	±0.019°	±0.019°			
Isint Dance	Joint 1	±105°	±105°			
Joint Range	Joint 2	±157.5°	±157.5°			

	Joint 3	210 mm		
	Joint 4	±360°		
Inertia Moment (Max.)	Joint 4	450 kg-cm ²		
	Joint 1	386°/s		
Joint Speeds	Joint 2	720°/s		
Joint Speeds	Joint 3	1100 mm/s		
	Joint 4	1200°/s		
Cycle times	Burst	0.73 s		
(Payload 2.0 kg)	Sustained	0.73 s		
Power Requirements		24 VDC: 6 A 200 to 240 VAC: 10 A, single-phase		
Protection		IP20	IP20	IP65
Clean Class			Class 10	
Environment	Ambient Temperature	5 to 40°C		
Requirements	Humidity Range	5 to 90% (non-condensing)		
Weight		43 kg		
	Controller	eAIB		
	On-board I/O (Input/Output)	12/8, 4 Solenoid Output		
	Conveyor tracking input	No		
Basic configuration	RS-232C serial communications port	No		
	Programming environment	ACE		
	ACE Sight	No *2		
	ePLC Connect	No		
	ePLC I/O	No		
Connectable controller		No		

Dimensions:

Motion Type: RRPR

Links: 3 Links, 4 including the base

- Link1 (L1) The Base
- Link2 (L2) 450 mm
- Link3 (L3) 350 mm
- Link4 (L4)

Joints: 4 joints

- Joint1 (J1) motion type: R [ranges (±105°)]
- Joint2 (J2) motion type: R [ranges (±157.5°)]
- Joint3 (J3) motion type: P [ranges (210 mm)]
- Joint4 (EE) end-effector; Gripper [ranges (±360°)]

eCobra 800 Robot Top and Side Dimensions:

About the Program:

A MATLAB file is attached with the report, calculating the end effector position and orientation with DH convention, also provides animation of the robot Kinematic diagram movements, Robot arm simulation and animation of workspace.

To know the position of the end effector at a certain moment you need to enter (theta1 which is the angular position of the joint1 (J1)), (theta2 which is the angular position of the joint2 (J2)), (theta4 which is the angular position of the end effector [the angle that the end effector is rotated with]) and (d3) which is the distance the end effector moved [joint3 is P type, it moves vertically, so d3 is the distance which joint3 makes the link3 move by and it should be positive value]

The function that makes this calculations is called [Calc_PosAndOren_Of_EE], its inputs are: theta1, theta2, theta4, d3, the output of the DH convention is a 4x4 matrix represents the position of the EE (end effector) [the fourth column], and a rotation matrix of EE [3x3 matrix starts with the first row and column]

$$T_4^0 = \cos(\theta_1 + \theta_2 - \theta_4) - \sin(\theta_1 + \theta_2 - \theta_4) = 0 = \frac{\sin(\theta_1 + \theta_2 - \theta_4)}{0} = \frac{\cos(\theta_1 + \theta_2 - \theta_4)}{0} = \frac{\cos(\theta_1 + \theta_2 - \theta_4)}{0} = 0 = 0 = 0 = 0$$

Where d is the height of the base, since we calculate the position of the EE relative to the base not to the first joint. And d3 as we mentioned before is the distance which Link3 moved vertically.

Kinematic diagram of the Robot

Animations and Simulations captured from the Program:

• Kinematic diagram:

• SCARA Arm animation:

• Workspace:

• Workspace animation:

DH Convention for Robots:

The general format for the matrix for a single joint is:

$$T_i^{i-1} = \begin{matrix} \cos\theta_i & -\sin\theta_i * \cos\alpha_i & \sin\theta_i * \sin\alpha_i & r_i * \cos\theta_i \\ \sin\theta_i & \cos\theta_i * \cos\alpha_i & -\cos\theta_i * \sin\alpha_i & r_i * \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 1 \end{matrix}$$

And for a SCARA 800 robot, the DH parameters are described in the following table:

joints	$d_i(mm)$	$a_{i-1}(mm)$	$\alpha_{i-1}(^{\circ})$	$ heta_i(^\circ)$
1	d_1	L_1	0	$ heta_1$
2	0	L_2	180	$ heta_2$
3	-d ₃	0	0	0
4	0	0	0	$ heta_4$

So

$$T_{1}^{0} = \begin{cases} cos\theta_{1} & -sin\theta_{1} & 0 & L_{1}*cos\theta_{1} \\ sin\theta_{1} & cos\theta_{1} & 0 & L_{1}*sin\theta_{1} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 1 \end{cases}$$

$$Cos\theta_{2} & -sin\theta_{2} & 0 & L_{2}*cos\theta_{2} \\ T_{2}^{1} = \begin{cases} sin\theta_{2} & cos\theta_{2} & 0 & L_{2}*sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{cases}$$

$$T_3^2 = \begin{matrix} 1 & 0 & 0 & 0 & & & \cos\theta_4 & -\sin\theta_4 & 0 & 0 \\ 0 & -1 & 0 & 0 & & & & & & & & \\ 0 & 0 & -1 & -d_3 & , & T_4^3 = \begin{matrix} \cos\theta_4 & -\sin\theta_4 & 0 & 0 \\ \sin\theta_4 & \cos\theta_4 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}$$

So the final matrix of the end-effector will be as mentioned before:

$$T_4^0 = T_1^0 * T_2^1 * T_3^2 * T_4^3 =$$

$$\cos(\theta_1 + \theta_2 - \theta_4) - \sin(\theta_1 + \theta_2 - \theta_4) \quad 0 \quad L_1 \cos\theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$\sin(\theta_1 + \theta_2 - \theta_4) \cos(\theta_1 + \theta_2 - \theta_4) \quad 0 \quad L_1 \sin(\theta_1) + L_2 \sin(\theta_1 + \theta_2)$$

$$0 \quad 0 \quad -1 \quad d - d_3$$

$$0 \quad 0 \quad 1$$

$$= \begin{cases} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{cases}$$

where the robot end-effector position is (p_x , p_y , p_z)

and the rotation matrix is:
$$\begin{array}{cccc} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{array}$$

Test Cases Included In the Code:

Test 1:

joints	$d_i(mm)$	$a_{i-1}(mm)$	$\alpha_{i-1}(^{\circ})$	$ heta_i(^\circ)$
1	398	450	0	89
2	0	350	0	65
3	210	0	180	0
4	0	0	0	23

And the results were as in the image:

7

Test 2:

joints	$d_i(mm)$	$a_{i-1}(mm)$	$\alpha_{i-1}(^{\circ})$	$ heta_i(^\circ)$
1	398	450	0	30
2	0	350	0	70
3	10	0	180	0
4	0	0	0	18

And the results were as in the image:

1

Test 3:

joints	$d_i(mm)$	$a_{i-1}(mm)$	$\alpha_{i-1}(^{\circ})$	$ heta_i(^\circ)$
1	398	450	0	28
2	0	350	0	45
3	50	0	180	0
4	0	0	0	56

And the results were as in the image:

