Polarized Electrons in JLEIC

V.S. Morozov, Ya.S. Derbenev, F. Lin, Y. Zhang, JLab

D. Barber, *DESY*

A.M. Kondratenko, M.A. Kondratenko, Novosibirsk, Russia

Yu.N. Filatov, MIPT, Russia

JLEIC Layout

- Electron complex
 - CEBAF
 - Electron collider ring: 3-12 GeV/c
- Ion complex
 - Ion source
 - SRF linac: 150 MeV for protons
 - Low Energy Booster: 8.9 GeV/c
 - High Energy Booster: 13 GeV/c
 - Ion collider ring: 200 GeV/c
- Up to two detectors at minimum background locations
- Upgradable to 140 GeV CM by doubling ion energy

arXiv:1209.0757 arXiv:1504.07961

pCDR August 2019 Zgoubi Workshop 2019

12 GeV CEBAF as Injector

- Extensive fixed-target science program
 - Fixed-target program compatible with concurrent JLEIC operations
- JLEIC injector
 - -Fast fill of collider ring
 - -Full energy
 - -~85% polarization
 - —Enables top-off
- New operation mode but no hardware modifications

Up to 12 GeV to JLEIC

Electron Collider Ring Layout

Cost reduction by reusing PEP-II magnets, RF and vacuum pipe in the electron ring

Electron Collider Ring Optics: Complete Ring

Global chromaticity compensation scheme

Beam size

$$\sigma = \sqrt{\beta \varepsilon + (D\Delta p/p)^2}$$
$$\varepsilon p/mc^2 \text{ is a constant}$$

Electron Injection

- Electron injection from CEBAF
 - Existing CEBAF electron gun
 - Two polarization state injection
 - f_{ring} / f_{CEBAF} = 476.3 MHz / 1497 MHz = 7 / 22
- Test of CEBAF in JLEIC injector mode completed

476.3 MHz e-ring (NCRF PEP-II)

Mid-cycle 1, inject the 1st of every 7 buckets in the ring

Jefferson Lab

Zgoubi Workshop 2019 6 August 27, 2019

Electron Beam

- Electron beam
 - 3 A at up to 7 GeV
 - Normalized emittance85 µm @ 5 GeV
 - Synchrotron power density < 10 kW/m
 - Total power up to 10 MW

Parameter	Units					
Energy	GeV	3	5	7	10	12
Beam current	Α	3	3	3	8.0	0.39
Total SR power	MW	0.30	2.28	8.76	9.73	9.84
Energy loss per turn	MeV	0.10	0.76	2.92	12.17	25.23
Energy spread	10-4	2.5	4.1	5.8	8.2	9.9
Transverse damping time	ms	474	102	37	13	7
Longitudinal damping time	ms	237	51	19	6	4
Normalized horizontal emittance	um	18	85	234	683	1180
Normalized vertical emittance	um	1.3	6.0	16.6	48.3	83.5
Bunch length	cm	1	1	1	1	1.32

Radiative Polarization Effects

Sokolov-Ternov polarization change rate

$$\tau_{ST}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 h / 2\pi}{m_e} \frac{1}{C} \oint ds \left\langle \frac{1 - \frac{2}{9} (\hat{n} \cdot \hat{s})^2}{|\rho(s)|^3} \right\rangle_{S}$$

 \hat{n} is the invariant spin field, a 1-turn periodic unit 3-vector field over the phase space satisfying the T-BMT equation along particle trajectories, \hat{s} is a unit vector along the particle velocity, and $2\pi\hbar$ is Planck's constant.

• Depolarization rate due to spin diffusion

$$\tau_{SD}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 h/2\pi}{m_e} \frac{1}{C} \oint ds \left\langle \frac{11(\partial \hat{n}/\partial \delta)^2}{18|\rho(s)|^3} \right\rangle_{S}$$

 $\partial \hat{n}/\partial \delta$ is the spin-orbit coupling function

Total polarization change rate

$$\tau_{DK}^{-1} = \tau_{ST}^{-1} + \tau_{SD}^{-1}$$

Equilibrium polarization

$$P(t) = P_{ens,DK} \left(1 - e^{-t/\tau_{DK}} \right) + P_0 e^{-t/\tau_{DK}}$$

where $P_{ens,DK} = P_{DK} \langle \hat{n} \rangle_s$ is the value of ensemble average of P_{DK} independent of s and P_0 is the initial polarization

Electron Polarization Strategies

- Highly vertically polarized electron beams are injected from CEBAF
 - avoid spin decoherence, simplify spin transport from CEBAF to MEIC, alleviate the detector background
- Polarization is designed to be vertical in the JLEIC arc to avoid spin diffusion and longitudinal at collision points using spin rotators
- Universal spin rotator (fixed orbit) rotates the electron polarization from 3 to 12 GeV
- · Desired spin flipping is implemented by changing the source polarization
- Polarization configuration with figure-8 geometry removes electron spin tune energy dependence, significantly suppress the synchrotron sideband resonance
- Continuous injection of highly-polarized electrons from CEBAF is considered to maintain high equilibrium polarization
- Spin matching in some key regions is considered to improve polarization lifetime
- Compton polarimeter provides non-invasive measurements of the electron polarization

bunch train & polarization pattern (in arcs)

Universal Spin Rotator

Changes polarization from vertical in the arcs to longitudinal in the straights

electrons

Sequence of solenoid and dipole sections

Geometry independent of energy

- Dispersion suppressed in solenoids and each solenoid is individually decoupled
- Two polarization states with equal lifetimes
- Electron beam rotators house vertical doglegs for stacking the electron and ion beams in arcs and bring them to same plane in the straights

Е	Solenoid 1		Dipole set 1	Solenoid 2		Dipole set 2
	Spin Rotation	BDL	Spin Rotation	Spin Rotation	BDL	Spin Rotation
GeV	rad	T∙m	rad	rad	T∙m	Rad
3	π/2	15.7	π/3	0	0	π/6
4.5	π/4	11.8	π/2	π/2	23.6	π/4
6	0.62	12.3	2π/3	1.91	38.2	π/3
9	π/6	15.7	π	2π/3	62.8	π/2
12	0.62	24.6	4π/3	1.91	76.4	2π/3

Zgoubi Workshop 2019 10 August 27, 2019

Spin Tracking

Spin tune scan using a spin tuning solenoid in SLICK/SLICKTRACK

 Demonstrates suppression of synchrotron sideband spin resonances

Verified by Zgoubi's Monte-Carlo spin tracking

Zgoubi Workshop 2019 11 August 27, 2019

Polarization Lifetime and Continuous Injection

Estimated polarization lifetime

Energy (GeV)	3	5	7	9	12
Lifetime (hours)	116	9	1.7	0.5	0.1

- Constant polarization is maintained by continuous injection of highly polarized electron beam from CEBAF
- Equilibrium polarization $P_{equ} = P_0 \left(1 + \frac{T_{rev}I_{ring}}{\tau_{DK}I_{inj}} \right)^{-1}$
- A relatively low average injected beam current of tens-of-nA level can maintain a high equilibrium polarization in the whole energy range
- Beam lifetime must be balanced with the beam injection rate and $\tau_{beam} \ll \tau_{pol}$

Electron Interaction Region

• Downstream chicane for low- Q^2 tagging and polarimetry

Low Q^2 Tagger in JLEIC

- Dipole chicane for high-resolution detection of low-Q² electrons
- Compton polarimetry has been integrated to the interaction region design
 - -same polarization at laser as at IP due to zero net bend

Zgoubi Workshop 2019 August 27, 2019

Summary

- JLEIC electron polarization design
 - —High polarization level maintained by full-energy top-off injection of highly polarized electrons from CEBAF
 - -Polarization is vertical in the arcs to minimize the spin diffusion
 - —Universal fixed-geometry spin rotators to provide longitudinal polarization at the IP
 - Equal lifetimes of the two polarization states
 - —No energy dependence of the spin tune
 - Compton polarimetry
- Preliminary simulations confirm theoretical expectations
- Future work
 - -Spin matching
 - —Spin tracking
 - Polarization lifetime
 - Top-off process
 - Invariant spin field
 - Spin dynamics at different energies
 - Optimization

