Introduction - Concept of PIII&D

- Ion implantation
- A method of modifying the electrical, chemical, and mechanical properties of the near surface ($< 1 \mu m$) layer of materials.
 - Plasma immersion ion implantation (PIII)
- A room temperature, plasma-based, surface modification technology for the surface engineering of semiconductors, metals, and dielectrics.

- The surface of a substrate (or 'target') is exposed to, or immersed in a plasma.
- Negative high-voltage pulses are applied (up to 150 kV, typically $20 \sim 60 \text{ kV}$).
- The electrons are accelerated away from the substrate while the positive ions are accelerated from the source plasma toward the substrate and implanted.

Schematic diagram of ion penetration

Processing Chamber

Nitrogen implantation (operation parameters)

	Incident ion dose (ions / cm²)				
Parameters	3 ×10 ¹⁷	6 ×10 ¹⁷	9 ×10 ¹⁷	12 ×10 ¹⁷	15 ×10 ¹⁷
RF power (W, f=13.56 MHz)	200	200	150	200	150
Pressure (mTorr)	0.74	0.8	0.7	0.76	0.8
Implantation voltage (kV)	20	20	20	20	20
Stage temperature (℃)	74	75	65	96	100
Specimen temperature (℃)	85	90	70	113	110

Wear tracks

자동차 엔진부품 적용

Automobile piston

. DLC-coated mold and Tool

Influence of plasma activation on the microstructure of layer

Cr deposited without plasma activation

Cr deposited with plasma activation

Al oxide deposited without plasma activation

Al oxide deposited with plasma activation

(a) Without ion implantation

(b) With ion implantation

고망간강 특성

망간은 니켈 등의 합금 원소보다 가격은 저렴하지만, 철강 제품에 첨가하면 가공성이 높아지고, 극저온에서도 잘 견디는 성질 등을 갖게 됨. 이러한 특성으로 산업계가 요구하는 다양한 소재 개발이 가능

고망간강 구조 철+망간(Mn)3~27%=고망간강

고망간강 제조 과정

고망간강은 망간 합금을 대량 첨가하므로 기존 공정에서는 생산에 어려움이 있었으나 액체 상태의 망간강 제조 공정을 구축해 이를 해결

국저온용 고망간강 인장강도 1000MPa 25°C 기준 용력 750 고망간강 파단지점 500 250 알루미늄 0 10 20 30 40 50 60% ※ 재료에 한 방향으로 파괴될 때까지 힘을 가했을 때 고망간강의 최대 강도는 970메a