ÜBUNGEN ZUR KLASSISCHEN PHYSIK 1

WS 2023/24

11. Übungsblatt

29.01.2024

Aufgabenweise Abgabe in Gruppen von 2 bis 3 Personen bis **29.01.2024/12 Uhr** über WueCampus. Bei jeder Aufgabe die Gruppennamen auf die erste Seite der Abgabe **und** in den Dateinamen schreiben!

Ergebnisse als Funktion der gegebenen Größen angeben!

Ein langer, dünner, homogener Stab (Länge l, Querschnittsfläche A) ist am Rand eines Gefäßes befestigt und hängt zum Teil im Wasser (Dichte ρ_l). Der Stab kann frei in der Zeichenebene um die Befestigung rotieren. Im Gleichgewichtszustand ist 1/n-tel des Stabes nicht im Wasser. Vernachlässigen Sie Oberflächeneffekte.

- (2 P) a) Bestimmen Sie die Dichte des Stabes ρ_s im Verhältnis zur Dichte des Wassers. Machen Sie eine Skizze mit den von Ihnen verwendeten Größen.
- (1 P) b) Bestimmen Sie die Kraft \vec{F}_{H} , die die Befestigung auf den Stab ausübt.
- (1 P) c) Das Stabende befindet sich zu Beginn in der Tiefe $y = h_1$ unter der Wasseroberfläche. Wird die Füllhöhe des Gefäßes verändert, verändert sich auch der Winkel, den der Stab zur Wand einnimmt. Bestimmen Sie diesen Winkel als Funktion der Höhenänderung y der Wasseroberfläche. Die y-Achse zeige nach unten. Bei welcher Füllhöhe stößt der Stab gegen die Wand?

- (1 P) a) Welche der beiden Flüssigkeiten ist Wasser, welche Öl? Bestimmen Sie die Dichte des Öls.
- (1 P) b) Nun wird auf der Wasserseite der Luftdruck oberhalb der Wassersäule um Δp erhöht und das Rohr mit einem Stopfen verschlossen. Wie verändern sich die Wasserstände auf der linken und auf der rechten Seite in Abhängigkeit von Δp ?
- (1 P) c) Was für eine Bewegung führt die Flüssigkeitssäule aus, wenn der Stopfen wieder entfernt wird? Begründung!

ÜBUNGEN ZUR KLASSISCHEN PHYSIK 1

WS 2023/24

11. Übungsblatt

29.01.2024

Aufgabe 11.3: *Staudamm*

Der Abfluss eines Fischteichs kann durch einen Schieber, der nach oben aus dem Staudamm gezogen wird, geregelt werden. Die Breite des Schiebers ist b, die Höhe h und die Masse m. Die Haft-/Gleitreibungskoeffizienten zwischen der vertikalen Führung und dem Schieber sind μ_H und μ_G . Gehen Sie von einer idealen, inkompressiblen Flüssigkeit mit Dichte ρ_l im Teich aus.

- (2 P)a) Bestimmen Sie den Betrag der Kraft, die benötigt wird um den Schieber in seiner tiefsten Stellung in Bewegung zu versetzen. Machen Sie eine Skizze!
- (1 P)b) Berechnen Sie die Arbeit, die notwendig ist um den Schieber aus der tiefsten Stellung komplett herauszuziehen.
- (1 P)c) Der Schieber ist einen kleinen Spalt geöffnet. Bestimmen Sie den Betrag der Geschwindigkeit, mit der das Wasser ausströmt. Der Wasserspiegel im Teich bleibt konstant (sehr großes Reservoir).

Ein rechteckiger Becher mit Querschnittsfläche A_1 hat im Boden einen Auslauf mit Querschnittsfläche A_0 . Diese Offnung wird zunächst verschlossen und der Becher mit Wasser (Dichte $\rho_{\rm w}$) gefüllt. Im gesamten Außenraum herrscht der atmosphärische Luftdruck p_L . Der geringe Luftdruckunterschied zwischen Niveau (1) und (0) sei vernachlässigbar. Nehmen Sie das Wasser als inkompressibel und reibungsfrei an.

- (2 P)a) Nach dem Öffnen des Auslaufs strömt Wasser mit der Geschwindigkeit v_a aus dem Gefäß. Bestimmen Sie diese Geschwindigkeit in Abhängigkeit von der momentanen Wasserhöhe h_1 und den Gefäßabmessungen.
- b) Wie groß ist der Betrag der Rückstoßkraft auf das Gefäß? Nehmen Sie dazu an, dass (1 P) $A_1 \gg A_0$.
- c) Sie füllen nun kontinuierlich Wasser in das Gefäß von oben mit einem Volumenstrom I_e . (1 P)Berechnen sie die konstante Höhe h_2 , die der Wasserpegel im Gefäß nach einiger Zeit annimmt.