

Algoritmos codiciosos

IIC2133

Yadran Eterovic 2022-1

Los algoritmos codiciosos se usan para resolver problemas que en su mayoría tienen las siguientes características —paradigma de subconjuntos:

- hay n inputs
- queremos obtener un subconjunto que satisfaga ciertas restricciones → una solución factible
- ... y, en particular, queremos una solución factible que, ya sea, maximice o minimice una función objetivo
 optima

P.ej., el problema de la mochila con objetos fraccionables

Tenemos *n* objetos y una mochila:

- el objeto k pesa w_k
- *n* inputs
- la capacidad, en peso, de la mochila es *m*
- si incluimos en la mochila una fracción x_k del objeto k, entonces obtenemos una ganancia $p_k x_k$

El problema es cómo llenar la mochila cumpliendo tres condiciones:

Una solución factible es un conjunto $\{x_1, ..., x_n\}$ que cumple ii) y iii)

Una solución óptima es una solución factible que cumple i)

Los algoritmos codiciosos trabajan en etapas, considerando un input a la vez:

- en cada etapa, se toma una decisión con respecto a si el input considerado pertenece, o no, a la solución óptima
- la idea es que una vez que la decisión es tomada, es final
 - → ninguna de las decisiones que se tomen más adelante va a hacer que esta decisión cambie

En el problema de la mochila, se trata se seleccionar un subconjunto de objetos

... y determinar, para cada uno, la fracción x_k , $0 \le x_k \le 1$, que debe ir en la mochila

Para esto, los inputs van siendo considerados en orden según un procedimiento de selección:

- si la inclusión del próximo input en la solución óptima parcial produce una solución infactible, entonces el input se descarta
- ... en otro caso, el input es agregado a la solución

El procedimiento de selección está basado en alguna *medida de* optimización o estrategia codiciosa:

- seleccionamos un input de forma localmente óptima
 - ... y esperamos que esta selección nos lleve a una solución globalmente óptima

Posibles medidas de optimización o estrategias codiciosas para el problema de la mochila:

- incluir a continuación el objeto con mayor ganancia
- incluir a continuación el objeto con menor peso
- incluir a continuación el objeto con mayor cuociente ganancia/peso

En general, varias medidas de optimización diferentes pueden ser plausibles para un problema dado

... pero normalmente la mayoría de ellas va a producir soluciones subóptimas:

los algoritmos codiciosos no siempre producen soluciones óptimas

P.ej.,
$$n = 3$$

 $w_1, w_2, w_3 = 18, 15, 10$

$$m = 20$$

 $p_1, p_2, p_3 = 25, 24, 15$

Algunas soluciones factibles:

X_1, X_2, X_3	$\sum_{k=1}^{n} w_k x_k$	$\sum_{k=1}^{n} p_k x_k$
a) 1, 2/15, 0	20	28.2
b) 0, 2/3, 1	20	31
c) 0, 1, 1/2	20	31.5

Posibles medidas de optimización para el problema de la mochila:

- incluir a continuación el objeto con mayor ganancia → solución a),
 que no es óptima
- incluir a continuación el objeto con menor peso → solución b), que no es óptima
- incluir a continuación el objeto con mayor cuociente ganancia/peso
 → solución c), que es óptima

En general, varias medidas de optimización diferentes pueden ser plausibles para un problema dado

... pero normalmente la mayoría de ellas va a producir soluciones subóptimas:

los algoritmos codiciosos no siempre producen soluciones óptimas

Esto implica que para estar seguros de que una estrategia codiciosa efectivamente produce una solución óptima es necesario demostrar que es así

Algoritmo abstracto del método codicioso para el paradigma de subconjuntos

contiene los *n* inputs

selecciona y saca un input de a

```
greedy(a[], n):
    solution = empty
    for i = 1, ..., n:
        x = select(a)
        if feasible(solution, x):
            solution = union(solution, x)
        return solution
```

función booleana que determina si *x* puede ser incluida en la solución

Programación de charlas en una misma sala

Tenemos *n* charlas,

... cada una con una hora de inicio s_i y una hora de fin f_i

• definen el intervalo de tiempo $[s_i, f_i)$ de la charla

Para dar las charlas tenemos una única sala

... en la que sólo se puede dar una charla a la vez

 si los intervalos de tiempo de dos charlas se traslapan, entonces sólo se puede dar una de ellas

El propósito es maximizar el número de charlas dadas

Programación de charlas en una misma sala

Jenemos *n* charlas,

n inputs

... cada una con una hora de inicio s_i y una hora de fin f_i

definen el intervalo de tiempo $[s_i, f_i]$ de la charla

Para dar las charlas tenemos una única sala

... en la que sólo se puede dar una charla a la vez

restricciones

• si los intervalos de tiempo de dos charlas se traslapan, entonces sólo se puede dar una de ellas

El propósito es maximizar el número de charlas dadas

función objetivo

Tres estrategias codiciosas que, en general, **no** producen una solución óptima

a) elegir primero la charla que empieza más temprai	20			
a) clegii primero la charia que empreza mas temprar				
b) elegir primero la charla <i>más corta</i>	Intervalo de tiempo de una			
	charla; el tiempo transcurre de izquierda a derecha			
c) elegir primero la charla que tiene menos incompatibilidades con otras charlas				

Sin embargo, el problema sí puede resolverse mediante una estrategia codiciosa:

elegir primero la charla que termina más temprano

En el ej., las charlas elegidas son 1, 3 y 5, y el número de charlas dadas es 3:

- la charla 1 es la que termina más temprano, en t = 5
- (la charla 2 es la segunda charla en terminar, pero es incompatible con la charla 1 => la descartamos)
- la charla 3 es la tercera en terminar, en t
 = 9, y es compatible con la charla 1
- (la charla 4 es incompatible con las charlas 1 y 3)
- la charla 5 es compatible con la 1 y la 3
- (la charla 6 es incompatible con la 5)

Selección de tareas con plazos y ganancias

Se acerca el final del semestre y tengo que hacer *n* tareas:

 tareas propiamente tales, estudiar para una I o examen, terminar un proyecto, preparar una presentación, ...

Cada tarea *i* tiene dos propiedades:

- un plazo d_i —un día del mes, tal que el día 1 es mañana
- una ganancia p_i —lo que hacer bien la tarea significa para mí que la obtengo si y sólo si hago la tarea a tiempo (dentro del plazo)

Para hacer una tarea, tengo que dedicarle todo un día

→ sólo puedo hacer una tarea al día

Una solución factible es un subconjunto T de tareas tal que puedo hacer cada tarea en T a tiempo

El **valor** de T es la suma $\sum_{k \in T} p_k$ de las ganancias de las tareas incluidas en T

Una solución factible es óptima si su valor es máximo

P.ej., para
$$n = 4$$
, sean:
 $p_1, p_2, p_3, p_4 = 100, 10, 15, 27$
 $d_1, d_2, d_3, d_4 = 2, 1, 2, 1$

solución factible <i>T</i>	orden de procesamiento	valor
{ 1, 2 }	2, 1	110
{1,3}	1, 3 o 3, 1	115
{ 1, 4 }	4, 1	127
{ 2, 3 }	2, 3	25
{3,4}	4, 3	42
{1}	1	100
{2}	2	10
{3}	3	15
{ 4 }	4	27

Tomemos la propia función objetivo como medida de optimización (o estrategia codiciosa) para elegir la próxima tarea:

- la próxima tarea a considerar es la que aumenta más la suma $\sum_{k \in T} p_k$, sujeta a que el Tresultante sea factible
- consideramos las tareas en orden decreciente de los p_i's

La estrategia funciona en el ej.:

- inicialmente, $T = \emptyset$ y $\sum p_i = 0$ y consideramos las tareas en el orden 1, 4, 3 y 2
- agregamos la tarea 1 a T tiene la mayor ganancia y T = {1} es factible
- agregamos la tarea 4 a T —T = {1,
 4} es factible
- consideramos la tarea 3, pero la descartamos $-T = \{1, 3, 4\}$ no es factible
- finalmente, consideramos la tarea 2 y la descartamos —T = {1,
 2, 4} no es factible