M4.4. | 1 punkt | Niech α będzie punktem stałym przekształcenia $\phi \in C^{p+1}(\mathcal{J})$, gdzie $\mathcal{J} := (\alpha - \delta, \alpha + \delta)$ jest pewnym otoczeniem punktu α oraz $p \ge 1$. Udowodnić, że jeśli $\phi^{(i)}(\alpha) = 0$ dla $i = 1, 2, \ldots, p$ oraz $\phi^{(p+1)}(\alpha) \neq 0$, to metoda iteracyjna

$$x_{k+1} = \phi(x_k)$$

jest metodą rzędu p+1 oraz

$$\lim_{k \to \infty} \frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1}} = \frac{\phi^{(p+1)}(\alpha)}{(p+1)!}.$$

adzie bez straty ogólnosú EKE[XK,~]

 $\varphi(\alpha) = \alpha$ bo metoda ma być zbiezna Ci z resita jest bo $\varphi'(\alpha) = 0 \Rightarrow |\varphi'(\alpha)| < 1$ w otoczeniu d)

wszystkie pochodne $\varphi^{(i)}(x)=0$ dla i=1.pwięc mamy $X_{k+1}=x+\frac{\varphi^{(p+1)}(\xi_k)}{(p+1)!}(X_k-x)^{(p+1)}$

$$\frac{x_{k+1}-d}{(x_k-\alpha)^{p+1}} = \frac{\varphi^{(p+1)}(\varepsilon_k)}{(p+1)!}$$

wiemy, ze X_k→d zotem E_k→d

$$\lim_{n\to\infty} \frac{x_{k+n}-d}{(x_k-d)^{(p+n)}} = \frac{\varphi^{(p+n)}(d)}{(p+n)!} \neq 0 \quad \text{zatem granica}$$

$$\text{istnieje (po prawej jest jakas liczba)}$$

$$\varphi(x_k) \text{ iest redu} \qquad = i \text{ jest } = 0$$

 $\varphi(x_n)$ jest redu p+1

<= i jest >0