H1 Lecture 6: Quicksort

Lecture 6: Quicksort

```
Quicksort
    Basic Plan
    Partitioning
    Java Implementation
        Implementation Details
    Trace
    Running Time Analysis
        Best Case
        Worst Case
        Average Case
        Performance Characteristics
    Properties
        In Place
        Instability
    Practical Improvement
        Insertion Sort Small Subarrays
        Median of Sample
        Visualisation
Selection
    Quick-Select
    Running Time Analysis
Duplicate Keys
    Problem
    3-Way Partitioning
        Dijkstra 3-Way Partitioning
        Java Implementation
    Trace
    Visualisation
```

H2 Quicksort

• Java sort for primitive types

Lower Bound
Sorting Summary

• C qsort, Unix , Visual C++ , Python , Matlab , Chrome JavaScript

Animation

H₃ Basic Plan

• **shuffle** the array

- *partition* so that, for some j:
 - entry a[j] is in place
 - no larger entry to the left of j
 - no smaller entry to the right of [j]
- **sort** each piece recursively

H₃ Partitioning

- maintain two pointers i and j
- repeat until i and j cross
 - scan i from left to right so long as a[i] < a[lo]
 - scan j from right to left so long as a[j] > a[lo]
 - exchange a[i] with a[j]
- when pointers cross, exchange a[lo] with a[j]

Before Partitioning

After Partitioning


```
private static int partition(Comparable[] a, int lo, int
hi) {
   int i = lo, j = hi+1;
   while (true) {
       /* find item on left to swap*/
       while (less(a[++i], a[lo]))
       if (i == hi) break;
}
```

```
/* find item on right to swap*/
9
            while (less(a[lo], a[--j]))
                if (j == lo) break;
10
11
12
            if (i >= j) break; // check if pointers cross
            exch(a, i, j); // swap
13
        }
14
15
        exch(a, lo, j); // swap with partitioning item
16
       return j; // return index of item now known to be in
17
    place
18 }
```


H₃ Java Implementation

```
public class Quick {
        private static int partition(Comparable[] a, int lo,
    int high) {
        /* see above */
 4
        }
 5
 6
        public static void sort(Comparable[] a) {
7
            StdRandom.shuffle(a);
            sort(a, 0, a.length-1);
9
        }
10
        private static void sort(Comparable[] a, int lo, int
11
    hi) {
            if (hi <= lo) return;</pre>
12
            int j = partition(a, lo, hi);
13
            sort(a, lo, j-1);
14
            sort(a, j+1, hi);
15
16
       }
17
    }
```

H4 Implementation Details

Partitioning In-Place:

Using an extra array makes partitioning easier (and stable), but is not worth the cost

Terminating The Loop:

Testing whether the pointers cross is a bit trickier than it might seem

Staying In Bounds:

The (j == 10) test is redundant, but the (i == hi) test is not

Preserving Randomness:

Shuffling is needed for performance guarantee

Equal Keys:

When duplicates are present, it is (*counter-intuitively*) better to stop on keys equal to the partitioning item's key

H₃ Trace

Quicksort trace (array contents after each partition)

H3 Running Time Analysis

H4 Best Case

Number of compares is $\sim N \lg N$

a[] 7 5 2 3 6 8 9 10 11 12 13 14 lo j hi 0 1 4 C Ε G Н Α В F D ı Μ 0 initial values L K J Ν C G random shuffle Н Α В F E D L K J Μ 0 Ν C Ε G 14 Α В F Н K J Μ 0 C Ε G 6 D Н 0 В N M Ō C G 0 1 2 Α В D F E H L K N M 0 C Ē, 0 D F G Н N 0 C E 2 В D G Н N M 0 5 6 В C D Ε F G 4 Н K N M 0 C 4 4 В D Ε G Ō Н N Ċ E 6 В D F G Н 6 N 0 C Е D 11 F G L 8 14 Α В Н K Ν Μ 0 C 8 10 Α В D E F Ġ Н K N M 0 8 8 Ċ D E G В F Н K N M 0 10 10 C D E G В Н K N 0 C 12 13 В D E G 0 14 Н K Μ Ν Ċ 12 12 Α В D E F G Н K Ĺ M N

H4 Worst Case

14

Number of compares is $\sim {1\over 2} N^2$

14

Ċ

C

D

D

E

Ε

F G

F

G

Н

Н

K

K

J

0

0

M

Μ

В

В

Α

lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initia	al valu	ies	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	Ν	0
rand	om sl	nuffle	Α	В	C	D	Е	F	G	Н	ı	J	K	L	М	Ν	О
0	0	14	Α	В	C	D	Ε	F	G	Н	١	J	K	L	М	Ν	О
1	1	14	Α	В	C	D	E	F	G	Н	l	J	K	L	М	Ν	0
2	2	14	Α	В	C	D	Ε	F	G	Н	l	J	K	L	М	Ν	0
3	3	14	А	В	C	D	Ε	F	G	Н	١	J	K	L	М	Ν	О
4	4	14	А	В	C	D	E	F	G	Н	ı	J	K	L	М	Ν	0
5	5	14	Α	В	C	D	E	F	G	Н	ı	J	K	L	М	Ν	0
6	6	14	А	В	C	D	E	Ē	G	Н	ı	J	K	L	М	Ν	0
7	7	14	А	В	Ċ	D	E.	F	Ğ	Н	I	J	K	L	М	Ν	0
8	8	14	Α	В	C	D	E	F	G		I	J	K	L	М	Ν	0
9	9	14	А	В	C	D	E	F	G			J	K	L	М	Ν	О
10	10	14	Α	В	C	D	Ē.	F	Ğ			J	K	L	М	Ν	0
11	11	14	А	В	C	D	E	F	G			J	K	L	М	Ν	0
12	12	14	А	В	C	D	E	F	G			J	K	L	М	Ν	О
13	13	14	Α	В	C	D	Ē	F	G	-	1	J	K	L	M	N	О
14		14	Α	В	C	D	E	F	G	H	İ	J	K	L	M	N	0
			Α	В	C	D	Ε	F	G	Н	ı	J	K	L	М	Ν	0

H₄ Average Case

Proposition: The avarage number of comapres C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$)

Proof:

 C_N statisfies the recurrence $C_0=C_1=0$ and for $N\geq 2$:

$$C_N = (N+1) + rac{C_0 + C_{N-1}}{N} + rac{C_1 + C_{N-2}}{N} + \cdots + rac{C_{N-1} + C_0}{N}$$

- (N+1) is the partitioning $C_0 \dots C_{N-1}$ are the left subarrays $C_{N-1} \dots C_0$ are the right subarrays
 - ullet determinator N is the partioning probability

Multiply both sides by N:

$$NC_N = N(N+1) + 2(C_0 + C_1 + \cdots + C_{N-1})$$

Subtract the same equation for N-1

$$(N-1)C_{N-1} = N(N-2) + 2(C_0 + C_1 + \dots + C_{N-2}) \ NC_N - (N-1)C_{N-1} = N(N+1) - N(N-2) + 2C_{N_1} \ = 2N + 2C_{N-1}$$

Rearrange terms and divide by N(N+1)

$$rac{C_N}{N+1} = rac{C_{N-1}}{N} + rac{2}{N+1}$$

Repratedly apply above equation

$$\begin{split} \frac{C_N}{N+1} &= \frac{C_{N-1}}{N} + \frac{2}{N+1} \\ &= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1} \\ &= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1} \\ &= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{N+1} \end{split}$$

Approximate sum by an integral

$$C_N = 2(N+1)(rac{1}{3} + rac{1}{4} + rac{1}{5} + \dots + rac{1}{N+1}) \ \sim 2(N+1) \int_3^{N+1} rac{1}{x} dx \ = 2(N+1) \ln N pprox 1.39 N \lg N$$

H4 Performance Characteristics

Worst Case: Number of comapres is quadratic

- $N + (N-1) + (N-2) + \cdots + 1 \sim \frac{1}{2}N^2$
- less likely

Average Case: Number of compares is $\sim 1.39 N \lg N$

- 39% more compares than mergesort
- but faster than mergesort in practice because of less data movement

Random Shuffle

- Probabilistic guarantee against worst case
- basis for math model that can be validated with experiments

Caveat Emptor: Many textbook implementations go quadratic if array

- is sorted or reverse sorted
- has many duplicates (even if randomised)

H₃ Properties

H₄ In Place

Propostition: Quicksort is an in-place sorting algorithm

Proof:

- Partitioning: constant extra space
- Depth of recursion: logarithmic extra space (with high probability), can guarantee logarithmic depth by recurring on smaller subarray before larger subarray

H4 Instability

Proposition: Quicksort is not stable

Proof:

i	j	0	1	2	3	
		Ві	Cı	C ₂	Aı	
1	3	B_1	C_1	C_2	A_1	
1	3	B_1	A_1	C_2	C_1	
0	1	A_1	Bı	C_2	C_1	

H3 Practical Improvement

H4 Insertion Sort Small Subarrays

- even quicksort has too much overhead for tiny subarrays
- cutoff to insertion sort for $\,\approx 10\,$ items
- note: could delay insertion sort until one pass at end

```
private static void sort(Comparable[] a, int lo, int hi) {
 2
        if (hi <= lo + CUTOFF - 1) {</pre>
 3
            Insertion.sort(a, lo, hi);
            return;
 5
        }
        int j = partition(a, lo, hi) {
            sort(a, lo, j-1);
            sort(a, j+1, hi);
 8
 9
        }
10
   }
```

H4 Median of Sample

- best choice of pivot item is median
- estimate true median by taking median of sample
- Median-of-3 (random) items

```
private static void sort(Comparable[] a, int lo, int hi) {
 1
 2
        if (hi <= lo) return;</pre>
 3
 4
        int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
 5
        swap(a, lo, m);
 6
 7
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
 8
 9
        sort(a, j+1, hi);
    }
10
```

H4 Visualisation

H₂ Selection

Goal: Given an array of N items, find a k^{th} smallest item

Theory:

- Easy $N \lg N$ uppoer bound, by sorting the array in the first place
- Easy kN upper bound for $k=1,2,3,\ldots$, k pass entry to the array
- ullet Easy N lower bound since all items have to be visited so that no item will be missed

Question: is there a lieanr-time algorithm for each k?

H₃ Quick-Select

Partition array so that:

- entry a[j] is in place
- no larger entry to the left of j
- no smaller entry to the right of j

Repeat in one subarray, depending on j, finished when j equals k

```
public static Comparable select(Comparable[] a, int k) {
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo) {
        int j = partition(a, lo, hi);
        if (j < k) lo = j + 1;
        else if (j > k) hi = j - 1;
        else return a[k];
    }
    return a[k];
}
```


H3 Running Time Analysis

Proposition: Quick-select takes linear time on average

Proof:

- Intuitively, each partitioning step splits array approximately in half: $N+rac{N}{2}+rac{N}{4}+\cdots+1\sim 2N$ compares
- Formal analysis similar to quicksort analysis yields:

$$C_N = 2N + 2k\ln(rac{N}{k}) + 2(N-k)\lnrac{N}{N-k}$$

 $(2+2\ln 2)N$ to find the median

Remark:

Quick-select uses $\sim \frac{1}{2}N^2$ compares in the **worst case**, but (as with quicksort) the random shuffle provides a probabilistic quarantee

Compared-Based Selection:

A compared-based selection algorithm has worst-case running which is linear [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]

Remark: but constants are too high, so the algorithm is not used in practice

Lessons:

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort

H2 Duplicate Keys

Mergesort with Duplicate Keys:

Between $\frac{1}{2}N\lg N$ and $N\lg N$ compares

Quicksort wth Duplicate Keys:

- algoirthm goes quadratic unless partitioning stops on equal keys
- 1990s C user found this defect in qsort()

H₃ Problem

Mistake: put all items equal to the partitioining item on one side

 $extit{Consequence}: \sim rac{1}{2}N^2 ext{ compares when all keys equal}$

Recommanded: stop scans on items equal to the partitioning item

Consequences: $\sim N \lg N$ compares when all keys equal

Desirable: put all items equal to the partitioning item in place

H₃ 3-Way Partitioning

Goal: partition array into 3 parts so that:

- entries between $\ensuremath{ exttt{lt}}$ and $\ensuremath{ exttt{gt}}$ equal to partition item $\ensuremath{ exttt{v}}$
- no larger entries to left of 1t
- no smaller entries to right of gt

H4 Dijkstra 3-Way Partitioning

- let v be partitioning item a[10]
- scan i from left to right
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v) : exchange a[gt] with a[i]; decrement gt
 - (a[i] == v) : increment i

Before:

After:

H4 Java Implementation

```
private static void sort(Comparable[] a, int lo, int hi) {
 1
 2
         if (hi <= lo) return;</pre>
         int lt = lo, gt = hi;
 4
         Comparable v = a[lo];
 5
         int i = lo;
         while (i <= gt) {</pre>
 7
             int cmp = a[i].compareTo(v);
             if (cmp < 0) exch(a, lt++, i++);</pre>
 8
             else if (cmp > 0) exch(a, i, gt--);
 9
10
             else i++;
```

```
11 }
12
13 sort(a, lo, lt-1);
14 sort(a, gt+1, hi);
15 }
```

H₃ Trace

```
a[]
1t
       i
                    0
                        1
                            2
                                 3
                                     4
                                          5
                                              6
                                                  7
                                                      8
                                                           9 10 11
           gt
                    R
 0
       0
           11
                        В
                            W
                                 W
                                     R
                                         W
                                              В
                                                  R
                                                      R
                                                           W
                                                               В
                                                                    R
 0
       1
           11
                    R
                        B
                                     R
                                              В
                                                  R
                                                      R
                                                           W
                                                               В
                                                                    R
                            W
                                 W
                                         W
       2
                    В
 1
           11
                        R
                            W
                                ₩
                                     R
                                         W
                                              В
                                                  R
                                                      R
                                                           W
                                                               B
                                                                    R
 1
       2
                                              В
                                                  R
                                                       R
           10
                    B
                        R
                                                           W
                                                               В
 1
       3
           10
                    В
                        R
                            R
                                   -R
                                              В
                                                  R
                                                           W
                                         W
                                                               В
                                                                    W
 1
       3
            9
                    В
                                         W
                                              В
                                                  R
                                                       R
                                                           W
                        R
                                     R
                                                                    W
 2
       4
            9
                    В
                        В
                            R
                                     R
                                              В
                                                  R
                                                       R
                                         W
                                                           W
                                                               W
                                                                    W
 2
       5
            9
                    В
                                         W-B
                        В
                            R
                                 R
                                     R
                                                               W
                                                                    W
 2
       5
            8
                                 R
                                                      R
                    В
                        В
                                                                    W
 2
       5
            7
                    В
                        В
                            R
                                 R
                                     R
                                                  R
                                          R
                                             B
                                                           W
                                                                    W
 2
       6
            7
                    В
                        В
                            R - R
                                     R
                                                  R
                                                      W
                                                           W
                                                               W
                                                                    W
 3
            7
       7
                    В
                        В
                            B -
                                 R
                                     R
                                             - R
                                                  R
                                                      W
                                                           W
                                                               W
                                                                   W
 3
       8
            7
                    В
                        В
                            В
                                 R
                                     R
                                          R
                                              R
                                                  R
                                                      W
                                                           W
                                                               W
                                                                    W
 3
       8
            7
                    В
                        В
                            В
                                 R
                                     R
                                          R
                                              R
                                                  R
                                                      W
                                                           W
                                                                    W
 3-way partitioning trace (array contents after each loop iteration)
```

H3 Visualisation

If there are n distinct keys and the i^{th} one occurs x_i times, any compare-based sorting algorithm must use at least

$$\lg(rac{N!}{x_1!x_2!\dots x_n!})\sim -\sum_{i=1}^n x_i\lgrac{x_i}{N}$$

compares in the worst case

- ullet $N \lg N$ when all distinct ($x_i = 1$)
- linear when only a constant number of distinct keys

Proposition: Quicksort with 3-way partitioning is *entropy-optimal*

Entropy-Optimal:

Propotional to lower bound

Buttom Line:

Randomised quicksort with 3-way partitioning reduces running time from *linearithmic* to *linear* in broad class of applications

H2 Sorting Summary

algorithms in- place?		stable>	worst	average	best	remark		
selection √			$\frac{N^2}{2}$	$\frac{N^2}{2}$	$\frac{N^2}{2}$	N exchanges		
insertion √		V	$\frac{N^2}{2}$	$\frac{N^2}{4}$	N	use for small N or partially order		
shell	√		?	?	N	tight code, subquadratic		
merge		✓	$N \lg N$	$N \lg N$	$N \lg N$	$N\log N$ guarantee, stable		
quick	V		$\frac{N^2}{2}$	$2N \ln N$	$N \lg N$	$N\log N$ probabilistic guarantee, fastest in practice		
3-way quick	✓		$\frac{N^2}{2}$	$2N \ln N$	N	improves quicksort in presence of duplicate keys		
???	V	V	$N \lg N$	$N \lg N$	N	holy sorting grail 🏆		