G400 - Stabilizovaný zdroj 0 - 30V, 0 - 3A

Tento síťový zdroj je ideální pro použití v laboratoři, neboť lze výstupní napětí regulovat od 0 do 30 V a proud může být omezen od několika mA do 3 A.

Zapojení obsahuje omezovač výstupního proudu. Jeho funkce je indikována rozsvícením LED diody. Tímto je výstup zdroje a napájený obvod chráněn před zničením. Tato ochrana by měla být dostatečným důvodem pro použití tohoto přístroje ve Vaší laboratoři.

Technické údaje:

Vstupní napětí 24 V ~

Maximální odběr proudu 3 A

Výstupní napětí 0 ÷30 V

Výstupní proud 5 mA ÷ 3 A nastavitelný

Zvlnění výstupního napětí 0,01 %

Maximální vstupní napětí 30 V AC *

Minimální vstupní napětí 12 V AC **

* při provozování zdroje s příliš velkým vstupním napětím a současně velkým proudem je třeba dát pozor na výkonovou ztrátu koncového tranzistoru Q4. Teplota tranzistoru s chladičem nesmí přesáhnout 90 ° C.

** při tomto vstupním střídavém napětí ještě zdroj pracuje spolehlivě, maximální výstupní napětí však nedosahuje hodnoty 30 V.

PŘEDNOSTI:

malé rozměry, lehce zamontovatelný kamkoliv, jednoduchá funkce nastavitelné výstupní napětí

nastavitelný výstupní proud

omezení výstupního proudu s indikací LED diodou chrání připojené přístroje a obvody při zkratu nebo přetí ení konstantní výstupní napětí

nepatrné zvlnění

POPIS ČINNOSTI

Na svorky 1 a 2 je připojeno sekundární vinutí transformátoru 220V / 24V - 3A. Střídavé napětí 24 V je usměrňováno diodami D1, D2, D3, D4. Diody tvoří můstkové zapojení, co zajišťuje dvoucestné usměrnění. Pulsní usměrněné napětí je přivedeno na filtrační obvod R1 - C1. Součástky Z3, R10, Q5, C9 tvoří jednoduchý omezovač napětí pro napájení kladné větve operačních zesilovačů. Obvody okolo ope- račního zesilovače IC2a vytvářejí referenční napětí pro stabilní činnost zapojení. Zenerova dioda Z2 pracuje s minimálním proudem, aby se omezilo její oteplení na nejmenší možnou míru, a tím se zajistila teplotní stabilita celého přístroje. Rezistory R5 a R6 nastavují referenční napětí na 9,4 V. Zapojení pracuje následujícím způsobem:

Výstupní napětí operačního zesilovače IC2a se ustálí na takové hodnotě, aby bylo napětí mezi jeho vstupy 2 a 3 nulové. Na rezistoru R5 se vytvoří tedy napětí stejné jako na Zenerově diodě 5.6 V. Proto e proud z rezistoru R5 protéká také přes rezistor R6, je výstupní napětí operačního zesilovače rovno součtu napětí na R5 a R6. IC1b s rezistory R11 a R12 zesiluje napětí 3,61 krát podle vztahu A = (R11+R12) / R11 a zvyšuje tak 9,4 V na 33,9 V. Pokud zdroj pracuje správně a na výstupu je připojena zátěž, tak veškerý proud protéká přes rezistor R7. Napětí z rezistoru R7 je přívedeno přes R19 na invertující vstup IC1a, který pracuje jako komparátor. Na neinvertující vstup je přivedeno napětí z

potenciometru P2, které lze nastavit od 0 do 1,42 V. Pokud je napětí na invertujícím vstupu menší ne napětí na potenciometru, je na výstupu IC1a plné kladné napětí a dioda D7 je uzavřena.

Pokud se nyní zvětší zátěž zdroje, vzroste proud protékající rezistorem R7. To způsobí zvětšení napětí na invertujícím vstupu IC1a, jen začne řídit přes diodu D7 obvod IC1b tak, aby se výstupni proud a tedy napětí na R7 již dále nezvětšovalo. Proud, od kterého začíná toto řízení působit se dá nastavit potenciometrem P2. Nejmenší možný nastavitelný proud lze nastavit pomocí trimru P3. Nyní pracuje obvod proudového omezení tak, že napětí na rezistoru R7 zůstává konstantní a IC1b, IC1a jej regulují. Zdroj je přepnut ze zdroje konstantního napětí na zdroj konstantního proudu. Výstupní napětí se mění tak, aby zátěží na výstupu zdroje protékal konstantní proud. Přitom se rozsvítí dioda D10. Zpětnovazebním kondenzátorem C8 je dosažena potřebná stabilita IC1a.

R17 a R18 stanovují pracovní hodnoty pro tranzistor Q3. Pokud proudová ochrana zapůsobí, Q3 se otevře a dioda LED D10 se rozsvítí. Tranzistor Q6 slouží ke snížení napětí pro Q3 tak, aby nebylo vyšší než maximální kladné výstupní napětí IC1. Proud pro LED diodu je omezen rezistorem R20. Z diod D2 a D4, přes rezistor R2 a obvod D5, D6, C2, C3, je získáváno záporné napětí, které je nutné pro funkci operačních zesilovačů IC1a a IC1b. Je stabilizováno pomocí Q7, R3 a Z1 a napájí vývod č.4 dvojnásobného operačního zesilovače IC1. Kondenzátory C4 a C5 tvoří zkrat pro vysoké frekvence, které by mohly rušit funkci operačních zesilovačů.

Přes R14 je přiváděno napětí na tranzistory Q2 a Q4, jež jsou schopny dodat proud a 3 A. Q2 a Q4 pracují v Darlingtonově zapojení. Rezistor R15 omezuje vliv klidového proudu tranzistoru Q2. Tranzistor Q1 udržuje výstup zdroje na nulovém napětí při nepřítomnosti záporného napájecího napětí. Tím zabraňuje přechodným jevům při zapínání a vypínání zdroje. Zenerova dioda Z4 uzavře tranzistor poté co naběhne záporné napájecí napětí pro operační zesilovače a zdroj začne pracovat v normálním režimu.

STAVBA

Začněte sestavovat tím, že všechny součástky vzájemě rozdělíte, to znamená, rezistory, kondenzátory, integrovaný obvod a další součástky si rozložíte na stůl odděleně. Nejprve připájejte propojky a rezistory. Ověřte si předtím, že správné barvy na rezistorech jsou na příslušných pozicích. Rezistory R1 a R7 umístěte asi 5 mm nad desku, nebo se v průběhu provozu zahřívají. Pak připájejte kondenzátory a patici na integrovaný obvod. Při montáži elektrolytických kondenzátorů mějte na zřeteli, že se jedná o součástky, které je nutno správně pólovat (elektrolytické kondenzátory nesmíme přepólovat - dojde k zahřátí a po určité době ke zničení - záleží na napětí a velikosti kapacity).

Pokračujte nyní s diodami a tranzistory. Umístěte je na správné místo, dbejte na správnou orientaci a nepřehřívejte je při pájení. Tranzistor Q2 je třeba nejprve přišroubobat na chladič (viz sestava) a spolu s ním zapájet. Buďte opatrní u diody Z2, nebo se jedná o Zenerovu diodu, na které závisí stabilita výstupního napětí. Pokud nechcete mít potenciometry P1 a P2 zapájené přímo v plošném spoji, propojte je propojovacími vodiči tak, jako by byly na svém místě na plošném spoji. Přišroubujte tranzistor Q4 podle obrázku sestavy na chladič. Mezi tranzistor a chladič se vloží izolační slídová podložka, kterou potřete z obou stran silikonovou vazelínou (je v zataveném igelitovém sáčku). Silikonová vazelina výrazně zlepšuje přestup tepla z tranzistoru na

chladič. Na pájecí očko a vývody tranzistoru napájejte přívodní vodiče a natáhněte izolační bužírky. Propojte jeho elektrody emitor, báze, kolektor na připojovací piny E B C.

Dále připájíme další pasivní prvky - potenciometry, vodiče na připojení napájení, popř. vodiče na připojení LED diody, pokud ji nechceme mít přímo na plošném spoji. Nakonec vsuneme do připájených patic integrované obvody IC1 a IC2.

<u>Ještě jednou</u> důkladně zkontrolujeme,

zda všechny součástky jsou na správných místech a správně orientovány zejména elektrolytické kondenzátory, tranzistory a integrované obvody, (doporučujeme provést několikrát - vyplatí se).

Nyní můžeme připojit napájecí napětí 24 V~ z transformátoru 220/24 V na piny 1 a 2 (transformátor může být konstruován i na menší proud nebo napětí, pokud nevyžadujeme tak velký výstupní proud nebo napětí). Pokud je všechno v pořádku, transformátor můžeme připojit do sítě.

OŽIVENÍ

POZOR: Od této chvíle a do doby, kdy bude celé zařízení vestavěno do krabice, se nesmíte dotknout primární strany transformátoru - je pod ivotu nebezpečným napětím 220 V! Seznamte se se základními bezpečnostními předpisy. (ČSN 343500 - První pomoc při úrazech elektřinou)

Výrobce ani prodejce neručí za škody způsobené nesprávným použitím a zacházením s touto stavebnicí.

 Zapojte do série se sekundárním vinutím transformátoru (24 V) ampérmetr na střídavý proud s rozsahem do 3 A a pomocný rezistor R21 (75 ohm/2W - je obsažen v balení)

2. Připojte primární vinutí transformátoru do sítě

 Pokud je zařízení v pořádku, proud, který ukazuje ampérmetr by se měl pohybovat do 60 mA.

4. Pokud je proud znatelně větší, pak je v zařízení nějaká chyba.

 Pokud je odběr proudu v pořádku, odpojte pomocný sériový rezistor R21 a změřte napětí na výstupu operačního zesilovače IC2a (pin č. 1), mělo by být kolem 9,4 V

6. Změřte napětí na pinu č. 7 u obvodu IC1b, mělo by se měnit při změně polohy potenciometru P1 od 0 do 30 a 34 V (zenerova dioda ve zdroji ref. napětí není přesně 5,6 V).

7. Změřte napětí na pinu č.4 u IC1. Mělo by ležet mezi -5 a -6 volty.

Měřte výstupní napětí a otáčejte přitom potenciometrem P1.
 Výstupní napětí by mělo být nastavitelné mezi 0 a 30 V.

 zkontrolujte funkci proudového omezení: připojte voltmetr na pin č.3 obvodu IC1a. Pokud otáčíme potenciometrem P2, napětí se musí měnit od 0 do přibližně 1,4 voltů. Nyní nastavte proudové omezení na minimum (levá krajní poloha P2). Zapojte ampermetr na výstup zdroje a měřte protékající proud. LED dioda proudového omezení musí svítit. Nejmenší požadovaný proud nastavte trimrem P3. Měl být větší než 2 mA.

Pokud se děje něco jiného, nebo vůbec nic, odpojte transformátor ze sítě a prověřte všechno ještě jednou.

Pokud je vše v pořádku, připojte na výstupní piny +U a GND voltmetr a uvidíte zda lze potenciometrem P1 nastavit napětí od 0 do 30 voltů. Pokud připojíte na kladný pól ampérmetr s proudovým rozsahem 0 a 3 A v sérii se spotřebičem, který odebírá určitý proud, můžete prověřit proudové omezení. Otáčejte s potenciometrem od pravé krajní polohy proti směru hodinových ručiček. Na určitém místě se rozsvítí LED dioda proudového omezení. Od této chvíle pracuje proudové omezení.

Pozn.: Doporučený transformátor je 220/24V - 3 A, avšak může mít i menší proudové zatížení nebo napětí, pokud nevyžadujeme tak velký výstupní proud popř. napětí,

ing. Jindřich Tolg, ing. Tomáš Tolg

PROUDOVÉ OMEZENÍ

REGULACE NAPĚTÍ

dodává:

GES-ELECTRONICS

RADIOSTANICE ELEKTRONICKÉ SOUČÁSTKY MĚŘICÍ PŘÍSTROJE

velkoobchod

zásilková služba

Karlovarská 99, 324 48 Plzeň

Tel.: 019/725 91 31

725 91 41 725 91 51

Fax: 019/ 725 91 61

Prodejny:

GES-ELECTRONICS
Mikulášské nám. 7, 301 45 Plzeň
Tel.: 019/ 724 18 81
Fax: 019/ 722 10 85
GES-ELECTRONICS
Gočárova 514, 500 02 Hradec Králové
Tel.: 049/269 78 Fax: 049/261 32

SEZN	NAM SOUČÁST	TEK - G400
OZNAČENÍ VE SCHEMATU	НОВМОТА	PŘESNÉ OZNAČENÍ
PR1,PR2,PR3	Propojky z odstřížených vývodů	
R1	2,2K	2W METAL 2,2K
R2	82Ω	SMA0207 50 82,0 1%
R3, R4, R9, R10, R17, R20	2,2K	SMA0207 50 2k20 1%
R5, R18, R19	10K	SMA0207 50 10k0 1%
R6	6,8K	SMA0207 50 6k80 1%
R7	0, 47Ω	UR 033 R47
R8, R11, R13	18K	SMA0207 50 18k0 1%
R12	47K	SMA0207 50 47k0 1%
R16	56K	SMA0207 50 56k0 1%
R14, R15	1K	SMA0207 50 1k00 1%
R21	68Ω(75Ω)/ 2W	oživovaci rezistor
P1,P2	10K	P4M-LIN 10K
P3	220 Ω	T10FH 220R
C1	3300µF/63V	3,300/63 AX
C2, C3	47µF/63V	47/63 RAD
C4	100N	TC350T 100N/K
C5	220N	TC350T 220N/K
C6,C8,C10	330pF	KERKO 330
C7	10µF/63V	10/63 RAD
C9	4,7µF/35V	4,7/35 RAD
C11	100µF/16V	100/16 RAD
D1, D2, D3, D4	3A	1N5402
D5, D6, D7, D8		1N4448
D9	1A	1N4001
D10		LED 5mm červená

D10		LED 5mm červená	
SEZNAM	SOUČÁSTE	K - G400	
OZNAČENÍ VE SCHEMATU	HODNOTA	PŘESNÉ OZNAČENÍ	
Z1, Z2	5,6V	ZF 5,6V	
Z3	33V	ZF33	
Z4	3,3V	ZF 3,3V	
Q1, Q5, Q6		BC 547A	
Q2		BD139	
Q3, Q7		BC557B	
Q4		2N3055	
IC1, IC2		TL082	
Patice pro IC1, IC2		GS8	
Chładić pro Q2			
Chladič pro Q4		SK 34 75SA	
Slídová podložka pod tranzistor Q4		GLIMMER TO3	
2 x Izolační vložka		IB 1	
Pájeci oko k tranzistoru Q4			
Cin	140 cm		
silikonová vazelína			
2 x Śroub M3 -14mm			
1 x Śroub M3 -8mm			
3 x Matice M3			
6 x Podložka M3			
3 x Pérová podložka			
3 x Bužírka pro Q4			
Plošný spoj		G400	
Propoj. vodiće			