

Big Data Analytics & Applications

Bin Li

School of Computer Science Fudan University

ML Problems in BDA

- In BDA, there are two commonly seen ML problem settings
 - ☐ Supervised learning: Classification, Regression
 - ☐ Unsupervised learning: Clustering, Dimensionality Reduction

Supervised Learning Algorithms

Unsupervised Learning Algorithms

Semi-supervised Learning Algorithms

Classification Problem

- Inputs:
 - Instances: $x_1, x_2, ... \in X$, where X is feature space
 - \square Class labels: $y_1, y_2, ... \in Y$, where $Y = \{1, 2, ..., L\}$ is label set
- Classification problem setting:
 - **□** Training data: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
 - □ Test data: $\{(x',?),(x'',?),...,\}$
- Objective: Learn a function $f: X \to Y$ on the training data such that $f(x_N) = y_n$ for n = 1, 2, ..., N

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} classification_loss(f(x_n), y_n)$$

Classification Problem

- Supervised learning example: Image classification
 - Instances: $x_1, x_2, ...$ are images
 - □ Class labels: $y_1, y_2, ... \in \{dog, cat, rabbit\}$

$$f(\bigcirc) = "dog"$$

$$f(\bigcirc) = "cat"$$

$$f(M) = "rabbit"$$

Classification Problem

- Application provides the dataset $\{(x_1, y_1), ..., (x_N, y_N)\}$
 - \square Image annotation: x_n pixel image
 - \square Document categorization: x_n bag-of-words representation
 - \square User classification: x_n user profile
- \blacksquare $f: X \to Y$ is a selected model for certain applications
 - Nearest Neighbors Classifier
 - ☐ Linear Classifier
 - Logistic Regression
 - Support Vector Machine
 - Multilayer Perceptron
 - □ Decision Tree

Regression Problem

- Inputs:
 - Instances: $x_1, x_2, ... \in X$, where X is feature space
 - □ Targets: $y_1, y_2, ... \in Y$, where $Y \subset \mathbb{R}^m$ is target domain
- Regression problem setting:
 - **□** Training data: $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
 - □ Test data: $\{(x',?),(x'',?),...,\}$
- Objective: Learn a function $f: X \to Y$ on the training data such that $f(x_N) = y_n$ for n = 1, 2, ..., N

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} regression_loss(f(x_n), y_n)$$

Regression Problem

- Supervised learning example: Income Prediction
 - **□** Instances: $x_1, x_2, ... \in Education \times Seniority$
 - □ Targets: $y_1, y_2, ... \in Income$

$$f(12,3) = 50K$$

$$f(16,5) = 80K$$

$$f(19,8) = 200K$$

Regression Problem

- Application provides the dataset $\{(x_1, y_1), ..., (x_N, y_N)\}$
 - \square Stock trend prediction: x_n variates, y_n index
 - \square Location prediction: x_n previous locations, y_n new location
 - \blacksquare Rating prediction: x_n user profile, y_n rating
- \blacksquare $f: X \to Y$ is a selected model for certain applications
 - Nearest Neighbors Regression
 - ☐ Linear Regression
 - Support Vector Regression
 - ☐ Gaussian Process Regression
 - Multi-Layer Perceptron
 - □ Decision Tree

Classification vs Regression

- It seems that classification and regression are similar
- What makes them different? Loss ※

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} classification_loss(f(x_n), y_n)$$

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} \frac{regression_loss(f(x_n), y_n)}{n}$$

Classification Loss

- Zero-One Loss: $l_{0-1}(f(x_n), y_n) = 1(y_n f(x_n) \le 0)$
- Hinge Loss: $l_{hinge}(f(x_n), y_n) = \max(1 y_n f(x_n), 0)$
- Logistic Loss: $l_{logistic}(f(x_n), y_n) = ln(1 + exp(-y_n f(x_n)))$

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} classification_loss(f(x_n), y_n)$$

Regression Loss

- Quadratic Loss (L2-Loss): $l_{L2}(f(x_n), y_n) = (y_n f(x_n))^2$
- Absolute Loss (*L*1-Loss): $l_{L1}(f(x_n), y_n) = |y_n f(x_n)|$
- Huber Loss: $l_{Huber}(f(x_n), y_n) = \begin{cases} (y_n f(x_n))^2, & |y_n f(x_n)| \le \delta \\ |y_n f(x_n)|, & |y_n f(x_n)| > \delta \end{cases}$

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} regression_loss(f(x_n), y_n)$$

Generalization

■ Generalization error is a measure of how accurately a model is able to predict outcome values for previously unseen data ※

Regularization

- In ML, regularization is a process of introducing additional information in order to prevent overfitting
- Regularized Empirical Risk Minimization:

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} loss(f(x_n), y_n) + \lambda R(f)$$

- Some explanations for regularization
 - Solve ill-posed (underdetermined) problem
 - ☐ Impose Occam's razor on the solution
 - ☐ Impose certain prior distributions on model parameters

Structural Risk Minimization

Structural risk minimization principle

Capacity (h)

Objective Function

■ General form of objective function for supervised learning

$$\min_{f} \frac{1}{N} \sum_{n=1}^{N} loss(f(x_n), y_n) + \lambda R(f)$$

- Different combinations of $f(\cdot)$, $loss(\cdot)$, and $R(\cdot)$ will result different machine learning models
- Ordinary Linear Model: Ridge Regression
 - \Box Linear model: $f(x_n) = w^{\mathsf{T}} x_n$
 - Quadratic loss: $loss(f(x_n), y_n) = (y_n w^T x_n)^2$
 - *L*2-norm regularization: $R(f) = ||w||^2$

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} (y_n - w^{\mathsf{T}} x_n)^2 + \lambda ||w||^2$$

Ridge Regression

- Ridge Regression
 - \Box Linear model: $f(x_n) = w^{\mathsf{T}} x_n$
 - Quadratic loss: $loss(f(x_n), y_n) = (y_n w^T x_n)^2$
 - *L*2-norm regularization: $R(f) = ||w||^2$

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} (y_n - w^{\mathsf{T}} x_n)^2 + \lambda ||w||^2$$

$$\Rightarrow \min_{w} (Y - Xw)^{\mathsf{T}} (Y - Xw) + \lambda w^{\mathsf{T}} w$$

Convex Optimization (quadratic programming)

Let
$$J(w) = (Y - Xw)^{T}(Y - Xw) + \lambda w^{T}w \%$$

$$\frac{\partial J(w)}{\partial w} = -2X^{T}(Y - Xw) + 2\lambda w = 0$$

$$w = (X^{T}X + I\lambda)^{-1}X^{T}Y$$

Logistic Regression

- Logistic Regression
 - \Box Linear model: $f(x_n) = w^{\mathsf{T}} x_n$
 - □ Logistic loss: $loss(f(x_n), y_n) = -y_n \ln(\sigma_n) (1 y_n) \ln(1 \sigma_n)$, where $\sigma_n = \frac{1}{1 + \exp(-w^T x_n)}$ and $y_n \in \{0,1\}$
 - L2-norm regularization: $R(f) = ||w||^2$

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} -y_n \ln(\sigma_n) - (1-y_n) \ln(1-\sigma_n) + \lambda ||w||^2$$

□ Let
$$J(w) = -\frac{1}{N} \sum_{n=1}^{N} (y_n \ln(\sigma_n) - (1 - y_n) \ln(1 - \sigma_n)) + \lambda ||w||^2$$

$$\frac{\partial J(w)}{\partial w} = \frac{1}{N} \sum_{n=1}^{N} -y_n (1 - \sigma_n) x_n + (1 - y_n) \sigma_n x_n + 2\lambda w$$
$$= \frac{1}{N} \sum_{n=1}^{N} x_n (\sigma_n - y_n) + 2\lambda w$$

Maximum Likelihood Estimation

- In statistics, Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical model, given observations $D = \{(x_1, y_1), ..., (x_N, y_N)\}$
- MLE attempts to find the parameter values that maximize the likelihood function ※

$$\max_{\theta \in \Theta} p(D|\theta) \Rightarrow \max_{\theta \in \Theta} \prod_{n=1}^{N} p(x_n, y_n | \theta) \Rightarrow \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} -\log p(x_n, y_n | \theta)$$

- \square $p(x_n, y_n | \theta)$ is Gaussian distribution \rightarrow Quadratic loss
- \square $p(x_n, y_n | \theta)$ is Laplacian distribution \rightarrow Absolute loss
- \square $p(x_n, y_n | \theta)$ is Logistic function \rightarrow Logistic loss

Maximum *a posteriori*

- In Bayesian statistics, Maximum *a posteriori* (MAP) is an estimate of an unknown quantity, that equals the mode of the posterior distribution.
- MAP estimation can be seen as a regularization of MLE.

$$\arg \max_{\theta \in \Theta} p(\theta|D) = \arg \max_{\theta \in \Theta} \frac{p(D|\theta)p(\theta)}{\int_{\theta'} p(D|\theta')p(\theta')d\theta'} = \arg \max_{\theta \in \Theta} p(D|\theta)\frac{p(\theta)}{p(\theta)}$$

$$\max_{\theta \in \Theta} p(D|\theta)p(\theta) \Rightarrow \max_{\theta \in \Theta} \prod_{n=1}^{N} p(x_n, y_n|\theta)p(\theta)$$
$$\Rightarrow \min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} -\log p(x_n, y_n|\theta) - \log p(\theta)$$

■ Compare to $\min_{f} \frac{1}{N} \sum_{n=1}^{N} loss(f(x_n), y_n) + \lambda R(f)$ ※

ML Problems in BDA

- In BDA, there are two commonly seen ML problem settings
 - ☐ Supervised learning: Classification, Regression
 - ☐ Unsupervised learning: Clustering, Dimensionality Reduction

Supervised Learning Algorithms

Unsupervised Learning Algorithms

Semi-supervised Learning Algorithms

Clustering Problem

- Instances: $x_1, x_2, ... \in X$, where X is feature space
- Objective: Input instances $x_1, x_2, ... \in X$ and output corresponding cluster indicators $z_1, z_2, ... \in \{0,1\}^K$ for each instance, satisfying certain optimization criteria

$$\min_{\{z\},\{\theta\}} \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} clustering_loss(x_n, \theta_k)$$

- \square θ_k denotes the parameter set of the *k*-th cluster
- \square $z_{n,k} \in \{0,1\}$ denotes whether the *n*-th instance belongs to the k-th cluster
- \square Goal: Find values of θ_k and $z_{n,k}$ to minimize the objective

K-Means Clustering

- Minimize $J = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n,k} ||x_n \mu_k||^2$ in terms of the mean of the cluster μ_k and the cluster indicator $z_{n,k}$
- Given $\{\theta_1, ..., \theta_K\}$ fixed, since J is a linear function of $z_{n,k}$, this optimization can be easily obtained by

$$z_{n,k} = \begin{cases} 1, & \text{if } k = \arg\min_{j} ||x_n - \mu_j||^2 \\ 0, & \text{otherwise} \end{cases}$$

■ Given $\{z_{1,1}, ..., z_{N,K}\}$ fixed, J is a quadratic function of μ_k , it can be minimized by setting its derivative w.r.t. μ_k to zero

$$2\sum_{n=1}^{N} z_{n,k} (x_n - \mu_k) = 0 \Rightarrow \mu_k = \frac{\sum_{n=1}^{N} z_{n,k} x_n}{\sum_{n=1}^{N} z_{n,k}}$$

Assumptions of *K*-Means

- \blacksquare Assumptions (sometimes limitations) in *K*-Means
 - ☐ Isotropically distributed
 - ☐ Distributed with equal variances
 - ☐ Clusters are evenly sized

Gaussian Mixture Model (GMM)

- *K*-Means is hard-membership clustering technique
 - \square $z_{n,k} \in \{0,1\}$: Each instance can or cannot belong to a cluster
 - \square $\sum_{k=1}^{K} z_{n,k} = 1$: Each instance can belong to only one cluster
- Is there a soft-membership clustering technique?
 - $\Box z_{n,k} \in \{0,1\} \rightarrow \gamma(z_{n,k}) \in [0,1]$
 - $\square \sum_{k=1}^{K} \gamma(z_{n,k}) = 1 \text{ still holds}$
- Gaussian Mixture Model

$$p(x_n|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$$

- Anisotropically distributed
- ☐ Distributed with different variances
- ☐ Clusters are variously sized

Maximum Likelihood of GMM

■ Given $\{x_1, ..., x_N\}$ and we wish to model these instances using a GMM. The log likelihood function is

$$\ln p(X|\{\pi_k, \mu_k, \Sigma_k\}_k) = \sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \right\}$$

■ Set the derivatives of $\ln p(X|\{\pi_k, \mu_k, \Sigma_k\}_k)$ w.r.t. the means μ_k of the Gaussian components to zero

$$-\sum_{n=1}^{N} \frac{\pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x_{n} | \mu_{k'}, \Sigma_{k'})} \Sigma_{k}(x_{n} - \mu_{k}) = 0$$

$$\gamma(z_{n,k}) = p(z_{n,k} = 1 | x_{n}) = \frac{\pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x_{n} | \mu_{k'}, \Sigma_{k'})}$$

$$-\sum_{n=1}^{N} \gamma(z_{n,k}) \Sigma_{k}(x_{n} - \mu_{k}) = 0 \Rightarrow \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n,k}) x_{n}}{\sum_{n=1}^{N} \gamma(z_{n,k})}$$

Maximum Likelihood of GMM

■ Set the derivatives of $\ln p(X|\pi,\mu,\Sigma)$ w.r.t. the covariance matrix Σ_k of the Gaussian components to zero

$$\Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n,k}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{\mathsf{T}}}{\sum_{n=1}^{N} \gamma(z_{n,k})}$$

■ Set the derivatives of $\ln p(X|\pi,\mu,\Sigma)$ w.r.t. the mixing coefficients π_k subject to $\sum_{k=1}^K \pi_k = 1$

$$\pi_k = \frac{\sum_{n=1}^N \gamma(z_{n,k})}{N}$$

■ In the MLE of (π_k, μ_k, Σ_k) we assume $\gamma(z_{n,k})$ is given, which however is also conditioned on (π_k, μ_k, Σ_k)

Expectation-Maximization (EM) Algorithm for GMM

- Initialize (π_k, μ_k, Σ_k) and evaluate $\ln p(X|\pi, \mu, \Sigma)$
- E-Step: Evaluate $\gamma(z_{n,k})$ using the current (π_k, μ_k, Σ_k)

$$\gamma(z_{n,k}) = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} \mathcal{N}(x_n | \mu_{k'}, \Sigma_{k'})}$$

■ M-Step. Estimate (π_k, μ_k, Σ_k) using the current $\gamma(z_{n,k})$

$$\pi_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n,k})}{N} \qquad \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n,k}) x_{n}}{\sum_{n=1}^{N} \gamma(z_{n,k})}$$

$$\Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{n,k}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{\top}}{\sum_{n=1}^{N} \gamma(z_{n,k})}$$

■ Evaluate $\ln p(X|\pi,\mu,\Sigma)$ and check the convergence

EM Algorithm for GMM

■ Illustration of EM iterations for fitting a GMM

EM Algorithm for Latent Variable Models

- Given a joint distribution $p(X, Z|\Theta)$ over observed variables X and latent variables Z, governed by parameters Θ , the goal is to maximize the likelihood function $p(X|\Theta)$ w.r.t. Θ .
- The general EM algorithm:
 - \square Initialize the parameters Θ^{old} ;
 - **\square E-Step**: Evaluate $p(Z|X, \Theta^{\text{old}})$;
 - **□** M-Step: Evaluate θ^{new} given by

$$\Theta^{\text{new}} = \underset{\Theta}{\operatorname{argmax}} \sum_{Z} p(Z|X, \Theta^{\text{old}}) p(X, Z|\Theta)$$

□ Check the convergence of the parameter values; if convergence condition is not satisfied, set $\theta^{\text{old}} = \theta^{\text{new}}$ and go to E-step.

Latent Variable Models

- Latent Class Analysis (discrete latent variable model) is usually based on cluster assumption
 - Mixture Model
 - □ Topic Model
 - Relational Model
 - Latent Feature Model
 - □ etc.
- Latent Factor Analysis (continuous latent variable model) is usually based on subspace assumption
 - ☐ Principal Component Analysis
 - Matrix Factorization
 - □ etc.

Principal Component Analysis

- Given $\{x_1, ..., x_N\} \in \mathbb{R}^D$, PCA is to project the data on to a space that maximizes the variance of the projected data
 - Noise filtering
 - □ Dimensionality reduction
 - Data visualization
 - □ Data compression
 - □ etc.

Principal Component Analysis

- Suppose the first principal component is u_1 , then each data point is projected onto a one-dimensional space $u_1^T x_n$
- The variance of the projected data is given by

$$\frac{1}{N} \sum_{n=1}^{N} \left(u_1^{\mathsf{T}} x_n - u_1^{\mathsf{T}} \bar{x} \right)^2 = u_1^{\mathsf{T}} \left(\frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x}) (x_n - \bar{x})^{\mathsf{T}} \right) u_1 = u_1^{\mathsf{T}} \Sigma u_1$$

■ Maximize $u_1^\mathsf{T} \Sigma u_1$ w.r.t. u_1 subject to $u_1^\mathsf{T} u_1 = 1$

$$\max_{u_1} u_1^{\mathsf{T}} \Sigma u_1 + \lambda_1 (1 - u_1^{\mathsf{T}} u_1) \Rightarrow u_1^{\mathsf{T}} \Sigma u_1 = \lambda_1$$

Dimensionality Reduction

- In statistics and machine learning, dimensionality reduction is to reduce the number of random variables by obtaining a set of principal variables.
 - ☐ Principal Component Analysis (PCA)
 - ☐ Canonical Correlation Analysis (CCA)
 - Nonnegative Matrix Factorization (NMF)
 - Autoencoder
 - ☐ Learning to Hash
 - Random Projection
 - ☐ Locality-Sensitive Hashing (LSH)
 - □ etc.

Model Selection

- A common problem in machine learning is to select a hyper-parameter which usually determines the structure (or complexity) of the model
 - Number of components in a GMM
 - Number of latent dimensions in matrix factorization
 - Hyper-parameters in neural networks
 - ☐ Hyper-parameters in kernel methods
 - ☐ Hyper-parameters in Bayesian methods
 - □ etc.
- Criteria for model selection
 - ☐ Cross-validation most frequently used
 - ☐ Information theory based criteria (AIC, BIC, MDL, etc.)
 - Bayesian nonparametric methods

Bayesian Methods

■ Recall that Maximum *a posteriori* (MAP) is an estimate of an unknown quantity, that equals the mode of the posterior distribution – point estimation.

$$\arg \max_{\theta \in \Theta} p(\theta|D) = \arg \max_{\theta \in \Theta} \frac{p(D|\theta)p(\theta)}{\int_{\theta'} p(D|\theta')p(\theta')d\theta'} = \arg \max_{\theta \in \Theta} p(D|\theta)p(\theta)$$

■ Bayesian methods treat parameters as random variables and infer the posterior distribution

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\int_{\theta'} p(D|\theta')p(\theta')d\theta'}$$

■ Bayesian methods use predictive distribution for prediction

$$p(x|D) = \int_{\theta} p(x|\theta)p(\theta|D)d\theta$$

Point Estimation vs Bayesian Inference

- Point estimation (MLE & MAP) is simpler and more efficient to solve
 - \blacksquare Build MLE/MAP (objective function) conditioned on Θ
 - \Box Find optimal Θ^* using some optimization techniques
 - \square Substitute Θ^* into the model for prediction
- Bayesian inference: There are integrals in both inference stage and prediction stage
- Advantages of Bayesian inference
 - Avoid local optima
 - Predict with confidence
 - ☐ Incorporate rich prior knowledge

Thanks

Email: libin@fudan.edu.cn

MAP & Generalized Linear Model

- MAP: $\min_{\theta \in \Theta} \frac{1}{N} \sum_{n=1}^{N} -\log p(x_n, y_n | \theta) \log p(\theta)$
- In statistics, the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution.
- GLM generalizes linear regression by allowing the linear model to be related to the target via a link function.
 - □ $p(x_n, y_n | \theta)$ is Gaussian distribution → Link function: $w^T x_n = \mu$ (Identity) → Mean function: $\mu = w^T x_n$
 - □ $p(x_n, y_n | \theta)$ is Logistic function → Link function: $w^{\mathsf{T}} x_n = \ln \frac{\mu}{1 \mu}$ (Logit) → Mean function: $\mu = \frac{1}{1 + \exp(-w^{\mathsf{T}} x_n)}$