

# Deep Residual Learning for Image Recognition

2025-07-08

**CVPR 2015** 

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

#### **Content**



- □ Introduction
  - Stacking Layers: Solution or Illusion?
  - Problems with adding layers
- □ Deep Residual Learning
- **□** Experiments
- □ Conclusion

## **Stacking Layers: Solution or Illusion?**



- ☐ Deep networks
  - Naturally integrate low/mid/high-level features





→ Is learning better networks as easy as stacking more layers?

CAU

- ☐ Vanishing/Exploding gradients
  - Hamper convergence from the beginning



→ Can alleviate through SGD, Batch Normalization



#### **Degradation**

With the network depth increasing, accuracy gets saturated and then degrades rapidly





- Degradation
  - Solution
    - ☐ Added layer : identity mapping
    - ☐ The other layer : copied from the learned shallower model





#### Degradation

Difficult to approximate identity mapping by multiple nonlinear layers



→ When the identity mapping is optimal, wouldn't the zero-mapping approximation be easier?

## **Deep Residual Learning**



#### □ Residual Learning

- $\blacksquare \mathcal{H}(x)$ 
  - ☐ A mapping to be fit by a few stacked layer
- $\mathbf{F}(x)$ 
  - □ A residual function
  - $\square \mathcal{H}(x) x$
  - ☐ Can involve several layers except for only one layer



Figure 2. Residual learning: a building block.

$$\rightarrow \mathcal{H}(x) = \mathcal{F}(x) + x$$

 $\rightarrow$  Approximating  $\mathcal{H}(x)=x$  is equal to approximating  $\mathcal{F}(x)=0$ 

## **Deep Residual Learning**



- □ Shortcut
  - Case 1. Identity mapping
    - $\square$  dim(x) = dim( $\mathcal{F}$ )

    - □ No extra parameter
  - Case 2. Linear projection
    - $\square$  dim(x)  $\neq$  dim( $\mathcal{F}$ )

## **Deep Residual Learning**



- Real case
  - It is unlikely that identity mappings are optimal
    - $\rightarrow$  If H(x) becomes too far from x, isn't the purpose of residual learning meaningless?
    - → Batch normalization helps indirectly!



→ Make solver to find the perturbations with reference to an identity mapping!



- □ Model
  - Plain network
    - Deploy Convolutional layers continuously



- Residual network
  - ☐ Add shortcut connections to the Plain network





- □ Model
  - Residual network
    - ☐ 1. Identity mapping + zero padding
    - 2. Linear projection





#### □ Model

| layer name | output size | 18-layer                                                                           | 34-layer                                                                           | 50-layer                                                                                        | 101-layer                                                                                                         | 152-layer                                                                                                      |  |
|------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                    |                                                                                                 |                                                                                                                   |                                                                                                                |  |
| conv2_x    | 56×56       | 3×3 max pool, stride 2                                                             |                                                                                    |                                                                                                 |                                                                                                                   |                                                                                                                |  |
|            |             | $\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$          | $\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$          | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$    | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                      | $   \begin{bmatrix}     1 \times 1, 64 \\     3 \times 3, 64 \\     1 \times 1, 256   \end{bmatrix} \times 3 $ |  |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$ | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$  | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$                    | $ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $               |  |
| conv4_x    | 14×14       | $ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2 $      | $ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $      | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$ | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$                  | $ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $             |  |
| conv5_x    | 7×7         | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$     | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$     | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$ | $   \begin{bmatrix}     1 \times 1, 512 \\     3 \times 3, 512 \\     1 \times 1, 2048   \end{bmatrix} \times 3 $ | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $              |  |
|            | 1×1         | average pool, 1000-d fc, softmax                                                   |                                                                                    |                                                                                                 |                                                                                                                   |                                                                                                                |  |
| FLOPs      |             | $1.8 \times 10^{9}$                                                                | $3.6 \times 10^{9}$                                                                | $3.8 \times 10^{9}$                                                                             | $7.6 \times 10^9$                                                                                                 | 11.3×10 <sup>9</sup>                                                                                           |  |



- ☐ ImageNet Classification
  - Plain network (left)
    - ☐ Increase train, validation error as the number of layer grows
  - ResNet (right)
    - ☐ Decrease train, validation error as the number of layer grows







#### ☐ Identity vs. Projection Shortcuts

- A
  - ☐ Identity + zero-padding
- В
  - ☐ Identity + Projection (when dimension increases
- Projection

| model          | top-1 err. | top-5 err. |  |
|----------------|------------|------------|--|
| VGG-16 [41]    | 28.07      | 9.33       |  |
| GoogLeNet [44] | -          | 9.15       |  |
| PReLU-net [13] | 24.27      | 7.38       |  |
| plain-34       | 28.54      | 10.02      |  |
| ResNet-34 A    | 25.03      | 7.76       |  |
| ResNet-34 B    | 24.52      | 7.46       |  |
| ResNet-34 C    | 24.19      | 7.40       |  |
| ResNet-50      | 22.85      | 6.71       |  |
| ResNet-101     | 21.75      | 6.05       |  |
| ResNet-152     | 21.43      | 5.71       |  |

→ Projection shortcuts are not essential for addressing the degradation problem!



#### ☐ CIFAR-10

| output map size | 32×32 | 16×16 | 8×8 |
|-----------------|-------|-------|-----|
| # layers        | 1+2n  | 2n    | 2n  |
| # filters       | 16    | 32    | 64  |

| me               | error (%) |          |                         |
|------------------|-----------|----------|-------------------------|
| Maxo             | 9.38      |          |                         |
| NII              | 8.81      |          |                         |
| DSI              | 8.22      |          |                         |
|                  | # layers  | # params |                         |
| FitNet [35]      | 19        | 2.5M     | 8.39                    |
| Highway [42, 43] | 19        | 2.3M     | $7.54 (7.72 \pm 0.16)$  |
| Highway [42, 43] | 32        | 1.25M    | 8.80                    |
| ResNet           | 20        | 0.27M    | 8.75                    |
| ResNet           | 32        | 0.46M    | 7.51                    |
| ResNet           | 44        | 0.66M    | 7.17                    |
| ResNet           | 56        | 0.85M    | 6.97                    |
| ResNet           | 110       | 1.7M     | <b>6.43</b> (6.61±0.16) |
| ResNet           | 1202      | 19.4M    | 7.93                    |



- ☐ CIFAR-10
  - Plain network
    - ☐ Increase train, validation error as the number of layer grows
  - ResNet
    - ☐ Train error converges to almost zero, and test error decreases



Figure 6. Training on **CIFAR-10**. Dashed lines denote training error, and bold lines denote testing error. **Left**: plain networks. The error of plain-110 is higher than 60% and not displayed. **Middle**: ResNets. **Right**: ResNets with 110 and 1202 layers.



- ☐ CIFAR-10
  - Analysis of layer responses
    - ☐ ResNets have generally smaller responses than their plain counterparts



#### **Conclusion**



- ☐ Problem with adding layers
  - Vanishing/Exploding gradients, Degradation
- Deep Residual Learning
  - Learn  $\mathcal{F}(x) \coloneqq \mathcal{H}(x) x$
  - Make solver to find the perturbations with reference to an identity mapping
- □ Experiments
  - Decrease train, validation error as the number of layer grows