

REPORT NO		IG-589	9
BATE	7	Cct	1959
NO. OF PARES	5		

CONVAIR ASTRONAUTICS

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

LD672204

Distriction of this document is unlimited.

THE WEAPONS-ASSIGNMENT PROBLEM

PREPIRED BY_	81	W.	Chenen	
			Cheney	

CHECKED BY____

APPROVED BY_____

APPROVED BY.....

REVISIONS

HO. DATE 0		BY	PAGES AFFECTED		

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The problem of the title is as follows. There is a stockpile of n missiles and a list of m military targets. The value of the ith target is a known quantity V_i (14 i \leq m). The probability that the ith target will not be hit if attacked by the jth missile is a known quantity Pi $(1 \le i \le m, 1 \le j \le n)$. It is assumed that a hit results in total destruction of the target. What assignment of missiles to targets will effect the maximum expected destruction?

If all missiles were directed to the same target, say the ith, the destruction expected would be

$$D = V_1 \left[1 - \prod_{j=1}^{n} P_{i,j} \right].$$

This formula is trivial for n = 1, and may be proved inductively for other values of n as follows: A strike from a salvo of n missiles can result in three mutually exclusive events:

- (a) one of the first (n-1) missiles strikes while the nth pisses.
- one of the first (n-1) missiles strikes and the nth strikes also.
- (c) none of the first (n-1) missiles strikes while the nth strikes.

The probabilities of these three events being added, we obtain, assuming as an inducation hypothesis that the formula for D is valid up to n-1:

$$\left(1-\frac{n-1}{j-1}P_{ij}\right)P_{in}+\left(1-\frac{n-1}{j-1}P_{ij}\right)\cdot\left(1-P_{in}\right)+\left(\frac{n-1}{j-1}P_{ij}\right)\left(1-P_{in}\right).$$

Algebraically, this is equivalent to $1 - \prod_{i=1}^{n} P_{i}$, Q.E.D.

CONVAIR | ASTRONAUTICS

Now consider the given data as being laid out tabularly.

	v ₁ v ₂	P ₁₁ P ₂₁	P ₁₂	•••	P _{ln} P _{2n}	
1	•		•			
4			,		•.	
,	•		ď			
- 1-4	3		1,0	100	1	

An estignish of witstist to harper team on the eyent pass will be on the The born teller in audit a conversal cooper. B for a council or the book of the CHANGE THE STATE WAS ENERGISM OF BRANCHER STATE OF THE STATE OF THE SECOND managia. a five-techni, throcomisation man in a suit of the converge of a The Litragen indicate they give and those the control &, And and 1. 202 1.0

បែលមានស្រឹក្សា**តមណ**ា (ស្រុក) ស្រុក (ស្រុក) ស្រុក (សុ

and the process of the second of the second a vers = lague. I a vers in the

ASTRONAUTICS

REPORT_	AG-589	
2040	3	

In the next paragraph there is described a relaxation method for the improvement of assignments. This algorithm does not generally yield a solution of the original problem, but is offered here as a means of generating good if not optimal assignments by means of automatic computation. This method, in fact, solves the following simpler problem: as missiles roll off the assembly line, it is desired to assign them optimally and sequentially to targets without altering the assignments of those already stockpiled. There may be instances where the problem just described is the more practical, as when altering the assignment of a missile involves costly reinstrumentation.

Now suppose, for the moment, that an assignment has been fixed for all missiles except one, say the rth one. To which target should the rth missile be directed in order that the resulting full assignment shall be optimal? This problem can be solved by calculating the m different total destructions that can result when missile r is directed to targets 1, 2,...,m in turn. Having done this for one value of r, we repeat for another, at each step changing one component of the assignment vector to increase the total destruction. This process, repeated indefinitely, is called relexation.

If all but the rth missile are fired, the probability of survival of target i is

The expected (surviving) value of target i is then

If missile r is fired at target i, an additional expected destruction is effected of magnitude

$$E_{i} = (1 - P_{ir}) V_{i} \prod_{j=1}^{n} H_{ij}.$$

1900

Missile r should then be assigned to that target i for which \mathbf{E}_i is a maximum. A program for the IBM 650 which performs this task iteratively is described in Appendix I. We show now by example that the process can fail to produce a solution. Consider the datum

V		P
40	•5	.8
30	•3	•4

The assignment (2,1) yields a total expected destruction of

$$D = (.7)(30) - (.2)(40) = 29.$$

Any attempt to improve this by alteration of a <u>single</u> component will fail, for D (1,1)=27.2 and D (2,2)=26.4. However, D (1,2)=38. The assignment (1,2) can be obtained from (2,1) only by alteration of <u>two</u> components simultaneously. The example just considered may be represented pictorially as follows. The assignments (1,1), (1,2), (2,1), (2,2) may be shown as points in E₂, and the corresponding value of D may be plotted on the vertical axis.

The relaxation algorithm can proceed from (2,2) to (1,2), or from (1,1) to (1,2), but not from (2,1) to (1,2).

CONVAIR	X	ASTRONAUTICS
---------	---	--------------

REPURT	AG-589
PASE	5

Another example of the same type is as follows:

V		P	
10	•4	•5	•5
20	.8	•7	•5
10	•5	•5	.1

The assignment (2,1,3) yields an expected destruction of

$$D = 20(.2) + 10(.5) + 10(.9) = 18.$$

Every assignment that can be obtained from (2,1,3) by altering a single component yields a lower value of D. However, there exists an assignment, vis. (1,2,3), obtainable from (2,1,3) by altering two components, which yields a higher value of D.

In an attempt to improve an assignment produced by the relaxation method, we may try interchanges of components in the assignment vector T. Both the preceding examples would yield to this treatment. It is not known whether these two methods together will produce optimum assignments in all cases. It seems unlikely that they would. This composite algorithm may be tried over and over on different initial assignments, and these initial assignments may be generated by a random device in the computer. Measures such as this are of use even in simpler problems like the classical assignment problem. In using the relaxation algorithm, it is possible to start with any initial assignment. A reasonable first assignment may be obtained as follows: Calculate all numbers V_1 $(1 - P_{1j})$. Let the greatest be indexed with i_0 j_0 . Then, in the initial assignment, send missile j_0 to target i_0 . Now reduce V_{10} to V_{10} P_{10j_0} and repeat the process, emitting j_0 as a value of j_0 . The 650 Program which accomplishes this is described in Appendix II.

All the measures just described must be regarded only as stopgaps until a genuine solution becomes available.

Appendix I: Relaxation Algorithm

Appendix II: Starting Procedure for Relaxation Algorithm

100

									·
1		BLR	1950	1999	MISSILE				
1 2 3		REG	P0101	0600	ASSIGNMENT				
		REG	V0601	0630	PROBLEM				
4		REG	T0631	0650					
5		REG	50651	0680					
J 6		REG	E0681	0710					
7		REG	01027	1036					
8		REG	X1077	1086					
9		REG	Y1127	1136					
10		REG	R1951	1960					
11		SYN	X1	X0001					
12		SYN	X2	X0002					
13		SYN	Z	1027					
14 15		SYN	START Halt	1950 0000					
16		SYN	M	1951					
17		SYN	N	1952					
18		REG	G1200	1800					
19	START	RCD	R0001	1A		1950	70	1951	0001
20	14	LDD	N	• •	ALGURITHM	0001	69	1952	0005
21	• • • • • • • • • • • • • • • • • • • •	STD	COUNT	2 A	TO OBTAIN	0005	24	0008	0011
22	2A	LDD	М		STARTING	0011	69	1951	0004
23		RAB	8001		ASSIGNMENT	0004	82	8001	0010
24		RAU	8001		FOR	0010	60	8001	0017
25		MPY	N		RELAXATION	0017	19	1952	0022
26		RAC	8002	2B	METHOD	0022	88	8002	0031
27	2B	LDD	N			0031	69	1952	0055
28		RAA	8001	2C		0055	80	8001	0061
29	2C	RAU	FLONE			0061	60	0014	0019
30		FSB	P0000			0019	33	6100	0027
		FMP		В		0027	39	4600	0050
		STU	G0000			0030	21	7199	0002
3 3	20	SXC	0001	2 D		0002	59	0001	0058
34	2D	NZC	2E	3 A		0058	48	0711	0012
35	2E	SXA	0001	2F		0711	51	0001	0067
36 37	2F	NZA	20001	2G		0067	40	0061	0021
38	2G	SXB	0001	28		0021	53	0001 1952	0031 0007
39	3A	RAU MPY	N M			0012 0007	60 19	1951	0007
40		RAC	8002	3B		0072	88	8002	0081
41	38	RAB	6000	70		0081	82	6000	0038
42	30	SXB	0001	3C		0038	53	0001	0044
43	3C	RAU	G0000			0044	60	7199	0003
44		FSB	G0000			0003	33	5199	0025
45	3 D	BMI	3 E	3F		0025	46	0028	0029
46	3E	LDD	8006			0028	69	8006	0034
47		RAC	8001	3 B		0034	88	8001	0081
48	3F	SXB	0001	3 G		0029	53	0001	0035
49	3G	NZB	3C	3H		0035	42	0044	0039
50	3H	RAL	8007			0039	65	8007	0047
51		DIA	N			0047	14	1952	0062
52		STU	JMAX			0062	21	0016	0069
53		ALO	ONE			0069	15	0722	0077
54	_	STL	IMAX	4 A		0077	20	0731	0084
55	4A	LDD	JMAX			0084	69	0016	0719
26		RAA	8001			0719	80	8001	0727
7		LDD	IMAX			0727	69	0731	0734
58		STD	T0000	A 5A		0734	24	263¢	0033
59	5 A	RSU	ONE			0033	61	0722	0777
60		AUP	M			0777	10	1951	0755
61		MPY	N			0755	19	1952	0772

62		ALO	XAML				0772	15	0016	0071
63		RAA	8003				0071	80	8003	0030
64		RAU	ZERO	5	ΒB		0030	60	0083	0037
65	5B	STU	G0000 A	A			0037	21	3199	0052
_66		LDD	N				0052	69	1952	0805
3637		SXA	8001		5 C		0805	51	8001	0761
68	5C	BMA	6 A		5B		0761	41	0064	0037
69	6 A	LDD	N				0064	69	1952	0855
70		RAA	8001				0855	60	8001	0811
71		RAU	N				0811	60	1952	0057
72		MPY	IMAX				0057	19	0731	0752
73		RAB	8002				0752	82	8002	0861
74		SLO	N				0861	16	1952	0757
75		ALO	JMAX				0757	15	0016	0721
76		RAC	8002				0721	88	8002	0079
77		LDD	P0000	_			0079	69	6100	0053
78		STD	LAMBD		6B		0053	24	0006	0009
79	6B	RAU	G0000 I				0009	60	5199	0753
80	00	FMP	LAMBD	J			0753	39	0006	0056
		STU		8	6C		0056	21	5199	0802
81	40				6D		0802	51	0001	0758
82	6C	SXA	5001		7A		0758	40	0911	0712
83	6D	NZA	6E				0911	53	0001	0009
84	6E	SXB	0001 COUNT		6B		0712	60	0001	0013
95	7A	RAU					0013	11	0722	0827
86		SUP	ONE						0008	0961
87		STU	COUNT		O.T.1		0827	21	0012	0066
88	PT1	NZU	3 A		PT1	RELAXATION	0961	44 69	1952	0905
89	PII	LDD	N			ALGORITHM	0066	24	8080	1011
90		STD	R				0905	69	1951	0054
91		LDD	M			BEGINS	1011			0060
C ²		RAA	8001		0.70	HERE	0054	80	8001	
93		SUP	8003		PT2		0060	11	8003	0717
94	PT2	FAD	V0000	A			0717	32	2670	0877
95		SXA	0001				0877	51	0001	0733
96		NZA	PT2		0.7.2		0733	40	0717	0087
97		STU	X1		PT3		0087	21	1077	0080
98	PT3	LDD	ZERO		0.700		0080	69	0083	(036
99		STD	Z		PT32		0036	24	1027	0715
100	PT4	LDD	М				0730	69	1951	0754
101		STD	I		PT5		0754	24	C807	0760
102	PT5	LDD	N				0760	69	1952	0955
103		RAA	8001				0955	80	8001	1061
10%		RAU	FLONE				1061	60	0014	0769
105		STU	0		PT7		0769	21	0024	0927
106	PT7	RSU	T0000	Α			0927	61	2630	0 085
107		AUP	I				0085	10	0807	1111
108		NZU	PT8		PT9		1111	44	0015	0716
109	PT8	SXA	0001		PT10		0015	51	0001	0771
110	PT9	RAU	1				0716	60	0807	1161
111		SUP	ONE				1161	11	0722	0977
112		MPY	N				0977	19	1952	0822
113		ALO	8005				0822	15	8005	0729
114		RAC	8002				0729	88	8002	0737
115		RAU	Q				0737	60	0024	0779
116		FMP	P0000	C			0779	39	6100	0100
1137		STU	Q		PT8		0100	21	0024	0015
8	PT10	NZA	PT7		PT11		0771	40	0927	0075
119	PT11	RAU	I				0075	60	0807	1811
120		RAB	8003				1811	82	8003	0020
121		RAU	Q				0020	60	0024	0829
122		FMP	V0000	В			0829	39	4600	0750
- 										_

¥.

123		STU	50000 B	PT12	0750	21	4650	0803
124 125	PT12	RAU	Z	0.1.1.2	0803 0781	60	1027 0735	0781 0086
126	PT13	NZU Rau	PT19 I	PT13	0086	44 60	0807	1861
127	F113	SUP	CNE		1861	11	6722	1177
₹ A		STU	I		1177	21	0807	0810
12 8		MPY	'n		0810	19	1952	0872
130		ALO	R		0872	15	0808	0063
131		RAA	8002		0063	80	8002	0821
132		RSU	P0000 A		0821	61	2100	1005
133		FAD	FLONE		1005	32	0014	0041
134		FMP	S0000 B		0041	39	4650	0800
135		STU	E0000 B	PT14	0800	21	4680	0783
136	PT14	RAU	I		0783	60	0807	1911
137		NZU	PT5	PT15	1911	44	0760	0766
138	PT15	LDD	M		0766	69	1951	0804
139		RAA	8001	DOV1	0804	80	8001	0860
140	DOV1	RAC	8001	BOX1	0860 0816	88 59	8001 0001	0816 0922
141 142	BOX1	SXC NZC	0001 BOX2	вохз	0922	48	0725	0026
142	вохз	LDD	8005		0026	69	8005	0032
144	0077	STD	K	PT16	0032	24	0785	0088
145	BOX 2	RAU	E0000 A		0725	60	2660	0835
146	<u> </u>	FSB	E0000 C		0835	33	6680	0857
147		BMI	BOX4	BOX1	0257	46	0910	0816
148	BOX4	RAA	6000	BOX1	0910	80	6000	0816
149	PT16	LDD	R		0088	69	0808	0762
150		RAA	8001		0762	80	8001	0018
151		LDD	K		0018	69	0785	0738
152		STD	T0000 A	PT17	0738	24	2630	0833
1.53	PT17	LDD	ONE	0.77	0833	69	0722	0775
155	DTIO	STD	2 0001	PT4	0775 0735	24 53	1027 0001	0730 0091
155 156	PT19	SXB R au	0001 I		0091	60	0807	0812
157		SUP	ONE		0812	11	0722	1827
158		STU	I		1827	21	0807	0960
159		NZB	PT5	PT20	0960	42	0760	0714
160	PT20	LDD	X 1		0714	69	1077	0780
161	_	STD	X 2		0780	24	1078	0831
152		LDD	М		0831	69	1951	0854
163		RAA	8001		0854	80	8001	1010
164		SUP	8003	PT21	1010	11	8003	0767
165	PT21	FAD	S0000 A		0767	32	2650	1877
166		SXA	0001	D T 2 2	1877	51	0001	0883
167	0.00	NZA	PT21	PT22	0883	40	0767	0787
168	PT22	STU	X1 X0001	PT23	0787	21	1077	0830
169	PT23 PT24	PCH	X0001	PT24	08 30 1927	71 69	1077 1951	1927 0904
170 171	F124	LD D R ab	м 8 0 01		0904	82	8001	1060
172		RSC	0000	SET 1	1060	89	0000	0866
173	SET 1	RSA	0008	LOOPÎ	0866	81	0008	0972
174	LOOP1	LDD	50001 C		0972	69	6651	0954
175		STD	Y0009 A		0954	24	3135	0788
176		AXC	0001		0788	58	0001	0094
177		SXB	0001		0094	53	0001	0850
178		NZB		THRU1	0850	42	0853	1004
		AXA	0001		0853	50	0001	0059
180		NZA	LOOP1		0059	40	0972	0713
181		PCH	Y0001		0713	71	1127	0078
182		RSA	0008	10000	0078	81	8000	0784
183		LDD	ZERO	LOOP2	0784	6 9	0083	0736

184	LOOP2	STD	Y0009 A		0	736 24	3135	ەدە0
185		AXA	0001			838 50		0744
186		NZA	LOOP2	SET 1		744 40		0866
187	THRU1	PCH	Y0001			004 71		0720
188		RSA	8000		0	728 81	8000	0834
9		LDD	ZERO	LOOP3	0	834 69	0083	0786
190	LOOP3	STD	Y0009 A		0	786 24	3135	0888
191		AXA	0001			888 50		0794
192		NZA	LOOP3			794 40		0048
193		LDD	М			048 69		1054
194		RAB	8001			054 82		1110
195		RSC	0000	SET 2		110 89		0916
196	SET 2	RSA	0008	LOOP4		916 81		1022
197	LOOP4	LDD	T0001 C			022 69		0884
198		STD	Y0009 A			884 24		0938
199		AXC	0001			938 58		0844
200		SXB	0001	T		844 53		0900
201		NZB		THRU2		900 42		1104
202		AXA	0001			903 50		0759
203		NZA	LOOP4			759 40		0763
204		PCH	Y0001			763 71		0778
205 206		RSA	0008	1.0005		778 81		0934
207	LOOP5	LDD	ZERO	LOOP5		934 69		0836
208	LOOPS	STD Axa	Y0009 A)		836 24 988 50		0988 0894
209		NZA	L00P5	SET 2		988 50 894 40		0916
210	THRU2	PCH	Y0001	SLI Z		104 71		0828
211	THIOL	RSA	0008			828 81		0984
212		LDD	ZERO	LOOP6		984 69		0886
213	LOOP6	STD	Y0009 A			886 24		1038
		AXA	0001	•		038 50		0944
C15		NZA	LOOP6	PT25		944 40		0098
216	PT25	RAU	XC001			098 60		0881
217		FSB	X0002			881 33		1055
218		BMI	PT29	PT26	1	055 46	0858	0809
219	PT26	RAU	W		0	809 60	0862	0817
220		SUP	ONE		0	817 11	0722	0878
221		STU	W			878 21		0065
222		STU	00001			065 21		0880
223		PCH	00001	PT27		880 71		0928
224	PT27	NZU	PT30	HALT		928 44		0000
225	PT29	RAU	M	0700		858 60		0813
227	0736	STU	W	PT30		813 21		0931
228	PT30	RAU	R			931 60		0863
229		SUP	ONE			863 11		0978
230		STU	R	DT21		978 21		0912
231 232	PT31	NZU	PT32	PT31		912 44	-	0966
232	6131	LDD STD	N R	PT3		966 69 155 24		1155
234	PT32	LDD	R	F 1 3		155 24 715 69		0080
235	F132	RAC	8001			962 88		0962
236		LDD	ONE			068 69		0008
237		STD	T0000 (PTA		825 24		0825 0730
238	HALT	01	9999	9999		000 01	_	9999
239	ONE	00	0000	0001		722 00		0001
	FLONE	10	0000	0051		014 10		0051
24 0	ZERO	00	0000	0000		083 00		0000
•					-			5.700