0.1 Strukturtheorie zu Gruppen ("Einige Aussagen")

Sei im Weiteren M ein Monoid, G eine Gruppe und X eine Menge.

Definition 0.1 (Wirkung). Eine Abbildung

$$\lambda: M \times X \to X, (m, x) \mapsto m \cdot x := \lambda(m, x)$$

heißt Linkswirkung (left action, Linksoperation) von M auf X, wenn es gelten $\forall x \in X, m, m' \in M$:

- (i) Neutrales Element: $e \cdot x = x$
- (ii) Assoziativität: $m \cdot (m' \cdot x) = (m \cdot m') \cdot x$

Bezeichnung. Ist M eine Gruppe, so heißt λ auch Gruppenwirkung und X heißt Links-M-Menge.

Bemerkung. Analog kann man auch Rechtswirkungen

$$\rho: X \times M \to X, (x,m) \mapsto x \cdot m$$

definieren. (Axiome: $x \cdot e = c$ und $(x \cdot m) \cdot m' = x \cdot (m \cdot m')$)

Bemerkung (Übung). Jede Links-G-Wirkung kann man in eine Rechts-G-Wirkung überführen: zu $\lambda: G \times X \to X$ definiere $\rho: X \times G \to X$ durch

$$\rho(x,g) := \lambda(g^{-1},x) \iff x \cdot g := g^{-1} \cdot x$$

Proposition 0.2 (Alternative Beschreibung von Wirkungen).

(a) Sei $\lambda: G \times X \to X$ eine Linkswirkung, dann ist

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto (\varphi_g: X \to X, x \mapsto gx)$$

ein wohl-definierter Gruppenhomomorphismus.

(b) $Sei \varphi: G \to Bij(X)$ ein Gruppenhomomorphismus, dann ist

$$\lambda: G \times X \to X, (g, x) \mapsto \varphi(g)(x)$$

eine Linkswirkung von G auf X.

Beweis. (a) Für $g \in G$ sei $\varphi_g : X \to X, x \mapsto gx$, dann gelten: $\varphi_e : X \to X, x \mapsto ex = x$ ist id_X (Axiom (i)), und

$$(*) \quad \varphi_g \circ \varphi_{g'} = \varphi_{gg'}$$

denn $\forall x \in X$:

$$(\varphi_g \circ \varphi_{g'})(x) = \varphi_g(\varphi_{g'}(x)) = g(g'x) \stackrel{(ii)}{=} (gg')x = \varphi_{gg'}(x)$$

Damit folgen:

1. $\varphi_g \circ \varphi_{g^{-1}} = \underbrace{\varphi_e}_{\operatorname{id}_X} = \varphi_{g^{-1}} \circ \varphi_g \implies \varphi_g$ ist eine bijektive Abbildung mit Inverse $\varphi_{g^{-1}}$, d.h.

$$\varphi: G \to \operatorname{Bij}(X), g \mapsto \varphi_g$$

ist wohl-definiert.

2. φ ist ein Gruppenhomomorphismus: folgt aus (*) (Verknüpfung in Bij(X) ist die Verkettung von Abbildungen.)

(b) Übung.

Bemerkung. (a) Das Analogon von Proposition 2 gilt auch für Monoide. Die Linkewirkungen eines Monoids M auf X entsprechen Monoidhomomorphismen $M \to (\mathrm{Abb}(X,X),\mathrm{id}_X,\circ)$

(b) Eine Gruppe kann auch auf "Objekten" mit mehr Struktur als eine Menge wirken, z.B. auf eine Gruppe!

Beispiel. G wirkt auf eine Gruppe N heißt, man hat einen Gruppenhomomorphismus $G \to \operatorname{Aut}(N)$ (vgl. Lemma 1.56)

Definition 0.3 (Eigenschaften von Wirkungen). Sei $\lambda: G \times X \to X$ eine Linkswirkung von G auf X.

- (a) Die Bahn zu $x \in X$ ist $Gx = \{gx \mid g \in G\}$. Die Länge der Bahn zu x ist #Gx
- (b) λ ist transitiv $\iff \forall y, z \in X \exists g \in G : gy = z \stackrel{\ddot{\text{Ubung}}}{\iff} \forall y \in X : Gy = X \stackrel{\ddot{\text{Ubung}}}{\iff} \exists x \in X : Gx = X$
- (c) λ ist n-fach transitiv $(n \in \mathbb{N})$, wenn für alle Paare von n-Tupeln $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ mit $\#\{x_1, ..., x_n\} = \#\{y_1, ..., y_n\}$ gilt $\exists g \in G : gx_i = y_i, \forall i$.
- (d) Die Wirkung heißt treu, wenn der induzierte Gruppenhomomorphismus $\varphi:G\to \mathrm{Bij}(X)$ (aus Proposition 2) injektiv ist

$$\overset{\text{Übung}}{\Longleftrightarrow} \forall g \in G \setminus \{e\}: \exists x \in X: \underbrace{gX \neq X}_{\varphi_g(x) \neq \operatorname{id}_X(x)}$$

Beispiel 0.4.

- 1. Ist V ein K-Vektoraum, so wirkt das Monoid $(K,1,\cdot)$ auf V durch Skalarmultiplikation $(\lambda,v)\mapsto \lambda v$
- 2. Die folgenden 3 Beispiele sind Linkswirkungen von $GL_n(K)$:
 - (i) $\mathrm{GL_n}(K) \times K^n \to K^n, (g,v) \mapsto gv.$ (Übung: Es gibt die Bahnen $\{0\}, K^n \setminus \{0\})$
 - (ii) Sei $\mathcal{B} = \{\text{geordnete Basen von } K^n\}$ und

$$\operatorname{GL}_{n}(K) \times \mathcal{B} \to \mathcal{B}, (g, (b_{1}, ..., b_{n})) \mapsto (gb_{1}, ..., gb_{n})$$

die Wirkung ist treu und transitiv.

- (iii) $\operatorname{GL}_n(K) \times \operatorname{End}_K(K^n) \to \operatorname{End}_K(K^n), (A, B) \mapsto ABA^{-1}$ die Wirkung ist nicht treu $Z(\operatorname{GL}_n(K))$ wirkt trivial. (Übung: Bahnen stehen in Bijektion zu den Frobeniusnormalformen von Matrizen.)
- 3. $S_n \times \{1,...,n\} \rightarrow \{1,...,n\}, (\sigma,i) \mapsto \sigma(i)$ Wirkung ist treu und n-fach transitiv.
- 4. Abstrakte Beispiele: Sei $H \leq G$ eine Untergruppe.
 - (i) $\lambda: H \times G \to G, (h,g) \mapsto hg$. Die Bahnen sind die Mengen Hg, also die Rechtsnebenklassen zu H (treu?) Menge der Rechtsnebenklassen

$$H^{\backslash G} := \{ Hg \mid g \in G \}$$

(ii) $\rho: G \times H \to G, (g,h) \mapsto gh$ Bahnen = Linksnebenklassen zu H und

$$G_{H} = \{gH \mid g \in G\}$$

- (iii) $c: G \times G \to G, (g,g') \mapsto gg'g^{-1}$ ist eine Linkswirkung, denn der nach Proposition 2 zugehörige Gruppenhomomorphismus ist $c: G \to \operatorname{Aut}(G), g \mapsto c_g$.
- (iv) $G \times G/H \to G/H$, $(g, g'H) \mapsto gg'H$ Die Klassen gH heißen Linksnebenklassen wegen der Links-G-Wirkung auf ihnen.

Proposition 0.5. Sei X eine Links-G-Menge (zu der Wirkung $\lambda : G \times X \to X, (g, x), \mapsto gx$) definiere Relation \sim auf X durch

$$x \sim y \iff \exists g \in G : gx = y$$

dann gelten:

- (a) \sim ist eine Äquivalenzrelation.
- (b) Die Äquivalenzklasse zu $x \in X$ bezüglich \sim ist die Bahn Gx. Insbesondere ist X die disjunkte Vereinigung seiner Bahnen. (Ist $(x_i)_{i \in I}$ ein Repräsentantensystem der G-Bahnen, so gilt also $\#X = \sum_{i \in I} \#Gx$)

Beweis. (a) \sim ist eine Äquivalenzrelation: Prüfe

- \sim reflexiv: $ex = x \implies x \sim x$.
- ~ symmetrisch: Gelte $x \sim y$, d.h. $\exists g \in G : gx = y$, dann gilt $x = ex = g^{-1}(gx) = g^{-1}y \implies y \sim x$.
- \sim transitiv: Gelte $x \sim y$ und $y \sim z$, d.h. $\exists g, h' \in G : gx = y, g'y = z$

$$\implies (g'g)x = g'(gx) = g'y = z \implies x \sim z$$

(b) Sei $x \in X$, dann ist

$$\{y \in X \mid x \sim y\} = \{y \in X \mid \exists g \in G : y = gx\} = \{gx \mid g \in G\} = Gx.$$

Satz 0.6 (Satz von Cayley). Jede Gruppe G (jedes Monoid M) ist isomorph zu einer Untergruppe (einem Untermonoid) von $(Bij(G), id_G, \circ)$ (bzw. $(Abb(G, G), id_G, \circ)$).

Beweis. (Für Gruppen, Rest ist eine Übung) Definiere die Wirkung $\lambda G \times G \to G, (g,h) \mapsto gh$, dann erhalten wir den induzierten Gruppenhomomorphismus $\varphi: G \to \text{Bij}(G)$, wir zeigen φ ist injektiv: Sei $g \in G \setminus \{e\}$, dann gilt $ge = g \neq e \Longrightarrow \text{Wirkung treu, also } \varphi$ ist ein Gruppenmonomorphismus. D.h. G "ist" Untergruppe von Bij(G).

Definition 0.7 (Stabilisator). Sei X eine Links-G-Menge und $x \in X$, dann heißt

$$G_x := \operatorname{Stab}_G(x) := \{ g \in G \mid gx = x \}$$

Stabilisator von x (unter G). Warnung: $G_x \neq G \cdot x$.

Beispiel. Stab $_{S_n}(\{n\})=\{\sigma\in S_n\mid \sigma(n)=n\}\cong S_{n-1}$ mit der üblichen S_n -Wirkung auf $\{1,...,n\}$.

Übung. G-Wirkung auf einer Menge X ist treu

$$\iff \bigcap_{x \in X} \operatorname{Stab}_G(x) = \{e\}$$

Proposition 0.8. Sei X eine links-G-Menge, $x \in X, g \in G$, dann gilt

- (a) $\operatorname{Stab}_G(x) \leq G$ ist eine Untergruppe.
- (b) $\operatorname{Stab}_G(gx) = g \operatorname{Stab}_G(x)g^{-1}$

Beweis.

(a) $e \in \operatorname{Stab}_G(x)$, denn ex = x. Seien $\underbrace{g_1, g_2 \in \operatorname{Stab}_G(x)}_{\text{bedeutet } g_1x = x, g_2x = x}$, zu zeigen ist $g_1^{-1}g_2 \in \operatorname{Stab}_G(x)$

 $\operatorname{Stab}_G(x)$

$$\stackrel{g_1^{-1}}{\Longrightarrow} x = ex = g_1^{-1}g_1x = g^{-1}x$$

Damit gilt $(g_1^{-1} \cdot g_2^{-1})x = g_1^{-1}(g_2x) = g_1^{-1}x = x$

(b) Sei $h \in G$, dann:

$$h \in \operatorname{Stab}_{G}(gx) \iff hgx = gx \overset{g^{-1}}{\iff} g^{-1}hgx = x$$
 $\iff g^{-1}hg \in \operatorname{Stab}_{G}(x) \underset{\operatorname{Konj. mit } g}{\iff} h \in g \operatorname{Stab}_{G}(x)g^{-1}.$

Proposition 0.9 (Bahngleichung). Sei X eine links-G-Menge, $x \in X$, dann gilt:

- $\psi: {}^{G}/_{G_x} \to Gx, hG_x \mapsto hx$ ist wohl-definiert und eine Bijektion.
- Ist G endlich, so folgt $\#G \cdot x = [G:G_x]$.

Beweis.

• ψ injektiv und wohl definiert: Seien $q, h \in G$, dann

$$hx = gx \iff g^{-1}hx = x \iff g^{-1}h \in G_x \le G$$

$$\iff g^{-1}hG_x = G_x \iff hG_x = gG_x$$

- ψ surjektiv nach Definition von $G \cdot x$.
- Aussage über Mächtigkeiten: ψ bijektiv $\implies \#^G\!\!/_{G_x} = \#G \cdot x.$

Bemerkung. Die Abbildung ψ ist ein Homomorphismus von links-G-Mengen (ein Isomorphismus!), G/G und $G \times x \subseteq X$ sind links-G-Mengen und ψ erfüllt:

$$\psi(g \cdot hG_x) = g \cdot \psi(hG_x)$$

(beides ist = $gx \cdot x$)

Definition 0.10. Sei X eine links-G-Menge,

- (a) Man sagt G operiert frei auf $X \iff \forall x \in X : G_x = \{e\}$
- (b) Die Menge der Fixpunkte der G-Wirkung ist

$$X^G := \{ x \in X \mid G_x = G \}$$

Beispiel. $GL_n(K)$ operiert frei auf der Menge der geordneten Basen von K^n .

Korollar 0.11. Sei X eine links-G-Menge. Sei $x_1, ..., x_n$ ein Repräsentantensystem der Bahnen der Länge ≥ 2 . Dann:

(a)
$$X = X^G \sqcup \bigsqcup_{i \in \{1,...,n\}} G \cdot x_i$$

(b)
$$\#X = \#X^G + \sum_{i \in \{1,...,n\}} \underbrace{[G:G_{x_i}]}_{=\#G:x}$$

Beweis. Aus Proposition 5 folgt (a), Lemma 9 gibt (b).

Anwendung. Sei X := G. Sei die G-Wirkung durch Konjugation gegeben, d.h.

$$g \underbrace{\circ}_{\text{Wirk.}} h = ghg^{-1}$$

Die Bahnen unter dieser G-Wirkung heißen Konjugationsklassen. Die Konjugationsklasse zu $h \in G = X$ ist

$$G_h := \{ghg^{-1} \mid g \in G\}$$

Bahnen der Länge 1 sind Fixpunkte unter Konjugation mit allen $g \in G$

$$=\{h\in G\mid \forall g\in G: \underbrace{ghg^{-1}=h}_{gh=hg}\}=:Z(G)\text{ das Zentrum von }G$$

Stabilisator zu $h \in G$ (unter Konjugationswirkung)

$$= \{g \in G \mid ghg^{-1} = h\} = C_G(h)$$
 Zentralisator von h

Aus Korollar 11 ergibt sich nun:

Satz 0.12 (Klassengleichung). Sei G endlich. Ist $g_1, ..., g_n$ ein Repräsentantensystem der Konjugationsklassen der Länge ≥ 2 , so gilt:

$$\# \underbrace{G}_{X} = \# \underbrace{Z(G)}_{X^{G}} + \sum_{i=1}^{n} [G : \underbrace{C_{G}(g_{i})}_{C_{g}}]$$

Definition 0.13. Sei p eine Primzahl, eine Gruppe G heißt p-Gruppe \iff $\#=p^m$ füe ein $m\in\mathbb{N}$

Beispiel.

$$\mathbb{Z}_{p^m} \text{ oder } U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F}_p \right\}$$

Korollar 0.14. Ist G eine p-Gruppe, so gilt p|#Z(G), $(d.h.\ Z(G)$ ist nicht-trivial und also eine p-Gruppe)

Beweis. Seien $g_1, ..., g_n$ wie im Satz 12. Dann gilt: $C_G(g_i) < G$ ist eine echte Untergruppe. (sonst $g_i = Z(G)$, ist ausgeschlossen)

$$\Longrightarrow_{\text{Lagrange}} [G: C_G(g_i)] \text{ teilt } \#G = p^m$$

ist ungleich 1!

$$\implies p|[G:C_G(g_i)], \forall i \in \{1, ..., n\}$$

Klassengleichung modulo p:

$$\underbrace{0}_{\#G} \cong \#Z(G) + \sum_{i=1}^{n} \underbrace{0}_{[G:C_{G}(q_{i})]} \mod p \implies p | \#Z(G).$$

Übung 0.15 (Satz von Cauchy). (?) Sei p eine Primzahl und G endlich, dann gilt:

$$p | \#G \implies \exists g \in G : \operatorname{ord}(g) = p.$$

(\implies #G und # $\exp(G)$ haben dieselben Primteiler)

Idee: Verwende Induktion über #G und die Klassengleichung. In Induktionsschritt 2 Fälle:

- 1. $\exists H < G$ echte Untergruppe mit p | # H
- 2. $\neg \exists H < G$ echte Untergruppe mit p | # H

Im 2. Fall wende Klassengleichung mod p an!

0.2 Permutationsgruppen

Sei $n \in \mathbb{N}$, $S_n = \text{Bij}(\{1,...,n\})$, Notation für $\sigma \in S_n$, d.h. $\sigma : \{1,...,n\} \rightarrow \{1,...,n\}$ bijektiv ist

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Dabei gilt: $(\sigma(1),...,\sigma(n))$ ist eine Permutation von $\{1,...,n\}$, d.h.

$$\#\{\sigma(1),...,\sigma(n)\}=n$$

Korollar 0.16. $\#S_n = n!$

Beweis. (Übung) Betrachte die möglichen "Wertetabellen" für Permutationen.

Definition 0.17. Für $\sigma, \tau \in S_n$ definiere

- (a) $supp(\sigma) = Träger von \sigma, supp(\sigma) := \{i \in \{1, ..., n\} \mid \sigma(i) \neq i\}$
- (b) σ und τ sind disjunkt \iff supp $(\sigma) \cap \text{supp}(\tau) = \emptyset$

Bemerkung. supp $(\sigma) = \emptyset \iff 0 = id$

Lemma 0.18 (Andere Interpretation des Trägers). Sei $\sigma \in S_n$, dann gilt für die Wirkung von $\langle \sigma \rangle$: supp $(\sigma) = Vereinigung der Bahnen von <math>\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 .

Beweis.

- " \subseteq ": Sei $i \in \text{supp}(\sigma) \implies \sigma(i) \neq i \implies \{i, \sigma(i), \sigma^2(i), ..., \sigma^m(i), ...\}$ ist Bahn von $\langle \sigma \rangle = \{\sigma^j \mid j \in \mathbb{N}_0\} = \{\text{id}, \sigma, ..., \sigma^{r-1}\}$ der Länge ≥ 2 . für $r = \text{ord}(\sigma)$.
- "\(\subseteq\)": Sei $i \notin \text{supp}(\sigma) \implies \sigma(i) = i \implies \sigma^j(i) = i, \forall j \in \mathbb{N} \implies \text{Bahn}$ von i unter $\langle \sigma \rangle$ ist 1-elementig.

Korollar 0.19. Für $\sigma \in S_n$ gelten:

- (a) $i \in \text{supp}(\sigma) \iff \sigma(i) \in \text{supp}(\sigma)$
- (b) Auf jeder $\langle \sigma \rangle$ -Bahn (durch $i \in \{1,...,n\}$) wirkt σ als "zyklische Permutation", d.h.

Beweis. (a)

$$i \in \operatorname{supp}(\sigma) \implies \sigma(i) \neq i \underset{\sigma \text{ anwenden}}{\Longrightarrow} \sigma(\sigma(i)) \neq \sigma(i) \implies \sigma(i) \in \operatorname{supp}(\sigma)$$

Falls
$$\sigma(i) \in \operatorname{supp}(\sigma)$$
, so gilt $\sigma(\sigma(i)) \neq \sigma(i) \underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} \sigma(i) \neq i$

(b) Sei r die Länge der Bahn durch i unter $\langle \sigma \rangle$. Dann sind $i_{j+1} := \sigma^j(i), j = 0, ..., r-1$ paarweise verschieden. Sonst $\exists 0 \leq j_1 < j_2 \leq r-1$ mit $\sigma^{j_1}(i) = \sigma^{j_2}(i)$

$$\underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} i = \sigma^{j_2 - j_1}(i) \quad (*)$$

 \implies Bahn durch ihat höchstens $j_2 - j_1 < r$ Elemente, die Bahn ist wegen (*)

$$= \{i, \sigma(i), ..., \sigma^{j_2 - j_1}(i)\}$$

Und nun: Wiederholtes Anwenden von σ gibt den Zykel

$$i_1 \longmapsto i_2 \longmapsto \cdots \longmapsto i_r$$

Lemma 0.20. Sind $\sigma, \tau \in S_n$ disjunkt, so gilt $\sigma \tau = \tau \sigma$.

Beweis. Zeige $\sigma\circ\tau=\tau\circ\sigma$ als Abbildungen $\{1,...,n\}\to\{1,...,n\},$ sei $i\in\{1,...,n\}$

- Fall 1: $i \in \text{supp}(\sigma) \implies \sigma(i) \in \text{supp}(\sigma) \implies i, \sigma(i) \notin \text{supp}(\tau)$. Also $\tau(i) = i, \tau(\sigma(i)) = \sigma(i)$
- Fall 2: $i \in \text{supp}(\tau)$ analog zu Fall 1.
- Fall 3: $i \notin \operatorname{supp}(\sigma) \cup \operatorname{supp}(\tau) \implies \sigma(i) = i = \tau(i)$.

Also
$$\sigma(\tau(i)) = \sigma(i) = i = \tau(i) = \tau(\sigma(i)).$$

(Folge: σ, τ disjunkt $\implies \operatorname{ord}(\sigma\tau) = \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau))$)

Definition 0.21. Seien $i_1,...,i_r \in \{1,...,n\}$ paarweise verschieden. Der r-Zykel

$$(i_1 \ i_2 \ \cdots \ i_r)(j) = \begin{cases} j & j \notin \{i_1, ..., i_r\} \\ i_{s+1} & j = i_s \ (s \in \{1, ..., n\}) \\ i_1 & j = i_r \end{cases}$$

2-Zykel heißen Transposition. Konvention: (·) := $\mathrm{id}_{\{1,\dots,n\}}$ (leerer Zykel). Beachte:

- (i) $(i) = (\cdot)$ für $i \in \{1, ..., n\}$
- (ii) supp $(i_1 \ i_2 \ \cdots \ i_r) = \begin{cases} \{i_1, ..., i_r\} & r \geq 2 \\ \emptyset & r = 1 \end{cases}$
- (iii) $(i_1 \ i_2 \ \cdots \ i_r) = (i_r \ i_1 \ i_2 \ \cdots i_{r-1})$ (Notation ist nicht eindeutig, können Einträge zyklisch weiterschieben.) z.B.

(iv) $ord(i_1 \cdots i_r) = r$, z.B. $ord(1\ 2) = 2$

Satz 0.22 (Zykeldarstellung). Sei $\sigma \in S_n$, seien $I_1, ..., I_t \subseteq \{1, ..., n\}$. Die verschiedenen Bahnen von $\langle \sigma \rangle$ der Länge ≥ 2 , dann:

- (a) $\exists ! \ Zykel \ \sigma_j \ der \ L\"{a}nge \ \#I_j \ mit \ \mathrm{supp}(\sigma_j) = I_j, \ so \ dass \ \sigma_j|_{I_i} = \sigma|_{I_i}$
- (b) $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ und die σ_i kommutieren paarweise.
- (c) Die Darstellung in (b) ist bis auf Permutation der Faktoren eindeutig.
- (d) Es gilt mit der Notation aus (b):

$$\operatorname{ord}(\sigma) = \operatorname{kgV}(\#I_1, ..., \#I_t)$$