This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Currently Amended) A method of detecting and locating noise sources each emitting a respective signal S_j with j = 1 to M, detection being provided by means of acoustic wave or vibration sensors each delivering a respective time-varying electrical signal s_i with i lying in the range 1 to N, the method eonsisting comprising:

- in taking the time-varying electrical signals delivered by the sensors, each signal $s_i(t)$ delivered by a sensor being the sum of the signals S_j emitted by the noise sources;
- in amplifying and filtering the time-varying electrical signals as taken;
- in digitizing the electrical signals;
- in calculating the functional f, such that:

$$f(n_1, \ldots, n_j, \ldots, n_M) = \frac{\det(\langle T_k(\omega), T_1^*(\omega) \rangle k, l = 0 \text{ to } M)}{\det(\langle T_k(\omega), T_1^*(\omega) \rangle k, l = 1 \text{ to } M)}$$

with

$$(T_k(\omega))_i = e^{\int \omega \frac{\langle n_k, c_i \rangle}{c}}$$

<.,.> being the scalar product;

.. c_i being the vector constructed between the center of gravity of the sensors and the position of sensor i;

.. \mathbf{n}_j being the unit vector in the direction defined by the center of gravity of the senors and source j;

.. with $T_0 = s$; and

.. with c = the speed of sound; and

in minimizing the functional f relative to the vectors \mathbf{n}_j for j = 1 to M in such a manner as to determine the directions \mathbf{n}_j of the noise sources, wherein ω is angular frequency.

 $\leq T_k(\omega)$, $T_1^*(\omega) >$ is the scalar product between $T_k(\omega)$, and $T_1^*(\omega)$, J corresponds to the imaginary number in mathematics.

Claim 2 (Currently Amended) A method according to claim 1, wherein, in order to minimize the functional f when the noise sources are narrow band sources, the method eonsists comprises:

- in calculating the Fourier transforms of the signals $s_i(t)$ delivered by the sensors;
- in using the expressions for the determinants of the matrices of general term:

$$< T_{k}(\omega), T_{1}^{\star}(\omega) >$$

to calculate the functional:

$$f_1 = \sum_{\mathbf{k}} \|B(\omega)_{\mathbf{k}}\|^2$$

and after selecting a determined number of noise sources, in minimizing the functional f_1 to determine the directions n_j of the selected noise sources, wherein B is the noise vector which depends on ω .

Claim 3 (Currently Amended) A detection method according to claim 1, wherein, in order to minimize the functional f when the noise sources are broad band, the method consists comprises:

- ^a in calculating the Fourier transforms of the signals s_i(t) delivered by the sensors;
- " in using the expressions of the determinants of the matrices of general term:

$$< T_k(\omega), T_1^*(\omega)>$$

to calculate the functional:

$$f_2 = \int ||B(\omega)||^2 d\omega$$

3

and after selecting a determined number of noise sources, in minimizing the functional f_2 to determine the directions \mathbf{n}_j of the selected noise sources, wherein $d\omega$ is the derived term in the integral mathematics formulation.

LOM-0034

Claim 4 (Currently Amended) A detection method according to claim 1, wherein, in order to minimize the functional f, the method eonsists comprises:

in simplify simplifying the expression for the functional f to minimize the following functional f_3 :

$$f_3 = \int \det(\langle T_k, T_1^* \rangle) k$$
, $l = 0$ to M) dw

- in calculating the cross-correlation functions γ_{ij} of the signals s_i and s_j ; and
- after selecting a determined number of noise sources, in minimizing the functional f₃, wherein

$$\leq T_k$$
, $T_1^* > is$ the scalar product between T_k and T_1^* .

Claim 5 (Currently Amended) A detection method according to claim 1, wherein, after the minimization operation, the method eonsists in comprises calculating the source vector:

$$S(\omega) = (^{\mathsf{t}}T^{*}.T)^{-1}.^{\mathsf{t}}T^{*}.S(\omega)$$

in order to discover the characteristics of the noise sources, wherein

^tT* is the conjugate transposed matrix of T and T is a matrix,

S (ω) is the vector of S which depends on ω .