Analyzing How Protein Interaction Networks Improve Classification Performance in Gene Expression Data Analysis

Adrin Jalali Supervised by: Nico Pfeifer

MPI for Informatics

July 9, 2013

Overview

- Introduction and data
- Formulate the approach incorporate PPI-Network in SVM
- Results
- Work in progress graph kernels

Microarray Gene Expression

en.wikipedia.org

van 't Veer Breast-Cancer Data

- 1 Input: Gene expression data
- Output: Prognosis (Poor vs. Good), Metastases
- Goal: Classify and find important genes
- Issue: Hard to classify due to huge number of features (genes) compared to number of samples (~ 22000 ≫ 98)

Yeast Protein Interaction Network

Nature Reviews | Genetics

The colour of a node indicates the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal, orange = slow growth, yellow = unknown)

A. Barabsi, Z. Oltvai, Nature Reviews Genetics, (2004) JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 6, 2012 Mary Ann Liebert, Inc. Pp. 694-709 DOI: 10.1089/cmb.2012.0065

> Network-Induced Classification Kernels for Gene Expression Profile Analysis

OFER LAVI, 1,3 GIDEON DROR,2 and RON SHAMIR1

ABSTRACT

Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information plontly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the exact primary, or we form an extension of the control of the c

Key word: algorithms.

It's shown:

- Co-expressed genes tend to be close in the PPI-Network
- Exploit this fact to modify the SVM objective function - called NICK
- What can be done:
 - Reverse engineer the learned machine to extract important genes after using the network information.

NICK

1. SVM modified objective function

$$\min_{\mathbf{w}, w_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \beta \sum_{(j,k) \in E} (w_j - w_k)^2 \right\}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : (\mathbf{wx}_i + w_0)y_i \geq 1$$

3. Dual to Primal

$$\mathbf{w} = (\mathbf{I} + \beta \mathbf{B})^{-1} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

2. Dual Problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^\mathsf{T} \mathbf{L}) (\mathbf{L}^\mathsf{T} \mathbf{x}_j) \right\}$$

$$\mathbf{L}\mathbf{L}^T = (\mathbf{I} + \beta \mathbf{B})^{-1}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \ge 0$$

Laplacian matrix:

$$B = D - A$$

NICK Performance Summary

Ofer Lavi, et.al., Journal of Computational Biology, (2012)

Verify What Has To Be Done

- 1 To be done: extract important genes.
- 2 There is no gold standard for it.
- 3 Synthesized data for the purpose of method verification.

Synthesize Data

- A random graph (PPI-Network)
- Signal nodes (genes):

$$f(n) = \begin{cases} N(-\mu, 1) & \text{if } n \text{ is in class } 1\\ N(\mu, 1) & \text{if } n \text{ is in class } 2 \end{cases}$$

3 Random nodes (non-informative genes):

$$f(n) = N(0,1)$$

4 Pathway: 2, 3, or 4 connected signal nodes.

Synthesized Data

Synthesized Data

Synthesized Data

Blue: random gene, Orange: Signal node being a member of a pathway of signal nodes, Yellow: A lonely signal node

Extract Important Genes

- Solve SVM problem for original and transformed data.
- Calculate w for both models.
- Compute for each pair of nodes, for each model:

$$Score(i,j) = \frac{|w_i| + |w_j|}{2} \times e^{max(d_G(i,j),1)}$$

• Report pairs with highest scores for both trained models.

Synthesized Data Easy Scenario

	Transformed			
	X196	X196		
	X233	X233		
	X196	X133		
	X133	X133		
	X133	X116		
	X116	X116		
	X95	X95		
	X240	X240		
	X39	X39		
	X240	X243		
)	X59	X59		
	X106	X106		
	X243	X243		
	X106	X168		
	X114	X114		
	X168	X168		
	X243	X150		
	X56	X56		
	X39	X47		
	X298	X298		
	X150	X150		
	X247	X247		
	X125	X125		
	X83	X83		

Synthesized Data Medium Scenario

	Transformed			
	X233	X233		
	X190	X190		
	X112	X112		
	X240	X240		
	X190	X272		
	X240	X243		
	X86	X86		
	X243	X243		
	X243	X150		
	X190	X127		
	X150	X150		
	X272	X272		
	X246	X246		
∍	X298	X298		
	X106	X106		
	X125	X125		
	X35	X35		
	X125	X82		
	X247	X247		
	X272	X69		
	X272	X22		
	X82	X82		
	X100	X100		
	X257	X257		

Synthesized Data Hard Scenario

_		
	Transf	ormed
	X233	X233
	X190	X190
	X112	X112
	X190	X272
	X86	X86
	X190	X127
	X272	X272
	X272	X205
	X205	X205
	X146	X146
	X146	X68
	X68	X68
	X298	X298
⋑	X272	X22
	X90	X90
	X127	X127
	X100	X100
	X272	X69
	X297	X297
	X72	X72
	X127	X148
	X155	X155
	X247	X247
	X196	X196

van 't Veer

Original			
X85453	X85453		
X85453	X92140		
X6605	X6605		
X56886	X56886		
X10640	X10640		
X8817 X8817			
X56894	6894 X56894		
X6605	X332		
X5733	X5733		
X57758	X57758		
X7532	X7532		
X51	X51		
X7566	X7566		
X3267	X3267		
X89953	X89953		
X5713	X5713		
X5193	X5193		
X5365	X5365		
X10874	X10874		
X5982	X5982		

wc p-value (paired):	0.006
AUC (Original):	72.9
AUC (Transformed):	73.6
`	

Transformed

X9917	X9917
X84279	X84279
X197370	X197370
X51143	X51143
X58475	X58475
X55585	X55585
X25949	X25949
X54892	X54892
X126695	X126695
X57168	X57168
X10456	X10456
X148223	X148223
X9742	X9742
X253558	X253558
X342527	X342527
X10175	X10175
X83930	X83930
X57035	X57035
X145482	X145482
X57465	X57465

van 't Veer

Original

\(\(\alpha\)	1/0=1=0	
X85453	X85453	
X85453	X92140	
X6605	X6605	
X56886	X56886	
X10640	X10640	
X8817	X8817	
X56894	X56894	
X6605	X332	
X5733	X5733	
X57758	X57758	
X7532	X7532	
X51	X51	
X7566	X7566	
X3267	X3267	
X89953	X89953	
X5713	X5713	
X5193	X5193	
X5365	X5365	
X10874	X10874	
X5982	X5982	

Node	Degree
X85453	12
X6605	98
X56886	26
X10640	16
X8817	152
X56894	28
X5733	150
X57758	8
X7532	86
X51	172
X7566	16
X3267	56
X89953	4
X5713	126
X5193	32
X5365	70
X10874	132
X5982	172
X92140	20
X332	328

Node	Degree
X9917	0
X84279	0
X197370	0
X51143	0
X58475	0
X55585	0
X25949	0
X54892	0
X126695	0
X57168	0
X10456	0
X148223	0
X9742	0
X253558	0
X342527	0
X10175	0

X83930

X57035

X145482

X57465

0

0

0

0

Trans	Transformed		
X9917	X9917		
X84279	X84279		
X197370	X197370		
X51143	X51143		
X58475	X58475		
X55585	X55585		
X25949	X25949		
X54892	X54892		
X126695	X126695		
X57168	X57168		
X10456	X10456		
X148223	X148223		
X9742	X9742		
X253558	X253558		
X342527	X342527		
X10175	X10175		
X83930	X83930		
X57035	X57035		
X145482	X145482		
X57465	X57465		

wc p-value (paired):	0.006
AUC (Original):	72.9
AUC (Transformed):	73.6

 Estimate gene expression value probability distributions for samples of class A.

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - Extract abnormal genes according to above estimated distributions.
 - 2 Extract the part of PPI network induced by extracted genes (almost)

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - 1 Extract abnormal genes according to above estimated distributions.
 - 2 Extract the part of PPI network induced by extracted genes (almost)
- 3 Use a graph kernel for labeled graphs to classify extracted graphs.

SVM Dual Problem

$$\begin{aligned} \max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i.\mathbf{x}_j \rangle \right\} \\ \text{s.t.:} \\ \forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0 \end{aligned}$$

$$i=1$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \geq 0$$

SVM Dual Problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \phi(\mathbf{x}_{i}).\phi(\mathbf{x}_{j}) \rangle \right\}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \geq 0$$

SVM Dual Problem

$$\begin{aligned} \max_{\alpha \mathbf{x}} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \right\} \\ \text{s.t.:} \\ \forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0 \\ \forall i \in \{1, \cdots, n\} : \alpha_i \geq 0 \end{aligned}$$

- Random Walks (A^k : number of walks of length k)
- Sub-Tree Kernels
- Shortest Paths Kernels (1-shortest path, k-shortest paths)
- Graphlet Kernels (Isomorphism proved for $n = k + 1, n \le 11$)
- Laplacian Matrix Eigenvalues (Isomorph(G_1, G_2) $\iff \exists P : B(G_1) = P^t B(G_2)P$), number of connected components = number of $\lambda_i = 0$

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - 1 Extract abnormal genes according to above estimated distributions.
 - 2 Extract the part of PPI network induced by extracted genes (almost)
- 3 Use a graph kernel for labeled graphs to classify extracted graphs.

Weighted Idea

Weighted Idea

Class B member

Next ...

- Same structured graphs for each sample even same edge weights.
- Most kernels:
 - Detect structural differences on graphs.
 - Assume nodes are not labeled.
- Design/Find/Change a kernel for our graphs.
- Reverse engineer the kernel on support vectors to detect common substructures on them.

Acknowledgment

- Thomas Lengauer
- Nico Pfeifer
- Sarvesh Nimkubh
- Nora Speicher
- Anna Feldmann

Thank You! Questions?