শ্রেণি নবম, বিষয়ঃ গণিত

অভিজ্ঞতার শিরোনামঃ অনুক্রম ও ধারা

- 1. (i) একটি গুনোভর ধারার 4 তম পদ $\frac{8}{9}$ এবং 7 তম পদ $\frac{64}{243}$.
- (\it{ii}) একটি সমান্তর ধারার ১ম 10 পদের সমষ্টি 155 এবং ১ম 20 পদের সমষ্টি 610.
- ক) 1 + 2 + 3 + ··· + 50 = কত? 1
- খ) গুনোত্তর ধারাটির 10 তম পদ নির্ণয় কর।
- গ) সমান্তর ধারাটির প্রথম 13পদের সমষ্টি নির্ণয় কর। ১ নং প্রশ্নের সমাধানঃ
- **(ক)** দেওয়া আছে, 1 + 2 + 3 + · · · · · · · · · + 50 এখানে প্রথম পদ, a=1 সাধারণ অন্তর, d=2-1=1পদসংখ্যা, n=50
- ধারাটির সমষ্টি, $S_n = \frac{n}{2} \{2a + (n-1)d\}$
- $\exists 1, S_{50} = \frac{50}{2} \{ 2 \times 1 + (50 1) \times 1 \} = 25 \times \{ 2 + 1 + (50 1) \times 1 \}$
- 49} = 25 × 51 = 1275
- **অথবা,** দেওয়া আছে, $1+2+3+\cdots+50$
- প্রথম 50 টি স্বাভাবিক সংখ্যার সমষ্টি= $\frac{n(n+1)}{2}$ = $\frac{50(50+1)}{2}$ =
- $25 \times 51 = 1275$
- (খ) আমরা জানি, গুণোত্তর ধারার প্রথম পদ=a, সাধারণ অনুপাত=rহলে, n তম পদ বা সাধারন পদ, $a_n=ar^{n-1}$ দেওয়া আছে,
- একটি গুণোত্তর ধারার 4 তম পদ, $a_4=ar^{4-1}=ar^3=rac{8}{9}\cdots\cdots(i)$
 - 7 তম পদ, $a_7 = ar^{7-1} = ar^6 = \frac{64}{243}$ \cdots (ii)
- সমীকরণ(ii) নং কে(i) নং দ্বারা ভাগ করে পাই, $\frac{ar^6}{ar^3} = \frac{\overline{243}}{8}$
- বা, $r^3 = \frac{64}{243} \times \frac{9}{8}$ বা, $r^3 = \frac{8}{27}$ বা, $r^3 = \left(\frac{2}{3}\right)^3$: r =
- এখন r এর মান (i) নং এ বসিয়ে পাই, $a imes \left(\frac{2}{3}\right)^3 = \frac{8}{9}$
- $a \times \frac{8}{27} = \frac{8}{9} a$, $a = \frac{8}{9} \times \frac{27}{8} : a = 3$
- 10 তম পদ, $a_{10} = ar^{10-1} = ar^9 = 3 \times \left(\frac{2}{3}\right)^9 =$
- $3 \times \frac{2^9}{3^9} = \frac{512}{6561}$
- (গ) আমরা জানি, সমান্তর ধারার প্রথম পদ=a, সাধারণ অন্তর=d
- n তম পদের সমষ্টি, $S_n = \frac{n}{2}\{2a + (n-1)d\}$
- দেওয়া আছে, সমান্তর ধারার প্রথম10টি পদের সমষ্টি,
- $S_{10} = \frac{10}{2} \{2a + (10 1)d\} = 5\{2a + 9d\} = 155$
- $\therefore 2a + 9d = 31 \cdots (i)$
- এবং প্রথম 20 টি পদের সমষ্টি.
- $S_{20} = \frac{20}{2} \{ 2a + (20 1)d \} = 10\{ 2a + 19d \} = 610$
- $\therefore 2a + 19d = 61 \cdots (ii)$
- সমীকরণ(ii) থেকে (i)নং বিয়োগ করে,
- 2a + 19d 2a 9d = 61 31
- বা, 10d = 30
- d = 3

এখন d এর মান (i) নং এ বসিয়ে পাই,

$$2a + 9 \times 3 = 31$$

বা,
$$2a = 31 - 27$$

বা,
$$a = \frac{4}{3}$$

3

3

প্রথম 13টি পদের সমষ্টি, $S_{13} = \frac{13}{2} \{2 \times 2 + (13 - 1) \times 13\}$

$$3$$
} = $\frac{13}{2}$ × 40 = 13 × 20 = 260

- ${f 2}.\,\, 54+x+y+z+\ldots$ একটি গুণোন্তর ধারা এবং একটি সমান্তর ধারার ১ম n সংখ্যক পদের সমষ্টি $rac{n(3n-1)}{2}$
- ক) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$,.... অনুক্রমটির সাধারণ পদ নির্ণয় কর। 1
- খ) গুণোত্তর ধারার 8 তম পদ $rac{2}{81}$ হলে, x, y এবং z এর মান নির্ণয় কর3

3

- গ) সমান্তর ধারাটির কত তম পদ 118 তা নির্ণয় কর।
- 2 নং প্রশ্নের সমাধানঃ
- (ক) প্রদত্ত অনুক্রমঃ $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$,

জোড় পদ গুলোতে ঋণাত্মক চিহ্ন (-) থাকলে $(-1)^{n-1}$ বা $(-1)^{n+1}$, দ্বারা গুণ করতে হয়।

দেওয়া আছে,

$$n=1$$
 হলে ১ম পদ = $\frac{1}{2}=(-1)^{n+1} imes \frac{1}{1+1}$
 $n=2$ হলে ২য় পদ = $-\frac{2}{3}=(-1)^{2+1} imes \frac{2}{2+1}$
 $n=3$ হলে ৩য় পদ = $\frac{3}{2}=(-1)^{3+1} imes \frac{3}{2}$

$$n=3$$
 হলে ৩য় পদ= $\frac{3}{4}=(-1)^{3+1} imes \frac{3}{3+1}$

$$n=4$$
 হলে ৪র্থ পদ= $-\frac{4}{5}=(-1)^{4+1} imes rac{4}{4+1}$

- n তম পদ= $(-1)^{n+1} \times \frac{n}{n+1}$; $n \in \mathbb{N}$
- \therefore অনুক্রমটির সাধারণ পদ, $a_n=(-1)^{n+1} imesrac{n}{n+1}$
- (খ) দেওয়া আছে,
- $54+x+y+z+\cdots$ একটি গুণোত্তর ধারা আমরা জানি, গুণোত্তর ধারার প্রথম পদ=a=54এবং সাধারন অনুপাত=r হলে,
- n তম পদ, $a_n = ar^{n-1}$
- 8 তম পদ, $a_8 = ar^{8-1} = ar^7 = \frac{2}{81}$
- বা, $54 \times r^7 = \frac{2}{81}$
- \therefore দ্বিতীয় পদ, $x = ar = 54 \times \frac{1}{3} = 18$
- \therefore তৃতীয় পদ, $y = ar^2 = 54 \times \left(\frac{1}{3}\right)^2 = 54 \times \frac{1}{9} = 6$
- : চতুর্থ পদ, $z = ar^3 = 54 \times \left(\frac{1}{3}\right)^3 = 54 \times \frac{1}{27} = 2$
- (গ) দেওয়া আছে,
- একটি সমান্তর ধারার ১ম n সংখ্যক পদের সমষ্টি $rac{n(3n-1)}{2}$

- 3. একটি সমান্তর ধারার প্রথম, দ্বিতীয় ও 10তম পদ যথাক্রমে একটি গুণোত্তর ধারার প্রথম, চতুর্থ ও 7তম পদের সমান।
- ক) সমান্তর ধারার প্রথম পদ $oldsymbol{a}$, সাধারণ অন্তর $oldsymbol{d}$ এবং গুণোত্তর ধারার সাধারণ অনুপাত $oldsymbol{r}$ হলে, ধারা দুটির সমন্বয়ে

দুটি সমীকরণ গঠন কর।

- খ) সাধারণ অনুপাত $m{r}$ এর মান নির্ণয় কর।
- গ) গুণোত্তর ধারাটির $oldsymbol{10}$ তম পদ $oldsymbol{5120}$ হলে, $oldsymbol{a}$ ও $oldsymbol{d}$ এর মান নির্ণয় কর।

3 নং প্রশ্নের সমাধানঃ

(ক)

সমান্তর ধারার ক্ষেত্রে, প্রথম পদ=a, সাধারণ অন্তর= n তমপদ, $a_n = a + (n-1)d$ ২য় পদ, $a_2 = a + (2-1)d = a + d$ 10 তম পদ, $a_{10} = a + (10 - 1)d = a + 9d$ গুণোত্তর ধারার ক্ষেত্রে, প্রথম পদ=a, সাধারণ অনুপাত=rn তমপদ= ar^{n-1} 4র্থ পদ $= ar^{4-1} = ar^3$ 7ম পদ $= ar^{7-1} = ar^6$ শৰ্তমতে, $a + d = ar^3 \cdots (i)$ $a + 9d = ar^6 \cdots (ii)$

(খ) 'ক' থেকে পাই, $a + d = ar^3 \cdots (i)$ $a + 9d = ar^6 \cdots (ii)$ (i) নং থেকে, $d = ar^3 - a = a(r^3 - 1)$ d এর মান (ii) নং এ বসিয়ে পাই, $a+9a(r^3-1)=ar^6$ $4, 9a(r^3 - 1) = ar^6 - a$ $\exists 1, \, a(r^6 - 1) = 9a(r^3 - 1)$ বা, $a(r^3-1)(r^3+1)=9a(r^3-1)$

বা,
$$(r^3+1)=\frac{9(r^3-1)}{(r^3-1)}$$
 [যেহেতু $r\neq 1$]
বা, $r^3+1=9$
বা, $r^3=9-1=8=2^3$
 $\therefore r=2$
সাধারণ অনুপাত $r=2$ (Ans.)

দেওয়া আছে, গুণোত্তর ধারার 10 তম পদ= 5120 'খ' থেকে পাই সাধারণ অনুপাত, r=2

এখন 10 তম পদ $=ar^{10-1}$

বা,
$$ar^9 = 5120$$

বা,
$$a \times 2^9 = 5120$$

বা,
$$a = \frac{5120}{512}$$

$$\therefore a = 10$$

'ক' থেকে পাই,
$$a+d=ar^3$$

বা,
$$10 + d = 10 \times 2^3$$

$$d, d = 80 - 10 = 70$$

$$d = 70$$

1

3

 $4.\,$ (\emph{i}) একটি সমান্তর ধারার \emph{m} তম পদ \emph{m}^2 এবং \emph{n} তম পদ \emph{n}^2 . $(ii) \sum_{k=1}^{n} (3k+2) = 1105$

ক)
$$a=4, r=rac{1}{2}$$
 হলে $S_{\infty}=$ কত?

খ) ধারাটির
$$(m+n)$$
 তম পদ নির্ণয় কর। 3

1

3

গ) (
$$ii$$
) নং থেকে n এর মান নির্ণয় কর।

4 নং প্রশ্নের সমাধানঃ

(ক) দেওয়া আছে, $a=4, r=\frac{1}{2}$

গুণোত্তর ধারার অসীমতক সমষ্টি, $S_{\infty}=rac{a}{1-r}=rac{4}{1-rac{1}{r}}$ $= \frac{4}{1} = 4 \times \frac{2}{1} = 8$

(খ) ধরি, সমান্তর ধারার প্রথম পদ =a এবং সাধারণ অন্তর =dআমরা জানি, সমান্তর ধারার m তম পদ=a+(m-1)d

$$\therefore a + (m-1)d = m^2 \cdots \cdots (i)$$

সমান্তর ধারার n তম পদ= a+(n-1)d

$$\therefore a + (n-1)d = n^2 \cdots (ii)$$

(i)নং থেকে (ii)নং বিয়োগ করে পাই,

$$a + (m-1)d - a - (n-1)d = m^2 - n^2$$

বা,
$$(m-1-n+1)d = (m+n)(m-n)$$

বা,
$$(m-n)d = (m+n)(m-n)$$

বা,
$$d = \frac{(m+n)(m-n)}{(m-n)} = m + n$$

$$\therefore (m+n)$$
 তমপদ = $a+(m+n-1)d=a+$

$$(m-1)d+nd$$

$$= m^2 + n \times (m+n) [\because a + (m-1)d = m^2]$$

$$= m^2 + mn + n^2$$

(গ) দেওয়া আছে, $\sum_{k=1}^{n} (3k+2) = 1105$ এখানে, (3k+2) তে $k=1,2,3,\ldots n$ বসিয়ে পাই, (3.1 + 2) + (3.2 + 2) + (3.3 + 2) + ... + (3.n + 2) = 1105

বা,
$$3(1+2+3+....n)+2n=1105$$
বা, $3\times\frac{n}{2}\{2.1+(n-1).1\}+2n=1105$
[$S_n=\frac{n}{2}\{2a+(n-1)d\}$ সূত্র প্রয়োগ করে]
বা, $3\times\frac{n}{2}\{2+n-1\}+2n=1105$
বা, $3\times\frac{n}{2}(n+1)+2n=1105$
বা, $3.\frac{n}{2}(n+1)+2n=1105$
বা, $3.\frac{n}{2}(n+1)+2n=1105$
বা, $3(n^2+n)+4n=2210$ [উপয়পক্ষকে 2 দ্বারা গুণ করে]
বা, $3n^2+3n+4n=2210$ বা, $3n^2+7n-2210=0$
বা, $3n^2-78n+85n-2210=0$
বা, $3n(n-26)+85(n-26)=0$
বা, $(n-26)(3n+85)=0$
 $\therefore n-26=0$
 $\therefore n$

অভিজ্ঞতার শিরোনামঃ লগারিদিমের ধারণা ও প্রয়োগ

1. (i)
$$L = \frac{x^a}{x^b}$$
, $M = \frac{x^b}{x^c}$, $N = \frac{x^c}{x^a}$
(ii) $A = 2\sqrt[3]{343} + 2\sqrt[5]{243} - 12\sqrt[6]{64}$

ক) যদি
$$\log_x\left(\frac{1}{49}\right)=\ -2$$
 হয়, তবে $x=?$

খ) প্রমাণ কর যে,
$$\sqrt[ab]{L} \times \sqrt[bc]{M} \times \sqrt[ca]{N} = 1.$$

1 নং প্রশ্নের সমাধানঃ

 \therefore n= 26

(ক) দেওয়া আছে,
$$\log_x\left(\frac{1}{49}\right) = -2$$

$$41, x^{-2} = \frac{1}{49}$$

$$41, \frac{1}{x^2} = \frac{1}{49}$$

বা, $x=\sqrt{49}$ [ঋণাত্মক মান বর্জন করে; কারণ ভিত্তি x কখনো ঋণাত্মক হতে পারে না।]

$$\therefore x = 7 \text{ (Ans.)}$$

=ডানপক্ষ (প্রমাণিত)

(খ) দেওয়া আছে,
$$L=\frac{x^a}{x^b}$$
 , $M=\frac{x^b}{x^c}$, $N=\frac{x^c}{x^a}$

বামপক্ষ =
$${}^{ab}\sqrt{L}$$
 × ${}^{bc}\sqrt{M}$ × ${}^{ca}\sqrt{N}$ = ${}^{ab}\sqrt{\frac{x^a}{x^b}}$ × ${}^{bc}\sqrt{\frac{x^b}{x^c}}$ ×

$$ca \sqrt{\frac{x^{c}}{x^{a}}}$$

$$= (\frac{x^{a}}{x^{b}})^{\frac{1}{ab}} \times (\frac{x^{b}}{x^{c}})^{\frac{1}{bc}} \times (\frac{x^{c}}{x^{a}})^{\frac{1}{ca}}$$

$$= x \frac{a-b}{ab} \times x \frac{b-c}{bc} \times x \frac{c-a}{ca} = x \frac{a-b}{ab} + \frac{b-c}{bc} + \frac{c-a}{ca}$$

$$= x \frac{c(a-b)+a(b-c)+b(c-a)}{abc}$$

$$= x \frac{ca-bc+ab-ca+bc-ab}{abc}$$

$$= x \frac{0}{abc}$$

$$= x^{0}$$

$$= x^{0}$$

$$= 1$$

(গ) দেওয়া আছে,

$$A = 2\sqrt[3]{343} + 2\sqrt[5]{243} - 12\sqrt[6]{64}$$

$$= 2\sqrt[3]{7^3} + 2\sqrt[5]{3^5} - 12\sqrt[6]{2^6}$$

$$= 2(7^3)^{\frac{1}{3}} + 2(3^5)^{\frac{1}{5}} - 12(2^6)^{\frac{1}{6}}$$

$$= 2 \times 7^{\frac{3}{3}} + 2 \times 3^{\frac{5}{5}} - 12 \times 2^{\frac{6}{6}}$$

$$= 2 \times 7 + 2 \times 3 - 12 \times 2$$

$$= 14 + 6 - 24$$

$$= 20 - 24$$

- $2. (i) \quad A = x^{\log_b y}$ এবং $B = y^{\log_b x}$
 - (ii) একটি গরম পানির পাম্প থেকে 50 ডেসিবেলের শব্দ নির্গত হচ্ছে। অন্যদিকে একটি সেচ পাম্প থেকে 62 ডেসিবেলের শব্দ

ক)
$$\log_{2\sqrt{5}} 400$$
 এর মান কত?

3 খ) $(m{i})$ নং হতে, প্রমাণ কর যে, $m{A}=m{B}$

1

গ) সেচ পাম্পের শব্দের তীব্রতা গরম পানির পাম্পের শব্দের তীব্রতা থেকে কতগুণ বেশি? 3

2 নং প্রশ্নের সমাধানঃ

1

(ক) ধরি,
$$\log_{2\sqrt{5}} 400 = x$$

বা,
$$\left(2\sqrt{5}\right)^x = 400$$

বা,
$$\left(2\sqrt{5}\right)^x = 16 \times 25$$

বা,
$$\left(2\sqrt{5}\right)^x = 2^4 \times (5)^4$$

বা,
$$(2\sqrt{5})^x = (2\sqrt{5})^4$$

∴ $\chi=4$ [∵উভয় পক্ষের ভিত্তি সমান]

$$\therefore$$
 নির্ণেয় মান $\log_{2\sqrt{5}} 400 = 4$

(খ) ধরি,
$$\log_b y = m$$
 $\therefore b^m = y \cdots \cdots (i)$ এবং $\log_b x = n$ $\therefore b^m = x \cdots \cdots (ii)$

(i) এর উভয় পক্ষে n এর ঘাত নিয়ে পাই,

$$(b^m)^n = y^n : b^{mn} = y^n \cdots (iii)$$

(ii) এর উভয় পক্ষে m এর ঘাত নিয়ে পাই,

$$(b^n)^m = x^m : b^{mn} = x^m \cdots (iv)$$

সমীকরণ (iii) এবং (iv) তুলনা করে পাই,

$$x^m = v^n$$

 $\therefore x^{\log_b y} = y^{\log_b x}$ [m ও n এর মান বসিয়ে পাই] (প্রমাণিত)

(গ) আমরা জানি,
$$d=10\log_{10}\left(\frac{I}{c}\right)$$

এখানে, d=50 ডেসিবেল

মনে করি, গরম পানির পাম্পের ক্ষেত্রে, শব্দের তীব্রতা, I=h

সুতরাং,
$$50 = 10 \log_{10} \left(\frac{h}{s}\right)$$

উভয়পক্ষে 10 দ্বারা ভাগ করে পাই,

$$5 = \log_{10}\left(\frac{h}{S}\right)$$

$$\text{at, } \frac{h}{S} = 10^5$$

$$\therefore \ddot{h} = 10^5 \times S \cdots \cdots (i)$$

ধরি, সেচ পাম্পের ক্ষেত্রে, শব্দের তীব্রতা I=w

$$\therefore 62 = 10 \log_{10} \left(\frac{w}{S}\right)$$

উভয়পক্ষে 10 দ্বারা ভাগ করে পাই,

$$6.2 = \log_{10} \left(\frac{w}{S} \right)$$

বা,
$$\frac{w}{s} = 10^{6.2}$$

বা,
$$w = 10^{6.2} \times S \cdots (ii)$$

(ii)নং কে (i) নং দ্বারা ভাগ করে পাই,

$$\frac{w}{h} = \frac{10^{6.2} \times S}{10^5 \times S}$$

$$\text{at, } \frac{w}{h} = 10^{6.2-5}$$

$$\text{at, } \frac{w}{h} = 10^{1.2}$$

$$\frac{w}{10} = 10^{6.2-5}$$

ৰা
$$\frac{w}{w} = 10^{1.2}$$

বা,
$$\frac{n}{w} \approx 15.85$$

$$\therefore w \approx 15.85 \times h$$

সূতরাং সেচ পাম্পের শব্দের তীব্রতা গরম পানির পাম্পের শব্দের তীব্রতার 15.85 গুণ প্রায়।

3.
$$P = \left(\frac{x^q}{x^r}\right)^{q+r-p} \times \left(\frac{x^r}{x^p}\right)^{r+p-q} \times \left(\frac{x^p}{x^q}\right)^{p+q-r}$$

এবং
$$Y = \sqrt[pq]{\frac{x^p}{x^q}} \times \sqrt[qr]{\frac{x^q}{x^r}} \times \sqrt[rp]{\frac{x^r}{x^p}}$$

ক) $\log_5(\sqrt[3]{5}.\sqrt{5}$) এর মান নির্ণয় কর।

খ) প্রমাণ কর যে,
$$P-1=0$$
 .

গ) দেখাও যে,
$$Y + \sqrt[3]{64} = 5$$
 .

3 নং প্রশ্নের সমাধানঃ

(ক) প্রদত্তরাশি=
$$\log_5(\sqrt[3]{5}.\sqrt{5}$$
)

$$= \log_5(5^{\frac{1}{3}} \times 5^{\frac{1}{2}})$$

$$= \log_5(5^{\frac{1}{3} + \frac{1}{2}})$$

$$=\log_5 5^{\frac{2+3}{6}}$$

$$-\log \frac{5}{6}$$

$$= \log_5 5^{\frac{3}{6}}$$

$$= \frac{5}{6} \log_5 5$$

$$=\frac{5}{6} \text{ (Ans.)}$$

(খ) দেওয়া আছে,

$$P = \left(\frac{x^q}{x^r}\right)^{q+r-p} \times \left(\frac{x^r}{x^p}\right)^{r+p-q} \times \left(\frac{x^p}{x^q}\right)^{p+q-r}$$

বামপক্ষ =
$$P - 1 = \left(\frac{x^q}{x^r}\right)^{q+r-p} \times \left(\frac{x^r}{x^p}\right)^{r+p-q} \times \left(\frac{x^r}{x^p}\right)^{r+p-q}$$

$$\left(\frac{x^p}{x^q}\right)^{p+q-r}-1$$

$$= (x^{q-r})^{q+r-p} \times (x^{r-p})^{r+p-q} \times (x^{p-q})^{p+q-r} - 1$$

$$= x^{q^2 - r^2 - p(q - r)} \times x^{r^2 - p^2 - q(r - p)} \times x^{p^2 - q^2 - r(p - q)} - 1$$

$$= x^{q^2 - r^2 - p(q - r) + r^2 - p^2 - q(r - p) + p^2 - q^2 - r(p - q)} - 1$$

$$= x^{q^2 - r^2 - pq + pr + r^2 - p^2 - qr + pq + p^2 - q^2 - pr + qr} - 1$$

$$-x$$
 $=x^0-1=1-1=0$ =ডানপক্ষ (প্রমাণিত)

গে) দেওয়া আছে,
$$Y=\sqrt[pq]{\frac{x^p}{x^q}}\times\sqrt[qr]{\frac{x^q}{x^r}}\times\sqrt[pr]{\frac{x^r}{x^p}}$$

এখন,
$$Y + \sqrt[3]{64} = \sqrt[pq]{\frac{x^p}{x^q}} \times \sqrt[qr]{\frac{x^q}{x^r}} \times \sqrt[qr]{\frac{x^r}{x^p}} + \sqrt[3]{4^3}$$

$$= \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} \times \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \times \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} + 4^{\frac{3}{3}}$$

$$= x^{\frac{p-q}{pq}} \times x^{\frac{q-r}{qr}} \times x^{\frac{r-p}{rp}} + 4 = x^{\frac{p-q}{pq} + \frac{q-r}{qr} + \frac{r-p}{rp}} + 4$$

$$= x \frac{r(p-q)+p(q-r)+q(r-p)}{pqr} + 4$$

$$= \chi$$
 pqr $+ 4$ $pr-qr+pq-pr+qr-pq$

$$=x \frac{pqr}{r} + 4$$

$$=x^{\frac{0}{pqr}}+4$$

$$= x^0 + 4$$

$$= 1 + 4$$

4. (i)
$$A = \log_a \left(\frac{\sqrt{140}}{2\sqrt{30}} \right) + \log_a \left(\frac{3\sqrt{12}}{2\sqrt{27}} \right) +$$

$$\log_a\left(\frac{a^3\sqrt{b^2}}{b\sqrt{a^2}}\right) \qquad (ii) \qquad B = 2\log_{10}3 +$$

$$3 \log_{10} 4 + 2 \log_{10} 5$$

ক) প্রমাণ কর যে,
$$b^{\log_b a} = a$$
.

খ)
$$(ii)$$
 নং হতে, ${f B}$ এর মান নির্ণয় কর।

1

3 3

গ)
$$(i)$$
 নং হতে, \mathbf{A} এর মান নির্ণয় কর।

4 নং প্রশ্নের সমাধানঃ

(ক) মনেকরি, $\log_b a = x$

এই লগারিদমীয় সম্পর্কটিকে সূচকের মাধ্যমে প্রকাশ করি

$$b^x = a$$

1

3

3

এখন, $oldsymbol{\chi}$ এর মান বসাই,

$$holdsymbol{\cdot} b^{\log_b a} = a$$
 (প্রমাণিত)

(খ) প্রদত্তরাশি,
$$B=2\log_{10}3+3\,\log_{10}4+2\log_{10}5$$

$$= \log_{10} 3^2 + \log_{10} 4^3 + \log_{10} 5^2$$

$$= \log_{10}(3^2 \times 4^3 \times 5^2)$$

$$= \log_{10}(9 \times 64 \times 25)$$

$$=\log_{10} 14400 \approx 4.1583$$
 (Ans.)

(গ) দেওয়া আছে,
$$A=\log_a\left(\frac{\sqrt{140}}{2\sqrt{30}}\right)+\log_a\left(\frac{3\sqrt{12}}{2\sqrt{27}}\right)$$
 +

$$\log_a \left(\frac{a^3 \sqrt{b^2}}{b \sqrt{a^2}} \right)$$

$$= \log_a \left(\frac{\sqrt{4 \times 35}}{2\sqrt{30}} \right) + \log_a \left(\frac{3\sqrt{4 \times 3}}{2 \times 3\sqrt{3}} \right) + \log_a \left(\frac{a^3 \times b}{b \times a} \right)$$

$$= \log_a \left(\frac{2\sqrt{35}}{2\sqrt{30}} \right) + \log_a \left(\frac{3 \times 2\sqrt{3}}{2 \times 3 \times \sqrt{3}} \right) + \log_a a^2$$

$$= \log_a \left(\frac{\sqrt{35}}{\sqrt{30}} \right) + \log_a 1 + 2 \log_a a$$

$$= \log_a \left(\sqrt{\frac{35}{30}} \right) + 0 + 2 \log_a a$$

$$= \log_a(\frac{7}{6})^{\frac{1}{2}} + 0 + 2$$

$$=\frac{1}{2}\log_a \frac{7}{6} + 2$$
 (Ans.)

অভিজ্ঞতার শিরোনামঃ বাস্তব সমস্যা সমাধানে সহসমীকরণ

 $\mathbf{1}$. 3x - 2y = 2 এবং 7x + 3y = 43 হলো দুইটি সমীকরণ।

ক) দেখাও যে, প্রদত্ত সমীকরণ জোট সমঞ্জস।

খ) আড় গুণন পদ্ধতিতে প্রদত্ত সমীকরণদ্বয়ের সমাধান কর। 2

গ) সরল সমীকরণ জোটকে লেখের মাধ্যমে সমাধান কর।

1 নং প্রশ্নের সমাধানঃ

(ক) প্রদত্ত সমীকরণদ্বয়,

$$3x - 2y = 2 \cdot \cdot \cdot \cdot \cdot (i)$$

$$7x + 3y = 43 \cdots (ii)$$

$$(i)$$
 নং কে $a_1x+b_1y=c_1$ এবং (ii) নং কে $a_2x+b_2y=a_1$

 c_2 এর সাথে তুলনা করে পাই,

$$a_1 = 3$$
, $b_1 = -2$, $c_1 = -2$

$$a_2 = 7$$
, $b_2 = 3$, $c_2 = -43$

এখানে,
$$x$$
 এর সহগদ্বয়ের অনুপাত $\frac{a_1}{a_2}=\frac{3}{7}$ y এর সহগদ্বয়ের অনুপাত $\frac{b_1}{b_2}=\frac{-2}{3}$

ধুবক পদদ্বয়ের অনুপাত $\frac{c_1}{c_2} = \frac{2}{43}$

যেহেতু
$$\frac{3}{7} \neq \frac{-2}{3} \left[\because \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \right]$$

অতএব, সমীকরণদ্বয় সমঞ্জস।

(খ) প্রদত্ত সমীকরণদ্বয়,

$$3x - 2y = 2$$

$$7x + 3y = 43$$

পক্ষান্তর প্রক্রিয়ায় প্রদত্ত সমীকরণদ্বয়ের ডানপক্ষ 0 (শূন্য) করে পাই,

$$3x - 2y - 2 = 0 \cdot \cdot \cdot \cdot \cdot (i)$$

$$7x + 3y - 43 = 0 \cdot \cdot \cdot \cdot \cdot (ii)$$

$$(i)$$
 নং এবং (ii) নং সমীকরণকে $a_1x + b_1y + c_1 = 0$ এবং

 $a_2x + b_2y + c_2 = 0$ এর সাথে তুলনা করে পাই

$$a_1 = 3$$
, $b_1 = -2$, $c_1 = -2$

$$a_2 = 7$$
, $b_2 = 3$, $c_2 = -43$

আড় গুণন পদ্বতিতে পাই,

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$

$$\overline{\mathsf{d}}, \frac{x}{(-2)\times(-43)-3\times(-2)} = \frac{y}{(-2)\times7-(-43)\times3} = \frac{1}{3\times3-7\times(-2)}$$

$$\overline{A}$$
, $\frac{x}{86+6} = \frac{y}{-14+129} = \frac{1}{9+14}$

$$\sqrt{x} = \frac{y}{115} = \frac{1}{23}$$

বা,
$$\frac{x}{92} = \frac{1}{23}$$

বা,
$$x = \frac{92}{22} = 4$$

$$\overline{1}$$
, $\frac{y}{115} = \frac{1}{22}$

$$\therefore y = \frac{115}{23} = 5$$

∴নির্ণেয় সমাধান
$$(x, y) = (4, 5)$$

(গ) প্রদত্ত সমীকরণদ্বয়,

$$3x - 2y = 2 \cdots (i)$$

$$7x + 3y = 43 \cdots (ii)$$

সমীকরণ (i) থেকে পাই,

$$3x - 2 = 2y$$

বা,
$$y = \frac{3x-2}{2}$$

সমীকরণটিতে χ এর সুবিধামতো কয়েকটি মান নিয়ে এর অনুরূপ মান বের করি এবং নিম্নের ছকটি তৈরি করিঃ

X	2	4	6
y	2	5	9

সমীকরণটির লেখের উপরে তিনটি বিন্দু (2, 2), (4, 5), (6, 9) আবার, সমীকরণ (ii) থেকে পাই,

$$3y = 43 - 7x$$

বা,
$$y = \frac{43-7x}{3}$$

সমীকরণটিতে x এর সুবিধামতো কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি এবং নিম্নের ছকটি তৈরি করিঃ

X	1	4	7
У	12	5	-2

সমীকরণটির লেখের উপরে তিনটি বিন্দু (1, 12), (4, 5), (7, -2)

মনেকরি, XOX' ও YOY' যথাক্রমে \mathbf{x} -অক্ষ ও \mathbf{y} -অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি এক বাহুর দৈর্ঘ্যকে এক একক ধরি।

এখন ছক কাগজের সমীকরণ (i) হতে প্রাপ্ত (2,2), (4,5), (6,9) বিন্দু গুলো স্থাপন করি এবং এদের পস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (1,12), $(4,\ 5)$, (7,-2) বিন্দু গুলো স্থাপন করি এবং এদের পস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

মনেকরি সরলরেখাদ্বয় পরস্পর বিন্দুতে P ছেদ করেছে। চিত্র থেকে দেখা যায় বিন্দুর স্থানাঙ্ক ${
m P}\,({f 4},{f 5})$ ।

∴নির্ণেয় সমাধান (x, y) = (4, 5)

- ${f 2}.$ 3x-5y=-9 এবং 5x-3y=1 হলো দুইটি সমীকরণ।
- ক) দেখাও যে, প্রদত্ত সমীকরণ জোট সমঞ্জস। $oldsymbol{1}$
- 2 খ) অপনয়ন পদ্ধতিতে প্রদত্ত সমীকরণদ্বয়ের সমাধান কর।
- গ) সরল সমীকরণ জোটকে লেখের মাধ্যমে সমাধান কর।
- ২ নং প্রশ্নের সমাধানঃ
- (ক) প্রদত্ত সমীকরণদ্বয়,

$$3x - 5y = -9 \cdots (i)$$

$$5x - 3y = 1 \cdots (ii)$$

(i) নং কে $a_1x + b_1y = c_1$ এবং (ii) নং কে $a_2x + b_2y =$ c_2 এর সাথে তুলনা করে পাই,

$$a_1=3, b_1=-5, c_1=-9$$
 $a_2=5, b_2=-3, c_2=1$
এখানে, x এর সহগদ্বয়ের অনুপাত $\frac{a_1}{a_2}=\frac{3}{5}$
 y এর সহগদ্বয়ের অনুপাত $\frac{b_1}{b_2}=\frac{-5}{-3}=\frac{5}{3}$
ধ্বুক পদদ্বয়ের অনুপাত $\frac{c_1}{c_2}=\frac{-9}{1}$
যেহেতু $\frac{3}{5}\neq\frac{5}{3}$ [$\because \frac{a_1}{a_2}\neq\frac{b_1}{b_2}$]
অতএব, সমীকরণদ্বয় সমঞ্জস।

(খ) প্রদত্ত সমীকরণ জোটঃ

$$3x - 5y = -9 \cdots (i)$$

$$5x - 3y = 1 \cdot \cdot \cdot \cdot \cdot (ii)$$

(i) নং সমীকরণকে 5 দারা ও (ii)নং সমীকরণকে 3 দারা গুণ করে পাই,

$$15x - 25y = -45 \cdots (iii)$$

$$15x - 9y = 3 \cdots (iv)$$

(iii) নং হতে (iv) নং বিয়োগ করি, 15x-25y-15x+

$$9y = -45 - 3$$

$$-16y = -48$$

বা,
$$16y = 48$$

(ii) নং সমীকরণে y=3 বসিয়ে পাই,

$$5x - 3 \times 3 = 1$$

বা,
$$5x = 1 + 9$$

বা,
$$5x = 10$$

 \therefore নির্ণেয় সমাধান (x,y)=(2,3) (Ans.)

(গ) প্রদত্ত সমীকরণদ্বয়,

$$3x - 5y = -9 \cdots (i)$$

$$5x - 3y = 1 \cdots (ii)$$

সমীকরণ (i) থেকে পাই,

$$3x + 9 = 5y$$

বা,
$$y = \frac{3x+9}{5}$$

সমীকরণটিতে χ এর সুবিধামতো কয়েকটি মান নিয়ে এর অনুরূপ মান বের করি এবং নিমের ছকটি তৈরি করিঃ

X	2	7	12
У	3	6	9

সমীকরণটির লেখের উপরে তিনটি বিন্দু (2,3), (7,6), (12,9) আবার, সমীকরণ (ii) থেকে পাই,

$$5x - 3y = 1$$

বা,
$$y = \frac{5x-1}{3}$$

সমীকরণটিতে χ এর সুবিধামতো কয়েকটি মান নিয়ে y এর অনুরূপ মান বের করি এবং নিয়ের ছকটি তৈরি করিঃ

X	2	5	8
У	3	8	13

সমীকরণটির লেখের উপরে তিনটি বিন্দু (2,3), (5, 8), (8,13)

N.B. Do yourself

মনেকরি, XOX' ও YOY' যথাক্রমে x-অক্ষ ও y-অক্ষ এবং O মূলবিন্দু। ছক কাগজের উভয় অক্ষ বরাবর ক্ষুদ্রতম বর্গের প্রতি এক বাহুর দৈর্ঘ্যকে এক একক ধরি।

এখন ছক কাগজের সমীকরণ (i) হতে প্রাপ্ত

(2,3),(7,6),(12,9)বিন্দু গুলো স্থাপন করি এবং এদের পস্পর সংযুক্ত করি। লেখটি একটি সরলরেখা।

একইভাবে, সমীকরণ (ii) হতে প্রাপ্ত (2,3), (5,8), (8,13)বিন্দু গুলো স্থাপন করি এবং এদের পস্পর সংযুক্ত করি। লেখটি একটি সরলবেখা।

মনেকরি সরলরেখাদ্বয় পরস্পর বিন্দুতে P ছেদ করেছে। চিত্র থেকে দেখা যায় বিন্দুর স্থানাজ্ঞ $P\left(2,\,3\right)$ ।

∴নির্ণেয় সমাধান (x,y)=(2,3) (Ans.)

3. (i)
$$3x + y - 17 = 0$$

(ii)
$$x - 3y + 1 = 0$$

(iii)
$$y = x^2 - 2x - 3$$

ক) $x^2-2x-3=0$ সমীকরণের নিশ্চায়কের মান নির্ণয় কর। $oldsymbol{1}$

খ) (i)ও (ii) নং সমীকরণ জোটকে প্রতিস্থাপন পদ্ধতিতে সমাধান কর। 2

গ) (ii) ও (iii) নং সমীকরণদ্বয়ের সমাধান কর।

3 নং প্রশ্নের সমাধানঃ

(ক)
$$x^2 - 2x - 3 = 0$$
 সমীকরণটিকে $ax^2 + bx + c = 0$
এর সাথে তুলনা করে পাই, $a = 1, b = -2, c = -3$
∴ নিশ্চায়ক = $b^2 - 4ac = (-2)^2 - 4 \times 1 \times (-3)$

$$= 4 + 12$$

$$= 16$$

(খ) প্রদত্ত সমীকরণদ্বয়ঃ

$$3x + y - 17 = 0 \cdot \cdot \cdot \cdot \cdot (i)$$

$$x - 3y + 1 = 0 \cdot \cdot \cdot \cdot (ii)$$

সমীকরণ (i) নং হতে পাই,

$$3x + y - 17 = 0$$

$$\therefore y = 17 - 3x \cdots (iii)$$

y এর মান সমীকরণ (ii) এ বসিয়ে,

$$x - 3(17 - 3x) + 1 = 0$$

$$7, x - 51 + 9x + 1 = 0$$

বা,
$$10x = 50$$

$$\therefore x = 5$$

সমীকরণ (iii) নং এ x = 5বসিয়ে পাই,

$$y = 17 - 3 \times 5$$

 $\therefore y = 2$

∴নির্ণেয় সমাধান (x, y) = (5, 2) (Ans.)

(গ) প্রদত্ত সমীকরণদ্বয়ঃ

$$x - 3y + 1 = 0 \cdots (i)$$

$$y = x^2 - 2x - 3 \cdots (ii)$$

সমীকরণ (i)নং হতে পাই,

$$x - 3y + 1 = 0$$

বা,
$$3y = 1 + x$$

$$\therefore y = \frac{1+x}{3} \cdots \cdots (iii)$$

y এর মান সমীকরণ (ii) এ বসিয়ে পাই,

$$\frac{1+x}{3} = x^2 - 2x - 3$$

$$4, 1 + x = 3x^2 - 6x - 9$$

$$4x^2 - 6x - x - 9 - 1 = 0$$

$$41, 3x^2 - 7x - 10 = 0$$

$$4x - 3x^2 - 10x + 3x - 10 = 0$$

$$4, x(3x - 10) + 1(3x - 10) = 0$$

$$(x+1)(3x-10) = 0$$

হয়,
$$(x + 1) = 0$$
 অথবা, $(3x - 10) = 0$

$$\therefore x = -1$$

$$\therefore x = \frac{10}{3}$$

x = -1 (iii) এ বসিয়ে পাই,

$$y = \frac{1-1}{3} = 0$$

$$x = \frac{10}{3}$$
 (iii) এ বসিয়ে পাই, $y = \frac{1 + \frac{10}{3}}{3} = \frac{3 + 10}{3 \times 3} = \frac{13}{9}$
∴নির্ণেয় সমাধান $(x, y) = (-1, 0), (\frac{10}{3}, \frac{13}{9})$ (Ans.)

- 4. অপুর একটি আয়তকার সবজির বাগান আছে। বাগানটির পরিসীমা 120~মিটার । প্রস্থকে দ্বিগুণ করলে এবং দৈর্ঘ্য থেকে 3~মিটার কমালে পরিসীমা হয় 150~মিটার ।
- ক) $x^2-3=0$ সমীকরণের মূলের প্রকৃতি নির্ণয় কর। 1
- খ) র 3 = 0 সমাকরণের মুলের প্রসৃথি নিশর কর। 1
 খ) বাগানটি 3 পাশে ঘেরা আছে এবং দৈর্ঘ্য বরাবর এক পাশে ফীকা আছে
 । ফীকা পাশ বেড়া দিয়ে ঘিরে দিতে প্রতি মিটার 10 টাকা হিসাবে মোট
 কত টাকা হবে?
- গ) যদি প্রতি বর্গমিটারে জৈবিক সারের জন্য 7 টাকা খরচ হয়, তাহলে সার বাবদ অপুর মোট কত টাকা খরচ হবে?

4 নং প্রশ্নের সমাধানঃ

- (ক) $x^2-3=0=x^2+0\times x-3=0$ সমীকরণটিকে $ax^2+bx+c=0$ এর সাথে তুলনা করে পাই, $a=1,\ b=0,$ c=-3
- \therefore নিশ্চায়ক = $b^2 4ac = (0)^2 4 \times 1 \times (-3) = 12 > 0$ এবং পূর্ণবর্গ নয়। \therefore মূলদ্বয় বাস্তব, অসমান ও অমূলদ হবে।
- (খ) ধরি, বাগানের দৈর্ঘ্য x মিটার এবং প্রস্থ y মিটার

১ম শর্তমতে,
$$2(x + y) = 120$$

$$7, 2x + 2y = 120$$

$$\therefore x + y = 60 \cdots (i)$$

২য় শর্তমতে, প্রস্থের দ্বিগুণ =2y

দৈর্ঘ্য 3 মিটার কম= x - 3

এখন,
$$2(x-3+2y)=150$$

বা,
$$x + 2y - 3 = 75$$

$$\therefore x + 2y = 78 \cdots (ii)$$

এখন সমীকরণ (i) হতে পাই, x + y = 60

$$\forall i, y = 60 - x \cdots (iii)$$

y এর মান সমীকরণ (ii)এ বসিয়ে পাই, x + 2(60 + x) = 78

$$4x + 120 - 2x = 78$$

$$\sqrt{1}$$
, $-x = 78 - 120 =$

বা,
$$-x = -42$$

$$\therefore x = 42$$

xএর মান সমীকরণ(iii) এ বসিয়ে পাই,

$$y = 60 - 42 = 18$$

বাগানের দৈর্ঘ্য x=42 মিটার এবং প্রস্থ y=18 মিটার

বাগানটির দৈর্ঘ্য বরাবর ফাঁকা আছে,

সুতরাং ফাঁকা আছে, x=42 মিটার

1মিটারে খরচ হয় 10 টাকা

ফাঁকা পাশ বেড়া দিয়ে ঘিরে দিতে খরচ হবে 420 টাকা। (Ans.)

গ) 'খ' থেকে পাই,

বাগানের দৈর্ঘ্য x=42 মিটার এবং প্রস্থ y=18 মিটার

বাগানের ক্ষেত্রফল = xy = 42 imes 18 = 756 বর্গমিটার

1 বর্গমিটারে সার বাবদ খরচ 7 টাকা

: 756 || || || (756×7) = 5292 টাকা

∴ সার বাবদ অপুর মোট খরচ হবে 5292 টাকা। (Ans.)

অভিজ্ঞতার শিরোনামঃ ত্রিকোণমিতি

- দুই বন্ধু 600 মিটার দুরতে দাঁড়িয়ে আছে এবং তারা দেখলো একটি প্লেন তাদের উপর দিয়ে উড়ে আসছে। কোনো একটি নির্দিষ্ট সময়ে প্রথম বন্ধুর থেকে প্লেনের উন্নতি 60° কোণ এবং দ্বিতীয় বন্ধুর থেকে প্লেনের উন্নতি কোণ 30°.
 - ক) প্লেনটি কত উচ্চতায় উড়ছিল?

9

খ) প্লেনটি যদি 3 সেকেন্ড পরে ২য় বন্ধুর মাথার উপর দিয়ে অতিক্রম করে, তাহলে প্লেনের গতিবেগ কত ছিল?

1 নং প্রশ্নের সমাধানঃ

(ক)

মনেকরি, প্রথম বন্ধুর অবস্থান ${f A}$ দ্বিতীয় বন্ধুর অবস্থান ${f B}$ এবং প্লেনের অবস্থান ${f P}$ । তাহলে, ভু-সমতলের উপরে লম্বরেখা ${f PQ}$ প্লেনের উচ্চতা। প্রথম বন্ধুর উন্নতি

$$\angle PBQ = 30^{\circ}$$

ধরি,
$$PQ = h$$
, $AQ = x$

এবং BQ = AQ + AB = (x + 600) মিটার

 \therefore সমকোণী ΔPQA থেকে পাই,

$$tan \angle PAQ = \frac{PQ}{AQ}$$

বা,
$$tan60^{\circ} = \frac{h}{x}$$

বা,
$$\sqrt{3} = \frac{h}{x}$$

আবার, সমকোণী ΔPQB থেকে পাই,

$$tan \angle PBQ = \frac{PQ}{BQ}$$

ৰা,
$$tan30^{\circ} = \frac{h}{x+600}$$

ৰা, $\frac{1}{\sqrt{3}} = \frac{h}{x+600}$

$$\overline{4}, \frac{1}{\sqrt{3}} = \frac{h}{x + 600}$$

বা,
$$\sqrt{3}h = x + 600$$

$$4, \sqrt{3}h = \frac{h}{\sqrt{3}} + 600$$

বা,
$$3h = h + 600\sqrt{3}$$

বা,
$$2h = 600\sqrt{3}$$

$$\therefore h = 300\sqrt{3} = 519.62$$
 মিটার (প্রায়)

∴ প্লেনটি প্রায় 519.62 মিটার উচ্চতায় উড়ছিল। (Ans.)

(খ) 'ক' হতে পাই,

প্লেনটি $300\sqrt{3}$ মিটার উচ্চতা দিয়ে উড়ে যাচ্ছে। তাহলে, (i) নং সমীকরণে $300\sqrt{3}$ বসিয়ে পাই,

$$x = \frac{h}{\sqrt{3}} = \frac{300\sqrt{3}}{\sqrt{3}} = 300$$

∴ প্লেনটি 3 সেকেন্ডে মোট দূরত্ব অতিক্রম করে 600+300=900 মিটার সুতরাং প্লেনের গতিবেগ, $900 \div 3 = 300$ মিটার/ সেকেন্ড। (Ans.)

2. $\tan \theta = \sqrt{3}$, θ সুক্ষকোণ।

ক) $oldsymbol{ heta}$ এর মান নির্ণয় করো।

খ)
$$\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}-\sec\theta$$
 মান নির্ণয় কর।

গ) প্রমাণ করো যে, $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$. ৩

2 নং প্রশ্নের সমাধানঃ

(ক) দেওয়া আছে,

$$tan \theta = \sqrt{3}$$
, θ সূক্ষ্মকোণ।

বা,
$$tan\theta = tan60^{\circ}$$

$$\therefore \theta = 60^{\circ}$$

েও
$$=$$
 $\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} - \sec\theta$

$$= \frac{\sin60^\circ + \cos60^\circ}{\sin60^\circ - \cos60^\circ} - \sec60^\circ$$

$$=\frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}-2$$

$$= \frac{3 + \sqrt{3} + \sqrt{3} + 1}{(\sqrt{3})^2 - 1^2} - 2$$

$$= \frac{4 + 2\sqrt{3}}{3 - 1} - 2$$

$$= \frac{2(2 + \sqrt{3})}{2} - 2$$

$$= 2 + \sqrt{3} - 2$$

$$= \sqrt{3}$$

(গ) 'ক' থেকে পাই,

$$\theta = 60^{\circ}$$

$$L.H.S.=cos2\theta = cos(2 \times 60^{\circ}) = cos120^{\circ} =$$

$$\cos(1 \times 90^{\circ} + 30^{\circ}) = -\sin 30^{\circ} = -\frac{1}{2}$$

$$M.S. = \cos^2 \theta - \sin^2 \theta$$

$$= \cos^2 60^\circ - \sin^2 60^\circ = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$

$$= \cos^{2} 60^{\circ} - \sin^{2} 60^{\circ} = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$$
R.H.S.
$$= \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} = \frac{1 - \tan^{2} 60^{\circ}}{1 + \tan^{2} 60^{\circ}} = \frac{1 - 3}{1 + 3} = \frac{-2}{4} = -\frac{1}{2}$$

$$\therefore \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta = \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta} \text{ (proved)}$$

$$\therefore \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$
(proved)

3.

$$P = \sin(-\theta) + \sin(90^{\circ} - \theta) + \sin(90^{\circ} + \theta) + \sin(180^{\circ} - \theta)$$

$$Q = \sin(180^{\circ} + \theta) + \sin(270^{\circ} - \theta) + \sin(270^{\circ} + \theta) + \sin(360^{\circ} + \theta)$$

ক) P ও Q কে সরল করো।

খ) প্রমাণ করো যে ,
$$rac{Q-P}{P}+2=P+Q$$
.

3 নং প্রশ্নের সমাধানঃ

(ক) দেওয়া আছে,

$$P = \sin(-\theta) + \sin(90^{\circ} - \theta) + \sin(90^{\circ} + \theta) + \sin(180^{\circ} - \theta)$$

$$= -\sin\theta + \cos\theta + \cos\theta + \sin\theta$$

$$= 2\cos\theta$$

$$Q = \sin(180^{\circ} + \theta) + \sin(270^{\circ} - \theta) + \sin(270^{\circ} + \theta) + \sin(360^{\circ} + \theta)$$

$$= -\sin\theta - \cos\theta - \cos\theta + \sin\theta$$

$$=-2\cos\theta$$

(খ) L.H.S.=
$$\frac{Q-P}{P} + 2$$

$$(4) \text{ L.H.S.} = \frac{\frac{Q-P}{P}}{2} + 2$$

$$= \frac{-2\cos\theta - 2\cos\theta}{2\cos\theta} + 2$$

$$= \frac{-4\cos\theta}{2\cos\theta} + 2$$

$$=\frac{-4\cos\theta}{2}+2$$

$$= -2 + 2$$

$$= 0$$

$$R.H.S. = P + Q$$

$$= 2\cos\theta - 2\cos\theta$$

$$= 0$$

L.H.S.=R.H.S. (proved)

4.

ক) P বিন্দুকে (r, θ) এর মাধ্যমে প্রকাশ করো।

খ) প্রমাণ করো যে,
$$\frac{\sin\theta+\cos\theta}{\tan\theta-\cot\theta}=\frac{12}{35}$$

গ) সরল করো:
$$\csc(-\theta) + \cot(-\theta) + \sec(450^{\circ} + \theta)$$

$$\theta$$
) + cosec(180° – θ)

4 নং প্রশ্নের সমাধানঃ

ক) দেওয়া আছে, x = 3, y = -4

$$\therefore r = \sqrt{x^2 + y^2}$$

$$\theta = -\tan^{-1}\left|\frac{-4}{-4}\right|$$

$$\theta = -\tan^{-1}\left|\frac{-4}{3}\right| = -\tan^{-1}(\frac{4}{3})$$

$$\therefore (r,\theta) = \left(5, -tan^{-1}\left(\frac{4}{3}\right)\right) (Ans.)$$

খ) মনেকরি, θ = 270° + α

খ) মনেকরি,
$$\theta = 270^{\circ} + \alpha$$
L. H. $S = \frac{\sin(270^{\circ} + \alpha) + \cos(270^{\circ} + \alpha)}{\tan(270^{\circ} + \alpha) - \cot(270^{\circ} + \alpha)} = \frac{-\cos\alpha + \sin\alpha}{-\cot\alpha + \tan\alpha}$

$$= \frac{-\frac{4}{5} + \frac{3}{5}}{-\frac{4}{3} + \frac{3}{4}} = \frac{\frac{-4+3}{5}}{\frac{-16+9}{12}}$$

$$= \frac{-1}{5} \times \frac{12}{7} = \frac{12}{35} = \text{R. H. S.}$$

$$=\frac{-1}{5} \times \frac{12}{-7} = \frac{12}{35} = \text{R. H. S}$$

$$\theta = 270^{\circ} + \alpha$$

এখন,
$$\csc(-\theta) + \cot(-\theta) + \sec(450^\circ + \theta) + \csc(180^\circ - \theta)$$

=
$$cosec(-270^{\circ} - \alpha) + cot(-270^{\circ} - \alpha)$$

+ $sec(450^{\circ} + 270^{\circ} + \alpha)$
+ $cosec(180^{\circ} - 270^{\circ} - \alpha)$

$$= -cosec(270^{\circ} + \alpha) - \cot(270^{\circ} + \alpha)$$
$$+ \sec(720^{\circ} + \alpha) + cosec(-90^{\circ} - \alpha)$$

$$= -cosec(270^{\circ} + \alpha) - \cot(270^{\circ} + \alpha)$$

$$+\sec(720^{\circ} + \alpha) - \csc(90^{\circ} + \alpha)$$

$$= -(-\sin\alpha) - (-\tan\alpha) + \sec\alpha - \sin\alpha$$

$$= \sin\alpha + \tan\alpha + \sec\alpha - \sin\alpha$$

$$= tan\alpha + sec\alpha$$

$$=\frac{3}{4}+\frac{5}{4}=\frac{3+5}{4}=2$$
 (Ans.)

5.

ক) $\frac{4\pi}{2}$ রেডিয়ান কোণকে ডিগ্রিতে প্রকাশ করো।

খ) $\angle AOB$ কে রেডিয়ানে প্রকাশ করো।

গ) চাপ AB এর দৈর্ঘ্য নির্ণয় করো।

5 নং প্রশ্নের সমাধানঃ

(ক) আমরা জানি, 1রেডিয়ান $=\frac{180^\circ}{\pi}$

$$\therefore \frac{4\pi}{3}$$
রেডিয়ান= $\left(\frac{4\pi}{3} \times \frac{180^{\circ}}{\pi}\right)^n = 240^{\circ}$

(খ) উদ্দীপকের চিত্র থেকে পাই.

$$\angle AOB = 55^{\circ}15' = \left(55 + \frac{15}{60}\right)^{\circ} = 55.25^{\circ}$$

আমরা জানি, $1^\circ = \frac{\pi}{180}$ রেডিয়ান

$$\therefore 55.25^\circ = \left(\frac{55.25 \times \pi}{180}\right)$$
 রেডিয়ান

 $=0.3069\pi$ রেডিয়ান

= 0.96415রেডিয়ান (Ans.)

(গ) উদ্দীপকের চিত্র থেকে পাই,

বুত্তের ব্যাসার্ধ, OA = r = 5cm = 0.05m

'খ' থেকে পাই,heta=0.96415 রেডিয়ান

চাপ ${f AB}$ এর দৈর্ঘ্য, s=r heta

 $= 0.05 \times 0.96415$

= 0.0482075 মিটার (প্রায়) (Ans.)

অভিজ্ঞতা-৯ বিস্তার পরিমাপ

১। 10 সদস্যের একটি নমুনার গাণিতিক গড় ও পরিমিত ব্যবধান যথাক্রমে 9.5 এবং 2.5। পরে 15 মানের আরো একটি সদস্য নমুনায় অন্তর্ভুক্ত করা হলো। তাহলে 11 সদস্য বিশিষ্ট নমুনার:

ক. গাণিতিক গড় নির্ণয় কর।

ঽ

খ. পরিমিত ব্যবধান নির্ণয় কর।

গ. পরিমিত ব্যবধান কোথায় এবং কেন ব্যবহার করি।

১ নং প্রশ্নের সমাধানঃ

(ক)

11 সদস্যবিশিষ্ট নমুনার গাণিতিক গড় নির্ণয়ঃ

দেওয়া আছে,

10 সদস্যের নমুনার 10 টি উপাত্তের গাণিতিক গড় =9.5

 $\therefore 10$ টি উপাত্তের গাণিতিক সমষ্টি = $9.5 \times 10 = 95$

এখন, 15 মানের আরও এক সদস্য নমুনায় যোগ করলে, 11 টি উপাত্তের মানের সমষ্টি হয় = 95+15 = 110

 $\therefore 11$ টি উপাত্তের গাণিতিক গড় = $\frac{110}{11}$ = 10

$$\therefore \frac{\sum_{i=1}^{10} x_i}{11} = 10$$

এগারো সদস্যবিশিষ্ট নমুনার পরিমিত ব্যবধান নির্ণয়ঃ

দেওয়া আছে,

$$\sigma = 2.5$$

বা,
$$\sigma^2 = 6.25$$

$$\operatorname{d}, \left(\frac{\sum_{i=1}^{10} x_i^2}{n}\right) - \left(\frac{\sum_{i=1}^{10} x_i}{n}\right)^2 = 6.25$$

বা,
$$\left(\frac{\sum_{i=1}^{10} x_i^2}{n}\right) - \left(\frac{\sum_{i=1}^{10} x_i}{n}\right)^2 = 6.25$$

বা, $\frac{1}{10}(x_1^2 + x_2^2 + \dots + x_{10}^2) - (95/10)^2 = 6.25$ [$\therefore 10$ সদস্যের নম্নার মানের স্মষ্টি = $9.5 \times 10 = 95$]

$$\sqrt{1/10(X_1^2+X_2^2+\cdots+X_{10}^2)}-90.25=6.25$$

$$\sqrt{(x_1^2 + x_2^2 + \cdots + x_1 n^2)} = 965$$

বা,
$$x_1^2 + x_2^2 + \cdots + x_{10}^2 + 15^2 = 965 + 15^2$$
 [উভয়পক্ষে 15^2 যোগ করে]

বা,
$$x_1^2 + x_2^2 + \dots + x_{11}^2 = 1190$$
 [:11 তম পদ 15]

আবার,
$$11$$
টি নমুনার সমষ্টি = $95+15=110$ [ক থেকে পাই]

অর্থাৎ,
$$x_1+x_2+\cdots\cdots+x_{11}=110$$

🗀 এগারো সদস্যবিশিষ্ট নমুনার পরিমিত ব্যবধান

$$= \sqrt{\left(\frac{\sum_{i=1}^{11} x_i^2}{n}\right) - \left(\frac{\sum_{i=1}^{11} x_i}{n}\right)^2}$$

$$= \sqrt{\frac{1190}{11} - \left(\frac{110}{11}\right)^2}$$

$$= \sqrt{108.1818 - 100}$$

$$= \sqrt{8.1818}$$

$$= 2.86 \text{ (213)}$$

(গ)

- 1. আমাদের আয় ও চাহিদা অনুসারে দৈনন্দিন বাজেটে আমরা একটি গড় অর্থ বরাদ্ধ করে থাকি। কোনো রকম গাণিতিক হিসাব ছাড়াই আমরা পরিমিত ব্যবধান ব্যবহার করে নির্ধারণ করে থাকি বরাদ্ধের চেয়ে খুব বেশি বা কম ব্যয় করছি কি না।
- 2. তাছাড়া বিভিন্ন প্রকার গবেষণা, পরিকল্পনা প্রণয়ন, সামাজিক কর্মকান্ড ও শিল্পকারখানায় সমজাতীয় পণ্যের উৎকর্ষতা যাচাই সম্পর্কিত তথ্যসমূহের বিশ্লেষণে এটি বহুলভাবে ব্যবহৃত হয়ে।
- 3. পরিমিত ব্যবধান হলো এমন একটি গুরুত্বপূর্ণ হাতিয়ার যা ব্যবসার মালিকগণ ঝুঁকি ব্যবস্থাপনা এবং সিদ্ধান্ত গ্রহণের ক্ষেত্রে ব্যবহার করে থাকেন।
- 4. চিকিৎসা গবেষণা ও ঔষধ তৈরিতে পরিমিত ব্যবধান ব্যবহার করা হয়। প্রতিটি নমুনায় ভাইরাস নির্মূলের গড়ের হারে অ্যান্টি-ভাইরালের একই প্রভাব রয়েছে কি না তা পরিমিত ব্যবধানের মাধ্যমে গণনা করা হয়।

২। ছয় জন শিক্ষার্থীর উচ্চতা সেন্টিমিটারে দেয়া আছে: 161,163,140,170,173,150

ক. গড় ও মধ্যক নির্ণয় কর

খ. গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় কর।

গ্র গড় ও মধ্যক থেকে পরিমিত ব্যবধান এবং ভেদাঞ্চ নির্ণয় কর।

২ নং প্রশ্নের সমাধানঃ

(ক) ছয় জন শিক্ষার্থীর উচ্চতা যথাক্রমেঃ 161, 163, 140, 170, 173, 150

আবার, উচ্চতা গুলোকে মানের উর্ধক্রমে সাজিয়ে পাই,

140, 150, 161, 163, 170, 173

এখানে মোট শিক্ষার্থীর সংখ্যা, n=6, যা জোড় সংখ্যা।

$$\therefore$$
 মধ্যক $(M_e)=rac{rac{n}{2}$ তম পদ $+(rac{n}{2}+1)$ তম পদ $=rac{6}{2}$ তম পদ $+(rac{6}{2}+1)$ তম পদ $=rac{6}{2}$

$$=rac{3$$
 তম পদ+ 4 তম পদ}{2}=rac{161+163}{2}=162

(খ) 'ক' হতে পাই, গড়, $\ \bar{x}=159.5,\$ মধ্যক, $M_e=162$ গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয়ের সারণি তৈরি করিঃ

9	मय)भ (य	(यः गर्भ प)पयान ।नगरव्य र	।।त्राच ८७।त्र चनत्र
	$\mathbf{X}_{\mathbf{i}}$	$ x_i - \bar{x} \bar{x} = 159.5$	$ x_i - M_e , M_e = 162$
	161	1.5	1
	163	3.5	1
	140	19.5	22
	170	10.5	8
	173	13.5	11
	150	9.5	12
	n=6	$\sum xi - \bar{x} = 58$	$\sum xi - Me = 55$

∴ গাণিতিক গড় হতে গড় ব্যবধান, $M.D.(\bar{x}) = \frac{\sum (x_i - \bar{x})}{n} = \frac{58}{6} = 9.667$ (প্রায়) ∴মধ্যক হতে গড় ব্যবধান, $M.D.(M_e) = \frac{\sum |x_i - M_e|}{n} = \frac{55}{6} = 9.167$ (প্রায়)

(গ) গড় ও মধ্যক থেকে পরিমিত ব্যবধান ["]নির্ণয় করিঃ

ক হতে পাই, গড়, $\bar{\it x}$ = 159.5, মধ্যক, M_e = 162 গড় ও মধ্যক হতে পরিমিত ব্যবধান নির্ণয়ে সারণি তৈরি করিঃ

1,4	-1017	.0 11.11.10 1) 1 11.11	1 164 1141	1 6 9 1.1 1 1.10
উচ্চত	(X _i -	$(\mathbf{X}_{\mathbf{i}} - \bar{\mathbf{x}})^2, \bar{\mathbf{x}} =$	$(x_i - M_e)$,	$(\mathbf{x}_{\mathrm{i}}$ - $\mathbf{M}_{\mathrm{e}})^2$
\mathbf{x}_{i}	\bar{x})	159.5	M_e = 162	
161	1.5	2.25	-1	1
163	3.5	12.25	1	1
140) - 19. 5	380.25	-22	484
170	10.	110.25	8	64
173	3 13. 5	182.25	11	121
150	9.5	90.25	-12	144
n=6	5	$\sum (xi - \bar{x})^2 = 777.5$		$\sum (xi - Me)^2 = 815$

darphi গাণিতিক গড় হতে পরিমিত ব্যবধান, $\sigma = \sqrt{rac{\sum (x_i - \overline{x})^2}{n}} =$

$$\sqrt{\frac{777.38}{6}} = 11.38$$
 (প্রায়)

 \therefore মধ্যক হতে পরিমিত ব্যবধান, $\sigma=\sqrt{rac{\sum (x_i-M_e)^2}{n}}$ $=\sqrt{rac{815}{6}}=11.65$ (প্রায়)

৩. একটি কারখানার শ্রমিকের বেতনের (শত টাকায়) গণসংখ্যা নিবেশন সারণী দেয়া হলো:

সাপ্তাহিক	20-	23-	26-	29-	32-	35-	38-
বেতন	22	25	28	31	34	37	40
শ্রমিকের সংখ্যা	5	10	26	30	16	8	5

- ক. প্রথম ${f n}$ সংখ্যক স্বাভাবিক সংখ্যার পরিমিত ব্যবধান σ =10 হলে ${f n}$ =?
- খ. অনুমিত গড় পদ্ধতিতে উপাত্তের পরিমিত ব্যবধান নির্ণয় কর।

৩ নং প্রশ্নের সমাধানঃ

(ক) প্রথম n সংখ্যক স্বাভাবিক সংখ্যার পরিমিত ব্যবধান,

$$\sigma = \sqrt{\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n}} - \left(\frac{1 + 2 + 3 + \dots + n}{n}\right)^2$$

$$= \sqrt{\frac{n(n+1)(2n+1)}{6n}} - \frac{n^2(n+1)^2}{4n^2}$$

$$= \sqrt{\frac{(n+1)}{2}\left\{\frac{(2n+1)}{3} - \frac{(n+1)}{2}\right\}}$$

$$= \sqrt{\frac{(n+1)}{2}\left(\frac{n-1}{6}\right)} = \sqrt{\frac{n^2 - 1}{12}}$$
প্রামতে, $\sqrt{\frac{n^2 - 1}{12}} = \sqrt{10}$

বা, $n^2=120+1=121$: n=11(খ) অনুমিত গড় পদ্ধতিতে পরিমিত ব্যবধান নির্ণয়ের জন্য সারণিঃ

শ্রেণি	শ্রেণি	শ্রমিক সংখ্যা	$d = \frac{x - a}{h}$	fd	fd^2
ব্যাপ্তি	মধ্যবিন্দু	(f_i)	h		
(বৈতন)	(x_i)				
20-22	21	5	-3	15	45
23-25	24	10	-2	-20	40
26-28	27	26	-1	-26	26
29-31	30 ← a	30	0	0	0
32-34	33	16	1	16	16
35-37	36	8	2	16	32
38-40	39	5	3	15	45
h = 3		n = 100		$\sum_{} fd = -14$	$\sum_{} fd^2 = 204$

∴পরিমিত ব্যবধান,
$$\sigma = \sqrt{\frac{\sum fd^2}{n} - (\frac{\sum fd}{n})^2} \times h$$

$$= \sqrt{\frac{204}{100} - (\frac{-14}{100})^2} \times 3 = \sqrt{2.02} \times 3 = 4.246$$
প্রায়)

8. নিপার একটি ফুলের বাগান আছে বাগানটিতে ৬০ টি বিভিন্ন জাতের ফুল গাছ আছে গাছগুলোর উচ্চতার মধ্যক ২৮.৫ সেন্টিমিটার।

উচ্চতা (সেমি)	0-10	10-20	20-30	30-40	40-50	50-60
গাছের সংখ্যা	5	х	20	15	у	5

- ক. x ও y মান নির্ণয় করে সারণিটি পুরণ করো।
- খ. সংক্ষিপ্ত পদ্ধতিতে গাছগুলোর উচ্চতার গড় নির্ণয় করো।
- গ. ক তে প্রাপ্ত সারণি হতে মধ্যক এবং প্রচুরক বের কর।

৪ নং প্রশ্নের সমাধানঃ

(ক) এখানে,
$$n=$$
 গাছের সংখ্যার সমষ্টি = $5+x+20+15+y+5=x+y+45$

আবার, দেওয়া আছে, n = 60

$$x + y + 45 = 60$$

বা,
$$x+y = 60-45$$

বা,
$$x+y = 15(i)$$

আবার, দেওয়া আছে,

মধ্যক $M_e=28.5$ যা নির্দেশ করে এই মান উচ্চতা শ্রেণি 20-30 এ রয়েছে।

তাহলে, এখানে, 20-30 শ্রেণির নিম্নসীমা, L=20; $\frac{n}{2}=30$; 20-30 এর পূর্বের শ্রেণির ক্রমযোজিত গাছের সংখ্যা, $F_c=5+x$;

শ্রেণি ব্যবধান, h=10;

20-30 শ্রেণিতে গাছের সংখ্যা, $f_m=20$

$$\therefore$$
 মধ্যক, $\mathrm{M}_e = L + \left(\frac{n}{2} - F_c\right) \times \frac{h}{f_m}$

বা,
$$28.5 = 20 + (30-5-x) \times \frac{10}{20}$$
 বা, $28.5 = 20 + (25-x)$

$$\times\frac{1}{2} \quad \text{al, } (25\text{-}x) \times \frac{1}{2} = 28.5\text{-}20 \quad \text{al, } (25\text{-}x) \times \frac{1}{2} = 8.5$$

$$\text{al, } (25\text{-}x) = 17 \quad \text{al, } -x = 17\text{-}25 \quad \text{al, } -x = -8 \quad \text{al, } x = 8$$

বা, (25-x) = 17 বা, -x = 17-25 বা, -x = -8 বা, x = এখন, x=8, (i) নং এ বসিয়ে পাই,

$$8+y = 15$$

বা,
$$y = 15-8 = 7$$

∵ x ও y এর মান নির্ণয় পুর্বক সারণিটি নিয়রুপঃ

উচ্চতা (সেমি)	গাছের সংখ্যা
0-10	5
10-20	8
20-30	20
30-40	15
40-50	7
50-60	5

(খ) সংক্ষিপ্ত পদ্ধতিতে গড় নির্ণয়ের জন্য নিচের সারণিটি প্রস্তুত করিঃ

উচ্চতা	শ্রেণি	গাছের	$u_i =$	$f_i u_i$
(সেমি)	মধ্যমান	সংখ্যা	(Xi-	
	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	a)/h	
0-10	5	5	-3	-15
10-	15	8	-2	-16
20				
20-	25	20	-1	-20
30				
30-	35 =	15	0	0
40	a			
40-	45	7	1	7
50				
50-	55	5	2	10
60				
h=10		n=60		$-f_iu_i =$
				34

সংক্ষিপ্ত পদ্ধতিতে গাছগুলোর উচ্চতার গড়

=
$$a + \left(\frac{\sum f_i u_i}{n}\right) \times h$$

= $35 + \left(\frac{-34}{60}\right) \times 10$
= $35 - 5.67 = 29.33$ (21)

(গ) এখানে মোট গাছের সংখ্যা, $n{=}60$ সুতরাং মধ্যক শ্রেণি $20{-}30$ ।

উচ্চতা (সেমি)	গাছের সংখ্যা	ক্রমযোজিত গণসংখ্যা
0-10	5	5
10-20	8	13)
20-30	20	33
30-40	15	48
40-50	7	55
50-60	5	60

$$\therefore$$
 মধ্যক $(M_e) = L + \left(\frac{n}{2} - F_c\right) \times \frac{h}{f_m}$

$$= 20 + \left(\frac{60}{2} - 13\right) \times \frac{10}{20} = 28.5$$
 \therefore আমরা জানি, প্রচুরক= $L + \frac{f_1}{f_1 + f_2} \times h$

$$= 20 + \frac{12}{12 + 5} \times 10 = 27.05$$
 (প্রায়)

প্রাপ্তিস্থানঃ নুর স্টেশনারি, ফারহান ফাইয়াজ গেট, ঢাকা রেসিডেনসিয়াল মডেল কলেজ RIFIELDE