Lake Okeechobee System Operating Manual (WQ Subteam)

DRAFT - Estuary Nutrient Loading Model

FDEP - Office of Water Policy and Ecosystem Restoration

September 18, 2020

S-79 Water Quality Model

- **Goal:** Develop a series of water quality models based on hydrodynamic indicators to be used in planning model scenario evaluation for LOSOM using RSMBN.
- Period of Record: May 1980 April 2019 (WY1981 2019)
 - Based on available data.
 - Years with major hurricanes were excluded.
- Parameters of Interest: Total Phosphorus and Total Nitrogen.
- **Predictor Variables:** Discharge (S77, S78, S79, C43 Basin) converted from ft³ s⁻¹ to Acre-Ft d⁻¹ and Lake Okeechobee stage elevation were considered.
- Statistical Modeling:
 - Multiple regression models using training and testing datasets (70:30).
 - Training dataset: randomly sampled 70% of monthly data
 - Testing dataset: remaining 30% was used for model testing
 - Verified with k-fold cross-validation linear modeling.

Regional Simulation Model - Basins (RSMBN)

- A link-node application of the Regional Simulation Model (RSM) specific to Lake Okeechobee and Basins.
 - >100 basins/lakes/canals represented
 - >150 connections represented
- Used in prior planning efforts.

RSMBSN Link-Node Routing Diagram: Initial Operating Regime Baseline Simulation

Geographical representation of RSM-BN

- Annual TP and TN loads were estimated by interpolating water quality concentration daily from grab samples collected at each respective structure during days of observed flow (consistent with SFWMD Nutrient Load Program).
 - Period of Record was restricted to WY 1982 2019.
- Major hurricane years were excluded from the dataset.
 - Major hurricane years were identified by major storms centerline that passed within 20 km of the C43 Basins and Lake Okeechobee.

- TP load was square-root transformed to fit the assumptions of linear modeling
- Model assumptions and verified
 - GVLMA (Global Stats = 4.37, ρ =0.36)
- Variance inflation factors (VIF) evaluated for model
- Residuals check for autocorrelation (Breusch-Godfrey test)
 - Breusch-Godfrey (LM test = 0.27, df = 1, ρ =0.60)
- Final Model:

$$\sqrt{TPLoad_{S79}} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

$$\sqrt{TPLoad_{S79}} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

• Model Output:

Parameter	Estimate	Standard Error	t-value	ρ-value	VIF
(Intercept)	30.68	181.80	0.17	0.87	
Q_{C43}	2.17x10 ⁻⁴	7.33x10 ⁻⁵	2.95	<0.01	2.96
Q _{s77}	4.16x10 ⁻⁵	3.07x10 ⁻⁵	1.36	0.19	1.59
Mean Lake Stage	17.07	15.70	1.09	2.89	2.89

Residual standard error (σ): 65.71 on 16 degrees of freedom

Multiple R2: 0.79; Adj R2: 0.75

F-statistic: 20.33 on 3 and 16 DF; ρ-value<0.01

$$\sqrt{TPLoad_{S79}} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Relative importance of each predictor calculated by partitioning R^2 by averaging sequential sums of squares over all orders of regressors (Lindeman et al 1979). All metrics are normalized to a sum of 100%.

Relative Importance Metrics for the S79 TP Load annual model.

Predictor	Percent of R ²		
Q _{C43}	46.5		
Q ₅₇₇	21.0		
Mean Lake Stage	32.3		

$$\sqrt{TPLoad_{S79}} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Actual versus predicted TP loads at S-79 based on predictive model. Actual and predicted concentration were highly correlated (Spearman's correlation: r=0.83, ρ <0.01).

Train:Test

• $R^2: 0.79$

• RMSE: 65.71

• Mean Absolute Present Error: 21%

Min-Max Accuracy: 82 %

$$\sqrt{TPLoad_{S79}} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Actual versus predicted TP loads at S-79 with each k-model presented.

k-fold (k=10)

Cross-validation error (average k errors)

• $R^2: 0.79$

• RMSE: 61.0

• Mean Absolute Present Error: 24 %

• Min-Max Accuracy: 82 %

- No response variable transformation performed
- Model assumptions and verified
 - \circ GVLMA (Global Stats = 4.77, ρ =0.31)
- Variance inflation factors (VIF) evaluated for model
- Residuals check for autocorrelation (Breusch-Godfrey test)
 - Breusch-Godfrey (LM test = 0.73, df = 1, ρ =0.39)
- Final Model:

$$TNLoad_{S79} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

$$TNLoad_{S79} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

• Model Output:

Parameter	Estimate	Standard Error	t-value	ρ-value	VIF
(Intercept)	5.20x10 ⁴	1.14x10 ⁶	-0.05	0.96	
Q_{C43}	2.42	0.46	5.27	<0.01	2.96
Q _{S77}	1.16	0.19	6.02	<0.01	1.59
Mean Lake Stage	2.35x10 ³	9.83x10 ⁴	0.02	0.98	2.89

Residual standard error (σ): 4.11x10⁵ on 16 degrees of freedom

Multiple R²: 0.93; Adj R²: 0.92

F-statistic: 73.87 on 3 and 16 DF; ρ-value<0.01

$$TNLoad_{S79} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Relative importance of each predictor calculated by partitioning R² by averaging sequential sums of squares over all orders of regressors (Lindeman et al 1979). All metrics are normalized to a sum of 100%.

Relative Importance Metrics for the S79 TN Load annual model.

Predictor	Percent of R ²		
Q _{C43}	39.6		
Q ₈₇₇	37.9		
Mean Lake Stage	22.5		

$$TNLoad_{S79} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Actual versus predicted TP loads at S-79 based on predictive model. Actual and predicted concentration were highly correlated (Spearman's correlation: r=0.95, ρ <0.01).

Train:Test

• $R^2: 0.93$

• RMSE: 4.11x10⁵

• Mean Absolute Present Error: 10 %

• Min-Max Accuracy: 92 %

$$TNLoad_{S79} = Q_{C43Basin} + Q_{S77} + MeanLakeStage$$

Actual versus predicted TP loads at S-79 with each k-model presented.

k-fold (k=10)

Cross-validation error (average k errors)

• $R^2: 0.94$

• RMSE: 3.57x10⁵

• Mean Absolute Present Error: 11 %

• Min-Max Accuracy: 90 %

S-79 Water Quality Models

Annual observed versus predicted (\pm 95% CI) S-79 load during the period of record (WY1982 – WY 2019) with hurricane years identified.

S-79 Water Quality Models

Annual observed versus predicted (\pm 95% CI) S-79 load during the period of record (WY1982 – WY 2019) with hurricane years identified.

S-79 Water Quality Models

Application of model with RSM-BN outputs¹

Provisional RSM BN outputs with POR extension. For demonstration/testing purposes only.

Application of model with RSM-BN outputs¹

Provisional RSM BN outputs with POR extension. For demonstration/testing purposes only.

Acknowledgements

Data

South Florida Water Management District (DBHYDRO)

Slides

HTML Slide deck © Julian (2020)

RMarkdown Source

Draft FDEP Work Product