LOW POLYMERIZATION OF ALPHA-OLEFIN

Publication number: JP7017878

Publication date: 1995-01-20

Inventor: TANAKA EIJI; URATA HISAO; OSHIKI TOSHIYUKI;

AOSHIMA NORIYUKI

Applicant: MITSUBISHI CHEM CORP

Classification:

- international: C07B61/00; C07C2/30; C07C2/32; C07C11/107;

C08F2/00; C08F2/04; C08F2/06; C08F2/38; C08F4/60; C08F4/69; C08F10/00; C10G50/00; C07B61/00; C07B61/00; C07C2/00; C07C11/00; C08F2/00; C08F2/04; C08F2/38; C08F4/00; C08F10/00; C10G50/00; C07B61/00; (IPC1-7): C07B61/00; C07C11/107; C07C2/30: C07C2/32: C08F2/00:

C08F2/06; C08F4/69; C08F10/00; C10G50/00

- European:

Application number: JP19930163589 19930701 Priority number(s): JP19930163589 19930701

Report a data error here

Abstract of JP7017878

PURPOSE:To provide low polymerization method capable of selectively obtaining a product mainly consisting of trimer, especially 1-hexene in a high yield and suppressing the production of polymer having high molecular weight in a low polymerization of alpha-olefin, especially ethylene. CONSTITUTION:This low polymerization of alpha-olefin is carried out with the use of chromium catalyst consisting of chromium salt, amine and alkylaluminum compound. The low polymerization of alpha-olefin is carried out by using a hydrocarbon as a solvent and further an aromatic hydrocarbon compound having less than 2 of allphatic hydrocarbon substitution group is used in the range of <=40% of a feed solution of this low polymerization.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-17878

(43)公開日 平成7年(1995)1月20日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ					技術表示箇所
C 0 7 C	11/107		9280 - 4H						
	2/30								
	2/32								
C 0 8 F	2/00	MDA							
	2/06	MAW							
			審査請求	未請求	請求項	の数4	OL	(全 10 頁)	最終頁に続く
(21)出願番号	寻	特願平5-163589		(71)	出願人	000005	5968		
						三菱化	学株式	会社	
(22)出願日		平成5年(1993)7月	月1日			東京都	7千代田	区丸の内二丁	目5番2号
				(72)	発明者	田中	栄司		
						岡山県	倉敷市	潮通三丁目10	番地 三菱化成
						株式会	社水島	工場内	
				(72)	発明者	浦田	尚男		
						神奈川	県横浜	市緑区鴨志田	町1000番地 三
						菱化成	株式会	社総合研究所	内
				(72)	発明者	押木	俊之		
						神奈川	県横浜	市緑区鴨志田	町1000番地 三
						菱化成	株式会	社総合研究所	内
				(74)	代理人	弁理士	. 長谷	川 曉司	
									最終頁に続く

(54) 【発明の名称】 α-オレフィンの低重合方法

(57)【要約】

【構成】 クロム塩、アミン、およびアルキルアルミニウム化合物からなるクロム触媒を用いてα-オレフィンを低重合する方法において、溶媒として脂肪族炭化水素を用い、2個以下の脂肪族炭化水素置換基を有する芳香族炭化水素化合物を、仕込みの溶液量の40%以下の範囲の量用いて低重合反応を行うことを特徴とするα-オレフィンの低重合方法。

【効果】 本発明方法によれば、 α -オレフィン、特に エチレンを低重合させて、選択的に三量体を主体とした 生成物、特に1-ヘキセンが高収率で得られ、かつ、高 分子量重合体の生成を抑制することができるため、多大 な工業的利益を提供する。

【特許請求の範囲】

【請求項1】 クロム塩、アミン、およびアルキルアル ミニウム化合物からなるクロム触媒を用いて α-オレフ ィンを低重合する方法において、溶媒として脂肪族炭化 水素を用い、2個以下の脂肪族炭化水素置換基を有する 芳香族炭化水素化合物を、仕込みの溶液量の40%以下 の範囲の量用いて低重合反応を行うことを特徴とする α -オレフィンの低重合方法。

【請求項2】 アミンおよびアルキルアルミニウム化合 物を含む溶液中に、 α -オレフィンおよびクロム塩を導 10 43-18707号公報に記載された方法では、<math>1-ヘキ 入することを特徴とする請求項1に記載のα-オレフィ ンの低重合方法。

【請求項3】 クロム塩およびアミンを含む溶液中に、 α-オレフィンおよびアルキルアルミニウム化合物を導 入することを特徴とする請求項1に記載のα-オレフィ ンの低重合方法。

【請求項4】 α -オレフィンがエチレンであり、主生 成物が1-ヘキセンであることを特徴とする請求項1か ら3に記載のα-オレフィンの低重合方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はα-オレフィンの低重合 方法に関するものである。より詳しくは、クロム系触媒 を用いて、特にエチレンから選択的に三量体を主体とし た生成物を高収率で得ることができる α-オレフィンの 低重合方法に関する。

[0002]

【従来の技術】従来から、特定のクロム化合物と特定の 有機アルミニウム化合物の組み合せからなる触媒を用 られている。例えば、特公昭43-18707号公報に は、一般式MXnで表されるCrを含むVIA族の遷移 金属化合物とポリヒドロカルビルアルミニウムオキシド からなる触媒系により、エチレンから1-ヘキセンとポ リエチレンを得る方法が記載されており、また、特開平 3-128904号公報には、クロム-ピロリル結合を持 つクロム含有化合物と金属アルキル又はルイス酸とを予 め反応させて得られた触媒を用いてα-オレフィンを三 量化する方法が記載されている。

【0003】一方、先に本発明者らは、クロム-ピロリ 40 【0009】以下、本発明をより詳細に説明する。 ル結合を持つクロム含有化合物、α-オレフィン、およ びアルキルアルミニウムの接触方法を規定することによ り、α-オレフィンの低重合反応を行う方法を提案し た。この方法に従えば、特にエチレンの低重合反応によ り、1-ヘキセンを驚異的な高活性で得ることができ る。さらに、本発明者らはクロム-ピロリル結合を有す るクロム含有化合物を炭化水素を溶媒とすることで煩雑 な操作なしで高収率で製造し、なおかつこれをアルキル アルミニウム化合物と組み合わせて用いることによっ

化反応を高活性で行い、純度の高い1-ヘキセンを生成

させることのできる方法も提案した。 【0004】また、最近本発明者らは、クロム塩、アミ ン、α-オレフィン、およびアルキルアルミニウム化合

物の接触方法を規定することにより、α-オレフィンの 低重合反応、特にエチレンの三量化反応を行なう方法も 提案した。

[0005]

【発明が解決しようとする課題】しかしながら、特公昭 センと同時に生成するポリエチレンの量が多く、ポリエ チレンの量を少なくしようとすると、全体の活性が低下 するという問題があり、一方、特開平3-128904 号公報に記載された方法は、高分子量重合体の生成量は 少ないが、触媒活性が十分でないという問題がある。

【0006】本発明は、上記のような従来方法の持つ問 題を解決し、高収率であり高選択率で工業的有利に α-オレフィンの低重合物、特に1-ヘキセンを得ることを 可能とする、新規な α-オレフィンの低重合方法を提供 20 することを目的とするものである。

[0007]

【課題を解決するための手段】本発明者らは、かかる目 的を達成すべく鋭意検討を進めた結果、クロム塩、アミ ン、およびアルキルアルミニウム化合物からなるクロム 触媒を用いてα-オレフィン、とくにエチレンを低重合 する方法において、溶媒として脂肪族炭化水素を用い、 2個以下の脂肪族炭化水素置換基を有する芳香族炭化水 素化合物を、仕込みの溶液量の40%以下の範囲の量用 いて低重合反応を行うことにより、極めて高いα位選択 α 、エチレン等の α -オレフィンを低重合することは知 30 性で1-ヘキセンが生成することを見出し、本発明を完 成した。

> 【0008】即ち、本発明の要旨は、クロム塩、アミ ン、およびアルキルアルミニウム化合物からなるクロム 触媒を用いてα-オレフィンを低重合する方法におい て、溶媒として脂肪族炭化水素を用い、2個以下の脂肪 族炭化水素置換基を有する芳香族炭化水素化合物を、仕 込みの溶液量の40%以下の範囲の量用いて低重合反応 を行うことを特徴とする α-オレフィンの低重合方法に 存する。

【0010】本発明において使用されるクロム塩は、一 般式CrXn(式中、クロムの価数は1価ないし6価で あり、Xは同一、又は、相互に異なる任意の有機又は無 機の基であり、nは1ないし6の整数である。)で表さ れる。nの数としては2以上が好ましい。有機基として は、炭化水素基、カルボニル基、アルコキシ基、カルボ キシル基、β-ジケトナート基、β-ケトエステル基およ びアミド基等が例示される。有機基の炭素数は、通常1 ~30であり、炭化水素基としてはアルキル基、シクロ て、α-オレフィンの低重合反応、特にエチレンの三量 50 アルキル基、アリール基、アルキルアリール基、アラル

キル基等が挙げられる。無機基としては、ハロゲン、硝 酸基、硫酸基、または酸素等が挙げられる。好ましく は、クロム塩はアルコキシ塩、カルボキシル塩、β-ジ ケトナート塩、β-ケトエステルのアニオンとの塩、あ るいはハロゲン化物であり、具体的にはクロム(IV)tert -ブトキシド、クロム(III)アセチルアセトナート、クロ ム(III)トリフルオロアセチルアセトナート、クロム(II I) ヘキサフルオロアセチルアセトナート、クロム(II I) (2, 2, 6, 6-テトラメチル-3, 5-ヘプタンジ オナート)、Cr (PhCOCHCOPh)。(但しここ 10 る。クロムの各種シクロペンタジエニル錯体、アルキル でPhはフェニル基を示す。)、クロム(II)アセテー ト、クロム(III)アセテート、クロム(III) 2-エチルヘ キサノエート、クロム(III)ベンゾエート、クロム(III) ナフテネート、Cr (CH₈ COCHCOOCH₈)₈、塩 化第一クロム、塩化第二クロム、臭化第一クロム、臭化 第二クロム、ヨウ化第一クロム、ヨウ化第二クロム、フ ッ化第一クロム、フッ化第二クロム等が挙げられる。ま た、これらのクロム塩と電子供与体からなる錯体も用い ることができる。電子供与体としては、窒素、酸素、リ ン、及び硫黄化合物の中から選択される。窒素含有化合 20 示したクロム塩及び金属ピロリドを溶媒中で反応させる 物としては、ニトリル、アミン、アミド等が挙げられ、 具体的には、アセトニトリル、ピリジン、ジメチルピリ ジン、ジメチルホルムアミド、N-メチルホルムアミ ド、アニリン、ニトロベンゼン、テトラメチルエチレン ジアミン、ジエチルアミン、イソプロピルアミン、ヘキ サメチルジシラザン、ピロリドン等が挙げられる。酸素 含有化合物としては、エステル、エーテル、ケトン、ア ルコール、アルデヒド等が挙げられ、具体的には、エチ ルアセテート、メチルアセテート、テトラヒドロフラ ン、ジオキサン、ジエチルエーテル、ジメトキシエタ ン、ジグライム、トリグライム、アセトン、メチルエチ ルケトン、メタノール、エタノール、アセトアルデヒド 等が挙げられる。リン化合物としては、ヘキサメチルフ ォスフォルアミド、ヘキサメチルフォスフォラストリア ミド、トリエチルフォスファイト、トリプチルフォスフ ィンオキシド、トリエチルフォスフィン等が例示され る。硫黄含有化合物としては、二硫化炭素、ジメチルス ルフォキシド、テトラメチレンスルフォン、チオフェ ン、ジメチルスルフィド等が例示される。従って、クロ ム塩と電子供与体からなる錯体例としては、ハロゲン化 40 ある。 クロムのエーテル錯体、エステル錯体、ケトン錯体、ア ルデヒド錯体、アルコール錯体、アミン錯体、フォスフ ィン錯体、チオエーテル錯体等が挙げられ、具体的に は、CrCl3・3THF、CrCl3・3dioxan e, CrCl3 · (CH3 CO2 n-C4H9), CrCl3 · (CH₃ CO₂ C₂ H₅), CrCl₃·3 (1-C₃ H₇ O H), $CrC1_3 \cdot 3$ [CH₃ (CH₂) $_3$ CH (C₂H₅) CH2OH], CrCl3·3pyridine, CrC $1_{\,3}\, \cdot \, 2$ (i - $C_{\,3}\, H_7\, N\, H_2)$, [C r C $I_{\,3}\, \cdot \, 3$ C H_3 C

2THF, CrCl₂·2pyridine, CrCl₂ • 2 [(C₂ H₅)₂ NH], CrCl₂• 2CH₃ CN, C r C 12・2 [P (CH3) 2 Ph] 等が挙げられる。ク ロム塩としては、炭化水素溶媒に可溶な化合物がより好 ましく、クロムのβ-ジケトナート塩、クロムのカルボ ン酸塩、クロムのβ-ケトエステルのアニオンとの塩、 クロムのβ-ケトカルボン酸塩、クロムのアミド錯体、 クロムのカルボニル錯体、クロムの各種シクロペンタジ エニル錯体、アルキル錯体、フェニル錯体等が挙げられ 錯体、フェニル錯体等としては、CpCrC12(ここ でCpはシクロペンタジエニル基を示す。)、(Cp*C r C 1 CH₈)₂ (ここでC p*はペンタメチルシクロペン タジエニル基を示す。)、(CHs)2CrC1等が例示 される。

【0011】また、本発明のクロム触媒であるクロム塩 およびアミンの代わりに、例えばクロム-ピロリル結合 を有するクロム含有化合物を用いることもできる。クロ ム-ピロリル結合を有するクロム含有化合物は、先に例 ことにより得られる。金属ピロリドは、ピロール、およ びピロールの誘導体から誘導されるものを指し、ピロー ル誘導体としては、2,5-ジメチルピロール、3,4-ジメチルピロール、3, 4-ジクロロピロール、2, 3、4、5-テトラクロロピロール、2-アシルピロール 等が挙げられ、金属としては、IA族、IIA族、II IB族、およびIVB族から選択される。好ましい金属 ピロリドとしては、リチウムピロリド、ナトリウムピロ リド、カリウムピロリド、セシウムピロリド等が挙げら 30 れる。また、金属ピロリドの代りに、ピロール、および ピロール誘導体そのものを用いてもよい。

【0012】また、本発明においては、クロム触媒とし てクロム塩およびアミンを用いることで、空気あるいは 湿度に対して極めて不安定なクロム-ピロリル結合を有 するクロム含有化合物を一旦合成単離する必要がない。 従って、α-オレフィンの低重合プロセスの他に該クロ ム含有化合物の製造工程、単離工程を経る必要がなく、 さらには不安定な該化合物の貯蔵槽が不要であり、全体 の製造プロセスにかかる建設費が安くなるという利点が

【0013】本発明においては、クロム塩あるいはクロ ム-ピロリル結合を含むクロム含有化合物を無機酸化物 等の担体に担持して用いることもできるが、好ましくは そのような操作をせずに、単にアルキルアルミニウム化 合物および/またはアミンと組み合わせるだけで用いる のがよい。本発明における α-オレフィンの低重合は、 通常、炭化水素溶媒中で行われるが、クロム塩およびク ロム含有化合物の濃度は、溶媒1リットルあたり0.1 $mg\sim5g$ であり、好ましくは $1mg\sim2g$ である。

N] ・CH₃ CN、CrCl₃・3 PPh₃、CrCl₂・ 50 【0014】本発明の触媒系のもう一つの構成要素であ

るアミンは、1級または2級のアミン、1級または2級 のアミンから誘導される金属アミド、およびこれらの混 合物を総称してアミンと呼ぶこととする。1級アミンと しては、アンモニア、エチルアミン、イソプロピルアミ ン、シクロヘキシルアミン、ベンジルアミン、アニリ ン、ナフチルアミン等が例示され、2級アミンとして は、ジエチルアミン、ジイソプロピルアミン、ジシクロ ヘキシルアミン、ジベンジルアミン、ビス(トリメチル シリル) アミン、モルホリン、イミダゾール、インドリ ル、3、4-ジメチルピロール、3、4-ジクロロピロー ル、2、3、4、5-テトラクロロピロール、2-アシル ピロール、ピラゾール、ピロリジン等が例示される。1 級または2級のアミンから誘導される金属アミドとして は、上で例示した1級又は2級のアミンとIA族、II A族、IIIB族、およびIVB族から選択される金属 との反応により得られるアミドであり、例えば、リチウ ムアミド、ナトリウムエチルアミド、カルシウムビス (エチルアミド)、リチウムジイソプロピルアミド、カ リウムベンジルアミド、ナトリウムビス(トリメチルシ 20 ることにより α-オレフィンの低重合反応を行う。アル リル) アミド、リチウムインドリド、ナトリウムピロラ イド、リチウムピロライド、カリウムピロライド、カリ* $R^1_n A I (OR^2)_n H_p X_q$

(式中、 R^{T} および R^{2} は、炭素数が通常 $1\sim15$ 、好ま しくは1~8の炭化水素基であって互いに同一であって も異なっていてもよく、Xはハロゲン原子を表し、mは $0 \le m \le 3$, $n \ne 0 \le n \le 3$, $p \ne 0 \le p \le 3$, $q \ne 0 \%$

R13 A 1

(式中、R¹は前記と同じ)で示されるトリアルキルア★ ★ルミニウム化合物、 R1 n A 1 X3-n

(式中、R¹およびXは前記と同じ。mは1.5≦m<3 である。) で示されるハロゲン化アルキルアルミニウム☆ R1 A 1 (OR2) 3 m

(式中、 R^1 及び R^2 は前記と同じ。mは0 < m < 3、好 ましくは1.5 \leq m<3である。) で示されるアルコキ \spadesuit R1 A 1 H3-1

(式中、 R^{1} は前記と同じ。mは0<m<3、好ましく は1.5≤m<3である。) で示される水素化アルキル アルミニウム化合物等が挙げられる。具体的にはトリメ ブチルアルミニウム、ジエチルアルミニウムモノクロリ ド、ジエチルアルミニウムエトキシド、ジエチルアルミ ニウムヒドリド等が挙げられ、これらのアルキルアルミ ニウム化合物のうちトリメチルアルミニウム、トリエチ ルアルミニウム、ジエチルアルミニウムヒドリド等がよ り好ましい。

【0017】アルキルアルミニウム化合物の使用量は、 0.1mmol/クロム塩g以上であるが、5mmol /クロム塩gより大きくするのが活性、三量体の選択率 が向上する点で好ましい。本発明において使用される 2 50 【 0 0 1 8 】 2 個以下の脂肪族炭化水素置換基を有する

*ウムピロリジド、アルミニウムジエチルピロライド、エ チルアルミニウムジピロライド、アルミニウムトリピロ ライド等が挙げられる。アミンとしては、2級のアミ ン、あるいは2級のアミンから誘導されるアミド、およ びこれらの混合物が好ましく、具体的には、ピロール、 2, 5-ジメチルピロール、3, 4-ジメチルピロール、 3, 4-ジクロロピロール、2, 3, 4, 5-テトラクロ ロピロール、2-アシルピロール、およびアルミニウム ピロライド、エチルアルミニウムジピロライド、アルミ ン、インドール、ピロール、2,5-ジメチルピロー 10 ニウムトリピロライド、ナトリウムピロライド、リチウ ムピロライド、カリウムピロライド等が挙げられる。 【0015】アミンの使用量としては、クロム塩に対し て0.001当量以上であれば良く、上限としては特に 制限はないが、不必要に多量のアミンを使用する必要は ない。好ましいアミンの使用量としては、クロム塩に対 して0.005当量~1000当量であり、さらに好ま しくは0.01当量~100当量の範囲が挙げられる。

【0016】本発明においては、以上のようなクロム塩 とアミンとアルキルアルミニウム化合物とを組み合わせ キルアルミニウム化合物としては、下記一般式

...(1)

%≤q<3のそれぞれの数であって、しかもm+n+p+q=3である数を表す。) で示されるアルキルアルミニ ウム化合物が好ましく、例えば、

 $\cdots (2)$

 \cdots (3)

☆化合物、

 $\cdots (4)$

◆シアルミニウム化合物、

...(5)

個以下の脂肪族炭化水素置換基を有する芳香族炭化水素 化合物における脂肪族炭化水素置換基としては、メチル 基、エチル基、プロピル基、イソプロピル基、ブチル チルアルミニウム、トリエチルアルミニウム、トリイソ 40 基、シクロプロピル基、シクロブチル基、シクロヘキシ ル基等の鎖状あるいは脂環式炭化水素基が例示される。 使用される炭化水素置換芳香族炭化水素化合物の具体例 としては、ベンゼン、トルエン、エチルベンゼン、o-キシレン、m-キシレン、p-キシレン、クメン、p-シ メン、1,4-ジブチルベンゼン、tert-ブチルベン ゼン、1、4-ジ-tert-ブチルベンゼン、シクロへ キシルベンゼン、1,4-ジシクロヘキシルベンゼン、 メチルナフタレン、2,6-ジメチルナフタレン、1, 5-ジメチルナフタレン等が挙げられる。

芳香族炭化水素化合物の添加量は、好ましくは仕込みの 溶液量の0.1ppm以上、好ましくは10ppm以 上、更に好ましく0.1%以上であり、上限としては、 40%以下、好ましくは30%以下、さらに好ましくは 20%以下の範囲である。

【0019】本発明においては、2個以下の脂肪族炭化 水素置換基を有する芳香族炭化水素化合物を添加物とし てα-オレフィン、特にエチレンの低重合反応を行なう と、生成する α-オレフィンの純度が向上する。この理 香族炭化水素化合物が、クロム塩、アミン、およびアル キルアルミニウム化合物から調製されるクロム触媒に配 位することにより、ヘキセン類に含まれる二重結合の位 置異性体の生成が抑制されるため、1-ヘキセンの純度 が向上するものと考えられる。また、本発明で用いる脂 肪族炭化水素置換基を有する芳香族炭化水素化合物は、 どのような方法で反応系内に添加してもかまわない。

【0020】本発明では、これらのクロム塩、アミン、 およびアルキルアルミニウム化合物からなるクロム触媒 が活性種となってα-オレフィンの低重合がおこるが、 該クロム塩をアルキルアルミニウム化合物と前もって接 触させることなくα-オレフィンおよび該クロム触媒を 反応系に供給することが好ましい。そのためには、クロ ム塩とアルキルアルミニウム化合物とを、前もって物理 的に接触させないのが最も確実な方法であって、具体的 には、(1)アミンおよびアルキルアルミニウム化合物 を含む溶液中に、α-オレフィンおよびクロム塩を導入 する、(2)クロム塩およびアミンを含む溶液中に、α -オレフィンおよびアルキルアルミニウム化合物を導入 する、(3)クロム塩を含む溶液中に、α-オレフィ 30 る点が好ましい。 ン、アミンおよびアルキルアルミニウム化合物を導入す る、(4)アルキルアルミニウム化合物を含む溶液中 に、α-オレフィン、クロム塩およびアミンを導入す る、(5)クロム塩、アミン、アルキルアルミニウム化 合物および α-オレフィンをそれぞれ同時に独立に反応 系に導入する方法等が挙げられる。

【0021】クロム塩を、前もってアルキルアルミニウ ム化合物と反応させた場合、他の反応方法に比べ、α-オレフィンの低重合反応活性が低くなる。この理由は未 を反応させた場合、クロム塩に配位している配位子と、 アルキルアルミニウム化合物中のアルキル基との間で配 位子交換反応が進行すると考えられるが、この際生成す るアルキル-クロム化合物は、それ自身では不安定であ り、アルキルークロム化合物の分解還元反応が優先して 進行し、その結果として低重合反応には不適当な脱メタ ル化が起こってしまうため、α-オレフィンの低重合反 応活性が低下するものと考えられる。

【0022】本発明における反応温度は0~250℃で

力は常圧ないし250kg/cm²で行うが、100kg/ cm²以下で十分である。本発明においては、脂肪族炭化 水素溶媒を用いて低重合反応が実施され、ブタン、ペン タン、ヘキサン、ヘプタン、オクタン、シクロヘキサ ン、メチルシクロヘキサン、デカリン等の直鎖状または 脂環式の飽和炭化水素、5-デセン、6-ドデセン、シク ロヘキセン、シクロオクテン等の鎖状または環状の不飽 和炭化水素化合物が使用される。これらの溶媒のうち、 直鎖状または脂環式の飽和炭化水素が好ましい。また、 由については未だ推定の域をでないが、炭化水素置換芳 10 反応原料のα-オレフィンそのもの、あるいは反応の主 原料以外のα-オレフィンを溶媒として用いることもで きる。これらの α -オレフィンとしては、4から30の 炭素数を有するものが使用されるが、常温で液状のもの が特に好ましい。また、ここに例示した化合物の混合物 を反応溶媒として用いても差し支えない。

> 【0023】本発明において用いられる原料のα-オレ フィンは、置換、非置換の2~30の炭素原子を有する ものである。具体例としては、エチレン、プロピレン、 1-ブテン、1-ヘキセン、1-オクテン、3-メチル-1-20 ブテン、4-メチル-1-ペンテン等が挙げられる。特に 本発明はエチレンの低重合に好適であり、高活性で高選 択的に1-ヘキセンを得ることができる。

【0024】反応は回分式で実施できるが、活性の向上 よりも製品の高い純度が要求される連続式で反応を実施 する際にも本発明方法は効果的である。滞留時間として は、1分から20時間の範囲であるが、好ましくは0. 5~6時間である。本発明のα-オレフィンの低重合に おいては、反応時に水素を共存させることができる。水 素の共存により、活性、三量体選択率の向上が認められ

[0025]

【実施例】以下に、実施例および比較例により本発明を 更に詳細に説明するが、本発明は、その要旨を越えない 限り以下の実施例に限定されるものではない。

【0026】実施例1

150℃の乾燥器で加熱乾燥した300m1のオートク レーブを熱時に組み立て、真空窒素置換した。このオー トクレーブには破裂板を備えた触媒フィード管を取り付 けておいた。ヘプタン(47m1)、トリエチルアルミニ だ明らかではないが、クロム塩とアルキルアルミニウム 40 ウムのヘプタン溶液(0.4mmol、1ml)、ピロ ールのヘプタン溶液 (1.3ml、0.0625mmo 1)、およびベンゼン(1m1、9.41mmol)を オートクレーブ胴側に仕込み、一方、触媒フィード管に クロム (III) 2-エチルヘキサノエート (10mg、 0.0208mmo1) のヘプタン(1m1)溶液を仕込 んだ。この時点では、クロム塩とトリエチルアルミニウ ムは、接触していない。オートクレーブを100℃に加 熱し、次いで、100℃でエチレンを触媒フィード管よ り導入した。エチレン圧により破裂板が破裂し、クロム あるが、好ましくは0~150℃である。また、反応圧 50 塩がオートクレーブ胴側に導入されエチレンの低重合が

開始した。エチレンを全圧が35kg/cm2まで導入 し、以後、全圧を35kg/cm2に、反応温度を10 0℃に維持した。1時間後、エタノール圧入により反応 を停止し、生成物をガスクロマトグラフで定量した。結 果を表-2に示す。

【0027】実施例2

ベンゼンをトルエン (1ml、9.41mmol) とし たこと以外は実施例1と同様に反応を行った。

トルエンをオートクレーブ胴側に入れず、また、クロム 10 (III) 2-エチルヘキサノエート(10mg、0.02 08mmo1)のヘプタン溶液のかわりに、トルエン (1m1、9.41mmo1) 溶液を用いたこと以外は 実施例2と同様に反応を行った。

【0028】実施例4

トリエチルアルミニウムの使用量を0.8mmo1とし たこと以外は実施例2と同様に反応を行った。

実施例5

クロム塩をクロム(III) 2-エチルヘキサノエートの代 g、0.028mmo1)とし、ピロールの添加量を 0. 085mmo1とし、トリエチルアルミニウムの使 用量を0.57mmo1としたこと以外は実施例2と同 様に反応を行った。

【0029】 実施例6

ベンゼンをm-キシレン(1.15ml、9.41mm o 1) としたこと以外は実施例1と同様に反応を行っ た。

実施例7

メチルピロール (3 mg、0.0312 mmo1) と し、トリエチルアルミニウムの使用量を 0.2 mm o 1 とし、反応温度を90℃としたこと以外は実施例2と同 様に反応を行った。

【0030】実施例8

トルエン添加量を5m1とし、ピロールを2,5-ジメ チルピロール (5. 95mg、0. 0625mmo1) とし、反応温度を90℃としたこと以外は実施例2と同 様に反応を行った。

クロム触媒製造例 (Cr化合物-1の製造)

NaHO. 79g (16. 5mmol) & THF15m 1を加え、THF5m1に溶解したピロール1.0m1 (15mmol)を滴下した。室温で1時間攪拌した 後、この溶液をTHF25mlに懸濁したCrCls

0. 79g (5mmol) に滴下した。滴下後、20時 間加熱還流した。沈澱を濾別した後、溶媒を留去した結 果、黒色の粉末1.65gを得た。この粉末の各元素含 有量は以下の通りであった。

Cr: 6. 5%, C: 58. 0%, H: 6. 6%, N: 10.5%。

【0031】実施例9

クロム化合物をクロム(III) 2-エチルヘキサノエート の代わりにクロム触媒製造例で得られたCr化合物-1 (10mg) とし、オートクレーブ胴側にピロールを仕 込まなかったこと以外は実施例2と同様に反応を行っ た.

実施例10

150℃の乾燥器で加熱乾燥した300m1のオートク レーブを熱時に組み立て、真空窒素置換した。このオー トクレーブには破裂板を備えた触媒フィード管を取り付 けておいた。ヘプタン(44m1)、トルエン(1m1、 9. 41mmol)、およびトリエチルアルミニウムの ヘプタン溶液 (0.4 mm o 1、4 m 1) をオートクレ わりにクロム (III) アセチルアセトナート (10m 20 ーブ胴側に仕込み、一方、触媒フィード管にヘプタン (1m1) にスラリー化した、クロム触媒製造例で得ら れたCr化合物-1(10mg)を仕込んだ。水素を 3. 5 kg/cm² 導入し、オートクレーブを100℃ に加熱した。次いで、100℃でエチレンを触媒フィー ド管より導入した。エチレン圧により破裂板が破裂し、 エチレン、クロム化合物、トリエチルアルミニウム、お よび水素が同時に接触しエチレンの低重合が開始した。 エチレンを全圧が40kg/cm²まで導入し、以後、 全圧を40kg/cm²に、反応温度を100℃に維持 クロム塩の使用量を5mgとし、ピロールを2,5-ジ 30 した。1時間後、エタノール圧入により反応を停止し、 生成物をガスクロマトグラフで定量した。

【0032】比較例1

ベンゼンを添加しないこと以外は実施例1と同様に反応 を行った。

比較例2

ベンゼンを添加せず、ピロールを2,5-ジメチルピロ ール(0.0625mmol)としたこと以外は実施例 1と同様に反応を行った。

比較例3

40 トルエンを添加しないこと以外は実施例9と同様に反応 を行った。

[0033]

【表1】

1	J
_	_

The second secon				***************************************				
- 0 Z				実	施	16 6		
		- 1	2	3	Ŧ	5	9	<u>-</u>
Cr化合物		Cr (28HA) , ''	Cr (2EHA) 2 12	Cr(2BHA),"	Cr (2EHA) 317	Cr (acac) 32>	Cr(ZEHA)317	Cr (ZEHA) s 12
Cr化合物量	BW	10	10	10	10	10	10	5
アミン量	rano 1	0. 0625	0.0625	0.0625	0.0625	0.085	0.0625	0.0312*
Bt3A1量	rmo l	0.4	0.4	0.4	0.8	0.57	0.4	0.2
容殊		ヘプタン	ヘプタン	ヘナタン	ヘプタン	ヘプタン	ヘプタン	ヘプタン
容 媒 量	m]	20	20	20	50	50	20	20
芳香族化合物		ベンポン	トゲボン	トルエンも	トアイン	トプエン	- サンフン	トルエン
芳香族化合物添加量	la 1	1	-			_	1.15	_
エチレン圧	kg/cm²	35	33	35	35	35	35	35
H2 🖷	kg/cm²	0	0	0	0	0	0	0
金田	kg/cm²	35	33	35	35	35	35	35
反応溫度	ပ္	100	100	100	100	100	100	ط٥
反応時間	h	I	I	_	-	_	-	
连 1) Cl 2) Cl 3) Cl	$Cr(2BHA)_3 = \beta \square L(Cr(acac)_3 $	= 7 = 4 (II) 2 = 7 = 4 (II) 7	(II)2-エチルヘキサノエート (II)アセチルアセトナート	サノエート・ナート				
	カインスと、プインストンストン	アプロコーグの手さたは観察レイード値に供給した	Hitter はいたい これの はい はい はい はい はい はい はい かいしん					

[0034]

【表2】

13

表-1 つづき

· · · · · · · · · · · · · · · · · · ·		<u> </u>	778		
実	施	例	比	較	例
8	9	1 0	1	2	3
Cr (2BHA) 8 13	Cr化合物-1	Cr化合物-1	Cr (2EHA) s 1)	Cr(2EHA) a 13	Cr化合物-1
10	10	10	10 .	10	10
0. 062531	0	0	0. 0625	0. 0625°	0
0.2	0.4	0. 4	0.4	0. 2	0. 4
ヘプタン	ヘプタン	ヘプタン	ヘプタン	ヘプタン	ヘプタン
50	50	50	50	50	50
トルエン	トルエン	トルエン	_	_	
5	1	1	0	0	0
3 5	35	35	35	. 35	35
0	0	3. 5	0	0	0
35	35	40	35	35	35
90	100	100	100	100	100
1	1	l	1	1	1

[0035] [表3]

		75	۶ - X				
· (2			Juit.	美 加	施命	(9)	
		1	2	3	4	ល	9
オレフィン生成量	88	6.94	6. 25	6.44	9.03	9.64	5.96
	C 4	18.8	8.3	22.5	15.00	5.1	18.9
	金	47.8	63.0	49.8	58.2	₱ '6₱	48.7
組成分布	~ 1-Hexene純度	96. 1	96.5	96.7	96.00	94.9	96.3
	80	13.4	7.9	13.4	10.3	9	12.7
重 電 %	C10-C20	19.3	19.1	13.8	15.4	22.6	18.6
	C22-C30	0.6	1.5	0.3	9.0	9.3	0.4
	PE	0.1	0.4	0.2	0.5	7.7	0.5
触媒効率	gat/7/1//014代合物	694	625	644	305	₹96	296
触媒活性	g <i>tV74%/g</i> ∮u4+h	6430	5783	5960	8359	0410	5514

[54]

18

表-2 つづき

,	実	随		比	較	例
7	8	9	1 0	1	2	3
4. 55	5. 23	2.8	4. 56	7. 33	26. 95	1. 94
56. 8	57. 9	17. 5	13.9	10.5	10. 1	20.6
32. 1	29. 8	57. 9	64. 9	61	60. 3	55. 6
96. 5	98. 3	95. 1	94. 8	92.6	90. 1	92. 6
7. 3	8.5	9. 4	8. 4	8	5. 9	10.3
3. 5	3. 6	12. 1	10. 7	18. 9	23. 5	10. 3
0	0.05	0. 4	0. 4	0.8	0.2	0
0. 1	0, 2	2.7	1.7	0.8	0	2.8
909	523	280	456	733	2694	194
8420	4843	4308	7015	6791	24950	2980

[0037]

特にエチレンを低重合させて、選択的に三量体を主体と した生成物、特に1-ヘキセンが高収率で得られ、か つ、高分子量重合体の生成を抑制することができる。特 に、本発明方法を用いて、工業的に1-ヘキセンを製造

する場合、1-ヘキセンの純度が向上するので、蒸留等 【発明の効果】本発明方法によれば、 α -オレフィン、 20 による1-ヘキセンの精製操作が容易になり、精製装置 に要するコストを低減することができる。また、特に精 密な精製操作を行わずに純度の高い製品が得られるの で、工業的な利用価値が高い。

フロントページの続き

(51) Int. Cl. 6 識別記号 庁内整理番号 FΙ 技術表示箇所 C 0 8 F 4/69 MFG10/00 C 1 0 G 50/00 6958-4H // C07B 61/00 300

(72)発明者 青島 敬之

神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内