Song Popularity & Algorithm Comparison

Osher Boudara

09/28/22

Cognizant

Agenda

- 1. About Me
- 2. Motivation
- 3. Business/Technical Impact
- 4. Project Pipeline
- 5. Dataset
- 6. Data Preprocessing
- 7. Data Scaling
- 8. Algorithms
- 9. Results
- 10. Conclusion/Future Research

About Me: Osher Boudara

- Role
 - Data Engineer, Associate
- Interests
 - Machine Learning
 - Data Warehousing
 - Python Shorthand Techniques
- Fun Fact
 - Spent a year studying abroad in Israel after high school

Motivation

- Throughout history, music was only heard if played live or if one knew how to play.
 - Select few can classify what a popular or good song is.
- In the modern day, music streaming services allow us to listening to almost anything we want at the tip of our fingers.
 - Anyone can classify a popular or good song by simply listening to it on their mobile device.

VS.

Because of this, it is my interest to determine what makes a song popular.

Popular Then

Popular Now

Business Impact

- Musicians and record labels alike can utilize the certain features of a song to help create songs that will become popular.
- Further, using current data to build prediction models will give us insight into whether a new song created can be popular.

Short Term Impact	Long Term Impact	
Musicians can produce a popular song by utilizing certain song features over others.	Musicians and record labels can construct a system for using more favorable features to consistently produce popular songs.	Cognizant

Technical Impact

- In order to make valid predictions on whether a song is popular, it is important to figure out the best performing model.
- A few algorithms were used to learn what makes a song popular:
 - Linear Regression
 - XGBoost Regressor
 - Random Forest Regressor
- Algorithm metrics will be assessed to determine best performing model.

Project Pipeline

Dataset

- Spotify Dataset from Kaggle
- Dataset Shape:

O Rows: 232725

O Columns: 18

- Popularity
 - Target Feature
 - Value between 0-100 before scaling

Popularity	Max	Popularity Min
100		0

Dataset

genre	artist_name	track_name	track_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	time_signature	valence
0 Movie	Henri Salvador	C'est beau de faire un Show	0BRj06ga9RKCKjfDqeFgWV	0	0.611	0.389	99373	0.910	0.000	C#	0.3460	-1.828	Major	0.0525	166.969	4/4	0.814
1 Movie	Martin & les fées	Perdu d'avance (par Gad Elmaleh)	0BjC1NfoEOOusryehmNudP	1	0.246	0.590	137373	0.737	0.000	F#	0.1510	-5.559	Minor	0.0868	174.003	4/4	0.816
2 Movie	Joseph Williams	Don't Let Me Be Lonely Tonight	0CoSDzoNIKCRs124s9uTVy	3	0.952	0.663	170267	0.131	0.000	С	0.1030	-13.879	Minor	0.0362	99.488	5/4	0.368
3 Movie	Henri Salvador	Dis-moi Monsieur Gordon Cooper	0Gc6TVm52BwZD07Ki6tlvf	0	0.703	0.240	152427	0.326	0.000	C#	0.0985	-12.178	Major	0.0395	171.758	4/4	0.227
4 Movie	Fabien Nataf	Ouverture	0luslXpMROHdEPvSl1fTQK	4	0.950	0.331	82625	0.225	0.123	F	0.2020	-21.150	Major	0.0456	140.576	4/4	0.390

Data Preprocessing

- Genre column had two variations of Children's Music value. This was fixed to only have one value.
- Check for null values
 - Null values did not exist in the dataset.

```
#Check for any obscure genres, children's music had two genres
file.genre.unique()
array(['Movie', 'R&B', 'A Capella', 'Alternative', 'Country', 'Dance',
       'Electronic', 'Anime', 'Folk', 'Blues', 'Opera', 'Hip-Hop',
       "Children's Music", 'Children's Music', 'Rap', 'Indie',
       'Classical', 'Pop', 'Reggae', 'Reggaeton', 'Jazz', 'Rock', 'Ska',
       'Comedy', 'Soul', 'Soundtrack', 'World'], dtype=object)
new df = file.copv()
# Place childrens music different columns under same column
new df['genre'] = file['genre'].replace(['Children\'s Music'], 'Children's Music')
new df.genre.unique()
array(['Movie', 'R&B', 'A Capella', 'Alternative', 'Country', 'Dance',
       'Electronic', 'Anime', 'Folk', 'Blues', 'Opera', 'Hip-Hop',
       'Children's Music', 'Rap', 'Indie', 'Classical', 'Pop', 'Reggae',
       'Reggaeton', 'Jazz', 'Rock', 'Ska', 'Comedy', 'Soul', 'Soundtrack',
       'World'], dtype=object)
```

```
# Check for null values
new df.isnull().sum()
genre
artist name
track name
track id
popularity
acousticness
danceability
duration ms
energy
instrumentalness
liveness
loudness
speechiness
tempo
time signature
valence
dtype: int64
```

Data Preprocessing

- Checked for duplicate songs
 - Duplicate songs had varying genre labels and popularity values.
 - Duplicate songs were kept to assess if genre played a part into popularity.
- Dropped informational columns
 - Columns dropped: artist_name, track_name, track_id

```
Column
    genre
   popularity
   acousticness
   danceability
   duration ms
    energy
    instrumentalness
    kev
   liveness
    loudness
10
    mode
   speechiness
    tempo
   time signature
   valence
```

```
# Check if same songs but labeled as different genre have different popularity
df.filter((df.artist name == 'System Of A Down') & (df.track name == 'Chop Suev!')).show()
# they do have different popularity so genre label can be integral for popularity, did not remove
# duplicate songs for that reason
                                                          track id|popularity|acousticness|danceability|duration ms|energy|instrumentalness|key|liveness|loudness| mode|speechiness| tempo|time signature|valence
      Alternative|System Of A Down|Chop Suev!|2DlHlPMa4M17kufBv...
                                                                                   2.78E-4
                                                                                                             210240 0.934
                                                                                                                                                          -3.908 Minor
                                                                                                                                                                               0.12 | 127.288
|Children's Music|System Of A Down|Chop Suey!|2DlHlPMa4M17kufBv...
                                                                                   2.78E-4
                                                                                                  0.419
                                                                                                             210240 0.934
                                                                                                                                                                               0.12 | 127.288 |
                                                                                                                                                          -3.908 Minor
              Rap|System Of A Down|Chop Suey!|2DlHlPMa4M17kufBv...
                                                                           81
                                                                                   2.78E-4
                                                                                                  0.419
                                                                                                             210240 0.934
                                                                                                                                                   0.132
                                                                                                                                                          -3.908 Minor
                                                                                                                                                                               0.12 | 127.288 |
             Rock|System Of A Down|Chop Suey!|2DlHlPMa4M17kufBv...
                                                                                  2.78E-4
                                                                                                             210240 0.934
```

Data Scaling: Numerical

- Numerical data was scaled using Min Max Scaler
 - MinMaxScaler scales values between 0 and 1
- Scaling was done using PySpark VectorAssembler and a pipeline.
- After transforming dataset to contain original values, vector values and scaled values, original and vector values were dropped while scaled values were kept in order to build the model.

```
# Create vectors of column value and placed into column with new name
# Create scaled column vectors and placed into new column with new name
# Pass through pipeline transformation to achieve scaled values and put all columns
# (Vector, Unscaled, Scaled vectors) into one spark dataframe
assemblers = [VectorAssembler(inputCols=[col], outputCol= col + '_vec') for col in numerical_columns]
scalers = [MinMaxScaler(inputCol=col+'_vec', outputCol=col + '_scaled') for col in numerical_columns]
pipeline = Pipeline(stages=assemblers + scalers)
model_min_max_scaler = pipeline.fit(df_numeric)
df_numeric_scaled = model_min_max_scaler.transform(df_numeric)
```

	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence	popularity
0	0.613454	0.356292	0.015167	0.910909	0.000000	0.339614	0.900856	0.032070	0.642704	0.814	0.00
1	0.246988	0.571934	0.022029	0.737732	0.000000	0.142710	0.834469	0.068374	0.675801	0.816	0.01
2	0.955823	0.650252	0.027969	0.131113	0.000000	0.094241	0.686429	0.014818	0.325182	0.368	0.03
3	0.705823	0.196438	0.024747	0.326313	0.000000	0.089697	0.716695	0.018311	0.665238	0.227	0.00
4	0.953815	0.294067	0.012142	0.225209	0.123123	0.194208	0.557054	0.024767	0.518516	0.390	0.04
	700		***		956						
232720	0.003855	0.676000	0.056136	0.714709	0.544545	0.075561	0.744311	0.009949	0.400722	0.962	0.39
232721	0.033032	0.781139	0.048227	0.683677	0.000881	0.229550	0.809825	0.012172	0.392666	0.969	0.38
232722	0.904619	0.493617	0.027372	0.419408	0.000000	0.085658	0.786018	0.133150	0.252941	0.813	0.47
232723	0.263052	0.738226	0.037391	0.704699	0.000000	0.326487	0.806391	0.131033	0.327737	0.489	0.44
232724	0.097691	0.752173	0.055555	0.470460	0.000049	0.074652	0.814025	0.006880	0.392981	0.479	0.35
232725 rd	ows × 11 columns										

Data Scaling: Categorical

- Categorical data was handled using One Hot Encoding.
- This was accomplished using the Pandas get_dummies function.
- Columns subject to One Hot Encoding are:
 - genre
 - o key
 - mode
 - time_signature

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

```
Column
    genre A Capella
    genre Alternative
    genre Anime
    genre Blues
    genre Children's Music
    genre Classical
    genre Comedy
    genre Country
    genre Dance
    genre Electronic
   genre Folk
   genre Hip-Hop
   genre Indie
   genre Jazz
   genre Movie
   genre Opera
   genre Pop
   genre R&B
   genre Rap
   genre Reggae
   genre Reggaeton
   genre Rock
   genre_Ska
   genre Soul
   genre Soundtrack
   genre World
   key A
   key_A#
   kev B
   key_C
   key C#
   key D
   key_D#
   key_E
   key F
   key F#
   key G
37 key_G#
   mode_Major
   mode Minor
   time signature 0/4
   time signature 1/4
   time_signature_3/4
   time_signature_4/4
   time_signature_5/4
```

Algorithms: Initial Steps and Linear Regression

- Correlation coefficients between popularity and other numeric features were assessed to see if any one feature determines popularity.
 - The correlation coefficients were low (less than 0.5 and greater than -0.5).
 - This fueled the idea for prediction models to see how collectively each feature plays into the popularity value.
- Linear Regression
 - Approach for modeling relationship between scalar variable (target) and one or more explanatory variables.

	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence
popularity	1.000000	-0.381295	0.256564	0.002348	0.248922	-0.210983	-0.167995	0.363011	-0.151076	0.081039	0.060076
acousticness	-0.381295	1.000000	-0.364546	0.011203	-0.725576	0.316154	0.069004	-0.690202	0.150935	-0.238247	-0.325798
danceability	0.256564	-0.364546	1.000000	-0.125781	0.325807	-0.364941	-0.041684	0.438668	0.134560	0.021939	0.547154
duration_ms	0.002348	0.011203	-0.125781	1.000000	-0.030550	0.076021	0.023783	-0.047618	-0.016171	-0.028456	-0.141811
energy	0.248922	-0.725576	0.325807	-0.030550	1.000000	-0.378957	0.192801	0.816088	0.145120	0.228774	0.436771
instrumentalness	-0.210983	0.316154	-0.364941	0.076021	-0.378957	1.000000	-0.134198	-0.506320	-0.177147	-0.104133	-0.307522
liveness	-0.167995	0.069004	-0.041684	0.023783	0.192801	-0.134198	1.000000	0.045686	0.510147	-0.051355	0.011804
loudness	0.363011	-0.690202	0.438668	-0.047618	0.816088	-0.506320	0.045686	1.000000	-0.002273	0.228364	0.399901
speechiness	-0.151076	0.150935	0.134560	-0.016171	0.145120	-0.177147	0.510147	-0.002273	1.000000	-0.081541	0.023842
tempo	0.081039	-0.238247	0.021939	-0.028456	0.228774	-0.104133	-0.051355	0.228364	-0.081541	1.000000	0.134857
valence	0.060076	-0.325798	0.547154	-0.141811	0.436771	-0.307522	0.011804	0.399901	0.023842	0.134857	1.000000

Algorithms: RF and XGB Regressors

- Random Forest Regressor:
 - "A meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting." [1]
 - The latter portion of the above statement is what differs random forest classification from random forest regressor.
 - The model built had was given a max_depth value of 2.
- XGBoost Regressor:
 - Efficient implementation of the gradient boosting algorithm.
 - Gradient boosting is a class of ensemble machine learning algorithms that can be used for regression predictive modeling problems.

Algorithms: Additional Information

- For splitting the data, repeated k-fold cross validation was used in order to obtain the best possible model of each of the previously discussed models.
- For all the algorithms, k was set equal to 5 and there were 2 repeats.
 - This means each model was implemented 10 times to obtain best model from each respective algorithm.

K Folds Cross Validation Method

- 1. Divide the sample data into k parts.
- 2. Use k-1 of the parts for training, and 1 for testing.
- 3. Repeat the procedure k times, rotating the test set.
- Determine an expected performance metric (mean square error, misclassification error rate, confidence interval, or other appropriate metric) based on the results across the iterations

Results: Algorithm Comparison

Linear Regression

Random Forest Reg.

XGBoost Regressor

Metrics for best performing Linear Regression model

MSE: 0.012348584 RMSE: 0.11112418

R^2: 0.6287180211686056

CPU times: user 7.5 s, sys: 1.42 s, total: 8.92 s

Wall time: 5.41 s

Metrics for best performing Random Forest model

MSE: 0.02508184219117359 RMSE: 0.15837247927330553 R^2: 0.24044417852733324

CPU times: user 5min 46s, sys: 599 ms, total: 5min 46s

Wall time: 5min 48s

Metrics for best performing XGBoost model

MSE: 0.011454776 RMSE: 0.10702699

R^2: 0.6521474798156409

CPU times: user 4min 54s, sys: 685 ms, total: 4min 54s

Wall time: 4min 57s

Results: Algorithm Comparison

Results: Business Insight

- Time Signatures and Keys were weighted highest.
 - O This means that as these independent variables increase, the dependent variable (Popularity) will increase.
- Therefore, musicians and record labels should focus on these features over others.
- Using our best performing model, musicians and record labels can determine whether a song will be popular.

category	
time_signature_0/4	170.170151
time_signature_4/4	170.128448
time_signature_5/4	170.125000
time_signature_3/4	170.119629
time_signature_1/4	170.117004
key_F#	40.219810
key_G#	40.216576
key_C#	40.215973
key_B	40.214645
key_D#	40.213943
key_A#	40.210503
key_F	40.210052
key_E	40.209595
key_A	40.209465
key_D	40.209198
key_G	40.209152
key_C	40.208363
duration_ms	0.219493
loudness	0.103868
energy	0.029150
tempo	-0.015553
danceability	-0.018230

Conclusion

- Using certain features over others, musicians and record labels can produce songs that will become popular.
- Features such as time signature, key should be focused on more according to weights.
- Best performing model for song popularity predictions:
 - XGBoost Regressor
- The best performing model can help musicians determine if a song will become popular.

Future Research

- Investigation of other regression algorithms that may perform quicker and have better metrics.
- Access Spotify API to analyze data in real time.
 - Use Kafka to stream real time data.
- Acquire more features that may contribute to song popularity.
 - Features such as year of release.

Thank you.

References

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble_RandomForestRegressor.html#:~:text=A%20random%20forest%20regressor.accuracy%20and%20control%20over%2Dfitting. [1]

Image References

- 6-018-06619-3 16101678.png
- 2) 848&s=170667a&w=0&h=AemkCTK0p9FomQvnlGQBSsV////wk/ulGnkZcW
- 3)
- https://play-lh.googleusercontent.com/UrY7BAZ-XIXI.mike/Wg0zCCeo-7ras4D 4)
- 5) 6)
- https://encrypted-tbn0.gstatic.com/images?g=tbm.ANd9GcQ0lHPRIZI-UNI2g-K
- https://blog.landr.com/wp-content/uploads/2020/06/Make-Money-from-Music Feat 1200x627.jpg

Image References

- https://i.imgur.com/mtimFxh.png
- https://cdn.searchenginejournal.com/wp-content/uploads/2019/11/why-technic al-seo-and-on-site-seo-is-rarely-enough-5dcfef7155db8.png
- https://www.python.org/static/community_logos/python-logo-master-v3-TM.png
- https://miro.medium.com/max/1400/1*qqkjkj6BLVS1uD4lmw_sTEq.png
- https://dwgeek.com/wp-content/uploads/2019/01/Spack-SQL-Performance-Tuning.jpg
- https://upload.wikimedia.org/wikipedia/commons/humb/e/ed/Pandas_logo.svg/1200px-Pandas_logo.svg.png
- https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/Scikit_learn_logo_small.svg/1200px-Scikit_learn_logo_small.svg.png

Image References

- https://user-images.githubusercontent.com/67586773/105040771-4388//300-5 a88-11eb-9f01-bee100b9ef22.png
- https://static.javatpoint.com/tutorial/matplotlib/images/matplotlib-tutorial.png
- https://miro.medium.com/max/412/1*Y-tB8ue9D1B7ZImpiYGXUA.one
- https://rapids.ai/assets/images/xgboost_logo.png
- https://mljar.com/images/machine-learning/random_forest_logo.png
- https://miro.medium.com/max/1400/1*chD302ssE0002wireunGp4A.jpeq
- https://s3.amazonaws.com/Archivelmages/LJ/2017/05/imagesCA1G7ZSW.jpg
- https://upload.wikimedia.org/wikipedia/commons//s/6f/Beethoven.jpg
- https://media1.popsugar-assets.com/files/thumbor/zan-t_Me63if8oqWYE9ENi PLlhA/0x224:2826x3050/fit-in/2048xorig/filters:format_auto-!!-:strip_icc-!!-/202 0/02/11/894/n/1922398/87f6bb525e430e7bd44e40.22278576_/i/Drake.jpg