Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Pattern Evaluation

Summary

Mining frequent patterns
moun patterns risknowowoog has Data

บางยุงหนาจักเกก

What Is Pattern Discovery?

- What are patterns? ปอเทมนลาย อย่าวที่มักจะชื่อร่วมกัน (patterns การชื่อของคน), set of items มักจะเกิดขึ้นช้าๆ
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - □ What products were often purchased together? ผูนตับ ไรก็คนา: เรื่องเรื่องกับเหมอ

Basic Concepts: k-Itemsets and Their Supports

เริกของ โอเท็มที่ คหมัก จ. ช้อร่วมกัด

Itemset: A set of one or more items

Ex. {Beer, Nuts, Diaper} is a 3-itemset (nowledge) support (count) of X, sup{X}:

Frequency or the number of occurrences of an itemset X

 \Box Ex. sup{Beer} = 3

■ Ex. sup{Beer, Diaper} = 3

 \Box Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
10	Beer, Nuts, Diaper กังห์มาบาตั้ง ID	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

(relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

 \blacksquare Ex. s{Beer} = 3/5 = 60%

 \blacksquare Ex. s{Diaper} = 4/5 = 80%

Ex. $s\{Beer, Eggs\} = 1/5 = 20\%$

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ (וחמית) או אח וועם זיוסד לצווחו
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
- All the frequent 1-itemsets:

 Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:

 | Beer ou Diaper found 3945 transaction = 107. |
 | Beer, Diaper : 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

,		1,1,1,00
Coffee: 2/5	(40%)	בא אואואוחותיא

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- **Observation**: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer nusto Diaper in light beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \blacksquare Measuring association rules: $X \rightarrow Y$ (s, c)
 - □ Both X and Y are itemsets
 - Support, s: The probability that a transaction contains $X \cup Y$
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%) w sup $\sqrt[7]{50.6}$
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - $\Box \quad \text{Calculation: } c = \sup_{X \in \mathcal{X}} (X \cup Y) / \sup_{X \in \mathcal{X}} (X)$
 - \square Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{3}{4} = 0.75$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- **Association rule mining**
 - Given two thresholds: minsup, minconf
 - Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50% เป็นใจเพมเช็คที่มือดู่เป็นส่วนในญี่ของพานแช็กชื่น
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,
 - Diaper: 4, Eggs: 3
 - Freq. 2-itemsets: {Beer, Diaper}: 3

เกิดขั้นข้างกันมากงดในห

- Let minconf = 50%

 Sup (beer/Diaper) / Sup (beer)

 Beer > Diaper (60%, 100%) > 101 Diaper ไปรบชนาทย beer
- - *Diaper* → *Beer* (60%, 75%)

Tid	Items bought		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

Observations:

- Mining association rules and mining frequent patterns are very close problems
 - Scalable methods are needed for mining large datasets

(Q: Are these all rules?)

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - □ Initially, scan DB once to get frequent 1-itemset אוואמול א אמוניים ו
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm—An Example

