Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9702	23

1 (a) energy or W: kg m² s⁻²

or

power or
$$P$$
: kg m² s⁻³

М1

intensity or I: $kg m^2 s^{-2} m^{-2} s^{-1}$ (from use of energy expression)

or

indication of simplification to kg s⁻³

A1 [2]

(b) (i)
$$\rho$$
: kg m⁻³, c: m s⁻¹, f: s⁻¹, x_0 : m

M1

substitution of terms in an appropriate equation and simplification to show
$$K$$
 has no units

A1 [2]

(ii)
$$I = 20 \times 1.2 \times 330 \times (260)^2 \times (0.24 \times 10^{-9})^2$$

C1

=
$$3.1 \times 10^{-11} (W \, m^{-2})$$

C1

$$= 31 (30.8) \,\mathrm{pW}\,\mathrm{m}^{-2}$$

A1 [3]

2 (a) (i) (the loudspeakers) are connected to the same signal generator

B1 [1]

(ii) 1. the waves (that overlap) have phase difference of zero or path difference of zero and so

either constructive interference

or displacement larger

B1 [1]

2. the waves (that overlap) have phase difference of $(n + \frac{1}{2}) \times 360^{\circ}$ or $(n + \frac{1}{2}) \times 2\pi$ rad or path difference of $(n + \frac{1}{2})\lambda$ and so

either destructive interference

or displacements cancel/smaller

B1 [1]

3. the waves (that overlap) are in phase or have phase difference of $n360^{\circ}$ or $2\pi n$ rad or path difference of $n\lambda$ and so

either constructive interference

or displacement larger

B1 [1]

(b) time period = 0.002 s or 2 ms

C1

wave drawn is half time period

В1

amplitude 1.0 cm (same as Fig. 2.2)

B1 [3]

P	age 3		Mark Scheme	Syllabus		
		C	cambridge International AS/A Level – October/November 2015	9702	23	
3	(a) ((i)	1. $s = ut + \frac{1}{2}at^2$			
			$192 = \frac{1}{2} \times 9.81 \times t^2$		C1	
			t = 6.3 (6.26) s		A1	[2]
			2. max E_k (= mgh) = $0.27 \times 9.81 \times 192$		C1	
			or			
			calculation of v (= 61.4) and use of $E_{\rm K}$ (= $\frac{1}{2}$ mv^2) = $\frac{1}{2}$ × 0.27 ×	$(61.4)^2$	(C1)	
			$\max E_k = 510 (509) J$		A1	[2]
	(i	ii)	velocity is proportional to time or velocity increases at a constant ra	ate		
			as acceleration is constant or resultant force is constant		B1	[1]
	(ii	ii)	use of $v = at$ or $v^2 = 2as$ or $E = \frac{1}{2}mv^2$ to give $v = 61(.4) \text{m s}^{-1}$		B1	[1]
	•	,	5			
	(b) ((i)	R increases with velocity		B1	
			resultant force is $mg - R$ or resultant force decreases		B1	
			acceleration decreases		B1	[3]
	(i	ii)	at $v = 40 \mathrm{m s^{-1}}$, $R = 0.6 (\mathrm{N})$		C1	
			$0.27 \times 9.8 - 0.6 = 0.27 \times a$			
			$a = 7.6 (7.58) \text{ m s}^{-2}$		A1	[2]
	(ii	ii)	R = weight for terminal velocity		B1	
			either weight requires velocity to be about 80 m s ⁻¹ or at 60 m s ⁻¹ , <i>R</i> is less than weight			
			so does not reach terminal velocity		B1	[2]
4	(a) ((i)	reaction/vertical force = weight – P cos 60°		C1	
			$= 180 - 35 \cos 60^{\circ}$			
			= 160 (163)N		A1	[2]
	(i	ii)	work done = $35 \sin 60^{\circ} \times 20$		C1	

[2]

Α1

= 610 (606) J

Pa	age 4		Mark Scheme Syllabu		
			Cambridge International AS/A Level – October/November 2015 9702	23	
	(b)	(i)	work done by force P = work done against frictional force	B1	[1]
		(ii)	horizontal component of P is equal and opposite to frictional force	B1	
			vertical component of P + normal reaction force equal and opposite to weight	ht B1	[2]
5	(a)	(i)	resistance = V/I	В1	
			very high/infinite resistance at low voltages	B1	
			resistance decreases as V increases	B1	[3]
		(ii)	p.d. from graph 0.50 (V)	C1	
			resistance = $0.5/(4.4 \times 10^{-3})$		
			= 110 (114) Ω	A1	[2]
	(b)	(i)	current (= $1.2/375$) = 3.2×10^{-3} A	A1	[1]
		(ii)	current in diode = 4.4×10^{-3} (A) total resistance = $1.2/4.4 \times 10^{-3} = 272.7$ (Ω)	C1	
			resistance of $R_1 = 272.7 - 113.6 = 160 (159)\Omega$	A1	
			or		
			p.d. across diode = $0.5V$ and p.d. across R_1 = $0.7V$	(C1)	
			resistance of R ₁ = $0.7/4.4 \times 10^{-3}$ = $160 (159)\Omega$	(A1)	[2]
		(iii)	power = IV or I^2R or V^2/R	C1	
			ratio = $(4.4 \times 0.5)/(3.2 \times 1.2)$ or $[(4.4)^2 \times 114]/[(3.2)^2 \times 375]$ or $[(0.5)^2 \times 375]/[114 \times (1.2)^2]$ = 0.57	A1	[2]
c	(0)	14/6	was from loudeneeker (traval down tube and) are reflected at closed and	D4	
6	(a)		ves from loudspeaker (travel down tube and) are reflected at closed end	B1	
			o waves (travelling) in opposite directions with same frequency/wavelength erlap	B1	[2]
	(b)	(i)	0.51 m 0.85 m	A1 A1	[2]
		(ii)	A at open end, N at closed end, with an N and A in between, equally space (by eye)	d B1	[1]

Page 5		5	Mark Scheme	Syllabus	Paper	
			Cambridge International AS/A Level – October/November 2015		23	
7	(a)		ess or $\sigma = F/A$ x. tension = UTS × $A = 4.5 \times 10^8 \times 15 \times 10^{-6} = 6800 (6750) N$		C1 A1	[2]
	(b)	ρ=	m/V		C1	
			ight = $mg = \rho Vg = \rho ALg$ $50 = 7.8 \times 10^3 \times 15 \times 10^{-6} \times L \times 9.81$		C1	
		L =	$5.9 (5.88) \times 10^3 \mathrm{m}$		A1	
		or				
		ma	ximum mass = $6750/9.81 = 688 \text{ kg}$ ss per unit length = $\rho A = 0.117 \text{ kg m}^{-1}$ $688/0.117 = 5.9 \times 10^3 \text{ m}$		(C1) (C1) (A1)	
		or				
		vol	ximum mass = $6750/9.81 = 688 \text{ kg}$ ume = $m/\rho = 0.0882 \text{ m}^3 = LA$ $0.0882/15 \times 10^{-6} = 5.9 \times 10^3 \text{ m}$		(C1) (C1) (A1)	[3]
8	(a)	pro	ss-energy ton number or charge cleon number		B2	[2]
	(b)	(i)	$E_k = \frac{1}{2} mv^2$ and $p = mv$ with working leading to			
			[via $E_k = \frac{1}{2}m^2v^2/m$ or $\frac{1}{2}m(p/m)^2$] to $E_k = \frac{p^2}{2m}$		B1	[1]
		(ii)	$p = (2E_k m)^{1/2}$ hence $(2[E_k m]_{\alpha})^{1/2} = (2[E_k m]_{Th})^{1/2}$		C1	
			$2 \times [E_k]_{Th} \times 234 = 2 \times 6.69 \times 10^{-13} \times 4$		C1	
			$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$ = 71(.5) keV		A1	
			or			
			calculation of speed of α -particle = 1.42 \times 10 ⁷ m s ⁻¹ calculation of momentum of α -particle/nucleus = 9.43 \times 10 ⁻²⁰ N s		(C1)	

(C1) (A1)

[3]

= $1.14 \times 10^{-14} \text{ J}$ = 71(.5) keV

 $[E_{\mathsf{k}}]_{\mathsf{Th}}$