_					
Фа	м	и	л	ия	

1. Выберите верные утверждения:

Nº	Задание	Ответ
а	Любую схему стойкого аутентифицированного шифрования	
	можно использовать в качестве стойкого кода аутентичности	
b	При использовании схемы MAC-then-Encrypt необходимо	
	использовать независимые ключи для МАС и шифрования	
С	При использовании схемы ЕАХ необходимо использовать	
	независимые ключи для МАС и шифрования	
d	ССА стойкость более сильно определение, чем СРА стойкость	
е	Возможно построить ССА стойкий шифр, который не будет СРА	
	стойким	
f	Обеспечение целостности открытых текстов не может быть	
	обеспечено через целостность соответствующих шифртекстов	
g	Схема Encrypt-and-MAC в общем случае является не стойкой	
h	ССА стойкости достаточно для защиты аутентичности от пассивных	
	противников	
i	Целостность шифртекстов более сильное определение, чем	
	целостность открытых текстов, при передаче шифртекстов по	
	каналу связи	
	Не заполнять!	/ 9

2. Пусть $k \in_R K$ – случайная величина, полученная с использованием **неравномерного** распределения, $K = \{0,1\}^{256}$:

$$\forall c \in \{0,1\}^{256}$$
: $\Pr[k=c] = \begin{cases} \frac{1}{2^{128}}, & \text{if } MSB_{128}(c) = 0^{128} \\ 0, & \text{else} \end{cases}$

Иными словами, k выбирается из подмножества векторов в K, для которых первые 128 бит — нулевые.

Пусть F(k,x) — стойкая PRF, с множеством ключей K. Какие из PRF ниже является стойкими PRF (в практическом смысле, минимальный параметр стойкость — 80 бит), но не является стойкими при выборе k с использованием распределения, описанного выше?

Nº	Задание	Ответ
а	$F'(k,x) = \begin{cases} F(k,x), & \text{if } MSB_{128}(k) \neq 0^{128} \\ & 0^{256}, & \text{else} \end{cases}$	
b	$F'(k,x) = \begin{cases} F(k,x), & \text{if } MSB_{128}(k) \neq 1^{128} \\ 0^{256}, & \text{else} \end{cases}$	
С	F'(k,x) = F(k,x)	
d	$F'(k,x) = \begin{cases} F(k,x), & \text{if } MSB_{128}(k) \neq 1^{128} \\ 1^{256}, & \text{else} \end{cases}$	
	Не заполнять!	/8

3. Пусть (E, D) – схема стойкого аутентифицированного симметричного шифрования на $(K, \{0,1\}^n, \{0,1\}^s)$. Какие из схем ниже являются стойкими схемами аутентифицированного шифрования (формально докажите или опровергните).

Nº	Задание	Ответ
а	E'(k,m) = E(k,m)	
	$D'(k,c) = \begin{cases} D(k,c), & \text{if } D(k,c) \neq \bot \\ 0^n, & \text{else} \end{cases}$	
b	$E'(k,m) = E(k,m \oplus 1^n)$	
	$D'(k,c) = \begin{cases} D(k,c) \oplus 1^n, & \text{if } D(k,c) \neq \bot \\ \bot, & \text{else} \end{cases}$	
С	E'(k,m) = (E(k,m),0)	
	D'(k,(c,d)) = D(k,c)	
d	$E'(k,m) = E(k,m) \oplus 1^s$	
	$D'(k,c) = D(k,c \oplus 1^{s})$	
е	E'(k,m) = E(k,m) E(k,m)	
	$D'(k, (c_1, c_2)) = \begin{cases} D(k, c_1), & \text{if } D(k, c_1) = D(k, c_2) \\ & \text{1, else} \end{cases}$	
f	$c \leftarrow_R E(k,m)$, return (c,c) }	
	$D'(k, (c_1, c_2)) = \begin{cases} D(k, c_1), & \text{if } c_1 = c_2 \\ \bot, & \text{else} \end{cases}$	
	1, else	
	Не заполнять!	/12

4. Пусть (E,D) — строго стойкий блочный шифр на $(K,M\times R),1/|R|$ - пренебрежимо малая. Докажите, что шифр ниже стойкий ССА шифр, но не стойкий AE шифр (не обеспечивается целостность шифртекстов). Строго стойкий блочных шифр (strongly secureblock cipher) — шифр, стойкий против противников, которые могут помимо запросов на зашифрование произвольных блоков запрашивать запросы на расшифрование произвольных блоков блочного шифра в игре на стойкость блочного шифра (PRP).

$$E'(k,m) = \left\{ r \leftarrow^R R, c \leftarrow^R E(k,(m,r)), \text{ return } c \right\}$$
$$D'(k,c) = \left\{ (m,r') \leftarrow D(k,c), \text{ return } m \right\}$$

	Ответ
	Доп. Листы.
Не заполнять!	/2