Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ${\bf 10~Aυγούστου~2017}$

ΑΛΓΕΒΡΑ Β΄ ΛΥΚΕΙΟΥ

Πολυώνυμα

ΛΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

Ευκλείδεια διαίρεση ονομάζεται η διαδικασία με την οποία για κάθε ζεύγος πολυωνύμων $\Delta(x)$, $\delta(x)$ (Διαιρετέος και διαιρέτης αντίστοιχα) προκύπτουν μοναδικά πολυώνυμα $\pi(x)$, $\upsilon(x)$ (πηλίκο και υπόλοιπο) για τα οποία ισχύει :

$$\Delta(x) = \delta(x) \cdot \pi(x) + \upsilon(x)$$

- Η παραπάνω ισότητα ονομάζεται ταυτότητα της ευκλείδειας διαίρεσης.
- Εαν v(x) = 0 τότε η διαίρεση ονομάζεται **τέλεια** ενώ η ταυτότητα της διαίρεσης είναι

$$\Delta(x) = \delta(x) \cdot \pi(x)$$

• Στην τέλεια διαίρεση τα πολυώνυμα $\delta(x)$, $\pi(x)$ ονομάζονται παράγοντες ή διαιρέτες.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΔΙΑΙΡΕΣΗ ΜΕ $x - \rho$

Το υπόλοιπο της διαίρεσης ενός πολυωνύμου P(x) με διαρέτη ένα πολυώνυμο 1^{ou} βαθμού της μορφής $x-\rho$ ισούται με την τιμή του πολυωνύμου P(x) για $x=\rho$.

$$v = P(\rho)$$

ΘΕΩΡΗΜΑ 2: ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ

Ένα πολυώνυμο P(x) έχει παράγοντα ένα πολυώνυμο της μορφής $x-\rho$ αν και μόνο αν ο πραγματικός αριθμός ρ είναι ρίζα του πολυωνύμου P(x).

$$x - \rho$$
 παράγοντας $\Leftrightarrow P(\rho) = 0$