Modelos Especiais

tradução do Jay Davore e do livro Análise de variância (W.BUSSAB)

índice

- Introdução
 - Reta passando pela origem
 - Regressão Linear para séries de tempo
 - Transformação de variáveis
 - Modelo Exponencial
 - Alguns modelos Linearizáveis

Introdução

Suponha o modelo

$$Y = \beta x + \epsilon$$

com as mesmas suposições do MRLS. E seja observada uma amostra (x_i,y_i) com i=1,...,n. Neste modelo, a soma de quadrados a ser minimizada é

$$\sum \epsilon_i^2 = \sum (y_i - \beta x_i)^2 = SQ(\beta)$$

Derivando e igualando a zero temos:

$$b = \hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}$$

Reta passando pela origem Regressão Linear para séries de tempo Transformação de variáveis Modelo Exponencial

Alguns modelos Linearizáveis

Os resultados para o modelo são:

•
$$E(b) = \beta$$
 e $var(b) = \frac{\sigma_{\epsilon}^2}{\sum x_i^2}$

• $E(s_{\epsilon}^2) = \sigma_{\epsilon}^2$, onde

$$s_{\epsilon}^2 = \frac{1}{n-1} \sum (y_i - \hat{y}_i)^2 = \frac{1}{n-1} \{ \sum y_i^2 - b^2 \sum x_i^2 \}$$

a estatística t:

$$t_b = \frac{b - \beta}{s_{\epsilon}} \sqrt{\sum x_i^2} \sim t_{n-1} \quad g.l.$$

Reta passando pela origem

Regressão Linear para séries de tempo Transformação de variáveis Modelo Exponencial Alguns modelos Linearizáveis

- $E(\hat{\mu}(x)) = E(\hat{y}|x) = \beta x$ $var(\hat{\mu}(x)) = \frac{\sigma_{\epsilon} x^2}{\sum_{x=0}^{\infty} x^2}$
- ullet o IC para μ ao 95% é

$$IC[\mu(x), 1 - \alpha] = \hat{y} \pm t_{\alpha/2, n-2} s_{\epsilon} * \frac{x}{\sqrt{\sum x_i^2}}$$

• o IC para Y(x) é

$$IC(Y(x), 1 - \alpha) = \hat{y} \pm t_{\alpha/2, n-1} s_{\epsilon} * \sqrt{1 + \frac{x^2}{\sum x_i^2}}$$

ANOVA

Devemos observar que quando $\beta=0$ o modelo será:

$$y = 0 + \epsilon$$

e devemos comparar a diminuição entre o resíduo deste modelo que não tem parâmetros a serem estimados com o modelo $y=\beta x+\epsilon$ (um parâmetro).

Para o modelo com $\beta = 0$ teremos:

$$SQTot = SQT = \sum (y_i - 0)^2 = \sum y_i^2$$

$$SQRes = \sum (y_i - \hat{y}_i)^2 = \sum y_i^2 - b^2 \sum x_i^2$$

portanto a diminuição será:

$$SQReg = SQT - SQRes = b^2 \sum x_i^2$$

ANOVA

Para testar $\beta = 0$ usamos:

$$t_b = \frac{b}{s_\epsilon} \sqrt{\sum x_i^2}$$
 ou $t_b^2 = \frac{b^2 \sum x_i^2}{s_\epsilon^2} = \frac{SQReg}{s_\epsilon^2} = F$

ANOVA

o coeficiente \mathbb{R}^2 passa a ser

$$R^2 = \frac{SQReg}{SQT} = \frac{b^2 \sum x_i^2}{\sum y_i^2}$$

As informações são resumidas abaixo:

ANOVA Modelo $\hat{y} = bx$

Fonte	gl	SQ	QM	F
Regressão	1	$b^2 \sum x_i^2$	$b^2 \sum x_i^2$	$F = \frac{b^2 \sum_{s_z^2} x_i^2}{s_z^2}$
Resíduo	8	$\sum y_i^2 - b^2 \sum x_i^2$	s_ϵ^2	- E
Total	9	$\sum y_i^2$	$\hat{\sigma}^2$	$R^2 = \frac{b^2 \sum x_i^2}{\sum y_i^2}$

Reta passando pela origem Regressão Linear para séries de tempo Transformação de variáveis Modelo Exponencial

Exemplo

Fonte	gl	SQ	QM	F
Regressão	1	382908,69	382909	F=157488
Resíduo	8	47,31	2,43318	
Total	9	383028	42559	$R^2 = 99,97\%$

Introdução

Reta passando pela origem Regressão Linear para séries de tempo Transformação de variáveis Modelo Exponencial Alguns modelos Linearizáveis

Exemplo

É necessário cautela sobre o uso do modelo, pois ela pode servir para um intervalo e não para valores fora dela.

É, portanto, importante, ter cuidado na hora de fazer previsões,

Introdução

- Intentamos entender a variabilidade de um fenômeno em função do tempo
- Neste caso, a variável auxiliar será o tempo
- o modo de análise é idêntico ao apresentado nos capítulos anteriore

Representação Gráfica

- O primeiro passo para investigar o tipo de modelo a ser adotado é a representação gráfica dos dados observados, a qual pode sugerir a forma da curva relacionando as variáveis.
- Por exemplo, podemos ver um modelo do tipo

$$f(x) = \alpha e^{\beta x}$$

Adaptando às condições conhecidas, teriamos

$$Y = \alpha e^{\beta x} + f$$

ullet a mudança da variável residual f é para não confundir a constante e que aparece no modelo.

Representação gráfica

• A derivação dos estimadores MQ será:

$$SQ(\alpha, \beta) = \sum f^2 = (y_i - \alpha e^{\beta x_i})^2$$

ullet derivando com respeito de lpha e de eta

$$\frac{\partial S}{\partial \alpha} = -2\sum (y_i - ae^{bx_i})e^{bx_i} = 0$$

$$\frac{\partial S}{\partial \beta} = -2\sum (y_i - ae^{bx_i})ae^{bx_i}x_i = 0$$

Representação gráfica

Obtemos finalmente as equações:

$$a\sum e^{2bx_i} = \sum y_i e^{bx_i}$$

$$a^2 \sum x_i e^{2bx_i} = a \sum x_i y_i e^{bx_i}$$

A solução exata deste sistema de equações exige a adoção de técnicas de soluções numéricas.

Esta dificuldade sugere o emprego de modelos alternativos mais simples , ou ainda a transformação das variáveis envolvidas de modo a reduzir o problema a casos já conhecidos.

Introdução

Introdução

Para exemplificar como a transformação das variáveis pode reduzir um modelo mais complexo num outro linear. Para o exemplo, se aplicamos o logaritmo:

$$lnf(x) = ln(\alpha e^{\beta x}) = ln\alpha + \beta x$$

e reescrevendo:

$$Y' = lnY \quad e \quad \alpha' = ln\alpha$$

podemos escrever o modelo linear

$$Y' = \alpha' + \beta x + \epsilon$$

- Estamos interessados em funções que através de transformações de variáveis reduzem-se a modelos lineares do tipo $f(x) = \alpha + \beta x$.
- o conhecimento da forma de diversas famílias de curva, ajuda-nos a decidir por um dado modelo
- Os modelos obtidos através de análise gráfica exigem cuidados especiais tanto na sua utilização para previsão como para interpretação. No primeiro caso, devemos tomar precauções nas extrapolações. Já para a interpretação das estimativas dos parâmetros, lembre que na maioria dos casos interessa-nos a relação no modelo original e não no transformado, devido à complexidade, a interpretação torna-se dificil.
- É obrigatório a análise de resíduos.

Algumas transformações

Figura	Função	transformações	Forma Linear	Observaç
(a)(b)	$y = \alpha x^{\beta}$	y' = log(y),	$y' = log(\alpha) + \beta x'$	y > 0
		x' = log(x)		x > 0
(c)(d)	$y = \alpha e^{\beta x}$	y' = ln(y)	$y' = \alpha + \beta x'$	y > 0
(e)(f)	$y = \alpha + \beta \log(x)$	x' = log(x)	$y = \alpha + \beta x'$	x > 0
(g)(h)	$y = \frac{x}{\alpha x - \beta}$	$y^{'}=\frac{1}{y^{'}}$,	$y' = \alpha - \beta x'$	$y \neq 0$ e
	αw ρ	$x' = \frac{9}{x}$		$x \neq 0$
(i)	$y = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$	$y' = \ln(\frac{y}{1-y})$	$y' = \alpha + \beta x$	•

Exemplo

Exemplo

