ONDAS ELECTROMAGNETICAS Y MEDIOS DE ENLACE CLASE VIRTUAL

U.T. 8 - Reflexión Normal sobre un Conductor Perfecto

Ing. Antonio GARCIA ABAD

Esta experiencia tiende a introducir una nueva modalidad de enseñanza a fin de lograr que el alumnado pueda continuar su aprendizaje progresivo de los temas en forma independiente.

Requiere una gran responsabilidad por parte del alumno, debido a que tiene que planificar sus tiempos y actividades, para dedicarse al estudio de lo aquí presentado.

No intenta reemplazar los libros ni las clases presenciales, solo es un aporte a la mejor comprensión de la materia y facilitar el aprendizaje de los contenidos.

1.- ¿Que desarrollaremos?

Las unidad que nos permiten familiarizarnos con la reflexión perpendicular sobre un conductor perfecto.

2.- ¿Que es lo importante?

Acompañar esta clase virtual con el libro de "Campos Electromagnéticos y Medios de Enlace", realizar los desarrollos de las ecuaciones y desarrollar los ejercicios solicitados como Práctico de la "Guía de Actividades".

3. Cualquier sugerencia, consulta o aporte que pueda realizar, solicito hacerlo por grupo a la dirección de email: **ondaem2004@yahoo.com.ar**

Unidad Temática 8

Reflexión Normal sobre un Conductor Perfecto

8.1 Introducción

E n esta unidad analizamos un caso especial que está comprendido dentro de las ecuaciones analizadas en el capítulo anterior. Al tener el medio 2 conductividad que tiende a infinito el campo eléctrico reflejado E_r es igual al campo eléctrico incidente E_i pero de signo contrario, es decir que en la superficie de contorno el campo eléctrico total E_T es igual a cero, mientras que el campo magnético reflejado H_r es igual en signo y en valor al campo magnético incidente H_i , por lo tanto el campo magnético total H_T en la superficie de contorno es igual a dos veces el campo magnético incidente ($H_T = 2 H_i$).

8.2 Cálculo del Campo Eléctrico Total

ONDAS ELECTROMAGNETICAS Y MEDIOS DE ENLACE CLASE VIRTUAL

U.T. 8 - Reflexión Normal sobre un Conductor Perfecto

Ing. Antonio GARCIA ABAD

8.3 Cálculo del Campo Magnético Total

$$H_T y(z,t) = 2 Hi \cdot \cos \beta z \cdot \cos \omega t$$

Práctico: Con estas ecuaciones pueden realizar el ejercicio 08.01.55 y realizar los gráficos, en el cual es recomendable hacer la tabla ordenadamente para poder comprobar todos los valores.

8.4 Conclusión

Puede observarse en los gráficos anteriores que el campo eléctrico total E_T y el campo magnético total H_T están desfasados 90 grados.

En el capítulo siguiente se encontrará otra forma de graficar la distribución de campo aplicando el Diagrama de Crank.

Práctico: Los ejercicios 08.02.56 y 08.03.57 son necesarios para familiarizarse con las ecuaciones y además para luego comprobar los resultados mediante el diagrama de Crank y el ábaco de Smith.

Si aplicamos la siguiente ecuación para ωt entre 0 y 2 π y para z entre 0 y λ obtendremos el campo eléctrico total en un medio con reflexión:

$$E_{X}(z) = E_{i}.\cos(\boldsymbol{\varpi} t - \boldsymbol{\beta} z) + E_{r}.\cos(\boldsymbol{\varpi} t + \boldsymbol{\beta} z - \boldsymbol{\theta}_{\Gamma})$$
$$E_{r} = [\Gamma].E_{i}$$

ONDAS ELECTROMAGNETICAS Y MEDIOS DE ENLACE CLASE VIRTUAL

U.T. 8 - Reflexión Normal sobre un Conductor Perfecto

Ing. Antonio GARCIA ABAD

Representación gráfica de ondas con distintos valores de coeficiente de reflexión y para varios tiempos

$$[\Gamma] = 0.2$$

$$\theta_{\Gamma} = 45^{\circ}$$

$$[\Gamma] = 0.5$$

 $\theta_{\Gamma} = 45^{\circ}$

Fín Unidad 8