MEAN

FORMULA 8-

 $mean = .Sum of data = .Sxi^{\circ}$ $no \cdot of data points n$

EXAMPLE 8 01

Find the mean of this data

mean = 1+2+4+5

= $\frac{12}{4}$ \Rightarrow 3

mean is 3

EXAMPLE \$ 02

When data is present in tabular form we find mean as

mean $\overline{\chi} = (\chi_1 f_1 + \chi_2 f_2 + \dots + \chi_n f_n)$ $f_1 + f_2 + \dots + f_n$

,	Example	e:	ind m	rean o	t tolla	wing	distribution	
	×	4	6	9	10	17	100000	
	f	5	10	10	7	8		
							,	

Calculation Xi°	table for	axithematic	
Χį°		asithematic	
Χį°			mean:
4	+1	xifi	
	5	20	
6	10	60	
9	10	90	
10	7	70	
15	8	120	Marie .
	Sti= 40	Sxiti	= 360
$Mean \bar{\chi} =$	Sxifi		
	Sti.		
=	360.	⇒ 9	
	40		
Mean is	7		
			NALL L
		10000000	

MEDIAN

Note: - Always arrange the data in ascending

If n is Even:

• Median = $\left[(n/2)^{th} tesm + (n/2+1)^{th} tesm \right]$

If n is Odd:

• Median = $\frac{n+1}{2}$

EXAMPLE 1:

let's consider the data: 56, 67, 54, 34, 78, 43, 23. What is median?

Solution:-

Assanging is ascerding order we get

23, 34, 43, 54, 56, 67, 78.

Here n (no-of lobservations) = 7

So 7+1 = 4

median = 54

EXAMPLE 2: Let's Consider Eata 50, 67, 24, 34, 78, 43. What is the median? Solution :-Arranging in ascending order we get 24, 34, 43, 50, 87, 78. 6 = 3 Using Formula Median = 3rd observation + 4th observation = 43+50

2 Median = 46-5

MODE Term with the highest frequency EXAMPLE : 1 Ms. Noris asked students in her class how many siblings each had. Find the mode of data: 0,0,1,1,1,1,2,2,2,3,5 The mode is 1' sibling. EXAMPLE : 02 find the mode of data: 0, 1, 1, 1, 2, 2, 2, 3, 4, 3 Their is a tie for value that occur most So the modes are 1 and 2.

PROBUBILITY DISTRIBUTION TYPES 1. NORMAL Distribution 2. UNIFORM DISTRIBUTION 3. BINOMIAL DISTRIBUTION 4. POISSON DISTRIBUTION NORMAL DISTRIBUTION FORMULA : 4 $f(x) = 1 \exp \left[-\frac{1}{2} \left(\frac{x-\nu}{6}\right)^2\right]$ Where X is the variable p is the mean 6 standard deviation EXAMPLE: -Find the probability density function for normal distribution where mean is 4, standard deviation is 2 & x=3. Solution: $f(x) = \frac{1}{2\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{3-4}{2}\right)^2\right]$ f(x) = 0.17603

BINOMIAL DISTRIBUTION FORMULA :- $P(x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{(n-x)!} x!$ where no no of trials (or samples) z: the no-of successes desired 9: probability of getting success in one trial.

p: probability of getting failure in one trial. Example 1: 11 coin is tossed 5 times, using binomial distribution find probability of: No-of trials n=5 Probability of head p= 1/2 Probability of taily= 1/2 Exactly 2 heads x = 2 $C_{x} \rho^{x} (q)^{n-x}$ $5C_{2} (V_{2})^{2} (V_{2})^{3} = 5!$

Example = - 60 % of people who purchase sports car are men. Find prob. that exactly 7 are men if 10 sports car owness & selected randomly. The number of sports car owness n=10 & no. to find probability is X=7. p= 60 % or 0.60 Probability of failure q=1-0.6 =0.4 $P(x) = n! \qquad pq \qquad n-x$ = 10! (0.6) (0.4)(10-7) | 71 P(x) = 0.215

POISSON DISTRIBUTION FORMULAS $f(x) = e^{-\lambda} k$ Example :1 If vandom variable X follows a Poisson distribution with a mean of 3.4 find P(X=6)? $P(X=6) = e^{-3-4} 3.4$ = 0.072 EXAMPLE : 2 In a case, the customer assives at a mean rate of 2 per min. Find probability of arrival of 5 customers in 1 min. Given $\lambda = 2$ & x = 5 $P = e^{-2}, 5$ P= 0.036