

FIRST SEMESTER 2022-2023

Course Handout Part II

Date: 5-8-22

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MEL G 621
Course Title : VLSI DESIGN
Instructor-in-Charge : Sumit K Chatterjee

Course Description: Introduction to NMOS and CMOS circuits; NMOS and CMOS processing technology; CMOS circuits and logic design; circuit characterization and performance estimation; structured design and testing; symbolic layout systems; CMOS subsystem design; system case studies.

Scope and Objective of the Course:

The objective of this course is to understand different design principles used in the Design of Digital VLSI Circuits & Systems using nMOS and CMOS with emphasis on for high performance computing. VLSI design activity will be understood by Synthesis and then Analysis at several successive levels of design abstraction.

The broad topics of coverage includes Principles of operations of CMOS transistors used as a digital switch and various other topologies used in Digital VLSI Design, Logic implementation strategies and performance characterization of the VLSI circuits, Low Power Design, different clocking strategies, symbolic layout systems, CMOS subsystems design and Memory modules.

Textbooks:

- 1. Essential of VLSI Circuits and Systems Author: KamaranEsharaghian, Dauglas A. PuecknellSholenEshraghian Publisher: PHI.2009
- 2. CMOS Digital Integrated Circuit, Analysis and Design, Sung-Mo Kang and Yusuf Leblebici, Publisher: McGraw- Hill Companies, Inc.2003

Reference books

1. Digital Integrated Circuits: A Design Perspective Author: Jan Rabey, Prentice Hall, 2005

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-3	Introduction	Overview of Digital VLSI Design Methodologies	Chapter-I (T2)
	Introduction to MOS	=: 1010 g.co	2.2(T1), 3.1,

	Physics	Basic Electrical Properties of MOS Devices	3.2, 3.3(T2)
4-5	Device Characteristics	Understanding Drain-to-Source Current versus Voltage relationships	2.1, 2.3(T1);3.4(T
6-8	Static NMOS/CMOS inverter: voltage- transfer characteristics	Voltage Transfer Characteristics of CMOS Inverters; Performance measure of CMOS Inverters	2) 2.4; 2.6; 2.10(T1), Chapter 4 (T2), Chapter 5 (R1)
9-10	MOS Capacitances, Dynamic Behavior of MOS Inverters	Capacitances associated with CMOS devices and switching characteristics of CMOS inverters	4.6;4,7(T1) Chapter 6 (T2)
11-13	CMOS Process Technology , Layout and Design Rules	CMOS Fabrication steps, Stick Diagrams and Layout Design rules	Chapter 3 (T1)
14	Scaling of MOS Devices	Constant Voltage Scaling; Full Scaling; Short channel and narrow channel effects	Chapter 5 (T1)
15-23	Combinational CMOS logic circuit :static logic; optimization for speed, method of logical effort; Euler diagrams; Ratioed logic, pseudo-NMOS logic; Pass transistor logic	Building blocks for combinational logic; Examples of structured logic design; Different Design styles; subsystem design	6.2-6.4,(T1) Chapter 7(T2);
24-26	Inter-Connect Parasitic	Understanding Interconnect Capacitances, Resistance, Delay models	4.2-4.10(T1) 6.5-6.7 (T2)
27-31	CMOS Sequential logic Design	Design of Flip-flops; Latches & registers	6.5-6.6(T1) Chapter 7(R1)
32-35	Dynamic and Domino Logic Design	Dynamic CMOS Circuit techniques; Dynamic latches & Registers; NORA logic, Pipelining Approach.	6.6 (T1) Chapter 7(R1) Chapter 9 (T2)
36-38	Clocking Strategies	Synchronous design, timing metrics	11.5(T1); 10.1- 10.2(R1)
39-41	Adder architectures	Adders, Multipliers & Shifter Design	8.4-8.5(T1); Chapter 11(R1)

Evaluation Scheme:

don seneme.				
Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Sem	90 min	20	05/11 1.30 - 3.00PM	Closed Book
Assignments	NA	10	NA	Open Book

Research Seminar	NA	10	NA	Open Book
Lab	NA	20	NA	Open Book
Comprehensive Exam	180 min	40	30/12 AN	Closed book

Chamber Consultation Hour: Will be announced in the class.

Notices: Notices regarding the course will be put up on CMS only.

Make-up Policy: Make-up will be given on **genuine** grounds only. Prior application should be made for seeking the make- up examination.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE MEL G621

