

Busher Bridi, Jamie Cohen, & Marcelo Rodrigues

Overview

- IoT devices have become increasingly prevalent in today's interconnected world
 - IoT devices play a vital role in many industries, enhancing efficiency, and ease of use.
- Clustering IoT devices can provide insight into device management and security
 - Problem Statement 1: Determine whether IoT devices can be clustered based on their features
- It is crucial to keep IoT devices safe from cyber attacks, especially mission critical ones. Analyzing IoT traffic can detect and possibly mitigate possible threats.
 - **Problem Statement 2:** Determine whether malicious network activity can be identified and predicted

Objective

- **Objective 1:** Create a model that will show which features can be used to identify different types of IoT devices
 - Success: An equal amount of distinct cluster to the amount of unique IoT
 Devices in the datasets

- Objective 2: Create a model that can accurately predict type of IoT attack
 - Success: 50% accuracy

Methodology - Device Identification

Methodology - Attack Prediction

Datasets

Dataset 1: IoT Device Identification

- 297 Features
- 10 Types of IoT Devices within dataset
- o 13,701 data points

Dataset 2: IoT Attack Prediction

- 16 Features
- Labeled with attack type
 - Possible types of attack include: SHA, DFA, SFA, SYA, and VNA
- o 10,845 data points

Visualization - Device

Visualization - Device

Visualization - Prediction

Visualization - Prediction

Device Identification

K-Means

Average mean clusters BIC: 6.84

DBSCAN

- Epsilon = 6,Minimum_Samples = 20
- Silhouette Coefficient: 0.418

Gaussian Mixture Model

BerkeleyMICS

Hierarchical Clustering

Optics

BerkeleyMICS

Attack Prediction

K-Nearest Neighbors

	precision	recall	f1-score	support
0	0.33	0.57	0.42	622
1	0.39	0.39	0.39	727
2	0.57	0.46	0.51	542
3	0.60	0.47	0.53	662
4	0.67	0.48	0.56	701
accuracy			0.47	3254
macro avg	0.51	0.48	0.48	3254
weighted avg	0.51	0.47	0.48	3254

Decision Trees

	precision	recall	f1-score	support
0	0.42	0.51	0.46	622
1	0.49	0.45	0.47	727
2	0.68	0.63	0.66	542
3	0.70	0.67	0.69	662
4	0.96	0.96	0.96	701
accuracy			0.65	3254
macro avg	0.65	0.64	0.65	3254
weighted avg	0.65	0.65	0.65	3254

Logistic Regression

	precision	recall	f1-score	support
0	0.39	0.22	0.28	622
1	0.30	0.39	0.34	727
2	0.34	0.32	0.33	542
3	0.28	0.29	0.28	662
4	0.37	0.40	0.38	701
accuracy			0.33	3254
macro avg	0.34	0.32	0.32	3254
weighted avg	0.33	0.33	0.32	3254

Naive Bayes

	precision	recall	f1-score	support
0	0.67	0.11	0.19	622
1	0.25	0.58	0.34	727
2	0.35	0.04	0.08	542
3	0.20	0.08	0.12	662
4	0.28	0.44	0.34	701
accuracy			0.27	3254
macro avg	0.35	0.25	0.21	3254
weighted avg	0.34	0.27	0.22	3254

Random Forests

	precision	recall	f1-score	support
0	0.48	0.54	0.51	622
1	0.50	0.54	0.52	727
2	0.76	0.65	0.70	542
3	0.74	0.69	0.71	662
4	0.95	0.95	0.95	701
accuracy			0.68	3254
macro avg	0.69	0.67	0.68	3254
weighted avg	0.69	0.68	0.68	3254

Attack Prediction ROC Curve

Same Conditions Neural Networks

Hidden Layers = [256,256,256,64,64]

Learning rate = 0.001

Optimizer = Adam

Batch size = 25

Ер

oochs = 10	Accuracy	F1-Score	AUC	Time-To-Compute
ANN	53%	54%	74%	14.163 seconds
GRU	36%	41%	63%	405.860 seconds
LSTM	32%	37%	59%	462.704 seconds
CNN	42%	46%	69%	8.793 seconds

	Accuracy	F1-Score	AUC	Time-To-Compute
K-NN	47%	48%	74%	0.400 seconds
Decision Trees	65%	65%	78%	0.338 seconds
Logistic Regression	33%	32%	65%	0.508 seconds
Naive Bayes	27%	21%	60%	0.261 seconds
Random Forest	68%	68%	89%	2.923 seconds
ANN	53%	54%	74%	14.163 seconds
GRU	36%	41%	63%	405.860 seconds
LSTM	32%	37%	59%	462.704 seconds
CNN	42%	46%	69%	8.793 seconds

Artificial Neural Network (ANN)

Hidden Layers =
[256,256,256,64,64]
Learning rate = 0.001
Optimizer = Adam
Batch size = 25
Epochs = 10

		precision	recall	f1-score	support
	VNA	0.45	0.74	0.56	622
	SHA	0.44	0.72	0.55	727
	DFA	0.49	0.80	0.61	542
	SFA	0.45	0.79	0.57	662
	SYA	0.64	0.84	0.73	701
micro	avg	0.49	0.78	0.60	3254
macro	avg	0.49	0.78	0.60	3254
weighted	avg	0.50	0.78	0.60	3254
samples	avg	0.59	0.78	0.65	3254

Gated Recurrent Unit (GRU)

Hidden Layers = [64,64] Learning rate = 0.001 Optimizer = Adam Batch size = 5 Epochs = 40

		precision	recall	f1-score	support
	VNA	0.40	0.62	0.49	622
	SHA	0.38	0.65	0.48	727
	DFA	0.47	0.68	0.56	542
	SFA	0.42	0.66	0.51	662
	SYA	0.49	0.73	0.59	701
micro	avg	0.43	0.67	0.52	3254
macro	777	0.43	0.67	0.53	3254
weighted	avg	0.43	0.67	0.52	3254
samples	avg	0.50	0.67	0.55	3254

Long Short-Term Memory (LSTM)

Hidden Layers = [64,64] Learning rate = 0.001 Optimizer = Adam Batch size = 20 Epochs = 50 Dropout Rate = 0.2

		precision	recall	f1-score	support
	VNA	0.38	0.63	0.47	622
	SHA	0.36	0.67	0.47	727
	DFA	0.40	0.75	0.52	542
	SFA	0.41	0.64	0.50	662
	SYA	0.44	0.71	0.55	701
micro	avg	0.40	0.68	0.50	3254
macro	2000 T3	0.40	0.68	0.50	3254
weighted	avg	0.40	0.68	0.50	3254
samples	avg	0.47	0.68	0.53	3254

Hidden Layers = [64,64] Learning rate = 0.001 Optimizer = Adam Batch size = 5 Epochs = 50

Convolutional Neural Network (CNN)

		precision	recall	f1-score	support
	VNA	0.39	0.67	0.49	622
	SHA	0.40	0.63	0.49	727
	DFA	0.43	0.62	0.51	542
	SFA	0.36	0.76	0.49	662
	SYA	0.49	0.78	0.60	701
micro	avg	0.41	0.69	0.52	3254
macro	avg	0.41	0.69	0.52	3254
weighted	avg	0.41	0.69	0.52	3254
samples	avg	0.49	0.69	0.55	3254

	Accuracy	F1-Score	AUC	Time-To-Compute
ANN	61%	60%	79%	25.077 seconds
GRU	51%	52%	72%	831.946 seconds
LSTM	49%	50%	71%	318.898 seconds
CNN	50%	52%	72%	47.961 seconds

Fairness and Bias

- IoT Device
 - Sample size bias
 - Device similarities
- IoT Prevention

Limitations

- Lack of data
 - Similarities in labels/devices
- Computational Power
 - Ineffectiveness of certain models tested
- Time and Experience

BerkeleyMICS

Future Work

- Fine tuning clustering models
- Optimization of neural networks
- Hybrid models
- Expand datasets

Questions?

