

Jan Kristian Jensen

Python geopandas

Timeline

- 2013: Beginning of the development
- 2014: GeoPandas 0.1.0 released
- 2020: GeoPandas became NumFOCUS Affiliated Project

Timeline

- 2008: Development of pandas started
- 2009: pandas becomes open source
- 2012: First edition of *Python for Data Analysis* is published
- 2015: pandas becomes a NumFOCUS sponsored project

Detta ække nytt - men det er nyttig!

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types.

You can think of it like a spreadsheet or SQL table

https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html

1 bomstasjoner[['Navn bomstasjon', 'Takst liten bil', 'Takst stor bil']].head()

	Navn bomstasjon	Takst liten bil	Takst stor bil
0	Øvstabø	64.0	84.0
1	Sandviken	32.0	72.0
2	Gyldenpris	32.0	72.0
3	Straume	32.0	72.0
4	Gravdal	32.0	72.0

«A GeoDataFrame is a DataFrame that has a column with geometry»

1 bomstasjoner[['Navn bomstasjon', 'Takst liten bil', 'Takst stor bil', 'geometry']].head()

	Navn bomstasjon	Takst liten bil	Takst stor bil	geometry
0	Øvstabø	64.0	84.0	POINT Z (8105.874 6552587.819 380.748)
1	Sandviken	32.0	72.0	POINT Z (-32178.727 6737228.442 31.701)
2	Gyldenpris	32.0	72.0	POINT Z (-32637.918 6733197.696 17.242)
3	Straume	32.0	72.0	POINT Z (-36045.964 6727021.841 5.105)
4	Gravdal	32.0	72.0	POINT Z (-35230.758 6733476.926 14.993)

Python shapely - objekter

2D GIS-operasjoner Joda, geometri kan være 3D - men alle operasjoner er i kartplan

bomstasjoner[['Navn bomstasjon', 'Takst liten bil', 'Takst stor bil', 'geometry']].head()

	Navn bomstasjon	Takst liten bil	Takst stor bil	geometry
0	Øvstabø	64.0	84.0	POINT Z (8105.874 6552587.819 380.748)
1	Sandviken	32.0	72.0	POINT Z (-32178.727 6737228.442 31.701)
2	Gyldenpris	32.0	72.0	POINT Z (-32637.918 6733197.696 17.242)
3	Straume	32.0	72.0	POINT Z (-36045.964 6727021.841 5.105)
4	Gravdal	32.0	72.0	POINT Z (-35230.758 6733476.926 14.993)

Python shapely - objekter

Min arbeidsflyt

Mitt eget bibliotek for NVDB

https://github.com/LtGlahn/nvdbapi-V3

https://pypi.org/project/nvdbapi-v3/

1. Importer

import nvdbapiv3
import pandas as pd

Pandas er med i nyere Python-installasjoner Søkeobjekt – sjekk https://github.com/LtGlahn/nvdbapi-V3

NVDB Objekttype 45 = Bomstasjon

https://datakatalogen.atlas.vegvesen.no/#/45-Bomstasjon

2. Søk (og filtrer)

```
mittSok = nvdbapiv3.nvdbFagdata(45)
mittSok.filter( {'fylke' : [11, 46] } )
mittSok.filter( { 'vegsystemreferanse' : 'Ev,Rv'})
```

Vil ha bomstasjoner innafor Rogaland og Vestland fylke På Europa- og riksveg

Lager liste med dictionaries

3. Gjør om til DataFrame

```
bomst = pd.<u>DataFrame( mittSok.to records() )</u>
```

4. Utforsk data

bomst.head()

	objekttype	nvdbld	versjon	startdato	Rushtid morgen, til	Tidsdifferensiert takst	Rushtidstakst liten bil	Rushtidstaks stor bi
0	45	82443541	12	2022-01- 01	08:59	Ja	59.0	130.0
1	45	82559833	11	2022-01- 01	08:59	Ja	59.0	130.0
2	45	82559836	12	2022-01- 01	08:59	Ja	59.0	130.0
3	45	141140381	11	2022-01- 01	08:59	Ja	59.0	130.0
4	45	264392510	7	2021-11-	NaN	Nei	NaN	Nat
5 ro	ows × 47 co	lumns						

bomst.dtypes

objekttype	int64
nvdbId	int64
Takst liten bil	float64
Takst stor bil	float64
Navn bomstasjon	object
kommune	int64
fylke	int64
vref	object
vegkategori	object
fase	object
vegnummer	int64
geometri	object

• • •

bomst['Takst liten bil'].describe()

```
38
count
          37.710526
mean
std
          32.707473
min
          12.000000
25%
          25.000000
50%
          30.000000
75%
          32.000000
         149.000000
max
Name: Takst liten bil, dtype: float64
```

nvdbld Takst liten bil

fylke	vegkategori		
11	E	8	18.500000
	R	10	52.300000
46	E	17	33.666667
	R	5	51 400000

	fylke	vegkategori	nvdbld	Takst liten bil
0	11	Е	8	18.500000
1	11	R	10	52.300000
2	46	Е	17	33.666667
3	46	R	5	51.400000

Ny DataFrame

5. Lag nye kolonner

```
Bomst['antall'] = 1
```

Lag ny kolonne med shapely geometri

Shapely

```
In [45]: bomst['geometri']
Out[45]:
0 POINT Z(-32178.727 6737228.442 31.701)
1 POINT Z(-35230.758 6733476.926 14.993)
2 POINT Z(-31572.63 6732758.286 10.152)
3 POINT Z(-31875.942 6729771.812 14.607)
4 POINT Z(-38302.253 6630101.496 58.359)
5 ....
```

Kolonne «geometri» inneholder tekst

Well Known Text
WKT Wikipedia

```
from shapely import wkt
Bomst['geometry'] = Bomst['geometri'].apply(wkt.loads)
```

```
Bomst['vref'] = Ev39 S79D50 m7106

Ønsker: Ev39 S79D1 m18734

Ev39 S79D1 m12371

Ev39 S79D1 m12371

Ev5158 S1 Rv555 S1D1 m4051
```

```
Bomst['ny'] = Bomst['vref'].apply( lambda x : x.split('D')[0] )
```

lambda ???

Anonym funksjon med ett – 1 – enkelt uttrykk *kort levetid*

Bomst['trafikantgruppe'] = K eller G

```
Ønsker:
```

Trafikantgruppe + *Ev39* S79
Trafikantgruppe + *Rv555* S1

```
K EV39 S79
K RV555 S1
```

• • •

Bruk funksjon med hele raden som argument

For bilister EV39 S79 For bilister RV555 S1

def lagnykolonne(row):
 trafikantgruppe = 'For bilister'
 if row['trafikantgruppe'] == 'G':
 trafikantgruppe = 'For gående'
 return trafikantgruppe + " " + row['vref'].split('D')[0]

```
Bomst['ny kolonne'] = Bomst.apply( lagnykolonne, axis=1 )
```

```
Bomst['ny kolonne'] = Bomst.apply( lambda x : lagnykolonne(x), axis=1)
```

Nytt karteksempel

- gøy med shapely geometri

Bergensere liker ikke bompenger!

Hypotese: Bergenseres bompengehat er omvendt proporsjonalt med avstanden til den blå steinen på Torgallmenningen

SRID=5973; Point(-32064, 6734257)

Dataprepp

for hypotese:

Bergenseres bompengehat er omvendt proporsjonalt med avstanden til den blå steinen på Torgallmenningen

blåstein = wkt.loads('Point(-32064 6734257)') <

Bomst['Avstand blå stein'] = Bomst['geometry'].apply(lambda x : blåstein.distance(x))

6. Lagre

Bomst.to_excel('minExcelFil.xlsx', index=False)


```
import geopandas as gpd
from shapely import wkt
Bomst['geometry'] = Bomst['geometri'].apply( wkt.loads )

Geobom = gpd.GeoDataFrame( Bomst, geometry='geometry', crs=5973)

Geobom.to_file('minfil.gpkg', layer='mittlag', driver='GPKG')
```


eller

Du er her: Forsiden • Dokument ∨ • Rapporter og planer •

Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssystemet for fylkeskommunene

Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssystemet for fylkeskommunene

Rapport | Dato: 02.07.2021

https://www.regjeringen.no/no/dokumenter/id2864850/

Faktor: Antall ferjekaibruer og tilleggskaier

1. Uttak av data fra NVDB (samme rapport som for bruer)

Uthenting av mengdegrunnlag – kilde:

NVDB rapporter(https://www.vegdata.no/produkter-og-tjenester/nvdb-rapporter/

Velg: Vegnett og objektdata for driftskontrakter

https://nvdb-vegnett-og-objektdata.atlas.vegvesen.no/generisk/

Velg: Egendefinerte rapporter

Velg: Detaljert mengdeoversikt (V4)

Velg objekttype: «Bru»

Velg fylke: (alle fylker må hentes hver for seg eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke

Legg inn to kolonner til venstre og

legg inn fylkesnummer og

fylkesnavn på hver linje.

Faktor: Antall ferjekaibruer og tilleggskaier

1. Uttak av data fra NVDB (samme rapport som for bruer)

Brukategori 1263

Vegbru 7304

Bruifylling 7305

G/S-bru 7306

Ferjeleie 7307

Tunnel/Vegoverbygg 7309

Støttekonstruksjon 7310

Jernbanebru 7311

Annen byggv.kategori 7312

Objekttype 60 Bru i NVDB = mye mere enn vegbru! https://datakatalogen.atlas.vegvesen.no/#/60-Bru

Faktor: Antall ferjekaibruer og tilleggskaier

1. Uttak av data fra NVDB (samme rapport som for bruer)

Velg fylke: (alle fylker må hentes hver for seg/eks Oslo)

Velg Vegfilter: F (fylkesveg)

Lagre fil som regneark for hvert fylke

Legg inn to kolonner til venstre og

legg inn fylkesnummer og

fylkesnavn på hver linje.

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

Trafikantgruppe: K (kjørende)

Vegkategori: F (fylkesveg)

Fase: V (eksisterende)

Brukategori Ferjeleie

Status: Trafikkert, (blank)

Filtreringshjelp 1

Byggverkstype 810, 811, 812, 820, 822, 823, 824

Med bruk av pivot-tabell i Excel kan summering av brulengder for ulike materialtyper gjøres slik:

Trafikantgruppe	K	Ţ								
Vegkategori		ΨŢ								
Fase		Ţ,								
Brukategori	Ferjeleie	Ţ								
Status	(Multiple Items)	Ţ,								
Filteringshjelp	1	Ţ								
Count of NummerOgNavn	Byggverkstype	Ţ	Ferjekaibru	Feriekaibru	Feriekaibru		Tilleggskai	Tilleggskai	Tilleggskai	
Fylke	Ferjekaibru (810	0)	(811)	(812)	(819)	Kai (820)	(822)	(823)	(824)	Grand Total
Agder			4			1				5
Innlandet		2								2
Møre og Romsdal		47		4						51
Nordland		14	17	23	1		6	5	4	70
Rogaland		16	3	1	1		1			22
Troms og Finnmark		12	3	27			1			43
Trøndelag		20	2	1						23
Vestland		1	17	21	19					58
Viken		1	1	2			1			5
Grand Total	1	13	47	79	21	1	9	5	4	279

Tema v

Dokument v

Aktuelt v

Du er her: Forsiden • Dokument ∨ • Rapporter og planer •

Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssysteme

Forslag til ny modell for beregning av kriteriet for fylkesveg i inntektssystemet for fylkeskommunene

Last ned per fylke => 11 x last ned Sammenstill manuelt Departemen Filtrer **Lag Pivot-tabell**

Rapport | Dato: 02.07.2021

Faktor: Antal

1. Uttak av da

Uthenting av NVDB rapport Brukategori = Ferjeleie

https://datakatalogen.atlas.vegvesen.no/#/60-Bru

Velg: Vegnett og objektuata for unitskontrak

https://nvdb-vegnett-og-objektdata.atlas.vegves-

Velg: Egendefinerte rapporter

```
sok = nvdbapiv3.nvdbFagdata(66,
sok.filter( {'vegsystemreferanse : 'Fv' } )
sok.filter( { 'egenskap' : '(1263=7307)'} )
mydf = pd.DataFrame( sok.to_records())
mydf.drop_duplicates( subset='nvdbId')
```


Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

Trafikantgruppe: K (kjørende)

Vegkategori: F (fylkesveg)

Fase: V (eksisterende)

Brukategori Ferjeleie

Status: Trafikkert, (blank)

Filtreringshjelp 1

Byggverkstype 810, 811, 812, 820, 822, 823, 824

```
sok = nvdbapiv3.nvdbFagdata(60)
sok.filter( {'vegsystemreferanse' : 'Fv' } )
sok.filter( { 'egenskap' : '(1263=7307)'} )
```


Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

```
Byggverkstype 810, 811, 812, 820, 822, 823, 824
```

mydf[mydf['Byggverkstype'].isin(bvType)]

mydf[en eller annen betingelse]

DataFrame med hakeparantes = gi meg subsett av DataFrame

en eller annen betingelse

Betingelse = Generer «liste» med True / False

Liste-aktig...
Pandas series

```
mydf['Byggverkstype'].isin(bvType)]
series (liste) med True / False
```

Returnerer ny Dataframe med de elementene der vi har *True* inni *«listene»* i hakeparantes

Filtrere samlet fil med følgende filtre for hvert fylke (med f.eks. bruk av pivottabell i Excel)

Byggverkstype 810, 811, 812, 820, 822, 823, 824

```
dfB = mydfA[ betingelse ] .COPY()
```

dfB ikke egen kopi, men referer til mydfA Kan ikke endre dfB

Overstyres med .copy() => endrbar dfB

Med bruk av pivot-tabell i Excel kan summering av brulengder for ulike materialtyper gjøres slik:

Trafikantgruppe	K	τŢ								
Vegkategori	F	Ţ,								
Fase	V	Ţ,								
Brukategori	Ferjeleie	Ţ,								
Status	(Multiple Items)	,T								
Filteringshjelp	1	Ţ								
Count of NummerOgNavn	Byggverkstype		Feriekaihru	Feriekaihru	Ferjekaibru		Tilleggskai	Tilleggskai	Tilleggskai	
Fylke	Ferjekaibru (810		(811)	(812)	(819)	Kai (820)	(822)	(823)	(824)	Grand Total
Agder			4			1	L			5
Innlandet		2								2
Møre og Romsdal		47		4						51
Nordland		14	17	23	1		6	5	4	70
Rogaland		16	3	1	1		1			22
Troms og Finnmark		12	3	27			1			43
Trøndelag		20	2	1						23
Vestland		1	17	21	19					58
Viken		1	1	2			1			5
Grand Total	1	13	47	79	21	1	. 9	5	. 4	279


```
mydf['antall'] = 1
```

byggverkstype = mydf[['fylke', 'Byggverkstype', 'antall']].pivot_table(

```
index='fylke',
columns='Byggverkstype',
aggfunc='count',
fill_value=0 )
```

In [19]: byggverkstype Out[19]:													
	antall												
Byggverkstype Ferjekaibr	u (810)	Ferjekaibru	(811)	Ferjekaibru	(812)	Kai	(820)	Tilleggskai	(822)	Tilleggskai	(823)	Tilleggskai	(824)
fylke													
11	17		3		2		0		1		0		0
15	52		0		4		0		0		0		0
18	15		17		25		2		6		5		4
30	1		1		2		0		1		0		0
34	5		0		0		0		0		0		0
42	0		4		0		1		0		0		0
46	3		18		22		0		0		0		0
50	21		2		1		0		0		0		0
54	22		3		27		0		1		0		0

- # Litt dataframe-wodoo for å få vekk multilevel-kolonnenavn
- # https://stackoverflow.com/a/44023799

byggverkstype.columns = byggverkstype.columns.droplevel(0)

Byggverkstype.columns =

Genialt, men forvirrende!

```
MultiIndex([('antall', 'Ferjekaibru (810)'),
             ('antall', 'Ferjekaibru (811)'),
             ('antall', 'Ferjekaibru (812)'),
             ('antall', 'Kai (820)'),
             ('antall', 'Tilleggskai (822)'),
             ('antall', 'Tilleggskai (823)'),
             ('antall', 'Tilleggskai (824)')],
          names=[None, 'Byggverkstype'])
```

```
antall
Byggverkstype Ferjekaibru (810) Ferjekaibru (811) Ferjekaibru (812) Ka
fylke
11 17 3 2
```

- # Litt dataframe-wodoo for å få vekk multilevel-kolonnenavn
- # https://stackoverflow.com/a/44023799

byggverkstype.columns = byggverkstype.columns.droplevel(0)


```
import pandas as pd
import nvdbapiv3
if __name__ == '__main__':
   sok = nvdbapiv3.nvdbFagdata(60)
    sok.filter( {'vegsystemreferanse' : 'Fv' } )
    sok.filter( { 'egenskap' : '(1263=7307)'} ) # Brukategori=Ferjeleie
   mydf = pd.DataFrame( sok.to records( ))
   mydf.drop duplicates( subset='nvdbId', inplace=True)
   # Disse brutypene er definert i oppskriften: 810, 811, 812, 820, 822, 823, 824.
   # Merk at vi hopper over 821.
   disseByggverkTypene = ['Ferjekaibru (810)', 'Ferjekaibru (811)', 'Ferjekaibru (812)',
              'Kai (820)', 'Tilleggskai (822)', 'Tilleggskai (823)', 'Tilleggskai (824)' ]
   mydf = mydf[ mydf['Byggverkstype'].isin( disseByggverkTypene )].copy()
   mydf['antall'] = 1
   byggverkstype = mydf[['fylke', 'Byggverkstype', 'antall']].pivot table(
              index='fylke', columns='Byggverkstype', aggfunc='count', fill value=0 )
   # Litt dataframe-wodoo for å få vekk multilevel-kolonnenavn
    byggverkstype.columns = byggverkstype.columns.droplevel(0)
```


40 linjer kode

40 linjer kode

Lær av data science folka!

Ny teknologi Nye analyseteknikker STORDATA teknologi Metodikk & **beste praksis**

Spatial is no longer special

GIS metodikk GIS analyser GIS verktøy

Spatial is no longer special

For a data scientists:

A map ... is just another visualization

A spatial analysis ... is just another analysis

Lær av data science folka!

Ny teknologi Nye analyseteknikker STORDATA teknologi Metodikk & **beste praksis**

