UPLB Eliens - Pegaraw Notebook

Contents

1 Data Structures

	1.1	Binary Trie	
	1.2	Disjoint Set Union	
	1.3	Minimum Queue	
	1.4	Mo	
	1.5	Range Add Point Query	
	1.6	Range Add Range Query	
	1.7	Segment Tree	
	1.8	Segment Tree 2d	
	1.9	Sparse Table	
	1.10	Sparse Table 2d	
	1.11	Sqrt Decomposition	
	D		
2		mic Programming	4
	2.1	Divide And Conquer	
	2.2	Edit Distance	
	2.3	Knapsack	
	2.4	Knuth Optimization	
	2.5	Longest Common Subsequence	
	2.6	Longest Increasing Subsequence	
	2.7	Max Sum	
	2.8	Subset Sum	
3	Geon	netry	
•	3.1	Areas	
	3.2	Basic Geometry	
	3.3		
	3.4	Circle Line Intersection	
	3.5	Count Lattices	
	3.6	Line Intersection	
	3.7	Line Sweep	
	3.8	Minkowski Sum	
	3.9	Nearest Points	
	3.10	Point In Convex	
	3.11	Segment Intersection	
4	Grap	h Theory	é
	4.1	Articulation Point	
	4.2	Bellman Ford	
	4.3	Bridge	
	4.4	Centroid Decomposition	
	4.5	Dijkstra	
	4.6	Dinics	,
	4.7	Edmonds Karp	
	4.8	Fast Second Mst	
	4.9		1
	4.10		1
	4.10		1
	4.12 4.13		1
	4.14	*	1
	4.15	· ·	1
	4.16		1
	4.17	·	1
	4.18		1
	4.19		1
	4.20		1
	4.21	Maximum Bipartite Matching	1
	4.22	Min Cost Flow	1
	4.23	Prim	1
	4.24	Topological Sort	1
	4.25	Zero One Bfs	1

```
Math
  5.3
  5.4
  5.7
 5.8
  Segmented Sieve . . . . . . . . . . . . . . . . . .
  6 Miscellaneous
  References
Strings
  Count Unique Substrings . . . . . . . . . . . .
  Finding Repetitions . . . . . . . . . . . . . . . .
  Group Identical Substrings . . . . . . . . . . .
  Knuth Morris Pratt . . . . . . . . . . . . . . . .
  1 Data Structures
1.1 Binary Trie
```

```
struct Node { struct Node* parent, child[2]; };
      struct BinaryTrie {
        Node* root;
        BinaryTrie() {
          root = new Node();
           root->parent = NULL;
          root->child[0] = NULL;
          root->child[1] = NULL;
        void insert_node(int x) {
          Node* cur = root;
          for (int place = 29; place >= 0; place--) {
            int bit = x >> place & 1;
            if (cur->child[bit] != NULL) cur = cur->child
                  [bit];
            else {
              cur->child[bit] = new Node();
              cur->child[bit]->parent = cur;
              cur = cur->child[bit];
              cur->child[0] = NULL;
              cur->child[1] = NULL;
12 24
        void remove node(int x) {
          Node* cur = root;
           for (int place = 29; place >= 0; place--) {
```

```
int bit = x >> place & 1;
             if (cur->child[bit] == NULL) return;
             cur = cur->child[bit];
13 30
           while (cur->parent != NULL && cur->child[0] ==
                NULL && cur->child[1] == NULL) {
             Node* temp = cur;
             cur = cur->parent;
14 34
             if (temp == cur->child[0]) cur->child[0] =
             else cur->child[1] = NULL;
             delete temp;
         int get_min_xor(int x) {
           Node* cur = root;
           int minXor = 0;
           for (int place = 29; place >= 0; place--) {
             int bit = x >> place & 1;
             if (cur->child[bit] != NULL) cur = cur->child
                  [bit];
             else {
               minXor ^= 1 << place;
               cur = cur->child[1 ^ bit];
           return minXor;
```

1.2 Disjoint Set Union

13

13

13

14

15

15

16

16

16

16

16

16

16

17

17

```
struct DSU {
      vector<int> parent, size;
      DSU(int n) {
        parent.resize(n);
        size.resize(n);
        for (int i = 0; i < n; i++) make_set(i);</pre>
      void make_set(int v) {
        parent[v] = v;
        size[v] = 1;
      bool is_same(int a, int b) { return find_set(a)
           == find_set(b); }
      int find_set(int v) { return v == parent[v] ? v :
            parent[v] = find_set(parent[v]); }
      void union_sets(int a, int b) {
       a = find_set(a);
       b = find_set(b);
        if (a != b) {
          if (size[a] < size[b]) swap(a, b);</pre>
          parent[b] = a;
          size[a] += size[b];
23 };
```

1.3 Minimum Queue

```
1 11 get_minimum(stack<pair<11, 11>> &s1, stack<pair<</pre>
        11, 11>> &s2) {
     if (s1.empty() || s2.empty()) {
       return s1.empty() ? s2.top().second : s1.top().
            second;
```

```
} else {
        return min(s1.top().second, s2.top().second);
 7
    void add_element(ll new_element, stack<pair<ll, ll</pre>
      11 minimum = s1.empty() ? new_element : min(
           new_element, s1.top().second);
      s1.push({new_element, minimum});
11 }
12 11 remove_element(stack<pair<11, 11>> &s1, stack<
         pair<11, 11>> &s2) {
13
      if (s2.empty()) {
14
        while (!sl.empty()) {
15
          11 element = s1.top().first;
16
          s1.pop();
          11 minimum = s2.empty() ? element : min(
               element, s2.top().second);
18
          s2.push({element, minimum});
19
20
21
      11 removed_element = s2.top().first;
      s2.pop();
23
      return removed_element;
24 }
```

1.4 Mo

```
void remove(idx); // TODO: remove value at idx
         from data structure
    void add(idx);
                     // TODO: add value at idx from
         data structure
    int get_answer(); // TODO: extract the current
         answer of the data structure
    int block_size;
    struct Query {
      int 1, r, idx;
      bool operator<(Query other) const {</pre>
 8
        return make_pair(l / block_size, r) < make_pair</pre>
              (other.1 / block_size, other.r);
 9
10 };
    vector<int> mo_s_algorithm(vector<Query> queries) {
      vector<int> answers(queries.size());
13
      sort(queries.begin(), queries.end());
14
      // TODO: initialize data structure
      int cur_1 = 0, cur_r = -1;
16
      // invariant: data structure will always reflect
            the range [cur_1, cur_r]
17
      for (Query q : queries) {
18
        while (cur_1 > q.1) {
19
          cur_1--;
20
          add(cur_l);
         while (cur_r < q.r) {</pre>
23
          cur r++;
24
25
          add(cur_r);
26
27
         while (cur_1 < q.1) {
          remove(cur_l);
28
          cur_1++;
29
30
        while (cur_r > q.r) {
31
          remove(cur_r);
          cur_r--;
34
         answers[q.idx] = get_answer();
```

```
return answers;
1.5 Range Add Point Query
```

```
template<typename T, typename InType = T>
    class SegTreeNode {
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF;
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
        val = 0;
18
      SegTreeNode(const vector<InType>& a, int i, int j
          ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
        val = 0;
      void range_add(int 1, int r, T x) {
        if (r <= i || j <= 1) return;</pre>
        if (1 <= i && j <= r) {
          val += x;
          return;
        lc->range add(l, r, x);
        rc->range_add(1, r, x);
      T point_query(int k) {
40
        if (k < i \mid | j \le k) return IDN;
        if (j - i == 1) return val;
42
        return val + lc->point_query(k) + rc->
             point_query(k);
    };
    template<typename T, typename InType = T>
    class SegTree {
    public:
48
      SegTreeNode<T, InType> root;
49
      SegTree(int n) : root(0, n) {}
50
      SegTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
      void range_add(int 1, int r, T x) { root.
           range_add(1, r, x); }
52
      T point_query(int k) { return root.point_query(k)
           ; }
    };
```

1.6 Range Add Range Query

```
template<typename T, typename InType = T>
    class SegTreeNode {
3
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val, to_add = 0;
      SegTreeNode<T, InType>* lc, * rc;
      SeqTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = DEF:
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
        rc = new SegTreeNode<T, InType>(k, j);
        val = operation(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
           ) : i(i), j(j) {
        if (j - i == 1) {
          lc = rc = nullptr;
          val = (T) a[i];
          return;
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(a, i, k);
        rc = new SegTreeNode<T, InType>(a, k, j);
        val = operation(lc->val, rc->val);
2.9
      void propagate() {
        if (to_add == 0) return;
        val += to_add;
        if (j - i > 1) {
34
          lc->to_add += to_add;
35
          rc->to_add += to_add;
        to\_add = 0;
38
      void range_add(int 1, int r, T delta) {
40
        propagate();
        if (r <= i | | j <= 1) return;</pre>
        if (l <= i && j <= r) {
          to_add += delta;
          propagate();
        } else {
          lc->range_add(l, r, delta);
          rc->range_add(1, r, delta);
48
          val = operation(lc->val, rc->val);
      T range_query(int 1, int r) {
        propagate();
        if (1 <= i && j <= r) return val;</pre>
        if (j <= 1 || r <= i) return IDN;</pre>
        return operation(lc->range_query(l, r), rc->
             range_query(l, r));
56
57
      T operation(T x, T y) {}
58
    template<typename T, typename InType = T>
    class SegTree {
61
62
      SegTreeNode<T, InType> root;
      SegTree(int n) : root(0, n) {}
```

1.7 Segment Tree

```
template<typename T, typename InType = T>
    class SegTreeNode {
    public:
      const T IDN = 0, DEF = 0;
      int i, j;
      T val;
      SegTreeNode<T, InType>* lc, * rc;
      SegTreeNode(int i, int j) : i(i), j(j) {
        if (j - i == 1) {
10
          lc = rc = nullptr;
11
          val = DEF;
12
          return:
13
14
        int k = (i + j) / 2;
        lc = new SegTreeNode<T, InType>(i, k);
16
         rc = new SegTreeNode<T, InType>(k, j);
17
        val = op(lc->val, rc->val);
18
19
      SegTreeNode(const vector<InType>& a, int i, int j
           ) : i(i), j(j) {
        if (j - i == 1) {
21
          lc = rc = nullptr;
22
          val = (T) a[i];
23
          return;
24
25
         int k = (i + j) / 2;
26
        lc = new SegTreeNode<T, InType>(a, i, k);
27
         rc = new SegTreeNode<T, InType>(a, k, j);
28
        val = op(lc->val, rc->val);
29
      void set(int k, T x) {
31
        if (k < i | | j <= k) return;
32
        if (j - i == 1) {
          val = x;
34
          return;
36
        lc->set(k, x);
37
        rc->set(k, x);
38
        val = op(lc->val, rc->val);
39
40
      T range_query(int 1, int r) {
41
        if (1 <= i && j <= r) return val;</pre>
42
        if (j <= 1 || r <= i) return IDN;</pre>
         return op(lc->range_query(l, r), rc->
43
             range_query(1, r));
44
45
      T \circ p(T \times, T y) \{ \}
46 };
    template<typename T, typename InType = T>
    class SegTree {
48
49
    public:
      SegTreeNode<T, InType> root;
51
      SegTree(int n) : root(0, n) {}
52
      SeqTree(const vector<InType>& a) : root(a, 0, a.
           size()) {}
      void set(int k, T x) { root.set(k, x); }
```

1.8 Segment Tree 2d

```
template<typename T, typename InType = T>
    class SegTree2dNode {
    public:
      int i, j, tree_size;
      SegTree<T, InType>* seg_tree;
      SegTree2dNode<T, InType>* lc, * rc;
      SegTree2dNode() {}
      SegTree2dNode(const vector<vector<InType>>& a,
           int i, int j) : i(i), j(j) {
        tree_size = a[0].size();
        if (j - i == 1) {
          lc = rc = nullptr;
          seg_tree = new SegTree<T, InType>(a[i]);
          return;
        int k = (i + j) / 2;
        lc = new SegTree2dNode<T, InType>(a, i, k);
        rc = new SegTree2dNode<T, InType>(a, k, j);
18
        seg_tree = new SegTree<T, InType>(vector<T>(
             tree_size));
19
        operation_2d(lc->seg_tree, rc->seg_tree);
       ~SegTree2dNode() {
        delete lc;
        delete rc:
      void set_2d(int kx, int ky, T x) {
        if (kx < i || j <= kx) return;</pre>
        if (j - i == 1) {
          seg_tree->set(ky, x);
          return;
        1c->set_2d(kx, ky, x);
        rc \rightarrow set_2d(kx, ky, x);
3.3
        operation_2d(lc->seg_tree, rc->seg_tree);
34
35
      T range_query_2d(int lx, int rx, int ly, int ry)
36
        if (lx <= i && j <= rx) return seg_tree->
             range_query(ly, ry);
37
        if (j <= lx || rx <= i) return -INF;</pre>
38
        return max(lc->range_query_2d(lx, rx, ly, ry),
             rc->range_query_2d(lx, rx, ly, ry));
39
40
      void operation_2d(SegTree<T, InType>* x, SegTree<</pre>
           T, InType>* y) {
        for (int k = 0; k < tree_size; k++) {</pre>
          seg_tree->set(k, max(x->range_query(k, k + 1)
               , y->range_query(k, k + 1)));
43
44
45
    template<typename T, typename InType = T>
    class SegTree2d {
48
    public:
      SegTree2dNode<T, InType> root;
      SegTree2d() {}
      SegTree2d(const vector<vector<InType>>& mat) :
           root(mat, 0, mat.size()) {}
      void set_2d(int kx, int ky, T x) { root.set_2d(kx
           , ky, x); }
```

```
T range_query_2d(int lx, int rx, int ly, int ry)
{ return root.range_query_2d(lx, rx, ly, ry)
; }
54 };
```

1.9 Sparse Table

```
1  11 log2_floor(ll i) {
      return i ? __builtin_clzll(1) - __builtin_clzll(i
           ): -1;
3 }
   vector<vector<ll>> build_sum(ll N, ll K, vector<ll>
          &array) {
      vector<vector<ll>>> st(K + 1, vector<ll>(N + 1));
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
      for (ll i = 1; i <= K; i++)</pre>
8
        for (11 j = 0; j + (1 << i) <= N; <math>j++)
          st[i][j] = st[i - 1][j] + st[i - 1][j + (1 <<
                (i - 1))];
      return st;
    11 sum_query(11 L, 11 R, 11 K, vector<vector<11>>> &
         st) {
      11 \text{ sum} = 0;
      for (11 i = K; i >= 0; i--) {
        if ((1 << i) <= R - L + 1) {</pre>
          sum += st[i][L];
          L += 1 << i;
18
19
      return sum;
21
22
    vector<vector<ll>> build_min(ll N, ll K, vector<ll>
          &array) {
      vector<vector<ll>> st(K + 1, vector<ll>(N + 1));
      for (ll i = 0; i < N; i++) st[0][i] = array[i];</pre>
25
      for (11 i = 1; i <= K; i++)</pre>
        for (11 \ j = 0; \ j + (1 << i) <= N; \ j++)
          st[i][j] = min(st[i-1][j], st[i-1][j+(1
                 << (i - 1));
28
      return st;
2.9
    11 min_query(11 L, 11 R, vector<vector<11>>> &st) {
      ll i = log2\_floor(R - L + 1);
      return min(st[i][L], st[i][R - (1 << i) + 1]);</pre>
33 }
```

1.10 Sparse Table 2d

```
const int N = 100;
int matrix[N][N];
int table[N][N][(int)(log2(N) + 1)][(int)(log2(N) + 1)];

void build_sparse_table(int n, int m) {
   for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++)
      table[i][j][0][0] = matrix[i][j];

   for (int k = 1; k <= (int)(log2(n)); k++)
   for (int j = 0; j + (1 << k) - 1 < n; i++)
   for (int j = 0; j + (1 << k) - 1 < m; j++)
   table[i][j][k][0] = min(table[i][j][k - 1][0], table[i + (1 << (k - 1))][j][k - 1][0], table[i + (1 << (k - 1))][j][k - 1][0];

for (int k = 1; k <= (int)(log2(m)); k++)
   for (int i = 0; i < n; i++)</pre>
```

```
4
```

```
14
           for (int j = 0; j + (1 << k) - 1 < m; <math>j++)
15
             table[i][j][0][k] = min(table[i][j][0][k -
                  1], table[i][j + (1 << (k - 1))][0][k
16
       for (int k = 1; k \le (int)(log2(n)); k++)
17
         for (int 1 = 1; 1 <= (int) (log2(m)); 1++)</pre>
18
           for (int i = 0; i + (1 << k) - 1 < n; i++)
19
             for (int j = 0; j + (1 << 1) - 1 < m; <math>j++)
20
               table[i][j][k][l] = min(
21
                 min(table[i][j][k-1][l-1], table[i]
                       + (1 << (k - 1)) ] [j] [k - 1] [1 -
22
                 min(table[i][j + (1 << (l - 1))][k -
                       1][1-1], table[i + (1 << (k - 1)
                       ) ] [j + (1 << (1 - 1))] [k - 1] [1 -
23
               );
24
25 int rmq(int x1, int y1, int x2, int y2) {
26
       int k = log2(x2 - x1 + 1), l = log2(y2 - y1 + 1);
27
       return max(
28
         \max(\text{table}[x1][y1][k][1], \text{table}[x2 - (1 << k) +
              1|[v1|[k][1]),
         \max(\text{table}[x1][y2 - (1 << 1) + 1][k][1], \text{table}[
              x^2 - (1 \ll k) + 1][y^2 - (1 \ll 1) + 1][k][1
      );
31 }
```

1.11 Sqrt Decomposition

```
1 int n;
    vector<int> a (n);
    int len = (int) sqrt (n + .0) + 1; // size of the
          block and the number of blocks
    vector<int> b (len);
    for (int i = 0; i<n; ++i) b[i / len] += a[i];</pre>
    for (;;) {
       int 1, r;
       // read input data for the next query
       int sum = 0;
      for (int i = 1; i <= r; )</pre>
11
         if (i % len == 0 && i + len - 1 <= r) {</pre>
           // if the whole block starting at i belongs
                to [1, r]
           sum += b[i / len];
14
          i += len;
15
         } else {
           sum += a[i];
           ++i;
18
19
       // or
20
21
22
23
24
25
       /*
       int sum = 0;
       int c_1 = 1 / len, c_r = r / len;
       if (c_1 == c_r)
           for (int i=1; i<=r; ++i)
               sum += a[i];
26
27
           for (int i=1, end=(c_1+1)*len-1; i<=end; ++i)
28
               sum += a[i];
29
30
           for (int i=c_1+1; i<=c_r-1; ++i)
               sum += b[i];
           for (int i=c_r*len; i<=r; ++i)
               sum += a[i];
```

```
35
```

2 Dynamic Programming

2.1 Divide And Conquer

```
1 11 m, n;
   vector<ll> dp_before(n), dp_cur(n);
   11 C(11 i, 11 j);
   void compute(ll l, ll r, ll optl, ll optr) {
      if (1 > r) return;
      11 \text{ mid} = (1 + r) >> 1;
      pair<11, 11> best = {LLONG_MAX, -1};
      for (ll k = optl; k <= min(mid, optr); k++)</pre>
       best = min(best, \{(k ? dp\_before[k - 1] : 0) +
             C(k, mid), k});
      dp_cur[mid] = best.first;
      11 opt = best.second;
      compute(1, mid - 1, optl, opt);
      compute(mid + 1, r, opt, optr);
      for (11 i = 0; i < n; i++) dp_before[i] = C(0, i)</pre>
      for (11 i = 1; i < m; i++) {
18
        compute (0, n - 1, 0, n - 1);
19
        dp_before = dp_cur;
      return dp_before[n - 1];
```

2.2 Edit Distance

```
11 edit_distance(string x, string y, 11 n, 11 m) {
     vector<vector<int>> dp(n + 1, vector<int>(m + 1,
          INF));
     dp[0][0] = 0;
     for (int i = 1; i <= n; i++) {</pre>
       dp[i][0] = i;
     for (int j = 1; j \le m; j++) {
8
       dp[0][j] = j;
9
     for (int i = 1; i <= n; i++) {
       for (int j = 1; j <= m; j++) {
         dp[i][j] = min({dp[i - 1][j] + 1, dp[i][j -
              1] + 1, dp[i - 1][j - 1] + (x[i - 1] !=
              y[j - 1])));
     return dp[n][m];
```

2.3 Knapsack

2.4 Knuth Optimization

```
1 11 solve() {
     11 N;
     ... // Read input
     vector<vector<ll>> dp(N, vector<ll>(N)), opt(N,
         vector<ll>(N));
     auto C = [&](ll i, ll j) {
       ... // Implement cost function C.
     for (11 i = 0; i < N; i++) {
       opt[i][i] = i;
       ... // Initialize dp[i][i] according to the
           problem
     for (11 i = N - 2; i >= 0; i--) {
       for (11 j = i + 1; j < N; j++) {
         11 mn = 11_MAX, cost = C(i, j);
         for (11 k = opt[i][j-1]; k \le min(j-1,
              opt[i + 1][j]); k++) {
           if (mn \ge dp[i][k] + dp[k + 1][j] + cost) {
             opt[i][j] = k;
             mn = dp[i][k] + dp[k + 1][j] + cost;
         dp[i][j] = mn;
     cout << dp[0][N - 1] << '\n';
```

2.5 Longest Common Subsequence

```
1 ll LCS(string x, string y, ll n, ll m) {
     vector<vector<ll>> dp(n + 1, vector<ll>(m + 1));
     for (ll i = 0; i <= n; i++) {
       for (11 j = 0; j <= m; j++) {
         if (i == 0 || j == 0) {
            dp[i][j] = 0;
         } else if (x[i - 1] == y[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
         } else {
           dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
     11 \text{ index} = dp[n][m];
     vector<char> lcs(index + 1);
     lcs[index] = ' \setminus 0';
     11 i = n, j = m;
     while (i > 0 \&\& j > 0) {
       if (x[i - 1] == y[j - 1]) {
         lcs[index - 1] = x[i - 1];
         i--;
       } else if (dp[i - 1][j] > dp[i][j - 1]) {
```

2.6 Longest Increasing Subsequence

```
1  ll get_ceil_idx(vector<ll> &a, vector<ll> &T, ll l,
          11 r, 11 x) {
      while (r - 1 > 1) {
        11 m = 1 + (r - 1) / 2;
        if (a[T[m]] >= x) {
         r = m;
        } else {
          1 = m;
10
      return r;
11 }
12 11 LIS(11 n, vector<11> &a) {
13
      11 len = 1;
14
      vector<11> T(n, 0), R(n, -1);
      T[0] = 0;
      for (11 i = 1; i < n; i++) {
17
        if (a[i] < a[T[0]]) {</pre>
18
         T[0] = i;
19
        } else if (a[i] > a[T[len - 1]]) {
20
          R[i] = T[len - 1];
21
          T[len++] = i;
22
        } else {
23
         11 pos = get_ceil_idx(a, T, -1, len - 1, a[i
              1);
          R[i] = T[pos - 1];
25
          T[pos] = i;
26
27
28
      return len;
29 }
```

2.7 Max Sum

```
int max_subarray_sum(vi arr) {
  int x = 0, s = 0;
  for (int k = 0; k < n; k++) {
    s = max(arr[k], s+arr[k]);
    x = max(x,s);
  }
  return x;
}</pre>
```

2.8 Subset Sum

```
7     if (j >= arr[i]) {
8         dp[i][j] |= dp[i - 1][j - arr[i]];
9      }
10     }
11     }
12     return dp[n][sum];
13  }
```

3 Geometry

3.1 Areas

```
int signed_area_parallelogram(point2d p1, point2d
         p2, point2d p3) {
      return cross(p2 - p1, p3 - p2);
 3
   double triangle_area(point2d p1, point2d p2,
         point2d p3) {
      return abs(signed_area_parallelogram(p1, p2, p3))
            / 2.0;
   bool clockwise (point2d p1, point2d p2, point2d p3)
      return signed_area_parallelogram(p1, p2, p3) < 0;</pre>
9
   bool counter_clockwise(point2d p1, point2d p2,
         point2d p3) {
      return signed_area_parallelogram(p1, p2, p3) > 0;
12
   double area(const vector<point>& fig) {
      double res = 0;
      for (unsigned i = 0; i < fig.size(); i++) {
        point p = i ? fig[i - 1] : fig.back();
       point q = fig[i];
18
       res += (p.x - q.x) * (p.y + q.y);
19
20
      return fabs(res) / 2;
```

3.2 Basic Geometry

return *this;

```
1 struct point2d {
      ftype x, y;
      point2d() {}
     point2d(ftype x, ftype y): x(x), y(y) {}
      point2d& operator+=(const point2d &t) {
6
       x += t.x;
       y += t.y;
8
       return *this:
9
     point2d& operator-=(const point2d &t) {
       x -= t.x;
       y -= t.y;
       return *this;
14
      point2d& operator *= (ftype t) {
       x *= t;
       y *= t;
       return *this;
      point2d& operator/=(ftype t) {
       x /= t;
        y /= t;
```

```
point2d operator+(const point2d &t) const {
           return point2d(*this) += t; }
26
      point2d operator-(const point2d &t) const {
           return point2d(*this) -= t; }
      point2d operator*(ftype t) const { return point2d
           (*this) *= t; }
28
      point2d operator/(ftype t) const { return point2d
           (*this) /= t; }
30 point2d operator*(ftype a, point2d b) { return b *
31 ftype dot(point2d a, point2d b) { return a.x * b.x
         + a.y * b.y; }
32 ftype dot(point3d a, point3d b) { return a.x * b.x
         + a.y * b.y + a.z * b.z; }
33 ftype norm(point2d a) { return dot(a, a); }
    double abs(point2d a) { return sqrt(norm(a)); }
    double proj(point2d a, point2d b) { return dot(a, b
        ) / abs(b); }
    double angle(point2d a, point2d b) { return acos(
        dot(a, b) / abs(a) / abs(b)); }
   point3d cross(point3d a, point3d b) { return
        point3d(a.y * b.z - a.z * b.y, a.z * b.x - a.x
         * b.z, a.x * b.y - a.y * b.x);
38 ftype triple(point3d a, point3d b, point3d c) {
        return dot(a, cross(b, c)); }
    ftype cross(point2d a, point2d b) { return a.x * b.
        y - a.y * b.x; }
   point2d intersect(point2d a1, point2d d1, point2d
         a2, point2d d2) { return a1 + cross(a2 - a1,
         d2) / cross(d1, d2) * d1; }
   point3d intersect(point3d a1, point3d n1, point3d
         a2, point3d n2, point3d a3, point3d n3) {
      point3d x(n1.x, n2.x, n3.x);
      point3d y(n1.y, n2.y, n3.y);
44
      point3d z(n1.z, n2.z, n3.z);
      point3d d(dot(a1, n1), dot(a2, n2), dot(a3, n3));
46
      return point3d(triple(d, y, z), triple(x, d, z),
          triple(x, y, d)) / triple(n1, n2, n3);
47 }
```

3.3 Circle Line Intersection

```
double r, a, b, c; // given as input
    double x0 = -a * c / (a * a + b * b);
    double y0 = -b * c / (a * a + b * b);
   if (c * c > r * r * (a * a + b * b) + EPS) {
     puts ("no points");
   } else if (abs (c *c - r * r * (a * a + b * b)) <</pre>
         EPS) {
      puts ("1 point");
      cout << x0 << ' ' << y0 << '\n';
      double d = r * r - c * c / (a * a + b * b);
      double mult = sqrt (d / (a * a + b * b));
      double ax, ay, bx, by;
     ax = x0 + b * mult;
     bx = x0 - b * mult;
     ay = y0 - a * mult;
     bv = v0 + a * mult;
      puts ("2 points");
      cout << ax << ' ' << ay << '\n' << bx << ' ' <<
          by << '\n';
19
```

```
struct pt {
      double x, y;
 3 };
    11 orientation(pt a, pt b, pt c) {
      double v = a.x * (b.y - c.y) + b.x * (c.y - a.y)
           + c.x * (a.y - b.y);
      if (v < 0) {
        return -1;
      \} else if (v > 0) {
        return +1;
11
      return 0:
12
13 bool cw(pt a, pt b, pt c, bool include_collinear) {
14
      11 o = orientation(a, b, c);
15
      return o < 0 || (include collinear && o == 0);</pre>
16
17
    bool collinear(pt a, pt b, pt c) {
18
      return orientation(a, b, c) == 0;
19
20
    void convex_hull(vector<pt>& a, bool
         include collinear = false) {
      pt p0 = *min_element(a.begin(), a.end(), [](pt a,
        return make_pair(a.y, a.x) < make_pair(b.y, b.x</pre>
             );
24
      sort(a.begin(), a.end(), [&p0](const pt& a, const
            pt& b) {
25
        11 \circ = orientation(p0, a, b);
26
        if (o == 0) {
          return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.x)
               a.y) * (p0.y - a.y)
                < (p0.x - b.x) * (p0.x - b.x) + (p0.y -
                    b.y) * (p0.y - b.y);
29
        return o < 0;
      }):
      if (include collinear) {
        11 i = (11) a.size()-1;
34
        while (i \ge 0 \&\& collinear(p0, a[i], a.back()))
              i--;
        reverse(a.begin()+i+1, a.end());
36
      vector<pt> st;
38
      for (ll i = 0; i < (ll) a.size(); i++) {</pre>
39
        while (st.size() > 1 && !cw(st[st.size() - 2],
             st.back(), a[i], include_collinear)) {
40
          st.pop_back();
41
42
        st.push back(a[i]);
43
44
      a = st:
45 }
```

3.5 Count Lattices

3.4 Convex Hull

```
cnt += (fk * (n - 1) + 2 * fb) * n / 2;
        k -= fk;
 8
        b -= fb;
9
      auto t = k * n + b;
      auto ft = t.floor();
      if (ft \geq= 1) cnt += count_lattices(1 / k, (t - t.
           floor()) / k, t.floor());
      return cnt;
14 }
 3.6 Line Intersection
    struct pt { double x, y; };
    struct line { double a, b, c; };
    const double EPS = 1e-9;
    double det(double a, double b, double c, double d)
         { return a*d - b*c; }
    bool intersect(line m, line n, pt & res) {
      double zn = det(m.a, m.b, n.a, n.b);
      if (abs(zn) < EPS) return false;</pre>
      res.x = -det(m.c, m.b, n.c, n.b) / zn;
      res.y = -det(m.a, m.c, n.a, n.c) / zn;
      return true;
    bool parallel(line m, line n) { return abs(det(m.a,
          m.b, n.a, n.b)) < EPS; }
    bool equivalent(line m, line n) {
      return abs(det(m.a, m.b, n.a, n.b)) < EPS</pre>
15
          && abs(det(m.a, m.c, n.a, n.c)) < EPS
6
          && abs(det(m.b, m.c, n.b, n.c)) < EPS;
1.7 }
 3.7 Line Sweep
    const double EPS = 1E-9;
    struct pt { double x, y; };
    struct seq {
      pt p, q;
      11 id:
      double get v(double x) const {
        if (abs(p.x - q.x) < EPS) return p.y;</pre>
 8
        return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x)
             .x):
 9
    };
    bool intersect1d(double 11, double r1, double 12,
         double r2) {
      if (11 > r1) swap(11, r1);
      if (12 > r2) swap(12, r2);
14
      return max(11, 12) <= min(r1, r2) + EPS;</pre>
   11 vec (const pt& a, const pt& b, const pt& c) {
```

double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y)

return intersectld(a.p.x, a.q.x, b.p.x, b.q.x) &&
 intersectld(a.p.y, a.q.y, b.p.y, b.q.y) &&

vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <=</pre>

vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <=

return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;

bool intersect(const seg& a, const seg& b) {

) * (c.x - a.x);

3.3 0

18

19

2.4

25 }

```
26 bool operator<(const seg& a, const seg& b) {</pre>
      double x = max(min(a.p.x, a.g.x), min(b.p.x, b.g.
           x));
28
      return a.get_y(x) < b.get_y(x) - EPS;</pre>
29
30 struct event {
      double v.
      11 tp, id;
      event() {}
      event (double x, 11 tp, 11 id) : x(x), tp(tp), id(
34
      bool operator<(const event& e) const {</pre>
        if (abs(x - e.x) > EPS) return x < e.x;
        return tp > e.tp;
38
39
   };
40 set<seg> s;
    vector<set<seg>::iterator> where;
    set<seg>::iterator prev(set<seg>::iterator it) {
      return it == s.begin() ? s.end() : --it;
    set<seg>::iterator next(set<seg>::iterator it) {
      return ++it;
47
48
    pair<11, 11> solve(const vector<seg>& a) {
      11 n = (11) a.size();
      vector<event> e;
      for (11 i = 0; i < n; ++i) {
        e.push_back(event(min(a[i].p.x, a[i].q.x), +1,
5.3
        e.push_back(event(max(a[i].p.x, a[i].q.x), -1,
             <u>i</u>));
54
55
      sort(e.begin(), e.end());
56
      s.clear();
      where.resize(a.size());
58
      for (size_t i = 0; i < e.size(); ++i) {</pre>
       11 id = e[i].id;
59
60
        if (e[i].tp == +1) {
          set<seq>::iterator nxt = s.lower_bound(a[id])
               , prv = prev(nxt);
          if (nxt != s.end() && intersect(*nxt, a[id]))
                return make_pair(nxt->id, id);
          if (prv != s.end() && intersect(*prv, a[id]))
                return make pair (prv->id, id);
          where[id] = s.insert(nxt, a[id]);
        } else {
          set<seg>::iterator nxt = next(where[id]), prv
                = prev(where[id]);
          if (nxt != s.end() && prv != s.end() &&
               intersect(*nxt, *prv)) return make_pair(
               prv->id, nxt->id);
68
          s.erase(where[id]);
69
      return make_pair(-1, -1);
72 }
3.8 Minkowski Sum
```

```
11 cross(const pt & p) const { return x * p.y - y
             * p.x; }
 6
    };
     void reorder_polygon(vector<pt> & P) {
       size_t pos = 0;
       for (size_t i = 1; i < P.size(); i++) {</pre>
         if (P[i].y < P[pos].y || (P[i].y == P[pos].y &&
               P[i].x < P[pos].x)) pos = i;
11
12
      rotate(P.begin(), P.begin() + pos, P.end());
13 }
14 vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
15
      // the first vertex must be the lowest
      reorder_polygon(P);
17
       reorder_polygon(Q);
18
      // we must ensure cyclic indexing
19
      P.push_back(P[0]);
20
      P.push_back(P[1]);
21
       Q.push_back(Q[0]);
22
23
       Q.push_back(Q[1]);
      // main part
24
      vector<pt> result;
       size_t i = 0, j = 0;
26
       while (i < P.size() - 2 || j < Q.size() - 2){</pre>
27
        result.push_back(P[i] + Q[j]);
28
         auto cross = (P[i + 1] - P[i]).cross(Q[j + 1] -
               Q[j]);
        if (cross >= 0 && i < P.size() - 2) ++i;</pre>
        if (cross <= 0 && j < Q.size() - 2) ++j;</pre>
31
       return result;
33 }
```

3.9 Nearest Points

```
struct pt {
                        ll x, y, id;
                 struct cmp_x {
                        bool operator()(const pt & a, const pt & b) const
                                 return a.x < b.x || (a.x == b.x && a.y < b.y);</pre>
   8 };
                 struct cmp v {
                        bool operator()(const pt & a, const pt & b) const
                                                 { return a.y < b.y; }
11 };
              11 n;
             vector<pt> a;
                double mindist;
                pair<11, 11> best_pair;
16
               void upd_ans(const pt & a, const pt & b) {
                        double dist = sqrt((a.x - b.x) * (a.x - b.x) + (a.x - 
                                            .y - b.y) * (a.y - b.y);
18
                        if (dist < mindist) {</pre>
19
                                mindist = dist;
20
                                best_pair = {a.id, b.id};
21
22 }
23 vector<pt> t;
24
                void rec(ll l, ll r) {
25
                        if (r - 1 \le 3) {
26
                                 for (11 i = 1; i < r; ++i)
27
                                        for (11 j = i + 1; j < r; ++j)
28
                                                upd_ans(a[i], a[j]);
                                 sort(a.begin() + 1, a.begin() + r, cmp_y());
```

```
return;
      11 m = (1 + r) >> 1, midx = a[m].x;
      rec(1, m);
      rec(m, r);
      merge(a.begin() + 1, a.begin() + m, a.begin() + m
           , a.begin() + r, t.begin(), cmp_y());
      copy(t.begin(), t.begin() + r - 1, a.begin() + 1)
      11 \text{ tsz} = 0;
      for (ll i = 1; i < r; ++i) {</pre>
39
        if (abs(a[i].x - midx) < mindist) {</pre>
40
          for (ll j = tsz - 1; j >= 0 && a[i].y - t[j].
               y < mindist; --j)</pre>
             upd_ans(a[i], t[j]);
          t[tsz++] = a[i];
44
      }
45
46 t.resize(n);
   sort(a.begin(), a.end(), cmp_x());
48 mindist = 1E20;
49 rec(0, n);
```

3.10 Point In Convex

```
struct pt {
      long long x, y;
      pt() {}
      pt (long long \underline{x}, long long \underline{y}) : x(\underline{x}), y(\underline{y}) {}
      pt operator+(const pt &p) const { return pt(x + p
           .x, y + p.y);}
      pt operator-(const pt &p) const { return pt(x - p
           .x, y - p.y);
      long long cross(const pt &p) const { return x * p
           y - y * p.x;
      long long dot(const pt &p) const { return x * p.x
            + y * p.y; }
      long long cross(const pt &a, const pt &b) const {
            return (a - *this).cross(b - *this); }
      long long dot (const pt &a, const pt &b) const {
           return (a - *this).dot(b - *this); }
      long long sqrLen() const { return this->dot(*this
           ); }
    bool lexComp(const pt &1, const pt &r) { return 1.x
          < r.x \mid | (1.x == r.x && 1.y < r.y); }
    int sgn(long long val) { return val > 0 ? 1 : (val
         == 0 ? 0 : -1); }
    vector<pt> seq;
16
    pt translation;
    int n:
18
    bool pointInTriangle(pt a, pt b, pt c, pt point) {
      long long s1 = abs(a.cross(b, c));
      long long s2 = abs(point.cross(a, b)) + abs(point
           .cross(b, c)) + abs(point.cross(c, a));
      return s1 == s2;
22
    void prepare(vector<pt> &points) {
      n = points.size();
      int pos = 0;
      for (int i = 1; i < n; i++) {
        if (lexComp(points[i], points[pos])) pos = i;
2.8
      rotate(points.begin(), points.begin() + pos,
           points.end());
```

```
seq.resize(n);
      for (int i = 0; i < n; i++) seq[i] = points[i +</pre>
           1] - points[0];
      translation = points[0];
34
    bool pointInConvexPolygon(pt point) {
      point = point - translation;
      if (seq[0].cross(point) != 0 && sgn(seq[0].cross(
           point)) != sgn(seq[0].cross(seq[n - 1])))
        return false:
39
      if (seq[n-1].cross(point) != 0 \&\& sqn(seq[n-1])
           1].cross(point)) != sgn(seq[n - 1].cross(seq
        return false;
      if (seq[0].cross(point) == 0)
        return seq[0].sqrLen() >= point.sqrLen();
      int 1 = 0, r = n - 1;
      while (r - 1 > 1) {
        int mid = (1 + r) / 2;
        int pos = mid;
        if (seq[pos].cross(point) >= 0) 1 = mid;
        else r = mid;
      int pos = 1;
      return pointInTriangle(seq[pos], seq[pos + 1], pt
           (0, 0), point);
52
```

3.11 Segment Intersection

```
const double EPS = 1E-9;
    struct pt {
      double x, y;
      bool operator<(const pt& p) const {</pre>
        return x < p.x - EPS \mid \mid (abs(x - p.x) < EPS &&
            y < p.y - EPS);
    };
   struct line {
      double a, b, c;
      line() {}
      line(pt p, pt q) {
        a = p.y - q.y;
       b = q.x - p.x;
       c = -a * p.x - b * p.y;
        norm();
      void norm() {
18
        double z = sqrt(a * a + b * b);
19
        if (abs(z) > EPS) a \neq z, b \neq z, c \neq z;
      double dist(pt p) const { return a * p.x + b * p.
           y + c; }
    double det (double a, double b, double c, double d)
      return a * d - b * c;
   inline bool betw(double 1, double r, double x) {
      return min(1, r) \le x + EPS && x \le max(1, r) +
   inline bool intersect_ld(double a, double b, double
          c, double d) {
      if (a > b) swap(a, b);
      if (c > d) swap(c, d);
      return max(a, c) <= min(b, d) + EPS;</pre>
```

```
Pegaraw
```

```
34 bool intersect(pt a, pt b, pt c, pt d, pt& left, pt
         & right) {
      if (!intersect_ld(a.x, b.x, c.x, d.x) || !
           intersect_ld(a.y, b.y, c.y, d.y)) return
      line m(a, b);
      line n(c, d);
      double zn = det(m.a, m.b, n.a, n.b);
      if (abs(zn) < EPS) {</pre>
        if (abs(m.dist(c)) > EPS || abs(n.dist(a)) >
             EPS) return false;
41
        if (b < a) swap(a, b);
42
        if (d < c) swap(c, d);
43
        left = max(a, c);
44
         right = min(b, d);
4.5
         return true;
46
      } else {
        left.x = right.x = -det(m.c, m.b, n.c, n.b) /
48
        left.y = right.y = -det(m.a, m.c, n.a, n.c) /
49
         return betw(a.x, b.x, left.x) && betw(a.v, b.v,
              left.y) &&
50
               betw(c.x, d.x, left.x) && betw(c.y, d.y,
                     left.v);
51
52 }
```

4 Graph Theory

4.1 Articulation Point

```
void APUtil(vector<vector<ll>>> &adj, ll u, vector<</pre>
         bool> &visited,
    vector<ll> &disc, vector<ll> &low, ll &time, ll
         parent, vector<bool> &isAP) {
      11 children = 0:
      visited[u] = true;
      disc[u] = low[u] = ++time;
      for (auto v : adj[u]) {
        if (!visited[v]) {
          children++;
          APUtil(adj, v, visited, disc, low, time, u,
          low[u] = min(low[u], low[v]);
11
          if (parent != -1 && low[v] >= disc[u]) {
            isAP[u] = true;
13
        } else if (v != parent) {
15
          low[u] = min(low[u], disc[v]);
16
17
18
      if (parent == -1 && children > 1) {
19
        isAP[u] = true;
20
21
    void AP(vector<vector<ll>>> &adj, ll n) {
23
      vector<ll> disc(n), low(n);
      vector<bool> visited(n), isAP(n);
24
25
      11 time = 0, par = -1;
      for (11 u = 0; u < n; u++) {
        if (!visited[u]) {
          APUtil(adj, u, visited, disc, low, time, par,
                isAP);
2.9
```

4.2 Bellman Ford

```
struct Edge {
      int a, b, cost;
    1:
    int n, m, v;
    vector<Edge> edges;
    const int INF = 1000000000;
    void solve() {
      vector<int> d(n, INF);
      d[v] = 0;
      vector<int> p(n, -1);
      int x;
      for (int i = 0; i < n; ++i) {
       \mathbf{x} = -1;
        for (Edge e : edges)
          if (d[e.a] < INF)
            if (d[e.b] > d[e.a] + e.cost) {
              d[e.b] = max(-INF, d[e.a] + e.cost);
              p[e.b] = e.a;
              x = e.b;
      if (x == -1) cout << "No negative cycle from " <<</pre>
      else {
        int y = x;
        for (int i = 0; i < n; ++i) y = p[y];
        vector<int> path;
        for (int cur = y;; cur = p[cur]) {
          path.push_back(cur);
          if (cur == y && path.size() > 1) break;
30
        reverse(path.begin(), path.end());
32
        cout << "Negative cycle: ";</pre>
        for (int u : path) cout << u << ' ';</pre>
```

4.3 Bridge

```
int n:
vector<vector<int>> adj;
vector<bool> visited;
vector<int> tin, low;
int timer;
void dfs (int v, int p = -1) {
  visited[v] = true;
 tin[v] = low[v] = timer++;
  for (int to : adj[v]) {
   if (to == p) continue;
    if (visited[to]) {
      low[v] = min(low[v], tin[to]);
    } else {
      dfs(to, v);
      low[v] = min(low[v], low[to]);
      if (low[to] > tin[v]) IS_BRIDGE(v, to);
```

4.4 Centroid Decomposition

```
vector<vector<int>> adj;
   vector<bool> is_removed;
   vector<int> subtree_size;
   int get_subtree_size(int node, int parent = -1) {
           subtree_size[node] = 1;
           for (int child : adj[node]) {
                   if (child == parent || is_removed[
                        child]) continue;
                    subtree_size[node] +=
                        get_subtree_size(child, node);
           return subtree_size[node];
   int get_centroid(int node, int tree_size, int
        parent = -1) {
           for (int child : adj[node]) {
                   if (child == parent || is_removed[
                        child]) continue;
                    if (subtree_size[child] * 2 >
                        tree_size) return get_centroid
                         (child, tree_size, node);
           return node;
18
   void build_centroid_decomp(int node = 0) {
           int centroid = get_centroid(node,
                get_subtree_size(node));
            // do something
           is_removed[centroid] = true;
            for (int child : adj[centroid]) {
                    if (is_removed[child]) continue;
                    build_centroid_decomp(child);
27 }
```

4.5 Dijkstra

```
q.pop();
14
        if (d v != d[v]) continue;
15
        for (auto edge : adj[v]) {
16
          int to = edge.first, len = edge.second;
17
          if (d[v] + len < d[to]) {</pre>
18
              d[to] = d[v] + len;
19
              p[to] = v;
20
              q.push({d[to], to});
23
24 }
```

4.6 Dinics struct FlowEdge { int v, u; 11 cap, flow = 0;FlowEdge(int v, int u, ll cap) : v(v), u(u), cap(struct Dinic { const 11 flow_inf = 1e18; vector<FlowEdge> edges; vector<vector<int>> adj; int n, m = 0, s, t; vector<int> level, ptr; queue<int> q; 13 Dinic(int n, int s, int t) : n(n), s(s), t(t) { 14 adj.resize(n); 15 level.resize(n); 16 ptr.resize(n); 17 18 void add_edge(int v, int u, 11 cap) { 19 edges.emplace_back(v, u, cap); 20 edges.emplace_back(u, v, 0); 21 adj[v].push_back(m); $adj[u].push_back(m + 1);$ 23 m += 2;24 25 bool bfs() { while (!q.empty()) { 27 int v = q.front(); 28 q.pop(); 29 for (int id : adj[v]) { if (edges[id].cap - edges[id].flow < 1)</pre> continue; if (level[edges[id].u] != -1) continue; level[edges[id].u] = level[v] + 1; q.push(edges[id].u); 34 35 36 return level[t] != -1; 37 38 11 dfs(int v, 11 pushed) { 39 if (pushed == 0) return 0; 40 if (v == t) return pushed; 41 for (int& cid = ptr[v]; cid < (int)adj[v].size</pre> (); cid++) 42 int id = adj[v][cid], u = edges[id].u; 43 if (level[v] + 1 != level[u] || edges[id].cap - edges[id].flow < 1) continue;</pre> 11 tr = dfs(u, min(pushed, edges[id].cap edges[id].flow));

if (tr == 0) continue;

edges[id].flow += tr;

edges[id ^ 1].flow -= tr;

4.5

46

47

```
return tr;
49
50
        return 0;
      11 flow() {
        11 f = 0;
        while (true) {
          fill(level.begin(), level.end(), -1);
56
          level[s] = 0;
          q.push(s);
58
          if (!bfs()) break;
59
          fill(ptr.begin(), ptr.end(), 0);
          while (ll pushed = dfs(s, flow_inf)) f +=
               pushed;
62
        return f;
64 };
 4.7 Edmonds Karp
    int n:
   vector<vector<int>> capacity;
   vector<vector<int>> adi;
 4 int bfs(int s, int t, vector<int>& parent) {
     fill(parent.begin(), parent.end(), -1);
      parent[s] = -2;
      queue<pair<int, int>> q;
      q.push({s, INF});
      while (!q.empty()) {
10
        int cur = q.front().first, flow = q.front().
             second;
        q.pop();
        for (int next : adj[cur]) {
13
          if (parent[next] == -1 && capacity[cur][next
            parent[next] = cur;
            int new_flow = min(flow, capacity[cur][next
                 ]);
            if (next == t) return new flow;
            q.push({next, new_flow});
18
      return 0;
    int maxflow(int s, int t) {
      int flow = 0;
      vector<int> parent(n);
      int new flow;
      while (new_flow = bfs(s, t, parent)) {
       flow += new_flow;
29
        int cur = t;
30
        while (cur != s) {
          int prev = parent[cur];
          capacity[prev][cur] -= new_flow;
          capacity[cur][prev] += new_flow;
```

4.8 Fast Second Mst

return flow;

cur = prev;

```
struct edge {
        int s, e, w, id;
        bool operator<(const struct edge& other) {</pre>
             return w < other.w; }</pre>
   typedef struct edge Edge;
    const int N = 2e5 + 5;
    long long res = 0, ans = 1e18;
8 int n, m, a, b, w, id, 1 = 21;
9 vector<Edge> edges;
10 vector<int> h(N, 0), parent(N, -1), size(N, 0),
         present (N, 0);
11 vector<vector<pair<int, int>>> adj(N), dp(N, vector
         <pair<int, int>>(1));
vector<vector<int>> up(N, vector<int>(1, -1));
    pair<int, int> combine(pair<int, int> a, pair<int,</pre>
         int> b) {
      vector<int> v = {a.first, a.second, b.first, b.
          second);
      int topTwo = -3, topOne = -2;
      for (int c : v) {
        if (c > topOne) {
          topTwo = topOne;
          topOne = c;
        } else if (c > topTwo && c < topOne) topTwo = c</pre>
      return {topOne, topTwo};
23
24
    void dfs(int u, int par, int d) {
     h[u] = 1 + h[par];
      up[u][0] = par;
      dp[u][0] = {d, -1};
      for (auto v : adj[u]) {
29
        if (v.first != par) dfs(v.first, u, v.second);
    pair<int, int> lca(int u, int v) {
      pair<int, int> ans = \{-2, -3\};
      if (h[u] < h[v]) swap(u, v);</pre>
      for (int i = 1 - 1; i >= 0; i--) {
        if (h[u] - h[v] >= (1 << i)) {
          ans = combine(ans, dp[u][i]);
38
          u = up[u][i];
      if (u == v) return ans;
      for (int i = 1 - 1; i >= 0; i--) {
        if (up[u][i] != -1 && up[v][i] != -1 && up[u][i
             ] != up[v][i]) {
          ans = combine(ans, combine(dp[u][i], dp[v][i
          u = up[u][i];
          v = up[v][i];
49
      ans = combine(ans, combine(dp[u][0], dp[v][0]));
50
      return ans;
51
52
53 int main(void) {
      cin >> n >> m;
      for (int i = 1; i <= n; i++) {</pre>
        parent[i] = i;
        size[i] = 1;
59
      for (int i = 1; i <= m; i++) {</pre>
60
        cin >> a >> b >> w; // 1-indexed
```

edges.push_back($\{a, b, w, i - 1\}$);

```
62
 63
       sort(edges.begin(), edges.end());
       for (int i = 0; i <= m - 1; i++) {
 65
         a = edges[i].s;
         b = edges[i].e;
 66
 67
         w = edges[i].w;
 68
         id = edges[i].id;
         if (unite_set(a, b)) {
           adj[a].emplace_back(b, w);
           adj[b].emplace_back(a, w);
           present[id] = 1;
 73
           res += w;
 74
         }
 75
 76
       dfs(1, 0, 0);
       for (int i = 1; i \le 1 - 1; i++) {
 78
         for (int j = 1; j <= n; ++j) {</pre>
 79
           if (up[j][i - 1] != -1) {
 80
             int v = up[j][i - 1];
 81
             up[j][i] = up[v][i - 1];
 82
             dp[j][i] = combine(dp[j][i-1], dp[v][i-
 84
 85
 86
       for (int i = 0; i <= m - 1; i++) {
 87
         id = edges[i].id;
         w = edges[i].w;
 88
 89
         if (!present[id]) {
 90
           auto rem = lca(edges[i].s, edges[i].e);
 91
           if (rem.first != w) {
 92
             if (ans > res + w - rem.first) ans = res +
                  w - rem.first;
           } else if (rem.second != -1) {
             if (ans > res + w - rem.second) ans = res +
                   w - rem.second;
 95
 96
         }
 97
       cout << ans << "\n";
 99
       return 0;
100 }
```

4.9 Find Cycle

```
bool dfs(ll v) {
      color[v] = 1;
      for (ll u : adj[v]) {
        if (color[u] == 0) {
          parent[u] = v;
          if (dfs(u)) {
            return true;
        } else if (color[u] == 1) {
          cycle_end = v;
          cycle_start = u;
          return true;
13
14
15
      color[v] = 2;
16
      return false;
17 }
18 void find_cycle() {
      color.assign(n, 0);
20
      parent.assign(n, -1);
      cycle_start = -1;
      for (11 v = 0; v < n; v++) {
```

```
if (color[v] == 0 && dfs(v)) {
          break;
26
      if (cycle_start == -1) {
        cout << "Acyclic" << endl;</pre>
      } else {
30
        vector<ll> cycle;
        cycle.push_back(cycle_start);
        for (11 v = cycle_end; v != cycle_start; v =
             parent[v]) {
          cycle.push_back(v);
34
35
        cycle.push_back(cycle_start);
        reverse(cycle.begin(), cycle.end());
        cout << "Cycle found: ";</pre>
        for (11 v : cycle) {
         cout << v << ' ';
40
        cout << '\n';
43 }
```

4.10 Floyd Warshall

4.11 Ford Fulkerson

```
1 bool bfs(ll n, vector<vector<ll>>> &r_graph, ll s,
         11 t, vector<11> &parent) {
      vector<bool> visited(n, false);
      queue<11> q;
      q.push(s);
5
      visited[s] = true;
      parent[s] = -1;
      while (!q.empty()) {
       11 u = q.front();
        q.pop();
        for (11 v = 0; v < n; v++) {
          if (!visited[v] && r_graph[u][v] > 0) {
            if (v == t) {
              parent[v] = u;
              return true;
15
            q.push(v);
            parent[v] = u;
            visited[v] = true;
```

```
return false;
    11 ford_fulkerson(ll n, vector<vector<ll>>> graph,
         11 s, 11 t) {
      11 u, v;
      vector<vector<11>> r_graph;
      for (u = 0; u < n; u++)
        for (v = 0; v < n; v++)
          r_graph[u][v] = graph[u][v];
      vector<11> parent;
31
      11 \text{ max\_flow} = 0;
      while (bfs(n, r_graph, s, t, parent)) {
        11 path_flow = INF;
34
        for (v = t; v != s; v = parent[v]) {
          u = parent[v];
          path_flow = min(path_flow, r_graph[u][v]);
        for (v = t; v != s; v = parent[v]) {
          u = parent[v];
          r_graph[u][v] -= path_flow;
          r_graph[v][u] += path_flow;
        max flow += path flow;
      return max_flow;
46
```

4.12 Hierholzer

```
void print_circuit (vector<vector<ll>>> &adj) {
      map<11, 11> edge_count;
      for (ll i = 0; i < adj.size(); i++) {</pre>
        edge_count[i] = adj[i].size();
      if (!adj.size()) {
        return;
      stack<ll> curr_path;
      vector<ll> circuit;
      curr_path.push(0);
      11 curr_v = 0;
      while (!curr_path.empty()) {
        if (edge_count[curr_v]) {
          curr_path.push(curr_v);
          11 next_v = adj[curr_v].back();
          edge_count[curr_v]--;
          adj[curr_v].pop_back();
          curr_v = next_v;
          circuit.push_back(curr_v);
          curr_v = curr_path.top();
          curr_path.pop();
2.4
25
      for (ll i = circuit.size() - 1; i >= 0; i--) {
        cout << circuit[i] << ' ';
28
29 }
```

4.13 Hungarian

```
1 vector<int> u (n+1), v (m+1), p (m+1), way (m+1);
2 for (int i=1; i<=n; ++i) {
3  p[0] = i;
4 int j0 = 0;</pre>
```

```
vector<int> minv (m+1, INF);
      vector<bool> used (m+1, false);
      do {
        used[j0] = true;
         int i0 = p[j0], delta = INF, j1;
10
         for (int j=1; j<=m; ++j)</pre>
          if (!used[j]) {
             int cur = A[i0][j]-u[i0]-v[j];
             if (cur < minv[j]) minv[j] = cur, way[j] =</pre>
14
             if (minv[j] < delta) delta = minv[j], j1 =</pre>
15
16
         for (int j=0; j<=m; ++j)</pre>
17
          if (used[j]) u[p[j]] += delta, v[j] -= delta
18
           else minv[j] -= delta;
19
         j0 = j1;
20
      } while (p[j0] != 0);
21
        int j1 = way[j0];
23
        p[j0] = p[j1];
24
         j0 = j1;
25
      } while (†0);
26
27
    vector<int> ans (n+1);
28
    for (int j=1; j<=m; ++j)</pre>
      ans[p[j]] = j;
30 int cost = -v[0];
```

4.14 Is Bipartite

```
1 bool is_bipartite(vector<ll> &col, vector<vector<ll</pre>
         >> &adj, ll n) {
       queue<pair<11, 11>> q;
      for (11 i = 0; i < n; i++) {</pre>
        if (col[i] == -1) {
          q.push({i, 0});
          col[i] = 0;
          while (!q.empty()) {
             pair<11, 11> p = q.front();
             q.pop();
10
             11 v = p.first, c = p.second;
             for (11 j : adj[v]) {
              if (col[j] == c) {
13
                 return false;
15
               if (col[j] == -1) {
16
                 col[j] = (c ? 0 : 1);
17
                 q.push({j, col[j]});
18
19
20
21
23
      return true;
```

4.15 Is Cyclic

```
if (!vis[v] && is_cyclic_util(v, adj, vis, rec)
            ) return true;
 6
        else if (rec[v]) return true;
8
      rec[u] = false;
9
      return false;
    bool is_cyclic(int n, vector<vector<int>> &adj) {
12
      vector<bool> vis(n, false), rec(n, false);
      for (int i = 0; i < n; i++)
        if (!vis[i] && is_cyclic_util(i, adj, vis, rec)
            ) return true;
      return false;
16 }
```

4.16 Kahn

```
void kahn(vector<vector<ll>>> &adj) {
     11 n = adj.size();
      vector<ll> in_degree(n, 0);
      for (11 u = 0; u < n; u++)
      for (ll v: adj[u]) in_degree[v]++;
      queue<11> q;
      for (11 i = 0; i < n; i++)
       if (in_degree[i] == 0)
         q.push(i);
      11 cnt = 0;
      vector<ll> top_order;
      while (!q.empty()) {
       11 u = q.front();
        q.pop();
        top_order.push_back(u);
        for (ll v : adj[u])
         if (--in_degree[v] == 0) q.push(v);
18
        cnt++;
19
      if (cnt != n) {
        cout << -1 << '\n';
        return;
      // print top_order
```

4.17 Kosaraju

return adj_t;

```
void topo_sort(int u, vector<vector<int>>& adj,
        vector<bool>& vis, stack<int>& stk) {
     vis[u] = true;
     for (int v : adj[u]) {
       if (!vis[v]) {
         topo_sort(v, adj, vis, stk);
6
7
8
     stk.push(u);
9
   vector<vector<int>> transpose(int n, vector<vector<</pre>
        int>>& adj) {
     vector<vector<int>> adj_t(n);
     for (int u = 0; u < n; u++) {
       for (int v : adj[u]) {
         adj_t[v].push_back(u);
```

```
void get_scc(int u, vector<vector<int>>& adj_t,
         vector<bool>& vis, vector<int>& scc) {
      vis[u] = true;
23
      scc.push_back(u);
      for (int v : adj_t[u]) {
        if (!vis[v]) {
          get_scc(v, adj_t, vis, scc);
31
    void kosaraju(int n, vector<vector<int>>& adj,
         vector<vector<int>>& sccs) {
      vector<bool> vis(n, false);
      stack<int> stk;
      for (int u = 0; u < n; u++) {
       if (!vis[u]) {
          topo_sort(u, adj, vis, stk);
38
      vector<vector<int>> adj t = transpose(n, adj);
      for (int u = 0; u < n; u++) {
       vis[u] = false;
      while (!stk.empty()) {
       int u = stk.top();
        stk.pop();
       if (!vis[u]) {
          vector<int> scc;
          get_scc(u, adj_t, vis, scc);
49
          sccs.push_back(scc);
52
```

4.18 Kruskals

```
1 struct Edge {
      int u, v, weight;
      bool operator<(Edge const& other) {</pre>
        return weight < other.weight;</pre>
6
   };
   int n;
   vector<Edge> edges;
    int cost = 0;
   vector<Edge> result;
   DSU dsu = DSU(n);
    sort(edges.begin(), edges.end());
    for (Edge e : edges) {
     if (dsu.find_set(e.u) != dsu.find_set(e.v)) {
        cost += e.weight;
        result.push_back(e);
        dsu.union_sets(e.u, e.v);
19 }
```

4.19 Kuhn

```
int n, k;
vector<vector<int>> g;
vector<int> mt;
vector<bool> used;
```

```
bool try_kuhn(int v) {
      if (used[v]) return false;
      used[v] = true;
      for (int to : g[v]) {
        if (mt[to] == -1 || try_kuhn(mt[to])) {
10
          mt[to] = v;
11
          return true;
12
13
14
      return false;
15 }
16 int main() {
17
      mt.assign(k, -1);
18
        vector<bool> used1(n, false);
19
        for (int v = 0; v < n; ++v) {
20
         for (int to : q[v]) {
21
           if (mt[to] == -1) {
              mt[to] = v;
23
              used1[v] = true;
24
              break;
25
26
          }
27
28
        for (int v = 0; v < n; ++v) {
29
          if (used1[v]) continue;
          used.assign(n, false);
31
          try_kuhn(v);
        for (int i = 0; i < k; ++i)
34
          if (mt[i] != -1)
35
            printf("%d %d\n", mt[i] + 1, i + 1);
36 }
```

4.20 Lowest Common Ancestor

```
1 struct LCA {
      vector<ll> height, euler, first, segtree;
      vector<bool> visited;
      LCA(vector<vector<ll>>> &adj, ll root = 0) {
       n = adj.size();
       height.resize(n);
       first.resize(n);
        euler.reserve(n * 2);
10
        visited.assign(n, false);
11
        dfs(adj, root);
        11 m = euler.size();
13
        segtree.resize(m * 4);
14
        build(1, 0, m - 1);
15
16
      void dfs(vector<vector<ll>> &adj, ll node, ll h =
        visited[node] = true;
18
        height[node] = h;
19
         first[node] = euler.size();
20
        euler.push_back(node);
         for (auto to : adj[node]) {
          if (!visited[to]) {
23
            dfs(adj, to, h + 1);
            euler.push_back(node);
25
26
27
      void build(ll node, ll b, ll e) {
29
        if (b == e) segtree[node] = euler[b];
         11 \text{ mid} = (b + e) / 2;
```

```
build(node << 1, b, mid);</pre>
           build(node << 1 | 1, mid + 1, e);
           11 1 = segtree[node << 1], r = segtree[node</pre>
                << 1 | 1];
           segtree[node] = (height[1] < height[r]) ? 1 :</pre>
36
      11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
        if (b > R | | e < L) return -1;</pre>
40
        if (b >= L && e <= R) return segtree[node];</pre>
        11 \text{ mid} = (b + e) >> 1;
         11 left = query(node << 1, b, mid, L, R);</pre>
43
         11 right = query(node << 1 | 1, mid + 1, e, L,</pre>
              R);
44
         if (left == -1) return right;
45
         if (right == -1) return left;
46
         return height[left] < height[right] ? left :</pre>
              right;
48
      ll lca(ll u, ll v) {
49
        11 left = first[u], right = first[v];
50
         if (left > right) swap(left, right);
         return query(1, 0, euler.size() - 1, left,
              right);
52
53 };
```

4.21 Maximum Bipartite Matching

```
bool bpm(ll n, ll m, vector<vector<bool>> &bpGraph,
          11 u, vector<bool> &seen, vector<11> &matchR)
      for (11 \ v = 0; \ v < m; \ v++) {
        if (bpGraph[u][v] && !seen[v]) {
          seen[v] = true;
          if (matchR[v] < 0 \mid \mid bpm(n, m, bpGraph,
               matchR[v], seen, matchR)) {
            matchR[v] = u;
            return true;
 8
9
      return false;
12
   11 maxBPM(11 n, 11 m, vector<vector<bool>> &bpGraph
      vector<11> matchR(m, -1);
      11 \text{ result} = 0;
      for (11 u = 0; u < n; u++) {
        vector<bool> seen(m, false);
        if (bpm(n, m, bpGraph, u, seen, matchR)) {
19
          result++;
20
      return result;
```

4.22 Min Cost Flow

```
1 struct Edge {
2   int from, to, capacity, cost;
3   };
4  vector<vector<int>> adj, cost, capacity;
5  const int INF = 1e9;
```

```
void shortest_paths(int n, int v0, vector<int>& d,
         vector<int>& p) {
      d.assign(n, INF);
      d[v0] = 0;
      vector<bool> inq(n, false);
      queue<int> q;
      q.push(v0);
      p.assign(n, -1);
      while (!q.empty()) {
        int u = q.front();
        q.pop();
        inq[u] = false;
        for (int v : adj[u]) {
18
          if (capacity[u][v] > 0 && d[v] > d[u] + cost[
              u][v]) {
            d[v] = d[u] + cost[u][v];
            p[v] = u;
            if (!inq[v]) {
             inq[v] = true;
              q.push(v);
28
29
    int min_cost_flow(int N, vector<Edge> edges, int K,
          int s, int t) {
      adj.assign(N, vector<int>());
      cost.assign(N, vector<int>(N, 0));
      capacity.assign(N, vector<int>(N, 0));
      for (Edge e : edges) {
34
        adj[e.from].push_back(e.to);
        adj[e.to].push_back(e.from);
        cost[e.from][e.to] = e.cost;
        cost[e.to][e.from] = -e.cost;
38
        capacity[e.from][e.to] = e.capacity;
39
      int flow = 0;
      int cost = 0;
      vector<int> d, p;
      while (flow < K) {</pre>
       shortest_paths(N, s, d, p);
        if (d[t] == INF) break;
        int f = K - flow, cur = t;
        while (cur != s) {
        f = min(f, capacity[p[cur]][cur]);
          cur = p[cur];
        flow += f;
        cost += f * d[t];
        cur = t;
        while (cur != s) {
          capacity[p[cur]][cur] -= f;
          capacity[cur][p[cur]] += f;
          cur = p[cur];
58
59
60
      if (flow < K) return -1;</pre>
      else return cost;
62 }
```

4.23 Prim

```
const int INF = 1000000000;
struct Edge {
   int w = INF, to = -1;
   bool operator((Edge const& other) const {
```

```
Pegaraw
```

```
return make_pair(w, to) < make_pair(other.w,
             other.to);
 7
    };
8 int n;
    vector<vector<Edge>> adj;
10 void prim() {
      int total_weight = 0;
      vector<Edge> min_e(n);
13
      \min e[0].w = 0;
      set < Edge > q;
      q.insert({0, 0});
      vector<bool> selected(n, false);
17
      for (int i = 0; i < n; ++i) {</pre>
18
        if (q.empty()) {
19
         cout << "No MST!" << endl;</pre>
20
          exit(0);
21
        int v = q.begin()->to;
23
         selected[v] = true;
24
        total_weight += q.begin()->w;
25
         q.erase(q.begin());
         if (min e[v].to != -1) cout << v << " " <<</pre>
             min_e[v].to << endl;</pre>
         for (Edge e : adj[v]) {
28
          if (!selected[e.to] && e.w < min_e[e.to].w) {</pre>
29
             q.erase({min_e[e.to].w, e.to});
             min_e[e.to] = \{e.w, v\};
             q.insert({e.w, e.to});
35
      cout << total_weight << endl;</pre>
```

4.24 Topological Sort

```
void dfs(ll v) {
      visited[v] = true;
      for (ll u : adj[v]) {
       if (!visited[u]) {
          dfs(u);
      ans.push_back(v);
9
10 void topological_sort() {
      visited.assign(n, false);
      ans.clear();
      for (ll i = 0; i < n; ++i) {</pre>
14
       if (!visited[i]) {
15
          dfs(i);
16
17
18
      reverse(ans.begin(), ans.end());
```

4.25 Zero One Bfs

```
1 vector<int> d(n, INF);
2 d[s] = 0;
3 deque<int> q;
4 q.push_front(s);
5 while (!q.empty()) {
    int v = q.front();
```

```
7    q.pop_front();
8    for (auto edge : adj[v]) {
9       int u = edge.first, w = edge.second;
10       if (d[v] + w < d[u]) {
11            d[u] = d[v] + w;
12            if (w == 1) q.push_back(u);
13            else q.push_front(u);
14       }
15    }
16 }</pre>
```

5 Math

5.1 Chinese Remainder Theorem

```
struct Congruence {
     11 a, m;
   };
   11 chinese_remainder_theorem(vector<Congruence>
         const& congruences) {
      11 M = 1:
      for (auto const& congruence : congruences) M *=
           congruence.m;
      11 \text{ solution} = 0:
      for (auto const& congruence : congruences) {
       11 a i = congruence.a;
        11 M_i = M / congruence.m;
        11 N_i = mod_inv(M_i, congruence.m);
        solution = (solution + a_i * M_i % M * N_i) % M
14
      return solution;
16 }
```

5.2 Extended Euclidean

```
int gcd(int a, int b, int& x, int& y) {
   if (b == 0) {
      x = 1;
      y = 0;
      return a;
   }
   int x1, y1, d = gcd(b, a % b, x1, y1);
   x = y1;
   y = x1 - y1 * (a / b);
   return d;
}
```

5.3 Factorial Modulo

```
11 return res;
12 }
```

5.4 Fast Fourier Transform

```
1 using cd = complex<double>;
    const double PI = acos(-1);
    void fft(vector<cd>& a, bool invert) {
      int n = a.size();
      if (n == 1) return;
      vector<cd> a0 (n / 2), a1 (n / 2);
      for (int i = 0; 2 * i < n; i++) {
       a0[i] = a[2 * i];
        a1[i] = a[2 * i + 1];
      fft(a0, invert);
      fft(a1, invert);
      double ang = 2 * PI / n * (invert ? -1 : 1);
      cd w(1), wn(cos(ang), sin(ang));
      for (int i = 0; 2 * i < n; i++) {
       a[i] = a0[i] + w * a1[i];
        a[i + n / 2] = a0[i] - w * a1[i];
        if (invert) {
         a[i] /= 2;
          a[i + n / 2] /= 2;
        w \star = wn;
12.4
    vector<int> multiply(vector<int> const& a, vector<</pre>
         int> const& b) {
        vector<cd> fa(a.begin(), a.end()), fb(b.begin()
            , b.end());
        int n = 1;
        while (n < a.size() + b.size()) n <<= 1;</pre>
        fa.resize(n);
        fb.resize(n);
        fft(fa, false);
        fft(fb, false);
        for (int i = 0; i < n; i++) fa[i] *= fb[i];</pre>
34
        fft(fa, true);
        vector<int> result(n);
        for (int i = 0; i < n; i++) result[i] = round(</pre>
             fa[i].real());
        return result:
```

5.5 Fibonacci

```
13 - Periodic sequence modulo p
14 - sum[i=1..n]f[i] = f[n+2] - 1
15 - sum[i=0..n-1]f[2i+1] = f[2n]
16 - sum[i=1..n]f[2i] = f[2n+1] - 1
17 - sum[i=1..n]f[i]^2 = f[n]f[n+1]
18 Fibonacci encoding:
19 1. Iterate through the Fibonacci numbers from the
         largest to the
   smallest until you find one less than or equal to n
   2. Suppose this number was F_i. Subtract F_i from
         n Łand put a 1 Ł
   in the i-2 position of the code word (indexing from
         0 from the
23 leftmost to the rightmost bit).
24 3. Repeat until there is no remainder.
25 4. Add a final 1 Lto the codeword to indicate its
   Closed-form: f[n] = (((1 + rt(5))/2)^n - ((1 - rt))^n)
        (5)) / 2) ^n)/rt(5)
28 struct matrix {
29
      11 mat[2][2];
      matrix friend operator *(const matrix &a, const
          matrix &b) {
        matrix c:
32
        for (int i = 0; i < 2; i++) {
         for (int j = 0; j < 2; j++) {
34
           c.mat[i][j] = 0;
            for (int k = 0; k < 2; k++) c.mat[i][j] +=
                a.mat[i][k] * b.mat[k][j];
36
       }
38
        return c;
39
40 };
41 matrix matpow(matrix base, 11 n) {
      matrix ans{ {
43
       {1, 0},
44
       {0, 1}
45
      } };
46
      while (n) {
47
       if (n & 1) ans = ans * base;
48
       base = base * base;
49
       n >>= 1;
51
      return ans;
52
53 11 fib(int n) {
54
      matrix base{ {
       {1, 1},
56
       {1, 0}
57
      } };
58
      return matpow(base, n).mat[0][1];
59 }
60 pair<int, int> fib (int n) {
61
    if (n == 0) return {0, 1};
62
      auto p = fib(n >> 1);
63
      int c = p.first * (2 * p.second - p.first);
64
      int d = p.first * p.first + p.second * p.second;
65
      if (n & 1) return {d, c + d};
66
      else return {c, d};
67 }
```

5.6 Find All Solutions

```
1 bool find_any_solution(ll a, ll b, ll c, ll &x0, ll | 2 Matrix exponentation:
```

```
&y0, 11 &g) {
      q = qcd \text{ extended (abs (a), abs (b), x0, y0);}
      if (c % q) return false;
      x0 *= c / g;
      y0 \star = c / q;
      if (a < 0) x0 = -x0;
      if (b < 0) y0 = -y0;
      return true;
10 void shift_solution(ll & x, ll & y, ll a, ll b, ll
        cnt) {
      x += cnt * b;
      y -= cnt * a;
    11 find_all_solutions(ll a, ll b, ll c, ll minx, ll
          maxx, 11 miny, 11 maxy) {
15
      11 x, y, g;
      if (!find_any_solution(a, b, c, x, y, g)) return
           0;
      a /= g;
      b /= q;
      11 \text{ sign}_a = a > 0 ? +1 : -1;
      11 \text{ sign } b = b > 0 ? +1 : -1;
      shift_solution(x, y, a, b, (minx - x) / b);
      if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
      if (x > maxx) return 0;
      11 1x1 = x;
      shift_solution(x, y, a, b, (maxx - x) / b);
      if (x > maxx) shift_solution(x, y, a, b, -sign_b)
      11 \text{ rx1} = x;
      shift_solution(x, y, a, b, -(miny - y) / a);
29
      if (y < miny) shift_solution(x, y, a, b, -sign_a)</pre>
30
      if (y > maxy) return 0;
      11 \ 1x2 = x;
      shift_solution(x, y, a, b, -(maxy - y) / a);
33
      if (y > maxy) shift_solution(x, y, a, b, sign_a);
      11 \text{ rx2} = x;
      if (1x2 > rx2) swap(1x2, rx2);
36
      11 1x = max(1x1, 1x2), rx = min(rx1, rx2);
      if (lx > rx) return 0;
      return (rx - 1x) / abs(b) + 1;
39 }
5.7 Linear Sieve
 void linear_sieve(ll N, vector<ll> &lowest_prime,
         vector<ll> &prime) {
      for (11 i = 2; i <= N; i++) {
        if (lowest_prime[i] == 0) {
          lowest_prime[i] = i;
          prime.push_back(i);
 6
        for (11 j = 0; i * prime[j] <= N; j++) {</pre>
         lowest_prime[i * prime[j]] = prime[j];
```

if (prime[j] == lowest_prime[i]) break;

5.8 Matrix

}

10

12 }

```
1 /*
2 Matrix exponentation
```

```
f[n] = af[n-1] + bf[n-2] + cf[n-3]
    Use:
    |f[n]| | |a|b|c||f[n-1]|
    |f[n-1]|=|1 0 0||f[n-2]|
    |f[n-2]| |0 1 0||f[n-3]|
   To get:
    |f[n] | |a b c|^(n-2)|f[2]|
   |f[n-1]|=|1 0 0| |f[1]|
   |f[n-2]| |0 1 0|
                          |f[0]|
   struct Matrix { int mat[MAX_N][MAX_N]; };
   Matrix matrix_mul(Matrix a, Matrix b) {
     Matrix ans; int i, j, k;
      for (i = 0; i < MAX_N; i++)</pre>
      for (j = 0; j < MAX_N; j++)</pre>
      for (ans.mat[i][j] = k = 0; k < MAX_N; k++)
       ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
      return ans;
   Matrix matrix_pow(Matrix base, int p) {
     Matrix ans; int i, j;
      for (i = 0; i < MAX_N; i++)</pre>
        for (j = 0; j < MAX N; j++)
         ans.mat[i][j] = (i == j);
      while (p) {
        if (p & 1) ans = matrix_mul(ans, base);
        base = matrix_mul(base, base);
        p >>= 1;
32
     return ans;
33 }
5.9 Miller Rabin
    using u64 = uint64_t;
    using u128 = __uint128_t;
```

```
u64 binpower(u64 base, u64 e, u64 mod) {
     u64 \text{ result} = 1;
     base %= mod;
     while (e) {
       if (e & 1) result = (u128) result * base % mod;
        base = (u128) base * base % mod;
        e >>= 1;
11
     return result;
    bool check_composite(u64 n, u64 a, u64 d, 11 s) {
     u64 x = binpower(a, d, n);
      if (x == 1 \mid | x == n - 1) return false;
      for (11 r = 1; r < s; r++) {</pre>
       x = (u128) x * x % n;
        if (x == n - 1) return false:
     return true:
    bool miller_rabin(u64 n) {
      if (n < 2) return false;</pre>
      11 r = 0;
      u64 d = n - 1;
      while ((d \& 1) == 0) {
27
        d >>= 1:
2.8
        r++;
      for (11 a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
           31, 37}) {
        if (n == a) return true;
```

if (check_composite(n, a, d, r)) return false;

```
33    }
34    return true;
35    }
```

5.10 Modulo Inverse

```
1  ll mod_inv(ll a, ll m) {
2    if (m == 1) return 0;
3    ll m0 = m, x = 1, y = 0;
4    while (a > 1) {
5        ll q = a / m, t = m;
6        m = a % m;
7        a = t;
8        t = y;
9        y = x - q * y;
10        x = t;
11    }
12    if (x < 0) x += m0;
13    return x;
14 }</pre>
```

5.11 Pollard Rho Brent

```
1 11 mult(11 a, 11 b, 11 mod) {
      return (__int128_t) a * b % mod;
 4 ll f(ll x, ll c, ll mod) {
      return (mult(x, x, mod) + c) % mod;
 6
 7 ll pollard_rho_brent(ll n, ll x0 = 2, ll c = 1) {
      11 \times = x0, g = 1, q = 1, xs, y, m = 128, 1 = 1;
      while (g == 1) {
       v = x;
11
        for (11 i = 1; i < 1; i++) x = f(x, c, n);
12
13
        while (k < 1 \&\& g == 1) {
14
        xs = x;
15
         for (11 i = 0; i < m && i < 1 - k; i++) {
16
          x = f(x, c, n);
17
            q = mult(q, abs(y - x), n);
18
19
          g = \underline{gcd}(q, n);
20
          k += m;
21
        1 *= 2;
23
24
      if (g == n) {
25
       do {
26
        xs = f(xs, c, n);
27
         g = \underline{gcd}(abs(xs - y), n);
28
        } while (g == 1);
29
      return q;
31 }
```

5.12 Range Sieve

```
1 vector<bool> range_sieve(ll 1, ll r) {
2    l1 n = sqrt(r);
3    vector<bool> is_prime(n + 1, true);
4    vector<ll> prime;
5    is_prime[0] = is_prime[1] = false;
```

```
prime.push_back(2);
      for (l1 i = 4; i <= n; i += 2) is_prime[i] =</pre>
           false:
      for (11 i = 3; i <= n; i += 2) {
9
       if (is_prime[i]) {
          prime.push_back(i);
          for (ll j = i * i; j <= n; j += i) is_prime[j</pre>
               ] = false;
12
13
     vector<bool> result(r - 1 + 1, true);
      for (ll i : prime)
    for (11 \ j = \max(i * i, (1 + i - 1) / i * i); j
           <= r; j += i)
          result[j - 1] = false;
18 if (1 == 1) result[0] = false;
      return result;
20 }
```

5.13 Segmented Sieve

```
1 vector<ll> segmented_sieve(ll n) {
      const 11 S = 10000;
     11 nsgrt = sgrt(n);
      vector<char> is_prime(nsqrt + 1, true);
      vector<11> prime;
      is_prime[0] = is_prime[1] = false;
      prime.push_back(2);
      for (11 i = 4; i <= nsgrt; i += 2) {
      is_prime[i] = false;
      for (11 i = 3; i <= nsqrt; i += 2) {</pre>
      if (is_prime[i]) {
         prime.push_back(i);
          for (ll j = i * i; j <= nsqrt; j += i) {</pre>
           is_prime[j] = false;
       }
      vector<1l> result;
      vector<char> block(S);
      for (11 k = 0; k * S \le n; k++) {
       fill(block.begin(), block.end(), true);
       for (11 p : prime) {
          for (11 j = max((k * S + p - 1) / p, p) * p -
              k * S; j < S; j += p) {
            block[j] = false;
        if (k == 0) {
         block[0] = block[1] = false;
30
        for (11 i = 0; i < S && k * S + i <= n; i++) {</pre>
         if (block[i]) {
33
            result.push_back(k * S + i);
35
       }
      return result;
38 }
```

5.14 Sum Of Divisors

```
for (int i = 2; (11) i * i <= num; i++) {</pre>
       if (num % i == 0) {
          int e = 0;
          do {
           e++;
           num /= i;
          } while (num % i == 0);
          11 \text{ sum} = 0, \text{ pow} = 1;
          do {
           sum += pow;
           pow *= i;
          } while (e-- > 0);
          total *= sum;
      if (num > 1) total *= (1 + num);
      return total;
20 }
```

5.15 Tonelli Shanks

```
1 11 legendre(ll a, ll p) {
     return bin_pow_mod(a, (p - 1) / 2, p);
4 ll tonelli_shanks(ll n, ll p) {
    if (legendre(n, p) == p - 1) {
      return -1:
    if (p % 4 == 3) {
     return bin_pow_mod(n, (p + 1) / 4, p);
     11 \ 0 = p - 1, S = 0;
      while (Q \% 2 == 0) {
      0 /= 2;
       S++;
     11 z = 2;
      for (; z < p; z++) {</pre>
      if (legendre(z, p) == p - 1) {
         break;
      11 M = S, c = bin_pow_mod(z, Q, p), t =
         bin_pow_mod(n, Q, p), R = bin_pow_mod(n, Q)
          + 1) / 2, p);
      while (t % p != 1) {
       if (t % p == 0) {
          return 0;
       11 i = 1, t2 = t * t % p;
       for (; i < M; i++) {
         if (t2 % p == 1) {
           break;
         t2 = t2 * t2 % p;
       11 b = bin_pow_mod(c, bin_pow_mod(2, M - i - 1,
             p), p);
       M = i;
       c = b * b % p;
       t = t * c % p;
       R = R * b % p;
39
     return R;
41 }
```

6 Miscellaneous

6.1 Gauss

```
const double EPS = 1e-9;
    const 11 INF = 2;
    11 gauss(vector <vector <double>> a, vector <double>
         &ans) {
      11 n = (11) a.size(), m = (11) a[0].size() - 1;
      vector<11> where (m, -1);
      for (11 col = 0, row = 0; col < m && row < n; ++</pre>
           col) {
         11 sel = row:
         for (11 i = row; i < n; ++i) {
          if (abs(a[i][col]) > abs(a[sel][col])) {
10
             sel = i;
12
13
         if (abs (a[sel][col]) < EPS) {</pre>
14
          continue;
15
16
         for (ll i = col; i <= m; ++i) {</pre>
17
          swap(a[sel][i], a[row][i]);
18
19
         where[col] = row;
20
         for (11 i = 0; i < n; ++i) {
          if (i != row) {
             double c = a[i][col] / a[row][col];
23
             for (11 j = col; j <= m; ++j) {
24
              a[i][j] = a[row][j] * c;
25
26
          }
27
28
        ++row:
29
30
      ans.assign(m, 0);
      for (11 i = 0; i < m; ++i) {
        if (where[i] != -1) {
           ans[i] = a[where[i]][m] / a[where[i]][i];
34
35
36
      for (11 i = 0; i < n; ++i) {
37
         double sum = 0;
38
         for (11 j = 0; j < m; ++j) {
39
          sum += ans[j] * a[i][j];
40
41
        if (abs (sum - a[i][m]) > EPS) {
42
43
44
45
      for (11 i = 0; i < m; ++i) {
46
        if (where[i] == -1) {
47
          return INF;
48
49
      return 1;
51
```

6.2 Ternary Search

```
double ternary_search(double 1, double r) {
   double eps = le-9;
   while (r - 1 > eps) {
    double ml = l + (r - 1) / 3;
}
```

```
5     double m2 = r - (r - 1) / 3;
6     double f1 = f(m1);
7     double f2 = f(m2);
8     if (f1 < f2) {
9         1 = m1;
10     } else {
1         r = m2;
12     }
13     }
14     return f(1);
15 }</pre>
```

7 References

7.1 Ref

```
1 st.insert(4);
 2 st.erase(4);
 3 st.empty();
 4 // permutations
 5 do {
 6 for (int num : nums) {
    cout << num << " ";
 8 }
 9 cout << endl;</pre>
10 } while (next_permutation(nums.begin(), nums.end())
        );
   // bitset
   int num = 27; // Binary representation: 11011
13 bitset<10> s(string("0010011010")); // from right
14 bitset<sizeof(int) * 8> bits(num);
15 int setBits = bits.count();
16 // sort
   sort(v.begin(), v.end());
18 sort(v.rbegin(), v.rend());
    // custom sort
   bool comp(string a, string b) {
    if (a.size() != b.size()) return a.size() < b.size</pre>
        ():
    return a < b;
24 sort(v.begin(), v.end(), comp);
   // binary search
26 int a = 0, b = n-1;
    while (a \le b) { int k = (a+b)/2; if (array[k] == x
        ) {
28 // x found at index k
   } if (array[k] > x) b = k-1; else a = k+1;}
   for (auto it = s.begin(); it != s.end(); it++) {
32 cout << *it << "\n";
33 }
    // hamming distance
    int hamming(int a, int b) {
    return __builtin_popcount(a^b);
   // custom comparator for pq
39 class Compare {
41 bool operator()(T a, T b){
42 if(cond) return true; // do not swap
    return false;
44 }
45 };
```

46 priority_queue<PII, vector<PII>, Compare> ds;

Strings

8.1 Count Unique Substrings

```
int count_unique_substrings(string const& s) {
  int n = s.size();
  const int p = 31;
  const int m = 1e9 + 9;
  vector<long long> p_pow(n);
  p_pow[0] = 1;
  for (int i = 1; i < n; i++) p_pow[i] = (p_pow[i -</pre>
        1] * p) % m;
  vector<long long> h(n + 1, 0);
  for (int i = 0; i < n; i++) h[i + 1] = (h[i] + (s
       [i] - 'a' + 1) * p_pow[i]) % m;
  int cnt = 0;
  for (int 1 = 1; 1 <= n; 1++) {
    unordered_set<long long> hs;
    for (int i = 0; i <= n - 1; i++) {</pre>
      long long cur_h = (h[i + 1] + m - h[i]) % m;
      cur_h = (cur_h * p_pow[n - i - 1]) % m;
      hs.insert(cur_h);
    cnt += hs.size();
  return cnt;
```

8.2 Finding Repetitions

```
vector<int> z_function(string const& s) {
      int n = s.size();
      vector<int> z(n);
      for (int i = 1, l = 0, r = 0; i < n; i++) {
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
             z[i]++;
        if (i + z[i] - 1 > r) {
          1 = i;
          \mathbf{r} = \mathbf{i} + \mathbf{z}[\mathbf{i}] - 1;
11
      return z;
    int get_z(vector<int> const& z, int i) {
      if (0 <= i && i < (int) z.size()) return z[i];</pre>
      else return 0;
    vector<pair<int, int>> repetitions;
    void convert_to_repetitions(int shift, bool left,
         int cntr, int 1, int k1, int k2) {
      for (int 11 = \max(1, 1 - k2); 11 \le \min(1, k1);
           11++) {
        if (left && 11 == 1) break;
        int 12 = 1 - 11;
        int pos = shift + (left ? cntr - 11 : cntr - 1
             - 11 + 1);
        repetitions.emplace_back(pos, pos + 2 * 1 - 1);
26
    void find_repetitions(string s, int shift = 0) {
28
      int n = s.size();
29
      if (n == 1) return;
      int nu = n / 2;
```

```
int nv = n - nu;
      string u = s.substr(0, nu);
      string v = s.substr(nu);
      string ru(u.rbegin(), u.rend());
      string rv(v.rbegin(), v.rend());
      find_repetitions(u, shift);
37
      find_repetitions(v, shift + nu);
38
      vector<int> z1 = z_function(ru);
39
      vector<int> z2 = z_function(v + '#' + u);
      vector<int> z3 = z_function(ru + '#' + rv);
41
      vector<int> z4 = z_function(v);
42
      for (int cntr = 0; cntr < n; cntr++) {</pre>
43
        int 1, k1, k2;
44
        if (cntr < nu) {</pre>
45
          1 = nu - cntr;
46
          k1 = get_z(z1, nu - cntr);
47
          k2 = get_z(z2, nv + 1 + cntr);
48
49
          1 = cntr - nu + 1;
50
          k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu))
          k2 = get_z(z4, (cntr - nu) + 1);
        if (k1 + k2 >= 1) convert_to_repetitions(shift,
              cntr < nu, cntr, 1, k1, k2);</pre>
54
55 }
```

8.3 Group Identical Substrings

```
1 vector<vector<int>> group_identical_strings(vector<</pre>
         string> const& s) {
      int n = s.size();
      vector<pair<long long, int>> hashes(n);
      for (int i = 0; i < n; i++) hashes[i] = {</pre>
           compute_hash(s[i]), i};
      sort(hashes.begin(), hashes.end());
      vector<vector<int>> groups;
      for (int i = 0; i < n; i++) {
        if (i == 0 || hashes[i].first != hashes[i - 1].
             first) groups.emplace_back();
        groups.back().push_back(hashes[i].second);
10
11
      return groups;
12 }
```

8.4 Hashing

8.5 Knuth Morris Pratt

```
1 vector<ll> prefix_function(string s) {
```

```
ll n = (ll) s.length();
      vector<ll> pi(n);
      for (ll i = 1; i < n; i++) {
       11 j = pi[i - 1];
       while (j > 0 \&\& s[i] != s[j]) j = pi[j - 1];
       if (s[i] == s[j]) j++;
8
       pi[i] = j;
      return pi;
   // count occurences
   vector<int> ans(n + 1);
14 for (int i = 0; i < n; i++)
     ans[pi[i]]++;
16 for (int i = n-1; i > 0; i--)
     ans[pi[i-1]] += ans[i];
18 for (int i = 0; i <= n; i++)
    ans[i]++;
```

8.6 Longest Common Prefix

```
vector<int> lcp_construction(string const& s,
     vector<int> const& p) {
   int n = s.size();
  vector<int> rank(n, 0);
   for (int i = 0; i < n; i++) rank[p[i]] = i;</pre>
   int k = 0;
   vector<int> lcp(n-1, 0);
   for (int i = 0; i < n; i++) {
    if (rank[i] == n - 1) {
      k = 0:
       continue;
     int j = p[rank[i] + 1];
     while (i + k < n \&\& j + k < n \&\& s[i + k] == s[
         j + k]) k++;
     lcp[rank[i]] = k;
    if (k) k--;
  return lcp;
```

8.7 Manacher

```
vector<int> manacher_odd(string s) {
     int n = s.size();
      s = "$" + s + "^";
      vector<int> p(n + 2);
      int 1 = 1, r = 1;
      for (int i = 1; i \le n; i++) {
        p[i] = max(0, min(r - i, p[1 + (r - i)]));
        while (s[i - p[i]] == s[i + p[i]]) p[i]++;
        if(i + p[i] > r) 1 = i - p[i], r = i + p[i];
      return vector<int>(begin(p) + 1, end(p) - 1);
12
13
   vector<int> manacher(string s) {
      string t;
      for(auto c: s) t += string("#") + c;
      auto res = manacher_odd(t + "#");
      return vector<int>(begin(res) + 1, end(res) - 1);
18
```

```
8.8 Rabin Karp
```

```
vector<11> rabin_karp(string const& s, string const
     const 11 p = 31, m = 1e9 + 9;
     11 S = s.size(), T = t.size();
     vector<ll> p_pow(max(S, T));
     p_pow[0] = 1;
     for (ll i = 1; i < (ll) p_pow.size(); i++) p_pow[</pre>
          i] = (p_pow[i-1] * p) % m;
     vector<11> h(T + 1, 0);
     for (11 i = 0; i < T; i++) h[i + 1] = (h[i] + (t[
          i] - 'a' + 1) * p_pow[i]) % m;
     11 h s = 0;
     for (11 i = 0; i < S; i++) h_s = (h_s + (s[i] - '
         a' + 1) * p_pow[i]) % m;
     vector<11> occurences;
     for (11 i = 0; i + S - 1 < T; i++) {
      11 \text{ cur}_h = (h[i + S] + m - h[i]) % m;
       if (cur_h == h_s * p_pow[i] % m) occurences.
           push_back(i);
     return occurences;
```

8.9 Suffix Array

```
vector<int> sort_cyclic_shifts(string const& s) {
      int n = s.size();
      const int alphabet = 256;
      vector<int> p(n), c(n), cnt(max(alphabet, n), 0);
      for (int i = 0; i < n; i++) cnt[s[i]]++;</pre>
      for (int i = 1; i < alphabet; i++) cnt[i] += cnt[</pre>
           i - 1];
      for (int i = 0; i < n; i++) p[--cnt[s[i]]] = i;</pre>
      c[p[0]] = 0;
      int classes = 1;
      for (int i = 1; i < n; i++) {</pre>
        if (s[p[i]] != s[p[i-1]]) classes++;
        c[p[i]] = classes - 1;
      vector<int> pn(n), cn(n);
      for (int h = 0; (1 << h) < n; ++h) {
        for (int i = 0; i < n; i++) {
          pn[i] = p[i] - (1 << h);
          if (pn[i] < 0)
            pn[i] += n;
        fill(cnt.begin(), cnt.begin() + classes, 0);
        for (int i = 0; i < n; i++) cnt[c[pn[i]]]++;</pre>
        for (int i = 1; i < classes; i++) cnt[i] += cnt</pre>
             [i - 1];
        for (int i = n-1; i >= 0; i--) p[--cnt[c[pn[i
             ]]]] = pn[i];
        cn[p[0]] = 0;
        classes = 1;
        for (int i = 1; i < n; i++) {
28
          pair<int, int> cur = {c[p[i]], c[(p[i] + (1
               << h)) % n]};
          pair < int, int > prev = {c[p[i-1]], c[(p[i-1]] + }
                (1 << h)) % n]};
          if (cur != prev) ++classes;
          cn[p[i]] = classes - 1;
        c.swap(cn);
```

```
34
35
36
     }
     return p;
37
    vector<int> build_suff_arr(string s) {
38
     s += "$";
39
      vector<int> sorted_shifts = sort_cyclic_shifts(s)
40
      sorted_shifts.erase(sorted_shifts.begin());
41
      return sorted_shifts;
42 }
43 // compare two substrings
44 int compare(int i, int j, int 1, int k) {
      pair<int, int> a = {c[k][i], c[k][(i + 1 - (1 <<</pre>
```

```
k)) % n]};
46    pair<int, int> b = {c[k][j], c[k][(j + 1 - (1 << k)) % n]};
47    return a == b ? 0 : a < b ? -1 : 1;
48  }

8.10    Z Function

1    vector<int> z_function(string s) {
2        int n = s.size();
3        vector<int> z(n);
```

f(n) = O(g(n))	iff \exists positive c, n_0 such that	$n = n(n+1)$ $n = n(n+1)(2n+1)$ $n = n(2(n+1))^2$
	$0 \le f(n) \le cg(n) \ \forall n \ge n_0.$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n = n + n = n + n = n = n = n = n = n = $
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
$\binom{n}{k}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\left\langle {n\atop k}\right\rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$
$\langle\!\langle {n \atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}, 19. \ \binom{n}{n-1}$	
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,
25. $\left\langle {0\atop k}\right\rangle = \left\{ {1\atop 0}\right\}$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$\binom{n}{2} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
28. $x^n = \sum_{k=0}^n \binom{n}{k}$	$\left\langle {x+k \choose n}, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^m$	
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,
$34. \; \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	-1 $\left\langle \left\langle \left$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{n} \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \!\! \binom{x+n-1-k}{2n},$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \bmod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b$$
.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \mod n$$
.

$$\mu(i) = \begin{cases} (n-1)! = -1 \bmod n. \\ \text{M\"obius inversion:} \\ \mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$
 If

 If

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

T	 0	٠,	٠	
				ns

Loop An edge connecting a vertex to itself.

Directed Each edge has a direction. SimpleGraph with no loops or multi-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Pathtrail with distinct

vertices.

ConnectedA graph where there exists a path between any two

vertices.

ComponentΑ maximal connected subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

k-Tough $\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \le |S|$.

A graph where all vertices k-Regular have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

E(G)Edge set Vertex set V(G)

c(G)Number of components

G[S]Induced subgraph deg(v)Degree of v

Maximum degree $\Delta(G)$

 $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph

 K_{n_1,n_2} Complete bipartite graph

Ramsev number

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective (x, y)(x, y, 1)y = mx + b(m, -1, b)

x = c(1,0,-c)Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p\right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} ix^{ii},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^{n}x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{1!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + (\frac{n+2}{2})x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(i)},$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{126}x^4 + \cdots = \sum_{i=0}^{\infty} (\frac{i+n}{i})x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} (\frac{2i}{i})x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} (\frac{2i}{i})x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} H_i x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} H_i x^i,$$

$$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power se

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{i=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker