Модели. Алгебраические типы данных

Теория формальных языков *2021 г*.

Проектирование структур

- На прошлом занятии полиморфные функциональные типы без структур. Как навесить структуры?
- Хорошо спроектированные полиморфные функции действуют семантически одинаково на аргументах разного вида.
- Как описать аналог этого свойства для структур данных?

Сигнатура с сортами

Определение

Алгебра \mathcal{A} — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке,

$$\mathcal{A} = \langle \{\mathcal{N}_i\}, \{c_i\}, \{f_i: \mathcal{N}_{i_1} \times \ldots \mathcal{N}_{i_{k_i}} \rightarrow \mathcal{N}_i'\} \rangle.$$

Сигнатура с сортами

Определение

Алгебра \mathcal{A} — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке,

$$\mathcal{A} = \langle \{\mathcal{N}_i\}, \{c_i\}, \{f_i: \mathcal{N}_{i_1} \times \dots \mathcal{N}_{i_{k_i}} \rightarrow \mathcal{N}_i'\} \rangle.$$

Иными словами, в алгебре у функций сигнатуры не бестиповые, а оснащены простыми типами.

- λx.x x нет сортов;
- $\lambda x y.$ if x then y * 2 else y -есть сорта.

Сигнатура с сортами

Определение

Алгебра \mathcal{A} — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке,

$$\mathcal{A} = \langle \{\mathcal{N}_i\}, \{c_i\}, \{f_i : \mathcal{N}_{i_1} \times \dots \mathcal{N}_{i_{k_i}} \to \mathcal{N}'_i\} \rangle.$$

Иными словами, в алгебре у функций сигнатуры не бестиповые, а оснащены простыми типами.

- λx.x x нет сортов;
- $\lambda x y$.if x then y * 2 else y есть сорта.

Зачем многосортные алгебры нужна в CS?

- Сигнатура Σ синтаксис ЯП;
- $\Sigma(X) + \Gamma_X$ (контекст) множество термов ЯП.
- Алгебра над Σ семантика ЯП.

Универсальные алгебры

- В CS выделенные значения функции от нуля аргументов (конструкторы).
- Каждой константе в Σ соответствует ровно один носитель из \mathcal{A} ;
- Каждому функциональному символу в Σ соответствует отображение с такой же сигнатурой.
- Каждому присвоению сорта (утверждению о типизации) в контексте Γ вида $x_i : T_i$ соответствует окружение отображение из x_i в множество носителей \mathcal{A} .

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\bullet \ \mathcal{A}[\![f(M_1,\ldots\,M_n)]\!]\eta = f^{\mathcal{A}}(\mathcal{A}[\![M_1]\!]\eta,\ldots,\mathcal{A}[\![M_n]\!]\eta).$

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\bullet \ \mathcal{A}[\![f(M_1,\ldots\,M_n)]\!]\eta = f^{\mathcal{A}}(\mathcal{A}[\![M_1]\!]\eta,\ldots,\mathcal{A}[\![M_n]\!]\eta).$
- Множество натуральных чисел интерпретация термов над сигнатурой $\{s(\bullet),z\}$ единственный одноместный конструктор + константа.
- Множество двоичных деревьев интерпретация термов над сигнатурой $\{\langle \bullet, \bullet \rangle, e\}$ единственный двухместный конструктор + константа.
- Свободная алгебра каждый функциональный символ интерпретируется собой.

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\mathcal{A}[[f(M_1, \ldots, M_n)]]\eta = f^{\mathcal{A}}(\mathcal{A}[M_1]]\eta, \ldots, \mathcal{A}[[M_n]]\eta).$
- Множество натуральных чисел интерпретация термов над сигнатурой $\{s(\bullet),z\}$ единственный одноместный конструктор + константа.
- Множество двоичных деревьев интерпретация термов над сигнатурой $\{\langle \bullet, \bullet \rangle, e\}$ единственный двухместный конструктор + константа.
- Свободная алгебра каждый функциональный символ интерпретируется собой.

Лемма о подстановке: $[M[x := N]] \eta = [M] (\eta[x := [N]] \eta]).$

Модели

Выполнимость уравнения в окружении η принято обозначать $\mathcal{A}, \eta \models M = N[\Gamma]$, где η согласовано с Γ (т.е. значения переменных имеют правильные типы).

- Выполнимость в модели: $A \models M = N[\Gamma]$ (для любого окружения).
- Общезначимость: $\models M = N[\Gamma]$ (для любого окружения в любой алгебре).

Модели

Выполнимость уравнения в окружении η принято обозначать $\mathcal{A}, \eta \models M = N[\Gamma]$, где η согласовано с Γ (т.е. значения переменных имеют правильные типы).

- Выполнимость в модели: $\mathcal{A} \models M = N[\Gamma]$ (для любого окружения).
- Общезначимость: $\models M = N[\Gamma]$ (для любого окружения в любой алгебре).

Бесконечность НОГ

Пусть в алгебре \mathcal{A} есть одна бинарная операция \circ и выделенное значение \mathfrak{a} такое, что $\mathcal{A}\models (\mathfrak{a}\circ x)\circ y=x.$ Тогда если носитель \mathcal{A} содержит больше одного элемента, то он бесконечен.

Выводимость и выполнимость

- Навесим на свободную алгебру над Σ множество уравнений Е в сигнатуре Σ и объявим полученную структуру алгебраической спецификацией.
- Скажем, что из E семантически следует M=N, если во всех алгебрах, удовлетворяющих E, выполняется M=N. Пишем: $E \models M=N$.
- Допустимые правила вывода: симметричность и транзитивность равенства, введение свободной переменной в контекст и правило подстановки.
- (теоремы корректности и полноты) $E \vdash M = N \Leftrightarrow E \models M = N$.

Пример

Общерекурсивных полиморфных функций с типом $P = ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ (P — формула Пирса) не существует.

Пример

Общерекурсивных полиморфных функций с типом $P = ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ (P — формула Пирса) не существует.

Рассмотрим следующую конечнозначную модель и убедимся, что формула Пирса в ней не общезначима.

Α	В	$A \Rightarrow B$	P
0	0	1	
0	n	n	
0	1	1	
n	0	0	
n	n	n	n
n	1	1	
1	0	0	
1	n	n	
1	1	1	

Теорема Линденбаума-Тарского

Если алгебраическая спецификация имеет модель, тогда она имеет конечную модель.

Основа современных методов анализа программ — Satisfiability Modulo Theories (поиск конечной контрмодели).

Универсум Эрбрана

Определение

Набор всех правильно типизированных термов в сигнатуре $\langle \{f_i\}, \{c_j\} \rangle$ — универсум Эрбрана.

Интуитивно задаёт наиболее общую модель для системы вывода, но не учитывает эквациональность, т.е. возможность равенства термов.

Инициальные алгебры

Пусть \mathcal{C} — множество алгебр над сигнатурой Σ (Σ -алгебр) и $\mathcal{A} \in \mathcal{C}$. \mathcal{A} называется инициальной, если для любой $\mathcal{A}' \in \mathcal{C}$ существует единственный гомоморфизм из \mathcal{A} в \mathcal{A}' .

Инициальные алгебры

Пусть ${\mathcal C}$ — множество алгебр над сигнатурой Σ (Σ -алгебр) и ${\mathcal A}\in{\mathcal C}$. ${\mathcal A}$ называется инициальной, если для любой ${\mathcal A}'\in{\mathcal C}$ существует единственный гомоморфизм из ${\mathcal A}$ в ${\mathcal A}'$.

- «Никакого мусора» в \mathcal{A} должно быть так мало различных элементов, насколько возможно.
- «Никакой путаницы» в $\mathcal A$ элементы должны быть равны только если без этого равенства не обойтись.

Примеры

• Рассмотрим односортную сигнатуру $\Sigma_0 = \langle 0, S(x) = x \to x+1 \rangle$ над типом натуральных чисел. Тогда свободная алгебра с константой 0 и единственным унарным конструктором $S(\bullet)$ является инициальной для алгебр над Σ_0 . Если добавить в сигнатуру сложение и аксиомы $x+0=x, \ x+S(y)=S(x+y),$ тогда инициальная алгебра станет стандартной арифметикой Пресбургера.

Примеры

- Рассмотрим односортную сигнатуру $\Sigma_0 = \langle 0, S(x) = x \to x+1 \rangle$ над типом натуральных чисел. Тогда свободная алгебра с константой 0 и единственным унарным конструктором $S(\bullet)$ является инициальной для алгебр над Σ_0 . Если добавить в сигнатуру сложение и аксиомы $x+0=x, \ x+S(y)=S(x+y),$ тогда инициальная алгебра станет стандартной арифметикой Пресбургера.
- Алгебра с добавлением ω для наименьшего числа, большего всех натуральных, инициальной не является. Аналогично \mathbb{Z}_k .

Примеры

- Рассмотрим односортную сигнатуру $\Sigma_0 = \langle 0, S(x) = x \to x+1 \rangle$ над типом натуральных чисел. Тогда свободная алгебра с константой 0 и единственным унарным конструктором $S(\bullet)$ является инициальной для алгебр над Σ_0 . Если добавить в сигнатуру сложение и аксиомы $x+0=x, \ x+S(y)=S(x+y),$ тогда инициальная алгебра станет стандартной арифметикой Пресбургера.
- Алгебра с добавлением ω для наименьшего числа, большего всех натуральных, инициальной не является. Аналогично \mathbb{Z}_k .
- Выполнимость в инициальной \mathcal{A} неидентична доказуемости. См. коммутативность сложения: $\mathcal{A} \models M+N=N+M$ в инициальной модели, но это не так для ординальной модели.

Лемма Ламбека

Определение

Скажем, что X — это lfp (наименьшая неподвижная точка) для f над A, если $(\forall n f^n(A) \in X)$ & $\forall Y (\forall n (f^n(A) \in Y) \Rightarrow X \subseteq Y)$.

Лемма Ламбека

Определение

Скажем, что X — это lfp (наименьшая неподвижная точка) для f над A, если $(\forall n f^n(A) \in X)$ & $\forall Y (\forall n (f^n(A) \in Y) \Rightarrow X \subseteq Y)$.

Лемма Ламбека, полуформально

Пусть F — это сигнатура (здесь не Σ по терминологическим причинам) вместе с функцией обхода, V — множество выделенных значений. Тогда $lfp(F\ V)$ — инициальная алгебра над F и V.

Лемма Ламбека

Определение

Скажем, что X — это lfp (наименьшая неподвижная точка) для f над A, если $(\forall n f^n(A) \in X) \& \forall Y (\forall n (f^n(A) \in Y) \Rightarrow X \subseteq Y).$

Лемма Ламбека, полуформально

Пусть F — это сигнатура (здесь не Σ по терминологическим причинам) вместе с функцией обхода, V — множество выделенных значений. Тогда $lfp(F\ V)$ — инициальная алгебра над F и V.

Проще говоря, инициальная алгебра задаётся индукцией по построению термов.

Пример: множества

сорта: set, nat, bool

уравнения: 0+0=0, 0+1=1, ..., k+n=m

eq? x x = true

eq? 0.1 = false, ..., eq? n m = false

ismem? x empty = false

ismem? x (ins y s) = if (eq? x y) then true

else ismem? x s

union empty s = s

union (ins y s) s' = ins y (union s s')

Выполняется ли уравнение union s s' = union s' s в инициальной модели?

Пример: множества

сорта: set, nat, bool

уравнения: 0+0=0, 0+1=1, ..., k+n=m

eq? x x = true

eq? 0.1 = false, ..., eq? n m = false

ismem? x empty = false

ismem? x (ins y s) = if (eq? x y) then true

else ismem? x s

union empty s = s

union (ins y s) s' = ins y (union s s')

Выполняется ли уравнение union s s' = union s' s в инициальной модели? Ответ: нет, инициальная модель — модель списков с навязанным порядком обхода слева направо.

Спецификация списков

сорта: list, atom, bool car(cons x I) = xуравнения: cdr(cons x I) = Iisempty? nil = trueisempty? (cons $x \mid 1$) = false $cond_a$ true x y = x $cond_{\alpha}$ false x y = y $cond_b$ true v1 v2 = v1 $cond_h$ false v1 v2 = v2 $cond_1$ true I1 I2 = I1 $cond_1$ false | 1 | 12 = | 12

Спецификация списков

сорта: list, atom, bool уравнения: car(cons x l) = x cdr(cons x l) = l isempty? nil = true

isempty? (cons x I) = false

 $cond_a$ true x y = x $cond_a$ false x y = y $cond_b$ true v1 v2 = v1 $cond_b$ false v1 v2 = v2 $cond_l$ true I1 I2 = I1 $cond_l$ false I1 I2 = I2

Выполняется ли уравнение (cons (car I)(cdr I)) = I в инициальной модели?

Спецификация списков

сорта: list, atom, bool

уравнения: car(cons x l) = x

cdr(cons x I) = Iisempty? nil = true

isempty? (cons x I) = false

 $cond_{\alpha}$ true x y = x $cond_{\alpha}$ false x y = y $cond_{b}$ true v1 v2 = v1

 $cond_b$ false v1 v2 = v2

cond₁ true |1| |2| = |1|

 $cond_1$ false | 1 | 12 = | 12

Выполняется ли уравнение (cons (car I)(cdr I)) = I в инициальной модели? Ответ: нет, проблема с термами вида (cdr nil) и (car nil).

Работа над ошибками

 Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)

Работа над ошибками

- Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)
- Null-неопределённости. Положим, что (car nil) произвольно, (cdr nil)=nil. Уничтожается индуктивное равенство между списками.

A

Работа над ошибками

- Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)
- Null-неопределённости. Положим, что (car nil) произвольно, (cdr nil)=nil. Уничтожается индуктивное равенство между списками.
- Введение терма-ошибки.

Наивная обработка ошибок

```
уравнения: car nil = error_a
cdr nil = error_l
cons error_a \ l = error_l
cons x error_l = error_l
car error_l = error_a
cdr error_l = error_l
```


Наивная обработка ошибок

Наивная обработка ошибок

```
ypaвнения: car nil = error<sub>a</sub>
    cdr nil = error<sub>l</sub>
    cons error<sub>a</sub> I = error<sub>l</sub>
    cons x error<sub>l</sub> = error<sub>l</sub>
    car error<sub>l</sub> = error<sub>a</sub>
    cdr error<sub>l</sub> = error<sub>l</sub>
    isempty? error<sub>l</sub> = error<sub>b</sub>
    cond<sub>a</sub> error<sub>b</sub> x y = error<sub>a</sub>
    cond<sub>l</sub> error<sub>b</sub> x y = error<sub>b</sub>
    cond<sub>l</sub> error<sub>b</sub> x y = error<sub>l</sub>
```

Проблема с аксиомой car (cons x I) = x — из-за неё можно доказать, что в данной модели любой терм равен ошибке.

Краткое резюме

- Аксиоматический способ описания семантики двойственен алгебраическому.
- Алгебраические типы данных задаются инициальными алгебрами, т.е. рекурсивный обход по определению существует.
- Non-exhaustive patterns (неисчерпывающие правила переписывания для термов заданного сорта) указание на возможную ошибку в описании инициальной алгебры.