1 First week

 $\mathbf{2}^A$: insieme delle parti di $\mathbf{A} \Rightarrow 2^{\wedge \# A} =$ elenco delle parti di \mathbf{A}

Relazioni: dati 2 insiemi X e Y, e un sottoinsieme $\mathcal{R}(X,Y)$ è detto relazione tra X e Y e scriveremo $x\mathcal{R}y, x,y \in \mathcal{R}$

Funzione: siano dati X,Y e dia f
 una relazione tra X e Y, f $\subset X \times Y$. diremo che f è una funzione da X in Y se vale:

$$\forall x \in X : \exists ! y \in Yt.c.(x, y) \in f$$

Dominio: insieme delle x che vanno in Y

Codomidio: insieme delle y che hanno corrispondenza in X

Legge: proprietà che definisce una relazione da X a Y

Insieme di tutte le funzioni: Y^X corrisponde a tutte le funzioni con leggi diverse ma con stessi insiemi di partenza ed arrivo

Funzione identità: $id_X(X) = X$

Composizione di funzioni: $x \to^f y \to^g z \Rightarrow g(f(x)) = z \Rightarrow gof(x) = z$

Iniettiva: ad ogni f(x) corrisponde un solo y Surgettiva: ad ogni y corrisponde un f(x) Bigiettiva: sia iniettiva che suriettiva

Inversa: se f è biettiva, allora esiste $g = f^{-1}$

2 Second week

Sistemi equipotenti: X e Y sono equipotenti $(X \sim Y)$ se hanno la stessa cardinalità e la funzione $f: X \to Y$ è bigiettiva (o invertibile)

insiemi cardinali: sono gli insiemi in formato $\{0,1,...,n\}$ equipotenti all'insieme dato, si rapprensentano |A| e definiscono una cardinalità pari a n+1

TEOREMA: X e Y sono equipotenti se e solo se i loro insiemi cardinali sono uguali

$$|X| = |Y|$$

Numeri naturali: sono definiti dagli assiomi di Peano:

- 0 è un numero naturale
- $\bullet\,$ esiste una funzione successivo $\mathbb{N} \to \mathbb{N}$
- $succ(n) \in \mathbb{N} \setminus \{0\}$, cioé il successivo di ogni naturale è diverso da 0
- vale principio d'induzione

Principio d'induzione: con $A \subset \mathbb{N}$

- base induttiva: $0 \in A$
- passo induttivo: $\forall n \in \mathbb{N}, n \in A \Rightarrow succ(n) \in A$, allora $A = \mathbb{N}$

Principio induttivo di prima forma:

Prendiamo una proposizione P(n) e supponiamo che rispetti 2 condizioni:

• la base induttiva: P(0) è vera

• il passo induttivo: $\forall n \in \mathbb{N}, P(n)$ è vera (ipotesi induttiva), allora P(succ(n))

Se rispetta queste condizioni allora implica $\forall n \in \mathbb{N}, P(n)$

Teorema di ricorsione: Sia X un insieme, esite una funzione $f: \mathbb{N} \to X$ t.c.:

$$f(0) = c$$

$$f(succ(n)) = h(n, f(n))$$

Addizione: tramite il teorema di ricorsione definiamo la funzione $m \to n + m$:

$$n + 0 = n$$
$$n + succ(m) = succe(n) + m$$

Moltiplicazione: tramite il teorema di ricorsione definiamo la funzione $m \to nm$:

$$n \cdot 0 = 0$$
$$n(m+1) = mn + n$$

Ordinamento dei naturali: può essere totale o parziale

Ordine parziale: è una relazione $\mathcal{R} \subset X \times X$ e rispecchia le seguenti proprità:

• riflessiva: $x\mathcal{R}x, \forall x \in X$

• antisimmetrica: $x \mathcal{R} y e y \mathcal{R} x \Rightarrow x = y, \forall x, y \in X$

• transitiva: $x\mathcal{R}y \ e \ y\mathcal{R}z \Rightarrow x\mathcal{R}z, \forall x, y, z \in X$

Ordinamento totale: come l'ordinamento parziale, ma con la proprietà aggiunta:

• tricotomia: $x\mathcal{R}y \ o \ y\mathcal{R}x \ \forall x,y \in X$

insiemi ordinati: se \mathcal{R} è parziale o totale, dirò che (X,\mathcal{R}) è parzialmente o totalmente ordinato

Principio d'induzione shiftato di prima forma: identico alla prima forma ma la base invece che 0, parte da $k \le n$

• base induttiva: P(k) è vera

• passo induttivo: $\forall n \geq k$, P(n) è vera $\Rightarrow P(n+1)$

3 third week

exercises

4 forth week

Insiemi finiti: Indicando con I_n un insieme che va da 0 a n, diremo che l'insieme X è finito se essite $n \in \mathbb{N}$ t.c. $I_n \sim X$. Se non esiste lo definiremo insieme infinito.

Teorema di lemma dei cassetti: Siano X e Y due insiemi rispettivamente $X \sim I_n$ e $Y \sim I_m$ con n < m allora la funzione $f(x): Y \to X$ non è iniettiva

Cardinalità: Sia X un insieme finito. Definiamo cardinalità n t.c. I_n sia equipotente a X. Definiamo I_n come insieme cardinalità associato a X

Proposizione: Sia A insieme finito e $B \subseteq A$, allora $|B| \le |A|$

Osservazione: Qualsiasi $f(x): \mathbb{N} \to \mathbb{N}/\{0\}$ è bigiettiva

Minimo: Sia A un insieme e $z \in A$. Se $\forall x \in A, z \leq x$, allora definiremo z come **minimo** di A.

$$z = min(A)$$

Buon ordinamento: Un ordinamento totale è definito **ben ordinato** se ogni sottoinsieme di (Z, \leq) ammette un minimo

Assioma di buon ordinamento: L'ordinamento (\mathbb{N}, \leq) è ben ordinato e l'ordinamento \leq è usuale su \mathbb{N} (cioé se $\exists k \ t.c. \ n+k=m$ allora $n\leq m$)

Principio di induzione ($2^a forma$): prendiamo una famiglia di preposizioni P(n) e supponiamo rispetti le 2 condizioni:

- la base induttiva: P(0) è vera
- il passo induttivo: $\forall n \in \mathbb{N}, \forall k \in \mathbb{N} \ t.c. \ 0 \le k \le n, \ P(k)$ è vera (ipotesi induttiva), allora P(n)

Se rispetta questa condizioni allora implica $\forall n \in \mathbb{N}, P(n)$

Divisione euclidea: Siano $n,m\in\mathbb{Z} t.c.m\neq 0 \exists !q,r\in\mathbb{Z} t.c:$

$$n = mq + r$$
$$0 \le n < |m|$$

(si definiscono q quoziente e rresto della divisione di n per m)

5 fifth week

Rappresentabilità: Sia $b \in \mathbb{N}$, diremo che $n \in \mathbb{N}$ è rappresentabile in base b se esistono $k \in \mathbb{N}$ e $\varepsilon 0, \varepsilon 1, ..., \varepsilon k \in I_b$ t.c:

$$n = \sum_{i=0}^{k} \varepsilon_i b^i$$
 con $I_b = \{0, 1, ..., b-1\}$

Teorema della rappresentazione dei naturali in base arbitraria: Sia $b \in \mathbb{N}, b \geq 2$, allora $\forall n \in \mathbb{N}, n$ è rappresentabile in base b in maniera univoca

Divisibilità: Dati $n, m \in \mathbb{Z}$ si dice che n è **divisore** di m (o m è multiplo di n) se $\exists k \in \mathbb{Z}$ t.c. m = nk e scriveremo n|m

Proprità della divisibilità:

- se n|m e m|q allora n|q
- se n|m e m|n allora $n = \pm m$

Massimo Comune Divisore: Dati $m, n \in \mathbb{Z}$ si dice $d \in \mathbb{Z}, d > 0$ massimo comune divisore se:

- d|n e d|m
- $\exists c \in \mathbb{Z} \ t.c. \ c|n \ c|m \ c|d$

proposizione: se d e d^I sono mcd tra m e n allora $d = d^I$

Teorema: dati $n, m \in \mathbb{Z} \neq 0$, esiste mcd unico indicato con (n, m)

Lemma utile: dati $n, m, c \in \mathbb{Z} \neq 0$ e c|n c|m, allora $\forall x, y \in \mathbb{Z}$ vale:

$$c|xn + ym$$

Corollario: Siano $n, m \in \mathbb{Z} \neq 0$ se sia d := (n, m) allora esistono $x, y \in \mathbb{Z}$ t.c:

$$d = xn + ym$$

Numeri coprimi: dati $n, m \in \mathbb{Z}$, si dicono coprimi fra di loro se (n, m) = 1

proposizione: sia d=n,m allora $(\frac{n}{d},\frac{m}{d})=1$

Algoritmo di Euclide:

Es:

$$\begin{array}{lll} 48 = 28 \cdot 1 + 20 \\ 28 = 20 \cdot 1 + 8 \\ 20 = 8 \cdot 2 + 4 \\ 8 = \underline{4} \cdot 2 + 0 \\ MDC = 4 \end{array} \Rightarrow \begin{array}{ll} 4 = 20 - 2 \cdot 8 \\ 8 = 28 - 20 \cdot 1 \\ 20 = 48 - 28 \cdot 1 \end{array}$$

$$4 = 20 - 2(28 - 20 \cdot 1) = 3 \cdot 20 - 2 \cdot 28$$

$$4 = 3(48 - 28 \cdot 1) - 2 \cdot 28$$

$$= 3 \cdot 48 - 5 \cdot 28$$

6 Sixth week

Proprietà dei coprimi: Siano $n, m, q \in \mathbb{Z}$ e n o $m \neq 0$ e (n, m) = 1:

• Se n|mq allora n|q

• Se n|q e m|q allora nm|q

Numeri primi: $p \in \mathbb{Z}$ si dice **primo** se $p \geq 2$ e i suoi divisori sono quelli banali $(\pm 1|p, \pm p|p)$. p è primo se $\forall n, m$ e p|nm allora $p|n\bigvee p|m$

Minimo Comune Multiplo: dati $n, m \in \mathbb{Z}$ si dice M minimo comune multiplo di n e m se:

• $n|M \in m|M$

• $\exists c \ t.c. \ n|c, m|c, M|c$

Unicità mcm: dati $n, m \in \mathbb{Z}$ e M, M^1 sono mcm di n e m, allora $M = M^1$

Denotazione mcm: mcm di $n \in m$ si scrive [n, m]

Teorema d'esistenza: siano $n, m \in \mathbb{Z}$ allora $\exists [n, m]$ e se $n \bigvee m \neq 0$ allora:

$$[n,m] = \frac{nm}{(n,m)}$$

Teorema fondamentale dell'aritmetica: $\forall n \in \mathbb{N}, n \geq 2, n$ è uguale a un prodotto di numeri primi, anche ripetuti:

$$n = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_k$$

La fattorizzazione di questo prodotto è univoca

Corollario: i numeri primi sono infiniti

Congruenza: dati $a, b \in \mathbb{Z}$ diremo che a è congruo a b modulo n ($a \equiv b \mod n$) se

$$n|a-b$$

Proprietà congruenza:

• riflessiva: $a \equiv a \mod n \quad \forall a, n \in \mathbb{Z}$

• simmetrica: $a \equiv b \mod n$ allora $b \equiv a \mod n \quad \forall a, b, n \in \mathbb{Z}$

• transitiva: $a \equiv b \mod n$ e $b \equiv c \mod n$ allora $a \equiv c \mod n \quad \forall a,b,c,n \in \mathbb{Z}$

equivalenza: una relazione $\mathcal R$ binaria su l'insieme X si dice relazione d'equivalenza su X se:

• è riflessiva: $\forall x \in X, \ x \mathcal{R} x$

• è simmetrica: $\forall x,y \in X, \ x\mathcal{R}y$ allora $y\mathcal{R}x$

 \bullet è transitiva: $\forall x,y,z\in X,\ x\mathcal{R}y$ e
 $y\mathcal{R}z$ allora $x\mathcal{R}z$

7 seventh week

Classi d'equivalenza: sia X, $x \in X$ e \sim una relazione d'equivalenza su X. Chiameremo classe d'equivalenza di x in X rispetto a \sim il sottoinsieme di X i quali elementi y sono equivalenti a x:

$$[x]_{\sim} = \{ y \in x | y \sim x \}$$

Insieme quoziente: chiameremo insieme quoziente di X modulo \sim l'insieme delle classi d'equivalenza contenute in X:

$$X/\sim = \{y \in x | y \sim x\}$$

Proprietà classi d'equivalenza:

- $\forall x \in X, \ x \in [x]$
- $\forall x, y \in X, [x] = [y] \Leftrightarrow x \sim y$
- $\forall x, y \in X, [x] \cap [y] \neq 0 \Rightarrow [x] = [y]$

Classi di congruenza: Dati $a, n \in \mathbb{Z}$ definiamo la classe di congruenza di a modulo n l'insieme delle x congruenti ad a mod n:

$$[a]_n = \{ x \in \mathbb{Z} | x \equiv a \bmod n \}$$

Indicheremo l'insieme quoziente \mathbb{Z} mod \sim_n come $\mathbb{Z}/_n\mathbb{Z}$ e ha come elementi le classi di congruenza $[a]_n$ che appartengono alle partizioni di \mathbb{Z} $(2^{\mathbb{Z}})$, quindi:

$$[a]_n = \{a + kn | k \in \mathbb{Z}\}$$

Es:

$$\mathbb{Z}/_3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\}$$

Prop: Sia $a \in \mathbb{Z}$ e sia r il resto di $\frac{a}{n}$, allora $a \equiv r \pmod{n}$, oppure:

$$[a]_n = [r]_n$$

Criterio di divisibilità: dati $a, n \in \mathbb{Z}$ con $n \neq 0$, diremo che a è multiplo di n se:

$$[a]_n = [0]_n$$

Notazione: dato $a \in \mathbb{Z}$ e $x \in [a]_n$ ($[a]_n = [x]_n$), diremo che x è rappresentante della classe $[a]_n$. Se x è di tipo resto, allora x è rappresentante canonico

gli elementi di $\mathbb{Z}/_n\mathbb{Z}$ si chiamano **classi di resto** modulo n

Struttura algebrica: esistono due operazioni di somma e moltiplicazione tra insiemi quozienti:

- Somma: $[a]_n + [b]_n = [a+b]_n$
- Moltiplicazione: $[a]_n \cdot [b]_n = [a \cdot b]_n$

Prop: dati $a,a^1,b,b^1\in\mathbb{Z}$ to $[a]_n=[a^I]_n$ e $[b]_n=[b^I]_n$ allora:

- Somma: $[a+b]_n = [a^I + b^I]_n$
- Moltiplicazione: $[a \cdot b]_n = [a^I \cdot b^I]_n$

Oss: Sia $a \in \mathbb{Z}, \ m \in \mathbb{N}, \ m > 0$. Allora:

$$[a]_n^m = [a_1]_n \cdot [a_2]_n \cdot \dots \cdot [a_m]_n \cdot = [a^m]_n$$

8 eight week

Teorema cinese del resto: Siano n, m > 0 e siano $a, b \in \mathbb{Z}$. Consideriamo il seguente sistema di congruenze:

$$\begin{cases} x \in \mathbb{Z} \\ x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases} \quad \circ \quad \begin{cases} x \in \mathbb{Z} \\ [x]_n = [a]_n \\ [x]_m = [b]_m \end{cases}$$

Sia S l'insieme delle soluzioni dei precedenti Sistemi

$$S = \langle x \in \mathbb{Z} | x \equiv a \pmod{n} \ e \ x \equiv b \pmod{m} \rangle$$

Il precedente sistema è compatile (ammette soluzioni) se e soltanto se:

$$(n,m)|a-b|$$

Se
$$S \neq \emptyset$$
 e $c \in S$, allora $S = [c]_{[n,m]} \in \mathbb{Z} = \langle c + k_{[n,m]} \in \mathbb{Z} | k \in \mathbb{Z} \rangle$

Es:

$$\begin{cases} x \equiv 9 \pmod{162} \\ x \equiv -9 \pmod{114} \end{cases}$$

1 - Compatibilità

$$(162, 114) = 6 \Rightarrow (162, 114)|9 - (-9) = 6|18 = 3$$

 $\Rightarrow 9 - (-9) = 3(162, 114)_{(1)}$

2 - Calcolo di una soluzione Algoritmo di Euclide:

Da (1) e (2) segue che

$$9 - (-9) = 3(162, 114) = 3(10 \cdot 114 - 7 \cdot 162)$$
$$9 - (-9) = 30 \cdot 114 - 21 \cdot 162_{(3)}$$
$$9 + 21 \cdot 162 = -9 + 30 \cdot 114 \Rightarrow 3411$$

c=3411 è una soluzione del sistema

3 - Calcolo di S

Teorema cinese del resto:

$$S = [c]_{[162,114]} = [3411]_{[162,114]}$$
$$[162,114] = \frac{162 \cdot 114}{(162,114)} = 3078 \quad \Rightarrow \quad S = [3411]_{[3078]} = [333]_{[3078]}$$
$$\Rightarrow S = \langle 333 + 3078k \in \mathbb{Z} | k \in \mathbb{Z} \rangle$$

Bonus:

Esiste soluzione di S divisibile da 17?

metodo 1

$$\begin{cases} x \equiv 333 \pmod{3078} \\ x \equiv 0 \pmod{17} \end{cases}$$
$$(3078, 17)|333 - 0$$
$$1|333$$

è divisibile quindi accetta soluzione

metodo 2

$$[333 + 3078k]_{17} = [333]_{17} + [3078]_{17}[k]_{17}$$
$$[10]_{17} + [1]_{17}[k]_{[17]} = [10 + k]_{17}$$
$$\Rightarrow k = 7$$

Elementi invertibili modulo n: Siano $a, n \in \mathbb{Z}$ con n > 0. Diremo che a è invertibile modulo n o equivalentemente che $[a]_n$ è invertibile in $\mathbb{Z}/n\mathbb{Z}$ se esiste $x \in \mathbb{Z}$ to:

$$ax \equiv 1 \pmod{n} \Leftrightarrow [a]_n [x]_n = [1]_n$$

In questo caso diremo che x è un'inversa di $a \pmod{n}$ e $[x]_n$ è una classe inversa di $[a]_n$ in $[Z]/_n\mathbb{Z}$

Lemma: Supponiamo che a sia invertibile modulo n, ovver $[a]_n$ sia invertibile in $[Z]/_n\mathbb{Z}$. Allora esiste un unico $[x]_n \in [Z]/_n\mathbb{Z}$ tale che:

$$[a]_n[x]_n = [x]_n[a]_n = [1]_n$$

Equivalentemente $[x]_n$ è l'unica classe inversa di $[a]_n$ in $[Z]/_n\mathbb{Z}$. Tale classe $[x]_n$ viene detta inversa e viene indicata con il simbolo $[a]_n^{-1}$

Prop: $a \in \mathbb{Z}$ è invertibile $mod \ n \Leftrightarrow (a, n) = 1$, in questo caso esiste $x, y \in \mathbb{Z}$ tali che:

$$xa + yn = 1$$

(Algoritmo di euclide)

Allora

$$[a]_n^{-1} = [x]_n$$

 Es :

 $11 \ inv(mod \ 30)$

$$(11,30) = 1 \Rightarrow \exists [11]_{30}^{-1}$$

alg. euclide:

$$1 = 11 \cdot 11 + (-4)30$$

$$[1]_{30} = [(11)(11) + (-4)(30)] = [11]_{30}[11]_{30} + [-4]_{30}[0]_{30} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}^{-1} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}^{-1} = [11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30} \Rightarrow [11]_{30}[11]_{30}[11]_{30}$$

Def: Dato $n \in \mathbb{Z}, n > 0$, indichiamo con $(\mathbb{Z}/n\mathbb{Z})^*$ il sottoinsieme di $\mathbb{Z}/n\mathbb{Z}$ formato da tutti invertibili, gli interi modulo n invertibili

cioé mcd è uguale a 1

Prop: Sia p numero primo, allora vale:

$$(\mathbb{Z}/_n\mathbb{Z})^* = \{[1]_p, [2]_p, ..., [p-1]_p\} = \mathbb{Z}/_p\mathbb{Z} \setminus \{[0]_p\}$$