Problème de soutien Enoncé

Automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$

Soit $n \in \mathbb{N}$ tel que $n \geq 2$. On désigne dans la suite par $\mathcal{M}_n(\mathbb{C})$ l'algèbre des matrices carrées d'ordre n à coefficients complexes

Partie I: Automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$

On se propose de montrer que les automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$ sont les applications de la forme $M \mapsto PMP^{-1}$ où $P \in GL_n(\mathbb{C})$.

On note $(e_i)_{1 \leq i \leq n}$ la base canonique de \mathbb{C}^n , que l'on identifie aux matrices colonnes à n lignes. On note E_{ij} la matrice définie par $E_{ij}(e_k) = \delta_{jk}e_i$ pour tout $k \in [1, n]$.

Soit désormais Φ un automorphisme de $\mathcal{M}_n(\mathbb{C})$. On pose $F_{ij} = \Phi(E_{ij})$.

- 1. Pour tout $P \in GL_n(\mathbb{C})$, on définit $f_P : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ par $f_P : M \mapsto PMP^{-1}$. Montrer que f_P est un automorphisme de l'algèbre $\mathcal{M}_n(\mathbb{C})$.
- 2. Simplifier $E_{ij}E_{k\ell}$. (Justifier.)
- 3. Montrer que F_{11} est un projecteur non-nul. En déduire qu'il existe $u_1 \in \mathbb{C}^n$ non nul tel que $F_{11}(u_1) = u_1$.
- 4. On pose $u_i = F_{i1}(u_1)$ pour $i \in [2, n]$. Montrer que $F_{ij}(u_k) = \delta_{jk}u_i$. En déduire que $(u_i)_{1 \leq i \leq n}$ est une base de \mathbb{C}^n .
- 5. Soit P l'unique matrice telle que $P(e_i) = u_i$. Montrer $\Phi = f_P$.

Partie II: Automorphismes de $\mathcal{M}_n(\mathbb{C})$ préservant $GL_n(\mathbb{C})$

L'objectif de cette partie est de montrer qu'un endomorphisme f de l'espace vectoriel $\mathcal{M}_n(\mathbb{C})$ stabilise $GL_n(\mathbb{C})$ si et seulement s'il préserve le rang. On rappelle que si $M \in \mathcal{M}_n(\mathbb{C})$, alors $\chi_M(\lambda) = \det(\lambda I_n - M)$, polynôme caractéristique de M

Soit $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{C}))$ qui stabilise $GL_n(\mathbb{C})$, c'est-à-dire, $f(GL_n(\mathbb{C})) \subset GL_n(\mathbb{C})$.

- 1. Montrer que pour toutes $A, B \in GL_n(\mathbb{C}), \varphi : M \mapsto AMB$ stabilise $GL_n(\mathbb{C})$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ de rang $r \leq n-1$.
 - (a) Montrer que A est équivalente à la matrice par blocs $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$.
 - (b) Montrer qu'il existe $M \in GL_n(\mathbb{C})$ telle que $M \lambda A \in GL_n(\mathbb{C})$ pour tout $\lambda \in \mathbb{C}$.
 - (c) Exprimer $\det(\lambda f(A) f(M))$ en fonction de $\chi_{f(M)^{-1}f(A)}$, polynôme caractéristique de $f(M)^{-1}f(A)$. En déduire $\chi_{f(M)^{-1}f(A)}$.
 - (d) Montrer que f(A) n'est pas inversible.
- 3. (a) Soit $B \in \mathcal{M}_n(\mathbb{C})$, de polynôme caractéristique χ_B . Montrer que si χ_B admet r racines distinctes $z_1, ..., z_r$, alors il existe $u_1, ..., u_r \in \mathbb{C}^n \setminus \{0\}$ tels que pour tout $i \in [1, n]$, $B(u_i) = z_i u_i$. Montrer que la famille $(u_1, ..., u_r)$ est libre. Que peut-on dire de $\mathbf{rg}B$?
 - (b) Montrer qu'il existe $N \in GL_n(\mathbb{C})$ telle que $N \lambda A$ soit non inversible pour exactement r valeurs distinctes de λ .
 - (c) Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{C})$, on a $\mathbf{rg}f(A) \geqslant \mathbf{rg}(A)$.
- 4. Montrer que f préserve le rang.

Problème de soutien Correction

Automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$

Partie I: Automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$

- 1. La linéarité vient de la linéarité de $M \mapsto AM$ et $M \mapsto MA$. Comme \mathcal{M} est de dimension finie, la bijectivité équivaut à l'injectivité. Or $M \in \text{Ker}\Phi \Leftrightarrow PMP^{-1} = 0 \Leftrightarrow M = 0$ car P est inversible. Enfin $\Phi(M)\Phi(N) = PMP^{-1}PNP^{-1} = PMNP^{-1} = \Phi(MN)$ et $\Phi(I_n) = PI_nP^{-1} = I_n$. Donc Φ est un automorphisme d'algèbre.
- 2. On identifie une matrice et l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{C})$ qu'elle représente. Soit $(e_p)_{1\leqslant p\leqslant n}$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$. Alors $E_{ij}(e_p)=\delta_{jp}e_i$. Donc

$$E_{ij}E_{kl}e_p = E_{ij}(\delta_{lp}e_k) = \delta_{lp}E_{ij}(e_k) = \delta_{lp}\delta_{jk}e_i = \delta_{jk}E_{il}(e_p).$$

Donc $E_{ij}E_{kl}$ et $\delta_{jk}E_{il}$ coïncident sur une base donc sont égaux.

3. Comme $E_{11}^2 = E_{11}$, on a

$$F_{11} = \Phi(E_{11}) = \Phi(E_{11}^2) = \Phi(E_{11})^2 = F_{11}^2$$
.

Donc F_{11} est un projecteur. Il est non nul car E_{11} est non nul et que Φ est injective. Donc $\operatorname{Im} F_{11} \neq \{0\}$. Donc tout $u_1 \in \operatorname{Im} F_{11}$ non nul vérifie $F_{11}(u_1) = u_1$ car F_{11} est un projecteur.

4.

$$F_{ij}(u_k) = F_{ij}F_{k1}(u_1) = \Phi(E_{ij})\Phi(E_{k1})(u_1)$$

= $\Phi(E_{ij}E_{k1})(u_1) = \delta_{jk}\Phi(E_{i1})(u_1) = \delta_{jk}F_{i1}(u_1) = \delta_{jk}u_i.$

Il suffit de montrer que $(u_i)_{1 \leqslant i \leqslant n}$ est libre car elle est de cardinal $n = \dim \mathbb{C}^n$. Soient $\lambda_1, ..., \lambda_n \in \mathbb{C}$ tels que $\sum_{i=1}^n \lambda_i u_i = 0$. On applique F_{1j} :

$$0 = F_{1j}(0) = \sum_{i=1}^{n} \lambda_i F_{1j}(u_i) = \sum_{i=1}^{n} \lambda_i \delta_{ji} u_1 = \lambda_j u_1.$$

D'où $\lambda_j = 0$ et ceci pour tout $j \in [1, n]$.

5. P est inversible car envoie une base sur une base. Il suffit de vérifier que Φ et f_P coïncident sur la base $(E_{ij})_{1 \leq i,j \leq n}$, c'est-à-dire, pour tout $k \in [1,n]$, $\Phi(E_{ij})(u_k) = f_P(E_{ij})(u_k)$. Or $F_{ij}(u_k) = \delta_{jk}u_i$ et

$$f_P(E_{ij})(u_k) = (PE_{ij}P^{-1})P(e_k) = PE_{ij}e_k = P(\delta_{jk}e_i) = \delta_{jk}P(e_i) = \delta_{jk}u_i.$$

Partie II: Automorphismes de $\mathcal{M}_n(\mathbb{C})$ préservant $GL_n(\mathbb{C})$

- 1. $GL_n(\mathbb{C})$ étant stable par produit, $A, B, M \in GL_n(\mathbb{C})$ implique que $AMB \in GL_n(\mathbb{C})$. Comme $M \in GL_n(\mathbb{C})$ implique ${}^tM \in GL_n(\mathbb{C})$, $M \mapsto A^tMB$ stabilise aussi $GL_n(\mathbb{C})$. (En fait, ce sont les seuls.)
- 2. (a) La matrice échelon $\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$ est de rang r car possède r lignes non nulles. Elle est donc équivalentes d'après le cours à toute matrice de rang r, et en particulier à A.
 - (b) D'après la question précédente, il existe $P,Q \in GL_n(\mathbb{C})$ telles que $P\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}Q = A$. On note $J_r = \begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$. Alors $I_n + \lambda J_r$ est inversible car est triangulaire supérieure avec des 1 sur la diagonale. D'où $P(I_n + \lambda J_r)Q = PQ + \lambda A$ aussi ; M = PQ convient.
 - (c) Remarquons que $f(M) \in GL_n(\mathbb{C})$ par hypothèse d'où l'existence de $f(M)^{-1}$. Or

$$\det(f(M) - \lambda f(A)) = \det(f(M))\det(I_n - \lambda f(M)^{-1}f(A)).$$

On suppose $\lambda \neq 0$:

$$\det(f(M) - \lambda f(A)) = \det(f(M))\det\left((-\lambda)\left(f(M)^{-1}f(A) - \frac{1}{\lambda}I_n\right)\right)$$
$$= (-1)^n \lambda^n \det(f(M))\chi_{f(M)^{-1}f(A)}\left(\frac{1}{\lambda}\right).$$

elamdaoui@gmail.com 2 www.elamdaoui.com

Problème de soutien Correction

Automorphismes d'algèbre de $\mathcal{M}_n(\mathbb{C})$

D'où, en posant $x = 1/\lambda$, pour tout $x \neq 0$:

$$\chi_{f(M)^{-1}f(A)}(x) = \underbrace{(-1)^n \det(f(M))}_{\neq 0} \underbrace{x^n}_{\neq 0} \underbrace{\det\left(f(M) - \frac{1}{x}f(A)\right)}_{\neq 0 \text{ (question précédente)}}.$$

Donc $\chi_{f(M)^{-1}f(A)}$ est un polynôme de degré n qui n'admet aucune racine dans \mathbb{C}^* . Donc par le théorème fondamental de l'Algèbre, il admet 0 pour seule racine. Donc $\chi_{f(M)^{-1}f(A)}(x) = (-1)^n x^n$.

- (d) On a bien sûr pour tout $N \in \mathcal{M}_n(\mathbb{C})$, $\chi_N(0) = \det(N 0I_n) = \det N$. D'où d'après la question précédente, $\det f(M)^{-1} f(A) = 0$. Or $\det(f(M)^{-1}) \neq 0$. Donc $\det f(A) = 0$, c'est-à-dire, f(A) n'est pas inversible.
- 3. (a) Déjà z est racine de $\chi_B \Leftrightarrow \det(B zI_n) = 0 \Leftrightarrow \dim \operatorname{Ker}(B zI_n) \geqslant 1$. D'où l'existence de $u \neq 0$ tel que B(u) = zu. Montrons que (u_1, \ldots, u_r) est libre. Soient $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ tels que $\sum_{i=1}^r \lambda_i u_i = 0$. Alors pour tout $k \in \mathbb{N}$, on a

$$0 = B^{k}(0) = B^{k}(\sum_{i=1}^{r} \lambda_{i} u_{i}) = \sum_{i=1}^{r} \lambda_{i} z_{i}^{k} u_{i}.$$

En notant L_1, \ldots, L_r les polynômes de Lagrange associés à la famille (z_1, \ldots, z_r) (c'est-à-dire, $L_j(z_k) = \delta_{jk}$), et en écrivant L_j dans la base canonique de $\mathbb{C}_{r-1}[X]$, on a $L_j = \sum_{k=0}^{r-1} \alpha_{j,k} X^k$, donc $\sum_{k=0}^{r-1} \sum_{i=1}^r \lambda_i \alpha_{j,k} z_i^k u_i = 0$, c'est-à-dire,

$$0 = \sum_{i=1}^{r} \lambda_i L_j(z_i) u_i = \lambda_j u_j.$$

Comme $u_j \neq 0$, on a $\lambda_j = 0$ et ceci pour tout $j \in [1, r]$. (Remarque : on aurait aussi pu procéder par récurrence.)

Parmi les z_i , un au plus est nul. D'où la famille $(B(u_i) = z_i u_i)_{1 \le i \le r}$ compte au moins r-1 vecteurs non nuls qui sont dans ImB. D'où $\mathbf{rg}B \ge n-1$.

(b) Soit
$$U_1 = \begin{pmatrix} 1 & & & \\ & 1/2 & & \\ & & \ddots & \\ & & & 1/r \end{pmatrix} \in \mathcal{M}_r(\mathbb{C}) \text{ et } U = \begin{pmatrix} U_1 & 0 \\ 0 & 0_{n-r} \end{pmatrix} \in \mathcal{M}_{n-r}(\mathbb{C}).$$
 La matrice $I_n - \lambda U$ est de

rang n sauf si $\lambda \in [1, r]$. Comme U est de rang r, il existe $P', Q' \in GL_n(\mathbb{C})$ tels que P'UQ' = A. On pose N = P'Q'. On a bien $P'(I_n - \lambda U)Q' = N - \lambda A$ inversible pour $\lambda \in [1, r]$.

(c) On pose $B = f(N)^{-1}f(A)$. Comme $f(N)^{-1} \in GL_n(\mathbb{C})$, il suffit de montrer que $\operatorname{\mathbf{rg}}(B) \geqslant r = \operatorname{\mathbf{rg}}(A)$. Comme précédemment, pour $\lambda \neq 0$, on a

$$\det(f(N) - \lambda f(A)) = (-1)^n \lambda^n \det(f(N)) \chi_{f(N)^{-1} f(A)} \left(\frac{1}{\lambda}\right).$$

Donc en particulier, $\chi_{f(N)^{-1}f(A)}$ admet pour racines $1, 1/2, \ldots, 1/r$. D'apès la question précédente, il existe $u_1, \ldots, u_r \in \mathbb{C}^n$ tels que $B(u_j) = \frac{1}{j}u_j$ et donc la famille $(u_j)_j$ est libre dans $\mathrm{Im}B$ car ici $z_j \neq 0$. D'où $\mathrm{rg}B \geqslant r$.

4. Comme $\operatorname{\mathbf{rg}} f(A) \geqslant \operatorname{\mathbf{rg}} A$ pour toute A, $\operatorname{\mathbf{rg}} A \geqslant 1 \Rightarrow \operatorname{\mathbf{rg}} f(A) \geqslant 1$, c'est-à-dire, f(A) est non nul. Donc f est injective, donc bijective car \mathcal{M} est de dimension finie. Or d'après la question 2, f stabilise $\mathcal{M} \setminus GL_n(\mathbb{C})$. Donc f^{-1} stabilise $GL_n(\mathbb{C})$. Donc pour toute $A \in \mathcal{M}$, $\operatorname{\mathbf{rg}} f^{-1}(A) \geqslant \operatorname{\mathbf{rg}} A$ et donc

$$\operatorname{\mathbf{rg}} A = \operatorname{\mathbf{rg}} f(f^{-1}(A)) \geqslant \operatorname{\mathbf{rg}} f(A).$$

D'où $\mathbf{rg}A = \mathbf{rg}f(A)$.

elamdaoui@gmail.com 3 www.elamdaoui.com