# **Newton-Raphson's Method**

Newton-Raphson method named after Isaac Newton and Joseph Raphson is a powerful technique for solving equations numerically. The Newton-Raphson method in one variable is implemented as follows:

Let  $\alpha$  be an exact root and  $x_0$  be the initial approximate root of the equation f(x) = 0. First approximation  $x_1$  is taken by drawing a tangent to curve y = f(x) at the point  $(x_0, f(x_0))$ . If  $\theta$  is the angle which tangent through the point  $(x_0, f(x_0))$  makes with x- axis, then slope of the tangent is given by  $\tan(\theta) = f(x_0)/(x_0 - x_1) = f'(x_0)$  Hence,  $x_1 = x_0 - (f(x_0)/f'(x_0))$ 

Similarly 
$$x_2 = x_1 - (f(x_1) / f'(x_1))$$

The required root to desired accuracy is obtained by drawing tangents to the curve at points  $(x_n, f(x_n))$  successively.

Hence, 
$$x_{n+1} = x_n - (f(x_n) / f'(x_n))$$



### **Remarks:**

Newton-Raphson method can be used for solving both algebraic and transcendental equations.

Initial approximation  $x_0$  can be taken randomly in the interval [a, b], such that f(a)f(b) < 0.

Newton-Raphson method has **quadratic convergence**, but in case of bad choice of  $x_0$  (the initial guess), Newton-Raphson method may fail to converge.

This method is useful in case of large value of  $f'(x_n)$  i.e. when graph of f(x) while crossing x -axis is nearly vertical

## Newton-Raphson method

### **Algorithm:**

Given an equation f(x) = 0

Step 1. Take the initial approximation  $x_0$  randomly in the domain of function f(x).

Step2. Calculate  $x_{n+1} = x_n - (f(x_n) / f'(x_n))$ , for n=0,1,2,3...

**Example 1:** Use Newton-Raphson method to find a root of the equation  $x^3 - 5x + 3 = 0$  correct to three decimal places.

**Solution:**  $f(x) = x^3 - 5x + 3$  and  $f'(x) = 3x^2 - 5$ 

Here f(0) = 3 and  $f(1) = -1 \Rightarrow f(0)f(1) < 0$ 

Also fx is continuous on [0,1],  $\therefore$  at least one root exists in [0,1]

Let initial approximation  $x_0$  in the interval [0,1] be 0.8.

| Iteration | X <sub>n</sub> | f(x <sub>n</sub> ) | f '(x <sub>n</sub> ) |
|-----------|----------------|--------------------|----------------------|
| 0         | 0.8            | -0.488             | -3.08                |
| 1         | 0.6416         | 0.0561             | -3.7650              |
| 2         | 0.6565         | 0.0004             | -3.7070              |
| 3         | 0.6566         | 0.00008            | -3.7066              |
|           |                |                    |                      |

First three decimal places have been stabilized; hence **0.6566** is the real root correct to three decimal places.

**Example 2:** Find the approximate value of square root of 28 correct to 3 decimal places using Newton Raphson method.

**Solution:**  $x^2 - 28 = 0$ 

i.e.,  $f(x) = x^2$  -28 and f'(x) = 2x

Here f(5) = -3 and  $f(6) = 8 \Rightarrow f(5)f(6) < 0$ 

Also f(x) is continuous on [5,6],  $\therefore$  at least one root exists in [5,6]

Let initial approximation  $x_0$  in the interval [5,6] be 5.5.

| Iteration | X <sub>n</sub> | f(x <sub>n</sub> ) | f'(x <sub>n</sub> ) |
|-----------|----------------|--------------------|---------------------|
| 0         | 5.5            | 2.25               | 11                  |
| 1         | 5.2955         | 0.0423             | 10.519              |
| 2         | 5.2915         | -0.00003           | 10.583              |
| 3         | 5.2915         | -0.00002           | 10.583              |
|           |                |                    |                     |
|           |                |                    |                     |

First three decimal places have been stabilized; hence **5.2915** is the real root correct to three decimal places.

#### **Exercise Problems:**

- 1. Calculate the first 3 iterations of Newton Raphson method on  $x^3 7x^2 + 14x 6 = 0$ with the following initial approximation

- i)  $x_0 = 0.5$ ii)  $x_0 = 2.8$ iii)  $x_0 = 3.5$
- 2. Apply Newton Raphson to find a root of the equation  $xe^x = 1$  correct to three decimal places (with initial approximation  $(x_0 = 0.5)$ )
- 3. Calculate the first 5 iterations of the Newton Raphson method on  $f(x) = xe^x 2 = 0$  ( with initial approximation ( $x_0 = 3.5$ )
- 4. Do 3 iterations of Newton Raphson method on  $f(x) = x^2$  -5 with initial approximation  $(x_0 = 2.5).$

Or

Find the approximate value of square root of 5 using Newton Raphson method. (Do 3 iterations with initial approximation  $(x_0 = 2.5)$ ]).