## **Computer Programming in Financial Engineering**

Midterm Project 1400017706 Chunyan Lei

## Question 1

(a)

| maturity | mean  | standard deviation |
|----------|-------|--------------------|
| 1        | 98.76 | 0.78               |
| 2        | 97.46 | 1.56               |
| 3        | 96.14 | 2.32               |
| 4        | 94.83 | 3.02               |
| 5        | 92.23 | 4.38               |
| 6        | 89.64 | 5.56               |
| 7        | 87.06 | 6.64               |
| 8        | 84.48 | 7.62               |
| 9        | 79.48 | 9.25               |
| 10       | 74.70 | 10.50              |
| 11       | 65.78 | 12.13              |
| 12       | 54.38 | 13.06              |
|          |       |                    |

(b) rbar\_hat equals to 0.44923 gamma\_hat equals to 0.01534 alpha\_hat equals to 0.02246

(c)



(d)



mean std 3.4094e-05 0.0034

(e) '

| Relative I | Pricing Errors |                                   |
|------------|----------------|-----------------------------------|
| 2007.01    | 0.0525         |                                   |
| 2007.02    | 0.0279         |                                   |
| 2007.03    | 0.0182         |                                   |
| 2007.04    | 0.0440         |                                   |
| 2007.05    | 0.0601         |                                   |
| 2007.06    | 0.0786         |                                   |
| 2007.07    | 0.0426         |                                   |
| 2007.08    | 0.0467         |                                   |
| 2007.09    | 0.0172         |                                   |
| 2007.10    | -0.0055        |                                   |
| 2007.11    | -0.0216        |                                   |
| 2007.12    | -0.0184        |                                   |
| 2008.01    | -0.0841        |                                   |
| (f)        |                |                                   |
| time       | hedge ratio    | maturity of most overpriced(year) |
| 1990.06    | 0.6716         | 3.00                              |
| 1990.07    | 0.1405         | 0.50                              |
| 1990.08    | 0.0712         | 0.25                              |

| 1990.09 | 0.0697 | 0.25 |
|---------|--------|------|
| 1990.10 | 0.0695 | 0.25 |
| 1990.11 | 0.0689 | 0.25 |
| 1990.12 | 0.0659 | 0.25 |

## **Bonus Part:**

(Return means return rate here)

Mean and Std of Historical Returns of the Dynamic Strategy

mean std -0.0008 0.0172

(g)

Non-callable part can be seemed as a ZCB with face value 102.5 and maturity 5 years, also 10 ZCBs with face value 100\*5%/2=2.5, and maturity relatively 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,5.

By CIR formula and Monte Carlo Simulation, the results are as follows.

Noncallable part: 108.0002 Callable part: 4.0312

-----

Callable Bond Price: 103.9689