Report on Binary Classification and Statistical Learning Theory

Sereda Daniil 5130203/20102

November 1, 2024

How SLT offer math basic framework to solve the problem of binary classification in Machine Learning?

0.1 Introduction

Binary classification is a fundamental problem in machine learning where the objective is to categorize data points into one of two distinct classes. Formally, given a dataset $D = \{(x_i, y_i)\}, i = 1 \dots n$, where $x_i \in \mathbb{R}^d$ represents the feature vector and $y_i \in \{0, 1\}$ denotes the class label, the goal is to learn a function $f : \mathbb{R}^d \to \{0, 1\}$ that accurately predicts the class labels for unseen data.

0.2 Problem Formulation

The binary classification problem can be mathematically framed as follows:

Hypothesis Space: Define a hypothesis space \mathcal{H} consisting of functions $h: \mathbb{R}^d \to \{0,1\}$.

Loss Function: A common loss function used in binary classification is the 0-1 loss, defined as:

$$L(h(x), y) = \begin{cases} 0, & h(x) = y \\ 1, & h(x) \neq y \end{cases}$$

The objective is to minimize the expected loss, or risk, defined as:

$$R(h) = E_{(x,y) \sim P}[L(h(x), y)]$$

where P is the joint distribution of (x, y).

Empirical Risk Minimization: In practice, the true distribution *P* is unknown, and we use the empirical distribution derived from the training set:

$$\hat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(x_i), y_i)$$

The goal is to find $h \in \mathcal{H}$ that minimizes $\hat{R}(h)$.

0.3 Statistical Learning Theory (SLT)

Statistical Learning Theory provides a mathematical framework to analyze the performance of learning algorithms, particularly in the context of binary classification. Key concepts include:

- **Generalization:** The ability of a model to perform well on unseen data. SLT quantifies generalization through the concept of VC dimension (Vapnik-Chervonenkis dimension), which measures the capacity of a hypothesis space \mathcal{H} . A higher VC dimension indicates a more complex model that can fit a wider variety of functions but may also lead to overfitting.
- Bias-Variance Tradeoff: SLT emphasizes the tradeoff between bias (error due to approximating a real-world problem with a simplified model) and variance (error due to sensitivity to fluctuations in the training set). A good binary classifier should balance these two sources of error to achieve optimal performance.
- **Learning Guarantees:** SLT provides theoretical guarantees on the performance of learning algorithms. For instance, it establishes bounds on the difference between the empirical risk $\hat{R}(h)$ and the true risk R(h):

$$R(h) \leq \hat{R}(h) + \text{error term}$$

The error term typically depends on the VC dimension and the number of training samples, providing insights into how much training data is needed to ensure good generalization.

0.4 Conclusion

In summary, binary classification is a critical problem in machine learning that can be effectively addressed using the principles of Statistical Learning Theory. By providing a mathematical framework to analyze hypothesis spaces, generalization, and learning guarantees, SLT equips practitioners with the tools necessary to develop robust classifiers that perform well on unseen data.