Econometricks: Short guides to econometrics

Trick 02: Specific Distributions

Davud Rostam-Afschar (Uni Mannheim)

Content

- 1. The normal distribution
- 2. Method of transformations
- 3. The χ^2 distribution
- 4. The F-distribution
- 5. The student t-distribution
- 6. The lognormal distribution
- 7. The gamma distribution
- 8. The beta distribution
- 9. The logistic distribution
- 10. The Wishart distribution
- 11. Common distributions and their properties

Specific Distributions

Thanks to Ping Yu

Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial) is

$$Prob(x = 1) = p,$$

 $Prob(x = 0) = 1 - p,$

where $0 \le p \le 1$ is the probability of success.

- ightharpoonup E[x] = p and
- $V[x] = E[x^2] E[x]^2 = p p^2 = p(1 p).$

Discrete distributions

The distribution for x successes in n trials is the **binomial distribution**,

$$Prob(X = x) = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x} \quad x = 0, 1, ..., n.$$

The mean and variance of x are

- \triangleright E[x] = np and
- ▶ V[x] = np(1-p).

Example of a binomial [n = 15, p = 0.5] distribution:

Discrete distributions

The limiting form of the binomial distribution, $n \to \infty$, is the **Poisson distribution**,

$$Prob(X = x) = \frac{e^{\lambda} \lambda^{x}}{x!}.$$

The mean and variance of x are

- $ightharpoonup E[x] = \lambda$ and
- $ightharpoonup V[x] = \lambda.$

Example of a Poisson [3] distribution:

The normal distribution

Random variable $x \sim N[\mu, \sigma^2]$ is distributed according to the **normal distribution** with mean μ and standard deviation σ obtained as

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}.$$
 (1)

The density is denoted $\phi(x)$ and the cumulative distribution function is denoted $\Phi(x)$ for the standard normal. Example of a standard normal, $(x \sim N[0,1])$, and a normal with mean 0.5 and standard deviation 1.3:

Transformation of random variables

Continuous variable x may be transformed to a discrete variable y. Calculate the mean of variable x in the respective interval:

$$Prob(Y = \mu_1) = P(-\infty < X \le a),$$

 $Prob(Y = \mu_2) = P(a < X \le b),$
 $Prob(Y = \mu_3) = P(b < X \le \infty).$

Method of transformations

If x is a continuous random variable with pdf $f_x(x)$ and if y = g(x) is a continuous monotonic function of x, then the density of y is obtained by

$$Prob(y \le b) = \int_{-\infty}^{b} f_{x}(g^{-1}(y))|g^{-1}(y)|dy.$$

With $f_y(y) = f_x(g^{-1}(y))|g^{-1}(y)|dy$, this equation can be written as

$$Prob(y \leq b) = \int_{-\infty}^{b} f_y(y) dy.$$

Example

If $x \sim N[\mu, \sigma^2]$, then the distribution of $y = g(x) = \frac{x - \mu}{\sigma}$ is found as follows:

$$g^{-1}(v) = x = \sigma v + \mu$$

$$g^{-1}(y) = \frac{dx}{dy} = \sigma$$

Therefore with $f_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}[(g^{-1}(y) - \mu)^2/\sigma^2]} |g^{-1}(y)|$

$$f_y(y) = \frac{1}{\sqrt{2\pi}} e^{-[(\sigma y + \mu) - \mu]^2/2\sigma^2} |\sigma| = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.$$

Properties of the normal distribution

Preservation under linear transformation: If $x \sim N[\mu, \sigma^2]$, then $(a + bx) \sim N[a + b\mu, b^2\sigma^2]$.

► Convenient transformation $a=-\mu/\sigma$ and $b=1/\sigma$: The resulting variable $z=\frac{(x-\mu)}{\sigma}$ has the standard normal distribution with density

$$\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}.$$

- ▶ If $x \sim N[\mu, \sigma^2]$, then $f(x) = \frac{1}{\sigma} \phi[\frac{x-\mu}{\sigma}]$
- ▶ $Prob(a \le x \le b) = Prob\left(\frac{a-\mu}{\sigma} \le \frac{x-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$
- lackloss $\phi(-z)=1-\phi(z)$ and $\Phi(-x)=1-\Phi(x)$ because of symmetry

Method of transformations

If $z \sim N[0, 1]$, then $z^2 \sim \chi^2[1]$ with pdf $\frac{1}{\sqrt{2\pi y}}e^{-y/2}$.

Example

$$\begin{split} f_x(x) &= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \\ y &= g(x) = x^2 \\ g^{-1}(y) &= x = \pm \sqrt{y} \text{ there are two solutions to } g_1, g_2. \\ g^{-1\prime}(y) &= \frac{dx}{dy} = \pm 1/2y^{-1/2} \\ f_y(y) &= f_x(g_1^{-1}(y))|g_1^{-1\prime}(y)| + f_x(g_2^{-1}(y))|g_2^{-1\prime}(y)| \\ f_y(y) &= f_x(\sqrt{y})|1/2y^{-1/2}| + f_x(-\sqrt{y})| - 1/2y^{-1/2}| \\ f_y(y) &= \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} + \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} \end{split}$$

Distributions derived from the normal

- ▶ If $z \sim N[0, 1]$, then $z^2 \sim \chi^2[1]$ with $E[z^2] = 1$ and $V[z^2] = 2$.
- ▶ If $x_1, ..., x_n$ are *n* independent $\chi^2[1]$ variables, then

$$\sum_{i=1}^n x_i \sim \chi^2[n].$$

▶ If z_i , i = 1, ..., n, are independent N[0, 1] variables, then

$$\sum_{i=1}^n z_i^2 \sim \chi^2[n].$$

▶ If z_i , i = 1, ..., n, are independent $N[0, \sigma^2]$ variables, then

$$\sum_{i=1}^n \left(\frac{z_i}{\sigma}\right)^2 \sim \chi^2[n].$$

▶ If x_1 and x_2 are independent χ^2 variables with n_1 and n_2 degrees of freedom, then

$$x_1 + x_2 \sim \chi^2 [n_1 + n_2].$$

The χ^2 distribution

Random variable $x \sim \chi^2[n]$ is distributed according to the **chi-squared distribution** with n degrees of freedom

$$f(x|n) = \frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(\frac{n}{2})},$$
 (2)

where Γ is the Gamma-distribution (more below).

- \triangleright E[x] = n
- V[x] = 2n

Example of a $\chi^2[3]$ distribution:

The F-distribution

If x_1 and x_2 are two independent chi-squared variables with degrees of freedom parameters n_1 and n_2 , respectively, then the ratio

$$F[n_1, n_2] = \frac{x_1/n_1}{x_2/n_2} \tag{3}$$

has the **F** distribution with n_1 and n_2 degrees of freedom.

The student t-distribution

If x_1 is an N[0,1] variable, often denoted by z, and x_2 is $\chi^2[n_2]$ and is independent of x_1 , then the ratio

$$t[n_2] = \frac{x_1}{\sqrt{x_2/n_2}}. (4)$$

has the **t** distribution with n_2 degrees of freedom.

Example for the *t* distributions with 3 and 10 degrees of freedom with the standard normal distribution.

Comparing (3) with $n_1 = 1$ and (4), if $t \sim t[n]$, then $t^2 \sim F[1, n]$.

The t[30] approx. the standard normal

Approximating a χ^2

For degrees of freedom greater than 30 the distribution of the chi-squared variable x is approx.

$$z = (2x)^{1/2} - (2n-1)^{1/2},$$
 (5)

which is approximately standard normally distributed. Thus,

$$Prob(\chi^2[n] \le a) \approx \Phi[(2a)^{1/2} - (2n-1)^{1/2}].$$

The lognormal distribution

The **lognormal distribution**, denoted $LN[\mu, \sigma^2]$, has been particularly useful in modeling the size distributions.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2}[(\ln x - \mu)/\sigma]^2}, \qquad x > 0$$

A lognormal variable x has

• $E[x] = e^{\mu + \sigma^2/2}$, and

Var[x] = $e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$.

If $y \sim LN[\mu, \sigma^2]$, then $\ln y \sim N[\mu, \sigma^2]$.

The gamma distribution

The general form of the gamma distribution is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta x} x^{\alpha - 1}, \qquad x \ge 0, \beta = 1/\theta > 0, \alpha = k > 0.$$
 (6)

Many familiar distributions are special cases, including the **exponential distribution**($\alpha=1$) and **chi-squared**($\beta=1/2, \alpha=n/2$). The **Erlang distribution** results if α is a positive integer. The mean is α/β , and the variance is α/β^2 . The **inverse gamma distribution** is the distribution of 1/x, where x has the gamma distribution.

The beta distribution

For a variable constrained between 0 and c>0, the **beta distribution** has proved useful. Its density is

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x}{c}\right)^{\alpha - 1} \left(1 - \frac{x}{c}\right)^{\beta - 1} \frac{1}{c}, \qquad 0 \le x \le 1.$$

It is symmetric if $\alpha = \beta$, asymmetric otherwise. The mean is $ca/(\alpha + \beta)$, and the variance is $c^2\alpha\beta/[(\alpha + \beta + 1)(\alpha + \beta)^2]$.

The logistic distribution

The **logistic distribution** is an alternative if the normal cannot model the mass in the tails; the cdf for a logistic random variable with $\mu=0, s=1$ is

$$F(x) = \Lambda(x) = \frac{1}{1 + e^{-x}}.$$

The density is $f(x) = \Lambda(x)[1 - \Lambda(x)]$. The mean and variance of this random variable are zero and $\sigma^2 = \pi^2/3$.

The Wishart distribution

The **Wishart distribution** describes the distribution of a random matrix obtained as

$$f(\mathbf{W}) = \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)'.$$

where x_i is the *i*th of nK element random vectors from the multivariate normal distribution with mean vector, μ , and covariance matrix, Σ . The density of the Wishart random matrix is

$$f(\boldsymbol{W}) = \frac{\exp\left[-\frac{1}{2} trace(\boldsymbol{\Sigma}^{-1} \boldsymbol{W})\right] |\boldsymbol{W}|^{-\frac{1}{2}(n-K-1)}}{2^{nK/2} |\boldsymbol{\Sigma}|^{K/2} \pi^{K(K-1)/4} \prod_{j=1}^{K} \Gamma\left(\frac{n+1-j}{2}\right)}.$$

The mean matrix is $n\Sigma$. For the individual pairs of elements in W,

$$Cov[w_{ij}, w_{rs}] = n(\sigma_{ir}\sigma_{js} + \sigma_{is}\sigma_{jr}).$$

The Wishart distribution is a multivariate extension of χ^2 distribution. If $\mathbf{W} \sim W(n, \sigma^2)$, then $\mathbf{W}/\sigma^2 \sim \chi^2[n]$.

	Normal	Logistic
Parameters	$\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_{>0}$	$\mu \in \mathbb{R}$, $s \in \mathbb{R}_{>0}$
Support	$x \in \mathbb{R}$	$x \in \mathbb{R}$
PDF	$\phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\lambda\left(\frac{x-\mu}{s}\right) = \frac{e^{-(x-\mu)/s}}{s\left(1+e^{-(x-\mu)/s}\right)^2}$
CDF	$\Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2}\left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$	$\Lambda\left(\frac{x-\mu}{s}\right) = \frac{1}{1+e^{-(x-\mu)/s}}$
Mean	μ	μ
Median	μ	μ
Mode	μ	μ
Variance	σ^2	$\frac{\mu}{\frac{s^2\pi^2}{3}}$
Skewness	0	0 3
Ex. Kurtosis	0	6/5
MGF	$\exp(\mu t + \sigma^2 t^2/2)$	$e^{\mu t}B(1-st,1+st)$ for $t\in (-1/s,1/s)$

- PDF denotes probability density function, CDF cumulative distribution function, MGF moment-generating function.
- μ mean (location), σ, s (scale).
- ▶ $B(z_1, z_2)$ is beta function $\int_0^1 t^{z_1-1}(1-t)^{z_2-1} dt$ for complex number inputs z_1, z_2 with $\Re(z_1), \Re(z_2) > 0$.
- Excess Kurtosis is defined as Kurtosis minus 3.

	t	Log-normal
Parameters	$n \in \mathbb{R}_{>0}$	$\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_{>0}$
Support	$x \in \mathbb{R}$	$x \in \mathbb{R}_{>0}$
PDF	$\frac{\Gamma\left(\frac{-n+1}{2}\right)}{\sqrt{\pi n} \; \Gamma\left(\frac{n}{2}\right)} \left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}$	$\frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$
CDF	$\frac{1}{2} + x \Gamma\left(\frac{n+1}{2}\right) \times$	$\frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\ln x - \mu}{\sigma \sqrt{2}} \right) \right]$
	$\frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{n+1}{2}; \frac{3}{2}; -\frac{x^{2}}{n}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}$	$=\Phi\left(\frac{\ln(x)-\mu}{\sigma}\right)$
Mean	0 for $n > 1$	$\exp\left(\mu + \frac{\sigma^2}{2}\right)$
Median	0	$\exp(\dot{\mu})$
Mode	0	$\exp\left(\mu-\sigma^2 ight)$
Variance	$\frac{n}{n-2}$ for $n>2$,	$\left[\exp(\sigma^2)-1\right]\exp\left(2\mu+\sigma^2\right)$
	∞ for $1 < n \le 2$	
Skewness	0 for $n > 3$	$\left[\exp\left(\sigma^2 ight) + 2 ight] \sqrt{ \exp(\sigma^2) - 1}$
Ex. Kurtosis	$\frac{6}{n-4}$ for $n > 4, \infty$ for $2 < n \le 4$	$1\exp\left(4\sigma^2\right) + 2\exp\left(3\sigma^2\right) + 3\exp\left(2\sigma^2\right) - 6$
MGF	does not exist	not determined by its moments

- n denote degrees of freedom.
- $ightharpoonup _2F_1(\ ,\ ;\)$ is a particular instance of the hypergeometric function.

	Γ	Γ
Parameters	$k>0\in\mathbb{R}$ (shape),	$lpha>0\in\mathbb{R}$ (shape),
	$ heta>0\in\mathbb{R}$ scale	$eta>0\in\mathbb{R}$ (rate)
Support	$x\in\mathbb{R}(0,\infty)$	$x\in\mathbb{R}(0,\infty)$
PDF	$f(x) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-x/\theta}$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$
CDF	$F(x) = \frac{1}{\Gamma(k)} \gamma\left(k, \frac{x}{\theta}\right)$	$F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$
Mean	$k\theta$	$\frac{\alpha}{B}$
Median	No simple closed form	No simple closed form
Mode	$(k-1)\theta$ for $k \ge 1$, 0 for $k < 1$	$rac{lpha-1}{eta}$ for $lpha\geq 1$, 0 for $lpha<1$
Variance	$k\theta^2$	$\frac{\alpha}{\beta^2}$
Skewness	2/7	$\frac{\frac{\alpha}{\beta^2}}{\frac{2}{\sqrt{\alpha}}}$ $\frac{\frac{6}{\alpha}}{\alpha}$
Ex. Kurtosis	$\frac{2}{\sqrt{k}}$ $\frac{6}{L}$	<u> </u>
MGF	$(1-\thetat)^{-k}$ for $t<rac{1}{ heta}$	$\left(1-rac{t}{eta} ight)^{-lpha}$ for t

- ho $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$, $\Re(z) > 0$, for complex numbers with a positive real part.
- lower incomplete gamma function is $\gamma(s,x) = \int_0^x t^{s-1} e^{-t} dt$, for complex numbers with a positive real part.

	χ^2	F
Parameters	$n \in \mathbb{N}_{>0}$	n_1 , $n_2 \in \mathbb{N}_{>0}$
Support	$x \in \mathbb{R}_{>0}$ if $n = 1$,	$x \in \mathbb{R}_{>0}$ if $n_1 = 1$,
	else $x \in \mathbb{R}_{>0}$	else $x \in \mathbb{R}_{>0}$
PDF	$\frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}$	$n_1^{\frac{n_1}{2}} n_2^{\frac{n_2}{2}} \frac{\Gamma(\frac{\bar{n_1} + n_2}{2})}{\Gamma(\frac{\bar{n_1}}{2})\Gamma(\frac{\bar{n_2}}{2})} \frac{x^{\frac{n_1}{2} - 1}}{(n_1 x + n_2)^{\frac{m_1 + n_2}{2}}}$ $I\left(\frac{n_1 x}{n_1 x + n_2}, \frac{n_2}{1}, \frac{n_2}{2}\right)$
CDF	$\frac{1}{\Gamma(n/2)} \gamma\left(\frac{n}{2}, \frac{x}{2}\right)$	$I\left(\frac{n_1 \times}{n_1 \times + n_2}, \frac{n_1}{2}, \frac{n_2}{2}\right)$
Mean	n	$\frac{n_2}{n_2-2}$ for $n_2 > 2$
Median	No simple closed form	No simple closed form
Mode	$\max(n-2,0)$	$\frac{n_1-2}{n_1} \frac{n_2}{n_2+2}$ for $n_1 > 2$
Variance	2 <i>n</i>	$\frac{2 n_2^2 (n_1 + n_2 - 2)}{n_1 (n_2 - 2)^2 (n_2 - 4)}$ for $n_2 > 4$
Skewness	$\sqrt{8/n}$	$\frac{\frac{(2n_1+n_2-2)\sqrt{8(n_2-4)}}{(n_2-6)\sqrt{n_1(n_1+n_2-2)}} \text{for } n_2 > 6$
Ex. Kurtosis	12 n	$12\frac{n_1(5n_2-22)(n_1+n_2-2)+(n_2-4)(n_2-2)^2}{n_1(n_2-6)(n_2-8)(n_1+n_2-2)} \text{ for } n_2 > 8$
MGF	$(1-2t)^{-n/2}$ for $t<\frac{1}{2}$	does not exist

n, n₁, n₂ known as degrees of freedom.

Regularized incomplete beta function $I(x, a, b) = \frac{B(x, a, b)}{B(a, b)}$ with $B(x, a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$.

	В
Parameters	$lpha,eta\in\mathbb{R}_{>0}$
Support	$x \in [0,1] \text{ or } x \in (0,1)$
PDF	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$
CDF	$I(x, \alpha, \beta)$
Mean	$\frac{\alpha}{\alpha+\beta}$
Median	$I_{rac{1}{2}}^{[-1]}(lpha,eta)pproxrac{lpha-rac{1}{3}}{lpha+eta-rac{2}{3}} ext{ for } lpha,eta>1$
Mode	*
Variance	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Skewness	$\frac{2(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$
Ex. Kurtosis	$\frac{6[(\alpha-\beta)^2(\alpha+\beta+1)-\alpha\beta(\alpha+\beta+2)]}{\alpha\beta(\alpha+\beta+2)(\alpha+\beta+3)}$
MGF	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$

[►] $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and Γ is the Gamma function.

Regularized incomplete beta function
$$I(x, a, b) = \frac{B(x, a, b)}{B(a, b)}$$
 with $B(x, a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$.

*
$$\frac{\alpha-1}{\alpha+\beta-2}$$
 for α , $\beta>1$; any value in(0,1) for α , $\beta=1$; {0,1} (bimodal) for α , $\beta<1$; 0 for $\alpha\leq 1$, $\beta>1$

 $[\]qquad \qquad \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \ \mathrm{d}t, \qquad \Re(z) > 0, \ \text{for complex numbers with a positive real part}.$

References I

Greene, W. H. (2011): *Econometric Analysis*. Prentice Hall, 5 edn.