Data Mining

Prof. Dr. Stefan Kramer Johannes Gutenberg-Universität Mainz

Outline

 Condensed representations: closed and free sets

Condensed Representations: Closed and Free Sets

Condensed Representations: Motivation

- Problem of APriori-like approaches: computing frequent itemsets intractable in *dense* and *highly correlated Boolean* data (remember: exponential in the worst-case)
- Distinction: *sparse* and *dense* dataset
- Condensed representations: remove redundancy and provide more interesting patterns to the end-user

Multiples Uses of Frequent Itemsets

... Based on Condensed Representations

Condensed representations of Knowledge frequent sets Rules **Patterns** Similarities Interpretation and evaluation Clusters FS Boolean data Data mining

... Based on Condensed Representations

The "Closure" Evaluation Function

 The closure of X is the maximal superset of X that has exactly the same frequency as X (!)

closure(X, r) = items(objects(X, r), r)

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

closure($\{A\}$, r) = $\{A,C\}$

Note:

 $A \Rightarrow C$ has confidence 1.0

Closed Sets

 X is a closed set iff X = closure(X, r). It is a maximal set of items that support exactly the same transactions.

	D	С	В	Α
CA 63 :	0	1	0	1
{A,C} is	0	1	1	1
C _{Close} (S	1	1	1	0
Close	1	0	1	0
• How	0	1	1	1

closed {A,B} is not closed

$$C_{Close}(S)$$

- about the empty set?
- Closedness is not an anti-monotonic property!

Closed Sets

 X is a closed set iff X = closure(X, r). It is a maximal set of items that support exactly the same transactions.

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

Frequent (MinSupport = 2)

A:3, B:4, C:4, D:2,

AB:2, AC:3, BC:3, BD:2,

ABC:2

Frequent closed:

B:4, C:4,

AC:3, BC:3, BD:2, ABC:2

Closed Sets

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

Frequent:

A:3, B:4, C:4, D:2,

AB:2, AC:3, BC:3, BD:2,

ABC:2

Frequent closed:

B:4, C:4,

AC:3, BC:3, BD:2, ABC:2

Α	В		В	D	
1	0		0	0	
1	1	?	1	0	?
0	1		1	1	
0	1		1	1	
1	1		1	0	

Possible: confidence 1.0 (logical) rules:

$$A \rightarrow C$$
, $D \rightarrow B$, $AB \rightarrow C$

Properties of the Closure

- $X \subseteq closure(X)$
- closure(closure(X)) = closure(X)
- $Y \subseteq X \Rightarrow closure(Y) \subseteq closure(X)$

Using Closed Sets

closure({ABC})={ABC}

Comparison with Maximally Specific Itemsets and Borders

- With borders/version spaces: possible to generate all solution patterns
- With frequent closed sets: possible to generate all solution patterns along with their frequencies

Closed Sets and How to Use Them

When S is frequent, choose the frequent closed set X s.t. $S \subseteq X$ that has the maximal support and return freq(S,r) = freq(X,r)

Example Frequent Closed Sets

1	ABCD
2	AC
3	AC
4	ABCD
5	ВС
6	ABC

```
16 frequent sets
```

1 maximal frequent set

5 frequent closed sets

C, AC, BC, ABC, ABCD

$$A \rightarrow C$$
, $B \rightarrow C$, $AB \rightarrow C$, $ABD \rightarrow C$, etc.

Minimum frequency threshold = 2

Example: Closed Sets?

EMPTY(6) B(4) C(6) A(5)D(2)AB(3) AC(5) AD(2) BC(4) BD(2) CD(2) ABC(3) ABD(2) ACD(2) BCD(2)

ABCD(2)

Example: Closed Sets!

EMPTY(6)

Free Sets

- An itemset X is called free if every proper subset of X has a frequency strictly greater than that of X.
- In other words, X is a free set iff there is no logical (confidence 1.0) rule that holds between any of its subsets
- Free sets are special cases of δ -free sets (see next slides), closed sets are the closures of free sets

Α	В	С	D	(HOW about t	the empty set:)
1	0	1	0		
1	1	1	0	(A B) : (5.4. 6.3. 1. 6
0	1	1	1	{A,B} is free	{A,C} is not free
0	1	0	1	$C_{-}(S)$	(anti-monotonic!)
1	1	1	0	$C_{Free}(S)$	(diffi-inonotoffic:)

Example: Free Sets?

EMPTY(6)

Example: Free Sets

EMPTY(6)

Closed and Free Sets

Closures and δ -Closures

closure(A)={ABC}

closure({ABC})={ABC}

 $B,C \in closure_{\delta}(A)$

δ-Freeness 1

- A δ -free-set is such that there is no δ -strong rule that holds between any of its subsets
- $X \Rightarrow_{\delta} Y$ is δ -strong if it has at most δ exceptions

Α	В	С	D	{A,B} is free, but not 1-free
1	0	1	0	(A,D) is free, but free
1	1	1	0	$C_{\delta-free}(S)$ (anti-monotonic)
0	1	1	1	
0	1	0	1	
1	1	1	0	

δ-Freeness 2

- ...is (as, e.g., the minimum frequency constraint) *anti-monotonic!* Any subset of a delta-free itemset is also delta-free
- Any superset of a non-delta-free itemset is also non-delta-free
- ...provides a condensed representation: frequent free itemsets are less numerous than frequent itemsets while providing almost the same information

δ-Freeness 3

- If X is a frequent free itemset then possible to derive frequencies of supersets of X without having to count them
- Compute closure F of X = maximal superset such that frequency is that of X; every set between F and X has frequency of X

APriori Can Be Used to Solve Any Anti-Monotonic Constraint

Most important modification here from:

```
\mathcal{F}_{l}(r) := \{ X \in \mathcal{C}_{l} \mid \mathit{fr}(X, r) \geq \mathit{min\_fr} \};
```

to:

$$\mathcal{F}_l(r) := \{X \in \mathcal{C}_l \mid \mathit{fr}(X,r) \geq \mathit{min_fr} \text{ and }$$
 $\mathit{fr}(X,r) \neq \mathit{fr}(Y,r) \text{ for all } Y \subset X\};$

Discovery of All Frequent Closed Sets

- Find all frequent free sets in the described manner
- Compute closures of frequent free sets from the database
 - determine transactions, where they occur, and intersect them

Examples of Condensed Representations

1	ABCD
2	AC
3	AC
4	ABCD
5	ВС
6	ABC

```
16 frequent sets
```

1 maximal frequent set

Frequent closed sets

C, AC, BC, ABC, ABCD

Frequent free sets

 \emptyset , A, B, D, AB

Frequent 1-free sets

 \emptyset , B, D

Minimum frequency threshold = 2

Example Closed and Free Sets

EMPTY(6)

