

Deep Learning

Maths Refresher

Tuesday 29th November 2019

Dr. Nicholas Cummins

- Linear Algebra
- Probability
- Differential Calculus
- Gradient Descent

3

- Linear Algebra
- Probability
- Differential Calculus
- Gradient Descent

Why Linear Algebra?

- It is a key foundation to the field of machine learning
 - Present from notations used to describe the operation of algorithms to the implementation of algorithms in code
- Also needed to understanding the calculus and statistics used in machine learning
- Enables a deeper intuition in algorithms
 - Implement algorithms from scratch
 - Devise new algorithms

Scalar

A one-dimensional vector, i.e. 1 x 1

Vector

- A single-dimensional array of numbers
- i.e. 1 x m

Matrix

- A two-dimensional array of numbers
- An $m \times n$ matrix has m rows and n columns

Tensor

A multidimensional array of numbers

Scalar: a

Norm of a vector

- The norm is a measure of magnitude
 - The l^p norm is given by:

$$l^p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

- Machine learning generally uses the l^1 and l^2 norms
 - ullet The least squares cost function is the l^2 norm of an error vector
 - Norm of a parameter vector can be used in regularization

Norm of a vector

 $-l^1$ norm example

$$v = \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}, ||v||_1 = |1| + |-4| + |5| = 10$$

 $-l^2$ norm example

$$v = \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}, ||v||_2 = \sqrt{|1|^2 + |-4|^2 + |5|^2} = \sqrt{42}$$

Dot product

– The dot product of two vectors, $v_1 \in \mathbb{R}^{n \times 1}$ and $v_2 \in \mathbb{R}^{n \times 1}$, is the sum of the product of the corresponding elements:

$$v_1 \cdot v_2 = v_1^T v_2 = v_2^T v_1 = v_{1_1} v_{2_1} + v_{1_2} v_{2_2} + \dots + v_{1_n} v_{2_n} = \sum_{k=1}^n v_{1_k} v_{2_k}$$

Dot product

– Example:

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$$

$$v_1 \cdot v_2 = v_1^T v_2 = 1 \times 3 + 2 \times 5 - 3 \times 1 = 10$$

Why is the dot product important?

 The dot product encodes information about the angle between two vectors

$$\boldsymbol{v}_1 \cdot \boldsymbol{v}_1 = \|\boldsymbol{v}_1\| \|\boldsymbol{v}_1\| \cos \theta$$

$$\theta = \arccos\left(\frac{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}{\|\boldsymbol{v}_1\| \|\boldsymbol{v}_1\|}\right)$$

Why is the dot product important?

$$\cos 0 = 1$$
 $\begin{array}{c} \bullet \\ b \\ a \end{array}$

Dot product is positive

- The dot product measures how similar two vectors are

Matrix multiplication

– For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ to be multipliable n must equal p and the resulting matrix is $C \in \mathbb{R}^{m \times q}$

$$C_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

$$\forall i \in \{1,2,...,m\}$$

$$\forall j \{1,2,...,q\}$$

Matrix multiplication

– Example:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, C = A \times B$$

$$C_{11} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$
, $1 \times 5 + 2 \times 7 = 19$, $C_{12} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix}$, $1 \times 6 + 2 \times 8 = 22$

$$C_{21} = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$
, $3 \times 5 + 4 \times 7 = 43$, $C_{22} = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix}$, $3 \times 6 + 4 \times 8 = 50$

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Matrix transpose

- The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is generally represented as $A^T \in \mathbb{R}^{n \times m}$
- This is performed by transposing the column vectors as row vectors

$$a'_{ji}=a_{i,j}, \forall \ i\in\{1,2,\ldots,m\}, \ \forall \ j\ \{1,2,\ldots,n\}$$
 where $a'_{ji}\in A^T$ and $a_{i,j}\in A$

- Transpose is important as it relates in inner products
 - The dot product of two column vectors a and b can be computed as the single entry of the matrix product: $[a \cdot b] = a^T b$

Matrix transpose

– Examples:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 then $A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 8 & 2 & 6 \\ 7 & 8 & 3 \\ 4 & 9 & 6 \\ 7 & 8 & 1 \end{bmatrix}$$
then $A^T = \begin{bmatrix} 1 & 8 & 7 & 4 & 7 \\ 4 & 2 & 8 & 9 & 8 \\ 3 & 6 & 3 & 6 & 1 \end{bmatrix}$

Determinant of a matrix

- The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a number denoted by |A| or $\det(A)$ and is given by:

$$det(A) = \pm \prod a_{1j_i} a_{2j_2}, \dots, a_{nj_n}$$

– where the column indices $j_1, j_2,..., j_n$ are taken from the set $\{1, 2, ..., n\}$, with no repetitions allowed. The plus (minus) sign is taken if the permutation $(j_1, j_2,..., j_n)$ is even (odd)

Determinant of a matrix

– Examples:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{21}(a_{12}a_{33} - a_{32}a_{13}) + a_{31}(a_{12}a_{23} - a_{22}a_{13})$$

Inverse of a matrix

– For a square matrix $A \in \mathbb{R}^{n \times n}$, the inverse is denoted as A^{-1} and produces the identity when multiplied by A

$$AA^{-1} = A^{-1}A$$

$$A^{-1} = \frac{(cofactor\ matrix\ of\ A)^T}{\det(A)}$$

- Cofactor for $a_{i,j} = (-1)^{i_-+j} d_{ij}$
 - ullet Where d_{ij} is the determinate of the matrix formed by deleting row i and column j from A

Inverse of a matrix

Examples

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11} \times a_{22} - a_{21} \times a_{12}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

$$\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}^{-1} = \frac{1}{4 \times 6 - 2 \times 7} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}^{-1} = \frac{1}{3 \times 8 - 6 \times 4} \begin{bmatrix} 8 & -4 \\ -6 & 3 \end{bmatrix} \rightarrow \text{inverse does not exist}$$

- Linear Algebra
- Probability
- Differential Calculus
- Gradient Descent

Image Source https://pixabay.com/

Why probability?

- Machine learning must always deal with uncertain quantities
- Laws of probability govern how a machine learning algorithm should reason
 - We design machine learning algorithms to approximate expressions derived from probability theory
- Analyse the behaviour of a proposed approach

Definitions

- Experiment: any process of observation
- Random experiment: An experiment in which the outcomes cannot be precisely predicted
- Sample space: set of all possible outcomes
- Probability measure P: an assignment of a number
 between 0 and 1 to a particular event in the sample space

P(A): the probability that an event A will occur

$$0 \le P(A) \le 1$$

Rules of Probability

- Intersection of events
 - The probability that Events A and B occur, denoted $P(A \cap B)$
- Mutually exclusive events
 - Cannot occur at the same time i.e. $P(A \cap B) = 0$
- Union of events
 - The probability that events A or B occur, denoted $P(A \cup B)$
- Conditional probability
 - The probability that Event A occurs, given that Event B has occurred
 - Denoted P(A|B)

Rules of probability

Rule of multiplication

$$P(A \cap B) = P(A) P(B|A)$$

$$= P(B)P(A|B)$$

• Note, $P(A \cap B)$ is denoted as P(AB)

- Rule of addition

$$\bullet \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Rules of probability

- Chain rule of probability
 - Extension of the rule of multiplication

$$\begin{split} P(A_1 A_2 A_3 \dots A_n) &= P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) P(A_n | A_1 A_2 A_3 \dots A_{n-1}) \\ &= P(A_1) \prod_{i=2}^n P(A_i | A_1 A_2 A_3 \dots A_{n-1}) \end{split}$$

- Mutually exclusive events P(AB) = 0

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n)$$
$$= \sum_{i=1}^{n} P(A_n)$$

- Rules of probability
 - Independence of events

$$P(AB) = P(A)P(B)$$

- Bayes' rule 📃
 - From multiplication rule

$$P(AB) = P(A)P(B|A) = P(B)P(A|B)$$

• Therefore

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Random experiment

- An experiment or a process for which the outcome cannot be predicted with absolute certainty
 - However, we have knowledge of the sample space, the set of all possible outcomes

Random variable

- Individual outcomes of a random experiment
 - A function that maps the outcomes of random experiment (the samples space) to a subset of real numers (i.e. \mathbb{R}).
 - E.g. A random variable can be used to describe the process of rolling a fair die and the possible outcomes $\{1, 2, 3, 4, 5, 6\}$

Probability Mass Function (PMF)

- Let X be a random variable with domain D
- The probability mass function is then defined as the probability that X is equal to some value x

$$\sum_{x \in D} P(X = x) = 1$$

- To be a PMF, P must satisfy
 - P must be the sets of all possible states of X
 - $0 \le P(X) \le 1$
 - $\bullet \sum_{x \in D} P(X) = 1$

Expectation

– The average value that some function takes when x is drawn from P

$$\mathbb{E}_{x \sim P}[f(x)] = \mu = \sum_{x} P(x)f(x)$$

Variance

 Variation in different sample values of x when drawn from its probability distribution

$$Var[f(x)] = \sigma^2 = \mathbb{E}[f(x) - \mathbb{E}[f(x)]^2]$$

Covariance

Measure joint variability between two random variables

$$\begin{aligned} Cov\big(f(x),g(y)\big) &= \\ \mathbb{E}[(f(x) - \mathbb{E}[f(x)])(g(x) - \mathbb{E}[g(x)])] \end{aligned}$$

Random processes

- A collection of random variables defined over a common PMF
 - Consider a random process η with N observed values
 - Mean

- Mean-Square
 - The 'power' of the process
- Variance

$$\mu_{\eta} = \frac{1}{N} \sum_{n=0}^{N-1} \eta(n)$$

$$MS_{\eta} = \frac{1}{N} \sum_{n=0}^{N-1} (\eta(n))^2$$

$$\sigma_{\eta}^{2} = \frac{1}{N} \sum_{n=0}^{N-1} (\eta(n) - \mu_{\eta})^{2}$$

• Random signal

Image Source: https://www.vocal.com

- When the values of a random process η form a time series
 - Also known as a stochastic process
- Denoted $\eta(t)$
- Key properties
 - μ_{η} represents the DC component
 - DC component is the amplitude signal fluctuates around
 - Assumed to be zero for random noise
 - MS_{η} represents the average power
 - If μ_{η} is zero $\sigma_{\eta}^2 = MS_{\eta}$

Information Theory

- Quantifying how much information is present in a signal
 - Likely events should have low information content
 - Likely events are uninformative
 - Less likely events should have higher information content
 - Unlikely events are more informative

$$I(x) = -logP(x)$$

- Entropy:
$$H(x) = E_{x \sim P}[I(x)] = -E_{x \sim P}[logP(x)]$$

Distribution of expected information

- Linear Algebra
- Probability
- Differential Calculus
- Gradient Descent

- A good understanding of calculus is essential for machine learning
 - Machine learning models are (normally) a function of several variables
 - In building a model we generally need to compute a cost function, we derive the models that best explain the training data by optimising this cost function
 - Optimisation refers to the task of minimising (or maximising) a function f(x)

Maxima and Minima of Functions

 Building machine-learning models relies on iteratively minimising a cost function

Rules for locating maxima/minima

- 1st order derivative is zero
- Maxima: 2nd order derivative is *less* than zero
- Minima: 2nd order derivative is *greater* than zero
- Point of inflection: 2nd order derivative equals zero

• Derivative of a function f(t)

 Rate of change of a quantity represented by a function with respect to another quantity on which the function is dependent on.

$$\frac{df}{dt} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

• Derivative of a function f(t)

f(x)	f'(x)	f(x)	f'(x)
x^n	nx^{n-1}	e^x	e^x
$\ln(x)$	1/x	$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$	tan(x)	$\sec^2(x)$
$\cot(x)$	$-\csc^2(x)$	sec(x)	$\sec(x)\tan(x)$
cosec(x)	$-\operatorname{cosec}(x)\operatorname{cot}(x)$	$\tan^{-1}(x)$	$1/(1+x^2)$
$\sin^{-1}(x)$	$1/\sqrt{1-x^2} \text{ for } x <1$	$\cos^{-1}(x)$	$-1/\sqrt{1-x^2} \text{ for } x <1$
sinh(x)	$\cosh(x)$	$\cosh(x)$	$\sinh(x)$
tanh(x)	$\operatorname{sech}^2(x)$	$\coth(x)$	$-\operatorname{cosech}^2(x)$
$\operatorname{sech}(x)$	$-\mathrm{sech}(x)\tanh(x)$	$\operatorname{cosech}(x)$	$-\operatorname{cosech}(x)\operatorname{coth}(x)$
$\sinh^{-1}(x)$	$1/\sqrt{x^2+1}$	$ \cosh^{-1}(x) $	$1/\sqrt{x^2-1} \text{ for } x>1$
$\tanh^{-1}(x)$	$1/(1-x^2) \text{ for } x < 1$	$\coth^{-1}(x)$	$-1/(x^2-1)$ for $ x >1$

Product Rule

- If f(x) and g(x) are differentiable on x then:

$$(f \cdot g)'(x) = f(x)g'(x) + g(x)f'(x)$$

Chain Rule

- If f(x) and g(x) are differentiable on x

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

- If y = g(u) and u = g(x) the derivative of y is

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

• Partial derivatives z = f(x, y)

$$\frac{\partial z}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(y+h,x) - f(x,y)}{h}$$

$$\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(y+h,x) - f(x,y)}{h}$$

Successive Partial Derivatives

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y}$$

• Note that if the second derivatives are continuous, $\frac{\partial^2 z}{\partial v \partial x} = \frac{\partial^2 z}{\partial x \partial y}$

Gradient of a function

Vector of first order partial derivatives

$$f(\mathbf{x}), \text{ where } \mathbf{x} = [x_1, x_2, ..., x_n]^T \epsilon \mathbb{R}^{n \times 1}$$
 Then,
$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]^T$$

 The gradient is important in machine-learning algorithms when we try to maximize or minimize cost functions with respect to the model parameters,

- Hessian Matrix of a function
 - Matrix of second order partial derivatives
 - Useful in optimisation problems
 - Especially when cost function is non linear

For a function:
$$f(x, y, z)$$
:
$$Hf(x, y, z) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

- Linear Algebra
- Probability
- Differential Calculus
- Gradient Descent

Gradient Descent Algorithms

- Arguably the most widely used optimisation technique
- Iterative solution
 - Uses the negative gradient of the cost function to determine the direction they parameters need updating

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

Gradient Descent Algorithms

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

- $-\eta$ is the learning rate
- A constant that defines the size of the gradient descent step
- Size is important:
 - To large and the update function might oscillate over the minima
 - To small and convergence is slow

Big learning rate

Small learning rate

Multivariate Gradient Descent Algorithms

- Lets consider a cost function $C(\theta)$ where $\theta \in \mathbb{R}^{n \times 1}$
- At every iteration we want to update θ to $\theta + \Delta \theta$ such that $C(\theta + \Delta \theta)$ is less than $C(\theta)$
- Achieved by assuming linearity and using a *Taylor series expansion* we get:

$$C(\theta + \Delta\theta) = C(\theta) + \Delta\theta^T \nabla C(\theta)$$

– Need to choose $\Delta\theta$ such that $C(\theta + \Delta\theta)$ is less than $C(\theta)$

Multivariate Gradient Descent Algorithms

• Need to choose $\Delta\theta$ such that $C(\theta + \Delta\theta)$ is less than $C(\theta)$

$$C(\theta + \Delta\theta) = C(\theta) + \Delta\theta^T \nabla C(\theta)$$

– To get the minimum value of the dot product $\Delta \theta^T \nabla C(\theta)$, the direction of $\Delta \theta$ should be the opposite of $\nabla C(\theta)$

$$\Delta\theta \propto -\nabla C(\theta)$$
 Hence
$$\Delta\theta = -\eta \nabla C(\theta)$$

$$\theta + \Delta\theta = \theta - \eta \nabla C(\theta)$$

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$