# UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO CURSO DE ENGENHARIA DE COMPUTAÇÃO



# ANDRÉ LOUIS SOUZA RIBEIRO (2019107791) ANDRÉ OLIVEIRA CUNHA (2019107756)

TRABALHO 2 DE SISTEMAS REALIMENTADOS

# SUMÁRIO

| Projeto 1      | 2  |
|----------------|----|
| Projeto 1.1.i  | 6  |
| Projeto 1.1.ii | 16 |
| Projeto 1.2.i  | 29 |
| Projeto 1.2.ii | 41 |
| Proieto 1.3    | 44 |

# **Projeto 1**

A dinâmica de um veículo lunar (ver Fig. P12.10 pág 571 do livro do Dorf e Bishop) é dada por:

$$G = \frac{500N}{s(s + (N+3))(s + \frac{25}{\sqrt{N}})}e^{-(T)s}$$

Devemos projetar controlador PID, usando a resposta em frequência, para que o sistema atenda às seguintes especificações:

- I. Erro à entrada rampa <= 1
- II. Erro à entrada ao distúrbio <= 1
- III. Margem de fase >= 60°
- IV. Largura de banda maior possível.

Sendo N neste caso, o número da dupla, que deve ser substituído na equação, no nosso caso o N = 4. Substituindo o N da dupla, ficará da seguinte forma a planta:

$$G = \frac{2000}{3(3+7)(3+125)} Q^{-(T)_{52}}$$

ou então, feita no Matlab:

Podemos projetar um controlador PID, primeiro fazendo um controlador PI e depois um controlador PD. Em que esses tem característica de filtro passa baixa e filtro passa alta. Por esse motivo, o controlador PID tem característica de um filtro passa faixa. O controlador PID pode ser definido por:

$$PID = KP + KI/s + sKd = (1 + sKdd)(Kpi + kii/s)$$

Vamos analisar primeiro, os **critérios** que o sistema deve obedecer. Para analisar o erro em regime permanente, podemos perceber que o sistema é do tipo 2 e entrada rampa, e podemos utilizar a seguinte tabela de erro para auxiliar nossos cálculos:



|          | tipo 0     | tipo 1 | tipo 2 |
|----------|------------|--------|--------|
| Degrau   | 1 / 1 + kp | 0      | 0      |
| Rampa    | ∞          | 1/kv   | 0      |
| Parábola | ∞          | ∞      | 1/ka   |

Podemos comprovar que o erro em regime será zero por meio dos cálculos:

$$G_c = \frac{Kd_3^2 + kis + kp}{s}$$

Salendo também que o digrama de belocos do sistema é:



$$G_{MA} = \frac{k d a^2 + k i a + k_P}{a} \cdot \frac{2000}{a(a+7)(a+12i5)}$$

$$G_{MA} = \frac{2000 (Kd s^2 + k; s + kp)}{s^2 (s^2 + 19,5s + 87,5)}$$

Salendo que a realimentação é unitária e conhecendo a Gma, podemos calculas o erro a entrada rampa como:

$$k_v = \lim_{n \to 0} \frac{2000 (Kds^2 + kis + kp)}{s^2 (s^2 + 19,5s + 87,5)} \cdot 1$$

Entar o error em regime é:

$$e_{\infty}(\infty) = \frac{1}{|\mathcal{K}_{\vee}|} = \frac{1}{\infty} = 0$$

Para o disturbio, o mosso diagrama de blaco fico:





Forzendo analise similar ao enterior, porém com  $H = G_c$ , entros:

$$k_{r} = \lim_{n \to 0} s \left( \frac{2000}{s(s+7)(s+12/5)} \cdot \frac{kds^{2} + kis + kp}{s} \right)$$

$$k_{V} = \lim_{n \to 0} \frac{2000 (K \lambda_{0}^{2} + kin + k_{0})}{s^{2} (s^{2} + 19.5n + 87.5)}$$

Entos o erro em regime a entrada disturbio é:

$$exp(\infty) = \frac{1}{K_V} = \frac{1}{\infty} = 0$$

# Projeto 1.1.i

Devemos projetar um controlador com T=0, isso quer dizer que não tem atraso de transporte.

Para projetarmos o PID vamos seguir os passos fornecidos pelo professor, Sendo eles :

- 1. Determinar a *GM*, *PM*, frequências de cruzamento de ganho e de fase e a largura de banda da Planta dada pela função de transferência *GP*;
- 2. Obter a nova frequência de cruzamento de ganho ( $\omega 0dB$ ) através da relação:  $25^{\circ} = 180^{\circ} + Fase \ de \ GP(\omega 0dB)$
- 3. Calcular o ganho proporcional do PI (*KPI*) de maneira que  $GMA = GP \times KPI$  tenha a MF aproximadamente igual a 25° na nova frequência de cruzamento de ganho ( $\omega 0dB$ ). Ou seja escolher *KPI* tal que: 20 log(*KP*) + 20 log[*GP* ( $\omega 0dB$ )] = 0;
- 4. Escolher a frequência de corte do PI tal que o atraso de fase do PI ocorra um pouco abaixo da nova frequência de cruzamento de ganho. Por exemplo:  $KVKP = \omega 0dB/2$  ou  $KVKP = \omega 0dB/5$  Em seguida, simular o PI com a planta, e verificar se a resposta é estável e rápida.
- 5. Projetar o PD dado por 1 + sKdd considerando a FTMA  $GMA = GP \times [KPI \times (KII/s)]$  e que a MF especificada seja maior ou igual a 60° na nova frequência de cruzamento de ganho obtida no item 3. Isto pode ser obtido escolhendo a frequência de corte do PD tal que:  $(1/Kdd = \omega 0dB)$
- 6. Simular o sistema realimentado com o controlador PID projetado para a entrada degrau.
- 7. Refazer o projeto caso a resposta ao degrau não seja satisfatória;

Inicialmente, vamos substituir na nossa planta os valores e simular a mesma, para que seja possível extrair alguns dados iniciais de margem de fase e margem de ganho, inclusive suas frequências e largura de banda. Para achar a largura de banda devemos olhar no gráfico de bode a frequência onde a amplitude corresponde a -3 dB. Fazemos isso com o seguinte trecho de código:

```
syms s
T = 0;
N = 4;
num = 500*N;
den = conv([1 0], conv([1 3+N], [1 25/sqrt(N)]));
g_planta = tf(num, den, 'InputDelay', T);
[Gm, Pm, Wgm, Wpm] = margin(g_planta)
```

Vamos obter o seguinte gráfico de Bode:



Gm = 0.8531; Pm = -4.2847; Wgm = 9.3541 rad/s; Wpm = 10.1131 rad/s

Podemos notar, pelo gráfico de margem e fase, que o gráfico de bode está instável.

Para elaboração do controlador PI, devemos então, definir uma nova frequência de cruzamento de ganho. Utilizando a seguinte fórmula:

25° = 180° + Fase de 
$$GP(\omega 0dB)$$
  
Fase de  $GP(\omega 0dB)$  = -155°

Olhando o gráfico de bode para uma fase de **-155°**, temos uma frequência w = 5,8 (rad/s). Nessa mesma frequência, temos um ganho de aproximadamente 8.79 dB. Como podemos ver na seguinte imagem:



Agora, para que a nova frequência de cruzamento de ganho atenda a margem de fase especificada de 25°, devemos calcular o ganho do controlador proporcional do controlador PI, para modificar o gráfico da magnitude. Podemos encontrar o ganho proporcional do PI (KPI), utilizando log para converter o valor do dB.

20 log 
$$K_{Pi} = -8,79$$
  
 $(-8,79/20)$   
 $K_{Pi} = 10$   
 $K_{Pi} = 0,3635$ 

Agora que temos o valor de KPI, podemos multiplicá-lo pela planta. Depois disso, simular e pegar as informações das novas margens de ganho e fase, a frequência de corte e visualizar o novo gráfico de bode.

### O código fica:

```
% Nova g_planta com o kpi
gma = g_planta*kpi;
[MGgma, MFgma, wGgma, wFgma] = margin(gma);%retorno do margin
% Novos valores para as margens
MGgma
MFgma
wFgma
wFgma
wFgma
wFgma
margin(gma); % Mostra o grafico de bode com a margem de fase e ganho
```

#### O gráfico do G da planta com o Kpi:



Gm = 2.3570; Pm= 25.4461.; Wgm = 9.3541; Wpm = 5.8021;kpi =0.3635

#### Nova Gma:

```
727
-----s^3 + 19.5 s^2 + 87.5 s
```

Agora é necessário encontrar uma frequência de corte cujo atraso de fase do PI esteja um pouco abaixo da nova frequência de cruzamento de ganho. Para isso vamos utilizar a seguinte fórmula:

Logo, serão realizados testes para diferentes valores de **X** para estipular um bom valor para Kii.

Para achar um Kii bom para a planta, vamos rodar um código em loop para adicionar alguns possíveis valores e armazená-los em um array. Posteriormente vamos fazer outro loop para gerar uma tabela com os valores de sobressinal, tempo de subida e estabelecimento para cada planta multiplicada por esses valores de Kii salvos.

```
% Projetando o controlador PI
kii_array = []; % Possiveis valores de ki para o controlador PI
gmf_pi_array = []; % Possiveis novas plantas com o controlador PI
for i = [2.5 3 5 7 9 10 12 14 16 18 20]
    result_kii = kpi*wFgma/i;
    kii_array = [kii_array, result_kii];

    result_pi = tf([kpi result_kii], [1 0]);
    result_gma = g_planta*result_pi;

    result_gmf = feedback(result_gma,1);
    gmf_pi_array = [gmf_pi_array, result_gmf];
end

% gera a tabela para os valores de KII na planta
index = 1; % Contador para a tabela
col_pi = [];

for i = gmf_pi_array
    Os_pi=0;
    RT_pi=0;
    ST_pi=0;
```

```
st_info=stepinfo(i);
OS_pi(index)=st_info.Overshoot; % MP
RT_pi(index)=st_info.RiseTime; % Tr
ST_pi(index)=st_info.SettlingTime; % Ts

col_pi = [col_pi, [OS_pi(index) RT_pi(index) ST_pi(index)
kii_array(index) ]'];
  index = index+1;
end

Tabelal=table(col_pi,'RowNames',{'Sobressinal (%)','T. Subida (s)', 'T. Estabelecimento(s)','KII' });
```

Com esses resultados conseguimos gerar uma tabela e comparar os resultados obtidos.

#### Valores de Kii:

| Х                     | 2.5      | 3       | 5       | 7       | 9       | 10      | 12      |
|-----------------------|----------|---------|---------|---------|---------|---------|---------|
| Sobressinal(%)        | 105.6898 | 97.0766 | 78.7409 | 70.4354 | 65.7090 | 64.0364 | 61.5101 |
| T. Subida(s)          | 0.1721   | 0.1759  | 0.1846  | 0.1890  | 0.1916  | 0.1926  | 0.1941  |
| T. Estabelecimento(s) | 30.5010  | 11.9626 | 5.2334  | 4.1616  | 3.7463  | 3.7356  | 3.7222  |
| KII                   | 0.8436   | 0.7030  | 0.4218  | 0.3013  | 0.2343  | 0.2109  | 0.1758  |

Com base na tabela acima, concluímos que a melhor escolha é o **Kii = 0.1758**, pois ele está com um o melhor tempo de assentamento e além disso com um baixo tempo de subida. Então avaliando esse conjunto, essa é a melhor escolha para o projeto.

Agora que projetamos o controlador PI, devemos então projetar o controlador PD (1 + sKdd). E com isso conseguiremos projetar nosso controlador PID.

Podemos utilizar a seguinte fórmula para encontrar Kdd:

Kdd = X / W0db

Podemos encontrar o melhor X, pegando cada um dos valores de Kdd, colocando na fórmula do PD que é 1 + sKdd, e multiplicando pelo controlador PI que foi projetado. Dessa forma, vamos ter o nosso controlador PID, multiplicando esse controlador pela planta vamos ter o resultado final do projeto. E com isso podemos analisar se os requisitos foram atendidos.

Fizemos um código no matlab que gera alguns possíveis valores para Kdd com a fórmula acima e salva em um array.

```
kdd array = [];
gmf pid array = [];
for i = [1 \ 1.1 \ 1.2 \ 1.3 \ 1.4 \ 1.5 \ 1.6 \ 1.7 \ 2 \ 2.5 \ 3]
   result kdd = i/wFgma;
   kdd array = [kdd array, result kdd];
  n pid = conv([kpi kii array(7)], [result kdd 1]);
  d pid = [1 0];
  result pid = tf(n pid, d pid);
  result gma pid = g planta*result pid;
   result_gmf = feedback(result_gma_pid,1);
  gmf pid array = [gmf pid array, result gmf];
end
col pid = [];
index = 1;
for i = gmf pid array
  OS pid=0;
  RT_pid=0;
  ST pid=0;
  st info=stepinfo(i);
  OS pid(index)=st info.Overshoot;
  RT pid(index) = st info.RiseTime;
  ST pid(index)=st info.SettlingTime;
  col pid = [col pid, [OS pid(index) RT pid(index) ST pid(index)
kdd array(index)]'];
   \overline{index} = index+1;
Tabela2=table(col pid,'RowNames',{'Sobressinal (%)','T. Subida (s)',
'T. Estabelecimento(s)', 'KDD'});
```

A tabela abaixo mostra alguns possíveis candidatos de Kdd.

#### Valores de Kdd:

| Х | Kdd | Sobressin al(%) | tr | ta | Largura de<br>Banda |
|---|-----|-----------------|----|----|---------------------|
|---|-----|-----------------|----|----|---------------------|

| 1.5 | 0.2585 | 6.8878 | 0.1340 | 2.5026 | 13.4 rad/s |
|-----|--------|--------|--------|--------|------------|
| 1.6 | 0.2758 | 6.6852 | 0.1287 | 2.5220 | 14 rad/s   |
| 1.7 | 0.2930 | 6.6721 | 0.1238 | 2.5400 | 14.5 rad/s |
| 2   | 0.3447 | 7.2115 | 0.1113 | 2.5852 | 16.1 rad/s |
| 2.5 | 0.4309 | 9.2226 | 0.0952 | 2.6245 | 18.4 rad/s |

Tabela - Testes do Kdd

Portanto, fazendo a análise da tabela, escolhemos o Kdd no valor de **0.2930**, sendo essa a melhor escolha dentre os outros valores, pois possui o menor sobressinal e os tempos de assentamento e subida são bons comparados com os outros.

Dito isso, chegamos ao seguinte controlador PID:

$$PID = (1 + sKdd)(Kpi + kii/s)$$

$$PID = (1 + s0.2930)(0.3635 + 0.1758/s)$$

Podemos simular o sistema e verificar que os requisitos foram atendidos, incluindo o de obter uma MF > 60°. Analisando o gráfico de bode, da planta multiplicada pelo

#### controlador:





RiseTime: 0.1238
SettlingTime: 2.5400
SettlingMin: 0.9069
SettlingMax: 1.0667
Overshoot: 6.6721
Undershoot: 0
Peak: 1.0667
PeakTime: 0.2499

Podemos perceber que a margem de fase está dentro do requisito de ter a margem fase maior que 60 graus e erro menor que 1, logo, conseguimos projetar um controlador para esse sistema. Além disso, vemos que a resposta ao degrau do sistema tem bons resultados.

Podemos simular o que aconteceria se aumentássemos ou diminuíssemos o Kdd e quais Margens de fase iremos encontrar.



Kdd = 0.2758(Menor do que o escolhido)



Kdd = 0.3447(Maior do que o escolhido)

Logo, podemos verificar que a nossa escolha do **Kdd = 0.2930** foi a melhor escolha para o projeto, possuindo com os melhores resultados.

O código abaixo gera a Gma com o melhor PID projetado.

```
% A gma com o melhor PID

n_pid_final = conv([kpi kii_array(8)], [kdd_array(5) 1]);
d_pid_final = [1 0];
pid_final = tf(n_pid_final, d_pid_final);
```

```
gma_pid_final = g_planta * pid_final;
% Novos valores de margem para o controlador PID final
[MG_pid2, MF_pid2, wG_pid2, wF_pid2] = margin(gma_pid_final);
gmf_pid_final = feedback(gma_pid_final,1);
margin(gma_pid_final);
```

# Projeto 1.1.ii

Para projetar o sistema com atraso de transporte de 0.01s, vamos seguir as mesmas etapas realizadas no projeto anterior.

Inicialmente, vamos substituir na nossa planta os valores e simular a mesma, para que seja possível extrair alguns dados iniciais de margem de fase e margem de ganho, inclusive suas frequências e largura de banda.

```
syms s
T = 0.01;
N = 4;
num = 500*N;
den = conv([1 0], conv([1 3+N], [1 25/sqrt(N)]));
g_planta = tf(num, den, 'InputDelay', T);
[Gm, Pm, Wgm, Wpm] = margin(g_planta)
```



Para elaboração do controlador PI, devemos então, definir uma nova frequência de cruzamento de ganho. Utilizando a seguinte fórmula:

25° = 180° + Fase de 
$$GP(\omega 0dB)$$
  
Fase de  $GP(\omega 0dB)$  = -155°

Olhando o gráfico de bode para uma fase de **-155**°, temos uma frequência w = 5,49 (rad/s). Nessa mesma frequência, temos um ganho de aproximadamente 9.53 dB. Como podemos ver na seguinte imagem:



Agora para que a nova frequência de cruzamento de ganho atenda a margem de fase especificada de 25°, devemos calcular o ganho do controlador proporcional do controlador PI, para modificar o gráfico da magnitude. Podemos encontrar o ganho proporcional do PI (KPI), utilizando log para converter o valor do dB.

20 leg 
$$k_{Ph} = -9,53$$
  
 $(-9,53/20)$   
 $k_{Ph} = 10$   
 $k_{Ph} = 0,3338$ 

Agora que temos o valor de KPI, podemos multiplicá-lo pela planta. Depois disso, simular e pegar as informações das novas margens de ganho e fase, a frequência de corte e visualizar o novo gráfico de bode.

# O gráfico do G da planta com o Kpi:



Gm = 2.1456; Pm = 24.9944; Wgm = 8.55 rad/s; Wpm = 5.49 rad/s

## Nova gma:



Agora é necessário encontrar uma frequência de corte cujo atraso de fase do PI esteja um pouco abaixo da nova frequência de cruzamento de ganho. Para isso vamos utilizar a seguinte fórmula:

$$Kii = kpi * W0db / X$$

Logo, serão realizados testes para diferentes valores de **X** para estipular um bom valor para Kii.

Para achar um Kii bom para a planta, vamos rodar um código em loop para adicionar alguns possíveis valores e armazená-los em um array. Posteriormente vamos fazer outro loop para gerar uma tabela com os valores de sobressinal, tempo de subida e estabelecimento para cada planta multiplicada por esses valores de Kii salvos.

Gerando alguns possíveis valores de Kii e analisando o sobressinal, tempo de subida e de estabelecimento temos a tabela a seguir:

| Х  | Kii    | Sobressinal(%) | tr     | ta     |
|----|--------|----------------|--------|--------|
| 5  | 0.3668 | 80.7678        | 0.1929 | 7.1949 |
| 9  | 0.2038 | 67.4534        | 0.2002 | 3.9567 |
| 10 | 0.1834 | 65.7465        | 0.2010 | 3.9456 |
| 12 | 0.1528 | 63.1438        | 0.2024 | 3.9315 |
| 14 | 0.1310 | 61.2711        | 0.2035 | 3.9227 |

Um bom valor de **Kii**, com base na tabela gerada é de 0.1528, visto que ele tem um dos tempos de assentamento mais baixos e uma resposta de subida mais rápida. Portanto, avaliando esse conjunto, essa é a melhor escolha.

Agora que projetamos o controlador PI, devemos então projetar o controlador PD (1 + sKdd). E com isso conseguiremos projetar nosso controlador PID.

Podemos utilizar a seguinte fórmula para encontrar **Kdd**:

#### Kdd = X / W0db

Podemos encontrar o melhor **X**, pegando cada um dos valores de **Kdd**, colocando na fórmula do PD que é 1 + sKdd, e multiplicando pelo controlador PI que foi projetado. Dessa forma, vamos ter o nosso controlador PID, multiplicando esse controlador pela planta vamos ter o resultado final do projeto. E com isso podemos analisar se os requisitos foram atendidos.

| Kdd    | Sobressinal(%) | tr     | ta  |
|--------|----------------|--------|-----|
| 0.2002 | 10.9518        | 0.1541 | NaN |
| 0.2093 | 10.4322        | 0.1506 | NaN |

| 0.2184 | 10.0141 | 0.1472 | NaN |
|--------|---------|--------|-----|
| 0.2275 | 9.6823  | 0.1438 | NaN |
| 0.3640 | 11.2019 | 0.1047 | NaN |

Nos resultados obtidos percebemos a aparição de muitos valores **NaN** no tempo de assentamento, isso provavelmente está indicando que o sistema não possui um tempo finito de assentamento. Além disso, quando simulamos o nosso controlador PID multiplicado pela planta, chegamos a MF 62.5°, porém com uso desses valores NaN nas colunas do tempo de assentamento.

Simulação Kdd = 0.2093; MF = 62.5°; Ta = NaN;



Simulação Kdd = 0.2184; MF = 62.8°; Ta = NaN;



Simulação Kdd = 0.3640; MF = 62.1°; Ta = NaN;



Também foram realizadas mudanças no **Kii** escolhido, mesmo assim o sistema continuou com esses valores NaN. E após alguns testes, concluímos que não é possível projetar esse controlador com esses requisitos com a escolha da nova margem de fase de 25°. Então, vamos mudar a nossa Margem de fase para 30° e

obter uma nova frequência de cruzamento de ganho para analisar se vai atender aos requisitos pedidos.

30° = 180° + Fase de 
$$GP(\omega 0dB)$$
  
Fase de  $GP(\omega 0dB)$  = -150°

Olhando o gráfico de bode para uma fase de **-150°**, temos uma frequência w = 5 (rad/s). Nessa mesma frequência, temos um ganho de aproximadamente 10.8 dB. Como podemos ver na seguinte imagem:



Fase: -150°, Magnitude: 10.8, Frequência: 5

Agora, para que a nova frequência de cruzamento de ganho atenda a margem de fase especificada de 30°, devemos calcular o ganho do controlador proporcional do controlador PI, para modificar o gráfico da magnitude. Podemos encontrar o ganho proporcional do PI (KPI), utilizando log para converter o valor do dB.

20 
$$\log k_{\rm Ph} = -10.8$$
  
 $k_{\rm Ph} = 10$   
 $k_{\rm Ph} = 0.2884$ 

Agora que temos o valor de KPI, podemos multiplicá-lo pela planta. Depois disso, simular e pegar as informações das novas margens de ganho e fase, a frequência de corte e visualizar o novo gráfico de bode.

#### **Nova Gma:**

Continuous-time transfer function.



Gm = 2.48; Pm = 29.92; Wgm = 8.55 rad/s; Wpm = 4.98 rad/s



Agora é necessário encontrar uma frequência de corte cujo atraso de fase do PI esteja um pouco abaixo da nova frequência de cruzamento de ganho. Para isso vamos utilizar a seguinte fórmula:

Kii = kpi \* W0db / X

Logo, serão realizados testes para diferentes valores de **X** para estipular um bom valor para **Kii**.

| Х | Kii    | Sobressinal(<br>%) | tr     | ta     |
|---|--------|--------------------|--------|--------|
| 3 | 0.4794 | 90.0403            | 0.2004 | 7.2538 |
| 5 | 0.2876 | 72.0903            | 0.2103 | 4.2559 |
| 7 | 0.2055 | 64.0683            | 0.2164 | 3.1987 |
| 9 | 0.1598 | 59.4774            | 0.2196 | 3.1888 |

Um bom valor de Kii, com base na tabela gerada é de **0.2055**, visto que ele tem um dos tempos de assentamento mais baixos e uma resposta de subida mais rápida. Portanto, avaliando esse conjunto, essa é a melhor escolha.

Agora que projetamos o controlador PI, devemos então projetar o controlador PD (1 + sKdd). E com isso conseguiremos projetar nosso controlador PID.

Podemos utilizar a seguinte fórmula para encontrar **Kdd**:

#### Kdd = X / W0db

Podemos encontrar o melhor **X**, pegando cada um dos valores de Kdd, colocando na fórmula do PD que é 1 + sKdd, e multiplicando pelo controlador PI que foi projetado. Dessa forma, vamos ter o nosso controlador PID, multiplicando esse controlador pela planta vamos ter o resultado final do projeto. E com isso podemos analisar se os requisitos foram atendidos.

| X   | Kdd    | Sobressin al(%) | tr     | ta     | Largura de<br>Banda |
|-----|--------|-----------------|--------|--------|---------------------|
| 1.1 | 0.2206 | 7.8818          | 0.1679 | 2.8399 | 11.3 rad/s          |
| 1.2 | 0.2406 | 7.0015          | 0.1590 | NaN    | 10.8 rad/s          |
| 1.6 | 0.3208 | 6.3020          | 0.1333 | 2.9768 | 13.1 rad/s          |

Um bom valor de Kdd, com base na tabela gerada é de **0.2206**, visto que ele tem o tempo de assentamento mais baixo. Além disso não tem NaN na em sua coluna que está sendo utilizada, os NaN diminuíram bastante com o aumento da margem de fase, aparecendo poucos dessa vez.

Dito isso, chegamos ao seguinte controlador PID:

$$PID = (1 + sKdd)(Kpi + kii/s)$$

# PID = (1 + s0.2206)(0.2884 + 0.2055/s)

Podemos simular o sistema e verificar que os requisitos foram atendidos, incluindo o de obter uma MF > 60°. Analisando o gráfico de bode, da planta multiplicada pelo controlador:





RiseTime: 0.1644
SettlingTime: 2.5836
SettlingMin: 0.9614
SettlingMax: 1.0985
Overshoot: 9.8458

Undershoot: 0

Peak: 1.0985 PeakTime: 0.3681 Podemos perceber que a margem de fase está dentro do requisito (**MF = 61.5**), além disso, conseguimos bons valores de tempo de subida, assentamento e largura de banda. Logo, conseguimos projetar um controlador para esse sistema atendendo aos requisitos.

# Projeto 1.2.i

Nesse projeto, nós vamos repetir o projeto da 1.1, porém usando o controlador Atraso-Avanço de fase. Então, usando a mesma planta da questão anterior, vamos projetar um controlador que atenda ao erro à entrada rampa e ao distúrbio de rampa menores ou iguais a 1, largura de banda da função de transferência em malha aberta maior possível e margem de fase maior ou igual a 60 graus.

Para esse primeiro passo vamos fazer com T = 0, sem atraso de transporte. Seguindo o passo a passo do material do professor para projetar um controlador atraso-avanço, vamos:

 Determinar o ganho K1 para atender as especificações do erro em regime e da largura de banda.

Para isso com o auxílio do Matlab, vamos gerar a nossa planta:

```
syms s
T = 0; % Tempo
N = 4; % Numero do grupo
num = 500*N;
den = conv([1 0], conv([1 3+N], [1 25/sqrt(N)]));
g_planta = tf(num, den, 'InputDelay', T);
margin(g_planta);
```



Depois usamos o numerador e denominador para calcular o erro em regime permanente a entrada rampa e o erro ao distúrbio:

```
num1 = poly2sym(conv(num,[1 0]),s);
den1 = poly2sym(den,s);
g1 = num1/den1;
% Entrada rampa
sEs = 1/(g1);
ess = double(limit(sEs,s,0,'right'));
ess
% Disturbio rampa
sEd = g1/(g1);
essd = double(limit(sEd,s,0,'right'));
essd
```

Obtivemos como resposta, para a nossa planta um erro em regime permanente a entrada rampa (ess) e o erro ao distúrbio (essd) de:

```
ess = 0.0437
essd = 1
```

Ou então por meio de cálculos feitos a mão chegamos em resultados bem próximos:

$$e_{ss}(\infty) = \lim_{n \to 0} \frac{1}{k_{1}G_{MA}} \times 1$$

$$e_{ss}(\infty) = \lim_{n \to 0} \frac{1}{k_{1}\left(\frac{2000}{s'(n+3)(n+12/6)}\right)} \times 1$$

$$\frac{1}{22,85 \, k_{1}} \times 1$$

$$e_{ssk}(\infty) = \lim_{n \to 0} \frac{G_{MA}}{1 + k_{1}G_{MA}} \times 1$$

$$e_{ssk}(\infty) = \lim_{n \to 0} \frac{G_{MA}}{1 + k_{1}G_{MA}} \times 1$$

$$1 + k_{1}\left(\frac{2000}{s(n+3)(n+12/6)}\right) \times 1$$

$$= \frac{22,85}{1 + 22,85 \, k_{1}} \times 1$$

$$= k_{1} > 0,956$$

Como devemos atender às duas situações, **ess** > 0.0437 e **essd** > 1, podemos escolher o valor do K1 (nosso K de atraso) com um valor igual a 2. Mas para conferir se ainda vai atender aos erros ser menor do que 1, fazemos:

```
%% Verificando o erro a rampa
k1 = 2;
sEs = 1/(k1*g1);
ess = double(limit(sEs,s,0,'right'))
```

```
%erro encontrado 0.02
% Disturbio rampa
sEd = g1/(k1*g1);
essd = double(limit(sEd,s,0,'right'))
%erro encontrado 0.500
```

#### E obtemos como resposta:

```
ess = 0.0219
essd = 0.5000
```

Atendendo aos requisitos do problema.

2) Dada a FT da planta (Gp), projetaremos o controlador atraso de fase:

$$G_{Atraso}=k\,rac{s+z_1}{s+p_1}=k_{atraso}\,rac{1+jlpha_1\omega au_1}{1+j\omega au_1}$$
 ,  $k_{atraso}=rac{k}{lpha_1}$ 

para atender as especificações do erro em regime e largura de banda. Considerando que a MF após a aplicação deste controlador na planta seja entre 30 a 40 graus.

#### Multiplicando nossa planta com o K1 obtemos:

```
Margem de fase: -21.065872, Largura de banda: 13.835427
```

Como o ideal é que a MF após a aplicação do controlador seja entre 30 e 40 graus, vamos escolher o valor de 35 graus (que é um valor intermediário) e calcular então a nova frequência de cruzamento:

```
[mag,fase,wout] = bode(k1*g_planta);
mag = squeeze(mag);
fase = squeeze(phase);

% FaseGP = 35 - 180 = -145
nova_fase = 35 - 180;

% Valor da frequência a partir da nova fase
w = interpl(fase, wout, nova_fase);

% Valor do ganho a partir da frequencia
mod = interpl(wout, 20*log10(mag), w);
```

```
mod
figure()
bode(k1*g_planta);
```

```
w(frequência) = 4.7595
mod = 17.4303
```

Podemos conferir isso também no gráfico esses valores do ganho e da frequência pelo gráfico de bode:



Logo, tanto por meio de código quanto pela análise do diagrama de bode, chegamos a conclusão de que a nova frequência de cruzamento de ganho deve ser 4.7 rad/s e o módulo nessa frequência é 17.5 dB.

Agora, obtendo a constante alfa1 do controlador atraso de fase:

```
syms alfa1
equacao = 20*log10(mod) + 20*log10(alfa1);
alfa1 = double(solve(equacao));
```

```
alfa1 = 0.0574
```

Escolhendo a frequência de corte do zero do compensador uma década abaixo, ou seja, 4.7/10 = 0.47 da nova frequência de cruzamento de ganho, encontramos a frequência de corte do pólo do compensador:

```
syms tau1
equacao = 1/(alfa1*tau1) - w/10;
tau1 = double(solve(equacao))
```

O valor de tau1, do controlador de atraso encontrado foi de 36.62.

A frequência de corte do zero do compensador (1/(alfa1\*tau1)) encontrada foi de **0.4759** e a frequência de corte do pólo do compensador (1/(tau1)) de **0.0273**.

Com todos esses valores em mão, podemos agora montar nosso controlador atraso de fase:

```
syms jw
g_atrasos = k1*(1+jw*alfa1*tau1)/(1+jw*tau1);
[num,den]=numden(g_atrasos);
g_atraso = tf(sym2poly(num),sym2poly(den))
```

3) Vamos multiplicar a FT da planta pela FT do controlador Atraso de fase, obtido no passo anterior para obter Gma = g\_atraso\*Gp e determinar a MF usando esta FT em malha aberta.

```
%% Etapa 3 - Multiplicar atraso pela planta
g_planta_atrasada = g_atraso*g_planta;
[Gm,Pm1,Wgm,Wpm]=margin(g_planta_atrasada);
```

Bode Diagram

Gm = 16.5 dB (at 8.87 rad/s), Pm = 49.1 deg (at 2.47 rad/s)



Margem de Ganho: 6.690666, Largura de banda: 2.470658
Margem de Fase: 49.108195, Frequência de Ganho: 8.874183

4) Considerando a FT em malha aberta Gma obtida no passo 3, vamos projetar o controlador avanço de fase avanço:

$$G_{Avanço} = k_{avanço} \frac{1 + j\alpha_1\omega\tau_1}{1 + j\omega\tau_1}$$
 onde  $k_{avanço} = \alpha_2 > 1$ 

Escolhendo um K\_avanco igual a 1 para atender a margem de fase especificada (60 graus) considerando uma folga de 10 graus na MF, vamos achar que o alfa2 é:

```
FaseGma = 70 - Pm1; % margem de fase especificada 60, +10 de
folga
syms alfa2
equacao=(alfa2-1)/(2*sqrt(alfa2))==tand(FaseGma);
alfa2 = double(solve(equacao))
```

alfa2 = 2.1085

mod = -3.2398

Com alfa2 em mãos, podemos calcular o módulo dele:

```
%% Calcular mod usando a formula
mod = -10*log10(alfa2)
```

E tanto pelo código abaixo, quanto analisando o diagrama de bode, conseguimos obter o valor da frequência:

```
bode(g_planta_atrasada)
[mag,phase,wout] = bode(g_planta_atrasada);
mag = squeeze(mag);
wm = interp1(20*log10(mag), wout, mod);
```

wm = 3.3566



Com a frequência de 3.35 rad/s encontrada, podemos encontrar o valor de tau2:

```
tau2 = 1/(wm*sqrt(alfa2));
1/(alfa2*tau2) % freq de corte do zero do compensador
1/(tau2) % freq de corte do polo do compensador
```

tau2 = 0.2052

Com os dados obtidos, podemos montar nosso controlador de avanço:

5) Agora vamos verificar se as especificações de MF e Largura de Banda da resposta em frequência em malha aberta de Cc\*Gp = G\_atraso \* G\_avanco \*Gp foram atendidas.

```
nova_gma = g_avanco * g_atraso * g_planta;
[Gm,Pm,Wgm,Wpm]=margin(nova_gma);
margin(nova_gma)
```

Nossa nova Gma obtida com o controlador atraso-avanço é:

E seu gráfico de bode:



Como é possível ver no diagrama de bode, a Margem de fase encontrada foi de 62.7 graus, sendo atendida. A largura de banda encontrada (Wpm) foi de 3.35 rad/s.

Os requisitos do projeto foram atendidos! Mas como a questão pede a maior largura de banda possível, vamos criar uma tabela com a variação de 30 a 40 graus feita no passo 2, abstraindo todos os passos anteriores e indo para o resultado final, visto que os cálculos e procedimentos são os mesmos.

| MF (passo 2) | MF (final) | Largura de Banda (final) |
|--------------|------------|--------------------------|
| 30           | 61.320663  | 3.703089                 |
| 31           | 61.615449  | 3.627795                 |
| 32           | 61.906997  | 3.553993                 |
| 33           | 62.181454  | 3.483504                 |
| 34           | 62.447099  | 3.415283                 |
| 35           | 62.705373  | 3.348859                 |
| 36           | 62.950793  | 3.284814                 |
| 37           | 63.198903  | 3.221308                 |
| 38           | 63.439985  | 3.159419                 |
| 39           | 63.674272  | 3.099082                 |
| 40           | 63.905389  | 3.039752                 |

Como é possível ver na tabela acima, o melhor projeto se encontra quando usamos 30 graus no passo 2, visto que a margem de fase final ficou mais próxima dos 60 graus e a largura de banda foi a maior dentre o intervalo de 30 a 40.

Escolhemos então, para o nosso projeto, um controlador atraso-avanço com as seguintes especificações:

k1 = 2

alfa1 = 0.0623

tau1 = 30.3192

Nova Gma com controlador:



E a resposta ao degrau:



RiseTime: 0.3071 TransientTime: 4.5467 SettlingTime: 4.5467 SettlingMin: 0.9074 SettlingMax: 1.1121 Overshoot: 11.2057 Undershoot: 0

Peak: 1.1121 PeakTime: 0.6838

Os passos foram os mesmos feitos com 35 graus no passo 2, só que agora com 30 graus. Por isso apresentamos apenas os resultados parciais e finais.

# Projeto 1.2.ii

Nesse projeto vamos fazer a mesma aplicação do atraso-avanço que o anterior, mas agora com o com atraso de transporte de 0,01 segundos.

Não vamos precisar recalcular o erro em regime e o de distúrbio novamente, pois o ganho será igual já que o atraso de transporte só influencia na fase da malha. Portanto, nossos erros para essa questão é:

```
ess = 0.0219
essd = 0.5000
```

Nosso sistema com o atraso de transporte ficará:

```
syms s
 = 0.01; % Tempo
N = 4; % Numero do grupo
num = 500*N;
den = conv([1 0], conv([1 3+N], [1 25/sqrt(N)]));
g planta = tf(num, den, 'InputDelay', T);
margin(g planta)
```



Assim como feito no projeto atraso-avanço anteriormente, serão repetidos aqui. Com isso conseguimos obter os valores dos alfas, taus, além dos controladores de avanço, atraso e a planta final. Usando também 30 graus no passo 2, temos que os resultados obtidos foram:

$$alfa1 = 0.0594$$
  
 $tau1 = 33.8100$ 

Com uma margem de fase de 30 graus (passo 2) obtemos nosso controlador atraso de fase:

$$tau2 = 0.1837$$

Com uma MF de 70 graus, ou seja, 60 graus + 10 graus de folga temos que nosso controlador avanço de fase é:

Com isso, nossa planta inicial com atraso de transporte junto com o controlador de atraso-avanço tem:

Margem de fase: 60.910040 Largura de banda: 3.568297

E portanto, nossa nova Gma é:

Seu diagrama de bode:



E a resposta ao degrau do sistema é:



RiseTime: 0.3133
TransientTime: 4.8047
SettlingTime: 4.8047
SettlingMin: 0.9358
SettlingMax: 1.1164
Overshoot: 11.6407

Undershoot: 0 Peak: 1.1164

PeakTime: 0.7033

Com isso conseguimos obter um controlador que atende as especificações desejadas. Percebemos que a presença do atraso de transporte na nossa planta não gerou muita influência no resultado final, sendo possível projetar o controlador com as mesmas especificações feitas sem a presença dele.

Nota-se que a largura de banda alcançada é menor que o controlador atraso-avanço obtido na planta sem atraso, isso muito se justifica no uso do valor mínimo de K1 para atender o erro em distúrbio, porque dessa forma quanto maior o valor de k1, o sistema irá ter um ganho, aumentando a largura de banda(cortar o -3db mais para frente), assim deixando a largura de banda desde o primeiro passo baixa.

A análise com o atraso de transporte é importante, visto que os projetos reais, em sua maioria, costumam apresentá-lo.

# Projeto 1.3

1.3 - Compare as respostas à entrada degrau (sobressinal, tempo de subida) e o erro em regime às entradas rampa para os dois sistemas com os controladores obtidos nos itens 1.1 e 1.2 para T=0.0 s.

Fazendo uma comparação entre o controlador PID feito na questão 1.1 e o controlador de atraso-avanço na questão 1.2, vimos que em relação ao erro em regime e o erro ao distúrbio para o PID é zero, visto que este adiciona um polo a origem do sistema, e como a

planta já tinha um polo acabou se tornando do tipo 2. Por ser do tipo 2 uma entrada rampa terá os dois erros iguais a zero, mas já no atraso-avanço não é (apesar de apresentar valores bem baixos). Na tabela abaixo é possível comparar alguns valores dos dois controladores.

| Controla<br>dor   | MF   | MP     | tr     | ta   | Largura de banda | ess    | essd |
|-------------------|------|--------|--------|------|------------------|--------|------|
| PID               | 60.6 | 6.67%  | 0.1238 | 2.54 | 14.5 rad/s       | 0      | 0    |
| atraso-a<br>vanço | 60.9 | 11.64% | 0.31   | 4.8  | 3.56 rad/s       | 0.0437 | 1    |

Podemos concluir analisando a tabela que esses controladores são parecidos em alguns quesitos, ficando bem próximos no caso da margem de fase e tempo de subida e overshoot. Porém, em uma situação real, o controlador escolhido seria o avanço-atraso, pois o PID ele acaba não feito na prática. Outro motivo da escolha do controlador atraso-avanço é que ele possui um menor largura de banda, portanto possui um maior tempo de subida.