Algorithms and Complexity

Analyzing Algorithm Complexity. Asymptotic Notation

Technical Trainers SoftUni

Software University

https://about.softuni.bg/

Table of Contents

1. Algorithms

 Sorting and Searching, Combinatorics, Dynamic Programming, Graphs, Others

2. Complexity of Algorithms

- Time and Space Complexity
- Mean, Average and Worst Case
- Asymptotic Notation O(g)

What is an Algorithm?

- The term "algorithm" means "a sequence of steps"
 - Derived from Muḥammad Al-Khwārizmī', a Persia mathematician and astronomer
 - He described an algorithm for solving quadratic equations in 825

"In mathematics and computer science, an algorithm is a step-by-step procedure for calculations. An algorithm is an effective method expressed as a finite list of welldefined instructions for calculating a function."

-- Wikipedia

Algorithms in Computer Science

- Algorithms are fundamental in programming
 - Imperative (traditional, algorithmic) programming means to describe in formal steps how to do something
 - Algorithm == sequence of operations (steps)
 - Can include branches (conditional blocks) and repeated logic (loops)
- Algorithmic thinking (mathematical thinking, logical thinking, engineering thinking)
 - Ability to decompose the problems into formal sequences of steps (algorithms)

Pseudocode and Flowcharts

 Algorithms can be expressed as pseudocode, through flowcharts or program code

```
BFS(node)
  queue 

node
  while queue not empty
    \nu \leftarrow queue
    print v
    for each child c of v
       queue \leftarrow c
```


public void DFS(Node node) Print(node.Name); for (int i = 0; i < node. Children.Count; i++) if (!visited[node.Id]) DFS(node.Children[i]); visited[node.Id] = true;

Pseudo-code

Flowchart

Source code

Some Algorithms in Programming

- Sorting and searching
- Combinatorial algorithms
 - Recursive algorithms
- Dynamic programming
- Graph algorithms
 - DFS and BFS traversals
- Other algorithms
 - Greedy algorithms, computational geometry, randomized algorithms, parallel algorithms, genetic algorithms

Algorithm Analysis

- Why should we analyze algorithms?
 - Predict the resources the algorithm will need
 - Computational time (CPU consumption)
 - Memory space (RAM consumption)
 - Communication bandwidth consumption
 - The expected running time of an algorithm is:
 - The total number of primitive operations executed (machine independent steps)
 - Also known as algorithm complexity

Algorithmic Complexity

- What to measure?
 - CPU time
 - Memory consumption
 - Number of steps
 - Number of particular operations
 - Number of disk operations
 - Number of network packets
 - Asymptotic complexity

Time Complexity

Worst-case

- An upper bound on the running time for any input of given size
- Typically, algorithms performance is measured for their worst case

Average-case

- The running time averaged over all possible inputs
- Used to measure algorithms that are repeated many times

Best-case

The lower bound on the running time (the optimal case)

Time Complexity: Example

- Sequential search in a list of size n
 - Worst-case:
 - n comparisons
 - Best-case:
 - 1 comparison
 - Average-case:
 - n/2 comparisons
- The algorithm runs in linear time
 - Linear number of operations

Algorithms Complexity

- Algorithm complexity rough estimation of the number of steps of a given computation, depending on the size of the input
 - Measured with asymptotic notation
 - O(g) where g is a function of the size of the input data
- Examples:
 - Linear complexity O(n)
 - All elements are processed once (or constant number of times)
 - Quadratic complexity O(n²)
 - Each of the elements is processed n times

Asymptotic Notation: Definition

- Asymptotic upper bound
 - O-notation (Big O notation)
- For a given function g(n), we denote by O(g(n)) the set of functions that are different than g(n) by a constant

```
O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \}
such that f(n) <= c*g(n) \text{ for all } n >= n_0 \}
```

- Examples:
 - $3*n^2+n/2+12 \in O(n^2)$
 - $4*n*log_2(3*n+1) + 2*n-1 \in O(n*log n)$

Functions Growth Rate

O(n) means a function grows linearly when n increases

• E.g.
$$f(n)=n+1$$

 O(n²) means a function grows exponentially when n increases

• E.g.
$$f(n)=n^2+2n+2$$

• O(1) means a function does not grow when n changes

Asymptotic Notation: Examples

Positive examples:

$$10n \in O(n),
10n \in O(n^{2}),
10n \in O(n^{4})
10n \in O(3n^{4} - 10n^{2} + 7)
10n+3 \in O(n)
4n^{2} - 5n + 2 \in O(n^{2})
4n^{3} + 5n^{2} + 5 \in O(n^{3})
\sqrt{n} \in O(n)
log $n \in O(\sqrt{n})$$$

Negative examples:

$$2n \notin O(1)$$

$$4n^2 - 5n + 2 \notin O(n)$$

$$5n + 1 \notin O(\sqrt{n})$$

$$\sqrt{n^3} \notin O(n)$$

Asymptotic Functions

Typical Complexities

Complexity	Notation	Description
constant	O(1)	Constant number of operations, not depending on the input data size, e.g. $n = 1000000 \rightarrow 1-2$ operations
logarithmic	O(log n)	Number of operations proportional to $log_2(n)$ where n is the size of the input data, e.g. $n = 1 000 000 000 \rightarrow 30$ operations
linear	Number of operations proportional to input data size, e. g. $n = 10000 \rightarrow 500$ operations	

Typical Complexities (2)

Complexity	Notation	Description	
quadratic	O(n²)	Number of operations proportional to the square of the size of the input data, e.g. $n = 500 \rightarrow 250\ 000$ operations	
cubic	O(n³)	umber of operations propor-tional to e cube of the size of the input data, e.g. = 200 → 8 000 000 operations	
exponential	O(2 ⁿ), O(k ⁿ), O(n!)	Exponential number of operations, fast growing, e.g. n = 20 → 1 048 576 operations	

Function Values

Function	Value						
Function	n=1	n=2	n = 10	n = 100	n = 1000		
5	5	5	5	5	5		
$\log n$	0	1	3,32	6,64	9,96		
n	1	2	10	100	1000		
$n \log n$	0	2	33,2	664	9966		
n^2	1	4	100	10000	106		
n^3	1	8	1000	106	109		
2^n	2	4	1024	10 ³⁰	10 ³⁰⁰		
n!	$n!$ 1 2 n^n 1 4		3628800	10157	10 ²⁵⁶⁷		
n^n			1010	10 ²⁰⁰	103000		

Time Complexity and Program Speed

Complexity	10	20	50	100	1 000	10 000	100 000
O(1)	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s
O(log(n))	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s
O(n)	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s
O(n*log(n))	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s
O(n ²)	< 1 s	< 1 s	< 1 s	< 1 s	< 1 s	2 s	3-4 min
O(n ³)	< 1 s	< 1 s	< 1 s	< 1 s	20 s	5 hours	231 days
O(2 ⁿ)	< 1 s	< 1 s	260 days	hangs	hangs	hangs	hangs
O(n!)	< 1 s	hangs	hangs	hangs	hangs	hangs	hangs
O(n ⁿ)	3-4 min	hangs	hangs	hangs	hangs	hangs	hangs

Complexity Examples


```
int FindMaxElement(int[] array)
  int max = array[0];
  for (int i = 1; i < array.length; i++)
    if (array[i] > max)
      max = array[i];
  return max;
```

- Runs in O(n) where n is the size of the array
- The number of elementary steps is ~ n

Complexity Examples (2)


```
long FindInversions(int[] array)
  long inversions = 0;
  for (int i = 0; i < array.Length; i++)
    for (int j = i + 1; j < array.Length; i++)
      if (array[i] > array[j])
        inversions++;
  return inversions;
```

- Runs in O(n²) where n is the size of the array
- The number of elementary steps is ~ n * (n+1) / 2

Complexity Examples (3)


```
decimal Sum3(int n)
    decimal sum = 0;
    for (int a = 0; a < n; a++)
        for (int b = 0; b < n; b++)
            for (int c = 0; c < n; c++)
                sum += a * b * c;
    return sum;
```

- Runs in cubic time O(n³)
- The number of elementary steps is ~ n³

Complexity Examples (4)


```
decimal SpecialCalculation(int n)
    decimal sum = 0;
    for (int a = 0; a < n; a++)
        for (int b = 0; b < n; b++)
            if (a == b)
              for (int c = 0; c < n; c++)
                sum += a * b * c;
    return sum;
```

- Runs in quadratic time O(n²) think why!
- The number of elementary steps is $\sim n^2$

Summary

- Algorithms are sequences of steps for calculating / doing something
- Algorithm complexity is a rough estimation of the number of steps performed by given computation
 - Can be logarithmic linear, n log n, square (n²), cubic (n³), exponential, etc.
 - Complexity predicts the speed of given code before its execution

Questions?

SoftUni Digital

SoftUni Foundation

Resources

- "Fundamentals of Computer Programming with C#" → "Data Structures and Algorithm Complexity" → pages 787-798
 - https://introprogramming.info/wpcontent/uploads/2018/07/CSharp-Principles-Book-Nakov-v2018.pdf

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://softuni.org
- © Software University https://softuni.bg

