

Projet thématique MOON

AYRINHAC Elisa¹, DROUIN Clément² et JOUCLARD Charly³

¹HEPIA, MT2, elisa.ayrinhac@hes-so.ch ²HEPIA, MT2, clement.drouin@hes-so.ch ³HEPIA, MT2, charly.jouclard@hes-so.ch

28 avril 2023

Introduction

Le projet thématique viens se placer dans le cadre des études de bachelor en microtechnique option Bioingénierie. Cette année notre cliente est une biologiste travaillant sur l'endométriose, une maladie encore peu connue touchant 1 femme sur 10. Cette pathologie se caractérise par le développement de tissu semblable à l'endomètre hors de l'utérus. Ces tissus peuvent proliférer dans les organes voisins comme les ovaires, l'intestins, la vessie ou même les poumons. Les symptômes varient énormément entre les femmes mais ont retiens, le plus souvent, celui de la douleur extrême provoquer par la croissance de ces tissus. Le but de notre projet est de créer un bio-chip qui permettrait d'étudier les tissus de l'endomètre soumis à différentes concentration d'hormones. jjlkjopéké,éléo

Table des matières

1	Etuc	des préliminaire	3
	1.1	Biologie	3
	1.2	Etat de l'art	3
	1.3	Aperçu du projet	4
		1.3.1 Besoins	4
		1.3.2 Fonctions	4
	1.4	Cahier des charges	5
	1.5	Catalogue de solutions	6
		1.5.1 Gestion des nutriments, déchets et de la concentration des hormones	6
		1.5.2 Contrôler l'environnement extérieur	6
		1.5.3 Cultiver les cellules	6
		1.5.4 Circulation du fluide	6
		1.5.5 Mélanger les fluides	7
		1.5.6 Analyser les concentrations	7
		1.5.7 Contrôler le système (microcontrôleur)	7
		1.5.8 Alimentation	8
	1.6	Schéma bloc du système	8
	1.7	Déroulé du projet	9
	1.8	Choix pour le projet	9
^	0	anautinu maénautinu	0
2	2.1	Fr	-
	۷.۱	9 7	-
		2.1.1 Simulation fluidique	
	2.2	Zone de culture	
	2.2	Support des réservoirs	
	2.3	Support des reservoirs	O
3	Con	nception électronique et programmation 1	8
	3.1	Carte d'alimentation	8
	3.2	Programmation	8
		3.2.1 GitHub	8
		3.2.2 Raspberry Pi	8
		3.2.3 Préparation des données	8
4	Con	nclusion 2	20
_			
5	Ann	nexe 2	1:

1 Etudes préliminaire

1.1 Biologie

Pour que l'expérience soit optimale, le client a besoin de suivre l'évolution d'un tissu d'endomètre sur la durée d'un cycle endométrial. Le système doit être compact et permettre l'observation des cellules en culture ainsi que la possibilité de collecter des cellules et du milieu de culture pour analyse. Afin mieux comprendre comment concevoir un appareil correspondant à la demande du client, une courte introduction biologique est nécessaire. L'endomètre est un épithélium qui compose une partie de l'appareil reproducteur féminin, il tapisse les parois de la cavité utérine et est composé de 3 couches : Le myomètre qui est la fondation de l'endomètre, la couche basale qui contient les glandes et les tissu conjonctifs et la couche fonctionnelle. Cette dernière couche est celle qui vois sa taille changer durant le cycle menstruel qui est réglé par 4 Hormones. L'hypothèse émise par la biologiste serais qu'il y a une influence du cycle hormonale sur l'apparition de l'endométriose. Il y a notamment deux hormones qui sont suspecter, l'estradiol et la progestérone. Nous allons donc devoir recrée les concentrations de ce cycle et les appliquer à des cellules in-vitro.

1.2 Etat de l'art

Actuellement la culture cellulaire est un procédé connu et maitriser par l'Homme qui consiste à placer des cellules dans un milieu de culture afin de les faire proliférer. Cette méthode permet d'avoir des colonies de cellule pouvant aller jusqu'a formé des organoïdes. Organoïdes pouvant être utilisés à des fins de recherche sur l'organe miniaturisé. La méthode d'incubation consiste à placer dans un incubateur une colonie de cellules contenue dans un milieu nutritif. Pour maintenir de bonnes conditions on place ces échantillons dans l'enceinte d'un incubateur qui permet d'isoler les cellules du milieu extérieur tout en maintenant les constantes de températures, d'humidité et de CO2 de façon optimal. Les incubateurs professionnels sont des machines de précision, asservis qui permettent de réglée précisément toutes les conditions de leurs enceinte, cela permet de chercher l'expression de certain phénotype au seins des colonies. Ils sont aussi dotés de sécurité notamment en termes de ventilation afin de protège les cellules et le biologiste. Toutefois cette précision rend le matériel chère. Il faut compter entre 5000CHF et 15000 CHF pour un incubateur professionnel. L'incubateur fait maison sont moins précis mais permette une personnalisation complète en termes de condition de culture. Toutefois même si cela reste compliqué à construire dans sa totalité, il est assez simple de stabiliser la température et l'humidité. Ces machines permettent de crée une atmosphère apte à la reproduction cellulaire toutefois afin de contenir les cellules et leurs milieu nutritif il faut des instruments de culture. L'écouvillons : Il s'agit de petit tube munis d'un couvercle étanche en plastique dans lequel on place un peu de liquide du fait de leurs petite taille et de leurs facilités de conception ils peuvent être alignés afin de facilité la reproductivité toutefois il ne possède aucune capacité permettant de maintenir l'homéostasie de la cellule. La verrerie de chimie : On peut utiliser techniquement tout contenant biocompatible.

1.3 Aperçu du projet

1.3.1 Besoins

On peut voir avec la figure 1 que le système conçu va permettre au biologiste d'étudier l'influence des hormones sur du tissus endométrial.

Figure 1: Bête à corne

1.3.2 Fonctions

N°	Fonction
FP1	Maintenir les cellules en vie
FP2	Intégrer des concentrations spécifiques d'hormone
FC3	Observer les cellules au microscope
FC4	Alimenter le système en énergie
FC5	Réaliser un système autonome
FC6	Résister au milieu imposer par les cellules
FC7	Utiliser un matériau biocompatible
FC8	Respecter le budget
FC9	Assurer un cycle de 28 jours

Tableau 1: Fonctions à assurer

Figure 2: Diagramme pieuvre avec les fonctions associés

1.4 Cahier des charges

La première fonction à prendre en compte est la survie des cellules. Pour cela, notre système devra respecter les paramètres suivants :

- une température de 37 °C
- un pH de 7
- un renouvellement du milieu de culture de 1 ml par jours
- · atténué toute variation de milieu
- · la Biocompatibilité du milieu

Pour ce qui est du système fluidique, il permet l'apport du milieu de culture à la cellule et donc nécessite de répondre aux points suivants :

- · un système étanche
- un écoulement laminaire
- un système de purge
- un système d'injection d'hormones
- un mélangeur pour éviter des pics de concentration
- · une pompe pour un système dynamique

Enfin, le système dans sa globalité devra assurer :

- · une autonomie de 28 jours minimum
- une zone transparente permettant l'observation des cellules

1.5 Catalogue de solutions

1.5.1 Gestion des nutriments, déchets et de la concentration des hormones

Solution	Avantages	Inconvénients
Seringues auto-poussés	-Précis -Facile d'utilisation -Facilement programmable -Réponse linéaire	-Energie -Limité en quantité -Espace
Pompe péristaltiques[1]	-Déjà présent au labo	-Peu précis -Energie
Système de goutte à goutte	-Low-cost -Economique en énergie	-Précision -A pression atmosphérique -Complexité d'asservissement -Réponse chaotique

Tableau 2: Solutions pour la gestions des nutriments, déchets et des hormones

1.5.2 Contrôler l'environnement extérieur

Solution	Avantages	Inconvénients
Incubateur	-Constante externe stable -A disposition -Retour d'expérience	-Placé dans l'incubateur -Protéger l'électronique
Système autonome	-Pas de dépendance	-Compliqué à réaliser -Energivore -Coût

Tableau 3: Solutions pour gérer l'environnement extérieur

1.5.3 Cultiver les cellules

Solution	Avantages	Inconvénients
Bio-chip en PMMA	-Usinage -Retour d'expérience -Sur mesure -Fluidique intégré	-Assemblage par couche -Long à fabriquer
Boîte de pétris	-Coût -Stérilité	-Pas de circulation de fluide

Tableau 4: Solutions pour le milieu de culture

1.5.4 Circulation du fluide

Solution	Avantages	Inconvénients
Pompe péristaltique	-Déjà présent au labo -Facile d'utilisation -Pas de contamination	-Débit limité -Energie
Gravité	-Pas besoin de matériel spécifique -Pas besoin d'alimentation	-Compliqué à mettre en oeuvre

Tableau 5: Solutions pour injecter les différents fluides

1.5.5 Mélanger les fluides

Solution	Avantages	Inconvénients
Mélangeur hydrostatique "2D"	-Economique -Facilité d'intégration -Compact -Volume sur mesure -Modélisable	-A créer -Perte de charge
Mélangeur hydrostatique "3D"	-Economique -Facilité d'intégration -Compact -Volume sur mesure -Modélisable	-A créer -Perte de charge -Usinage
Mélangeur magnétique	-Déjà présent au labo -Facilement nettoyable -Gestion de la puissance	-Espace -Biocompatibilité -Non modélisable -Non pilotable

Tableau 6: Solutions pour assurer l'homogénéité des liquides

1.5.6 Analyser les concentrations

Solution	Avantages	Inconvénients
Colorimètre externe	-Facilité d'intégration -Précis -Déjà présent au labo	-Aucune donnée interne -Nécessite présence utilisateur
Colorimètre interne	-Retour en temps réel -Gain de précision de l'asservissement -Donnée interne au système	-A créer -Précision

Tableau 7: Solutions pour contrôler les concentrations

1.5.7 Contrôler le système (microcontrôleur)

Solution	Avantages	Inconvénients
Arduino Uno	-Facilité d'utilisation -Flexible	-Pas de stockage interne -Pas de contrôle à distance -Pas de possibilité d'utiliser python -14 pin
Raspberry Pi	-Retour en temps réel -Contrôlable à distance -Stockage interne -Utilisation possible de Python -40 pin	-Faible disponibilité

Tableau 8: Solutions pour commander le système

1.5.8 Alimentation

Solution	Avantages	Inconvénients
Secteur	-Disponibilité	-Toujours branché
Batteries	-Portable	-Prix
Dalleries		-Recharge compliqué

Tableau 9: Solutions pour alimenter le bio-chip

1.6 Schéma bloc du système

Figure 3: Schéma bloc du système

1.7 Déroulé du projet

insert diagramme de gant

1.8 Choix pour le projet

Nous estimons que pour réaliser la culture de cellule de l'endomètre, tout en respectant le cahier des charges, il faut concevoir notre propre bio-chip. Pour ce faire on va utiliser différents outils disponibles dans le laboratoire afin de diminuer les coûts. Certaines pièces devront être fabriqués afin de répondre à nos besoins comme le boitier de notre bio-chip. Pour accueillir nos cellules nos utiliserons un boitier en PMMA que nous fabriquerons sur place grâce à la découpe laser qui se trouve dans le campus. Pour la régulation de l'environnement on utilisera un incubateur présent dans le laboratoire car cela diminuera le cout de fabrication. Nous utiliserons un Raspberry pi pour contrôler notre bio-chip car il dispose de beaucoup plus d'avantage que l'Arduino UNO et il nous permettra de contrôler notre bio-chip à distance. Pour l'apport d'hormones et de nutriment on utilisera des pousses seringues qui sont disponible dans le laboratoire. Pour faire circuler le fluide dans notre boitier on prendra des pompes péristaltiques qui sont fournis. L'ensemble du bio-chip sera alimenté par le secteur afin de limiter les coûts de fabrication et éviter de devoir développer un système avec une batterie

2 Conception mécanique

2.1 Mélangeur hydrostatique

2.1.1 Simulation fluidique

Dans cette partie nous allons parler de la simulation et de la modélisation d'un mélangeur statique permettant de rentre le mélange homogène avant de l'envoyer sur les cellules. Afin de déterminer la forme du mélangeur nous avons basé nos recherches sur la simulation fluide de créo. Dans l'industrie, les mélangeurs statiques sont des composant de fluidique en 3 dimensions conçue pour perturber l'écoulement et ainsi crée des turbulences. Cela a pour but de mélanger le fluide sans utiliser de composant actif tel qu'une pompe, un moteur, ou un mélangeur magnétique.

Flow Division

Radial Mixing

Figure 4: Schéma montrant comment ce mélange un fluide

Une première étape de conception fus donc d'essayer de comprendre à quoi pourrais bien ressembler ce type de mélangeur en 2D. On sait de par la mécanique des fluides que la pression et la vitesse d'écoulement sont liée à la géométrie du milieu d'écoulement. Ainsi J'ai modélisé quatre différents mélangeurs afin d'observer le comportement du fluide lors d'une simulation. De plus le mode de fabrication le plus simple étant la découpe LASER il a fallu adapter la forme de ceux-ci afin qu'il soit réalisable en entier à la découpeuse LASER du campus.

Figure 5: CAO du mélangeur avec chicanes

Comme on peut le voir dans la figure 5 le premier mélangeur était juste composé d'un chemin direct auquel ont été ajouté des chicanes droites. Le flux de liquide assimiler a de l'eau entre par en dessous et sort par au-dessus, et les conditions de pression sont celle donnée dans la datasheet de la pompe étant donné que le mélangeur sera placer juste derrière la pompe.

Figure 6: Simulation fluidique du mélangeur à chicanes

Grâce à la figure 6 on peut voir que les chicanes n'apporte pas de plus value pour mélanger le fluide.

Figure 7: Simulation fluidique avec 2 voies et chicanes

En divisant le flux en deux et en réduisant l'espace des chicanes ont remarque qu'il n'y a que peu d'effet. Toutefois la division du flux en deux apporte des turbulences lorsque les deux flux se recombinent ainsi que l'obstacle placer perpendiculairement au flux.

Figure 8: Simulation fluidique avec accélération

Une autre version avait pour idée de détendre et de comprimé le flux afin de crée des turbulences, on voit (zone coloré) que la vitesse augmente mais reste toujours dans le sens du circuit. Il manque une forme pour casser ce flux.

Figure 9: Simulation fluidique avec chicanes et obstacles

Lorsque l'on casse le flux et qu'on le dirige vers un obstacle cela crée des turbulences. Ce que l'on observe

ici c'est une accélération du fluide couplé à des zone de dépression. Cela cause des turbulences derrière les obstacles placer au centre.

2.1.2 CAO du mélangeur

Nous avons donc choisi de partir sur un mélangeur composé de deux parties, l'une central permet de casser de flux et de le séparer en deux. La partie externe est mobilisé afin de crée des zones d'accélération et de décélération.

Figure 10: Couche central du mélangeur

Notre conception est basée sur un principe de sandwich, une première épaisseur permettant l'étanchéité, le support et le guidage des autres couches. Une couche centrale munit d'un détrompeur composer d'un élément externe guider par deux goupilles extérieures, et un élément interne guidé par les goupilles intérieures. Et enfin une dernière couche permettant de fermer le tout, toujours guider par les deux goupilles externes. L'adhésion et l'étanchéité sera assuré par une couche adhésive déposer sur les plaques.

Figure 11: Mélangeur hydrostatique

2.2 Zone de culture

Figure 12: bio-chip pour les cellules

Pour le biochip contenant les cellules visibles sur la figure 12, nous avons choisi d'utiliser l'assemblage en plusieurs couches de PMMA. Celui-ci contient 4 couches d'épaisseur différentes pour répondre à certaines contraintes. Nous utiliserons des goupilles, pour être sûr que les différents éléments soient bien alignés.

Figure 13: CAO de la première couche

Figure 14: CAO de la seconde couche

La couche du dessous fait 0.3 mm d'épaisseur pour permettre l'observation des cellules au microscope. La 2e couche est prévu pour contenir les cellules mais sera supprimer car elle crée des angles droits qui risque d'endommager les cellules.

Figure 15: CAO de la troisième couche

Figure 16: CAO de la quatrième couche

La 3e couche permet au fluide contenant les hormones et nutriment de circuler la où seront accroché les cellules. L'entrée du fluide est plus étroite que la sortie pour éviter des problèmes de surpression. Et enfin la dernière couche contient les trous pour chasser les connecteur Luer lock, permettant de relier le bio chip contenant les cellules au reste du système par l'intermédiaire de tuyaux. Les angles devront être arrondit pour éviter d'endommager les cellules.

2.3 Support des réservoirs

Figure 17: CAO du porte réservoir version 1

Figure 18: CAO du porte réservoir version 2

Désormais nous avons une idée très claire du rendu physique du projet, celui-ci sera composer d'un boitier auxquelles sera fixé les trois pompe, les quatre tube comprenant les hormones, le liquide de culture neuf, et usagé. Ce boitier sera lui aussi découper au LASER et au besoin renforcé par des pièces imprimé en 3D. Il ne contiendra pas l'électronique, celui-ci sera placer en dehors de l'incubateur et relier au système via un câble. Il est à noter qu'il manque les électrovannes, qui ont été modéliser et qui seront placer de l'autre côté des pompes.

Figure 19: CAO des électrovannes

3 Conception électronique et programmation

3.1 Carte d'alimentation

L'alimentation de tous le biochip se fera via l'alimentation d'un Arduino de 60 W. Il arrive sur la carte d'alimentation via la connectique circulaire JAlim. U1 est un régulateur de tension à découpage de la marque TRACO, il permet de descendre la tension de 12V à 5V il sert à alimenter le Raspberry pi qui sera alimenter par ses pins GPIO. Les moteurs seront contrôlés par les mosfet M1, M2 et M3. Les moteurs seront branchés à la carte via des connecteurs circulaire afin que le système soit le plus flexible possible. Les diodes D1, D2 et D3 sont des diodes de roues libres.

3.2 Programmation

3.2.1 GitHub

On a mis en place un GitHub pour se partager les codes de programmation, le "repo" contient aussi une ébauche du guide d'utilisateur. Le guide d'utilisateur contient actuellement uniquement les requirements pour le Raspberry pi ainsi que les commandes à utiliser.

3.2.2 Raspberry Pi

On a configuré le Raspberry pi 4 pour qu'on puisse se connecter dessus à distance à l'aide du protocole SSH. On peut s'y connecter facilement dessus à partir du moment que l'on se trouve sur le même réseau wifi. On peut lui transmettre des fichiers ainsi que récupérer des fichiers qui sont stockées dessus.

3.2.3 Préparation des données

Ce code permet de préparer les datas afin de pouvoir être utiliser par le logiciel qui contrôle le biochip. Il a été conçu pour que l'utilisateur rentre un minimum de donner afin de gagner du temps. Il permet de convertir un fichier csv que l'utilisateur aura créée au préalable avec les différents jalons de concentration en un fichier qui contient toutes les concentrations de l'expérience sur 28 jours. Sur la figure 20 on peut voir une représentation des données rentrées par l'utilisateur et les données produites par le programme.

Figure 20: Données généré par le programme avec les données rentrées par l'utilisateur

On peut l'utiliser directement sur un ordinateur puis envoyer le fichier généré sur le Raspberry pi ou bien on peut envoyer le fichier csv sur le Raspberry pi puis le généré directement sur le Raspberry pi. Le fichier

généré est un fichier de type ftr il n'est donc pas lisible directement ceci est fait afin de gagner en rapidité d'exécution et gagner du stockage. Si on utilisait un fichier csv équivalent il contiendrait tellement de donnés qu'il faudrait plusieurs secondes pour le généré et il prendrait 10 fois plus de stockage. Le fichier à préparer doit être présenter sous la forme :

Time	Conc1	Conc2
0	1	1
2	6	8
10	2	1
15	4	2

4 Conclusion

Pour conclure on peut commencer la découpe du mélangeur et de la zone de culture afin de commencer les tests. Il faut commander les pièces électroniques pour commencer les tests électroniques.	ion
	n peut commencer la découpe du mélangeur et de la zone de culture afin de commencer les mander les pièces électroniques pour commencer les tests électroniques.

5 Annexe

References [1] Welco. WPM peristaltic pump selection guide.