

NHD-3.12-25664UCW2

Graphic OLED Display Module

NHD- Newhaven Display
3.12- 3.12" Diagonal Size
25664- 256 x 64 Pixel Resolution

UC- Model

W- Emitting Color: White 2- +2.95V Power Supply

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	7/27/15	Initial Product Release	SB
1	6/16/17	Optical Characteristics Updated	SB
2	1/3/18	Mechanical Drawing Updated	TM

Functions and Features

- 256 x 64 pixel resolution
- Built-in SSD1322 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

Interface Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface:
			Read/Write select signal, R/W=1: Read R/W: =0: Write
			8080-interface:
			Active LOW Write signal.
6	E or /RD	MPU	6800-interface:
			Operation enable signal. Falling edge triggered.
			8080-interface:
			Active LOW Read signal.
7-14	DB0 – DB7	MPU	8-bit Bi-directional data bus lines.
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BS0	MPU	MPU Interface Select signal.

Serial Interface:

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
			Tie LOW for 3-wire Serial Interface.
5-6	V_{SS}	Power Supply	Ground
7	SCLK	MPU	Serial Clock signal.
8	SDIN	MPU	Serial Data Input signal.
9	NC	-	No Connect
10-14	V_{SS}	Power Supply	Ground
15	NC	-	No Connect
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC	-	No Connect
19	BS1	MPU	MPU Interface Select signal.
20	BS0	MPU	MPU Interface Select signal.

MPU Interface Pin Selections

Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface
BS1	1	1	0	0
BS0	1	0	1	0

MPU Interface Pin Assignment Summerv

Bus			D	ata/C	omm	and Interfa	Control Signals						
Interface	D7 D6 D5 D4 D3 D2 D1 D0									R/W	/cs	D/C	/RES
8-bit 6800		D[7:0]								R/W	/CS	D/C	/RES
8-bit 8080					D[:	7:0]			/RD	/WR	/CS	D/C	/RES
3-wire SPI	Tie LOW NC SDIN SCLK							SCLK	Tie	LOW	/CS	Tie LOW	/RES
4-wire SPI		Tie LOW				NC	SDIN	SCLK	Tie	LOW	/CS	D/C	/RES

Wiring Diagrams

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-40	-	+85	°C
Storage Temperature Range	T _{ST}	Absolute Max	-40	-	+90	°C
Supply Voltage	V_{DD}		-	3.0	3.3	٧
Supply Current (logic)	I _{DD}	T _{OP} =25°C, V _{DD} =3.0V	-	5	6	mA
Supply Compact (display)		50% ON, V _{DD} =3.0V	-	155	165	mA
Supply Current (display)	Icc	100% ON, V _{DD} =3.0V	-	250	265	mA
"H" Level input	V _{IH}	-	0.8 * V _{DD}	_	V _{DD}	V
"L" Level input	V _{IL}	-	Vss	_	0.2 * V _{DD}	V
"H" Level output	Vон	-	0.9 * V _{DD}	_	V _{DD}	V
"L" Level output	Vol	-	Vss	-	0.1 * V _{DD}	V

Optical Characteristics

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
	Тор	φΥ+		-	80	-	0
Optimal Viewing	Bottom	φΥ-		-	80	-	0
Angles	Left	θХ-		-	80	-	0
	Right	θХ+		-	80	-	0
Contrast Ratio		Cr	-	10:000:1	-	-	-
Dosnonso Timo	Rise	T_R	-	-	10	-	μs
Response Time	Fall	T _F	-	-	10	-	μs
Brightness		L _V	50% Checkerboard	60	80	-	cd/m²
Lifetime		-	L _V = 60 cd/m ² 50% Checkerboard	15,000	25,000	1	Hrs.

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display.

Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Built-in SSD1322 controller

Instruction Table

lu atuu ati a m					Cod	е					Description	RESET
Instruction	D/C	HEX	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	value
Enable Grayscale	0	00	0	0	0	0	0	0	0	0	Enable the Grayscale table settings. (see command 0xB8)	
Table												
Set Column	0	15	0	0	0	1	0	1	0	1	Set column start and end address	
Address	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Column start address. Range: 0-119d	0
	1	B[6:0]	*	В6	B5	В4	В3	B2	B1	В0	B[6:0]: Column end address. Range: 0-119d	119d
Write RAM	0	5C	0	1	0	1	1	1	0	0	Enable MCU to write Data into RAM	
Command												
Read RAM	0	5D	0	1	0	1	1	1	0	1	Enable MCU to read Data from RAM	
Command												
Set Row Address	0	75	0	1	1	1	0	1	0	1	Set row start and end address	
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	A[6:0]: Row start address. Range: 0-127d	0
	1	B[6:0]	*	В6	В5	В4	В3	B2	B1	В0	B[6:0]: Row end address. Range: 0-127d	127d
Set Remap	0	A0	1	0	1	0	0	0	0	0	A[0] = 0; Horizontal Address Increment	0
•	1	A[5:0]	0	0	A5	A4	0	A2	A1	A0	A[0] = 1; Vertical Address Increment	
	1	B[4]	*	*	0	В4	0	0	0	1	A[1] = 0; Disable Column Address remap	0
	-	-[.,								_	A[1] = 1; Enable Column Address remap	
											A[2] = 0; Disable Nibble remap	0
											A[2] = 1; Enable Nibble remap	
											A[4] = 0; Scan from COM0 to COM[N-1]	0
											A[4] = 1; Scan from COM[N-1] to COM0	
											A[5] = 0; Disable COM split Odd/Even	0
											A[5] = 1; Enable COM split Odd/Even	
											B[4] = 0; Disable Dual COM mode	0
											B[4] = 1; Enable Dual COM mode	
											Note: A[5] must be 0 if B[4] is 1.	
Set Display Start	0	A1	1	0	1	0	0	0	0	1	Set display RAM display start line register from 0-127.	0
Line	1	A[6:0]	*	A6	A5	A4	A3	A2	A1	A0		
Set Display Offset	0	A2	1	0	1	0	0	0	1	0	Set vertical shift by COM from 0~127.	0
	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0		
Display Mode	0	A4/A7	1	0	1	0	0	X2	X1	X0	0xA4 = Entire display OFF	0xA6
											0xA5 = Entire display ON, all pixels Grayscale level 15	
											0xA6 = Normal display	
	1			ļ		ļ					0xA7 = Inverse display	
Enable Partial	0	A8	1	0	1	0	1	0	0	0	Turns ON partial mode.	
Display	1	A[6:0]	0	A6	A5	A4	А3	A2	A1	A0	A[6:0] = Address of start row	
	1	B[6:0]	0	В6	B5	B4	В3	B2	B1	В0	B[6:0] = Address of end row (B[6:0] > A[6:0])	

Exit Partial Display	0	A9	1	0	1	0	1	0	0	1	Exit Partial Display mode		
Function Selection	0	AB	1	0	1	0	1	0	1	1	A[0] = 0; External VDD		
	1	A[0]	0	0	0	0	0	0	0	Α0	A[0] = 1; Internal VDD regulator		
Set Sleep Mode	0	AE~AF	1	0	1	0	1	1	1	X0	0xAE = Sleep Mode ON (display OFF)		
ON/OFF											0xAF = Sleep Mode OFF (display ON)		
Set Phase Length	0	B1	1	0	1	1	0	0	0	1	A[3:0] = P1. Phase 1 period of 5-31 DCLK clocks	9	
	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	Α0	A[7:4] = P2. Phase 2 period of 3-15 DCLK clocks	7	
Set Display Clock	0	В3	1	0	1	1	0	0	1	1	A[3:0] = 0000; divide by 1	0	
Divide Ratio /	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	Α0	A[3:0] = 0001; divide by 2		
Oscillator											A[3:0] = 0010; divide by 4		
Frequency											A[3:0] = 0011; divide by 8		
											A[3:0] = 0100; divide by 16		
											A[3:0] = 0101; divide by 32		
											A[3:0] = 0110; divide by 64		
											A[3:0] = 0111; divide by 128		
											A[3:0] = 1000; divide by 256		
											A[3:0] = 1001; divide by 512		
											A[3:0] = 1010; divide by 1024	4400	
											A[3:0] >= 1011; invalid	1100b	
											A[7:4] = Set the Oscillator Frequency. Frequency increases with the		
C-+ CDIO		D.F.	-	_	4	4	_	4	•	4	value of A[7:4]. Range 0000b~1111b.		
Set GPIO	0	B5	1 *	0	1	1	0	1	0	1	A[1:0] = 00; GPIO0 input disabled A[1:0] = 01; GPIO0 input enabled		
	1	A[3:0]	•	•	•	•	A3	A2	A1	A0	A[1:0] = 10; GPIO0 output LOW	10b	
											A[1:0] = 11; GPIO0 output HIGH	100	
											A[3:2] = 00; GPIO1 input disabled		
											A[3:2] = 01; GPIO1 input enabled		
											A[3:2] = 10; GPIO1 output LOW	10b	
											A[3:2] = 11; GPIO1 output HIGH		
Set Second	0	В6	1	0	1	1	0	1	1	0	Sets the second precharge period	1000b	
Precharge Period	1	A[3:0]	*	*	*	*	А3	A2	A1	Α0	A[3:0] = DCLKs		
Set Grayscale	0	В8	1	0	1	1	1	0	0	0	Sets the gray scale pulse width in units of DCLK. Range 0-180d.		
Table	1	A1[7:0]	A1 ₇	A1 ₆	A1 ₅	A1 ₄	A1 ₃	A1 ₂	A1 ₁	A1 ₀	A1[7:0] = Gamma Setting for GS1		
	1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A24	A2 ₃	A2 ₂	A2 ₁	A2 ₀	A2[7:0] = Gamma Setting for GS2		
	1												
	1												
	1												
	1	A14[7:0]	A14 ₇	A14 ₆	A14 ₅	A14 ₄	A14 ₃	A14 ₂	A14 ₁	A14 ₀	A14[7:0] = Gamma Setting for GS14		
	1	A14[7:0] A15[7:0]	A15 ₇	A15 ₆	A15 ₅	A15 ₄	A15 ₃	A15 ₂	A15 ₁	A15 ₀	A15[7:0] = Gamma Setting for GS15		
	1	712[1.0]	A13/	W126	M135	A134	W123	A132	A131	WT20			
											Note: 0 < GS1 < GS2 < GS3 < GS14 < GS15		
											The setting must be followed by command 0x00.		
Select Default	0	В9	1	0	1	1	1	0	0	1	Sets Linear Grayscale table		

Linear Gray Scale Table											GS0 pulse width = 0 GS0 pulse width = 0	
Table											GSO pulse width = 8	
											GSO pulse width = 16	
											GS0 pulse width = 104	
											GS0 pulse width = 112	
Set Precharge	0	BB	1	0	1	1	1	0	1	1	Set precharge voltage level.	0x17
Voltage	1	A[4:0]	*	*	*	A4	А3	A2	A1	A0	A[4:0] = 0x00; 0.20*VCC	
				_	_	_					A[4:0] = 0x3E; 0.60*VCC	
Set VCOMH	0	BE	1	0	1	1	1	1	1	0	Sets the VCOMH voltage level	0x04
Voltage	1	A[3:0]	*	*	*	*	А3	A2	A1	A0	A[3:0] = 0x00; 0.72*VCC	
											A[3:0] = 0x04; 0.8*VCC	
											A[3.0] - 0.004, 0.0 VCC	
											A[3:0] = 0x07; 0.86*VCC	
Set Contrast	0	C1	1	1	0	0	0	0	0	1	Double byte command to select 1 out of 256 contrast steps.	0x7F
Control	1	A[7:0]	A7	A6	A5	A4	А3	A2	A1	A0	Contrast increases as the value increases.	
Master Contrast	0	C7	1	1	0	0	0	1	1	1	A[3:0] = 0x00; Reduce output for all colors to 1/16	0x0f
Control	1	A[3:0]	*	*	*	*	А3	A2	A1	Α0	A[3:0] = 0x01; Reduce output for all colors to $2/16$	
		1 (0.0)										
											A[3:0] = 0x0E; Reduce output for all colors to 15/16	
	1										A[3:0] = 0x0F; no change	
Set Multiplex	0	CA	1	1	0	0	1	0	1	0	Set MUX ratio to N+1 MUX	127d
Ratio	1	A[6:0]	*	A6	A5	A4	А3	A2	A1	A0	N=A[6:0]; from 16MUX to 128MUX (0 to 14 are invalid)	
Set Command	0	FD	1	1	1	1	1	1	0	1	A[2] = 0; Unlock OLED to enable commands	0x12
Lock	1	A[2]	0	0	0	1	0	A2	1	0	A[2] = 1; Lock OLED from entering commands	

For detailed instruction information, see datasheet: http://www.newhavendisplay.com/app_notes/SSD1322.pdf

MPU Interface

For detailed timing information, see datasheet: http://www.newhavendisplay.com/app_notes/SSD1322.pdf

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	\downarrow	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1		0	0
Read Status	1	1	0	0
Write Data	1	\uparrow	0	1
Read Data	1	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/cs	D/C
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface (4-wire)

The 4-wire serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	
Write Data	Tie LOW	Tie LOW	0	1	\rightarrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0.

D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.

Note: Read is not available in serial mode.

Serial Interface (3-wire)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, R/W, and D/C should be connected to GND.

Function	/RD	/WR	/CS	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\uparrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0).

Note: Read is not available in serial mode.

For detailed protocol information, see datasheet: http://www.newhavendisplay.com/app notes/SSD1322.pdf

Example Initialization Sequence:

```
Set Command Lock(0x12);
                                      // Unlock Basic Commands (0x12/0x16)
Set_Display_On_Off(0x00);
                                      // Display Off (0x00/0x01)
Set Column Address(0x1C,0x5B);
Set Row Address(0x00,0x3F);
Set Display Clock(0x91);
                                      // Set Clock as 80 Frames/Sec
Set Multiplex Ratio(0x3F);
                                      // 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00);
                                      // Shift Mapping RAM Counter (0x00~0x3F)
Set_Start_Line(0x00);
                                      // Set Mapping RAM Display Start Line (0x00~0x7F)
Set_Remap_Format(0x14);
                                      // Set Horizontal Address Increment
                                          Column Address 0 Mapped to SEG0
                                      //
                                          Disable Nibble Remap
                                          Scan from COM[N-1] to COM0
                                          Disable COM Split Odd Even
                                      //
                                          Enable Dual COM Line Mode
Set GPIO(0x00);
                                      // Disable GPIO Pins Input
Set_Function_Selection(0x01);
                                      // Enable Internal VDD Regulator
Set Display Enhancement A(0xA0,0xFD);
                                             // Enable External VSL
Set_Contrast_Current(0x9F);
                                      // Set Segment Output Current
Set_Master_Current(0x0F);
                                      // Set Scale Factor of Segment Output Current Control
//Set_Gray_Scale_Table();
                                      // Set Pulse Width for Gray Scale Table
Set_Linear_Gray_Scale_Table();
                                      //set default linear gray scale table
Set_Phase_Length(0xE2);
                                      // Set Phase 1 as 5 Clocks & Phase 2 as 14 Clocks
                                      // Enhance Driving Scheme Capability (0x00/0x20)
Set_Display_Enhancement_B(0x20);
Set Precharge Voltage(0x1F);
                                      // Set Pre-Charge Voltage Level as 0.60*VCC
Set_Precharge_Period(0x08);
                                      // Set Second Pre-Charge Period as 8 Clocks
Set VCOMH(0x07);
                                      // Set Common Pins Deselect Voltage Level as 0.86*VCC
Set Display Mode(0x02);
                                      // Normal Display Mode (0x00/0x01/0x02/0x03)
Set_Partial_Display(0x01,0x00,0x00);
                                      // Disable Partial Display
Set_Display_On_Off(0x01);
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high	+90°C , 240hrs	2
	storage temperature.		
Low Temperature storage	Test the endurance of the display at low	-40°C , 240hrs	1,2
	storage temperature.		
High Temperature	Test the endurance of the display by	+85°C, 240hrs	2
Operation	applying electric stress (voltage & current)		
	at high temperature.		
Low Temperature	Test the endurance of the display by	-40°C , 240hrs	1,2
Operation	applying electric stress (voltage & current)		
	at low temperature.		
High Temperature /	Test the endurance of the display by	+60°C, 90% RH, 240hrs	1,2
Humidity Operation	applying electric stress (voltage & current)		
	at high temperature with high humidity.		
Thermal Shock resistance	Test the endurance of the display by	-40°C 30min -> 25°C 5min ->	
	applying electric stress (voltage & current)	85°C 30min = 1 cycle	
	during a cycle of low and high	For 100 cycles	
	temperatures.		
Vibration test	Test the endurance of the display by	10-22Hz, 1.5mm amplitude.	3
	applying vibration to simulate	22-500Hz, 1.5G	
	transportation and use.	30min in each of 3 directions	
		X,Y,Z	
Atmospheric Pressure test	Test the endurance of the display by	115mbar, 40hrs	3
	applying atmospheric pressure to simulate		
	transportation by air.		
Static electricity test	Test the endurance of the display by	VS=800V, RS=1.5kΩ, CS=100pF	
	applying electric static discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

Precautions for using OLEDs/LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Newhaven Display International, Inc. reserves the right to alter this product or specification at any time without notification.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display: NHD-3.12-25664UCW2