Applied Machine Learning

Perceptron and Support Vector Machines

Reihaneh Rabbany

COMP 551 (winter 2020)

Learning objectives

geometry of linear classification
Perceptron learning algorithm
margin maximization and support vectors
hinge loss and relation to logistic regression

Perceptron

old implementation (1960's)

historically a significant algorithm

(first neural network, or rather just a neuron)

biologically motivated model simple learning algorithm convergence proof beginning of *connectionist* Al it's criticism in the book "Perceptrons" was a factor in Al winter

Model

image:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

geometry of the Separating hyperplane

this hyperplane has one dimension lower than D _(number of features) for any two points **a** and **b** on the line

geometry of the Separating hyperplane

this hyperplane has one dimension lower than D (number of features) for any two points **a** and **b** on the line $w^ op (a-b) + w_0 - w_0 = 0$ so $\frac{w}{||w||}$ is the unit normal vector to the line the orthogonal component of any point on the line $\,rac{w^+}{||w||}b=-rac{w_0}{||w||}$ $\hat{\;\;\;} y = w^ op x + w_0 = w_2 x_2 + w_1 x_1 + w_0 = 0$

geometry of the Separating hyperplane

the orthogonal component of any point on the line $\,rac{w^{+}}{||w||}b=-rac{w_{0}}{||w||}$

Perceptron: objective

if $y^{(n)}\hat{y}^{(n)} < 0$ try to increase it

label and prediction have different signs

revisiting Perceptron: optimization

if
$$y^{(n)}\hat{y}^{(n)} < 0$$
 minimize $J_n(w) = -y^{(n)}(w^ op x^{(n)})$ now we included bias in work otherwise, do nothing

use stochastic gradient descent $abla J_n(w) = -y^{(n)}x^{(n)}$

$$w^{\{t+1\}} \leftarrow w^{\{t\}} - {}_{m{lpha}}
abla J_n(w) = w^{\{t\}} + {}_{m{lpha}} y^{(n)} x^{(n)}$$

Perceptron uses learning rate of 1 this is okay because scaling w does not affect prediction

$$\operatorname{sign}(w^{ op}x) = \operatorname{sign}({\color{blue}lpha} w^{ op}x)$$

Perceptron convergence theorem

the algorithm is guaranteed to converge in finite steps if linearly separable

Perceptron: example

iteration 1

note that the code is not chacking for convergence

 $\stackrel{ ext{initial decision boundary}}{\longrightarrow} w^ op x = 0$

Perceptron: example

iteration 10

note that the code is not chacking for convergence

observations:

after finding a linear separator no further updates happen the final boundary depends on the order of instances (different from all previous methods)

Perceptron: example

Perceptron: issues

cyclic updates if the data is not linearly separable?

- try make the data separable using additional features?
- data may be inherently noisy

even if linearly separable convergence could take many iterations

the decision boundary may be suboptimal

Perceptron: issues

cyclic updates if the data is not linearly separable?

- try make the data separable using additional features?
- data may be inherently noisy

even if linearly separable convergence could take many iterations

the decision boundary may be suboptimal

Margin

the margin of a classifier (assuming correct classification) is the distance of the closest point to the decision boundary

signed distance is
$$\frac{1}{||w||}(w^{\top}x^{(n)}+w_0)$$
 correcting for sign (margin) $\frac{1}{||w||}y^{(n)}(w^{\top}x+w_0)$ $y=1$ $y=0$ $y=-$

Max margin classifier

find the decision boundary with maximum margin

margin is not maximal

maximum margin

Max margin classifier

find the decision boundary with maximum margin

$$egin{cases} \max_{w,w_0} M \ M \leq rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) & orall n \end{cases}$$

only the points (n) with

$$M = rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0)$$
 matter in finding the boundary

these are called support vectors

max-margin classifier is called **support vector machine** (SVM)

Support Vector Machine

find the decision boundary with maximum margin

$$egin{cases} \max_{w,w_0} M \ M \leq rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) & orall n \end{cases}$$

observation

if w^*,w_0^* is an optimal solution then cw^*,cw_0^* is also optimal (same margin) fix the norm of w to avoid this $||w||_2=rac{1}{M}$

Support Vector Machine

find the decision boundary with maximum margin

6.5

Perceptron: issues

cyclic updates if the data is not linearly separable?

- try make the data separable using additional features?
- data may be inherently noisy

even if linearly separable convergence could take many iterations

the decision boundary may be suboptimal

now lets fix this problem maximize a **soft** margin

Soft margin constraints

allow points inside the margin and on the wrong side but penalize them

instead of hard constraint $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$ orall n use $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1-m{\xi^{(n)}}$ orall n

 $\xi^{(n)} \geq 0$ slack variables (one for each n)

 $\xi^{(n)} = 0$ zero if the point satisfies original margin constraint

 $0 < \xi^{(n)} < 1$ if correctly classified but inside the margin

 $\xi^{(n)} > 1$ incorrectly classified

Soft margin constraints

allow points inside the margin and on the wrong side but penalize them

soft-margin objective

$$egin{aligned} \min_{w,w_0} rac{1}{2} ||w||_2^2 + \gamma \sum_n \xi^{(n)} \ & y^{(n)}(w^ op x^{(n)} + w_0) \geq 1 - \xi^{(n)} \quad orall n \ & \xi^{(n)} \geq 0 \quad orall n \end{aligned}$$

 γ is a hyper-parameter that defines the importance of constraints for very large γ this becomes similar to hard margin svm

Hinge loss

would be nice to turn this into an unconstrained optimization

$$\min_{w,w_0} rac{1}{2} ||w||_2^2 + \gamma \sum_n \xi^{(n)}$$

$$y^{(n)}(w^\top x^{(n)} + w_0) \geq 1 - \xi^{(n)}$$

$$\xi^{(n)} \geq 0 \quad orall n$$

if point satisfies the margin $\ y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$ minimum slack is $\ \xi^{(n)}=0$

otherwise
$$y^{(n)}(w^ op x^{(n)}+w_0)<1$$
 the smallest slack is $oldsymbol{\xi}^{(n)}=1-y^{(n)}(w^ op x^{(n)}+w_0)$

so the optimal slack satisfying both cases

$$m{\xi}^{(n)} = \max(0, 1 - y^{(n)}(w^ op x^{(n)} + w_0))$$

Hinge loss

would be nice to turn this into an unconstrained optimization

soft-margin SVM is doing L2 regularized hinge loss minimization

Perceptron vs. SVM

Perceptron

if correctly classified evaluates to zero otherwise it is $\min_{w,w_0} -y^{(n)}(w^ op x^{(n)}+w_0))$

can be written as

$$\sum_n \max(0, -y^{(n)}(w^ op x^{(n)} + w_0))$$

finds some linear decision boundary if exists

stochastic gradient descent with fixed learning rate

SVM

$$\sum_n \max(0, 1-y^{(n)}(w^{ op}x^{(n)}+w_0))+rac{\lambda}{2}||w||_2^2$$
 so this is the difference! (plus regularization)

for small lambda finds the max-marging decision boundary depending on the formulation we have many choices

Perceptron vs. SVM

cost
$$J(w) = \sum_n \max(0, 1 - y^{(n)} w^ op x^{(n)}) + rac{\lambda}{2} ||w||_2^2$$
 now we included bias in w

check that the cost function is convex in w(?)

```
1 def cost(X,y,w, lamb=le-3):
2     yh = np.dot(X, w)
3     J = np.mean(np.maximum(0, 1 - y*yh)) + lamb * np.dot(w[:-1],w[:-1])/2
4     return J
```


hinge loss is not smooth (piecewise linear)

if we use "stochastic" sub-gradient descent

the update will look like Perceptron

if
$$y^{(n)}\hat{y}^{(n)}<1$$
 minimize $-y^{(n)}(w^{\top}x^{(n)})+\frac{\lambda}{2}||w||_2^2$ otherwise, do nothing

```
1 def subgradient(X, y, w, lamb):
2    N,D = X.shape
3    yh = np.dot(X, w)
4    violations = np.nonzero(yh*y < 1)[0]
5    grad = -np.dot(X[violations,:].T,
    y[violations])/N
6    grad[:-1] += lamb2 * w[:-1]
7    return grad</pre>
```

Example


```
max-margin boundary (using small lambda ~\lambda=10^{-8}~ )
```


compare to Perceptron's decision boundary

Example

SVM recap

signed distance is

distance:
$$\frac{1}{||w||}y^{(n)}(w^{ op}x+w_0)$$

$$y^{(n)}\hat{y}^{(n)} < 0$$
 wrong side

Perceptron
$$\min_{w,w_0} \sum_n \max(0,-y^{(n)}(w^ op x^{(n)}+w_0))$$

minimize the number of points on the wrong side

$$\max_{w,w_0} M = \max_{w,w_0} rac{1}{||w||_2} = \min_{w,w_0} ||w||_2$$

 $\min_{w,w_0}||w||_2^2$ subject to

hard margin
$$y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$$
 $orall n$ soft margin $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1-\xi^{(n)}$ $orall n$ $\xi^{(n)}=1-y^{(n)}(w^ op x^{(n)}+w_0)$

SVM
$$\min_{w,w_0} \sum_n \max(0, 1 - y^{(n)}(w^ op x^{(n)} + w_0)) + rac{1}{2\gamma} ||w||_2^2$$

SVM vs. logistic regression

recall**: logistic regression** simplified cost for $y \in \{0,1\}$

$$L_{CE}(y,\hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$
 cross entropy loss $\hat{y} = \sigma(w^Tx) = rac{1}{1+e^{-w^Tx}} = rac{1}{1+e^{-z}} \Rightarrow \ \log(\hat{y}) = -\log(1+e^{-z})$ $1-\hat{y} = 1-rac{1}{1+e^{-z}} = rac{e^{-z}}{1+e^{-z}} = rac{1}{1+e^z} \Rightarrow \ \log(1-\hat{y}) = -\log(1+e^z)$

$$J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-z^{(n)}}
ight) + \left(1 - y^{(n)}
ight) \log \left(1 + e^{z^{(n)}}
ight) \qquad ext{where} \quad z^{(n)} = w^ op x^{(n)}$$
 includes the bias

SVM vs. logistic regression

recall: **logistic regression** simplified cost for $y \in \{0,1\}$ $J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-z^{(n)}}
ight) + (1 - y^{(n)}) \log \left(1 + e^{z^{(n)}}
ight) \quad ext{ where } \ z^{(n)} = w^ op x^{(n)}$ includes the bias for $y \in \{-1, +1\}$ we can write this as $J(w) = \sum_{n=1}^{N} \log (1 + e^{z^{(n)}})$ for y = +1 $J(w) = \sum_{n=1}^{N} \log \left(1 + e^{-z^{(n)}}\right)$ for y = -1 $J(w) = \sum_{n=1}^{N} \log \left(1 + e^{-y^{(n)}z^{(n)}}\right)$ $J(w) = \sum_{n=1}^{N} \log \left(1 + e^{-y^{(n)}z^{(n)}}\right) + \frac{\lambda}{2}||w||_2^2$ also added some regularization compare to **SVM cost** for $y \in \{-1, +1\}$ $J(w) = \sum_{m} \max(0, 1 - y^{(n)} z^{(n)}) + \frac{\lambda}{2} ||w||_2^2$

SVM vs. logistic regression

for $y \in \{-1, +1\}$ we can write this as

$$J(w) = \sum_{n=1}^{N} \log \left(1 + e^{-y^{(n)}z^{(n)}}
ight) + rac{\lambda}{2} ||w||_2^2$$

also added some regularization

compare to **SVM cost** for $y \in \{-1, +1\}$

$$J(w) = \sum_n \max(0, 1 - y^{(n)}(z^{(n)})) + rac{\lambda}{2} ||w||_2^2$$

they both try to approximate 0-1 loss (accuracy)

$$L_{0-1}(y, w^T x) = \mathbb{I}(y = \operatorname{sign}(w^T x))$$

Ideal loss function

Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:

train C different 1-vs-(C-1) classifiers $y_c(x) = w_{[c]}^ op x$

test time:

choose the class with the highest score

$$c^* = rg \max_c y_c(x)$$

problems:

class imbalance not clear what it means to compare $\;y_c(x)$ values

Multiclass classification

can we use multiple binary classifiders?

one versus one

training:

train $\frac{C(C-1)}{2}$ classifiers for each class pair

test time:

choose the class with the highest vote

problems:

computationally more demanding for large C ambiguities in the final classification

Summary

- geometry of linear classification
- Perceptron algorithm
- distance to the decision boundary (margin)
- max-margin classification
- support vectors
- hard vs soft SVM
- relation to perceptron
- hinge loss and its relation to logistic regression
- some ideas for max-margin multi-class classification