Exercise 1: Approximation interpretation of PCA

Suppose we want to find an orthogonal set of M linear basis vectors $u_j \in \mathbb{R}^D$, and the corresponding scores $z_i \in \mathbb{R}^M$, such that we minimize the average reconstruction error (Equation 1)

$$J = \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_i - \hat{\boldsymbol{x}}_i\|^2 = \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_i - \boldsymbol{U}\boldsymbol{z}_i\|^2$$
 (1)

where U is an orthonormal matrix with u_j as its j-th column. Show that the optimal solution is obtained by setting $U^* = V_M$, where V_M contains the M eigenvectors with largest eigenvalues of the empirical covariance matrix $\Sigma = \frac{1}{N} \sum_{i=1}^N x_i x_i^{\top}$. (We assume the x_i have zero mean, for notational simplicity.) Furthermore, the optimal low-dimensional encoding of the data is given by $z_i = U^{\top} x_i$, which is an orthogonal projection of the data onto the column space spanned by the eigenvectors. (Hint: start with the case of M=1,2 and then proof by induction; Use Lagrange multipliers to include the orthonormality constraints $u_i^{\top} u_j = \delta_{ij}$.)

Solution: We use $u_j \in \mathbb{R}^D$ to denote the j-th principal direction, $x_i \in \mathbb{R}^D$ to denote the i-th high-dimensional observation, $z_i \in \mathbb{R}^L$ to denote the i-th low-dimensional representation (i.e., the projection), and $\tilde{z}_j \in \mathbb{R}^N$ to denote the $[z_{1j},...,z_{Nj}]$, which is the j-th component of all the low-dimensional vectors.

Let us start by estimating the best 1d solution, $u_1 \in \mathbb{R}^D$, and the corresponding projected points $\tilde{z}_1 \in \mathbb{R}^N$. The reconstruction error is given by:

$$\begin{split} J(\boldsymbol{u}_{1}, \boldsymbol{z}_{1}) &= \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_{i} - z_{i1} \boldsymbol{u}_{1}\|^{2} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_{i} - z_{i1} \boldsymbol{u}_{1})^{\top} (\boldsymbol{x}_{i} - z_{i1} \boldsymbol{u}_{1}) \\ &= \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{i} - 2 z_{i1} \boldsymbol{u}_{1}^{\top} \boldsymbol{x}_{i} + z_{i1}^{2} \boldsymbol{u}_{1}^{\top} \boldsymbol{u}_{1}) \\ &= \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{i} - 2 z_{i1} \boldsymbol{u}_{1}^{\top} \boldsymbol{x}_{i} + z_{i1}^{2}) \end{split}$$

where we have used the orthonormality $u_1^\top u_1 = 1$.

Taking derivatives w.r.t. z_{i1} and equating to zero gives:

$$\frac{\partial}{\partial z_{i1}} J(\boldsymbol{u}_1, \boldsymbol{z}_1) = \frac{1}{N} [-2\boldsymbol{u}_1^{\top} \boldsymbol{x}_i + 2z_{i1}] \stackrel{!}{=} 0 \quad \Rightarrow \quad z_{i1} = \boldsymbol{u}_1^{\top} \boldsymbol{x}_i$$

i.e., the optimal reconstruction weights are obtained by orthogonally projecting the data onto u_1 .

Plugging the optimal z_1 into the expression of J, we obtain:

$$J(\boldsymbol{u}_1) = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i^{\top} \boldsymbol{x}_i - z_{i1}^2) = \text{const} - \frac{1}{N} \sum_{i=1}^{N} z_{i1}^2$$

Also, we see that the variance of the projected data is given by:

$$\operatorname{Var}[\tilde{z}_1] = \mathbb{E}\left[\tilde{z}_1^2\right] - (\mathbb{E}\left[\tilde{z}_1\right])^2 = \frac{1}{N} \sum_{i=1}^N z_{i1}^2 - 0 = \frac{1}{N} \sum_{i=1}^N z_{i1}^2$$

since
$$\mathbb{E}\left[z_{i1}\right] = \mathbb{E}\left[\boldsymbol{x}_{i}^{\top}\boldsymbol{u}_{1}\right] = \mathbb{E}\left[\boldsymbol{x}_{i}\right]^{\top}\boldsymbol{u}_{1} = 0$$

Therefore, minimizing the reconstruction error $J(u_1)$ is equivalent to maximizing the variance of the projected data, i.e.,

$$\underset{\boldsymbol{u}_1}{\operatorname{argmin}} J(\boldsymbol{u}_1) = \underset{\boldsymbol{u}_1}{\operatorname{argmax}}_{\boldsymbol{u}_1} \operatorname{Var}[\tilde{\boldsymbol{z}}_1]$$

The variance of the projected data can also be written as:

$$\frac{1}{N}\sum_{i=1}^N z_{i1}^2 = \frac{1}{N}\sum_{i=1}^N \boldsymbol{u}_1^\top \boldsymbol{x}_i \boldsymbol{x}_i^\top \boldsymbol{u}_1 = \boldsymbol{u}_1^\top \hat{\boldsymbol{\Sigma}} \boldsymbol{u}_1$$

which is exactly the objective in conventional PCA, i.e.,

$$u_1 = \operatorname{argmax}_{u_1} u_1^{\top} \hat{\Sigma} u_1$$
 s.t. $u_1^{\top} u_1 = 1$

Solving this by using Lagrange multipliers, we see that u_1 is the eigenvector of the covariance matrix $\hat{\Sigma}$ with the largest associated eigenvalue.

Assume that it holds that $\forall j \leq M-1$ that $z_{ij} = \boldsymbol{u}_j^{\top} \boldsymbol{x}_i$, and \boldsymbol{u}_j is the eigenvector of the covariance matrix $\hat{\boldsymbol{\Sigma}}$ with the j-th largest associated eigenvalue (And the orthogonormality holds $\boldsymbol{u}_i \boldsymbol{u}_j = \delta_{ij}$ for $i, j \leq M-1$).

Now prove the case for j = M.

$$J = \frac{1}{N} \sum_{i=1}^{N} \| \boldsymbol{x}_i - z_{i1} \boldsymbol{u}_1 - z_{i1} \boldsymbol{u}_2 - \dots - z_{iM} \boldsymbol{u}_M \|^2$$
 (2)

Optimizing w.r.t. z_{iM} (setting the derivative of J w.r.t. z_{iM} equals to zero) gives:

$$\frac{\partial J}{\partial z_{iM}} = \frac{1}{N} [-2\boldsymbol{u}_{M}^{\top}\boldsymbol{x}_{i} + 2z_{iM}] \stackrel{!}{=} 0 \quad \Rightarrow \quad z_{iM} = \boldsymbol{u}_{M}^{\top}\boldsymbol{x}_{i}$$

Substituting the solutions for all $z_{i1},...,z_{iM}$ and $u_1,...,u_{M-1}$, we have:

$$\begin{split} J(\boldsymbol{u}_{M}) &= \frac{1}{N} \sum_{i=1}^{N} [\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{i} - \boldsymbol{u}_{1}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{u}_{1} - ... - \boldsymbol{u}_{M-1}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{u}_{M-1} - \boldsymbol{u}_{M}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{u}_{M}] \\ &= \frac{1}{N} \sum_{i=1}^{N} (\operatorname{const} - \boldsymbol{u}_{M}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{u}_{M}) \\ &= \operatorname{const} - \boldsymbol{u}_{M}^{\top} \hat{\boldsymbol{\Sigma}} \boldsymbol{u}_{M} \end{split}$$

Incorporating the orthogonormality constraints $u_i u_j = \delta_{ij}$ via Langrange multipliers:

$$\tilde{J}(\boldsymbol{u}_{M}) = -\boldsymbol{u}_{M}^{\top} \hat{\boldsymbol{\Sigma}} \boldsymbol{u}_{M} + \lambda_{M} (\boldsymbol{u}_{M}^{\top} \boldsymbol{u}_{M} - 1) + \sum_{i=1}^{M-1} \lambda_{jM} (\boldsymbol{u}_{M}^{\top} \boldsymbol{u}_{j} - 0)$$

The stationary points occur when

$$0 = 2\hat{\boldsymbol{\Sigma}}\boldsymbol{u}_M - 2\lambda_M\boldsymbol{u}_M + \sum_{j=1}^{M-1} \lambda_{jM}\boldsymbol{u}_j.$$

Left multiplying with u_j^{\top} , and using the orthogonality constraints, we see that $\lambda_{jM}=0$ for j=1,...,M-1.

We therefore obtain

$$\hat{\Sigma} u_M = \lambda_M u_M$$

and so u_M must be an eigenvector of $\hat{\Sigma}$ with eigenvalue λ_M . So the reconstruction error const $-u_M^{\top}\hat{\Sigma}u_M$ is minimized by choosing u_M to be the eigenvector having the largest eigenvalue amongst those not previously selected.

Exercise 2: PCA and Kernel PCA

Show that the conventional linear PCA algorithm is recovered as a special case of kernel PCA if we choose the linear kernel function given by $k(x, x') = x^{\top}x'$.

Solution: W.l.o.g. assuming that the data is centered. For kernel PCA, the eigenvectors a of the kernel matrix K (associated with largest eigenvalues) are computed:

$$Ka = \lambda a$$

For linear kernel function $k(x, x') = x^{\top}x'$, the kernel matrix is equivalent to $K = XX^{\top}$. Hence,

$$Ka = \lambda a$$

$$\iff XX^{\top}a = \lambda a$$

$$\iff X^{\top}XX^{\top}a = \lambda X^{\top}a$$

$$\iff C'X^{\top}a = \lambda X^{\top}a$$

$$\iff C'u = \lambda u$$

where C' = C corresponds to the (scaled) covariance matrix, $u = X^{\top}a$ corresponds to the eigenvector of C'.

The projection of data matrix in conventional PCA recovers that of linear kernel PCA:

$$XU = X(X^{\top}A) = (XX^{\top})A = KA$$

Exercise 3: Probabilistic PCA

Probabilistic PCA is a simple example of the linear-Gaussian framework. First, a latent variable z is introduced (which corresponds to the principal-component subspace). Next, we define a Gaussian prior distribution p(z) (Equation 3) over the latent variable, together with a Gaussian conditional distribution p(x|z) (Equation 4) for the observed variable x conditioned on the value of the latent variable. Specifically, the mean of x is a general linear function of z governed by the $D \times M$ matrix W and the D-dimensional vector μ .

$$p(z) = \mathcal{N}(z|0, I) \tag{3}$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$$
 (4)

i) Compute the marginal distribution p(x) and posterior distribution p(z|x).

- ii) Given a data set $X = \{x_i\}_{i=1}^n$ of observed data points, write down the corresponding log likelihood function.
- iii) Verify that the maximum likelihood solution for the parameter μ is given by $\mu_{\rm ML}=\bar{x}$, where \bar{x} is the mean of the data vectors.
- iv) The maximum likelihood solution for the parameter W has a form of

$$\mathbf{W}_{\mathrm{ML}} = \mathbf{U}_{M} (\mathbf{L}_{M} - \sigma^{2} \mathbf{I})^{1/2} \mathbf{R}$$
 (5)

where U_M is a $D \times M$ matrix matrix whose columns are given by the M eigenvectors of the data covariance matrix Σ with the largest eigenvalues, the $M \times M$ diagonal matrix L_M has elements given by the corresponding eigenvalues λ_i , and R is an arbitrary $M \times M$ orthogonal matrix.

Show that in the limit $\sigma^2 \to 0$, the posterior mean $\mathbb{E}[z|x]$ for the probabilistic PCA model becomes an orthogonal projection onto the principal subspace, as in conventional PCA.

Solution:

i) Both the marginal and posterior will also be Gaussian as a result of the linear Gaussian model:

$$x = Wz + \mu + \varepsilon$$

And we have

$$\begin{split} \mathbb{E}\left[\boldsymbol{x}\right] &= \mathbb{E}\left[\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu} + \boldsymbol{\varepsilon}\right] = \boldsymbol{\mu} \\ \operatorname{Cov}[\boldsymbol{x}] &= \mathbb{E}\left[(\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\varepsilon})(\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\varepsilon})^{\top}\right] \\ &= \mathbb{E}\left[\boldsymbol{W}\boldsymbol{z}\boldsymbol{z}^{\top}\boldsymbol{W}^{\top}\right] + \mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right] = \boldsymbol{W}\boldsymbol{W}^{\top} + \sigma^{2}\boldsymbol{I} \end{split}$$

Hence,

$$p(x) = \mathcal{N}(x|\mu, C)$$
 where $C = WW^{\top} + \sigma^2 I$ (6)

Making use of matrix inversion identity (Equation (C.7) in [1])

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

to compute the C^{-1} , we have

$$\boldsymbol{C}^{-1} = \boldsymbol{\sigma}^{-1} \boldsymbol{I} - \boldsymbol{\sigma}^{-2} \boldsymbol{W} \boldsymbol{M}^{-1} \boldsymbol{W}^{\top}$$

where $\mathbf{M} = \mathbf{W}^{\top} \mathbf{W} + \sigma^2 \mathbf{I}$ is an $M \times M$ matrix.

Then, making use of Equation (2.116) from [1] (See Figure 1), we have:

$$p(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{M}^{-1}\boldsymbol{W}^{\top}(\boldsymbol{x} - \boldsymbol{\mu}), \sigma^{-2}\boldsymbol{M}^{-1})$$
(7)

ii) The log likelihood function is given by:

$$\log p(\boldsymbol{X}|\boldsymbol{\mu}, \boldsymbol{W}, \sigma^2) = \sum_{n=1}^{N} \log p(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{W}, \sigma^2)$$

$$= -\frac{ND}{2} \log(2\pi) - \frac{N}{2} \log |\boldsymbol{C}| - \frac{1}{2} \sum_{n=1}^{N} (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \boldsymbol{C}^{-1} (\boldsymbol{x}_n - \boldsymbol{\mu}) \quad (8)$$

iii) The log likelihood is a quadratic function of μ , thus taking the derivative and letting it equal to zero leads to the unique maximum solution $\mu_{\rm ML} = \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$.

iv) Taking the limit $\sigma^2 \to 0$, we have $M = W^\top W$

From the posterior in Equation 7, we have that:

$$\mathbb{E}\left[\boldsymbol{z}|\boldsymbol{x}\right] = \boldsymbol{M}^{-1}\boldsymbol{W}^{\top}(\boldsymbol{x} - \boldsymbol{\mu}) = \boldsymbol{M}^{-1}\boldsymbol{W}_{\mathrm{ML}}^{\top}(\boldsymbol{x} - \bar{\boldsymbol{x}}) = (\boldsymbol{W}_{\mathrm{ML}}^{\top}\boldsymbol{W}_{\mathrm{ML}})^{-1}\boldsymbol{W}_{\mathrm{ML}}^{\top}(\boldsymbol{x} - \bar{\boldsymbol{x}})$$

Substituting for $W_{\rm ML}$ using Equation 4, in which we take R=I for compatibility with conventional PCA. Using the orthogonality property $U_M^{\top}U_M=I$ and setting $\sigma^2=0$, we have

$$egin{aligned} oldsymbol{W}_{ ext{ML}} &= oldsymbol{U}_M oldsymbol{L}_M^{1/2} \ \mathbb{E}\left[oldsymbol{z} | oldsymbol{x}
ight] &= oldsymbol{L}_M^{-1/2} oldsymbol{U}_M^ op (oldsymbol{x} - ar{oldsymbol{x}}) \end{aligned}$$

Note that this corresponds to the whitening operation:

- 1. centering: $x x^2 = x^2 + x^2 = x^2$
- 2. projection : $U_M^\top(x-\bar{x})$
- 2. rescaling : $oldsymbol{L}_{M}^{-1/2}oldsymbol{U}_{M}^{ op}(oldsymbol{x}-ar{oldsymbol{x}})$

Exercise 4: Neural Network: Properties of activation functions

- i) Show that the derivative of the *sigmoid* (i.e., $\sigma(z)=\frac{1}{1+e^{-z}}$) and the tanh (i.e., $\sigma(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}$) activation function can be expressed in terms of the function value itself.
- ii) Show that the derivative of the binary cross-entropy error function (Equation 10) with respect to the activation a_k for an output unit having a logistic sigmoid activation function satisfies Equation 9.
- iii) Show that the derivative of the multiclass cross-entropy error function (Equation 11) with respect to the activation a_k for output units having a softmax activation function satisfies Equation 9.

$$\frac{\partial E}{\partial a_k} = y_k - t_k \tag{9}$$

Solution:

i) The derivative of sigmoid:

$$\sigma'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{1 + e^{-z}} \right)$$

$$= -\left(\frac{1}{1 + e^{-z}} \right)^2 \cdot \frac{\mathrm{d}}{\mathrm{d}z} \left(1 + e^{-z} \right)$$

$$= -\left(\frac{1}{1 + e^{-z}} \right)^2 \left(-e^{-z} \right)$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

The derivative of *tahn*:

$$tahn'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{e^z - e^{-z}}{e^z + e^{-z}} \right)$$

$$= \frac{(e^z - e^{-z})'(e^z + e^{-z}) - (e^z - e^{-z})(e^z + e^{-z})'}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$

$$= \frac{(e^z + e^{-z})^2 - (e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

$$= 1 - \frac{(e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$

$$= 1 - tahn^2(z)$$

Both derivatives can be expressed by the function value itself.

ii) We know that $y_k = \sigma(a_k)$ where σ is the logistic sigmoid function. As shown above, we have the derivative $\sigma' = \sigma(1 - \sigma)$. Thus, differentiating Equation 10 w.r.t. the activation a_k corresponding to a particular data point k, we obtain

$$\begin{split} \frac{\partial E(\boldsymbol{w})}{\partial a_k} &= \frac{\partial}{\partial a_k} \left[-\left(t_k \cdot \log y_k + (1 - t_k) \cdot \log \left(1 - y_k \right) \right) \right] \\ &= -\left(t_k \frac{1}{y_k} y_k (1 - y_k) + (1 - t_k) \frac{1}{1 - y_k} (-y_k (1 - y_k)) \right) \\ &= -t_k (1 - y_k) + (1 - t_k) y_k \\ &= -t_k + y_k \end{split}$$

iii) Similar to ii), we first denote $y_{kn} = y_k(\boldsymbol{x}_n, \boldsymbol{w})$ the k-th entry of the output vector on data point n. We know that $y_{kn} = \frac{\exp{(a_{kn})}}{\sum_{j=1}^K exp(a_{jn})}$. and the derivative of softmax activation function is:

$$\frac{\partial y_{kn}}{\partial a_{jn}} = y_{kn}(\delta_{kj} - y_{jn})$$

Therefore,

$$\frac{\partial E(\boldsymbol{w})}{\partial a_{jn}} = -\sum_{k=1}^{K} t_{kn} \frac{1}{y_{kn}} \left(y_{kn} \left(\delta_{kj} - y_{jn} \right) \right)$$

$$= -\sum_{k=1}^{K} t_{kn} \left(\delta_{kj} - y_{jn} \right)$$

$$= -\sum_{k=1}^{K} t_{kn} \delta_{kj} + \sum_{k=1}^{K} t_{kn} y_{jn}$$

$$= -t_{jn} + y_{jn}$$

where we have used the fact that $\sum_{k=1}^{K} t_{kn} = 1$.

Exercise 5: Neural Network: Probabilistic Interpretation of Classification Models

i) Consider a binary classification problem in which the target values are $t \in \{0, 1\}$, with a network output $y(\mathbf{x}, \mathbf{w})$ that represents $p(t = 1|\mathbf{x})$, and suppose that there is a probability ε

that the class label on a training data point has been incorrectly set. Assuming independent and identically distributed data, write down the error function corresponding to the negative log likelihood. Verify that when $\varepsilon=0$, the error function is reduced to the usual cross-entropy error function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \cdot \log y_n + (1 - t_n) \cdot \log(1 - y_n)\}$$
 (10)

Note that this error function (that consider mislabelling) makes the model robust to incorrectly labelled data, in contrast to the usual cross-entropy error function.

ii) Show that maximizing likelihood for a multiclass neural network model in which the network outputs have the interpretation $y_k(\boldsymbol{x}, \boldsymbol{w}) = p(t_k = 1|\boldsymbol{x})$ is equivalent to the minimization of the cross-entropy error function:

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} \{t_{kn} \cdot \log y_k(\boldsymbol{x}_n, \boldsymbol{w})\}$$
(11)

Solution:

i) First, we use t to denote the observed target label, and t_r to denote the real label. Then, we have that:

$$p(t = 1|\boldsymbol{w}, \boldsymbol{x}) = (1 - \varepsilon) \cdot p(t_r = 1|\boldsymbol{w}, \boldsymbol{x}) + \varepsilon \cdot p(t_r = 0|\boldsymbol{w}, \boldsymbol{x})$$
$$p(t = 0|\boldsymbol{w}, \boldsymbol{x}) = (1 - \varepsilon) \cdot p(t_r = 0|\boldsymbol{w}, \boldsymbol{x}) + \varepsilon \cdot p(t_r = 1|\boldsymbol{w}, \boldsymbol{x})$$

Note that the network is aimed to predict the real label t_r instead of the noisy one t, i.e., we model $p(t_r = 1 | \boldsymbol{w}, \boldsymbol{x}) = y(\boldsymbol{w}, \boldsymbol{x})$.

Hence,

$$p(t = 1|\mathbf{w}, \mathbf{x}) = (1 - \varepsilon) \cdot y(\mathbf{w}, \mathbf{x}) + \varepsilon \cdot (1 - y(\mathbf{w}, \mathbf{x}))$$
$$p(t = 0|\mathbf{w}, \mathbf{x}) = (1 - \varepsilon) \cdot (1 - y(\mathbf{w}, \mathbf{x})) + \varepsilon \cdot y(\mathbf{w}, \mathbf{x})$$

Combining the two cases (t = 0/1), we have:

$$p(t|\boldsymbol{w}) = (1 - \varepsilon) \cdot y^{t} (1 - y)^{1 - t} + \varepsilon (1 - y)^{t} y^{1 - t}$$

Given a data set with N points, the error function corresponding to the negative log likelihood function is then:

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \log \left((1 - \varepsilon) \cdot y_n^{t_n} \left(1 - y_n \right)^{1 - t_n} + \varepsilon (1 - y_n)^{t_n} y_n^{1 - t_n} \right)$$
(12)

When $\varepsilon = 0$, it is obvious that the equation above will reduce to Equation 10.

ii) For the given interpretation of $y_k(x, w)$, the probability that the observed sample has target vector t is given by:

$$p(\boldsymbol{t}|\boldsymbol{w}) = \prod_{k=1}^{K} y_k^{t_k}$$

Then, for a data set of N points, the log likelihood function will be:

$$l(\boldsymbol{w}) = \sum_{n=1}^{N} \log p(\boldsymbol{t}_n | \boldsymbol{w}) = \sum_{n=1}^{N} \log \left(\prod_{k=1}^{K} y_k^{t_k} \right) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \log y_{kn}$$

Maximizing the log likelihood function w.r.t. w is exactly minimizing the cross-entropy in Equation 11.

Appendix

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distribution for y given x in the form

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \tag{2.113}$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
 (2.114)

the marginal distribution of y and the conditional distribution of x given y are given by

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
 (2.115)

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}\boldsymbol{\mu}\}, \mathbf{\Sigma})$$
 (2.116)

where

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A})^{-1}. \tag{2.117}$$

Figure 1: Commonly used results for linear Gaussian models.

References

- [1] C. M. Bishop. *Pattern recognition and machine learning*. springer, 2006.
- [2] J. Friedman, T. Hastie, R. Tibshirani, et al. *The elements of statistical learning*, volume 1. Springer series in statistics New York, 2001.
- [3] K. P. Murphy. *Machine learning: a probabilistic perspective*. MIT press, 2012.