

Universidad Simón Bolívar Decanato de Estudios Profesionales Coordinación de Ingeniería de la Computación

Título

Por: Antonio Álvarez

Realizado con la asesoría de: Emely Arráiz B.

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero de Computación

Sartenejas, septiembre de 2018

Resumen

Hola mundo

Índice general

Re	esum	en]
Ín	dice	de Fig	uras	IV
Li	sta d	e Tabl	as	V
Ín	dice	de alg	oritmos	X
A	cróni	mos y	Símbolos	XI
In	trod_{1}	ucción		xi 2 2 3 a Conocimiento y preprocesamiento de datos 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 6 6 7 7 7 8 7 8 8 6 7 9 7 8 9 7 8 7 9 7 9 7 8 7 9 8 7 9 8 7 9 8 7 9 8 8 9 8 9
1.			brimiento de Conocimiento y preprocesamiento de datos	3 7 8 8 9 9 10 10 10
	1.3.	Metch 1.3.1. 1.3.2.	eurísticas	12 13 14 14 15 15
2.		_	todológico sentación del cromosoma	20

<u>Índice General</u>

	2.2.	Función objetivo	21
	2.3.	Adaptaciones de los algoritmos evolutivos	22
	2.4.	Criterios para comparar los métodos de selección de prototipos	24
	2.5.	Conjunto de datos	26
	2.6.	Validación cruzada y estratificación	26
		Entonación de las metaheurísticas	
_	-		
3.		luación experimental	32
	3.1.	Diseño experimental	
		3.1.1. Resultados	35
		3.1.1.1. Heurísticas	35
		3.1.1.2. Metaheurísticas	36
		3.1.1.3. Variaciones de las metaheurísticas	39
		3.1.1.3.1. Conjuntos pequeños	39
		3.1.1.3.2. Conjuntos medianos	45
		3.1.1.3.3. Conjuntos Grandes	51
\mathbf{C}	onclu	siones y Recomendaciones	53
Bi	ibliog	grafía	55
A	. Res	ultados de todos los conjuntos	62

Índice de figuras

Taxonomía para los métodos de selección de prototipos	10
Representación de un cromosoma y su respectivo conjunto reducido	21
Cruce de un punto	22
Validación cruzada	28
Estratificación	29
Selección de puntos de las heurísticas	35
Boxplots de las metaheurísticas para los conjuntos pequeños	37
Boxplots de las metaheurísticas para los conjuntos medianos	38
Boxplots de las variaciones de las metaheurísticas para los conjuntos	
pequeños	39
Boxplots de las variaciones de las metaheurísticas para los conjuntos	
medianos	45
	pequeños

2.1.	Conjuntos de datos pequeños	27
2.2.	Conjuntos de datos medianos	28
2.3.	Conjuntos de datos grandes	28
3.1.	1	32
3.2.	~ · · · · · · · · · · · · · · · · · · ·	33
3.3.		33
3.4.	ı v	33
3.5.	1 0	33
3.6.	Promedios de heurísticas	36
3.7.	Promedios de las metaheurísticas	37
3.8.	Pruebas de Wilcoxon entre las metaheurísticas para conjuntos pequeños	38
	Pruebas de Wilcoxon entre las metaheurísticas para conjuntos pequeños	38
3.10.	Promedios de las distintas variaciones de cada metaheurística para los	
	conjuntos pequeños	40
	Pruebas de Wilcoxon entre GGA y variaciones para conjuntos pequeños	40
3.12.	Pruebas de Wilcoxon entre SSGA y variaciones para conjuntos pequeños	41
3.13.	Pruebas de Wilcoxon entre MA y variaciones para conjuntos pequeños .	41
	Pruebas de Wilcoxon entre CHC y variaciones para conjuntos pequeños	42
3.15.	Pruebas de Wilcoxon entre las mejores variaciones de cada metaheurís-	
	tica para conjuntos pequeños	44
3.16.	Rangos de las metaheurísticas en $accuracy + reducción, kappa + reduc-$	
		44
3.17.	Promedios de las distintas variaciones de cada metaheurística para los	
	conjuntos medianos	46
3.18.	Pruebas de Wilcoxon entre GGA y variaciones para conjuntos medianos	46
3.19.	Pruebas de Wilcoxon entre SSGA y variaciones para conjuntos medianos	47
3.20.	Pruebas de Wilcoxon entre MA y variaciones para conjuntos medianos	47
3.21.	Pruebas de Wilcoxon entre CHC y variaciones para conjuntos medianos	48
3.22.	Pruebas de Wilcoxon entre las mejores variaciones de cada metaheurís-	
	tica para conjuntos medianos	49
3.23.	Rangos de las metaheurísticas en $accuracy + reducción, kappa + reduc-$	
	ción y tiempo para los conjuntos medianos	50

3.24. Promedios de las distintas variaciones de cada metaheurística para los conjuntos grandes	5 .
A.1. Resultados de CNN para conjuntos pequeños con 1000 iteraciones fijas	32
	33
- v	33
- • •	34
	35
· · · · · · · · · · · · · · · · · · ·	35
· · · · · · · · · · · · · · · · · · ·	36
1 0 1 1	37
A.9. Resultados de RSS para conjuntos grandes con 1000 iteraciones fijas 6	37
A.10.Resultados de GGA para conjuntos pequeños con 1000 iteraciones fijas	36
A.11.Resultados de GGA para conjuntos medianos con 1000 iteraciones fijas 6	36
A.12.Resultados de GGA para conjuntos grandes con 1000 iteraciones fijas . 6	36
A.13.Resultados de CNN-GGA para conjuntos pequeños con 1000 iteraciones	
fijas	7(
A.14.Resultados de CNN-GGA para conjuntos medianos con 1000 iteraciones	
3	7]
A.15.Resultados de CNN-GGA para conjuntos grandes con 1000 iteraciones	
o a constant of the constant o	71
A.16.Resultados de ENN-GGA para conjuntos pequeños con 1000 iteraciones	
v	72
A.17.Resultados de ENN-GGA para conjuntos medianos con 1000 iteraciones	
	73
A.18.Resultados de ENN-GGA para conjuntos grandes con 1000 iteraciones	
v	73
A.19.Resultados de RSS-GGA para conjuntos pequeños con 1000 iteraciones	_
3	74
A.20.Resultados de RSS-GGA para conjuntos medianos con 1000 iteraciones	- -
v	75
A.21.Resultados de RSS-GGA para conjuntos grandes con 1000 iteraciones	7.
fijas	75
1 V 1 1	76
A.23.Resultados de CNN-RSS-GGA para conjuntos medianos con 1000 ite-	1 (
- · · · · · · · · · · · · · · · · · · ·	77
A.24.Resultados de CNN-RSS-GGA para conjuntos grandes con 1000 itera-	'
	77
A.25.Resultados de ENN-RSS-GGA para conjuntos pequeños con 1000 ite-	
	78
A.26.Resultados de ENN-RSS-GGA para conjuntos medianos con 1000 ite-	, (
- *	79

A.27.Resultados de ENN-RSS-GGA para conjuntos grandes con 1000 itera-
ciones fijas
A.28.Resultados de SSGA para conjuntos pequeños con 1000 iteraciones fijas
A.29.Resultados de SSGA para conjuntos medianos con 1000 iteraciones fijas
A.30.Resultados de SSGA para conjuntos grandes con 1000 iteraciones fijas .
A.31.Resultados de CNN-SSGA para conjuntos pequeños con 1000 iteracio-
nes fijas
A.32.Resultados de CNN-SSGA para conjuntos medianos con 1000 iteraciones fijas
A.33.Resultados de CNN-SSGA para conjuntos grandes con 1000 iteraciones
fijas
A.34.Resultados de ENN-SSGA para conjuntos pequeños con 1000 iteracio-
nes fijas
A.35.Resultados de ENN-SSGA para conjuntos medianos con 1000 iteracio-
nes fijas
A.36.Resultados de ENN-SSGA para conjuntos grandes con 1000 iteraciones
fijas
A.37.Resultados de RSS-SSGA para conjuntos pequeños con 1000 iteraciones
fijas
A.38.Resultados de RSS-SSGA para conjuntos medianos con 1000 iteraciones
fijas
A.39.Resultados de RSS-SSGA para conjuntos grandes con 1000 iteraciones
fijas
A.40.Resultados de CNN-RSS-SSGA para conjuntos pequeños con 1000 ite-
raciones fijas
A.41.Resultados de CNN-RSS-SSGA para conjuntos medianos con 1000 ite-
raciones fijas
A.42.Resultados de CNN-RSS-SSGA para conjuntos grandes con 1000 itera-
ciones fijas
A.43.Resultados de ENN-RSS-SSGA para conjuntos pequeños con 1000 ite-
raciones fijas
A.44.Resultados de ENN-RSS-SSGA para conjuntos medianos con 1000 ite-
raciones fijas
A.45.Resultados de ENN-RSS-SSGA para conjuntos grandes con 1000 itera-
ciones fijas
$\rm A.46. Resultados \ de \ MA$ para conjuntos pequeños con 1000 iteraciones fijas $$.
$\rm A.47. Resultados \ de \ MA$ para conjuntos medianos con 1000 iteraciones fijas $$.
$\rm A.48. Resultados \ de \ MA$ para conjuntos grandes con 1000 iteraciones fijas $$. $$.
A.49.Resultados de CNN-MA para conjuntos pequeños con 1000 iteraciones
fijas
A.50.Resultados de CNN-MA para conjuntos medianos con 1000 iteraciones
fijas

A.51.Resultados de CNN-MA para conjuntos grandes con 1000 iteraciones
fijas
A.52.Resultados de ENN-MA para conjuntos pequeños con 1000 iteraciones
fijas
A.53.Resultados de ENN-MA para conjuntos medianos con 1000 iteraciones
fijas
A.54.Resultados de ENN-MA para conjuntos grandes con 1000 iteraciones
fijas
A.55.Resultados de RSS-MA para conjuntos pequeños con 1000 iteraciones
fijas
A.56.Resultados de RSS-MA para conjuntos medianos con 1000 iteraciones
fijas
A.57.Resultados de RSS-MA para conjuntos grandes con 1000 iteraciones fijas 99
A.58.Resultados de CNN-RSS-MA para conjuntos pequeños con 1000 itera-
ciones fijas
A.59.Resultados de CNN-RSS-MA para conjuntos medianos con 1000 itera-
ciones fijas
A.60.Resultados de CNN-RSS-MA para conjuntos grandes con 1000 itera-
ciones fijas
ciones fijas
A.62.Resultados de ENN-RSS-MA para conjuntos medianos con 1000 itera-
ciones fijas
A.63.Resultados de ENN-RSS-MA para conjuntos grandes con 1000 itera-
ciones fijas
A.64.Resultados de CHC para conjuntos pequeños con 1000 iteraciones fijas 104
A.65.Resultados de CHC para conjuntos medianos con 1000 iteraciones fijas 105
A.66.Resultados de CHC para conjuntos grandes con 1000 iteraciones fijas . 105
A.67.Resultados de CNN-CHC para conjuntos pequeños con 1000 iteraciones
fijas
A.68.Resultados de CNN-CHC para conjuntos medianos con 1000 iteraciones
fijas
A.69.Resultados de CNN-CHC para conjuntos grandes con 1000 iteraciones
fijas
A.70.Resultados de ENN-CHC para conjuntos pequeños con 1000 iteraciones
fijas
A.71.Resultados de ENN-CHC para conjuntos medianos con 1000 iteraciones
fijas
A.72.Resultados de ENN-CHC para conjuntos grandes con 1000 iteraciones
fijas
A.73.Resultados de RSS-CHC para conjuntos pequeños con 1000 iteraciones
fias 110

A.74.Resultados de RSS-CHC para conjuntos medianos con 1000 iteraciones
fijas
A.75.Resultados de RSS-CHC para conjuntos grandes con 1000 iteraciones
fijas
A.76.Resultados de CNN-RSS-CHC para conjuntos pequeños con 1000 ite-
raciones fijas
A.77.Resultados de CNN-RSS-CHC para conjuntos medianos con 1000 ite-
raciones fijas
A.78.Resultados de CNN-RSS-CHC para conjuntos grandes con 1000 itera-
ciones fijas
A.79.Resultados de ENN-RSS-CHC para conjuntos pequeños con 1000 ite-
raciones fijas
A.80.Resultados de ENN-RSS-CHC para conjuntos medianos con 1000 ite-
raciones fijas
A.81.Resultados de ENN-RSS-CHC para conjuntos grandes con 1000 itera-
ciones fijas

Índice de algoritmos

1.1.	CNN	11
1.2.	ENN	11
1.3.	RSS	12
1.4.	Algoritmo Genético Generacional	16
1.5.	Algoritmo Genético Estacionario	16
1.6.	Algoritmo Memético Estacionario	17
1.7.	CHC	18
1.8.	Recombinar	19
1.9.	Reinicializar	19
2.1.	Meme	25
2.2.	IRACE	30

Acrónimos y Símbolos

KDD Knowledge Discovery in Databases

DM Data Mining

IS Instance Selection

PS Prototype Selection

NN Nearest Neighbor

NE Nearest Enemy

CNN Condensed Nearest Neighbor

ENN Edited Nearest Neighbor

RSS Relaxed Selective Subset

GGA Generational Genetic Algorithm

SSGA Steady-State Genetic Algorithm

CHC CHC Adaptive Search Algorithm

MA Memetic Algorithm

∈ Relación de pertenencia, «es un elemento de»

⊆ Subconjunto

\ Diferencia de conjuntos

Introducción

En los últimos años ha crecido la cantidad de información generada con las computadoras, producto de procesos industriales, administrativos, científicos y sociales. Con la gran cantidad de información que se procesa en la actualidad, nace el descubrimiento de conocimiento en bases de datos (KDD por sus siglas en inglés) que busca transformar esa información en conocimiento útil para distintas áreas de aplicación [HPK11]. Entre las tareas de KDD se encuentra el preprocesamiento de datos, el cual busca preparar la información para ser usada por algoritmos de minería de datos.

Entre los métodos de preprocesamiento de datos se encuentra la selección de prototipos, proceso que consta en elegir un subconjunto de las instancias originales que mantenga la capcidad de representación del conjunto original [GLH16]. Esta tarea se puede ver como un proceso de optimización, para lo cual se han planteado una serie de heurísticas como *Condensed Nearest Neighbor* (CNN) [Har68], *Edited Nearest Neighbor* (ENN) [Wil72] y *Relaxed Selective Subset* (RSS) [FM17]; donde cada heurística plantea un esquema de reducción acorde a una idea sobre cuáles son los puntos más importantes a preservar.

Por otra parte, se pueden usar metaheurísticas de propósito general para conseguir una solución aproximada a la óptima del problema. En este trabajo se implementaron cuatro metaheurísticas que entran dentro de la clasificación de algoritmos evolutivos: Generational Genetic Algorithm (GGA) [Hol75], Steady State Genetic Algorithm (SS-GA) [Tal09], Memetic Algorithm (MA) [NC12] y Adaptative Search Algorithm (CHC) [Esh91].

El uso de metaheurísticas para resolver el problema de selección de prototipos no es nuevo, ya que trabajos como los realizados por *Czarnowski, I. & Jędrzejowicz, P* en [CJ11], donde usan *Simulated Annealing*; *Cerverón, V. & Ferri, F.* en [CF01], los

Introducción 2

cuales usan una variación de Búsqueda Tabú; Anwar, I. et al. en [ASA15b, ASA15a] quienes utilizan colonia de hormigas; Ahmad, S. & Pedrycz, W en [AP11], quienes adaptan Particle Swarm Optimization; Sierra, B. et al. en [SLI+01] por su parte, optan por utilizar algoritmos de estimación de distribución o Wang, J. et al. en [WXGZ16] que usan Differential Evolution.

Tradicionalmente, las metaheurísticas empiezan con una o varias soluciones aleatorias que se van mejorando paulatinamente con los procesos particulares a cada algoritmo. En algunos casos se usa una heurística para conseguir una buena solución inicial que le permita a la metaheurística conseguir mejores soluciones. En base a lo anterior, el objetivo principal de este trabajo es evaluar si el uso de las heurísticas CNN, ENN y RSS para construir la población inicial de los algoritmos evolutivos GGA, SSGA, MA y CHC mejoran la relación entre el accuracy, kappa y reducción de estos últimos. Para lograr el objetivo principal se procede a combinar cada una de las tres heurísticas con cada una de las cuatro metaheurísticas y se mide el accuracy, kappa, reducción y tiempo de cómputo sobre varios conjuntos de datos.

Este trabajo cobra importancia porque el tiempo de cómputo de los algoritmos de minería de datos se ha vuelto muy grande; por lo tanto, se necesita reducir la cantidad de datos, manteniendo o mejorando la calidad de los mismos de tal manera que se vuelva factible el uso de los distintos algoritmos. Además, este trabajo es novedoso al combinar heurísticas para el problema de selección de prototipos con metaheurísticas de propósito genera, intentando mejorar el desempeño de estas últimas.

El resto del trabajo se divide en tres cápítulos, donde el primero es el marco teórico e introduce toda la información referente a KDD, preprocesamiento de datos, el problema de selección de instancias, las heurísticas y las metaheurísticas utilizadas; el segundo capítulo es el marco metodológico donde se explica las adaptaciones particulares hechas a cada metaheurística, el proceso de validación cruzada, la estratificación, las métricas con las que se evalúan las metaheurísticas, el entonador usado para configar los distintos métodos, la representación del problema y la función objetivo utilizada; el tercer capítulo presenta los detalles del experimento realizado y muestra los resultados obtenidos; finalmente se cierra el trabajo con las conclusiones y recomendaciones.

Capítulo 1

Marco teórico

1.1. Descubrimiento de Conocimiento y preprocesamiento de datos

Hoy en día, existe una creciente necesidad de procesar grandes volúmenes de datos, estos datos son producto de la recolección de información de procesos y actividades de distintas índoles y se vuelven un material valioso para extraer información sobre posibles tendencias que puedan existir en dichos procesos [HPK11]. Es aquí donde entra el descubrimiento de conocimiento en bases de datos (KDD por su siglas en inglés) como disciplina encargada del procesamiento de datos para la extracción de información.

KDD es definida por *Smyth*, *P. et al.* [FSS96] como "el proceso no trivial de identificar patrones en los datos que sean válidos, novedosos, potencialmente útiles y finalmente entendibles". Para este fin, KDD se subdivide en distintas etapas a llevar a cabo para lograr el fin último de identificar patrones, éstas son [GLH16]: especificación del problema, entendimiento del problema, preprocesamiento de los datos, minería de datos, evaluación de los resultados y explotación de los resultados. En este trabajo es de especial interés la etapa de preprocesamiento de datos.

El preprocesamiento de datos consiste en el conjunto actividades destinadas a preparar los datos para ser usado por un algoritmo de minería de datos (DM por sus siglas en inglés). Las actividades realizadas en el preprocesamiento pueden ser clasificadas como actividades para la preparación de los datos y la reducción de los mismos [GLH16].

La preparación de datos es un paso obligatorio en el preprocesamiento, ya que transforma los datos, que inicialmente no se pueden utilizar para el algoritmo de DM por asuntos como la presencia de atributos faltantes en instancias, datos erróneos y atributos con formatos no aceptables para el algoritmo a utilizar [GLH16]. Dependiendo del enfoque dado, estas actividades pueden clasificarse en:

■ Limpieza de datos [GLH16, KCH+03]: incluye el tratamiento de los atributos faltantes y los datos erróneos, que si se dejan sin tratar resulta en un modelo de minería de datos poco confiable. Un atributo faltante en una instancia resulta de no haberlo introducido al momento del registro o por la pérdida en el proceso de almacenamiento. Los datos con atributos faltantes pueden tratarse de tres maneras [FKP07]: la eliminación de las instancias que presenten el problema, utilizar métodos de estimación de máxima verosimilitud para calcular promedios y varianzas y utilizar algoritmos del repertorio de machine learning como k-nn, k-means o Suport Vector Machine para estimar el valor de los atributos faltantes.

Por su parte, los datos erróneos (también conocidos como datos ruidosos) pueden venir de dos formas [CAB11]: ruido de clase cuando la instancia está mal clasificada y ruido de atributo cuando uno o más valores de los atributos en una instancia están distorsionados y no representan la realidad. Para tratar los datos ruidosos se puede usar tres métodos: construir algoritmos de DM que no se vean afectados en cierta medida ante el ruido (sean robustos), pulir los datos [Ten99] de tal manera que se corrijan los errores y por último se puede identificar los datos ruidosos para eliminarlos del conjunto y así quedarse sólo con datos correctos [BF99].

Transformación de datos [GLH16]: se centra en aplicar fórmulas matemáticas a los valores de los atributos para así obtener valores sintéticos que puedan proporcionar más información respecto a la instancia y al conjunto que pertenecen, las transformaciones más comunes son la lineal y la cuadrática.

• Integración de los datos [GLH16, BLN86]: consiste en la unión de los conjuntos de datos provenientes de distintas fuentes en un único conjunto. La integración tiene que tomar en cuenta algunos aspectos que se pueden presentar durante el proceso, entre ellos están la redundacia de atributos, la cual sucede cuando dos atributos están fuertemente correlacionados. La redundancia de atributos puede traer consigo un sobre ajuste (overfitting en inglés) de los modelos predictivos, además de aumentar el tiempo de cómputo de los mismos, es por eso que se debe eliminar la redundancia y para ello se utiliza una prueba de correlación χ^2 con el fin de identificar los atributos redundantes y así decidir con cual quedarse.

Al continuar con los problemas que se pueden presentar al momento de la integración, se tiene también la duplicación de instancias, problema que normalmente trae consigo la inconsistencia en los valores de los atributos, debido a las diferencias con las que se registran los valores. Para solucionar este asunto primero se tiene que identificar las instancias duplicadas usando técnicas que midan la similitud entre ellas, como la propuesta de *Fellegi, I. & Sunter, A.* [FS69] que lo modela como un problema de inferencia bayesiana o como en [CKLS01] donde se usan árboles de clasificación y regresión (CART por sus siglas en inglés) para cumplir este trabajo.

■ Normalización de datos [GLH16]: busca cambiar la distribución de los datos originales de tal manera que se acoplen a las necesidades de los algoritmos predictivos. Dos de los tipos de normalización más usadas son la normalización min-max y la normalización z-score.

Pasando a la reducción de los datos, se tiene que engloba todas las técnicas que reducen el conjunto de datos original para obtener uno representativo con el cual trabajar en los modelos predictivos. La reducción de datos cobra especial importancia cuando se tienen conjuntos muy grandes que tienden a elevar en gran medida el tiempo de cómputo de los algoritmos que los van a usar. Las técnicas de reducción de datos son [GLH16]:

■ Discretización de datos [GLH16, GLS+13]: es el proceso de transformar datos numéricos en datos categóricos, definiendo un número finito de intervalos

que representan rangos entre distintos valores consecutivos con el fin de poder tratarlos como valores nominales. Es de especial importancia conseguir el número correcto de intervalos que mantengan la información original de los datos, ya que muy pocos intervalos puede llegar a ocultar la relación existente entre un rango en específico y una clase dada y muchos intervalos puede llevar a un sobre ajuste [CPSK07]. El principal atractivo de la discretización es que permite utilizar un algoritmo de DM que trabaje principalmente con datos nominales como *Naïve Bayes* [YW09] a partir de datos numéricos. Para un estudio más completo de la discretización se referencia a [GLS⁺13].

- Selección de características [GLH16, LM12]: busca eliminar atributos que sean redundantes o irrelevantes de tal manera que el subconjunto de características restantes mantenga la distribución original de las clases. El proceso de selección de características tiene ventajas, como mantener e incluso mejorar la precisión de los modelos predictivos, reducir los tiempos de cómputo y reducir la complejidad de los modelos resultantes. La búsqueda de un subconjunto de atributos puede realizarse de tres maneras: búsqueda exhaustiva, búsqueda heurística y métodos no determinísticos. La búsqueda exhaustiva cubre todo el espacio de soluciones, normalmente van probando todas las combinaciones posibles de atributos para conseguir el que mejor se acople a la métrica a optimizar, entre los métodos exhaustivos están Focus [AD91], Automatic Branch & Bound [LMD98], Best First Search [XYC88], entre otros. Por su parte, la búsqueda heurística busca una solución aproximada a la óptima en poco tiempo, entre sus métodos están los propuestos en [DL97, KS96, Bat94]. Por último, están los métodos no determinísticos, de entre los que destacan los algoritmos géneticos, recocido simulado y Las Vegas Filter [LS⁺96].
- Selección de instancias [GLH16]: consiste en elegir un subconjunto de las instancias totales manteniendo las características del conjunto original. Es el problema a tratar en este trabajo y se elabora más sobre el mismo en la siguiente sección.

1.2. Selección de Instancias y Selección de Prototipos

La selección de instancias (IS por sus siglas en inglés) consiste en reducir el conjunto de datos dado a un conjunto reducido que conserve las capacidades de representación del conjunto original, para ser utilizado con un algoritmo de clasificación o regresión, manteniendo el desempeño del algoritmo como si se usara el conjunto original.

Definición 1. Dado un conjunto de datos X, se tiene que una instancia $X_i = (X_i^1, X_i^2, \dots, X_i^p)$ donde X_i^j es el atributo j para la instancia X_i con $X_i \in X$ y siendo p el número de atributos. La instancia X_i es de clase Y_j donde $Y_j \in Y$, siendo Y el conjunto de todas las clases definidas con $j \in (1 \dots q)$ donde q es el número de clases totales. Se divide el conjunto X en un conjunto TR de entrenamiento y un conjunto TS de prueba. El problema de **Selección de Instancias** consiste en conseguir un conjunto reducido $S \subseteq TR$ con el cual, al usarse con el clasificador M se mantenga o mejore la capacidad de representación del conjunto original [GLH16].

La respuesta óptima de un método de selección de instancias es un conjunto *consistente* y de cardinalidad mínima.

Definición 2. Un conjunto R es **consistente** con T, si y solo si toda instancia $t \in T$ es clasificada correctamente mediante el uso de un clasificador M y las instancias en R como conjunto de entrenamiento. [Ale14]

Sin embargo, conseguir la respuesta óptima es un problema NP-Duro (NP-Hard) como lo demuestra Zukhba, A. en [Zuk10]. Por lo tanto, la mayoría de los métodos propuestos hasta la fecha se enfocan en obtener una solución aproximada.

El problema de selección de instancias se puede enfocar como un problema de selección de prototipos (PS por sus siglas en inglés). PS es en esencia IS con el detalle de que el clasificador M usado es un clasificador basado en instancias [GLH16], de los cuales K Vecinos más Cercanos (KNN por sus siglas en inglés) es el más conocido. En este trabajo se usa 1-NN como clasificador.

1.2.1. Taxonomía del problema de selección de prototipos

En este trabajo se adopta la taxonomía propuesta por *García*, *S. et al.* en [GDCH12]. Sea TR el conjunto de entrenamiento y S el conjunto reducido, las propiedades son las siguientes:

1.2.1.1. Dirección de búsqueda

- Incremental: se empieza con un conjunto vacío S y se va añadiendo instancias de TR si cumple con cierto criterio. El orden de presentación de las instancias puede llegar a afectar el resultado final para muchos algoritmos, por eso se acostumbra a presentar los datos de manera aleatoria. Una búsqueda incremental tiene la ventaja de que puede seguir agregando instancias una vez finalizado un proceso de selección inicial, lo cual lo hace bastante atractivo para el aprendizaje continuo
- **Decremental:** la búsqueda empieza con S = TR y se va seleccionando instancias para remover de S. El orden de presentación sigue siendo importante, pero a diferencia de los métodos incrementales, se tiene todo el conjunto desde el inicio. Los algoritmos decrementales tienden a presentar un mayor costo computacional que los incrementales.
- Por lote: se elige un grupo y se evalúan todos los elementos del mismo para su eliminación, los que no pasen la prueba seleccionada son desechados. El proceso se repite con distintos lotes hasta terminar.
- Mixto: S empieza como un subconjunto preseleccionado (puede ser de manera aleatoria o usando un proceso incremental/decremental) e iterativamente puede añadir o remover instancias que cumplan con criterios en específico.
- Fijo: el número final de instancias en S se fija al principio de la fase de aprendizaje y se aplica una búsqueda mixta hasta cumplir con dicha cuota.

1.2.1.2. Tipo de selección

- Condensación: se busca mantener los puntos bordes (aquellos que están cercas de las fronteras entre las clases). El razonamiento es que son los puntos bordes los que realmente determinan las fronteras, siendo más útiles al momento de clasificar una nueva instancia. Estos métodos tienden a reducir bastante el conjunto original ya que hay menos puntos bordes que interiores.
- Edición: los métodos de edición en cambio buscan remover los puntos bordes, suavizando las fronteras bajo la idea de que es el lugar donde se concentran la mayor cantidad de puntos ruidosos. Tienden a disminuir en menor medida el conjunto TR en comparación a los métodos de condensación.
- Híbridos: su principal objetivo es mantener la precisión del clasificador usando un conjunto lo más reducido posible. Para esto eliminan tanto puntos internos como los ruidosos en el borde, tomando las ideas principales de los métodos de condensación y edición.

1.2.1.3. Evaluación de la búsqueda

- Filtro: son los métodos que usan un conjunto parcial de datos para decidir cuáles remover o añadir sin usar un esquema de validación, donde se deja uno por fuera para probar con el resto de los datos en cada iteración del algoritmo.
- Envolventes: usan todo el conjunto TR en un proceso de validación cruzada. Son métodos más costosos que los filtros, pero tienden a obtener una precisión mayor al momento de generalizar usando un algoritmo de DM.

A continuación se presenta en la la figura 1.1 la clasificación que se le puede dar a los algoritmos. Para un estudio más extenso sobre los distintos algoritmos se recomienda leer [GLH16]

FIGURA 1.1: Taxonomía para los métodos de selección de prototipos

1.2.2. Heurísticas

En esta sección se exponen las heurísticas utilizadas en este trabajo. Citando a *Pearl*, *J.* en [Pea84]: "Una heurística es un criterio, método o principio para decidir cual, de entre varias alternativas de acciones a seguir, promete ser la más efectiva para alcanzar un objetivo". Para el caso de PS, dicho objetivo es alcanzar un buen aproximado del conjunto de cardinalidad mínima y máxima precisión en la clasificación.

1.2.2.1. Condensed Nearest Neighbor (CNN)

Propuesto inicialmente por *Hart, P.* en [Har68],CNN es un método de condensación incremental. El conjunto S se construye de tal manera que cada elemento de TR está más cerca de un miembro de S de la misma clase que un miembro de S de clase distinta. El algoritmo empieza seleccionando una instancia aleatoria s y se coloca en S (inicialmente vacío), acto seguido se empieza a clasificar las instancias de TR sólo usando las instancias pertenecientes S; si una instancia es clasificada incorrectamente, se agrega a S, asegurando así que en la siguiente vuelta sea clasificada correctamente. Una vez aumentado S se vuelve a probar cada instancia de TR y se agregan las que sean mal clasificadas. El proceso se repite hasta que no existan instancias en TR que se encuentren mal clasificadas. CNN se presenta en el algoritmo 1.1.

1.2.2.2. Edited Nearest Neighbor (ENN)

Propuesto por Wilson, D. en [Wil72] ENN es un método de edición decremental. Empieza con S = TR y se va iterando sobre las instancias de S, removiendo aquellas

Algoritmo 1.1 CNN

Input: TR conjunto de entrenamiento, k número de vecinos a ser considerado en la clasificación

```
Output: S conjunto reducido
 1: S \leftarrow instancia aleatoria s
 2: flag \leftarrow false
 3: while \neg flag do
        for all x \in TR do
 4:
            Y \leftarrow k vecinos más cercanos a s pertenecientes a S
 5:
            Clasificar s con la misma clase que sea mayoría en Y
 6:
            if s está mal clasificada then
 7:
                S \leftarrow S \cup \{s\}
 8:
 9:
                Retornar a 3
        if Todas las instancias en TR fueron bien clasificadas then
10:
11:
            flag \leftarrow true
12: return S
```

que no concuerdan con la clase de la mayoría de sus k vecinos más cercanos. ENN se presenbta en el algoritmo 1.2.

Algoritmo 1.2 ENN

Input: TR conjunto de entrenamiento, k número de vecinos a ser considerado en la clasificación

```
Output: S conjunto reducido
```

```
    S ← TR
    for s ∈ S do
    Y ← k vecinos más cercanos a s pertenecientes a S
    if la clase de s es distinta a la clase mayoritaria en Y then
    Se elimina s de S
    return S
```

1.2.2.3. Relaxed Selective Subset (RSS)

Propuesto por *Flores*, A. & Mount, D. en [FM17] se tiene que RSS es un algoritmo híbrido incremental con la particularidad de que no es sensible al orden de presentación de las instancias, porque realiza un ordenamiento inicial de las mismas. El método primero ordena las instancias según la distancia que tengan a su enemigo más cercano (la instancia más cercana con clase distinta) de manera incremental (de la distancia más corta a la más larga). Luego, empezando con un conjunto S vacío, se

van presentando las instancias y se agrega a S aquellas para las cuales no exista un punto $s \in S$ que esté a una distancia menor que la distancia que tiene s a su enemigo más cercano. Sea $d_{NE}(p)$ la distancia del punto p a su enemigo más cercano y sea $d(p_i, s)$ la distancia de un punto p_i a un punto s. Rss se presenta en el algoritmo 1.3.

Algoritmo 1.3 RSS

```
Input: TR conjunto de entrenamiento
```

Output: S conjunto reducido

- 1: $S \leftarrow \emptyset$
- 2: Sea $\{p_i\}_{i=1}^n$ los puntos en TR ordenados de manera ascendente respecto a $d_{NE}(p_i)$
- 3: for all $p_i \in TR$ do
- 4: if $\neg \exists s \in S \text{ tal que } d(p_i, r) < d_{NE}(r) \text{ then}$
- 5: $S \leftarrow S \cup \{p_i\}$
- 6: return S

1.3. Meteheurísticas

Las metaheurísticas son una familia de algoritmos aproximados de propósito general y no determinístico; consistentes en procedimientos iterativos que guían una heurística subordinada. Al momento de diseñar una metaheurística se debe tomar en cuenta dos conceptos: intensificación y diversificación [Tal09]. En un proceso de intensificación, las regiones en el espacio de soluciones prometedoras son revisadas con la esperanza de conseguir mejores soluciones. En un proceso de diversificación, las regiones no exploradas son visitadas para poder abarcar distintos lugares en el espacio de soluciones y así evitar que la exploración se estanque en una región específica. Las metaheurísticas se pueden clasificar como metaheurísticas basadas en una única solución o metaheurísticas basadas en una población [Tal09]. Para estudiar los distintos métodos, primero se necesita definir una serie de conceptos que son comunes para todos:

Definición 3. La **representación del problema** es la manera de codificar las soluciones pertenecientes al espacio de soluciones. Debe ser acorde al problema de tal manera que cumpla con las siguientes características: debe ser completo, es decir, todas las soluciones deben poder ser codificadas; debe ser conexo, lo que se traduce a

que debe haber un camino entre dos cualesquiera soluciones y por último, debe ser eficiente, de tal manera que la manipulación por los operadores de búsqueda tenga un costo en tiempo y espacio razonable [Tal09].

Definición 4. La función objetivo (también conocida como función de adaptabilidad o de utilidad) \mathcal{F} asocia a cada solución un valor real que mide la calidad de la solución: $\mathcal{F}: S \to \mathbb{R}$, donde S es el espacio de soluciones. Con la función objetivo se guía la búsqueda hacia "buenas" soluciones[Tal09].

Definición 5. La **vecindad** de una solución s es el conjunto de soluciones cercanas a s. Se obtienen realizando una pequeña perturbación a s con un operador de movimiento [Tal09].

1.3.1. Metaheurísticas basadas en una única solución

También conocidas como metaheurísticas de trayectoria, se centran en mejorar una solución que van cambiando a lo largo del curso del algoritmo; se puede ver como trayectorias de búsqueda en el espacio de soluciones, dichas trayectorias son trazadas por procesos iterativos que se mueven de una solución a otra dependiendo del criterio de aceptación particular de la metaheurística utilizada. Esta clase de metaheurísticas se enfocan principalmente en la explotación del espacio de soluciones. Entre ellas se encuentra la búsqueda local [Tal09, AL03], el recocido simulado [Tal09, KGV83], la búsqueda tabú [Tal09, Glo89], Búsqueda Local Iterada (ILS) [LMS03], Búsqueda de Vecindad Variable (VNS) [MH97], Búsqueda Local Guiada (GLS) [Vou98], GRASP [FR95], entre otros. De especial importancia está la búsqueda local, la cual juega un papel importante en la mayoría de las metaheurísticas de trayectoria y en algunas metaheurísticas poblacionales:

1.3.2. Metaheurísticas basadas en una población

Estas metaheurísticas empiezan con una población inicial de soluciones, que puede ser elegida de manera aleatoria o con heurísticas que introduzcan "buenas" soluciones, e iterativamente generan nuevos elementos que pueden llegar a suplantar los de la población actual según un criterio de selección. El proceso de generación y selección se repite hasta que se cumpla un criterio de parada, el cual puede ser un número de iteraciones fijas o hasta que la población converga a una región sin mejoras pasado un número de iteraciones. Dichos procesos de generación y selección pueden ser sin memoria, es decir, solo dependen de la población actual, como el caso de los algoritmos genéticos tradicionales o pueden ser con memoria y usar información adquirida durante el proceso de búsqueda para dirigir la generación y selección a mejores resultados. [Tal09].

Entre las metaheurísticas basadas en una población se encuentran: Scatter Search [Tal09, Glo77], colonia de hormigas [Tal09, Dor92], optimización de enjambre de partículas [Tal09, ESK01], algoritmos de estimación de distribución [Tal09, LLIB06], Evolución Diferencial [Tal09, PSL06], Algoritmos evolutivos [Tal09], entre otros.

1.3.2.1. Algoritmos evolutivos

Los algoritmos evolutivos están basados en la competencia entre individuos de una población llamados cromosomas; la población se inicializa con cromosomas elegidos aleatoriamente o a través de heurísticas. Con esto, dado una función objetivo, se evalúa cuán bueno es cada cromosoma y con esta información se decide por medio de un proceso de selección cuáles serán los cromosomas que se van a cruzar, dando como resultado uno o más hijos que comparten características de sus padres. Luego del cruce, viene la mutación de los nuevos cromosomas con un operador definido que perturba ligeramente al cromosoma. Por último viene un proceso de reemplazo donde se decide si los hijos suplantan algún elemento de la población (esquema estacionario) o si se construye una nueva población con los hijos que va a suplantar totalmente a sus padres (esquema generacional) [Tal09].

El diseño de un algoritmo evolutivo viene dado con la toma de decisiones respecto a algunos componentes. Algunos comunes a todas las metaheurísticas como la representación del problema, el cual puede ser un vector de valores binarios, enteros, reales, una permutación, entre otros; la inicialización de la población, que puede ser por medio de heurísticas o aleatoria y la elección de una función objetivo que represente cuán buena es un cromosoma y el criterio de parada. Por otro lado, hay unos componentes que son propios de los algoritmos evolutivos como el criterio de selección de cromosomas para reproducirse, el operador de cruce, el operador de mutación y la estrategia de reemplazo.

Los algoritmos evolutivos que fueron implementados en este trabajo fueron:

1.3.2.1.1 Algoritmo Genético Generacional (GGA)

Generational Genetic Algorithm (GGA) en inglés, es el esquema tradicional de algoritmos genéticos; los algoritmos genéticos fueron desarrollados por Holland, H. en [Hol75]. La versión generacional usa una estrategia de reemplazo en la cual se genera una población nueva de hijos en cada ciclo del algoritmo y ésta suplanta a la generación anterior. El algoritmo comienza con una población inicial aleatoria y va creando poblaciones nuevas en cada generación hasta que se cumpla una condición de parada. En medio del proceso está actuando un operador de cruce que mezcla los cromosomas seleccionados como padres y una operación de mutación que modifica algunos cromosomas de la nueva generación. GGA se presenta en el algoritmo 1.4 [Ale14].

1.3.2.1.2 Algoritmo Genético Estacionario (SSGA)

Steady State Genetic Algorithm (SSGA) en inglés, es otra variación de los algoritmos genéticos. En este caso, la estrategia de reemplazo consiste en generar uno o dos hijos por iteración y decidir al momento si va a suplantar algún elemento de la población; puede suplantar a uno de los padres si es mejor que uno de ellos o puede suplantar al peor elemento de la población. Al igual que GGA, se tiene que definir un operador de mutación y cruce. SSGA se presenta en el algoritmo 1.5 [Ale14].

Algoritmo 1.4 Algoritmo Genético Generacional

Input: pop tamaño de la población, cp probabilidad de cruce, mp probabilidad de mutación

```
Output: La solución al problema
 1: P \leftarrow Generar población aleatoria de pop cromosomas
 2: s^* \leftarrow \text{el } mejor \text{ individuo en } P
 3: while ¬ Condición de parada do
 4:
         P' \leftarrow \emptyset
         while |P'| < pop do
 5:
              p_1 \leftarrow \text{Seleccionar} un cromosoma en P
 6:
              p_2 \leftarrow \text{Seleccionar} un cromosoma en P
 7:
              c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ con probabilidad cp}
 8:
              Mutar c_1 y c_2 con probabilidad mp
 9:
              P' \leftarrow P' \cup \{c_1, c_2\}
10:
         P \leftarrow P'
11:
         if El mejor cromosoma en P es mejor que s^* then
12:
              s^* \leftarrow \text{el } mejor \text{ cromosoma en } P
13:
14: return s^*
```

Algoritmo 1.5 Algoritmo Genético Estacionario

Input: pop tamaño de la población, cp probabilidad de cruce, mp probabilidad de mutación

```
Output: La solución al problema
```

```
1: P \leftarrow Generar población aleatoria de pop cromosomas
 2: s^* \leftarrow \text{el } mejor \text{ cromosoma en } P
 3: while ¬ Condición de parada do
        p_1 \leftarrow \text{Seleccionar} un cromosoma en P
 4:
        p_2 \leftarrow \text{Seleccionar un cromosoma en } P
 5:
        c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ con probabilidad cp}
 6:
 7:
        Mutar c_1 y c_2 con probabilidad mp
        Seguir algún criterio de reemplazo de cromosomas en P por c_1 y c_2
 8:
        if El mejor icromosoma en P es mejor que s^* then
 9:
10:
             s^* \leftarrow \text{el } mejor \text{ cromosoma en } P
11: return s^*
```

1.3.2.1.3 Algoritmo Memético (MA)

Memetic Algorithm en inglés, es un algoritmo evolutivo basado en los algoritmos genéticos que tiene la peculiaridad de tener un proceso de optimización interno llamado "meme", el cual es aplicado a todos o algunos cromosomas de la población en cada iteración; el meme más común es una búsqueda local [NC12]. El esquema clásico se basa en los GGA y primero genera una población nueva con los cruces y mutaciones propios de un GGA, para luego pasar a una fase de intensificación donde aplica el meme a todas las soluciones y se genera una nueva población optimizada que suplanta la generación anterior. Otro esquema se basa en los SSGA y en cada iteración se cruzan una serie de padres para generar uno o dos hijos que, luego de mutar con cierta probabilidad dada, se decide si pasan a un proceso de optimización con el meme y el resultado se decide si se incorpora a la población. En el algoritmo 1.6 se presenta la versión estacionaria de los algoritmos meméticos (SSMA).

Algoritmo 1.6 Algoritmo Memético Estacionario

Input: pop tamaño de la población, cp probabilidad de cruce, mp probabilidad de mutación, mem meme usado

Output: La solución al problema

- 1: $P \leftarrow$ Generar población de pop cromosomas
- 2: $s^* \leftarrow \text{el } mejor \text{ cromosoma en } P$
- 3: **while** ¬ Condición de parada **do**
- 4: $p_1 \leftarrow \text{Seleccionar un cromosoma en } P$
- 5: $p_2 \leftarrow \text{Seleccionar un cromosoma en } P$
- 6: $c_1, c_2 \leftarrow \text{recombinar } p_1 \text{ y } p_2 \text{ con probabilidad cp}$
- 7: Mutar c_1 y c_2 con probabilidad mp
- 8: Determinar si c_1 y c_2 van a ser optimizados con mem y almacenar el resultado en c'_1 y c'_2
- 9: Seguir algún criterio de reemplazo de cromosomas en P por c_1' y c_2'
- 10: **if** El mejor cromosoma en P es mejor que s^* then
- 11: $s^* \leftarrow \text{el } mejor \text{ cromosoma en } P$
- 12: return s^*

1.3.2.1.4 CHC Adaptative Search Algorithm

Propuesto inicialmente por *Eshelman*, *L*. en [Esh91], es un algoritmo evolutivo generacional con la diferencia de que es totalmente elitista, ya que elige los mejores

n elementos de entre la vieja y nueva población para conformar la nueva generación (n es el número de cromosomas en la población). También tiene la particularidad de que implementa un operador de cruce llamado HUX en el cual, dado dos padres, intercambia la mitad de los genes que no coincidan entre ellos de manera aleatoria con el fin de crear hijos lo más distinto posible de los padres. Además CHC tiene un mecanismo de prevención de incesto en el cual se usa la distancia de Hamming entre los dos posibles candidatos a ser padres para determinar si son lo suficientemente distintos para cruzarse, para esto usa un umbral que inicialmente es L/4 donde L es la longitud del cromosoma. Por último, no existe una operación de mutación y en cambio, cuando pasa una generación sin cromosomas nuevos, se disminuye el umbral de incesto en 1, hasta que llega a 0 y se toma la decisión de reinicializar la población, preservando el mejor cromosoma encontrado hasta el momento y poblando los cromosomas restantes con variaciones del mejor, donde se perturban hasta un 35 % de los genes asociados al cromosoma. CHC se presenta en el algoritmo 1.7, donde t es la generación actual, d es el umbral de incesto, P(t) es la población de la generación t, L es la longitud del cromosoma.

Algoritmo 1.7 CHC

```
Input: pop tamaño de la población
Output: La solución al problema
 1: t = 0
 2: d = L/4
 3: P(t) \leftarrow Generar población de pop cromosomas
 4: s^* \leftarrow \text{el } mejor \text{ cromosomas en } P
 5: while ¬ condición de parada do
        t = t + 1
 6:
 7:
        C(t) \leftarrow P(t-1)
        recombinar los cromosomas en C(t) para formar C'(t)
 8:
 9:
       evaluar los cromosomas en C'(t) con la función objetivo
       seleccionar P(t) de C'(t) y P(t-1) sólo con los mejores cromosomas
10:
       if El mejor cromosoma en P es mejor que s^* then
11:
12:
            s^* \leftarrow \text{el } mejor \text{ cromosoma en } P
       if P(t) = P(t-1) then
13:
           d \leftarrow d - 1
14:
       if d < 0 then
15:
           Reinicializar P(t)
16:
17: return s^*
```

Algoritmo 1.8 Recombinar

```
Input: C(t) candidatos a padre, d umbral de incesto

Output: C'(t) hijos

for all par de instancias en C(t) x_1 y x_2 do

ham \leftarrow \text{distancia de hamming entre } x_1 y x_2

if ham/2 > d then

cambiar la mitad de elementos que difieran entre x_1 y x_2 de forma aleatoria para generar x_1' y x_2'

C'(t) \leftarrow C'(t) \cup \{x_1', x_2'\}

else

borrar el par x_1 y x_2 de C(t)

return C'(t)
```

Algoritmo 1.9 Reinicializar

```
Input: P(t-1) población anterior, s^* mejor solución, r porcentaje de genes a cambiar, d umbral de incesto

Output: P(t) población renovada

Llenar P(t) con copias de s^*

for all miembros x_i \in P(t) excepto uno do

Cambiar r*L genes de manera aleatoria de x_i

Evaluar x_i con la función objetivo

d = L/4

return P(t)
```

Capítulo 2

Marco metodológico

En este capítulo se detalla la representación utilizada para los cromosomas, la función objetivo, las adaptaciones particulares que se hizo a cada algoritmo evolutivo usado en el experimento, el proceso de validación cruzada, la técnica de estratificación, se presenta los conjuntos de datos usados para el experimento y se explica el método de entonación utilizado para ajustar los algoritmos evolutivos.

2.1. Representación del cromosoma

Sea T el conjunto de instancias a reducir de tamaño n, la representación usada para modelar el problema de selección de prototipos es el de un mapa de bits de tamaño n, donde cada bit representa una instancia $t_i \in T$; si el valor del bit i es 1, entonces la instancia $t_i \in S$, donde S es el conjunto reducido; si el bit i es 0, $t_i \notin S$. En este sentido, el conjunto S representado por el mapa de bits M se define como en la ecuación (2.1). Además un ejemplo se presenta en 2.1. Cabe destacar que en los algoritmos evolutivos, los mapas de bits se conocen como cromosomas y cada bit como gen.

$$S = \{ t_i \in T \mid i = 1 \dots n \land m_i = 1 \land m_i \in M \}$$
 (2.1)

FIGURA 2.1: Representación de un cromosoma y su respectivo conjunto reducido

2.2. Función objetivo

Se necesita una función con la cual los algoritmos evolutivos puedan evaluar cuán buena es una solución dada, además de que dicha función debe permitir establecer una relación de orden entre las soluciones con el fin de decidir cuál cromosoma es mejor que otro. Como se explicó anteriormente, los algoritmos evolutivos buscan aproximarse al óptimo global, que en este caso es el conjunto reducido S con menor cardinalidad y mayor precisión en la clasificación de instancias nuevas. Es por eso que se adopta una función objetivo derivada del trabajo de *Cano*, *J.* en [dA04], la cual se presenta a continuación:

$$\mathcal{F}(S) = \alpha * error(S) + (1 - \alpha) * reduccin(S)$$
 (2.2)

Donde $\mathcal{F}:S\to\mathbb{R}$ es la función objetivo, S es el conjunto reducido a evaluar, α es un parámetro que controla cuánta importancia se le da al error asociado a S con respecto a la tasa de reducción del segundo término de la ecuación (2.2), TR es el conjunto de entrenamiento original del cual se realizó la reducción, error(S) es el porcentaje de error al clasificar un conjunto de prueba TS usando 1-NN con S como conjunto de entrenamiento y reducción(S) es el porecentaje de instancias restantes en S en relación al conjunto original TR. El α usado es 0.5 como lo establecen en [dA04] para darle la misma importancia a la reducción de datos como a mantener bajo los porcentajes de error en la clasificación.

Dado esta función objetivo, la meta de todas las metaheurísticas implementadas se vuelve minimizar $\mathcal{F}(S)$, lo cual quiere decir que se busca tanto reducir |S|, como reducir error(S). Una conjunto S_i es mejor que un conjunto S_j si $\mathcal{F}(S_i) < \mathcal{F}(S_j)$.

FIGURA 2.2: Cruce de un punto

2.3. Adaptaciones de los algoritmos evolutivos

Para aplicar los distintos algoritmos evolutivos implementados para este trabajo, es necesario determinar los operadores de cruce, mutación, el método de selección de los cromosomas que van a cruzarse, el criterio de selección de los cromosomas sobrevivientes y en caso del algoritmo memético el proceso de optimización interno (también conocido como meme) utilizado.

Para el caso del algoritmo genético estacionario y el algoritmo memético, se eligió como método se selección de cromosomas a cruzarse un proceso de torneo [Tal09], el cual consiste en seleccionar k cromosomas de manera aleatoria y elegir el mejor de los k. CHC por su parte elige dos cromosomas aleatorios y utiliza su mecanismo de prevención de incesto para elegir a los padres. El algoritmo genético generacional simplemente elige dos elementos aleatorios para realizar el cruce.

El operador de cruce utilizado en GGA, SSGA y MA es el cruce de un punto [Tal09], el cual consiste en definir un punto μ en el cual se va dividir los dos cromosomas seleccionados como padres y luego se forman dos hijos a partir de la mezcla de las partes de los padres. CHC en cambio usa el operador HUX explicado anteriormente. En la figura 2.2 se muestra un ejemplo del cruce de un punto.

El operador de mutación para GGA, SSGA y MA consta de cambiar 5% de los genes del cromosoma de manera aleatoria. Se elige 5% basado en [Ale14] para que la mutación represente una variación en S, ya que si sólo se cambia un gen, el conjunto mutado sería para los efectos de la optimización casi idéntico al original. Sin embargo la probabilidad de que un cromosoma dado mute es baja, basado principalmente en los

resultados de *Cano*, *J.* en [dA04] donde obtienen mejores resultados experimentales con bajas probabilidades de mutación (menor al 1% por cromosoma), justificándose en que con mayores valores, la búsqueda podría degenerar en una búsqueda aleatoria. CHC por su parte no tiene mutación.

El criterio de reemplazo para GGA es generar una población nueva de hijos P_i que va a suplantar la generación anterior P_{i-1} excepto el mejor elemento en P_{i-1} . Por su parte, el criterio de reemplazo de SSGA es que dado dos padres y los dos hijos producidos por el operador de cruce, se eligen los 2 mejores cromosomas para permanecer dentro de la población. MA, en cambio usa un criterio de reemplazo en el cual los 2 hijos suplantan a los 2 peores elementos de la población y CHC se queda con los $\bf n$ mejores cromosomas entre P_i y P_{i-1} , ambos casos son totalmente elitistas.

El algoritmo memético es el que más adaptaciones tiene para adecuarse a PS, se usa una adaptación realizado por Cano, J. et~al. en [GCH08]. Se basa en el algoritmo memético estacionario presentado anteriormente, con la peculiariadad de que para decidir si los hijos producidos en una iteración van a ser optimizados con el meme, se usa un parámetro P_{LS} que se determina de la siguiente forma:

$$P_{LS} = \begin{cases} 1 & \text{si } \mathcal{F}(S_{nuevo}) < \mathcal{F}(S_{peor}) \\ 0.0625 & \text{en caso contrario} \end{cases}$$
 (2.3)

Donde \mathcal{F} es la función objetivo, S_{nuevo} es el conjunto reducido representado por uno de los cromosomas hijos y S_{peor} es el conjunto reducido representado por el peor cromosoma de la población. Es así como P_{LS} representa la probabilidad con la cual se va a decidir si se optimiza el cromosoma hijo; P_{LS} debe ser calculado para cada hijo creado en el cruce. La idea es que si el hijo es mejor que el peor cromosoma de la población, entonces vale la pena optimizarlo; en cambio, si es peor, se le da una probabilidad de optimización de 6,25%.

El meme usado en MA es el que se presenta en el algoritmo 2.1. El procedimiento consiste en ir reduciendo progresivamente las instancias que se encuentran en el conjunto S, representado por el cromosoma M, sin que se pierda la precisión asociada a S. Para esto, se usa una lista U del primer vecino más cercano de cada gen en M,

una lista R que contiene los genes que ya han sido puestos en 0 y que no generan una ganancia mayor al umbral de aceptación t, clase(i) es la clase asociada a la instancia representada por el gen i del cromosoma M, ganancia representa cuánto mejora (en caso de que sea positiva) o cuánto empeora (en caso de ser negativa) la solución dada por el cromosoma M luego de cambiar un gen, $fitness_M$ es el valor de evaluar la función objetivo con el cromosoma M y $fitness_{ganancia}$ se define como en la ecuación (2.4), donde L es el largo del cromosoma:

$$fitness_{ganancia} = \frac{\frac{ganancia}{L} * 100 + \frac{100}{L}}{2}$$
 (2.4)

El meme intenta remover una instancia de S en cada iteración pra ver si la precisión mejora, se mantiene igual o empeora. Si la ganancia es positiva y está por encima del umbral de aceptación entonces se preservan los cambios; en cambio, si la ganancia está por debajo del umbral, entonces se vuelve a incluir la instancia eliminada y se etiqueta su respectivo gen como revisado.

2.4. Criterios para comparar los métodos de selección de prototipos

Al momento de comparar los distintos métodos de PS, se usan los siguiente criterios para evaluar las fortalezas y debilidades relativas de cada algoritmo [GLH16]:

- Reducción: se mide como la proporción existente entre la cardinalidad del conjunto reducido S entre el conjunto de entrenamiento; esto es |S|/TR. La reducción de las instancias trae consigo una disminución en los tiempos de cómputo al tener que revisar menos cromosomas en cada iteración para clasificar una nueva instancia.
- Precisión de la clasificación: se espera que aún con el conjunto reducido, se mantenga las tasas de acierto del clasificador o inclusive, mejoren. Un algoritmo

Algoritmo 2.1 Meme

```
Input: M cromosoma a optimizar, t umbral de aceptación
Output: M cromosoma optimizado
 1: Sea M = \{m_1, m_2, \dots, m_n\} el cromosoma a optimizar
 2: R \leftarrow \emptyset
 3: U = \{u_1, u_2, \dots, u_n\} la lista de vecinos asociados, donde u_i es el vecino más cercano
    del gen i.
 4: while (\exists m_i \in M \mid m_i = 1 \land i \notin R) do
        elegir j aleatoriamente de M tal que m_i = 1 \land j \notin R
        qanancia \leftarrow 0
 6:
        m_i \leftarrow 0
 7:
        Copiar U a U'
 8:
 9:
        for all u_i \in U \mid u_i = j do
             u_i \leftarrow nuevo vecino más cercano con el nuevo M
10:
11:
             if clase(i) = clase(u_i) \wedge clase(i) \neq clase(u_i) then
                 qanancia \leftarrow qanancia - 1
12:
             else if clase(i) \neq clase(u_i) \wedge clase(i) = clase(u_i) then
13:
                 qanancia \leftarrow qanancia + 1
14:
15:
        if qanancia > t then
             fitness_M \leftarrow fitness_M + fitness_{ganancia}
16:
17:
        else
18:
             Recuperar U de U'
19:
             m_i \leftarrow 1
20:
             R \leftarrow R \cup j
21:
22: return M
```

de PS debe poder mantener la precisión al momento de ser evaluado con el conjunto de prueba. La precisión se calcula dividiendo el número de clasificaciones hechas correctamente entre el total de clasificaciones.

- Tiempo de cómputo: involucra cuánto tiempo le lleva al algoritmo realizar la reducción de los datos, un factor importante al momento de escalar los métodos a conjuntos muy grandes. En este trabajo el tiempo de cómputo se mide en segundos.
- Cohen's Kappa: es una métrica que originalmente mide el nivel de acuerdo o desacuerdo entre dos clasificadores. Sin embargo se han hecho adaptaciones de esta métrica para ser usada por un sólo clasificador [GDCH12], ya que es más robusta que la precisión por tomar en cuenta la posibilidad de que una

clasificación sea hecha aleatoriamente. Esta métrica sirve para verificar si el clasificador está etiquetando las instancias correctamente de manera consistente o de una manera inestable con muchas decisiones aleatorias. Cohen's kappa se calcula a partir de la matriz de confusión como se muestra en la ecuación (1.1). Donde y_{ii} es el conteo de las celdas de la diagonal principal, N el número de instancias revisadas, Ω el el número de clases presentes, y_i es la suma de las celdas de la fila i y Y_{i} es la suma de las celdas de la columna i.

$$kappa = \frac{N * \sum_{i=1}^{\Omega} y_{ii} - \sum_{i=1}^{\Omega} y_{i.} * y_{.i}}{N^2 - \sum_{i=1}^{\Omega} y_{i.} * y_{.i}}$$
(2.5)

2.5. Conjunto de datos

Los conjuntos de datos utilizados para validar el experimento provienen de *UCI Machine Learning Repository* [DKT17] y *KEEL Data-Mining Software Tool* [AFFL⁺11]. Se hace una separación como la establecida en [dA04] donde se considera como conjunto de datos pequeños aquellos con menos de 2000 instancias, los conjuntos medianos los que poseen entre 2000 y 20000 instancias y los conjuntos grandes aquellos con más de 20000 instancias. En la tabla 2.1 se detallan los conjuntos pequeños, en 2.2 los medianos y en 2.3 los grandes. Solo se eligió conjunto de datos numéricos para poder utilizar la distancia euclídea con 1-NN sin tener problemas en la preservación de información al convertir datos categóricos a numéricos.

2.6. Validación cruzada y estratificación

Dado un conjunto de datos T, el proceso de validación cruzada [K+95] consta de dividir T en k subconjuntos disjuntos T_1, T_2, \ldots, T_k de aproximadamente el mismo tamaño, donde cada subconjunto mantiene la distribución de las clases presente en T. Luego se procede a probar el clasificador M, que en este caso es 1-NN, k veces, donde en cada prueba $t \in \{1, 2, \ldots, k\}$ se utiliza como conjunto de entrenamiento $TR = T \setminus T_t$, se aplica el algoritmo de selección de prototipos a TR y el conjunto

Conjunto	Instancias	Atributos	CLASES
Iris	150	4	3
Cleveland	297	13	5
Led7Digit	500	7	10
Pima	768	8	2
WDBC	569	30	2
Monk-2	432	6	2
Wisconsin	683	9	2
Wine	178	13	3
Glass	214	9	7
Banknote	1372	5	2
Appendicitis	106	7	2
Balance	625	4	3
Bands	539	19	2
Contraceptive	1473	9	3
Dermatology	366	34	6
Ecoli	336	7	8
Haberman	306	3	2
Hayes-roth	160	4	3
Heart	270	13	2
Hepatitis	155	19	2
Mammographic	961	5	2
Newthyroid	215	5	3
Tae	151	5	3
Vehicle	846	18	4
Vowel	990	13	11
Yeast	1484	8	10

Tabla 2.1: Conjuntos de datos pequeños

resultante S se valida usando $TS = T_t$ como conjunto de prueba. El porcentaje de aciertos del clasificador se calcula como el promedio de las k pruebas realizadas; pero como las metaheurísticas tienen un componente estocástico, se necesita repetir cada prueba varias veces. En la figura 2.3 se muestra un esquema de cómo se aplica la validación cruzada para el problema de selección de prototipos dado que la partición k es seleccionada como conjunto de prueba.

Por otra parte está la estratificación, la cual es una técnica propuesta por Cano, J. et~al. en [CHL05] para solventar el problema de aplicación de los algoritmos de PS a conjunto de datos muy grandes. Dicho problema viene dado porque la mayoría de los algoritmos de PS y metaheurísticas utilizadas son $O(n^2)$, siendo n la cantidad de instancias del conjunto a procesar, y por lo tanto, para grandes volúmenes de

Conjunto	Instancias	Atributos	CLASES
Banana	5300	2	2
Cardiotocography	2126	23	3
Eye-state	14980	15	2
Page-blocks	5473	10	5
Penbased	10992	16	10
Satimage	6435	36	7
Thyroid	7200	21	3
Segment	2310	19	7
Coil2000	9822	85	2
Magic	19020	10	2
Marketing	8993	13	9
Phoneme	5404	5	5
Ring	7400	20	2
Spambase	4597	57	2
Texture	5500	40	11
Titanic	2201	3	2
Twonorm	7400	20	2

Tabla 2.2: Conjuntos de datos medianos

Conjunto	Instancias	Atributos	Clases
Credit-card	30000	24	2
Shuttle	58000	9	7

TABLA 2.3: Conjuntos de datos grandes

FIGURA 2.3: Validación cruzada

FIGURA 2.4: Estratificación

datos estos algoritmos empiezan a tardar mucho en calcular una solución, lo cual los vuelve poco útiles al momento de hacer preprocesamiento de datos. Es así que la estratificación se adopta como una técnica que lleva a tiempos aceptables el cómputo con conjuntos de muchas instancias.

Dado un conjunto de datos TR producto de la división hecha por un proceso de validación cruzada, la estratificación empieza dividiendo TR en k subconjuntos disjuntos, llamados estratos, TR_1, TR_2, \ldots, TR_k de aproximadamente el mismo tamaño. Luego, se aplica el algoritmo de PS directamente a cada uno de los k subconjuntos seleccionados TR_i para el entrenamiento, formando entonces subconjuntos reducidos $TRS_1, TRS_2, \ldots, TRS_k$; acto seguido, se juntan todos los TRS_i para formar el conjunto reducido S que va a ser usado por 1-NN para clasificar TS. La estratificación prueba ser un método efectivo, como lo demuestran en [CHL05], ya que reduce la cantidad de instancias que debe tratar el algoritmo de PS a TR/k, por lo que la elección del número de estratos k se vuelve de especial importancia. En la figura 2.4 se muestra un esquema de cómo se aplica la estratificación, donde el estrato k es seleccionado como conjunto de prueba.

2.7. Entonación de las metaheurísticas

Para la entonación de las metaheurísticas se usó *irace* [LIDLC+16], el cual es un paquete de R que implementa el método de entonación automática conocido como *iterated F-race*. La esencia de *iterated F-race* es hacer varias carreras, las cuales son procesos internos del algoritmo que ponen a competir un conjunto de vectores de parámetros (tambien conocidos como configuraciones) con un repertorio de problemas, con el fin de recopilar datos referentes al desempeño de cada configuración, para poder hacer pruebas estadísticas que determinarán las configuraciones que van a ser elegidas como las mejores y además descartar las peores en una etapa temprana de la carrera.

Iterated F-race en específico trata de un método que consiste en tres pasos: (1) elegir varias configuraciones posibles de acuerdo a una distribución en particular y así formar una población, (2) elegir una población de configuraciones (3) actualizar la distribución de la población de tal manera que sea sesgado a favor de las mejores configuraciones. Estos tres pasos son repetidos hasta que pase un número de iteraciones dadas por el usuarion. El algoritmo de iterated F-race se presenta en 2.2.

Algoritmo 2.2 IRACE

Input: I conjunto de instancias del problema a entonar, X espacio de configuraciones, U función de utilidad, B número de iteraciones con el que se cuenta

Output: θ^{elite} mejores configuraciones encontradas

- 1: $\theta_1 \leftarrow$ una muestra uniforme de X
- 2: $\theta^{elite} \leftarrow$ resultado de una **carrera** usando θ_1 como población y con número de iteraciones B_1
- $3: j \leftarrow 1$
- 4: while $B^{usado} \leq B$ do
- 5: $j \leftarrow j + 1$
- 6: $\theta^{nueva} \leftarrow \text{muestra sesgada hacia } \theta^{elite} \text{ de X}$
- 7: $\theta_i \leftarrow \theta^{nueva} \cup \theta^{elite}$
- 8: $\theta^{elite} \leftarrow$ resultado de una **carrera** usando θ_j como población y con presupuesto B_j
- 9: **return** θ^{elite}

Cabe acotar que *irace* asume que el problema sobre el cual se va a entonar es un problema de minimización. Por lo tanto, siempre se busca menores valores de la función de utilidad U para cada configuración; además, luego de cada carrera asigna

un rango r_z dependiendo de cómo se compare la configuración z con respecto al resto, a menor rango, mejor es la configuración, por lo tanto, el conjunto de élites θ^{elite} está conformado por los k elementos con menor rango. El número k es calculado al principio de la corrida de *irace* y en este trabajo se deja su cálculo automático por defecto.

La prueba estadística utilizada por la carrera para ir eliminando las peores configuraciones y preservando las élites es la prueba Friedman no paramétrica o la prueba *t-test*. Por recomendación de los autores se usa una prueba t-test con un valor significativo de 0.05 ya que, según sus criterios, es la más adecuada para la entonación de parámetros de valores continuos.

Irace, además, implementa un método de reinicialización cuando la población de configuraciones converge prematuramente. En este proceso se mantienen las configuraciones élites de la última carrera y empieza de nuevo segun ciertas consideraciones. Aunado a esto, irace también implementa un sistema de carrera elitista, el cual evita que las mejores configuraciones encontradas hasta el momento se pierdan en una carrera producto de una serie desfavorable de evaluaciones en un momento dado. En este trabajo se usa ambas funciones como configuración por defecto que tiene irace. Para más información de todas las funciones y utilidades que presenta esta herramemienta, se recomienda leer [LIDLC+16].

Capítulo 3

Evaluación experimental

3.1. Diseño experimental

En este capítulo se describe todas las decisiones tomadas con respecto a la experimentación; esto incluye los parámetros usados para la entonación, las particiones hechas en la validación cruzada y la estratificación, el diseño de los experimentos combinando las heurísticas con las metaheurísticas y finalmente se presentan los resultados de cada prueba realizada.

Lo primero que se hace es entonar los algoritmos evolutivos para que devuelvan el mejor valor posible al probarse con los conjuntos de datos expuestos en la sección 2.4. Para lograr la entonación, se usa *irace*, expuesto en la sección 2.6, con los parámetros de la tabla 3.1. Se consigue una configuración de parámetros para los problemas pequeños, medianos y grandes respectivamente.

Parámetros	irace
Iteraciones	1000, 400 y 100
Número decimales significativos	4
Prueba estadística	t-test
Nivel de significancia para prueba estadística	0.05
Frecuencia de la prueba estadística	1 iteración
Número de configuraciones élites	automática
Reinicialización por convergencia prematura	Sí
Modo elitista	Sí

Tabla 3.1: Parámetros usados para irace

Parámetros	Tipo de dato	Rangos
Población	entero	[10,150]
Probabilidad de cruce	real	[0,1]
Probabilidad de mutación	real	[0,0.01]
Número del torneo	entero	[1,10]

Tabla 3.2: Rangos usados para los parámetros en la entonación

Parámetros	Algoritmos				
FARAMETROS	GGA	SGA	MA	CHC	
Iteraciones	1000	1000	1000	1000	
Población	70	90	21	33	
Prob. de Cruce	0.4837	0.9848	0.9496	-	
Prob. de Mutación	0.0001	0.0057	0.0071	-	
Número del torneo	-	3	1	-	

Tabla 3.3: Parámetros usados para los conjuntos pequeños

Duningen	Algoritmos				
Parámetros	GGA	SGA	MA	СНС	
Iteraciones	1000	1000	1000	1000	
Población	88	132	32	27	
Prob. de Cruce	0.5779	0.9859	0.9549	-	
Prob. de Mutación	0.0001	0.0001	0.0004	-	
Número del torneo	-	1	3	-	

Tabla 3.4: Parámetros usados para los conjuntos medianos

	Algoritmos				
Parámetros	GGA	SGA	MA	СНС	
Iteraciones	1000	1000	1000	1000	
Población	102	122	35	37	
Prob. de Cruce	0.5158	0.9554	0.9698	-	
Prob. de Mutación	0.0001	0.0078	0.0049	-	
Número del torneo	-	7	3	-	

Tabla 3.5: Parámetros usados para los conjuntos grandes

Los parámetros a entonar son: número de iteraciones, cardinalidad de la población, probabilidad de cruce, probabilidad de mutación y número del torneo. Los rangos válidos para cada parámetro se presentan en la tabla 3.2. La elección de los rangos se hace en base a los trabajos [dA04, dA04, GDCH12, GCH08, Tal09]. Los resultados de la entonación se presentan en las tablas 3.3, 3.4 y 3.5.

Para la validación cruzada se usa k = 10 y se repite cada prueba 3 veces basándose

en el trabajo de *Cano*, *J.* en [dA04]. Este esquema de validación cruzada se aplica a los conjuntos de tamaño pequeño como lo hacen en [dA04]. Para la estratificación se adopta k = 10 para los conjuntos medianos y k = 50 para los conjuntos grandes, tal y como se determinan en [CHL05], cuya idea es hacer que el algoritmo de PS no trabaje con más de 2000 instancias por estrato para reducir la cantidad a un conjunto de tamaño pequeño según la clasificación anteriormente expuesta. Además, al igual que en la validación cruzada, las metaheurísticas utilizadas son estocásticas y por lo tanto, cada una de las k pruebas realizadas se repite 3 veces, regresando el promedio de todas las pruebas realizadas como resultado.

Una vez obtenido los distintos parámetros para cada metaheurística, se procede con el experimento principal, el cual consta de utilizar los conjuntos S obtenidos por CNN, ENN y RSS como base para inicializar la población de las metaheurísticas GGA, SSGA, MA y CHC.

Se elige utilizar CNN, ENN, y RSS porque son de las heurísticas más rápidas en ejecución según el trabajo de Salvador, G. et al. en [GDCH12] y por el tipo de instancias que eligen: la primera heurística elige los puntos bordes mientras que descarta los internos bajo la idea de que los puntos bordes son los que realmente establecen los límites de decisión entre clases; ENN por su parte, elige los puntos internos y se deshace de los puntos bordes con la premisa de que los puntos bordes sólo agregan ruido al conjunto y por lo tanto hay que eliminarlos; por último RSS es un híbrido que preserva algunos puntos bordes y algunos internos manteniendo una distancia uniforme entre los mismos. En la figura 3.6 se puede apreciar la selección de puntos realizadas por cada heurística sobre el conjunto banana.

Los experimentos fueron hechos con un procesador Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 4 procesadores y 4GB de memoria RAM. Se utilizó C++ como lenguaje de programación y se compiló con GCC v.7.3.0.

FIGURA 3.1: Selección de puntos de las heurísticas

3.1.1. Resultados

3.1.1.1. Heurísticas

El primer tipo de tablas que se presentan contienen los promedios en accuracy, kappa, reducción y tiempo de cómputo medido en segundos para cada heurística. Accuracy y kappa se miden sobre los conjuntos de entrenamiento y prueba, la reducción mide el porcentaje de instancias eliminadas del conjunto original; a mayor accuracy, kappa y reducción mejor es la metaheurística. Las pruebas fueron realizadas para los conjuntos pequeños, medianos y grandes por separado.

Como se puede observar en la tabla 3.6, ENN es la heurística que presenta el mayor $accuracy\ y\ kappa$, esto se debe a que ENN es la heurística que menos reduce y por lo tanto el conjunto S resultante se parece bastante al conjunto original, manteniendo su capacidad de representación casi intacta. Por otro lado CNN es la heurística que más reduce de las 3 con niveles muy parecidos en $accuracy\ y\ kappa$ a RSS en los conjuntos

Argonimico	Accur	RACY	Kap	Карра		Tiempo (seg)
Algoritmo	Training	Test	Training	Test		
Pequeños						
CNN	0.9093	0.7447	0.8396	0.5404	0.7380	0.1351
ENN	0.8563	0.7924	0.7319	0.6120	0.2591	0.1815
RSS	0.8363	0.7499	0.6997	0.5426	0.7308	0.1231
Medianos						
CNN	0.8944	0.7823	0.7611	0.5613	0.7437	0.7108
ENN	0.8402	0.7999	0.6842	0.5863	0.2861	1.2668
RSS	0.8619	0.7922	0.6822	0.5524	0.6477	0.9201
Grandes						
CNN	0.8818	0.8158	0.7396	0.5587	0.8183	3.2853
ENN	0.9355	0.8895	0.7938	0.6463	0.1495	6.1658
RSS	0.9176	0.8731	0.7411	0.6007	0.7236	10.7264

Tabla 3.6: Promedios de heurísticas

pequeños y medianos, pero con una diferencia en kappa para los conjuntos grandes, en donde RSS supera por un 5% a CNN; RSS por su parte presenta una tasa de reducción superior a ENN pero inferior a CNN.

El conjunto S proporcionado por CNN le da a la metaheurística utilizada una población bastante reducida con la cual trabajar, enfocada principalmente en los puntos bordes. ENN, en cambio, inicializa la población de la metaheurística con una gran cantidad de elementos, lo cual le deja a la metaheurística el trabajo de reducción. RSS le aporta a la metaheurística una población variada entre puntos internos y puntos bordes para trabajar.

3.1.1.2. Metaheurísticas

La tabla 3.7 presenta los promedios para las metaheurísticas con inicialización aleatoria. Además en las tablas 3.8 y 3.9 se muestran los resultados de las pruebas de Wilcoxon de rango con signo con un nivel de significacia de 1%, donde se compara cada metaheurística en relación al accuracy, kappa, reducción, 0.5 * accuracy + 0.5 * reducción y <math>0.5 * kappa + 0.5 * reducción. Donde la hipótesis nula implica que las medidas son estadísticamente iguales y la hipótesis alternativa indica que existe una diferencia real entre las medidas.

A	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo (seg)
Algoritmo	Training	Test	Training	Test		. ,
Pequeños						
GGA	0.8312	0.7525	0.7017	0.5557	0.5532	12.8250
SSGA	0.8654	0.7716	0.7635	0.5917	0.8432	0.6655
MA	0.8570	0.7918	0.7440	0.6216	0.9561	4.1047
CHC	0.8446	0.7843	0.7172	0.6084	0.9466	0.5266
Medianos						
GGA	0.8702	0.7982	0.7375	0.5812	0.5641	110.0812
SSGA	0.8431	0.8029	0.6676	0.5871	0.8392	3.5589
MA	0.8057	0.7908	0.5825	0.5564	0.9624	73.3461
CHC	0.8313	0.8115	0.6347	0.5986	0.9455	2.8843
Grandes						
GGA	0.9316	0.8644	0.7994	0.6014	0.5050	672.0273
SSGA	0.8911	0.8743	0.6953	0.6201	0.8056	27.6637
MA	0.8904	0.8999	0.6499	0.6510	0.9973	256.1432
CHC	0.8961	0.8934	0.6614	0.6506	0.9615	16.8665

Tabla 3.7: Promedios de las metaheurísticas

FIGURA 3.2: Boxplots de las metaheurísticas para los conjuntos pequeños

Las figuras 3.2 y 3.3 muestran que MA y CHC tienen la mejor relación entre accuracy, kappa y reducción tanto para los conjuntos pequeños como medianos. Cuando se revisa la tabla con los promedios y los p-valores 3.7 3.8, para los conjuntos pequeños se tiene que las 4 metaheurísticas presentan niveles similares de accuracy y kappa, destacando MA y CHC por tener los valores más elevados. La diferencia se encuentra en la reducción, donde MA y CHC superan a SSGA y GGA.

Para los conjuntos medianos, las tablas 3.7 y 3.9 muestran un comportamiento similar que los conjuntos pequeños; con la diferencia de que el accuracy y kappa son

FIGURA 3.3: Boxplots de las metaheurísticas para los conjuntos medianos

ALGORITMO	ACCURACY	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
GGA					
vsSSGA	1.855e-02	2.142e-02	1.228 e-05	1.229 e-05	1.229 e-05
vsMA	7.421e-03	2.643e-02	1.229 e-05	1.229 e-05	1.229 e-05
vsCHC	3.822 e-03	3.822 e-03	1.228 e-05	1.229 e-05	1.229 e - 05
SSGA					
vsMA	1.373 e - 01	1.615 e-01	1.229 e-05	1.229 e-05	2.543e-05
vsCHC	1.779 e - 01	3.395 e-01	1.228 e-05	1.229 e-05	2.001 e-05
MA					
vsCHC	1.873 e - 01	1.425 e-01	8.401e-01	6.934 e- 02	7.800e-02

TABLA 3.8: p-valor de pruebas de rangos con signo de Wilcoxon para las distintas metaheurísticas sobre conjuntos pequeños

Algoritmo	Accuracy	Карра	Reducción	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
GGA					
vsSSGA	9.359 e-01	4.688e-01	1.318e-04	1.318e-04	1.318e-04
vsMA	8.405 e-01	3.547 e-01	1.318e-04	1.318e-04	1.318e-04
vsCHC	5.197 e-01	7.172e-01	1.318e-04	1.318e-04	1.318e-04
SSGA					
vsMA	1.842e-01	1.365 e-01	1.318e-04	1.318e-04	1.318e-04
vsCHC	2.122e-01	4.939e-01	1.316e-04	1.318e-04	1.316e-04
MA					
vsCHC	1.57 e-02	5.338e-02	9.100 e-02	6.009 e-01	7.172e-01

Tabla 3.9: p-valor de pruebas de rangos con signo de Wilcoxon para las distintas metaheurísticas sobre conjuntos medianos

estadísticamente similares entre todas las metaheurísticas y la mayor reducción la presentan CHC y MA. Para los conjuntos grandes, la tabla 3.7 muestra que CHC y MA presentan accuracy, kappa y reducción superiores a SSGA y GGA. Con estos

resultados se puede deducir que el principal factor que influye entre las relaciones accuracy + reducción y kappa + reducción es la reducción, que es la medida que presenta las diferencias más marcadas entre las metaheurísticas.

3.1.1.3. Variaciones de las metaheurísticas

A continuación se pasa a combinar las heurísticas con las metaheurísticas. La idea es evaluar las variaciones de cada metaheurística por separado, de tal manera de que se se identifique cuál heurística beneficia más a la metaheurística. La notación en la columna de "ALGORITMO" indica primero qué heurística se usó para inicializar la población y le sigue la metaheurística usada; un ejemplo es CNN-GGA, que indica que CNN es la heurística usada para inicializar la población de la metaheurística GGA. Para el caso de usar una población incial aleatoria, se coloca simplemente el nombre de la metaheurística.

3.1.1.3.1 Conjuntos pequeños

Figura 3.4: Boxplots de las variaciones de las metaheurísticas para los conjuntos pequeños

La figura 3.4 muestra boxplots de todas las variaciones de metaheurísticas para los conjuntos pequeños, de izquierda a derecha los boxplots representan las siguientes variaciones: '1':GGA, '2':CNN-GGA, '3':ENN-GGA, '4':RSS-GGA, '5':CNN-RSS-GGA, '6':ENN-RSS-GGA, '7':SSGA, '8':CNN-SSGA, '9':ENN-SSGA, '10':RSS-SSGA,

ALGORITMO	Accu	RACY	Kai	PPA	Reducción	Tiempo (seg)
ALGORITMO	Training	Test	Training	Test		
GGA	0.8312	0.7525	0.7017	0.5557	0.5532	12.8250
CNN-GGA	0.5736	0.4911	0.3525	0.2151	0.7491	33.4671
ENN-GGA	0.8533	0.7891	0.7327	0.6093	0.2611	14.6024
RSS- GGA	0.6626	0.6177	0.4044	0.3263	0.7717	21.5376
CNN-RSS-GGA	0.7883	0.6809	0.6353	0.4472	0.6221	43.1002
ENN-RSS-GGA	0.8973	0.7872	0.8182	0.6063	0.1994	36.5439
SSGA	0.8654	0.7716	0.7635	0.5917	0.8432	0.6655
CNN-SSGA	0.8791	0.7695	0.7840	0.5815	0.8425	1.2187
ENN-SSGA	0.8733	0.7919	0.7683	0.6112	0.7823	0.8601
RSS-SSGA	0.8581	0.7726	0.7460	0.5905	0.8958	1.0116
CNN-RSS-SSGA	0.8808	0.7742	0.7884	0.5974	0.8373	1.9109
EEN-RSS-SSGA	0.8843	0.7890	0.7904	0.6134	0.7586	1.6563
MA	0.8570	0.7918	0.7440	0.6216	0.9561	4.1047
CNN-MA	0.8653	0.7987	0.7519	0.6307	0.9486	5.9638
ENN-MA	0.8666	0.7930	0.7576	0.6215	0.9534	4.2491
RSS-MA	0.8446	0.7795	0.7137	0.5903	0.9630	4.6391
CNN-RSS-MA	0.8639	0.7848	0.7538	0.6090	0.9507	8.9884
ENN-RSS-MA	0.8736	0.7942	0.7716	0.6268	0.9474	8.3942
CHC	0.8446	0.7843	0.7172	0.6084	0.9466	0.5266
CNN-CHC	0.8495	0.7812	0.7269	0.6027	0.9385	0.7891
ENN-CHC	0.8429	0.7863	0.7179	0.6132	0.9424	0.7445
RSS-CHC	0.8383	0.7779	0.6963	0.5836	0.9546	0.7137
CNN-RSS-CHC	0.8442	0.7794	0.7099	0.5864	0.9437	1.1144
ENN-RSS-CHC	0.8484	0.7846	0.7224	0.6030	0.9333	1.0723

Tabla 3.10: Promedios de las distintas variaciones de cada metaheurística para los conjuntos pequeños

Algoritmo	Accuracy	Карра	Reducción	Accuracy + reducción	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
RSS-GGA					
vsGGA	7.224 e - 05	6.451 e-05	1.773e-05	6.446 e - 05	9.036e-01
vsCNN-RSS-GGA	8.481e-04	1.405 e-04	2.257e-05	3.216e-03	4.758e-01
GGA					
vsCNN-RSS-GGA	4.927e-03	7.423e-03	9.263 e-02	8.086 e-01	3.130e-01

Tabla 3.11: p-valor de pruebas de rangos con signo de Wilcoxon para GGA sobre conjuntos pequeños

'11':CNN-RSS-SSGA, '12':ENN-RSS-SSGA, '13':MA, '14':CNN-MA, '15':ENN-MA, '16':RSS-MA, '17':CNN-RSS-MA, '18':ENN-RSS-MA, '19':CHC, '20':CNN-CHC, '21':ENN-CHC, '22':RSS-CHC, '23':CNN-RSS-CHC y '24':ENN-RSS-CHC.

Los boxplots que van del 1 al 6 de la figura 3.4 muestran que GGA, RSS-GGA y

Algoritmo	ACCURACY	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
RSS-SSGA					
vsSSGA	6.865 e-01	9.250 e-01	1.772 e-05	1.941e-04	4.162 e-03
vsCNN-SSGA	5.774e-01	5.998e-01	2.692 e-05	1.186e-03	1.430e-03
vsCNN-RSS-SSGA	6.476 e - 01	4.073e-01	1.229 e-05	8.085 e-05	2.699 e-03
SSGA					
vsCNN-SSGA	7.366e-01	5.449 e-01	9.317e-01	9.893 e-01	8.191e-01
vsCNN-RSS-SSGA	7.570 e-01	6.281 e-01	6.964 e-01	9.250 e-01	7.366e-01
CNN-SSGA					
vsCNN-RSS-SSGA	2.418e-01	4.797e-02	5.933e-02	9.464 e - 01	1.658e-01

Tabla 3.12: p-valor de pruebas de rangos con signo de Wilcoxon para SSGA sobre conjuntos pequeños

Algoritmo	Accuracy	Карра	Reducción	Accuracy + reducción	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
MA					
vsCNN-MA	6.682 e-01	6.892 e-01	1.430 e-03	6.668e-01	9.678e-01
vsENN-MA	9.678e-01	9.036e-01	1.617e-01	5.629 e-01	9.036e-01
vsRSS-MA	1.035e-01	1.094e-01	2.469 e-03	4.432e-01	2.418e-01
vsCNN-RSS-MA	1.353e-01	6.934 e-02	6.932 e- 02	4.215e-02	3.704 e - 02
vsENN-RSS-MA	6.034 e-01	3.967 e-01	3.404 e-03	3.002e-01	6.766e-01
CNN-MA					
vsENN-MA	1.918e-01	4.118e-01	1.261 e-01	7.751e-01	9.893 e-01
vsRSS-MA	2.227e-02	1.516e-02	4.073 e-05	5.449 e - 01	1.155e-01
vsCNN-RSS-MA	8.571 e-03	2.299e-02	2.879 e-01	3.243 e-02	2.831e-02
vsENN-RSS-MA	3.819 e-01	5.629 e-01	3.129 e-01	3.194e-01	3.819e-01
ENN-MA					
vsRSS-MA	2.209e-01	1.919e-01	2.956e-04	9.036e-01	5.449e-01
vsCNN-RSS-MA	1.742 e-01	3.129 e-01	6.265 e-01	1.855 e-02	1.155e-01
vsENN-RSS-MA	9.464 e - 01	6.964 e-01	1.479 e-03	2.641e-01	8.401e-01
RSS-MA					
vsCNN-RSS-MA	4.576 e - 01	2.478e-01	1.822 e-05	3.458e-01	8.415 e-01
vsENN-RSS-MA	6.746 e - 02	3.955 e-02	3.220 e-05	7.982e-01	3.674 e-01
CNN-RSS-MA					
vsENN-RSS-MA	3.002 e-01	1.829 e-01	1.793 e-01	9.250 e-01	3.674 e-01

Tabla 3.13: p-valor de pruebas de rangos con signo de Wilcoxon para MA sobre conjuntos pequeños

CNN-RSS-GGA presentan valores muy similares en *accuracy* + reducción. Cuando se evalúan los p-valores la tabla 3.11 se nota que GGA y CNN-RSS-GGA son estadísticamente similares, mientras que RSS-GGA es distinto de los otros dos métodos. Cuando se revisan los promedios en la tabla 3.10 se nota que hay diferencias marcadas en *accuracy* y reducción; donde RSS-GGA mantiene buenos niveles de *accuracy* y posee la mayor tasa de reducción.

Con respecto a kappa + reducción para los conjuntos pequeños, GGA, RSS-GGA

Algoritmo	Accuracy	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
CHC					
vsCNN-CHC	3.967e-01	4.432e-01	1.188e-02	1.658e-01	1.742e-01
vsENN-CHC	8.823 e-01	8.506 e-01	4.245 e-02	3.674 e - 01	4.593 e-01
vsRSS-CHC	5.629 e-01	3.533e-01	6.642 e-03	7.982e-01	6.571 e-01
vsCNN-RSS-CHC	3.674 e-01	1.284 e-01	2.699e-01	4.593 e-01	2.528e-01
vsENN-RSS-CHC	8.639 e-01	9.464 e-01	6.739 e-04	9.797e-02	2.109e-01
CNN-CHC					
vsENN-CHC	2.418e-01	3.395 e-01	8.823 e-01	6.571 e-01	5.812e-01
vsRSS-CHC	9.515 e-01	4.118e-01	9.067e-05	1.658e-01	9.893 e-01
vsCNN-RSS-CHC	9.886 e-01	3.606 e-01	2.418e-01	7.164 e-01	8.191e-01
vsENN-RSS-CHC	3.615 e-01	5.633 e-01	2.528 e-01	9.036e-01	7.982e-01
ENN-CHC					
vsRSS-CHC	4.432e-01	3.260 e-01	1.498e-03	4.273 e-01	9.464 e-01
vsCNN-RSS-CHC	5.098e-01	3.002e-01	6.766e-01	9.893 e-01	5.449 e-01
vsENN-RSS-CHC	6.682 e-01	3.819 e-01	2.380e-02	2.109e-01	1.285 e-01
RSS-CHC					
vsCNN-RSS-CHC	7.672 e-01	6.186 e-01	1.756e-03	6.092 e-01	9.464 e-01
vsENN-RSS-CHC	4.405 e-01	3.819 e-01	1.127e-04	2.418e-01	7.366e-01
CNN-RSS-CHC					
vsENN-RSS-CHC	7.317e-01	6.071 e-01	1.913e-02	6.186 e-01	6.766 e-01

Tabla 3.14: p-valor de pruebas de rangos con signo de Wilcoxon para CHC sobre conjuntos pequeños

y CNN-RSS-GGA presentan niveles muy similares en la figura 3.4, lo cual es respaldado por los p-valores de la tabla 3.11, que muestran que los tres métodos son estadísticamente similares.

Al evaluar el tiempo de cómputo entre las distintas variantes de GGA, se tiene que ENN-GGA y RSS-GGA son las versiones más rápidas, tardando 1.7774 y 8.7126 segundos más en devolver un resultado que la inicialización aleatoria.

De los resultados anteriores RSS-GGA resalta como la mejor opción entre las variaciones de GGA para los conjuntos pequeños; RSS-GGA presenta $21.85\,\%$ más reducción que la inicialización aleatoria a cambio de 8.7126 segundos más de tiempo de cómputo.

Los boxplots que van del 7 al 12 de la figura 3.4 muestran valores muy similares en accuracy + reducción y kappa + reducción entre SSGA, CNN-SSGA, RSS-SSGA y CNN-RSS-SSGA; los p-valores en la tabla 3.12 corroboran que SSGA, CNN-SSGA y CNN-RSS-SSGA presentan medias estadísticamente iguales, mientras que RSS-SSGA presenta valores distintos para las dos medidas. La tabla 3.10 muestra que las cuatro

variaciones muestran valores muy similares para accuracy y kappa, pero RSS-SSGA posee una mayor tasa de reducción con 89.58 %.

Con respecto a los tiempos de cómputo de las variantes de SSGA se tiene que ENN-SSGA y RSS-SSGA son las versiones más rápidas, tardando 0.2 y 0.35 segundos más que la inicialización aleatoria en devolver un resultado.

De los resultados anteriores, RSS-SSGA se puede identificar como la mejor variación de SSGA para los conjuntos pequeños, donde se presenta un *accuracy y kappa* prácticamente iguales a SSGA, con una diferencia en reducción de 5.26 % a favor de RSS-SSGA.

Los boxplots que van desde el 13 al 18 de la figura 3.4 muestran valores muy similares entre todas las variaciones de MA para accuracy + reducción y para kappa + reducción. Ninguna variante destaca sobre otra, los p-valores de la tabla 3.13 confirman que todas las variaciones son estadísticamente similares y en la tabla 3.10, no se nota una diferencia real entre los promedios.

En este sentido para elegir cual es la mejor variante de entre todas se decide en función al tiempo de cómputo que les toma para devolver una respuesta. Es por eso que para los conjuntos pequeños, una inicialización aleatoria es la mejor opción al presentar los menores tiempos.

Los boxplots que van desde el 19 al 24 de la figura 3.4 muestran un comportamiento similar para todas las variantes de CHC como el visto para MA, en donde todas presentan valores similares en accuracy + reducción y kappa + reducción. Los p-valores de la tabla 3.14 muestran que todas las variantes tienen valores estadísticamente similares. La tabla 3.10 corrobora la noción de que para los conjuntos pequeños, los resultados en accuracy, kappa y reducción son similares para todas las variantes.

Ya que todas las variantes presentan valores similares entre accuracy, kappa y reducción, se elige cuál es la mejor en función al tiempo de cómputo, en cuyo caso CHC con inicialización aleatoria presenta el menor tiempo en todas las instancias y por lo tanto es la variante preferida para los conjuntos pequeños.

Teniendo las mejores variaciones de cada metaheurística para los conjuntos pequeños: RSS-GGA, RSS-SSGA, MA y CHC, se hace una comparación entre ellos para

Algoritmo	ACCURACY	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
RSS-GGA					
vsRSS-SSGA	4.574 e - 05	6.451 e-05	4.574 e - 05	1.229 e-05	1.229 e - 05
vsMA	2.001e-05	3.624 e-05	1.390 e - 05	1.229 e-05	1.229 e - 05
vs CHC	2.257 e - 05	2.001e-05	2.541 e-05	1.229 e-05	1.229 e - 05
RSS-SSGA					
vsMA	3.243 e-02	5.437e-02	1.822 e-05	1.405 e-04	6.022 e-04
vsCHC	8.648 e-02	1.353 e-01	1.571 e-05	1.941e-04	1.720e-03
MA					
vsCHC	1.873 e-01	1.425 e-01	8.401e-01	6.934 e-02	7.800e-02

Tabla 3.15: p-valor de pruebas de rangos con signo de Wilcoxon para las mejores variantes de las metaheurísticas sobre conjuntos pequeños

ACCURACY +	REDUC	CIÓN	Kappa + R	EDUCCIO	ÓΝ	Тіемро			
Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	
MA	5.38	5	CNN-MA	5.26	4	CHC	1.34	20	
ENN-MA	5.46	2	ENN-MA	5.53	0	SSGA	2.57	4	
CNN-MA	5.57	4	MA	5.57	5	RSS-CHC	3.26	0	
RSS-MA	6.07	6	ENN-RSS-MA	6.00	3	ENN-CHC	4.53	0	
ENN-RSS-MA	6.30	3	RSS-MA	6.76	6	CNN-CHC	4.96	0	
RSS-CHC	6.80	1	CNN-RSS-MA	7.07	0	ENN-SSGA	5.57	1	
CNN-RSS-MA	6.96	0	ENN-CHC	7.46	2	RSS-SSGA	7.23	1	
CHC	7.07	0	CHC	7.50	1	CNN-SSGA	7.73	0	
ENN-CHC	7.53	0	RSS-CHC	7.96	1	ENN-RSS-CHC	8.88	0	
CNN-RSS-CHC	7.65	2	CNN-RSS-CHC	8.07	2	CNN-RSS-CHC	9.26	0	
ENN-RSS-CHC	7.88	2	ENN-RSS-CHC	8.26	1	ENN-RSS-SSGA	11.80	0	
CNN-CHC	8.73	1	CNN-CHC	8.84	1	CNN-RSS-SSGA	12.38	0	
RSS-SSGA	12.07	0	RSS-SSGA	11.92	0	MA	13.53	0	
CNN-SSGA	14.53	0	SSGA	14.30	0	ENN-MA	13.69	0	
SSGA	14.88	0	CNN-RSS-SSGA	14.26	0	RSS-MA	14.15	0	
CNN-RSS-SSGA	15.07	0	CNN-SSGA	14.46	0	CNN-MA	15.30	0	
ENN-SSGA	16.11	0	ENN-SSGA	15.26	0	CNN-RSS-MA	17.65	0	
ENN-RSS-SSGA	17.26	0	ENN-RSS-SSGA	16.42	0	ENN-RSS-MA	17.80	0	
RSS-GGA	19.11	0	GGA	20.15	0	GGA	19.84	0	
GGA	20.73	0	RSS-GGA	20.19	0	ENN-GGA	20.38	0	
CNN-RSS-GGA	20.84	0	CNN-RSS-GGA	20.88	0	CNN-GGA	20.42	0	
CNN-GGA	21.30	0	CNN-GGA	21.69	0	ENN-RSS-GGA	23.26	0	
ENN-GGA	22.73	0	ENN-GGA	22.53	0	RSS-GGA	21.00	0	
ENN-RSS-GGA	23.84	0	ENN-RSS-GGA	23.53	0	CNN-RSS-GGA	23.34	0	

Tabla 3.16: Rangos de las metaheurísticas en accuracy + reducción, kappa + reducción y tiempo para los conjuntos pequeños

determinar cuál es la mejor opción. La figura 3.4 muestra que '13':MA y '19':CHC presentan los mejores valores en *accuracy* + reducción y *kappa* + reducción. La tabla 3.15 muestra que MA y CHC son estadísticamente similares y esto se puede apreciar al comparar los valores de la tabla 3.10.

La tabla 3.16 ordena todas las metaheurísticas y sus variaciones por el rango asignado de mayor a menor sus resultados por instancia. La columna de "rank" muestra el rango promedio en el que quedó cada metaheurística, la columna de "best" indica en cuántos conjuntos dicha metaheurística quedó como la mejor opción.

En la tabla 3.16 las variaciones de MA y CHC comparten los primeros puestos al tener los mejores valores en *accuracy*, *kappa* y reducción. La diferencia principal entre ambas radica en el tiempo de cómputo, donde las variaciones de MA son más lentas que las de CHC y SSGA, mientras que las variaciones de CHC son las más rápidas entre todas. Lo cual hace a CHC con inicialización aleatoria la opción a elegir para los conjuntos pequeños.

3.1.1.3.2 Conjuntos medianos

FIGURA 3.5: Boxplots de las variaciones de las metaheurísticas para los conjuntos medianos

Los boxplots que van desde el 1 al 6 de la figura 3.5 muestran que para los conjuntos medianos CNN-GGA tiene la mejor relación entre accuracy + reducción. Al ver los p-valores de la tabla 3.18 se tiene que CNN-GGA presenta valores similares RSS-GGA y GGA en accuracy + reducción. Al revisar la tabla 3.17 CNN-GGA es la variación que tiene la mejor tasa de reducción con 77.45 %.

Con respecto a kappa + reducción, la figura 3.5 muestra un desempeño muy similar entre GGA, CNN-GGA, RSS-GGA y CNN-RSS-GGA. Al ver los p-valores de la tabla

A L CODITINO	Accu	RACY	Kai	PPA	Reducción	Tiempo (seg)
Algoritmo	Training	Test	Training	Test		
GGA	0.8702	0.7982	0.7375	0.5812	0.5641	110.0812
CNN-GGA	0.7990	0.7051	0.5952	0.4426	0.7745	232.8342
ENN-GGA	0.8475	0.8071	0.6949	0.5965	0.2862	125.8465
RSS-GGA	0.8027	0.7520	0.5575	0.4547	0.6733	137.0381
CNN-RSS-GGA	0.8932	0.7890	0.7571	0.5516	0.5514	309.4603
ENN-RSS-GGA	0.9141	0.8155	0.8246	0.6168	0.1981	314.2968
SSGA	0.8431	0.8029	0.6676	0.5871	0.8392	3.5589
CNN-SSGA	0.8540	0.8007	0.6965	0.5923	0.8547	6.4410
ENN-SSGA	0.8200	0.8009	0.6324	0.5793	0.7459	5.6722
RSS-SSGA	0.8302	0.8045	0.6389	0.5854	0.8690	5.9946
CNN-RSS-SSGA	0.8586	0.8047	0.7043	0.5977	0.8121	10.5868
ENN-RSS-SSGA	0.8550	0.8078	0.7042	0.6004	0.7049	10.4293
MA	0.8057	0.7908	0.5825	0.5564	0.9624	73.3461
CNN-MA	0.8116	0.8021	0.6000	0.5765	0.9572	57.3939
ENN-MA	0.7938	0.7925	0.5747	0.5608	0.9707	67.5310
RSS-MA	0.7924	0.7893	0.5611	0.5449	0.9671	69.5927
CNN-RSS-MA	0.8051	0.8015	0.5962	0.5808	0.9654	121.2220
ENN-RSS-MA	0.8070	0.7971	0.5886	0.8070	0.9633	112.0309
CHC	0.8313	0.8115	0.6347	0.5986	0.9455	2.8843
CNN-CHC	0.8303	0.8081	0.6337	0.5925	0.9352	4.6572
ENN-CHC	0.8107	0.8032	0.6084	0.5834	0.9356	5.0976
RSS-CHC	0.8151	0.8058	0.6074	0.5851	0.9535	4.7450
CNN-RSS-CHC	0.8276	0.8073	0.6280	0.5871	0.9319	6.7859
ENN-RSS-CHC	0.8255	0.8074	0.6355	0.5944	0.9154	7.0284

Tabla 3.17: Promedios de las distintas variaciones de cada metaheurística para los conjuntos medianos

Algoritmo	Accuracy	Карра	Reducción	Accuracy + reducción	KAPPA + REDUCCIÓN
-	p-valor	p-valor	p-valor	p-valor	p-valor
CNN-GGA					
vsGGA	6.249 e-04	1.116e-03	3.307e-03	1.260 e-02	7.662e-02
vsRSS-GGA	1.001e-02	1.712e-01	1.758e-02	4.209 e-01	1.842e-01
vsCNN-RSS-GGA	2.137e-04	2.137e-04	1.318e-04	9.673 e-04	1.124e-02
RSS-GGA					
vsGGA	1.001e-02	6.210 e-03	2.543e-03	8.903e-03	8.092e-01
vsCNN-RSS-GGA	5.491 e-03	7.231e-04	1.318e-04	2.137e-04	1.842e-01
GGA					
vsCNN-RSS-GGA	6.210 e - 03	1.576 e - 02	7.475e-01	$1.000\mathrm{e}{+00}$	4.209 e-01

Tabla 3.18: p-valor de pruebas de rangos con signo de Wilcoxon para GGA sobre conjuntos medianos

3.18 se obtiene que estos cuatro métodos son estadísticamente similares. La tabla 3.17 muestra que GGA y CNN-RSS-GGA tienen un mayor nivel de kappa que CNN-GGA

Algoritmo	ACCURACY	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
RSS-SSGA					
vsSSGA	4.326e-01	9.100 e-02	4.274 e-03	7.013e-03	5.857 e-02
vsCNN-SSGA	4.093e-01	5.732e-01	3.760 e-01	2.772 e-01	6.874 e-01
vsCNN-RSS-SSGA	9.039 e - 01	1.474 e-01	1.318e-04	1.318e-04	6.249 e-04
SSGA					
vsCNN-SSGA	4.421e-02	2.196e-01	4.862 e-02	1.712e-01	1.712e-01
vsCNN-RSS-SSGA	3.341e-01	7.782e-01	1.909e-01	1.978e-01	2.598e-01
CNN-SSGA					
vsCNN-RSS-SSGA	2.263 e-03	3.858e-02	2.137e-04	4.634 e-04	1.696e-03

Tabla 3.19: p-valor de pruebas de rangos con signo de Wilcoxon para SSGA sobre conjuntos medianos

Algoritmo	Accuracy	Карра	Reducción	Accuracy + reducción	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
MA					
vsCNN-MA	3.760e-01	6.292 e-01	4.688e-01	$1.000 \mathrm{e}{+00}$	7.782e-01
vsENN-MA	5.066e-01	3.981e-01	3.958 e- 01	3.869e-01	3.271 e-01
vsRSS-MA	5.094e-02	4.862 e-02	3.241e-01	4.688e-01	2.273e-01
vsCNN-RSS-MA	6.009 e-01	4.209 e-01	8.721e-01	6.874 e-01	6.874 e-01
vsENN-RSS-MA	8.446 e - 01	8.789 e - 01	9.679 e-01	7.172e-01	9.359 e-01
CNN-MA					
vsENN-MA	8.789 e-01	9.826 e-01	2.954 e-01	4.445e-01	4.445e-01
vsRSS-MA	5.341e-02	1.075 e-01	4.445 e - 01	4.939e-01	3.144e-01
vsCNN-RSS-MA	9.679 e - 01	7.172e-01	7.782e-01	6.009 e-01	5.732e-01
vsENN-RSS-MA	2.122e-01	4.445 e - 01	1.989e-01	9.039 e-01	9.358 e-01
ENN-MA					
vsRSS-MA	1.075e-01	1.712e-01	6.475 e-01	2.954e-01	1.531e-01
vsCNN-RSS-MA	3.547 e - 01	3.981 e-01	3.981e-01	4.209 e-01	6.580 e- 01
vsENN-RSS-MA	9.519 e-01	8.092 e-01	8.721e-01	8.721e-01	5.732e-01
RSS-MA					
vsCNN-RSS-MA	7.908e-03	1.758e-02	1.842e-01	2.432 e-01	7.662e-02
vsENN-RSS-MA	7.662 e-02	5.341 e-02	4.939e-01	8.721e-01	5.461e-01
CNN-RSS-MA					
vsENN-RSS-MA	1.365e-01	2.122e-01	5.732e-01	1.842e-01	3.760e-01

Tabla 3.20: p-valor de pruebas de rangos con signo de Wilcoxon para MA sobre conjuntos medianos

y RSS-GGA, pero estos dos últimos compensan teniendo una reducción mayor.

Al comparar los tiempos, se tiene que ENN-GGA y RSS-GGA son las variantes más rápidas de GGA, con 15.76 y 26.95 segundos más de cómputo que GGA con inicialización aleatoria.

Para los conjuntos medianos CNN-GGA es la mejor opción entre las variaciones de GGA con $21.04\,\%$ más reducción que GGA.

Algoritmo	Accuracy	Карра	REDUCCIÓN	Accuracy + reducción	KAPPA + REDUCCIÓN
	p-valor	p-valor	p-valor	p-valor	p-valor
CHC					
vsCNN-CHC	5.817e-02	5.094e-02	8.248 e-01	3.652 e-01	1.262 e-01
vsENN-CHC	6.009e-01	8.092e-01	4.862 e-02	2.977e-02	8.356e-02
vsRSS-CHC	2.179e-02	1.124e-02	2.977e-02	9.679 e-01	2.772e-01
vsCNN-RSS-CHC	2.977e-02	2.977e-02	2.422e-02	7.901e-03	1.000e-02
vsENN-RSS-CHC	2.351 e-01	1.000e + 00	2.134e-04	1.819e-04	8.375 e-04
CNN-CHC					
vsENN-CHC	7.226e-01	4.074e-01	1.119e-01	1.590 e-01	5.197e-01
vsRSS-CHC	6.579 e-01	5.197e-01	1.227 e-02	2.273 e-01	2.432e-01
vsCNN-RSS-CHC	7.172e-01	5.066e-01	9.896 e-02	6.707e-02	2.122e-01
vsENN-RSS-CHC	6.292 e-01	1.712e-01	2.977e-02	3.820 e-02	4.860 e-02
ENN-CHC					
vsRSS-CHC	8.353 e-02	2.688e-02	5.857 e-02	3.292 e- 02	3.547e-01
vsCNN-RSS-CHC	2.860 e-01	5.857e-02	4.445 e-01	4.209 e-01	6.009 e-01
vsENN-RSS-CHC	9.306 e-01	9.133e-01	1.476e-03	1.576e-02	1.590 e-01
RSS-CHC					
vsCNN-RSS-CHC	7.475 e - 01	8.405 e-01	3.411e-04	4.634 e-04	2.688e-02
vsENN-RSS-CHC	4.565 e-01	1.075 e-01	1.316e-04	3.416e-04	1.758e-02
CNN-RSS-CHC					
vsENN-RSS-CHC	1.841e-01	6.415 e-02	1.981e-02	5.857e-02	3.981 e-01

Tabla 3.21: p-valor de pruebas de rangos con signo de Wilcoxon para CHC sobre conjuntos medianos

Los boxplots que comprenden desde el 6 al 12 de la figura 3.5 muestran que SSGA, CNN-SSGA, RSS-SSGA y CNN-RSS-SSGA son muy similares entre sí para accuracy + reducción y kappa + reducción. Los p-valores de la tabla 3.19 muestran que la única diferencia se da en accuracy + reducción entre SSGA y RSS-SSGA, de resto las cuatro variaciones son estadísticamente similares en kappa + reducción. La tabla 3.17 muestra valores muy parejos en accuracy, kappa y reducción. En este caso, RSS-SSGA destaca del resto por presentar la tasa reducción más alta con 86.90 %, que es 1.43 % mayor a la tasa de reducción de CNN-SSGA y es 2.98 % mayor que la tasa de reducción de SSGA.

En tiempo de cómputo se tiene que ENN-SSGA y RSS-SSGA son las variaciones más rápidas, con 2.12 y 2.44 segundos más que SSGA.

RSS-SSGA es entonces, la mejor opción entre las variantes de SSGA para los conjuntos medianos, con $2.98\,\%$ más reducción que SSGA y a cambio de 2.44 segundos más de tiempo de cómputo.

Los boxplots que van desde el 13 al 18 de la figura 3.5 muestran valores muy

similares entre todas las variaciones de MA para accuracy + reducción y para kappa + reducción. Ninguna variante destaca sobre otra, la tabla 3.20 confirma que todas las variaciones son estadísticamente similares, además, la tabla 3.17 no muestra una diferencia real entre las variaciones.

En relación al tiempo de cómputo, CNN-MA es la variación más rápida de todas, siendo más rápido que MA por 15.95 segundos en promedio. Esto se debe a que utilizando CNN, MA tiene menos llamadas al proceso de optimización interna que con una población inicial aleatoria.

Por el tiempo de cómputo, se puede referir a CNN-MA como la mejor elección entre las distintas variantes de MA al momento de ser utilizado para conjuntos medianos.

Los boxplots que van desde el 19 al 24 de la figura 3.5 muestran un comportamiento similar para todas las variantes de CHC, en donde todas presentan valores similares en accuracy + reducción y kappa + reducción. Los p-valores de la tabla 3.21 muestra que CHC, CNN-CHC, ENN-CHC y RSS-CHC son estadísticamente similares. Los promedios de la tabla 3.17 corroboran que CHC, CNN-CHC, ENN-CHC y RSS-CHC poseen valores similares.

De entre las cuatro variantes mencionadas anteriormente, se elige CHC con inicialización aleatoria como mejor versión de CHC ya que presenta los menores tiempos de cómputo, con un promedio de 2.88 segundos.

Algoritmo	ACCURACY	Карра	REDUCCIÓN	ACCURACY + REDUCCIÓN	KAPPA + REDUCCIÓN
CNN-GGA					
vsRSS-SSGA	2.502 e-04	6.249 e-04	1.410 e - 02	2.137e-04	2.137e-04
vsCNN-MA	2.502 e-04	8.375 e-04	1.822e-04	1.318e-04	1.318e-04
vsCHC	2.137e-04	3.416e-04	2.137e-04	1.318e-04	1.318e-04
RSS-SSGA					
vsCNN-MA	8.092e-01	7.475e-01	1.316e-04	1.318e-04	2.134e-04
vsCHC	1.576 e-02	8.903 e-03	1.551e-04	1.318e-04	1.318e-04
CNN-MA					
vsCHC	3.820 e-02	1.260 e-02	1.365 e-01	6.292 e-01	5.197e-01

Tabla 3.22: p-valor de pruebas de rangos con signo de Wilcoxon para las mejores variantes de las metaheurísticas sobre conjuntos medianos

Teniendo las mejores variaciones de cada metaheurística para los conjuntos medianos: CNN-GGA, RSS-SSGA, CNN-MA y CHC, se hace una comparación entre ellos para determinar cuál es la mejor opción. La figura 3.5 muestra que '14':CNN-MA y

Accuracy + Reducción		Kappa + Reducción			Тіємро			
Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor	Algoritmo	Rank	Mejor
CNN-RSS-MA	4.76	5	CHC	5.05	2	CHC	1.41	13
ENN-MA	5.05	4	ENN-MA	5.41	4	SSGA	1.94	3
CHC	5.52	2	CNN-RSS-MA	5.52	5	CNN-CHC	4.11	0
CNN-MA	5.94	3	RSS-CHC	6.52	0	RSS-CHC	4.58	0
ENN-RSS-MA	5.94	1	CNN-MA	6.76	2	ENN-CHC	5.00	0
RSS-CHC	5.94	0	ENN-RSS-MA	7.05	1	ENN-SSGA	5.52	0
MA	6.29	0	MA	7.23	1	RSS-SSGA	7.17	0
RSS-MA	7.05	1	CNN-CHC	7.23	0	CNN-SSGA	7.36	1
CNN-CHC	7.35	0	ENN-CHC	7.47	1	ENN-RSS-CHC	9.05	0
ENN-CHC	8.41	0	CNN-RSS-CHC	8.29	0	CNN-RSS-CHC	9.11	0
CNN-RSS-CHC	8.70	0	RSS-MA	8.41	0	ENN-RSS-SSGA	11.23	0
ENN-RSS-CHC	10.00	1	ENN-RSS-CHC	8.47	1	CNN-RSS-SSGA	11.47	0
RSS-SSGA	13.47	0	CNN-SSGA	12.94	0	MA	14.35	0
CNN-SSGA	13.47	0	RSS-SSGA	13.05	0	RSS-MA	14.64	0
SSGA	14.70	0	SSGA	14.23	0	CNN-MA	15.23	0
CNN-RSS-SSGA	15.82	0	CNN-RSS-SSGA	15.05	0	ENN-MA	15.23	0
ENN-SSGA	16.64	0	ENN-SSGA	16.76	0	CNN-RSS-MA	17.88	0
CNN-GGA	18.17	0	ENN-RSS-SSGA	18.00	0	ENN-RSS-MA	18.23	0
ENN-RSS-SSGA	18.47	0	CNN-GGA	18.52	0	GGA	18.88	0
RSS-GGA	19.94	0	GGA	20.47	0	ENN-GGA	19.52	0
GGA	21.00	0	RSS-GGA	20.52	0	RSS-GGA	20.05	0
CNN-RSS-GGA	21.41	0	CNN-RSS-GGA	21.23	0	CNN-GGA	21.76	0
ENN-GGA	22.05	0	ENN-GGA	22.05	0	ENN-RSS-GGA	22.76	0
ENN-RSS-GGA	23.82	0	ENN-RSS-GGA	23.64	0	CNN-RSS-GGA	23.41	0

TABLA 3.23: Rangos de las metaheurísticas en accuracy + reducción, kappa + reducción y tiempo para los conjuntos medianos

'19':CHC presentan los mejores valores en *accuracy* + reducción y *kappa* + reducción. La tabla 3.22 muestra que CNN-MA y CHC son estadísticamente similares y esto se puede apreciar al comparar los valores de la tabla 3.17.

En la tabla 3.23 las variaciones de MA y CHC comparten los primeros puestos al tener los mejores valores en *accuracy*, *kappa* y reducción. La diferencia principal entre ambas vuelve a estar en el tiempo de cómputo, el cual hace a CHC con inicialización aleatoria la mejor opción a elegir para los conjuntos medianos, ya que tarda 54.51 segundos menos que CNN-MA en devolver un resultado.

Argonymyo	ACCURACY		Карра		Reducción	Tiempo (seg)
Algoritmo	Training	Test	Training	Test		
GGA	0.9316	0.8644	0.7994	0.6014	0.5050	672.0273
CNN-GGA	0.7106	0.6431	0.4478	0.3094	0.8409	1568.8913
ENN-GGA	0.9357	0.8890	0.7944	0.6453	0.1502	718.0400
RSS-GGA	0.9150	0.8719	0.7227	0.5821	0.7083	1197.0505
CNN-RSS-GGA	0.9455	0.8588	0.8410	0.5885	0.6089	2646.6438
ENN-RSS-GGA	0.9574	0.9574	0.9574	0.6238	0.1025	1703.4263
SSGA	0.8911	0.8743	0.6953	0.6201	0.8056	27.6637
CNN-SSGA	0.8897	0.8512	0.7002	0.5939	0.8807	90.1004
ENN-SSGA	0.9097	0.8892	0.7113	0.6441	0.6823	34.9024
RSS-SSGA	0.8968	0.8826	0.6743	0.6271	0.8927	57.7995
CNN-RSS-SSGA	0.9002	0.8634	0.7140	0.6069	0.8434	99.1629
ENN-RSS-SSGA	0.9112	0.8805	0.7245	0.6272	0.6668	78.5967
MA	0.8904	0.8999	0.6499	0.6510	0.9973	256.1432
CNN-MA	0.8925	0.8926	0.6360	0.6341	0.9884	612.7902
ENN-MA	0.8807	0.8902	0.6072	0.6145	0.9976	288.6525
RSS-MA	0.9000	0.9002	0.6347	0.6343	0.9746	527.9115
CNN-RSS-MA	0.8857	0.8951	0.6176	0.6160	0.9707	960.3951
ENN-RSS-MA	0.8746	0.8912	0.6292	0.6386	0.9969	443.0003
CHC	0.8961	0.8934	0.6614	0.6506	0.9615	16.8665
CNN-CHC	0.8903	0.8871	0.6554	0.6437	0.9771	38.3314
ENN-CHC	0.8993	0.8964	0.6746	0.6631	0.9233	27.3520
RSS-CHC	0.8972	0.8962	0.6591	0.6526	0.9819	41.1142
CNN-RSS-CHC	0.8945	0.8910	0.8945	0.6435	0.9719	50.5800
ENN-RSS-CHC	0.8975	0.8922	0.6721	0.6532	0.9099	47.4006

Tabla 3.24: Promedios de las distintas variaciones de cada metaheurística para los conjuntos grandes

3.1.1.3.3 Conjuntos Grandes

La tabla 3.24 muestra que RSS-GGA tiene la mejor relación en accuracy + reducción, seguido por CNN-GGA, el cual tiene la mejor reducción. Para kappa + reducción RSS-GGA, GGA y CNN-GGA se encuentran más parejos, estando RSS-GGA ligeramente por encima. En relación al tiempo, ENN-GGA es la variante más rápida, tardando 46.02 segundos más que GGA; mientras que RSS-GGA es la segunda variante más rápida, tardando 525.03 segundos más que GGA. Bajo estas consideraciones RSS-GGA es la mejor elección entre las variantes de GGA para los conjuntos grandes.

Para los conjuntos grandes, la tabla 3.24 revela que RSS-SSGA presenta la mejor

relación entre accuracy, kappa y reducción con 88.26%, 62.71% y 89.27% respectivamente. Con respecto al tiempo, ENN-SSGA y RSS-SSGA son las variantes más rápidas, tardando 7.24 y 30.13 segundos más que SSGA respectivamente. Por estas razones, RSS-SSGA es la mejor elección entre las variantes de SSGA para los conjuntos grandes.

Con respecto a MA, la tabla 3.24 no muestra diferencias reales en *accuracy, kappa* ni reducción entre las distintas variantes. En cambio, cuando se toma en cuenta el tiempo MA con inicialización aletaoria es la versión que tarda menos en devolver un resultado. Por lo tanto MA es la mejor opción para los conjuntos grandes.

Pasando a CH, la tabla 3.24 muestra valores muy similares en *accuracy, kappa* y reducción para CHC, CNN-CHC, RSS-CHC y CNN-RSS-CHC. Es por eso que se decide cuál es la mejor opción a partir del tiempo de cómputo, siendo CHC con inicialización aleatoria la opción elegida para los conjuntos grandes.

Al comparar las mejores variantes de cada metaheurística: RSS-GGA, RSS-SSGA, MA y CHC; se tiene que MA con inicialización aleatoria es la metaheurística que presenta los mejores valores, teniendo un *accuracy y kappa* similares a CHC y la mayor tasa de reducción con un 99.73 %, el cual es 3.58 % mayor que CHC. Por lo tanto, la mejor opción entre todas las variantes de metaheurísticas para los conjuntos grandes es MA.

Conclusiones y Recomendaciones

En este trabajo se implementaron tres heurísticas y cuatro metahuerísticas con el fin de evaluar si la utilización de las heurísticas como métodos de inicialización de la población de las metaheurísticas mejora el accuracy, kappa y la tasa de reducción de las mismas en comparación con una inicialización aleatoria de la población. Además, se buscó determinar cuales son las mejores combinaciones de heurísticas y metaheurísticas al evaluarse bajo las métricas antes mencionados.

Para lograr este cometido, se probó todas las combinaciones posibles sobre conjuntos de datos pequeños, medianos y grandes. Aunado a esto, se usó el proceso de estratificación propuesto por *Cano*, *J. et al.* en [CHL05] para reducir los tiempos de cómputo de los conjuntos medianos y grandes. Por otra parte se usó una herramienta de entonación conocida como *Irace* para conseguir los mejores parámetros para las distintas metaheurísticas.

De los resultados obtenidos se observa que la utilización de heurísticas sólo beneficia a GGA Y SSGA, donde RSS le da a las metaheurísticas la mejor relación entre accuracy, kappa y reducción. Por otra parte CHC y MA no se benefician mucho del uso de heurísticas ya que los resultados en accuracy, kappa y reducción son similares entre todas las variantes. Con esto se puede concluir que las metaheurísticas menos informadas y con menos recursos para conseguir una solución óptima, son las que más se benefician de elegir una población incial buena, filtrada previamente por una heurística.

Cuando se comparan todas las metaheurísticas, se tiene que para los conjuntos pequeños y medianos, las variantes de CHC y MA presentan los mejores valores de accuracy, kappa y reducción; siendo estadísticamente similares en promedio; por lo tanto, se elige CHC con inicialización aleatoria de la población como la mejor opción,

porque es la metaheurística más rápida en devolver un resultado. Por otra parte, para los conjuntos grandes, MA con inicialización aleatoria es la mejor opción porque presenta la tasa de reducción más alta, $3.58\,\%$ mayor que CHC, a la vez que mantiene los mejores valores de accuracy y kappa.

Las recomendaciones que se desprenden de esta investigación incluyen: probar otras heurísticas y metaheurísticas a las utilizadas en este trabajo, utilizar otras funciones de distancia distintas a la euclídea con el fin de incorporar conjuntos de datos categóricos, plantear el problema de selección de prototipos como un problema de optimización multiobjetivo en relación al accuracy, kappa, reducción y tiempo par estudiar el comportamiento de los distintos algoritmos y por último se recomienda probar con distintas técnicas de entonación de metaheurísticas para evaluar el desempeño de distintas configuraciones de parámetros.

Bibliografía

- [AD91] Hussein Almuallim and Thomas G Dietterich. Learning with many irrelevant features. In AAAI, volume 91, pages 547–552, 1991.
- [AFFL⁺11] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador García, Luciano Sánchez, and Francisco Herrera. Keel datamining software tool: data set repository, integration of algorithms and experimental analysis framework. *Journal of Multiple-Valued Logic & Soft Computing*, 17, 2011.
 - [AL03] Emile HL Aarts and Jan Karel Lenstra. Local search in combinatorial optimization. Princeton University Press, 2003.
 - [Ale14] Flores Alejandro. Metaheurísticas Bio-Inspiradas para Selección de Instancias. PhD thesis, Undergraduate thesis, Departamento de Ciencias de la Computación, Universidad Simón Bolívar, Venezuela, 2014.
 - [AP11] S Sakinah S Ahmad and Witold Pedrycz. Feature and instance selection via cooperative pso. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pages 2127–2132. IEEE, 2011.
 - [ASA15a] Ismail M Anwar, Khalid M Salama, and Ashraf M Abdelbar. Adr-miner: An ant-based data reduction algorithm for classification. In *Evolutionary Computation (CEC)*, 2015 IEEE Congress on, pages 515–521. IEEE, 2015.
 - [ASA15b] Ismail M Anwar, Khalid M Salama, and Ashraf M Abdelbar. Instance selection with ant colony optimization. *Procedia Computer Science*, 53:248–256, 2015.

- [Bat94] Roberto Battiti. Using mutual information for selecting features in supervised neural net learning. *IEEE Transactions on neural networks*, 5(4):537–550, 1994.
- [BF99] Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. *Journal of artificial intelligence research*, 11:131–167, 1999.
- [BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative analysis of methodologies for database schema integration. *ACM computing surveys (CSUR)*, 18(4):323–364, 1986.
- [CAB11] Cagatay Catal, Oral Alan, and Kerime Balkan. Class noise detection based on software metrics and roc curves. *Information Sciences*, 181(21):4867–4877, 2011.
 - [CF01] Vicente Cerveron and Francesc J Ferri. Another move toward the minimum consistent subset: a tabu search approach to the condensed nearest neighbor rule. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 31(3):408–413, 2001.
- [CHL05] José Ramón Cano, Francisco Herrera, and Manuel Lozano. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Letters, 26(7):953–963, 2005.
 - [CJ11] Ireneusz Czarnowski and Piotr Jędrzejowicz. Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem. *International Journal of Applied Mathematics and Computer Science*, 21(1):57–68, 2011.
- [CKLS01] Munir Cochinwala, Verghese Kurien, Gail Lalk, and Dennis Shasha. Efficient data reconciliation. *Information Sciences*, 137(1-4):1–15, 2001.
- [CPSK07] Krzysztof J Cios, Witold Pedrycz, Roman W Swiniarski, and Lukasz Andrzej Kurgan. *Data mining: a knowledge discovery approach*. Springer Science & Business Media, 2007.
 - [dA04] José Ramón Cano de Amo. Reducción de datos basada en Selección Evolutiva de Instancias para Mineria de Datos. PhD thesis, PhD thesis,

- Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain, 2004.
- [DKT17] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
 - [DL97] Manoranjan Dash and Huan Liu. Feature selection for classification. Intelligent data analysis, 1(3):131–156, 1997.
 - [Dor92] Marco Dorigo. Optimization, learning and natural algorithms. *PhD Thesis, Politecnico di Milano*, 1992.
 - [Esh91] Larry J Eshelman. The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In Foundations of genetic algorithms, volume 1, pages 265–283. Elsevier, 1991.
- [ESK01] Russell C Eberhart, Yuhui Shi, and James Kennedy. Swarm intelligence. Elsevier, 2001.
- [FKP07] Alireza Farhangfar, Lukasz A Kurgan, and Witold Pedrycz. A novel framework for imputation of missing values in databases. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(5):692–709, 2007.
- [FM17] Alejandro Flores and David M Mount. Nearest neighbor condensation with guarantees. 2017.
- [FR95] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search procedures. *Journal of global optimization*, 6(2):109–133, 1995.
- [FS69] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. *Journal* of the American Statistical Association, 64(328):1183–1210, 1969.
- [FSS96] Usama M Fayyd, Gregory P Shapiro, and Padhraic Smyth. From data mining to knowledge discovery: An overview. 1996.

- [GCH08] Salvador García, José Ramón Cano, and Francisco Herrera. A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8):2693–2709, 2008.
- [GDCH12] Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for nearest neighbor classification: Taxonomy and empirical study. *IEEE transactions on pattern analysis and machine intelligence*, 34(3):417–435, 2012.
 - [GLH16] Salvador García, Julián Luengo, and Francisco Herrera. *Data preprocessing in data mining*. Springer, 2016.
 - [Glo77] Fred Glover. Heuristics for integer programming using surrogate constraints. *Decision sciences*, 8(1):156–166, 1977.
 - [Glo89] Fred Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–206, 1989.
- [GLS⁺13] Salvador Garcia, Julian Luengo, José Antonio Sáez, Victoria Lopez, and Francisco Herrera. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. *IEEE Transactions on Knowledge and Data Engineering*, 25(4):734–750, 2013.
 - [Har68] Peter Hart. The condensed nearest neighbor rule (corresp.). *IEEE transactions on information theory*, 14(3):515–516, 1968.
 - [Hol75] John H Holland. Adaptation in natural and artificial systems. an introductory analysis with application to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press, pages 439–444, 1975.
- [HPK11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 2011.
 - [K+95] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In *Ijcai*, volume 14, pages 1137–1145. Montreal, Canada, 1995.

- [KCH+03] Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Doheon Lee. A taxonomy of dirty data. Data mining and knowledge discovery, 7(1):81-99, 2003.
- [KGV83] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983.
 - [KS96] Daphne Koller and Mehran Sahami. Toward optimal feature selection. Technical report, Stanford InfoLab, 1996.
- [LIDLC⁺16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration. *Operations Research Perspectives*, 3:43–58, 2016.
 - [LLIB06] Jose A Lozano, Pedro Larrañaga, Iñaki Inza, and Endika Bengoetxea.

 Towards a new evolutionary computation: advances on estimation of distribution algorithms, volume 192. Springer, 2006.
 - [LM12] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data mining, volume 454. Springer Science & Business Media, 2012.
 - [LMD98] Huan Liul, Hiroshi Motoda, and Manoranjan Dash. A monotonic measure for optimal feature selection. In *European conference on machine learning*, pages 101–106. Springer, 1998.
 - [LMS03] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search. In *Handbook of metaheuristics*, pages 320–353. Springer, 2003.
 - [LS⁺96] Huan Liu, Rudy Setiono, et al. A probabilistic approach to feature selection-a filter solution. In *ICML*, volume 96, pages 319–327. Citeseer, 1996.
 - [MH97] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations research, 24(11):1097–1100, 1997.

- [NC12] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.
- [Pea84] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. 1984.
- [PSL06] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. *Differential evolution: a practical approach to global optimization*. Springer Science & Business Media, 2006.
- [SLI⁺01] Basilio Sierra, Elena Lazkano, Iñaki Inza, Marisa Merino, Pedro Larrañaga, and Jorge Quiroga. Prototype selection and feature subset selection by estimation of distribution algorithms. a case study in the survival of cirrhotic patients treated with tips. In *Conference on Artificial Intelligence in Medicine in Europe*, pages 20–29. Springer, 2001.
 - [Tal09] El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74. John Wiley & Sons, 2009.
- [Ten99] Choh-Man Teng. Correcting noisy data. In *ICML*, pages 239–248. Citeseer, 1999.
- [Vou98] Christos Voudouris. Guided local search—an illustrative example in function optimisation. BT Technology Journal, 16(3):46–50, 1998.
- [Wil72] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. *IEEE Transactions on Systems, Man, and Cybernetics*, (3):408–421, 1972.
- [WXGZ16] Jiaheng Wang, Bing Xue, Xiaoying Gao, and Mengjie Zhang. A differential evolution approach to feature selection and instance selection. In Pacific Rim International Conference on Artificial Intelligence, pages 588–602. Springer, 2016.
 - [XYC88] Lei Xu, Pingfan Yan, and Tong Chang. Best first strategy for feature selection. In *Pattern Recognition*, 1988., 9th International Conference on, pages 706–708. IEEE, 1988.

Bibliografía 61

[YW09] Ying Yang and Geoffrey I Webb. Discretization for naive-bayes learning: managing discretization bias and variance. *Machine learning*, 74(1):39–74, 2009.

[Zuk10] AV Zukhba. Np-completeness of the problem of prototype selection in the nearest neighbor method. *Pattern Recognition and Image Analysis*, 20(4):484–494, 2010.

Apéndice A Resultados de todos los conjuntos

Сомимто	Accur	RACY	Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9593	0.8800	0.9389	0.8200	0.8887	0.0134
cleveland	0.9181	0.5487	0.8722	0.3055	0.5478	0.0462
led7digit	0.5864	0.5200	0.5390	0.4640	0.6088	0.0939
$_{ m pima}$	0.8898	0.6570	0.7604	0.2590	0.6728	0.1904
wdbc	0.9629	0.9081	0.9212	0.8053	0.9044	0.1447
monk2	0.9277	0.8079	0.8550	0.6140	0.7792	0.0684
wisconsin	0.9642	0.9185	0.9190	0.8137	0.9293	0.1470
wine	0.9662	0.9075	0.9483	0.8563	0.8944	0.0103
glass	0.9497	0.7705	0.9275	0.6626	0.6972	0.0209
banknote	0.9978	0.9913	0.9956	0.9824	0.9808	0.3733
appendicitis	0.9224	0.7850	0.7345	0.2999	0.8066	0.0050
balance	0.9181	0.7347	0.8584	0.5484	0.7547	0.1245
bands	0.8962	0.6652	0.7811	0.3061	0.6425	0.0734
contraceptive	0.8363	0.4231	0.7477	0.1159	0.4833	0.6498
dermatology	0.9758	0.9262	0.9692	0.9063	0.8866	0.0671
ecoli	0.9332	0.7769	0.9035	0.6778	0.7292	0.0449
haberman	0.8882	0.6439	0.7110	0.1313	0.6703	0.0353
hayes-roth	0.8139	0.6938	0.7066	0.5119	0.6250	0.0151
heart	0.8996	0.7037	0.7961	0.3968	0.7241	0.0275
hepatitis	0.9333	0.7375	0.7451	0.0611	0.7725	0.0011
mammographic	0.8470	0.7133	0.6938	0.4256	0.7204	0.2016
newthyroid	0.9788	0.9256	0.9515	0.8312	0.9102	0.0108
tae	0.8749	0.6029	0.8123	0.3993	0.5589	0.0074
vehicle	0.9118	0.6670	0.8822	0.5553	0.6681	0.2286
vowel	0.9881	0.9444	0.9869	0.9389	0.8066	0.2923
yeast	0.9012	0.5087	0.8718	0.3619	0.5252	0.6199

Tabla A.1: Resultados de CNN para conjuntos pequeños con 1000 iteraciones fijas

Conmina	Accur	RACY	KAP	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
banana	0.9048	0.8374	0.8185	0.6723	0.8146	0.1792
$\operatorname{cardiotocography}$	0.9283	0.8802	0.8275	0.6843	0.8098	0.0438
eye-state	0.8835	0.7799	0.7753	0.5563	0.6718	2.1157
page-blocks	0.9556	0.9377	0.8149	0.6798	0.9109	0.1955
penbased	0.9815	0.9858	0.9806	0.9842	0.9108	0.9328
satimage	0.9276	0.8696	0.9133	0.8399	0.8043	0.4847
thyroid	0.9212	0.8849	0.6208	0.3725	0.8603	0.4934
segment	0.8419	0.1567	0.8172	0.0162	0.2219	0.0927
coil2000	0.8586	0.8008	0.3599	0.0613	0.8172	1.8300
magic	0.8573	0.7566	0.7066	0.4752	0.7365	3.0852
marketing	0.7892	0.2641	0.7616	0.1632	0.3017	0.6029
phoneme	0.9071	0.8449	0.7927	0.6278	0.7695	0.2589
ring	0.9078	0.8369	0.8255	0.6731	0.7802	0.5239
spambase	0.8933	0.8360	0.7885	0.6588	0.7774	0.3424
texture	0.9807	0.9791	0.9797	0.9770	0.8454	0.3805
titanic	0.7511	0.7587	0.3155	0.3187	0.7301	0.0284
twonorm	0.9156	0.8905	0.8411	0.7811	0.8803	0.4941

Tabla A.2: Resultados de CNN para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7843	0.6334	0.4839	0.1226	0.6591	1.9767
shuttle	0.9793	0.9982	0.9954	0.9948	0.9775	4.5940

Tabla A.3: Resultados de CNN para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9541	0.9533	0.9311	0.9300	0.1420	0.0150
cleveland	0.6712	0.5784	0.4599	0.2935	0.4542	0.0532
led7digit	0.7427	0.6820	0.7129	0.6448	0.3712	0.1037
pima	0.8080	0.7324	0.5599	0.3828	0.3195	0.2318
wdbc	0.9678	0.9576	0.9297	0.9069	0.1366	0.2143
monk2	0.8403	0.7193	0.6776	0.4348	0.2690	0.0998
wisconsin	0.9766	0.9636	0.9481	0.9185	0.1327	0.2239
wine	0.9538	0.9588	0.9301	0.9381	0.1416	0.0226
glass	0.8230	0.7236	0.7475	0.6014	0.2715	0.0365
banknote	0.9979	0.9978	0.9957	0.9956	0.1019	0.7042
appendicitis	0.9507	0.9538	0.7422	0.7140	0.1764	0.0062
balance	0.9141	0.8738	0.8395	0.7642	0.2370	0.1610
bands	0.7787	0.6975	0.5033	0.3168	0.3247	0.0989
contraceptive	0.6286	0.4679	0.4260	0.1802	0.5192	0.6643
dermatology	0.9631	0.9434	0.9530	0.9281	0.1374	0.1330
ecoli	0.8823	0.8270	0.8298	0.7476	0.2464	0.0721
haberman	0.8046	0.7050	0.4219	0.0917	0.3203	0.0411
hayes-roth	0.8076	0.6500	0.6932	0.4333	0.3188	0.0137
heart	0.8617	0.8074	0.7197	0.6093	0.2681	0.0499
hepatitis	0.9111	0.9125	0.4840	0.3857	0.2188	0.0035
mammographic	0.8470	0.7783	0.6941	0.5564	0.2835	0.2779
newthyroid	0.9633	0.9456	0.9109	0.8603	0.1330	0.0302
tae	0.7572	0.5304	0.6328	0.2794	0.3331	0.0094
vehicle	0.7851	0.6927	0.7135	0.5902	0.3241	0.3354
vowel	0.9892	0.9758	0.9881	0.9733	0.1097	0.4254
yeast	0.6849	0.5736	0.5837	0.4364	0.4463	0.6923

Tabla A.4: Resultados de ENN para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kai	PPA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9326	0.8872	0.8743	0.7725	0.1990	0.2991
cardiotocography	0.9370	0.9001	0.8389	0.7138	0.2230	0.0746
eye-state	0.9090	0.8286	0.8273	0.6555	0.2969	3.2362
page-blocks	0.9689	0.9660	0.8697	0.8064	0.1403	0.4002
penbased	0.9844	0.9924	0.9837	0.9915	0.1165	1.9932
satimage	0.9240	0.8957	0.9084	0.8712	0.2155	0.9814
thyroid	0.9438	0.9454	0.5127	0.4180	0.1494	0.9467
segment	0.2884	0.1424	0.1715	-0.0005	0.8134	0.0565
coil2000	0.9375	0.9314	0.2698	0.0648	0.1964	4.5221
magic	0.8916	0.8304	0.7672	0.6109	0.2749	4.9207
marketing	0.4367	0.3002	0.3540	0.1954	0.7031	0.4916
phoneme	0.9303	0.8860	0.8470	0.7267	0.2434	0.3277
ring	0.6748	0.6045	0.3553	0.2022	0.4272	0.7776
spambase	0.9377	0.9067	0.8800	0.8025	0.2294	0.6905
texture	0.9771	0.9825	0.9758	0.9808	0.1461	0.8034
titanic	0.6370	0.6461	0.2409	0.2508	0.3445	0.0323
twonorm	0.9723	0.9526	0.9545	0.9051	0.1454	0.9818

Tabla A.5: Resultados de ENN para conjuntos medianos con 1000 iteraciones fijas

Conjunto	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
credit-card	0.8725	0.7804	0.5911	0.2965	0.2756	2.8839
shuttle	0.9985	0.9986	0.9964	0.9961	0.0234	9.4477

Tabla A.6: Resultados de ENN para conjuntos grandes con 1000 iteraciones fijas

Сомими	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9496	0.9400	0.9244	0.9100	0.8127	0.0074
cleveland	0.7550	0.5943	0.6066	0.3414	0.5936	0.0332
led7digit	0.6871	0.6500	0.6511	0.6093	0.7522	0.0586
pima	0.8291	0.6808	0.6142	0.2740	0.6229	0.1369
wdbc	0.9260	0.9234	0.8363	0.8297	0.8798	0.1131
monk2	0.8153	0.7848	0.6301	0.5693	0.7972	0.0507
wisconsin	0.9545	0.9343	0.8970	0.8506	0.8772	0.2640
wine	0.9457	0.9174	0.9176	0.8758	0.8298	0.0130
glass	0.8053	0.7021	0.7126	0.5569	0.6636	0.0158
banknote	0.9871	0.9825	0.9739	0.9645	0.9160	0.5805
appendicitis	0.9299	0.9175	0.6883	0.5848	0.7660	0.0032
balance	0.7562	0.7359	0.5849	0.5519	0.9219	0.0962
bands	0.8137	0.6446	0.6086	0.2608	0.5814	0.0485
contraceptive	0.7128	0.4589	0.5543	0.1619	0.5452	0.4976
dermatology	0.9476	0.9294	0.9327	0.9095	0.8377	0.0566
ecoli	0.8409	0.7627	0.7669	0.6495	0.7074	0.0361
haberman	0.7985	0.7144	0.4423	0.1849	0.6742	0.0281
hayes-roth	0.7201	0.5375	0.5582	0.2597	0.6538	0.0071
heart	0.8342	0.7704	0.6618	0.5321	0.6889	0.0322
hepatitis	0.8528	0.7625	0.4282	0.1196	0.7725	0.0016
mammographic	0.8086	0.7289	0.6161	0.4567	0.7412	0.1620
newthyroid	0.8927	0.8703	0.6855	0.6091	0.8716	0.0266
tae	0.7476	0.5438	0.6206	0.3105	0.5669	0.0050
vehicle	0.8030	0.6763	0.7372	0.5679	0.6489	0.2051
vowel	0.8783	0.8242	0.8662	0.8067	0.7148	0.2364
yeast	0.7523	0.5103	0.6762	0.3603	0.5646	0.4852

Tabla A.7: Resultados de RSS para conjuntos pequeños con 1000 iteraciones fijas

Conmina	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
banana	0.8832	0.8677	0.7700	0.7277	0.6826	0.2696
$\operatorname{cardiotocography}$	0.8837	0.8804	0.6574	0.6236	0.7527	0.0583
eye-state	0.8573	0.7865	0.7162	0.5585	0.5803	2.3796
page-blocks	0.9458	0.9487	0.7605	0.7310	0.8753	0.5875
penbased	0.9808	0.9870	0.9798	0.9855	0.5199	1.6799
satimage	0.8946	0.8699	0.8727	0.8402	0.5017	0.7375
thyroid	0.9102	0.8786	0.5998	0.3867	0.7890	0.6370
segment	0.6277	0.1558	0.5674	0.0152	0.4549	0.0819
coil2000	0.9150	0.8985	0.2946	0.0651	0.7542	2.1691
magic	0.8403	0.7997	0.6373	0.5237	0.6706	3.4522
marketing	0.6410	0.2679	0.5927	0.1662	0.4565	0.5593
phoneme	0.8302	0.8139	0.5365	0.4669	0.6358	0.3402
ring	0.9631	0.8603	0.9362	0.7199	0.5577	0.9070
spambase	0.9137	0.8860	0.8266	0.7550	0.6110	0.3883
texture	0.9641	0.9645	0.9615	0.9610	0.5837	0.5338
titanic	0.6761	0.6820	0.0249	0.0230	0.8892	0.1321
twonorm	0.9263	0.9207	0.8625	0.8413	0.6952	0.7287

Tabla A.8: Resultados de RSS para conjuntos medianos con 1000 iteraciones fijas

Conjunto	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
credit-card	0.8367	0.7475	0.4858	0.2049	0.5967	2.1960
shuttle	0.9985	0.9987	0.9964	0.9964	0.8505	19.2569

Tabla A.9: Resultados de RSS para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
iris	0.9578	0.9333	0.9367	0.9000	0.4860	1.6052
cleveland	0.7383	0.5825	0.5962	0.3419	0.5485	6.5904
led7digit	0.6893	0.6480	0.6540	0.6072	0.5488	9.0854
pima	0.8317	0.6768	0.6240	0.2754	0.5402	17.3229
wdbc	0.9733	0.9492	0.9420	0.8889	0.5409	23.3391
monk2	0.8673	0.7822	0.7336	0.5629	0.5329	8.2115
wisconsin	0.9730	0.9504	0.9394	0.8886	0.5313	15.1765
wine	0.9632	0.9353	0.9445	0.9030	0.5129	2.5872
glass	0.7006	0.6131	0.5633	0.4205	0.6154	3.4891
banknote	0.9984	0.9957	0.9967	0.9912	0.5497	29.7193
appendicitis	0.8901	0.8738	0.6201	0.5506	0.5321	1.0743
balance	0.8964	0.8034	0.8158	0.6503	0.5368	12.4007
bands	0.7987	0.6696	0.5676	0.3031	0.5471	10.1985
contraceptive	0.6950	0.4366	0.5287	0.1354	0.5538	38.9566
dermatology	0.9709	0.9496	0.9631	0.9364	0.5212	15.6820
ecoli	0.8591	0.8110	0.7956	0.7203	0.5548	6.6674
haberman	0.8072	0.6772	0.4823	0.1404	0.5516	4.6479
hayes-roth	0.5444	0.5125	0.2700	0.2143	0.6838	1.8741
heart	0.8407	0.7593	0.6745	0.5086	0.5300	5.5938
hepatitis	0.8611	0.8250	0.4622	0.2541	0.5100	1.0918
mammographic	0.8450	0.7373	0.6895	0.4739	0.5405	17.2283
newthyroid	0.9618	0.9504	0.9073	0.8607	0.5135	2.7401
tae	0.4696	0.4042	0.2095	0.0909	0.7205	1.8484
vehicle	0.8158	0.6925	0.7541	0.5897	0.5595	26.8813
vowel	0.9247	0.8697	0.9172	0.8567	0.5658	28.9557
yeast	0.7370	0.5263	0.6575	0.3821	0.5566	40.4827

Tabla A.10: Resultados de GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9336	0.8670	0.8660	0.7317	0.5339	50.4962
cardiotocography	0.9359	0.8954	0.8168	0.6954	0.5731	19.7200
eye-state	0.9002	0.8108	0.7984	0.6177	0.5512	209.4679
page-blocks	0.9760	0.9573	0.8652	0.7563	0.5420	60.4759
penbased	0.9950	0.9913	0.9944	0.9904	0.5456	155.4689
satimage	0.9440	0.8931	0.9310	0.8684	0.5439	114.2495
thyroid	0.9697	0.9384	0.7598	0.4854	0.5408	99.9336
segment	0.4049	0.1468	0.3057	0.0045	0.7051	23.9123
coil2000	0.9448	0.9002	0.4752	0.0612	0.5412	320.5003
magic	0.9008	0.8061	0.7793	0.5617	0.5466	257.4847
\max keting	0.5472	0.2673	0.4840	0.1647	0.6214	93.4540
phoneme	0.9310	0.8701	0.8307	0.6803	0.5455	53.9916
ring	0.7438	0.6525	0.4848	0.2999	0.6361	98.3467
spambase	0.9463	0.8900	0.8873	0.7689	0.5521	98.5384
texture	0.9880	0.9781	0.9868	0.9759	0.5505	104.2189
titanic	0.7621	0.7624	0.3333	0.3332	0.5249	10.2480
twonorm	0.9698	0.9426	0.9395	0.8852	0.5358	100.8737

Tabla A.11: Resultados de GGA para conjuntos medianos con 1000 iteraciones fijas

Conjunto	ACCURACY		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
credit-card	0.8641	0.7299	0.6008	0.2059	0.5073	505.3758
shuttle	0.9990	0.9990	0.9979	0.9969	0.5026	838.6788

Tabla A.12: Resultados de GGA para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kai	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.3030	0.3200	-0.0456	-0.0200	0.9240	6.3656
cleveland	0.5293	0.3679	0.3537	0.1336	0.6963	5.9664
led7digit	0.6047	0.5360	0.5591	0.4826	0.4976	7.5702
pima	0.7962	0.6137	0.5746	0.1733	0.6272	15.2452
wdbc	0.6694	0.6784	0.3348	0.3413	0.9313	43.9950
monk2	0.7477	0.7167	0.4912	0.4271	0.7556	8.0582
wisconsin	0.3132	0.3147	-0.1204	-0.1146	0.9529	272.6415
wine	0.3945	0.3988	0.0050	0.0191	0.9202	7.4435
glass	0.4090	0.3240	0.1886	0.0510	0.8065	4.2692
banknote	0.5184	0.5102	0.0812	0.0678	0.9848	280.3950
appendicitis	0.1747	0.1563	-0.0476	-0.0932	0.9358	3.0004
balance	0.9204	0.7651	0.8647	0.5975	0.6248	14.6300
bands	0.7986	0.6423	0.5860	0.2476	0.5633	7.3417
contraceptive	0.9028	0.4222	0.8500	0.1121	0.3169	28.9513
dermatology	0.4545	0.4624	0.3400	0.3427	0.9212	23.5747
ecoli	0.5530	0.5303	0.4009	0.3704	0.8086	8.2870
haberman	0.6193	0.5517	0.2413	0.0795	0.7000	4.7037
hayes-roth	0.5792	0.5875	0.3234	0.3317	0.6288	1.3488
heart	0.6284	0.5444	0.2698	0.1018	0.7552	5.2345
hepatitis	0.2208	0.1750	0.0044	-0.0382	0.8950	2.3698
${\it mammographic}$	0.7618	0.6639	0.5233	0.3270	0.6719	18.7637
newthyroid	0.3228	0.3650	0.1216	0.1462	0.9470	17.0849
tae	0.4702	0.3988	0.2035	0.1067	0.6715	1.2970
vehicle	0.7324	0.6024	0.6424	0.4689	0.6746	22.3047
vowel	0.5860	0.6020	0.5446	0.5622	0.8578	29.2790
yeast	0.9031	0.5188	0.8737	0.3691	0.4065	30.0230

Tabla A.13: Resultados de CNN-GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kai	PPA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8370	0.7930	0.6838	0.5855	0.8698	143.1180
cardiotocography	0.7095	0.6793	0.4598	0.3887	0.8567	60.1878
eye-state	0.8868	0.7900	0.7828	0.5787	0.6282	231.2230
page-blocks	0.7852	0.7752	0.3919	0.3442	0.9472	694.1560
penbased	0.9485	0.9540	0.9438	0.9488	0.9346	515.6620
satimage	0.8691	0.8292	0.8420	0.7911	0.8576	238.5030
thyroid	0.8393	0.8158	0.4006	0.2771	0.8964	280.0980
segment	0.7321	0.1606	0.6891	0.0207	0.3306	21.6793
coil2000	0.7481	0.7008	0.2124	0.0491	0.8571	339.5150
magic	0.8244	0.7278	0.6557	0.4453	0.7179	426.6730
marketing	0.7031	0.2532	0.6639	0.1514	0.3992	87.8192
phoneme	0.7686	0.7270	0.5190	0.4164	0.8306	243.0430
ring	0.8275	0.7330	0.6640	0.4633	0.7424	197.2490
spambase	0.8256	0.7844	0.6574	0.5640	0.8252	93.0783
texture	0.8071	0.8042	0.7888	0.7846	0.8905	151.4730
titanic	0.5624	0.5702	-0.0657	-0.0621	0.7318	31.2225
twonorm	0.9095	0.8884	0.8291	0.7768	0.8511	203.4820

Tabla A.14: Resultados de CNN-GGA para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	Accuracy		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7000	0.5640	0.3824	0.1055	0.6966	563.6650
shuttle	0.7212	0.7222	0.5131	0.5134	0.9852	2574.1175

Tabla A.15: Resultados de CNN-GGA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
	Training	Test	Training	Test		
iris	0.9541	0.9533	0.9311	0.9300	0.1413	1.4803
cleveland	0.6738	0.5659	0.4545	0.2666	0.4650	7.4858
led7digit	0.7144	0.6660	0.6819	0.6276	0.3834	10.2158
pima	0.8063	0.7271	0.5610	0.3728	0.3194	17.8755
wdbc	0.9670	0.9576	0.9275	0.9062	0.1381	38.7962
monk2	0.8400	0.7310	0.6777	0.4589	0.2706	8.2817
wisconsin	0.9761	0.9651	0.9469	0.9223	0.1329	17.8421
wine	0.9494	0.9471	0.9237	0.9203	0.1455	4.4621
glass	0.8043	0.7164	0.7185	0.5900	0.2916	3.5409
banknote	0.9979	0.9978	0.9957	0.9956	0.1019	26.7934
appendicitis	0.9581	0.9438	0.7735	0.6611	0.1613	1.1819
balance	0.9092	0.8688	0.8337	0.7590	0.2474	11.3776
bands	0.7811	0.6753	0.5171	0.2805	0.3200	13.0032
contraceptive	0.6226	0.4706	0.4174	0.1848	0.5267	41.4551
dermatology	0.9640	0.9462	0.9541	0.9313	0.1369	25.6686
ecoli	0.8810	0.8522	0.8270	0.7833	0.2595	6.8828
haberman	0.8010	0.7122	0.4381	0.1458	0.3216	3.8786
hayes-roth	0.8153	0.6250	0.7060	0.3870	0.2931	1.6927
heart	0.8617	0.8000	0.7196	0.5942	0.2667	7.2303
hepatitis	0.8931	0.8875	0.5329	0.4000	0.2188	1.6808
mammographic	0.8454	0.7711	0.6909	0.5418	0.2852	17.0408
newthyroid	0.9623	0.9456	0.9118	0.8662	0.1340	2.6122
tae	0.7579	0.5571	0.6337	0.3278	0.3450	1.6246
vehicle	0.7817	0.6847	0.7089	0.5792	0.3258	30.7541
vowel	0.9892	0.9758	0.9881	0.9733	0.1097	35.4269
yeast	0.6795	0.5729	0.5786	0.4377	0.4485	41.3776

Tabla A.16: Resultados de ENN-GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9326	0.8866	0.8743	0.7714	0.2005	40.9813
cardiotocography	0.9373	0.9015	0.8397	0.7162	0.2209	20.6367
eye-state	0.9088	0.8282	0.8270	0.6547	0.3007	207.7310
page-blocks	0.9690	0.9656	0.8694	0.8018	0.1413	57.1816
penbased	0.9844	0.9924	0.9837	0.9915	0.1169	169.9620
satimage	0.9241	0.8960	0.9086	0.8715	0.2172	144.5530
thyroid	0.9431	0.9451	0.5049	0.4152	0.1509	114.0900
segment	0.2854	0.1437	0.1679	0.0010	0.8145	25.7382
coil2000	0.9377	0.9314	0.2758	0.0670	0.1968	465.3530
magic	0.8914	0.8303	0.7665	0.6106	0.2775	250.8440
marketing	0.4381	0.2958	0.3566	0.1914	0.6979	102.7230
phoneme	0.9308	0.8858	0.8481	0.7263	0.2446	45.7861
ring	0.6693	0.6020	0.3447	0.1980	0.4323	95.1795
spambase	0.9383	0.9067	0.8814	0.8027	0.2322	134.9760
texture	0.9771	0.9827	0.9758	0.9810	0.1475	140.3440
titanic	0.7680	0.7746	0.4346	0.4355	0.3282	9.3024
twonorm	0.9723	0.9526	0.9545	0.9051	0.1461	114.0080

Tabla A.17: Resultados de ENN-GGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8728	0.7793	0.5922	0.2944	0.2770	541.2280
shuttle	0.9985	0.9987	0.9965	0.9962	0.0233	894.8520

Tabla A.18: Resultados de ENN-GGA para conjuntos grandes con 1000 iteraciones fijas

Сомимто	Accuracy		Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.5400	0.5467	0.3100	0.3200	0.8833	5.5023
cleveland	0.6995	0.5729	0.5127	0.2824	0.6000	6.3971
led7digit	0.5527	0.5160	0.5020	0.4613	0.8240	11.9904
$_{ m pima}$	0.8002	0.6972	0.5542	0.3114	0.6133	18.1228
wdbc	0.8521	0.8519	0.6553	0.6578	0.8538	23.9792
monk2	0.6772	0.6479	0.3484	0.2897	0.8639	12.4095
wisconsin	0.7849	0.7956	0.4227	0.4501	0.9149	39.3925
wine	0.5652	0.5539	0.3467	0.3296	0.8933	8.3321
glass	0.5492	0.5655	0.3256	0.3274	0.7813	4.4381
banknote	0.7390	0.7355	0.4367	0.4300	0.9587	157.4090
appendicitis	0.6647	0.6575	0.0856	0.0546	0.7925	1.7964
balance	0.4461	0.4325	0.1961	0.1813	0.9686	48.2580
bands	0.7586	0.6377	0.4917	0.2357	0.5882	9.8358
contraceptive	0.6986	0.4528	0.5339	0.1546	0.5468	37.5165
dermatology	0.6459	0.6480	0.5522	0.5552	0.9059	16.5175
ecoli	0.7478	0.7249	0.6330	0.5976	0.7229	6.8582
haberman	0.7321	0.6872	0.3222	0.1714	0.6794	5.1684
hayes-roth	0.4563	0.4500	0.1113	0.1064	0.7663	2.1052
heart	0.7185	0.7148	0.4190	0.4175	0.7233	5.4765
hepatitis	0.5903	0.5875	0.1514	0.1471	0.7925	1.3769
mammographic	0.7645	0.6952	0.5278	0.3888	0.7325	21.4182
newthyroid	0.7107	0.7255	0.0031	0.0395	0.8977	6.3003
tae	0.4747	0.3958	0.2144	0.0949	0.6967	1.7932
vehicle	0.7788	0.6904	0.7048	0.5867	0.6264	25.0300
vowel	0.5505	0.5333	0.5056	0.4867	0.8702	42.3341
yeast	0.7308	0.5445	0.6486	0.4052	0.5676	40.2190

Tabla A.19: Resultados de RSS-GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8050	0.8013	0.6016	0.5828	0.7280	84.1568
cardiotocography	0.8283	0.8282	0.4189	0.3822	0.7138	22.3631
eye-state	0.7666	0.7295	0.5189	0.4281	0.6508	233.4130
page-blocks	0.9259	0.9258	0.5842	0.5230	0.8192	108.7890
penbased	0.9352	0.9390	0.9291	0.9323	0.5503	199.4800
satimage	0.8348	0.8182	0.8007	0.7783	0.5464	189.0800
thyroid	0.8317	0.8125	0.4056	0.2997	0.8765	168.3580
segment	0.4871	0.1623	0.4032	0.0227	0.5987	21.4625
coil2000	0.9171	0.8938	0.3499	0.0775	0.6987	266.3050
magic	0.8032	0.7798	0.5325	0.4562	0.6845	319.2850
marketing	0.5438	0.2746	0.4821	0.1740	0.5708	94.6385
phoneme	0.7567	0.7530	0.2580	0.2201	0.6511	58.1494
ring	0.9608	0.8303	0.9315	0.6595	0.5230	150.5110
spambase	0.8336	0.8186	0.6403	0.5936	0.6711	90.7451
texture	0.8847	0.8831	0.8742	0.8714	0.6330	117.4850
titanic	0.6750	0.6820	0.0236	0.0245	0.7902	20.4498
twonorm	0.8566	0.8520	0.7232	0.7039	0.7399	184.9760

Tabla A.20: Resultados de RSS-GGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8316	0.7452	0.4495	0.1684	0.5853	490.8110
shuttle	0.9983	0.9985	0.9959	0.9958	0.8312	1903.2900

Tabla A.21: Resultados de RSS-GGA para conjuntos grandes con 1000 iteraciones fijas

Сомими	Accur	RACY	Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.6281	0.6667	0.4422	0.5000	0.8380	9.1441
cleveland	0.8638	0.5521	0.7875	0.3042	0.3933	17.9343
led7digit	0.6580	0.6000	0.6187	0.5526	0.5338	24.3794
pima	0.9100	0.6925	0.8002	0.3161	0.4408	43.5050
wdbc	0.9307	0.9275	0.8474	0.8418	0.7239	51.2243
monk2	0.8403	0.7683	0.6786	0.5332	0.6391	22.0426
wisconsin	0.9308	0.9190	0.8324	0.8039	0.7564	50.4188
wine	0.6436	0.7031	0.4442	0.5351	0.8416	14.6128
glass	0.6767	0.5648	0.5309	0.3691	0.6570	9.2663
banknote	0.8327	0.8440	0.6475	0.6723	0.9466	290.2950
appendicitis	0.4336	0.4575	-0.0203	-0.0329	0.8519	4.3040
balance	0.7175	0.6850	0.5520	0.4907	0.8419	60.3778
bands	0.8965	0.6867	0.7794	0.3293	0.4145	29.2568
contraceptive	0.8889	0.4386	0.8283	0.1333	0.2884	96.0340
dermatology	0.7799	0.7905	0.7184	0.7307	0.8101	33.7780
ecoli	0.9068	0.7804	0.8654	0.6772	0.5366	15.6847
haberman	0.8447	0.7222	0.6102	0.2778	0.4918	10.5201
hayes-roth	0.7438	0.6500	0.5903	0.4316	0.4844	4.1884
heart	0.8687	0.7222	0.7330	0.4367	0.5144	13.2776
hepatitis	0.6750	0.6500	0.2622	0.1001	0.7163	3.6349
mammographic	0.8582	0.7289	0.7161	0.4570	0.5357	44.3800
newthyroid	0.7647	0.7434	0.2932	0.2836	0.8488	13.8422
tae	0.6836	0.5096	0.5249	0.2564	0.4914	3.9989
vehicle	0.9108	0.6951	0.8810	0.5931	0.4475	69.7710
vowel	0.6726	0.6646	0.6399	0.6311	0.7999	88.2295
yeast	0.9344	0.5412	0.9148	0.4037	0.3317	96.5058

Tabla A.22: Resultados de CNN-RSS-GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8739	0.8308	0.7500	0.6505	0.6487	192.4880
cardiotocography	0.9095	0.8802	0.7463	0.6270	0.6335	50.4685
eye-state	0.8796	0.7870	0.7624	0.5597	0.5011	535.3850
page-blocks	0.9520	0.9430	0.7694	0.6651	0.7332	205.2115
penbased	0.9808	0.9852	0.9797	0.9835	0.5059	459.5600
satimage	0.9151	0.8732	0.8981	0.8443	0.4645	418.5175
thyroid	0.9475	0.9071	0.7441	0.4328	0.7163	318.7000
segment	0.7420	0.1506	0.7007	0.0091	0.3236	54.1318
coil2000	0.9282	0.8717	0.5406	0.0891	0.6014	721.2475
magic	0.9017	0.8006	0.7898	0.5419	0.5272	668.4100
marketing	0.7786	0.2765	0.7492	0.1750	0.2644	216.0485
phoneme	0.8723	0.8347	0.6715	0.5446	0.5467	133.0128
ring	0.9709	0.8181	0.9518	0.6350	0.4729	320.8075
spambase	0.9388	0.8771	0.8811	0.7381	0.5176	258.4575
texture	0.9712	0.9698	0.9694	0.9668	0.5565	297.4400
titanic	0.6843	0.6910	0.0796	0.0818	0.7211	75.1360
twonorm	0.9382	0.9164	0.8864	0.8327	0.6395	335.8025

Tabla A.23: Resultados de CNN-RSS-GGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8922	0.7187	0.6845	0.1801	0.4155	1268.6125
shuttle	0.9988	0.9989	0.9974	0.9968	0.8023	4024.6750

Tabla A.24: Resultados de CNN-RSS-GGA para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9630	0.9467	0.9444	0.9200	0.1340	3.7309
cleveland	0.8096	0.5459	0.6995	0.2790	0.2906	20.1712
led7digit	0.7038	0.6360	0.6693	0.5930	0.3022	25.5188
$_{ m pima}$	0.8747	0.7025	0.7175	0.3308	0.2320	45.1518
wdbc	0.9701	0.9576	0.9348	0.9068	0.1351	97.8315
monk2	0.8843	0.7333	0.7665	0.4622	0.2285	21.2641
wisconsin	0.9774	0.9593	0.9500	0.9095	0.1291	44.2328
wine	0.9619	0.9471	0.9422	0.9205	0.1348	11.6699
glass	0.8577	0.7657	0.7982	0.6660	0.2369	10.0634
banknote	0.9980	0.9978	0.9959	0.9956	0.1018	67.1385
appendicitis	0.9602	0.9238	0.8214	0.6144	0.1481	3.0538
balance	0.9193	0.8466	0.8508	0.7211	0.2227	28.2728
bands	0.8959	0.7068	0.7714	0.3534	0.2093	35.9293
contraceptive	0.7880	0.4583	0.6708	0.1612	0.3020	96.3725
dermatology	0.9637	0.9548	0.9538	0.9423	0.1355	64.8818
ecoli	0.9111	0.8205	0.8712	0.7389	0.2012	17.4796
haberman	0.8627	0.7128	0.6145	0.1416	0.2448	10.0612
hayes-roth	0.8472	0.6500	0.7582	0.4311	0.2231	3.9015
heart	0.9058	0.8074	0.8091	0.6068	0.2044	18.4351
hepatitis	0.9431	0.8750	0.7678	0.3314	0.1613	4.8569
${\it mammographic}$	0.8665	0.7554	0.7329	0.5107	0.2234	41.0910
newthyroid	0.9737	0.9504	0.9379	0.8781	0.1242	6.2042
tae	0.8021	0.5567	0.6999	0.3246	0.2417	4.1103
vehicle	0.8735	0.7045	0.8313	0.6058	0.2326	82.0315
vowel	0.9921	0.9798	0.9914	0.9778	0.1078	88.4353
yeast	0.8246	0.5715	0.7714	0.4405	0.2779	98.2530

Tabla A.25: Resultados de ENN-RSS-GGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accuracy		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9534	0.8830	0.9159	0.7632	0.1627	98.5610
cardiotocography	0.9491	0.9085	0.8736	0.7388	0.1989	52.2130
eye-state	0.9507	0.8331	0.9105	0.6622	0.2012	512.1025
page-blocks	0.9725	0.9655	0.8916	0.8053	0.1363	142.6913
penbased	0.9883	0.9941	0.9881	0.9934	0.1079	423.7225
satimage	0.9493	0.8982	0.9397	0.8744	0.1695	370.8175
thyroid	0.9850	0.9457	0.9524	0.5330	0.1088	290.8975
segment	0.6367	0.1515	0.5778	0.0101	0.4432	51.3460
coil2000	0.9461	0.9223	0.4612	0.0722	0.1737	1166.3825
magic	0.9156	0.8274	0.8216	0.6036	0.2259	597.8900
marketing	0.7100	0.2909	0.6706	0.1907	0.3459	216.2983
phoneme	0.9505	0.8967	0.8929	0.7445	0.1946	111.3275
ring	0.9572	0.7403	0.9243	0.4778	0.1505	281.3275
spambase	0.9611	0.9086	0.9291	0.8071	0.1779	356.0225
texture	0.9843	0.9867	0.9837	0.9854	0.1262	358.0500
titanic	0.7520	0.7596	0.3175	0.3208	$0.3143\ 23.3339$	
twonorm	0.9785	0.9514	0.9670	0.9027	0.1296	290.0625

Tabla A.26: Resultados de ENN-RSS-GGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.9158	0.7605	0.7359	0.2502	0.1812	1409.3950
shuttle	0.9990	0.9991	0.9978	0.9974	0.0239	1997.4575

Tabla A.27: Resultados de ENN-RSS-GGA para conjuntos grandes con 1000 iteraciones fijas

Covyyy	Accur	RACY	Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9719	0.9467	0.9578	0.9200	0.9167	0.1425
cleveland	0.7433	0.5907	0.5781	0.3256	0.8357	0.2904
led7digit	0.7111	0.6220	0.6783	0.5789	0.8304	0.3914
pima	0.8255	0.7143	0.6052	0.3413	0.8090	0.9706
wdbc	0.9744	0.9472	0.9445	0.8847	0.8499	0.8070
monk2	0.9069	0.7849	0.8135	0.5688	0.8164	0.4609
wisconsin	0.9777	0.9593	0.9508	0.9099	0.8466	0.8056
wine	0.9862	0.9471	0.9788	0.9187	0.9112	0.1887
glass	0.8510	0.7061	0.7855	0.5725	0.8374	0.2000
banknote	0.9995	0.9978	0.9990	0.9956	0.8233	1.9947
appendicitis	0.9707	0.9338	0.8649	0.6594	0.9519	0.1038
balance	0.8780	0.8420	0.7765	0.7118	0.8299	0.6654
bands	0.8143	0.6714	0.5932	0.2956	0.8222	0.3919
contraceptive	0.6222	0.4354	0.4154	0.1299	0.7909	2.3099
dermatology	0.9737	0.9427	0.9667	0.9272	0.8665	0.4319
ecoli	0.8783	0.7956	0.8234	0.7013	0.8503	0.3654
haberman	0.8297	0.7556	0.4794	0.2531	0.8471	0.2898
hayes-roth	0.7875	0.5813	0.6665	0.3331	0.8156	0.1207
heart	0.8914	0.8111	0.7794	0.6165	0.8556	0.2568
hepatitis	0.9153	0.7625	0.6882	0.2213	0.9300	0.0680
mammographic	0.8491	0.7855	0.6979	0.5704	0.8157	1.0376
newthyroid	0.9721	0.9628	0.9328	0.9065	0.8981	0.1924
tae	0.7520	0.5046	0.6276	0.2569	0.8278	0.1282
vehicle	0.7992	0.6505	0.7322	0.5338	0.7987	1.1757
vowel	0.9398	0.8838	0.9338	0.8722	0.7589	1.2075
yeast	0.6798	0.5276	0.5812	0.3804	0.7868	2.3061

Tabla A.28: Resultados de SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	ACCURACY		Kai	PPA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9009	0.8797	0.7996	0.7566	0.8460	2.0155
cardiotocography	0.9010	0.8794	0.7177	0.6550	0.8952	0.8157
eye-state	0.8318	0.7782	0.6597	0.5512	0.7998	8.1422
page-blocks	0.9607	0.9511	0.7809	0.7240	0.8591	2.3354
penbased	0.9910	0.9868	0.9900	0.9853	0.8266	4.9590
satimage	0.9130	0.8916	0.8924	0.8659	0.8399	2.9289
thyroid	0.9471	0.9370	0.5434	0.4430	0.8547	3.4614
segment	0.3352	0.1377	0.2244	-0.0061	0.8025	0.8695
coil2000	0.9291	0.9155	0.2023	0.0364	0.8408	7.0551
magic	0.8479	0.8044	0.6583	0.5567	0.8081	11.0371
marketing	0.4385	0.2958	0.3576	0.1942	0.8008	3.1245
phoneme	0.8770	0.8431	0.7047	0.6212	0.8438	2.1808
ring	0.8423	0.7698	0.6837	0.5376	0.8069	3.3822
spambase	0.9028	0.8821	0.7962	0.7531	0.8468	2.1174
texture	0.9719	0.9648	0.9691	0.9613	0.8382	2.3282
titanic	0.7844	0.7838	0.4532	0.4497	0.9170	0.4438
twonorm	0.9581	0.9480	0.9162	0.8960	0.8395	3.3044

Tabla A.29: Resultados de SSGA para conjuntos medianos con 1000 iteraciones fijas

Conjunto	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
credit-card	0.7834	0.7498	0.3935	0.2439	0.8070	17.8910
shuttle	0.9988	0.9987	0.9971	0.9963	0.8041	37.4363

Tabla A.30: Resultados de SSGA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
iris	0.9741	0.9400	0.9611	0.9100	0.9407	0.1854
cleveland	0.8058	0.5818	0.6817	0.3238	0.7593	0.3769
led7digit	0.6373	0.5680	0.5959	0.5179	0.7878	0.5826
pima	0.8325	0.6664	0.6258	0.2451	0.7874	1.1970
wdbc	0.9691	0.9362	0.9333	0.8622	0.9364	1.5751
monk2	0.9059	0.8447	0.8116	0.6898	0.8435	0.5582
wisconsin	0.9764	0.9579	0.9481	0.9075	0.9621	5.2854
wine	0.9813	0.9548	0.9716	0.9310	0.9438	0.2875
glass	0.9081	0.7267	0.8674	0.6058	0.7790	0.2505
banknote	0.9973	0.9905	0.9946	0.9808	0.9780	6.2513
appendicitis	0.9759	0.9600	0.8770	0.6889	0.9585	0.1973
balance	0.8669	0.7695	0.7620	0.5936	0.8496	1.1170
bands	0.8499	0.6426	0.6746	0.2241	0.7751	0.5191
contraceptive	0.6974	0.4489	0.5335	0.1527	0.6686	2.8633
dermatology	0.9659	0.9278	0.9571	0.9089	0.9254	0.8536
ecoli	0.9025	0.8114	0.8576	0.7221	0.8435	0.4702
haberman	0.8453	0.6850	0.5383	0.0956	0.8183	0.3448
hayes-roth	0.7889	0.6313	0.6684	0.4175	0.7813	0.1321
heart	0.8934	0.7667	0.7839	0.5287	0.8581	0.3429
hepatitis	0.9167	0.8500	0.5894	0.3057	0.9550	0.0871
mammographic	0.8481	0.7422	0.6960	0.4842	0.8157	1.4781
newthyroid	0.9840	0.9361	0.9624	0.8492	0.9442	0.4025
tae	0.7991	0.5700	0.6965	0.3420	0.7722	0.1270
vehicle	0.8318	0.6569	0.7755	0.5421	0.7615	1.6007
vowel	0.9608	0.9202	0.9569	0.9122	0.7652	1.6396
yeast	0.7415	0.5222	0.6636	0.3770	0.6951	2.9597

Tabla A.31: Resultados de CNN-SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8885	0.8645	0.7846	0.7259	0.8845	3.2397
cardiotocography	0.8965	0.8788	0.7236	0.6507	0.9112	1.2179
eye-state	0.8339	0.7759	0.6746	0.5472	0.7736	11.8877
page-blocks	0.9549	0.9532	0.7970	0.7406	0.9531	10.7988
penbased	0.9773	0.9826	0.9759	0.9807	0.9243	10.0667
satimage	0.9108	0.8825	0.8922	0.8551	0.8776	5.3487
thyroid	0.9257	0.9158	0.5344	0.4023	0.9175	6.8629
segment	0.4875	0.1455	0.4037	0.0030	0.6338	0.8590
coil2000	0.8935	0.8766	0.2694	0.0713	0.8878	11.5184
magic	0.8408	0.7857	0.6621	0.5253	0.8168	19.2789
marketing	0.5485	0.2730	0.4871	0.1712	0.6361	3.6459
phoneme	0.8794	0.8488	0.7219	0.6320	0.8583	4.4701
ring	0.9086	0.8707	0.8270	0.7409	0.8571	7.7641
spambase	0.9001	0.8819	0.8018	0.7521	0.8753	2.7725
texture	0.9668	0.9667	0.9645	0.9634	0.8820	3.4171
titanic	0.7687	0.7755	0.4367	0.4387	0.9235	0.6296
twonorm	0.9368	0.9339	0.8836	0.8678	0.9175	5.7192

Tabla A.32: Resultados de CNN-SSGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7810	0.7039	0.4041	0.1919	0.7816	21.0698
shuttle	0.9984	0.9986	0.9963	0.9960	0.9797	159.1310

Tabla A.33: Resultados de CNN-SSGA para conjuntos grandes con 1000 iteraciones fijas

Continue	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9674	0.9600	0.9511	0.9400	0.8693	0.1472
cleveland	0.7258	0.6011	0.5452	0.3391	0.8253	0.4247
led7digit	0.7618	0.6880	0.7346	0.6516	0.7902	0.6063
pima	0.8420	0.7403	0.6424	0.4055	0.7372	1.1757
wdbc	0.9799	0.9597	0.9564	0.9119	0.7274	0.9593
monk2	0.8987	0.7587	0.7964	0.5142	0.7498	0.5481
wisconsin	0.9793	0.9593	0.9543	0.9087	0.7158	0.9413
wine	0.9776	0.9588	0.9658	0.9375	0.8472	0.2131
glass	0.8588	0.6863	0.7976	0.5411	0.7921	0.2460
banknote	0.9997	0.9986	0.9993	0.9971	0.6555	2.5586
appendicitis	0.9476	0.9238	0.7417	0.5986	0.9245	0.0900
balance	0.8924	0.8675	0.8001	0.7526	0.7298	0.7682
bands	0.8313	0.6850	0.6312	0.3014	0.7701	0.4592
contraceptive	0.6334	0.4609	0.4340	0.1708	0.7903	3.2616
dermatology	0.9702	0.9387	0.9624	0.9226	0.7684	0.5990
ecoli	0.8939	0.8422	0.8460	0.7688	0.7890	0.4199
haberman	0.8279	0.7311	0.4790	0.1877	0.8108	0.3237
hayes-roth	0.8167	0.7063	0.7128	0.5367	0.7875	0.1310
heart	0.9008	0.8185	0.7980	0.6307	0.8019	0.3099
hepatitis	0.9236	0.8375	0.6029	0.1971	0.9425	0.0762
${\it mammographic}$	0.8625	0.7855	0.7249	0.5703	0.7265	1.2844
newthyroid	0.9783	0.9399	0.9487	0.8453	0.8260	0.2164
tae	0.7550	0.5438	0.6298	0.3072	0.8278	0.1260
vehicle	0.8144	0.6929	0.7526	0.5905	0.7273	1.4909
vowel	0.9787	0.9343	0.9765	0.9278	0.6441	1.7673
yeast	0.6890	0.5701	0.5911	0.4355	0.7624	3.2192

Tabla A.34: Resultados de ENN-SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	ACCURACY		Kai	PPA	Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8991	0.8864	0.8065	0.7708	0.7288	2.1969
cardiotocography	0.8910	0.8766	0.7018	0.6409	0.8060	0.8030
eye-state	0.8455	0.8005	0.6997	0.5990	0.7017	13.5620
page-blocks	0.9597	0.9620	0.8156	0.7792	0.7061	2.5222
penbased	0.9824	0.9908	0.9816	0.9898	0.6497	8.3334
satimage	0.9037	0.8884	0.8833	0.8620	0.7211	4.5211
thyroid	0.9397	0.9456	0.4656	0.4177	0.6880	4.4753
segment	0.2051	0.1325	0.0742	-0.0121	0.9342	1.2889
coil2000	0.9307	0.9321	0.1334	0.0155	0.6953	16.2075
magic	0.8506	0.8219	0.6713	0.5890	0.6946	19.2229
marketing	0.3668	0.2908	0.2718	0.1827	0.8889	4.5905
phoneme	0.8783	0.8540	0.7228	0.6493	0.7404	2.3454
ring	0.6895	0.6382	0.3855	0.2716	0.7558	4.1515
spambase	0.8997	0.8862	0.7988	0.7587	0.7447	3.3582
texture	0.9684	0.9733	0.9662	0.9706	0.6984	3.7807
titanic	0.7742	0.7819	0.4504	0.4549	0.8467	0.5041
twonorm	0.9562	0.9545	0.9225	0.9089	0.6800	4.5633

Tabla A.35: Resultados de ENN-SSGA para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8205	0.7796	0.4251	0.2915	0.7354	21.8477
shuttle	0.9989	0.9988	0.9975	0.9966	0.6292	47.9571

Tabla A.36: Resultados de ENN-SSGA para conjuntos grandes con 1000 iteraciones fijas

Сохими	Accur	RACY	Kap	PA	REDUCCIÓN	TIEMPO PROMEDIO (SEG)
Conjunto	Training	Test	Training	Test		
iris	0.9763	0.9667	0.9644	0.9500	0.9527	0.2457
cleveland	0.7247	0.5631	0.5525	0.3053	0.8508	0.3319
led7digit	0.7180	0.6620	0.6859	0.6230	0.9114	0.6265
$_{ m pima}$	0.8157	0.7164	0.5872	0.3737	0.8465	1.2026
wdbc	0.9643	0.9413	0.9217	0.8718	0.9545	1.3163
monk2	0.8809	0.8167	0.7623	0.6332	0.9153	0.6187
wisconsin	0.9745	0.9651	0.9436	0.9237	0.9630	1.9268
wine	0.9862	0.9725	0.9792	0.9582	0.9573	0.2952
glass	0.8308	0.7267	0.7611	0.6090	0.8710	0.2159
banknote	0.9960	0.9956	0.9920	0.9911	0.9622	4.4683
appendicitis	0.9623	0.9138	0.8455	0.6281	0.9623	0.1313
balance	0.8597	0.8335	0.7399	0.6901	0.9483	1.3446
bands	0.8149	0.6245	0.5968	0.1818	0.8323	0.4596
contraceptive	0.6243	0.4583	0.4174	0.1633	0.7886	2.9997
dermatology	0.9659	0.9364	0.9566	0.9194	0.9453	0.6027
ecoli	0.8641	0.7814	0.8034	0.6854	0.8979	0.4327
haberman	0.8094	0.7189	0.3919	0.0827	0.9007	0.3774
hayes-roth	0.7903	0.5938	0.6735	0.3597	0.8531	0.1580
heart	0.8774	0.7963	0.7516	0.5891	0.9052	0.3431
hepatitis	0.9222	0.8875	0.6251	0.4514	0.9638	0.0922
mammographic	0.8380	0.7916	0.6758	0.5825	0.8937	1.4353
newthyroid	0.9716	0.9485	0.9274	0.8601	0.9600	0.3301
tae	0.7586	0.4708	0.6371	0.1988	0.8238	0.1111
vehicle	0.7849	0.6482	0.7130	0.5304	0.8395	1.4432
vowel	0.9210	0.8384	0.9131	0.8222	0.7868	1.6671
yeast	0.6775	0.5197	0.5787	0.3699	0.8041	3.1249

Tabla A.37: Resultados de RSS-SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8901	0.8908	0.7860	0.7769	0.8852	2.8499
cardiotocography	0.8781	0.8771	0.6600	0.6389	0.9514	1.1030
eye-state	0.8008	0.7667	0.6007	0.5196	0.8122	13.0538
page-blocks	0.9450	0.9512	0.7343	0.7219	0.9671	5.5642
penbased	0.9805	0.9885	0.9795	0.9873	0.8067	8.6334
satimage	0.8792	0.8716	0.8536	0.8420	0.8119	5.1614
thyroid	0.9050	0.8997	0.4760	0.3767	0.9155	5.7662
segment	0.3390	0.1498	0.2305	0.0081	0.7916	0.9479
coil2000	0.9204	0.9246	0.1088	0.0262	0.9177	12.1242
magic	0.8165	0.8027	0.5834	0.5351	0.8615	19.2977
marketing	0.4480	0.2737	0.3721	0.1717	0.7637	3.9325
phoneme	0.8366	0.8301	0.5915	0.5566	0.8713	2.8382
ring	0.9224	0.8915	0.8547	0.7827	0.8250	7.4582
spambase	0.8903	0.8849	0.7799	0.7573	0.8722	2.9937
texture	0.9568	0.9602	0.9534	0.9562	0.8459	3.3894
titanic	0.7629	0.7696	0.4047	0.4065	0.9804	1.2767
twonorm	0.9410	0.9441	0.8920	0.8881	0.8932	5.5177

Tabla A.38: Resultados de RSS-SSGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7956	0.7669	0.3534	0.2589	0.8467	22.9713
shuttle	0.9980	0.9983	0.9951	0.9953	0.9387	92.6277

Tabla A.39: Resultados de RSS-SSGA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PPA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9719	0.9067	0.9578	0.8600	0.9440	0.3540
cleveland	0.7897	0.5900	0.6680	0.3612	0.7660	0.7094
led7digit	0.6960	0.6360	0.6611	0.5938	0.7896	1.0877
pima	0.8491	0.6987	0.6628	0.3313	0.7544	2.3401
wdbc	0.9690	0.9436	0.9326	0.8779	0.9295	2.5540
monk2	0.9051	0.8259	0.8102	0.6525	0.8477	1.1195
wisconsin	0.9749	0.9678	0.9448	0.9287	0.9416	3.2933
wine	0.9813	0.9529	0.9716	0.9287	0.9388	0.5113
glass	0.8988	0.7577	0.8527	0.6446	0.7921	0.4308
banknote	0.9988	0.9956	0.9975	0.9911	0.9557	8.4500
appendicitis	0.9769	0.9538	0.8837	0.6995	0.9528	0.3099
balance	0.8661	0.8038	0.7580	0.6512	0.8680	2.2282
bands	0.8429	0.6627	0.6643	0.2748	0.7595	0.9569
contraceptive	0.6965	0.4299	0.5307	0.1265	0.6687	5.8234
dermatology	0.9733	0.9398	0.9658	0.9223	0.9176	1.3022
ecoli	0.8972	0.8068	0.8509	0.7170	0.8262	0.8184
haberman	0.8490	0.6972	0.5479	0.1525	0.8183	0.6672
hayes-roth	0.8132	0.6625	0.7068	0.4650	0.7725	0.2630
heart	0.8951	0.7889	0.7874	0.5744	0.8378	0.6360
hepatitis	0.9208	0.8125	0.6281	0.3032	0.9475	0.1503
mammographic	0.8518	0.7675	0.7032	0.5344	0.8037	2.5998
newthyroid	0.9850	0.9571	0.9637	0.8975	0.9447	0.6348
tae	0.7918	0.5304	0.6832	0.2761	0.7755	0.2657
vehicle	0.8264	0.6728	0.7684	0.5635	0.7580	2.9250
vowel	0.9357	0.8566	0.9293	0.8422	0.7768	3.3522
yeast	0.7448	0.5117	0.6676	0.3623	0.6821	5.8997

Tabla A.40: Resultados de CNN-RSS-SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	Accuracy		PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9000	0.8734	0.8081	0.7442	0.8382	5.0634
cardiotocography	0.8969	0.8868	0.7267	0.6805	0.9040	1.8768
eye-state	0.8451	0.7846	0.6955	0.5618	0.7367	23.3502
page-blocks	0.9573	0.9565	0.8093	0.7561	0.9377	9.8009
penbased	0.9825	0.9902	0.9817	0.9891	0.7955	15.1759
satimage	0.9093	0.8825	0.8905	0.8551	0.7698	8.7042
thyroid	0.9283	0.9178	0.5506	0.4085	0.8944	10.3729
segment	0.4875	0.1494	0.4038	0.0076	0.6400	1.6935
coil2000	0.9012	0.8839	0.2681	0.0486	0.8554	21.8598
magic	0.8494	0.7970	0.6760	0.5430	0.7777	34.0916
\max keting	0.5589	0.2727	0.4990	0.1714	0.6266	7.1618
phoneme	0.8828	0.8472	0.7270	0.6239	0.8041	4.8972
ring	0.9165	0.8703	0.8428	0.7400	0.7973	12.8932
spambase	0.9046	0.8869	0.8102	0.7617	0.8179	5.3826
texture	0.9709	0.9716	0.9689	0.9688	0.8216	6.3915
titanic	0.7669	0.7760	0.4271	0.4354	0.9272	1.5767
twonorm	0.9387	0.9326	0.8875	0.8651	0.8609	9.6835

Tabla A.41: Resultados de CNN-RSS-SSGA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	ACCURACY		Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8019	0.7282	0.4316	0.2178	0.7528	40.7734
shuttle	0.9985	0.9986	0.9964	0.9959	0.9341	157.5524

Tabla A.42: Resultados de CNN-RSS-SSGA para conjuntos grandes con 1000 iteraciones fijas

Coxxxxx	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9719	0.9400	0.9578	0.9100	0.8660	0.2756
cleveland	0.7714	0.5521	0.6285	0.2937	0.7741	0.7355
led7digit	0.7518	0.7080	0.7235	0.6742	0.7688	1.1967
pima	0.8511	0.7071	0.6623	0.3430	0.7053	2.1534
wdbc	0.9814	0.9650	0.9600	0.9244	0.7286	1.8697
monk2	0.9108	0.8679	0.8213	0.7356	0.7308	0.9656
wisconsin	0.9834	0.9593	0.9632	0.9099	0.7044	2.2695
wine	0.9812	0.9332	0.9714	0.8985	0.8534	0.4101
glass	0.8858	0.7394	0.8314	0.6143	0.7715	0.4329
banknote	0.9998	0.9978	0.9995	0.9956	0.6522	5.3130
appendicitis	0.9581	0.9338	0.7988	0.6732	0.9255	0.1857
balance	0.8928	0.8572	0.8017	0.7367	0.7210	1.5537
bands	0.8444	0.6999	0.6599	0.3276	0.7326	0.9935
contraceptive	0.6781	0.4434	0.5010	0.1394	0.6894	5.8073
dermatology	0.9811	0.9553	0.9758	0.9429	0.7623	1.1132
ecoli	0.9018	0.7977	0.8564	0.7027	0.7619	0.7794
haberman	0.8464	0.7283	0.5532	0.2168	0.7784	0.5724
hayes-roth	0.8229	0.6938	0.7211	0.5151	0.7706	0.2846
heart	0.8979	0.7963	0.7930	0.5848	0.7889	0.6413
hepatitis	0.9097	0.8000	0.6258	0.1505	0.9188	0.1395
${\it mammographic}$	0.8581	0.7904	0.7159	0.5801	0.7120	2.3182
newthyroid	0.9788	0.9533	0.9491	0.8851	0.8228	0.4134
tae	0.7741	0.5163	0.6589	0.2699	0.7742	0.2531
vehicle	0.8415	0.6824	0.7886	0.5763	0.6903	2.9208
vowel	0.9786	0.9384	0.9764	0.9322	0.6408	3.4563
yeast	0.7376	0.5568	0.6558	0.4158	0.6778	6.0095

Tabla A.43: Resultados de ENN-RSS-SSGA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kai	PPA	Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.9097	0.8842	0.8273	0.7651	0.7089	4.1720
cardiotocography	0.9044	0.8889	0.7396	0.6723	0.7899	1.5734
eye-state	0.8605	0.8037	0.7280	0.6027	0.6566	24.8708
page-blocks	0.9618	0.9644	0.8329	0.7988	0.7063	5.4408
penbased	0.9840	0.9904	0.9833	0.9893	0.6511	16.0600
satimage	0.9152	0.8953	0.8976	0.8707	0.6979	8.5619
thyroid	0.9529	0.9424	0.6829	0.4985	0.6739	8.4669
segment	0.3945	0.1390	0.2952	-0.0045	0.7362	1.7743
coil2000	0.9282	0.9192	0.2377	0.0296	0.6844	27.9752
magic	0.8613	0.8201	0.6963	0.5853	0.6673	34.5252
marketing	0.4879	0.2724	0.4171	0.1692	0.7186	7.3495
phoneme	0.8945	0.8664	0.7535	0.6678	0.7110	4.5721
ring	0.8581	0.7457	0.7256	0.4890	0.6467	8.9013
spambase	0.9139	0.8884	0.8297	0.7645	0.7159	6.1743
texture	0.9740	0.9758	0.9724	0.9734	0.6861	7.0997
titanic	0.7798	0.7883	0.4323	0.4388	0.8499	1.1059
twonorm	0.9547	0.9481	0.9194	0.8962	0.6822	8.6751

Tabla A.44: Resultados de ENN-RSS-SSGA para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	Accur	Accuracy		Kappa		Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8234	0.7621	0.4512	0.2574	0.7019	40.8990
shuttle	0.9990	0.9989	0.9979	0.9969	0.6318	116.2944

Tabla A.45: Resultados de ENN-RSS-SSGA para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kap	PA	Reducción	TIEMPO PROMEDIO (SEG)
Conjunto	Training	Test	Training	Test		, ,
iris	0.9770	0.9067	0.9656	0.8600	0.9740	0.2593
cleveland	0.7171	0.5838	0.5237	0.3102	0.9306	0.9515
led7digit	0.7644	0.7420	0.7376	0.7122	0.9696	1.2289
$_{ m pima}$	0.8131	0.7659	0.5680	0.4569	0.9674	6.3130
wdbc	0.9734	0.9505	0.9423	0.8921	0.9830	3.5505
monk2	0.9532	0.9328	0.9062	0.8653	0.9757	2.4957
wisconsin	0.9766	0.9578	0.9486	0.9073	0.9927	7.3022
wine	0.9831	0.9292	0.9744	0.8933	0.9680	0.3459
glass	0.7996	0.6545	0.7033	0.4836	0.9145	0.5640
banknote	0.9982	0.9978	0.9964	0.9956	0.9892	12.6341
appendicitis	0.9644	0.9600	0.8391	0.7352	0.9745	0.3151
balance	0.8843	0.8627	0.7835	0.7431	0.9738	3.8908
bands	0.7885	0.6582	0.5250	0.2308	0.9449	1.2039
contraceptive	0.6194	0.4819	0.4061	0.1940	0.9452	18.6463
dermatology	0.9746	0.9559	0.9677	0.9438	0.9645	1.2560
ecoli	0.8608	0.8012	0.7961	0.7062	0.9625	1.3572
haberman	0.8018	0.7089	0.3817	0.1279	0.9768	1.6556
hayes-roth	0.7688	0.6688	0.6381	0.4826	0.9088	0.2636
heart	0.8811	0.8296	0.7572	0.6524	0.9696	0.8221
hepatitis	0.9222	0.8750	0.6535	0.3771	0.9638	0.1015
mammographic	0.8459	0.8265	0.6914	0.6529	0.9854	9.7776
newthyroid	0.9747	0.9313	0.9417	0.8320	0.9735	0.7552
tae	0.6799	0.5567	0.5189	0.3293	0.9106	0.2531
vehicle	0.7965	0.6621	0.7286	0.5490	0.9221	5.1786
vowel	0.8875	0.8253	0.8763	0.8078	0.8701	5.6765
yeast	0.6766	0.5623	0.5732	0.4211	0.9472	19.9237

Tabla A.46: Resultados de MA para conjuntos pequeños con 1000 iteraciones fijas

Сомимию	Accur	RACY	KAP	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
banana	0.8886	0.8846	0.7740	0.7658	0.9484	27.6695
cardiotocography	0.8783	0.8682	0.6553	0.6240	0.9869	3.1308
eye-state	0.7385	0.7190	0.4705	0.4308	0.9717	143.5858
page-blocks	0.9423	0.9394	0.6565	0.6373	0.9959	16.9769
penbased	0.9826	0.9809	0.9807	0.9788	0.9032	448.9862
satimage	0.8715	0.8628	0.8410	0.8303	0.9672	35.6554
thyroid	0.9447	0.9437	0.4543	0.4416	0.9954	25.3644
segment	0.2546	0.1546	0.1304	0.0136	0.8941	3.3403
coil2000	0.9358	0.9340	0.0739	0.0454	0.9975	81.9335
magic	0.8206	0.8078	0.6008	0.5718	0.9699	237.1728
marketing	0.3404	0.2877	0.2414	0.1808	0.9419	25.6661
phoneme	0.8127	0.8007	0.5439	0.5128	0.9817	16.7353
ring	0.7169	0.7041	0.4306	0.4047	0.9704	32.5529
spambase	0.8696	0.8617	0.7279	0.7113	0.9854	9.3396
texture	0.9623	0.9586	0.9586	0.9545	0.8660	110.9760
titanic	0.7839	0.7828	0.4563	0.4506	0.9902	3.0523
twonorm	0.9534	0.9523	0.9067	0.9046	0.9954	24.7465

Tabla A.47: Resultados de MA para conjuntos medianos con 1000 iteraciones fijas

Conjunto	Accur	ACCURACY		PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
credit-card	0.8043	0.8035	0.3163	0.3128	0.9970	97.4400
shuttle	0.9764	0.9962	0.9835	0.9892	0.9976	414.8464

Tabla A.48: Resultados de MA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	ACCURACY		Карра		REDUCCIÓN	Tiempo promedio (seg)
	Training	Test	Training	Test		
iris	0.9593	0.9533	0.9389	0.9300	0.9713	0.2560
cleveland	0.7340	0.5976	0.5674	0.3410	0.9178	1.1617
led7digit	0.7636	0.7640	0.7369	0.7370	0.9688	1.7061
$_{ m pima}$	0.8181	0.7408	0.5853	0.4129	0.9616	6.3759
wdbc	0.9692	0.9517	0.9332	0.8968	0.9835	4.3126
monk2	0.9601	0.9513	0.9201	0.9022	0.9722	2.2859
wisconsin	0.9749	0.9666	0.9449	0.9272	0.9918	10.8397
wine	0.9670	0.9235	0.9497	0.8824	0.9674	0.4105
glass	0.8380	0.7259	0.7628	0.5999	0.9005	0.5582
banknote	0.9960	0.9949	0.9918	0.9897	0.9897	19.3378
appendicitis	0.9622	0.9338	0.8197	0.6226	0.9726	0.3812
balance	0.8704	0.8306	0.7579	0.6843	0.9618	4.4479
bands	0.7952	0.6745	0.5346	0.2540	0.9318	1.4442
contraceptive	0.6397	0.4874	0.4369	0.1983	0.9238	34.5453
dermatology	0.9711	0.9359	0.9635	0.9185	0.9620	1.6582
ecoli	0.8770	0.8189	0.8208	0.7371	0.9438	1.6602
haberman	0.7988	0.7850	0.3414	0.3042	0.9830	1.6235
hayes-roth	0.7951	0.6625	0.6817	0.4761	0.9063	0.3040
heart	0.8695	0.8074	0.7336	0.6065	0.9748	0.9108
hepatitis	0.9250	0.8750	0.6103	0.3771	0.9625	0.1547
mammographic	0.8473	0.8205	0.6945	0.6408	0.9807	10.7792
newthyroid	0.9731	0.9408	0.9343	0.8521	0.9767	0.9724
tae	0.7277	0.5238	0.5888	0.2769	0.8795	0.2448
vehicle	0.8039	0.6320	0.7386	0.5085	0.9063	6.7557
vowel	0.9759	0.9141	0.9735	0.9056	0.8363	10.6054
yeast	0.6867	0.5546	0.5887	0.4161	0.9371	31.3284

Tabla A.49: Resultados de CNN-MA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	ACCURACY		Карра		REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8740	0.8594	0.7565	0.7170	0.9243	23.6071
cardiotocography	0.8781	0.8798	0.6685	0.6528	0.9776	3.6315
eye-state	0.7818	0.7592	0.5695	0.5136	0.9208	184.2650
page-blocks	0.9395	0.9461	0.6854	0.6734	0.9905	29.4964
penbased	0.9802	0.9871	0.9791	0.9856	0.9392	109.8440
satimage	0.8773	0.8664	0.8510	0.8352	0.9362	36.4186
thyroid	0.9321	0.9408	0.4125	0.4144	0.9969	30.0824
segment	0.1780	0.1489	0.0427	0.0071	0.9731	3.7275
coil2000	0.9033	0.9409	0.0000	0.0000	0.9991	74.6177
magic	0.7938	0.7951	0.5462	0.5362	0.9934	263.4050
\max keting	0.4412	0.2817	0.3632	0.1794	0.8123	57.3855
phoneme	0.8260	0.8223	0.5917	0.5671	0.9715	21.4618
ring	0.8409	0.8426	0.6912	0.6844	0.9867	49.4540
spambase	0.8803	0.8743	0.7595	0.7359	0.9675	11.3417
texture	0.9570	0.9625	0.9537	0.9588	0.9030	48.3416
titanic	0.7763	0.7842	0.4455	0.4498	0.9869	3.5772
twonorm	0.9366	0.9449	0.8832	0.8897	0.9942	25.0392

Tabla A.50: Resultados de CNN-MA para conjuntos medianos con 1000 iteraciones fijas

Conmin	ACCURACY		Kappa		Reducción	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7874	0.7867	0.2759	0.2721	0.9969	98.1104
shuttle	0.9976	0.9986	0.9962	0.9961	0.9800	1127.4700

Tabla A.51: Resultados de CNN-MA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	ACCURACY		Карра		REDUCCIÓN	Tiempo promedio (seg)
	Training	Test	Training	Test		
iris	0.9741	0.9267	0.9611	0.8900	0.9707	0.2700
cleveland	0.7042	0.5521	0.5089	0.2664	0.9461	0.8643
led7digit	0.7660	0.7300	0.7393	0.6991	0.9708	1.4853
pima	0.8289	0.7174	0.6114	0.3523	0.9574	7.0557
wdbc	0.9766	0.9416	0.9493	0.8743	0.9821	3.9045
monk2	0.9072	0.8562	0.8146	0.7135	0.9743	2.2931
wisconsin	0.9776	0.9608	0.9504	0.9131	0.9918	9.4304
wine	0.9832	0.9666	0.9745	0.9492	0.9708	0.3391
glass	0.8084	0.7291	0.7159	0.5946	0.9318	0.4199
banknote	0.9989	0.9964	0.9977	0.9926	0.9894	12.2694
appendicitis	0.9665	0.9375	0.8231	0.6294	0.9811	0.3498
balance	0.8905	0.8769	0.7944	0.7688	0.9733	3.8255
bands	0.8162	0.6680	0.5940	0.2643	0.9332	1.3530
contraceptive	0.6406	0.4773	0.4409	0.1889	0.9330	16.9860
dermatology	0.9789	0.9289	0.9733	0.9098	0.9690	1.5115
ecoli	0.8926	0.8254	0.8429	0.7448	0.9417	1.2752
haberman	0.8134	0.7578	0.3781	0.1659	0.9745	1.6995
hayes-roth	0.7847	0.6813	0.6616	0.4987	0.9038	0.2399
heart	0.8840	0.8037	0.7630	0.5949	0.9607	0.8990
hepatitis	0.9208	0.8625	0.6728	0.4790	0.9588	0.1211
mammographic	0.8535	0.8145	0.7067	0.6281	0.9793	8.4882
newthyroid	0.9736	0.9551	0.9396	0.8972	0.9753	0.8561
tae	0.7182	0.5104	0.5728	0.2575	0.9139	0.2509
vehicle	0.8080	0.6633	0.7440	0.5511	0.9204	6.3843
vowel	0.9774	0.9111	0.9752	0.9022	0.8437	9.8755
yeast	0.6891	0.5681	0.5917	0.4336	0.9423	18.0281

Tabla A.52: Resultados de ENN-MA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8633	0.8692	0.7302	0.7319	0.9896	17.1335
cardiotocography	0.8858	0.8889	0.6940	0.6839	0.9746	3.0763
eye-state	0.7977	0.7742	0.6026	0.5449	0.9110	270.1560
page-blocks	0.9342	0.9408	0.6493	0.6349	0.9959	16.5685
penbased	0.9723	0.9798	0.9703	0.9776	0.9655	109.4700
satimage	0.8632	0.8615	0.8334	0.8289	0.9789	32.1135
thyroid	0.9365	0.9440	0.4528	0.4337	0.9964	30.7640
segment	0.1909	0.1489	0.0577	0.0071	0.9684	3.8059
coil2000	0.9099	0.9146	0.0526	0.0135	0.9952	91.0547
magic	0.8211	0.8115	0.6112	0.5762	0.9630	316.5210
marketing	0.2945	0.2837	0.1790	0.1649	0.9923	34.3821
phoneme	0.7932	0.7953	0.5156	0.5060	0.9915	17.3694
ring	0.6782	0.6812	0.3626	0.3585	0.9962	37.9116
spambase	0.8732	0.8777	0.7438	0.7424	0.9873	12.6539
texture	0.9563	0.9616	0.9529	0.9578	0.8216	113.3510
titanic	0.7730	0.7814	0.4506	0.4552	0.9894	3.5486
twonorm	0.9509	0.9577	0.9119	0.9154	0.9846	38.1463

Tabla A.53: Resultados de ENN-MA para conjuntos medianos con 1000 iteraciones fijas

CONTINUE		CURACY		PA	Reducción	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7956	0.7950	0.2746	0.2715	0.9971	103.3980
shuttle	0.9658	0.9854	0.9398	0.9575	0.9982	473.9070

Tabla A.54: Resultados de ENN-MA para conjuntos grandes con 1000 iteraciones fijas

Convenie	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9726	0.9400	0.9589	0.9100	0.9727	0.2681
cleveland	0.6992	0.6059	0.4858	0.3448	0.9556	1.0823
led7digit	0.7669	0.7280	0.7407	0.6967	0.9742	1.4398
pima	0.8080	0.7400	0.5662	0.4072	0.9727	6.1474
wdbc	0.9670	0.9398	0.9286	0.8712	0.9919	3.9374
monk2	0.9264	0.8863	0.8527	0.7721	0.9782	2.3380
wisconsin	0.9769	0.9665	0.9492	0.9264	0.9937	8.1878
wine	0.9737	0.9294	0.9600	0.8931	0.9787	0.3840
glass	0.7976	0.6688	0.7010	0.5058	0.9322	0.4620
banknote	0.9945	0.9934	0.9888	0.9867	0.9914	16.3687
appendicitis	0.9434	0.8938	0.7176	0.4961	0.9717	0.2145
balance	0.8823	0.8770	0.7797	0.7696	0.9891	4.7406
bands	0.7808	0.6224	0.5058	0.1368	0.9496	1.3912
contraceptive	0.6280	0.4801	0.4201	0.1944	0.9347	20.4189
dermatology	0.9450	0.9146	0.9297	0.8913	0.9768	1.4266
ecoli	0.8568	0.8189	0.7914	0.7371	0.9560	1.2293
haberman	0.8101	0.7300	0.4011	0.1513	0.9752	1.7327
hayes-roth	0.6833	0.5875	0.5102	0.3519	0.9406	0.3744
heart	0.8691	0.8333	0.7328	0.6602	0.9778	0.8880
hepatitis	0.8958	0.8500	0.4275	0.1914	0.9750	0.0999
mammographic	0.8463	0.8313	0.6924	0.6623	0.9878	8.7594
newthyroid	0.9498	0.9275	0.8730	0.8136	0.9847	0.7880
tae	0.7042	0.5300	0.5526	0.2789	0.9026	0.2229
vehicle	0.7782	0.6560	0.7043	0.5415	0.9349	6.7902
vowel	0.8299	0.7475	0.8128	0.7222	0.8881	11.5964
yeast	0.6746	0.5689	0.5729	0.4341	0.9510	19.3274

Tabla A.55: Resultados de RSS-MA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kai	PPA	Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8694	0.8760	0.7437	0.7468	0.9740	23.4139
cardiotocography	0.8226	0.8371	0.4657	0.4626	0.9920	2.9228
eye-state	0.7464	0.7364	0.4971	0.4665	0.9637	152.6790
page-blocks	0.9288	0.9360	0.6430	0.6366	0.9949	25.5404
penbased	0.9665	0.9728	0.9639	0.9698	0.8778	422.8700
satimage	0.8535	0.8552	0.8214	0.8211	0.9694	42.2098
thyroid	0.9333	0.9421	0.4113	0.4047	0.9964	32.8508
segment	0.2506	0.1372	0.1274	-0.0066	0.8956	3.6726
coil2000	0.9089	0.9131	0.0702	0.0289	0.9938	75.3100
magic	0.8068	0.8080	0.5762	0.5662	0.9845	221.9630
marketing	0.2934	0.2611	0.1928	0.1544	0.9611	27.8332
phoneme	0.7951	0.8005	0.5122	0.5107	0.9918	19.1806
ring	0.8637	0.8573	0.7370	0.7140	0.9596	42.5625
spambase	0.8600	0.8681	0.7192	0.7258	0.9902	10.0464
texture	0.9277	0.9316	0.9215	0.9248	0.9064	50.5114
titanic	0.6995	0.7342	0.2370	0.2324	0.9951	3.0863
twonorm	0.9444	0.9520	0.8987	0.9041	0.9946	26.4229

Tabla A.56: Resultados de RSS-MA para conjuntos medianos con 1000 iteraciones fijas

CONTINUE ACCURA		RACY	Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8022	0.8023	0.2749	0.2739	0.9979	100.2660
shuttle	0.9978	0.9982	0.9945	0.9948	0.9513	955.5570

Tabla A.57: Resultados de RSS-MA para conjuntos grandes con 1000 iteraciones fijas

Continue	Accur	RACY	Kap	PPA	Reducción	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9726	0.9333	0.9589	0.9000	0.9707	0.4569
cleveland	0.7303	0.5741	0.5455	0.3040	0.9205	1.7327
led7digit	0.7738	0.7460	0.7482	0.7170	0.9698	2.6460
pima	0.8281	0.7213	0.6135	0.3763	0.9512	9.9424
wdbc	0.9664	0.9469	0.9273	0.8852	0.9880	6.4664
monk2	0.9535	0.9465	0.9067	0.8928	0.9706	3.8355
wisconsin	0.9779	0.9577	0.9513	0.9072	0.9933	12.3154
wine	0.9819	0.9409	0.9725	0.9107	0.9685	0.5770
glass	0.8364	0.7236	0.7614	0.5906	0.9107	0.8341
banknote	0.9969	0.9934	0.9938	0.9867	0.9914	28.1222
appendicitis	0.9528	0.9338	0.7774	0.6732	0.9708	0.4840
balance	0.8683	0.8387	0.7533	0.6981	0.9723	6.0806
bands	0.7912	0.6412	0.5318	0.1805	0.9419	2.2547
contraceptive	0.6450	0.4889	0.4451	0.2005	0.9210	59.3072
dermatology	0.9684	0.9318	0.9600	0.9132	0.9626	2.1529
ecoli	0.8879	0.8172	0.8378	0.7320	0.9494	2.1302
haberman	0.8119	0.7183	0.4173	0.1254	0.9703	2.1519
hayes-roth	0.7681	0.6438	0.6383	0.4330	0.9225	0.4233
heart	0.8778	0.8222	0.7511	0.6378	0.9719	1.1734
hepatitis	0.9125	0.8125	0.6414	0.3098	0.9688	0.1865
mammographic	0.8430	0.8060	0.6857	0.6117	0.9861	15.4283
newthyroid	0.9742	0.9381	0.9410	0.8504	0.9753	1.2759
tae	0.7425	0.5158	0.6071	0.2551	0.8682	0.3527
vehicle	0.8167	0.6563	0.7556	0.5415	0.9046	11.1661
vowel	0.8846	0.8000	0.8731	0.7800	0.8721	8.9446
yeast	0.6983	0.5573	0.6035	0.4204	0.9259	53.2580

Tabla A.58: Resultados de CNN-RSS-MA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8774	0.8792	0.7629	0.7564	0.9715	24.6509
cardiotocography	0.8714	0.8728	0.6403	0.6243	0.9831	4.7265
eye-state	0.6811	0.6801	0.3634	0.3510	0.9900	251.3580
page-blocks	0.9316	0.9397	0.6278	0.6243	0.9961	29.2761
penbased	0.9784	0.9854	0.9771	0.9838	0.8672	694.8735
satimage	0.8731	0.8696	0.8451	0.8384	0.9782	48.7587
thyroid	0.9372	0.9458	0.4726	0.4685	0.9973	42.8546
segment	0.2104	0.1511	0.0805	0.0096	$0.9353\ 6.0053$	
coil2000	0.9116	0.9158	0.0981	0.0429	0.9927	201.4395
magic	0.8169	0.8191	0.6003	0.5924	0.9819	423.7635
marketing	0.3113	0.2670	0.2147	0.1628	0.9541	45.1995
phoneme	0.8108	0.8101	0.5538	0.5364	0.9805	27.6275
ring	0.9140	0.9130	0.8378	0.8258	0.9623	74.1207
spambase	0.8712	0.8705	0.7397	0.7274	0.9822	16.1604
texture	0.9648	0.9658	0.9622	0.9624	0.8575	126.0213
titanic	0.7756	0.7823	0.4509	0.4514	0.9906	4.9272
twonorm	0.9493	0.9574	0.9085	0.9149	0.9923	39.0111

Tabla A.59: Resultados de CNN-RSS-MA para conjuntos medianos con 1000 iteraciones fijas

CONTINUES ACC		JRACY KA		PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7923	0.7917	0.2394	0.2364	0.9974	142.4352
shuttle	0.9791	0.9985	0.9958	0.9956	0.9440	1778.3550

Tabla A.60: Resultados de CNN-RSS-MA para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
iris	0.9741	0.9200	0.9611	0.8800	0.9673	0.3921
cleveland	0.7426	0.5886	0.5728	0.3320	0.9189	1.4480
led7digit	0.7782	0.7480	0.7530	0.7191	0.9708	2.1737
$_{ m pima}$	0.8345	0.7023	0.6241	0.3260	0.9490	10.4837
wdbc	0.9793	0.9546	0.9552	0.9030	0.9821	5.7885
monk2	0.9558	0.9233	0.9114	0.8463	0.9718	4.1140
wisconsin	0.9785	0.9665	0.9528	0.9262	0.9927	12.8946
wine	0.9876	0.9489	0.9811	0.9221	0.9657	0.5748
glass	0.8256	0.6903	0.7478	0.5461	0.9164	0.6182
banknote	0.9981	0.9927	0.9961	0.9852	0.9885	18.1902
appendicitis	0.9665	0.9175	0.8359	0.5183	0.9802	0.5248
balance	0.8932	0.8627	0.7995	0.7423	0.9723	5.6966
bands	0.8143	0.6457	0.5849	0.2262	0.9271	2.3531
contraceptive	0.6525	0.4936	0.4589	0.2119	0.9182	44.9582
dermatology	0.9767	0.9260	0.9702	0.9054	0.9670	2.3290
ecoli	0.8856	0.8072	0.8347	0.7188	0.9342	1.7891
haberman	0.8032	0.7283	0.3933	0.2118	0.9742	2.2746
hayes-roth	0.8069	0.6688	0.6974	0.4788	0.8844	0.3543
heart	0.8798	0.8259	0.7551	0.6425	0.9656	1.2251
hepatitis	0.9153	0.8875	0.6817	0.5556	0.9738	0.1910
${\it mammographic}$	0.8499	0.8012	0.6996	0.6020	0.9782	15.8397
newthyroid	0.9773	0.9628	0.9471	0.9100	0.9744	1.4227
tae	0.7395	0.5567	0.6065	0.3210	0.8788	0.3991
vehicle	0.8216	0.6482	0.7622	0.5308	0.9051	12.4426
vowel	0.9851	0.9242	0.9836	0.9167	0.8381	13.7513
yeast	0.6930	0.5576	0.5964	0.4175	0.9369	56.0210

Tabla A.61: Resultados de ENN-RSS-MA para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8828	0.8751	0.7728	0.7470	0.9516	27.5738
cardiotocography	0.8543	0.8578	0.5909	0.5811	0.9899	4.4298
eye-state	0.7765	0.7584	0.5581	0.5113	0.9334	471.9360
page-blocks	0.9353	0.9424	0.6634	0.6540	0.9962	30.1905
penbased	0.9687	0.9751	0.9663	0.9723	0.9754	155.7405
satimage	0.8637	0.8628	0.8339	0.8303	0.9808	49.9541
thyroid	0.9329	0.9419	0.3756	0.3770	0.9969	44.3003
segment	0.2306	0.1437	0.1041	0.0010	0.9178	5.6872
coil2000	0.9212	0.9281	0.0616	0.0345	0.9977	122.0585
magic	0.8246	0.8172	0.6176	0.5883	0.9633	613.1190
marketing	0.3801	0.2915	0.2915	0.1881	0.8971	55.3629
phoneme	0.7936	0.7868	0.5115	0.4801	0.9845	30.0998
ring	0.7960	0.7976	0.6011	0.5941	0.9922	78.4577
spambase	0.8730	0.8718	0.7446	0.7316	0.9679	26.3904
texture	0.9634	0.9642	0.9607	0.9606	0.8504	130.5968
titanic	0.7758	0.7837	0.4488	0.4537	0.9898	5.0069
twonorm	0.9468	0.9527	0.9036	0.9054	0.9906	53.6210

Tabla A.62: Resultados de ENN-RSS-MA para conjuntos medianos con 1000 iteraciones fijas

Сомимто	Accur	Accuracy		Kappa		Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7724	0.7857	0.2868	0.2864	0.9964	154.4925
shuttle	0.9769	0.9968	0.9716	0.9908	0.9974	731.5080

Tabla A.63: Resultados de ENN-RSS-MA para conjuntos grandes con 1000 iteraciones fijas

Сомими	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9585	0.9000	0.9378	0.8500	0.9700	0.1097
cleveland	0.7003	0.5659	0.5024	0.2849	0.9465	0.2684
led7digit	0.7476	0.7300	0.7193	0.6992	0.9682	0.3557
pima	0.8132	0.7283	0.5688	0.3752	0.9405	0.7985
wdbc	0.9631	0.9354	0.9199	0.8599	0.9865	0.6287
monk2	0.9100	0.8797	0.8196	0.7588	0.9611	0.4123
wisconsin	0.9730	0.9651	0.9405	0.9233	0.9914	0.7332
wine	0.9606	0.9527	0.9398	0.9272	0.9798	0.1367
glass	0.7784	0.6482	0.6734	0.4813	0.9266	0.1676
banknote	0.9981	0.9993	0.9961	0.9985	0.9527	1.3379
appendicitis	0.9288	0.9338	0.6988	0.6424	0.9792	0.1030
balance	0.8690	0.8462	0.7555	0.7145	0.9626	0.6150
bands	0.7591	0.6825	0.4559	0.2739	0.9537	0.3133
contraceptive	0.6411	0.4746	0.4423	0.1849	0.8444	1.5983
dermatology	0.9532	0.9118	0.9412	0.8891	0.9718	0.3737
ecoli	0.8648	0.8228	0.8007	0.7366	0.9610	0.3069
haberman	0.7956	0.7683	0.3214	0.2651	0.9820	0.2920
hayes-roth	0.7111	0.6375	0.5504	0.4333	0.9388	0.1336
heart	0.8646	0.8111	0.7232	0.6142	0.9756	0.2325
hepatitis	0.9194	0.8625	0.6624	0.3505	0.9663	0.0733
${\it mammographic}$	0.8333	0.8048	0.6667	0.6097	0.9665	0.9039
newthyroid	0.9633	0.9628	0.9126	0.9129	0.9814	0.1926
tae	0.6409	0.5154	0.4583	0.2499	0.9404	0.1154
vehicle	0.7888	0.6587	0.7185	0.5450	0.9007	0.9109
vowel	0.9327	0.8535	0.9259	0.8389	0.8156	0.9711
yeast	0.6909	0.5398	0.5953	0.3979	0.8494	1.6069

Tabla A.64: Resultados de CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8986	0.8916	0.7941	0.7799	0.9654	1.8342
cardiotocography	0.8928	0.8855	0.6854	0.6626	0.9747	0.8028
eye-state	0.8250	0.7829	0.6460	0.5609	0.8324	5.6788
page-blocks	0.9585	0.9542	0.7596	0.7342	0.9861	2.5129
penbased	0.9848	0.9829	0.9831	0.9809	0.9332	3.5643
satimage	0.8970	0.8844	0.8726	0.8571	0.9501	2.3742
thyroid	0.9431	0.9412	0.4272	0.4032	0.9882	3.0773
segment	0.2311	0.1515	0.1029	0.0101	0.9260	0.8781
coil2000	0.9377	0.9359	0.0584	0.0255	0.9819	5.4810
magic	0.8440	0.8106	0.6482	0.5707	0.8601	8.2651
marketing	0.3807	0.2867	0.2882	0.1797	0.8911	2.4493
phoneme	0.8373	0.8168	0.6045	0.5535	0.9586	2.0545
ring	0.9091	0.8983	0.8180	0.7963	0.9530	3.7638
spambase	0.8875	0.8775	0.7643	0.7436	0.9719	1.5940
texture	0.9635	0.9584	0.9599	0.9543	0.9285	1.7402
titanic	0.7829	0.7810	0.4586	0.4515	0.9911	0.5162
twonorm	0.9593	0.9559	0.9186	0.9117	0.9808	2.4462

Tabla A.65: Resultados de CHC para conjuntos medianos con 1000 iteraciones fijas

Conjunto Accuracy		Kappa		Reducción	Tiempo promedio (seg)	
CONJUNTO	Training	Test	Training	Test		
credit-card	0.7944	0.7888	0.3286	0.3070	0.9740	12.2479
shuttle	0.9977	0.9980	0.9942	0.9941	0.9490	21.4851

Tabla A.66: Resultados de CHC para conjuntos grandes con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	Reducción	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9452	0.9400	0.9178	0.9100	0.9667	0.1280
cleveland	0.6824	0.5735	0.4687	0.2898	0.9508	0.3327
led7digit	0.7407	0.7180	0.7114	0.6863	0.9576	0.4912
pima	0.8177	0.7273	0.5885	0.3820	0.9167	1.0538
wdbc	0.9567	0.9311	0.9051	0.8525	0.9851	0.9464
monk2	0.9295	0.9075	0.8589	0.8153	0.9671	0.5052
wisconsin	0.9723	0.9593	0.9389	0.9093	0.9924	2.3531
wine	0.9631	0.9706	0.9439	0.9551	0.9702	0.1832
glass	0.8172	0.6815	0.7366	0.5386	0.9150	0.1969
banknote	0.9938	0.9869	0.9875	0.9734	0.9827	2.1826
appendicitis	0.9602	0.9175	0.8315	0.5920	0.9755	0.1196
balance	0.8535	0.8053	0.7281	0.6410	0.9581	0.8653
bands	0.7610	0.6755	0.4572	0.2639	0.9438	0.4083
contraceptive	0.6360	0.4610	0.4381	0.1721	0.8007	2.3267
dermatology	0.9526	0.9050	0.9396	0.8789	0.9707	0.5386
ecoli	0.8526	0.7865	0.7871	0.6893	0.9530	0.4642
haberman	0.7894	0.7389	0.3108	0.1839	0.9856	0.3480
hayes-roth	0.7292	0.6250	0.5779	0.4102	0.9344	0.1447
heart	0.8580	0.7963	0.7123	0.5873	0.9759	0.2957
hepatitis	0.9181	0.8500	0.6438	0.3686	0.9650	0.0828
mammographic	0.8276	0.8120	0.6552	0.6242	0.9696	1.2071
newthyroid	0.9716	0.9608	0.9311	0.9058	0.9767	0.3146
tae	0.6542	0.4646	0.4782	0.1843	0.9272	0.1390
vehicle	0.7987	0.6744	0.7315	0.5656	0.8805	1.2140
vowel	0.9621	0.9030	0.9583	0.8933	0.8136	1.2354
yeast	0.7427	0.5392	0.6628	0.3971	0.7664	2.4397

Tabla A.67: Resultados de CNN-CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accui	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8872	0.8851	0.7817	0.7671	0.9564	2.4352
cardiotocography	0.8710	0.8752	0.6482	0.6389	0.9755	0.9279
eye-state	0.8377	0.7796	0.6823	0.5550	0.7871	9.4798
page-blocks	0.9485	0.9538	0.7531	0.7341	0.9829	5.0899
penbased	0.9786	0.9867	0.9774	0.9852	0.9360	5.5268
satimage	0.8871	0.8811	0.8626	0.8528	0.9473	3.8257
thyroid	0.9355	0.9443	0.4300	0.4248	0.9930	4.8042
segment	0.2910	0.1506	0.1744	0.0091	0.8691	0.8686
coil2000	0.9302	0.9389	0.0163	0.0049	0.9874	9.2518
magic	0.8239	0.7935	0.6211	0.5393	0.8866	15.0822
marketing	0.4467	0.2704	0.3690	0.1658	0.7859	3.2887
phoneme	0.8315	0.8249	0.6065	0.5757	0.9627	3.3927
ring	0.9092	0.9034	0.8283	0.8066	0.9561	6.2863
spambase	0.8681	0.8658	0.7342	0.7184	0.9771	2.1910
texture	0.9547	0.9575	0.9511	0.9532	0.9215	2.4389
titanic	0.7753	0.7810	0.4491	0.4481	0.9898	0.5828
twonorm	0.9391	0.9464	0.8882	0.8927	0.9841	3.7002

Tabla A.68: Resultados de CNN-CHC para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	Accur	Accuracy		PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7829	0.7763	0.3168	0.2937	0.9700	15.7268
shuttle	0.9976	0.9978	0.9940	0.9937	0.9841	60.9359

Tabla A.69: Resultados de CNN-CHC para conjuntos grandes con 1000 iteraciones fijas

Continue	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9526	0.9200	0.9289	0.8800	0.9720	0.1291
cleveland	0.6704	0.5825	0.4417	0.3001	0.9630	0.3670
led7digit	0.7624	0.7440	0.7357	0.7146	0.9682	0.5451
pima	0.8141	0.7239	0.5739	0.3599	0.9289	1.0341
wdbc	0.9615	0.9523	0.9166	0.8956	0.9761	0.9131
monk2	0.8855	0.8515	0.7710	0.7034	0.9637	0.4827
wisconsin	0.9732	0.9592	0.9410	0.9110	0.9717	0.9064
wine	0.9652	0.9294	0.9470	0.8937	0.9758	0.1929
glass	0.7674	0.6870	0.6668	0.5421	0.9318	0.2286
banknote	0.9979	0.9971	0.9957	0.9941	0.8972	2.1298
appendicitis	0.9623	0.9438	0.7982	0.6792	0.9717	0.1422
balance	0.8855	0.8657	0.7851	0.7476	0.9522	0.7496
bands	0.7729	0.6596	0.4840	0.2229	0.9408	0.4344
contraceptive	0.5895	0.4678	0.3628	0.1731	0.9041	2.5653
dermatology	0.9634	0.9445	0.9531	0.9287	0.9721	0.5299
ecoli	0.8505	0.7960	0.7829	0.7055	0.9589	0.3897
haberman	0.7905	0.7611	0.3168	0.2320	0.9863	0.3135
hayes-roth	0.7361	0.6125	0.5920	0.3955	0.9219	0.1379
heart	0.8646	0.8148	0.7237	0.6222	0.9756	0.2903
hepatitis	0.9125	0.8750	0.6779	0.4848	0.9663	0.0864
mammographic	0.8454	0.8060	0.6904	0.6117	0.9370	1.0858
newthyroid	0.9612	0.9399	0.9068	0.8557	0.9819	0.2263
tae	0.6689	0.4892	0.5023	0.2263	0.9285	0.1184
vehicle	0.7833	0.6747	0.7111	0.5660	0.8928	1.2502
vowel	0.9364	0.8828	0.9300	0.8711	0.7685	1.5126
yeast	0.6426	0.5642	0.5311	0.4273	0.8965	2.5965

Tabla A.70: Resultados de ENN-CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accuracy		Kai	PPA	Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8875	0.8851	0.7821	0.7671	0.9598	2.2316
cardiotocography	0.8724	0.8672	0.6601	0.6284	0.9721	0.8639
eye-state	0.7984	0.7754	0.6033	0.5467	0.8776	11.5479
page-blocks	0.9490	0.9560	0.7510	0.7428	0.9809	2.8736
penbased	0.9773	0.9850	0.9758	0.9833	0.8884	7.0029
satimage	0.8864	0.8855	0.8618	0.8583	0.9375	4.0794
thyroid	0.9358	0.9442	0.4030	0.3912	0.9758	4.4285
segment	0.1882	0.1407	0.0545	-0.0025	0.9614	1.0229
coil2000	0.9228	0.9289	0.0935	0.0487	0.9579	14.3025
magic	0.8528	0.8260	0.6778	0.6012	0.7430	16.7927
marketing	0.3476	0.2971	0.2503	0.1907	0.9427	3.5624
phoneme	0.8321	0.8242	0.6084	0.5759	0.9494	2.3561
ring	0.7809	0.7707	0.5702	0.5393	0.9521	4.4712
spambase	0.8729	0.8732	0.7418	0.7311	0.9653	2.9880
texture	0.9503	0.9540	0.9464	0.9494	0.9139	3.2882
titanic	0.7763	0.7833	0.4493	0.4514	0.9898	0.5746
twonorm	0.9520	0.9573	0.9140	0.9146	0.9383	4.2723

Tabla A.71: Resultados de ENN-CHC para conjuntos medianos con 1000 iteraciones fijas

CONTINUES ACCURA		RACY	KAPPA		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.8010	0.7950	0.3551	0.3325	0.9622	17.9675
shuttle	0.9976	0.9978	0.9940	0.9937	0.8843	36.7365

Tabla A.72: Resultados de ENN-CHC para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9689	0.9467	0.9533	0.9200	0.9753	0.1232
cleveland	0.6603	0.5582	0.4330	0.2698	0.9623	0.2902
led7digit	0.7684	0.7500	0.7422	0.7214	0.9746	0.4270
pima	0.8060	0.7304	0.5625	0.3914	0.9478	0.9977
wdbc	0.9557	0.9347	0.9031	0.8573	0.9886	0.8044
monk2	0.9035	0.8818	0.8066	0.7638	0.9799	0.4537
wisconsin	0.9740	0.9636	0.9427	0.9200	0.9928	1.2788
wine	0.9700	0.9353	0.9541	0.9001	0.9730	0.1844
glass	0.7596	0.6808	0.6439	0.5252	0.9509	0.2138
banknote	0.9930	0.9898	0.9859	0.9793	0.9821	2.4199
appendicitis	0.9422	0.9038	0.7179	0.4875	0.9755	0.1132
balance	0.8688	0.8709	0.7541	0.7582	0.9848	0.8330
bands	0.7455	0.7061	0.4134	0.3239	0.9636	0.3674
contraceptive	0.6579	0.4773	0.4676	0.1875	0.8264	2.3649
dermatology	0.9473	0.9369	0.9333	0.9196	0.9749	0.3946
ecoli	0.8466	0.8089	0.7733	0.7152	0.9649	0.3800
haberman	0.7908	0.7317	0.3173	0.1412	0.9853	0.2903
hayes-roth	0.7035	0.5188	0.5274	0.2341	0.9400	0.1418
heart	0.8527	0.7963	0.7000	0.5835	0.9807	0.2551
hepatitis	0.9000	0.8500	0.3634	0.1257	0.9775	0.0793
mammographic	0.8340	0.8133	0.6680	0.6262	0.9753	1.1150
newthyroid	0.9669	0.9438	0.9199	0.8531	0.9814	0.2253
tae	0.6748	0.5238	0.5093	0.2817	0.9219	0.1172
vehicle	0.7819	0.6408	0.7091	0.5206	0.9058	1.0728
vowel	0.8688	0.7899	0.8557	0.7689	0.8494	1.2532
yeast	0.6538	0.5411	0.5463	0.3986	0.8846	2.3610

Tabla A.73: Resultados de RSS-CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8809	0.8832	0.7687	0.7631	0.9713	2.4651
cardiotocography	0.8730	0.8765	0.6594	0.6501	0.9763	0.8185
eye-state	0.7984	0.7672	0.5977	0.5229	0.8514	10.3898
page-blocks	0.9387	0.9466	0.6831	0.6805	0.9928	3.6991
penbased	0.9728	0.9798	0.9709	0.9776	0.9293	6.9140
satimage	0.8643	0.8622	0.8349	0.8299	0.9627	3.9961
thyroid	0.9340	0.9421	0.3929	0.3818	0.9919	4.2709
segment	0.2340	0.1528	0.1080	0.0116	0.9190	0.9589
coil2000	0.9246	0.9320	0.0466	0.0223	0.9901	9.2795
magic	0.8127	0.8075	0.5797	0.5532	0.9313	15.2582
marketing	0.3830	0.2894	0.2947	0.1862	0.8809	3.3203
phoneme	0.8035	0.8066	0.5439	0.5374	0.9815	2.7217
ring	0.9204	0.9134	0.8507	0.8266	0.9381	6.3558
spambase	0.8635	0.8660	0.7260	0.7205	0.9794	2.4941
texture	0.9387	0.9442	0.9335	0.9386	0.9372	2.7477
titanic	0.7672	0.7751	0.4304	0.4353	0.9918	0.7916
twonorm	0.9478	0.9546	0.9055	0.9092	0.9841	4.1837

Tabla A.74: Resultados de RSS-CHC para conjuntos medianos con 1000 iteraciones fijas

ACCURACY ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)	
Conjunto	Training	Test	Training	Test		
credit-card	0.7973	0.7948	0.3250	0.3120	0.9836	18.1931
shuttle	0.9970	0.9976	0.9933	0.9932	0.9801	64.0352

Tabla A.75: Resultados de RSS-CHC para conjuntos grandes con 1000 iteraciones fijas

Соминито	Accur	RACY	Kap	PA	REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9644	0.9400	0.9467	0.9100	0.9727	0.1984
cleveland	0.6924	0.5969	0.4606	0.2823	0.9535	0.4987
led7digit	0.7267	0.7000	0.6959	0.6659	0.9640	0.7427
pima	0.8095	0.7296	0.5673	0.3839	0.9271	1.4884
wdbc	0.9566	0.9303	0.9055	0.8497	0.9905	1.3146
monk2	0.9252	0.9049	0.8501	0.8100	0.9653	0.8357
wisconsin	0.9730	0.9679	0.9404	0.9287	0.9931	1.9354
wine	0.9719	0.9471	0.9569	0.9182	0.9725	0.2697
glass	0.7954	0.7109	0.7021	0.5814	0.9215	0.3134
banknote	0.9958	0.9942	0.9915	0.9881	0.9802	3.5226
appendicitis	0.9498	0.9138	0.7707	0.5601	0.9708	0.1846
balance	0.8514	0.8099	0.7218	0.6446	0.9603	1.2547
bands	0.7756	0.6735	0.4974	0.2610	0.9381	0.6660
contraceptive	0.5845	0.4671	0.3566	0.1746	0.8599	3.4468
dermatology	0.9528	0.9198	0.9398	0.8978	0.9684	0.7480
ecoli	0.8519	0.7839	0.7869	0.6901	0.9580	0.6480
haberman	0.7850	0.7622	0.2966	0.2072	0.9876	0.5423
hayes-roth	0.7278	0.5625	0.5742	0.3116	0.9269	0.2216
heart	0.8617	0.8000	0.7184	0.5894	0.9807	0.4144
hepatitis	0.9000	0.7875	0.4285	0.0026	0.9700	0.1070
${\it mammographic}$	0.8335	0.7928	0.6667	0.5849	0.9600	1.6868
newthyroid	0.9659	0.9447	0.9213	0.8775	0.9786	0.4077
tae	0.6674	0.5571	0.4990	0.3363	0.9278	0.1822
vehicle	0.8088	0.6459	0.7450	0.5272	0.8680	1.7682
vowel	0.9519	0.9051	0.9470	0.8956	0.8132	1.9504
yeast	0.6715	0.5163	0.5697	0.3669	0.8268	3.6261

Tabla A.76: Resultados de CNN-RSS-CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	ACCURACY		Карра		Reducción	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8792	0.8785	0.7654	0.7538	0.9557	3.3310
cardiotocography	0.8781	0.8766	0.6643	0.6402	0.9725	1.3603
eye-state	0.8138	0.7754	0.6328	0.5445	0.8348	14.3698
page-blocks	0.9441	0.9512	0.7199	0.7132	0.9873	6.2237
penbased	0.9785	0.9860	0.9773	0.9844	0.9193	9.0444
satimage	0.8847	0.8768	0.8596	0.8474	0.9368	5.3913
thyroid	0.9303	0.9392	0.3410	0.3393	0.9924	7.2426
segment	0.2703	0.1416	0.1503	-0.0015	0.8742	1.3484
coil2000	0.9257	0.9327	0.0725	0.0277	0.9833	13.9504
magic	0.8329	0.7904	0.6400	0.5303	0.8337	21.4493
marketing	0.4297	0.2765	0.3504	0.1737	0.8099	4.9986
phoneme	0.8373	0.8227	0.6201	0.5707	0.9532	3.7557
ring	0.9208	0.9159	0.8515	0.8318	0.9416	8.7030
spambase	0.8743	0.8734	0.7503	0.7380	0.9593	3.4641
texture	0.9611	0.9656	0.9582	0.9622	0.9154	3.9357
titanic	0.7675	0.7746	0.4285	0.4301	0.9906	1.0707
twonorm	0.9416	0.9477	0.8933	0.8954	0.9829	5.7217

Tabla A.77: Resultados de CNN-RSS-CHC para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7912	0.7839	0.3192	0.2925	0.9655	23.9880
shuttle	0.9979	0.9981	0.9947	0.9945	0.9784	77.1720

Tabla A.78: Resultados de CNN-RSS-CHC para conjuntos grandes con 1000 iteraciones fijas

Сомими	ACCURACY		Карра		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
iris	0.9674	0.9400	0.9511	0.9100	0.9700	0.1910
cleveland	0.6887	0.5646	0.4708	0.2789	0.9492	0.4973
led7digit	0.7700	0.7500	0.7440	0.7213	0.9650	0.7768
pima	0.8145	0.7104	0.5781	0.3404	0.9069	1.4055
wdbc	0.9652	0.9454	0.9246	0.8819	0.9740	1.2396
monk2	0.8819	0.8244	0.7642	0.6501	0.9477	0.6825
wisconsin	0.9763	0.9607	0.9478	0.9150	0.9659	1.5583
wine	0.9650	0.9294	0.9465	0.8910	0.9725	0.2891
glass	0.8033	0.7046	0.7063	0.5670	0.9327	0.3123
banknote	0.9985	0.9964	0.9969	0.9926	0.8961	3.2309
appendicitis	0.9560	0.9075	0.8038	0.4920	0.9736	0.1773
balance	0.8695	0.8549	0.7554	0.7281	0.9526	1.0740
bands	0.7678	0.6398	0.4652	0.1757	0.9496	0.6864
contraceptive	0.6172	0.4582	0.4071	0.1685	0.8392	3.6247
dermatology	0.9553	0.9346	0.9433	0.9168	0.9704	0.7982
ecoli	0.8605	0.8275	0.7988	0.7507	0.9604	0.5703
haberman	0.7938	0.7506	0.3261	0.2283	0.9843	0.4800
hayes-roth	0.7431	0.6500	0.6008	0.4526	0.9244	0.2057
heart	0.8601	0.8222	0.7153	0.6362	0.9767	0.3964
hepatitis	0.9083	0.8875	0.5886	0.4257	0.9638	0.1256
mammographic	0.8446	0.7976	0.6891	0.5953	0.9237	1.4707
newthyroid	0.9633	0.9628	0.9088	0.9072	0.9842	0.3664
tae	0.6799	0.4963	0.5171	0.2344	0.9238	0.2055
vehicle	0.7766	0.6744	0.7021	0.5656	0.8819	1.6821
vowel	0.9300	0.8737	0.9230	0.8611	0.7779	2.1629
yeast	0.7014	0.5367	0.6082	0.3927	0.8005	3.6700

Tabla A.79: Resultados de ENN-RSS-CHC para conjuntos pequeños con 1000 iteraciones fijas

Conjunto	ACCURACY		Карра		REDUCCIÓN	Tiempo promedio (seg)
CONJUNTO	Training	Test	Training	Test		
banana	0.8825	0.8779	0.7720	0.7525	0.9508	3.2142
cardiotocography	0.8731	0.8734	0.6457	0.6284	0.9742	1.2996
eye-state	0.8119	0.7798	0.6305	0.5553	0.8348	15.7707
page-blocks	0.9459	0.9512	0.7476	0.7303	0.9752	4.4175
penbased	0.9807	0.9886	0.9797	0.9874	0.8829	10.1493
satimage	0.8899	0.8873	0.8663	0.8608	0.9385	5.7040
thyroid	0.9368	0.9442	0.4603	0.4439	0.9591	6.1879
segment	0.2481	0.1472	0.1245	0.0051	0.9100	1.3631
coil2000	0.9235	0.9287	0.1108	0.0501	0.9295	17.9349
magic	0.8575	0.8194	0.6889	0.5860	0.7224	22.8720
marketing	0.4103	0.2797	0.3281	0.1774	0.8467	4.8414
phoneme	0.8372	0.8244	0.6229	0.5780	0.9477	3.5526
ring	0.8877	0.8574	0.7852	0.7143	0.8887	6.4200
spambase	0.8648	0.8636	0.7258	0.7117	0.9597	4.1330
texture	0.9577	0.9642	0.9545	0.9606	0.9136	4.5437
titanic	0.7758	0.7837	0.4500	0.4549	0.9902	1.0768
twonorm	0.9503	0.9543	0.9105	0.9086	0.9387	6.0015

Tabla A.80: Resultados de ENN-RSS-CHC para conjuntos medianos con 1000 iteraciones fijas

CONTINUE	ACCURACY		Kappa		REDUCCIÓN	Tiempo promedio (seg)
Conjunto	Training	Test	Training	Test		
credit-card	0.7967	0.7860	0.3481	0.3110	0.9372	24.3612
shuttle	0.9983	0.9984	0.9960	0.9955	0.8826	70.4400

Tabla A.81: Resultados de ENN-RSS-CHC para conjuntos grandes con 1000 iteraciones fijas