Calcolatori Elettronici - Ingegneria Informatica Appello del 24 febbraio 2022 T1

Per svolgere i quesiti può essere usata una qualsiasi applicazione. I file relativi agli esercizi devono essere inviati tramite studium.

Tempo a disposizione 1h 45 min

1. Data la funzione booleana $f(a,b,c,d,e) = \Sigma(1,5,6,7,17,19,22,23)$ scrivere l'espressione logica minima utilizzando il metodo di Quine-McCluskey.

abcde	
00001	1
00101	5
00110	6
00111	7
10001	17
10011	19
10110	22
10111	23

2. Data la seguente tabella degli stati relativa ad una rete sequenziale con un solo ingresso x:

Stato	x=0	x=1
A	D/0	C/0
В	E/1	C/0
С	D/0	A/0
D	B/0	A/0
E	B/1	A/0

- Eseguire la minimizzazione degli stati e realizzare la tabella degli stati della macchina minima equivalente.
- Costruire la tabella delle transizioni e delle eccitazioni usando come elemento di memoria i FF T.
- Scrivere l'espressione logica minima delle funzioni booleane che rappresentano lo stato prossimo e l'uscita.

3. Data l'entity

```
Entity DPath is

Port( Din: in std_logic_vector(7 downto 0);
        OP: in std_logic;
        clk,WeA,WeR: in std_logic;
        R: out std_logic_vector(7 downto 0)
);

End DPath;

Architecture beh of DPath is
begin
--
end beh;
```

descrivere in VHDL il comportamento descritto dal seguente schematico

4. Scrivere un programma in linguaggio Assembly MIPS che traduce il seguente programma C (cognome.nome.s):

```
int calcola(char *st, int d, int val)
{ int j,cnt;
    cnt=0;
    for (j=0; j< d; j++)
     if(st[j]-48 < val)
          cnt++;
      else cnt+=2;
   return cnt;
}
main() {
  char ST[16];
  int i, num, ris;
   i=0;
   do{
    printf("Inserisci una stringa di soli numeri\n");
    scanf("%s",ST);
    printf("Inserisci un numero a una cifra");
    scanf("%d",&num);
    ris= calcola(ST, strlen(ST), num);
    printf(" Valore= %d \n", ris);
    i++;
    while (i < 3);
}
```

- 5) Valutare il CPI di un processore pipeline con una gerarchia di memoria con cache separata istruzioni e dati sapendo che
- -FetchMisses= 45,
- -f_{LOAD}=15%,
- -f_{STORE}=20%,
- -MissRate_{Istruzioni}= 4,5%,
- -MissRate_{Dati}= 4%,
- -MissPenalty_{Istruzioni}= 40 cicli,
- -MissPenalty_{Dati}= 45 cicli,
- -CPI_{execution}=1,6,
- -Numero di Istruzioni = 1000