

Introduction to Linux Shell

What is a Shell?

A shell is a command-line interface (CLI) that allows users to interact with the operating systemby executing commands. It serves as a bridge are between the user and the kernel.

Types of Shells

Shell Type Description

Bourne Shell (sh) The original Unix shell.

Bash (Bourne Again

Shell)

Improved version of Bourne Shell, widely used in Linux.

C Shell (csh)

Uses C-like syntax.

Korn Shell (ksh)

Combines features of Bourne and C Shell.

Z Shell (zsh)

Extended version of Bash with extra features.

Basic Linux Commands

File and Directory Management

♦ Command Description

ls List files and directories.

pwd Show current directory.

cd <directory> Change directory.

mkdir <directory> Create a new directory.

File Viewing

File Permissions and Ownership

Process Management

System Information

Networking Commands

Command Line Help

Getting Help on Commands

Searching for Commands

Command✓ DescriptionaproposFind commands related to a keyword.

apropos Find commands related to a key keyword>

Bash Shell

What is Bash?

Bash (Bourne Again Shell) is the most commonly used Linux shell. It provides powerful scripting, command history, and job control features.

- Bash Features
- Command history Use history or arrow keys to navigate previous commands.
- Auto-completion Press Tab to autocomplete commands.
- ✓ Aliases- Define shortcuts using alias name='command'.

Bash Scripting Basics

Creating a Bash Script

1 Create a new script file:

nano script.sh

2 Add script content:

```
#!/bin/bash
echo "Hello, World!"
```

3 Make it executable:

```
chmod +x script.sh
```

4 Run the script:

```
./script.sh
```


Variables in Bash

```
name="John"
echo "Hello, $name"
```

Conditional Statements

```
if [ "$name" == "John" ]; then
    echo "Name is John"
else
    echo "Name is not John"
fi
```

Loops in Bash

```
for i in {1..5}; do
    echo "Number: $i"
done
```


Linux Core Concepts

1. Linux Kernel

What is the Linux Kernel?

The Linux Kernel is the coreof the operating system. It acts as a bridge between hardware and user applications, managing:

- Processes
- Memory ____
- Devices
- File Systems
- ✓ Networking ⊕

Checking Kernel Information

Use these commands to check kernel details:

```
# Display kernel version
uname -r
               # Show complete system information
uname -a
cat /proc/version # Detailed kernel version info
```

Updating the Kernel

To check and upgrade your kernel:

```
sudo apt update && apt list --upgradable | grep linux-image # Check
for kernel updates
sudo apt install linux-image-generic # Upgrade the kernel
```

2. Working with Hardware

Device Files in Linux

Linux represents hardware as files in the /dev/ directory:

- Character Devices Process data one character at a time (e.g., /dev/tty for terminals).
- ◆ Block Devices Process data in blocks (e.g., /dev/sda for storage).

Checking Hardware Information

Use these commands to check system hardware:

```
# Display CPU details
lscpu
lsblk
           # Show storage devices and partitions
           # List PCI devices (graphics, network cards, etc.)
lspci
           # List connected USB devices
lsusb df
fhee
            # Show disk space usage
            # Display RAM usage in MB
```

Managing Devices

Mount a device:

sudo mount /dev/sdb1 /mnt # Mount device at /mnt

★ Unmount a device:

sudo umount /mnt # Unmount device from /mnt

Load a kernel module:

sudo modprobe <module_name> # Load a specific kernel module

Remove a kernel module:

sudo rmmod <module_name> # Remove a kernel module

3. Linux Boot Sequence

The Linux Boot Process consists of:

- 1 BIOS/UEFI- Initializes hardware and loads bootloader.
- 2 Bootloader (GRUB, LILO, Syslinux, etc.) Loads the Linux kernel.
- 3 **Kernel Initialization** Detects hardware and mounts the root filesystem.
- 4 Init System (Systemd, SysVinit, Upstart) Starts system processes.
- 5 Runlevel/Target Execution— Loads user processes and services.

Checking Boot Information

4. Runlevels (SysVinit) and Systemd Targets

```
Runlevels in SysVinit Systems
```

Description

```
0 Shutdown
```

Runlevel

- 1 Single-user mode 🖴
- 2 Multi-user (No Networking) 🔌
- Multi-user (With Networking)
- 4 Unused/Custom ☼
- 5 Graphical mode (GUI) 🧒
- Reboot

Check & Change Runlevels:

```
runlevel  # Check current runlevel
sudo init 3  # Change to runlevel 3 (multi-user mode)
```

Systemd Targets (Modern Linux Systems)

Systemd Target Equivalent Runlevel

poweroff.target Runlevel 0 (Shutdown)

rescue.target Runlevel **1**(Single-user mode)

multi-user.target Runlevel 3(Multi-user mode)

graphical.target Runlevel 5(Graphical mode)

reboot.target Runlevel 6 (Reboot)

★ Managing Systemd Targets:

systemctl get-default # Check the current target
sudo systemctl set-default multi-user.target # Set default target
sudo systemctl isolate graphical.target # Switch to a specific target

5. Linux File Types

File Type	★ Description	Example
Regular File	Normal text, binary, or script file	/etc/passwd
Directory	Folder containing files	/home/user/
Symbolic Link	Shortcut to another file	/usr/bin/python -> /usr/bin/python3
Character Device	Reads/Writes one character at a time	/dev/cty
Block Device	Reads/Writes data in blocks	/dev/sda
Named Pipe	Inter-process communication	/tmp/mypipe
Socket	Network communication endpoint	/var/run/docker.sock
Symbolic Link Character Device Block Device Named Pipe	Shortcut to another file Reads/Writes one character at a time Reads/Writes data in blocks Inter-process communication	<pre>/usr/bin/python -> /usr/bin/python3 /dev/tty /dev/sda /tmp/mypipe</pre>

Checking File Types:

ls -1 # Display file types
file /dev/sda # Check type of a specific file

★ Example output of 1s -1:

```
-rw-r--r-- 1 user user 1024 Mar 07 12:00 file.txt # Regular file
drwxr-xr-x 2 user user 4096 Mar 07 12:00 mydir/ # Directory
lrwxrwxrwx 1 user user 10 Mar 07 12:00 link -> file.txt # Symbolic
link
```

6. Filesystem Hierarchy

The Filesystem Hierarchy Standard (FHS) organizes Linux directories:

Directory	≉ Purpose	C Example Command
1	Root directory (everything starts here)	ls /
/bin	Essential binaries (e.g., ls, cat)	ls /bin
/boot	Boot files (Kernel, GRUB)	ls /boot
/dev	Device files	ls /dev
/etc	Configuration files	ls /etc
/home	User home directories	ls /home
/lib	Shared libraries & kernel modules	ls /lib
/media	Mount points for removable media	ls /media
/mnt	Temporary mount points	ls /mnt
/opt	Optional software packages	ls /opt
/proc	Virtual filesystem (process info)	ls /proc
/root	Home directory for root user	ls /root
/sbin	System binaries (for admin tasks)	ls /sbin
/srv	Data served by the system	ls /srv
/tmp	Temporary files	ls /tmp

/usr User applications and libraries ls /usr
/var Variable data (logs, caches, ls /var databases)

Checking Disk Usage:

df -h # Show available disk space
du -sh /var/log # Display the size of the /var/log directory

Linux Package Management **

1. Introduction to Package Management

What is Package Management?

Package management is how Linux handles software installation, updates, and removal. Different distributions use different package management tools.

- Types of Package Managers
- Low-Level Package Managers (work directly with package files):
 - rpm → Used in Red Hat-based systems
 - dpkg → Used in **Debian-based** systems
- High-Level Package Managers (handle dependencies & repositories):
 - yum / dnf → Used in **Red Hat-based** systems
 - apt / apt-get Used in **Debian-based** systems
- **Package Manager Categories by Distribution**
- Low-Level Package High-Level Package Distribution Manager Manager dpkg apt, apt-get

Debian-based (Ubuntu, Debian, Mint)

Red Hat-based (RHEL, CentOS, yum. dnf rpm Fedora)

2. RPM and YUM (For Red Hat-based Systems)

RPM (Red Hat Package Manager)

RPM is a low-level package manage rused in Red Hat-based distributions like CentOS and Fedora.

```
★ Common RPM Commands
```

Install a package:

sudo rpm -ivh package.rpm

★ Upgrade a package:

sudo rpm -Uvh package.rpm

★ Remove a package:

sudo rpm -e package-name

★ Query installed packages:

rpm -qa | grep package-name

★ Show package details:

rpm -qi package-name

★ YUM (Yellowdog Updater, Modified)

YUM is a high-level package manager that resolves dependencies automatically.

- **←** Common YUM Commands
- Install a package:

sudo yum install package-name

★ Remove a package:

sudo yum remove package-name

★ Update all packages:

sudo yum update

★ Check if a package is installed:

yum list installed | grep package-name

Show package info:

yum info package-name

Note: dnfis the newer version of yum used in Fedora and CentOS 8+.

3. DPKG and APT (For Debian-based Systems)

DPKG (Debian Package Manager)

dpkg is a low-level package manager for .deb packages and does not handle dependencies automatically.

Install a package:

sudo dpkg -i package.deb

📌 Remove a package:

sudo dpkg -r package-name

Reconfigure a package:

sudo dpkg-reconfigure package-name

★ List installed packages:

dpkg -1 | grep package-name

APT (Advanced Package Tool)

APT is a **high-level package manager** for **Debian-based** systems that resolves dependencies automatically.

- Common APT Commands
- **♥** Update package lists:

sudo apt update

★ Install a package:

sudo apt install package-name

* Remove a package:

sudo apt remove package-name

★ Upgrade all packages:

sudo apt upgrade

★ Show package details:

apt show package-name

Search for a package:

apt search package-name

4. APT vs APT-GET

• Both apt and apt-get are used in Debian-based distributions, but apt is newer and more user-friendly.

Key Differences

Feature

apt-get

Introduced in

Debian

Ubuntu 16.04+

Handles package

Yes

management
Displays progress bar

× No Ves

Simplified syntax × No ✓ Yes

Example Commands Comparison

Task	apt-get (Old)	apt (New)
Update package lists	sudo apt-get update	sudo apt update
Install a package	<pre>sudo apt-get install package-name sudo apt-get upgrade</pre>	<pre>sudo apt install package-name sudo apt upgrade</pre>
Upgrade all		

Upgrade all packages

 Note: apt-get is still available for backward compatibility, but apt is recommended for newer systems.

Conclusion

- ✓ Red Hat-based systems use rpm (low-level) and yum/dnf (high-level).
- ✓ Debian-based systems use dpkg (low-level) and apt/apt-get (high-level).
- ☑ High-level package managers (apt, yum, dnf) handle dependencies automatically.
- ✓ Low-level package managers(rpm, dpkg) work directly with package file. s

Choosing the Right Package Manager:

- If you're on **Ubuntu/Debian**, use apt.
- If you're on Fedora/CentOS, use dnf.
- If you want manual control, use dpkgor rpm.

Working with Shell in Linux

1. File Compression and Archival

What is File Compression and Archival?

- Compression reduces file sizes, making them easier to store or transfer.
- Archivingbundles multiple files into a single file.

Common Compression and Archival Commands

Command	Description
tar	Archive multiple files into one file
gzip	Compress files using the Gzip algorithm
bzip2	Compress files using the Bzip2 algorithm Compress files using the XZ algorithm
XZ	Compress files into a .zip format
zip	Extract .zip archives
unzip	

Archiving with tar

Create an archive (without compression):

tar -cvf archive.tar file1 file2 directory/

Extract an archive:

tar -xvf archive.tar

List contents of an archive:

Compress a file using gzip:

```
gzip file.txt # Produces file.txt.gz
gunzip file.txt.gz # Decompress
```

Compress a file using bzip2:

```
bzip2 file.txt # Produces file.txt.bz2
bunzip2 file.txt.bz2 # Decompress
```

Compress a file using xz:

```
xz file.txt # Produces file.txt.xz
unxz file.txt.xz # Decompress
```

Combining tar with Compression

Create a gzip-compressed archive:

```
tar -czvf archive.tar.gz file1 file2 directory/
```

Create a bzip2-compressed archive:

```
tar -cjvf archive.tar.bz2 file1 file2 directory/
```

Create an xz-compressed archive:

```
tar -cJvf archive.tar.xz file1 file2 directory/
```

Extract compressed archives:

```
tar -xzvf archive.tar.gz # For gzip
tar -xjvf archive.tar.bz2 # For bzip2
tar -xJvf archive.tar.xz # For xz
```

Working with Zip Files

Create a zip archive:

zip archive.zip file1 file2 directory/

Extract a zip archive:

unzip archive.zip

2. Searching for Files and Patterns

Why Search for Files?

Searching for files and text patterns is essential for managing a Linux system effectively.

Finding Files with find

Find a file by name:

```
find /home -name "file.txt"
```

Find files larger than 100MB:

```
find / -size +100M
```

Find all .log files in /var/log:

```
find /var/log -name "*.log"
```

Find and delete files older than 7 days:

find /tmp -type f -mtime +7 -exec rm {} \;

Searching for Text in Files with grep

Find a pattern in a file:

grep "error" /var/log/syslog

Case-insensitive search:

grep -i "warning" /var/log/syslog

Recursive search in a directory:

grep -r "TODO" /home/user/projects/

Show line numbers for matches:

grep -n "failed" /var/log/auth.log

Searching Faster with locate

Find files using locate (requires updatedb first):

locate bashrc

Update the locate database:

sudo updatedb

3. I/O Redirection

What is I/O Redirection?

I/O redirection allows you to control where input and output streams go in the shell.

Stream	Description	File Descriptor
stdin	Standard input	0
stdou t	Standard output	1
stder r	Standard error	2

Redirecting Output to a File

Redirect stdout to a file (overwrite):

ls > output.txt

Redirect stdout to a file (append):

ls >> output.txt

Redirect stderr to a file:

ls non_existing_file 2> error.txt

Redirect both stdout and stderr:

ls non_existing_file > output.txt 2>&1

Suppress error messages:

command 2>/dev/null

Redirecting Input from a File

Read from a file instead of standard input:

sort < unsorted.txt</pre>

Ø Using Pipes () to Redirect Output Between Commands

Count lines in a file:

cat file.txt | wc -l

Find all .log files and search for "error":

find /var/log -name "*.log" | xargs grep "error"

4. Vi Editor

What is the Vi Editor?

vi is a **powerful text editor** used in Unix/Linux systems.

Opening and Closing Files

Open a file in vi editor:

vi filename

Exit without saving:

:q!

Save and exit:

:wq

Vi Modes

Mode Description

Normal Mode Default mode for navigation and commands

Insert Mode Used for text editing (press i or a to enter)

Command Mode Used for executing commands (: followed by

command)

Basic Navigation

• Move left: h

• Move right: 1

• Move down: j

• Move up: k

Editing in Insert Mode

Insert before cursor: i

Append after cursor: a

• Open a new line below: o

• Return to Normal mode: ESC

Copy, Cut, and Paste

• Copy a line: yy

• Cut (delete) a line: dd

• Paste after the cursor: p

Paste before the cursor: P

Searching in Vi

Search forward for "word": /word

Search backward for "word": ?word

- Repeat last search forward: n
- Repeat last search backward: N

■ Saving and Exiting

Save: :wQuit: :q

• Save and quit: :wq

• Quit without saving: :q!

Linux Networking

1 Network Issues

Overview

Networking issues in Linux can arise due to misconfigurations, hardware failures, or connectivity problems. Below are common network issues, their causes, and solutions.

Common Network Issues

Issue	Cause	Solution
No Internet	Missing IP address, no default gateway	Check with ip a, route -n
Slow Connection	High network traffic, DNS issues Firewall, incorrect routes	Test with ping, traceroute
Cannot Reach Host		Check iptables, firewalld, netstat -r
Hostname Not	DNS issues	Verify /etc/resolv.co ⁿ ufse
Resolving No Network Interface	Driver issue	nslookup, dig Use lspci, lsmod , reinstall drivers

Basic Network Commands

```
ip a ip r ping 8.8.8.8 # Show network interfaces
99991P0698
                       # Display routing table
ASTEP BOW
                       # Test connectivity
                       # Trace route to a host # Resolve domain
netstat -tulnp
                       to IP
                       # Show open ports and listening services
```

2 DNS (Domain Name System)

DNS translates domain names (e.g., google.com) into IP addresses.

Checking DNS Configuration

View DNS servers in use:

cat /etc/resolv.conf

Test domain resolution:

nslookup google.com
dig google.com
host google.com

★ Flushing DNS Cache

If using systemd-resolved:

sudo systemctl restart systemd-resolved

For nscd (Name Service Cache Daemon):

sudo systemctl restart nscd

Manually Setting DNS

Edit /etc/resolv.con(temporary change):

nameserver 8.8.8.8 nameserver 1.1.1.1

For permanent changes, modify /etc/systemd/resolved.conf:

```
[Resolve]
DNS=8.8.8.8 1.1.1.1
```

Then restart the service:

sudo systemctl restart systemd-resolved

3 Networking Basics

Overview

Linux networking follows a layered approach similar to the **OSI model**.

Key Networking Components

Component	Description
IP Addressing	Identifies a device in a network (e.g., 192.168.1.1)
Subnet Mask	Defines the network range (e.g., 255.255.255.0)
Gateway	Router address for external traffic
DNS Server	Resolves domain names (e.g., 8.8.8.8 for Google DNS)
MAC Address	Unique hardware address of a network interface

★ Viewing Network Configuration

```
ip a ip # Show IP addresses
r ip # Show routing table
        # Show network interfaces
link
```

Assigning a Static IP (Temporary)

```
sudo ip addr add 192.168.1.100/24 dev eth0
sudo ip route add default via 192.168.1.1
```

Assigning a Static IP (Permanent - Ubuntu)

```
network:
   ethernets:
   eth0:
    addresses:
    - 192.168.1.100/24
   gateway4: 192.168.1.1
   nameservers:
   addresses:
    - 8.8.8.8
   - 1.1.1.1
```

Edit /etc/netplan/*.yaml:

Apply the changes:

version: 2

sudo netplan apply

4 Network Troubleshooting

Overview

Troubleshooting involves diagnosing and resolving network issues systematically.

Step-by-Step Troubleshooting

Step 1: Check Network Interfaces

```
ip a  # List all interfaces
ifconfig -a # Show interface details
```

Step 2: Check Connectivity

Step 3: Verify Routing Table

```
ip r  # Show routing table
route -n  # Display routes
```

Step 4: Check DNS Resolution

nslookup google.com
dig google.com
host google.com

Step 5: Check Open Ports

```
netstat -tulnp # Show listening ports
ss -tulnp # Alternative to netstat
```

Step 6: Restart Networking Services

Step 7: Inspect Logs

```
journalctl -u networking --no-pager # View networking logs
dmesg | grep eth0 # Check for interface errors
```

✓ Summary of Key Commands

Action	Command
Show network interfaces	ip a ip r ping 8.8.8.8
Display routing table	traceroute google.com
Test connectivity	
Trace route to a host	

Check DNS resolution nslookup google.com

Restart networking service sudo systemctl restart networking

Assign a static IP (temporary) sudo ip addr add 192.168.1.100/24 dev

eth0

Edit /etc/netplan/*.yaml and run sudo Set a static IP permanently

netplan apply

netstat -tulnp or ss -tulnp

Show open ports journalctl -u networking --no-pager

View networking logs

(Ubuntu)

Linux Security and File Permissions

1 Security Incidents

Overview

A security incident in Linux refers to unauthorized access, malware, data breaches, or misconfigurations that compromise system integrity.

Common Security Incidents in Linux

Incident Type	Description	Detection Method
Unauthorized Access	An attacker gains unauthorized system access	Check /var/log/auth.log, last, w Audit sudo logs (cat
Privilege Escalation	User gains unauthorized root access	/var/log/auth.log) Scan with chkrootkit, clamav
Malware Infection	Malicious software compromises the system	
File Integrity Breach	Unauthorized modification of files	Use tripwire or aide for integrity checking
Denial of Service (DoS)	Overloading services to cause downtime	Monitor netstattop, fail2ban

Basic Security Audit Commands

```
last
                             # Show last logins
                             # Show logged-in users
who
                             # Find processes using high memory
ps aux --sort=-%mem
                             # Check open ports
netstat -tulnp
```

2 Linux Accounts

Overview

Linux has different types of accounts to manage access and permissions.

Types of Linux Accounts

Account Type	Description
Root User (UID=0)	Full system access
Regular User	Restricted access, used for daily tasks
System Accounts	Used by services (e.g., www-data,
(UID<1000)	mysql)

★ Managing User Accounts

3 Access Control Files

Overview

Linux uses access control files to manage permissions for users and groups.

Important Access Control Files

File	Description
/etc/pass wd	Stores user account details
/etc/shad ow /etc/grou	Stores encrypted passwords
p /etc/sudo ers	Manages group memberships
	Controls sudo access

Checking User Access

```
cat /etc/passwd | grep user1  # View user account details
cat /etc/group | grep sudo  # Check if a user is in the sudo group
```

4 User Management

Creating and Managing Users

```
# Create a new user
sudo useradd -m user1

# Set a password for the user
sudo passwd user1

# Add a user to a group
sudo usermod -aG sudo user1

# Delete a user
sudo userdel -r user1
```

Group Management

```
# Create a new group
sudo groupadd developers

# Add a user to a group
sudo usermod -aG developers user1

# Remove a user from a group
sudo gpasswd -d user1 developers
```

5 File Permissions and Ownership

Overview

Linux file permissions determine who can read, write, and execute files.

Understanding File Permissions

To view file permissions, use:

```
ls -l file.txt
```

Example output:

```
-rwxr-xr-- 1 user1 group1 1024 Mar 7 10:00 file.txt
```

Permission Symbol	Meaning
r (read)	Can read the file
w (write)	Can modify the file
x (execute)	Can run the file as a program

- First three characters:Owner permissions
- Next three:Group permissions
- Last three:Others' permissions

Changing Permissions

```
chmod 755 file.txt  # Owner: rwx, Group: r-x, Others: r-x chmod u+r file.txt  # Add read permission for owner
```

Changing Ownership

```
chown user1 file.txt  # Change file owner
chgrp group1 file.txt  # Change file group
```

6 SSH and SCP

Secure Shell (SSH)

SSH allows secure remote login:

ssh user@remote-server

Copying Files Securely with SCP

```
# Copy file to a remote server
scp file.txt user@remote-server:/home/user/
# Copy file from a remote server
scp user@remote-server:/home/user/file.txt .
```

7 IPTables Introduction

Overview

iptables is a firewall used to filter traffic.

Service Basic IPTables Commands

```
# List current rules
sudo iptables -L -v

# Block an IP address
sudo iptables -A INPUT -s 192.168.1.10 -j DROP

# Allow SSH (port 22)
sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

# Save rules
sudo iptables-save > /etc/iptables.rules
```

8 Securing the Environment with IPTables

Securing Common Services

```
# Allow web traffic (HTTP and HTTPS)
sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT

# Allow internal network access
sudo iptables -A INPUT -s 192.168.1.0/24 -j ACCEPT

# Block all other incoming traffic
sudo iptables -P INPUT DROP
```

Saving and Reloading Rules

```
sudo iptables-save > /etc/iptables.rules
sudo iptables-restore < /etc/iptables.rules</pre>
```

9 Cron Jobs

Overview

Cron jobs automate scheduled tasks in Linux.

Creating a Cron Job

crontab -e # Edit cron jobs

Example Cron Jobs

Task	Cron Expression
Run a script every minute	* * * * *
	/path/to/script.sh
Run a script daily at midnight	0 0 * * * /path/to/script.sh

Run a script every Sunday at 2 0 2 * * 0 AM

/path/to/script.sh

Command

List and Remove Cron Jobs

crontab -l # List scheduled jobs crontab -r # Remove all cron jobs

Summary of Key Security Commands

Action

Show last logins last who netstat -tulnp chmod

Show logged-in users chown scp sudo iptables -L -v

sudo iptables -A INPUT -s <IP> Check open ports

-j DROP

Change file permissions sudo systemctl restart sshd

Change file ownership

Securely copy files

List current firewall rules

Block an IP address

Restart SSH service

Linux System Management: systemd **Services**

1. Creating a systemd Service

What is systemd?

systemd is an init system that manages services, processes, and system states. It uses unit files to control how services are started, stopped, and restarted.

Steps to Create a Custom systemd Service

1. Create the Service File

systemd service files are stored in /etc/systemd/system/.

sudo nano /etc/systemd/system/myservice.service

2. Define the Service Configuration

A basic **systemd** service file has three sections:

- [Unit] Describes the service and dependencies
- [Service] Defines how the service runs
- [Install] Specifies when to start the service
- **Example systemd Service File**

[Unit]

Description=My Custom Service After=network.target

[Service]

ExecStart=/usr/bin/python3 /home/user/myscript.py Restart=always User=user

Group=user WorkingDirectory=/home/user StandardOutput=journal StandardError=journal

[Install]

WantedBy=multi-user.target

3. Reload systemd to Recognize the New Service

sudo systemctl daemon-reload

▶ 4. Enable and Start the Service

sudo systemctl enable myservice sudo systemctl start myservice

5. Check Service Status

sudo systemctl status myservice

6. Stop and Disable the Service

sudo systemctl stop myservice sudo systemctl disable myservice

2. systemd Service Management and Tools

Managing Services

Action Command

Start a service sudo systemctl start

myservice

Stop a service sudo systemctl stop

myservice

sudo systemctl restart Restart a service

myservice

sudo systemctl reload

Reload a service myservice

sudo systemctl enable

myservice

Enable at boot sudo systemctl disable

myservice

sudo systemctl status

Disable at boot myservice

journalctl -u myservice

Check service

status

View service logs

Checking System Services

systemctl list-units --type=service # List all active services systemctl list-unit-files --type=service # List all installed services

3. Service Unit File Options

[Unit] Section (Describes the service)

Option	Description
Descripti	Short description of the service
on=	
After=	
Dafana	Services that should start before this one
Before=	Services that should start after this one
Requires=	
	Hard dependency – If this service fails, dependent services fail too

Wants= Soft dependency – If this service fails, dependent services may

continue

[Service] Section (Defines how the service runs)

Option Description Command to start

ExecStart= the service

ExecStop= Command to stop the service

ExecReload Command to reload the service

Restart = Restart policy (alwayson-failureno,

on-success)

User= Specifies which user runs the service

Group= Specifies which group runs the service

WorkingDirect

ory=

Environment=

Specifies the working directory

Sets environment variables

[Install] Section (Specifies startup behavior)

Option Description

WantedBy= Defines target where the service should start (e.g.,

multi-user.target)

Services that depend on this service

RequiredB

y=

% 4. systemctl Command Options

Command Description

systemctl start Starts a service

<service>

systemctl stop <service> Stops a service

systemctl restart Restarts a service

<service>

systemctl reload

Reloads the configuration of a running <service>

service systemctl enable

<service>

Enables a service at boot systemctl disable

<service>

systemctl status

<service>

Disables a service at boot

systemctl is-active

<service> Shows service status

systemctl is-enabled

<service>

systemctl mask <service> Checks if a service is running

systemctl unmask

<service> Checks if a service is enabled

Prevents a service from starting

Allows a masked service to start

5. Checking systemd Logs

journalctl -xe # Show detailed logs journalctl -u myservice --since "1 hour ago" # View logs for a specific service journalctl --boot -1 # Show logs from the previous boot

6. Editing and Reloading Services

```
sudo systemctl edit myservice # Edit service configuration
sudo systemctl daemon-reexec # Restart systemd itself
sudo systemctl reset-failed # Clear failed services list
```

Conclusion

- systemd provides a powerful way to manage services in Linux.
- You can create, enable, disable, start, stop, and monitor services with systemctl.
- Logs can be viewed with journalctl to debug issues.
- Understanding systemd helps in automating processes, running background jobs, and optimizing system performance.
- 🚀 Mastering systemd = Better Linux System Administration! 🖖💻

Linux Storage Management

1. Disk Partitions

A disk partition is a logical division of a physical storage device that allows better management of data. In Linux, partitions are managed using tools like fdisk, parted, and Isblk.

Types of Partitions

Partition Type **Description**

Primary Can contain a bootable OS, limited to 4 partitions

Extended Used to create more than 4 partitions, acts as a

container

Partitions inside an extended partition

Logical

Checking Disk Partitions

l#sbLlikst block devices and partitions # Display fpadritsikti-oln details parted -l # Show partition table info

Creating a New Partition with fdisk

```
sudo fdisk /dev/sdb
# Press 'n' → Create a new partition
# Press 'p' → Make it a primary partition
# Enter partition number and size
# Press 'w' → Write changes
```

♦ Formatting a Partition

sudo mkfs.ext4 /dev/sdb1 # Format as ext4

Mounting a Partition

sudo mount /dev/sdb1 /mnt/data

To make it permanent, add to /etc/fstab:

/dev/sdb1 /mnt/data ext4 defaults 0 2

2. File Systems in Linux

A file system defines how data is stored and accessed on a disk.

Common File Systems

File Description

System

ext4 Default Linux file system, supports journaling

xfs High-performance file system, used in RHEL

btrfs Supports snapshots and RAID features

vfat Used for USB drives, compatible with Windows

ntfs Windows file system, needs ntfs-3g to write

Checking File System Type

```
df -T /mnt/data # Check file system type of a mount point
lsblk -f # Show file system type of all partitions
```

Converting File Systems

```
sudo mkfs.xfs /dev/sdb1 # Convert to XFS
sudo mkfs.btrfs /dev/sdb1 # Convert to Btrfs
```

3. DAS, NAS, and SAN

Linux storage can be categorized into:

- ✓ Direct-Attached Storage (DAS)
- ✓ Network-Attached Storage (NAS)
- ✓ Storage Area Network (SAN)

3.1 Direct-Attached Storage (DAS)

DAS refers to storage devices that are directly connected to a single computer without a network.

Examples of DAS

- Internal Hard Drives (HDDs & SSDs): SATA, NVMe
- External USB Drives: USB hard drives, flash drives
- RAID: Locally attached RAID controllers

Advantages of DAS

- ✓ High speed (direct connection)
- ✓ No network dependency
- ✓ Lower cost

Disadvantages of DAS

- X Limited to a single machine
- X Not easily shareable

Checking DAS Devices in Linux

```
lsblk
          # Show block devices
fdisk -l # List partitions
df -h  # Show mounted file systems
```

DAS

3.2 Network-Attached Storage (NAS)

NAS is a storage device connected to a network, accessible by multiple clients over protocols like **NFS** (Linux/Unix) and **SMB** (Windows).

Examples of NAS

- **Dedicated NAS appliances** (e.g., Synology, QNAP)
- Linux-based file servers

Advantages of NAS

- ✓ Centralized storage
- ✓ Multiple users can access files
- ✓ Easy to scale

X Disadvantages of NAS

- X Slower than local DAS
- X Dependent on network performance
- Mounting a NAS Share via NFS

sudo mount -t nfs 192.168.1.100:/shared_folder /mnt/nas

To make it persistent, add to /etc/fstab:

192.168.1.100:/shared_folder /mnt/nas nfs defaults 0 0

NAS

★ 3.3 Storage Area Network (SAN)

SAN is a high-speed network dedicated to providing block-level storage to multiple machines, often used in data centers.

Examples of SAN Technologies

- Fibre Channel (FC) High-speed storage networking
- iSCSI (Internet Small Computer System Interface)— Block storage over TCP/IP

Advantages of SAN

- ✓ High-speed performance
- ✓ Redundancy and fault tolerance
- ✓ Supports virtualization

X Disadvantages of SAN

- **X** Expensive setup
- X Requires specialized hardware

Checking SAN/iSCSI Devices in Linux

```
iscsiadm -m session # List active iSCSI sessions
lsblk # Show block devices
multipath -ll # Show multi-path storage devices
```

SAN

遂 4. NFS (Network File System) in Linux

NFS allows Linux systems to share files over a network using a **client-server architecture**.

♦ 4.1 Installing NFS

On the NFS Server:

```
sudo apt install nfs-kernel-server # Debian-based
sudo yum install nfs-utils
                         # RHEL-based
```

On the NFS Client:

```
sudo apt install nfs-common # Debian-based
sudo yum install nfs-utils # RHEL-based
```


4.2 Configuring an NFS Server

Create a Shared Directory:

sudo mkdir -p /mnt/shared
sudo chmod 777 /mnt/shared

Edit the NFS Exports File:

sudo nano /etc/exports

Add:

/mnt/shared 192.168.1.0/24(rw,sync,no_root_squash)

Restart NFS Service:

sudo systemctl restart nfs-server

4.3 Mounting an NFS Share on a Client

sudo mount -t nfs 192.168.1.100:/mnt/shared /mnt/client

To make it persistent, add to /etc/fstab:

192.168.1.100:/mnt/shared /mnt/client nfs defaults 0 0

4.4 Checking NFS Status

showmount -e 192.168.1.100 # Show available NFS shares systemctl status nfs-server # Check NFS service status

💗 5. LVM (Logical Volume Manager)

LVM allows **flexible disk management**, enabling resizing and snapshots.

5.1 LVM Components

Component **Description**

Physical Volume (PV) Raw storage device (e.g.,

/dev/sdb)

Collection of physical volumes

Volume Group (VG)

Partition inside a volume group

Logical Volume (LV)

5.2 Creating an LVM Partition

Step 1: Initialize the Physical Volume

sudo pvcreate /dev/sdb

Step 2: Create a Volume Group

sudo vgcreate my_vg /dev/sdb

Step 3: Create a Logical Volume

sudo lvcreate -L 10G -n my_lv my_vg

Step 4: Format and Mount the LVM Volume

sudo mkfs.ext4 /dev/my_vg/my_lv

sudo mkdir /mnt/lvm

sudo mount /dev/my_vg/my_lv /mnt/lvm

To make the mount persistent, add it to /etc/fstab:

/dev/my_vg/my_lv /mnt/lvm ext4 defaults 0 2

5.3 Resizing an LVM Volume

Increase LVM Size

sudo lvextend -L +5G /dev/my_vg/my_lv # Increase by 5GB

sudo resize2fs /dev/my_vg/my_lv # Resize file system

Reduce LVM Size (Unmount First!)

sudo umount /mnt/lvm

sudo lvreduce -L -5G /dev/my_vg/my_lv

sudo resize2fs /dev/my_vg/my_lv

sudo mount /dev/my_vg/my_lv /mnt/lvm

5.4 Creating LVM Snapshots

Create a Snapshot

sudo lvcreate -L 1G -s -n my_snapshot /dev/my_vg/my_lv

Restore from a Snapshot

sudo lvconvert --merge /dev/my_vg/my_snapshot

5.5 Checking LVM Status

Show Physical Volumes

sudo pvs

Show Volume Groups

sudo vgs

Show Logical Volumes

sudo lvs