

## fastNLO

## **Motivation**

- Calculation of jet cross sections in higher orders are time consuming
- Often: Calculations have to be repeated for same measurement but different PDFs or α<sub>s</sub> (e.g. PDF uncertainties, scale variations, etc...)
- > Inclusion of jet-data in a fit (e.g. PDF or  $\alpha_s$ ) requires very fast recomputation of almost the same cross sections

Need procedure for fast repeated computations of NLO cross sections

use: fastillo

## fastNLO

## fastNLO concept

Jet-production cross section in DIS

$$\sigma = \sum_{a,n} \int_{0}^{1} dx \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,n}(\frac{x_{Bj}}{x}, \mu_{r}, \mu_{f}) \cdot f_{a}(x, \mu_{f})$$

 $\triangleright$  Introduce interpolation kernels for 'x' using Eigenfunctions  $E_i(x)$ 

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

- > Single PDF is replaced by a linear combination of interpolation kernels
- > We can calculate once a table with perturbative coeff. using e.g. nlojet++
- Cross section is then just a sum  $\sigma_{DIS}^{Bin} = \sum_{i,a,n,m} \alpha_s^n (\mu^{(m)}) \cdot f_a(x_1^{(i)},\mu^{(m)}) \cdot \tilde{\sigma}_{a,n}^{(i)(m)}$  over all interpolation nodes

#### More features of fastNLO

e.g.Scale interpolation, PDF reweighting, scale independent contr., etc..

# Jet production in diffractive DIS

## Jetproduction in diffractive DIS (t=0)

$$\sigma = \sum_{a,n} \int_{0}^{1} dx_{IP} \int_{0}^{1} dz_{IP} \alpha_{s}^{n} \cdot c_{a,n} \cdot f_{a}(x_{IP}, z_{IP}, \mu_{f})$$

# Standard method of calculating NLO cross sections: 'Slicing method'

- Riemann-Integration of dx<sub>IP</sub>
  - $\triangleright$  Discretize the  $x_{IP}$  range into k bins (k~10)
- Repeated cross section calculation with reduced hadron energy for each slice of x<sub>IP</sub>
  - Fixed value of x<sub>IP,i</sub>
  - At reduced center of mass energy of  $sqrt(s) = x_{IP} \cdot 4E_P E_e$
  - $\gt$  slice-width  $\Delta x_{IP}$

$$\int_{0}^{1} dx_{IP} f_{IP/a}(x_{IP,i}) \sigma_{IP}(x_{IP}) \cong \sum_{k} \Delta x_{IP,i} f_{IP/a}(x_{IP,i}) \sigma_{IP}(x_{IP})$$





# Jet production in diffractive DIS

# Perturbative coefficients have only dependence on momentum fraction

- $\triangleright$  No direct dependence of the two momentum fractions  $x_{IP}$  and  $z_{IP}$
- Each slice calculates basically same coefficients c
- Factorization is independent of incoming parton

Perform  $x_{IP}$ -Integration a-posteriori Calculate one fastNLO table with hadron energy = proton energy



#### Calculation of only one single fastNLO table is needed

- Very high statistical precision
- $\triangleright$  No limitations in  $x_{IP}$  integration

# Proof of concept

## Compare two cross section calculations for one single fixed $x_{IP}$ slice at $x_{IP} = 10^{-1.5}$

$$X_{IP} = 10^{-1.5}$$

Cross section contribution with reduced CME (standard slicing method)

Hadron = Pomeron 
$$E_h = x_{IP} \cdot E_P$$

Calculate matrix elements using proton energy (new method)

Hadron = 
$$Proton$$
  
 $E_h = E_P$ 

#### Compare z<sub>IP</sub> dependent cross section contribution

$$Z_{IP} = X_{hadron}$$
  
 $Z_{IP} = X_{hadron}/X_{IP} < 1$ 

x<sub>hadron</sub> being the momentum fraction of the parton wrt. to the incoming hadron (Pomeron) momentum



## Perfect agreement

➤ Perturbative coefficients are identical for each x<sub>IP</sub> slice

## Jets in diffractive DIS with fastNLO

#### 1. Fixed center-of-mass calculation

- Calculate only one fastNLO table at proton energy E<sub>p</sub>
- Increased number of x-nodes in low-x region

## 2. Adapt the slicing method

- Define arbitrary x<sub>IP</sub> slicing
- Calculate cross section by Rieman-integrating x<sub>IP</sub>
- ➤ Integrate x wrt. E<sub>p</sub>
- Formulae calculated properly by Federico !!!

$$\sigma_{n,a} = \sum_{k} \Delta x_{\text{IP},k} \int_{0}^{x_{\text{IP},k}} \frac{dx}{x_{\text{IP},k}} \alpha_s^n \cdot c_0(x) \cdot f_a(x_{\text{IP},k}, z_{\text{IP}} = \frac{x}{x_{\text{IP},k}}, \mu_f)$$

## Integral becomes a standard fastNLO evaluation

Upper integration interval needs to be respected properly

- > x-integration runs over discrete x-nodes
- Uppermost x-node is weighted according to its range inside/outside of the integration interval

## FastNLO procedure improves previously used approach

## Code example for pre-calculated fastNLO table

```
// FastNLO example code in C++ for reading
// H1 diffractive dijets dP*_T,1
// Eur.Phys.J. C70 (2010) 15

FastNLODiffH12006FitB fnlodiff( "fnhd1012.tab" );
fnlodiff.SetXPomLinSlicing( 30, 0.0, 0.1 );
vector<double> xs = fnlodiff.GetDiffCrossSection();

// optional printout
fnlodiff.PrintCrossSections();
```

```
// output
   This is a single-differential table in p*_T,1.
*
  --- p*_T,1 --- - Bin -
                             -- XS-FNLO --
      4.000 - 6.500
                          0
                                   9.4173e+01
*
      6.500 - 8.500
                                6.6364e+01
                         1
*
      8.500 -
                12.000
                          2
                                   1,6610e+01
```

#### Pretty easy to use (if fastNLO table is already calculated)

# Application: Scale study

# Dijet production in diffractive DIS (H1) EPJ C72 (2012) 1970

- Calculations available for
  - dσ/dQ<sup>2</sup>
  - $d\sigma/dp^*_{T,1}$
- Possibility to derive by restricting x<sub>IP</sub> integration interval
  - $d\sigma/dx_{IP}$

#### Full fastNLO features accessible

- Scale studies are easily possible
- Compare various scale choices
- Interface various DPDFs
- Direct access to k-factors



**NEW:** Facilitate inclusion of diffractive jets in DPDF fits

-> Will help to constrain the gluon in diffractive PDFs

# Test scenario: Diffractive Dijets dQ<sup>2</sup>



#### **Small differences**

- Automatic (but wrong) nlojet++ interpolation of NLO subtraction terms
- ➤ Jet-finder recombination scheme (~1%)
- Different (but very fine) xIP (and dxIP) slicing (~0-2%)
- ➤ Limited statistic (26×6·106) vs. very high statistic (2·1010) (<1%)

# Which slicing is preferred?



## Linear or logarithmic slicing of xIP?

#### Both are available

```
fnlodiff.SetXPomLinSlicing( 30, 0.0, 0.1 );
fnlodiff.SetXPomLogSlicing( 30, 0.0, 0.1 );
```

#### Or any other

```
double xp[] = {...};
double dxp[] = {...};
fnlodiff.SetXPomSlicing( 30, xp, dxp );
```





# Convergence of slicing method

# Study cross section dependence on number of $x_{IP}$ slices

Compare: linear and logarithmic slicing

## Convergence after 10 slices Logarithmic slicing seems to converge faster

But one must know lowest x<sub>IP</sub> -> Otherwise bias!

#### **Fluctuations**

- arise from discrete x<sub>hadron</sub> interpolation within fastNLO
- despite (simple) 'smoothing' at upper integration interval at X<sub>hadron</sub> ~ X<sub>IP.k</sub>



- > Very fast convergence of cross section
- > FastNLO accuracy (for this table) could be estimated to < 0.25 %
  - ➤ Accuracy smaller than cut on log(x<sub>IP.min</sub>) for log slicing

# What about $d\sigma/dz_{IP}$ ??

## Warning!

No  $d\sigma/dz_{IP}$  available through restricting  $z_{IP}$  integration interval

 $z_{IP} \neq \xi_{IP}$  in higher orders

z<sub>IP</sub> = Parton momentum fraction compared to Hadron (Pomeron)

$$\xi_{IP} = \beta_{Bj} \cdot (1 + M_{jj}/Q^2)$$

# Summary

- New method of calculating diffractive jet-cross sections was developed
- FastNLO code was developed and intensively tested
- FastNLO for jet production in diffractive DIS is ready to use

Use it for your analysis or for fits of diffractive PDFs





# Diffractive dijets



# Generalized fastNLO concept in v2.0

#### We know

$$\sigma \xrightarrow{fastNLO} \sum_{j}^{\mu} \sum_{i}^{x} \widetilde{\sigma}_{ij}(\mu_{j}) f(x_{i}, \mu_{j}) \alpha_{s}(\mu_{j})$$

We can use variables from look-up tables for 'any' further calculation (like  $\alpha_s(\mu)$ )



#### Scale independent weights

$$\omega(\mu_R, \mu_F) = \omega_0 + \log(\frac{\mu_R}{Q})\omega_R + \log(\frac{\mu_F}{Q})\omega_F$$

- 'log( $\mu$ /Q)' can be done at evaluation time  $\mu$ 's are 'freely' choosable functions
- $-\mu \rightarrow \mu(Q,p_T)$

#### We store scale independent contribution

Three tables holding the weights Further scale-variables ->  $\sigma_{ijk...}$  need more dimensions

## new in v2.0







arb. ext. functions

- 1) We can choose  $\mu_R$  independently from  $\mu_F$
- 2) We can choose the functional form of  $\mu_{R/F}$  as functions of look-up-variables



(x)

#### Introduce n discrete x-nodes x<sub>i</sub>'s

- $\rightarrow$  with  $x_n < ... < x_i < ... < x_0 = 1$
- > x<sub>n</sub> is lowest x-value in each bin
- needs reasonable choice of discretization e.g.

$$f(x) = -\sqrt{\log_{10}(1/x)}$$

# Around each $x_i$ define n (cubic) Eigenfunction $E_i(x)$

$$E_i(x_j) = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

$$\sum_{i} E_{i}(x) = 1$$
 for all  $x$ 

#### Hadron-hadron collision need two dimensions

2D-Eigenfunctions

$$E^{(i,j)}(x_1,x_2) = E^{(i)}(x_1)E^{(j)}(x_2)$$

13×13 partonic subprocesses reduce to 7

$$\sum_{a,b}^{13\times13} f_{1,a}(x_1,\mu_f) f_{2,b}(x_2,\mu_f) \to \sum_{k}^{7} H_k(x_1,x_2,\mu_f)$$





```
H_1(x_1, x_2)
  gg \rightarrow \text{jets}
                                                                         \propto H_2(x_1,x_2)
  qg \rightarrow \text{jets}
                                              \bar{q}g \rightarrow \text{jets}
                             plus
  gq \rightarrow \text{jets}
                            plus
                                              g\bar{q} \rightarrow \text{jets}
                                                                        \propto H_3(x_1,x_2)
q_i q_i \rightarrow \text{jets}
                            plus \bar{q}_i \bar{q}_i \rightarrow \text{jets}
                                                                        \propto H_4(x_1,x_2)
q_i q_i \rightarrow \text{jets}
                            plus \bar{q}_i \bar{q}_i \rightarrow \text{jets}
                                                                        \propto H_5(x_1,x_2)
q_i \bar{q}_i \rightarrow \text{jets}
                            plus \bar{q}_i q_i \rightarrow \text{jets} \propto H_6(x_1, x_2)
q_i \bar{q}_i \rightarrow \text{jets}
                                                                                  H_7(x_1,x_2)
                                           \bar{q}_i q_i \rightarrow \mathsf{jets}
```

# Flatten PDFs by reweighting with simple function w(x)

We choose

$$w(x) = x^{-3/2} (1 - 0.99x)^3$$

- Improve high-x gluon
- > PDF curvatures are reduced for all scales
- $\triangleright$  independent of  $\mu_f$
- $\triangleright w(x)^{-1}$  is absorbed in  $E_i$



# Single PDF is replaced by a linear combination of eigenfunctions

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$



#### With these definitions the cross section reads

$$\sigma_{hh} = \int dx_1 \int dx_2 \sum_n \alpha_s^n(\mu_r) \sum_{k=1}^7 c_{k,n}(x_1, x_2, \mu_r, \mu_f) H_k(x_1, x_2, \mu_f)$$

## Now express PDF linear combinations $H_k$ by the 2D-eigenfunction

$$\sigma_{hh} = \int dx_1 \int dx_2 \sum_n \alpha_s^n(\mu_r) \sum_{k=1}^7 c_{k,n}(x_1, x_2, \mu_r, \mu_f) \left( \sum_{i,j} H_k(x^{(1)}, x^{(2)}) \cdot E^{(i,j)}(x_1, x_2) \right)$$

#### Rewrite the cross section

$$\sigma_{hh} = \sum_{n} \alpha_{s}^{n}(\mu_{r}) \sum_{k=1}^{7} \sum_{i,j} H_{k}(x_{1}^{(i)}, x_{2}^{(j)}) \cdot \underbrace{\int dx_{1} \int dx_{2} c_{k,n}(\mu_{r}, \mu_{f}) \cdot E^{(i,j)}(x_{1}, x_{2})}_{\text{Independent of PDFs and } \alpha_{s}}$$

#### **Important**: Integral is independent of PDFs!

# Last steps

## Scale dependence

- > Perturbative coefficients are scale dependent
- $\triangleright$  PDFs and  $\alpha_s$  need to be evaluated at certain scale values

## Introduce interpolation procedure also for scales

- $\triangleright$  Assume  $\mu_r = \mu_f$
- > Introduce m scale nodes with distances

$$f(\mu) = \log(\log(4 \cdot \mu))$$

Coefficient table gets one additional dimension for  $\mu$ 

#### Final fastNLO cross sections

> Define σ-table and store it as fastNLO table

$$\widetilde{\sigma}_{k,n}^{(i,j)(m)} = \sigma_{k,n}(\mu) \otimes E^{(i,j)}(x_1, x_2) \otimes E^{(m)}(\mu)$$

Contains all information on the observable

Final cross section formula  $\sigma_{hh}^{Bin} = \sum_{i,j,k,n,m} \alpha_s^n (\mu^{(m)}) \cdot H_k(x_1^{(i)}, x_2^{(j)}, \mu^{(m)}) \cdot \tilde{\sigma}_{k,n}^{(i,j)(m)}$