Recurrent Neural Network (RNN)

COSC 6336: Natural Language Processing Spring 2020

Lecturer: Niloofar Safi Samghabadi

This Week

- ★ Understand a Recurrent Neural Network
 - Forward Propagation in RNN
 - Backpropagation Through Time (BPTT)
 - Different Types of RNN
 - Vanishing and Exploding Gradient Problem
- ★ Long Short-Term Memory (LSTM)
- ★ Gated Recurrent Unit (GRU)
- Bidirectional RNN

★ Speech Recognition

★ Speech Recognition

★ Translation

★ Speech Recognition

★ Translation

★ Summarization

★ Sentiment Classification

"Not to my taste, will skip and watch another movie!"

★ Sentiment Classification

"Not to my taste, will skip and watch another movie!"

★ Music Generation

★ Sentiment Classification

"Not to my taste, will skip and watch another movie!"

★ Music Generation

★ Image Captioning

A bulldog resting on and sleeping with a teddy bear.

Vocabulary

★ What if we have a word which is **NOT** in the vocabulary?

★ What if we have a word which is **NOT** in the vocabulary?

Unknown token → <UNK>

★ Why not a standard network?

- Inputs, outputs might have different lengths
- Doesn't share features across different positions of text.

Tanh Activation

Why Tanh?

Figure 1: Vector transformation without tanh

Figure 2: Vector transformation with tanh

Backpropagation Through Time

$$L^{< t>}(y^{< t>} - y^{< t>}_{true}) = -y^{< t>}_{true}logy^{< t>} - (1 - y^{< t>}_{true}log(1 - y^{< t>}))$$

$$L(y,y_{true}) = \Sigma_{t=1}^{Ty} L^{< t>}(y^{< t>},y_{true}^{< t>})$$

Backpropagation Through Time

Backpropagation Through Time

Different Types of RNN

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Pytorch Tutorial:

Sentiment Analysis Using RNN

Disadvantages of RNN

- ★ Gradient Exploding
 - When W_{aa} getting large
 - Solution:
 - Gradient Clipping
- Gradient Vanishing
 - When W_{aa} getting small
 - Solution:
 - Long Short-Term Memory (LSTM)

LSTM vs RNN

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Sigmoid Activation

GRU

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Bidirectional RNN

- Problem of unidirectional network:
 - He said, "Teddy Roosevelt was a great president"
 - He said, "Teddy bears are on sale!"

Is "Teddy" a PERSON's name?

Bidirectional RNN

