Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

ET+V

Elektrotechnik Vertiefung

HSLU T&A

Ersatzquellen, Quellenwandlung, Superposition, Stern-/Dreieckwandlung, Knotenpotentialverfahren

10.9.2013, Dr. P. Bosshart

Lernziele

- Zählpfeilsysteme
- Netzwerkanalyse
 - Stromquelle
 - Ersatzquellen Darstellung (Thévenin/Norton)
 - Stern-Dreieck-Wandlung
 - Superpositionsverfahren
 - Knotenpotentialverfahren

G1-1: Netzwerkgleichungen aufstellen und auflösen

Daten:

$$U_{q1} = 24 \text{ V}$$

$$U_{q2} = 12 \text{ V}$$

$$R = 100 \Omega$$

$$I_1 = 1 A$$

$$I_2 = 2 A$$

$$I_3 = 3 A$$

G3-1

$$R_T = R_N \cdot e^{b \cdot \left(rac{1}{T} - rac{1}{T_N}
ight)}, T \; in \; K$$

Aufgabe 1: Brückenschaltung mit einem NTC-Widerstand

Daten:

$$U_{\rm q} = 12 \, {\rm V}$$
 $R_1 = 100 \, {\rm \Omega}$
 $R_2 = 200 \, {\rm \Omega}$ $R_3 = 300 \, {\rm \Omega}$
NTC: $b = 2000 \, {\rm K}$
 $R_{\rm N} = 1 \, {\rm k} {\rm \Omega}$ $T_{\rm N} = 293 \, {\rm K}$

- Bestimmen Sie die Temperatur in °C, die am NTC herrscht, wenn das ideale Voltmeter (mit einem sehr grossen Innenwiderstand) $U_V = 2 \text{ V}$ anzeigt.
- Bestimmen Sie die Temperatur in °C, die am NTC herrscht, wenn die Brücke abgeglichen ist.

Repetition/Selbsttest

Fragen:

- Was versteht man unter einem Spannungsteiler?
- 2. Mit welchen Gleichungen können wir Netzwerke analysieren? Zählen Sie die drei fundamentalen Beziehungen auf.

Zählpfeilsysteme

 $P = U \cdot I \ge 0$: Zweipol erzeugt

+ U - U > 0: Pfeilrichtung zeigt vom höheren I > 0: Flies srichtung pos. Ladung zum tieferen Potential

stimmt mit Pfeilrichtung überein

gemischtes Pfeilsystem (häufig angewendet):

Übung Zählpfeilsysteme

	Zähl- pfeilsystem	I	U	Verbraucher oder Erzeuger?
$U \downarrow_{\circ}$	VZS	3	3	Verbraucher
		2	-3	Erzeuger
\overline{I}		-3	2	Erzeuger
	VZS	- 3	- 2	Verbraucher
	EZS	3	3	Erzeuger
		2	-3	Verbraucher
		-3	2	Verbraucher
	EZS	- 3	- 2	Erzeuger 7

Zählpfeilsysteme: Beispiel 1

Welches Gebiet verbraucht - erzeugt el. Leistung? Wieviel?

Zählpfeilsysteme: Beispiel 2

Tram auf Talfahrt

- Das bremsende Tram wird als eine reale Spannungsquelle Ui, Ri gemäss Skizze betrachtet. Welche Spannung Ui ist notwendig damit das Tram (Ui und Ri) eine Bremsleistung von 200 kW erbringt? UN = 550V, Ri = 1.5 Ohm.
- 2. Welche Stromrichtung (la,lb) ist zu wählen, wenn wir das Erzeugerzählpfeilsystem wollen.
- 3. Welcher Stromstärke fliesst im Fahrdraht?

Reale Stromquelle-1

Der Laststrom I sinkt, wenn U ansteigt. Ideal wäre gleichbleibender Strom. Innenwiderstand Ri, Ideale Stromquelle Iq

Leerlauf: U = Ri*Iq = U0 = max. Spannung

Kurzschluss: Der ganze Quellenstrom fliesst durch den Kurzschluss, lk = lq

Betrieb:
$$I = Iq - \frac{U}{Ri}$$

Reale Stromquelle-2

Berechnungsmöglichkeiten für Ri

$$R_{i} = \frac{U_{0}}{I_{q}} = \frac{Leerlaufspannung}{Quellenstrom}$$

$$R_{i} = \frac{\Delta U}{\Delta I} = \frac{Klemmenspannungsänderung}{Laststromänderung}$$

Nichtlineare Stromquelle: R_i ist abhängig von Belastung

Realisation: Spannungsquelle mit hoher Spannung und Stromregelung (Begrenzung)

Ersatzspannungsquelle-1 (G15) (Thévenin-Äquivalent)

Zwei Unbekannte

 $R_{i\!E}$ und $U_{q\!E}$

Bestimmung der Ersatzquellen-Grössen:

Ausgangsspannung \mathbf{U}_{AB} bei offenen Klemmen bestimmen: $U_{\mathit{qE}} = U_{\mathit{AB}}$

Drei Methoden um R_{iE} zu bestimmen:

- 1. Ersatzwiderstand R bezüglich Klemmen A-B berechnen. Dazu Spannungsquellen kurzschliessen, Stromquellen durch Unterbrüche ersetzen. $R_{iE}=R$
- ersetzen. $R_{iE}=R$ 2. Kennt man den Kurzschlussstrom $I_{\rm K}$, so ist $R_{iE}=\frac{U_{qE}}{I_K}$
- 3. Belastung mit bekanntem Widerstand R_L . Ausgangsspannung $U_{AB} = U_L$

$$R_{iE} = \frac{R_L U_{qE} - U_L R_L}{U_{ee}}$$

Ersatzspannungsquelle-2 (Thévenin-Äquivalent)

Skript G15, S.1

Jede mögliche Kombination von linearen Spannungs- und Stromquellen und Widerständen bezüglich zweier Klemmen ist elektrisch äquivalent zu einer Serieschaltung aus einer Spannungsquelle und einem Widerstand.

Ersatzspannungsquelle-3 (Thévenin-Äquivalent), Zahlenbeispiel

Berechnen Sie die Ersatzquellen-Grössen

Umwandlung von Ersatzquellen

$$I_{qE} = \frac{O}{R}$$

$$U_{qE} = R_{iE} \cdot I_{qE} \leftarrow$$

Thévenin

Norton

Skript G7, S.4

Ersatzstromquelle-7 (Norton-Äquivalent)

Berechnen Sie die Ersatzelemente vom Norton-Äquivalent

Ersatzspannungsquelle-9 Anwendung

Berechnen Sie mit Hilfe der Ersatzquellen die Spannung U

Daten:

$$U_{q} = 12 \text{ V}$$

$$R_1 = 110 \Omega$$

$$R_4 = 430 \Omega$$

$$R_1 = 110 \Omega$$
 $R_2 = 220 \Omega$ $R_3 = 330 \Omega$ $R_4 = 430 \Omega$ $R_5 = 220 \Omega$ $R_6 = 330 \Omega$

$$R_5 = 220 \Omega$$

$$R_3 = 330 \Omega$$

$$R_6 = 330 \Omega$$

Repetition

- Ein Photovoltaik-Anlage hat bei Standardbedingungen (Sonnen-Einstrahlung 1000 W/m² und 25°C) auf der Gleichspannungsseite folgende Eigenschaften:
 - Leerlaufspannung 375 V
 - Kurzschlussstrom 5.5 A

Bestimmen Sie die zu dieser Sonneneinstrahlung passende

- 1. Thévenin Ersatzspannungsquelle
- 2. Norton Ersatzstromquelle

Dreieck-Stern-Transformation (G12) - 1

• **Zweck:** Reduktion von Netzwerken auf einfache Grundschaltungen

Netzwerk mit drei Anschlüssen ohne Quellen

Zwei mögliche Darstellungen von Schaltungen mit drei Anschlüssen ohne Quellen

Dreieck-Stern-Transformation - 2

Beispiel:

Vorteil der Dreieck-Stern-Transformation: Die Zweige mit R2 und R3 lassen sich als Parallelschaltung zusammenfassen

Quelle: Elektrotechnik für Ingenieure

R. Ose, S.80

Dreieck-Stern-Transformation - 3

 Prinzip: Umwandlung der beiden Schaltungstypen, so dass von "aussen" d.h. von gleichen Anschlüssen aus gesehen kein Unterschied feststellbar ist. Dazu müssen die beteiligten Widerstände umgerechnet werden.

Dreieck-Stern-Transformation - 4

 Umwandlungsformeln für Widerstände von Stern- auf Dreieck und umgekehrt:

Sternschaltung:

Dreieckschaltung:

Stern \rightarrow **Dreieck:** mit $S = R_1 \cdot R_2 + R_2 \cdot R_3 + R_3 \cdot R_1$

$$R_{12} = S/R_3$$
 $R_{23} = S/R_1$ $R_{31} = S/R_2$

Dreieck \rightarrow **Stern:** mit $D = R_{12} + R_{23} + R_{31}$

$$R_1 = \frac{R_{12} \cdot R_{31}}{D}$$
 $R_2 = \frac{R_{23} \cdot R_{12}}{D}$ $R_3 = \frac{R_{31} \cdot R_{23}}{D}$

Dreieck-Stern-Transformation Beispiel - 5

Berechnen Sie mit Hilfe der Dreieck-Stern-Transformation der Zweige mit R3,R4,R5 den Quellenstrom Iq.

$$U_{\rm q}~=~12~{
m V}$$

$$R_1 = 110 \Omega$$

$$R_3 = 330 \Omega$$

$$R_4 = 330 \Omega$$
 $R_5 =$

$$R_5 = 330 \Omega$$

Quelle: Übung G4-1 D.Salathé

Stern-Dreieck-Transformation Beispiel - 8

Wandeln Sie die Schaltung in eine äquivalente Dreieckschaltung um.

Superposition-1 (G14)

Voraussetzung: Lineare Elemente (Strom proportional zu Spannung)

Prinzip:In einem **linearen** physikalischen System, auf das mehrere Ursachen (Spannungs- und Stromquellen) einwirken, ergibt sich die Gesamtwirkung durch Superposition, d.h. Überlagerung der Wirkungen der einzelnen Ursachen.

Vorgehen

- 1. Die Wirkung (z.b. Strom oder Spannung) nur einer Quelle berechnen
 - alle anderen idealen Spannungsquellen werden nicht beachtet: kurzgeschlossen,
 - alle anderen idealen Stromquellen werden offen gelassen: unterbrochen,
 - Innenwiderstände berücksichtigen
- 2. Für diese Situation werden die interessierenden Teilspannungen und -ströme in den Zweigen des Netzwerkes berechnet.
- 3. Mit allen Quellen wird der Reihe nach gleich vorgegangen.
- 4. Die gesuchten Grössen ergeben sich durch **Addition** der Teilspannungen bzw. Teilströme, wobei der **Richtungssinn** berücksichtigt werden muss.

Superposition-5 Zahlenbeispiel

Berechnen Sie mit Hilfe des Superpositionsprinzips die Leerlaufspannung U_{AB}

Verfahren zielt auf minimale Anzahl Gleichungen ab. **Prinzip**: Netz mit k Knoten. k-1 unbekannte Knotenpotentiale, d.h. Spannungen gegen 0.

Vorbereitung:

 Spannungsquellen durch Stromquellen ersetzen. Ziel: Knoten haben Verbindungen zu Widerständen und/oder Stromquellen:

- Bezugsknoten wählen (im Prinzip beliebig, idealerweise einen zentral gelegenen Knoten)
- Restliche Knoten nummerieren

Aufstellen des Koeffizientenschemas: G-Matrix

Grundlage: $[G] \cdot [U] = [I]$

Spannungen	U_{10}	U_{20}	U_{30}	 U_{n0}	rechte Seite
Knoten 1					
Knoten 2					
Knoten 3					
Knoten n					

- 1. Hauptdiagonale G_{ii} : Summe der Leitwerte des Knotens i, i=1..n
- 2. Andere Elemente G_{ik}: Negativer Leitwert des Verbindungszweiges zwischen Knoten i und Knoten k. Falls keine Verbindung G_{ik}= 0
- 3. Rechte Seite, d.h. Vektor [I_i], i=1..n:
 - I_i = Summe aller Stromquellen am Knoten i.
 - I_i > 0: Strompfeil in Knoten i
 - I_i < 0: Strompfeil aus Knoten i heraus

Berechnung der unbekannten Spannungen U_{i0}
 Knotenpotential gegenüber Bezugknoten 0
 Die Zählpfeile der Potentiale sind positiv vom Knoten i zum Bezugsknoten 0.

Mathematik

$$[\mathbf{G}] \cdot [U] = [I] \Rightarrow [U] = [\mathbf{G}]^{-1} \cdot [I]$$

Lösung auf Taschenrechner oder Computer

Beispiel

Daten:

$$U_q = 12 \text{ V}$$

$$R_1 = 110 \Omega$$

$$R_4 = 430 \Omega$$

$$R_2 = 220 \Omega$$

$$R_5 = 220 \Omega$$

$$R_3 = 330 \Omega$$

$$R_6 = 330 \Omega$$

Quelle: Übung G4-2 D.Salathé

Aufbereitung: 1. Spannungsquellen durch Stromquellen ersetzen, 2. Knoten nummerieren und 3. Bezugsknoten wählen.

Aufstellen des Koeffizientenschemas

Spannungen	U_{10}	U_{20}	U_{30}	Rechte Seite [I]
Knoten 1	G_{11}	G_{12}	G_{13}	I_1
Knoten 2	G_{21}	G_{22}	G_{23}	I_2
Knoten 3	G_{31}	G_{32}	G_{33}	I_3

Geben Sie die Koeffizienten der Leitwertmatrix G und der rechten Seite, d.h. des Quellenstromvektors zunächst in algebraischer Form an.

Koeffizientenschema in algebraischer Form

Spannungen	U_{10}	U_{20}	U_{30}	Rechte Seite [I]
Knoten 1	$\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}$	$-\frac{1}{R_5}$	0	$\frac{U_q}{R_1}$
Knoten 2	$-\frac{1}{R_5}$	$\frac{1}{R_5} + \frac{1}{R_6}$	$-\frac{1}{R_6}$	0
Knoten 3	0	$-\frac{1}{R_6}$	$\frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_6}$	$\frac{U_q}{R_2}$

Setzen Sie die Zahlenwerte im Koeffizientenschema ein

$$U_{\rm q} = 12 \, {
m V}$$

 $R_1 = 110 \, {
m \Omega}$ $R_2 = 220 \, {
m \Omega}$ $R_3 = 330 \, {
m \Omega}$
 $R_4 = 430 \, {
m \Omega}$ $R_5 = 220 \, {
m \Omega}$ $R_6 = 330 \, {
m \Omega}$

und lösen Sie das Gleichungssystem $[G] \cdot [U] = [I]$ nach [U] auf Ihrem Taschenrechner auf.

Werte des Koeffizientenschemas

Spannungen	U_{10}	U_{20}	U_{30}	Rechte Seite [I]
Knoten 1	0.0167	-0.00455	0	0.10909
Knoten 2	-0.00455	0.00758	-0.00303	0
Knoten 3	0	-0.00303	0.00990	0.05455

Gleichungssystem mit Taschenrechner TI-89 lösen:

```
rref([0.0167, -0.00455,0, 0.10909;
-0.00455, 0.00758, -0.00303,0;
0, -0.00303, 0.00990, 0.05455]) Enter
```

Gleichungssystem mit Taschenrechner TI-89 lösen:

```
      [1.E0
      0.E0
      0.E0
      8.86872E0

      0.E0
      1.E0
      0.E0
      8.57529E0

      0.E0
      0.E0
      1.E0
      8.13466E0
```

Interpretation der Ergebnisse

Knotenpotential-Verfahren Aufgabe

- 1. Geben Sie das passende Koeffizientenschema
- 2. Welche Grössen errechnet das Verfahren?

Hausaufgabe Knotenpotentialverfahren

Jaten:
$$R_{1,} = 100 \, \Omega$$
 Gesucht: U_{1}, U_{1}
 $R_{2} = 470 \, \Omega$
 $R_{3} = 47 \, \Omega$
 $R_{4} = 270 \, \Omega$, $U_{1} = -6 \, V$, $I_{1} = 3 \, A$

Aufgaben – Phase der Studierenden Dozent hilft nach Möglichkeit individuell

Aufgabe G2-1: Netzwerkanalyse, Anwenden Thévenin/Norton

Aufgabe Hausaufgabe Knotenpotentialverfahren