Proyecto final Redes Inalámbricas:Singapore

Uso e implementación de antenas mediante celdas

Eduard Daniel Lemos Arias Universidad Distrital Francisco José de Caldas Bogotá D.C edlemosa@udistrital.edu.co

Jonathan Camilo Duarte Universidad Distrital Francisco José de Caldas Bogotá D.C gjonathand@udistrital.edu.co

Jeym Marina Cañon Aguirre Universidad Distrital Francisco José de Caldas Bogotá D.C jmcanona@udistrital.edu.co

Contenido

I.	In	troduction	3
II.	Ge	eografía:	3
III.		Límites:	3
IV.		Idioma:	3
V.	Re	sligión:	3
VI.		Moneda:	3
VII.		Coyuntura económica	3
A		OBJETIVOS 4	
	1)	Diseño de sistema de distribución de señal	4
	1.	Zona geográfica Singapur	4
	2.	Zona geográfica (urbanización)	4
	3.	Delimitación de la zona	4
	4.	Distribución celdas (zona urbana)	4
	5.	Área de servicio (contorno de interferencia)	5
	6.	Resultante frecuencias redes A, C, Y	6
	7.	Información Sistema de antenas A, C, Y	6
	8.	Información latitud,longitud,altitud,etc. Antenas A, C, Y	6
	2)	CONCLUSIONES	7
	3)	References	8

This electronic document is a sample of the implementation of concepts in the mobile radio software; initially a city in Southeast Asia (Singapore) is chosen, then a series of hexagonal cells are made to implement antennas in the city configuring them (power, frequency, height, etc.).

keywords -hexagonal cells, antennas, frequency, power, height.

I. INTRODUCTION

Singapur

La ciudad de Singapur está situada entre Malasia al norte e Indonesia al sur; siendo esta una mezcla entre ciudad y país insular; es una ciudad del sudeste asiático que cuenta con una población de 5,454 millones de habitantes; además de que su superficie oscila unos 734,3 km²; actualmente esta metrópoli ha aumentado su población en un 3,4% considerando que para esta época su número de habitantes se acerca a 5,63 millones de habitantes.

Por otra parte, Singapur es considerado como un sitio costoso para el visitante; pero esto no es obstáculo alguno para esta hermosa ciudad pues tiene más del 60% del terreno urbanizado; teniendo de este modo riquezas de un 40% como lo son los parques naturales y el poder estar rodeado de zonas verdes. Adicionalmente, su aeropuerto es considerado una obra maestra a manos de la ingeniería; todo lo mencionado con anterioridad le da un status a este estado-país desarrollado adquiriendo una calidad de vida alta pero tranquila y segura además de ser uno de los mayores centros financieros del mundo.

II. GEOGRAFÍA:

Está formado por 64 islas incluyendo la isla principal conocida como la isla de Singapur o Pulau Ujong.12 Esta isla está unida a la península malaya por dos puentes. El primero lleva a la ciudad fronteriza de Johor Bahru en Malasia. El segundo, más al oeste, conecta también con Johor Bahru en los barrios de la region de Tuas. Muchos depósitos de agua potable están dispersos por toda la isla para permitir la autonomía al estado de suministro en caso de guerra con la vecina Malasia. La isla de Sentosa es a veces llamada el punto más meridional del continente asiático. Esto es algo controvertido, ya que tanto Singapur como la isla de Sentosa están conectados con represas y puentes al continente. La isla es bastante plana, con pequeñas colinas, siendo la más alta Bukit Timah, que tiene 163 metros

de altura. En el noreste de la isla se ha ganado más espacio y se ha despejado una gran superficie de pantanos y selva. Singapur tiene un clima ecuatorial sin estaciones distinguibles, con las temperaturas y la presión uniforme, humedad alta y lluvias abundantes. Las temperaturas suelen variar entre 23 y 32 °C. La humedad relativa promedio es de alrededor del 79 % en la mañana y 73 % por la tarde.15. Los meses de abril y mayo son los meses más calurosos, con la temporada más húmeda de noviembre a enero. Desde Julio a octubre, suele producirse a menudo neblina, causada por los incendios forestales en la vecina Indonesia.

III. LÍMITES:

Singapur está compuesta de una isla principal y 64 islas pequeñas. Limita al Norte con el estrecho de Johor, que la separa de Malasia. Al Suroeste limita con el estrecho de Malaca, que la separa de Indonesia. Las costas más cercanas por el Sur son las de Sumatra (Indonesia).

IV. **IDIOMA**:

El inglés, el malayo, el mandarín y el tamil son los cuatro idiomas oficiales de Singapur, pero la Administración trabaja básicamente en inglés.

V. RELIGIÓN:

Singapur es una República laica de carácter multirracial y multirreligiosa en la que conviven las religiones budista, musulmana, hindú y cristiana.

VI. MONEDA:

Dólar de Singapur (SGD). El 26 de julio de 2023 la equivalencia era aprox.1 €=1,47 SGD.

VII. COYUNTURA ECONÓMICA

La economía de Singapur creció un 0,3 % en el segundo trimestre de 2023 con respecto a los tres meses anteriores, evitando por poco una recesión técnica o dos trimestres consecutivos de contracción. El primer trimestre fue negativo con un -0,4% en tasa trimestral. El producto interno bruto (PIB) también creció un 0,7 por ciento interanual en el período abriljunio, según estimaciones del Ministerio de Comercio e Industrias (MTI). En los primeros tres meses de 2023, la economía había crecido un 0,4 % interanual, desacelerándose desde el 2,1 % de expansión del trimestre anterior. El crecimiento en el segundo trimestre se vio nuevamente lastrado por el sector industrial, que se contrajo aún más por la debilidad de la economía mundial y el ciclo a la baja de la electrónica.

Las estimaciones preliminares mostraron que el sector industrial se contrajo un 7,5 por ciento interanual en el segundo trimestre, más pronunciado que la caída del 5,3 por ciento en el trimestre anterior. El débil desempeño del sector se debió a la caída de la producción en todos los sectores industriales. excepto en la ingeniería de transporte. Sin embargo, el sector servicios ofreció una sorpresa al alza. En los sectores de servicios, el comercio mayorista y minorista, y los sectores de transporte y almacenamiento crecieron colectivamente un 2,6 % interanual en el segundo trimestre, un cambio respecto a la contracción del 0,7 % del trimestre anterior. El conjunto de sectores que comprende los sectores de información y comunicaciones, finanzas y seguros y servicios profesionales creció un 1,5 por ciento interanual en el segundo trimestre, ampliando el crecimiento del 1,3 por ciento del trimestre anterior. Los servicios de alojamiento y alimentación, inmobiliario, servicios administrativos y de apoyo y otros servicios se expandieron en un 6,1 por ciento interanual. El sector de la construcción creció un 6,6 por ciento interanual en el segundo trimestre, extendiendo el crecimiento del 6,9 por ciento del primer trimestre. La contracción de los primeros tres meses del año en medio de la debilidad de la demanda externa de las exportaciones de Singapur, había hecho surgir la amenaza de una recesión técnica. Una encuesta de economistas de Bloomberg habían pronosticado de hecho que la economía se contraería un 0,2% en el segundo trimestre. Las perspectivas no son buenas para la segunda mitad del año y será difícil superar el consenso de mercado que sitúa en el 1% la tasa de crecimiento del PIB para el conjunto del año 2023. En la encuesta de opinión sobre 100.000 pymes realizada por el banco OCBC, las perspectivas son muy poco alentadoras con tres sectores marcando un índice por debajo del 50: TICs, comercio mayorista y el transporte y logística.

A. OBJETIVOS

- Elaborar un sistema de distribución de celdas hexagonales celulares para una ciudad del sudeste asiático, cubriendo por lo menos entre el 90y 100% de la zona urbana de la población.
- Brindar información acerca de la ciudad Singapur, en la que incluya: población, área urbana, limites, entre otros datos acerca de la misma.

1) Diseño de sistema de distribución de señal

1. Zona geográfica Singapur

2. Zona geográfica (urbanización)

3. Delimitación de la zona

4. Distribución celdas (zona urbana)

5. Área de servicio (contorno de interferencia)

Inicialmente se anexa una imagen con el lugar las antenas utilizadas.

Antena A

Antena B

Antena C

Antenas D

Antena X

Antena y

Antena Z

6. Resultante frecuencias redes A, C, Y

Resultante frecuencias redes B, D, X, Z

7. Información Sistema de antenas A, C, Y

Radio Mobile				1				1	
SSystem									
ou y accord	1	1		Supplemen	tal		i		
System		Tx	Line	Line	Antenna	Antenna	Antenna	Rx	
	System name	power(W)	loss(dB	loss(dB/m)	type	gain(dBi	height(m)threshold(dBm)
1	3705 9 35	7,943282	0.5		Oellipse.an	1 8	3	9-88,00001	
2	23705_10_27	1,995262	0.5		0ellipse.an	1 8	3 1	9-88,00001	
3	33705 15 34	2,511886	0.5		Ocardio.ant		3 15	5-88,00001	
4	3713 30 24#	10,2511886	0.5		Ocardio.ant		3 30	0-88,00001	
	3713 30 26#	20,3981072	0.5		Ocardio.ant		3 30	0-88.00001	
6	33732 30 40#	1 10	0.5		Odipole.ant		3 30	0-88,00001	
7	73732 30 40#	2 12	0.5		Ocardio.ant		3 30	0-88.00001	
8	33713 30 40#	3 12	0.5		Ocorner.an		3 30	0-88,00001	
5	System 9	10	10.5		Oomni.ant		2 :	2	-107
10	System 10	10	100,5 100,5 100,5		Oomni.ant		2 :	2	-107
11	System 11	10			Oomni.ant		2 :	2	-107
12	System 12	10			Oomni.ant		2	2	-107
13	System 13	10	10.5		Oomni.ant		2 :	2	-107
14	System 14	10	100,5		Oomni.ant		2	2	-107
15	System 15	10	0.5		Oomni.ant			2	-107
16	System 16	10	10.5		Oomni.ant			2	-107
17	System 17	10	0.5		Oomni.ant		2	2	-107

Información Sistema de antenas B, D, X, Z

Mobile \$Systen	n	+	+						
	·			Supplemen	tal				
System		Tx	Line	Line			Antenna		
ID	System name			3) loss(dB/m)				threshold(d	IB m
	13700_25_32_;				0ellipse.ant			-88,00001	
	23705_20_33_;	1,995262	0,5		Ocardio.ant	8	20	-88,00001	
	33723 13 25 1				Ocardio.ant	8		-88,00001	
	43742 15 30 6	10,7943282	20,5		0omni.ant	8	17	-88,00001	
	5System 5	10	00,5		Oomni.ant	2	2		-10
	6System 6	10	00,5		0omni.ant	2	2		-10
7	7System 7	10	00,5		Oomni.ant	2	2		-10
	BSystem 8	10	00,5		Oomni.ant	2	2		-10
1	9System 9	10	00,5		Oomni.ant	2	2		-10
10	System 10	10	00,5		0omni.ant	2	2		-10
1.	System 11	10	00,5		0omni.ant	2	2		-10
12	2System 12	10	00,5		Oomni.ant	2	2		-10
13	3System 13	10	00.5		0omni.ant	2	2		-10
14	4System 14	10	00.5		Oomni.ant	2	2		-10
15	System 15	10	00.5		Oomni.ant	2	2		-107
		2.5							

8. Información latitud,
longitud, altitud, etc. Antenas A, C, Υ

Mobile								
\$Unit	Dear	li	li				<u>i</u>	
Unit ID		Enabled Latitude	LongitudeEle	vationIcon	ForecolorStyle	Back	coolorText	Locked
	1ANT-Y1	11,438543	3103,7071	23	1FFFFFF	0	0	78
	2ANT-Y2	11,321413	2104,0239	5	1FFFFFF	0	0	
	3ANT-Y3	11,272307	7103,6796	0	1FFFFFF	0	0	
	4ANT-A1	11,331773	3103,703	8	1FFFFFF	0	0	1
	5ANT-A2	11,273658	3103,7869	4	1FFFFFF	0	0	1
	6ANT-A3	11,307897	7103,8382	41	1FFFFFF	0	0	
	7ANT-A4	11,333575	5103,9198	27	1FFFFFF	0	0	
	8ANT-A5	11,377275	5103,8265	45	1FFFFFF	0	0	
	9ANT-A6	11,411062	2103,7342	13	1FFFFFF	0	0	
1	0ANT-C1	11,37367	103,7414	11	1FFFFFF	0	0	
1	1ANT-C2	11,30294	1103,7972	14	1FFFFFF	4	0	1
1	2ANT-C3	11,35565	103,8869	18	1FFFFFF	0	0	-1
- 1	3ANT-C4	11,353398	3103,9743	14	1FFFFFF	0	0	
1	4ANT-C5	11,442598	3103,8099	11	1FFFFFF	0	0	
1	5ANT-C6	11,32997	1103,6593	9	1FFFFFF	0	0	1

Información latitud,
longitud,
altitud,
etc. Antenas B, D, \mathbf{X},\mathbf{Z}

		·			
Radio Mobile					
\$Unit Unit		<u> </u>			
Unit ID name	EnabledLatitude Longitude	ElevationIco	n ForecolorSt	de Bac	kcolorText
1ANT-X1	11.391691103.7914	53	1FFFFFF	yie Bac	0
2ANT-X1		6	1FFFFFF	0	0
3ANT-X3	,,	35	1FFFFFF	0	0
4ANT-Y1	11,442147103,7148	11	1FFFFFF	0	0
5ANT-Y2		0	1FFFFFF	0	0
6ANT-Y3		0	1FFFFFF	0	0
7ANT-Z1	11,367814103,6634	7	1FFFFFF	0	0
8ANT-Z2		12	1FFFFFF	0	0
9ANT-Z3		3	1FFFFFF	0	0
10ANT-A1	11.331323103.7044	8	1FFFFFF	0	0
11ANT-B1	11,314204103,7305	9	1FFFFFF	0	0
12ANT-B2		9	1FFFFFF	0	0
13ANT-B3	,,,	9	1FFFFFF	0	0
14ANT-B4		7	1FFFFFF	0	0
15ANT-B5		2	1FFFFFF	0	0
16ANT-B6		43	1FFFFFF	0	0
17ANT-C1	11,356101103,7413	33.9	1FFFFFF	0	0
18ANT-D1	11,379977103,713	16	101FFFFFF	0	0
19ANT-D2		65	101FFFFFF	0	0
20ANT-D3	11,343036103,8473	18	101FFFFFF	0	0
21ANT-D4		8	101FFFFFF	0	0
22ANT-D5	11,411513103,8914	11	101FFFFFF	0	0
23ANT-D6	11,263296103,7022	9	101FFFFFF	0	0
24ANT-A2	11,290777103,7792	20	1FFFFFF	0	0
25ANT-C2	11,314654103,8148	24,1	1FFFFFF	0	0
26ANT-A3	11,29303 103,8509	20	1FFFFFF	0	0
27ANT-C3	11,360155103,8865	13	1FFFFFF	0	0
28ANT-A4	11,331773103,923	24	1FFFFFF	0	0
29ANT-C4	11,353398103,9581	26	1FFFFFF	0	0
30ANT-A5	11,378175103,8513	28	1FFFFFF	0	0
31ANT-C5	11,438994103,8112	27	1FFFFFF	0	0
32ANT-A6	11,395745103,7427	27	1FFFFFF	0	0
33ANT-C6	11,315555103,6481	10	1FFFFFF	0	0

Realizando un pequeño análisis cabe resaltar que las antenas varían respecto a la necesidad de cada celda, pues para que su cobertura sea casi un 100% es necesario realizar pruebas de que antena y cual elevación es la más conveniente para que la interferencia de una no se cruce con otra y que de este modo la ciudad de Singapur tenga una cobertura urbana bastante eficaz.

2) **CONCLUSIONES**

- ◆ La elección de la ciudad se hizo por medio de tomar unas medidas fáciles en las áreas de servicio por medio del cálculo de la ecuación y los km2 que tiene la ciudad
- Hubo que hacer varias pruebas con los puntos del hexágono, porque es una ciudad —con múltiples zonas tropicales, aeropuertos y una reserva forestal en el centro de la ciudad, cuestión de que las antenas debían posicionarse más en comercio, turismo y trabajo.
- ♦ Las zonas isleñas se tuvieron que ajustar para que recubriera bien las zonas más lejanas de la ciudad
- Los sistemas para las antenas tuvieron que ser reajustados varias veces ya que los cálculos que se tomaban no coincidían con los parámetros que solicitaba el informe, adicionalmente se hicieron varias pruebas para determinar cuál sería el mejor sistema de potencia y altura para cada grupo de antena
- ♦ Se trato de usar la mayor cantidad de veces las frecuencias de reusó para que cada grupo de redes estuviera regido por el mismo sistema, sin embargo, en algunos casos se tuvo que variar la altura de la antena para poder registrar una señal más concisa y sin interferencias con las del mismo grupo
- ◆ La mayor variación radicó en el uso de múltiples antenas, en especial entre cardio, eclipse y córner, que fueron las óptimas para generar seña dentro de las áreas específicas de servicio y que no generara interferencia con las consiguas.
- ♦ Se decidió usar 7 grupos (3 grupos grandes y 4 pequeños) con 33 antenas que cubrían todo el ancho de la ciudad, divididas en rangos de frecuencia óptimos para cada zona geográfica.
- ♦ Los inconvenientes más frecuentes se dieron por las interferencias de las señales a la hora de tomar algunos puntos de altura muy altos, ya que el terreno es relativamente bajo y causa que las antenas puedan llegar a puntos más lejanos despues de los 10km de distancia, afectando otras celdas del mismo grupo de servicio.
- Se requirió muchas veces apuntar las antenas al suelo para disminuir el sobre alcancé que estas tenían y usar un poco menos de 1 watts de potencia.

- Uno de los puntos más determinantes del proyecto es encontrar los inconvenientes que tiene un terreno plano o zonas en donde la antena era bloqueada por puntos geográficos que no permitían el paso de la señal de manera normal, cuestión que provocó múltiples reposicionamientos geográficos y cambios del tipo de antena.
- 3) References

OFICINA DE INFORMACIÓN DIPLOMÁTICA. (2023, octubre). Singapur República de Singapur. https://www.exteriores.gob.es/Documents/FichasPais/SINGAPUR_FICHA%20PAIS.pdf

Colaboradores de los proyectos Wikimedia. (2003, 10 de noviembre). *Singapur - Wikipedia, la enciclopedia libre*. Wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Singapur