## Санкт-Петербургский Государственный Университет Аэрокосмического Приборостроения

# Исследование Структуры Электромагнитного Поля над Проводящей Плоской Поверхностью

Отчет по Лабораторной работе N6

Выполнил: Студент факультета №5 Группы 5025 кафедры 52 Соколовский Роман Александрович

#### 1. Цель Работы

- Изучение законов отражения плоских электромагнитных волн от плоской проводящей поверхности
- Изучение структуры поля при нормальном и наклонном падении параллельно поляризованной волны на плоскую проводящую поверхность
- Изучение структуры поля при наклонном падении перпендикулярно поляризованной волны на плоскую проводящую поверхность
- Исследование распределения по нормали к экрану амплитуд составляющих электрического поля в зависимости от угла падения на проводящий экран параллельно поляризованной плоской электромагнитной волны
- Исследование волны, направляемой металлической границей раздела
- Исследование распределения амплитуж составляющих поля по нормали к экрану в зависимости от угла падения на проводящий экран параллельно и перпендикулярно поляризованных плоских электромагнитных волн.

### 2. Схема Лабораторной Установки

Схема лабораторной установки представлена на Рис. 1, компонеты установки обозначены следующим образом:

- (1) СВЧ-генератор
- (2) излучающий пирамидальный рупор
- (3) волновод прямоугольного сечения
- (4) коаксиальный волновой переход
- (5) полуволновой симметричный вибратор
- (6) коаксиальный соединитель
- (7) детекторная секция
- (8) измерительный усилитель
- (9) металлический стол с крестообразными прорезями
- (10) плоский основной алюминиевый экран
- (11) плоский дополнительный алюминиевый экран.



Рис. 1. Принципиальная схема лабораторной установки

### 3. Результаты измерений и вычислений

### 3.1. Измерения и вычисления.

## 3.1.1. $\Delta \varphi_{\text{расч}}$ .

$$\lambda_{d} = \frac{\lambda}{\sqrt{1 - (\lambda/2\alpha)^{2}}}$$

$$\varphi_{\tau} = \frac{2\pi}{\lambda_{d}}d$$

$$\varphi_{n} = \frac{2\pi}{\lambda}d$$

$$\lambda = \frac{c}{f}$$

$$\Delta\varphi_{\text{pacq}} = \varphi_{\tau} - \varphi_{n}$$

$$\begin{cases}
c = 3 \cdot 10^{8} m/s \\
f = 11.96 \cdot 10^{9} Hz \\
\alpha = 20 \cdot 10^{-3} m \\
d = 24 \cdot 10^{-3} m
\end{cases}$$

$$\varphi_{r} = 4.71$$

$$\varphi_{n} = 6.03$$

$$\Delta\varphi_{\text{pacq}} = -1.32$$

 $3.1.2.~\Delta \varphi_{\text{изм}}.~$  Значение сдвига фаз, полученное на основе экспериментальных данных, вычисляется по формуле:

$$\Delta \varphi = \arctan\left[\frac{2r}{(1+r^2)\sin^2\beta_0}\right] \tag{3.1}$$

На основе данных таблицы 3 протокола измерений (см. Приложение 1) были получены следующие значения сдвига фаз:

$$Ψ = 15^{\circ}$$
  $Δφ_{\text{изм}} = 1.25$ 
 $Ψ = -15^{\circ}$   $Δφ_{\text{изм}} = 1.31$ 
 $Ψ = 30^{\circ}$   $Δφ_{\text{изм}} = -0.95$ 
 $Ψ = -30^{\circ}$   $Δφ_{\text{изм}} = -0.89$ 

(3.2)

Хорошо видно, что значение смещения очень точно совпадает с теоретической оценкой для  $\Psi=15^\circ$  и довольно сильно расходится при  $\Psi=30^\circ$ . Это может объясняться накопленной погрешностью измерительных приборов и увеличением влияния окружающих неучтеных препятствий с увеличением угла отклонения.

3.1.3. Коэффициент эллиптичности без учета различного затухания составляющих вектора.

$$r_{1} = \sqrt{\frac{\alpha_{+45}}{\alpha_{-45}}}$$

$$B = \sqrt{\frac{\alpha_{n}}{\alpha_{\tau}}}$$

$$\Rightarrow \begin{vmatrix} r_{1} = \sqrt{\frac{46}{42}} = 1.0465 \\ r_{1}B = \sqrt{\frac{40}{32}} \cdot 1.0465 = 1.17 \end{vmatrix}$$

$$(3.3)$$

**3.2.** Таблицы результатов измерений и вычислений. Результаты исследования линейно поляризованной волны приведены в таблице 1. Полученные характеристики эллиптически поляризованных волн сведены в эту же таблицу для компактности и удобства. Графы таблиц, дублирующие таблицы протокола измерений (см. Приложение 1), здесь приведены не будут.

| $\theta^{\circ}$ | Линейная волна, $\alpha_n$ | Эллиптич $\Psi = 30^{\circ}$ | и. волна, $\alpha_n$ $\Psi = -30^\circ$ |
|------------------|----------------------------|------------------------------|-----------------------------------------|
| 0                | 1                          | 0.707107                     | 0.803219                                |
| 15               | 0.960769                   | 0.534522                     | 0.803219                                |
| 30               | 0.862316                   | 0.327327                     | 0.915811                                |
| 45               | 0.679366                   | 0.387298                     | 0.983739                                |
| 60               | 0.566139                   | 0.46291                      | 1                                       |
| 75               | 0.330113                   | 0.547723                     | 0.950382                                |
| 90               | 0                          | 0.755929                     | 0.842424                                |
| 105              | 0.310087                   | 0.894427                     | 0.851943                                |
| 120              | 0.599145                   | 1                            | 0.581988                                |
| 135              | 0.679366                   | 0.956183                     | 0.475191                                |
| 150              | 0.847319                   | 0.861892                     | 0.439941                                |
| 165              | 0.9337                     | 0.717137                     | 0.508001                                |
| 180              | 0.960769                   | 0.676123                     | 0.803219                                |
| 195              | 0.919866                   | 0.507093                     | 0.803219                                |
| 210              | 0.800641                   | 0.316228                     | 0.915811                                |
| 225              | 0.620174                   | 0.400892                     | 0.983739                                |
| 240              | 0.531085                   | 0.478091                     | 1                                       |
| 255              | 0.299572                   | 0.755929                     | 0.950382                                |
| 270              | 0                          | 0.755929                     | 0.803219                                |
| 285              | 0.299572                   | 0.861892                     | 0.823055                                |
| 300              | 0.57735                    | 0.92582                      | 0.538816                                |
| 315              | 0.640513                   | 0.910259                     | 0.421212                                |
| 330              | 0.816497                   | 0.828079                     | 0.40161                                 |
| 345              | 0.905822                   | 0.676123                     | 0.475191                                |
| 360              | 1                          | 0.707107                     | 0.803219                                |

ТАБЛИЦА 1. Исследование линейно и эллиптически поляризованных волн.

**3.3.** Графики и рисунки. Наиболее наглядным способом демонстрации и анализа поляризованных волн являются поляризационные диаграммы. На рисунках 2 и 4 представлены диаграммы для линейно и эллиптически поляризованных волн. Они хорошо согласуются с теоретическими формами кривых, что подтверждает корректность проведенных измерений и обработки их результатов.



Рис. 2. Поляризационная диаграмма линейно поляризованной волны



Рис. 3. График зависимости эллиптичности от угла поворота поляризационной решетки





Рис. 4. Поляризационная диаграмма эллиптически поляризованной волны