A Strongly Normalizing Computation Rule for the Univalence Axiom in Higher-Order Propositional Logic

Robin Adams¹, Marc Bezem¹, and Thierry Coquard²

Universitetet i Bergen, Bergen, Norway
 {robin.adams,marc}@uib.no
 University of Gothenburg, Gothenburg, Sweden
 coquand@chalmers.se

Homotopy type theory offers the promise of a formal system for the univalent foundations of mathematics. However, if we simply add the univalence axiom to type theory, then we lose the property of canonicity — that every term computes to a normal form. A computation becomes 'stuck' when it reaches the point that it needs to evaluate a proof term that is an application of the univalence axiom. We wish to find a way to compute with the univalence axiom.

As a first step towards such a system, we present here a system of higher-order propositional logic, with a universe Ω of propositions closed under implication and quantification over any simple type over Ω . We add a type $a =_A b$ for any terms a, b of type A (this type is not a proposition in Ω), and two ways to prove an equality: reflexivity, and the univalence axiom. We present reduction relations for this system, and prove the reduction confluent and strongly normalizing.

Predicative higher-order propositional logic with equality. We call the following type theory predicative higher-order propositional logic. It contains a universe Ω of propositions that contains \bot and is closed under \to . The system also includes the higher-order types that can be built from Ω by \to . Its rules of deduction are

$$\frac{\Gamma \text{ valid}}{\langle \rangle \text{ valid}} \quad \frac{\Gamma \text{ valid}}{\Gamma, x : A \text{ valid}} \quad \frac{\Gamma \vdash \phi : \Omega}{\Gamma, p : \phi \text{ valid}} \quad \frac{\Gamma \text{ valid}}{\Gamma \vdash x : A} \quad (x : A \in \Gamma) \quad \frac{\Gamma \text{ valid}}{\Gamma \vdash p : \phi} \quad (p : \phi \in \Gamma)$$

$$\frac{\Gamma \text{ valid}}{\Gamma \vdash \bot : \Omega} \quad \frac{\Gamma \vdash \phi : \Omega}{\Gamma \vdash \phi \to \psi : \Omega}$$

$$\frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad \frac{\Gamma \vdash \delta : \phi \to \psi \quad \Gamma \vdash \epsilon : \phi}{\Gamma \vdash \delta \epsilon : \psi}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A . M : A \to B} \quad \frac{\Gamma, p : \phi \vdash \delta : \psi}{\Gamma \vdash \lambda p : \phi . \delta : \phi \to \psi} \quad \frac{\Gamma \vdash \delta : \phi \quad \Gamma \vdash \psi : \Omega}{\Gamma \vdash \delta : \psi} \quad (\phi \simeq \phi)$$

Extensional equality. On top of this system, we add an equality relation that satisfies univalence. We add a new judgement form, $\Gamma \vdash P : M =_A M$, to denote that P is a proof of that M and N are equal terms of type A. We also add the following constructions:

- For any M: A, a proof ref $(M): M =_A M$.
- Univalence. Given proofs $\delta: \phi \to \psi$ and $\epsilon: \psi \to \phi$, a proof $\mathsf{univ}_{\phi,\psi}(\delta,\epsilon): \phi =_{\Omega} \psi$.
- Given a proof $P: \phi =_{\Omega} \psi$, proofs $P^+: \phi \to \psi$ and $P^-: \psi \to \phi$.
- Given a proof $\Gamma, x: A, y: A, e: x =_A y \vdash P: Mx =_B Ny$, a proof $\lambda \lambda he: x =_A y.P: M =_{A \to B} N$. (Here, e, x and y are bound within P.)
- Rules to ensure that the equality is a congruence for \rightarrow and application.

The reduction relation. We define the following reduction relation on proofs and equality proofs.

$$(\operatorname{ref}(\phi))^{+} \leadsto \lambda x : \phi.x \qquad (\operatorname{ref}(\phi))^{-} \leadsto \lambda x : \phi.x \\ \operatorname{univ}_{\phi,\psi}(\delta,\epsilon)^{+} \leadsto \delta \qquad \operatorname{univ}_{\phi,\psi}(\delta,\epsilon)^{-} \leadsto \epsilon$$

$$(\operatorname{ref}(\phi) \to \operatorname{univ}_{\psi,\chi}(\delta,\epsilon)) \leadsto \operatorname{univ}_{\phi \to \psi,\phi \to \chi}(\lambda f : \phi \to \psi.\lambda x : \phi.\delta(fx), \lambda g : \phi \to \chi.\lambda x : \phi.\epsilon(gx))$$

$$(\operatorname{univ}_{\phi,\psi}(\delta,\epsilon) \to \operatorname{ref}(\chi)) \leadsto \operatorname{univ}_{\phi \to \chi,\psi \to \chi}(\lambda f : \phi \to \chi.\lambda x : \psi.f(\epsilon x), \lambda g : \psi \to \chi.\lambda x : \phi.g(\delta x))$$

$$(\operatorname{univ}_{\phi,\psi}(\delta,\epsilon) \to \operatorname{univ}_{\phi',\psi'}(\delta',\epsilon')$$

$$\leadsto \operatorname{univ}_{\phi \to \phi',\psi \to \psi'}(\lambda f : \phi \to \phi'.\lambda x : \psi.\delta'(f(\epsilon x)), \lambda g : \psi \to \psi'.\lambda y : \phi.\epsilon'(g(\delta y)))$$

$$(\operatorname{ref}(\phi) \to \operatorname{ref}(\psi)) \leadsto \operatorname{ref}(\phi \to \psi) \qquad \operatorname{ref}(M)\operatorname{ref}(N) \leadsto \operatorname{ref}(MN)$$

$$(\operatorname{ref}(\lambda x : A.M))P \leadsto \{P/x\}M \qquad (P \text{ a normal form not of the form ref}(\bot))$$

$$(\lambda \lambda e : x =_A y.P)Q \leadsto [M/x, N/y, Q/e]P \qquad (Q : M =_A N)$$

Here, $\{P/x\}M$ is an operation called *path substitution* defined such that, if $P: N =_A N'$ then $\{P/x\}M: [N/x]M = [N'/x]M$.

We can prove the following result about the canonical forms in this system:

Proposition 1. Every closed normal form of type $\phi =_{\Omega} \psi$ either has the form ref (_) or univ(_, _). Every closed normal form of the type $M =_{A \to B} N$ either has the form ref (_) or is a $\lambda \lambda - term$.

Thus, once we have proved strong normalization, we know that a well-typed computation never gets 'stuck' at an application of the univalence axiom.

Proof of strong normalization. The proof of strong normalization follows the method of Tait [1] We define the set of *computable* terms $E_{\Gamma}(A)$ for each type A, and computable proofs $E_{\Gamma}(M =_A N)$ for any terms $\Gamma \vdash M, N : A$

Tait's proof relies on confluence, which does not hold for this reduction relation in general. But we do have that the following, which turns out to be sufficient.

Proposition 2. Reduction is locally confluent. All computable terms are strongly normalizing and confluent. The computability predicates are closed under reduction and well-tiped expansion.

Theorem 3. If
$$\Gamma \vdash M : A$$
 then $M \in E_{\Gamma}(A)$. If $\Gamma \vdash P : M =_A N$ then $P \in E_{\Gamma}(M =_A N)$.

It follows that this system is strongly normalizing.

In the proof, we prove confluence 'on-the-fly'. That is, whenever we require a term to be confluent, the induction hypothesis provides us with the fact that that term is computable, and hence strongly normalizing and confluent.

References

[1] W. W. Tait. Intensional iinterpretation of ffunctional of finite type i. *Journal of Symbolic Logic*, 32:198–212, 1967.