The dataset www.mines.edu/~wnavidi/math437537/concrete.csv contains data from 28 construction jobs involving the construction of concrete silos. Three of the variables describe resource requirements. These are the volume of concrete required in $m^3(y)$, the number of crew-days of labor (z), or the number of concrete mixer hours (w) needed for a particular job. The table below defines 23 potential independent variables that can be used to predict y, z, or w.

$\overline{x_1}$	Number of bins	x_{13}	Breadth to thickness ratio
x_2	Maximum required concrete per hr.	x_{14}	Perimeter of complex
x_3	Height	x_{15}	Mixer capacity
x_4	Sliding Rate of the Slipform (m/day)	x_{16}	Density of stored material
x_5	Number of construction stages	x_{17}	Waste percent in reinforcing steel
x_6	Perimeter of slipform	x_{18}	Waste percent in concrete
x_7	Volume of silo complex	x_{19}	Number of workers in concrete crew
x_8	Surface area of silo walls	x_{20}	Wall thickness (cm)
x_9	Volume of one bin	x_{21}	Number of reinforcing steel crews
x_{10}	Wall-to-floor areas	x_{22}	Number of workers in forms crew
x_{11}	Number of lifting jacks	x_{23}	Length to breadth ratio
x_{12}	Length to thickness ratio		

- 1. Let **X** be the matrix whose columns are the variables x_1-x_{23} . Let **Y** be the volume of concrete required (y in the data set). Fit the full model $\mathbf{Y} = \beta_0 \mathbf{1} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and obtain the least-squares estimate $\hat{\boldsymbol{\beta}}$.
- 2. Let **W** be the standardized version of **X**. Construct the matrix **Z** whose columns are the principal components of **W**. Fit the model $\mathbf{Y} = \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}$, and find the least-squares estimator $\hat{\gamma}$.
- 3. How many principal components are necessary to explain 90% of the variation in **W**?
- 4. Let k be the number of principal components needed to explain at least 90% of the variation in **W**. Find the reduced estimator $\hat{\gamma}_k$.
- 5. Compute the fitted values $\hat{\mathbf{Y}}$ from the fit of the full model and from the reduced model. Plot the estimates from the full model against those from the fitted model. Are they similar?
- 6. Use cross-validation to choose the number of principal components. Because there are only 28 observations, use the leave-one-out method, This can be done by specifying validation="L00". How many principal components does this method suggest to use?
- 7. Let

$$\mathbf{X} = \begin{bmatrix} 10 & 8 & 8 & 7 & 8 \\ 11 & 6 & 8 & 9 & 5 \\ 7 & 7 & 5 & 4 & 10 \\ 4 & 4 & 0 & 10 & 2 \\ 9 & 12 & 6 & 8 & 6 \\ 8 & 7 & 9 & 9 & 7 \\ 3 & 4 & 7 & 10 & 7 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} -76 \\ 24 \\ 27 \\ -8 \\ 8 \\ 37 \\ -12 \end{bmatrix}$$

Assume the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ holds.

- (a) Find the value of \mathbb{R}^2 when \mathbf{Y} is regressed on \mathbf{X} .
- (b) How much of the variation in **X** is explained by the first four principal components?
- (c) Find the value of R^2 when **Y** is regressed on the first four principal components of **X**.

Required for MATH 537, extra credit for MATH 437:

8. Let \mathbf{X} be the matrix in problem 1. Find a vector \mathbf{Y} such that the value of R^2 when \mathbf{Y} is regressed on \mathbf{X} is 1, and the value of R^2 when \mathbf{Y} is regressed on the first 22 principal components of \mathbf{X} is 0.