

Source: USA Today

Source: Bookmundi

Source: SBS News

Rainfall in Australia

Ravinit Chand, Ryan Cosgrove, Eric Kye, Revanth Rao

Source: PaymentsJorunal

Source: NASA

We got our dataset from Kaggle

- Source: National Museum Of Australia
- (link: https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package)
- Various cities in Australia
- Dates ranging from 2008 to 2017
- Weather conditions: temperature, rainfall, wind, pressure, and humidity
- The response variable is if it rains tomorrow

Rain in Australia

Predict next-day rain in Australia

Data Card Code (650) Discussion (21) Suggestions (0)

About Dataset

Context

Predict next-day rain by training classification models on the target variable RainTomorrow.

Content

This dataset contains about 10 years of daily weather observations from many locations across Australia.

RainTomorrow is the target variable to predict. It means -- did it rain the next day, Yes or No? This column is Yes if the rain for that day was 1mm or more.

Source & Acknowledgements

Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data.

An example of latest weather observations in Canberra: http://www.bom.gov.au/climate/dwo/IDCJDW2801.latest.shtml

Definitions adapted from http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml

Data source: http://www.bom.gov.au/climate/dwo/ and http://www.bom.gov.au/climate/data.

Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

Usability ①

10.00

License

Other (specified in description)

Expected update frequency

Never

Tags

Earth and Nature

Classification

Binary Classification

Weather and Climate

Source: Kaggle

Data Description

- The data consists of a combination of quantitative and categorical variables
- There are 145,460 rows being the dates and 23 columns being the variables
- The temperature, rainfall, wind speed, humidity, pressure, and cloud cover variables in the data set are some quantitative variables
- The location, wind gust direction, wind direction are some categorical variables
- Rain today and rain tomorrow are both binary variables taking values of "Yes" or "No"

^	Date [‡]	Location [‡]	MinTemp *	MaxTemp [‡]	Rainfall =	Evaporation [‡]	Sunshine [‡]	WindGustDir [‡]	WindGustSpeed *	WindDir9am •	WindDir3pm	WindSpeed9am	WindSpeed3pm	Humidity9am *
1	2008-12-01	Albury	13.4	22.9	0.6	NA	NA	w	44	w	WNW	20	24	71
2	2008-12-02	Albury	7.4	25.1	0.0	NA	NA	WNW	44	NNW	WSW	4	22	44
3	2008-12-03	Albury	12.9	25.7	0.0	NA	NA	wsw	46	w	wsw	19	26	38
4	2008-12-04	Albury	9.2	28.0	0.0	NA	NA	NE	24	SE	E	11	9	45
5	2008-12-05	Albury	17.5	32.3	1.0	NA	NA	w	41	ENE	NW	7	20	82
6	2008-12-06	Albury	14.6	29.7	0.2	NA	NA	WNW	56	w	W	19	24	55
7	2008-12-07	Albury	14.3	25.0	0.0	NA	NA	w	50	SW	w	20	24	49
8	2008-12-08	Albury	7.7	26.7	0.0	NA	NA	w	35	SSE	w	6	17	48
9	2008-12-09	Albury	9.7	31.9	0.0	NA	NA	NNW	80	SE	NW	7	28	42
10	2008-12-10	Albury	13.1	30.1	1.4	NA	NA	w	28	S	SSE	15	11	58
11	2008-12-11	Albury	13.4	30.4	0.0	NA	NA	N	30	SSE	ESE	17	6	48
12	2008-12-12	Albury	15.9	21.7	2.2	NA	NA	NNE	31	NE	ENE	15	13	89
13	2008-12-13	Albury	15.9	18.6	15.6	NA	NA	w	61	NNW	NNW	28	28	76
14	2008-12-14	Albury	12.6	21.0	3.6	NA	NA	SW	44	w	SSW	24	20	65
15	2008-12-15	Albury	8.4	24.6	0.0	NA	NA	NA	NA	S	WNW	4	30	57
16	2008-12-16	Albury	9.8	27.7	NA	NA	NA	WNW	50	NA	WNW	NA	22	50
17	2008-12-17	Albury	14.1	20.9	0.0	NA	NA	ENE	22	SSW	E	11	9	69
18	2008-12-18	Albury	13.5	22.9	16.8	NA	NA	w	63	N	WNW	6	20	80
19	2008-12-19	Albury	11.2	22.5	10.6	NA	NA	SSE	43	wsw	SW	24	17	47
20	2008-12-20	Albury	9.8	25.6	0.0	NA	NA	SSE	26	SE	NNW	17	6	45
21	2008-12-21	Albury	11.5	29.3	0.0	NA	NA	s	24	SE	SE	9	9	56
22	2008-12-22	Albury	17.1	33.0	0.0	NA	NA	NE	43	NE	N	17	22	38
23	2008-12-23	Albury	20.5	31.8	0.0	NA	NA	WNW	41	w	w	19	20	54
24	2008-12-24	Albury	15.3	30.9	0.0	NA	NA	N	33	ESE	NW	6	13	55
25	2008-12-25	Albury	12.6	32.4	0.0	NA	NA	w	43	E	w	4	19	49
26	2008-12-26	Albury	16.2	33.9	0.0	NA	NA	wsw	35	SE	WSW	9	13	45
27	2008-12-27	Albury	16.9	33.0	0.0	NA	NA	wsw	57	NA	w	0	26	41
28	2008-12-28	Albury	20.1	32.7	0.0	NA	NA	WNW	48	N	WNW	13	30	56
29	2008-12-29	Albury	19.7	27.2	0.0	NA	NA	WNW	46	NW	WSW	19	30	49
30	2008-12-30	Albury	12.5	24.2	1.2	NA	NA	WNW	50	wsw	SW	11	22	78
31	2008-12-31	Albury	12.0	24.4	0.8	NA	NA	w	39	WNW	WNW	17	17	48
32	2009-01-01	Albury	11.3	26.5	0.0	NA	NA	WNW	56	w	WNW	19	31	46
Show	ing 1 to 32 of	145 460 antria	e 23 total colun	nne										

WindSpeed3pm *	Humidity9am =	Humidity3pm *	Pressure9am *	Pressure3pm [‡]	Cloud9am ‡	Cloud3pm *	Temp9am ‡	Temp3pm ‡	RainToday [‡]	RainTomorrow
24	71	22	1007.7	1007.1	8	NA	16.9	21.8	No	No
22	44	25	1010.6	1007.8	NA	NA	17.2	24.3	No	No
26	38	30	1007.6	1008.7	NA	2	21.0	23.2	No	No
9	45	16	1017.6	1012.8	NA	NA	18.1	26.5	No	No
20	82	33	1010.8	1006.0	7	8	17.8	29.7	No	No
24	55	23	1009.2	1005.4	NA	NA	20.6	28.9	No	No
24	49	19	1009.6	1008.2	1	NA	18.1	24.6	No	No
17	48	19	1013.4	1010.1	NA	NA	16.3	25.5	No	No
28	42	9	1008.9	1003.6	NA	NA	18.3	30.2	No	Yes
11	58	27	1007.0	1005.7	NA	NA	20.1	28.2	Yes	No
6	48	22	1011.8	1008.7	NA	NA	20.4	28.8	No	Yes
13	89	91	1010.5	1004.2	8	8	15.9	17.0	Yes	Yes
28	76	93	994.3	993.0	8	8	17.4	15.8	Yes	Yes
20	65	43	1001.2	1001.8	NA	7	15.8	19.8	Yes	No
30	57	32	1009.7	1008.7	NA	NA	15.9	23.5	No	NA
22	50	28	1013.4	1010.3	0	NA	17.3	26.2	NA	No
9	69	82	1012.2	1010.4	8	1	17.2	18.1	No	Yes
20	80	65	1005.8	1002.2	8	1	18.0	21.5	Yes	Yes
17	47	32	1009.4	1009.7	NA	2	15.5	21.0	Yes	No
6	45	26	1019.2	1017.1	NA	NA	15.8	23.2	No	No
9	56	28	1019.3	1014.8	NA	NA	19.1	27.3	No	No
22	38	28	1013.6	1008.1	NA	1	24.5	31.6	No	No
20	54	24	1007.8	1005.7	NA	NA	23.8	30.8	No	No
13	55	23	1011.0	1008.2	5	NA	20.9	29.0	No	No
19	49	17	1012.9	1010.1	NA	NA	21.5	31.2	No	No
13	45	19	1010.9	1007.6	NA	1	23.2	33.0	No	No
26	41	28	1006.8	1003.6	NA	1	26.6	31.2	No	No
30	56	15	1005.2	1001.7	NA	NA	24.6	32.1	No	No
30	49	22	1004.8	1004.2	NA	NA	21.6	26.1	No	Yes
22	78	70	1005.6	1003.4	8	8	12.5	18.2	Yes	No
17	48	28	1006.1	1005.1	1	NA	16.9	22.7	No	No
31	46	76	1004.5	1003.2	N/A	AIA	197	25.7	No	No

Pre-Processing Steps and Project Focus

- Pre-processing steps:
 - Our data included NA values within multiple predictor variables which caused for more difficulty in analysis, leading us to remove NA values from the data
 - We also removed columns that were found to be not useful to our analysis.
 This included the date, location, wind gust direction, and wind direction

 Our project attempts to predict whether it will rain tomorrow based on the other variables remaining in the data set

Exploratory Analysis

- Summary statistics for the variables used in the models are shown on the right

 It appears that some variables have large values that should be considered outliers (ex: Rainfall, Evaporation)

In the data, we can see that it didn't rain
 78% of the days and rained 22% of the days

Variable	N	Mean Sto	l. Dev.	Min	Pctl. 25	Pctl. 75	Max
MinTemp	56420	13	6.4	-6.7	8.6	18	31
MaxTemp	56420	24	7	4.1	19	30	48
Rainfall	56420	2.1	7	0	0	0.6	206
Evaporation	56420	5.5	3.7	0	2.8	7.4	81
Sunshine	56420	7.7	3.8	0	5	11	14
WindGustSpeed	56420	41	13	9	31	48	124
WindSpeed9am	56420	16	8.3	2	9	20	67
WindSpeed3pm	56420	20	8.5	2	13	26	76
Humidity9am	56420	66	19	0	55	79	100
Humidity3pm	56420	50	20	0	35	63	100
Pressure9am	56420	1017	6.9	980	1013	1022	1040
Pressure3pm	56420	1015	6.9	977	1010	1019	1039
Cloud9am	56420	4.2	2.8	0	1	7	8
Cloud3pm	56420	4.3	2.6	0	2	7	9
Temp9am	56420	18	6.6	-0.7	13	23	39
Temp3pm	56420	23	6.8	3.7	17	28	46
RainToday	56420						
No	43958	78%					
Yes	12462	22%					
RainTomorrow	56420						
No	43993	78%					
Yes	12427	22%					

Exploratory Analysis (cont.)

 Correlation plot between quantitative explanatory variables shown on the right

- Large boxes indicate higher correlation (both negative and positive)

- Blue indicates positive correlation, red indicates negative correlation, white indicates weak or no correlation

 Many of the correlations are intuitive (for example, the correlations between the Sunshine and Cloud variables are near -1)

Exploratory Analysis (cont.)

Methodology

- Split data into two parts: 2008-2013 (training) and 2014-2017 (test):
 - Because we're working with time series data, we don't want to predict rain using data from days in the future that haven't occurred

Methods used:

- 1. LDA/QDA:
 - Both methods are commonly used for classification because they use decision boundaries to separate the data. LDA has the same covariance matrix in each class while QDA has a different covariance matrix in each class
- 2. Logistic Regression:
 - This is a very popular classification model when there are 2 classes, as is the case with our response variable RainTomorrow, which has classes "Yes" and "No".

Methodology (continued)

- 3. Lasso/Ridge Regression
 - Lasso and Ridge shrink the coefficients close to zero to improve the prediction accuracy
 - Used cross-validation to select the optimal tuning parameter λ
- 4. Random Forest
 - Random Forest grows many decision trees on the training data, then combines them in order to make predictions
 - This method is useful because it is an advanced version of decision trees with higher prediction accuracy, allowing us to make better predictions on our test data

Overall Results

- QDA/LDA:

- QDA had an accuracy of 85.4%
- LDA had an accuracy of 83.7%
- Both models were highly accurate

LDA

Overall Results (continued)

Logistic Regression

- We used a cutoff point of 0.5 for our predictions
 - Predictions above 0.5
 were classified as "Yes"
 and predictions below
 0.5 were classified as
 "No" for RainTomorrow
 - Trying other cutoff points resulted in very similar accuracy as well
- Overall accuracy was 85.5%, implying that the logistic regression model was pretty accurate
- Very similar to QDA/LDA results

Overall Results (cont.)

- Lasso/Ridge Regression:
 - Lasso Accuracy: 85.5%
 - Ridge Accuracy: 85.1%
- Lasso had λ = 0.00018, Ridge had λ = 0.019
- No coefficients were shrunk to 0

Lasso

Ridge

			•
(Intercept) MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm Pressure9am Pressure3pm Cloud9am	lambda.min 56.672900914 -0.039524262 0.002861825 0.012524012 -0.002833204 -0.139631993 0.059845053 -0.010288875 -0.027363712 0.001074917 0.057336990 0.141957640 -0.204532156 -0.014934135	(Intercept) MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm Pressure9am Pressure3pm Cloud9am	lambda.min 57.1883694152 -0.0004860718 0.0049484487 0.0129704448 -0.0199356224 -0.1231279365 0.0383400223 -0.0060877086 -0.0125301733 0.0050073728 0.0363669856 -0.0047604579 -0.0565809903 0.0033221501
Humidity9am	0.001074917	Humidity9am	0.0050073728
Pressure3pm	-0.204532156	Pressure3pm	-0.0565809903
Temp9am Temp3pm RainTodayYes	0.037511549 0.005217262 0.418399522	Temp9am Temp3pm RainTodayYes	0.0174424096 -0.0075681767 0.2988933497

Overall Results (continued)

- Random Forest
 - Accuracy of 85.7%
- Points on the right side of the plot show the importance of certain variables for improving model predictions
- Humidity3pm, Pressure3pm,
 Sunshine, and
 WindGustSpeed appear to be the most important variables for model performance

Strengths/Limitations

- Strengths:
 - Large dataset allowed us to have large training and test sets
 - Model performance was fairly consistent across every method
 - Accuracy ranged from 83–86%
 - Given that it didn't rain 78% of the days, every model comfortably beat a naive prediction of no rain every day
 - Using a variety of methods allowed us to get a good sense of a reasonable prediction accuracy for the data
- Limits:
- Dataset had many NA values, leading to some holes in the data
- Some of the methods, such as the Random Forest, are somewhat computationally intensive

Areas for Improvement / Next Steps

- Use other methods such as polynomial regression, naive Bayes, or more advanced decision tree methods

- Replace NA values with mean, median, or other value rather than removing them from the data

 Use best subset selection or forward/backward stepwise selection to refine the model by removing predictors

- Experiment with different sizes for test and training sets to see if the results are replicable

Conclusion

- All of our methods had fairly similar accuracy in predicting rain
- We believe that all of our models were reliable, and that this data allows for good classification models due to the high accuracy
- Given the similar accuracy in model performance, it may be preferable to use models like logistic regression or LDA which are simple and easy to interpret

Method	Accuracy			
LDA	85.4%			
QDA	83.7%			
Logistic Regression	85.5%			
Lasso Regression	85.5%			
Ridge Regression	85.1%			
Random Forest	85.7%			