Logical Formalism Set Theory

Adrien Pommellet, LRE

August 31, 2023

Collecting objects

- We need to be able to gather and manipulate objects.
- A set is merely a well-defined collection of objects.
- \mathbb{N} , \mathbb{R} , the prime numbers \mathbb{P} , the points of a line, etc.

$\mathsf{The} \in \mathsf{predicate}$

- Formally, a set E is matched to a **predicate** \in such that x **belongs** to E if and only the statement $x \in E$ is true.
- We also introduce the predicate $x \notin E \iff \neg(x \in E)$.
- We define the **empty set** \emptyset such that no element belongs to \emptyset : the proposition $x \in \emptyset$ is always false.

Representing sets

- Each object in a set can appear only once: there are no duplicates.
- A finite set containing n elements can be written $\{x_1, \ldots, x_n\}$. This indexing is a purely arbitrary choice and may be **unordered**.
- The set $\{x\}$ containing only the element x is called a **singleton**. It should not be mistaken with x itself.
- $\{0,1,2\}$ and $\{1,0,2\}$ represent the same set, whereas $\{1,1,2\}$ is not a set.

Shaky foundations

Set theory is somewhat flawed because of the catalogue paradox.

Consider a library that follows three rules:

- Each library section features a catalogue listing its contents.
- 2 Some catalogues may list themselves, others do not.
- A special catalogue lists all the catalogues that do not list themselves.

The paradox consists in the following question: does the special catalogue list itself?

The union \cup

Given two sets A and B, we introduce their **union** $A \cup B$ such that $x \in A \cup B$ if and only if $(x \in A) \lor (x \in B)$.

Consider $\mathbb{Z} = \mathbb{Z}_+ \cup \mathbb{Z}_-$. Note that 0 belongs to **both** \mathbb{Z}_+ and \mathbb{Z}_- .

The Intersection ∩

Given two sets A and B, we introduce their **intersection** $A \cap B$ such that $x \in A \cap B$ if and only if $(x \in A) \wedge (x \in B)$.

The intersection of two distinct lines in \mathbb{R}^2 is either \emptyset or a singleton.

The subset relation \subseteq

Given two sets A and B, we introduce the **subset relation**: $A \subseteq B$ if and only if $(x \in A) \implies (x \in B)$.

The simple inclusion pattern

The logical implication \implies yields the following **proof pattern**:

Goal. Prove that $A \subseteq B$.

Let $x \in A \dots$

... then $x \in B$.

Practical Application

Exercise 1. Let $A = \{a, b, c\}$ and $B = \{a, d\}$. Explicit the sets:

 $A \cup A$

 $A \cap A$

 $A \cup B$

 $A \cap B$

 $A \cap B \cup \{e\}$

Answer

Equality of sets

- Given two sets A and B, we introduce the **equality relation**: A = B if and only if $(x \in A) \iff (x \in B)$.
- Remember that $(P \iff Q) \iff (P \implies Q) \land (Q \implies P)$.
- As a consequence, $(A = B) \iff (A \subseteq B) \land (B \subseteq A)$.

The double inclusion pattern

Goal. Prove that A = B.

Subgoal 1. Prove that $A \subseteq B$.

Let $x \in A \dots$

... then $x \in B$.

Subgoal 2. Prove that $B \subseteq A$.

Let $x \in B \dots$

... then $x \in A$.

Set Theory

Power Sets

- Given a set E, we introduce $\mathcal{P}(E)$, the **power set** of E such that $X \in \mathcal{P}(E) \iff X \subseteq E$.
- $\mathcal{P}(E)$ is a set of sets.
- Note that $\emptyset \in \mathcal{P}(E)$ and $E \in \mathcal{P}(E)$ for any set E.

Practical Application

Exercise 2. Explicit the set $\mathcal{P}(\{a,b,c\})$.

Answer

Set Theory

The set subtraction \

Given two sets A and B, we introduce the **subtraction** $A \setminus B$ of A by B such that $x \in A \setminus B$ if and only if $(x \in A) \land (x \notin B)$.

B isn't necessarily a subset of A: $\{0,1,2,3\} \setminus \{1,3,4\} = \{0,2\}$.

Set Theory

The complement C

Given an **implicit** set E and a subset $A \subseteq E$, the **complement** of A with regard to E is the set $A^{\complement} = E \setminus A$.

Given $A = \{0\}$, $A^{\complement} = \mathbb{N}^*$ with regard to \mathbb{N} and $A^{\complement} = \mathbb{R}^*$ with regard to \mathbb{R} .

Properties of Sets

Sets and propositional logic

Sets

 $A \cup B$ $A \cap B$ $A \subseteq B$ A = B

Logical Operators

$$P \lor Q$$

$$P \land Q$$

$$P \implies Q$$

$$P \iff Q$$

Properties of Sets

Common equalities

The following properties on sets hold, assuming $A, B, C \in \mathcal{P}(E)$:

$$A^{\mathbb{C}^{\mathbb{C}}} = A$$

$$A \cup A^{\mathbb{C}} = E$$

$$A \setminus B = A \cap B^{\mathbb{C}}$$

$$(A \cup B)^{\mathbb{C}} = A^{\mathbb{C}} \cap B^{\mathbb{C}}$$

$$(A \cap B)^{\mathbb{C}} = A^{\mathbb{C}} \cup B^{\mathbb{C}}$$

$$\emptyset^{\mathbb{C}} = E$$

$$A \subseteq B \iff A \cap B^{\mathbb{C}} = \emptyset$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Practical Application

Exercise 3. Are the following properties true in the general case, assuming $A, B, C \in \mathcal{P}(E)$? If they're not, use **counter-examples** to falsify them.

$$A = B \iff A \cup C = B \cup C$$

$$A = B \iff A \cap B = A$$

$$A \cup B = C \iff A \cup C = B$$

$$A \subseteq B \cup C \iff (A \subseteq B) \lor (A \subseteq C)$$

$$A \subseteq B \cap C \iff (A \subseteq B) \land (A \subseteq C)$$

$$A = B \iff A \setminus C = B \setminus C$$

$$(A \subseteq C) \land (B \subseteq C) \implies A \subseteq B$$

$$A \cup B = C \iff A \cup B = A + B - A \cup B$$

Answer I

Answer II

Practical Application

Exercise 4. Are the following equalities true in the general case, assuming $A, B, C \in \mathcal{P}(E)$? If they're not, use **counter-examples** to falsify them.

$$(A \setminus B) \cup B = A$$

$$(A \cup B) \setminus B = A$$

$$(A \cup B \cup B) \setminus B = A \cup B$$

$$(A \setminus B) \cup (A \cap B) = A$$

$$\emptyset \cup A = E \cap A$$

$$\emptyset \cap A = E \cup A$$

$$A + B - B = A$$

$$A \cup B \cup B = A + 2B$$

$$A \cup B = (A \cup B) \setminus (A \cap B)$$

Answer I

Answer II

A Last Few Definitions

The Cartesian product \times

- We consider **ordered pairs** of objects. We use the notation (x, y).
- Do not mistake the pair (x, y) for the set (also called an unordered pair) $\{x, y\}$.
- Given two sets U and V, we introduce their **Cartesian product** $U \times V$ such that $(x, y) \in U \times V$ if and only if $(x \in U) \wedge (y \in V)$.

A Last Few Definitions

Qualifying sets

- A common way to define a set is to select all the elements of a set verifying a given proposition.
- Formally, given a proposition P(x) and a set E, we can introduce a subset S of E such that $x \in S \iff (x \in E) \land P(x)$.
- We often write $S = \{x \in E \mid P(x)\}$ instead.
- For $a, b \in \mathbb{R}$, the set $S = \{(x, y) \in \mathbb{R}^2 \mid y = a \cdot x + b\}$ is a line of the real plane \mathbb{R}^2 .