

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică

Craiova, 9-15 aprilie 2007 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subiect	C-14'-	Punctaj	
	Soluție	parțial	total
I.A.	Expresia forței responsabilă de mișcarea oscilatorie a pendulului $F = (mg - F_e)\sin(\Delta\alpha)$,	0,3	3 p
	unde F_e este forța electrică ce acționează asupra corpului suspendat de fir $(F_e < G)$		
	$F_e = qE \; ; \; E = \frac{\sigma}{2\varepsilon_0} \; ,$	0,4	
	unde σ este densitatea sarcinii superficiale a planului orizontal;		
	$F = \left(mg - q \frac{\sigma}{2\varepsilon_0} \right) \sin(\Delta \alpha);$	0,3	
	Pentru oscilații mici: $\sin(\Delta \alpha) \approx \Delta \alpha$; $\Delta y \approx l \Delta \alpha$;	0,4	
	$F = \frac{1}{l} \left(mg - q \frac{\sigma}{2\varepsilon_0} \right) \Delta y;$		
	$\vec{F} = -\frac{1}{l} \left(mg - q \frac{\sigma}{2\varepsilon_0} \right) \Delta \vec{y}; \ k = \frac{1}{l} \left(mg - q \frac{\sigma}{2\varepsilon_0} \right); \vec{F} = -k\Delta \vec{y};$	0,4	
	$k = m\omega^2 = m\frac{4\pi^2}{T_0^2}; T_0^2 = \frac{4\pi^2 l}{g - \frac{q}{m}\frac{\sigma}{2\varepsilon_0}}.$	0,4	
	Dacă sarcina pendulului este $-q$, atunci perioada oscilațiilor sale armonice va fi dată de expresia:	0,4	
	$T^{2} = \frac{4\pi^{2}l}{g + \frac{q}{m}\frac{\sigma}{2\varepsilon_{0}}};$		
	$T = \pi T_0 \sqrt{\frac{2l}{gT_0^2 - 2\pi^2 l}}.$	0,4	
I.B.a.	Cunoasterea formulei $v = \sqrt{\tau/\mu}$ (viteza undelor transversale) si	0,5	3 p
	aflarea dependentei concrete $v = \sqrt{gx}$ (x = distanta de la capatul		

	inferior al corzii)		
	Calculul timpului de propagare a pulsului pe distanta $L-x$ [anume deducerea expresiei $T(x) = (2/\sqrt{g})(\sqrt{L} - \sqrt{x})$]	1,0	
	Timpul de parcurs al bilei $t(x) = \sqrt{2(L-x)/g}$	0,2	
	Deducerea ecuatiei $9x^2 - 10Lx + L^2 = 0$ si obtinerea solutiilor $x = L$ (momentul initial) si $x = L/9$ (momentul depasirii pulsului de catre bila)	0,5	
I.B.b.	Deducerea expresiei $t_{\text{intalnire}} = (4/3)\sqrt{L/g}$	0,3	
I.B.c.	Calculul timpilor $t_u = 2\sqrt{L/g}$ si $t_b\sqrt{2L/g}$ precum si relatia $t_u = \sqrt{2} \ t_b$	0,5	
I.C.	Desenul formarii umbrei pe ecranul din planul focal	0,5	3 p
	Din asemanarea de triunghiuri diametrul exterior $D_u = D(\ell+f)/\ell$	0,5	
	Din asemanarea de triunghiuri diametrul interior $d_u = d(L-f)/L$	0,5	
	Pozitia punctului imagine este data de $L = f\ell/(\ell - f)$	0,5	
	Formula ariei umbrei pe ecran $S(\ell) = \frac{\pi}{4\ell^2} [D^2(\ell + f)^2 - d^2 f^2)]$	0,5	
	Graficul dependentei $S(\ell)$	0,5	
Oficiu			1 p
Total su			10 p
II.A.	Egalitatea drumurilor optice (pe axul optic principal si pe traiectul marginal si rezultatul $n = \sqrt{2}$	0,75	3 p
	Desenul traversarii lentilei in vecinatatea coltului B	0,5	
	Legea refractiei la intrare, unghiul $\theta = 45^{\circ}$ si concluzia $r = 30^{\circ}$	0,5	
	Legea refractiei la iesire si relatia $r' = \alpha - 30^{\circ}$	0,5	
	Stabilirea rezultatului final $tg\alpha = \sqrt{2} + \sqrt{3} = 3,15$, adica $\alpha = 72,4^{\circ}$	0,75	
II.B.	Intuirea situatiei (a) si desenul corespunzator	0,5	3 p
	Legea refractiei la intrare ($\alpha = 30^0$ in I) adica legatura dintre $n \sin \beta$	0,4	
	Determinarea lui $IO = (R\sqrt{3})/2$	0,2	
	Unghiul $IA_4O = 30^0 - \beta$	0,2	
	Teorema sinusurilor in triunghiul IOA ₄ si obtinerea relatiei	0,5	
	$\sin \beta = 1/\sqrt{13}$		
	$\sin \beta = 1/\sqrt{13}$ Determinarea lui $n_{min} = (\sqrt{13})/2 \approx 1,803$	0,4	

	Concluzio n < n < +~	0,3	
II.C.1.	Concluzia $n_{min} \le n < +\infty$ Stabilirea diferentei de drum optic $\Delta_0 = 2z\sin\theta + \lambda/2$	0,5	3 p
11.0.1.	_	0,5	Эр
	Conditiile $\Delta_0 = m\lambda$ (pentru maxime) si $\Delta_0 = (m+1/2)\lambda$ (pentru minime) si localizarea maximelor si minimelor	0,3	
	$z_{\text{max}} = \frac{(m-1/2)\lambda}{2\sin\theta} = 1,55(m-1/2) \text{ mm,respectiv}$		
	$z_{\min} = \frac{m\lambda}{2\sin\theta} = 1,55m \text{ mm, (m=1,2,3)}$		
	Expresia interfranjei $i = \lambda/2\sin\theta = 1,55$ mm precum si valorile	0,5	
	$I_{\text{max}} = 4I_1 \text{ respectiv } I_{\text{min}} = 0$		
II.C.2.	Relatia $I_2 = R_{\perp}I_1$	0,3	
	Deducerea $I_{\text{max}} = I_1(1 + \sqrt{R_{\perp}})^2 = 3,7562I_1 \text{ si}$	0,6	
	$I_{\min} = I_1 (1 - \sqrt{R_{\perp}})^2 = 0.0038I_1$		
	Deducerea vizibilitatii $V = (2\sqrt{R_{\perp}})/(1 + R_{\perp}) = 0.998$	0,6	
Oficiu	• • • • • • • • • • • • • • • • • • • •		1 p
Total sul	oiect II		10 p
III.			
III.a.	Y''. 1	0.2	3 p
	Viteza luminii are aceeași valoare în raport cu ambele sisteme de referință.	0,2	
	Distanța dintre cele două puncte, aparținând oricăruia dintre cele două sisteme de referință se calulează ca fiind egală cu lungimea diagonalei unui paralelipiped:	0,3	
	$(c\Delta t')^2 = (\Delta x')^2 + (\Delta y')^2 + (\Delta z')^2;$		
	$(c\Delta t)^2 = (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2,$		
	astfel încât:		
	$(c\Delta t')^{2} - (\Delta x')^{2} + (\Delta y')^{2} + (\Delta z')^{2} = (c\Delta t)^{2} - (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2} = 0;$		
	$(\Delta s')^2 = (\Delta s)^2 = 0.$		
	$x' = x; \ y' = \frac{y - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}}; \ z' = z; \ t' = \frac{t - \frac{v_0}{c^2} y}{\sqrt{1 - \frac{v_0^2}{c^2}}};$	0,4	
	$x = x'; y = \frac{y' + V_0 t'}{\sqrt{1 - \frac{V_0^2}{c^2}}}; z = z'; t = \frac{t' + \frac{V_0}{c^2}}{\sqrt{1 - \frac{V_0^2}{c^2}}};$		

		0.4	
	$\Delta y = y \Delta t$ $\Delta t = \frac{V_0}{2} \Delta y$	0,4	
	$\Delta x' = \Delta x; \ \Delta y' = \frac{\Delta y}{\sqrt{2}}; \ \Delta z' = \Delta z; \ \Delta t' = \frac{C}{\sqrt{2}};$		
	$\Delta x' = \Delta x; \ \Delta y' = \frac{\Delta y - v_0 \Delta t}{\sqrt{1 - \frac{v_0^2}{c^2}}}; \ \Delta z' = \Delta z; \ \Delta t' = \frac{\Delta t - \frac{\Delta t}{c^2} \Delta y}{\sqrt{1 - \frac{v_0^2}{c^2}}};$		
		0.4	
	$\Delta x = \Delta x'; \ \Delta y = \frac{\Delta y' + v_0 \Delta t'}{\sqrt{1 - \frac{v_0^2}{c^2}}}; \ \Delta z = \Delta z'; \ \Delta t = \frac{\Delta t' + \frac{v_0}{c^2} \Delta y'}{\sqrt{1 - \frac{v_0^2}{c^2}}};$	0,4	
	$\Delta x = \Delta x'; \ \Delta y = \frac{\Delta y + v_0 \Delta t}{\sqrt{2}}; \ \Delta z = \Delta z'; \ \Delta t = \frac{C^2}{\sqrt{2}};$		
	$\sqrt{1-\frac{V_0^2}{2}}$ $\sqrt{1-\frac{V_0^2}{2}}$		
	$V C^2 \qquad V C^2$	0.0	
	$(\Delta s')^{2} = c^{2} (\Delta t')^{2} - (\Delta x')^{2} - (\Delta y')^{2} - (\Delta z')^{2} \neq 0;$	0,8	
	$(\Delta s)^2 = c^2 (\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 \neq 0;$		
	$\left(\begin{array}{cc} \mathbf{v}_{0}^{2} & \mathbf{v}_{0} \end{array}\right)^{2}$		
	$(\Delta s')^2 = c^2 \frac{\left(\Delta t - \frac{\mathbf{v}_0^2}{c^2} \Delta y\right)^2}{1 - \frac{\mathbf{v}_0^2}{2}} - (\Delta x)^2 - \frac{(\Delta y - \mathbf{v}_0 \Delta t)^2}{1 - \frac{\mathbf{v}_0^2}{2}} - (\Delta z)^2 =$		
	$(\Delta s')^2 = c^2 \frac{1}{V_0^2} - (\Delta x)^2 - \frac{1}{V_0^2} - (\Delta z)^2 = \frac{1}{V_0^2} - \frac{1}{V_$		
	$1-\frac{\sigma}{c^2}$ $1-\frac{\sigma}{c^2}$		
	$= c^{2} (\Delta t)^{2} - (\Delta x)^{2} - (\Delta y)^{2} - (\Delta z)^{2} = (\Delta s)^{2};$		
	$(\Delta s)^2 = c^2 (\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 =$		
	$\left(\begin{array}{ccc} & \mathbf{v}_0^2 & \\ \end{array} \right)$		
	$=c^{2}\frac{\left(\Delta t'+\frac{V_{0}^{2}}{c^{2}}\Delta y'\right)}{1-\frac{V_{0}^{2}}{c^{2}}}-\left(\Delta x'\right)^{2}-\frac{\left(\Delta y'+V_{0}\Delta t'\right)^{2}}{1-\frac{V_{0}^{2}}{c^{2}}}-\left(\Delta z'\right)^{2}=$		
	$=c^{2}\frac{1}{V_{c}^{2}}-(\Delta x')^{2}-\frac{(-y')^{2}-(\Delta z')^{2}}{V_{c}^{2}}-(\Delta z')^{2}=$		
	$1-\frac{\sqrt{6}}{c^2}$ $1-\frac{\sqrt{6}}{c^2}$		
	$= c^{2} (\Delta t')^{2} - (\Delta x')^{2} - (\Delta y')^{2} - (\Delta z')^{2} = (\Delta s')^{2};$		
	În prima variantă $(\Delta s')^2 = (\Delta s)^2 = 0$.	0,5	
	În varianta a doua $(\Delta s')^2 = (\Delta s)^2 \neq 0$.		
	Concluzie: $(\Delta s')^2 = (\Delta s)^2$, invariantul transformărilor Lorentz		
	(invarianța intervalului relativist spațio-temporal).		
III.b	(mvarianța miervarara retativist spațio-temporar).		3 p
1.	Dacă cele două evenimente, E_{α} și E_{β} , ar fi constatate de observatorul	1,5	•
	O' din sistemul S' ca petrecându-se simultan $(t'_{\alpha} = t'_{\beta})$ în punctele		
	P'_{α} și respectiv P'_{β} , atunci intervalul spațio-temporal dintre aceste		
	evenimente ar fi:		
	$(\Delta s'_{\alpha\beta})^2 = c^2 (t'_{\beta} - t'_{\alpha})^2 - (x'_{\beta} - x'_{\alpha})^2 - (y'_{\beta} - y'_{\alpha})^2 - (z'_{\beta} - z'_{\alpha})^2;$		
	$\left(\Delta s_{\alpha\beta}^{\prime}\right)^{2} = -\left(x_{\beta}^{\prime} - x_{\alpha}^{\prime}\right)^{2} - \left(y_{\beta}^{\prime} - y_{\alpha}^{\prime}\right)^{2} - \left(z_{\beta}^{\prime} - z_{\alpha}^{\prime}\right)^{2} < 0,$		
	rezultat care nu poate fi acceptat deoarece, în conformitate cu		
	invarianța intervalului spațio-temporal dintre aceleași două evnimente		

		1	
	$\left[\left(\Delta s_{\alpha\beta} \right)^2 = \left(\Delta s_{\alpha\beta} \right)^2 \right]$, contrazice definiția intervalului de gen		
	tmporal, $(\Delta s_{\alpha\beta})^2 > 0$.		
	Concluzie: două evenimente separate printr-un interval de gen		
	temporal sunt decalate în timp față de orice alt SRI, ceea ce justifică denumirea dată acestor intervale. Sucesiunea temporală a evnimentelor		
	separate printr-un interval de gen tmporal este absolută.		
2.	Într-adevăr, dacă cele două evenimente, E_{α} și E_{β} , vor fi constatate de	1,5	
	observatorul O'din sistemul S' ca petrecându-se la momentele t_{α} și		
	respectiv t'_{β} în același punct P', atunci intervlul spațio-temporal dintre		
	aceste evnimente va fi:		
	$\left(\Delta s_{\alpha\beta}^{\prime}\right)^{2} = c^{2}\left(t_{\beta}^{\prime} - t_{\alpha}^{\prime}\right)^{2} > 0,$		
	rezultat care trebuie acceptat deoarece, în conformitate cu invarianța intervalului spațio-temporal dintre aceste evenimente,		
	$\left(\Delta s_{\alpha\beta}\right)^2 = \left(\Delta s_{\alpha\beta}\right)^2$, nu contrazice definiția intervalului de gen		
	temporal, $(\Delta s_{\alpha\beta})^2 > 0$.		
III.c.			3 p
1.	Dacă cele două evnimente, E_{α} și E_{β} , ar fi constatate de observatorul	1,5	
	O' din sistemul S' ca petrecându-se într-un același punct, P', la		
	momentele t'_{α} şi respectiv t'_{β} , atunci intervalul spațio-temporal dintre		
	aceste evenimente ar fi:		
	$\left(\Delta s_{\alpha\beta}^{\prime}\right)^{2}=c^{2}\left(t_{\beta}^{\prime}-t_{\alpha}^{\prime}\right)^{2}>0,$		
	rezultat care nu poate fi acceptat deoarece, în conformitate cu invarianța intervalului spațio-temporal dintre aceleași două evnimente		
	$\left[\left(\Delta s_{\alpha\beta} \right)^2 = \left(\Delta s_{\alpha\beta} \right)^2 \right]$, contrazice definiția intervalului de gen spațial,		
	$\left(\Delta s_{\alpha\beta}\right)^2 < 0.$		
	Concluzie: două evenimente separate printr-un interval de gen spațial,		
ĺ	1 1 1 """ "" "" "" "" "" "" "" "" "" ""		
	sunt decalate în spațiu față de orice alt SRI, ceea ce justifică denumirea		
	dată acestor intervale. Decalarea spațială a evnimentelor separate		
2.	dată acestor intervale. Decalarea spațială a evnimentelor separate printr-un interval de gen spațial este absolută.	1,5	
2.	dată acestor intervale. Decalarea spațială a evnimentelor separate printr-un interval de gen spațial este absolută. Într-adevăr, dacă cele două evenimente, E_{α} și E_{β} , vor fi constatate de	1,5	
2.	dată acestor intervale. Decalarea spațială a evnimentelor separate printr-un interval de gen spațial este absolută. Într-adevăr, dacă cele două evenimente, E_{α} și E_{β} , vor fi constatate de observatorul O'din sistemul S' ca petrecându-se în punctele P'și	1,5	
2.	dată acestor intervale. Decalarea spațială a evnimentelor separate printr-un interval de gen spațial este absolută. Într-adevăr, dacă cele două evenimente, E_{α} și E_{β} , vor fi constatate de observatorul O'din sistemul S' ca petrecându-se în punctele P' și respectiv Q', la momentele t'_{α} și respectiv t'_{β} , atunci intervlul spațio-	1,5	
2.	dată acestor intervale. Decalarea spațială a evnimentelor separate printr-un interval de gen spațial este absolută. Într-adevăr, dacă cele două evenimente, E_{α} și E_{β} , vor fi constatate de observatorul O'din sistemul S' ca petrecându-se în punctele P'și	1,5	

	rezultat care trebuie acceptat deoarece, în conformitate cu invarianța intervalului spațio-temporal dintre aceste evenimente, $(\Delta s_{\alpha\beta})^2 = (\Delta s_{\alpha\beta})^2$, nu contrazice definiția intervalului de gen temporal, $(\Delta s_{\alpha\beta})^2 < 0$.	
Oficiu		1 p
Total su	biect III	10 p
	TOTAL GENERAL	30 p

Subiect propus de: prof. dr. Florea ULIU- Facultatea de Fizică - Universitatea din Craiova

prof. dr. Mihail SANDU- Facultatea de Științe - Universitatea Lucian Blaga Sibiu