A equação de dano:

seja c(t) o número de células ou moléculas em estudo:

$$c(t) = c_0 \exp{-\Omega(t)}$$

ou seja, se Ω traduz o efeito da interacção danosa, o número de células na população decresce exponencialmente no tempo.

$$\ln \frac{c(t)}{c_0} = -\Omega(t) = -A \int \exp\left(-\frac{\Delta E}{RT(t')}\right) \, dt'$$

- \bullet ΔE , a energia de transição de estado das células ou moléculas
- $\bullet~RT,$ a energia térmica da amostra de células
- o integral da exponencial
 - que acontece quando $RT\gg \Delta E>>> \frac{\Delta E}{RT} \to 0 \ \Omega(t) \sim A \, \Delta t$
 - $-\ RT \ll \Delta E, \, \frac{\Delta E}{RT} \rightarrow \infty$ pelo que $\Omega(t) \rightarrow 0$
 - * população de células...
 - -A, unidades?,
 - * característico do meio de interacção (Niemz apresenta alguns valores típicos...)

$$A = \frac{KT}{h} \exp \frac{\Delta S}{R}$$

- Splinter avança mesmo números para Ω determinantes do efeito térmico induzido no tecido:
 - $-0 \le \Omega \le 0.53$, sem efeito térmico notável
 - 0.53 < Ω < 1, coagulação do tecido
 - $-\Omega \geq 1$, carbonização do tecido!

problema Moodle

100mJ, 1ms

• $\bar{P}=100{
m W},\,I=\bar{P}/A\sim 10^4{
m W/cm^2},$ fluência $\Phi_{1ms}=I\times\delta t=10^4\times 10^{-3}=10{
m J/cm^2}$

 $100 \mathrm{pJ},\, 1 \mathrm{ps}$

• $\bar{P}=100$ W, $I=\bar{P}/A\sim 10^4$ W/cm², fluência $\Phi_{1ps}=I\times\delta t=10^4\times 10^{-12}=10^{-8}$ J/cm²

A fluência do impulso ps é muito baixa para induzir qualquer efeito térmico em tecidos biológicos. Para que estes impulsos possam causar impacto térmico têm de ser entregues em grande quantidade

duplicação em frequência

relevante para transformar um laser Vis/NIR em UV!

 $E_1 = h\nu_1 \text{ (1064nm, Nd:YAG)}$

 $E_2=h(2\nu_1)\to\nu_2=2\nu_1\to\lambda_2=\lambda_1/2$ (532nm cristal KTP, geração de 2º harmónico)

 $E_3=\stackrel{'}{h}(3\nu_1)\to\nu_3=3\nu_1\to\lambda_2=\lambda_1/3$ (355nm cristal LBO, geração de 3º harmónico)

 $E_4 = \stackrel{.}{h}(4\nu_1) \rightarrow \nu_4 = 4\nu_1 \rightarrow \lambda_2 = \lambda_1/4$ (266nm KDP, ADP não linear)