2016《线性代数 Ⅱ》期末考试卷(B)

使用专业、班级 学号 姓名

题号	 	三	四	五.	六	七	八	总分
得分								

本题 得分

一、填空题(每小题 4分,共 20分)

$$\begin{vmatrix} 2 & 2 & 2 \\ -1 & 1 & 3 \\ 1 & 1 & 9 \end{vmatrix} = \underline{\qquad 32 \qquad}.$$

2. 已知矩阵
$$A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$
, $\mathcal{M}(A-2E)^{-1} = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ \hline 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$.

3. 设
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & a & 1 \\ 5 & 0 & 3 \end{pmatrix}$$
,且其秩为 2,则 $a = \underline{\qquad 6}$.

4. 设 η_1 、 η_2 是非齐次线性方程组 AX = b 的两个解,若 $\lambda \eta_1 + \mu \eta_2$ 仍然为该线性方程组的 μ 解,则 λ 、 μ 满足关系式 $\lambda + \mu = 1$.

5. 设 A 为三阶矩阵,且 A 的各行元素之和为 4 ,则 A 一定有特征值 4 .

得分

二、选择题(每小题 4分,共16分)

1. 设A,B均为n阶矩阵,则必有(C).

(A)
$$|A + B| = |A| + |B|$$
 (B) $AB = BA$ (C) $|AB| = |BA|$ (D) $|A|^2 = |B|^2$

- 2. 如果P $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} a_{11} 2a_{21} & a_{12} 2a_{22} & a_{13} 2a_{23} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$, 则P = (B). $(a_{31} \ a_{32} \ a_{33}) \ (a_{31} \ a_{32}$ $\begin{pmatrix} 1 & -2 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ (A) $\begin{bmatrix} -2 & 1 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} -2 & 0 & 1 \end{pmatrix}$
- 3. "n阶矩阵 A 有 n 个不同的特征根"是"A 与 n 阶对角阵相似"的(B). (A) 充要条件 (B) 充分而非必要条件

 - (C) 必要而非充分条件 (D) 既不充分也不必要条件
- 4. 设A 是秩为n-1的n阶矩阵, α_1 、 α_2 是方程组AX=0的两个不同的解向量,则 方程组 AX = 0 的通解为(D).

- (A) $\alpha_1 + \alpha_2$ (B) $k\alpha_1$ (C) $k(\alpha_1 + \alpha_2)$ (D) $k(\alpha_1 \alpha_2)$

三、(本题 10分)

设
$$a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $b = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$, $A = ab^T$, 求 A^6 .

解: $A^6 = a (b^T a)^5 b^T \dots (4) = -ab^T \dots (6)$

四、(本题 12 分) 已知矩阵 $A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$,且满足 AX = A + 2X,求 X.

解::: $(A-2E)X = A \cdot \cdot \cdot \cdot \cdot \cdot (2')$

$$|A-2E| = \begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{vmatrix} = -1 \neq 0 \Rightarrow A-2E$$
 可逆 $\Rightarrow X = (A-2E)^{-1}A \cdots (5')$

$$(A-2E:A) = \begin{pmatrix} 2 & 2 & 3 & 4 & 2 & 3 \\ 1 & -1 & 0 & 1 & 1 & 0 \\ -1 & 2 & 1 & -1 & 2 & 3 \end{pmatrix} \xrightarrow{\text{institute}} \begin{pmatrix} 1 & 0 & 0 & 3 & -8 & -6 \\ 0 & 1 & 0 & 2 & -9 & -6 \\ 0 & 0 & 1 & -2 & 12 & 9 \end{pmatrix} \cdots \cdots (11')$$

$$\therefore X = \begin{pmatrix} 3 & -8 & -6 \\ 2 & -9 & -6 \\ -2 & 12 & 9 \end{pmatrix} \dots \dots (12^{'})$$

本题 得分

五、 (本题 12 分) 齐次线性方程组为
$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (1+\lambda)x_2 + x_3 = 0 \end{cases}$$
 ,问:
$$x_1 + x_2 + (1+\lambda)x_3 = 0$$

 $\pm \lambda$ 为何值时,该方程组只有零解、有非零解;并求出非零解时的通解.

解: 系数行列式
$$|A| = \begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = (\lambda+3) \lambda^2 \cdots (3')$$

- (1) 当 $|A| \neq 0$ 即 $\lambda \neq -3$ 且 $\lambda \neq 0$ 时,方程组只有零解;……(5')
- (2)当|A| = 0即 $\lambda = -3$ 或 $\lambda = 0$ 时,方程组有非零解;……(7)

当
$$\lambda = -3$$
时, $A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ $\xrightarrow{\eta \Leftrightarrow free \#}$ $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \Rightarrow 通解为 $c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $c \in R \cdots (9^{\circ})$

当
$$\lambda = 0$$
 时, $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ 初等行变换 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ⇒ 通解为 $c_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$; c_1 、 $c_2 \in R$(12)

江南大学考 试卷专用纸

本题

六、(本题 12分)

已知向量组
$$\overrightarrow{\alpha_1} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\overrightarrow{\alpha_2} = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\overrightarrow{\alpha_3} = \begin{pmatrix} 2 \\ -5 \\ 3 \\ 6 \end{pmatrix}$, $\overrightarrow{\alpha_4} = \begin{pmatrix} 1 \\ 5 \\ 4 \\ 8 \end{pmatrix}$, $\overrightarrow{\alpha_5} = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}$;

- (1) 求该向量组的秩以及它的一个最大无关组;
- (2) 将其余向量用所求的最大无关组线性表示.

$$\widehat{\text{MF}}: \left(\overrightarrow{\alpha_1}, \overrightarrow{\alpha_2}, \overrightarrow{\alpha_3}, \overrightarrow{\alpha_4}, \overrightarrow{\alpha_5}\right) = \begin{pmatrix} 1 & 0 & 2 & 1 & 1 \\ -1 & 3 & -5 & 5 & -2 \\ 2 & 1 & 3 & 4 & 2 \\ 4 & 2 & 6 & 8 & 0 \end{pmatrix} \xrightarrow{\widehat{\tau_7}} \begin{pmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \dots (4')$$

$$\xrightarrow{\overline{i}} \begin{pmatrix}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\dots \dots (6')$$

- ⇒该向量组的秩为3……(8′)
- ⇒ 最大无关组为 $(\overrightarrow{\alpha_1}, \overrightarrow{\alpha_2}, \overrightarrow{\alpha_5})$(10)

$$\Rightarrow \overrightarrow{\alpha_3} = 2\overrightarrow{\alpha_1} - \overrightarrow{\alpha_2}, \overrightarrow{\alpha_4} = \overrightarrow{\alpha_1} + 2\overrightarrow{\alpha_2} \cdot \cdots \cdot (12')$$

本题 七、(本题12分)

设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
, 求正交矩阵 P 和对角阵 Λ , 使得 $P^{-1}AP = \Lambda$.

解:
$$|A - \lambda E| = \begin{vmatrix} 3 - \lambda & 2 & 2 \\ 2 & 3 - \lambda & 2 \\ 2 & 2 & 3 - \lambda \end{vmatrix} = (7 - \lambda)(1 - \lambda)^2 = 0 \Rightarrow$$
特征值为 7、1(3')

当
$$\lambda = 7$$
时, $(A - \lambda E) = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \dots (5')$

当
$$\lambda = 1$$
时, $(A - \lambda E) = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ $\xrightarrow{\text{fī}}$ $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \xi_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\xi_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$;……(8')

$$\Rightarrow P = \begin{pmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & 0 & -\frac{\sqrt{6}}{3} \end{pmatrix} \cdots (11'); \quad \Lambda = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P^{-1}AP = \Lambda \cdots (12')$$

本题 得分

八、(本题6分)

已知向量组 $\overrightarrow{\alpha_1}$ 、 $\overrightarrow{\alpha_2}$ 、 $\overrightarrow{\alpha_3}$ 是正交向量组,证明: $\overrightarrow{\alpha_1}$ 、 $\overrightarrow{\alpha_2}$ 、 $\overrightarrow{\alpha_3}$ 线性无

关. 证明:

设
$$k_1 \overrightarrow{\alpha_1} + k_2 \overrightarrow{\alpha_2} + k_3 \overrightarrow{\alpha_3} = \overrightarrow{O}$$

 $\Rightarrow \overrightarrow{\alpha_1}^T (k_1 \overrightarrow{\alpha_1} + k_2 \overrightarrow{\alpha_2} + k_3 \overrightarrow{\alpha_3}) = 0 \cdot \cdot \cdot \cdot \cdot \cdot (2')$

因为 $\overrightarrow{\alpha_1}$ 、 $\overrightarrow{\alpha_2}$ 、 $\overrightarrow{\alpha_3}$ 为正交向量组 $\Rightarrow k_1 \overrightarrow{\alpha_1}^T \overrightarrow{\alpha_1} = 0 \Rightarrow k_1 = 0$ 类似可证 $k_2 = k_3 = 0 \cdots (5')$ 所以 $\overrightarrow{\alpha_1}$ 、 $\overrightarrow{\alpha_2}$ 、 $\overrightarrow{\alpha_3}$ 线性无关.....(6')