INTO 10TH CBSE/ICSE

INSTRUCTIONS

NUMBER OF QUESTIONS: 100

TIME: 2 Hrs

- 1. ATTEMPT ALL OUESTIONS WITHIN THE TIME.
- 2. EACH OUESTION CARRIES 1 MARK
- 3. NO NEGATIVE MARKS.
- 4. DON'T DO ROUGH WORK ON QUESTION PAPER AND OMR.
- 5. USE BLACK (OR) BLUE PEN FOR BUBBLING ON OMR.

MATHEMATICS

- A rational number between $3\frac{1}{3}$ and $3\frac{2}{3}$ is
 - 1.3

- 2. 4 3. $3\frac{1}{2}$ 4. $3\frac{4}{5}$

- 2.
 - 1. 0.84

- 1. 0.84 2. 8.4 3. 0.084 4. 0.74 If x + y = 7, xy = 12 then $x^2 + y^2 =$
- 1. 14

- 2. 15 3. 25 4. 16
- $3 + 2\sqrt{5}$ is a
- 1. A rational number 2. An integer 3. An irrational number 4. A whole number
- $\sqrt{8+2}\sqrt{15}$

- 1. $\sqrt{5} + \sqrt{3}$ 2. $\sqrt{5} \sqrt{3}$ 3. $\sqrt{3} \sqrt{5}$ 4. $\sqrt{3} + \sqrt{2}$ 6. The degree of the polynomial $3x^4 2x^3 + 5x^2 + 7$ 1. 1 2. 2 3. 4 4. 3
 7. If $p(x) = x^2 5x 6$ then P(1) =

- 1. 1 2. 5 3. 10 4. -10 The remainder of $4x^2 8x + 3$ when divided by 2x + 3 is

- 4. 24
- 1. 0 2. 8 3.-16 If the remainder of the polynomial f(x) when divided by x + 1 and x - 1 are 7, 3 Then 9. the reminder of f(x) when divided by $x^2 - 1$ is

- 1. 3x+5 2. 2x+7 3. 2x+5 4. -2x+5 10. Which of the following is a polynomial?

- 1. $2x^2 \frac{3}{x} + 5$ 2. $5\sqrt{x} + 2x$ 3. $x^2 \frac{1}{2}$ 4. $-\frac{1}{x+y}$ 11. If x + y + z = 0 then $x^3 + y^3 + z^3 =$
 - 1. xyz 2. 2xyz 3. 3xyz

26.						
	1. $x + y = 1$	2. $x + y = -1$	$3. x^2 + y^2 = 1$	4. $(x+y)^2 = 1$		
27.	If medians of trian	ngle are $3\sqrt{5}, 3\sqrt{5}, 3\sqrt{2}$	units Then area of	the triangle issq		
	units					
20	1. 18	2. 36	3.9	4. 10		
28.		ting 53 Sundays in a l		5		
	1. $\frac{1}{7}$	2. $\frac{2}{7}$	$3.\frac{3}{7}$	4. $\frac{5}{7}$		
29.		x+y				
	If $x > y > 0$, $x^2 + y$	$y^2 = 6xy$ then $\frac{x+y}{x-y}$ is	equal to			
	_	•	. 1	_		
	1. $\sqrt{3}$	2. $\sqrt{2}$	3. $\frac{1}{\sqrt{2}}$	4. $-\sqrt{2}$		
30.	In a square ABCD	of side 6 units. P, Q	are mid points of BC	C, CD respectively. The		
	_	DP intersect in 'R' th	-			
21	1. 12	2. 24	3.48	4. 36		
31.		ure diameter of semic		A		
	units and $AB = AC$ sq units	C then area of $\triangle ABC$	IS			
	•	_ 1	/			
	1.1	$2.\frac{1}{2}$	u			
	3.2	4.4	В	o C		
32.	1 2 4	2017 . 1				
	If $x + \frac{1}{x} = 2$ then $x = \frac{1}{x}$	$x^{2017} + \frac{1}{x^{2017}} =$				
	1. 1	2. 0	3.2	4. 2017		
33.	In adjacent figure	$\angle ABC = 45^0$ then $\angle B$	BCE =	$A \longrightarrow B$		
				C/		
				\times		
				$D \longrightarrow D$		
	1 600	2. 450	2 000	D , E		
34.	1. 60 ⁰ Class mark of 10-2	2. 45°	3.90 ⁰	4. 180 ⁰		
34.	1. 10	2. 15	3.20	4. 25		
35.		hombus are 3cm, 4cm				
	1. 12	2. 6	3.18	4. 9		
36.	Volume of sphere		4	4		
	1. $\frac{2}{3}\pi r^3$	$2. \pi r^2 h$	$3.\frac{1}{2}\pi r^2h$	4. $\frac{4}{3}\pi r^3$		
37.	Equation of x axis		2	5		
51.	Equation of x axis 1. $y = 0$		3. $y = k$	4. $x = k$		
38.	Angle in a semicir					
\ <u></u>	1.0^{0}	2. 60 ⁰	3.90^{0}	4. 120 ⁰		

1. $\frac{1}{2}$ 2. 1 3. 0 4. $-\frac{1}{2}$ 40. If a, b are positive real numbers and $a+b=1$ then minimum value of a^3+b^4 1. $\frac{1}{2}$ 2. $\frac{1}{4}$ 3. $\frac{1}{8}$ 4. $\frac{1}{16}$ 41. The length of equator on the globe is 88 cm, then $r=$	39.	Probability of impossible event is					
1. $\frac{1}{2}$ 2. $\frac{1}{4}$ 3. $\frac{1}{8}$ 4. $\frac{1}{16}$ 41. The length of equator on the globe is 88 cm, then $r =$		1. $\frac{1}{2}$	2. 1	3.0	4.	$-\frac{1}{2}$	
41. The length of equator on the globe is 88 cm, then $r =$ cm. 1. 12	40.	If a, b are positive real numbers and $a+b=1$ then minimum value of a^4+b^4					
41. The length of equator on the globe is 88 cm, then $r =$ cm. 1. 12		1 1	$\frac{1}{2}$	$\frac{1}{3}$	1	1	
1. 12 2. 10 3. 16 4. 14 42. The base of prism is a triangle of sides 3 cm, 4cm and 5cm. Height of the prism is 10 cm, the LSA =		$\frac{1}{2}$	2. 4	3. 8	4 .	16	
42. The base of prism is a triangle of sides 3 cm, 4cm and 5cm. Height of the prism is 10 cm, the LSA =	41.	The length of equator	or on the globe is 88	cm, then $r = \dots$		cm.	
cm, the LSA =							
1. 110 2. 100 3. 160 4. 120 43. If the median of $\frac{a}{3}, \frac{a}{2}, \frac{a}{4}, \frac{2a}{5}, \frac{a}{6}$ is 12, then find the value a(a>0). 1. 36 2. 48 3. 30 4. 24 44. Which of the following is correct? N = Natural numbers W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1. $(x+2)(x+5) = (x+2)(x+5) = (x+2$	42.		•	cm, 4cm and 5cm. H	Heig	ht of the prism is 10	
43. If the median of $\frac{a}{3}$, $\frac{a}{2}$, $\frac{a}{4}$, $\frac{2a}{5}$, $\frac{a}{6}$ is 12, then find the value a(a>0). 1. 36 2. 48 3. 30 4. 24 44. Which of the following is correct? N = Natural numbers W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1. $(x+2)(x+5) = \frac{x^2}{2} + $				2.160		120	
1. 36 2. 48 3. 30 4. 24 44. Which of the following is correct? N = Natural numbers W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1. (3) (3) (3) (3) (3) (3) (4) (3) (4)	42					120	
44. Which of the following is correct? N = Natural numbers W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1. $(x+2)(x+5) = -x$ 2. $(x+2)(x+5) = -x$ 3. $(x+2)(x+5) = -x$ 1. $(x+2)(x+5) = -x$ 1. $(x+2)(x+5) = -x$ 2. $(x+2)(x+5) = -x$ 3. $(x+2)(x+5) = -x$ 4.	43.	3 .					
N = Natural numbers W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1.				3.30	4.	24	
W = Whole numbers Z = integer Q = rational numbers S = irrationals R = real numbers 1.	44.		•				
Z = integer Q = rational numbers S = irrationals R = real numbers 1. $(x+2)(x+5) = -x$ 2. $(x+2)(x+5) = -x$ 1. $(x+2)(x+5) = -x$ 2. $(x+2)(x+5) = -x$ 3. $(x+2)(x+5) = -x$ 4. $(x+2)(x+5) = -x$							
Q = rational numbers S = irrationals R = real numbers 1. $(x+2)(x+5) = -x^2 - 7x + 10$ 2. $(x+2)(x+5) = -x^2 - 7x + 10$ 3. $(x+2)(x+5) = -x^2 - 7x + 10$ 46. The angle between two hands of a clock when the time in the clock is 7:00 PM is 1. $(x+2)(x+5) = -x^2 - 7x + 10$ 3. $(x+2)(x+5) = -x^2 - 7x + 10$ 47. The figure formed by joining the mid points of sides of a rectangle is 1. Rhombus 2. Rectangle 3. Parallelogram 4. Square 48. If $a^x = \left(\frac{a}{k}\right)^y = k^m$ then $\frac{1}{x} - \frac{1}{y} = \frac{1}{x^2} = \frac$			S				
S = irrationals R = real numbers 1.		_	*0				
R = real numbers 1.		_	.5				
1. $(x+2)(x+5)=$ 2. $(x+2)(x+5)=$ 4. $($							
3.		1. z			R)		
1. $x^2 + 7x + 10$ 2. $x^2 - 7x + 10$ 3. $x^2 + 10x + 7$ 4. $x^2 - 7x - 10$ 46. The angle between two hands of a clock when the time in the clock is 7:00 PM is $ \frac{1.360^0}{1.360^0} $ 2. 90^0 3. 0^0 4. 210^0 47. The figure formed by joining the mid points of sides of a rectangle is $ \frac{1. \text{Rhombus}}{1. \text{Rhombus}} $ 2. Rectangle 3. Parallelogram 4. Square 48. If $a^x = \left(\frac{a}{k}\right)^y = k^m$ then $\frac{1}{x} - \frac{1}{y} = \frac{1}{x^2}$ 1. 0 2. 1 3. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is		3. (Zs)w		N Z S	R		
46. The angle between two hands of a clock when the time in the clock is 7:00 PM is $ \frac{1.360^{0}}{1.360^{0}} $ 2. 90° 3.0° 4. 210° 47. The figure formed by joining the mid points of sides of a rectangle is 1. Rhombus 2. Rectangle 3. Parallelogram 4. Square 48. If $a^{x} = \left(\frac{a}{k}\right)^{y} = k^{m}$ then $\frac{1}{x} - \frac{1}{y} =$ 1. 0 2. 1 3. m 4. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is $ \frac{1}{m} $	45.	(x+2)(x+5) =					
1. 360° 2. 90° 3. 0° 4. 210° 47. The figure formed by joining the mid points of sides of a rectangle is 1. Rhombus 2. Rectangle 3. Parallelogram 4. Square 48. If $a^{x} = \left(\frac{a}{k}\right)^{y} = k^{m}$ then $\frac{1}{x} - \frac{1}{y} =$ 1. 0 2. 1 3. m 4. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is		1. $x^2 + 7x + 10$	2. $x^2 - 7x + 10$	3. $x^2 + 10x + 7$	4.	$x^2 - 7x - 10$	
47. The figure formed by joining the mid points of sides of a rectangle is	46.	The angle between t	wo hands of a clock	when the time in the	clo	ck is 7:00 PM is	
47. The figure formed by joining the mid points of sides of a rectangle is							
1. Rhombus 2. Rectangle 3. Parallelogram 4. Square 48. If $a^{x} = \left(\frac{a}{k}\right)^{y} = k^{m}$ then $\frac{1}{x} - \frac{1}{y} =$ 1. 0 2. 1 3. m 4. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is							
48. If $a^{x} = \left(\frac{a}{k}\right)^{y} = k^{m}$ then $\frac{1}{x} - \frac{1}{y} =$ 1. 0 2. 1 3. m 4. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is	47.						
If $a^{x} = \left(\frac{a}{k}\right) = k^{m}$ then $\frac{1}{x} - \frac{1}{y} = \frac{1}{x}$. 1. 0 2. 1 3. m 4. $\frac{1}{m}$ 49. Each edge of a cube is increased by 50% then percentage increase in the surface area is	10			3. Parallelogram	4.	Square	
49. Each edge of a cube is increased by 50% then percentage increase in the surface area is	46.	If $a^{\mathbf{x}} = \left(\frac{a}{k}\right)^{n} = k^{m}$ th					
49. Each edge of a cube is increased by 50% then percentage increase in the surface area is		1. 0	2. 1	3. <i>m</i>	4.	<u>1</u>	
is	40		11 500				
	49.						
,			2. 2 times increase	d 3. Does not change	4.	50%	

	1. to change the instrument used for measurement								
	2. to take help of experienced observer								
	3. to repeat the experiment many times and to take the average results								
	4. none of the above								
63.				elocity-time gra	aphs s	shows a re	ealistic si	tuat	ion for a body in
00.		tion?		orderly time gre	apris :	no we are			ion for a coaj m
	ı IIIO t	▲	v	A .		v A		ν,	4
	1		2	\sim	2	1 _ 1	4		
	1.	(2.	$ / \vee$	3.	7	4.	•	
		<u></u> ,		<u> </u>		'	1	<u></u> -	<u> </u>
64.	A p	erson moves 30	m nort	th and 20m tow	ards	east and f	inally 30	$\sqrt{2}$	m in south-west
	dire	ction. The displ	aceme	ent of the person	n fror	n the orig	in will be)	
		0m along north		-		_			ero
65.									onless table. If m ₁
		$kg, m_2 = 8kg, m_3$			_				
	1. 1		, _,	_				r ₁ [T ₂ T ₃
		.375N		2. 9N 4. 1.75N	ſ		<i>m</i> ₁		m_2 m_3 m_3
66.	A h	ody of mass 10k	σ mov	ves at a constan	t sne	ed of 10m	viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	istai	nt force then acts
00.									rection. The force
		on on the body i		and Sives it a s	Pood		ii opposit	.	100010111 1110 10100
		30 N	22	20 N	3	10 N	4.	1	5 N
67.			a ser					mal	l pistons are in the
									eient to lift a car of
		s 1200 kg?	Ü	1		•			
	1.3	kgf	2. 30	0 kgf	3.3	00 kgf	4.	. 30	000 kgf
68.	A ta	ink full of liquid	has a	n orifice 4.9 m	belov	w the surf	ace level	in t	he tank. The
	velo	ocity of outcomi	ng liq	uid is					1
		.9 m s ⁻¹							
69.									materials is 5 : 3.
						ne thickne	ss of thes	se m	naterials is same,
	ther	n the ratio of the	_						
	1. $\frac{3}{5}$	3	$_{2} = \frac{5}{}$	_	3 4	2	$\it \Delta$	7	
	5	<u> </u>	2. $\frac{1}{3}$	-	5	7	т.	$\frac{1}{2}$	
70.	On	a hypothetical so	cale X	, the ice point	15.40^{0}	and the st	team poi	nt is	120 ⁰ . For another
		e Y, the ice poir							
		ıld read		-		-	•		
	1	5^{0}	2	8^0	3	10^{0}	4.	:	12^{0}
71.		coefficients of	annare	ent expansion of	of a lic	uid when	determi	ned	using two
		erent vessels A		-		-			_
									f the vessel B is:
	-						-		
	1 -	$\alpha \gamma_1 \gamma_2$	$2 \frac{\gamma}{2}$	$\gamma_1 - \gamma_2$	$3^{\frac{1}{2}}$	$\gamma_1 - \gamma_2 + \alpha$	- 4	γ_1	$\frac{1-\gamma_2}{1-\gamma_2}+\alpha$
	γ	$\frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$		2α	٥.	3			3
72.	Wh	en 10 ¹⁹ electrons	s are r	emoved from a	neuti	al metal p	plate, the	elec	ctric charge on it
		coulomb)				1			Č
	·	,						1($0q_1$
	1. 1	0^{+19}	2. +	1.6	3	1.6	4.	. =	<u>- 11</u>
									\mathcal{U}_2

62. The best method to reduce random error is

73.	The current I in th	e given circuit	is		i	
				, 3 ,	2 V T	50 Hr 2250
	1. $\frac{1}{45}$ A	$2. \frac{15}{15}$ A	3. $\frac{10}{10}$ A	4 A		
		4. 4 . 4		11 1		5Ω
74.	Two similar head					
	consume 48W from 1.6Ω	2.4Ω				
75.	An electron and p		nagnetic field	.0Ω perpendicularl	عدد. ۱.عد lv Both ha	
,	energy. Which of			perpendicular		
	1. trajectory of ele	ectron is less cu	irved 2	2. Trajectory of	f proton is	less curved
	2. both trajectories	s are equally cu	urved 4	I. Both move o	n straight l	line path
76.	A long magnet is of				of their le	engths is 2:1.
	Then ratio of pole 1. Equal	strengths of bo		n is 2. In the ratio o	f 2 · 1	
	3. In the ratio of 1	: 2		I. In the ratio o		
77.	A small object is p					behind the
	object, 30 cm from					
	your eyes?	2 (0	2.6		4 40	
70	1. 20 cm				4. 40 cı	n
78.	One side of a glass is incident on the				45°	
	Refractive index of			l = 43.		
	The deviation of the			al path when it	<u>-</u>	μ = 1.5
	comes out of the	•		•	minnin.	
	1. 90 ⁰	2. 180 ⁰	3.1	20^{0}	4. 45 ⁰	
79.	For stretched strin	g, frequency is	directly prop	portional to		
	1. Tension	2. √tension	- 1 3. N	Mass/unit lengt	h 4. $\sqrt{\text{ma}}$	ss/unit length
80.	If 25 waves are pr					
	1. 25 Hz	2. 20Hz	3.1	5Hz	4. 30Hz	Z
0.1			CHEMIS	TRY		
81.	LPG stands for			N T	D.41.	C
	 Litre Petroleum Gas Latitudinal Petroleum Gas Liquefied petroleum G 					
82	Hydrochloric acid					
02.	1. Ammonium hyd		•	2. Ammonium		ance cancu
	3. Ammonium chl			I. Nitric acid	ilydioxide	
83.	The scattering of b				colloidal so	olution is
	1. Raman effect			2. Crompton ef		31441 011 15
	3. Photo electric e	ffect		I. Tyndall effe		
84.	Which reaction in	volves neither	oxidation nor	reduction		
	1. $CrO_4^{2-} \to Cr_2O_7^2$	$-2. Cr \rightarrow Ci$	rCl_3 3. I	$Na \rightarrow Na^+$	4. $2S_2C$	$O_3^{2-} \to S_4 O_6^{2-}$
85.	Match the following	ng.				
	a) Calcium nitrate		i) HNC			
	b) Nitric acid		ii) (NH	., -		
	c) Ammonium Ch		iii) Ca(
	d) Ammonium pho	-	iv) NH		;;; 1 '	
	1. $a \rightarrow iii$, $b \rightarrow i$, $c \rightarrow i$			2. a→i, b→ii, c	,	
<u></u>	3. a→ii, b→iii, c−	→1V, a→1	ے 	$1. \ a \rightarrow iv, b \rightarrow i,$	$c \rightarrow 11, d \rightarrow 1$	11

86.	36. Number of moles of 22g of carbon dioxide is								
		_		4. 0.5					
87.	The isotope of	is used in tre	eatment of cancer.						
	1. Iron	2. Sodium	3. Iodine	4. Cobalt					
88.				in his alpha particles					
	scattering experim								
	•	2. Silver foil	3. Copper foil	4. Gold foil					
89.		s present in CuSO ₄ .5							
		nd covalent		nt and coordinate					
		ovalent and coordina							
	4. Covalent and co								
90.			tely reduced to meta	allic lead by heating in a					
	•	-	•	s half the weight of lead					
	•	other oxide. The data							
	1. Law of reciproc	cal proportions	2. Law of cons	stant proportions					
	3. Law of multiple	proportions	4. Law of equi	valent proportions					
91.	5.6 litres of a gas	at N.T.P are found to	have a mass of 11g.	The molecular mass of the					
	gas is		C						
	1. 22	2. 44	3.88	4. 32					
92.	Boron has two sta	ble isotopes, ¹⁰ B (19%	6) and 11 B (81%). T	he atomic mass that should					
		n the periodic table is							
		2. 10.2		4. 10.0					
93.				olume. What is the percent					
		ane in the mixture?	•	_					
	1. 19.97 %	2. 20.05 %	3.50 %	4. 80.03 %					
94.	Which one of the	following pairs of ion	s have the same elec	etronic configuration?					
	1. Cr^{3+} , Fe^{3+}	2. Fe^{3+} , Mn^{2+}	$3. Fe^{3+}, Co^{3+}$	4. Sc^{3+}, Cr^{3+}					
95.				. Its ion is represented by					
		2. M ²⁺							
96.				s -328 kJ mol ⁻¹ ; hence the					
	energy of fourth Bohr orbit would be								
		282 kJ mol ⁻¹	341 kJ mol ⁻¹	4164 kJ mol ⁻¹					
97.		following sets of ions							
	species?	C	•						
	1. N^{3} , O^{2} , F , S^{2}		2. Li ⁺ , Na ⁺ , M	g^{2+}, Ca^{2+}					
	3. K ⁺ , Cl ⁻ , Ca ²⁺ , Se	e^{3+}	4. Ba ²⁺ , Sr ²⁺ , I	K^+, Ca^{2+}					
98.			$H_2SO_4 + YSO_2 \rightarrow K_2S$	$SO_4 + Cr_2(SO_4)_3 + ZH_2O$					
	X, Y and Z are	2 2 ,		. 2 . 3 2					
		2. 4, 1, 4	3. 3. 2. 3	4. 2. 1. 2					
99.				on in terms of mass by					
	volume percentage								
	• •	2. 30%	3.25%	4. 40%					
100.		owing is example for							
1. Soap lather 2. Fog 3. Hair cream 4. Foam rubber									
	THE END								