

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. Simone Warzel Dr. Michael Prähofer

Mathematik 3 für Physiker (Analysis 2) MA9203

Sommersemester 2015 Probeklausur (29.06.2015)

1. Krümmung einer Klothoide

(8 Punkte)

Zeigen Sie, dass die Krümmung $\kappa(t)$ der Kurve

$$\vec{r}(t) = \begin{pmatrix} \int_0^t \cos(u^2/2) \, \mathrm{d}u \\ \int_0^t \sin(u^2/2) \, \mathrm{d}u \end{pmatrix}$$

an der Stelle t > 0 gleich ihrer Länge L(t) ist.

HINWEIS: Die Krümmungsformel lautet $\kappa = |(\dot{x}\ddot{y} - \ddot{x}\dot{y})/(\dot{x}^2 + \dot{y}^2)^{3/2}|$, wobei $\vec{r} = \binom{x}{y}$. Lösung:

Sei t > 0. Wir berechnen zuerst die Krümmung mit der Formel aus dem Hinweis. [2]

$$\dot{x}(t) = \cos(t^2/2), \quad \ddot{x}(t) = -t\sin(t^2/2), \quad \dot{y}(t) = \sin(t^2/2), \quad \ddot{y}(t) = t\cos(t^2/2)$$

 $\kappa(t) = \left| \frac{t \cos^2(t^2/2) + t \sin^2(t^2/2)}{(\cos^2(t^2/2) + \sin^2(t^2/2))^{3/2}} \right| = t.$ Einsetzen ergibt nun [3]

 $L(t) = \int_0^t |\dot{\vec{r}}(u)| \, \mathrm{d}u = \int_0^t \sqrt{\dot{x}(u)^2 + \dot{y}(u)^2} \, \mathrm{d}u = t = \kappa(t).$ [3]

2. Stetigkeit, Differenzierbarkeit Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^6}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$ (7 Punkte)

(a) Beweisen Sie, dass f im Nullpunkt nicht stetig ist. [3] *Hinweis:* Bestimmen Sie x_n , so dass $f(x_n, y_n)$ für $y_n = \frac{1}{n}$ konstant ist.

(b) Die partielle Ableitung $\partial_1 f(0,0)$ ist [1]

> $\Box -1 \qquad \boxtimes 0 \qquad \Box \frac{1}{2}$ \Box 1 \square nicht definiert.

(c) Die partielle Ableitung $\partial_2 f(0,0)$ ist [1]

> $\Box -1 \quad \boxtimes 0$ $\square \frac{1}{2}$ \square nicht definiert. \square 1

(d) Wie lautet die totale Ableitung von f im Nullpunkt? [2]

$$\Box \quad Df(0) = \begin{pmatrix} 0 & 0 \end{pmatrix} \qquad \Box \ Df(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Box \ Df(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 \square Df(0) ist nicht definiert \square Df(0) hängt von der betrachteten Kurve ab

Lösung:

- (a) Für die Nullfolge $(\frac{1}{n^3}, \frac{1}{n})$ gilt $f(\frac{1}{n^3}, \frac{1}{n}) = \frac{\frac{1}{n^6}}{2\frac{1}{n^6}} = \frac{1}{2} \neq 0 = f(0, 0)$. (b),(c) $f(x, 0) = 0, x \in \mathbb{R}, f(0, y) = 0, y \in \mathbb{R}$.
- - (d) f ist nicht stetig im Nullpunkt, also auch nicht (total) differenzierbar.

3. Kurvenintegral und Integrabilität

(9 Punkte)

Gegeben sei das Vektorfeld $v: \mathbb{R}^3 \to \mathbb{R}^3$, $v(x) = (x_2x_3, x_3x_1, x_1x_2)$ und die Kurve $\gamma: [0, \pi] \to \mathbb{R}^3$, $\gamma(t) = (1, 1 + \cos t, 1 + \sin t).$

- (a) Ist v konservativ? Begründen Sie.
- (b) Berechnen Sie das Kurvenintegral $\int_{\gamma} v(y) \cdot dy$.
- (c) Ist $\gamma((0,\pi))$ eine Untermannigfaltigkeit des \mathbb{R}^3 ? Wenn ja, welche Dimension hat sie?

$$\[\]$$
 Ja, [1] $\dim(\gamma((0,\pi))) = \boxed{1} \[\]$ [1]

 \square Nein.

Lösung:

(a) rot v=0 [2] und \mathbb{R}^3 ist sternförmig, nach dem Lemma von Poincaré ist v ein Gradientenfeld, d.i., konservativ. [2]

Volle Punktzahl auch bei Angabe eines Potentials F, z.B., $F(x) = x_1x_2x_3$.

(b) Da v konservativ ist mit einem Potential $F(x) = x_1x_2x_3$, [2][1]

$$\int_{\gamma} v(y) \cdot dy = F(\gamma(\pi)) - F(\gamma(0)) = F(1, 0, 1) - F(1, 2, 1) = -2.$$

(c) $\gamma(((0,\pi)) \subset \mathbb{R}^3$ ist eine eindimensionale C^{∞} -Untermannigfaltigkeit. $\gamma|_{(0,\pi)}$ ist Parametrisierung. Sie kann auch als Lösungsmenge der beiden Gleichungen $x_1 - 1 = 0$, $(x_2 - 1)^2 + (x_3 - 1)^2 = 1$ auf der offenen Menge $\{x \in \mathbb{R}^3 \mid x_3 > 1\}$ beschrieben werden.

4. Kettenregel

(5 Punkte)

Seien $v, w \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ und $\gamma : \mathbb{R} \to \mathbb{R}^n$ eine differenzierbare Kurve. Beweisen Sie für alle $t \in \mathbb{R}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}v(\gamma(t))\cdot w(\gamma(t)) = \sum_{j=1}^{n} \left[w_j(\gamma(t))\nabla v_j(\gamma(t)) + v_j(\gamma(t))\nabla w_j(\gamma(t)) \right] \cdot \dot{\gamma}(t).$$

LÖSUNG:
$$\frac{\mathrm{d}}{\mathrm{d}t}v(\gamma(t))\cdot w(\gamma(t)) \stackrel{[1]}{=} \frac{\mathrm{d}}{\mathrm{d}t}\sum_{j=1}^{n}v_{j}(\gamma(t))w_{j}(\gamma(t))$$

$$\stackrel{[2]}{=} \sum_{j=1}^{n} \left(\frac{\mathrm{d}}{\mathrm{d}t} v_j(\gamma(t)) \right) w_j(\gamma(t)) + v_j(\gamma(t)) \left(\frac{\mathrm{d}}{\mathrm{d}t} w_j(\gamma(t)) \right)$$

$$\stackrel{[2]}{=} \sum_{j=1}^{n} w_j(\gamma(t)) \nabla v_j(\gamma(t)) \cdot \dot{\gamma}(t) + v_j(\gamma(t)) \nabla w_j(\gamma(t)) \cdot \dot{\gamma}(t)$$

5. Extrema (10 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = x_1^3 + x_2^2 - 3x_1 - 2x_2$.

(a) Bestimmen und klassifizieren Sie die lokalen Extrema von f.

(b) Unter der Nebenbedingung
$$x_2 = 1$$
 besitzt f bei $x_1 = -1$ [2]

 \square ein lokales Maximum \square ein lokales Minimum \square einen Sattelpunkt bei $x_1 = -1$

LÖSUNG:

(a) Kritische Punkte:
$$\nabla f(x) = {3x_1^2 - 3 \choose 2x_2 - 2} = {3(x_1^2 - 1) \choose 2(x_2 - 1)} = 0$$
 [1]

$$\iff x_1 = \pm 1, \ x_2 = 1.$$
 [2]

Hessematrix:
$$H_f(x) = \begin{pmatrix} 6x_1 & 0 \\ 0 & 2 \end{pmatrix}$$
 [1]

Bei
$$(1,1)$$
: $H_f(1,1) = \operatorname{diag}(6,2)$ ist positiv definit, also lokales Minimum [2]

Bei
$$(-1,1)$$
: $H_f(-1,1) = \operatorname{diag}(-6,2)$ ist indefinit, also Sattelpunkt

(b) Mit der Nebenbedingung $x_2 = 1$ ist die Funktion $x_1 \mapsto f(x_1, 1) = x_1^3 - 3x_1 - 1$ zu betrachten, mit erster Ableitung $3x_1^2 - 3$ gleich Null bei $x_1 = \pm 1$ und zweiter Ableitung $6x_1$ kleiner 0 bei $x_1 = -1$, also lokales Maximum.

6. Taylorpolynom (8 Punkte)

Geben Sie das Taylorpolynom 5. Ordnung von $f(x,y) = \frac{\sin(y)}{\sqrt{1+x^2y^2}}$ um (0,0) an.

$$T_5 f((x,y);(0,0)) = y - \frac{1}{6}y^3 + \frac{1}{120}y^5 - \frac{1}{2}x^2y^3$$

LÖSUNG:

$$f(x,y) = (y - \frac{1}{6}y^3 + \frac{1}{120}y^5 \mp \cdots)(1 - \frac{1}{2}x^2y^2 \pm \cdots) = y - \frac{1}{6}y^3 + \frac{1}{120}y^5 - \frac{1}{2}x^2y^3 + \cdots$$

[1],[2],[2],[2] für die richtigen Terme und [1] falls keine zusätzlichen Terme angegeben sind.

7. Inverse Funktionen (6 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^3 + 2xy + y^2, x^2 + y)$. Zeigen Sie, dass f in einer Umgebung von (1,1) invertierbar ist und bestimmen Sie die Ableitung der lokalen Umkehrfunktion im Punkt f(1,1). LÖSUNG:

für die Ableitung
$$Df(x,y) = \begin{pmatrix} 3x^2 + 2y & 2x + 2y \\ 2x & 1 \end{pmatrix}$$
 [1]

gilt im Punkt
$$(1,1)$$
, dass $Df(1,1) = \begin{pmatrix} 5 & 4 \\ 2 & 1 \end{pmatrix}$. [1]

Diese Matrix ist wegen det
$$\begin{pmatrix} 5 & 4 \\ 2 & 1 \end{pmatrix} = 5 - 8 = -3 \neq 0$$
 invertierbar. [1]

Nach dem Satz über die Umkehrfunktion ist f in (1,1) lokal invertierbar, mit [1]

$$Df^{-1}(f(1,1)) = Df(1,1)^{-1} = \frac{1}{-3} \begin{pmatrix} 1 & -4 \\ -2 & 5 \end{pmatrix}.$$
 [1]

8. Tangentialraum

(4 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x) = x \cdot x$. Dann ist der Graph $G_f := \{(x, f(x)) \mid x \in \mathbb{R}^3\} \subset \mathbb{R}^4$ eine 3-dimensionale C^{∞} -Untermannigfaltigkeit des \mathbb{R}^4 . Geben Sie möglichst explizit eine Basis von T_pG_f an, wobei $p \in G_f$. LÖSUNG:

$$\Phi: \mathbb{R}^3 \to \mathbb{R}^4$$
, $\Phi(x) = (x, f(x))$ ist eine Parametrisierung von G_f .

Zu jedem $p \in G_f$ gibt es genau ein $x \in \mathbb{R}^3$ mit $p = \Phi(x)$.

Da
$$D\Phi(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2x_1 & 2x_2 & 2x_3 \end{pmatrix}$$
 vollen Rang hat, ist T_pG_f dreidimensional mit [2]

$$T_pG_f = \operatorname{span}(\partial_1\Phi(x), \partial_2\Phi(x), \partial_3\Phi(x)) = \operatorname{span}(\begin{pmatrix} 1\\0\\0\\2x_1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\2x_2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2x_3 \end{pmatrix})$$