Statistics for Biology and Health

Series Editors:

M. Gail

K. Krickeberg

J. M. Samet

A. Tsiatis

W. Wong

Statistics for Biology and Health

Bacchieri/Cioppa: Fundamentals of Clinical Research

Borchers/Buckland/Zucchini: Estimating Animal Abundance: Closed Populations

Burzykowski/Molenberghs/Buyse: The Evaluation of Surrogate Endpoints

Duchateau/Janssen: The Frailty Model

Everitt/Rabe-Hesketh: Analyzing Medical Data Using S-PLUS

Ewens/Grant: Statistical Methods in Bioinformatics: An Introduction, 2nd ed.

Gentleman/Carey/Huber/Irizarry/Dudoit: Bioinformatics and Computational Biology

Solutions Using R and Bioconductor

Hougaard: Analysis of Multivariate Survival Data

Keyfitz/Caswell: Applied Mathematical Demography, 3rd ed.

Klein/Moeschberger: Survival Analysis: Techniques for Censored and Truncated Data, 2nd ed

Kleinbaum/Klein: Survival AnalysisL A Self-Learning Text, 2nd ed.

Kleinbaum/Klein: Logistic Regression: A Self-Learning Text, 2nd ed.

Lange: Mathematical and Statistical Methods for Genetic Analysis, 2nd ed.

Lazar: The Statistical Analysis of Functional MRI Data

Manton/Singer/Suzman: Forecasting the Health of Elderly Populations

Martinussen/Scheike: Dynamic Regression Models for Survival Data

Moyé: Multiple Analyses in Clinical Trials: Fundamentals for Investigators

Nielsen: Statistical Methods in Molecular Evolution

O'Quigley: Proportional Hazards Regression

Parmigiani/Garrett/Irizarry/Zeger: The Analysis of Gene Expression Data: Methods and Software

Proschan/LanWittes: Statistical Monitoring of Clinical Trials: A Unified Approach

Siegmund/Yakir: The Statistics of Gene Mapping

Simon/Korn/McShane/Radmacher/Wright/Zhao: Design and Analysis of DNA Microarray Investigations

Sorensen/Gianola: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Stallard/Manton/Cohen: Forecasting Product Liability Claims: Epidemiology and Modeling in the Manville Asbestos Case

Sun: The Statistical Analysis of Interval-censored Failure Time Data

Therneau/Grambsch: Modeling Survival Data: Extending the Cox Model

Ting: Dose Finding in Drug Development

Vittinghoff/Glidden/Shiboski/McCulloch: Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models

Wu/Ma/Casella: Statistical Genetics of Quantitative Traits: Linkage, Maps, and OTL

Zhang/Singer: Recursive Partitioning in the Health Sciences

Zuur/Ieno/Smith: Analysing Ecological Data

Zuur/Ieno/Walker/Saveliev/Smith: Mixed Effects Models and Extensions in Ecology with R

Alain F. Zuur · Elena N. Ieno · Neil J. Walker · Anatoly A. Saveliev · Graham M. Smith

Mixed Effects Models and Extensions in Ecology with R

Alain F. Zuur

Highland Statistics Ltd.

Newburgh United Kingdom highstat@highstat.com

Anatoly A. Saveliev Kazan State University

Kazan

Russia

saa@ksu.ru

Elena N. Ieno Highland Statistics Ltd.

Newburgh United Kingdom

bio@highstat.com

Graham M. Smith Bath Spa University

Bath

United Kingdom

graham.smith@myotis.co.uk

Series Editors M. Gail

National Cancer Institute Rockville, MD 20892

USA

K. KrickebergLe ChateletF-63270 Manglieu

France

J. Samet

Department of Preventive

Medicine

Neil I. Walker

United Kingdom

n.walker@csl.gov.uk

Gloucester

Central Science Laboratory

Keck School of Medicine University of Southern

California

1441 Eastlake Ave. Room 4436, MC 9175

4436, MC 9175 Los Angeles, CA 90089

A. Tsiatis Department of Statistics North Carolina State University Raleigh, NC 27695

USA

W. Wong

Department of Statistics Stanford University Stanford, CA 94305-4065

USA

ISSN 1431-8776 ISBN 978-0-387-87457-9 DOI 10.1007/978-0-387-87458-6

e-ISBN 978-0-387-87458-6

Library of Congress Control Number: 2008942429

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Thanks to my parents for sharing the burden of my university fees – Alain F. Zuur

To my friends, colleagues, and former students who are actively committed to the protection and care of the environment – Elena N. Ieno

Thanks to my wife Tatiana for her patience and moral support – Anatoly A. Saveliev

I would like to thank all family and friends for help and support through times good and bad during the writing of this book – Neil J. Walker

To my parents who, even now, continue to support me in everything I do – Graham M. Smith

Preface

No sooner, it seems, had our first book *Analysing Ecological Data* gone to print, than we embarked on the writing of the nearly 600 page text you are now holding. This proved to be a labour of love of sorts – we felt that there were certain issues sufficiently common in the analysis of ecological data that merited more detailed description and analysis. Thus the present book can be seen as a 'sequel' to *Analysing Ecological Data* but with much greater emphasis on these very issues so commonly encountered in the collection of, and analysis of, ecological data. In particular, we look at different ways of analysing nested data, heterogeneity of variance, spatial and temporal correlation, and zero-inflated data.

The original plan was to write a text of about 350 pages, but to do justice to the sheer range of problems and ideas we have well exceeded that original target (as you can see!). Such is the scope of applied statistics in ecology. In particular, partly on the back of reviewer's comments, we have included a chapter on Bayesian Monte-Carlo Markov-Chain applications in generalized linear modelling. We hope this serves as an informative introduction (but no more than an introduction!) to this interesting and increasingly relevant area of statistics.

We received lots of positive feedback on the approach and style we used in *Analysing Ecological Data*, especially the combination of case studies and a theory section. We have therefore followed the same approach with this book. This time, however, we have provided the R code used for the analysis. Most of this R code is included in the text, but where the code was particularly long, it is only available from the book's website at www.highstat.com. In the case studies, we also included advice on what to write in a paper.

Newburgh, United Kingdom Newburgh, United Kingdom Gloucester, United Kingdom Kazan, Russia Bath, United Kingdom December 2008 Alain F. Zuur Elena N. Ieno Neil J. Walker Anatoly A. Saveliev Graham M. Smith

Acknowledgements

The material in this book has been taught in various courses in 2007 and 2008, and we are greatly in debt to all participants who helped improving the material. We would also like to thank a number of people who read and commented on parts of earlier drafts, namely Chris Elphick, Alex Douglas, and Graham Pierce. The manuscript was reviewed by Loveday Conquest (University of Washington), Sarah Goslee (USDA), Thomas Kneib (LMU Munich), Bret Larget (University of Wisconsin), Ruth Salway (University of Bath), Jing Hua Zhao (University of Cambridge), and several anonymous referees. We thank them all for their positive, encouraging, and useful reviews. Their comments and criticisms greatly improved the book.

The most difficult part of writing a book is finding public domain data which can be used in theory chapters. We are particularly thankful to the following persons for donating data sets. Sonia Mendes and Graham Pierce for the whale data, Gerard Janssen for the benthic data, Pam Sikkink for the grassland data, Graham Pierce and Jennifer Smith for the squid data, Alexandre Roulin for the barn owl data, Michael Reed and Chris Elphick for the Hawaiian bird data, Tatiana Rogova for the Volzhsko-Kamsky forestry data, Robert Cruikshanks, Mary Kelly-Quinn and John O'Halloran for the Irish (sodium dominance index) river data, Chris Elphick for the sparrow and California bird data, Michael Penston for the sea lice data, Joaquín Vicente and Christian Gortázar for the wild boar and deer data, Ken Mackenzie for the cod data, and António Mira for the snake data. The proper references are given in the text. We also would like to thank all people involved in the case study chapters; they are credited where relevant.

Michelle Cronin provided the seal photo on the back cover, Joaquin Vicente the deer photo, and Malena Sabatino gave us the bee photo. The photograph of the koalas was provided by Australian Koala Foundation (www.savethekoala.com). The photo on the front cover is from © Wayne Lynch/Arcticphoto.com.

Finally, we would like to thank John Kimmel for giving us the opportunity to write this book and for patiently accepting the 6-month delay. Up to the next book.

Contents

1	Intro	duction		1
	1.1	What I	s in the Book?	1
		1.1.1	To Include or Not to Include GLM and GAM	3
		1.1.2	Case Studies	4
		1.1.3	Flowchart of the Content	4
	1.2	Softwa	re	5
	1.3	How to	Use This Book If You Are an Instructor	6
	1.4	What V	We Did Not Do and Why	6
	1.5	How to	Cite R and Associated Packages	7
	1.6	Our R	Programming Style	8
	1.7	Getting	g Data into R	9
		1.7.1		
2	Limi	tations o	of Linear Regression Applied on Ecological Data	11
	2.1	Data E	xploration	12
		2.1.1	Cleveland Dotplots	12
		2.1.2	Pairplots	14
		2.1.3	Boxplots	15
		2.1.4	xyplot from the Lattice Package	15
	2.2	The Li	near Regression Model	17
	2.3	Violati	ng the Assumptions; Exception or Rule?	19
		2.3.1	Introduction	19
		2.3.2	Normality	19
		2.3.3	Heterogeneity	20
		2.3.4	Fixed X	21
		2.3.5	Independence	21
		2.3.6	Example 1; Wedge Clam Data	22
		2.3.7	Example 2; Moby's Teeth	26
		2.3.8	Example 3; Nereis	
		2.3.9	Example 4; Pelagic Bioluminescence	
	2.4	Where	to Go from Here	

xii Contents

3	Thin	igs Are N	Not Always Linear; Additive Modelling	35
	3.1	Introdu	action	35
	3.2	Additiv	ve Modelling	36
		3.2.1	GAM in gam and GAM in mgcv	37
		3.2.2	GAM in gam with LOESS	38
		3.2.3	GAM in mgcv with Cubic Regression Splines	42
	3.3	Techni	cal Details of GAM in mgcv	44
		3.3.1	A (Little) Bit More Technical Information	
			on Regression Splines	47
		3.3.2	Smoothing Splines Alias Penalised Splines	49
		3.3.3	Cross-Validation	51
		3.3.4	Additive Models with Multiple Explanatory Variables	53
		3.3.5	Two More Things	53
	3.4	GAM l	Example 1; Bioluminescent Data for Two Stations	55
		3.4.1	Interaction Between a Continuous and Nominal Variable.	59
	3.5	GAM l	Example 2: Dealing with Collinearity	63
	3.6		nce	66
	3.7		ary and Where to Go from Here?	67
4	Deal	ing with	Heterogeneity	71
	4.1	Dealin	g with Heterogeneity	72
		4.1.1	Linear Regression Applied on Squid	72
		4.1.2	The Fixed Variance Structure	74
		4.1.3	The VarIdent Variance Structure	75
		4.1.4	The varPower Variance Structure	78
		4.1.5	The varExp Variance Structure	80
		4.1.6	The varConstPower Variance Structure	80
		4.1.7	The varComb Variance Structure	81
		4.1.8	Overview of All Variance Structures	82
		4.1.9	Graphical Validation of the Optimal Model	84
	4.2	Benthi	c Biodiversity Experiment	86
		4.2.1	Linear Regression Applied on the Benthic	
			Biodiversity Data	86
		4.2.2	GLS Applied on the Benthic Biodiversity Data	89
		4.2.3	A Protocol	90
		4.2.4	Application of the Protocol on the Benthic Biodiversity	
			Data	92
5	Mixe	ed Effect	ts Modelling for Nested Data	101
	5.1	Introdu	action	101
	5.2	2-Stage	e Analysis Method	103
	5.3	The Li	near Mixed Effects Model	105
		5.3.1	Introduction	
		5.3.2	The Random Intercept Model	106
		5.3.3	The Random Intercept and Slope Model	
		5.3.4	Random Effects Model	111

Contents xiii

	5.4	Induced	l Correlations	112
		5.4.1	Intraclass Correlation Coefficient	114
	5.5	The Ma	arginal Model	114
	5.6	Maximi	um Likelihood and REML Estimation	116
		5.6.1	Illustration of Difference Between ML and REML	119
	5.7	Model S	Selection in (Additive) Mixed Effects Modelling	120
	5.8	RIKZ D	Data: Good Versus Bad Model Selection	122
		5.8.1	The Wrong Approach	122
		5.8.2	The Good Approach	127
	5.9	Model '	Validation	128
	5.10	Begging	g Behaviour of Nestling Barn Owls	129
		5.10.1	Step 1 of the Protocol: Linear Regression	130
		5.10.2	Step 2 of the Protocol: Fit the Model with GLS	132
		5.10.3	Step 3 of the Protocol: Choose a Variance Structure	132
		5.10.4	Step 4: Fit the Model	133
		5.10.5	Step 5 of the Protocol: Compare New Model with	
			Old Model	. 133
		5.10.6	Step 6 of the Protocol: Everything Ok?	134
		5.10.7	Steps 7 and 8 of the Protocol: The Optimal	
			Fixed Structure	. 135
		5.10.8	Step 9 of the Protocol: Refit with REML and Validate	
			the Model	. 137
		5.10.9	Step 10 of the Protocol	139
		5.10.10	Sorry, We are Not Done Yet	139
			·	
6	Viole	tion of I	ndependence – Part I	1/12
U	6.1		ral Correlation and Linear Regression	
	0.1	6.1.1	ARMA Error Structures	
	6.2	0.1.1	Regression Model and Multivariate Time Series	
	6.3		bling Negotiation Data	
	0.3	Owi Sit	oning Negotiation Data	138
7	Viola	tion of I	ndependence – Part II	161
	7.1		Detect Violation of Independence	
	7.2	Adding	Spatial Correlation Structures to the Model	166
	7.3	Revisiti	ng the Hawaiian Birds	171
	7.4	NT:4	n Instant Dating in Whales	172
	/ .T	Mitroge	n Isotope Ratios in Whales	1/2
	7.4	_	Moby	
	7.4	_	-	172
	7.5	7.4.1 7.4.2	Moby	172 174
		7.4.1 7.4.2 Spatial	Moby	172 174 177
	7.5	7.4.1 7.4.2 Spatial	Moby	172 174 177 182
	7.5	7.4.1 7.4.2 Spatial Short G	Moby	172 174 177 182 182
	7.5	7.4.1 7.4.2 Spatial Short G 7.6.1	Moby	172 174 177 182 182 183
	7.5	7.4.1 7.4.2 Spatial Short G 7.6.1 7.6.2	Moby	172 174 177 182 182 183
	7.5	7.4.1 7.4.2 Spatial Short G 7.6.1 7.6.2 7.6.3	Moby All Whales Correlation due to a Missing Covariate odwits Time Series Description of the Data Data Exploration Linear Regression	172 174 177 182 182 183 184

xiv Contents

8	Meet	the Exp	onential Family	193
	8.1	Introdu	ction	193
	8.2	The No	rmal Distribution	194
	8.3	The Poi	sson Distribution	196
		8.3.1	Preparation for the Offset in GLM	198
	8.4	The Ne	gative Binomial Distribution	199
	8.5	The Ga	mma Distribution	201
	8.6	The Ber	rnoulli and Binomial Distributions	202
	8.7	The Na	tural Exponential Family	204
		8.7.1	Which Distribution to Select?	
	8.8	Zero Tr	uncated Distributions for Count Data	206
9	GLM	and GA	AM for Count Data	209
	9.1		ction	
	9.2		ın Linear Regression as a GLM	
	9.3		cing Poisson GLM with an Artificial Example	
	9.4		ood Criterion	
	9.5		cing the Poisson GLM with a Real Example	
		9.5.1	Introduction	
		9.5.2	R Code and Results	
		9.5.3	Deviance	
		9.5.4	Sketching the Fitted Values	
	9.6	Model S	Selection in a GLM	
		9.6.1	Introduction	
		9.6.2	R Code and Output	
		9.6.3	Options for Finding the Optimal Model	
		9.6.4	The Drop1 Command	
		9.6.5	Two Ways of Using the Anova Command	
		9.6.6	Results	
	9.7	Overdis	spersion	
		9.7.1	Introduction	
		9.7.2	Causes and Solutions for Overdispersion	224
		9.7.3	Quick Fix: Dealing with Overdispersion in	
			a Poisson GLM	225
		9.7.4	R Code and Numerical Output	226
		9.7.5	Model Selection in Quasi-Poisson	
	9.8	Model '	Validation in a Poisson GLM	
		9.8.1	Pearson Residuals	229
		9.8.2	Deviance Residuals	229
		9.8.3	Which One to Use?	230
		9.8.4	What to Plot?	230
	9.9	Illustrat	ion of Model Validation in Quasi-Poisson GLM	231
	9.10	Negativ	re Binomial GLM	233
		9.10.1	Introduction	233
		9.10.2	Results	236

Contents xv

	9.11	GAM	238
		9.11.1 Distribution of larval Sea Lice Around Scottish	
		Fish Farms	. 239
10		I and GAM for Absence–Presence and Proportional Data	
	10.1		
	10.2	GLM for Absence–Presence Data	
		10.2.1 Tuberculosis in Wild Boar	
		10.2.2 Parasites in Cod	
	10.3	GLM for Proportional Data	
	10.4	GAM for Absence–Presence Data	
	10.5	Where to Go from Here?	259
11	Z ero	-Truncated and Zero-Inflated Models for Count Data	261
	11.1		
	11.2		
	11.2	11.2.1 The Underlying Mathematics for Truncated Models	
		11.2.2 Illustration of Poisson and NB Truncated Models	
	11.3	Too Many Zeros	
		11.3.1 Sources of Zeros	
		11.3.2 Sources of Zeros for the Cod Parasite Data	
		11.3.3 Two-Part Models Versus Mixture Models, and Hippos.	
	11.4	ZIP and ZINB Models	
		11.4.1 Mathematics of the ZIP and ZINB	274
		11.4.2 Example of ZIP and ZINB Models	278
	11.5	ZAP and ZANB Models, Alias Hurdle Models	
		11.5.1 Mathematics of the ZAP and ZANB	
		11.5.2 Example of ZAP and ZANB	288
	11.6	Comparing Poisson, Quasi-Poisson, NB, ZIP, ZINB, ZAP and	
		ZANB GLMs	. 291
	11.7	Flowchart and Where to Go from Here	293
12	Cono	eralised Estimation Equations	205
14	12.1		
	12.1	12.1.1 The California Bird Data	
		12.1.1 The Camorina Bird Data	
		12.1.2 The Owi Data	
	12.2	Specifying the GEE	
	12.2		
		12.2.1 Introduction	302
		12.2.2 Step 1 of the GEE: Systematic Component and Link Function	202
		±	
	12.2	12.2.4 Step 3 of the GEE: The Association Structure Why All the Fuss?	
	12.3		
		12.3.1 A Bit of Maths	510

xvi Contents

	12.4	Association for Binary Data	313
	12.5	Examples of GEE	314
		12.5.1 A GEE for the California Birds	314
		12.5.2 A GEE for the Owls	316
		12.5.3 A GEE for the Deer Data	319
	12.6	Concluding Remarks	320
13	GLM	IM and GAMM	323
10	13.1	Setting the Scene for Binomial GLMM	
	13.2	GLMM and GAMM for Binomial and Poisson Data	
		13.2.1 Deer Data	
		13.2.2 The Owl Data Revisited	
		13.2.3 A Word of Warning	
	13.3	The Underlying Mathematics in GLMM	
14	Estin	nating Trends for Antarctic Birds in Relation	
		imate Change	343
		Zuur, C. Barbraud, E.N. Ieno, H. Weimerskirch, G.M. Smith,	
		N.J. Walker	
	14.1		343
		14.1.1 Explanatory Variables	
	14.2	Data Exploration	
	14.3	Trends and Auto-correlation	350
	14.4	Using Ice Extent as an Explanatory Variable	352
	14.5	SOI and Differences Between Arrival and Laying Dates	354
	14.6	Discussion	360
	14.7	What to Report in a Paper	361
15	Larg	e-Scale Impacts of Land-Use Change in a Scottish	
		ning Catchment	363
		Zuur, D. Raffaelli, A.A. Saveliev, N.J. Walker, E.N. Ieno,	
		G.M. Smith	
	15.1	Introduction	363
	15.2	Data Exploration	365
	15.3	Estimation of Trends for the Bird Data	367
		15.3.1 Model Validation	368
		15.3.2 Failed Approach 1	372
		15.3.3 Failed Approach 2	373
		15.3.4 Assume Homogeneity?	374
	15.4	Dealing with Independence	
	15.5	To Transform or Not to Transform	
	15.6	Birds and Explanatory Variables	
	15.7	Conclusions	
	15.8	What to Write in a Paper	381

Contents xvii

16			mial GAM and GAMM to Analyse Amphibian		
				383	
		A.F. Zuur, A. Mira, F. Carvalho, E.N. Ieno, A.A. Saveliev, G.M. Smith,			
		I.J. Walker			
	16.1		tion		
			Roadkills		
	16.2		ploration		
	16.3				
	16.4		anding What the Negative Binomial is Doing		
	16.5		Adding Spatial Correlation		
	16.6		on		
	16.7	What to	Write in a Paper	397	
17			d Modelling Applied on Deep-Sea Pelagic		
	Biolu	minescen	t Organisms	399	
			Priede, E.N. Ieno, G.M. Smith, A.A. Saveliev,		
	and N	I.J. Walker	r		
	17.1	Biologic	al Introduction	399	
	17.2		and Underlying Questions		
	17.3	Construc	ction of Multi-panel Plots for Grouped Data	402	
		17.3.1	Approach 1	. 402	
		17.3.2	Approach 2	407	
		17.3.3	Approach 3	. 408	
	17.4	Estimation	ng Common Patterns Using Additive Mixed Modelling .	. 410	
		17.4.1	One Smoothing Curve for All Stations	. 410	
		17.4.2	Four Smoothers; One for Each Month	. 414	
		17.4.3	Smoothing Curves for Groups Based		
			on Geographical Distances	. 417	
		17.4.4	Smoothing Curves for Groups Based on Source		
			Correlations	. 418	
	17.5	Choosing	g the Best Model	. 419	
	17.6	Discussion	on	. 420	
	17.7	What to	Write in a Paper	. 421	
18	Addi	tive Mixe	d Modelling Applied on Phytoplankton Time Series		
	Data			423	
	A.F. 2	Zuur, M.J	Latuhihin, E.N. Ieno, J.G. Baretta-Bekker, G.M. Smith,		
	and N	I.J. Walker	r		
	18.1	Introduct	tion	. 423	
		18.1.1	Biological Background of the Project	424	
	18.2	Data Exp	ploration	427	
	18.3		ical Data Analysis Strategy for DIN		
	18.4		For Temperature		
	18.5		for DIAT1		
	18.6	Compari	ng Phytoplankton and Environmental Trends	. 443	

xviii Contents

	18.7 18.8	Conclusions					
			. 440				
19		Mixed Effects Modelling Applied on American Foulbrood Affecting					
	•	y Bees Larvae	. 447				
		Zuur, L.B. Gende, E.N. Ieno, N.J. Fernández, M.J. Eguaras,					
		tz, N.J. Walker, A.A. Saveliev, and G.M. Smith	4.47				
		Introduction					
		Data Exploration					
	19.3	Analysis of the Data					
		Discussion					
	19.5	What to Write in a Paper	. 458				
20		e-Way Nested Data for Age Determination Techniques Applied					
		taceans	. 459				
		eno, P.L. Luque, G.J. Pierce, A.F. Zuur, M.B. Santos, N.J. Walker,					
		Saveliev, and G.M. Smith	450				
		Introduction					
		Data Exploration					
	20.3	Data Analysis					
	20.4	Discussion					
		What to Write in a Paper					
	20.3	what to write in a raper	. 400				
21	GLM	M Applied on the Spatial Distribution of Koalas in a					
	Fragr	nented Landscape	. 469				
	J.R. R	hodes, C.A. McAlpine, A.F. Zuur, G.M. Smith, and E.N. Ieno					
	21.1	Introduction	. 469				
	21.2	The Data	. 471				
	21.3	Data Exploration and Preliminary Analysis	. 473				
		21.3.1 Collinearity	. 473				
		21.3.2 Spatial Auto-correlation					
	21.4	Generalised Linear Mixed Effects Modelling					
		21.4.1 Model Selection					
		21.4.2 Model Adequacy					
	21.5	Discussion					
	21.6	What to Write in a Paper	. 492				
22	A Co	mparison of GLM, GEE, and GLMM Applied to Badger					
	Activi	ity Data	. 493				
		Valker, A.F. Zuur, A. Ward, A.A. Saveliev, E.N. Ieno,					
	and G	.M. Smith					
	22.1	Introduction					
	22.2	Data Exploration					
	22.3	GLM Results Assuming Independence	. 497				

Contents xix

	22.4	GEE Results	499
	22.5	GLMM Results	
	22.6	Discussion	501
	22.7		
	_		
23		porating Temporal Correlation in Seal Abundance Data with	500
		MC	503
		Saveliev, M. Cronin, A.F. Zuur, E.N. Ieno, N.J. Walker,	
		G.M. Smith Introduction	502
	23.1		
	23.2	GLM	
	23.3	23.3.1 Validation	
	23.4	What Is Bayesian Statistics?	
	23.4	•	
	22.5	1	
	23.5	Fitting the Poisson Model in BRugs	
		23.5.1 Code in R	
		23.5.4 Superior the Province Distribution	
		23.5.4 Summarising the Posterior Distributions	
	22.6	23.5.5 Inference	
	23.6	Poisson Model with Random Effects	
	23.7	Poisson Model with Random Effects and Auto-correlation	523
	23.8	Negative Binomial Distribution with Auto-correlated Random	505
		Effects	
	22.0	23.8.1 Comparison of Models	
	23.9	Conclusions	320
A	Requ	ired Pre-knowledge: A Linear Regression and Additive	
	Mode	elling Example	531
	A.1	The Data	531
	A.2	Data Exploration	532
		A.2.1 Step 1: Outliers	532
		A.2.2 Step 2: Collinearity	533
		A.2.3 Relationships	536
	A.3	Linear Regression	536
		A.3.1 Model Selection	540
		A.3.2 Model Validation	
		A.3.3 Model Interpretation	543
	A.4	Additive Modelling	
	A.5	Further Extensions	
	A.6	Information Theory and Multi-model Inference	
	A.7	Maximum Likelihood Estimation in Linear Regression Context.	
ъ		Č	
K	eiereno	ees	333
In	dex		563

Contributors

- **C. Barbraud** Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers en Bois, France
- **J.G. Baretta-Bekker** Rijkswaterstaat Centre for Water Management, P.O. Box 17, 8200 AA Lelystad, The Netherlands
- **F. Carvalho** Unidade de Biologia da Conservação, Departamento de Biologia, Universidade de Évora, 7002-554 Évora, Portugal
- M. Cronin Coastal & Marine Resources Centre, Naval Base, Haulbowline, Cobh, Co. Cork, Ireland
- **M.J. Eguaras** Laboratorio de Artrópodos, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata, Argentina
- **N.J. Fernández** Laboratorio de Artrópodos, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata, Argentina
- **R. Fritz** Laboratorio de Bromatología, Departamento de Química, Universidad Nacional de Mar del Plata, Funes 3350, segundo piso, (7600) Mar del Plata, Argentina
- **L.B. Gende** Laboratorio de Artrópodos, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata, Argentina
- **E.N. Ieno** Highland Statistics LTD., 6 Laverock Road, Newburgh, AB41 6FN, United Kingdom
- **M.J. Latuhihin** Rijkswaterstaat Data-ICT-Department, P.O. Box 5023, 2600 GA Delft, The Netherlands

xxii Contributors

P.L. Luque School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom

- **C.A. McAlpine** The University of Queensland, School of Geography, Planning and Architecture, Brisbane, QLD 4072, Australia
- **A. Mira** Unidade de Biologia da Conservação, Departamento de Biologia Universidade de Évora, 7002-554 Évora, Portugal
- **G.J. Pierce** Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, P.O. Box 1552, 36200, Vigo, España and University of Aberdeen, Oceanlab, Main Street, Newburgh, AB41 6AA, United Kingdom
- **I.G. Priede** University of Aberdeen, Oceanlab, Main Street, Newburgh, AB41 6AA, United Kingdom
- **D. Raffaelli** Environment, University of York, Heslington, York, YO10 5DD, United Kingdom
- **J.R. Rhodes** The University of Queensland, School of Geography, Planning and Architecture, Brisbane, QLD 4072, Australia
- **M.B. Santos Vázquez** Instituto Español de Oceanografía, Centro Oceanogrfico de Vigo, P.O. Box 1552, 36200, Vigo, Espaa
- **A.A. Saveliev** Faculty of Ecology, Kazan State University, 18 Kremlevskaja Street, Kazan, 420008, Russia
- **G.M. Smith** School of Science and Environment, Bath Spa University, Newton Park, Newton St Loe, Bath, BA2 9BN, United Kingdom
- **N.J. Walker** Woodchester Park CSL, Tinkley Lane, Nympsfield, Gloucester GL10 3UJ, United Kingdom
- **A. Ward** Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United Kingdom
- **H. Weimerskirch** Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, 79360 Villiers en Bois, France
- **A.F. Zuur** Highland Statistics LTD., 6 Laverock Road, Newburgh, AB41 6FN, United Kingdom