Exercício 1 (Lema de Klingenberg, [?], Cap. X, Exer. 1) Seja M uma variedade Riemanniana completa com curvatura seccional $K \le K_0$ onde K_0 é uma constante positiva. Sejam p, $q \in M$ e seja γ_0 e γ_1 duas geodésicas distinas unindo p a γ_1 e duas geodésicas distinas unindo p a γ_1 e homotópica a γ_1 , isto é, existe uma família contínua de curvas γ_1 , te γ_2 tal que γ_3 e γ_4 e γ_4 e γ_4 . Prove que existe γ_4 tal que

$$\ell(\gamma_0) + \ell(\alpha_{t_0}) \geqslant \frac{2\pi}{\sqrt{K_0}}$$

Solução. Primeiro vou mostrar como usar o teorema de Rauch para assegurar que para qualquer $p \in M$, a exponencial em $p \in M$ não possui pontos críticos na bola de raio $\pi/\sqrt{K_0}$ centrada em $0 \in T_pM$.

O seguinte argumento mostra que qualquer geodésica γ com velocidade unitária partindo de p não possui pontos conjugados antes de alcançar comprimento $\pi/\sqrt{K_0}$. Fixe um campo de Jacobi $J \in \mathfrak{X}^J_{\gamma}$ tal que J(0) = 0 e $\langle J, \gamma' \rangle = 0$. Para aplicar Rauch, considere uma geodésica unitária $\tilde{\gamma}$ em $S^n_{K_0}$, a esfera de curvatura constante K_0 , e um campo de Jacobi $\tilde{J} \in \mathfrak{X}^J_{\tilde{\gamma}}$ tal que $\tilde{J}(0) = 0$, $\langle \tilde{J}, \tilde{\gamma}' \rangle = 0$ e $|J'(0)| = |\tilde{J}'(0)|$. (\tilde{J} existe por ser a solução da equação de Jacobi junto com a condição de ortogonalidade com $\tilde{\gamma}'$.) Como $K \leqslant K_0$, pelo lema de Rauch concluímos que $0 \leqslant |\tilde{J}| \leqslant |J|$ para $t < \pi/\sqrt{K_0}$.

Agora vou argumentar por que isso assegura que \exp_p não pode ter pontos críticos em $p \in M$. Por contrapositiva, suponha que \exp_p tem um ponto crítico em $v \in T_pM$ e vamos mostrar que existe um ponto conjugado q a p ao longo de γ . Como v é um ponto crítico de \exp_p , existe um vetor não nulo $w \in \ker d_v \exp_p$. Considere uma curva c(s) tal que c(0) = v e c'(0) = w. Temos a seguinte variação por geodésicas de γ : $\gamma_{c(s)}(t) = \exp_p(tc(s))$. Note que em t = 0 todas as geodésicas ficam em p, pelo que o campo variacional J se anula em p. O fato de que $d_v \exp_p(w) = \frac{d}{ds}\Big|_{s=0} \exp_p(c(s)) = 0$, é exatamente o fato de que o campo variacional J se anula em $q = \gamma_v(1)$.

Portanto, \exp_p é um difeomorfismo local sobrejetivo em $B_{\pi/\sqrt{K_0}}$, mas pode não ser injetivo:

Note que podemos levantar tanto γ_0 quanto γ_1 por ser geodésicas, i.e. pegamos os vetores velocidade de cada uma e as linhas que eles geram no espaço tangente a p; é claro que essas curvas são levantamentos de \exp_p . Note que se levantássemos a homotopia completa, necessariamente $\gamma_0 = \gamma_1$. Isso segue simplesmente de que não pode ter uma família contínua de curvas começando em um ponto e terminando em outro.

Dúvida Como estão construídos os levantamentos das curvas perto de γ_0 ? Em [?] simplesmente se afirma que é claro que podemos levantar as curvas perto de γ_0 , mas que não será possível levantar a homotopia completa.

Eu só sei que podemos levantar γ_0 e γ_1 usando as velocidades delas e o fato de que \exp_p manda esses vetores em essas curvas; mas as outras curvas da homotopia não são geodésicas e esse argumento não aplica.

Para entender melhor a construção consultei [?]. Cap. 5., sec. 6. Prop. 2, que estabelece a existência e unicidade dos levantamentos de curvas (ou "caminhos") no caso das aplicações de recobrimento. A prova da unicidade parece válida para homeomorfismos locais, e como é parecida ao argumento de achar um conjunto aberto e fechado dentro do intervalo (como na sugestão do nosso exercício), achei bom passar em limpo. Mas **pode pular**, essa prova não é importante para a discussão que segue.

Unicidade de levantamentos para aplicações de recobrimentos Seja $\pi: \tilde{B} \to B$ é homeomorfismo local, $\alpha: [0,\ell] \to B$ um caminho em B e $\tilde{p}_0 \in \tilde{B}$ um ponto de \tilde{B} tal que $\pi(\tilde{p}_0) = \alpha(0) = p_0$. Se existe um levantamento $\tilde{\alpha}: [0,\ell] \to \tilde{B}$ de α com origem em \tilde{p}_0 , ele é único.

Demostração. Suponha que existe outro levantamento $\tilde{\beta}:[0,\ell]\to \tilde{\mathbb{B}}$ de α com origem em $\tilde{\mathfrak{p}}_0$. Seja $A\subset [0,\ell]$ o conjunto de pontos onde $\tilde{\alpha}$ e $\tilde{\beta}$ coincidem. Ele é fechado porque se pegamos uma sequência de pontos dentro de ele, por continuidade tanto de $\tilde{\alpha}$ quanto de $\tilde{\beta}$ o ponto limite irá ficar dentro de A.

Para ver que é aberto considere um ponto $t \in A \subset I$. Vamos mostrar que existe uma vizinhança dele totalmente contida em A. Defina $\tilde{\mathfrak{p}}:=\tilde{\alpha}(t)=\tilde{\beta}$ (que vale porque pegamos $t \in A$). Pegue uma vizinhança V de $\tilde{\mathfrak{p}}$ onde π seja um homeomorfismo. Como $\tilde{\alpha}$ e $\tilde{\beta}$ são contínuas, as imagens inversas de V sob $\tilde{\alpha}$ e $\tilde{\beta}$ podem ser intersectadas para produzir uma vizinhança I_t de t.

Só falta ver que $\tilde{\alpha}$ e $\tilde{\beta}$ coincidem em I_t . Como $\tilde{\alpha}$ e $\tilde{\beta}$ são levantamentos, sabemos que $\pi \circ \tilde{\alpha} = \pi \circ \tilde{\beta}$. Como π é um homeomorfismo em V, podemos inverter ele para concluir que $\tilde{\alpha} = \tilde{\beta}$ nessa vizinhança.

Porém o que realmente nos compete aqui é a existência dos levantamentos. O problema é que isso não vale para difeomorfismos (ou homeomorfismos) locais arbitrários. A prova de existência de levantamentos em [?] para aplicações de recobrimento pode ser resumida assim:

- (a) Para cada $t \in I$ podemos considerar uma **vizinhança distinguida** de $\alpha(t)$. Ou seja, uma vizinhança de $V_t \ni \alpha(t)$ tal que $\pi^{-1}(U_t)$ é uma união disjunta de abertos de \tilde{M} onde π se restringe a um homeomorfismo. Note que isso não existe em nosso caso; apenas podemos garantir a existência de uma vizinhança de $\alpha(t)$ onde π se restringe a um difeomorfismo.
- (b) Usando a compacidade do intervalo junto com a continuidade de α podemos cobrir o caminho $\alpha(I)$ com uma quantidade finita de abertos.
- (c) Considere o primeiro deles, I_0 . Como π se restringe a um homeomorfismo nessa vizinhança, podemos levantar esse pedacinho da curva α como sendo simplesmente a preimagem de $\alpha(I_0)$ sob π a algum dos abertos disjuntos que são a preimagem da vizinhança distinguida. Isso vale para nosso difeomorfismo local na preimagem do aberto em que exp $_{\mathfrak{p}}$ é um difeomorfismo.
- (d) Considere agora I_1 , o seguinte intervalo. Deve existir um ponto $t \in I_1 \cap I_0$. A imagem inversa de π em V_1 é uma união disjunta de abertos distinguidos, **um** dos quais deve intersectar V_0 simplesmente por definição de conjunto. O lance é que toda a imagem inversa de V_0 é uma união de abertos distinguidos e por isso

podemos garantir que um deles intersecta o aberto distinguido onde começamos nosso levantamento.

No caso de \exp_p , embora podemos garantir que existe um aberto onde \exp_p se restringe a um homeomorfismo, não temos como garantir que essa vizinhança intersecta vizinhança onde começou o levantamento.

Continuando com a construção, como π se restringe a um homeomorfismo em V_1 podemos definir um levantamento novamente como a imagem inversa sob π .

Como já provamos unicidade e **os levantamentos coincidem num ponto**, o segundo levantamento coincide com o primeiro na interseção $I_0 \cap I_1$.

(e) Podemos fazer esse processo para o número de intervalos, que é finito, obtendo um único levantamento de α .

Finalmente vamos dar uma olhada à prova do levantamento de homotopias para homeomorfismos locais com a propriedade de levantamento de curvas, Prop. 3 em [?], Cap. 5, Sec. 6. A estratégia é clara: dada uma homotopia no espaço base, definimos a homotopia no espaço total como sendo o levantamento de cada uma das curvas na base usando fortissimamente a propriedade de levantamento de curvas. A prova consiste em provar unicidade (análoga à unicidade de levantamentos de curvas) e a continuidade da homotopia levantada.

Então parece que essa prova não vai ajudar no nosso caso: **não vejo como garantir o** levantamento de nenhuma curva além de γ_0 ou γ_1 , mesmo que esteja perto de γ_0 com respeito ao parâmetro da homotopia.

Por fim, esse problema fica resolvido se fixamos nossa atenção só nos abertos que obtemos usando que \exp_p é um difeomorfismo local ao longo de γ_0 . Desse jeito conseguimos construir por pedaços, usando que \exp_p é um homeomorfismo em cada aberto e a unicidade dos levantamentos em cada interseção, um levantamento de qualquer curva que esteja completamente contida na união dos abertos gerados ao longo de γ_0 .

Note que esse processo pode ser feito de novo para qualquer curva que já tenhamos conseguido levantar. É tentador pensar que se todas as curvas da homotopia estivessem contidas em $B_{\pi/\sqrt{K_0}}(p) \subset M$ poderíamos levantar toda a homotopia. Porém,

afirmação (extra) nem todo difeomorfismo local tem a propriedade de levantamento de homotopias, i.e. dada uma homotopia $h: I \times I \to M$ e um levantamento da primeira curva, não temos como garantir que existe um levantamento da homotopia completa.

Contraexemplo. Considere

$$(0,2) \longrightarrow S^1$$
$$t \longmapsto e^{2\pi i t}$$

Considere uma homotopia entre um caminho constante e um caminho que da 100 voltas

ao círculo:

$$h: I \times I \longrightarrow S^1$$

 $h_s(t) = e^{2\pi i 100st}$

O primeiro caminho $h_0(t)$ é o caminho constante 1. O último caminho $h_1(t)$ é o laço que da 100 voltas ao círculo. É possível levantar o primeiro caminho, mas não o último:

$$\begin{array}{c} (0,2) \\ & \downarrow e^{2\pi i\,t} \\ I\times I \stackrel{h}{\longrightarrow} S^1 \end{array}$$

se existisse um caminho $\tilde{h}_1(t)$ que comuta com a projeção, teríamos

$$e^{2\pi i \tilde{h}_1(t)} = e^{2\pi i 100t} \implies e^{2\pi i (\tilde{h}_1(t)-100t)} = 1 \implies \tilde{h}_1(t) - 100t \in \mathbb{Z}$$

Então deve existir um número inteiro $n \in \mathbb{Z}$ tal que $\tilde{h}_1(t) = 100t + n$, absurdo, pois $\tilde{h}_1(t) \in (0,2)$, e essa função começa em n e termina em 100 + n.

Então não podemos garantir que existe uma curva que sai da bola $B_{\pi/\sqrt{K_0}}(p) \subset M$. Porém, como aponta Manfredo, podemos garantir que existem curvas arbitrariamente perto do bordo dela.

Então suponha que existe um $\varepsilon>0$ que tal que o levantamento de toda curva (da nossa homotopia) que possa ser levantada esteja a distância $\geqslant \varepsilon$ do bordo de $B_{\pi/\sqrt{K_0}} \subset T_pM$. Isso muda completamente o scenario porque o espaço total agora é completo.

Lembre que a prova do teorema de Hadamard feita em sala recai sobre o seguinte lema:

lema 2 Seja $f: \tilde{M} \to M$ é um difeomorfismo local, onde \tilde{M} é completo, e suponha que $|f_{*,p}v| \ge |v|$ para todo $v \in T_pM$ e todo $p \in M$. Então f levanta curvas e portanto é uma aplicação de recobrimento.

Mas isso não é exatamente o que precisamos, pois o novo domínio da exponencial, $B_{\epsilon}(0)$, embora compacto, não é completo, pois ele tem bordo e o domínio maximal das geodésicas não é \mathbb{R} . Porém, a prova do lema 2 usa só a **completude métrica** do espaço total:

Prova do lema 2. Suponha que uma curva $\alpha:I\to M$ pode ser levantada a uma curva $\tilde{\alpha}:[0,r)\to \tilde{M}$. Considere uma sequência $t_n\to r$, e as sequências $\alpha(t_n)$ e $\tilde{\alpha}(t_n)$. Note que $\alpha(t_n)$ é de Cauchy, pois $\alpha(r)$ está bem definito. Então $\tilde{\alpha}(t_n)$ também é de Cauchy:

$$d(\tilde{\alpha}(t_n),\tilde{\alpha}(t_m))\leqslant \int_{t_n}^{t_m}|\tilde{\alpha}'|\leqslant \int_{t_n}^{t_m}|f_*\tilde{\alpha}'|=\int_{t_n}^{t_m}|(f\circ\tilde{\alpha})'|=\int_{t_n}^{t_m}|\alpha'|$$

Quando n, m $\to \infty$, o número da direita vai pra zero. Como \tilde{M} é completa, a sequência de Cauchy $\tilde{\alpha}(t_n)$ é convergente a um ponto $\tilde{\alpha}(r)$.

Isso mostra que o conjunto de parâmetros tais que α pode ser levantada é fechado. Mas também é aberto: se $\alpha(t)$ é levantado, como f é um difeomorfismo local, podemos levantar um vizinhança pequena de α definindo-a como a imagem inversa local de f. \Box

A parte do argumento que prova que o conjunto de parâmetros levantáveis é fechado pode ser usado no nosso exercício para mostrar que podemos levantar qualquer curva cujo parâmetro seja um ponto limite do conjunto de curvas levantáveis; i.e. que o conjunto de parâmetros de curvas levantáveis é fechado.

Também é aberto: podemos achar uma vizinhança pequena de qualquer parâmetro tal que toda curva dentro dessa vizinhança esteja contida na união das vizinhanças onde exp_p é um difeomorfismo local ao longo da curva levantável—como já fizemos antes.

Então o conjunto de curvas levantáveis seria todo o intervalo, absurdo, e concluímos que existem curvas cujos levantamentos estão arbitrariamente próximos a $\partial B_{\pi/\sqrt{K_0}}(0)$.

Nessa hora da nossa discussão já usamos a propriedade expansora da exponencial: $|d_{\nu} \exp_p w| \ge |w|$. Então repare: o tamanho dos vetores em cima é arbitrariamente próximo a $\pi/\sqrt{K_0}$. Então o comprimento das curvas em baixo está forçado a se aproximar ao mesmo número:

$$\ell(\alpha) = \int_0^1 |\alpha_t'| = \int_0^1 |(exp_\mathfrak{p} \circ \tilde{\alpha})'| = \int_0^1 |d_{\tilde{\alpha}} \, exp_\mathfrak{p}(\tilde{\alpha}')| \geqslant \int_0^1 |\tilde{\alpha}'| = \ell(\tilde{\alpha}) > \frac{\pi}{\sqrt{K_0}} - \epsilon$$

(em algum momento me esqueci de que a constante realmente era $2\pi/\sqrt{K_0}...$)