

TERM PROJECT #1 REPORT

Berke Diler

2401503

Question: 1

Take a screenshot of your schematic (circuit you build through steps 1-10) and add it to your report with an explanation and a test value (using poke tool)

A 2's complement circuit consisting of 8 FullAdders. With Cin being 0 the circuit is just the same as a 1's complement circuit, but when Cin is 1, the circuit becomes 2's complement since 2's complement = 1's complement+1.

•

Here, the input value is splitted into three and then merged into one again to get 2's complement which is connected to O2 output, while the inputs were splitted, the 0th and 7th bits are sent to and and gate which is connected to O1 output.

Question: 2

Implement two subcircuits, one to rotate right an 8-bit input value and a second to rotate an 8-bit input value left. Hint: you will need two inputs for each subcircuit, one is the input to be rotated, and the second input will hold the rotation amount. Call the first input A and the second Input B. What is the size of input B? And why? Answer this question and add screenshots of your subcircuits with an explanation to your report

Input A is 8 bits, and to rotate all the bits on the input we are going to need an amount that is equal to 7. So

Rotr Circuit: 2nd screenshot

Rotl Circuit: 1st screenshot

Question: 3

Build an 8-bit full adder using the same method explained in the tutorial examples. Add a screenshot of your schematic and test results (USING A TEST VECTOR YOU WILL WRITE). Attach the circuit and test file to odtuclass.

A 1 bit Full Adder tested with a test vector:

An 8 bit Full Adder:

Test vector results of the 8 bit Full Adder:

Question: 4

Draw a circuit layout, build it using Logisim, and write a test to test all the functions. You need to add the layout along with the test results (USING A TEST VECTOR YOU WILL WRITE) to your report. In addition to that, you need to upload the .circ file along with the ALU8_test.txt to ODTUClass.

8-bit ALU Design:

8-bit ALU Test Vector Results:

