Lecture 8: Normal Distribution

Chapter 3.1

Goals for Today

- ▶ Define the normal distribution in terms of its parameters
- ► Review: ²/₃ / 95% / 99.7% rule
- ▶ Standardizing normal observations to z-scores

Normal Distribution

From text page 118:

Many variables are nearly normal, but none are exactly normal. Thus the normal distribution, while not perfect for any single problem, is very useful for a variety of problems.

We will use it in data exploration and to solve important problems in statistics.

Normal Distribution

Normal distributions:

- 1. are symmetric
- 2. are unimodal and bell-shaped
- 3. have area under the curve 1

Normal Distribution

A normal curve can be described by two parameters:

- ▶ the mean μ . i.e. the center
- the standard deviation (SD) σ . i.e. the measure of spread

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Recall these were the population mean and the population SD.

- ---

Normal Distribution

 μ (mean) specifies the center, σ (standard deviation) the spread.

6/23

Normal Example

 μ (mean) specifies the center, σ (standard deviation) the spread.

- ---

Normal Example

 μ (mean) specifies the center, σ (standard deviation) the spread.

8/23

Standardized Normal Distribution

If $\mu = 0$ and $\sigma = 1$, this is the standard normal distribution:

Rules of Thumb

Recall if a distribution is normal, then:

- 1. Approx. $\frac{2}{3}$'s of the data are within ± 1 SD of the mean
- 2. Approx. 95% of the data are within ± 2 SD of the mean
- 3. Also approx. 99.7% of the data are within ± 3 SD of the mean

Motivating Example

From text: Say Ann scores 1800 on the SAT and Tom scores 24 on the ACT. Say both tests scores were normally distributed with:

$$\begin{array}{c|cccc} & SAT & ACT \\ \hline Mean μ & 1500 & 21 \\ SD σ & 300 & 5 \\ \end{array}$$

Question: Who did relatively better?

z-scores

The z-score AKA standardized observation of an observation x is the number of SD it falls above or below the mean.

The z-score for an observation x that follows a distribution with mean μ and SD σ :

$$z = \frac{x - \mu}{\sigma}$$

.

z-scores

Why is the z-score $z = \frac{x-\mu}{\sigma}$ called the standardized observation?

- 1. The observations are centered at μ . re-center the x observations to 0 by subtracting μ .
- 2. The observations have spread σ . re-scale the spread of the $x-\mu$ values to be 1 by dividing by σ .

So we can compare observations from any normally distributed data with (μ,σ)

i.e. we've standardized the observations to make them comparable.

Back to Example

- ► Ann scored 1800. $z = \frac{1800 1500}{300} = +1$ standard deviation from the mean
- ► Tom scored 24. $z = \frac{24-21}{5} = +0.6$ standard deviation from the mean

So Ann did relatively better.

-- ---

Percentiles

Recall a percentile (%'ile) indicates the value below which a given %'age of observations fall below.

Question: What %'ile is Ann's SAT score of 1800? i.e. what is the blue shaded area?

Percentiles

Because the total area under the curve is 1, the area to the left of z represents the %'ile of the observation:

- ➤ The blue shaded area on the left plot will be less than 0.5.
 We have %'iles less than the 50th %'ile.
- ► The blue shaded area on the right plot will be greater than 0.5. We have %'iles greater than the 50th %'ile.

19 / 23

Normal Probability Table

A normal probability table allows you to:

- ▶ identify the %'ile corresponding to a z-score
- ▶ or vice versa: the z-score corresponding to a %'ile

The normal probability tables on page 409 represent z-scores and $\%\mbox{'iles}$ corresponding to area to the left:

Normal Probability Table

- Red case: Given a z-score of 0.43. A lookup tells us the area to the left of z=0.43 is 0.6664, i.e. the 66th %'ile
- ► Blue case: We want the z-score that is the 80th %'ile.

 Reverse lookup: the closest value on the table is 0.7995, i.e. a z-score of 0.84

Back to Ann and Tom

- ➤ Since Ann had a z-score of 1.0, her %'ile is 0.8413. (1.0 row, 0.00 column)
 - i.e. She did better than 84.13% of SAT test takers.
- Since Tom had a z-score of 0.6, his %'ile is 0.7257. (0.6 row, 0.00 column)
 - i.e. He did better than 72.57% of ACT test takers

Next time we will: Re-iterate the motivation for the normal curves Go over examples using z-scores. Evaluating the normal approximation.	<i>i</i> e.
	23 / 23
	607 60

Next Time