MAT473 Homework 1

- 1. Let R be a ring. Prove the following basics:
 - (a) $0 \cdot a = 0$ for all $a \in R$. Consider 0a + 0a = (0 + 0)a = 0a. Taking the additive inverse of 0a on both sides gives 0a + 0 = 0 or 0a = 0.
 - (b) If $a, b \in R$, then $a \cdot (-b) = -(a \cdot b)$. (Be careful as this isn't just "moving around a minus sign"; it says that a times the additive inverse of b is suppose to be the additive inverse of ab, and that's what you must prove.) a(-b) + ab = a(-b+b) = a0 = 0. Hence, -ab = a(-b).
- 2. Let n be a positive integer. Prove that the set of zero divisors of $\mathbb{Z}/n\mathbb{Z}$ is precisely the set of elements in $\mathbb{Z}/n\mathbb{Z}$ that are not relatively prime to n, and that the set of units in $\mathbb{Z}/n\mathbb{Z}$ is the set of elements that are relatively prime to n. Suppose that $z \in \{1, \ldots, n-1\}$ is an integer with $\gcd(z,n) = d \neq 1$. Then $\operatorname{lcm}(z,n) = \frac{zn}{d} = z\frac{n}{d}$. By definition of d, $\frac{n}{d}$ is an integer that is strictly less than n since $d \neq 1$. Thus,

$$[z][n/d] = [zn/d]$$
$$= [(z/d)n]$$

which is equal to zero since z/d is an integer. Hence, if z and n are not coprime, z is a zero divisor. Now suppose that $[z] \in \mathbb{Z}/n\mathbb{Z}$ is a zero divisor. Then there is a non-zero element $[b] \in \mathbb{Z}/n\mathbb{Z}$ such that [bz] = [0] in $\mathbb{Z}/n\mathbb{Z}$. Without loss of generality, we may assume $z, b \in \{1, \ldots, n-1\}$. Hence, bz is a multiple of n, so bz = kn for some integer k. But since b < n, zb < zn. Therefore, the least common multiple of z and n is less than zn. This implies that b and n are not relatively prime. Suppose that $[z] \in \mathbb{Z}/n\mathbb{Z}$ is a unit. Thus, there is an element $[a] \in \mathbb{Z}/n\mathbb{Z}$ such that [a][z] = [1], i.e., az - 1 is a multiple of n. Hence, az - 1 = bn for some integer b. Equivalently, az + bn = 1 for some integers a and b. This implies that $\gcd(z,n) = 1$ (since the smallest positive integer that can be written as a \mathbb{Z} -linear combination of two integers is their greatest common divisor). The other direction is similar.

- 3. Prove that if R is an integral domain and the cardinality of R is finite, then R is a field. Suppose that R is an integral domain of finite cardinality. Suppose that $y \in R \setminus \{0\}$, and enumerate the elements of R as $\{x_1, \ldots, x_n\}$. Consider the set of elements $yR = \{yx_1, yx_2, \ldots, yx_n\}$. Note that $|yR| \leq |R|$ since yR has at most n distinct elements. Define a function $f: R \to yR$ via f(x) = yx. It is clear that $|yR| \leq |R|$ I claim first that f is injective. Indeed, suppose that $f(x_i) = f(x_j)$ for some i, j. Then $yx_i = yx_j$. By the cancellation in integral domains proven in class, $x_i = x_j$. Therefore, f is injective. This implies that $|R| \leq |yR|$. Hence, combined with the other inequality from above, we have |yR| = |R|. But $yR \subset R$ since R is closed under multiplication. Since they are of equal and finite cardinality, yR = R. Therefore, $1 \in yR$, so $1 = yx_i$ for some i.
- 4. Let R be an integral domain, and $a, b \in R$ be elements with $a \neq 0$. Prove that the equation $ax^2 = b$ has at most two solutions in R. Then find an example

Name: ______

MAT473 Homework 1

of an integral domain R and an equation $ax^2 = b$ that has no solutions, one that has exactly one solution, and one that has exactly two solutions. Suppose that $a, b \in R$ with $a \neq 0$, and suppose that $x \neq y \in R$ are two elements with $ax^2 = b$ and $ay^2 = b$. Then $ax^2 = ay^2$, so by cancellation in integral domains, $x^2 = y^2$. Subtracting y^2 from both sides and factoring yields

$$x^2 - y^2 = 0$$
$$(x - y)(x + y) = 0.$$

Since R is an integral domain, this implies x-y=0 or x+y=0. Therefore, either x=y (which contradicts the assumption) or -x=y. If z is a third solution, then by the same reasoning -x=z as well. But this implies y=z, so the only two possible solutions are x and -x. * Note: This does not imply that there are two solutions. There could be none, and there could be one. Can you construct examples where this is the case? In $\mathbb{Z}/4\mathbb{Z}$, $x^2=1$ has exactly two solutions, $x^2=2$ has no solutions, in $\mathbb{Z}/2\mathbb{Z}$, $x^2=1$ has only one solution.

- 5. Let $\varphi: R \to R'$ be a ring homomorphism. Prove that $\ker \varphi$ is a subring with the additional absorbtion property. That is, if $x \in \ker \varphi$ and $r \in R$, then $rx \in \ker \varphi$ and $xr \in \ker \varphi$. Such a subring is called a two-sided ideal in R. Find all two-sided ideals in $\mathbb{Z}/60\mathbb{Z}$. Suppose that $x \in \ker \varphi$ and $r \in R$. Then $\varphi(rx) = \varphi(r)\varphi(x) = \varphi(r) \cdot 0 = 0$, and similarly with the other order.
- 6. Consider the ring \mathbb{Z} and a two-sided ideal $I \subset \mathbb{Z}$. Prove that $x, y \in I$ if and only if $\gcd(x,y) \in I$. Suppose that $x,y \in I$. Since I is an ideal, by absorption, ax, by are in I for any $a, b \in \mathbb{Z}$. By closure under addition, $ax + by \in I$ for all $a, b \in \mathbb{Z}$ as well. In particular, $\gcd(x,y)$ is the smallest positive integer that can be written in the form ax + by, so $\gcd(x,y) \in I$. Now suppose that $d = \gcd(x,y) \in I$. Then x = kd and y = ld for some $k, l \in \mathbb{Z}$. Hence, by absorption, $x, y \in I$.
- 7. Let F be a field and $a \in F$ be an arbitrary element. Define the function $\operatorname{ev}_a : F[x] \to F$ via $\operatorname{ev}_a(f) = f(a)$ (i.e., just replace x with a and evaluate).
 - (a) Prove that ev_a is a ring homomorphism. First, $\operatorname{ev}_a(0) = 0$ since the evaluation at any point of the zero polynomial is zero. Now suppose that $f(x), g(x) \in F[x]$. Then $\operatorname{ev}_a(f+g) = (f+g)(a) = f(a) + g(a) = \operatorname{ev}_a(f) + \operatorname{ev}_a(g)$. Finally, $\operatorname{ev}_a(fg) = (fg)(a) = f(a)g(a) = \operatorname{ev}_a(f)\operatorname{ev}_a(g)$.
 - (b) Compute the kernel of ev_a and prove your result. Suppose that $f \in \ker ev_a$. Then f(a) = 0. We can apply the division algorithm, dividing f(x) by (x a), which yields

$$f(x) = (x - a)g(x) + r(x)$$

where the degree of r(x) is at most 1. Hence, f(x) = (x - a)g(x) + c.

Name: ______

MAT473 Homework 1

From the above remarks,

$$f(a) = (a - a)g(a) + c$$
$$0 = 0 + c$$
$$0 = c.$$

Hence, f(x)=(x-a)g(x). Therefore, $f(x)\in\ker\operatorname{ev}_a$ if and only if f(x)=(x-a)g(x) for some polynomial g(x).

Name: ______