CSE2315 Slides week 2 - NFAs

Matthijs Spaan Stefan Hugtenburg

Algorithmics group

Delft University of Technology

19 February 2020

This lecture

- Introduction to nondeterministic finite automata
- Formal definition NFAs
- Acceptation and recognition by NFAs
- Equivalence of automata
- Construction of DFAs from NFAs without ε-transitions
- Construction of DFAs from NFAs with ε -transitions
- So languages recognized by NFAs are regular!
- Regular operations and closure properties of regular languages

Nondeterministic finite automata (NFAs)

(see also videos Nondeterministic Finite State Machines: Introduction and Nondeterministic Finite State Machines: Formal Definition)

Three differences with deterministic finite automata:

- Multiple transitions possible for one symbol from a state;
- Possibility that no transition is defined for a symbol from a state;
- $\boxed{\mathbf{3}}$ ε transitions: reading nothing but transitioning to another state.

Result: In an NFA, it is possible for there to be zero, one or more ways to consume a string *w* in its entirety.

Adaptation of notion of acceptation (informally): A string w is accepted by an NFA iff at least one path label by w exists that ends in an accepting state.

Example

An NFA that accepts every word that contains the substring *aba*:

Note that this NFA is simple than the DFA that recognizes the same language:

Example

An NFA that accepts every word with the suffix ab.

Nondeterminism and NFAs

- Adds the notion of choice.
- Can be seen as a form of (unlimited) parallelism.
- NFAs form a good starting point for studying the phenomenon of nondeterminism
- Higher order, declarative description of processes that can be simulated by deterministic processes.
- Some theorems are easier to prove for NFAs than for DFAs.
- Gives natural descriptions of certain languages, for instance of the form L₁ ∪ L₂. See also previous slides.
- DFAs have nicer formal properties, while NFAs are easier to construct.

Nondeterministic Finite Automata (NFAs)

Definition 1.37 A nondeterministic finite automaton (*NFA*) is an ordered quintuple $N = (Q, \Sigma, \delta, q_0, F)$, with:

- Q, Σ , q_0 and F are defined as in a DFA;
- however: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathscr{P}(Q)$.

Here $\mathscr{P}(Q)$ is called the power set of Q.

Notation: Instead of $\Sigma \cup \{\varepsilon\}$, we usually write Σ_{ε} .

Meaning of δ

Given an NFA $N = (Q, \Sigma, \delta, q_0, F)$. What does it mean if:

$$\delta(q, w) = P$$

with $q \in Q$, $w \in \Sigma_{\varepsilon}$ and $P \in \mathscr{P}(Q)$?

Answer: First, $P \in \mathscr{P}(Q)$ means P is a *subset* of Q, written as $P \subseteq Q$. Next, $\delta(q,w)$ is therefore a set, namely the set consisting of precisely those possible states which N can end up in from q in one step by reading one symbol from Σ or by taking one ε step.

Acceptation of Words by NFAs

Definition: Let $N=(Q,\Sigma,\delta,q_0,F)$ an NFA and $w\in\Sigma^*$. N accepts (recognizes) $w=a_1a_2\cdots a_n$ iff there are $r_0,\ldots,r_n\in Q$ such that:

- $1 r_0 = q_0,$
- **2** $r_{i+1} \in \delta(r_i, a_{i+1})$, for each $i \ge 0$,
- $r_n \in F$.

$$\delta^*(q,w) = \{q' \in Q \mid \text{there is a path from } q \text{ to } q' \text{ labeled by } w\}$$

- NB 1: Some a_i can indicate the empty string ε !
- NB 2: "Neat" recursive definition of δ^* is possible but is complicated by ε transitions.

Example

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_2, q_3\}$$

δ	a	b	ε
q_0	Ø	Ø	$\{q_1,q_3\}$
q_1	$\{q_1,q_2\}$	Ø	Ø
q_2	Ø	$\{q_2\}$	Ø
q_3	$\{q_3\}$	$\{q_4\}$	Ø
q_4	$\{q_3,q_4\}$	Ø	Ø

Language recognized by an NFA

Definition: Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. The language L(N) recognized by N is defined as:

$$\begin{array}{lcl} L(N) & = & \{w \in \Sigma^* \mid N \text{ accepts } w\} \\ & = & \{w \in \Sigma^* \mid \delta^*(q_0,w) \cap F \neq \emptyset\}. \end{array}$$

Example

Examples:
$$\delta^*(q_0,a)=\{q_1,q_2,q_3\}$$

$$\delta^*(q_0,bba)=\emptyset$$

$$\delta^*(q_1,abb)=\{q_2\}$$

$$\delta^*(q_1,aaa)=\{q_1,q_2\}$$

Exercise

Construct an NFA that accepts the following language with

$$\Sigma = \{a, b\}$$
:

$$\{(ab)^n \mid n > 0\} \cup \{ab^m a \mid m \ge 0\}.$$

Not a solution!

This is NOT a correct solution! Why not?

Which languages are recognized by NFAs?

Definition (again): A language L is regular iff there exists a DFA M such that L = L(M).

Question: Which languages are recognized by NFAs?

Remarkable answer: The class of languages recognized by NFAs is also the class of regular languages!

Equivalence of NFAs and DFAs

(see also video Equivalence of Deterministic and Nondeterministic FSMs)

Definition: Automata M_1 and M_2 are equivalent iff $L(M_1) = L(M_2)$.

Theorem: For every NFA, an equivalent DFA exists.

Corollary: The class of languages recognized by NFAs is the class of regular languages.

Proof sketch

- First we prove that for every NFA N without ε transitions a
 DFA M can be constructed such that L(M) = L(N).
 This is done by having M execute all possible transitions that N
 may do from a set of states in parallel.
- Then we treat the case of NFAs with ε transitions. While doing this, we take into account that during these transitions, ε might be "read". Besides all states that N can reach by reading a symbol, M also determines all states that can be reached from these states by following them by ε transitions.

NFAs without ε transitions

Definition: An NFA $(Q, \Sigma, \delta, q_0, F)$ without ε transitions is an NFA such that:

$$\delta: Q \times \Sigma \to \mathscr{P}(Q).$$

The function δ^* is inductively defined as:

$$\delta^*(q,\varepsilon) = \{q\}$$

$$\delta^*(q,wa) = \delta(p_0,a) \cup \cdots \cup \delta(p_n,a)$$

$$\text{with } \{p_0,\ldots,p_n\} = \delta^*(q,w)$$

$$= \bigcup_{p \in \delta^*(q,w)} \delta(p,a).$$

Exercise

Let $a \in \Sigma$. Do we generally have $\delta(q, a) = \delta^*(q, a)$ for:

- DFAs?
- 2 NFAs without ε transitions?
- **3** NFAs with ε transitions?

From NFA without ε transitions to DFA

Theorem: For every NFA without ε transitions there exists an equivalent DFA.

Idea: Construct a DFA M that for each input word w performs all computation paths of N in parallel. The word w is accepted by M if at least one of the computation paths of N ends in an accepting state.

Constructing a DFA from an NFA

Let $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$ be an NFA without ε transitions.

Define $M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ such that:

$$Q_{M} = \mathscr{P}(Q_{N})$$

$$q_{M} = \{q_{N}\}$$

$$F_{M} = \{X \subseteq Q_{N} \mid X \cap F_{N} \neq \emptyset\}$$

For each $X = \{x_0, \dots, x_n\} \subseteq Q_N$ and each $a \in \Sigma$:

$$\delta_M(X, a) = \delta_N(x_0, a) \cup \cdots \cup \delta_N(x_n, a)$$
$$= \bigcup_{x \in X} \delta_N(x, a)$$

Note: $\delta_M(\emptyset, a) = \emptyset$ for all $a \in \Sigma$!

Exercise

Transform the following NFA to an equivalent DFA:

Note: States $\{2\}$ and $\{0,1\}$ have been left out. Why?

Exercise

Transform the following NFA into a DFA.

Overview definitions

Let $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$ be an NFA without ε transitions. Then:

$$\delta_N^*(q,\varepsilon) = \{q\}
\delta_N^*(q,wa) = \bigcup_{p \in \delta_N^*(q,w)} \delta_N(p,a)$$

• $M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ is defined as:

$$Q_M = \mathscr{P}(Q_N)$$
 $F_M = \{X \subseteq Q_N \mid X \cap F_N \neq \emptyset\}$
 $q_M = \{q_N\}$ $\delta_M(X, a) = \bigcup_{x \in X} \delta_N(x, a)$

•

$$\delta_M^*(X,\varepsilon) = X
\delta_M^*(X,wa) = \delta_M(\delta_M^*(X,w),a)$$

ε closure

Definition: Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA. Then E(q) is the ε closure of a state $q\in Q$, and E(X) of a set of states $X\subseteq Q$ is defined as follows:

$$E(q) = \{q' \in Q \mid q' \text{ can be reached from } q \$$
 via $0 \text{ or more } \varepsilon \text{ transitions} \}$ $E(X) = \{q' \in Q \mid \text{there exists a } q \in X \text{ such that } q' \in E(q) \}$

Note: It always holds that $q \in E(q)$; after all, q can be reached from q in 0 ε transitions.

DFA for an NFA with ε transitions

Let $N = (Q_N, \Sigma, \delta_N, q_N, F_N)$ be an NFA.

Define $M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ such that:

$$Q_M = \mathscr{P}(Q_N)$$

 $q_M = E(q_N)$
 $F_M = \{X \subseteq Q_N \mid X \cap F_N \neq \emptyset\}$

and for each $X = \{x_0, \dots, x_n\} \subseteq Q_N$ and each $a \in \Sigma$:

$$\delta_{M}(X,a) = E(\delta_{N}(x_{0},a)) \cup \ldots \cup E(\delta_{N}(x_{n},a))$$
$$= \bigcup_{x \in X} E(\delta_{N}(x,a))$$

Exercise

Transform the following NFA into an equivalent DFA:

Regular operations

Definition: The language operations *union* (\cup), *concatenation* (\circ) and *star* (*) are called the regular operations.

If L_1 and L_2 are languages, we write these operations as $L_1 \cup L_2$, $L_1 \circ L_2$ en L_1^* .

Note: We usually write L_1L_2 instead of $L_1 \circ L_2$.

Closure under Union

Theorem 1.45: The class of regular languages is closed under union.

Sipser, pp. 59, 60.

(Also see for closure under \cup , \circ and * the video Closure of the Regular Operations)

Closure under Concatenation

Theorem 1.47: The class of regular languages is closed under concatenation.

Sipser, pp. 60, 61.

Closure under Star

Theorem 1.49: The class of regular languages is closed under star.

Sipser, pp. 62, 63.

Exercise (1.15)

Let *M* be an NFA. Why does the following construction for star NOT generally work?

Counterexample

Let N be the left NFA and N' the right NFA. Note that $b \notin L(N)^*$, while $b \in L(N')$

Exercise

Prove or disprove the following statement:

Let L be a regular language. Then the language

$$L' = \{wv \mid w \in L \text{ and } |v| = 2\}$$

is also regular.

Exercise

Let M be an NFA. Show that there exists an equivalent NFA M' such that:

- \bigcirc M' has precisely one start state,
- 2 M' has precisely one accept state,
- no transition ends in the start state,
- 4 no transition starts in the accept state.

