

Generazione e visualizzazione grafica di traffico di reti

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Laurea Triennale in Informatica

Francesco Pannozzo

Matricola 699427

Relatore

Prof. Daniele De Sensi

Anno Accademico 2023/2024

Tesi non ancora discussa
Generazione e visualizzazione grafica di traffico di reti Relazione di tirocinio. Sapienza Università di Roma
© 2024 Francesco Pannozzo. Tutti i diritti riservati

Questa tesi è stata composta con \LaTeX e la classe Sapthesis.

 $Email\ dell'autore:\ francesco.pannozzo@libero.it$

Dedicato alla mia famiglia

Sommario

Questa relazione descrive il lavoro di tirocinio interno svolto presso l'università La Sapienza, concretizzato nella realizzazione di un progetto volto a realizzare un software per poter visualizzare in forma grafica l'andamento del traffico di una rete. Il progetto ha come obiettivo di mostrare il traffico di rete al variare del tempo e ciò viene raggiunto tramite grafiche e animazioni generate programmaticamente. L'idea dell'ambito di tirocinio nasce dalla volontà di sperimentare una realizzazione front-end tramite la libreria Manim, un motore di animazioni per video matematici esplicativi..

Indice

1	1 Introduzione		1
	1.3 Stato dell'arte		2
	1.4 Contributi		3
	1.5 Base di partenza del progetto		4
2	2 Contesto di sviluppo: le tecnolo	ogie impiegate	5
3	3 Progettazione		7
_	4 Test		9
	4.1 Sotto capitolo test		- 10

Introduzione

Nel mondo le reti informatiche sono oramai un concetto ben istanziato nella colletività, la loro presenza è soverchiante e si dirama nei più disparati settori. Basti pensare già alle reti PAN (Personal Area Network) le quali connettono dispositivi personali entro pochi metri e che ognuno di noi usa abitualmente nella propria casa, alle reti LAN (Local Area Network), anch'esse presenti nelle nostre case così come in uffici o edifici scolastici, le reti dei datacenter fino a giungere alla rete globale internet, la quale è creatrice a sua volta di paradigmi come può essere l'internet of things. Le reti informatiche sono impiegate nei più vari settori come l'istruzione, in cui le reti sono cruciali nelle scuole e nelle università per avere accesso a risorse educative o sfruttare l'e-learning, i servizi pubblici governativi e sanitari, nel settore ludico e multimediale come il gioco online e l'attuale streaming di contenuti multimediali: insomma, le reti informatiche sono di fatto una presenza piena e diffusissima ed è estremamente difficile riuscire a immaginare il mondo come lo vediamo oggi senza questa tecnologia. Con l'aumentare delle funzionalità legate alle reti, così come i dispositivi collegati a esse, capire cosa succede al loro interno, come si muovono i dati, è quindi di cruciale importanza, tramite l'analisi dei dati che vi fruiscono è possibile fare diagnostica, per quanto riguarda un discorso di monitoraggio, ma anche è possibile applicare le analisi in un ambito didattico e accademico. Capire cosa sta succedendo in una rete in modo immediato e visivo è lo scopo di questo progetto, il quale punta a mostrare, in modo grafico, l'andamento del traffico di una rete.

1.1 Ambito del tirocinio

Il progetto fa parte del percorso di tirocinio interno intrapreso presso l'Università La Sapienza di Roma. L'argomento su cui verte il progetto è la realizzazione di un visualizzatore grafico dell'andamento del traffico di una rete, basato su animazioni programmatiche. Il tool permette di visualizzare gli switch rappresentanti i vari endpoints e i link che li collegano i quali vengono colorati tramite animazioni nel tempo in base al traffico di rete precedentemente analizzato. Nel tool è presente anche una parte generativa di traffico di rete, una creazione di traffico fittizia di vitale importanza ai fini di testing.

2 1. Introduzione

1.2 Motivazioni

L'idea di sviluppare un visualizzatore grafico di traffico di rete è nata, in sede di proposta, dal Professore Daniele De Sensi, relatore del tirocinio, e dalla mia volontà di sviluppare un'applicazione avente il front-end come focus dell'esperienza. Nel mio personale corso di studi presso il Dipartimento di Informatica non ho avuto modo di studiare e approfondire un discorso legato al front-end, per cui la volontà di intraprendere questo percorso nasce in primis da un forte interesse verso questo aspetto dell'informatica e in secondo luogo per un completamento di formazione professionale personale.

1.3 Stato dell'arte

L'esigenza di analisi di reti informatiche ha portato alla luce svariati tool che permettono appunto di analizzare cosa avviene in una rete, di studiarne i dati statistici e di visualizzare graficamente determinati scenari. L'universita americana Johns Hopkins[7] ha stilato una lista di software per la visualizzazione e analisi di reti[8]:

- Gephi[3]: Gephi è il software leader di visualizzazione ed esplorazione per tutti i tipi di grafici e reti ed è open source. Le sue caratteristiche includono l'analisi esplorativa dei dati mediante manipolazioni di reti in tempo reale, analisi dei collegamenti per rivelare le strutture sottostanti delle associazioni tra oggetti, analisi dei social network per la creazione di connettori di dati sociali per mappare le organizzazioni della comunità e le reti di piccoli mondi, analisi della rete biologica per rappresentazione di modelli di dati biologici ed esportazione e creazione poster erp promuovere e divulgare il lavoro scientifico con mappe stampabili di alta qualità.
- Cytoscape[2]: è una piattaforma software open source per visualizzare reti complesse e integrarle con qualsiasi tipo di dati. Consiste in una piattaforma per visualizzare reti di interazioni molecolari e percorsi biologici, potendo integrare queste reti con annotazioni, profili di espressione genica e altri dati. Originariamente progettato per la ricerca biologica, ora è una piattaforma generale per l'analisi e la visualizzazione di reti complesse.
- GraphVis[4]: è un software di visualizzazione di grafici open source. Caratteristiche, I programmi di layout Graphviz accettano descrizioni di grafici in un semplice linguaggio di testo e creano diagrammi in formati utili, come immagini e SVG per pagine web; PDF o Postscript per l'inclusione in altri documenti; o visualizzare in un browser grafico interattivo. Graphviz ha molte funzionalità utili per diagrammi concreti, come opzioni per colori, caratteri, layout di nodi tabulari, stili di linea, collegamenti ipertestuali e forme personalizzate.
- **igraph**[5]: è una collezione di librerie per creare, manipolare grafici e analizzare ponendo l'enfasi nell'efficienza, portabilità e facilità d'uso. Igraph è open source e gratuito e può essere programmato in R, Python, Mathematica e C/C++

1.4 Contributi 3

• UCINET6[15]: è un pacchetto software per l'analisi dei dati dei social network. UCINET viene fornito con il tool di visualizzazione di rete NetDraw. Può leggere e scrivere una moltitudine di file di testo diversamente formattati, nonché file Excel. I metodi di analisi dei social network includono misure di centralità, identificazione di sottogruppi, analisi di ruolo, teoria dei grafi elementari e analisi statistica basata sulla permutazione. Inoltre, il pacchetto dispone di potenti routine di analisi delle matrici, come l'algebra delle matrici e la statistica multivariata.

- SocNetV[13]: è un'applicazione software gratuita multipiattaforma per l'analisi e la visualizzazione dei social network. Tra le caratteristiche principali troviamo il poter disegnare i social network, caricare i campi da un file supportato (GraphML, GraphViz, Adjacency, EdgeList, GML, Pajek, UCINET, ecc.), personalizzare attori e collegamenti tramite sistema punta e clicca, analizzare le proprietà dei grafici e dei social network, produrre report HTML e incorporare layout di visualizzazione di rete
- Pajek[9]: è un software per la visualizzazione e l'analisi delle reti. La sua forza risiede nel poter analizzare reti complesse potendo arrivare fino a un miliardo di vertici. L'analisi e la visualizzazione vengono eseguite utilizzando sei tipi di dati: rete (grafico), partizione, vettore, cluster (sottoinsieme di vertici), permutazione (riordinamento dei vertici, proprietà ordinali); e gerarchia (struttura generale ad albero sui vertici).

1.4 Contributi

Da un punto di vista grafico e quindi di visualizzazione, la maggior parte degli strumenti sopra elencati, permette una certa forma di personalizzazione nella disposizione dei nodi, sia automaticamente attraverso algoritmi di layout sia manualmente, permettendo agli utenti di spostare i nodi per ottimizzare la visualizzazione o per enfatizzare certi aspetti della rete. Tuttavia, la possibilità di avere animazioni dinamiche che mostrino l'andamento del traffico nel tempo, mostrando la variazione del colore in base alla quantità dello stesso, risulta essere una caratteristica meno comune nei software di analisi di rete, nello specifico:

- Gephi: Non supporta nativamente animazioni dinamiche basate su traffico in tempo reale. Tuttavia, la sua flessibilità e la capacità di aggiungere plugin potrebbero permettere implementazioni personalizzate.
- Cytoscape: Anche se fortemente orientato all'analisi statica, plugin o estensioni potrebbero aggiungere capacità simili.
- GraphVis (Graphviz): Principalmente orientato verso la visualizzazione statica; non supporta direttamente animazioni dinamiche dei link basate sul traffico.
- igraph: Come libreria di analisi, non è orientato verso la visualizzazione in tempo reale o animazioni dei link basate su traffico nel suo utilizzo standard.

4 1. Introduzione

• UCINET (con NetDraw): Focalizzato sull'analisi statica di reti sociali; non supporta animazioni dinamiche in base al traffico.

- SocNetV: Orientato all'analisi statica e alla visualizzazione; non è progettato per visualizzare animazioni dinamiche basate sul traffico.
- Pajek: Simile agli altri, è più un tool per l'analisi statica e la visualizzazione di grandi reti, senza un supporto diretto per animazioni dei link basate su traffico.

In questo contesto, l'inserimento di una caratteristica che permetta di fare quanto premesso come base del progetto di tirocinio, risulta particolarmente indicata nel contribuire a fornire una soluzione visiva come strumento aggiuntivo di analisi di una rete, di debugging e anche come strumento didattico. La possibilità di avere un riscontro visivo istantaneo di cosa avviene nel tempo in una rete, a livello di traffico, può dare immediato feedback nel caso ci fosse un problema di congestione in un punto nevralgico, oppure mostrare parti di rete libere dove poter studiare un reindirizzamento dello stesso, volto a ottimizzare le prestazioni. A livello didattico ciò si potrebbe mostrare per presentazioni così come per didattica tramite banalmente spiegazioni. Insomma i benefici derivanti da una rappresentazione del generale sono evidenti e ciò può essere di grosso aiuto nell'analisi così anche solo come semplice rappresentazione del traffico di rete, nonchè uno strumento complementare a quanto già presente in circolazione.

1.5 Base di partenza del progetto

Il progetto è partito da zero, si basa sullo sviluppo totalmente nuovo dell'applicazione ed è stato tutto idealizzato e pianificato in sede di proposta. Come approfondirò in seguito, nella sezione dedicata alla tecnologia impiegata, il progetto non è l'unica cosa a essere partita da zero, poichè il linguaggio scelto per sviluppare l'applicazione è Python[11], linguaggio non incluso nel mio personale percorso di studi e che ho dovuto necessariamente studiare da zero per poter affrontare il percorso di tirocinio.

Contesto di sviluppo: le tecnologie impiegate

Il progetto, a livello di tecnologia impiegata, pone le fondamenta su tre aspetti, uno dei quali è la scelta del linguaggio di programmazione che, come accennato precedentemente, è Python. Ci sono diversi validi motivi per cui puntare su questa tecnologia; in primis è materia di insegnamento alla facoltà di Informatica de La Sapienza, ciò ha quindi una forte valenza accedemica, in secondo luogo risulta essere il linguaggio più usato al mondo, ad affermarlo è l'Institute of Electrical and Electronics Engineers (IEEE)[6][1] un'associazione internazionale di scienziati professionisti con l'obiettivo della promozione delle scienze tecnologiche. Il linguaggio ha molte caratteristiche ottime, come una sintassi semplice e leggibile che lo rende facile da imparare e semplice da usare per gli sviluppatori esperti accorciando di gran lunga i tempi di sviluppo, una grande versatilità per poter essere usato in ambiti diversi come l'intelligenza artificiale, il web development, data analysys e molto altro, un ampio supporto delle librerie, due delle quali usate proprio nel progetto (di cui ne parlerò a breve), una grande comunità in cui trovare facilmente risorse, tutorial e supporto, una interoperabilità che permette un'ottima integrazione con altre tecnologie e altri linguaggi, orientato agli oggetti volto a facilitare la gestione del codice e migliora il riuso, scalabile e di facile integrazizone. Il secondo aspetto risiede nella scelta della libreria Manim[14], che viene definita come "Animation engine for explanatory math videos". Lo scopo di Manim è quindi quello di animare concetti tecnici legati alla matematica e si affida alla semplicità di Python per generare animazioni in modo programmatico. Manim può produrre anche immagini e gif, ma è nella produzione di video che splende, in questo modo è possibile progettare animazioni e renderle visibili in movimento, coprendo figure algebriche, grafici cartesiani, grafi e molto altro[14]. Manim viene impiegato principalmente per presentazioni che implichino aspetti matematici, la sfida del progetto è stata quella di cercare di sfruttare le potenzialità della libreria e renderle al servizio di uno strumento di analisi sul traffico di reti, una sfida vinta come potremo vedere in seguito. Il terzo aspetto tecnologico riguarda l'aspetto di gestione dei dati. Un visualizzatore grafico di traffico di reti ha bisogno principalmente di due insiemi di informazioni importanti; uno riguarda tutte le informazioni che riguardano il come è costruita la rate, parliamo quindi degli endpoint quali sono gli switch e conseguenti informazioni annesse, pensiamo ad esempio all'indirizzo di rete, un nome identificativo e così via, ma parliamo anche dei link che collegano i vari endpoints, con la necessità di tenere traccia delle loro capacità trasmissive, la tipologia di rete, se ha una struttura a grafo completo, mesh, torus o disposizione libera e molte altre informazioni che discuteremo in seguito. L'altro insieme di informazioni deriva dal traffico vero e proprio, rendendo quindi necessario un sistema di mantenimento dei dati legati ai pacchetti trasmessi. L'analisi di questi due insiemi di informazioni ha portato alla valutazione di tre sistemi per la strutturazione di dati; json[10], yaml[16] e CSV[12]. Dopo attenta anlisi si è deciso di adottare il formato json per strutturare e memorizzare i dati legati al traffico, con la possibilità di scegliere anche il formato yaml, mentre per i dati relativi alla descrizione della rete il compito è stato affidato esclusivamente a yaml, csv è stato scartato. Perchè csv è stato scartato? Sebbene csv rappresenti un'ottima alternativa, essendo molto veloce da analizzare, da leggere e scrivere, tuttavia lo diventa meno quando c'è bisogno di strutturare maggiormente i dati con strutture più complesse dalla semplice forma tabellare, tipicamente usate nei database. L'idea di scartarla, sia per strutturare i dati della rete che per quelli del traffico, deriva principalmente dai seguenti motivi:

- Leggibilità: uno dei primi intenti del progetto era di rendere l'applicazione il più leggibile possibile, questo perchè si è fortemente voluto attribuirne anche scopi di debugging e didattici, laddove avere una certa leggibilità è più che ragionevole.
- Strutture complesse: sicuramente il motivo più importante. Con csv non è possibile rappresentare strutture complesse, parliamo ad esempio di oggetti all'interno di altri oggetti. Sebbene per come sia ora strutturato il progetto una rappresentazione cvs è ancora possibile, ciò potrebbe non esserlo in futuro nell'ottica di espansione del progetto

Per esplicare meglio il concetto di struttura complessa non fattibile è possibile focalizzarsi sul seguente esempio. Segue la rappresentazione di diversi pacchetti così come sono utilizzati nel progetto:

fig. 2.1. pacchetti di rete rappresentati in json

Progettazione

...

Test

Per ottenere i lati di un rettangolo che abbia proporzioni 16 : 9 partendo da un quadrato di lato n, dobbiamo innanzitutto considerare che l'area del quadrato è data da $A = n^2$. Vogliamo che il rettangolo abbia la stessa area del quadrato ma rispetti le proporzioni 16 : 9.

Denotiamo con l la lunghezza e con h l'altezza del rettangolo. La condizione di proporzione si può esprimere come

$$\frac{l}{h} = \frac{16}{9}.$$

Dato che l'area del rettangolo deve essere uguale a quella del quadrato, abbiamo che

$$l \cdot h = n^2$$
.

Utilizzando la proporzione, possiamo esprimere l in termini di h come

$$l = \frac{16}{9}h.$$

Sostituendo questa espressione nell'equazione dell'area, otteniamo

$$\frac{16}{9}h \cdot h = n^2,$$

che si semplifica in

$$\frac{16}{9}h^2 = n^2.$$

Da qui, isoliamo h ottenendo

$$h^2 = \frac{9}{16}n^2 \implies h = n \cdot \frac{3}{4}.$$

Risostituendo il valore di h nell'espressione di l, abbiamo

$$l = \frac{16}{9} \cdot n \cdot \frac{3}{4} = n \cdot \frac{4}{3}.$$

Quindi, per un quadrato di lato n, per ottenere i lati di un rettangolo che mantenga la stessa area (n^2) con proporzioni 16:9, l'altezza h del rettangolo sarà $n\cdot\frac{3}{4}$ e la lunghezza l sarà $n\cdot\frac{4}{3}$.

Quindi il tutto funziona poichè è sempre vero quanto segue:

$$(l+1)(m+1) > ml \tag{4.1}$$

10 4. Test

4.1 Sotto capitolo test

Ecco un esempio di codice YAML:

```
- coordinates:

- [1, 2]

- [3, 0]
```

E ora un esempio di codice Python:

La complessità temporale dell'algoritmo è O(m+n).

$$O(m+n) (4.2)$$

..

Figura 4.1. a nice plot

As you can see in the figure 4.1, the function grows near 0. Also, in the page 10 is the same example.

Bibliografia

- [1] Stephen Cass Author. The Top Programming Languages 2023. https://spectrum.ieee.org/the-top-programming-languages-2023. Accessed: 2024-04-12. 2023.
- [2] Cytoscape Consortium. Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization. https://cytoscape.org. Accessed: 2024-04-12. 2024.
- [3] Gephi. Gephi: The Open Graph Viz Platform. https://gephi.org. Accessed: 2024-04-12. 2024.
- [4] Graphviz. Graphviz Graph Visualization Software. https://graphviz.org. Accessed: 2024-04-12. 2024.
- [5] igraph. igraph The Network Analysis Package. https://igraph.org. Accessed: 2024-04-12. 2024.
- [6] Institute of Electrical and Electronics Engineers. *IEEE Advancing Technology* for Humanity. https://www.ieee.org. Accessed: 2024-04-12. 2024.
- [7] Johns Hopkins University. *Homepage of Johns Hopkins University*. https://www.jhu.edu/. Accessed: 2024-04-12. 2024.
- [8] Johns Hopkins University Libraries. Network Data Visualization Guide. https://guides.library.jhu.edu/datavisualization/network. Accessed: 2024-04-12. 2024.
- [9] Pajek. Pajek Program for Large Network Analysis. http://mrvar.fdv.uni-lj.si/pajek/. Accessed: 2024-04-12. 2024.
- [10] Jon Postel. Internet Protocol. RFC 791. Accessed: 2024-04-12. RFC Editor, 1981. URL: https://www.rfc-editor.org/rfc/rfc791#page-11.
- [11] Python Software Foundation. Python Programming Language Official Website. https://www.python.org. Accessed: 2024-04-12. 2024.
- [12] Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files. RFC 4180. Accessed: 2024-04-12. RFC Editor, 2005. URL: https://www.rfc-editor.org/rfc/rfc4180.html#page-2.
- [13] SocNetV. Social Network Visualizer (SocNetV). https://socnetv.org. Accessed: 2024-04-12. 2024.
- [14] The Manim Community Developers. *Manim Documentation: Quickstart Guide*. Accessed: 2024-03-25. 2024. URL: https://docs.manim.community/en/stable/index.html.

12 Bibliografia

[15] UCINET. $UCINET\ Software$. https://sites.google.com/site/ucinetsoftware/. Accessed: 2024-04-12. 2024.

[16] YAML Core Team. YAML Ain't Markup Language (YAMLTM) Version 1.2. https://www.rfc-editor.org/info/rfc9512. Accessed: 2024-04-12. 2009.