

# THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院



# Evolutionary computation with applications in 3D urban reconstruction 进化计算在城市三维重建中的应用

24 September 2019
Tianjin, China
Civil Aviation University of China



Fan Xue 薛帆

Assistant Professor Dept. of REC / iLab FoA, HKU, HKSAR, PRC



#### **Outline**



iLab



#### **Evolutionary computation**



# **Optimization-driven 3D reconstruction**



#### **Discussion**



### 0.1 HKUrbanLab, HKU



iLab

◆ Faculty of Architecture, HKU 建筑学院

- 3 Departments: Arch., REC, DUPAD
- 2 Divisions: Landscape Arch., Arch. Conservation
- ♦ HKURBANlab 实验室集群
  - Newly branded research arm of FoA
  - 1 Academician (CAS), 12 full professors
  - 14 labs on
    - Urban planning;Property rights;
    - Chinese architecture; Rural;
    - Health; Sustainability;
    - Fabrication and materials;
       Conservation;
    - o iLab (data and information); Virtual Reality; ...





**建築學院** 



www.arch.hku.hk



# 0.1 iLab: The urban big data hub



#### ♦ iLab 实验室



- Urban big data hub
- multi-dimensional and multi-disciplinary urban big data collection, storage, analysis, and presentation to inform decisionmaking in urban development



- o Geographical Information Systems (GIS)
- Global Positioning Systems (GPS)
- Urban Remote Sensing (URS)
- Building Information Model (BIM)
- Internet of Things (IoT)
- virtual design and construction (VDC)
- integrated project delivery (IPD)









#### 0.1 iLab



- **♦** Director
  - Prof. Wilson Lu
- Members
  - 1 Assistant Professor, 1 Postdoc Fellow
  - 3 Research Assistants, 6 PhD students
- **♦** Themes 方向
  - Urban big data / urban computing
    - o BIM, GIS, Digital Twin, Text mining, IoT, ...
  - Construction waste
    - Metrics, Behavioral analysis, policy
  - International construction
    - Corporate social responsibility



Lunch-time gathering



# 0.2 About myself



iLab

◆ A mixed background 背景

- BEng in Automation, CAUC
- MSc in Computer Science, CAUC
  - Advisor: Prof. W Fan
- PhD in System Engineering, HKPU
- PDF/RAP/AP in Construction IT
- ◆ Research interests 方向
  - Urban sensing and computing
  - Automation in construction
  - Applied operations research
  - Machine learning and data visualization



- ◆ Engineering■ ISE, CEM, EIE
- ♦ Computer Science■ AI, DFO, ML
- Economics
  - SCM



# 0.2 My research projects



iLab

#### ◆ On-going 在研

- PI: HK RGC (17201717, 17200218), HKU-Tsinghua SPF (20300083), HKU (201811159177)
- Co-PI: Key R&D Guangdong (2019B010151001), HKU PTF (102009741)
- Co-I: NSFC (71671156), NSSFC (17ZDA062), HK SPPR (S2018.A8.010.18S), HK PPR (2018.A8.078.18D)



#### **♦** Completed 完成

- PI: HKU (201702159013, 201711159016)
- Co-I: NSFC (60472123)
- ♦ Job vacancy Research Assistant (2~3 openings)
  - \$17,000/month, Transferable to PhD applicant (vision, performance)
  - New updates on my web page (QR code)





#### 1.1 Fundamentals



- **♦** Function
  - A mapping f from a domain set to a range set
- Optimization problem
  - the selection of a *best* element (with regard to some criteria) from *some* set of available alternatives
    - Optimality ← Objective function
    - "Best value" in range  $\min f: \mathbb{R}^n \mapsto \mathbb{R}$
    - $\circ$  "Best element" in domain **arg min** f
- ♦ Fitness landscape
  - $\blacksquare$  Appearance of f
  - Peaks/valleys contain the solutions
    - Extremum / extrema







#### 1.1 Fundamentals



- iLab
- Optimality guaranteed methods
  - Linear programming
    - Linear super plane of fitness landscape
  - Gradient-based
    - Stationary points, where the first derivative is zero
  - Brach-and-bound/cut
  - Exhaustive
- ♦ Non-guaranteed methods
  - Monte Carlo
  - Quasi-gradient / Surrogate
  - Heuristics (Fixed rules)
  - Evolutionary / metaheuristics (rules of rules)

Expensive *f* 

Inexpensive *f*, escape "local optima



First derivative and stationary points





# 1.2 Evolutionary computation



iLab

Evolutionary computation (EC)

- A.k.a. metaheuristics
- A set of optimization algorithms
  - Iteration, population
- Often a meta-model "M"
- ♦ A long History
  - From bio-inspiration
  - To meta-model
  - With many variants
    - see AC



Derivations of AC (Xue 2012)

Timeline of early EC (Xue 2012)



# 1.2 Evolutionary computation (cont.)





- $\blacksquare$  For expensive f
- Escaping local optima
- Approximately a.k.a. derivative-free optimization (DFO)
- Examples
  - CMA: Covariance Matrix Adaptation
    - CMA-ES; Variants of CMA-ES
    - o CMA-VNS (Xue & Shen, 2017)
  - IDEA: Iterated Density Estimation EA
  - Nelder—Mead (downhill simplex)
  - NEWUOA: New Unconstrained Optimization w. quadratic Approxir
  - DIRECT: DIviding RECTangles



Nelder-Mead Source: Wikipedia.org



CMA-ES Source: otoro.net



# 1.3 Benchmark performance



iLab

- ♦ Black-Box Optimization Benchmark solving without explicit ∇
  - Surrogate methods
    - CMA-ES and its variants are competitive
  - Trust-region methods
    - o DIRECT, NEWUOA, etc.
  - Metaheuristics (GA, PSO, VNS, etc.)
  - Hyper-heuristics, data mining
  - ... and Monte Carlo



Comparison of algorithms for BBOB-2009 (Black-Box Optimization Benchmarking, higher is better) (Auger et al., 2010) *Image courtesy: Inria* 



# 1.3 Benchmarking performance (cont.)



- iLab
- Symmetry detection in 3D point clouds (Xue et al. 2019a)
  - Among 7 algorithms
    - All with default parameters
  - DIRECT was the best
  - NSGA2 was the worst
- ♦ So, overall, we say
  - Quasi-derivative + evolutionary' > Quasi-derivative > evolutionary
  - Due to the characteristics of real world problems



1000

Number of iterations (k)

100

 $10^{4}$ 





#### 2.1 3D urban reconstruction



- ♦ 3D Reconstruction
  - Capturing the shape and appearance of real objects to cyber space
- ♦ Abundant 2D/3D urban data from sensors





#### 2.2 An indoor case (Xue et al. 2019b)



- ♦ Input: 3D point cloud
- ♦ Traditional methods
  - Non-semantic: Photogrammetry, 3D mesh
  - Semantic: Segment  $\rightarrow$  features  $\rightarrow$  class, parameters
- $\diamond$  Modeling f for EC
  - Available 3D components from manufacturer/WWW
  - Best model = best fitting
    - Fitting parameters: 3D location  $(t_z, t_z, t_z)$ , 3D rotation  $(r_z)$
    - o  $x = (t_z, t_z, t_z, r_z)$ , DoF(x) = 4
  - - $\circ$  min f
    - o **s.t.** x in Boundary, C(x) ≤ 0







#### 2.2.2 The overall flow



- **♦** Two inputs
- One output
- ♦ Four modules
  - Autodesk Revit
  - Component op. (Revit plugin) / C++ CLR
  - DFO algorithm (CMA-ES) / C++11
  - $\blacksquare f$  evaluation / C++11
  - **■** (See the message sequencing chart)



- †: In C++, supported by libcmaes (version 0.9.5, available at: https://github.com/beniz/libcmaes)
- 1: In C++, supported by PCL (version 1.8.1, with FLANN, available at: http://pointclouds.org)
- #: In C++-compatible CLR, supported by Autodesk Revit (version 2015 Educational, documents available at: http://www.revitapidocs.com)





# 2.2.3 f evaluation



iLab

 $\diamondsuit$  *f* is still too expensive

 $\blacksquare$  Computing m points against thousands of triangles

♦ An effective approximation

■ Component point cloud dense sampling (pre-iteration

■ Input cloud down sampling

 $O(m \log m)^{**}$ 

Iteration

• Transform component with x = O(n)

• Octree voxel down sampling  $O(n \log n)^{**}$ 

o *nndist* for n' points  $O(n' \log m')$ 

• Compute *f* 

O(n')

Meta-model Evolution

 $f(X) = RMSE(BIM(X), P_{in})$   $\approx RMSE(P_X, P_{in})$   $\approx RMSE(P_X', P_{in}')$   $= \sqrt{\sum_{p \in P_{in}'} nndist^2(p, P_X')/m'}$   $\approx RMSE(P_{in}', P_X')$   $= \sqrt{\sum_{p \in P_X'} nndist^2(p, P_{in}')/||P_X'||}$ 



\*\*: optional



# **2.2.3** Implementation with GUI









# 2.2.4 3D reconstruction as f descending





- **♦** T=6.448
  - **■** Manual = 330s
- ♦ Iter = 9,000
- ♦ Precision = 1.0
- ♦ Recall = 1.0



#### 2.2.4 Result BIM





(a) A screenshot of the 3D view of the output asbuilt BIM

(b) A visual comparison between the input (grey points) and the output BIM



# 2.2.4 Demo video (another scene)







# 2.2.5 Parameter sensitivity analysis



- ♦ Two major parameters
  - Iterations per component (*trails*)
  - *Grid size* of octree voxelization
- **♦** Indicators
  - (a): correctness
  - **■** (b): *f*
  - (c): time consumption
  - (d): trade-off between (a) and (c)



(a) The number of correct components (higher (b) The objective function (lower is better) is better)



(c) The time cost (in log<sub>10</sub>, lower is better)





## 2.3.1 Image-based reconstruction (Xue et al. 2018)



- Problem
  - To fit 3D object to 2D
- $\diamondsuit$  f = dissimilarity
  - $\blacksquare$  arg max f(x)=SSIM(t(x), m)
- ♦ Algorithm
  - CMA-ES
- **♦** Performance
  - Good
  - ~1 trails/s







# 2.3.2 Opt in algorithms (Xue et al. 2019c)



- Problem
  - Reconstructing repetitive objects
- $\diamond$  Same f to 2.2
- **♦** Algorithm
  - → Multi-Modal Optimization (MMO)
  - NMMSO
- **Performance** 
  - $\blacksquare$  Recall  $\rightarrow$  + 10%
  - Precision  $\rightarrow$  + 10%
  - Time  $\rightarrow$  -35%





# 2.3.3 Topology reconstruction: Symmetry (Xue et al. 2019d)



- Problem
  - Detecting symmetry in point cloud
- f = distance
  - arg min  $f = RMSE(C(x), C) \approx RMSE(C'(x), C')$
- Algorithm
  - CMA-ES
- **♦** Performance
  - Time = 98.6s
  - $\blacksquare$  PCR = 93.7%







## 2.3.4 Clustering similar objects (Xue et al. 2019e)



iLab

Problem

- To cluster similar cloud patches
- $\diamondsuit$  f = dissimilarity
  - $\blacksquare$  min  $f = RMSE(C_1(x), C_2)$
- **♦** Algorithm
  - CMA-ES
- Performance
  - ~0.6s for each pair



城市点云中的目标聚类





# 3.1 A recap



- ♦ "Any evidence-based decision making can be formulated as an optimization problem"
- ♦ Evolutionary computation
  - A long history
  - Still a thriving domain
    - Conferences: GECCO, IEEE CEC
  - Good to handle expensive, complex tests
    - E.g., 3D urban reconstruction
    - Especially recent algorithms





# 3.2 Modeling for EC



- $\diamond$  To design f
  - Supporting functions
- ♦ To set up domain
- ♦ To validate range
- ♦ To apply EC
- ♦ To analyze parameter sensitivity



#### References



- il ab
- **Xue, F.**, Lu, W., Chen, K. (2018). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. *Computer-Aided Civil and Infrastructure Engineering*, *33*(11), 926-942.
- **Xue, F.**, Lu, W., Webster, C. J., & Chen, K. (2019a). A derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds. *ISPRS Journal of Photogrammetry and Remote Sensing*, 148, 32-40.
- **Xue, F.**, Lu, W., Chen, K., & Zetkulic, A. (2019b). From Semantic Segmentation to Semantic Registration: Derivative-Free Optimization—Based Approach for Automatic Generation of Semantically Rich As-Built Building Information Models from 3D Point Clouds. *Journal of Computing in Civil Engineering*, *33*(4), 04019024.
- **Xue, F.**, Lu, W., Chen, K., & Webster, C. J. (2019c). BIM reconstruction from 3D point clouds: A semantic registration approach based on multimodal optimization and architectural design knowledge, *Advanced Engineering Informatics*, 42, 100965.
- **Xue, F.**, Chen, K., & Lu, W. (2019d). Architectural symmetry detection from 3D urban point clouds: A derivative-free optimization (DFO) approach. In *Advances in Informatics and Computing in Civil and Construction Engineering* (pp. 513-519). Springer, Cham.
- **Xue, F.**, Chen, K., & Lu, W. (2019e). Understanding unstructured 3D point clouds for creating digital twin city: An unsupervised hierarchical clustering approach. *CIB World Building Congress* 2019.



# THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院



