ST758, Homework 1

Due Thursday, Sep 11, 2014

Some R exercises

- 1. Let a = 0.7, b = 0.2, and c = 0.1.
 - (a) Test whether (a + b) + c equals 1.
 - (b) Test whether a + (b + c) equals 1.
 - (c) Test whether (a+c)+b equals 1.
 - (d) Explain what you found. Hint: find the internal representation of these numbers.
- 2. Create the vector $\mathbf{v} = (959, 960, \dots, 969, 971, 972, \dots, 1023)$ of 64 elements.
 - (a) Compute the sum $\sum_{i=1}^{64} 2^{v_i}$.
 - (b) Compute the sum $\sum_{i=2}^{64} 2^{v_i}$.
 - (c) Compute the sum $2^{v_1} + \sum_{i=2}^{64} 2^{v_i}$.
 - (d) Explain what you found.
- 3. Create the vector $\mathbf{x} = (0.988, 0.989, 0.990, \dots, 1.010, 1.011, 1.012)$.
 - (a) Plot the polynomial $y = x^7 7x^6 + 21x^5 35x^4 + 35x^3 21x^2 + 7x 1$ at points x_i in x.
 - (b) Plot the polynomial $y = (x-1)^7$ at points x_i in \boldsymbol{x} .
 - (c) Explain what you found.
- 4. Let $\mathbf{u} = (1, 2, 3, 3, 2, 1)^{\mathsf{T}}$.
 - (a) Compute $U = I (2/d)uu^{\mathsf{T}}$ where $d = u^{\mathsf{T}}u$. (This type of matrix is known as an 'elementary reflector' or a 'Householder transformation.')
 - (b) Let C = UU, the matrix product of U and itself. Find the largest and smallest off-diagonal elements of C.
 - (c) Find the largest and smallest diagonal elements of C.
 - (d) Compute Uu. (matrix times vector)
 - (e) Compute the scalar $\max_{i} \sum_{j} |U(i,j)|$
 - (f) Print the third row of U.
 - (g) Print the elements of the second column below the diagonal.
 - (h) Let A be the first three columns of U. Compute $P = AA^{\mathsf{T}}$.
 - (i) Show that P is idempotent by recomputing (e) with PP P.
 - (j) Let B be the last three columns of U. Compute $Q = BB^{\mathsf{T}}$.
 - (k) Show that Q is idempotent by recomputing (e) with QQ Q.

- (l) Compute P + Q.
- 5. Read in the matrix in the file 'oringp.dat' on the failure of O-rings leading to the Challenger disaster. The columns are flight number, date, number of O-rings, number failed, and temperature at launch. Compute the correlation between number of failures and temperature at launch, deleting the last, missing observation (the disaster).
- 6. Let the $n \times n$ matrix \boldsymbol{A} have elements A(i,j) = 1/(|i-j|+1).
 - (a) Compute and print \mathbf{A} for n = 10.
 - (b) Compute and print the Cholesky factorization for \boldsymbol{A} for n=10.
 - (c) Compute the Cholesky factorization for n = 20. Does it fail? If not, find the determinant.