Ejercicios 4

1. Resuelve las siguientes congruencias lineales:

a)
$$3x \equiv 1 \pmod{12}$$
 b) $3x \equiv 1 \pmod{11}$ c) $64x + 11 \equiv 43 \pmod{84}$

2. Encuentra el conjunto de enteros x que verifican el siguiente sistema de congruencias:

$$\begin{cases} x \equiv -2 \pmod{5} \\ 2x \equiv 1 \pmod{7} \\ x \equiv 3 \pmod{8} \end{cases}$$

3. Resuelve, cuando sea posible, los sistemas:

$$a) \begin{cases} x \equiv 5 \pmod{6} \\ x \equiv 3 \pmod{10} \\ x \equiv 8 \pmod{15} \end{cases} \qquad b) \begin{cases} x \equiv 2 \pmod{14} \\ x \equiv 10 \pmod{30} \\ x \equiv 6 \pmod{21} \end{cases}$$

- 4. Encuentra el menor entero positivo cuyo resto cuando se divide por 11 es 8, que tiene el último dígito igual a 4 y es divisible por 27.
- 5. Un tesoro escondido de monedas de oro pasa a "ser propiedad" de una banda de 15 piratas. Cuando empiezan a repartirse las monedas, les sobran 3 monedas. La discusión por el reparto se "anima" y sólo quedan 7 piratas, pero, cuando se reparten las monedas entre ellos, sobran 2. La discusión continua y el número de piratas se reduce a 4, que sí consiguen repartirse todas las monedas. ¿Cúal es el mínimo número de monedas que podía haber en el tesoro?
- 6. En los apartados siguientes, calcula el menor entero positivo x que verifique la relación:

a)
$$3^{201} \equiv x \pmod{11}$$
 b) $2^{11} \cdot 3^{13} \equiv x \pmod{7}$

- 7. Calcula el resto de dividir 100^{101} entre 7.
- 8. Sea p un número primo. Demuestra que $n^p \equiv n \pmod{p}$ para todo entero positivo n.
- 9. Utiliza la congruencia módulo 9 para encontrar el dígito x en el producto: $89878 \cdot 58965 = 5299x56270$.
- 10. Determina la máxima potencia de 2 que divide a cada uno de los enteros siguientes:
 - a) 1423408 b) 41578912246

11. La letra asociada al DNI en el NIF indica la clase del número módulo 23, teniendo en cuenta la siguiente correspondencia:

	1				I	I	I	I	I		
Т	R	W	A	G	M	Y	F	Р	D	X	В
12	13	14	15	16	17	18	19	20	21	22	
N	J	Z	S	Q	V	Н	L	С	K	E	

En cada apartado, determina si existe un dígito α que haga que el NIF resultante sea válido

- a) $24\alpha 67890A$
- b) $2\alpha 041327Y$
- c) $4459\alpha 203D$