Number Theory

Cryptography

Modular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship

$$a=qn+r$$
 where $q=floor (a/n)$

a = 11;	n = 7;	11 = 1 x 7 + 4;	r = 4	q = 1
a = -11;		-11 = (-2) x 7 + 3;	r = 3	q = -2

Modulus

- If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n. The integer n is called the **modulus**. Thus, for any integer a, we can always write:
- ▶ 11 mod 7 = 4
- \rightarrow -11 mod 7 = 3

$$a = \mathbf{L} a/n \mathbf{J} \times n + (a \mod n)$$

congruent modulo

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This is written as $\equiv b \pmod{n}$.

Which is same as a-b=kn

For example,

$$38 \equiv 14 \pmod{12}$$

because 38 - 14 = 24, which is a multiple of 12, or, equivalently, because both 38 and 14 have the same remainder 2 when divided by 12.

The same rule holds for negative values:

$$-8 \equiv 7 \pmod{5}$$

$$2 \equiv -3 \pmod{5}$$

$$-3 \equiv -8 \pmod{5}$$
.

Divisors

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers. That is, b divides a if there is no remainder on division.
- The notation is commonly used to mean b divides a. Also, if b|a, we say that b is a <u>divisor</u> of a.
- The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

Modular Arithmetic Operations

- By definition, the (mod n) operator maps all integers into the set of integers {0, 1,... (n 1)}.
- This suggests the question: Can we perform arithmetic operations within the confines of this set?
- It turns out that we can; this technique is known as **modular arithmetic**.

Modular Arithmetic Operations

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n 2. [(a mod n) - (b mod n)] mod n = (a - b) mod n 3. [(a mod n) x (b mod n)] mod n = (a x b) mod n e.g. $[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2 (11 + 15) \mod 8 = 26 \mod 8 = 2$ $[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4 (11 - 15) \mod 8 = -4 \mod 8 = 4$ $[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5 (11 \times 15) \mod 8 = 165 \mod 8 = 5$

 Exponentiation is performed by repeated multiplication, as in ordinary arithmetic.

```
To find 11^7 \mod 13, we can proceed as follows: 11^2 = 121 \equiv 4 \pmod{13}11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}
```

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

```
+ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
     6 5 4 3 2
```

an illustration of modular addition and multiplication modulo 8

				(view full Size illiage)						
+	0	1	2	3	4	5	6	7		
1	1	2	3	4	5	6	7	0		
2	2	3	4	5	6	7	0	1		
3	3	4	5	-6	7	0	1	2		
4	4	5	6	7	0	1	2	3		
5	5	6	7	.0	1	2	3	4		
6	6	7	0	1	2	3	4	5		
7	7	0	1	2	3	4	5	6		

(a) Addition modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	-4	6
3	0	3	6	1	-4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

w	-w	₩,-1
0	0	_
1	7	1
2	6	_
3	5	3
4	4	-
- 5	3	5
6	2	_
7	1	7

(c) Additive and multiplicative inverses modulo 8

Properties of Modular Arithmetic

- Define the set Z_n as the set of nonnegative integers less than n:
- > $Z_n = \{0, 1, ..., (n-1)\}$ This is referred to as the set of residues, or <u>residue classes</u> modulo n.
- ▶ To be more precise, each integer in Z_n represents a residue class. We can label the residue classes modulo n as [0], [1], [2],...,[n-1], where
- ▶ $[r] = \{a: a \text{ is an integer, } a \equiv r \pmod{n}\}$

The residue classes modulo 4 are

$$[0]_4 = \{ ..., -16, -12, -8, -4, 0, 4, 8, 12, 16, ... \}$$

$$[1]_4 = \{ ..., -15, -11, -7, -3, 1, 5, 9, 13, 17, \}$$

$$[2]_4 = \{ ..., -14, -10, -6, -2, 2, 6, 10, 14, 18, ... \}$$

$$[3]_4 = \{ ..., -13, -9, -5, -1, 3, 7, 11, 15, 19, ... \}$$

Properties of Modular Arithmetic

Property	Expression
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws	$(w \times x) \mod n = (x \times w) \mod n$
Accociativa lavva	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws	$[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
Identities	$(1 \times w) \mod n = w \mod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Relative Prime(co-prime)

- Two integers are relatively prime if their only common positive integer factor is 1.
- This is equivalent to saying that a and b are relatively prime if gcd(a, b) = 1.
- ▶ 8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15, so 1 is the only integer on both lists

LCM and Greatest Common Divisor

- A nonzero b is defined to be a divisor of a if a = mb for some m, where a, b, and m are integers.
- We will use the notation gcd(a, b) to mean the greatest common divisor of a and b.
- The positive integer c is said to be the greatest common divisor of a and b if
 - c is a divisor of a and of b;
 - any divisor of a and b is a divisor of c.
- An equivalent definition is the following:
- gcd(a, b) = max[k, such that k|a and k|b]

$$lcm(a,b) = \frac{ab}{\gcd(a,b)}$$

For example, $lcm(70, 130) = \frac{70.130}{10} = 910$.

If two integers a and b share no common factors, then gcd(a, b) = 1. Such a pair of integers are called **relatively prime**.

The Euclidean Algorithm

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any positive integer b,

$$gcd(a,b)=gcd(b, a mod b)$$

- Example
- pcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) =
 11.
- ightharpoonup gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

The Euclidean algorithm makes repeated use of above equation to determine the greatest common divisor, as follows. The algorithm assumes a>b>0. It is acceptable to restrict the algorithm to positive integers because gcd(a,b)=gcd(|a|,|b|).

EUCLID(a, b)

- 1. $A \leftarrow a$; $B \leftarrow b$.
- 2. if B = 0 return A = gcd(a, b)
- 3. $R = A \mod B$
- 4. A ← B
- 5. $B \leftarrow R$
- 6. goto 2

The algorithm has the following progression

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                               gcd(1066, 904)
1066 = 1 \times 904 + 162
                              gcd(904, 162)
904 = 5 \times 162 + 94
                               gcd(162, 94)
162 = 1 \times 94 + 68
                               gcd (94, 68)
94 = 1 \times 68 + 26
                               gcd(68, 26)
68 = 2 \times 26 + 16
                               gcd(26, 16)
26 = 1 \times 16 + 10
                               gcd(16, 10)
16 = 1 \times 10 + 6
                               gcd(10, 6)
10 = 1 \times 6 + 4
                               gcd(6, 4)
6 = 1 \times 4 + 2
                               gcd(4, 2)
4 = 2 \times 2 + 0
                               gcd(2, 0)
```

trace this algorithm on inputs a = 105 and b = 252

\boldsymbol{x}	y	r = remainder(x, y)
105	252	105
252	105	42
105	42	21
42	21	0
21	0	

Finite Fields of The Form GF(p)

- Infinite fields are not of particular interest in the context of cryptography.
- However, finite fields play a crucial role in many cryptographic algorithms.
- It can be shown that the order of a finite field (number of elements in the field) must be a power of a prime pⁿ, where n is a positive integer.
- A prime number is an integer whose only positive integer factors are itself and 1. That is, the only positive integers that are divisors of p are p and 1.
- The finite field of order pⁿ is generally written **GF(pⁿ)**; stands for Galois field, in honor of the mathematician who first studied finite fields.

Finite Fields of Order p

- For a given prime, p, the finite field of order p, GF(p) is defined as the set Z_p of integers {0, 1,..., p−1}, together with the arithmetic operations modulo p.
- The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+	0	1
0	0	1
1	1	0

Addition

$$\begin{array}{c|cccc}
\times & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1
\end{array}$$

Multiplication

+	0	1	\times	0	1	w	-w	w^{-1}
0	0	1	0	0	0	0	0	<u> </u>
1	1	0	1	0				1

The simplest finite field is GF(2).

×	0	1	2	3	4	5	6
O	0	0	0	О	O	0	O
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

GF(7)

(b) Multiplication modulo 7

Floor and ceiling functions

- In <u>mathematics</u> and <u>computer science</u>, the **floor** and **ceiling** <u>functions</u> map a <u>real number</u> to the largest previous or the smallest following <u>integer</u>, respectively.
- More precisely, floor(x) is the largest integer less than or equal to x and ceiling(x) is the smallest integer greater than or equal to x.
- For example,
 - floor(2.4)=2
 - Ceiling(2.4)=3

Floor(2)=?

ceiling(2)=? 2? Or something else??

Finding the Multiplicative Inverse in GF(p)

- ➤ If *a* and *b* are relatively prime, then *b* has a multiplicative inverse modulo *a*.
- That is, if gcd(a, b) = 1, then b has a multiplicative inverse modulo a.
- That is, for positive integer b < a, there exists a $b^{-1} < a$ such that $bb^{-1} = 1 \mod a$.
- If a is a prime number and b < a, then clearly a and b are relatively prime and have a greatest common divisor of 1.

Extended Eucledean Algorithm

- It is easy to find the multiplicative inverse of an element in GF(p) for small values of p.
- We simply construct a multiplication table, and the desired result can be read directly.
- However, for large values of p, this approach is not practical.
- The alternative is Extended Eucledean Algorithm.

Extended Eucledean Algorithm

- Extended_Euclid(m,b)
- 1) $(A1,A2,A3) \leftarrow (1,0,m); (B1,B2,B3) \leftarrow (0,1,b)$
- If B3=0 return A3=gcd(m,b), no inverse exists
- 3) If B3=1 return B3=gcd(m,b); B2= b^{-1} mod m
- Q=floor(A3/B3)
- 5) (T1,T2,T3)=(A1-Q*B1, A2-Q*B2, A3-Q*B3)
- 6) $(A1,A2,A3) \leftarrow (B1,B2,B3)$
- 7) $(B1,B2,B3) \leftarrow (T1,T2,T3)$
- 8) goto step 2

Example

- shows that gcd(1759, 550) = 1 and that the multiplicative inverse of 550 is 355; that is,
- \triangleright 550 x 355 ≡1 (mod 1759).

Finding the Multiplicative Inverse of 550 in GF(1759)

S.N.	Q	A 1	A2	A3	B1	B2	B 3	T1	T2	T3
1	-	1	0	175 9	0	1	550			
2	3	0	1	550	1	-3	109	1	-3	109
3	5	Ī	-3	109	-5	16	5	-5	16	5
4	21	-5	16	5	106	-339	4	106	-339	4
5	1	106	-339	4	-111	355	1	-111	355	1

Prime Numbers

- An integer p>1 is a prime number if and only if its only divisors are \pm 1 and $\pm p$.
- Prime numbers play important role in computations involving numbers, including cryptographic computations.
- But how to test whether a number 'n' is prime or not, particularly if it is large.
- Testing all possible divisors of n is computationally infeasible for large 'n'.
- So we need different primality Testing algorithms.

Fermat's Theorem

- This is sometimes referred to as Fermat's little theorem.
- Statement:

"If p is prime and a is a positive integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then $a^p \equiv a \pmod{p}$

Note that the first form of the theorem requires that a be relatively prime to p, but this form does not.

Euler's Totient Function

- Euler's totient function and written $\Phi(n)$, defined as the number of positive integers less than n and relatively prime to n. By convention, $\Phi(1) = 1$.
- **Determine** $\Phi(37)$ and $\Phi(35)$.
- Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thus $\Phi(37) = 36$.
- To determine $\Phi(35)$, we list all of the positive integers less than 35 that are relatively prime to it:
- 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.
- There are 24 numbers on the list, so $\Phi(35)$. = 24.

Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

```
a = 3; n = 10; \phi(10) = 4 a^{\phi(n)} = 3^4 = 81 \equiv 1 \pmod{10} = 1 \pmod{n}
a = 2; n = 11; \phi(11) = 10 a^{\phi(n)} = 2^{10} = 1024 \equiv 1 \pmod{11} = 1 \pmod{n}
```

Group

- > a set S of elements or "numbers"
 - may be finite or infinite
- with some operation '.' so G=(S,.)
- Obeys CAIN:
 - Closure: a,b in S, then a.b in S
 - Associative law: (a.b).c = a.(b.c)
 - has Identity e: e.a = a.e = a
 - has inverses a^{-1} : $a.a^{-1} = e$
- > if commutative a.b = b.a
 - then forms an abelian group

Cyclic Group

- define exponentiation as repeated application of operator
 - example: $a^3 = a.a.a$
- ➤ and let identity be: e=a⁰
- a group is cyclic if every element is a power of some fixed element a
 - i.e., b = a^k for some a and every b in group
- > a is said to be a generator of the group

Ring

- > a set of "numbers"
- with two operations (addition and multiplication) which form:
- an abelian group with addition operation
- > and multiplication:
 - has closure
 - is associative
 - odistributive over addition:
 a (b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

Field

- > a set of numbers
- with two operations which form:
 - abelian group for addition
 - abelian group for multiplication (ignoring 0)
 - ring
- have hierarchy with more axioms/laws
 - group -> ring -> field

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in SThere is an element 0 in R such that a+0=0+a=a for all a in S For each a in S there is an element -a in S such that a + (-a) = (-a) + a = 0a+b=b+a for all a, b in S If a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in Sa(b+c) = ab + ac for all a, b, c in S(a + b)c = ac + bc for all a, b, c in Sab = ba for all a, b in SThere is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and a 0, there is an

element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$

Finite (Galois) Fields

- > finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- > in particular often use the fields:
 - GF(p)
 - GF(2ⁿ)

Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
 - find inverse with Extended Euclidean algorithm

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

> can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefs mod p
 - poly arithmetic with coefs mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- > eg

let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - i.e. all coefficients are 0 or 1
 - e.g. let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + x^2$

Polynomial Division

- can write any polynomial in the form:
 - f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $r(x) = f(x) \mod g(x)$
- \rightarrow if have no remainder say g(x) divides f(x)
- \triangleright if g(x) has no divisors other than itself & 1 say it is **irreducible** (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field.

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0 = \sum_{i=0}^{n-1} a_ix^i$$

- Consider the set S of all polynomials of degree n-1 or less over the field Z_p. Thus, each polynomial has the form
- where each a_i takes on a value in the set $\{0, 1, ..., p-1\}$. There are a total of p^n different polynomials in S.
- For p = 3 and n = 2, the $3^2 = 9$ polynomials in the set are

0 x 2x

1 x + 1 2x + 1

2 x + 2 2x + 2

For p = 2 and n = 3, the $2^3 = 8$ the polynomials in the set are

 $0 x + 1 x^2 + x$

 $1 x^2 x^2 + x + 1$

 $X x^2 + 1$

mod 2:

$$1 + 1 = 1 - 1 = 0;$$

 $1 + 0 = 1 - 0 = 1;$
 $0 + 1 = 0 - 1 = 1.$

- if f(x) has no divisors other than itself & 1 it is said irreducible (or prime) polynomial, an irreducible polynomial forms a field.
- $f(x) = x^4 + 1$ over GF(2) is reducible,
 - because $x^4 + 1 = (x + 1)(x^3 + x^2 + x + 1)$
- $f(x) = x^3 + x + 1$ is irreducible residual 1.

$$x + 1 / x^{3} + x + 1$$
eg. let $f(x) = x^{3} + x^{2}$ and $g(x) = x^{2} + x + 1$

$$f(x) + g(x) = x^{3} + x + 1$$

$$f(x) \times g(x) = x^{5} + x^{2}$$

Polynomial GCD

- gcd[a(x), b(x)] is the polynomial of maximum degree that divides both a(x) and b(x).
- \mathbf{p} gcd[a(x), b(x)] = gcd[b(x), a(x)mod(b(x))]
- Euclid[a(x), b(x)]
 - 1. $A(x) \leftarrow a(x)$; $B(x) \leftarrow b(x)$
 - 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]
 - 3. $R(x) = A(x) \mod B(x)$
 - 4. $A(x) \leftarrow B(x)$
 - 5. $B(x) \leftarrow R(x)$
 - **6.** goto 2

Example of GCD in Z_2 or in GF(2), Step1, gcd(A(x), B(x)) $A(x) = x^6 + x^5 + x^4 + x^3 + x^2 + 1$ $B(x) = x^4 + x^2 + x + 1$; $D(x) = x^2 + x$;

$$R(x) = x^3 + x^2 + 1$$

$$A(x) = B(x) = x^4 + x^2 + x + 1;$$

$$B(x) = R(x) = x^3 + x^2 + 1$$
,

$$D(x) = x + 1; R(x) = 0;$$

Step 3,

$$A(x) = B(x) = x^3 + x^2 + 1;$$

$$B(x) = R(x) = 0;$$

$$gcd(A(x), B(x)) = x^3 + x^2 + 1$$

$$x^{2} + x + x + 1$$

$$x^{2} + x + 1$$

$$x^{3} + x^{4} + x^{2} + x + 1$$

$$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{2} + 1$$

$$x^{2} + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{2} + 1$$

Find gcd[a(x), b(x)] for a(x) = $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and b(x) = $x^4 + x^2 + x + 1$.

$$A(x) = a(x); B(x) = b(x)$$

$$x^{4} + x^{2} + x + 1 / x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1$$

$$x^{6} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + x + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{3} + x^{2} + x$$

$$R(x) = A(x) \mod B(x) = x^3 + x^2 + 1$$

$$A(x) = x^4 + x^2 + x + 1$$
; $B(x) = x^3 + x^2 + 1$

$$R(x) = A(x) \mod B(x) = 0$$

$$gcd[a(x), b(x)] = A(x) = x^3 + x^2 + 1$$

Example GF(23)

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²
100	x ²	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^{2} + x$	$x^{2} + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	x	1	0

(b) Multiplication

		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
100	x^2	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	x + 1	$x^{2} + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^{2} + x$	x^2	x + 1

Discrete Logarithms

Consider the equation $y = g^x \mod p$

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must perform x repeated multiplications, and algorithms exist for achieving greater efficiency.

However, given y, g, and p, it is, in general, very difficult to calculate x (take the discrete logarithm, called discrete Logarithms Problem). The difficulty seems to be on the same order of magnitude as that of factoring primes required for RSA.