Отчёт по лабораторной работе №15

Дисциплина: Администрирование локальных сетей

Исаев Булат Абубакарович НПИбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Вывод 3.1 Контрольные вопросы	19

Список иллюстраций

2.1	Открытие проекта lab_PT-15.pkt	6
2.2	Настройка OSPF на маршрутизаторе msk-donskaya-baisaev-gw-1	
	(включение процесса OSPF, назначение областей интерфейсам).	7
2.3	Проверка состояния протокола OSPF на маршрутизаторе msk-	
	donskaya-baisaev-gw-1 (просмотр статуса всех соседей в заданном	
	сегменте, вывод информации из таблицы маршрутизации)	8
2.4	Настройка маршрутизатора msk-q42-gw-1	Ć
2.5	Настройка маршрутизирующего коммутатора msk-hostel-gw-1	Ć
2.6	Настройка маршрутизатора sch-sochi-gw-1	Ć
2.7	Проверка состояния протокола OSPF на маршрутизаторе msk-q42-	
	gw-1	10
2.8	Проверка состояния протокола OSPF на маршрутизирующем ком-	
	мутаторе msk-hostel-gw-1	11
2.9	Проверка состояния протокола OSPF на маршрутизаторе sch-sochi-	
	gw-1	12
2.10	Настройка интерфейсов коммутатора provider-baisaev-sw-1	13
2.11	Настройка маршрутизатора msk-q42-gw-1	13
2.12	Настройка коммутатора sch-sochi-sw-1	14
2.13	Настройка маршрутизатора sch-sochi-gw-1	14
2.14	Ping по адресу 10.130.0.200	15
2.15	Отслеживание в режиме симуляции движения пакета ICMP (OSPF) с	
	ноутбука администратора сети на Донской в Москве до компьютера	
	пользователя в филиале в г. Сочи	15
2.16	Временное отключение на коммутаторе провайдера vlan 6	16
2.17	Проверка изменения маршрута прохождения пакета ІСМР в режиме	
	симуляции с ноутбука администратора сети на Донской в Москве	
	до компьютера пользователя в филиале в г. Сочи	16
2.18	Потеря пакетов	17
2.19	Восстановление на коммутаторе провайдера vlan 6	17
2.20	Проверка изменения маршрута прохождения пакета ІСМР в режиме	
	симуляции с ноутбука администратора сети на Донской в Москве	
	до компьютера пользователя в филиале в г. Сочи	18

Список таблиц

1 Цель работы

Настроить динамическую маршрутизацию между территориями организации.

2 Выполнение лабораторной работы

Теперь откроем проект с названием lab_PT-14.pkt и сохраним под названием lab_PT-15.pkt. После чего откроем его для дальнейшего редактирования (рис. 2.1)

Рис. 2.1: Открытие проекта lab_PT-15.pkt.

Для начала настроим OSPF на маршрутизаторе msk-donskaya-baisaev-gw-1. Включение OSPF на маршрутизаторе предполагает, во-первых, включение процесса OSPF командой router ospf, во-вторых — назначение областей (зон) интерфейсам с помощью команды network area (рис. 2.2) Идентификатор процесса OSPF (process-id) по сути идентифицирует маршрутизатор в автономной системе, и, вообще говоря, он не должен совпадать с идентификаторами процессов на других маршрутизаторах. Значение идентификатора области (area-id) может быть целым числом от 0 до 4294967295 или может быть представлено в виде IP-адреса: А.В.С.D. Область 0 называется магистралью, области с другими идентификаторами должны подключаться к магистрали.

Рис. 2.2: Настройка OSPF на маршрутизаторе msk-donskaya-baisaev-gw-1 (включение процесса OSPF, назначение областей интерфейсам).

Проверим состояние протокола OSPF на маршрутизаторе msk-donskaya-baisaev-gw-1. Маршрутизаторы с общим сегментом являются соседями в этом сегменте. Соседи выбираются с помощью протокола Hello. Команда show ip ospf neighbor показывает статус всех соседей в заданном сегменте. Команда show ip ospf route (или show ip route) выводит информацию из таблицы маршрутизации (рис. 2.3)

Рис. 2.3: Проверка состояния протокола OSPF на маршрутизаторе msk-donskayabaisaev-gw-1 (просмотр статуса всех соседей в заданном сегменте, вывод информации из таблицы маршрутизации).

Далее приступим к настройке: маршрутизатора msk-q42-gw-1, маршрутизирующего коммутатора msk-hostel-gw-1, маршрутизатора sch-sochi-gw-1 (рис. 2.4), (рис. 2.5), (рис. 2.6)

Рис. 2.4: Настройка маршрутизатора msk-q42-gw-1.

Рис. 2.5: Настройка маршрутизирующего коммутатора msk-hostel-gw-1.

Рис. 2.6: Настройка маршрутизатора sch-sochi-gw-1.

Теперь проверим состояние протокола OSPF на всех маршрутизаторах (рис. 2.7), (рис. 2.8), (рис. 2.9)

Рис. 2.7: Проверка состояния протокола OSPF на маршрутизаторе msk-q42-gw-1.

Рис. 2.8: Проверка состояния протокола OSPF на маршрутизирующем коммутаторе msk-hostel-gw-1.

Рис. 2.9: Проверка состояния протокола OSPF на маршрутизаторе sch-sochi-gw-1.

Следующим шагом настроим линк 42-й квартал—Сочи (рис. 2.10), (рис. 2.11), (рис. 2.12), (рис. 2.13)

Рис. 2.10: Настройка интерфейсов коммутатора provider-baisaev-sw-1.

Рис. 2.11: Настройка маршрутизатора msk-q42-gw-1.

Рис. 2.12: Настройка коммутатора sch-sochi-sw-1...

Рис. 2.13: Настройка маршрутизатора sch-sochi-gw-1.

В режиме симуляции отследим движение пакета ICMP с ноутбука администратора сети на Донской в Москве (admin-donskaya-baisaev) до компьютера пользователя в филиале в г. Сочи рс-sochi-1 (рис. 2.14), (рис. 2.15)

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Recket Tracer RC Command Line 1.0
C:\ping 10.130.0.200 with 32 bytes of data:

Request timed out.
Replace timed ou
```

Рис. 2.14: Ping по адресу 10.130.0.200.

Рис. 2.15: Отслеживание в режиме симуляции движения пакета ICMP (OSPF) с ноутбука администратора сети на Донской в Москве до компьютера пользователя в филиале в г. Сочи.

Следующим шагом на коммутаторе провайдера отключим временно vlan 6 и в

режиме симуляции убедимся в изменении маршрута прохождения пакета ICMP с ноутбука администратора сети на Донской в Москве до компьютера пользователя в филиале в г. Сочи (рис. 2.16), (рис. 2.17)

Рис. 2.16: Временное отключение на коммутаторе провайдера vlan 6.

Рис. 2.17: Проверка изменения маршрута прохождения пакета ICMP в режиме симуляции с ноутбука администратора сети на Донской в Москве до компьютера пользователя в филиале в г. Сочи.

На коммутаторе провайдера восстановим vlan 6 и в режиме симуляции вновь убедимся в изменении маршрута прохождения пакета ICMP (рис. 2.18), (рис. 2.19), (рис. 2.20)

```
Request timed out.
Top
```

Рис. 2.18: Потеря пакетов.

Рис. 2.19: Восстановление на коммутаторе провайдера vlan 6.

Рис. 2.20: Проверка изменения маршрута прохождения пакета ICMP в режиме симуляции с ноутбука администратора сети на Донской в Москве до компьютера пользователя в филиале в г. Сочи.

3 Вывод

В ходе выполнения лабораторной работы мы настроили динамическую маршрутизацию между территориями организации.

3.1 Контрольные вопросы

- 1. Какие протоколы относятся к протоколам динамической маршрутизации? **OSPF, RIP, EIGRP.**
- 2. Охарактеризуйте принципы работы протоколов динамической маршрутизации. -
 - Маршрутизаторы по протоколу делятся между собой информацией из своих таблиц маршрутизации и корректируют их в соответствии с остальными.
- 3. Опишите процесс обращения устройства из одной подсети к устройству из другой подсети по протоколу динамической маршрутизации. -
 - Вектор-Расстояние маршрутизатор рассылает список адресов со сборным параметром расстояния (кол-во маршрутизаторов, производительность и т. д.) из доступных сетей. Состояние канала маршрутизаторы обмениваются топологической (связи маршрутизаторов) информацией.

4. Опишите выводимую информацию при просмотре таблицы маршрутизации.

_

Протокол Тип маршрута Адрес удаленной сети [Административная дистанция источника/Метрика маршрута] Следующий маршрутизатор Время последнего обновления маршрута Интерфейс.