Cycle Relations

Aresh Pourkavoos

May 30, 2023

Problem. Let S be a set. A ternary relation \circlearrowleft on S is a cycle relation when:

- (1) For all $a \in S$, ${}_a \overset{a}{\circlearrowleft} {}_a$.
- (2) For all $a,b,c\in S,\ _b\circlearrowleft_c^a$ implies $_a\circlearrowleft_b^c$.
- (3) For all $a \in S$, if we define the relation $\overset{a}{\leq}$ on $S \setminus \{a\}$ so that $b \overset{a}{\leq} c$ when $\overset{a}{b} \overset{a}{\circlearrowleft}_c$, then $\overset{a}{\leq}$ is a partial order. Let $z \in S$, and let \preceq be a partial order on $S \setminus \{z\}$.
 - (i) Does there exist a cycle relation \circlearrowleft on S such that $\stackrel{z}{\leq}$ as defined above is equal to \preceq ?
 - (ii) Assuming that such a O exists, is it unique?

Solution.

- (i) We show that a cycle relation exists. Define \circlearrowleft as follows:
 - (A) For all $a, b \in S$, $b \circ b$.
 - (B) For all $w, x \in S \setminus \{z\}$ where $w \leq x$, $\underset{w}{\overset{z}{\circlearrowleft}}_{x}$.
 - (C) For all $w, x, y \in S \setminus \{z\}$ where $w \leq x \leq y$, $x \stackrel{w}{\circlearrowleft}_y$.
 - (D) All cycles of the above satisfy \circlearrowleft , e.g. $z \overset{x}{\circlearrowleft}_w$ and $z \overset{w}{\circlearrowleft}_z$ where $w \preceq x$, and no other triples do.
 - By (A) with b = a, \circlearrowleft satisfies property (1), and by (D), it also satisfies (2).

To show (3), we find the relations $\stackrel{a}{\leq}$ for $a \in S$. In the first case, a = z. Neither (A) nor (C) contributes to $\stackrel{z}{\leq}$, even when cycled by (D). However, by (B), for all $w, x \in S \setminus \{z\}$ where $w \preceq x$, $w \stackrel{z}{\leq} x$, and the cycles of (B) again contribute nothing. Thus $\stackrel{z}{\leq} = \preceq$, so $\stackrel{z}{\leq}$ is a partial order (and has the desired agreement with \preceq).

In the second case, let $w \in S \setminus \{z\}$. Then $\stackrel{w}{\leq}$ is defined as follows:

- (I) By (A) with a = w, for all $b \in S \setminus \{w\}$, $b \stackrel{w}{\leq} b$.
- (II) By (B), for all $x \in S \setminus \{w, z\}$, if $w \leq x$, then $w \overset{z}{\circlearrowleft}_x$, so $x \overset{w}{\circlearrowleft}_z$, so $x \overset{w}{\leq} z$. Also, if $x \leq w$, then $x \overset{z}{\circlearrowleft}_w$, so $z \overset{w}{\leq} x$.
- (III) By (C), for all $x,y \in S \setminus \{w,z\}$, if $w \preceq x \preceq y$, then $\underset{x}{\overset{w}{\circlearrowleft}}_y$, so $x \overset{w}{\leq} y$. Also, if $y \preceq w \preceq x$, then $\underset{x}{\overset{y}{\circlearrowleft}}_x$, so $\underset{x}{\overset{w}{\circlearrowleft}}_y$, so $x \overset{w}{\leq} y$. Finally, if $x \preceq y \preceq w$, then $\underset{y}{\overset{x}{\circlearrowleft}}_y$, so $\underset{x}{\overset{w}{\circlearrowleft}}_y$, so $x \overset{w}{\leq} y$.

We show that $\stackrel{w}{\leq}$ is a partial order. By (I), $\stackrel{w}{\leq}$ is reflexive. To show that it is antisymmetric, let $a,b\in S\setminus\{w\}$, and suppose $a\stackrel{w}{\leq}b$ and $b\stackrel{w}{\leq}a$. We case on the values of a and b.

- If both are z, a = b trivially.
- If one is z and the other is not, this contradicts the goal a=b, so we want to show that this case cannot occur. WLOG a=z and $b \in S \setminus \{w,z\}$, so $z \stackrel{w}{\leq} b$ and $b \stackrel{w}{\leq} z$. This must arise from (II), so $b \preceq w$ and $w \preceq b$, respectively. Since \preceq is antisymmetric, b=w, which contradicts $b \in S \setminus \{w,z\}$.
- If neither is z, i.e. $a, b \in S \setminus \{w, z\}$, then $a \stackrel{w}{\leq} b$ and $b \stackrel{w}{\leq} a$ must arise from either (I), which would immediately imply that a = b, or (III). For the latter, since $a \stackrel{w}{\leq} b$, one of the following is true:
 - $w \leq a \leq b$
 - $-b \leq w \leq a$
 - $-a \leq b \leq w$

Likewise, since $b \stackrel{w}{\leq} a$, one of the following is true:

- $w \leq b \leq a$
- $a \leq w \leq b$
- $-b \leq a \leq w$

From here, it may be verified that any of the $3 \times 3 = 9$ cases implies one of the following:

- $-a \leq b$ and $b \leq a$, so a = b because \leq is antisymmetric.
- $-a \leq w$ and $w \leq a$, so a = w, which contradicts $a \in S \setminus \{w, z\}$.
- $-b \leq w$ and $w \leq b$, so b = w, which contradicts $b \in S \setminus \{w, z\}$.

It remains to show that $\stackrel{w}{\leq}$ is transitive. Let $a,b,c\in S\setminus\{w\}$, and suppose $a\stackrel{w}{\leq}b$ and $b\stackrel{w}{\leq}c$. If any pair of a,b, and c are equal, then $a\stackrel{w}{\leq}c$ follows immediately, so we assume from here that all three are distinct. Then at most one of them can be z.

- If a=z, then $b,c\in S\setminus\{w,z\}$. Also, $z=a\stackrel{w}{\leq}b$ must arise from (II), so $b\preceq w$, and $b\stackrel{w}{\leq}c$ must arise from (III), so one of the following is true:
 - $w \leq b \leq c$
 - $-c \leq w \leq b$
 - $-b \leq c \leq w$

In all cases, $w \leq b$ or $c \leq w$. If $w \leq b$, then b = w, which contradicts $b \in S \setminus \{w, z\}$. If $c \leq w$, then by (II), $z \leq c$, i.e. $a \leq c$.

- If b = z, then $a, c \in S \setminus \{w, z\}$. Also, $a \stackrel{w}{\leq} b = z$ must arise from (II), so $w \preceq a$, and $z = b \stackrel{w}{\leq} c$ must arise from (II), so $c \preceq w$. Thus $c \preceq w \preceq a$, so by (III), $a \stackrel{w}{\leq} c$.
- If c = z, then $a, b \in S \setminus \{w, z\}$. Also, $b \leq c = z$ must arise from (II), so $w \leq b$, and $a \leq b$ must arise from (III), so one of the following is true:
 - $w \leq a \leq b$
 - $-b \leq w \leq a$
 - $-a \stackrel{-}{\preceq} b \stackrel{-}{\preceq} w$

In all cases, $b \leq w$ or $w \leq a$. If $b \leq w$, then b = w, which contradicts $b \in S \setminus \{w, z\}$. If $w \leq a$, then by (II), $a \leq z$, i.e. $a \leq c$.

- If none of them is z, then $a, b, c \in S \setminus \{w, z\}$. $a \stackrel{w}{\leq} b$ must arise from (III), so one of the following is true:
 - $w \leq a \leq b$
 - $b \leq w \leq a$
 - $-a \leq b \leq w$

 $b \leq c$ must also arise from (III), so one of the following is true:

- $w \prec b \prec c$
- $-c \leq w \leq b$
- $-b \leq c \leq w$

From here, it may be verified that any of the $3 \times 3 = 9$ cases implies one of the following:

- $-b \leq w$ and $w \leq b$, so b = w, contradicting $b \in S \setminus \{w, z\}$.
- $w \leq a \leq c$, so by (III), $a \stackrel{w}{\leq} c$.
- $-c \leq w \leq a$, so by (III), $a \stackrel{w}{\leq} c$.
- $-a \leq c \leq w$, so by (III), $a \leq c$.

Since $\stackrel{w}{\leq}$ is transitive, $\stackrel{w}{\leq}$ is a partial order on $S \setminus \{w\}$, so \circlearrowleft is a cycle relation.

- (ii) We show that the cycle relation is not unique if it exists. Let $S = \{w, x, y, z\}$, and let $\leq = \{(w, w), (x, x), (y, y)\}$. Define \circlearrowleft as follows:
 - (A) For all $a, b \in S$, ${}_b \overset{a}{\circlearrowleft} {}_b$.
 - (B) $x \overset{w}{\circlearrowleft}_y$.
 - (C) All cycles of the above satisfy \circlearrowleft , and no other triples do.

Then by (A) with a = b, \circlearrowleft satisfies property (1), and by (C), it also satisfies (2). To show (3), we find the relations $\stackrel{a}{\leq}$ for $a \in S$:

- $\stackrel{w}{\leq} = \{(x, x), (y, y), (z, z), (x, y)\}$
- $\stackrel{x}{\leq} = \{(w, w), (y, y), (z, z), (y, w)\}$
- $\stackrel{y}{\leq} = \{(w, w), (x, x), (z, z), (w, x)\}$
- $\stackrel{z}{\leq} = \{(w, w), (x, x), (y, y)\}$

All of these are partial orders, so (3) is satisfied. Thus \circlearrowleft is a cycle relation. Also, $\stackrel{z}{\leq} = \preceq$.

Next, define \circlearrowright (with the direction of the arrow reversed) so that ${}_b{}^a{}^c{}_c$ when ${}_c{}^a{}^c{}_b$. Since \circlearrowleft satisfies (1) and (2), so does \circlearrowright . Also, each relation $\overset{a}{\geq}$ for \circlearrowright is the reverse of the corresponding $\overset{a}{\leq}$ for \circlearrowleft . Since the reverse of a partial order is also a partial order, \circlearrowright is a cycle relation. Also, $\overset{z}{\geq}=\overset{z}{\leq}=\preceq$.

Finally, $x \overset{w}{\circlearrowleft}_y$, but $x \overset{w}{\not \circlearrowleft}_y$, so the cycle relation is not unique.