Principal Component Analysis (PCA): Part I

CLPS 2908 Lecture 10 Mar 5, 2019

The Name

Linear Combinations

	X1	X2	Х3	X4	М	SUM	LC1	LC2	LC3	PC1
	4	3	5	4	4	16	3.1	3.9	-0.5	0.77
	8	6	2	2	4.5	18	3.5	6.0	2.5	-2.81
	6	5	7	5	5.75	23	4.5	5.8	-0.25	0.53
	4	5	5	7	5.25	21	3.8	4.8	-0.75	1.35
М	5.5	4.75	4.75	4.5	4.9	19.5	3.7	5.1	0.3	0.0
S ²	3.67	1.58	4.25	4.33	0.60	9.67	0.34	0.95	2.29	3.54

$$LC1 = (X1*1 + X2*0.5 + X3*1 + X4*0.5)/4$$

$$LC2 = (X1*2 + X2*1 + X3*0.5 + X4*0.5)/4$$

PC1 = X1*(-0.329)+X2*(-0.241)+X3*(0.276)+X4*(0.356)

Linear Combinations

_	X1	X2	Х3	X4	М	SUM	LC1	LC2	LC3	PC1
	4	3	5	4	4	16	3.1	3.9	-0.5	0.77
	8	6	2	2	4.5	18	3.5	6.0	2.5	-2.81
	6	5	7	5	5.75	23	4.5	5.8	-0.25	0.53
	4	5	5	7	5.25	21	3.8	4.8	-0.75	1.35
M	5.5	4.75	4.75	4.5	4.9	19.5	3.7	5.1	0.3	0.0
S ²	3.67	1.58	4.25	4.33	0.60	9.67	0.34	0.95	2.29	3.54

$$LC1 = (X1*1 + X2*0.5 + X3*1 + X4*0.5)/4$$

$$LC2 = (X1*2 + X2*1 + X3*0.5 + X4*0.5)$$

PC1 = X1*(-0.329)+X2*(-0.241)+X3*(0.276)+X4*(0.356)

PCA's Major Elements

Focus I: Subject variance = distinguishing information

Focus II: Variables' covariance

Goal of PCA: Capture much of the variance with fewer variates (components) than the number of original variables.

Constraints: Let components be orthogonal; let each have (relative) maximal variance.

Pear Component Analysis

Figure 7.94: Pear on the sword: PCA metaphor.

A clear case

Variances of Linear Combinations

Linear combination: C = Xw

$$\mathbf{S_{cc}} = \mathbf{C'C} \cdot (n-1)^{-1}$$

$$= (\mathbf{X}\mathbf{w})' \mathbf{X}\mathbf{w} \cdot (n-1)^{-1} \qquad \leftarrow \text{Substitute } \mathbf{X}\mathbf{w} \text{ for } \mathbf{C}$$

$$= \mathbf{w'} \mathbf{X'X}\mathbf{w} \cdot (n-1)^{-1}$$

$$\mathbf{S_{xx}}$$
PCA can be performed on the original variance covariance matrix $\mathbf{S_{xx}}$ correlation matrix $\mathbf{R_{xx}}$

PCA can be performed either on the original variancecovariance matrix S_{xx} or the correlation matrix \mathbf{R}_{xx}

$$\mathbf{S_{cc}} = \mathbf{w'S_{xx}}\mathbf{w}$$

similarly: $\mathbf{R_{cc}} = \mathbf{v'R_{xx}}\mathbf{v} = \mathbf{C'C} \cdot (n-1)^{-1}$,
whereby $\mathbf{C} = \mathbf{Z}\mathbf{v}$

Finding the Components

Origin of Procedure

Theorem: For any symmetric $p \times p$ matrix (e.g., $\mathbf{R'} = \mathbf{R}$), there are p "eigenvectors" that are "invariant under transformation by their matrix":

$$\mathbf{R} \ v = \lambda_{\mathbf{j}} \ v \quad \text{or} \quad \mathbf{R} \ \mathbf{V} = \Lambda \ \mathbf{V} \Rightarrow \quad \mathbf{R} = \mathbf{V} \Lambda \ \mathbf{V}'$$

$$\mathbf{R} \ v - \lambda_{\mathbf{j}} \ v = \mathbf{0} \qquad \qquad (= \text{spectral decomposition of R into eigenstructures})$$

$$(\mathbf{R} - \mathbf{I} \ \lambda_{\mathbf{j}}) \ v = \mathbf{0}$$

$$\text{To maximize } \lambda_{\mathbf{j}}, \text{ set the determinant to zero}$$

$$| \ \mathbf{R} - \mathbf{I} \ \lambda_{\mathbf{j}}| \rightarrow \mathbf{0}$$

Redone one λ after another, always extracting the next largest one.

Selection of Components

Better: Simulate Chance

Comparison

