Der Robinson-Kalkül

Vereinbarung: Bei Klauseln Allquantoren weggelassen.

Beispiel: Wir schreiben

$$pop(push(x_1, s_1))$$

statt

$$\forall x_1 \in \mathbb{N} : \forall s_1 \in Stack : pop(push(x_1, s_1)).$$

Vereinbarung: Klauseln sind Mengen von Literalen

$$l_1 \vee \cdots \vee l_n = \{l_1, \cdots, l_n\}$$

Definition: Schluß-Regel ist Paar der Form

$$\langle \{k_1, \cdots, k_n\}, k \rangle$$

k und k_i : prädikatenlogische Klauseln.

 k_1, \cdots, k_n : Prämissen

k: Konklusion

Schreibweise:

$$\frac{k_1 \quad \cdots \quad k_n}{k}$$

Definition: Substitutions-Regel

$$\frac{k}{k\tau}$$
 (Subst)

k: Klausel

 τ : Substitution

Beobachtung: Klauseln "schrumpfen" durch Subst-Regel.

Betrachte:

1.
$$k = q(x, d) \lor q(c, y)$$

2.
$$\tau = [x \mapsto c, y \mapsto d]$$

Dann gilt:

$$k\tau = q(c,d) \lor q(c,d)$$

$$= \{q(c,d), q(c,d)\}$$

$$= \{q(c,d)\}$$

$$= q(c,d)$$

Also: $\frac{q(x,d) \vee q(c,y)}{q(c,d)}$ (Subst).

Definition: (Schnitt-Regel) Es sei

- 1. k_1 , k_2 : prädikatenlogische Klauseln
- 2. *l*: prädikatenlogisches Literal

$$\frac{k_1 \vee l}{k_1 \vee k_2} (Schnitt)$$

Definition: Kalkül = Menge von Schluß-Regeln Simple := {Subst, Schnitt}

Herleitungs-Begriff

Definition: $M \vdash_{\mathcal{K}} k$

- 1. Falls $k \in M$, dann $M \vdash_{\mathcal{K}} k$.
- 2. Falls
 - (a) $M \vdash_{\mathcal{K}} k_i$ für alle $i = 1, \dots, n$ und
 - (b) $\frac{k_1 \cdots k_n}{k}$ Schluß aus \mathcal{K} , dann $M \vdash_{\mathcal{K}} k$.

Sprechweise: "k kann mit K aus M hergeleitet werden".

Beispiel: Signatur

- 1. $\mathbb{T} := \{\mathbb{B}, \mathbb{N}\}.$
- 2. $Fz := \{s\} \text{ und } s : \mathbb{N} \to \mathbb{N}.$
- 3. $Pz := \{<\} \text{ und } <: \mathbb{N} \times \mathbb{N} \to \mathbb{B}.$
- 4. $V := \{x, y, z, u, v, w\}.$

Klauseln:

- 1. $q_1 := \neg x < x$.
- $2. \ g_2 := \neg \ x < y \ \lor \ \neg \ y < z \ \lor \ x < z.$
- 3. $g_3 := x < s(x)$.
- 4. $g_4 := x < s(s(x))$.

Ein Beispiel

Setze: $M := \{g_1, g_2, g_3\}.$

Zeige: $M \vdash Simple g_4$.

1. Aus g_2 folgt mit $\tau = [y \mapsto s(x)]$

$$\frac{\neg x < y \lor \neg y < z \lor x < z}{\neg x < s(x) \lor \neg s(x) < z \lor x < z} (Subst)$$

2. Aus g_3 und der letzten Formel folgt mit Schnitt

3. Daraus folgt mit $\tau = [z \mapsto s(s(x))]$

$$\frac{\neg s(x) < z \lor x < z}{\neg s(x) < s(s(x)) \lor x < s(s(x))} (Subst)$$

4. Aus g_3 folgt mit $\tau = [x \mapsto s(x)]$

$$\frac{x < s(x)}{s(x) < s(s(x))}$$
 (Subst)

5. Aus den letzten beiden Formeln folgt mit Schnitt

$$s(x) < s(s(x)) \qquad \neg s(x) < s(s(x)) \lor x < s(s(x))$$
$$x < s(s(x))$$

Resolutions-Regel (Motivation)

Frage: Wie wähle ich Substitution τ in (Subst)?

Antwort: So, dass Schnitt-Regel anwendbar wird!

$$\frac{\frac{k_1 \vee l_1}{k_1 \tau_1 \vee l_1 \tau_1} (Subst) \quad \frac{l_2 \vee k_2}{l_2 \tau_2 \vee k_2 \tau_2} (Subst)}{k_1 \tau_1 \vee k_2 \tau_2} (Schnitt)$$

Forderung:

$$l_1\tau_1 = \overline{l_2}\tau_2$$

Beispiel:

1.
$$k_1 \vee l_1 = x < s(x)$$

2.
$$l_2 \lor k_2 = \neg s(x) < z \lor x < z$$

3.
$$(x < s(x))\tau_1 = (x < z)\tau_2$$

4.
$$\tau_1 = [x \mapsto s(x)]$$

5.
$$\tau_2 = [z \mapsto s(s(x))]$$

6.
$$k_1\tau_1 \vee k_2\tau_2 = x < s(s(x))$$

Definition: $\pi = [x_1 \mapsto y_1, \cdots, x_n \mapsto y_n]$

ist Variablen-Umbenennung falls

1.
$$\{y_1, \dots, y_n\} \cap \{x_1, \dots, x_n\} = \emptyset$$
.

2.
$$i \neq j \Rightarrow y_i \neq y_i$$
,

Resolutions-Regel

Definition: (Resolutions–Regel) Es gelte:

- 1. k_1 , k_2 : prädikatenlogische Klauseln,
- 2. l_1 , l_2 : prädikatenlogische Literale,
- 3. π : Variablen–Umbenennung,
- 4. $l_1 \doteq \overline{l_2}\pi$: lösbare syntaktische Gleichung,
- 5. $\mu = mgu(l_1, \overline{l_2})$.

Dann: Resolutions-Regel

$$\frac{k_1 \vee l_1 \qquad l_2 \vee k_2}{k_1 \mu \vee k_2 \pi \mu}$$
(Res)

Bemerkung: Res = 2 * (Subst) + (Schnitt)

$$\frac{k_1 \vee l_1}{k_1 \mu \vee l_1 \mu} (Subst) \frac{\frac{l_2 \vee k_2}{l_2 \pi \vee k_2 \pi} (Subst)}{\frac{l_2 \pi \mu \vee k_2 \pi \mu}{k_2 \pi \mu} (Subst)} (Schnitt)$$

Robinson-Kalkül

Definition: (Faktorisierungs–Regel)

- 1. k: prädikatenlogische Klausel,
- 2. l_1 und l_2 : prädikatenlogische Literale,
- 3. $l_1 \doteq l_2$: lösbare syntaktische Gleichung
- 4. $\mu = mgu(l_1, l_2)$

$$\frac{k \vee l_1 \vee l_2}{k\mu \vee l_1\mu}$$
(Fakt)

Beispiel:

$$\frac{q(x,d)\vee q(c,y)}{q(c,d)}$$
 (Fakt).

Bemerkung: (Fakt) ist Spezialfall von (Subst)

Definition: Robinson–Kalkül

$$\mathcal{R} := \{Res, Fakt\}$$

Korrektheits-Satz:

Falls $M \vdash_{\mathcal{R}} k$, dann $M \models k$.

Widerlegungs-Vollständigkeit:

Falls $M \models \bot$, dann $M \vdash_{\mathcal{R}} \bot$.

Robinson-Kalkül (Beispiel)

Beispiel: Sei

1.
$$g_1 := \neg x < x$$
.

2.
$$g_2 := \neg x < y \lor \neg y < z \lor x < z$$
.

3.
$$g_3 := x < s(x)$$
.

4.
$$g_4 := x < s(s(x))$$
.

Zeige: $\{g_1, g_2, g_3\} \vdash_{\mathcal{R}} g_4$

1. Aus g_3 und g_2 folgt mit $\pi = []$ und $\mu = [y \mapsto s(x)]$

$$\frac{x < s(x) \qquad \neg \ x < y \ \lor \ \neg \ y < z \ \lor \ x < z}{\neg \ s(x) < z \ \lor \ x < z}$$
 (Res)

2. Aus g_2 und $\neg s(x) < z \lor x < z$ folgt mit

$$\pi = [x \mapsto u, z \mapsto v]$$
 und $\mu = [x \mapsto s(u), v \mapsto s(s(u))]$

$$\frac{x < s(x) \qquad \neg s(x) < z \ \lor \ x < z}{u < s(s(u))}$$
(Res)

Verfahren zur Überprüfung $M \models k$

- 1. Setze $N:=M\cup\{\neg f\}$. Dann $M\models f$ g.d.w. $N\models\bot$.
- 2. Sei $N=\{g_1,\cdots,g_n\}$. Überführe $g_1,\cdots g_n$ in Klausel-Normalform: $\{g_1,\cdots,g_n\}\approx_e \{k_1,\cdots,k_m\}$
- 3. $M \models f$ g.d.w. $\{k_1, \dots, k_m\} \vdash_{\mathcal{R}} \bot$

Aber: $\{k_1, \dots, k_m\} \vdash_{\mathcal{R}} \bot$ nur semi-entscheibar.

- 1. Falls $\{k_1, \dots, k_m\} \vdash_{\mathcal{R}} \bot$, dann finden wir es heraus.
- 2. Falls $\{k_1, \dots, k_m\} \not\vdash_{\mathcal{R}} \bot$, dann rechnen wir beliebig lange.
- 3. Also: Gleichzeitig systematisch nach Struktur \mathcal{S} suchen mit
 - (a) $S(m) = \text{true f.a. } m \in M$,
 - (b) S(f) = false.

Problem: Manchmal gibt es nur unendliche Strukturen S für die $S(m) = \text{true f.a. } m \in M$ gilt.

Beispiel: $M = \{g_1, g_2, g_3\}$

Prädikatenlogik unentscheidbar!

Beispiel

Axiome:

- 1. Jeder Drache ist glücklich, wenn alle seine Kinder fliegen können.
- 2. Rote Drachen können fliegen.
- 3. Die Kinder eines roten Drachens sind immer rot.

Behauptung: Alle roten Drachen sind glücklich.

Formalisierung:

Signatur: $\Sigma_{Drache} := \langle \mathcal{V}, Fz, Pz, arity \rangle$

- 1. $V = \{x, y, z\}$
- 2. $Fz = \{\}$
- 3. $Pz = \{rot, fliegt, glück, kind\}$
- 4. $arity = \{\langle rot, 1 \rangle, \langle fliegt, 1 \rangle, \langle gl\ddot{u}ck, 1 \rangle, \langle kind, 2 \rangle\}$

Beispiel (Fortsetzung)

Formalisierung von Axiomen und Behauptung:

1.
$$f_1 := \forall x : (\forall y : kind(y, x) \rightarrow fliegt(y)) \rightarrow glück(x)$$

2.
$$f_2 := \forall x : rot(x) \rightarrow fliegt(x)$$

3.
$$f_3 := \forall x : rot(x) \rightarrow \forall y : kind(y, x) \rightarrow rot(y)$$

4.
$$f_4 := \forall x : rot(x) \rightarrow gl\ddot{u}ck(x)$$

Skolemisierungen f_1 :

$$f_1 = \forall x : (\forall y : kind(y, x) \rightarrow fliegt(y)) \rightarrow gl\ddot{u}ck(x)$$
 $\leftrightarrow \forall x : \neg(\forall y : \neg kind(y, x) \lor fliegt(y)) \lor gl\ddot{u}ck(x)$
 $\leftrightarrow \forall x : (\exists y : kind(y, x) \land \neg fliegt(y)) \lor gl\ddot{u}ck(x)$
 $\leftrightarrow \forall x : \exists y : (kind(y, x) \land \neg fliegt(y)) \lor gl\ddot{u}ck(x)$
 $\approx_e \forall x : (kind(k(x), x) \land \neg fliegt(k(x))) \lor gl\ddot{u}ck(x)$

Umformung in Klauseln:

$$k_1 := kind(k(x), x) \vee gl\ddot{u}ck(x)$$

 $k_2 := \neg fliegt(k(x)) \vee gl\ddot{u}ck(x)$

Umformung in Klauseln f_2 :

$$k_3 := \neg rot(x) \lor fliegt(x)$$

Umformung in Klauseln f_3 :

$$k_4 := \neg rot(x) \lor \neg kind(y, x) \lor rot(y)$$

Beispiel (Fortsetzung)

Umformung in Klauseln $\neg f_4$:

$$\neg f_4 = \neg \forall x : rot(x) \rightarrow gl\ddot{u}ck(x)
\leftrightarrow \neg \forall x : \neg rot(x) \lor gl\ddot{u}ck(x)
\leftrightarrow \exists x : rot(x) \land \neg gl\ddot{u}ck(x)
\approx_e rot(d) \land \neg gl\ddot{u}ck(d)$$

Klauseln:

$$k_5 = rot(d)$$

 $k_6 = \neg gl\ddot{u}ck(d)$

Definiere $L := \{k_1, k_2, k_3, k_4, k_5, k_6\}$ mit

1.
$$k_1 = kind(k(x), x) \vee glück(x)$$

2.
$$k_2 = \neg fliegt(k(x)) \lor gl\ddot{u}ck(x)$$

3.
$$k_3 = \neg rot(x) \lor fliegt(x)$$

4.
$$k_4 = \neg rot(x) \lor \neg kind(y, x) \lor rot(y)$$

5.
$$k_5 = rot(d)$$

6.
$$k_6 = \neg gl\ddot{u}ck(d)$$

Zeige:

$$L \vdash_{\mathcal{R}} \bot$$

Der Beweis

1. Aus k_5 und k_4 folgt

$$\frac{rot(d) \quad \neg rot(x) \lor \neg kind(y, x) \lor rot(y)}{\neg kind(y, d) \lor rot(y)} (\mathcal{R})$$

2. Daraus folgt mit k_1

$$\frac{\neg \textit{kind}(y,d) \lor \textit{rot}(y) \quad \textit{kind}(k(x),x) \lor \textit{gl\"uck}(x)}{\textit{gl\"uck}(d) \lor \textit{rot}(k(d))} (\mathcal{R})$$

3. Daraus folgt mit k_6

$$\frac{\textit{gl\"{u}\textit{ck}}(d) \lor \textit{rot}(k(d)) \quad \neg \textit{gl\"{u}\textit{ck}}(d)}{\textit{rot}(k(d))} (\mathcal{R})$$

4. Daraus folgt mit k_3

$$\frac{\mathit{rot}(k(d)) \quad \neg \mathit{rot}(x) \lor \mathit{fliegt}(x)}{\mathit{fliegt}(k(d))} (\mathcal{R})$$

5. Daraus folgt mit k_2

$$\frac{\textit{fliegt}(k(d)) \quad \neg \textit{fliegt}(k(x)) \lor \textit{glück}(x)}{\textit{glück}(d)} (\mathcal{R})$$

6. Daraus folgt mit k_6

$$\frac{g l \ddot{u} c k(d) - g l \ddot{u} c k(d)}{|} (\mathcal{R})$$

Hausaufgabe

Gegeben seien folgende Axiome:

- 1. Jeder Barbier rasiert alle Personen, die sich nicht selbst rasieren.
- 2. Kein Barbier rasiert jemanden, der sich selbst rasiert.

Folgern Sie daraus:

Alle Barbiere sind blond.