The state of the s

a' C' Cont

R¹ is alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylamino, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfolyl, halogen, haloalkyl, polyhaloalkyl, polyhaloalkoxy, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, alkoxycarbonylamino, I,I-(alkoxyl or aryloxy), alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring), $S(O)_2R^6R^7$, $-NR^6(C=NR^7)$ alkyl, $-NR^6(C=NR^7)$ alkenyl, -NR⁶(C=NR⁷)alkynyl. -NR⁶(C=NR⁷)heterðaryl, -NR⁸(C=NCN)-amino,

$$-\frac{\prod_{\mathbf{p}} \mathbf{p}}{\mathbf{p}} \mathbf{R}^{\mathbf{g}}$$

pyridine-N-oxide,

$$-\underbrace{\overset{\circ}{\underset{n'}{\bigvee}}_{R^8}}_{R^8}, \underbrace{\overset{\overset{\circ}{\underset{n'}{\bigvee}}_{n'}}_{N}}_{N}, \underbrace{\overset{\circ}{\underset{n'}{\bigvee}}_{n'}}_{O}$$

(where Q is O or H_2 and n' is 0, 1, 2 or 3) or

—C=CH—C—R^{8a}; tetrazolyl, pyrazolyl, thiazolyl, pyrimidinyl, imidazole, oxazole, or triazole, -PO(R¹³)(R¹⁴), (where R¹³ and R¹⁴ are independently alkyl, aryl, alkoxy, aryloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroarylalkoxy, cycloheteroalkyl, cycloheteroalkylalkyl, cycloheteroalkylalkoxy);

R⁶, R⁷, R⁸, R^{8a} and R⁹ are the same or different and are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, or cycloheteroalkyl;

and R¹ may be unsubstituted or substituted with from one to five substituents;

ma Tr

 \mathcal{Q}'

 1 1 2 2 2 and 4 are the same or different and are independently H, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl) 3Si (where each alkyl or aryl group is independent), cycloalkyl, bycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylaminò, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl. heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl, polyhaloalkoxy, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, alylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylàminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxyòarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonylox), alkoxycarbonylamino, l,l-(alkoxyl or aryloxy)2alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring), $S(O)_2R^6R^7$, $-NR^6(C=NR^7)$ alkyl, $-NR^6(C=NR^7)$ alkenyl.

 $-\mathsf{NR}^6(\mathsf{C} = \mathsf{NR}^7) \\ \mathsf{alkynyl}, \ -\mathsf{NR}^6(\mathsf{C} = \mathsf{NR}^7) \\ \mathsf{heteroaryl}, \ -\mathsf{NR}^8(\mathsf{C} = \mathsf{NCN}) \\ \mathsf{-amino}, \\ \mathsf{number} \\$

$$-\frac{\prod_{\mathbf{p}} \mathbf{p}}{\mathbf{p}} \mathbf{R}^{\mathbf{g}}$$

pyridine-N-oxide,

$$-N \longrightarrow \mathbb{R}^{8} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N}$$

(where Q is O or H_2 and n' is 0, 1, 2 or 3) or

 $\frac{{}^{NR}{}^8R^9}{C} = \frac{1}{C} - {}^{R}{}^{8a}; \text{ tetrazolyl, pyriadyl, thiazolyl, pyrimidinyl, imidazole, oxazole, or triazole, -PO(R^{13})(R^{14}), (where R^{13} \text{ and } R^{14} \text{ are independently alkyl, aryl, alkoxy, aryloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroarylalkoxy, cycloheteroalkyl, cycloheteroalkyl, in the same of the sam$

in the

cycloheteroalkoxy, or cycloheteroalkylalkoxy); and may be optionally independently substituted with from one to five substituents, which may be the same or different;

a Cont

including pharmaceutically acceptable salts thereof, prodrugs thereof, and all stereoisomers thereof; with the provisos that (1) where Z is imidazol-4-yl, 5-alkylimidazol-4-yl or 5-cycloalkylimidazol-4-yl, then R¹ cannot be or include a benzoxazole, benzothiazole, or benzimidazole and (2) R¹ is exclusive of 3-(1-benzimidazolonyl)propyl. --

2 50 b

--17. (Amended) The compound as defined in Claim I wherein \mathbb{R}^2 and \mathbb{R}^3 are independently H or lower alkyl, and \mathbb{R}^4 and \mathbb{R}^5 are each H, and \mathbb{R}^1 is heteroaryl. --

--19. (Amended) The compound as defined in Claim I wherein R¹ is

Contract C3

--22. (Amended) The compound as defined in Claim 14 wherein

Dy Pot

$$R^{2}$$
 R^{1}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R_{4}
 R_{1}
 R^{2}
 R^{2}
 R^{3}
 R_{4}
 R^{2}
 R^{3}
 R_{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

,

--24. (Amended) The compound as defined in Claim 14 wherein

£5,

--26. The compound as defined in Claim 1 wherein R¹ is phenyltetrazole, 1-(2,4-dihalo-5-alkoxyphenyltetrazol-5-yl, alkylphenyltetrazole, halophenyltetrazol, 1-(2-alkoxy-5-halophenyl)tetrazol-5-yl, 1-(3-alkyl-4-halophenyl)tetrazol-5-yl, alkoxyphenyltetrazole, alkoxy(halo)phenyltetrazole, alkoxy(halo)phenyltetrazole, alkoxy(halo)phenyltetrazole, phenyl-alkyl-pyrazole, alkoxyphenyl-alkyl-pyrazole, alkoxy(halo)phenyl-alkyl-pyrazole, alkoxy(alkyl)phenyl-alkyl-pyrazole, alkyl-pyrazole, a

Q 5

alkyl-pyrazole, dihalophenyl-alkyl-pyrazole, dialkylphenyl-alkyl-pyrazole, alkoxyphenyl-alkyl-pyrazole, halophenyl-haloalkyl-pyrazole, alkoxyphenyl(alkyl)(halo)pyrazole, phenylpyrimidine, phenyl(halo)pyrimidine, diphenylpyrimidine, halophenyl(halo)pyrimidine, dihalopyrimidine, diphenyl(halo)pyrimidine, dihalopyrimidine, diphenyl(halo)pyrimidine, dihalophenylpyrimidine, alkylphenyl(halo)pyrimidine, dihalophenylpyrimidine, alkylphenyl(alkoxy)pyrimidine, alkylphenyl(alkoxy)pyrimidine, alkylphenyl(alkoxy)pyrimidine, alkyl(halo)phenyl(alkoxy)pyrimidine, alkoxy(halo)phenyl(alkoxy)pyrimidine, dihalophenyl(dialkylamino)pyrimidine, heteroaryl(dihalophenyl)pyrimidine, halophenylpyrimidine, alkoxy(phenyl)pyrimidine, dialkoxyphenylpyrimidine, phenoxy(phenyl)pyrimidine, heteroaryl(phenyl)pyrimidine, alkoxy(halo)phenylpyrimidine, cycloheteroalkyl(phenyl)pyrimidine, alkoxy(halo)phenylpyrimidine, alkyl(halo)phenylpyrimidine, nitrophenylpyrimidine, dihalophenyl(alkoxy)pyrimidine, alkyl(halo)phenylpyrimidine, alkylcarbonylphenylpyrimidine, naphthylpyrimidine, alkylthiophenylpyrimidine, alkyl(halophenyl)triazole, alkyl(halo)phenyl-(alkyl)triazole, alkylimidazopyridine

phenylimidazopyridine, halophenylimidazopyridine, dihalophenylimidazopyridine, alkoxyphenylimidazopyridine. --

--27. (Amended) The compound as defined in Claim I wherein

R² is CH₃ or H;

R³ is CH₃ or H;

R⁴ is H;

R¹ is 2,3-dihydrobenzofuran-4-yl, 1-phenyltetrazol-5-yl,

1-(2,4-dichloro-5-methoxyphenyl)tetrazol-5-yl,

1-(3-chlorophenyl)tetrazol-5-yl,

1-(3-chloro-4-methyl)tetrazol-5-yl,

1-(3-methylphenyl)tetrazol-5-yl,

1-(2-chlorophenyl)tetrazol-5-yl,

1-(2-methoxy-5-chloro)tetrazol-5-yl,

1-(3-methyl-4-chlorophenyl)tetrazol-5-yl,

1-(2-methoxy-5-chlorophenyl)tetrazol-5-yl,

1-(3-methoxyphenyl)tetrazol-5-yl,

1-(2-methoxy-5-chlorophenyl)tetrazol-5-yl,

1-(3-chlorophenyl)-3-methylpyrazol-5-yi,

1-(3-fluoro)phenyl)-3-methylpyrazol-5-yi,

1-(3-methox)phenyl)-3-methylpyrazol-5-yl,

1-(3,5-dichlorophenyl)-3-methylpyrazol-5-yl,

1-(3-chlorophen)()-3-ethylpyrazol-5-yl,

1-(3-chloro-4-meth)(lphenyl)-3-methylpyrazol-5-yl,

1-(2,4-dimethylphenyl)-3-methylpyrazol-5-yl,

1-(3-chloro-4-fluorophehyl)-3-methylpyrazol-5-yl,

1-(3-trifluoromethylphenyl),-3-methylpyrazol-5-yl,

1-(3-chlorophenyl)-3-trifluoramethylpyrazol-5-yl,

1-(3-methylphenyl)3-methylpykazol-5-yl,

1-(3-chlorophenyl)-3-ethylpyrazò(-5-yl,

5-(3-chloro-4-fluorophenyl)pyrimidfn-4-yl,

5-(2-chlorophenyl)pyrimidin-4-yl,

5-(3-methylphenyl)pyrimidin-4-yl,

5-(3-trifluoromethylphenyl)pyrimidin-4-yl,

5-(2,4-dichlorophenyl)pyrimidin-4-yl,

5-(2,5-dimethylphenyl)pyrimidin-4-yl,

5-(3,4-dichlorophenyl)pyrimidin-4-yl,

5-(2,3-dimethylphenyl)pyrimidin-4-yl,

5-(2-methoxy-5-chlorophenyl)pyrimidin-4-yl,

5-(2-methoxy-5-fluorophenyl)pyrimidin-4-yl,

5-(3-methyl-4-fluorophenyl)pyrimidin-4-yl,

5-(3-chloro-4-fluorophenyl)-2-methoxy-pyrimidin-4-yl,

5-(3-chloro-4-fluorophenyl)-2-dimethylamino-pyrimidin-4-yl,

5-(3-chloro-4-fluorophenyl)-2-morpholinyl-pyrimidin-4-yl,

1-(3-chlorophenyl)-3-methyltriazol-5-yl,

1-(3-chloro-4-methylphenyl)-3-methyltriazol-5-yl,

5-(2,5-dichlorophenyl)pyrimidin-4-yl,

5-(3-chlorophenyl)pyrimidin-4-yl,

5-(3-trifluoromethoxyphenyl)pyrimidin-4-yl,

5-(2-chlorophenyl)-2-methoxypyrimidin-4-yl,

5-(3-chlorophenyl)-2-methoxypyrimidin-4-yl,

5-(3-trifluoromethylphenyl)-2-methoxypyrimidin-4-yl,

5-(2,4-dichlorophenyl)-2-methoxypyrimidin-4-yl,

5-(3-methylphenyl)-2-methoxypyrimidin-4-yl,

5-(2,5-dimethylphen)\)-2-methoxypyrimidin-4-yl, or

5-(3-methyl-4-fluorophenyl)-2-methoxypyrimidin-4-yl;

Z is 2-amino-5-methyl-imidazol-4-yl,

2,5-dimethylimidazol-4-yl, 2-amino-5-ethyl-imidazol-4-yl, 2-amino-5-isopropyl-imidazol-4-yl, 2-aminocarbonylamino-5-methyl-imidazol-4-yl, 5-methyl-imidazol-4-yl, imidazol-4-yl, or 4-methylimidazol-5-yl. --

--28. (Amended) A compound having the structure

--29.\(Amended) A compound having the structure

Please add the following claims.

95 y

63. A compound having the following structure

64. A compound having the structure

Pob

$$\begin{array}{c|c}
R^2 & & \\
\hline
 & & \\
R^1 - X & & \\
\hline
 & & \\
R^4 & & \\
\end{array}$$

wherein n is 4;

X is N;

Z is a heteroaryl group;

R¹ is heteroaryl, tetrazolyl, pyrazolyl, thiazolyl, pyrimidinyl, imidazole, oxazole, or triazole;

R⁶, R⁷, R⁸ and R⁹ are the same or different and are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, or cycloheteroalkyl;

and R¹ may be unsubstituted or substituted with from one to five substituents;

R², R³ and R⁴ are the same or different and are independently H, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylakylamino, arylakylamino, arylakyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl, polyhaloalkoxy, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylsulfonylamino, alkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyloxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino,

alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, alkoxycarbonylamino, I,I-(alkoxyl or aryloxy)2alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring), S(O)2R⁶R⁷, -NR⁶(C=NR⁷)alkyl, -NR⁶(C=NR⁷)alkenyl,

-NR⁶(C=NR⁷)alkyn**y**l, -NR⁶(C=NR⁷)heteroaryl, -NR⁸(C=NCN)-amino,

$$-\frac{\bigcup_{11/0}^{0}}{\bigcup_{n}^{1}}R^{8}$$

pyridine-N-oxide,

NR⁸R⁹

$$-N \longrightarrow \mathbb{R}^{8}$$

$$N \longrightarrow \mathbb{R}^{9}$$

$$N \longrightarrow \mathbb{R}^{1}$$

(where Q is O or H₂ and n' is 0, 1, 2 or 3) or

Learning II Learni

including pharmaceutically acceptable salts thereof, prodrugs thereof, and all stereoisomers thereof; with the proviso that where Z is imidazole 4-yl, 5-alkylimidazol-4-yl or 5-cyclohexylimidazol-4-yl, then R¹ cannot be benzoxazole, benzthiazole, benzimidazole or pyridine.

65. The compound as defined in Claim 64 wherein Z is imidazole, aminoimidazole, alkylimidazole, alkylthio(amino)imidazole, amino-(alkyl)imidazole, oxazole, (alkanoylamino)imidazole, thiazole, benzimiazole, aminothiazole, aminooxazole, aminooxazole, aminooxadiazole, dialkylimidazole, alkyl(alkanoylamino)imidazole, alkyl(amino)imidazole, arylaminocarbonylamino(alkyl)imidazole, alkoxycarbonylamino(alkyl)imidazole, aminotriazole or diaminopyrimidine.

50h G1 66 The compound as defined in Claim 1 wherein the R¹ group may be substituted within from one to five of the following groups:

alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)3Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylamino, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl such as CF3 and CF3CH2, polyhaloalkyloxy such as CF3O and CF3CH2O, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, I,\(\)(alkoxyl or aryloxy)2alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring, such as I,3dioxane or I,3-dioxolane), S(O)₂R⁶R⁷, -NR⁶(C=NR⁷)alkyl,

NR⁶(C=NR⁷)alkenyl, -NR⁶(C=NR⁷)alkynyl,

NR⁶(C=NR⁷)heteroaryl, -NR⁸(C=NCN)-amino, pyridine-N¹oxide,

$$-N \longrightarrow \mathbb{R}^{8}, \longrightarrow \mathbb{N}^{0}, \longrightarrow \mathbb{N}^{0}$$

 $\begin{tabular}{ll} NR^8R^9 & O \\ (where Q is O or H_2 and n' is 0,1,2 or 3) or $-C=CH-C-R^{8a}$; tetrazolyl, pyrazolyl, pyrydyl, thiazolyl, pyrimidinyl, imidazole, oxazole or triazole; -PO(R^{13})(R^{14}), (where R^{13}) and R^{14} are independently alkyl, aryl, alkoxy, aryloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroarylalkoxy, cycloheteroalkyl, cycloheteroalkoxy, or cycloheteroalkylalkoxy);$

R⁶, R⁷, R⁸, R^{8a} and R⁹ are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or cycloheteroalkyl, which substituents may be the same or different from each other and may be the same or different from the base R1 group.

67. The compound as defined in Claim 64 wherein R¹ is substituted with one to five of the following substituents: alkyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkylcarbonylamino, heteròaryl, halo, aryl, cycloalkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, alkoxycarbonylamino, guanidinyl, nitro, cycloheteroalkyl, aryloxycarbonylamino, heteroaryloxylcarbonylamino, uriedo (where the uriedo nitrogens may be substituted with alkyl, aryl or heteroaryl), heterocyclylcarbonylamino (where the heterocycle is connected to the carbonyl group

via a nitrogen or carbon atom), alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino,

Where J is: CHR²³,

R²³, R²⁴ and R²⁵ are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl;

R²⁰, R²¹, R²² are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl; and these preferred substituents may either be directly attached to R¹, or attached via an alkylene chain at an open position, which substituents may be the same or different from each other and may be the same or different from the base R¹ group.

68. The compound as defined in Claim 64 wherein Z is imidazole, aminoimidazole, alkylimidazole, alkylthioimidazole, alkylthio(amino)imidazole, amino(alkyl)imidazole or (acetylamino)imidazole.

69. The compound as defined in Claim 64 wherein the moiety

70. The compound as defined in Claim 64 wherein R2 and R3 are independently H, lower alkyl, lower alkoxy or aryl, and R⁴ and R⁵ are each hydrogen.

71. The compound as defined in Claim 64 wherein R1 is

72. The compound as defined in Claim 64 wherein R1, R2, R3 and/or R4 may be joined together with the N atom and/or carbons to which they are attached to form a non-aromatic ring.

73. The compound as defined in Claim 64 wherein

$$R^2$$
 R^3
 R^4

$$R^{1}-N = \begin{cases} R^{2} & R^{3} \\ R^{4} & R^{4} \end{cases}$$

74. The compound as defined in Claim 64 having the structure

(R³¹ = alkyl, haloalkyl,

(Ar = aryl or heteroaryl)