ICST103 QUIZ Problem Code: 3HIS3JU8CJ54S 1/17/2013

Manhattan Distance

The Manhattan distance refers to the distance that would be travelled to get from one point to the other if a grid-like path is followed (vertical and horizontal only, no diagonals). The Manhattan distance between two points is the sum of the absolute differences of their corresponding coordinates.

For example, given a 4x5 grid composed of sharp (#) signs and two points of concern denoted by ampersand (&) signs.

```
# # # # &
# # # # #
# # # # #
& # # # #
```

Calculating the Manhattan Distance between the two ampersand signs would go like this (indexes are added as reference).

```
0 1 2 3 4
0 # # # # &
1 # # # # #
2 # # # # #
3 & # # # #
```

```
coordinates of first ampersand (top right) \rightarrow x1 = 0, y1 = 4 coordinates of second ampersand (bottom left) \rightarrow x2 = 3, y2 = 0 therefore |(0-3)| + |(4-0)| -> 3 + 4 = 7
```

Tracing the Manhattan path shows that the Manhattan distance indeed is 7 units, see overlay path composed of dots below.

```
# # # . .
# . . . #
. . # # #
& # # # #
```

from the ampersand at the lower left to the ampersand at the top right first move \rightarrow up second move \rightarrow right third move \rightarrow up fourth move \rightarrow right fifth move \rightarrow right

ICST103 QUIZ Problem Code: 3HIS3JU8CJ54S 1/17/2013

```
sixth move \rightarrow up
seventh move → right (partner ampersand reached)
distance therefore is seven (7)
```

Given a grid of sharp symbols be able to calculate the Manhattan distance between two ampersands located within the grid.

Input Format (input: manhattan.in)

Input contains grids of sharp symbols with an empty line separating the grids from one another.

Output Format (output: standard output)

Display the Manhattan distance between two ampersands located within every grid.

Sample Input

```
# # # # # # # # &
# # # # # # # # # #
# # # # # # # # # #
# # # # # # # # # #
# # & # # # # # #
# # # # # # # # # #
# # # # # # # # # #
# # # # # # # # #
# # # # # # # # #
# # # # # # # # #
# # & # # # # #
# # # # # # # # #
# # # #
# # # #
```

Sample Output

&

11

6

7