MAT4400: Notes on Linear analysis

Morten Tryti Berg and Isak Cecil Onsager Rukan.

February 15, 2024

3 σ -Algebras

Definition 3.0.1 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \ \forall A \in S.$
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

6 Existence of Measures

Theorem 6.1 (Carathéodory). Let $S \subset P(X)$ be a semi-ring and $\mu : S \to [0, \infty)$ a pre-measure. Then μ has an extension to a measure μ^* on $\sigma(S)$, i.e. that $\mu(s) = \mu^*(s)$, $\forall s \in \sigma(S)$.

Also, if S contains an exhausting sequence, $S_n \uparrow X$, s.t. $\mu(S_n) < \infty$, then the extension is unique.

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.0.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.1. Let (X, A), (x', A') be measurable spaces and let $A' = \sigma(G')$. Then $T: X \to X'$ is A/A'-measurable iff $T^{-1}(G') \subset A$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.2. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Definition 7.2.1. (and lemma) Let $(T_i)_{i\in I}$, $T_I: X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, A_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Theorem 7.3. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (4)

defines a measure on (X', A').

Definition 7.3.1. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.4. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.5. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}|\lambda^n = |\det S|^{-1}\lambda^n.$$
(5)

Corollary 7.6. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u: X \to \mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)$ -measurable if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (6)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathcal{A}, \ \forall G \in \mathcal{G} \text{ where } \mathcal{G} \text{ generates } \mathcal{B}(\mathbb{R}^1).$$
 (7)

10 Integrals of Measurable Functions

We have defined our integral for positive measurable functions, i.e. functions in $\mathcal{M}^+(\mathscr{A})$. To extend our integral to not only functions in $\mathcal{M}^+(\mathscr{A})$ we first notice that

$$u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}) \Leftrightarrow u = u^+ - u^-, \ u^+, u^- \in \mathcal{M}_{\overline{\mathbb{R}}}^+,$$
 (8)

i.e. that every measurable function can be written as a sum of **positive** measurable functions.

Definition 10.0.1 (μ -integrable). A function $u: X \to \overline{\mathbb{R}}$ on (X, \mathscr{A}, μ) is μ -integrable, if it is $\mathscr{A}/\mathscr{B}(\overline{\mathbb{R}})$ -measurable and if $\int u^+ d\mu$, $\int u^- d\mu < \infty$ (recall the definition for the integral of positive measurable functions). Then

$$\int ud\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$
(9)

is the $(\mu$ -)integral of u. We write $\mathcal{L}^1(\mu)$ for the set of all real-valued μ -integrable functions ¹.

Theorem 10.1. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then the following conditions are equivalent:

- (i) $u \in \mathcal{L}^{\frac{1}{\overline{\mathbb{D}}}}(\mu)$.
- (ii) $u^+, u^- \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (iii) $|u| \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu)$.
- (iv) $\exists w \in \mathcal{L}^1_{\mathbb{R}}(\mu) \text{ with } w \geq 0 \text{ s.t. } |u| \leq w.$

Theorem 10.2 (Properties the μ -integral). The μ -integral has the following properties: homogeneous, additive, and:

¹In words, we extend our integral to positive measurable functions by noticing that we can write every measurable function as a sum of positive measurable functions, something that we do know how to integrate. We don't want to run into the problem of $\infty - \infty$, thus we require the integral of the positive and negative parts to both (separately) be less than infinity.

(i)
$$\min\{u, v\}, \max\{u, v\} \in \mathcal{L}^{1}_{\overline{\mathbb{D}}}(\mu)$$
 (lattice property)

(ii)
$$u \le v \Rightarrow \int u d\mu \le \int v d\mu$$
 (monotone)

(iii)
$$\left| \int u d\mu \right| \le \int |u| d\mu$$
 (triangle inequality)

Remark. If $u(x) \pm v(x)$ is defined in $\overline{\mathbb{R}}$ for all $x \in X$ then we can exclude $\infty - \infty$ and the theorem above just says that the integral is linear:

$$\int (au + bv)d\mu = a \int ud\mu + b \int vd\mu.$$
 (10)

This is always true for real-valued $u, v \in \mathcal{L}^1(\mu) = \mathcal{L}^1_{\mathbb{R}}(\mu)$, making $\mathcal{L}^1(\mu)$ a vector space with addition and scalar multiplication defined by

$$(u+v)(x) := u(x) + v(x), (a \cdot u)(x) := a \cdot u(x), \tag{11}$$

and

$$\int ...d\mu : \mathcal{L}^1(\mu) \to \mathbb{R}, \ u \mapsto \int u d\mu, \tag{12}$$

is a positive linear functional.

11 Null sets and the "Almost Everywhere"

Definition 11.0.1. A $(\mu$ -)null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathscr{A}$ satisfying

$$N \in \mu \Leftrightarrow N \in \mathscr{A} \text{ and } \mu(N) = 0.$$
 (13)

This can be used generally about a 'statement' or 'property', but we will be interested in questions like 'when is u(x) equal to v(x)', and we answer this by saying

$$u = v \ a.e. \Leftrightarrow \{x : u(x) \neq v(x)\}\$$
is (contained in) a μ -null set., (14)

i.e.

$$u = v \quad \mu\text{-a.e.} \Leftrightarrow \mu\left(\left\{x : u(x) \neq v(x)\right\}\right) = 0$$
 (15)

The last phrasing should of course include that the set $\{x: u(x) \neq v(x)\}$ is in \mathscr{A} , but this can be trivially seen.

Theorem 11.1. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then:

(i)
$$\int |u| d\mu = 0 \Leftrightarrow |u| = 0 \text{ a.e. } \Leftrightarrow \mu \{u \neq 0\} = 0,$$

(ii)
$$\mathbb{1}_N u \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu) \ \forall \ N \in \mathcal{N}_{\mu},$$

(iii) $\int_N u d\mu = 0.$

Corollary 11.2. Let $u = v \mu$ -a.e. Then

- (i) $u, v \ge 0$ $\Rightarrow \int u d\mu = \int v d\mu$,
- (ii) $u \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu) \Rightarrow v \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu) \text{ and } \int u d\mu = \int v d\mu.$

Corollary 11.3. If $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, $v \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu)$ and $v \geq 0$ then

$$|u| \le v \ a.e. \ \Rightarrow u \in \mathcal{L}^{1}_{\mathbb{R}}(\mu).$$
 (16)

Proposition 11.4 (Markow inequality). For all $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, $A \in \mathscr{A}$ and c > 0

$$u\left(\{|u| \ge c\} \cap A\right) \le \frac{1}{c} \int_{A} |u| d\mu,\tag{17}$$

if A = X, then (obviosly)

$$u\{|u| \ge c\} \le \frac{1}{c} \int |u| d\mu. \tag{18}$$

Corollary 11.5. If $u \in \mathcal{L}^{1}_{\overline{R}}(\mu)$, then μ is a.e. \mathbb{R} -vaued. In particular, we can find a version $\tilde{u} \in \mathcal{L}^{1}(\mu)$ s.t. $\tilde{u} = u$ a.e. and $\int \tilde{u} d\mu = \int u d\mu$