Computer Aided Geometric Design

Béziers Curves

Laurent Busé

Inria Sophia Antipolis - Méditerranée, Email : laurent.buse@inria.fr

Bézier Curves

Named after their Inventor **Pierre Bézier**, an ingeneer with the Renault car company.

Figure: Cubic Bézier curves

Figure: Font definition using Bézier curves

The Equation of a Bézier Curve

- ▶ Parameter $t \in [0,1] \subset \mathbb{R}$
- ► Bernstein polynomials

$$B_i^n(t) := \binom{n}{i} (1-t)^{n-i} t^i, \ i = 0, \dots, n$$

Control points:

$$\mathbf{P}_0, \dots, \mathbf{P}_n \in \mathbb{R}^2$$

Parameterization:

$$\mathbf{P}(t) := \sum_{i=0}^{n} \mathbf{P}_{i} B_{i}^{n}(t)$$

- ▶ Degree n Bézier curve
- ▶ Observe that $P(0) = P_0$, $P(1) = P_n$.

Figure: Bézier curves of various degree

Figure: Control points of a cubic Bézier curve

Arbitrary Parameter Intervals

- ▶ In the previous definition, the Bézier curves starts at t = 0 and ends at t = 1.
- ▶ It is useful, especially for fitting together several Bézier curves, to allow an arbitrary parameter interval

$$t \in [t_0, t_1] \subset \mathbb{R}$$

such that $\mathbf{P}(t_0) = P_0$ and $\mathbf{P}(t_1) = P_n$.

▶ The modified parameterization is given by

$$\mathbf{P}_{[t_0,t_1]}(t) = \sum_{i=0}^{n} \mathbf{P}_i \binom{n}{i} \left(\frac{t_1-t}{t_1-t_0} \right)^{n-i} \left(\frac{t-t_0}{t_1-t_0} \right)^{i}.$$

▶ It is obtained by a change of parameter: $t \leftarrow (t - t_0)/(t_1 - t_0)$.

The de Casteljau Algorithm

Subdvision

How to subdivide a Bézier curve $\mathbf{P}_{[t_0,t_2]}$ into two segments $\mathbf{P}_{[t_0,t_1]}$ and $\mathbf{P}_{[t_1,t_2]}$ whose union is equivalent to $\mathbf{P}_{[t_0,t_2]}$?

- ▶ label the control points as $P_0^0, P_1^0, P_2^0, P_3^0$; set $\tau := (t_1 t_0)/(t_2 t_0)$
- ► Compute the sequence of points

$$\mathbf{P}_{i}^{j} = (1-\tau)\mathbf{P}_{i}^{j-1} + \tau \mathbf{P}_{i+1}^{j-1}, \ j = 1, \dots, n, i = 0, \dots, n-j.$$

▶ Control points of $P_{[t_0,t_1]}$

$$\textbf{P}_0^0,\textbf{P}_0^1,\dots,\textbf{P}_0^n$$

▶ Control points of $P_{[t_1,t_2]}$

$$P_0^n, P_1^{n-1}, \ldots, P_n^0$$

ightharpoonup Evaluation : $\mathbf{P}(t_1) = \mathbf{P}_0^n$

The de Casteljau Algorithm

Figure: The de Casteljau Algorithm works even if $\tau \notin [0,1]$, i.e. $t_1 \notin [t_0, t_2]$. But it is numerically stable only if $t_1 \in [t_0, t_2]$

Figure: The collection of control polygons converge to the curve after repeated subdivisions.

Degree Elevation

Any degree n Bézier curve can be exactly represented as a degree n+1 Bézier curve.

New control points :
$$P_i^* = \frac{i}{n+1} P_{i-1} + \frac{n+1-i}{n+1} P_i, i = 0, ..., n+1.$$

Figure: Degree elevation of a cubic Bézier curve

Figure: Repeated degree elevation converges to the curve

$$\mathbf{P}(t) = ((1-t)+t)\,\mathbf{P}(t) = ((1-t)+t)\sum_{i=0}^n \mathbf{P}_i B_i^n(t) = \sum_{i=0}^{n+1} \mathbf{P}_i^* B_i^{n+1}(t)$$

The Convex Hull Property of Bézier Curves

- Bézier curves always lie in the convex hull of their control points.
- ► The convex hull is the smallest convex set that contains the control points.
- This is an easy consequence of the definition of a Bézier curve.

Convex set

A convex set is a set of points such that, given any two points *A*, *B* in that set, the segment [*AB*] joining them lies entirely within that set.

Distance between Two Bézier Curves

▶ **Difference curve**: Given two Bézier curves $\mathbf{P}(t) = \sum_{i=0}^{n} \mathbf{P}_{i} B_{i}^{n}(t)$ and $\mathbf{Q}(t) = \sum_{i=0}^{n} \mathbf{Q}_{i} B_{i}^{n}(t)$, define the Bézier curve

$$\mathbf{D}(t) = \mathbf{P}(t) - \mathbf{Q}(t) = \sum_{i=0}^n (\mathbf{P}_i - \mathbf{Q}_i) B_i^n(t).$$

▶ The convex hull property implies that the distance between the two curves is bounded by the largest distance from the origin to any of the control points of $\mathbf{D}(t)$.

Variation Diminishing Property

Property

If a straight line intersects a Bézier curve in c number of points and the control polygon in p number of points, then it will always hold that

$$c = p - 2j$$

where j is zero or a positive integer.

Practical interpretation

A Bézier curve will "wiggle" no more than its control polygon.

First derivative - Hodograph

Given a Bézier curve $\mathbf{P}_{[t_0,t_1]}(t) = \sum_{i=0}^n \mathbf{P}_i B_i^n(t)$, its first derivative can be expressed as a Bézier curve $\mathbf{P}_{[t_0,t_1]}(t)' = \sum_{i=0}^{n-1} \mathbf{D}_i B_i^{n-1}(t)$ where

$$\mathbf{D}_{i} = \frac{n}{t_{1} - t_{0}} \left(\mathbf{P}_{i+1} - \mathbf{P}_{i} \right).$$

Figure: Hodograph Bézier curve, $[t_0, t_1] = [0, 1]$

Higher Derivatives

- ► The first derivative curve is know as a hodograph
- ► The second derivative can be computed as the hodograph of the hodograph, and similarly for the higher derivatives.
- ▶ It is convenient to compute them in tabular form.

Example

Let $\mathbf{P}_{[0,\frac{1}{2}]}(t)$ be a cubic Bézier curve with the control points

$$\mathbf{P}_0 = (2,1), \ \mathbf{P}_1 = (4,5), \ \mathbf{P}_2 = (8,6), \ \mathbf{P}_3 = (9,2).$$

Then, we get the following hodographs

Curve		Control Points		
P(t)	(2,1)	(4,5)	(8,6)	(9,2)
P'(t)	(12, 24)	(24, 6)	(6, -24)	
P''(t)	(48, -72)	(-72, -120)		
$\mathbf{P}'''(t)$	(-240, -96)			

Three Dimensional Bézier Curves

- ► Bézier control points are defined in the 3D space
- ► The resulting curve is hence a 3D curve
- ► All the previous discussion extend to 3D without modification

Remark: conic Bézier curves are always planar. This is because they are defined by only three control points.

Figure: Intersection of two quartic Bézier curves in space

Rational Bézier Curves

- **Each** control point P_i is assigned a scalar weight w_i .
- ► The equation of a rational Bézier curve of degree *n* is

$$\mathbf{P}(t) = \frac{\sum_{i=0}^{n} w_{i} \mathbf{P}_{i} B_{i}^{n}(t)}{\sum_{i=0}^{n} w_{i} B_{i}^{n}(t)}$$

Figure: Impact of the weights

- "Rational" because the parameterization is given by rational functions (ratio of polynomials)
- Provide more control on the shape
- Allow to express exactly conic sections
- If all w_i = 1 then rational Bézier curves reduce to (polynomial)
 Bézier curves

Rational Bézier Curves

A rational Bézier curve can be interpreted as the perspective (or central) projection of a 3D Bézier curve.

- ► The 3D curve is a Bézier curve
- ► The 2D curve in the plane z = 1 is the perspective of the 3D curve : a rational Bézier curve.
- ▶ If (X(t), Y(t), Z(t)) denotes the points on the 3D curve, then the points on the 2D curve are given by

$$(x(t), y(t)) = \left(\frac{X(t)}{Z(t)}, \frac{Y(t)}{Z(t)}\right).$$

De Casteljau Algorithm and Degree Elevation

Extension to rational Bézier curves

Both The de Casteljau and the degree elevation algorithms extend easily to rational curves

- First, convert the rational Bézier curve into its corresponding 3D curve,
- ▶ Next, perform the algorithm on this 3D curve
- ▶ Finally, map the result back to 2D

Careful

The above procedure does not apply for hodographs because of the quotient rule differentiation.

- ► Nevertheless, we will describe how to compute the first derivative at an endpoint, as well as the curvature
- ▶ Used with the de Casteljau algorithm, this allows to compute the first derivative, or the curvature, at any point on a rational Bézier curve.

First derivative at an endpoint

For a rational Bézier curve of degree n

$$\mathbf{P}_{[t_0,t_1]}(t) = \frac{\sum_{i=0}^{n} w_i \mathbf{P}_i \binom{n}{i} \left(\frac{t_1-t}{t_1-t_0}\right)^{n-i} \left(\frac{t-t_0}{t_1-t_0}\right)^i}{\sum_{i=0}^{n} w_i \binom{n}{i} \left(\frac{t_1-t}{t_1-t_0}\right)^{n-i} \left(\frac{t-t_0}{t_1-t_0}\right)^i},$$

the first derivative at $t = t_0$ is

$$\mathbf{P}'(t_0) = rac{w_1}{w_0} rac{n}{t_1 - t_0} \left(\mathbf{P}_1 - \mathbf{P}_0
ight)$$

and the second derivative at $t = t_0$ is

$$\mathbf{P}''(t_0) = \frac{n(n-1)}{(t_1-t_0)^2} \frac{w_2}{w_0} (\mathbf{P}_2 - \mathbf{P}_0) - \frac{2n}{(t_1-t_0)^2} \frac{w_1}{w_0} \frac{nw_1 - w_0}{w_0} (\mathbf{P}_1 - \mathbf{P}_0).$$

Remark: One just applies the quotient rule differentiation and evaluate at $t=t_0$; computations become quickly extremely complicated.

Curvature at an endpoint

- ▶ Rational Bézier curve of degree *n*
- ▶ a and h as on the picture

$$\kappa(t_0) = \frac{w_0 w_2}{w_1^2} \frac{n-1}{n} \frac{h}{a^2}$$

Continuity

Definition

Two curve segments $\mathbf{P}_{[t_0,t_1]}$ and $\mathbf{Q}_{[t_1,t_2]}$ are said to be \mathcal{C}^k continuous if

$$\mathbf{P}(t_1) = \mathbf{Q}(t_1), \mathbf{P}'(t_1) = \mathbf{Q}'(t_1), \dots, \mathbf{P}^{(k)}(t_1) = \mathbf{Q}^{(k)}(t_1).$$

For example, these two curves are

- C^0 if ${\bf p}_3 = {\bf q}_0$,
- $ightharpoonup \mathcal{C}^1$ if in addition

$$\frac{3}{t_1-t_0}(\mathbf{p}_3{-}\mathbf{p}_2)=\frac{3}{t_2-t_1}(\mathbf{q}_1{-}\mathbf{q}_0)$$

 \triangleright C^2 if in addition

$$\frac{6}{(t_1-t_0)^2}(\mathbf{p}_3-2\mathbf{p}_2+\mathbf{p}_1)=\frac{6}{(t_2-t_1)^2}(\mathbf{q}_2-2\mathbf{q}_1+\mathbf{q}_0)$$

etc.

Geometric Continuity

- ▶ The geometric continuity, denoted G^k , is another method for describing the continuity of two curves, that is independent of their parameterizations.
- ► The conditions for geometric continuity are less strict compared to the classical continuity.

Definition

Two curves are G^k at a given point P if they can be reparameterized so that they become C^k at this point P.

- $ightharpoonup G^0$: the two curves have a common endpoint, but not necessarily with the same parameter value,
- ▶ G^1 : the line segments $\mathbf{p}_2 \mathbf{p}_3$ and $\mathbf{q}_0 \mathbf{q}_1$ are colinear (i.e. common tangent line),
- $ightharpoonup G^2$: same tangent line and same center of curvature,
- etc.