ACKNOWLEDGEMENT

We are greatly indebted to our project guide Ms. S. S. Wagre for her able guidance throughout this work. It has been an altogether different experience to work with her and we would like to thank her for the help, suggestions and numerous discussions.

We gladly take this opportunity to thank **Dr. A. M. Rajurkar** (HOD Computer Science & Engineering. MGM's College of Engineering. Nanded).

We are heartily thankful to **Dr. G. S. Lathkar** (Director, MGM's College of Engineering, Nanded) for providing facility during progress of report also, for her kindly help, guidance and inspiration.

With Deep Reverence.

Sai Pravin Nilapwar [75]
Rohan Nagnath Wadnawar [69]
(B.TECH CSE-I)

ABSTRACT

Traffic Sign Recognition plays a crucial role in management of the traffic-sign inventory. It provides an accurate and timely way to manage traffic-sign inventory with a minimal human effort. In the computer vision community, the recognition and detection of traffic signs are a well-researched problem. A vast majority of existing approaches perform well on traffic signs needed for advanced driver-assistance and autonomous systems. However, this represents a relatively small number of all traffic signs (43 categories) and performance on the remaining set of traffic signs, which are required to eliminate the manual labor in traffic-sign inventory management, remains an open question. In this project, we address the issue of detecting and recognizing a large number of traffic-sign categories suitable for traffic-sign inventory management. We adopt a convolutional neural network (CNN) approach. We propose several improvements that are evaluated on the detection of traffic signs and result in an improved overall performance. The results are reported on highly challenging trafficsign categories that have not yet been considered in previous works. We provide comprehensive analysis of the deep learning method for the detection of traffic signs with a large intra-category appearance variation and show below 3% error rates with the proposed approach, which is sufficient for deployment in practical applications of the traffic-sign inventory management.

TABLE OF CONTENTS

Chapter No.		Contents	Page No.
		ACKNOWLEDGEMENT	I
		ABSTRACT	II
		TABLE OF CONTENTS	III
		LIST OF FIGURES	\mathbf{V}
1		Introduction	1
	1.1	Background	1
		1.1.1 Historical Context	1
		1.1.2 Technological Advances	1
	1.2	Significance of TSR	2
	1.3	Evolution of TSR Technologies	2
	1.4	Motivation	2
		1.4.1 Motivations for Development	3
	1.5	Objectives of TSR	3
	1.6	Scope of the Report	4
	1.7	Structure of the Report	4
2		Literature Survey	5
	2.1	Introduction to Traffic Sign Recognition	5
	2.2	Image Processing and Computer Vision Techniques	5
	2.3	Machine Learning and Deep Learning Approaches	6
	2.4	Datasets for TSR	6
	2.5	Real-Time Systems and Hardware Implementation	6
3		Methodology	9
	3.1	Data Collection and Preprocessing	9
	3.2	Training the Model	10
	3.3	Documentation	10
4		System Analysis	11
	4.1	Purpose	11
	4.2	Scope	11

	4.3	Existing System	11
	4.4	Disadvantages Of Exisisting System	11
	4.5	Proposed System	12
	4.6	Advantages Of Proposed System	12
	4.7	Data Flow Diagram	12
	4.8	ER Diagram	14
	4.9	UML Diagrams	14
	4.10	Use Case Diagram	15
	4.11	Sequence Diagram	16
	4.12	Activity Diagram	17
5		Modules Description	19
	5.1	Modules	19
	5.2	Modules And Description	19
		5.2.1 Segmentation Module	19
		5.2.2 Data Pre-Processing Module	19
		5.2.3 Traffic Sign-recognition Module	20
		5.2.4 Traffic Sign Detection Module	20
6		System Implementation	22
	6.1	System Architecture	22
	6.2	Problem Statement	23
7		EXPERIMENTAL RESULTS	25
		CONCLUSION	33
		REFERENCES	34

LIST OF FIGURES

Figure No.	Name	Page No.
4.1	Data Flow Diagram	13
4.2	ER Diagram	14
4.3	Use Case Diagram	16
4.4	Activity Diagram	18
6.1	System Architecture	22
7.1	Distribution Of Traning Datasets	25
7.2	Preprocesed Image	25
7.3	Accuracy In Epochs	26
7.4	Loss In Epochs	27
7.5	Bumpy Road Image	27
7.6	Dengerous Curve To The Left Image	28
7.7	End of Speed Limit 80 km/h Image	28
7.8	Double Curve Image	29
7.9	No Entry Image	29
7.10	General Caution Image	30
7.11	Speed Limit 80 km/h Image	30
7.12	Road Work Image	31
7.13	Speed Limit 70 km/h Image	31
7.14	Stop Image	32
7.15	Traffic Signals Image	32