# Magellan – Spark as a Geospatial Analytics Engine

Ram Sriharsha Hortonworks



#### Who Am I?

Apache Spark PMC Member

**SPARK SUMMIT EAST** 

Spark

- Hortonworks Architect, Spark + Data Science
- Prior to HWX, Principal Research Scientist @ Yahoo Labs (Large Scale Machine Learning)
  - Login Risk Detection, Sponsored Search Click Prediction, Advertising Effectiveness Models, Online Learning, ...

# What is Geospatial Analytics?



Spark

How do pickup/ dropoff neighborhood hotspots evolve with time?

Correct GPS errors with more Accurate landmark measurements

Incorporate location in IR and search advertising

# Do we need one more library?

- Spatial Analytics at scale is challenging
  - Simplicity + Scalability = Hard
- Ancient Data Formats
  - metadata, indexing not handled well, inefficient storage
- Geospatial Analytics is not simply BI anymore
  - Statistical + Machine Learning being leveraged in geospatial
- Now is the time to do it!
  - Explosion of mobile data
  - Finer granularity of data collection for geometries
  - Analytics stretching the limits of traditional approaches
  - Spark SQL + Catalyst + Tungsten makes extensible SQL engines easier than ever before!



```
Polygon = (

[],

[(0.0, 0.0),(1.0, 0.0),

(2.0, 1.0),(1.0, 1.0),

(1.0, 2.0),(0.0, 2.0),

(0.0, 0.0)

])
```



```
Polygon = (

[0, 5],

[(0.0, 0.0),(1.0, 0.0),

(1.0, 2.0),(0.0, 2.0),

(0.0, 0.0),

(0.3, 0.3),

(0.6, 0.3),

(0.6, 0.9),

(0.3, 0.9),

(0.3, 0.3)

])
```

| polygon                              | metadata                    |
|--------------------------------------|-----------------------------|
| ([0], [(-122.4413024, 7.8066277),])  | neighborhood -> Marina      |
| ([0], [(-122.4111659, 37.8003388),]) | neighborhood -> North Beach |

sqlContext.read.format("magellan") .load(\${neighborhoods.path})

Shapefiles
\*.shp
\*.dbf

sqlContext.read.format("magellan")
.option("type", "geojson")
.load(\${neighborhoods.path})

GeoJSON \*.json



| polygon                                     | metadata                       |
|---------------------------------------------|--------------------------------|
| ([0], [(-<br>122.4413024,<br>7.8066277),])  | neighborhood -><br>Marina      |
| ([0], [(-<br>122.4111659,<br>37.8003388),]) | neighborhood -><br>North Beach |





| polygon                              | metadata                      |
|--------------------------------------|-------------------------------|
| ([0], [(-122.4111659, 37.8003388),]) | neighborhood-><br>North Beach |
| ([0], [(-122.4413024, 7.8066277),])  | neighborhood-><br>Marina      |

|   | point                         | polygon                                         | metadata                       |
|---|-------------------------------|-------------------------------------------------|--------------------------------|
| 1 | (-122.4343576,<br>37.8068007) | ([0], [(-<br>122.4111659,<br>37.8003388),<br>]) | neighborhood-<br>> North Beach |

#### point

(-122.4111659, 37.8003388)

(-122.4343576, 37.8068007)

points.join(neighborhoods). where('point within 'polygon). show()



| polygon                              | metadata                      |
|--------------------------------------|-------------------------------|
| ([0], [(-122.4111659, 37.8003388),]) | neighborhood-><br>North Beach |
| ([0], [(-122.4413024, 7.8066277),])  | neighborhood-><br>Marina      |

| point                         | polygon                                         | metadata                       |
|-------------------------------|-------------------------------------------------|--------------------------------|
| (-122.4343576,<br>37.8068007) | ([0], [(-<br>122.4111659,<br>37.8003388),<br>]) | neighborhood-<br>> North Beach |

```
neighborhoods.filter(
point(-122.4111659, 37.8003388).buffer(0.1)
intersects
'polygon
).show()
```



# 'point within 'polygon





# the join

- Inherits all join optimizations from Spark SQL
  - if neighborhoods table is small, Broadcast
     Cartesian Join
  - else Cartesian Join



#### **Status**

- Magellan 1.0.3 available as Spark Package.
- Scala
- Spark 1.4
- Spark Package: Magellan
- Github: <a href="https://github.com/harsha2010/magellan">https://github.com/harsha2010/magellan</a>
- Blog: <a href="http://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/">http://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/</a>
- Notebook example: <a href="http://bit.ly/1GwLyrV">http://bit.ly/1GwLyrV</a>
- Input Formats: ESRI Shapefile, GeoJSON, OSM-XML
- Please try it out and give feedback!



#### What is next?

- Magellan 1.0.4
  - Spark 1.6
  - Python
  - Spatial Join
  - Persistent Indices
  - Better leverage Tungsten via codegen + memory layout optimizations
  - More operators: buffer, distance, area etc.



# the join revisited

- What is the time complexity?
  - m points, n polygons (assume average k edges)
  - I partitions
  - O(mn/l) computations of 'point within 'polygon
  - O(ml) communication cost
  - Each 'point within 'polygon costs O(k)
  - Total cost = O(ml) + O(mnk/l)
  - O(m $\sqrt{n}\sqrt{k}$ ) cost, with O( $\sqrt{n}\sqrt{k}$ ) partitions







# Optimization?

- Do we need to send every point to every partition?
- Do we need to compute 'point in 'neighborhood for each neighborhood within a given partition?



### 2d indices

- Quad Tree
- R Tree
- Dimensional Reduction
  - Hashing
  - -PCA
  - Space Filling Curves



#### dimensional reduction

- What does a good dimensional reduction look like?
  - (Approximately) preserve nearness
  - enable range queries
  - No (little) collision



## row order curve





## snake order curve





## z order curve



# Binary Representation





# Binary Representation





# properties

- Locality: Two points differing in a small # of bits are near each other
  - converse not necessarily true!
- Containment
- Efficient construction
- Nice bounds on precision



# geohash

- Z order curve with base 32 encoding
- Start with world boundary (-90,90) X (-180, 180) and recursively subdivide based on precision



# encode (-74.009, 40.7401)

- 40.7401 is in [0, 90) => first bit = 1
- 40.7401 is in [0, 45) => second bit = 0
- 40.7401 is in [22.5, 45) => third bit = 1
- •
- do same for longitude

answer = dr5rgb



# decode dr5rgb

- Decode from Base 32 -> Binary
  - 01100 10111 00101 01111 01010
- lat = 101110001111, long = 0100101111000
- Now decode binary -> decimal.
  - latitude starts with 1 => between 0 90
  - second bit = 0 => between 0 45
  - third bit = 1 => between 22.5 45





# An algorithm to scale join?

- Preprocess points
  - For each point compute geohash of precision p covering point
- Preprocess neighborhoods
  - For each neighborhood compute geohashes of precision p that intersect neighborhood.
- Inner join on geohash
- Filter out edge cases



# Implementation in Spark SQL

- Override Strategy to define SpatialJoinStrategy
  - Logic to decide when to trigger this join
    - Only trigger if geospatial queries
    - Only trigger if join is complex: if n ~ O(1) then broadcast join is good enough
  - Override BinaryNode to handle the physical execution plan ourselves
    - Override execute(): RDD to execute join and return results
  - Stitch it up using Experimental Strategies in SQLContext







#### Persistent Indices

- Often, the geometry dataset does not change... eg. neighborhoods
- Index the dataset once and for all?



#### Persistent Indices

- Use Magellan to generate spatial indices
  - Think of geometry as document, list of geohashes as words!
- Persist indices to Elastic Search
- Use Magellan Data Source to query indexed ES data
- Pushdown geometric predicates where possible
  - Predicate rewritten to IR query



## Overall architecture







Spark

SPARK SUMMIT EAST 2016

## THANK YOU.

Twitter: @halfabrane, Github: @harsha2010

