Regresión simbólica para modelos epidemiológicos

 $\dot{\xi} Y = F(X) ?$

 $\dot{Y} = F(X)$?

• Regresión Lineal: $Y = X\beta + e$

 $\dot{\xi} Y = F(X) ?$

• Regresión Lineal: $Y = X\beta + e$

• Redes neuronales

$$X$$
 Magia \longrightarrow Y

• Regresión Lineal:
$$Y = X\beta + e$$

• Redes neuronales

$$X$$
 Magia \longrightarrow Y

Regresión Simbólica

Regresión simbólica

- Término medio entre los extremos de regresión lineal y redes neuronales.
- Idea básica: Tratar de buscar en el espacio de todas las posibles fórmulas matemáticas para encontrar las que mejores predicen Y tomando como entrada X.

• Ejemplo en física

M	A	F
2	5	10
4	6	24
10	2	20

¿Cómo se explora el espacio de fórmulas?

Programación genética

- Población inicial
- Función de cruzamiento
- Función de mutación

Modelos epidemiológicos

Dado el comportamiento de las variables epidemiológicas podemos encontrar un modelo epidemiológico que mejor aproxime el comportamiento de las varibles.

Por ejemplo para dos variables

$$\frac{dx}{dt} = f(x, y)$$

$$\frac{dy}{dt} = g(x, y)$$

Modelos epidemiológicos

$$\frac{dx}{dt} = f(x, y, t)$$

$$\frac{dy}{dt} = g(x, y, t)$$

Para encontrar el modelo:

- Encontrar candidatos f y g
- Resolver el sistema
- Comparar con datos de entrada

Regresión simbólica para modelos epidemiológicos