

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

НЭТИ

Кафедра прикладной математики

Лабораторная работа № 2

по дисциплине «Численное моделирование динамических систем, описываемых обыкновенными дифференциальными уравнениями»

Неявные методы Эйлера

Группа ПМ-91

ЗАТОЛОЦКАЯ ЮЛИЯ Бригада

КОНСТАНТИНОВА АНАСТАСИЯ

Преподаватель ВАГИН ДЕНИС ВЛАДИМИРОВИЧ

Дата 29.09.2021

Новосибирск

1. Задание:

На трёх сетках h = [0.1, 0.05, 0.025] решить задачу

$$y' = 4ty$$

$$t = [0,1]$$

$$y(0) = 1$$

с помощью трёх неявных схем Эйлера

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$$

$$y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$$

2. Результаты:

2.1 Первая схема h = 0,1

tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.1	1.04167	1.0202	-0.0214653
0.2	1.13225	1.08329	-0.0489593
0.3	1.28664	1.19722	-0.0894262
0.4	1.53172	1.37713	-0.154591
0.5	1.91465	1.64872	-0.265927
0.6	2.51927	2.05443	-0.464841
0.7	3.49899	2.66446	-0.834535
0.8	5.14558	3.59664	-1.54894
0.9	8.03996	5.05309	-2.98687
1	13.3999	7.38906	-6.01088

$$h = 0.05$$

tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.05	1.0101	1.00501	-0.00508849
0.1	1.03072	1.0202	-0.010514
0.15	1.06259	1.04603	-0.0165652
0.2	1.10687	1.08329	-0.0235808
0.25	1.16512	1.13315	-0.0319756
0.3	1.23949	1.19722	-0.0422763
0.35	1.33279	1.27762	-0.0551675
0.4	1.44868	1.37713	-0.0715558
0.45	1.59196	1,4993	-0.0926574
0.5	1.76884	1.64872	-0.120123
0.55	1.98747	1.83125	-0.156213
0.6	2.25848	2.05443	-0.20405
0.65	2.59596	2.32798	-0.26798
0.7	3.01856	2.66446	-0.3541

0.75	3.55124	3.08022	-0.471026
0.8	4.22767	3.59664	-0.63103
0.85	5.09358	4.24185	-0.851726
0.9	6.21168	5.05309	-1.15859
0.95	7.66874	6.07997	-1.58877
1	9.58593	7.38906	-2.19687

h = 0,025

tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.025	1.00251	1.00125	-0.00125548
0.05	1.00754	1.00501	-0.00253146
0.075	1.01516	1.01131	-0.00384415
0.1	1.02541	1.0202	-0.00521045
0.125	1.03839	1.03174	-0.00664827
0.15	1.0542	1.04603	-0.00817689
0.175	1.07298	1.06316	-0.00981727
0.2	1.09488	1.08329	-0.0115925
0.225	1.12008	1.10655	-0.0135281
0.25	1.1488	1.13315	-0.0156529
0.275	1.18129	1.16329	-0.0179993
0.3	1.21782	1.19722	-0.0206041
0.325	1.25873	1.23522	-0.023509
0.35	1.30438	1.27762	-0.0267623
0.375	1,3552	1.32478	-0.030419
0.4	1.41167	1.37713	-0.0345428
0.425	1.47433	1.43512	-0.0392073
0.45	1,5438	1,4993	-0.0444981
0.475	1.62079	1.57027	-0.0505142
0.5	1.70609	1.64872	-0.0573714
0.525	1.80063	1.73542	-0.0652045
0.55	1.90542	1.83125	-0.0741716
0.575	2.02167	1.93721	-0.0844575
0.6	2.15071	2.05443	-0.0962793
0.625	2.29409	2.1842	-0.109893
0.65	2.45358	2.32798	-0.125598
0.675	2.63118	2.48743	-0.143751
0.7	2.82923	2.66446	-0.16477
0.725	3.05038	2.86123	-0.189153
0.75	3.29771	3.08022	-0.21749
0.775	3.57475	3.32427	-0.25048
0.8	3,8856	3.59664	-0.288958
0.825	4.23498	3.90107	-0.333917
0.85	4,6284	4.24185	-0.386546
0.875	5.07222	4.62395	-0.448264
0.9	5.57386	5.05309	-0.520774
0.925	6.142	5.53588	-0.606122
0.95	6.78674	6.07997	-0.706768

0.975	7.51993	6.69426	-0.825676
1	8.35548	7.38906	-0.966425

Из того, что при уменьшении шага в 2 раза максимальная погрешность также уменьшается в приблизительно 2 раза, следует, что первая схема имеет 1 порядок аппроксимации.

$$\max \left| \psi_n \right| \leq C h^p \;, \quad p > 0 \;, \quad k-1 \leq n < N \;.$$

h	In-1 max	
0,1	-6,01088	
0,05	-2,19687	2,73611
0,025	-0,966425	2,27319

2.2 Вторая схема h = 0,1

tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.1	1.02041	1.0202	-0.000206823
0.2	1.08418	1.08329	-0.000896606
0.3	1.19952	1.19722	-0.002305
0.4	1.38206	1.37713	-0.00493061
0.5	1.65847	1.64872	-0.00974878
0.6	2.07309	2.05443	-0.0186544
0.7	2.69983	2.66446	-0.0353787
0.8	3.66406	3.59664	-0.067422
0.9	5.18331	5.05309	-0.130217
1	7.64538	7.38906	-0.256321

h = 0.05

tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.05	1.00503	1.00501	-1.26048e-05
0.1	1.02025	1.0202	-5.1439e-05
0.15	1.04615	1.04603	-0.00011966
0.2	1.08351	1.08329	-0.000222863
0.25	1.13352	1.13315	-0.000369629
0.3	1.19779	1.19722	-0.000572362
0.35	1.27847	1.27762	-0.000848549
0.4	1.37835	1.37713	-0.00122256
0.45	1.50103	1.4993	-0.00172822
0.5	1.65113	1.64872	-0.00241252
0.55	1.83459	1.83125	-0.00334089
0.6	2.05904	2.05443	-0.00460479
0.65	2.33431	2.32798	-0.00633264
0.7	2.67316	2.66446	-0.00870573
0.75	3.0922	3.08022	-0.0119813
0.8	3.61317	3.59664	-0.0165266
0.85	4.26472	4.24185	-0.0228688
1	ı	1	

0.9	5.08486	5.05309	-0.0317693
0.95	6.12431	6.07997	-0.0443346
1	7.45124	7.38906	-0.0621829

h = 0,025

4		/+\	/i \
tn	yn	y(tn)	yn-y(tn)
0	1	1	0
0.025	1.00125	1.00125	-7.8288e-07
0.05	1.00502	1.00501	-3.14722e-06
0.075	1.01132	1.01131	-7.1405e-06
0.1	1.02021	1.0202	-1.28431e-05
0.125	1.03176	1.03174	-2.03701e-05
0.15	1.04606	1.04603	-2.98743e-05
0.175	1.06321	1.06316	-4.15496e-05
0.2	1.08334	1.08329	-5.56355e-05
0.225	1.10663	1.10655	-7.24235e-05
0.25	1.13324	1.13315	-9.22637e-05
0.275	1.1634	1.16329	-0.000115574
0.3	1.19736	1.19722	-0.000142849
0.325	1.2354	1.23522	-0.000174675
0.35	1.27783	1.27762	-0.000211744
0.375	1.32504	1.32478	-0.00025487
0.4	1.37743	1.37713	-0.000305013
0.425	1.43549	1.43512	-0.000363303
0.45	1.49973	1.4993	-0.000431072
0.475	1.57078	1.57027	-0.000509888
0.5	1.64932	1.64872	-0.000601603
0.525	1.73613	1.73542	-0.000708402
0.55	1.83209	1.83125	-0.000832867
0.575	1.93819	1.93721	-0.000978052
0.6	2.05558	2.05443	-0.00114758
0.625	2.18555	2.1842	-0.00134573
0.65	2.32956	2.32798	-0.00157761
0.675	2.48928	2.48743	-0.00184926
0.7	2.66662	2.66446	-0.00216792
0.725	2.86377	2.86123	-0.00254216
0.75	3.0832	3.08022	-0.00298227
0.775	3.32777	3.32427	-0.00350052
0.8	3.60075	3.59664	-0.0041116
0.825	3.9059	3.90107	-0.00483316
0.85	4.24754	4.24185	-0.00568636
0.875	4.63065	4.62395	-0.00669666
0.9	5.06099	5.05309	-0.00789476
0.925	5.54519	5.53588	-0.00931765
0.95	6.09098	6.07997	-0.0110101
0.975	6.70728	6.69426	-0.0130262
1	7.40449	7.38906	-0.0154315

Из того, что при уменьшении шага в 2 раза максимальная погрешность также уменьшается в приблизительно 4 раза, следует, что первая схема имеет 2 порядок аппроксимации.

h	In-1 max	
0,1	-0,256321	
0,05	-0,0621829	4,122
0,025	-0,0154315	4,0296

3. Выводы

Первая схема имеет 1 порядок аппроксимации, вторая схема имеет 2 порядок аппроксимации.

4. Код программы

```
#define eps 1e-12
#define t_0 0
#define h 0.025
#include <iostream>
#include <fstream>
// вычисляемая функция
/*double fx(double x, double yn, double tn1) {
   return yn - x + 4 * h * x * tn1;
double fx(double x, double yn, double tn1) {
   return - x+yn + 2*h*(tn1-h)*yn+ 2 * h * x * tn1;
// производная функции
double dfx(double x, double yn, double tn1) {
   return -1 + 2* h * tn1;
/*double dfx(double x, double yn, double tn1) {
   return -1 + 4 * h * tn1;
} */
// задание типа function
typedef double(*function)(double x, double yn, double tn1);
double Newton(function fx, function dfx, double x0, double yn, double tn1) {
   double a;
   double b;
   double c;
   double x1 = x0 - fx(x0,yn,tn1) / dfx(x0, yn, tn1); // первое приближение
   while (fabs(x1 - \times0) > eps) { // пока не достигнута точность 0.000001
        x0 = x1;
        a = fx(x0, yn, tn1);
        b = dfx(x0, yn, tn1);
        c = -a / b;
        x1 = x0 + c; // последующие приближения
   return x1;
}
double y(double t) {
   return exp(2 * t * t);
double func(double t, double y) {
   return 4 * t * y;
```

```
double t_n(int n) {
  return t_0 + h * n;
void eyler(double y_0, double T, int n) {
   double f;
   double n;
   std::cout << t_0 << " " << yn << " " << y(t_0) << " " << y(t_0) - yn << '\n';
for (int i = 1; i < n + 1; i++) {
   double yn = y_0;
      n = Newton(fx, dfx, 1, yn, t_n(i));
      '\n';
       yn = n;
   }
int main()
   double T, y_0;
   T = 1;
   y_0 = 1;
   int n = (T - t_0) / h;
   eyler(y_0, T, n);
}
```