MECHANISTIC STUDIES OF Ru (III) AND Ir (III) CATALYSED OXIDATION OF BIOLOGICALLY ACTIVE COMPOUNDS BY (u (II) COMPLEXES

A THESIS

SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF

BUNDELKHAND UNIVERSITY

JHANSI

IN

CHEMISTRY

BY
ALOK AWASTHI
1991

GERTIFICATE

This is to certify that the thesis entitled "Mechanistic studies of Ru(III) and Ir(III) catalysed oxidation of Biologically active compounds by Cu(XX) complexes submitted for the degree of Doctor of Philosophy of the Sundelkhand University, Jhansi (U.P.) is a record of bonafide research work carried out by Sri Alok Awasthi under my guidance and supervision.

The work embodied in this thesis or a part thereof, has not been submitted for the award of any other degree or diploma. All the help and assistance received during the course of present investigations have been duly acknowledged.

Pic. seece

Raj kishor Shukla

M.Sc. Ph.D.

Chemistry Department Atarra P.G.College Aterna (BANDA)

U.P.

I would like to express my deep sense of gratitude to Dr. Raj Kishor Shukla, Head of Chemistry Department, Atarra P.G.College, Atarra (Banda) for his able guidance and encouragement.

I am also grateful to Principal, Atarra P.G.College,
Atarra (Banda) for extending library and laboratory
facilities during the present investigations. I also
extend my thanks to Sri Jagapet Singh, Manager of
Atarra P.G. College, Atarra for encouraging me in the
mesearch programme.

I am grateful to my teachers of the Atarra P.G. College and my all colleagues for their constant interest in my work.

Pinally, I am indebted to my parents for their continuous and all out efforts and encouragement throughout the present investigation. Their blessings have been my source of strength due to which I was able to complete this thesis.

October 20,1991

(Alok Awasthi)

Hawasthi

60)1631163

SL .110 .	ARTONAR			
CHAPTER I	INTRODUCTION	3.		12
GIAPTER II	BEFERIME HPAL	13	***	16
CHAPTER III	DETERMINATION OF ORDER OF THE BEACTION WITH RESPECT TO COPPER SULPHATE IN SM (III) CATALYSED OXIDATION OF AMINO ACIDS AND In (III) CATALYSED OXIDATION OF SUGARS	17	**	49
CHAPER IV	DETERMINATION OF ORDER OF THE REACTION WITH RESPECT TO AMINO ACIDS AND SUGARS IN THEIR RU(III) AND IN (III) CATALYSED OXIDATION RESPECTIVELY BY ALKALINE COPPER SULPHATE SOLUTION	49	**	75
CHAPTER Y	DETERMINATION OF ORDER OF THE REACTION WITH RESERT TO BM (LIL) IN OXIDATION OF AMINO ACIDS AND WITH RESPECT TO I. (LIL) IN OXIDATION OF SUGARS BY ALKALINE SOLUTION OF COPPER SULMATE	76		100

152 - 167

DETERMINATION OF ORDER OF THE CHAPPER VI REACTION WITH RESPECT TO HYDROXYL IONS IN Ru(III) CATALYSED OXIDATION OF CLYCIME AND ALAMINE AND IN (III) CATALYSED OXIDATION OF D-GLUCOSE AND D-GALACTOSE BY ALKALINE 102 - 123COPPER SULPMATE DEFERMINATION OF EFFECT OF CHAPTER VII ADDITION OF POTASSIUM CHLORIDE ON THE RATE OF OXIDATION OF AMINO ACIDS AND SUGARS BY ALKALINE SOLUTION OF COPIER SULPMANE 124 - 129DEEERMINATION OF EMPECT OF CHAPTER VIII VARIATION OF IONIC STRENGTH OF THE MEDIUM ON THE RATE OF OXIDATION OF AMINO ACIDS AND SUGARS BY ALKALINE COPPER 130 - 134SULPIATE DETERMINATION OF EFFECT OF CHAPTER IX VARIATION OF TEMPERATURE ON VELOCITY CONSTANT OF REACTIONS INVOLVING COPPER SULPHATE AS OXIDAME AND AMINO ACIDS AND SUGARS AS REDUCING SUBSTANCES 135 - 151DISCUSSION AND INCERPRETATION Chapter X

OF EXPERIMENTAL RESULTS

CHAPTER I

PATRICE NAME OF

IMPRODUCTION

Catalytic processes involving oxidation of organic compounds are useful and have always been in greater demand, Several of such processes were mastered by the common man merely using their powers of observations and analysis. In general the catalytic reactions might be divided into two main groups. The first group is concerned with heterogeneous reactions in which the reactants and catalyst have their different phases, The second group is conserned with homogeneous reactions in which the reactants and catalyst are found in the same phase, Of course, the first group of catalysed reactions have considerable applications in madera chemical industries and have, therefore, been widely subjected to studies and investigations. A survey of literature shows that the studies in the oxidation of organic compounds involving an effective heterogeneous datalyst are also much substantial as compared to homogeneous one. Almost very little incentives appear to have been given to work out the kinetics and mechanism of even well known homogeneously catalyses processes. Apparently, homogeneously datalysed processes have little scope of their being useful in synthetic work, yet these are of equal applicability and involve considerable academic interest from mechanistic point of view.

The homogeneously catalysed biological reactions are still a mysty and put a challenge to the scientists devoted in this field. The enzyme catalysed reactions are a good bet. Inspite of the general incentive required in investigating mechanistic dotails of these processes, the subject matter of the exidation of organic compounds using either type of the catalyst is far scanty in solution kinetics.

copper (II) - Copper (I) couple was used for the chidation of ethylen to acetaldehyde in the presence of palladium chloride used as a homogeneous catalyst. Direct addition of hydrogen perchide to elefinic compounds to produce glycols catalysed by various inorganic salts has been described very well by Mugdan and Young. These reactions were used for the synthetic work with no adequate attempt made to the kinetics and mechanism of the reactions which occur in a recent studies. A successful kinetic study was made by Martell and Khan in the metal ion and metal chlorate catalysed oxidation of ascorbic acid by molecular oxygen.

The oxidation of organic compounds by Ce (IV) catelysed by chromium (III) salts is an example of homogeneous datalysis. The proposed mechanism shows a papid resction between chromium (III) and Cerium (IV) followed by a rate determining reaction between the organic substrate and the chromium which is in a valence state greater than three (most likely it is chromium (IV)). This system exemplifies the fact that

exidation potentials can not be used as a reliable guide to rate of exidation, since Ce(IV) has a higher exidation potential than chromium(VI). Several reactions of industrial use are catalysed by vanadium in homogeneous reaction.

Osmium tetroxide has been described a very interesting and effective catalyst for the oxidation of organic compounds in solution. The catalytic actions of the meagent are well known with several couples.

The most thoroughly investigated type of geactions in solution are the electron - transfer reactions between an oxident and a reductant. The study of such reactions, also known as redox reactions, is of great inherest because of its wast application in understanding the nature of chemical process involved. An oxidation or reduction will be any reaction that converts one compound to different oxidation state. The most of atoms and free radicals having deficient electron shell are capable of acting as oxidising agents by abstracting electrons from other species and thus becoming ions themselves. The oxidising or reducing capacity of a compound is often determined by its redox potential. The common oxidising agent are higher valent compounds such as heptavalent manganese in the form of permanganate, hexavalent chromium in the form of chromic acid, cerium(IV) sulphate, hexacyanoferrate (III), potassiumiodate, peroxydisulphate and chloramine-T etc.

There are several factors which determine the mechanism of redox reactions in solution such as the order of reaction with respect to both exident and reducing substrate, the effect of solvent and dielectric constant, effect of ionic strength, effect of pH etc. The thermodynamic parameters vis energy of activation, free energy of activation, entropy of activation also give some informations about mechanism. In catalysed reactions several short-lived intermediates may be formed with the catalyst and thus the mechanism of a catalysed reaction may be quite different to that of the uncatalysed one, although the end products in both cases may be the same. There may be a number of intermediate products which are extremely reactive and hence short-lived. The identification of these intermediate products and the meagain products is another important factor which leads to the elucidation of reaction mechanism.

Several oxidising and reducing agents have been used for overall as well as step by step exidetion and reduction purposes, kinetics and mechanism of several redex reactions involving potassiumpermanganate, peroxydisulphate, hydrogen peroxide, hemocyanofernate(III), Cerium(IV), platimum(IV), chromium (VI), arsenic (III), cobalt (III), selenium(IV), copper(II), chloramine-I, brommaine-I, N-chlorosuccinimide, N-brommagenate etc. have been studied.

The role of several catalysts viz. vanadium(V), ommium(VIII)*
Ch(III, Co(III), Mo(VI), Rm(III), Pd(II) etc. during such
redox reactions has been studied extensively.

The kinetics of ruthenium(III) catalysed oxidation of aldoses by N-bromosuccinimide in presence of marcuric acetate, sulphuric acid and 10% (V/V) acetic acid have been studied. The reactions were first-order in N-bromosuccinimide in presence and absence of the catalyst. The order in substrate was unity in absence of the catalyst and changes to fractional order in the presence of the catalyst. Increase in H* retarded the reaction rate. The order of reactivity of different aldoses was observed, to be D = arabinose > D = galactose > D = galactose > D = galactose as the reactive species of the substrate has been proposed.

The kinetic studies on the nuthenium(III) catalysed oxidation of amino acids viz. glycine, \angle = alanine. β = alanine, leucine, phenylglycine by N-bromosuccinimide in the presence of mercuric acetate have been investigated. The oxidation products were identified as corresponding aldehyde, ammonia and CO_2 . The order of the reaction in N-bromosuscinimide was always unity. In presence of catalyst the order of peaction in substrate was fractional. The studies on ruthenium(III) catalysed oxidation of acetophenones by

Nobromosuccinimide in the presence of mercuric acetate have also shown a similar kinetics. The order of reactivity observed among different acetophenones was $p=10_2>$ $m=10_2> p=C1> m=0CH_3> m=CH_3> p=CH_3> p=CH_3>$ $p=CH_3> p=CH_3> p=C$

The kinetics of ruthenium (NII) catalysed oxidation of chroroacetic acids by N-bromosuccinimide (NES) have also been investigated in the presence of sulminuric acid and mercuric acetate. The order of the reaction in MBS was unite in the presence as well as in absence of the catalyst, However, the order in [Substrate] in the absence of Ru(TII) was unity, which changed to fractional in the presence of ruthonium (III). Increase in [H*] retarded the reaction rate. The kinetics of ruthenium (III) catalysed oxidation of benzaldohyde and substituted benzaldohyde by MBS in the presence of marcuric acetate have been investigated . The reaction showed a first-order in [MAS] and a fractional order in [substrate] as well in the [catalyst] . A mechanism involving MBS - substrate complex has been proposed ruthenium (III) catalysed oxidation of unsaturated acids vis. maleic acid and fumaric acid by NBS has also shown a similar kinetics.

Earlier, the kinetics of exidation of propionic acid and isobutyric acid by W-brompacetamide in the presence of mercuric acetate as scavenger for bromide ion 10 in the presence of acid solution of iridium(III) chloride 11 as homogeneous catalyst have been studied. The first order kinetics in N-brompagetamide at its low concentration has been reported to shift to zero - order at higher consentrations. First order dependence on iridium(III) chloride was reported and zero - order in reducing acids was shown. Iridium(III) chloride in acidic medium was shown to participate in reaction as ostelyst with its [InClasso] 2- species as catalytic species.

Iridium(III) chloride catalysed oxidation of valeric acid 12 by N-bromoacetamide also showed first-order dependence on iridium(III) chloride. The kinetiës and mechanism of iridium(III) chloride catalysis in N-bromoacetamide oxidation of some acids vis. lactic acid and glycollic acid in perchloric acid media have been recently reported 13. First order kinetics in N-bromoacetamide, iridium(III) chloride and Hg(II) was observed while inverse first order in H and acetamide was observed. Decreasing effect of added chloride ions was observed. (IrCl₅.H₂0) was taken as catalytic species of iridium(III) chloride. Mercuric acetate used as Br scavenger was found to have catalytic effect. Thus Ir(III) and Hg(II) co - catalyst mechanism was proposed.

Bartier Singh et al 14 studied oxidation kinetics of some reducing sugars by alkaline Cu(II) and observed that the

is first-order both with respect to hydroxide ion and reducing sugars concentrations. They further reported that the reaction has an induction period and shows autocatalysis due to Cu. 0 produced in the system. These results were confirmed by Marshall and waters 15 from the oxidation kinetics of D-glucode, bensein and agetoin by alkaline Cu(XI) using various complexing agents and also by Singh et al. from the exidation kinetics of some reducing sugars by alkaline Cu(II) without using any complexing agent, wiberg and Nigh17 have studied the oxidation of L - hydroxyacetophehone by Cu(II) in aqueous pyridine and they have supported the explanation of Singh 24,16 et al lower concentrations of Cu(II). The essential kinetic features of oxidation of keto sugars by ammoniacal Cu(IX) have been studied for the first time. The system becomes homogeneous due to formation of soluble Cu(I) - ammonia complex 1.e. [Cu(ss.)] In order to find out whether Cu(II) plays the similar role in the presence of amonia as observed in the role of Ag(I)19 in the presence of samonia or as observed in the role of Cu(II) in presence of complexing agents such as tartarate, citrate, picolinate and myridine, Singh et. al 20 have studied the kinetics of Cu(II) oxidation of keta sugars viz. D-fructose and L-sorbese by Cu(II) in the presence of ammonia as complexing agent.

rate of oxidation is independent of Cu(XI) concentration and

Singh et al. 21 have also reported the kinetics of emidation of D-glucode and D-galactose by Ck(II) in the presence of ammonium hydroxide, Kinetics data demonstrated sero - order kinetics in Cu(II) and first-order dependence on [Off] augar . A general mechanism involving the intermediate emedial anion was proposed gate of emplication as the rate of emidation of these sugars was evidenced here.

Singh, Sisodia, Parmar, Samena and Bajpai²² have studied the kinetics and mechanism of exidation of D-fructose by $\left(\operatorname{Cu}\left(\operatorname{CgHgH}\right)_{4}^{42}\right)$ in the presence of free syridine spectrophotometrically, Singh, Parmar, Tivari, Singh and Gupta²³ have recently reported the exidation kinetics involving lactose and maltose as reducing sugars and Cu(II) as exidant in the presence of bisyridyl as complexing agent in alkaline media.

PRESENT WORK

The present investigation includes the study of exidation of some amino acids viz. glycine and alamine by cooper sulphate in the presence of alkaline solution of 2,2 - bipyridyl as complexing agent, The alkaline solution of NagCO3 and NanCO3 has been used. In addition to above, another redox system containing D-clucose and D-calactose as reducing sugars and [Copper (bipyridy1)27 as oxidising reagent in the presence of alkali copper sulphate alongwith free bipyridyl forms a complex [Cu(bip.),] in a soluble state. When the proposed redox system is studied in alkaline medium, [Cu(bip.)2+ is reduced to [Cu(bip.)] * which is also soluble. Thus the complexing agent 2,2 - binyridyl halos in maintaining homogeneous redox system throughout the investigation. The kinetic parameters collected in the present investigation has helpedin proposing the reaction path which could give the rate law as

[Catalyst] = Either [Ru(III)] or [Ir(III)] $_{T}$

S * Amino Acid or Sugar

REFERENCES

J. Smidt 1. Chem. Ind. (London), 54 (1962). 2. M. Mugdon and J. Chem. Soc., 2988 (1949). D.P.Young M.M.Taquikhan and : J. Am.Chem.Soc., 91, 4668 (1969) . A.E. Martell 4. T. Kistayya, M.S.Reddy s Ind. J. Chem. 25A, 905 (1986) . and Sushma Kandiikar 5. P.G. Reddy, T. Kistayya, : Z. Phys. Chem. (Leipzig) J.A. Khen and Sushma 269, 1253 (1988). Randliker 6. T. Kistayya, J.A.Khan : Oxidation Communication 11, and Sushma Kandlikar 295 (1988). 7. P. Saroja and Sushma : Indian J. Chem. 27A, 632 (1986). Kandlikar T. Kistayya, P.G.Reddy : Oxidation Communication 9.43 8. and Sushma Kendlikar (1986) *T. Kistayya, P.G.Reddy, : Acta Cienc. Indica Chem., 13, 9. P.Saroja and S.Kandlikar 173 (1987) . 10. P.S.Radhakrishnamurti : Indian J. Chem. 20A, 269 (1981). and M.C.Salm 11. S. Bajpal Doctoral Thesis, Allahabad

University, (1988)

- 12. S. Bajpai
- a Doctoral Thesis, Allahabad University, (19
- A. Singh, B.Singh and A.K.Sinch
- 13. M. Samena, R. Gupta, : Oxidation Communication 13, 166 (1990).
- and S. Ghosh
- 14. M.P.Singh, B.Krishna : E. Phys. Chem. 204,1 (1955). 205, 285 (1956) ; 208, 273 (1958).
- W.A. We term
- 15. B.A. Marshall and : J. Chem. Soc. 2392 (1960) 1379 (1961)
- and S.V.Sinch
- 16. M.P.Singh, O.C.Samena : J. Am. Chem. Soc. 92,537 (1970) ..
- 17. K.B. wiberg and W.G. Nigh: J. Am. Chem. Soc. 87, 3849
 - (1965).
- William
- 18. B.R. James and R.J.P. : J. Chem. Soc. 2007 (1961).
- 19. M.P.Singh et al. : Indian J. Chem. 13, 819 (1975).
- and V.Tripathi
- 20. M. RSingh, A.K. Singh : J. Am. Chem. Soc. 82,1222 (1978).
- V. Trinathi and R.K.Singh
- 21. M.P.Singh, A.K.Singh, : Indian J. Chem. 16A, 205(1978).
- A. Parmar. Madhu Saxona and Shalini Bajpai
- 22. A.K.Singh, A.K.Sisodia, : Nat. Acad. Sci. Lett. 9, 309 (1986) ..
- A.Tiwari, A. Singh and 56, 71 (1990). R. Guota
- 23. A.K.Singh, A. Parmar, : Proc. Ind. Nat. Sci. Acad.

617 2-32

STATE OF STREET

experimental

2.1 : MATERIALS EMPLOYED

The samples of D-glucose and D-galactose used were of E.Merck grade. The samples of glycine and alanine were also of E.Merck grade. The solutions of these reducing materials were prepared by dissolving the weights!

Quantity of these samples in doubly distilled water.

The other chemicals used were cupric sulphate,

2,24 - bipyridyl in 25% ethyl alcohol, potassium chloride,
all of A R (8 D H) quality.

The standard solution of cupric sulphate was prepared by dissolving an exact amount of (BDH) AR grade sample in double distilled water.

The solutions of sodium cambonate and sodium bicarbonate were also prepared by dissolving their weighted samples in doubly distilled water and standardised with the help of standard solution of hydrochloric acid.

Standard solution of potassium chloride was also prepared by dissolving an exact amount of NCL (AR, NCH).

Solutions of ruthenium trichloride and iridium trichloride were also prepared by dissolving their 1 gm samples (Johnson & Matthey) in 100 ml HCl solution (0.1M) and then making up these solutions to 500 ml.

Solution of potassium dichrome was prepared by exact weighing of its sample in dissolving the weighed amount id desired volume of water.

2.2 s PROCEDURE

The kinetic studies involving glycine alanine,

D-glucose and D-galactose as reducing materials and

copper (II) as oxidant have been made in alkaline media

in the presence of 2,2° bibyridyl as complexing agent.

The system remains homogeneous due to soluble [Cu(nip.)2]

and [Cu(Bip)2] complexes throughout the course of reaction.

The meastion mixture was propared by mixing the requisite volume of Cu(XI), 2,2⁴ + biggridyl and alkali solutions (Wa₂CO₃ and MaHCO₂), ruthenium(XXI) chloride (in case of glycine and alamine) and iridium(XXI) chloride (in case of D-glucose and D-galactose) and potassium chloride solution. The geaction mixture was taken in a reaction bottle which was placed in an electrically e operated thermostat(± 0,10). In another bottle requisite volume of sugars or amino acid solution was also placed in the same thermostate to attain the termal equilibrium, when both the bottles had attained the desired temperature, then the requisite volume of sugar or amino acid was mixed with the reaction mixture of another bottle vigorously to initiate the reaction. Immediately time was noted for

sego time. An eliquot (5 ml) of this reaction mixture was immediately taken out and titrated against standard solution of potassium dichromate. Af different time intervals Cu(I) produced in the reaction mixture (5 ml) was titrated and readings were recorded. These recorded values helped in calculating he values from which he (standard tere-order rate constant) values were calculated by the formula

les = loxs

where s is strength of titrant (i.e. Kg Cy Oy) and W is 5 ml.

The order of the reactions with respect to $\operatorname{Cu}(\operatorname{II})$ is determined by keeping reducing sugers or amino acids concentration in large excess as compared to that of $\operatorname{Cu}(\operatorname{II})$. Under such condition the velocity of the reaction will mainly be determined by the change in the concentration of $\operatorname{Cu}(\operatorname{II})$ ion. It has been observed that in each experiment there has not been much change in k_0 i.e. (${}^{\operatorname{LX}}/\Delta t$) values. Thus in each kinetic runk sero-order kinetics in $\operatorname{Cu}(\operatorname{II})$ ion is followed.

The order of the reaction with respect to any other reactive species has been determined by the formula

k [reactive species]

This shows that if k, remain constant at different

[reactive species], the order in reactive

k, are constant at different

species in zero. Similarly, if concentrations of

reactive species, the reaction is first-order in

reactive species.

CHAPTER III

DEFERMINATION OF ORDER OF THE REACTION WITH RESPECT TO COPPER SULFMATE IN RU(III) CATALYSES CXEDATION OF AMINO ACIDS AND IT (III) CATALYSED OXIDATION OF SUBME 3 1 DETERMINATION OF ORDER OF THE REACTION WITH RESHECT
TO COPPER SULPHATE IN RU(III) CATALYSED OXIDATION
OF AMINO ACIDS AND IX (III) CATALYSED OXIDATION OF
SUCARS

In this charter an attempt has been made to study the dependence of the reaction between Cu(II) and amino acids on cooper sulphate and determination of order of the reaction between Cu(II) and sugars with respect to copper sulphate. Cooper sulphats - amino acids system has been studied in alkaline solution of ruthenium (III) chloride in the presence of 2,2° - binyridyl as complexing meagent while cooper sulphate - sugars redox system has been investigated in the presence of alkaline solution of iridium(III) chloride using again 2-2 - bipyridyl as complexing reacent. Alkaline nature of the reaction mixture has been maintained with solutions of Na, CO, and Marco, The results of various experiments performed at different concentrations of cooper sulphate but at fixed concentrations of all other reactants have been given in tables 3.1 + 3.6, tables 3.7 - 3.12, tables 3.13 - 3.18 and tables 3.19 - 3.24 for the oxidation of glycine, alanime, D-glucose and D-galactose respectively under the isolation conditions of experiments. It has been observed that both the redox systems follow similar kinetics with

respect to copper sulphate. Zero order rate constant

i.e. kg has been calculated by the formula $k_0 = \frac{ko \times s}{v}$ where ho is $\triangle x/\triangle$ t given in 3rd column of each table,

S is the strength of potassium dichromate used as titrent

to estimate Cu(I) produced at different time intervals and

v is volume (5 ml here in present case) of the reaction

mixture taken out at different time intervals for

estimation. In each table 2 = 2° bipyridyl has been written

as free bip for the sake of simplicity and convenience.

Similarly Ru(III) or Ir(III) have been written for Ru(III)

chloride and Ir(III) chloride respectively.

Table 3.1

$$[CuSO_4] = 1.00 \times 10^{-3} M$$
, $[Glycine] = 10.00 \times 10^{-2} M$
 $[Free Bip.] = 5.00 \times 10^{-3} M$, $[Ru(XXX)] = 4.00 \times 10^{-3} M$
 $[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NeWCO_3] = 2.00 \times 10^{-3} M$
 $[NC1] = 1.00 \times 10^{-3} M$, $pH = 10.8$, $Temp. 30^{-2} C$

Time (min_)	Volume of Kachan	10 ² k ₀ = \triangle K
	(m/2000) in ml	∆t ni/min
0	0.00	**
10	0.62	6,20
20	1.26	6.40
30	1.87	6,10
40	2.47	6.00
50	3.10	6,30
60	3.72	6.20
70	4.30	5.80
80	4.90	6.00
90	5.49	5.90
3.00	6.14	6.50

Average $k_0 = 6.14 \times 10^{-2} \text{ ml mlm}^{-1}$ $k_0 \text{ (sero-order rate constant)} = 6.14 \text{ sak0}^6 \text{ mol 1}^{-1} \text{ min}^{-1}$

where $k_0 = k_0 \times s/v$, a is strength of the titrant i.e. $\kappa_3 G_{1/2} O_7$ solution and v is the volume of reaction mixture estimated with $\kappa_2 G_{1/2} O_7$ solution used here as titrant

TABLE 3.2

Time (min.)	4 4 7	10 ² kg = Δ3	
	(N/2000) in ml	ml/mln	
0	0.66	***	
10	0.66	6.60	
20	1,28	6.20	
30	1.88	6.00	
40	2.52	6-40	
50	3.10	5.80	
	3.70	6.00	
80	4.96	6.30	
200	6.20	6.20	
1.20	7.40	6.00	
340	8.68	6.40	

Average to = $6.19 \times 10^{2} \text{ ml min}^{-1}$

kg = 6,49 x10⁻⁶ mol 1⁻⁴ min⁻¹

WARRING SEC

$$[Cuso_4] = 2.00 \times 10^{-3} \text{M}, [Glycine] = 10.00 \times 10^{-2} \text{M}$$
 $[Ence Bio_3] = 5.00 \times 10^{-3} \text{M}, [Ru(III)] = 4.00 \times 10^{-3} \text{M}$
 $[Ra_2Co_3] = 5.00 \times 10^{-2} \text{M}, [Herco_3] = 2.00 \times 10^{-3} \text{M}$
 $[RCI] = 1.00 \times 10^{-3} \text{M}, psi = 10.3 Temp. 30^{4}$
 $[RCI] = 1.00 \times 10^{-3} \text{M}, psi = 10.3 Temp. 30^{4}$

△ 🍱	10 ² No **	Volume of Kg Gy On	2:100	
\triangle		(m/2000) in mi	(mLn_)	
	mi/min			
	***	0.00		
0	5.00	0.58	30	
)	6.00	1.13	20	
)	5.40	2.78	30	
0	6.20	2,33	40	
0	6-40	3,02	50	
0	6.20	3.64	60	
9	6.00	4.94		
0	6.40	6.112	100	
D	6,60	8,10	130	
0	6.40	10.02	160	

Average $k_0 = 6.13 \text{ min}^{-1}$ $k_0 = 6.13 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

TRANSPORT S. A.

24.00	Volume of K2 G2 G	10 ² kg =
(min.)	(ni/\$50) in m2.	Δ
0	0.00	
	1.08	21.16
10	1.18	2.00
20	1.40	2,20
30	1.62	2.20
40	1.96	2.40
60	2.32	2.30
100	3.22	2.25
140	4.08	2.15
180	4.98	2.25
220	5.82	2.10
260	6.62	2.00

Average $k_0 = 2.18 \times 10^{-2}$ ml min⁻¹

This value is neglected

TABLE 3.5

*	Δ		ko	202	07	Giz	K2	of	m	ol un	V		Time
		min	må,			100	in	00)	00	(11/50			mine)
			Geograph actively			Asserted	}	0 .0(0		and the second	d method until mind of the colonial	0
•	60	33.					3	1.68	3				5
	60	1.0					ı	1.00	1				15
	60	1.0)	2.00	村山				25
	50	4.5)	2.30	-				(25)
	33	1.5					5	2.70	2				75
	60	1.0					5	3,10	3				100
	00	1.0					l.	3 . 64					130
	53	1.					9	4.10	4				2.60
		2.0					5	4.71	4				200
	30	1.5					5	5.3(-				240

Average k_0 (excluding *) = 1.56 x 10⁻² ml min⁻¹ $k_0 = 6.24 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

PARLS 3-6

Time	Volume of Ka Cha On	102 to m 0 1
(mla.)	(M/500) in m2	Δ 🗱
		ml. / ml.n
0.	3.00	466 604
20	1.90	38.00°
20	1.96	1.60
30	2.12	1.60
50	2.42	1,50
30	2.98	1.53
120	3.52	1,60
160	4.12	1.50
200	4.74	1.55
240	3.38	1.60
280	5.98	1.20

Average No 9 excluding *) = 1.54 \times 10⁻² ml min⁻¹ N_B = 6.16 \times 10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 3.7

$[\cos O_4] = 1.00 \times 10^{-3} \text{M}, [\text{Alanine}] = 10.00 \times 10^{-2} \text{M}$
[Free Bip.] = 5.00×10 ⁻³ M, [Ru(LTZ)] = 4.00×10 ⁻⁶ M
[Ha_CO3] = 5.00:40 %, [Nelico3] = 2.00:40 %
[RCl] = 1.00x10-3M, pil = 10.8 and Tomp. 30°C
/a = 17.50 × 10 ⁻² M

Time	Volume of K2G207	102 kg = 0x
(min.)	(0.50x40 ⁻³ m) in m	△ t.
0	0.00	**
10	0.42	4.20
20	0.36	4.40
30	1,26	4.00
45	1.90	4.26
	2.56	4.40
	3.40	4.20
100	4.22	4.10
120	5.02	4.00
140	5.86	4.20
160	6.68	4.10

Average $k_0 = 4.18 \times 10^{-2}$ ml min⁻¹ $k_0 = 4.18 \times 10^{-6}$ mod 2^{-1} min⁻¹

TABLE 3.8

$$[Cuso_{4}] = 1.25 \times 10^{-3} \text{ M}, [Alanine] = 10.00 \times 10^{-2} \text{ M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{ M}, [Ru(XIX)] = 4.00 \times 10^{-6} \text{ M}$
 $[Na_{2}Co_{3}] = 5.00 \times 10^{-2} \text{ M}, [NaRCo_{3}] = 2.00 \times 10^{-3} \text{ M}$
 $[KCl] = 1.00 \times 10^{-3} \text{ M}, pH = 10.8 and Temp. 30^{\circ}C$
 $[KCl] = 1.00 \times 10^{-3} \text{ M}, pH = 10.8 and Temp. 30^{\circ}C$

Time	Volume of K2G207 (0.50 x 10 ⁻³ M) in ml	10° 16 = 0 ×
(min.)	Chesch 2: no 11 mr	ni/min
0	0.00	
10	0.40	4-00
20	0.82	4.20
30	1.26	4.40
40	1.69	4.20
60	2.50	4.10
80	3.34	4.20
100	4.34	4.00
120	4.98	4.20
140	5.94	4.30
160	6.66	4.10

Average $k_0 = 4.17 \times 10^{-2}$ ml min⁻¹ $k_0 = 4.17 \cdot 10^{-6}$ mol 1^{-1} min⁻¹

PARIE 3.9

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.5 × 10 ⁻³ M) in ml	
		nd/mla
0	0.00	
10	0.44	4.40
20	0.96	4.20
40	1.66	4.00
60	2.48	4.20
80	3.32	4.20
200	4.12	4.00
125	5.12	4.00
150	6.22	4.40
175	7.28	4.24
200	8.38	4.40

Average $k_0 = 4.19 \times 10^{-2}$ ml min⁻¹ $k_0 = 4.19 \times 10^{-6}$ mol 1⁻¹ min⁻¹

PARILE 3,10

[Cuso₄] = 3.00x10⁻³ M, [Alanine] = 10.00x10⁻² M [Free Bip.] = 5.00x10⁻³ M, [Ru(III)] = 4.00x10⁻⁴ M [Ma₂Co₃] = 5.00x10⁻² M, [NaHCO₃] = 2.00x10⁻³ M [KCl] = 1.00x10⁻³ M, pH = 10.8 and Temp. 30⁶ C

Time (min.)	Volume of K ₂ Ch ₂ 0 ₇ (1.54x10 ⁻³ n) in ml	10 ² h ₀ = $\frac{\triangle}{\triangle}$ t
0	0.00	* *
10	1.34	13.40°
20	1.46	1.40
40	1.72	1,30
70	2,16	1.46
100	2.59	1.40
140	3.12	1.35
1.80	3.68	1.40
320	4,22	1.35
260	4.74	1.30
300	5,28	1.35

Average k_0 (excluding *) = 1.37 × 10^{-2} mi min⁻¹ $k_0 = \frac{1.37 \times 10^{-2} \times 1.54 \times 10^{-3}}{8} = 4.22 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

2100	Volume of Kalkala	20 ² k = △ X
(min.)	(2.00×10 ° M) in ma	
0	0.00	
10	1.48	14.90*
25	1.64	1.06
50	1.98	0.96
75	2.24	1.04
100	2.40	1.04
140	2.90	1.00
1200	3,22	1.05
220	3.66	1.10
260	4.08	1.05
300	4.50	2.05
350	5.04	1.08

Average k_0 (excluding *) = 1.04 × 10⁻² ml min⁻¹ $k_0 = 4.16 \times 10^{-4}$ mol 1⁻¹ min⁻¹

Time (min.)	Volume of K ₂ 6 ₉ 0 ₇ (2.00×10 ⁻³ N) in ml	
	0.00	
10	1.50	15.00°
25	1.66	1.06
50	1.92	1.06
75	2.16	0.96
100	2.40	0.96
150	2.90	1.00
200	3.42	3.04
250	3,96	1.08
300	4.48	1.04
350	5.00	1.04

Average k_3 (excluding *) = 1.03 × 10^{-2} ml min⁻¹ $k_3 = 4.12 \times 10-6$ mol 1^{-2} min⁻²

Time (min.)	Volume of M2G2O7 (0.50×10 ⁻³ H) in ml	$10^2 k_0 = \frac{\triangle x}{\triangle x}$
0	0.00	
	1.00	20.00*
10	1.50	10.00
15	2,02	10.40
20	2.50	9.60
30	3.50	10.00
40	4.48	9.80
50	5.50	10_20
60	6.50	10.00
70	7.48	9.90
80	8.50	10.20

Average No (excluding *) = 10.00×10^{-2} ml min⁻¹ No = 10.00×10^{-6} mol 1⁻¹ min⁻¹

PABLE 3.14

	ALL	加線	1	7	.5	0	M	1	0	1		
tin the statement of th	nender-de-rapid	ib vila terratisti	plessi	N(C)C)	united by Arth	Again such	t Hodelstand	into Mil	bhjulla si		Swindergeleiteite	THE PARTY OF THE PARTY OF

Time (mig.)	Volume of K ₂ G ₂ O ₋₇ (0.50x10 ⁻³ N) in ml			
0	0.00			
5	1.02	20.40		
10	1.50	9.60		
15	2.00	10.00		
20	2.52	10-40		
30	3.52	10.00		
40	4.50	9.80		
50	5.52	10.20		
60	6.52	10.00		
70	7.52	10.00		
80	8.52	10.00		

Average k_0 (excluding *) = 10.00×10⁻² ml min⁻¹ $k_0 = 10.00 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 325

$$[CusO_4] = 2.00 \times 10^{-3} M$$
, $[D-glucose] = 5.00 \times 10^{-2} M$
 $[Free Bio.] = 5.00 \times 10^{-3} M$, $[Ix(III)] = 5.00 \times 10^{-6} M$
 $[Ma_2CO_3] = 5.00 \times 10^{-2} M$, $[MastCO_3] = 2.00 \times 10^{-3} M$
 $[KC1] = 2.00 \times 10^{-3} M$, pH = 10.8 and Temp. $30^{\circ} C$

Time (min.)	(0.50x10 ⁻³ m) in mi		
0	0.00	500 to	
3.0	2.06	20.40°	
20	3.04	20.00	
30	4.02	9.80	
40	5.02	10.00	
50	6.04	10.20	
60	7.04	10.00	
30	9.02	9.90	
100	11.04	10.10	
120	13.04	10.00	
140	15.06	10.00	

Average ke (excluding *) = 10.00 min^{-2} ml min⁻¹ ke = $10.00 \text{ sd}0^{-6}$ mol 1^{-1} mln

Time	Volume of K20207	10 ² 16 = 0 x
(mi.n.)	(1.50x10 ⁻³ n) in ml	al/min
•	0.00	1985 PAD
5	1.00	20.00*
10	1.16	3.20
. 20	1.50	3.40
40	2,20	3.50
60	2.98	3.40
80	3,56	3.40
200	4.20	3.60
120	4.96	3,40
140	5.62	3,30
160	6.26	3.20

Average k_0 (excluding *) = 3.38x10⁻² ml min⁻¹ $k_0 = 10.14 \times 10^{-6}$ mol l^{-1} mln⁻¹

PARLE 3.17

Time (min.)	Volume of K2 Crt2 0, (1.50x10 ⁻³ n) in mi	Δ* Δ* Δ*
•	0.00	445
5	3.02	20.40
10	1.20	3.60
30	1.54	3,40
40	2.24	3.50
60	2.92	3,40
85	3.78	3.44
110	4.70	3.68
140	5.72	3.40
180	7.00	3,20
220	8,40	3.50

Average k_0 (excluding *) = 3.66 x 10^{-2} ml min⁻² $k_0 = 10.38 \times 10^{-6}$ mol 1^{-1} min⁻²

Time	Volume of K20207	10 ² kg = Δ*
(min.)	(2.00x20 ⁻³ N) in mil	ml/min
0	0.00	
	1.04	20.80°
10	1.18	2.90
20	2.44	2.60
40	1.94	2,50
60	2.42	2.40
90	2.88	2.30
110	3.60	2.40
140	4.34	2.46
180	5.34	2.50
220	6.40	2.65

Average k_0 (excluding *) = 2.51 x 10^{-2} ml min⁻² $k_0 = 10.64 \times 10^{-6}$ mol 1^{-1} min⁻¹

$[Cu SO_4] = 1.00x10^{-3} N, [D-galactose] = 5.00x10^{-2} M$	
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ir(III)] = $5.00 \times 10^{-6} \text{M}$	
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$	
[KCl] = 2.00x10 ⁻³ M, pH = 10.8 and Temp. 30°C	
$\mu = 17.50 \times 10^{-2} \text{M}$	

Time (min.)	Volume of K ₂ (m ₂ 0, (0.50 × 10 ⁻³ N) in ml	
0	0.00	and alle
\$	1.02	20 -40
10	1.64	12.40
20	2.84	12.00
30	4.06	12.20
40	5.26	12.00
50	6.48	12.22
60	7.66	11.80
70	8.82	11,60
80	9.98	11.60

Average k_0 (excluding *) = 11.97 x 10^{-2} ml min⁻¹ $k_0 = 11.97 \times 10^{-6}$ mol 1^{-2} min⁻²

Time	Volume of K2 Gn2 Og	102 10
(min,)	(0.50×10 ⁻³ m) in ml	mi/min
0	0.00	
	1.02	20.40h
10	1.62	12.00
15	2.24	12,40
20	2.98	12.80
25	3,48	12.00
30	4.10	12.40
40	5.30	12.00
50	6.32	12.20
60	7.54	12,20
70	9.74	12.00
80	9.96	12,20

Average k_0 (excluding *) = 12,22 x 10⁻² ml min⁻¹ $k_0 = 12,22 \times 10^{-6}$ mol 1⁻¹ min⁻¹

Time (min.)	(0.50x10 ⁻³ n) in ml	
क्षात्राचिकेक कर निर्मान कर के कार कर है। कार क्षात्र कर कर के साम करते हैं कि कर कर की किस्सी कर कर कर कर कर 		
O	0.00	all the second second
	1.04	20.80
20	1.64	12.00
20	2.84	12.00
30	4.06	12,20
40	5.30	12.24
50	6.50	12.00
60	7.74	32,40
70	8.94	12.00
30	10.16	12.20
90	11.36	12,00
100	12,60	12.40

Average k_0 (excluding *) = 12.14 $\times 10^{-2}$ ml min⁻¹ $k_0 = 12.14 \times 10^{-6}$ mol 118^{-3} mtn⁻¹

TABLE 3,22

Time (min.)	Volume of K2 Ch2 On (1.50×10 ⁻³ m) in mi	
		ml/mln
0	0.00	**
	1.06	21,20*
3.0	1.26	4.00
25	1.48	4.40
20	1,68	4.00
30	2.10	4,20
40	2.52	4.20
60	3.36	4.20
610	4.16	4.00
300	5.00	4.20
120	5.80	4.00
140	6.62	4.10

Average k_0 (excluding *) = 4.13 × 10⁻⁰ ml mln⁻¹ $k_0 = 12.39 \times 10^{-6}$ mol lit⁻¹ min⁻¹

Time (min.)	(2.00x10 ⁻³ n) in all	10° kg = Ax
0	0.00	
9	1.04	20.30*
10	1.20	3,20
1.5	1,39	3,60
20	1.52	2,30
30	1.82	3.00
40	2.12	3.00
60	2.72	3.00
90	3.64	3.06
130	4.94	3.00
1.80	6.44	3.33
240	8.24	3.00

Average to (excluding *) = 3.09 \times 10² ml min⁻¹) $k_{\rm S} = 12.36 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 3,24

Time (min.)	Volume of K ₂ C ₁₂ O ₇ (2.00×10 ⁻³ n) in ma	$10^2 \text{ h} = \triangle \times \\ \triangle \times \\ \triangle \times $
0	0.00	
	1.04	20.30 *
10	1.20	3.20
20	1.50	3.00
30	1.82	3,20
40	2.32	3.00
50	2.44	3.20
75	3.20	3.04
100	3.98	3,12
140	5.20	3.05
190	6.44	3.10
220	7.74	3.25

Average k_0 (excluding *) = 3.12 x 10^{-2} ml min⁻¹ $k_0 = 12.48 \times 10^{-6}$ mol 1^{-2} min⁻¹ The kinetic results obtained and recorded in tables 3.1 - 3.6 and tables 3.7 - 3.12 in exidation of glycine and alanime by Gu(II) in the presence of alkaline solution of ruthenium(III) chloride have been summarised in tables 3.25 and 3.26 respectively. The kinetic data reported in tables 3.13 - 3.18 and tables 3.19 - 3.24 in Ir(III) catalysed oxidation of D-glucose and D-galactose by Gu(III) in alkaline media have been summarised in tables 3.27 and 3.28 respectively.

[Glycine] = $10.00 \times 10^{-2} M$, [Ru(III)] = $4.00 \times 10^{-6} M$
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
[KCl] = 1.00×10 ⁻³ M, pH = 10.8, [Free Bip.] = 6.00×10^{-3} M
/m = 17.50 x 10 ⁻² m and Temp. 30°

[cu 50 ₄] x 16 ³ n	k _s × 10 ⁶ mol 1 ⁻¹ min ⁻⁴
1.00	6.14
1.25	6.19
2.00	6.18
3.00	6.73.
4.00	6.24
5.00	6.16

TABLE 3-46

[Alanine] =
$$10.00 \text{m10}^{-2} \text{M}$$
, [Ru(IXI)] = $4.00 \text{m10}^{-6} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Na₂CO₃] = $5.00 \times 10^{-2} \text{M}$
[Na₂CO₃] = $2.00 \times 10^{-3} \text{M}$, [RCl] = $1.00 \times 10^{-3} \text{M}$,
pH = 10.3 Temp. 30° C and

[cu so ₄] × 10 ³ N	k _n x 10 ⁶
1.00	4.18
1.25	4.17
2.00	4.19
3.00	4,22
4.00	4.16
5.00	4.12

SABLE DAY

k ₀ × 10 ⁶ mol 1 ⁻¹ min ⁻¹
10,00
10.00
30.00
10.14
10.38
10.04

TARLE 3.28

[D = galactone] = 5.00 \times 10⁻²M, [I_r(III)] = 5.00×10⁻³M [Na2CO₃] = 5.00×10⁻³M, [NaHCO₃] = 2.00 \times 10⁻³M [NCI] = 2.00 \times 10⁻³M, pH = 10.8 [Free Bip] = 5.00 \times 10⁻³M

[cu so ₄] × 10 ³ H	k _s = 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.00	11.97
1,25	12.22
2.00	12.34
3.00	12.39
4.00	12.36
5.00	12.48
3.00	

An examination of kinetic data reported in tables 3.25 and 3.26 in a summarised manner in the oxidation of glycine and alanine respectively by cooper sulphate in the presence of 2.2° bipyridyl and alkaline solution of nuthenium (III) chloride clearly indicates that both the presence of clearly indicates that both the presence of different concentrations of copper sulphate at different concentrations of copper sulphate.

Sero - order kinetics with respect to copper sulphate has also been observed in iridium(III) chloride cata yeed exidation of D-glucose and D-galactose by alkaline solution of copper sulphate in the presence of 2,2 bipyridyl as ks values at different concentrations of copper sulphate have been observed to be nearly constant. Thus order of all the reactions with respect to copper sulphate is sero.

CHAPTER AV

DETERMINATION OF ORDER OF THE REACTION WITH RESPECT TO AMINO ACIDS AND SUGARS IN THEIR RM (III) AND In (III) CATALYSED OXIDATIONS RESPECTIVELY BY ALKALINE COPPER SULTHATE SOLUTION

4 * DETERMINATION OF ORDER OF THE REACTION WITH RESPECT
TO AMINO ACIDS AND SUCARS IN THEIR OXIDATIONS
CATALYSED BY RM (III) AND In (III) RESPECTIVELY BY
BY ALKALINE SOLUTIONS OF COPPER SULPHATE

In this chapter an effort has been made to determine the order of the reaction with respect to amino acids viz. glycine and alanine in their oxidations with comper sulphate in the presence of alkaline solution of ruthenium(III) chloride as homogeneous catalyst. Similarly an attempt has also been made to aspertain the order of the neaction with respect to sugars viz. D-glucose and D-galachose in their oxidations with alkaline solution of copper sulphate using iridium(III) chloride as homogeneous catalyst. In this chapter all the experiments have bren carried out under isolation conditions i.e. the concentrations of all the reducing substrate have been maintained larger as compared to that of copper sulphate. The results of all the experiments have been recorded in tables 4.1 - 4.3, and tables 4.6 - 4.10 in exidation of dlycine and alanine, respectively and in tables 4.11 - 4.15 and tables 4.16 - 4.20 in exidation of D-glucose and D-galactose respectively. The value

of standard sero order rate constant i.e.

he has been calculated as usual by

multiplying he value with S/V where S and V

have their usual meanings as described in

previous chapter. In the bottom of each

table the values of he at different

concentrations of substrate have been given.

TABLE 4.1

[Cu SO₄] = 1.25x10⁻³N, [Glycine] = 2.50x10⁻²N [Pree Bipyridyl] = 5.00x10⁻³M, [Ru(III)] = 4.00x10⁻⁴M [Na₂CO₃] = 5.00x10⁻²N, [NaNCO₃] = 2.00x10⁻³M [NCl] = 1.00x10⁻³N pH = 10.8 and Temp. 30⁻⁶C

Time (min.)	Volume of K ₂ G ₂ O ₃ (0.50x40 ⁻³ N) in Ml	
0	0.00	400 400.
8	1.02	20.40°
15	1.18	1.60
40	1,60	1.68
80	2.20	1.50
120	2.84	1.60
160	3,46	1.55
200	4.06	1.50
250	4.88	1.64
300	5.68	1.60
350	6.48	1.60

Average ko (excluding *) = 1.58×10^{-2} ml min⁻¹ k_s = 1.58×10^{-6} mol 1^{-1} min⁻¹

NO E AV

[Cu
$$SO_4$$
] = 1.25x10⁻³M, [Glycine] = 5.00x10⁻²M
[Free Bip.] = 5.00x10⁻³M, [Ru(III)] = 4.00x10⁻³M
[Ma₂CO₃] = 5.00x10⁻³M, [NaHCO₃] = 2.00x10⁻³M
[NCl] = 1.00x10⁻³M, [NH = 10.8 and Temp. 30⁻³C

Time (min.)	volume of R ₂ Gi ₂ O ₇ (0.5 x 10 ⁻³ m) in ml	
0	0.00	
5	1.04	20.80
4.5	1.36	3.20
30	1.86	3,33
45	2.34	3,20
60	2.82	3.20
90	3.72	3.00
1.20	4.72	3,33
169	5.94	3.05
200	7.24	3,25
250	3.98	3,28

Average k_0 (excluding *) = 3.20 x 10^{-2} ml min⁻¹ $k_0 = 3.20 \times 10^{-6}$ mol 1^{-1} min⁻¹

PARTE 6.3

 $[Gu SO_4] = 2.25 \times 10^{-3} M$, $[Glycine] = 7.50 \times 10^{-2} M$ $[Free Bio.] = 5.00 \times 10^{-3} M$, $[Ru(III)] = 4.00 \times 10^{-6} M$ $[Ma_2CO_3] = 5.00 \times 10^{-2} M$, $[MeHCO_3] = 2.00 \times 10^{-3} M$ $[KCl] = 1.00 \times 10^{-3} M$, gH = 10.8 and Temp. 30^{-6}

	volume of K2 02 07	10 ² % = △
(min.)	(0.50:210 ⁻³ N) in ml	mi/min
0	0.00	***
5	1,00	20,00
25	1.50	5.00
25	1,98	4.80
40	2.74	5.06
60	3.74	5,00
80	4.64	4.50
100	5.68	5.05
120	6.58	4.50
140	7.50	4.60
1.00	8.44	4.70

Average k_0 (excluding *) = 4.90 × 10^{-2} ml/min⁻¹ $k_0 = 4.80 \times 10^{-6}$ mol 1" min⁻¹

TABLE 4.4

	Volume of KaGyO7	
(ml.n.,)	(0.50x10 ⁻³ N) in ml	12/M2
5	1.02	20.40
15	3.48	8,90
25	2,59	7.60
46	3.76	7.46
60	5,36	9.00
	5,36	7.50
200	7,38	7.60
120	8.33	7.50
140	10.42	7.70

Average k_0 (excluding *) = 7.63x10⁻² ml min⁻¹ $k_0 = 7.53x40^{-6}$ mol 1⁻¹ min⁻¹

THERE 4.5

[Cu SO ₄] = 1.25x10 ⁻³ M,	[dlycine] = 15.00x10 ⁻² M
[Free Bip.] = 5.00x10 ⁻³	M. $[Ru(III)] = 4.00 \times 10^{-6} M$
$[Na_2CO_3] = 5.00 \times 10^{-2} M_{\odot}$	[Manco ₃] = 2.00d.0 ⁻³ M
[RC1] = 1,00x10 ⁻³ M,	gsi = 10.8 and Temp. 30°C

Time (mi.m.)	Volume of K ₂ C ₂ O ₇ (0.50::10 ⁻³ n) in ml	
	0.00	ene wer
5	1.00	20.00
15	1.96	9.40
25	2.90	9.60
40	4,32	9,46
55	5.68	9.02
70	7.08	9.33
85	8,50	9.46
100	9.98	9.86
120	11.98	10,00

Average k_0 (excluding *) = 9.52 × 10⁻² ml min⁻¹ k_0 = 9.52×10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 446

[Cu so ₄] = 1.00x10 ⁻³ x	$[Alamige] = 2.50 \times 10^{-2} N$
[Free Bip.] = 5.00:d0	-3 _M , [Ru(III)] = 4.00x10-6 _M
Saut' Team	1. [Nanco ₃] = 2.00x10 ⁻³ M
[KC1] = 1.09c10 ⁻⁸ N,	pH = 10.8 and Temp. 30°C

Time (min.)	(0.50x10 ⁻³ n) in ml	10 ² ko = \triangle to \triangle t
Ò	0.00	
5	1.00	20 .00°
20	1.16	1.06
	3.34	1,20
60	1.60	1.04
100	2.00	2.00
150	2,56	1.32
200	3,16	1.20
250	3.72	1.12
300	4,30	1.16
360	4.96	1.10
420	5.60	1.06

Average k_0 (excluding *) = 1.11x10⁻² ml min⁻¹ $k_0 = 1.11x10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 4.7

[Prec Bip.] = 5.00×10 ⁻³ M, [Ru(IXX)] = 4.00×10 ⁻⁶ M [Na ₂ CO ₃] = 5.00×10 ⁻³ M, pH = 10.8 and Temp. 30 ⁻⁶ C [NaHCO ₃] = 2.00×10 ⁻³ M, [NC1]= 1.00×10 ⁻³ M		
Time (min.)	Volume of K ₂ C ₂ C ₃ C ₃ (0.50x10 ⁻³ y) in ml.	10 ² lo = Δ
0	0.00	
5	1.00	30,004
15	1,22	2.20
30	1.56	2,26
45	1.88	2,13
60	2,22	2.26
80	2.63	2,30
100	3.12	2,20
140	3.94	2.05
2.80	4-90	2,15
220	5.60	2.00
260	6.44	2.10

TABLE 4.8

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{M}, [Alanine] = 7.50 \times 10^{-2} \text{M}$$
 $[Prec Sip.] = 5.00 \times 10^{-3} \text{M}, [Ru(IXX)] = 4.00 \times 10^{-4} \text{M}$
 $[Ra_2CO_3] = 5.00 \times 10^{-2} \text{M}, [MarcO_3] = 2.00 \times 10^{-3} \text{M}$
 $[RC1] = 1.00 \times 10^{-3} \text{M}, prec = 10.8 and Temp. 30^{\circ}\text{C}$

Time	Volume of K2 G2 G7	$10^2 k_0 = \frac{\Delta^*}{\Delta^*}$
(min.)	(0.50x10 ⁻³ m) in ml	mi/min
0	0.00	dip eth
5	1.02	20.40
15	3.36	3.40
25	1.70	3.40
35	2.02	3.20
50	2,52	3.33
65	3.06	3.60
90	3,54	3.20
100	4.22	3.40
120	4.88	3,30
140	5.59	3,50
1.90	6.26	3.40

Average k_0 (excluding *) = 3.37x10⁻² ml min⁻¹ $k_0 = 3.37 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

THE 4.9

[Cu SO ₄] = 1.00x40 ⁻³ N.	[Alanine] = 12.50x10 ⁻² M
	3 _{M.} [Fu(III)] = 4.00×10 ⁻⁶ M
[Na2CO3] = 5.00:40-2	M, $[NaHCO_3] = 2.00 \times 10^{-3} M$
[KCl] = 1.00 Kl0 3 H.	pH = 10.8 and Temp. 30°C

Time	Volume of K2G2G7	10 ² k ₀ = Δ×	
(min.)	(0.50×40 ⁻³ m) in ml	ml/min	
0	0.00		
5	1.04	20.80	
15	1.58	5.40	
25	2.34	5.60	
35	2,66	5.20	
50	3,46	5.33	
70	4.56	5.50	
90	5.60	5.20	
110	6.65	5.30	
130	7.76	5.50	
150	8.84	5.40	
170	9.94	5.30	

Average k_0 (excluding *) = 5.39 \times 10⁻² ml min⁻¹ $k_0 = 5.39 \times 10^{-5}$ mol 1⁻¹ min⁻¹

PARTE 4.10

[Cu 504] =	1.00×10 ⁻³ n,	[Alanime] =	15.00×10 M
Free Bip.	= 5.00x10 ⁻³ m,	[Ru(III)]	= 4.00×10 ⁻⁶ M
[Na2CO3] =	5.00:20 ⁻² M,	Nerco3 =	2.00×10 ⁻³ M
[KCl] = 1.00)x40 ⁻³ M, pfi	= 10.8 an	d Temp. 30°C

Time (min.)	Volume of K ₂ C ₁₂ C ₂ C ₃ (0.50x40 ⁻³ M) in ml	
0	0.00	
5	1.02	20.40*
15	1.70	6.90
25	2,36	6.60
35	3.04	6.80
45	3.68	6.40
60	4.68	6,66
75	5.70	6.80
115	6.68	6.53
130	7.64	6.40
160	8,66	6.80

Average k_0 (excluding *) = 6.58 × 10^{-2} ml min⁻¹ $k_0 = 6.58 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

CAUTE 4-11

[Cu SO ₄] = 1,25x40 ⁻³ N,	$[D-glucose] = 2.50 \times 10^{-2} M$
[Free Bip.] = 5.00x10	M_{*} $[I_{*}(III)] = 5.00 \times 10^{-6} M$
NegCO3 = 5.00x10-2M.	$[10000] = 2.00 \times 10^{-3} M$
$[KC1] = 2.00 \times 10^{-3} M_{\bullet}$	psi = 10.3 and Temp. 30°C

Time (min.)	(0.50x10 ⁻³ N) in ml	
	0.00	***
	1.04	20.80*
15	1.56	5.20
25	2.20	5-40
35	2,60	5.00
45	3.12	5.20
60	3.99	5.06
	4.66	5.20
90	5.42	5.06
110	6.42	5.00
130	7.44	5,10
150	8.44	5.00

hyperage k_0 (excluding *) = 5.12 × 10⁻² ml min⁻¹ $k_0 = 5.12 \times 10^{-6}$ mol l^{-1} min⁻¹

CARLS 4.12

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, \quad [D-glucose] = 7.50 \times 10^{-2} \text{M}$$
 $[Pres Bip.] = 5.00 \times 10^{-3} \text{M}, \quad [I_{X}(XIX)] = 5.00 \times 10^{-6} \text{M}$
 $[No_2Co_3] = 5.00 \times 10^{-2} \text{M}, \quad [Norico_3] = 2.00 \times 10^{-3} \text{M}$
 $[KCl] = 2.00 \times 10^{-3} \text{M}, \quad pH = 10.8 \text{ and } Temp. 30^{\circ}\text{C}$

rime (min.)	Volume of Kg Gg Gg (0.50x10 ⁻³ N) in ml	20° k. □ △*. △*. △*.
	0.00	**
	1,02	20.40
15	2.48	14.60
25	4.00	15,20
35	5.50	15.00
45	7.52	15.20
55	9,00	14.30
65	10.44	14.40
	13.96	15.00
A cont		

Average k_0 (excluding *) = 16.98×10⁻² ml min⁻² k_0 = 14.88 × 10⁻⁶ mol 1⁻¹ min⁻²

TABLE 4-13

Time (min.)	Volume of K ₂ G ₁₂ 0 ₇ (0.50:40 ⁻³ m) in ml	10 ² k ₀ = \triangle = \triangle t
O		**
	1.02	20.40*
10	2.02	20.00
15	3.04	20.40
20	4.04	20.00
25	5.08	20.80
30	5.06	19,60
35	7.06	20.00
40	3.08	20.40
45	9.30	20.40
50	10,10	20.00

Average $k_0 = 20.20 \times 10^{-2}$ ml \sin^{-2} $k_0 = 20.20 \times 10^{-6}$ mol 1^{-1} mlu

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, \quad [D-glucose] = 12.50 \times 10^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{M}, \quad [I_{2}(III)] = 5.00 \times 10^{-6} \text{M}$
 $[MagCO_3] = 5.00 \times 10^{-2} \text{M}, \quad [MaHCO_3] = 2.00 \times 10^{-3} \text{M}$
 $[MC1] = 2.00 \times 10^{-3} \text{M}, \quad [MH = 10.8 and Temp. 30^{\circ}\text{C}]$

Volume of Ka Cha Og	$10^2 k_0 = \triangle^{3}$	
(0.50x10 ⁻³ H) in ml	oi/ain	
0.00	aller dalle	
1,02	20.40	
2,26	24.00	
3.52	25.20	
4.78	25.20	
6.02	24.89	
7.26	24.90	
9,52	25.20	
9.79	25,20	
11.00	24,40	
12,26	25.20	
	(0.50×10 ⁻³ N) in ml 0.00 1.02 2.26 3.52 4.78 6.02 7.26 9.78 11.00	

Average k_0 (excluding *) = 24.98×10⁻² ml min⁻¹ $k_0 = 24.98 \times 10^{-6}$ mol 1⁻¹ min⁻¹

SABLE 4-15

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, [D - glucose] = 15.00 \times 10^{-2} \text{M}$$
 $[Pree Bip.] = 5.00 \times 10^{-3} \text{N}, [I_2(III)] = 5.00 \times 10^{-6} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NeHCO_3] = 2.00 \times 10^{-3} \text{M}$
 $[KCl] = 2.00 \times 10^{-3} \text{M}, MH = 10.3 and Temp. 30^{-3} \text{C}$

rime (mi.n.)	Volume of K ₂ Ci ₂ O ₇ (0.50x40 ⁻³ m) in ml	
0	0.00	
	1.00	30.00
10	2.50	30,00
25	4.00	30.00
20	5.46	29.20
25	7.00	30,90
30	8,48	29.60
35	20,00	30,40
40	11.50	30.00

Average k_0 (excluding *) = 30.00 \times 10⁻² ml min⁻¹ $k_0 = 30.00 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

[ca so4] = 1.00:40-3 m	-gclactose = 2.50x10-2H
[Free Bip.] = 5.00×10 ⁻³ M,	$[I_{R}(xx)] = 5.00 \times 10^{-6} M$
[Na2CO3] = 5.00×10 ⁻² M,	MANCO3 = 2.00×10 ⁻³ M
[KC1] = 2.00×10 ⁻³ H, F	: = 10.8 and Tomp. 30°C

Time (min.)	volume of R ₂ G ₂ O ₇ (0.50×10 ⁻³ n) in ml		
0	0,00	**	
5	1.02	20.40*	
15	1.62	6.00	
25	2.24	6.20	
35	2.04	6.00	
45	3.43	6-40	
55	4.00	6.00	
65	4.63	6.00	
75	5.30	6.20	
90	6,20	6.00	
110	7.43	6.20	

Average to (excluding *) = 6.11 \times 10⁴² ml min⁻¹ to = 6.11×10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 4,17

[Cu SO₄] = 1.00×10⁻³N, [D-calactose] = 7.50×10⁻³N
[Free Bip.] = 5.00×10⁻³N,
$$[I_{\rm H}(ITI)]$$
 = 5.00×10⁻⁶M
[Na₂CO₃] = 5.00×10⁻²N, [NaHCO₃] = 2.00×10⁻³M
[NC1] = 2.80×10⁻³M, pH = 10.3 and Temp.30^oC

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50::10 ⁻³ N) in mi	
	0.00	Again soon
\$	1.00	20.00
10	1.90	13.00
15	2.92	18,40
20	3.72	18.00
25	4.64	18,40
30	5.52	17.60
35	6.42	18.00
40	7.34	18.40
45	8.28	19.80
50	9.18	18.00

Average k_0 (excluding *) = 19.36 x 10⁻² ml min⁻¹ $k_0 = 13.36 \times 10^{-6}$ mol 1⁻² min⁻¹

TABLE 4,19

$$[Cu SO_4] = 1.00 \times 10^{-2} M$$
, $[D-galactose] = 10.00 \times 10^{-2} M$
 $[Free Bip.] = 5.00 \times 10^{-3} M$, $[Te(III)] = 5.00 \times 10^{-4} M$
 $[Ne_2CO_3] = 5.00 \times 10^{-2} M$, $[NeHCO_3] = 2.00 \times 10^{-3} M$
 $[RC1] = 2.00 \times 10^{-3} M$, $gH = 10.3$ and Temp. 30°C

Time	Volume of R2Cn0,	10 ² 10 = Δ×
(min.)	(0.50x10 ⁻³ x) in ml	ml/min
	0.00	
5	1.00	20.00°
10	2.20	24.00
15	3.22	24,40
20	4.40	23.60
25	5.60	24.00
30	6.82	24.40
35	8.00	23,60
40	9,22	24,40

Average k_0 (excluding *) = 24.05x10⁻² ml min⁻¹ $k_0 = 24.05x10^{-6}$ mol 1⁻¹ min⁻¹

[Cu
$$SO_4$$
] = 1.00x10⁻³N. [D-gelectose] = 12.50x10⁻³N
[Free Bip] = 5.00x10⁻³M. [In(IXX)] = 5.00x10⁻⁶M
[NegOO₃] = 5.00x10⁻³M. [NeHCO₃] = 2.0x10⁻³M
[XCl] = 2.00x10⁻³M. pH = 10.8 and Temp. 30^oC

Time	Volume of Ka Giz 0	10 k, Δ*	
(min.)	(0.50:40 ⁻³ N) in ml	ml/mln	
0	0.00	***	
5	3.00	20.00*	
10	2.50	30.00	
25	4.00	30.00	
20	5.48	29.60	
25	7-00	30.40	
30	8,46	29.20	
35	10.96	30,00	

Average to (excluding *) = 29.86×10^{-2} ml min⁻¹ $k_0 = 20.96 \times 10^{-6}$ mol 1⁻¹ min⁻¹

PARIS 4,20

$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [D-galactose] = 15.00 \times 10^{-2} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, $[x_{st}(xx)] = 5.00 \times 10^{-6} \text{M}$
$[Na_2CO_3] = 5.00 \times 10^{-2} M. [MancO_3] = 2.00 \times 10^{-3} M$
[KCl] = 2.00×10 ⁻³ M. pH = 10.8 and Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	10 ² to = \triangle x	
	0.00		
5	1.00	20.00*	
	2.03	35.00	
1.2	3.52	36,00	
1.5	4.62	36.66	
1.8	5.70	36.00	
21	6.80	36,66	
24	7.90	36,66	
27	8.98	36.00	
30	9.99	33.33	

Average k_0 (excluding *) = 35.91 × 10^{-2} ml min⁻¹ $k_0 = 35.91 \times 10^{-6}$ mol 1^{-1} min⁻³ The kinetic data collected in tables 4.1 - 4.5 and tables 3.2, tables 4.6 - 4.10 and table 3.7, tables 4.11 - 4.15 and table 3.14 and tables 4.16-4.20 and table 3.19 have been summarised in tables 4.21, 4.22, 4.23 and table 4.24 respectively.

TABLE 4.21

 $[Cn SO_4] = 1.25 \times 10^{-3} \text{M}, [Free Bip.] = 5.00 \times 10^{-3} \text{M}$ $[Ru(III)] = 4.00 \times 10^{-6} \text{M}, [RCl] = 1.00 \times 10^{-3} \text{M}$ $[Ba_2Co_3] = 5.00 \times 10^{-2} \text{M}, [Barco_3] = 2.00 \times 10^{-3} \text{M}$ [Bl] = 10.8 and $[Color = 1.00 \times 10^{-3} \text{M}]$

[Glycine] x 10 ²	mol 1-1 min-1	k ₁ × 10 ⁵
2.50	1.59	6.32
5.00	3.20	6.40
7.50	4.80	6.40
10.00	6.19	6.19
12.50	7.68	6.14
15.00	9,52	6,35

 $[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, \quad [Ru(XII)] = 4.00 \times 10^{-6} \text{N}$ $[Free Bio.] = 5.00 \times 10^{-3} \text{M}, \quad [RGL] = 1.00 \times 10^{-3} \text{M}$ $[Na_2Co_3] = 5.00 \times 10^{-2} \text{M}, \quad [RBHCO_3] = 2.00 \times 10^{-3} \text{M}$ pH = 10.8 and Temp. 30°C

[Alanine] x 10 ²	to a to	h × 10°
2.50	1.11	4.40
5.00	2.16	4.32
7.50	3,37	4.40
10.00	4.19	4.10
12.50	5.39	4.32
15.00	6.58	4.38

[cu so4] =	1.25±10 ⁻³ n,	[IZ(III)]	= 5.00x10 ⁻⁶ N
Free Bip.	= 5.00x10 ⁻³ M	. [22] -	2.00x10 ⁻³ M
[Na2CO3] =	5.00x10 ⁻² M,	[Herico] =	2.00×10 ⁻³ M
pr = 10	.8 and Temp.	30°C	

[D-gl.ucose] x 10 ²	k _n × 10 ⁶ mol 1 ⁻¹ min ⁻¹	k ₁ × 10 ⁴
2.50	5.12	2.04
5,00	10.00	2.00
7.50	14.88	1.98
10.00	20.20	2.02
12.50	24.98	1.99
15.00	30.00	2.00

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{M}, [Free Bip.] = 5.00 \times 10^{-3} \text{M}$$
 $[I_T (III)] = 5.00 \times 10^{-6} \text{M}, [RC1] = 2.00 \times 10^{-3} \text{M}$
 $[Na_2 CO_3] = 5.00 \times 10^{-3} \text{M}, [NaHCO_3] = 2.00 \times 10^{-3} \text{M}$
 $[M = 10.8 \text{ and Temp. } 30^{\circ}\text{C}$

[D-galactose] × 102	k _s × 10 ⁶	Na × 20 ⁴
	mol 1-1 min-1	
2,50	6.11	2.44
5.00	11.97	2,39
7.50	18.36	2.44
10.00	24.05	2.41
12.50	29.86	2.39
15.00	35.91	2.39
Constant Calls (Inc.)		

FIG. 4.1: PLOT BETWEEN K, AND [SUBSTRATE] AT 30°C

[CUS04] = 1.25(A) AND 1.00(B) x 10³M, [Ru(III)] = 4.00 x 10⁶M,

[FREE BIPYRIDYL] = 5.00 x 10³M, [Na₂CO₃] = 5.00 x 10²M,

[NaHCO₃] = 2.00 x 10³M, [K(l] = 1.00 x 10³M, pH = 10.80

FIG. 4.2: PLOT BETWEEN KS AND [SUBSTRATE] AT 30°C LCUSO4J = 1.5 c(A) AND $1.00(B) \times 10^{3} M$, $[I_{Y}(III)] = 5.00 \times 10^{6} M$, $LFREE BIPYRIDYLJ = 5.00 \times 10^{3} M$, $[K(L)] = 2.00 \times 10^{-3} M$, $[H_{Z}(L)] = 10.80$ $[Na_{Z}(L)] = 5.00 \times 10^{-2} M$ AND $[NaHCO3J] = 2.00 \times 10^{-3} M$

A close examination of data of tables 4.21, 4.22, 4.23 and 4.24 clearly indicates that on increasing the concentration of reducing amino acids and sugars the corresponding values of k, also increase in direct proportionality showing thus first - order in smino acids and sugars. This is also obvious from constant k, values in each tables described above.

A straight line with slope equal to k values is obtained in each case when k values are plotted against concentration of each of glycine, alanine, D-glucose and D-galactose (Fig. 4.1 & 4.2). Thus fair degree of closeness in k value and corresponding slope in oxidation of each of glycine, alanine, D-glucose and D-galactose confirms first - order kinetics in reducing amino acids and sugars.

CHAPTER V

DETERMINATION OF ORDER OF THE REACTION WITH
RESPECT TO RU(III) IN OXIDATION OF AMINO ACIDS
AND WITH RESPECT TO I. (III) IN OXIDATION OF
SUGARS BY ALKALINE SOLUTION OF COPPER SULHBATE

5 : DETERMINATION OF ORDER OF THE REACTION WITH RESPECT
TO RM(III) IN OXIDATION OF AMINO ACIDS AND WITH
RESPECT TO I. (III) IN OXIDATION OF SUGARS BY ALKALINE
SOLUTION OF COPPER SULPHATE

The main aim of various experiments performed here in this chapter is to determine the order of oxidation of amino acids and sugars by copper sulphate with respect to catalyst i.e. Rm (III) and Ig (III) respectively. In order to do so, various experiments with warying concentrations of Ru(III) in oxidation of amino acids viz., glycine and alamine and similarly a set of experiments containing different concentrations of Ir (III) am oxidation of sugars i.e. D-glucose and D-galactose but at fixed concentrations of all other reactants have been performed. The results of such experiments have been recorded in tables 5.1 - 5.5, and tables 5.6 -5.10 in exidation of glycine and alanine respectively and in tables 5.11 - 5.15 and tables 5.16 - 5.20 in exidation of D-glucose and D-galactose, respectively. Here also the value of (-dc/4+) i.e. standard zero order rate constant (kg) has been determined by following the same procedure as described in 3rd chapter.

[Cu SO ₄] = 1.25x10 ⁻³ N,	[Glycine] = 5.00x10"
[Free Bip.] = 5.00x10	3M, [Ru(III)] = 2.00x10-6M
$[\text{Ne}_2\text{CO}_3] = 5.00 \times 10^{-2} \text{M},$	$[\text{NaMCO}_3] = 2.00 \times 10^{-3} \text{M}$
[RCl] = 1.00x10 ⁻³ M.	mH = 10.8 and Temp. 30°C

Time (min.)	(0.50x10 ⁻³ N) in m2	10 ² k ₀ = 5 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *
	0.00	100 Alone
	1.00	20.00*
15	1.16	1.60
25	1,32	1.60
40	1.58	1.60
60	1.38	2.50
90	2,38	1.66
140	3,16	1.36
200	4.16	1.66
250	5,12	1.60
320	6.02	1.50
380	6.94	1.53

Average k_0 (excluding *) = 1.58×10⁻² ml min⁻¹ $k_0 = 1.58 \times 10^{-6}$ mal 1^{-1} min⁻¹

ents 5.2

Time (min.)	Volume of K_2 G_2 O_7 (0.50x10 ⁻³ N) in ml	10 ² k ₀ = $\frac{3}{\triangle}$ * ml/min
0	9.00	**
	1.02	20 -40*
1.5	1.26	2.40
30	1.60	2,26
50	2.08	2.40
75	2.70	2.48
100	3.30	2.40
140	4.24	2.35
1.80	5,20	2,40
220	6.18	2.45
280	7.58	2.33
240	9.08	2.50

Average k, (excluding *) = 2.40×10⁻² ml min⁻¹ $k_a = 2.40 \times 10^{-6}$ mol 1^{-1} min⁻¹

2888 545

Time (min.)	Volume of K ₂ G ₃ O ₇ (0.50×10 ⁻³ N) in m2	10 ² 10 = Δ × Δ ×
e vide in general specify with two me constant and graph and make the procession of the constant and the con		
. 0	0.00	
5	1.00	20.00
15	1.38	3.80
25	1.78	4.00
40	2.34	3.73
60	3.12	3.90
90	4.28	3.86
120	5.42	3.80
150	6.58	3.96
180	7.70	3.73
210	8.84	3.80
250	10.34	3.75

Average k_0 (excluding *) = 3.82x10⁻² ml min⁻¹ $k_0 = 3.82x10^{-6}$ mol 1⁻⁴ min⁻¹

[Cu so4] =	1,25×10 ⁻³ H, [G	lycine] = 5	.00x10 ⁻² M
[Free Bip.]	= 5.00:40 ⁻³ H,	[Ru(III)]	= 6.00x40-6
[Ma2003] =	5.00x10 ⁻² M,	harco3 = 2	.00×10 ⁻³ M
[KG1] = 1.0	00x10 ⁻³ N, pH *	10.8 and T	emp. 30°C

Time	Volume of K2 G2 O7	10 ² ko = △×
(min.)	(0.50x10 ⁻³ N) in ml	ml/mln
0	0.90	***
	1.00	20.00°
15 25 40	1.50 2.00 2.70	5.00 5.00 4.66
60	3.60	4.50
800	4.52	4.60
100	5.46	4.70
120	6.42	4.80
140	7.40	4.90
180	9,30	4 . 75
220	11.30	5,00

Average k_0 (excluding *) = 4.79 x 10^{-2} mk min⁻¹ $k_0 = 4.79 \times 10^{-6}$ mol 1^{-1} min⁻¹

[Cu so₄] = 4.25 x 10⁻³ H. [Glycine] = 5.00x10⁻² H [Proc Sip.] = 5.00x10⁻³ H. [Ru(XIX)] = 8.00x10⁻⁶ H [Ma₂Co₃] = 5.00x10⁻² H. [NuHCo₃] = 2.00x10⁻³ H [KCl] = 1.00x10⁻³ H. pH = 10.8 and Temp. 30⁻⁶ C

	Volume of K2 Ga, O.	10 ² kg = Δ ×
(mln.)	(0.50x10 ⁻³ N) in ml	mi/min
0	0.00	***
5	1.02	20.40*
15	1,62	6.00
25	2,24	6.20
35	2.90	6.40
45	3,50	6.00
60	8.42	6.13
75	5,36	6.26
100	6.80	5.76
125	8.30	6.00
150	9.90	6.40
1.75	11.42	6.08

Average k_0 (excluding *) = 6.12 x 10^{-2} ml min⁻¹ $k_0 = 6.12 \times 10^{-6}$ mol 1^{-1} min⁻¹

TABLE 5.6

$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [Alanine] = 5.00 \times 10^{-2} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ru(III)] = $1.50 \times 10^{-6} \text{M}$
$[Na_3CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
$[KC1] = 1.00 \times 10^{-3} M$, pH = 10.8 and Temp. 30°C

Time	Volume of K2 G2 07	10 ² kg = 2 ×
(md.n.)	(0.50×10 ⁻³ N) in m2	ml/min
	0.00	ide in
5	1.02	20.40
25	1.48	0.30
60	1.46	0.90
120	1.92	0.77
190	2.36	0.73
240	2.32	0.76
300	3.30	0.90
3 60	3.76	0.76
420	4.20	0.73
480	4.66	0.76
540	5.12	0.76

Average k_0 (excluding *) = 0.77d.0 ml min $k_0 = 0.77 \times 10^{-6}$ mol 2 mln

TABLE 5.7

$[\text{Free Bip.}] = 5.00 \times 10^{-3} \text{M}, [\text{Ru}(\text{III})] = 3.00 \times 10^{-6} \text{M}$ $[\text{NB}_2\text{CO}_3] = 5.00 \times 10^{-2} \text{M}, [\text{NBHCO}_3] = 2.00 \times 10^{-3} \text{M}$ $[\text{NCl.}] = 1.00 \times 10^{-3} \text{M}, \text{pH} = 10.8 \text{ and Temp. } 30^{\circ}\text{C}$		
Time (min.)	Volume of K ₂ G ₂ G ₂ G ₃ (0.50×10 ⁻³ N) in ml	$10^2 k_0 = \triangle$
	0.00	
5	1.00	20.00*
15	1,16	1.60
35	1.45	1.50
60	1.80	1.36
90	2.26	1.53
130	2.86	2.50
130	3.64	1.56
240	4.56	1.53
300	5.46	1.50
360	6,34	1.47
420	7.24	1.50
Make the same of t	k, (excluding *) = 1.51 x 1	

TADLE 5.8

$[Cu SO_4] = 1.00 \times 10^{-3} N_s$ [A	lanine] = 5.00×10 ⁻² M
$[Pree Bip.] = 5.00x10^{-3} M_{\bullet}$	[Ru(III)] = 5.00:10 ⁻⁶ H
$[Na_2CO_3] = 5.00 \times 10^{-2} M_{\odot}$ [N	MECO ₃ = 2.00×10 ⁻³ M
[KCl] = 1.00x10 ⁻³ M, pH	= 10.8 and Temp. 30°C

fine (min.)	Volume of K ₂ G ₂ G ₇ (0.50x10 ⁻³ N) in ml	10 ² ko = △ * ml/min
0		
5	1.02	20.40*
15	1.28	2.60
35	1.82	2.70
60	2,50	2.72
90	3.28	2.60
130	4.08	2.66
150	4.84	2,53
1.80	5.62	2,60
220	6.70	2.70
280	8,30	2.66
340	9.88	2.63

Average k_0 (excluding *) = 2.64x10⁻³ ml min⁻¹ $k_0 = 2.64 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

FADE: 549

$$[Cu SO_4] = 1.00 \times 10^{-3} N$$
, [Alanine] = 5.00 $\times 10^{-2} M$
 $[Free Bip.] = 5.00 \times 10^{-3} M$, $[Ru(III)] = 6.00 \times 10^{-4} M$
 $[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NEECO_3] = 2.00 \times 10^{-3} M$
 $[KCl] = 1.00 \times 10^{-3} M$, $pH = 10.3$ and $Temp. 30^{\circ} C$

r.i.ac	Volume of K2 G2 07	10 ² k ₀ = Δ *
(min.)	(0.50x10 ⁻³ N) in m).	mi/min A
0	0.00	*
5	1.00	20.00°
15	1.32	3.20
35	1.92	3.00
60	2.68	3.04
100	3.96	3.20
140	5.20	3.10
180	6.46	3.15
220	7.74	3.20
260	9.02	3.20

gverage k_0 (excluding *) = 3.14x10⁻² ml min⁻¹ k_0 = 3.14 x 10⁻⁶ mol 1⁻¹ min⁻¹

Time	Volume of K2 G2 07	$10^2 \text{ to} = \frac{\triangle \times}{\triangle \times}$
(mi.n.)	(0.50×10 ⁻³ N) in ml	ml/mln
	0.00	
5	1.04	20.90*
15	1.42	3.00
45	1.78	3.60
35	2.18	4.00
45	2,58	4.00
60	3.16	3.36
90	4.26	3.66
120	5.36	4.33
150	6.76	4.00
180	7.94	3,90

Average k_0 (excluding *) = 3.91 x 10^{-2} ml min⁻¹ k_0 = 3.91 x 10^{-6} mol 1^{-1} mln⁻²

PARTS S. N.

Cu so4	= 1,25x10 ⁻³ N,	D=gluco	se] = 5.0	00x10 ⁻² M
[Free Bi	o.] = 5.00×10	3 _M , [x _s (x	u)]= 1.6	N ²⁻ 01x0
[ma ₂ co ₃]	= 5.00x40 ⁻² M,	[Neikco3]	= 2.00x1	.0 ⁻³ M
[KC1] =	2.00×10 ⁻³ M,	pH = 10.8	and Tem	». 30°c
	7.1	of v. c. a		

Cine	Volume of K2 G2 07	10° kg = \(\Delta \) %
(min.)	(0.50x10 ⁻³ N) in ml	al/min
9	0.00	
	1.02	20 -40
15	1.32	3.00
25	1.64	3,20
35	1.94	3.00
45	2,24	3.00
60	2.70	3.06
80	3,32	3,10
100	3.94	3.10
1.40	3.14	3.00
1.90	5.36	3.05
220	7.60	3.10

Average k_0 (excluding *) = 3.06 x 10^{-2} ml min⁻¹ $k_0 = 3.06 \times 10^{-6}$ mol 1^{-1} min⁻¹

$[Cu SO_4] = 1.25 \times 10^{-3} R, [D-glucose] =$	5.00×10 ⁻² M
[Pree Bip.] = 5.00x10 ⁻³ M. [Ir(XII)] =	3.00×10-6 _M
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NAHCO_3] = 2.0$	оож10 ⁻³ и
[KG1] = 2.00×10 ⁻³ M, pH = 10.8 and 1	19mp. 30°C

Time (mln.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	10° k, * △ * △ * △ * △ * △ * △ * △ * △ * △ *
0	0.00	
5	1.02	20,40
45	1,62	6.00
25	2.24	6,20
35	2.84	6.00
45	3.44	6.00
60	4.36	6.02
90	5.50	6.10
100	6.78	5.00
120	8.00	6.10
140	9.24	6.20

Agerage k_0 (excluding *) * Significant 6.07x10⁻² ml min⁻¹ $k_0 = 6.07 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

$[Cu SO_4] = 1.25 \times 10^{-3} N, [D-glucose] = 5.00 \times 10^{-2} M$
[Free Sip.] = 5.00×10 ⁻³ M, $[I_{X}(XXI)] = 4.90 \times 10^{-6}M$
$[Ne_2CO_3] = 5.00 \text{m}.0^{-2} \text{M}, [NRHCO_3] = 2.00 \text{m}.0^{-3} \text{M}$
[MCI] = 2.00ml0 ⁻³ M, pH = 10.8 and Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	10 ² 1
0	0.00	400
8	1.00	20,00
15	2.82	8.20
25	2.62	9.00
35	3.40	7.90
45	4.20	8.00
60	5.42	9.13
75	6,60	7.86
90	7.90	8.00
120	10.24	8.13

average k_0 (excluding *) = 8.11 × 10⁻² ml min⁻¹ k_0 = 8.11 × 10⁻⁶ mol 1⁻¹ min⁻¹

$[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, [D-glucose] = 5.00 \times 10^{-2} \text{M}$ $[Free Bio.] = 5.00 \times 10^{-3} \text{M}, [I_F(III)] = 6.00 \times 10^{-6} \text{M}$ $[Ma_2Co_3] = 5.00 \times 10^{-2} \text{M}, [Marco_3] = 2.00 \times 10^{-3} \text{M}$ $[MG1] = 2.00 \times 10^{-3} \text{M}, \text{SH} = 10.3 \text{ and Temp. } 30^{\circ}\text{C}$		
Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	10 ² 1 - A = A = A = A = A = A = A = A = A = A
	0.00	
	1.02	20.40
1.0	1,62	12.00
15	2,24	12,40
20	2,84	12.00
30	4.02	12,20
40	5.24	12.20
50	6,36	12,20
60	7.56	12.00
70	9.79	12,20
90	9.90	12.00

Average k_0 (excluding *) = 12.01 × 10⁻² ml min⁻¹ $k_0 = 12.01 \times 10^{-6}$ mol 2^{-1} min⁻¹

	Volume of K2 G2 O7	102 14 - 4
(min.)	(0.50×10 ⁻³ M) in ml	ml/mln
0	0.00	**
5	2.00	20.00
25	2.50	15.00
25	4.02	15.20
35	5.52	15.00
45	7.02	15.00
	3.54	15,20
G.S.	10.06	15.20
75	11.36	15.00

Average k_0 (excluding *) = 15.08 x 10^{-2} ml min⁻¹ k_0 = 15.08 x 10^{-6} mol 1^{-1} min⁻¹

[cu so4] =	1.25x10 ⁻³ N, [D-galactose]= 5.00x10 ⁻²	魔
[Free Bip.]	= 5.00×10 ⁻³ M, $[I_{\pi}(III)] = 1.50×10-6M$	
[Ma_CO3] =	$5.00 \times 10^{-2} \text{M}$, $[\text{NeHCO}_3] = 2.00 \times 10^{-3} \text{M}$	
	0x10-3 M. mH = 10.8 and Temp. 30°C	

Time (min.)	Volume of K_2 G_2 O_7 $(0.50 d.0^{-3} m)$ in ml	Δ
0	0,00	
5	3,04	30 - 30
15	1,38	3.40
25	1.74	3.60
40	2,26	3.46
60	3.00	3.70
90	4.32	3.73
1.20	5.20	3.60
160	6.66	3,65
200	8.10	3.61
250	9,90	3.60

Average k_0 (excluding *) = 3.60×10⁻² ml min⁻¹ $k_0 = 3.60 \times 10^{-6}$ mol 1⁻¹ min⁻¹

[Cu SO ₄] = 1.25×10^{-3} H. [D=galactose] = 5.00×10^{-2}	M
[Pree Bip.] = 5.00x10 ⁻³ M, $[I_{2}(III)] = 3.00x10^{-3}$	6 _M
$[\text{Ne}_2\text{CO}_3] = 5.00 \text{clo}^{-2}\text{M}, [\text{NeHCO}_3] = 2.00 \text{xlo}^{-3}\text{M}$	
[MG1] = 2.00x10 M, pH = 10.8 and Temp. 300	c

Time (min.)	(0.50×10 ⁻³ N) in ml.	
		ml/min
0	0.00	
5	1.02	20.40*
25	1.76	7.40
25	2.48	7.20
35	3.22	7.40
45	3.94	7.20
60	5.co	7.06
75	6.08	7.20
90	7.18	7.33
105	8.24	7.06
120	9,32	7.20
140	10.78	7.30

Average k_0 (excluding *) = 7.24 s40⁻² ml min⁻¹ $k_0 = 7.24 \text{s40-}^6 \text{ mol } 1^{-1} \text{ min}^{-1}$

	Volume of K2 G2 07	10 ² ko = △ ²
(min.)	(0.50×10 ⁻³ N) in ml	nl /ain
9	0.00	400
5	1.00	20.00*
15	1.98	9.80
25	2.94	9.60
3.5	3.88	9.40
45	4,84	9.60
60	6,32	9.86
75	7.76	9.60
90	8.18	9,46
105	9.62	9.60
120	11.06	9.60

Average ke (excluding *) = 9.61×10^{-2} ml min⁻¹ k_s = 9.61×10^{-6} mol 1^{-1} min⁻¹

PABLE 5,19

Sho	Volume of K2 G2 09	10° k = △ *
(min.)	(0.50×10 ⁻³ N) in ml	mi/min
è	0.00	
	1.00	20.00*
10	1.72	24.40
15	2.46	14.90
20	3.16	14.00
25	3.88	14.40
30	4.60	14.40
35	5.30	14.00
45	6.72	14.20
	3,12	14.00
	9.54	14.20
73	10.94	14.00

Average k_0 (excluding *) = 14.24×10^{-2} ml min⁻¹ $k_0 = 14.24 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

[Cu SO₄] = 1.25m10⁻³M, [D-galactose] = 5.00x10⁻²M [Free Rio.] = 5.00x10⁻²M, [Ir(III)] = 7.50x10⁻⁴M [Na₂CO₃] = 5.00x10⁻²M, [NaHCO₃] = 2.00x10⁻³M [NCI] = 2.00x10⁻²M, pH = 10.8 and Temp. 30⁻⁶C

Time	Volume of K2 G2 G7	10 ² 10 = Δ
(min.)	(0.50×10 ⁻³ N) in ml	mi/min
	0.00	. 👛 🖦
5	1.00	20.00
	1.90	18.00
10	2.92	18.90
15	3.82	13.00
20	4.68	17.20
25	5.56	17.60
30	6.44	17.60
35	7.34	18.00
40	8.22	17.60
45	9.10	17.60
50		17.40
60	10.94	

Average k_0 (excluding *) = 17.74x10⁻² ml min⁻¹ $k_0 = 17.76 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

The results of tables 5.1 - 5.55 & table 4.2, tables 5.6 - 5.10 and table 5.7, tables 5.11 - 5.15 & table 3.14 and tables 5.16 -5.20 & table 3.20 have been summarised in tables 5.21, 5.21, 5.22 and 5.23 respectively.

TABLE 5.21

 $[Cu SO_4] = 1.25 \times 10^{-3} \text{H}, \quad [Olycine] = 5.00 \times 10^{-2} \text{M}$ [Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ma₂CO₃] = $5.00 \times 10^{-2} \text{M}$ $[MaHCO_3] = 2.00 \times 10^{-3} M, [KC1] = 1.00 \times 10^{-3} M,$ pH = 10.8 and Temp. 30°C

[Ru (III)] × 10 ⁶ M	kg x 10 ⁶ mol 1 ⁻¹ mtm ⁻¹	k, min
2.00	1.58	0.79
3.00	2,40	0.80
4.00	3,20	0.80
5.00	3.82	0.76
6.00	4.79	0.79
8.00	6.12	0.76

Ru (III)] × 10 ⁶ H	16 × 2.0 €	k, min-1
	mod 11 min-4	
1.50	0.77	0.52
3.00	1.51	0.50
4.00	2.16	0.54
5.00	2,66	0.53
6.00	3,14	0.52
7.50	3.93	0.52

Average k_i = 0.52 min⁻¹

[R ₂₂ (XXX)] × 10 ⁶ M	k _s × 10 ⁶	k ₂ , min ⁻¹
	mol 1 ⁻¹ min ⁻¹	
1.50	3.06	2.04
3,00	6.07	2.02
4,00	8.11	2.03
5,00	10.00	2,00
6.00	12.01	2.00
7.50	15.08	2.01
Avezage k ₁ = 2	.01 min-1	

Average $k_0 = 2.39$ min⁻¹

FIG. 5.1: PLOT BETWEEN KS AND [RU(III)] AT 30° C [CUSO4] = 1.25(A) AND $(1.00(B) \times 10^{3} M, [KCl] = 1.00 \times 10^{3} M, [Glycine] = <math>5.00 \times 10^{2} M$ (A), [ALANINE] = $5.00 \times 10^{2} M$ (B), [FREE BIPYRIDYL] = $5.00 \times 10^{3} M$, $p^{H} = 10.80$, [Na₂ CO₃] = $5.00 \times 10^{2} M$ AND [Na₄ CO₃] = $2.00 \times 10^{3} M$

FIG. 5.2: PLOT BETWEEN Ks AND [I7.(11)] AT 30°C [CUSO4] = $1.25 \times 10^{3} \text{N}$, [SUBSTRATE] = $5.00 \times 10^{2} \text{M}$, $\beta^{H} = 10.80$ [FREE BIPYRIDYL] = $5.00 \times 10^{3} \text{M}$, [K(l)] = $2.00 \times 10^{3} \text{M}$ [Na2CO3] = $5.00 \times 10^{2} \text{M}$, [NaHCO3] = $2.00 \times 10^{3} \text{M}$

of tables 5.21 - 5.24 that there is direct proportionality between [Ru(III)] and kg values in oxidation of glycine and alamine by alkaline copper sulphate, suggesting first-order kinetics with respect to Ru(III). Similarly, kg values increase in direct proportionality with [Ig(III)] which indicates and confirms first-order dependence on Ig(III) in oxidation of D-glucose and D-galactose.

The above observation regarding dependence of reactions on [Catalyst] is further confirmed on plotting $k_{\rm S}$ values against [Ru(III)] or $[I_{\rm F}({\rm III})]$. A straight line passing through origine (Fig. 5.1 and Fig. 5.2) for each case is obtained. The slope value is in agreement fairly with average $k_{\rm I}$ values given in tables 5.21 - 5.24 for corresponding reducing agents. This shows first-order kinetics in Ru(III) and $I_{\rm F}({\rm III})$.

GRAPIER VI

DETERMINATION OF ORDER OF THE REACTION WITH
RESPECT TO HYDROXYL IONS IN RU(III) CATALYSED
OXIDATION OF GLYCINE AND ALANINE AND I, (III)
CATALYSED OXIDATION OF D-GLUCOSE AND D-GALACTOSE
BY ALKALISE COPER SULFHATE

6 • DETERMINATION OF ORDER OF THE REACTION WITH

RESPECT TO HYDROXYL IONS IN RU(III) CATALYSED

OXIDATION OF GLYCINE AND ALANINE AND In (III)

CATALYSED OXIDATION OF D-GLUCOSE AND

D-GALACTOSE BY ALKALINE COPPER SULPHATE

In this chapter an attempt has been made to determine the dependence of Ru(III) catalysed oxidation of amino acids and I₂(III) catalysed oxidation of sugars by alkaline copper sulphate on [alkali.] In order to do so, a series of emperiments with varying concentrations of sodium bidarbonate at fixed concentrations of all other reactants have been carried out and the results of such experiments have been recorded in tables 6.1 - 6.4, 6.5-6.8, 6.9-6.12 and 6.13 - 6.16 in exidation of glycine, alanine, D-glucose and D-galactose respectively. When sodium bidarbonate concentration is changes, pH also varies and hence concentration of Off is thus varied. All other calculations have been done as in previous chapters.

Time (min)	Volume of K ₂ G ₁₂ O ₇ (0.50m10 ⁻³ H) in ma	10 ² lo = Δ * Δ t
0	0.00	**
\$	1.00	20.00*
13	1,25	2.50
25	1.52	2.70
40	1,38	2.40
	2.40	2,40
90	3.14	2,46
120	3.86	2.40
1.60	4.96	2.50
200	5.88	2.55
240	6.88	2.50
300	8.38	2.50

Average k_0 (excluding *) = 2.52x10⁻² ml min⁻¹ $k_0 = 2.52x10^{-6}$ mol 1⁻² min⁻²

[Cu SO₄] = 1.25 \times 10⁻³M. [Glycine] = 5.00 \times 10⁻²M [Free Bip.] = 5.00 \times 10⁻³M. [Ru(III)] = 4.00 \times 10⁻⁶M [Na₂CO₃] = 5.00 \times 10⁻³M. [NaHCO₃] = 8.00 \times 10⁻³M [KCl] = 1.00 \times 10⁻³M. pH = 10.65 and Temp. 30^oC

Time (min.)	Volume of K_2 G_2 O_7 $(0.50 \times 10^{-3} \text{ m})$ in ml	10 ² k = A = A = A = A = A = A = A = A = A =
0	0.00	***
\$	1.02	20 -40*
	1.24	2.20
25	1.48	2,40
40	1.84	2,40
60	2,30	2.30
60	2.74	2,20
1.20	3.66	2,30
160	4.62	2.40
200	5.58	2.40
240	6.49	2,20
290	7.36	2,20
320	9.28	2,30

Average k_0 (excluding *) = 2.30x10⁻² ml min⁻¹ k_0 = 2.30x10⁻⁶ mol l⁻¹ min⁻¹

$$[Cu SO_A] = 1.25 \times 10^{-3} M$$
, $[Glycine] = 5.00 \times 10^{-2} M$
 $[Pree Bip.] = 5.00 \times 10^{-3} M$, $[Ru(XXX)] = 4.00 \times 10^{-6} M$, $[MagCO_3] = 5.00 \times 10^{-3} M$, $[NeHCO_3] = 10.00 \times 10^{-3} M$
 $[KCI] = 1.00 \times 10^{-3} M$, $[M = 10.60 \text{ and } 20 \text{ mp. } 30^{-6} \text{ c}]$

Time (min.)	Volume of K ₂ G ₂ 0,7 (0.50x10 ⁻³ m) in mi	10 ² ks * \triangle * \triangle *
0	0.00	
	1.00	20.00*
15	1.20	2.00
25	1.42	2,20
40	1,63	1.76
60	2,06	1,90
80	2,48	2,20
120	3.20	2,00
160	4.08	2,00
200	4,93	2,00
250	5,98	2,20
300	7.00	2,04

Average k_0 (excluding *) = 2.01 × 10⁻² ml mln⁻¹ $k_0 = 2.01 \times 10^{-6}$ mol 3^{-1} min⁻¹

$$[Cu SO_4] = 1.25 \times 10^{-3} M$$
, $[Glycine] = 5.00 \times 10^{-2} M$
 $[Pase Bip.] = 5.00 \times 10^{-3} M$, $[Ru(III)] = 4.00 \times 10^{-6} M$
 $[Re_2CO_3] = 5.00 \times 10^{-2} M$, $[ReHCO_3] = 16.00 \times 10^{-3} M$
 $[KCI] = 1.00 \times 10^{-3} M$, $[M] = 10.45$ and $[Remo_3] = 30^{\circ} C$

Tâme	volume of K ₂ G ₂ O ₇		
(min.)	(0.50x10 ⁻³ N) in ml	ml/mln	
	0.00		
	1.02	20.40	
	1.16	1.40	
35	1.46	1.50	
60	1.82	1.44	
3.00	2,38	1.40	
1.60	3.24	2.43	
220	4,08	1,40	
300	5.22	1.42	
380	6.34	1,40	
460	7.46	1.40	

[cu so ₄] =	1.00x10 ⁻³ N, [Alenine] = 5.00x10 ⁻³ M
Free Bip,	= $5.00 \times 10^{-3} M$, [Ru(III)] = $4.00 \times 10^{-6} M$
[Na2003] =	5.00×10 ⁻² M. [NeHCO ₃] = 4.00×10 ⁻³ M
[KCl] = 1.0	00x10-3 M. pH = 10.7 and Temp. 30°C

nine	Volume of K2 G2 07	10 ² % = △×
(min _*)	(0.50×10 ⁻³ N) in m2	mi/min
0	0.00	- **
5	1,00	20.00*
35	1,16	1.60
25	1.34	1.00
45	1.68	1.70
65	2.02	1.70
100	2.62	1.72
140	3.30	1.71
190	4.00	1.75
220	4,70	1.75
260	5,36	1.65

average k_0 (excluding *) = 1.72×10^{-2} ml min⁻² $k_0 = 1.72 \times 10^{-6} \text{ mod } 1^{-2} \text{ min}^{-2}$

[cu so ₄] =	1.00x10 ⁻³ m, [Alanine] = 5.00x10 ⁻² M
Free Blo.	= 5.00x20 M, [Ru(III)] = 4.00x20 M
[MagCOg] =	5.00x10 ⁻² M, [Netico ₃] = 8.00x10 ⁻³ M
[KC1] = 1.0	30x10 ⁻³ M, pH = 10.65 and Temp. 30°C

	Volume of K2 G2 07	102 to = 0 %
(min)	(0.50:d0 ⁻³ m) in ml	mi/min
		atorido resistencida político discursor a cilibrar lique delectropa en el discostribidos en cilibrar (cilibrar Anticono del como cilibrar en cilibrar en cilibrar
0		***
5	1.02	20,40
33	1.18	1.60
25	1.32	1.40
45	1.62	1.50
80	2.16	1.54
120	2.76	1.50
190	3.70	1.56
240	4.60	1.50
300	5.52	1,53
360	6.58	1.60

Average & (excluding *) = 1.54 = 10⁻⁶ ml min⁻¹

[Cu SO ₄] = 1.00:40 ⁻³ N,	Alenine = 5.00×10 ⁻² M
[Free Bip.] = 5.00x10 ⁻³ m,	$[Ru(XII)] = 4.00 \times 10^{-6} M$
[Ne ₂ CO ₃] = 5.00×10 ⁻² M,	$[NeHCO_3] = 10.00 \times 10^{-3} M$
[RC1] = 1.00:d0 3H, PH	= 10.60 and Temp. 30°C

Time (mid)	Volume of K ₂ G ₂ O ₃ (0.50x40 ⁻³ N) in ml	$10^2 \text{ k}_0 = \frac{\Delta^2}{\Delta^2}$ $\frac{\Delta^2}{\Delta^2}$
	0.00	-
5	1.02	20.40°
15	1,16	2,40
35	1.43	1,30
60	1.76	1,36
90	2,16	1,33
130	2,70	1.35
190	3,40	1.40
240	4,18	1,30
300	5,00	1,36
3.00	5.80	1,33
420	6.50	1,30

are note by (excluding v) = 1.38x30 $^{-3}$ ml min⁻¹

L = 1.38x10 $^{-6}$ mol 1 $^{-1}$ min⁻¹

TARLE 6.8

[Cu SO ₆] = 1.00:20 ⁻³ s, [Alanine] =	5.00x10 ⁻² M
[Free Bio.] = 5.00mio 3m. [Ru(III)]	= 4.00x10 ⁻⁶ M
$[\text{Ne}_2\text{CO}_3] = 5.00 \text{ klo}^{-2}\text{M}, [\text{NeHCO}_3] = 1$	16.00×10 ⁻³ m
[NC1] = 1.00×10 ⁻³ M, pH = 10.45	and Temp. 30°C

Time	Volume of K2 G2 07	10 ² kg = Δ×
(mi.1))	(0.50×10 ⁻³ H) in m2	ml/min
	0.00	**
	1.00	20.00*
1.5	1.10	1.00
35	1.30	1.00
60	1.54	0.96
100	1.92	0.95
1.50	2.50	0.96
220	3.10	1.00
280	3.66	0.93
360	4.44	0.97
440	5.20	0.95
520	5.92	0.90

Average k_0 (excluding *) = 0.96x10⁻² ml min⁻¹ $k_0 = 0.96 \times 10^{-6}$ mol 1⁻² min⁻²

$[Cu SO_4] = 1.25 \times 10^{-3} N_*$	$[D-glucose] = 5.00 \times 10^{-2} M$
Free Bip. = 5.00x10	3 _{M,} [Ig(III)] = 5.00×10 ⁻⁶ n
$[\text{Ne}_2\text{CO}_3] = 5.00 \times 10^{-2} \text{H}_2$	NaMCO3 = 4.00x40-314
$[RC1] = 2.00 \times 10^{-3} M_{\odot}$	pH = 10.7 and Tomp. 30°C

	Volume of K2 G2 07	10 ² kg = Δ
(min)	(0.30:40 ⁻³ N) in mi	mi/min
0	0.00	
3	1.02	20.40*
15	1.78	7.30
25	2.59	8.00
35	3.39	8,00
45	4,16	7.90
60	5.34	7.86
75	6,54	8.00
90	7.72	7.86
105	8,90	7.86
120	10.10	3.00
135	11.30	8.00

Average & (excluding *) = 7.98 x 10⁻² ml min⁻¹

& = 7.98 x 10⁻⁶ mol 1⁻² min⁻¹

TARCE 6.10

Time (min)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
0	0.00	600 Ann
5	1.06	20.00
15	2.70	7.00
25	2.42	7.20
35	3.12	7.00
45	3.32	7.00
60	4,98	7.05
75	5.94	7.05
90	6.00	7.05
105	7.06	7.05
120	8,14	7.20

Myerage k_0 (excluding *) = 7.07×10⁻² ml min⁻¹ $k_0 = 7.07 \times 10^{-6}$ mol 2⁻¹ min⁻¹

[Cu SO ₄] = 1.25x10 ⁻³ H, [D-9	ducose] = 5.00x10 ⁻² M
[Free Bip.] = 5.00x10 ⁻³ M, [3	(III)] = 5.00:40 ⁻⁶ M
[182,003] = 5.00x10-2M. [18	etco3] = 10.00x10 ⁻³ M
[RC1] = 2.00×10 ⁻³ H, pH =	10.60 and Temp. 30°C

21.00	Volume of K2 G2 07	10 ² b = Δ×
(mtn _n)	(0.50:d0 ⁻³ N) in mi	od/noin △ t
0	0.00	•
3	1.00	20.00
3.3	1.64	6-40
23	2,26	6.20
	2,88	6.20
45	3,52	6.40
60	4.48	6.40
75	5.42	8.26
90	6.36	6,26
	7.28	6.13
	8.24	6.40
30	9.34	6.50

	Volume of K2 G2 07	703 8 * V ×	
(min.)	(0.50x10 ⁻³ N) in ml	ml/min	
0	0.00	*	
	1.02	20,40 *	
45	2.46	4.40	
25	1.98	4.20	
35	2.32	4.40	
45	2.74	4.20	
60	3,38	4.26	
75	4.02	4.26	
90	4.69	4.40	
105	5.38	4.66	
120	6.06	4.53	
135	4.76	4.66	
150	7.46	4.66	

Average $k_{\rm p}$ (excluding *) = 4.42x10⁻² ml min⁻¹ $k_{\rm p}$ = 4.42 × 10⁺⁶ mol 1⁻¹ min⁻¹

EABLE 6.13

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ H) in ml	$10^2 k_s = \frac{\Delta z}{\Delta t}$
0	0.00	*
5	1.02	20.40*
15	1.98	9.60
25	2.92	9.40
	3.86	9.40
50	5.20	9.33
65	6.62	9.46
80	8.04	9.46
95	9.44	9.33
110	10.86	9.46
125	12.28	9.46

Average k_0 (excluding *) = 9.43×10⁻² ml min⁻¹ k_0 = 9.43 × 10⁻⁶ mol 1⁻¹ min⁻¹

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, [D-calactose] = 5.00 \times 10^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{M}, [I_{2}(III)] = 5.00 \times 10^{-4} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NeHCO_3] = 8.00 \times 10^{-3} \text{M}$
 $[KC1] = 2.00 \times 10^{-3} \text{M}, FH = 10.65 and Temp. 30^{\circ} \text{C}$

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
0	0.00	***
	1.02	20,40*
15	3.88	8.50
25	2.72	9.40
35	3.58	9.00
45	4.42	8.40
60	5.68	8.40
	6.98	8.00
90	9.13	8.26
3.05	9.34	8.13
120	10.62	8.53
135	11.88	8.40

Average k_0 (excluding *) = 8.37x10⁻² ml min⁻¹ $k_0 = 8.37x10^{-6}$ mol 1^{-1} min⁻¹

[cu so ₄] = 1.25:40 ⁻³ %,	[D-gelactose] = 5.00x10 ⁻² M
[Free Bip.] = 5.00x10 ⁻³ M,	$[I_{\Sigma}(III)] = 5.00 \times 10^{-6} M$
[BR2003] = 5.00x10-2H.	$[NeHCO_3] = 10.00 \times 10^{-3} M$
[KC3] = 2.00x1.0 ⁻³ M, pl	H = 10.60 and Temp. 30°C

The state of the s	Volume of K ₂ G ₃ O ₇	10 ² k ₀ * Δ*	
(mins)	(0,50x10 ⁻³ m) in ml	ml/min	
•	0.00		
5	1.02	20,40	
15	1.78	7.60	
25	2,56	7.80	
35	3.30	7.40	
45	4.06	7.60	
60	5.16	7.33	
7.5	6.30	7.60	
	7.48	7.96	
	8.62	7.60	
120	9.76	7.60	
135	23.452	7.74	

Amorage & feast uting *) = 7.51 × 10⁻² mt mtn

Time (min.)	Volume of K ₂ Cr ₂ 0.7 (0.50x10 ⁻³ N) in m2	
0	0.00	
*	1.02	20.40
15	1.56	5.40
23	2.09	5,20
	2.62	5,40
	3.16	5.40
60	3.94	5.20
75	4.74	5.33
90	5.56	5.46
105	6,38	5-46
120	7,18	5,33
140	8,34	5,30

Average k_0 (exclusing *) = 5.35 × 10⁻² ml min⁻¹ k_0 = 5.35 × 10⁻⁶ mal 1⁻¹ min⁻¹ The kinetic observations recorded in tables 6.1 - 6.4 and 4.2, tables 6.5 - 6.8 & 4.7, tables 6.9 - 6.12 & 3.14 and tables 6.13 - 3.16 & 3.20 have been summarised in tables 6.17, 6.18, 6.19 and 6.20 respectively.

TABLE 6.17

[Marco ₃]	103	off	[OH] x 10 ⁴	mol 1 ⁻¹ min ⁻¹	30 33 38.3
2,00		10.80	6,31	3,20	5,677
4.00		10.70	5.01	2,52	5,03
8.00		10.65	4.46	2.30	5,15
10.00		30.5	3.98	2.03	5.01
16.00		10.45	2.91	1.42	5.05

Average k = 5.06 x 10⁻³ min⁻¹

CARLE 6.10

[NestCO ₃] x 10 ³		[CH] = 10 ⁴	10 ⁶ k ₀ mol 1 ⁻¹ min ⁻¹	20° 5.
2,00	10,80	6,31	2,16	3,42
4.00	10.70	3.01	1,71	3,40
8,00	10,65	4.46	1.54	3,45
10.00	10.60	3,98	1.38	3.47
16.00	10.45	2.81	0.96	3.43

Average k = 3.43 × 10⁻³ min⁻¹

TABLE 6.19

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, [D-glucose] = 5.00 \times 10^{-2} \text{M}$$
 $[Pree Bip.] = 5.00 \times 10^{-3} \text{M}, [I_2(III)] = 5.00 \times 10^{-6} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-3} \text{M}, [NCL] = 2.00 \times 10^{-3} \text{M}$
 $[Resp. 30^{\circ}C]$

мексо _з ж 10 ³		[cm ²] x10 ⁴	nol 1 min	10 ³ Mg mam ⁴³
2,00	10,30	6.31	30.00	
4.00	10.70	5.01	7.98	1,59
9,00	10.65	4.46	7.07	1,50
10.00	10.60	3.98	6,32	1.56
16,00	20.45	2.81	4.42	1.57

Average k, = 1.57 x 10⁻³ min⁻¹

Merco ₃]x 10 ³	yet	[OH"] x 10 ⁴	nol 1 min-1	min ⁻²
2.00	10.90	6.31	12.22	1.03
4.00	10.70	5.01	9.43	1.88
8.00	10.65	4.45	8.37	1.07
10.00	10.60	3,98	7.61	1.01
16.00	10.45	2,81	5.35	1.91

FIG. 6.1: PLOT BETWEEN KS AND [OH] AT 30°C

[CUSO4] = 1.25(A) AND 1.00 (B) x10⁻³ M,

[RU(III)] = 4.00×10⁻⁶M, [KCl] = 1.00 ×10⁻³ M,

[FREE BIPYRIDYL] = 5.00×10⁻³M, [Na2CO3] = 5.00×10⁻²M,

[GLYCINE] = 5.00×10⁻²M(A) & [AL ANINE] = 5.00×10⁻²M(B)

FIG. 6.2: PLOT BETWEEN KS AND [OH] AT 30°C [CUSO4] = 1.25×10³M, [Ir(III)] = 5.00×10⁶M [FREE BIPYRIDYL] = 5.00×10³M, [KCJ] = 2.00×10³M [Na2CO3] = 5.00×10⁷M, [SUBSTRATE] = 5.00×10⁷M

tables that on increasing the concentration of sodium bicarbonate the value of will decreases and thus ultimately commentration of CH decreases. Thus on decreasing the [CH], the value of kg also decreases showing thus positive effect of hydroxide ion on reaction rate constant. It is also clear that kg values are in direct propertionality with [CH], which proves first order in hydroxyl ions.

This is, further, confirmed by plotting a graph between k, and [GHT], which gives a straight line passing through origins (Fig. 6.1) and (Fig. 6.2) whose slope is equal average k, value in each case.

On increasing the concentration of sodium bicarbonate is gradually suppressed. This causes fall in pH and hence decrease in [Off] is observed. This explains why [Off] is decreased on increasing sodium bicarbonate concentration.

GINERES VA

DETERMINATION OF EFFECT OF ADDITION OF FORASSIUM CHLORIDE ON THE RATE OF OXIDATION OF AMINO ACIDS AND SUGARS BY ALKALINE SOLUTION OF COPPER SULPHAGE 7 1 DETERMINATION OF REFECT OF ADDITION OF ROTASSIUM CHLORIDE ON THE RATE OF OXIDATION OF AMINO ACTOS AND SUGARS BY C.(4) IN ALKALINE MEDIA

the rate of oxidation of amino acids viz. glycine and alanine in the presence of alkaline solution of copper sulphate as oxidant and ruthenium(III) chloride as catalyst and on the rate of oxidation of sugars viz. Deglucose and Degalactose catalysed by iridium(III) chloride with copper sulphate as oxidant has been studied by varying the concentration of sotassium chloride; under the same experimental conditions. The results of such experiments have been recorded in the following tables in the summarized form at constant ionic strength of the medium.

	k _a × 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.00	3.20
2.00	2.94
3.00	2.66
4.00	2.12
5.00	1.76
6.00	1.44
7,50	1.02

BADLE 7.3

[RG1] x 10 ³ M	k _a × 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.00	2.16
2.00	1.92
3.00	1.64
4.00	1.36
5.00	1.00
6,00	0.72
8,00	0.26

TRUE TA

[KCI] m 10 ³ M	k, × 10 ⁶ mol 1 ⁻⁴ min ⁻⁴
	30.64
2.00	10.00
3,00	9.58
4.00	9.00
5.00	3.52
6.00	7.98
8.00	7.00

CAULE 7.4

[Cu SO₄] = 1.25x10⁻³H, [D-gelectore] = 5.00x10⁻³H
[Free Bip.] = 5.00x10⁻³H, [
$$I_{2}(III)$$
] = 5.00x10⁻⁴H
[Ha₂CO₃] = 5.00x10⁻²H, [HeHCO₃] = 2.00x10⁻³H
pH = 10.80 end Temp. 30⁻³C

[KG1] x 10 ³ H	1, × 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.00	12.86
2.00	13.22
3.00	13.66
4.00	11.00
5.00	10.46
2.50	10.00
10.00	8.86

results of tables 7.1 - 7.4 that in oxidation of each amino acid and each sugar under investigation here the value of kg i.e. sero order rate constant decreases on increasing the concentration of chloride ions which shows that addition of chloride ion has negative effect on the rate of oxidation of reducing amino acids and sugars employed here. This experimental fact has been used while deciding the catalytic species of ruthenium (III) chloride and iridium(III) chloride in the last chapter.

CHAPTER VIII

DETERMINATION OF EFFECT OF VARIATION OF HONIC STRENGTH OF THE MEDIUM ON THE RATE OF OXIDATION OF ANIMO ACIDS AND SUGARS BY ALKALINE COPPER SULPHATE 8 DETERMINATION OF EFFECT OF VARIATION OF IONIS
STRENGTH OF THE MEDIUM ON THE RAME OF OXIDARION
OF AMINO ACIDS AND SUGARS BY ALKALINE COPPER
SULFMATE

describe the influence of variation of ionic strength of the medium on meaction velocity constant. The knowledge of effect of variation of ionic strength indicates the type and nature of reactive species involved in the reaction rate determining step. Hence various experiments with varying ionic strengths affected by addition of different amounts of sodium perchlomate have been performed and the results have been summarised in the following tables for oxidation of each substrate.

PARLE 8.1

[Cu SO₄] = 1.25x10⁻³ M, [Glycine] = 10.00x10⁻² M [Free Bip.] = 5.00x10⁻³ M, [Ru(III)] = 4.00x10⁻⁶ M [Ma₂CO₃] = 5.00x10⁻² M, [MeHCO₃] = 2.00x10⁻³ M [KGl] = 1.00x10⁻³ M, [MH = 10.8, Temp. 30⁻⁶ C

[maco] n 10 ² m	Ionic Strongth (/1):40 ²	k _a = 10 ⁶
1.30	17.50	6.16
3.00	19.00	6.52
5.00	21,00	6.76
10.00	26.00	7.96
20.00	36.00	9.72
30.00	46.00	9.56
40.00	56.00	10.62
50,00	66.00	11.76
60.00	76.00	12.66

TABLE 8.2

[Neclo ₄] = 10 ² M	Tonic Strength (A)x10 ²	karlo ⁶ mol 1 ⁻¹ min ⁻¹
1.50	17.50	4.10
4.00	20.00	4.80
9-00	24.00	5,38
12,00	28.00	6.06
20.00	36.00	7.18
30.00	46.00	8,38
50.00	66.00	10.58
6000	76.00	11.48

TABLE 8.3

[NeCLO ₄] × 10 ²	Tonic Strength (m)x10 ²	k _p x 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.50	27,30	10.04
3,00	19,00	10.54
5.00	21,00	10.33
11,000	26,00	11,30
20.00	36,00	12.46
30,00	46.00	13.52
40.00	56.00	14,36
50.00	66.00	15.69
60.00	76.00	16,98

Walte EM

[MaCLO ₄] x 10 ²	Ionic Strength (m)x10 ²	k ₃ × 10 ^d
1		mol 1-1 min-1
1.50	27,30	12,40
3.00	19,00	12.62
5.00	21,00	13.20
10.00	26.00	13.86
30*00	36,00	14.66
30.00	65-00	15.38
40.00	56.00	16.52
50.00	66.00	27.46
60.00	76.00	18.54

It is clear from the data of tables 3.1 - 3.4 that change in ionic strength has positive effect on the rate of oxidation of amino acids and sugars by alkaline solution of copper sulphate.

GIATER IN

DESCRIPTING TO SEPTECT OF VARIATION OF COMPERATURE ON VELOCITY CONSTANT OF REACTIONS INVOIVING COPPER SULPHANT AS OXIDARY AND ANTINO ACIDS AND SUGARS AS REDUCTED SUBSTANCES

TEMPERATURE ON VELOCITY CONSTANT OF
REACTIONS INVOLVING COPIER SULPHATE AS
OXIDARY AND AMENO ACTOS AND SUGARS AS
REDUCING SUBSTANCES

Oxidation kinetics of various genetions are generally susciptible to change in temperature and the velocity of reactions increase on increasing the temperature. Resping this aim in mind, the kinetic results at temperatures 35, 40, and 45°C have been collected as kinetic results at 30°C have already been reported in previous chapters. The results at different temperatures are given in the following tables for oxidation of each amino acid and each sugar employed in the present investigation.

TABLE 9.1

[Cu SO₄] = 1.25×10⁻³N, [Glycine] = 10.00×10⁻³M
[Prec Bio.] = 5.00×10⁻³M, [Ru(XII)] = 4.00×10⁻³M
[RG1] = 1.00×10⁻³M, [Ne₂CO₃] = 5.00×10⁻³M.
[NeHCO₃] = 2.00×10⁻³M, pH = 10.80,
$$\mu$$
 = 17.50×10⁻³M

Timo	Volume of K2 Ci2 07	10 ² lo =
(min.)	(0,50×10 ⁻³ H) in mi	mi/min
0	0.00	***
5	1.02	20,40
15	1,92	9,00
25	2.84	9.20
35	3.72	8.80
45	4.62	9.00
60	6.02	9,33
78	7,38	9.06
90	3.76	9,20
110	20.56	9.00

Average ko (excluding *) = 9.17×10^{-2} ml/min kg = 9.17×10^{-6} mol 1^{-1} min⁻¹

TABLE 9,2

$$[Cu SO_4] = 1.29 \text{cm}^2 \text{N}. [Glycine] = 10.00 \text{M}^2 \text{N}$$
 $[Free Bip.] = 5.00 \times 10^{-2} \text{N}. [Ru(IXX)] = 4.00 \times 10^{-2} \text{M}$
 $[He_2CO_3] = 5.00 \times 10^{-2} \text{M}. [NeSCO_3] = 1.00 \times 10^{-2} \text{M}$
 $[KC1] = 1.00 \times 10^{-2} \text{M}. pH = 10.80. pt = 17.50 \times 10^{-2} \text{M}$
Temperature 40°C

Gl mo	ne Volume of K2 G2 07	
(mln.)	(0.50x49 ⁻³ H) in ml	mi./mi.m
0	0.00	*
	1.04	20.20
10	1.76	14.00
15	2.42	13.60
20	3.08	13.20
30	4,38	13,00
40	5.74	13,60
50	7.10	13.60
60	8.44	13.40
70	9.80	13.60
ao	11,14	13.40

Average k_0 (excluding *) = 13.49 × 10^{-2} ml/min k_0 = 13.49 × 10^{-6} mol 1^{-1} min⁻¹

eable 9.3

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, \quad [Glycine] = 10.00 \times 10^{-2} \text{N}$$
 $[Prec Bio.] = 5.00 \times 10^{-3} \text{N}, \quad [Ru(XIX)] = 6.00 \times 10^{-6} \text{N}$
 $[Ne_2Co_3] = 5.00 \times 10^{-2} \text{N}, \quad [NaMaO_3] = 2.00 \times 10^{-3} \text{N}$
 $[RC1] = 1.00 \times 10^{-3} \text{N}, \quad \text{pH} = 10.80, \quad \text{pL} = 17.50 \times 10^{-2} \text{N}$

Temperature 45°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	Δ
0	0.00	***
5	1.02	20.40*
20	1.94	13,40
25	2.94	20.00
20	3.90	19.20
25	4.84	18.90
30	5.80	19.20
40	7.76	19,60
	9.70	19.40
60	11.66	19,60

Average k_0 (excluding *) = 19.28×10^{-2} ml/min $k_{\rm p} = 19.28 \times 10^{-6} \text{ mal } 1^{-1} \text{ mLm}^{-1}$

TRBLE 9.4

[Cu SO₄] = 1.25x10⁻³N, [Alamine] = 10.00x10⁻²N
[Prec Sip.] = 5.00x10⁻³N, [Ru(III)] = 4.00x10⁻⁶N
[Na₂CO₃] = 5.00x10⁻²N, [NeHCO₃] = 2.00x10⁻³N
[NC3] = 1.00x10⁻³N, pH = 10.80,
$$\mu$$
 = 17.50x10⁻²M
Temperature 35°C

Time	Volume of R2 G2 09	10 ² % = Δ**
	(0.50:::10 ⁻³ n) in m	m 1/min
0	0.00	
5	1.02	20.40*
15	1.60	5.80
25	2.16	5.60
35	2.76	6.00
50	3.64	5.86
65	4.50	5.73
(0)	5.40	6.00
200	6,36	5.80
120	7.74	5.90
140	8,90	5.80

Average k_0 (excluding *) = 5.83×10⁻² mi min⁻¹ $k_0 = 5.83 \times 10^{-6}$ mol 1 min⁻¹

[Cu SO₄] = 1.35x10⁻³N, [Alanine] = 10.00x10⁻³M
[Pres Bip.] = 5.00x10⁻³M, [Ru(III)] = 4.00x10⁻⁶M
[Na₂CO₃] = 5.00x10⁻³M, [NaHCO₃] = 2.00x10⁻³M
[NCI] = 1.00x10⁻³M, NN = 10.80,
$$\mu$$
 = 17.50x10⁻³M

Time (min.)	Volume of K ₂ G ₂ G ₇ (0.50ml0 ⁻³ N) in mk	10 ² 1 ₂ Δ 3
0	0.00	
	2.02	20-40 [*]
15	1.90	8.50
25	2.90	9.00
3.5	3.66	8.60
43	4.54	8.80
55	5,42	8.00
65	6,32	9,00
75	7.24	9.20
90	8,58	8.93
205	9.94	9.06

Average k_0 (excluding *) = 8.91 × 10⁻² ml/min⁻¹ k_0 = 8.91 × 10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 9.6

[Cu so₄] = 1.25 do² N, [Alanine] = 10.00 x 10⁻² M
[Free Bip.] = 5.00 x 10⁻³ M, [Ru(XIX)] = 4.00 x 10⁻³ M
[Na₂Co₃] = 5.00 x 10⁻³ M, [NaHCo₃] = 2.00 x 10⁻³ M
[NCI] = 1.00 x 10⁻³ M,
$$_{2}$$
M = 10.50, $_{2}$ M = 27.50 x 10⁻³ M
Temperature 45^oC

Time (mi.n.)	Volume of K ₂ G ₂ O ₇ (0.50:40 ⁻³ H) in mi	
	0.00	and other
5	1,02	20.40*
2.0	2.76	14.40
20	3.26	13,40
30	4.50	13 ,40
40	5.86	23,60
50	7.13	13,20
60	3.50	13.20
70	9,36	13,60
80	11,20	13.40

Average k_0 (excluding *) = 13.55 \pm 10⁻² ml/min k_0 = 13.55 \pm 10⁻⁴ mol 1⁻¹ min⁻¹

TABLE 9.7

[Cu SO₄] = 1.25x10 N, [D-Glucose] = 5.00x10 N
[Free Bip] = 5.00x10 N, [E₂(XIX)] = 5.00x10 N
[Ha₂CO₃] = 5.00x10 N, [NSHCO₃] = 2.00x10 N
[HCl] = 2.00x10 N, HI = 10.80,
$$\mu$$
 = 17.50x10 N

21.00	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	10° 1, - △
(min.)		n3/n33
0	0.00	* *
5	1.00	20.00
10	1.80	16,00
15	2.56	15.20
20	3.34	15.60
25	4.14	16,00
30	4.90	15.60
40	6.44	15.40
50	8.04	16.00
60	9.62	15.80

Average k_0 (excluding $!*) = 15.70 \times 10^{-2}$ mG/min $k_0 = 15.70 \times 10^{-6}$ mol⁻¹ min⁻¹

[Cu SO₄] = 1.25x10⁻³N, [D-glucose] = 5.00x10⁻³N
[Free Bip.] = 5.00x10⁻³N, [I₈(III)] = 5.00x10⁻⁶N
[Na₂CO₃] = 3.00x10⁻³N, [NeFCO₃] = 2.00x10⁻³N
[NC1] = 2.00x10⁻³N, NFI = 10.50.
$$\mu$$
 = 17.50x10⁻³N
Temperature 40⁻³C

Time (mig.)	(0.50x10 ⁻³ n) in mk	
O .		
5	3.02	20.40*
10	2,20	24.00
15	3.44	24.90
20	4,66	24,40
25	5.88	24,40
30	7.08	24,00
35	9.28	24-00
40	9.50	24,40
45	10.74	24,90

Average k_0 (excluding *) = 24.35x10⁻² ml min⁻¹ k_0 = 24.35x10⁻⁶ mol 1⁻¹ min⁻¹

(A) (B) (B) (B)

[Cu SO₄] = 1.25×10⁻³ M, [D-clucose] = 5.00×10⁻² M
[Free Bip.] = 5.00×10⁻³ M, [I₂(XII)] = 5.00×10⁻⁶ M
[Na₂CO₃] = 5.00×10⁻² M, [NeNCy] = 2.00×10⁻³ M
[NG1] = 2.00×10⁻³ M, pH = 10.80,
$$\mu$$
 = 17.50×10⁻³ M
Temperature 45°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50:40 ⁻³ N) in mi	Δ * Δ * Δ * Δ * Δ * Δ * Δ * Δ * Δ * Δ *
	0.00	
5	1.00	20.00
1.0	2,69	33.60
15	4.39	34.00
20	6.94	33,20
3.5	7.60	32.90
30	9.36	33.60
35	11.00	32,90
38	12.02	34.00

Average k_0 (excluding *) = 33.40×10⁻² ml/mln k_0 = 33.40×10⁻⁶ mol 1⁻¹ min⁻¹

THE 9.10

[Cu so₄] = 1.25x10⁻³ N, [D-galactose] = 5.00x10⁻³ N
[Pree Bip.] = 5.00x10⁻³ N, [I₂(III)] = 1.50x10⁻⁴ N
[Ne₂CO₃] = 5.00x10⁻³ N, [NeaCO₃] = 2.00x10⁻³ N
[NCI] = 2.00x10⁻³ N, pH = 18.80,
$$\mu$$
 = 17.50x10⁻³ N
Femperature 35^oC

2460	Volume of K2 G2 07	10 ² k = 4
(ml.n.)	(0.50x10 ⁻³ N) in al	ni/sin
	0.00	496-466
	1.02	20.40
3.5	1.55	5,40
25	2,12	5.60
35	2.70	5.80
4.5	3.26	5.60
65	4.38	5.60
	5.52	5.70
110	6.92	5.60
140	8.54	5.40

Average k_0 (excluding *) = 5.59x40⁻² ml/min $k_0 = 5.59x40^{-6}$ mol 1⁻¹ min⁻¹

EASTER O.A.A.

[Cu SO₄] = 1.25x10⁻³N, [D-galactose] = 5.00x10⁻³M
[Free Bip.] = 5.00x10⁻³H, [
$$I_{X}$$
(III)] = 1.50x10⁻³M
[KCl] = 2.00x10⁻³H, [$Na_{2}CO_{3}$] = 5.00x10⁻³M
[NOHICO₃] = 2.00x10⁻³H, pH = 10.80, μ = 17.50x10⁻²M
Temperature 40°C

Time (min.)	Volume of E ₂ G ₂ O ₇ (0.50×10 ⁻³ H) in ml	10 ² k
0	0.00	÷ *
\$	1.02	20.40
25	1.92	9.00
25	2.84	9.20
35	3.72	8400
4.3	4.62	9.00
60	6.62	9,33
75	7.38	9.06
90	8.76	9.20
110	10.56	9.00
130	12,32	9.80

Average k_0 (excluding *) = 9.04 × 10⁻² ml/mln k_0 = 9.04 × 10⁻⁶ mol 1⁻¹ mlm⁻¹

TABLE 9.12

[Cu SO₄] = 1.25×10⁻³ M, [D-galactose] = 5.00×10⁻² M
[Free Bip.] = 5.00×10⁻³ M, [I₂(III)] = 1.50×10⁻⁶ M
[KG1] = 2.00×10⁻³ M, [Na₂CO₃] = 5.00×10⁻² M
[NBHCO₃] = 2.00×10⁻³ M, pH = 10.8,
$$\mu$$
 = 17.50×10⁻² M
Temperature 45^QC

(int.n.)	(0.50min) of K ₂ G ₂ O ₇	$10^2 k_0 = \frac{\Delta \pi}{\Delta \pi}$
0	0.00	
5	2.00	20,000
10	1.90	16.00
15	2,62	16-40
20	3.40	15.60
25	4.20	16.00
40	5,63	16.53
55	9.03	36,00
	11.50	16,13

Average k_0 (excluding *) = 16.09×10⁻² ml/min k_0 = 16.09×10⁻⁶ mol 1⁻¹ min

The results of tables 9.1 - 9.3 and table 3.2, tables 9.4 - 9.6 & table 3.8, tables 9.7 - 9.9 & table 3.14 and tables 9.10 - 9.12 & table 5.16 have been summarised in tables 9.13, 9.14, 9.15 and 9.16 respectively.

$[cu so_4] = 1.25 d0^{-3} N, [Glycine] = 10.00 \times 10^{-2} M$
[Free Bip.] = 5.00x10 ⁻³ M, [Ru(III)] = 5.00x10 ⁻⁶ M
$[Na_2CO_3] = 5.00 \times 10^{-2} M. [NaHCO_3] = 2.00 \times 10^{-3} M$
[KC1] = $1.00 \times 10^{-3} M_{\odot}$ pH = 10.8 and M = $17.50 \times 10^{-2} M_{\odot}$

Temperature	kg x 20 ⁶	
* C	mod 2 ⁻¹ mln ⁻¹	
30	6.19	
38	9.17	
40	13.49	
45	19.28	

2002 9.74

[Cu so ₄] =	1,25x10 ⁻³ N,	[Alemine] =	10.00×10-2M
[Free Bip.]	= 5.00x10 ⁻³ H,	Ru(XII)	= 4.00×10-6M
[88 ₂ CO ₃] *	5.00:40 ⁻² H,	[Nanco ₃] =	2.00:20 3 _M
[163] - 1.	,00×10-3H,	pM = 10.8	and
<i>)</i> **	= 17.50:10 ⁻²)		

Tempe reture	% × 10 ⁶ mol 1 ⁻² min ⁻²
\$ Q.	4.27
35	5.83
40	8.91
45	23.35

33,40

TABLE 9.15

$$[Cu SO_4] = 1.25 \times 10^{5} M, [D-gluxose] = 5.00 \times 10^{-5} M$$
 $[Ruse Sin_3] = 5.00 \times 10^{-5} M, [I_{2}(SII)] = 5.00 \times 10^{-6} M$
 $[Ma_2CO_3] = 5.00 \times 10^{-2} M, [MaHCO_3] = 2.00 \times 10^{-3} M$
 $[RCI] = 2.00 \times 10^{-3} M, RI = 10.00 and$
 $[RCI] = 17.50 \times 10^{-2} M$

Temperature	kg × 10 ⁶ mol 1 ⁻¹ min ⁻¹
°c	
30	30.00
35	15.70
40	24.35

45

FIG. 9.1: PLOT BETWEEN logks AND (1/T) [CUSO4]=1.25×10-7, [GLYCINE]=10.00×10-2(A)M,[Ru(III)]=5.00×10-M(A) [ALANINE]=10.00×10-(B)M, [Ru(III)]=4.00×10-M(B), $p^{H}=10.80$ [Na₂CO₃]=5.00×10-M, [Na_HCO₃]=2.00×10-M, [KCl]=1.00×10-M [Free Bipyridyl] = 5.00×10-3M, $M=17.50\times10^{-2}M$

FIG. 9.2: PLOT BETWEEN LOGKS AND (1/T)

[CUSO4]= 1-25 ×10³N, [SUBSTRATE] = 5.00×10³ (A → D-GLUCOSE)

AND B→ D-GALACTOSE), [IY(III)] = 5.00 ×10⁶M, M = 17.50×10⁶M

[Na₂CO₃] = 5.00×10²M, [NaHCO₃] = 2.00×10³M, pH = 10.80

[FREE BIPYRIDYL] = 5.00×10³M, [KCl] = 2.00×10³M

MARKS 9.16

$\begin{bmatrix} \text{Cu SO}_4 \end{bmatrix} = 1.25 \times 10^{-3} \text{N}, \begin{bmatrix} \text{D-galactose} \end{bmatrix} = 5.00 \times 10^{-3} \text{N}$
[Free Bip.] = 5.00x10 ⁻³ M. [Ig(IXI)] = 5.00x10 ⁻⁶ M
$[Na_3CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
$[KC1] = 2.00 \times 10^{-3} M$, whi = 10.80 and μ = 17.50 $\times 10^{-2} M$

Temperature	R.	24	108	mol.	1			
		Sproduceus panis			unite, dir			
30	3.60							
35	5.59							
40	9,04							
45	16.09							

The results of tables 9.13. 9.14. 9.15 and table 9.16 have been reproduced graphically. A straight line is obtained on plotting log k_0 against (1/p). The slape of the line gives the value equal to $-\Delta E/2.03R$. Thus from the slope (Fig. 9.1A, 9.1B, 9.2A and 9.2B) the value of ΔE i.e. energy of activation is calculated. The value of ΔE for the oxidation of glycine, alamine, D-glucose and D-galactose was found to be 14.66, 16.62, 15.26 and 18.32 K cal/mol, respectively.

67.02.33

DISCUSSION AND INTERPUTATION

OF EXPERIMENTAL RESULTS

10 :

This chapter contains the summarised results obtained in the studies of oxidation kinetics involving copper sulphate as exident in the presence of 2,2' - bipyridyl and amino acids wis, divoine and alanime and sugars vis. D-glucose and D-galectose as reducing materials in the presence of MagCO, and MagCO, buffer solution using Ru(III) chloride and iridium(III) chloride as homogeneous datalyst in oxidation of amino acids and sugars, respectively. These summarised data have been, further, analytically interpreted to elucidate the reaction schemes for the exidation of amino acids and sugars. The gate law has been, thereafter, derived on the basis of proposed reaction steps. In the following section summarised results have been noted in oxidation of glycine, alanine, D-glucose and D-galactose by copper sulphate.

10.1 . SUMPARY OF KINETIC RESULES

The following kinetic observations have been noted in Ru(III) catalysed oxidation of glycine and alanine and Ir(III) catalysed oxidation of D-glucose and D-galactome by alkaline solution of copper sulphase.

- (1) All the geactions have been found to follow sego-order kinetics in copper sulphate.
- (2) The order of the meaction with respect to all substrates i.e. glycine, elenine, D-glucose and D-galactose is one.
- (3) First order dependence on hydroxide concentration in all cases has been observed.
- (4) In oxidation of glycine and alanine first order kinetics with respect to ruthenium(III)
 chloride has been observed. In oxidation of
 D-glucose and D-galactose also first-order
 dependence on iridium(III) chloride concentration has been observed.
- (5) Successive addition of potassium chloride
 in oxidation of all the substrates decreased
 their oxidation rates, showing thus decreasing

effect of chloride ions on oxidation of all the substrates.

- (6) Ionic strength variation indicated positive effect on the reaction rate.
- (7) Increase in temperature increased the velocity constant in all cases significantly showing thus marked effect of temperature variation.

10.2 • BEACTIVE SPECIES OF RUTHENIUM (III) CHLORIDS IN CITOARTON OF AMEND ACIDS BY ALKALIES COPPER SULMANS

It has been observed experimentally that on increasing the concentration of petassium chloride the value of gate constant decreases in oxidation of both amino acids i.e. glycine and alanine by alkaline solution of copper sulphate. The decreasing effect of added chloride ions on reaction rate suggests that the following equilibrium exists, and the equilibrium mentioned here has tendency to shift

10.3 * REACTIVE SPECIES OF IRIDIUM(III) CHLORIDE IN OKIDATION OF SUSARS BY ALKALINE SOLUTION OF COPPER SULMANE

D-glucose and D-galactose by alkaline copper sulphate catalysed by iridium(III) chloride in the presence of various amounts of patessium chloride shows that on increasingh chloride ions the rate constant decreases. Thus decreasing effect of chloride ions suggests the following equilibrium(I) to exist which has bendency to move to right direction³.

$$\left[x_{2}cx_{2}\right]^{3} + H_{2}0 = \left[x_{2}cx_{3}H_{2}0\right]^{3} + cx^{2} = -(3)$$

Thus association property of chloride ions with
\[\lambda_{\text{cl}_{\text{g}}} \mathbb{\text{d}}_{\text{cl}_{\text{g}}} \rangle^{2} \] is remote. This indicates that
\[\lambda_{\text{g}} \mathbb{\text{cl}_{\text{g}}} \rangle^{2} \] cannot be assumed to be reaction species iridium(III) chloride because when rate law is derived on its basis, the rate law requires positive effect of chloride ions contrary to the observed negative effect of chloride ions on the reaction rate Hence the next choice is \[\lambda_{\text{g}} \mathbb{\text{cl}_{\text{g}}} \mathbb{H}_{\text{g}}^{2} \]

which, when taken as reactive species, gives rate law capable of explaining negative effect of chloride

ions on rate. Hence [I_Gl_g H_0] is the real catalytic species. Although earlier workers have also reported some different reactive species of iridium(III) chloride but these species are not conforming to the observed kinetics data here.

19.4 : MECHANISM OF CAUDATION OF AMINO ACIDS BY ALKALYNE COPPER SULHHARE CAPALYSED BY RU(III) CHLORIDE

The following reaction steps are suggested for the title reactions on the basis of kinetic investigations carried out in previous chapters.

Zero-order dependence on copper sulphate suggests that Cu(XI) is involved in a fast step after slow and rate determining step.

where forward reaction of step (3) is slow and rate determining step.

$$C_3 + Cu(II)^2 + H_20 - Cu(I)^2 + Products + [RuCl_3H_20]^2 - (2v)$$

where AA is emino acid and AA" is its anion. $[\operatorname{Cu}(\mathbf{u})^*] = [\operatorname{Cu}(\operatorname{Bip})_2^*] \quad \operatorname{and} [\operatorname{Cu}(\mathbf{u})^*] = [\operatorname{Cu}(\operatorname{Bip})_2^*]$

Now the gate of the meaction can be expressed in terms of gate of loss of $[Cu(XI)]^2$ with the help of above reaction steps as given by expression (1)

The total concentration of muthenium(n I) chloride i.e. [Ru(III)] may be written as eqn (2).

$$\left[\operatorname{au}(\mathbf{z}\mathbf{z})\right]_{\mathbf{g}} + \left[\mathbf{c}_{\mathbf{g}}\right] + \left[\mathbf{c}_{\mathbf{g}}\right] + \left[\mathbf{c}_{\mathbf{g}}\right] \qquad \cdots \qquad (2)$$

From Step (11) we have

Prom step (III) we have

where
$$K_3 = k_3/k_{-3}$$
 and $K_3^2 = K_3/[H_2O]$

On substituting the value of $[C_1]$ and $[C_3]$ from equs (3) and (4) respectively in eqn (2) we have eqn (5)

$$[au(III)] = \frac{[c_{1}][a_{1}]}{[c_{2}]} + [c_{3}] + r_{3} [c_{3}][AA]$$

or
$$K_2 [Ru(XXX)] = [C_2][CX^+] + K_2 + K_3 + K_4 - [AK^+]$$

$$cx [C_3] * \frac{\kappa_3 [Rm(XXX)]}{[C_3]^3 + \kappa_2 (3 + \kappa_3 [An^2])}$$
 (5)

By comparing eqns (1) and (5) we have

From step (1) we have

where K * K1/[H20]

On substituting [AA*] value from eqn (7) in eqn(6) se have

Further on assuming 1 \rightarrow K_3 K_1 AA CH* the eqn(8) may be written as eqn (9) in the light of above assumption

The rate law (9) fully explains all the observed kinetics in exidation of glycine and alanine by alkaline copper sulphate.

10.5 : MECHANISM OF OXIDATION OF SUGARS BY ALKALINE GOPPER SULPHATE CATALYSED BY IRIDIUM (III) CHLORIDE

given in section 10.1 the following reaction path is suggested for the oxidation of sugars viz.

Degluces and Degalactose by alkaline copper sulphate. It is well known that, in the presence of alkali, reducing sugars undergo a tautomeric change through the formation of an intermediate enadiol anion. Since in the present case reaction rate is directly proportional to the [OH*] hence it is the enadiol anion which after interaction with iridium(KII) chloride species forms an intermediate which is being fast oxidised by [Cu(Bip)*2*] giving the final product and soluble [Cu(Bip)*2*]. Hence the reaction scheme is given as following steps.

$$H - C - CH + CH^{-\frac{N_1}{N_2}} \qquad H \qquad C$$

$$C - CH + H_2O \qquad ... (4)$$

$$C - CH + H_2O \qquad ... (4)$$

whose forward meaction of step (iii) is slow step.

The rate of the reaction can be written in terms of rate of loss of [Cu(III)] by eqn (1) where [Cu(II)] = [Cu(Bip)2]

The total concentration of iridium(III) chloride i.e.

[Ig(XII)] may be written as

$$[c_{2}(xxx)] = [c_{2}] + [c_{2}] + [c_{3}] \dots (2)$$

Now from step (11) we have

... (4)

or
$$[c_1] = \frac{[c_2][c_2]}{c_2}$$
 ... (3)

Also from step (iii)

On substituting the value of $[C_1]$ and $[C_3]$ from eqns (3) and (4) respectively in eqn (2) we have eqn(5).

$$[x_{n}] = \frac{[c_{n}][c_{n}]}{[c_{n}]} + [c_{n}] + [c_{n}] + [c_{n}]$$

(7)

By comparing equs (1) and (5) we have

From step (1) we have

Now from eqns (6) and (7) we have eqn (8).

where
$$K_1 = K_1 [H_10]$$

Further on assuming $I > K_1 K_2 [S] [OH]$

[H_0]

eqn (8) may be written as eqn (9)

MENTERSACE

- 1. J. Helpern, B.R. James, s J. Am. Chem. Soc. 53.
 and A.L. W. Kemp. 4097 (1961).
- 2. J.F. Harrod, S. Ciccone : Can. J. Chem. 39, 1372 (1961).
 and J. Helpern
- 3. G.Gopalkrishnan, B.R.Rai : Indian J. Chem. 198, 293 (1980) and M.Venkatasubramanian
- 4. J.C. Chang and C.S. Garner : Inorg. Chem. 4, 209 (1965).
- 5. F.A. Cotton and a 'Advanced Inorganic Chemistry'
 G. Wilkinson willey Eastern Ltd., New Delhi
- 6. A.J.P. Domingos, A.M.T.S. b. J. Inorg. Nucl. Chem. 21.

 Domingos and J.M.P. 2563 (1969).

 Gabrel.
- 7. V.I. Kreytov and G.M. 1 Russ. J. Inorg. Chem. 2,552
 Petrova (1964).
- 8. A. Poulsen and C.S.Garner : J.Am. Chem. Soc. 34, 2032 (1962).