

+91 7411045484

https://github.com/ashwinip12

ashwinibms2020@gmail.com

https://www.linkedin.com/in/ashwini-p-15a8b2224/

ABOUT ME

Dedicated Information Science graduate with a strong technical background in front-end development, specializing in ReactJS and Redux. Proven ability to build scalable and responsive UI components, manage state effectively, and collaborate using Git for version control. Seeking a front-end development role to contribute technical expertise and creative problem-solving to innovative projects.

EDUCATION

Bapuji Institute of Engineering and Technology	June 2024	CGPA=8.67
B.E(Information Science and Engineering)		
Class -12 th	Mar 2020	85.33%
Class -10 th	Apr 2018	87.38%

SKILLS

Languages: C ,Java , JavaScript & HTML/CSS ,SQL

Frameworks: Redux, ReactJS

Tools: Git, VSCode, Chrome DevTools and Jest

INTERNSHIP

intern-Ivoyant

July -Nov 2024

Davanagere

- 1. Developed interactive UI components using ReactJS and Redux, improving page load time by 20%.
- 2. Built reusable components using TypeScript, improving development efficiency.
- 3. Managed state efficiently using Redux Toolkit, ensuring seamless data flow and component reusability.
- 4. Used Git for version control and team collaboration, resolving conflicts and ensuring smooth code merges.

PROJECTS

Electoral Voting System

- 1. Built using ReactJS, Redux, and SQL to ensure accurate voter data storage and reporting.
- 2. Developed customized SQL queries, reducing report generation time by 30%.
- 3. Ensured voter privacy using encryption techniques.

Leprosy Identification with AI analysis by Integrating Skin Lesion Images and Clinical Data

- 1. **D**eveloped using Python and TensorFlow to analyze skin lesion images.
- 2. Achieved an 85% accuracy rate in early-stage leprosy detection.
- 3. Processed large datasets using optimized image preprocessing techniques.