數位電路設計 Digital Circuit Design

莊仁輝

交通大學資訊工程系

Chapter 2

Boolean Algebra and Logic Gates

-

2.3 Axiomatic Definitions of Boolean Algebra

- An algebraic structure defined by a set of elements B and two binary operators + and ·, providing the following postulates are satisfied (Boolean Algebra, E. V. Huntington, 1904):
 - 1. Closure w.r.t. the operator + (·)
 - 2. An identity element w.r.t. $+ (\cdot)$
 - 3. Commutative w.r.t. $+ (\cdot)$
 - 4. · is distributive over +
 - + is distributive over ·
 - 5. $\forall x \in B, \exists x' \in B \text{ (complement of } x)$
 - 6. \exists at least two elements $x, y \in B$ such that $x \neq y$

2.3 Axiomatic Definitions of Boolean Algebra

- Two-valued Boolean Algebra
 - B = $\{0,1\}$ → Postulate 6
 - The rules of operations

AND

OR

NOT

\mathcal{X}	y	$x \cdot y$	\overline{x}	y	x+y	\overline{x}	x'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Postulate 1

X	\mathcal{Y}	$x \cdot y$	\mathcal{X}	У	x+y	\mathcal{X}	x'
0	0	0	0	0	0	0	1
$0 \\ 0$	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	$(b) x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) x(y+z) = xy + xz	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	$(b) \qquad (xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) $x(x + y) = x$

Theorem 1(a): x+x = x

•
$$x+x = (x+x)$$
 1 by postulate: 2(b)
= $(x+x)(x+x')$ 5(a)
= $x+xx'$ 4(b)
= $x+0$ 5(b)
= x

• Theorem 1(b): x x = x

$$xx = x x + 0$$

$$= xx + xx'$$

$$= x (x + x')$$

$$= x 1$$

$$= x$$

Theorem 2

$$x + 1 = 1 (x + 1)$$

$$= (x + x')(x + 1)$$

$$= x + x' 1$$

$$= x + x'$$

$$= 1$$

- x = 0 by duality
- Theorem 3: (x')' = x
 - Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0
 - The complement of x' is x and is also (x')'
 (the complement is unique)

Theorem 6

•
$$x + xy = x + xy$$

= $x + xy = x + xy$
= $x + xy = x + xy = x + xy$
= $x + xy = x + xy = x + xy$
= $x + xy = x + xy = x + xy = x + xy$
= $x + xy = x + xy$

•
$$x(x + y) = x$$
 by duality

By means of truth table

X	y	xy	x + xy
0	0	0	
0	1	0	
1	0	0	
1	1	1	

DeMorgan's Theorems

•
$$(x+y)' = x'y'$$

$$(x y)' = x' + y'$$

\mathcal{X}	y	x+y	(x+y)'	x'	y'	<i>x'y'</i>
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	O
1	1	1	0	0	0	0

The distributive laws ...

- Operator Precedence
 - parentheses
 - NOT
 - AND
 - OR
- Examples
 - xy'+z
 - (xy+z)'

2.5 Boolean Functions

A Boolean function

- binary variables
- binary operators OR and AND
- unary operator NOT
- Parentheses

Examples

•
$$F_1 = x + y'z$$

•
$$F_2 = x'y'z + x'yz + xy'$$

•
$$F_3 = x y' + x' z$$

2.5 Boolean Functions

• $F_1 = x + y'z$ • $F_2 = x' y' z + x' y z + x y'$ • $F_3 = x y' + x' z$

Table 2.2 *Truth Tables for F_1 and F_2*

X	y	Z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

• Two Boolean expressions may specify the same function: $F_2 = F_3$

2.5 Boolean Functions

Implementation with logic gates

$$F_2 = x' y' z + x' y z + x y'$$

$$F_3 = x y' + x' z \leftarrow Better!$$

Algebraic Manipulation

- To minimize Boolean expressions
 - literal: a primed or unprimed variable (an input to a gate)
 - term: an implementation with a gate
 - The minimization of the number of literals and the number of terms → a circuit with less equipment
 - It is a hard problem (no specific rules to follow)

Algebraic Manipulation

Ex. 2.1

1.
$$x(x'+y) = xx' + xy = ... = xy$$

2.
$$x + x'y =$$

3.
$$(x+y)(x+y') =$$

4.
$$xy + x'z + yz = xy + x'z + yz(x+x')$$

= $xy + x'z + yzx + yzx'$
= $xy(1+z) + x'z(1+y)$
= $xy + x'z$

5.
$$(x+y)(x'+z)(y+z) =$$

■ Duality: $1 \leftrightarrow 2$, $4 \leftrightarrow 5$ (consensus theorem)

Complement of a Function: A or B

- A. $F' \leftarrow$ an interchange of 0's for 1's and 1's for 0's in the value of F (Table)
- B. $F' \leftarrow \text{Applying DeMorgan's theorem to } F' \leftarrow \text{Applying DeMorgan's theorem to } F' \leftarrow (A+B)' = A'B', (AB)' = A'+ B' \text{ (Algebra)}$
- 3-variable DeMorgan's theorem

•
$$(A+B+C)' = (A+X)'$$
 let $B+C = X$
 $= A'X'$ by DeMorgan's
 $= A'(B+C)'$
 $= A'(B'C')$ by DeMorgan's
 $= A'B'C'$ associative

Complement of a Function

•
$$(A+B+C+...+F)' = A'B'C'...F'$$

•
$$(ABC ... F)' = A' + B' + C' + ... + F'$$

Ex. 2.2 (use DeMorgan's theorem)

•
$$(x'yz' + x'y'z)' = (x'yz')' (x'y'z)'$$

= $(x+y'+z) (x+y+z')$

$$[x(y'z'+yz)]' = x' + (y'z'+yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y+z) (y'+z') = \dots$$

Ex. 2.3 (take the dual + complement each literal)

■
$$x'yz' + x'y'z \rightarrow (x'+y+z')(x'+y'+z)$$
 (the dual)
 $\rightarrow (x+y'+z)(x+y+z')$

$$[x(y'z'+yz)]' \rightarrow \dots$$

Minterms and Maxterms

- A minterm: an AND term consists of all literals (in their normal form or in their complement form)
- For example, two binary variables x and y,
 - *xy*, *xy'*, *x'y*, *x'y'*
- It is also called a standard product
- n variables can be combined to form 2ⁿ minterms
- A maxterm: an OR term
- It is also call a standard sum
- 2ⁿ maxterms

 each maxterm is the complement of its corresponding minterm, and vice versa

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			M	interms	Мах	cterms	
x	y	z	Term	Term Designation		Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

- A Boolean function can be expressed by
 - a truth table or sum of minterms
- Ex.

•
$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

•
$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

Table 2.4

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- The complement of a Boolean function
 - the minterms that produce a 0

$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6$$
$$= x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$f_1 = (f_1')'$$

$$= (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)$$

$$= M_0 M_2 M_3 M_5 M_6$$

- Any Boolean function can be expressed as
 - a sum of minterms
 - a product of maxterms
 - →canonical forms

Ex. 2.4 Sum of minterms

•
$$F = A+B'C$$

= $A (B+B') + B'C$
= $AB + AB' + B'C$
= $AB(C+C') + AB'(C+C') + (A+A')B'C$
= $ABC + ABC' + AB'C + AB'C' + A'B'C$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

•
$$F(A,B,C) = \Sigma(1, 4, 5, 6, 7)$$

■ or, built the truth table first →

A	В	c	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Ex. 2.5 Product of maxterms

$$F = xy + x'z$$

$$= (xy + x') (xy + z)$$

$$= (x+x')(y+x')(x+z)(y+z)$$

$$= (x'+y)(x+z)(y+z)$$

•
$$x'+y = x' + y + zz'$$

= $(x'+y+z)(x'+y+z')$

$$F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$$
$$= M_0 M_2 M_4 M_5$$

•
$$F(x,y,z) = \Pi(0,2,4,5)$$

Conversion between Canonical Forms

Example

```
F(A,B,C) = \Sigma(1,4,5,6,7)

F'(A,B,C) = \Sigma(0,2,3)

F(A,B,C) = \Pi(0,2,3)

(By DeMorgan's theorem: m_i' = M_i)
```

- sum of minterms → product of maxterms
 - interchange the symbols Σ and Π and list those numbers missing from the original form
 - Σ of 1's
 - Π of 0's

Conversion between Canonical Forms

Example

•
$$F(x, y, z) = \Sigma(1, 3, 6, 7)$$

•
$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

Table 2.6 Truth Table for F = xy + x'z

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Consensus theorem: xy + x'z + yz = xy + x'z
 - redundant term → can eliminate race hazards

-

Standard Forms

- Canonical forms are seldom used
- Sum of products (SOP)

$$F_1 = y' + zy + x'yz'$$

Product of sums (POS)

$$F_2 = x(y'+z)(x'+y+z'+w)$$

Nonstandard form → standard form

$$F_3 = AB + C(D+E)$$

= $AB + CD + CE$

Standard Forms

Two-level implementation

Three- and two-level implementation

(a)
$$AB + C(D + E)$$

2.7 Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables
- 22ⁿ functions for n binary variables
- 16 functions of two binary variables

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0 0 0 0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

 All the new symbols except for the exclusive-OR symbol are not in common use by digital designers

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
0000 $F_0 = 0$		Null	Binary constant 0
$0001 F_1 = xy$	$x \cdot y$	AND	x and y
0010 $F_2 = xy'$	x/y	Inhibition	x, but not y
0011 $F_3 = x$		Transfer	x
0100 $F_4 = x'y$	y/x	Inhibition	y, but not x
0101 $F_5 = y$		Transfer	y
0110 $F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
0111 $F_7 = x + y$	x + y	OR	x or y
1000 $F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
1001 $F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
1010 $F_{10} = y'$	<i>y</i> ′	Complement	Not y
1011 $F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
1100 $F_{12} = x'$	x'	Complement	Not <i>x</i>
1101 $F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
1110 $F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
1111 $F_{15} = 1$		Identity	Binary constant 1

2.8 Digital Logic Gates

- Boolean expressions: AND, OR and NOT operations
- Constructing gates of other logic operations
 - the feasibility and economy
 - the possibility of extending gate's inputs
 - the basic properties of the binary operations
 - the ability of the gate to implement Boolean functions alone or ...

2.8 Digital Logic Gates

- Consider the 16 functions
 - two are equal to a constant
 - four are repeated
 - inhibition and implication are not commutative or associative
 - the other eight: complement, transfer, AND, OR, NAND, NOR, XOR, and equivalence are used as standard gates

Standard Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$\begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	$x \longrightarrow F$	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Standard Gates

NAND	x y F	F = (xy)'	0 0 1 1	y 0 1 0 1	1 1 1 0
NOR	x y F	F = (x + y)'	0 0 1 1	y 0 1 0 1	F 1 0 0 0
Exclusive-OR (XOR)	x y F	$F = xy' + x'y$ $= x \oplus y$	0 0 1 1	y 0 1 0 1	0 1 1 0
Exclusive-NOR or equivalence (XNOR)	x y F	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 1 1	y 0 1 0 1	F 1 0 0 1

Extension to Multiple Inputs

- AND and OR are commutative and associative
 - (x+y)+z = x+(y+z) = x+y+z
 - (x y)z = x(y z) = x y z
- NAND and NOR are commutative but not associative → they are not extendable

Extension to Multiple Inputs

- Multiple NOR ≜ a complemented OR gate
- Multiple NAND ≜ a complemented AND gate

- The cascaded NAND operations = sum of products
- The cascaded NOR operations = product of sums

Extension to Multiple Inputs

- The XOR and XNOR gates are commutative and associative
 - Example: 3-input XOR gate

XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's

Positive and Negative Logic

x	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

(c) Truth table for positive logic

Х	y	z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

(b) Gate block diagram

(d) Positive logic AND gate

(f) Negative logic OR gate

2.9 Integrated Circuits (IC, chips)

- Levels of integration
 - SSI: < 10 gates</p>
 - MSI: 10 ~ 1000 gates (Chapter 4)
 - LSI: 1000 ~ 100k gates (Chapter 7)
 - VLSI: > 100k gates
 - small size (compact size)
 - low cost
 - low power consumption
 - high reliability
 - high speed

(from wikipedia)

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

CMOS circuit

NMOS circuit

- The most important parameters
 - Fan-out: the number of standard loads that the output of a typical gate can drive
 - Fan-in: ...
 - Power dissipation
 - Propagation delay: the average transition delay time for the signal to propagate from input to output
 - Noise margin: the maximum external noise voltage added to an input signal ...

- Computer-Aided Design (CAD) tools
 - Millions of transistors → software programs
 - Support computer-based representation
 - Automate the design process
- A typical design flow
 - Design entry
 - Schematic capture
 - HDL Hardware Description Languages (Verilog, VHDL)
 - Simulation
 - Physical realization (ASIC, FPGA, PLD)

- Ex. A digital version of oscilloscope
 - an analog one:

