Almost Sure Convergence

Samahriti Mukherjee , Aytijhya Saha

16 August 2021

 \exists a set A $\subset \Omega$ s.t. P(A)=0, so that given $\epsilon > 0$, $\forall \omega \in \Omega \backslash A \exists N = N_{\omega}$ s.t. $\forall n > N_{\omega}$,

$$|X_n(\omega) - X(\omega)| < \epsilon$$

This is called almost sure convergence.

Suppose, $\forall \epsilon > 0, \exists A_{\epsilon} \subset \Omega \text{ with } P(A_{\epsilon}) = 0 \text{ and } \forall \omega \in \Omega \backslash A_{\epsilon} \exists N = N_{\omega} \text{ s.t.}$ $\forall n > N_{\omega},$

$$|X_n(\omega) - X(\omega)| < \epsilon$$

Clearly, a.e. convergence will guarantee this. What about the converse?

Ans:

Clearly, $A_{\epsilon'} \subseteq A_{\epsilon}$, whenever $\epsilon' > \epsilon$ Let, $A = \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$.

Now $0 \le P(A_1) \le P(A_{\frac{1}{2}}) \le \dots \le 1$ So $\{P(A_{\frac{1}{n}})\}$ is a non-decreasing sequence of non-negative numbers. Then by upward continuity of probability,

$$P(A_{\frac{1}{n}}) \uparrow P(\bigcup_{n=1}^{\infty} A_{\frac{1}{n}})$$

$$\Rightarrow P(A) \downarrow 0$$

 $\forall \epsilon > 0, \exists k \in \mathbb{N}, \text{ s.t. } \frac{1}{k} < \epsilon$

$$\Rightarrow A_{\epsilon} \subseteq A_{\frac{1}{k}} \subset \bigcup_{n=1}^{\infty} A_{\frac{1}{n}} = A$$
$$\Rightarrow A_{\epsilon} \subseteq A, \forall \epsilon > 0$$
$$\Rightarrow \Omega \backslash A \subseteq \Omega \backslash A_{\epsilon}$$

Hence, $\forall \omega \in \Omega \backslash A_{\epsilon} \exists N = N_{\omega} \text{ s.t. } \forall n > N_{\omega}, |X_n(\omega) - X(\omega)| < \epsilon \Rightarrow \forall \omega \in \Omega \backslash A \exists N = N_{\omega} \text{ s.t. } \forall n > N_{\omega}, |X_n(\omega) - X(\omega)| < \epsilon$

So the converse is also true.