CM202 - Cálculo Diferencial e Integral II

10 de Setembro de 2018 - Prova 1

Gabarito

1. Considere a função f cujas curvas de nível estão abaixo

Solution:
$$f_x(0,0) \approx \frac{f(1,0)-f(0,0)}{1} = \frac{3-4}{1} = -1$$

(b)
$$\boxed{5}$$
 Estime $\frac{\partial f}{\partial y}(0,-1)$.

Solution:
$$f_y(0,0)$$
 $\approx \frac{f(0,-0.5)-f(0,-1)}{0.5} = \frac{6-7}{0.5} = -2$

(c) $\boxed{5}$ Estime a derivada direcional de f no ponto (0.5, -1) na direção unitária que aponta para (-1, 0).

Solution:
$$\vec{v} = \langle -1.5, 1 \rangle$$
. $|\vec{v}| = \sqrt{2.25 + 1} \approx 1.8$. $D_{\vec{v}}f(0.5, -1) \approx \nabla f(0.5, -1) \cdot \frac{\vec{v}}{1.8}$. $f_x(0.5, -1) \approx \frac{f(1, -1) - f(0.5, -1)}{0.5} \approx \frac{6 - 6.3}{0.5} = -0.6$ $f_y(0.5, -1) \approx \frac{f(0.5, -0.75) - f(0.5, -1)}{0.25} \approx \frac{6 - 6.3}{0.25} = -1.2$ $D_{\vec{v}}f(0.5, -1) \approx \frac{-0.6 \times (-1.5) - 1.2 \times 1}{1.8} = \frac{0.9 - 1.2}{1.8} = \frac{-0.3}{1.8} = -\frac{1}{6} \approx -0.17$

2. Mostre que não existem os seguintes limites

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^6y^3 + x^2y^5}{x^{12} + y^6}$$
.

Solution: (i) Curva $\langle t, 0 \rangle$, $\lim_{t\to 0} f(t, 0) = 0$;

(ii) Curva
$$\langle t, t^2 \rangle$$
, $\lim_{t \to 0} f(t, t^2) = \lim_{t \to 0} \frac{2t^{12}}{2t^{12}} = 1$.

(b)
$$\lim_{(x,y)\to(0,0)} \frac{e^{xy}-1}{x^2+y^2}$$
.

Solution: (i) Curva $\langle t, 0 \rangle$, $\lim_{t\to 0} f(t, 0) = 0$;

(ii) Curva
$$\langle t, t \rangle$$
, $\lim_{t \to 0} f(t, t) = \lim_{t \to 0} \frac{e^{t^2} - 1}{2t^2} = \lim_{t \to 0} \frac{2te^{t^2}}{4t} = \lim_{t \to 0} \frac{1}{2}e^{t^2} = \frac{1}{2}$.

3. 10 Esboce o domínio da função $f(x,y) = \ln(x^2 + y^2 - 1) + \sqrt{xy}$.

Solution: Argumento do la deve ser positivo: $x^2 + y^2 > 1$;

Argumento da raiz deve ser não-negativo: $xy \ge 0$; Para que $xy \ge 0$, podemos ter $x,y \ge 0$ ou $x,y \le 0$.

4. 15 Esboce as curvas de nível da função $f(x,y) = \frac{x^2 + y^2}{2x}$.

Solution: Veja que $x \neq 0$.

$$\frac{x^2 + y^2}{2x} = k$$
 \Rightarrow $x^2 + y^2 = 2kx$ \Rightarrow $(x - k)^2 + y^2 = k^2$.

Circunferências de raio |k|, centradas em (k,0).

- 5. Considere a função $u(t,x) = 20e^{-3t}\sin(\pi x)$.
 - (a) 10 Mostre que $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$, para algum valor de α e mostre esse valor de α .

Solution:
$$u_t(t, x) = -60e^{-3t} \sin(\pi x)$$

 $u_x(t, x) = 20\pi e^{-3t} \cos(\pi x)$
 $u_{xx}(t, x) = -20\pi^2 e^{-3t} \sin(\pi x)$
 $\alpha = \frac{u_t(t, x)}{u_{xx}(t, x)} = \frac{3}{\pi^2}$, para $u_{xx}(t, x) \neq 0$.

(b) 10 Calcule a aproximação linear de u(t,x) em torno de t=0 e x=1/4.

Solution:
$$u(0, 1/4) = 10\sqrt{2}$$
, $u_t(0, 1/4) = -30\sqrt{2}$, $u_x(0, 1/4) = 10\pi\sqrt{2}$.
 $L(t, x) = u(0, 1/4) + u_t(0, 1/4)t + u_x(0, 1/4)(x - 1/4) = 10\sqrt{2}(1 - 3t + \pi(x - 1/4))$.

6. 10 A posição (x,y) de uma partícula no instante $t \in \mathbb{R}$ é dada pelas equações $x = t \sin(3t)$ e $y = t \cos(t)$. A força que age sobre essa partícula, em módulo, é dada pela função $F(x,y) = \sin x \sin y$. Calcule a derivada de F em relação à t no instante $t = \pi/3$, usando a regra da cadeia.

Solution:

$$x(\pi/3) = 0, \quad y(\pi/3) = \pi/6$$

$$x' = \sin 3t + 3t \cos 3t \Rightarrow x'(\pi/3) = -\pi$$

$$y' = \cos t - t \sin t \Rightarrow y'(\pi/3) = 1/2 - \sqrt{3}\pi/6$$

$$dF = \cos x \sin y dx + \sin x \cos y dy$$

em $t = \pi/3$,

$$dF = 1 \times \frac{1}{2}(-\pi dt) + 0dt = -\frac{\pi}{2}dt$$

7. 10 (Bônus) Considere uma função f diferenciável em (a,b), e alguma curva diferenciável \vec{r} sobre o gráfico desta função que passa em (a,b,f(a,b)) (\vec{r} é de três dimensões). Mostre que a reta tangente à curva em (a,b,f(a,b)) pertence ao plano tangente ao gráfico de f em (a,b).

Solution: Seja $\vec{r}(t) = \langle x(t), y(t), f(x(t), y(t)) \rangle$ com $\vec{r}(0) = \langle a, b, f(a, b) \rangle$, isto é, x(0) = a e y(0) = b. Daí,

$$\vec{r}'(t) = \langle x'(t), y'(t), f_x x'(t) + f_y y'(t) \rangle$$
.

No ponto t = 0, temos $\vec{r}'(0) = \langle x'(0), y'(0), f_x(a,b)x'(0) + f_y(a,b)y'(0) \rangle$. Por outro lado, o plano tangente nesse ponto tem normal $\vec{n} = \langle f_x(a,b), f_y(a,b), -1 \rangle$. Logo,

$$\vec{r}'(0) \cdot \vec{n} = x'f_x + y'f_y - (x'f_x + y'f_y) = 0,$$

de modo que o vetor $\vec{r}'(0)$ está contido nesse plano. Como a reta tangente à curva tem vetor diretor $\vec{r}'(0)$ e passa no ponto (a, b, f(a, b)), então toda a reta tangente está contida no plano tangente.