

Versuch 2

Messung nichtlinearer Kennlinien und Messungen an einer Abgleichbrücke

Gruppe: Tisch: Versuchsdatum:	·	
Teilnehmer:		
Korrekturen:		
Testat:		

Lernziel

In dieser Übung sollen verschiedene Vielfachmessgeräte des Labors eingesetzt werden und einfache nichtlineare Kennlinien punktweise gemessen werden. Weiter werden Kennwerte und die Kennlinie der Abgleichbrücke bestimmt.

Vorzubereitende Themen

- Nichtlineare Kennlinien: Gleichstromwiderstand und differenzieller Widerstand
- Darstellung von Messergebnissen in unterschiedlichen Skalierungen: linear und logarithmisch.
- Theorie der Abgleich-Brückenschaltung

Vorausberechnungen

Versuch 1.1 → Tabelle vorausberechnen

Versuch 1.2 a) → Lampenwiderstand im Nennbetrieb

Versuch 2.1 a) ... c) → herleiten bzw. vorausberechnen

Regeln zur Versuchsdurchführung und Protokollerstellung

⇒ <u>siehe Durchführungshinweise zum Praktikum !</u>

1.1 Berechnung der Glühlampen-Kennlinie

Die Strom-Spannungs-Charakteristik der Glühlampe wird näherungsweise durch folgende Funktion beschrieben:

$$\left(\frac{I}{mA}\right) = a \cdot \left(\frac{U}{V}\right)^b$$

Berechnen Sie für die in der Tabelle angegebenen Spannungswerte den Lampenstrom (mit a=20, b=0.5) und den Gleichstromwiderstand.

U/V	Strom I/mA	Gleichstrom- widerstand R _A
0.1		
0,2		
0.5		
1.0		
2.0		
5.0		
10.0		

1.2 Messung der Glühlampen-Kennlinie

- a) Es soll die Kennlinie I=f(U) einer Glühlampe (Nenndaten: 15V/82mA) bestimmt werden. Hierzu ist eine Schaltung mit
 - der variablen Spannungsquelle HM7042-5,
 - der zu messenden Lampe und
 - einem Vorwiderstand (Widerstandsdekade) aufzubauen.

Spannung und Strom sollen simultan mit 2 Messgeräten (15s für U, 18s für I) gemessen werden.

Frage: Ist hier die stromrichtige oder die spannungsrichtige Schaltung besser?

<u>Frage</u>: Wie groß ist der Lampenwiderstand im Nennbetrieb?

Stellen Sie die Spannungsquelle etwa auf 10V ein.

Zur Kennlinienaufnahme stellen Sie den Dekadenwiderstand jeweils so ein, dass an der Lampe genau die Spannungswerte 0.1V, 0.2V, 0.5V, 1.0V, 2.0V, 5.0V und 10V anliegen. Zu jedem Spannungswert messen Sie den Lampenstrom.

- b) Stellen Sie die Kennlinie I = f(U) in doppelt-<u>linearer</u> Skalierung dar (Matlab→ plot).

 Bestimmen Sie daraus den Gleichstromwiderstand R_A und den differenziellen Widerstand R_D
 bei U = 0.3V, 2.0V und 5.0V. Tragen Sie die Ergebnisse in eine Tabelle ein!
- c) Stellen Sie die Kennlinie I = f(U) in doppelt-logarithmischer Skalierung dar (Matlab \rightarrow loglog)!

2. Abgleichbrücke

Die folgende Abgleichbrücke ist gegeben:

 $\begin{aligned} R_2 &= 1.0 k \Omega \\ R_3 &= R_4 = &10.0 k \Omega \\ U_B &= 6.0 V \end{aligned}$

2.1 Berechnung der Brückenspannung

verwenden Sie den Ansatz U_{ab}=U₄-U₂.

- a) Angenommen R₂, R₃ und R₄ sind fehlerfrei: bei welchem R₁ ist die Brücke abgeglichen?
- b) Leiten Sie Formel zur Berechnung von U_{ab} = $f(R_1)$ her (exakte Formel, keine Näherung). Tip: Betrachten Sie den linken und rechten Brückenzweig als Spannungsteiler und

U_B, R₂, R₃ und R₄ treten in der Formel als Konstanten auf.

c) Berechnen Sie die Verstimmung v=f(R₁) und die Brückenspannung U_{ab} =f(R₁) der Abgleichbrücke für R₁=500 Ω 2000 Ω in 250 Ω -Schritten (Tabelle).

R_1/Ω	V	U _{ab} /V
500	-0.5	-1.0
2000		

2.2 Messungen an der Abgleichbrücke

Die Brücke ist gemäß Abb.1 mit festen Präzisionswiderständen R_2 bis R_4 aufzubauen. R_1 ist ein Dekadenwiderstand.

- a) Bestimmen Sie experimentell denjenigen Wert von R₁, bei dem die Brücke abgeglichen ist. Dies sei der Wert R₁₀.
- b) Messen Sie die Brückenspannung U_{ab} für R_1 = 500 Ω , 750 Ω ,, 2000 Ω (in 250 Ω -Schritten). Halten Sie die Messwerte U_{ab} =f(R_1) und die Verstimmung $v = \Delta R / R_{10}$ in einer Tabelle fest.

R_1/Ω	V	U_ab
500		
2000		

- c) Stellen Sie die gemessene Funktion $U_{ab} = f(R_1)$ grafisch dar (Matlab).
- d) Bestimmen Sie die Steigung der Tangente am Abgleichpunkt . Wie groß ist die E_0 (=Empfindlichkeit) der Abgleichbrücke (in mV/ Ω)?