Relatório de Comparação entre Métodos de Integração

Marcelo Schreiber e Felipe Quaresma Vieira

December 4, 2023

1 Introdução

Este relatório apresenta uma análise comparativa entre os métodos de integração dos Retângulos e de Monte Carlo pela média, aplicados para o cálculo da área da função Styblinski-Tang em diferentes dimensões. O objetivo é avaliar o desempenho e a precisão de cada método, considerando o número de pontos ou amostras, o intervalo de integração e o tempo de execução.

2 Implementação

Os programas foram implementados em C, utilizando a biblioteca padrão e uma função de geração de amostras pseudo-aleatórias baseada na função random() da biblioteca UNIX, com semente fixa em 20232.

3 Resultados Obtidos

3.1 Método de Monte Carlo

Foram realizados experimentos para o método de Monte Carlo com diferentes dimensões e $n=10^7$ (número de pontos). Os resultados obtidos são apresentados na Tabela 1.

Dimensões	Tempo (ms)	Resultado Obtido
2	984.16	-2.632441
4	1669.66	-5.265542
8	2710.62	-10.531798

Table 1: Resultados do Método de Monte Carlo

3.2 Método dos Retângulos

Para o método dos Retângulos, o programa não conseguiu concluir a execução em um tempo razoável para $n=10^7$ pontos e 2 dimensões. No entanto, obtevese um resultado próximo com n=5600 pontos, como mostrado na Tabela 2.

Dimensões	Tempo (ms)	Número de Pontos	Resultado Obtido
2	96.05	5600	-2.632441

Table 2: Resultados do Método dos Retângulos

3.3 Comparação

A comparação entre os métodos é realizada considerando a precisão e o tempo de execução. Para n=2 dimensões, o método dos Retângulos não conseguiu atingir o resultado de Monte Carlo para 10^7 amostras, mas obteve um resultado próximo com 5600 pontos, enquanto Monte Carlo utilizou 10^7 amostras. O tempo de execução do método dos Retângulos foi significativamente maior.

4 Conclusões

Os resultados destacam a eficiência notável do método de Monte Carlo em relação ao método dos Retângulos, devido à sua complexidade computacional inferior $(O(pontos \times dimensões)$ versus $O(pontos^2))$. Embora o método de Monte Carlo exija mais amostras para atingir a mesma precisão, sua rapidez torna-se crucial, especialmente com o aumento do número de pontos. Em cenários onde o tempo é crítico, o método de Monte Carlo oferece uma solução eficaz quando as dimensões são um número fixo.