A Gentle Introduction To Machine Learning

Kyle Kastner
Southwest Research Institute (SwRI)
University of Texas - San Antonio (UTSA)

Outline

- Why Use Machine Learning?
- Workflow
- Resources
- Final Comments

Why Use Machine Learning?

Drowning in data

Computers are cheap,
 humans are expensive

Psychic superpowers (sometimes)

Types of Problems

- Regression (Supervised)
 - Predict housing prices
- Classification (Supervised)
 - Handwritten digit recognition
- Clustering (Unsupervised)
 - Document tagging

Where to Start?

- Know your data
 - If labeled, supervised learning
 - Unlabeled, try unsupervised
- Clean it up
 - Normalize by removing mean and dividing by variance
 - Visualize in 2D

- Separate training data
 - Try 80/20% train/test split, randomly chosen

Preprocessing

- Typically normalize by subtracting mean and dividing by variance
- Use Principle Component Analysis (PCA) to keep structure while reducing dimensions
- PCA to plot Ndimensional data in 2D or 3D

Selecting an Algorithm

Linear Regression

Find the "best fit" line

Outliers will greatly affect results

Perform regression into different basis

 Basis can be Fourier, polynomial, wavelet, etc.

Logistic Regression

 Optimize parameters for each class label

Choose class with highest probability

 Can be very powerful, especially after PCA

Support Vector Machine (SVM)

- Margin parameter is a configurable "allowed error" to account for class overlap
- Boundaries use a semiarbitrary "kernel" function
- Linear, polynomial, wavelet, sigmoid

Data

- from sklearn import datasets
- Iris, Digits are excellent for classification
- Boston for regression
- Any classification dataset (sans labels) for clustering
- Very good for generating data

Resources

- Scikit-learn documentation and examples
 - The infamous cheat sheet

- Coursera courses
 - Andrew Ng's Machine Learning

- Pattern Recognition and Machine Learning
 - Christopher M. Bishop

Final Comments

Machine learning is a spectrum

Data preprocessing is vital

Prefer simple models to complex ones

Use sklearn

Questions?

Code on GitHub:

https://github.com/kastnerkyle/SciPy2013

Bonus: Trends in Machine Learning

- Deep networks
- Generative models
- Unsupervised data from Youtube
- Text-to-speech
- Image object recognition
- Google+ untagged image search

