Аналитиеская механика.			
Положение материальной точки:	$\vec{r} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$		
Скорость материальной точки:	$\vec{r} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ $\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dx}{dt}\vec{k}$ $\vec{w} = \frac{d\vec{v}}{dt} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2x}{dt^2}\vec{k}$		
Ускорение материальной точки:	$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2x}{dt^2}\vec{k}$		
Вектор $\vec{ au}$, определение:	$\vec{v} = \frac{a}{t} r[\vec{s(t)}] =$		
Ускорение через $ec{ au}$:	$\frac{d\vec{r}}{ds}\frac{ds}{dt} = \vec{\tau}\frac{ds}{dt}, \vec{\tau} = \frac{d\vec{r}}{ds}$ $\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{r}}{ds}\frac{ds}{dt} = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{r}}{ds} = \frac{1}{\rho}\vec{n}$ $\vec{w} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{\rho}\vec{n}$ $\vec{w} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{\rho}\vec{n}$		
Вектор кривизны, и его связь с \vec{n} :	$\frac{d\vec{\tau}}{ds} = \frac{1}{\rho}\vec{n}$		
Разложение \vec{w} по $\vec{\tau}$ и \vec{n} :	$\vec{w} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{\rho}\vec{n}$		
Вектор бинормали \vec{b} :	$ec{b} = ec{ au} imes ec{n}$		