Orthogonal transfromations of E² from the point of view of E³

Let A be an orthogonal transformation of \mathbf{E}^2 changing its orientation, det A=-1.

We know that A has two eignevectors $\tilde{\mathbf{e}}$, \tilde{f} with eignevalues 1, -1. One can see it easily from three-dimensional point of view:

Consider natural embedding of \mathbf{E}^2 (with basis $\{\mathbf{e}, \mathbf{f}\}$) in \mathbf{E}^3 , and consider the operator \hat{A} such that $\hat{A}(\mathbf{g}) = -\mathbf{g}$.

Operator \hat{A} is orthogonal operator and it preserves orientation. Hence it has axis \mathbf{N} : $A(\mathbf{N}) = \mathbf{N}$. It is easy to see that axis \mathbf{N} is orthogonal to vector \mathbf{g}

$$(\mathbf{N}, \mathbf{g}) = (\hat{A}(\mathbf{N}), -\hat{A}(\mathbf{g})) = -(\mathbf{N}, \mathbf{g}) \Leftarrow (\mathbf{N}.\mathbf{g}) = 0.$$

i.e. **N** belongs to \mathbf{E}^2 , thus we see that $A(\tilde{\mathbf{e}}) = \tilde{\mathbf{e}}$ for $\mathbf{e} = \frac{\mathbf{N}}{|\mathbf{N}|}$. If $\tilde{\mathbf{f}}$ is a vector orthogonal to \mathbf{N} then $\hat{A}(\mathbf{N}) = A(\mathbf{N})$ is also orthogonal to $\mathbf{N} = A(\mathbf{N})$, but A is not identical operator, hence hence $A(\tilde{\mathbf{f}}) = -\tilde{\mathbf{f}}$.