Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.2.1

Сдвиг фаз в цепи переменного тока

Студент			Преподаватель
(кми)	(фамилия)	(кми)	(отчество)
груп	па		(фамилия)

Цель работы: Изучить влияние активного сопротивления, индуктивности и емкости на сдвиг фаз между током и напряжением в цепи переменного тока.

1. Экспериментальная установка

$$R_L=$$
 при $u=$ $L=$ $r=$ $C=$ $u=$

RC-цепь

Ток, текущий через RC цепочку, пропорционален напряжению на резисторе, и опережает напряжение на конденсаторе по фазе на $\pi/2$. В таком простом случае метод векторных диаграмм даёт простой результат для зависимости сдвига фаз от R:

$$\operatorname{tg}\varphi = \frac{1}{\Omega RC}$$

RL-цепь

Всё аналогично RC цепочке, только импеданс катушки теперь

$$Z_2 = j\omega L$$
,

поэтому ток отстаёт по фазе от напряжения, а рассчётная формула приобретает вид

$$\operatorname{tg}\varphi = \frac{\omega L}{R_{\sum}}$$

Теперь к сопротивлению калибровочного резистора и резистора R добавится активное сопротивление катушки:

$$R_{\sum} = R + r + R_L,$$

где R_L – активное сопротивление катушки.

RCL-цепь

Комплексный импеданс RCL-цепочки:

$$Z = R + j\omega L - \frac{j}{\omega C}.$$

Сдвиг фаз между током и напряжением получим, взяв аргумент Z:

$$\operatorname{tg}\varphi = \frac{\omega L - \frac{1}{\omega C}}{R} = Q \frac{\left(\frac{\omega}{\omega_0}\right)^2 - 1}{\frac{\omega}{\omega_0}} = Q \frac{(1+x)^2 - 1}{1+x} \simeq 2xQ,$$

где $x = \Delta \omega/\omega_0 = \Delta \nu/\nu_0$, и в последнем переходе пренебрегаем квадратичными по x членами. Измерив ширину графика w = 2x на высоте $\varphi = \pi/4$ (tg $\varphi = 1$), можем непосредственно измерить добротность контура:

$$Q = \frac{1}{w}$$

Фазовращатель

Разность фаз равна $\pi/2$, когда медиана 34 является и высотой, т.е. когда $\triangle 124$ — равно-бедренный, откуда

2. Работа и измерения

RC-цепь

$$X_1 = \frac{1}{2\pi\nu C} =$$

$$- 3 -$$

R	x	x_0	φ	$\operatorname{tg} \varphi$	R_{Σ}	$1/(R_{\Sigma}\Omega C)$

Таблица 1: Полученные значения в RC-цепи

Найдем погрешности измерения величин:

$$\sigma_{\lg \varphi} = 0.1\pi \sqrt{\left(\frac{1}{x_0 \cos\left(\frac{\pi x}{x_0}\right)}\right)^2 + \left(\frac{x}{x_0^2 \cos\left(\frac{\pi x}{x_0}\right)}\right)^2}$$

Место для графика

Рис. 1: График зависимости tg $\varphi = f[1/\Omega CR_{\Sigma}]$

RL-цепь

$$X_2 = 2\pi\nu L =$$

R	x	x_0	φ	$\operatorname{tg} \varphi$	R_{Σ}	$\Omega L/R_{\Sigma}$

Таблица 2: Полученные значения в RL-цепи

Место для графика

Рис. 2: График зависимости $\operatorname{tg} \varphi = f[\Omega L/R_{\Sigma}]$

RCL-цепь

Сопротивление	$ u$, к Γ ц	x_0	x	φ	$nu\nu_0$
R = 0 Om					
R = 100 Om					

Таблица 3: Полученные значения при изучении зависимости фазы от $\frac{\nu}{\nu_0}$

C =, L =, $\nu_0 =$

Место для графика

Рис. 3: График зависимости $\varphi=f[
u/
u_0]$ для R=0 Ом

Место для графика

Рис. 4: График зависимости $\varphi=f[
u/
u_0]$ для R=100 Ом

Из графика R=0 Ом добротность равна:

$$Q_0 =$$

Из графика R = 100 Ом добротность равна:

$$Q_{100} =$$

Можно рассчитать её, выразив через параметры цепочки:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q_{\text{Teop, 0}} =$$

$$Q_{\text{Teop, 100}} =$$

3. Вывод

На данной лабораторной работе была изучена зависимость сдвига фаз между током и напряжением от сопротивления в цепи в RC, RL, контурах. Была определена добротность колебательного контура, снята зависимость сдвига фаз от частоты вблизи резонанса.

Для RC контура практический график довольно точно совпадает с теоретическим, однако в RL контуре значения отличаются на 20%. Ошибка связана с неправильной установкой частоты (10 к Γ ц вместо 1 к Γ ц), вследствие чего изменилось и реактивное сопротивление цепи. Точнее говоря, оно стало настолько большим, что диапазон изменения $\operatorname{tg} \varphi$ повысился и сильно увеличилась погрешность измерения.

После изменения частоты на 1 к Γ ц при измерении добротности колебательного контура получились достаточно точные значения, теоретические и практические совпали с учетом погрешности.