Particle spectrograph

Wave operator and propagator

Quadratic (free) action
$S == \\ \iiint (\frac{1}{6} (6t_1 \ \omega^{\alpha\prime}_{\alpha} \ \omega^{\theta}_{, \ \theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 12t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{,f} f^{\alpha\prime} + 12t_1$
$\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$12t_1\partial' f^\alpha_{}\partial_\theta f_{}^{} + 4t_1\omega_{\theta}\partial^\theta f^{\alpha\prime} + 4t_2\omega_{\theta}\partial^\theta f^{\alpha\prime} -$
$4t_1\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - 4t_1\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} -$
$t_2 \partial_\alpha f_{\theta_I} \partial^\theta f^{\alpha_I} + 2 t_1 \partial_I f_{\alpha\theta} \partial^\theta f^{\alpha_I} - t_2 \partial_I f_{\alpha\theta} \partial^\theta f^{\alpha_I} +$
$4t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + t_2\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 2t_1\partial_\theta f_{\prime\alpha}\partial^\theta f^{\alpha\prime} -$
$t_2 \partial_{\theta} f_{\prime \alpha} \partial^{\theta} f^{\alpha\prime} + 2 (t_1 + t_2) \omega_{\alpha\prime \theta} \left(\omega^{\alpha\prime \theta} + 2 \partial^{\theta} f^{\alpha\prime} \right) +$
$2 \omega_{\alpha\theta_{1}} ((t_{1}-2t_{2}) \omega^{\alpha'\theta}+2(2t_{1}-t_{2}) \partial^{\theta}f^{\alpha'})+$
$8r_2\partial_\beta\omega_{\alpha\prime\theta}\partial^\theta\omega^{\alpha\beta\prime}\text{-}4r_2\partial_\beta\omega_{\alpha\theta\prime}\partial^\theta\omega^{\alpha\beta\prime}\text{+}4r_2\partial_\beta\omega_{\prime\theta\alpha}$
$\partial^{ heta}\omega^{lphaeta_{\prime}}$ - $2r_{2}\partial_{\prime}\omega_{lphaeta heta}\partial^{ heta}\omega^{lphaeta_{\prime}}$ + $2r_{2}\partial_{ heta}\omega_{lphaeta_{\prime}}\partial^{ heta}\omega^{lphaeta_{\prime}}$ -
$4r_2\partial_ heta \omega_{lpha_!eta}\partial^ heta \omega^{lphaeta_!}))[t,ee x,ec y,z]dzdydee dt$

 $\frac{2k^2}{(1+2k^2)^2}$

0

0

0

0

 $\frac{1}{6}(t_1+4t_2)$

 $\omega_{1}^{\#1}{}_{\alpha\beta}$

 $f_{1^{-}}^{\#1}$

 $\omega_{1^{^{-}}\alpha}^{\#1}$

 $f_1^{\#1}{}_+\alpha\beta$

0

0

0

0

 $\frac{1}{3}$ $i k (t_1 + t_2)$

0

0

0

0

 $\frac{1}{3}k^2(t_1+t_2)$

 $-\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $\omega_1^{\#2} + ^{\alpha eta}$

 $\omega_{0}^{\#1}$

 $\omega_{0}^{\#1}$

0

0 0

 $\frac{-t_1}{\sqrt{2}kt_1}$

 $\begin{array}{c} \omega_{0}^{\#1} + \\ f_{0}^{\#1} + \\ f_{0}^{\#2} + \\ \omega_{0}^{\#1} + \\ \end{array}$

0

7

 $\omega_2^{\#1} + ^{\alpha\beta}$

0

 $k^2 t_1$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_2^{\#1} \dagger^{\alpha\beta}$

<u>t</u>₁

0

0

 $\omega_{2}^{\#1} +^{lphaeta\chi}$

 $\omega_{2}^{\#1}$ $_{lphaeta}$

 $\omega_{2}^{\#1}$

0

0

0

 $\sigma_2^{\#1} +^{\alpha\beta}$

0

0

 $\tau_0^{\#2}$

 $\tau_0^{\#1}$

 $\sigma_{0}^{\#1}$

 $\tau_{2}^{\#1}$

 $i k t_1$

0

 $-\frac{t_1}{2}$

0

0

0

 $\omega_{1}^{\#1} \dagger^{\alpha}$

0

0

0

 $\frac{t_1}{\sqrt{2}}$

0

0

0

 $\omega_1^{\#2} \dagger^{\alpha}$

0

0

0

0

0 0

0

0

 $f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$

0

0

0

0

 $\tau_2^{\#1} +^{\alpha\beta}$

0

0

 $\tau_{0}^{\#1}\,\dagger$

0

0

 $\tau_{0}^{\#2}$ †

0

0

0

0

0

0

0

 $\tau_{1}^{\#1} +^{\alpha}$

0

0

0

0

0

0

0

0

0

 $t_{1}^{\#1}$

 $\sigma_{1}^{\#2}{}_{lpha}$

 $\sigma_{1}^{\#1}{}_{lpha}$

0

0

0

0

0

0

0

0

0

 $\sigma_{1}^{\#_1} \, {\dagger}^{\alpha}$

 $\tau_1^{\#1} +^{\alpha\beta}$

 $\sigma_1^{\#2} + ^{\alpha \beta}$

0

0

0

 $\sigma_1^{\#2} +^{\alpha}$

0

Massive	and	massless	spectra

	Massive partic	le	(No
	Pole residue:	$-\frac{1}{r_2} > 0$	
9	Polarisations:	1	
?	Square mass:	$-\frac{t_2}{r_2} > 0$	
	Spin:	0	
	Parity:	Odd	

lo massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$