Introduction to object recognition

Fiseha B. Tesema, PhD

Recap

- Motion Field and Optical Flow:
- Optical Flow Constraint Equation
 - Aperture problem
- Lukas Kanade Method
- What if we have large Motion
 - Coarse to Fine Flow Estimation
- Dense and Sparse Optical Flow
- Application of Optical Flow

Object recognition

- Object Recognition is a field of artificial intelligence (AI) and computer vision that enables machines to identify, classify, and locate objects within digital images or video frames.
- It involves training algorithms to interpret visual data by recognizing patterns, shapes, textures, and contextual information to distinguish between different objects.

[A Survey of Face Recognition, Xin you etal, 2022]

Core components of Object Recognition

- Object Detection Locates objects in an image/video and draws bounding boxes around them.
- Object Classification Assigns a label (e.g., "dog," "car") to the detected object.
- Object Localization Precisely identifies the position of the object within the image.
- Instance Segmentation Distinguishes between different instances of the same object (e.g., multiple people in a crowd).
- Semantic Segmentation
 - Classifies every pixel in an image into a category (e.g., "road," "sky," "person").

Recognition: What type of output?

Image classification

Semantic segmentation

Object detection

Instance segmentation

Image classification demo

https://cloud.google.com/vision/docs/drag-and-drop

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

• • •

Next few slides adapted from Li, Fergus, & Torralba's excellent short course on category and object recognition

Verification: is that a lamp?

• Detection: where are the people?

• Identification: is that Potala Palace?

Object categorization

Scene and context categorization

Activity / Event Recognition

Object recognition: Is it really so hard?

This is a chair

Find the chair in this image

Output of normalized correlation

Object recognition: Is it really so hard?

Find the chair in this image

Pretty much garbage:
Simple template matching is not going to do the trick

Object recognition: Is it really so hard?

Find the chair in this image

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why not use SIFT matching for everything?

 Works well for object instances (or distinctive images such as logos)

 Not great for generic object categories

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Why is recognition hard?

Variability: Camera position,

Illumination,

Shape,

etc...

Challenge: lots of potential classes

Variation Makes Recognition Hard

 The same class of object can appear very differently in different images

The Semantic Gap

What we see

```
17770 777070070777
rrororrr rrorororo(
r 07007 7777070777(
10101011110111011(
17007777007 7 07 7(
rororr rrrrorror(
ror rrror roorooro:
roorrrr rooorrroo:
107007007007770007:
10000 1000111011100
0770000007777 7 7(
 1011001 010011 10
17 70007 7777
TITI TOTOTO TOTIT
10007070700707070701
1001 1111000010 11(
10111100001111 110:
```

What the computer sees

Image Classifiers in a Nutshell

- Input: an image
- Output: the class label for that image
- Label is generally one or more of the discrete labels used in training
 - e.g. {cat, dog, cow, toaster, apple, tomato, truck, ... }

```
def classifier(image):
    //Do some stuff
    return class_label;
```

$$f(igwidge)= ext{"Cat"}$$

$$f(\cite{line})=$$
 "Toaster"

The Problem is Under-constrained

- Distinct realities can produce the same image...
- We generally can't compute the "right" answer, but we can compute the most likely one...
- We need some kind of prior to condition on. We can learn this prior from data:

What Matters in Recognition?

- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
- Learning Techniques
 - E.g. choice of classifier or inference method

What Matters in Recognition?

- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part

in Phot

https://www.kesselskramer.com/project/24-hrs-in-photos/

Data Sets

- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- ImageNet
 - Huge, Crowdsourced,
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced,
- Microsoft COCO
 - Crowdsourced, large-scale objects

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- 20 object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge (which class is each pixel?)

Large Scale Visual Recognition Challenge (ILSCRV) IM GENET

20 object classes

1000 object classes **1,431,167** images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

2010-2017

Variety of object classes in ILSVRC

What Matters in Recognition?

- Representation
 - Low level: SIFT, HoG,
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
 - CNN

Bag of wor

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Neural networks

Perceptrons

Rosenblatt (1958)

Minsky & Papert (1969)

Back-propagation

Rumelhart, Hinton & Williams (1986)

Neocognitron

Fukushima (1980)

LeNet-5

mpling Convolutions Subs

LeCun et al. (1998)

AlexNet

Krizhevsky et al. (2012)

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method

Training & Testing a Classi fi er_{Training}

Training & Testing a Classifi ening

Testing

Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network
- Deep Neural Network

Next: Bag of features and Vola Jones