- 1 Sound & Light
- 2 Mathematics

Sound & Light (1)

Miscellaneous

$$\% \text{ error} = \frac{\text{observed - theoretical}}{\text{theoretical}} * 100\%$$

1.2 Kinematics

$$x = \frac{a}{2}(\Delta t)^2 + v_0 \Delta t + x_0 \qquad v = v_0 + a \Delta t$$

$$v^2 = v_0^2 + 2a\Delta x \qquad \Delta x = \frac{v_0 + v}{2} * \Delta t$$

1.3 Simple Harmonic Motion

$$x = A\cos(\omega t + \varphi)$$
 $v = -\omega A\cos(\omega t + \varphi)$ $a = -\omega^2 A\cos(\omega t + \varphi)$

$$x_{\text{max}} = A$$
 $v_{\text{max}} = \omega A$ $a_{\text{max}} = \omega^2 A$ $F_{\text{max}} = m\omega^2 A$

1.3.1 Springs and Slinkies

$$F_s = kx$$
 $F_{s_{max}} = kx_0 = mq$

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
 $T = 2\pi \sqrt{\frac{m}{k}}$ $\omega = 2\pi f = \sqrt{\frac{m}{k}}$

$$SPE = \frac{1}{2}kx^2 \qquad KE = \frac{1}{2}mv^2$$

$$TME = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{\text{max}}^2$$

1.3.2 Pendulums

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{L}} \qquad T = 2\pi \sqrt{\frac{L}{g}}$$

1.4 Waves

$$T = \frac{1}{f}$$
 $v = \lambda f$ $v = \frac{\Delta x}{\Delta t}$

1.4.1 Slinkies and strings with fixed ends

$$F_T = F_s = kx$$
 $\mu = \frac{m}{L}$ $v = \sqrt{\frac{F_T}{\mu}}$

Given mass m_T hanging below a pulley, $F_T = m_T g$.

1.5 Standing waves

1.5.1 Open-open, closed-closed n is the number of antinodes, or the nth harmonic.

$$f_n = f_1 n = \frac{nv}{2L}$$
 $f_1 = \frac{v}{2L}$ $\lambda_n = \frac{2L}{n}$

1.5.2 Open-closed

$$f_n = f_1 n = \frac{nv}{4L}$$
 $f_1 = \frac{v}{4L}$ $\lambda_n = \frac{2L}{n}$

1.5.3 End correction

Although a theoretical air column will have a frequency only dependent on the velocity and length of the column, the diameter of the air column plays an effect in the real world.

In an open-open pipe with diameter d:

$$f_n = f_1 n = \frac{nv}{2(L+0.6d)}$$
 $f_1 = \frac{v}{2(L+0.6d)}$ $\lambda_n = \frac{2(L+0.6d)}{n}$

In an open-closed pipe with diameter d:

$$f_n = f_1 n = \frac{nv}{4(L+0.6d)}$$
 $f_1 = \frac{v}{4(L+0.6d)}$ $\lambda_n = \frac{4(L+0.6d)}{n}$

1.6 Sound

1.6.1 Speed of sound

$$v = 331\sqrt{\frac{T_{^{\circ}\text{C}} + 273}{273}}$$
 $v \approx 331 + 0.59T$

1.6.2 Sound intensity

$$I = \frac{\text{Power (W)}}{\text{Area}} = \frac{\text{Power (W)}}{4\pi r^2}$$

$$I_{\text{dB}} = 10 \log_{10}(\frac{I}{10^{-12}})$$
 $I = 10^{\frac{I_{\text{dB}}}{10} - 12}$

1.6.3 Doppler effect

1.6.4 Constructive and Destructive Interference (2) dimensions)

For a point on the m^{th} antinodal/nodal line playing the same frequency with the same phase:

$$PD = m\lambda$$

where PD is the path length difference.

1.6.5 Beats

$$f_B = \Delta f$$

Mathematics (2)

2.1 Notation

deg p(x) means the degree of polynomial p.

LC p(x) means the leading coefficient of polynomial p.

2.2 Rational functions

For a rational function $f(x) = \frac{p(x)}{q(x)}$, cancel out any common factors, then:

- When deg p(x) = deg q(x):
 - HA: $y = \frac{\text{LC } p(x)}{\text{LC } q(x)}$
 - VA: roots of q(x)
- When deg p(x) < deg q(x):
 - HA: y = 0
 - x-intercept: roots of p(x)
 - VA: roots of q(x)
- When deg $p(x) > \deg q(x)$:
 - HA: none
 - slant asymptote: $\frac{p(x)}{q(x)}$ excluding remainder
 - VA: roots of q(x)

2.3 Common functions

2.3.1 Linear equations

Slope-intercept form: y = mx + b

Point-slope form: $y - y_1 = m(x - x_1)$ for point (x, y)

Standard form: ax + by = c

2.3.2 Quadratic equations

Standard form:
$$y = ax^2 + bx + c$$

Vertex form:
$$y = a(x - h)^2 + k$$
 for vertex (h, k)

3.4 Sequences and Series

2.4.1 Explicit formulas

Aritmetic sequence: $a_n = a_1 + r(n-1)$

Geometric sequence: $a_n = a_1 * r^{n-1}$

Harmonic sequence: $a_n = \frac{1}{a_1 + r(n-1)}$

2.4.2 Arithmetic and Geometric Series

$$\sum_{j=1}^{n} (a_1 + r(n-1)) = \frac{n}{2} (2a_1 + (n-1)d)$$

$$\sum_{j=1}^{n} (a_1 * r^{n-1}) = \frac{a_1 (1 - r^n)}{1 - r}$$

$$\sum_{j=1}^{\infty} (a_1 * r^{n-1}) = \frac{a_1}{1 - r} \text{ for } r \in [-1, 1]$$

2.4.3 Special Sums

$$\sum_{j=1}^{n} c = nc$$

$$\sum_{j=1}^{n} ca_j = c \sum_{j=1}^{n} a_j$$

$$\sum_{j=1}^{n} (a_j + b_j) = \sum_{j=1}^{n} a_j + \sum_{j=1}^{n} b_j$$

$$\sum_{i=1}^{n} j = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} j^{2} = \frac{n(n + \frac{1}{2})(n+1)}{3} = \frac{n(2n+1)(n+1)}{6}$$

$$\sum_{i=1}^{n} j^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{i=1}^{n} j^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$