

캡스톤 디자인 I 종합설계 프로젝트

프로젝트 명	SAFE LAB: VR 실험실 안전교육	
팀 명	EDU LAB	
문서 제목	수행계획서-17조	

Version	1.5	
Date	2020-MAR-21	

	김동현 (팀장)
	김재원
팀원	문석현
	양성원
	이형우

계획서				
프로젝트 명	SAFE LAB: VR 실력	험실 안전교육		
팀명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

CONFIDENTIALITY/SECURITY WARNING

이 문서에 포함되어 있는 정보는 국민대학교 전자정보통신대학 컴퓨터공학부 및 컴퓨터공학부 개설교과목 캡스톤 디자인I 수강 학생 중 프로젝트 "SAFE LAB: VR 실험실 안전교육"을 수행하는 팀 "EDU LAB"의 팀원들의 자산입니다. 국민대학교 컴퓨터공학부 및 팀 "EDU LAB"의 팀원들의 서면 허락없이사용되거나, 재가공 될 수 없습니다.

문서 정보 / 수정 내역

Filename	수행계획서-17조.docx
원안작성자	김동현
수정작업자	김동현, 김재원, 문석현, 양성원, 이형우

수정날짜	대표수정자	Revision	추가/수정 항목	내 용
2020-03-09	김동현	1.0	최초 작성	1 항목 최초 작성
2020-03-13	양성원	1.1	추가 작성	2 항목 내용 작성 및 수정
	김동현,			
2020-03-14	김재원,	1.2	추가 작성	1, 2 항목 추가 작성
	양성원			
2020-03-20	팀 전원	1.3	추가 작성	2, 3, 4, 5, 6 항목 추가 작성
2020 02 21	UF Y4 OI	1.4	ᅕᄁᅐᅛ	목차, 개요 4,6 항목 추가 작성 및 전체 수
2020-03-21	양성원	1.4	추가 작성	정
2020-03-21	김동현	1.5	추가 수정	docx 문서 형식에 맞게 수정

캡스톤 디자인 I Page 2 of 22 제안서

계획서			
프로젝트 명	SAFE LAB: VR 실	험실 안전교육	
팀 명	EDU LAB		
Confidential Restricted	Version 1.5	2020-MAR-21	

목 차 ▼

1. 개요	4
프로젝트 개요	4
추진 배경 및 필요성	4
2. 개발 목표 및 내용	9
2.1 프로젝트 목표	9
2.2 연구 및 개발 내용	9
2.3 개발 결과	10
2.3.1 시스템 기능 요구사항	10
2.3.2 시스템 비기능(품질) 요구사항	10
2.3.3 시스템 구조	11
2.3.4 결과물 목록 및 상세 사양	11
2.4 기대효과 및 활용방안	12
3. 배경 기술	13
기술적 요구사항	13
현실적 제한 요소 및 그 해결 방안	14
4. 프로젝트 팀 구성 및 역할 분담	15
5. 프로젝트 비용	16
6. 개발 일정 및 자원 관리	17
6.1 개발 일정	17
6.2 일정별 주요 산출물	18
6.3 인력자원 투입계획	20
6.4 비 인적자원 투입계획	21
*참고 문헌	22

계획서			
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육	
팀명	EDU LAB		
Confidential Restricted	Version 1.5 2020-MAR-21		

1 개요

1.1 프로젝트 개요

VR (Virtual Reality, 가상 현실) 기술은 게임 및 엔터테인먼트 분야뿐만 아니라 교육 분야의 혁신 기술로 떠오르고 있다. VR 콘텐츠는 실제로 구현하기 어려운 상황을 간접적으로 체험가능하게 함으로써 교육의 시간적, 공간적인 범위를 확대하는 기능을 수행할 수 있다. 또한 학습에 있어 실재성 증대 및 안전성 및 효율성 확보가 용이하다는 점에서, 교육적인 측면에서의 장점이 더욱 두드러진다.

본 프로젝트에서는 이러한 VR 기술의 특장점을 활용하여 새로운 형태의 VR 실험실 안전교육 시스템을 제작한다.

1.2 추진 배경 및 필요성

1.2.1 VR 기술 시장 현황

27 Nov 2019

Worldwide Spending on Augmented and Virtual Reality Expected to Reach \$18.8 Billion in 2020, According to IDC

[그림1-1] IDC 기사 발췌 (자료=IDC Media Center)

2019년 9월 상용화된 5G 기술과 함께 VR 및 AR에 대한 전 세계 소비자들의 관심이 갈수록 높아지고 있다. 미국의 IT 분야 시장조사 기관 'IDC'는 2020년 VR 및 AR 시장의 수요 금액이 전년보다 78% 증가한 188억 달러에 달할 것으로 전망하고 있다.

또한, 2019년 교육·의료·과학 등 산업 응용 분야의 VR·AR 시장 규모(약 90억 달러)가 게임·엔터테인먼트 분야의 VR·AR 시장 규모(약 70억 달러)를 추월하는 양상을 보였다. 2023년에는 그 격차가 3배에 달할 것으로 보고 있다.

계획서			
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육	
팀명	EDU LAB		
Confidential Restricted	Version 1.5 2020-MAR-21		

[그림1-2] 지역 VR·AR 제작거점센터 공간 운영 계획 (자료=과학기술정보통신부)

이와 같은 세계적 흐름에 발 맞춰, 대한민국 정부 또한 과학기술정보통신부의 '실감 콘텐츠 산업 활성화 전략(2019~2023)'에 따라 공공·산업분야의 VR·AR 신시장 창출 지원을 핵심과제로 제시했다.

서울(문화·영상), 대전(국방·과학), 광주(자동차), 대구(의료), 부산(해양·물류), 울산(조선·화학), 경남(조선해양·기계) 등 각 지방자치단체에 VR·AR 제작거점센터를 마련하며 문화 및 교육, 의료 등의 산업과 VR·AR 실감 콘텐츠 산업의 융합을 활발하게 진행하고 있다.

계획서			
프로젝트 명	SAFE LAB: VR 실력	험실 안전교육	
팀 명	EDU LAB		
Confidential Restricted	Version 1.5 2020-MAR-21		

1.2.2 VR 교육 분야의 전망

VR 교육은 그 특징에 따라 고비용(Expensive), 고위험(Dangerous), 체험불가(Impossible), 고 대가성(Counter-productive) 분야에 활발하게 적용할 수 있을 것으로 예상된다.

- 1) 고비용(Expensive): 현실에서 구축하기에 매우 큰 비용을 요구하는 상황
- 2) 고위험(Dangerous): 실제로 체험하기에 큰 위험을 수반하는 상황
- 3) 체험불가(Impossible): 체험이 어렵거나 불가능한 상황
- 4) 고대가성(Counter-productive): 실제로 구현했을 때 그 대가나 부담이 큰 상황

또한 VR 교육 콘텐츠는 학습자로 하여금 학습 내용에 더욱 몰입하게 하며, 주도적이고 능동적인 학습을 유도함은 물론, 학습의 내용을 깊게 체득하도록 하여 교육의 효율을 더욱 증진하는 효과를 기대할 수 있다.

[그림 1-3] The cone of learning (자료=ClassVR)

학습 방법에 따른 효과를 나타내는 '경험의 원추 이론(미국 교육학자 Edgar Dale)'에 따르면, 학습 2주 후, 실제로 말하고 행동하는 실감형 방법을 통해 학습한 학생들이 읽기(10%), 듣기(20%) 및 보기(30%) 등 다른 방법으로 학습한 학생들과 다르게 학습 내용의 약 90%를 기억했다는 결과를 보여준다.

4차 산업혁명 시대에 접어들면서 교육 산업의 규모가 더욱 커질 것으로 전망되는 가운데, VR을 활용한 미래형 교육의 성장성이 특히 높을 것으로 예상된다.

계획서			
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육	
팀 명	EDU LAB		
Confidential Restricted	Version 1.5	2020-MAR-21	

1.2.3 기존 시스템의 현황 및 새로운 시스템의 필요성

우리 학교에서 현재 실시하고 있는 실험실 안전교육 시스템은 법정 의무 교육이다.

- 1. 교육 대상자
 - 이공계 연구활동종사자(공과대학, 자연대학, 삼림대학, 전자대학 등)
 - 과학기술분야 교수, 직원, 연구(보조)원, 조교, 대학원생, 학부생
 - 조형대학, 미술학부 등 위험물질을 사용하는 실험실습실 연구활동종사자
 - 실험실습 교과목을 수강하는 대학(원)생

2. 근 거

- 『연구실 안전환경 조성에 관한 법률』제 18조(교육 및 훈련)
- 『연구실 안전환경 조성에 관한 법률 시행규칙』제 9조(교육시간 및 내용)

3. 목적

- 연구실험실 안전사고 예방 및 쾌적한 연구실험실 환경 조성

[그림1-4] 실험실 안전교육 (자료=국민대학교 실험실 안전교육시스템)

현재의 실험실 안전교육 시스템은 과목 선택 \rightarrow 교육 수강 \rightarrow 평가문제 풀이 \rightarrow 이수증명서 출력의 순서로 진행이 된다.

캡스**톤 디자인 !** Page 7 of 22 **제안서**

계획서				
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육		
팀명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

하지만 이와 같은 기존의 웹 교육 방식은 학습의 강제성이 다소 부족하여, 귀찮고 번거롭다는 등의 이유로 학생들이 온전히 학습에 집중하지 않더라도 쉽게 교육 이수 시간을 충족할 수 있게 하는 허점을 보인다.

□ 연도별 총 사고 건수 및 대학·대학원 사고 현황

('14~'18.8월, 단위: 건)

구 분	2014	2015	2016	2017	2018.8월	계
대 학 (총 건수 대비 비율)	153 (87%)	170 (78%)	213 (79%)	226 (87%)	145 (87%)	907 (83%)
연구기관	14	18	38	22	14	106
기업부설(연)	8	30	19	12	7	76
합 계	175	218	270	260	166	1,089

[그림1-5] '14년 ~ '18년 연구실 사고 현황 (자료=박찬대 의원실)

대학에서 실험을 하는 학생들은 전문 연구 인력에 비하여 실험 지식과 경험이 부족하기 때문에, 각종 실험 중 사고가 일어날 가능성이 높다. 실험실 안전교육의 미흡은 안전 불감증을 불러 일으키고, 이는 학생들의 생명에 직접적으로 위협을 가할 수 있는 치명적인 문제라고 할수 있다.

따라서 기존의 실험실 안전교육 시스템보다 더욱 효과적이고 실질적인 학습 경험을 제공할 수 있는 새로운 시스템의 요구성이 강조된다.

계획서			
프로젝트 명 SAFE LAB: VR 실험실 안전교육			
팀명	EDU LAB		
Confidential Restricted	Version 1.5	2020-MAR-21	

2 개발 목표 및 내용

2.1 프로젝트 목표

VR 기기를 이용하여 눈으로 보고 귀로 들으며, 가상 현실 내에서 직접 체험함으로써 새로운 안전교육 방법에 대한 경험을 얻을 수 있다.

또한 안전교육의 중요성과 필요성을 더욱 강조하고 현 시스템에 흥미를 느끼지 못하는 학생들에게는 실험실 안전교육에 대한 재미와 이해를 제공하면서 안전교육에 대한 학생들의 어려움과 부담감을 줄일 수 있는 VR 실험실 안전교육 시스템을 개발한다.

이 프로젝트의 궁극적인 목표는 실험실 안전교육에 대한 체험성을 VR기기를 통해 극대화하여 학생들로 하여금 몰입감과 흥미를 가지게하고, 분야에 맞는 실질적인 훈련을 가능하게 하여 실험실에서 발생가능한 사고들을 더 효과적으로 예방하는 것이다.

2.2 연구 및 개발 내용

- 1. Unity를 이용한 클라이언트 및 UI 개발
 - Oculus Go 기기를 Default 환경으로 설정하여 프로그램을 실행할 수 있도록 개발을 진행한다.
- 2. DB (Database) 환경 구축
 - 사용자별로 학습을 원하는 과목이 각기 다르고, 진행도 및 수강 여부 유무의 체크가 필요하다. 이에 따라 로그인 시스템 및 DB를 활용하여 각 사용자의 로그인 데이터를 저장할 필요성이 있다.
- 3. 질문 관련 선택지 및 시나리오 개발
 - 각 과목별로 실험실 혹은 관련된 장소가 구현된다. 사용자는 시나리오에 따라 학습을 진행하며, 진행 도중 주어지는 질문에 대해 선택을 할 수 있다. 이 선택 과정에서는 실험실 내부의 오브젝트와 상호 작용, 혹은 기타 행동을 통해 자신의 선택에 따른 결과를 확인할수 있다.

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

2.3 개발 결과

2.3.1 시스템 기능 요구사항

- (1) FR 1: 로그인 기능
 - Database를 활용하여 학생 정보 저장 및 로그인 기능을 구현한다.
- (2) FR 2: VR Controller 컨트롤 기능
 - VR 기기의 Controller를 이용하여 전체 시스템을 조작 가능하게 한다.
- (3) FR 3: Scene 제어 기능 (일시정지, 다시 시작 등)
 - 실험실 안전교육 시스템의 원활한 진행을 위한 장면 제어 기능을 구현한다.
- (4) FR 4: O&A와 Action을 통한 교육 진행
 - 학습 효과 극대화를 위한 Question-Answer 진행 방식을 채택한다.
- (5) FR 5: Controller 사용에 따른 Object 상호 작용 기능
 - Controller를 활용한 다양한 상황 재현을 통하여 사실적인 VR 환경을 구현한다.
- (6) FR 6: 진행 사항 저장 기능
 - 사용자가 교육을 마치거나 도중에 중지했을 때의 진행상황이 각각 저장될 수 있어 야한다.

2.3.2 시스템 비기능(품질) 요구사항

- (1) NFR 1: 사용성 (Usability)
 - 누구나 쉽게 접근할 수 있도록 간단한 UI를 만들고 튜토리얼을 제공한다.
- (2) NFR 2: 이식성 (Portability)
 - 다양한 VR 기기에서 작동할 수 있도록 프로그램을 제작한다.
- (3) NFR 3: 기능적 적절성 (Functional appropriateness)
 - 학생들이 교육을 진행하면서 온전히 몰입할 수 있도록 기능을 설계한다.
- (4) NFR 4: 성능 효율성 (Performance efficiency)
 - VR 프로그램 실행 중 Framerate 저하를 최소화하여 기기의 성능을 최대화한다.
- (5) NFR 5: 보안성 (Security)
 - DB에 저장된 사용자의 정보에 대한 보안을 강화한다.

계획서				
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육		
팀명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

2.3.3 시스템 구조

2.3.4 결과물 목록 및 상세 사양

분류	이름	기능	설명
하드웨어	Oculus Go	VR 프로젝트 탑재 및 실행	VR 기기
소프트웨어	SAFE LAB: VR	VR 안전교육 시스템 애플리케이션	Android apk 파일

계획서				
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육		
팀 명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

2.4 기대효과 및 활용방안

2020년 현재, 국내 대부분의 대학에서 진행 중인 실험실 안전교육 컨텐츠들을 살펴보면 인터 넷에 배포되어 있는 특정 코드를 이용해 안전교육 자체를 건너 뛸 수 있거나, 안전교육 컨텐츠를 실행한 상태로 다른 일들을 하며 교육을 제대로 이수하지 않는 것은 학생들 간의 공공연한 사실이다. SAFE LAB (세이프 랩) 프로젝트를 통해 VR기기를 장착하고 실행된 가상현실 프로그램 내부에서 실험실에서 일어날 수 있는 다양한 상황들과 위험 요소들을 사용자가 직접 기기를 움직이고 눈으로 보면서 상호 작용을 할 수 있게 한다.

이러한 경험은 사용자의 참여도 증진과 흥미를 유발하고 사용자의 행동에 따른 결과를 직접 스스로 체험하며 보다 효율적인 학습을 할 수 있고, 체감하는 사용자의 시각과 청각 및 컨트롤러를 잡는 촉각, 즉 오감의 절반 이상을 사용하여 눈 앞에 펼쳐진 가상현실의 세계에서 현실에서 발생 가능한 모든 체험을 할 수 있다. 이렇게 VR를 통해 실제 실험실처럼 안전교육이 필요한 장소에서의 안전수칙 및 사고 발생시 대처 요령을 전 보다 쉽게 기억하고 익힐 수 있도록 하여실험실 내 사고 발생률 감소를 기대할 수 있을 것이다. 이렇게 체험형 교육이 정착되어 지속된다면 교육을 받는 학생의 입장과 시스템을 유지하는 측면에서도 더 효과적인 측면을 보여줄 것이다.

단순히 실험실에서의 안전교육뿐만 아니라, 다른 장소의 콘텐츠도 추가하여 (ex. 공사장, 아파트, 천재지변 등) 모든 장소 및 상황에서 안전할 수 있는 방법과 위험요소들을 파악하여 미리일어날 수도 있는 사고들을 예방할 수 있는 방법의 어플리케이션 개발을 할 수 있을 것이다. 예를 들자면 가까운 나라인 일본에서는 수십 년간 지진으로 피해를 겪어 왔기 때문에, 국가 차원에서의 예방과 대피 그리고 필수 안전교육 등을 다양한 방법으로 시도하였고, 이 후 지진이 발생해도 전과 같은 피해를 입지 않은 것처럼 건물의 공사현장, 아파트 내에서의 누전, 화재 등과같은 일상 생활에서의 안전까지 다양한 사고 예방 VR교육을 통해 피해를 최소화할 수 있을 것이다.

하지만 아직 우리 나라에서는 국가 차원에서의 VR교육은 없거나 구현이 제대로 되지 않은 저품질의 VR교육들이 대부분이기 때문에, 우리는 앞으로 이 프로젝트를 통해 가까운 미래에 VR을 활용한 안전교육들이 많이 활용되어 이러한 시스템들이 정착되기를 기대한다.

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

3 배경 기술

3.3 기술적 요구사항

3.1.1 프로젝트 개발 환경

작업 기기	- PC - VR기기 (Oculus Go)
운영체제	- Windows 10 - Android 6.0 이상
개발도구	UnityVisual Studio 2019Google Firebase
개발언어	- C#

3.1.2 프로젝트 결과물 확인 환경

사용자(클라이언트) 환경		
개요	- 프로그램을 원활하게 구동할 수 있는 VR 기기에서 진행한다.	
VR 스펙	- Oculus Go 이상	
운영체제	- Android 6.0 이상	
저장용량	- 최소 4.0 GB 이상	

계획서				
프로젝트 명	SAFE LAB: VR 실험	험실 안전교육		
팀명	EDU LAB			
Confidential Restricted	Version 1.5	2020-MAR-21		

3.4 현실적 제한 요소 및 그 해결 방안

3.2.1 하드웨어(H.W)

- (1) 결과물을 확인할 수 있는 환경은 어플리케이션 구동 최소사양을 만족해야 한다.
- (2) 권장 제품 사양은 Oculus Go 이상이다.
- (3) 권장사양을 만족할 수 없을 시 사용 Asset의 양을 줄이거나 Effect 제거 등 최적화 작업을 통하여 하드웨어의 성능을 최대화한다.

3.2.2 소프트웨어(S.W)

- (1) 기능 구현만이 아니라 애니메이션 등과 같은 프로그래밍 외적인 항목들은 직접 제작하기에 기술적 한계가 있고 시간적인 한계가 따른다. Asset 스토어에 등록되어 있는 유/무료 Asset을 사용하되, 그대로 사용하는 것이 아닌 프로젝트에 적합한 형태의 Asset으로 수정하여 사용할 수 있게 한다. 원하는 Asset을 찾을 수 없을 시 직접 제작 및 구현하도록 한다.
- (2) 버전 관리 프로그램을 이용한 기능 병합 시 충돌이 발생할 수 있다. 팀원들은 각자 담당하는 역할을 잘 준수하며, GitHub의 기능을 적절하게 사용하여 에러를 최소화할 수 있도록 한다.

3.2.3 기타

- (1) VR은 일부 사용자에게 멀미를 유발할 수 있다. 시스템을 소요 시간이 짧은 파트 여러 개로 나누어 단기간 사용 후 휴식이 가능하도록 구성한다. 또한 프로그램 내의 화면 떨림, 오브젝트의 과도한 움직임을 최소화하고 화면 전환의 안정성을 높인다.
- (2) 오프라인 회의가 불가능한 경우, Zoom 및 GitHub 사용을 통해 온라인으로 회의를 하고 파트 분배를 통해 진행에 차질이 없게 한다.

캡스**톤 디자인 !** Page 14 of 22 **제안서**

계획서				
프로젝트 명	SAFE LAB: VR 실력	험실 안전교육		
팀명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

4. 프로젝트 팀 구성 및 역할 분담

이름	역할
김동현	– Project leader
김중언	- Unity C# 프로그래밍 작업
	- 프로젝트 기획
양성원	- UI 제작 및 구성
	- Unity 그래픽 최적화 작업
ㅁ서청	- 시나리오 구성
문석현	- Unity C# 프로그래밍 작업
71 TII OI	- 데이터베이스 설계
김재원	- Unity C# 프로그래밍 작업
	- 맵(연구실) 디자인
이형우	- 오디오 설계
	- 프로젝트 문서화

계획서					
프로젝트 명 SAFE LAB: VR 실험실 안전교육					
팀	EDU LAB				
Confidential Restricted	Version 1.5	2020-MAR-21			

5. 프로젝트 비용

항목	예상치 (MD)
프로젝트 비용 조사	5 MD
시나리오 구성	10 MD
UI 제작 및 구성	20 MD
DB 설계 및 구현	15 MD
맵(연구실) 구현	20 MD
최적화 작업	15 MD
시스템 관리 및 유지보수	5 MD
합	90 MD

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

6. 개발 일정 및 자원 관리

6.1 개발 일정

항목	세부내용	1월	2월	3월	4월	5월	6월	비고
요구사항 분석	프로젝트 주제 선정 및 회의							
표구시 8 군국	VR 관련 자료 수집							
	수행 계획서 작성							
기획	개발 환경 구축							
	VR 안전교육 시스템 기획							
	안전교육 시스템 설계 및 시							
설계	나리오 작성							
	데이터베이스 설계							
	Unity C# 프로그래밍 작업							
구현	데이터베이스 연동 작업							
	VR 그래픽 최적화							
테스트	시스템 테스트							

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀 명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

6.2 일정별 주요 산출물

마일스톤	개요	시작일	종료일
계획서 발표	프로젝트 사전 계획 회의 - 프로젝트 주제 선정 - 사용 기술 및 관련 자료 조사 개발 환경 구축 - Git 설치 및 테스트 - Unity C# 개발 환경 마련 GitHub repository 초기 관리 - 계획서 발표를 위한 페이지 생성 - Unity 프로젝트 생성 및 업데이트 계획서 제작 - 프로젝트 문서화 - 팀원 역할 분담 및 수행 계획 명세화 산출물: 1. 프로젝트 수행 계획서 2. 프로젝트 소개 발표 자료	2020-02-24	2020-03-27
소프트웨어 설계	VR 안전교육 시스템 설계 - 안전교육 시나리오 설계 - 안전교육 시스템 진행 과정 설계 - 맵 디자인 및 구성 요소 설계 - 데이터베이스 설계	2012-03-27	2020-04-10
1차 중간 자문 평가	진행 과정 중간 점검 및 미흡 사항 보완 - VR 실험실 안전교육 시스템의 체계 확립 - 시나리오 완성 및 적용 산출물: 1. 프로젝트 1차 중간 보고서 2. 프로젝트 진도 점검표	2012-04-10	2020-04-24

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

	<u> </u>		
2차 중간 자문 평가	피드백 사항 확인 및 제품 완성도 점검 - UI설계 및 구성 - 그래픽 및 성능 최적화 산출물: 1. 프로젝트 2차 중간 보고서 2. 프로젝트 진도 점검표	2020-04-24	2020-05-29
테스트	안전교육 시스템 최종 테스트 산출물: 1. 프로젝트 최종 결과물	2020-05-29	2020-06-05
최종 보고서	전시용 자료 및 최종 결과 보고서 작성 산출물: 1. 프로젝트 최종 보고서 2. 전시용 자료 3. 온라인 평가용 자료	2020-06-05	2020-06-12

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
ᅋ	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

6.3 인력자원 투입계획

이름	개발항목	시작일	종료일	총개발일(MD)
양성원	프로젝트 비용 조사	2020-03-16	2020-03-23	5 MD
문석현	시나리오 구성	2020-03-16	2020-04-24	20 MD
이형우	Unity Asset을 이용한 맵(연구실) 구현	2020-03-30	2020-05-15	20 MD
양성원	Unity UI 제작 및 구성	2020-03-30	2020-05-08	15 MD
김동현 김재원	Unity C# 프로그래밍 작업	2020-03-30	2020-05-15	20 MD
김재원	Google Firebase DB 설계 및 구현	2020-04-06	2020-05-15	15 MD
팀 전원	최적화 작업 및 프로그램 테스트	2020-05-15	2020-06-05	10 MD

계획서				
프로젝트 명 SAFE LAB: VR 실험실 안전교육				
팀 명	EDU LAB			
Confidential Restricted	Version 1.5 2020-MAR-21			

6.4 비 인적자원 투입계획

항목	Provider	시작일	종료일	Required Options
프로젝트 제작 엔진	Unity	2020-03-16	2020-06-12	
개발용 PC	Samsung, Apple, Hansung, acer	2020-03-16	2020-06-12	내장 VGA 탑재
VR 기기	Oculus Go	2020-03-16	2020-06-12	
데이터베이스 개발 플랫폼	Google Firebase	2020-03-16	2020-06-12	

계획서							
프로젝트 명	SAFE LAB: VR 실험실 안전교육						
팀	EDU LAB						
Confidential Restricted Version 1.5		2020-MAR-21					

참고 문헌

번호	종류	제목	출처	발행년도	저자	기타
1	보고서	VR·AR을 활용한 실감형 교육 콘텐츠 정책동 향 및 사례 분석	정보통신산 업진흥원	2019	범원택, 김 자영, 김남 주	
2	웹사이트	Virtual reality in the school classroom with ClassVR	ClassVR	2020	ı	
3	기사	Worldwide Spending on Augmented and Virtual Reality Expected to Reach \$18.8 Billion in 2020, According to IDC	IDC	2019	Michael Shirer	
4	기사	지역 VR·AR 제작거점센터 4곳 신축	디지털타임 스	2020	김은지	
5	기사	연구실 사고 83% 대학서 발생 "관리대책 시 급"	뉴데일리	2018	이상무	