Exercise 19.7 Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, assuming those are the only dependencies that hold for R, do the following: (a) Identify the candidate key(s) for R. (b) Identify the best Honnal forBl that R satisfies (1NF, 2NF, 3NF, or BeNF). (c) If R is not in BCNF, decOlnpose it into a set of BCNF relations that preserve the dependencies.

- 1. $C \rightarrow D$, $C \rightarrow A$. 13
- 2. $B \rightarrow C'$. $D \rightarrow A$
- 3. $ABC \rightarrow D$, $D \rightarrow A$
- 4. $A \rightarrow B$. $BC \rightarrow D$. $A \rightarrow C$
- 5. $A13 \rightarrow C$, $AB \rightarrow D$. $C \rightarrow A$, $D \rightarrow 13$

Exercise 19.8 Consider the attribute set R = ABCDEGH and the FD set $F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, Be \rightarrow A, B \rightarrow G\}$.

- 1. For each of the following attribute sets, do the following: Cornpute the set of dependencies that hold over the set and write down a minimal cover. (ii) Name the strongest nonnal [onn that is not violated by the relation containing these attributes. (iii) De-Colnpose it into a collection of BCNF relations if it is in BeNF'.
 - (a) ABC, (b) ABCD, (c) ABCEG, (d) DC:BGII, (e) ACEH
- 2. Which of the following decoIllpositions of R = ABCDEG, with the salne set of dependencies F, is (a) dependency-preserving? (b) lossless-join?
 - (a) $\{AB, BC, ABDE, EG\}$
 - (b) $\{ABC, ACDE, ADG\}$

Exercise 19.10 Suppose you are given a relation R(A,B,C,D). For each of the following sets of FDs, assuming they are the only dependencies that hold for R, do the following: (a) Identify the candidate key(s) for R. (b) State whether or not the proposed decOlnposition of R into smaller relations is a good decolliposition and briefly explain why or why not.

- 1. $B \rightarrow C$, $D \rightarrow A$; decompose into BC and AD.
- 2. $AB \rightarrow C$, $C \rightarrow A$, $C \rightarrow D$; decompose into ACD and Be.
- 3. $A \rightarrow BC$, $C \rightarrow AD$; decompose into ABC and AD.
- 4. $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$; decompose into AB and ACD.
- 5. $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$; decOInpose into AB, AD and CD.