

Aufgaben zu Riemannschen Flächen

12. Blatt – Übung am Montag, 23.01.2017

Aufgabe 43: Sei $\Delta:=\{z\in\mathbb{C}\mid |z|<1\}$ und $\Delta^\times=\Delta\smallsetminus\{0\}$. In der Vorlesung wurde gezeigt, dass es zu jeder C^∞ -Abbildung $g\in\mathcal{E}(\Delta)$ eine Lösung $f\in\mathcal{E}(\Delta)$ von

$$\frac{\partial f}{\partial \overline{z}} = g$$

exitsiert. Variieren Sie den Beweis so, dass die Behauptung auch für Δ^{\times} gilt.¹

Aufgabe 44: Folgern Sie aus der vorherigen Aufgabe, dass

$$\check{H}^1(\Delta^{\times}, \mathcal{O}) = 0$$

gilt.

Aufgabe 45: Sei X ein topologischer Raum und

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

eine kurze exakte Sequenz von Garben auf X. Zeigen Sie, dass für jedes offene $U \subset X$ die Sequenz

$$0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$$

(ohne die Null am rechten Ende) immer noch exakt ist.

Aufgabe 46: Zeigen Sie,

 $\mathrm{i})\,$ dass der kanonische Divisor auf \mathbb{CP}^1 durch

$$K = -2 \cdot \infty$$

gegeben ist (was heißt das eigentlich?) und

ii) dass jeder Divisor vom Grad 0 auf \mathbb{CP}^1 ein Hauptdivisor ist.

 $^{^1}$ An einer entsprechenden Stelle könnte man Laurent-Polynome $\sum_{k=-N}^M c_k z^k$ benutzen statt Polynome.