Predicting the Success of City of Chicago Food Inspections

41204 Machine Learning - Kolar

Alex Bue, Christian Gregorich, Conrad Liu, Ujjwal Sehrawat

Table of Contents

Introduction	Page 3
Data	Page 5
Methods	Page 7
Results	Page 8
Conclusion	Page 10

Inspections are a key piece of Chicago's food safety strategy for restaurants and other establishments

Introduction

- Each year, Chicago establishments that serve food are subject to inspection to ensure continued compliance with City ordinances and regulations
- In addition to recurring inspections, restaurants may also be inspected in response to a complaint
- Chicago has conducted more than 250,000 inspections of more than 40,000 unique businesses since 2010
- Inspections have seven possible outcomes, or "results"
 - Pass, pass with conditions, fail, not ready, no entry, business not located, and out of business

Thankfully, a large majority of inspections end with passing outcomes; however, a significant portion do end in failure

Our project came with significant data integrity issues that required time and judgment to resolve

We augmented the inspections dataset with several other City or external data sources

Augmentation Strategy	Commentary	
Temporal Dependence	 Used inspections dataset to build in "pseudo time series" features such as how many inspections an establishment had previously experienced, how many of these inspections they passed or failed across different inspection types, prior number of violations, and previous inspection result 	
Other City of Chicago Data	 Joined other City of Chicago public datasets to the inspections dataset to improve predictive power City data included information on public safety, demographics, business locations, and community activity 	
External Data	 Leveraged external data, such as the Zillow Home Value Index to add further features tied to the location surrounding inspected establishments 	

We chose to build models using four different machine learning techniques

We started with our project priorities

- Optimize for predictive power and accuracy
- Accommodate computational and operational restrictions
- Demonstrate understanding of several methods

Results: Confusion Matrices

Model 1: Logistic Regression

Model 2: Random
Forests

Model 3: Boosted Trees

Model 4: Neutral Networks

	Y	N
Υ	18,492	15,093
N	2,990	6,602

	Υ	N
Υ	21,671	11,914
N	3,398	6,194

	Υ	N
Υ	21,588	11,997
N	3,318	6,274

	Υ	N
Υ	20,939	12,646
N	3,636	5,956

Key Takeaways

- Random Forests and Boosted Trees are best with accuracy of 64.5%.
- Random forests have balanced false positive and false negative rates of 35.5%.
- Boosted Trees are better at predicting negative results with false negative rate of 34.6%.

Results of Boruta feature selection largely indicate that our feature augmentation efforts were successful

Boruta Algorithm Results

Key Takeaways

- Past failures seem to be the most useful feature for predicting future failures across models
- Added features such as Zillow Home Price Index and crime data proved to perform well
- Zip code was important in all models, indicating that there are likely differences in behavior by neighborhood that explain inspection failures
- Overall, the features we engineered or added to the dataset were very important

