Sequence models & Attention mechanism

Quiz, 10 questions

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- x True
- False

1 point

2.

In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to be true? Check all that apply.

- x Beam search will run more slowly.
- **X** Beam search will use up more memory.
- Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)

Sequence models & Attention mechanism

Quiz, 10 questions

3.

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

X

True

False

1 point

4.

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because $P(y^*\mid x)\leq P(\hat{y}\mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

Sequence models & Attention mechanism

Quiz, 10 questions

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

- X True.
- False.

1 point

6.

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

Χ

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. Sequence models (& tention mechanism Quiz, 10 questions We expect $\alpha^{< t,t'>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $v^{< t'>}$. (Note the indices in the superscripts.) $\sum_{t} \alpha^{< t, t'>} = 1$ (Note the summation is over t.) $\sum_{t'} \alpha^{\langle t,t'\rangle} = 1$ (Note the summation is over t'.) point 7. The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network: We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet. (\mathbf{X}) True False point Compared to the encoder-decoder model shown in Question 1 of this guiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when: (\mathbf{x}) The input sequence length T_x is large.

The input sequence length T_x is small.

1 point 9

-	ப் பிரி ட்டி திடு ட் டாட்டிர் நிரு பிரிட்டி நிரு acters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the
uiz, 10 questions	following string collapse to?
	c_oo_o_kkb_oooooookkk
	cokbok
	cookbook
	Cook book
	X coookkbooooookkk
	1 point
	10.
	In trigger word detection, $x^{< t>}$ is:
	$oldsymbol{x}$ Features of the audio (such as spectrogram features) at time t .
	The t -th input word, represented as either a one-hot vector or a word embedding.
	igcup Whether the trigger word is being said at time $t.$
	Whether someone has just finished saying the trigger word at time $t. \$
	Upgrade to submit
	Upgrade to submit

