20. Analytické vyjádření elipsy (MO 26)

Obecná a středová rovnice elipsy Ohniska, excentricita, délky poloos vzájemná poloha přímky a elipsy tečna k elipse

Teorie, vzorce, tabulky:

Dotazy?

Příklady, které mi nešly:

1. Najděte rovnici elipsy, jejíž ohniska leží v bodech $F_1[-3;2], F_2[3;2]$ a délka hlavní poloosy je 5.

$$\left[\frac{x^2}{25} + \frac{(y-2)^2}{16} = 1\right]$$

2. Určete polohu přímky p: 2x + y - 6 = 0 vzhledem k elipse dané rovnicí $4x^2 + y^2 = 20$.

[sečna]

3. Určete rovnici tečny k elipse $x^2 + 4y^2 - 4x + 32y + 48 = 0$ v tečném bodě $T[x_T > 0; -2]$.

 $[6\sqrt{2}]$

5. Sestavte rovnici elipsy se středem v bodě S[2;3] dotýkající se obou souřadnicových os.

$$\left[\frac{(x-2)^2}{4} + \frac{(y-3)^2}{9} = 1\right]$$

6. Najděte rovnice tečen k elipse $x^2 + 4y^2 = 4$, které jsou kolmé k přímce q: 3x + 2y = 0.

7. Napište obecnou rovnici elipsy, která má S[2;-1], hlavní osu rovnoběžnou s osou x, velikost vedlejší poloosy $b=\sqrt{2}$, excentricitu $e=\sqrt{2}$,. Zjistěte vzájemnou polohu bodu A[1;2] a elipsy.

$$[x^2 + 2y^2 - 4x + 4y + 2 = 0]$$

8. Napište obecnou rovnici elipsy, která má S[0;0], vedlejší poloosu b=8, která má společná ohniska hyperbolou $8x^2-y^2-32=0$.

$$[16x^2 + 25y^2 - 1600 = 0]$$

9. Napište rovnici tečen k elipse $6x^2 + 27y^2 - 162 = 0$ v bodě $T[3; y_T]$.

$$[x + 3y - 9 = 0; x - 3y - 9 = 0]$$

10. Napište osovou rovnici elipsy, která má střed S[0;0] a prochází body $M_1[2;3], M_2[-1;-4]$. Určete souřadnice ohnisek.

$$\left[\frac{7x^2}{55} + \frac{3y^2}{55} = 1, F_{1,2}[0; \pm 3,24], \right]$$

11. Určete kuželosečku $16x^2 + 25y^2 - 64x - 150y - 111 = 0$. (Druh kuželosečky, střed, poloosy, excentricitu, souřadnice vrcholů a ohnisek.) Kuželosečku načrtněte.

$$\left[\frac{(x-2)^2}{25} + \frac{(y-3)^2}{16} = 1; S[2;3]; a = 5; b = 4; e = 3\right]$$

12. Je dána elipsa $169x^2 + 25y^2 = 4225$. Vypočtěte velikost poloos a, b, excentricitu e a napište rovnici tečen k dané elipse v jejích vrcholech.

$$[a = 5; b = 13; e = 12; y = \pm 13; x = \pm 5]$$

13. Napište rovnici elipsy, která má hlavní osu rovnoběžnou s osou x, střed S[2; 1], hlavní osa je dvakrát delší než vedlejší osa a elipsa prochází počátkem soustavy souřadnic.

14. Určete, pro které hodnoty parametru $k \in \mathbf{R}$ má přímka p: y = kx s elipsou $x^2 + 4y^2 - 6x + 1 = 0$ a) právě jeden společný bod, b) dva společné body, c) žádný společný bod.

$$[a) \ k = \pm \sqrt{2} \quad b) \ k \in \left(-\sqrt{2}; \sqrt{2}\right); \quad c) \ k \in \left(-\infty; -\sqrt{2};\right) \cup \left(\sqrt{2}; \infty\right)]$$

15. Napište rovnice tečen k elipse $x^2 + 9y^2 = 5$, které jsou rovnoběžné s přímkou p: 2x - 3y = 0.

16. Do elipsy $x^2 + 3y^2 = 36$ vepište rovnostranný trojúhelník *KLM* tak, aby vrchol *K* splýval s hlavním vrcholem elipsy a vrcholy *L*, *M* ležely na dané elipse. Vypočítejte souřadnice vrcholů trojúhelníku *KLM* a délku jeho strany.

 $[K_{1,2}[\pm 6; 0]; L[0; -2\sqrt{3}]; M[0; 2\sqrt{3}]]$