- 1. Use Moreau decomposition to find the proximal mapping of
 - (a) $\|\mathbf{x}\|_1$.
 - (b) $\|\mathbf{X}\|_{*}$.
- 2. Use Moreau decomposition to prove that $\mathbf{x} = P_L(\mathbf{x}) + P_{L^{\perp}}(\mathbf{x})$, where L is a subspace and L^{\perp} is its orthogonal complement.
- 3. Show that the function $f(\mathbf{X}) = \mathbf{X}^{-1}$ is matrix convex on \mathbb{S}_{++}^n .
- 4. Schur complement. Suppose $\mathbf{X} \in \mathbb{S}^n$ partitioned as

$$\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{S}^k$. The Schur complement of \mathbf{X} (with respect to \mathbf{A}) is $\mathbf{S} = \mathbf{C} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$. Show that the Schur complement, viewed as function from \mathbb{S}^n into \mathbb{S}^{n-k} , is matrix concave on \mathbb{S}^n_{++} .

(3&4 choose one)

5. Sublevel sets and epigraph of K-convex functions. Let $K \subseteq \mathbb{R}^m$ be a proper convex cone with associated generalized inequality \preceq_K , and let $f : \mathbb{R}^n \to \mathbb{R}^m$. For $\alpha \in \mathbb{R}^m$, the α -sublevel set of f (with respect to \preceq_K) is defined as

$$C_{\alpha} = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \leq_K \alpha \}.$$

The epigraph of f, with respect to \leq_K , is defined as the set

$$\mathbf{epi}_K f = \{ (\mathbf{x}, \mathbf{t}) \in \mathbb{R}^{n+m} \mid f(\mathbf{x}) \leq K \mathbf{t} \}.$$

Show the following:

- (a) If f is K-convex, then its sublevel sets C_{α} are convex for all α .
- (b) f is K-convex iff $\mathbf{epi}_K f$ is a convex set.

(6-9 choose 3)

6. Let $\pi_{\mathcal{C}}$ be the projection operator onto a convex set \mathcal{C} . Prove:

$$\langle \pi_{\mathcal{C}}(\mathbf{y}) - \mathbf{x}, \pi_{\mathcal{C}}(\mathbf{y}) - \mathbf{y} \rangle \leq 0.$$

Further show that

$$\|\pi_{\mathcal{C}}(\mathbf{y}) - \mathbf{x}\|^2 + \|\pi_{\mathcal{C}}(\mathbf{y}) - \mathbf{y}\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2.$$

7. If f is an L-smooth function (a short for " ∇f is Lipschitz continuous with a Lipschitz constant L"), prove

$$f\left(\mathbf{x} - \frac{1}{\beta}\nabla f(\mathbf{x})\right) - f(\mathbf{x}) \le -\frac{1}{2\beta}\|\nabla f(\mathbf{x})\|^2.$$

8. Let f satisfy

$$0 \le f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \le \frac{\beta}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y}.$$

Prove that

$$f(\mathbf{x}) - f(\mathbf{y}) \le \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{y} \rangle \le \frac{1}{2\beta} \| \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \|^2, \quad \forall \mathbf{x}, \mathbf{y}.$$

9. Let f be L-smooth and μ -strongly convex on \mathbb{R}^n . Then

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{L\mu}{L+\mu} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{L+\mu} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2, \quad \forall \mathbf{x}, \mathbf{y}.$$