Preliminary analysis

Samuel Pawel, Björn Siepe, František Bartoš

11 August 2023

Visualizations

Note BS: I changed the font and suggested an alternative color palette in the plot for Q2. Happy to change back if needed.

```
## libraries
library(dplyr)
##
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:stats':
##
##
       filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
library(colorspace)
library(ggpubr)
library(stringr)
library(forcats)
library(knitr)
library(kableExtra)
##
## Attache Paket: 'kableExtra'
## Das folgende Objekt ist maskiert 'package:dplyr':
##
##
       group_rows
```

```
# devtools::install_github("kupietz/kableExtra")
theme_set(theme_bw() +
          theme(legend.position = "top",
                panel.grid.minor = element_blank()))
pal <- "Harmonic" # change palette here</pre>
## colorspace::hcl_palettes("qualitative", plot = TRUE)
# Alternative font
theme_bs <- function(){</pre>
  # add google font
  sysfonts::font_add_google("News Cycle", "news")
  # use showtext
  showtext::showtext_auto()
  # theme
  ggplot2::theme_bw(base_family = "news") +
  ggplot2::theme(
   legend.position = "top",
   panel.grid.minor = element_blank(),
    # Title and Axis Texts
   plot.title = ggplot2::element_text(size = ggplot2::rel(1.2), hjust = 0.5),
   plot.subtitle = ggplot2::element_text(size = ggplot2::rel(1.1), hjust = 0.5),
   axis.title = ggplot2::element_text(size = ggplot2::rel(1.15)),
   axis.text = ggplot2::element_text(size = ggplot2::rel(1.1)),
   axis.text.x = ggplot2::element_text(margin = ggplot2::margin(5, b = 10))
 )
theme_set(theme_bs())
## data
sim_res_fac_full <- readRDS(file = "data/sim_res_fac.RDS")</pre>
sim_res_num_full <- readRDS(file = "data/sim_res_num.RDS")</pre>
# subset assessment only
sim_res_fac <- sim_res_fac_full %>%
   filter(simstudy_q1 == "yes",
           coding_type == "assessment")
sim_res_num <- sim_res_num_full %>%
   filter(simstudy_q1 == "yes",
           coding_type == "assessment")
## proportion of simulation studies by journal
sim_res_fac_full %>%
   filter(coding_type == "assessment" | is.na(coding_type)) %>%
    group_by(journal) %>%
    summarize(propSim = mean(simstudy_q1 == "yes"),
              n = n()) \%
   mutate(journalLab = paste0(journal, " (n = ", n, ")")) %>%
    ggplot(aes(x = journalLab, y = propSim)) +
    geom_bar(stat = "identity") +
    scale_y_continuous(labels = scales::percent, limits = c(0, 1)) +
```

```
labs(x = NULL, title ="Journal", y = "Proportion of simulation studies") +
theme(panel.grid.major.x = element_blank())
```

```
Journal

100%

75%

50%

0%

BRM (n = 210)

MBR (n = 43)

PM (n = 68)
```

```
## # A tibble: 1 x 3
## propSim sim n
## <dbl> <int> <int>
## 1 0.343 85 248
```

```
## # A tibble: 3 x 4
    journal propSim
                     sim
    <fct>
              <dbl> <int> <int>
## 1 BRM
              0.156
                      24 154
## 2 MBR
              0.814
                      35
                            43
## 3 PM
              0.510
                            51
                      26
```

```
## Morris et al. (2019) find
## "264 articles of which 199 (75\%) included at least one simulation study"

## year
ggplot(data = sim_res_fac, aes(x = factor(year))) +
    geom_bar() +
    labs(x = NULL, title = "Year") +
    theme(panel.grid.major.x = element_blank())
```



```
## journal
ggplot(data = sim_res_fac, aes(x = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Journal") +
    theme(panel.grid.major.x = element_blank())
```



```
## reviewer
ggplot(data = sim_res_fac, aes(x = reviewer)) +
    geom_bar() +
    labs(x = NULL, title = "Reviewer") +
    theme(panel.grid.major.x = element_blank())
```



```
## Q2 number of simulation studies
# scale max for plot
q2_plot_max <- max(table(sim_res_fac$nsimstudies_q2)) + 5

q2 <- ggplot(data = sim_res_fac, aes(x = nsimstudies_q2, fill = journal)) +</pre>
```

```
geom_bar() +
labs(x = NULL, title ="Number of simulation studies in article", fill = "Journal") +
# scale_fill_discrete_qualitative(palette = pal) +
scale_fill_manual(values = c("#E69F00", "#009E73", "#0072B2"))+
scale_y_continuous(limits = c(0, q2_plot_max), expand = c(0,0))+
theme(panel.grid.major.x = element_blank())
q2
```

Number of simulation studies in article


```
## Q4 type of DGP
q4_plot_max <- max(table(sim_res_fac$dgptype_q4)) + 5

q4 <- sim_res_fac %>%
    mutate(dgptype_q4 = as.factor(dgptype_q4)) %>%
    mutate(dgptype_q4 = reorder(dgptype_q4, dgptype_q4, length, decreasing = TRUE)) %>%
    ggplot(aes(x = dgptype_q4, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Type of DGP", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    scale_y_continuous(limits = c(0, q4_plot_max), expand = c(0,0))+
    theme(panel.grid.major.x = element_blank())

q4
```



```
## Q6 How many conditions?
summary(sim_res_num$nconds_q6)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 1.0 5.0 16.0 185.8 96.0 6000.0 1
```

```
breaks <- c(1, 10, 100, 1000, 10000)
q6 <- ggplot(data = sim_res_num, aes(x = log(nconds_q6))) +
    geom_histogram(breaks = seq(0, log(10000), 0.5), col = 1, alpha = 0.5) +
    scale_x_continuous(breaks = log(breaks), labels = breaks) +
    scale_y_continuous(breaks = seq(0, 14, 2), limits = c(0,14), expand = c(0,0)) +
    labs(x = NULL, title = "How many simulation conditions?", fill = "Journal")
q6</pre>
```

Warning: Removed 1 rows containing non-finite values ('stat_bin()').


```
# double check consistency here: how was a single varied factor treated?
sim_res_fac %>%
  filter(factorsvaried q7 == 1) %>%
  select(reviewer, factorsvaried_q7, dgmfactorial_q7) %>%
  View()
## Q8 How many repetitions?
summary(sim_res_num$nsim_q8)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
               100
                       900
                             12198
                                      1000 1000000
##
breaks <- c(1, 10, 100, 1000, 10000, 100000, 1000000)
q8 <- ggplot(data = sim_res_num, aes(x = log(nsim_q8))) +
   geom_histogram(breaks = seq(0, log(2000000), 0.5), col = 1, alpha = 0.5) +
   labs(x = NULL, title ="How many repetitions?", fill = "Journal") +
    scale_x_continuous(breaks = log(breaks), labels = breaks)+
    scale_y\_continuous(limits = c(0,33), expand = c(0,0))
q8
```

Warning: Removed 6 rows containing non-finite values ('stat_bin()').


```
scale_y_continuous(limits = c(0, q9_plot_max), expand = c(0,0))+
theme(panel.grid.major.x = element_blank())
q9
```

Are the number of repetitions justified?


```
## Q10 Is the estimand stated?
q10 <- ggplot(data = sim_res_fac, aes(x = estimandstated_q10, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Is the estimand stated?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q10</pre>
```



```
## Q11 How many estimands?
summary(sim_res_num$nestimands_q11)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 1 2 4 22 15 384 10
```

```
breaks <- c(1, 3, 10, 30, 100, 300)
q11 <- ggplot(data = sim_res_num, aes(x = log(nestimands_q11))) +
    geom_histogram(breaks = seq(0, log(500), 0.4), col = 1, alpha = 0.5) +
    scale_x_continuous(breaks = log(breaks), labels = breaks) +
    scale_y_continuous(limits = c(0, 23), expand = c(0,0))+
    labs(x = NULL, title = "How many estimands?", fill = "Journal")
q11</pre>
```

Warning: Removed 10 rows containing non-finite values ('stat_bin()').


```
## Q12 Are estimands aggregated?
q12 <- ggplot(data = sim_res_fac, aes(x = estimandsagg_q12, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Are estimands aggregated?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q12</pre>
```



```
## Q13 How are the true parameters specified?
q13 <- ggplot(data = sim_res_fac, aes(x = truetheta_q13, fill = journal)) +
    geom_bar() +</pre>
```

```
labs(x = NULL, title ="How are the true parameters specified?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q13
```


Q14 How many methods are included? summary(sim_res_num\$nmethods_q14)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 2.00 3.00 5.63 5.00 192.00
```

Warning: Removed 1 rows containing non-finite values ('stat_count()').


```
## Q15 What is the evaluation target of the simulation?
q15_plot_max <- max(table(sim_res_fac$target_q15)) + 5

q15a <- sim_res_fac %>%
    mutate(target_q15 = as.factor(target_q15)) %>%
    mutate(target_q15 = reorder(target_q15, target_q15, length)) %>%
    ggplot(aes(x = target_q15, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="What is the evaluation target of the simulation?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    scale_y_continuous(limits = c(0, q15_plot_max), expand = c(0,0))+
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q15a
```



```
# to keep it consistent with other questions, also spread apart results here
q15a_new <- sim_res_fac %>%
    separate_wider_delim(target_q15,
                       delim = ",",
                       names_sep = "_",
                       too few = "align start") %>%
   pivot_longer(cols = contains("target"),
              names_to = NULL,
              values_to = "target",
              values_drop_na = TRUE) %>%
   mutate(target = str_trim(target)) %>%
   mutate(target = as.factor(target)) %>%
   mutate(target = reorder(target, target, length)) %>%
   ggplot(aes(x = target, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "What is the evaluation target of the simulation?",
        fill = "Journal", caption = "Double entries combined") +
   scale_fill_discrete_qualitative(palette = pal) +
    scale_y_continuous(limits = c(0, q15_plot_max), expand = c(0,0))+
   theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q15a_new
```

Warning: Removed 1 rows containing missing values ('geom_bar()').


```
## Q15 Which performance measures were used?
# Spread "Other" apart
q15_other <- sim_res_fac %>%
  separate_wider_delim(pmother_q15,
                       delim = ",",
                       names sep = " ",
                      too_few = "align_start") %>%
  pivot_longer(cols = contains("pmother"),
              names_to = NULL,
              values_to = "pmother",
              values_drop_na = TRUE) %>%
  select(pmother, journal) %>%
  # remove whitespace
  mutate(pmother = str_trim(pmother)) %>%
  mutate(pmother = str_replace(pmother, ".*correlation.*", "Correlation")) %>%
  mutate(pmother = str_replace(pmother, ".*standard deviation.*", "Standard Deviation")) %>%
  mutate(pmother = str_replace(pmother, ".*bias.*", "Bias")) %>%
  mutate(pmother = as.factor(pmother)) %>%
  mutate(pmother = forcats::fct_lump_n(pmother, 3)) %>%
  group_by(journal) %>%
  count(pmother) %>%
  rename(PM = pmother,
         count = n)
# Visualize
q15b <- sim_res_fac %>%
    group_by(journal) %>%
    summarise("Convergence" = sum(pmconvergence_q15 == "yes"),
              "Bias" = sum(pmbias_q15 == "yes"),
              "Empirical SE" = sum(pmempse_q15 == "yes"),
              "(R)MSE" = sum(pm_r_mse_q15 == "yes"),
              "Coverage" = sum(pmcover_q15 == "yes"),
              "Type I error rate" = sum(pmtypeierror_q15 == "yes"),
```

```
"Power" = sum(pmpower_q15 == "yes"),
              "CI width" = sum(pmciwidth_q15 == "yes"),
              "Other" = sum(!is.na(pmother_q15))) %>%
    gather(key = "PM", value = "count", "Convergence", "Bias", "(R)MSE",
           "Empirical SE", "Coverage", "Type I error rate",
           "Power", "CI width", "Other") %>%
   bind_rows(q15_other) %>%
   mutate(PM = as.factor(PM)) %>%
   mutate(PM = reorder(PM, count, sum)) %>%
   ggplot(aes(x = PM, y = count, fill = journal)) +
    geom_bar(stat = "identity") +
   labs(x = NULL,
         title = "Performance measure",
         fill = "Journal",
         caption = "Abs. and rel. Bias counted towards Bias") +
    scale_fill_discrete_qualitative(palette = pal) +
    scale_y_continuous(limits = c(0,130), expand = c(0,0),
                       breaks = c(20, 40, 60, 80, 100, 120))+
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q15b
```

Performance measure

Abs. and rel. Bias counted towards Bias

```
values_drop_na = TRUE) %>%
  mutate(pmother = str_trim(pmother)) %>%
  # mutate(pmother = str_replace(pmother, ".*bias.*", "bias")) %>%
  filter(grepl("bias", pmother)) %>%
  select(reviewer, pmbias_q15, pmother)
## # A tibble: 18 x 3
     reviewer pmbias_q15 pmother
      <fct>
               <fct>
## 1 FB
                          absolute bias
               yes
## 2 FB
                          relative bias
               yes
## 3 FB
               yes
                          relative bias
## 4 FB
               no
                          absolute bias
## 5 FB
                          bias of standard errors
               yes
## 6 FB
                          relative bias
               no
## 7 FB
               yes
                         relative bias
## 8 FB
                          relative bias
               no
## 9 FB
               nο
                          relative bias of standard errors
## 10 FB
                          relative bias
               no
## 11 FB
                          relative bias
               no
## 12 FB
                          relative bias
               no
## 13 FB
                          relative bias of se
               no
## 14 FB
               no
                          relative bias
## 15 FB
                          absolute relative bias
               no
## 16 FB
                          relative bias of se
               yes
## 17 FB
                          relative bias
               no
## 18 BS
                          SD of SE bias (as uncertainty)
               yes
# What is included in "Standard Deviation"?
sim_res_fac %>%
  separate_wider_delim(pmother_q15,
                       delim = ",",
                       names_sep = "_",
                       too_few = "align_start") %>%
  pivot_longer(cols = contains("pmother"),
               names_to = NULL,
               values_to = "pmother",
               values drop na = TRUE) %>%
  mutate(pmother = str_trim(pmother)) %>%
  # mutate(pmother = str_replace(pmother, ".*bias.*", "bias")) %>%
  filter(grepl("standard deviation", pmother)) %>%
  select(pmother)
## # A tibble: 8 x 1
##
     pmother
##
     <chr>>
## 1 means and standard deviations of the estimates
## 2 efficiency (standard deviation of estimates)
## 3 standard deviations
## 4 standard deviations
## 5 standard deviation
## 6 efficiency (standard deviation of estimates)
```

```
## 7 standard deviation
## 8 standard deviation over aggregated estimates
```

```
## Q16 Is Monte Carlo uncertainty reported anywhere?
q16_plot_max <- max(table(sim_res_fac$mcerrors_q16)) + 5

q16 <- sim_res_fac %>%
    mutate(mcerrors_q16 = as.factor(mcerrors_q16)) %>%
    mutate(mcerrors_q16 = reorder(mcerrors_q16, mcerrors_q16, length)) %>%
    ggplot(aes(x = mcerrors_q16, fill = journal)) +
        geom_bar() +
        labs(x = NULL, title ="Is Monte Carlo uncertainty reported anywhere?", fill = "Journal") +
        scale_fill_discrete_qualitative(palette = pal) +
        theme(panel.grid.major.y = element_blank()) +
        scale_y_continuous(limits = c(0, q16_plot_max), expand = c(0,0))+
        coord_flip()
q16
```

Is Monte Carlo uncertainty reported anywhere?


```
scale_y_continuous(limits = c(0,100), expand = c(0,0))+
    theme(panel.grid.major.x = element_blank())
q17
```

In which way are the results reported?


```
## Q18 Which software was used to conduct the simulation?
q18a <- ggplot(data = sim_res_fac, aes(x = software_1_q18, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title ="Which primary software was used?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.y = element_blank()) +
    coord_flip()
q18a</pre>
```



```
# add information from software_2_q18 and software_3_q18
q18b <- sim_res_fac %>%
  select(starts_with("software"), journal) %>%
  pivot_longer(cols = starts_with("software"),
               names_to = NULL,
               values to = "software",
              values_drop_na = TRUE) %>%
  mutate(software = as.factor(software)) %>%
  mutate(software = reorder(software, software, length)) %>%
  ggplot(aes(x = software, fill = journal)) +
  geom_bar() +
  labs(x = NULL, title ="Which software was used?", fill = "Journal") +
  scale_fill_discrete_qualitative(palette = pal) +
  scale_y\_continuous(limits = c(0, 81), expand = c(0,0))+
  theme(panel.grid.major.y = element_blank()) +
  coord_flip()
q18b
```



```
## Q19 Are there userwritten commands/packages/macros?
q19 <- ggplot(data = sim_res_fac, aes(x = userwritten_q19, fill = journal)) +
    geom_bar() +
    labs(x = NULL, title = "Are there userwritten commands/packages/macros?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
q19</pre>
```

count


```
## Q20 Is code provided?
q20_plot_max <- max(table(sim_res_fac$codeprovided_q20)) + 5</pre>
```



```
## Q21 If code is provided, is a seed provided?
q21 <- ggplot(data = sim_res_fac, aes(x = seedprovided_q21, fill = journal)) +
    geom_bar() +
   labs(x = NULL, title ="If code is provided, is a seed provided?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
    theme(panel.grid.major.x = element_blank())
# Compute as conditional on code provided
q21 <- sim_res_fac %>%
  filter(codeprovided q20 == "accessible online") %>%
  ggplot(aes(x = seedprovided_q21, fill = journal))+
  geom bar()+
 labs(x = NULL, title ="If code is provided, is a seed provided?", fill = "Journal") +
    scale_fill_discrete_qualitative(palette = pal) +
   theme(panel.grid.major.x = element_blank())
sim_res_fac %>%
    filter(codeprovided_q20 == "accessible online") %>%
     count(seedprovided_q21)
```

```
## # A tibble: 2 x 2

## seedprovided_q21 n

## <fct> <int>
## 1 not found 15

## 2 yes 21
```

If code is provided, is a seed provided?

Is information on the computational environment provided?

Is information on the operating system provided?

How confident was reviewer in coding of the article?

Descriptives

The following still needs some cleaning.

```
# detailed per-journal descriptives
journal_describe <- sim_res_fac %>%
  split(.$journal) %>%
  purrr::map(~Hmisc::describe(.x))
# In a tidy way for long summary table
summary_vars <- c(</pre>
  "reviewer", "simstudy_q1",
  "nsimstudies_q2", "whichsim", "aimsdefined_q3",
  "dgptype_q4",
  # "dgpparameters_q5",
  # "nconds_q6",
  "factorsvaried_q7", "dgmfactorial_q7",
  # "nsim_q8",
  "nsimjustified_q9",
  "estimandstated_q10",
  # "nestimands_q11",
  "estimandsagg_q12", "truetheta_q13",
  "nmethods_q14",
  "target_q15",
```

```
"pmconvergence_q15", "pmbias_q15", "pmempse_q15", "pm_r_mse_q15",
  "pmcover_q15", "pmtypeierror_q15", "pmpower_q15", "pmciwidth_q15",
  "pmsclear_q15", "mcerrors_q16",
  "resultsfigure_q17", "resultstable_q17", "resultstext_q17",
  "resultsother_q17", "software_1_q18", "software_2_q18",
  "software_3_q18", "software", "userwritten_q19",
  "codeprovided_q20", "seedprovided_q21",
 "compenvironment_q22", "compos_q23",
 "coding confidence"
sim_res_fac %>%
  as.data.frame() %>%
  group_by(journal) %>%
  pivot_longer(cols = starts_with("software"),
              names_to = NULL,
              values_to = "software",
              values_drop_na = TRUE) %>%
  mutate(software = as.factor(software)) %>%
  pivot_longer(cols = any_of(summary_vars),
              names_to = "col", values_to = "response") %>%
  select(journal, col, response) %>%
  group_by(journal, col) %>%
  count(response) %>%
  # filter(!is.na(response)) %>%
  # View()
  pivot_wider(id_cols = c(col, response),
              names_from = journal,
              values_from = n,
              values_fill = 0) %>%
  arrange(factor(col, levels = summary_vars)) %>%
  rowwise() %>%
  mutate(Sum = sum(BRM, MBR, PM)) %>%
  knitr::kable("latex", longtable = TRUE, caption = "Grouped by Journal") %>%
  kableExtra::column_spec(1, bold = TRUE) %>%
  kableExtra::collapse_rows(columns = 1:2, valign = "top")
```

Table 1: Grouped by Journal

col	response	BRM	MBR	PM	Sum
reviewer	BS	11	15	13	39
	FB	5	16	16	37
	SP	22	7	11	40
$-$ simstudy_q1	yes	38	38	40	116
${ m nsimstudies}_{ m q2}$	1	24	26	21	71
	2	6	8	14	28
	3	6	4	5	15
	5	1	0	0	1
	6	1	0	0	1
	1	31	26	31	88
	NA	7	11	8	26
	2	0	1	0	1

	3	0	0	1	1
${ m aimsdefined}$	no	1	1	1	3
	unclear	2	1	0	3
	yes	35	36	39	110
$dgptype_q4$	parametric based on actual data	3	6	8	17
	parametric thin-air	35	31	31	97
	resampled	0	1	1	2
factorsvaried_q7	1	8	9	16	33
	2	3	2	9	14
	3	11	14	1	26
	5	3	4	4	11
	6	3	2	2	7
	4	8	6	6	20
	7	2	0	2	4
	unclear	0	1	0	1
dgmfactorial_q7	fully-factorial	35	30	35	100
	one-at-a-time	1	4	0	5
	partially-factorial	2	4	5	11
$nsimjustified_q9$	no	32	36	37	105
	yes	6	2	3	11
${\rm estimandstated_q10}$	no	6	3	2	11
	unclear	4	5	0	9
	yes	28	30	36	94
	not applicable	0	0	2	2
${\rm estimandsagg_q12}$	no	31	29	33	93
	unclear	1	4	0	5
	yes	6	5	7	18
truetheta_q13	estimated	2	3	2	7
	known	36	35	36	107
	not applicable	0	0	2	2
nmethods_q14	1	8	11	7	26
	2	9	11	7	27
	3	6	7	7	20
	5	6	0	2	8
	6	2	2	6	10
	4	2	3	3	8
	7	1	0	1	2
	10	$\frac{1}{2}$	0	$\frac{1}{3}$	2
			0		5
	192 10?	1 0	0	0	1
	14	0	1	0	1
		0	1	0	1
				U	
	8				2
	9	0	1	1	2
	9 11+	0	1 0	1 1	1
	9 11+ 13	0 0 0	1 0 0	1 1 1	1 1
	9 11+ 13 design	0 0 0 1	1 0 0 1	1 1 1 2	1 1 4
	9 11+ 13 design estimation	0 0 0 1 16	1 0 0 1 22	1 1 1 2 28	1 1 4 66
	9 11+ 13 design estimation estimation, testing	0 0 0 1 16 7	1 0 0 1 22 4	1 1 1 2 28 0	1 1 4 66 11
	9 11+ 13 design estimation estimation, testing model selection	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 16 \\ 7 \\ 2 \end{array} $	1 0 0 1 22 4 4	1 1 2 28 0 1	$ \begin{array}{c c} 1 \\ 1 \\ 4 \\ 66 \\ \hline 11 \\ 7 \end{array} $
	9 11+ 13 design estimation estimation, testing model selection other	0 0 0 1 16 7 2 3	1 0 0 1 22 4 4	1 1 2 28 0 1 4	$ \begin{array}{c c} & 1 \\ & 1 \\ \hline & 4 \\ \hline & 66 \\ \hline & 11 \\ \hline & 7 \\ \hline & 7 \end{array} $
	9 11+ 13 design estimation estimation, testing model selection other prediction	0 0 0 1 16 7 2 3 3	1 0 0 1 22 4 4 0	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 28 \\ 0 \\ 1 \\ 4 \\ 1 \end{array} $	$ \begin{array}{c c} & 1 \\ \hline & 1 \\ \hline & 4 \\ \hline & 66 \\ \hline & 11 \\ \hline & 7 \\ \hline & 7 \\ \hline & 5 \\ \end{array} $
	9 11+ 13 design estimation estimation, testing model selection other	0 0 0 1 16 7 2 3	1 0 0 1 22 4 4	1 1 2 28 0 1 4	$ \begin{array}{c c} & 1 \\ & 1 \\ \hline & 4 \\ \hline & 66 \\ \hline & 11 \\ \hline & 7 \\ \hline & 7 \end{array} $

	estimation, model selection	0	3	0	3
pmconvergence_q15	no	33	30	25	88
	yes	5	8	12	25
	unclear	0	0	3	3
pmbias_q15	no	22	13	26	61
	yes	16	25	14	55
pmempse_q15	no	36	33	29	98
= .	yes	2	5	11	18
$pm_r_mse_q15$	no	24	20	24	68
	yes	14	18	16	48
pmcover_q15	no	27	27	31	85
	yes	11	11	9	31
pmtypeierror_q15	no	26	31	28	85
	yes	12	7	12	31
pmpower_q15	no	29	31	28	88
	yes	9	7	12	28
pmciwidth_q15	no	36	33	38	107
_	yes	2	5	2	9
pmsclear_q15	no	2	1	3	6
_	unclear	3	0	2	5
	yes	33	37	32	102
	NA	0	0	3	3
mcerrors_q16	boxplot	1	4	2	7
	nowhere	29	29	33	91
	plot	1	0	0	1
	plot, table	1	0	0	1
	standard deviation	5	1	0	6
	text	1	0	1	2
	figures	0	1	0	1
	reference intervals	0	1	0	1
	tables, text	0	2	0	2
	quantile plots	0	0	1	1
	ranges	0	0	1	1
	table	0	0	2	2
$ m results figure_q17$	no	7	17	23	47
	yes	31	21	17	69
$resultstable_q17$	no	16	8	9	33
	yes	22	30	31	83
resultstext_q17		38	36	38	112
	no	0	2	2	4
$results other_q17$		32	34	36	102
	yes	6	4	4	14
	unclear	3	4	2	9
	C++	1	0	0	1
	JAGS	1	0	1	2
	Java	1	0	0	1
	MATLAB	3	2	1	6
	Mplus	2	2	3	7
	Python	3	1	0	4
	R	22	26	29	77
	SAS	2	2	0	4
	Stan	0	1	1	2
	Ox	0	0	1	1
	flexMIRT	0	0	1	1

	Stata	0	0	1	1
userwritten_q19	no	20	21	12	53
	unclear	4	2	4	10
	yes	14	15	24	53
${ m codeprovided}_{f q20}$	accessible online	19	6	18	43
	not accessible	19	32	22	73
${ m seedprovided}_{-q21}$	yes	9	5	11	25
	not found	29	33	29	91
${f compenvironment}_{f q22}$	no	11	10	7	28
	fully	1	0	1	2
	minimal	16	24	27	67
	partially	10	4	5	19
$compos_q23$	no	35	36	37	108
	fully	2	1	1	4
	partially	1	1	2	4
coding_confidence	great	24	18	28	70
	medium	10	18	11	39
	poor	4	2	1	7

```
# Ungrouped and with proportions
sim_res_fac %>%
 as.data.frame() %>%
  # pivot_longer(cols = starts_with("software"),
                names_to = NULL,
                values_to = "software",
                values_drop_na = TRUE) %>%
  # mutate(software = as.factor(software)) %>%
 pivot_longer(cols = any_of(summary_vars),
              names_to = "col", values_to = "response") %>%
  select(col, response) %>%
  group_by(col) %>%
  count(response) %>%
  arrange(factor(col, levels = summary_vars)) %>%
 knitr::kable("latex", longtable = TRUE, caption = "Ungrouped") %>%
 kableExtra::column_spec(1, bold = TRUE) %>%
  kableExtra::collapse_rows(columns = 1:2, valign = "top")
```

Table 2: Ungrouped

col	response	n
reviewer	BS	32
	FB	34
	SP	34
simstudy_q1	yes	100
${ m nsimstudies}_{ m q2}$	1	63
	2	24
	3	11
	5	1
	6	1
whichsim	1	73
	2	1
	3	1
	NA	25

aimsdefined_q3	no	3
— •	unclear	3
	yes	94
$\overline{ ext{dgptype}_ ext{q4}}$	parametric based on actual data	15
	parametric thin-air	83
	resampled	$\frac{3}{2}$
factorsvaried_q7	unclear	
ideters varied_q.	1	28
	2	$\frac{20}{13}$
	3	$\frac{10}{22}$
	5	$\frac{22}{9}$
	6	$\frac{3}{6}$
	4	$\frac{0}{17}$
	7	4
dgmfactorial_q7	fully-factorial	86
agimacionai_q;	one-at-a-time	$\frac{-50}{5}$
	partially-factorial	$\frac{-\frac{5}{9}}{}$
nsimjustified_q9	no	$\frac{3}{92}$
nsinjustined_q5		$\frac{32}{8}$
estimandstated_q10	yes no	11
estimandstated_q10	unclear	$\frac{11}{6}$
		81
	yes not applicable	$\frac{-61}{2}$
estimandsagg_q12	no no	$\frac{2}{79}$
estimandsagg_q12	unclear	$\frac{13}{4}$
		$\frac{17}{17}$
truetheta_q13	yes not applicable	$\frac{17}{2}$
ti detneta_q15	estimated	$\frac{2}{7}$
	known	91
nmethods_q14	1	$\frac{-31}{24}$
miemous_q14	2	$\frac{24}{23}$
	3	18
	5	$\frac{10}{5}$
	6	$\frac{5}{7}$
	4	7
	7	$\frac{1}{2}$
	10	$\frac{2}{2}$
	10?	1
	11	$\frac{1}{4}$
	11+	$\frac{4}{1}$
	13	$\frac{1}{1}$
	14	1
	192	$\frac{1}{1}$
	8	$\frac{1}{1}$
	9	$\frac{1}{2}$
	design	$\frac{2}{4}$
	design, estimation	$\frac{4}{1}$
	estimation	$\frac{1}{56}$
	estimation estimation, model selection	$\frac{-30}{2}$
	estimation, model selection estimation, testing	$\frac{2}{9}$
	model selection	$\frac{9}{7}$
	other	$\frac{7}{5}$
	prediction	$\frac{3}{4}$
	prediction	4

	testing	12
pmconvergence_q15	no	79
	unclear	2
	yes	19
$pmbias_q15$	no	55
	yes	45
pmempse_q15	no	85
	yes	15
$pm_r_mse_q15$	no	61
	yes	39
pmcover_q15	no	74
	yes	26
pmtypeierror_q15	no	73
	yes	27
pmpower_q15	no	76
	yes	24
$ m pmciwidth_q15$	no	92
	yes	8
pmsclear_q15	no	5
	unclear	5
	yes	87
	NA	3
mcerrors_q16	boxplot	6
	figures	1
	nowhere	78
	plot	1
	plot, table	1
	quantile plots	1
	ranges	1
	reference intervals	1
	standard deviation	4
	table	2
	tables, text	2
	text	2
$ m results figure_q17$	no	39
	yes	61
$ m resultstable_q17$	no	30
	yes	70
resultstext_q17	no	4
	yes	96
${ m resultsother}_{ m q}17$	no	88
	yes	12
software_1_q18	unclear	9
	C++	1
	JAGS	1
	Java	1
	MATLAB	5
	Mplus	1
	Ox	1
	Python	2
	R	76
	SAS	3
	JAGS	1
	MATLAB	1

$software_2_q18$

	Mplus	6
	Python	2
	R	1
	SAS	1
	flexMIRT	1
	Stan	2
	Stata	1
	NA	84
software_3_q18		100
userwritten_q19	no	47
	unclear	8
	yes	45
${ m codeprovided}$	accessible online	36
	not accessible	64
$seedprovided_q21$	yes	21
	not found	79
$-$ compenvironment $_{-}$ q22	no	24
	fully	2
	minimal	60
	partially	14
compos_q23	no	93
	fully	4
	partially	3
coding_confidence	great	62
	medium	32
	poor	6

Analyses of individual questions:

```
# Q8:
sim_res_num$nsim_q8 %>%
 table()
## .
##
       1
            10
                   25
                         30
                               50
                                      60
                                           100
                                                  200
                                                        400
                                                              500
                                                                     800
                                                                         1000
                                                                                2000
                                      1
                                            17
                                                    5
             2
                    1
                          3
                                1
                                                          1
                                                               14
                                                                            29
       1
##
          3000 5000 10000 1e+06
    2500
##
                    5
                          7
       1
sessionInfo()
```

```
## R version 4.3.1 (2023-06-16 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 11 x64 (build 22621)
##
## Matrix products: default
##
##
##
## locale:
## [1] LC_COLLATE=German_Germany.utf8 LC_CTYPE=German_Germany.utf8
## [3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C
## [5] LC_TIME=German_Germany.utf8
```

```
##
## time zone: Europe/Berlin
## tzcode source: internal
##
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                                datasets methods
                                                                    base
## other attached packages:
## [1] kableExtra_1.3.4.9000 knitr_1.43
                                                    forcats_1.0.0
## [4] stringr_1.5.0
                                                    colorspace_2.1-0
                             ggpubr_0.6.0
## [7] ggplot2_3.4.3
                             tidyr_1.3.0
                                                    dplyr_1.1.2
## loaded via a namespace (and not attached):
  [1] gtable_0.3.4
                          xfun_0.40
                                             htmlwidgets_1.6.2 rstatix_0.7.2
  [5] vctrs_0.6.3
                          tools_4.3.1
                                             generics_0.1.3
                                                               curl_5.0.2
## [9] tibble_3.2.1
                          fansi_1.0.4
                                             highr_0.10
                                                               cluster_2.1.4
## [13] pkgconfig_2.0.3
                          data.table_1.14.8 checkmate_2.2.0
                                                               webshot_0.5.5
## [17] lifecycle 1.0.3
                          compiler_4.3.1
                                             farver 2.1.1
                                                               munsell 0.5.0
## [21] carData_3.0-5
                          htmltools_0.5.6
                                             yaml_2.3.7
                                                               htmlTable_2.4.1
## [25] Formula_1.2-5
                          pillar_1.9.0
                                             car_3.1-2
                                                               Hmisc_5.1-0
## [29] rpart_4.1.19
                          abind_1.4-5
                                             tidyselect_1.2.0
                                                               rvest_1.0.3
## [33] digest_0.6.33
                          stringi_1.7.12
                                             purrr_1.0.2
                                                               showtextdb_3.0
                          cowplot_1.1.1
## [37] labeling_0.4.2
                                             fastmap_1.1.1
                                                               grid_4.3.1
## [41] cli_3.6.1
                          magrittr_2.0.3
                                             base64enc 0.1-3
                                                               utf8 1.2.3
                                             withr_2.5.0
## [45] broom_1.0.5
                          foreign_0.8-84
                                                               scales_1.2.1
                                             rmarkdown_2.24
## [49] backports_1.4.1
                          showtext_0.9-6
                                                               httr_1.4.7
## [53] sysfonts_0.8.8
                          nnet_7.3-19
                                             gridExtra_2.3
                                                               ggsignif_0.6.4
                          viridisLite_0.4.2 rlang_1.1.1
                                                               glue_1.6.2
## [57] evaluate_0.21
## [61] xml2_1.3.5
                          svglite_2.1.1
                                             rstudioapi_0.15.0 jsonlite_1.8.7
## [65] R6_2.5.1
                          systemfonts_1.0.4
```