

EM620FU8B Low Power, 256Kx8 SRAM

Document Title

256K x8 bit Low Power and Low Voltage Full CMOS Static RAM

Revision History

Revision No.	History		Draft Date Remark
0.0	Initial Draft		Oct. 31, 2007
0.1	0.1 Revision	Fix typo error	Nov. 16, 2007

Emerging Memory & Logic Solutions Inc.

4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea $\,$ Zip Code : 690-719 Tel : +82-64-740-1712 Fax : +82-64-740-1749~1750 / Homepage : www.emlsi.com

The attached data sheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

EM620FU8B Low Power, 256Kx8 SRAM

256K x8 Bit Low Power and Low Voltage CMOS Static RAM

FEATURES

- Process Technology : 0.15μm Full CMOS

Organization :256K x8Power Supply Voltage

=> EM620FU8B : 2.7~3.3V

- Low Data Retention Voltage: 1.5V

- Three state output and TTL Compatible

- Packaged product designed for 45/55/70ns

GENERAL PHYSICAL SPECIFICATIONS

- Backside die surface of polished bare silicon

- Typical Die Thickness = 725um +/-15um

- Typical top-level metallization :

=> Metal (Ti/AlCu/TiN/ARC SiON/SiO2) : 5.2K Angstroms

- Topside Passivation :

=> Passivation (HDP/pNIT/PIQ) : 5.4K Angstroms

- Wafer diameter: 8 inch

PAD DESCRIPTIONS

Name	Function	Name	Function
CS1,CS2	Chip select inputs	Vcc	Power Supply
ŌE	Output Enable input	Vss	Ground
WE	Write Enable input	NC	No Connection
A0~A17	Address Inputs		
I/O0~I/O7	Data Inputs/Outputs		

BONDING INSTRUCTIONS

The 2M full CMOS SRAM die has total 56pads. Refer to the bond pad location and identification table for X, Y coordinates. EMLSI recommends using a bond wire on back side of die onto Vss bond pad for improved noise immunity.

ABSOLUTE MAXIMUM RATINGS *

Parameter	Symbol	Minimum	Unit
Voltage on Any Pin Relative to Vss	V _{IN} , V _{OUT}	-0.2 to 4.0V	V
Voltage on Vcc supply relative to Vss	V _{CC}	-0.2 to 4.0V	V
Power Dissipation	P _D	1.0	W
Operating Temperature	T _A	-40 to 85	°C

^{*} Stresses greater than those listed above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTIONAL DESCRIPTION

CS1	CS2	OE	WE	I/O ₀₋₇	Mode	Power
Н	Х	Х	Х	High-Z	Deselected	Stand by
Х	L	Х	Х	High-Z	Deselected	Stand by
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Data Out	Read	Active
L	Н	Х	L	Data In	Write	Active

Note: X means don't care. (Must be low or high state)

RECOMMENDED DC OPERATING CONDITIONS 1)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.7	3.0	3.3	V
Ground	V _{SS}	0	0	0	V
Input high voltage	V _{IH}	2.0	-	$V_{CC} + 0.2^{2)}$	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.6	V

- 1. TA= -40 to 85°C, otherwise specified
- 2. Overshoot: Vcc +2.0 V in case of pulse width \leq 20ns
- 3. Undershoot: -2.0 V in case of pulse width ≤ 20ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f =1MHz, T_A =25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Ouput capacitance	C _{IO}	V _{IO} =0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input leakage current	I _{LI}	$V_{IN}=V_{SS}$ to V_{CC}	-1	-	1	uA	
Output leakage current	I _{LO}	$\overline{\text{CS1}} = \text{V}_{\text{IH}} \text{ or } \text{CS2} = \text{V}_{\text{IL}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}$ $\text{V}_{\text{IO}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$		-1	-	1	uA
Operating power supply	I _{CC}	I_{IO} =0mA, $\overline{CS1}$ = V_{IL} , $CS2$ = \overline{WE} = V_{IH} , V_{IN} = V_{IH} or V_{IL}		-	-	3	mA
	I _{CC1}	$\label{eq:cycle_time} \begin{split} & \frac{\text{Cycle time} = 1 \mu \text{s}, \ 100\% \ \text{duty, } \ I_{IO} = 0 \text{mA}, \\ & \frac{\text{CS1}}{\leq} 0.2 \text{V}, \ \text{CS2} {\geq} \text{V}_{CC} \text{-} 0.2 \text{V}, \\ & \text{V}_{IN} {\leq} 0.2 \text{V or } \text{V}_{IN} {\geq} \text{V}_{CC} \text{-} 0.2 \text{V} \end{split}$		-	-	3	mA
Average operating current	I _{CC2}	Cycle time = Min, I _{IO} =0mA, 100% duty,	45ns	-	-	35	mA
		CS1=V _{IL} , CS2=V _{IH} ,	55ns	-	-	30	
		$V_{IN}=V_{IL}$ or V_{IH}		-	-	25	
Output low voltage	V _{OL}	I _{OL} = 2.1mA		-	-	0.4	٧
Output high voltage	V _{OH}	I _{OH} = -1.0mA		2.4	-	-	V
Standby Current (TTL)	I _{SB}	CS1=V _{IH} , CS2=V _{IL} , Other inputs=V _{IH} or V _{IL}		-	-	0.3	mA
Standby Current (CMOS)	I _{SB1}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	LF	-	1 ¹⁾	10	uA

NOTES

1. Typical values are measured at Vcc=3.0V, $T_A=25^{\circ}C$ and not 100% tested.

EM620FU8B Low Power, 256Kx8 SRAM

AC OPERATING CONDITIONS

Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level: 0.4V to 2.2V Input Rise and Fall Time: 5ns

Input and Output reference Voltage : 1.5V

Output Load (See right) : CL¹⁾ = 100pF + 1 TTL

 $CL^{1)} = 30pF + 1 TTL (only 45ns part)$

1. Including scope and Jig capacitance 2. R_1 =3070 ohm, R_2 =3150 ohm

3. V_{TM}=2.8V

4. CL = 5pF + 1 TTL (measurement with $t_{LZ1,2}$, $t_{HZ1,2}$, t_{OLZ} , t_{OHZ} , t_{WHZ})

READ CYCLE ($V_{cc} = 2.7V$ to 3.3V, Gnd = 0V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C)

Damamadan.	Symbol	45ns		55ns		70ns		I I i t	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Read cycle time	t _{RC}	45	-	55	-	70	-	ns	
Address access time	t _{AA}	-	45	-	55	-	70	ns	
Chip select to output	t _{CO1} , t _{CO2}	-	45	-	55	-	70	ns	
Output enable to valid output	t _{OE}	-	25	-	25	-	35	ns	
Chip select to low-Z output	t _{LZ1} , t _{LZ2}	10	-	10	-	10	-	ns	
Output enable to low-Z output	t _{OLZ}	5	-	5	-	5	-	ns	
Chip disable to high-Z output	t _{HZ1} , t _{HZ2}	0	20	0	20	0	25	ns	
Output disable to high-Z output	t _{OHZ}	0	15	0	20	0	25	ns	
Output hold from address change	t _{OH}	10	-	10	-	10	-	ns	

WRITE CYCLE ($V_{cc} = 2.7V$ to 3.3V, Gnd = 0V, $T_A = -40^{\circ}$ C to +85°C)

Davamatav	Symbol	45	45ns		55ns		70ns	
Parameter	Syllibol	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	t _{WC}	45	-	55	-	70	-	ns
Chip select to end of write	t _{CW1} , t _{CW2}	45	-	45	-	60	-	ns
Address setup time	t _{AS}	0	-	0	-	0	-	ns
Address valid to end of write	t _{AW}	45	-	45	-	60	-	ns
Write pulse width	t _{WP}	35	-	40	-	50	-	ns
Write recovery time	t _{WR}	0	-	0	-	0	-	ns
Write to ouput high-Z	t _{WHZ}	0	15	0	20	0	20	ns
Data to write time overlap	t _{DW}	25		25		30		ns
Data hold from write time	t _{DH}	0	-	0	-	0	-	ns
End write to output low-Z	t _{OW}	5	-	5	-	5	-	ns

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=V_{IL}, CS2=WE=V_{IH})

TIMING WAVEFORM OF READ CYCLE(2) ($\overline{\text{WE}} = \text{V}_{\text{IH}}$)

NOTES (READ CYCLE)

- 1. $t_{HZ1,2}$ and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, $t_{HZ1,2}(Max.)$ is less than $t_{LZ1,2}(Min.)$ both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE CONTROLLED)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 CONTROLLED)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 CONTROLLED)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low $\overline{CS1}$, a high CS2 and low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ goes low, CS2 goes high and \overline{WE} goes low. A write ends at the earliest transition among $\overline{CS1}$ goes high, CS2 goes low and \overline{WE} goes high. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the $\overline{CS1}$ going low or CS2 going high to end of write.
- 3. $t_{\mbox{\scriptsize AS}}$ is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. t_{WR} applied in case a write ends as $\overline{\text{CS1}}$ or $\overline{\text{WE}}$ going high or CS2 going low.

DATA RETENTION CHARACTERISTICS

Parameter	Symbol	Test Condition	Min	Typ ²⁾	Max	Unit
V _{CC} for Data Retention	V _{DR}	I _{SB1} Test Condition (Chip Disabled) ¹⁾	1.5	-	3.3	٧
Data Retention Current	I _{DR}	V _{CC} =1.5V, I _{SB1} Test Condition (Chip Disabled) ¹⁾	-	0.5	5.0	μА
Chip Deselect to Data Retention Time	t _{SDR}	See data retention wave form	0	-	-	ns
Operation Recovery Time	t _{RDR}	See data retention wave form	t _{RC}	-	-	119

NOTES

- 1. See the I_{SB1} measurement condition of data sheet page 4.
- 2. Typical value is measured at $T_A=25^{\circ}C$ and not 100% tested.

DATA RETENTION WAVE FORM

SRAM PART CODING SYSTEM

