Church's Thesis and Hume's Problem: Justification as Performance

Kevin T. Kelly
Department of Philosophy
Carnegie Mellon University
kk3n@andrew.cmu.edu

Further Reading

(With C. Glymour) "Why You'll Never Know Whether Roger Penrose is a Computer", Behavioral and Brain Sciences, 13: 1990.

- The Logic of Reliable Inquiry, Oxford: Oxford University Press, 1996.
- •(with O. Schulte) "Church's Thesis and Hume's Problem," in Logic and Scientific Methods, M. L. Dalla Chiara, et al., eds. Dordrecht: Kluwer, 1997.
- •(with O. Schulte and C. Juhl) "Learning Theory and the Philosophy of Science", Philosophy of Science 64: 1997. "The Logic of Success", British Journal for the Philosophy of Science, 51:2000.
- "Uncomputability: The Problem of Induction Internalized," Theoretical Computer Science 317: 2004.

Computability and Learnibility, Textbook manuscript, 2005.

Fateful First Cut

Relations of Ideas	Matters of fact
Analytic	Synthetic
Certain	Uncertain
A Priori	A Posteriori
Philosophy of Math	Philosophy of Science
Proofs and algorithms	Confirmation
Truth-finding	"Rationality"
Computability	Probability

Painful Progress

Rel	ation	of.	Ideas	,
TIC	TOPTOT.		Tricara)

Allalytic

Certain

A Priori

Philosophy of Math

Proofs and algorithms

Truth-finding

Computability

Matters of fact

Synthetic

Uncertain

A Posteriori

Philosophy of Science

Confirmation

"Rationality"

Probability

Slight Rearrangement

Philosophy of Math	Philosophy of Science	
Certain	Uncertain	
A Priori	A Posteriori	
Proofs and algorithms	Confirmation	
Truth-finding	"Rationality"	
Computability	Probability	

Philosophy of Science 101

Wrong Twice!

Formal Questions	Scientific Questions
Unverifiable	Unverifiable
"The given computation	"The sun will never
will never halt'	stop rising"
Verifiable	Verifiable
"The given number	"The next emerald
is even''	is green"

Classical Excuse

But Maybe...

Kant

Oops!

After Turing

Bad First Cut

Formal Questions	Scientific Questions
Unverifiable	Unverifiable
"The given computation	"The sun will never
will never halt''	stop rising'
Verifiable	Verifiable
"The given number	"The next emerald
is even''	is green"

Good First Cut

Formal Questions	Scientific Questions
Unverifiable	Unverifiable
"The given computation	"The sun will never
will never halt"	stop rising"
Verifiable	Verifiable
"The given number	"The next emerald
is even"	is green"

Computational Epistemology

For formal and empirical questions:

Justification = truth-finding performance

- Find the truth in the best possible sense
- And then as efficiently as possible.

Verification as "Support"

Deductive verification

Inductive verification

Paradigms Evolve

•Objective support by evidence.

Paradigms Evolve...

•Objective support by evidence.

- •Coherent personal opinion.
- •"Rational" update.

Paradigms Evolve...

•Objective support by evidence.

- •Coherent personal opinion.
- •"Rational" update.

But Leading Metaphors Matter

- Myopic
- •Bedrock = "rationality" intuitions
- •Success = being "rational"
- •Truth-finding performance deferred or ignored
- Problem complexity ignored
- •Little resemblance to computability

Conclusion Data

Can't take it back.

Verifiability

Conclusion false

Always green?

You must halt with "yes" if it's true!

Always green?

You must halt with "yes" if it's true!

A Purely Formal Problem

Analogy?

I ain't a' shootin', yeller belly!

Apparently Not

Game's up, J.R.! Yer program's showin'!

Apparently Not

Now shaddup! I'm calculatin' a-preeorey-like what yer gonna do.

Apparently Not

I got it! Two kin play that opry oary game!

I won't
shoot 'til I
see him shoot
in this here
opry oary
sim-yooo-laytion!

00

666

You check that there opry oary all you want...

An' all you'll see is I ain't a-shootin'

ROBO SHERIFF

Fooled A priori

Rice-Shapiro Theorem

Whatever a computable cognitive scientist could verify about an arbitrary computer's input-output behavior by formally analyzing its program...

Rice-Shapiro Theorem

...could also have been verified by a behaviorist computer who empirically studies only the arbitrary computer's input-output behavior!

Uncomputable Induction

Verifiable by "ideal agent".

Uncomputable Induction

Will see a non-halting machine

Not verifiable by computable agent.

Similarity

Halting Problem	Universal Law
Unverifiable	Unverifiable
Demon can fool	Demon can fool
computable agent	ideal agent
Answer runs beyond	Answer runs beyond
formal experience	empirical experience

A Difference

Halting Problem	Universal Law
Input ends	Input never ends
Can handle some examples a priori	Problem of induction
"Internal" problem of induction eventually catches up!	

Give and Take

Formal input	Empirical input
Jaw Breaker	Noodle
Fits in mouth but may never melt	May never fit in mouth
May never swallow	May never swallow

Another Difference

Formal Science Empirical Science

Incompleteness Problem of induction

Not Necessarily

Formal Science	Empirical Science
Incompleteness	Problem of induction
Add more powerful axiom	Conjecture a theory
Who knows if new axiom is consistent with old?	Who knows if theory is consistent with data?
Assume it is, keep checking, and hope	Assume it is, keep checking, and hope

Thesis

The problem of induction and the problem of uncomputability are essentially similar.

So the two should be understood similarly.

From the ground upward.

A House Divided

Unverifiability

- •"Confirmation"
- •"Support"
- •"Coherence"
- •"Rational" update, etc.

- Suck it up
- •Logic vs. engineering
- •Try to approximate, etc.

Unified Approach: Gun Control

- •Find the truth in the best feasible sense.
- •So drop the halting requirement if infeasible.

Start with Problems, Not Methods

Partition Q over set K of inputs

Convergence

Convergence ? ? ? A with halting

Convergence ? ? ? A ? B C C C ...
in limit
(in limit)

revisions

Success

Converge to right answer

Don't converge to wrong answer

Special Cases

Special Cases

Compute partial ϕ

 $Dom(\phi)$

Theory selection

Solutions and Optimality

- •Solution: method that succeeds on each input.
- Optimal solution: solves in best possible sense
- •Solvable problem: has solution.
- Problem complexity: best sense of solvability

Halting Bounds Revisions

Verifiability

■

convergence with 1 revision ending with "no".

Refutability ≡

convergence with 1 revision ending with "yes".

Decidability ≡

convergence with 0 revisions.

Generalization to n Revisions

n-Refutation =n+1 rev ending with -A

n-Verification = n+1 rev ending with A

n-Decision = n rev

Empirical Complexity

Formal Complexity

Formal + Empirical Complexity

Lim-ref $\exists \forall$ Lim-ver $A \exists$ Lim-dec Uncomputabilit 1-ver 1-ref \exists and \forall \forall or \exists 1-dec 0-ref 0-ver Co-r.e. r.e. 0-dec decidable

Ship-shape Epistemology

Ideal empirical

Effective empirical

Effective formal

Ship-shape Epistemology

Topological invariants

Recursive invariants

Recursive invariants

Ship-shape Epistemology

Messy, Odd Distinction

Empirical Borel

Mixed effective Borel

Formal arithmetical

Neat, Natural Distinctions

Example: Kantian Antinomy

Upper Complexity Bound

Lim-ref

Infinitely divisible

Finitely divisible

Lim-ver

 $A \exists$

 $\exists \forall$

I say inf when you let me cut.

Lower Complexity Bound

Lim-ref
-Lim-ver

Infinitely divisible

Finitely divisible

Lim-ver
-Lim-ref

I let you cut when you say fin.

 $\exists \forall$

Purely Formal Analogue

Lim-ref Lim-ver Infinite Finite -Lim-ref -Lim-ver domain domain A $\exists \forall$ 00 23455 666

Purely Formal Analogue

Lim-ref
-Lim-ver

Infinite domain

Finite domain

Lim-ver
-Lim-ref

I halt on another input each time he says fin in my opry oary simulation of him ganderin' at my program.

Analogies

Mixed Example: Penrose

Empirical Irony

Computable

Uncomputable

You can verify human computability in the limit...

Human subject

UCUCCCCCC...

Cognitive scientist

Empirical Irony

Computable

Uncomputable

But only if you aren't computable!

Computability

Computability

We can verify our computability in the limit... only if we are not computable!

Gold/Putnam

Even assuming computability, you can converge to the true computable behavior only if you are not computable!

Total computable functions

Uncomputable Predictions

(with Oliver Schulte)

T -T

- •There exists T such that
 - •T makes a unique prediction at each stage;
 - •The predictions are very uncomputable...

Uncomputable Predictions

(with Oliver Schulte)

T -T

- •There exists T such that
 - T makes a unique prediction at each stage;
 - •The predictions are very uncomputable...
 - •But T is refutable by a computable method!

Moral 1: Rational Hobgoblins

No consistent

computable

convergent

method.

Exists inconsistent

computable refuting

method.

Exists consistent

computable non-convergent

method.

So "a foolish consistency" precludes truth-finding!

Moral 2: Coup de Grace

•The very idea of insulating deduction from empirical data restricts the truth-finding power of effective science.

Moral 2: Coup de Grace

•The very idea of insulating deduction from empirical data restricts the truth-finding power of effective science.

Conclusions

- •Justification = truth-finding performance.
- •Performance depends on problem complexity.
- •Formal and empirical complexity are similar.
- Computational epistemology is unified
- •Standard epistemology is divided.
- •Insistence on division weakens truth-finding performance of effective science.

Closing Image

Standard epistemology

Computational epistemology

Closing Image

Standard epistemology

Computational epistemology

Closing Image

Standard epistemology

Computational epistemology

THE END