2시간에 끝내는 기초 수리물리

for 역학

2022.05.09

차례

I. 선형대수학
1. 기초 연산 영산 3
2. 행렬식과 이차형식
3. 행렬의 고윳값과 대각화
II. 미적분학
1. 편미분과 전미분
2. 중적분
3. 급수와 근사
III. 좌표계
1. 극좌표계
2. 원통좌표계와 구좌표계
3. 변환행렬과 야코비안
IV. 상미분방정식
1. 변수분리형 미분방정식
2. 선형 일계 미분방정식
3. 선형 이계 미분방정식

I. 선형대수학

1. 기초 연산

- 1.1 행렬의 연산
- 1.1.1 정의

Definition. 수 또는 다항식 등을 직사각형 모양으로 배열한 것.

*
$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 : m행 n열의 행렬의 일반적인 표기

1.1.2 linearlity

$$\binom{12}{34} + \binom{56}{78} = \binom{67}{1012}, \ \binom{12}{34} - \binom{56}{78} = \binom{-4-4}{-4-4}, \ 3 \times \binom{12}{34} = \binom{36}{912}$$
 : 덧셈, 뺄셈, 실수배

1.1.3 곱셈

 $(A \times B)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$, 장방행렬의 곱셈은 행렬의수가 맞는지 확인. $([m \times n] \times [n \times r] = [m \times r])$ PS 크로네커 곱셈 이라는 것도 있지만 알 필요는 없다.

예제(I-I) 다음 곱셈을 계산하시오

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 4 \\ 3 & -1 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 109275 & 9043 \\ 2094 & -394085 \end{pmatrix}$ (c) $\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

1.1.4 행렬의 종류

(a) 단위행렬 :
$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (b) 영행렬 : $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(c) 역행렬 : AX = XA = E일 때 $X = A^{-1}$ (d) 전치 행렬 : $[B]_{ij} = [A]_{ji}$ 일 때 $B = A^T$

단위행렬, 영행렬은 행렬에서 각각 곱셈의 항등원, 덧셈의 항등원 역할을 하며 실수의 연산에서 각각 1,0과 비슷한 기능을 한다.

- 1.2 벡터
- 1.2.1 정의

Definition. 크기와 방향을 가지는 양, 실수들의 모임

ex)
$$(x_1 x_2 x_3)$$
 : 행벡터 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$: 열벡터 (물리에서는 주로 열벡터를 사용)

1.2.2 linearlity

$$\binom{1}{2} + \binom{3}{4} = \binom{4}{6}$$
, $\binom{1}{2} - \binom{3}{4} = \binom{-2}{-2}$, $3 \times \binom{1}{2} = \binom{3}{6}$: 덧셈, 뺄셈, 실수배

1.2.3 내적과 외적

두 벡터 $\overrightarrow{A} = (x_1, y_1, z_1)$, $\overrightarrow{B} = (x_2, y_2, z_2)$ 에 대해

내적(=스칼라곱) :
$$\overrightarrow{A} \cdot \overrightarrow{B} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
 외적(=벡터곱) : $\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$

※ 벡터 내/외적 공식

(a) 벡터의 삼중곱 :
$$A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B) = \begin{vmatrix} a_x a_y a_z \\ b_x b_y b_z \\ c_x c_y c_z \end{vmatrix}$$

(b) BACK-CAB 코식 : $A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$

2. 행렬식과 이차형식

2.1 행렬식(determinant)

선형대수학에서 다루는 정확한 정의보다는 계산법을 익히자. 2x2, 3x3만 익혀놓아도 충분하다.

Definition. 행렬 A의 행렬식을 |A| 또는 det(A)라 쓰며 2x2, 3x3의 정방행렬의 경우

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$
 $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + cdh + bfg - ceg - bdi - afh = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$ 로 계산한다.

예제(I-2) 다음 행렬식을 계산하시오

(a)
$$\begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix}$$
 (b) $\begin{vmatrix} 1 & 3 & 0 \\ 2 & 0 & -1 \\ 3 & 0 & 1 \end{vmatrix}$

폐제(I-3) 다음 외적 및 삼중곱을 계산하시오

- (a) $(1,2,3)\times(-1,3,4)$ (b) $i\times j, j\times k, k\times i$ (c) $\overrightarrow{A}=(1,2,3), \overrightarrow{B}=(0,1,0), \overrightarrow{C}=(-1,4,2)$ 의 삼중곱
- **사라스의 공식이란 : 3x3 정방행렬의 행렬식을 외우는 팁, 4x4부터는 통하지 않음

2.2 이차형식(Quadratic form)

행렬 표현을 이용하면 이차식을 굉장히 깔끔하게 표기할 수 있다.

$$ax_1^2 + 2bx_1x_2 + cx_2^2 = (x_1x_2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X} \quad (단 \ \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}) : 곱해보면 바로 증명 가능$$

사실 A행렬은 여러 가지가 가능하지만 A가 대칭행렬이 되도록 잡는 것이 일반적이며 추후 고윳 값을 계산하거나 대각화하기도 편리하다.

예제(I-4) $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 일 때 다음 식을 만족하는 행렬 K, M을 구하시오.

(a)
$$\frac{k}{2}(x_1^2 + (x_1 - x_2)^2 + 2x_2^2) = \frac{1}{2}X^TKX$$
 (b) $\frac{m}{2}(x_1^2 + x_2^2) = \frac{1}{2}X^TMX$

이러한 이차형식 표기법은 추후 회전관성 텐서나, 결합 진동계, 그 밖의 일반화 좌표가 두개인 계의 에너지를 다룰데에 유용하게 이용되니 익혀 두도록 하자.

3. 행렬의 고윳값과 대각화

3.1 고윳값(eigenvalue)와 고유벡터(eigenvector)

3.1.1 정의

 λ 를 A의 고윳값이라고 하고 X를 λ 에 대한 고유벡터라고 한다.

3.1.2 구하는 방법

 $AX = \lambda X$ 를 $(A - \lambda E)X = O$ 로 다시 쓸 수 있다. 우변이 0인데 0이 아닌 열벡터 X가 존재하므로 행렬 $(A - \lambda E)$ 는 rank가 행의계수보다 적으며 $|A - \lambda E| = 0$ 을 풀면 고윳값 λ 를 구할 수 있다.

 λ 를 구하면 이를 $AX = \lambda X$ 에 대입하여 고유벡터 X를 구할 수 있다. (단 X는 유일하지 않음) PS : $\sum \lambda = tr(A)$, $\prod \lambda = \det(A)$ 임을 기억하면 계산 속도를 빠르게 할 수 있다.

#\M(I-5) 주어진 행렬의 고유치를 모두 구하고 각각에 대응되는 고유벡터를 하나씩 구하시오

(a)
$$\begin{pmatrix} 1-1 \\ 1 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1\,0\,0 \\ 0\,2\,0 \\ 0\,0\,3 \end{pmatrix}$ (주 : 이 문제는 대각화의 놀라운 유용성을 또하나 보여준다.)

째제(I-6) $K=\begin{pmatrix} 2k-k \\ -k & 3k \end{pmatrix}$, $M=\begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}$ 일 때 $KA=\omega^2 MA$ 인 실수 ω 와 열벡터 A가 존재한다. 가능한 모든 ω 값을 $\omega_0=\sqrt{\frac{m}{k}}$ 에 대해 나타내어라.

(실은 씨씨(I-6) 과 씨씨(I-4)을 합하면 선발고사 4(2) 문항에 대한 풀이가 된다. 그 이유를 설명할 수 있겠는가?)

4(2) 용수철상수를 측정해보니 $k = \frac{\gamma mg}{L}$ 라고 한다. (1)의 피스톤이 2개가 결합된 피스톤을 생각하자.

이때 이 진동계의 고유 진동수를 모두 구하시오.

(주 : 4(1)에 의해 피스톤을 위에것은 용수철상수 k, 아랫것은 용수철 상수가 2k 인 것으로 다룰 수 있다.)

3.2 행렬의 대각화(diagnolization)

3.2.1 정의

Definition. 정방행렬 A가 $[A]_{ii} = 0 (i \neq j)$ 를 만족할 때 A를 대각행렬이라고 한다.

Pefinition. $n \times n$ 행렬 A에 대해 적절한 $n \times n$ 행렬 P가 존재하여 대각행렬 D에 대해 $A = PDP^{-1}$ 로 표현 할 때 A를 대각화한다고 한다.

3.2.2 용도

대각화는 이차형식 표현에서 $ax_1^2 + 2bx_1x_2 + cx_2^2 = (x_1x_2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{X}^{\mathrm{T}} \mathbf{A} \mathbf{X}$ 임을 생각할 때 A가 대각행렬이라면 **교차항이 사라진다**는 놀라운 이점을 가질 수 있다. 교차항이 없으면 **변수들을 독립적으로 다룰 수 있으니** 추후 라그랑지안이나 회전관성 텐서등을 다룰 때 굉장히 유리하다.

추가적으로 $A = PDP^{-1}$ 의 P가 직교행렬 $(P^{-1} = P^{T})$ 이면 재미있는 성질들이 몇가지 더 나타나지만 일단 이 교재에서는 다루지 않기로 한다.

3.2.3 방법

 $n \times n$ 정방행렬 A의 고유벡터 $X_1, X_2 \dots X_n$ 에 대해 $P = (X_1 X_2 \dots X_n)$ 이면 $A = PDP^{-1}$ 이다. pf) 생략, 수리물리는 어디까지나 도구일 뿐이지 수학적 증명에 목매지 말자

 \square M(I-7) 다음 행렬을 대각화하여 $A = PDP^{-1}$ 형태로 쓰라.

(a)
$$\begin{pmatrix} 1-1\\1&4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2&1\\4-1 \end{pmatrix}$

Ⅱ. 미적분학

1. 편미분과 전미분

1.1 편미분

Definition. 다른 변수는 모두 상수 취급하고 특정 변수에 대해서만 미분하는 것, 기호는 $\frac{\partial}{\partial x}$

예제(II-I) $F(x,y,z)=e^{2x}\sin 3y\cos 4z$ 라 할때 다음 편미분을 계산하라

(a)
$$\frac{\partial F}{\partial x}$$

(a)
$$\frac{\partial F}{\partial x}$$
 (b) $\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}$ (c) $\frac{\partial^2 F}{\partial x \partial y}$

(c)
$$\frac{\partial^2 F}{\partial x \partial y}$$

제제(III-2) $f(x,y,z)=rac{1}{r}$ 라 할때 $rac{\partial^2 f}{\partial x^2}+rac{\partial^2 f}{\partial y^2}+rac{\partial^2 f}{\partial z^2}$ 을 계산하시오. (단 $r=\sqrt{x^2+y^2+z^2}$)

1.2 전미분

1.2.1 정의

다변수 함수에서는 이 변수들이 동시에 변할 때 함숫값이 어떻게 바뀌는가를 따져주어야 한다. Definition $y=f(x_1,x_2,...x_n)$ 과 같이 n개 변수들에 의해 결정되는 y의 변화량 dy는 아래와 같이 구할 수 있다.

$$dy = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \frac{\partial f}{\partial x_3} dx_3 + \ldots + \frac{\partial f}{\partial x_n} dx_n = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$$

위 summation에서 i번째 항은 x_i 가 dx_i 만큼 변화했을 때 y의 변화량을 나타내고 있다. 위 식을 y의 전미분이라고 한다.

1.2.2 다변수 함수의 극값

Theorem 일변수 함수에서 미분값이 0이 되는 지점이 극값이었듯 다변수 함수도 마찬가지로 전미 분 값이 0인 지점에서 극값이 된다. 일반적으로 x_i 가 모든 값을 가질 수 있을 때 어떤 미소변화 에도 항상 전미분값이 0이려면 다음 조건을 만족해야 한다. : $\frac{\partial f}{\partial r} = 0 \ (1 \le i \le n)$

극값의 종류에는 흔히 아는 극대점, 극소점, 바라 보는 방향에 따라 극대, 극소가 동시에 나타나는 안장점(왼쪽 그림)이 있다. (안장점은 일변수 함 수에서는 나타나지 않는다.) 이 셋을 통틀어 임계 점이라 부른다.

안장점의 예시

1.2.3 극값의 종류의 결정 : 헤시안 행렬(Hessian Matrix)

Theorem $y = f(x_1, x_2, ... x_n)$ 과 같이 n개 변수들에 결정되는 y의 임계점 종류를 판단할 때는, 우선 아래의 헤시안 행렬의 고윳값을 모두 구한다. 그 후 고윳값이 모두 양수면 극소점, 모두 음수면 극대점, 그 밖의 경우는 모두 안장점이다 .

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

삐제(II-3) 주어진 함수 f의 모든 임계점과 그 종류를 판별하시오.

(a)
$$f(x,y) = x^2 - y^2$$

(a)
$$f(x,y) = x^2 - y^2$$
 (b) $f(x,y,z) = x^3 + xyz + y^2 - 3x$

1.2.4 라그랑주 곱수법

다변수 문제에서 변수 사이의 구속조건이 있는 경우가 있다. 이때는 단순히 편미분한 값이 0이 된다라는 성질로 극값을 구할 수 없으며 라그랑주 곱수법을 이용한다. 증명은 생략하겠다.

Theorem n개의 변수 $x_1, x_2, ... x_n$ 사이에 p개의 구속조건 $g_i(x_1, x_2, ... x_n) = 0 (1 \le i \le p)$ 가 존재한다 고 할 때 $y = f(x_1, x_2, \dots x_n)$ 가 극값을 가질 필요조건은 다음과 같다.

:
$$\frac{\partial f}{\partial x_i} - \frac{\partial}{\partial x_i} \sum_{j=1}^p \lambda_j g_j = 0 (1 \le i \le n) \; (\lambda_j$$
는 라그랑주 곱수라 불리는 적절한 상수)

※ 라그랑주 곱수법의 아이디어는 추후 해석역학의 라그랑주 역학에서 일반화 좌표 사이에 구속 조건이 있을 때 운동 방정식 풀이에 사용된다.

PS : 1.2.3, 1.2.4 는 미적분학에서 굉장히 중요한 개념들이긴 하지만 필자의 경험에 따르면 초 기 역학을 공부할 때 필수적인 지식은 아니다. 물리에서 최솟값을 구하라고 하면 극값일 조건을 푼 후 그게 극소인지 극대인지 판별하는 과정은 건너뛰는 경우도 허다하기 때문...

2. 중적분

2.1 정의 및 기호

Pefinition 정적분의 개념을 확장하여 독립변수가 2개 이상인 함수를 적분하는 것. 표기할 때는 인테그랄 (\int)을 겹쳐서 쓴다.

2.2 계산 방법

소위 '편적분' 하듯이 하나의 변수에 대해 적분할 때는 다른 변수는 상수취급하며 적분한다. 피적분함수가 변수분리 되어 있는 경우는 $\int \int F(x)G(y)dxdy = \left(\int F(x)dx\right) imes \left(\int G(y)dy\right)$ 처럼 분리해서 계산할 수 있다. (이를 **푸비니의 정리**라 한다)

♥ 세계(II-4) 다음 중적분을 계산하시오

(a)
$$\int_0^1 \int_{-1}^1 (x^2 + y^2) dx dy$$
 (b) $\iiint_V dx dy dz$ (단 V는 원점을 중심으로 하고 반지름 1인 구)

₩₩(II-5) 원통좌표계에서 주어진 중적분을 계산하여 다음 원통의 회전관성을 계산하시오

$$I=
ho\int_V dI=
ho\int_{-rac{L}{2}}^{rac{L}{2}}\int_0^R\int_0^{2\pi}(rx^2+r^3\cos^2 heta)d heta dr dx$$
 (단 원통의 밀도 $ho=rac{M}{\pi R^2L}$)

2.3 선적분, 면적분, 부피적분

- (a) $\int_L Fdl$: 선적분, 일반적인 1차원 적분이 좌표축을 따라서만 적분한다면 이는 임의의 주어진 곡선을 따라 적분한다.
- (b) $\int_{c} Fda$: 면적분, 임의의 주어진 곡면을 따라 적분
- $(c)\int_V FdV$: 부피적분, 임의의 주어진 공간에서 적분

사실 '장'의 개념을 배우고 이를 계산할 때 자주 사용한다. 자세한 것은 "2시간에 끝내는 기초 수리물리 for 전자기학"에서 다루기로 하자.

2.4 폐적분

Definition 주어진 닫힌 공간에서 적분하는 것. \oint 처럼 적분기호에 동그라미를 써서 표현한다.

(a)
$$\oint_L Fdl$$
 : 주어진 폐곡선을 따라 적분
 (b) $\oint_S Fda \oiint_S Fda$: 주어진 폐곡면을 따라 적분

3. 급수와 근사

3.1 테일러 전개(Taylor Series)

3.1.1 정의

다루기 힘든 초월함수들을 무한한 차수의 다항함수로 근사할 수 있는 기술이다.

Definition 무한번 미분가능한 함수 f(x)는 다음이 성립한다.

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 : a=0인 경우를 매클로린 전개라고 부르기도 한다.

3.1.2 증명

엄밀한 증명은 적분법이나 코시 적분 공식등으로 행하지만 우리는 수리물리 시간이니 미정계수 법으로 확인만 해보도록 한다.

 ${\it Proof}\ f(x) = a_0 + a_1 x + a_2 x^2 + \dots$ 로 두고 양변에 0을 대입 $f(0) = a_0$, 양변을 미분하면 $f'(x) = 1!a_1 + 2a_2x + 3a_3x^2 + \dots$ 다시 양변에 0을 대입하면 $f'(0) = a_1$... 미분하고 0을 대입하기를 반복하면 $a_k = \frac{f^{(k)}(0)}{h!}$ 임을 확인 가능하다.

 $\omega M(II-6)$ 다음 초월함수를 x=0에서 테일러 전개하라. (이들은 앞 몇항을 암기하는 것을 추천)

- (a) e^x (b) $\sin x$ (c) $\cos x$ (d) $\ln(1+x)$

3.1.3 오일러 공식

Definition 위 예제의 (a), (b), (c) 의 결과를 확인해보면 $e^{ix} = \cos x + i \sin x$ 임을 확인할 수 있다. 이를 **오일러 공식**이라 한다. 물리에서 오일러 공식은 조화함수를 다룰 때에 굉장히 많이 사용되니 반드시 익혀놓도록 한다.

예세(II-7) 드 무아브르의 공식 $(\cos x + i \sin x)^n = \cos nx + i \sin nx$ 을 확인하라.

#세(II-8) 임의의 A,B에 대해 어떤 상수 C.D가 존재해 $Ae^{ix}+Be^{-ix}=C\cos x+D\sin x$ 을 만족함을 보여라.

3.1.4 유용한 근사 공식

(a)
$$\sin x \approx x \approx \tan x \ (x \ll 1)$$

(a)
$$\sin x \approx x \approx \tan x \ (x \ll 1)$$

 (b) $(1+x)^n \approx 1 + nx \approx 1 + nx + \frac{n(n-1)}{2}x^2 \ (x \ll 1)$

(c)
$$e^x - 1 \approx x \approx \ln(1+x)$$
 $(x \ll 1)$ (d) $\cos x \approx 1 - \frac{x^2}{2}$

(d)
$$\cos x \approx 1 - \frac{x^2}{2}$$

3.2 푸리에 급수(Fourier series)

3.2.1 정의

Definition 주기함수를 삼각함수 $(\sin x, \cos x)$ 의 가중치로 분해한 급수, 일반적으로 주기 T인 주기함수 f(x)에 대해 다음과 같은 식이 성립한다. 이를 푸리에 급수라 한다.

$$\begin{split} f(x) &= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega x) + b_n \sin(n\omega x) \right] \\ &\left(\exists t \ a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) dt, \ b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) dt \right) \end{split}$$

3.2.2 증명

Proof 우선 정수 m, n 에 다음을 확인할 수 있다. (삼각함수의 직교성)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0, & m \neq n \\ \frac{1}{2}, & m = n \neq 0 \\ 0, & m = n = 0 \end{cases}, \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0, & m \neq n \\ \frac{1}{2}, & m = n \neq 0 \\ 1, & m = n = 0 \end{cases}$$

그 다음 주기가 2π 인 함수 f에 대해 다음과 같이 전개된다고 하자.

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$$

적분 $\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx$ 를 생각하면 위에서 보인 식들에 의해 우변은 $\cos nx$ 의 적분항을 제외

하면 0이 되므로
$$\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx = \frac{1}{2}a_n$$
 , $a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\,dx$

비슷하게 $b_n=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\,dx$ 즉 주기가 2π 인 함수에 대해 위의 식이 증명되었다.

주기가 T인 함수f(x)에 대해서는 $g(x)=f(\frac{2\pi}{T}x)$ 는 주기가 2π 인 함수이니 간단한 치환적분을 통해 증명이 끝난다.

예계(III-9) 다음과 같은 정사각형 파동함수 $f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases}$, $f(x+2\pi) = f(x)$ 를 푸리에 급수로 나타내어라.

PS 푸리에 급수나 함수의 직교성을 이용해 미정계수를 구하는 아이디어는 전자기학까지 계속되므로 지금은 어려워도 차차 익혀둘 수 있도록 하자.

III. 좌표계

1. 극좌표계

1.1 정의

Definition. 한 점이 원점에서 떨어진 거리가 r, 점의 위치벡터가 x축의 양의 방향과 이루는 각이 θ 일 때 점의 위치를 (r,θ) 로 나타낼 수 있으며 이를 극좌표라 한다.

1.2 변환식

직교좌표계와 극좌표계 사이의 변환식은 다음과 같다. $\begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases} \Leftrightarrow \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$

폐제(III-I) 다음 직교좌표를 극좌표로 변환하라.

(c)
$$(0,12)$$

1.3 단위 벡터

 e_r , e_{θ} 을 r방향, θ 방향의 단위벡터라고 하자. 그러면 그림에서 간단히

$$\begin{cases} e_r = \cos\theta \, e_x + \sin\theta \, e_y \\ e_\theta = -\sin\theta \, e_x + \cos\theta \, e_y \end{cases} \quad 임을 확인할 수 있다.$$

1.4 속도와 가속도

 $\frac{de_r}{dt} = e_{\theta} \frac{d\theta}{dt}$, $\frac{de_{\theta}}{dt} = -e_r \frac{d\theta}{dt}$ 임을 확인가능. 극좌표계에서 입자의 위치벡터는 $\stackrel{\rightarrow}{r} = re_r$ 이므로

속도 벡터는
$$\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt} = \overrightarrow{r}e_r + \overrightarrow{r\theta}e_\theta$$

가속도 벡터는
$$\vec{a} = \frac{\vec{d} \cdot \vec{v}}{dt} = \ddot{r}e_r + \dot{r}\dot{\theta}e_{\theta} + \ddot{r}\dot{\theta}e_{\theta} + \dot{r}\dot{\theta}e_{\theta} - \dot{r}\dot{\theta}^2e_r = (\ddot{r} - \dot{r}\dot{\theta}^2)e_r + (\ddot{r}\ddot{\theta} + 2\dot{r}\dot{\theta})e_{\theta}$$

₩₩(III-2) 주어진 궤도의 시간에 따른 속도, 가속도를 구하라

(a)
$$r = b - ct$$
, $\dot{\theta} = kt$ (b) $r = bt^2$, $\theta = \omega t$ (c) $r = be^t$, $\theta = \omega t$

(b)
$$r = bt^2$$
, $\theta = \omega t$

(c)
$$r = be^t$$
, $\theta = \omega$

2. 원통좌표계와 구좌표계

2.1 원통 좌표계

2.1.1 정의

Definition. 한 점의 z좌표가 z, 점의 xy평면으로의 정사영의 극좌표가 (r,θ) 일 때 점의 좌표를 (r,θ,z) 라 쓰는 것을 원통좌 표계라고 한다.

2.1.2 변환식

직교좌표계와 원통좌표계 사이의 변환식은 다음과 같다.
$$\begin{cases} r=\sqrt{x^2+y^2} \\ \tan\theta=\frac{y}{x} \end{cases} \iff \begin{cases} x=r\cos\theta \\ y=r\sin\theta \\ z=z \end{cases}$$

☞ 제세(III-3) 다음 직교좌표를 원통좌표로 변환하라.

(a)
$$(1,1,5)$$
 (b) $(3,-4,2)$ (c) $(0,12,9)$

2.1.3 단위벡터

 r, θ, z 방향의 단위벡터를 각각 e_r, e_θ, e_z 라 하자. 극좌표의 경우와 비슷하게 구해 보면

$$e_r = \begin{bmatrix} \cos\theta \\ \sin\theta \\ 0 \end{bmatrix} = \cos\theta \, e_x + \sin\theta \, e_y, \qquad e_\theta = \begin{bmatrix} -\sin\theta \\ \cos\theta \\ 0 \end{bmatrix} = -\sin\theta \, e_x + \cos\theta \, e_y, \qquad \qquad e_z = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = e_z$$

2.1.4 속도와 가속도

극좌표와 비슷한 방법으로 유도할 수 있다. 애초 원통좌표계는 xy평면 상에서는 극좌표와 같고 직교좌표계의 2좌표만 추가한 것이므로 식의 유사성을 확인해 보라.

(a) 위치벡터 :
$$\overrightarrow{r} = re_r + ze_z$$
 (b) 속도벡터 : $\overrightarrow{v} = \frac{\overrightarrow{dr}}{dt} = \overrightarrow{r}e_r + \overrightarrow{r}\theta e_\theta + ze_z$

(c) 가속도벡터 :
$$\vec{a} = \frac{\vec{d} \cdot \vec{v}}{dt} = (\ddot{r} - r\dot{\theta}^2)e_r + (\ddot{r}\theta + 2\dot{r}\theta)e_\theta + \ddot{z}e_z$$

 ω 세(III-4) $\gamma = b$, $\theta = \omega t$, z = ct 의 궤도를 따라 움직이는 염주알의 속도와 가속도를 구하라.

2.2 구좌표계

2.2.1 정의

Definition. 한 점의 원점으로부터 거리가 r, 그 xy평면으로 의 정사영이 양의 x축과 이루는 각을 ϕ , 위치벡터가 z축과 이루는 각을 θ 라 할 때 (r,θ,ϕ) 로 점의 위치를 쓰는 것을 구 좌표계라 한다.

2.2.2 변화식

직교좌표계와 구좌표계 사이의 변환식은 다음과 같다.
$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \cos \theta = \frac{z}{r} \\ \tan \phi = \frac{y}{x} \end{cases} \iff \begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

폐제(III-5) 다음 직교좌표를 구면좌표로 변환하라.

(a) (1,0,0) (b) $(1,1,\sqrt{2})$ (c) (3,4,5)

2.2.3 단위벡터

 $r, heta, \phi$ 방향의 단위벡터를 각각 $e_r, e_{ heta}, e_{\phi}$ 라 하자. 마찬가지로 단위벡터를 직교좌표의 단위벡터로 나타내어 보면

$$e_{r} = \frac{\frac{d\mathbf{r}}{dr}}{\left|\frac{d\mathbf{r}}{dr}\right|} = \begin{bmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{bmatrix} = \sin\theta\cos\phi e_{x} + \sin\theta\sin\phi e_{y} + \cos\theta e_{z}$$

$$e_{\theta} = \frac{\frac{d\mathbf{r}}{d\theta}}{\left|\frac{d\mathbf{r}}{d\theta}\right|} = \begin{bmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{bmatrix} = \cos\theta\cos\phi e_{x} + \cos\theta\sin\phi e_{y} - \sin\theta e_{z}$$

$$\frac{d\mathbf{r}}{d\theta} = \begin{bmatrix} -\sin\phi \end{bmatrix}$$

$$e_{\phi} = \frac{\frac{d\mathbf{r}}{d\phi}}{\left|\frac{d\mathbf{r}}{d\phi}\right|} = \begin{bmatrix} -\sin\phi\\\cos\phi\\0 \end{bmatrix} = -\sin\phi e_x + \cos\phi e_y$$

2.2.4 속도와 가속도

위 세가지 식을 연립하면 다음 결과를 확인 할 수 있다.

$$\frac{de_r}{dt} = e_\phi \dot{\phi} \sin \theta + e_\theta \dot{\theta}, \quad \frac{de_\theta}{dt} = -e_r \dot{\theta} + e_\phi \dot{\phi} \cos \theta, \quad \frac{de_\phi}{dt} = -e_r \dot{\phi} \sin \theta - e_\phi \dot{\phi} \cos \theta$$
 이를 이용하면

(a) 위치벡터 :
$$\vec{r} = re_r$$
 (b) 속도벡터 : $\vec{v} = \frac{\vec{dr}}{dt} = \dot{r}e_r + rdot\phi\sin\theta e_\phi + r\dot{\theta}e_\theta$

(c) 가소도베터

$$\overrightarrow{a} = \frac{\overrightarrow{dv}}{dt} = (\overrightarrow{r} - r \dot{\phi}^2 \sin^2 \theta - r \dot{\theta}^2) e_r + (r \ddot{\theta} + 2 \dot{r} \dot{\theta} - r \dot{\phi}^2 \sin \theta \cos \theta) e_\theta + (r \ddot{\phi} \sin \theta + 2 \dot{r} \dot{\phi} \sin \theta + 2 \dot{r} \dot{\theta} \dot{\phi} \cos \theta) e_\phi$$

예제(III-6)
$$r=b$$
, $\phi=\omega t$, $\theta=\frac{\pi}{2}\left[1+\frac{1}{4}\cos(4\omega t)\right]$ 의 궤도의 속도를 구하라.

3. 변환행렬과 야코비안

3.1 변환행렬

3.1.1 정의

3개의 기저벡터의 일차결합으로 점의 위치를 나타내는 좌표계 간의 변환은 변환행렬을 이용한다.

Definition. ijk좌표계를 i'j'k'좌표계로 변환할 때, 즉 $A=iA_x+jA_y+kA_z=i'A_{x'}+j'A_{y'}+k'A_{z'}$ 로 써질 때, **투영**의 개념을 생각하면 계수 사이의 관계는 다음과 같다.

$$\begin{pmatrix} A_{x'} \\ A_{y'} \\ A_{z'} \end{pmatrix} = \begin{pmatrix} i & \cdot & i' & j & \cdot & i' & k & \cdot & i' \\ i & \cdot & j' & j & \cdot & j' & k & \cdot & j' \\ i & \cdot & k' & j & \cdot & k' & k & \cdot & k' \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

이 위 식의 3×3행렬을 변환행렬이라고 한다.

3.1.2 예제들

wM(III-7) x축, y축, z축을 중심으로 반시계 방향 θ 만큼 회전하는 회전변환에 대한 변환행렬을 구하라. 그 후 회전 변환의 순서가 결과에 영향을 미침을 확인하라. (회전각은 벡터가 아니다)

예계(III-8) 위에서 구한 변환행렬들이 직교행렬임을 확인하라. $(A^T = A^{-1})$

3.2 야코비안(Jacobian)

3.2.1 정의

좌표계 변환시 미분소(dA,dV,dS) 등을 구할 때 사용하는 행렬식이다.

Definition.
$$x = x(u,v)$$
, $y = y(u,v)$ 로 변환하는 좌표변환에서 야코비안을 $J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial (x,y)}{\partial (u,v)} \end{pmatrix}$

라고 정의한다. 이때 dxdy = |J|dudv 와 같이 미분소의 크기를 구할 수 있다.

3.2.2 이용

위의 방법으로 앞에서 배운 좌표계들의 미분소를 구해 보자.

(a) 극좌표계

$$J = \left(rac{\partial (x,y)}{\partial (r, heta)}
ight) = \left(egin{matrix} \cos heta & \sin heta \\ -r \sin heta & r \cos heta \end{matrix}
ight), \ |J| = r$$
이므로 $dA = dx dy = r dr d heta$ (이는 반드시 암기한다)

$$3$$
차원 좌표계 변환의 경우도 비슷하게 $J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{pmatrix} = \begin{pmatrix} \frac{\partial (x,y,z)}{\partial (u,v,w)} \end{pmatrix}$ 로 정의해 이용할 수 있다.

(b) 원통 좌표계

$$J \equiv \left(rac{\partial (x,y,z)}{\partial (r, heta,z)}
ight) = \left(egin{matrix} \cos heta & \sin heta & 0 \\ -r \sin heta & r \cos heta & 0 \\ 0 & 0 & 1 \end{matrix}
ight), \ |J| = r$$
이므로 $dV = dx dy dz = r dr d heta dz$

(c) 구면좌표계

$$J\!\!\equiv\!\!\left(\!\!\!\begin{array}{c} \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}\!\!\right)\!\!=\!\!\!\left(\!\!\!\begin{array}{c} \sin\!\theta\!\cos\!\phi & \sin\!\theta\!\sin\!\phi & \cos\!\theta\\ r\!\cos\!\theta\!\cos\!\phi & r\!\cos\!\theta\!\sin\!\phi - r\!\sin\!\theta\\ -r\!\sin\!\theta\!\sin\!\phi r\!\sin\!\theta\!\cos\!\phi & 0 \!\!\end{array}\!\!\right)\!\!, \quad |J|=r^2\!\sin\theta\!\circ\!|\,\Box\!\not\equiv d\,V\!=dxdydz\!=\!r^2\!\sin\theta\,drd\theta\,d\phi$$

☞제(III-9) 주어진 좌표계의 면적 미분소를 구하라.

(a)
$$u = x + y$$
, $v = x - y$ (b) $u = 2x - y$, $v = y$

PS. 사실 미분소는 그림을 그리고 직사각형 혹은 직육면체로 근사하면 쉽게 답은 얻을 수 있다. 그러나 과연 충분히 작다고 해서 직사각형 혹은 직육면체로 근사해도 될지 의문이 들었을 텐데, 이를 야코비안으로 엄밀히 구하는 것이다.

IV. 상미분방정식

1. 변수분리형 미분방정식

1.1 미분방정식이란

Definition, 미분을 포함한 방정식, 종류가 매우 다양하며 풀이법 또한 일부를 제외하고는 정형화 되어 있지 않다.

※ 미분방정식 용어 정리

선형/비선형: 더하기, 빼기, 실수배로만 구성되었으면 선형, 그렇지 않으면 비선형

동차/비동차 : 방정식에서 상수항이 없으면 동차, 상수항이 있으면 비동차

일계/이계: 방정식에 나오는 최고계미분이 일계면 일계미분방정식, 이계면 이계미분방정식 일반해/특수해 : 동차미방의 해가 일반해, 비동차미방의 해 중 일반해가 아닌 것이 특수해

ex) y'' + 3y' - 4y = 3x + 5 : 선형 비동차 이계 미분방정식

1.2 변수분리형 미분방정식의 풀이

 $\frac{dy}{dx} = \frac{f(x)}{g(y)}$, 꼴의 방정식은 g(y)dy = f(x)dx 꼴로 변형해 양변을 적분해 풀이한다.

♥♥(IV-1) 아래 미분 방정식을 풀어라 (초기조건이 없으면 적분상수를 이용해 답을 구할 것)

(a)
$$y' = 3y$$

(b)
$$y' = \sqrt{1 - y^2}$$

(a)
$$y' = 3y$$
 (b) $y' = \sqrt{1-y^2}$ (c) $\frac{dT}{dt} = k(T - T_0)$: 뉴턴의 냉각법칙

☞서(IV-2) 물체의 저항은 크기에 따라 속력 혹은 속력의 제곱에 비례한다.

- (a) 운동방정식이 ma = -kv 이고, 초기속력이 v_0 일 때 시간에 따른 속도 v(t)를 계산하라.
- (b) 운동방정식이 $ma = -kv^2$ 이고, 초기속력이 v_0 일 때 시간에 따른 속도 v(t)를 계산하라.
- (c) 중력과 저항력을 동시에 받으며 낙하하는 물체 의 운동방정식을 쓰고, 초기속력이 v_0 일 때 시간에 따른 속도 v(t)를 계산하라.

2. 선형 일계 미분방정식

2.1 선형 동차 일계 미분방정식

x에 관한 식 P에 대해 y'+Py=0을 푸는 방법을 알아보자. 이 식은 분리 가능하므로

$$\frac{dy}{y} = -Pdx, \ln y = -\int Pdx + C, \quad y = Ae^{-\int Pdx}$$

와 같이 풀 수 있다. 표기를 간단히 하기 위해 $I=\int Pdx$ 라 쓰면 e^I 를 **적분인자**라 부른다. 적분 인자는 양변에 곱했을 때 좌변을 어떤 함수의 미분으로 쓰여지게(완전미분방정식) 해준다.

2.2 선형 비동차 일계 미분방정식

2.2.1 일반적인 방법

이 절에서는 x에 관한 식 P,Q에 대해 y'+Py=Q를 푸는 방법을 알아본다.

 $\frac{d}{dt}(ye^I) = e^I(y' + Py)$ 임을 기억하며(적분인자의 성질) 방정식의 양변에 적분인자 e^I 를 곱하면

$$\frac{d}{dt}(ye^{I}) = e^{I}(y' + Py) = Qe^{I}, \quad ye^{I} = \int Qe^{I}dx + c$$

$$\therefore y = e^{-I} \int Qe^{I}dx + ce^{-I}$$

즉 임의의 P.Q에 대해 선형 비동차 일계 미분 방정식을 풀어낼 수 있다.

* 여기서 동차해가
$$y=ce^{-I}$$
꼴이었음을 기억하면 $\begin{cases} y_p=e^{-I}\int Qe^Idx(특수해) \\ y_c=ce^{-I}(일반해) \end{cases}$ 임을 알 수 있다.

2.2.2 응용

(a) Bernoulli 방정식

Definition. $y' + Py = Qy^n$ 꼴의 방정식

Solution. $z = y^{1-n}$ 으로 바꾸면 z' + (1-n)Pz = (1-n)Q 가 되어 일계미방으로 풀이 가능하다.

(b) 동차방정식 (용어가 모호하지만 동차식과는 다른 개념)

Definition. 모든 항이 $x^n f(\frac{y}{r})$ 로 쓸 수 있는 방정식, "차수가 같은 방정식"

Solution. y = xv로 변수변화하여 푼다.

PS. 이렇듯 미분방정식의 풀이에서는 적절한 변수변환을 할 수 있는 센스가 필요하다.

₩₩(IV-3) 아래 미분 방정식을 풀어라

(a)
$$y' + y = e^x$$
 (b) $(1+x^2)y' + 6xy = 2x$

3. 선형 이계 미분방정식

- 3.1 선형 동차 이계 미분방정식
- 3.1.1 미분연산자

Definition.
$$\frac{d}{dx}=D$$
 라 쓰고 D 를 미분연산자라 한다. $:$ $ex)$ $\frac{dy}{dx}+4y=(D+4)y$

엄밀하진 않지만 수리물리에서 받아들여야 할 미분연산자의 특성은 다음과 같다.

- (a) 고계미분은 연산자 D 의 거듭제곱처럼 취급한다.
- (b) 식을 전개할때는 다항식을 전개하듯 *D*를 하나의 문자로 취급한다.

이때 $\frac{dy}{dx} + cy = (D+c)y = 0$ 의 해는 $y = Ae^{-cx}$ 이다. D+c=0의 해가 D=-c임에서 미분방정식을 미분연산자를 문자로 취급한 다항방정식으로 바꾸어 생각할 수 있음을 추측할 수 있다.

3.1.2 특성방정식

상수 a,b,c에 대한 미분방정식 $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$ 을 생각하자.

미분연산자를 이용해 식을 다시 쓰면 $(aD^2+bD+c)y=0$

Pefinition. 여기서 $ax^2 + bx + c$ 를 이 미분방정식의 특성방정식이라 하며 특성방정식의 해의 종류에 따라 방정식의 해가 달라진다.

(a) 특성 방정식이 서로다른 실근 c_1, c_2 를 가질 때

$$\begin{split} &(D-c_1)(D-c_2)y=0 \text{ 이므로 } (D-c_2)y=A'e^{c_1x}, \text{ 양변에 적분인자 } e^{-c_2x} \!\!\!\! = \text{ 곱하면} \\ &D(ye^{-c_2x})=A'e^{(c_1-c_2)x}, \ ye^{-c_2x}=Ae^{(c_1-c_2)x}+B \text{ (단 } A=A'/(c_1-c_2)) \ \therefore \ y=Ae^{c_1x}+Be^{c_2x} \end{split}$$

(b) 특성 방정식이 하나의 중근 c를 가질 때

$$(D-c)(D-c)y = 0$$
 이므로 $(D-c)y = Ae^{cx}$, 양변에 적분인자 e^{-cx} 를 곱하면 $D(ue^{-cx}) = A$. $ue^{-cx} = Ax + B$. $\therefore y = Axe^{cx} + Be^{cx}$

(c) 특성 방정식이 서로다른 허근 c_1, c_2 를 가질 때

(a)에서
$$c_1,c_2$$
가 실근이라는 조건을 사용한적이 없음을 기억하자. 즉 $\therefore y=A'e^{c_1x}+B'e^{c_2x}$ 특성방정식이 실계수 방정식이라면 $c_1=-b+i\,\beta,\ c_2=-b-i\,\beta$ 꼴이므로 오일러 공식에 의해 $\therefore y=e^{-bx}(A\sin\beta x+B\cos\beta x)$

이 결과를 정리하면 다음과 같다.

$$\begin{array}{ll} \textit{Theorem. } ay'' + by' + c = 0 \\ & \text{of ite} \end{array} \begin{array}{l} \left\{ \begin{aligned} y &= Ae^{c_1x} + Be^{c_2x} & (b^2 - 4ac > 0) \\ y &= Axe^{cx} + Be^{cx} & (b^2 - 4ac = 0) \\ y &= e^{-bx} (A\sin\beta x + B\cos\beta x) \left(b^2 - 4ac < 0\right) \end{aligned} \right. \end{array}$$

예계(IV-4) 감쇠진동자의 미분방정식은 $y''+2\gamma y'+\omega_0^2 y=0$ 꼴 로 쓸 수 있다. 주어진 γ 와 ω_0 의 관계에 따라 미분방정식을 풀고 감쇠진동자의 움직임을 논하라.

(a)
$$\gamma > \omega_0$$

(b)
$$\gamma = \omega_0$$

(b)
$$\gamma = \omega_0$$
 (c) $\gamma < \omega_0$

♥♥(エV-5) 다음 RLC 회로의 미분방정식을 보고 감쇠진동자와 RLC회로가 동치임을 보여라

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$$

- 3.2 선형 비동차 이계 미분방정식
- 3.2.1 일반해와 특수해

Definition. 비동차 미분방정식 f(y) = g(x)에 대해 f(y) = 0의 해를 일반해 (y_c) , f(y) = g(x)의 해를 특수해 (y_p) 라고 부른다.

au 7heorem. 선형비동차 미분방정식 f(y) = g(x)의 해는 $y = y_c + y_b$ 꼴로 쓸 수 있다.

- 3.2.2 특수해 구하기
- 이 절에서는 선형 비동차 이계 미분방정식의 특수해를 구하는 방법에 대해 다룬다.
- (a) 두 개의 일차방정식의 연속적분
- 3.1.2에서 푼 방법을 우변이 0이 아닐 때에도 그대로 적용, 적분인자는 우변이 0이 아닐 때에도 통한다는 점을 기억하라.
- (b) 우변이 지수함수인 경우

 $(D-a)(D-b)=Ae^{bx}$ 꼴 일 때 특수해는 $y_b=Ce^{bx}$ 꼴이다.

₩ 제(IV-6) 위 문장을 증명하라.

(c) 우변이 삼각함수인 경우

 $(D-a)(D-b)y=\begin{cases}k\sin\alpha x\\k\cos\alpha x\end{cases}$ 꼴의 경우 오일러 공식에 착안하면 $(D-a)(D-b)y=ke^{iax}$ 를 풀고 허수부분, 혹은 실수부분을 취한다.

(d) 중첩원리 : 우변에 여러 항이 있는 경우 각각의 특수해를 선형결합한 것이 특수해가 된다.

₩₩(zv-7) 강제진동은 감쇠진동자에 외부구동력을 작용해서 진동시키는 경우를 말하며 그 미분 방정식은 아래와 같다.

$$y'' + 2\gamma y' + \omega_0^2 y = F \sin \omega t$$

이를 풀어 강제진동의 공명진동수를 구하라. (Hint: 이 경우 비동차해는 무시하라)

 $\omega_{\sigma}(IIV-8I)$ 위 예제들을 바탕으로 $\omega_{0}(III)$ 비감쇠진동자의 자연진동수), $\omega_{d}(II)$ 위 예제들을 바탕으로 $\omega_{0}(III)$ 사이의 관계에 대해 논하라.

MEMO

 $\hfill \hfill \hfill$