NPTEL MOOC, JAN-FEB 2015 Week 4, Module 5

DESIGN AND ANALYSIS OF ALGORITHMS

Minimum cost spanning trees

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Example: Road network

- * District hit by a cyclone, damaging the roads
- * Government sets to work to restore the roads
- * Priority is to ensure that all parts of the district can be reached
- * What set of roads should be restored first?

Spanning tree

- * Minimum connectivity: no loops
 - * Removing an edge from a loop cannot disconnect graph
- * Connected acyclic graph tree
- * Spanning tree

Spanning tree

- * Minimum connectivity: no loops
 - * Removing an edge from a loop cannot disconnect graph
- * Connected acyclic graph tree
- * Spanning tree

Spanning tree

- * Minimum connectivity: no loops
 - * Removing an edge from a loop cannot disconnect graph
- * Connected acyclic graph tree
- * Spanning tree

Spanning tree with costs

- * Restoration of each road has a cost
- * Among the different spanning trees, choose the one with minimum cost
- * Minimum cost spanning tree

Spanning tree with costs

Cost = 114

- * Restoration of each road has a cost
- * Among the different spanning trees, choose the one with minimum cost
- * Minimum cost spanning tree

Spanning tree with costs

$$Cost = 114$$

$$Cost = 44$$

- * Restoration of each road has a cost
- * Among the different spanning trees, choose the one with minimum cost
- * Minimum cost spanning tree

Definition: A tree is a connected acyclic graph

Fact 1: A tree on n vertices has exactly n-1 edges

- * Start with a tree and delete edges
- * Initially one single component
- * Deleting an edge must split a component into two
- * After n-1 edge deletions, n components, each an isolated vertex

Fact 2: Adding an edge to a tree must create a cycle

- * Suppose we add an edge (i,j)
- * Tree is connected, so there is already a path p from i to j
- * New edge (i,j) plus path p creates a cycle

Fact 3: In a tree, every pair of nodes is connected by a unique path

* If there are two paths from i to j, there must be a cycle

Any two of the following facts about a graph G implies the third

- * G is connected
- * G is acyclic
- * G has n-1 edges

Building a minimum cost spanning trees

Two natural strategies

* Start with smallest edge and grow it into a tree

Prim's Algorithm

* Scan edges in ascending order of cost and connect components to form a tree

