محمد جواد زنديه 9831032

۹-۱- تعیین ولتاژ آستانه ترانزیستور NMOS

به محض اینکه جریان درین به مقدار خواسته شده رسید، ولتاژ گیت-سورس نشاندهنده ولتاژ آستانه خواهد بود.

ولتاژ آستانه برابر است با مقدار ولتاژ گیت زمانی که مقدار آن را از صفر تا لحظه گذر جریان از مقاومت درین تغییر میدهیم (حداقل 0.1 میلی آمپر)

در نمودار زیر این مقدار برابر 1.8 ولت میباشد.

۹-۲- بایاس ساده ترانزیستور NMOS

در مدار شکل (۹-۹) با استفاده از نتیجه بدست آمده برای ولتاژ آستانه، مقاومت سورس را طوری انتخاب کنید که جریان درین ۸۷ شود.

مدار شکل (۹-۹) را روی بِرد بورد ببندید. ولتاژ درین و سورس را اندازه بگیرید و با مقدار تئوری خود مقایسه کنید. چقدر خطا دارید؟ دلیل آن را توضیح دهید.

$$R_D = \frac{(10 - 8)V}{20mA} = 100\Omega$$

مقدار 5 ولت را برای گیت فرض میکنیم و چون ولتاژ آستانه ما 1.8 ولت است و برای آنکه بین درین و سورس جریان برقرار باشد باید مقدار ولتاژ گیت_سورس بیش از آن باشد پس این اختلاف ولتاژ را هم 2 درنظر میگیریم پس ولتاژ سورس 3 ولت به دست می آید

$$V_G = 5V$$

$$V_{GS} > V_t$$

$$V_{GS} = 2$$

$$V_S = 3 \rightarrow R_S = \frac{3V}{20mA} = 150\Omega$$

حال که مقادیر مقاومت درین و سورس را حدس زدیم با افزایش مقدار ولتاژ گیت زمانی را که مقدار جریان درین_سورس برابر 20 میلی آمپر می شود و با یک تقسیم ولتاژ می توان مقاومت گیت را هم پیدا کرده و مقدار ولتاژ گیت به طور دقیق مشخص می شود و با یک تقسیم ولتاژ می توان مقاومت گیت را هم پیدا کرد.

مشاهده می شود که زمانی که ولتاژ گیت برابر 5.52 ولت است به طور تقریبی مقدار جریان درین_سورس برابر 20 میلی آمپر می شود.

حال نیاز است که یک تقسیم ولتاژ بزنیم در مدار اولیه که داشتیم و مقدار مقاومت گیت را حساب کنیم:

$$5.52 = \frac{R_G * (10 - 5.52)}{100K} \to R_G = 123.2K$$

اگر مقادیر مقاومت به دست آمده را جایگذاری کنیم و مدار را رسم کنیم میتوان دید که به درستی مقدار جریان 20 میلی آمیر به دست می آید :

ولتاژ درین-سورس برابر 3.002 ولت می باشد که در حدس اولیه ما آن را 3 ولت حدس زده بودیم و این اخلاف اندک هم به دلیل آن است که ولتاژ گیت-سورس را 2 ولت در نظر گرفتیم در حالی که این مقدار برابر 2.19 ولت میباشد یعنی باید اختلاف ولتاژ گیت و سورس برابر اسن مقدار باشد تا جریان گفته ایجاد شود.

۹-۴- تقویت کننده سورس مشترک با ترانزیستور NMOS

پیش گزارش: بهره ولتاژ Vout بر حسب Vin را حساب کنید.

مدار شکل (۱۱-۹) یک مدار سورس مشترک میباشد که در آن ورودی به گیت اعمال شده و خروجی از درین
 گرفته میشود. این مدار را روی برد بورد ببندید و جدول (۹-۲) و (۹-۳) را تکمیل کنید.
 ولتاژ ورودی به گیت یک موج سینوسی با دامنه ۱۰۰ میلیولت و فرکانس KHz است.

جدول (۹-۲)

I_d	V_d	V_g	پارامتر
297.3 uA	7.027 V	1.826 V	مقدار اندازه گیری شده

محاسبات تئورى : با تحليل DC

$$V_{th}=1.8~v, K=1.48rac{A}{V^2}$$
 $V_{th}=1.80~v, K=1.48rac{A}{V^2}$ $V_{th}=1.82~v, V_{th}=1.82~v$ $V_{th}=1.82~v$ V_{th

مقدار مقاومت درین را مطابق جدول (۹-۳) تغییر دهید و نتایج بدست آمده را یادداشت نمایید.

جدول (٣-٩)

درصد خطا	تئورى A_v	عملی A_v	V_o	V_{in}	R_d
0.19%	58.6	58.7146	587.146m	10m	\· ΚΩ
0.21%	29.3	29.3619	293.619m	10m	Δ ΚΩ

محاسبه تئوری برای مقاومت 10 کیلو اهم با تحلیل AC

$$g_m = k(V_{GS} - V_{th}) = 0.293 * (1.82 - 1.8) = \frac{5.86mA}{V}$$

$$KVL : V_o = -g_m * v_{gs} * 10^4$$

$$KVL : v_{gs} - v_i = 0 \rightarrow v_{gs} = v_i$$

$$V_0 = 586 \ mv \rightarrow V_v = \frac{586}{10} = 58.6$$

محاسبه تئوری برای مقاومت 5 کیلو اهم با تحلیل AC

$$g_m = k(V_{GS} - V_{th}) = 0.0293 * (1.82 - 1.8) = \frac{0.586mA}{V}$$

$$KVL : V_o = -g_m * v_{gs} * 5 * 10^3$$

$$KVL : v_{gs} - v_i = 0 \rightarrow v_{gs} = v_i$$

$$V_0 = 293 \ mv \rightarrow V_v = \frac{293}{10} = 29.3$$

به ازای 10 کیلو اهم:

به ازای 5 کیلو اهم:

