Assignment 4 of MATP6610/4820

(Due on March-19-2019 in class)

Problem 1

Consider the problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{x}, \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$.

- 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Starting from $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, do by hand two cycles of the coordinate descent method for (1).
- 2. Given $\bar{\mathbf{x}}$ and i, let

$$\hat{x}_i = \operatorname*{arg\,min}_{x_i} f(\bar{\mathbf{x}}_{< i}, x_i, \bar{\mathbf{x}}_{> i}).$$

Derive an explicit formula of \hat{x}_i , which should depend on \mathbf{A}, \mathbf{b} and $\bar{\mathbf{x}}$.

3. (Only for 6610 students:) Let $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ be the iterate sequence given by the coordinate descent method for (1). Show that for any initial point $\mathbf{x}^{(0)}$, $f(\mathbf{x}^{(k)})$ converges to the optimal objective value.

Hint: first show that

$$f(\mathbf{x}_{< i}^{k+1}, x_i^{k+1}, \mathbf{x}_{> i}^k) = f(\mathbf{x}_{< i}^{k+1}, x_i^k, \mathbf{x}_{> i}^k) - \frac{a_{ii}}{2} (x_i^k - x_i^{k+1})^2;$$

secondly, show that

$$f(\mathbf{x}^{k+1}) \le f(\mathbf{x}^k) - \frac{c}{2} ||\mathbf{x}^k - \mathbf{x}^{k+1}||^2, \, \forall k \ge 0,$$

where $c = \min_i a_{ii} > 0$, and a_{ii} is the *i*-th diagonal element of **A**. Thirdly, noting $f(\mathbf{x}^k) \ge \min_{\mathbf{x}} f(\mathbf{x})$, show $\sum_{k=0}^{\infty} \|\mathbf{x}^k - \mathbf{x}^{k+1}\|^2 < \infty$ and thus $\mathbf{x}^k - \mathbf{x}^{k+1} \to \mathbf{0}$ as $k \to \infty$. Fourth, let $\bar{\mathbf{x}}$ be any limit point of $\{\mathbf{x}^k\}_{k\ge 0}$, and show $A\bar{\mathbf{x}} = \mathbf{b}$ and thus $\bar{\mathbf{x}}$ is an optimal solution. Finally, use the monotonicity of $\{f(\mathbf{x}^k)\}_{k\ge 0}$ to argue $f(\mathbf{x}^k) \to f(\bar{\mathbf{x}})$ as $k \to \infty$.

Problem 2

Consider the Lasso problem:

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \lambda \|\mathbf{x}\|_1,$$
 (2)

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are given.

Use the instructor's provided file $CD_Lasso.m$ to write a Matlab function CD_Lasso with input A, b, initial vector $\mathbf{x}0$, parameter λ , and maximum iteration number maxit. Also test your function by running the provided test file $test_CD_Lasso.m$ and compare to the instructor's function. Print your code and the results you get.