Homework Assignment 9

Matthew Tiger

November 20, 2016

Problem 8.2.2. If Sf(x) is the Schwarzian derivative of f(x) with $f \in C^3$ and $F(x) = \frac{f''(x)}{f'(x)}$, show that $Sf(x) = F'(x) - (F(x))^2/2$.

Solution. Recall that the Schwarzian derivative of f is given by

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2.$$

We readily see from the definition of F(x) that

$$F'(x) - \frac{1}{2} [F(x)]^2 = \frac{f'(x)f'''(x) - f''(x)^2}{f'(x)^2} - \frac{1}{2} \left[\frac{f''(x)}{f'(x)} \right]^2$$
$$= \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2$$
$$= Sf(x)$$

and we are done.

- **Problem 8.2.5.** i. Show that if p is a polynomial of degree n having n distinct fixed points, and negative Schwarzian derivative, then not all of the fixed points can be attracting.
 - ii. On the other hand, show that the logistic maps $L_{\mu}: \mathbb{R} \to \mathbb{R}$ for $\mu > 2 + \sqrt{5}$ have negative Schwarzian derivative but have no attracting periodic orbits.
- Solution. i. Suppose to the contrary that p is a polynomial of degree n with n distinct fixed points and negative Schwarzian derivative but all of its fixed points are attracting. Let x_1, \ldots, x_n denote these attracting fixed points.

Since p is a polynomial, it is continuous, which implies that for each attracting fixed point x_k , its immediate basin of attraction W_k is an open interval. Note that these fixed points are distinct and attracting so that the immediate basins of attraction of two fixed points x_j and x_k with $j \neq k$ are mutually exclusive, i.e. $W_j \cap W_k = \emptyset$ for any $j \neq k$.

Since $p \in C^3$ with negative Schwarzian derivative, we have by Singer's theorem that for every fixed point x_k , either W_k is an unbounded interval, or the orbit of some critical point of p is attracted to the orbit of x_k under f.

ii.

2

Problem 8.2.6.

 \Box

Problem 8.2.10.

 \Box

Problem 10.3.4. The Sierpinski carpet is a 2-dimensional version of the Cantor set and the Menger sponge. Start with the unit square $[0,1] \times [0,1]$ partitioned into nine equal squares. Remove the "open middle third" square $(1/3,2/3) \times (1/3,2/3)$. From each of the remaining eight squares of side length 1/3, remove the open middle third squares and continue indefinitely.

- i. Show that the resulting area removed is equal to one square unit.
- ii. Show that the box counting dimension of the Sierpinski carpet is $\log 8/\log 3$.
- iii. Show that the Sierpinski carpet has no interior, i.e. contains no open balls in \mathbb{R}^2 .

Solution. i. On the first iteration, one square of dimension $1/3 \times 1/3$ is removed. Each subsequent iteration removes 8 times as many squares that were removed in the previous iteration where the length of each square to be removed is 1/3 of the length of the previous squares removed. Therefore, A_n , the area removed at each iteration n for $n = 1, 2, \ldots$, is $A_n = 8^{n-1}/3^{2n}$ and the total area removed, A, is given by

$$A = \sum_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} \frac{8^{n-1}}{3^{2n}} = \frac{1}{8} \sum_{n=1}^{\infty} \left(\frac{8}{9}\right)^n = 1.$$

ii. Let K is a non-empty subset of \mathbb{R}^n and let $N_{\delta}(K)$ be the minimum number of boxes of equal length $\delta > 0$ needed to cover the set K. Then the box-counting dimension of K is given by

$$\dim(K) = \lim_{\delta \to 0^+} \frac{\log N_{\delta}(K)}{\log 1/\delta}.$$

Now let $K \subseteq \mathbb{R}^2$ be the Sierpinski carpet. We will construct a sequence For the first iteration, we see that we would need 8 squares with side-length 1/3 in order to completely cover the Sierpinski carpet. The next iteration would require 64 squares of side-length 1/9 in order to completely cover the Sierpinski carpet. In general, for the n-th iteration, we would require $N_{\delta_n}(K) = 8^n$ squares of length $\delta_n = 3^{-n}$. Therefore,

$$\dim(K) = \lim_{\delta \to 0^+} \frac{\log N_{\delta}(K)}{\log 1/\delta} = \lim_{n \to \infty} \frac{\log N_{\delta_n}(K)}{\log 1/\delta_n} = \lim_{n \to \infty} \frac{\log 8^n}{\log 3^n} = \frac{\log 8}{\log 3}.$$

iii. Suppose to the contrary that the interior of K, the Sierpinski carpet, is non-empty, i.e. there is some point $x \in K$ such that a square centered at x is contained completely in K. Since this square is completely within the Sierpinski carpet, it contains a square defined by the coordinates $\left(\frac{j}{3^n}, \frac{k}{3^n}\right), \left(\frac{j}{3^n}, \frac{k+1}{3^n}\right), \left(\frac{j+1}{3^n}, \frac{k}{3^n}\right), \left(\frac{j+1}{3^n}, \frac{k+1}{3^n}\right)$ for some $0 < j, k < 3^n$ that are not multiples of 3. However, after the n-th iteration this square will be removed from K, contradicting the fact that the square centered at x is completely inside K. Therefore, the interior of the Sierpinski carpet is empty.

Problem 10.3.6. Find the box-counting dimension of the set $M = \{0, 1, 1/2, 1/3, 1/4, \dots\}$.

Solution. Note that $M = \{0\} \cup \bigcup_{n \in \mathbb{Z}^+} \frac{1}{n}$ is a countable set. For any $\delta > 0$, we can cover M with countably many intervals of length δ , i.e. for each

 $x \in M$, we have that $\{x\} \subseteq [x - \delta/2, x + \delta/2]$ so that

$$M \subseteq \left[-\frac{\delta}{2}, \frac{\delta}{2} \right] \cup \bigcup_{n \in \mathbb{Z}^+} \left[n - \frac{\delta}{2}, n + \frac{\delta}{2} \right].$$

Thus, the minimum number of boxes needed to cover M is $N_{\delta}(M) = \lim_{n \to \infty} n$ and the box-counting dimension of M is given by

$$\dim(M) = \lim_{\delta \to 0^+} \frac{\log N_{\delta}(M)}{\log 1/\delta} = \lim_{\delta \to 0^+} \lim_{n \to \infty} \frac{\log n}{\log 1/\delta} = \lim_{n \to \infty} \frac{\log n}{\log n} = 1.$$

Note that M is a collection of points so its topological dimension is 0. Therefore, M is a fractal since its box-counting dimension is strictly greater than its topological dimension. \Box

Problem 10.3.7.

 \Box