

Roger Penrose, Andrea Ghez and Reinhard Genzel (left to right) received the 2020 Nobel physics prize for their research on black holes. Credit: David Levenson/Getty, Christopher Dibble, ESO/M. Zamani

Introdução à Física Moderna: Programa provisório

- ➤ Analise Dimensional uma introdução
- > Relatividade Restrita
- > Algumas noções de Relatividade Geral e cosmologia
- > Fotões
- > Átomos
- > Ondas de Matéria

Bibliografia

Disponibilidade livre

- "Mechanics and Relativity", Timon Idema Chapters 10-14 https://textbooks.open.tudelft.nl/index.php/textbooks/catalog/book/14
- "University Physics Vol 3", S. Ling Chapters 7-8 https://openstax.org/books/university-physics-volume-3/pages/1-introduction
- "World Science U" de Brian Greene e amigos http://www.worldscienceu.com/

Na biblioteca Central UMinho

- Modern physics for scientists and engineers (2004) J.R. Taylor, C.D. Zafiratos, M.A. Dubson *530.1*
- Modern physics, P.A. Tipler e R.A. Llewellyn (2000) 530.1
- Introdução à Física, J. Dias de Deus, M. Pimenta, A. Noronha, T. Peña, P. Brogueira (1993) *530.1 I*
- Taylor, E. F., Wheeler, J. A. (1992). Spacetime Physics (Second edition). W. H. Freeman and Co. *530.12*
- Quantum physics: a first encounter, V. Scarani (2006) 530.145

Avaliação

Opção A: 2 Testes cada um com um peso de 50%

Opção B: Melhor teste 50%, outro teste 40%,

Participação em Persuall 10%c

Perusall

Perusall

O Perusall ajuda a aprender mais rápido, através de anotações e discussão com os colegas da turma.

A colaboração permite

- a ajuda entre pares
- fornece informação sobre os aspetos que devem ser aprofundados nas aulas
 - A collaborative e-book reader
 - Developed at Harvard University by Eric Mazur, Gary King, Brian Lukoff and Kelly Miller

Ordens de grandeza

$$\hbar \approx 1.055 x 10^{-34} Js$$
 $c \approx 2.998 x 10^8 m / s$
 $G \approx 6.67 x 10^{-11} m^3 / kg \cdot s^2$
 $M_{sol} \approx 2x 10^{30} kg$
 $m_e \approx 9.11 x 10^{-31} kg$

A maior parte dos constantes físicos tem unidades associadas.

No sistema SI as unidades fundamentais são: massa (kg), distância (m), tempo (s), corrente (Amperes = Coulomb/s), temperatura (Kelvin), intensidade luminosa (candela)

"As leis de Física não devem depender do sistema das unidades usados"

Consistência dimensional

Em qualquer equação as dimensões dos vários elementos tem ser consistentes... Considere um comboio a passar numa curva – qual é a aceleração?

$$a = ?$$
 $a = f(r, v)$

$$\begin{bmatrix} a \end{bmatrix} = \frac{D}{T^2}$$

$$\begin{bmatrix} v \end{bmatrix} = \frac{D}{T}$$

$$\begin{bmatrix} r \end{bmatrix} = D$$

$$a = Const \frac{v^2}{r}$$

$$f(r,v,x,y,..)$$
 $g(r,v,x,y,..)$

Numa forma adimensional

Grupos adimensionais

$$[a] = \frac{D}{T^2}$$

$$\left[\mathbf{v}\right] = \frac{D}{T}$$

$$[r] = D$$

Só existe uma combinação adimensional

$$\begin{bmatrix} a \end{bmatrix} = \frac{D}{T^2}$$
 Só existe uma combinação adimen
$$\begin{bmatrix} v \end{bmatrix} = \frac{D}{T}$$

$$\begin{bmatrix} v \end{bmatrix} = \frac{D}{T}$$

$$\begin{bmatrix} r \end{bmatrix} = D$$
 Constante adimensional
$$\begin{bmatrix} r \end{bmatrix} = D$$

Porque não escrevemos
$$\left[\frac{ar}{v^2}\right]^3 = C$$
?

$$\left| \frac{ar}{v^2} \right|^2 = C$$

Grupos adimensionais

$$\left[a\right] = \frac{D}{T^2}$$

$$[\mathbf{v}] = \frac{D}{T}$$

$$[r] = D$$

Só existe uma combinação adimensional

$$\begin{bmatrix} a \end{bmatrix} = \frac{D}{T^2}$$
 Só existe uma combinação adimenta
$$\begin{bmatrix} v \end{bmatrix} = \frac{D}{T}$$

$$\begin{bmatrix} v \end{bmatrix} = D$$

$$\begin{bmatrix} r \end{bmatrix} = D$$
 Constante adimensional
$$\begin{bmatrix} r \end{bmatrix} = D$$

Porque não escrevemos $\left[\frac{ar}{r^2}\right]^3 = C$?

$$\left[\frac{ar}{v^2}\right]^3 = C \qquad ?$$

Resulta na mesma resultado

$$\frac{ar}{v^2} = C^{1/3}$$

Ainda mais geral
$$f\left(\frac{ar}{v^2}\right) = C \rightarrow \frac{ar}{v^2} = f^{-1}(C) = C'$$

$$\frac{ar}{v^2} = C$$
 $a \sim \frac{v^2}{r}$

Desconhecemos o constante mas tipicamente é de ordem 1

Exemplo: Intercidades com v = 220 km/h ou seja cerca de 60m/s r típica ≈ 2 km

$$a \sim \frac{(60m/s)^2}{2x10^3 m} \approx 1.8 \, m/s^2$$

$$g \approx 9.8 \, m/s^2$$

Convêm que $\frac{a}{g}$ seja modesto para que a inclinação não seja muito grande...

Grupos adimensionais

Existe uma vantagem em trabalhar com conjuntos de variáveis físicos que formam grupos adimensionais.

Exemplo: Imagine que queremos saber o período, τ, de oscilação dum pêndulo.

Primeiro listar as variáveis relevantes e determinar as suas dimensões

$$\begin{bmatrix} \tau \end{bmatrix} = T$$
$$\begin{bmatrix} l \end{bmatrix} = D$$
$$\begin{bmatrix} m \end{bmatrix} = M$$
$$\begin{bmatrix} g \end{bmatrix} = D/T^2$$

Notar que é impossível formar um grupo adimensional com m.

Logo o período não pode depender de m!

$$f\left(\frac{\tau^2 g}{l}\right) = C$$

Em geral o Nº de grupos adimensionais é igual ao o Nº de variáveis – Nº dimensões independentes

$$\theta_0$$

$$f\left(\frac{\tau^{2}g}{l}\right) = C \qquad \qquad \tau^{2} = \frac{l}{g}f^{-1}(C)$$

$$\tau = C'\sqrt{\frac{l}{g}}$$

Como achar o constante C'?

- Resolver a equação diferencial
- Fazer um experiência

l = 0.65m; 10 oscilações demoram 16.1s

C'=1.61s
$$\sqrt{\frac{(9.8m/s^2)}{0.65m}} \approx 6.25 \rightarrow 2\pi$$

A Estimativa do G Taylor

Teste de "Trinity" e, 1945 explosão duma bomba atómica. O jornal Life publicou as imagens (com escala de distâncias) As forças armadas dos EUA não revelou a energia libertada pela bomba.

A Estimativa do G Taylor

t (ms)	R (m)
3.26	59.0
4.61	67.3
15.0	106.5
62.0	185.0

Variáveis importantes

Energia	E	MD^2
Lifergia	L	T^2
Raio da Explosão	R	D
tempo	t	T
densidade do ar	ρ	$\frac{M}{D^3}$

4 variáveis, 3 dimensões independentes 1 grupo adimensional

$$\left[\frac{E}{\rho}\right] \sim \frac{D^5}{T^2} \qquad \left[\frac{Et^2}{\rho}\right] \sim D^5 \quad \left[\frac{Et^2}{R^5\rho}\right] \sim 1$$

$$E = C\left(\frac{\rho R^5}{t^2}\right)$$

A Estimativa do G Taylor

$$E = C\left(\frac{\rho R^5}{t^2}\right)$$

Confirmação: Numa dada explosão E e ρ são constantes

$$E = C\left(\frac{\rho R^5}{t^2}\right) \to R \sim C' t^{2/5}$$

R (m)
59.0
67.3
106.5
185.0

$$\rho = 1.2kg / m^3$$

Densidade do ar
$$\rho = 1.2kg / m^3$$
 $E \sim \left(\frac{\rho R^5}{t^2}\right) \sim 7x10^{13} J \approx 17k$ Toneladas TNT

Valor atual 20 kToneladas TNT

Quando existe 2 grupos adimensionais

Desvio da luz por efeito gravítico

LIGHTS ALL ASKEW IN THE HEAVENS

Men of Science More or Less Agog Over Results of Eclipse Observations.

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be. but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

Variáveis relevantes

Ângulo
$$heta$$
 1

Distância menor
$$r$$
 D

Efeito de Gravidade
$$Gm = \frac{D^3}{T^2}$$

$$[F] = \frac{MD}{T^2} - \frac{Gm_1m_2}{r^2} = F$$

Com estas varáveis só podemos fazer um grupo adimensional, θ ???

Variáveis relevantes

heta	1	Grupos adimensionais
r	D	$ heta = rac{Gm}{rc^2}$
Gm	$\frac{D^3}{T^2}$	rc^2
С	$\frac{D}{T}$	$\theta = f\left(\frac{Gm}{rc^2}\right)$
	r Gm	r D Gm $\frac{D^3}{T^2}$ c D

$$\theta = f\left(\frac{Gm}{rc^2}\right)$$
 Simplificação notável

Usar física para deduzir algumas constrangimentos

- Se Gm aumenta esperamos que o desvio aumenta Logo a função desconhecido f devia ser uma função monotónica
- Imagine que a força gravítica fosse repulsiva (G<0)
 Neste caso o desvio devia ser <0, logo a função f deve ser impar

A solução mais simples é
$$\theta \sim \frac{Gm}{rc^2}$$

Existe pelo menos 3 possibilidades para o constante de proporção

$$\theta = \frac{Gm}{rc^2} \begin{cases} 1 \text{ solução mais simples} \\ 2 \text{ previsão de Newton} \\ 4 \text{ valor previsto pela Relatividade Geral} \end{cases}$$
 (Resolver 10 equações diferenciais)

$$\theta = 4 \frac{Gm}{rc^2}$$

Será observável?

$$G = 6,67x10^{-11}m^{3} / s^{2}kg$$

$$m_{sol} = 1,99x10^{30}kg$$

$$r_{sol} = 6,96x10^{8}m$$

$$c = 2,998x10^{8}m / s$$

$$\theta = 4 \frac{Gm}{rc^2} \approx 8,5x10^{-6} radianos$$

1,75 segundos de arco

Aproximadamente o limite de resolução do telescópio que Eddington usou em 1919 (Diâmetro = 33cm)

LIGHTS ALL ASKEW IN THE HEAVENS

Men of Science More or Less Agog Over Results of Eclipse Observations.

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

A BOOK FOR 12 WISE MEN

No More in All the World Could Comprehend It, Said Einstein When His Daring Publishers Accepted It.

