Sakarya Üniversitesi Elektrik-Elektronik Mühendisliği EEM 305-İşaretler ve Sistemler Ödev 5

- 1. Aşağıda verilen işaretlerin Fourier dönüşümünü hesaplayınız.

(b)
$$x[n] = (\frac{1}{2})^{-n}u[-n]$$

(a)
$$x[n] = u[n-2] - u[n-6]$$

(c) $x[n] = (\frac{1}{3})^{|n|} u[-n-2]$

(d)
$$2^n \sin(\frac{\pi}{4}n)u[-n]$$

(e)
$$x[n] = (\frac{1}{2})^{|n|} \cos(\frac{\pi}{8}(n-1))$$

(b)
$$x[n] = (\frac{1}{2})^{-n}u[-n-1]$$

(d) $2^n \sin(\frac{\pi}{4}n)u[-n]$
(f) $x[n] = \begin{cases} n, & -3 \le n \le 3\\ 0, & \text{aksi halde} \end{cases}$
(h) $x[n] = \sin(\frac{5\pi}{3}n) + \cos(\frac{7\pi}{3}n)$

(g)
$$x[n] = \sin(\frac{\pi}{2}n) + \cos(n)$$

(i) $x[n] = x[n-6]$ ve $0 \le n \le 5$ için $x[n] = u[n] - u[n-5]$

(h)
$$x[n] = \sin(\frac{5\pi}{2}n) + \cos(\frac{7\pi}{2}n)$$

(i)
$$x[n] = \sin(\frac{\pi}{2}n) + \cos(n)$$

$$(\mathbf{n}) \ x[n] = \mathbf{s}$$

(i)
$$r[n] = (n-1)(\frac{1}{2})^{|n|}$$

(k)
$$x[n] = \left(\frac{\sin(\pi n/5)}{\pi n}\right)\cos(\frac{7\pi}{2}n)$$

2. Aşağıda verilen Fourier dönüşümlerine karşılık gelen ayrık-zaman işaretleri bulunuz.

(a)
$$X(e^{j\omega}) = \begin{cases} 1, & \frac{\pi}{4} \le |\omega| \le \frac{3\pi}{4} \\ 0, & \text{aksi halde} \end{cases}$$

$$\begin{array}{ll} \text{(a)} \ X(e^{j\omega}) = \left\{ \begin{array}{ll} 1, & \frac{\pi}{4} \leq |\omega| \leq \frac{3\pi}{4} \\ 0, & \text{aksi halde} \end{array} \right. \\ \text{(b)} \ X(e^{j\omega}) = 1 + 3e^{-j\omega} + 2e^{-j2\omega} - 4e^{-j3\omega} + e^{-j10\omega} \\ \text{(c)} \ -\pi \leq \omega \leq \pi \ \text{için} \ X(e^{j\omega}) = e^{-j\omega/2} \\ \text{(d)} \ X(e^{j\omega}) = \cos^2(\omega) + \sin^2(3\omega) \\ \text{(e)} \ X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(\omega - \frac{\pi}{2}k) \\ \text{(f)} \ X(e^{j\omega}) = \frac{e^{-j\omega} - \frac{1}{5}}{1 - \frac{1}{5}e^{-j\omega}} \\ \text{(g)} \ X(e^{j\omega}) = \frac{1 - \frac{1}{3}e^{-j\omega}}{1 - \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-j2\omega}} \\ \end{array} \right.$$

(c)
$$-\pi \le \omega \le \pi \text{ igin } X(e^{j\omega}) = e^{-j\omega/2}$$

(d)
$$X(e^{j\omega}) = \cos^2(\omega) + \sin^2(3\omega)$$

(e)
$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(\omega - \frac{\pi}{2}k)$$

(f)
$$X(e^{j\omega}) = \frac{e^{-j\omega} - \frac{1}{5}}{1 - \frac{1}{5}e^{-j\omega}}$$

(g)
$$X(e^{j\omega}) = \frac{1 - \frac{1}{3}e^{-j\omega}}{1 - \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-j\omega}}$$

(h)
$$X(e^{j\omega}) = \frac{1 - (\frac{1}{3})^6 e^{-j6\omega}}{1 - \frac{1}{3} e^{-j\omega}}$$

3. Şekilde verilen işaretin Fourier dönüşümü $X(e^{j\omega})$ ile belirtilsin. Aşağıdaki hesaplamaları $X(e^{j\omega})$ 'yı belirlemeden yapınız.

(a)
$$X(e^{j0})$$
, (b) $\angle X(e^{j\omega})$

(c)
$$\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$$
, (d) $X(e^{j\pi})$

- (e) Fourier dönüşümü $\operatorname{Re}\{X(e^{j\omega})\}$ olan işareti belirleyiniz ve çiziniz.
- (f) (i) $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$ ve (ii) $\int_{-\pi}^{\pi} \left| \frac{dX(e^{j\omega})}{d\omega} \right|^2 d\omega$ integrallerini hesaplayınız.

- 4. (i) $Re\{X(e^{j\omega})\} = 0$
 - (ii) $\text{Im}\{X(e^{j\omega})\} = 0$
 - (iii) $e^{j\alpha\omega}X(e^{j\omega})$ gerçel olacak şekilde gerçel bir tamsayı α vardır

(iv)
$$\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega = 0$$

(v) $X(e^{j\omega})$ periyodiktir

(vi)
$$X(e^{j0}) = 0$$

özelliklerinin aşağıda verilen işaretlerden hangileri tarafından sağlandığını belirleyiniz.

- (a) x[n] Şekil (a)'da verilmiştir
- (b) x[n] Şekil (b)'de verilmiştir
- (c) $x[n] = (\frac{1}{2})^n u[n]$
- (d) $x[n] = (\frac{1}{2})^{|n|}$
- (e) $x[n] = \delta[n-1] + \delta[n+2]$
- (f) $x[n] = \delta[n-1] + \delta[n+3]$
- (g) x[n] Sekil (c)'de verilmiştir
- (h) x[n] Şekil (d)'de verilmiştir
- (i) $x[n] = \delta[n-1] \delta[n+1]$

5. Şekilde verilen işareti ele alalım. Bu işaretin ayrık-zaman Fourier dönüşümü kartezyen koordinatlarda

$$X(e^{j\omega}) = A(\omega) + jB(\omega)$$

şeklinde yazılsın.

$$Y(e^{j\omega}) = [B(\omega) + A(\omega)e^{j\omega}]$$

dönüşümüne karşılık gelen ayrık-zaman işareti elde ediniz.

- 6. $x_1[n]$, ayrık-zaman Fourier dönüşümünün gerçel ve sanal kısımları Şekil (a)'da gösterildiği gibi bir işaret olsun.
 - (a) Fourier dönüşümü Şekil (b)'de verilen işaret $x_2[n]$ olsun. $x_2[n]$ 'yi $x_1[n]$ cinsinden yazınız. [İpucu: $X_2(e^{j\omega})$ 'yı $X_1(e^{j\omega})$ cinsinden yazın ve ayrık-zaman Fourier dönüşümünün özelliklerini kullanın.]
 - (b) (a) şıkkını, Fourier dönüşümü Şekil (c)'de verilen $x_3[n]$ işareti için tekrarlayınız.
 - (c) α aşağıdaki şekilde tanımlansın:

$$\alpha = \frac{\sum_{n=-\infty}^{\infty} n x_1[n]}{\sum_{n=-\infty}^{\infty} x_1[n]}$$

 $x_1[n]$ işaretinin ağırlık merkezi olan bu büyüklüğe genelde $x_1[n]$ 'nin $gecikme\ zamanı$ denir. α 'yı hesaplayınız. (Bu işlem $x_1[n]$ belirlenmeden yapılabilr.)

(d) $x_4[n] = x_1[n] * h[n]$ olmak üzere, $X_4(e^{j\omega})$ 'yı çiziniz. Burada

$$h[n] = \frac{\sin(\pi n/6)}{\pi n}$$

7. (a) x[n], ayrık-zaman Fourier dönüşümü şekilde gösterildiği gibi bir işaret olsun. Aşağıda belirtilen p[n] işaretleri için w[n] = x[n]p[n] işaretinin Fourier dönüşümünü çiziniz.

(a)

- (i) $p[n] = \cos(\pi n)$
- (ii) $p[n] = \cos(\pi n/2)$
- (iii) $p[n] = \sin(\pi n/2)$
- (iv) $p[n] = \sum_{k=-\infty}^{\infty} \delta[n-2k]$ (v) $p[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$
- (b) (a) şıkkındaki w[n] işaretinin, impuls yanıtı

$$h[n] = \frac{\sin(\pi n/2)}{\pi n}$$

olan bir LTI sisteme uygulandığını varsayalım. Sistemin çıkışını, (a) şıkkında belirtilen p[n] işaretleri için bulunuz.

8. x[n] ve g[n] işaretlerinin Fourier dönüşümleri $X(e^{j\omega})$ ve $G(e^{j\omega})$ olsun. $X(e^{j\omega})$ ve $G(e^{j\omega})$ 'nın aşağıdaki gibi ilişkili olduğu bilinmektedir:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) G(e^{j(\omega-\theta)}) d\theta = 1 + e^{-j\omega}$$

- (a) $x[n] = (-1)^n$ ise, Fourier dönüşümü $G(e^{j\omega})$, yukarıda verilen denklemi sağlayan bir g[n] işareti bulunuz. Çözüm tek midir?
- (b) (a) şıkkını $x[n] = (\frac{1}{2})^n$ için tekrarlayınız.
- 9. (a) İmpuls yanıtı $h[n] = (1/2)^n u[n]$ olan bir ayrık-zaman LTI sistemi ele alalım. Sistemin aşağıda verilen girişlere olan yanıtlarını Fourier dönüşümü kullanarak bulunuz.
 - (i) $x[n] = (3/4)^n u[n]$, (ii) $x[n] = (n+1)(1/4)^n u[n]$, (iii) $x[n] = (-1)^n$
 - (b) (a) şıkkını $h[n] = [(1/2)^n \cos(\pi n/2)] u[n]$ ve aşağıdaki girişler için tekrarlayınız.
 - (i) $x[n] = (1/2)^n u[n]$, (ii) $x[n] = \cos(\pi n/2)$.
 - (c) $X(e^{j\omega}) = 3e^{j\omega} + 1 e^{-j\omega} + 2e^{-j3\omega}$ ve $H(e^{j\omega}) = -e^{j\omega} + 2e^{-j2\omega} + e^{j4\omega}$ olsun. y[n] = x[n] * h[n]'yi belirleyiniz.

- 10. İmpuls yanıtı $h(t) = (W/\pi) \operatorname{sinc}(Wt/\pi) = \sin(Wt)/\pi t$ olan sistemin sürekli-zaman LTI sistemlerin analizinde önemli olduğunu görmüştük. Benzer şekilde, $h[n] = (W/\pi) \operatorname{sinc}(Wn/\pi) = \sin(Wn)/\pi n$ impuls yanıtlı sistem, ayrık-zaman sistemlerin analizinde önemlidir.
 - (a) İmpuls yanıtı h[n] olan sistemin frekans yanıtını bulunuz ve çiziniz.
 - (b) $x[n] = \sin(\pi n/8) 2\cos(\pi n/4)$ işaretini ele alalım. Bu işaretin, impuls yanıtları aşağıda belirtilen sistemlere uygulandığında her bir durumda çıkışı hesaplayınız.
 - (i) $h[n] = \frac{\sin(\pi n/6)}{\pi n}$
 - (ii) $h[n] = \frac{\sin(\pi n/6)}{\pi n} + \frac{\sin(\pi n/2)}{\pi n}$
 - (iii) $h[n] = \frac{\sin(\pi n/6)\sin(\pi n/3)}{\pi^2 n^2}$
 - (iv) $h[n] = \frac{\sin(\pi n/6)\sin(\pi n/3)}{\pi n}$
 - (c) İmpuls yanıtı $h[n] = \sin(\pi n/3)/\pi n$ olan sistemin aşağıda verilen girişlere olan yanıtını bulunuz.
 - (i) x[n], aşağıdaki şekilde verilmiştir.
 - (ii) $x[n] = \sum_{k=-\infty}^{\infty} \delta[n 8k]$
 - (iii), x[n], aşağıdaki şekilde verilen işaret ile $(-1)^n$ işaretinin çarpımına eşittir.
 - (iv) $x[n] = \delta[n+1] + \delta[n-1]$

- 11. LTI bir sistemin impuls yanıtı h[n]'dir ve $-\pi \le \omega_0 \le \pi$ iken, $\cos(\omega_0 n)$ girişine olan yanıt $\omega_0 \cos(\omega_0 n)$ olacak şekilkde bir frekans yanıtı $H(e^{j\omega})$ 'ya sahip olduğu bilinmektedir.
 - (a) $H(e^{j\omega})$ 'yı belirleyiniz.
 - (b) h[n]'yı belirleyiniz.
- 12. $h_1[n]$ ve $h_2[n]$ nedensel LTI sistemlerin impuls yanıtı olsun ve karşılık gelen frekans yanıtları $H_1(e^{j\omega})$ ile $H_2(e^{j\omega})$ olsun. Bu koşullar altında, aşağıdaki denklem doğru mudur? Yanıtınızın gerekçesini açıklayınız.

$$\left[\frac{1}{2\pi}\int_{-\pi}^{\pi}H_1(e^{j\omega})d\omega\right]\left[\frac{1}{2\pi}\int_{-\pi}^{\pi}H_2(e^{j\omega})d\omega\right] = \frac{1}{2\pi}\int_{-\pi}^{\pi}H_1(e^{j\omega})H_2(e^{j\omega})d\omega$$

- 13. Giriş-çıkış ilişkisi y[n] + (1/2)y[n-1] = x[n] fark denklemiyle tanımlanan nedensel bir LTI sistemi ele alalım.
 - (a) Sistemin frekans yanıtı $H(e^{j\omega})$ nedir?
 - (b) Sistemin aşağıdaki girişlere olan yanıtı nedir?
 - (i) $x[n] = (1/2)^n u[n]$
 - (ii) $x[n] = (-1/2)^n u[n]$
 - (iii) $x[n] = \delta[n] + (1/2)\delta[n-1]$
 - (iv) $x[n] = \delta[n] (1/2)\delta[n-1]$
 - (c) Sistemin, Fourier dönüşümü aşağıda verilen işaretlere olan yanıtını hesaplayınız.
 - (i) $X(e^{j\omega}) = \frac{1 \frac{1}{4}e^{-j\omega}}{1 + \frac{1}{2}e^{-j\omega}}$
 - (ii) $X(e^{j\omega}) = \frac{1 + \frac{1}{2}e^{-j\omega}}{1 \frac{1}{4}e^{-j\omega}}$
 - (iii) $X(e^{j\omega}) = \frac{1}{(1-\frac{1}{4}e^{-j\omega})(1+\frac{1}{2}e^{-j\omega})}$
 - (iv) $X(e^{j\omega}) = 1 + 2e^{-3j\omega}$

14. Bir sistem, frekans yanıtları aşağıda verilen LTI iki sistemin seri bağlanmasından oluşmaktadır.

$$H_1(e^{j\omega}) = \frac{2 - e^{-j\omega}}{1 + \frac{1}{2}e^{-j\omega}}, \quad H_2(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega} + \frac{1}{4}e^{-j2\omega}}$$

- (a) Sistemin girişi ile çıkışı arasındaki fark denklemi nedir?
- (b) Sistemin impuls yanıtını belirleyiniz.
- 15. a, genliği 1'den az olan gerçel bir sayı olmak üzere, nedensel bir LTI sistemin girişi ile çıkışı arasındaki fark denklemi

$$y[n] - ay[n-1] = bx[n] + x[n-1]$$

ile verilmektedir.

- (a) Sistemin frekans yanıtı, tüm ω değerleri için $|H(e^{j\omega})|=1$ olacak şekilde a,b değerlerini bulunuz. Böyle sistemler, girişine uygulanan herhangi frekanslı karmaşık bir üstel işareti zayıflatmadan geçirdiğinden tüm geçiren olarak adlandırılır. Diğer şıklarda, bulduğunuz a,b değerlerini kullanın.
- (b) a = 1/2 iken $0 \le \omega \le \pi$ için $\angle H(e^{j\omega})$ 'yı kabaca çiziniz.
- (c) (b) şıkkını a = -1/2 için tekrarlayınız.
- (d) a = -1/2 ve

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$

iken sistemin çıkışını hesaplayınız ve çiziniz. Bu örnekten, işaretin fazındaki doğrusal olmayan bir değişimin, doğrusal faz değişimine göre işaret üzerinde daha farklı etkilere sahip olabileceğini anlıyoruz.

- 16. (a) h[n] ve g[n], birbirlerinin tersi olan kararlı LTI iki sistemin impuls yanıtları olsun. Bu iki sistemin frekans yanıtları arasındaki ilişki nedir?
 - (b) Aşağıdaki fark denklemleriyle tanımlanan nedensel LTI sistemleri ele alalım. Her bir şık için, ters sistemin impuls yanıtını ve ters sistemi tanımlayan fark denklemini bulunuz.
 - (i) y[n] = x[n] (1/4)x[n-1]
 - (ii) y[n] + (1/2)y[n-1] = x[n]
 - (iii) y[n] + (1/2)y[n-1] = x[n] (1/4)x[n-1]
 - (iv) y[n] + (5/4)y[n-1] (1/8)y[n-2] = x[n] (1/4)x[n-1] (1/8)x[n-2]
 - (v) y[n] + (5/4)y[n-1] (1/8)y[n-2] = x[n] (1/2)x[n-1]
 - (vi) y[n] + (5/4)y[n-1] (1/8)y[n-2] = x[n]

(c)
$$y[n] + y[n-1] + (1/4)y[n-2] = x[n-1] - (1/2)x[n-2]$$
 (1)

fark denklemiyle tanımlanan nedensel bir ayrık-zaman LTI sistemi ele alalım. Sistemin tersi nedir? Ters sistemin nedensel olmadığını gösteriniz. Denklem (1)'de tanımlanan sistemin "gecikmeli tersi" olan başka bir nedensel LTI sistem bulunuz. Daha açık ifade etmek gerekirse, aşağıdaki şekilde belirtilen w[n] işareti, x[n-1]'ye eşit olacak şekilde nedensel bir LTI sistem bulunuz.

$$(1 a) \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} = \frac{3(n-2) + 5(n-3) + 5(n-4) + 5(n-5)}{3(j\omega) = e} + \frac{-j2\omega}{e} \frac{-j3\omega}{e} \frac{-j4\omega}{e} \frac{-j5\omega}{e}$$

b)
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} X_{n} e^{j\omega n} = \sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^{-n} e^{-j\omega n}$$

$$+ \sin(n) e^{j\omega} = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{-n} e^{-j\omega n}$$

$$+ \sin(n) e^{j\omega} = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{-n} e^{-j\omega n}$$

$$=\sum_{n=1}^{\infty}\left(\frac{e^{2n}}{2}\right)^n=\frac{e^{2n}}{2}\frac{1}{1-(1/2)e^{2n}}$$

c)
$$\chi(e^{j\omega}) = \sum_{n=-\infty}^{-2} (\frac{1}{3})^{-n} e^{-j\omega n} = \sum_{n=2}^{\infty} (\frac{1}{3} e^{j\omega})^{n}$$

$$A = \sum_{n=-\infty}^{\infty} 2^{n} \sin(\frac{\pi}{4}n) e^{-\frac{\pi}{2}\omega n} = -\sum_{n=0}^{\infty} 2^{n} \sin(\frac{\pi}{4}n) e^{\frac{\pi}{2}\omega n} = -\frac{1}{2j} \sum_{n=0}^{\infty} \left[2^{n} e^{\frac{\pi}{4}n} e^{\frac{\pi}{2}\omega n} - 2^{n} e^{-\frac{\pi}{4}n} e^{\frac{\pi}{2}\omega n} \right]$$

$$X(e^{2\omega}) = -\frac{1}{2j} \left[\frac{1}{1 - (1/2) e^{\frac{\pi}{2}\pi/4} e^{\frac{\pi}{2}\omega}} - \frac{1}{1 - (1/2) e^{\frac{\pi}{2}\pi/4} e^{\frac{\pi}{2}\omega}} \right]$$

f)
$$X[n] = -3\delta[n+3] = 2\delta[n+2] - \delta[n+1] + \delta[n-1] + 2\delta[n-2] + 3\delta[n-3]$$

$$X(e^{j\omega}) = -3e^{j3\omega} - 2e^{j2\omega} - e^{j\omega} + e^{j\omega} + 2e^{j2\omega} + 3e^{-j3\omega}$$

g) Tabledon
$$X_1(n) = \cos(n) \xrightarrow{F} X_1(e^{j\omega}) = \pi \left[\delta(\omega - 1) + \delta(\omega + 1)\right] \quad 0 \in \omega \in \pi$$

$$\times_2(n) = \sin(\frac{\pi}{2}n) \xrightarrow{F} X_2(e^{j\omega}) = \frac{\pi}{j} \left[\delta(\omega - \pi/2) - \delta(\omega + \pi/2)\right] \quad 0 \in \omega \in \pi$$

$$\times (e^{j\omega}) = X_1(e^{j\omega}) + X_2(e^{j\omega}) \quad 0 \in \omega \in \pi$$

h)
$$g$$
 sikking benzer sakilde $X(e^{i\omega}) = \frac{\pi}{j} \left[\delta(\omega - \frac{\pi}{3}) - \delta(\omega + \frac{\pi}{3}) \right] + \pi \left[\delta(\omega - \frac{\pi}{3}) + \delta(\omega + \frac{\pi}{3}) \right]$ $O(\omega) = \frac{\pi}{j} \left[\delta(\omega - \frac{\pi}{3}) - \delta(\omega + \frac{\pi}{3}) \right] + \sigma(\omega) = \frac{\pi}{3} \left[\delta(\omega - \frac{\pi}{3}) + \delta(\omega + \frac{\pi}{3}) \right]$

$$\frac{1}{\left(\frac{1}{3}\right)^{|n|}} \xrightarrow{f} \frac{1-\left(\frac{1}{3}\right)^{2}}{1-2\cdot\frac{1}{3}\cos(\omega)+\frac{1}{9}} = \frac{4}{5-3\cos(\omega)}, \quad \left(\frac{1}{3}\right)^{|n|} \xrightarrow{f} \rightarrow \frac{12\sin(\omega)}{(5-3\cos(\omega))^{2}} \quad \text{Frekansta tures}$$

$$\frac{1-\left(\frac{1}{3}\right)^{|n|}}{1-2\cdot\frac{1}{3}\cos(\omega)+\frac{1}{9}} = \frac{4}{5-3\cos(\omega)} - \frac{12\sin(\omega)}{(5-3\cos(\omega))^{2}}$$

$$\frac{1-\left(\frac{1}{3}\right)^{|n|}}{(5-3\cos(\omega))^{2}} = \frac{4}{5-3\cos(\omega)} - \frac{12\sin(\omega)}{(5-3\cos(\omega))^{2}}$$

$$k) \quad x \in \mathbb{N} = \frac{\sin(\pi n/5)}{\pi n} \cdot \cos(\frac{\pi}{2}n) = x_1 \in \mathbb{N} \cdot x_2 \in \mathbb{N}$$

$$\times (j\omega) = \frac{1}{2\pi} \left[X_1(e^{j\omega}) * X_2(e^{j\omega}) \right] , \quad x_1(e^{j\omega}) = \begin{cases} 1, & |\omega| \leqslant \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \leqslant \omega \leqslant \pi \end{cases}$$

$$\times (1e^{j\omega}) = \pi \left\{ \delta(\omega - \pi/2) + \delta(\omega + \pi/2) \right\}$$

$$\times (1e^{j\omega}) = \pi \left\{ \delta(\omega - \pi/2) + \delta(\omega + \pi/2) \right\}$$

$$C.6)_{a)} X_{2}(e^{j\omega}) = \Re \left\{ X_{1}(e^{j\omega}) \right\} + \Re \left\{ X_{1}(e^{j(\omega - \frac{2\pi}{3})}) \right\} + \Re \left\{ X_{1}(e^{j(\omega - \frac{2\pi}{3})}) \right\} + \Re \left\{ X_{1}(e^{j(\omega + \frac{2\pi}{3})}) \right\}$$

$$\times_{2} \ln 3 = \Pr \left\{ X_{1} \ln 3 \right\} \left[1 + e^{\frac{52\pi}{3}} + e^{-\frac{52\pi}{3}} \right]$$

$$b) \Re \left\{ X_{2}(e^{j\omega}) = 0 \right\} X_{1}(e^{j\omega}) = \operatorname{Im} \left\{ X_{1}(e^{j(\omega - \pi)}) \right\} + \operatorname{Im} \left\{ X_{1}(e^{j(\omega + 2\pi)}) \right\}$$

b)
$$Re\{X_3(\vec{e}^{im}) = 0 \quad X_3(\vec{e}^{im}) = Im\{X_1\vec{e}^{i(m-\pi)}\} + Im\{X_1\vec{e}^{i(m+\pi)}\}$$

 $X_3(\vec{e}^{im}) = 0$

$$X_3(\vec{e}^{im}) = Im\{X_1\vec{e}^{i(m-\pi)}\} + Im\{X_1\vec{e}^{i(m+\pi)}\}$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$X_3(\vec{e}^{im}) = 0$$

$$c) \sum_{n=-\infty}^{\infty} \cap x_1 [n] = \int_{-\infty}^{\infty} i \frac{dx_1 [e^{j\omega}]}{d\omega}$$

→ T w

d)
$$x_4 t_{n} = x_1 t_{n} + h t_{n} \Rightarrow x_4 (e^{j\omega}) = x_1 (e^{j\omega}) \cdot H(e^{j\omega}) + H(e^{j\omega}) \Rightarrow \frac{1}{-\pi/4} \frac{1}{\pi/4} \omega$$

Gariloligi gibi H(e) kesne frekansı T/o olan alkak gecilren bir filtreyi ifada etnektdir.

$$\mathbf{C.2 a)} \times \mathbf{M} = \frac{1}{2\pi} \left[\begin{array}{c} X(e^{j\omega}) e^{j\omega} \wedge d\omega \Rightarrow \times \mathcal{E} \mathcal{N} = \frac{1}{2\pi} \left[\begin{array}{c} \int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} e^{j\omega} \wedge d\omega + \int_{-\frac{\pi}{4}}^{3\pi/4} e^{j\omega} \wedge d\omega \end{array} \right]$$
 5-3

c)
$$\times c = \frac{1}{2\pi} \int_{\pi}^{\pi} e^{-j\omega/2} e^{j\omega n} d\omega = \frac{1}{2\pi} \frac{1}{j(n-1/2)} e^{j(n-1/2)\omega} \int_{-\pi}^{\pi}$$

$$\times CN = \frac{1}{2\pi j (n^{-1}/2)} \begin{bmatrix} e^{jn\pi} & -j\frac{\pi}{2} \\ e^{jn} & -j \end{bmatrix} = \frac{-jn\pi}{2\pi j (n^{-1}/2)} = \frac{-$$

d)
$$X(e^{j\omega}) = \cos^2\omega + \sin^2(3\omega) = \frac{1+\cos(2\omega)}{2} + \frac{1-\cos(3\omega)}{2} = \frac{1}{2} + \frac{1}{4}e^{j2\omega} + \frac{1}{4}e^{j2\omega} - \frac{1}{4}e^{j3\omega} - \frac{1}{4}e^{-j3\omega} + \frac{1}{2}e^{j3\omega} $

e) (Slayt 15) perfyedik Isaretlein F.D =>
$$X(e^{2\nu}) = \sum_{k=-\infty}^{\infty} 2 \pi a_k \delta(\omega - k\omega_0) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(\omega - k \frac{\pi}{2})$$

$$\omega_0 = \frac{\pi}{2}, N=4, \alpha_k = (-1)^k \frac{1}{2\pi}$$

$$x[n] = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi k)n} + pertyotiain x[n] = \sum_{k=0}^{3} \frac{(-1)^k j^k \frac{\pi}{2\pi}}{2\pi} = \frac{1}{2\pi} \left\{ 1 - e^{j\pi k \frac{\pi}{2\pi}} + e^{j\pi k \frac{\pi}{2\pi}} \right\}$$

$$f) \ \ X(\hat{e}^{i}) = \left(\bar{e}^{j\omega} - \frac{1}{5}\right) \cdot \frac{1}{1 - \frac{1}{5}\bar{e}^{j\omega}} = \bar{e}^{j\omega} \cdot \frac{1}{1 - \frac{1}{5}\bar{e}^{j\omega}} - \frac{1}{5} \cdot \frac{1}{1 - \frac{1}{5}\bar{e}^{j\omega}} \times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

$$\times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCn} + \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

$$\times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCn} + \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

$$\times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

$$\times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

$$\times \text{Enj} = \left(\frac{1}{5}\right)^{0} \cdot \text{UCnj}$$

g)
$$\chi(e^{2\omega}) = \frac{(2/3)}{1 - 1/2} + \frac{(7/3)}{1 + 1/4} = \frac{2}{3} (\frac{1}{2})^n u + \frac{7}{3} (-\frac{1}{4})^n u + \frac{7}{3} (-\frac{1}{$$

h)
$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{3}\bar{e}^{j\omega}} - (\frac{1}{3})^6 \bar{e}^{jb\omega} \frac{1}{1 - \frac{1}{3}\bar{e}^{j\omega}}$$

$$X(n) = \left(\frac{1}{3}\right)^n u(n) - \left(\frac{1}{3}\right)^6 \left(\frac{1}{3}\right)^{n-6} u(n-6)$$

3)
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x t n e^{-j\omega n}$$
 $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x t n = 6$

5-4

b)
$$y = x + 2$$
] olsun; Dolayisiyla (slayt 27) $Y(e^{j\omega})$ gerael ve aifttic.
Yanı $LY(e^{j\omega}) = 0$ dir.

c)
$$\times Enj = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \implies 2\pi \times Enj = \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega = 4\pi$$

d)
$$X(e^{j\pi}) = \sum_{n=-\infty}^{\infty} x \tau n e^{j\pi n} = \sum_{n=-\infty}^{\infty} x \tau n (-1)^n = 0$$

e)
$$Ev\{x \in \mathbb{N}\} \xrightarrow{F} Re\{X(e^{j\omega})\} \Rightarrow Ev\{x \in \mathbb{N}\} = \{x \in \mathbb{N}\} + x \in \mathbb{N}\}/2$$

Parseval teoreminder
$$\sum_{n=-\infty}^{\infty} |x_{tnj}|^2 = \frac{1}{2\pi} \int_{T}^{T} |x_{t}(e^{j\omega})|^2 d\omega$$
$$\int_{T}^{T} |x_{t}(e^{j\omega})|^2 d\omega = 2\pi \sum_{n=-\infty}^{\infty} |x_{tnj}|^2 = 28\pi$$

$$n \times n = \frac{F}{2} \left[\frac{d \times (e^{2\omega})}{d\omega} \right]^2 = 2\pi \sum_{n=-\infty}^{\infty} |n|^2 |x + n|^2 = 316 \pi$$

4)
$$\int_{-T}^{T} X(e^{i\omega}) d\omega = 2\pi X \cos = 0$$
 in $(a, b, d, e, f, ve h)$

$$(b, e, f, h) ve i$$

6)
$$X(e^{j0}) = \sum_{n=-\infty}^{\infty} \times tn = 0$$
, b, g ve i

5)
$$A(\omega) = Re\{X(e^{i\omega})\} \xleftarrow{F} xetnJ = Fv\{xtnJ\}$$
 $B(\omega) = Im\{X(e^{i\omega})\} \xleftarrow{F} xotnJ = Od\{xtnJ\}$
 $A(\omega) = \frac{1}{F} xetn+1J - jxotnJ$
 $Y(e^{i\omega}) \xrightarrow{F} xetn+1J - jxotnJ$

$$(7 \text{ a)} \times (7 \text{ a)} \times (7 \text{ a)} = (7 \text{ a)} \times (7 \text{ a)} \times (7 \text{ a)}) / (2\pi)$$

$$i) \text{ pin} = \cos(\pi n) \rightarrow (7 \text{ a)} = \pi \left[\delta(\omega - \pi) + \delta(\omega + \pi) \right]$$

ii)
$$\sin(\frac{\pi}{2}\gamma) \rightarrow P(\hat{e}^{\omega}) = \frac{\pi}{J} \left[\delta(\omega - \frac{\pi}{2}) - \delta(\omega + \frac{\pi}{2}) \right]$$

$$|v| \sum_{k=-\infty}^{\infty} \delta(n-2k) \rightarrow P(e^{\omega}) = \pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\pi)$$

$$\forall P(e^{j\omega}) = \frac{\pi}{2} \sum_{k=0}^{\infty} \delta(\omega - k \pi/2)$$

$$y(n) = \frac{1}{2\pi} \int_{-\pi/2}^{\pi} \gamma(e^{j\omega}) e^{j\omega n} d\omega = -\frac{1}{2\pi} \int_{-\pi/2}^{\infty} \frac{j^{\omega n}}{2\pi} d\omega + \frac{1}{2\pi} \int_{0}^{\pi/2} \frac{j^{\omega n}}{2\pi} d\omega$$

$$y^{-1} = -\frac{1}{2\pi^2} \left[\frac{e^{\frac{3\omega_0}{2n^2}} (j\omega_0 - 1)}{j^2 n^2} \right] + \frac{1}{2\pi^2} \left[\frac{e^{\frac{3\omega_0}{2n^2}}}{j^2 n^2} (j\omega_0 - 1) \right]_0^{\pi/2}$$

$$y[n] = \frac{\sin(\pi n/2)}{2\pi n} - \frac{1 - \cos(\pi n/2)}{\pi^2 n^2}$$

$$\xrightarrow{T|_2} \xrightarrow{T|_2} \frac{\pi}{2\pi} \int_{-\pi/2}^{\pi/2} j \frac{\omega}{\pi} e^{j\omega n} d\omega = -\frac{j}{2\pi^2} \left\{ \frac{e^{j\omega n}}{j^2 n^2} (j\omega n - 1) \Big|_{-\pi/2}^{\pi/2} \right\}$$

$$\frac{j \frac{dy(e^{j\omega})}{d\omega}}{\int_{-\frac{\pi}{2}}^{-1} n \cdot y t \cdot n} = \frac{1}{\pi} \frac{\sin(\frac{\pi}{2}n/2)}{\frac{\pi}{2}}$$

$$y = \frac{\sin(\sqrt{\ln/2})}{\sqrt{10^2}} - \frac{\cos(\sqrt{\ln/2})}{2\sqrt{10}}$$

$$y(n) = \frac{1}{2\pi^2} \int_{-\pi_2}^{\pi_2} w e^{2\omega n} d\omega = \frac{1 - \cos(\pi n/2)}{\pi^2 n^2} = \frac{\sin(\pi/2)}{2\pi n}$$

$$\forall) \qquad \qquad \begin{array}{c|c} 1/4 & \forall (e^{2\omega}) \\ \hline -\pi y_2 & \pi y_2 \end{array}$$

v)
$$\frac{1/4}{1}$$
 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{\sin(\pi n/2)}{\pi n}$ (tablodan, slayt 19)

C.8
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) G(e^{j(w-\theta)}) d\theta = 1 + e^{jw} = Y(e^{jw})$$
 olsan.

$$= X(e^{jw}) * G(e^{jw}), \quad F^{-1}_{\pi} \times \text{Cnj.gcnj} \text{ is verif.} \quad \text{(Slayf 26, 20monda)}$$

By dyrunda
$$F^{-1}/(e^{jw}) = \gamma y z n = x z n g z n = \delta z n + \delta z n - 1$$
 (Slayt 19)

a)
$$x[n] = (-1)^n$$
 ise $y[n] = x[n] \cdot g[n] = \delta[n] + \delta[n-1] \Rightarrow g[n] = \delta[n] - \delta[n-1]$

(9)
$$\times$$
 [h[n] \rightarrow $y[n] = \times [n] * h[n] $\rightarrow Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$

$$F^{-1}\{Y(e^{j\omega})\} = y[n]$$$

a)
$$H(e^{j\omega}) = \frac{1}{1-(1/2)e^{-j\omega}}$$

i)
$$\times e^{j\cdot y} = \frac{1}{1-(3/4)\bar{e}^{j\cdot \omega}}$$
 $\forall (e^{j\omega}) = \frac{1}{1-(1/2)\bar{e}^{j\cdot \omega}} \cdot \frac{1}{1-(3/4)\bar{e}^{j\cdot \omega}} = \frac{H}{1-(1/2)\bar{e}^{j\cdot \omega}} + \frac{B}{1-(3/4)\bar{e}^{j\cdot \omega}}$

$$A = -2$$
, $B = 3$

$$2 \cdot y = 3(3/4)^{9} u = 2(1/2)^{9} u = 7$$

$$\sqrt{(e^{2})} = \frac{A}{(1-(1/4)\bar{e}^{2})^{\omega}} + \frac{B}{(1-(1/4)\bar{e}^{2})^{\omega})^{2}} + \frac{C}{1-(1/2)\bar{e}^{2}}, \quad A = -2, \quad B = -3, \quad C = 4$$

=>
$$y(x) = -2(\frac{1}{4})^n u(x) - 3(x+1)(\frac{1}{4})^n u(x) + 4(\frac{1}{2})^n u(x)$$

[] $x(e^{jw})$ elde edilishe dikkat edini?

$$\begin{array}{c} X[n] \Rightarrow \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ X[n] \Rightarrow \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ X[n] = X[n] - X[n-1] \end{array} \\ \begin{array}{c} X_1[n] \\ \end{array} \\ \begin{array}{c} X_1[n]$$

$$\times (e^{j\omega}) = \times_1(e^{j\omega}) - e^{-j\omega} \times_1(e^{j\omega}) = (1 - e^{j\omega}) \times_1(e^{j\omega}) \qquad \qquad \times_1(e^{j\omega}) = \pi \sum_{k=-\infty}^{\infty} \delta(\omega - k\pi)$$

XTO isin N=2 ye
$$w_0 = \pi$$
 => $X(e^{j\omega}) = (1 - e^{-jk\pi}) X_1(e^{j\omega})$

$$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi)$$

$$\forall (\hat{e}^{\omega}) = \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi)\right] \left[\frac{1}{1 - \frac{1}{2}\hat{e}^{\omega}}\right] = \frac{4\pi}{3} \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi) \Rightarrow \forall \tau \eta = \frac{2}{3} \left(-1\right)^{\eta}$$

 $X(e^{\omega})'$ gizildizinde $Y(e^{2\omega})'$ nin sadece (k.T)/ ign siftedan funkli deĝor alabileceĝi gorulur. Bu durumda $H(e^{2\omega}) = 2/3$ deĝorini alacaktir!

b)
$$h = \frac{1}{2} \left(\frac{1}{2} e^{\frac{j\pi}{2}} \right)^{n} u = n + \frac{1}{2} \left(\frac{1}{2} e^{-j\frac{\pi}{2}} \right)^{n} u = n \Rightarrow H(e^{j\omega}) = \frac{1/2}{1 - 1/2} e^{\frac{j\pi}{2} - j\omega} + \frac{1/2}{1 - 1/2} e^{\frac{j\pi}{2} - j\omega} + \frac{1/2}{1 - 1/2} e^{\frac{j\pi}{2} - j\omega}$$

i)
$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{j\omega}}$$
, $Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}) = \frac{A}{1 - \frac{1}{2}e^{j\omega}} + \frac{B}{1 + \frac{1}{2}e^{j\omega}} + \frac{C}{1 - \frac{1}{2}e^{j\omega}}$

$$A = -i/(2(1-j))$$
 $B = 1/2(1+j)$ $C = 1/2$

$$y = \frac{-j}{2(1-j)} \left(\frac{1}{2}\right)^{n} u = \frac{1}{2(1+j)} \left(-\frac{j}{2}\right)^{n} u = \frac{1}{2} \left(\frac{1}{2}\right)^{n} u = \frac{1}{2} \left(\frac{$$

ii)
$$\cos(\pi n/2) \Rightarrow \times (e^{j\omega}) = \pi \left[\delta(\omega - \pi/2) + \delta(\omega + \pi/2) \right]$$

$$y(n) = \frac{4}{3} \cos(\pi n/2) \cdot u(n) - \frac{1}{3} \left(\frac{1}{2} \right)^n \cos(\pi n/2) \cdot u(n)$$

$$\forall (e^{\hat{j}\omega}) = -3e^{\hat{j}^2\omega} + 6e^{\hat{j}^2\omega} + 3e^{\hat{j}^2\omega} - e^{\hat{j}^2\omega} + 2e^{\hat{j}^2\omega} + 1 - 2e^{\hat{j}^2\omega} - e^{\hat{j}^2\omega} + 2e^{\hat{j}^2\omega} + 2e^{\hat{j}^2\omega} + 1 - 2e^{\hat{j}^2\omega} + 4e^{\hat{j}^2\omega} + 2e^{\hat{j}^2\omega}

b)
$$X[n] = \sin\left(\frac{\pi n}{8}\right) + 2\cos\left(\frac{\pi n}{4}\right) = x_1[n] - 2x_2[n]$$

$$X_{1}(e^{j\omega}) = \frac{1}{j} \left[\delta(\omega - \frac{\pi}{8}) - \delta(\omega + \frac{\pi}{8}) \right]$$

$$X_{2}(e^{j\omega}) = \pi \left[\delta(\omega - \frac{\pi}{4}) + \delta(\omega + \frac{\pi}{4}) \right]$$

$$|\omega| < \pi$$

$$y = 2\sin(\pi n/8) - 2\cos(\pi n/4)$$

iii) hen =
$$\sin(\pi n/6)$$
. $\sin(\pi n/3)$

The Henry heres

$$y(n) = F^{-1}\left(X(e^{j\omega})H(e^{j\omega})\right) = \frac{1}{6}\sin\left(\pi\eta/g\right) - \frac{1}{4}\cos\left(\pi\eta/4\right)$$

iv)
$$h(n) = \frac{\sin(\pi n/6)}{\pi n}$$
. $\sin(\pi n/3)$
 $h_2(n)$ $h_1(n)$

$$\forall (e^{j\omega}) = \forall (e^{j\omega}) \times (e^{j\omega}) \Rightarrow \forall \forall \exists - \sin(\exists \cap /4)$$

$$(C.41) a) \longrightarrow h(n) \longrightarrow h($$

b) hen=
$$\frac{1}{2\pi} \int_{-\pi}^{\infty} e^{i\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} e^{i\omega n} d\omega = \frac{1}{\pi} \left[\frac{\cos(n\pi) - 1}{n^2} \right]$$

$$C.12)\left[\frac{1}{27}\int_{-7}^{7}H_{1}(e^{j\omega})d\omega\right]\cdot\left[\frac{1}{27}\int_{-7}^{7}H_{2}(e^{j\omega})d\omega\right]=h_{1}[0].h_{2}[0]$$

$$H_{1}\left(e^{j\omega}\right)H_{2}\left(e^{j\omega}\right) \xleftarrow{F} h_{1}\left(n\right) * h_{2}\left(n\right) \xrightarrow{1} \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{1}\left(e^{j\omega}\right)H_{2}\left(e^{j\omega}\right) d\omega = \left[h_{1}\left(n\right) * h_{2}\left(n\right)\right]_{n=0}^{n=0}$$

$$h_{1}\left(n\right) \cdot h_{2}\left(n\right) = \left[h_{1}\left(n\right) * h_{2}\left(n\right)\right]_{n=0}^{n=0} h_{1}\left(n\right) \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size } u \text{ of } u \text{ is the size$$

$$(C.13)_a Y(e^{2\omega}) + \frac{1}{2} e^{2\omega} Y(e^{2\omega}) = X(e^{2\omega}) \Rightarrow H(e^{2\omega}) = \frac{Y(e^{2\omega})}{X(e^{2\omega})} = \frac{1}{1 + \frac{1}{2} e^{2\omega}}$$

b) i)
$$X(e^{j\omega}) = \frac{1}{1 - (4z)e^{j\omega}}$$
 $\rightarrow Y(e^{2\omega}) = \frac{1}{1 + (4z)e^{j\omega}} \cdot \frac{1}{1 - (4z)e^{j\omega}} = \frac{A}{1 + 4ze^{j\omega}} + \frac{B}{1 - 4ze^{j\omega}} \Rightarrow A = \frac{4}{2}$

$$y \in M = \frac{1}{2} (4z)^n u \in M + \frac{1}{2} (-4z)^n u \in M$$

$$(3\log t + 19) = \frac{1}{1 + (1/2)\bar{e}^{j\omega}} \qquad (2i\omega) = \left[\frac{1}{1 + 1/2}\bar{e}^{j\omega}\right]^2 \rightarrow y = (n+1)\left(-\frac{1}{2}\right)^n u = 1$$

$$(3\log t + 19) da vaila = 2ellik)$$

iii)
$$X(\dot{e}^{i\omega}) = 1 + 1/2 \dot{e}^{i\omega}$$
 $Y(e^{i\omega}) = 1$ $Y(e^{i\omega}) = 0$

$$|V| X(e^{j\omega}) = 1 - \frac{1}{2}e^{j\omega} \qquad Y(e^{j\omega}) = \frac{1 - \frac{1}{2}e^{j\omega}}{1 + \frac{1}{2}e^{j\omega}} = -1 + \frac{2}{1 + \frac{1}{2}e^{j\omega}} \Rightarrow y = -\delta \tau \eta + 2(-\frac{1}{2})^n u \tau \eta$$

$$c)i) \forall (\hat{e}^{\omega}) = \frac{1 - \frac{1}{4} \bar{e}^{j\omega}}{1 + \frac{1}{2} \bar{e}^{j\omega}} \cdot \frac{1}{1 + \frac{1}{2} \bar{e}^{j\omega}} = \frac{1}{(1 + \frac{1}{2} \bar{e}^{j\omega})^{2}} - \frac{\frac{1}{4} \bar{e}^{j\omega}}{(1 + \frac{1}{2} \bar{e}^{j\omega})^{2}} \cdot \frac{\left(\frac{1}{4} \frac{1}{2} \bar{e}^{j\omega}\right)^{2}}{(1 + \frac{1}{2} \bar{e}^{j\omega})^{2}} \xrightarrow{F^{-1}} \frac{1}{4} (n+1)(-\frac{1}{2})^{n} u cn$$

$$y cn = (n+1)(-\frac{1}{2})^{n} u cn = \frac{1}{4} \cdot (-\frac{1}{2})^{n-1} \cdot u cn = \frac{1}{4} \cdot (-\frac{1}{2})^{n-1} \cdot u cn = \frac{1}{4} \cdot (-\frac{1}{4})^{n-1} \cdot u cn = \frac{1}{4} \cdot (-\frac{1}{4$$

$$|iii) \ \ \forall (e^{j\omega}) = \frac{1}{(1+\sqrt{1_2}e^{j\omega})(1-\sqrt{1_4}e^{j\omega})} \cdot \frac{1}{(1+\sqrt{1_2}e^{j\omega})} = \frac{H}{(1+\sqrt{1_2}e^{j\omega})} + \frac{B}{(1+\sqrt{1_2}e^{j\omega})^2} + \frac{C}{(1-\sqrt{1_4}e^{j\omega})} \qquad H = 2/9 \quad B = 2/3$$

$$C = 1/9$$

$$|v| \ \forall (\hat{e}^{\omega}) = \frac{1+2\bar{e}^{\hat{j}^{3\omega}}}{1+\eta_2\bar{e}^{\hat{j}^{\omega}}} = \frac{1}{1+\eta_2\bar{e}^{\hat{j}^{\omega}}} + \frac{2\bar{e}^{\hat{j}^{3\omega}}}{1+\eta_2\bar{e}^{\hat{j}^{\omega}}} \longrightarrow y^{\tau_n} = (-\eta_2)^n u^{\tau_n} + 2(-\eta_2)^{n-3}u^{\tau_n} - 3$$

$$\frac{\chi(e^{j\omega})}{H(e^{j\omega})} = H_1(e^{j\omega})H_2(e^{j\omega}) = \frac{2-e^{j\omega}}{1+1/e^{j\omega}}$$

$$\frac{\chi(e^{j\omega})}{\chi(e^{j\omega})} = H_1(e^{j\omega})H_2(e^{j\omega}) = \frac{2-e^{j\omega}}{1+1/e^{j\omega}}$$

$$\frac{\chi(e^{j\omega})}{\chi(e^{j\omega})} = \chi(e^{j\omega})H_2(e^{j\omega}) = \frac{2-e^{j\omega}}{1+1/e^{j\omega}}$$

$$\chi(e^{j\omega}) = H_1(e^{j\omega})H_2(e^{j\omega}) = \frac{2-e^{j\omega}}{1+1/e^{j\omega}}$$

b)
$$h(n) = f^{-1} \{Hk^{j\omega}\} = \frac{2 - e^{j\omega}}{1 + \frac{1}{2}e^{j\omega}} \cdot \frac{1}{1 - \frac{1}{2}e^{j\omega}} \cdot \frac{1}$$

d)
$$H(\hat{e}^{\omega}) = \frac{1/2 + \hat{e}^{j\omega}}{1 + 1/2 \hat{e}^{j\omega}}$$
, $X(\hat{e}^{j\omega}) = \frac{1}{1 - 1/2 \hat{e}^{j\omega}}$, $Y(\hat{e}^{j\omega}) = H(\hat{e}^{j\omega}) \cdot X(\hat{e}^{j\omega})$

$$\frac{1}{1+\frac{1}{2}e^{3w}} + \frac{B}{1-\frac{1}{2}e^{3w}} + \frac{B}{1-\frac{1}{2}e^{3w}}, \quad B = \frac{5}{4} \implies y = \frac{5}{4}(\frac{1}{2})^n u = \frac{3}{4}(-1)_2^n u = \frac{3}{4}(-1$$

(16) a) here =
$$\frac{1}{g(e^{i\omega})}$$
 H($e^{i\omega}$) = $\frac{1}{G(e^{i\omega})}$

$$b)i) + (e^{j\omega}) = 1 - 1/4 e^{j\omega} \rightarrow G(e^{j\omega}) = \frac{1}{1 - 1/4 e^{j\omega}} \rightarrow g(n) = (1/4)^n u(n)$$

$$G(e^{j\omega}) = \frac{1}{X(e^{j\omega})} = \frac{1}{1 - 1/4 e^{j\omega}} \Rightarrow g(n) - 1/4 g(n-1) = x(n)$$

(ii)
$$H(e^{i\omega}) = \frac{1}{1 + 1/2 e^{j\omega}}$$

 $G(e^{j\omega}) = 1 + 1/2 e^{j\omega} \rightarrow g(n) = \delta f(n) + 1/2 \delta f(n-1) = yf(n) = xf(n) + \frac{1}{2} xf(n-1)$