Assignment -3

Abalone Age Prediction

Assignment Date	10 October 2022
Student Name	DESIKA.T
Student Roll Number	820419104016
Maximum Marks	2 Marks

1.Importing necessary packages & Downloading the packages

import pandas as pd

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import LabelEncoder

import numpy as np

from collections import Counter

from sklearn.pipeline import make_pipeline

from sklearn.linear_model import Ridge, Lasso

from sklearn.ensemble import RandomForestRegressor

from sklearn.pipeline import make_pipeline

from sklearn.linear_model import Ridge, Lasso

from sklearn.model_selection import GridSearchCV

from sklearn.exceptions import NotFittedError

from sklearn.metrics import r2_score,mean_absolute_error

2. Download the dataset:

df= pd.read_csv("abalone.csv")

df.head()

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

3. Visualizations

(i) Univariate Analysis

Input:
sns.displot(df["Diameter"])

Output:

<seaborn.axisgrid.FacetGrid at 0x1a7c3cc60a0>

Input:

sns.set(rc={'figure.figsize':(7,7)})
depth = df['Rings'].value_counts(normalize=False).reset_index()
sns.barplot(data=depth,x='index',y='Rings')

Output:

Input:

df['Sex'].value_counts().plot(kind='pie',autopct='%.0f')

Output:

<AxesSubplot:ylabel='Sex'>

(ii) BiVariate Analysis

Input:

sns.set(rc={'figure.figsize':(17,10)})
sns.countplot(df['Rings'], hue = df['Sex'], color ='y')

Output:

<AxesSubplot:xlabel='Rings', ylabel='count'>

Input:

sns.set(rc={'figure.figsize':(10,7)})
plt.scatter(df.Length, df.Height)
plt.title('Length vs Height')
plt.xlabel('Height')
plt.ylabel('Length')

Output:

Text(0, 0.5, 'Length')

(iii) MultiVariate Analysis

Input:

plt.figure(figsize=(12,10)) sns.pairplot(df)

Output:

<seaborn.axisgrid.PairGrid at 0x1a8005d43a0>

<Figure size 864x720 with 0 Axes>

Input:

plt.figure(figsize = (8,6)) corr = df.corr() sns.heatmap(corr, annot = **True**)

Output:

<AxesSubplot:>

4.Descriptive Statistics

Input:

df.info()

Output:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count Dtype							
0	Sex	4177 non-null object							
1	Length	4177 non-null float64							
2	Diameter	4177 non-null float64							

3 Height 4177 non-null float64

4 Whole weight 4177 non-null float64

5 Shucked weight 4177 non-null float64

6 Viscera weight 4177 non-null float64

7 Shell weight 4177 non-null float64

8 Rings 4177 non-null int64 dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

Input: df.describe()

Output:

	Length	Diamete r	Height	Whole weight	Shucke d weight	Viscera weight	Shell weight	Rings
cou nt	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000
me an	0.52399	0.40788	0.13951 6	0.82874	0.35936 7	0.18059 4	0.23883	9.93368 4
std	0.12009	0.09924	0.04182 7	0.49038	0.22196	0.10961 4	0.13920	3.22416
mi n	0.07500	0.05500	0.00000	0.00200	0.00100	0.00050	0.00150	1.00000
25 %	0.45000	0.35000	0.11500 0	0.44150	0.18600	0.09350	0.13000	8.00000
50 %	0.54500	0.42500	0.14000	0.79950 0	0.33600	0.17100	0.23400	9.00000
75 %	0.61500 0	0.48000	0.16500 0	1.15300 0	0.50200	0.25300	0.32900	11.0000
ma	0.81500	0.65000	1.13000	2.82550	1.48800	0.76000	1.00500	29.0000

	Length	Diamete r	Height	Whole weight	Shucke d weight	Viscera weight	Shell weight	Rings
X	0	0	0	0	0	0	0	00

5.Handle Missing Values

Input:

df.isna().sum()

Output:

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

6. Outlier Detection

Input:

outlier_correction_df = df.drop(columns=['Sex'],axis=1)
outlier_correction_df.head()

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
Input:
def detection(df,features):
outlier_indices=[]
 for c in features:
     Q1 = np.percentile(df[c],25)
     Q3 = np.percentile(df[c],75)
     IQR = Q3 - Q1
     outlier_step = IQR * 1.5
     lower_range = Q1 - (outlier_step)
     upper_range = Q3 + (outlier_step)
     outlier_list_col=df[ (df[c] < lower_range) | (df[c] > upper_range) ].index
     outlier_indices.extend(outlier_list_col)
     return outlier_indices
     def multiple_outlier_indices(outlier_indices):
     outlier_indices=Counter(outlier_indices)
     multiple_outliers = list(i for i, v in outlier_indices.items() if v > 2)
     return multiple_outliers
```

Solution:

outlier_correction_df.columns

Output:

```
Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight'
'Viscera weight', 'Shell weight', 'Rings'],
dtype='object')
```

Solution:

outliers=detection(df,['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight'])

Input:

Counter(outliers)

Output:

Counter({148: 2,

149: 2,

236: 3,

237: 3,

238: 3,

239: 3,

305: 2,

306: 3,

321: 2,

465: 2,

523: 2,

525: 2,

526: 2,

611: 2,

694: 3,

696: 2,

718: 3,

719: 3,

720: 3,

1053: 2,

1054: 2,

1055: 2,

1056: 1,

1210: 1,

1429: 3,

1824: 2,

1986: 2,

1987: 3,

2114: 3,

2115: 2,

- 2169: 3,
- 2171: 3,
- 2343: 2,
- 2371: 2,
- 2380: 2,
- 2381: 3,
- 2458: 2,
- 2711: 3,
- 3141: 2,
- 3143: 2,
- 3190: 3,
- 3318: 2,
- 3380: 2,
- 3472: 2,
- 3600: 2,
- 3837: 3,
- 3899: 3,
- 3902: 3,
- 3994: 2,
- 43: 1,
- 44: 1,
- 520: 1,
- 892: 1,
- 898: 1,
- 1988: 1,
- 2172: 2,
- 2545: 1,
- 2712: 1,
- 3473: 1,
- 3521: 1,
- 3716: 1,
- 1174: 1,
- 1257: 1,
- 1417: 2,
- 1428: 3,
- 1763: 4,
- 2051: 1,
- 2179: 1,
- 3996: 1,
- 165: 3,
- 358: 2,
- 891: 3,
- 1051: 2,
- 1052: 3,
- 1193: 3,
- 1206: 3,

- 1207: 4,
- 1209: 3,
- 1426: 2,
- 1427: 3,
- 1761: 3,
- 1762: 4,
- 2265: 1,
- 2334: 2,
- 2623: 3,
- 2624: 3,
- 2811: 3,
- 2862: 2,
- 2863: 3,
- 3007: 2,
- 3008: 2,
- 3188: 2,
- 3427: 3,
- 3599: 2,
- 3715: 4,
- 3800: 1,
- 3993: 2,
- 1048: 2,
- 1197: 1,
- 1199: 1,
- 1202: 1,
- 1418: 1,
- 1527: 1,
- 1528: 1,
- 1749: 1,
- 1750: 2,
- 1754: 1,
 - 1756: 1,
 - 1821: 1,
 - 1982: 1,
 - 2544: 1,
 - 2625: 1,
 - 2675: 1,
 - 2710: 2,
 - 2810: 2,
 - 2970: 1,
 - 2972: 1,
 - 3082: 1,
 - 3713: 1,

 - 3961: 1,
 - 3962: 1, 170: 1,

```
1204: 1,
     1422: 1,
     1757: 1,
     1759: 1,
     2709: 1,
     3628: 1,
     4148: 1,
     81: 1,
     129: 1,
     157: 1,
     163: 1,
     164: 1,
     166: 1,
     167: 1,
     168: 1,
     277: 1,
     334: 1,
     1823: 1,
     1985: 1,
     2090: 1,
     2108: 1,
     2157: 1,
     2161: 1,
     2208: 1,
     2274: 1,
     2368: 1,
     3148: 1,
     3149: 1,
     3151: 1,
     3928: 1,
     4145: 1})
Input:
multiple_outlier_indices = multiple_outlier_indices(outliers)
Solution:
print(Counter(multiple_outlier_indices))
Counter({236: 1, 237: 1, 238: 1, 239: 1, 306: 1, 694: 1, 718: 1, 719: 1, 720: 1, 1429: 1, 1987: 1,
2114: 1, 2169: 1, 2171: 1, 2381: 1, 2711: 1, 3190: 1, 3837: 1, 3899: 1, 3902: 1, 1428: 1, 1763: 1,
```

165: 1, 891: 1, 1052: 1, 1193: 1, 1206: 1, 1207: 1, 1209: 1, 1427: 1, 1761: 1, 1762: 1, 2623: 1,

Input:

df=df.drop(multiple_outlier_indices,axis=0).reset_index(drop = **True**)

2624: 1, 2811: 1, 2863: 1, 3427: 1, 3715: 1})

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••					::	::	::		
4134	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4135	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4136	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4137	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4138	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

 $^{4139 \}text{ rows} \times 9 \text{ columns}$

Input: df.shape

Output:

 $(41\overline{3}9, 9)$

7. Categorical Attribute Encoding

Input:

le=LabelEncoder()

df['Sex']=le.fit_transform(df['Sex'])

Solution:

df.head()

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

8. Seperate dataframe into Predictor and Target

Input:

feature =pd.DataFrame(df.drop(['Rings'], axis = 1))

label = pd.DataFrame(df.Rings)

9. Scaling the Predictor variables

Input:

convert = StandardScaler()

feature = pd.DataFrame(convert.fit_transform(feature))

10. Perform the train test split

Input:

X_train, X_test, y_train, y_test = train_test_split(feature, label, test_size = 0.2, random_state = 0)

```
Input:
print('X_train : ')
print(X_train)
print(X_train.shape)
print(")
print('X_test : ')
print(X_test)
print(X_test.shape)
print(")
print('y_train : ')
print(y_train)
print(y_train.shape)
print(")
print('y_test : ')
print(y_test)
print(y_test.shape)
X_train:
                    2
                           3
                                 4
                                        5
                                              6 \
    1.151942 -0.040971 -0.087769 -0.481759 -0.514480 -0.574405 -0.453057
1521 -0.062807 -1.409929 -1.432469 -1.091508 -1.310493 -1.322352 -1.158735
3436 1.151942 1.670227 1.618965 1.469438 2.013909 1.674082 1.916340
3444 -0.062807 -0.768230 -0.760119 -0.725659 -0.868496 -0.720742 -0.798886
3993 -0.062807 -0.725450 -0.863557 -0.725659 -0.689393 -0.462910 -0.565218
            ...
                •••
                       ... ...
                                   ...
1033 1.151942 1.413547 1.205212 0.859689 1.832711 2.173488 1.701365
3264 1.151942 1.028527 0.946616 1.225538 0.845026 0.772829 0.916240
1653 - 1.277555 \quad 0.729068 \quad 0.688019 \quad 0.493839 \quad 0.607270 \quad 0.120118 \quad 0.402169
2607 -0.062807 -0.725450 -0.708400 -0.969558 -0.876875 -0.690546 -0.995167
2732 -0.062807 0.215709 0.119108 0.371889 0.180984 0.638106 0.004933
       7
64 -0.390700
1521 -1.300351
3436 2.132846
3444 - 1.014251
3993 -0.959232
     ...
1033 1.223195
3264 1.149837
1653 1.032462
2607 -0.992243
2732 -0.243983
```

```
[3311 rows x 8 columns]
(3311, 8)
X_test:
                   2
                          3
       0
             1
                                4
                                      5
                                            6 \
958 1.151942 -0.126531 0.015669 0.127990 -0.062009 0.134054 0.014280
2613 -0.062807 -0.425991 -0.346365 -0.603709 -0.639119 -0.579050 -0.569891
45 -0.062807 -1.153250 -1.173873 -1.091508 -1.304208 -1.254990 -1.261549
3145 -1.277555 -0.169311 0.015669 -0.115910 -0.353182 -0.309604 -0.439037
3994 -0.062807 -0.340431 -0.449804 -1.213458 -0.365751 -0.191140 -0.448384
620 -1.277555 -0.853790 -0.760119 -1.091508 -1.054931 -1.101684 -1.112002
1544 -0.062807 -0.597110 -0.501523 -0.603709 -0.772137 -0.692869 -0.883007
2954 1.151942 0.087369 -0.036050 0.859689 0.931959 0.884324 1.369556
177 -0.062807 -2.564988 -2.570292 -2.311006 -1.632040 -1.545343 -1.541951
50 -0.062807 -0.040971 0.015669 -0.481759 -0.483058 -0.553499 -0.644665
958 -0.313674
2613 -0.680468
45 -1.197648
3145 -0.317342
3994 -0.427380
620 -0.830854
1544 -0.669464
2954 0.724355
177 -1.637802
50 -0.354021
[828 rows x 8 columns]
(828, 8)
y_train:
   Rings
64
1521
       8
3436
       11
3444
       7
3993
       8
1033
       8
3264
       17
1653
       10
2607
       7
```

9

2732

```
[3311 rows x 1 columns]
(3311, 1)
y_test:
   Rings
958
2613
        7
       7
45
3145 15
3994
        8
620
     10
1544
       10
2954
       13
177
       4
50
       8
[828 rows x 1 columns]
(828, 1)
11.Build Model
Input:
pipelines={
'rf':make_pipeline(RandomForestRegressor(random_state=1234)),
'ridge':make_pipeline(Ridge(random_state=1234)),
'lasso':make_pipeline(Lasso(random_state=1234)),
}
Input:
hyperparagrid={
'randomforestregressor_min_samples_split':[2,4,6],
'randomforestregressor__min_samples_leaf':[1,2,3]
},
'ridge':{
  'ridge_alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
},
'lasso':{
  'lasso__alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
}
```

12. Traning the Model

Input:

```
fit_models={ }
for algo, pipeline in pipelines.items():
  model=GridSearchCV(pipeline,hyperparagrid[algo],cv=10,n jobs=-1)
  try:
    print('Start training for { }'.format(algo))
    model.fit(X_train,y_train)
     fit_models[algo]=model
  except NotFittedError as e:
    print(repr(e))
Start training for rf
Start training for ridge
Start training for lasso
13,14 Testing and Measuring Performance
Input:
best_model_rf=fit_models['rf']
best_model_rf
Output:
       GridSearchCV(cv=10,
       estimator=Pipeline(steps=[('randomforestregressor',
                        RandomForestRegressor(random_state=1234))]),
       n jobs=-1,
       param_grid={'randomforestregressor_min_samples_leaf': [1, 2, 3],
               'randomforestregressor_min_samples_split': [2, 4, 6]})
Input:
best_model_ridge=fit_models['ridge']
best_model_ridge
Output:
       GridSearchCV(cv=10,
       estimator=Pipeline(steps=[('ridge', Ridge(random_state=1234))]),
       n_{jobs}=-1,
```

```
param_grid={'ridge__alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.99]})
```

Input:

```
best_model_lasso=fit_models['lasso'] best_model_lasso
```

Output:

```
GridSearchCV(cv=10, estimator=Pipeline(steps=[('lasso', Lasso(random_state=1234))]), n_jobs=-1, param_grid={'lasso__alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.99]})
```

Input:

```
for algo,model in fit_models.items():
    ya=model.predict(X_test)
    print('{} scores-R2:{} MAE:{}'.format(algo,r2_score(y_test,ya),
    mean_absolute_error(y_test,ya)))
```

Output:

rf scores-R2:0.5255029479701915 MAE:1.570513566816263 ridge scores-R2:0.5189099860811324 MAE:1.6528099660919895 lasso scores-R2:0.5190720174119673 MAE:1.6525494856846143