Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID04262
Project Name	Project – Early Detection of Chronic Kidney
	Disease using Machine Learning
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model:	See Below
		MAE - , MSE - , RMSE - , R2 score -	
		Classification Model:	
		Confusion Matrix - , Accuracy	
		Score- & Classification Report -	
2.	2. Tune the Model	Hyper-parameter Tuning -	See Below
		Validation Method -	

1. Metrics

Model: Random Forest Classification

```
check model performance Random forest gives accurate predictions than
        logistic regression
In [51]: accuracy_score(y_test,y_pred)
Out[51]: 0.95
In [52]: conf_mat=confusion_matrix(y_test,y_pred)
        conf_mat
Out[52]: array([[52, 2],
               [ 2, 24]], dtype=int64)
In [53]: print(classification_report(y_test,y_pred))
                    precision recall f1-score support
                   0 0.96 0.96 0.96
1 0.92 0.92 0.92
                                                         54
                                                         26
        accuracy 0.95
macro avg 0.94 0.94 0.94
weighted avg 0.95 0.95 0.95
                                                         80
                                                         80
                                                         80
In [54]: pickle.dump(lgr,open('CKD.pkl','wb'))
```

2. Tune the Model

Hyper parameter Tuning:

- The number of features is important and should be tuned in random forest classification.
- Initially all parameters in the data set are taken as independent values to arrive at the dependent decision of Chronic Kidney Disease or No Chronic Kidney Disease.
- But the result was not accurate so used only 8 more correlated values as independent values to arrive at the dependent decision of Chronic Kidney Disease or not.

Validation Method:

It involves partitioning the training data set into subsets, where one subset is held out to test the performance of the model. This data set is called the validation data set.

Cross validation is to use different models and identify the best:

Logistic Regression Model performance values:

```
check model performance Random forest gives accurate predictions than
        logistic regression
In [59]: accuracy_score(y_test,y_pred)
Out[59]: 0.925
In [60]: conf_mat=confusion_matrix(y_test,y_pred)
        conf_mat
Out[60]: array([[48, 6],
               [ 0, 26]], dtype=int64)
In [61]: print(classification_report(y_test,y_pred))
                     precision recall f1-score support
                        1.00 0.89
0.81 1.00
                  0
                                            0.94
                                                       54
                                          0.90
                                                       26
                  1
                                            0.93
                                                       80
            accuracy
           macro avg 0.91 0.94
ighted avg 0.94 0.93
                                            0.92
                                                       80
                                            0.93
        weighted avg
In [54]: pickle.dump(lgr,open('CKD.pkl','wb'))
```

Hence we tested with Logistic regression and Random Forest Classification wherein the accuracy of Random Forest classification is 95% compared with Logistic Regression.

Logistic Regression					Random Forest Classification					
	0.925				0.95					
accuracy_score(y_test,y_pred)				accuracy_score(y_test,y_pred)						
0.925				0.95						
<pre>conf_mat=confusion_matrix(y_test,y_pred) conf_mat</pre>				<pre>conf_mat=confusion_matrix(y_test,y_pred) conf_mat</pre>						
array([[48, 6], [0, 26]], dtype=int64)					array([[52, 2], [2, 24]], dtype=int64)					
<pre>print(classification_report(y_test,y_pred))</pre>					<pre>print(classification_report(y_test,y_pred))</pre>					
	precision	recall	f1-score	support	p	recision	recall	f1-score	support	
0	1.00	0.89	0.94	54 26	0 1	0.96	0.96 0.92	0.96 0.92	54 26	
	0.02	2.00	0.93	80	accuracy			0.95	80	
macro avg weighted avg	0.91	0.94 0.93	0.92	80 80	macro avg weighted avg	0.94	0.94 0.95	0.94 0.95	80 80	
	accuracy_score(0.925 conf_mat=confus conf_mat array([[48, 6]	accuracy_score(y_test,y_p 0.925 conf_mat=confusion_matrix conf_mat array([[48, 6], [0, 26]], dtype=i print(classification_repo precision 0 1.00 1 0.81 accuracy macro avg 0.91	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_conf_mat array([[48, 6], [0, 26]], dtype=int64) print(classification_report(y_test_precision recall 0 1.00 0.89 1 0.81 1.00 accuracy macro avg 0.91 0.94	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	0.925 accuracy_score(y_test,y_pred) 0.925 conf_mat=confusion_matrix(y_test,y_pred) conf_mat array([[48, 6],	

The above table shows that Random Forest Classification gives better results over Logistic Regression.