Digital Electronics (DE) Code: 01EC0102 3rd sem

Unit-1
Number Systems and Codes

- 1. Analogue Versus Digital
- 2.Introduction to Number Systems and its Conversions
- **3.Floating-Point Numbers**
- 4. Various binary code

UNIT -1

Signal

- Signal: Physical quantity which contains some information.
- It is a function of one or more independent variables.
- Types: Analog and Digital

Types of signal: Aanalog and Digital signal

 T_4

 An analog signal is an electric signal whose value varies in analogy with a physical quantity such as temperature, force, or acceleration and any natural signal.

Continuous signals.

Types of signal: Aanalog and Digital signal

- A digital signal can only have a finite number of discrete amplitudes at any given time.
- Digital devices works only digital signal not analog signal.
- Greater accuracy

Types of signal: Aanalog and Digital signal

> The most common digital signals are binary signals.

A binary signal is a signal that can take only one of two discrete values and is therefore characterized by transitions between two states.

Types of signal: Digital signal

Amplitude

Figure

Typical binary signals.

Difference between Analog and Digital signal

Comparison of Analog and Digital Signal

S.N.	Analog Signal	Digital Signal
1	Analog signal has a infinite values.	Dig ital signal has a finite number of the values.
2	Analog signal has a continuous nature.	Dig ital sig nal has a discrete nature.
3	Analog signal is generate by transducers and signal generators.	Digital signal is generate by A to D converter.
4	Example of analog signal: sine wave, triangular waves.	Example of digital signal: binary signal.

Example of Analog and Digital Devices

- 1) Voltmeter analog or digital (digital voltmeter, or DVM)
- 3) Odometer (which records kilometres) ——— digital
- 4) Toggle switch digital,
- 5) **Dimmer switch** analog

UNIT - 2

Number System

Section - 1

110001100101 17BF 360° 2¹⁶ 11001001 512₁₀ FFFF 42 65536

Different number system with different number bases which plays very important role in today's computer world.

Common Number Systems

System	Base/ Radix	Symbols	Used by Humans?	Used in Computers and digital circuit?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

- The base (radix) of the number system is the total number of digits in the system.
- Octal and Hexa decimal: Used to represent long binary pattern into compact form.

DECIMAL	HEXADEC	OCTAL	BINARY
0	0	000	00000000
1	1	001	00000001
2	2	002	00000010
3	3	003	00000011
4	4	004	00000100
5	5	005	00000101
6	6	006	00000110
7	7	007	00000111
8	8	010	00001000
9	9	011	00001001
10	A	012	00001010
11	В	013	00001011
12	C	014	00001100
13	D	015	00001101
14	E	016	00001110
15	F	017	00001111
16	10	020	00010000
17	11	021	00010001
18	12	022	00010010
19	13	023	00010011
20	14	024	00010100
21	15	025	00010101
22	16	026	00010110
23	17	027	00010111
24	18	030	00011000
25	19	031	AV00011001

la Of

Some definition:

- Decimal → Decimal point
- Binary → Binary point
- Bit(Binary Digits→ 0 or 1
- Nibble → Group of 4 bits → 0010
- Byte → Group of 8 bits → 10101100
- word → 16 bits

Count from 0 to 8 in radix 6 system.

Count from 0 to 8 in radix 3 system.

In decimal there are 0 to 25 numbers and in Hexa decimal there are 0 to 19 but in hexa between 9 and 10 there will be alphabets A to F.

Conversion among Bases

Possibilities

There are total 12 possibilities among convesion bases

Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base
University

1) Decimal to Binary

- Technique
 - → Divide by two, keep track of the remainder
 - → The remainders read from bottom to top give the equivalent binary integer number.
- Example 1 $125_{10} = ?_2$

125 ₁₀ = ? ₂	2	125	1
1 - 3 10 3 2	2	62	0
62 x 2 = 124 + 1 =125	2	31	1
02 X 2 = 12 4 + 1 = 125	2 62 2 31	15	1
	2	7	1
	2	3	1
	2	1	1
		0	

Example - 2

$0.6875_{10} = ?2$	<u>intege</u>	<u>r</u>	<u>fraction</u>
$0.6875 \times 2 = 1.3750$	1	+	0.3750
$0.3750 \times 2 = 0.7500$	0	+	0.7500
$0.7500 \times 2 = 1.5000$	1	+	0.5000
$0.5000 \times 2 = 1.0000$	↓ 1	+	0.0000

$$0.6875_{10} = 0.1011_2$$

1) Decimal to Binary

❖The decimal number (75)₁₀ is converted into its binary equivalent:

Thus, the binary number for $(75)_{10}$ is given by:

- The left most bit in binary is called the Most Significant Bit (MSB)
- The rightmost bit in binary is called the Least Significant Bit (LSB)

1)Decimal to Binary

Conversion of fractional decimal number (0.4375)10 into its binary equivalent

$$0.4375 \times 2 = 0.8750$$

 $0.8750 \times 2 = 1.7500$
 $0.7500 \times 2 = 1.5000$
 $0.5000 \times 2 = 1.0000$
Stop

$$0.252_{10} = ?_2$$

Thus,
$$(0.4375)_{10} = (.0111)_2$$
.

Accuracy in Binary Number Conversion

Example

Convert $(0.252)_{10}$ to binary with an error less than 1%.

Solution

▶ Absolute value of allowable error is found by calculating 1% of the number

$$E_{allow} = 0.01 X 0.252 = 0.00252_{10}$$

Maximum error due to truncation is set to be less than allowable error by solving from $E_{10} = 2^{-n}$. This equation is written as

$$2^{-n} < 0.00252$$

Inverting both sides of the inequality

$$2^n > 397$$

Accuracy in Binary Number Conversion

▶ Taking log of both sides and solving for *n*

$$n \log 2 = \log 397$$

$$n = \frac{\log 397}{\log 2} = 8.63 \approx 9 (next largest integer)$$

- ▶ This indicates that the use of 9 bits in the binary number will guarantee an error less than 1%.
- ▶ So the conversion is carried out to 9 places which results in

$$0.252_{10} = 0.010000001_2$$

2) Binary to Decimal

- Technique
 - \rightarrow Multiply each bit by 2^n , where *n* is the "weight" of the bit
 - → The weight is the position of the bit, starting from 0 on the right(Weighted form). Finally, Add the results.
- Example 1 $101011_2 = ?_{10}$

In this time of system assume number system like integer and the decimal represents the addition of two numbers

$$101011_2 = 43_{10}$$

$$11.11_2 = 3.75_{10}$$

3)Decimal to Octal

- ▶ Technique
 - → Divide by **eight**, keep track of the remainder
 - → The remainders read from **bottom to top** give the equivalent octal integer number.

USE like euclid division lemma.

$$125_{10} = \frac{?}{8}$$

 $125_{10} = 175_{8}$

8	125	5
8	15	7
8	1	1
	0	

$$0.6875_{10} = \frac{?}{8}$$

 $0.6875 \times 8 = 5.5000$

 $0.5000 \times 8 = 4.0000$

USE DUAL FACTOR.

$$0.6875_{10} = 0.54_{8}$$

4) Octal to Decimal

- Technique
 - \rightarrow Multiply each digit by 8ⁿ, where n is the "weight" of the digit
 - → The weight is the position of the digit, starting from 0 on the right. Finally, Add the results.
- Example 1

Example - 2

In this type the conversion is about octal to decimal so we have to first multiply by 8 and further we hav eto reduce power and then we have to addition.

$$724_8 = 468_{10}$$

5) Decimal to Hexa-Decimal

- Technique
 - → Divide by sixteen, keep track of the remainder
 - → The remainders read from bottom to top give the equivalent hexadecimal integer number.
- Example 1 $1234_{10} = ?_{16}$

16	1234	2
16	77	13=D
16	4	4
	0	

Example - 2
0.03125₁₀ = ?₁₆

$$1234_{10} = 4D2_{16}$$

in this the conversion is about decimal to hexadecimal so we have to use dual factor also

$$0.03125_{10} = 0.08_{16}$$

6) Hexa-Decimal to Decimal

- Technique
 - \rightarrow Multiply each digit by 16ⁿ, where *n* is the "weight" of the digit
 - → The weight is the position of the digit, starting from 0 on the right. Finally, Add the results.
- Example 1

$$ABC_{16} = ?_{10}$$

Example - 2

$$43.25_{16} = ?_{10}$$

$$4 \quad 3 \quad . \quad 2 \quad 5$$
in this we have to do do hexadecimal to decimal so we have to multiply with 16 and do further process which we have done in previous one
$$64 \quad + \quad 3 \quad + \quad 0.125 \quad + \quad 0.0195$$

$$ABC_{16} = 2748_{10}$$

6) Hexa-Decimal to Decimal

$$356_{16} = 3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

= $768 + 80 + 6$
= 854_{10}

$$2AF_{16} = 2 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$$

= $512 + 160 + 15$
= 687_{10}

7) Octal to Binary

- ▶ Technique
 - → Convert each octal digit to a 3-bit equivalent binary representation
- Example $705_8 = ?_2$

In this we have to use binary conversion table

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

8) Binary to Octal

- ▶ Technique
 - → From given fractional point, group bits in threes to right and group bits in threes to left
 - → If, left with less than 3 bits at the end then stuff 0s to make it group of three
 - → Convert to octal digits
- Example

$$1011010.111_2 = \frac{?}{8}$$

1011010.111₂ = 132.7₈

9) Hexa-Decimal to Binary

- Technique
 - → Convert each hexadecimal digit to a 4-bit equivalent binary representation
- Example 10AF₁₆ = ?₂

$$10AF_{16} = 1000010101111_2$$

Hexa-Decimal	Binary	Hexa-Decimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111

10)Binary to Hexa-Decimal

- ▶ Technique
 - → From given fractional point, group bits in fours to right and group bits in fours to left
 - → If, left with less than 4 bits at the end then stuff 0s to make it group of four
 - → Convert to hexadecimal digits
- Example

$$101101.0111_2 = ?_{16}$$

$$1011010111_2 = 2D.7_{16}$$

11)Octal to Hexa-Decimal

- ▶ Technique
- Direct conversion method is not available for it.
 - → Convert Octal to Binary
 - these bits are grouped in four bits.
 - → Convert Binary to Hexa-Decimal
- Example

 $1076_8 = 23E_{16}$

12) Hexa-Decimal to Octal

- Technique
 - → Convert Hexa-Decimal to Binary
 - → these bits are grouped in three bits.
 - → Convert Binary to Octal
- Example

$$1F0C_{16} = ?_{8}$$

$$1F0C_{16} = 17414_8$$

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Exe

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Don't use a calculator!

Exe

Answer

Decimal	Binary	Octal	Hexa- decimal
29.8	11101.110011	35.63	1D.CC
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

Floating Point Representation

- Scientific notation for Decimal number system to represent very large or small number is,
 - 1) $976,000,000,000,000 = 9.76 * 10^{(+14)}$
 - 2) $0.000000000000000976 = 9.76 * 10^{-14}$.
- Decimal point is put on a convenient location and use the exponent of
 10 to keep track of that decimal point
- This allows a range of very large and very small numbers to be represented with only a few digits.
- Normalized Floating point number: if most significant digit of the number is non-zero. i.e. 350 is normalized but 00035 is normalized but 00035 is normalized

Floating Point Representation

- Scientific notation of binary number is Floating point representation.
- A floating-point (FP) number:

$$\pm m^*b^e$$

- 1. m = mantissa represents the fraction part of the number,
- 2. e = exponent, :- the position of the decimal(binary) point
- 3. $\mathbf{b} = \text{base (radix) of the exponent.}$

Floating point Representation

Representation of number in floating point method

•
$$(13.8)_{10} = (1101.11001...)_2$$

= $(1.10111001...) * 2^3$
= $(1.1011) * 2^{(011)_2}$

Example -2

```
• (-13.9)_{10} = -(1101.11100...)_2
= -(1.101111100) * 2^3
• = -(1.101111100) * 2^0(011)_2
• = -(1.1011) * 2^0(011)_2
```

0

0

Floating Point Representation

- Two main Standard:
 - 1) ANSI(American National Standard Institute)
 - 2) IEEE(Institute of Electrical and Electronics Engineers)

32 bit floating point number in ANSI(American National Standard Institute)

Figure

Representation of a floating-point number

Floating Point Representation

- •The most commonly used format for representing floating-point numbers is the IEEE-754 standard.
- •Established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

Characteristic parameters of IEEE-754 formats.

Precision	Sign (bits)	Exponent (bits)	Mantissa (bits)	Total length (bits)
Single	1	8	23	32
Single-extended	1	≥ 11	≥ 32	≥ 44
Double	1	11	52	64
Double-extended	1	≥ 15	≥ 64	≥ 80

Floating Point Representation- IEEE-754

Double Precision
IEEE 754 Floating-Point Standard

Binary Addition & Subtraction

0 + 0 = 0

0 + 1 = 1

Rules for binary addition

Rules for binary subtraction

$$1 - 1 = 0$$

 $1 - 0 = 1$
 $0 - 1 = 1$, with
a borrow 1

0 - 0 = 0

Binary Multiplication & Division

Multiplication

Division

Signed Binary Numbers

- ▶ Two ways of representing signed numbers:
 - → 1) Sign-magnitude form, 2) Complement form.
- ▶ Most of computers use complement form for negative number notation.
- ▶ 1's complement and 2's complement are two different methods in this type.

1's Complement

- ▶ 1's complement of a binary number is obtained by subtracting each digit of that binary number from 1.
- Example

Shortcut: Invert the numbers from 0 to 1 and 1 to 0

2's Complement

- ▶ 2's complement of a binary number is obtained by adding 1 to its 1's complement.
- Example

Shortcut: Starting from right side, all bits are same till first 1 occurs then invert rest of the bits

Representation of negative number in 2's complement form

Express -65.5 in 12 bit 2's complement form.

2	65	1
2	32	0
2	16	0
2	8	0
2	4	0
2	2	0
2	1	1
	0	

$$0.5 \times 2 = 1.0$$

So, result in 12-bit binary is as follows:

$$65.5_{10} = 01000001.1000_2$$

For negative number, we have to convert this into 2's complement form

$$-65.5_{10} = 101111110.1000_2$$

Accuracy in Binary Number Conversion

Example

Convert $(0.252)_{10}$ to binary with an error less than 1%.

Solution

▶ Absolute value of allowable error is found by calculating 1% of the number

$$E_{allow} = 0.01 X 0.252 = 0.00252_{10}$$

Maximum error due to truncation is set to be less than allowable error by solving from $E_{10} = 2^{-n}$. This equation is written as

$$2^{-n} < 0.00252$$

Inverting both sides of the inequality

$$2^n > 397$$

Accuracy in Binary Number Conversion

▶ Taking log of both sides and solving for *n*

$$n \log 2 = \log 397$$

$$n = \frac{\log 397}{\log 2} = 8.63 \approx 9 (next largest integer)$$

- ▶ This indicates that the use of 9 bits in the binary number will guarantee an error less than 1%.
- ▶ So the conversion is carried out to 9 places which results in

$$0.252_{10} = 0.010000001_2$$

9's Complement

- ▶ 9's complement of a decimal number is obtained by subtracting each digit of that decimal number from 9.
- Example

10's Complement

- ▶ 10's complement of a decimal number is obtained by adding 1 to its 9's complement.
- Example

Subtraction using 9's complement & 10's complement

- Using 9's complement
 - Obtain 9's complement of subtrahend
 - → Add the result to minuend and call it intermediate result
 - → If carry is generated then answer is positive and add the carry to Least Significant Digit (LSD)
 - → If there is no carry then answer is negative and take 9's complement of intermediate result and place negative sign to the result.
- Using 10's complement
 - → Obtain 10's complement of subtrahend
 - → Add the result to minuend
 - → If carry is generated then answer is positive, ignore carry and result itself is answer
 - → If there is no carry then answer is negative and take 10's complement of intermediate result and place negative sign to the result.

Subtraction using 9's complement (Examples)

Example - 1 745.81 - 436.62

Subtraction using 9's complement (Examples)

Example - 2436.62 - 745.81

As carry is not generated, so take 9's complement of the intermediate result and add ' – ' sign to the result

Subtraction using 10's complement (Examples)

Example - 1 745.81 - 436.62

Subtraction using 10's complement (Examples)

Example - 2 436.62 - 745.81

As carry is not generated, so take 10's complement of the intermediate result and add ' – ' sign to the result

Subtraction using 1's complement & 2's complement

- Using 1's complement
 - Obtain 1's complement of subtrahend
 - → Add the result to minuend and call it intermediate result
 - → If carry is generated then answer is positive and add the carry to Least Significant Digit (LSD)
 - → If there is no carry then answer is negative and take 1's complement of intermediate result and place negative sign to the result.
- Using 2's complement
 - Obtain 2's complement of subtrahend
 - → Add the result to minuend
 - → If carry is generated then answer is positive, ignore carry and result itself is answer.
 - → If there is no carry then answer is negative and take 2's complement of intermediate result and place negative sign to the result.

Subtraction using 1's complement (Examples)

► Example - 1 68.75 - 27.50

Subtraction using 1's complement (Examples)

Example - 243.25 - 89.75

As carry is not generated, so take 1's complement of the intermediate result and add ' – ' sign to the result

Subtraction using 2's complement (Examples)

► Example - 1 68.75 - 27.50

Subtraction using 2's complement (Examples)

Example - 2 43.25 - 89.75

As carry is not generated, so take 2's complement of the intermediate result and add ' – ' sign to the result

Binary Codes

Section - 2

DECIMAL	HEXADEC	OCTAL	BINARY
0	0	000	00000000
1	1	001	00000001
2	2	002	00000010
3	3	003	00000011
4	4	004	00000100
5	5	005	00000101
6	6	006	00000110
7	7	007	00000111
8	8	010	00001000
9	9	011	00001001
10	A	012	00001010
11	В	013	00001011
12	C	014	00001100
13	D	015	00001101
14	E	016	00001110
15	F	017	00001111
16	10	020	00010000
17	11	021	00010001
18	12	022	00010010
19	13	023	00010011
20	14	024	00010100
21	15	025	00010101
22	16	026	00010110
23	17	027	00010111
24	18	030	00011000
25	19	031	WW0.0011001

8421 BCD Code (Natural BCD Code)

- ▶ Each decimal digit, 0 through 9, is coded by 4-bit binary number
- ▶ 8, 4, 2 and 1 weights are attached to each bit
- ▶ BCD code is weighted code
- ▶ 1010, 1011, 1100, 1101, 1110 and 1111 are illegal codes
- Less efficient than pure binary
- Arithmetic operations are more complex than in pure binary
- Example

Binary Codes

Decimal	Binary	BCD
0	0	0000
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111

Decimal	Binary	BCD		
8	1000	1000		
9	1001	1001		
10	1010	0001 0000		
11	1011	0001 0001		
12	1100	0001 0010		
13	1101	0001 0011		
14	1110	0001 0100		
15	1111	0001 0101		

67

BCD Addition

Example - 1

No carry, no illegal code. So, this is the correct sum.

Rule: If there is an illegal code or carry is generated as a result of addition, then add 0110 to particular that 4 bits of result.

BCD Addition

Example - 2

BCD Subtraction

Example - 1

No borrow. So, this is the correct difference.

Rule: If one 4-bit group needs to take borrow from neighbor, then subtract 0110 from the group which is receiving borrow.

BCD Subtraction

Example - 2

			0101	1000	.1001	Corrected difference
	58.9	0000		1110 -0110		Borrows are present Subtract 0110
-	147.8	- 0001	0100	0111	.1000	
	206.7	0010	0000	0110	.0111	

Excess Three (XS-3) Code

- Excess Three Code = 8421 BCD + 0011(3)
- ▶ XS-3 code is non-weighted BCD code
- Also known as self complementing code
- ▶ 0000, 0001, 0010, 1101, 1110 and 1111 are illegal codes
- Example

XS-3 Addition

Example

	0101	0111	1010	.1001	
+	0110	1000	1100	.0111	
	1011	1111	10110	1.0000	
		+14	+14		
	1011	10000	0111	.0000	
	+ 1	1			
	1100	0000	0111	.0000	
	1100 - 0011	0000 +0011	0111 +0011	.0000 +.0011	

Carry generated

Propagate carry

Rule: Add 0011 to group which generated carry and Subtract 0011 to group which do not generated carry

XS-3 Subtraction

Example

	57.6	1000	1010	.1001	
-	27.8	- 0101	1010	.1011	
	29.8	0010	1111	.1110	
		+0011	-0011	0011	
		0101	1100	.1011	

Rule: Subtract 0011 to group which generated borrow and Add 0011 to group which do not generated borrow

Gray Code

- Only one bit changes between each pair of successive code words (Unit distance code).
- Gray code is a reflected code.
- Gray codes are designed recursively using following rules:
 - → 1-bit Gray code has two code words, 0 and 1.
 - → The first 2ⁿ code words of an (n+1)-bit Gray code equal the code words of n-bit gray code, written in order with a leading 0 appended.
 - → The last 2ⁿ code words of an (n+1)-bit Gray code equal the code words of n-bit gray code, but written in reverse order with a leading 1 appended.

	(Decimal	4-bit Binary		
1-bit	2-bit	3-bit	4-bit	Decillar	4-bit billary
0	0 0	0 0 0	0 0 0 0	0	0000
1	0 1	0 0 1	0 0 0 1	1	0001
	11	0 1 1	0 0 1 1	2	0010
	10	0 1 0	0 0 1 0	3	0011
		110	0110	4	0100
		111	0111	5	0101
		101	0 1 0 1	6	0110
		1 0 0	0 1 0 0	7	0111
			1100	8	1000
			1101	9	1001
			1111	10	1010
			1110	11	1011
			1010	12	1100
			1011	13	1101
			1 0 0 1	14	1110
			1000	15	11

Binary to Gray and Gray to Binary Conversion

▶ Conversion of n-bit Binary number (B) to Gray Code (G) is as follows:

 \blacktriangleright Example: Convert $(1001)_2$ to Gray Code.

77

Gray to Binary Conversion

▶ Conversion of n-bit Gray Code (G) to Binary Number (B) is as follows:

$B_n = G_n$	$B_{n-1} = B_n \oplus G_{n-1}$	$B_{n-2} = B_{n-1} \oplus G_{n-2} \dots$	$B_1 = B_2 \oplus G_1$

Example: Convert Gray code 1101 to Binary.

Error-Detecting Codes

- Noise can alter or distort the data in transmission.
- ▶ The 1s may get changed to 0s and 0s to 1s.
- Because digital systems must be accurate to the digit, errors can pose a serious problem.
- ▶ Single bit error should be detect & correct by different schemes.
- ▶ Parity, Check Sums and Block Parity are few examples of error detecting code.

Parity

- Parity bit is the simplest technique.
- ▶ There are two types of parity Odd parity and Even parity.
- ▶ For odd parity, the parity is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an odd number.
- ▶ For even parity, the parity is set to a 0 or a 1 at the transmitter such that the total number of 1 bits in the word including the parity bit is an even number.
- ▶ For example, 0110 binary number has "1" as Odd parity and "0" as Even parity.
- ▶ Detect a single-bit error but can not detect two or more errors within the same word.
- ▶ In any practical system, there is always a finite probability of the occurrence of single error.
- ▶ E.g. In an even-parity scheme, code 10111001 is erroneous because number of 1s is odd(5), while code 11110110 is error free because number of 1s is even(6).

Check Sums

- Simple parity can not detect two errors within the same word.
- ▶ Added to the sum of the previously transmitted words
- At the transmission, the check sum up to that time is sent to the receiver.
- ▶ The receiver can check its sum with the transmitted sum.
- If the two sums are the same, then no errors were detected at the receiver end.
- ▶ If there is an error, the receiving location can ask for retransmission of the entire data.
- ▶ This type of transmission is used in teleprocessing system.

Block Parity

Error Correcting Code

- ▶ 7-bit Hamming Code is widely used error correcting code, containing 4 bits of data and 3 bits of even parity.
- Pattern: P₁ P₂ D₃ P₄ D₅ D₆ D₇
- ► Group 1: P₁D₃D₅D₇
- ► Group 2: P₂D₃D₆D₇
- ► Group 3: P₄D₅D₆D₇
- Example: Data = 1101

$$P_1 P_2 D_3 P_4 D_5 D_6 D_7 = P_1 P_2 1 P_4 1 0 1$$

 $P_1 D_3 D_5 D_7 = 1 1 1$
 $P_2 D_3 D_6 D_7 = 1 0 1$
 $P_4 D_5 D_6 D_7 = 1 0 1$

▶ 7-bit Hamming Code is 1 0 1 0 1 0 1

- How to detect error?
- Example: Received data = 1001001

$$P_1 P_2 D_3 P_4 D_5 D_6 D_7 = 100101$$

$$P_1 D_3 D_5 D_7 = 1001$$
 (No Error)

$$P_2 D_3 D_6 D_7 = 0 0 0 1 (Error)$$

$$P_4 D_5 D_6 D_7 = 1001$$
 (No Error)

- The error word is $0.10 = 2_{10}$.
- Complement the 2nd bit (from left).
- Correct code is 1 1 0 1 0 0 1

UNIT - 3

Boolean Algebra

Section - 3

Boolean Algebra Laws

► AND laws

1.
$$A \cdot 0 = 0$$
 (Null Law)

2.
$$A \cdot 1 = A$$
 (Identity Law)

$$3. A \cdot A = A$$

4.
$$A \cdot \bar{A} = 0$$

Commutative laws

1.
$$A + B = B + A$$

2.
$$A \cdot B = B \cdot A$$

OR laws

1.
$$A + 0 = A (Null Law)$$

2.
$$A + 1 = 1$$
 (*Identity Law*)

3.
$$A + A = A$$

4.
$$A + \bar{A} = 1$$

Associative laws

1.
$$(A + B) + C = A + (B + C)$$

2.
$$(A \cdot B)C = A(B \cdot C)$$

Boolean Algebra Laws

- Distributive laws
- 1. A(B+C) = AB + AC
- 2. A + BC = (A + B)(A + C)
- ▶ Idempotent laws
- 1. $A \cdot A = A$
- 2. A + A = A

▶ De Morgan's Theorem

$$1. \ \overline{A+B} = \overline{A}\overline{B}$$

$$2. \ \overline{AB} = \overline{A} + \overline{B}$$

Redundant Literal Rule

1.
$$A + \bar{A}B = A + B$$

$$2. A(\bar{A}+B)=AB$$

Absorption laws

1.
$$A + AB = A$$

2.
$$A(A + B) = A$$

Proof of $\overline{A+B+C}=\bar{A}\;\bar{B}\;\bar{C}$

L.H.S.						R.F	I.S.	
A	В	С	A+B+C	A+B+C	Ā	$\overline{\mathbf{B}}$	Ē	$\overline{A}\overline{B}\overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	0

From truth table, it is clearly visible that L.H.S. = R.H.S. Hence, the complement sum of variables is equal to the product of their individual complement.

Proof of $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$

L.П.З.							к.п.5.	
A	В	С	ABC	ABC	Ā	$\overline{\mathbf{B}}$	Ē	$\overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

From truth table, it is clearly visible that L.H.S. = R.H.S. Hence, the complement product of variables is equal to the sum of their individual complement

Reducing Boolean Expression (Example - 1)

▶ Reduce the expression $f = A + B[AC + (B + \bar{C})D]$

$$f = A + B[AC + (B + \bar{C})D]$$

$$f = A + B[AC + BD + \bar{C}D]$$

$$f = A + BAC + BBD + B\bar{C}D$$

$$f = A + ABC + BD + B\bar{C}D$$

$$f = A(1 + BC) + BD(1 + \bar{C})$$

$$f = A + BD$$

(Distributive law)

(Distributive law)

$$(A.A = A)$$

$$(1 + A = 1)$$

Reducing Boolean Expression (Example - 2)

Reduce the expression $f = A[B + \bar{C}(\overline{AB + A\bar{C}})]$

$$f = A[B + \bar{C}(AB + A\bar{C})]$$

$$f = A[B + \bar{C}(\bar{A}B\bar{A}\bar{C})]$$

$$f = A[B + \bar{C}(\bar{A} + \bar{B})(\bar{A} + C)]$$

$$f = A[B + \bar{C}(\bar{A}\bar{A} + \bar{A}C + \bar{B}\bar{A} + \bar{B}C)]$$

$$f = A[B + \bar{C}\bar{A} + \bar{C}\bar{A}C + \bar{C}\bar{B}\bar{A} + \bar{C}\bar{B}C]$$

$$f = A[B + \bar{C}\bar{A} + 0 + \bar{C}\bar{B}\bar{A} + 0]$$

$$f = AB + A\bar{C}\bar{A} + A\bar{C}\bar{B}\bar{A}$$

$$f = AB + 0 + 0$$

$$f = AB$$

(De-Morgan's law)

(De-Morgan's law)

(Distributive law)

(Distributive law)

(A.A' = 0)

(Distributive law)

$$(A.A' = 0)$$

Logic Gates

Section - 4

Logic Gates

- Most basic logical unit of the digital system is gate circuit.
- ▶ Types of gate circuits are as follows
 - 1. AND Gate
 - 2. OR Gate
 - 3. NOT Gate (Inverter)
 - 4. NOR Gate
 - 5. NAND Gate
 - 6. XOR Gate
 - 7. XNOR Gate

1. AND Gate

▶ AND Gate has an output which is normally at logic level "0" and only goes "HIGH" to a logic level "1" when ALL of its inputs are at logic level "1"

2-input AND Gate

Truth Table

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

$$C = A \cdot B$$

2. OR Gate

▶ OR Gate or Inclusive-OR gate has an output which is normally at logic level "0" and only goes "HIGH" to a logic level "1" when one or more of its inputs are at logic level "1".

2-input OR Gate

Truth Table

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

$$C = A + B$$

3. NOT (Inverter) Gate

▶ NOT gate has an output which is always opposite to input level.

Inverter Gate

Truth Table

Α	С
0	1
1	0

$$C = \bar{A} \text{ or } C = A'$$

4. NOR Gate

- ▶ NOR Gate is an OR gate followed by an inverter.
- NOR Gate has an output which is normally at logic level "1" and only goes "LOW" to a logic level "0" when one or more of its inputs are at logic level "1".

2-input NOR Gate

Truth Table

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

$$C = (A + B)'$$

5. NAND Gate

- ▶ NAND Gate is an AND gate followed by an inverter.
- ▶ NAND Gate has an output which is normally at logic level "1" and only goes "LOW" to a logic level "0" when ALL inputs are at logic level "1".

2-input NAND Gate

Truth Table

Α	В	С
0	0	1
0	1	1
1	0	1
1	1	0

$$C = (A \cdot B)'$$

6. Exclusive-OR (X-OR) Gate

- ▶ X-OR gate that has 1 state when one and only one of its two inputs assumes a logic 1 state and has 0 state when all of its input are same.
- ▶ Also known as anti-coincidence gate or inequality detector.

2-input XOR Gate

Truth Table

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

$$C = A \oplus B$$

7. Exclusive-NOR (X-NOR) Gate

- ▶ X-NOR gate that has 1 state when all of its input are same and has 0 state when one of its input has 0 state and other input is 1 state.
- Also known as coincidence gate or equality detector.

2-input XNOR Gate

Truth Table

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	1

$$C = A \odot B$$

NAND as Universal Gate

OR using NAND

NOR as Universal Gate

AND using NOR

