Number Theory Coursework

The result proved in this coursework has also been proved using the same method in the Lean theorem prover. This is available at https://github.com/ChrisHughes24/numbertheory

1 Preliminaries

For this proof one related theorem is required. For any $n \in \mathbb{N}_{\geq 0}$, let $v_p(n)$ be the maximum integer k such that p^k divides n. Then for any integers n > 0, and k > 0, $v_p\binom{n}{k} \geq v_p(n) - v_p(k)$.

A theorem by Legendre says that for any n, $v_p(n!) = \sum_{i=0}^{\infty} \left| \frac{n}{p^i} \right|$.

To compute a bound on $v_p\binom{n}{k}$, observe that

$$v_p \binom{n}{k} = v_p(n!) - v_p(k!) - v_p((n-k)!)$$

$$= \sum_{i=0}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{k}{p^i} \right\rfloor - \left\lfloor \frac{n-k}{p^i} \right\rfloor$$
(1)

Observe that if p^i divides n but not k then the corresponding term in the sum is 1, so the sum is at least as big as the number of i that divide n but not k, which is $v_p(n) - v_p(k)$

2 Main proof

Lemma 1 If m is even then x + 1 is a power of 2

Consider congruences mod p when m is even, and p divides $x^m + 1$. Then p also divides x + 1

$$x^m + 1 \equiv (-1)^m + 1 \equiv 2 \bmod p \tag{2}$$

So $2 = 0 \mod p$ and therefore p = 2 and x + 1 is a power of 2.

Lemma 2 If m is even then $x^m + 1 \equiv 2 \mod 4$

This is because x must be odd, so x^m is an odd square, so x^m is 1 mod 4.

Lemma 3 m is odd

Assume m is even.

By Lemma 1, $x^m + 1$ is a power of 2. But by Lemma 2 $x^m + 1$ is 2 mod 4. 2 is the only power of 2 congruent to 2 mod 4. So $x^m + 1 = 2$, but this contradicts x > 1 and m > 1. So m is odd.

Lemma 4 x + 1 divides $x^m + 1$

-1 is a root of the polynomial $X^m + 1$ since m is odd. So by the factor theorem x + 1 divides $x^m + 1$.

The idea of the rest of the proof is to prove that $\frac{x^m+1}{x+1}$ divides m, and is therefore less than or equal to m, which puts bounds on x and m. The divisibility is proven by proving every prime power that dividies $\frac{x^m+1}{x+1}$ also divides m.

Lemma 5 Let p be a prime and suppose p^r divides m. Let t be a positive integer. Let i be an integer at least 2. The p^{r+t+1} divides $\binom{m}{i}p^{ti}$

If p=2 then since m is odd, r=0. So $p^{r+t+1}=p^{t+1}$ which divides p^{ti} .

Otherwise, we use the fact that $v_p\binom{m}{i} \ge v_p(m) - v_p(i)$.

First prove that $p^{ti-t} > i$. $p^{ti-t} = p^t p^{t(i-2)} \ge 3p^{t(i-2)} \ge p^{t(i-2)} + 2 > t(i-2) + 2 \ge i$, So p^{ti-t} does not divide i.

Therefore $v_p\binom{m}{i} > v_p(m) - (ti - t)$. So $v_p\left(\binom{m}{i}p^{ti}\right) \ge v_p(m) + t$.

Lemma 6 If p is prime and p^t divides x + 1, but p^{t+1} does not divide x + 1 and p^{s+t} divides $x^m + 1$, then p^s divides m.

If t=0 then s must also be equal to zero, since any prime dividing x^m+1 also divides x+1.

First prove that p^r divides m, when $r \leq s$ by induction on r. We can assume t is positive.

The case r = 0 is trivial.

Now assume p^r divides m and deduce p^{r+1} divides m, provided r < s.

Write $x = kp^t - 1$ where p does not divide k.

Then
$$x^m + 1 = (kp^t - 1)^m + 1 = mkp^t - \sum_{i=2}^m {m \choose i} (-k)^i p^{it}$$
.

Using Lemma 5, p^{r+t+1} divides the sum. It also divides $x^m + 1$, so p^{r+t+1} must divide mkp^t , so p^{r+1} divides m.

Lemma 7 $\frac{x^m+1}{x+1} \leq m$

By Lemma 6, every prime power that divides $\frac{x^m+1}{x+1}$ also divides m, So $\frac{x^m+1}{x+1}$ divides m and is therefore less than or equal to m.

Lemma 8 m=3

Suppose for a contradiction that $m \geq 4$. Write m = m' + 4, where $m' \in \mathbb{N}_0$. Similarly write x = x' + 2.

Now show $(m'+4)(x'+2) + m' + 4 < (x'+2)^{m'+4} + 1$.

$$(m'+4)(x'+2) + x'(m'+4)$$

$$= (3m'+12) + x'(m'+4)$$

$$< (3(x'+2)^{m'} + 12(x'+2)^{m'}) + x'((x'+2)^{m'} + 4(x'+2)^{m'})$$

$$\leq (x'+2)^{m'+4} + 1$$
(3)

But by Lemma 7, $(m'+4)(x'+2)+m'+4 \ge (x'+2)^{m'+4}+1$, so m cannot be greater than 3. m is odd and m>1 so m=3

Lemma 9 x=2

Suppose for a contradiction that $x \geq 3$. Write x = x' = 3 Then

$$mx + m$$

$$= 3x' + 12$$

$$< x'^{3} + 9x'^{2} + 27x' + 27$$

$$= x^{m} + 1$$
(4)

So x < 3, but x > 1, so x = 2.

Lemma 10 The solutions are x = 2, m = 3 and $n \ge 2$

Given x=2 and m=3 simple calculations verify that this is a solution if and only if $n\geq 2$.