Medical Image Seminar

QIU Liangdong

The Chinese University of Hong Kong(ShenZhen)

May 14, 2020

Outline

- 1 Volumetric Attention for 3D Medical Image Segmentation and Detection (MICCAI 2019)
- 2 Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis (MICCAI 2019)
- 3 Feedback U-net for Cell Image Segmentation (CVPR 2020 workshop)

Volumetric Attention for 3D Medical Image Segmentation and Detection (MICCAI 2019)

- Propose volumetric attention(VA) module for 3D medical image segmentation and detection
- Inspired by Non-local Neural Networks Segmentation and Detection
- Backbone: Mask R-CNN Segmentation and Detection

Mask R-CNN VS. VA Mask R-CNN

- 2D network but 3D
- transfer learning (pre-trained detection network)

Mask R-CNN Network Structure

Proposed Network Structure: Attention Module before RPN

Module Detail

■ Features Bag: $[\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N] \in \mathbb{R}^{N \times C^i \times H^i \times W^i}$

Results

- enhance lesion prediction
- avoid false positive

Experiment on LiTS dataset (131 training and 70 test CT scans)

Team	Model	Dice per case
3D U-Net(Ours) [5]	3D U-Net	55.0
G. Chlebus [3]	2D U-Net	65.0
E. Vorontsov et al. [16]	2D + 3D FCN	65.0
Y. Yuan [21]	Deconv-Conv Net	65.7
X. Han [9]	2D U-Net	67.0
LeHealth	-	70.2
Mask-RCNN(Ours)[10]	Mask-RCNN	70.3
X. Li et al.[13]	H-DenseUNet	72.2
VolumetricAttention	VA Mask-RCNN	74.1

Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis (MICCAI 2019)

- Propose a transfer learning pipeline for 3D Medical Image tasks
 Segmentation and Detection
- ImageNet is used for 2D task transfer learning, while 3D medical transfer learning is still a challenge

Network Structure

Distribution-based

■ intensity transformation

I. Non-linear transformation

Learning organ appearance and intensity distribution

Distribution-based

shuffling

II. Local pixel shuffling

Learning organ texture and local boundaries

Painting-based

- in-painting
- out painting

III. Out-painting

IV. In-painting

Make use of pre-trained models

Results

- 2D score is close to ImagesNet
- for 3D, proposed method outperforms Scratch

Task	2D (%)				p -value †		
lask	Scratch	ImageNet	Genesis	Scratch	ImageNet	Genesis	p-varue
NCC	96.03 ± 0.86	97.79 ± 0.71	97.45 ± 0.61	94.25 ± 5.07	N/A	98.20 ± 0.51	0.0213
NCS	70.48 ± 1.07	72.39 ± 0.77	72.20 ± 0.67	74.05 ± 1.97	N/A	77.62 ± 0.64	< 1e-8
ECC	71.27 ± 4.64	78.61 + 3.73	78.58 + 3.67	79.99 ± 8.06	N/A	88.04 + 1.40	5.50e-4

[†]These *p*-values are calculated between our Models Genesis vs. the fine-tuning from ImageNet, which always offers the best performance (highlighted in red) for all three tasks in 2D.

Experiment on 5 tasks

						-	~	
Task	Metric	Disease	Organ	Dataset	Modality	Scratch (%)	Genesis $(\%)$	p-value
NCC1	AUC					$94.25{\pm}5.07$	$\bf 98.20 \!\pm\! 0.51$	0.0180
\mathtt{NCS}^2	IoU					$74.05 {\pm} 1.97$	$\bf 77.62 {\pm} 0.64$	1.04e-4
ECC^3	AUC	X		X		79.99 ± 8.06	$88.04{\pm}1.40$	0.0058
\mathtt{LCS}^4	IoU	Х	X	X		$74.60 \!\pm\! 4.57$	$\textbf{79.52} \!\pm\! \textbf{4.77}$	0.0361
\mathtt{BMS}^5	IoU	×	×	×	×	90.16 ± 0.41	$\bf 90.60 \!\pm\! 0.20$	0.0041

¹ LUNA winner holds an official score of 0.968 vs. 0.971 (ours)

² Wu et al. holds a Dice of 74.05% vs. 75.86% ±0.90% (ours)

³ Zhou et al. holds an AUC of 87.06% vs. 88.04%±1.40% (ours)

⁴ LiTS winner w/ postprocessing (PP) holds a Dice of 96.60% vs. 91.13%±1.51% (ours w/o PP)

⁵ BraTS winner w/ ensembling holds a Dice of 91.00% vs. 92.58%±0.30% (ours w/o ensembling)

Feedback U-net for Cell Image Segmentation (CVPR 2020 workshop)

- Imitate feedback processing of human neural system
- 2 round forward using Convolutional LSTM

Pipeline

Network Structure

Experiment on Drosophila cell image dataset achieved the best accuracy which is 71.5% on mean IoU

Method	cytoplasm (%)	cell membrane (%)	mitochondria (%)	synapses (%)	meanloU (%)
U-Net	92.0	74.9	73.1	40.9	70.2
RU-Net (time-step=2)	92.2	75.8	74.3	43.2	71.4
Feedback U-Net with Recurrent Neural Layer	92.2	75.1	73.8	37.9	69.8
Feedback U-Net without Convolutional LSTM	92.1	76.0	74.9	38.4	70.4
Feedback U-Net with Convolutional LSTM	92.4	76.4	75.2	42.3	71.5

Visual results

image segmentation