()	Γ . Π	a	\mathbf{R} .	ен	ие

ГЛАВА 12. ЭВОЛЮЦИЯ СИЛОВЫХ ПОЛУПРВОДНИКОВЫХ ПРИБО	POB
	1

ГЛАВА 12. ЭВОЛЮЦИЯ СИЛОВЫХ ПОЛУПРВОДНИКОВЫХ ПРИБОРОВ

Мощные полупроводниковые приборы являются теми компонентами, которые определяют эффективность, габариты и стоимость электронных систем для управления энергией. Быстро увеличивающаяся потребность контролируемых силовых электронных системах стимулирует исследования новых материалов новых материалов, структур и топологий для таких приборов. Современные мощные приборы неизменно изготавливаются с использованием кремния как основного материала. Среди перспективных полупроводниковых материалов наибольшее внимание привлекает карбид кремния, арсенид галлия и нитрид галлия.

Таблица 12.1 Сравнительные характеристики полупроводниковых материалов, и электрических параметров ультрабыстрых диодов на Si, GaAs, SiC и GaN.

Свойство	Si	GaAs	4H-SiC	GaN
		(p-i-n)		
Ширина запрещенной зоны, эВ	1,12	1,43	3,26	3,45
Диэлектрическая	11,9	13,1	10,1	9
проницаемость				
Критическая напряженность	300	455	2200	2000
электрического поля, кВ/см				
Подвижность электронов,	1500	10000	900	1000
$cm^2/B \cdot c$				
Подвижность дырок, см ² /В·с	600	400	115	850
Коэффициент	1,5	0,46	4,9	1,3
теплопроводности, Вт/см К				
Скорость дрейфа электронов в	1	1,5	2	2,2
режиме насыщения, 10^7 см/с				
Предельная рабочая	+175	+260+300	+175+200	+200
температура p-n перехода T_n ° C				
Отсечка прямого напряжения р-	≈0,6	1,05	2,8	2,9
п-перехода, В				_
Прямое падение напряжения	1,5	1,8	1,5	1,6

$U_{\rm np}$, B					
Время	восстановления	40	22	10 (ДБШ)	30
обратного сопротивления $\tau_{\text{восст}}$,					(GaN/Si)
нс ($I_{\rm np} = 8$ А, $U_{\rm o6p} = 600$ В)					

Во всех современных зарубежных и отечественных публикациях по силовой электронике предпочтение отдается SiC и GaN как материалам, значительно превосходящим по своим физическим параметрам Si и GaAs. На первый взгляд, это логично, а именно:

- удельное сопротивление приборов в открытом состоянии на порядок меньше;
 - радиационная стойкость очень высокая;
 - теплопроводность, особенно у SiC, исключительно высокая;
 - обратные токи почти нулевые (ширина запрещенной зоны);
 - накопленные заряды сверхмалые;
 - быстродействие...

Необходимо отметить, что силовые приборы на Si, GaAs, SiC создаются либо на монокристаллах, либо на базовых гомоэпитаксиальных слоях, т. е. в качестве подложек используется «родной» кристалл, в то время как качественных коммерческих монокристаллических GaN-подложек пока нет. Выращивание эпитаксиальных GaN-структур на монокристаллических подложках SiC и Si осложняется кристаллографическими несоответствиями на границе раздела двух полупроводников, что приводит к механическим напряженностям и высокой дефектности структур, следовательно, и к их высокой стоимости.

При проектировании мощных приборов и технологических процессов их изготовления ученые ведут поиск новых разработок для совершенного полупроводникового переключателя, определяемого следующими отличительными знаками:

- 1. Очень низкие потери управления: переключатель имеет высокий входной импеданс, так что управляющий ток бесконечно мал. Кроме того, управляющая схема проста и дешева.
- 2. Незначительные потери в состоянии «включено» или прямой проводимости: падение прямого напряжения при рабочем токе равно нулю. Кроме того, плотность рабочего тока велика, что делает чип малым по размеру и рентабельным для данной токонесущей мощности.
- 3. Минимальные потери в состоянии «выключено» или обратного запирания: бесконечно большое обратное запирающее напряжение вместе с нулевым током утечки, даже когда прибор работает при повышенных температурах.
- 4. Чрезвычайно низкие потери переключения: длительности как включения, так и выключения почти равны нулю. Для систем

постоянного тока (длительность периода = ∞) и низкочастотных применений (период значительный, но конечный) эти потери очень малы, поскольку времена переключения намного меньше, чем длительность соответствующего периода.

В настоящее время в применениях, где не требуется способность к управляемому запиранию, тиристоры и приборы с наиболее высокой являются основополагающими плотностью мощности, компонентами силовой электроники, имеющие высокие прямые токи величиной ~3500А при прямом падении напряжения < 2 B, и выдерживающие ≥ 6000 B в (запирающем) Тиристоры направлении. единственными приборами, удовлетворяющими мегаваттному диапазону мощностей, пригодными в таких номиналах как 12 кВ/1,5 кА, 7,5 кВ/1,65 кА, 6,5 кВ/2,65 кА и т.д. В применениях, где ток нагрузки как включается, так и выключается входным сигналом, широко используются мощные биполярные транзисторы БПТ.

На мировом рынке представлены тысячи типономиналов высоковольтных биполярных кремниевых транзисторов, от единиц ампер до килоампер, с напряжениями до 2 кВ и выше. В стандартных диапазонах до 200 В кремниевые БПТ демонстрируют время спада до 50 нс, до 1200 В — 0,12 мкс, до 1500 В —0,2 мкс. Но большие времена рассасывания неосновных носителей (\sim 1,2–1,5 мкс) допускают реализацию эффективных преобразователей на частоты не более 50 кГц.

Модульные двойные или тройные пары Дарлингтона (пара Дарлингтона – составной транзистор с объединенными коллекторами, включенный по схеме база - эмиттер) (1200В, 800А) используются в конвертерах с частотой переключения до нескольких килогерц. Хотя биполярные транзисторы имеют время выключения < 1 мкс, они требуют очень высокого управляющего базового тока как во включенном состоянии, так и во время выключения.

Другими приборами, подходящими ДЛЯ систем управляющим электродом являются мощные кремниевые МОПТ: с V-образной канавкой (VMOП), горизонтальные с двойной диффузией ГДМОП и, особенно, вертикальные с двойной диффузией ВДМОП и COOL-MOS, которые закрывают диапазон 200...1500В. Приборы имеют частоты переключения ~100кГц с временами включения и выключения менее 100нс. Высокая скорость переключения, легкость управления, широкая область устойчивой работы и способность выдерживать высокие скорости нарастания прямого напряжения (dV/dt) делают их логическим выбором силовой схемотехники. они работают с униполярной проводимостью, сопротивление в открытом (включенном) состоянии сильно возрастает при увеличении напряжения исток-сток.

Тем не менее на пороге SiC-MOПТ — совсем другой класс приборов, со значениями сопротивления сток-исток открытого транзистора на порядок

ниже, чем у кремниевых МОПТ. Это уже революция в области мощных приборов с МОП-управлением.

В настоящее время показана возможность работы 1200-В SiC-МОПТ на частотах вплоть до 1 МГц при мощности 1,2 кВт.

Особенности, преимущество и недостатки мощных биполярных и МОПТ структур приведены в Таблице 12.2.

Таблица 12.2 Особенности, за и против МОП и биполярных транзисторов

	МОП-транзисторы	Биполярные транзисторы
No.	Особенности:	Особенности:
1	Однозарядный прибор	Двузарядный прибор
2	Работает дрейфом основных	Работает диффузией неосновных
	носителей	носителей
3	Управляется напряжением	Управляется током
4	Ток стока определяется шириной	Ток коллектора определяется
	канала и концентрацией носителей	длиной и площадью эмиттера
5	Более высокое пробивное	Более высокое пробивное
	напряжение достигается	напряжение требует
	использованием	слаболегированной области
	слаболегированной области стока	коллектора
6	Плотность тока для данного	Плотность тока для данного
	падения напряжения высокая при	падения напряжения средняя, и
	низких напряжениях и низкая при	существует трудность со
	высоких напряжениях	скоростью переключения
7	Квадратичные вольтамперные	Экспоненциальные I-V
	характеристики при низких токах	характеристики
	и линейные I-V при высоких токах	
8	Отрицательный температурный	Положительный температурный
	коэффициент тока стока	коэффициент тока коллектора
9	Слабое накопление заряда на	Накопление заряда в базе и
	емкости затвор-канал	коллекторе
	3a:	Против:
1	Высокий входной импеданс Z ~	Низкий входной импеданс $Z \sim 10^3$
	$10^9 - 10^{11}\Omega$	$10^{5}\Omega$
2	Минимальная управляющая	Высокая управляющая мощность.
	мощность. На затворе не требуется	На базе постоянно требуется
	никакого постоянного тока.	постоянный ток.
3	Простая управляющая схема	Сложная управляющая схема, т.к.
		требуются большие

		положительные и отрицательные
		токи.
4	Более линейное	Больше интермодуляционных и
	функционирование и меньше	перекрёстных составляющих
	гармоник	
5	Приборы легко могут быть	Приборы не могут быть легко
	соединены параллельно	соединены параллельно
6	Нет теплового убегания	Склонны к тепловому убеганию
7	Менее восприимчивы к вторичным	Уязвимы к вторичным пробоям
	пробоям	
8	Максимальная рабочая	Максимальная рабочая
	температура 200С	температура до 150С
9	Очень низкие потери	Потери переключения от средних
	переключения	до высоких в зависимости от
		компромисса с потерями
		проводимости
10	Высокая скорость переключения,	Более низкая скорость
	которая меньше чувствительна к	переключения, которая больше
	температуре	чувствительна к температуре
	Против:	3a:
1	Высокое сопротивление	Низкое сопротивление
	включения	включения
2	Высокая активная межэлектродная	Низкая активная межэлектродная
	проводимость	проводимость

В отдельную группу нужно выделить биполярные транзисторы с изолированным затвором БТИЗ (IGBT), которые сочетают в себе как достоинства МОПТ - малые мощности управления, так и достоинства БПТ – малое сопротивление открытого прибора.