

262,144-color, 240RGB x 320 dot graphics liquid crystal controller driver for Amorphous-Silicon TFT Panel

REJxxxxxxx-xxxx Rev.1.1 October 30, 2006

Features 7 Difference between R61505 and R61505U 10 Block Diagram 11 Block Function 12 1. System Interface 12 2. External Display Interface (RGB, VSYNC interfaces) 13 3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 PAD arrangement 22 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Index (IR) 44 Display control 44 Display control 44 Display control 44 Device code read (R00h) 44 <th>Description</th> <th>6</th>	Description	6
Block Diagram 11 Block Function 12 1. System Interface 12 2. External Display Interface (RGB, VSYNC interfaces) 13 3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Instruction Data Format 43 Index (IR) 44 Display control 44	Features	7
Block Function	Difference between R61505 and R61505U	10
1. System Interface 12 2. External Display Interface (RGB, VSYNC interfaces) 13 3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Instruction Data Format 43 Index (IR) 44 Display control 44	Block Diagram	11
1. System Interface 12 2. External Display Interface (RGB, VSYNC interfaces) 13 3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Instruction Data Format 43 Index (IR) 44 Display control 44	Block Function	12
3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Instruction Data Format 43 Index (IR) 44 Display control 44		
3. Address Counter (AC) 13 4. Graphics RAM (GRAM) 14 5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Instruction Data Format 43 Instruction Data Format 43 Index (IR) 44 Display control 44	2. External Display Interface (RGB, VSYNC interfaces)	13
5. Grayscale Voltage Generating Circuit 14 6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44		
6. Liquid crystal drive power supply circuit 14 7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	4. Graphics RAM (GRAM)	14
7. Timing Generator 14 8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	5. Grayscale Voltage Generating Circuit	14
8. Oscillator (OSC) 14 9. Liquid crystal driver Circuit 14 10. Internal logic power supply regulator 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	6. Liquid crystal drive power supply circuit	14
9. Liquid crystal driver Circuit. 14 10. Internal logic power supply regulator. 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	7. Timing Generator	14
9. Liquid crystal driver Circuit. 14 10. Internal logic power supply regulator. 14 Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	8. Oscillator (OSC)	14
Pin Function 15 PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44		
PAD arrangement 22 PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	10. Internal logic power supply regulator	14
PAD coordinates 24 BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	Pin Function	15
BUMP arrangement 39 Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	PAD arrangement	22
Connection example 40 GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	PAD coordinates	24
GRAM address map 41 Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	BUMP arrangement	39
Instruction 43 Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	Connection example	40
Outline 43 Instruction Data Format 43 Index (IR) 44 Display control 44	GRAM address map	41
Instruction Data Format 43 Index (IR) 44 Display control 44	Instruction	43
Index (IR)		
Index (IR)	Instruction Data Format	43
	Display control	44
	Device code read (R00h)	44

Driver Output Control (R01h)	45
LCD Driving Wave Control (R02h)	45
Entry Mode (R03h)	46
Resizing Control (R04h)	49
Display Control 1 (R07h)	50
Display Control 2 (R08h)	52
Note to Setting BP and FP	52
Display Control 3 (R09h)	53
Display Control 4 (ROAh)	55
External Display Interface Control 1 (R0Ch)	55
Frame Marker Position (R0Dh)	57
VCOM Low Power Control (R0Eh)	58
External Display Interface Control 2 (R0Fh)	59
Power control	60
Power Control 1 (R10h)	60
Power Control 2 (R11h)	63
Power Control 3 (R12h)	64
Power Control 4 (R13h)	66
Power Control 5 (R17h)	66
RAM access instruction	67
RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)	67
Write Data to GRAM (R22h)	68
Read Data from GRAM (R22h)	71
NVM(NON-VOLATILE MEMORY) write control instruction	
NVM read data (R28h), VCOM High Voltage (R29h, R2Ah)	72
γ Control	75
γ Control 1 ~ 14 (R30h to R3Dh)	75
Window address control instruction	<i>77</i>
Window Horizontal RAM Address Start/End (R50h/ R51h)	<i>77</i>
Window Vertical RAM Address Start/End (R52h/R53h)	<i>77</i>
Base image display control instruction	78
Driver Output Control (R60h),	<i>7</i> 8
Base Image Display Control (R61h)	<i>7</i> 8
Vertical Scroll Control (R6Ah)	78
Partial display control instruction	81
Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h)	81
Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h)	81
Panel interface control instruction	82
Panel interface control 1(R90h)	82
Panel interface control 2(R92h)	83
Panel interface control 3(R93h)	84
Panel interface control 4(R95h)	85
Panel interface control 5(R97h)	87
Panel interface control 6(R98h)	87
NVM(NON-VOLATILE MEMORY) control	
NVM access control 1 (RA0h), NVM access control 2 (RA1h)	88
Calibration control (RA4h)	89
Setting disabled instruction (Inhibition RA5h ~ RFFh)	90

Instruction List	91
Reset Function	92
Basic mode operation of the R61505U	94
Interface and data format	95
System Interface	
80-system 18-bit Bus Interface	
80-system 16-bit Bus Interface	
Data Transfer Synchronization in 16-bit Bus Interface operation	
80-system 9-bit Bus Interface	
Data Transfer Synchronization in 9-bit Bus Interface operation	104
80-system 8-bit Bus Interface	
Data Transfer Synchronization in 8-bit Bus Interface operation	
Serial Interface	108
MONNO Literaction	111
VSYNC Interface	
Notes to VSYNC Interface operation	113
External Display Interface	115
RGB Interface	
Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals	
RGB Interface Timing	
16-/18-bit RGB Interface Timing	
6-bit RGB Interface Timing	
RAM access via system interface in RGB interface operation	
6-bit RGB interface	
Data Transfer Synchronization in 6-bit Bus Interface operation	
16-bit RGB interface	
18-bit RGB interface	
Notes to external display interface operation	
- Total to care any and just operation	
RAM Address and Display Position on the Panel	127
Restrictions in setting display control instruction	
Instruction setting example	
Resizing function	132
Resizing setting	133
Example of 1/2 resizing	134
Resizing instruction	134
Notes to Resizing function	135
EMADIZ C	107
FMARK function	
FMP setting example	
Display operation synchronous data transfer using FMARK	
Notes to display operation synchronous data transfer using FMARK signal	140

High-speed RAM Write Function	
High-speed RAM data write in a window address area	
Window Address Function	144
Scan Mode Setting	145
8-color Display Mode	146
Line Inversion AC Drive	
Frame-Frequency Adjustment Function	
Partial Display Function	150
Liquid crystal panel interface timing Internal clock operation RGB interface operation	151
Oscillator	153
γ Correction function γ Correction registers	154
Power-supply Generating Circuit	157
Specifications of Power-supply Circuit External Elements	159
Voltage Setting Pattern Diagram Liquid crystal application voltage waveform and electrical potential	
VCOMH voltage adjustment sequence	162
NVM control sequence	165
Power supply Instruction Setting	168
Notes to Power Supply ON sequence	169
Instruction setting	170

Display ON/OFF sequences	170
Sleep mode SET/EXIT sequences	
Deep standby mode IN/EXIT sequences	
8-color mode setting	
Partial display setting	
Absolute Maximum Ratings	
Electrical Characteristics	177
DC characteristics (VCC= 2.50V~3.30V, IOVCC=1.65V~3.30V, Ta=-40C~+85C See note 1)	177
Step-Up Circuit Characteristics	179
Internal Reference Voltage (Condition: VCC= 2.50V~3.30V, Ta=25 °C)	179
AC Characteristics	180
1. Clock Characteristics	
2. 80-System Bus Interface Timing Characteristics (18-/16- bit interface)	180
3. 80-System Bus Interface Timing Characteristics (9-/ 8- bit interface)	182
4. Clock-synchronized Serial Interface Timing Characteristics	
5. Reset Timing Characteristics (IOVCC=1.65~3.30V)	183
6. RGB Interface Timing Characteristics	184
7. LCD driver Output Characteristics	185
Notes on Electrical Characteristics	

Description

The R61505U is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, comprising RAM for a maximum 240 RGB x 320 dot graphics display, source driver, gate driver and power supply circuit. For efficient data transfer, the R61505U supports high-speed interface via 8-/9-/16-/18-bit ports as system interface to the microcomputer and high-speed RAM write function. As moving picture interface, the R61505U supports RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0).

Also, the R61505U incorporates step-up circuit and voltage follower circuit to generate TFT liquid crystal panel drive voltages.

The R61505U's power management functions such as 8-color display and deep standby and so on make this LSI an ideal driver for the medium or small sized portable products with color display systems such as digital cellular phones or small PDAs, where long battery life is a major concern.

Features

- A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum 240RGB x 320dots graphics display on amorphous TFT panel in 262k colors
- System interface
 - High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
 - Clock synchronous serial interface
- Moving picture display interface
 - 6-, 16-, 18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
 - VSYNC interface (System interface + VSYNC)
 - FMARK interface (System interface + FMARK)
- High-speed RAM write function
- Window address function to specify a rectangular area in the internal RAM to write data
- Write data within a rectangular area in the internal RAM via moving picture interface
- Reduce data transfer by specifying the area in the RAM to rewrite data
- Enable displaying the data in the still picture RAM area with a moving picture simultaneously
- Resizing function (x 1/2, x 1/4)
- Abundant color display and drawing functions
 - Programmable γ-correction function for 262k-color display
 - Partial display function
- Low -power consumption architecture (allowing direct input of interface I/O power supply)
 - Deep standby function
 - 8-color display function
 - Input power supply voltages: $VCC = 2.5V \sim 3.3 \text{ V}$ (logic regulator power supply)

 $IOVCC = 1.65V \sim 3.3 V$ (interface I/O power supply)

 $VCI = 2.5V \sim 3.3 \text{ V}$ (liquid crystal analog circuit power supply)

- Incorporates a liquid crystal drive power supply circuit
 - Source driver liquid crystal drive/VCOM power supply: DDVDH-GND = $4.5V \sim 6.0 V$

$$VCL\text{-}GND = -1.9V \sim -3.0V$$

VCI-VCL ≤ 6.0V

- Gate drive power supply: VGH-GND = $10.0V \sim 20.0 V$

$$VGL\text{-}GND = -4.5V \sim -13.5V$$

 $VGH-VGL \le 28.0V$

VCOM drive (VCOM power supply): VCOMH = 3.0V ~ (DDVDH-0.5)V

$$VCOML = (VCL+0.5)V \sim 0V$$

VCOMH-VCOML amplitude = 6.0V (max.)

- Liquid crystal power supply startup sequencer
- TFT storage capacitance: Cst only (common VCOM formula)
- 172,800-byte internal RAM
- Internal 720-channel source driver and 320-channel gate driver
- Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate
- Internal NVM: User identification code, 4 bits, VCOM level adjustment, 5 bits x 2 sets

• Internal reference voltage: to generate VREG1OUT (VCIR)

• Product Numbers

The R61505U has two variations of frequencies enabling users to choose whichever suitable for display system.

Product Number	Oscillation Frequency
R61505U0	376KHz
R61505U1	600KHz

• Power supply specifications

Table 1

No.	Item		R61505U		
1	TFT data lines		720		
2	TFT gate lines		320		
3	TFT display sto	orage capacitance	Cst only (Common VCOM formula)		
4	Liquid crystal	S1~S720	V0 ~ V31 grayscales		
	drive output	G1~320	VGH-VGL		
		VCOM	Change VCOMH-VCOML amplitude with electronic volume		
			Change VCOMH with either electronic volume or from VCOMR		
5	Input voltage	IOVCC	1.65V ~ 3.30V		
		(interface voltage)	Power supply to IM0/ID, IM1-3, RESET*, DB17-0, RD*, SDI, SDO, WR/SCL, RS, CS*, VSYNC, HSYNC, DOTCLK, ENABLE, FMARK		
			Connect to VCC and VCI on the FPC when the electrical potentials are the same.		
		VCC	2.50V ~ 3.30V		
		(logic regulator power supply)	Connect to IOVCC and VCI on the FPC when the electrical potentials are the same.		
		VCI	2.50V ~ 3.30V		
		(liquid crystal drive power supply voltage)	Connect to IOVCC and VCC on the FPC when the electrical potentials are the same.		
		VPP (NVM power supply)	VPP1: 9.0±0.1V		
			VPP2: 7.5±0.1V		
			VPP3: GND		
6	Liquid crystal	DDVDH	4.5V ~ 6.0V		
	drive voltages	VGH	10.0V ~ 20.0V		
		VGL	-4.5V ~ -13.5V		
		VGH-VGL	Max. 28.0V		
		VCL	-1.9V ~ -3.0V		
		VCI-VCL	Max. 6.0V		
6	Internal	VLOUT1 (DDVDH)	VCI1 x 2, x 3		
	step-up circuits	VLOUT2 (VGH)	VCI1 x 6, x 7, x 8		
	5 Odito	VLOUT3 (VGL)	VCI1 x -3, x -4, x -5		
		VCL	VCI1 x -1		

Difference between R61505 and R61505U

Table 2 R61505

I	BT[3:0]	DDVDH	VCL	VGH	VGL	Capacitor connection pins
4	4'h0	VCI1 x 2 [x 2]	-VCI1 [x -1]	DDVDH x 4 [x 8]		VLOUT1, VLOUT2, VLOUT3, VCL, C11±, C12±, C13±, C21 ±, C22±, C23±

Table 3 R61505U

BT[3:0]	DDVDH	VCL	VGH	VGL	Capacitor connection pins
4'h0	VCI1 x 2 [x 2]	-VCI1 [x -1]	DDVDH x 3 [x 6]	-(VCI1+DDVDH x 2) [x -5]	See "Specifications of Power- supply Circuit External Elements". C23±may be omitted.

Table 4 VCOM amplitude

	R61505	R61505U
VCOM amplitude (Max.)	VREG1OUT x 1.0	VREG1OUT x 1.24

Table 5 Oscillator

	R61505	R61505U
RC Oscillation	External resistor	Internal resistor

Block Diagram

Figure 1

Block Function

1. System Interface

The R61505U supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock synchronous serial interface. The interface is selected by setting the IM3-0 pins.

The R61505U has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control register and internal GRAM. The WDR is the register to temporarily store data to be written to control register and internal GRAM. The RDR is the register to temporarily store the data read from the GRAM. The data from the MPU to be written to the internal GRAM is first written to the WDR and then automatically written to the internal GRAM in internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to the data bus when the R61505U performs the first read operation from the internal GRAM. Valid data is read out when the R61505U performs the second and subsequent read operation.

The instruction execution time except that of starting oscillation takes 0 clock cycle to allow writing instructions consecutively.

Table 6 Register Selection (80-system 8/9/16/18-bit Parallel Interface)

WR*	RD*	RS	Function
0	1	0	Write index to IR
1	0	0	Setting disabled
0	1	1	Write to control register or internal GRAM via WDR
1	0	1	Read from internal GRAM and register via RDR

Table 7 Register Selection (Clock synchronous serial interface) Start byte

R/W	RS	Function
0	0	Write index to IR
1	0	Setting disabled
0	1	Write to control register or internal GRAM via WDR
1	1	Read from internal GRAM and register via RDR

Table 8

IM3	IM2	IM1	IMO	System interface	DB pins	RAM write data	Instruction write transfer
0	0	0	0	Setting disabled	-	-	-
0	0	0	1	Setting disabled	-	-	-
0	0	1	0	80-system 16-bit interface	DB17-10, DB8-1	Single transfer (16 bits) 2 transfers (1st: 2 bits, 2nd: 16 bits) 2 transfers (1st: 16 bits, 2nd: 2 bits)	Single transfer (16 bits)
0	0	1	1	80-system 8-bit interface	DB17-10	2 transfers (1st: 8 bits, 2nd: 8 bits) 3 transfers (1st: 6 bits, 2nd: 6 bits, 3rd: 6 bits)	2 transfers (1st: 8 bits, 2nd: 8 bits)
0	1	0	*	Clock synchronous serial interface	- (SDI, SDO)	2 transfers (1st: 8 bits, 2nd: 8 bits)	2 transfers (1st: 8 bits, 2nd: 8 bits)
0	1	1	0	Setting disabled	-	-	-
0	1	1	1	Setting disabled	-	-	-
1	0	0	0	Setting disabled	-	-	-
1	0	0	1	Setting disabled	-	-	-
1	0	1	0	80-system 18-bit interface	DB17-0	Single transfer (18 bits)	Single transfer (16 bits)
1	0	1	1	80-system 9-bit interface	DB17-9	2 transfers (1st: 9 bits, 2nd: 9 bits)	2 transfers (1st: 8 bits, 2nd: 8 bits)
1	1	*	*	Setting disabled		-	-

2. External Display Interface (RGB, VSYNC interfaces)

The R61505U supports RGB interface and VSYNC interface as the external interface to display moving picture. When the RGB interface is selected, the display operation is synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface operation, data (DB17-0) is written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation in order to prevent flicker while updating display data.

In VSYNC interface operation, the display operation is synchronized with the internal clock except frame synchronization, which synchronizes the display operation with the VSYNC signal. The display data is written to the internal GRAM via system interface. When writing data via VSYNC interface, there are constraints in speed and method in writing data to the internal RAM. For details, see the "VSYNC interface" section.

The R61505U allows switching interface by instruction according to the display, i.e. still and/or moving picture(s). The R61505U writes all display data via RGB interface to the internal GRAM in order to transfer data only when updating the data and thereby reduce the data transfer and power consumption for moving picture display.

3. Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register to set a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As the R61505U writes data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only within the rectangular area specified in the GRAM.

4. Graphics RAM (GRAM)

GRAM is graphics RAM, which can store bit-pattern data of 172,800 (240RGB x 320 (dots) x 18(bits)) bytes at maximum, using 18 bits per pixel.

5. Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale data in the γ -correction registers to enable 262k-color display. For details, see the γ -Correction Register section.

6. Liquid crystal drive power supply circuit

The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive liquid crystal.

7. Timing Generator

The timing generator generates a timing signal for the operation of internal circuit such as the internal GRAM. The timing signal for display operation such as RAM read operation and the timing signal for internal operation such as RAM access from the MPU are generated separately in order to avoid mutual interference.

8. Oscillator (OSC)

The R61505U generates the RC oscillation clock by internal RC oscillator. Adjusting the frequency by external resistance is impossible. Adjust the oscillation frequency and line numbers by Frame-Frequency Adjustment Function. During the deep standby mode, RC oscillation halts to reduce power consumption. See "Oscillator" for details.

9. Liquid crystal driver Circuit

The liquid crystal driver circuit of the R61505U consists of a 720-output source driver (S1 \sim S720) and a 320-output gate driver (G1 \sim G320). The display pattern data is latched when 720 bits of data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in combination with the GS bit to select the optimal scan mode for the module.

10. Internal logic power supply regulator

The internal logic power supply regulator generates internal logic power supply VDD.

Pin Function

Table 9 Interface

Signal	1/0	Connect to	Function	n						When not in use
IM3-1, IM0/ID	I	IOGND or IOVCC					to an MPU. In serial the ID bit of device co		peration,	-
			IM3	IM2	IM1	IM0/I D	Interface Mode	DB Pin	Colors	
			0	0	0	0	Setting disabled	-	-	
			0	0	0	1	Setting disabled	-	-	
			0	0	1	0	80-system 16-bit interface	DB17-10, DB8-1	262,144 see Note 1	
			0	0	1	1	80-system 8-bit interface	DB17-10	262,144 see Note 2	
			0	1	0	*(ID)	Clock synchronous serial interface	-	65,536	
			0	1	1	0	Setting disabled	-	-	
			0	1	1	1	Setting disabled	-	-	
			1	0	0	0	Setting disabled	-	-	
			1	0	0	1	Setting disabled	-	-	
			1	0	1	0	80-system 18-bit interface	DB17-0	262,144	
			1	0	1	1	80-system 9-bit interface	DB17-9	262,144	
			1	1	0	0	Setting disabled	-	-	
			1	1	0	1	Setting disabled	-	-	
			1	1	1	0	Setting disabled	-	-	
			1	1	1	1	Setting disabled	-	-	
				,			ne transfer mode o transfers mode			
CS*	I	MPU	Low: the	e R61	505U i	s sele	ude: IOVCC-IOGND cted and accessible selected and not acce	essible.		IOVCC
RS	I	MPU		lect In	dex o	statu	nplitude: IOVCC-IOGN s register er	ND		IOVCC
WR*/SCL	I	MPU	write op	eratio	n whe	n WR*	system bus interface of is low. Synchronous Amplitude: IOVCC-IC	clock signa		IOVCC
RD*	I	MPU					system bus interface of is low. Amplitude: IO			IOVCC
SDI	I	MPU			•	, .	in serial interface ope e of the SCL signal. A			IOGND or IOVCC
SDO	I/O	MPU		ed on t	he fall	ing ed	oin in serial interface o ge of the SCL signal. O	peration.	The data is	Open

Signal	I/O	Connect to	Function	When not in use
DB0-DB17	I/O	MPU	18-bit parallel bi-directional data bus for 80-system interface operation (Amplitude: IOVCC-IOGND).	IOGND or IOVCC
			8-bit I/F: DB17-DB10 are used. 9-bit I/F: DB17-DB9 are used. 16-bit I/F: DB17-DB10 and DB8-1 are used. 18-bit I/F: DB17-DB0 are used.	
			18-bit parallel bi-directional data bus for RGB interface operation (Amplitude: IOVCC-IOGND).	
			6-bit I/F: DB17-DB12 are used. 16-bit I/F: DB17-DB13 and DB11-1 are used. 18-bit I/F: DB17-DB0 are used.	
ENABLE	I	MPU	Data enable signal for RGB interface operation. (Amplitude: IOVCC-IOGND).	IOGND or IOVCC
			Low: accessible (select) High: Not accessible (Not select)	
			The polarity of ENABLE signal can be inverted by setting the EPL bit.	
VSYNC	I	MPU	Frame synchronous signal for RGB interface operation. Low active. (Amplitude: IOVCC-IOGND).	IOGND or IOVCC
HSYNC	I	MPU	Line synchronous signal for RGB interface operation. Low active. (Amplitude: IOVCC-IOGND).	IOGND or IOVCC
DOTCLK	I	MPU	Dot clock signal for RGB interface operation. The data input timing is on the rising edge of DOTCLK. (Amplitude: IOVCC-IOGND).	IOGND or IOVCC
FMARK	0	MPU	Frame head pulse signal, which is used when writing data to the internal RAM. (Amplitude: IOVCC-IOGND).	Open

Table 10 Reset, RC oscillation

Signal	I/O	Connect to	Function	When not in use
RESET*	I	MPU or external RC circuit	Reset signal. Initializes the R61505U when it is low. Make sure to execute a power-on reset when turning on power supply (IOVCC-IOGND amplitude signal).	-
OSC1 OSC2	I O	Open	Leave them open.	Open

Table 11 Power supply

Signal	I/O	Connect to	Function					
VCC	-	Power supply	Power supply to int VCC ≥ IOVCC	Power supply to internal logic regulator circuit: VCC = 2.5V~3.3V. VCC ≥ IOVCC				
GND	-	Power supply	Internal logic GND:	GND = 0V.			-	
RGND	-	Power supply				electrical potential as PC to prevent noise.	-	
VDD	0	Stabilizing capacitor	Internal logic regula internal logic. Con	•		e power supply to	-	
IOVCC	-	Power supply	DB17-0, VSYNC, HIOVCC = 1.65V ~ 3	Power supply to the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE. DVCC = 1.65V ~ 3.3V. VCC ≥ IOVCC. In case of COG, connect to VCC on the FPC if IOVCC=VCC, to prevent noise.				
IOGND	-	Power supply	VSYNC, HSYNC, [GND for the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0, /SYNC, HSYNC, DOTCLK, ENABLE. IOGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.				
AGND	-	Power supply		Analog GND (for logic regulator and liquid crystal power supply circuit): AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.				
VCI	I	Power supply	Power supply to the Connect to an exte				-	
VCILVL	I	Reference power supply	VCILVL = 2.5V ~ 3.	VCILVL must be at the same electrical potential as VCI. VCILVL = 2.5V ~ 3.3V. Connect to external power supply. In case of COG, connect to VCI on the FPC to prevent noise.				
VPP1	I	Power supply or open		nternal NVM power supply. Apply the following voltages on VPP1 ~ /PP3 respectively according to the power supply ON sequence.				
VPP2	I	Power	Operation mode	VPP1	VPP2	VPP3	Open	
		supply or open	NVM write	9.0±0.1V	7.5±0.1V	GND		
VPP3	I	Power supply or open	NVM read	Open	Open	Open or GND	Open or GND	

Table 12 Step-up circuit

Signal	I/O	Connect to	Function	When not in use
VCIOUT	0	Stabilizing capacitor, VCI1	Output voltage from the step-up circuit 1, generated from the reference voltage. The output factor is set by VC bits. Make sure to connect to stabilizing capacitor.	-
VCI1	I/O	VCIOUT	Reference voltage of step-up circuit 1. Make sure the output voltage levels from VLOUT1, VLOUT2, VLOUT3 do not exceed the respective setting ranges.	-
VLOUT1	0	Stabilizing capacitor, DDVDH	Output voltage from the step-up circuit 1, generated from VCI1. The step-up factor is set by instruction (BT bits). Make sure to connect to stabilizing capacitor. VLOUT1 = $4.5V \sim 6.0V$	-
DDVDH	I	VLOUT1	Power supply for the source driver liquid crystal drive unit and VCOM drive. Connect to VLOUT1. DDVDH = 4.5V ~ 6.0V	-
VLOUT2	0	Stabilizing capacitor, VGH	Output voltage from the step-up circuit 2, generated from VCI1 and DDVDH. The step-up factor is set by instruction (BT bits). Make sure to connect to stabilizing capacitor. VLOUT2 = max 20.0V	-
VGH	I	VLOUT2	Liquid crystal drive power supply. Connect to VLOUT2.	-
VLOUT3	0	Stabilizing capacitor, VGL	Output voltage from the step-up circuit 2, generated from VCI1 and DDVDH. The step-up factor is set by instruction (BT bits). Make sure to connect to stabilizing capacitor. VLOUT3 = min –13.5V	-
VGL	I	VLOUT3	Liquid crystal drive power supply. Connect to VLOUT3.	-
VCL	0	Stabilizing capacitor	VCOML drive power supply. Make sure to connect to stabilizing capacitor. VCL = -1.9V ~ -3.0V	-
C11+, C11- C12+, C12-	I 0	Step-up capacitor	Capacitor connection pins for the step-up circuit 1.	-
C13+, C13- C21+, C21- C22+, C22- C23+, C23-	0	Step-up capacitor	Capacitor connection pins for the step-up circuit 2. Connect capacitors to C23 \pm according to the step-up factor.	-

Table 13 LCD drive

Signal	I/O	Connect to	Function	When not in use
VREG1 OUT	0	Stabilizing capacitor	Output voltage generated from the reference voltage (VCILVL or VCIR). The factor is determined by instruction (VRH bits).	Open
			VREG1OUT is used for (1) source driver grayscale reference voltage, (2) VCOMH level reference voltage, and (3) VCOM amplitude reference voltage. Connect to a stabilizing capacitor when in use. VREG1OUT = $4.0V \sim (DDVDH - 0.5)V$	
VCOM	0	TFT panel common electrode	Power supply to TFT panel's common electrode. VCOM alternates between VCOMH and VCOML. The alternating cycle is set by internal register. Also, the VCOM output can be started and halted by register setting.	
VCOMH	0	Stabilizing capacitor	The High level of VCOM amplitude. The output level can be adjusted by either external resistor (VCOMR) or electronic volume. Make sure to connect to stabilizing capacitor.	
VCOML	0	Stabilizing capacitor	The Low level of VCOM amplitude. The output level can be adjusted by instruction (VDV bits). VCOML = (VCL+0.5)V ~ 0V. Make sure to connect to stabilizing capacitor.	
VCOMR	I	Variable resistor or open	Connect a variable resistor when adjusting the VCOMH level between VREG10UT and GND.	Open
VGS	I	GND	Reference level for the grayscale voltage generating circuit.	-
S1~S720	0	LCD	Liquid crystal application voltages. To change the shift direction of segment signal output, set the SS bit as follows.	Open
			When SS = 0, the data in the RAM address h00000 is outputted from S1. When SS = 1, the data in the RAM address h00000 is outputted from S720.	
G1~G320	0	LCD	Gate line output signals. VGH: gate line select level VGL: gate line non-select level	Open

Table 14 Others (test, dummy pins)

Signal	I/O	Connect to	Function	When not in use
V0T, V31T	I/O	Open	Test pins. Leave them open.	Open
VTEST	0	Open	Test pin. Leave it open.	Open
VREFC	I	AGND	Test pin. Make sure to fix to the AGND level.	-
VREF	0	Open	Test pin. Leave it open.	Open
VDDTEST	I	AGND	Test pin. Make sure to fix to the AGND level.	-
VREFD	0	Open	Test pin. Leave it open.	Open
VMON	0	Open	Test pin. Leave it open.	Open
TESTA5	0	Open	Test pin. Leave it open.	Open
IOVCCDUM1-2	0	-	Use them to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave it open.	Open
VCCDUM1	0	-	Test pin. Leave it open	Open
IOGNDDUM1-3	0	-	Use them to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave it open.	Open
OSC1DUM1-4	0	-	Test pins. Leave them open.	Open
OSC2DUM1-2	0	-	Test pins. Leave them open.	Open
AGNDDUM1-4	0	-	Use them to fix VREFC, VDDTEST.	Open
DUMMYR 1-10	-	-	DUMMYR1 and DUMMYR10, DUMMYR2 and DUMMYR9, DUMMYR3 and DUMMYR4, DUMMYR5 and DUMMYR8, and DUMMYR6 and DUMMYR7 are short-circuited within the chip for COG contact resistance measurement.	Open
VGLDMY 1-4	0	-	Dummy pads. Leave them open.	Open

Signal	1/0	Connect to	Function	When not in use
TESTO1-38	0	-	Dummy pads. Leave them open.	Open
TEST1, 2	I	IOGND	Test pins. Connect to IOGND.	IOGND
TEST3	I	IOVCC	Test pin. Connect to IOVCC.	IOVCC
TEST4	I	IOVCC	Test pin. Connect to IOVCC.	IOVCC
TEST5	I	IOGND	NVM operation enable pin. Connect to IOGND.	IOGND
TSC	I	IOGND	Test pin. Connect to IOGND.	IOGND
TS8-0	0	Open	Test pins. Leave them open.	Open

Patents of dummy pin which is used to fix pin to VCC or GND are pending or granted.

PATENT ISSUED: United States Patent No. 6,323,930

PATENT PENDING: Japanese Application No. 10-514484, Korean Application No. 19997002322

Taiwanese Application No.086103756, (PCT/JP96/02728(W098/12597)

Chip size: 21.56 mm x 1.28 mm Chip thickness: $280/400\mu m$ (typ.) PAD coordinates: PAD center PAD coordinates origin: Chip center

Au bump size $(1) 50 \mu \text{m} \times 80 \mu \text{m}$

I/O output side:

No. 1 - No. 298

(2) $21\mu m \times 100\mu m$

Liquid crystal output side:

No. 299 - No. 1354

Au bump pitch: See PAD coordinates table

Au bump height: $15\mu m(typ.)$ No. in the Figure corresponds to No. in the

PAD coordinates table

Alignment mark

Alignment mark shape	Х	Y
T A	-10613.0	-468.0
Туре А	10613.0	-468.0

Unit (µm) a: 30 e: 40

b: 40 c: 30 f: 30

g: 100 h: 100 d: 30

	U Pau Coordina		
pad No	pad name	X	Υ
	DUMMYR1	-10395.0	-517.5
	DUMMYR2	-10325.0	-517.5
	TESTO1	-10255.0	-517.5
	VCCDUM1	-10185.0	-517.5
5	VPP1	-10115.0	-517.5
6	VPP1	-10045.0	-517.5
7	VPP1	-9975.0	-517.5
8	VPP2	-9905.0	-517.5
9	VPP2	-9835.0	-517.5
	VPP2	-9765.0	-517.5
11	VPP2	-9695.0	-517.5
12	VPP2	-9625.0	-517.5
13	VPP3A	-9555.0	-517.5
14	VPP3A	-9485.0	-517.5
15	VPP3B	-9415.0	-517.5
16	TESTO2	-9345.0	-517.5
17	IOGNDDUM1	-9275.0	-517.5
18	TESTO3	-9205.0	-517.5
19	TEST1	-9135.0	-517.5
	TEST2	-9065.0	-517.5
	TEST4	-8995.0	-517.5
	TEST5	-8925.0	-517.5
	PROTECT	-8855.0	-517.5
	IM0/ID	-8785.0	-517.5
	IM1	-8715.0	-517.5
	IM2	-8645.0	-517.5
	IM3	-8575.0	-517.5
	TESTO4	-8505.0	-517.5
	IOVCCDUM1	-8435.0	-517.5
	TESTO5	-8365.0	-517.5
	RESET*	-8295.0	-517.5
	VSYNC	-8225.0	-517.5
	HSYNC	-8155.0	-517.5
	DOTCLK	-8085.0	-517.5
	ENABLE	-8015.0	-517.5
	DB17	-7945.0	-517.5
37	DB16	-7875.0	-517.5
	DB15	-7805.0	-517.5
	DB14	-7735.0	-517.5
	DB13	-7665.0	-517.5
	DB13	-7595.0	-517.5
	DB12	-7525.0	-517.5
	DB10	-7455.0	-517.5
	DB9	-7385.0	-517.5
	DB8	-7315.0	-517.5
	TESTO6	-7315.0	-517.5 -517.5
	IOGNDDUM2		
		-7175.0	-517.5 -517.5
	TESTO7	-7105.0	
	DB7	-7035.0	-517.5
50	DB6	-6965.0	-517.5

52 DB4 -6825.0 -517.5 53 DB3 -6755.0 -517.5 54 DB2 -6685.0 -517.5 55 DB1 -6615.0 -517.5 56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 67 TS8 -5775.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5635.0 -517.5 70 TS5 -5			2003.11	.00 1010.1
52 DB4 -6825.0 -517.5 53 DB3 -6755.0 -517.5 54 DB2 -6685.0 -517.5 55 DB1 -6615.0 -517.5 56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 67 TS8 -5775.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5635.0 -517.5 70 TS5 -5	pad No	pad name	X	Υ
53 DB3 -6755.0 -517.5 54 DB2 -6685.0 -517.5 55 DB1 -6615.0 -517.5 56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5215.0 -517.5	51	DB5	-6895.0	-517.5
54 DB2 -6685.0 -517.5 55 DB1 -6615.0 -517.5 56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5	52	DB4	-6825.0	-517.5
55 DB1 -6615.0 -517.5 56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5	53	DB3	-6755.0	-517.5
56 DB0 -6545.0 -517.5 57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 79 TESTO11 -4935.0 -517.5 <	54	DB2	-6685.0	-517.5
57 SDO -6475.0 -517.5 58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 71 TS4 -5495.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 79 TESTO11 -4935.0 -517.5 <	55	DB1	-6615.0	-517.5
58 SDI -6405.0 -517.5 59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5665.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 79 TESTO11 -4935.0 -517.5 81 OSC1DUM3 -4055.0 -517.5	56	DB0	-6545.0	-517.5
59 RD* -6335.0 -517.5 60 WR*/SCL -6265.0 -517.5 61 RS -6195.0 -517.5 62 CS* -6125.0 -517.5 63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4585.0 -517.5	57	SDO	-6475.0	-517.5
60 WR*/SCL	58	SDI	-6405.0	-517.5
61 RS	59	RD*	-6335.0	-517.5
62 CS*	60	WR*/SCL	-6265.0	-517.5
63 TESTO8 -6055.0 -517.5 64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5665.0 -517.5 70 TS5 -5665.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 75 TS0 -5215.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 <t< td=""><td></td><td></td><td>-6195.0</td><td>-517.5</td></t<>			-6195.0	-517.5
64 IOVCCDUM2 -5985.0 -517.5 65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 79 TESTO11 -4935.0 -517.5 81 OSC1DUM3 -5005.0 -517.5 81 OSC1DUM2 -4725.0 -517.5 85 OSC1DUM4 <td>62</td> <td>CS*</td> <td>-6125.0</td> <td>-517.5</td>	62	CS*	-6125.0	-517.5
65 TESTO9 -5915.0 -517.5 66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 75 TS0 -5285.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5	63	TESTO8	-6055.0	-517.5
66 FMARK -5845.0 -517.5 67 TS8 -5775.0 -517.5 68 TS7 -5705.0 -517.5 69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5	64	IOVCCDUM2	-5985.0	-517.5
67 TS8	65	TESTO9	-5915.0	-517.5
68 TS7	66	FMARK	-5845.0	-517.5
69 TS6 -5635.0 -517.5 70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 <td>67</td> <td>TS8</td> <td>-5775.0</td> <td>-517.5</td>	67	TS8	-5775.0	-517.5
70 TS5 -5565.0 -517.5 71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.	68	TS7	-5705.0	-517.5
71 TS4 -5495.0 -517.5 72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -409	69	TS6	-5635.0	-517.5
72 TS3 -5425.0 -517.5 73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4025.0 -517.5 93 IOGND -3	70	TS5	-5565.0	-517.5
73 TS2 -5355.0 -517.5 74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 84 OSC1DUM4 -4515.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -3955.0 -517.5	71	TS4	-5495.0	-517.5
74 TS1 -5285.0 -517.5 75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -3955.0 -517.5	72	TS3	-5425.0	-517.5
75 TS0 -5215.0 -517.5 76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 84 OSC1DUM3 -4655.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 93 IOGND -3955.0 -517.5	73	TS2	-5355.0	-517.5
76 TSC -5145.0 -517.5 77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -3955.0 -517.5	74	TS1	-5285.0	-517.5
77 TESTO10 -5075.0 -517.5 78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	75	TS0	-5215.0	-517.5
78 IOGNDDUM3 -5005.0 -517.5 79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -3955.0 -517.5	76	TSC	-5145.0	-517.5
79 TESTO11 -4935.0 -517.5 80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	77	TESTO10	-5075.0	-517.5
80 TESTO12 -4865.0 -517.5 81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	78	IOGNDDUM3	-5005.0	-517.5
81 OSC1DUM1 -4795.0 -517.5 82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	79	TESTO11	-4935.0	-517.5
82 OSC1DUM2 -4725.0 -517.5 83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	80	TESTO12	-4865.0	-517.5
83 OSC1 -4655.0 -517.5 84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	81	OSC1DUM1	-4795.0	-517.5
84 OSC1DUM3 -4585.0 -517.5 85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	82	OSC1DUM2	-4725.0	-517.5
85 OSC1DUM4 -4515.0 -517.5 86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	83	OSC1	-4655.0	-517.5
86 OSC2 -4445.0 -517.5 87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	84	OSC1DUM3	-4585.0	-517.5
87 OSC2DUM1 -4375.0 -517.5 88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	85	OSC1DUM4	-4515.0	-517.5
88 OSC2DUM2 -4305.0 -517.5 89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	86	OSC2	-4445.0	-517.5
89 DUMMYR3 -4235.0 -517.5 90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	87	OSC2DUM1	-4375.0	-517.5
90 DUMMYR4 -4165.0 -517.5 91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	88	OSC2DUM2	-4305.0	-517.5
91 IOGND -4095.0 -517.5 92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	89	DUMMYR3	-4235.0	-517.5
92 IOGND -4025.0 -517.5 93 IOGND -3955.0 -517.5	90	DUMMYR4	-4165.0	-517.5
93 IOGND -3955.0 -517.5	91	IOGND	-4095.0	-517.5
	92	IOGND	-4025.0	-517.5
94 IOGND -3885.0 -517.5	93	IOGND	-3955.0	-517.5
	94	IOGND	-3885.0	-517.5
95 IOGND -3815.0 -517.5	95	IOGND	-3815.0	-517.5
96 IOGND -3745.0 -517.5	96	IOGND	-3745.0	-517.5
97 IOGND -3675.0 -517.5	97	IOGND	-3675.0	-517.5
98 IOVCC -3605.0 -517.5	98	IOVCC	-3605.0	-517.5
99 IOVCC -3535.0 -517.5	99	IOVCC	-3535.0	-517.5
100 IOVCC -3465.0 -517.5	100	IOVCC	-3465.0	-517.5

pad No	pad name	X	Y
_	IOVCC	-3395.0	
	IOVCC	-3325.0	
	IOVCC	-3255.0	
	IOVCC	-3185.0	-517.5
	VCC	-3115.0	-517.5 -517.5
	VCC	-3045.0	-517.5 -517.5
	VCC	-2975.0	-517.5 -517.5
	VCC	-2975.0	
	VCC		-517.5
	VCC	-2835.0	-517.5
	VCC	-2765.0	-517.5
	VCC	-2695.0	-517.5
	VDDOUT	-2625.0	-517.5
		-2555.0	-517.5
	VDDOUT	-2485.0	-517.5
	VDDOUT	-2415.0	-517.5
	VDDOUT	-2345.0	-517.5
	VDD	-2275.0	-517.5
	VDD	-2205.0	-517.5
	VDD	-2135.0	-517.5
	VDD	-2065.0	-517.5
	VDD	-1995.0	-517.5
	VDD	-1925.0	-517.5
	VDD	-1855.0	-517.5
	VDD	-1785.0	-517.5
	VDD	-1715.0	-517.5
	TESTO13	-1645.0	-517.5
	VREFD	-1575.0	-517.5
	TESTO14	-1505.0	-517.5
	VREF	-1435.0	-517.5
	TESTO15	-1365.0	-517.5
	VREFC	-1295.0	-517.5
	TESTO16	-1225.0	-517.5
	VDDTEST	-1155.0	-517.5
	AGND	-1085.0	-517.5
	AGND	-1015.0	-517.5
	AGND	-945.0	-517.5
	AGND	-875.0	-517.5
	AGND	-805.0	-517.5
	AGND	-735.0	-517.5
	AGND	-665.0	-517.5
	AGND	-595.0	-517.5
	AGND	-525.0	-517.5
	AGND	-455.0	-517.5
	AGND	-385.0	-517.5
	GND	-315.0	-517.5
	GND	-245.0	-517.5
	GND	-175.0	-517.5
	GND	-105.0	-517.5
	GND	-35.0	-517.5
150	GND	35.0	-517.5

Pad No				
152 RGND	pad No	pad name	Χ	Υ
153 RGND 245.0 -517.5 154 RGND 315.0 -517.5 155 RGND 385.0 -517.5 156 RGND 455.0 -517.5 157 RGND 525.0 -517.5 158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1755.0 -517.5 <	151	RGND	105.0	-517.5
154 RGND 315.0 -517.5 155 RGND 385.0 -517.5 156 RGND 455.0 -517.5 157 RGND 525.0 -517.5 158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1575.0 -517.5 172 VCOM	152	RGND	175.0	-517.5
155 RGND 385.0 -517.5 156 RGND 455.0 -517.5 157 RGND 525.0 -517.5 158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOMH 1925.0 -517.5 177 VCOMH 1925.0 -517.5	153	RGND	245.0	-517.5
156 RGND 455.0 -517.5 157 RGND 525.0 -517.5 158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 V0T 1155.0 -517.5 167 TESTO20 1225.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1925.0 -517.5 180 VCOMH 2065.0 -517.5 181 V	154	RGND	315.0	-517.5
157 RGND 525.0 -517.5 158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 TESTO21 1365.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1785.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1925.0 -517.5 180 VCOMH 2205.0 -517.5<	155	RGND	385.0	-517.5
158 RGND 595.0 -517.5 159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1785.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1925.0 -517.5 179 VCOMH 1925.0 -517.5 180 VCOMH 2205.0 -517.5<	156	RGND	455.0	-517.5
159 RGND 665.0 -517.5 160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 V0T 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 173 VCOM 1575.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 1995.0 -517.5 180 VCOMH 2065.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2235.0 -517.5 <td< td=""><td>157</td><td>RGND</td><td>525.0</td><td>-517.5</td></td<>	157	RGND	525.0	-517.5
160 RGND 735.0 -517.5 161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM	158	RGND	595.0	-517.5
161 TESTO17 805.0 -517.5 162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 173 VCOM 1715.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 178 VCOM	159	RGND	665.0	-517.5
162 VTEST 875.0 -517.5 163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 173 VCOM 175.0 -517.5 174 VCOM 175.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH	160	RGND	735.0	-517.5
163 TESTO18 945.0 -517.5 164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1785.0 -517.5 177 VCOMH 1855.0 -517.5 178 VCOMH 1995.0 -517.5 180 VCOMH	161	TESTO17	805.0	-517.5
164 VGS 1015.0 -517.5 165 TESTO19 1085.0 -517.5 166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1505.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOML 2275.0 -517	162	VTEST	875.0	-517.5
165 TESTO19 1085.0 -517.5 166 V0T 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 1995.0 -517.5 180 VCOMH 2065.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2445.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 189 TESTO22 2765.0 -517.5	163	TESTO18	945.0	-517.5
166 VOT 1155.0 -517.5 167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1785.0 -517.5 175 VCOM 1855.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1995.0 -517.5 178 VCOMH 1995.0 -517.5 180 VCOMH 2065.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2485.0 -517	164	VGS	1015.0	-517.5
167 TESTO20 1225.0 -517.5 168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 1995.0 -517.5 180 VCOMH 2065.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2485.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5	165	TESTO19	1085.0	-517.5
168 VMON 1295.0 -517.5 169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 1995.0 -517.5 180 VCOMH 2065.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5	166	V0T	1155.0	-517.5
169 TESTO21 1365.0 -517.5 170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5	167	TESTO20	1225.0	-517.5
170 V31T 1435.0 -517.5 171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2485.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 <td< td=""><td>168</td><td>VMON</td><td>1295.0</td><td>-517.5</td></td<>	168	VMON	1295.0	-517.5
171 VCOM 1505.0 -517.5 172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 <tr< td=""><td>169</td><td>TESTO21</td><td>1365.0</td><td>-517.5</td></tr<>	169	TESTO21	1365.0	-517.5
172 VCOM 1575.0 -517.5 173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 <	170	V31T	1435.0	-517.5
173 VCOM 1645.0 -517.5 174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2485.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5	171	VCOM	1505.0	-517.5
174 VCOM 1715.0 -517.5 175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG10UT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0	172	VCOM	1575.0	-517.5
175 VCOM 1785.0 -517.5 176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG10UT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 </td <td>173</td> <td>VCOM</td> <td>1645.0</td> <td>-517.5</td>	173	VCOM	1645.0	-517.5
176 VCOM 1855.0 -517.5 177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG10UT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0<	174	VCOM	1715.0	-517.5
177 VCOMH 1925.0 -517.5 178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2485.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255	175	VCOM	1785.0	-517.5
178 VCOMH 1995.0 -517.5 179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3465.0 -517.5	176	VCOM	1855.0	-517.5
179 VCOMH 2065.0 -517.5 180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3465.0 -517.5	177	VCOMH	1925.0	-517.5
180 VCOMH 2135.0 -517.5 181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2625.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3465.0 -517.5 199 VCL 3465.0 <td>178</td> <td>VCOMH</td> <td>1995.0</td> <td>-517.5</td>	178	VCOMH	1995.0	-517.5
181 VCOMH 2205.0 -517.5 182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3465.0 -517.5 199	179	VCOMH	2065.0	-517.5
182 VCOMH 2275.0 -517.5 183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	180	VCOMH	2135.0	-517.5
183 VCOML 2345.0 -517.5 184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	181	VCOMH	2205.0	-517.5
184 VCOML 2415.0 -517.5 185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	182	VCOMH	2275.0	-517.5
185 VCOML 2485.0 -517.5 186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	183	VCOML	2345.0	-517.5
186 VCOML 2555.0 -517.5 187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	184	VCOML	2415.0	-517.5
187 VCOML 2625.0 -517.5 188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	185	VCOML	2485.0	-517.5
188 VCOML 2695.0 -517.5 189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	186	VCOML	2555.0	-517.5
189 TESTO22 2765.0 -517.5 190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	187	VCOML	2625.0	-517.5
190 TESTO23 2835.0 -517.5 191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	188	VCOML	2695.0	-517.5
191 VREG1OUT 2905.0 -517.5 192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	189	TESTO22	2765.0	-517.5
192 TESTO24 2975.0 -517.5 193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	190	TESTO23	2835.0	-517.5
193 TESTA5 3045.0 -517.5 194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	191	VREG1OUT	2905.0	-517.5
194 TESTO25 3115.0 -517.5 195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	192	TESTO24	2975.0	-517.5
195 VCOMR 3185.0 -517.5 196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	193	TESTA5	3045.0	-517.5
196 TESTO26 3255.0 -517.5 197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5	194	TESTO25	3115.0	-517.5
197 VCL 3325.0 -517.5 198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5			3185.0	-517.5
198 VCL 3395.0 -517.5 199 VCL 3465.0 -517.5			3255.0	-517.5
199 VCL 3465.0 -517.5	197	VCL	3325.0	-517.5
			3395.0	-517.5
200 VLOUT1 3535.0 -517.5			3465.0	
	200	VLOUT1	3535.0	-517.5

			· p,
pad No	pad name	Χ	Υ
201	VLOUT1	3605.0	-517.5
202	VLOUT1	3675.0	-517.5
203	DDVDH	3745.0	-517.5
204	DDVDH	3815.0	-517.5
205	DDVDH	3885.0	-517.5
206	DDVDH	3955.0	-517.5
207	DDVDH	4025.0	-517.5
208	DDVDH	4095.0	-517.5
209	DDVDH	4165.0	-517.5
210	VCIOUT	4235.0	-517.5
211	VCIOUT	4305.0	-517.5
212	VCIOUT	4375.0	-517.5
	VCI1	4445.0	-517.5
	VCI1	4515.0	-517.5
	VCI1	4585.0	-517.5
	VCI1	4655.0	-517.5
	VCI1	4725.0	-517.5
	VCILVL	4795.0	-517.5
	VCI	4865.0	-517.5
	VCI	4935.0	-517.5
	VCI	5005.0	-517.5
	VCI	5075.0	-517.5
	VCI	5145.0	-517.5
	VCI	5215.0	-517.5
	VCI	5285.0	-517.5
	VCI	5355.0	-517.5
	C12-	5425.0	-517.5
	C12-	5495.0	-517.5
	C12-	5565.0	-517.5
	C12-	5635.0	-517.5
	C12-	5705.0	-517.5
	C12+	5775.0	-517.5
	C12+	5845.0	-517.5
	C12+	5915.0	-517.5
	C12+	5985.0	-517.5
	C12+	6055.0	-517.5
	C11-	6125.0	-517.5
	C11-	6195.0	-517.5
	C11-	6265.0	-517.5
	C11-	6335.0	-517.5
	C11-	6405.0	-517.5
	C11+	6475.0	-517.5
	C11+	6545.0	-517.5
	C11+	6615.0	-517.5
	C11+	6685.0	-517.5
	C11+	6755.0	-517.5
240		6825.0	-517.5 -517.5
	VLOUT3	6895.0	-517.5
	VLOUT3	6965.0	-517.5 -517.5
250		7035.0	-517.5 -517.5
250	V OL	1000.0	-517.5

pad No	pad name	Χ	Υ
251	VGL	7105.0	-517.5
252	VGL	7175.0	-517.5
253	VGL	7245.0	-517.5
254	VGL	7315.0	-517.5
255	VGL	7385.0	-517.5
256	VGL	7455.0	-517.5
257	VGL	7525.0	-517.5
258	VGL	7595.0	-517.5
259	VGL	7665.0	-517.5
260	AGNDDUM2	7735.0	-517.5
261	AGNDDUM3	7805.0	-517.5
262	AGNDDUM4	7875.0	-517.5
263	VLOUT2	7945.0	-517.5
264	VLOUT2	8015.0	-517.5
265	VGH	8085.0	-517.5
266	VGH	8155.0	-517.5
267	VGH	8225.0	-517.5
	VGH	8295.0	-517.5
	TESTO27	8365.0	-517.5
	C13-	8435.0	-517.5
	C13-	8505.0	-517.5
	C13-	8575.0	-517.5
	TESTO28	8645.0	-517.5
	C13+	8715.0	-517.5
	C13+	8785.0	-517.5
	C13+	8855.0	-517.5
	TESTO29	8925.0	-517.5
	C21-	8995.0	-517.5
	C21-	9065.0	-517.5
	C21-	9135.0	-517.5
	C21+	9205.0	-517.5
	C21+	9275.0	-517.5
	C21+	9345.0	-517.5
	C22-	9415.0	-517.5
285	C22-	9485.0	-517.5
	C22-	9555.0	
	C22+	9625.0	-517.5
	C22+	9695.0	-517.5
	C22+	9765.0	-517.5
	C23-	9835.0	-517.5
	C23-	9905.0	-517.5
	C23-	9975.0	-517.5
	C23+	10045.0	-517.5
	C23+	10115.0	-517.5
	C23+	10185.0	-517.5
	TESTO30	10255.0	-517.5
	DUMMYR5	10325.0	-517.5
	DUMMYR6	10395.0	-517.5
	TESTO31	10670.0	511.5
300	TESTO32	10650.0	386.5
000	• . • • -	. 5 5 5 5 . 0	300.0

			- ротт.,
pad No	pad name	Χ	Υ
301	DUMMYR7	10630.0	511.5
302	DUMMYR8	10610.0	386.5
303	VGLDMY1	10590.0	511.5
304	G1	10570.0	386.5
305	G3	10550.0	511.5
306		10530.0	386.5
307		10510.0	511.5
308		10490.0	386.5
	G11	10470.0	511.5
	G13	10450.0	386.5
	G15	10430.0	511.5
	G17	10410.0	386.5
	G19	10390.0	511.5
	G21	10370.0	386.5
	G23	10350.0	511.5
	G25	10330.0	386.5
	G27	10310.0	511.5
	G29	10290.0	386.5
	G31	10270.0	511.5
	G33	10250.0	386.5
	G35	10230.0	511.5
	G37	10210.0	386.5
	G39	10190.0	511.5
	G41	10170.0	386.5
	G43	10170.0	511.5
	G45	10130.0	386.5
	G47	10110.0	511.5
	G49	10090.0	386.5
	G51	10030.0	511.5
	G53	10070.0	386.5
	G55	10030.0	511.5
	G57	10030.0	386.5
	G59	9990.0	511.5
	G61	9970.0	386.5
	G63	9950.0	511.5
	G65	9930.0	386.5
	G67	9910.0	511.5
	G69	9890.0	386.5
	G71	9870.0	511.5
	G73	9850.0	386.5
	G75	9830.0	511.5
	G75 G77	9830.0	
	G77 G79		386.5
	G79 G81	9790.0	511.5
		9770.0	386.5
	G83	9750.0	511.5
	G85	9730.0	386.5
	G87	9710.0	511.5
	G89	9690.0	386.5
	G91	9670.0	511.5
350	G93	9650.0	386.5

pad No	pad name	Χ	Υ
351	G95	9630.0	511.5
352	G97	9610.0	386.5
353	G99	9590.0	511.5
354	G101	9570.0	386.5
355	G103	9550.0	511.5
356	G105	9530.0	386.5
357	G107	9510.0	511.5
358	G109	9490.0	386.5
359	G111	9470.0	511.5
360	G113	9450.0	386.5
361	G115	9430.0	511.5
362	G117	9410.0	386.5
363	G119	9390.0	511.5
364	G121	9370.0	386.5
365	G123	9350.0	511.5
	G125	9330.0	386.5
	G127	9310.0	511.5
368	G129	9290.0	386.5
	G131	9270.0	511.5
	G133	9250.0	386.5
	G135	9230.0	511.5
	G137	9210.0	386.5
	G139	9190.0	511.5
	G141	9170.0	386.5
	G143	9150.0	511.5
	G145	9130.0	386.5
	G147	9110.0	511.5
	G149	9090.0	386.5
379	G151	9070.0	511.5
380	G153	9050.0	386.5
	G155	9030.0	511.5
382	G157	9010.0	386.5
	G159	8990.0	511.5
	G161	8970.0	386.5
385	G163	8950.0	511.5
	G165	8930.0	386.5
	G167	8910.0	511.5
	G169	8890.0	386.5
	G171	8870.0	511.5
	G173	8850.0	386.5
	G175	8830.0	511.5
	G177	8810.0	386.5
	G179	8790.0	511.5
	G181	8770.0	386.5
	G183	8750.0	511.5
	G185	8730.0	386.5
	G187	8710.0	511.5
	G189	8690.0	386.5
	G191	8670.0	511.5
400	G193	8650.0	386.5
100		5500.0	500.0

		· · · · ·	· p,
pad No	pad name	X	Υ
401	G195	8630.0	511.5
402	G197	8610.0	386.5
403	G199	8590.0	511.5
404	G201	8570.0	386.5
405	G203	8550.0	511.5
406	G205	8530.0	386.5
407	G207	8510.0	511.5
408	G209	8490.0	386.5
409	G211	8470.0	511.5
410	G213	8450.0	386.5
	G215	8430.0	511.5
	G217	8410.0	386.5
	G219	8390.0	511.5
	G221	8370.0	386.5
	G223	8350.0	511.5
	G225	8330.0	386.5
	G227	8310.0	511.5
	G229	8290.0	386.5
	G231	8270.0	511.5
	G233	8250.0	386.5
	G235	8230.0	511.5
	G237	8210.0	386.5
	G239	8190.0	511.5
	G241	8170.0	386.5
	G243	8150.0	511.5
	G245	8130.0	386.5
	G247	8110.0	511.5
	G249	8090.0	386.5
	G251	8070.0	511.5
	G253	8050.0	386.5
	G255	8030.0	511.5
	G257	8010.0	386.5
	G259	7990.0	511.5
	G261	7970.0	386.5
	G263	7950.0	511.5
	G265	7930.0	386.5
	G267	7910.0	511.5
	G269	7890.0	386.5
	G271	7870.0	511.5
	G273	7850.0	386.5
441	G275	7830.0	511.5
441		7810.0	386.5
	G279	7790.0	511.5
	G281	7770.0	386.5
445		7750.0	511.5
		7730.0	386.5
447		7710.0	511.5
447		7690.0	386.5
446		7670.0	511.5
449		7670.0	386.5
400	G230	7030.0	300.3

pad No	pad name	Χ	Υ
451	G295	7630.0	511.5
452	G297	7610.0	386.5
453	G299	7590.0	511.5
454	G301	7570.0	386.5
455	G303	7550.0	511.5
456	G305	7530.0	386.5
457	G307	7510.0	511.5
458	G309	7490.0	386.5
459	G311	7470.0	511.5
460	G313	7450.0	386.5
461	G315	7430.0	511.5
462	G317	7410.0	386.5
463	G319	7390.0	511.5
464	VGLDMY2	7370.0	386.5
465	TESTO33	7350.0	511.5
466	TESTO34	7130.0	511.5
467	S720	7110.0	386.5
468	S719	7090.0	511.5
469	S718	7070.0	386.5
470	S717	7050.0	511.5
471	S716	7030.0	386.5
472	S715	7010.0	511.5
473	S714	6990.0	386.5
474	S713	6970.0	511.5
475	S712	6950.0	386.5
476	S711	6930.0	511.5
477	S710	6910.0	386.5
478	S709	6890.0	511.5
479	S708	6870.0	386.5
480	S707	6850.0	511.5
	S706	6830.0	386.5
482	S705	6810.0	511.5
483	S704	6790.0	386.5
484	S703	6770.0	511.5
	S702	6750.0	386.5
	S701	6730.0	511.5
	S700	6710.0	386.5
	S699	6690.0	511.5
	S698	6670.0	386.5
	S697	6650.0	511.5
	S696	6630.0	386.5
	S695	6610.0	511.5
	S694	6590.0	386.5
	S693	6570.0	511.5
	S692	6550.0	386.5
	S691	6530.0	511.5
		6510.0	386.5
	S689	6490.0	511.5
	S688	6470.0	386.5
500	S687	6450.0	511.5

		- · ·	· p,
pad No	pad name	Х	Υ
501	S686	6430.0	386.5
502	S685	6410.0	511.5
503	S684	6390.0	386.5
504	S683	6370.0	511.5
505	S682	6350.0	386.5
	S681	6330.0	511.5
507		6310.0	386.5
	S679	6290.0	511.5
	S678	6270.0	386.5
	S677	6250.0	511.5
511		6230.0	386.5
	S675	6210.0	511.5
	S674	6190.0	386.5
	S673	6170.0	511.5
	S672	6150.0	386.5
	S671	6130.0	511.5
	S670	6110.0	386.5
	S669	6090.0	511.5
	S668	6070.0	386.5
	S667	6050.0	511.5
521		6030.0	386.5
522		6010.0	511.5
	S664	5990.0	386.5
	S663	5970.0	511.5
	S662	5950.0	386.5
	S661	5930.0	511.5
527		5910.0	386.5
	S659	5890.0	511.5
	S658	5870.0	386.5
530		5850.0	511.5
531		5830.0	386.5
531		5810.0	511.5
	S654	5790.0	386.5
	S653 S652	5770.0 5750.0	511.5 386.5
	S651	5750.0	511.5
	S650	5710.0	386.5
538		5690.0	511.5
539		5670.0	386.5
540		5650.0	511.5
541	S646	5630.0	386.5
542		5610.0	511.5
543		5590.0	386.5
544		5570.0	511.5
545		5550.0	386.5
546		5530.0	511.5
547		5510.0	386.5
548		5490.0	511.5
549		5470.0	386.5
550	S637	5450.0	511.5

pad No	pad name	X	Υ
551	S636	5430.0	386.5
552	S635	5410.0	511.5
553	S634	5390.0	386.5
554	S633	5370.0	511.5
555	S632	5350.0	386.5
556	S631	5330.0	511.5
557	S630	5310.0	386.5
558	S629	5290.0	511.5
559	S628	5270.0	386.5
560	S627	5250.0	511.5
561	S626	5230.0	386.5
562	S625	5210.0	511.5
563	S624	5190.0	386.5
564	S623	5170.0	511.5
565	S622	5150.0	386.5
566	S621	5130.0	511.5
567	S620	5110.0	386.5
568	S619	5090.0	511.5
569	S618	5070.0	386.5
570	S617	5050.0	511.5
571	S616	5030.0	386.5
572	S615	5010.0	511.5
573	S614	4990.0	386.5
574	S613	4970.0	511.5
575	S612	4950.0	386.5
576	S611	4930.0	511.5
577	S610	4910.0	386.5
578	S609	4890.0	511.5
579	S608	4870.0	386.5
580	S607	4850.0	511.5
581	S606	4830.0	386.5
582	S605	4810.0	511.5
583	S604	4790.0	386.5
584	S603	4770.0	511.5
585	S602	4750.0	386.5
586	S601	4730.0	511.5
	S600	4710.0	386.5
588	S599	4690.0	511.5
589	S598	4670.0	386.5
590	S597	4650.0	511.5
591	S596	4630.0	386.5
		4610.0	511.5
	S594	4590.0	386.5
	S593	4570.0	511.5
	S592	4550.0	386.5
	S591	4530.0	511.5
	S590	4510.0	386.5
598	S589	4490.0	511.5
	S588	4470.0	386.5
600	S587	4450.0	511.5

		- · · -	· p,
pad No	pad name	Х	Υ
601	S586	4430.0	386.5
602	S585	4410.0	511.5
603	S584	4390.0	386.5
604	S583	4370.0	511.5
605	S582	4350.0	386.5
	S581	4330.0	511.5
	S580	4310.0	386.5
	S579	4290.0	511.5
609	S578	4270.0	386.5
	S577	4250.0	511.5
611		4230.0	386.5
	S575	4210.0	511.5
	S574	4190.0	386.5
	S573	4170.0	511.5
	S572	4150.0	386.5
	S571	4130.0	511.5
	S570	4110.0	386.5
	S569	4090.0	511.5
	S568	4070.0	386.5
	S567	4050.0	511.5
621		4030.0	386.5
	S565	4010.0	511.5
	S564	3990.0	386.5
	S563	3970.0	511.5
	S562	3950.0	386.5
	S561	3930.0	511.5
627		3910.0	386.5
	S559	3890.0	511.5
	S558	3870.0	386.5
630		3850.0	511.5
631		3830.0	386.5
632		3810.0	511.5
	S554	3790.0	386.5
	S553	3770.0	511.5
	S552	3750.0	386.5
	S551	3730.0	511.5
	S550	3730.0	386.5
638		3690.0	511.5
639		3670.0	386.5
640		3650.0	511.5
641	S546	3630.0	
		3610.0	386.5
642 643		3590.0	511.5 386.5
644			511.5
645		3570.0 3550.0	386.5
646		3530.0	511.5
647		3510.0	386.5
648		3490.0	511.5
649		3470.0	386.5
650	S537	3450.0	511.5

pad No	pad name	Х	Υ
	S536		
	S535	3430.0 3410.0	386.5 511.5
	S534	3390.0	386.5
	S533	3370.0	511.5
	S532	3350.0	386.5
	S531	3330.0	511.5
	S530	3310.0	386.5
	S529	3290.0	511.5
	S528	3270.0	386.5
	S527	3250.0	511.5
	S526	3230.0	386.5
	S525	3210.0	511.5
	S524	3190.0	386.5
	S523	3170.0	511.5
	S523	3170.0	386.5
	S521	3130.0	511.5
	S520	3110.0	386.5
	S519	3090.0	511.5
	S518	3070.0	386.5
	S517	3050.0	511.5
	S516	3030.0	386.5
	S515	3010.0	511.5
	S514	2990.0	386.5
	S513	2970.0	511.5
	S512	2950.0	386.5
	S511	2930.0	511.5
	S510	2910.0	386.5
	S509	2890.0	511.5
	S508	2870.0	386.5
	S507	2850.0	511.5
	S506	2830.0	386.5
	S505	2810.0	511.5
	S504	2790.0	386.5
	S503	2770.0	511.5
	S502	2750.0	386.5
	S501	2730.0	511.5
	S500	2710.0	386.5
		2690.0	511.5
	S498	2670.0	386.5
	S497	2650.0	511.5
691	S496	2630.0	386.5
692	S495	2610.0	511.5
693	S494	2590.0	386.5
694	S493	2570.0	511.5
695	S492	2550.0	386.5
696	S491	2530.0	511.5
697	S490	2510.0	386.5
698	S489	2490.0	511.5
699	S488	2470.0	386.5
700	S487	2450.0	511.5
		_	

pad No	pad name	Χ	Υ
	S486	2430.0	386.5
	S485	2410.0	511.5
	S484	2390.0	386.5
	S483	2370.0	511.5
	S482	2350.0	386.5
	S481	2330.0	511.5
	S480	2310.0	386.5
	S479	2290.0	511.5
	S478	2270.0	386.5
	S477	2250.0	511.5
	S476	2230.0	386.5
	S475	2210.0	511.5
	S474	2190.0	386.5
	S473	2170.0	511.5
	S472	2150.0	386.5
	S471	2130.0	511.5
717		2110.0	386.5
	S469	2090.0	511.5
	S468	2070.0	386.5
	S467	2050.0	511.5
	S466	2030.0	386.5
	S465	2010.0	511.5
	S464	1990.0	386.5
	S463	1970.0	511.5
	S462	1950.0	386.5
	S461	1930.0	511.5
727		1910.0	386.5
	S459	1890.0	511.5
	S458	1870.0	386.5
	S457	1850.0	511.5
731		1830.0	386.5
732		1810.0	511.5
	S454	1790.0	386.5
	S453	1770.0	511.5
	S452	1750.0	386.5
	S451	1730.0	511.5
	S450	1710.0	386.5
	S449	1690.0	511.5
	S448	1670.0	386.5
	S447	1650.0	511.5
	S446	1630.0	386.5
	S445	1610.0	511.5
	S444	1590.0	386.5
	S443	1570.0	511.5
745	S442	1550.0	386.5
	S441	1530.0	511.5
	S440	1510.0	386.5
	S439	1490.0	511.5
749	S438	1470.0	386.5
750	S437	1450.0	511.5

pad No	pad name	Χ	Υ
751	S436	1430.0	386.5
	S435	1410.0	511.5
	S434	1390.0	386.5
	S433	1370.0	511.5
	S432	1350.0	386.5
	S431	1330.0	511.5
	S430	1310.0	386.5
	S429	1290.0	511.5
	S428	1270.0	386.5
	S427	1250.0	511.5
	S426	1230.0	386.5
	S425	1210.0	511.5
	S424	1190.0	386.5
	S423	1170.0	511.5
	S422	1150.0	386.5
	S421	1130.0	511.5
	S420	1110.0	386.5
	S419	1090.0	511.5
	S418	1070.0	386.5
	S417	1050.0	511.5
	S416	1030.0	386.5
	S415	1010.0	511.5
	S414	990.0	386.5
	S413	970.0	511.5
	S412	950.0	386.5
	S411	930.0	511.5
	S410	910.0	386.5
	S409	890.0	511.5
	S408	870.0	386.5
	S407	850.0	511.5
	S406	830.0	386.5
	S405	810.0	511.5
	S404	790.0	386.5
	S403	770.0	511.5
	S402	750.0	386.5
	S401	730.0	
	S400	730.0	386.5
	S399	690.0	511.5
	S398	670.0	386.5
	S397	650.0	511.5
	S396	630.0	386.5
	S395	610.0	511.5
	S394	590.0	386.5
	S393	570.0	511.5
	S392	550.0	386.5
	S391	530.0	511.5
	S390	510.0	386.5
	S389	490.0	511.5
	S388	490.0	386.5
800	S387	470.0	511.5
000	JJ01	450.0	311.5

801 \$386 \$430.0 \$386.5 802 \$385 \$410.0 \$511.5 803 \$384 \$390.0 \$386.5 804 \$383 \$370.0 \$511.5 805 \$382 \$350.0 \$386.5 806 \$381 \$30.0 \$511.5 807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$3373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 821 \$366 \$	1101000	·	C (OIIIC	-
802 S385 410.0 511.5 803 S384 390.0 386.5 804 S383 370.0 511.5 805 S382 350.0 386.5 806 S381 330.0 511.5 807 S380 310.0 386.5 808 S379 290.0 511.5 809 S378 270.0 386.5 810 S377 250.0 511.5 811 S376 230.0 386.5 812 S375 210.0 511.5 813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 <	pad No	pad name	Х	Υ
803 \$384 \$90.0 \$386.5 804 \$383 \$370.0 \$511.5 805 \$382 \$350.0 \$386.5 806 \$381 \$30.0 \$511.5 807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 819 \$368 \$70.0 \$386.5 820 \$367 \$50.0 \$511.5 821 \$366 \$30.0				
804 \$383 \$370.0 \$511.5 805 \$382 \$350.0 \$386.5 806 \$381 \$30.0 \$511.5 807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 819 \$368 \$70.0 \$386.5 820 \$367 \$50.0 \$511.5 821 \$366 \$30.0 \$386.5 822 \$365 \$10.0				
805 \$382 \$350.0 \$386.5 806 \$381 \$30.0 \$511.5 807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 819 \$368 \$70.0 \$386.5 820 \$367 \$50.0 \$511.5 821 \$366 \$30.0 \$386.5 822 \$365 \$10.0 \$511.5 823 \$364 \$10.0<				
806 \$381 \$30.0 \$511.5 807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 819 \$368 \$70.0 \$386.5 820 \$367 \$50.0 \$511.5 821 \$366 \$30.0 \$386.5 822 \$365 \$10.0 \$511.5 823 \$364 \$-10.0 \$386.5 824 \$363 \$-30.0				
807 \$380 \$310.0 \$386.5 808 \$379 \$290.0 \$511.5 809 \$378 \$270.0 \$386.5 810 \$377 \$250.0 \$511.5 811 \$376 \$230.0 \$386.5 812 \$375 \$210.0 \$511.5 813 \$374 \$190.0 \$386.5 814 \$373 \$170.0 \$511.5 815 \$372 \$150.0 \$386.5 816 \$371 \$130.0 \$511.5 817 \$370 \$110.0 \$386.5 818 \$369 \$90.0 \$511.5 819 \$368 \$70.0 \$386.5 820 \$367 \$50.0 \$511.5 821 \$366 \$30.0 \$386.5 822 \$365 \$10.0 \$511.5 823 \$364 \$-10.0 \$386.5 824 \$363 \$-30.0 \$511.5 825 \$362 \$-50.				
808 \$379 290.0 \$511.5 809 \$378 270.0 386.5 810 \$377 250.0 \$511.5 811 \$376 230.0 386.5 812 \$375 210.0 \$511.5 813 \$374 190.0 386.5 814 \$373 170.0 \$511.5 815 \$372 150.0 386.5 816 \$371 130.0 \$511.5 817 \$370 110.0 386.5 818 \$369 90.0 \$511.5 819 \$368 70.0 386.5 820 \$367 50.0 511.5 821 \$366 30.0 386.5 822 \$365 10.0 \$511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 \$511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 \$511.5 <td>806</td> <td>S381</td> <td>330.0</td> <td>511.5</td>	806	S381	330.0	511.5
809 S378 270.0 386.5 810 S377 250.0 511.5 811 S376 230.0 386.5 812 S375 210.0 511.5 813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 824 S363 -30.0 511.5 827 S360 -90.0 386.5 <td>807</td> <td>S380</td> <td>310.0</td> <td></td>	807	S380	310.0	
810 S377 250.0 511.5 811 S376 230.0 386.5 812 S375 210.0 511.5 813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 </td <td>808</td> <td>S379</td> <td></td> <td>511.5</td>	808	S379		511.5
811 S376 230.0 386.5 812 S375 210.0 511.5 813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 <			270.0	
812 S375 210.0 511.5 813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5			250.0	511.5
813 S374 190.0 386.5 814 S373 170.0 511.5 815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S366 -170.0 386.5	811	S376	230.0	386.5
814 \$373 170.0 \$511.5 815 \$372 150.0 386.5 816 \$371 130.0 \$511.5 817 \$370 110.0 386.5 818 \$369 90.0 \$511.5 819 \$368 70.0 386.5 820 \$367 50.0 \$511.5 821 \$366 30.0 386.5 822 \$365 10.0 \$511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 \$511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 \$511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 \$511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 \$511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 \$511	812	S375	210.0	511.5
815 S372 150.0 386.5 816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S366 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5	813	S374	190.0	386.5
816 S371 130.0 511.5 817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S366 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5	814	S373	170.0	511.5
817 S370 110.0 386.5 818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837	815	S372	150.0	386.5
818 S369 90.0 511.5 819 S368 70.0 386.5 820 S367 50.0 511.5 821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838	816	S371	130.0	511.5
819 \$368 70.0 386.5 820 \$367 50.0 511.5 821 \$366 30.0 386.5 822 \$365 10.0 511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839	817	S370	110.0	386.5
820 \$367 50.0 511.5 821 \$366 30.0 386.5 822 \$365 10.0 511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5	818	S369	90.0	511.5
821 S366 30.0 386.5 822 S365 10.0 511.5 823 S364 -10.0 386.5 824 S363 -30.0 511.5 825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841<	819	S368	70.0	386.5
822 \$365 10.0 511.5 823 \$364 -10.0 386.5 824 \$363 -30.0 511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 84	820	S367	50.0	511.5
823 \$364 -10.0 386.5 824 \$363 -30.0 511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5	821	S366	30.0	386.5
824 \$363 -30.0 \$511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 \$511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 \$511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 \$511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 \$511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 \$511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 \$511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 \$511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 \$511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 \$511.5 843 \$344 -410.0 386.5	822	S365	10.0	511.5
824 \$363 -30.0 \$511.5 825 \$362 -50.0 386.5 826 \$361 -70.0 \$511.5 827 \$360 -90.0 386.5 828 \$359 -110.0 \$511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 \$511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 \$511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 \$511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 \$511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 \$511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 \$511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 \$511.5 843 \$344 -410.0 386.5	823	S364	-10.0	386.5
825 S362 -50.0 386.5 826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 <t< td=""><td>824</td><td>S363</td><td>-30.0</td><td></td></t<>	824	S363	-30.0	
826 S361 -70.0 511.5 827 S360 -90.0 386.5 828 S359 -110.0 511.5 829 S358 -130.0 386.5 830 S357 -150.0 511.5 831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 <	825	S362	-50.0	
827 \$360 -90.0 386.5 828 \$359 -110.0 511.5 829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5	826	S361	-70.0	
829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 511.5	827	S360	-90.0	386.5
829 \$358 -130.0 386.5 830 \$357 -150.0 511.5 831 \$356 -170.0 386.5 832 \$355 -190.0 511.5 833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 511.5	828	S359	-110.0	511.5
831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5	829	S358	-130.0	
831 S356 -170.0 386.5 832 S355 -190.0 511.5 833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5	830	S357	-150.0	511.5
833 \$354 -210.0 386.5 834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 511.5 849 \$338 -530.0 386.5	831	S356	-170.0	
833 S354 -210.0 386.5 834 S353 -230.0 511.5 835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5	832	S355	-190.0	511.5
834 \$353 -230.0 511.5 835 \$352 -250.0 386.5 836 \$351 -270.0 511.5 837 \$350 -290.0 386.5 838 \$349 -310.0 511.5 839 \$348 -330.0 386.5 840 \$347 -350.0 511.5 841 \$346 -370.0 386.5 842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 511.5 849 \$338 -530.0 386.5	833	S354		
835 S352 -250.0 386.5 836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5			-230.0	
836 S351 -270.0 511.5 837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5	835	S352		
837 S350 -290.0 386.5 838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
838 S349 -310.0 511.5 839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
839 S348 -330.0 386.5 840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
840 S347 -350.0 511.5 841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
841 S346 -370.0 386.5 842 S345 -390.0 511.5 843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
842 \$345 -390.0 511.5 843 \$344 -410.0 386.5 844 \$343 -430.0 511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 511.5 849 \$338 -530.0 386.5				
843 S344 -410.0 386.5 844 S343 -430.0 511.5 845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
844 \$343 -430.0 \$511.5 845 \$342 -450.0 386.5 846 \$341 -470.0 \$511.5 847 \$340 -490.0 386.5 848 \$339 -510.0 \$511.5 849 \$338 -530.0 386.5				
845 S342 -450.0 386.5 846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
846 S341 -470.0 511.5 847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
847 S340 -490.0 386.5 848 S339 -510.0 511.5 849 S338 -530.0 386.5				
848 \$339 -510.0 511.5 849 \$338 -530.0 386.5				
849 S338 -530.0 386.5				
223.3	850	S337	-550.0	511.5

852 S335 -590.0 50 853 S334 -610.0 36 854 S333 -630.0 50 855 S332 -650.0 36 856 S331 -670.0 50 857 S330 -690.0 36 858 S329 -710.0 50 859 S328 -730.0 36 860 S327 -750.0 50 861 S326 -770.0 36 862 S325 -790.0 50 863 S324 -810.0 36 864 S323 -830.0 50 865 S322 -850.0 36 867 S320 -890.0 36 868 S319 -910.0 50 869 S318 -930.0 36 870 S317 -950.0 50 871 S316 -970.0 50 872 S315 -990.0 50	86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5
852 S335 -590.0 50 853 S334 -610.0 36 854 S333 -630.0 50 855 S332 -650.0 36 856 S331 -670.0 50 857 S330 -690.0 36 858 S329 -710.0 50 859 S328 -730.0 36 860 S327 -750.0 50 861 S326 -770.0 36 862 S325 -790.0 50 863 S324 -810.0 36 864 S323 -830.0 50 865 S322 -850.0 36 867 S320 -890.0 36 868 S319 -910.0 50 869 S318 -930.0 36 870 S317 -950.0 50 871 S316 -970.0 50 872 S315 -990.0 50	11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5
853 S334 -610.0 36 854 S333 -630.0 5 855 S332 -650.0 36 856 S331 -670.0 5 857 S330 -690.0 36 858 S329 -710.0 5 859 S328 -730.0 36 860 S327 -750.0 5 861 S326 -770.0 36 862 S325 -790.0 5 863 S324 -810.0 36 864 S323 -830.0 5 865 S322 -850.0 36 867 S320 -890.0 36 868 S319 -910.0 5 869 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5 11.5 86.5
854 \$333 -630.0 5 855 \$332 -650.0 36 856 \$331 -670.0 5 857 \$330 -690.0 36 858 \$329 -710.0 5 859 \$328 -730.0 36 860 \$327 -750.0 5 861 \$326 -770.0 36 862 \$325 -790.0 5 863 \$324 -810.0 36 864 \$323 -830.0 5 865 \$322 -850.0 36 866 \$321 -870.0 5 867 \$320 -890.0 36 868 \$319 -910.0 5 869 \$318 -930.0 36 870 \$317 -950.0 5 871 \$316 -970.0 5 872 \$315 -990.0 5	11.5 36.5 11.5 36.5 11.5 36.5 11.5 36.5 11.5 36.5
855 S332 -650.0 33 856 S331 -670.0 57 857 S330 -690.0 36 858 S329 -710.0 57 859 S328 -730.0 36 860 S327 -750.0 57 861 S326 -770.0 36 862 S325 -790.0 57 863 S324 -810.0 36 864 S323 -830.0 57 865 S322 -850.0 36 866 S321 -870.0 57 867 S320 -890.0 36 868 S319 -910.0 57 869 S318 -930.0 36 870 S317 -950.0 57 871 S316 -970.0 57 872 S315 -990.0 57	36.5 11.5 36.5 11.5 36.5 11.5 36.5 11.5 36.5
856 S331 -670.0 56 857 S330 -690.0 36 858 S329 -710.0 56 859 S328 -730.0 36 860 S327 -750.0 56 861 S326 -770.0 36 862 S325 -790.0 56 863 S324 -810.0 36 864 S323 -830.0 56 865 S322 -850.0 36 866 S321 -870.0 56 867 S320 -890.0 36 868 S319 -910.0 56 869 S318 -930.0 36 870 S317 -950.0 56 871 S316 -970.0 36 872 S315 -990.0 56	11.5 36.5 11.5 36.5 11.5 36.5 11.5 36.5
857 S330 -690.0 33 858 S329 -710.0 57 859 S328 -730.0 36 860 S327 -750.0 57 861 S326 -770.0 36 862 S325 -790.0 57 863 S324 -810.0 36 864 S323 -830.0 57 865 S322 -850.0 36 867 S320 -890.0 36 868 S319 -910.0 57 869 S318 -930.0 36 870 S317 -950.0 57 871 S316 -970.0 36 872 S315 -990.0 57	36.5 11.5 36.5 11.5 36.5 11.5 36.5
858 S329 -710.0 56 859 S328 -730.0 38 860 S327 -750.0 56 861 S326 -770.0 38 862 S325 -790.0 56 863 S324 -810.0 38 864 S323 -830.0 56 865 S322 -850.0 38 866 S321 -870.0 56 867 S320 -890.0 38 868 S319 -910.0 56 869 S318 -930.0 38 870 S317 -950.0 56 871 S316 -970.0 38 872 S315 -990.0 56	11.5 36.5 11.5 36.5 11.5 36.5 11.5
859 S328 -730.0 36 860 S327 -750.0 5 861 S326 -770.0 36 862 S325 -790.0 5 863 S324 -810.0 36 864 S323 -830.0 5 865 S322 -850.0 36 866 S321 -870.0 5 867 S320 -890.0 36 868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	36.5 11.5 36.5 11.5 36.5 11.5
860 S327 -750.0 5 861 S326 -770.0 33 862 S325 -790.0 5 863 S324 -810.0 33 864 S323 -830.0 5 865 S322 -850.0 33 866 S321 -870.0 5 867 S320 -890.0 36 868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	11.5 36.5 11.5 36.5 11.5 36.5
861 S326 -770.0 33 862 S325 -790.0 57 863 S324 -810.0 33 864 S323 -830.0 57 865 S322 -850.0 33 866 S321 -870.0 57 867 S320 -890.0 33 868 S319 -910.0 57 869 S318 -930.0 33 870 S317 -950.0 57 871 S316 -970.0 33 872 S315 -990.0 57	36.5 11.5 36.5 11.5 36.5
862 S325 -790.0 56 863 S324 -810.0 36 864 S323 -830.0 56 865 S322 -850.0 36 866 S321 -870.0 56 867 S320 -890.0 36 868 S319 -910.0 56 869 S318 -930.0 36 870 S317 -950.0 56 871 S316 -970.0 36 872 S315 -990.0 56	11.5 36.5 11.5 36.5
863 S324 -810.0 33 864 S323 -830.0 57 865 S322 -850.0 36 866 S321 -870.0 57 867 S320 -890.0 36 868 S319 -910.0 57 869 S318 -930.0 36 870 S317 -950.0 57 871 S316 -970.0 36 872 S315 -990.0 57	36.5 11.5 36.5
864 S323 -830.0 5 865 S322 -850.0 36 866 S321 -870.0 5 867 S320 -890.0 36 868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	11.5 36.5
865 S322 -850.0 36 866 S321 -870.0 5 867 S320 -890.0 36 868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	36.5
866 S321 -870.0 5 867 S320 -890.0 36 868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	
867 S320 -890.0 36 868 S319 -910.0 56 869 S318 -930.0 36 870 S317 -950.0 56 871 S316 -970.0 36 872 S315 -990.0 56	11.5
868 S319 -910.0 5 869 S318 -930.0 36 870 S317 -950.0 5 871 S316 -970.0 36 872 S315 -990.0 5	
869 S318 -930.0 38 870 S317 -950.0 5 871 S316 -970.0 38 872 S315 -990.0 5	36.5
870 S317 -950.0 57 871 S316 -970.0 38 872 S315 -990.0 57	11.5
871 S316 -970.0 38 872 S315 -990.0 50	36.5
871 S316 -970.0 38 872 S315 -990.0 50	11.5
	36.5
873 5314 1010 20	11.5
0/3 3314 1010.0 30	36.5
	11.5
	36.5
	11.5
	36.5
	11.5
879 S308 -1130.0 38	36.5
880 S307 -1150.0 5 ⁻¹	11.5
881 S306 -1170.0 38	36.5
882 S305 -1190.0 5 ⁻¹	11.5
883 S304 -1210.0 38	36.5
884 S303 -1230.0 5 ⁻	11.5
885 S302 -1250.0 38	36.5
886 S301 -1270.0 5	11.5
887 S300 -1290.0 38	36.5
888 S299 -1310.0 5 ⁻¹	11.5
889 S298 -1330.0 38	36.5
890 S297 -1350.0 5	11.5
891 S296 -1370.0 38	36.5
	11.5
	36.5
	11.5
	36.5
	11.5
	36.5
	11.5
900 S287 -1550.0 5	36.5

1101000		V V	
pad No	pad name	Х	Υ
	S286	-1570.0	386.5
	S285	-1590.0	511.5
	S284	-1610.0	386.5
904	S283	-1630.0	511.5
905	S282	-1650.0	386.5
906	S281	-1670.0	511.5
907	S280	-1690.0	386.5
908	S279	-1710.0	511.5
909	S278	-1730.0	386.5
910	S277	-1750.0	511.5
911	S276	-1770.0	386.5
912	S275	-1790.0	511.5
913	S274	-1810.0	386.5
914	S273	-1830.0	511.5
915	S272	-1850.0	386.5
916	S271	-1870.0	511.5
917	S270	-1890.0	386.5
918	S269	-1910.0	511.5
919	S268	-1930.0	386.5
	S267	-1950.0	511.5
	S266	-1970.0	386.5
	S265	-1990.0	511.5
	S264	-2010.0	386.5
	S263	-2030.0	511.5
	S262	-2050.0	386.5
	S261	-2070.0	511.5
	S260	-2090.0	386.5
	S259	-2110.0	511.5
	S258	-2130.0	386.5
	S257	-2150.0	511.5
	S256	-2170.0	386.5
	S255	-2190.0	511.5
	S254	-2210.0	386.5
	S253	-2230.0	511.5
	S252	-2250.0	386.5
	S251	-2270.0	511.5
	S250	-2290.0	386.5
	S249	-2310.0	511.5
	S248	-2330.0	386.5
	S247	-2350.0	511.5
	S246	-2370.0	386.5
	S245	-2390.0	511.5
942		-2390.0	386.5
	S243	-2430.0	511.5
	S242	-2450.0	386.5
	S241	-2470.0	511.5
	S240	-2470.0	386.5
	S239	-2490.0	
	S238		511.5 386.5
		-2530.0 -2550.0	511.5
950	S237	-2000.0	311.5

pad No	pad name	Χ	Υ
951	S236	-2570.0	386.5
952	S235	-2590.0	511.5
953	S234	-2610.0	386.5
954	S233	-2630.0	511.5
955	S232	-2650.0	386.5
	S231	-2670.0	511.5
957	S230	-2690.0	386.5
958	S229	-2710.0	511.5
959	S228	-2730.0	386.5
960	S227	-2750.0	511.5
961	S226	-2770.0	386.5
962	S225	-2790.0	511.5
963	S224	-2810.0	386.5
964	S223	-2830.0	511.5
965	S222	-2850.0	386.5
	S221	-2870.0	511.5
967	S220	-2890.0	386.5
968	S219	-2910.0	511.5
969	S218	-2930.0	386.5
	S217	-2950.0	511.5
	S216	-2970.0	386.5
	S215	-2990.0	511.5
	S214	-3010.0	386.5
	S213	-3030.0	511.5
	S212	-3050.0	386.5
	S211	-3070.0	511.5
	S210	-3090.0	386.5
	S209	-3110.0	511.5
	S208	-3130.0	386.5
	S207	-3150.0	511.5
981	S206	-3170.0	386.5
982	S205	-3190.0	511.5
	S204	-3210.0	386.5
984	S203	-3230.0	511.5
985	S202	-3250.0	386.5
986	S201	-3270.0	511.5
	S200	-3290.0	386.5
	S199	-3310.0	511.5
	S198	-3330.0	386.5
990	S197	-3350.0	511.5
991	S196	-3370.0	386.5
992	S195	-3390.0	511.5
993	S194	-3410.0	386.5
994	S193	-3430.0	511.5
995	S192	-3450.0	386.5
996	S191	-3470.0	511.5
997	S190	-3490.0	386.5
998	S189	-3510.0	511.5
999	S188	-3530.0	386.5
1000	S187	-3550.0	511.5

	o i da socialita	ic (Offic	
pad No	pad name	Χ	Υ
1001	S186	-3570.0	386.5
1002	S185	-3590.0	511.5
1003	S184	-3610.0	386.5
1004	S183	-3630.0	511.5
1005	S182	-3650.0	386.5
1006	S181	-3670.0	511.5
1007	S180	-3690.0	386.5
1008	S179	-3710.0	511.5
1009	S178	-3730.0	386.5
1010	S177	-3750.0	511.5
1011	S176	-3770.0	386.5
1012	S175	-3790.0	511.5
1013	S174	-3810.0	386.5
1014	S173	-3830.0	511.5
1015	S172	-3850.0	386.5
	S171	-3870.0	511.5
1017	S170	-3890.0	386.5
	S169	-3910.0	511.5
	S168	-3930.0	386.5
1020	S167	-3950.0	511.5
	S166	-3970.0	386.5
	S165	-3990.0	511.5
	S164	-4010.0	386.5
	S163	-4030.0	511.5
	S162	-4050.0	386.5
	S161	-4070.0	511.5
	S160	-4090.0	386.5
	S159	-4110.0	511.5
	S158	-4130.0	386.5
	S157	-4150.0	511.5
	S156	-4170.0	386.5
	S155	-4190.0	511.5
	S154	-4210.0	386.5
	S153	-4230.0	511.5
	S152	-4250.0	386.5
	S151	-4270.0	
	S150	-4290.0	386.5
	S149	-4310.0	511.5
	S148	-4330.0	386.5
	S147	-4350.0	511.5
	S146	-4370.0	386.5
	S145	-4390.0	511.5
1042		-4410.0	386.5
	S143	-4430.0	511.5
	S142	-4450.0	386.5
	S141	-4470.0	511.5
	S140	-4490.0	386.5
	S139	-4510.0	511.5
	S138	-4530.0	386.5
1050		-4550.0	511.5
	I .		

pad No	pad name	Χ	Υ
1051	S136	-4570.0	386.5
1052	S135	-4590.0	511.5
1053	S134	-4610.0	386.5
1054	S133	-4630.0	511.5
1055	S132	-4650.0	386.5
1056	S131	-4670.0	511.5
1057	S130	-4690.0	386.5
1058	S129	-4710.0	511.5
	S128	-4730.0	386.5
1060	S127	-4750.0	511.5
1061	S126	-4770.0	386.5
1062	S125	-4790.0	511.5
	S124	-4810.0	386.5
1064	S123	-4830.0	511.5
	S122	-4850.0	386.5
	S121	-4870.0	511.5
	S120	-4890.0	386.5
	S119	-4910.0	511.5
	S118	-4930.0	386.5
	S117	-4950.0	511.5
	S116	-4970.0	386.5
	S115	-4990.0	511.5
	S114	-5010.0	386.5
	S113	-5030.0	511.5
	S112	-5050.0	386.5
	S111	-5070.0	511.5
	S110	-5090.0	386.5
	S109	-5110.0	511.5
	S108	-5130.0	386.5
	S107	-5150.0	511.5
	S106	-5170.0	386.5
	S105	-5190.0	511.5
	S104	-5210.0	386.5
	S103	-5230.0	511.5
	S102	-5250.0	386.5
	S101	-5270.0	511.5
	S100	-5290.0	386.5
1088		-5310.0	511.5
1089		-5330.0	386.5
1090		-5350.0	511.5
1091		-5370.0	386.5
1092		-5390.0	511.5
	S94	-5410.0	386.5
1094		-5430.0	511.5
1095		-5450.0	386.5
1096		-5470.0	511.5
1097		-5490.0	386.5
1098		-5510.0	511.5
1099		-5530.0	386.5
1100	S87	-5550.0	511.5

			· P****
pad No	pad name	Х	Υ
1101	S86	-5570.0	386.5
1102	S85	-5590.0	511.5
1103	S84	-5610.0	386.5
1104		-5630.0	511.5
1105		-5650.0	386.5
1106		-5670.0	511.5
1107		-5690.0	386.5
1108		-5710.0	511.5
1109		-5730.0	386.5
1110		-5750.0	511.5
1111		-5770.0	386.5
1112		-5790.0	511.5
1113		-5810.0	386.5
1114		-5830.0	511.5
1115		-5850.0	386.5
1116		-5870.0	511.5
1117		-5890.0	386.5
1118		-5910.0	511.5
1119		-5930.0	386.5
1120		-5950.0	511.5
1120		-5970.0	386.5
1122		-5990.0	511.5
1122		-6010.0	386.5
1123		-6030.0	511.5
1124		-6050.0	386.5
1125		-6070.0	511.5
1120		-6090.0	386.5
1127		-6110.0	511.5
1120		-6130.0	386.5
1130		-6150.0	511.5
1130		-6170.0	386.5
1131			511.5
1132		-6190.0	
		-6210.0	386.5
1134 1135		-6230.0	511.5
		-6250.0	386.5 511.5
1136		-6270.0	
1137		-6290.0	386.5
1138		-6310.0	511.5
1139		-6330.0	386.5
1140		-6350.0	511.5
1141		-6370.0	386.5
1142		-6390.0	511.5
1143		-6410.0	386.5
1144		-6430.0	511.5
1145		-6450.0	386.5
1146		-6470.0	511.5
1147		-6490.0	386.5
1148		-6510.0	511.5
1149		-6530.0	386.5
1150	S37	-6550.0	511.5

pad No	pad name	Х	Υ
1151		-6570.0	386.5
1152		-6590.0	511.5
1153		-6610.0	386.5
1154		-6630.0	511.5
1155		-6650.0	386.5
1156		-6670.0	511.5
1157		-6690.0	386.5
1158		-6710.0	511.5
1159		-6730.0	386.5
1160		-6750.0	511.5
1160			
		-6770.0	386.5
1162		-6790.0	511.5
1163		-6810.0	386.5
1164		-6830.0	511.5
1165		-6850.0	386.5
1166		-6870.0	511.5
1167		-6890.0	386.5
1168		-6910.0	511.5
1169		-6930.0	386.5
1170		-6950.0	511.5
1171		-6970.0	386.5
1172		-6990.0	511.5
1173		-7010.0	386.5
1174		-7030.0	511.5
1175		-7050.0	386.5
1176		-7070.0	511.5
1177		-7090.0	386.5
1178		-7110.0	511.5
1179		-7130.0	386.5
1180		-7150.0	511.5
1181		-7170.0	386.5
1182		-7190.0	511.5
1183		-7210.0	386.5
1184		-7230.0	511.5
1185		-7250.0	386.5
1186		-7270.0	511.5
	TESTO35	-7290.0	386.5
		-7350.0	511.5
	VGLDMY3	-7370.0	386.5
	G320	-7390.0	511.5
	G318	-7410.0	386.5
1192	G316	-7430.0	511.5
	G314	-7450.0	386.5
	G312	-7470.0	511.5
	G310	-7490.0	386.5
	G308	-7510.0	511.5
1197	G306	-7530.0	386.5
	G304	-7550.0	511.5
	G302	-7570.0	386.5
1200	G300	-7590.0	511.5

			- p,
pad No	pad name	Χ	Υ
1201	G298	-7610.0	386.5
1202	G296	-7630.0	511.5
1203	G294	-7650.0	386.5
1204	G292	-7670.0	511.5
	G290	-7690.0	386.5
1206	G288	-7710.0	511.5
1207	G286	-7730.0	386.5
1208	G284	-7750.0	511.5
1209	G282	-7770.0	386.5
1210	G280	-7790.0	511.5
1211	G278	-7810.0	386.5
1212	G276	-7830.0	511.5
1213	G274	-7850.0	386.5
1214	G272	-7870.0	511.5
1215	G270	-7890.0	386.5
1216	G268	-7910.0	511.5
1217	G266	-7930.0	386.5
1218	G264	-7950.0	511.5
1219	G262	-7970.0	386.5
1220	G260	-7990.0	511.5
1221	G258	-8010.0	386.5
1222	G256	-8030.0	511.5
1223	G254	-8050.0	386.5
1224	G252	-8070.0	511.5
1225	G250	-8090.0	386.5
1226	G248	-8110.0	511.5
1227	G246	-8130.0	386.5
1228	G244	-8150.0	511.5
	G242	-8170.0	386.5
1230	G240	-8190.0	511.5
	G238	-8210.0	386.5
1232	G236	-8230.0	511.5
1233	G234	-8250.0	386.5
1234	G232	-8270.0	511.5
	G230	-8290.0	386.5
	G228	-8310.0	511.5
	G226	-8330.0	386.5
	G224	-8350.0	511.5
	G222	-8370.0	386.5
	G220	-8390.0	511.5
1241		-8410.0	386.5
	G216	-8430.0	511.5
	G214	-8450.0	386.5
	G212	-8470.0	511.5
	G210	-8490.0	386.5
	G208	-8510.0	511.5
1247		-8530.0	386.5
	G204	-8550.0	511.5
	G202	-8570.0	386.5
1250	G200	-8590.0	511.5

		2005.11	.30 revo.1
pad No	pad name	Х	Υ
1251	G198	-8610.0	386.5
1252	G196	-8630.0	511.5
1253	G194	-8650.0	386.5
1254	G192	-8670.0	511.5
1255	G190	-8690.0	386.5
1256	G188	-8710.0	511.5
1257	G186	-8730.0	386.5
1258	G184	-8750.0	511.5
1259	G182	-8770.0	386.5
1260	G180	-8790.0	511.5
1261	G178	-8810.0	386.5
1262	G176	-8830.0	511.5
1263	G174	-8850.0	386.5
1264	G172	-8870.0	511.5
1265	G170	-8890.0	386.5
1266	G168	-8910.0	511.5
1267	G166	-8930.0	386.5
1268	G164	-8950.0	511.5
1269	G162	-8970.0	386.5
1270	G160	-8990.0	511.5
1271	G158	-9010.0	386.5
1272	G156	-9030.0	511.5
1273	G154	-9050.0	386.5
1274	G152	-9070.0	511.5
	G150	-9090.0	386.5
	G148	-9110.0	511.5
	G146	-9130.0	386.5
		-9150.0	511.5
	G142	-9170.0	386.5
	G140	-9190.0	511.5
	G138	-9210.0	386.5
	G136	-9230.0	511.5
	G134	-9250.0	386.5
	G132	-9270.0	511.5
	G130	-9290.0	386.5
	G128	-9310.0	511.5
	G126	-9330.0	386.5
		-9350.0	511.5
		-9370.0	386.5
		-9390.0	511.5
1291	G118	-9410.0	386.5
1292	G116	-9430.0	511.5
	G114	-9450.0	386.5
	G112	-9470.0	511.5
	G110	-9490.0	386.5
	G108	-9510.0	511.5
	G106	-9530.0	386.5
	G104	-9550.0	511.5
	G102	-9570.0	386.5
1300	G100	-9590.0	511.5

2005.11.30 rev0.1

R61505U Pad Coordinate (Unit:μm)

	o Pau Coordina		•
pad No	pad name	Х	Υ
1301	G98	-9610.0	386.5
1302	G96	-9630.0	511.5
1303	G94	-9650.0	386.5
1304	G92	-9670.0	511.5
1305	G90	-9690.0	386.5
1306	G88	-9710.0	511.5
1307	G86	-9730.0	386.5
1308	G84	-9750.0	511.5
1309	G82	-9770.0	386.5
1310	G80	-9790.0	511.5
1311	G78	-9810.0	386.5
1312	G76	-9830.0	511.5
1313	G74	-9850.0	386.5
1314	G72	-9870.0	511.5
1315	G70	-9890.0	386.5
1316	G68	-9910.0	511.5
1317	G66	-9930.0	386.5
1318	G64	-9950.0	511.5
1319	G62	-9970.0	386.5
1320		-9990.0	511.5
1321		-10010.0	386.5
1322		-10030.0	511.5
1323		-10050.0	386.5
1324		-10070.0	511.5
1325		-10090.0	386.5
1326		-10110.0	511.5
1327		-10130.0	386.5
1328		-10150.0	511.5
1329		-10170.0	386.5
1330		-10190.0	511.5
1331		-10210.0	386.5
1332		-10230.0	511.5
1333		-10250.0	386.5
1334		-10270.0	511.5
1335		-10290.0	386.5
1336		-10310.0	511.5
1337		-10330.0	386.5
1338		-10350.0	511.5
1339		-10370.0	386.5
1340		-10390.0	511.5
1341		-10410.0	386.5
1342		-10430.0	511.5
1343		-10450.0	386.5
1344		-10470.0	511.5
1345		-10490.0	386.5
1346		-10510.0	511.5
1347		-10530.0	386.5
1348		-10550.0	511.5
1349		-10570.0	386.5
1350	VGLDMY4	-10570.0	511.5
1000	1.0EDIVIT	10000.0	311.0

pad No	pad name	Χ	Υ
1351	DUMMYR9	-10610.0	386.5
1352	DUMMYR10	-10630.0	511.5
1353	TESTO37	-10650.0	386.5
1354	TESTO38	-10670.0	511.5

R61505U Pad Coordinate (Unit:μm)

2005.11.30 rev0.1

Alignment mark	X	Υ
1-a	-10613.0	-468.0
1-b	10613.0	-468.0

BUMP arrangement

Figure 2

GRAM address map

Table 15 GRAM address and display position on the panel (SS = 0, BGR = 0)

				_				_		_	_	_		_			г -				т —	1		1		
S/G	pin	S1	S2	S3	84	S5	S6	S7	88	68	S10	S11	S12		8208	S710	S711	S712	S713	S714	S715	S716	S717	S718	S719	S720
GS=0	GS=1	W	D[17	:01	W	D[17	:01	w	D[17	:01	W	D[17:	:01		W	D[17	:01	w	D[17:	:01	w	D[17	:01	WI	D[17:	:01
G1	G320		0000	-		0000			0000			0000				000E	-		000E	_	1	000E			000E	-
G2	G319		0010			0010			0010			0010				001E			001E		1	001E			001E	
G3	G318		0020			0020			0020			0020				002E			002E			002E			002E	
G4	G317		0030		h	0030	1	h	0030	12		0030				003E		h	003E	D	h	003E	E	h(003E	F
G5	G316	h	0040	0	h	0040	1	h	0040	12	h	0040	3		h(004E	:C	h	004E	D	h	004E	Ε	h(004E	F
G6	G315	h	0050	0	h	0050	1	h	0050	12	h	0050	3		h(005E	C	h	005E	D	h	005E	E	h(005E	F
G7	G314	h	0060	0	h	0060	1	h	0060	12	h	0060	3		h(006E	C	h	006E	D	h	006E	Ε	h(006E	F
G8	G313	h	0070	0	h	0070	1	h	0070	2	h	0070	3		h(007E	C	h	007E	D	h	007E	E	h(007E	F
G9	G312	h	0080	0	h	0080	1	h	0080	12	h	0080	3		h(008E	C.	h	008E	D	h	008E	Ε	h(008E	F
G10	G311	h	0090	0	h	0090	1	h	0090	12	h	0090	3		h(009E	C	h	009E	D	h	009E	Ε	h(009E	F
G11	G310	h	00A0	00	h	00A0	11	h	00A0)2	h	00A0	3		h(00AE	C	h(00AE	D	h	00AE	Ε	h(00AE	:F
G12	G309	h	00B0	00	h	00B0	1	h	00B0)2	h	00B0	3		h()0BE	C	h(00BE	D	h	00BE	Ε	h(00BE	F
G13	G308	h	h00C00 h00D00 h00E00		h	00C0)1	h	00C0)2	h	00C0	3		h(OCE	С	h(OOCE	D	h	00CE	E	hC	OCE	:F
G14	G307	h	00D0	00	h	00D0)1	h	00D0)2	h	00D0	3		h()ODE	С	h(00DE	D	h	00DE	E	hC	00DE	:F
G15	G306	h	h00E00 h00F00		h	00E0)1	h	00E0)2	h	00E0	3		h(0EE	C	h(OOEE	D	h	00EE	E	h(00EE	:F
G16	G305	h			h	00F0	1	h	00F0)2	h	00F0	3		h(0FE	:C	h(OOFE	D	h	00FE	Έ	h(00FE	:F
G17	G304	h	h00F00		h	0100	1	h	0100	2	h	0100	3		h()10E	С	h	010E	D	h	010E	E	h()10E	F
G18	G303	h	0110	0	h	0110	1	h	0110	12	h	0110	3		h()11E	C	h	011E	D	h	011E	E	h()11E	:F
G19	G302	h	0120	0	h	0120	1	h	0120	2	h	0120	3		h()12E	C	h	012E	D	h	012E	E	h()12E	F
G20	G301	h	0130	0	h	0130	1	h	0130	12	h	0130	3		h()13E	:C	h(013E	D	h	013E	E	h()13E	F.
:	:		:			:			:			:		:		:			:			:			:	
G305	G16	h	1300	0	h	1300	1	h	1300	2	h	1300	3		h′	130E	C	h'	130E	D	h	130E	E	h′	130E	F
G306	G15	h	1310	0	h	1310	1	h	1310	2	h	1310	3		h′	131E	C	h'	131E	D	h	131E	E	h′	131E	F_
G307	G14	h	1320	0	h	1320	1	h	1320	12	h	1320	3		h′	132E	C	h'	132E	D	h	132E	E	h′	132E	F_
G308	G13	h	1330	0	h	1330	1	h	1330	12	h	1330	3		h′	133E	C	h [.]	133E	D	h	133E	E	h'	133E	.F
G309	G12		1340			1340			1340			1340				134E	_		134E	_	.	134E			134E	
G310	G11		1350			1350			1350			1350				135E			135E		1	135E			135E	
G311	G10		1360			1360			1360			1360				136E			136E		1	136E			136E	
G312	G9		1370			1370			1370			1370				137E	_		137E			137E			137E	
G313	G8		1380			1380			1380			1380				138E	_		138E		1	138E			138E	
G314	G7		1390			1390			1390			1390				139E			139E		1	139E			139E	
G315	G6		13A0			13A0			13A0			13A0				I3AE			13AE		1	13AE			13AE	
G316	G5	-	13B0	_		13B0			13B0		_	13B0	_			13BE			13BE		1	13BE			13BE	
G317	G4		13C0			13C0			13C0			13C0				3CE			13CE			13CE			13CE	
G318	G3		13D0			13D0			13D0			13D0				3DE			13DE		1	13DE			13DE	
G319	G2		13E0			13E0			13E0			13E0				13EE			13EE		1	13EE			13EE	
G320	G1	h	13F0	JU	h	13F0	T .	h	13F0	12	h	13F0	ა		n'	13FE	:C	n'	13FE	U	h	13FE	E	n'	13FE	.F

Table 16 GRAM address and display position on the panel (SS = 1, BGR = 1)

S/G pin Result	## WD[17:0] ## NOODEF ## NOODEF
G1 G320 h00000 h00001 h00002 h00003	h000EF h001EF h002EF h003EF h004EF h005EF h006EF h007EF h008EF h009EF
G1 G320 h00000 h00001 h00002 h00003 h000EC h000ED h000EE G2 G319 h00100 h00101 h00102 h00103 h001EC h001ED h001EE G3 G318 h00200 h00201 h00202 h00203 h002EC h002ED h002EE G4 G317 h00300 h00301 h00302 h00303 h003EC h003ED h003ED h003EE G5 G316 h00400 h00401 h00402 h00403 h004EC h004ED h004EE G6 G315 h00500 h00501 h00502 h00503 h005EC h005ED h005EE G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h0080	h001EF h002EF h003EF h004EF h005EF h006EF h007EF h008EF h009EF
G3 G318 h00200 h00201 h00202 h00203 h002EC h002ED h002EE G4 G317 h00300 h00301 h00302 h00303 h003EC h003ED h003EE G5 G316 h00400 h00401 h00402 h00403 h004EC h004ED h004EE G6 G315 h00500 h00501 h00502 h00503 h005EC h005ED h005EE G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE <t< td=""><td>h002EF h003EF h004EF h005EF h006EF h007EF h008EF h009EF h00AEF</td></t<>	h002EF h003EF h004EF h005EF h006EF h007EF h008EF h009EF h00AEF
G4 G317 h00300 h00301 h00302 h00303 h003EC h003ED h003EE G5 G316 h00400 h00401 h00402 h00403 h004EC h004ED h004EE G6 G315 h00500 h00501 h00502 h00503 h005EC h005ED h005EE G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h004EC h00AED h00AEE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h003EF h004EF h005EF h006EF h007EF h008EF h009EF
G5 G316 h00400 h00401 h00402 h00403 h004EC h004ED h004EE G6 G315 h00500 h00501 h00502 h00503 h005EC h005ED h005EE G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h004EF h005EF h006EF h007EF h008EF h009EF h00AEF
G6 G315 h00500 h00501 h00502 h00503 h005EC h005ED h005EE G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h005EF h006EF h007EF h008EF h009EF h00AEF
G7 G314 h00600 h00601 h00602 h00603 h006EC h006ED h006EE G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h006EF h007EF h008EF h009EF h00AEF
G8 G313 h00700 h00701 h00702 h00703 h007EC h007ED h007EE G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h007EF h008EF h009EF h00AEF
G9 G312 h00800 h00801 h00802 h00803 h008EC h008ED h008EE G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h008EF h009EF h00AEF
G10 G311 h00900 h00901 h00902 h00903 h009EC h009ED h009EE G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h009EF h00AEF
G11 G310 h00A00 h00A01 h00A02 h00A03 h00AEC h00AED h00AEE	h00AEF
	1
G12 G309 h00B00 h00B01 h00B02 h00B03 h00BEC h00BED h00BEE	h00BEF
	+
G13 G308 h00C00 h00C01 h00C02 h00C03 h00CEC h00CED h00CEE	h00CEF
G14 G307 h00D00 h00D01 h00D02 h00D03 h00DEC h00DED h00DEE	h00DEF
G15 G306 h00E00 h00E01 h00E02 h00E03 h00EEC h00EED h00EEE	h00EEF
G16 G305 h00F00 h00F01 h00F02 h00F03 h00FEC h00FED h00FEE	h00FEF
G17 G304 h01000 h01001 h01002 h01003 h010EC h010ED h010EE	h010EF
G18 G303 h01100 h01101 h01102 h01103 h011EC h011ED h011EE	h011EF
G19 G302 h01200 h01201 h01202 h01203 h012EC h012ED h012EE	h012EF
G20 G301 h01300 h01301 h01302 h01303 h013EC h013ED h013EE	h013EF
	:
G305 G16 h13000 h13001 h13002 h13003 h130EC h130ED h130EE	h130EF
G306 G15 h13100 h13101 h13102 h13103 h131EC h131ED h131EE	h131EF
G307 G14 h13200 h13201 h13202 h13203 h132EC h132ED h132EE	h132EF
G308 G13 h13300 h13301 h13302 h13303 h133EC h133ED h133EE G309 G12 h13400 h13401 h13402 h13403 h134EC h134ED h134EE	h133EF h134EF
G310 G11 h13500 h13501 h13502 h13503 h135EC h135ED h135EE	h135EF
G311 G10 h13600 h13601 h13602 h13603 h136EC h136ED h136EE	h136EF
G312 G9 h13700 h13701 h13702 h13703 h137EC h137ED h137EE	h137EF
G313 G8 h13800 h13801 h13802 h13803 h138EC h138ED h138EE	h138EF
G314 G7 h13900 h13901 h13902 h13903 h139EC h139ED h139EE	h139EF
G315 G6 h13A00 h13A01 h13A02 h13A03 h13AEC h13AED h13AEE	h13AEF
G316 G5 h13B00 h13B01 h13B02 h13B03 h13BEC h13BED h13BEE	h13BEF
G317 G4 h13C00 h13C01 h13C02 h13C03 h13CEC h13CED h13CEE	h13CEF
G318 G3 h13D00 h13D01 h13D02 h13D03 h13DEC h13DED h13DEE	h13DEF
G319 G2 h13E00 h13E01 h13E02 h13E03 h13EEC h13EED h13EEE	h13EEF
G320 G1 h13F00 h13F01 h13F02 h13F03 h13FEC h13FED h13FEE	h13FEF

Instruction

Outline

The R61505U adopts 18-bit bus architecture in order to interface to high-performance microcomputer in high speed. The R61505U starts internal processing after storing control information of externally sent data (16, 8, 1 bit(s)) in the instruction register (IR) and the data register (DR). Since the internal operation of the R61505U is controlled by the signals sent from the microcomputer, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 \sim IB0) are called instruction. When accessing the R61505U's internal RAM, data is processed in units of 18 bits. The following are the kinds of instruction of the R61505U.

- 1. Specify index
- 2. Display control
- 3. Power management control
- 4. Set internal GRAM address
- 5. Transfer data to and from the internal GRAM
- 6. γ-correction
- 7. Window address control
- 8. Panel Display Control

Normally, the instruction to write data is used the most often. The internal GRAM address is updated automatically as data is written to the internal GRAM, which, in combination with the window address function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer. The R61505U writes instructions consecutively by executing the instruction within the cycle when it is written (instruction execution time: 0 cycle).

Instruction Data Format

As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different according to the interface format. Make sure to transfer the instruction bits according to the format of the selected interface.

The following are detail descriptions of instruction bits (IB15-0). Note that the instruction bits IB[15:0] in the following figures are transferred according to the format of the selected interface.

Index (IR)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	*	*	*	*	*	*	*	*	ID [7]	ID [6]	ID [5]	ID [4]	ID [3]	ID [2]	ID [1]	ID [0]

The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed using a binary number from "0000_0000" to "1111_1111". The access to the register and instruction bits in it is prohibited unless the index is specified in the index register.

Display control

Device code read (R00h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1

The device code "1505"H is read out when reading out this register forcibly.

Driver Output Control (R01h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SS: Sets the shift direction of output from the source driver.

When SS = "0", the source driver output shift from S1 to S720.

When SS = "1", the source driver output shift from S720 to S1.

The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 \sim S720.

When SS = "0" and BGR = "0", RGB dots are assigned one to one from S1 to S720.

When SS = "1" and BGR = "1", RGB dots are assigned one to one from S720 to S1.

When changing the SS and BGR bits, RAM data must be rewritten.

SM: Controls the scan mode in combination with GS setting. See "Scan mode setting".

LCD Driving Wave Control (R02h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	1	BC0	EOR	0	0	0	0	0	0	0	NW0
Defa	ult value	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0

NW0: When BC0=1, NW bit sets number of line, N, as alternating cycle of line inversion. Line inversion is operated every N+1 line cycle. NW bit can be set to 1 or 2.

BC0: Selects the liquid crystal drive waveform VCOM. See "Line Inversion AC Drive" for details.

BC = 0: frame inversion waveform is selected.

BC = 1: line inversion waveform is selected when EOR = 1.

In either liquid crystal drive method; the polarity inversion is halted in blank period (back and front porch periods).

EOR: Enables liquid-crystal line-inversion drive when EOR = 1 and BC0 = 1

Entry Mode (R03h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	TRIR EG	DFM	0	BGR	0	0	HWM	0	ORG	0	I/D [1]	I/D [0]	AM	0	0	0	
Defaul	t value	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	

The entry mode register includes instruction bits for setting how to write data from the microcomputer to the internal GRAM of the R61505U.

AM: Sets either horizontal or vertical direction in updating the address counter automatically as the R61505U writes data to the internal GRAM.

AM = "0", sets the horizontal direction.

AM = "1", sets the vertical direction.

When making a window address area, the data is written only within the area in the direction determined by I/D1-0, AM bits.

I/D[1:0]: Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is written to the GRAM. The I/D[0] bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The I/D[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM.

ORG: Moves the origin address according to the ID setting when a window address area is made. This function is enabled when writing data within the window address area using high-speed RAM write function. Also see Figure 3 and Figure 4.

ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area.

ORG = 1: The origin address "h00000" is moved according to the I/D[1:0] setting.

Notes: 1. When ORG = 1, only the origin address "h00000" can be set in the RAM address set registers (R20h, R21h).

2. In RAM read operation, make sure to set ORG = 0.

HWM: The R61505U writes data in high speed with low power consumption by setting HWM = 1. The data to be written within the window address area is buffered in order to write the data in units of horizontal lines. This can minimize the number of RAM access and the power consumption required in data write operation.

When HWM = 1, make sure to set AM = 0 (horizontal direction) and write the data in each horizontal line of the window address area at a time. If the data is not enough to rewrite the horizontal line of the window address area, the GRAM data in that line is not overwritten.

Notes: 1. The R61505U requires no dummy write operation in high-speed write operation.

2. When terminating RAM data write operation in the middle of the line and executing another instruction, the data in the buffer is cleared.

3. When switching from high-speed RAM write operation to index write operation, wait at least 2 normal-write cycle periods (2 t_{cycw} periods).

BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.

BGR = 0: Write data in the order of RGB to the GRAM.

BGR = 1: Reverse the order from RGB to BGR in writing data to the GRAM.

BGR = 0

D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В5	B4	В3	B2	B1	В0

BGR = 1

D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
В5	B4	В3	B2	B1	В0	G5	G4	G3	G2	G1	G0	R5	R4	R3	R2	R1	R0	

DFM: In combination with the TRIREG setting, sets the format to develop 16-/8-bit data to 18-bit data when using either 16-bit or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16-bit or 8-bit interface.

TRIREG: Selects the format to transfer data bits via 16-bit or 8-bit interface.

In 8-bit interface operation,

TRIREG = 0: 16-bit RAM data is transferred in two transfers.

TRIREG = 1: 18-bit RAM data is transferred in three transfers.

In 16-bit bus interface operation,

TRIREG = 0: 16-bit RAM data is transferred in one transfer.

TRIREG = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRIREG = 0 when not transferring data via 16-bit or 8-bit interface. Also, set TRIREG = 0 during read operation.

Figure 3 Automatic address update (ORG = 0, AM, ID)

Note: When writing data within the window address area with ORG = 0, any address within the window address area can be designated as the starting point of RAM write operation.

Figure 4 Automatic address update (ORG = 1, AM, ID)

- Notes: 1. When ORG = 1, make sure to set the address "h00000" in the RAM address set registers (R210h, R21h). Setting other addresses is inhibited.
 - 2. When ORG = 1, the starting point of writing data within the window address area can be set at either corner of the window address area ("S" in circle in the above figure).

Resizing Control (R04h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	RCV [1]	RCV [0]	0	0	RCH [1]	RCH [0]	0	0	RSZ [1]	RSZ [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RSZ[1:0]: Sets the resizing factor. When the RSZ bits are set for resizing, the R61505U writes the data according to the resizing factor so that the original image is displayed in horizontal and vertical dimensions contracted according to the factor. See "Resizing function".

RCH[1:0]: Sets the number of pixels made as the remainder in horizontal direction when resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

RCV[1:0]: Sets the number of pixels made as the remainder in vertical direction when resizing a picture. By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

Table 17 Resizing factor (RSR)

RSZ [1:0]	Resizing Scale
2'h0	No resizing (x1)
2'h1	x 1/2
2'h2	Setting inhibited
2'h3	x 1/4

Table 18 Remainder Pixels in Horizontal Direction (RCH)

RCH [1:0]	Number of remainder Pixels in Horizontal Direction
2'h0	0 pixel
2'h1	1 pixel
2'h2	2 pixels
2'h3	3 pixels

Table 19 Remainder Pixels in Vertical Direction (RCV)

RCV [1:0]	Number of remainder Pixels in Vertical Direction
2'h0	0 pixel
2'h1	1 pixel
2'h2	2 pixels
2'h3	3 pixels

Note: 1 pixel = 1RGB

Note:

1 pixel = 1RGB

Display Control 1 (R07h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	PTDE [1]	PTDE [0]	0	0	0	BASE E	0	VON	GON	DTE	COL	0	D [1]	D [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

D[1:0]: A graphics display is turned on when writing D1 = "1", and is turned off when writing D1 = "0". When writing D1 = "0", the graphics display data is retained in the internal GRAM and the R61505U displays the data when writing D1 = "1". When D1 = "0", i.e. while no display is shown on the panel, all source outputs becomes the GND level to reduce charging/discharging current, which is generated within the LCD while driving liquid crystal with AC voltage.

When the display is turned off by setting D1-0 = 2'b01, the R61505U continues internal display operation. When the display is turned off by setting D1-0 = 2'b00, the R61505U's internal display operation is halted completely. In combination with the GON setting, the D[1:0] setting controls display ON/OFF. For details, see "Instruction Setting".

Table 20 Source output level and display operation

D[1:0]	BASEE	Source Output (S1-720)	FMARK signal	Internal Operation
2'h0	*	GND	Halt	Halt
2'h1	*	GND	Operation	Operation
2'h2	*	Non-lit display	Operation	Operation
2'h3	0	Non-lit display	Operation	Operation
2113	1	Base-image display	Operation	Operation

Notes: 1: The data write operation from the microcomputer is not affected by the D[1:0] setting.

- 2: The PTS bits set the source output level for "Non-lit display".
- 3: The LCD drive level during non-lit display period is determined by NDL setting.

COL: When COL = 1, 30 grayscale amplifiers other than V0 and V30 halt to display using less power. When setting 8-color display mode, follow the sequence of 8-color display mode setting.

Table 21

COL	Operating amplifier	Display color
0	32	262,144
1	2	8

Note: When COL = 1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted.

GON, DTE: The combination of GON and DTE settings set the output level form gate lines ($G1 \sim G320$). When GON = 0, the VCOM output level becomes the GND level.

Table 22

APE	GON	DTE	G1~G320
0	*	*	VGL (= GND)
	0	0	VGH
1	0	1	VGH
ı	1	0	VGL
	1	1	VGH/VGL

VON: Controls VCOMH, VCOML, VCOM amplitude signal output.

Table 23

APE	AP[1:0]	VON	VCOM output
0	*	*	GND
	0	0	GND
1	0	1	Setting disabled
'	1 ~ 3	0	GND
	1 ~ 3	1	VCOMH/VCOML

BASEE: Base image display enable bit.

BASEE = 0: No base image is displayed. The R61505U drives liquid crystal with non-lit display level or drives only partial image display areas.

BASEE = 1: A base image is displayed on the screen.

The D[1:0] setting has precedence over the BASEE setting.

PTDE[1:0]: PTDE[0] is the display enable bit of partial image 1. PTDE[1] is the display enable bit of partial image 2. When PTDE1/0 = 0, the partial image is turned off and only base image is displayed on the screen. When PTDE1/0 = 1, the partial image is displayed on the screen. In this case, turn off the base image by setting BASEE = 0.

Display Control 2 (R08h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	FP [3]	FP [2]	FP [1]	FP [0]	0	0	0	0	BP [3]	BP [2]	BP [1]	BP [0]
Defaul	t value	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0

FP [3:0]: Sets the number of lines for a front porch period (a blank period following the end of display).

BP [3:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of display).

In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNC signal and the display operation starts after the back porch period. A blank period will start after a front porch (FP) period and it will continue until next VSYNC input is detected.

Note to Setting BP and FP

Set the BP and FP bits as follows in respective operation modes.

Table 24 BP and FP Settings

Internal clock operation mode	BP ≥ 2 lines	FP ≥ 2 lines	FP + BP ≤ 16 lines
RGB interface operation	$BP \geq 2 \text{ lines}$	$FP \geq 2 \ lines$	FP + BP ≤ 16 lines
VSYNC interface operation	$BP \geq 2 \ lines$	FP ≥ 2 lines	FP + BP = 16 lines

Table 25 Front and Back Porch period (Line periods)

FP[3:0] BP[3:0] Front and Back Porch period (Line periods)

4'h0	Setting inhibited
4'h1	Setting inhibited
4'h2	2 lines
4'h3	3 lines
4'h4	4 lines
4'h5	5 lines
4'h6	6 lines
4'h7	7 lines
4'h8	8 lines
4'h9	9 lines
4'hA	10 lines
4'hB	11 lines
4'hC	12 lines
4'hD	13 lines
4'hE	14 lines
4'hF	Setting inhibited

Figure 5 Front and Back Porch periods

Display Control 3 (R09h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	PTS [2]	PTS [1]	PTS [0]	0	0	PTG [1]	PTG [0]	ISC [3]	ISC [2]	ISC [1]	ISC [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ISC [3:0]: Set the scan cycle when PTG[1:0] selects interval scan in non-display area drive period. The scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle.

Table 26

ISC[3:0]	Scan cycle	Time for interval when (fFLM) = 60Hz		
4'h0	Setting disabled	-		
4'h1	3 frames	50ms		
4'h2	5 frames	84ms		
4'h3	7 frames	117ms		
4'h4	9 frames	150ms		
4'h5	11 frames	184ms		
4'h6	13 frames	217ms		
4'h7	15 frames	251ms		

ISC[3:0]	Scan cycle	Time for interval when (fFLM) = 60Hz
4'h8	17 frames	284ms
4'h9	19 frames	317ms
4'hA	21 frames	351ms
4'hB	23 frames	384ms
4'hC	25 frames	418ms
4'hD	27 frames	451ms
4'hE	29 frames	484ms
4'hF	31 frames	518ms

PTG[1:0]: Sets the scan mode in non-display area. The scan mode selected by PTG[1:0] bits is applied in the non-display area when the base image is turned off and the non-display area other than the first and second partial display areas.

Table 27

PTG[1]	PTG[0]	Scan mode in non- display area	Source output level in non-display area	VCOM output
0	0	Normal scan	PTS[2:0] setting	VCOMH/VCOML amplitude
0	1	Setting disabled	-	-
1	0	Interval scan	PTS[2:0] setting	VCOMH/VCOML amplitude
1	1	Setting disabled	-	-

Note: Select frame-inversion AC drive when interval scan is selected.

PTS[2:0]: Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V31 are halted and the step-up clock frequency becomes half the normal frequency in non-display drive period in order to reduce power consumption.

Table 28 Source output level and voltage generating operation in non-display drive period

PTS[2:0]	Source output lev	vel .	Grayscale amplifier	Step-up clock frequency		
F 13[2.0]	Positive polarity	Negative polarity	in operation	Step-up clock frequency		
3'h0	V31	V0	V0 to V31	Register setting (DC0, DC1)		
3'h1	Setting inhibited	Setting inhibited	-	-		
3'h2	GND	GND	V0 to V31	Register setting (DC0, DC1)		
3'h3	Hi-Z	Hi-Z	V0 to V31	Register setting (DC0, DC1)		
3'h4	V31	V0	V0 and V31	1/2 the frequency set by DC0, DC1		
3'h5	Setting inhibited	Setting inhibited	-	-		
3'h6	GND	GND	V0 and V31	1/2 the frequency set by DC0, DC1		
3'h7	Hi-Z	Hi-Z	V0 and V31	1/2 the frequency set by DC0, DC1		

Notes: 1. The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period.

2. The gate output level in non-display drive period is controlled by the PTG setting (off-scan mode).

Display Control 4 (R0Ah)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	_
W	1	0	0	0	0	0	0	0	0	0	0	0	0	FMAR KOE	FMI [2]	FMI [1]	FMI [0]	
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ĺ

FMI[2:0]: Sets the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

FMARKOE: When FMARKOE = 1, the R61505U starts outputting FMARK signal from the FMARK pin in the output interval set by FMI[2:0] bits. See "FMARK" for details.

Table 29

FMI[2]	FMI[2] FMI[1] FMI[0]		Output interval			
0	0 0 0		1 frame			
0	0	1	2 frames			
0	1	1	4 frames			
1 0		1	6 frames			
Other se	ettings		Setting disabled			

External Display Interface Control 1 (R0Ch)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	ENC [2]	ENC [1]	ENC [0]	0	0	0	RM	0	0	DM [1]	DM [0]	0	0	RIM [1]	RIM [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RIM[1:0]: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM[1:0] bits before starting display operation via RGB interface. Do not change the setting while the R61505U performs display operation.

Table 30 RGB interface operation

RIM[1:0]	RGB Interface operation	Colors
2'h0	18-bit RGB interface (1 transfer/pixel) via DB17-0	262,144
2'h1	16-bit RGB interface (1 transfer/pixel) via DB17-13 and DB11-1	65,536
2'h2	6-bit RGB interface (3 transfers/pixel) via DB17-12	262,144
2'h3	Setting inhibited	-

Notes: 1: Instruction bits are set via system interface.

2: Transfer the RGB dot data one by one in synchronization with DOTCLK in 6-bit RGB interface operation.

DM[1:0]: Selects the interface for the display operation. The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation mode and the VSYNC interface operation mode is prohibited.

Table 31 Display Interface

DM[1:0]	Display Interface
2'h0	Internal clock operations
2'h1	RGB interface
2'h2	VSYNC interface
2'h3	Setting inhibited

RM: Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface.

Table 32 RAM Access Interface

RM	RAM Access Interface
0	System interface/VSYNC interface
1	RGB interface

ENC[2:0]: Sets the RAM write cycle via RGB interface.

Table 25 RAM Write Cycle

ENC[2:0]	RAM Write Cycle (frame periods)						
3'h0	1 frame						
3'h1	2 frames						
3'h2	3 frames						
3'h3	4 frames						
3'h4	5 frames						
3'h5	6 frames						
3'h6	7 frames						
3'h7	8 frames						

Frame Marker Position (R0Dh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	FMP [8]	FMP [7]	FMP [6]	FMP [5]	FMP [4]	FMP [3]	FMP [2]	FMP [1]	FMP [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FMP[8:0]: Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9'h000, a high-active pulse FMARK is outputted at the start of back porch period for 1H period (IOVCC-IOGND amplitude signal). FMARK can be used as the trigger signal for frame synchronous write operation. See "FMARK" for details.

Make sure the setting restriction $9^{\circ}h000 \le FMP \le BP+NL+FP$.

Table 33

FMP[8:0]	FMARK output position
9"h000	0 th line
9'h001	1 st line
9"h002	2 nd line
:	:
9"h14E	334 th line
9'h14F	335 th line
9"h150~1FF	Setting disabled

VCOM Low Power Control (R0Eh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	VEM [0]	0	0	0	0
Default	value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VEM [0]: VCOM equalize function control bit.

When VEM [0]="1", VCO connect to GND when switching to VCOMH to VCOML (VCOMH \rightarrow GND \rightarrow VCOML).

Adjust VCOM equalize period by setting VQWI[2:0] (R93h) after setting VEM[0]=1.

Less power is consumed when VCOM equalize function is used compared with normal VCOM drive. Check image quality and effectiveness of the function.

Make sure that VCI<VCOMH and GND>VCOML.

Table 34

VEM[0]	Operation
1'h0	Normal VCOM drive
1'h1	Equalize VCOML (VCOMH→VCOML)

Note: This function is disabled when RGB interface is selected.

External Display Interface Control 2 (R0Fh)

_	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DPL: Sets the signal polarity of DOTCLK pin.

DPL = 0: input data on the rising edge of DOTCLK DPL = 1: input data on the falling edge of DOTCLK

EPL: Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB17-0 when ENABLE = "0" and disables data write operation when ENABLE = "1".

EPL = 1: writes data DB17-0 when ENABLE = "1" and disables data write operation when ENABLE = "0".

HSPL: Sets the signal polarity of HSYNC pin.

HSPL = 0: low active HSPL = 1: high active

VSPL: Sets the signal polarity of VSYNC pin.

VSPL = 0: low active VSPL = 1: high active

Power control

Power Control 1 (R10h)

R/	W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
'	W	1	0	0	0	SAP	BT [3]	BT [2]	BT [1]	BT [0]	APE	0	AP [1]	AP [0]	0	DSTB	SLP	0
D	efaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SLP: When SLP = 1, the R61505U enters the sleep mode. In sleep mode, the internal display operation except RC oscillation is halted to reduce power consumption. No change to the GRAM data and instruction setting is accepted and he GRAM data and the instruction setting are maintained in sleep mode.

DSTB: When DSTB = 1, the R61505U enters the deep standby mode. In deep standby mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the R61505U enters the deep standby mode, and they must be reset after exiting deep standby mode.

AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP1-0 = 2'h0 to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

Table 35 Constant current in amplifier in LCD power supply, grayscale voltage generating circuits

AP[1:0]	LCD power supply circuits	Grayscale voltage generating circuit
2'h0	Halt operation	Halt operation
2'h1	0.5	0.62
2'h2	0.75	0.71
2'h3	1	1

Note: In this table, the constant current in operational amplifiers is the ratio to the constant current when AP[1:0] is set to 2'h3.

APE: Liquid crystal power supply enable bit. Set APE = 1 and follow the sequence when starting up the liquid crystal power supply.

Table 36

APE	Liquid crystal power supply circuit	Grayscale voltage generating circuit
0	Halt	Halt
1	Operate	Operate

BT[3:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

SAP: The grayscale voltage generating circuit is halted by setting SAP = 0. Grayscale voltages are generated when SAP = 1. When starting the operation of LCD power supply circuit in Power ON operation and so on, make sure SAP = 0. Set SAP = 1, after starting up the LCD power supply circuit.

Table 37 Step up factor and output voltage level

BT[3:0]	DDVDH	VCL	VGH	VGL	Capacitor Connection Pins (see note 4)
4'h0			DDVDH x 3 [x 6]	-(VCI1 + DDVDH x 2) [x -5]	C23± may be omitted.
4'h1			DDVDH x 4	–(DDVDH x 2) [x –4]	
4'h2			[x 8]	–(VCI1 + DDVDH) [x –3]	
4'h3				-(VCI1 + DDVDH x 2) [x -5]	
4'h4	VCI1 x 2 [x 2]		VCI1 + DDVDH x 3 [x 7]	–(DDVDH x 2) [x –4]	
4'h5				-(VCI1 + DDVDH) [x -3]	
4'h6			DDVDH x 3	–(DDVDH x 2) [x –4]	C23± may be omitted.
4'h7			[x 6]	-(VCI1 + DDVDH) [x -3]	C23± may be omitted.
4'h8		-VCI1 [x –1]	DDVDH x 3 [x 9]	-(VCI1 + DDVDH x 2) [x -7]	C23± may be omitted.
4'h9			DDVDH x 4	–(DDVDH x 2) [x –6]	
4'hA			[x 12]	–(VCI1 + DDVDH) [x –4]	
4'hB	VCI1 x 3			-(VCI1 + DDVDH x 2) [x -7]	
4'hC	[x 3]		VCI1 + DDVDH x 3 [x 10]	–(DDVDH x 2) [x –6]	
4'hD				–(VCI1 + DDVDH) [x –4]	
4'hE			DDVDH x 3	–(DDVDH x 2) [x –6]	C23± may be omitted.
4'hF			[x 9]	–(VCI1 + DDVDH) [x –4]	C23± may be omitted.

Notes: 1. The step-up factor from VCI1 is shown in the brackets [].

- 2. Connect capacitors where required when using DDVDH, VGH, VGL and VCL voltages.
- 3. Set the following voltages within the respective ranges: $\mbox{DDVDH} = 6.0 \mbox{V (max.)}$

VGH = 20.0V (max.)

VGL = -13.5V (max.)

VCL=-3.0V(max.)

4. Connect capacitors according to "Specifications of Power-supply Circuit External Elements". In this case, comments should be preceded.

Power Control 2 (R11h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	DC1 [2]	DC1 [1]	DC1 [0]	0	DC0 [2]	DC0 [1]	DC0 [0]	0	VC [2]	VC [1]	VC [0]
Defaul	t value	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0

Table 38 step-up frequency (Step-up Circuit 1)

DC0[2:0]	Step-up circuit 1: step-up frequency (fDCI	DC1)
----------	--	------

3'h0	fosc
3'h1	fosc / 2
3'h2	fosc / 4
3'h3	fosc / 8
3'h4	fosc / 16
3'h5	Setting inhibited
3'h6	Halt Step-up circuit 1
3'h7	Setting inhibited

Note: Make sure the DC0, DC1 setting restriction: $f_{DCDC1} \ge f_{DCDC2}$.

Table 39 step-up frequency (Step-up Circuit 2)

DC1[2:0]	Step-up circuit 2: step-up frequency (f _{DCDC2})
3'h0	fosc / 16
3'h1	fosc / 32
3'h2	fosc / 64
3'h3	fosc / 128
3'h4	fosc / 256
3'h5	Setting inhibited
3'h6	Halt Step-up circuit 2
3'h7	Setting inhibited

Note: Make sure the DC0, DC1 setting restriction: $f_{DCDC1} \ge f_{DCDC2}$.

 Table 40
 VCIOUT output level

VC[2:0]	VCIOUT (Reference Voltage) (VCI1 Voltage)
3'h0	0.94 x VCILVL
3'h1	0.89 x VCILVL
3'h2	Setting inhibited
3'h3	Setting inhibited
3'h4	0.76 x VCILVL
3'h5	Setting inhibited
3'h6	Setting inhibited
3'h7	1.00 x VCILVL

Power Control 3 (R12h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ıŢ	W	1	0	0	0	0	0	0	0	VCM	VRE	0	PSON	PON	VRH	VRH	VRH	VRH
	vv	1	U	U	U	U	U	U	U	R[0]	G1R	U	PSON	PON	[3]	[2]	[1]	[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
										-								

VRH[3:0]: Sets the factor to generate VREG1OUT from VCILVL.

Table 41 VREG1OUT

	VREG1OUT Voltage	VREG1OUT Voltage
VRH	(External Reference Electric potential; VCILVL)	(Internal Reference Electric Potential; VCIR)
4'h0∼ 4'h3	Halt (Hiz)	Halt (Hiz)
4'h4~ 4'h7	Setting inhibited	Setting inhibited
4'h8	VCILVL×1.60	2.5V×1.60 = 4.00V
4'h9	VCILVL×1.65	2.5V×1.65 = 4.13V
4'hA	VCILVL×1.70	$2.5V \times 1.70 = 4.25V$
4'hB	VCILVL×1.75	$2.5V \times 1.75 = 4.38V$
4'hC	VCILVL×1.80	$2.5V \times 1.80 = 4.50V$
4'hD	VCILVL×1.85	$2.5V \times 1.85 = 4.63V$
4'hE	VCILVL×1.90	$2.5V \times 1.90 = 4.75V$
4'hF	Setting inhibited	Setting inhibited

Note: Make sure the VC and VRH setting restrictions: $VREG1OUT \le (DDVDH-0.5)V$.

PON: Controls the operation to generate VLOUT3. In setting the PON bit, follows the power-supply startup sequence.

PON = 0: Halts the step-up operation to generate VLOUT3.

PON = 1: Starts the step-up operation to generate VLOUT3.

PSON: Power supply ON bit. When turning on the power supply, set PSE = 1 first and then set PSON = 1 to start internal power supply operation.

VREG1R: Set reference voltage to generate VREG1OUT.

Table 42

VREG1R	reference voltage for VREG1OUT
0 (Default Value)	VCILVL (External)
1	VCIR (Internal Reference Voltage))

VCMR[0]: Selects either external resistance (VCOMR pin) or internal electronic volume (VCM[4:0]) to set the electrical potential of VCOMH. The internal electronic volume can be set by VCM1 and VCM2 bits

Table 43

VCMR[0]	VCOMH Electrical Potential setting
0	VCOMR
1	Internal electronic volume

Power Control 4 (R13h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	0	0	0	VDV [4]	VDV [3]	VDV [2]	VDV [1]	VDV [0]	0	0	0	0	0	0	0	0	
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

VDV[4:0]: Set VCOM alternating amplitude in the range of VREG1OUTx0.70 to VREG1OUTx1.24.

Table 44 VDV Setting

Table 44	VDV Setting
VDV[4:0]	VCOM Amplitude
5'h0	VREG1OUT×0.70
5'h1	VREG1OUT×0.72
5'h2	VREG1OUT×0.74
5'h3	VREG1OUT×0.76
5'h4	VREG1OUT×0.78
5'h5	VREG1OUT×0.80
5'h6	VREG1OUT×0.82
5'h7	VREG1OUT×0.84
5'h8	VREG1OUT×0.86
5'h9	VREG1OUT×0.88
5'hA	VREG1OUT×0.90
5'hB	VREG1OUT×0.92
5'hC	VREG1OUT×0.94
5'hD	VREG1OUT×0.96
5'hE	VREG1OUT×0.98
5'hF	VREG10UT×1.00

VDV[4:0]	VCOM Amplitude
5'h10	VREG1OUT×0.94
5'h11	VREG1OUT×0.96
5'h12	VREG10UT×0.98
5'h13	VREG10UT×1.00
5'h14	VREG10UT×1.02
5'h15	VREG10UT×1.04
5'h16	VREG10UT×1.06
5'h17	VREG10UT×1.08
5'h18	VREG10UT×1.10
5'h19	VREG10UT×1.12
5'h1A	VREG10UT×1.14
5'h1B	VREG10UT×1.16
5'h1C	VREG10UT×1.18
5'h1D	VREG10UT×1.20
5'h1E	VREG10UT×1.22
5'h1F	VREG10UT×1.24

Note: Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less.

Power Control 5 (R17h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PSE
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PSE: Power supply startup enable bit.

- PSE = 1: The R61505U's power supply is started by setting PSON when PSE =1. When completing the power supply generating operation, PSE is set to 0.
- PSE = 0: Power supply sequencer is reset. When halting the operating power supply sequencer, set PSE = 0. When starting up power supply without power supply sequencer, set PSE = 0. The power sequencer enables the register settings sequentially at the designated timing and order.

RAM access instruction

RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 20	W	1	0	0	0	0	0	0	0	0	AD [7]	AD [6]	AD [5]	AD [4]	AD [3]	AD [2]	AD [1]	AD [0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 21	W	1	0	0	0	0	0	0	0	AD [16]	AD [15]	AD [14]	AD [13]	AD [12]	AD [11]	AD [10]	AD [9]	AD [8]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AD[16:0]: A GRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as the R61505U writes data to the internal GRAM so that data can be written consecutively without resetting the address in the AC. The address is not automatically updated when reading data from the internal GRAM.

Note 1: In RGB interface operation (RM = "1"), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.

Note 2: In internal clock operation and VSYNC interface operation (RM = "0"), the address AD16-0 is set when executing the instruction.

Table 45 GRAM Address setting range

AD[16:0]	GRAM Data Setting
17'h00000 – 17'h000EF	Bitmap data on the first line
17'h00100 – 17'h001EF	Bitmap data on the second line
17'h00200 – 17'h002EF	Bitmap data on the third line
17'h00300 – 17'h003EF	Bitmap data on the fourth line
17'h00400 – 17'h004EF	Bitmap data on the fifth line
:	:
17'h13600 - 17'h13CEF	Bitmap data on the 317 th line
17'h13700 – 17'h13DEF	Bitmap data on the 318 th line
17'h13800 – 17'h13EEF	Bitmap data on the 319 th line
17'h13900 – 17'h13FEF	Bitmap data on the 320 th line

Write Data to GRAM (R22h)

R/W	RS	
W	1	RAM write data WD[17:0] is transferred via different data bus in different interface operation.
RGB interface		RAM write data WD[17:0] is transferred via different data bus in different interface operation.

WD[17:0]: The R61505U develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation.

The GRAM data represents the grayscale level. The R61505U automatically updates the address according to AM and I/D[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces do not conflict one another.

Table 46 GRAM data and corresponding LCD grayscale level (REV =1)

GRAM	Grayscale lev	/el	1	GRAM	GRAM Grayscale le
ata RGB	Negative	Positive	-	data RGB	data RGB Negative
6'h00	V31	V0	6'h2	0	0 V15
6'h01	(V30+V31)/2	(V0+V1)/2	6'h21		(V14+V15)/2
6'h02	V30	V1	6'h22		V14
6'h03	(V29+V30)/2	(V1+V2)/2	6'h23		(V13+V14)/2
6'h04	V29	V2	6'h24		V13
6'h05	(V28+V29)/2	(V2+V3)/2	6'h25		(V12+V13)/2
6'h06	V28	V3	6'h26		V12
6'h07	(V27+V28)/2	(V3+V4)/2	6'h27		(V11+V12)/2
6'h08	V27	V4	6'h28		V11
6'h09	(V26+V27)/2	(V4+V5)/2	6'h29		(V10+V11)/2
6'h0A	V26	V5	6'h2A		V10
6'h0B	(V25+V26)/2	(V5+V6)/2	6'h2B		(V9+V10)/2
6'h0C	V25	V6	6'h2C		V9
6'h0D	(V24+V25)/2	(V6+V7)/2	6'h2D		(V8+V9)/2
6'h0E	V24	V7	6'h2E		V8
6'h0F	(V23+V24)/2	(V7+V8)/2	6'h2F		(V7+V8)/2
6'h10	V23	V8	6'h30		V7
6'h11	(V22+V23)/2	(V8+V9)/2	6'h31		(V6+V7)/2
6'h12	V22	V9	6'h32		V6
6'h13	(V21+V22)/2	(V9+V10)/2	6'h33		(V5+V6)/2
6'h14	V21	V10	6'h34		V5
6'h15	(V20+V21)/2	(V10+V11)/2	6'h35		(V4+V5)/2
6'h16	V20	V11	6'h36		V4
6'h17	(V19+V20)/2	(V11+V12)/2	6'h37		(V3+V4)/2
6'h18	V19	V12	6'h38	Ì	V3
6'h19	(V18+V19)/2	(V12+V13)/2	6'h39		(V2+V3)/2
6'h1A	V18	V13	6'h3A	1	V2
6'h1B	(V17+V18)/2	(V13+V14)/2	6'h3B		(V1+V2)/2
6'h1C	V17	V14	6'h3C		V1
6'h1D	(V16+V17)/2	(V14+V15)/2	6'h3D		(V0+V1)/2
6'h1E	V16	V15	6'h3E		(V1+2V0)/3
6'h1F	(V15+V16)/2	(V15+V16)/2	6'h3F		V0

Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).

Table 47 GRAM data and corresponding LCD grayscale level (REV =0)

GRAM	Grayscale level								
data RGB	Negative	Positive							
6'h00	V0	V31							
6'h01	(V0+V1)/2	(V30+V31)/2							
6'h02	V1	V30							
6'h03	(V1+V2)/2	(V29+V30)/2							
6'h04	V2	V29							
6'h05	(V2+V3)/2	(V28+V29)/2							
6'h06	V3	V28							
6'h07	(V3+V4)/2	(V27+V28)/2							
6'h08	V4	V27							
6'h09	(V4+V5)/2	(V26+V27)/2							
6'h0A	V5	V26							
6'h0B	(V5+V6)/2	(V25+V26)/2							
6'h0C	V6	V25							
6'h0D	(V6+V7)/2	(V24+V25)/2							
6'h0E	V7	V24							
6'h0F	(V7+V8)/2	(V23+V24)/2							
6'h10	V8	V23							
6'h11	(V8+V9)/2	(V22+V23)/2							
6'h12	V9	V22							
6'h13	(V9+V10)/2	(V21+V22)/2							
6'h14	V10	V21							
6'h15	(V10+V11)/2	(V20+V21)/2							
6'h16	V11	V20							
6'h17	(V11+V12)/2	(V19+V20)/2							
6'h18	V12	V19							
6'h19	(V12+V13)/2	(V18+V19)/2							
6'h1A	V13	V18							
6'h1B	(V13+V14)/2	(V17+V18)/2							
6'h1C	V14	V17							
6'h1D	(V14+V15)/2	(V16+V17)/2							
6'h1E	V15	V16							
6'h1F	(V15+V16)/2	(V15+V16)/2							

Grayscale level								
Negative	Positive							
V16	V15							
(V16+V17)/2	(V14+V15)/2							
V17	V14							
(V17+V18)/2	(V13+V14)/2							
V18	V13							
(V18+V19)/2	(V12+V13)/2							
V19	V12							
(V19+V20)/2	(V11+V12)/2							
V20	V11							
(V20+V21)/2	(V10+V11)/2							
V21	V10							
(V21+V22)/2	(V9+V10)/2							
V22	V9							
(V22+V23)/2	(V8+V9)/2							
V23	V8							
(V23+V24)/2	(V7+V8)/2							
V24	V7							
(V24+V25)/2	(V6+V7)/2							
V25	V6							
(V25+V26)/2	(V5+V6)/2							
V26	V5							
(V26+V27)/2	(V4+V5)/2							
V27	V4							
(V27+V28)/2	(V3+V4)/2							
V28	V3							
(V28+V29)/2	(V2+V3)/2							
V29	V2							
(V29+V30)/2	(V1+V2)/2							
V30	V1							
(V30+V31)/2	(V0+V1)/2							
(V30+2V31)/3	(V1+2V0)/3							
V31	V0							
	Negative V16 (V16+V17)/2 V17 (V17+V18)/2 V18 (V18+V19)/2 V19 (V19+V20)/2 V20 (V20+V21)/2 V21 (V21+V22)/2 V22 (V22+V23)/2 V23 (V23+V24)/2 V24 (V24+V25)/2 V25 (V25+V26)/2 V26 (V26+V27)/2 V27 (V27+V28)/2 V28 (V29+V30)/2 V29 (V30+V31)/3							

Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).

Read Data from GRAM (R22h)

R/W	RS	
R	1	RAM read data RD[17:0] is transferred via different data bus in different interface operation.

RD[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus in different interface operation.

When the R61505U reads data from the GRAM to the microcomputer, the first word read immediately after RAM address set is executed is taken in the internal read-data latch and invalid data is sent to the data bus. Valid data is sent to the data bus when the R61505U reads out the second and subsequent words.

When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.

Note: This register is not available in RGB interface operation.

Figure 6 GRAM Read Sequence

NVM(NON-VOLATILE MEMORY) write control instruction

NVM read data (R28h), VCOM High Voltage (R29h, R2Ah)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R28	W	1	0	0	0	0	0	0	0	0	0	0	0	0	UID [3]	UID [2]	UID [1]	UID [0]
	Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R29	W	1	0	0	0	0	0	0	0	0	0	0	0	VCM1 [4]	VCM1 [3]	VCM1 [2]	VCM1 [1]	VCM1 [0]
	Defa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R2A	W	1	0	0	0	0	0	0	0	0	VCMS EL	0	0	VCM2 [4]	VCM2 [3]	VCM2 [2]	VCM2 [1]	VCM2 [0]
	Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

UID[3:0]: The data bits UID[3:0] are written to the designated address in NVM and the written data can be read out from NVM by instruction setting (CALB) to this register. UID[3:0] can be used to write and read user identification code in NVM.

The setting value in UID[3:0] bits is enabled when not reading out the setting value from NVM via CALB setting.

VCM1[4:0]: Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in VCM1[4:0], make sure to set VCMSEL = 0.

When using the data written in NVM for setting the VCOMH level, the data bits VCM1[4:0] are written to the designated address in NVM and the written data can be read out from NVM by instruction setting (CALB) to this register. When the data bits VCM2[4:0] are written in NVM before writing the data bits VCM1[4:0] to NVM, the VCM1[4:0] setting value written in NVM cannot be used for setting the VCOMH level.

Table 48

VCM1[4:0]	VCOMH voltage
5'h00	VREG1OUT x 0.69
5'h01	VREG1OUT x 0.70
5'h02	VREG1OUT x 0.71
5'h03	VREG1OUT x 0.72
5'h04	VREG1OUT x 0.73
5'h05	VREG1OUT x 0.74
5'h06	VREG1OUT x 0.75
5'h07	VREG1OUT x 0.76
5'h08	VREG1OUT x 0.77
5'h09	VREG1OUT x 0.78
5'h0A	VREG1OUT x 0.79
5'h0B	VREG1OUT x 0.80
5'h0C	VREG1OUT x 0.81
5'h0D	VREG1OUT x 0.82
5'h0E	VREG1OUT x 0.83
5'h0F	VREG1OUT x 0.84

VCM1[4:0]	VCOMH voltage
5'h10	VREG1OUT x 0.85
5'h11	VREG1OUT x 0.86
5'h12	VREG1OUT x 0.87
5'h13	VREG1OUT x 0.88
5'h14	VREG1OUT x 0.89
5'h15	VREG1OUT x 0.90
5'h16	VREG1OUT x 0.91
5'h17	VREG1OUT x 0.92
5'h18	VREG1OUT x 0.93
5'h19	VREG1OUT x 0.94
5'h1A	VREG1OUT x 0.95
5'h1B	VREG1OUT x 0.96
5'h1C	VREG1OUT x 0.97
5'h1D	VREG1OUT x 0.98
5'h1E	VREG1OUT x 0.99
5'h1F	VREG1OUT x 1.00

Notes: 1. Make sure the VCOMH level is set between 3.0V to (DDVDH-0.5)V.

2. The above setting is enabled when selecting internal electronic volume for setting the VCOMH level.

VCM2[4:0]: Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in VCM2[4:0], make sure to set VCMSEL = 1. The function of VCM2[4:0] instruction is the same as that of VCM1[4:0].

Write the setting value in VCM2[4:0] bits and VCMSEL = 1 in the designated addresses of NVM, when reading out the setting value written in NVM for VCOMH level setting and the data is already written in the designated address of VCM1[4:0] in the NVM. The VCM2[4:0] data bits written in NVM can be read out via CALB setting for setting the VCOMH level.

Table 49

VCM2[4:0]	VCOMH voltage
5'h00	VREG1OUT x 0.69
5'h01	VREG1OUT x 0.70
5'h02	VREG10UT x 0.71
5'h03	VREG10UT x 0.72
5'h04	VREG1OUT x 0.73
5'h05	VREG1OUT x 0.74
5'h06	VREG1OUT x 0.75
5'h07	VREG1OUT x 0.76
5'h08	VREG10UT x 0.77
5'h09	VREG1OUT x 0.78
5'h0A	VREG1OUT x 0.79
5'h0B	VREG1OUT x 0.80
5'h0C	VREG1OUT x 0.81
5'h0D	VREG1OUT x 0.82
5'h0E	VREG1OUT x 0.83
5'h0F	VREG1OUT x 0.84

VCM2[4:0]	VCOMH voltage
V CIVIZ[4.0]	VOOMIT VOITage
5'h10	VREG1OUT x 0.85
5'h11	VREG1OUT x 0.86
5'h12	VREG1OUT x 0.87
5'h13	VREG1OUT x 0.88
5'h14	VREG1OUT x 0.89
5'h15	VREG1OUT x 0.90
5'h16	VREG1OUT x 0.91
5'h17	VREG1OUT x 0.92
5'h18	VREG1OUT x 0.93
5'h19	VREG1OUT x 0.94
5'h1A	VREG1OUT x 0.95
5'h1B	VREG1OUT x 0.96
5'h1C	VREG1OUT x 0.97
5'h1D	VREG1OUT x 0.98
5'h1E	VREG1OUT x 0.99
5'h1F	VREG1OUT x 1.00

Notes: 1. Make sure the VCOMH level is set between 3.0V to (DDVDH-0.5)V.

2. The above setting is enabled when selecting internal electronic volume for setting the VCOMH level.

VCMSEL: When VCMSEL = 0, VCM1[4:0] is selected. When VCMSEL = 1, VCM2[4:0] is selected.

γ Control

γ Control 1 ~ 14 (R30h to R3Dh)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 30	W	1	0	0	0	0	0	P0KP 1[2]	P0KP 1[1]	P0KP 1[0]	0	0	0	0	0	P0KP 0[2]	P0KP 0[1]	P0KP 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 31	W	1	0	0	0	0	0	P0KP 3[2]	P0KP 3[1]	P0KP 3[0]	0	0	0	0	0	P0KP 2[2]	P0KP 2[1]	P0KP 2[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 32	W	1	0	0	0	0	0	P0KP 5[2]	P0KP 5[1]	P0KP 5[0]	0	0	0	0	0	P0KP 4[2]	P0KP 4[1]	P0KP 4[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 33	W	1	0	0	0	0	0	0	P0FP 1[1]	P0FP 1[0]	0	0	0	0	0	0	P0FP 0[1]	P0FP 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 34	W	1	0	0	0	0	0	0	P0FP 3[1]	P0FP 3[0]	0	0	0	0	0	0	P0FP 2[1]	P0FP 2[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 35	W	1	0	0	0	0	0	P0RP 1[2]	P0RP 1[1]	P0RP 1[0]	0	0	0	0	0	P0RP 0[2]	P0RP 0[1]	P0RP 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 36	W	1	0	0	0	V0RP 1[4]	V0RP 1[3]	V0RP 1[2]	V0RP 1[1]	V0RP 1[0]	0	0	0	V0RP 0[4]	V0RP 0[3]	V0RP 0[2]	V0RP 0[1]	V0RP 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 37	W	1	0	0	0	0	0	P0K N1[2]	P0K N1[1]	P0K N1[0]	0	0	0	0	0	P0K N0[2]	P0K N0[1]	P0K N0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 38	W	1	0	0	0	0	0	P0K N3[2]	P0K N3[1]	P0K N3[0]	0	0	0	0	0	P0K N2[2]	P0K N2[1]	P0K N2[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 39	W	1	0	0	0	0	0	P0K N5[2]	P0K N5[1]	P0K N5[0]	0	0	0	0	0	P0K N4[2]	P0K N4[1]	P0K N4[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

γ Control 1 ~ 14 (R30h to R3Dh) (continued)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 3A	W	1	0	0	0	0	0	0	P0FN 1[1]	P0FN 1[0]	0	0	0	0	0	0	P0FN 0[1]	P0FN 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 3B	W	1	0	0	0	0	0	0	P0FN 3[1]	P0FN 3[0]	0	0	0	0	0	0	P0FN 2[1]	P0FN 2[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 3C	W	1	0	0	0	0	0	P0RN 1[2]	P0RN 1[1]	P0RN 1[0]	0	0	0	0	0	P0RN 0[2]	P0RN 0[1]	P0RN 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 3D	W	1	0	0	0	V0R N1[4]	V0R N1[3]	V0R N1[2]	V0R N1[1]	V0R N1[0]	0	0	0	V0R N0[4]	V0R N0[3]	V0R N0[2]	V0R N0[1]	V0R N0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P0KP5-0[2:0]:	γ fine-adjustment register for positive polarity
P0FP3-0[1:0]:	γ fine-adjustment register for positive polarity
P0RP1-0[2:0]:	γ gradient-adjustment register for positive polarity
V0RP1-0[4:0]:	γ amplitude-adjustment register for positive polarity
P0KN5-0[2:0]:	γ fine-adjustment register for negative polarity
P0FN3-0[1:0]:	γ fine-adjustment register for negative polarity
P0RN1-0[2:0]:	γ gradient-adjustment register for negative polarity
V0RN1-0[4:0]:	γ amplitude-adjustment register for negative polarity

Window address control instruction

Window Horizontal RAM Address Start/End (R50h/ R51h)

Window Vertical RAM Address Start/End (R52h/R53h)

_	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 50	W	1	0	0	0	0	0	0	0	0	HSA [7]	HSA [6]	HSA [5]	HSA [4]	HSA [3]	HSA [2]	HSA [1]	HSA [0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 51	W	1	0	0	0	0	0	0	0	0	HEA [7]	HEA [6]	HEA [5]	HEA [4]	HEA [3]	HEA [2]	HEA [1]	HEA [0]
	Defaul	t value	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1
R 52	W	1	0	0	0	0	0	0	0	VSA [8]	VSA [7]	VSA [6]	VSA [5]	VSA [4]	VSA [3]	VSA [2]	VSA [1]	VSA [0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 53	W	1	0	0	0	0	0	0	0	VEA [8]	VEA [7]	VEA [6]	VEA [5]	VEA [4]	VEA [3]	VEA [2]	VEA [1]	VEA [0]
	Defaul	t value	0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

HSA[7:0], HEA[7:0]: HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that $8^{\circ}h00 \le HSA \le 8^{\circ}hEF$ and $8^{\circ}h04 \le HEA - HSA$.

VSA[8:0], VEA[8:0]: VSA[8:0] and VEA[8:0] are the start and end addresses of the window address area in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that 9'h $000 \le VSA < VEA \le 9$ 'h13F.

Figure 7 GRAM Address Map and Window Address Area

Base image display control instruction

Driver Output Control (R60h),

Base Image Display Control (R61h)

Vertical Scroll Control (R6Ah)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 60	W	1	GS	0	NL [5]	NL [4]	NL [3]	NL [2]	NL [1]	NL [0]	0	0	SCN [5]	SCN [4]	SCN [3]	SCN [2]	SCN [1]	SCN [0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 61	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 6A	W	1	0	0	0	0	0	0	0	VL [8]	VL [7]	VL [6]	VL [5]	VL [4]	VL [3]	VL [2]	VL [1]	VL [0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SCN[5:0]: Specifies the gate line where the gate driver starts scan.

NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

GS: Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the convenience of the display module configuration and the display direction.

REV: Enables the grayscale inversion of the image by setting REV = 1. This enables the R61505U to display the same image from the same set of data whether the liquid crystal panel is normally black or white. The source output level during front, back porch periods and blank periods is determined by register setting (PTS).

Table 50 GRAM Data-grayscale level inversion

REV	GRAM Data	Source Output Le	Source Output Level in Display Area							
	ONAM Data	Positive Polarity	Negative Polarity							
	18'h00000	V31	V0							
0	:	:	:							
	18'h3FFFFF	V0	V31							
	18'h00000	V0	V31							
1	:	:	:							
	18'h3FFFFF	V31	V0							

VLE: Vertical scroll display enable bit. When VLE = 1, the R61505U starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is not available in external display interface operation. In this case, make sure to set VLE = "0".

Table 51

VLE	Base image
0	Fixed
1	Enable scrolling

NDL: Sets the source output level in non-lit display area. NDL bit can keep the non-display area lit on.

Table 52

NDL	Non-display	area
	Positive	Negative
0	V31	V0
1	V0	V31

VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL[8:0]. Make sure VL[8:0] \leq 320.

Table 53

NL[5:0]	Number of Lines	NL[5:0]	Number of Lines	NL[5:0]	Number of Lines
6'h00	Setting inhibited	6'h0E	Setting inhibited	6'h1C	Setting inhibited
6'h01	Setting inhibited	6'h0F	Setting inhibited	6'h1D	240 (lines)
6'h02	Setting inhibited	6'h10	Setting inhibited	6'h1E	248
6'h03	Setting inhibited	6'h11	Setting inhibited	6'h1F	256
6'h04	Setting inhibited	6'h12	Setting inhibited	6'h20	264
6'h05	Setting inhibited	6'h13	Setting inhibited	6'h21	272
6'h06	Setting inhibited	6'h14	Setting inhibited	6'h22	280
6'h07	Setting inhibited	6'h15	176 lines	6'h23	288
6'h08	Setting inhibited	6'h16	Setting inhibited	6'h24	296
6'h09	Setting inhibited	6'h17	Setting inhibited	6'h25	304
6'h0A	Setting inhibited	6'h18	Setting inhibited	6'h26	312
6'h0B	Setting inhibited	6'h19	Setting inhibited	6'h27	320
6'h0C	Setting inhibited	6'h1A	Setting inhibited	6'h28-6'h3F	Setting inhibited
6'h0D	Setting inhibited	6'h1B	Setting inhibited		
		· -			

Table 54

	Gate Line No	(Scan start po	sition)	See note.
SCN[5:0]	SM=0		SM=1	
	GS=0	GS=1	GS=0	GS=1
6'h00	G1	G320	G1	G320
6'h01	G9	G312	G17	G304
6'h02	G17	G304	G33	G288
6'h03	G25	G296	G49	G272
6'h04	G33	G288	G65	G256
6'h05	G41	G280	G81	G240
6'h06	G49	G272	G97	G224
6'h07	G57	G264	G113	G208
6'h08	G65	G256	G129	G192
6'h09	G73	G248	G145	G176
6'h0A	G81	G240	G161	G160
6'h0B	G89	G232	G177	G144
6'h0C	G97	G224	G193	G128
6'h0D	G105	G216	G209	G112
6'h0E	G113	G208	G225	G96
6'h0F	G121	G200	G241	G80
6'h10	G129	G192	G257	G64
6'h11	G137	G184	G273	G48
6'h12	G145	G176	G289	G32
6'h13	G153	G168	G305	G16
6'h14	G161	G160	G2	G319
6'h15	G169	G152	G18	G303
6'h16	G177	G144	G34	G287
6'h17	G185	G136	G50	G271
6'h18	G193	G128	G66	G255
6'h19	G201	G120	G82	G239
6'h1A	G209	G112	G98	G223
6'h1B	G217	G104	G114	G207
6'h1C	G225	G96	G130	G191
6'h1D	G233	G88	G146	G175
6'h1E	G241	G80	G162	G159
6'h1F	G249	G72	G178	G143
6'h20	G257	G64	G194	G127
6'h21	G265	G56	G210	G111
6'h22	G273	G48	G226	G95
6'h23	G281	G40	G242	G79
6'h24	G289	G32	G258	G63
6'h25	G297	G24	G274	G47
6'h26	G305	G16	G290	G31
6'h27	G313	G8	G306	G15
6'h28-6'h3F	Setting disabled	Setting disabled	Setting disabled	Setting disabled

Note: Make sure that number of scan start position + number of scan end position is 320 lines or less.

Partial display control instruction

Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h)

Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 80	W	1	0	0	0	0	0	0	0	PTDP 0[8]	PTDP 0[7]	PTDP 0[6]	PTDP 0[5]	PTDP 0[4]	PTDP 0[3]	PTDP 0[2]	PTDP 0[1]	PTDP 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 81	W	1	0	0	0	0	0	0	0	PTSA 0[8]	PTSA 0[7]	PTSA 0[6]	PTSA 0[5]	PTSA 0[4]	PTSA 0[3]	PTSA 0[2]	PTSA 0[1]	PTSA 0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 82	W	1	0	0	0	0	0	0	0	PTE A0[8]	PTE A0[7]	PTE A0[6]	PTE A0[5]	PTE A0[4]	PTE A0[3]	PTE A0[2]	PTE A0[1]	PTE A0[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	,			•		•	•		•			•	•	•	•			
R 83	W	1	0	0	0	0	0	0	0	PTDP 1[8]	PTDP 1[7]	PTDP 1[6]	PTDP 1[5]	PTDP 1[4]	PTDP 1[3]	PTDP 1[2]	PTDP 1[1]	PTDP 1[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 84	W	1	0	0	0	0	0	0	0	PTSA 1[8]	PTSA 1[7]	PTSA 1[6]	PTSA 1[5]	PTSA 1[4]	PTSA 1[3]	PTSA 1[2]	PTSA 1[1]	PTSA 1[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 85	W	1	0	0	0	0	0	0	0	PTE A1[8]	PTE A1[7]	PTE A1[6]	PTE A1[5]	PTE A1[4]	PTE A1[3]	PTE A1[2]	PTE A1[1]	PTE A1[0]
	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTDP0[8:0]: Sets the display position of partial image 1.

PTDP1[8:0]: Sets the display position of partial image 2.

The display areas of the partial images 1 and 2 must not overlap each another. In setting, make sure that

Partial image 1 display area < Partial image 2 display area, and

Coordinates of partial image 1 display position: (PTDP0, PTDP0 + (PTEA0 – PTSA0)) Coordinates of partial image 2 display position: (PTDP1, PTDP1 + (PTEA1 – PTSA1))

If PTDP0 = "9'h000", the partial image 1 is displayed from the first line of the base image.

PTSA0[8:0] and PTEA0[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 1. In setting, make sure that PTSA0 \leq PTEA0.

PTSA1[8:0] and PTEA1[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 2. In setting, make sure that PTSA1 \leq PTEA1.

Panel interface control instruction

Panel interface control 1(R90h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	DIVI [1]	DIVI [0]	0	0	0	RTNI [4]	RTNI [3]	RTNI [2]	RTNI [1]	RTNI [0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

RTNI[4:0]: Sets 1H (line) period. This setting is enabled while the R61505U's display operation is synchronized with internal clock.

DIVI[1:0]: Sets the division ratio of the internal clock frequency. The R61505U's internal operation is synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of the reference clock for liquid crystal panel control signals is changed.

The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see "Frame-Frequency Adjustment Function". The setting in DIVI[1:0] is disabled in RGB interface operation.

Frame Frequency Calculation

Frame frequency =	fosc	[Hz]					
Frame nequency –	Clocks per line x division ratio x (line + BP + FP)	נווצן					
fosc : RC oscillation frequency							
Line: Number of lines to drive the LCD (NL bits)							
Division ratio: DIVI							
Clocks per line: RTNI							

Table 55 clocks per line (internal clock operation: 1 clock = 1 OSC)

RTNI[4:0]	Clocks per Line	RTNI[4:0]	Clocks per Line	RTNI[4:0]	Clocks per Line
5'h00-5'h0F	Setting inhibited	5'h15	21 clocks	5'h1B	27 clocks
5'h10	16 clocks	5'h16	22 clocks	5'h1C	28 clocks
5'h11	17 clocks	5'h17	23 clocks	5'h1D	29 clocks
5'h12	18 clocks	5'h18	24 clocks	5'h1E	30 clocks
5'h13	19 clocks	5'h19	25 clocks	5'h1F	31 clocks
5'h14	20 clocks	5'h1A	26 clocks		

Table 56 Division ratio of the internal clock

DIVI[1:0]	Division Ratio	Internal operation clock unit	
2'h0	1/1	1 OSC	_
2'h1	1/2	2 OSC	
2'h2	1/4	4 OSC	_
2'h3	1/8	8 OSC	_

Panel interface control 2(R92h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	NOW I[2]	NOW I[1]	NOW I[0]	0	0	0	0	0	0	0	0
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation synchronizing with the internal clock.

Table 57

NOWI[2:0]	Non-overlap period	NOWI[2:0]	Non-overlap period
3'h0	0 (internal clock *see note)	3'h4	4 (internal clock *see note)
3'h1	1	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

Panel interface control 3(R93h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MCP I[2]	MCP I[1]	MCP I[0]	
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l

MCPI[2:0]: Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation synchronizing with the internal clock.

Table 58

MCPI[2:0]	Source output position	MCPI[2:0]	Source output position
3'h0	0 (internal clock *see note)	3'h4	4 (internal clock)
3'h1	1	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note:

The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits. The source output position is measured from the reference point by the number of internal clock cycle.

VEQWI [2:0]: VEQWI sets VCOM equalize period. This setting is enabled when VEM[0]= 1 (R0Eh) and display operation of the R61505U is synchronized with internal clock.

VEQWI setting is enabled when RGB interface is selected.

Table 59

VEQWI[2:0]	VCOM equalize period
3'h0	0 clocks
3'h1	1 clock
3'h2	2 clock
3'h3	3 clock
3'h4	Setting disabled
3'h5	Setting disabled
3'h6	Setting disabled
3'h7	Setting disabled

Note: DIVI (R90h) sets division ratio of clock frequency.

Panel interface control 4(R95h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	0	0	0	0	0	0	DIVE [1]	DIVE [0]	0	0	RTN E[5]	RTN E[4]	RTN E[3]	RTN E[2]	RTN E[1]	RTN E[0]	
Defaul	t value	0	0	0	0	0	0	1	0	0	0	0	1	1	1	1	0	l

RTNE[5:0]: Sets RTNE[5:0] and DIVE[1:0] bits so that the number of DOTCLK calculated from the following formula becomes the number of DOTCLK which should be inputted in 1H period. The RTNE[5:0] setting is enabled in display operation via RGB interface.

DIVE[1:0] (division ratio) x RTNE[5:0] (Number of DOTCLK)

Number of DOTCLK in 1H period

DIVE[1:0]: Sets the division ratio of DOTCLK frequency. The R61505U's internal operation is synchronized with the frequency divided DOTCLK. The setting in DIVE[1:0] is enabled in RGB interface operation.

Table 60 Division ratio of DOTCLK

DIVE[1:0]	Division	Internal operation clock unit (DOTCLK)												
DIVE[1.0]	Ratio	18-bit, 1 transfer RGB interface	DOTCLK = 5 MHz	8-bit, 3 transfers RGB interface	DOTCLK = 15 MHz									
2'h0	Setting disabled	Setting disabled	-	Setting disabled	-									
2'h1	1/4	4 DOTCLKs	0.8µs	12 DOTCLKs	0.8μs									
2'h2	1/8	8 DOTCLKs	1.6µs	24 DOTCLKs	1.6µs									
2'h3	1/16	16 DOTCLKs	3.2μs	48 DOTCLKs	3.2μs									

Table 61 DOTCLK per line (1H period)

		*	
RTNE[5:0]	DOTCLK per line (1H)	RTNE[5:0]	DOTCLK per line (1H)
6'h00	Setting disabled	6'h20	32 clocks
6'h01	Setting disabled	6'h21	33 clocks
6'h02	Setting disabled	6'h22	34 clocks
6'h03	Setting disabled	6'h23	35 clocks
6'h04	Setting disabled	6'h24	36 clocks
6'h05	Setting disabled	6'h25	37 clocks
6'h06	Setting disabled	6'h26	38 clocks
6'h07	Setting disabled	6'h27	39 clocks
6'h08	Setting disabled	6'h28	40 clocks
6'h09	Setting disabled	6'h29	41 clocks
6'h0A	Setting disabled	6'h2A	42 clocks
6'h0B	Setting disabled	6'h2B	43 clocks
6'h0C	Setting disabled	6'h2C	44 clocks
6'h0D	Setting disabled	6'h2D	45 clocks
6'h0E	Setting disabled	6'h2E	46 clocks
6'h0F	Setting disabled	6'h2F	47 clocks
6'h10	16 clocks	6'h30	48 clocks
6'h11	17 clocks	6'h31	49 clocks
6'h12	18 clocks	6'h32	50 clocks
6'h13	19 clocks	6'h33	51 clocks
6'h14	20 clocks	6'h34	52 clocks
6'h15	21 clocks	6'h35	53 clocks
6'h16	22 clocks	6'h36	54 clocks
6'h17	23 clocks	6'h37	55 clocks
6'h18	24 clocks	6'h38	56 clocks
6'h19	25 clocks	6'h39	57 clocks
6'h1A	26 clocks	6'h3A	58 clocks
6'h1B	27 clocks	6'h3B	59 clocks
6'h1C	28 clocks	6'h3C	60 clocks
6'h1D	29 clocks	6'h3D	61 clocks
6'h1E	30 clocks	6'h3E	62 clocks
6'h1F	31 clocks	6'h3F	63 clocks

Panel interface control 5(R97h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	NOW E[3]	NOW E[2]	NOW E[1]	NOW E[0]	0	0	0	0	0	0	0	0
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOWE[3:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.

Table 62

NOWE[3:0]	Non-overlap period	NOWE[3:0]	Non-overlap period
4'h0	0 (clock *see note)	4'h8	8 (clocks *see note)
4'h1	1	4'h9	9
4'h2	2	4'hA	10
4'h3	3	4'hB	11
4'h4	4	4'hC	12
4'h5	5	4'hD	13
4'h6	6	4'hE	14
4'h7	7	4'hF	15

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

Panel interface control 6(R98h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MCP E[2]	MCP E[1]	MCP E[0]
Ī	Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MCPE[2:0]: Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation via RGB interface.

Table 63

MCPE[2:0)] Source output position	MCPE[2:0]	Source output position
3'h0	Setting Disabled	3'h4	4 (clocks *see note)
3'h1	1 clock	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].

NVM(NON-VOLATILE MEMORY) control

NVM access control 1 (RA0h), NVM access control 2 (RA1h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
RA0	W	1	0	0	0	0	0	0	0	0	TE	0	EOP [1]	EOP [0]	0	0	EAD [1]	EAD [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RA1	W		0	0	0	0	0	0	0	0	ED [7]	0	0	ED [4]	ED [3]	ED [2]	ED [1]	ED [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EAD[1:0]: Designates the address in NVM, where the data is written. See also description of ED7 and ED4-0 bits below.

Table 64

EAD[1:0]	Data written in NVM
2'h0	UID[3:0]
2'h1	VCM1[4:0]
2'h2	VCMSEL, VCM2[4:0]
2'h3	Setting disabled

EOP [1:0]: Internal NVM control bits to write-in data to NVM, and halt write-in operation.

Table 65

EOP[1:0]	NVM control
2'h0	Halt
2'h1	Write
2'h2	Setting disabled
2'h3	Setting disabled

TE: Enable internal NVM control bit (EOP). Follow the NVM control sequence when setting TE.

ED [7], [4:0]: The data written in the Internal NVM.

Table 66

EAD[1:0]	ED7	ED6	ED5	ED4	ED3	ED2	ED1	ED0
2'h0	0	0	0	0	UID[3]	UID[2]	UID[1]	UID[0]
2'h1	0	0	0	VCM1[4]	VCM1[3]	VCM1[2]	VCM1[1]	VCM1[0]
2'h2	VCMSEL	0	0	VCM2[4]	VCM2[3]	VCM2[2]	VCM2[1]	VCM2[0]

Calibration control (RA4h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R A4	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CALB
A	Defau		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Value																	

CALB: Instruction to read in data on NVM. When CALB=1, data written to NVM is read out to internal register. CALB sets oscillation frequency at 376kHz +/- 7% (R61505U0) or 600kHz +/- 7% (R61505U1). (IOVCC=VCC=3V, 25C).

Make sure to input CALB=1 every time after power on reset.

Inputting CALB=1 periodically is highly recommended to reduce erroneous display operation caused by noise from outside of the R61505U.

Setting disabled instruction (Inhibition RA5h ~ RFFh)

Setting is inhibited for the registers listed as follows. DO NOT ACCESS TO THESE REGISTERS.

 $R05h-R06h,\ R0Bh,\ R14h-R16h,\ R18h-R1Fh,\ R23h-R27h,\ R2Bh-R2Fh,\ R54h-R5Fh,\ R62h-R69h,\ R6Bh-R6Fh,\ R86h-R8Fh,\ R91h,\ R94h,\ R96h,\ R99h-R9Fh,\ RA5h-RAFh,\ RB*h-RF*h$

	31505U Inst	ruction																			06,10.26 Rev1.1
Upper Index	Main Category	Index	Sub Category Command	IB15	IB14	IB13	Uppe IB12	r code IB11	IB10	IB9	IB8	IB7	IB6	IB5	Lowe IB4	r code IB3	IB2	IB1	IB0	Index	Notes
=	Index	-	Index	*	*	*	*	*	*	*	*	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	-	
		00h	Device Code Read	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1		Device Code "1505"
		01h	Driver Output Control	0	0	0	0	0	SM (0)	0	SS	0	0	0	0	0	0	0	0		
		02h	LCD Drive Waveform Cotrol	0	0	0	0	0	1	BC0	EOR	0	0	0	0	0	0	0	NW0		
				TRIREG	DFM		BGR		(1)	(0) HWM	(0)	ORG	<u> </u>	ID1	ID0	AM	0	-	(0)		
		03h	Entry Mode	(0)	(0)	0	(0)	0	0	(0) RCV[1]	RCV[0]	(0)	0	(1) RCH[1]	(1) RCH[0]	(0)		0 RSZ[1]	0 RSZ[0]		
		04h	Resize Control	0	0	0	0	0	0	(0)	(0)	0	0	(0)	(0)	0	0	(0)	(0)		
		05h-06h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
		07h	Display Control 1	0	0	PTDE[1] (0)	PTDE[0] (0)	0	0	0	BASEE (0)	0	VON (0)	GON (0)	DTE (0)	COL	0	D[1] (0)	D[0]		
		08h	Display Control 2	0	0	0	0	FP[3]	FP[2] (0)	FP[1]	FP[0]	0	0	0	0	BP[3]	BP[2]	BP[1]	BP[0]		
		09h		0	0	0	0	(1)	(0) PTS[2]	(0) PTS[1]	(0) PTS[0]	0	0	PTG[1]	PTG[0]	(1) ISC[3]	(0) ISC[2]	(0) ISC[1]	(0) ISC[0]		
			Display Control 3			ļ			(0)	(0)	(0)			(0)	(0)	(0) FMARKOE	(0) FMI[2]	(0) FMI[1]	(0) FMI[0]		
		0Ah	Display Control 4	0	0	0	0	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)		
		0Bh	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
		0Ch	External Display Interface Control 1	0	ENC[2] (0)	ENC[1] (0)	ENC[0] (0)	0	0	0	RM (0)	0	0	DM[1] (0)	DM[0]	0	0	RIM[1] (0)	RIM[0] (0)		
		0Dh	Frame Marker Control	0	0	0	0	0	0	0	FMP[8]	FMP[7]	FMP[6]	FMP[5]	FMP[4]	FMP[3]	FMP[2]	FMP[1]	FMP[0]		
						-				<u> </u>	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
		0Eh	VCOM Low Power Control	0	0	0	0	0	0	0	0	0	0	0	VEM[0] VSPL	0 HSPL	0	0 EPL	0 DPL		
		0Fh	External Display Interface Control 2	0	0	0	0	0	0	0	0	0	0	0	(0)	(0)	0	(0)	(0)		
1*	Power Control	10h	Power Control 1	0	0	0	(0)	BT[3] (0)	BT[2] (0)	BT[1] (0)	BT[0] (0)	APE(0)	0	AP[1] (0)	AP[0] (0)	0	DSTB (0)	SLP (0)	0		
		11h	Power Control 2	0	0	0	0	0	DC1[2] (1)	DC1[1]	DC1[0] (0)	0	DC0[2]	DC0[1]	DC0[0] (0)	0	VC[2] (0)	VC[1] (0)	VC[0]		
		12h	Power Control 3	0	0	0	0	0	0	0	VCMR[0]	VREG1R	0	PSON	PON	VRH[3]	VRH[2]	VRH[1]	VRH[0]		
					<u> </u>	0	VDV[4]	VDV[3]	VDV[2]	VDV[1]	(0) VDV[0]	(0)	0	(0)	(0)	(0)	(0)	(0)	(0)		
		13h	Power Control 4	0 Setting	0 Setting	Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	0 Setting	Setting	0 Setting	0 Setting	Setting	0 Setting	0 Setting	0 Setting		
1		14h-16h	Setting inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	Setting inhibited	Setting inhibited	inhibited	inhibited	inhibited	inhibited		
1		17h	Power Control 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PSE (0)		
1		18h-1Fh	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
2*	RAM Access	20h	RAM Adddress Set (Horizontal)	0	0	0	0	0	0	0	0	AD[7]	AD[6]	AD[5]	AD[4]	AD[3]	AD[2]	AD[1]	AD[0]		
1		21h	RAM Adddress Set (Vertical)	0	0	0	0	0	0	0	AD[16]	(0) AD[15]	(0) AD[14]	(0) AD[13]	(0) AD[12]	(0) AD[11]	(0) AD[10]	(0) AD[9]	(0) AD[8]	1	
				U	U	!	!			!	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
1		22h	Write Data to / Read Data from GRAM	0	0					RD17-0) bits								0	0		
1		23h-27h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	<u></u>										
1		28h	NVM Data Read	0	0	0	0	0	0	0	0	0	0	0	0	UID[3] (0)	UID[2] (0)	UID[1] (0)	UID[0] (0)		
		29h	VCOM High Voltage	0	0	0	0	0	0	0	0	0	0	0	VCM1[4]	VCM1[3]	VCM1[2]	VCM1[1]	VCM1[0]		
1										!		VCMSEL			(0) VCM2[4]	(0) VCM2[3]	(0) VCM2[2]	(0) VCM2[1]	(0) VCM2[0]	1	
1		2Ah	VCOM High Voltage	0 Satting	0 Satting	0 Setting	0 Satting	0 Satting	0 Satting	0 Satting	0 Satting	(0)	0 Satting	0 Satting	(0)	(0)	(0)	(0)	(0)		
		2Bh-2Fh	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
3*	Gamma Control	30h	Gamma Control 1	0	0	0	0	0	P0KP1[2] (0)	P0KP1[1] (0)	P0KP1[0] (0)	0	0	0	0	0	P0KP0[2] (0)	P0KP0[1] (0)	P0KP0[0] (0)		
		31h	Gamma Control 2	0	0	0	0	0	P0KP3[2]	P0KP3[1]	P0KP3[0]	0	0	0	0	0	P0KP2[2]	P0KP2[1]	P0KP2[0]		
		32h	Common Combrat 2	0	0	0	0	0	(0) P0KP5[2]	(0) P0KP5[1]	(0) P0KP5[0]	0	0	0	0	0	(0) P0KP4[2]	(0) P0KP4[1]	(0) P0KP4[0]		
			Gamma Control 3		<u> </u>				(0)	(0) P0FP1[1]	(0) P0FP1[0]						(0)	(0) P0FP0[1]	(0) P0FP0[0]		
		33h	Gamma Control 4	0	0	0	0	0	0	(0)	(0)	0	0	0	0	0	0	(0)	(0)		
		34h	Gamma Control 5	0	0	0	0	0	0	P0FP3[1] (0)	P0FP3[0] (0)	0	0	0	0	0	0	P0FP2[1] (0)	P0FP2[0] (0)		
		35h	Gamma Control 6	0	0	0	0	0	P0RP1[2]	P0RP1[1]	P0RP1[0]	0	0	0	0	0	P0RP0[2]	P0RP0[1]	P0RP0[0]		
		36h	Common Combant 7	0	0	0	V0RP1[4]	V0RP1[3]	(0) V0RP1[2]	(0) V0RP1[1]	V0RP1[0]	0	0	0	V0RP0[4]	V0RP0[3]	(0) V0RP0[2]	(0) V0RP0[1]	V0RP0[0]		
			Gamma Control 7			<u> </u>	(0)	(0)	(0) P0KN1[2]	(0) P0KN1[1]	(0) P0KN1[0]	-	 		(0)	(0)	(0) P0KN0[2]	(0) P0KN0[1]	(0) P0KN0[0]		
		37h	Gamma Control 8	0	0	0	0	0	(0)	(0)	(0)	0	0	0	0	0	(0)	(0)	(0)		
		38h	Gamma Control 7	0	0	0	0	0	P0KN3[2] (0)	P0KN3[1] (0)	P0KN3[0] (0)	0	0	0	0	0	P0KN2[2] (0)	P0KN2[1] (0)	P0KN2[0] (0)		
		39h	Gamma Control 7	0	0	0	0	0	P0KN5[2]	P0KN5[1]	P0KN5[0]	0	0	0	0	0	P0KN4[2]	P0KN4[1]	P0KN4[0]		
		3Ah	Gamma Control 11	0	0	0	0	0	(0)	P0FN1[1]	(0) P0FN1[0]	0	0	0	0	0	(0)	P0FN0[1]	P0FN0[0]		
										(0) P0FN3[1]	(0) P0FN3[0]	-						(0) P0FN2[1]	(0) P0FN2[0]		
		3Bh	Gamma Control 12	0	0	0	0	0	0	(0)	(0)	0	0	0	0	0	0	(0)	(0)		
		3Ch	Gamma Control 13	0	0	0	0	0	P0RN1[2] (0)	P0RN1[1] (0)	P0RN1[0] (0)	0	0	0	0	0	P0RN0[2] (0)	P0RN0[1] (0)	P0RN0[0] (0)		
		3Dh	Gamma Control 14	0	0	0	V0RN1[4]	V0RN1[3]	V0RN1[2]	V0RN1[1]	V0RN1[0]	0	0	0	V0RN0[4]	V0RN0[3]	V0RN0[2]	V0RN0[1]	V0RN0[0]		
		3Eh-3Fh	Setting inhibited	Setting	Setting	Setting	(0) Setting	(0) Setting	Setting	(0) Setting	(0) Setting	Setting	Setting	Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting		
		3En-3Fn	Setting inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited HSA[7]	inhibited HSA[6]	inhibited HSA[5]	inhibited HSA[4]	inhibited HSA[3]	inhibited HSA[2]	inhibited HSA[1]	inhibited HSA[0]		
5*	Coordinates Control	50h	indow Horizontal RAM Address (Start Addres	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
		51h	Vindow Horizontal RAM Address (End Address	0	0	0	0	0	0	0	0	HEA[7] (1)	HEA[6] (1)	HEA[5] (1)	HEA[4] (0)	HEA[3] (1)	HEA[2] (1)	HEA[1] (1)	HEA[0] (1)		
		52h	Window Vertical RAM Address (Start Address)	0	0	0	0	0	0	0	VSA[8] (0)	VSA[7] (0)	VSA[6] (0)	VSA[5] (0)	VSA[4] (0)	VSA[3] (0)	VSA[2] (0)	VSA[1] (0)	VSA[0] (0)		
		53h	Window Vertical RAM Address (End Address)	0	0	0	0	0	0	0	VEA[8]	VEA[7]	VEA[6]	VEA[5]	VEA[4]	VEA[3]	VEA[2]	VEA[1]	VEA[0]		
				Setting	(1) Setting	(0) Setting	(0) Setting	(1) Setting	(1) Setting	(1) Setting	(1) Setting	(1) Setting	(1) Setting								
		54h-5Fh	Setting inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited		
6*	Panel Image Control	60h	Driver Output Control	GS (0)	0	NL[5] (0)	NL[4] (0)	NL[3] (0)	NL[2] (0)	NL[1] (0)	NL[0] (0)	0	0	SCN[5] (0)	SCN[4] (0)	SCN[3] (0)	SCN[2] (0)	SCN[1] (0)	SCN[0] (0)		
1		61h	Base Image Display Control	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL (0)	VLE (0)	REV (0)		
		62h-69h	Setting inhibited	Setting	Setting	Setting	Setting	Setting	Setting	Setting	l										
				inhibited	inhibited VL[8]	inhibited VL[7]	inhibited VL[6]	inhibited VL[5]	inhibited VL[4]	inhibited VL[3]	inhibited VL[2]	inhibited VL[1]	inhibited VL[0]	1							
1		6Ah	Vertical Scroll Control	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
		6Bh-6Fh	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
8*	Partial Image Control	80h	Partial Image 1 Display Position	0	0	0	0	0	0	0	PTDP0[8] (0)	PTDP0[7] (0)	PTDP0[6] (0)	PTDP0[5] (0)	PTDP0[4] (0)	PTDP0[3] (0)	PTDP0[2] (0)	PTDP0[1] (0)	PTDP0[0] (0)		
1		81h	Partial Image 1 RAM Address	0	0	0	0	0	0	0	PTSA0[8]	PTSA0[7]	PTSA0[6]	PTSA0[5]	PTSA0[4]	PTSA0[3]	PTSA0[2]	PTSA0[1]	PTSA0[0]		
			(Start Line Address) Partial Image 1 RAM Address				-			 	(0) PTEA0[8]	(0) PTEA0[7]	(0) PTEA0[6]	(0) PTEA0[5]	(0) PTEA0[4]	(0) PTEA0[3]	(0) PTEA0[2]	(0) PTEA0[1]	(0) PTEA0[0]	 	
1		82h	(End Line Address)	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		
1		83h	Partial Image 2 Display Position	0	0	0	0	0	0	0	PTDP1[8] (0)	PTDP1[7] (0)	PTDP1[6] (0)	PTDP1[5] (0)	PTDP1[4] (0)	PTDP1[3] (0)	PTDP1[2] (0)	PTDP1[1] (0)	PTDP1[0] (0)		
1		84h	Partial Image 2 RAM Address (Start Line Address)	0	0	0	0	0	0	0	PTSA1[8] (0)	PTSA1[7] (0)	PTSA1[6] (0)	PTSA1[5] (0)	PTSA1[4] (0)	PTSA1[3] (0)	PTSA1[2] (0)	PTSA1[1] (0)	PTSA1[0] (0)	Ī	
1		85h	Partial Image 2 RAM Address	0	0	0	0	0	0	0	PTEA1[8]	PTEA1[7]	PTEA1[6]	PTEA1[5]	PTEA1[4]	PTEA1[3]	PTEA1[2]	PTEA1[1]	PTEA1[0]		
1			(End Line Address)	Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	(0) Setting	1							
<u> </u>	Dec 11 : 1	86h-8Fh	Setting inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited		
9*	Panel Interface Control	90h	Panel Interface Control 1	0	0	0	0	0	0	DIVI[1] (0)	DIVI[0] (0)	0	0	0	RTNI[4] (1)	RTNI[3] (0)	RTNI[2] (0)	RTNI[1] (0)	RTNI[0] (0)	<u> </u>	
1		91h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	<u> </u>										
1		92h	Panel Interface Control 2	innibited 0	innibited 0	innibited 0	innibited 0	innibited 0	NOWI[2]	NOWI[1]	NOWI[0]	innibited 0	innibited 0	innibited 0	innibited 0	innibited 0	innibited 0	innibited 0	innibited 0		
1					.		<u> </u>		(0)	(0)	(0)		 				MCPI[2]	MCPI[1]	MCPI[0]	1	
1		93h	Panel Interface Control 3	0	0	0	0	0	VEQWI[2]	VEQWI[1]	VEQWI[0]	0	0	0	0	0	(0)	(0)	(0)		
1		94h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	<u></u>										
1		95h	Panel Interface Control 4	0	0	0	0	0	0	DIVE[1] (1)	DIVE[0] (0)	0	0	RTNE[5] (0)	RTNE[4] (1)	RTNE[3] (1)	RTNE[2] (1)	RTNE[1] (1)	RTNE[0] (0)		
1		96h	Setting inhibited	Setting	Setting	Setting	Setting	Setting	Setting	Setting											
1			_	inhibited	inhibited	inhibited	inhibited	inhibited NOWE[3]	inhibited NOWE[2]	inhibited NOWE[1]	inhibited NOWE[0]	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	1	
		97h	Panel Interface Control 5	0	0	0	0	(0)	(0)	(0)	(0)	0	0	0	0	0	0 MCDE[3]	0 MCDE[1]	0 MCDE[0]		
1		98h	Panel Interface Control 6	0	0	0	0	0	0	0	0	0	0	0	0	0	MCPE[2] (0)	MCPE[1] (0)	MCPE[0] (0)	<u></u>	
		99h-9Fh	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
A*	NVM Control	A0h	NVM Access Control 1	innibited 0	TE	innibited 0	EOP[1]	EOP[0]	innibited 0	innibited	EAD[1]	EAD[0]									
Α.Τ	John J									!		(0) ED7		(0)	(0) ED4	ED3	ED2	(0) ED1	(0) ED0	 	
1		A1h	NVM Access Control 2	0	0	0	0	0	0	0	0	(0)	0	0	(0)	(0)	(0)	(0)	(0)		
1		A2h-A3h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
1		A4h	Calibration Control	inhibited 0	inhibited 0	inhibited 0	inhibited 0	inhibited 0	inhibited 0	CALB	1										
1				Setting	Setting	Setting	Setting	Setting	Setting	(0) Setting	-										
<u> </u>		A5h-AFh	Setting inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited	inhibited		
B*-F*	Setting inhibited	B*h-F*h	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited											
				IIDICEU	IIDICEU	IIDICEU	IIDILEU	IIDITEU	IIDITEU	morteu	IIDICEU	IIDILEU	insiteu	IIDILEU	IIDILEU		IIDICEU	IIDICEU	IIDICEU		•

Reset Function

The R61505U is initialized by the RESET input. During reset period, the R61505U is in a busy state and instruction from the MPU and GRAM access are not accepted. The R61505U's internal power supply circuit unit is initialized also by the RESET input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, GRAM access and initial instruction setting are prohibited.

1. Initial state of instruction bits (default)

See the instruction list of p.91. The default value is shown in the parenthesis of each instruction bit cell.

2. RAM Data initialization

The RAM data is not automatically initialized by the RESET input. It must be initialized by software in display-off period (D1-0 = "00").

3. Output pin initial state * see Note

1.	LCD driver S1~S720	: GND
	G1~G320	: VGL (= GND)
2.	VCOM	: Halt (GND output)
3.	VCOMH	: DDVDH
4.	VCOML	: Halt (GND output)
5.	VREG1OUT	: VGS
6.	VCIOUT	: Hi-z
7.	VLOUT1 (DDVDH)	: VCI clamp
8.	VLOUT2 (VGH)	: DDVDH clamp
9.	VLOUT3 (VGL)	: GND
10.	VCL	: GND
11.	VCI1	: Hi-z
12.	FMARK	: Halt (GND output)
13.	SDO	: High level (IOVCC) when IM = "010*" (serial interface)
		: Hi-z when IM \neq "010*" (other than serial interface)
_		- saa Nata

: Hi-z

4. Initial state of input/output pins* see Note

C11+

1.

2.	C11-	: Hi-z
3.	C12+	: Hi-z
4.	C12-	: Hi-z
5.	C13+	: VCI1 (= Hi-z)
6.	C13-	: GND
7.	C21+	: DDVDH
8.	C21-	: GND
9.	C22+	: DDVDH
10.	C22-	: GND
11.	C23+	: DDVDH
12.	C23-	: GND
13.	VDD	: VDD

Note: The above mentioned initial states of output and input pins are those of when the R61505U's power supply circuit is connected as exemplified in "Connection example".

5. Note on Reset function

- (1) When a RESET input is entered into the R61505U while it is in deep standby mode, the R61505U starts up the inside logic regulator and makes a transition to the initial state. During this period, the state of the interface pins may become unstable. For this reason, do not enter a RESET input in deep standby mode.
- (2) When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to execute data transfer synchronization after reset operation.

Basic mode operation of the R61505U

The basic operation modes of the R61505U are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence.

Figure 8

Interface and data format

The R61505U supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The R61505U can select the optimum interface for the display (moving or still picture) in order to transfer data efficiently.

As external display interface, the R61505U supports RGB interface and VSYNC interface, which enables data rewrite operation without flickering the moving picture on display.

In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNC, HSYNC, and DOTCLK. In synchronization with these signals, the R61505U writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the R61505U's GRAM so that data is transferred only when rewriting the frames of moving picture and the data transfer required for moving picture display can be minimized. The window address function specifies the RAM area to write data for moving picture display, which enables displaying a moving picture and RAM data in other than the moving picture area simultaneously. To access the R61505U's internal RAM in high speed with low power consumption, use high-speed write function (HWM = 1) in RGB or VSYNC interface operation.

In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNC). The VSYNC interface enables a moving picture display via system interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization with the falling edge of VSYNC. In this case, there are restrictions in setting the frequency and the method to write data to the internal RAM.

The R61505U operates in either one of the following four modes according to the state of the display. The operation mode is set in the external display interface control register (R0Ch). When switching from one mode to another, make sure to follow the relevant sequence in setting instruction bits.

Table 67 Operation Modes

Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM)
Internal clock operation (displaying still pictures)	System interface (RM = 0)	Internal clock operation (DM1-0 = 00)
RGB interface (1) (displaying moving pictures)	RGB interface (RM = 1)	RGB interface (DM1-0 = 01)
RGB interface (2) (rewriting still pictures while displaying moving pictures)	System interface (RM = 0)	RGB interface (DM1-0 = 01)
VSYNC interface (displaying moving pictures)	System interface (RM = 0)	VSYNC interface (DM1-0 = 10)

Notes:

- 1. Instructions are set only via system interface.
- 2. The RGB and VSYNC interfaces cannot be used simultaneously.
- 3. Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface is in operation.
- 4. See the "External Display Interface" section for the sequences when switching from one mode to another.
- 5. Use high-speed write function (HWM = 1) when writing data via RGB or VSYNC interface.

Figure 9

Internal clock operation

The display operation is synchronized with signals generated from internal oscillator's clock (OSC) in this mode. All input via external display interface is disabled in this operation. The internal RAM can be accessed only via system interface.

RGB interface operation (1)

The display operation is synchronized with frame synchronous signal (VSYNC), line synchronous signal (HSYNC), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied during the display operation via RGB interface.

The R61505U transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. The combined use of high-speed RAM write mode and window address function can minimize the total number of data transfer for moving picture display by transferring only the data to be written in the moving picture RAM area when it is written and enables the R61505U to display a moving picture and the data in other than the moving picture RAM area simultaneously.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the R61505U by counting the number of clocks of line synchronous signal (HSYNC) from the falling edge of the frame synchronous signal (VSYNC). Make sure to transfer pixel data via DB17-0 pins in accordance with the setting of these periods.

RGB interface operation (2)

This mode enables the R61505U to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first. Then set an address in the RAM address set register and R22h in the index register.

VSYNC interface operation

The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode. This mode enables the R61505U to display a moving picture via system interface by writing data in the internal RAM at faster than the calculated minimum speed via system interface from the falling edge of frame synchronous (VSYNC). In this case, there are restrictions in speed and method of writing RAM data. For details, see the "VSYNC Interface" section.

As external input, only VSYNC signal input is valid in this mode. Other input via external display interface becomes disabled.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNC) inside the R61505U according to the instruction settings for these periods.

System Interface

The following are the kinds of system interfaces available with the R61505U. The interface operation is selected by setting the IM3/2/1/0 pins. The system interface is used for instruction setting and RAM access.

Table 68 IM Bit Settings and System Interface

IM3	IM2	IM1	IMO	Interfacing Mode with MPU	DB Pins	Colors
0	0	0	0	Setting inhibited	-	-
0	0	0	1	Setting inhibited	-	-
0	0	1	0	80-system 16-bit interface	DB17-10, DB8-1	262,144 *see Note1
0	0	1	1	80-system 8-bit interface	DB17-10	262,144 *see Note2
0	1	0	*	Clock synchronous serial interface	-	65,536
0	1	1	0	Setting inhibited	-	-
0	1	1	1	Setting inhibited	-	-
1	0	0	0	Setting inhibited	-	-
1	0	0	1	Setting inhibited	-	-
1	0	1	0	80-system 18-bit interface	DB17-0	262,144
1	0	1	1	80-system 9-bit interface	DB17-9	262,144
1	1	0	0	Setting inhibited	-	-
1	1	0	1	Setting inhibited	-	-
1	1	1	0	Setting inhibited	-	-
1	1	1	1	Setting inhibited	-	-

Notes: 1. 65,536 colors in 16-bit single transfer mode.

^{2. 65,536} colors in 8-bit 2-transfer mode.

80-system 18-bit Bus Interface

Figure 10 18-bit interface

Figure 11 18-bit Interface Data Format (Instruction Write / Device Code Read)

Figure 12 18-bit Interface Data Format (RAM Data Write / RAM Data Read)

80-system 16-bit Bus Interface

Figure 13 16-bit interface

Figure 14 16-bit Interface Data Format (Instruction Write / Device Code Read)

Figure 15 16-bit Interface Data Format (RAM data write)

Figure 16 16-bit Interface Data Format (RAM data read)

Data Transfer Synchronization in 16-bit Bus Interface operation

The R61505U supports data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 17 16-bit Data Transfer Synchronization

80-system 9-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits).

Figure 18 9-bit interface

Figure 19 9-bit Interface Data Format (Instruction Write / Device Code Read)

Figure 20 9-bit Interface Data Format (RAM Data Write/ RAM Data Read)

Data Transfer Synchronization in 9-bit Bus Interface operation

The R61505U supports data transfer synchronization function to reset the counters for upper and lower 9-bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 21 9-bit Data Transfer Synchronization

80-system 8-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either IOVCC or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits).

Figure 22 8-bit interface

Figure 23 8-bit Interface Data Format (Instruction Write / Device Code Read)

Figure 24 8-bit Interface Data Format (RAM Data Write)

Figure 25 8-bit Interface Data Format (RAM Data Read)

Data Transfer Synchronization in 8-bit Bus Interface operation

The R61505U supports data transfer synchronization function to reset the counters for upper and lower 8-bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 26 8-bit Data Transfer Synchronization

Serial Interface

The serial interface is selected by setting the IM3/2/1 pins to the IOGND/IOVCC/IOGND levels, respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0/ID pin functions as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVCC or GND level.

The R61505U recognizes the start of data transfer on the falling edge of CS input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CS input. The R61505U is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the R61505U are compared and both 6-bit data match. Then, the R61505U starts taking in subsequent data. The least significant bit of the device identification code is determined by setting the ID pin. Send "01110" to the five upper bits of the device identification code. Two different chip addresses must be assigned to the R61505U because the seventh bit of the start byte is register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which selects either read or write operation. The R61505U receives data when the R/W = 0, and transfers data when the R/W = 1.

When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The R61505U writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data.

After receiving the start byte, the R61505U starts transferring or receiving data in units of bytes. The R61505U transfers data from the MSB. The R61505U's instruction consists of 16 bits and it is executed inside the R61505U after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61505U expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by the R61505U following the start byte is recognized as the upper eight bits of instruction and the second byte is recognized as the lower 8 bits of instruction.

When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data are read from the GRAM following the start byte. The R61505U sends valid data to the data bus when it reads the sixth and subsequent byte data.

Table 69 Start Byte Format

Transferred Bits	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start	Device ID code						RS	R/W
		0	1	1	1	0	ID	_	

Note: The ID bit is determined by setting the IM0/ID pin.

Table 70 Functions of RS, R/W bits

RS	R/W	Function
0	0	Set index register
0	1	Setting inhibited
1	0	Write instruction or RAM data
1	1	Read register settings or RAM data

Figure 27 Serial interface Data Format

Figure 28 Data Transfer in Serial interface

VSYNC Interface

The R61505U supports VSYNC interface, which enables displaying a moving picture via system interface by synchronizing the display operation with the VSYNC signal. VSYNC interface can realize moving picture display with minimum modification to the conventional system operation.

Figure 29 VSYNC Interface

The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the R61505U rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display. By writing data using high-speed write function (HWM =1), the R61505U can write data via VSYNC interface in high speed with low power consumption.

Figure 30 Moving Picture Data Transfers via VSYNC Interface

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

Internal clock frequency (fosc) [Hz]

 $= FrameFrequency \times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) \times 16(clocks) \times variance$

$$RAMWriteSpeed (min.)[Hz] > \frac{240 \times DisplayLines(NL)}{(BackPorch(BP) + DisplayLines(NL) - m \arg ins) \times 16(clocks) \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface operation is as follows.

[Example]

Panel size $240 \text{ RGB} \times 320 \text{ lines (NL} = 6'\text{h}27: 320 \text{ lines)}$

Total number of lines (NL) 320 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2)

Frame frequency 65 Hz

Internal clock frequency (fosc) [Hz]

 $= 65 \text{ Hz} \times (320 + 2 + 14) \text{ lines} \times 16 \text{ clocks} \times 1.07 / 0.93 = 402 \text{ kHz}$

- Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of ±10% for variances and guarantee that display operation is completed within one VSYNC cycle.
 - This example includes variances attributed to LSI fabrication process and room temperature.
 Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

Minimum speed for RAM writing [Hz]

```
> 240 \times 320 / \{((14 + 320 - 2) \text{ lines} \times 16 \text{ clocks}) \times 1/402 \text{ kHz}\} = 5.81 \text{ MHz}
```

- Notes: 1. In this example, it is assumed that the R61505U starts writing data in the internal RAM on the falling edge of VSYNC.
 - 2. There must be at least a margin of 2 lines between the line to which the R61505U has just written data and the line where display operation on the LCD is performed.

In this example, the RAM write operation at a speed of 5.7MHz or more, which starts on the falling edge of VSYNC, guarantees the completion of data write operation in a certain line address before the R61505U starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.

Figure 31 Write/Display Operation Timing via VSYNC Interface

Notes to VSYNC Interface operation

- The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for VSYNC interface operation.
- 2. The above example shows the values when writing over the full screen. Extra margin will be created if the moving picture display area is smaller than that.

Figure 32 RAM Write Speed Margins

- 3. The front porch period continues from the end of one frame period to the next VSYNC input.
- 4. The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation modes and vice versa are enabled from the next frame period.
- 5. The partial display and vertical scroll functions are not available in VSYNC interface operation.
- 6. In VSYNC interface operation, set AM = 0 to transfer display data correctly.
- 7. In VSYNC interface operation, use high-speed write function (HWM = 1) when writing display data to the internal RAM.

Figure 33 Sequences to Switch between VSYNC and Internal Clock Operation Modes

External Display Interface

The R61505U supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM is accessible via RGB interface.

Table 71 RGB interface

RIM1	RIM0	RGB Interface	DB Pin
0	0	18-bit RGB interface	DB17-0
0	1	16-bit RGB interface	DB17-13, DB11-1
1	0	6-bit RGB interface	DB17-12
1	1	Setting inhibited	-

Note: Using multiple interface at a time is prohibited.

RGB Interface

The display operation via RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The data can be written only within the specified area with low power consumption by using window address function and high-speed write mode (HWM = 1). In RGB interface operation, front and back porch periods must be made before and after the display period.

Figure 34 Display Operation via RGB Interface

Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals

The polarities of VSYNC, HSYNC, ENABLE, and DOTCLK signals can be changed by setting the DPL, EPL, HSPL, and VSPL bits, respectively for convenience of system configuration.

RGB Interface Timing

The timing relationship of signals in RGB interface operation is as follows.

16-/18-bit RGB Interface Timing

Figure 35

Notes: 1. VLW: VSYNC Low period
HLW: HSYNC Low period
DTST: data transfer setup time

2. Use high-speed write function (HWM = 1) when writing data via RGB interface.

6-bit RGB Interface Timing

Figure 36

Notes: 1. VLW: VSYNC Low period

HLW: HSYNC Low period DTST: Data transfer setup time

- 2. Use high-speed write function (HWM = 1) when writing data via RGB interface.
- 3. In 6-bit RGB interface operation, set the VSYNC, HSYNC, ENABLE, DOTCLK cycles so that one pixel is transferred in units of three DOTCLKs via DB17-12 (DB5-0).

Moving Picture Display via RGB Interface

The R61505U supports RGB interface for moving picture display and incorporates RAM for storing display data, which provides the following advantages in displaying a moving picture.

- 1. The window address function enables transferring data only within the moving picture area
- 2. The high-speed write function enables RAM access in high speed with low power consumption
- 3. It becomes possible to transfer only the data written over the moving picture area
- 4. By reducing data transfer, it can contribute to lowering the power consumption of the whole system
- 5. The data in still picture area (icons etc.) can be written over via system interface while displaying a moving picture via RGB interface

RAM access via system interface in RGB interface operation

The R61505U allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the RAM via system interface, set ENABLE "High" to stop writing data via RGB interface. Then set RM = "0" to enable RAM access via system interface. When reverting to the RGB interface operation, wait for the read/write bus cycle time. Then, set RM = "1" and the index register to R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two interfaces, there is no guarantee that the data is written in the RAM.

The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface.

Figure 37 Updating the Still Picture Area while Displaying Moving Picture

6-bit RGB interface

The 6-bit RGB interface is selected by setting RIM1-0 = 10. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 6-bit port while data enable signal (ENABLE) allows RAM access via RGB interface. Unused pins DB11-0 (DB17-6) must be fixed at either IOVCC or IOGND level.

Instruction bits can be transferred only via system interface.

Figure 38 Example of 6-bit RGB Interface and Data Format

Data Transfer Synchronization in 6-bit Bus Interface operation

The R61505U has the counters, which count the first, second, third 6 bit transfers via 6-bit RBG interface. The counters are reset on the falling edge of VSYNC so that the data transfer will start from the first 6 bits of 18-bit RGB data from the next frame period. Accordingly, the data transfer via 6-bit interface can restart in correct order from the next frame period even if a mismatch occurs in transferring 6-bit data. This function can minimizes the effect from data transfer mismatch and help the display system return to normal display operation when data is transferred consecutively in moving picture operation.

Figure 39 6-bit Transfer Synchronization

16-bit RGB interface

The 16-bit RGB interface is selected by setting RIM1-0 = 01. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.

Figure 40 Example of 16-Bit RGB Interface and Data Format

18-bit RGB interface

The 18-bit RGB interface is selected by setting RIM1-0 = 00. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.

Figure 41 Example of 18-bit RGB Interface and Data Format

Notes to external display interface operation

a. The following functions are not available in external display interface operation.

Table 72 Functions Not Available in External Display Interface operation

Function	External Display Interface	Internal Display Operation
Partial display	Not available	Available
Scroll function	Not available	Available

- b. The VSYNC, HSYNC, and DOTCLK signals must be supplied during display period.
- c. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator.
- d. In 6-bit RGB interface operation, 6-bit dot data (R, G, and B) is transferred in synchronization with DOTCLK. In other words, it takes three DOTCLKs to transfer one pixel data.
- e. In 6-bit RGB interface operation, make sure to set the cycles of VSYNC, HSYNC, DOTCLK, ENABLE signals so that the data transfer is completed in units of pixels.
- f. When switching between the internal operation mode and the external display interface operation mode, follow the sequences below in setting instruction.
- g. In RGB interface operation, front porch period continues after the end of frame period until next VSYNC input is detected.
- h. In RGB interface operation, use high-speed write function (HWM = 1) when writing data to the internal RAM.
- i. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.

Figure 42 RGB and Internal Clock Operation Mode switching sequences

RAM Address and Display Position on the Panel

The R61505U has memory to store display data of 240RGB x 320 lines. The R61505U incorporates a circuit to control partial display, which allows switching driving method between full-screen display mode and partial display mode.

The R61505U makes display arrangement setting and panel driving position control setting separately and specifies RAM area for each image displayed on the panel. For this reason, there is no need to take the mounting position of the panel into consideration when designing a display on the panel.

The following is the sequence of setting full-screen and partial display.

- 1. Set (PTSAx, PTEAx) to specify the RAM area for each partial image
- 2. Set the display position of each partial image on the base image by setting PTDPx.
- 3. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image
- 4. After display ON, set display enable bits (BASEE, PTDE0/1) to display respective images

Normal display	BASEE = 1
Partial display 1/2	BASEE = 0, PTDE0/1 = 1

5. Changes BASEE, PTDE0/1 settings when turning on and off the full and partial displays 1/2.

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting).

When switching the display position in horizontal direction, set SS bit when writing RAM data.

Table 73

	Display ENABLE	Numbers of lines	RAM area
Base image	BASEE	NL	(BSA, BEA) = (9'h000, 9'h13F)

Notes 1: The base image is displayed from the first line of the screen.

2: Make sure $NL \le 320$ (lines) = BEA – BSA when setting a base image RAM area. BSA and BEA are fixed to 9'h000, 9'h13F, respectively.

Table 74

	Display ENABLE	Display position	RAM area
Partial image 1	PTDE0	PTDP0	(PTSA0, PTEA0)
Partial image 2	PTDE1	PTDP1	(PTSA1, PTEA1)

Figure 43 RAM Address, display position and drive position

Restrictions in setting display control instruction

There are restrictions in coordinates setting for display data, display position and partial display.

Screen setting

In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is 320 lines or less (NL ≤ 320 lines).

Base image display

- 1. The base image is displayed from the first line of the screen: $BSA = 1^{st}$ line (of the display panel)
- 2. The base image RAM area (specified by BSA = 000, BEA = 13F) must include the same or more number of lines set by NL bits (liquid crystal panel drive lines): BEA BSA = 320 lines \geq NL

Partial image display

Set the partial image RAM area setting registers (PTSAx, PTEAx bits) and the partial position setting registers (PTDPx bits) so that the RAM areas and the display positions of partial images do not overlap one another.

 $0 \le PTDP0 \le PTDP0 + (PTEA0 - PTSA0) < PTDP1 \le PTDP1 + (PTEA1 - PTSA1) \le NL$

The following figure shows the relationship among the RAM address, display position, and the lines driven for the display.

Figure 44 Display RAM address and panel display position

Note: This figure shows the relationship between RAM line address and the display position on the panel. In the R61505U's internal operation, the data is written in the RAM area specified by the window address setting (R50h~R53h).

Instruction setting example

The followings are examples of settings for 240(RGB) x 320(lines) panel.

1. Full screen display (no partial display)

The following is an example of settings for full screen display.

Table 75

Base image display instruction		
BASEE	1	
NL[5:0]	6'h27	
PTDE0	0	
PTDE1	0	

Figure 45 Full screen display (no partial)

2. Partial Display

The following is an example of settings for displaying partial image 1 only and turning off the base image. The partial image 1 is displayed at the position specified by PTDP0 bit.

Table 76

Base image display	y instruction
BASEE	0
NL[5:0]	6'h27

partial image 1 display instruction		
PTDE0	1	
PTSA0[8:0]	9'h000	
PTEA0[8:0]	9'h00F	
PTDP0[8:0]	9'h080	

partial image 2 display instruction		
PTDE1	0	
PTSA1[8:0]	9'h000	
PTEA1[8:0]	9'h000	
PTDP1[8:0]	9'h000	

Figure 46 Partial Display

Resizing function

The R61505U supports resizing function (x 1/2, x 1/4), which is performed when writing image data. The resizing function is enabled by setting a window address area and the RSZ bit representing the contraction factor (x1/2 or x1/4) of the image. This function enables the R61505U to write the resized image data directly to the internal RAM, while allowing the system to transfer the original-sized image data.

The resizing function allows the system to transfer data as usual even when resizing of the image is required. This feature makes image resizing easily available with various applications such as camera display, sub panel display, thumbnail display and so on.

The R61505U processes the contraction of an image simply by selecting pixels. For this reason, the resized image may appear distorted when compared with the original image. Check the resized image before use.

Figure 47 Data transfer in resizing

Figure 48 Data transfer, display example in resizing

Table 77

Original image size (X x Y)	Resized image size	
	1/2 (RSZ = 2'h1)	1/4 (RSZ = 2'h3)
640x480(VGA)	320x240	160x120
352x288 (CIF)	176x144	88x72
320x240 (QVGA)	160x120	80x60
176x144 (QCIF)	88x72	44x36
120x160	60x80	30x40
132x176	66x88	33x44

Resizing setting

The RSZ bit sets the resizing (contraction) factor of an image. When setting a window address area in the internal RAM, the window address area must fit the size of the resized picture. If there are surplus pixels as a result of resizing, which are calculated from the following equations, set RCV, RCH bits to the number of surplus pixels before writing data to the internal RAM.

Figure 49 Resizing Setting, surplus pixel calculation

Table 78
Image (before resizing)

Number of data in horizontal direction	Х
Number of data in vertical direction	Υ
Resizing ratio	1/N

Register setting in the R61505U

Resizing setting	RSZ	N-1
Number of data in horizontal direction	RCV	L
Number of data in vertical direction	RCH	M

RAM writing start address	AD	(X0, Y0)
RAM window address	HSA	X0
	HEA	X0+Rx - 1
	VSA	Y0
	VEA	Y0+Ry – 1

Example of 1/2 resizing

Figure 50 Resizing setting example (x 1/2)

Table 79
Original image (before resizing)

Number of data in horizontal direction	Х	240
Number of data in vertical direction	Υ	320
Resizing ratio	1/N	1/2

Register setting in the R61505U

Resizing setting	RSZ	2'h1
Number of data in horizontal direction	RCV	2'h0
Number of data in vertical direction	RCH	2'h0

RAM writing start address	AD	17'h00000
RAM window address	HSA	8'h00
	HEA	8'h77
	VSA	8'h00
	VEA	8'h9F

Resizing instruction

Table 80 Resizing factor

RSZ[1:0]	Contraction factor
2h'0	No resizing (x 1)
2h'1	1/2 resizing (x 1/2)
2h'2	Setting disabled
2h'3	1/4 resizing (x 1/4)
2h'4	Setting disabled

Table 81 Surplus pixels

Vertical direction

RCV[1:0]	Surplus pixels
2h'0	0
2h'1	1 pixel
2h'2	2 pixels
2h'3	3 pixels

1 pixel = 1 RGB

horizontal direction

RCH[1:0]	Surplus pixels
2h'0	0
2h'1	1 pixel
2h'2	2 pixels
2h'3	3 pixels

1 pixel = 1 RGB

Notes to Resizing function

- 1. Set the resizing instruction bits (RSZ, RCV, and RCH) before writing data to the internal RAM.
- 2. When writing data to the internal RAM using resizing function, make sure to start writing data from the first address of the window address area in units of lines.
- 3. Set the window address area in the internal RAM to fit the size of the resized image.
- 4. Set AD16-0 (R20h, R21h) before start transferring and writing data to the internal RAM.
- 5. Set the RCH, RCV bits only when using resizing function and there are surplus pixels. Otherwise (if RSZ = 2'h0), set RCH = RCV = 2'h0.

Figure 51 RAM write operation sequence in resizing

FMARK function

The R61505U outputs an FMARK pulse when the R61505U is driving the line specified by FMP[8:0] bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation.

The FMARK output interval is set by FMI[2:0] bits. Set FMI[2:0] bits in accordance with display data rewrite cycle and data transfer rate. Set FMARKOE = 1 when outputting FMARK pulse from the FMARK pin.

Table 82

FMP[8:0]	FMARK output position
9'h000	0
9'h001	1 st line
9'h002	2 nd line
:	:
9'h14D	333 rd line
9'h14E	334 th line
9'h14F	335 th line
9'h150 ~ 1FF	Setting disabled

Table 83

FMI[2]	FMI[1]	FMI[0]	FMARK Output interval
0	0	0	One frame period
0	0	1	2 frame periods
0	1	1	4 frame periods
1	0	1	6 frame periods
Other se	tting		Setting disabled

FMP setting example

Figure 52

Display operation synchronous data transfer using FMARK

The R61505U uses FMARK signal as a trigger signal to start writing data to the internal GRAM in synchronization with display scan operation.

Figure 53 Display synchronous data transfer interface

In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture RAM area without causing flicker on the display. The data is written in the internal RAM in order to transfer only the data written over the moving picture display area and minimize the data transfer required for moving picture display. High-speed write function (HWM = 1) enables writing data in high speed with low power consumption.

Figure 54 Moving Picture Data Transfers via FMARK function

When transferring data in synchronization with FMARK signal, minimum RAM data write speed and internal clock frequency must be taken into consideration. They must be more than the values calculated from the following equations.

Internal clock frequency (fosc) [Hz]

 $= FrameFrequency \times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) \times 16(clocks) \times variance$

$$RAMWriteSpeed (min.)[Hz] > \frac{240 \times DisplayLines(NL)}{(FrontPorch(FP) + BackPorch(BP) + DisplayLines(NL) - m \arg ins) \times 16(clocks) \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account.

Examples of calculating minimum RAM data write speed and internal clock frequency is as follows.

[Example]

Panel size $240 \text{ RGB} \times 320 \text{ lines (NL} = 6^{\circ}\text{h27})$

Total number of lines (NL) 320 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2) Frame marker position (FMP) Display end line: 320^{th} (FMP = 9'h14E)

Frame frequency 65 Hz

Internal clock frequency (fosc) [Hz] = $65 \text{ Hz} \times (320 + 2 + 14) \text{ lines} \times 16 \text{ clocks} \times 1.07 / 0.93 = 402 \text{ kHz}$

- Notes: 1.When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of $\pm 10\%$ for variances and guarantee that display operation is completed within one FMARK cycle.
 - 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

```
Minimum speed for RAM writing [Hz] > 240 \times 320 / \{((2+14+320-2) \text{ lines} \times 16 \text{ clocks}) \times 1/402 \text{ kHz}\} = 5.81 \text{ MHz}
```

- Notes: 1. In this example, it is assumed that the R61505U starts writing data in the internal RAM on the rising edge of FMARK.
 - 2. There must be at least a margin of 2 lines between the line to which the R61505U has just written data and the line where display operation on the LCD is performed.
 - 3. The FMARK signal output position is set to the line specified by FMP[8:0] bits.

In this example, RAM write operation at a speed of 5.67MHz or more, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the R61505U starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.

Figure 55 Write/Display Operation Timing

Notes to display operation synchronous data transfer using FMARK signal

- The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for this operation.
- 2. Use high-speed write function (HWM = 1).

High-speed RAM Write Function

The R61505U supports high-speed RAM write function to write data to each line of window address area at a time. This function makes the R61505U available with the applications, which require high-speed, low-power-consumption data write operation such as color moving picture display.

When enabling high-speed RAM write function (HWM = "1"), the data is first stored in the internal register of the R61505U in order to rewrite the RAM data in each horizontal line of the window address area at a time. Also, when transferring the data from the internal register to the internal RAM, the data written in the next line of the window address area can be transferred to the internal register of the R61505U. The high-speed write function minimizes the number of RAM access in write operation and enables high-speed consecutive RAM write operation required for moving picture display with low power consumption.

Figure 56 High-speed Consecutive RAM Write Operation

Figure 57 Example of High-speed RAM Write Operation (HWM = 1)

Note: When switching from high-speed RAM write operation to index write operation, wait at least for two normal RAM write bus cycle periods (2 x teyew) before executing a next instruction.

Figure 58 Example of High-speed RAM Write Operation via 9-bit Interface

Note: In high-speed RAM write operation, the R61505U writes data in units of n words. When using 9-bit interface, the R61505U performs write operation 2 x n times in the internal register before writing the data in each line of the window address area.

Notes to high-speed RAM write function

- 1. In high-speed RAM write mode, the R61505U performs write operation to the internal RAM in units of lines. If the data inputted to the internal write register is not enough to rewrite the data in the horizontal line of the window address area, the data is not written correctly in that line address.
- 2. If the IR is set to 22h when HWM = "1", the R61505U always performs RAM write operation. With this setting, the R61505U does not perform RAM read operation. Make sure to set HWM = 0, when performing RAM read operation.
- 3. The high-speed RAM write function cannot be used when writing data in normal RAM write function mode. When switching form one write mode to the other, change modes first and set AD16-0 (RAM address set) before starting write operation.

Table 84 RAM Write Operation

	Normal RAM Write (HWM = 0)	High-speed RAM Write (HWM = 1)
BGR function	Available	Available
RAM address set	In units of words	In units of words
RAM read	In units of words	Not available
RAM write	In units of words	In units of words
Window address	In units of words (minimum window address area: 1 word x 1 line)	In units of words (minimum window address area: 8 words x 1 line)
External display interface	Available	Available
AM	AM = 1/0	AM = 0

High-speed RAM data write in a window address area

The R61505U can perform consecutive high-speed data rewrite operation within a rectangular area (minimum: 8 words x 1 line) made in the internal RAM with the following settings.

When writing data to the internal RAM using high-speed RAM write function, make sure each line of the window address area is overwritten at a time. If the data buffered in the internal register of the R61505U is not enough to overwrite the horizontal line in the window address area, the data is not written correctly in that line.

The following is an example of writing data in the window address area using high-speed write function when a window address area is made by setting HSA = 8'h12, HEA = 8'hA7, VSA = 9'h020, and VEA = 9'h05B.

Figure 59 High-speed RAM Write Operation in the Window Address Area

Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made in the internal RAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and I/D bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the R61505U to write data including image data consecutively without taking the data wrap position into account.

The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area.

[Window address area setting range] $(Horizontal \ direction) \qquad 8'h00 \leq HSA < HEA \leq 8'hEF \\ (Vertical \ direction) \qquad 9'h000 \leq VSA < VEA \leq 9'h13F$ [RAM Address setting range] $(RAM \ address) \qquad HSA \leq AD7-0 \leq HEA \\ VSA \leq AD16-8 \leq VEA$

Figure 60 Automatic address update within a Window Address Area

Scan Mode Setting

The R61505U can set the gate pin assignment and the scan direction in the following 4 different ways by setting SM and GS bits to realize various connections between the R61505U and the LCD panel.

Figure 61

8-color Display Mode

The R61505U has a function to display in eight colors. In this display mode, only V0 and V31 are used and power supplies to other grayscales (V1 to V30) are turned off to reduce power consumption.

In 8-color display mode, the γ -adjustment registers P0KP0-P0KP5, P0KN0-P0KN5, P0RP0, P0RP1, P0RN0, P0RN1, P0FP0-P0FP3, and P0FN0-P0FN3, are disabled and the power supplies to V1 to V30 are halted. The R61505U does not require GRAM data rewrite for 8-color display by writing the MSB to the rest in each dot data to display in 8 colors.

Figure 62 8-color Display Mode

Line Inversion AC Drive

The R61505U supports n-line inversion alternating current drive in addition to frame-inversion liquid crystal alternating current drive. The timing to invert the electric current can be set to either every line or every two lines. Set line number of inversion timing checking display quality on liquid crystal display. Note that less number of line leads to higher inversion frequency of liquid crystal and more charge/discharge battery in liquid crystal display.

Figure 63 Example of Alternating Signals for n-line Inversion

Alternating Timing

The following figure illustrates the liquid crystal polarity inversion timing in different LCD driving methods. In case of frame-inversion AC drive, the polarity is inverted as the R61505U draws one frame, which is followed by a blank period lasting for (BP+FP) periods. In case of line inversion AC drive, polarity is inverted as the R61505U draws one line, and a blank period lasting for (BP+FP) periods is inserted when the R61505U draws one frame.

Figure 64 Alternating Timing

Note: Frame inversion AC drive is available only in 8-color display mode. Check the quality of display on the panel.

Frame-Frequency Adjustment Function

The R61505U supports a function to adjust frame frequency. The frame frequency for driving liquid crystal can be adjusted by setting the DIV, RTN bits without changing the oscillation frequency.

The R61505U allows changing the frame frequency depending on whether moving picture or still picture is displayed on the screen. In this case, set a high oscillation frequency. By changing the DIV and RTN settings, the R61505U can operate at high frame frequency when displaying a moving picture, which requires the R61505U to rewrite data in high speed, and it can operate at low frame frequency when displaying a still picture.

Relationship between liquid crystal drive duty and frame frequency

The following equation represent the relationship between liquid crystal drive duty and frame frequency. The frame frequency can be changed by setting the 1H period adjustment bit (RTN) and the operation clock frequency division ratio setting bit (DIV).

Equation for calculating frame frequency

$$FrameFrequency = \frac{fosc}{Number of Clocks / line \times DivisionRatio \times (Line + FP + BP)} [Hz]$$

fose: RC oscillation frequency

Number of clocks per line: RTN bit

Division ratio: DIV bit

Line: number of lines to drive the LCD panel (NL bit)

Number of lines for front porch: FP Number of lines for back porch: BP

Example of Calculation: when maximum frame frequency = 70 Hz

Fosc: 376KHz

Number of lines: 320 lines

1H period: 16 clock cycles (RTNI/E[4:0] = "10000")

Division ratio of operating clock: 1/1

Front porch: 2 lines Back porch: 14 lines

FFLM=376KHz/(16 clocks x 1/1 x (320 + 2 + 14) (lines) = 70Hz

Partial Display Function

The partial display function allows the R61505U to drive lines selectively to display partial images by setting partial display control registers. The lines not used for displaying partial images are driven at non-lit display level to reduce power consumption.

The power efficiency can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions.

Figure 65 Partial display

Note: See the "RAM Address and Display Position on the Panel" (p.127) for details on the relationship between the display positions of partial images and respective RAM area setting.

Liquid crystal panel interface timing

The relationships between RGB interface signals and liquid crystal panel control signals in internal operation and RGB interface operations are as follows

Internal clock operation

Figure 66

RGB interface operation

Figure 67

Oscillator

The R61505U incorporates necessary RC elements for oscillator, eliminating the need to connect external elements for RC oscillation.

The R61505U has two versions, each with different oscillation frequency: Typ. 376kHZ (R61505U0) and Typ. 600kHz (R61505U). See "Electrical Characteristics" for details. Select either suitable for display system.

Connecting external resistance to adjust frequency is impossible.

See "Frame-Frequency Adjustment Function" to adjust frame frequency.

External resistance is not needed.

Figure 68

Note 1: OSC frequency is set at Typ.376kHz (R61505U0) or 600Khz (R61505U1) when using RC element (See Electrical Characteristics).

γ Correction function

The R61505U supports γ -correction function to display in 262,144 colors simultaneously using gradient-adjustment, amplitude-adjustment, fine-adjustment, tap-adjustment, and voltage division ratio adjustment registers. Each register consists of positive-polarity register and negative-polarity register to allow optimal gamma correction setting for the characteristics of the panel by enabling different settings for positive and negative polarities.

γ Correction registers

The γ -correction registers of the R61505U consists of gradient-adjustment, amplitude-adjustment, fine-adjustment, tap-adjustment, and voltage division ratio adjustment registers to correct grayscale voltage levels according to the gamma characteristics of the liquid crystal panel. These register settings make adjustments to the relationship between grayscale number and grayscale voltage and the setting can be made differently for positive and negative polarities (the reference level and the register settings are the same for all RGB dots). The function of each register is as follows.

Figure 69

R61505U

Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient, which represents the relationship between grayscale and voltage, without changing the dynamic range. The grayscale voltages for middle grayscale number can be adjusted by this register setting.

Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage.

Fine adjustment registers

The fine adjustment registers are used for minute adjustment of grayscale voltage levels.

Tap adjustment registers

The tap adjustment registers are for selecting two tap voltage supply points from V3 to V6 and from V25 to V28 by using selector.

Voltage division ratio adjustment registers

The voltage division ratio adjustment registers are used to change the division ratios between V0 and V1 and between V30 and V31.

Table 85 γ correction registers

Register	Positive	Negative	Function
Gradient	P0RP0 [2:0]	P0RN1 [2:0]	Grayscale V4 variable resistance
Gradient	P0RP1 [2:0]	P0RN0 [2:0]	Grayscale V27 variable resistance
Amplitude	V0RP0 [4:0]	V0RN1 [4:0]	Voltage level for grayscale V0
Amplitude	V0RP1 [4:0]	V0RN0 [4:0]	Voltage level for grayscale V31
	P0KP0 [2:0]	P0KN5 [2:0]	Voltage level for grayscale V1
	P0KP1 [2:0]	P0KN4 [2:0]	Voltage level for grayscales V3, V4, V5, V6
	P0KP2 [2:0]	P0KN3 [2:0]	Voltage level for grayscale V10
	P0KP3 [2:0]	P0KN2 [2:0]	Voltage level for grayscale V21
	P0KP4 [2:0]	P0KN1 [2:0]	Voltage level for grayscales V28, V27, V26, V25
	P0KP5 [2:0]	P0KN0 [2:0]	Voltage level for grayscales V30
Fine	P0FP0 [1:0]	P0FN3 [1:0]	Division ratio between V0 and V1
adjustment		DOENS [4:0]	P0FP1[1:0]: specify either one of grayscales V3, V4, V5, V6 for the P0KP1[2:0] level
	P0FP1 [1:0]	P0FN2 [1:0]	P0FN2[1:0]: specify either one of grayscales V3, V4, V5, V6 for the P0KN4[2:0] level
	D0ED3 [4:0]	DOEN4 [4:0]	P0FP2[1:0]: specify either one of grayscales V28, V27, V26, V25 for the P0KP4[2:0] level
	P0FP2 [1:0]	P0FN1 [1:0]	P0FN1[1:0]: specify either one of grayscales V28, V27, V26, V25 for the P0KN1[2:0] level
	P0FP3 [1:0]	P0FN0 [1:0]	Division ratio between V30 and V31

γ Correction register settings and γ curve relationship

Figure 70

Figure 71 Source output waveform and VCOM polarity relationship

Power-supply Generating Circuit

The following figures show the configurations of liquid crystal drive voltage generating circuit of the R61505U.

Power supply circuit connection example 1 (VCI1 = VCIOUT)

In the following example, the VCIOUT level is adjusted internally in the VCIOUT output circuit.

Figure 72

Note: The wiring resistances between the schottky diode and GND/VGL must be 10Ω or less.

Power supply circuit connection example 2 (VCI1 = VCI direct input)

In the following example, the electrical potential VCI is directly applied to VCI1. In this case, the VCIOUT level cannot be adjusted internally but step-up operation becomes more effective.

Figure 73

Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 10Ω or less.

2. When directly applying the VCI level to VCI1, set VC = 3'h7. Capacitor connection to VCIOUT is not necessary.

Specifications of Power-supply Circuit External Elements

The specifications of external elements connected to the power-supply circuit of the R61505U are as follows.

Table 86 Capacitor

Capacitance	Voltage proof	Pin Connection
1µF	6 V	(1) VREG1OUT, (3) VCIOUT, (4) C11-/+, (5) C12-/+, (8) C13-/+, (16) VCL, (17) VCOMH, (18) VCOML, (19) VDD
(B characteristics)	10 V	(6) VLOUT1, (9) C21-/+, (10) C22-/+, (11) C23-/+
	25 V	(11) VLOUT2, (13) VLOUT3

- Notes: 1. Check with the LC module.
 - 2. The numbers in the parentheses corresponds to the numbers of the elements in Figure 72, Figure 73.

Table 87 Schottky Diode

Specification	I	Pin Connection
VF < 0.4 V/20 mA@25 °C (Recommended diode: H	SC226)	(15) GND–VGL, (13) VCI–VGH, (7) VCI–DDVDH

Table 88 Variable Resistor

Specification	Pin Connection
> 200 kΩ	(2) VCOMR

Table 89 Internal logic power supply

Capacitance	Voltage proof (recommended)	Pin Connection
1μF (B characteristics)	3V	VDD

Voltage Setting Pattern Diagram

The following are the diagrams of voltage generation in the R61505U and the TFT display application voltage waveforms and electrical potential relationship.

Figure 74

- Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical levels (ideal voltages) due to current consumption at each output level. Make sure that output voltage level in operation maintains the following relationship: (DDVDH VREG1OUT) ≥ 0.5V, (VCOML VCL) > 0.5V. Also make sure VGH-VGL ≤ 28V, VCI-VCL ≤ 6V. When the alternating cycle of VCOM is high (e.g. polarity inverts every line cycle), current consumption will increase. In this case, check the voltage before use.
 - 2. In operation, setting voltages within the respective voltage ranges are recommended.

Liquid crystal application voltage waveform and electrical potential

Figure 75

VCOMH voltage adjustment sequence

When adjusting the VCOMH voltage by setting VCM1 [5:0] in the R29'h register (internal VCOMH level adjustment circuit), follow the sequence below. The R61505U can retain the VCOMH level adjustment setting values in NVM, which allows writing twice (only one setting value can be written in NVM at one time).

In writing the setting value in NVM, write the VCOMH adjustment setting value VCM1 [4:0] in ED[4:0] and ED[7] = 0 when writing in NVM for the first time or ED[7] = 1 when writing for the second time. When writing the setting value in NVM, follow the NVM control sequence and NVM write sequence in the following pages.

Figure 76

NVM control sequence

Figure 77

NVM Write In Sequence

Figure 78

NVM Read Out Sequence

Figure 79

R61505U

Written data on NVM can be confirmed by reading instruction registers. The write-in area is R28'h to R2A'h. Following table shows example of the reading out.

Do not concern about ID7-5 (R29h) and ID6-5 (R2Ah) bits as individual die have different data. Check only the bits marked "user setting".

Table 90

Index	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	
28'h	0	0	0	0	User setting	User setting	User setting	User setting	To write in user ID
29'h	*	*	*	User setting	User setting	User setting	User setting	User setting	To write in VCOM setting
2A'h	VCMSEL	*	*	User setting	User setting	User setting	User setting	User setting	To write in VCOM setting

NVM instruction dummy read sequence

Figure 80

Power supply Instruction Setting

The following are the sequences for setting power supply ON/OFF instructions. Set power supply ON/OFF instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences.

Figure 81

R61505U

Notes to Power Supply ON sequence

When voltages do not rise in the order of VCC, IOVCC and then VCI and have to change the order, please follow the following note.

Note

Internal operation of the R61505U is unstable until VCC rises. If IOVCC rose before VCC rises, the R61505U may be in "output" status. In this case, do not send or receive any data before power supply is completed.

Changing order of voltage input will not cause troubles such as latchup or destruction of the LSI.

Instruction setting

The following are the sequences for various instruction settings. When setting instruction in the R61505U, follow the relevant sequence below.

Display ON/OFF sequences

Figure 82

Sleep mode SET/EXIT sequences

Figure 83

Deep standby mode IN/EXIT sequences

Figure 84 Cancel standby mode by inputting CS="Low" (18-/ 16-/ 9-/ 8- bit interface)

Figure 85 Cancel deep standby mode by inputting CS="Low" and WR="Low" (18-/ 16 bit interface)

Figure 86 Cancel deep standby mode by inputting CS="Low" and WR="Low" (9-/ 8- bit interface)

8-color mode setting

Figure 87

Partial display setting

Figure 88

Absolute Maximum Ratings

Table 91

Item	Symbol	Unit	Value	Note
Power Supply Voltage1	VCC, IOVCC	V	-0.3 ∼ +4.6	1, 2
Power Supply Voltage 2	VCI – AGND	V	-0.3 ∼ +4.6	1, 3
Power Supply Voltage 3	DDVDH – AGND	V	-0.3 ∼ +6.5	1, 4
Power Supply Voltage4	AGND – VCL	V	-0.3 ∼ +4.6	1
Power Supply Voltage 5	DDVDH – VCL	V	-0.3 ∼ +9.0	1, 5
Power Supply Voltage7	AGND – VGL	V	-0.3 ∼ +13.0	1, 6
Power Supply Voltage 8	VGH– VGL	V	-0.3 ∼ +30.0	1
Power Supply Voltage 9	VPP1	V	-0.3 ∼ +10.0	1
Power Supply Voltage 10	VPP2	V	-0.3 ~ +10.0	1
Power Supply Voltage 11	VPP3	V	0	1
Input Voltage	Vt	V	-0.3 ∼ IOVCC + 0.3	1
Operating Temperature	Topr	$^{\circ}$ C	-40 ∼ +85	1, 7
NVM Write Temperature	Twep	$^{\circ}$ C	+25 ∼ +35	1
Storage Temperature	Tstg	$^{\circ}$ C	-55 ∼ +110	1

Notes 1.If the R61505U is used beyond the absolute maximum ratings, the LSI may be permanently damaged. It is strongly recommended to use the LSI under the condition within the electrical characteristics in normal operation. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

- 2. Make sure VCC(high)≥GND(low), IOVCC(high)≥IOGND(low) .
- 3. Make sure VCI(high)≥AGND(low) .
- 4. Make sure DDVDH(high)≥AGND(low).
- 5. Make sure DDVDH(high) ≥VCL(low).
- 6. Make sure AGND(high)≥VGL(low).
- 7. The DC/AC characteristics of die and wafer products are guaranteed at 85° C.

Electrical Characteristics

DC characteristics (VCC= $2.50V \sim 3.30V$, IOVCC= $1.65V \sim 3.30V$, Ta= $-40C \sim +85C$ See note 1)

Table 92

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input "High" level voltage	V _{IH}	V	IOVCC=1.65V~3.30V	0.80× IOVCC	_	IOVCC	2,3
Input "Low" level voltage	VIL	V	IOVCC=1.65V~3.30V	-0.3	_	0.20× IOVCC	2,3
Output "High" level voltage 1 (DB0-17, FMARK)	V _{OH}	V	IOVCC=1.65V~3.30V, IOH=-0.1mA	0.8× IOVCC	_	_	2
Output "Low" level voltage 1 (DB0-17, FMARK)	V _{OL}	V	IOVCC=1.65V~3.30V, IOL=0.1mA	_	_	0.20× IOVCC	2
Input / Output leagage current	I _{LI}	μΑ	Vin=0∼IOVCC	-1	_	1	4
Current Consumption ((IOVCC-IOGND) + (VCC-GND)) Normal operation mode (260k-color, display operation)	I _{OP1}	μΑ	fosc=376/600kHz (320 line drive), IOVCC=VCC=3.00V, fFLM=70Hz, Ta=25C, RAM data: 18'h000000, See below for other data	-	175 (376KHz) 190 (600Khz)	295 (376KHz) 310 (600KHz)	5, 6
Current Consumption ((IOVCC-IOGND) + (VCC-GND)) 8-color mode, 64-line partial display operation	I _{op2}	μΑ	fosc=376/600kHz (64 line partial display), IOVCC=VCC=3.00V, fFLM=40Hz, Ta=25C, RAM data: 18h'000000, See below for other data	-	140	_	5, 6
Current Consumption ((IOVCC-IOGND) + (VCC-GND))	I _{DST}	μA	IOVCC=VCC=3.00V, Ta=25C	_	0.1	1.0	5
Deep Standby mode			18-250				
Current Consumption ((IOVCC-IOGND)) + (VCC-GND)) RAM access mode 1 (Normal write operation, HWM=0)	I _{RAM1}	mA	IOVCC=2.40V, VCC=3.00V, tCYCW=125ns, Ta=25C, I80-8bit-I/F, TRIREG=1'h1, Consecutive RAM access during display operation, VCM1=5'h1D, AP=2'h3, BC0=0, FP=5, BP=8, γ register; 0(default), COL=0 (8-color mode)	_	2.0	_	6

Average output voltage variance	$\Delta V \Delta$	mV	_	-35	_	35	8
Output voltage dispersion	ΔVΟ	mV	_	_	5	_	7
LCD Power Supply Current (VCI-GND) 8-color (64-line partial) display operation	Ici2	mA	IOVCC=VCC= 3.00V, VCI=3.00V, VCI=3.00V, fosc=376/600kHz (64 line partial), fFLM=40Hz, Ta=25C, RAM data: 18'h00000, REV="0", BC0=0, FP=5, BP=8, VxRPx="0", VxRNx="0", PxKPx="0", PxKPx="0", PxKPx="0", PxRPx="0", PxFPx="0", PxFPx="0", PxFPx="0", PxFPx="0", BT=4'h6, VC=3'h7, AP=2'h3, DC0=3'h1, DC1=3'h2, VRH=4'hA, VCM1=5'h1D, VDV=5'h8, VCMR=1'h1, COL=1'h1, GON=1, No load on the panel.	_	0.5 (376KHz) 0.8 (600KHz)		5, 6
LCD Power Supply Current (VCI-GND) 260-k color display operation	lci1	mA	fosc=376/600kHz (320 line), fFLM=70Hz, Ta=25C, RAM data: 18'h00000, REV="0", BC0=0, FP=5, BP=8, VxRPx="0", PxKPx="0", PxKNx="0", PxKNx="0", PxRNx="0", PxRNx="0", PxFPx="0", PxF	_	1.4 (376KHz) 1.9 (600KHz)	3.0 (376KHz) 3.5 (600KHz)	5, 6
Current Consumption ((IOVCC-IOGND) + (VCC-GND)) RAM access mode 2, High-speed write function (HWM=1)	I _{RAM2}	mA	IOVCC=2.40V, VCC=3.00V, tCYCW=70ns, Ta=25C, I80-8bit-I/F, TRIREG=1'h1, Consecutive RAM access during display operation, VCM1=5'h1D, AP=2'h3, BC0=0, FP=5, BP=8, γ register; 0(default), COL=0 (8-color mode) IOVCC=VCC=3.00V, VCI=3.00V,	-	1.7	_	6

R61505U

Step-Up Circuit Characteristics

Table 93

Step-up Output	Item		Unit	Test Condition	Min.	Тур.	Max.	Note
fosc=376/600[kHz],Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V], fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, 13.72 14.40 - DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C223=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics, Iload2=-100[uA], No load on the panel. IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V], fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics, Iload3=+100[uA], No load on the panel. IOVCC=VCC=3.00[V], VCI=VCI1=2.5[V], fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, -2.25 -2.30 - C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Ch		·		fosc=376/600[kHz],Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16) , DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,	4.57	4.84	-	-
Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/ 16), DC1=3'h4 (div. 1/256) , COL=0, D=2'h0, VON=0, VLOUT3 V DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, -6.86 -7.13 C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics, Iload3=+100[uA], No load on the panel. IOVCC=VCC=3.00[V], VCI=VCI1=2.5[V], fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, VCL V D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, -2.25 -2.30 C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,		VLOUT2	V	fosc=376/600[kHz],Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V], fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,	13.72	14.40	-	-
fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/ 256), COL=0, VCL V D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,		VLOUT3	V	Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,	-6.86	-7.13	-	-
Iload4=+200[uA], No load on the panel.		VCL	V	fosc=376/600[kHz], Ta=25C, VC=3'h7, AP=2'h3, BT=3'h7, DC0=3'h4 (div. 1/16), DC1=3'h4 (div. 1/256), COL=0, D=2'h0, VON=0, DIVI=2'h0, RTNI=5'h10, FP=4'h8, BP=4'h8, C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics, VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,	-2.25	-2.30	-	-
Input Voltage VCI V 2.5 - 3.3 -	In a st Malta a a	\/OI		lload4=+200[uA], No load on the panel.	0.5		0.0	

Internal Reference Voltage (Condition: VCC= 2.50V ~ 3.30V, Ta=25℃)

Table 94

Item	Symbol	Unit	Min.	Тур.	Max.	Note
Internal Reference Voltage	VCIR	V	2.45	2.50	2.55	12

AC Characteristics

 $(VCC=2.50V\sim3.30V, IOVCC=1.65V\sim3.30V, Ta=-40C\sim+85C \text{ See Note 1})$

1. Clock Characteristics

Table 95

Item	Symb ol	Unit	Test Condition	Min.	Тур.	Max.	Note
RC oscillation clock (R61505U0)	fosc	kHz	IOVCC=VCC=3.0V 25℃	349	376	402	9
RC oscillation clock (R61505U1)	fosc	kHz	IOVCC=VCC=3.0V 25°C	558	600	642	9

2. 80-System Bus Interface Timing Characteristics (18-/ 16- bit interface)

Table 96 Normal write operation (HWM=0), IOVCC=1.65V~3.30V

Item		Symbol	Unit	Timing Diagram	Min.	Тур.	Max.
Bus cycle time	Write	tcycw	ns	Figure 97	125	_	_
	Read	tcycr	ns	Figure 97	450	_	_
Write low-level pulse width		PWLW	ns	Figure 97	45	_	_
Read low-level pulse width		PWLR	ns	Figure 97	170	_	_
Write high-level pulse width		PWHW	ns	Figure 97	70	_	_
Read high-level pulse width		PWHR	ns	Figure 97	250	_	_
Write / Read rise/ fall time		twr, wrf	ns	Figure 97	_	_	25
Setup time	Write (RS to CS*, WR*)	tas	ns	Figure 97	0	_	_
	Read (RS to CS*, RD*)	-	ns	Figure 97	10	_	_
Address hold time		tah	ns	Figure 97	2	_	_
Write data setup time		tosw	ns	Figure 97	25	_	_
Write data hold time		tн	ns	Figure 97	10	_	_
Read data delay time		tddr	ns	Figure 97	_	_	150
Read data hold time		tDHR	ns	Figure 97	5		

Table 97 High-speed write Function (HWM=1), IOVCC=1.65~3.30V

Item		Symbol	Unit	Timing Diagram	Min.	Тур.	Max.
Bus cycle time	Write	tcycw	ns	Figure 97	75	_	_
	Read	tcycr	ns	Figure 97	450	_	_
Write low-level pul	se width	PWLW	ns	Figure 97	40	_	_
Read low-level pul	se width	PWLR	ns	Figure 97	170	_	_
Write high-level pu	lse width	PWHW	ns	Figure 97	25		
Read high-level pu	lse width	PWHR	ns	Figure 97	250	_	_
Write / Read rise/ f	fall time	twr, wrf	ns	Figure 97	_	_	25
Setup time	Write (RS to CS*, WR*)	tas	ns	Figure 97	0	_	_
	Read (RS to CS*, RD*)	•	ns	Figure 97	10	_	_
Address hold time		tah	ns	Figure 97	2	_	_
Write data setup tii	me	tosw	ns	Figure 97	25	_	_
Write data hold tim	ie	tн	ns	Figure 97	10	_	_
Read data delay tii	me	todr	ns	Figure 97	_	_	150
Read data hold tim	ne	tohr	ns	Figure 97	5	_	_

$\textbf{3. 80-System Bus Interface Timing Characteristics} \ (\textbf{9-/ 8- bit interface})$

Table 98 Normal Write Function (HWM=0)/ High-speed Write Function (HWM=1), IOVCC=1.65~3.30V)

Item		Symbol	Unit	Timing Diagram	Min.	Тур.	Max.
Bus cycle time	Write	tcycw	ns	Figure 97	70	_	_
	Read	tcycr	ns	Figure 97	450	_	_
Write low-level pul	se width	PWLW	ns	Figure 97	30	_	_
Read low-level pu	lse width	PWLR	ns	Figure 97	170	_	_
Write high-level pu	ulse width	PWHW	ns	Figure 97	25	_	_
Read high-level pu	ulse width	PWHR	ns	Figure 97	250	_	_
Write / Read rise/	fall time	twr, wrf	ns	Figure 97	_	_	25
Setup time	Write (RS to CS*, WR*)	tas	ns	Figure 97	0	_	_
	Read (RS to CS*, RD*)	_	ns	Figure 97	10	_	_
Address hold time		tah	ns	Figure 97	2	_	_
Write data setup ti	me	tosw	ns	Figure 97	25	_	_
Write data hold tin	пе	tH	ns	Figure 97	10	_	_
Read data delay ti	me	tddr	ns	Figure 97	_	_	150
Read data hold tin	ne	tdhr	ns	Figure 97	5	_	_

4. Clock-synchronized Serial Interface Timing Characteristics

Table 99 Normal Write Function (HWM=0), High-speed Write Function (HWM=1), IOVCC=1.65~3.30V)

Item		Symbol	Unit	Timign Diagram	Min.	Тур.	Max.
Serial clock cycle	Write (receive)	tscyc	ns	Figure 98	100	_	20,000
time	Read (transmitted)	tscyc	ns	Figure 98	350	_	20,000
Serial clock high-	Write (receive)	tscн	ns	Figure 98	40	_	_
level width	Read (transmitted)	tscн	ns	Figure 98	150	_	_
Serial clock low-	Write (receive)	tscl	ns	Figure 98	40	_	_
level width	Read (transmitted)	tscL	ns	Figure 98	150	_	_
Serial clock rise/fall	time	tscr, tscf	ns	Figure 98	_	_	20
Chip select setup tir	me	tcsu	ns	Figure 98	20	_	_
Chip select hold tim	e	tсн	ns	Figure 98	60	_	_
Serial input data ser	tup time	tsisu	ns	Figure 98	30	_	_
Serial input data ho	ld time	tsıн	ns	Figure 98	30	_	_
Serial output data d	elay time	tsod	ns	Figure 98	_	_	130
Serial output data h	old time	tsон	ns	Figure 98	5	_	_

5. Reset Timing Characteristics (IOVCC=1.65~3.30V)

Table 100

Item	Symbol	Unit	Timign Diagram	Min.	Тур.	Max.
Reset low-level width	tres	ms	Figure 99	1	_	_
Reset rise time	trRES	μs	Figure 99	_	_	10

6. RGB Interface Timing Characteristics

Table 101 18-/ 16- bit RGB interface (HWM=1), IOVCC=1.65~3.30V

Item	Symbol	Unit	Timign Diagram	Min.	Тур.	Max.
VSYNC/HSYNC setup time	tSYNCS	clock	Figure 100	0	_	1
ENABLE setup time	tENS	ns	Figure 100	10	_	_
ENABLE hold time	tENH	ns	Figure 100	20	_	_
DOTCLK low-level pulse width	PWDL	ns	Figure 100	40	_	_
DOTCLK high-level pulse width	PWDH	ns	Figure 100	40	_	_
DOTCLK cycle time	tCYCD	ns	Figure 100	100	_	_
Data setup time	tPDS	ns	Figure 100	10	_	_
Data hold time	tPDH	ns	Figure 100	40	_	_
DOTCLK, VSYNC and HSYNC rise/fall time	trgbr, trgbf	ns	Figure 100	_	_	25

Table 102 6-bit RGB interface (HWM=1), IOVCC=1.65~3.30V

Item	Symbol	Unit	Timign Diagram	Min.	Тур.	Max.
VSYNC/HSYNC setup time	tSYNCS	clock	Figure 100	0	_	1
ENABLE setup time	tENS	ns	Figure 100	10	_	_
ENABLE hold time	tENH	ns	Figure 100	25	_	_
DOTCLK low-level pulse width	PWDL	ns	Figure 100	25	_	_
DOTCLK high-level pulse width	PWDH	ns	Figure 100	25	_	_
DOTCLK cycle time	tCYCD	ns	Figure 100	60	_	_
Data setup time	tPDS	ns	Figure 100	10	_	_
Data hold time	tPDH	ns	Figure 100	25	_	
DOTCLK, VSYNC and HSYNC rise/fall time	trgbr, trgbf	ns	Figure 100	_	_	25

7. LCD driver Output Characteristics

Table 103

Item	Symbol	Unit	Timing Diagram	Min.	Тур.	Max.	Note
Source driver output delay time	tdds	μs	VCC=IOVCC=3.00V, DDVDH=5.50V, VREG1OUT=5.00V, fosc=376/600kHz (320-line drive), Ta=25C, REV=0, AP=2'h3, VRH=4'h0, PxKPx=3'h0, PxKNx=3'h0, PxRNx=3'h0, PxRNx=3'h0, VxRNx=5'h0, VxRPx=5'h0, PxFPx=2'h0, PxFPx=2'h0, PxFPx=2'h0 Same change from same grayscale at all time-division source output pins. Time to reach +/- 35mV from VCOM polarity inversion timing	_	-	17	10
VCOM output delay time	tddv	μs	R=10kohm, C=20pF VCC=IOVCC=3.00V, DDVDH=5.50V, VREG10UT=5.00V, fosc=376/600kHz (320 line drive), Ta=25C, REV=0, AP=2'h3, VRH=4'h0, PxKPx=3'h0, PxKNx=3'h0, PxRNx=3'h0, PxRNx=5'h0, VxRNx=5'h0, VxRPx=5'h0, PxFPx=2'h0, PxFNx=2'h0, PxFNx=	_	_	17	11

Notes on Electrical Characteristics

- 1. DC/AC electrical characteristics of bare die and wafer products are guaranteed at +85°C.
- 2. The followings illustrate the configurations of input, I/O, and output pins.

Figure 89

- 3. Fix pins as follows; TEST1/2/5 pins to IOGND, TEST3/4 pins to IOVCC, VDDTEST and VREFC to ground (AGND), and IM0/ID pins to IOVCC or IOGND.
- 4. This excludes the current in the output-drive MOS.
- 5. This excludes the current in the input/output units. Make sure that the input level is fixed because through current will increase in the input circuit when the CMOS input level takes a middle range level. The current consumption is unaffected by whether the CS* pin is "high" or "low" while not accessing via interface pins.
- 6. The relation between voltage and current consumption is as follows.

Figure 90

Figure 91

- 7. The output voltage deviation is the difference in the voltages between output pins that are placed side by side in same display mode. The output voltage deviation is reference value.
- 8 The average output voltage dispersion is the variance of average source-output voltage of different chips of the same product. The average source output voltage is measured for one chip with same display data.
- 9 This applies to internal oscillators when using an internal RC oscillator.
- 10 The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line by checking the quality on the actual panel in use.

Figure 92

11 VCOM output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line checking the quality on the actual panel in use.

Figure 93

12 Internal reference voltage VCIR depends on temperature as shown in following graph.

Figure 94

Test Circuits

Figure 95

Figure 96

Test Characteristics

80-System Bus Interface

Figure 97 80-System Bus Interface

Clock Synchronous Serial Interface

Figure 98 Clock Synchronous Serial Interface

Reset Operation

Figure 99 Reset Operation

RGB Interface

Figure 100 RGB Interface

LCD Driver Output

Figure 101 LCD Driver Outputs

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

- contact Reneass Technology Corporation or an authorized Reneass Technology Corporation product distributor for the latest product information before purchasing a product instead herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Reneasa Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation by rounders are not designed or an authorized Renesas Technology Corporation or an authorized Renesas Technology Corporation or an authorized Renesas Technology Corporation is reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Copyright © 2006. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.04	2005.01.26	First issue		
0.1.0	2006.02.20	Change PAD Arrangement, add Instruction List.		
0.10	2006.04. 03	p.44 NW bit added (R02h)		
		p. 53 PTG[1:0] 2'h1 changed to setting inhibited.		
		p.59 VCL added to note 2 and 3.		
		p.61 Setting of VREG1OUT added to Table 40.		
		p.62 Description of VREG1 bit added.		
		p.63 "5.5V or less" changed to "6.0V or less". (Note1 to Table 42)		
		p.76 Table 51 6'h15 of NL[5:0] bits changed to 176 lines.		
		p.81 VEQWI[1:0] bit added.		
		p.85 EAD[1:0] bits added.		
		p.86 Description of RA4h added.		
		p.143 Description of line inversion AC drive added.		
		p.149 (TBD)kHz changed to 376kHz.		
		p.155 Table to Internal Oscillator deleted.		
		p.161 Figure 78 added.		
		p.163 "RF9h" deleted from Figure 80.		
		p.166 "RF9h" deleted from Figure 83.		
		pp.168-187 added.		
0.11	2006. 05. 12	p.169, pp.172-177 Target speculation value filled in (except Step-up circuit output characteristics)		
0.12	2006.05.31	p.7 Change VCOM adjustment bits (11 bits \rightarrow 5 bits x 2 sets).		
		p.8 Add VPP and delete note.		
		p.15 Change the description of OSC1 and OSC2.		
		p.17 Change the description of capacitor connection pins (C23 \pm).		
		p.18 3.0V →4.0V (VREG1OUT)		
		p.50 Change the table about VON.		
		p.59 Add C13± (4'h1, 4'h4, 4'h6, 4'h9, 4'hC, and 4'hE) ,and delete C23± (4'h0 and 4'h8).		
		p.62 VCM bits \rightarrow VCM1 and VCM2 bits		
		p.88 Delete Status Read.		
		p.89 Change the initial state of VLOUT1 and VLOUT2, add VCI1, and delete the initial state of C21+, C22+, and C23		
		p.157 2.5V $ ightarrow$ 4.0V (VREG1OUT), (DDVDH –		

Rev.	Date	Contents of Modification	Drawn by	Approved by
		$VREG1OUT) > 0.5V \rightarrow (DDVDH - VREG1OUT) \geq 0.5V$		
		p.161 Change VPP1 and VPP2, and the description of dummy data read and write data setting.		
		p.164 Add notes.		
		p.169 Delete Power Supply Voltage 6, and add Power Supply Voltage 8 to 11, and NVM write temperature.		
		p.173 Change timing diagram of clock characteristics.		
		p.175 80ns \rightarrow 70ns (tCYCW), 50ns \rightarrow 38ns (PW _{LW})		
		p.178 Delete Typ., and add Max (tdds and tddv).		
0.13	2006.06.01	p.9 Delete C23 \pm from R61505U's capacitor connection pins.		
		p.16 Change note 2, VPP2 value, "When not in use" of VPP1, VPP2, and VPP3.		
0.14	2006.06.02	p.9 Add VCL in R61505's capacitor connection pins, and change the description of R61505U's capacitor connection pins.		
		p.18 Add "(VCILVL or VCIR)" in VREG1OUT.		
		p.60 Change capacitor connection pins and VGL (max.), and add note 4.		
0.15	2006.07.18	p.7 Gate drive power supply: VGH-GND=10.0V~15.0V \rightarrow VGH-GND=10.0V~20.0V, VGL-GND= -4.5V \sim -12.5V \rightarrow VGL-GND= -4.5V \sim -13.5V		
		p.8 Add "Internal reference voltage: to generate VREG1OUT (VCIR)".		
		p.9 Table 1: NVM_FUSE → NVM, VGH 10.0V~15.0V → 10.0V ~ 20.0V VGL -4.5V~ -12.5V → -4.5V ~ -13.5V		
		 p.14 Change description to oscillator (8). VDH → DDVDH (liquid crystal drive circuit power supply circuit, 9) 		
		p.17 Open \rightarrow Open or GND (VPP3: "When not in use" and NVM read)		
		p.18 Add "Make sure to connect to stabilizing capacitor" to VCIOUT, VLOUT1, VLOUT2, VLOUT3 and VCL.		
		p.19 Delete VDH from description of VREG1OUT. Add "Make sure to connect to stabilizing capacitor." to VCOMH and VCOML.		
		p.21 TEST5 Delete "To stop the NVM operation, set the TEST5 pin to IOVCC level.		
		p.61 VGH =15.0V (max.) \rightarrow 20.0V (max) VGL = -12.5V (max) \rightarrow -13.5V(max)		
		p. 65 Error correction. (Description to VDV and Table 43)		
		p.115 FPP + BPP = $16 \rightarrow \text{FPP} + \text{BPP} \le 16$		
		p.159 Figure 74: VGH 10.0V~15.0V \rightarrow 10.0V ~ 20.0V,		

Rev.	Date	Contents of Modification	Drawn by	Approved by
		VGL –4.5V~ -12.5V → -4.5V ~ -13.5V		
		p.162 29'h → 2A'h		
		p.165 Figure 79: Error correction (Dummy access required → Dummy access is not required.)		
		p.166 Figure 80: Add CALB=1.		
		p.167 Figure 81: Error correction.		
		p.171 Table 88: -0.3 ~ +13.0 \rightarrow -0.3 \rightarrow 14.0 (Power supply voltage 7)		
		p.172 Table 89: Delete ""(Other than OSC1 pin)" (Input High level voltage, Input Low level voltage). $V_{OH1} \rightarrow V_{OH}$, $V_{OL1} \rightarrow V_{OL}$.		
		p. 175 Change AC characteristics (Table 93: tcycw 150ns \rightarrow 125ns, PWLW 50ns \rightarrow 45ns.		
		p.176 Change AC characteristics (Table 94: tcycw 80ns \rightarrow 75ns, PWLW 50ns \rightarrow 40ns).		
		p.177 Change AC characteristics (Table 95: PWLW 38ns $ ightarrow$ 30ns).		
		p.181 Figure 86: Delete "DB17-0 (RGB interface (RM=1)) and "(80-system interface (RM=0))"		
		p.187 Figure 91: "Data bus DB15-DB0" $ ightarrow$ "Data bus DB17-DB0"		
		p.188 Figure 93: tWRr \rightarrow tWRf, VIH \rightarrow VOH, VIL \rightarrow VOL.		
		p.189 Figure 94: VOH1, VOL1 → VOH, VOL		
		p.190 Figure 97: S1-240 → S1-720		
0.1.6	2006.07.26	p.11 Figure 1: Change direction of arrow (VREG1OUT).		
		p. 21 AGND \rightarrow IOGND (TSC)		
		p.44 Delete row of "W" (R00h)		
		p.50 Table 20: Source Output (S1-240) \rightarrow Source Output (S1-720).		
		p.51 Table 23: VCOML → GND		
		p.57 9'h175 \rightarrow 9'h15A, 9'h176 \rightarrow 9'h15B, 9'h177 \rightarrow 9'h1FF, 373 rd line \rightarrow 346 line, 374 th line \rightarrow 347 th line, 375 th line \rightarrow Setting disabled.		
		p.91 Delete "Oscillator: Oscillate".		
		p.142 Table 82: Delete row of "Write mask function".		
		p.149 Figure 65: 8'h000, 8'h013 \rightarrow 9'h000, 9'h013 (Partial image 1 display RAM area), PTDP0=8'h028 \rightarrow PTDP0=9'h028.		
		p.152 Description changed.		
		p.159 Figure 74: Delete voltage ranges.		
		p. 170 Figure 84: R07h: COL=2'h1 \rightarrow COL=1'h1, COL=2'h0 \rightarrow COL=1'h0		

Rev.	Date	Contents of Modification	Drawn by	Approved by
		p. 172 Table 89: AP=3'h3 → AP=2'h3 (Current consumption, RAM access mode 1)		
		p.173 AP=3'h3 \rightarrow AP=2'h3 (Current consumption, RAM access mode 2). AP=3'h3 \rightarrow AP=2'h3, COL=2'h0 \rightarrow COL=1'h0 (LCD Power Supply Current, 262-k color display operation). AP=3'h3 \rightarrow AP=2'h3, COL=2'h1 \rightarrow COL=1'h1 (LCD Power Supply Current, 8 color display operation).		
		p.181 Figure 86: Change wiring.		
		p.185 Figure 89: AP=3'h1 → AP=2'h3		
		p.186 Figure 90: AP=3'h1 → AP=2'h3		
		p.187 Figure 90: Load capacitance C25pF $ ightarrow$ 20pF		
1.0	2006.09.13.	p.8 Add product numbers.		
		p.17 Delete Note 1 to VPP.		
		p. 18 Error correction (VLOUT2= max, 15.0 \rightarrow 20.0V, VLOUT3=min12.5 \rightarrow -13.5V)		
		p.50 Revise description of COL.		
		p. 53 Table 26 Error correction.		
		p. 57 Table 33 Error correction (FMP).		
		p. 83 Delete VEQWI (R93h).		
		p. 84 Error correction (Instruction List, R95h).		
		p. 88 Change description of CALB.		
		p. 90 Change Instruction List (Delete VEQWI, R93h).		
		p. 108 Table 68 "11" Read instruction or RAM data $ ightarrow$ Read register settings or RAM data.		
		p. 109 Figure 28 Delete "(d) Instruction Read".		
		p. 120 Figure 38 Error correction.		
		p. 152 Revise description of "Oscillator".		
		p. 163 Revise Figure 77.		
		p. 165 Inserted.		
		p. 166 Figure 80: Error correction (NVM dummy read).		
		p. 167 Revise Figure 81.		
		p. 168 Insert "Notes on Power Supply ON sequence".		
		p. 169 Revise Figure 83 (Display ON/OFF sequence).		
		p. 171 Revise Figure 85 (Deep standby mode).		
		p.172 Insert Figure 86 (Deep standby mode).		
		p. 173 Insert Figure 87 (Deep standby mode).		
		pp. 176-184 Revise Electrical characteristics.		
		pp. 187-190 Graphs inserted.		
		p. 190 Add Note 12		

Rev.	Date	Contents of Modification	Drawn by	Approved by
1.1	2006/10/30	p. 58 Insert R0Eh VCOM Low Power Control.		
		p. 84 Add VEQWI (R93h).		
		p.88 Change description of EOP (delete "and store write-in data to register).		
		p. 89 Change description to CALB.		
		p. 90 Delete R0E from setting disabled instructions.		
		p.112 Calculation Example Frame frequency $60\text{Hz} \rightarrow 65\text{Hz}$ Internal clock frequency (fosc) [Hz] = $60\text{ Hz} \times (320+2+14)$ lines \times 16 clocks \times 1.1 / 0.9 = $394\text{ kHz} \rightarrow$ Internal clock frequency (fosc) [Hz] = $65\text{ Hz} \times (320+2+14)$ lines \times 16 clocks \times 1.07 / 0.93 = 402 kHz Minimum speed for RAM writing [Hz] > $240\text{x}320$ / $\{((14+320-2)\text{lines} \times 16\text{ clocks}) \times 1/394\text{kHz} = 5.7\text{MHz} \rightarrow 240\text{x}320$ / $\{((14+320-2)\text{lines} \times 16\text{ clocks}) \times 1/402\text{kHz} = 5.81\text{MHz}$		
		p. 113 Figure 31 (graph) RAM write 5.7MHz \rightarrow 5.81MHz RC oscillation \pm 10% \rightarrow \pm 7% 16.67 (60MHz) \rightarrow 15.38 (65Hz)		
		Figure 32 (graph) RAM write 5.7MHz \rightarrow 5.81MHz RC oscillation \pm 10% \rightarrow \pm 7% 16.67 (60MHz) \rightarrow 15.38 (65Hz)		
		p. 139 Calculation Example Frame frequency $60\text{Hz} \rightarrow 65\text{Hz}$ Internal clock frequency (fosc) = $60\text{Hz} \times (320+2+14)$ lines x 16 clocks x 1.1/0.9 = $349\text{kHz} \rightarrow 65\text{Hz} \times (320+2+14)$ lines x 16 clocks x 1.07/0.93 = $402\text{kHz} \times (320+2+14)$ lines x 16 clocks x 1.07/0.93 = $402\text{kHz} \times (320+2+14)$ lines x 16 clocks x 1.07/0.93 = $402\text{kHz} \times (320+2+14)$ lines x 16 clocks) x 1/ 394kHz} = 5.67MHz $\rightarrow 240 \times 320$ / {((2+14 + 320-2)lines x 16 clocks) x 1/ 402kHz} = 5.81MHz		
		Figure 55 (graph)		
		RAM write $5.67\text{MHz} \rightarrow 5.81\text{MHz}$ RC oscillation $\pm 10\% \rightarrow \pm 7\%$ RAM write $5.67\text{MHz} \rightarrow 5.81\text{MHz}$ $13.54,\ 13.64 \rightarrow 13.22$ $16.67\ (60\text{Hz}) \rightarrow 15.38(65\text{Hz})$		
		p. 144 Window address area setting range Horizontal direction 8'00 ≤HSA≤HEA≤8'hEF → 8'00 ≤HSA <hea≤8'hef Vertical direction 9'h000≤VSA≤VEA≤9'h13F → 9'h000≤VSA<vea≤9'h13f< td=""><td></td><td></td></vea≤9'h13f<></hea≤8'hef 		
		p. 168 Figure 81 Note 2 changed.		
		p.169 Change Notes to power supply ON sequence.		
		p. 170 Display ON sequence \rightarrow Display OFF sequence (Display OFF sequence, 2^{nd} box from bottom)		

Rev.	Date	Contents of Modification	Drawn by	Approved by
		p. 188 Figure 90 Change label on x-axis.		
		p. 190 Figure 92 Error correction (tDD on x-axis \rightarrow tdds)		