FAI Item Selection

```
suppressPackageStartupMessages({
  library("tidyverse")
  library("TAM")
  library("psych")
  library("lordif")
  library("ggridges")
  library("ggpubr")
  library("paletteer")
  library("readxl")
  library("mice")
  library("VIM")
  library("paran")
  library("lavaan")
  library("polycor") # for hetcor()
  library("multilevel")
  library("miceRanger")
  library("papaja")
  theme_set(theme_apa())
  library("outForest")
  library("lavaanExtra")
  # Caricare le librerie necessarie
  library(glmnet) # Per LASSO regression
  library(randomForest) # Per valutare importanza delle variabili
  library(Boruta) # Per selezione robusta delle variabili
  library(missRanger)
  library(caret)
  library(pROC)
  library(lavaan)
  library(semTools)
})
library("here")
```

here() starts at /Users/corrado/_repositories/meyer_fai

```
# Increase max print
options(max.print = .Machine$integer.max)
source(here("functions", "fai_funs.R"))
```

Import data

```
fai_s <- read_xlsx(
  here("data", "raw", "FAI_TOT_2020_corrected.xlsx"), col_names = TRUE
)</pre>
```

Demographic information.

```
demo_info <- recode_demo_info(fai_s)</pre>
```

Categorize disease severity.

```
# Function to categorize disease severity
categorize_severity <- function(disease) {</pre>
  disease <- tolower(disease) # Normalize text (case insensitive)
  if (grepl("allergia|asma lieve|rinite", disease)) {
   return("Lieve")
  } else if (grepl("diabete|colite ulcerosa|artrite|cardiopatia|insufficienza renale|iperten
   return("Moderata")
  } else if (grepl("fibrosi cistica|leucemia|epilessia|distrofia|sindrome nefrosica|osteosar
   return("Grave")
  } else if (grepl("tumore|cancro|metastasi|cuore ipoplasico|malattia metabolica|aciduria|en
   return("Critica")
  } else {
    return(NA) # Unclassified
 }
}
# Apply the function to categorize chronic diseases
demo_info <- demo_info %>%
 mutate(severity_level = factor(
    sapply(chronic_disease, categorize_severity),
```

In the original administration, there is no psychological criterion variable available. The only external variable that could serve as a criterion is death risk, based on the assumption that coping is more challenging for a life-threatening disease compared to a non-life-threatening condition.

```
table(demo_info$death_risk)
```

0 1 264 230

Data Wrangling

Extract item responses (columns 51 to 247).

```
items <- fai_s[, 51:247]
colnames(items) <- paste0("item_", seq_len(ncol(items))) # Rename items</pre>
```

Identify and remove items with excessive missing values.

```
n_nas <- colSums(is.na(items))
bad_items <- names(n_nas[n_nas > 50])  # Adjust threshold as needed
items_filtered <- items %>%
    dplyr::select(-all_of(bad_items))
```

Combine cleaned item data with demographic info.

```
mydata <- bind_cols(demo_info, items_filtered) %>%
  mutate(subj_id = as.factor(seq_len(nrow(.))))
```

Identify and Remove Problematic Participants

```
d_num <- mydata %>%
  dplyr::select(starts_with("item_")) %>%
  dplyr::select(where(is.numeric)) # Ensure numeric selection

# Mahalanobis Distance
mahal_out <- careless::mahad(d_num)</pre>
```

Q-Q plot of Mahalanobis D² vs. quantiles of χ^2_{nvar}


```
mahal_cutoff <- boxplot(mahal_out, plot = FALSE)$stats[5]
bad_mahal <- mydata$subj_id[mahal_out > mahal_cutoff]

# Longstring Analysis
longstring_out <- careless::longstring(d_num)
longstring_cutoff <- boxplot(longstring_out, plot = FALSE)$stats[5]
bad_longstring <- mydata$subj_id[longstring_out > longstring_cutoff]

# IRV Analysis
irv_out <- careless::irv(d_num)
irv_cutoff <- boxplot(irv_out, plot = FALSE)$stats[5]
bad_irv <- mydata$subj_id[irv_out > irv_cutoff]

# Person Total Correlation
cm <- colMeans(d_num, na.rm = TRUE)</pre>
```

```
person_tot_cor <- apply(d_num, 1, function(x) cor(x, cm, use = "complete.obs"))
person_tot_cutoff <- boxplot(person_tot_cor, plot = FALSE)$stats[1]
bad_person_tot <- mydata$subj_id[person_tot_cor < person_tot_cutoff]

# Combine all flagged participants
bad_ids <- unique(c(bad_mahal, bad_longstring, bad_irv, bad_person_tot))

# Remove problematic participants before imputation
d_clean <- mydata %>%
    dplyr::filter(!subj_id %in% bad_ids)
```

Multiple Imputation

```
dim(df)
```

[1] 453 208

Item Selection Based on Clinical Criteria

```
# Define selected items based on clinical criteria
selected items <- c(
 "i_86", "i_57", "i_5", "i_85", "i_81",
 "i_105", "i_48", "i_133", "i_129", "i_39", "i_103",
  "i 143", "i 79".
 "i_111", "i_34", "i_119", "i_116", "i_23", "i_45", "i_41",
  "i_186", "i_38", "i_128", "i_7", "i_16", "i_29",
 "i_137", "i_96", "i_194"
# Convert to match column names in `imp`
selected_items_corrected <- paste0("item_", sub("^i_", "", selected_items))</pre>
# Ensure only existing columns are selected
selected_items_corrected <- intersect(selected_items_corrected, colnames(imp))</pre>
# Select the matching columns
imp_selected <- imp %>%
  dplyr::select(any_of(selected_items_corrected))
# Validate the selection
if (length(selected items_corrected) != length(selected_items)) {
 warning("Some selected items were not found in the dataset.")
}
print(names(imp_selected))
 [1] "item 86" "item 57" "item 5" "item 85" "item 81" "item 105"
 [7] "item_48" "item_133" "item_129" "item_39" "item_103" "item_143"
[13] "item_79" "item_111" "item_34" "item_119" "item_116" "item_23"
[19] "item_45" "item_41" "item_186" "item_38" "item_128" "item_7"
[25] "item_16" "item_29" "item_137" "item_96" "item_194"
```

Define Target Matrix for Factor Structure (29x6)

```
# Initialize a 29x6 matrix filled with zeros
TARGET <- matrix(0, nrow = length(selected_items_corrected), ncol = 6)</pre>
```

```
# Assign factor loadings based on clinical criteria
TARGET[1:5, 1] <- 1  # F1
TARGET[6:11, 2] <- 1  # F2
TARGET[12:13, 3] <- 1  # F3
TARGET[14:20, 4] <- 1  # F4
TARGET[21:26, 5] <- 1  # F5
TARGET[27:29, 6] <- 1  # F6

# Add row names for clarity
rownames(TARGET) <- selected_items_corrected
colnames(TARGET) <- pasteO("F", 1:6)

# Print the target rotation matrix
print(TARGET)</pre>
```

```
F1 F2 F3 F4 F5 F6
item_86
    1 0 0 0 0 0
item_57
     1 0 0 0 0 0
    1 0 0 0 0 0
item 5
item_85
     1 0 0 0 0 0
     1 0 0 0 0 0
item_81
item_105 0 1 0 0 0 0
item_143 0 0 1 0 0 0
item_79 0 0 1 0 0 0
item_111 0 0 0 1 0 0
item_119 0 0 0 1 0 0
item_116 0 0 0 1 0 0
0 0 0 1 0 0
item_45
item_41 0 0 0 1 0 0
item_186 0 0 0 0 1 0
item_128  0  0  0  0  1  0
item_7 0 0 0 0 1 0
     0 0 0 0 1 0
item_16
```

Define the ESEM Model in Lavaan Syntax

```
model <- '
   efa("efa1")*f1 +
   efa("efa1")*f2 +
   efa("efa1")*f3 +
   efa("efa1")*f4 +
    efa("efa1")*f5 +
    efa("efa1")*f6 =~
       item_86 + item_57 + item_5 + item_85 + item_81 +
       # F2
       item_105 + item_48 + item_133 + item_129 + item_39 + item_103 +
       # F3
      item_{143} + item_{79} +
       # F4
      item_111 + item_34 + item_119 + item_116 + item_23 + item_45 + item_41 +
       # F5
       item_186 + item_38 + item_128 + item_7 + item_16 + item_29 +
       # F6
       item_137 + item_96 + item_194
```

Fit the ESEM Model with Target Rotation

```
fit1 <- sem(
  model = model,
  data = imp_selected,
  ordered = TRUE,  # Use ordered estimation if Likert-type items
  rotation = "target",
  rotation.args = list(target = TARGET)
)</pre>
```

```
fit_indices <- fitMeasures(fit1, c(
    "chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr",
    "chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.robust", "tli.robust",
    "rmsea.robust", "srmr"
))

# Display selected fit indices (Standard & Robust)
cat("\nModel Fit Indices (Standard & Robust):\n")</pre>
```

Model Fit Indices (Standard & Robust):

```
fit_indices_df <- data.frame(
   Measure = names(fit_indices),
   Value = round(fit_indices, 3)
)
print(fit_indices_df)</pre>
```

```
Measure
                 Value
1
          chisq 235.901
2
            df 247.000
       pvalue 0.683
3
            cfi 1.000
5
            tli 1.001
6
          rmsea 0.000
7
           srmr 0.037
8
  chisq.scaled 461.729
      df.scaled 247.000
10 pvalue.scaled 0.000
     cfi.robust 0.922
12
     tli.robust 0.872
13 rmsea.robust 0.059
14
           srmr 0.037
```

```
# Extract Standardized Factor Loadings
# Get standardized solution
std_solution <- standardizedSolution(fit1)

# Filter only loadings (Lambda matrix)
std_loadings <- std_solution %>%
filter(op == "=~") %>%
```

```
dplyr::select(lhs, rhs, est.std) %>%
  arrange(lhs, desc(abs(est.std))) # Sorted by factor and magnitude

colnames(std_loadings) <- c("Factor", "Item", "Standardized Loading")

# Display standardized loadings
cat("\nStandardized Factor Loadings:\n")</pre>
```

Standardized Factor Loadings:

print(std_loadings)

	Factor	Item	Standardized.Loading
1	f1	item_81	0.577
2	f1	item_86	0.571
3	f1	item_48	0.511
4	f1	$\mathtt{item_105}$	0.508
5	f1	item_57	0.461
6	f1	item_38	0.358
7	f1	item_39	0.341
8	f1	item_5	0.340
9	f1	$\mathtt{item_103}$	0.312
10	f1	$item_194$	-0.264
11	f1	$\mathtt{item_186}$	0.221
12	f1	$\mathtt{item_137}$	-0.221
13	f1	item_7	0.177
14	f1	item_41	0.170
15	f1	item_96	-0.168
16	f1	item_85	0.167
17	f1	item_34	0.164
18	f1	${\tt item_119}$	-0.157
19	f1	$item_45$	0.134
20	f1	item_29	0.123
21	f1	item_23	-0.116
22	f1	$\mathtt{item_116}$	0.077
23	f1	$\mathtt{item_129}$	0.067
24	f1	item_79	0.065
25	f1	$\mathtt{item_143}$	0.065
26	f1	$item_111$	-0.053
27	f1	$\mathtt{item_133}$	0.031

28	f1	item_128	-0.022
29	f1	item_16	0.007
30	f2	$item_129$	0.908
31	f2	$item_133$	0.836
32	f2	item_81	0.722
33	f2	item_105	0.594
34	f2	$item_48$	0.533
35	f2	$item_103$	0.500
36	f2	item_5	0.475
37	f2	item_39	0.400
38	f2	$item_116$	0.399
39	f2	item_29	0.344
40	f2	$item_111$	0.274
41	f2	item_86	0.260
42	f2	item_23	0.239
43	f2	$item_137$	0.202
44	f2	item_96	0.196
45	f2	item_57	0.191
46	f2	item_34	0.171
47	f2	$item_45$	0.144
48	f2	item_85	0.120
49	f2	item_79	0.101
50	f2	item_16	-0.093
51	f2	$\mathtt{item_119}$	0.086
52	f2	item_41	-0.066
53	f2	item_7	-0.047
54	f2	$\mathtt{item_143}$	-0.045
55	f2	$\mathtt{item_128}$	-0.037
56	f2	$\mathtt{item_194}$	-0.033
57	f2	$\mathtt{item_186}$	-0.027
58	f2	item_38	0.023
59	f3	$\mathtt{item_143}$	0.928
60	f3	item_79	0.852
61	f3	$\mathtt{item_194}$	0.236
62	f3	$\mathtt{item_186}$	0.226
63	f3	item_85	0.213
64	f3	$item_45$	-0.200
65	f3	item_86	-0.181
66	f3	item_39	-0.173
67	f3	$\mathtt{item_116}$	-0.152
68	f3	item_5	0.140
69	f3	item_38	0.135
70	f3	$item_111$	-0.121

71	f3	item_105	0.119
72	f3	$\mathtt{item_128}$	-0.106
73	f3	item_16	-0.102
74	f3	item_48	0.089
75	f3	item_7	-0.077
76	f3	item_23	-0.075
77	f3	item_96	-0.071
78	f3	$\mathtt{item_103}$	-0.062
79	f3	$item_41$	-0.060
80	f3	$\mathtt{item_133}$	0.054
81	f3	$item_34$	-0.045
82	f3	$item_119$	-0.029
83	f3	$\mathtt{item_129}$	0.023
84	f3	item_81	-0.018
85	f3	item_57	-0.012
86	f3	item_29	0.009
87	f3	$item_137$	0.003
88	f4	$item_119$	0.836
89	f4	$item_111$	0.803
90	f4	item_34	0.775
91	f4	item_23	0.705
92	f4	item_41	0.595
93	f4	item_39	0.422
94	f4	$item_103$	0.378
95	f4	$item_116$	0.281
96	f4	$item_194$	0.232
97	f4	item_48	0.229
98	f4	item_85	0.187
99	f4	$item_143$	-0.182
100	f4	item_38	-0.170
101	f4	item_137	0.155
102		item_96	0.139
103	f4	$item_128$	0.129
104	f4	item_86	0.105
105	f4	item_29	-0.082
106	f4	item_57	-0.082
107	f4	item_105	0.070
108	f4	item_7	-0.060
109	f4	item_133	0.060
110	f4	item_45	-0.060
111	f4	item_79	-0.055
112	f4	item_129	-0.054
113	f4	item_16	0.033

114	f4	item_81	-0.030
115	f4	item_5	-0.029
116	f4	item_186	-0.021
117	f5	item_7	1.015
118	f5	item_128	0.800
119	f5	item_16	0.664
120	f5	item_186	0.481
121	f5	item_38	0.426
122	f5	$item_45$	0.397
123	f5	$item_23$	-0.318
124	f5	item_86	0.307
125	f5	item_85	0.238
126	f5	$\mathtt{item_137}$	0.178
127	f5	$\mathtt{item_103}$	-0.166
128	f5	item_57	0.161
129	f5	$\mathtt{item_143}$	0.161
130	f5	item_79	0.160
131	f5	item_39	0.157
132	f5	$item_194$	0.138
133	f5	item_81	0.121
134	f5	$\mathtt{item_129}$	0.114
135	f5	$item_111$	-0.100
136	f5	item_34	-0.096
137	f5	${\tt item_119}$	-0.091
138	f5	$\mathtt{item_105}$	0.091
139	f5	item_96	0.077
140	f5	item_5	-0.064
141	f5	$item_41$	-0.060
142	f5	item_29	0.057
143	f5	$\mathtt{item_133}$	-0.033
144	f5	$\mathtt{item_116}$	-0.022
145	f5	$item_48$	-0.021
146	f6	$\mathtt{item_137}$	0.842
147	f6	item_96	0.758
148	f6	$\mathtt{item_116}$	0.492
149	f6	$\mathtt{item_194}$	0.399
150	f6	item_81	-0.286
151	f6	$\mathtt{item_103}$	0.256
152	f6	item_23	0.242
153	f6	item_39	0.223
154	f6	item_38	0.223
155	f6	item_57	-0.221
156	f6	item_86	-0.216

```
157
       f6 item_48
                                  -0.199
158
       f6 item_34
                                   0.167
159
       f6 item_128
                                   0.130
160
       f6 item_45
                                  0.130
161
       f6 item 143
                                  0.126
162
       f6 item_41
                                  -0.120
163
       f6 item 186
                                  0.108
164
       f6
            item_7
                                   0.106
165
       f6 item_111
                                  -0.097
166
       f6 item_133
                                  0.082
167
       f6 item_79
                                  0.056
168
       f6 item_16
                                  0.033
169
       f6 item_119
                                  -0.017
170
       f6 item_85
                                  -0.011
171
       f6
            item_5
                                  0.010
172
       f6 item_129
                                  -0.009
173
       f6 item_105
                                  0.005
174
                                   0.000
       f6 item_29
```

```
# Extract Interfactor Correlations
# Extract standardized correlations (Phi matrix)
interfactor_corr <- std_solution %>%
    dplyr::filter(op == "~~" & lhs != rhs) %>% # Only factor correlations
    dplyr::select(lhs, rhs, est.std) %>%
    arrange(desc(abs(est.std))) # Sort by magnitude

colnames(interfactor_corr) <- c("Factor 1", "Factor 2", "Standardized Correlation")
# Display interfactor correlations
cat("\nInterfactor Correlations:\n")</pre>
```

Interfactor Correlations:

print(interfactor_corr)

```
4
         f3
                   f5
                                          0.517
5
         f5
                   f6
                                         -0.405
6
         f4
                   f6
                                         -0.394
7
         f2
                   f6
                                          0.349
                                         -0.282
8
         f3
                   f6
9
         f1
                   f5
                                         -0.267
10
         f2
                   f4
                                         -0.212
11
         f2
                   f3
                                         -0.203
12
         f1
                   f3
                                         -0.147
13
         f1
                   f4
                                         -0.121
14
         f2
                   f5
                                         -0.043
15
         f1
                   f2
                                          0.010
```

Classification Accuracy

```
# Extract manifest variables (indicators) from the fitted model
indicator_names <- lavNames(fit1, type = "ov")</pre>
# Select corresponding variables from imputed data
XX <- imp_selected |>
  dplyr::select(all_of(indicator_names))
# Convert to matrix for modeling
X <- as.matrix(XX)</pre>
y <- df$death_risk
# Ensure death_risk is a binary factor
df$death_risk <- as.factor(df$death_risk)</pre>
# Merge imp_selected with the outcome variable
df_model <- imp_selected %>%
  mutate(death_risk = df$death_risk)
# Split data into training (80%) and testing (20%) sets
set.seed(123) # For reproducibility
trainIndex <- createDataPartition(df model$death_risk, p = 0.8, list = FALSE)
train_data <- df_model[trainIndex, ]</pre>
test_data <- df_model[-trainIndex, ]</pre>
# Fit logistic regression model
logit_model <- glm(death_risk ~ ., data = train_data, family = binomial)</pre>
```

```
# Predict probabilities on test set
pred_probs <- predict(logit_model, test_data, type = "response")</pre>
# Convert probabilities to class labels (0.5 threshold)
pred_classes <- factor(ifelse(pred_probs > 0.5, 1, 0), levels = levels(test_data$death_risk)
# Compute classification accuracy
accuracy <- mean(pred_classes == test_data$death_risk)</pre>
cat("Classification Accuracy:", round(accuracy, 3), "\n")
Classification Accuracy: 0.556
# Compute AUC (Area Under the Curve)
roc_curve <- roc(test_data$death_risk, pred_probs)</pre>
Setting levels: control = 0, case = 1
Setting direction: controls < cases
auc_value <- auc(roc_curve)</pre>
cat("AUC:", round(auc_value, 3), "\n")
AUC: 0.611
# Permutation Test: Evaluating Accuracy Against Chance Level
set.seed(123)
null_accuracies <- replicate(1000, {</pre>
  shuffled_risk <- sample(train_data$death_risk) # Shuffle class labels</pre>
  # Fit model on shuffled labels
  null_model <- glm(shuffled_risk ~ ., data = train_data, family = binomial)</pre>
  # Predict using null model
  null_preds <- predict(null_model, test_data, type = "response")</pre>
  null_classes <- factor(ifelse(null_preds > 0.5, 1, 0), levels = levels(test_data$death_ris
  mean(null_classes == test_data$death_risk) # Compute accuracy on actual test labels
})
```

```
# Compute p-value: Proportion of null models performing as well as or better than the real m p_value <- mean(null_accuracies >= accuracy) cat("P-value for classification above chance:", round(p_value, 4), "\n")
```

P-value for classification above chance: 0.332

```
# Plot ROC Curve
plot(roc_curve, col = "blue", main = "ROC Curve")
abline(a = 0, b = 1, lty = 2, col = "red") # Reference line for random classification
```


Remove the worse items

```
selected_items <- c(
   "i_86", "i_57", "i_5", "i_81",
   "i_105", "i_48", "i_133", "i_129", "i_39", "i_103",
   "i_143", "i_79",
   "i_111", "i_34", "i_119", "i_116", "i_23", "i_41",
   "i_186", "i_38", "i_128", "i_7", "i_16",
   "i_137", "i_96", "i_194"</pre>
```

```
)
# Convert to match column names in `imp`
selected_items_corrected <- paste0("item_", sub("^i_", "", selected_items))</pre>
# Ensure only existing columns are selected
existing_items <- intersect(selected_items_corrected, colnames(imp))</pre>
# Issue a warning if any items are missing
missing_items <- setdiff(selected_items_corrected, existing_items)</pre>
if (length(missing_items) > 0) {
warning("The following items were not found in the dataset: ", paste(missing_items, collapse)
}
# Select the matching columns
imp_selected <- imp %>%
  dplyr::select(all_of(existing_items))
# Validate the selection
print(names(imp_selected))
 [1] "item_86" "item_57" "item_5"
                                       "item_81" "item_105" "item_48"
 [7] "item_133" "item_129" "item_39" "item_103" "item_143" "item_79"
[13] "item_111" "item_34" "item_119" "item_116" "item_23" "item_41"
[19] "item_186" "item_38" "item_128" "item_7"
                                                 "item_16" "item_137"
[25] "item_96" "item_194"
# Define Target Matrix for Factor Structure (26x6)
# Initialize a 26x6 matrix filled with zeros
TARGET <- matrix(0, nrow = length(existing_items), ncol = 6)</pre>
# Assign factor loadings dynamically
factor_assignments <- list(</pre>
 F1 = c(1:4),
 F2 = c(5:10),
 F3 = c(11:12),
 F4 = c(13:18),
  F5 = c(19:23),
  F6 = c(24:26)
```

```
# Assign 1s based on factor structure
for (factor in names(factor_assignments)) {
   TARGET[factor_assignments[[factor]], as.numeric(substr(factor, 2, 2))] <- 1
}

# Add row and column names for clarity
rownames(TARGET) <- existing_items
colnames(TARGET) <- pasteO("F", 1:6)

# Print the target rotation matrix
print(TARGET)</pre>
```

```
F1 F2 F3 F4 F5 F6
item_86
    1 0 0 0 0 0
item_57
     1 0 0 0 0 0
item_5 1 0 0 0 0 0
item_81 1 0 0 0 0 0
item_105 0 1 0 0 0 0
item_143 0 0 1 0 0 0
item_111 0 0 0 1 0 0
item_119 0 0 0 1 0 0
item_116 0 0 0 1 0 0
item_23 0 0 0 1 0 0
item_41
    0 0 0 1 0 0
item_186 0 0 0 0 1 0
0 0 0 0 1 0
item_7
    0 0 0 0 1 0
item_16
item_137 0 0 0 0 0 1
    0 0 0 0 0 1
item_96
item_194 0 0 0 0 0 1
```

```
# Define the ESEM Model in Lavaan Syntax
model <- '
    efa("efa1")*f1 +
    efa("efa1")*f2 +
    efa("efa1")*f3 +
    efa("efa1")*f4 +
    efa("efa1")*f5 +
    efa("efa1")*f6 =~
       # F1
       item_86 + item_57 + item_5 + item_81 +
       item_105 + item_48 + item_133 + item_129 + item_39 + item_103 +
       # F3
       item_{143} + item_{79} +
       # F4
       item 111 + item 34 + item 119 + item 116 + item 23 + item 41 +
       item_186 + item_38 + item_128 + item_7 + item_16 +
       # F6
       item_137 + item_96 + item_194
# Fit the ESEM Model with Target Rotation
fit2 <- sem(
  model = model,
  data = imp_selected,
  ordered = TRUE, # Use ordered estimation if Likert-type items
 rotation = "target",
  rotation.args = list(target = TARGET)
)
fit2 indices <- fitMeasures(fit2, c(</pre>
  "chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr",
  "chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.robust", "tli.robust",
  "rmsea.robust", "srmr"
))
# Display selected fit indices (Standard & Robust)
cat("\nModel Fit Indices (Standard & Robust):\n")
```

Model Fit Indices (Standard & Robust):

```
fit2_indices_df <- data.frame(
    Measure = names(fit2_indices),
    Value = round(fit2_indices, 3)
)
print(fit2_indices_df)</pre>
```

```
Value
        Measure
          chisq 182.195
1
2
             df 184.000
         pvalue
3
                  0.524
4
                 1.000
            cfi
5
            tli
                  1.000
6
          rmsea 0.000
7
           srmr
                  0.035
8
   chisq.scaled 391.429
9
      df.scaled 184.000
10 pvalue.scaled 0.000
11
     cfi.robust 0.930
12
     tli.robust 0.877
13 rmsea.robust 0.063
14
           srmr 0.035
```

```
# Extract Standardized Factor Loadings
# Get standardized solution
std_solution <- standardizedSolution(fit2)

# Filter only loadings (Lambda matrix)
std_loadings <- std_solution %>%
    filter(op == "=~") %>%
    dplyr::select(lhs, rhs, est.std) %>%
    arrange(lhs, desc(abs(est.std))) # Sorted by factor and magnitude

colnames(std_loadings) <- c("Factor", "Item", "Standardized Loading")

# Display standardized loadings
cat("\nStandardized Factor Loadings:\n")</pre>
```

Standardized Factor Loadings:

print(std_loadings)

	Factor	Item	Standardized.Loading
1	f1	item_81	0.562
2	f1	item_86	0.553
3	f1	$\mathtt{item_105}$	0.485
4	f1	$item_48$	0.474
5	f1	item_57	0.436
6	f1	item_5	0.336
7	f1	item_39	0.327
8	f1	item_38	0.322
9	f1	$item_103$	0.316
10	f1	item_194	-0.314
11	f1	item_119	-0.255
12	f1	item_137	-0.196
13	f1	item_186	0.157
14	f1	item_7	0.147
15	f1	item_111	-0.139
16	f1	item_23	-0.134
17	f1	item_96	-0.127
18	f1	item_41	0.117
19	f1	item_34	0.106
20	f1	item_116	0.106
21	f1	item_129	0.082
22	f1	item_79	-0.064
23	f1	$item_143$	-0.059
24	f1	item_128	-0.050
25	f1	$item_133$	0.026
26	f1	item_16	-0.003
27	f2	$item_129$	0.890
28	f2	$item_133$	0.848
29	f2	item_81	0.738
30	f2	$item_105$	0.632
31	f2	item_48	0.559
32	f2	$item_103$	0.502
33	f2	item_5	0.475
34	f2	item_39	0.416
35	f2	item_116	0.382
36	f2	$item_111$	0.298
37	f2	item_86	0.283
38	f2	item_57	0.213
39	f2	item_23	0.195

40	f2	item_137	0.192
41	f2	item_96	0.186
42	f2	$item_34$	0.153
43	f2	item_79	0.123
44	f2	$item_119$	0.111
45	f2	item_16	-0.107
46	f2	item_38	0.079
47	f2	$item_41$	-0.077
48	f2	$item_7$	-0.036
49	f2	$item_128$	-0.032
50	f2	$item_194$	-0.032
51	f2	$item_186$	0.018
52	f2	$\mathtt{item_143}$	-0.002
53	f3	$item_143$	0.952
54	f3	item_79	0.787
55	f3	$item_186$	0.227
56	f3	$item_194$	0.206
57	f3	item_86	-0.176
58	f3	$item_116$	-0.154
59	f3	item_38	0.143
60	f3	$\mathtt{item_105}$	0.132
61	f3	$item_128$	-0.129
62	f3	item_39	-0.122
63	f3	$item_5$	0.122
64	f3	$item_16$	-0.112
65	f3	$item_111$	-0.112
66	f3	$item_48$	0.111
67	f3	item_23	-0.109
68	f3	$item_41$	-0.084
69	f3	$item_7$	-0.080
70	f3	$item_34$	-0.067
71	f3	$item_103$	-0.066
72	f3	$item_133$	0.053
73	f3	item_57	-0.051
74	f3	item_96	-0.050
75	f3	$item_137$	0.018
76	f3	$item_119$	-0.018
77	f3	item_81	-0.018
78	f3	item_129	0.010
79	f4	item_119	0.837
80	f4	item_34	0.792
81	f4	$item_111$	0.792
82	f4	item_23	0.750

83	f4	item_41	0.614
84	f4	item_39	0.376
85	f4	$item_103$	0.357
86	f4	item_116	0.254
87	f4	item_38	-0.250
88	f4	item_194	0.228
89	f4	$item_48$	0.226
90	f4	item_7	-0.172
91	f4	item_57	-0.138
92	f4	$\mathtt{item_143}$	-0.135
93	f4	$\mathtt{item_137}$	0.116
94	f4	item_96	0.103
95	f4	$\mathtt{item_186}$	-0.077
96	f4	$\mathtt{item_129}$	-0.069
97	f4	item_81	-0.061
98	f4	$\mathtt{item_133}$	0.039
99	f4	item_86	0.033
100	f4	item_16	-0.029
101	f4	item_5	-0.023
102	f4	item_79	0.022
103	f4	$\mathtt{item_128}$	0.021
104	f4	$\mathtt{item_105}$	0.020
105	f5	item_7	1.084
106	f5	$\mathtt{item_128}$	0.906
107	f5	item_16	0.723
108	f5	$\mathtt{item_186}$	0.504
109	f5	item_38	0.455
110	f5	item_86	0.324
111	f5	item_23	-0.323
112	f5	item_57	0.199
113	f5	$item_137$	0.198
114	f5	$\mathtt{item_103}$	-0.175
115	f5	$item_194$	0.173
116	f5	item_79	0.123
117	f5	$item_111$	-0.122
118	f5	item_39	0.121
119	f5	$\mathtt{item_119}$	-0.106
120	f5	$item_143$	0.102
121	f5	item_34	-0.101
122	f5	item_96	0.092
123	f5	item_5	-0.088
124	f5	item_48	-0.085
125	f5	item_133	-0.077

```
127
        f5 item_81
                                   0.067
128
        f5 item_129
                                   0.059
129
        f5 item_41
                                  -0.049
130
        f5 item 116
                                  -0.028
131
        f6 item_137
                                   0.822
132
        f6 item 96
                                   0.733
133
        f6 item_116
                                   0.488
134
        f6 item_194
                                   0.403
135
        f6 item_81
                                  -0.275
136
        f6 item_23
                                   0.268
137
        f6 item_103
                                   0.251
138
        f6 item_39
                                   0.207
139
        f6 item_86
                                  -0.206
        f6 item_48
140
                                  -0.205
141
        f6 item_38
                                   0.202
142
        f6 item_57
                                  -0.200
143
        f6 item_34
                                   0.193
144
        f6 item_128
                                   0.157
145
        f6
             item 7
                                   0.129
146
        f6 item_143
                                   0.126
147
        f6 item 111
                                  -0.107
148
        f6 item_186
                                   0.101
                                  -0.093
149
        f6 item_41
150
        f6 item_79
                                   0.076
151
        f6 item_133
                                   0.071
152
        f6 item_16
                                   0.060
153
        f6 item_119
                                  -0.028
154
        f6
             item_5
                                   0.019
155
        f6 item_105
                                  -0.008
156
        f6 item_129
                                  -0.005
# Extract Interfactor Correlations
# Extract standardized correlations (Phi matrix)
interfactor_corr <- std_solution %>%
```

0.073

126

 $f5 item_105$

colnames(interfactor_corr) <- c("Factor 1", "Factor 2", "Standardized Correlation")</pre>

dplyr::filter(op == "~~" & lhs != rhs) %>% # Only factor correlations

dplyr::select(lhs, rhs, est.std) %>%

arrange(desc(abs(est.std))) # Sort by magnitude

```
# Display interfactor correlations
cat("\nInterfactor Correlations:\n")
```

Interfactor Correlations:

```
print(interfactor_corr)
```

	Factor.1	Factor.2	Standardized.Correlation
1	f4	f5	0.710
2	f3	f4	0.678
3	f3	f5	0.551
4	f1	f6	0.497
5	f5	f6	-0.426
6	f4	f6	-0.365
7	f2	f6	0.345
8	f3	f6	-0.237
9	f2	f3	-0.202
10	f1	f5	-0.187
11	f2	f4	-0.171
12	f1	f2	-0.049
13	f2	f5	-0.021
14	f1	f4	0.016
15	f1	f3	0.015

Combine the first two factors

Also, add additional items to maximize classification accuracy. These are the items that maximally contribute to accurate classification: item_22 item_23 item_26 item_40 item_99 item_121 item_125 item_139 item_157 item_159 item_164 item_187.

```
selected_items <- c(
   "i_86", "i_57", "i_5", "i_81",
   "i_105", "i_48", "i_133", "i_129", "i_39", "i_103",
   "i_143", "i_79",
   "i_111", "i_34", "i_119", "i_23", "i_41", "i_139",
   "i_186", "i_38", "i_128", "i_7", "i_16", "i_125",
   "i_137", "i_96", "i_194", "i_159"
)</pre>
```

```
# Convert to match column names in `imp`
selected_items_corrected <- paste0("item_", sub("^i_", "", selected_items))</pre>
# Ensure only existing columns are selected
existing_items <- intersect(selected_items_corrected, colnames(imp))</pre>
# Issue a warning if any items are missing
missing_items <- setdiff(selected_items_corrected, existing_items)</pre>
if (length(missing_items) > 0) {
 warning("The following items were not found in the dataset: ", paste(missing_items, collap.
}
# Select the matching columns
imp_selected <- imp %>%
  dplyr::select(all_of(existing_items))
# Validate the selection
print(names(imp_selected))
 [1] "item_86" "item_57" "item_5" "item_81" "item_105" "item_48"
 [7] "item_133" "item_129" "item_39" "item_103" "item_143" "item_79"
[13] "item_111" "item_34" "item_119" "item_23" "item_41" "item_139"
[19] "item 186" "item 38" "item 128" "item 7"
                                                 "item 16" "item 125"
[25] "item_137" "item_96" "item_194" "item_159"
# Define Target Matrix for Factor Structure
# Determine the number of rows dynamically
num_items <- length(existing_items)</pre>
TARGET <- matrix(0, nrow = num_items, ncol = 5)</pre>
# Assign factor loadings dynamically
factor_assignments <- list(</pre>
  F1 = 1:10,  # Caratteristiche bambino e richieste caregiving
 F2 = 11:12, # Percezione cura
  F3 = 13:18, # Fattori intrapsichici
 F4 = 19:24, # Coping
  F5 = 25:28 # Iperprotezione
)
# Assign 1s based on factor structure
```

```
for (factor in names(factor_assignments)) {
   TARGET[factor_assignments[[factor]], as.numeric(substr(factor, 2, 2))] <- 1
}

# Add row and column names for clarity
rownames(TARGET) <- existing_items
colnames(TARGET) <- paste0("F", 1:5)

# Print the target rotation matrix
print(TARGET)</pre>
```

```
F1 F2 F3 F4 F5
item_86
     1 0 0 0 0
item_57
    1 0 0 0 0
item_5
     1 0 0 0 0
item_105 1 0 0 0 0
item_133 1 0 0 0 0
item_129 1 0 0 0 0
item_143 0 1 0 0 0
item_111 0 0 1 0 0
item_119 0 0 1 0 0
item_23 0 0 1 0 0
item_139 0 0 1 0 0
item_186  0  0  0  1  0
item_128  0  0  0  1  0
item_7 0 0 0 1 0
item_16
     0 0 0 1 0
item_125 0 0 0 1 0
item_137 0 0 0 0 1
item_96  0  0  0  0  1
item_159 0 0 0 0 1
```

```
# Define the ESEM Model in Lavaan Syntax
model <- '
    efa("efa1")*f1 +
   efa("efa1")*f2 +
    efa("efa1")*f3 +
    efa("efa1")*f4 +
    efa("efa1")*f5 =~
       # F1
       item_86 + item_57 + item_5 + item_81 +
       item_105 + item_48 + item_133 + item_129 + item_39 + item_103 +
       # F2
       item_143 + item_79 +
       # F3
      item_111 + item_34 + item_119 + item_23 + item_41 + item_139 +
       item_186 + item_38 + item_128 + item_7 + item_16 + item_125 +
       # F4
       item_137 + item_96 + item_194 + item_159
# Fit the ESEM Model with Target Rotation
fit3 <- sem(
 model = model,
  data = imp_selected,
 ordered = TRUE, # Use ordered estimation if Likert-type items
 rotation = "target",
  rotation.args = list(target = TARGET)
)
fit3_indices <- fitMeasures(fit3, c(</pre>
  "chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr",
  "chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.robust", "tli.robust",
  "rmsea.robust", "srmr"
))
# Display selected fit indices (Standard & Robust)
```

Model Fit Indices (Standard & Robust):

cat("\nModel Fit Indices (Standard & Robust):\n")

```
fit3_indices_df <- data.frame(
   Measure = names(fit3_indices),
   Value = round(fit3_indices, 3)
)
print(fit3_indices_df)</pre>
```

```
Measure
                  Value
          chisq 342.662
1
2
             df 248.000
         pvalue
3
                  0.000
4
            cfi
                  0.994
5
            tli
                0.990
6
          rmsea
                  0.029
7
                  0.044
           srmr
8
  chisq.scaled 648.584
9
      df.scaled 248.000
10 pvalue.scaled 0.000
     cfi.robust 0.864
     tli.robust 0.793
12
13 rmsea.robust 0.081
14
           srmr 0.044
```

```
# Extract Standardized Factor Loadings
# Get standardized solution
std_solution <- standardizedSolution(fit3)

# Filter only loadings (Lambda matrix)
std_loadings <- std_solution %>%
    filter(op == "=~") %>%
    dplyr::select(lhs, rhs, est.std) %>%
    arrange(lhs, desc(abs(est.std))) # Sorted by factor and magnitude

colnames(std_loadings) <- c("Factor", "Item", "Standardized Loading")

# Display standardized loadings
cat("\nStandardized Factor Loadings:\n")</pre>
```

Standardized Factor Loadings:

print(std_loadings)

	Factor	Item	Standardized.Loading
1	f1	item_81	0.973
2	f1	$\mathtt{item_105}$	0.830
3	f1	$\mathtt{item_129}$	0.805
4	f1	item_48	0.750
5	f1	$\mathtt{item_133}$	0.730
6	f1	item_39	0.705
7	f1	$\mathtt{item_103}$	0.693
8	f1	item_86	0.640
9	f1	item_5	0.577
10	f1	item_57	0.433
11	f1	item_34	0.349
12	f1	item_38	0.314
13	f1	item_7	0.304
14	f1	$\mathtt{item_143}$	-0.295
15	f1	item_41	0.265
16	f1	item_96	0.251
17	f1	item_23	0.211
18	f1	$\mathtt{item_194}$	-0.204
19	f1	${\tt item_128}$	0.193
20	f1	$\mathtt{item_111}$	0.188
21	f1	$\mathtt{item_159}$	0.184
22	f1	\mathtt{item}_137	0.172
23	f1	item_79	-0.166
24	f1	$item_186$	0.160
25	f1	$\mathtt{item_139}$	0.116
26	f1	item_16	0.083
27	f1	$\mathtt{item_125}$	0.072
28	f1	$\mathtt{item_119}$	-0.034
29	f2	$\mathtt{item_143}$	0.746
30	f2	item_79	0.641
31	f2	$\mathtt{item_125}$	0.317
32	f2	item_129	-0.314
33	f2	$\mathtt{item_133}$	-0.279
34	f2	$item_186$	0.255
35	f2	$\mathtt{item_194}$	0.244
36	f2	$\mathtt{item_137}$	0.239
37	f2	$\mathtt{item_139}$	0.192
38	f2	item_81	-0.185
39	f2	item_38	0.170

40	f2	item_96	0.168
41	f2	$item_41$	0.164
42	f2	item_111	-0.152
43	f2	$item_34$	0.107
44	f2	item_159	0.096
45	f2	item_86	-0.079
46	f2	item_5	0.056
47	f2	item_128	-0.052
48	f2	$item_57$	-0.050
49	f2	item_105	0.049
50	f2	$item_16$	-0.047
51	f2	$item_23$	0.026
52	f2	$item_48$	0.016
53	f2	item_119	-0.015
54	f2	item_39	0.013
55	f2	item_103	0.011
56	f2	$item_7$	-0.006
57	f3	$item_41$	0.959
58	f3	item_119	0.787
59	f3	item_111	0.768
60	f3	item_139	0.767
61	f3	$item_34$	0.657
62	f3	$item_23$	0.609
63	f3	$item_48$	0.359
64	f3	item_39	0.344
65	f3	item_38	-0.299
66	f3	$item_79$	0.227
67	f3	item_103	0.214
68	f3	item_159	-0.184
69	f3	$item_7$	-0.161
70	f3	item_133	0.149
71	f3	item_194	0.117
72	f3	item_81	0.111
73	f3	item_105	0.093
74	f3	item_186	-0.092
75	f3	item_143	0.088
76	f3	$item_57$	-0.086
77	f3	item_129	0.075
78	f3	$item_16$	-0.063
79	f3	item_137	-0.054
80	f3	$item_5$	0.051
81	f3	item_125	-0.049
82	f3	item_86	0.047

83	f3	item_128	-0.019
84	f3	item_96	-0.011
85	f4	$item_7$	1.058
86	f4	${\tt item_128}$	0.878
87	f4	$\mathtt{item_125}$	0.742
88	f4	$item_16$	0.698
89	f4	$\mathtt{item_186}$	0.670
90	f4	item_38	0.548
91	f4	item_86	0.427
92	f4	item_23	-0.343
93	f4	$\mathtt{item_143}$	0.317
94	f4	item_79	0.305
95	f4	item_57	0.291
96	f4	$\mathtt{item_105}$	0.259
97	f4	$item_41$	-0.256
98	f4	item_81	0.254
99	f4	$\mathtt{item_139}$	-0.232
100	f4	item_96	-0.155
101	f4	$\mathtt{item_129}$	0.145
102	f4	$item_194$	0.138
103	f4	$item_48$	0.114
104	f4	item_39	0.106
105	f4	$\mathtt{item_159}$	-0.104
106	f4	$item_111$	-0.080
107	f4	$\mathtt{item_137}$	-0.066
108	f4	item_34	-0.061
109	f4	$\mathtt{item_119}$	-0.059
110	f4	$\mathtt{item_103}$	-0.032
111	f4	item_5	0.017
112	f4	$\mathtt{item_133}$	-0.010
113		$\mathtt{item_137}$	0.665
114	f5	$\mathtt{item_159}$	0.586
115	f5	item_96	0.463
116	f5	$\mathtt{item_194}$	0.455
117	f5	$\mathtt{item_139}$	-0.430
118	f5	$\mathtt{item_143}$	0.364
119	f5	$item_41$	-0.364
120	f5	item_79	0.337
121	f5	$\mathtt{item_133}$	0.325
122	f5	item_86	-0.248
123	f5	item_23	0.219
124	f5	item_81	-0.197
125	f5	$\mathtt{item_129}$	0.194

```
126
       f5 item_119
                                  0.180
127
       f5 item_57
                                 -0.174
128
       f5 item_111
                                  0.140
129
       f5
           item_7
                                 -0.125
130
       f5 item 48
                                 -0.119
131
       f5 item_103
                                  0.107
132
       f5 item_34
                                  0.107
       f5 item_16
133
                                 -0.099
134
       f5 item_39
                                  0.077
135
       f5 item_128
                                 -0.056
136
       f5 item_5
                                  0.049
137
       f5 item_38
                                  0.044
138
       f5 item_186
                                  0.032
139
       f5 item_105
                                  0.030
140
       f5 item_125
                                  0.015
```

```
# Extract Interfactor Correlations
# Extract standardized correlations (Phi matrix)
interfactor_corr <- std_solution %>%
   dplyr::filter(op == "~~" & lhs != rhs) %>% # Only factor correlations
   dplyr::select(lhs, rhs, est.std) %>%
   arrange(desc(abs(est.std))) # Sort by magnitude

colnames(interfactor_corr) <- c("Factor 1", "Factor 2", "Standardized Correlation")
# Display interfactor correlations
cat("\nInterfactor Correlations:\n")</pre>
```

Interfactor Correlations:

print(interfactor_corr)

	Factor.1	Factor.2	Standardized.Correlation
1	f3	f4	0.751
2	f1	f3	-0.451
3	f1	f4	-0.424
4	f1	f5	0.335
5	f1	f2	0.235
6	f2	f5	-0.225

```
7
         f4
                   f5
                                          0.128
         f2
                   f4
                                         -0.071
8
9
         f3
                   f5
                                          0.031
10
         f2
                   f3
                                         -0.010
```

Classification Accuracy

```
# Get observed variable names from the fitted model
indicator_names <- lavNames(fit3, type = "ov")</pre>
# Select corresponding variables from imputed dataset
XX <- imp_selected |>
  dplyr::select(all_of(indicator_names))
# Convert to matrix for modeling
X <- as.matrix(XX)</pre>
y <- df$death_risk # Outcome variable
# Ensure death_risk is a binary factor
df$death_risk <- factor(df$death_risk)</pre>
# Merge imputed data with the criterion variable
df_model <- imp_selected %>%
  mutate(death_risk = df$death_risk)
# Validate the factor levels
if (length(levels(df_model$death_risk)) != 2) {
  stop("Error: The death_risk variable must be binary.")
}
# Train-Test Split
set.seed(123) # For reproducibility
trainIndex <- createDataPartition(df_model$death_risk, p = 0.8, list = FALSE)</pre>
train_data <- df_model[trainIndex, ]</pre>
test_data <- df_model[-trainIndex, ]</pre>
# Fit Logistic Regression Model
logit_model <- glm(death_risk ~ ., data = train_data, family = binomial)</pre>
# Predict probabilities on test set
pred_probs <- predict(logit_model, test_data, type = "response")</pre>
```

```
# Convert probabilities to class labels using dynamic factor levels
threshold <- 0.5
pred_classes <- factor(ifelse(pred_probs > threshold, levels(df$death_risk)[2], levels(df$death_risk)
                        levels = levels(df$death_risk))
# Compute classification accuracy
accuracy <- mean(pred_classes == test_data$death_risk, na.rm = TRUE)
cat("Classification Accuracy:", round(accuracy, 3), "\n")
Classification Accuracy: 0.622
# Compute AUC (Area Under the Curve)
roc_curve <- roc(test_data$death_risk, pred_probs)</pre>
Setting levels: control = 0, case = 1
Setting direction: controls < cases
auc_value <- auc(roc_curve)</pre>
cat("AUC:", round(auc_value, 3), "\n")
AUC: 0.71
# Permutation Test: Evaluating Accuracy Against Chance Level
set.seed(123)
null_accuracies <- replicate(1000, {</pre>
  shuffled_risk <- sample(train_data$death_risk) # Shuffle class labels</pre>
  # Fit model on shuffled labels
  null_model <- glm(shuffled_risk ~ ., data = train_data, family = binomial)</pre>
  # Predict using null model
  null_preds <- predict(null_model, test_data, type = "response")</pre>
  null_classes <- factor(ifelse(null_preds > threshold, levels(df$death_risk)[2], levels(df$
                          levels = levels(df$death_risk))
  mean(null_classes == test_data$death_risk, na.rm = TRUE) # Compute accuracy on actual test
})
```

```
# Compute p-value: Proportion of null models performing as well as or better than the real models p-value <- mean(null_accuracies >= accuracy) cat("P-value for classification above chance:", round(p_value, 4), "\n")
```

P-value for classification above chance: 0.123

```
# Plot ROC Curve
plot(roc_curve, col = "blue", main = "ROC Curve")
abline(a = 0, b = 1, lty = 2, col = "red") # Reference line for random classification
```


Interpreting the Results

Classification Accuracy:

Measures the percentage of correct classifications in the test set. If accuracy > 0.70, the model has reasonably good predictive power.

AUC (Area Under the Curve):

AUC = 0.5: Model performs at chance level (random guessing). AUC > 0.7: Good discrimination between positive/negative cases. AUC = 1: Excellent classification performance.

Permutation Test (p-value):

Tests whether the classifier performs significantly better than chance. If p < 0.05: The model significantly outperforms random classification. If p $\,$ 0.5: The model is not better than random guessing.