MOUVEMENT DANS E ET B (CCP PC 2014 épreuve 2)

A. Mouvement d'une particule chargée dans un champ magnétique uniforme

Référentiel : ℜ Galiléen Système : M(q,m) Force : F=qv∧B

Mouvement circulaire uniforme

Si le mouvement est circulaire la base polaire est la plus adaptée (attention avec l'orientation il y a deux vecteurs $\overrightarrow{e_z}$)

$$\vec{v} = v\vec{e_{\theta}} = R\dot{\theta}\vec{e_{\theta}}$$

$$\vec{a} = \frac{dv}{dt} \vec{e_{\theta}} - \dot{\theta}^2 R \vec{e_r} = \frac{dv}{dt} \vec{e_{\theta}} - \frac{v^2}{R} \vec{e_r}$$

$$\vec{F} = q\vec{v} \wedge \vec{B} = q \ v \overrightarrow{e_{\theta}} \wedge -B \overrightarrow{e_{zcylin}} = -qvB \overrightarrow{e_r}$$

<u>Loi</u> : deuxième loi de Newton : ma = F

$$\frac{\text{Projections}}{\text{Projections}}: \begin{cases} m\frac{v^2}{R} = qvE \\ m\frac{dv}{dt} = 0 \end{cases}$$

Ainsi de la deuxième projection on en déduit que le

mouvement est <u>uniforme v = cst = v_0 </u>

Et de la première projection $R = \frac{mv_0}{aB}$

B. Le cyclotron

B.1. Durée T_{1/2} pour un demi-tour

Dans les Dee d'après l'étude du A, les protons ont un mouvement circulaire uniforme.

Ainsi
$$T_{1/2} = \frac{\pi R}{v}$$

On remplace le rayon par l'expression donnée : $T_{1/2} = \frac{\pi m_p}{gB}$

On remarque que le temps ne dépend pas de la vitesse des protons. Ils mettront donc à chaque demi-tour le même temps pour l'effectuer.

B.2. Le choix de la tension

On choisit une tension sinusoïdale pour qu'à chaque passage entre les Dee le champ électrique soit dans le bon sens pour accélérer les protons.

B.3. Expression de la fréquence

Si on néglige le temps de parcours d'un Dee à l'autre, un proton se présente dans la même direction entre les Dee après avoir fait deux demi-tours.

Ainsi T =
$$\frac{1}{f}$$
 = 2T_{1/2}.
Soit $f = \frac{qB}{f}$

Application numérique : f = 15,2 MHz

B.4. Energie cinétique en sorti du cyclotron

Le dernier demi-tour dans le cyclotron correspond à un rayon R_s.

Ainsi d'après le A les protons ont une vitesse : $v_s = \frac{qBR_s}{m_p}$

Or l'énergie cinétique $E_c = \frac{1}{2}mv^2$

On en déduit
$$E_{cS} = \frac{q^2 B^2 R_S^2}{2m_p}$$

Application numérique : $E_{CS} = 1,92 \cdot 10^{-12} \text{ J} = 12,0 \text{ MeV}$

B.5. Nombres de tours

- Théorème de l'énergie cinétique pour une particule chargée dans une différence de potentiel : ∆Ec = qU
- Ainsi à chaque demi-tour les protons reçoivent une énergie cinétique $\Delta Ec = qU_m$ En effet on néglige le temps de parcours entre les Dee on peut ainsi supposer que la tension garde comme valeur celle de son amplitude
- Pour N tours les protons passent 2N fois entre les Dee.

Le gain d'énergie est donc $\Delta E_{CT} = E_{CS} - 0 = 2NqU_m$

D'où
$$N = \frac{qB^2R_S^2}{4U_mm_p}$$

Application numérique : N = 60 tours

B.6.1. Expression de α

Pour un mouvement circulaire uniforme on a l'accélération $a = \frac{v^2}{R}$ D'où en remplaçant dans l'expression de la puissance $P = \frac{\mu_0 q^2}{6\pi c} \frac{v^4}{R^2} = \alpha v^4$

Par identification $\alpha = \frac{\mu_0 q^2}{6\pi c R^2}$

B.6.2. L'énergie rayonnée lors du dernier demi-tour

On a
$$E_{\text{ray}} = PT_{1/2} = \frac{\mu_0 q^2}{6\pi c R^2} \frac{\pi m_p}{qB} \left(\frac{qBR_s}{m_p}\right)^4$$

Ainsi : $E_{\text{Ray}} = \frac{\mu_0 q^5 B^3 R_s^2}{6cm_p^3}$

Ainsi :
$$\mathbf{E}_{\text{Ray}} = \frac{\mu_0 q^5 B^3 R_s^2}{6cm_p^3}$$

Application numérique $E_{Rav} = 3.9 \cdot 10^{-30} \text{ J} = 24.6 \, \mu\text{eV}$

L'énergie perdue par rayonnement est négligeable

B.7. Longueur d'onde des protons à la sortie du cyclotron

Relation de Louis De Broglie $\lambda = \frac{h}{p} = \frac{h}{mv}$

Ainsi
$$\lambda = \frac{h}{qBR_s}$$

Application numérique : $\lambda = 8,3 \text{ fm}$

CHUTE D'UN ARBRE (Mine pont sujet 2 PC 2019)

Référentiel: 93 Galiléen

1. Système: Le bucheron

Force: $\overline{R_2}$ la réaction du support

 $\overrightarrow{P_2}$ le poids du bucheron

 $-\vec{F}$ la force de la corde sur le bucheron par le principe de l'action et de la réaction

Schéma:

<u>Loi</u>: Equilibre - \vec{F} + $\overrightarrow{P_2}$ + $\overrightarrow{R_2}$ = $\vec{0}$

Projections: $\sup \overline{u_x} T_2 - F\cos\alpha = 0$ $\sup \overline{u_z} N_2 + F\sin\alpha - mg = 0$

Condition de non-glissement $\|\overline{T_2}\| < f\|\overline{N_2}\|$

On remplace F
$$\cos \alpha < f \text{ (mg - Fsin}\alpha \text{)}$$

D'où F < F_{max} = $\frac{f\text{mg}}{\cos \alpha + f \sin \alpha}$

2. Système : L'arbre

 $\overrightarrow{R_1}$ la réaction du support Force:

 $\overrightarrow{P_1}$ le poids de l'arbre

 \vec{F} la force de la corde

<u>Loi</u>: Equilibre $\vec{F} + \overrightarrow{P_1} + \overrightarrow{R_1} = \vec{0}$

<u>Projections</u>: $sur \overrightarrow{u_x} T_1 + Fcos\alpha = 0$

 $\operatorname{sur} \overrightarrow{u_z} \operatorname{N}_1 - \operatorname{Fsin} \alpha - \operatorname{Mg} = 0$

On a ainsi

$$\frac{\|\overrightarrow{T_1}\| = \mathsf{Fcos}\alpha = \|\overrightarrow{T_2}\|}{\|\overrightarrow{N_1}\| = \mathsf{Fsin}\alpha + \mathsf{Mg} > \|\overrightarrow{N_2}\|}$$

et

Ainsi si F augmente N_2 (= f (mg - Fsin α)) diminue et N_1 (= Fsin α +Mg) augmente.

Donc le glissement de l'arbre ne peut pas avoir lieu avant celui du bucheron

3. Le moment du poids de l'arbre

$$\Gamma_{g} = (\overrightarrow{OG} \wedge M\overrightarrow{g}) . \overrightarrow{u_{y}} = -Mag$$

Pour cela on utilise le bras de levier et la règle de la main droite.

4. Condition sur le moment de F

Pour que l'arbre pivote il faut que $\Gamma_B > \Gamma_g$

Ainsi $\Gamma_{Bmin} = Mga$

5. Valeur optimale de α

Déterminons le moment de F

$$\Gamma_B = (\overrightarrow{OC} \wedge \overrightarrow{F}).\overrightarrow{u_v} = ||\overrightarrow{OC}||.||\overrightarrow{F}|| \sin(\overrightarrow{OC}, \overrightarrow{F})$$

$$\Gamma_{\mathsf{B}} = \ell \sin \alpha \mathsf{F} \cos \alpha$$

$$\Gamma_{\rm B} = \frac{1}{2} {\sf F} \ell {\sf sin} 2\alpha$$

 $\Gamma_{\rm B}$ sera optimal si sin $2\alpha = 1$ soit $\alpha = \pi/4$

6. Expression de Γ _B

On a
$$\Gamma_B = \ell \sin\alpha \cos\alpha$$
 F_{max} avec $F_{max} = \frac{f_{mg}}{\cos\alpha + f_{sin}\alpha}$

D'où
$$\Gamma_{\text{B}} = \ell \sin \alpha \cos \alpha \frac{f \text{mg}}{\cos \alpha + f \sin \alpha}$$

Ainsi
$$\Gamma_{\rm B} = \ell \text{mg} \frac{1}{\frac{1}{\cos \alpha} + \frac{1}{f \sin \alpha}} = \frac{\text{mg}\ell}{\phi(\alpha)}$$

On retrouve bien l'expression proposée.

Expression de α_m

Pour avoir le plus grand moment il faut que $\phi(\alpha)$ soit minimale

$$\phi'(\alpha) = 0 \qquad \Leftrightarrow -\frac{\cos \alpha}{f \sin^2 \alpha} + \frac{\sin \alpha}{\cos^2 \alpha} = 0$$
$$\Leftrightarrow -\cos^3 \alpha + f \sin^3 \alpha = 0$$
$$\Leftrightarrow \tan \alpha = (f)^{1/3}$$

Ainsi si f = 1 on a bien $\alpha_m = \pi/4$

7. Applications numériques

$$F_{\text{max}} = \frac{f_{\text{mg}}}{\cos\alpha + f_{\text{sin}\alpha}}$$
 avec $\alpha_{\text{m}} = \pi/4$ et $f_{\text{=}}1$ on obtient $F_{\text{max}} = 707 \text{ N}$

De plus
$$|\Gamma_B| = \ell \sin\alpha \cos\alpha \frac{fmg}{\cos\alpha + f\sin\alpha} = Mga$$

 $\ell = \frac{\cos\alpha + f\sin\alpha}{\cos\alpha \sin\alpha} \frac{Ma}{fm} = 14 \text{ m}$

$$\ell = \frac{\cos\alpha + f\sin\alpha}{\cos\alpha \sin\alpha} \frac{Ma}{fm} = 14 \text{ m}$$

MOUVEMENT A FORCE CENTTRALE (Concours ATS 2014)

Référentiel: Rg Galiléen Système: le satellite M(m) Base: cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{k})$

1. Préliminaires

1. Vecteur position et vitesse

Le vecteur position **OM**=ru,

Le vecteur vitesse $\vec{v} = \frac{d\overrightarrow{OM}}{dt} \Rightarrow \overrightarrow{v_M} = \dot{r}\overrightarrow{u_r} + r\dot{\theta}\overrightarrow{u_\theta}$

2. La force gravitationnelle

Par définition d'une force conservative $\vec{F} = -\frac{dE_p}{dr} \vec{u_r}$

On donne $E_p(r) = -g_0 m \frac{R_T^2}{r}$ On en déduit $\overrightarrow{\mathbf{F}} = -g_0 m \frac{R_T^2}{r^2} \overrightarrow{\mathbf{u}_r}$

L'interaction gravitationnelle est <u>attractive</u>.

3. La grandeur $\overrightarrow{L_0}$

 $\overrightarrow{L_0} = \overrightarrow{OM} \land \overrightarrow{mv_M}$ correspond au <u>vecteur moment cinétique</u> du point M par rapport au point O.

Son expression

$$\overrightarrow{L_O} = r\overrightarrow{u_r} \wedge m(\dot{r}\overrightarrow{u_r} + r\dot{\theta}\overrightarrow{u_\theta}) \Rightarrow \overrightarrow{L_O} = mr^2\dot{\theta}\overrightarrow{u_r}$$
$$\Rightarrow L_O = mr^2\dot{\theta}$$

Vecteur constant

Théorème du moment cinétique $\frac{d\overrightarrow{L_O}}{dt} = \overrightarrow{\mathcal{M}} = \overrightarrow{OM} \wedge \overrightarrow{F} = \overrightarrow{0}$

En effet le rayon vecteur et la force sont colinéaires

Ainsi le vecteur moment cinétique est un vecteur constant.

2. Mise en orbite du satellite

4. Vitesse et accélération pour l'orbite circulaire

Le mouvement est circulaire on a donc r =0

D'où
$$\overrightarrow{\mathbf{v_M}} = r\dot{\boldsymbol{\theta}}\overrightarrow{\mathbf{u_{\theta}}} = \mathbf{v}\overrightarrow{\mathbf{u_{\theta}}}$$

Vecteur accélération :
$$\vec{a} = \frac{d\vec{v}}{dt} \Rightarrow \vec{a_M} = \vec{v} \vec{u_\theta} - \vec{v} \vec{\theta} \vec{u_r}$$

$$\Rightarrow \vec{a_M} = \vec{v} \vec{u_\theta} - \frac{\vec{v}^2}{r} \vec{u_r}$$

5. Mouvement circulaire uniforme

 $\underline{\text{Loi}}$: principe fondamentale de la dynamique $\overrightarrow{\text{ma}_{\text{M}}} = \overrightarrow{\text{F}}$

Projections: $m \dot{v} = 0$

$$-m\frac{v^2}{r} = -g_0 m \frac{R_T^2}{r^2}$$

Ainsi $\dot{v} = 0$ le mouvement est donc uniforme

La norme de la vitesse est : $v^2 = g_0^{R_T^2}$

6. Les énergies

• Energie cinétique :
$$E_C = \frac{1}{2}mv^2$$
 \Rightarrow $E_C = \frac{1}{2}mg_0\frac{R_T^2}{r}$
• Energie mécanique : $E_m = E_c + E_p \Rightarrow$ $E_m = -\frac{1}{2}mg_0$

• Energie mécanique :
$$E_m = E_c + E_p \Rightarrow E_m = -\frac{1}{2} mg_0 \frac{R_T^2}{r}$$

L'énergie mécanique est négative car le satellite reste à une distance finie de la Terre, on a un état lié.

7. Application numérique

$$E_{mb} = -102 \text{ GJ}$$

 $E_{mh} = -20,5 \text{ GJ}$

3. Etude énergétique du satellite

8. Autre écriture de l'énergie mécanique

Le satellite n'est soumis qu'à des forces conservatives, son énergie mécanique est constante.

$$\begin{split} E_m &= E_c + E_p = = \frac{1}{2} m v^2 - g_0 m \frac{R_T^2}{r} \\ \text{Avec } v^2 &= \dot{r}^2 + r^2 \dot{\theta}^2 \end{split}$$

Avec
$$V^2 = \dot{r}^2 + r^2 \dot{\theta}^2$$

Or
$$L_O = mr^2\dot{\theta}$$

On en déduit
$$v^2 = \dot{r}^2 + \frac{L_O^2}{m^2 r^2}$$

On retrouve le résultat demandé : $E_m = \frac{1}{2}m\dot{r}^2 + \frac{L_0^2}{2mr^2} - g_0m\frac{R_T^2}{r}$

9. Potentiel effectif

On a donc
$$E_{pEff} = E_M - \frac{1}{2}m\dot{r}^2$$

Or
$$\frac{1}{2}$$
 m $\dot{r}^2 \ge 0 \Rightarrow \mathbf{E}_{pEff} (\mathbf{r}) \le \mathbf{E}_{m}$

10. a. Correspondance

D'après la relation démontrée au 9. On peut dire

E_{m1} correspond à un état de diffusion, le satellite pourra échapper à l'attraction terrestre (r $\rightarrow \infty$)

E_{m2} correspond à une trajectoire elliptique, le satellite a sa distance à la Terre comprise entre deux valeurs. $r_1 \le r \le r_2$

10.b. Trajectoire circulaire

Le satellite reste à une distance constante de la Terre $r = r_0$ pour $E_m = E_{min}$

4. Mise en orbite haute

11. Valeur de *r*

En A et en P le rayon prend ses valeurs extrêmes on a donc **rel** . Ou encore d'après la question précédente en A et P Ec = 0J

• Le demi-grand axe

On a :
$$2a = r_h + r_b$$

12. Energie sur une orbite elliptique

Par analogie avec l'orbite circulaire on a $E_{m,t} = -\frac{1}{2}mg_0\frac{R_T^2}{a}$

13. Energie sur l'orbite de transfert

On lit $\underline{\mathbf{E}_{m,t}} = -35 \ \mathbf{GJ}$

C'est la valeur de E_{peff} pour r_b et r_h car l'énergie cinétique est nulle en ces points.

14. Energie sur les orbites circulaires

On lit pour l'orbite basse : $\underline{E_{m,b}} = -100 \text{ GJ}$ On lit pour l'orbite haute : $\underline{E_{m,h}} = -20 \text{ GJ}$

15. Energie nécessaire au transfert en P

On déduit des résultats précédant :

$$\Delta E_{mP} = E_{m,t} - E_{m,b} = 65 \text{ GJ}$$

• Masse de carburant

$$m_c = \frac{\Delta E_{mP}}{P_{cal}} = 1300 \text{ kg}$$

La rhubarbe

Partie 2 : Toxicité des feuilles

1. Diagramme de prédominance

Pour un couple acido basique on a pH = pK_A + Log $\frac{[A^-]}{[HA]}$ ainsi A⁻ prédomine si [A⁻] > [HA] donc pH > pK_A et HA prédomine si $[A^-]$ < [HA] donc pH < pK_A.

On généralise pour le diacide

$H_2C_2O_4$	HC ₂ O ₄ -	$C_2O_4^{2-}$
pK _{A1} =	: 1,27 pK _{A2}	= 4,27 pH

2. Acide oxalique dans l'urine

D'après le diagramme e prédominance il est principalement sous la forme d'oxalate C₂O₄²-

Diagramme d'existence

La réaction $CaC_2O_{4(s)} = Ca^{2+} + C_2O_4^{2-}$ $K_s = [Ca^{2+}][C_2O_4^{2-}]$

$$K_s = [Ca^{2+}][C_2O_4^{2-}]$$

Au premier grain de précipité [Ca²⁺] \approx C = 10⁻³ mol/L et le K_S est vérifié.

$$K_s = C[C_2O_4^{2-}]$$

 $pC_2O_4 = pKs + logC = 11,2$ \Leftrightarrow

3. Quantité d'ions dans l'urine

$$Ca^{2+} + C_2O_4^{2-}$$

$$CaC_2O_{4(s)} K = 1/K_s$$

$$K = 1/K_s$$

La réaction est quasi totale c'est donc le réactif limitant qui en détermine la fin $\xi = 10^{-4}$ mol/L

[Ca²⁺] = 0,9 10⁻³ mol/L

ΕI

EF

 $[C_2O_4^2] = K_s/[Ca^{2+}] = 7 \cdot 10^{-6} \text{ mol/L}$

(l'hypothèse est valable)

n(CaC₂O₄) = 10⁻⁴ mol

4. La réaction

 $Na_3C_6H_5O_7 \rightarrow 3Na^+ + C_6H_5O_7^{3-}$

5. pH du citrate

• Echelle d'acidité

La réaction prépondérante

$$C_6H_5O_7^{3-} + H_2O_2^{-}$$

$$C_6H_5O_7^{3-} + H_2O \leftarrow$$

$$HO^{-} + C_6H_6O_7$$

Χ

$$C_6H_6O_7^{2-}$$
 $K_B = K_e/K_A = 10^{-7.7}$

EI
$$C_0$$
 EF $C_0 - 3$

$$C_0$$
 $C_0 - x$

Χ

La réaction est faiblement déplacée donc x << C₀

Ainsi
$$\frac{K_e}{K_A} = \frac{x^2}{C_0}$$

D'où [HO] =
$$\frac{K_e}{h}$$
 = $x = \sqrt{\frac{C_0 K_e}{K_A}}$

D'où
$$pH = pK_e - \frac{1}{2} (-logC_0 + pK_e - pK_A) = 9.2$$

6. Concentrations au moment du mélange

On réalise une dilution par deux :

 $[Ca^{2+}]_0 = 5,0 \cdot 10^{-4} \text{ mol/l et } [C_6H_5O_7^{2-}]_0 = 5,0 \cdot 10^{-3} \text{ mol/l}$

7. Concentrations l'état final

$$Ca^{2+}_{(aq)} + C_6H_5O_7^{3-}_{(aq)} = Ca(C_6H_5O_7)^{-}_{(aq)}$$
 $K_f = 10^{4,68}$

EF
$$5.0 \cdot 10^{-4} - x = 5.0 \cdot 10^{-3} - x$$

La réaction est quai totale c'est le réactif limitant qui en détermine la fin x = 5,0 10⁻⁴ mol/L

Ainsi
$$[C_6H_5O_7^{3-}] = 4.5 \cdot 10^{-4} \text{ mol/l et } [Ca(C_6H_5O_7)^-] = 5.0 \cdot 10^{-4} \text{ mol/L}$$

On ne déduit :
$$\overline{ [Ca^{2+}] = \frac{[Ca(C_6H_5O_7)^{-}]}{[C_6H_5O_7^{-}]K_F}} = 2,3 \ 10^{-6} \ mol/L$$

L'hypothèse est donc valable.

8. Précipitation

Le quotient de la réaction pour la formation de CaC₂O_{4(s)} est alors :

$$Q = [Ca^{2+}][C_2O_4^{2-}]$$

$$Q = 2.3 \cdot 10^{-6} \times 1 \cdot 10^{-4} = 2.3 \cdot 10^{-10} < K_s = 10^{-8.2}$$

Il n'y a pas de formation de précipités

Le traitement est donc efficace

Partie 3 : titrage de l'acide oxalique

1. La constante d'équilibre

Il s'agit de la réaction inverse de la précipitation $K = 1/K_s = 10^{8,2}$

La réaction est quasi-totale il s'agit bien d'une réaction de dosage.

2. Le volume à l'équivalence

Il se situe à l'intersection des deux portions de droites. On relève $V_e = 10,8 \text{ ml}$

D'après la réaction de dosage, à l'équivalence on a $[Ca^{2+}]_0V_e = [C_2O_4^{2-}]_0V_0$

D'où $[C_2O_4^{2-}]_0 = [Ca^{2+}]_0V_0/V_0 = 5,4 \cdot 10^{-2} \text{ mol/l}$

3. Interprétation de la courbe

• V < V_e

Tout se passe comme si on remplaçait un ion C₂O₄²⁻ par deux ions Cl⁻

On a $2\lambda^{\circ}_{Cl}$ - λ°_{C2O4} = +0,4 mS.m².mol⁻¹

La conductivité augmente légèrement

V >V_e

Tout se passe comme si on ajoutait des ions Ca2+ et 2Cl-

On a $2\lambda^{\circ}_{Cl^{-}} + \lambda^{\circ}_{Ca2+} = +27,1 \text{ mS.m}^{2}.\text{mol}^{-1}$

La conductivité augmente fortement

4. La masse de H₂C₂O₄

Dans la solution S_1 on a $[C_2O_4^{2-}] = 5,4 \ 10^{-2} \ \text{mol/L}$ d'oxalate. Il provient entièrement de l'acide oxalique présent dans un litre de solution S_0 .

On a donc $n = 5.4 \cdot 10^{-4}$ mol d'acide oxalique qui sont contenus dans 280 g de feuille.

D'où une masse m = n.M = 4,86 g pour 280g

C'est-à-dire 1,73 g/100g soit 1730 mg/100g ce qui est tout à fait cohérent.