The Welfare Effects of Bundling in Multichannel Television Markets

Author: Gregory S. Crawford and Ali Yurukoglu Presenter: Renjie Zhong Econ 220B Presentation

Motivation and Background

How would bundling affect consumer and producer welfare?

bundling with fixed input costs: extraction >> inclusion benefits

$$(p_1+p_2-c_1-c_2)(1-F(p_1+p_2))>>(p_1-c_1)(1-F_1(p_1))+(p_2-c_2)(1-F_2(p_2))$$

- \Rightarrow separately selling improves consumer welfare
- bilateral cost bargaining: flat demand function incurs high costs

$$p_F \in rg \max \ [(p-c)(1-F(p))]^ au \cdot [c(1-F(p))]^{1- au} \ ext{where} \ c = G^{-1}(1-F(p))$$

$$(p_F,c_F)>(p_{F'},c_{F'})$$
 if $F'\prec_{\textit{dispersed}} F\Rightarrow$ separately selling raises costs and reduces welfare

ambiguous answer, depending on the structure of preferences, relative bargaining power, ...

empirical case: bundling in multichannel television markets

Households Optimization and Demand Estimation

consumer
$$i$$
 bundle j market n : $u_{ijn} = v_{ijn}^* + z_{jn}' \psi + \alpha_i p_{jn} + \xi_{jn} + \epsilon_{ijn}$

 v_{ijn}^st indirect utility to i consuming j (microfoundation: allocate time to maximize Cobb-Douglas utility)

$$\max_{t_{ij}} \sum_{c} \gamma_{ic} \log(1 + t_{ijc})$$
 subject to $\sum_{c} t_{ijc} \leq T$,

parametrization:
$$\gamma_i = \chi_i \circ (\Pi o_i + v_i)$$
, $\hat{t}_{ijcn}(\Pi, \rho, \Lambda, \Sigma)$

where the coordinator $\chi_{ic} \sim \text{Bernoulli}(\rho_{o_ic})$ (selection of bundle), o_i demographic attributes,

 v_i unobs heterogeneity vector drawn from a multidimensional dist G with exponential marg dist with parameters Λ , and a correlation structure Σ

identification:

- \blacksquare $\rho_{d,c}$: the fraction of households that watch zero hours by channel and demographic group
- Π: mean hours watched by household & the covariance in DMA ratings
- \blacksquare Λ : the mean and variance in hours & Σ : the cross-channel covariance of household hours watched

consumer *i* bundle *j* market *n*: $u_{ijn} = v_{ijn}^* + z_{jn}' \psi + \alpha_i p_{jn} + \xi_{jn} + \epsilon_{ijn}$

 p_{jn} subscription fee of bundle j, $\alpha_i = \alpha + \pi_p y_i$ the marginal utility of income, y_i i income. z_{jn} observed system and bundle characteristics of bundle j in market n, ψ corresponding tastes ξ_{jn} unobserved common term, ϵ_{ijn} idios term $\epsilon_{ijn} \sim_{i,i,d}$. Gumbel $(0,1) \Rightarrow$ market share s_{in} (standard mixed Logit choice probability)

BLP (2004): using market shares to estimate $\delta_{jn}=z'_{jn}\psi+\alpha p_{jn}+\xi_{jn}$

 \Rightarrow estimate α and ψ by linear IV reg using $Z_{jn} = \begin{bmatrix} z_{jn} & w_n \end{bmatrix}$, where z_{jn} observed nonprice product characteristics, w_n the average price of other cable systems' bundles

using the aggregate cable and satellite market share by income level to estimate $\pi_{
ho}$

Supply Cost and Estimation

upstream f, market n: $\Pi_{fn}(\mathbf{b}_n,\mathbf{p}_n) = \sum_{j \in b_{fn}} \left(p_{jn} - \sum_{c \in C_{jn}} \tau_{fc} \right) s_{jn}(\mathbf{b}_n,\mathbf{p}_n)$

where (b_n, p_n) a list of offered bundles with prices in n, b_{fn} the bundles offered by f, τ_{fc} f-channel fees

parametrization: $\hat{\tau}_{fc}(\eta, \varphi) = (\eta_1 + \eta_2 \tau_c) \exp(\varphi_1 MSOSIZE_f + \varphi_2 VI_{fc}) \Rightarrow \text{using F.O.M to estimate } (\eta, \varphi)$

where τ_c the observed average input cost for c, $MSOSIZE_f$ f's total number of consumers,

 VI_{fc} is the ownership share f has in c, same effect of distri size & vertical integration on input costs of c

upstream f, market n: $\Pi_{fn}(\mathbf{b}_n,\mathbf{p}_n) = \sum_{j \in b_{fn}} \left(p_{jn} - \sum_{c \in C_{jn}} \tau_{fc}\right) s_{jn}(\mathbf{b}_n,\mathbf{p}_n) \Rightarrow \mathsf{Nash}$ equil

Nash equil \Rightarrow F.O.C conditions

 \Rightarrow solving implied marg cost of each bundle & cov(estimated marg, implied marg) = 0

Nash equil ⇒ no deviations (punishing candidate parameter estimates enabling profitable devia)

$$\Rightarrow E[\Delta r_{fn}(b,b') + \Delta r_{fn'}(b',b)] \geq 0$$

approximation:
$$\Pi_{fn}((\mathbf{b}_{fn}, \mathbf{b}_{-fn}), (\mathbf{p}_{fn}, \mathbf{p}_{-fn})) \approx r_{fn}((\mathbf{b}_{fn}, \mathbf{b}_{-fn}), (\mathbf{p}_{fn}, \mathbf{p}_{-fn})) + \nu_{fnb,1} + \nu_{fnb,2}$$

 $pprox r_{fn}$ the profits predicted from the model

 $u_{\rm fnb,1}$ the error unknown to the firms when making decisions, $u_{\rm fnb,2}$ the error known to firms at that time

Bargaining and Estimation

bargaining with dnst K: $\max_{\tau_{fK}} [\Pi_f(\tau_{fK}, \Psi_{-fK}) - \Pi_f(\infty; \Psi_{-fK})]^{\zeta_{fK}} [\Pi_K(\tau_{fK}, \Psi_{-fK}) - \Pi_K(\infty; \Psi_{-fK})]^{1-\zeta_{fK}}$ where Π_f is f's total profits over n and $\Pi_K(\tau_{fK}, \Psi_{-fK}) = \sum_{c \in K} \left(\sum_f \tau_{fc} Q_{fc}(\Psi) \right) + r_c^{ad} t_c(\Psi)$,

 $\Psi = \{ au_{ extit{fc}}\}$ a set of input costs: downstream externality in bargaining

 Q_{fc} total number of c from f, r_c^{ad} advertising rev of c per hour

estimation: choose ζ_{fK} to minimize the distance of model's equil input costs and estimated ones

- lacktriangledown estimate pair-specific input costs au_{fc}

comuptation, results, counterfactuals... (reducing > enhancing)