Predict survival on the Titanic

In this Lab, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy

Dataset

The dataset contains 891 observations of 12 variables:

• PassengerId: Unique ID for each passenger

• **Survived**: Survival (0 = No; 1 = Yes)

• **Pclass**: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

• Name: Name

• Sex: Sex

• Age: Age

• Sibsp: Number of Siblings/Spouses Aboard

• Parch: Number of Parents/Children Aboard

• Ticket: Ticket Number

• Fare: Passenger Fare

• Cabin: Cabin

• **Embarked** Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

```
import os
from google.colab import drive
drive.mount('/content/drive', force remount=False)
```

1 # imports
 import warnings
 warnings.filterwarnings('ignore')
 # your code here
 import pandas as pd
 import numpy as np

2

2 titanic = pd.read_csv('titanic.csv') # your code here titanic.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

Looks like there are some Nan values, let's see how many for each column

5 titanic.isnull().sum()

5	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	

Cabin contains a lot of Nan values, we'll drop this column

We'll replace the Nan values in **Age** with the age's median, and the ones in **Embarked** with **'S'**, which is the most frequent one in this column

```
7 # your code here to drop Cabin
  titanic.drop('Cabin', axis = 1, inplace = True)
```

```
# check the fillna documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFr
titanic["Age"].fillna(titanic["Age"].median, inplace = True)
titanic["Embarked"].fillna(titanic["Embarked"].mode, inplace = True)
titanic.isnull().sum()
```

7 PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 0 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Embarked 0 dtype: int64

Visualization

0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0

Survived

```
9  # make a function to plot survival against passenger attribute
  def survival_rate(column,t):
        df=pd.DataFrame()
        df['total']=titanic.groupby(column).size()
        df['survived'] = titanic.groupby(column).sum()['Survived']
        df['percentage'] = round(df['survived']/df['total']*100,2)
        print(df)

        df['survived'].plot(kind=t)
        df['total'].plot(kind=t,alpha=0.5,title="Survivors per "+str(column))
        plt.show()
```

```
10 # Draw survival per Sex
survival_rate("Sex","barh")
```

	total	survived	percentage
Sex			
female	314	233	74.20
male	577	109	18.89

Draw survival per Class survival_rate("Pclass","barh")

	total	survived	percentage
Pclass			
1	216	136	62.96
2	184	87	47.28
3	491	119	24.24

Graph survived per port of embarkation survival_rate("Embarked","bar")

				total	survived	\
Embarked	of 0	S\n1	C	2	2	
C	01 0	2/117	C	168	93	
Q				77	30	
S				644	217	
Embarked				percen	tage	
<pre><bound (="" c="" method="" pre="" q="" s<="" series.mode=""></bound></pre>	of 0	S\n1	C	5	0.00 5.36 8.96 3.70	

13 # Draw survived per Number of Parents/Children Aboard (Parch) # your code here survival_rate('Parch',"bar")

	total	survived	percentage
Parch			
0	678	233	34.37
1	118	65	55.08
2	80	40	50.00
3	5	3	60.00
4	4	0	0.00
5	5	1	20.00
6	1	0	0.00


```
# your code here
survival_rate('SibSp', "bar")
```

	total	survived	percentage
SibSp			
0	608	210	34.54
1	209	112	53.59
2	28	13	46.43
3	16	4	25.00
4	18	3	16.67
5	5	0	0.00
8	7	0	0.00

Model training

Some of the columns don't have predictive power, so let's specify which ones are included for prediction

```
15 predictors = ["Pclass", "Sex", "Age", 'SibSp' ,'Parch', "Fare", "Embarked"]
```

We need now to convert text columns in **predictors** to numerical ones

```
for col in predictors: # Loop through all columns in predictors
    if titanic[col].dtype == 'object': # check if column's type is object (text)
        titanic[col] = pd.Categorical(titanic[col]).codes # convert text to numerical
```

titanic.head()

16		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	0	1	0	3	Braund, Mr. Owen Harris	1	0	1	0	A/5 21171	7
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	1	1	0	PC 17599	7

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
2	3	1	3	Heikkinen, Miss. Laina	0	2	0	0	STON/O2. 3101282	7
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	3	1	0	113803	5
4	5	0	3	Allen, Mr. William Henry	1	3	0	0	373450	8

```
17 # Split the data into a training set and a testing set. Set: test_size=0.3, random_state=1
    # your code here
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(titanic[predictors], titanic['Survived'], test_si
    print ("train shape", X_train.shape, y_train.shape)
    print ("test shape", X_test.shape, y_test.shape)
    train shape (623, 7) (623,)
    test shape (268, 7) (268,)
18 # import LogisticRegression from: http://scikit-learn.org/stable/modules/generated/sklearn.linear_mod
    # your code here
    from sklearn.linear_model import LogisticRegression
    clf = LogisticRegression(random_state=1)
    # your code here
    clf.fit(X_train, y_train)
    train_score = clf.score(X_train, y_train)
    test_score = clf.score(X_test, y_test)
    print ('train accuracy =', train_score)
    print ('test accuracy =', test_score)
    train\ accuracy = 0.8138041733547352
    test accuracy = 0.7611940298507462
    Let's print the model's parameters
19 coeff = pd.DataFrame()
    coeff['Feature'] = X_train.columns
    coeff['Coefficient Estimate'] = pd.Series(clf.coef_[0])
    coeff.loc[len(coeff)]=['Intercept',clf.intercept_[0]]
    print (coeff)
         Feature Coefficient Estimate
    0
         Pclass
                            -0.891619
```

Sex

Age

SibSp

Parch

Fare

2

3

4

-2.679929

0.001337

-0.237991

0.086617

0.000066

6 Embarked -0.230639 7 Intercept 3.698563

0 1 0 1 1 0 0 0 0]

We now need to predict class labels for the test set. We will also generate the class probabilities

generate class probabilities : http://scikit-learn.org/stable/modules/generated/sklearn.linear_mode
y_probs = clf.predict_proba(X_test)
print (y_probs)

[[0.09811678 0.90188322] [0.91231803 0.08768197] [0.21933444 0.78066556] [0.36162655 0.63837345] [0.19261216 0.80738784] [0.91026515 0.08973485] [0.77042761 0.22957239] [0.13186827 0.86813173] [0.57773539 0.42226461] [0.41804473 0.58195527] [0.90872448 0.09127552] [0.41702822 0.58297178] [0.63524995 0.36475005] [0.81004738 0.18995262] [0.36163243 0.63836757] [0.6319125 0.3680875] [0.94210346 0.05789654] [0.92614495 0.07385505] [0.90591444 0.09408556] [0.25642063 0.74357937] [0.90894583 0.09105417] [0.89294928 0.10705072] [0.06687551 0.93312449] [0.80527616 0.19472384] [0.34973759 0.65026241] [0.91199266 0.08800734] [0.08935272 0.91064728] [0.22206506 0.77793494] [0.81048368 0.18951632] [0.10669091 0.89330909] [0.41763687 0.58236313] [0.63588507 0.36411493] [0.36702898 0.63297102] [0.46411658 0.53588342] [0.88515013 0.11484987] [0.59951235 0.40048765] [0.61781714 0.38218286] [0.9123211 0.0876789] [0.57163057 0.42836943] [0.91156683 0.08843317] [0.41540419 0.58459581] [0.37399543 0.62600457]

[0.11609521 0.88390479]

```
[0.61746707 0.38253293]
[0.67744212 0.32255788]
[0.91242935 0.08757065]
[0.96507476 0.03492524]
[0.80839642 0.19160358]
[0.51647164 0.48352836]
[0.8034039 0.1965961 ]
[0.72887161 0.27112839]
[0.22186261 0.77813739]
[0.80696848 0.19303152]
[0.79785643 0.20214357]
[0.90970881 0.09029119]
[0.46232504 0.53767496]
[0.80508751 0.19491249]
[0.61866996 0.38133004]
[0.89425355 0.10574645]
[0.41409452 0.58590548]
[0.80042905 0.19957095]
[0.86773033 0.13226967]
[0.79331219 0.20668781]
[0.62692375 0.37307625]
[0.68784032 0.31215968]
[0.26801155 0.73198845]
[0.88313868 0.11686132]
[0.86794976 0.13205024]
[0.39481521 0.60518479]
[0.81924741 0.18075259]
[0.94083221 0.05916779]
[0.96084102 0.03915898]
[0.51023179 0.48976821]
[0.91231803 0.08768197]
[0.20920844 0.79079156]
[0.75500133 0.24499867]
[0.13187656 0.86812344]
[0.89202967 0.10797033]
[0.52206123 0.47793877]
[0.1025837 0.8974163 ]
[0.91227614 0.08772386]
[0.9831913 0.0168087 ]
[0.91231722 0.08768278]
[0.91114208 0.08885792]
[0.14926199 0.85073801]
[0.9097089 0.0902911 ]
[0.91231722 0.08768278]
[0.86773036 0.13226964]
[0.58271519 0.41728481]
[0.36286472 0.63713528]
[0.62255116 0.37744884]
[0.86771913 0.13228087]
[0.88770702 0.11229298]
[0.36163243 0.63836757]
[0.91230959 0.08769041]
[0.51241357 0.48758643]
[0.90794892 0.09205108]
[0.31026291 0.68973709]
[0.91070073 0.08929927]
[0.91231803 0.08768197]
[0.52389966 0.47610034]
[0.637277 0.362723 ]
[0.88410428 0.11589572]
[0.2864439 0.7135561 ]
[0.06210218 0.93789782]
[0.90827272 0.09172728]
[0.90971664 0.09028336]
[0.90971759 0.09028241]
[0.95992558 0.04007442]
[0.91036994 0.08963006]
[0.57487679 0.42512321]
```

[0.86834283 0.13165717]

```
[0.79479445 0.20520555]
[0.92663807 0.07336193]
[0.80232 0.19768
[0.90839197 0.09160803]
[0.83965996 0.16034004]
[0.68584322 0.31415678]
[0.25540166 0.74459834]
[0.41312155 0.58687845]
[0.26700856 0.73299144]
[0.65055338 0.34944662]
[0.91231803 0.08768197]
[0.80591492 0.19408508]
[0.08965769 0.91034231]
[0.10504364 0.89495636]
[0.22322184 0.77677816]
[0.41768074 0.58231926]
[0.9831913 0.0168087]
[0.89202967 0.10797033]
[0.90816858 0.09183142]
[0.90648242 0.09351758]
[0.37568559 0.62431441]
[0.52228991 0.47771009]
[0.58119203 0.41880797]
[0.06918274 0.93081726]
[0.0890262 0.9109738 ]
[0.96388418 0.03611582]
[0.92781633 0.07218367]
[0.40441709 0.59558291]
[0.10815755 0.89184245]
[0.91137246 0.08862754]
[0.1121606 0.8878394]
[0.41637639 0.58362361]
[0.91231867 0.08768133]
[0.4682795 0.5317205]
[0.80800748 0.19199252]
[0.91231722 0.08768278]
[0.26630092 0.73369908]
[0.91274482 0.08725518]
[0.39478652 0.60521348]
[0.90986981 0.09013019]
[0.95133511 0.04866489]
[0.36286773 0.63713227]
[0.91206195 0.08793805]
[0.90894345 0.09105655]
[0.91274821 0.08725179]
[0.91037591 0.08962409]
[0.18893195 0.81106805]
[0.80232 0.19768 ]
[0.83634896 0.16365104]
[0.91090935 0.08909065]
[0.41022417 0.58977583]
[0.63177554 0.36822446]
[0.94379359 0.05620641]
[0.35952727 0.64047273]
[0.29070456 0.70929544]
[0.91206195 0.08793805]
[0.90883446 0.09116554]
[0.4774079 0.5225921 ]
[0.06824165 0.93175835]
[0.60751059 0.39248941]
[0.1022151 0.8977849 ]
[0.92178953 0.07821047]
[0.10406749 0.89593251]
[0.6363495 0.3636505 ]
[0.89202978 0.10797022]
[0.88955912 0.11044088]
[0.39021453 0.60978547]
[0.92999448 0.07000552]
```

[0.06709562 0.93290438]

```
[0.22371432 0.77628568]
[0.86954264 0.13045736]
[0.79720887 0.20279113]
[0.1028124 0.8971876 ]
[0.80589948 0.19410052]
[0.91231722 0.08768278]
[0.08924401 0.91075599]
[0.89202967 0.10797033]
[0.06572299 0.93427701]
[0.63558801 0.36441199]
[0.62678603 0.37321397]
[0.36163243 0.63836757]
[0.30684061 0.69315939]
[0.32911089 0.67088911]
[0.05659667 0.94340333]
[0.81017893 0.18982107]
[0.22261058 0.77738942]
[0.90360997 0.09639003]
[0.51005186 0.48994814]
[0.90906076 0.09093924]
[0.14846394 0.85153606]
[0.86773036 0.13226964]
[0.71898759 0.28101241]
[0.65730943 0.34269057]
[0.21748083 0.78251917]
[0.12407981 0.87592019]
[0.80316668 0.19683332]
[0.63594523 0.36405477]
[0.94059352 0.05940648]
[0.06735104 0.93264896]
[0.95741679 0.04258321]
[0.86369003 0.13630997]
[0.86328525 0.13671475]
[0.83835159 0.16164841]
[0.9124241 0.0875759]
[0.89203532 0.10796468]
[0.08386708 0.91613292]
[0.18972105 0.81027895]
[0.61844413 0.38155587]
[0.63589268 0.36410732]
[0.86773036 0.13226964]
[0.61617219 0.38382781]
[0.68353449 0.31646551]
[0.91286455 0.08713545]
[0.57435943 0.42564057]
[0.08551223 0.91448777]
[0.6843857 0.3156143 ]
[0.26969771 0.73030229]
[0.68904 0.31096 ]
[0.83176145 0.16823855]
[0.88654616 0.11345384]
[0.84352879 0.15647121]
[0.80777449 0.19222551]
[0.9126383 0.0873617]
[0.36322921 0.63677079]
[0.43194415 0.56805585]
[0.32267179 0.67732821]
[0.46944939 0.53055061]
[0.92993247 0.07006753]
[0.81892504 0.18107496]
[0.85696658 0.14303342]
[0.86226747 0.13773253]
[0.90868104 0.09131896]
[0.89882778 0.10117222]
[0.91124264 0.08875736]
[0.22071086 0.77928914]
[0.22368576 0.77631424]
[0.38757763 0.61242237]
```

[0.10274715 0.89725285]

```
[0.90546205 0.09453795]
[0.88890066 0.11109934]
[0.67146669 0.32853331]
[0.64083442 0.35916558]
[0.09751839 0.90248161]
[0.35549868 0.64450132]
[0.67439434 0.32560566]
[0.22249596 0.77750404]
[0.83025735 0.16974265]
[0.53434596 0.46565404]
[0.19598724 0.80401276]
[0.91286455 0.08713545]
[0.36163243 0.63836757]
[0.18942653 0.81057347]
[0.8092976 0.1907024 ]
[0.80253948 0.19746052]
[0.57105641 0.42894359]
[0.67729915 0.32270085]]
```

As you can see, the classifier outputs two probabilities for each row. It's predicting a 1 (Survived) any time the probability in the second column is greater than 0.5. Let's visualize it all together.

	Survived_original	Survived_predicted	Survived_proba	Comparison
862	1	1	0.901883	True
223	0	0	0.087682	True
84	1	1	0.780666	True
680	0	1	0.638373	False
535	1	1	0.807388	True

Confusion matrix

27

As you can see, we can have the classification report for each class

K-Fold Cross Validation

```
# import cross_validation from: http://scikit-learn.org/stable/modules/generated/sklearn.model_select
# your code here
from sklearn.model_selection import cross_val_score
clf = LogisticRegression(random_state=1)
scores = cross_val_score(clf, titanic[predictors], titanic["Survived"], scoring='accuracy', cv=5)
## see model
print(scores)
# Take the mean of the scores (because we have one for each fold)
print(scores.mean())

[0.77653631 0.79775281 0.78089888 0.7752809 0.80337079]
0.7867679367271357
```

When you are improving a model, you want to make sur that you are really doing it and not just being lucky. This is why it's good to work with cross validation instead of one train/test split.