Verifiable Computation for Approximate Homomorphic Encryption Schemes

Ignacio Cascudo, Anamaria Costache, <u>Daniele Cozzo</u>, Dario Fiore, Antonio Guimarães, Eduardo Soria-Vazquez

Context

Cloud Computing

Cloud Computing

Homomorphic Encryption (HE)

privacy

Homomorphic Encryption (HE)

Homomorphic Encryption (HE)

Verifiable computation (VC)

VC-HE

VC-HE

	Public Verification	Native R _q Arithmetic	Efficient Key Switching / Rescale	Efficient Bootstrapping	CKKS (approximate schemes)
Generic SNARK ^[1]	√	×	×	×	✓
Rinocchio ^[2]	×	1	×	×	✓
HE-IOPs ^[3]	×	√	✓	√	×
Our Work	✓	✓	✓	?	✓

^[1] A. Viand, C. Knabenhans, and A. Hithnawi, "Verifiable Fully Homomorphic Encryption" arXiv:2301.07041

^[2] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez, "Rinocchio: SNARKs for Ring Arithmetic" Journal of Cryptology, 2023

^[3] D. F. Aranha, A. Costache, A. Guimarães, and E. Soria-Vazquez, "HELIOPOLIS: Verifiable Computation over Homomorphically Encrypted Data from Interactive Oracle Proofs is Practical" ASIACRYPT 2024

Our contributions

- VC-HE for CKKS
- Modular solution

Proof-friendly CKKS

$$q \approx 2^{300}$$
 $N \approx 2^{14}$

 R_q

- Efficient HE computations
 - RNS

$$egin{aligned} R_{q} & \stackrel{L}{\cong} p_{i} & R_{p_{1}} \ & \stackrel{R}{\cong} & R_{p_{2}} \ & \stackrel{R}{\cong} & R_{p_{3}} \end{aligned}$$

- Efficient HE computations
 - RNS

$$egin{aligned} R_q = \prod\limits_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ & & R_{p_3} \end{aligned}$$

- Efficient HE computations
 - o RNS
- Soundness
 - Large exceptional set

$$R_{q} = \prod_{i=1}^{L} p_{i} \ R_{p_{1}} \ R_{p_{2}} \ R_{p_{3}} \ R_{p_{3}} \ R_{p_{3}} \ R_{p_{3}} \ R_{p_{3}} \ R_{p_{4}} \ R_{p_{5}} \$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{align*} R_q = \prod_{i=1}^L p_i & R_{p_1} & \prod_{i=1}^{X^N+1} \prod_{i=1}^{\lfloor (X^d-\zeta^{2i-1}) \mod p_1} & \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \mathbb{F}_{p_1^d} \end{bmatrix} \\ R_{p_2} & \prod_{i=1}^{X^N+1} \prod_{i=1}^K (X^d-\zeta^{2i-1}) \mod p_2} & \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \mathbb{F}_{p_2^d} \end{bmatrix} \\ R_{p_3} & \prod_{i=1}^{X^N+1} \prod_{i=1}^K (X^d-\zeta^{2i-1}) \mod p_3} & \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \mathbb{F}_{p_3^d} \end{bmatrix} \mathbb{F}_{p_3^d} \end{bmatrix}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{aligned} R_q = \prod\limits_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ & & R_{p_3} \end{aligned}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{aligned} R_q = \prod_{i=1}^L p_i & R_{p_1} \ & \cong & R_{p_2} \ \end{pmatrix}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

$$egin{aligned} R_q = \prod_{i=1}^L p_i & R_{p_1} \ \cong & R_{p_2} \ R_{p_3} \end{aligned}$$

- Efficient HE computations
 - RNS
- Soundness
 - Large exceptional set

CKKS

$$\begin{cases} q_1 = q \\ q_i = q_{i-1}/p_i \end{cases}$$

$$q = q_1 > q_2 > \dots > q_L$$

CKKS

• An approximate scheme:

RLWE ciphertext:

$$(a,b)\in R_q^2$$

RNS representation with 3 components:

$$a_{01} | a_{02} | a_{03} | b_{01} | b_{02} | b_{03}$$

CKKS

Level 1

 $a_{01} = \begin{bmatrix} a_{01} & a_{02} & a_{03} \end{bmatrix}$

 $b_{01} = \begin{bmatrix} b_{01} & b_{02} & b_{03} \end{bmatrix}$

 $a_{11} \ a_{12} \ a_{13}$

| b₁₂ |

b₁₁

b₁₃ X

 m_2

 $m_{_{1}}$

Proof-friendly CKKS vs CKKS

	Proof-frier	CKKS	
	d = 2	d = 4	HEXL
CKKS multiplication	7.394ms	8.457ms	7.197ms

N = 16384#RNS components (L) = 6

Proof-friendly CKKS in summary

- Carefully chosen ring setup
 - High soundness for proof system
 - Efficiency of computations
- Ring does not change
 - Proof system works on same ring
- Noise analysis
 - Easier to prove bounds on ciphertexts (see later)

HE circuit Relations over Χ Χ

Polynomial mult

Polynomial mult

Key-switching

$$c_{0} = d_{0} + \langle \text{evk}, CRT^{-1}(d_{2}) \rangle$$

$$e_{1} = d_{1} + \langle \text{evk}, CRT^{-1}(d_{2}) \rangle$$

$$e_{0} = e_{1}$$

$$c_{0} = (e_{0} - [e_{0}]_{p_{l}}) \cdot p_{l}^{-1}$$

$$c_{1} = (e_{1} - [e_{1}]_{p_{l}}) \cdot p_{l}^{-1}$$

Algebraic operation

Not algebraic!

$$a_{0} \underset{\downarrow}{a_{1}} \underset{\downarrow}{b_{0}} \underset{\downarrow}{b_{1}}$$

$$(d_{0}, d_{1}, d_{2}) = (a_{0}, a_{1}) \otimes (b_{0}, b_{1})$$

$$\begin{vmatrix} d_{0} & d_{1} & d_{2} \\ d_{0} & d_{1} & d_{2} \end{vmatrix}$$

$$e_{0} = d_{0} + \langle \text{evk}, \mathbf{w}_{\text{ks}} \rangle$$

$$e_{1} = d_{1} + \langle \text{evk}, \mathbf{w}_{\text{ks}} \rangle$$

$$e_{0} \qquad e_{1} \qquad c_{0} = (e_{0} - [e_{0}]_{p_{l}}) \cdot p_{l}^{-1}$$

Can be rewritten as **Euclidean division**

$$e_i = c_i \cdot p_l + [e_i]_{p_l}$$

Not algebraic

$$a_{0} a_{1} b_{0} b_{1}$$

$$(d_{0}, d_{1}, d_{2}) = (a_{0}, a_{1}) \otimes (b_{0}, b_{1})$$

$$\begin{vmatrix} d_{0} & d_{1} & d_{2} \\ d_{0} & d_{1} & d_{2} \end{vmatrix}$$

$$e_{0} = d_{0} + \langle \operatorname{evk}, \mathbf{w}_{\operatorname{ks}} \rangle$$

$$e_{1} = d_{1} + \langle \operatorname{evk}, \mathbf{w}_{\operatorname{ks}} \rangle$$

$$e_{0} = e_{1}$$

$$c_{0} = (e_{0} - [e_{0}]_{p_{l}}) \cdot p_{l}^{-1}$$

$$c_{1} = (e_{1} - [e_{1}]_{p_{l}}) \cdot p_{l}^{-1}$$

Can be rewritten as **Euclidean division**

$$e_i = c_i \cdot p_l + [e_i]_{p_l}$$

Prover inputs $w_{\mathrm{quo},i}$ $w_{\mathrm{rmd},i}$

$$\|\mathbf{w}_{\mathrm{quo},i}\| \le q_l/p_l$$

$$\|\mathbf{w}_{\mathrm{rmd},i}\| < p_l$$

$$e_i = w_{\text{quo},i} \cdot p_l + w_{\text{rmd},i}$$

Not algebraic

Flattening the circuit

Flattening the circuit

Final set of relations

HE circuit satisfiability reduced to **two** main **relations**:

$$\mathcal{R}_{AC} := \{ (C; \mathbf{x}, \mathbf{w}) : C(\mathbf{x}, \mathbf{w}) = \mathbf{0} \}$$

$$\mathcal{R}_{range} := \{ (B; \mathbf{w}) : ||\mathbf{w}|| < B \}$$

Proof of AC satisfiability

Proving AC satisfiability

- GKR-style proof system
 - AC satisfiability => layers of equations
 - Consistency of layer i-th reduced to that of layer i+1-th
 - Works over R_a
 - Custom gates (rescon, bdcon, ...)
 - Flattened system of relations => constant depth 4

Range checks

- Prove that vector \mathbf{v} of m elements in R_q has coeffs bounded by B (e.g B = q_I)
- Can be seen as a look-up argument

- Prove that vector \mathbf{v} of m elements in R_q has coeffs bounded by B (e.g B = q_l)
- Can be seen as a look-up argument

[1] S. Setty, J. Thaler, and R. Wahby, "Unlocking the Lookup Singularity with Lasso," EUROCRYPT 2024

- Set $\beta = B^{1/c}$
- Prove that c vectors $\mathbf{v}_1, ..., \mathbf{v}_c$ of m elements in R_q have coeffs bounded by β

- Set $\beta = B^{1/c}$
- Prove that c vectors $\mathbf{v}_1, ..., \mathbf{v}_c$ of m elements in R_q have coeffs bounded by β

- Set
- Prov

Solution:

Decompose the ring R_a

Problem:

n R_a have coeffs bounded by β

 T_{β} is still too big

 $\approx 2^{30 \times N} = 2^{30 \times 32768}$

$$T_{\beta} = [0, \beta)^N$$

$$T_{\beta} = [0, \beta)^N$$

$$T_{\beta} = [0, \beta)^{T}$$

• Prove that cN vectors $\mathbf{v}_1,...,\mathbf{v}_{cN}$ of m elements in Z_q have coeffs bounded by β :

• Prove that cN vectors $\mathbf{v}_1,...,\mathbf{v}_{cN}$ of m elements in Z_a have coeffs bounded by β :

The polynomial commitment

Polynomial Commitment

Need to commit to elements in $R_q[X_1,\ldots,X_\ell]$ where

$$R_q \cong \mathbb{F}_{p_0^4} \times \cdots \times \mathbb{F}_{p_L^4}$$

- ullet Reduce MV PC over R_q to MV PC over $\mathbb{F}_{p_i^4}$
- Field-agnostic multivariate PC => Brakedown
- $\mathbb{F}_{p_i^4}$ has N/2 roots of unity. Can we use them?

x10 improvement on Breakdown with expander graph

Conclusions

To summarize

- First practical VC for CKKS
 - Technique extend to FV/BGV
- Description of problem in a modular way (arithmetization)
 - AC satisfiability + range checks
- Design of proof-friendly CKKS
- Design of custom GKR to prove AC over rings
- Design of range proofs for polynomial rings
- Improved Brakedown for medium-sized fields
- Implemented all building blocks

Thank you!

Norwegian University of Science and Technology

This work is supported by the PICOCRYPT project that has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 101001283), partially supported by projects PRODIGY (TED2021-132464B- 100) and ESPADA (PID2022-142290OB-100) funded by MCIN/AEI/10.13039/501100011033/. This work is part of the grant JDC2023-050791-I, funded by MCIN/AEI/10.13039/501100011033 and the ESF+. This work is also supported by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme in the scope of the CONFIDENTIAL6G project under Grant Agreement 101096435. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Images used in this presentation

User faces: "Plump Interface Duotone Icons" by Streamline, Creative Commons
 Attribution 4.0 International, available at
 https://iconduck.com/sets/plump-interface-duotone-icons

VC-HE

	Verification	Arithmetic operations	Ciphertext maintenance	Bootstrapping	Supported HE schemes
Generic SNARK	Public	emulated	emulated	emulated	Any
Rinocchio	Private	Native	emulated	emulated	Any
HE-IOPs	Private VO attacks	Native	Native	Native	Exact (no CKKS)
Our Work	Public	Native	Efficiently emulated	?	Any