Data Modeling Overview

Data Science: Following the Data

An old adage in detective work is to "follow the money." In data science, one key to success is to "follow the data." In most cases, a data scientist will not help to design an information system from scratch. Instead, there will be several or many legacy systems where data resides; a big part of the challenge to the data scientist lies in integrating those systems.

Introduction to Data Models & Systems

- Context for more functional use of R
 - -Systems Analysis & Design 101
 - Process model (data flow diagram)
 - Data model (entity relationship diagram)
 - Data model (star schema)
 - Graphical user interface (GUI)
- Reference to the "systems type" pyramid

Note that might be a review for many of you

Data Flow Diagram (DFD)

Entity Relationship Diagram (ERD)

A doctor can be scheduled for many appointments but may not have any scheduled at all. Each appointment is scheduled with exactly 1 doctor.

Star Schema

Information System Types

- Analytics
- Executive information systems (EIS)
- Decision supported (DSS)
- Management information system
- Transaction processing syst

Data Science

Information Systems Types

- Analytics
- Executive information systems (EIS)
- Decision support system (DSS)
- Managementsinformation system
- Transaction processing system

Question

Why do data modeling—why is it useful?

Rows and Columns

Rows and Columns

One of the most basic and widely used methods of representing data is to use rows and columns, where each row is a case or instance and each column is a variable and attribute. Most spreadsheets arrange their data in rows and columns, although spreadsheets don't usually refer to these as cases or variables. R represents rows and columns in an object called a *data frame*.

Thinking About Data

- Know your data
 - Context
 - Content
 - -Mode

- Data organization to facilitate R analysis
 - Rows and columns
 - Consistent mode type by attribute/variable

An Example Dataset: Context

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	42	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

Two-dimensions: rows and columns

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	42	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

- Rows (data)
 - -Cases
 - -Instances
 - -Observations

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	42	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

Note: Name Age Gender Weight is **not** a data row.

- Columns (data)
 - -Variable name
 - -Attributes
 - -Variables

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	42	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

- Columns (data)
 - -Attributes
 - -Variables
 - -Variable name

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	<u>42</u>	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

• Note: Name Age Gender Weight are not data

Each row has a unique identifier (case label).

NA	ME	AGE		GENDER	WEIGHT
Da	ıd	43		Male	188
Mo	m	42		Female	136
Si	is	12		Female	83
Bı	0	8		Male	61
Do	og	5		Female	44

- Each column has the same type/mode of data.
- Each column has the same number of entries.

NAME	AGE		GE	NDER	WEIGHT
Dad	43	43		Male	188
Mom	42		F	emale	136
Sis	12		F	emale	83
Bro	8		1	Male	61
Dog	5		F	emale	44

Creating a dataset in R

- Data set: How does this get built in R?
 - Create a vector for each variable (column).
 - Create a data frame to combine individual vectors.

NAME	AGE	GENDER	WEIGHT
Dad	43	Male	188
Mom	42	Female	136
Sis	12	Female	83
Bro	8	Male	61
Dog	5	Female	44

Question:

- How would you represent the following data in a data frame?
 - -Students in a class
 - For each student, we have a student ID and a GPA.
 - Student 1: ID: N1; GPA: 3.8
 - Student 2: ID: N2; GPA: 4.0
 - Student 3: ID: N3; GPA: 3.3
 - Student 4: ID: N4; GPA: 3.5
 - Student 5: ID: N5; GPA: 3.9
 - Create a grid (table) to show how you would represent this information. (Submit a simple table as a spreadsheet.)

Answer:

 How would you represent the following data in a data frame?

Student ID	Student GPA
N1	3.8
N2	4.0
N3	3.3
N4	3.5
N5	3.9

Data Frames in R

Creating a Dataframe in R

The respective variable columns have been built as vectors and displayed below.

```
RGui (32-bit) - [R Console]
R File Edit View Misc Packages Windows Help
> myFamilyNames <- c("Dad","Mom","Sis","Bro","Dog")</pre>
> myFamilyNames
[1] "Dad" "Mom" "Sis" "Bro" "Dog"
> myFamilyAges <- c(43, 42, 12, 8, 5)
> myFamilyAges
[1] 43 42 12 8 5
> myFamilyGenders <- c("Male", "Female", "Female", "Male", "Female")</pre>
> myFamilyGenders
[1] "Male" "Female" "Female" "Male" "Female"
> myFamilyWeights <- c(188,136,83,61,44)
> myFamilyWeights
[1] 188 136 83 61 44
> myFamily <- data.frame(myFamilyNames,myFamilyAges, myFamilyGenders, myFamilyWeights)
```

The columns have been combined and assigned a label via the data.frame function.

Viewing a Dataframe

Display the contents of the data object MyFamily.

```
> myFamily <- data.frame(myFamilyNames,myFamilyAges, myFamilyGenders, myFamilyWeights)
> myFamily
  myFamilyNames myFamilyAges myFamilyGenders myFamilyWeights
                                         Male
                                                          188
1
                          43
            Dad
2
                          42
                                                          136
            Mom
                                       Female
3
            Sis
                                       Female
                                                           83
                          12
                                         Male
                                                           61
            Bro
                                       Female
                                                           44
            Dog
```

Using the R "Str" (Structure) Command

```
> myFamily
              myFamilyNames myFamilyAges myFamilyGenders myFamilyWeights
                         Dad
                                       43
                                                      Male
                                                                        188
                        Mom
                                       42
                                                    Female
                                                                        136
                                       12
                                                                         83
                         Sis
                                                    Female
                                                      Male
                                                                         61
                         Bro
                        Dog
                                                    Female.
                                                                         44
What does
            > str(myFamily)
the structure 'data.frame':
                             5 obs. of 4 variables:
             $ myFamilyNames : Factor w/ 5 levels "Bro", "Dad", "Dog", ...: 2 4 5 1
function tell
             $ myFamilyAges
                               : num
                                     43 42 12 8 5
us about the
             $ myFamilyGenders: Factor w/ 2 levels "Female", "Male": 2 1 1 2 1
             $ myFamilyWeights: num 188 136 83 61 44
da object
myFamily?
```

- Confirmation that MyFamily is a data frame;
 MyFamily has five observations (cases/instances) and four variables.
- "\$" for each variable/component column with descriptive information.
- Each of the variables has a mode or type (same mode within a variable/column).
- Variable is either a "factor" or "num".
- "Factor" variable has a "level".
- "Level" describes the options within a variable.
- "num" variable indicates "numeric".

Using the R Summary Command

```
> summary (myFamily)
              myFamilyNames myFamilyAges myFamilyGenders myFamilyWeights
              Bro:1
                             Min.
                                            Female:3
                                                             Min.
                                                                     : 44.0
              Dad:1
                             1st Qu.: 8
                                            Male :2
                                                              1st Qu.: 61.0
What does the
              Dog:1
                             Median:12
                                                             Median: 83.0
summary
              Mom:1
                                                                     :102.4
                             Mean
                                     :22
                                                             Mean
function tell us
              Sis:1
                             3rd Qu.:42
                                                              3rd Qu.:136.0
about the data
                                     :43
                                                                     :188.0
                             Max.
                                                             Max.
object
myFamily?
```

- "Factor" variables list variable names (MyFamilyNames, myFamilyGenders, MyFamilyWeights) along with the number of occurrences of cases that are coded within that factor.
- Numeric variables have six different calculated quantities that help summarize the variable:
 - Min—minimum or lowest value of all cases
 - 1st Qu—dividing line at the top of the 1st quartile
 - Median—value of the case that splits the whole group in half
 - Mean—numeric average
 - 3rd Qu—3rd quartile
 - Max—max value of all cases

Accessing Dataframes as a Matrix

```
# returns the data in the first row and first column
> myFamily[1,1]
#Returns the first row
> myFamily[1,]
#Returns the first column
> myFamily[,1]
#Returns everything but the first row (deletes first row)
> myFamily[-1,]
#Returns everything but the first column
> myFamily[,-1]
```

R Takeaways

- A vector is a list of elements/things
- All the vectors things are the same type (mode)
- Data is in a rectangular format (rows & columns)
- A data frame stores these rectangular data sets
- data.frame() organizes vectors into a data frame
- str() and summary() provide info on a data frame
- A factor organizes groups of observations
- Quartiles divide a sorted vector into 4 groups.
- Min() and max() measure "dispersion"
- Mean() and median() measure "central tendency"

School of Information Studies SYRACUSE UNIVERSITY