Разработка программной системы для увеличения разрешения изображений на основе нейросетевых технологий

Толмачева Анастасия Вячеславовна

Телефон: +79517942166

Email: froshiksid@gmail.com

tg: @Malenkaya_duck

Содержание

- Постановка задачи
- Обзор аналогичных систем
- Обзор нейросетевых моделей для увеличения разрешения изображения
- Коэффициент увеличения разрешения изображения
- Обзор метрик оценки качества
- Пример работы
- Вопросы и предложения

Постановка задачи

Выходное изображение Исходное изображение Система Нейросетевая модель Разрешение 500×364 рх

Разрешение 2000×1456 px

Увеличение разрешения в 4 раза

Обзор аналогов (общие характеристики)

	1	<u> </u>	1						
Nº	Название	Онлайн доступ	Десктопн ая версия	API	Пробные фото	Цена	Целевая категория изображений	Открытый код	Базовая модель ИНС
1	Gigapixel Al	ı	+	+	-	Платный	Фото	<u>URL</u>	CNN
2	<u>Let's</u> <u>Enhance</u>	+	-	+	+	Платный	Арт и фото	<u>URL</u>	CNN и GAN
3	Bigjpg	+	+	+	+	Есть платные услуги	Арт	-	CNN
4	Waifu2x	+	-	-	+	Бесплатн ый	Арт	<u>URL</u>	CNN
5	Imglarger	+	-	-	+	Платный	Фото	-	-
6	<u>Upscayl</u>	+	+	+	+	Бесплатн ый	Арт и фото	<u>URL</u>	GAN

Обзор аналогов (общие характеристики)

Nº	Название	Формат Название		Мах уве	Мах размеры входного	
		импорта	экспорта	разрешения	изображения	изображения
1	Gigapixel AI	JPEG, PNG, TIFF, RAW	JPEG, PNG, TIFF, DNG	32 000 × 32 000 px	6x	- (но TIFF до 4 Гб)
2	Let's Enhance	JPEG, PNG, WebP	JPEG, PNG, WebP	23000 × 23000 px	16x	50 Мб
3	Bigjpg	JPEG, PNG, TIFF, WebP	JPEG, PNG, TIFF, WebP	Нет данных	16x	50 Мб
4	Waifu2x	JPEG, PNG, WebP, TIFF	PNG, WebP	Нет данных	4x	5 Мб
5	<u>Imglarger</u>	JPG, PNG, WebP	JPG, PNG, WebP	8000 × 4000 px	4x	10 Мб
6	<u>Upscayl</u>	JPEG, PNG, TIFF, WebP	JPEG, PNG, TIFF, WebP	Нет данных	16x	Нет данных

Обзор нейросетевых моделей для увеличения разрешения изображения (1/3)

Nº	Название	Статья	Реализация	Архитектура	Время обучения	Время инференса, с	Обучающая выборка	Работает с Фото +/- Детализация +/- Арты +/- Шум на фото +/-
1	SRCNN	<u>PDF</u>	<u>Сайт</u> <u>Github</u>	3 сверточных слоя	Нет данных	0,1 – 1	ILSVRC 2013 ImageNet: 395К фото, JPEG, 1000 категорий	+
2	FSRCNN	<u>PDF</u>	<u>Сайт</u> <u>Github</u>	5 сверточных слоев (нелинейное отображение разбито на три слоя)	Нет данных	0,01 - 0,1	91-image dataset: 91 фото, PNG; General-100 dataset: 100 изображений BMP	+ - -

Обзор нейросетевых моделей для увеличения разрешения изображения (2/3)

Nº	Название	Статья	Реализация	Архитектура	Время обучения	Время инференса, с	Обучающая выборка	Работает с Фото +/- Детализация +/- Арты +/- Шум на фото +/-
3	ESPCN	<u>PDF</u>	<u>Github</u>	Три сверточных слоя, использует субпиксельную свертку	7 дней на графическом процессоре K2	0,2 - 0,3	ImageNet: 50K рандомно взятых фото	+
4	SRGAN	<u>PDF</u>	<u>Github</u>	Генератор использует субпиксельную свертку	Нет данных	0,012 – 0,030	ImageNet: 350K рандомно взятых фото	+ +

Обзор нейросетевых моделей для увеличения разрешения изображения (3/3)

Nº	Название	Статья	Реализа ция	Архитектура	Время обучения	Время инференса, с	Обучающая выборка	Работает с Фото +/- Детализация +/- Арты +/- Шум на фото +/-
5	ESRGAN	<u>PDF</u>	<u>Github</u>	Генератор содержит блоки Residual-in-Residual Dense	Нет данных	Нет данных	<u>DIV2K</u> : 800 изображений, PNG; <u>Flickr2K</u> : 2650 изображений, PNG; <u>OST</u> : формат PNG	+ + + -
6	Real- ESRGAN	<u>PDF</u>	<u>Github</u>	Генератор использует субпиксельную свертку	Нет данных	Нет данных	Такие же, как у ESRGAN	+ + +

Коэффициент увеличения разрешения изображений (1/2)

Nº	Название	Коэф	фициенты
ING	пазвание	бесплатные	платные
1	Gigapixel AI	-	0.5x, 2x, 4x, 6x
2	Let's Enhance	1x, 2x, 4x	8x, 16x
3	Bigjpg	2x, 4x	8x, 16x
4	Waifu2x	1x, 1.6x, 2x, 4x	-
5	<u>Imglarger</u>	2x	4x
6	<u>Upscayl</u>	1x — 5x; 6x — 16x — может вызвать проблемы с производительностью	-

Коэффициент увеличения разрешения изображений (2/2)

Оригинал

Увеличение разрешения в 3 раза, бикубическая интерполяция

Увеличение разрешения в 3 раза, SRCNN

Обзор метрик качества (определение)

Nº	Название	Неформальное определение	Диапазон значений	Предпочтительное значение	Реализация
1	PSNR (Peak Signal-to- Noise Ratio)	Измеряет отношение максимальной мощности сигнала к мощности шума	Веществен ное неотрицате льное	Чем выше, тем лучше качество изображения	+
2	SSIM (Structural Similarity Index)	Оценивает визуальное восприятие изменений в структуре изображения. SSIM учитывает яркость, контрастность и структуру	От -1 до 1	1 — указывает на полное совпадение	+
3	NIQE (Natural Image Quality Evaluator)	Метод, который оценивает качество изображения, используя статистические признаки, и сравнивает их с эталонной моделью, построенной на естественных изображениях	От 0 до 100	0 — наилучший результат	+

Обзор метрик качества (формулы)

Nº	Название	Формула
1	PSNR (Peak Signal-to-Noise Ratio)	$PSNR = 10 \log_{10} \left(\frac{MAX_I^2}{MSE} \right) = 20 \log_{10} \left(\frac{MAX_I}{\sqrt{MSE}} \right)$, где MAX — максимальное возможное значение пикселя изображения, MSE — среднеквадратическая ошибка
2	SSIM (Structural Similarity Index)	$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)},$ где μ_x, μ_y — средние значения пикселей оригинального и сгенерированного изображений, σ_x^2, σ_y^2 — дисперсии значений пикселей, σ_{xy} — ковариация между оригинальным и сгенерированным изображениями, c_1 и c_2 — малые константы, которые предотвращают деление на ноль
3	NIQE (Natural Image Quality Evaluator)	$D(v_1,v_2,\Sigma_1,\Sigma_2)=\sqrt{((v_1-v_2)^T\left(rac{\Sigma_1+\Sigma_2}{2} ight)^{-1}(v_1-v_2))},$ где v_1,v_2 и Σ_1,Σ_2 – это векторные средние и ковариационные матрицы для естественной модели многомерного гауссовского распределения и модели многомерного гауссовского распределения искаженного изображения

Пример работы

Оригинал (133 КБ)

ESPCN, увеличение разрешения в 2 раза (446 КБ)

ESRGAN, увеличение разрешения в 4 раза (555 КБ)

PSNR (дБ): 29.45

SSIM: 0.7850

NIQE: 4.4710

PSNR (дБ): 28.83

SSIM: 0.5974

NIQE: 2.3841 13/14

Вопросы и предложения

Функциональные требования:

- 1. Типовой цикл работы с системой:
 - 1. Загрузка изображения,
 - 2. Выбор моделей,
 - 3. Выбор увеличения,
 - 4. Генерация,
 - 5. Подсчет метрик качества и их вывод,
 - 6. Сохранение результата
- 2. Какая обучающая выборка и откуда будет передаваться? Предложение: применять для каждой модели соответствующую выборку, которую использовали разработчики.
- 3. Формат входных и выходных изображений: JPEG, PNG, TIFF.

Нефункциональные требования:

- 1. Интерфейс: командная строка или графическая оболочка?
- 2. На какой платформе предполагаются обучение и инференс?