MATH COMPS FALL 2023

Alistair Pattison | October 23, 2023

1 Goals

Finiteness of class group (proved as a corrolary to Theorem 35 on page 91 of chapter 5.

Dirichlet's unit theorem (Theorem 38 on page 100 of chapter 5).

2 Chapter 1

Algebraic number theory is the study of number fields: finite extensions of the rationals $\mathbb{Q}(a_1,\ldots,a_n)$.

Example 2.0.1. The extension $\mathbb{Q}[i]$

Theorem 2.1 (Fermat's Last Theorem). For n > 2, the equation $x^n + y^n = z^n$ has no solutions.

Definition 2.2 (Class number). Let p be a prime and take ω to be the pth root of unity $e^{2\pi i/p}$. Then, the class number of the ring $\mathbb{Z}[\omega]$ (or the class number of p) is the number of equivalence classes under the following relation on the ideals of $\mathbb{Z}[\omega]$:

$$A \sim B \text{ iff } \alpha A = \beta B \text{ for some } \alpha, \beta \in \mathbb{Z}[\omega].$$

Let $h: \P \to \mathbb{N}$ be the function that gives the class number for a prime p.

The relation \sim above is an equivalence relation.

Example 2.2.1.

Definition 2.3 (Regular primes). A prime p is regular if $p \nmid h$

Definition 2.4 (Ideal class group).

3 Number Fields and Number Rings

Definition 3.1 (Number field). A number field is a field $K \subset \mathbb{C}$ with $\deg_{\mathbb{Q}} K$ finite.

Theorem 3.2. Every number field has the form $\mathbb{Q}[\alpha]$ for some algebraic number $\alpha \in \mathbb{C}$. Furthermore, if d is the degree of the minimal polynomial of α , then the set $\{1, \alpha, \alpha^2, \dots, \alpha^{d-1}\}$ is a basis for $\mathbb{Q}[\alpha]$.

Proof. Given in Appendix B of Marcus.

Definition 3.3 (Cyclomatic field). Let $\omega_p = e^{2\pi i/m}$ for some $m \in \mathbb{N}$. Then, the field $\mathbb{Q}[\omega_p]$ is the mth cyclomatic field.

Theorem 3.4. The degree of the mthe cyclomatic field is $\varphi(m)$.

Definition 3.5 (Quadratic field). A quadratic field is a field of the form $\mathbb{Q}[\sqrt{m}]$ for any non-square $m \in \mathbb{Z}$. If m < 0, we call $Q[\sqrt{m}]$ an imaginary quadratic field. If m > 0, we call $Q[\sqrt{m}]$ a real quadratic field.

Theorem 3.6. All quadratic fields have degree 2 over \mathbb{Q} with basis $\{1, \sqrt{m}\}$.

Theorem 3.7. Quadratic fields for squarefree m are all distinct.

Example 3.7.1. $\mathbb{Q}[\sqrt{-3}] = Q[\omega_6]$

Definition 3.8 (Algebraic integer). A number $\alpha \in \mathbb{C}$ is an algebraic integer if it's the root of a monic polynomial $f \in \mathbb{Z}[x]$. We denote the sum of all algebraic integers as A.

Theorem 3.9. Let α be an algebraic integer with a monic vanishing polynomial $f \in \mathbb{Z}[x]$ of minimal degree. Then f is irredicible over \mathbb{Q} .

Theorem 3.10. The followign are equivalent for $a \in \mathbb{C}$

- (i) α is an algebraic integer,
- (ii) The (addative) group $\mathbb{Z}[\alpha]$ is finitely generated,
- (iii) α is a member of some subring R of \mathbb{C} where (R,+) is finitely generated,
- (iv) $\alpha A \subset A$ for some finitely-generated additive subgroup $A \subset \mathbb{C}$.

Corrolary 3.11. *If* $\alpha, \beta \in \mathbb{A}$, then $\alpha + \beta, \alpha\beta \in \mathbb{A}$.

Definition 3.12 (Number ring). The number ring of a number field K is the ring $R = A \cap K$.

Example 3.12.1. The corresponding number ring for the cyclomatic field $\mathbb{Q}[\omega]$ is $\mathbb{A} \cup \mathbb{Q}[\omega] = \mathbb{Z}[\omega]$.

Definition 3.13 (Embeddings). An embedding of a field K in a field F is a ring homomorphism $\sigma: K \to F$.

Theorem 3.14. Any embedding is injective.

Definition 3.15 (Trace and norm). Let K be a number field with embeddings $\sigma_1, \ldots, \sigma_n : K \to \mathbb{C}$ with $n = [K : \mathbb{C}]$. Then, the trace of some element $\alpha \in K$ is

$$T(\alpha) = \sigma_1(\alpha) + \dots + \sigma_n(\alpha) \tag{1}$$

and the norm is

$$N(\alpha) = \sigma_1(\alpha) \cdots \sigma_n(\alpha). \tag{2}$$

Definition 3.16.

$$t(n) = \tag{3}$$

Theorem 3.17. Let K be a number field with an element $\alpha \in K$ Let d be the degree of α and $n = [K : \mathbb{C}]$. Then,

$$T(\alpha) = -\frac{n}{d}t(\alpha) \tag{4}$$

and

$$N(\alpha) = (n(\alpha))^{n/d}. (5)$$

Corrolary 3.18. $T(\alpha)$ and $N(\alpha)$ are rational.

Corrolary 3.19. If α is an algebraic integer, then $T(\alpha)$ and $N(\alpha)$ are integers.

Definition 3.20 (Relative trace and norm). Let $K \subset L$ be two number fields and let $\sigma_1, \ldots, \sigma_n$ be the n = [K : L] embeddings of L in $\mathbb C$ that fix K pointwise. Then, for $\alpha \in L$, the relative trace is

$$T_K^L(\alpha) = \sigma_1(\alpha) + \dots + \sigma_n(\alpha)$$
 (6)

and the relative norm is

$$N_K^L(\alpha) = \sigma_1(\alpha) \cdots \sigma_n(\alpha). \tag{7}$$

Theorem 3.21. Let $\alpha \in L$ and take $d := \deg_K(\alpha)$. Then,

Corrolary 3.22. The relative trace and norm of α are in K. If $\alpha \in \mathbb{A} \cap L$, then they are in $\alpha \cap K$.

Theorem 3.23 (Transitivity of the trace and norm). Let $K \subset L \subset M$ be number fields. Then, for all $\alpha \in M$,

$$T_K^L(T_L^M(\alpha)) = T_K^M(\alpha), \tag{8}$$

$$N_K^L(N_L^M(\alpha)) = N_K^M(\alpha). \tag{9}$$

Proof.

Definition 3.24 (Discriminant). Let K be a number field of with degree n over \mathbb{Q} . Let $\sigma_1, \ldots, \sigma_n$ be the embeddings of K in \mathbb{C} . Then, the discriminant of $\alpha_1, \ldots, \alpha_n \in K$ is

$$\operatorname{disc}(\alpha_1, \dots, \alpha_n) = \det(\sigma_i(\alpha_j))^2 = \det \begin{pmatrix} \sigma_1(\alpha_1) & \cdots & \sigma_1(\alpha_n) \\ \vdots & \ddots & \\ \sigma_n(\alpha_1) & \sigma_n(\alpha_n) \end{pmatrix}^2.$$
(10)

Theorem 3.25 (Discriminant with respect to the trace).

$$\operatorname{disc}(\alpha_1, \dots, \alpha_n) = \det \left(T(a_i a_j) \right)_{ij} \tag{11}$$

Theorem 3.26 (Discriminant of linearly dependent numbers). $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = 0$ iff $\alpha_1, \ldots, \alpha_n$ are linearly dependent.

4 Prime Decompositions

Definition 4.1 (Integral). Let $S \subseteq R$ be rings with $\alpha \in R$. Then, b is integral over S if there exists a monic $f \in S[x]$ such that $f(\alpha) = 0$.

Definition 4.2 (Dedekind domain). A Dedekind domain is an integral domain R such that

- (i) every ideal is finitely generated,
- (ii) every nonzero prime ideal is maximal,
- (iii) R is integrally closed in its fraction field $K = \{a/b : a, b \in R, b \neq 0\}$.

Theorem 4.3. Number rings are Dedekind domains.

Theorem 4.4. For all ideals I of a Dedekind domain R, there exists an ideal $J \subset R$ such that IJ is principal.

Corrolary 4.5. With chapter 1, exercise 32, this implies that the ideal class group is a group.

Corrolary 4.6. If A and B are ideals, then $A \mid B$ iff $A \supset B$.

Theorem 4.7 (Unique factorization). Every ideal in a Dedekind domain R uniquely factors into primes ideals.

Theorem 4.8 (Every Dedekind ideal is generated by two elements). Let I be an ideal of a Dedekind domain R and let $\alpha \in R$ be arbitrary. Then, there exists a $\beta \in R$ such that $R = (\alpha, \beta)$.

Theorem 4.9. A Dedekind domain is a UFD iff it's a PFD.

Theorem 4.10. Let $K \subset L$ be fields and $P \subset R = \mathcal{O}_K$ and $Q \subset S = \mathcal{O}_L$ be prime ideals of their corresponding number rings. Then, the following are equivalent

- (i) $Q \mid PS$,
- (ii) $Q \supset PS$,

- (iii) $Q \supset P$,
- (iv) $Q \cap R = P$,
- (v) $Q \cap K = P$.

List of Theorems		
List of Figures		
List of Tables		