(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-256507 (P2000-256507A)

(43)公開日 平成12年9月19日(2000.9.19)

(21)出願番号	}	特願平11-57424	(71)出願人	0000002	:06		
			來請承	未請求	請求項の数4	OL	(全 10 頁)
	36/06		3	6/06			
	4/52			4/52		4	J 1 0 0
	2/44			2/44	I	C 4	J015
C08F	2/06		C08F	2/06		4	J 0 1 1
C08L	9/00		C08L	9/00		4	J002
(51) Int.Cl. ⁷		識別記号	FΙ			テーマコ	一片(参考)

(22)出願日 平成11年3月4日(1999.3.4)

宇部興産株式会社

山口県宇部市西本町1丁目12番32号

(72)発明者 井上 篤司

千葉県市原市五井南海岸8番の1 宇部興

産株式会社千葉石油化学工場内

(72)発明者 中島 哲司

千葉県市原市五井南海岸8番の1 宇部興

産株式会社千葉石油化学工場内

最終頁に続く

(54) 【発明の名称】 ポリプタジエンゴム及びその製造方法。

(57) 【要約】

【課題】 ヘキサン可溶部が t-cp>4MLなるを有 するポリブタジンゴム複合体、及びその製造方法を提供

(A) 特定の1, 2-ポリブタジエン成 【解決手段】 分10~25重量%、及び、(B)特定のハイシスポリ ブタジエン成分90~75重量%からなるポリブタジエ ンゴム、並びに、(a) 周期律表3族金属の化合物、

(b) アルキルアルミニウムハイドライド、(c) ブタ ジエン、及び(d)アルキルアルミニウムクロライドを 熟成して得られる触媒を用いて、ブタジエンを重合さ せ、得られた重合溶液の存在下で、シンジオタクチック -1.2-重合触媒の存在下、更にブタジエンを重合す

【特許請求の範囲】

【請求項1】 (A) 還元粘度 $0.5\sim401,2-ポ$ リブタジエンを主成分とする沸騰 $n-\Lambda$ キサン不溶分・・・ $10\sim25$ 重量%、及び、(B) トルエン溶液粘度 (t-cp) と100 におけるムーニー粘度 (ML) とが、t-cp>4 ML なる関係を満足するハイシスポリブタジエンを主成分とする沸騰 $n-\Lambda$ キサン可溶分・・・ $90\sim75$ 重量%からなるポリブタジエンゴム。

1

【請求項2】 当該(A)成分が、更に差動熱量計(DSC)の吸熱曲線が170~210℃の範囲にダブルピ 10 一クを有していることを特徴とする請求項1に記載のポリブタジエンゴム。

【請求項3】 (a) 周期律表3族金属の化合物、

(b) アルキルアルミニウムハイドライド化合物、

(c) ブタジエン、及び(d) アルキルアルミニウムクロライドを熟成して得られる触媒を用いて、ブタジエンを重合させ、得られた重合溶液の存在下で、シンジオタクチック-1,2-重合触媒の存在下、更にブタジエンを重合することを特徴とする請求項1~2に記載のポリブタジエンゴムの製造方法。

【請求項4】 当該重合を非芳香族系溶媒で行うことを 特徴とする請求項3に記載のポリブタジエンゴムの製造 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定のn-ヘキサン不溶分と特定のn-ヘキサン可溶分からなるポリブタジエンゴム、周期律表3族金属の化合物からなる重合触媒を用いたポリブタジエンゴム、及び当該重合を非芳香族系溶媒下で行う製造方法に関するものである。

[0002]

【従来の技術】ポリブタジエンは、重合触媒によって種々のミクロ構造を有するポリマーが得られることが知られている。コバルト化合物、あるいはニッケル化合物と有機アルミニウム化合物を用いたポリブタジエンは、一般にそのミクロ構造の特徴から(シス分95%以上)ハイシスBRと呼ばれ、その特徴を生かし、主としてタイヤ用の材料として工業的に生産され、使用されている。また、これらのハイシスBRのもつ特徴を生かし、より高機能な特徴を持ったBRとして、ハイシスBR中に1ー2シンジオタクチックポリブタジエン(以下SPBと略)を分散させた複合体ゴム(VCR)が知られている。

【0003】特公昭49-17666号公報には、コバルト触媒を用いたSPB含有のハイシスBR複合体の製造法が開示されている。また、特公昭63-1324号公報には、ニッケル触媒を用いたSPB含有のハイシスBR複合体の製造法が開示されている。

【0004】また、特公平2-62123号、特公平4-48815号公報などにも、同様なBR組成物及びそ 50

の製造方法が開示されている。

【0005】また、特開平3-45609号公報には、複合体のハイシスBRが、t-cp>3ML-30なる特性を有するブタジエンゴムであり、反発弾性が改良されることが開示されている。しかし、具体的に記載されているのは、t-cp/3MLが、 $2\sim3$ 程度のものである。また、ハイシスBRの重合触媒として、ランタン系列希土類元素系の触媒(例、トリエチルアルミニウム・有機酸ネオジウム・ルイス酸系等)との記載があるが、具体的な触媒は記載されていない。

【0006】特開平5-194658号公報には、複合体のハイシスBRが、3ML-30< t-cp<3ML+30なる特性を有するブタジエンゴムであり、ポリブタジエンの長所を保持しつ各種特性のバランスが優れていることが開示されている。しかし、上記公報の実施例のゴムのt-cpは、高々、100~200程度であり、t-cp/MLは、2~4である。

【0007】高シスポリブタジエンの分岐度の指標としてトルエン溶液粘度(t-cp)とムーニー粘度(M L)の比(t-cp/ML)がある。t-cpは濃厚溶液中での分子の絡み合いの程度を示すのであって、同程度の分子量分布の高シスポリブタジエンにあっては、分子量が同一であれば(すなわち、MLが同一であれば)分岐度の指標となるものである(t-cpが大きい程、分岐度は小さい)。また、t-cp/MLはMLの異なる高シスポリブタジエンの分岐度を比較する場合に指標として用いられる(t-cp/MLが大きい程、分岐度は小さい)。

[00008] 複合体がタイヤの各種部材やその他の用途 においては、従来のものでは得られない特性が求めらる ことがあり、より高い t-cp、あるいは、より高い t-cp/MLが求められることがある。

【0009】また、上記の複合体のヘキサン不溶部は200℃付近に差動熱量計(DSC)の吸熱ピークを有していることが記載されている。

【0010】また、上記の複合体を製造する重合反応として、脂肪族炭化水素溶媒などの非芳香族溶媒を用いることが望まれている。

【0011】高シスー1,4構造のポリブタジエンを得る方法として、上記の触媒系に加えて、周期律表3族の金属化合物を用いた重合触媒が知られている。

【0012】例えば、周期律表3族の金属化合物を用いた重合触媒としては、特公昭47-14729号公報には、①セリウムオクタノエート等の周期律表3族金属の化合物と②ジイソブチルアルミニウムハイドライド等のアルキルアルミニウムハイドライドやトリアルキルアルミニウムと③エチルアルミニウムジクロライド等のアルキルアルミニウムハライドからなる触媒系が示されており、特に触媒をブタジエンの存在下で熟成することにより触媒活性が増加することが示されている。

【0013】また、特公昭63-64444号公報には希土類元素のカルボキシレート、有機アルミニウム及びルイス酸からなる触媒系、特公平4-2601号公報には希土類元素のカルボキシレート、有機アルミニウム及び有機ハロゲン誘導体からなる触媒系、特開平7-268013号公報には希土類の塩、周期律表第I~III族の金属化合物及び3価のホウ素の有機金属誘導体からなる触媒系、特公平3-22887号公報にはネオジウム化合物、有機アルミニウム化合物及び水からなる触媒系が開示されている。

[0014]

[0015]

【課題を解決するための手段】本発明は、(A)還元粘度 $0.5\sim4$ の 1,2 -ポリブタジエンを主成分とする沸騰 1 - 1

【0016】また、本発明は、更に差動熱量計(DSC)の吸熱曲線が $170\sim210$ $^{\circ}$ $^{\circ}$ の範囲にダブルピー $^{\circ}$ $^{\circ}$ クを有していることを上記のポリブタジエンゴムに関する。

【0017】また、本発明は、(a) 周期律表3族金属の化合物、(b) アルキルハイドロアルミニウム化合物、(c) ブタジエン、及び(d) アルキルアルミニウムクロライドを熟成して得られる触媒を用いて、ブタジエンを重合させ、得られた重合溶液の存在下で、シンジオタクチック-1,2-重合触媒の存在下更にブタジエンを重合することを特徴とするポリブタジエンの製造方法に関する。

【0018】また、本発明は、重合を非芳香族系溶媒で行うことを特徴とする上記のポリブタジエンゴムの製造方法に関する。

【0019】本発明のポリブタジエンゴムは、沸騰nーへキサン不溶分と沸騰nーへキサン可溶分からなっている。

【0020】沸騰n-ヘキサン不溶分は、シンジオタクチック-1,2-ポリブタジエン、及び/又はシンジオタクチック-1,2-ポリブタジエンを主要構造とするポリブタジエンを主成分とするものである。一方、沸騰 50

4

n-ヘキサンに可溶な成分は、高シス-1, 4-ポリブタジエンを主成分とするものである。

【0021】沸騰nーへキサン不溶分の割合は、10~25重量%であることが必要である。沸騰nーへキサン不溶分の割合が10重量%より少ないと、ポリブタジエンゴムの硬度、弾性率、及び破壊強度が低下するという問題が生じる。一方、25重量%より多い場合はポリブタジエンゴムの配合物MLが高くなりすぎ、加工性に難が生じる。ここで「配合物」とは、ポリブタジエンゴムを配合したゴム組成物にカーボンブラックやプロセスオイル、加硫剤等を配合したものをいう。

【0022】沸騰n-ヘキサン不溶分は、テトラリン中で130℃で測定した粘度の値から計算した還元粘度の値が0.5~4の範囲にあることが必要である。還元粘度が0.5よりも小さいと、沸騰n-ヘキサン不溶分が沸騰n-ヘキサン可溶分中に繊維状に分散しないので、得られるポリブタジエンゴムの硬度や弾性、耐屈曲性が低下するという問題が起こる。一方、還元粘度が4を超えると、沸騰n-ヘキサン不溶分は沸騰n-ヘキサン可溶分中で凝集塊を形成するようになり、分散不良を起こし易くなるので、ポリブタジエンゴムの加工性や耐久性が低下するという問題が生じる。

【0023】沸騰nーへキサン可溶分は、重量平均分子量が、好ましくは30万~100万の範囲である。又、重量平均分子量(Mm)と数平均分子量(Mn)の比Mw/Mnは2~5であることが好ましい。重量平均分子量が上記範囲より小さい場合は、得られるポリブタジエンゴムの耐久性が悪化するという問題が生じる。一方、重量平均分子量が上記範囲より大きい場合は、配合物のムーニー粘度が高くなり過ぎ、加工が困難になるという問題が起こる。又、配合ゴムの流動性も悪化する。

【0024】更に、沸騰n-ヘキサン可溶分は、それ自 体のトルエン溶液粘度(t-cp)とムーニー粘度(M L) とが、t-cp>4MLなる関係を満たしているこ とが必要である。トルエン溶液粘度は、濃厚溶液中での 沸騰n-ヘキサン可溶分の分子の絡みあいの程度を示す ものであって、同程度の分子量分布のゴムにあっては、 分子量が同一であれば(即ちムーニー粘度が同一であれ ば)ポリマー鎖の分岐の度合いの尺度となるものであ る。即ち同一ムーニー粘度の場合、トルエン溶液粘度が 小さいことは分岐度の大きなことを示し、トルエン溶液 粘度が大きいことは分岐度の小さなことを示すのであ る。上記の関係を満たすと、高硬度、高モジュラス、引 裂抵抗性、耐摩耗性などの特性のバランスが向上する。 【0025】また、上記のヘキサン不溶(A)成分は、 好ましくは、更に170~210℃の範囲にDSCの吸 熱曲線がダブルピークを有している。一般に、自動車タ イヤなどの加硫は、175℃付近で行ない、ヘキサン不

溶(A)成分が従来の200℃付近の融点とともに、1

75℃付近に別の吸熱ピークを有していることにより、 他のゴムとの共加硫が起こりやすく、タイヤ強度の低下 が少ない効果がある。

【0026】以下、本発明のポリブタジエンゴムの製造 法について説明する。製造法には、例えば二段重合法が ある。

【0027】二段重合法とは、1,3-ブタジエンを最初にシス-1,4-重合して高シス-1,4-ポリブタジエンとし、次いで重合系にシンジオタクチック-1,2 重合触媒を投入して残余の1,3-ブタジエンを1,2 重合させるというものである。1,4-重合触媒としては、(a)周期律表3族金属の化合物、(b)アルキルアルミニウムハイドライド化合物、(c)ブタジエン、及び(d)アルキルアルミニウムクロライドを熟成して得られる触媒が好ましい。

【0028】上記の触媒系の(a)成分である周期律表3族金属の化合物を構成する金属は、周期律表3族に属する原子であり、ランタン系列元素、アクチニウム系列元素などが挙げれる。好ましくは、希土類元素が挙げられる。具体的には、ネオジウム、プラセオジウム、セリウム、ランタン、ガドリニウム又はこれらの混合物である。特に、好ましくは、ネオジウムが挙げられる。

【0029】周期律表3族金属の化合物としては、周期律表3族金属のカルボン酸塩、アルコキサイド、βージケトン錯体、リン酸塩また亜リン酸塩などであり、中でもカルボン酸塩、リン酸塩が好ましく、特にカルボン酸塩が好ましい。

【0030】周期律表3族金属のカルボン酸塩は、一般式 (RCO_2) $_3$ M (式中、Mは周期律表3族金属であり、Rは炭素数 $1\sim20$ の炭化水素基である。)で表さ 30 れる化合物である。

【0031】Rは、飽和又は不飽和のアルキル基であり、かつ直鎖状、分岐状又は環状であり、カルボキシル基CO2は1級、2級又は3級の炭素原子に結合している。具体的には、オクタン酸、2-エチルーへキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸及びバーサチック酸(シェル化学の商品名であって、カルボキシル基が 3級炭素原子に結合しているカルボン酸である)などの塩が挙げられる。中でも、2-エチルーへキサン酸及びバーサチック酸が好ましい。

【0032】周期律表3族金属のアルコキサイドは、一般式(RO)3 M(式中、MおよびRは前記と同じである。)で表される化合物である。ROで表されるアルコキシ基の例として、2-エチルーへキシルアルコキシ、オレイルアルコキシ、ステアリルアルコキシ、フェノキシ及びベンジルアルコキシ基が挙げられる。なかでも、2-エチルーへキシルアルコキシ及びベンジルアルコキシ基が好ましい。

【0033】周期律表3族金属のβ-ジケトン錯体としては、周期律表3族金属のアセチルアセトン、ベンゾイ 50

6

ルアセトン、プロピオニトリルアセトン、バレリルアセトン及びエチルアセチルアセトン錯体などが挙げられる。なかでもアセチルアセトン及びエチルアセチルアセトン錯体が好ましい。

【0034】周期律表3族金属のリン酸塩又は亜リン酸 塩としては、周期律表3族金属のリン酸ビス(2-エチ ルヘキシル)、リン酸ビス(1-メチルヘプチル)、リ ン酸ビス(pーノニルフェニル)、リン酸ビス(ポリエ チレングリコールーpー ノニルフェニル)、リン酸 (1-メチルヘプチル) (2-エチルヘキシル)、リン 酸 (2-エチルヘキシル) (p-ノニルフェニル)、2 - エチルヘキシルホスホン酸モノ-2- エチルヘキシ ル、2-エチルヘキシルホスホン酸モノ-2- ノニル フェニル、ビス (2-エチルヘキシル) ホスフィン酸、 ビス (1-メチルヘプチル) ホスフィン酸、ビス (p-ノニルフェニル)ホスフィン酸、(1-メチルヘプチ ル) (2-エチルヘキシル) ホスフィン酸、(2-エチ ルヘキシル)(pーノニルフェニル)ホスフィン酸など の塩が挙げられる。中でも、リン酸ビス(2-エチルへ 20 キシル)、リン酸ビス(1-メチルヘプチル)、2-エ チルヘキシルホスホン酸モノー2-エチルヘキシル、ビ ス(2-エチルヘキシル)ホスフィン酸などの塩が好ま しい。

【0035】以上の例示した中でも、特に好ましいのはネオジウムのリン酸塩又はネオジウムのカルボン酸塩であり、さらにネオジウムの2-エチル-ヘキサン塩及びネオジウムのバーサチック酸塩などのカルボン酸塩が最も好ましい。

【0036】また、上記触媒系の(b)アルキルアルミニウムハイドライド化合物としては、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジーn-ブチルエチルアルミニウムハイドライド、ジフェニルアンブチルアルミニウムハイドライドなどが挙げられる。

【0037】また、上記触媒系の(d)アルキルアルミニウムクロライドとしては、ジアルキルアルミニウムクロライドとしては、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイドなどのジアルキルアルミニウムハライド、アルキルアルミニウムセスキブロマイドなどのアルキルアルミニウムセスキハライド、アルキルアルミニウムジクロライド、アルキルアルミニウムジハライド等のアルキルアルミニウムジハライド等が挙げられる。具体的化合物としては、ジエチルアルミニウムモノクロライド、ジブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムモノクロライド、ジシクロヘキシルアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド等が挙げられる。

【0038】上記の触媒の各成分は、割合としては、以

8

下のものが好ましい。

(b): (a) = 1:1~100:1 (モル比)

(c): $(a) = 0.5:1 \sim 200:1$ (モル比)

(d): (a) = 1:1~10:1(モル比)。

【0039】また、上記の触媒系は熟成して用いることが好ましい。熟成時間は1分~150分が好ましい。熟成温度は-10 $\sim~30$ \sim が好ましい。

【0040】重合溶媒としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、環状脂肪族炭化水素などの非芳香族系溶媒が好ましい。

【0041】シンジオタクチック-1,2-重合触媒には、公知のものを使用することができる。例えば、可溶性コバルトー有機アルミニウム化合物-二硫化炭素系触媒(特公昭47-19892号)や、この触媒系に更にアクリロニトリルを加えたもの(特公昭47-19893号)を挙げることができる。

【0042】その中でも、(e)二硫化炭素、(f)有機アルミニウム化合物、及び(g)コバルト化合物から得られる触媒が好ましい。

(f) 有機アルミニウム化合物としては、トリアルキルアルミニウムやジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムセスキブロマイド等である。その中でも、トリアルキルアルミニウムが好ましく、具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリブチルアルミニウム、トリブチルアルミニウムなどが挙げられる。

【0043】(g)コバルト化合物としては、塩化コバルト、臭化コバルト、硝酸コバルト、オクチル酸コバルト、オクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等のコバルト塩や、コバルトのビスアセチルアセトネートやトリスアセチルアセトネート、アセト酢酸エチルエステルコバルト、ハロゲン化コバルトのトリアリールフォスフィン錯体やトリアルキルフォスフィン錯体、もしくはピリジン錯体やピコリン錯体等の有機塩基錯体、もしくはエチルアルコール錯体等が挙げられる。

【0044】また、上記の触媒に加えて、アルコール、アルデヒド、ケトン、エステル、ニトリル、スルホキシド、アミド、燐酸エステル等を添加して、融点の低いシ 40ンジオタクチック-1,2-ポリブタジエンを得ることができる。

【0045】重合溶媒としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、環状脂肪族炭化水素などの非芳香族系溶媒が好ましい。重合溶媒等も公知の方法に従って適宜設定できる。

【0046】本発明のポリブタジエンゴムは、このほか ブレンド法によっても製造できる。ブレンド法とは、予 め高シス1,4-ポリブタジエンとシンジオタクチック 1,2-ポリブタジエンを別々に重合しておき、各々の 50

重合溶液をブレンドするというものである。このほか、 高シス1, 4ーポリブタジエンの重合溶液に固体状のシンジオタクチック1, 2ーポリブタジエンをブレンドする等の方法も可能である。

【0047】本発明のポリブタジエンゴムは、高シスポリブタジエンゴムや低シスポリブタジエンゴムやスチレンーブタジエンゴム、イソプレンゴム、ブチルゴム、及び天然ゴムからなる群から選ばれた少なくとも1種類のゴムを配合した組成物としてタイヤのベーストレッドやサイドウォール、或いはビードフィラーに好ましく用い得る。但しこの組成物は本発明のポリブタジエンゴムを20重量%以上含有することが望ましい。

[0048]

【実施例】以下の実施例および比較例において、ブタジエンゴムについて以下の各項目の測定は、次のようにして行った。

【0049】 $n-\Lambda$ キサン不溶分の還元粘度:ポリブタジエンゴム25gを沸騰 $n-\Lambda$ キサン1000 메中で還流し、沸騰 $n-\Lambda$ キサン不溶分と可溶分とに分離した。得られた沸騰 $n-\Lambda$ キサン不溶分0.2gをテトラリン100 메に溶解し、130 の温度にてウベローデ粘度計にて測定した。DSCによる吸熱曲線は、を用いて測定した。

【0050】 $n- n+ y > \eta$ 下部分の重量平均分子量の測定:ポリブタジエンゴム 25 g を沸騰 n- n+ y > 10 00 ml 中で還流し、沸騰 n- n+ y > 10 の n- n+ y > n 下溶液を回収した。得られた n- n+ y > n 下液液を回収した。得られた n- n+ y > n 下液から n- n+ y > n 下液分をに回収した。回収された n- n+ y > n 下海分をテトラヒドロフランに溶解し、GPCを用い、ポリスチレン換算分子量から Mwを算出した。測定条件は以下の通り。装置:HLC-802A型(東洋曹達株式会社製)カラム:GMH6000、2本並列溶離液:テトラヒドロフラン溶離液流量:1.0 ml/分測定温度:カラム槽・・40 で 検出器・・・40 で サンプル濃度:0.025 g/100 ml サンプル注入量:0.5 ml 【0051】 n- n+ y > n 下溶分のミクロ構造:上記の

【0051】 nーヘキサン可溶分のミクロ構造:上記の方法で得られた沸騰 nーヘキサン可溶分について、赤外線吸収スペクトル法(モレロ法)によってシス-1,4 構造の割合を定量した。

【0052】 n - へキサン可溶分のトルエン溶液粘度 (T-cp):上記の方法で得られた沸騰n-ヘキサン 可溶分を5重量%になるようにトルエンに溶解して、キャノンフェンスケ粘度計を25℃で測定した。

【0053】n-ヘキサン可溶分及び配合物のムーニー 粘度 JIS-K-6300に規定されている測定方法 に従って測定した。

【0054】(実施例1)

(触媒の熟成) ジイソブチルアルミニウムハイドライド 3. 13 mm o l (n - ヘキサン溶液 2 m l)、ブタジ

エン3.57mmol(シクロへキサン溶液)及びNd V_3 (ネオジムバーサテート)0.13mmol(シクロへキサン溶液)を混合し、20 $\mathbb C$ で10分間熟成した。さらに、ジエチルアルミニウムクロライド0.36mmol(n-ヘキサン溶液)を添加し、20分間熟成した。

(VCR製造)上記のシス重合溶液に、二硫化炭素 15 mg/L、トリエチルアルミニウム 0.4 mg/L、及 びコバルトオクトエート 30 mg/Lを加えて、60 ℃、<math>30 分間攪拌を行い、残余の 1 , 3 - ブタジエンを シンジオタクチック 1 , 2 重合した。重合反応を停止した後、重合溶液を常法に従って処理し、ポリブタジエン ゴムを回収した。得られたポリブタジエンゴムは、収量 が 115 g であり、ムーニー粘度が 52 (ML1+4、100 ℃) であった

【0055】沸騰 $n-\Lambda$ キサン不溶分の含有率が12重量%、沸騰 $n-\Lambda$ キサン可溶分の含有率は88重量%であった。沸騰 $n-\Lambda$ キサン不溶分は還元粘度が1.2であり、DSCによる吸熱曲線に176 \mathbb{C} と191.6 \mathbb{C} のダブルピークを有していた(図1 参照)。沸騰 $n-\Lambda$ キサン可溶分はムーニー粘度が35 (ML1+4、<math>100 \mathbb{C})、トルエン溶液粘度が80、重量平均分子量が40 万であり、シス-1, 4構造の割合は98%であった。【0056】(比較例 $1\sim2$)(実施例 $1\sim3$)(触媒

第一段のハイシス重合を、表1に示した条件で行った以外は、実施例を同様に行った。ハイシス重合部分の結果*

*を表1及び表2に示した。

[0057] (実施例5~8) (触媒熟成時間の影響) 第一段のハイシス重合を、表3に示した条件で行った以 外は、実施例を同様に行った。ハイシス重合部分の結果 を表3及び表4に示した。

[0058] (実施例9~10) (ハイシス重合時間の 影響) 第一段のハイシス重合を、表5に示した条件で行った以外は、実施例を同様に

行った。ハイシス重合部分の結果を表5及び表6に示した。

[0059] (実施例11~13) (ハイシス重合温度の影響)

第一段のハイシス重合を、表7に示した条件で行った以外は、実施例を同様に行った。ハイシス重合部分の結果を表7及び表8に示した。

【0060】 (実施例14~17) (ハイシス重合の

(b) / (a) のモル比の影響)

第一段のハイシス重合を、表9に示した条件で行った以外は、実施例を同様に行った。ハイシス重合部分の結果 20 を表9及び表10に示した。

【0061】 (実施例18~20) (ハイシス重合の(d)/(a)のモル比の影響)

第一段のハイシス重合を、表11に示した条件で行った以外は、実施例を同様に行った。ハイシス重合部分の結果を表11及び表12に示した。

【0062】(実施例21~23) (ハイシス重合の(a)成分の種類の影響)

第一段のハイシス重合を、表13に示した条件で行った 以外は、実施例を同様に行った。ハイシス重合部分の結 30 果を表13及び表14に示した。

[0063]

【表1】

	Aging Time	Activity	Conversion Mi		ro Struc	cture
	mln	(g-PB/mmoi-Nd.h)	(%)	cis(%)	trans(%)	vinyl(%)
比較例1	0	100	8.9	95.4	2.9	1.7
比較例2	5	150	13.3	96.3	2.1	1.6
実施例2	30	792	70.4	97.4	2.0	0.6
実施例3	60	783	69.6	97.8	1.3	0.9
実施例4	120	783	69.6	98.2	1.1	0.7

重合条件:シクロヘキサン=615g, ブタジエン=135g, ゾイソブチルアルミコカハイ・ライト・→ ブタジエン→NdVa→ジェチルアルミコカクロライト・→室温での熟成時間

ŷ イソフ チルアルミニウムハイト ライト (DIBALH)=2. 4mmol,

プタジェン(BD)=3. 75mmol,

NdV₃=0. 12mmol, ジェチルアルミニウムクロライト (DEAC)=0. 36mmol,

重合温度=60℃, 重合時間=1時間,

熟成時間の影響)

11						12
	ML ₁₊₄	Mn×10 ⁻⁴	Mw×10 ⁻⁴	Mw/Mn	Т_ор	T _{-op} /ML
比較例1	_	3.9	118.6	30.8	_	-
比較例2	_	8.9	137.1	15.5	_	_
実施例2	43	9.1	92.4	10.1	1,163	27.0
実施例3	44	18.9	157.0	8.3	1,293	29.4
実施例4	43	17.1	135.1	7.9	1,149	26.7

[0065]

*【表3】

	Aging Time	Activity	Conversion	Mid	icro Structure		
	min	(g-PB/mmol-Nd.h)	(%)	cis(%)	trans(%)	vinyl(%)	
実施例5	1	792	70.4	97.4	2.0	0.6	
実施例6	2	758	67.4	97.4	1.4	1.2	
実施例7	5	775	68.9	97.5	1.5	1.0	
実施例8	10	783	69.6	97.4	1.7	0.9	

重合条件:シクロヘキサン=615g, ブタジェン=135g, DIBALH=2. 4mmol,

BD=3. 75mmol, NdV₃=0. 12mmol, DEAC=0. 36mmol, DIBALH→BD→NdV₃→室温での熟成時間→DEAC(全部で30分間熟成) 重合温度=60℃, 重合時間=1時間,

[0066]

※ ※【表4】

	ML ₁₊₄	Mn×10 ⁻⁴	Mw×10 ⁻⁴	Mw/Mn	Т_ор	T _{-op} /ML
実施例5	43	9.1	92.4	10.1	1,163	27
実施例6	44	18.5	158.9	8.6	1,200	27.3
実施例7	32	17.5	87.4	5.0	294	9.2
実施例8	31	19.9	74.8	3.8	161	5.2

[0067]

★ ★【表5】

	Polymerization	Activity	Conversion	Micro Structure		
	Time(min)	(g-PB/mmol-Nd.h)	(%)	cis(%)	trans(%)	vinyl(%)
実施例9	30	1,100	48.9	97.6	1.5	0.9
実施例10	60	775	68.9	97.5	1.5	1.0
実施例11	120	492	87.4	97.8	1.3	0.9

重合条件:シクロヘキサン=615g, BD=135g, DIBALH→BD→NdV3(室温で5分熟成) DEAC(25分熟成), DIBALH=2. 4mmol, BD=3. 75mmol, NdV₈=0. 12mmol,

> 重合温度=60℃, 重合時間=変動 DEAC=0. 36mmol,

[0068]

☆40☆【表6】

	ML ₁₊₄	Mn×10 ⁻⁴	Mw× 10 ⁻⁴	Mw/Mn	Т-ор	T _{-op} /ML
実施例9	19	15.2	69.9	4.61	188	9.9
実施例10	32	17.5	87.4	4.99	294	9.2
実施例11	49	24.3	96.0	3.96	410	8.4

[0069]

【表7】

	Polymerization	Activity	Conversion	Micro Structure		
	Temp(℃)	(g-PB/mmol-Nd.h)	(%)	cis(%)	trans(%)	vinyl(%)
実施例11	40	592	52.6	97.3	1.7	1.0
実施例12	60	792	70.4	97.4	2.0	0.6
実施例13	80	592	52.6	97.0	2.1	0.9

重合条件: シクロヘキサン=615g, BD=135g,

DIBALH→BD→NdV3→DEAC(室温で30分熟成)

DIBALH=2. 4mmol, BD=3. 75mmol, NdV₃=0. 12mmol,

DEAC=0. 36mmol,

Nd:DIBALH:CI=1:20:3

重合温度=変動, 重合時間=1時間,

[0070]

* *【表8】

	ML ₁₊₄	Mn × 10 ⁻⁴	Mw×10 ⁻⁴	Mw/Mn	T _{-cp}	T _{-cp} /ML
実施例11	37	11.2	111.6	9.9	1,255	33.9
実施例12	43	9.1	92.4	10.1	1,163	27.0
実施例13	46	11.5	119.6	10.4	751	16.3

[0071]

※ ※【表9】

	DIBALH/Nd	Activity	Conversion	Micro Structure		
	Molar Ratio	(g-PB/mmol-Nd.h)	(%)	ois(%)	trans(%)	vinyl(%)
実施例14	20	783	69.6	97.8	1.3	0.9
実施例15	30	875	77.8	97.5	1.7	0.7
実施例16	40	958	85.2	97.2	2.1	0.7
実施例17	· 60	892	79.3	96.7	2.3	1.0

重合条件: シクロヘキサン=615g, BD=135g,

DIBALH→BD→NdV3→DEAC(室温で30分熟成)

NdV3=0. 12mmol, Nd:Cl=1:3, BD=3. 75mmol, DEAC=0. 36mmol,

DIBALH=変動,重合温度=60°C,重合時間=1時間,

[0072]

★ ★【表10】

	ML ₁₊₄	Mn×10 ⁻⁴	Mw× 10 ⁻⁴	Mw/Mn	T _{-op}	T _{-op} /ML
実施例14	44	18.9	157.0	8.3	1,296	29.5
実施例15	28	13.5	227.5	16.9	589	21.0
実施例16	15	13.4	95.8	7.2	209	13.9
実施例17		7.6	76.0	10.0	_	_

[0073]

【表11】

15						16
	CI/Nd	Activity	Conversior	Micro Structur		ture
	Molar Ratio	(g-PB/mmol-Nd.h)	(%)	ois(%)	trans(%)	vinyl(%)
比較例3	1	192	17.0	95.3	3.3	1.4
実施例18	3	783	69.6	97.8	1.3	0.9
実施例19	4	675	60.0	97.7	1.4	0.9
実施例20	5	250	22.2	95.1	2.7	2.2

重合条件:シクロヘキサン=615g, BD=135g,

DIBALH→BD→NdV3→DEAC→室温で30分熟成 NdV₃=0. 12mmol, Nd:DIBALH=1:20, DIBALH=2. 4mmol, BD=3.75mmol, DEAC=変動, 重合温度=60℃, 重合時間=1時間,

[0074]

* *【表12】

	ML ₁₊₄	Mn×10 ⁻⁴	Mw×10 ⁻⁴	Mw/Mn	Т-ср	T _{-op} /ML
比較例3	_	7.1	43.4	6.1	-	-
実施例18	44	18.9	157.0	8.3	1,296	29.5
実施例19	43	15.8	166.0	10.5	1,476	34.3
実施例20	20	6.4	148.9	23.4	1,327	66.4

[0075]

※ ※【表13】

	Nd Catalyst	Activity	Conversion	Micro Structure		
		(g-PB/mmol-Nd.h)	(%)	cis(%)	trans(%)	vinyl(%)
実施例21	NdV₃	1,833	64.0	97.1	1.8	1.1
実施例22	Nd(Oct) ₃	650	22.7	96.3	2.2	1.5
実施例23	Nd(Nap) ₃	117	4.1	94.1	3.2	2.7

[0076]

★ ★【表14】

	ML ₁₊₄	Mn × 10 ⁻⁴	Mw×10 ⁻⁴	Mw/Mn	T _{-op}	T _{-op} /ML
実施例21	40	22.2	95.1	4.2	220	5.5
実施例22	17	9.9	68.7	6.9	77	4.5
実施例23		8.3	92.3	11.1	_	

【図面の簡単な説明】

トである。

【図1】本発明の一実施例の(A)成分のDSCチャー

[図1]

フロントページの続き

Fターム(参考) 4J002 AC031 AC032 AC042

4J011 HA03 HB22 PA04 PA76 PC01

4J015 DA05 DA14

4J100 AS02P CA01 CA12 CA14

DA09 DA24 DA40 FA08 FA30

FA34 JA29