# 第8章数字系统设计基础 Design of Digital Systems

§ 8.1 概述

数字系统 二 模块 子系统

每个子系统 { 控制器 数据处理器

# 关系:

# 状态变量



结果作为状态变量反馈给控制器.

# § 8.2 算法状态机 — ASM 图表

#### **Algorithmic State Machine**

ASM: 数字系统控制过程的算法流程图

与通常算法流程图不同, ASM图表示了准确的时间序列

# 特点:

- 1. 操作是按时间序列进行的
- 2. 操作取决于某一判断(外输入及反馈信号)

# 8.2.1 ASM 符号

1. 状态框 (rectangle)



在T1 状态下, 代码 001, 输出 Z = 0, 下一个 CLK 到来,数据处 理器进行操作 A+1.



状态框内的操作为无条件操作。是此状态下将要实现的操作,将在下一个CLK到来时执行。

 $A \leftarrow A+1$ 

寄存器传输语言

Register Transfer Languages (RTL)

$$R \leftarrow SR$$
 ( $R$  shift right)  
 $A \leftarrow 0$  ( $A$  clear)  
 $F \leftarrow 1$  ( $F$  set 1)

# 2. 判断框 (prism 菱形)



控制器根据判断框内容(条件)决定下一个 CLK 到时状态转换

# 3. 条件框 (ellipse 椭圆)

条件框内的操作为条件操作 它的入口只能接判断框的分支



#### 例:分析下面 ASM图.



在T<sub>1</sub>状态下,

输出:START

若输入 E = 1, 下一个 *CLK* 到来 *R* 复位 (清0), 否则 *R* 保持, 新状态为 T<sub>2</sub>

# 8.2.2 ASM块

规则: 每个ASM 块必须包含只能包含一个状态框, 以及与之相连的判定框和条件框。

划分 ASM 块的意义:

一个ASM块定义数字系统的一个时序,

即一个ASM块内的操作在一个CLK周期完成。



例: ASM块

一个状态框 两个判定框 一个条件框

 $T_0$  状态下,下一个 CLK 到来:

控制器

数据处理器

$$A \leftarrow A+1$$

(无条件操作)

If 
$$E=1$$
,

(条件操作)

If 
$$E = 0$$
,  $F = 0$ ,

$$E = 0, F = 1,$$

**State**  $T_0 \rightarrow T_3$ 

$$T_0 \rightarrow T_1$$

$$T_0 \rightarrow T_2$$



现态  $T_0$  与状态框内的操作不是在同一个CLK内

# ASM~状态图的关系

# ASM → 状态图





|         | ASM          | 状态图          |  |
|---------|--------------|--------------|--|
| 状态转换    | $\checkmark$ | $\checkmark$ |  |
| 转换条件    | √            | $\checkmark$ |  |
| 数据处理器操作 | √            | X            |  |
| 描述      | 系统           | 控制器          |  |

相同

相异

# 8.2.3 ASM图表的建立

# 例 1

在 $T_0$ 状态下,若控制输入X和Y分别等于0和1,系统实现条件操作:寄存器R左移,并转移到状态 $T_1$ ,试画出其ASM图。

#### **ASM:**



例 2: 用数字系统记录并显示车场内的存车数目,入口出口都有光电元件,每当有汽车进入车场时,光线有变化,信号Y由 $1\rightarrow 0$ ;汽车离开车场时,出口信号Z由 $1\rightarrow 0$ ;信号Y,Z与时钟同步,记录车场车辆数目的数据处理器是一可逆计数器,画出该数字系统的ASM图表.

$$Y=1$$
 无车进入  $Y=0$  车进入  $Y=0$  车进入  $Z=1$  无车出  $Z=0$  车出

设 N: 车场内目前的车辆数

$$S:$$
开始信号 $S=1$  开始  $S=0$  保持

#### **ASM**



A: 计数器

操作  $A \leftarrow N$  需要一个 CLK,需要一个状态框.

$$\lambda, Y \begin{cases} Y=1 \ \mathbb{E}$$
 无车进入  $Y=0$  车进入

出, 
$$Z = 1$$
 无车出  $Z = 0$  车出

- 例 3: 设计一个数字系统,它有三个4位的寄存器X、Y、Z,并实现下列操作:
- (1) 启动信号S 出现, 传送两个4 位二进制数 $N_1$ 、 $N_2$  给寄存器 X、Y;
- (2) 如果 X > Y, 左移X, 结果送给Z;
- (3) 如果 X < Y, 右移X, 结果送给Z;
- (4) 如果 X = Y, 将 X 或 Y 送给 Z.



练习: 一个数字系统在 $T_1$ 状态下,若启动信号S=0, 则保持 $T_1$ 状态不变; 岩S=1, 则完成条件操作:  $A \leftarrow N1$ ,  $B \leftarrow N2$ ,状态由 $T_1 \rightarrow T_2$ 。在 T,状态下,下一个CLK到, 完成无条件操作 $B \leftarrow B - 1$ , P右移,状态由 $T_2 \rightarrow T_3$ ; 若 M=1,状态由 $T_2 \rightarrow T_4 \rightarrow T_1$ 。 画出该数字系统的ASM 图。:



# § 8.3 数字系统设计

# 8.3.1 数字系统设计步骤

- 1. 分析
- **2. ASM**
- 3. 设计控制器

状态转换

4. 设计数据处理器

条件操作和无条件操作

5. 电路

# 8.3.2 数字系统设计举例

例 1:设计三种图案彩灯控制系统的控制器。三种 图案彩灯依次循环亮, 其中苹果形图案灯亮 16 s, 香蕉形图案灯亮 12 s, 葡萄形图案灯亮 9 s。

#### 1. 分析

# 输入:

计时信号 { 16 s: X=1 12 s: Y=1 9 s: Z=1

定时启动t = 1 计时开始 = 0 否则

# 输出:

灯亮

苹果形: A=1

香蕉形: B=1

葡萄形:G=1

高有效

# 2. 建立 ASM图

#### 3. 设计控制器

$$(X, Y, Z \rightarrow T_0, T_1, T_2)$$

# 每个状态一个触发器

状态数 = FFs

选择 D-FF,  $Q^{n+1} = D$ 

$$D_{i}$$
  $D_{i}$   $D_{i}$   $D_{i}$   $D_{i}$ 



根据ASM图,各个状态的输入条件作为D-FF的控制输入方程.

任何时刻,只能存在一个状态(=1),其它状态=0

3 状态, 3 D-FF, 输入 D, 输出 T<sub>i</sub>

$$T_0=1$$
,  $D_0=T_0\overline{X}+T_2Z$ 

$$T_1=1$$
,  $D_1=T_0X+T_1\overline{Y}$ 

$$T_2=1$$
,  $D_2 = T_1Y + T_2\overline{Z}$ 



# 4. 电路

$$T_0=1, D_0=T_0\overline{X}+T_2Z$$

$$T_1=1, D_1=T_0X+T_1\overline{Y}$$

$$T_2=1, D_2=T_1Y+T_2\overline{Z}$$



# 例 2. 十字路口交通灯管理系统 (例 8.8)

在主干道 A 和小道 B 的十字交叉路口,设置 交通灯管理系统。小道 B 路口设有传感器 M,小道有车M=1,否则M=0.



主干道通车最短16 s, 超过16 s, 若小道有车 (M = 1), 主干道绿灯灭黄灯亮3 s,然后红灯亮. 小道绿灯 (通车) 最长时间16 s, 在16 s内,只要小道无车 (M = 0), 小道由绿灯变黄灯 (3 s) 后变红灯, 主干道红灯变绿灯. 16 s 和3 s 定时信号由加法计数器完成, 时间到, t = 1, 计数器清0, 重新计时下一个定时时间.

#### 1. 分析:

输出: AG, AY, AR, BG, BY, BR = 1 亮 输入、输出均是高电平有效 (=1)

# 2. 建立 ASM图



# 3. 控制器设计 (用 M, Y, Z 得到: $T_0, T_1, T_2, T_3$ )

用 MUX, D-FF, 译码器设计控制器

根据 ASM: 4 个状态 T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>

输出: 高电平有效 2-4 译码器

其入口接两个 D-FF 的出口  $Q_0$ ,  $Q_1$  D-FF的入口各接一个4-1 MUX

4-1 MUX入口接*M*, *Y*, *Z*, 实现

$$M, Y, Z$$
 控制  $T_0, T_1, T_2, T_3$ 

# 状态图, 找到 $Q_1^{n+1}$ , $Q_0^{n+1}$ (即 $D_1$ , $D_0$ ) 与总输入 M, Y, Z 的关系 从ASM图:

| 状态<br>符号       | 现状态<br><i>Q</i> <sub>1</sub> <sup>n</sup> <i>Q</i> <sub>0</sub> <sup>n</sup> | 输入<br>Y Z M             | 新状态<br>Q <sub>1</sub> <sup>n+1</sup> Q <sub>0</sub> <sup>n+1</sup>                                  | 输出<br>T <sub>0</sub> T <sub>1</sub> T <sub>2</sub> T <sub>3</sub> |
|----------------|------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $T_0$          | 0 0                                                                          | 0 Ф Ф<br>1 Ф 0<br>1 Ф 1 | $ \begin{array}{c c} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} $ YM                                       | 1 0 0 0                                                           |
| $T_1$          | 0 1                                                                          | Φ 0 Φ<br>Φ 1 Φ          | $ \begin{array}{c c} Z \left\{ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right\} \overline{Z} $ | 0 1 0 0                                                           |
| T <sub>2</sub> | 1 0                                                                          | 0 Ф 1<br>0 Ф 0<br>1 Ф Ф | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                               | 0 0 1 0                                                           |
| T <sub>3</sub> | 1 1                                                                          | Ф 0 Ф<br>Ф 1 Ф          | $egin{array}{c cccc} ar{z} & 1 & 1 \ 0 & 0 \end{array} ar{z}$                                       | 0 0 0 1                                                           |

4-1MXU的输入即转换条件,也就是 D-FF 的输入变量方程,用引入变量 K-map (VEM),把 M, Y, Z 作引入变量.



四个小格分别为4-1MUX的输入端变量

# 电路



| $Q_0^{n+1}$ | 2 <sub>1</sub> <sup>n</sup> 0 | 1              |
|-------------|-------------------------------|----------------|
| 0           | 0                             | 1              |
| 1           | Z                             | $\overline{Z}$ |

| $Q_0^{n+1}$ $Q_0^{n}$ | 21 <sup>n</sup> 0 | 1                   |
|-----------------------|-------------------|---------------------|
| 0                     | YM                | <u>Y</u> + <u>M</u> |
| 1                     | $\overline{Z}$    | $\overline{Z}$      |

# 4. 数据处理器设计

# (1) 灯电路

$$AG = T_0$$

$$AY = T_1$$

$$AR = T_2 + T_3$$

| State | AG | AY | AR | BG | BY | BR |
|-------|----|----|----|----|----|----|
| $T_0$ | 1  | 0  | 0  | 0  | 0  | 1  |
| $T_1$ | 0  | 1  | 0  | 0  | 0  | 1  |
| $T_2$ | 0  | 0  | 1  | 1  | 0  | 0  |
| $T_3$ | 0  | 0  | 1  | 0  | 1  | 0  |

$$BG = T_2$$

$$BY = T_3$$

$$BR = T_0 + T_1$$



(2) 定时启动电路 (产生 t = 1)

定时启动: t=1 ASM: t=1 条件

$$t = T_0 YM + T_1 Z + T_2 Y + T_2 \overline{YM} + T_3 Z$$
$$= T_0 YM + (T_1 + T_3) Z + T_2 (Y + \overline{M})$$



# (3) 计时电路 (产生Y,Z)

2个计数器 Y:16 s, Z:3 s.

74161 驱动要求

用74161实现: M-16 (Y) 和 M-3 (Z)

| 控制信号         | 操作                    | _ 驱动条件                                                  |
|--------------|-----------------------|---------------------------------------------------------|
|              |                       | CLR LD CNT CNP $D_3 D_2 D_1 D_0$                        |
| 下降沿 <b>丁</b> | Clear (清0)<br>启动 (预置) | <ul> <li>0 Φ Φ ΦΦΦΦ</li> <li>1 0 1 1 0 0 0 0</li> </ul> |

# Y和Z输出

ASM 分析,

什么状态下计时16 s, 3 s?

$$Y = (T_0 + T_2)CO = 1$$

即  $T_0$  或  $T_2$  状态下,

$$CO = 1 (Q_3Q_2Q_1Q_0 = 1111)$$

$$Y=1$$
;

$$Z = (T_1 + T_3)Q_1 = 1$$

即  $T_1$  或  $T_3$  状态下,

$$Q_3Q_2Q_1Q_0 = 0010$$

$$Z=1$$
.



# 系统





- 注:① 整个系统用一个CLK 脉冲(控制器和计数器)
  - ② 整个系统用一个 $\overline{CLR}$  (包括 $\overline{R_D}$ )  $\Box$

