TD de préparation à l'examen 1

Ivan Lejeune*

11 mars 2024

Exercice 1. Soient f et g deux fonctions calculables. Considérons

$$E = \{x \mid f(x) = 0 \text{ ou } g(x) = 0\}$$

- 1. Donner un algorithme qui affiche les éléments de E.
- 2. Que peut-on en déduire sur E.

Solution.

1. On peut écrire un algorithme qui affiche les éléments de E en utilisant la fonction de temps h. Cela donne l'algorithme suivant :

Algorithme 1 : Affichage des éléments de E

Entrées : $\forall x, \forall t$

Sorties : Affiche x si f(x) = 0 ou g(x) = 0

si $(h(f,x,t) \land f(x) = 0) \lor (h(y,x,t) \land f(x) = 0)$ alors

 \perp Afficher x

2. On peut en déduire que E est récursivement énumérable.

Exercice 2. Soit f une bijection des suites finies d'entiers dans \mathbb{N} définie $f(x_1, x_2, \dots, x_k)$ où la liste est (x_1, x_2, \dots, x_k) et $x_i \in \mathbb{N}$. En déduire une fonction g bijective des suites croissantes (au sens large i.e. $x_i \leq x_{i+1}$) finies d'entiers dans \mathbb{N} .

Exercice 3.

- 1. Soient f et g deux fonctions calculables. Soit $E = \{x \mid f(x) \text{ est défini, } g(x) \text{ est défini et } f(x) < g(x)\}$. Montrer que E est récursivement énumérable.
- 2. Le complémentaire de E est-il récursivement énumérable? Justifiez complètement votre réponse.
- 3. Soit p une procédure définie pour tout x. Montrer que savoir si $\forall x, p(x)$ est premier est un problème indécidable.
- 4. Soit une suite f_i de fonctions totales de \mathbb{N} dans \mathbb{N} . Donner une fonction croissante h qui n'appartienne pas à cette suite.

Solution.

1. On peut écrire un algorithme qui affiche les éléments de E en utilisant la fonction de temps h. Cela donne l'algorithme suivant :

Algorithme 2 : Affichage des éléments de E

Entrées : $\forall x, \forall t$

Sorties : Affiche x si f(x) est défini, g(x) est défini et f(x) < g(x)

si $h(f, x, t) \wedge h(g, x, t) \wedge f(x) < g(x)$ alors

 \perp Afficher x

^{*}Feuille inspirée de M. Giroudeau

- 2. Le complémentaire de E n'est pas récursivement énumérable. En effet, si le complémentaire de E était récursivement énumérable, alors E serait décidable, ce qui n'est pas forcément le cas.
- 3. Soit P le prédicat suivant :

$$P(p) = \begin{cases} 1 & \text{si } \forall x, p(x) \text{ est premier} \\ 0 & \text{sinon} \end{cases}$$

On considère

Int
$$p_0(n) \mapsto n$$
 et Int $p_1(n) \mapsto 3$

Alors

$$P(p_0) = 1$$
 et $P(p_1) = 0$

Donc P n'est pas trivial. Alors d'après le théorème de Rice, P est indécidable.

4. On considère la fonction h suivante :

$$h(i) = \sum_{k=0}^{i} f_k(i) + i$$

Alors h est croissante et n'appartient pas à la suite f_i .

Exercice 4 - Réduction en K et K_0 .

Soit $K = \{x \mid x \in \mathbb{N}, \phi_x(x) \downarrow \}$ et $K_0 = \{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, \phi_x(y) \downarrow \}.$

On rappelle que la notation $\phi_x(y) \downarrow$ (resp. $\phi_x(y) \uparrow$) signifie que la fonction récursive ϕ_x converge (resp. diverge) en y. Montrer que K_0 est indécidable.

Solution. Il suffit de voir que K est un cas particulier de K_0 . Alors $K \subseteq K_0$. Or K est indécidable (argument diagonal de Cantor).

Donc K_0 est indécidable.

Exercice 5 - Un nouvel ensemble A.

Soit $A = \{x \mid x \in \mathbb{N}, \phi_x \text{ est une fonction constante }\}$. Montrer que A est indécidable. Pour cela, considérons la fonction

$$g(x,y) = \begin{cases} 0 & \text{si } \phi_x(x) \downarrow \\ \uparrow & \text{sinon} \end{cases}$$

Est-ce que g est calculable?

Solution. Supposons que $x \in K$. Alors $\phi_x(x) \downarrow$. Donc g(x,y) = 0. Supposons que $x \notin K$. Alors $\phi_x(x) \uparrow$. Donc g n'est pas constante. Donc A est indécidable.

Exercice 6 - Un nouvel ensemble B.

Soit $A = \{x \mid x \in \mathbb{N}, \phi_x(4) = 12\}$. Montrer que B est indécidable. Pour cela, considérons la fonction

$$g(x,y) = \begin{cases} 12 & \text{si } \phi_x(x) \downarrow \\ \uparrow & \text{sinon} \end{cases}$$

Est-ce que g est calculable?

Solution. Supposons que $x \in K$. Alors $\phi_x(x) \downarrow$. Donc g(x,y) = 12. Supposons que $x \notin K$. Alors $\phi_x(x) \uparrow$. Donc g n'est pas constante. Donc g est indécidable.

Exercice 7 - Un nouvel ensemble ${\it C}$.

Soit $C = \{x \mid x \in \mathbb{N}, \phi_x(23) \uparrow \}$. Montrer que C est indécidable.

Solution. Supposons que $x \in K$. Alors $\phi_x(23) \downarrow$. Donc $x \notin C$. Supposons que $x \notin K$. Alors $\phi_x(23) \uparrow$. Donc $x \in C$. Donc C est indécidable.

Exercice 8. Dans les cas suivants, donner un exemple d'ensemble $A \subseteq \mathbb{N}$ ou montrer qu'il n'en existe pas :

- 1. A est récursif et \overline{A} est récursif.
- 2. A est récursif et \overline{A} n'est pas récursif.
- 3. A est récursif et \overline{A} est récursivement énumérable.
- 4. A est récursif et \overline{A} n'est pas récursivement énumérable.
- 5. A est récursivement énumérable et \overline{A} n'est pas récursif.
- 6. A est récursivement énumérable et \overline{A} est récursivement énumérable.
- 7. A est récursivement énumérable et \overline{A} n'est pas récursivement énumérable.
- 8. A n'est pas récursivement énumérable et \overline{A} n'est pas récursivement énumérable.

Solution.

- 1. On peut prendre $A = \mathbb{N}$. Alors A est récursif et $\overline{A} = \emptyset$ est récursif.
- 2. On ne peut pas trouver un tel ensemble A.
- 3. On peut prendre $A = \mathbb{N}$. Alors A est récursif et $\overline{A} = \emptyset$ est récursivement énumérable.
- 4. On ne peut pas trouver un tel ensemble A.
- 5. Voir exercice 3.
- 6. On peut prendre $A=\mathbb{N}.$ Alors A est récursivement énumérable et $\overline{A}=\emptyset$ est récursivement énumérable.
- 7. Voir exercice 3.
- 8. Voir le problème de l'arrêt.