goal: observe the fact that, in LTI systems, the definitions of controllability & observability are mathematically dual

ref: Hespanha 15.8

• consider the (cT-LTI) system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^k$ y = Cx + Du, $y \in \mathbb{R}^m$ • recall: 1°. (cT-LTI) controllable \iff rank $W(t_0, t_1) = n$ where $W(t_0, t_1) = \int_{t_0}^{t_1} e^{A(T-t_0)} BB^T e^{A^T(T-t_0)} dT$ \Rightarrow show that $R(W(t_0, t_1)) = R(\int_{t_0}^{t_1} e^{A(t_1-T)} BB^T e^{A^T(t_1-T)} dT)$ $\Rightarrow 2^\circ$. (cT-LTI) observable \iff rank $M(t_0, t_1) = N$ $\Rightarrow A(T-t_0) = N$

observability Page 1

2. (CT-LTI) OBSERVADR () (WK M(to,ti) " where $M(t_0,t_1) = \int_{t}^{t_1} e^{AT(z-t_0)} cT c e^{A(z-t_0)} dz$ oconsider the dual system $\frac{\circ}{X} = A^T X + C^T u$, $X \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ $(\overline{CT-LTI})$ $y = B^T X + D^T u$, $y \in \mathbb{R}^k$ note: 1°. ($\overline{cT-LTI}$) controllable \iff rank $\overline{W}(t_0,t_1)=n$ where $\overline{W}(t_0,t_1)=\int_{t_0}^{t_1}e^{A\overline{t}(\overline{t}-t_0)}c\overline{t}ce^{A(\overline{t}-t_0)}dz$ 2°. (CT-LTI) observable \iff rank $\overline{M}(t_0,t_1)=N$ where $\overline{M}(t_0,t_1)=\int_{t}^{t_1}e^{A(z-t_0)}BB^{T}e^{A^{T}(z-t_0)}dz$ i.e. $W = \overline{M}$ and $M = \overline{W}$ so (CT-LTI) (CT-LTI) (CT-LTI) (CT-LTI) (CT-LTI) (CT-LTI) (CT-LTI) (CT-LTI) i.e. controllability matrix (for (CT-LTI) characterizes observability of (CT-LTI) (CT = To termed observability mottix)