Visualization tool for comparison of a single amino acid change in protein simulation

Bruno Iochins Grisci Instituto de Informatica UFRGS Porto Alegre, Brazil

Email: bigrisci@inf.ufrgs.br

Fig. 1. Image of the tool with all elements presented.

Abstract—

Keywords-one or two words; separated by semicolon; from specific; to generic fields;

I. INTRODUCTION

Proteins are polymers formed by a sequence of 20 different possible amino acids that under physiological conditions fold into a precise shape known as its native state [1]. Each amino acid has an alpha carbon (CA) with bonds to amino (NH2) and carboxyl (COOH) groups and a variable side-chain (R) that determines the particular physicochemical properties of each residue. A peptide is a molecule composed of two or more amino acids chained by a chemical bond called the *peptide bond*. This bond is formed when the carboxyl group of one residue reacts with the amino group of the other residue, releasing a water molecule. The interaction between amino acids in a protein causes the polypeptide chain to fold, usually in a proper configuration, as α -helix, β -sheet,

coil or turn. These local folding patterns represent the secondary structure of a protein. The topology or fold is given by the succession of secondary structures connected in a 3D space. The specific characteristics of the peptide bond have significant implications for the 3D fold that can be adopted by polypeptides. The peptide bond (C-N) has a double bond, and it is not allowed rotation of the molecule around this bond. The rotation is only permitted around the bonds N-C α and C α -C. The analysis of experimental protein structures (X-ray data) reveals that amino acid residues can assume many conformations in proteins [2]. Each amino acid has a set of physiochemical properties which contributes to its intrinsic conformational preference [3]. Amino acids in a secondary structure usually adopt a particular set of backbone torsion angles [2].

ONIMA	DSSP	SASA	GYRATE	ENERGY	RMSF	id
ALA	4	26.094	0.816329	-80229	0.2516	0
ARG	2	28.816	0.856553	-81117	0.2984	1
ASN	12	26.482	0.831238	-80430	0.2104	2
ASP	14	26.122	0.807755	-80102	0.2079	3
CYS	5	28.019	0.877226	-80025	0.3071	4
GLN	4	27.886	0.871859	-80336	0.2905	5
GLU	6	24.541	0.802756	-80047	0.2079	6
GLY	9	25.919	0.820493	-80913	0.2301	7
HIS	6	25.007	0.840453	-80419	0.3367	8
ILE	9	23.409	0.79386	-80471	0.2787	9
LEU	11	30.184	0.915368	-79149	0.3493	10
LYS	10	27.063	0.813342	-80020	0.2427	11
MET	8	27.442	0.838433	-80080	0.2216	12
PHE	2	25.836	0.817202	-80166	0.3390	13
PRO	0	26.962	0.874286	-79379	0.2689	14
SER	2	25.027	0.815362	-79635	0.2347	15
THR	11	25.966	0.899779	-80668	0.3751	16
TRP	5	29.179	0.848737	-80060	0.3149	17
TYR	12	26.107	0.805299	-80520	0.2703	18
VAL	4	26.407	0.860652	-79820	0.2216	19

Fig. 2. Overview of the used grid.

Fig. 3. Example of the use of brush.

A. Related work

II. DATA CHARACTERIZATION

A. Data dimensions

DSSP:

SASA:

GYRATE:

ENERGY:

RMSF:

III. TECHNICAL BACKGROUND

IV. TECHNIQUE OVERVIEW

A. Grid

Item highlighting:

Item selection:

B. Parallel Coordinates

Axis brushing: Fig. 3

Axis sorting:

Axis reordering:

Recoloring by axis selection:

C. Radar Plot

Item highlighting:

Fig. 4. Example of one amino acid being visualized in the radar plot.

D. Slider

V. EXPERIMENTS

VI. RESULTS AND DISCUSSION

A. Future work

VII. CONCLUSION

A demo can be tested at: http://inf.ufrgs.br/ bigrisci/parallel-coordinates/examples/table.html

ACKNOWLEDGMENT

REFERENCES

- [1] C. Anfinsen, "Principles that govern the folding of protein chains," *Science*, vol. 181, no. 96, pp. 223–230, 1973.
- [2] B. Borguesan, M. Barbachan e Silva, B. Grisci, M. Inostroza-Ponta, and M. Dorn, "Apl: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction," *Comput. Biol. Chem.*, vol. 59, no. A, pp. 142–157, 2015.
- Comput. Biol. Chem., vol. 59, no. A, pp. 142–157, 2015.

 [3] V. Mathura and D. Kolippakkam, "Apdbase: Amino acid physicochemical properties database," *Bioinformation*, vol. 1, no. 1, pp. 2–4, 2005.