

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

INFORMATYKA Poziom rozszerzony WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 14 maja 2025 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 210 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1–7) i czy dołączony jest do niego nośnik danych – podpisany DANE. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Symbol zamieszczony w nagłówku zadania oznacza, że zadanie nie wymaga użycia komputera i odpowiedź do zadania należy zapisać tylko w miejscu na to przeznaczonym w arkuszu egzaminacyjnym.
- 5. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to zapisz go w zadeklarowanym (wybranym) języku programowania i umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 6. Jeżeli rozwiązaniem zadania lub jego części jest algorytm (który trzeba zapisać w arkuszu) i wybrałeś(-łaś) jego zapis w postaci języka programowania, to użyj języka programowania, który wybrałeś(-łaś) na egzamin (Java, C++ lub Python).
- 7. Jeśli rozwiązaniem zadania lub jego części jest baza danych utworzona z wykorzystaniem MySQL lub MariaDB, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL treści zapytań w języku SQL oraz (przed zakończeniem egzaminu) wyeksportowaną całą bazę danych w formacie *.sql.
- 8. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz je pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatora.

 Pamiętaj, że zadania praktyczne niezawierające komputerowej realizacji rozwiązań zostaną ocenione na 0 punktów.
- 9. **Przed upływem czasu przeznaczonego na egzamin** zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiązania zadań.
- 10. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 11. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 12. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki są umieszczone na marginesie przy każdym zadaniu.
- 13. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Funkcja rekurencyjna

Dana jest rekurencyjna funkcja *przestaw*, której parametrem jest nieujemna liczba całkowita:

```
przestaw(n):
```

```
r \leftarrow n \mod 100

a \leftarrow r \operatorname{div} 10

b \leftarrow r \mod 10

n \leftarrow n \operatorname{div} 100

\mathbf{je\dot{z}eli} \ n > 0

w \leftarrow a + 10 * b + 100 * przestaw(n)

\mathbf{w} przeciwnym razie

\mathbf{je\dot{z}eli} \ a > 0

w \leftarrow a + 10 * b

\mathbf{w} przeciwnym razie

w \leftarrow b

wynikiem jest w
```

Uwaga:

Operator mod oznacza resztę z dzielenia, natomiast div – część całkowitą z dzielenia.

Zadanie 1.1. (0-3)

Uzupełnij tabelę – wpisz w drugiej kolumnie wynik funkcji *przestaw*(*n*) dla podanych wartości argumentu *n* oraz wpisz w trzeciej kolumnie liczbę wywołań funkcji *przestaw* łącznie z pierwszym wywołaniem z parametrem *n*.

n	Wynik działania funkcji przestaw	Liczba wywołań funkcji przestaw
316498	134689	3
43657688		
154005710		
998877665544321		

Miejsce na obliczenia (brudnopis)

Zadanie 1.2. (0-2)

Oceń prawdziwość podanych zdań. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F** – jeśli jest fałszywe.

Niech n będzie liczbą k-cyfrową, gdzie k > 0. Liczba wywołań funkcji przestaw w zależności od k jest równa:

1.	$\frac{k}{2}$	Р	F
2.	$(k+1) \operatorname{div} 2$ (gdzie div oznacza dzielenie całkowite)	Р	F
3.	$\begin{cases} \frac{k}{2} & \text{gdy } k \text{ jest liczbą parzystą} \\ \frac{k+1}{2} & \text{gdy } k \text{ jest liczbą nieparzystą} \end{cases}$	Р	F
4.	$\frac{k+1}{2}$	Р	F

Miejsce na obliczenia (brudnopis)

Zadanie 1.3. (0-4)

W postaci pseudokodu lub w wybranym języku programowania napisz **nierekurencyjną** funkcję *przestaw2*, która dla danej nieujemnej liczby całkowitej *n* da taką samą wartość jak *przestaw(n)*.

Uwaga: Twój algorytm może używać wyłącznie zmiennych przechowujących liczby całkowite oraz może operować wyłącznie na liczbach całkowitych. W zapisie możesz wykorzystać tylko operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, resztę z dzielenia oraz porównywanie liczb, instrukcje sterujące, przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące wyżej wymienione operacje. Zabronione jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione, w tym – funkcji przestaw.

Specyfikacja:

Dane

n – nieujemna liczba całkowita

Wynik

w – nieujemna liczba całkowita, wynik działania taki sam jak po wykonaniu przestaw(n)

Miejsce na zapis algorytmu

Zadanie 2. Zapis symboliczny

W pliku symbole.txt zapisano 2000 napisów. Każdy z nich jest zapisany w osobnym wierszu i składa się z dokładnie 12 znaków spośród: 0, +, *.

Napisz program (lub kilka programów) znajdujący(-ch) odpowiedzi do podanych zadań. Każdą odpowiedź zapisz w pliku wyniki2.txt i poprzedź ją numerem oznaczającym zadanie.

Do Twojej dyspozycji jest plik <code>symbole_przyklad.txt</code>, który zawiera 20 wierszy danych spełniających warunki zadania. Odpowiedzi dla pliku <code>symbole_przyklad.txt</code> są podane pod każdym zadaniem.

Pamiętaj, że Twój program musi ostatecznie zadziałać na pliku symbole.txt zawierającym 2000 napisów.

2.1.

Zadanie 2.1. (0-2)

Podaj wszystkie takie napisy z pliku symbole.txt, które są palindromami (czytane od przodu i od tyłu są takie same). Wypisz je po jednym w wierszu, w kolejności takiej jak w pliku symbole.txt.

Odpowiedź dla pliku symbole_przyklad.txt to oooo+**+oooo (w tym pliku jest jeden palindrom)

2.2. 0–1–

2–3–

Zadanie 2.2. (0-4)

Podaj, ile takich kwadratów występuje w pliku symbole.txt. Jeżeli w pliku występuje jeden taki kwadrat, podaj numer wiersza i numer pozycji w wierszu (licząc od 1) jego środkowego pola. Jeżeli jest więcej takich kwadratów, podaj numer wiersza i numer pozycji w wierszu dla środkowego pola każdego z nich.

Przykład:

Poniżej podano 6 wierszy przykładowych danych (po 12 znaków w każdym wierszu):

- 1. + * * + 0 * 0 + + * 0 +
- 2. +++0000*0***
- 3. +0*0000**+++
- 4. * + * 0 0 0 0 0 0 + + +
- 5. 0 * * 0 + + + 0 + + + +
- 6. 0000++**+*

Mamy tutaj trzy kwadraty złożone z 9 identycznych symboli: pierwszy ma środek w wierszu 3 na pozycji 5, drugi – w wierszu 3 na pozycji 6, a trzeci – w wierszu 4 na pozycji 11.

Odpowiedź dla pliku symbole_przyklad.txt to
163
(jeden kwadrat, który ma środkowe pole w wierszu 6, na pozycji 3).

Informacja do zadań 2.3. i 2.4.

Każdy z napisów podanych w pliku symbole. txt będziemy traktować jako liczbę zapisaną w systemie trójkowym, w którym:

 $znak \mathrel{\circ} odpowiada \ cyfrze \ 0 \\$

znak + odpowiada cyfrze 1

znak * odpowiada cyfrze 2.

Zadanie 2.3. (0-2)

Podaj największą liczbę spośród liczb zapisanych w pliku symbole.txt. W odpowiedzi podaj tę liczbę w zapisie dziesiętnym oraz napis jej odpowiadający.

Odpowiedź dla pliku symbole_przyklad.txt to 519789 ***+0*000++0

Zadanie 2.4. (0-3)

Oblicz sumę wszystkich liczb z pliku symbole.txt. Podaj jej wartość w zapisie dziesiętnym oraz w zapisie trójkowym z użyciem symboli: 0, +, *.

Odpowiedź dla pliku symbole_przyklad.txt to 4841542 +0000****+00+0+

Do oceny oddajesz:

- plik wyniki2.txt zawierający odpowiedzi do zadań 2.1.–2.4.
 (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- pliki zawierające kody źródłowe Twojego(-ich) programu(-ów) o nazwach (uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania):

adanie 2.1	• • • •
adanie 2.2	
adanie 2.3	
adamia O A	

2.3.

0–1–2

0-1-

Zadanie 3. Dron

Tor lotu pewnego drona składa się z prostych odcinków. Lot rozpoczyna się w punkcie (0, 0), a kończy w punkcie (20000, 0). Dron poza startem i lądowaniem jest zawsze na wysokości większej od zera.

Plik dron.txt zawiera 100 wierszy, w których zapisano dane dotyczące ruchu drona. W każdym wierszu jest zapisana para liczb całkowitych rozdzielonych znakiem spacji. Pierwsza liczba oznacza przemieszczenie drona (odległość) w poziomie od ostatniej pozycji – jest to zawsze liczba dodatnia. Druga liczba oznacza przemieszczenie w pionie od ostatniej pozycji. Jeśli druga liczba jest dodatnia, to dron wykonał ruch w górę, jeśli ujemna – w dół, a jeśli równa 0 – nie zmieniał wysokości.

Przykład 1.

Dla przykładowych danych:

3000 2000

2000 9000

5000 - 7000

5000 4000

3000 6000

2000 -14000

lot drona można zilustrować na wykresie:

gdzie:

x – odległość w poziomie od punktu startowego

y – wysokość (odległość w pionie od punktu startowego)

[A, B] – umieszczone na wykresie pary liczb oznaczające przemieszczenia drona odpowiednio w poziomie i w pionie.

Napisz program (lub kilka programów), który(-e) znajdzie(-dą) odpowiedzi dla podanych zadań. Każdą odpowiedź zapisz w pliku wyniki3.txt i poprzedź ją numerem oznaczającym zadanie.

Do Twojej dyspozycji jest plik <code>dron_przyklad.txt</code> zawierający 10 wierszy danych w opisanej postaci. Odpowiedzi dla pliku <code>dron_przyklad.txt</code> są podane pod każdym zadaniem. Pamiętaj, że Twój program musi ostatecznie zadziałać na pliku <code>dron.txt</code> zawierającym 100 wierszy danych.

Zadanie 3.1. (0-2)

Dla każdego przesunięcia [A, B] zapisanego w pliku dron.txt oblicz największy wspólny dzielnik (NWD) wartości bezwzględnych liczb A i B. Podaj **liczbę** par [A, B], dla których największy wspólny dzielnik wartości bezwzględnych liczb A i B jest większy od 1.

3.1. 0–1–2

Uwaga: przyjmujemy, że NWD(A, 0) = A.

Odpowiedź dla pliku dron_przyklad.txt to 6

Zadanie 3.2. (0-4)

Rozważmy **wszystkie punkty**, w których dron znajdował się **po wykonaniu** kolejnych ruchów (przesunięć).

Dla danych z przykładu 1. będą to punkty: (3000, 2000), (5000, 11000), (10000, 4000), (15000, 8000), (18000, 14000) i (20000, 0).

- **a)** Podaj, ile spośród wszystkich rozważanych punktów znajduje się wewnątrz kwadratu o wierzchołkach (0, 0), (0, 5000), (5000, 5000), (5000, 0). Nie liczymy punktów leżących na krawędziach kwadratu.
- **b)** Spośród wszystkich rozważanych punktów znajdź i podaj trzy różne, takie, że jeden z nich jest środkiem odcinka o końcach w pozostałych dwóch. Jest tylko jedna taka trójka punktów.

Uwaga: punkty należące do szukanej trójki nie muszą być trzema kolejnymi punktami, do których przemieszczał się dron.

Odpowiedź dla pliku dron_przyklad.txt to a) 2

b) (14000, 3014), (16000, 2010), (18000, 1006)

Do oceny oddajesz:

- plik wyniki3.txt zawierający odpowiedzi do zadań 3.1.–3.2.
 (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- pliki zawierające kody źródłowe Twojego(-ich) programu(-ów) o nazwach (uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania):

zadanie 3.1	
zadanie 3.2.	

Zadanie 4. (0-1)

Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.

Program typu keylogger służy do

- **A.** szyfrowania informacji do postaci uniemożliwiającej jej odczytanie bez zdefiniowanego klucza.
- **B.** przechowywania danych logowania, w tym haseł, w bezpiecznym miejscu na dysku użytkownika.
- **C.** generowania kodu, który umożliwia użytkownikowi bankowości elektronicznej wykonanie operacji.

Zadanie 5. (0-2)

Poniżej sposobem pisemnym dodano dwie liczby podane w zapisie binarnym. Uzupełnij brakujące cyfry tak, aby działanie było wykonane poprawnie.

Miejsce na obliczenia (brudnopis)

Zadanie 6. Martianeum

W 2033 roku na Marsie wylądowała automatyczna stacja wydobywcza wyposażona w transporter i w autonomiczny dron pobierający ładunki skał zawierających minerał niewystępujący na Ziemi – martianeum.

Stacja działa według następujących zasad:

- dron codziennie przywozi ładunek z pewnego obszaru Marsa
- stacja waży ładunek przywieziony przez drona i bada zawartość martianeum
- jeśli zawartość martianeum w przywiezionym ładunku wynosi co najmniej 1%, to stacja automatycznie wydobywa cały minerał z tego ładunku
- jeśli na koniec dnia (po wydobyciu martianeum) ilość minerału na stacji osiągnie co najmniej 100 kg, to transporter zabiera 100 kg na orbitę, skąd ładunek jest wysyłany na Ziemię, a transporter wraca do stacji (jeśli na stacji zgromadzone jest więcej niż 100 kg, to nadmiar pozostaje na stacji)
- początkowy stan magazynu na stacji 0 kg martianeum.

W pliku tekstowym martianeum. txt w kolejnych wierszach zapisano dane z lat 2033–2038:

data – data przywozu ładunku w formacie rrrr-mm-dd

nazwa_obszaru — nazwa obszaru Marsa, z którego ładunek został pobrany

masa [kg] — masa ładunku drona w kilogramach

zawartość [%] – zawartość martianeum w próbce w % (nieujemna liczba z jednym

miejscem po przecinku, np. 0,1 oznacza 0,1%)

Dane w pliku rozdzielono znakami tabulacji.

Przykład:

•			
data	nazwa_obszaru	masa [kg]	zawartosc [%]
2033-03-03	Cebrenia	27 , 8	0,2
2033-03-04	Amenthes	11,8	1,7
2033-03-05	Noachis	21,0	6,0
2033-03-06	Coprates	26,3	11,4
2033-03-07	Ismenius Lacus	28,8	0,0
2033-03-08	Mare Boreum	29,2	0,0

Z wykorzystaniem danych zawartych w pliku martianeum.txt oraz dostępnych narzędzi informatycznych wykonaj podane zadania. Wyniki zapisz w pliku tekstowym wyniki6.txt. Odpowiedź do każdego zadania poprzedź numerem tego zadania.

Zadanie 6.1. (0-2)

Podaj łączną masę ładunków drona oraz łączną masę martianeum wydobytego przez stację.

6.2.	
0–1	

Zadanie 6.2. (0-1)

Podaj nazwę obszaru, dla którego średnia masa przywiezionych ładunków jest najmniejsza.

Zadanie 6.3. (0-2)

Czas pracy stacji dzielimy na kolejne 7-dniowe okresy. Pierwszy okres obejmuje dni od 03.03.2033 do 09.03.2033, drugi – od 10.03.2033 do 16.03.2033 itd.

Podaj największą łączną masę ładunków przywiezionych w ciągu kolejnych 7-dniowych okresów oraz podaj datę <u>początku</u> okresu, w którym przywieziono tę największą masę.

Zadanie 6.4. (0-3)

Wykonaj zestawienie, w którym dla każdego obszaru podasz, ile razy dron przewoził ładunek z tego obszaru w poszczególnych latach.

Na podstawie wykonanego zestawienia utwórz wykres skumulowany kolumnowy. Pamiętaj o czytelnym opisie wykresu: na osi X umieść nazwy obszarów, dodaj opisy osi – "nazwy obszarów" dla osi X i "liczba przewozów ładunku" dla osi Y, tytuł oraz legendę zawierającą kolejne lata.

Zadanie 6.5. (0-3)

Uwzględnij zasady działania stacji opisane na początku zadania i podaj:

- ile razy stacja wysyłała ładunek na orbitę
- datę pierwszego transportu ładunku na orbitę
- datę ostatniego transportu ładunku na orbitę.

Do oceny oddajesz:

- plik tekstowy wyniki6.txt zawierający odpowiedzi do zadań 6.1.–6.5. Odpowiedź do każdego zadania powinna być poprzedzona jego numerem.
- plik zawierający wykres do zadania 6.4. o nazwie:

•	plik(pliki) zawierający(-e) komputerową realizację Twoich rozwiązań o nazwie(-ach): (uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania)

Zadanie 7. Poszukiwanie wody na Marsie

W trzech plikach tekstowych o nazwach laziki.txt, obszary.txt, pomiary.txt zapisano informacje zawierające dane o poszukiwaniu wody na Marsie w latach 2050–2080. Łaziki zasilane energią słoneczną poruszają się po różnych obszarach Marsa i wykonują pomiary georadarowe, na podstawie których szacują ilość wody i głębokość, na której się ona znajduje. Pierwszy wiersz każdego z plików jest wierszem nagłówkowym, a dane w wierszach rozdzielono znakami tabulacji.

Plik o nazwie laziki.txt zawiera informacje o różnych łazikach, które wykonywały pomiary. W każdym wierszu tego pliku znajdują się:

nr_lazika — co najwyżej trzycyfrowy, unikatowy numer łazika

nazwa lazika - nazwa łazika (tekst do 50 znaków)

rok wyslania – rok startu z Ziemi

wsp ladowania – współrzędne lądowania na Marsie oddzielone znakiem

przecinka i spacją

Przykład:

nr_lazika	nazwa_lazika	rok_wyslania	wsp_ladowania
1	Mariner 3	2049	50.51N, 70.01E
2	Mariner 6	2050	11.90N, 119.49E
3	Mariner 7	2050	44.90S, 130.80W

Plik o nazwie obszary.txt zawiera informacje o obszarach na Marsie. W każdym wierszu tego pliku znajdują się:

kod_obszaru – pięcioznakowy, unikatowy kod obszaru nazwa obszaru – nazwa obszaru (tekst do 50 znaków)

Przykład:

kod_obszaru	nazwa_obszaru
MC-01	Mare Boreum
MC-02	Diacria
MC-03	Arcadia

Plik o nazwie pomiary.txt zawiera informacje o wynikach badań georadarowych wykonanych przez łaziki. W każdym wierszu tego pliku znajdują się:

nr lazika — co najwyżej trzycyfrowy numer łazika

data_pomiaru — data wykonania pomiaru (w formacie rrrr-mm-dd)

kod obszaru – pięcioznakowy kod obszaru, na którym został wykonany

pomiar

wspolrzedne - współrzędne wykonania pomiaru, oddzielone znakiem

przecinka i spacją

glebokosc – szacowana głębokość, na której znajduje się woda (w metrach)

ilosc – szacowana ilość wody (w m³)

Przykład:

nr_	data_	kod_	wspolrze	edne	glebokosc	ilosc
lazika	pomiaru	obszaru				
17	2061-06-03	MC-13	13.17N,	77.80E	344	5622
17	2056-06-02	MC-14	14.93N,	106.00E	43	2054
47	2075-10-18	MC-05	45.57N,	3.30E	9	23366

Z wykorzystaniem danych zawartych w podanych plikach oraz dostępnych narzędzi informatycznych podaj odpowiedzi do zadań 7.1–7.4. Odpowiedzi zapisz w pliku wyniki7.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

7.1.

Zadanie 7.1. (0-2)

Podaj nazwę obszaru, na którym znaleziono łącznie we wszystkich pomiarach najwięcej m³ wody na głębokości do 100 metrów włącznie. Jest jeden taki obszar.

7.2.

Zadanie 7.2. (0-2)

Podaj nazwę łazika, który wykonywał pomiary w najdłuższym okresie, licząc od pierwszego (najwcześniejszego) do ostatniego (najpóźniejszego) pomiaru. Podaj datę pierwszego i ostatniego pomiaru wykonanego przez ten łazik.

7.3.

Zadanie 7.3. (0-2)

Podaj nazwy obszarów na Marsie, na których żaden z łazików nie wykonał ani jednego pomiaru w tym samym roku, w którym został wysłany z Ziemi.

7.4.

Zadanie 7.4. (0-2)

Podaj nazwy łazików, które wylądowały na półkuli południowej, ale wykonywały pomiary na obu półkulach: północnej (N) i południowej (S).

Do oceny oddajesz:

- plik tekstowy wyniki7.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(-ach) (uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania):

Zadanie 7.5. (0-2)

Do tabel utworzonych na podstawie opisanych wcześniej plików dołączamy kolejną – o nazwie *Producent*, w której zapisano informacje o producentach poszczególnych modeli łazików.

7.5. 0–1–2

Tabela *Producent* zawiera następujące pola:

kod producenta – unikatowy kod producenta

nazwa — nazwa producenta kraj — kraj producenta

Do tabeli Laziki dodano pole kod_producenta.

Napisz w języku SQL zapytanie, w wyniku którego otrzymasz listę nazw producentów, których łaziki badały obszar Marsa o nazwie Arcadia w roku 2060. Nazwy producentów nie mogą się powtarzać.

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony Formuła 2023

INFORMATYKA Poziom rozszerzony Formuła 2023

INFORMATYKA Poziom rozszerzony Formuła 2023