- 1. (2%) After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position? (the rules you applied must be different from the sample code) 因為 start 的 index 一定要小於 end,因此我用 if 判斷,如果 start_idx<=end_idx 才代表是答案,否則就略過。
- 2. (2%) Try another type of pretrained model which can be found in huggingface's Model Hub (e.g. BERT -> BERT-wwm-ext, or BERT -> ROBERTa), and describe
- the pretrained model you used hfl/chinese-macbert-large
- performance of the pretrained model you used
 Best public score is 0.81928
- the difference between BERT and the pretrained model you used (architecture, pretraining loss, etc.)

原始 BERT 模型使用[MASK] token 進行掩蔽,但是[MASK] token 在微調階段從未出現,這會造成預訓練任務與下游微調任務不一致;因此 macbert 使用類似的單詞來掩蔽需要被掩蔽的單詞。

	Chinese	English
Original Sentence + CWS + BERT Tokenizer	使用语言模型来预测下一个词的概率。 使用语言模型来预测下一个词的概率。 使用语言模型来预测下一个词的概率。	we use a language model to predict the probability of the next word. - we use a language model to pre ##di ##ct the pro ##ba ##bility of the next word .
Original Masking + WWM ++ N-gram Masking +++ Mac Masking	使用语言[M]型来[M]测下一个词的概率。 使用语言[M][M]来[M][M]下一个词的概率。 使用[M][M][M][M]来[M][M]下一个词的概率。 使用语法建模来预见下一个词的几率。	we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word .

Figure 1: Examples of different masking strategies.

模型架構比較

	BERT	ERNIE	XLNet	RoBERTa	ALBERT	ELECTRA	MacBERT
Туре	AE	AE	AR	AE	AE	AE	AE
Embeddings	T/S/P	T/S/P	T/S/P	T/S/P	T/S/P	T/S/P	T/S/P
Masking	T	T/E/Ph	-	T	T	T	WWM/NM
LM Task	MLM	MLM	PLM	MLM	MLM	Gen-Dis	Mac
Paired Task	NSP	NSP	-	-	SOP	-	SOP

TRAINING DETAILS OF CHINESE PRE-TRAINED LANGUAGE MODELS.

	BERT	BERT-wwm	RoBERTa-wwm	RBT	ELECTRA	MacBERT
Word #	0.4B	5.4B	5.4B	5.4B	5.4B	5.4B
Vocab #	21,128	21,128	21,128	21,128	21,128	21,128
Hidden Activation	GeLU	GeLU	GeLU	GeLU	GeLU	GeLU
Optimizer	AdamW	LAMB	AdamW	AdamW	AdamW	LAMB
Training Steps (base/large)	?	2M	1M / 2M	1 M	1M / 2M	1M / 2M
Initial Checkpoint (base)	random	BERT	BERT	RoBERTa	random	BERT

DD CD	D	ev	Test		
DRCD	EM	F1	EM	F1	
BERT	83.1 (82.7)	89.9 (89.6)	82.2 (81.6)	89.2 (88.8)	
BERT-wwm	84.3 (83.4)	90.5 (90.2)	82.8 (81.8)	89.7 (89.0)	
BERT-wwm-ext	85.0 (84.5)	91.2 (90.9)	83.6 (83.0)	90.4 (89.9)	
RoBERTa-wwm-ext	86.6 (85.9)	92.5 (92.2)	85.6 (85.2)	92.0 (91.7)	
ELECTRA-base	87.5 (87.0)	92.5 (92.3)	86.9 (86.6)	91.8 (91.7)	
MacBERT-base	89.4 (89.2)	94.3 (94.1)	89.5 (88.7)	93.8 (93.5)	
ELECTRA-large	88.8 (88.7)	93.3 (93.2)	88.8 (88.2)	93.6 (93.2)	
RoBERTa-wwm-ext-L	89.6 (89.1)	94.8 (94.4)	89.6 (88.9)	94.5 (94.1)	
MacBERT-large	91.2 (90.8)	95.6 (95.3)	91.7 (90.9)	95.6 (95.3)	

Table 5: Results on DRCD (Traditional Chinese).

ref: https://zhuanlan.zhihu.com/p/250595837

ref: https://arxiv.org/abs/2004.13922