Week 2: Data Pre-Processing and Exploration

Theory and Practice

Ying Lin, Ph.D | ylin65@syr.edu 24 January, 2020

Outline of the Topics

- · A standard machine learning pipeline
- · Dataset types, attribute types and conversion
- · Data quality issues and cleaning/transformation/preprocessing
- Exploratory data analysis and visualization
- · R/Python demo

A Standard Machine Learning Pipeline

Dataset Types

- · Structured data: Record dataset
 - Row: object, record, example
 - Column: feature, attribute, variable
- Unstructured data
 - Market basket data
 - Text data
 - Image data
 - Sequence data

Attribute Types

- · Categorical (Qualitative)
 - Nominal: e.g. name, zip code
 - Ordinal: e.g. rating, rank
- Numerical (Quantitative)
 - Interval: e.g. IQ, temperature in fahrenheit, date
 - Ratio: e.g. height, weight
- Properties of Attributes
 - Distinctness
 - Order
 - Substraction
 - Division

Discretization

- Discrete vs. continuous
- Discretization: one type of data transformation from a continuous attribute to a discrete one
 - Equal interval
 - Equal frequency
 - K-means
 - Equal entropy
- Some data mining and machine learning algorithms don't work with continuous attributes: decision tree induction, association rule mining, naive Bayes classifier

Numerization

- · Label/integer encoding: assume ordinal property of the categorical attributes
- One-hot encoding: create the same number of dummy variables/binary attributes for the categorical attributes with the same number of possible values (minus one), i.e. dummify
- Target encoding: use the target attribute (categorical and numerical) to encode. Careful with overfitting.
- Frequency encoding
- · Embedding
- When needed: regression, PCA, distance-based methods (KNN, clustering analysis), nueral network, SVM

Data Quality Issues

- Data noise vs. outliers
 - Risk of overfitting
- Missing values
 - Can't be tolerated by neural network, linear/logistic regression, etc.
- · Duplicate data
- Multicollinearity
- · Attributes with low to no variance
- · Imbalanced dataset

Data Transformation

- Transformation based on rows (records, objects)
- Transformation based on columns (attributes, features)
- Aggregation and data roll-up
- Attribute transformation/feature engineering
- · Sampling: e.g. bootstrap resampling
- Dimension reduction:
 - Principal Component Analysis (PCA): represent data in lower dimension and address multicollinearity
 - Remove attributes with low to no variance

Aggregation

- · Combine multiple attributes (or objects) into a single attribute (or object)
- Benefits
 - Data reduction
 - Reduce data variability
 - Change of analysis scale
 - Generate summary/descriptive analysis

Feature Engineering and Attribute Transformation

- Discretization and numerization
 - Many ML algorithms can only work with categorical or numerical attributes
- Apply transformation function, such as log(x), e^x , x^k , $\frac{1}{x}$
 - Reduce effects of outliers
- Normalization and standardization (scale and center)
- Algorithms that require both numerization and normalization
 - Distance-based algorithms: KNN, Cluster Analysis, kernel based methods such as SVM
 - Neural network and deep learning
 - PCA

Normalization and Standardization

• Z-score transformation: convert numerical values into the distance in standard deviation units form the mean.

$$z_i = \frac{x_i - \overline{x}}{\sigma}$$

 Min-Max standardization: Standardize the range of all the numerical attributes to [0, 1]

$$f(x) = \frac{x - min}{max - min}$$

Sampling

- Create data samples with the similar properties as the original distribution
 - Sampling with vs. without replacement
 - Sample size
- · Sampling Methods
 - Convenience sampling
 - Random sampling
 - Stratified sampling
 - Systematic sampling

Exploratory Data Analysis (EDA)

- · EDA is an iterative cycle
 - Generate questions/hypotheses about your data
 - Search for answers by cleaning, visualising, transforming and modeling your data
 - Use what you learn to refine your questions and generate new questions
- EDA is a state of minds: curiosity and inquisitiveness
 - EDA is fundamentally a creative process that is shaped by a series of Q & A
 - Key to asking questions is to generate a large of questions followed up with data checking and exploration

Visualization

- Multivariate analysis to intuitively recognize higher-dimensional data patterns and derive insights to guide data modeling
- Increase expressiveness through integrating more and various type of attributes
- · Common visualization techniques and their variants
 - Basic types: histogram, box plot, bar chart, scatter plot, bubble chart, pie/donut pie chart, area graph, density plot, heatmap, etc.
 - Special types: word cloud, tree diagram, network diagram, radar chart, sankey diagram, etc.
 - Combination: faceted plot, dashboarding

Demo Dataset: Car MPG Dataset

```
library(ggplot2)
data(mpg, package = "ggplot2")
dim(mpg)
## [1] 234 11
str(mpg)
## Classes 'tbl df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
  $ manufacturer: chr "audi" "audi" "audi" "audi" ...
                : chr "a4" "a4" "a4" "a4" ...
## $ model
   $ displ
               : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
               : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
## $ year
## $ cyl
               : int 4 4 4 4 6 6 6 4 4 4 ...
## $ trans
               : chr "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
## $ drv : chr "f" "f" "f" "f" ...
## $ cty : int 18 21 20 21 16 18 18 18 16 20 ...
               : int 29 29 31 30 26 26 27 26 25 28 ...
## $ hwy
                : chr "p" "p" "p" "p" ...
## $ fl
## $ class
                : chr "compact" "compact" "compact" ...
```

A Preview of Data

knitr::kable(mpg)

manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
audi	a4	2.0	2008	4	auto(av)	f	21	30	р	compact
audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compact
audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
audi	a4 quattro	1.8	1999	4	auto(l5)	4	16	25	р	compact
audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact 17/53

Meta Data of "mpg" Data frame (1)

Variable Description

manufacturer carmarker

model model name

displ engine displacement (in litres)

year of manufacture

cyl number of cylinders

trans type of transmission

drv f = front-wheel drive, r = rear wheel drive, 4 = 4wd

cty city miles per gallon

hwy highway miles per gallon

fl fuel type

class "type" of car

Change Attribute Type

```
char var <- sapply(mpg, is.character)</pre>
mpg[, char var] <- lapply(mpg[, char var], as.factor)</pre>
str(mpg)
## Classes 'tbl df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
  $ manufacturer: Factor w/ 15 levels "audi", "chevrolet", ...: 1 1 1 1 1 1 1 1 1 1 ...
                 : Factor w/ 38 levels "4runner 4wd",..: 2 2 2 2 2 2 3 3 3 ...
   $ model
   $ displ
                 : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
## $ year
                  : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
## $ cvl
                  : int 4 4 4 4 6 6 6 4 4 4 ...
                 : Factor w/ 10 levels "auto(av)", "auto(13)", ...: 4 9 10 1 4 9 1 9 4 10 ...
## $ trans
                 : Factor w/ 3 levels "4", "f", "r": 2 2 2 2 2 2 1 1 1 ...
## $ drv
## $ cty
                 : int 18 21 20 21 16 18 18 18 16 20 ...
## $ hwy
                  : int 29 29 31 30 26 26 27 26 25 28 ...
                  : Factor w/ 5 levels "c", "d", "e", "p", ...: 4 4 4 4 4 4 4 4 4 4 ...
## $ fl
## $ class
                  : Factor w/ 7 levels "2seater", "compact", ...: 2 2 2 2 2 2 2 2 2 ...
```

Illustration of EDA

Descriptive data analysis to identify interesting data patterns; e.g. compare fuel economy of different car classes

```
library(dplyr)
mpg %>% group by(class) %>%
 summarise(ct=n(), cty=round(mean(cty, na.rm=T), 1),
           hwy=round(mean(hwy, na.rm=T), 1),
           displ=round(mean(displ, na.rm=T), 1)) %>%
 arrange(desc(cty))
## # A tibble: 7 x 5
    class
                 ct
                           hwy displ
                      cty
    <fct>
          <int> <dbl> <dbl> <dbl>
                 35 20.4 28.1
## 1 subcompact
                                 2.7
## 2 compact
                 47 20.1 28.3
                                 2.3
## 3 midsize
                 41 18.8 27.3
                                 2.9
## 4 minivan 11 15.8 22.4
                                 3.4
## 5 2seater
                5 15.4 24.8
                                 6.2
               62 13.5 18.1
## 6 suv
                                 4.5
## 7 pickup
                 33 13 16.9
                                 4.4
```

Discretization: Conversion from Numerical to Categorical Attributes

```
library(dplyr)
library(arules)
mpg$displ grp <- arules::discretize(mpg$displ, method = "frequency",</pre>
                         breaks = 3, labels = c("low",
                                              "medium", "high"))
mpg %>%
 group by(displ grp) %>%
 summarise(avg displ = mean(displ), count = n(), min = min(displ), max = max(displ))
## # A tibble: 3 x 5
    displ grp avg displ count min
                                   max
   <fct> <dbl> <int> <dbl> <dbl>
               2.02 62 1.6 2.4
## 1 low
## 2 medium 3.06 86 2.5 3.9
## 3 high
          4.93 86 4
                                   7
```

Convert from Categorical to Numerical Attributes

function from package creates a full set of dummy variables,
 i.e. less than full rank parameterization

```
library()
unique(mpg$drv)
## [1] f 4 r
## Levels: 4 f r
dmy <- caret::dummyVars(" ~ drv", data = mpg, fullRank = T)</pre>
head(data.frame(predict(dmy, newdata = mpg)), 5)
    drv.f drv.r
## 1
## 2 1
              0
## 3 1
              0
## 4 1
              0
## 5
        1
              0
```

Dimension Reduction and Feature Engineering: PCA

```
trans = caret::preProcess(mpg[, sapply(mpg, is.numeric)], method=c("center", "scale", "pca"),
                  pcaComp = 5)
PC = predict(trans, mpg[, sapply(mpg, is.numeric)])
head(PC, 5)
##
                      PC2
           PC1
                                 PC3
                                             PC4
                                                         PC5
## 1 -1.8858984 0.9723721 -0.4244892 -0.18149906 -0.52192770
## 2 -2.2424056 0.9025047 -0.1179838 -0.07438406 -0.01253529
## 3 -2.0917184 -1.0910392 -0.3338737 -0.07819127 -0.37494694
## 4 -2.1275729 -1.0902013 -0.3212256 -0.01996586 -0.09463483
## 5 -0.3953825 0.9725482 0.1057113 -0.48523023 -0.38418629
str(PC)
## 'data.frame': 234 obs. of 5 variables:
   $ PC1: num -1.886 -2.242 -2.092 -2.128 -0.395 ...
   $ PC2: num 0.972 0.903 -1.091 -1.09 0.973 ...
   $ PC3: num -0.424 -0.118 -0.334 -0.321 0.106 ...
   $ PC4: num -0.1815 -0.0744 -0.0782 -0.02 -0.4852 ...
   $ PC5: num -0.5219 -0.0125 -0.3749 -0.0946 -0.3842 ...
```

Remove Features with No or Low Variances

```
nzv <- caret::nearZeroVar(mpg[mpg$year == 1999, ], saveMetrics = T)
colnames(mpg)[nzv$nzv]

## [1] "year"

nzv[nzv$nzv, ]

## freqRatio percentUnique zeroVar nzv
## year 0 0.8547009 TRUE TRUE</pre>
```

Data Normalization and Standardization

```
mpg cp <- mpg
mpg cp$displ scale <- scale(mpg cp$displ, center = TRUE, scale = TRUE)</pre>
summary(mpg cp$displ)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                             Max.
   1.600 2.400 3.300 3.472 4.600
                                            7.000
sd(mpg cp$displ)
## [1] 1.291959
summary(mpg cp$displ scale)
##
         V1
## Min.
         :-1.4488
## 1st Qu.:-0.8296
   Median :-0.1330
   Mean : 0.0000
   3rd Qu.: 0.8733
## Max. : 2.7309
sd(mpg cp$displ scale)
```

Deal with Data Outliers and Noises (1)

Before removing outliers

boxplot(mpg\$hwy)

mpg\$hwy[mpg\$hwy %in% boxplot.stats(mpg\$hwy)\$out] <- median(mpg\$hwy, na.rm = T)
boxplot(mpg\$hwy)</pre>

Deal with Data Outliers and Noises (2)

After removing outliers

mpg\$hwy[mpg\$hwy %in% boxplot.stats(mpg\$hwy)\$out] <- median(mpg\$hwy, na.rm = T)
boxplot(mpg\$hwy)</pre>

Remove Duplicate Data Record

```
nrow(mpg)

## [1] 234

nrow(mpg[!duplicated(mpg), ])

## [1] 225

mpg %>%
  distinct(.keep_all = T) %>%
  nrow()

## [1] 225
```

Output those Duplicated Records

mpg[duplicated(mpg) | duplicated(mpg, fromLast = T),]

```
## # A tibble: 18 x 12
     manufacturer model displ year
                                       cyl trans drv
                                                                hwy fl
                                                                          class
                                                          cty
##
      <fct>
                   2008
    1 chevrolet
                   c150~
                           5.3
                                                                 20 r
                                         8 auto~ r
                                                           14
                                                                          suv
    2 chevrolet
                   c150~
                           5.3
                                2008
                                         8 auto~ r
                                                                 20 r
                                                           14
                                                                          suv
##
    3 dodge
                                1999
                                         6 auto~ f
                                                                 22 r
                                                                          mini~
                           3.3
                                                           16
                   cara~
    4 dodge
                           3.3
                                1999
                                         6 auto~ f
                                                           16
                                                                 22 r
                                                                          mini~
                   cara~
    5 dodge
                                                                          mini~
                           3.3
                                2008
                                         6 auto~ f
                                                                 24 r
                   cara~
                                                           17
##
    6 dodge
                                2008
                                         6 auto~ f
                                                                          mini~
                           3.3
                                                                 24 r
                   cara~
                                                           17
   7 dodge
                                                                          pick~
##
                   dako~
                           4.7
                                2008
                                         8 auto~ 4
                                                           14
                                                                19 r
##
    8 dodge
                   dako~
                           4.7
                                2008
                                         8 auto~ 4
                                                           14
                                                                19 r
                                                                          pick~
    9 dodge
                                2008
                                         8 auto~ 4
                                                                17 r
                   dura~
                           4.7
                                                           13
                                                                          suv
## 10 dodge
                                                                 17 r
                   dura~
                           4.7
                                2008
                                         8 auto~ 4
                                                           13
                                                                          suv
## 11 dodge
                                                                          pick~
                           4.7
                                2008
                                         8 manu~ 4
                                                           12
                                                                 16 r
                   ram ~
## 12 dodge
                                                                          pick~
                   ram ~
                           4.7
                                2008
                                         8 auto~ 4
                                                           13
                                                                 17 r
## 13 dodge
                                                                          pick~
                           4.7
                                2008
                                         8 auto~ 4
                                                           13
                                                                 17 r
                   ram ~
## 14 dodge
                                                                          pick~
                           4.7
                                2008
                                         8 manu~ 4
                                                           12
                                                                 16 r
                   ram ~
## 15 ford
                   expl~
                                1999
                                         6 auto~ 4
                                                                 17 r
                                                           14
                                                                          suv
## 16 ford
                   expl~
                                1999
                                         6 auto~ 4
                                                           14
                                                                17 r
                                                                          suv
## 17 honda
                   civic
                                         4 auto~ f
                                                                          subc~
                           1.6
                                1999
                                                           24
                                                                 32 r
## 18 honda
                   civic
                           1.6
                                1999
                                         4 auto~ f
                                                           24
                                                                 32 r
                                                                          subc~
## # ... with 1 more variable: displ grp <fct>
```

Aggregation

Goal: output the five most fuel economy models

```
mpg %>%
  group by(manufacturer) %>%
  summarise(avg cty = mean(cty)) %>%
  arrange(desc(avg cty)) %>%
  head(5)
## # A tibble: 5 x 2
     manufacturer avg_cty
     <fct>
                    <dbl>
## 1 honda
                    24.4
## 2 volkswagen
                    20.9
## 3 subaru
                    19.3
## 4 hyundai
                    18.6
## 5 toyota
                    18.5
```

Random Data Sampling without Replacement

```
mpg sample index <- sample(1:nrow(mpg),</pre>
                          size = nrow(mpq) * 0.3,
                          replace = F)
prop.table(table(mpg[mpg sample index, "drv"]))
##
## 0.4285714 0.4571429 0.1142857
mpg[mpg sample index, ]
## # A tibble: 70 x 12
     manufacturer model displ year
                                     cvl trans drv
                                                             hwy fl
                                                                      class
                                                       cty
##
                  <fct>
   1 dodge
                               2008
                  dako~
                          4.7
                                        8 auto~ 4
                                                        14
                                                              19 r
                                                                      pick~
   2 nissan
                                                                      mids~
                  maxi~
                          3
                               1999
                                        6 auto~ f
                                                        18
                                                              26 r
   3 volkswagen
                  qti
                              1999
                                       4 auto~ f
                                                        19
                                                              26 r
                                                                      comp~
   4 volkswagen
                              2008
                                        4 manu~ f
                                                        21
                                                             29 p
                                                                      mids~
                  pass~
   5 chevrolet
                                                              24 p
                               2008
                                       8 manu~ r
                  corv~
                                                        15
                                                                      2sea~
   6 chevrolet
                                                             26 p
                                                                      2sea~
                              2008
                                        8 manu~ r
                                                        16
                  corv~
   7 toyota
                          2.2
                               1999
                                        4 manu~ f
                                                        21
                                                              29 r
                                                                      mids~
                  camry
                                                             25 p
   8 audi
                  a4 q~
                               2008
                                        6 manu~ 4
                                                        15
                          3.1
                                                                      comp~
   9 dodge
                                                                      pick~
##
                  dako~
                          5.2
                              1999
                                        8 auto~ 4
                                                        11
                                                              15 r
```

Stratified Data Sampling

Missing Value Manipulations (1)

Check if missing values exist in the dataset. If not, then randomly assign some missing values and check how many missing values exist for which variables.

```
sum(!complete.cases(mpg))
## [1] 0
mpg$hwy[sample(1:length(mpg$hwy), size = 5, replace = F)] <- NA</pre>
sum(!complete.cases(mpg))
## [1] 5
sapply(mpg, function(x) sum(is.na(x)))
## manufacturer
                                      displ
                        model
                                                                     cyl
                                                     year
##
                             0
                                           0
                                                         0
                                                                       0
##
                                                                      fl
          trans
                           drv
                                         cty
                                                       hwy
##
                                                                       0
##
          class
                    displ grp
##
               0
```

Missing Value Manipulations (2)

Check number of missing values, records with missing values, and attributes with missing values

```
sum(is.na(mpg))
## [1] 5
which (apply(mpg, 1, function(x) sum(is.na(x))) > 0)
## [1] 37 116 135 150 155
which (apply(mpg, 2, function(x) sum(is.na(x))) > 0)
## hwy
sum(!complete.cases(mpg))
## [1] 5
```

Missing Value Manipulations (3)

Simple imputation method for missing value: replace with mean of the attribute

```
mpg2 <- mpg
mpg2$hwy[is.na(mpg2$hwy)] <- mean(mpg2$hwy, na.rm = T)
sum(!complete.cases(mpg2))
## [1] 0</pre>
```

More advanced missing value imputation algorithms: kNN imputation

```
preprocess <- caret::preProcess(mpg, method = c("knnImpute", "center", "scale"))
mpg3 <- predict(preprocess, mpg)
sum(!complete.cases(mpg3))
## [1] 0</pre>
```

Examine the Missing Value Imputation Values

```
row <- which (apply (mpq, MARGIN = 1, function(x) sum(is.na(x)) > 0))
col \leftarrow which(apply(mpq, MARGIN = 2, function(x) sum(is.na(x)) > 0))
print(as.data.frame(unique(mpg2[row, col])))
##
         hwv
## 1 23.17904
mpg3[row, c("manufacturer", "model", "class", "displ", "displ grp", "cyl", "cty", "hwy")]
## # A tibble: 5 x 8
                      class displ displ grp
    manufacturer model
                                                   cvl ctv
                                                                    hwy
    <fct>
                <fct> <fct> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <
                       midsize 0.0992 medium 0.0689 0.0331 0.364
## 1 chevrolet
                malibu
## 2 hyundai
                tiburon
                        subcomp~ -1.14 low
                                                   -1.17 0.503 0.616
## 3 lincoln
                navigator~ suv
                                   1.49 high 1.31 -1.38
                                                                 -1.26
## 4 nissan
                maxima
                          midsize 0.0218 medium
                                                    0.0689 0.503 0.796
## 5 pontiac
                grand prix midsize -0.288 medium
                                                    0.0689 0.268
                                                                 0.508
```

Detect Attributes' Correlation: Correlogram

```
library(corrplot)
cor_matrix <- cor(mpg[complete.cases(mpg), sapply(mpg, is.numeric)], method = "pearson")
corrplot(cor_matrix, type = "upper")</pre>
```


Visualization: Box Plot

Apply to two attributes: one categorical and one numeric attribute.

```
theme_set(theme_bw())

ggplot(mpg, aes(x = displ_grp, y = hwy)) +
  geom_boxplot() +
  theme(panel.grid.major.x = element_blank())
```


Visualization: Scatter Plot (and its Variants)

Apply to two numeric attributes.

```
ggplot(mpg, aes(x = hwy, y = cty)) +
  geom_point(aes(color = as.factor(cyl), size = displ)) +
  geom_smooth(method = "lm")
```


Visualization: Pie Chart

Apply to one categorical attribute (optional: numeric count).

Visualization: Ordered Bar Plot

Apply to two attributes: one categorical and one numeric attribute.

Visualization: Density Plot

Apply to two attributes: one categorical and one numeric attribute.

Density plot

City Mileage Grouped by Number of cylinders

Visualization: Heatmap

Apply to two attributes: one categorical and one numeric attribute.

```
ggplot(mpg, aes(x = as.factor(year), y = displ_grp)) +
  geom_tile(aes(fill = hwy), color = "white") +
  scale_fill_gradient(low = "red", high = "green") +
  theme(axis.ticks = element_blank()) +
  labs(x = "Year", y = "Engine Power")
```


Visualization: Faceting

Combine multiple plots by adding two additional categorical attributes.

```
ggplot(mpg, aes(cty, hwy)) +
  geom_point() +
  facet_grid(year ~ displ_grp)
```


Setup Python in Rmarkdown

```
library(reticulate)
use python("C:/Users/ylin65/AppData/Local/Programs/Python/Python37/python.exe", required = T)
py discover config()
## python:
                  C:/Users/ylin65/AppData/Local/Programs/Python/Python37/python.exe
## libpython:
                   C:/Users/ylin65/AppData/Local/Programs/Python/Python37/python37.dll
## pythonhome:
                   C:\Users\ylin65\AppData\Local\Programs\Python\Python37
## version:
                   3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64 bit (AMD64)]
## Architecture: 64bit
## numpy:
                  C:\Users\ylin65\AppData\Local\Programs\Python\Python37\lib\site-packages\numpy
## numpy version: 1.17.1
##
## NOTE: Python version was forced by use python function
```

Data exploration

```
import pandas as pd
import numpy as np
mpg = pd.DataFrame(r.mpg)
mpg.info()
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 234 entries, 0 to 233
## Data columns (total 12 columns):
## manufacturer 234 non-null category
## model
         234 non-null category
## displ
         234 non-null float64
## year
                234 non-null int32
               234 non-null int32
## cyl
        234 non-null category
## trans
## drv
                 234 non-null category
## cty
                 234 non-null int32
                 229 non-null float64
## hwy
## fl
                 234 non-null category
## class
            234 non-null category
## displ grp 234 non-null category
## dtypes: category(7), float64(2), int32(3)
## memory usage: 11.6 KB
```

mpg.describe()

Data Discretization

Data Normalization and Standardization

```
from sklearn import preprocessing
mpg['displ scale'] = preprocessing.scale(mpg['displ'])
mpg['displ scale'].describe().round(2)
## count
          234.00
## mean
       -0.00
## std
          1.00
## min -1.45
## 25% -0.83
## 50% -0.13
## 75%
       0.88
## max
            2.74
## Name: displ scale, dtype: float64
```

One Hot Encoding and Label Encoding

```
mpg_drv = pd.concat([mpg, pd.get_dummies(mpg["drv"], prefix="drv")], axis=1)
mpg_drv.sample(n=mpg_drv.shape[0]).head(10)
```

```
##
       manufacturer
                                         displ ... drv 4 drv f drv r
                                  model
## 208
         volkswagen
                                    ati
                                                                      0
## 176
             toyota
                            4runner 4wd
                                           3.4 ...
## 6
               audi
                                           3.1 ...
## 183
             toyota
                                           3.0 ...
                                                                      0
                                  camry
             subaru
## 165
                            impreza awd
                                           2.2 ...
## 81
                           explorer 4wd
                                           4.6 ...
               ford
                                tiburon
## 120
            hyundai
                                          2.7 ...
                                                                      0
## 122
               jeep grand cherokee 4wd
                                          3.0 ...
                                                                      0
## 188
            toyota
                           camry solara
                                           2.4 ...
                                                                      0
## 196
                                corolla
             toyota
                                           1.8 ...
                                                                      0
##
## [10 rows x 17 columns]
```

Data Outliers and Noises

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(y="hwy", data=mpg)
plt.show()
```


Remove Duplicate Data Records

```
mpg2 = mpg.drop duplicates(keep="first")
diff = mpq.shape[0] - mpq2.shape[0]
print(f"There are {diff} duplicate records")
## There are 9 duplicate records
mpg[mpg.duplicated()]
##
       manufacturer
                                   model
                                               displ grp py displ scale
                                                       high
## 20
          chevrolet.
                      c1500 suburban 2wd
                                                                 1,418098
## 40
              dodge
                                                     medium
                                                                -0.133257
                             caravan 2wd
## 42
              dodge
                                                     medium
                                                                -0.133257
                             caravan 2wd
## 53
              dodge
                       dakota pickup 4wd
                                                       high
                                                                0.952691
## 60
              dodge
                             durango 4wd
                                                       high
                                                                0.952691
## 67
              dodge
                     ram 1500 pickup 4wd
                                                       high
                                                                0.952691
## 68
              dodge
                    ram 1500 pickup 4wd
                                                       high
                                                                0.952691
                                                               0.409717
## 79
               ford
                            explorer 4wd
                                                     medium
              honda
## 103
                                   civic
                                                         low
                                                                -1.451909
##
## [9 rows x 14 columns]
```

Aggregation

```
mpg2.groupby("manufacturer")['cty'].mean().sort_values(ascending=False)
```

```
## manufacturer
## honda
              24.500000
## volkswagen 20.925926
## subaru 19.285714
## hyundai 18.642857
## toyota
         18.529412
## nissan
         18.076923
## audi
       17.611111
## pontiac 17.000000
## chevrolet 15.055556
## ford
            14.000000
## jeep
       13.500000
## mercury 13.250000
         12.935484
## dodge
## land rover 11.500000
## lincoln 11.333333
## Name: cty, dtype: float64
```

Scatter Plot

sns.scatterplot(x="hwy", y="cty", hue="cyl", size="displ", data=mpg)

