总框架

一、计算

二、 应用

- (1) 方程组 = ⑤⑦
- (2) 向量 = 方程组+①
- (3) 特征值类 = 向量+248

两步计算(一)

一、定义

两步计算 需要计算两次才能完成的计算,叫做两步计算。

特点 两步计算的计算式中,包含2个计算符号。

二、分类

类型	第一步	第二步	举例
1	单数	单数	A^{-1}
2	双数	双数	A(B+C)
3	单数	双数	A B
4	双数	单数	AB

三、公式(?+单数)

序号	第一步	第二步:
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

$$|A| = 0$$
 (2015) 设矩阵 $A = \begin{pmatrix} a & 1 & 0 \\ \bar{1} & a & -1 \\ 0 & 1 & a \end{pmatrix}$,且 $A^3 = 0$ (1) 求 a 的值; (2) 若矩阵 X 满足 $X - XA^2 - A$

 $AX + AXA^2 = E$,其中 E 为 3 阶单位矩阵, 求 X。

$$\frac{3\delta_{4}}{2} = 0$$

$$\frac{3}{2} = 0$$

$$|X|^{2} = 0$$

$$|A|^{3} = 0$$

$$= \begin{bmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & -2 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$

(2013) 设
$$A = (a_{ij})$$
是 3 阶非零矩阵, $|A|$ 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若 $a_{ij} + A_{ij} = 0$ $i, j = 1,2,3$),则 $|A| =$

$$A^{*} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} -a_{11} & -a_{21} & -a_{31} \\ -a_{12} & -a_{32} & -a_{33} \end{bmatrix} = \begin{bmatrix} -A^{7} \\ -A^{$$

多 Al=O 时

$$|A^*| = |-AT|$$
 $|A|^2 = |-AT|$
 $|A|^$

 $= -a_{11}^{2} - a_{12}^{2} - a_{13}^{2}$ $= -(a_{11}^{2} + a_{12}^{2} + a_{13}^{2}) = D$ $= -(a_{11}^{2} + a_{12}^{2} + a_{13}^{2}) = D$ $= a_{11}^{2} = a_{12}^{2} = a_{13}^{2} = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= -(a_{11}^{2} + a_{12}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= -(a_{11}^{2} + a_{12}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= a_{31}^{2} = a_{32}^{2} = a_{33}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= a_{21}^{2} = a_{22}^{2} = a_{23}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2}) = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} + a_{13}^{2} = D$ $= -(a_{11}^{2} + a_{13}^{2} + a_{13}^{2$

1A = a11 A11 + a12 A12 + a13 A13

更多干货 请关注微博 @考研数学闻彬

3

总框架

一、计算

二、 应用

- (1) 方程组 = ⑤⑦
- (2) 向量 = 方程组+①
- (3) 特征值类 = 向量+248

两步计算(二)

一、相关定义

独立向量 线性无关的向量,叫做独立向量。

导出向量 由独立向量通过乘加的关系推导出的向量,叫做导出向量。

矩阵中的向量 矩阵的所有行向量,不是独立向量,就是导出向量。

矩阵的所有列向量,不是独立向量,就是导出向量。

同一个矩阵,其行向量中,<u>独立向量</u>的个数,等于其列向量中,<u>独立</u> 向量的个数。

二、回顾

独立公式 矩阵的秩等于矩阵的行(或列)向量中,所有独立向量的个数,即 $R(A)=n_{\scriptscriptstyle{24}}$ 。

注: 矩阵的秩可以从向量的角度去理解。

三、基本公式

- ① $R(A_{m\times n}) \leq m$, $\coprod R(A_{m\times n}) \leq n$.
- ②若矩阵 A 和 B 等价,则 R(A) = R(B).
- ③若P可逆,则R(PA)=R(A).

若Q可逆,则R(AQ)=R(A).

若P、Q 可逆,则R(PAQ)=R(A).

四、其他公式(?+秩)

序号	第一步	第二步:
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	
拼接	А, В	

$$\frac{(2016)}{(2016)}$$
 设矩阵 $\begin{bmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ 等价,则 $a = 2$.

$$R(A) = R(B)$$

$$R(A) = R(B)$$

$$R(B) = 2$$

$$R(A) = 2$$

$$R(A) = 2$$

$$R(A) = 2$$

$$R(A) = 0$$

$$R(A) = 0$$

$$R(A) = 1$$

$$R(A) = 1$$

更多干货 请关注微博 @考研数学闻彬 (2010)设A为 $m \times n$ 阶矩阵,B为 $n \times m$ 阶矩阵,E为m单位矩阵,若AB = E,则

$$(A) r(A) = m, r(B) = m$$

(B)
$$r(A) = m, r(B) = n$$

(C)
$$r(A) = n, r(B) = m$$

(D)
$$r(A) = n, r(B) = n$$

42 =

R(AB) < R(A) DR(AB) < R(B)

$$R(AB) = R(E) = M$$

2/

设A为n阶矩阵,证明 $R(A+E)+R(A-E) \ge n$.

 $R(A+B) \leq R(A) + R(B)$

记:

$$(A+E) + (E-A) = 2E$$

$$R^{-1}$$
 $R(E-A) = R(A-E)$

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

特殊方阵

- 1. E
- 2. E₁₂
- 3. 对称矩阵
- 4. 对角矩阵
- 5. 分块对角矩阵
- 6. 正交矩阵

更多干货 请关注微博 @考研数学闻彬

简称: "2E,3对,1正"

审题之前,要先判断题目中有没有"特殊方阵"

2E — E

一、定义

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 以3阶为例$$

二、公式

序号	计算类型	
1		
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

$$2E - E_{12}$$

一、定义

$$E_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 以3阶为例$$

二、公式

序号	计算类型	
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

3 对一对称矩阵

定义 以主对角线为轴,两边的元素呈对称分布,这样的矩阵叫做对称矩阵。如:

$$\begin{bmatrix} 1 & 3 & 5 \\ 3 & 1 & 2 \\ 5 & 2 & 1 \end{bmatrix}$$

定义式 $A^{T} = A$

观察方法 将主对角线竖起来,观察两边的元素是否左右对称。如:

最简单的对称矩阵 E和E12

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{E}_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3 对一对角矩阵

一、定义

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}, 以3阶为例$$

最简单的对角阵 E

二、公式

序号	计算类型	
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

3 对一分块对角矩阵

一、定义

$$A_{m \times m}$$
 $B_{n \times n}$

$$G = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}, H = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}.$$

二、公式

序号	计算类型	
1		
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

1正一正交矩阵

一、定义

定义式 1 $A^{T}A = AA^{T} = E$ 。

定义式 2 $A^{-1} = A^{\mathrm{T}}$

最简单的正交矩阵 Е和Е12

二、公式

序号	计算类型	
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

(2009) 设 A, B 均为 2 阶矩阵, A^*, B^* 分别为 A, B 的伴随矩阵,若(A = 2) B = 3,则分块矩 $\stackrel{\text{FE}}{(A)} \begin{pmatrix} O & A \\ B & O \end{pmatrix} \text{ 的件随矩阵为}$ (a) $\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}$ (b) $\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}$ (c) $\begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O \end{pmatrix}$ (D) $\begin{pmatrix} O & 2A^* \\ 3A^* & O$

小结

两步计算

特殊方阵

一、两步计算

序号	第一步	第二步:
1		
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	
拼接	A, B	

二、特殊方阵

2E, 3对, 1正

审题之前,要先判断题目中有没有"特殊方阵"。

序号	计算类型	
1	A	
2	A^{-1}	
3	A^*	
4	A^{T}	
5	R(A)	
6	A + B	
7	kA	
8	AB	
9	A^k	