Random initialization

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Random initialization

- Initialize weights
 - Normal distribution
 - Uniform distribution
- What should μ_i and σ_i $\mathbf{W}_3 = \mathcal{N}(\mu_3, \sigma_3^2 \mathbf{I})$ be?
 - For simplicity $\mu_i = 0$ and bias = 0

Scaling matters

$$\mathbf{o} = \mathbf{W}_2 \mathbf{W}_1 \mathbf{x}$$

$$\frac{\partial \mathcal{E}(\mathbf{o})}{\partial \mathbf{W}_1} = \left(\mathbf{W}_2^{\mathsf{T}} \frac{\partial \mathcal{E}(\mathbf{o})}{\partial \mathbf{o}}\right) \mathbf{x}^{\mathsf{T}}$$

$$\frac{\partial \mathcal{E}(\mathbf{o})}{\partial \mathbf{W}_2} = \frac{\partial \mathcal{E}(\mathbf{o})}{\partial \mathbf{o}} \left(\mathbf{W}_1 \mathbf{x} \right)^{\mathsf{T}}$$

How do we scale the initialization?

- By hand
 - A lot of tuning
- Automatically
 - A lot of math

