GUJCET-MG-2021

પ્રશ્ન પુસ્તિકાનો નંબર:

0601170

પ્રશ્ન પુસ્તિકાનો સેટ નંબરઃ

06

આ પુસ્તિકાના કુલ 16 પાના છે.

જ્યાં સુધી આ પ્રશ્ન પુસ્તિકા ખોલવાની સૂચના ન મળે ત્યાં સુધી ખોલવી નહીં.

મહત્ત્વની સૂચનાઓ :

- 1) આ પ્રશ્નપુસ્તિકામાં ગણિત કુલ 40 બહુવિકલ્પીય પ્રશ્નો આપેલા છે. પ્રત્યેક પ્રશ્નનો 1 ગુણ છે. 1 સાચા પ્રત્યુત્તરનો 1 ગુણ મળશે. પ્રત્યેક ખોટા પ્રત્યુત્તર માટે 1 ગુણ કાપવામાં આવશે. વધુમાં વધુ 1 ગુણ પ્રાપ્ત થઈ શકશે.
- 2) આ કસોટી 1 ક્લાકની રહેશે.
- 3) પ્રશ્નના પ્રત્યુત્તર માટે આપવામાં આવેલ OMR ઉત્તર પત્રિકામાં પ્રત્યુત્તર માટેની નિયત જગ્યામાં ફક્ત કાળી શાહીવાળી બોલપેન વડે '●' જ કરવું.
- 4) રફ કામ કરવા માટે પ્રશ્ન પુસ્તિકામાં દરેક પાના ઉપર નિયત જંગા આપવામાં આવેલી છે, તે જ જગ્યામાં રફ કામ કરવું.
- 5) આ વિષયની કસોટી પૂર્ણ થયા બાદ ઉમેદવારે તેમની ઉત્તર પત્રિકા ખંડ નિરીક્ષકને કરજીયાત સોંપવાની રહેશે. ઉમેદવાર કસોટી પૂર્ણ થયા બાદ પ્રશ્ન પુસ્તિકા તેમની સાથે લઇ જઇ શકાશે.
- 6) આ પ્રશ્નપુસ્તિકાનો સેટ નંબર 06 છે. પ્રશ્ન પુસ્તિકાનો પ્રકાર અને તમોને આપવામાં આવેલી ઉત્તર પત્રિકાનો પ્રકાર સરખા જ હોવા જોઈએ. આ અંગે કોઈ ફેરફાર હોય તો નિરીક્ષકનું તાતકાલિક ધ્યાન દોરવું, જેથી પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકા સરખા પ્રકાર ધરાવતી આપી શકાય.
- 7) ઉમેદવારે ઉત્તર પત્રિકામાં ગળ ન પડે, લીટા ન પડે, તે રીતે સાચવીને ઉત્તરો આપવાં.
- 8) પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકામાં નિયત કરેલ જગ્યા સિવાય ઉમેદવારે તેમને ફાળવેલ બેઠક નંબર લખવો નહિ કે અન્ય કોઈ જગ્યાએ ઓળખ થાય તેવી નિશાની / ચિન્હો કરવા નહીં. આવું કરનાર ઉમેદવાર સામે ગેરરીતિનો કેસ નોંધવામાં આવશે
- 9) વ્હાઈટ ઈંક લગાડવા માટે પરવાનગી નથી.
- 10) દરેક ઉમેદવારે પરીક્ષા ખંડમાં પ્રવેશ માટે ખંડ નિરીક્ષકને પ્રવેશપત્ર બતાવવું જરૂરી છે.
- 11) કોઈ પણ ઉમેદવારને અપવાદ રૂપ સંજોગો સિવાય પરીક્ષાખંડ છોડવાની પરવાનગી મળશે નહીં. આ અંગેની પરવાનગી ખંડ નિરીક્ષક-સ્થળ સંચાલક સંજોગો ધ્યાને લઈને આપશે.
- 12) . ઉમેદવાર કક્ત સાદુ ગણનયંત્ર વાપરી શકરો.
- 13) દરેક ઉમેદવારે પરીક્ષાખંડ છોડ્યા પહેલા ઉત્તર પત્રિકા ખંડ નિરીક્ષકને સોંપી ઉત્તર પત્રિકા પરત કર્યા બદલની સહી પત્રક -01 (હાજરી પત્રક) માં કરવાની રહેશે. જો ઉમેદવારે ઉત્તર પત્રિકા આપ્યા બદલની સહી પત્રક -01 માં કરેલ નહિ હોય, તો ઉત્તર પત્રિકા આપેલ નથી તેમ માનીને ગેર રીતિનો કેસ નોંધવામાં આવશે.
- 14) દરેક ઉમેદવારે પરીક્ષા માટેના બોર્ડ દ્વારા બહાર પાડેલ નિયમો અને બોર્ડના નીતિ નિયમોનું ચુસ્તપણે પાલન કરવાનું રહેશે. દરેક પ્રકારના ગેરરીતિના કેસોમાં બોર્ડના નિયમો લાગુ પડશે.
- 15) કોઈપણ સંજોગોમાં પ્રશ્ન પુસ્તિકા- ઉત્તર પુસ્તિકાનો કોઈ ભાગ જુદો પાડવો નહીં
- 16) ઉમેદવારે સહી પત્રક-01 (હાજરી પત્રક) અને પ્રવેશપત્રમાં પ્રશ્ન પુસ્તિકા અને ઉત્તર પુસ્તિકા ઉપર છાપેલ સેટ નંબર લખવાનો રહેશે.

ઉમેદવારનું નામ	Papers Visit www.VisionPapers.in !!!
	(શબ્દોમાં)
પરીક્ષા કેન્દ્રનં નામ :	પરીક્ષા કેન્દ્ર ક્રમાંક.:
પશ્ચ પશ્ચિકાનો સેટ નંબર. :	પ્રશ્ન પુસ્તિકાનો નંબર. :

1)
$$\int \tan\left(\frac{\pi}{4} - x\right) \cdot (2 + 2\sin 2x) dx = \underline{\qquad} + C.$$

(A) $\sin 2x$ $2\sin 2x$

 $-\sin 2x$

 $-2\sin 2x$

2)
$$\int_{0}^{1} \frac{dx}{(3x+2)+\sqrt{3x+2}} = \underline{\hspace{1cm}}$$

(A)
$$-\frac{2}{3} \log \left| \frac{\sqrt{5} + 1}{\sqrt{2} + 1} \right|$$
 (B) $2 \log \left| \sqrt{5} + 1 \right|$

(B)
$$2 \log |\sqrt{5} + 1|$$

(C)
$$\frac{2}{3} \log \left| \frac{\sqrt{5} + 1}{\sqrt{2} + 1} \right|$$

(D)
$$\frac{2}{3} \log \left| \sqrt{5} + 1 \right|$$

3)
$$\Re \int \frac{\cos 3x}{\sin x} dx = p \cos 2x + q \log |\sin x| + C, \text{ di } p + q = \underline{\hspace{1cm}}$$

4)
$$\int e^x (2021 + \tan x + \tan^2 x) dx =$$
_____+ C.

- (A) $(2021 + \tan x)e^x$
- (B) $(2020 + \tan x)$
- $(2020 + \tan x)e^x$
- (D) $(2000 + \tan x)e^x$

(રફ કામ)

5) ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ $\frac{\pi}{6}$ હોય, તો ઉપવલયનું સમીકરણ ______ છે.

(A)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

(B)
$$\frac{x^2}{36} + y^2 = 1$$

(C)
$$4x^2 + 9y^2 = 1$$

(D)
$$x^2 + y^2 = 36$$

6) વક $y^2 = 4x$, Y-અક્ષ અને રેખા y = 3 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ _____ છે.

(B)
$$\frac{9}{4}$$

(C)
$$\frac{9}{3}$$

(D)
$$\frac{9}{2}$$

7) વક $y^2 = x$, X-અક્ષ અને રેખાઓ x = 1 અને x = 4 વડે પ્રથમ ચરણમાં આવૃત્ત પ્રદેશનું ક્ષેત્રફળ _____ છે.

(A)
$$\frac{14}{3}$$

(B)
$$\frac{28}{3}$$

(C)
$$\frac{7}{3}$$

(રફ કામ)

8)	વિકલ સમીકરણ	$\frac{dy}{dx} = e^{x-y}$	નો વ્યાપક	ઉકેલ	થશે.
----	-------------	---------------------------	-----------	------	------

$$(A) \quad e^x + e^y = C$$

(B)
$$e^{-x} + e^{-y} = C$$

$$(C) e^{-x} + e^{y} = C$$

(D)
$$e^x - e^y = C$$

9) ચતુર્થ કક્ષાના વિકલ સમીકરણનાં વિશિષ્ટ ઉકેલમાં સ્વૈર અચળની સંખ્યા _____ હશે.

(A) 4

(B) 3

(C) 2

(D) (

10) વિકલ સમીકરણ $e^{\frac{d^2y}{dx^2}} = x$ ની કક્ષા અને પરિમાણ અનુક્રમે ______ છે.

- (A) 2 અને અવ્યાખ્યાયિત
- (B) 2 અને 1

(C) 1 અને 2

(D) 1 અને અવ્યાખ્યાયિત

11) સદિશો $\vec{a}=2\hat{i}+2\hat{j}-5\hat{k}$ અને $\vec{b}=2\hat{i}+\hat{j}+3\hat{k}$ ના સરવાળાના સદિશની દિશામાં એકમ સદિશ \vec{c} હોય, તો $|\vec{c}|=$ _____

(A)
$$\frac{4}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} - \frac{2}{\sqrt{29}}\hat{k}$$

(B)₀

(C). 1

(D) -1

(રફ કામ)

- 12) સિંદશો \vec{a} અને \vec{b} આપેલ છે. $|\vec{a}|=3$ અને $|\vec{b}|=\frac{\sqrt{2}}{3}$ છે. જો $\vec{a}\times\vec{b}$ એકમ સિંદશ હોય, તો \vec{a} અને \vec{b} વચ્ચેનો ખૂણો _____ હોય.
 - (A) $\frac{\pi}{6}$

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{3}$

- (D) $\frac{\pi}{2}$
- 13) જેની પાસ-પાસેની બાજુઓ સદિશો $\vec{a}=\hat{i}-\hat{j}+3\hat{k}$ અને $\vec{b}=2\hat{i}-7\hat{j}+\hat{k}$ હોય તેવા સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ ______થશે.
 - (A) $15\sqrt{2}$

 $\sqrt{\text{B}}$ $\frac{15}{\sqrt{2}}$

(C) 15

- (D) $\frac{15}{2}$
- 14) સમતલ 6x −3y + 2z −4 = 0 થી બિંદુ (2, 5, −3) નું અંતર ____
 - $\stackrel{\text{(A)}}{\sqrt{7}}$

(B) $\frac{5}{\sqrt{7}}$

(C) $\frac{5}{7}$

(D) $\frac{13}{7}$

(રફ કામ)

15) ઊગમબિંદુથી સમતલ 2x - 3y + 4z - 12 = 0 પર દોરેલા લંબના લંબપાદના યામ _____ છે.

(A)
$$\left(\frac{12}{29}, -\frac{18}{29}, \frac{24}{29}\right)$$

(B)
$$\left(\frac{24}{\sqrt{29}}, -\frac{36}{\sqrt{29}}, \frac{48}{\sqrt{29}}\right)$$

(C)
$$\left(\frac{24}{29}, -\frac{36}{29}, \frac{48}{29}\right)$$

$$(29) \left(\frac{12}{\sqrt{29}}, -\frac{18}{\sqrt{29}}, \frac{24}{\sqrt{29}}\right)$$

16) જો બે સમતલો 2x + 3y - z + 7 = 0 અને x - 2y + kz + 2 = 0 પરસ્પર લંબ સમતલો હોય તો k = 1

(A) 4

(B) -4

(C) 8

(D) -8

17) નીચે આપેલી શરતોને આધીન Z=2x+3yનું ન્યૂનતમ મૂલ્ય શોધો. $2x+4y \le 12$, $x+y \le 3$, $x \ge 0$ અને $y \ge 0$.

(A) 12

(B) 0

(C) 9

(D) 6

ે (રફ કામ)

18) જો
$$P(A) = \frac{6}{11}$$
, $P(B) = \frac{5}{11}$ અને $P(A \cup B) = \frac{7}{11}$ હોય, તો $P(A/B) =$ _____

(A) $\frac{4}{5}$

 $\sqrt{(B)} \frac{4}{11}$

(C) $\frac{2}{3}$

(D) $\frac{2}{11}$

19) ઘટનાઓ A અને B પરસ્પર નિવારક ઘટનાઓ છે. જો $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$ તથા P(B') = p હોય, તો p =______

(A) $\frac{1}{5}$

 $\begin{array}{c} (B) \quad \frac{2}{5} \end{array}$

(C) $\frac{9}{10}$

(D) $\frac{1}{10}$

20) જો A અને B બે ઘટનાઓ માટે $P(A) \neq 0$ અને $P(B_A) = 1$ હોય, તો ______

A $B \subset A$

(B) $A = \emptyset$

(C) $B = \emptyset$

(D) A ⊂ B

(રફ કામ) -

21)	ગણ $\{x:x\in\mathbb{N},x\leq 4\}$	પર સંબંધ R = {(1, 1), (2, 2), (3,3)	} વ્યાખ્યાયિત છે, તો સંબંધ R ર્	મે
-----	-----------------------------------	-------------------------------------	---------------------------------	----

- (A) સ્વવાચક અને સંમિત છે, પરંતુ પરંપરિત નથી
- સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત નથી.
- (C) સંમિત અને પરંપરિત છે, પરંતુ સ્વવાચક નથી.
- (D)ં સામ્ય સંબંધ છે.

22) વિધેય
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$ દ્વારા વ્યાખ્યાયિત છે તો વિધેય f એ ______.

- (A) એક-એક અને વ્યાપ્ત છે.
- (B) અનેક-એક અને વ્યાપ્ત છે.
- (C) એક-એક છે પરંતુ વ્યાપ્ત નથી.
- (D) એક-એક પણ નથી અને વ્યાપ્ત પણ નથી.

23)
$$\Re f(x) = \frac{1+x}{1-x}; x \neq 1, \operatorname{di} f(x) \cdot f(y) = \underline{\hspace{1cm}}$$

(A)
$$f\left(\frac{x+y}{1-xy}\right)$$

(A)
$$f\left(\frac{x+y}{1-xy}\right)$$
 (B) $f\left(\frac{x+y}{1+xy}\right)$

(C)
$$f(x \cdot y)$$

(C)
$$f(x \cdot y)$$
 (D) $f\left(\frac{1}{1+xy}\right)$

(રફ કામ) *

24)
$$\cos^2(\sin^{-1}x) + \sin^2(\cos^{-1}x) = ____; 0 < x < 1.$$

(A) $2\sqrt{1-x^2}$

(C) $2(x^2-1)$

 $(\mathbb{D}) \quad 2\left(1-x^2\right)$

25)
$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$$
 નો ઉકેલ ગણ _____ છે.

 $(A) \quad \left\{\frac{1}{6}, -1\right\}$

 $(B) \left\{\frac{1}{6}, 1\right\}$

(C) $\{0, 1\}$

(D) $\left\{\frac{1}{6}\right\}$

26) જો AB =
$$\begin{bmatrix} -6 & 26 \\ -1 & 19 \end{bmatrix}$$
 અને $11B^{-1} = \begin{bmatrix} 5 & -3 \\ 2 & 1 \end{bmatrix}$ હોય, તો A = _____

- $\begin{bmatrix} -2 & 4 \\ 3 & -2 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & -4 \\ -3 & 2 \end{bmatrix}$
- (C) $\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} -2 & 4 \\ 3 & 2 \end{bmatrix}$

(રફ કામ)

27) જો
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 અને $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ હોય, તો $(A+B)^{-1} = \underline{\qquad}$

(A)
$$\frac{1}{25}I_3$$

(B)
$$\frac{1}{5}I_3$$

(C)
$$-\frac{1}{5}I_3$$

(D)
$$-\frac{1}{25}I_3$$

28) જો
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$
 અને $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ તો નીચે આપેલાં પૈકી કયુ વિધાન અસત્ય છે.

$$(A) (AB)' = A'B'$$

$$(B) (A+B)' = B'+A'$$

(C)
$$A \cdot adj A = A I$$

(D)
$$(AB)^{-1} = B^{-1} \cdot A^{-1}$$

- 29) A(1, 3), B(0, 0) અને C(k, 0) શિરોબિંદુઓવાળા Δ ABC નું ક્ષેત્રકળ 3 એકમ હોય, તો k =_____.
 - (A) 2

(B) -2

(C) 0

(D) ± 2

(રફ કામ)

30)
$$\sqrt[8]{2} \frac{\sin(A+B)}{\cos(A-B)} \frac{\cos(A+B)}{\sin(A-B)} + \sqrt{3} = 0, \text{ et } A = \underline{\qquad}$$

(A)
$$\frac{\pi}{6}$$

(B)
$$\frac{\pi}{12}$$

(C)
$$\frac{\pi}{3}$$

(D)
$$\frac{\pi}{4}$$

(B)
$$-2$$

(D)
$$-1$$

$$32) \quad \frac{d}{dx} \left(\csc^{-1} e^x \right) = \underline{\hspace{1cm}}.$$

(A)
$$\frac{1}{\sqrt{e^{2x}-1}}$$

(B)
$$\sin^{-1}(e^x)$$

(C)
$$\frac{-1}{\sqrt{e^{2x}-1}}$$

$$(D) \quad \frac{-e^x}{\sqrt{e^{2x} - 1}}$$

(રફ કામ)

33) $\Re f(x) = 4x^3 + 3x^2 + 3x + 4; x \neq 0, \ \Re \frac{d}{dx} \left(x^3 \cdot f\left(\frac{1}{x}\right) \right) = \underline{\qquad}$

(A)
$$24x^5 + 15x^4 + 12x^3 + 12x^2$$
 (B) $\frac{x^2}{12} + \frac{x}{6} + \frac{1}{3}$

(B)
$$\frac{x^2}{12} + \frac{x}{6} + \frac{1}{3}$$

(C)
$$\frac{12}{x^2} + \frac{6}{x} + 3$$

(D)
$$12x^2 + 6x + 3$$

34) $\frac{d}{dx} \left[\log \left(\frac{1}{x} \right) + \log \left(\frac{1}{x^2} \right) + \log \left(\frac{1}{x^3} \right) \right] = \underline{\qquad}; x > 1.$

(A)
$$-\frac{6}{x}$$

(A)
$$-\frac{6}{x}$$
 (B) $\frac{6}{x}$

(D)
$$-6x$$

35) જો $x+1=e^{-y}$, તો $\frac{d^2y}{dx^2}=$ ______

(A)
$$\left(\frac{dy}{dx}\right)^3$$

$$(B) \left(\frac{dy}{dx}\right)^2$$

(C)
$$\frac{dy}{dx}$$

(D)
$$-\frac{dy}{dx}$$

36) વક $y = 2x^2 + 3\sin x$ ના x = 0 આગળ અભિલંબનો ઢાળ =

(A) 3

, (રફ કામ)

37) વક
$$x^2 = 2y$$
 પરનું (0, 5) થી સૌથી નજીકનું બિંદુ _____ હોય.

$$(4)$$
 $(2\sqrt{2},4)$

(B)
$$(2\sqrt{2},0)$$

$$(C)$$
 $(0,0)$

38)
$$y = x^2 \cdot e^{-x}$$
 એ ____ અંતરાલમાં વધતું વિધેય છે.

$$(A) \left(-\infty,\infty\right)$$

(B)
$$(-2,0)$$

(C)
$$(2,\infty)$$

(D)
$$(0,2)$$

39)
$$\int \frac{x^5 + 1}{x + 1} dx = \underline{\qquad} + C$$

(A)
$$\sum_{n=1}^{4} \left((-1)^{n+1} \cdot \frac{x^n}{n} \right)$$

(B)
$$\sum_{n=1}^{4} \left((-1)^n \cdot \frac{x^n}{n} \right)$$

(C)
$$\sum_{n=1}^{5} \left((-1)^{n+1} \cdot \frac{x^n}{n} \right)$$

(D)
$$\sum_{n=1}^{5} \left((-1)^n \cdot \frac{x^n}{n} \right)$$

$$\int_{-1}^{1} \cot^{-1} x \, dx = \underline{\qquad}$$

(A) 0

(B) π

(C) $\frac{\pi}{2}$

(D) 2π

(२६ डाउ