The Dot Product and The Cross Product

October 25, 2006

The Dot Product

• If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

• It is also called the **scalar product** or **inner product**.

Examples

- $\langle 2, 1 \rangle \cdot \langle -1, 3 \rangle$.
- $\langle 3, -2, 1 \rangle \cdot \langle 0, 1, 1 \rangle$.

Properties of the Dot Product

ullet If ${f a},{f b}$, and ${f c}$ are vectors in V_3 and c is a scalar, then

$$1. \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

5.
$$\mathbf{0} \cdot \mathbf{a} = 0$$
.

The angle between two vectors

ullet If heta is the angle between the vectors ${f a}$ and ${f b}$, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

The angle between two vectors

ullet If heta is the angle between the vectors ${f a}$ and ${f b}$, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

ullet If heta is the angle between the nonzero vectors ${f a}$ and ${f b}$, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Orthogonal vectors

• \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Direction Angles

- The **direction angles** of a nonzero vector \mathbf{a} are the angles α , β , and γ that \mathbf{a} makes with the positive x-y-1, and z-1
- The cosines of these direction angles are called the direction cosines of the the vector a:

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}, \ \cos \beta = \frac{a_2}{|\mathbf{a}|}, \ \cos \gamma = \frac{a_3}{|\mathbf{a}|}.$$

Projections

Projections

• Scalar projection of **b** onto **a**:

$$comp_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

Vector projection of b onto a

$$\operatorname{proj}_a b = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Work done by a constant force

ullet The work done by a constant force ${f F}$ is

$$\mathbf{F} \cdot \mathbf{D}$$
,

where ${f D}$ is the displacement vector.

Work done by a constant force

ullet The work done by a constant force ${f F}$ is

$$\mathbf{F} \cdot \mathbf{D}$$
,

where ${f D}$ is the displacement vector.

• Example: A constant force $\mathbf{F} = -2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ moves an object along a straight line from the point (1,0,0) to (-3,2,3). Find the work done.

The Cross Product

The Cross Product

• If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

- ullet The vector ${f a} imes {f b}$ is orthogonal to both ${f a}$ and ${f b}$.
- ullet If heta is the angle between ${f a}$ and ${f b}$ then

$$|a \times b| = |a||b|\sin\theta$$

- ullet Two nonzero vectors are parallel if and only if ${f a} imes {f b} = 0$
- The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

Examples

 \bullet Find a vector perpendicular to both $\langle -2,2,0\rangle$ and $\langle 0,1,2\rangle$ of the form $\langle 1,___,___\rangle$

Examples

- \bullet Find a vector perpendicular to both $\langle -2,2,0\rangle$ and $\langle 0,1,2\rangle$ of the form $\langle 1, ___, ___\rangle$
- \bullet Find the area of the triangle with vertices $P(0,0,0),\,Q(-2,2,5),\,R(0,3,-3).$

The volume of a parallelepiped

• The volume of a parallelepiped determined by the vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} is the magnitude of their scalar triple product:

$$V = |a \cdot (b \times c)|$$

The volume of a parallelepiped

ullet The volume of a parallelepiped determined by the vectors ${f a}, {f b}$, and ${f c}$ is the magnitude of their scalar triple product:

$$V = |a \cdot (b \times c)|$$

• Find the volume of the parallelepiped with adjacent edges PQ, PR, PS where P(1,4,-3), Q(3,7,0), R(0,3,-4), S(7,2,-1).