Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously Presented) A catalyst system for use in reducing emissions from an exhaust gas stream containing hydrocarbons, CO and NOx comprising:

a first lean NOx trapping catalyst for optimizing the storage of NOx emissions under lean air/fuel ratios, comprising a first zone and a second zone, wherein the entire first zone is positioned upstream of the second zone;

said first zone comprising a) a catalyst mixture PM-Rh, where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof, and b) a metal oxide selected from the group consisting of oxides of aluminum, alkali metals, alkaline-earth metals, and combinations thereof, wherein said first zone is devoid of cerium;

said second zone comprising a) a catalyst mixture PM-Rh, where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof, and b) a metal oxide selected from the group consisting of alkali metals, alkaline earth metals, rare earth metals and combinations thereof; and

a second catalyst for optimizing the reduction of hydrocarbon, NOx and CO emissions under stoichiometric air/fuel ratios comprising: a) a catalyst mixture PM-Rh, where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof, b) a metal oxide selected from the group consisting of oxides of aluminum, alkali metals, alkaline earth metals and combinations thereof, and c) a metal oxide selected from the group consisting of oxides of zirconium, cerium and combinations thereof.

- 2. (Original) The catalyst system of claim 1, wherein said second zone of said first catalyst further comprises zirconium oxide.
- 3. (Original) The catalyst system of claim 1, wherein said second catalyst further comprises hydrogen sulfide emission suppressants.

- 4. (Original) The catalyst system of claim 1, wherein said second catalyst further comprises nickel oxide.
- 5. (Original) The catalyst system of claim 1, wherein said Rh in said first catalyst is placed on ZrO2 particles of 3-5% (wt).
- 6. (Original) The catalyst system of claim 1, wherein said catalyst mixtures of said first and second catalysts are coated on an alumina substrate.
- 7. (Original) The catalyst system of claim 6, wherein said alumina substrate in said first zone is stabilized by between 1-8% (wt) La2O3.
- 8. (Original) The catalyst system of claim 6, wherein said alumina substrate in said second catalyst is stabilized by 2-15% (wt) BaO.
- 9. (Original) The catalyst system of claim 1, wherein said first zone of said first catalyst further comprises a metal oxide selected from the group consisting of barium oxide, magnesium oxide, potassium oxide and combinations thereof, wherein the metal oxide comprises 2-15% (wt).
- 10. (Original) The catalyst system of claim 1, wherein said second zone of said first catalyst further comprises a metal oxide selected from the group consisting of barium oxide, magnesium oxide and combinations thereof.
- 11. (Original) The catalyst system of claim 10, wherein said second zone of said first catalyst comprises BaO and MgO of 10-40% (wt).
- 12. (Original) The catalyst system of claim 1, wherein said catalyst mixture PM-Rh in said first zone of said first catalyst comprises Pt and Rh in a ratio of between 5:1 and 25:1.

S/N: 10/065,497

Reply to Office Action of October 24, 2006

13. (Original) The catalyst system of claim 1, wherein said catalyst mixture PM-Rh in said first zone of said first catalyst has a loading of between 60-300 g/ft3.

- 14. (Original) The catalyst system of claim 1, wherein said second zone of said first catalyst comprises Pt and Rh in a ratio of between 1:1 and 10:1.
- 15. (Original) The catalyst system of claim 1, wherein said catalyst mixture PM-Rh in said second zone of said first catalyst has a loading of between 10-100 g/ft3.
- 16. (Original) The catalyst system of claim 1, wherein said catalyst mixture PM-Rh in said second catalyst comprises Pt and Rh in a ratio of between 5:1 and 15:1.
- 17. (Original) The catalyst system of claim 1, wherein said catalyst mixture PM-Rh in said second catalyst has a loading of between 10-120 g/ft3.
- 18. (Original) The catalyst system of claim 1, wherein PM-Rh in said second catalyst comprises Pt and Rh placed on Ce and Zr particles of 5-30% (wt) wherein the molar ratio of Ce and Zr is 50:50.
- 19. (Original) The catalyst system of claim 1, wherein said first catalyst and said second catalyst are close-coupled, said first catalyst being positioned in a forward position and said second catalyst being positioned in a downstream position.
- 20. (Original) The catalyst system of claim 1, wherein an exhaust gas sensor is placed between said first and second catalysts.
 - 21. (Canceled)
 - 22. (Canceled)

-4-

S/N: 10/065,497 Reply to Office Action of October 24, 2006

- 23. (Canceled)
- 24. (Canceled)
- 25. (Canceled)
- 26. (Canceled)
- 27. (Canceled)
- 28. (Canceled)
- 29. (Canceled)
- 30. (Canceled)
- 31. (Previously Presented) A catalyst for use with an internal combustion engine to provide emission reductions, comprising:

a first zone for optimizing the reduction of hydrocarbon, NOx and CO emissions under stoichiometric air/fuel ratios and a second NOx trapping zone for optimizing NOx reductions under lean air/fuel ratios, wherein the entire first zone is positioned upstream of the second zone and wherein the first zone and the second zone are contained within a single catalyst structure;

said first zone comprising a) a catalyst mixture PM-Rh where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof, and b) a metal oxide selected from the group consisting of cerium, zirconium and combinations thereof; and said second zone comprising a) a catalyst mixture PM-Rh, where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof; and b) a metal selected from the group consisting of oxides of aluminum, alkali metals, alkaline

S/N: 10/065,497 Reply to Office Action of October 24, 2006

earth metals and combinations thereof, wherein said second zone is devoid of cerium to minimize the release of unreduced NOx.

32. (Previously Presented) A catalyst for use with an internal combustion engine to provide emission reductions, comprising:

a first zone for optimizing the reduction of hydrocarbon, NOx and CO emissions under stoichiometric air/fuel ratios, a second NOx trapping zone for optimizing NOx reduction under lean air/fuel ratios, and a third zone to minimize hydrogen sulfide emissions, said first zone comprising a) a catalyst mixture PM-Rh where PM is a catalyst mixture selected from the group consisting of Pt, Pd and combinations thereof, and b) a metal oxide selected from the group consisting of cerium, zirconium and combinations thereof;

said second zone comprising a) a catalyst mixture Pm-Rh, where PM is a catalyst material selected from the group consisting of Pt, Pd and combination thereof; and b) a metal selected from the group consisting of oxides of aluminum, alkali metals, alkaline earth metals and combinations thereof, wherein said second zone is devoid of cerium, wherein the entire first zone is positioned upstream of the second zone and wherein the first zone and the second zone are contained within a single catalyst structure; and

said third zone comprising a) a hydrogen sulfide suppressant, b) a catalyst mixture PM-Rh where PM is a catalyst material selected from the group consisting of Pt, Pd and combinations thereof, and c) a metal oxide selected from the group consisting of cerium, zirconium and combinations thereof.