Not a Demo Replicating:

"Realtime Edge Based Visual Inertial Odometry (REBVO) for MAV Teleoperation in Indoor Environments

Juan Jose Tarrio · Sol Pedre"

Joshua McCready December 4th, 2019

Stated goals in project proposal:

Use monocular visual odometry that focused on addressing the constraints of real time operation on mobile robotics with limited computational resources:

- 1. Replicate runtime environment for REBVO on the Picar and required dependencies so the source code can compile on the Picar and run the benchmark EuRoC dataset. Skid right to a halt here
- 2. Use the "Custom Camera" REBVO class to interface with images gathered by the usbcam ros package.
- 3. Configure the system with gathered camera parameters from previous Camera Calibration and other required parameters.
- 4. Try to use the built in ROS support for the application to transmit depth maps that could be used by a PID controller to show proof of concept.

XKCD: Cautionary

PARENTS: TAUK TO YOUR KIDS ABOUT LINUX...
BEFORE SOMEBODY ELSE DOES.

Into the rabbit hole:

Realtime Edge Based Visual Inertial
Odometry for MAV Teleoperation in Indoor
Environments code base can be found here:

https://github.com/JuanTarrio/rebvo

Includes an application to simulate a dataset with no hardware or a video and imu data feed. Importantly it also has a ros implementation that I hoped to use.

Top Left: Original image + Edgemap compression data rate
Top Right: Surface fitting Bottom Left: Full Edgemap Bottom

Right: Compressed edgemap @ 4FPS

Too far into the rabbit hole

After a long hunt to install all package dependencies, the project built but...

I screwed something up quite badly and broke the rqt_xxx commands necessary for ros debugging. I think it was reinstalled Qt (?) or something else I thought I needed.

After many attempts to remedy the issues, I am re-imaging on a new SD card and starting over...

• System requirements

In ubuntu and most linux dist this libraries can be downloaded directly from the repos, except for TooN.

- -- C++11
- -- Linux, X11, v4l2
- -- OpenGL development libraries (GL,GLU,glut)
- -- TooN 2.2 mathematical library (http://www.edwardrosten.com/cvd/toon.html ZIP provided in the repo)
- -- Lapack (for advanced TooN functions)
- -- LibAV (Video Codecs)
- -- LibGD (Image managment)
- -- Optionally NE10 for ARM Neon optimizations

Also need an IMU

It was easy to find a IMU that will work easily with raspberry pi that doesn't interfere with Sunfounder Hat.

Dedicated python library:

https://pypi.org/project/sense-hat/

Starting point ROS Node:

https://github.com/mirkodcomparet
ti/ros sensehat

*To mount the Sense HAT securely it is advisable to use a set of standoffs and mounting screws

Temperature and humidity sensor

Small joystick

@ Raspberry Pi Model A+

Here's an IMU – will it work…? Probably

Picar hat: Robot HATS uses:

I2C: PCF8591 is used as the ADC chip, with I2C communication, and the address 0x48

TB6612 motor control ports: includes 3.3V for the TB6612 chip, 5V for motors, and direction control of motors MA and MB; working with SunFounder TB6612 Motor driver

If I interpret the silkscreening right then the only other concern is B27 and B17 which I believe are not used by the Pi Sense Hat.

Unable to find a pinout so I will "give it a try..."

Promised Land: Rqt_graph mock up

Raspberrypi: 192.168.1.84:2708 Picar robot and REBVO

raspberrypi_viewer: 192.168.1.71:2708 Remote visualization of REBVO output