Sec III Q5:

restart;

#2a.

$$xc := 4 \cdot ya^2 + 5 \cdot yb^2;$$

$$xc := 4 ya^2 + 5 yb^2 \tag{1}$$

5a: This is allocable multiple production problem.

Interdependence := $\frac{\partial^2}{\partial ya \partial yb}(xc)$;

$$Interdependence := 0 (2)$$

They are technically independent because interdependence = 0. # 5b:

 $LC := 16 \cdot ya + 10 \cdot yb + \lambda \cdot (336 - xc);$

$$LC := 16 ya + 10 yb + \lambda \left(-4 ya^2 - 5 yb^2 + 336 \right)$$
 (3)

 $lc_yb := diff(LC, yb);$

$$lc yb := -10 \lambda yb + 10 \tag{4}$$

 $lc_ya := diff(LC, ya);$

$$lc_ya := -8 \lambda ya + 16 \tag{5}$$

 $lc_{\lambda} := diff(LC, \lambda);$

$$lc_{\lambda} := -4 ya^2 - 5 yb^2 + 336$$
 (6)

 λ from $lc\ yb := solve(lc\ yb = 0, \lambda);$

$$\lambda _from_lc_yb := \frac{1}{yb} \tag{7}$$

 $\lambda _from_lc_ya := solve(lc_ya = 0, \lambda);$

$$\lambda from_l c_y a := \frac{2}{va}$$
 (8)

(9)

Isoproduction_ya := solve($\lambda_from_lc_yb = \lambda_from_lc_ya, ya$); #ya Pseudo line equivalent
Isoproduction_ya := 2 yb

Isoproduction $yb := solve(\lambda \text{ from } lc \ yb = \lambda \text{ from } lc \ ya, yb); #yb Pseudoline equivalent.$

$$Isoproduction_yb := \frac{ya}{2}$$
 (10)

 $ybStar_Int := eval(lc_\lambda, [ya = Isoproduction_ya]);$

$$ybStar_Int := -21 \ yb^2 + 336$$
 (11)

 $YbStar := solve(ybStar_Int = 0, yb); \# Required production function Yb. = 4$

$$YbStar := -4, 4 \tag{12}$$

 $YaStar := eval(Isoproduction_ya, [yb = YbStar]); # Required production function Ya. = 8$

$$YaStar := -8, 8 \tag{13}$$

5c:

$$Marginal_Unit_Of_x_yb := eval(\lambda_from_lc_yb, yb = YbStar); \# = \frac{1}{4}$$

$$Marginal_Unit_Of_x_yb := \frac{1}{-4.4}$$
 (14)

 $Marginal_Unit_Of_x_ya := eval(\lambda_from_lc_ya, ya = YaStar); \# = \frac{2}{8} = \frac{1}{4}$

$$Marginal_Unit_Of_x_ya := \frac{2}{-8.8}$$
 (15)

5d:

 $profit := 16 \cdot ya + 10 \cdot yb - 0.2 \cdot xc$

$$profit := 16 \ ya + 10 \ yb - 0.8 \ ya^2 - yb^2$$
 (16)

 $profit\ ya := diff(profit, ya);$

$$profit \ ya := 16 - 1.6 \ ya \tag{17}$$

 $profit \ yb := diff(profit, yb);$

$$profit \ yb := 10 - 2.0 \ yb \tag{18}$$

 $ya_Unit_For_Profit_max := solve(profit_ya = 0, ya); \#Unit\ of\ pineapple\ for\ profit\ maximization. = 10$ $ya_Unit_For_Profit_max := 10. \tag{19}$

 $yb_Unit_For_Profit_max := solve(profit_yb = 0, yb); #Unit of banana for profit maximization. = 5$ $yb_Unit_For_Profit_max := 5.$ (20)

 $Input_Level_Of_Input_Used := eval(xc, [ya = ya_Unit_For_Profit_max, yb = yb Unit For Profit max]); #Unit of input used = 525.$

Input Level Of Input Used
$$:= 525$$
. (21)