Probability & Statistics for EECS: Homework #07

Due on April 02, 2023 at 23:59

Name: **Zhou Shouchen** Student ID: 2021533042

(a)
$$F(x) = \frac{2}{\pi} sin^{-1}(\sqrt{x}), x \in (0,1)$$

(a) $F(x) = \frac{2}{\pi} sin^{-1}(\sqrt{x}), x \in (0,1).$ 1. Since at the range of $[0,1], \sqrt{x}$ and $sin^{-1}(x) = arcsin(x)$ are continuous, so $sin^{-1}(\sqrt{x})$ is continuous.

So F(x) is continuous.

So
$$\lim_{x \to 0^+} F(x) = \frac{2}{\pi} sin^{-1}(0) = \frac{2}{\pi} \cdot 0 = 0.$$

And $\lim_{x \to 1^-} F(1) = \frac{2}{\pi} sin^{-1}(1) = \frac{2}{\pi} \cdot \frac{\pi}{2} = 1.$

And
$$\lim_{x\to 1^{-}} F(1) = \frac{2}{\pi} \sin^{-1}(1) = \frac{2}{\pi} \cdot \frac{\pi}{2} = 1.$$

And we are given that $F(x) = 0, x \le 0$, and $F(x) = 1, x \ge 1$, so F(x) is a continuous in the domain. And $\lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$

2. Also,
$$f(x) = F'(x) = \frac{1}{\pi \sqrt{x(1-x)}}, x \in (0,1).$$

$$f(x) = 0, x \in (-\infty, 0], [1, +\infty)$$

But
$$\lim_{x \to +0^+} f(x) \to +\infty$$
 and $\lim_{x \to +1^-} f(x) \to +\infty$.

So only for x = 0 and x = 1, f(x) is not continuous.

i.e. F(x) only have two endpoints (x = 0, x = 1) that is continuous but not differentiable. And for other period, F(x) is differentiable.

3.from 2. we know that $f(x) = \frac{1}{\pi \sqrt{x(1-x)}}, x \in (0,1)$, and for other points, f(x) = 0.

Since
$$x \in (0,1)$$
, so $x(1-x) > 0$, so $F'(x) = f(x) > 0$.

So for all points in the domain, we have $f(x) \geq 0$. i.e. the PDF is valid.

And in the period of (0,1), the CDF F is increasing.

So combine the above three parts, we have F(x) is a continuous function in the domain, have finite endpoints not differentiable, and have a valid PDF.

So above all, F is a valid CDF,

and the correspinding PDF is
$$f(x) = \frac{1}{\pi \sqrt{x(1-x)}}, x \in (0,1); f(x) = 0, otherwise.$$

(b) Although
$$\lim_{x \to +0^+} f(x) \to +\infty$$
 and $\lim_{x \to +1^-} f(x) \to +\infty$.

But the probability at these points are 0.

i.e. the small integral at that part is 0.

Proof: We already know that F(x) is a continuous function in the domain.

So
$$\forall x_0 \in R$$
, $\lim_{\delta \to 0} |F(x+\delta) - F(x)| = 0$.

And the small integral is that $\lim_{\delta \to 0^+} \int_0^{\delta} f(x) = \lim_{\delta \to 0^+} F(\delta) - F(0) = 0$, $\lim_{\delta \to 1^-} \int_{\delta}^1 f(x) = \lim_{\delta \to 1^-} F(1) - F(\delta) = 0$, so the probability at these points are 0.

So above all, the probability that $x \to 0$ and $x \to 1$ is 0.

So the PDF is valid.

Since μ is the mean of the distribution with CDF F.

So $\mu = \int_{-\infty}^{+\infty} x f(x) dx$, where f(x) is the PDF of the distribution.

Since F is the CDF of the distribution, and f is the PDF of the distribution. So f(x) = F'(x)

Since F is continuous and strickly increasing, so its quantile function is injective.

So let u = F(x), then we can get that $x = F^{-1}(u)$, and du = dF(x) = f(x)dx.

With this mapping, we can get that when $x \in (-\infty, +\infty)$, $u \in (0, 1)$.

In other word, when $u \in (0,1), x \in (-\infty, +\infty)$

From the beginning, we know that $\int_{-\infty}^{+\infty} x f(x) dx = \mu$,

so the area under the curve of the quantile function from 0 to 1 is that $\int_0^1 F^{-1}(u)du = \int_{-\infty}^{+\infty} x f(x)dx = \mu$.

$$\int_{0}^{1} F^{-1}(u) du = \int_{-\infty}^{+\infty} x f(x) dx = \mu.$$

So above all, the area under the curve of the quantile function from 0 to 1 is μ .

Suppose that the CDF of X is F(x).

Since $X = max(U_1, \dots, U_n)$, and since $U_i \sim Unif(0, 1)$, so $\forall x \leq 0, F(x) = 0$, and $\forall x \geq 1, F(x) = 1$. Then for $x \in (0, 1)$:

 $F(x) = P(X \le x) = P(max(U_1, \dots, U_n) \le x) = P(U_1 \le x, \dots, U_n \le x).$

Since U_1, \dots, U_n are i.i.d. So $P(U_1 \le x, \dots, U_n \le x) = P(U_1 \le x) P(U_2 \le x) \dots P(U_n \le x)$.

And because $U_i \sim Unif(0,1)$, so $P(U_i \leq x) = x$.

So $F(x) = x^n$.

So the CDF of X is $F(x) = x^n, x \in (0,1)$. And $\forall x \leq 0, F(x) = 0, \forall x \geq 1, F(x) = 1$

So the PDF of X is $f(x) = F'(x) = nx^{n-1}, x \in (0,1)$. f(x) = 0, otherwise.

Let the survival function of X be G(x) = 1 - F(x).

Then $S(x) = 1 - x^n, x \in (0, 1)$. $G(x) = 0, x \in [1, +\infty)$.

Since X is nonnegative r.v.

so
$$E(X) = \int_0^{+\infty} G(x)dx = \int_0^1 (1 - x^n)dx = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
.

So above all, the PDF of X is $f(x) = nx^{n-1}, x \in (0,1)$. f(x) = 0, otherwise.

And
$$E(X) = \frac{n}{n+1}$$
.

(a) Since $R = \frac{X}{Y}$, where X is the shorter piece, and Y is the longer case, so 0 < R < 1.

Let F(r) be the CDF of R. Then $\forall r \leq 0, F(r) = 0$, and $\forall x \geq 1, F(r) = 1$.

As for
$$r \in (0,1)$$
, $r = \frac{X}{Y}$, so $X = r \cdot Y$. And since $X + Y = 1$, so $X = \frac{r}{r+1}$, $Y = \frac{1}{r+1}$.

Let $U \sim Unif(0,1)$. So when $u \in (0,1), P(U \le u) = u$, and with the symmetry, $P(1-U \le u) = u$.

Suppose the the
$$U=u$$
 is the break point of the stick.
So $F(r)=P(R\leq r)=P(X\leq \frac{r}{r+1})=P(u\leq \frac{r}{r+1} \text{ or } 1-u\leq \frac{r}{r+1})=\frac{2r}{r+1}.$

And let f(r) be the PDF of R.

Then when $r \in (0,1), f(r) = F'(r) = \frac{2}{(r+1)^2}$. And f(r) = 0, otherwise.

So above all, the PDF of R is $f(r) = \frac{2}{(r+1)^2}$, $r \in (0,1)$, and f(r) = 0, otherwise.

And the CDF of R is $F(r) = \frac{2r}{r+1}$. And $\forall r \leq 0, F(r) = 0, \forall x \geq 1, F(r) = 1$.

(b)
$$E(R) = \int_{-\infty}^{+\infty} r f(r) dr = \int_{0}^{1} \frac{2r}{(r+1)^2} = \int_{0}^{1} \frac{2(r+1)-2}{(r+1)^2} d(r+1) = \int_{1}^{2} \frac{2x-2}{x^2} dx = \int_{1}^{2} (\frac{2}{x} - \frac{2}{x^2}) dx$$

= $(2ln|x| + \frac{2}{x})\Big|_{x=1}^{2} = 2ln2 - 1.$

So above all, the expected value of R is E(R) = 2ln2 - 1.

(c) With LOTUS, we can get that

$$E(\frac{1}{R}) = \int_{-\infty}^{+\infty} \frac{1}{r} f(r) dr = \int_{0}^{1} \frac{2}{r(r+1)^{2}} dr = \int_{0}^{1} (\frac{2}{r} - \frac{2}{r+1} - \frac{2}{(r+1)^{2}}) dr = (2lnr - 2ln(r+1) + \frac{2}{r+1}) \Big|_{r=0}^{1} = \lim_{\epsilon \to 0^{+}} (-2ln2 - 1 - 2ln\epsilon) \to \infty.$$

So above all, the expected value of $\frac{1}{R}$ is not exitst.

(a) Since T is the first time that success, so at the time T, we totally failed G times and successed 1 time. So we faced totally G+1-1=G trails, and each trail have the time of Δt .

So $T = G \cdot \Delta t$.

So above all, $T = G\Delta t$.

(b) From the description, we could know that $G \sim Geom(\lambda \Delta t)$.

Let $p = \lambda \Delta t$, and let q = 1 - p. From what we have learned about Geometry distribution, we can get that the PDF of G is $P(G = g) = q^g \cdot p, g \ge 0$.

So its CDF is
$$P(G \le g) = \sum_{k=0}^{g} q^k p = p \cdot \frac{1(1-q^g)}{1-q} = 1 - (1-\lambda \Delta t)^g$$
.

And from (a) we know that $T = G\Delta t$, so the PDF of T is that $P(T = t) = P(G = \lfloor \frac{t}{\Delta t} \rfloor), t \geq 0$.

And there exist a round down $\lfloor \frac{t}{\Delta t} \rfloor$, because of G is a discrete r.v., so it must be integer.

So the CDF of T is
$$P(T \le t) = P(G \le \lfloor \frac{t}{\Delta t} \rfloor) = 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor}$$
.

So above all, the CDF of T is $P(T \le t) = 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor}, t \ge 0$.

(c) From what we have learned in mathematical analysis, we know that $\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$.

So
$$\lim_{x \to +\infty} (1 - \frac{1}{x})^x = \lim_{x \to +\infty} (\frac{x-1}{x})^x = \frac{1}{\lim_{x \to +\infty} (\frac{x}{x-1})^x}.$$

So
$$\lim_{x \to +\infty} (1 - \frac{1}{x})^x = \lim_{x \to +\infty} (\frac{x-1}{x})^x = \frac{1}{\lim_{x \to +\infty} (\frac{x}{x-1})^x}.$$
And $\lim_{x \to +\infty} (\frac{x}{x-1})^x = \lim_{x \to +\infty} (\frac{x-1+1}{x-1})^x = \lim_{x \to +\infty} (1 + \frac{1}{x-1})^x = \lim_{x \to +\infty} (1 + \frac{1}{x-1})^{x-1} (1 + \frac{1}{x-1}) = \frac{1}{e} \cdot 1 = \frac{1}{e}$
With the property of round down, we could know that $\frac{t}{\Delta t} - 1 < \lfloor \frac{t}{\Delta t} \rfloor \le \frac{t}{\Delta t}.$

From (b), we can get that the CDF of T is $F(t) = 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor}, t \geq 0$.

And from monotonicity of exponential function, we can get that

$$1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t} - 1} < 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor} \le 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t}}.$$

Let
$$x = \frac{1}{\lambda \Delta t}$$
, and since $\Delta t > 0$, so when $\Delta t \to 0, x \to +\infty$.

Since
$$\lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t}} = \lim_{x \to +\infty} 1 - (1 - \frac{1}{x})^{x \cdot \lambda t} = 1 - (\frac{1}{e})^{\lambda t} = 1 - e^{-\lambda t},$$

and similarly,
$$\lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t} - 1} = \lim_{x \to +\infty} 1 - \frac{(1 - \frac{1}{x})^{x \cdot \lambda t}}{1 - \frac{1}{x}} = 1 - \frac{(\frac{1}{e})^{\lambda t}}{1} = 1 - e^{-\lambda t}.$$

According to the Squeeze Theorem, when $\Delta t \to 0$,

since
$$1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t} - 1} < 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor} \le 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t}}$$
,

and
$$\lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t} - 1} = 1 - e^{-\lambda t}$$
,

and
$$\lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\frac{t}{\Delta t}} = 1 - e^{-\lambda t}$$
,

so
$$\lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor} = 1 - e^{-\lambda t}$$
.

So we get
$$\lim_{\Delta t \to 0} F(t) = \lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor} = 1 - e^{-\lambda t}, t \geq 0$$
.

So we get $\lim_{\Delta t \to 0} F(t) = \lim_{\Delta t \to 0} 1 - (1 - \lambda \Delta t)^{\lfloor \frac{t}{\Delta t} \rfloor} = 1 - e^{-\lambda t}, t \geq 0.$ From what we have learned, the CDF of the Exponential distribution $Expo(\lambda)$ is that $F(x) = 1 - e^{-\lambda x}, x \geq 0.$

So above all, as $\Delta t \to 0$, the CDF of T converges to the $Expo(\lambda)$.

And the CDF at fixed t > 0 is that $F(t) = 1 - e^{-\lambda t}$.

With LOTUS, we can get that

$$E[max(Z-c),0] = \int_{-\infty}^{+\infty} max(z-c,0)\varphi(z)dz = \int_{c}^{+\infty} (z-c)\varphi(z)dz = \int_{c}^{+\infty} z\varphi(z)dz - c\int_{c}^{+\infty} \varphi(z)dz$$

From we have learned, we can get that the PDF of the standard distribution is that $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$.

So
$$\int_{c}^{+\infty} z \varphi(z) dz = \int_{c}^{+\infty} z \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = \int_{c}^{+\infty} \frac{1}{2\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz^{2}$$

= $\int_{c^{2}}^{+\infty} \frac{1}{2\sqrt{2\pi}} e^{-\frac{x}{2}} dx = \frac{1}{2\sqrt{2\pi}} \cdot (-2) e^{-\frac{x}{2}} \Big|_{x=c^{2}}^{+\infty} = \frac{1}{\sqrt{2\pi}} e^{-\frac{c^{2}}{2}}.$

And since $\varphi(x)$ is the PDF of standard normal distribution, and $\Phi(x)$ is its CDF. So $c\int_c^{+\infty}\varphi(z)dz=\lim_{z\to+\infty}c[\Phi(z)-\Phi(c)]=c[1-\Phi(c)].$

So above all, combine the two parts, we can get that $E[max(Z-c,0)] = \frac{1}{\sqrt{2\pi}}e^{-\frac{c^2}{2}} - c[1-\Phi(c)].$