Apache Spark MLlib

CMSC 691 High Performance Distributed Systems

Apache Spark MLlib

Dr. Alberto Cano
Assistant Professor
Department of Computer Science
acano@vcu.edu

Apache Spark MLlib

Apache Spark Machine Learning Library (MLlib)

- Algorithms: classification, regression, frequent pattern mining, clustering, filtering, recommendation
- Data processing: feature extraction, transformation, dimensionality reduction, and feature selection
- Utilities: pipelines, persistence, linear algebra, statistics, etc

Apache Spark MLlib

DataFrames

- As of Spark 2.0, the DataFrame-based API is primary API but RDD-based API is now in maintenance mode
- Data abstraction for working with structured and semi-structured data, i.e. datasets with a schema or metadata (as a table in relational databases, schema + data)
- DataFrame is a distributed collection of tabular data organized into rows and named columns storing text, feature vectors, true labels, and predictions
- Don't worry (actually do because the documentation is a mess),
 but the API allows to convert from RDD to DataFrame and vice versa, right now samples work for both representations

Apache Spark MLlib

ML Pipelines

- Defines a workflow to assemble, combine and configure multiple distributed algorithms into a single pipeline
- A practical ML pipeline often involves a sequence of data preprocessing, feature extraction, model fitting, and validation stages
- A pipeline chains multiple transformers and estimators together to specify a input/model/output sequence
- Transformer: A transformer is an algorithm which can transform one DataFrame into another DataFrame. E.g., an ML model which transforms a DataFrame features into predictions
- **Estimator**: An estimator is an algorithm which can be fit on a DataFrame to produce a Transformer. E.g., a learning algorithm is an Estimator which trains on a DataFrame and produces a model

Apache Spark MLlib

ML Pipelines

- A Pipeline is specified as a sequence of stages, and each stage is either a transformer or an estimator
- For transformer stages, the transform() method is called on the DataFrame, generating a new transformed DataFrame
- For estimator stages, the fit() method is called to produce a transformer, for which transform() is called on the DataFrame

Apache Spark MLlib

ML Pipelines

- Pipelines are also estimators (allows for multi-level pipelines)
- Persistent objects, can be read and loaded

Parameters

- A Param is a named parameter with self-contained documentation
- A ParamMap is a set of (parameter, value) pairs to configure a given transformer or estimator

Evaluators and CrossValidators

 A evaluator is a transformation that maps a DataFrame into a metric indicating how good a model is, e.g.
 Binary/MulticlassClassificationEvaluator, RegressionEvaluator

Apache Spark MLlib

Installation

 Add Spark MLlib dependencies to your Maven project in Eclipse in addition to the Spark core ones

Apache Spark MLlib

CMSC 691 High Performance Distributed Systems

Apache Spark MLlib

Dr. Alberto Cano
Assistant Professor
Department of Computer Science
acano@vcu.edu