- 1. Derive the relationship for V_{out} (LSB) and V_{out} (MSB) for n bit DAC.
- 2. Find the relationship between V_{out} (LSB) and full scale output voltage V_{OFS}.
- 3. In R-2R ladder voltage mode 4-bit D/A converter, the reference voltage $V_{ref} = 5V$.
 - a. Find the output voltage when input is 0001 and 1010.
 - b. Sketch the output when inputs are driven from a 4-bit binary up counter.
- 4. In R-2R ladder current mode 4-bit D/A converter, $V_{ref}=10V$ and R=10K Ω . Find the total current delivered to the amplifier and the output voltage when binary input is 1010.
- 5. In 4-bit binary weighted resistor DAC the full scale output is -10V and $V_{ref} = 5V$. Find the output when input bit is 1010V.
- 6. Determine the full scale output voltage and resolution for the 4-bit binary weighted resistor DAC having $R_f = 10K\Omega$, $V_{ref} = 5V$ and $R_{max} = 200K\Omega$.
- 7. An 8-bit DAC has an output voltage range of 0-25.5V. Define its resolution in two ways.
- 8. For a 5-bit DAC with the reference voltage V_r being 10V, if there is the fluctuation in the reference voltage of about 10% what will be the deviation in the output for MSB and LSB due to this fluctuation?
- 9. A DAC has a reference voltage of 5V for 10-bit input and the smallest resistance is R_i =20K Ω . Find the resolution for
 - a) Binary weighted

- b) R-2R ladder.
- 10. Determine how many bits a DAC must have to provide output increment of 0.04V or less provided for V_{ref} =10V.