D latch

Enable	S	R	Q	Q	State
0	Х	Χ	Ø	Ы	Hold
1	1	0	1	0	Set
1	0	1	0	1	Reset
1	0	0	Ø	Ø	Hold
1	1	1	0	0	Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Synchronous Sequential Circuits

Example

Example

Problem with Latch

Circuits are designed with the idea there would be single change in output or memory state in single clock cycle.

Edge Triggered Latch or Flip-flop

Positive edge triggered flipflop

Negative Edge Triggered Latch or Flip-flop

Master-Slave D Flip-flop

Positive edge triggered Flip-flop

Positive edge triggered Flip-flop

A change in input has no effect if it occurs after the clock edge

Characteristic table

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs	(D)	Q(t+1)
	0	0
	1	1

$$Q(t+1) = D$$

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

$$Q(t+1) = \overline{Q(t)}.J + Q(t).\overline{K}$$

→Characteristic equation

Toggle or T Flip-flop

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

$$Q(t+1) = \overline{Q(t)}.T + Q(t).\overline{T}$$

Excitation Table What inputs are required to effect a particular state change

Inputs				
Q(t)	Q(t+1)	Т		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Excitation Table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

	Inputs	
Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

D	Q(t+1)
0	0
1	1

Inputs				
Q(t)	Q(t+1)	D		
0	0	0		
0	1	1		
1	0	0		
1	1	1		

Convert a D FF to JK FF

J	K	Q(t+1)	D
0	0	Q(t)	Q(t)
0	1	0	0
1	0	1	1
1	1	Q(t)	Q(t)

Q/k	00	01	11	10_
0	0	0	1	1.
1	1:	0	0	1

$$D = \overline{Q}.J + Q.\overline{K}$$

Limitations of Combinational logic: decisions can only be based on the present value of inputs

•A more general purpose decision making machine should be able to make decisions based on past values of inputs as well.

Limitations:

$$z[n] = x[n] .OR. z[n-1]$$

$$z[n] = x[n] .OR. x[n-1] .OR. x[n-2]x[0]$$

Requires infinite memory!

⇒Make provision for storage of past values of Outputs as well

Improved System:

Limitations:

z[n] = x[n] .OR. (x[n-1] .AND. z[n-1])

Requires two storage elements

However, by defining a new variable y[n] = x[n-1]. AND. z[n-1], we can use only one storage element.

Improved Decision Making Machine:

Since Output Z is a function of Y and X

Mealy Sequential Machine

y: Present State Y: Next State

Moore Sequential Machine

Example of a synchronous sequential circuit

Analysis Next state Logic **Output Logic** CC-2 Α Next State logic Α Χ Memory Output logic (FFs) B В clk memory

The dependence of output z on input x depends on the state of the memory (A,B)

The memory has 2 FFs and each FF can be in state 0 or 1. Thus there are four possible states: AB: 00,01,10,11.

To describe the behavior of a sequential circuit, we need to show

- 1. how the system goes from one memory state to the next as the input changes
- 2. How the output responds to input in each state

Analysis of Sequential Circuits

$$D_A = A.x + B.x$$
; $D_B = \overline{A}.x$; $z = (A + B).\overline{x}$

$$A(t+1) = A(t).x + B(t).x$$

$$B(t+1) = \overline{A(t)}.x$$

$$z = (A+B).\overline{x}$$

State Transition Table

Preser	t State	Input	Nex	t State	Output
Α	В	Х	Α	В	Z
0 0	0	0 1	0	0 1	0
0 0	1	0 1	0 1	0 1	1 0
1	0 0	0	0	0	0
1 1	1	0	0 1	0	1 0

	State Transition Table							
l	Preser	nt State	Input	Next	State	Output		
	Α	В	B x A B		z			
	0	0	0	00	0 1	0 0		
	0 0	1	0	0	0 1	1 0		
	1	0	0	0	0	1 0		
	1	1	0 1	0	0 0	1 0		

00) — Memory state in which FF A& B have output values 00

If x = 0 then z = 0, When the clock edge comes the system would stay in 00 state.

If x = 1 then z = 0. When the clock edge comes the system would go to 01 state.

Analysis of Sequential Circuits

State Transition Table

Preser	t State	Input	Nex	t State	Output
Α	В	Х	Α	В	z
0 0	0	0	0	0 1	0
0 0	1	0 1	0 1	0 1	1 0
1 1	0 0	0	0	0	0
1 1	1 1	0 1	0 1	0 0	1 0

System specification to State Transition Graph

Detect 3 or more consecutive 1's in the input stream

Conversion of State transition graph to a circuit

Example-1

3 blocks need to be designed

- 1. How many FFs do we need?
- N FFS can represent 2^N states so Minimum is 1

- 2. Which FF do we choose?
- Say D FF
- 3. How are the states encoded?
- Say FF output Q=0 represents S₀ and Q=1 represents S₁ state

State Transition Table							
Present State	D	Output					
Q(t)	Х	Q(t+1)		Z			
0	0	0	0	0			
0	1	1	1	0			
1	0	1	1	0			
1	1	0	0	1			

$$D = \overline{Q}.x + Q.\overline{x} \quad ; \quad z = Q.x$$

Example-2

- 1. How many FFs do we need? 1
- 2. Which FF do we choose? Say JK FF
- 3. How are the states encoded? Say FF output Q=0 represents S_0 and Q=1 represents S_1 state

State Transition Table

Present State	Input	Next State	J K	Output
Q(t)	X	Q(t+1)		z
0	0 1	0 1	0 X 1 X	0
1 1	0 1	1 0	X 0 X 1	0 1

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

$$J = x$$
; $K = x$; $z = Q.x$

Example-3

	FF	O/P
State	A	В
S ₀	0	0
S ₁	0	1
S ₂	1	0
S ₃	1	1

For 4 states a minimum of two FFs will be required. Let us choose 2 D FFs A &B

I	Presen	t State	Input	Next	State		
	Α	В	Х	Α	В	D_A	D_B
	0 0	0 0	0 1	0 0	1 0	0 0	1 0
	0	1	0 1	1 1	1 0	1	1 0
	1 1	0	0 1	1 1	1 0	1	1 0
	1	1	0	0	0	0	0

Present State Ir		Input	Next	Next State		
Α	В	Х	Α	В	D_A	D_B
0	0 0	0 1	0 0	1 0	0	1 0
0 0	1 1	0 1	1 1	1 0	1	1 0
1	0	0 1	1 1	1 0	1	1
1 1	1	0 1	0	0	0	0 1

$$D_A = \overline{A}B + xB + A\overline{B}$$
$$= A \oplus B + x.B$$

$$D_{B} = \overline{x}.\overline{A} + \overline{x}.\overline{B} + x.A.B$$

$$= \overline{x}.(\overline{A} + \overline{B}) + x.A.B$$

$$= \overline{x}.\overline{AB} + x.AB = \overline{x} \oplus \overline{AB}$$

$$D_A = A \oplus B + x.B$$

$$D_B = \overline{x \oplus AB}$$

Sequential Circuits: Summary

•we need to know how the system goes from one state to another in response to the inputs and how the outputs respond to these changes

Synthesis involves the following tasks:

- Number of storage elements
- State Encoding
- Choosing a flipflop type to implement states
- Synthesize next state logic
- Synthesize output logic

Examples of FSM

Vending machine

Traffic light controller

Counters

In state S_0 , the output ABC is 000, in S_1 001 and so on

There are 8 states so 3 FFs are at least required. Let us choose T FF.

PS	NS	
АВС	АВС	$T_A T_B T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Binary UP counter

$$T_A = B.C \; ; \; T_B = C \; ; \; T_C = 1$$

Counter with Enable

Counter is in Hold state.

When Enable = 1, the counter begins the count.

Counter with Asynchronous Reset

When Enable = 1, the counter begins the count.

- -D toggles every clock cycle
- -B toggles only when D is 1
- -C toggles only when both C and D are 1
- -A toggles only when B C D are 1
- T FF toggles when T=1

4-bit Down Counter

ABCD

- -D toggles every clock cycle
- -C toggles only when D is 0
- -B toggles only when both C and D are 0
- -A toggles only when D C B are 0

Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

4-bit Up-Down Counter

Merging of the two structures gives an Up/down counter

BCD Counter

Binary Coded Decimal (BCD): each decimal digit is coded as a 4-bit binary number

BCD counter from 0 to 99

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	J_B K_B	$J_C K_C$
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111. one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Counter with Unused States

PS	NS			
A B C	АВС	$J_A K_A$	$J_B K_B$	J_{C} K_{C}
0 0 0	0 0 1	(0\ X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$

Counter with Unused States

PS	NS			
A	АВС	J_A K_A	J_B K_B	J_C K_C
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$
 $J_C = \overline{B}$ $K_C = 1$

After synthesizing the circuit, one needs to check that if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

Example From a frequency of 10KHz, generate the following signal of frequency 1KHz

This will have a frequency of 1KHz but it will not have the same waveform

The idea is to generate a divide by 5 counter first and then divide it again by 2 to get the required waveform

Alternatively design a divide by 10 counter with the following states

Example From a frequency of 10KHz, generate the following signal of frequency 2KHz

A divide by 5 counter is required that has 5 states.

A will give the required waveform.

Synthesis of Sequential Machine

•we need to know how the system goes from one state to another in response to the inputs and how the outputs respond to these changes

•we need to know how the system goes from one state to another in response to the inputs and how the outputs respond to these changes

State Transition Graph

Synthesis involves the following tasks:

- Number of storage elements
- State Encoding
- Choosing a flipflop type to implement states
- Synthesize next state logic
- Synthesize output logic

Example: Detect pattern "101" in the incoming bit Stream.

State Minimization

Find equivalent states and eliminate redundancy

Equivalent States : those that have the **same**

output behavior and

have the same state transitions

for all input combinations.

State S3 and S1 are equivalent

State Minimization

State Encoding

Attach a bit pattern to the symbolic states

Remember that the goal is not to minimize no. of bits but overall circuit complexity

Minimization of no. of bits minimizes only storage but not necessarily combinational logic complexity

State Encoding

Given binary code, how should the code be Assigned to different states?

State	Code
So	01
S ₁	10
S_2	11
S_3	00

П

State	Code
So	00
S ₁	01
S ₂	10
S ₃	11

Sequential circuit design: Choose flipflop type

A D FF allows easier implementation While a JK FF may result in simpler circuit

D vs. JK: area comparison

Cell Size

Drive Strength	Height (μm)	Width (μm)	Drive Strength	Height (μm)	Width (μm)
DFFNXL	5.0	11.2	JKFFXL	5.0	13.9
DFFNX1	5.0	11.2	JKFFX1	5.0	13.9
DFFNX2	5.0	13.9	JKFFX2	5.0	16.5
DFFNX4	5.0	15.8	JKFFX4	5.04	19.80

24% larger

Sequential Circuit Design: Truth tables

I

State	Q_1Q_0
S _o	01
S ₁	10
S ₂	11
S_3	00

i/p (x)	P. State	N. State	o/p	i/p FF
X	Q_1Q_0	Q_1Q_0	Z	D_1D_0
0	0 1	0 1	0	0 1
1	0 1	1 0	0	1 0
0	1 0	1 1	0	1 1
1	1 0	1 0	0	1 0
0	1 1	0 1	0	0 1
1	1 1	0 0	1	0 0
0	0 0	1 1	0	1 1
1	0 0	0 1	0	0 1

Sequential Circuit Design: Logic minimization

FSM Synthesis

- State minimization
- State Encoding
- Choosing a flipflop type to implement states
- Synthesize next state logic
- Synthesize output logic

Sequential Circuit Design: Truth tables

I

State	Q_1Q_0
S _o	01
S ₁	10
S ₂	11
S_3	00

i/p (x)	P. State	N. State	o/p	i/p FF
X	Q_1Q_0	Q_1Q_0	Z	D_1D_0
0	0 1	0 1	0	0 1
1	0 1	1 0	0	1 0
0	1 0	1 1	0	1 1
1	1 0	1 0	0	1 0
0	1 1	0 1	0	0 1
1	1 1	0 0	1	0 0
0	0 0	1 1	0	1 1
1	0 0	0 1	0	0 1

Sequential Circuit Design :combinational logic synthesis

i/p (x)	P. State	N. State	o/p	i/p FF
Х	Q_1Q_0	Q_1Q_0	Z	D_1D_0
0	0 1	0 1	0	0 1
1	0 1	1 0	0	1 0
0	1 0	1 1	0	1 1
1	1 0	1 0	0	1 0
0	1 1	0 1	0	0 1
1	1 1	0 0	1	0 0
0	0 0	1 1	0	1 1
1	0 0	0 1	0	0 1

Q_1	Q_0	0 1	1 1	1 0
x 0	1)	0	0	1 1
1	0	1	0	1
$D_1 = Q_1 \overline{Q_0} + \overline{X} \overline{Q_0} + \overline{X} \overline{Q_1} Q_0$				

Sequential Circuit Design:

Sequential Circuit Design: State coding scheme-II

State	Q_1Q_0
S _o	00
S ₁	01
S ₂	10
S_3	11

i/p (x)	P. State	N. State	o/p	i/p FF
Х	Q_1Q_0	Q_1Q_0	Z	D_1D_0
0	0 0	0 0	0	0 0
1	0 0	0 1	0	0 1
0	0 1	1 0	0	1 0
1	0 1	0 1	0	0 1
0	1 0	0 0	0	0 0
1	1 0	1 1	1	1 1
0	1 1	1 0	0	1 0
1	1 1	0 1	0	0 1

Sequential Circuit Design: Logic minimization

Comparison

State	Q_1Q_0
S _o	01
S ₁	10
S ₂	11
S_3	00

$$D_1 = Q_1 Q_0 + x Q_0 + x Q_1 Q_0$$

$$D_0 = \overline{Q}_1 \overline{Q}_0 + \overline{x}$$

$$Cost = 2+6+2=10$$

State	Q_1Q_0
So	00
S ₁	01
S ₂	10
S ₃	11

$$z = x Q_1 Q_0$$
 $D_1 = x Q_0 + x Q_1 Q_0$
 $D_0 = x$

$$Cost = 2+4+0=6$$