DIFFERENTIAL EQUATIONS: A COMPLETE GUIDE

DIFFERENTIAL EQUATIONS

August 25, 2021

ELIJAH THOMPSON, PHYSICS AND MATH HONORS

Solo Pursuit of Learning

Contents

[Partial Differential Equations
1	Where do PDEs Come From?
	1.1 What is a PDE: Notation and Definitions
	Partial Derivatives
	Differential Operators
	1.2 What is a Partial Differential Equation (PDE)?
	Linear PDEs
	Nonlinear PDEs
	Solutions
	Homogeneous/Inhomogeneous Linear PDEs

Part I Ordinary Differential Equations

Part II

Partial Differential Equations

Chapter 1

Where do PDEs Come From?

1.1.0 What is a PDE: Notation and Definitions

Partial Derivatives

Consider a function *u* of several variables:

$$u = u(x, y, z)$$
 or more generally $u = u(x_1, x_2, ..., x_n)$

for $(x, y, z) \in U \subset \mathbb{R}^3$ or $(x_1, x_2, ..., x_n) \in U \subset \mathbb{R}^n$. We also write $\mathbf{x} = \vec{x} = (x_1, x_2, ..., x_n)$. The $x_1, ..., x_n$ are called *independent variables*

Definition 1.1.1. We say that $U \subseteq \mathbb{R}^n$ is a domain if and only if U is connected, $U^{\circ} \neq \emptyset$, and ∂U is smooth.

Notation 1.1.1. Let $u:U\subset\mathbb{R}^n\to\mathbb{R}$ be a smooth function (e.g. $u\in C^1(U)$). We denote the partial derivatives with

$$\lim_{h\to 0}\frac{u(\mathbf{x}+he_i)-u(\mathbf{x})}{h}=\frac{\partial u}{\partial x_i}(\mathbf{x})=u_{x_i}(\mathbf{x}), \quad i=1,2,...,n$$

where e_i is the *i*th standard basis vector in \mathbb{R}^n . For partial derivatives of order $k \in \mathbb{N}$, we write

$$\frac{\partial^k u}{\partial x_{i_1}...\partial x_{i_k}}(\mathbf{x}) = u_{x_{i_1},...,x_{i_k}}(\mathbf{x}), \quad i_1,...,i_k \in \{1,...,n\}$$

For the collection of all partial derivatives of order $k \in \mathbb{N}$ we write

$$D^k u := \{u_{x_{i_1},...,x_{i_k}} : i_1,...,i_k \in \{1,...,n\}\}$$

Differential Operators

Definition 1.1.2. For $u:U\subset\mathbb{R}^n\to\mathbb{R}$ smooth, we define the **gradient** of u to be

$$\nabla u := (u_{x_1}, ..., u_{x_n})$$

where ∇ is the Nabla differential operator.

Definition 1.1.3. Given a vector $v = (v_1, ..., v_n) \in \mathbb{R}^n$ and $u : U \subseteq \mathbb{R}^n \to \mathbb{R}$ smooth, the directional derivative of u in the direction of v is given by (by application of the chain rule):

$$D_{\nu}u = \nabla u \cdot \nu = \sum_{i=1}^{n} u_{x_{i}} \nu_{i} =: \frac{\partial u}{\partial \nu}$$

In particular, $\nabla u \cdot e_i = u_{x_i}$.

Definition 1.1.4. For $V: U \subset \mathbb{R}^n \to \mathbb{R}^n$ a smooth vector field, we write $V(\mathbf{x}) = (V^1(\mathbf{x}), ..., V^n(\mathbf{x}))$, and we have the differential of V, or Jacobian,

$$J_V = DV = egin{bmatrix} V_{x_1}^1 & \dots & V_{x_n}^1 \ dots & \ddots & dots \ V_{x_1}^n & \dots & V_{x_n}^n \end{bmatrix}$$

We then define the **divergence** of *V* to be

$$DivV := \nabla \cdot V = trDV = \sum_{i=1}^{n} V_{x_i}^i$$

Definition 1.1.5. Let $u(\mathbf{x}) = u(x_1, ..., x_n)$ be a smooth real-valued function, $\boldsymbol{\curvearrowleft} \in U$. Then $\nabla u : U \subset \mathbb{R}^n \to \mathbb{R}^n$ and as above we have Hessian matrix for u, i.e. the Jacobian of the gradient of u:

$$H_u = D
abla u = egin{bmatrix} u_{x_1, x_1} & \dots & u_{x_1, x_n} \\ \vdots & \ddots & \vdots \\ u_{x_n, x_1} & \dots & u_{x_n, x_n} \end{bmatrix}$$

and we then define the **laplacian** of u to be the divergence of ∇u :

$$\Delta u := tr D \nabla u = \sum_{i=1}^{n} u_{x_i, x_i}$$

1.2.0 What is a Partial Differential Equation (PDE)?

Definition 1.2.1. A PDE is an equation which relates an unknown function *u*, its partial derivatives, and its independent variables.

A general PDE on a domain $U \subseteq \mathbb{R}^n$ can be written as

$$F(\mathbf{x}, u, D^{1}u, ..., D^{k}u) = F(\mathbf{x}, u(\mathbf{x}), D^{1}u(\mathbf{x}), ..., D^{k}u(\mathbf{x})) = g(\mathbf{x}), \quad \mathbf{x} \in U$$
(1.2.1)

for functions $g(\mathbf{x})$ and $F(\mathbf{x}, \theta, \theta^1, ..., \theta^k)$, where $(x_1, ..., x_n) = \mathbf{x} \in U$, $\theta \in \mathbb{R}$, and $\theta^i = (\theta^i_1, ..., \theta^i_{n^i}) \in \mathbb{R}^{n^i}$ and i = 0, 1, ..., k, representing that for a potential function $u : U \subset \mathbb{R}^n \to \mathbb{R}$, there are n^i partial derivatives of order i. u and $D^1u, ..., D^ku$ are also called dependent variables.

When we study a PDE often the domain U is not specified yet in the beginning.

Definition 1.2.2. The <u>order</u> of a PDE is the highest order of a partial derivative that appears in the equation.

The most general form of a first order PDE for 2 independent variables is

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y)) = f(x, y, u, u_x, u_y) = g(x, y)$$

Linear PDEs

Definition 1.2.3. A PDE of the form

$$F(\mathbf{x}, u, D^{1}u, ..., D^{k}u) = g(\mathbf{x})$$
(1.2.2)

is called a linear if the function

$$(\theta, \theta^1, ..., \theta^k) \in \mathbb{R} \times \mathbb{R}^n \times ... \times \mathbb{R}^{n^k} \mapsto F(\mathbf{x}, \theta, \theta^1, ..., \theta^k) \in \mathbb{R}$$

is multilinear (linear in each \mathbb{R} component).

A linear PDE of order 2 in n independent variables can always be written in the form

$$\sum_{i,j=1}^{n} a_{i,j}(\mathbf{x}) u_{x_i,x_j} + \sum_{k=1}^{n} b_k(\mathbf{x}) u_{x_k} + c(\mathbf{x}) u = g(\mathbf{x})$$

with coefficients $(a_{i,j}(\mathbf{x}))_{1 \leq i,j \leq n}$, $(b_k(\mathbf{x}))_{1 \leq k \leq n}$, $c(\mathbf{x})$ that are functions in \mathbf{x} .

Example 1.2.1 (Poisson Equation). The Poisson PDE for a function $g:U\subset\mathbb{R}^n\to\mathbb{R}$ is given by

$$\Delta u = \sum_{i=1}^{n} u_{x_i, x_i} = g(\mathbf{x})$$

where in the form of the above equation we have $a_{i,j} = \delta_{i,j}$, the Kronecker delta, $b_i = 0$ and c = 0.

Nonlinear PDEs

Definition 1.2.4. A PDE of the form $F(\mathbf{x}, u, D^1u, ..., D^ku) = g(\mathbf{x})$ is called

• semi linear if we can write

$$F(\overline{\mathbf{x}}, \theta, \theta^1, ..., \theta^k) = L(\mathbf{x}, \theta^k) + G(\mathbf{x}, \theta, \theta^1, ..., \theta^{k-1})$$

and the function $\theta^k \in \mathbb{R}^{n^k} \mapsto L(\mathbf{x}, \theta^k)$ is multilinear.

• quasi linear if we can write

$$F(\overline{\mathbf{x}}, \theta, \theta^1, ..., \theta^k) = L(\mathbf{x}, \theta, \theta^1, ..., \theta^k) + G(\mathbf{x}, \theta, \theta^1, ..., \theta^{k-1})$$

and the function $\theta^k \in \mathbb{R}^{n^k} \mapsto L(\mathbf{x}, \theta, \theta^1, ..., \theta^k)$ is multilinear.

• **fully nonlinear** if the PDE is not linear, semilinear, or quasilinear.

The following implications are clear: linear implies semi-linear implies quasi-linear.

Consider a quasi linear PDE $F(\mathbf{x}, u, D^1 u) = g(\mathbf{x})$. Hence, F has the form

$$F(\mathbf{x}, \theta, \theta^1) = \sum_{i=1}^n a_i(\mathbf{x}, \theta)\theta^1 + G(\mathbf{x}, \theta)$$

The coefficients $(a_i)_{1 \le i \le n}$ are functions in **x** and θ . The PDE takes the form

$$\sum_{i=1}^n a_i(\mathbf{x}, u) u_{x_i} + G(\mathbf{x}, u) = g(\mathbf{x})$$

Example 1.2.2 (Inviscid (or Non-viscous) Burger's Equations). The PDE

$$u_t + (u^2)_x = 0 \implies u_t + 2uu_x = 0$$

is a quasi-linear PDE of order 1 in 2 independent variables: $t = x_1$ and $x = x_2$. Here we have $a_1(\mathbf{x}, u) = 1, a_2(\mathbf{x}, u) = u$ and $G = g \equiv 0$.

Consider a PDE of order 2 $F(\mathbf{x}, u, D^1u, D^2u) = g(\mathbf{x})$. If the PDE is quasi-linear, it can be written in the general form

$$\sum_{i,i=1}^n a_{i,j}(\mathbf{x},u,D^1u)u_{x_i,x_j}+G(\mathbf{x},u,D^1u)=g(\mathbf{x})$$

 $(a_{i,j})_{1 \le i,j \le n}$, G are functions in \mathbf{x} , θ , and θ^1 .

Solutions

Definition 1.2.5. Consider a PDE of order k:

$$F(\mathbf{x}, u, D^1 u, ..., D^k u) = g(\mathbf{x})$$

A classical solution of the PDE on a domain $\Omega \subset \mathbb{R}^n$ where n is the number of independent variables, is a sufficiently smooth function $u(\mathbf{x})$ that satisfies it. By sufficiently smooth, we mean in this case that $u \in C^k(\Omega)$.

Example 1.2.3. The function $u(x,t) = \frac{x}{t}$ solves

$$u_t + uu_x = 0$$

on $\mathbb{R} \times (0, \infty) \subset \mathbb{R}^2$, the upper half plane.

Homogeneous/Inhomogeneous Linear PDEs

Definition 1.2.6. Consider a linear PDE of order k: $L(\mathbf{x}, u, D^1 u, ..., D^k u) = \mathcal{L}[u] = g(\mathbf{x})$. If $g(\mathbf{x}) \equiv 0$, the PDE is called **homogeneous**. Otherwise, the PDE is called **inhomogeneous**.

Theorem 1.2.1 (Superposition Principle). *If* u and v are solutions to the homogeneous linear $PDE\ L(\overline{x}, u, D^1u, ..., D^ku) = 0$ on a domain $\Omega \subset \mathbb{R}^n$, then for all $\alpha, \beta \in \mathbb{R}$, $\alpha u + \beta v$ is a solution to the same homogeneous linear PDE on the domain Ω .

Theorem 1.2.2 (Particular Solution). If u solves the homogenous linear PDE $\mathcal{L}[u] = 0$ and w solves the inhomogeneous linear PDE $L[w] = g(\mathbf{x})$, then u + w solves the same inhomogeneous linear PDE.

It follows that \mathcal{L} , defined by $\mathcal{L}[u] = L(\mathbf{x}, u, D^1u, ..., D^ku)$ is a linear differential operator. Hence, it makes sense to specify appropriate function vector spaces V and W such that $u \in V$ and $\mathcal{L}u \in W$. For instance: For a PDE of order 2, we can choose $V = C^2(\Omega)$ and $W = C^0(\Omega)$. In particular, for a linear PDE of order one for independent variables x and y, we could set $V = C^1(\mathbb{R}^2)$ and $W = C^0(\mathbb{R}^2)$.

Appendices