PATCHWORK COMBINATOIRE DE COURBES ALGÉBRIQUES

Raphaël Alexandre, Thomas Mordant Encadré par : Ilia Itenberg

6 février 2016

Sommaire

Introdu	ıction du problème	ii
1	Le seizième problème de HILBERT	ii

Introduction du problème

Avant le propos central de ce texte, nous allons essayer d'exposer le problème étudié ainsi que de poser les premières notations utilisées.

1 LE SEIZIÈME PROBLÈME DE HILBERT

Le problème est le suivant. Étant donné une polynôme homogène $F(x_0, x_1, x_2)$ à coefficients réels et de degré d, quelles sont les qualités topologiques de ses zéros dans le plan projectif réel, $\mathbf{P}^2(\mathbf{R})$?

Par la suite, nous supposerons toujours que les zéros de F sont non-singuliers.

Nous désignerons par $\mathbf{R}F$ l'ensemble des zéros de F, qui a alors naturellement une structure de variété lisse. Une variété lisse fermée de dimension 1 dans un espace compact est une union de cercles. Ainsi, $\mathbf{R}F$ sera une collection de cercles.

En dimension 1. En prenant d=1, nous observons que

$$F(x_0, x_1, x_2) = ax_0 + bx_1 + cx_2$$

avec $a,b,c\in\mathbf{R}$. Ainsi, $\mathbf{R}F$ est une droite de \mathbf{R}^2 . Son plongement dans $\mathbf{P}^2(\mathbf{R})$ est un grand cercle.

Plongements de R^2 dans $P^2(R)$

Il est utile de garder à l'esprit que deux plongements possibles dans ${f P}^2({f R})$ donnent lieu à un cercle :

- le plongement d'une droite de \mathbb{R}^2 (qui donne un grand cercle qui intersecte la droite à l'infini en un point);
- \bullet le plongement d'une conique de ${\bf R}^2$ (que nous appellerons ovale). §1

Le plongement d'un ovale divise $\mathbf{P}^2(\mathbf{R})$ en deux régions non connectées : une boule et un ruban de MÖBIUS. \S^2

EN DIMENSION 2. Si on revient au problème initial, pour d=2 nous avons F qui décrit une conique de $\mathbf{P}^2(\mathbf{R})$, c'est donc ou bien un ovale ou bien l'ensemble vide (ce qui se produit lorsque F est définie).

Lemme 1.1

Nous montrerons que:

- lorsque d est pair, $\mathbf{R}F$ est une réunion d'ovales;
- \bullet lorsque d est impair, $\mathbf{R}F$ est la réunion d'une droite et d'ovales.

^{§1.} Quelques doutes dessus, il faudrait vérifier si c'est le plongement d'une conique ou d'autre chose ...

^{§2.} Est-ce que c'est aussi vrai pour les grands cercles?

EN DIMENSION 4. La classification pour d=4 nous donne la distinction de cas suivante sur la composition de $\mathbf{R}F$:

- cela peut être l'ensemble vide;
- un, ou deux, ou trois, ou quatre ovales;
- $\bullet\,$ un ovale dans un autre tel que dans la figure qui suit.

FIGURE 1 – Lorsque d=4, un ovale peut être dans un autre

Mais le cas suivant est impossible :

Figure 2 – Ceci est impossible

En effet, si on trace une droite qui coupe chacun des ovales en deux points, on obtient 6 points d'intersections alors que le degré de l'équation sous-jacente est de 4.

Figure 3 – Les six points d'intersections contredisent d=4

On procède de même avec le cas où nous aurions 5 ovales. Par leurs 5 centres passe une conique et l'intersection est de 10 points alors qu'il devrait y en avoir au plus $4 \times 2 = 8$.