Formularium Fysica

Hoofdstuk 21. Elektrische lading en het elektrisch veld

Elektrische lading: $Q = \pm Ne$

$$Q = \pm Ne$$

met

$$e = 1.602$$
. 10^{-19} C = lading ve proton

Q = willekeurige lading (eenheid: Coulomb)

N = geheel getal

- Wet van Coulomb: grootte vd kracht tussen 2 puntladingen

$$\overrightarrow{F_{12}} = k \frac{Q_1 Q_2}{r_{21}^2} \ \widehat{r_{21}}$$

met
$$\widehat{r_{21}} = \frac{\overline{r_{21}}}{r_{21}} = \text{eenheidsvector}$$

$$k = \frac{1}{4\pi\varepsilon_0}$$

$$k = \frac{1}{4\pi\varepsilon_0}$$

 $\epsilon_0 = per \ddot{m}ittiviteit~v~vacuum = 8.85$. $10^{\text{-12}}~\text{C}^2/(\text{Nm}^2)$

- Ladingsdichtheid:
 - 1. Q is homogeen verdeeld: $\rho = \frac{Q}{V}$
 - 2. Q is niet-homogeen verdeeld: $\rho(\vec{r}) = \lim_{\Delta r \to 0} \frac{\Delta Q}{\Delta V} = \frac{dQ}{dV}$
- \square Wanneer Q ie eindig volume: $Q = \int_V dV \rho(\vec{r})$
- Oppervlakte ladingsdichtheid:

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta Q}{\Delta A} = \frac{dQ}{dA}$$

- Lineaire ladingsdichtheid:

$$\lambda = \lim_{\Delta L \to 0} \frac{\Delta Q}{\Delta L} = \frac{dQ}{dL}$$

met L = lengte voorwerp

- Elektrisch veld:

$$\vec{E} = \frac{\vec{F}}{q_0}$$

met $q_0 = \text{testlading}$

eenheid: N/C of V/m

- I kracht door elektrisch veld op lading: $\vec{F} = q\vec{E}$
 - 1. voor puntlading:
 - 2. tgv continue ladingsverdeling:

$$\vec{E} = -k \int_{V} \frac{dQ}{r^2} \hat{r}$$

 $dQ = \rho(\vec{r})dV$ als lading verdeeld is over het volume

 $dQ = \sigma(\vec{r})dA$ als lading verdeeld is over het oppervlak

 $dQ = \lambda(\vec{r})dL$ als lading verdeeld is over de lengte

3. voor vlakke plaat: $\vec{E} = \frac{\sigma}{2\varepsilon_0}$

met voor
$$z > 0$$
: σ
voor $z < 0$: $-\sigma$

4. ie geleider: $\vec{E} = 0$

= elektrostatisch evenwicht

5. tgv dipool
$$E = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3}$$

- Versnelling ve lading onderworpen aan een E-veld:

$$\vec{F} = m\vec{a} \to \vec{a} = \frac{q}{m}\vec{E}$$

- Dipoolmoment:
$$\vec{p} = q\vec{L}$$

- Krachtmoment:
$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$\square$$
 geleverde arbeid: $W = -\int_{\theta_1}^{\theta_2} \tau(\theta) d\theta$

$$\square$$
 potentiele energie: $U = -\vec{p} \cdot \vec{E}$

- Veldlijnen geven de richting weer van de kracht op een positieve testlading, snijden elkaar niet en hun dichtheid is evenredig met de sterkte van het veld.

Hoofdstuk 22. Wet van Gauss:

1. Uniform E-veld
$$\phi_E = \vec{E}\vec{A} = EA\cos\theta$$

met
$$\vec{A} = A\hat{n}$$
 ($\hat{n} = \text{normaalvector}$)

andere notaties:
$$\phi_E = E_{\perp}A \quad \text{met } E_{\perp} = E\cos\theta = \vec{E}\hat{n}$$

 $\phi_E = A_{\perp}E \quad \text{met } A_{\perp} = A\cos\theta = \vec{A}\hat{n}$

2. Niet uniform E-veld
$$\phi_E = \int_A \vec{E} \, d\vec{A}$$

$$\square$$
 wanneer A gesloten is: $\phi_E = \oint_A \vec{E} d\vec{A}$

- Wet van Gauss:
$$\phi_E = \oint_A \vec{E} d\vec{A} = \frac{Q_{encl}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \int_V \rho(\vec{r}) dV$$

- Elektrisch veld:

1. Op puntlading:
$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

2. Geleidende bolschil

- Buiten de bolschil:
$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

- Binnen de bolschil:
$$E = 0$$

3. Uniform geladen bol

- Buiten de bolschil:
$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

- Binnen de bolschil: $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r_0^3} r$

- Binnen de bolschil:
$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r_0^3} r_0^3$$

4. Uniform geladen draad
$$E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{k}$$

5. Uniform geladen plaat of isolator
$$E = \frac{\sigma}{2\varepsilon_0}$$

6. In de buurt ve geleider

- Binnen de geleider: E = 0

- Buiten de geleider: $E = \frac{\sigma}{\epsilon}$

Hoofdstuk 23. Elektrische potentiaal:

- Conservatief veld voor gesloten baan: $\oint \vec{E} d\vec{l} = 0$

- Verandering in potentiele energie: $dU = -dW = -\vec{F}d\vec{l} = -q_1\vec{E}d\vec{l}$ als nulpunt potentiele energie = nulpunt potentiaal: U = qV

- Potentiaalverschil: Elektrische potentiaal:

$$dV = \frac{dU}{q_1} = -\vec{E}\,d\vec{l}$$

eenheid: volt V

 \square tussen 2 punten: Spanning: $\Delta V = V_b - V_a = -\int_a^b \vec{E} d\vec{l}$

1. tgv puntlading:

- Coulomb potentiaal:

$$V = \frac{kQ}{r} = \frac{1}{4\pi\,\varepsilon_0} \frac{Q}{r}$$

- Potentiele energie:

$$U = \frac{kQQ_0}{r} = \frac{1}{4\pi\varepsilon_0} \frac{QQ_0}{r}$$

2. tgv dipool:

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$$

met p = Q.1

3. tgv oneindig groot uniform geladen plaat

$$V = V_0 - \frac{\sigma}{2\varepsilon_0} |x|$$

met V_0 = potentiaal bij x = 0

Hoofdstuk 24. Elektrostatische capaciteit, dielektrica en elektrische energie:

- Capaciteit ve geïsoleerde geleider: $C = \frac{Q}{V}$

eenheid: Farad

- Vlakke plaat condensator

- E-veld:
$$E = \frac{\sigma}{\varepsilon_0}$$
 met $\sigma = \frac{Q}{A}$

🛚 wanneer er een dielektricum tussen de platen zit:

$$E = \frac{E_0}{K}$$
 met K = dielektrische constante

$$E = \frac{E_0}{K} \qquad \text{met } K = \text{dielektrische constante}$$

$$C = \frac{K\varepsilon_0 A}{d} = \frac{\varepsilon A}{d} \qquad \text{met } \varepsilon = \varepsilon_0 K = \text{permittiviteit}$$

- Capaciteit:
$$\frac{a}{C} = \varepsilon_0 \frac{A}{d}$$

 \square wanneer parallel geplaatst: $C_{eq} = C_1 + C_2 + \cdots$

 \square wanneer in serie geplaatst: $\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \cdots$

- Elektrische potentiele energie:

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2} \varepsilon_0 E^2 (Ad)$$

- Energiedichtheid:

$$u_e = \frac{U}{\Omega} = \frac{1}{2} \varepsilon_0 E^2$$

 $u_e = \frac{U}{\Omega} = \frac{1}{2} \varepsilon_0 E^2$ met $\Omega = Ad$ = volume tussen de condensatorplaten

I wanneer dielektricum tussen de platen zit: $u_e(\vec{r}, t) = \frac{1}{2} \varepsilon E^2(\vec{r}, t)$

Hoofdstuk 25. Elektrische stroom en weerstand

- Elektrische stroom: eenheid: Ampère

- Gemiddeld: $I = \frac{\Delta Q}{\Delta t}$

- Ogenblikkelijk: $I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$

eenheid: Ohm

- Weerstand: $R(V, I) = \frac{V}{I}$

□ Wet van Ohm: V = RI met R = constanteof andere notatie: $\vec{l} = \sigma \vec{E}$ met $\sigma = \text{geleidbaarheid}$

- In een geleider: $R = \rho \frac{L}{A}$ = wet van Pouillet

 ρ = resistiviteit $\square \sigma = 1/\rho$ = conductiviteit L = lengte vd draadA = doorsnede vd draad

- Vermogen: eenheid: Watt

- Geleverd aan een toestel:

P = IV $P = IV = I^{2}R = \frac{V^{2}}{R}$ - Verbruikt door een weerstand:

- Geleverd door een bron:

- Wetten van Kirchoff:

- In elk gesloten circuit is de som van de potentiaalveranderingen gelijk aan nul.

 $(\sum V = 0)$

- Op elk kruispunt van een circuit is de som gelijk aan nul.

 $(\sum I = 0)$

- Stroomdichtheid:
$$J = \frac{I}{A} = nqv_d$$
 $I = \int_S \vec{J} d\vec{A}$

Hoofdstuk 26. Gelijkstroomcircuits:

- Klemspanning van een batterij: $V_{ab} = \varepsilon Ir$ met r = interne weerstand
- Weerstanden:

$$R = R_1 + R_2 + R_3 + \dots$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

- Opladen condensator:

- Spanning:
$$V_C = \frac{Q}{C} = \varepsilon (1 - e^{\frac{-t}{RC}})$$

- Stroom:
$$I = \frac{dQ}{dt} = \frac{\varepsilon}{k} e^{\frac{-t}{RC}}$$

- Lading:
$$Q = C\varepsilon(1 - \varepsilon^{\frac{-t}{RC}})$$

- Ontladen condensator:

- Spanning:
$$V_C = \frac{Q}{C} = V_0 e^{\frac{-t}{RC}}$$

- Stroom:
$$I = \frac{-dQ}{dt} = \frac{Q_0}{RC} e^{\frac{-t}{RC}} = I_0 e^{\frac{-t}{RC}}$$

Hoofdstuk 27. Magnetisme:

- Kracht op stroomdraad door uniform magneetveld eenheid: Tesla of Gauss

$$\vec{F} = I\vec{l} \times \vec{B}$$

$$\Box F = IlBsin\theta$$

met
$$\theta$$
 = hoek tussen B en I

U wanneer magnetisch veld niet uniform is of draad niet recht:

$$d\vec{F} = Id\vec{l} \times \vec{B} \rightarrow \vec{F} = \int Id\vec{l} \times \vec{B}$$

- Magnetische kracht: $\vec{F} = q\vec{v} \times \vec{B}$
- Lorentzkracht = kracht op puntlading in elektrisch en magnetisch veld

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

- Cyclotronfrequentie: $\omega = \frac{dB}{m}$
- Magnetisch dipoolmoment: $\vec{\mu} = IA\hat{n} = I\vec{A}$

 \square wanneer er N windingen zijn: $\vec{\mu} = NIA\hat{n} = NI\vec{A}$

 \square potentiele energie: $U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \theta$

- Magnetisch moment: $\vec{\tau} = \vec{\mu} \times \vec{B}$

Hoofdstuk 28. Bronnen van magnetisme

- Wet van Ampère:
$$\oint_C \vec{B} d\vec{l} = \mu_0 I_{encl}$$
 met I_{encl} = nettostroom

- Magnetisch veld t.g.v. ...

-... een rechte draad:
$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$
 met $r = \text{loodrechte afstand tot de draad}$ $\mu_0 = \text{permeabiliteit van vacüum} = 4\pi. \ 10^{-7} \text{N/A}^2$

- ... een bewegende lading:
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{\vec{qv} \times \hat{r}}{r^2}$$

- ... een stroomdraad:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$$
 (Biot-Savart)

- ... op de as v.e. cirkelvormige stroomdraad:
$$B_x = \frac{\mu_0}{4\pi} \frac{2\pi R^2 I}{(x^2 + R^2)^{3/2}}$$

- ... binnen een lange solenoïde:
$$B = \mu_0 nI$$

- ... een oneindige lange rechte geleider:
$$B = \frac{\mu_0}{4\pi} \frac{2I}{R}$$

- Orbitaal magnetisch moment:

$$\vec{\mu} = \frac{\vec{q}}{2m}\vec{L}$$
 met $\vec{L} = \vec{r} \times \vec{p} = \text{impuls}$

- Spin magnetisch moment:

$$\vec{\mu} = -\frac{2\mu_B \vec{S}}{\hbar}$$
 met $\mu_B = \text{Bohr magneton} = 5,79 \cdot 10^{-5} \text{ (eV)/T}$ $\vec{S} = \text{spin-impulsmoment}$ $\hbar = \frac{h}{2\pi}$ met $h = \text{constante van Planck}$

- Magnetische veldlijnen ...
 - ... beginnen of eindigen niet, ze vormen lussen
 - ... zijn iso-B-lijnen

- Wet van Gauss voor magnetisme:
$$\phi_{m,net} = \iint_S B_n dA = 0$$
 (Geen geïsoleerde polen!)

- Magnetische materialen:
 - Paramagnetisme:
 - Dipolen ondervinden geen wederzijdse invloed
 - Dipolen random georiënteerd door thermische agitatie
 - Dipolen oriënteren deels volgens extern B-veld (*M parallel aan B*)
 - Ferromagnetisme:

- Dipolen ondervinden sterke wederzijdse invloed
- Dipolen dus reeds deels georiënteerd
- Dipolen oriënteren verder volgens extern B-veld (*M parallel aan B*)
- Diamagnetisme:
 - De geïnduceerde magnetische momenten zijn tegengesteld aan extern B-veld (M antiparallel aan B)
- Magnetisatie:

$$\vec{M} = \frac{d\vec{\mu}}{dV}$$

- Totale magnetische veld: $\vec{B} = \vec{B_0} + \vec{B_M} = \vec{B_0} + \mu_0 \vec{M}$

$$\overrightarrow{B} = \overrightarrow{B_0} + \overrightarrow{B_M} = \overrightarrow{B_0} + \mu_0 \overline{M}$$

Voor para- en diamagneten:

$$\overrightarrow{M} = \frac{\chi_m \overline{B_0}}{\mu_0} \quad \text{met } \chi_m = \text{magnetische susceptibiliteit}$$

$$\square \overrightarrow{B} = \overrightarrow{B_0} + \mu_0 \overrightarrow{M} = (1 + \chi_m) \overrightarrow{B_0} = K_m \mu_0 \quad \text{met } K_m = \text{relatieve permeabiliteit}$$

$$\frac{K_m \mu_0}{K_m}$$
 met K_m = relatieve permeabiliteit

- Permeabiliteit: $\mu = (1 + \chi_m)\mu_0 = K_m \mu_0$

Hoofdstuk 29. Elektromagnetische inductie:

- Veranderende flux induceert een emf/stroom.
- Magnetische flux: eenheid: Weber

$$\phi_B = \int \vec{B} d\vec{A} = \int \vec{B} \hat{n} dA = B_{\perp} A = BA \cos\theta$$

- Inductiewet van Faraday

$$\varepsilon = -\frac{Nd\phi_E}{dt}$$

$$met N = aantal windingen$$

- Wet van Faraday

$$\oint_C \vec{E} \, d\vec{l} = -\frac{d\phi_B}{dt} = -\frac{d}{dt} \int_S \vec{B} \, d\vec{A}$$

- Bewegings-emk:

$$\varepsilon = \frac{d\phi_B}{dt} = \frac{BdA}{dt} = Blv$$

- Wet van Lenz:

De geïnduceerde emf heeft een zodanige richting dat ze de verandering tegenwerkt die deze emf induceert.

Hoofdstuk 30. Wisselstromen

Symbolen:

L = spoel

C = condensator

R = weerstand

DC = gelijkstroom

AC = wisselstroom

- Wederzijdse inductie:

$$\varepsilon_2 = -M_{21} \frac{dI}{dt}$$

 $\varepsilon_2 = -M_{21} \frac{dI}{dt}$ met M_{21} = wederzijdse inductiecoëfficiënt

- Zelfinductie: $\varepsilon = -L \frac{dI}{dt}$

met L = zelfinductiecoëfficiënt

 \Box potentiele energie: $U = \frac{1}{2}LI^2$

- LC circuit:

$$L \frac{d^2Q}{dt^2} + \frac{Q}{C} = 0$$

 \square met als oplossing: $Q(t) = Q_0 \cos(\omega_0 t + \phi)$ met $\omega_0 = \frac{1}{\sqrt{LC}}$

- \square stroom: $I = I_0 \sin(\omega_0 t + \phi)$
- LRC circuit: 2

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C} = 0$$

- Wisselstromen:

- Spanning: $V = V_0 \cos(2\pi f t) = V_0 \cos(\omega t)$ met V_0 = piekspanning

- Frequentie: $f = \frac{1}{T} = \frac{\omega}{2\pi}$ met $\omega =$ hoekfrequentie

- Stroom: $I = I_0 \cos(\omega t)$ met $I_0 = \frac{V_0}{R}$

- Gemiddelde stroom en spanning: $\bar{I} = 0$ en $\bar{V} = 0$

 \square middelbare waarde: $I_{rms} = \sqrt{\overline{I^2}}$ en $V_{rms} = \sqrt{\overline{V^2}}$

- Vermogen: $P = I_{rms}V_{rms}$

- Inductieve reactantie:

- Capactieve reactantie:

- Kwaliteitsfactor:

- Impedanties: $Z = |Z|e^{i\delta}$

V = ZI

Hoofdstuk 31. Maxwell vergelijkingen en elektromagnetische golven

- Maxwell vergelijkingen:
 - 1. Wet van Gauss
 - voor elektrische velden: $\oint_S \vec{E} d\vec{A} = \frac{1}{\epsilon_0} Q$
 - voor magnetische velden: $\oint_{S} \vec{B} d\vec{A} = 0$
 - 2. Wet van Faraday: $\oint_C \vec{E} d\vec{l} = -\frac{d\phi_B}{dt}$ met $\phi_B = \int_S \vec{B} d\vec{A}$
 - 3. Wet van Ampère-Maxwell: $\oint_C \vec{B} d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$
- Stelling van Gauss: $\oint_{\mathcal{C}} \vec{F} d\vec{A} = \int_{\mathcal{C}} \nabla \vec{F} dV$
- Stelling van Stokes: $\oint_C \vec{F} d\vec{l} = \int_S \nabla \times \vec{F} d\vec{A}$
- Wet van Gauss in differentiaalvorm:
 - 1. voor elektrisch veld: $\nabla \vec{E} = \frac{1}{\epsilon_0} \rho(\vec{r})$
 - $2. \nabla \vec{B} = 0$
- Wet van Faraday in differentiaalvorm: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
- Wet van Ampère in differentiaalvorm: $\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{\mu_0 \varepsilon_0 \ \partial \vec{E}}{\partial t}$
- Vergelijking van Poisson $\nabla V^2 = -\frac{\rho(\vec{r})}{\epsilon_0}$
- Vergelijking van Laplace: $\nabla V^2 = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$