ALGEBRA

Polar coordinate system

The polar coordinate system is a two-dimensional coordinate system in which each point P on a plane is determined by the length of its position vector r and the angle q between it and the positive direction of the x-axis, where 0 < r < + oo and 0 < q < 2p.

Polar and Cartesian coordinates relations

Since the inverse tangent function (arctan or tan^{-1}) returns values in the range -p/2 < q < p/2, then for points lying in the 2nd or 3rd quadrant and for points lying in the 4th quadrant

$$\theta = \arctan\left(\frac{y}{x}\right) + \pi,$$
 $\theta = \arctan\left(\frac{y}{x}\right) + 2\pi.$

Example: Convert Cartesian coordinates $(-1, -\ddot{O}3)$ to polar coordinates.

Solution:
$$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$$
,

and since the point lies in the 3rd quadrant, then

$$\theta = \arctan\left(\frac{y}{x}\right) + \pi,$$

$$\theta = \arctan\left(\frac{-\sqrt{3}}{-1}\right) + \pi = \arctan\sqrt{3} + \pi,$$

$$\theta = \frac{\pi}{3} + \pi = \frac{4}{3}\pi.$$

:: Equation of a line in polar form

Lines parallel to the axes, horizontal and vertical lines

Lines parallel to the y-axis

A vertical line, x = c is represented by the equation

$$r \cos q = c$$
 or $r = \frac{c}{\cos \theta}$.

Lines parallel to the x-axis

A horizontal line, y = c is represented by the equation

$$r \sin q = c$$
 or $r = \frac{c}{\sin \theta}$.

Lines running through the origin or pole (radial lines)

The equation of a line through the origin or pole that makes an angle a with the positive x-axis

$$y = mx$$
, where $m = \tan \alpha$ therefore, $y = \tan \alpha \cdot x \mid \div x$
$$\frac{y}{x} = \tan \alpha \mid arc \tan \alpha$$
 arc $\tan \left(\frac{y}{x}\right) = arc \tan (\tan \alpha)$,

$$arc \tan\left(\frac{y}{x}\right) = arc \tan(\tan\alpha),$$

y

since
$$\frac{y}{x} = \tan \theta$$
 then, $arc \tan (\tan \theta) = arc \tan (\tan \alpha)$ or $\theta = \alpha$.

Thus, the equation of a line through the origin is represented by the equation q = a in polar coordinates.

Polar equation of a line

$$cos(\theta - \varphi) = \frac{p}{r}$$

the polar equation of a line

$$r = \frac{p}{\cos(\Theta - \phi)}$$

where p is the distance of the line from the pole Oand j is the angle that the segment p makes with the polar axis.

Example: Write polar equation of the line passing through points (-4, 0) and (0, 4).

Solution: Using polar equation of a line

$$r = \frac{p}{\cos(\Theta - \varphi)}, \quad r = \frac{2\sqrt{2}}{\cos\left(\Theta - \frac{3}{4}\pi\right)}.$$

Proof, using Cartesian to polar conversion formulas.

The intercept form of the line $\frac{x}{a} + \frac{y}{b} = 1$ or

$$\frac{x}{-4} + \frac{y}{4} = 1 \quad | \cdot 4$$

$$-x + y = 4$$
, $y = x + 4$

Therefore,
$$-r\cos\theta + r\sin\theta = 4$$
, $r(\sin\theta - \cos\theta) = 4$ or $r = \frac{4}{\sin\theta - \cos\theta} = \frac{2\sqrt{2}}{\cos\left(\theta - \frac{3}{4}\pi\right)}$.

:: Equation of a circle in polar form

General equation of a circle in polar coordinates

The general equation of a circle with a center at (r_0, \mathbf{j}) and radius R.

Using the law of cosine,

$$r^2 + r_0^2 - 2rr_0 \cos(q - j) = R^2$$

Polar equation of a circle with a center on the polar axis running through the pole

Polar equation of a circle with radius R and a center on the polar axis running through the pole O (origin).

Since
$$\cos \theta = \frac{r}{2R}$$

then,

$$r = 2R \cos q$$

Polar equation of a circle with a center at the pole

Since,
$$r^2 = x^2 + y^2$$
 and $x^2 + y^2 = R^2$ then $r = R$

is polar equation of a circle with radius R and a center at the pole (origin).

Example: Convert the polar equation of a circle $r = -4 \cos q$ into Cartesian coordinates.

Solution: As, $r = -4 \cos q$ then $r^2 = -4r \cos q$,

and by using polar to Cartesian conversion formulas, $r^2 = x^2 + y^2$ and $x = r \cos q$

obtained is
$$x^2 + y^2 = -4x$$

$$x^2 + 4x + y^2 = 0$$

or
$$(x+2)^2 + y^2 = 4$$

the equation of a circle with radius R=2 and the center at (-2, 0).

Copyright © 2004 - 2020, Nabla Ltd. All rights reserved.