Mathematical Formulation

Notation

All of these will be introduced in the text, but for a quick reference they are listed here.

n: the number of (spatial) locations with observations

N: the number of observations per location

m: the number of neighbors for calculation

 α_i : the shape parameter for the IG prior in the i'th regression

 β_i : the scale parameter for the IG prior in the i'th regression

 a_i, b_i : posterior IG parameters

 Γ_i : the prior variance on the coefficients in the i'th regression

 \mathbf{G}_i : posterior variance

 $\hat{\mathbf{U}} = \mathbf{U}\mathbf{D}^{-1/2}$: Cholesky of the precision matrix

A spatial model and the screening effect

Assume we have $N \ge 1$ observations of a continuous spatial process at n locations (in low dimensional space). We model the detrended (i.e., centered) data as

$$\mathbf{z}^{(\ell)}|\mathbf{\Sigma} \stackrel{iid}{\sim} \mathcal{N}_n(\mathbf{0}, \mathbf{\Sigma}), \qquad \ell = 1, \dots, N,$$
 (1)

where $\mathbf{z}^{(\ell)} = (z_1^{(\ell)}, \dots, z_n^{(\ell)})'$, and $z_i^{(\ell)}$ is observed at spatial location \mathbf{s}_i . We denote by \mathbf{z} all observations $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)}$ stacked into a long vector. We assume that the locations $\mathbf{s}_1, \dots, \mathbf{s}_n$, and hence the corresponding variables $z_i^{(\ell)}$ in $\mathbf{z}^{(\ell)}$, are ordered according to a maximin ordering (Guinness, 2018; Schäfer et al., 2017).

Our goal is to make inference on the spatial covariance matrix Σ based on the data \mathbf{z} , in the case where n is large (in the hundreds or even hundreds of thousands) and N is relatively small. Typically, a parametric, and often isotropic, covariance function is assumed to determine Σ such that it only is a function of a very small number of parameters, which can then be estimated relatively easily. Here, we avoid explicit assumptions of stationarity and isotropy.

Instead, we assume that a spatial screening effect holds, such that

$$p(z_i^{(\ell)}|\mathbf{z}_{1:i-1}^{(\ell)}, \mathbf{\Sigma}) = p(z_i^{(\ell)}|\mathbf{z}_{q_m(i)}^{(\ell)}, \mathbf{\Sigma}), \tag{2}$$

where $g_m(i) \subset (1, \ldots, i-1)$ is an index vector consisting of the indices of the $\min(m, i-1)$ nearest neighbors to \mathbf{s}_i among those ordered previously; that is, $\mathbf{s}_{(g_m(i))_j}$ is the jth nearest neighbor of \mathbf{s}_i . The equation (2) always holds trivially holds for m = n - 1, but for many covariances, it even holds (at least approximately) for $m \ll n$ due to the so-called screening effect. Assume for now that m is fixed and known.

Consider the modified Cholesky decomposition of the inverse of Σ (i.e., the precision matrix):

$$\mathbf{\Sigma}^{-1} = \mathbf{U}\mathbf{D}^{-1}\mathbf{U}',\tag{3}$$

where $\mathbf{D} = \mathrm{diag}(d_1, \ldots, d_n)$ is a diagonal matrix with positive entries $d_i > 0$, and \mathbf{U} is an upper triangular matrix with unit diagonal (i.e., $\mathbf{U}_{ii} = 1$). The screening effect in (2) implies that \mathbf{U} is sparse, with at most m nonzero off-diagonal elements per column (e.g., Katzfuss and Guinness, 2017, Prop. 3.1). We define $\mathbf{u}_i = \mathbf{U}_{g_i,i}$ as the nonzero off-diagonal entries in the ith column.

Inference conditional on hyperparameters

From (3), we see that we can estimate Σ by inferring d_1, \ldots, d_n and $\mathbf{u}_1, \ldots, \mathbf{u}_n$. To do so, note that our data model (1) can be written as a series of linear regression models (Huang et al., 2006):

$$p(\mathbf{z}|\mathbf{\Sigma}) = \prod_{i=1}^{n} p(\mathbf{y}_i|\mathbf{y}_{1:i-1}, \mathbf{\Sigma}) = \prod_{i=1}^{n} \mathcal{N}_N(\mathbf{y}_i|\mathbf{X}_i\mathbf{u}_i, d_i\mathbf{I}_N),$$
(4)

where $\mathbf{y}_i = (z_i^{(1)}, \dots, z_i^{(N)})'$, and \mathbf{X}_i is an $N \times m$ matrix with ℓ th row $-\mathbf{z}_{g_i}^{(\ell)}$. Note the negative sign for the entries of \mathbf{X}_i . Further details on why this and (3) are pushed to Section 2.

For the regression models in (4), we assume the standard, conjugate priors to form a series of Bayesian regression models:

$$\mathbf{u}_i|d_i, \boldsymbol{\theta} \overset{ind.}{\sim} \mathcal{N}(\mathbf{0}, d_i \boldsymbol{\Gamma}_i), \qquad d_i|\boldsymbol{\theta} \overset{ind.}{\sim} \mathcal{IG}(\alpha_i, \beta_i),$$

where θ is a vector of hyperparameters determining m, Γ_i , α_i , and β_i , which will be discussed further below.

Due to conjugacy, the posterior distribution (conditional on θ) is available in closed form:

$$p(\mathbf{u}_1, \dots, \mathbf{u}_n, d_1, \dots, d_n | \mathbf{z}, \boldsymbol{\theta}) = \prod_{i=1}^n p(\mathbf{u}_i, d_i | \mathbf{z}, \boldsymbol{\theta}) = \prod_{i=1}^n p(\mathbf{u}_i | d_i, \mathbf{z}, \boldsymbol{\theta}) p(d_i | \mathbf{z}, \boldsymbol{\theta})$$
(5)

$$= \prod_{i=1}^{n} \mathcal{N}(\mathbf{u}_i|\hat{\mathbf{u}}_i, d_i \mathbf{G}_i) \mathcal{IG}(d_i|a_i, b_i), \tag{6}$$

where $\hat{\mathbf{u}}_i = \mathbf{G}_i \mathbf{X}_i' \mathbf{y}_i$, $\mathbf{G}_i = (\mathbf{X}_i' \mathbf{X}_i + \mathbf{\Gamma}_i^{-1})^{-1}$, $a_i = \alpha_i + N/2$, and $b_i = \beta_i + (\mathbf{y}_i' (\mathbf{I}_N + \mathbf{X}_i \mathbf{\Gamma}_i \mathbf{X}_i')^{-1} \mathbf{y}_i)/2 = \beta_i + (\mathbf{y}_i' \mathbf{y}_i - \hat{\mathbf{u}}_i' \mathbf{G}_i^{-1} \hat{\mathbf{u}}_i')/2$.

Inference on the hyperparameters

Previously, we have assumed the hyperparameters θ determining m, Γ_i , α_i , and β_i to be fixed. We now discuss the inference of these hyperparameters.

First, assuming a hyperprior $p(\theta)$ has been specified, the goal is to obtain the posterior distribution $p(\theta|\mathbf{z}) \propto p(\mathbf{z}|\theta)p(\theta)$. While this distribution cannot be obtained analytically, we can sample from the posterior using the Metropolis-Hastings algorithm using the closed form of the marginal or integrated likelihood,

$$p(\mathbf{z}|\boldsymbol{\theta}) \propto \prod_{i=1}^{n} \sqrt{|\mathbf{G}_i|/|\mathbf{\Gamma}_i|} \times \beta_i^{\alpha_i}/b_i^{a_i} \times \Gamma(a_i)/\Gamma(\alpha_i),$$

where the (non-bold) Γ denotes the gamma function. Given the posterior distributions of \mathbf{U}, \mathbf{D} , these evaluations are cheap computationally. Another alternative is to optimize these hyperparameters with this likelihood.

We now parameterize the prior distributions from before in terms of $\theta = (\theta_1, \theta_2, \theta_3)'$, such that the resulting model shrinks toward an isotropic Mat'ern-type covariance. The parameter θ_1 will play the role of a marginal

variance, while θ_2 and θ_3 are related to the range and smoothness. For the package, we concatenate the prior parameters α_i , β_i into n-dimensional vectors a, b, and the prior variance parameter Γ_i (which is diagonal) into a matrix \mathbf{G} of dimension n by m as follows:

$$a = 6$$

$$b = 5e^{\theta_1} \left[1 - \exp\left(-\frac{e^{\theta_2}}{\sqrt{0:(n-1)}} \right) \right]$$

$$temp = \exp\left(-e^{\theta_3} * (1:m) \right)$$
each row of $\mathbf{G} = \frac{\text{temp}}{b_i/(a_i - 1)}$

For the method, we also provide a guideline for choosing m. Our solution is to tie m to the decay of the elements of \mathbf{U} . To allow the data to choose m within the MCMC algorithm or optimization, we deterministically link the number of neighbors to θ_3 (for our experiments we use $\exp(\theta_3 * j) < 0.001$, where j denotes the neighbor number). This coincides to the amount of variation expected to be learnable from the data. By allowing m to change within the MCMC, an incorrect m will negatively influence the integrated likelihood so the data can reject it.

Why (3) and (4) hold

This section is based on Section 2.2.4 of (Pourahmadi, 2011).

First consider an autoregressive model, then move all elements to the same side.

$$\mathbf{y}_i = \sum_{j \in g_i} \phi_{ij} z_j + \epsilon_i$$
$$\mathbf{y}_i - \sum_{j \in g_i} \phi_{ij} z_j = \epsilon_i$$

Now, it can be written in matrix form as $\epsilon = T\mathbf{X}$, where

$$T = \begin{pmatrix} 1 & & & & \\ -\phi_{21} & 1 & & & \\ -\phi_{31} & -\phi_{32} & 1 & & \\ \vdots & \vdots & & \ddots & \\ -\phi_{n1} & -\phi_{n2} & \cdots & -\phi_{nn-1} & 1 \end{pmatrix}$$

However, for notational simplicity, we absolve the negative sign into the coefficient matrix X Now, to see that it is indeed the valid covariance function:

$$cov(\epsilon) = D^2 = cov(TY) = T\Sigma T'$$

$$\Sigma = T^{-1}D^2T'^{-1}$$

$$\Sigma^{-1} = T'D^{-2}T$$

References

Guinness, J. (2018). Permutation methods for sharpening Gaussian process approximations. Technometrics, 60(4):415–429.

Huang, J., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance matrix selection and estimation via penalized normal likelihood. Biometrika, 93(1):85–98. Katzfuss, M. and Guinness, J. (2017). A general framework for Vecchia approximations of Gaussian processes. arXiv:1708.06302.
Pourahmadi, M. (2011). Covariance estimation: The glm and regularization perspectives. Statistical Science, pages 369–387.
Schäfer, F., Sullivan, T. J., and Owhadi, H. (2017). Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity. arXiv:1706.02205.