Problem Set #3

Quiz, 5 questions

1 point

1.

Suppose you implement the functionality of a priority queue using a *sorted* array (e.g., from biggest to smallest). What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

- $\Theta(1)$ and $\Theta(n)$
- $igotimes \Theta(n)$ and $\Theta(n)$
- $\Theta(n)$ and $\Theta(1)$
- $\Theta(\log n)$ and $\Theta(1)$

1 point

2.

Suppose you implement the functionality of a priority queue using an *unsorted* array. What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

- $\Theta(1)$ and $\Theta(n)$
- $\Theta(n)$ and $\Theta(1)$
- $\Theta(1)$ and $\Theta(\log n)$
- $\Theta(n)$ and $\Theta(n)$

1 point

3.

	e given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can his $\log n$ time?
Quiz, 5 questio	Find the largest element stored in the heap.
	Find the fifth-smallest element stored in the heap.
	None of these.
	Find the median of the elements stored in the heap.
of node	e given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number es in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) for node x of the tree? $\Theta(n)$ $\Theta(n\log n)$ $\Theta(n^2)$ $\Theta(height)$
1 point 5. Suppos	se we relax the third invariant of red-black trees to the property that there are no <i>three</i> reds in a row.
	if a node and its parent are both red, then both of its children must be black. Call these <i>relaxed</i> redrees. Which of the following statements is <i>not</i> true?
	The height of every relaxed red-black tree with n nodes is $O(\log n)$.
	Every binary search tree can be turned into a relaxed red-black tree (via some coloring of the nodes as black or red).
	There is a relaxed red-black tree that is not also a red-black tree.
	Every red-black tree is also a relaxed red-black tree.

Problem Set #3

Upgrade to submit

Quiz, 5 questions

