CIRCUITOS ARITMÉTICOS E CÓDIGOS ESPECIAIS

OBJETIVOS

- Projetar circuitos somadores binários;
- Projetar circuitos subtratores binários;
- Projetar circuitos multiplicadores binários;
- Projetar circuitos somadores e subtratores em BCD;
- Trabalhar com Unidades Lógicas e Aritméticas ALU;
- Trabalhar com o Código de GRAY;
- Trabalhar com Códigos Detectores e Corretores de Erro.

RESUMO

Introdução

Adição

Subtração

Unidade Lógica e

Aritmética

Adição em BCD

Código de Gray

Código Detector de Erro

Código Corretor de Erro

ADIÇÃO

Entradas	Saídas					
"Bit" 1	+	"Bit" 2	→	Resultado	Transporta	
0		0		0	0	
0		1		1	0	
1		0		1	0	
1		1		0	1	

Projeto do Somador para quatro "bits"

Somador Incompleto ("Half Adder")

Entradas		Saídas		
			"Carry"	
A1	B1	S1	C1	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

A1
$$S1 = \overline{A1}B1 + A1\overline{B1}$$

$$= A1 + B1$$

$$C1 = A1 B1$$

$$C1$$

Entradas		Saídas		
		Soma	"Carry "	
A1	B1	S1	C1	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Volts

5.00

A1

0.00

5.00

8

0.00

4.00

S

0.00

4.00

Count

0.00

0.00 50.00n

100.00n

150.00n

Somador Completo ("Full-Adder")

E	ntrada	Sa	ídas	
Ci-1	Ai	Bi	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Si = (Ci-1) . (Bi)
$$\hat{\ }$$
 . Ai + (Ci-1) . Bi . (Ai) $\hat{\ }$ + (Ci-1) . Bi . Ai = (Ci-1) . (Ai $\hat{\ }$ Bi) + (Ci-1) . (Ai $\hat{\ }$ Bi) = (Ci-1) $\hat{\ }$ Ai + Bi

$$Ci = (Ci - 1) . Ai + (Ci - 1) . Bi + Ai . Bi$$

= Ai . Bi + (Ci - 1) . (Ai $-$ Bi)

Ci-1

Somador Paralelo

Circuito Integrado – 74LS83

1 3 8 10 16 4 7 11 A4 A3 A2 A1 B4 B3 B2 B1 5 5V **74LS83** 14 Cout Cin 13 **S**2 **S**3 **S**4 **S**1 15 2 6 9 12

Projeto de um somador para números binários positivos com oito "bits".

.

Projetar um circuito que realize a adição dos decimais (+4) e (-19) representados em complemento de 2 (assunto tratado no capítulo 1).

$$-15$$
 $1.1110001 = -15$

Sem adição complementar

	<i>,</i> .		
Sa		_	C
			_

"Bit" 1	-	"Bit" 2	→	Resultado	Empresta
0		0		0	0
0		1		1	1
1		0		1	0
1		1		0	0

Subtração dos números binários 1100 e 0110.

Empréstimo	-1 -	· 1				
•	1	1	0	0	-	12 -
	0	1	1	0		6
				_		
Diferenca	0	1	1	0		6

Projetar um circuito que realize a subtração, em complemento de 1 (assunto tratado no capítulo 1), dos decimais (-4) e (-19).

Projetar um circuito que apresente o resultado da adição ou a subtração de duas palavras, X e Y, cada uma com oito "bits" (incluindo o "bit" de sinal") e representadas na notação complemento de 2.

UNIDADE LÓGICA E ARITMÉTICA – ALU

0	0	0	0	F = A	F = A	F = A mais 1
0	0	0	1	F = A + B	F = A + B	F = (A+B) mais 1
0	0	1	0	F = A.B	F = A + B	F = (A+B) mais 1
0	0	1	1	F = 0	F = Menos 1 (comp de 2)	F = 0
0	1	0	0	F = A.B	F = A mais A.B	F = A mais A.B mais 1
0	1	0	1	F = B	F = (A+B) mais A.B	F = (A+B) mais A.B mais 1
0	1	1	0	F = A + B	F = A menos B menos 1	F = A menos B
0	1	1	1	F = A.B	F = A.B menos 1	F = A.B
1	0	0	0	F = A + B	F = A mais A.B	F = A mais A.B mais 1
1	0	0	1	F = A + B	F = A mais B	F = A mais B mais 1
1	0	1	0	F = B	F = (A+B) mais A.B	F = (A+B) mais A.B mais 1
1	0	1	1	F = A.B	F = A.B menos 1	F = A.B
1	1	0	0	F = 1	F = A mais A.B	F = A mais A mais 1
1	1	0	1	F = A + B	F = (A+B) mais A.B	F = (A+B) mais A mais 1
1	1	1	0	F = A + B	F = (A+B) mais A	F = (A+B) mais A mais 1
1	1	1	1	F = A	F = A menos 1	F = A

ADIÇÃO EM BCD

```
Transporte 1 1110 100  
254 = 0010 \ 0101 \ 0100 \ + 
175 = 0001 \ 0111 \ 0101 
Soma Complementar  
0100 \ \frac{1}{1100} \ 1001 \ + 
0110 \ 0010 \ 1001
Decimal 6
```


CÓDIGO DE GRAY

```
0
0
                           0
                             0
                                0
1
       0
                             0
2
       1
3
       1
                           0
                             1 0
           0
                                0
                                   0
4
5
6
                             0
                                   0
                                  0
                  0
                     0
                       0
                             0 0
                                  1
8
                                0
                             0
                                      0
9
                             0
                                1 1 0
10
11
                             1 0
                                      0
12
                              1 0
13
14
                             0
                                1
15
                           0
                             0
                                0
```


Receptor de luz eixo Emissor de luz

Raio de luz

Fotosensor

A = **1**

B = 0

C = 1

D = 0

Roda de Gray

Eixo

CÓDIGO DETECTOR DE ERRO

Código Binário Original

Código Binário Original

ABCD				
0000	1	ABCD	X	
0001	2	0000	0	2
0010	1	0001	1	2
0011	3	0010	1	2
0100	1	0011	0	4
0101	2	0100	1	2
0110	1	0101	0	2
0111	4	0110	0	2
1000	1	0111	1	3
1001	2	1000	1	2
1010	1	1001	0	2
1011	3	1010	0	2
1100	1	1011	1	4
1101	2	1100	0	2
1110	1	1101	1	2
1111	4	1110	1	2
	<u>.</u>	1111	0	4

$$X = A \oplus B \oplus C + D$$

A

B X

C

D

CÓDIGO CORRETOR DE ERRO

