Machine Learning

Description Document

General Information on dataset:

1. Image Dataset:

- Dataset Name: UTKFace
- Number of Classes and Their Labels:
 - o Class 0: Ages 0-20 years (Youth)
 - o Class 1: Ages 21-40 years (Young Adult)
 - o Class 2: Ages 41-60 years (Middle-Aged Adult)
 - o Class 3: Ages 61-80 years (Senior Adult)
 - o Class 4: Ages 81-116 years (Elderly)
- Total Number of Samples: 24,108 images.
- Image Size: Each image is resized to 200x200 pixels.
- Data Split:
 - o **Training Set**: 75% of the dataset (~18,000 images).
 - o **Testing Set**: 25% of the dataset (~6,000 images).

2. Numerical Dataset:

- **Dataset Name**: Life Expectancy
- Number of Features/Columns: 22 columns.
- Total Number of Samples: 2,938 rows
- Total Number of Missing Values: 14 columns
- Data Split:
 - o **Training Set**: 70% of the dataset (~2,056 rows).
 - o **Testing Set**: 30% of the dataset (~881 rows).

Applied Algorithms:

1. Image Dataset:

- Logistic Regression: Predict the age class of individuals based on image data. images are normalized and dimensionality reduced using PCA, Logistic Regression is applied after normalization and dimensionality reduction.
- ii. **KNN Regression**: is used to classify images into 5 age classes, images resized to 28x28 pixels and flattened into 1D arrays, images are normalized and dimensionality reduced using PCA, a KNN classifier with optimal hyperparameters (e.g., k=81) is trained

2. Numerical Dataset:

- i. **Linear Regression**: to estimate life expectancy based on a dataset containing 2938 samples and 21 features. This algorithm establishes a linear relationship between the independent variables (features) and the dependent variable (Life Expectancy).
- ii. **KNN Regression**: implemented to predict the target variable (Life Expectancy), based on various health, economic, and demographic indicators from the dataset.

Comparative Analysis:

1. Image Dataset:

	Logistic Regression	KNN
Performance	0.5468724074995852	0.5503567280570765
Log Loss	1.153231177033976	1.2114021542510467

- KNN outperforms Logistic Regression on all metrics:
 - Higher Accuracy indicates better classification performance across all 5 age classes.
 - ❖ Higher ROC-AUC values for all classes show KNN's ability to differentiate between the age groups effectively.
 - ❖ Lower Log Loss indicates better confidence in predictions for KNN compared to Logistic Regression.

Thus, KNN is the better model for predicting and classifying age in this case.

2. Numerical Dataset:

	KNN	Linear Regression
Mean Absolute Error (MAE)	1.9036377468412986	2.9780594691160074
Mean Squared Error (MSE)	8.818238974163677	15.859259203093796
Root Mean Squared Error	2.969551982061213	3.98236854184715
(RMSE)		
R-squared (R ²)	0.9011764307313425	0.8222696612103129

- KNN outperforms Linear Regression on all metrics:
 - ❖ Lower error values (MAE, MSE, RMSE) indicate better predictions.
 - ❖ A higher R² value (closer to 1) shows KNN better explains the variance in the data.

Thus, KNN is the better model for predicting life expectancy in this case.