Introduction to Rings and Modules

Lecture 5, Monday April 24 2023 Ari Feiglin

Example 5.0.1:

Suppose that R is commutative and I=(a) and J=(b) are two ideals, then IJ=(ab). This is because $a \in I$ and $b \in J$ so $ab \in IJ$ and thus $(ab) \subseteq IJ$ (since (ab)=abR). And every element in IJ is of the form $\sum_{k=1}^{n} i_k j_k$ where $i_k \in I$ and $j_k \in J$ so $i_k = ar_n$ and $j_k = bs_n$. Thus the element is

$$\sum_{k=1}^{n} ar_n bs_n = ab \sum_{k=1}^{n} r_n s_n \in abR = (ab)$$

so $IJ \subseteq (ab)$ and thus IJ = (ab) as required.

Notice that if $R = \mathbb{R}[x]$ and I = (x-1) and J = (x+1) then by above $IJ = (x^2-1)$ so by the chinese remainder theorem:

$$\mathbb{R}[x]/_{(x^2-1)} \cong \mathbb{R}[x]/_{(x-1)} \times \mathbb{R}[x]/_{(x+1)} \cong \mathbb{R} \times \mathbb{R}$$

where the last equality is true since we showed that $\mathbb{R}^{[x]}/_{(x-a)} \cong \mathbb{R}$. So notice that while $\mathbb{R}^{[x]}/_{(x^2+1)} \cong \mathbb{C}$ is a field, $\mathbb{R}^{[x]}/_{(x^2-1)} \cong \mathbb{R}^2$ is not a field since there are zero divisors: $(1,0) \cdot (0,1) = 0$.

The chinese remainder theorem has its limits, specifically when the ideals are not comaximal. For example $\mathbb{R}^{[x]}/(x^2)$ since $(x^2) = (x)(x)$ and (x) is not comaximal with itself (in general groups G satisfy $G \cdot G = G$, and this holds with ideals I + I = I). But we can take $y = x + (x^2) \in \mathbb{R}^{[x]}/(x^2)$ and so $y^2 = x^2 + (x^2) = (x^2) = 0_R$ (y is nilpotent). Notice that $\mathbb{R}^{[x]}/(x^2-1)$ has no such non-trivial element since $(x,y)^2 = 0 \implies (x,y) = 0$, and therefore these two rings cannot be isomorphic.

So these three rings are all non-isomorphic.

Proposition 5.0.2:

Suppose $f: R \longrightarrow S$ is a ring homomorphism, then

- (1) If $R' \subseteq R$ is a subring or subrng of R then f(R') is a subring or subrng of S.
- (2) If $J \subseteq S$ is a (left, right, or bidirectional) ideal of S then $f^{-1}(J)$ is a (left, right, or bidirectional) ideal of R.
- (3) If $I \subseteq R$ is a (left, right, or bidirectional) ideal of R then f(I) is a (left, right, or bidirectional) ideal of f(R).

Proof:

Notice that in all cases, f(X) or $f^{-1}(X)$ are abelian groups as the image or preimage of an abelian group. So for these proofs all we need to show is the multiplicative nature of whatever we're investigating.

- (1) Suppose $f(x), f(y) \in f(R')$ then $f(x)f(y) = f(xy) \in R'$ as required. And if f is a ring homomorphism and R' is a subring then $1_R \in R'$ so $f(1_R) = 1_S \in f(R')$ as required.
- (2) We will assume that J is a right ideal, the proofs for the other cases are identical. Suppose $x \in f^{-1}(J)$ then we must show for any $r \in R$, $xr \in f^{-1}(J)$. This is if and only if f(xr) = f(x)f(r), since $f(x) \in J$ and $f(r) \in S$, $f(x)f(r) \in J$ so $f(xr) \in J$ and so $xr \in f^{-1}(J)$ as required.
- (3) Again we suppose I is a right ideal. Suppose $f(x) \in f(I)$ and $f(r) \in f(R)$ then f(x)f(r) = f(xr), and since $xr \in I$, $f(x)f(r) \in f(I)$ as required.

Notice that since $\{0\}$ is an ideal of S, we get that $\operatorname{Ker} f = f^{-1}\{0\} \leq R$ from the above proposition.

Note:

If \mathbb{F} is a field and $I \subseteq \mathbb{F}$ is an ideal, if $I \neq (0)$ then there exists an $a \in I$ such that $a \neq 0$ so $a^{-1} \cdot a = 1 \in I$ and so $I = \mathbb{F}$. Thus the ideals of fields are all trivial.

Theorem 5.0.3:

Suppose R is a ring and $I \subseteq R$ is a bidirectional ideal, then there is a pairing between right/left/bidirectional ideals of R/I and right/left/bidirectional ideals of R which contain I.

Definition 5.0.4:

Suppose R is a commutative ring. An ideal $I \subseteq R$ is **prime** if I is not trivial and for every $a, b \in R$ if $ab \in I$ then either $a \in I$ or $b \in I$.

Example 5.0.5:

Notice then that if p is prime, then $p\mathbb{Z}$ is a prime ideal. This is because if $nm \in p\mathbb{Z}$ then p divides nm and therefore divides n or m and so one is in $p\mathbb{Z}$.

And if n is not prime then suppose p is a prime which divides n, then $p \cdot \frac{n}{p} \in n\mathbb{Z}$ but neither p nor $\frac{n}{p}$ are in $n\mathbb{Z}$, so $n\mathbb{Z}$ is not prime. So the only prime ideals of \mathbb{Z} are $p\mathbb{Z}$.

Proposition 5.0.6:

Let R be a commutative ring, and $I \subseteq R$. The following are equivalent:

- (1) I is a prime ideal.
- (2) For any $J, J' \subseteq R$, if $JJ' \subseteq I$ then $J \subseteq I$ or $J' \subseteq I$.
- (3) R/I is an integral domain.

Proof:

We show the first equivalence. Suppose that there is an $a \in J$ which isn't in I and a $b \in J'$ which isn't in I. But $ab \in JJ' \subseteq I$ and since I is prime, $a \in I$ or $b \in I$.

Now we show the second equivalence. Suppose that

$$(r+I)(r'+I) = I \implies rr' + I = I$$

then $rr' \in I$ so one must be in I, so one of r+I or r'+I is 0, so R/I is an integral domain.

We show that the third implies the first. Suppose $ab \in I$ then $(a+I)(b+I) = ab+I = 0_{R/I}$. But since R/I is an integral domain, a+I or b+I must be 0 so either $a \in I$ or $b \in I$ as required.