C. C. D

Prof Dr Leif Kobbelt

Stefan Dollase, Ira Fesefeldt, Alexandra Heuschling, Gregor Kobsik

Übung 9

Aufgabe 4 (Optimaler Suchbaum):

7 + 2 + 1 = 10 Punkte

Gegeben sind folgende Knoten mit dazugehörigen Zugriffswahrscheinlichkeiten:

Knoten	10	N_1	11	N_2	12	N ₃	<i>I</i> ₃	N ₄	14	N_5	l ₅
Wert	$(-\infty,1)$	1	(1,2)	2	(2,3)	3	(3,4)	4	(4,5)	5	(5,∞)
Wahrscheinlichkeiten	0.1	0.01	0.1	0.01	0.1	0.04	0.2	0.04	0.2	0.05	0.15

Konstruieren Sie einen optimalen Suchbaum wie folgt.

a) Füllen Sie untenstehende Tabellen für $W_{i,j}$ und $C_{i,j}$ nach dem Verfahren aus der Vorlesung aus. Geben Sie in $C_{i,j}$ ebenfalls **alle möglichen Wurzeln** des optimalen Suchbaums für $\{i, \ldots, j\}$ an.

$W_{i,j}$	0	1	2	3	4	5
1						
2	-					
3	_	_				
4	_	_	_			
5	_	_	1	-		
6	_	_	_	_	_	
$C_{i,j}(R_{i,j})$	0	1	2	3	4	5
1		()	()	()	()	()
			\ /	()	()	\ /
2	-	,	()	()	()	()
3	_ _	_	()	()	()	()
	- - -	_ _ _	()	()	()	()
3	- - -		() 	()	()	

- **b)** Geben Sie einen optimalen Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten graphisch an.
- c) Ist der optimale Suchbaum für die Knoten mit den gegebenen Zugriffswahrscheinlichkeiten und der gegebenen Reihenfolge der Knoten eindeutig? Geben Sie dazu eine kurze Begründung an.

Aufgabe 5 (Union Find):

12 Punkte

Führen Sie die folgenden Operationen beginnend mit einer anfangs leeren *Union-Find-Struktur* aus und geben Sie die entstehende Union-Find-Struktur nach jeder *MakeSet*, *Union* und *Find* Operation an. Nutzen Sie dabei die beiden Laufzeitverbesserungen: Höhenbalencierung und Pfadkompression. Dabei soll die Union-Operation bei **gleicher Höhe der Wurzeln immer die Wurzel des zweiten Parameters** als neue Wurzel wählen. Es ist nicht notwendig die Höhe der Bäume zu notieren.

- 1. MakeSet(1)
- 2. MakeSet(2)
- 3. Union(1,2)
- 4. MakeSet(3)
- 5. Union(1,3)

- 6. MakeSet(4)
- 7. MakeSet(5)
- 8. Union(4,5)
- 9 Union(1,4)
- 10. MakeSet(6)
- 11 Union(3,6)
- 12. MakeSet(7)
- 13. MakeSet(8)
- 14. Union(7,8)
- 15. Union(2,7)
- 16. Find(7)

Aufgabe 6 (Graph Terminology):

2 + 2 + 2 + 2 + (4 * 0.5) = 10 Punkte

- a) Sei V eine feste Knotenmenge mit Größe $|V|=n\in\mathbb{N}$. Wie viele Kantenmengen E gibt es, sodass (V,E) ein *gerichteter* Graph ist? Begründen Sie Ihre Antwort kurz.
- **b)** Sei V eine feste Knotenmenge mit Größe $|V| = n \in \mathbb{N}$. Wie viele Kantenmengen E gibt es, sodass (V, E) ein *ungerichteter* Graph ist? Begründen Sie Ihre Antwort kurz.
- c) Wie viele einfache Weg der Länge genau $k \in \{0, 1, ..., n-1\}$ hat ein vollständiger ungerichteter Graph mit $n \in \mathbb{N}$ Knoten? Begründen Sie Ihre Antwort kurz.
- **d)** Ein einfacher Kreis $v_0 \dots v_{k-1} v_0$ ist ein Kreis, für den $v_0 \dots v_{k-1}$ einfach ist. Wie viele einfachen Kreise der Länge mindestens 3 hat ein vollständiger ungerichteter Graph mit $n \in \mathbb{N}$ Knoten? Begründen Sie Ihre Antwort kurz.
- **e)** Sei G = (V, E) ein gerichteter Graph. Wir definieren die Menge $E' = \{(i, j) \mid (j, i) \in E\}$. Betrachten Sie die Graphen $G^T = (V, E')$ und $\hat{G} = (V, \hat{E})$ mit $\hat{E} = E \cup E'$. Beweisen oder widerlegen Sie folgende Aussagen:
 - i) \hat{G} ist symmetrisch.
 - ii) Falls \hat{G} stark zusammenhängend ist, dann ist G oder G^T stark zusammenhängend.
 - iii) Falls G oder G^T stark zusammenhängend ist, dann ist auch \hat{G} stark zusammenhängend.
 - iv) G ist schwach zusammenhängend genau dann, wenn G^T schwach zusammenhängend ist.

Hinweise:

- Die Länge eines Kreises $v_0 \dots v_k$ ist k.
- ullet Sie dürfen die Anzahlen auch mit \sum und \prod Termen angeben.

Aufgabe 7 (Zykel finden):

2 + 2 + 2 + 2 = 8 Punkte

Gegeben sei eine einfach verkettete Liste mit n Elementen, deren Länge Sie nicht kennen. Wir betrachten diese Liste im folgenden als gerichteten Graph.

- a) Entwerfen Sie einen Algorithmus, mit dem sich testen lässt, ob der Graph einen Zykel enthält.
- **b)** Zeigen Sie die Korrektheit Ihres Algorithmus.
- c) Wie ist seine Laufzeit? Begründe Sie Ihre Antwort.
- **d)** Ist dies auch in Zeit O(n) möglich? Begründe Sie Ihre Antwort.