Modelling and Optimization

INF170

#10: Set Covering/Set Packing/Set Partitioning Problems

AHMAD HEMMATI

Optimization Group Dept. of Informatics University of Bergen

Fall Semester 2018

AGENDA

- Set Covering Problem
 - EMS location planning
 - EMS location planning II
- Set Packing Problem

- Set Partitioning Problem
 - Political Districting Problem
 - Workplan Problem
 - Airline Crew Scheduling

- We want to locate EMS stations so that each district has a station in it, or in a district next to it
- Objective: minimize number of stations required

Decision variables:

$$x_i = \begin{cases} 1 & \text{if station is put in district } i \\ 0 & \text{otherwise} \end{cases}$$

for
$$i = 1, ..., 5$$

Objective: minimize

$$\sum_{i=1}^{5} x_i$$

Constraints:

Every district has a station in it, or in a district next to it:

$$x_1 + x_2 + x_3 \ge 1$$
 (D_1)

$$x_2 + x_1 + x_3 + x_4 + x_5 \ge 1$$
 (D₂)

$$x_3 + x_1 + x_2 + x_4 + x_5 \ge 1$$
 (D₃)

$$x_4 + x_2 + x_3 + x_5 \ge 1$$
 (D_4)

$$x_5 + x_2 + x_3 + x_4 \ge 1$$
 (D_5)

$$min \sum_{i=1}^{5} x_i$$

s.t.

$$x_{1} + x_{2} + x_{3} \ge 1 \quad (D_{1})$$

$$x_{2} + x_{1} + x_{3} + x_{4} + x_{5} \ge 1 \quad (D_{2})$$

$$x_{3} + x_{1} + x_{2} + x_{4} + x_{5} \ge 1 \quad (D_{3})$$

$$x_{4} + x_{2} + x_{3} + x_{5} \ge 1 \quad (D_{4})$$

$$x_{5} + x_{2} + x_{3} + x_{4} \ge 1 \quad (D_{5})$$

$$x_{i} \in \{0,1\} \quad \text{for } i = 1, \dots, 5$$

SET COVERING PROBLEM

- Set of items N = {1, 2, ..., n}(e.g. set of all districts)
- Collection of subsets of $N: S_1, S_2, ..., S_t$ (e.g. S_i = set of locations that satisfy district i 's demands)
- Cost c_j for each item $j \in N$
- Choose items from N so that <u>at least one</u> item from each subset $S_1, ..., S_t$ is chosen, while minimizing cost

Page 7

SET COVERING PROBLEM

Decision variables:

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for
$$j \in N$$

Model:

$$\min \sum_{j \in N} c_j x_j$$

s.t.

$$\sum_{j \in S_i} x_j \ge 1 \quad \text{for } i = 1, ..., t$$
$$x_j \in \{0,1\} \quad \text{for } j \in N$$

• Suppose now that with each district, there is an associated estimated demand:

District	Demand (1000s)
1	5
2	4
3	7
4	9
5	6

- Suppose now we can only build 2 stations
- Instead of minimizing the number of stations required, what if we wanted to minimize the unsatisfied demand?

District	Demand (1000s)
1	5
2	4
3	7
4	9
5	6

• Idea: introduce additional decision variables

$$y_i = \begin{cases} 1 & \text{if demand in district } i \text{ is not satisfied} \\ 0 & \text{otherwise} \end{cases}$$
 for $i = 1, \dots, 5$

Objective: minimize unsatisfied demand

Minimize
$$5y_1 + 4y_2 + 7y_3 + 9y_4 + 6y_5$$

- Constraints:
- District 1 needs a station in Districts 1, 2, 3, or its demand is unsatisfied

$$x_1 + x_2 + x_3$$
 + $y_1 \ge 1$ (D_1) satisfied unsatisfied

• Same idea for other districts

$$x_{2} + x_{1} + x_{3} + x_{4} + x_{5} + y_{2} \ge 1 \qquad (D_{2})$$

$$x_{3} + x_{1} + x_{2} + x_{4} + x_{5} + y_{3} \ge 1 \qquad (D_{3})$$

$$x_{4} + x_{2} + x_{3} + x_{5} + y_{4} \ge 1 \qquad (D_{4})$$

$$x_{5} + x_{2} + x_{3} + x_{4} + y_{5} \ge 1 \qquad (D_{5})$$

• At most 2 stations can be built

$$\sum_{i=1}^{5} x_i \le 2$$

The model:

Minimize
$$5y_1 + 4y_2 + 7y_3 + 9y_4 + 6y_5$$

s.t.

$$x_1 + x_2 + x_3 + y_1 \ge 1 \tag{D_1}$$

$$x_2 + x_1 + x_3 + x_4 + x_5 + y_2 \ge 1$$
 (D₂)

$$x_3 + x_1 + x_2 + x_4 + x_5 + y_3 \ge 1$$
 (D_3)

$$x_4 + x_2 + x_3 + x_5 + y_4 \ge 1 \tag{D_4}$$

$$x_5 + x_2 + x_3 + x_4 + y_5 \ge 1 \tag{D_5}$$

$$\sum_{i=1}^{5} x_i \le 2$$

$$x_i \in \{0,1\}$$
 for $i = 1, ..., 5$

$$y_i \in \{0,1\}$$
 for $i = 1, ..., 5$

- Your kitchen contains a collection of different food ingredients
- You have a cookbook with a collection of recipes
- Each recipe requires a subset of the food ingredients.
- You want to prepare the largest possible collection of recipes from the cookbook.
- You are actually looking for a collection of recipes whose sets of ingredients are pairwise disjoint.

- Set of items N = {1, 2, ..., n}
 (e.g. set of all ingredients)
- Collection of subsets of $N: S_1, S_2, ..., S_t$ (e.g. $S_j = \text{set of ingredients that we need for recipe } j$)
- Maximize the total number of subsets so that the selected sets are pairwise disjoint

Decision variables:

$$x_j = \begin{cases} 1 & \text{if recipe } j \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

$$j = 1, \dots, t$$

Model:

$$\max \sum_{j=1}^{t} x_j$$

s.t.

$$\sum_{j=1}^{t} a_{ij} x_j \le 1 \quad \text{for } i \in N$$

$$a_{ij} = 1$$
 if item i is in S_j

$$x_j \in \{0,1\}$$
 for $j = 1, ..., t$

• Set of ingredients $N = \{A, B, C, D, E\}$

$$\square S_1 = \{A, B\}$$

$$\Box S_2 = \{A, C, E\}$$

$$\Box S_3 = \{B, D, E\}$$

$$\square S_4 = \{C\}$$

$$\square S_5 = \{A\}$$

$$\Box S_6 = \{D, E\}$$

 Maximize number of subsets so that the selected sets are pairwise disjoint

The model:

Maximize
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

s.t.

$$x_1 + x_2 + x_5 \leq 1 \tag{A}$$

$$x_1 + x_3 \leq 1 \tag{B}$$

$$x_2 + x_4 \leq 1 \qquad (C)$$

$$x_3 + x_6 \le 1$$
 (D)

$$x_2 + x_3 + x_6 \le 1 \tag{E}$$

$$x_i \in \{0,1\}$$
 for $i = 1, \dots, 6$

- English course!
- Set of Non-English languages $N = \{A, B, C, D, E\}$
 - \square $S_1 = \{A, B\}$ //person 1 can speak in languages A and B
 - \square $S_2 = \{A, C, E\}$
 - $\Box S_3 = \{B, D, E\}$
 - $\square S_4 = \{C\}$
 - $\Box S_5 = \{A\}$
 - \Box $S_6 = \{D, E\}$
- A maximum set packing will choose the largest possible number of people under the desired constraint. Maximize the size of the group!

- Camera refurbishing!
- Consider a business that refurbishes cameras by assembling together the good parts of defective products.
- There are many models of cameras, but some models share parts.
- Some camera parts are available, we should decide which partly-done camera should get the needed parts to get completed.
- We want to maximize the number of completed cameras

- Set of available camera parts $N = \{A, B, C, D, E\}$
 - $\square S_1 = \{A, B\}$ // camera 1 need parts A and B to be fixed
 - $\Box S_2 = \{A, C, E\}$
 - $\Box S_3 = \{B, D, E\}$
 - $\square S_{4} = \{C\}$
 - $\square S_5 = \{A\}$
 - $\Box S_6 = \{D, E\}$
- A maximum set packing will choose the largest possible number of cameras that can be fixed.

- Combinatorial Auction!
- Set of Products:

- Each customer can bid:

□ \$3 for { (**)}

Decision variables:

$$x_j = \begin{cases} 1 & \text{if } bid \ j \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

$$j = 1, \dots, t$$

Model:

$$\max \sum_{j=1}^{t} p_j x_j$$

s.t.

$$\sum_{j=1}^{t} a_{ij} x_j \le 1 \quad \text{for } i \in N$$

$$a_{ij} = 1$$
 if item i is in bid_j

$$x_j \in \{0,1\}$$
 for $j = 1, ..., t$

• Set of items: $I = \{1, 2, ..., m\}$

• Set of Collections: C ($C_1, C_2, ..., C_n$ are subsets of I)

- Cost p_j for each collection $j \in \{C_1, C_2, ..., C_n\}$
- Choose collections from C so that each item is assigned to exactly one collection, while minimizing cost

Decision variables:

$$x_j = \begin{cases} 1 & \text{if } collection \ j \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for $j \in C$

Model:

$$\min \sum_{j \in C} p_j x_j$$

s.t.

$$\sum_{j \in C} a_{ij} x_j = 1 \quad \text{for } i \in I$$
$$x_j \in \{0,1\} \quad \text{for } j \in C$$

 $a_{ij} = 1$ if item i is included in collection j

- The political districting problem consists in partitioning an area into electoral constituencies (districts)
- Each population unit is assigned to one district;
- The number of districts is usually known (N districts);
- All districts must have approximately the same number of voters for better equity

Parameters:

I : set of population units

N: number of district centers

 p_i : population of the i^{th} population unit

a: minimum population allowed for a district (as a ratio of average district population)

b: maximum population allowed for a district (as a ratio of average district population)

 d_{ij} : distance between the centers of population units i and j.

a and b can be considered as deviations from the average population of all population units which is given by

$$\sum_{i \in I} \frac{P_i}{N}$$

Variables:

$$x_{ij} = \begin{cases} 1 & \text{population unit } i \text{ is assigned to district } j \\ 0 & \text{otherwise} \end{cases} \text{ for } i, j \in I$$

Objective function:

$$\min \sum_{i \in N} \sum_{j \in N} d_{ij}^2 P_i x_{ij}$$

Model:

$$\min \sum_{i \in N} \sum_{j \in N} d_{ij}^2 P_i x_{ij}$$

s.t.

$$\sum_{j \in N} x_{ij} = 1 \quad \text{for } i \in I$$

$$\sum_{j \in N} x_{jj} = N$$

$$\sum_{i \in N} P_i x_{ij} \ge a \left(\frac{\sum_{i \in I} P_i}{N}\right) x_{jj} \quad \text{for } j \in I$$

$$\sum_{i \in N} P_i x_{ij} \le b \left(\frac{\sum_{i \in I} P_i}{N}\right) x_{jj} \quad \text{for } j \in I$$

$$x_{ij} \in \{0,1\} \qquad \text{for } i, j \in I$$

• We have 6 assignments A, B, C, D, E and F, that needs to be carried out. For every assignment we have a start time and a duration (in hours).

Assignment	А	В	С	D	Е	F
Start	0.0	1.0	2.0	2.5	3.5	5.0
Duration	1.5	2.0	2.0	2.0	2.0	1.5

Page 32

A Workplan:

• A workplan is a set of assignments. Now we want to formulate a mathematical model that finds the cheapest set of workplans that fullfills all the assignments.

Workplan rules:

- A workplan can not consist of assignments that overlap each other.
- The length L of a workplan is equal to the finish time of the last assignment minus start of the first assignments plus 30 minutes for checking in and checking out.
- The cost of a workplan is max (4.0, L).

	Start	Duration	
A	0.0	1.5	
В	1.0	2.0	
C	2.0	2.0	
D	2.5	2.0	
E	3.5	2.0	
F	5.0	1.5	

• Workplans starting with assignment A

	c_1	c_2	C3	C4	C ₅	<i>C</i> ₆	<i>C</i> 7
A	1	1	1	1	1	1	1
В	0	0	0	0	0	0	0
C	0	1	1	0	0	0	0
D	0	0	0	1	1	0	0
Ε	0	0	0	0	0	1	0
F	0	0	1	0	1	0	1

Assignment	А	В	С	D	Е	F
Start	0.0	1.0	2.0	2.5	3.5	5.0
Duration	1.5	2.0	2.0	2.0	2.0	1.5

Workplan Problem

• Workplans starting with assignment A

	c_1	C_2	<i>C</i> ₃	C4	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇		4	$4\frac{1}{2}$	7	5	7	6	7
										1					
В	0	0	0	0	0	0	0	В	0	0	0	0	0	0	0
C	0	1	1	0	0	0	0	C	0	1	1	0	0	0	0
D	0	0	0	1	1	0	0	D	0	0	0	1	1	0	0
Ε	0	0	0	0	0	1	0	Ε	0	0	0	0	0	1	0
F	0	0	1	0	1	0	1	F	0	0	1	0	1	0	1

Assignment	А	В	С	D	Е	F
Start	0.0	1.0	2.0	2.5	3.5	5.0
Duration	1.5	2.0	2.0	2.0	2.0	1.5

• Completing the model

	4	$4\frac{1}{2}$	7	5	7	6	7	4	5	6	4	5	4	$4\frac{1}{2}$	4	4
Α	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
C	0	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
D	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	0
Е	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0
F	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1

Decision variables:

$$x_j = \begin{cases} 1 & \text{if we use workplan } j \\ 0 & \text{otherwise} \end{cases}$$

for
$$j \in C$$

Model:

$$\min \sum_{j \in C} c_j x_j$$

s.t.

$$\sum_{j \in C} a_{ij} x_j = 1 \quad \text{for } i \in I$$
$$x_j \in \{0,1\} \quad \text{for } j \in C$$

 $a_{ij} = 1$ if assignment iis included in workplan j

A feasible solution is:

 $x_3 = 1, x_9 = 1, x_{13} = 1$ with a solution value of 16.

	4	$4\frac{1}{2}$	7	5	7	6	7	4	5	6	4	5	4	$4\frac{1}{2}$	4	4
Α	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	1	1	1	0	0	0	0 0	0	0
C	0	1	(1)	0	0	0	0	0	0	0	1	1	0	0	0	0
D	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	0
E	0	0	0	0	0	1	0	0		0	0	0	0	0	1	0
F	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1

An optimal solution is:

✓ $x_2 = 1, x_9 = 1, x_{14} = 1$ with a solution value of 13.

	4	$4\frac{1}{2}$	7	5	7	6	7	4	5	6	4	5	4	$4\frac{1}{2}$	4	4
Α	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
C	0	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
D	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0	0
Ε	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0
F	0	0	1	0	1	0	1	0	0	1	0	1	0	1	0	1

- Horizontal axis is time
 - e.g. Flight 101 from MIA to CHI, Flight 402 from DFW to CHI
- A single crew (typically pilots and attendants) is assigned to a pairing: a sequence of flights over a 2 to 3 day period
 - Pairing must begin and end at the same city

- Typically, lots of government and union rules to consider
- Reasonable pairings usually generated by complex algorithms
- Below, all possible pairings of 3 or 4 flights with associated costs

	Flight sequence	Cost		Flight sequence	Cost
1	101-203-406-308	2900	9	305-407-109-212	2600
2	101-203-407	2700	10	308-109-212	2050
3	101-204-305-407	2600	11	402-204-305	2400
4	101-204-308	3600	12	402-204-310-211	3600
5	203-406-310	2600	13	406-308-109-211	2550
6	203-407-109	3150	14	406-310-211	2650
7	204-305-407-109	2550	15	407-109-211	2350
8	204-308-109	2500			

- Want to find a collection of pairings that cover each flight exactly once, at minimum cost
- Decision variables → selecting pairings

	Flight sequence	Cost		Flight sequence	Cost
1	101-203-406-308	2900	9	305-407-109-212	2600
2	101-203-407	2700	10	308-109-212	2050
3	101-204-305-407	2600	11	402-204-305	2400
4	101-204-308	3600	12	402-204-310-211	3600
5	203-406-310	2600	13	406-308-109-211	2550
6	203-407-109	3150	14	406-310-211	2650
7	204-305-407-109	2550	15	407-109-211	2350
8	204-308-109	2500			

Decision variables:

$$x_i = \begin{cases} 1 & \text{if pairing } i \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$

for
$$i = 1, ..., 15$$

Objective:
$$min 2900 x_1 + 2700 x_2 + 2600 x_3 + 3600 x_4 + 2600 x_5 + 3150 x_6 + 2550 x_7 + 2500 x_8 + 2600 x_9 + 2050 x_{10} + 2400 x_{11} + 3600 x_{12} + 2550 x_{13} + 2650 x_{14} + 2350 x_{15}$$

	Flight sequence	Cost		Flight sequence	Cost
1	101-203-406-308	2900	9	305-407-109-212	2600
2	101-203-407	2700	10	308-109-212	2050
3	101-204-305-407	2600	11	402-204-305	2400
4	101-204-308	3600	12	402-204-310-211	3600
5	203-406-310	2600	13	406-308-109-211	2550
6	203-407-109	3150	14	406-310-211	2650
7	204-305-407-109	2550	15	407-109-211	2350
8	204-308-109	2500			

Constraints: each flight needs to be covered by a pairing exactly once

For example, flight 101:

$$x_1 + x_2 + x_3 + x_4 = 1$$

> Same idea for each flight

The full model:

Objective: $min 2900 x_1 + 2700 x_2 + 2600 x_3 + 3600 x_4 + 2600 x_5 + 3150 x_6 + 2550 x_7 + 2500 x_8 + 2600 x_9 + 2050 x_{10} + 2400 x_{11} + 3600 x_{12} + 2550 x_{13} + 2650 x_{14} + 2350 x_{15}$

s.t.

$$x_{1} + x_{2} + x_{3} + x_{4} = 1$$

$$x_{6} + x_{7} + x_{8} + x_{9} + x_{10} + x_{13} + x_{15} = 1$$

$$x_{1} + x_{2} + x_{5} + x_{6} = 1$$

$$x_{3} + x_{4} + x_{7} + x_{8} + x_{11} + x_{12} = 1$$

$$x_{12} + x_{13} + x_{14} + x_{15} = 1$$

$$x_{9} + x_{10} = 1$$

$$x_{1} + x_{4} + x_{8} + x_{10} + x_{13} = 1$$

$$x_{1} + x_{4} + x_{8} + x_{10} + x_{13} = 1$$

$$x_{1} + x_{12} + x_{14} = 1$$

$$x_{11} + x_{12} = 1$$

$$x_{1} + x_{5} + x_{13} + x_{14} = 1$$

$$x_{2} + x_{3} + x_{6} + x_{7} + x_{9} + x_{15} = 1$$

$$x_{1}, \dots, x_{15} \in \{0,1\}$$

$$(101)$$

$$(102)$$

$$(203)$$

$$(204)$$

$$(211)$$

$$(212)$$

$$(305)$$

$$(308)$$

$$(310)$$

$$(402)$$

$$(406)$$

$$(407)$$

NEXT LECTURE

LECTURE #11:

KNAPSACK AND BINPACKING PROBLEM

