Planche nº 3. Raisonnement par récurrence

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**T)

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $2^n > n$.

Exercice nº 2 (**T)

Montrer par récurrence que, pour tout $n \ge 4$, $n! \ge n^2$ (où $n! = 1 \times 2 \times ... \times n$).

Exercice nº 3 (***)

Montrer par récurrence que, pour tout entier $n \ge 2$ est divisible par au moins un nombre premier.

Exercice nº 4 (**T)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$u_0 = 2$$
, $u_1 = 1$ et pour tout entier naturel n , $u_{n+2} - u_{n+1} - 6u_n = 0$.

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n = (-2)^n + 3^n$.

Exercice nº 5 (***I)

- 1) Montrer par récurrence que, pour tout naturel non nul n, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. En calculant la différence $(k+1)^2 k^2$, trouver une démonstration directe de ce résultat.
- 2) Calculer de même les sommes $\sum_{k=1}^{n} k^2$, $\sum_{k=1}^{n} k^3$ et $\sum_{k=1}^{n} k^4$ (et mémoriser les résultats). On donne les identités remarquables $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ et $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$.

Exercice nº 6 (**T)

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$. Trouver une démonstration directe.
- 2) Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$. Trouver une démonstration directe.

Exercice nº 7 (****)

Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que, pour $n \ge 2$, H_n n'est jamais un entier (indication : montrer par récurrence que H_n est le quotient d'un entier impair par un entier pair en distinguant les cas où n est pair et n est impair).

Exercice nº 8 (***)

Déterminer toutes les applications injectives de $\mathbb N$ vers $\mathbb N$ telles que :

$$\forall n \in \mathbb{N}, \ f(n) \leqslant n.$$