L2 EEA

Examen HAE301E

Partie F. Martinez

Aucun document autorisé/ Calculatrice non autorisée
Tous les résultats doivent être encadrés. L'homogénéité des résultats doit être
vérifiée.

La caractéristique idéalisée de la diode est donnée par la figure 1.

Figure 1

- 1. En utilisant le modèle proposé, quelles(s) relation(s) vérifient I_D et V_D :
 - a. Si la diode est bloquée ?
 - b. Si la diode est passante?

Le circuit présenté sur la figure 2 utilise la diode précédente. La tension E est fournie par un générateur de tension idéal, $0 \le E \le 10 \text{ V}$, $R_1 = 2 \text{ k}\Omega$ et $R_2 = 1 \text{ k}\Omega$.

Figure 2

2. On suppose la diode passante. Etablir l'expression de I_{R1} , V_D et I_{R2} et I_D en fonction de R_1 , R_2 , V_0 et E. Présenter les résultats sous la forme d'un tableau :

$ m I_{R1}$	$ m V_D$	$ m I_{R2}$	${ m I}_{ m D}$

- 3. Établir la condition sur E pour la diode soit passante.
- 4. On suppose la diode bloquée. Etablir l'expression de I_{R1} , V_D et I_{R2} et I_D en fonction de R_1 , R_2 , V_0 et E. Présenter les résultats sous la forme d'un tableau.
- 5. Établir la condition sur E pour la diode soit bloquée.
- 6. En utilisant les valeurs numériques de R_1 , R_2 et V_0 , tracer l'évolution de la tension V_D en fonction de E.