EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

PUBLICATION DATE

09007176 10-01-97

APPLICATION DATE

29-03-96

APPLICATION NUMBER

08103591

APPLICANT: MITSUBISHI CHEM CORP;

INVENTOR: HORIE MICHIKAZU;

INT.CL.

G11B 7/00 B41M 5/26 G11B 7/125

G11B 7/24 G11B 19/247

TITLE

OPTICAL RECORDING METHOD AND

OPTICAL RECORDING MEDIUM

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an optical recording method expanding linear velocity margin of a phase transition type optical recording medium.

SOLUTION: For dealing with the different linear velocity on the phase transition recording medium, a clock period T is changed according to the linear velocity V, and a parameter of pulse division in a recording laser pulse is revised. The laser pulse is divided into m pieces of pulses by providing the interval $\alpha_1 T$ (1≤i≤m) applying recording power Pw and the interval β_iT applying bias power Pb alternately when a mark of a length nT is formed. In this division, at least one side between the combination of the αiT and the bias power Pb is made variable making correspond to the linear velocity V. It is suitably used to a CD-E, etc., adopting mark length modulation recording in which the linear velocity is largely different.

COPYRIGHT: (C)1997,JPO

特開平9-7176

技術喪示箇所	1/00 T	7/125 B	7/24 5.1.1	19/247 R	5/26 X	審査請求 未請求 請求項の数18 FD (全 17 頁)	(71) 出題人 000005968	三妻化学株式会社	東京都千代田区丸の内二丁目5番2号	一類 田姫	神奈川県樹浜市青葉区鴨志田町1000番地	三菱化学株式会社模成総合研究形内	大野 幸起	神奈川県樹袞市青紫区鴨志田町1000番地	三菱化学株式会社樹浜総合研究所内	信國 奈珠子	神疾川県横浜市青森区島志田町1000番地	三菱化学株式会社徵英総合研究所内	弁理士 鶴垣 清	最終買に焼く
ţ£.	G11B			_	B41M	審査開次	(71) 出國人			(72) 発明者			(72) 発明者			(72) 発明者			(74)代理人	
广内数理番号	9464-5D		8721 – 5D		7416-2H			-	A29B						ш					
學別記得				5 1 1			棒賦平8-103591		平成8年(1996)3月29日		特國平7-100387	平7 (1995) 3 月31日	日本 (JP)	特顯平7-116339	平7 (1995) 4 月18日	日本 (JP)				
	2/00	6/26	7/125	7/24	19/247		_				中野語		題	班番号		田郎				
(51) Int CL.	G11B	B41M	G11B				(21) 出際番号		(22) 出版日		(31)優先權主班番号	(32) 優先日	(33)優先權主班國	(31)優先権主張番号	(32)優先日	(33)優先權主照国				

(54) 【発明の名称】 光記像方法および光記録媒体

【課題】 相変化型光学的記録媒体の線速度マージンを **広げる光記録方法を提供する。**

【解決手段】 相変化記録媒体上での異なる線速度に対 記録パワーPwを印加する期間aiT(1≦i≦m)とバ イアスパワーPbを印加する期間 Bi Tとを交互に設ける ことでレーザパルスをロ個のパルスに分割する。この分 E 等に好適に利用できる。特定の組成の記録層がこの方 応するために、線速度∨に従ってクロック周期Tを変え ると共に、記録レーザパルスにおけるパルス分割のパラ 速度が大きく異なるマーク長変調記録を採用するCDー 割において、椒速度Vに対応させてaiTの組合せ及び メータを変更する。長さnTのマークを形成する際に、 パイパスパワー Pbの少なくとも一方を可変とする。 緞 **牡に遊したものとして駅示される。**

ail T、ail T、ail T、ail Tを夫々、線速度VがV て、ait Sai1 Sai2 Sain、用つ、Bit SBi15 B12 L、V1、V2、Vnのときの分割された個々のパルスのパ ルス幅とするとき、VL<VI<V2<Vnとなる線速度V |及びV2においては、1≦i≦mなるすべてのiに対し in、又は、Bit<Binとすることを特徴とする間求項2 ≦giiとし、且つ、少なくともViにおいてはailくa に記載の光記録方法。

[開水項4] 母大線速度Vhを1.2~1.4m/S の範囲にある最小線速度V_Lの2~6倍の範囲とするマ ーク長変闘記録であった、

線速度VがV=VL、2VL、4VL、又は、6VLの有限 mをm=n、n-1又はn-2に適定し、 個の値をもとろものと選定し

て、ai+Bi=1.0とし、且つ、iが1≦i≦mの穏 上記各級速度Vにおいて、iが2≦α≦mの範囲におい

特配平9ー7176

3

囲においてPbi=P,±0.5mWとし、

に破少することを特徴とする請求項3に記載の光記録方 線速度∨が低下するとき、全ての;に対してαiが単弧

> て記録パワーPW、消去パワーPe、及び、パイアスパワ 職別可能な非晶質マークの形成又は消去を行って、光学

- Pbの少なくとも3値の間で変調することで光学的に

的情報記録媒体にデータを記録・消去する光記録方法に

光学的記録媒体上の楊速度Vを、最大線速度Vh及び最

小様凝膜 N1に従って、N1 M N N いの側囲か回敷と

殺速度∨のときのクロック周期Tを、線速度∨に従って

·、 amTとし且つパイアスパワー Pbを印加する期間を

記録パワーPwを印加する期間をa1T、a1T、・・

BIT, BIT, ..., B.TELT, V-FXD-0 ための印加期間を順次にα1T、β1T、α2T、β2T、

【髀状項1】 レーザーパワーをクロック困期下に従っ

[特許請求の領囲]

【請求項5】 Ba+0であることを特徴とする開求項 4に記載の光記録方法。

【請求項6】 Thを線速度がVhのときのクロック周期 n (Vh/V) であることを特徴とする関東項1乃至5の とすると、報速度Vの時のクロック周期TがT=T 10 一に記載の光記録方法。

= 1. 5又は1. 0、iが2≦i≦mの範囲としてβい [請求項7] 使用する最大線速度Vnにおいて、a1h =αin=0. 5とし、且つ、すべたの袋殻倒Vにおい て、iを2≦i≦mの簡囲の値として、αi+βi

0としたことを特徴とする請求項3に記載の光配

5くaiく0. 5であることを特徴とする請求項7に記 が2≦i≦mの範囲で、2≦ai<ain、且つ、0.0 【請求項8】 線速度VがVL≤V<Vhの範囲では、i 戦の光記録方法。 20

kを0から2<u>迄の整数から成るパラメータ、jを</u>0から

ワーを日極のパルスに分割し、

2 迄の実数からなるパラメータとし、且つ、前記nの最

小値をnaiaとして、

・・・・、amT、BmTと確定することで、nを2以上 の整数として長さっての非晶質マークを記録する記録パ

一定であり、且つ、a1>a1であることを特徴とする講 【鼈米母3】 24iるmの稿囲のiになした、aiが 水項3に記載の光記録方法。

0、0であり得ることを特徴とする請求項3に記載の光 【数米瓜10】 iが1≤i<πの亀囲に対して8.が一 定値をとり、且つ、Baが、該一定値とは異なり、且 記録方法。

て、aiTの組合せ、及び、Pbの少なくとも一方を変化

a≖+βm=n+jを条件として、前記線速度Vに対応し

nsin−k≧1, m=n−k, αı+βı+····+

上記マーク長変顕記録におけるnのと りうる範囲が、線速度Vに従って異なることを特徴とす る3に配載の光記録方法。 [即水項11]

30

変化させることを特徴とする謄水項1に記載の光記録方 【静水項3】 線速度Vt≦V≤Vh (Vh≧2Vt)の範 囲で、少なくとも記録時の線速度を連続的または段階的

記パイアスパワーPoiを変化することに代えて、パイア

【欝水項2】 前記速度に対応して、β:Tにおける前 スパワー Pbi と消去パワー po との比 Pbi / Pbm bi を

させることを特徴とする光配録方法。

【欝水項12】 最小のマーク長 nein Tに対して nein T×Vが一定であることを特徴とする翻求項11に配載 の光記録方法。

【請求項13】 使用する最大級遊度Vhを、1.2~ 4 m/Sの範囲にある最小級速度Vtの2~6倍の **範囲とし、m=n、n-1又はn-2としたァーク是名 敬速度∨を∨ι、2∨ι、4∨ι叉は6∨ιの有限個**の 間のEFM変調を用い、

0、iが1≤i≤mの範囲においてβin=αin=0.5 **橡液度Vが2Vl以上において、an=1.5又は1.** した疑応し、 6

全ての線速度Vにおいて、iが2≦i≤mの範囲におい $\tau_{\alpha i} + \beta_{i-1} = 1.0 \text{ b.b.}$

模速度Vが2Vにおいて、iが1≦i≦mの範囲に対 して、Prを再生光パワーとして、Pbi=Pr±0.5 mWとし、

緑速度Vnにおいて Pbi = Poとすることを特徴とする的 **線速度∨がV1において、iが1≤i≦mの範囲におい** て0. 05<a!<0. 5、且つ、a!に≦a!11とし、 S

ල

【請求項14】 Bu≠0.5であることを特徴とする 請求項13に記載の光記録方法。録方法。

【静水項15】 Thを線速度がVhのときのクロック周 別とすると、線速度Vの時のクロック周期下がT=T₁ (Vn/V) であることを特徴とする間水項14又は1 5 に記載の光記録方法。

u, Ag, Au, Pd, Pt, S, Se, Oのうちの少なくと < 0. 1の範囲で、yは0.2< y< 0.9の範囲の数 值)及び (M, (Tel-xSbx) 1-v (yは0≦y<0.3 の矯屈で、xは0.5<×<0.9の矯屈の数値で、M も1種を示す)の少なくとも1種からなり、前配記録層 魯、記録層、上部誘電体保護層、及び、金属反射層を順 { (G+T+) y (Sb2Te3) 1-y} 1-x Sbx (x 110≤x (#In, Ga, Zn, Ge, Sn, Si, Pb, Co, Cr, C 【請求項16】 基板上に少なくとも下部誘電体保護 に設けてなる相変化型媒体において、前記記録層が

【欝水項17】 ディスク本体と該ディスク本体上に記 ルス分割情報が、使用されるディスク本体の線速度に従 録された照射光のためのパルス分割情報とを備え、駭パ って複数のパルス分割方法から1つを選択するための情 殷であることを特徴とする相変化型光学的情報記録媒 0-30mmであることを特徴とする光記録用媒体。

20

の膜厚が15-30 nm、上部誘電体保護層の膜厚が1

【請求項18】 マーク長変闘された記録情報と照射光 ス分割方法の1つを選択してパルス分割を実行すること のパルス分割情報とを有する相変化型光学的情報記録媒 体に用いるディスク駆動装置であって、記録媒体の線速 度に従って、前記パルス分割情報に含まれる複数のパル を特徴とするディスク駆動装置。 [発明の詳細な説明]

30

[0001]

化型光学的記録媒体について、記録可能な線速を広範囲 び光学的記録方法に関する。より群しくは、レーザー光 などの照射により、情報を記録、消去、再生可能な相変 【発明の属する技術分野】本発明は光学的記録媒体およ に拡大し得る配録方法及びこれに利用される記錄媒体に

[0002]

た相変化媒体が挙げられる。相変化媒体は外部磁気を必 が可能である。さらに、消去及び再記録を単一ピームで [従来の技術] 近年、情報量の増大、記録・再生の高密 要とせず、レーザー光のパワー変闘だけで、記録・消去 **假・植協化の取状に朽える記録媒体とした、ワーチーや** 利用した光ディスクについての開発が盛んに行われてい る。記録可能な光ディスクには、一度だけ記録が可能な る。警換え型光ディスクとしては、光磁気効果を利用し た光磁気記録媒体や、可逆的な結晶状態の変化を利用し 追記型と、記録・消去が何度でも可能な蓄換え型があ

回時に行う、1 アームギーパーライトが可能であるとい 質化させることによって記録マークを形成し、これを結 う利点を有する。1ピームオーバーライト可能な相変化 5。このような、相変化記録方式に用いられる記録層材 <、因之ば、Ge-Te米、Ge-Te-Sb米、In-Sb 記録方式では、記録膜のumオーダーの微小部分を非晶 料としては、カルコゲン系合金薄膜を用いることが多 晶化させることによって消去を行う場合が一般的であ - Te米、Ge-Sn-Te米合金薄膜等が挙げられる。

まで記録層部分を加熱することによってなされる。この **ために、異なる2007ベアのフーボー光パワーを用い** の消去を行う場合を例にとって説明する。結晶化は、記 鈴層の結晶化損度より十分に高く、融点よりは低い遺度 ように、記録層を誘電体圏で挟んだり、ピームの移動方 向に長い楕円形ピームを用いたりする。一方、非晶質化 パーライトを行う際には、記録パルスを記録レーザーバ ワーとそれよりも低いパワーの消去レーザーパワーとの 層としての機能をも有する。さらに、上述のような、加 形や、プラスチック猛板への熱的ダメージを防ぎ、或い は、湿気による記録層の劣化を防止するためにも、上記 相異なる2つの状態(結晶化及び非晶質化)を実現する を消去しながら記録を行う。この場合、誘電体層は、記 **豫層で十分な冷却速度(過冷却速度)を得るための放熟** 熱・冷却過程における記録層の容融・体積変化に伴う変 質は、レーザー光に対した光学的に独明であること、略 る。この方式を、結晶化された初期状態から非晶質マー クを形成し、また、これを再び結晶化して非晶質マーク 場合、結晶化が十分なされる程度に冷却速度が遅くなる は融点より高い温度まで記録層を加熱し、急冷すること **たよって行う。通常の相変化媒体において1 アームオー** 間で変顕して、既に記録されている過去の非晶質マーク 誘電体層が重要な役割を有する。一般に、誘電体圏の材 点・軟化点・分解祖度が高いこと、膜形成が容易である こと、適当な熱伝導性を有すること等の観点から選定さ [0003] 一般に、審換え型の相変化記録媒体では、

[0004]

化媒体の作成時においては、配録および消去特性を向上 パワーで容融せしめた記録層を、臨界冷却速度以上の遊 R&D Review vol.4 No2 p68-81)。 この冷却速度は、同 記録及び消去時の熱特性がレーザピームの走査速度、即 ち、線速度によって大きく影響を受けることから、相変 させるために、目的とする記録装置の記録・消去時のデ イスク級速度に応じて媒体の記録層組成又は爗構成を最 商化する必要がある。非晶質マークの形成は、一旦記錄 さで冷却することによって行われる (Mitsubishi Kasei 禹線速では冷却速度が速くなり、低線速では冷却速度は 遅くなる。これを確認するため、本発明の実施例でも用 一層構成を用いた場合には線速度に依存する。つまり、 [発明が解決しようとする課題] 上記相変化媒体では、

m、ZnS:SiOz混合膜を20nm、Al合金膜を10 0 n m順次に形成したディスクで、一般的な差分法を用 た。結果は、糠速度が10m/s以上では数K/nse いた熱分布シミュレーションを行った。この場合、計算 度1350℃まで昇温した後に、湿度が降下する過程に (アペル) Pbを照射し、記録層にしいた、最高到達温 c以上、4m/sでは2.2K/nsec、1.4m/ いた陥構成である、ポリカーポネート基板上に2nS; SiO2混合膜を100nm、GeSbTe配錄層を25n パルス照射開始位置から0.1μm進んだ位置で調べ おいて融点 (600℃) 付近における臨界冷却速度を 上の記録パワー (レベル) PM、及び、ベースパワー sでは0、9K/nsecであった。

2 成の化合物を用いたり、熱の逃げやすい層構成にしたり [0005] 一方、非晶質マークを消去するには、記録 低級速では長くなる傾向がある。従って、線速度の比較 的大きな記録装置では、光ピームを照射した際に、その 照射された部分の記録層の熱分布が時間的、空間的に比 かかる記録装置に対応するためには、比較的短時間で結 晶化すなわちマーク消去が可能なるように、記録層に結 晶化が比較的速い組成の化合物を用いたり、全体として 熱の逃げにくい層構成にしたりする。逆に、線速度が比 晶化を防ぐ方法として、記録層に結晶化が比較的遅い組 層をその結晶化温度以上で融点以下に一定時間保持する 較的遅い記録装置では、前述のように冷却速度が遅くな 線速度の比較的小さな配録装置に対応するためには、目 的のマーク畏さを得るために、配録マーク形成時の再結 蚊的急峻になるため、消去時の消し残りが騒念される。 必要がある。この保温時間は、逆に、高級速では短く、 ることから、記録時の再結晶化が懸念される。そこで、

[0006] 具体的には、高線速用媒体には、層構成と して記録層と反射層との間の熱絶線層を厚くして熟を逃 金を利用する場合ではGeTe→Sb₂Te₂ライン上の結晶 低級速用では、上記熱絶線層を描くして熱が逃げやすい 用する場合よりも多く入れて再凝固時に結晶化しにくく げにくくし、或いは、材料として例えばGeSbTeX合 構造になるようにし、或いは、Sbを高級連用媒体に利 **化しやすい組成を利用する等の工夫がなされる。一方、** する等の工夫がなされる。

Ĝ

[0007] 上記のような記録層組成を採用し或いは層 成としているので、髙嶽遼では消去しにくい。結局、記 段媒体の最適化のみでは様速度マージンを大きく広げる に合わせると、非晶質ピットを形成しやすい組成・層構 良好な特性で情報の配録、消去及び再生を行うことが可 能である。しかし、線速度が比較的大きな記錄装置用に で、線速度が小さな領域では、再結晶化のために非晶質 アットが形成しにへく使用できない。 逆に媒体や低線速 **最適化した媒体では、結晶化速度を大きくしているの** 隋成の最適化を行う等により、目的とする駆動装置で、

€

ために記録及び消去時の媒体の線速度は大きくなってき ているものの、他方で、情報を実時間に沿って記録した いとする要請がある。例えば、映像や音楽等の配録の場 合であり、この場合、実時間に沿って記録することが必 須である。また、この場合、奥時間に沿って記録を行っ た後には、その情報の編集のための記録は高速で行いた いという要請もある。更に、同一の記録媒体を、記録可 に小さな線速度で記録を行うと、目的とするマーク長が 記録できずに、情報の記録が出来ない場合があった。こ れは、相変化記録媒体に於いては、一般に、記録層の微 小部分にレーザーを照射しその微小部分を熔脱させた後 【0008】近年、記録、消去に費やす時間を短縮する 能CDのような比較的低線速(例えば、1.2m/s~ び、現行の光磁気ディスク(約10m/s以上)のよう 1. 4m/s及びその4-6倍速まで)での用途、及 な高線速での用途の双方に使い分けることができれば、 にこれを急冷することにより非晶質マークを形成する 構成や記録層組成が最適化された本来の線速度より マルチメディア用の記録媒体として特に好ましい。 し、このような要求を満たすために、その記録媒 20

が、ディスク模速度が比較的小さな場合には、前述のよ うに、記録溶融後に再結晶化が起こり、十分な非晶質マ 一クの形成が困難となるためと考えられる。溶配後に再 うになり、非晶質膜部分の状態を示す図2を併せて参照 マーク後半部分では比較的良好に非晶質が形成されてい ると説明できる。この場合、マーク後半部分では、その 道後に記録パワーに相当するワーボーアームが照射され 結晶化した記録マークの再生板形を観察すると図1のよ ることが判る。このことは、記録パワーに相当するシー ザービームの連模照射により、マーク後半部分に相当す る個域へのレーザー服針による熱が、一旦は溶船したと 一ク前半部分に相当する領域に伝導し、その結果、マー ク前半部分が急冷されずに再結晶化してしまうことによ なくなるために、余軒な熱の伝導がなく、溶破した町分 的になり、記録時の再結晶化によるマークの劣化を抑え すると、記録マークの前半部分では再結晶化が大きく、 パルスを分割すれば、記録層の時間的な温度変化が怠 が良好な非晶質になる。以上を考慮すると、記録 の照射阻站後に、一旦パワーを落とすことによっ ることが可能になると推論できる。

【0009】上記を考慮した記録方法の例としては、特 4 (1991)p677-681等があり、、また、オフバルスを利用 したものでは第40回応用物理学関係連合会帯奉講資会 特開平1-116927号の各公観、JJAP. vol.30 No. 号、特開平1-253828号、特開平1-15023 00、核医中1-3150304、核医4-3138 29a-B-4、特開平7-37251、特開平6-4867 特開平5-62193号、特開平5-325258号、 開平2-165420号,特開平4-212735号、

20

20

9

3938号の各公報等が挙げられる。しかし、これらの が、鍛速度が大きく異なる条件下では良好な記録が行え 特定の1 つの媒体で対応可能な線速度の徳囲には限界が 16号、特開平2-199628号、特開昭63-11 ない場合が多く、一定のパルス分割方法を用いる限り、 方法では、いずれもパルス分割方法が一定であるため に、ある一定範囲の線速度での記録時には有効である

【課題を解決するための手段】本発明者等は、上記問題 こで提案する。本発明者らは、低速度になるに従って記 段層から熱を発早く逃がして非晶質化しやすいように工 の解決のため、線速度にあわせたパルス分割の方法をこ 夫し、そのパルス分割方法を殺速度に併せて指定できる ようにと考えた。即ち、本発明の要旨は、記録パルスの 分割方法そのものではなく、線速度に応じたパルス分割 方法の変更方法にある。本発明によると、特定の1枚の ディスクの橡速度の使用マージンを広げることが可能に なる。以下、群迷する。

【0011】本発明の記録方法では、まず、光学的に職 **引可能な結晶及び非晶質状態を利用して、少なくとも記** 媒体に、長されて(n:2以上の自然。nの取りうる値 ための記録信号パルスを分割する。この分割は、記録パ 値のレーザー光変調によりオーバーライト可能な光記録 た、T:基準クロック周期)のマーク長変調記録をする 鍛パワーPw、消去パワーPe、パイアスパワーPbの3 ワーの印加期間をai(1≦i≦m)、パイアスパワー の最小、最大値をそれぞれ、nain、nasxとする。ま の印加期間をBiとして、各期間を順次に

aIT/BIT/a2T/B2T/····/amT/BmT となるように権成して、ソーザパワーをn個のパルスに を印加する時間、BiTはパイアスパワーPbを印加する 分割する。ここで、上記の通り、alTは記録パワーP。 時間である。

度を連続的または段階的に可変とした場合に、この選択 - j = a 1 + B 1 +・・・・・+ a n + B n (但し、 J は 0 ≦ j ≦2の槙囲の映数)、m=n−k(kはk=0、1 又は2、nmin−k≧1を条件として、榝速度 Vi≦ V≦ [0012] 本発明では、上記分割において、nl=n された級速度に応じて分割パルス幅の「Tの組合せ及び Vh (Vh ≧ 2 VL)の範囲で、少なくとも記録時の級選 パイアスパワーPbの少なくとも一方を変化させる。

20 き、825915812811が成立するようにする。た i≦mなるすべてのiに対して、an≦an≦an≦a inが成立するようにする (但し、αιι、αιι、αι2、α inはそれぞれ、VL、V1、V2、Vnの時の分割された個 [0013] 本発明の好ましい例では、例えば、Vi< Vi<V2<Vnとなる線速度Vi、V2においては、1≦ 々のパルス幅)。さらに、上記各B:T期間におけるパ イアスパワーPbi とPeとの比Pbi / Peを 8 i とすると

だし、少なくともVィにおいてはai、くaih、または8

応させて記録している。ディスク駆動装置は、選定する 【0014】本発明の相変化型配録媒体では、上記で採 用されるべき複数の分割方法に関する情報を線速度に対 集体に記録されたこの情報に基めいて、線速度に対応し 鍛速度に対応させてクロック周波数を避定すると共に、

て複数のパルス分割方法からその1つを選択する。

[0010]

【0015】上記パルス分割方法を採用できる本発明の 相変化型記録媒体は、記録層を { (G・T。) y (Sb2 Te e, Sn, Si, Pb, Co, Cr, Cu, Ag, Au, Pd, P t, S, Se, Oのうちの少なくとも1種を示す)の少な くとも1種から構成し、前配配設層の膜厚が15-30 ı) 1-y) 1-x Sbx (xは0≦x<0. 1の憩囲で、yは 0. 2 < y < 0. 9の範囲の数字)及び {My (Tel-x Sbr) 1-v (yは0≤y<0.3の範囲で、xは0.5 < x < 0、9の橋田の教件で、Mit I n、Ga、Zn、G nm、上部誘電体保護層の膜厚が10-30nmとなる ように形成することが好ましい。

[発明の実施の形態] 線速度がほぼ一定である記録方法 [0016]

QLV) 等がある(麾上守夫監修、光ディスク技術、ラジ y)、ゾーンごとに殺速度が一定である2CLV(Zoned **本技術社)。 2 C L V 形式においては、ゾーン内では若** 干線速度は変化するが全体として線速度はほぼ一定に保 (1. 2m/s~1. 4m/s) の聞で可変とすること としては、一般的なCLV(Constant Linear Velocit たれている。今日においては、CDの線速を1倍速 自体は公知の技術である。

算上(Vh/V)×Thとし、nTパルスにより同じ長さ れるクロック周期をThとする。nを指定すると、nTh によって記録されるマーク長さが決まる。低線速度Vで 同じ長さのマークを記録するには、クロック周期Tを計 のケークが得られる箸である。模球に応じてこのように クロック周期Tを調整することは既に一般的に行われて あるいは再結晶化によるマーク長短縮により、必ずしも 所望のマーク長が得られない。このようなことは、最低 起こりやすい。そこで、記録パルスを分割し、個々の分 割パルス幅を短くすることで記録層内の恒度分布を調整 する。このマーク長変闘した記録方法を図3に示す。こ のようなマーク長変闘を利用する変闘方式には、1 – 7 は、記録マークの始端位置と後端位置とが記録データに [0017]例えば、ある最大線速度Vnの時に採用さ 線速度 Ntが4~6m/s未満の低線速度の場合に特に いる。しかし、実際には熱拡散によるマーク長の拡大、 変闘、EFM変闘等がある。これらのマーク長記録で 対応するため特に重要である。

[0018] 本発明においては、線速度に対応してパル (a1+ B1+・・・・+ am+ Ba)、 nmin- k 21 ス分割力法を決めるパラメータm=n-k、n-j=

を条件として、aiT及びPbのうち少なくとも一方を下 記の法則に従った可変とし、同一の媒体の適用可能級強 を広げる構成を採用する。即ちち、本発明では、線速度 が小さく冷却速度が遅くなった場合には、記録パワーP ιがオンとなるパルス幅αιTを短くし、オフとなる時間 BiTを長くし、又は、記録パワートwがオフとなる期間 81 下に巴哲されるワーザー光パワー (ベイアメパワ

化を防止する。あるいは、これらに加えて、1つのマー クを記録するために分割された記録パルスの1つが、後 らば、相変化型光記録媒体に情報を記録する線速度の範 速度V1、V2においては、1≦i≤mなるすべてのiに 一) Pbi を低線速ほど低くすることで、1 マーク内に熱 がたまることを抑制して冷却速度を増大せしめ、再結晶 統する記録パルスにより再加熱されることを抑制するた めに、分割された記録パルス間に照射される光エネルギ 一を制御することにより、非晶質マーク形成のために溶 囲(Vt~Vh)において、Vt<V1<V2<Vhとなる線 除された領域の冷却速度を制御する。より定式化するな

が成立するようにする。ここで、のに、のこ、のに、の inはそれぞれ、Vu、Vi、Vi、Viの時の分割された個 Ê αil ≦αi1 ≦αi12 ≦αih 4のパルス幅である。

[0019]上記に代えて、乾いは、上記に加えて、上 びbihを、同様に夫々Vl、Vi、V2及びVnのときのり 記Bi T期間における各パイアスパワー Pbi と消去パワ −Peとの比Pbi/Poを引きし、βil、βil及

(3) 011≤811≦812≦8ih とすることが出来る。

[0020] 上記いずれの場合にも、少なくともVに おいては、

(3) ait<aih

(4 $\theta : L < \theta : h$

が少なくとも1つの;に対して成り立つようにする。但 し、当然のことながら、記録パワーPw、消去パワーPe [0021]特に、Peは、それのみを直流的に一回だ は個々の線速によって異なる値をとる。

け照射したときに、非晶質マークを消去できるパワーに

分割してもしなくても良いが、PwとPeの2値で変闘を 或いは、fmas=1/(2 nassT)なる単一周故数なる 嵌数(デューティ比50%)で記録したマーク上に直流 %) の信号でオーバーライト(このとき、記録パルスは max T)、又は、fuin=1/ (2 nmin T) なる単一周 的にPeを照射したときに、消去された信号のキャリア (デューティ比50%) で記録したマーク上に、fmin ■1/ (nain T) なる単一周波数 (デューティ比50 レベルの減衰が約20dB以上となるPeが選ばれる。 **遠ばれる。より具体的には、fmar=1/(2**n

ようにPeを選ぶ。なお、Paはfmax及びfminの記録信 行う) したときに、fainのキャリアレベルと消去され 号のC/N比 (Carrier to Noise 比) が約45dB以 た [***・のキャリアレベルの遊が約20 d B 以上となる 上となるように選ばれる。

の線速に応じて変更することは公知である。しかし、本 発明のごとく、パルス分割方法を譲渡に応じて、しかも 一定の法則に従って変化させることは、本発明者等が最 初に提案するものである。これらのパルス分割方法を配 [0022] PW、Peおよび、クロック周期Tを記録時 述するパラメータは、破壊に応じて連続的に変化させて もよいが、一定の秧運の範囲ごとに段階的に変化させて さんい。 01

化し数循環のレベルをとってもよいものとすることが出 冷的になるために、再結晶化倒域を小さくすることが可 来る。この場合、熱分布を細かく慰御することが可能に なり、非晶質マークの形が整えられ、また、記録信号の ゾッターを良好にすることが可能になる。また、より急 能で、記録感度が向上する場合もある。ここで、Pblが 0になるとサーボ信号がとれなくなり、トラッキングサ 一ポがかからなくなるので好ましくない。また、Pbiが 不可能となるため好ましくない。 結局、Poiは、Oより 意値をとり(図4)、しかも Pbi の値が Bi Tの間に変 Peを超えると、記録層が容融するため、かえって消去 3 値記録を行う場合の消去に必要なパワーPe以下。 [0023] 上記の光記録方法で、記録パワーを> ナる Bi T 期間におけるパイアスパワー Pbi が、 大でPe以下であることが好ましい。 20

り替え回路に高速応答性が必要になるためである。しか ーンでは、先にPb=Peをとり、その後Pb<Peと変化 数の値Pbi」(但し、BI=ΣJBi」であり、Pbi」は、B に、まず、0<Pb<Peをとり、次いで、Pb=Peと変 化する場合を挙げた。また、図5(b)に例示したパタ bを bb= pe (一定) としてオーバーライトできる媒体 が望ましい。 函級波では、クロック周期が短く Pbの切 する例をあげた。このように、BiTにおいてPbiが複 |内をさらに分割した区間Bi゚Tにおいてとるパイアス し、低級速で使用する場合には、クロック周期が長く、 パルス制御回路の応答性に対する要求が緩和されるの で、非晶質マークの形を整えるために、Pbを1種類の 値ではなく、数種類の組み合わせにすることは、回路を を定義し、(2) 式及び(4) 式が成り立つようにす パワー値) をとりうる場合には、上記り1に代えて、 した4Tマークのためのパケーンでは、B:Tの草 複雑にするものの、時には好ましい。図5 (a) $\theta i = \Sigma_j (Pb_{ij}\beta_{ij}T) / (Pe \cdot \beta_iT)$ 30 6

[0025]上記の光記録方法において、マーク先端部 は、頃前のレーザーパワーが指虫パワーであり、過餐は

20

®

上で効果がある。さらには、先行するマークとの熱干渉 **温度が上がりにくいため、先頭の分割パルスのパルス幅** 記録パルスの立ち上がりは、必ずしもクロック周期と同 **期している必要はないが、パルス制御回路を簡単にする** ためには、同期していることが望ましい。ただし、その 場合にも、一つのマーク長に対する先頭パルスまたは最 徐パルスの立ち上がりだけをクロック周期下から高々T だけずらすことは、異なるマーク間の熱干渉を補正する を抑制するため、後魏マークの先頭パルスの直前(最大 でも2T時間経過以前)にオフパルス区間を設けること も複雑にはなるが有効である。この例を図6(b)に示 この例を図6(3)に示した。また、個々の分割された をその後に焼くパルスより畏くすると良い場合がある。

は、パルス長nTに依存せずー定であり、且つ、一つの とが、パルス制御回路を簡素化する上で望ましい。 しか しながら、1つのマーク内の先頭パルスの記録パワーか は有効となる。場合によっては、さらに、n Tマークを マーク内の分割された個々のパルス相互で一定であるこ 特に後続パルスの配録パワーを低めにすることは、時に つまり、 (αι+βι+····+αα+βπ) = n とな その場合には、(a1+β1+・・・・・+α+β=)= n−j (jは0<j≦2の範囲の実数)として、それに 応じてパルス分割数m=n→kを変化させてもよい。図 ら後穂するパルスの記録パワーを段階的に変化させる、 るパルス列を印加すると、加熱時間が長くなりすぎて、 し、Bnのみ異なる値とするパターンを例示した。この 場合、β∎の閻整により、n−jを変化させ、所望のマ 記録するのに、必要なパルス長nT分のレーザパワー、 必要な長さより長いマークが奢けてしまうことがある。 1には、例として、β! (1≦i≦m−1) を一定と 【0026】記録パワーPwは、個々の線速において 一ク長nTを得ることができる。

は、パルス制御回路を簡素化する上で望ましい。より一 て、低級選になればなるほど、パルス幅を短くして再結 [0027] 緑遠に応じて変化させるべきパルス分割方 て、(1) - (4) 式の金てが成り立つようにすること とする。このようにすると、個々の記録パルスの立ち上 がりが、一定の遅延は別として、基準クロックに同期す パルス長n-j、及び、aι+Biを櫛速によらず一定と が、このパラメータのうち、パルス分割数m=n-k、 る。従って、パルス制御回路の設計が更に容易になる。 法のパラメータは前述のように少なくとも2種類ある し、Vi < Vi < Vi < Vi < Vn となる极速度Vi、Viにおい ここで、袋選度VL≦V<Vnの範囲の袋選度Vにおい 層望ましくは、使用する最大線速度Vnにおいて、 ain=0, 5, 1, 0, XILI, 5, BU とし、且つ、全ての极速度において、 β1n=a1n=0. 5 (2≤i≤m) αi+βi=1. 0 (2≤i≤m)

晶化を防げばよい。 しかし、あまり パルス幅を短くする と、記録感度が悪くなり好ましくないので、実際上は 0. 05くaiと下限を散けることが好ましい。

ん、本発明はこの層構成に限定されるものではない。図 も、GeTeとSbrTeaの疑似2元合金)、SbroTeso共 【0028】本発明では、マーク長変調記録を対象とす 【0029】本発明を適用できる光配録媒体は、いわゆ る相変化型配験媒体であって、結晶状態を未記録状態と この種の相変化媒体の構成の1例を図8に示す。もちろ 8において、基板1上に、下部保護層2、相変化型の記 録帰3、上部保護層4、金属または半導体からなる反射 層5、及び、紫外線または熱硬化樹脂からなる保護層6 通常はスパック法で成膜される薄膜である。記録再生用 晶組成の近傍でAg、Cu、Au、Ge、Pd、Pt等を添加 層2や保護圏4の厚み、保護層2、4及び反射層5の熱 ましい。このような、CDーEの使用方法は、公表され た、同文献に開示されているような、マーク端の検出を の集束光は、一般に、透明基板1を透過して記録層3に 急徴に冷却され、固化する際に非晶質となる。非晶質マ る。このような原理でオーバーライトできる記録層材料 は結晶化温度を制御し、使用する線速度にあわせて最適 化を行っている。例えば、GeTeーSbz Tes疑似2元合 化速度が遅くなるので、低線速向きとなる。また、記録 [0030] 本発明の具体的な応用例としては、記録可 能なコンパクトディスク (CD-E) が挙げられる。C 速、及び、2、4、6倍速の全てで記録再生できれば望 てはいないが、現在すでに市場に出回っている、ライト 服針される。記録層3は記録パワーFwの照射により局 ークはPeの照射により、融点以下で結晶化温度以上の の制御により、結晶化速度および非晶質形成能、あるい 伝導率を制御することで、記録時に形成された容融領域 の過冷却速度を制御することでも、線速に適合させる制 る、蚊いは、記録層および上部保護圏の厚みを15-3 Onmとして、記録層から反射層への熱拡散を促進する Jpn. J. Appl. Phys.、Vol. 31 (1992)、584-589ppに開示され し、非晶質の記録マークを形成する形式のものである。 が順次に形成されている。符号2-5で示した各層は、 所的に加熱されて容融し、集東光照射光のオフにより、 としては、すでに述べたようなGoSbTe合金(なかで したものが挙げられる。これらの合金では、特にSb量 金にSbを添加していくと、非晶質形成能が増し、結晶 D-Eでは、Vi=1.2~1.4m/sであり、1倍 るが、マーク端検出方式には制限されない。 すなわち、 温度となるように加熱されて再結晶化され、消去され ているような、単純な直流レベルによるスライス、又 は、2回微分によるピーク検出のいずれでもよい。ま と、非晶質形成が促進されるので、低線速向きとなる。 御が可能となる。例えば、保護層の熱伝導率を萬くす マーク町塩と後塩とで別々に行う方法も有効である。

望ましいとされている。この場合、好ましいパルス分割 n-1、又は、n-2なるEFM変闘を採用し、Vとし てV1、2 V1、4 V1または、6 V1の有限個の値を取り 且つ、全ての線速度において、 ai+ βi-1=1.0 (2 ち、各ャーク最後猫のオフパルス期間はャーク内のオフ パルス期間と異なる時間とすることが出来る。こうする ことで、循々の級速度で記録を行う多種のドライブ装置 e) では、1-6倍速の広線速で記録可能であることが うるものとする。 線速2VL以上において a m = 1.5 ≦i≤m)としている。更に、線速度2VrではPbi= 5mw (1≦i≦m)、線速度Vにおいては0.05 方法としては、まず、マーク長変闘方式としてm=n、 又は1. 0、βιh=αih=0. 5 (2≦i≦m) とし、 Pr±0. 5 mW (1≤i ≤m、Prは再生光パワー)、 < ai<0. 5 (2≦i≦m) 及びaい≦aいとなるよ 線速度Vn=4VL又は6VLにおいてはPbi = Pa±0. うに線速度に応じて記録パルス分割方法を変更させる。 但し、βm≠0.5 (0であり得る)とする。すなわ

[0031] 上記光記録方法に適したCD-E記録媒体 として、より具体的には、粘板上に少なくとも下部観像 部誘電体保護層、金属反射層を順に設けてなり、記錄層 30mmとした相変化型媒体が挙げられる。或いは、こ 0のうちの少なくとも1種)に代えてもよい。特関甲4 -212135号公報及び特開平5-62193号公報 録層を用いた相変化型記録媒体に関する方法の先願であ り、長マークで記録パルスを分割する記録方法が示され 方法は示唆すらされておらず、また、2、4、6 倍速で **んら触れていない。更に、ある一定の法則に従って記録** パルス分割方法を変更して、報遊依存性を克服する方法 については、全く開示されていない。 特開平1-372 51号公報、及びその発明者等による学会発費(Intern ational symposium on Optical Memory, 1995, Knana 録層を用いたCD-E媒体の例及びその記録方法が例示 膜厚が15-30mm、上部誘電体保護層膜厚が10-記録するときに生じる線速度依存性の問題についてはな されている。しかしながら、やはり、椴速度依存性の問 は、特にCD線速において事き換え可能なGeSbTe配 x (0≤x<0, 1, 0, 2<y<0, 9) 配錄層、上 ている。しかし、上記2倍速2Viにおけるパルス分割 zawa, Japan, No.P-33) においては、AginSbTe配 の記錄層を、Mr (Tel-x Sbx) 1-y (0≦y<0.3、 0. 5 < x < 0. 9, M= In, Ga, Zn, Ge, Sn, Si, Co, Cr, Cu, Ag, Au, Pd, Pt, S, Se, **個及びその解決方法についてはなんら関示されていな** 体保護層、 { (GeTe) v (Sb2Te3) 1-v} 1-x Sb

は、mをm=n、n-1又はn-2に避危し、殺遊腹V ~1. 4m/Sの範囲にあるマーク長変闘記録にあって [0032] 上記例において、殷小鍛速度Vtが1. 2

がV=Vヒ、2Vヒ、4Vヒ、又は、6 Vヒの有限個の値を もとるものと潜定し、この各級速度Vにおいて、iが2 ≦α≦Ⅲの億囲かは、α!+β!=1.0とし、困つ、i に被少するように構成することが出来る。また、この場 段速度∇が低下するとき、金てのiに対してαιが単調 台、Ba≠0とすることが、トラッキングサーボの観点 が1≦i≦mの稳囲ではPbi = Pr±0. 5mWとし、 から好ましい。

じる線速度依存性を解消することである。 すなわち、蛇 従って記録パルス分割方法を変化させることにより、半 て不都合無く情報を記録できる。この記録パルス分割方 低する相変化型ディスクの内外周の鍛強度整によって生 **録領域の内外周の半径が2倍以上になるような半径の大** 困難である。そこで内外周の狼強度に応じて、本発明に 径方向に均一な媒体においても、ディスク全面にわたっ 定角速度 (constant angular velocity, CAV) で回 (ZonedCAV) 方式の媒体では、半径位置における基 法の半径位置に伴う変更は、例えば、通常の2CAV [0033] 本発明のもう一つの有効な利用方法は、 きな媒体では、内外周に2倍以上の線速度発が生じ 層構成を変化させることは、製造時に特別の工夫を 節クロック周期の切り替えと運動して行えば良い。 **線速度依存性を克服するために、内外周で配録層**# 20

に対して、1種類の媒体で対応できる。

に利用するため、使用するディスクに、予め例えば凹凸 【0034】本発明の光記録方法をより簡便に且つ有効 るものの組合せを、使用する線速度に合わせて変更する ように記載されていることが好ましい。この記載は、V ι≦∨≦Vnの範囲の線速度Vにおいて、Vι及びVnにお ける線速度のみに関して分割方法が記載され、その間の V についしては、VL及びVhに対するパラメータを補助 して利用することが可能である。また、上記のCD一日 では、リードインエリアにある蛇行した溝の周波数変闘 が可能となる。つまり、本発明は、ある特定の相変化媒 体上に、ある特定の固定されたパルス分割方法のみを採 により、上記パルス分割に関する情報をあらかじめ基板 ムを自動的に実施する。このようなディスク駆動装置を の、記録情報のフォーマットが相互に同じ複数の相変化 **媒体が市場に共存した場合にも、その互換性をとること** 用したディスク駆動装置で記録した場合に、再結晶化が 生じて正常なマークが記録されないという問題を解消し のピット情報にでパルス分割に関する情報を記録する。 w, Pe, Pb, m, j, k, ai, Bi) のうち可擬とす そのパルス分割情報は、例えば、上記パラメータ(P 採用することにより、線速依存性は相互に異なるもの ルス分割方法及び線速度で配録を行うパルス分割スま に記載してもよい。ディスク駆動装置は、予めデ に配載されたパルス分割方法を読みとり、指定され 40

[0035] 上記のように、本発明では、鍛速度に対応 してパルス分割力法を変えることで、糠項度の大きく適

ワンス型の記録可能CD (CDーR、CDーRecrordab)

20

20

ම

9

低線速における再結晶化や、高線速における消し残 パルステック社製光ディスクドライブテスタを用いて記 6、ディスク上に良好な温度分布を作ることが可能とな 毀(11ビーム・オーバーライト)を行った。再生光パワ 5条件、例えば Vh M 2 2 V L の极速度範囲で記録を行って 【0036】以下に本発明の実施形態例(実施例)を示 ーダイオード、NA=0. 60の光針アンズや搭段した クロック周期Tは緑速に反比例させるものとし、1.4 10m/sでT=20.0nsecとなるように適定し い。以下の実稿囪及び孔敷囪では、680mmのソーギ m/sでの記録時にT=143nsec (7MHz)、 り等が抑えられて、1枚のディスクを相変化媒体では、 従来不可能とされてきた広い鍛速において使用できる。 すが、本発明は以下の実施例に限定されるものではな ーPrは1. 0mWで根遊によらず一定とした。また、

[0037] [契施例1、比較例1、2] 実施例1と 出にはタイムインターパルアナライザー(TIA、ヒュ ーレットパッカード製、E1725A)及び簡易法(Jp O1) 20 [mol%] 層を100nm、Ge22.2Sb22.2Te ss.s [at%] 獨を25nm, (ZnS) 80 (SiO2) 20 [mol%] 層を20nm、AI合金層を100nm順次に マグネトロンスパッタリング法にて積層し、更にその上 に紫外線硬化樹脂を 4 μ m設けることにより作成したデ イスクを用いた。まず、3T/9T/7T/9T/11 T/9T(下級部がマーク、下級無し部がマーク間に相 当する)のパターンを繰り返し合む繰返しパターンによ る評価を行った。適当な条件で数回オーバーライトした 後に、再生信号中の111/91信号振幅のピーク波高 質の中心レベルでスライスし、マーク長を検出した。検 n. J. Appl. Phys.、Vol. 31 (1992)、584-589pp等に開示され して、ポリカーポネート基板上に(ZnS)80(Si た簡易ピーク検出法)を用いた。

パルス分割法を用いた(例えば、Proc. Int. Symp. on Opt し、適当なPW及びPoを選ぶことで、20m/sまでの [0038] 駿遊度10m/sにおいて図9 (a) や氷 すようなパターン、すなわち、m=n-j、j=0 (P (a) に示したオッシログラフのような良好な再生被形 が得られた。同様に、クロック周期を根速に応じて関節 英田でオーバーライトを試みたところ、すべて、良好な 記録液形がえられた。また、3T、7T、11Tのマー ク長でTの10%未満という良好なマーク長ジッターが W、Pe=4. OmWでオーパーライトを行い、図10 5、81=0. 5、α1=81=0. 5 (i≧2) とした ical Memory,1991,291-296pp参照)。 Pw= 1 2. 0 m e=Pbであるから、j=0.2でも同じ)、 a1=1.

20 を飼験し、1. 4m/s むオーバータイトを試みた。い [0039] 比較例1として、同様の構成でパルス分割 のパターンを線速度で変化させず、クロック周期下のみ

の場合、いかなるPWとPeの組み合わせにおいても、7 **ておよび11Tマークの記録が不可能であった。図10** マーク長が長い場合に、マーク前半部分がマーク後半部 分の記録時の余熱により再結晶化し、非晶質マークの配 【0040】そこで、最も困難なケースとして、10ー 験ができなかったものと考えられる。更に、比較例2と して、1. 4m/s用に最適化するために、記録層の組 成を先の例より SbリッチとしたGe21 Sb28 Te18とした ところ、非晶質マークは十分に形成されたものの、結晶 化速度が遅いため、10m/sでは非晶質マークの消去 20m/sで使用する高線速用媒体で1.4m/sでも 良好な記録を行うために、本発明の趣旨に従って、以下 (b) にその液形の一例 (比較的ましな例) を示した。 比が不十分であり、オーバーライトには適さなかった。 のようにパルス分割方法の最適化を試みた。

線速度10−20m/s用に最適化した ディスクを用いて、線速度1. 4m/sで上記の繰返し マーク長パターンによるオーバーライトを試みた。m= 0. 2mWと一定にし、且つ、nTマーク形成のための **んど非晶質化せず、TIAによるマーク娼の検出そのも** 2nsec (0. 084T) では、PWとしてPW>16 mW以上が必要であり、上記テスタでは感度不足であっ n 個の分割記録パルスの幅Tpを、Tp= a l Tと一定に のができなかった。図11 (a) 及び (b) は夫々、T 1 T未満) とした場合に、PW=14~17mWにおい n, j=0.2, Pe=4mW&L, PbttPb=Pb1= し、記録パワー Pwを可変とした。このパルスパターン を図9 (b) に示した。TP≧50nsecでは、ほと について形す。Tp=30nsec米獺 (即ち、0.2 1 T未満の良好なジッターが遜られた。なお、Tp=1 pをさらに短くした場合のマーク县及びマーク長ジッタ て、配録マークnTに対応した適正なマーク長と、0. 一の Pw依存性を各n Tマーク (3T、7T、11T) 20 30

【0041】本実施例では、Biについては、Bn以外は みな等しく、Bnのみをj=0.2となるように魍難し

m=n、j=0, 2、Pe=0, 4mWの条件下で、Pb 々、マーク長及びマーク長ジッターの Pw、Pb依存性を およびPwを可変とした。図12 (a) 及び (b) に夫 図11 (a) 及び (b) と同様に示す。 Pbが1 mw程 1 T以下の良好なジッターが得られた。なお、0 < Pb Tp=20nsec (α_1 =0.14), <Prとしても、トラッキングサーが毎に影響はなから た。Pb=0.2mWとPbをPrより低くしても、この 程度の時間であれば、トラッキングサーボははずれな 度より小さければ、PW=14~17mWで、ほぼ0. [実施例3]

【0042】実施例2、3か5、1.4m/s~20m /sといった広範囲の線速度で使用する場合には、特

-6-

小さくすることを併用すると良好な結果が得られること に、低級速側において、aiを小さくすることと、Pbを

クトディスク (CD) で用いられるEFM変闘方式にお 合)、図14 (m=n-1の場合)に示した。マーク展 7の範囲に最適点が存在することがわかる。m=n-1 としては、mが線速に応じて変化する場合より一定にで 良好な結果を得たことにより、n=3から11の全ての マーク長を含むパターンが採用される、例えば、コンパ いて、広衛囲の線速度でオーバーライトが可能になった **再結晶化が起こりにくいので、線速依存性に関する問題** T)、Pb=0.2mW、Pe=4mWにおいて、m=n 又はm=n-1とした場合のマーク長およびマーク長ジ て変化させればよいことから好ましい。パルス制御回路 きるほうが回路構成上好ましいからである。また、n゠ 3、7、11のマーク長を含む繰返しパターンを用いて ことを意味する。但し、T=143nsecでの最短マ **一ク長である3Tは0.6μmに相当し、現行のCDよ** 0.8~0.9μπとなっても、若干のパルス幅等の最 適化を行えば、同様に広範囲の線速度でオーバーライト 例えば、ディジタルビデオディスクにおけるマーク畏変 ッターの Pw及びj 依存性を夫々、図13 (m=nの場 は、nーj=Σ (αi+βi) に強く依存する。m=n、 及び、m=n-1のいずれにおいてもj=0. $2\sim0$. て、mを一定とし、n-j及びaiのみを様速度に応じ の場合には、1. 4m/s~20m/sの範囲におい り高密度である。しかし、これが、現行のCDなみの 可能になる。一方、最短マーク畏がさらに小さくなる、 **類記録でも同様である。むしろ、マーク長が短い方が、** は軽減される。このような高密度記録媒体においても、 Tp=20nsec (ai=0.14本発明のパルス分割方法は適用可能である。 [実施例4]

[0043] <u>[奥枯例5]</u> 10m/sと1.4m/s でのパルス長変闘方式が異なる場合にも適用できる。本 との間の中間線速において、上記相変化媒体に上記線返 た、本実施例の媒体に対しては、少なくとも、CD模型 一方、CD線速の約4倍速である5.6m/sにおいて [0044] [実施例6] 本発明は、高線速と低線速 2. 8 m/s における記録を行なった。その結果、Tp おいて、Pw=約15mW以上で、適正なマーク是及び しパターンをオーバーライトすることとし、例として、 ≠15-20nsec., j=0.2, m=n, Pe= 4mW、Pb=0.2mWとしたパルス分割パターンに の1-2倍速においては、同じパターンを適用できる。 は、m=n-1、j=0,0、Pb=Pe、Tp=20n 0. 1 T以下の良好なジッターが得られた。したがっ secとしたところ、Pw=16mW及びPe=4mW で、0、1 T以下の良好なジッターが得られた。

短マーク2TとEFM変闘における3Tマークをいずれ 有効となる。図15 (a) ~ (c) に夫々、**袋**選10m |ength-limited] 符号を用い、1.4m/sにおいては この場合、クロック周期Tを一定としたほうがマーク始 険出回路が容易になる。もっとも、必ずしも厳密に一致 する必要はない。物理的な最短マーク長は、その媒体の 物理的特性で決まる線密度の下限であるから、一定にし たほうが良い。そこで、上記 (1、7) 変調における最 もの. 6 μmとするようにクロック周期を変えることが /s (EFM変調)、5.6m/s (EFM変調)、及 び、1.4m/s(1-1英國)におけるアイパターン 2から8迄のマーク長からなる(1、7)RLL(run-EFM変闘を用いてオーパーライトすることを試みた。 を示した。同図にみるように、各線速において良好 形が侮られたおり、最陋マークにおいても、レー ッターは0.1 下米猫であった。

[0045] [(奥施例7] 記録媒体として、記録層 = 0.55の光学レンズを用いた。CD2倍線速4.8 m/sにおいて、EFM変闘方式に対して、図16に示 のジッターがクロック周期の10%未満となった。この た。記録には、放長が180ヵmの半導体レーザ、NA ろ、良好なアイパターンが得られた。すなわち各マーク CD1倍速で記録したところ、再結晶化が巻しく、良好 い、層構成としては実施例1と同様としたものを用載し 媒体を同じパルス分割方式で、クロック周期を倍にして 33 (2≦i≦m、aiは1. 0で変化させず)、 P#= したパルス分割方式で、Pw=12mW、Pe=6mW、 に Agr. 1 Ins. 2 Sbs2. 6 Tezs. 6の組成の合金薄膜を用 Pb= Pr= 0.8mWのパターンにより記録したとこ 11mw、Pe=5mW、Pb=Pr=0.8mWとした なアイパターンが踏られなかった。しかし、aiを0. 30

棒に、角袋遊画のケージンを広げることがやき、広い独 [発明の効果] 本発明の記録方式を用いることにより、 録時の線速度が異なる種々のドライブに対して同一の数 媒体の材質を変えることなく、媒体の敏速度を一ジン 記録データのフォーマットには互換性がありなが 速度の範囲でオーパーライト記録が可能となる。 [0046]

ところ、良好なアイパターンが得られた。

体で対応でき、各様速用に最適化する必要がなくなるの で、媒体互換性の問題が解消できる。 [図面の簡単な説明]

[図1] 従来の非晶質マークの反射特性を示すグラフ。 [図2] 図1の非晶質マークの構造を示す模式的平面 [図3] nTマークを記録するマーク長変闘方式におけ るパルスパターンを図示する故形図。

[図4] 本発明で採用されるマーク長変調におけるパル スパターンを倒示する故形図。

[図5] (a) 及び (b) は失々、4 Tマークを記録す

S

コンピュータ周辺機器と光記録媒体で用いられる、ロー

実施例6では、実際に、10-20m/sの徳囲では、

特別49-7176

(15)

るパルスパターンを倒示する故形図。

Ξ

[図6] (a)及び(b)は夫々、パルス印加期間を変 えたときのパルスパターンを例示する故形図。

[図7] 本発明の実施例で採用されるパルスパターンを 倒示する被形図。

[図8] 本発明で採用される配録媒体の層構成を示す断 [図9] (a) 及び (b) は夫々、本発明の実施例で採

用されるパルスパターンの故形図。

[図10] (a) 及び(b) は夫々、実施例1及び比較 [図11] (a) 及び (b) は夫々、実施例2における マーク長及びジッターの記録パワー依存性を示すグラ 例1の再生故形を示すオッシログラフ写真

[図12] (a) 及び(b) は夫々、実施例3における 図11 (a) 及び(b) と同様なグラフ。

[図13] (a) 及び(b) は夫々、実施例4における 図11 (a) 及び (b) と同様なグラフ。

1-7変顕における再生されたアイパターンを示すオッ [図15] (a) ~ (c) は夫々、EFM変闘、又は、 る、m=n及びm=n-1のときの図13と同様な図。 [図14] (a) 及び(b) は夫々、実施例4におけ シログラフ写真。

【図16】実施例7における記録故形のパターンを示す 故形図。

下部保護圈 上部保護層 [符号の説明] 記錄層 反射層 1 基板 9

保護層

[図3] [図1]

[<u>8</u>4] ŝ

[图3]

12位位号

--- 601121 [88] 12日パルス CLOCK 9

-12-

特開平9-7176

(12)

-91-

15 .

フロントページの箱や

(72)発明者 - 超江 - 通和 神奈川県後疾市青葉区鴨志田町1000番地 三菱化学株式会社債孫総合研究所内

-11-