解析入門 解答

河村遼

2019年7月5日

第1章実数と連続

§1 実数

問 1(i)

 $a,b \in K$ が両方 (R3) を満たす 0 であると仮定する.

a が (R3) を満たす 0 なので b+a=b

b も (R3) を満たす 0 なので a+b=a

また (R1) より a+b=b+a

以上より a = b で (R3) を満たす 0 は唯一

(ii)

 $a \in K$ に対し $b, c \in K$ を両方 (R4) を満たす -a であると仮定する.

a+b=0 より (R3) と合わせ c+(a+b)=c+0=c

また a+c=0

(R1) より a+c=c+a なので c+a=0

より

$$b = b + 0 \ (\because (R3))$$

$$= 0 + b \ (\because (R1))$$

$$= (c + a) + b$$

$$= c + (a + b) \ (\because (R2))$$

$$= c$$

つまり (R4) を満たす -a は唯一

(iii)

 $a \in K$ に対し (R4) より a + (-a) = 0

(R1) $\xi \vartheta (-a) + a = a + (-a) \ \mathfrak{C} (-a) + a = 0 \ \mathfrak{E}.$

より (ii) から -(-a) = a

(iv)

* 注意

 $a \in K$ がある $b \in K$ に対して b + a = b なら a = 0 だ.

なぜなら

以下これは暗黙の了解として使う.

 $a \in K$ に対し

より 0a = 0

(v)

 $a \in K$ に対し

$$\begin{aligned} a + (-1)a &= a1 + (-1)a \ (\because (R8) \ \& \ ^{i}) \ a = a1) \\ &= 1a + (-1)a \ (\because (R5) \ \& \ ^{i}) \ a1 = 1a) \\ &= (1 + (-1))a \ (\because (R7)) \\ &= 0a \ (\because (R4) \ \& \ ^{i}) \ 1 + (-1) = 0) \\ &= 0 \ (\because (iv)) \end{aligned}$$

より (ii) から (以下 (ii) も暗黙の了解として使う)(-1)a = -a (vi)

$$(-1)(-1) = -(-1) \ (\because (v))$$
$$= 1 \ (\because (iii))$$

(vii)

より a(-b) = -ab

より (-a)b = -ab (viii)

(ix)

 $b \neq 0$ と仮定する. b^{-1} が存在し $bb^{-1} = 1$.

この時

$$a = a1 \ (\because (R8))$$

$$= a(bb^{-1}) \ (\because bb^{-1} = 1)$$

$$= ab(b^{-1}) \ (\because (R6))$$

$$= 0b^{-1}$$

$$= 0 \ (\because (iv))$$

つまり a=0 または b=0

(x)

$$(-a)(-(a^{-1})) = aa^{-1} \ (\because (viii))$$

= 1 $(\because (R9))$

(ii) と同様に (R9) を満たす a^{-1} は各 $a\in K, a\neq 0$ に対し唯一なので (以下これは暗黙の了解として使う). $(-a)^{-1}=-(a^{-1})$ (xi)

$$(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} \ (\because (R6))$$

$$= (a(bb^{-1}))a^{-1} \ (\because (R6) \ \sharp \ ^{\flat}) \ (ab)b^{-1} = a(bb^{-1}))$$

$$= (a1)a^{-1} \ (\because (R9) \ \sharp \ ^{\flat}) \ bb^{-1} = 1)$$

$$= aa^{-1} \ (\because (R8) \ \sharp \ ^{\flat}) \ a1 = a)$$

$$= 1 \ (\because (R9))$$

より
$$(ab)^{-1} = b^{-1}a^{-1}$$
 問 $2(i)$ ⇒ $a \le b \ge (R15)$ より $a + (-a) \le b + (-a)$ より $0 \le b - a$ \Leftrightarrow $0 \le b - a \ge (R15)$ より $0 + a \le (b - a) + a$ より $a \le b$ (ii) (i) より $a \le b \Leftrightarrow 0 \le b - a$ きらに (i) より $-b \le -a \Leftrightarrow 0 \le -a - (-b)$ 以上より $-a - (-b) = b - a \ge a \ge b \Rightarrow -b \le -a$ (iii) (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (ii) と $a \le b \implies b \Rightarrow a \ge 0$ (ii) と $a \le b \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \le 0 \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \le 0 \implies b \Rightarrow a \ge 0 \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \ge 0 \implies a \ge 0 \implies b \implies a \ge 0 \implies$

§2 実数列の極限

以上より a+c < b+d

1)(i)

N > |a| となる $N \in \mathbb{N}$ が存在.

c < d に矛盾し背理法から $a + c \neq b + d$

$$n>N$$
 の時 $|a_n|=|a_{n-1}|rac{|a|}{n},rac{|a|}{n}<1$ で
$$|a_n|<|a_{n-1}|$$

これを繰り返し用いると $n \ge N$ で

$$|a_n| \le |a_N|$$

 $\epsilon>0$ に対し $n\geqq \max(N+1,\frac{|aa_N|}{\epsilon}+1)$ とすると

$$|a_n| = |a_{n-1}| \frac{|a|}{n}$$

$$\leq \frac{|aa_N|}{n}$$

$$< \epsilon$$

より

$$a_n \to 0 \ (n \to \infty)$$

(ii)

 $\epsilon > 0$ に対し $\epsilon' = min(1, \epsilon)$ とする.

 $0 \le 1 - \epsilon' < 1$ なので例 6 より $\lim_{n \to \infty} (1 - \epsilon')^n = 0$

より a>0 より $N\in\mathbb{N}$ が存在し

$$n \ge N \Rightarrow (1 - \epsilon')^n < a$$

より $n \ge N$ の時 $-\epsilon \le -\epsilon' < \sqrt[n]{a} - 1$ また二項定理より $n \ge 1$ で

$$(1+\epsilon)^n = \sum_{k=0}^n {}_n C_k \epsilon^k > n\epsilon$$

 $M > \frac{a}{\epsilon}$ を満たすように $M \in \mathbb{N}$ を取ると

 $n \geq M$ \mathcal{C}

$$a < n\epsilon < (1+\epsilon)^n$$

より $\sqrt[n]{a} - 1 < \epsilon$

 $n \ge \max(N, M)$ の時 $|\sqrt[n]{a} - 1| < \epsilon$ で

$$a_n \to 1 \ (n \to \infty)$$

(iii)

 $k=2,\cdots,n$ で $rac{k}{n}\leqq 1$ なので辺々掛け合わせて

$$\frac{n!}{n^{n-1}} \le 1$$

より $0 < a_n \leq \frac{1}{n}$

また $\lim_{n\to\infty}\frac{1}{n}=0$ なのではさみうちの原理から

$$a_n \to 0 \ (n \to \infty)$$

(iv)

二項定理より $n \ge 2$ で

$$2^n = \sum_{k=0}^n {}_n C_k > \frac{n(n-1)}{2}$$

より $0 < a_n < \frac{2}{n-1}$

また $\lim_{n\to\infty}\frac{2}{n-1}=0$ なのではさみうちの原理から

$$a_n \to 0 \ (n \to \infty)$$

(v)

 $\epsilon>0$ に対し $N>\frac{1}{\epsilon^2}$ となる $N\in\mathbb{N}$ が存在.

 $n \ge N$ \mathcal{C}

$$a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n}} < \epsilon$$

 $a_n > 0$ も合わせて $n \ge N$ で $|a_n| < \epsilon$ なので

$$a_n \to 0 \ (n \to \infty)$$

2)

 $-1 \leq \cos(n!\pi x) \leq 1 \, \text{\r{E}}.$

 $\cos(n!\pi x)=\pm 1$ の時 $(\cos(n!\pi x))^{2m}=1$ なので $\lim_{m\to\infty}(\cos(n!\pi x))^{2m}=1$

 $-1 < \cos(n!\pi x) < 1$ の時 $0 \le (\cos(n!\pi x))^2 < 1$ なので例 6 より $\lim_{m\to\infty} (\cos(n!\pi x))^{2m} = 0$ $\cos(n!\pi x) = \pm 1 \Leftrightarrow n!x \in \mathbb{Z}$ だ.

x が有理数の時 $x = \frac{p}{q}, q \in \mathbb{N}, p \in \mathbb{Z}$ とおけ $n \ge q$ の時

$$n!x = n \cdots (q+1) \cdot (q-1) \cdots 1 \cdot p \in \mathbb{Z}$$

より $n \ge q$ で $\lim_{m \to \infty} (\cos(n!\pi x))^{2m} = 1$

より
$$\lim_{n\to\infty} (\lim_{m\to\infty} (\cos(n!\pi x))^{2m}) = 1$$

x が無理数の時

n!x が整数と仮定する.

 $x = \frac{n!x}{n!}$ で分母と分子が整数なので x が有理数となり矛盾.

より n!x は整数でなく $\lim_{m\to\infty}(\cos(n!\pi x))^{2m}=0$

 $\sharp \, \mathcal{V} \, \lim_{n \to \infty} (\lim_{m \to \infty} (\cos(n!\pi x))^{2m}) = 0$

以上より

$$f(x) = \begin{cases} 1 & x \text{ が有理数} \\ 0 & x \text{ が無理数} \end{cases}$$

3)

 $\epsilon > 0$ とする.

 $\lim_{n\to\infty} a_n = a$ なので $n \ge N'$ なら $|a_n - a| < \frac{\epsilon}{2}$ となる $N' \in \mathbb{N}$ が存在.

N = max(1, N') とする.

 $n \ge \max(N, \frac{2}{\epsilon} |\sum_{k=1}^{N-1} (a_k - a)|)$ の時

$$\left| \frac{1}{n} \sum_{k=1}^{n} a_k - a \right| \le \frac{1}{n} \left| \sum_{k=1}^{N-1} (a_k - a) \right| + \frac{1}{n} \sum_{k=N}^{n} |a_k - a| < \frac{\epsilon}{2} + \frac{n - N + 1}{2n} \epsilon < \epsilon$$

より
$$\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$$

4)

$$a_k \neq 0$$
 なので $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}}$

より
$$a_k > 0$$
 に注意し $\log a_n = \log a_1 + \log \frac{a_2}{a_1} + \log \frac{a_3}{a_2} + \dots + \log \frac{a_n}{a_{n-1}}$

 $n \in \mathbb{N}$ に対し $a_n > 0$ なので $b_n = \log \frac{a_{n+1}}{a_n}$ とおける.

$$\log \sqrt[n]{a_n} = \frac{b_1 + b_2 + \dots + b_n}{n} - \frac{b_n}{n} + \frac{\log a_1}{n}$$

 $\lim_{n \to \infty} rac{a_{n+1}}{a_n} = a$ と $\log x$ が連続なので $\lim_{n \to \infty} b_n = \log a$

より 3) より
$$\lim_{n\to\infty} \frac{b_1+b_2+\dots+b_n}{n} = \log a$$

また $n \ge N$ で $|b_n - \log a| < 1$ となる $N \in \mathbb{N}$ が存在.

$$n \geq N$$
で $\frac{\log a - 1}{n} \leq \frac{b_n}{n} \leq \frac{\log a + 1}{n}$ で $\lim_{n \to \infty} \frac{\log a - 1}{n} = \lim_{n \to \infty} \frac{\log a + 1}{n} = 0$ なのではさみうちの原理から

 $\lim_{n \to \infty} \frac{b_n}{n} = 0$

さらに $\lim_{n \to \infty} \frac{\log a_1}{n} = 0$ なので

$$\lim_{n \to \infty} \log \sqrt[n]{a_n} = \log a$$

 e^x は連続なので $\lim_{n\to\infty} \sqrt[n]{a_n} = e^{\log a} = a$

5)

 $H = A \cup \{0\} \cup \{1\} \cup \cdots \cup \{m-1\}$ とする.

H が継承的であることを示す.

 $\{0\} \subset H$ なので $0 \in H$

 $x \in H$ とする

 $x=0,\cdots,m-2$ の時 $\{x+1\}\subset H$ なので $x+1\in H$

x=m-1 の時イ) より $m \in A$ で $A \subset H$ なので $x+1=m \in H$

 $x \in A$ の時イ) より $x \ge m$

 $x \in A, x \ge m$ なので口) より $x + 1 \in A$ で $A \subset H$ なので $x + 1 \in H$

以上より H は継承的.

より $\mathbb{N} \subset H$

 $n \in \mathbb{N} \ \column{c} \column{c} n \geq m \ \column{c} \$

また $n \ge m$ なので $n \ne 0, 1, \cdots, m-1$ で $n \notin \{0\} \cup \{1\} \cup \cdots \cup \{m-1\}$

より $n \in A$ で $\{n \in \mathbb{N} | n \geq m\} \subset A$

次に $n \in A$ とする.

 $A \subset \mathbb{N}$ なので $n \in \mathbb{N}$

イ) より $n \ge m$

より $n \in \{n \in \mathbb{N} | n \ge m\}$ で $A \subset \{n \in \mathbb{N} | n \ge m\}$

以上より $A = \{n \in \mathbb{N} | n \ge m\}$

6)

 $n \in \mathbb{N}$ に対し $A_n = \{x \in \mathbb{R} | x + n \in \mathbb{N}\}$ とする.

 A_n が継承的であることを示す.

 $n \in \mathbb{N}$ なので $0 + n \in \mathbb{N}$ で $0 \in A_n$

 $x+n \in \mathbb{N}$ で \mathbb{N} が継承的なので $x+1+n \in \mathbb{N}$

より $x+1 \in A_n$

以上より A_n は継承的で $\mathbb{N} \subset A_n$

 $m \in \mathbb{N}$ なら $m \in A_n$ で $m + n \in \mathbb{N}$

 $n \in \mathbb{N}$ に対し $B_n = \{x \in \mathbb{R} | xn \in \mathbb{N}\}$ とする.

 B_n が継承的であることを示す.

 $0n = 0 \in \mathbb{N} \ \mathcal{D} \subset 0 \in B_n$

 $x \in B_n$ とする.

 $xn, n \in \mathbb{N}$ なので上の結果より $xn + n = (x+1)n \in \mathbb{N}$

より $x+1 \in B_n$

以上より B_n は継承的で $\mathbb{N} \subset B_n$

 $m \in \mathbb{N}$ なら $m \in B_n$ で $mn \in \mathbb{N}$

 $C = \{0\} \cup \{x \in \mathbb{N} | x - 1 \in \mathbb{N}\}$ とする.

C が継承的であることを示す.

 $x \in C \$ とする.

 $x \in \{0\}, x \in \{x \in \mathbb{N} | x - 1 \in \mathbb{N}\}$ いずれの場合も $x \in \mathbb{N}$

 \mathbb{N} は継承的なので $x+1 \in \mathbb{N}$

また $x+1-1=x\in\mathbb{N}$ なので $x+1\in C$

以上より C は継承的で $\mathbb{N} \subset C$

 $m \in \mathbb{N}$ に対し $D_m = \{x \in \mathbb{N} | m < x$ または $m - x \in \mathbb{N} \}$ とする.

 D_m が継承的であることを示す.

 $m \in \mathbb{N}$ なので $m - 0 \in \mathbb{N}$ で $0 \in D_m$

 $x \in D_m$ とする.

 $m \leq x$ の時 m < x + 1 なので $x + 1 \in D_m$

m > x の時 $m - x \in \mathbb{N} \subset C$

さらに $m-x \neq 0$ なので $m-x-1 \in \mathbb{N}$

より $x+1 \in D_m$

いずれの場合も $x+1 \in D_m$ で $0 \in D_m$ と合わせて D_m は継承的で $\mathbb{N} \subset D_m$

より $n \in \mathbb{N}, m \ge n$ なら $m - n \in \mathbb{N}$

7)

 \mathbb{R}_+ は継承的なので $\mathbb{N} \subset \mathbb{R}_+$ で $n \in \mathbb{N}$ なら $n \ge 0$ なことに注意する.

 $n \in \mathbb{N}$ に対して $E_n = \{x \in \mathbb{N} | x \leq n \text{ または } n+1 \leq x\}$ とする.

 $\sharp \, \mathcal{F} = \{ n \in \mathbb{N} | \mathbb{N} \subset E_n \} \, \, \mathsf{LTS}.$

F が継承的であることを示したい.

まず E_0 が継承的なことを示す.

 $0 \in \mathbb{N} \ \mathfrak{C} \ 0 \leq 0 \ \sharp \ \mathcal{V} \ 0 \in E_0$

 $x \in E_0$ とする. $x \in \mathbb{N}$ で $x + 1 \in \mathbb{N}$

また $x \ge 0$ なので $1 \le x + 1$ で $x + 1 \in E_0$

より E_0 は継承的で $0 \in F$

次に $n \in F$ を仮定して $n+1 \in F$ を示す.

 $n \in F \subset \mathbb{N}$ なので $n \ge 0$ で $0 \le n+1$ で $0 \in E_{n+1}$

 $x \in E_{n+1}$ とする. $x \in \mathbb{N} \subset E_n$ なので $x \le n$ または $n+1 \le x$

より $x+1 \le n+1$ または $n+2 \le x+1$

より $x + 1 \in E_{n+1}$

以上より E_{n+1} は継承的で $\mathbb{N} \subset E_{n+1}$

より $n+1 \in F$

以上より F は継承的で $\mathbb{N} \subset F$

より $n\in\mathbb{N}$ なら $\mathbb{N}\subset\{x\in\mathbb{N}|x\leqq n$ または $n+1\leqq x\}$ で

n < k < n+1となる自然数は存在しない.