Computational Physics – Exercise 6: Monte Carlo methods

Kristel Michielsen

Institute for Advanced Simulation
Jülich Supercomputing Centre
Forschungszentrum Jülich
k.michielsen@fz-juelich.de
http://www.fz-juelich.de/ias/jsc/qip

1D and 2D Ising model

 1D model: The energy of a configuration is given by

$$E = -\sum_{n=1}^{N-1} S_n S_{n+1}$$

 Use the MMC method to compute the average energy U / N and specific heat C / N per spin for

$$T = 0.2, 0.4, \dots, 4$$
 and $N = 10, 100, 1000$

$$N_{\text{samples}} = 1000, 10000$$

Free boundary conditions

1D and 2D Ising model

• 1D model: To check the results, compare with the exact analytical solution.

$$Z = \sum_{\{S_1,...,S_N\}} \exp(\beta \sum_{n=1}^{N-1} S_n S_{n+1}) = \sum_{\{S_1,...,S_N\}} \prod_{n=1}^{N-1} e^{\beta S_n S_{n+1}}$$

$$= \sum_{\{S_1,...,S_N\}} e^{\beta S_1 S_2} \prod_{n=2}^{N-1} e^{\beta S_n S_{n+1}} = 2 \cosh \beta \sum_{\{S_2,...,S_N\}} \prod_{n=2}^{N-1} e^{\beta S_n S_{n+1}}$$

$$= 2 (2 \cosh \beta)^{N-1}$$

$$U/N = -\frac{N-1}{N} \tanh \beta$$
 , $C/N = -\frac{\beta^2}{N} \frac{\partial U}{\partial \beta} = \frac{N-1}{N} (\beta/\cosh \beta)^2$

Example output 1D Ising model, N = 1000

T	beta	U_MC	C_MC	U_theory	C_theory	acc
0.400E+01	0.250E+00	-0.245E+00	0.586E-01	-0.245E+00	0.588E-01	0.83
0.380E+01	0.263E+00	-0.257E+00	0.651E-01	-0.257E+00	0.647E-01	0.82
0.360E+01	0.278E+00	-0.271E+00	0.717E-01	-0.271E+00	0.715E-01	0.80
0.340E+01	0.294E+00	-0.286E+00	0.804E-01	-0.286E+00	0.794E-01	0.79
0.320E+01	0.313E+00	-0.303E+00	0.852E-01	-0.303E+00	0.887E-01	0.77
0.300E+01	0.333E+00	-0.322E+00	0.981E-01	-0.322E+00	0.996E-01	0.75
0.280E+01	0.357E+00	-0.342E+00	0.115E+00	-0.343E+00	0.113E+00	0.72
0.260E+01	0.385E+00	-0.366E+00	0.131E+00	-0.367E+00	0.128E+00	0.70
0.240E+01	0.417E+00	-0.393E+00	0.146E+00	-0.394E+00	0.147E+00	0.67
0.220E+01	0.455E+00	-0.426E+00	0.170E+00	-0.426E+00	0.169E+00	0.63
0.200E+01	0.500E+00	-0.462E+00	0.195E+00	-0.462E+00	0.197E+00	0.59
0.180E+01	0.556E+00	-0.504E+00	0.229E+00	-0.505E+00	0.230E+00	0.54
0.160E+01	0.625E+00	-0.554E+00	0.269E+00	-0.555E+00	0.270E+00	0.49
0.140E+01	0.714E+00	-0.613E+00	0.317E+00	-0.613E+00	0.318E+00	0.43
0.120E+01	0.833E+00	-0.681E+00	0.383E+00	-0.682E+00	0.371E+00	0.35
0.100E+01	0.100E+01	-0.761E+00	0.403E+00	-0.762E+00	0.420E+00	0.26
0.800E+00	0.125E+01	-0.847E+00	0.429E+00	-0.848E+00	0.438E+00	0.17
0.600E+00	0.167E+01	-0.932E+00	0.370E+00	-0.931E+00	0.370E+00	0.07
0.400E+00	0.250E+01	-0.987E+00	0.125E+00	-0.987E+00	0.166E+00	0.01
0.200E+00	0.500E+01	-0.993E+00	0.193E+00	-0.100E+01	0.454E-02	0.01

1D and 2D Ising model

2D model: The energy of a configuration is given by

$$E = -\sum_{i=1}^{N-1} \sum_{j=1}^{N} S_{i,j} S_{i+1,j} - \sum_{i=1}^{N} \sum_{j=1}^{N-1} S_{i,j} S_{i,j+1}$$

- Use the MMC method to compute the average energy U/N^2 and specific heat C/N^2 per spin for T=0.2,0.4,...,4and N = 10,50,100 (free boundary conditions)
- Also compute the average magnetization per spin

$$M = \sum_{\left\{S_{1,1},...,S_{N,N}\right\}} \sum_{i,j=1}^{N} S_{i,j} e^{-\beta E} / \sum_{\left\{S_{1,1},...,S_{N,N}\right\}} e^{-\beta E}$$

and compare with the exact result for the infinite

$$\text{System} \\ M / N^2 = \begin{cases} \left(1 - \sinh^{-4} 2\beta\right)^{1/8} & \text{if} \quad T < T_{\rm C} = \frac{2}{\ln(1 + \sqrt{2})} \\ 0 & \text{if} \quad T > T_{\rm C} \end{cases}$$

1D and 2D Ising model

 2D model: make 3 plots of the results of the average energy U/N^2 , specific heat C/N^2 and magnetization M / N^2 per spin and put the data for N = 10,50,100 on the same plot

$$-N_{\text{samples}} = 1000,10000$$

 Interpret the results in terms of a phase transition from a state with magnetization zero to a state with definite magnetization

1D and 2D Ising model

- Boundary conditions: Simulations are performed on finite systems → How to treat edges (boundaries) of the lattice?
 - Periodic boundary conditions: wrap the ddimensional lattice on a (d+1)-dimensional torus
 - Effectively eliminates boundary effects, but the system is still characterized by the finite lattice size

Free boundary conditions

Report

Mr. Hannes Lagemann h.lagemann@fz-juelich.de

Dr. Fengping Jin f.jin@fz-juelich.de

- <u>Filename:</u> Report_6_Surname1_Surname2.pdf, where Surname1 < Surname02 (alphabetical order). Example:
 Report_6_Jin_Lagemann.pdf (Do not use "umlauts" or any other special characters in the names)
- Content of the report:
 - Names + matricle numbers + e-mail addresses + title
 - Introduction: describe briefly the problem you are modeling and simulating (write in complete sentences)
 - Simulation model and method: describe briefly the model and simulation method (write in complete sentences)
 - Simulation results: show figures (use grids, with figure captions!)
 depicting the simulation results. Give a brief description of the results
 (write in complete sentences)
 - Discussion: summarize your findings
 - Appendix: Include the listing of the program

Due date: 5 PM, June 16, 2020