TD n°13 Onduleur

Exercice 1

On réalise le montage suivant en utilisant quatre interrupteurs électroniques, fonctionnant deux par deux :

Le générateur de tension continue a une f.e.m. E égale à 24 V.

La charge est une résistance de valeur $R = 100 \Omega$.

Le fonctionnement des interrupteurs est résumé sur le diagramme ci-dessous :

Les interrupteurs sont supposés parfaits.

- 1. Représenter les chronogrammes :
 - de la tension u aux bornes de la charge
 - des courants i, i_{K1} et i_G .
- Calculer la valeur efficace de la tension u.
 En déduire la valeur efficace du courant i et la puissance reçue par la charge.
- 3. Calculer la valeur moyenne du courant débité par le générateur. En déduire la puissance fournie par le générateur et le rendement de l'onduleur. Commentaire ?

Exercice 2

L'onduleur suivant est constitué de quatre interrupteurs électroniques commandés (K₁ à K₄) supposés parfaits. E est une source de tension continue parfaite de valeur 200 V.

La charge est une résistance de valeur $R = 100 \Omega$.

1

BTS ATI / A2

Le tableau ci-dessous indique les états de conduction des interrupteurs.

	$0 < t < \alpha T/2$	$\alpha T/2 < t < T/2$	$T/2 < t < (1+\alpha)T/2$	$(1+\alpha)T/2 < t < T$
K_1	Fermé	Fermé	Ouvert	Ouvert
K_2	Ouvert	Fermé	Fermé	Ouvert
K ₃	Fermé	Ouvert	Ouvert	Fermé
K_4	Ouvert	Ouvert	Fermé	Fermé

- 1. Quel type de conversion réalise un onduleur autonome ? Citer une application de ce type de convertisseur.
- 2. Représenter en fonction du temps la tension u aux bornes de la charge et le courant i circulant dans celle-ci (on prendra $\alpha = 1/3$).
- 3. Exprimer la valeur moyenne et la valeur efficace du courant i en fonction de E, R et α . Faire l'application numérique (avec $\alpha = 1/3$).
- 4. En déduire la valeur moyenne de la puissance fournie à la charge.
- 5. Tracer les chronogrammes des courants i_{K1} , i_{K2} et i_{G} .
- 6. Exprimer les valeurs moyennes des courants i_{K1} , i_{K2} et i_G en fonction de E, R et α . Faire l'application numérique.
- 7. En déduire la valeur moyenne de la puissance fournie par la source E. Commentaire ?
- 8. Quels composants peut-on utiliser pour réaliser les interrupteurs ?

Exercice 3

On considère l'onduleur monophasé en ½ pont suivant :

La charge est inductive (de type RL).

1. Expliquer la nécessité (contrairement au cas des exercices 1 et 2) d'avoir des interrupteurs en montage antiparallèle.

2

- 2. Représenter u(t) sur une période. Justifier.
- 3. Représenter i(t) sur une période. Indiquer les intervalles de conduction des composants.

BTS ATI / A2