Mechanics of Materials: Course Syllabus

Viggo K. Hansen

January 18, 2025

1. Course Number: 2183213

2. Course Credit: 3 (3-0-6)

3. Course Title: Mechanics of Materials

4. Faculty/Department: International School of Engineering

5. **Semester:** First

6. Academic Year: 2024

7. Instructors:

• Section 1: Asst. Prof. Tawan Paphapote

• Section 2: Viggo Hansen

8. Conditions:

Prerequisite: 2183212Corequisite: NoneConcurrent: None

9. Status: Required

10. Curriculum:

- B.E. in Automotive Design and Manufacturing Engineering
- B.E. in Robotics and AI
- 11. **Degree:** Bachelor's Degree
- 12. Total Number of Hours: 45 hours

13. Course Description:

Concepts of stress and strain; stress and strain components; plane stress and plane strain; Mohr's circle for plane stress; Hooke's law and modulus of elasticity; engineering stress-strain diagrams; working stress; factor of safety; axial loading including statically indeterminate problems and temperature changes; thin-walled pressure vessels; torsion of circular shafts; statically indeterminate shafts; beam analysis including stress, deflection; Euler's formula for buckling; combined stress; theories of failure.

14. Course Outline:

• Objectives:

- (a) Determine stress and strain in simple mechanical components.
- (b) Explain material behaviors based on mechanical properties.
- (c) Analyze plane stress at a point, construct and apply Mohr's circle.

Version 1.0 January 26, 2025

- (d) Determine stress and deformation under various load types including axial, torsional, flexural, pressure vessel, and combined loading.
- (e) Solve statically indeterminate problems using additional deformation equations.
- (f) Calculate beam deflection including elastic curve.
- (g) Determine buckling loads for columns with various boundary conditions.

Course Content:

Period	Topics	Remarks
1	Introduction, External and internal loads, Normal and Shear stress, Allowable stress, Deformation, Strain, Tensile/Compressive tests, Stress-strain behavior, Ductile vs. Brittle materials, Hooke's law, Poisson's ratio	Chapter 1
2	Plane stress, Stress transformation equations, Principal stress, Maximum in-plane shear stress, Mohr's circle, Absolute maximum shear stress	Chapter 2
3	Deformation under axial load, Thermal stress	Chapter 3
4	Statically Indeterminate Members	Chapter 4
5	Torsion, Torsion formula	Chapter 5
6	Power transmission, Angle of twist, Statically indeterminate torque-loaded members	Chapter 6
7	Shear and Moment Diagrams	Chapter 7
8	Shear and Moment Diagrams (Graphical Method), Geometric properties (centroid, Q, I)	Chapter 8
9	Bending, Flexural formula, Shear in beams, Shear formula	Chapter 9
10	Elastic curve, Slope and displacement by integration	Chapter 10
11	Statically Indeterminate Beams by Integration	Chapter 11
12	Thin-Walled Pressure Vessels	Chapter 12
13	Combined Loadings	Chapter 13
14	Buckling, Critical load, Columns with various supports	Chapter 14

Homework Notes:

- Contributions: Homework can be submitted as:
 - Python functions relevant to coursework (optimizations encouraged)
 - Jupyter Notebooks for textbook problems or student/instructor-created problems
 - Corrections to existing software or content

Assignments can also be submitted as PDF or Word documents.

- Submission: Use the Course GitHub Repository for code (MATLAB, Python, etc.). Refer to Code-First Learning slides for guidelines.
- GitHub Access: Email your GitHub username to mailto:vkhansen@eng.chula.ac.thvkhansen@eng.chula.ac.th for access.

Method of Teaching: Lectures, Code-first

Teaching Media: Class notes, GitHub Source Code

Assignment through Network System:

Method: MyCourseville, GitHubLMS: MyCourseville, GitHub

Evaluation

 \bullet Weekly Quizzes (Paper-Based, 1 Note Page Allowed) based on topics from the Course Outline: 30%

Version 1.0 January 26, 2025

• Homework Assigned Weekly via MCV (Submit as source code, PDF, to GitHub Repo): 20%

Midterm: 20% Final Exam: 30%

Reading Lists:

• Required Textbook: Hibbeler, R.C., Mechanics of Materials, Prentice Hall.

Teacher Evaluation:

- Standard Chulalongkorn University Evaluation form: Lecture course (Form 04)
- Continuous improvement through Program Outcomes
- Discussions aimed at enhancing CU graduate qualifications.

Document History

 \bullet Version 1.0 - 01/26/2024 - Initial draft by Viggo Hansen