CSE202 Design and Analysis of Algorithms

Week 3 — Divide & Conquer 2: Rankings, Selection,...

I. Comparing Rankings

Compare Two Rankings

Music site tries to match your song preferences with others

- you rank n songs
- music site consults database to find people with similar tastes

Similarity metric: ?

Me	You
А	D
С	А
D	В
В	С

Compare Two Rankings

Music site tries to match your song preferences with others

- you rank n songs
- music site consults database to find people with similar tastes

Similarity metric: number of inversions between two rankings [Kendall-tau distance]

(A,D) (C,D) (C,B)

Number of crossings of pairs of line segments: 3

Compare Two Rankings

Music site tries to match your song preferences with others

- you rank n songs
- music site consults database to find people with similar tastes

Similarity metric: number of inversions between two rankings [Kendall-tau distance]

Me		You							1	
Α	: 1	D	: 3	Array A:	3		4	2		
С	: 2	А	: 1		1	2	3	4		
D	: 3	В	: 4		of inversions:					
В	: 4	С	: 2	pairs i < j such that A[i] > A[j						

Counting Inversions

Input. An array A

Output. Number of pairs i < j such that A[i] > A[j]

Brute force algorithm: check all O(n2) pairs i and j

Divide and Conquer: O(n log n)

Counting Inversions: Applications

Voting theory
Rank aggregation for meta-searching on the Web
Measuring the "sortedness" of an array

• • •

Rank aggregation methods for the Web

Cynthia Dwork¹, Ravi Kumar², Moni Naor³, D. Sivakumar²

1: Compaq Systems Research Center, Palo Alto, CA, USA.

2: IBM Almaden Research Center, San Jose, CA, USA.

3: Weizmann Institute of Science, Rehovot, Israel.

(Visiting IBM Almaden and Stanford University)

Abstract

We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building meta-search engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations. We develop a set of techniques for the rank aggregation problem and compare their performance to that of well-known methods. A primary goal of our work is to design rank aggregation techniques that can effectively combat "spam," a serious problem in Web searches. Experiments show that our methods are simple, efficient, and effective.

Counting Inversions: DAC

1 5 4 8 10 2 6 9 12 11 3 7

Divide into 2 sublists of equal size

1 5 4 8 10 2 6 9 12 11

Recursively count the inversions

5 yellow-yellow inv.

8 red-red inv.

Combine: add recursive counts and yellow-red inv

9 yellow-red inv.

Total: 5 + 8 + 9 = 22

Counting Inversions: DAC

1 5 4 8 10 2 6 9 12 11 3 7

<u>Cost</u>

Divide into 2 sublists of equal size

1 5 4 8 10 2 6 9

6 9 12 11 3 7

O(1)

Recursively count the inversions

5 yellow-yellow inv.

8 red-red inv.

2* C(n/2)

Combine: add recursive counts and yellow-red inv

9 yellow-red inv.

Total: 5 + 8 + 9 = 22

555

Counting Inversions: DAC

Variation of **merge-sort**

Combine: count yellow-red inversions

- assume each half is sorted
- count inversions where A[i] and A[j] are in different halves
- merge two sorted halves into sorted whole

Merge-and-Count: count inversions while merging the two sorted lists

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Total: 6 + 3

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

Total: 6 + 3

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16

Total: 6 + 3 + 2

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16 17

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16 17 18

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16 17 18 19

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16 17 18 19 23

Merge and count step:

- given two sorted halves, count the number of inversions where A[i] and A[j] are in different halves
- combine two sorted halves into sorted whole

2 3 7 10 11 14 16 17 18 19 23 25

Total: 6 + 3 + 2 + 2 = 13

```
Sort-and-Count(A):
 if A has one element
   return (0,A)
 Divide A into two halves A1, A2
 (r1, A1) \leftarrow Sort-and-Count(A1)
 (r2,A2) \leftarrow Sort-and-Count(A2)
 (rC, A) \leftarrow Merge-and-Count(A1,A2)
 return (r1+r2+rC, A)
```

```
Merge-and-Count(A1,A2):
 Initialize an empty array B
 Inv \leftarrow 0
 If A1 or A2 is empty ...
 Compare first elems of A1, A2
 If the smallest is in A1:
    move it at the end of B
 Else
    move it at the end of B
    Inv += |A1|
 return (Inv, B)
```

Complexity of the Sort-and-Count

$$C(n) \le 2C(\lceil n/2 \rceil) + \lambda n$$

$$\leq \lambda n + 2\lambda \lceil n/2 \rceil + 4C(\lceil n/2 \rceil_2)$$

Notation:

$$\lceil x/2 \rceil_1 = \lceil x/2 \rceil$$

$$\lceil x/2 \rceil_{k+1} = \lceil \lceil x/2 \rceil_k / 2 \rceil$$

N: power of 2 s.t.

$$n \le N < 2n$$

$$\leq \lambda N(1+1+\cdots+1)+2^k C(\lceil n/2 \rceil_k)$$

$$\leq \lambda N(k-1) + 2^k C(\lceil n/2 \rceil_k)$$

$$use \\ k = \lceil \log_2 n \rceil$$

$$= \lambda n(\lceil log_2 n \rceil - 1) + 2^{\lceil log_2 n \rceil}$$

$$= O(nlogn)$$

II. Selection: Linear Time with DAC

Complexity of DAC algorithms

O(log n): binary powering

O(n log n): merge sort, counting inversions

 $O(n^{\log_2 3} \approx n^{1.58})$: Karatsuba multiplication (integers, polynomials)

 $O(n^{\log_2 7} \approx n^{2.80})$: Strassen's matrix multiplication

Next, we talk about a linear time algorithm

Select: $(A := \{a_1, ..., a_n\}, k) \mapsto x \in A \text{ s.t. } |\{a \in A \mid a \le x\}| = k$

Select: $(A := \{a_1, ..., a_n\}, k) \mapsto x \in A \text{ s.t. } |\{a \in A \mid a \le x\}| = k$

Min/Max: Select with k = 1 and k = n, resp.

Straightforward algorithm in O(n) comparisons

Select: $(A := \{a_1, ..., a_n\}, k) \mapsto x \in A \text{ s.t. } |\{a \in A \mid a \le x\}| = k$

Median: Select with $k = \lfloor n/2 \rfloor$

Sorting gives an algorithm in $O(n \log n)$ comparisons

Median vs Mean:

Select: $(A := \{a_1, ..., a_n\}, k) \mapsto x \in A \text{ s.t. } |\{a \in A \mid a \le x\}| = k$

Sorting gives an algorithm in $O(n \log n)$ comparisons

Applications: Order statistics; find the "top k", ...

- **Q.** Can we do it with O(n) compares ?
- A. Yes! Selection is easier than sorting

Recall: QuickSort Partitioning (CSE103)

Input: an array of *n* comparable elements a pivot *p* among them

Output: array partitioned around *p*; new index of *p*.

Complexity: O(n) comparisons

Select using Partitioning

```
Algorithm Select(A, k):
   If |A| = 1, return A[0]
   Choose a good pivot p
   q := Partition(a, p)
   If q = k return q
   If q > k return Select(A[:q], k)
   If q < k return Select(A[q:], k - q)
```

Worst-case: $C(n) \le C(n) + O(n) \longrightarrow O(n^2)$

Select using Partitioning

Algorithm Select(A, k):

If |A| = 1, return A[0]

Choose a good pivot p

q := Partition(a, p)

If q = k return q

If q > k return Select(A[:q], k)

If q < k return Select(A[q:], k - q)

Low complexity:

depends on

|q - |A|/2

being small

Worst-case: $C(n) \le C(n) + O(n) \longrightarrow O(n^2)$

Better analysis: randomized algs. expected time=O(n)

Selection in worst-case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so that each piece is guaranteed to have $\leq 7/10$ n elements.

- Q. How to find approximate median in linear time?
- A. Recursively compute median of sample of $\leq 2/10$ n elements

$$C(n) = \begin{cases} \Theta(1), & \text{if } n = 1 \\ C(7/10n) + C(2/10n) + \Theta(n), & \text{otherwise} \end{cases}$$
two sub-problems of different sizes!
$$\implies C(n) = \Theta(n)$$

Choosing the pivot element

- Divide n elements into n/5 groups of 5 elements each (plus extra).
- Find median of each group (except extra).

Choosing the pivot element

- Divide n elements into n/5 groups of 5 elements each (plus extra).
- Find median of each group (except extra).

Choosing the pivot element

- Divide n elements into n/5 groups of 5 elements each (plus extra).
- Find median of each group (except extra).

Median-of-medians selection algorithm

```
MOM-Select(A,k):
    n ← |A|
    if ( n < 50 ):
        return k-th smallest element of A via mergesort
    Group A into n/5 groups of 5 elements each (ignore leftovers)
    B ← median of each group of 5
    p ← MOM-Select(B, n/10) ← median of medians</pre>
```

Median-of-medians selection algorithm

```
MOM-Select(A,k):
  n \leftarrow |A|
  if (n < 50):
     return k-th smallest element of A via mergesort
  Group A into n/5 groups of 5 elements each (ignore leftovers)
  B ← median of each group of 5
  p ← MOM-Select(B, n/10) ← median of medians
  (L, R) \leftarrow Partition(A,p)
  if (k < |L|) return MOM-Select(L,k)
  else if (k > |L|) return MOM-Select(R, k - |L|)
  else return p
```

At least half of 5-element medians ≤ p

- At least half of 5-element medians ≤ p
- At least (n/5)/2 = n/10 medians $\leq p$

- At least half of 5-element medians ≤ p
- At least (n/5)/2 = n/10 medians $\leq p$
- At least 3(n/10) elements $\leq p$

At least half of 5-element medians ≥ p

- At least half of 5-element medians ≥ p
- At least (n/5)/2 = n/10 medians $\ge p$

- At least half of 5-element medians ≥ p
- At least (n/5)/2 = n/10 medians $\ge p$
- At least 3(n/10) elements $\geq p$

Recurrence

Median-of-medians selection algorithm recurrence.

- select called recursively with n/5 elements to compute MOM p
- at least 3/10 n elements ≤ p
- at least 3/10 n elements $\geq p$
- select called recursively with at most n (3/10 n) elements

$$C(n) \le C(\lfloor n/5 \rfloor) + C(n - 3\lfloor n/10 \rfloor) + \frac{11}{5}n$$

median of recursive computing median of 5 medians select (≤ 6 compares per group) partitioning (≤ n compares)

Recurrence

$$C(n) \le C(1/5n) + C(7/10n) + \lambda n$$

 $C(x) + C(y) \le C(x+y)$ (super-additive)

$$C(n) \le C(9/10n) + \lambda n$$

$$\le C((9/10)^2 n) + \lambda n(1 + 9/10)$$

$$\le C((9/10)^3 n) + \lambda n(1 + 9/10 + (9/10)^2)$$

$$\vdots$$

$$\le C(n_0) + \lambda n(1 + 9/10 + (9/10)^2 + \dots) = C(n_0) + \lambda n \cdot 10 = O(n)$$

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

Next

Next tutorial: Binary Search and friends

Next week: The end of divide-and-conquer "Master theorem"; other examples

Feedback

Moodle

Questions: constantin.enea@polytechnique.edu