Car Price Prediction

This Jupyter Notebook was created by <u>Dajah Vincent (https://www.linkedin.com/in/dajahvincent/)</u>

• Adding Data Manipulation and Visualization Libraries

```
In [1]: #Importing data manipulation and visualization libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

· Reading the csv data

```
In [2]: #Reading the CSV file containing the datasets
car_price = pd.read_csv("car data.csv")
```

Out[3]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0
5	vitara brezza	2018	9.25	9.83	2071	Diesel	Dealer	Manual	0
6	ciaz	2015	6.75	8.12	18796	Petrol	Dealer	Manual	0
7	s cross	2015	6.50	8.61	33429	Diesel	Dealer	Manual	0
8	ciaz	2016	8.75	8.89	20273	Diesel	Dealer	Manual	0
9	ciaz	2015	7.45	8.92	42367	Diesel	Dealer	Manual	0

In [4]: #Viewing the Last 10 rows from the dataset
 car_price.tail(10)

Out[4]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner
291	brio	2015	5.40	6.10	31427	Petrol	Dealer	Manual	0
292	jazz	2016	6.40	8.40	12000	Petrol	Dealer	Manual	0
293	city	2010	3.25	9.90	38000	Petrol	Dealer	Manual	0
294	amaze	2014	3.75	6.80	33019	Petrol	Dealer	Manual	0
295	city	2015	8.55	13.09	60076	Diesel	Dealer	Manual	0
296	city	2016	9.50	11.60	33988	Diesel	Dealer	Manual	0
297	brio	2015	4.00	5.90	60000	Petrol	Dealer	Manual	0
298	city	2009	3.35	11.00	87934	Petrol	Dealer	Manual	0
299	city	2017	11.50	12.50	9000	Diesel	Dealer	Manual	0
300	brio	2016	5.30	5.90	5464	Petrol	Dealer	Manual	0
4									

Exploratory Data Analysis - EDA

Out[5]:

	Year	Selling_Price	Present_Price	Driven_kms	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.642584	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

```
In [6]: #Viewing informations about the dataframe
         car_price.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 301 entries, 0 to 300
         Data columns (total 9 columns):
         # Column
                            Non-Null Count Dtype
         ---
             ----
                            -----
                                           ----
          0
             Car Name
                            301 non-null
                                           object
          1
             Year
                            301 non-null
                                           int64
             Selling_Price 301 non-null
                                           float64
          2
          3
             Present_Price 301 non-null
                                           float64
          4
             Driven_kms
                            301 non-null
                                           int64
          5
             Fuel Type
                            301 non-null
                                           object
             Selling_type
                            301 non-null
                                           object
          6
          7
             Transmission
                            301 non-null
                                           object
             Owner
                            301 non-null
                                           int64
         dtypes: float64(2), int64(3), object(4)
         memory usage: 21.3+ KB
In [7]: #Checking the sum of columns that have null or empty values
         car_price.isnull().sum()
Out[7]: Car_Name
                         0
                         0
         Year
         Selling_Price
                         0
         Present_Price
                         0
         Driven kms
                         0
         Fuel_Type
                         0
         Selling type
                         0
         Transmission
                         0
         Owner
                         0
         dtype: int64
In [8]: #Checking the dataframe for rows with duplicated values
         car_price.duplicated().sum()
Out[8]: 2
In [9]: #Dropping rows with duplicated values from the dataframe
         car_price.drop_duplicates(inplace=True)
In [10]: #Rechecking the dataframe for rows with duplicated values
         car_price.duplicated().sum()
```

Adding Visualization

Out[10]: 0

```
In [11]: import seaborn as sns
         import matplotlib.pyplot as plt
         def plot_histograms(data, features, colors):
             # Create a figure with appropriate size
             plt.figure(figsize=(8, len(features) * 5))
             # Loop over each feature to create a subplot with a unique color
             for index, feature in enumerate(features):
                 plt.subplot(len(features), 1, index + 1)
                 ax = sns.histplot(data[feature], bins=20, kde=True, color=colors[index])
                 plt.title(feature)
                 # Add Labels to each bar
                 for p in ax.patches:
                     ax.annotate(f"{p.get_height():.1f}",
                                 (p.get_x() + p.get_width() / 2., p.get_height()),
                                 ha='center', va='center',
                                 fontsize=9, color='black',
                                 xytext=(0, 5),
                                 textcoords='offset points')
             # Adjust layout to prevent overlap
             plt.tight_layout()
             # Show the plot
             plt.show()
         # Example usage:
         # Assuming 'car price' is a pandas DataFrame containing the data
         plot_histograms(car_price, ['Year', 'Selling_Price', 'Present_Price', 'Driven_kms', 'Owne
```


· Feature Engineering

```
category_cols = ['Fuel_Type', 'Selling_type', 'Transmission']
         unique categories = {col: car price[col].unique() for col in category cols}
         # Print the unique categories for each column
         for col, categories in unique_categories.items():
             print(f"Category in {col} is: {categories}")
         Category in Fuel_Type is: ['Petrol' 'Diesel' 'CNG']
         Category in Selling type is: ['Dealer' 'Individual']
         Category in Transmission is: ['Manual' 'Automatic']
In [13]: | def plot categorical features vs price(dataframe, category columns, price column):
             # Check if all category columns and price column exist in the dataframe
             missing_columns = [col for col in category_columns + [price_column] if col not in data
             if missing columns:
                 print(f"Warning: The following columns are missing from the dataframe: {missing_columns}
             # Create subplots
             num plots = len(category_columns)
             num_rows = (num_plots + 2) // 3 # Calculate the number of rows needed
             plt.figure(figsize=(12, num_rows * 4))
             # Loop through each categorical column and plot
             for i, feature in enumerate(category columns):
                 plt.subplot(num rows, 3, i + 1)
                 sns.boxplot(data=dataframe, x=feature, y=price column)
                 plt.title(f'{feature} vs. {price_column.capitalize()}')
             plt.tight_layout()
             plt.show()
         # Example usage:
         plot categorical features vs price(car price, category cols, 'Selling Price')
```



```
In [14]:
         def plot_correlation_heatmap(dataframe, numerical_features):
             # Check if all numerical features exist in the dataframe
             missing_columns = [col for col in numerical_features if col not in dataframe.columns]
             if missing columns:
                 print(f"Warning: The following columns are missing from the dataframe: {missing_columns}
                 return
             # Calculate the correlation matrix
             correlation_matrix = dataframe[numerical_features].corr()
             # Plot the heatmap
             plt.figure(figsize=(10, 8))
             sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
             plt.title('Correlation Heatmap')
             plt.show()
         # Example usage:
         # Assuming 'df' is a pandas DataFrame with the specified numerical features
         numerical_features = ["Year", "Selling_Price", "Present_Price", "Driven_kms", "Owner"]
         plot_correlation_heatmap(car_price, numerical_features)
```



```
In [16]: def encode_categorical_variables(dataframe, categorical_columns):
    label_encoder = LabelEncoder()
    for column in categorical_columns:
        dataframe[column] = label_encoder.fit_transform(dataframe[column])

    return dataframe

# Example usage:
# Assuming 'df' is a pandas DataFrame with categorical columns
categorical_columns = ['Fuel_Type', 'Selling_type', 'Transmission']
encoded_df = encode_categorical_variables(car_price, categorical_columns)

numerical_columns = ['Year', 'Present_Price', 'Driven_kms', 'Owner']
# Feature scaling
scaler = StandardScaler()
car_price[numerical_columns] = scaler.fit_transform(car_price[numerical_columns])
car_price
```

Out[16]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	
0	ritz	0.132992	3.35	-0.228138	-0.254603	2	0	1	-0
1	sx4	-0.212787	4.75	0.233742	0.156181	1	0	1	-0
2	ciaz	1.170329	7.25	0.269991	-0.770651	2	0	1	-0
3	wagon r	-0.904345	2.85	-0.396520	-0.814297	2	0	1	-0
4	swift	0.132992	4.60	-0.078466	0.142061	1	0	1	-0
296	city	0.824550	9.50	0.474622	-0.075193	1	0	1	-0
297	brio	0.478771	4.00	-0.191889	0.592640	2	0	1	-0
298	city	-1.595904	3.35	0.404463	1.309818	2	0	1	-0
299	city	1.170329	11.50	0.579860	-0.716735	1	0	1	-0
300	brio	0.824550	5.30	-0.191889	-0.807519	2	0	1	-0

299 rows × 9 columns

∢

Out[17]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	
0	ritz	0.132992	3.35	-0.228138	-0.254603	2	0	1	-0
1	sx4	-0.212787	4.75	0.233742	0.156181	1	0	1	-0
2	ciaz	1.170329	7.25	0.269991	-0.770651	2	0	1	-0
3	wagon r	-0.904345	2.85	-0.396520	-0.814297	2	0	1	-0
4	swift	0.132992	4.60	-0.078466	0.142061	1	0	1	-0
296	city	0.824550	9.50	0.474622	-0.075193	1	0	1	-0
297	brio	0.478771	4.00	-0.191889	0.592640	2	0	1	-0
298	city	-1.595904	3.35	0.404463	1.309818	2	0	1	-0
299	city	1.170329	11.50	0.579860	-0.716735	1	0	1	-0
300	brio	0.824550	5.30	-0.191889	-0.807519	2	0	1	-0

299 rows × 9 columns

Machine Learning Model Training & Evaluation

```
In [39]: #importing machine learning models and evaluation metrics
```

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from tabulate import tabulate
```

```
In [38]: #Split the data into features (X) and target (y)
         X = car_price.drop(['Selling_Price', 'Car_Name'], axis = 1)
         y = car_price['Selling_Price']
         #To split the datasets between training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
         #Initializing Linear Regression model
         model = LinearRegression()
         #Fitting the model to the training data
         model.fit(X_train, y_train)
         #Making predictions on the testing dataset
         y_predict = model.predict(X_test)
         #Evaluating the model performance
         mse = mean_squared_error(y_test, y_predict)
         mae = mean_absolute_error(y_test, y_predict)
         r2_square = r2_score(y_test, y_predict)
         #Creating a table using the tabulate library to efficiently display the models evaluation
         results_table = [
             ["R-squared", r2_square],
             ["Mean Squared Error", mse],
             ["Mean Absolute Error", mae]
         ]
         # Print the results in a tabulated format
         print(tabulate(results_table, headers=["Metric", "Value"], tablefmt="grid"))
```

Value
78644
7759
9518

Making Predictions of Car Prices Against Actual Car Price

In [55]: pred_df = pd.DataFrame({'Actual Price Value':y_test,'Predicted Price Value':y_predict,'Value'
pred_df

Out[55]:

	Actual Price Value	Predicted Price Value	Variance
283	8.99	7.552126	1.437874
267	8.35	7.494551	0.855449
166	0.45	1.286506	-0.836506
9	7.45	6.788805	0.661195
78	5.25	11.716672	-6.466672
126	0.90	1.808141	-0.908141
141	0.60	1.273614	-0.673614
154	0.50	0.687647	-0.187647
206	5.75	5.840494	-0.090494
56	4.50	5.023498	-0.523498

120 rows × 3 columns

```
In [62]: #Importing the random and tabulate libraries to pick datapoints and show predictions resul
         import random
         from tabulate import tabulate
         #Create a DataFrame with the relevant columns
         pred_df = pd.DataFrame({
             'Actual Price Value': y_test,
             'Predicted Price Value': y_predict,
             'Variance': y_test - y_predict
         })
         #Randomly sampling data points for the predictions (10 data points)
         random indices = random.sample(range(len(pred df)), 10)
         sampled_pred_df = pred_df.iloc[random_indices]
         #Create a table to display the sampled results
         results_table = [
             ["Index", "Actual Price", "Predicted Price", "Variance"]
         for idx, row in sampled pred df.iterrows():
             results_table.append([idx, f"{row['Actual Price Value']:.3f}", f"{row['Predicted Price
         print(tabulate(results_table, headers="firstrow", tablefmt="grid"))
```

++			++
Index	Actual Price	Predicted Price	Variance
225	2.7	2.578	0.12
34	5.5	6.048	-0.55
174	0.38	0.77	-0.39
61	4.5	5.211	-0.71
87	5.9	6.701	-0.8
230	6.15	6.283	-0.13
241	4.75	5.707	-0.96
221	4.5	6.071	-1.57
156	0.48	1.532	-1.05
64	33	21.54	11.46