南京航空航天大学

第 1页 (共 2页)

二〇一九~二〇二〇 学年 第I学期 **《复变函数》考试试题**

考试日期: 2019 年11月1日 试卷类型: A 卷

试卷代号:

班号					学号			姓名			
题号	_	11	=	四	五	六	七	八	九	+	总分
得分											

一. 填空题 (每空3分, 共24分)

$$1. \oint_{|z|=1} \frac{1}{2-z} dz = \underline{\hspace{1cm}}$$

2.
$$e^{2z} = -3 + 4i$$
, \emptyset $z =$ ______

4.
$$\operatorname{Re} s[\frac{1-\cos z}{z^4}, 0] =$$
 , $\operatorname{Re} s[\frac{1}{1-z}, 1] =$

5. 设
$$f(z) = \frac{z}{(z^2 + 1)^3 \sin z}$$
 , 则 $f(z)$ 的奇点______ (如果

是极点, 要写出级)

6.
$$f(z) = z^3$$
 在 $z = i$ 处的转动角为

7. 幂级数
$$\sum_{n=1}^{+\infty} n^3 z^n$$
 的收敛半径为_____

- 二、若 $u(x,y) = e^y \sin x + 2x + 1$, 求 证 u(x,y) 为 调 和 函 数 。 并 求 解 析 函 数 f(z) = u(x,y) + iv(x,y) , 其中 z = x + iy , 使得 f(0) = 1 + i 。 (12 分)
- 三、 $f(z) = 4x^2 4y^2 2 + e^x \sin y + 8xyi ie^x \cos y + 5i$, 其中 z = x + iy , 求出其导数并证明 f(z)解析。(12 分)

四、将
$$f(z) = \frac{1}{z(z-1)(z+2)}$$
 分别在 $0 < |z| < 1$ 和 $1 < |z-1| < 3$ 内展成洛朗级数。(12 分)

五、计算下列积分的值(每题5分,共20分)

$$1. \quad \oint_{|z|=1} \frac{\cos z}{z(z-5)^2} dz$$

$$2. \quad \oint_{|z|=1} \frac{z - \sin z}{z^6} dz$$

3.
$$\oint_{|z|=3} \frac{3z+2}{z(z+1)^2} dz$$

4.
$$\oint_{|z|=4} \frac{1}{z \sin z} dz$$

六、设f(z)在区域 D 内解析,且|f(z)|为常数,求证f(z)在 D 内也是常数。(10 分)

七、求将右半平面 Re(z) > 0 共形映射成单位圆 |w| < 1 的分式线性映射 w = f(z),使其满足 $f(1) = 0, f(i) = -1 \ . \ (10\ \%)$