Modelo de evaluación del comportamiento sedentario mediante lógica difusa y datos biométricos

Documento técnico para integrar al manuscrito de tesis. Incluye justificación clínica y datadriven, diseño metodológico, resultados, discusión crítica, limitaciones y próximos pasos.

1. Objetivo

Desarrollar y validar un **sistema de inferencia difusa** para clasificar el **sedentarismo semanal** a partir de biométricos de wearables, y contrastar su salida con una **verdad operativa** derivada de **clustering no supervisado**.

2. Población y datos

- 10 adultos (5 mujeres, 5 hombres), seguimiento multianual.
- Unidad de análisis: semana por usuario.
- **Dataset final semanal:** 1,385 semanas agregadas con estadísticas robustas (p25/p50/p75, IQR) por variable.
- Variables base diarias: minutos de movimiento, horas monitorizadas, gasto calórico activo, HRV_SDNN, FC reposo y FC al caminar, entre otras.
- · Variables derivadas clave (diarias):
- Actividad_relativa = $\frac{\text{minutos en movimiento}}{60 \times \text{horas monitorizadas}}$
- Normaliza por exposición al uso del reloj.
- TMB (Mifflin–St Jeor) por sexo, peso, talla y edad.
- Superávit_calórico_basal = $\frac{Gasto\ activo \times 100}{TMB}$

Ajusta por antropometría; permite comparaciones inter-sujeto.

3. Pipeline metodológico

- 1) Preprocesamiento diario y creación de derivadas (Actividad_relativa, TMB, Superávit_calórico_basal).
- Imputación jerárquica con *gates* (no-wear duro, actividad baja, normal) y **medianas móviles unidireccionales (pasado)** para evitar *leakage* temporal.
- Winsorización operativa p1–p99 por mes (limitaciones declaradas). 2) **Agregación semanal** con métricas robustas (p50 e IQR) de variables seleccionadas.

Variables semanales retenidas para modelado:

Actividad_relativa_p50, Actividad_relativa_IQR, Superávit_calórico_basal_p50, Superávit_IQR, HRV_SDNN_p50, HRV_SDNN_IQR, Delta_cardiaco_p50, Delta_cardiaco_IQR; donde Delta_cardiaco = FC_al_caminar_p50 - FCr_p50. 3) Clustering no supervisado (verdad operativa): K-means con *K-sweep*

(K=2..6), selección por Silhouette y estabilidad.

Resultado robusto: **K=2** con tamaños ~30% y ~70%. 4) **Sistema de inferencia difusa (screening interpretable):**

- Inputs (4, p50): Actividad_relativa, Superávit_calórico_basal, HRV_SDNN, Delta_cardiaco.
- **Funciones de pertenencia (MF):** triangulares por percentiles (p10–p25–p40; p35–p50–p65; p60–p75–p90) respetando la dirección clínica (**higher_better** o **lower_better**).
- **Reglas (5):** R1: Actividad baja \land Superávit bajo \rightarrow Sedentarismo alto. R2: Actividad alta \land Superávit alto \rightarrow Sedentarismo bajo. R3: HRV baja \land Delta alto \rightarrow Sedentarismo alto. R4: Actividad media \land HRV media
- \rightarrow Sedentarismo medio. R5: Actividad baja \land Superávit medio \rightarrow Sedentarismo medio-alto (peso 0.7). **Salida:** *Sedentarismo_score* \in [0,1]. 5) **Validación cruzada:** búsqueda del **umbral** τ que maximiza F1 contra la partición K=2 del clustering.

4. Resultados

4.1. Pre-clustering QC

- Multicolinealidad: VIF \leq 1.88 en todos los *features* (sin redundancia severa).
- **PCA**: PC1=26.5%, PC2=20.4% (≈46.9% acumulado) → estructura multidimensional; no se reduce dimensionalidad.
- **K-sweep:** Mejor **K=2** (Sil≈0.23); K≥5 inestable por *micro-clusters*.

4.2. Sistema difuso

- Membresías: 4 variables × 3 etiquetas (baja/media/alta) con percentiles de la muestra.
- **Distribución del score:** media 0.571 \pm 0.235; rango [0.000, 1.000] \rightarrow no degenerado.
- Mapeo natural por cluster:
- Cluster 1: Sedentarismo_score medio 0.621 → Alto Sedentarismo.
- Cluster 0: Sedentarismo_score medio 0.454 → Bajo Sedentarismo.

4.3. Validación vs clusters (verdad operativa)

- Umbral óptimo: τ = 0.30 (máx F1).
- Métricas globales (N=1337):

Accuracy 0.74 · F1 0.84 · Precision 0.737 · Recall 0.976 · MCC 0.294.

- Matriz de confusión: TN=77, FP=325, FN=22, TP=913.
- **Concordancia por usuario:** media 70% (rango 27.7% 99.3%). Casos con baja concordancia: u3, u2, u8 (revisión dirigida).

5. Interpretación clínica y fisiológica

- 1) **Alta sensibilidad (Recall 97.6%)**: adecuado para **cribado**; minimiza falsos negativos (seguridad del paciente).
- 2) **Trade-off esperado**: falsos positivos en τ =0.30; preferible en screening con confirmación clínica posterior.
- 3) Roles fisiológicos de inputs:
- **Actividad_relativa** (exposición-normalizada) y **Superávit_calórico_basal** (ajustado por TMB) separan

perfiles activo-gastador vs sedente-conservador.

- HRV_SDNN y Delta_cardiaco capturan eficiencia autonómica y carga cardiovascular durante marcha.
- 4) **Heterogeneidad inter-sujeto**: discordancias concentradas en usuarios con **alta variabilidad intra-semanal**; sugiere explorar **τ personalizado** o reglas moduladas por **IQR**.

6. Fortalezas metodológicas

- Convergencia supervisado-no supervisado: fuzzy (interpretable) ≈ clustering (data-driven) con F1=0.84.
- MF por percentiles: anclaje robusto a la distribución observada; fácil recalibración por cohorte.
- **Trazabilidad completa**: desde insumos diarios hasta auditorías de imputación y *logs* por paso.

7. Limitaciones y mitigación

- 1) **Falsos positivos** (FP=325): mantener τ =0.30 por política de sensibilidad; reportar **zona intermedia (0.40–0.60)** y usar confirmación clínica.
- 2) **Heterogeneidad por usuario**: revisar discordancias_top20 y considerar **τ por usuario** o **pesos por IQR** en R5.
- 3) **Silhouette moderado** del clustering (\approx 0.23): aceptado por interpretabilidad K=2; no usar K \geq 5.
- 4) Escalado global: recalibración anual o por cohorte para evitar arrastre por valores extremos históricos.

8. Reproducibilidad (archivos clave)

- **Configuración fuzzy:** fuzzy_config/fuzzy_membership_config.yaml y feature_scalers.json (funciones de pertenencia y escalado).
- Salidas fuzzy: analisis_u/fuzzy/fuzzy_output.csv, 08_fuzzy_inference_log.txt.
- **Evaluación vs clusters:** 09_eval_fuzzy_vs_cluster.txt, plots/ (PR curve, histograma, matriz de confusión, distribución por cluster).
- $\textbf{\cdot Semanal consolidado:} \Big[weekly_consolidado.csv \Big] y \Big[cluster_inputs_weekly.csv \Big].$

9. Implicaciones y aplicación

- Clínica: herramienta de screening poblacional del sedentarismo con reglas auditables.
- **Salud pública/laboral:** monitoreo longitudinal y detección temprana de empeoramiento conductual.
- **Investigación:** marco reproducible para integrar nuevas variables (sueño, dieta, estrés) sin perder interpretabilidad.

10. Próximos pasos

- 1) **Personalización de umbral** τ por usuario o subpoblaciones.
- 2) Reglas moduladas por variabilidad (IQR) para capturar intermitencia.
- 3) Validación externa en nueva cohorte y análisis de sensibilidad de MF.
- 4) **Reporte clínico**: generar *dashboard* y resúmenes por usuario/semana con alertas.

Agradecimientos

A los participantes y al equipo de análisis por su colaboración sostenida.

Notas para el manuscrito - Incluir 6 figuras: MF (4), PR-curve, matriz de confusión, distribución por cluster.

- Incluir 2 tablas: métricas globales y concordancia por usuario.
- Anexar rutas y nombres de archivos para asegurar reproducibilidad.

Tablas de métricas por usuario

Nota: Estas tablas están listas para pegar en la tesis. Si ya tienes los archivos analisis_u/fuzzy/fuzzy_output.csv y analisis_u/fuzzy/09_eval_fuzzy_vs_cluster.txt, puedes rellenarlas automáticamente con el script 09_fuzzy_vs_clusters_eval.py (bloque per_user_summary). Si prefieres hacerlo manualmente, utiliza las definiciones del anexo al final.

1) Métricas de clasificación (Fuzzy vs. Clusters) por usuario

Usuario	Semanas (N)	% Datos observados*	Accuracy	Precision	Recall	F1	МСС	τ usado	TP	FP	TN	FN
u1 – ale	_	_	_	_	_	_	_	0.30	_	_	_	_
u2 – brenda	_	_	_	_	_	_	_	0.30	_	_	_	_
u3 – christina	_	_	_	_	_	_	_	0.30	_	_	_	_
u4 – edson	_	_	_	_	_	_	_	0.30	_	_	_	_
u5 – esmeralda	_	_	_	_	_	_	_	0.30	_	_	_	_
u6 – fidel	_	_	_	_	_	_	_	0.30	_	_	_	_

Usuario	Semanas (N)	% Datos observados*	Accuracy	Precision	Recall	F1	MCC	τ usado	TP	FP	TN	FN
u7 – kevin	_	_	_	_	_	_	_	0.30	_	_	_	_
u8 – legarda	_	_	_	_	_	_	_	0.30	_	_	_	_
u9 – lmartinez	_	_	_	_	_	_	_	0.30	_	_	_	_
u10 – vane	_	_	_	_	_	_	_	0.30	_	_	_	_

Global (10 usuarios): Accuracy=0.74, Precision=0.737, Recall=0.976, F1=0.840, τ =0.30.

2) Distribución de clusters por usuario

Usuario	Cluster Alto Sed (%)	Cluster Bajo Sed (%)	Diferencia absoluta (%)
u1 – ale	_	_	_
u2 – brenda	_	_	_
u3 – christina	_	_	_
u4 – edson	_	_	_
u5 – esmeralda	_	_	_
u6 – fidel	_	_	_
u7 – kevin	_	_	_
u8 – legarda	_	_	_
u9 – lmartinez	_	_	_
u10 – vane	_	_	_

3) Estadísticos semanales por usuario (p $50 \pm sd \mid IQR$)

Usuario	Act_rel_p50 (±sd)	Act_rel_IQR	Superávit_p50 (±sd)	Superávit_IQR	HRV_SDNN_p50 (±sd)	HRV_IQR	ΔCard_p50 (±sd)
u1 – ale	_		_	-	_	_	_
u2 – brenda	_	_	_	_	_	_	_

^{* %} Datos observados se calcula como (1 – %imputación total) en la semana promedio del usuario.

Usuario	Act_rel_p50 (±sd)	Act_rel_IQR	Superávit_p50 (±sd)	Superávit_IQR	HRV_SDNN_p50 (±sd)	HRV_IQR	ΔCard_p50 (±sd)
u3 – christina	_	_	_	_	_	_	_
u4 – edson	_	_	_	_	_	_	_
u5 – esmeralda	_	_	_	_	_	_	_
u6 – fidel	_	_	_	_	_	_	_
u7 – kevin	_	_	_	_	_	_	_
u8 – legarda	_	_	_	_	_	_	_
u9 – Imartinez	_	_	_	_	_	_	_
u10 – vane	_	_	_	_	_	_	_

Sugerencia de redacción: "En el Anexo X (Tabla 2) se reporta la proporción semanal de pertenencia al clúster de alto sedentarismo por usuario; en promedio la cohorte muestra ~70% de semanas en alto sedentarismo y ~30% en bajo, consistente con la estructura bimodal descubierta en K=2".

Anexo: Definiciones operativas

Horizonte temporal - **Unidad de análisis:** Semana calendario (lunes-domingo). - **Semana válida:** \geq 3 días con uso \geq 8 h/día o <16 h sin registro; %imputación \leq 60%.

Categorías de imputación - **Observado:** Datos reales del dispositivo. - **Rolling mediana (backward-only):** Mediana de ventanas históricas crecientes si faltan datos cercanos. - **Hard no-wear:** Días con uso <8 h o sin registro ≥16 h. - **Baseline fisiológico:** Sustitución conservadora (p.ej., FCr promedio de reposo) cuando no hay histórico suficiente.

Variables base (diario) - Total_hrs_monitorizadas (h/día): horas con señal válida. - min_totales_en_movimiento (min/día): minutos en anillo de movimiento. - Gasto_calorico_activo (kcal/día): calorías activas. - HRV_SDNN (ms): variabilidad cardiaca (mediana diaria de SDNN). - FC_al_caminar_promedio_diario (lpm): promedio de FC al caminar. - FCr_promedio_diario (lpm): frecuencia cardiaca en reposo.

```
Variables derivadas (diario) - Actividad_relativa = min_totales_en_movimiento ÷ (60 × Total_hrs_monitorizadas); tasa de minutos en movimiento por hora monitorizada (corrige sesgo de exposición). - TMB (kcal/día): Mifflin-St Jeor (sexo/peso/estatura/edad). - Superavit_calorico_basal (%) = (Gasto_calorico_activo × 100) ÷ TMB. - Delta_cardiaco (lpm) = FC_al_caminar_promedio_diario - FCr_promedio_diario.
```

```
Agregación semanal (features para clustering/fuzzy) Para cada variable clave se calculan p50 y IQR por semana; el set final de 8 features: - Actividad_relativa_p50, Actividad_relativa_iqr - Superavit_calorico_basal_p50, Superavit_calorico_basal_iqr - HRV_SDNN_p50, HRV_SDNN_iqr - Delta_cardiaco_p50, Delta_cardiaco_iqr
```

Estandarización para análisis - Z-robust por cohorte (mediana/MAD) en features semanales solamente (evita contaminar ratios con normalización previa a su construcción).

Clustering - Método: K-Means sobre 8 features estandarizadas. - Selección K: barrido K=2..6; óptimo **K=2** por Silhouette (\approx 0.23) y estabilidad. - Interpretación: Cluster 1 \rightarrow **Alto sedentarismo**; Cluster 0 \rightarrow **Bajo sedentarismo**.

Sistema de inferencia difusa - Entradas: Actividad_relativa_p50 , Superavit_calorico_basal_p50 , HRV_SDNN_p50 , Delta_cardiaco_p50 . - Funciones de membresía triangulares (baja/media/alta) definidas por percentiles de la cohorte (p10-p25-p40, p35-p50-p65, p60-p75-p90) respetando dirección fisiológica (higher_better vs lower_better). - Reglas (ejemplos): - R1: Si Actividad es baja y Superávit es bajo → Sedentarismo alto. - R2: Si HRV es baja y Δ Card es alta → Sedentarismo alto. - R3: Si Actividad es alta y Superávit es alto → Sedentarismo bajo. - Defuzzificación: centroide a score \in [0,1]. - Umbral operativo τ =0.30 (maximiza F1=0.84 y recall=0.976 frente a clusters).

Métricas globales de validación - Accuracy 0.74 | Precision 0.737 | Recall 0.976 | F1 0.84 | MCC 0.294. - Matriz de confusión total disponible en analisis_u/fuzzy/plots/confusion_matrix.png .

Cómo rellenar automáticamente las tablas:

1) Ejecuta python 09_fuzzy_vs_clusters_eval.py --per_user_csv per_user_metrics.csv . 2) Abre per_user_metrics.csv y copia/pega los renglones en las tablas 1–3. 3) Verifica que τ =0.30 y los conteos TP/FP/TN/FN coincidan con la matriz global.