

UNIVERSIDAD TECNOLÓGICA NACIONAL INSTITUTO NACIONAL SUPERIOR DEL PROFESORADO TÉCNICO

Memorias

Prof.: Juan.C. Capia

Sistemas de Computación Comisión 2.602

CONTENIDO

- 1. Memoria Clasificación
- 2. Memoria Cache
- 3. Memoria Interna
- 4. Memoria Externa
 - Discos rígidos
 - RAID
 - Disco de estado solido
 - Memorias Óptica
 - Cinta Magnética

Definición

Dispositivo que retiene y almacena datos e instrucciones.

Características

Las memorias se pueden clasificar por diferentes:

- 1. Localización: Interna y Externa.
- 2. Capacidad. Tamaño de palabra, número de bytes, 32 bits, 64 bytes
- 3. Unidad de transferencia: tamaño de palabra, número de bytes, 8 bytes 16 bytes, de lectura y escritura en las memorias.
- Método de acceso: unidad de datos; (secuencial, directo, aleatorio y asociativo).
- 5. Performance: tiempo de acceso (latencia), tiempo del ciclo de memoria.
- 6. Tipo Físico: semiconductor, óptico, magnético.
- 7. Características físicas: guardar datos, volátiles, consumo...

Organización

INTERNA

- Es un tipo de memoria que sirve para almacenar información que el sistema utiliza para el inicio y para que funcionen varios tipos de programas, como los sistemas operativos.
- La memoria interna se confunde con la memoria principal, pero existen otras formas de memoria interna. El procesador tiene su propia memoria local, en forma de registros
- Además, la parte del procesador correspondiente a la unidad de control también puede requerir su propia memoria interna.

EXTERNA

- Consiste en dispositivos de almacenamiento periféricos, como el disco y la cinta, a los que el procesador puede acceder a través de controladores de E/S.
- Hace referencia a todos los dispositivos y medios de almacenamiento que no sean parte de la memoria interna de la computadora (ROM, RAM) y no es necesaria para el funcionamiento de la misma.
- Dispone de una capacidad de almacenamiento elevado y duradero a diferencia de lo proporcionado por la memoria principal.

Unidad de transferencia

Es la cantidad mínima de transferencia de información entre la memoria y otro dispositivo.

- Memorias Internas
 - La unidad de transferencia es igual al número de líneas de entrada/salida de datos del módulo de memoria.
 - Usualmente está determinada por el tamaño del bus de datos.
- Memorias Externas
 - Los datos se transfieren en unidades más grandes denominadas bloques, mucho mayores que un carácter, generalmente de a Kbyte.

SECUENCIAL

- Tipo de memoria a la que no se puede acceder directamente a la celda deseada, sino que se debe pasar obligatoriamente por todas las que proceden.
- Si se quiere leer o escribir en una determinada posición es necesario ir pasando una por una todas las posiciones hasta llegar a la deseada y para luego realizar la operación.
- Ejemplo: cinta magnética

DIRECTO

- Tipo de memoria que tiene asociado un mecanismo de lectura – escritura.
- Los bloques o registros tienen una dirección única basada en su dirección física.
- Se accede saltando a las cercanías y realizando una búsqueda secuencial, hasta alcanzar la posición final.
- Ejemplo : discos.

ALEATORIA

- Tipo de memoria donde cada posición direccionable se identifica con exactitud.
- El tiempo para acceder a una posición es constante e independiente de la secuencia de accesos previos.

Ejemplo: RAM

ASOCIATIVA

- Tipo de memoria que permite hacer una comparación de ciertas posiciones de bits dentro de una palabra buscando que coincidan con unos valores dados y hacer esto para todas las palabras simultáneamente.
- Una palabra es recuperada en base a una posición de su contenido en lugar de su dirección.

• Ejemplo. Memoria cache

Performance

Desde el punto de vista del usuario, las dos características más importantes de la memoria son la capacidad y el rendimiento.

- ☐ Tiempo de acceso (latencia): es el tiempo que se tarda en realizar una operación de lectura o escritura, es decir, el tiempo que transcurre desde el momento en que se presenta una dirección a la memoria hasta el momento en que los datos se han almacenado o se han puesto a disposición para su uso.
- ☐ Tiempo del ciclo de la memoria: Este concepto se aplica principalmente a la RAM y consiste en el tiempo de acceso más el tiempo adicional necesario antes de que pueda comenzar un segundo acceso. Aquí influye el bus del sistema, no al procesador.
- □ Velocidad de transferencia: Es la velocidad a la que los datos pueden transferirse dentro o fuera de una unidad de memoria. Para la RAM, es igual a 1/(tiempo de ciclo).

Unidad de transferencia

Es la cantidad mínima de transferencia de información entre la memoria y otro dispositivo.

Memorias Internas

- La unidad de transferencia es igual al número de líneas de entrada/salida de datos del módulo de memoria.
- Usualmente está determinada por el tamaño del bus de datos.

Memorias Externas

 Los datos se transfieren en unidades más grandes denominadas bloques, mucho mayores que un carácter, generalmente de a Kbytes

Tipos Físico

SEMICONDUCTOR

Almacenan la información en forma electrónica, mediante circuitos simples.

Pueden ser construidos automáticamente y masiva con tecnología de integración de gran escala.

Memorias volátiles, dado que al quitarse la alimentación la misma se pierde.

Ejemplos RAM (lectura y escritura) ROM (solo lectura)

MAGNETICAS

Usan diferentes patrones de magnetización sobre una superficie cubierta con una capa magnetizada para almacenar información.

No son volátiles.

Se llega a la información usando uno o más cabezales de lectura/ escritura.

Es de acceso secuencial y debe buscar, dar vueltas o las dos cosas

Ejemplo: Discos y Cintas

OPTICAS

Las memorias Ópticas almacenan información usando agujeros minúsculos grabados con un láser en la superficie de un disco circular. La información se lee iluminando la superficie con un diodo láser y observando la reflexión. Los discos ópticos son no volátil y de acceso secuencial.

Ejemplos:

CD DVD

Jerarquía de Memorias

JERARQUÍA DE MEMORIA DEL COMPUTADOR

- Hay tres características básicas que definen el diseño de un sistema de memoria: capacidad, tiempo de acceso y coste.
 - Se cumplen las siguientes relaciones:
 - Menor tiempo de acceso, mayor coste por bit.
 - Mayor capacidad, menor coste por bit.
 - Mayor capacidad, mayor tiempo de acceso
 - A medida que se desciende en la jerarquía, ocurre lo siguiente:
 - Disminución del costo por bit;
 - Aumento de la capacidad;
 - Aumento del tiempo de acceso;
 - Disminución de la frecuencia de acceso a la memoria por parte del procesador.

Memoria Cache

Cache and Main Memory

(a) Single cache

Desde el punto de vista del usuario, las dos características más importantes de la memoria son la capacidad y el rendimiento.

- Es un tipo de memoria volátil (como la memoria RAM), pero muy rápida. Su función es almacenar instrucciones y datos a los que el procesador debe acceder continuamente.
- Datos que permanecen de manera temporal en un sistema, lo que ayuda a que el rescate de datos se haga de manera más eficiente y veloz.
- Cada vez que el sistema quiere acceder a un nuevo dato, éste es almacenado en la memoria caché.
- Cuando se necesita recurrir nuevamente al mismo dato, el sistema se dirigirá directamente al caché, haciendo así el proceso mucho más rápido; por consiguiente obliga a la memoria caché a estar en continua renovación.

Niveles de Caché

 La transferencia entre la CPU y la Memoria Caché es rápida y a nivel de transferencia de palabras. Mientras que la transferencia entre la Memoria Cache y la Memoria Principal es más lenta y a nivel de transferencia de Bloques,

 A su vez existen diferentes niveles de caché, a medida que crecen los niveles son más grandes y más lentas.

Trasferencia de Datos

 La lectura de datos de la Memoria Principal por parte de la memoria Caché se realiza por Bloques. Un Bloque X contiene K palabras de Memoria Principal.

- La Memoria Caché contiene C líneas de memoria donde cada línea contiene un Bloque de celdas de Memoria Principal, es decir que su ancho es el ancho de K palabras.
- Además contiene una etiqueta que permite identificar al Bloque de Memoria principal que hace referencia.

Características de diseño

Aunque hay un gran número de implementaciones de caché, hay algunos elementos de diseño básicos que sirven para clasificar y diferenciar las arquitecturas de caché.

- Direcciones de Caché: Lógica y Física.
- Tamaño de Caché
- Funciones de Mapeo: Directo, Asociativo y Asociativo de Conjuntos.
- Algoritmo de Reemplazo: Menos Recientemente Usada (LRU), Primero el entrar Primero en Salir (FIFO), Menos Frecuentemente Usada (LFU) y al Azar.
- Política de Escritura: Escritura Inmediata y Escritura Posterior.
- Tamaño de Línea de Memoria.
- Número de Niveles de Caches-Uno o Dos niveles v Unificado o Dividido