APR 0 2 2002 STATE TRADEMARK

SEQUENCE LISTING

<110> Brookhaven Science Associates Anderson, Carl W Connelly, Margery A

<120> DNA-PK Assay

<130> BSA 01-02

<140> US 09/695,437

<141> 2000-10-24

<150> US 08/398,139

<151> 1995-03-03

<150> 08/132,284

<151> 1993-10-06

<160> 64

<170> PatentIn version 3.1

<210> 1

<211> 28

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<223> Human p53 residues 1-28

<400> 1

Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15

Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu 20 25

<210> 2

<211> 28

<212> PRT

<213> Musca domestica

<220>

<221> MISC_FEATURE

<223> Mourse p53 residues 4-31

<400> 2

Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pro Leu Ser Gln 1 5 10 15

1

```
Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro
            20
<210> 3
<211> 16
<212> PRT
<213> Musca domestica
<220>
<221> MISC_FEATURE
<223> Mouse p53 residues 4-13
<400> 3
Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pro Tyr Lys Lys
                                   10
<210> 4
<211> 25
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 1-24
<400> 4
Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln
                                   10
Glu Thr Phe Ser Asp Leu Trp Lys Lys
           20
<210> 5
<211> 25
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 1-24; S15A substitution
<400> 5
Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ala Gln
                                                       15
                5
                                    10
```

```
Glu Thr Phe Ser Asp Leu Trp Lys Lys
           20
<210> 6
<211> 18
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 29-44
<400> 6
Asn Asn Val Leu Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met
               5
                                   10
Lys Lys
<210> 7
<211> 16
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 160-175
<400> 7
Met Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg
               5
<210> 8
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24
<400> 8
Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
                                   10
```

```
<210> 9
<211> 11
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-19
<400> 9
Glu Pro Pro Leu Ser Gln Glu Thr Phe Lys Lys
<210> 10
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-21
<400> 10
Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Lys Lys
               5
<210> 11
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:T18A and S20A substitutions
<400> 11
Glu Pro Pro Leu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
               5
                                  10
<210> 12
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:T18A and S20A and W23L substitutions
```

```
<400> 12
Glu Pro Pro Leu Ser Gln Glu Ala Phe Ala Asp Leu Leu Lys Lys
                                   10
<210> 13
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:E17K, T18A and S20A substitutions
<400> 13
Glu Pro Pro Leu Ser Gln Lys Ala Phe Ala Asp Leu Trp Lys Lys
                                  10
<210> 14
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:L14Q, Q16L, T18A and S20A substitutions
<400> 14
Glu Pro Pro Gln Ser Leu Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 15
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:L14Q, T18A and S20A substitutions
<400> 15
Glu Pro Pro Gln Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 16
<211> 15
```

```
<212> PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223> Human p53 residues 11-24:S15T, T18A and S20A substitutions
<400> 16
Glu Pro Pro Leu Thr Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 17
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:L14D, T18A and S20A substitutions
<400> 17
Glu Pro Pro Asp Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
               5
                                   10
<210> 18
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 12-24:P13E, L14E, T18A and S20A substitutions
<400> 18
Pro Glu Glu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 19
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 13-24:L13P, S14E, T18A and S20A
       substitutions
```

```
<400> 19
Pro Glu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
               5
<210> 20
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24 with Q16E, E17Q, T18A and S20A
      substitutions
<400> 20
Glu Pro Pro Leu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 21
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> DNA-PK assay negative control peptide
<400> 21
Glu Pro Pro Leu Ala Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
               5
                                   10
<210> 22
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> DNA-PK assay negative control peptide
<400> 22
Glu Pro Pro Leu Ala Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
<210> 23
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> DNA-PK assay negative control peptide
<400> 23
Pro Glu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
               5
<210> 24
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> DNA-PK assay negative control peptide
<400> 24
Pro Glu Glu Ala Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 25
<211>
      14
<212> PRT
<213> Artificial Sequence
<220>
<223> DNA-PK assay negative control peptide
<400> 25
Pro Glu Glu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
               5
<210> 26
<211>
      14
<212> PRT
<213> Artificial Sequence
<223> Example of inappropriate DNA-PK negative control peptide
<400> 26
Pro Glu Glu Ala Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
               5
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> DNA effector for in vitro DNA-PK assays
```

```
<400> 27
                                                                   24
gcgcgcgcgc gcgcgcgcgc gcgc
<210> 28
<211> 19
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 92-108
<400> 28
Pro Leu Ser Ser Ser Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr
               5
                       10
Gly Lys Lys
<210> 29
<211> 21
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 306-327
<400> 29
Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro Lys Lys Pro
               5
                                  10
Leu Asp Gly Glu Tyr
           20
<210> 30
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 371-385
<400> 30
```

```
Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met Phe
               5
                                   10
<210> 31
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 380-393
<400> 31
His Lys Lys Leu Met Phe Lys Thr Glu Gly Pro Asp Ser Asp
<210> 32
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:Q16E, T18A and S20A substitutions
<400> 32
Glu Pro Pro Leu Ser Glu Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 33
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 11-24:Q16N, T18A and S20A substitutions
<400> 33
Glu Pro Pro Leu Ser Asn Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 34
<211> 15
<212> PRT
<213> Homo sapiens
```

```
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24 with Q16Y, T18A, S20A and W23L
       substitutions
<400> 34
Glu Pro Pro Leu Ser Tyr Glu Ala Phe Ala Asp Leu Leu Lys Lys
                                   10
<210> 35
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Casein kinase I substrate
<400> 35
Asp Asp Asp Glu Glu Ser Ile Thr Arg Arg
               5
<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic S6 kinase substrate
<400> 36
Arg Arg Leu Ser Ser Leu Arg Ala
<210> 37
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic casein kinase II substrate
<400> 37
Arg Arg Glu Glu Glu Thr Glu Glu Glu
                                   10
<210> 38
<211> 4
<212> PRT
```

```
<213> Artificial
<220>
<221> MISC FEATURE
<223> peptide fragement
<400> 38
Ser Asp Leu Trp
<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic casein kinase II substrate
<400> 39
Arg Arg Asp Asp Asp Ser Asp Asp
<210> 40
<211> 17
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222> (1)..(4)
<223> human hsp90 residues 1-4
<220>
<221> MISC FEATURE
<222> (5)..(17)
<223> human p53 residues 15-27 with S20E substitution
<400> 40
Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu
               5
                                   10
Pro
<210> 41
<211> 4
<212> PRT
```

```
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> human hsp90 residues 1-4
<400> 41
Met Pro Glu Glu
<210> 42
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> human p53 residues 15 to 27 with S20E substitution
<400> 42
Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 43
<211> 11
<212> PRT
<213> herpes simplex virus 1
<220>
<221> MISC FEATURE
<223> HSV \overline{1} glycoprotein D precursor residues 289-299
<400> 43
Glu Pro Glu Leu Ala Pro Glu Asp Pro Glu Asp
                5
<210> 44
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus cleavage site of human adenovirus endoproteinase
<400> 44
Met Ser Gly Gly
```

```
<210> 45
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic phosphorylation site segment
<400> 45
Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu
                                   10
Pro Gly His His
           20
<210> 46
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense strand oligonucleotide encoding DNA-PKphosphorylation segme
      nt SEQ ID NO: 45
<400> 46
tatgcctgag gaaagtcagg agacattcga agatctatgg aaactacttc ctg
                                                                     53
<210> 47
<211> 56
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense oligonucleotide for phosphorylation site segment
gtgaccagga agtagtttcc atagatcttc gaatgtgtcc tgactttcct caggca
                                                                     56
<210> 48
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense primer sequence
<400> 48
                                                                     53
gctctagaag tcgactttaa gaaggagata ccaagatgcc tgaggaaagt cag
```

<210>	49	
<211>	61	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Antisense primer with HSV epitope sequence	
<400>	49	
cgggat	ccta atcctcaggg tcttccgggg cgagctctgg ctgtgggttg attcttttt	60
С		61
<210>	50	
<211>	46	
<212>	DNA	
<213>		
	•	
<220>		
<223>	sense primer for substrate PCR	
<400>	50	46
catcaco	catg gtatgagcgg cggcatggag gagcccagtg accttg	40
<210>	51	
<211>	61	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense primer for substrate PCR	
<400>	51	60
cgggard	ccta atoctogggg tottoogggg ogagttotgg otgtgggttg attottttt	00
С		61
C		
<210>	52	
<211>	8	
<212>	PRT	
<213>	Artificial Sequence	
<000×		
<220> <223>	Synthetic substrate fragment	
\2237	Synthetic substrate fragment	
<400>	52	
Glu Glı	u Ala Gln Glu Thr Phe Glu	
1	5	
<01.0s	E 2	
<210> <211>	53	
<211>	25 DNA	

<213>	Artificial Sequence	
<220> <223>	Sense strand for SEQ ID NO: 52	
<400> tgagga	53 agcc caggagacat tcgaa	25
<210><211><211><212><213>	26	
<220> <223>	Antisense strand for SEQ ID NO: 52	
<400> gatctt	54 cgaa tgtctcctgg gcttcc	26
<210><211><211><212><213>		
<220> <223>	Sense strand for negative control vector	
<400> tgagga	55 gtót gagcagacat togaa	25
<210><211><211><212><213>	26	
<220> <223>	complement of SEQ ID NO: 55	
<400> gatctt	56 cgaa tgtctgctca gactcc	26
<210> <211> <212> <213>	36 DNA	
<220> <223>	sense strand for multiple cloning site	
<400> ctagct	57 ctag aggegegeee gggtaeegeg geegee	36

<210 <211 <212 <213	> : > !	58 36 DNA Arti:	ficia	al Se	equer	nce										
<220 <223		comp.	Lemer	nt of	f SEÇ	Q ID	NO:	57 n	nulti	iple	clor	ning	site	e *		
<400 tcga		58 ggc (cgcgg	gtaco	ec g	gggg	egect	cta	agag						·	36
<210> 59 <211> 177 <212> PRT <213> Artificial Sequence																
<220> <223> sequence of Human Oct-1 POU domain with His6 tag, expressed from plasmid pT7HPOU1												from				
<400	> !	59														
Met 1	Ala	Ser	Met	Thr 5	Gly	His	His	His	His 10	His	His	Gly	Met	Ser 15	Gly	
Gly	Met	Glu	Glu 20	Pro	Ser	Asp	Leu	Glu 25	Glu	Leu	Glu	Gln	Phe 30	Ala	Lys	
Thr	Phe	Lys 35	Gln	Arg	Arg	Ile	Lys 40	Leu	Gly	Phe	Thr	Gln 45	Gly	Asp	Val	
Gly	Leu 50	Ala	Met	Gly	Lys	Leu 55	Tyr	Gly	Asn	Asp	Phe 60	Ser	Gln	Thr	Thr	
Ile 65	Ser	Arg	Phe	Glu	Ala 70	Leu	Asn	Leu	Ser	Phe 75	Lys	Asn	Met	Cys	Lys 80	
Leu	Lys	Phe	Leu	Leu 85	Glu	Lys	Trp	Leu	Asn 90	Asp	Ala	Glu	Asn	Leu 95	Ser	
Ser	Asp	Ser	Ser 100	Leu	Ser	Ser	Pro	Ser 105	Ala	Leu	Asn	Ser	Pro 110	Gly	Ile	
Glu	Gly	Leu 115	Ser	Arg	Arg	Arg	Lys 120	Lys	Arg	Thr	Ser	Ile 125	Glu	Thr	Asn	
Ile	Arg 130	Val	Leu	Glu	Lys	Ser 135	Phe	Leu	Glu	Asn	Gln 140	Lys	Pro	Thr	Ser	

Glu Glu Ile Thr Met Ile Ala Asp Gln Leu Asn Met Glu Lys Glu Val 145 Ile Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Glu Lys Arg Ile Asn 170 Pro <210> 60 <211> 5005 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of pT7HPOU1 <400> 60 60 qatccacaqq acqqqtqtqq tcqccatgat cgcgtagtcg atagtggctc caagtagcga 120 aqcqaqcaqq actqqqcqqc qqccaaaqcq qtcqgacagt gctccgagaa cgggtgcgca tagaaattgc atcaacgcat atagcgctag cagcacgcca tagtgactgg cgatgctgtc 180 ggaatggacg atatecegea agaggeeegg cagtacegge ataaceaage etatgeetae 240 agcatccagg gtgacggtgc cgaggatgac gatgagcgca ttgttagatt tcatacacgg 300 360 tgcctgactg cgttagcaat ttaactgtga taaactaccg cattaaagct tatcgatgat aagctgtcaa acatgagaat tettgaagae gaaagggeet egtgataege etatttttat 420 480 aggttaatgt catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg 540 tgcgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga 600 gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc 660 720 caqaaacqct qqtqaaaqta aaaqatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc 780 caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt gttgacgccg 840 900 qqcaaqaqca actcqqtcqc cqcatacact attctcagaa tgacttqqtt gagtactcac 960 cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca

1020

taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg

agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac 1080 1140 cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct gcagcaatgg 1200 caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg 1260 1320 ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc 1380 aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc 1440 attggtaact gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt 1500 tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt 1560 1620 aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatcettt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag 1680 1740 cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta actggcttca 1800 gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca 1860 agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg 1920 ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct 1980 2040 acaccgaact gagataccta cagcgtgagc attgagaaag cgccacgctt cccgaaggga 2100 qaaaqqcqqa caqqtatccq gtaaqcqqca qqqtcqqaac aggaqaqcqc acqaqqqqaqc 2160 ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg 2220 agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg 2280 eggeettttt aeggtteetg geettttget ggeettttge teacatgtte ttteetgegt tateceetga ttetgtggat aacegtatta eegeetttga gtgagetgat aeegetegee 2340 2400 gcagccgaac gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcctgatgc 2460 ggtattttct ccttacgcat ctgtgcggta tttcacaccg catatatggt gcactctcag 2520 tacaatctgc tctgatgccg catagttaag ccagtataca ctccgctatc gctacgtgac 2580 tgggtcatgg ctgcgccccg acacccgcca acacccgctg acgcgccctg acgggcttgt 2640 ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag 2700 aggttttcac cgtcatcacc gaaacgcgcg aggcagctgc ggtaaagctc atcagcgtgg 2760 tegtgaageg atteacagat gtetgeetgt teateegegt eeagetegtt gagtttetee

agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	taagggcggt	tttttcctgt	2820
ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	tgggggtaat	gataccgatg	2880
aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	gttactggaa	2940
cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	aatcactcag	3000
ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	ccagcagcat	3060
cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	ttccagactt	3120
tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	cgttttgcag	3180
cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	agtaaggcaa	3240
ccccgccagc	ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	ccgtggccag	3300
gacccaacgc	tgcccgagat	gcgccgcgtg	cggctgctgg	agatggcgga	cgcgatggat	3360
atgttctgcc	aagggttggt	ttgcgcattc	acagttctcc	gcaagaattg	attggctcca	3420
attcttggag	tggtgaatcc	gttagcgagg	tgccgccggc	ttccattcag	gtcgaggtgg	3480
cccggctcca	tgcaccgcga	cgcaacgcgg	ggaggcagac	aaggtatagg	gcggcgccta	3540
caatccatgc	caacccgttc	catgtgctcg	ccgaggcggc	ataaatcgcc	gtgacgatca	3600
gcggtccagt	gatcgaagtt	aggctggtaa	gagccgcgag	cgatccttga	agctgtccct	3660
gatggtcgtc	atctacctgc	ctggacagca	tggcctgcaa	cgcgggcatc	ccgatgccgc	3720
cggaagcgag	aagaatcata	atggggaagg	ccatccagcc	tcgcgtcgcg	aacgccagca	3780
agacgtagcc	cagcgcgtcg	gccgccatgc	cggcgataat	ggcctgcttc	tcgccgaaac	3840
gtttggtggc	gggaccagtg	acgaaggctt	gagcgagggc	gtgcaagatt	ccgaataccg	3900
caagcgacag	gccgatcatc	gtcgcgctcc	agcgaaagcg	gtcctcgccg	aaaatgaccc	3960
agagcgctgc	cggcacctgt	cctacgagtt	gcatgataaa	gaagacagtc	ataagtgcgg	4020
cgacgatagt	catgccccgc	gcccaccgga	aggagctgac	tgggttgaag	gctctcaagg	4080
gcatcggtcg	acgctctccc	ttatgcgact	cctgcattag	gaagcagccc	agtagtaggt	4140
tgaggccgtt	gagcaccgcc	gccgcaagga	atggtgcatg	caaggagatg	gcgcccaaca	4200
gtcccccggc	cacggggcct	gccaccatac	ccacgccgaa	acaagcgctc	atgagcccga	4260
agtggcgagc	ccgatcttcc	ccatcggtga	tgtcggcgat	ataggcgcca	gcaaccgcac	4320
ctgtggcgcc	ggtgatgccg	gccacgatgc	gtccggcgta	gaggatcgag	atctcgatcc	4380
cgcgaaatta	atacgactca	ctatagggag	accacaacgg	tttccctcta	gaaataattt	4440

tgtttaactt	taagaaggag	atatacatat	ggcttctatg	actggtcacc	accaccatca	4500
ccatggtatg	agcggcggca	tggaggagcc	cagtgacctt	gaggagctcg	agcagtttgc	4560
caagaccttc	aaacaaagac	gaatcaaact	tggattcact	cagggtgatg	ttgggctcgc	4620
tatggggaaa	ctatatggaa	atgacttcag	ccaaactacc	atctctcgat	ttgaagcctt	4680
gaacctcagc	tttaagaaca	tgtgcaagtt	gaagccactt	ttagagaagt	ggctaaatga	4740
tgcagagaac	ctctcatctg	attcgtccct	ctccagccca	agtgccctga	attctccagg	4800
aattgagggc	ttgagcaggc	gcaggaagaa	acgcaccagc	atagagacca	acatccgtgt	4860
ggccttagag	aagagtttct	tggagaatca	aaagcctacc	tcggaagaga	tcactatgat	4920
tgctgatcag	ctcaatatgg	aaaaagaggt	gattcgtgtt	tggttctgta	accgtcgaca	4980
gaaagaaaaa	agaatcaacc	catag				5005

- <210> 61
- <211> 201
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> POUSUB1 artificial DNA-PK substrate
- <400> 61

Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu 1 5 10 15

Pro Gly His His His His His Gly Met Ser Gly Gly Met Glu Glu 20 25 30

Pro Ser Asp Leu Glu Glu Leu Glu Gln Phe Ala Lys Thr Phe Lys Gln 35 40 45

Arg Arg Ile Lys Leu Gly Phe Thr Gln Gly Asp Val Gly Leu Ala Met 50 55 60

Gly Lys Leu Tyr Gly Asn Asp Phe Ser Gln Thr Thr Ile Ser Arg Phe 65 70 75 80

Glu Ala Leu Asn Leu Ser Phe Lys Asn Met Cys Lys Leu Lys Pro Leu 85 90 95

Leu Glu Lys Trp Leu Asn Asp Ala Glu Asn Leu Ser Ser Asp Ser Ser 100 105 110

	Leu S	Ser	Ser 115	Pro	Ser	Ala	Leu	Asn 120	Ser	Pro	Gly	Ile	Glu 125	Gly	Leu	Ser	
	Arg A	Arg 130	Arg	Lys	Lys	Arg	Thr 135	Ser	Ile	Glu	Thr	Asn 140	Ile	Arg	Val	Ala	
	Leu (Glu	Lys	Ser	Phe	Leu 150	Glu	Asn	Gln	Lys	Pro 155	Thr	Ser	Glu	Glu	Ile 160	
	Thr N	1et	Ile	Ala	Asp 165	Gln	Leu	Asn	Met	Glu 170	Lys	Glu	Val	Ile	Arg 175	Val	
	Trp H	Phe	Cys	Asn 180	Arg	Arg	Gln	Lys	Glu 185	Lys	Arg	Ile	Asn	Pro 190		Pro	
	Glu I	Leu	Ala 195	Pro	Glu	Asp	Pro	Glu 200	Asp								
<210> 62 <211> 5873 <212> DNA <213> Artificial Sequence																	
	<220> <223>		lasn	nid	P349	9SUB:	l sed	quenc	ce								
	<400> cgago		52 :gt d	cgaca	aagct	t go	cggco	cgcac	c to	gagca	acca	ccad	ccac	cac	cact	gagatc	60
	cggct	gct	aa d	caaaq	gccc	ga aa	aggaa	agcto	g agt	tgg	ctgc	tgc	cacco	gct	gagca	aataac	120
	tagca	ataa	.cc c	cctt	gggg	cc to	ctaaa	acggg	g tct	tgaç	gggg	tttt	ttg	ctg	aaag	gaggaa	180
	ctata	atco	gg a	attg	gcgaa	at go	ggacç	geged	c ctq	gtago	cggc	gcat	taa	gcg	cggc	gggtgt	240
	ggtgg	gtta	.cg d	cgcaç	gcgt	ga co	egeta	acact	tg:	ccago	egce	ctaç	gege	ccg	ctcct	ttcgc	300
	tttct	tcc	ct t	cctt	ttct	eg e	cacgt	tcgc	c cg	gcttt	ccc	cgt	caag	ctc	taaat	cgggg	360
	gctco	cctt	ta ç	gggtt	tccga	at ti	tagto	gcttt	acq	ggcad	cctc	gaco	ccca	aaa	aactt	gatta	420
	gggtg	gatg	ıgt t	cac	gtagt	g g	gccat	cgcc	c ct	gataq	gacg	gttt	ttc	gcc	cttt	gacgtt	480
	ggagt	cca	icg t	tctt	ttaat	ia gt	tgga.	ctctt	gtt	ccaa	aact	ggaa	acaa	cac	tcaad	cctat	540
	ctcg	gtct	at t	ccttt	ttgat	ct ta	ataaq	gggat	tt!	gcc	gatt	tcg	gcct	att	ggtta	aaaaa	600
	tgago	ctga	itt t	caaca	aaaa	at ti	taacq	gcgaa	a tti	taad	caaa	atat	taa	cgt	ttaca	aatttc	660

aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	720
ttcaaatatg	tatccgctca	tgaattaatt	cttagaaaaa	ctcatcgage	atcaaatgaa	780
actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	840
atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	900
cgattccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	960
tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	aaaagtttat	1020
gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	1080
catcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gagacgaaat	acgcgatcgc	1140
tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	1200
catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	gctgttttcc	1260
cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggataaaa	tgcttgatgg	1320
tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	gtaacatcat	1380
tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	1440
atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	tacccatata	1500
aatcagcatc	catgttggaa	tttaatcgcg	gcctagagca	agacgtttcc	cgttgaatat	1560
ggctcataac	accccttgta	ttactgttta	tgtaagcaga	cagttttatt	gttcatgacc	1620
aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	1680
ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaaacca	1740
ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	tccgaaggta	1800
actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	1860
caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	1920
gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	1980
ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	2040
cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	2100
cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	2160
acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	2220
ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	2280
gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	2340
tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	2400

2460 accyctcycc ycayccyaac yaccyaycyc agcyaytcay tyagcyayga agcygaagay 2520 cgcctgatgc ggtattttct ccttacgcat ctgtgcggta tttcacaccg catatatggt 2580 gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca ctccgctatc 2640 gctacgtgac tgggtcatgg ctgcgccccg acacccgcca acacccgctg acgcgcctg 2700 acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagctgc ggtaaagctc 2760 2820 atcagcgtgg tcgtgaagcg attcacagat gtctgcctgt tcatccgcgt ccagctcgtt gagtttctcc agaagcgtta atgtctggct tctgataaag cgggccatgt taagggcggt 2880 2940 tttttcctgt ttggtcactg atgcctccgt gtaaggggga tttctgttca tgggggtaat 3000 gataccgatg aaacgagaga ggatgctcac gatacgggtt actgatgatg aacatgcccg 3060 gttactggaa cgttgtgagg gtaaacaact ggcggtatgg atgcggcggg accagagaaa aatcactcag ggtcaatgcc agcgcttcgt taatacagat gtaggtgttc cacagggtag 3120 3180 ccagcagcat cctgcgatgc agatccggaa cataatggtg cagggcgctg acttccgcgt ttccagactt tacgaaacac ggaaaccgaa gaccattcat gttgttgctc aggtcgcaga 3240 3300 cgttttgcag cagcagtcgc ttcacgttcg ctcgcgtatc ggtgattcat tctgctaacc 3360 agtaaggcaa ccccgccagc ctagccgggt cctcaacgac aggagcacga tcatgcgcac 3420 ccgtggggcc gccatgccgg cgataatggc ctgcttctcg ccgaaacgtt tggtggcggg 3480 accagtgacg aaggettgag egagggegtg caagatteeg aatacegeaa gegacaggee 3540 gatcategte gegetecage gaaageggte etegeegaaa atgaeceaga gegetgeegg 3600 cacctgtcct acgagttgca tgataaagaa gacagtcata agtgcggcga cgatagtcat 3660 gccccgcgcc caccggaagg agctgactgg gttgaaggct ctcaagggca tcggtcgaga 3720 teceggtgee taatgagtga getaaettae attaattgeg ttgegeteae tgeeegettt 3780 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 3840 cggtttgcgt attgggcgcc agggtggttt ttcttttcac cagtgagacg ggcaacagct 3900 gattgccctt caccgcctgg ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc 3960 ccagcaggcg aaaatcctgt ttgatggtgg ttaacggcgg gatataacat gagctgtctt 4020 cggtatcgtc gtatcccact accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgcgcat tgcgcccagc gccatctgat cgttggcaac cagcatcgca gtgggaacga 4080

4140 tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc cagtcgcctt 4200 cccqttccqc tatcgqctga atttgattgc gagtgagata tttatgccag ccagccagac 4260 gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc tggtgaccca 4320 atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg caggcagctt 4380 ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca ctgacgcgtt 4440 gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt tctaccatcg 4500 4560 acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg acaatttgcg 4620 acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac tgtttgcccg 4680 ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc gcttccactt 4740 tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa acggtctgat 4800 aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca ttcaccaccc 4860 tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg cgccattcga 4920 tggtgtccgg gatctcgacg ctctccctta tgcgactcct gcattaggaa gcagcccagt 4980 agtaggttga ggccgttgag caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg 5040 cccaacagtc ccccggccac ggggcctgcc accataccca cgccgaaaca agcgctcatg 5100 agcccgaagt ggcgagcccg atcttcccca tcggtgatgt cggcgatata ggcgccagca 5160 accgcacctg tggcgccggt gatgccggcc acgatgcgtc cggcgtagag gatcgagatc 5220 gatctcgatc ccgcgaaatt aatacgactc actatagggg aattgtgagc ggataacaat 5280 teceetetag aagtegaett taagaaggag taccaagatg eetgaggaaa gteaggagae 5340 attogaagat ctatggaaac tacttootgg toaccaccac catcaccatg gtatgagogg 5400 cggcatggag gagcccagtg accttgagga gctcgagcag tttgccaaga ccttcaaaca 5460 aagacgaatc aaacttggat tcactcaggg tgatgttggg ctcgctatgg ggaaactata 5520 tggaaatgac ttcagccaaa ctaccatctc tcgatttgaa gccttgaacc tcagctttaa 5580 gaacatgtgc aagttgaagc cacttttaga gaagtggcta aatgatgcag agaacctctc atctgattcg teceteteca geceaagtge cetgaattet eeaggaattg agggettgag 5640 5700 caggcgccgt aagaaacgca ccagcataga gaccaacatc cgtgtggcct tagagaagag tttcttggag aatcaaaagc ctacctcgga agagatcact atgattgctg atcagctcaa 5760 5820 tatggaaaaa gaggtgattc gtgtttggtt ctgtaaccgt cgacagaaag aaaaaagaat

5873 caacccacag ccagaactcg ccccggaaga ccccgaggat taggatccga att <210> 63 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> DNA-PK synthetic substrate based on human p53 residues 14-28 <400> 63 Pro Leu Ser Gln Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro 10 Lys Lys <210> 64 <211> 18 <212> PRT <213> Artificial Sequence <220> DNA-PK synthetic substrate based on human p53 residues 14-28 <223> <400> 64 Pro Leu Ser Gln Glu Ala Phe Ala Gly Leu Trp Lys Leu Leu Pro Pro

Lys Lys