Deductive Databases

Data Exchange

Outline

- Introduction
 - Definitions
- Schema Mapping
 - Schema mapping specification language
 - Examples
- Data Exchange Framework
 - Universal solution of Data Exchange
 - Examples
- Weakly Acyclic Sets of Tgds
 - Position Graph

Introduction

- Data is inherently heterogeneous
 - Due to the explosion of online data repositories
 - Due to the variety of users, who develop a wealth of applications
 - at different time
 - with disparate requirements in their mind

Introduction

- A fundamental requirement is to translate data across different formats and to ensure data interoperability
 - Two facets of the same problem
 - Data Integration
 - Data Exchange
 - Other important related problems
 - Schema Integration
 - Schema Evolution

Data Integration

- Data Integration [Lenzerini 2002]
 - Query heterogeneous data in different sources via a virtual global schema

Data Exchange

- Data Exchange [Fagin et al. 2005]
 - Transform data structured under a source schema into data structured under a different target schema

Schema Integration

- Schema Integration [Batini et al. 1986]
 - A set of source schemas need to be integrated into one mediated schema

Schema Evolution

- Schema Evolution [Lerner 2000]
 - An original schema S1 evolves into subsequent versions S1', S1" etc.

Data Exchange

- Data Exchange is an old, but recurrent, database problem
- Phil Bernstein, Microsoft 2003 "Data exchange is the oldest database problem"
 - EXPRESS: IBM San Jose Research Lab 1977 EXtraction, Processing, and REStructuring System for transforming data between hierarchical databases.
- Data Exchange underlies: Data Warehousing, ETL (Extract-Transform-Load) tasks; XML Publishing, XML Storage; more recently, exporting relational data to RDF.

Schema Mapping

- Schema mappings: high-level, declarative assertions that specify the relationship between two schemas
- Ideally, schema mappings should be
 - Expressive enough to specify data interoperability tasks
 - Simple enough to be efficiently manipulated by tools
- Schema mappings constitute the essential building blocks in formalizing data integration and data exchange
- Schema mapping help with the development of tools:
 - are easier to generate and manage (semi)-automatically;
 - can be compiled into SQL/XSLT scripts automatically

Schema Mapping

- Schema Mapping $M = (S, T, \Sigma)$
 - Source Schema S
 - Target Schema T
 - High-level, declarative assertions Σ that specify the relationship between S and T
- Data Exchange via the schema mapping $M=(S,\ T,\ \Sigma)$
 - ▶ Transform a given source instance I to a target instance J, so that $\langle I, J \rangle$ satisfy the specifications Σ of M

Solutions in schma mappings

- **Definition:** Schema Mapping $M = (S, T, \Sigma)$ If I is a source instance, then a solution for I is a target instance J such that (I, J) satisfy Σ
- Fact: In general, for a given source instance I
 - No solution for I may exist or
 - Multiple solutions for I may exist; in fact, infinitely many solutions for I may exist

Schema Mapping specification languanges

- Question: How are schema mappings specified?
- Answer: Use logic. In particular, it is natural to try to use first-order logic as a specification language for schema mappings
- ▶ Fact: There exists a fixed first-order sentence specifying a schema mapping M* such that Sol(M*) is undecidable
 - Reason: undecidability of validity in FOL
 - Hence, we need to restrict ourselves to wellbehaved fragments of first-order logic

Embedded Dependencies

- Dependency Theory: extensive study of constraints in relational databases in the 1970s and 1980s
- Embedded Implicational Dependencies: R. Fagin, C. Beeri and M. Vardi, ...
 - Class of constraints with a balance between high expressive power and good algorithmic properties
 - Tuple-generating dependencies (tgds):
 - Inclusion and multi-valued dependencies are a special case
 - Equality-generating dependencies (egds):
 - Functional dependencies are a special case

Schema Mapping specification languanges

- How the relationship between source and target is given by formulas of first-order logic,
 - Source-to-Target Tuple Generating Dependencies (s-t tgds)
- - $\phi(x)$ is a conjunction of atoms over the source;
 - $\Psi(x,y)$ is a conjunction of atoms over the target
- Example
 - ► (Student(s) \land Enrolls(s, c)) \rightarrow ∃ t ∃ g (Teachers(t, c) \land Grades(s, c, g))

- Let us consider some simple tasks that a schema mapping specification language should support:
 - Copy(Nicknaming): Copy each source table to a target table and rename it
 - Projection: Form a target table by projecting on one or more columns of a source table
 - Decomposition: Decompose a source table into two or more target tables

...

Let us consider some simple tasks that a schema mapping specification language should support:

```
...
```

- Column Augmentation: Form a target table by adding one or more columns to a source table.
- Join: Form a target table by joining two or more source tables
- Combination of the above
 - ▶ e.g., "join + column augmentation"

- Copy(Nicknaming):
 - Copy each source table to a target table and rename it

$$\forall x_1, ..., x_n \left(P(x_1, ..., x_n) \to R(x_1, ..., x_n) \right)$$

- Projection:
 - Form a target table by projecting on one or more columns of a source table

$$\forall x, y, z \left(P(x, y, z) \rightarrow R(x, y) \right)$$

- Decomposition:
 - Decompose a source table into two or more target tables

- Column Augmentation:
 - Form a target table by adding one or more columns to a source table

- > Join:
 - Form a target table by joining two or more source tables

$$\forall x, y, z \left(E(x, z) \land F(z, y) \rightarrow R(x, y, z) \right)$$

- > join + column augmentation:
 - Combination of the above

$$\rightarrow$$
 $\forall x, y, z \left(E(x, z) \land F(z, y) \rightarrow \exists w T(x, y, z, w) \right)$

Target Dependencies

- In addition to source-to-target dependencies, we also consider target dependencies
 - ► Target Tgds: $\phi^T(x) \rightarrow \exists y \ \Psi^T(x, y)$
 - An example of target inclusion dependency constraint
 - ▶ Dept(did,dname,mgr_id,mgr_name) → Mgr(mgr_id,did)
 - ► Target Egds: $\phi^T(x) \rightarrow (x1 = x2)$
 - An example of target key constraint
 - ► $(Mgr(e,d1) \land Mgr(e,d2)) \rightarrow (d1=d2)$

Data Exchange Framework

- Schema Mapping $M = (S, T, \Sigma_{st}, \Sigma_{t})$
 - $ightharpoonup \Sigma_{\rm st}$ is a set of source-to-target tgds
 - Σ_t is a set of target tgds and target egds

Multiple Solutions

- Fact: Given a source instance, multiple solutions may exist
- Example:
 - Source relation E(A,B)
 - ▶ target relation H(A,B)

$$\Sigma$$
: E(x, y) $\rightarrow \exists z (H(x, z) \land H(z, y))$

- Source instance:
 - $I = \{E(a, b)\}\$
- Solutions:
 - Infinitely many solutions exist

 \blacktriangleright Consider a set of source-to-target dependencies $\Sigma_{\rm st}$:

```
(d1) EmpCity(e,c) → ?H Home(e,H)
(d2) EmpCity(e,c) → ?D (EmpDept(e,D) ∧ DepCity(D,c))
(d3) LivesIn(e,h) → Home(e,h)
(d4) LivesIn(e,h) → ∃D∃C(EmpDept(e,D) ∧ DepCity(D,C))
```

and a source instance I such that:

Which possible solution do exist?

A possible solution:

```
I: LivesIn(Alice,SF)
    LivesIn(Bob,LA)
(d3): LivesIn(e,h) → Home(e,h)
```

A possible solution:

```
I: LivesIn(Alice,SF)
    LivesIn(Bob,LA)
(d3): LivesIn(e,h) → Home(e,h)
```

A possible solution:

 $J = \{ Home(Alice, SF), \}$

```
Home (Bob, LA),

Home (Bob, LA),

Home (Alice, H1),

Home (Bob, H2),

EmpDept (Alice, D1),

EmpDept (Bob, D2),

DepCity(D1,SJ),

DepCity(D2,SD) }
```

```
I: EmpCity(Alice,SJ)
    EmpCity(Bob,SD)
(d1): EmpCity(e,c) → ? H
Home(e,H)
```

Main issues in Data Exchange

- For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping
 - When more than one solution exist, which solutions are "better" than others?
 - How do we compute a "best" solution?
 - In other words, what is the "right" semantics of data exchange?

Universal solution in Data Exchange

- We introduce the notion of universal solutions as the "best" solutions in data exchange
- By definition, a solution is universal if it has homomorphisms to all other solutions
 - It is a "most general" solution
- Constants
 - entries in source instances
- Variables (labeled nulls)
 - invented entries in target instances

Universal solution in Data Exchange

- By definition, a solution is universal if it has homomorphisms to all other solutions
 - It is a "most general" solution
- ▶ Homomorphism $h:J1 \rightarrow J2$ between target instances:
 - h(c) = c, for every constant c in J1
 - For every fact $P(a_1, ..., a_m)$ in J1, then we have that $P(h(a_1), ..., h(a_m))$ is a fact in J2

Deductive Databases 2020/202^s

Schema Mapping

Structural Properties of Universal Solutions

- Universal solutions are analogous to most general unifiers in logic programming
- Uniqueness up to homomorphic equivalence: If J and J' are universal for I, then they are homomorphically equivalent
- Representation of the entire space of solutions: Assume that J is universal for I, and J' is universal for I'. Then the following are equivalent:
 - I and I' have the same space of solutions.
 - J and J' are homomorphically equivalent.

Weakly Acyclic Sets of Tgds: Definition

- **Position graph** (dependency graph) of a set Σ of tgds:
 - ▶ Nodes: R.A, with R relation symbol, A attribute of R
 - ▶ Edges: for every $\phi(x) \to \exists y \, \Psi(x,y)$ in Σ , for every occurrence of x in ϕ in position R.A
 - \blacktriangleright for every x in x occurring in Ψ in position S.B
 - \square add an edge R.A \rightarrow S.B (if it does not already exist)
 - for every existentially quantified variable y in Ψ and for every occurrence y in Ψ in position T.C
 - □ add a special edge R.A →T.C (if it does not already exist)
 - is weakly acyclic if the position graph has **no** cycle containing a special edge

Weakly Acyclic Sets of Tgds

- Weakly acyclic sets of tgds contain as special cases
 - Sets of full tgds

$$\phi^T\!(x,x') \to \ \Psi^T\!(x)$$

- \bullet $\phi^T(x, x')$ and $\Psi^T(x)$ are conjunctions of atoms
- Acyclic sets of inclusion dependencies
 - Large class of dependencies occurring in practice

Weakly Acyclic Sets of Tgds: Examples

Example 1: D(d1, d2) and M(m1)

$$\Sigma = \{D(e,m) \to M(m), M(m) \to \exists e D(e,m)\}$$

$$D.d1 \longleftarrow M.m1 \longleftarrow D.d2 \qquad \text{is weakly acyclic}$$

▶ Example 2: E (e1, e2)

$$\Sigma = \{E(x) \rightarrow \exists z \, E(z)\}$$

is not weakly acyclic