Federated Graph Representation Learning using Self-Supervision

arXiv preprint arXiv:2210.15120 (2022)

Suresh, Susheel and Godbout, Danny and Mukherjee, Arko and Shrivastava,
Mayank and Neville, Jennifer and Li, Pan
Reporter: Fengjiao Gong

February 16, 2023

Outline

- 1. Problem Setting
- 2. Novel Formulation
- 3. Method
- 4. Experiments

Problem Setting — Topic

Federated graph representation learning (FedGRL)

- ► Federated learning (FL)
 - 1. no sharing of raw data
 - 2. privacy-preserving model learning
 - 3. improve performance from others

Problem Setting — Topic

Federated graph representation learning (FedGRL)

- ► Federated learning (FL)
- ► Graph representation learning (GRL)
 - 1. node attributes
 - 2. structure information

Problem Setting — Challenges

Real-world graph data

- ► Label deficiency
- Downstream task heterogeneity

Problem Setting

Problem Setting for Clients

- ▶ Shared space of graph-structured data, though different distributions.
- ► Have access to vast amounts of unlabeled data.
- ▶ Different local downstream tasks with few private labeled data.

Novel Formulation — Notations

Consider graph G = (V, E)

- ▶ Edge set $E \subseteq V \times V$
- Node feature matrix $\boldsymbol{X} \in \mathbb{R}^{N \times F}$
- Adjacency matrix $\mathbf{A} \in \{0, 1\}^{N \times N}$

For graph encoder g(G) = g(X, A)

▶ Node representations $\mathbf{H} \in \mathbb{R}^{N \times F'}, F' << F$

Novel Formulation — Notations

For client $c \in \mathcal{C}$

- 1. graph data $G_c = (V_c, E_c)$
 - ightharpoonup node set $V_c = V_c^l \cup V_c^u$, labeled and unlabeled
 - ightharpoonup data distribution \mathcal{D}_c
 - ightharpoonup number of samples n_c
- 2. downstream task T_c
 - ▶ node label space \mathcal{Y}_c with size m_c
 - ightharpoonup infer labels for unlabeled nodes in V_c^u

Novel Formulation

Notes:

- Label scarcity
 - 1. small $|V_c^l|$
 - 2. much less unlabeled data $\sum_c |V_c^l| \ll \sum_c |V_c^u|$
 - 3. Poor data quality $|V_c^l| + |V_c^u|$ also small
- Downstream task heterogeneity
 - 1. different class label domain \mathcal{Y}_c

Novel Formulation — Federated Optimization

For client $c \in \mathcal{C}$

- ▶ Learn $f_c: \mathcal{X}_c \to \mathcal{Y}_c$
- Expected loss

$$\mathcal{L}_{c}\left(f_{c}
ight)=\mathbb{E}_{\left(x_{c},y_{c}
ight)\sim\mathcal{D}_{c}}\left[\ell_{c}\left(f_{c},x_{c},y_{c}
ight)
ight]$$

Overall distributed optimization

$$\min_{\{f_c\}} \sum_{c \in \mathcal{C}} \frac{n_c}{n} \mathcal{L}_c \left(f_c \right)$$

where, $n = \bigcup_{c \in C} n_c$ is total amount of data.

Novel Formulation — General Formulation

Interpolated model $f_c = p_c \circ f$

- $ightharpoonup p_c \Rightarrow \text{client model } < \text{local} >$
- ▶ $f \Rightarrow$ global model <shared>

Distributed Objective

$$\min_{\{p_c\}f} \sum_{c \in C} \left[\mathcal{L}_c \left(p_c, f, G_c, Y_c \right) \mathbf{1}_{T_c \text{ exists}} + \lambda_c \tilde{\mathcal{L}}_c \left(f, G_c \right) \right] \tag{1}$$

where

- ightharpoonup first term \Rightarrow label-supervised objective
- ► second term ⇒ self-supervised objective
- \triangleright λ_c controls the amount of model interpolation

Novel Formulation — Learning protocols

Two steps:

- 1. Federation < ignore first term, $\lambda_c = 1 >$ self-supervised learning to train f
- 2. Client Local specific task to train p_c by freezing or finetuning on top of f

Future work

- **1.** Label-supervision \Rightarrow both f and p_c
- **2.** Self-supervision \Rightarrow train f

Overview

Figure 1: Overview of the proposed general formulation for self-supervised FedGRL. Here, we learn a shared global GNN model f using a self-supervised (SSL) objective, collaboratively based on federated learning. With the copy gate, f is only trained on unlabeled data through SSL and local client models p_c are further trained individually on top of f with label supervision.

Method

Distributed Objective

$$\min_{\{p_c\}f} \sum_{c \in C} \left[\mathcal{L}_c\left(p_c, f, G_c, Y_c
ight) \mathbf{1}_{T_c ext{ exists }} + \lambda_c ilde{\mathcal{L}}_c\left(f, G_c
ight)
ight]$$

Next

- **▶** Self-Supervised Objective
- ► Task Specific Supervision

Method — Self-Supervised Objective

Bootstrapped Graph Latents (BGRL)

- ▶ a graph representation learning method that learns by predicting alternative augmentations of the input.
- ▶ a scalable and SoTA for node level self-supervised learning of GNNs
- ▶ it does not require contrasting negative node pairs

[reference] Bootstrapped representation learning on graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation Learning, 2021.

1. produce two alternate views of *G*

$$G^1 = \mathcal{T}^1(G)$$
, and $G^2 = \mathcal{T}^2(G)$

Graph Augmentations

- Node feature masking
 - Edge masking

[reference] Deep Graph Contrastive Representation Learning. arXiv, 2020.

Figure 2: Overview of BGRL

Figure 3: Overview of BGRL

1. produce two alternate views of *G*

$$G^1 = \mathcal{T}^1(G)$$
, and $G^2 = \mathcal{T}^2(G)$

2. encode with two GNN encoders

$$oldsymbol{H}^1 = \omega\left(G^1
ight), ext{ and } oldsymbol{H}^2 = au\left(G^2
ight)$$

3. feed \mathbf{H}^1 to a node-level head

$$\boldsymbol{Z}^1 = s\left(\boldsymbol{H}^1\right)$$

4. predict \mathbf{H}^2 with \mathbf{Z}^1

$$\tilde{\mathcal{L}}(\omega, s, \tau) = -\frac{2}{N} \sum_{i=0}^{N-1} \frac{Z_i^1 H_i^{2^\top}}{\left\|Z_i^1\right\| \left\|H_i^2\right\|}$$

Figure 4: Overview of BGRL

Update parameters

$$ilde{\mathcal{L}}(\omega_{ heta}, s_{\phi}, au_{
ho}) = -rac{2}{N} \sum_{i=0}^{N-1} rac{Z_i^1 H_i^{2^ op}}{\left\|Z_i^1
ight\| \left\|H_i^2
ight\|}$$

- 1. gradient descent only w.r.t θ , ϕ
- **2.** update ρ by exponential moving average

$$\rho = \epsilon \rho + (1 - \epsilon)\theta$$

where ϵ is the decay rate.

During federation

- 1. θ , ϕ are shared across clients
- 2. server aggregates them in each round
- 3. global shared model is $f = \omega$

Figure 5: Overview of BGRL

Method

Distributed Objective

$$\min_{\left\{p_{c}
ight\} f} \sum_{c \in C} \left[\mathcal{L}_{c}\left(p_{c}, f, G_{c}, Y_{c}
ight) \mathbf{1}_{T_{c} ext{ exists}} + \lambda_{c} ilde{\mathcal{L}}_{c}\left(f, G_{c}
ight)
ight]$$

Next

- ► Self-Supervised Objective
- ► Task Specific Supervision

Method - Task Specific Supervision

Supervision from the node labels if available

ightharpoonup Predict value of G_c

$$Z_c = \operatorname{softmax}\left(p_c \circ f(G_c)
ight), \ \operatorname{and} Z_c \in \mathbb{R}^{N_c imes m_c}$$

Cross-entropy loss

$$\mathcal{L}\left(p_{c},\!f,G_{c},Y_{c}
ight) = -\sum_{i \in V_{c}^{l}} \sum_{j=1}^{m_{c}} Y_{c\left(ij
ight)} \ln Z_{c\left(ij
ight)}$$

Experiments — Datasets

1. Twitch Gamer Networks

- ightharpoonup nodes \Rightarrow users, edges \Rightarrow friendships
- same feature space
- ▶ a binary node classification task ⇒ to predict if a user uses explicit language

Table 1: Statistics of Twitch Gamer Networks.

	twitch-DE	twitch-EN	twitch-ES	twitch-FR	twitch-PT	twitch-RU
#nodes	9,498	7,126	4,648	6,549	1,912	4,385
#edges	153,138	35,324	59,382	112,666	31,299	37,304
density	0.003	0.002	0.006	0.005	0.017	0.004

Experiments — Datasets

2 Amazon Co-purchase Networks

- ightharpoonup nodes \Rightarrow products, edges \Rightarrow co-purchase ("also buy")
- same feature space
- ightharpoonup a node classification task \Rightarrow to classify the fine-grained sub-segments
- different class label domains

Table 2: Statistics of Amazon Co-purchase Networks.

	computer	photo	phone	tool	guitar	art
#nodes	10,055	4,705	16,683	4,827	2,506	6,610
#edges	87,512	28,818	113,760	43,458	10,342	90,678
#classes	9	8	7	6	5	8

Experiments — Baselines

Metric:

$$\mbox{F1-Micro Score} = \frac{\textit{TP}}{\textit{TP} + 0.5*(\textit{FP} + \textit{FN})}$$

Baselines	Supervision	Methods
No-Fed-Sup	label	train a GNN model for each client individually
No-Fed-Self-Freeze	self	first train a GNN model then freeze the node representations perform linear evaluation
No-Fed-Self-Finetune	self	first train a GNN model perform fine-tuning with a MLP task head on top
Fed-Sup	label	trains a local GNN encoder + local MLP task head Share local GNN models across clients Server aggregates via FedAvg

Experiments — Results

Table 3: Node classification task on Twitch Gamer Networks.

	twitch-DE	twitch-EN	twitch-ES	twitch-FR	twitch-PT	twitch-RU
No-Fed-Rand-Init-GNN	0.502 ± 0.103	0.501 ± 0.047	0.496 ± 0.198	0.510 ± 0.131	0.533 ± 0.156	0.507 ± 0.248
No-Fed-Sup	0.673 ± 0.010	0.584 ± 0.014	0.725 ± 0.014	0.626 ± 0.016	0.678 ± 0.023	0.751 ± 0.015
No-Fed-Self-Freeze	0.685 ± 0.009	0.617 ± 0.012	0.731 ± 0.010	0.626 ± 0.015	0.696 ± 0.021	0.752 ± 0.009
No-Fed-Self-Finetune	0.703 ± 0.012	$\boldsymbol{0.665 \pm 0.023}$	0.746 ± 0.015	0.635 ± 0.018	0.710 ± 0.026	0.762 ± 0.01
Fed-Sup	0.677 ± 0.009	0.600 ± 0.009	0.723 ± 0.013	0.627 ± 0.018	0.683 ± 0.013	0.743 ± 0.015
Fed-Self-Freeze (ours)	0.686 ± 0.007	0.606 ± 0.012	0.733 ± 0.007	0.626 ± 0.014	0.699 ± 0.022	0.752 ± 0.009
Fed-Self-Finetune (ours)	$\textbf{0.706} \pm \textbf{0.013}$	0.657 ± 0.024	$\textbf{0.745}\pm\textbf{0.013}$	$\boldsymbol{0.636 \pm 0.021}$	$\textbf{0.712}\pm\textbf{0.024}$	0.761 ± 0.014

60/20/20 training, validation and test node random split

Figure 6: Performance gains in Twitch network experiments

Experiments — Results

Table 4: Node classification task results on Amazon Co-purchase Networks.

	computer	photo	phone	guitar	tool	art
No-Fed-Rand-Init-GNN	0.687 ± 0.005	0.709 ± 0.008	0.673 ± 0.005	0.737 ± 0.014	0.622 ± 0.008	0.653 ± 0.009
No-Fed-Sup	0.787 ± 0.009	0.801 ± 0.008	0.759 ± 0.007	0.866 ± 0.012	0.764 ± 0.012	0.741 ± 0.010
No-Fed-Self-Freeze	0.837 ± 0.004	0.841 ± 0.007	$\textbf{0.778} \pm \textbf{0.003}$	0.882 ± 0.011	0.800 ± 0.007	0.784 ± 0.006
No-Fed-Self-Finetune	0.789 ± 0.012	0.792 ± 0.014	0.757 ± 0.012	0.845 ± 0.026	0.758 ± 0.018	0.735 ± 0.015
Fed-Sup	0.769 ± 0.003	0.754 ± 0.009	0.741 ± 0.004	0.807 ± 0.019	0.722 ± 0.010	0.704 ± 0.013
Fed-Self-Freeze (ours)	$\boldsymbol{0.849 \pm 0.005}$	$\boldsymbol{0.868 \pm 0.009}$	0.776 ± 0.005	$\boldsymbol{0.897 \pm 0.011}$	$\boldsymbol{0.818 \pm 0.010}$	0.807 ± 0.005
Fed-Self-Finetune (ours)	0.786 ± 0.009	0.791 ± 0.012	0.753 ± 0.005	0.849 ± 0.019	0.764 ± 0.016	0.738 ± 0.015

60/20/20 training, validation and test node random split

Figure 7: Performance gains in Amazon network experiments

Thanks!