Team ID	PNT2022TMID19555
Project Title	Gas leakage monitoring and alerting system for
	industries

GAS LEAKAGE MONITORING AND ALERTING SYSTEM FOR INDUSTRIES

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

1.INTRODUCTION

1.1 PROJECT OVERVIEW

Safety plays a major role in today's world and it is necessary that good safety systems are to be implemented in places of education and work. This work modifies the existing safety model installed in industries and this system also be used in homes and offices. Gas Leakages in open or closed areas can prove to be dangerous and lethal. Leakage in any kind of gas are concern in recent years, whether it is an residential area, a cafe, or a canteen or industrial sectors. The traditional Gas Leakage Monitoring Systems though have great precision, fail to acknowledge a few factors in the field of alerting the people about the leakage. Therefore we use latest technology like Internet of Things based Gas leakage monitoring, leakage detecting and alerting system is proposed. The moment gas leakage will probably be recognized, users will be informed via SMS through GSM module. The system will monitor the gas and display through LCD display. Whenever the leakage is detected the buzzer begins sound. Also store the data using cloud data storage. This will detect the harmful gases in environment and alerting to the user through alarm and sending notification.

1.2 PURPOSE

For safety purpose, we use this device. The industries use different types of gases so gas leakage occurs it affect the workers health issue and sometimes it is reason of fire accident.so we have to maintain the gas pipes and monitor the gas if monitor the gas by 24 hrs and leakage occur it alert the buzzer sound and send notification for responsible person.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM

S.No	TITLE	PROPOSED WORK	TOOLS USED/ ALGORITHM	TECHNOLOGY	ADVANTAGES/ DISADVANTAGES
1	A Mobile Gas Detector with an Arduino Microcontroller	It describes hardware synthesis for a mobile gas detector with an Arduino microcontroller. The main aim of this project is to find the dangerous zone where many stationary detectors are unpractical or too expensive. Thus, we present a self-propelled robotic gas detector.	Arduino Mega 2560 MC, L9110 motor driver, 2Nos. DC motors, Wi-Fi module ESP8266, logic level converter, MQ2 sensor, HC-SR04 ultrasonic distance sensor	Internet of Things	ADVANTAGES Arduino has some sound advantages, such as large user community, free and broad ranges of libraries of codes, relatively low cost components, and so forth. DISADVANTAGES Its disadvantages are its small and a user has to work in a relatively small space. In many broad and multi-purpose projects, its required to look for third party sources in addition to Arduino scripts.

S.No	TITLE	PROPOSED WORK	TOOLS USED/ ALGORITHM	TECHNOLOGY	ADVANTAGES/ DISADVANTAGES
2	Gas Leakage Detection and Alert System using IoT	We design and develop an propose system which include some safety factors. A safety has been a major issue in today's day to day life.	 Regulator Rectifier LCD Display Gas Sensor Wi-fi Module Arduino UNO 	Internet of Things	ADVANTAGES The sensor-enabled solution helps prevent the high risk of gas explosions and affecting any casualties within and outside the premises. DISADVANTAGES It is affected due to ambient light interference.

S.NO	TITLE	PROPOSED WORK	TOOLS USED/ ALGORITHM	TECHNOLOGY	ADVANTAGES/ DISADVANTAGES
3	Gas Leakage Detector and Warning Generator	The main aim of this project is to find the dangerous zone where many stationary detectors are unpractical or too expensive. Thus, we present a self-propelled robotic gas detector. It describes hardware synthesis for a mobile gas detector with an Arduino microcontroller.	Arduino Mega 2560 MC, L9110 motor driver, 2Nos. DC motors, Wi-Fi module ESP8266, logic level converter, MQ2 sensor, HC-SR04 ultrasonic distance sensor	Internet of Things	ADVANTAGES The sensor-enabled solution helps prevent the high risk of gas explosions and affecting any casualties within and outside the premises. The gas sensors help detect the concentration of the gases present in the atmosphere to avoid hazardous consequences like fire breakouts DISADVANTAGES It has ability to detect wide range of gases.

2.2 REFERENCE

- 1. dekitan, A. I., Matthews, V. O., & Olasunkanmi, O. (2018). A microcontroller based gas leakage detection and evacuation system. IOP Conference Series: Materials Science and Engineering, 413, 012008. doi: 10.1088/1757-899x/413/1/012008
- 2. Shrivastava, A., Prabhaker, R., Kumar, R., & Verma, R. GSM based gas leakage detection system. International Journal of Emerging Trends in Electrical and Electronics (IJETEE-ISSN: 2320-9569), 2013; 3(2):42-45.
- 3. Priya, P. D., & Rao, C. T. Hazardous Gas Pipeline Leakage Detection Based on Wireless Technology. International Journal of Professional Engineering Studies, India, 2014; 2(1).

2.3 PROBLEM STATEMENT

Software Required:

Python IDLE

System Required:

RAM-Minimum 4GB Processor-Min. Configuration OS-Windows/Linux/MAC

Gas Leakage Monitoring & Alerting System for Industries has all the features as explained below

Features:

- This project helps the industries in monitoring the emission of harmful gases
- . In several areas, the gas sensors will be integrated to monitor the gas leakage
- If in any area gas leakage is detected the admins will be notified along with the location
- In the web application, admins can view the sensor parameters.

3.IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1.	Problem Statement	It helps for monitoring the
	(Problem to be	emission of harmful gases.
	solved)	If in any area gas leakage is
		detected the admins will be
		notified along with the
		Location and sent alert
		message to all workers.
		➤ Admins can view the sensor
		Parameters.
2.	Idea / Solution	Smart bands are used to alert
	description	workers of gas leaks in factories.
		GSM technique is used to send alert
		messages to the respective persons
		and workers, if there is no response
		it sends the message to fire
		department.
		Using offline messaging alert
		facility alerting people without
		internet in range of upto 100
		meters.
3.	Novelty / Uniqueness	Visual and Audible
		alarms are triggered.
		> It is power consumption
		and it is effective.
4.	Social Impact /	Get real-time alerts about the
	Customer Satisfaction	gaseous
		presence in the atmosphere
		Prevent fire hazards and explosions
		Supervise gas concentration levels
		2 up of the gas concentration for the
		Ensure worker's health using alert
		fit band.
		Cost-effective
		Get immediate gas leak alerts

5.	Business Model (Revenue Model)	 We can introduce product- based approach to earn a good revenue. The greater number of features attract the end users to use our application.
6.	Scalability of the Solution	 Our application can be used by the company which located in under the gas leakage area. We use IBM Watson cloud server to collect the live data the current data. we will ensure the safety of the workers. Not only triggering alarm it also can perform reactive operations like spreading a particular for making the leaked gas inactive.

3.4 PROBLEM SOLUTION FIT

CS

J&P

Define CS, fit into CC

CUSTOMER SEGMENT(S)

- In Industry we have to ensure the safety of workers because we don't know the whether the gas leakage is occur.
- ❖ In home, we use gas stove for cooking purpose. To identify the leakage use some external device.

6. CUSTOMER CONSTRAINTS

- To prevent the gas leakage, the industries must use quality pipes to transfer the gas.
- Maintenance should be taken atleast once in a month to prevent the gas leakage and services are done by technicians.

5. AVAILABLE SOLUTIONS

CC

RC

- Use GSM module to your product it will send the alert notification to concerned user.
- In devices, we use sensor to sense the gas leakage.

2. JOBS-TO-BE-DONE / PROBLEMS

In Industries, we transfer the gas through pipe line if we use qualityless pipes it cause gas leakage and if we maintain the cylinder properly it also cause disaster.

9. PROBLEM ROOT CAUSE

- Sometimes the device gives false alarm it is a problem.
- We use sensors to sense the gas, sometimes the sensors are not working proper it is also a problem.
- We use lot of gases in industry it is difficult to identify the difference between the gas it gives a problem.

7. BEHAVIOUR

- With the help of sensors we identify the gas leakage.
- Monitor regularly to avoid gas leakage and we use gsm module to send alert notification.

on J&P, tap into BE, underst

Explore AS, differentiate

AS

3. TRIGGERS TR	10. YOUR SOLUTION	8. CHANNELS of BEHAVIOUR
Industries must take safety precaution for workers because the workers safety is most important. Identify the leakage at the time we take necessary measurement incase any emergency.	Incase if leakage occurs, we have to create alternate way to move out the workers.	8.1 ONLINE It's a way to maintain the relationship and we make lot of conversation to people.
A.EMOTIONS: BEFORE / AFTER EM Before use this product workers feel unsafe to work under the gas areas because if leakage occurs it cause lot of damage. After use this product workers feel safe and peaceful mind to concentrate on his/her work because the product the detect the leakage it gives alarm signal to alert the workers.		The product based on gas leakage system is very less and customer prefer to visit and saw the products

4.REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	User Registration	❖ Registration through Form
		❖ Registration through Gmail
FR-2	User Confirmation	❖ Confirmation via Email
		❖ Confirmation via OTP
FR-3	User SIGN IN	❖ User can sign in with username and password
FR-4	Connect the NODEMCU	❖ Connect the NODEMCU device with
	device	application through Wifi.
FR-5	Update contact details	Update the emergency contact number.
FR-6	REALTIME MONITORING	❖ It display the temperature level in pictorial
		representation using flow chart.
FR-6	Output	❖ In Emergency situation, it sends alert message
		to emergency contact number.
		❖ It sends message to fire service.
FR-7	Review and Feedback	❖ User can share their experience about the app
		usage.
		❖ Provide feedback

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	 In Industries, we use this device to avoid the fire accidents. The device can be accessed through Wifi.
NFR-2	Security	Only authorised person can access the important details.
NFR-3	Reliability	 Prevent from accidents. Avoid false Alarm. It Should avoid the delay alert message.
NFR-4	Performance	In a gas usage industries, the gas is transferred from one end to another end through pipes at the time gas leakage is possible. We use this device to detect the gas leakage and gives buzzer alarm and send alert message to nearest police station and fire service department.
NFR-5	Availability	This model is used to continuously monitor and display the gas level and check the gas level is exceed or not.
NFR-6	Scalability	Lot of users can access the application at the same time without any inconvenience.

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with	HTML, CSS, JavaScript
		application e.g.	
		Web UI, Mobile App, Chatbot	
		etc.	
2.	IOT Application Logic-	Device Should be connected to	Python
	1	System Using python code.	
3.	IOT Application Logic-	NODEMCU device is	IBM Watson STT
	2	connected with IBM Watson	service
		Platform.	
4.	IOT Application Logic-	It is connected with Web UI	IBM Watson Assistant
	3	and alert the user through	
		messages.	

5.	Cloud Database	Database Service on Cloud.	IBM DB2, IBM
		Data can be any format based	Cloudant etc.
		on user.	
6.	File Storage	File Should be named and it	IBM Block Storage or
		contains details of file type,	Other Storage Service or
		date and time of file is created,	Local Filesystem
		memory space.	
7.	External API-1	It is used in device through Wifi	Aadhar API, etc.
		communicating and allotting	
		operation efficiency.	
8.	Machine Learning	IOT and machine learning	Object Recognition
	Model	delivers insights otherwise	Model and Danger
		hidden in data for rapid	prediction model etc.
		automated response and	
		improved decision making	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Without using framework,we lot of manual work to do the task, but using framework provide rapid development and in coding part it reduce the code.	Real time monitoring- Gas leakage is monitored continuously using IOT Zeta.
2.	Security Implementations	GSM module is enabled with devices. If leakage is detected send the alert message to concerned user.	e.g. SHA-256-It is used for encryption security.
3.	Scalable Architecture	Any problem occur, the concerned user can see the problem and real time monitoring the gas levels.	Multiple Data store Technologies, Reliable.
4.	Availability	It continuously monitor the gas level and whether the gas leakage occurs it immediatedly sends the SMS alert to user	GSM Module
5.	Performance	The leakage detected without any delay it gives fire alarm and it sends SMS alert to user. WEB UI Is also connected with device so it alert the concerned user. We use high quality pipes and	 High durable devices with good quality. Long Lasting Battery

S.No	Characteristics	Description	Technology
		regular maintanence to avoid the leakage.	

SOLUTION ARCHITECTURE:

USER STORIES:

USER TYPE	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email	High	Sprint-1
	Login	USN-3	As a user, I can log into the application entering email & password	I can login to my web to my email and password.	High	Sprint-1
	Dashboard	USN-4	As a user, I can login into my account and I can add the members to send alert message	Only added contact numbers can receive SMS alerts.	High	Sprint-1
Customer (Web user)	Registration	USN-1	As a user, I can register for to creating account by entering my email, password, and confirming my password.	I can access my account.	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the web user.	I can receive confirmation email.	High	Sprint-1
	Login	USN-3	As a user, I can log into the website entering email & password	Only valid credentials must be acceptable.	High	Sprint-1
	Dashboard	USN-4	As a user, I can login into my	Only added contact numbers	High	Sprint-1

USER STORIES:

USER TYPE	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
			account and I can add the members to send alert message	can receive sms alerts.		
Administrator	Admin	USN-1	As a Admin, He/ She can add the members those who want to receive alert message.	The Admin have authority can add members and edit the details.	High	Sprint-1
		USN-2	As a Admin, He/ She can monitor real time.	The admin can monitor the process by 24/7 hrs.	High	Sprint-1

6.PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022
Sprint-2	12	6 Days	31 Oct 2022	05 Nov 2022	12	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	10	6 Days	14 Nov 2022	19 Nov 2022	10	19 Nov 2022

Velocity:

Imagine we have a 6-day sprint duration, and the velocity of the team is 13(approx) (points per sprint). Let's calculate the team's average velocity(AV) per iteration unit(story points per day)

AV = Sprint duration/Velocity = 13/6=2.2

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		USN-1	As a user, I can register for the application by entering my email, password, and confirming	5	High	Sheela S
Sprint-1		USN-2	my password. As a user, I will receive confirmation email once I have registered for the application	5	Medium	Vijay Prabu S
Sprint-2	Login (Mobile User)	USN-3	As a user, I can log into the application entering email & password	5	Low	Vignesh Kumar M
Sprint-2		USN-4	Connect the sensor device to Mobile application to monitor the gas leakage	2	High	Nithish Kumar S
Sprint-2	Dashboard (Mobile User)	USN-5	As a user, I can login into my account and I can add the members to send alert message	5	High	Sheela S
Sprint-3	Registration (Web User)	USN-6	As a user, I can register for to creating account by entering my email, password, and confirming my password.	5	High	Vignesh Kumar M
Sprint-3		USN-7	As a user, I will receive confirmation email once	5	High	Nithish Kumar S

			I have registered for the web user.			
Sprint-3	Login(Web User)	USN-8	As a user, I can log into the website entering email & password	5	Medium	Vijay Prabu S

6.3 REPORTS FROM JIRA

1. Image showing the backlogs create in the JIRA Software (PETA Spring1, PETASpring2, PETA Spring3, PETA Spring4)

2.Image Showing the User Stories in the respective sprints.

3. Image showing the workspace progress in the sprint

Image Showing the RoadMap of Sprint

7.SOLUTIONING

7.1 FEATURE 1

7.2 FEATURE 2

8.TESTING

8.1 TEST CASES

Publish data to IBM cloud

IBM CLOUD USED TO STORE DATA:

DEVELOP A WEB APPLICATION USING NODE-RED:

USING TINKERCAD CREATE A CIRCUIT:

9.RESULTS

9.1 PERFORMANCE METRICS

DASHBOARD:

RESULT:

CIRCUIT SIMULATION RESULT:

10.ADVANTAGES & DISADVANTAGES

ADVANTAGES

Some of the advantage of using gas leakage monitoring and alerting system for industries are:

- Get real-time alerts about the gaseous presence in the atmosphere
- Prevent fire hazards and explosions
- Supervise gas concentration levels
- Ensure worker's health
- Real-time updates about leakages
- Get immediate gas leak alerts

DISADVANTAGES

Some of the disadvantages are:

- Sending late notification
- Sometimes false alarm occurs
- Using IOT devices so costly

11.CONCLUSION

This project aims to develop a monitoring and alerting system to meet safety standards and avoid free accidents caused by leakage. The system detects gas in the atmosphere and will continuously update and display the gas value, which the user can easily see via the mobile app. This system has a faster response rate and can disseminate critical information faster than manual methods. In the event of a leak, the system alerts and responds quickly by sending SMS to the appropriate authority

12.FUTURE SCOPE

In IOT have different types of devices like sensors. We use only gas sensor to sense the leakage in addition to use temperature sensor. The

temperature sensor can be used which detects the high-pressure gas and display the alert SMS when a high temperature is reached.

13.APPENDIX

SOURCE CODE:

PYTHON CODE:

```
#IBM Watson IOT Platform
#pip install wiotp-sdk
import wiotp.sdk.device
import time
import random
myConfig = {
  "identity": {
    "orgId": "fytwic",
    "typeId": "gasleakage114",
    "deviceId":"device114"
  },
  "auth": {
    "token": "01234567"
  }
def myCommandCallback(cmd):
  print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
  m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
```

```
client.connect()
while True:
  temp=random.randint(32,40)
  hum=random.randint(60,80)
  gas=random.randint(500,800)
  pres=random.randint(20,80)
  myData={'temperature':temp, 'humidity':hum, 'gasLevel':gas, 'pressure':pres,
'latitude':13.148760, 'longitude':80.229100}
  client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0,
onPublish=None)
  print("Published data Successfully: %s", myData)
  client.commandCallback = myCommandCallback
  time.sleep(2)
client.disconnect()
FOR CIRCUIT:
#include <LiquidCrystal.h>
LiquidCrystal lcd(6, 7, 8, 9, 10, 11);
float gasPin = A0;
float gasLevel;
int ledPin = 2;
int buttonPin = 3;
int buzzPin = 4;
int buttonState;
int fan = 5;
void setup(){
 pinMode(ledPin, OUTPUT);
```

```
pinMode(buttonPin, INPUT);
 pinMode(gasPin,INPUT);
 pinMode(fan,OUTPUT);
 Serial.begin(9600);
 lcd.begin(16, 2);
 lcd.setCursor(0,0);
 lcd.print(" Welcome");
 lcd.setCursor(0,2);
 lcd.print("PNT2022TMID19555");
 delay(500);
 lcd.clear();
void loop(){
 // Read the value from gas sensor and button
 gasLevel = analogRead(gasPin);
 buttonState = digitalRead(buttonPin);
 // call the function for gas detection and button work
 gasDetected(gasLevel);
 buzzer(gasLevel);
 exhaustFanOn(buttonState);
// Gas Leakage Detection & Automatic Alarm and Fan ON
void gasDetected(float gasLevel){
 if(gasLevel >= 200){
 digitalWrite(buzzPin,HIGH);
  digitalWrite(ledPin,HIGH);
  digitalWrite(fan,HIGH);
```

```
lcd.setCursor(0,0);
 lcd.print("GAS:");
  lcd.print(gasLevel);
 lcd.setCursor(0,2);
 lcd.print("FAN ON");
 delay(1000);
 lcd.clear();
 }else{
 digitalWrite(ledPin,LOW);
  digitalWrite(buzzPin,LOW);
  digitalWrite(fan,LOW);
  lcd.setCursor(0,0);
 lcd.print("GAS:");
  lcd.print(gasLevel);
 lcd.setCursor(0,2);
 lcd.print("FAN OFF");
 delay(100);
 lcd.clear();
//BUZZER
void buzzer(float gasLevel){
if(gasLevel>=200)
 for(int i=0; i<=30; i=i+10)
 tone(4,i);
```

```
delay(300);
 noTone(4);
 delay(4300);
// Manually Exhaust FAN ON
void exhaustFanOn(int buttonState){
 if(buttonState == HIGH){
  digitalWrite(fan,HIGH);
  lcd.setCursor(0,0);
 lcd.print("Button State:");
  lcd.print(buttonState);
  lcd.setCursor(0,2);
  lcd.print("FAN ON");
  delay(10000);
  lcd.clear();
 }}
GITHUB PROJECT LINK:
```

LINK- https://github.com/IBM-EPBL/IBM-Project-32504-1660210420

