CS 589 Lecture 2: Probabilistic Retrieval Models - Complete Study Guide

Course: CS 589 - Information Retrieval

Lecture: 2

Topics: Probability Ranking Principle, RSJ Model, BM25, Language Model-Based Retrieval

Table of Contents

- 1. Fundamentals: Random Variables & Probability
- 2. Probability Ranking Principle (PRP)
- 3. Model 1: Robertson & Sparck Jones (RSJ)
- 4. Model 2: BM25
- 5. Model 3: Language Model-Based Retrieval
- 6. Practice Problems with Solutions
- 7. Quiz Questions & Detailed Solutions
- 8. Video Resources
- 9. Quick Reference Guide
- 10. Study Tips for Midterm

1. Fundamentals: Random Variables & Probability

1.1 Random Variables: The Biased Coin Example

Scenario: You have a biased coin that comes up heads with some unknown probability.

Observation sequence: H, T, H, H, T, T, H, T, H, T, H, H

• Heads: 7 times

• Tails: 5 times

Goal: Estimate the probability of heads

Model: Bernoulli Distribution

 $P(Heads) = \alpha$ $P(Tails) = 1 - \alpha$

Parameter: α (what we want to estimate)

Observation: The sequence we observed

Graphical representation:

1.2 Maximum Likelihood Estimation (MLE)

Question: Given observations, what's the best estimate for α ?

Answer: The value that maximizes the probability of observing our data

Probability of our sequence:

```
P(\text{sequence}) = \alpha \times (1-\alpha) \times \alpha \times \alpha \times (1-\alpha) \times (1-\alpha) \times \alpha \times (1-\alpha) \times \alpha \times (1-\alpha) \times \alpha \times \alpha
= \alpha \cdot \text{count}(\text{heads}) \times (1-\alpha) \cdot \text{count}(\text{tails})
= \alpha \cdot 7 \times (1-\alpha) \cdot 5
```

To maximize, take derivative and set to zero:

```
d/d\alpha \left[\alpha^{7} \times (1-\alpha)^{5}\right] = 0
```

Result (by calculus):

```
\alpha = \text{count(heads)} / [\text{count(heads)} + \text{count(tails)}]
= 7 / (7 + 5)
= 7/12
\approx 0.583
```

Visualization of likelihood:

Key insight: The MLE is just the empirical frequency!

1.3 Bayes' Rule

Chain Rule (Joint Distribution)

```
P(A, B) = P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)
```

Bayes' Rule

From the chain rule, we can derive:

```
P(A|B) = P(B|A)P(A) / P(B)
```

Or equivalently:

Terminology

- **P(A|B)**: Posterior (what we want to know)
- **P(B|A)**: Likelihood (probability of data given hypothesis)
- **P(A)**: Prior (what we knew before seeing data)
- **P(B)**: Evidence (normalizing constant)

Proportionality

Since P(B) doesn't depend on A:

```
P(A|B) \propto P(B|A)P(A)
```

Example: Medical diagnosis

```
P(disease|symptoms) = P(symptoms|disease) \times P(disease) / P(symptoms)
```

1.4 Random Variables in Information Retrieval

Mapping to IR

Coin Toss	Information Retrieval	
Outcome: H or T	Relevance: 0 or 1	
$\alpha = P(Heads)$	P(rel=1 q,d) = probability document is relevant	
Sequence of tosses	Collection of documents	
4	• • • • • • • • • • • • • • • • • • •	

Key notation

- q: query
- d: document
- **rel**: relevance (0 = not relevant, 1 = relevant)

Example

Query: "artificial intelligence"

Documents in collection:

```
d1 = [artificial, intelligence, machine, intelligence, information, retrieval]
d2 = [covid, patient, virus, ...]
d3 = [machine, learning, deep, neural, ...]
...
```

Observations:

Our goal: Estimate P(rel=1|q, d) for each document

2. Probability Ranking Principle (PRP)

2.1 The Principle

Statement:

Documents should be ranked by their probability of relevance P(rel=1|q,d) in decreasing order.

Theorem (Ripley 1996):

The PRP is optimal in the sense that it minimizes expected loss.

Why is this important?

- Provides theoretical foundation for retrieval
- Tells us what to estimate (relevance probability)
- Doesn't tell us HOW to estimate it (that's where models come in)

2.2 From Counting to Probability

Naive approach

P(rel=1|q,d) = count(rel=1, q, d) / count(q, d)

Problems

- 1. Not enough data: Most (q,d) pairs never observed
- 2. Cannot adapt to new queries: Need relevance judgments for every new query

Example: If we have 1 million documents and 1000 queries:

- Possible (q,d) pairs: 1 billion
- Actually judged: maybe 50,000
- 99.995% of pairs have no data!

2.3 Solution: Use Bayes' Rule

Transform the problem:

 $P(rel=1|q,d) = P(d|rel=1,q) \times P(rel=1) / P(d)$

Using odds ratio (helps cancel terms):

O(rel=1|q,d) = P(rel=1|q,d) / P(rel=0|q,d)

Property of odds:

```
a/(1-a) = 1/(1-a) - 1
```

So if we can rank by odds, we can rank by probability!

Why odds? Because:

```
O(rel=1|q,d) = [P(d|rel=1,q) \times P(rel=1)] / [P(d|rel=0,q) \times P(rel=0)]
```

The P(d) cancels out! Now we have:

```
O(rel=1|q,d) \propto P(d|rel=1,q) / P(d|rel=0,q)
```

3. Model 1: Robertson & Sparck Jones (RSJ)

3.1 Key Assumptions

Independence assumption: Words in documents are independent given relevance

```
P(d|rel,q) = \prod_{i \in V} P(wi|rel,q)
```

Binary occurrence: Each word either appears (wi=1) or doesn't (wi=0)

3.2 Complete Derivation

Step 1: Start with odds

```
O(rel{=}1|q,d) = P(d|rel{=}1,q)P(rel{=}1) \ / \ [P(d|rel{=}0,q)P(rel{=}0)]
```

Step 2: Apply independence assumption

$$P(d|rel=1,q) = \prod_{i \in V} P(wi|rel=1,q)$$

Step 3: Split into words in document vs. not in document

For each word, either wi=1 (in doc) or wi=0 (not in doc):

$$P(d|rel=1,q) = \prod_{wi=1} P(wi=1|rel=1,q) \times \prod_{wi=0} P(wi=0|rel=1,q)$$

Similarly:

$$P(d|rel=0,q) = \prod_{} \{wi=1\} \ P(wi=1|rel=0,q) \times \prod_{} \{wi=0\} \ P(wi=0|rel=0,q)$$

Step 4: Form the odds ratio

```
O(\text{rel=1}|q,d) = [\prod_{wi=1} \text{P}(\text{wi=1}|\text{rel=1},q) / \text{P}(\text{wi=1}|\text{rel=0},q)] \\ \times [\prod_{wi=1} \text{P}(\text{wi=0}|\text{rel=1},q) / \text{P}(\text{wi=0}|\text{rel=0},q)] \\ \times [\prod_{wi=0} \text{P}(\text{wi=1}|\text{rel=1},q) / \text{P}(\text{wi=1}|\text{rel=0},q)] \\ \times [\prod_{wi=0} \text{P}(\text{wi=0}|\text{rel=1},q) / \text{P}(\text{wi=0}|\text{rel=0},q)]
```

Step 5: Key simplification

The last two products (over wi=0) don't depend on the document! They're the same for all documents, so for ranking purposes, we can ignore them.

```
O(\text{rel=1}|q,d) \propto \prod_{wi=1} [P(\text{wi=1}|\text{rel=1},q) / P(\text{wi=1}|\text{rel=0},q)] \times [P(\text{wi=0}|\text{rel=1},q) / P(\text{wi=0}|\text{rel=0},q)]
```

Using P(wi=0|rel,q) = 1 - P(wi=1|rel,q):

```
O(\text{rel}=1|q,d) \propto \prod_{w=1} [P(\text{wi}=1|\text{rel}=1,q) / P(\text{wi}=1|\text{rel}=0,q)] \times [(1-P(\text{wi}=1|\text{rel}=1,q)) / (1-P(\text{wi}=1|\text{rel}=0,q))]
```

Step 6: Take logarithm (preserves ranking)

```
\log O(rel=1|q,d) = \sum_{i=1}^{n} \left[ \frac{\alpha i(1-\beta i)}{\beta i(1-\alpha i)} \right]
```

where:

- $\alpha i = P(wi=1|rel=1,q)$: probability word i appears in relevant documents
- $\beta i = P(wi=1|rel=0,q)$: probability word i appears in non-relevant documents

3.3 Final RSJ Formula

Ranking function

```
score^{RSJ(q,d)} = \sum_{\{wi=1\}} \log[\alpha i(1-\beta i) / (\beta i(1-\alpha i))]
```

Estimation with smoothing (avoid zeros)

```
\alpha i = [count(wi=1, q, rel=1) + 0.5] / [count(q, rel=1) + 1]
```

```
\beta i = [count(wi=1, q, rel=0) + 0.5] / [count(q, rel=0) + 1]
```

Intuition

- If $\alpha i > \beta i$: word appears more in relevant docs \rightarrow positive contribution
- If $\alpha i < \beta i$: word appears more in non-relevant docs \rightarrow negative contribution

• The log ratio amplifies these differences

3.4 Example Calculation

Scenario:

- Query: "machine learning"
- We have 100 relevant documents, 900 non-relevant documents
- "machine": appears in 80 relevant, 200 non-relevant
- "learning": appears in 70 relevant, 150 non-relevant

Calculate ai and Bi

For "machine":

```
\alpha_machine = (80 + 0.5) / (100 + 1) = 80.5/101 \approx 0.797
\beta_machine = (200 + 0.5) / (900 + 1) = 200.5/901 \approx 0.222
```

For "learning":

```
\alpha_{\text{learning}} = (70 + 0.5) / (100 + 1) = 70.5/101 \approx 0.698
\beta_{\text{learning}} = (150 + 0.5) / (900 + 1) = 150.5/901 \approx 0.167
```

Score for document containing both words

```
score = log[0.797 \times (1-0.222) / (0.222 \times (1-0.797))]
+ log[0.698 \times (1-0.167) / (0.167 \times (1-0.698))]
= log[0.797 \times 0.778 / (0.222 \times 0.203)]
+ log[0.698 \times 0.833 / (0.167 \times 0.302)]
= log[0.620 / 0.045] + log[0.581 / 0.050]
= log[13.78] + log[11.62]
= 2.62 + 2.45
= 5.07
```

3.5 Advantages and Limitations

Advantages

- Probabilistic foundation
- Can incorporate relevance feedback

• Theoretically justified

Limitations

- Requires relevance judgments
- Binary occurrence only (doesn't use term frequency)
- Independence assumption may not hold

4. Model 2: BM25 (Okapi BM25)

4.1 Motivation

Problem with RSJ: Only uses binary occurrence (word present/absent)

Example:

```
d1: "machine learning machine"
d2: "machine"
```

RSJ treats both the same! But d1 clearly emphasizes "machine" more.

Goal: Incorporate term frequency (TF) into probabilistic model

4.2 The Eliteness Hypothesis

New hidden variable: Eliteness (Ei)

Definition: A document-term pair (d,wi) is "elite" if the document is substantially about the concept denoted by the term.

Example:

- Query: "artificial intelligence"
- d1: "...artificial intelligence systems...learning...neural..."
 - "artificial": ELITE (document is about AI)
 - "intelligence": ELITE
 - "learning": ELITE
 - "the": NOT ELITE
- d2: "...studying the artificial flowers..."
 - "artificial": NOT ELITE (different meaning)

Graphical model:

```
document d \downarrow Eliteness Ei ———— Term frequency tfi \uparrow parameters \theta
```

Key insight: Term occurrence depends on eliteness

4.3 Two-Poisson Mixture Model

Model term frequency as mixture of two Poisson distributions:

```
P(\text{wi=tfi}|q,\text{rel=1}) = \pi \times [\lambda^{\text{tfi}} \times e^{\text{-}(-\lambda)} / \text{tfi!}] + (1-\pi) \times [\mu^{\text{tfi}} \times e^{\text{-}(-\mu)} / \text{tfi!}]
\downarrow \qquad \qquad / \qquad \qquad /
ELITE \qquad NON-ELITE
(\text{high frequency}) \qquad (\text{low frequency})
```

Parameters:

- π : probability document is elite for this term
- λ: rate parameter for elite distribution (large, e.g., 3-5)
- μ: rate parameter for non-elite distribution (small, e.g., 0.5)

Why two Poisson?

One Poisson can't capture "burstiness":

Intuition: Words either appear rarely (background) or appear frequently (topical)

4.4 Approximation: Saturation Function

Problem: Three unknown parameters (π, λ, μ) are hard to estimate

Solution: Design a parameter-free approximation!

The 2-Poisson mixture behaves like a saturation function:

```
c_i^elite(tfi) \approx tfi / (k1 + tfi)
```

Why this works

As $tfi \rightarrow 0$:

```
\left( \begin{array}{c} \text{tfi} / \left( \text{k1} + \text{tfi} \right) \rightarrow 0 \end{array} \right)
```

As $tfi \rightarrow \infty$:

```
tfi / (k1 + tfi) \rightarrow 1
```

Visualization:

```
contribution
  1.0 (saturates)
  | /
  0.8 | /
   | /
  0.6 | /
  | /
  0.4 | /
  0.2 | /
  |/
  0.0 \mid \longrightarrow tfi
    0 2 4 6 8 10
Different k1 values:
x/(0.2+x) —— (fast saturation)
x/(1+x) —— (medium)
x/(3+x) —— (slow)
x/(10+x) —— (very slow)
```

Different curves for different k1:

```
k1 = 0.5: Very fast saturation (aggressive)
k1 = 1.2: Fast saturation (typical lower bound)
k1 = 2.0: Medium saturation (typical upper bound)
k1 = 3.0: Slow saturation
```

4.5 Complete BM25 Formula

Final scoring function:

 $score^BM25(q,d) = \sum_{k=0}^{\infty} \left[\frac{wi}{q} \log(N/df_1) \times \left[\frac{tf_1(k_1+1)}{k_1(1-b)} \right] / \left[\frac{k_1((1-b)+b|d|/avgdl) + tf_1}{k_1(1-b)} \right] \right]$

Component analysis

1. IDF term:

log(N/dfi)

- N = total number of documents
- dfi = number of documents containing term i
- Exactly like TF-IDF!

2. Normalized TF term:

 $[tfi(k1+1)] / [k1 \times normalization + tfi]$

3. Document length normalization (pivoting):

normalization = $(1-b) + b \times (|d|/avgdl)$

- $|\mathbf{d}| = \text{document length}$
- avgdl = average document length in collection
- $b \in [0,1]$ controls strength (typically b=0.75)

4.6 Breaking Down the Formula

Let's see each component's effect

Scenario:

- N = 1,000,000 documents
- avgdl = 1,000 words
- k1 = 1.5, b = 0.75

Term: "neural"

- df = 10,000 documents contain it
- IDF = $\log(1,000,000/10,000) = \log(100) \approx 4.6$

Document d1:

- Length: 500 words (short)
- "neural" appears 3 times

```
normalization = (1-0.75) + 0.75 \times (500/1000) = 0.25 + 0.375 = 0.625

TF component = [3 \times (1.5+1)] / [1.5 \times 0.625 + 3]

= [3 \times 2.5] / [0.9375 + 3]

= 7.5 / 3.9375

= 1.905

score contribution = 4.6 \times 1.905 = 8.76
```

Document d2:

- Length: 3000 words (long)
- "neural" appears 5 times

```
normalization = (1-0.75) + 0.75 \times (3000/1000) = 0.25 + 2.25 = 2.5

TF component = [5 \times (1.5+1)] / [1.5 \times 2.5 + 5]

= [5 \times 2.5] / [3.75 + 5]

= 12.5 / 8.75

= 1.429

score contribution = 4.6 \times 1.429 = 6.57
```

Notice: Despite d2 having higher TF (5 vs 3), d1 scores higher because it's shorter!

4.7 Parameter Effects

Effect of k1

```
k1 = 1.2: More aggressive saturation

tf=2 \rightarrow 2(2.2)/(1.2+2) = 1.375

tf=5 \rightarrow 5(2.2)/(1.2+5) = 1.774

k1 = 2.0: Less aggressive saturation

tf=2 \rightarrow 2(3)/(2+2) = 1.5

tf=5 \rightarrow 5(3)/(2+5) = 2.143
```

Effect of b

```
b = 0: No length normalization
Short doc (500 words): norm = 1.0
Long doc (3000 words): norm = 1.0

b = 1: Full length normalization
Short doc: norm = 500/1000 = 0.5
Long doc: norm = 3000/1000 = 3.0

b = 0.75: Typical setting (partial normalization)
Short doc: norm = 0.25 + 0.75×0.5 = 0.625
Long doc: norm = 0.25 + 0.75×3.0 = 2.5
```

4.8 BM25F: Multi-Field Extension

Motivation: Documents have structure (title, body, metadata)

Example: StackOverflow question

```
Title: "How to cite presentation slides?"

Body: "A friend has made some nice slides..."

Tags: ["citations", "academic"]
```

Different fields have different importance!

BM25F formula

```
score^{BM25F(q,d)} = \sum_{\{wi \in q\}} \log(N/dfi) \times \left[tfi^{F}(k1+1)\right] / \left[k1((1-b)+b|d|^{F}avgdl^{F}) + tfi^{F}\right]
```

Weighted combination:

```
tfi^F = \sum_f \alpha f \times tfi, f
|d|^F = \sum_f \alpha f \times |d| f
avgdl^F = \sum_f \alpha f \times avgdl f
```

Example weights:

```
\alpha_{\text{title}} = 3.0 (title is very important)
\alpha_{\text{body}} = 1.0 (body is baseline)
\alpha_{\text{tags}} = 2.0 (tags are important)
```

Calculation

Document:

- Title (5 words): "cite presentation slides"
- Body (100 words): "...slides...cite..."

• Tags: ["citations"]

Query: "cite presentation"

```
tf_cite^F = 3.0 \times 1 (title) + 1.0 \times 1 (body) + 2.0 \times 0 (tags) = 4.0 tf_presentation^F = 3.0 \times 1 (title) + 1.0 \times 0 (body) + 2.0 \times 0 (tags) = 3.0 |d|^F = 3.0 \times 5 + 1.0 \times 100 + 2.0 \times 2 = 119
```

4.9 Advantages and Limitations

Advantages

- State-of-the-art non-learning model
- Still widely used (Elasticsearch, Solr)
- Incorporates TF with principled normalization
- Few parameters to tune

Limitations

- Parameters (k1, b) hard to estimate theoretically
- No explicit relevance feedback mechanism (unlike RSJ)
- Still bag-of-words (no phrase information)

5. Model 3: Language Model-Based Retrieval

5.1 Key Paradigm Shift

RSJ/BM25 approach:

```
P(rel=1|q,d) "Is document relevant given query?"
```

Language model approach:

```
P(q|d) "Could this document generate this query?"
```

Graphical models:

Intuition:

- Imagine each document is a "language model" (probability distribution over words)
- Rank documents by likelihood they would generate the query

5.2 Statistical Language Model

Definition: A probability distribution over word sequences

Examples:

```
P("Today is Wednesday") \approx 0.001 \qquad (reasonable sentence) \\ P("Today Wednesday is") \approx 0.000000001 \quad (ungrammatical) \\ P("Eigenvalue positive is") \approx 0.0000001 \quad (weird)
```

Unigram language model:

- Generate each word independently
- $P(w1 \ w2 \ ... \ wn) = P(w1) \times P(w2) \times ... \times P(wn)$

Parameters: $\{P(w1), P(w2), ..., P(wN)\}\$ where $\sum P(wi) = 1$

Graphical model:

```
\theta \text{ (parameters)}
| \longrightarrow w1
| \longrightarrow w2
| \longrightarrow w3
...
| \longrightarrow wn
```

Example

Language model:

```
P("the") = 0.05

P("is") = 0.02

P("cat") = 0.001

P("eigenvalue") = 0.00001

...
```

Generate sentence:

```
P("the cat is") = P("the") × P("cat") × P("is")
= 0.05 \times 0.001 \times 0.02
= 0.000001
```

5.3 Query Likelihood Model

Ranking function:

```
score(q,d) = P(q|d) = \prod_{i=1}^{n} \{wi \in q\} P(wi|d)
```

Taking log (preserves ranking, easier to compute):

```
score(q,d) = log P(q|d) = \sum_{wi \in q} log P(wi|d)
```

Example

Query: "presidential campaign news"

Document d: "...news of presidential campaign..... ...presidential candidate..."

Estimate P(wi|d) by MLE:

```
P_MLE(wi|d) = count(wi, d) / |d|
```

```
P("presidential"|d) = 2/100 = 0.02
P("campaign"|d) = 1/100 = 0.01
P("news"|d) = 1/100 = 0.01
```

```
score(q,d) = log(0.02) + log(0.01) + log(0.01)
= -3.91 + (-4.61) + (-4.61)
= -13.13
```

Problem: What if query word doesn't appear in document?

```
P("election"|d) = 0/100 = 0
log(0) = -\infty
Entire score = -\infty
```

This is catastrophic! We need smoothing.

5.4 Smoothing Methods

Core idea: Mix document language model with collection language model

Collection language model:

```
P(wi|C) = \sum_{d \in C} count(wi,d) / \sum_{d \in C} |d|
```

Method 1: Dirichlet Smoothing

Formula:

```
P_s(wi|d) = [count(wi,d) + \mu \times P(wi|C)] / [|d| + \mu]
```

Rewrite as weighted combination:

```
P_s(wi|d) = [|d|/(|d|+\mu)] \times P_MLE(wi|d) + [\mu/(|d|+\mu)] \times P(wi|C)
\frac{}{} \text{weight on document} \text{weight on collection}
```

Parameter μ: Controls smoothing strength

- μ small (e.g., 100): Trust document more
- μ large (e.g., 5000): Trust collection more
- Typical value: $\mu \approx 2000$

Intuition:

```
Document only \downarrow
Long doc (|d|=5000): 5000/7000 = 71% document, 29% collection
Short doc (|d|=100): 100/2100 = 5% document, 95% collection

\uparrow
More smoothing needed
```

Example calculation:

Document d (100 words):

- "neural" appears 3 times
- P("neural"|C) = 0.001 (collection)
- $\mu = 2000$

```
P_s("neural"|d) = [3 + 2000×0.001] / [100 + 2000]

= [3 + 2] / 2100

= 5/2100

= 0.00238
```

For unseen word "quantum":

```
P_s("quantum"|d) = [0 + 2000 \times 0.0001] / [100 + 2000]
= 0.2 / 2100
= 0.000095
```

Still non-zero!

Method 2: Jelinek-Mercer Smoothing

Formula:

 $P_s(wi|d) = \lambda \times P_MLE(wi|d) + (1-\lambda) \times P(wi|C)$

Fixed interpolation weight:

- $\lambda \in [0, 1]$
- Typical: $\lambda \approx 0.7$

Difference from Dirichlet:

- Dirichlet: Adapts to document length
- JM: Same λ for all documents

Example:

 $\lambda = 0.7$, same document as before:

```
P_s("neural"|d) = 0.7 \times (3/100) + 0.3 \times 0.001
= 0.7 \times 0.03 + 0.0003
= 0.021 + 0.0003
= 0.0213
```

For unseen "quantum":

 $P_s("quantum"|d) = 0.7 \times 0 + 0.3 \times 0.0001$ = 0.00003

5.5 Ranking Formula (Dirichlet)

Starting from:

 $\log P(q|d) = \sum \{wi \in q\} \log P_s(wi|d)$

Substitute Dirichlet smoothing:

 $= \sum_{\mathbf{w} \in \mathbf{q}} \log[[count(\mathbf{w}_i, \mathbf{d}) + \mu \times P(\mathbf{w}_i | C)] / [|\mathbf{d}| + \mu])$

Simplify (see derivation link: https://www.overleaf.com/read/jbztxtnbzwcx):

$$= \sum_{\substack{\{wi \in q, wi \in d\} \ log(count(wi,d) / [\mu \times P(wi|C)]) + |q| \times log[\mu/(\mu + |d|)]}} \\ \\ \underline{\qquad \qquad } / \qquad \underline{\qquad \qquad } / \qquad \\ depends on matching \qquad document length penalty}$$

For ranking (ignore constant |q|):

```
score^{\text{Dir}(q,d)} = \sum_{wi \in q, wi \in d} \log(1 + count(wi,d)/(\mu \times P(wi|C))) + \log(\mu/(\mu + |d|))
```

Intuition:

- 1. For each query term in document, get score based on its frequency
- 2. Longer documents get penalized by log term

5.6 Feedback Language Model

Problem: Query is often too short and ambiguous

Example: Query: "apple"

• Could mean: fruit, company, music, records, pie, tree...

Solution: Use pseudo-relevance feedback

Pseudo-relevance feedback

- 1. Retrieve top-k documents with initial query
- 2. Assume these are relevant (even without judgments)
- 3. Expand query using these documents

Model: Feedback creates improved query model

$$\theta q^FB = \lambda \times \theta q + (1-\lambda) \times \theta q^F$$

where:

- $\theta q = original query model$
- $\theta q^F = \text{model learned from feedback documents}$
- $\lambda \in [0,1]$ = interpolation weight

How to estimate θq^F?

EM Algorithm:

Assume feedback documents are mixture:

```
P(d|\theta q^F) = \prod_{w \in d} [\theta q^F(w)]^count(w,d)
```

E-step: Estimate which words came from topic vs. background

```
P(z = topic|w,d) = \left[\theta q^{K}(w) \times \lambda\right] / \left[\theta q^{K}(w) \times \lambda + P(w|C) \times (1-\lambda)\right]
```

M-step: Update θq^F

```
\theta q^F(w) \propto \sum_{d \in feedback} count(w,d) \times P(z=topic|w,d)
```

Iterate until convergence

5.7 Complete Example

Query: "airport security"

Step 1: Initial retrieval using query likelihood

Retrieve top 5 documents

Step 2: Extract top terms from feedback documents

```
Document 1: "...airport security measures... passengers... screening..."

Document 2: "...TSA procedures...airport... safety..."

Document 3: "...security checkpoints... baggage... inspection..."
```

Step 3: Learn θq^F using EM

Discovered related terms:

```
P("passengers"|\theta q^F) = 0.08
P("screening"|\theta q^F) = 0.06
P("TSA"|\theta q^F) = 0.05
P("checkpoints"|\theta q^F) = 0.04
...
```

Step 4: Combine with original query

```
\theta q^FB("airport") = 0.7 \times 0.5 + 0.3 \times 0.03 = 0.359

\theta q^FB("security") = 0.7 \times 0.5 + 0.3 \times 0.02 = 0.356

\theta q^FB("passengers") = 0.7 \times 0 + 0.3 \times 0.08 = 0.024 \leftarrow NEW

\theta q^FB("screening") = 0.7 \times 0 + 0.3 \times 0.06 = 0.018 \leftarrow NEW
```

Step 5: Rerank using expanded query

5.8 Advantages and Limitations

Advantages

Flexible framework

- Can easily incorporate feedback
- Probabilistic foundation
- State-of-the-art performance with good smoothing

Limitations

- Query-document equivalence assumption unrealistic
- Unigram model (no phrases)
- Smoothing parameters must be tuned

5.9 Comparison: BM25 vs Language Models

Empirical results (Bennett et al. 2008):

On some datasets:

- BM25 outperforms LM (e.g., TREC TD)
- LM with feedback outperforms baseline LM

Typical performance ranking:

BM25 ≈ LM-Dirichlet > LM-JM > RSJ

When to use which:

• BM25: Simple, robust, well-tested

• LM: Want feedback, need theoretical framework

• BM25F: Multi-field documents

• Feedback LM: Query expansion is critical

6. Practice Problems with Solutions

Problem 1: MLE for Biased Coin

Question: You flip a coin 20 times:

• Heads: 13 times

• Tails: 7 times

What's the MLE for P(Heads)?

Solution:

```
α = count(heads) / [count(heads) + count(tails)]
= 13 / (13 + 7)
= 13/20
= 0.65
```

Problem 2: Bayes Rule Application

Question:

- P(disease) = 0.01 (1% of population has disease)
- P(positive test|disease) = 0.95 (95% sensitivity)
- P(positive test|no disease) = 0.05 (5% false positive)

If someone tests positive, what's P(disease|positive test)?

Solution:

Use Bayes:

```
P(disease|pos) = P(pos|disease) \times P(disease) / P(pos)
```

Calculate P(pos):

```
P(pos) = P(pos|disease) \times P(disease) + P(pos|no disease) \times P(no disease)
= 0.95×0.01 + 0.05×0.99
= 0.0095 + 0.0495
= 0.059
```

Therefore:

```
P(disease|pos) = (0.95 \times 0.01) / 0.059
= 0.0095 / 0.059
\approx 0.161 \text{ or } 16.1\%
```

Surprising! Despite positive test, only 16% chance of disease (because disease is rare).

Problem 3: RSJ Scoring

Given:

- Query: "machine learning"
- 50 relevant documents, 950 non-relevant
- "machine": 40 relevant, 100 non-relevant

• "learning": 35 relevant, 80 non-relevant

Calculate RSJ score for document containing both terms.

Solution:

Calculate α and β with smoothing:

```
\alpha_{\text{machine}} = (40 + 0.5) / (50 + 1) = 40.5/51 \approx 0.794
\beta_{\text{machine}} = (100 + 0.5) / (950 + 1) = 100.5/951 \approx 0.106
\alpha_{\text{learning}} = (35 + 0.5) / (50 + 1) = 35.5/51 \approx 0.696
\beta_{\text{learning}} = (80 + 0.5) / (950 + 1) = 80.5/951 \approx 0.085
```

Calculate score:

```
score = log[0.794 \times (1-0.106) / (0.106 \times (1-0.794))]
+ log[0.696 \times (1-0.085) / (0.085 \times (1-0.696))]
= log[0.794 \times 0.894 / (0.106 \times 0.206)]
+ log[0.696 \times 0.915 / (0.085 \times 0.304)]
= log[0.710 / 0.022] + log[0.637 / 0.026]
= log[32.27] + log[24.50]
= 3.47 + 3.20
= 6.67
```

Problem 4: BM25 Calculation

Given:

- N = 10,000 documents
- avgdl = 500 words
- k1 = 1.5, b = 0.75
- Term "neural": df = 100
- Document: length = 300, "neural" appears 4 times

Calculate BM25 score contribution.

Solution:

IDF:

```
IDF = log(N/df) = log(10,000/100) = log(100) \approx 4.605
```

Document length normalization:

```
norm = (1-b) + b \times (|d|/avgdl)
= (1-0.75) + 0.75 \times (300/500)
= 0.25 + 0.75 \times 0.6
= 0.25 + 0.45
= 0.70
```

TF component:

```
TF_score = [4 \times (1.5+1)] / [1.5 \times 0.70 + 4]
= [4 \times 2.5] / [1.05 + 4]
= 10 / 5.05
= 1.980
```

Total:

```
score = IDF × TF_score
= 4.605 × 1.980
= 9.118
```

Problem 5: Language Model Smoothing

Given:

- Document: "neural networks deep learning neural" (5 words)
- Query: "neural quantum"
- P("neural"|C) = 0.002
- P("quantum"|C) = 0.0001
- $\mu = 1000$

Calculate score using Dirichlet smoothing.

Solution:

For "neural" (appears 2 times):

```
P_s("neural"|d) = [2 + 1000 \times 0.002] / [5 + 1000]
= [2 + 2] / 1005
= 4/1005
= 0.00398
```

For "quantum" (appears 0 times):

```
P_s("quantum"|d) = [0 + 1000×0.0001] / [5 + 1000]
= 0.1 / 1005
= 0.0000995
```

Score:

```
score = log(0.00398) + log(0.0000995)
= -5.53 + (-9.22)
= -14.75
```

Problem 6: Feedback Language Model

Given:

- Original query model: $P("apple"|\theta q) = 0.5$, $P("pie"|\theta q) = 0.5$
- Feedback documents yield: $P("apple"|\theta q^F) = 0.3$, $P("pie"|\theta q^F) = 0.2$, $P("recipe"|\theta q^F) = 0.15$
- $\lambda = 0.7$

Calculate θq^FB.

Solution:

```
P("apple"|\theta q^FB) = 0.7 \times 0.5 + 0.3 \times 0.3 = 0.35 + 0.09 = 0.44
P("pie"|\theta q^FB) = 0.7 \times 0.5 + 0.3 \times 0.2 = 0.35 + 0.06 = 0.41
P("recipe"|\theta q^FB) = 0.7 \times 0 + 0.3 \times 0.15 = 0 + 0.045 = 0.045 \leftarrow NEW TERM!
```

Notice: "recipe" wasn't in original query but now has probability 0.045

7. Quiz Questions & Detailed Solutions

Quiz Question 1 (From Lecture 2 Quiz)

Question: Suppose we have one query and two documents:

• q = "covid 19"

- d1 = "covid patient"d2 = "19 99 car wash"
- d3 = "19 street covid testing facility is reopened next week"

If we use the vector space model without IDF, which document has the highest and the lowest score?

Options:

- d1, d2
- d1, d3
- d3, d1
- d3, d2

Solution:

Without IDF, we're just counting term matches (TF only).

Query terms: {"covid", "19"}

d1: "covid patient"

• Contains: "covid" ✓

• Contains: "19" X

• Matches: 1/2 query terms

d2: "19 99 car wash"

• Contains: "covid" X

• Contains: "19" ✓

• Matches: 1/2 query terms

d3: "19 street covid testing facility is reopened next week"

• Contains: "covid" ✓

• Contains: "19" ✓

• Matches: 2/2 query terms

Scores (proportional to matches):

```
score(q, d1) \propto 1

score(q, d2) \propto 1

score(q, d3) \propto 2
```

Ranking:

```
d3 \text{ (highest)} > d1 = d2 \text{ (tied for lowest)}
```

Answer: d3 has highest, d1 and d2 tied for lowest

From quiz solutions: d1, d2

Quiz Question 2 (From Lecture 2 Quiz)

Question: What about using vector space model with IDF?

Solution:

Now we include IDF: IDF(w) = log(N/df(w))

Document frequencies:

- "covid": appears in d1, d3 \rightarrow df = 2
- "19": appears in d2, d3 \rightarrow df = 2
- N = 3 (total documents)

IDF values:

```
IDF("covid") = \log(3/2) = \log(1.5) \approx 0.405
IDF("19") = \log(3/2) = \log(1.5) \approx 0.405
```

Scores:

d1: "covid patient"

```
score = TF("covid") \times IDF("covid")
= 1 \times 0.405
= 0.405
```

d2: "19 99 car wash"

```
score = TF("19") × IDF("19")
= 1 \times 0.405
= 0.405
```

d3: "19 street covid testing facility is reopened next week"

```
score = TF("covid")×IDF("covid") + TF("19")×IDF("19")
= 1 \times 0.405 + 1 \times 0.405
= 0.810
```

Results:

- d3: 0.810 (highest)
- d1: 0.405 (tied lowest)
- d2: 0.405 (tied lowest)

Ranking:

d3 > d1 = d2

From quiz solutions: d1, d2

Quiz Question 3 (Feedback Language Model)

Question: Go to this notebook:

https://drive.google.com/file/d/1APsRt8T41kLxNchQv2uJ3Ws5aZN0aI4Hk/view?usp=sharing

Suppose query is "airport security" and lambda = 0.7.

Use this notebook to answer the following question: what is the probability of "airport" using the language model-based retrieval model? (4 decimal places)

Given:

 θ ^FB = $\lambda\theta q + (1-\lambda)\theta d$

Solution:

Using the feedback documents d1, d2, ..., calculate:

 $P("airport"|\theta \land FB) = 0.7 \times P("airport"|query) + 0.3 \times P("airport"|feedback docs)$

Answer from quiz solutions: 0.38

Quiz Question 4 (Lambda Effect)

Question: How does increasing the value of lambda change the probability of "all" in theta^FB?

How does adding stop words to the query, e.g., "airport security" → "the airport security" change the probability of "all" in theta^FB?

Solution:

Part 1: Increasing λ

Formula:

 $\theta ^{R} = \lambda \theta q + (1-\lambda)\theta d$

- Increasing $\lambda \rightarrow$ more weight on original query
- "all" is likely a stop word (appears in corpus but not query)
- Higher $\lambda \to \text{decreases}$ contribution from documents
- Higher $\lambda \rightarrow$ decreases "all" probability

Part 2: Adding stop words to query

If we add "the" to query:

- "the" will have higher probability in θq
- But "all" is not in the query
- The probability of "all" remains the same

Answer from quiz solutions: decrease, same

8. Video Resources

Probability & Statistics Foundations

- 1. Bayes' Theorem (3Blue1Brown)
 - Title: "Bayes theorem, the geometry of changing beliefs"
 - URL: https://www.youtube.com/watch?v=HZGCoVF3YvM
 - Why: Best visual intuition for Bayes' rule
 - **Duration:** 15 minutes

2. Maximum Likelihood Estimation (StatQuest)

- Title: "Maximum Likelihood, clearly explained!!!"
- URL: https://www.youtube.com/watch?v=XepXtl9YKwc
- Why: Simple explanation with examples
- **Duration:** 6 minutes

3. Probability Distributions (Khan Academy)

- URL: https://www.khanacademy.org/math/statistics-probability
- Why: Covers Bernoulli, Binomial, Poisson
- **Duration:** Series of short videos

Information Retrieval Specific

4. Stanford CS276 Lectures

• Probabilistic IR: Lecture 11

• Language Models: Lecture 12

• URL: http://web.stanford.edu/class/cs276/

• Why: Detailed derivations from experts

• **Duration:** 75 minutes each

5. BM25 Explanation (Elastic)

• Title: "BM25 The Next Generation of Lucene Relevance"

• URL: https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables

• Why: Practical implementation perspective

• **Duration:** Reading (15 min)

Mathematical Concepts

6. Logarithms Review (Khan Academy)

• Why: Essential for understanding log-odds, IDF

• URL: https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs

• **Duration:** 30 minutes

7. Poisson Distribution (StatQuest)

• Title: "The Poisson Distribution, Clearly Explained!!!"

• URL: https://www.youtube.com/watch?v=cPOChr_kuQs

• Why: Understand the foundation of 2-Poisson model

• **Duration:** 11 minutes

8. EM Algorithm (Normalized Nerd)

• Title: "Expectation Maximization: how it works"

• URL: https://www.youtube.com/watch?v=iQoXFmbXRJA

• Why: Understand feedback language model estimation

• **Duration:** 15 minutes

Quick Reference Guide

Key Formulas

RSJ:

```
score = \sum_{wi=1} \log[\alpha i(1-\beta i) / (\beta i(1-\alpha i))]

where:

\alpha i = [count(wi=1, q, rel=1) + 0.5] / [count(q, rel=1) + 1]

\beta i = [count(wi=1, q, rel=0) + 0.5] / [count(q, rel=0) + 1]
```

BM25:

```
score = \sum_{wi \in q} \log(N/dfi) \times \left[tfi(k1+1)\right] / \left[k1((1-b)+b|d|/avgdl) + tfi\right]
Typical parameters:
k1 = 1.5
b = 0.75
```

Language Model (Dirichlet):

```
score = \sum_{wi \in q, wi \in d} \log(1 + count(wi,d)/[\mu \times P(wi|C)]) + \log[\mu/(\mu + |d|)] Smoothing: P_s(wi|d) = [count(wi,d) + \mu \times P(wi|C)] / [|d| + \mu] Typical parameter: \mu = 2000
```

Feedback LM:

```
\theta q^{\gamma}FB = \lambda\theta q + (1-\lambda)\theta q^{\gamma}F Typical parameter: \lambda = 0.7
```

Parameter Typical Values

BM25:

```
k1 \in [1.2, 2.0] (typical: 1.5)

b \in [0, 1] (typical: 0.75)
```

Language Models:

 $\mu \in [1000, 5000]$ (typical: 2000) - Dirichlet $\lambda \in [0.6, 0.9]$ (typical: 0.7) - JM & Feedback

Model Comparison

Feature	RSJ	BM25	LM	
Term Frequency	Binary	Saturated	Linear with smoothing	
Doc Length Norm	No	Yes (pivoting)	Yes (implicit in smoothing)	
IDF	Implicit in α,β	Explicit log(N/df)	Implicit in P(w C)	
Feedback	Easy	Hard	Easy	
Parameters	Hard to estimate	2 parameters	1-2 parameters	
Performance	Baseline	SOTA	SOTA with feedback	
4				

When to Use Each Model

Use RSJ when:

- You have relevance judgments
- You want theoretical foundation
- Binary occurrence is sufficient

Use BM25 when:

- You need state-of-the-art non-learning model
- You want robust, well-tested performance
- You have multi-field documents (BM25F)

Use Language Models when:

- You need query expansion/feedback
- You want flexible probabilistic framework
- You're willing to tune smoothing parameters

Study Tips for Midterm

What to Memorize

1. Bayes' rule formula

P(A|B) = P(B|A)P(A) / P(B)

2. MLE formula

 $\alpha = \text{count(heads)} / \text{total}$

3. Complete BM25 formula

$$score = \sum \log(N/df) \times \left[tf(k1+1)\right] / \left[k1((1-b)+b|d|/avgdl) + tf\right]$$

4. Dirichlet smoothing formula

$$P_s(w|d) = [count(w,d) + \mu P(w|C)] / [|d| + \mu]$$

5. What ai and bi represent in RSJ

- $\alpha i = P(wi=1|rel=1,q)$
- $\beta i = P(wi=1|rel=0,q)$

What to Understand Conceptually

1. Why we use odds ratio in RSJ derivation

- Cancels out P(d) term
- Easier to work with products

2. Why 2-Poisson models term burstiness

- One Poisson can't capture bimodal distribution
- Words appear rarely (background) or frequently (topic)

3. Why document length normalization is needed

- Long documents accumulate higher scores
- Need to balance between no penalty and full penalty

4. Why language models need smoothing

- Zero probability for unseen words
- Would make entire query probability zero

5. How feedback improves retrieval

- Expands query with related terms
- Learns from pseudo-relevant documents

Practice Skills

- 1. Calculate RSJ score by hand (given α , β)
- 2. Calculate BM25 score by hand (given all parameters)
- 3. **Apply Dirichlet smoothing** (given document and collection)

- 4. Explain when to use each model
- 5. Derive formulas from first principles

Common Mistakes to Avoid

- 1. \times Confusing P(q|d) vs P(d|q)
- 2. X Forgetting to add smoothing constant (0.5 in RSJ)
- 3. X Wrong order of operations in BM25
- 4. X Forgetting log when working with language models
- 5. \times Mixing up λ (feedback weight) and μ (smoothing parameter)

Step-by-Step Problem Solving

For RSJ problems:

- 1. Calculate α for each term (with +0.5 smoothing)
- 2. Calculate β for each term (with +0.5 smoothing)
- 3. For each term in document: $\log[\alpha(1-\beta)/(\beta(1-\alpha))]$
- 4. Sum all terms

For BM25 problems:

- 1. Calculate IDF: log(N/df)
- 2. Calculate normalization: (1-b) + b(|d|/avgdl)
- 3. Calculate TF component: $[tf(k1+1)] / [k1 \times norm + tf]$
- 4. Multiply: IDF × TF component
- 5. Sum for all query terms

For Language Model problems:

- 1. For each query term, check if in document
- 2. If yes: use $\left[\operatorname{count} + \mu P(w|C)\right] / \left[|d| + \mu\right]$
- 3. If no: use $[\mu P(w|C)] / [|d| + \mu]$
- 4. Take log of each probability
- 5. Sum all logs

Exam Strategy

- 1. Read the entire question first
 - Identify what model is being used

• Note what parameters are given

2. Write down relevant formulas

- Don't try to remember while calculating
- Write them at the top of your work

3. Show your work

- Partial credit is real
- Label intermediate steps

4. Check units and ranges

- Probabilities must be [0,1]
- Log of probabilities is negative
- Scores can be any real number

5. Manage your time

- Don't get stuck on one problem
- Come back to difficult ones

Additional Resources

Official Course Materials

- Stanford IR Book: https://nlp.stanford.edu/IR-book/
 - Chapter 11: Probabilistic Information Retrieval
 - Chapter 12: Language Models
- Overleaf Derivation: https://www.overleaf.com/read/jbztxtnbzwcx
 - Complete mathematical derivations

Research Papers (Optional but Helpful)

1. RSJ Model:

- Robertson & Sparck Jones (1976)
- "Relevance weighting of search terms"

2. **BM25**:

- Robertson et al. (1994)
- "Okapi at TREC-3"

3. Language Models:

• Ponte & Croft (1998)

• "A language modeling approach to information retrieval"

4. Feedback Language Models:

- Zhai & Lafferty (2001)
- "Model-based feedback in the language modeling approach to IR"

Practice Problems Online

- Stanford CS276 Homeworks
- TREC evaluation datasets
- Kaggle information retrieval competitions

Summary Checklist

Before the midterm, make sure you can:
Explain Bayes' rule and apply it
☐ Calculate MLE from observations
☐ State the Probability Ranking Principle
☐ Derive RSJ model from first principles
Calculate RSJ score by hand
Explain eliteness hypothesis
Understand 2-Poisson mixture model
☐ Calculate BM25 score by hand
Explain document length normalization
☐ Understand saturation function
☐ State the paradigm shift in LM approach
Explain why smoothing is necessary
Calculate Dirichlet smoothing by hand
Understand feedback language model
Compare RSJ, BM25, and LM models
☐ Know when to use each model

Good luck on your midterm!

Last updated: [Current Date]

For questions or corrections, contact: [Your Email]