

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

«Технологии разведочного анализа и обработки данных»

по курсу «Технологии машинного обучения» Вариант 5

Выполнил: студент группы ИУ5 – 62Б подпись, дата Проверил: к.т.н., доц., Г.И. Афанасьев подпись, дата

Текстовое описание набора данных¶

В качестве набора данных мы будем использовать набор данных о заболеваниях сердца. https://www.kaggle.com/ronitf/heart-disease-uci

Анализ подобного набора данных позволяет определить тенденции в данных о сердце для прогнозирования некоторых сердечно-сосудистых заболеваний или выявить какие-либо четкие признаки состояния сердечно-сосудистого здоровья.

Датасет состоит из одного файла heart.csv Файл содержит следующие колонки:

- age возраст в годах
- sex пол (1 мужской, 0 женский)
- ср тип боли в груди
- trestbps кровяное давление в спокойном состоянии (в mm Hg при поступлении в больницу)
- chol уровень холестирина в mg/dl
- fbs уровень сахара > 120 mg/dl (1 да, 0 нет)
- restecg результат ЭКГ (значения 0, 1, 2)
- thal макс. зафиксированный пульс
- exang ангина, вызванная управжнениями (1 да, 0 нет)
- oldpeak снижение ST-зубца, вызванного упражнениями, по сравнению со спокойным состоянием
- slope уклон пикового отрезка ST-зубца
- са число крупных судов (0-3), окрашенных по цвету
- thal 3 = нормально; 6 исправленный дефект; 7 исправляемый дефект
- target целевой признак (0 или 1)

Импорт библиотек¶

Импортируем библиотеки с помощью команды import.

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка данных¶

Загрузим файлы датасета с помощью библиотеки Pandas.

In [5]:

```
data = pd.read_csv('data/heart.csv', sep=",")
```

Проверка на наличие пропусков в данных¶

In [6]:

```
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
   temp null count = data[data[col].isnull()].shape[0]
   print('{} - {}'.format(col, temp_null_count))
age - 0
sex - 0
cp - 0
trestbps - 0
chol - 0
fbs - 0
restecg - 0
thalach - 0
exang - 0
oldpeak - 0
slope - 0
ca - 0
thal - 0
```

Основные характеристики датасета¶

target - 0

In [7]:

```
# Первые 5 строк датасета data.head()
```

Out[7]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
C	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [8]:

```
# Размер датасета - 303 строки, 14 колонок data.shape

Out[8]:
```

Основные статистические характеристки набора данных data.describe()

Out[9]:

In [9]:

	age	sex	ср	trestb ps	chol	fbs	restec g	thalac h	exang	oldpe ak	SIONE	ca	thal	target
СО	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00	303.00
unt	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
me	54.366	0.6831	0.9669	131.62	246.26	0.1485	0.5280	149.64	0.3267	1.0396	1.3993	0.7293	2.3135	0.5445
	_											-		54
ctd	9.0821	0.4660	1.0320	17.538	51.830	0.3561	0.5258	22.905	0.4697	1.1610	0.6162	1.0226	0.6122	0.4988
	01	11	52	143	751	98	60	161	94	75	26	Ub	//	35
mi	29.000	0.0000	0.0000	94.000	126.00	0.0000	0.0000	71.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n	000	00	00	000	0000	00	00	000	00	00	00	00	00	00
25	47.500	0.0000	0.0000	120.00	211.00	0.0000	0.0000	133.50	0.0000	0.0000	1.0000	0.0000	2.0000	0.0000
%	000	00	00	0000	0000	00	00	0000	00	00	00	00	00	00
50	55.000	1.0000	1.0000	130.00	240.00	0.0000	1.0000	153.00	0.0000	0.8000	1.0000	0.0000	2.0000	1.0000
%	000	00	00	0000	0000	00	00	0000	00	00	00	00	00	00
75	61.000	1.0000	2.0000	140.00	274.50	0.0000	1.0000	166.00	1.0000	1.6000	2.0000	1.0000	3.0000	1.0000
%	000	00	00	0000	0000	00	00	0000	00	00	00	00	00	00
ma	77.000	1.0000	3.0000	200.00	564.00	1.0000	2.0000	202.00	1.0000	6.2000	2.0000	4.0000	3.0000	1.0000
х	000	00	00	0000	0000	00	00	0000	00	00	00	00	00	00

In [10]:

```
# Определим уникальные значения для целевого признака data['target'].unique()
```

Out[10]:

array([1, 0], dtype=int64)

Корреляционный анализ¶

Тепловая карта корреляций всех признаков¶

In [11]:

plt.figure(figsize = (15,10))

Out[11]:

<matplotlib.axes. subplots.AxesSubplot at 0x1dd40b64c08>

Таким образом, наибольшая корреляция среди всех признаков наблюдается между:

- Снижением ST-зубца, вызванного упражнениями, по сравнению с состоянием покоя и уклоном пикового отрезка ST-зубца: -0.58
- Ангиной, вызванной управжнениями и целевым признаком: -0.44
- Типом боли в груди и целевым признаком: 0.43

Список наибольших по модулю корреляций¶

In [15]:

data.corr().unstack().abs().sort_values(ascending = False).drop_duplicates()[:10]

Out[15]:

```
target target 1.000000
slope oldpeak 0.577537
exang target 0.436757
target cp 0.433798
oldpeak 0.430696
```

```
thalach target 0.421741
age 0.398522
exang cp 0.394280
ca target 0.391724
thalach slope 0.386784
dtype: float64
```

Примечание: отсутствие переменной в левом столбце означает, что там стоит та же переменная, что и в строке выше

Корреляции целевого признака¶

In [16]:

```
plt.figure(figsize = (5,15))
sns.heatmap(data.corr().abs()[['target']].sort_values(by=['target'],ascending=False),c
map='Greens',annot=True);
```


Исходя из данного рисунка можно сделать вывод о том, что определения типа сердечнососудистого заболения и вообще его наличия следует прежде всего смотреть на:

- наличие ангины, вызванной управжнениями
- тип боли в груди
- снижение ST-зубца, вызванного упражнениями, по сравнению со спокойным состоянием

Построение гистограммы ¶

Построим гистограмму по столбцу trestbps, что показывает кровяное давление в спокойном состоянии

In [17]:

```
h = data['trestbps'].hist()
fig = h.get_figure()
```

