DIRECT MARKETING

BELLEVUE UNIVERSITY

FALL 2020

TORREY CAPOBIANCO

CONRAD IBANEZ

EDRIS SAFARI

BACKGROUND

- Direct marketing is a business sector that can leverage predictive analytics to determine the type of customer to send their advertisements to
- Direct marketing is costly
- Past data on customers can be used to see who will act on an advertisement
- Predicting the type of customer can shift the company's marketing resources to those that will spend vs. those that will not spend money
- Prevent wasted marketing resources on customers who will not act on the mailer

PROBLEM STATEMENT

Can we predict how much a customer will spend from direct mailing?

- The company uses direct mailing catalogs to send to customers
- From data collected from customers, can this information be used to determine the type of spender a new customer will be?
- The data insights will be used to expand their market regions to those that are predicted to spend more

DATA

- The data was retrieved from Kaggle
- 1,000 samples
- 10 total variables
- Characteristics of customers & households

<u>Variables</u>

• Age

Salary

• Gender

- Children
- OwnHome
- History

Married

Catalogs

Location

Amount Spent

DATA PREPARATION

Missing Values

- History had 303 missing values, over 1/4 of the data
- Could not derive the NA from other data
- Dropped History from data frame

Normalize

• For one model, continuous variables were normalized to be on the same scale

DATA PREPARATION

Feature Creation

- Classification Spending Label
 - Categorize into low, medium, high spenders
 - Based on the quantiles of amount spent

Class	Range	Amount
Low	Below Median Quantile	≤ \$962.00
Medium	Between Median and 3 rd	
High	Above 3 rd Quantile	> \$1688.50

Dummy Variables

- Explode categorical variables into dummy variables
- Dropped 1 from each to avoid correlation

Age	Gender	OwnHome
Old	Male	Own
Young	Female	Rent
Middle	Female	Own

EXPLORATORY DATA ANALYSIS

Salary has a positive correlation with amount spent

- Married households tend to make more, thus spending more
- Those that have a higher salary also tend to own a home vs. renting one.
 They also tend to spend more

EXPLORATORY DATA ANALYSIS

Catalogs

- The number of catalogs received seems to not determine how much they spend based on their salary
- Unsure of what effect catalogs would have for a new customer
 - Tested removing catalogs and did not change the model outcome

Number of Children

As children increase, spending
 starts to decrease

MODELING

- We present four different predictive models
 - K-Nearest Neighbors
 - Decision Tree
 - Linear Regression
 - Logistic Regression
- Training & Testing Sets: 80/20 split

K-NEAREST NEIGHBORS

- Classification Model
- Predicts type of spender by its neighbor's class
- 2 NearestNeighbors for optimal prediction

Train: 85.8%

Test: 71.5%

DECISION TREE

- Classification Model
- Predicts type of spender by splitting on decision nodes

• At depth 5, test and train have close accuracy

Train: 80.1%

Test: 81%

LINEAR REGRESSION

- Predicts actual dollar spent
- PCA removed all but one feature
- Train accuracy of 47%
- Test accuracy of 66.5 %
- Confusion Matrix after classifying predicted values to low, med, high

	predicted high	predicted med	predicted low
actual high	34	16	0
actual med	16	67	17
actual low	0	17	32

LOGISTIC REGRESSION

- Predicts the probability of a categorical dependent variable
- Train accuracy of 69.5%
- Test accuracy of 67.3 %

	predicted high	predicted med	predicted low
actual high	45	0	5
actual med	13	6	31
actual low	5	7	88

ACCURACY

Accuracy Score:

Proportion of predictions that the model classified correctly

Highest Accuracy: Decision Tre

K-Nearest	Decision	Linear	Logistic
Neighbors	Tree	Regression	Regression
71.5%	81%	66.5%	67.3%

CONFUSION MATRIX

Decision tree has the best classification scores for high and low spenders

Additional analysis to gain additional insights can be done for these results

CLOSING

- Opportunities for improvement:
 - To achieve higher accuracy we recommend the company collect additional customer data
 - Collect data on those that did not make a purchase when they received a catalog