Práctica modelos canónicos y su implementación en GeNIe

Tarea: Implementa en GeNIe una puerta OR en la que haya tres causas y un efecto. Razona la forma de construir la CPT en este caso (fórmula). Comprueba para un par de casos que los resultados coinciden con el cálculo que realiza GeNIe.

Parent		Paludismo	Neumonia	Meningitis	LEAK	
State		si	si	si		
•	si	0.7	0.8	0.9	0.01	
	no	0.3	0.2	0.1	0.99	

Parent		Paludismo	Neumonia	Meningitis	LEAK	
State		si	si	si		
▶	si	0.703	0.802	0.901	0.01	
	no	0.297	0.198	0.099	0.99	

	Paludismo	⊡ si				□ no			
	Neumonia		si		□ no		si	□ no	
Meningitis		si	no	si	no	si	no	si	no
•	si	0.99406	0.9406	0.9703	0.703	0.980	0.802	0.901	0.01
	no	0.00594	0.0594	0.0297	0.297	0.019	0.198	0.099	0.99

$$cp = P(+f/+p)=0.7$$

$$cn = P(+f/+n)=0.8$$

$$cm = P(+f/+m)=0.9$$

$$cr = p(+f/\neg p, \neg n, \neg m) = p(+f/\neg p, \neg n, \neg m, +r)=0.01$$

 $P(+f/\neg p, +n, +m, \neg r) = P(+f/\neg p, +n, \neg m, \neg r) + P(\neg f/\neg p, +n, \neg m, \neg r) P(+f/\neg p, \neg n, +m, \neg r) = 0.8 + 0.2*0.9 = 0.98$

 $P(+f/+p, +n, +m, \neg r) = P(+f/+p, \neg n, \neg m, \neg r) + P(\neg f/+p, \neg n, \neg m, \neg r) P(+f/\neg p, +n, +m, \neg r) = 0.7 + 0.3*0.98 = 0.994$

 $P(+f/+p, +n, +m) = P(+f/+p, +n, +m, \neg r) + P(\neg f/+p, +n, +m, \neg r) P(+f/\neg p, \neg n, \neg m) = 0.994 + 0.006*0.01 = 0.99406$

 $P(+f/+p, \neg n, \neg m) = P(+f/+p, \neg n, \neg m, \neg r) + P(\neg f/+p, \neg n, \neg m, \neg r) P(+f/\neg p, \neg n, \neg m) = 0.7 + 0.3*0.01 = 0.703$