EXERCICE 1 (Exercice préparé.)

Factoriser cos(3x) en fonction de cos(x) et sin(x).

EXERCICE 2 (Exercice préparé.)

Linéariser $\cos^4(x)$.

EXERCICE 3 (Exercice préparé.)

Déterminer les racines carrées de z = 16 + 30i.

EXERCICE 4 (Exercice préparé.)

Déterminer avec les deux méthodes les racines carrées de z=1+i. En déduire $\cos\frac{\pi}{8}$ et $\sin\frac{\pi}{8}$.

EXERCICE 5 (Exercice préparé.)

Résoudre $z^2 + (1-i)z - 4 - 8i = 0$.

EXERCICE 6 (Exercice préparé.)

Déterminer la partie réelle de $z_4 = \left(\frac{\sqrt{3} - i}{1 + i}\right)^{15}$.

Exercice 7

Écrire sous forme algébrique les nombres suivants

$$a = \frac{1}{3i}$$
 $b = \frac{1}{1+i}$ $c = \frac{1}{\sqrt{3}+i\sqrt{2}}$ $d = \frac{1}{3i-\sqrt{3}}$ $e = \frac{2i-\sqrt{2}}{3+i}$

EXERCICE 8

Résoudre dans $\mathbb C$ les équations suivantes d'inconnue z. On mettra les solutions sous forme algébrique.

$$(E): iz + 3(z - i) = 0$$
 $(F): (2i + 1)z = 1 + i - 2iz$ $(G): z = \frac{\overline{z}}{2}$

Exercice 9

Trouver les ensembles de nombres z dans $\mathbb C$ tels que

(a)
$$z = \bar{z}$$
 (b) $z = -\bar{z}$ (c) $z = i\bar{z}$ (d) $z = -i\bar{z}$ (e) $z^2 = z \times \bar{z}$

Exercice 10

Soit $z \neq 0$ un nombre complexe.

- 1. Prouver que $\frac{1}{z} + \frac{1}{\overline{z}}$ est un nombre réel.
- 2. Prouver que $\frac{1}{z} \frac{1}{\bar{z}}$ est un nombre imaginaire pur.

Exercice 11

Soient A, B et C trois points d'affixe respective $a=4+i,\,b=1+3i$ et $c=4-\frac{5}{2}i.$

- 1. Calculer la longueur AB.
- 2. Le point C appartient-il au cercle de centre A passant par B?

Exercice 12

Déterminer les racines quatrièmes de i et les racines cubiques de $-\frac{8\sqrt{2}}{1+i}$.

Exercice 13

Résoudre dans $\mathbb C$ les équations suivantes

1.
$$z^2 - (6+i)z + (11+13i) = 0$$

2.
$$z^2 + (4 - 3i)z = 2 + 8i$$

3.
$$z^2 - 5z + 4 + 10i = 0$$

4.
$$z^2 + 5z + 7 - i = 0$$

Exercice 14

On considère dans $\mathbb C$ l'équation suivante

$$(4z^2 - 20z + 37)(2z - 7 + 2i) = 0.$$

Démontrer que les solutions de cette équation sont les affixes de points appartenant à un même cercle, dont le centre est le point d'affixe 2.

Exercice 15

Calculer $(1+i\sqrt{3})^9$.

Exercice 16

Dans chaque cas, donner une condition nécessaire et suffisante sur z pour que

- 1. les points d'affixes 1, z et z^2 soient alignés;
- 2. les vecteurs d'affixes z et \bar{z} soient orthogonaux;
- 3. les points d'affixes $z, \frac{1}{z}$ et z-1 soient situés sur un même cercle de centre O.

Exercice 17

Donner la forme trigonométrique et exponentielle des nombres complexes suivants.

$$z_1 = 3i$$
 $z_2 = -2$ $z_3 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ $z_4 = \frac{3}{2} - \frac{3\sqrt{3}}{2}i$ $z_5 = \pi i$ $z_6 = 6\sqrt{3} + 6i$