Коды Хемминга и их построение

5 января 2023 г. 1:33

Коды Хемминга

Коды Хемминга это линейные коды, которые обеспечивают минимально возможное количество проверочных символов для минимального кодового расстояния d=3. Рассмотрим метод построения порождающей и проверочной матрицы для систематического кода Хемминга над полем GF(2). Пусть порождающая матрица кода G представляется в левой

канонической форме:

$$\mathbf{G} = [\mathbf{I}_k | \mathbf{G}_2],\tag{17}$$

где \mathbf{I}_k – единичная подматрица размером $k \times k$ и \mathbf{G}_2 – подматрица размером $r \times k$.

Проверочная матрица Н может быть записана как:

$$\mathbf{H} = [\mathbf{H}_1 | \mathbf{H}_2], \tag{18}$$

где H_1 – подматрица размером $r \times k$, H_2 – подматрица

размером
$$r \times r$$
.
 $\mathbf{0} = \mathbf{G} \cdot \mathbf{H}^T = [\mathbf{I}_k | \mathbf{G}_2] \begin{bmatrix} \mathbf{H}_1^T \\ \mathbf{H}_2^T \end{bmatrix} = \mathbf{H}_1^T + \mathbf{G}_2 \cdot \mathbf{H}_2^T$. (19)

Пусть проверочная матрица Н представлена в правой канонической форме, то есть \mathbf{H}_{2}^{T} – единичная подматрица. Тогда,

$$\mathbf{0} = \mathbf{H}_1^T + \mathbf{G}_2 \cdot \mathbf{H}_2^T = \mathbf{H}_1^T + \mathbf{G}_2. \tag{20}$$

С учетом работы в поле GF(2), из (20) следует:

$$\mathbf{G}_2 = \mathbf{H}_1^T. \tag{21}$$

- Матрица Н не должна содержать нулевых столбцов.
- Из Теоремы 2 следует, что для построения линейного кода с расстоянием d=3 любые два столбца ${\bf H}$ должны быть линейно независимы. В случае GF(2) это означает, что любые два столбца Н должны быть различными (это возможно, когда $n=k+r\leq 2^r-1$). При этом, матрица ${\sf H}$ должна быть записана в правой канонической форме, то есть содержать единичную подматрицу в правой части.

Построение кода Хемминга

Input.

Длина кодового слова n.

Длина информационной последовательности k.

Step 1.

$$r:=n-k$$

Сформировать \mathbf{H}_1 размером $r \times k$ из k различных столбцов, каждый из которых содержит больше одной единицы.

Step 2.

Сформировать \mathbf{H}_2 как единичную матрицу $r \times r$.

$$\mathsf{H} := [\mathsf{H}_1 | \mathsf{H}_2].$$

Step 3.

Сформировать \mathbf{G}_1 как единичную матрицу $k \times k$.

$$G := [G_1|H_1^T].$$

Пример. n = 7, k = 4. Скорость кода $R = \frac{k}{R} = \frac{4}{7}$.

$$\mathbf{H}_1 = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{array} \right],$$

$$\mathbf{H} = [\mathbf{H}_1 | \mathbf{H}_2] = \left[egin{array}{cccc|c} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array}
ight]$$

$$\textbf{G} = [\textbf{G}_1|\textbf{H}_1^{\mathcal{T}}] = \left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{array}\right]$$

0= HI + G2= 2 G2= - HI

лус ? Считаем по модулю 2: вычесть 1 всё равно, что прибавить 1

OneNote