Équations différentielles

$$\alpha 17 - MP^*$$

1 Généralités

Soit $n \in \mathbb{N}^*$, $f: D \subset \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$, I un intervalle de \mathbb{R} et $\varphi: I \xrightarrow{\mathcal{D}^1} \mathbb{R}^n$. φ est solution de l'équation différentielle f(x,y,y')=0 si : $\forall x \in I$, $(x,\varphi(x),\varphi'(x)) \in D$ et $f(x,\varphi(x),\varphi'(x))=0$. Si le degré est supérieur à 1, ay''+by'+cy+d=0 (1) équivaut à $\left\{ \begin{array}{c} y'-z=0 \\ az'+bz+cy+d=0 \end{array} \right.$ L'équation se met donc sous la forme $f(x,\varphi(x),\varphi'(x))=0$ avec $f:\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ telle que $f(x,\left(\begin{array}{c} u \\ v \end{array}\right),\left(\begin{array}{c} u' \\ v' \end{array}\right))=\left(\begin{array}{c} av'+bv+cu+d \\ u'-v \end{array}\right)$.

1.1 Prolongement de solutions, solutions maximales

Soit f(x, Y, Y') comme supra. Notons (I, φ) une solution $\varphi : I \longrightarrow \mathbb{R}^n$. On dit qu'une solution (I, φ) se prolonge en une solution (J, ψ) si $I \subset J$ et $\psi|_I = \varphi$. Une solution (I, φ) est dite maximale s'il n'existe pas de prolongement (J, ψ) tel que $I \subsetneq J$.

Propriété (hors programme): toute solution (I, φ) d'une équation différentielle se prolonge en au moins une solution maximale.

1.2 Théorème de Cauchy-Lipschitz

On dit qu'une équation différentielle est résolue en y' si elle est de la forme y'=f(x,y) où $f:\delta\subset\mathbb{R}\times\mathbb{R}^n\longrightarrow\mathbb{R}^n$. Si $(x_0,Y_0)\in\delta$, une solution de l'équation différentielle "avec problème de Cauchy" $\left\{\begin{array}{l} Y'=f(x,Y)\\ Y(x_0)=Y_0\end{array}\right.$ est une solution (I,Y) où $x_0\in I$ et qui vérifie de plus $Y(x_0)=Y_0$.

Théorème d'Arzelà (hors programme) : Soit Ω un ouvert de $\mathbb{R} \times \mathbb{R}^n$, $f: \Omega \xrightarrow{c^o} \mathbb{R}^n$, $\left\{ \begin{array}{c} Y' = f(x,Y) \\ Y(x_0) = Y_0 \end{array} \right.$, alors il existe une solution maximale de ce problème, et toute solution maximale est définie sur un intervalle ouvert.

Théorème de Cauchy-Lipschitz : Soit Ω un ouvert de $\mathbb{R} \times \mathbb{R}^n$, $f: \Omega \xrightarrow{\mathcal{C}^1} \mathbb{R}^n$.

- 1. Si $(x_0, Y_0) \in \Omega$, il existe un intervalle ouvert I_0 contenant x_0 tel que le problème $\begin{cases} Y' = f(x, Y) \\ Y(x_0) = Y_0 \end{cases}$ ait une solution et une seule φ_0 définie sur I_0 .
- 2. Si $(x_0, Y_0) \in \Omega$, il existe une solution maximale et une seule (I, φ) de l'équation différentielle telle que $x_0 \in I$ et $\varphi(x_0) = Y_0$.
- 3. Le domaine de définition de toute solution maximale est un ouvert.
- 4. Toute solution de l'équation différentielle Y' = f(x, Y) se prolonge de façon unique en une solution maximale.

1.3 Equations différentielles autonomes

Il s'agit d'équations différentielles de la forme f(Y,Y')=0 dites autonomes ou incomplètes en x.

1.3.1 Premier résultat

Soit une équation différentielle résolue en Y':Y'=f(Y) où $f:\Omega \xrightarrow{\mathcal{C}^1} \mathbb{R}^n$, Ω ouvert de \mathbb{R}^n . Soit $\varphi:I \longrightarrow \mathbb{R}^n$ une solution telle que $\exists t_0 \in I/\varphi'(t_0)=0$. Alors φ est constante.

1.3.2 Invariance par translation

Soit (E_0) $\begin{cases} y' = f(y) \\ y(t_0) = y_0 \end{cases}$ et (E_1) $\begin{cases} y' = f(y) \\ y(t_1) = y_0 \end{cases}$, $f: \Omega \subset \mathbb{R}^n \xrightarrow{\mathcal{C}^1} \mathbb{R}^n$, (E): y' = f(y) une équation différentielle. Soit $\varphi: I \xrightarrow{\mathcal{D}^1} \mathbb{R}^n$ une solution maximale. Si il existe t_0 et t_1 des éléments de I comme dans E_0 et E_1 et $t_0 < t_1$, alors $I = \mathbb{R}$ et $(t_1 - t_0)$ est une période de φ .

1.4 Équations différentielles scalaires d'ordre 1 classiques

1.4.1 Équations à variables séparables

Ce sont les équations différentielles de la forme y=a(y)b(x) où $a:I_a \stackrel{\mathcal{C}^1}{\longrightarrow} \mathbb{R}$ et $b:I_b \stackrel{\mathcal{C}^1}{\longrightarrow} \mathbb{R}$, I_a et I_b des intervalles ouverts de \mathbb{R} . Soit y'=f(x,y) une équation différentielle où $f:I_a\times I_b \stackrel{\mathcal{C}^1}{\longrightarrow} \mathbb{R}$ telle que f(x,y)=b(x)a(y). Si on donne $(x_0,y_0)\in I_a\times I_b$, il existe h>0 tel que $\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$ admette une unique solution $]x_0-h,x_0+h[\longrightarrow \mathbb{R}$. Les solutions constantes sont celles telles que $\forall x,b(x)a(\lambda)=0$. Les autres s'obtiennent grâce au calcul formel.

1.4.2 Équations scalaires homogènes

 $f:I\longrightarrow \mathbb{R}$ (I un intervalle ouvert). C'est une équation de la forme $y'=f(\frac{y}{x})$. On procède au changement de variables $t=\frac{y}{x}$ pour résoudre l'équation.

1.4.3 Équations linéaires scalaires d'ordre 1

Soit I un intervalle quelconque de \mathbb{R} , $a,b,c:I \xrightarrow{\mathcal{C}^0} \mathbb{C}$ telles que a ne s'annule en aucun point de I. Soit l'équation différentielle $(\mathcal{E}): a(x)y' + b(x)y + c(x) = 0$. Le théorème de Cauchy-Lipschitz linéaire s'énonce ainsi:

- 1. Les solutions maximales de \mathcal{E} sont définies sur I entier. Cet ensemble de solutions forme une droite affine incluse dans $\mathcal{C}^1(I,\mathbb{C})$. La direction de cette droite est le sev de $\mathcal{C}^1(I,\mathbb{C})$ formé des solutions maximales de $(\mathcal{E}_0): a(x)y' + b(x)y = 0$.
- 2. Soit $(x_0, y_0) \in I \times \mathbb{C}$, il existe une unique solution maximale de l'équation différentielle \mathcal{E} avec le problème de Cauchy $y(x_0) = y_0$. En particulier, toute solution définie sur un sous-intervalle non vide $J \subset I$ se prolonge de façon unique en une solution maximale.
- 3. On obtient toutes les solutions maximales de \mathcal{E} par la méthode formelle habituelle.

1.4.4 Équation différentielle scalaire aux différentielles exactes

Soit Ω un ouvert de $\mathbb{R} \times \mathbb{R}$, $a,b:I \xrightarrow{\mathcal{C}^0} \mathbb{R}$, $(\mathcal{E}): a(x,y)+b(x,y)y'=0$. Si la forme différentielle adx+bdy est exacte (c'est à dire de la forme $\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy$, où $F:\Omega \xrightarrow{\mathcal{C}^1} \mathbb{R}$), alors pour toute solution $\varphi:I \xrightarrow{\mathcal{D}^1} \mathbb{R}$ de \mathcal{E} , l'application $x \longmapsto F(x,\varphi(x))$ est constante. Les solutions de \mathcal{E} sont donc les fonctions $x \in I \longmapsto \varphi(x)$ définies implicitement par les équations $F(x,y)=\lambda$. On n'a ici qu'un résultat local.

2 Équations et systèmes linéaires

2.1 Forme générale et théorème de structure

Forme matricielle : I un intervalle de \mathbb{R} , $M:I \xrightarrow{\mathcal{C}^0} \mathfrak{M}_n(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), $A:I \xrightarrow{\mathcal{C}^0} \mathbb{K}^n$. Soit $(\mathcal{E}): X' = MX + A$. Une solution de (\mathcal{E}) est une fonction \mathcal{D}^1 (mais nécéssairement \mathcal{C}^1) $J \subset I \xrightarrow{\varphi} \mathbb{K}^n$ telle que $\forall t \in J$, $\varphi'(t) = M(t)\varphi(t) + A(t)$.

Forme générale : E un \mathbb{K} -evnf, I un intervalle, $u:I \xrightarrow{\mathcal{C}^0} \mathcal{L}(E)$, $v:I \xrightarrow{\mathcal{C}^0} E$ et $(\mathcal{E}): y' = (u(t))(y) + v(t)$, dim E = n.

- 1. Les solutions maximales de (\mathcal{E}) sont définies sur I tout entier. L'ensemble (S) qu'elles forment est un sous-espace affine de $\mathcal{C}^1(I,E)$ de dimension n. Si $v=\underline{0}$, on note (S_0) à la place de (S). C'est un sev de dimension n de $\mathcal{C}^1(I,E)$. Dans le cas général, si $\varphi_0 \in (S)$, alors $(S) = \varphi_0 + (S_0)$.
- 2. Si $(t_0, y_0) \in I \times E$, il existe une unique solution maximale de (\mathcal{E}) telle que $y(t_0) = y_0$
- 3. Toute solution de (\mathcal{E}) se prolonge de façon unique en une solution maximale de (\mathcal{E}) .

2.2 Systèmes linéaires homogènes

Ecriture matricielle : $M: I \xrightarrow{\mathcal{C}^{\circ}} \mathfrak{M}_n(\mathbb{K})$ (I un intervalle de \mathbb{R}), $(\mathcal{E}_0): Y' = M(t)Y$.

Ecriture linéaire : $u: I \xrightarrow{\mathcal{C}^0} \mathcal{L}(E)$, dim E = n, Y' = u(t)(Y).

Les solutions maximales sont définies sur I entier ; si $t_0 \in I$, $Y_0 \in E$, il existe une unique solution maximale telle que $\varphi_{Y_0}(t_0) = Y_0$. L'ensmble des solutions maximales est un sev de $\mathcal{C}^1(I, E)$. Pour $t \in I$ fixé, l'application $\delta_{t_0} : E \longrightarrow S_0$ telle que $\delta_{t_0}(Y_0) = \varphi_{Y_0}$ est un isomorphisme.

Corollaire : Soit $\mathcal{F} = (\phi_1, \dots, \phi_n)$ une famille de S_0 , alors les propriétés suivantes sont équivalentes :

- 1. \mathcal{F} est une base de S_0
- 2. $\exists t_0 \in I/(\phi_1(t_0), \ldots, \phi_n(t_0))$ est une base de E
- 3. $\forall t \in I, (\phi(t), \dots, \phi_n(t))$ est une base de E

Soit \mathcal{B} une base de E, $\mathcal{F} = (\phi_1, \dots, \phi_n)$ une famille dans S_0 . On définit le wronskien de la famille $\mathcal{F} : \forall t \in I$, $\mathcal{W}(t) = \det_{\mathcal{B}}(\phi_1(t), \dots, \phi_n(t))$.

- Si \mathcal{F} est une base de S_0 , alors $\forall t \in I$, $\mathcal{W}(t) \neq 0$.
- Si \mathcal{F} est liée, alors $\forall t \in I$, $\mathcal{W}(t) = 0$.

 \mathcal{W} est en outre \mathcal{C}^1 et solution de l'équation différentielle $w'=\operatorname{tr}(u(t))w$. Une base de S_0 s'appelle un système fondamental de solutions de (\mathcal{E}_0) .

2.3 Résolution d'un système complet

Forme matricielle : $M: I \xrightarrow{\mathcal{C}^0} \mathfrak{M}_n(\mathbb{K}), A: I \xrightarrow{\mathcal{C}^0} \mathbb{K}^n, (\mathcal{E}): Y' = M(t)Y + A(t)$. Supposons connu un système fondamental de solutions de $\mathcal{E}_0: (Y_1, \dots, Y_n)$. La solution générale de S_0 est alors $\sum \lambda_i Y_i = (Y_1, \dots, Y_n) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$. Posons $\Lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$, $R = (Y_1, \dots, Y_n)$. Pour résoudre le système complet, posons $Y(t) = R(t)\Lambda(t)$ où Λ est une fonction \mathcal{C}^1 inconnue. On a alors

 $R = (Y_1, \dots, Y_n)$. Pour résoudre le système complet, posons $Y(t) = R(t)\Lambda(t)$ où Λ est une fonction C^1 inconnue. On a alor $\Lambda' = R^{-1}A$; Λ s'obtient par primitivation.

Forme linéaire : $\mathcal{F} = (\varphi_1, \dots, \varphi_n)$ un système fondamental de solutions de \mathcal{E}_0 ; la solution générale de S_0 est $\sum \lambda_i \varphi_i$. On peut toujours se ramener à la forme matricielle.

2.4 Cas d'un système à coefficients constants

Forme matricielle : $A: I \xrightarrow{\mathcal{C}^0} \mathbb{K}^n$, $(\mathcal{E}): Y' = MY + A(t)$, $M \in \mathfrak{M}_n(\mathbb{K})$ constante. Soit l'équation différentielle (\mathcal{E}_0) avec le problème de Cauchy $Y(t_0) = Y_0$. La solution maximale est $t \in I \longmapsto \exp((t-t_0)M)Y_0$. On obtient un système fondamental en choisissant $t_0 \in I$ et en prenant $\varphi_i: t \longmapsto \exp((t-t_0)M)Y_i$ où Y_1, \ldots, Y_n est une base de \mathbb{K}^n . Pour le système complet, on fait varier les constantes dans $Y = \exp((t-t_0)M)\Lambda$ où Λ est l'inconnue.

Forme linéaire : y'(t) = u(y(t)) + v(t) où $u \in \mathcal{L}(E)$ constante. La solution maximale à y' = u(y) avec $y(t_0) = y_0$ est $\exp((t-t_0)u)(y_0)$. On a un système fondamental de solutions en remplaçant successivement y_0 par $y_1 \dots y_n$ d'une base de E. On obtient un système complet en posant $y = \exp((t-t_0)u)(\vec{\lambda}(t))$ où $\vec{\lambda} : I \longrightarrow E$ est une fonction \mathcal{C}^1 inconnue. Puis variation de la constante...

3 Équations scalaires d'ordre 2

3.1 Retour sur les généralités

y''=f(x,y,y') où $f:\Omega\longrightarrow\mathbb{R}$ avec $\Omega\subset\mathbb{R}^3$ ouvert. On se ramène au théorème de Cauchy-Lipschitz en posant y'=z comme au paragraphe 1. Un problème de Cauchy dans (S) est de la forme $\begin{cases} (S) \\ Y(x_0)=Y_0 \end{cases}$ où $(x_0,y_0)\in\Omega$. Pour (\mathcal{E}) , cela revient à

 $\begin{cases} y'' = f(x,y,y') \\ y(x_0) = y_0 \end{cases} \text{ . On a le théorème de Cauchy-Lipschitz : soit } f:\Omega \subset \mathbb{R}^3 \xrightarrow{\mathcal{C}^1} \mathbb{R}, \Omega \text{ ouvert de } \mathbb{R}^3, \text{ et } (x_0,y_0,z_0) \in \Omega. \text{ Il existe } y'(x_0) = y'_0 \end{cases}$

alors un intervalle ouvert I contenant x_0 , tel que le problème $\begin{cases} y(x_0) = y_0 \\ y'(x_0) = z_0 \end{cases}$ associé à l'équation différentielle y'' = f(x, y, y') admette une unique solution sur I. Toute solution s'étend de manière unique en une solution maximale, les domaines de définition des solutions maximales sont des ouverts. Deux solutions maximales (I, φ) et (J, ψ) sont égales ssi il existe $x_0 \in I \cap J$ tel que $\varphi(x_0) = \psi(x_0)$ et $\varphi'(x_0) = \psi'(x_0)$.

3.2 Équations différentielles linéaires scalaires d'ordre 2

$$\begin{cases} a(x)y'' + b(x)y' + c(x)y = d(x) & (E) \\ a(x)y'' + b(x)y' + c(x)y = 0 & (E_0) \end{cases}$$

où $a,b,c,d:I\stackrel{\mathcal{C}^0}{\longrightarrow}\mathbb{C}$ (I un intervalle quelconque) et a ne s'annulle pas sur I. Alors :

- 1. Les solutions maximales de (E) sont définies sur I tout entier.
- 2. Si $(x_0, y_0, y_0') \in I \times \mathbb{C}^2$, il existe une unique solution maximale $\varphi: I \longrightarrow \mathbb{C}$ telle que $\varphi(x_0) = y_0$ et $\varphi'(x_0) = y_0'$.
- 3. Toute solution de (E) définie sur un intervalle non vide se prolonge de manière unique en une solution maximale
- 4. L'ensemble (S) (resp. (S_0)) des solutions de (E) (resp. (E_0)) est un sous-espace affine (resp. sev) de dimension 2 de $\mathcal{C}^2(I,\mathbb{C})$.

3.3 Isomorphismes

Avec les mêmes notations, (S_0) est un plan vectoriel. Si $t_0 \in I$ fixé, l'application $\delta_{t_0}: S_0 \longrightarrow \mathbb{C}^2$ telle que $\delta_{t_0}(\varphi) = \begin{pmatrix} \varphi(t_0) \\ \varphi'(t_0) \end{pmatrix}$ est un isomorphisme d'ev. Si φ_1, φ_2 sont deux solutions maximales de (E_0) , on pose $\mathcal{W}: x \in I \longrightarrow \begin{pmatrix} \varphi_1(x) & \varphi_2(x) \\ \varphi'_1(x) & \varphi'_2(x) \end{pmatrix}$; c'est le wronskien de la famille (φ_1, φ_2) . \mathcal{W} est \mathcal{C}^1 et vérifie $\mathcal{W}' = -\frac{b}{a}\mathcal{W}$.

3.4 Méthodes de résolution

3.4.1 Si l'on connaît $\varphi \in S_0$ ne s'annulant pas sur I

Soit (E): a(x)y'' + b(x)y' + c(x)y = d(x), $\varphi \in S_0$. On procède au changement de fonction $y = z\varphi$ (z est \mathcal{C}^2 car φ ne s'annulle pas). On calcule y, y', y'' et par combinaison linéaire on obtient une équation différentielle linéaire d'ordre 1 en Z = z'. On la résout et on primitive Z pour obtenir z. On peut chercher des séries entières solution.

3.4.2 Si l'on connaît un système fondamental de solutions

Soit (φ_1, φ_2) une base de (S_0) . Dans (E), on effectue le changement de fonction inconnue $y = \underline{\lambda_1} \varphi_1 + \underline{\lambda_2} \varphi_2$, où λ_1 et λ_2 sont les nouvelles fonctions inconnues. On calcule y, y' et on impose $\lambda_1' \varphi_1 + \lambda_2' \varphi_2 = 0$; puis on calcule y, y', puis par combinaison linéaire on se ramène à un système linéaire de deux équations à deux inconnues en λ_1' et λ_2' , que l'on résout par exemple grâce aux formules de Cramer. On primitive ensuite λ_1' et λ_2' .

3.4.3 Équation différentielle d'ordre 2 à coefficients constants

Soit (E): ay'' + by' + cy = d où $a \neq 0, b, c$ sont des constantes, et $d: I \xrightarrow{C^0} \mathbb{C}$. La solution de (E_0) est

- $x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x}$ si le polynôme caractéristique $R(X) = aX^2 + bX + c$ a deux zéros r_1 et r_2 dans \mathbb{C}
- ou $x \longmapsto (\lambda x + \mu)e^{rx}$ si R admet une racine double dans \mathbb{C} .

On a donc un système fondamental de solutions, et on peut résoudre l'équation complète par variation des constantes. Si d est de la forme $x \in I \longrightarrow \sum \lambda_i e^{m_i x} P_i(x)$, où $(m_i, \lambda_i) \in \mathbb{C}^2$ et $P_i \in \mathbb{C}[X]$ pour tout i, la méthode qui suit ne demande

Si d est de la forme $x \in I \mapsto \sum \lambda_i e^{m_i x} P_i(x)$, où $(m_i, \lambda_i) \in \mathbb{C}^2$ et $P_i \in \mathbb{C}[X]$ pour tout i, la méthode qui suit ne demand jamais plus de calculs :

- 1. Pour chaque i, chercher une solution particulière de $ay'' + by' + cy = e^{m_i x} P_i(x)$ notée φ_i .
- 2. $\varphi = \sum \lambda_i \varphi_i$ est une solution de E.
- 3. La solution générale de E est $\varphi + S_0$ où S_0 est l'ensemble des solutions de E_0 .

On cherche une solution particulière à l'équation $ay'' + by' + cy = e^{mx} + P(x)$ sous la forme $\varphi = x^{\mu}e^{mx}Q(x)$ où :

- $Q \in \mathbb{C}[X]$ a même degré que P
- $\mu = 0 \text{ si } am^2 + bm + c \neq 0$
- $\mu = 1$ si m est un zéro simple de $R(X) = aX^2 + bX + c$
- $\mu = 2$ si m est un zéro double de R