Assignment 5 (Due on the week October 12 – 17)

- 1. Compute the directional derivative of the function $z = xy^2 xy + x^3y$ at a point M(4; -2) in the direction $\left(\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}\right)$
- 2. Find the derivative of the function $z=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)$ at a point $M\left(\frac{a}{\sqrt{2}};\frac{b}{\sqrt{2}}\right)$ in the direction of the inward normal line at the point M to the curve line defined by $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$.
- 3. Using the Chain Rule calculate $\frac{dz}{dt}$ at t=0 if $z=\frac{5t^2+3xy}{2w^2y},\ x=t^2+1,\ y=\sqrt{t^2+1}$ and $w=e^t+1$.
- 4. Calculate all partial derivatives of the first order with respect to x and y, if $u = f(\xi, \eta, \zeta)$, where $\xi = x^2 + y^2$, $\eta = x^2 y^2$, $\zeta = 2xy$.
- 5. Calculate the gradient function and Hesse matrix for the following functions:
 - (a) $f(x,y) = xy \ln(x^2 + 2y^2)$,
 - (b) $f(x,y) = ax^2 + 2bxy + cy^2$.