Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{32} = 4\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$	2p
	$4\sqrt{2} - 3\sqrt{2} - \sqrt{2} = 0$	3 p
2.	$f(x) = g(x) \Leftrightarrow x+1 = 4-2x \Leftrightarrow 3x = 3$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=2$	2p
3.	$5^{5-3x} = 5^2 \Leftrightarrow 5 - 3x = 2$	3 p
	x=1	2 p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $2.5 = 10$ numere	3 p
5.	AB=3	2p
	$BC = 3 \Rightarrow AB = BC$	3 p
6.	$\sin 30^{\circ} = \frac{1}{2}$, $\sin 45^{\circ} = \frac{\sqrt{2}}{2}$, $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$	3p
	$\frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} + \frac{1}{2} = 1$	2p

1.	$2015 \circ (-1) = 2015 \cdot (-1) + 2015 + (-1) =$	3p
	=-2015+2015-1=-1	2p
2.	$(x \circ y) \circ z = (xy + x + y) \circ z = xyz + xz + yz + xy + x + y + z$	2 p
	$x \circ (y \circ z) = x \circ (yz + y + z) = xyz + xy + xz + x + yz + y + z = (x \circ y) \circ z$, pentru orice numere reale x , y și z	3p
3.	$x \circ 0 = x \cdot 0 + x + 0 = x$	2p
	$0 \circ x = 0 \cdot x + 0 + x = x = x \circ 0$, pentru orice număr real x , deci $e = 0$ este element neutru al legii de compoziție " \circ "	3 p
4.	$x \circ x = x \cdot x + x + x = x^2 + 2x =$	2p
	$=x^2+2x+1-1=(x+1)^2-1$, pentru orice număr real x	3 p
5.	$x \circ x \circ x \circ x = (x+1)^4 - 1$	2p
	$(x+1)^4 = 1 \Leftrightarrow x_1 = -2 \text{si} x_2 = 0$	3 p
6.	$x \circ (x+1) - x = x(x+1) + x + x + 1 - x = x^2 + 2x + 1 =$	2p
	$=(x+1)^2 \ge 0$, deci $x \circ (x+1) \ge x$, pentru orice număr real x	3 p

	•	•
1.	$A(0) = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} = 0 \cdot 1 - 1 \cdot 2 =$	3p
	=0-2=-2	2p
2.	a = 0 - 2 = -2 $ a = a = 2$ $ a = a = 2 + a - 2$	3p
	$a^2 + a - 2 = 0 \Leftrightarrow a_1 = -2$ și $a_2 = 1$	2p
3.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 2 \\ 1 & a \end{pmatrix} \Rightarrow \det(A(a) - I_2) = a^2 - a - 2$	2p
	$a^2 - a - 2 < 0 \Leftrightarrow a \in (-1, 2)$	3 p
4.	$(2a+1)A(a) = \begin{pmatrix} 2a^2 + a & 4a+2\\ 2a+1 & 2a^2 + 3a+1 \end{pmatrix}$	1p
	$A(a) \cdot A(a) = \begin{pmatrix} a^2 + 2 & 4a + 2 \\ 2a + 1 & a^2 + 2a + 3 \end{pmatrix}$	2p
	$(2a+1)A(a)-A(a)\cdot A(a) = \begin{pmatrix} a^2+a-2 & 0 \\ 0 & a^2+a-2 \end{pmatrix} = (a^2+a-2)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (a^2+a-2)I_2,$	2p
	pentru orice număr real a	
5.	$A(2) = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}, \det(A(2)) = 4 \neq 0$	2p
	$(A(2))^{-1} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$	3р
6.	$\det(A(m)) \le 1 \Leftrightarrow m^2 + m - 3 \le 0$	2p
	Cum m este număr natural obținem $m = 0$ și $m = 1$	3p
	Com in the manual manual continuit in the state of the st	· P

Proba E. c)

Matematică M_pedagogic

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{32} \sqrt{18} \sqrt{2} = 0$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 4 2x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{5-3x} = 25$.
- **5p 4.** Determinați câte numere naturale pare de două cifre se pot forma cu cifrele 1, 2, 3, 4 și 5.
- **5p** | **5**. În reperul cartezian xOy se consideră punctele A(2,3), B(5,3) și C(5,6). Arătați că AB = BC.
- **5p 6.** Arătați că $\sin 30^{\circ} + \sin 45^{\circ} \cdot \cos 45^{\circ} = 1$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + x + y$.

- **5p 1.** Arătați că $2015 \circ (-1) = -1$.
- **5p 2.** Demonstrați că legea de compoziție "°" este asociativă.
- **5p 3.** Verificați dacă e = 0 este element neutru al legii de compoziție " \circ ".
- **5p 4.** Arătați că $x \circ x = (x+1)^2 1$, pentru orice număr real x.
- **5p 5.** Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x \circ x = 0$.
- **5p 6.** Arătați că $x \circ (x+1) \ge x$, pentru orice număr real x.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & 2 \\ 1 & a+1 \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $\det(A(0)) = -2$.
- **5p** 2. Determinați numerele reale a pentru care $\det(A(a)) = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale inecuația $\det(A(a)-I_2)<0$.
- **5p 4.** Arătați că $(2a+1)A(a)-A(a)\cdot A(a)=(a^2+a-2)I_2$, pentru orice număr real a.
- **5p 5.** Determinați inversa matricei A(2).
- **5p 6.** Determinați numerele naturale m pentru care $\det(A(m)) \le 1$.

Examenul de bacalaureat național 2015 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \left(\frac{1}{2}\right)^4 = 2 + \frac{1}{16} = \frac{33}{16}$	3p
	$\frac{33}{16}:\frac{33}{16}=1$	2p
2.	f(2) + f(-2) = (2+a) + (-2+a) = 2a	3p
	$2a = 4 \Leftrightarrow a = 2$	2p
3.	$x^2 + 2 = 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	$x_1 = 1$ și $x_2 = 2$	2p
4.	După prima scumpire cu 10%, prețul obiectului va fi $200 + \frac{10}{100} \cdot 200 = 220$ de lei	2p
	După a doua scumpire cu 10%, prețul obiectului va fi $220 + \frac{10}{100} \cdot 220 = 242$ de lei	3 p
5.	M(0,4)	2p
	OM = 4	3 p
6.	$\triangle ABC$ este dreptunghic în A , deci $\mathcal{A}_{\triangle ABC} = \frac{\sqrt{2} \cdot \sqrt{2}}{2} =$	3p
	=1	2p

1.	1007*1008 = 1007 + 1008 - 2015 =	3р
	=2015-2015=0	2p
2.	(x*y)*z = (x+y-2015)+z-2015 = x+y+z-4030	2 p
	x*(y*z) = x + (y+z-2015) - 2015 = x + y + z - 4030 = (x*y)*z, pentru orice numere reale x , y şi z	3p
3.	x*2015 = x + 2015 - 2015 = x	2p
	2015*x = 2015 + x - 2015 = x = x*2015, pentru orice număr real x , deci $e = 2015$ este element neutru al legii de compoziție "*"	3p
4.	x + x - 2015 = 2015	3p
	x = 2015	2p
5.	x*(x+2015) = x+(x+2015)-2015 = 2x	2 p
	(x+1007)*(x+1008) = (x+1007)+(x+1008)-2015 = 2x = x*(x+2015), pentru orice număr real x	3 p
6.	$5^{x} + 5^{2x} - 30 = 0 \Leftrightarrow (5^{x})^{2} + 5^{x} - 30 = 0$	2p
	$5^x = 5 \Leftrightarrow x = 1$	2 p
	$5^x = -6$ nu are soluție	1p

SUBII	SUBIECTUL al III-lea (30 de pur	
1.	$\det A = \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1 \cdot 0 - (-1) \cdot 3 =$	3p
	=0+3=3	2p
2.	$ \begin{pmatrix} a-1 & b+1 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} $	3p
	a=5 și $b=-1$	2p
3.	$\det B = \begin{vmatrix} 0 & b \\ 3 & 4 \end{vmatrix} = 0 \cdot 4 - b \cdot 3 = -3b$	3р
	$-3b = 9 \Leftrightarrow b = -3$	2p
4.	$AB = \begin{pmatrix} a-3 & b-4 \\ 3a & 3b \end{pmatrix}, BA = \begin{pmatrix} a+3b & -a \\ 15 & -3 \end{pmatrix}$	2 p
	$AB = BA \Leftrightarrow a = 5$ și $b = -1$	3 p
5.	$A \cdot \begin{pmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3p
	$\begin{pmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{pmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{pmatrix} \text{ este inversa matricei } A$	2p
6.	$B = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$, det $B = 1$, $B^{-1} = \begin{pmatrix} 4 & -1 \\ -3 & 1 \end{pmatrix}$	3р
	$X = B^{-1} \cdot A \Longleftrightarrow X = \begin{pmatrix} 1 & -4 \\ 0 & 3 \end{pmatrix}$	2p

Proba E. c)

Matematică M_pedagogic

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 + \left(\frac{1}{2}\right)^4\right) : \frac{33}{16} = 1$.
- **5p** 2. Determinați numărul real a pentru care f(2) + f(-2) = 4, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x^2+2} = 3^{3x}$.
- **5p 4.** Prețul unui obiect este 200 de lei. Determinați prețul obiectului după ce se scumpește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(-3,4) și B(3,4). Determinați distanța de la punctul O(0,0) la punctul O(0,0) de se mijlocul segmentului O(0,0) la punctul O
- **5p** | **6.** Calculați aria triunghiului ABC, știind că $m(\angle B) = 45^{\circ}$ și $AB = AC = \sqrt{2}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se defineste legea de compoziție x * y = x + y - 2015.

- **5p 1.** Arătați că 1007*1008=0.
- **5p 2.** Arătați că legea de compoziție "*" este asociativă.
- **5p** | **3.** Verificați dacă e = 2015 este elementul neutru al legii de compoziție "*".
- **5p** | **4.** Determinați numărul real x, știind că x*x = 2015.
- **5p** | **5.** Arătați că x*(x+2015)=(x+1007)*(x+1008), pentru orice număr real x.
- **5p 6.** Rezolvați în mulțimea numerelor reale ecuația $5^x * 25^x = -1985$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & -1 \\ 3 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} a & b \\ 3 & 4 \end{pmatrix}$, unde a și b sunt numere reale.

- **5p 1.** Arătați că det A = 3.
- **5p 2.** Determinați numerele reale a și b astfel încât $B A = 4I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** | **3.** Pentru a = 0, determinați numărul real b pentru care $\det B = 9$.
- **5p** | **4.** Determinați numerele reale a și b, știind că AB = BA.
- **5p 5.** Arătați că inversa matricei A este matricea $\begin{pmatrix} 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{pmatrix}$.
- **5p 6.** Pentru a = b = 1, rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația $B \cdot X = A$.

Examenul de bacalaureat național 2015 Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{18} = 3\sqrt{2}$, $\sqrt{50} = 5\sqrt{2}$ și $\sqrt{8} = 2\sqrt{2}$	3 p
	$9 - 3\sqrt{2} + 5\sqrt{2} - 2\sqrt{2} = 9$	2p
2.	f(2) = 2 - m	2p
	$2 - m = 0 \Leftrightarrow m = 2$	3 p
3.	$x^2 + 1 = 1$	2p
	x = 0 care verifică ecuația	3p
4.	$5\% \cdot x = \frac{x}{20}$, unde x este profitul anual al firmei	3 p
	$\frac{x}{20} = 2\ 000 \Rightarrow x = 40\ 000$ de lei	2p
5.	$m_d = 1$ și $m = m_d \Rightarrow m = 1$	3 p
	Ecuația dreptei este $y = x - 2$	2p
6.	$\sin 30^{\circ} = \frac{1}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}$	2p
	$\sin 30^{\circ} + \sqrt{3} \cdot \cos 30^{\circ} = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = 2$	3p

1.	(-2)*2=(-2)+2-2=	3 p
	=-2	2p
2.	(x*y)*z = (x+y-2)*z = x+y+z-4	2p
	x*(y*z) = x*(y+z-2) = x+y+z-4 = (x*y)*z pentru orice numere reale x, y şi z	3 p
3.	x*2=x+2-2=x pentru orice număr real x	3p
	2 * x = 2 + x - 2 = x pentru orice număr real x	2p
4.	(x+1)+x-2=3	3 p
	x = 2	2p
5.	$9^{x} + 3^{x} - 2 = 0 \Leftrightarrow (3^{x} + 2)(3^{x} - 1) = 0$	3p
	x = 0	2p
6.	$x^{2} * \frac{1}{x^{2}} = x^{2} + \frac{1}{x^{2}} - 2 = \frac{x^{4} - 2x^{2} + 1}{x^{2}} =$	2p
	$= \frac{\left(x^2 - 1\right)^2}{x^2} \ge 0 \text{ pentru orice număr real nenul } x$	3р

1.	$\det(A(0)) = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 0 \cdot 0 - (-1) \cdot 1 =$	3p
	=1	2p
2.	$A(1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ A(-1) = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}, \ A(7) = \begin{pmatrix} 7 & 1 \\ -1 & 7 \end{pmatrix}$	3p
	$4 \cdot A(1) - 3 \cdot A(-1) = 4 \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} - 3 \cdot \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 7 & 1 \\ -1 & 7 \end{pmatrix} = A(7)$	2p
3.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ -1 & a \end{vmatrix} = a^2 + 1$	2p
	$a^2 + 1 = 10 \Leftrightarrow a_1 = -3 \text{ si } a_2 = 3$	3 p
4.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 1 \\ -1 & a - 1 \end{pmatrix}$	3p
	$\det(A(a) - I_2) = \begin{vmatrix} a - 1 & 1 \\ -1 & a - 1 \end{vmatrix} = (a - 1)^2 + 1 > 0 \text{ pentru orice număr real } a$	2p
5.	$\det(A(2)) = 5$	2p
	$A^{-1}(2) = \begin{pmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$	3р
6.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ -1 & a \end{vmatrix} = a^2 + 1$	2p
	$a^2 \le 400 \Leftrightarrow a \le 20$ și $a \in \mathbb{Z}$, deci sunt 41 de matrice $A(a)$ care verifică cerința	3 p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M pedagogic*

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{81} \sqrt{18} + \sqrt{50} \sqrt{8} = 9$.
- **5p** 2. Determinați numărul real m pentru care f(2) = 0, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x m.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 1} = 1$.
- **5p 4.** O firmă folosește 2000 de lei pentru publicitate, ceea ce reprezintă 5% din profitul anual al firmei. Determinați profitul anual al firmei.
- **5p 5.** Determinați ecuația dreptei care trece prin punctul M(1,-1) și este paralelă cu dreapta d de ecuație y = x 1.
- **5p 6.** Arătați că $\sin 30^{\circ} + \sqrt{3} \cdot \cos 30^{\circ} = 2$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y - 2.

- **5p 1.** Calculați (-2)*2.
- **5p 2.** Arătați că legea de compoziție "*" este asociativă.
- **5p** | **3.** Verificați dacă e = 2 este element neutru al legii de compoziție "*".
- **5p 4.** Determinați numărul real x, știind că (x+1)*x=3.
- **5p 5.** Rezolvați în mulțimea numerelor reale ecuația $9^x * 3^x = 0$.
- **5p 6.** Arătați că $x^2 * \frac{1}{x^2} \ge 0$ pentru orice număr real nenul x.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(a) = \begin{pmatrix} a & 1 \\ -1 & a \end{pmatrix}$, unde a este număr real.

- **5p 1.** Calculați $\det(A(0))$.
- **5p 2.** Arătați că $4 \cdot A(1) 3 \cdot A(-1) = A(7)$.
- **5p** 3. Determinați numerele reale a, știind că $\det(A(a)) = 10$.
- **5p 4.** Arătați că $\det(A(a) I_2) > 0$ pentru orice număr real a, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p 5.** Determinați inversa matricei A(2).
- **5p 6.** Determinați numărul matricelor A(a), unde a este număr întreg și $\det(A(a)) \le 401$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_pedagogic* Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$-3 + \left(-\frac{1}{2}\right)^2 = -3 + \frac{1}{4} = -\frac{11}{4}$	3p
	$-\frac{11}{4}:\left(-\frac{11}{2}\right)=\frac{1}{2}$	2p
2.	$f(x) = 0 \Leftrightarrow -\frac{1}{3}x + \frac{2}{3} = 0$	3p
	x = 2 si y = 0	2p
3.	$2^{x^2 - 3x} = 2^{2x - 4} \Leftrightarrow x^2 - 5x + 4 = 0$	3 p
	$x_1 = 1$ şi $x_2 = 4$	2p
4.	$p+10\% \cdot p=594$, unde p este prețul obiectului înainte de scumpire	2p
	p = 540 de lei	3 p
5.	$x_M = 2$, $y_M = -2$, unde punctul M este mijlocul segmentului EF	3p
	$x_N = 2$, $y_N = 1$, unde punctul N este mijlocul medianei DM	2p
6.	$\operatorname{tg} B = \frac{3}{4} \Rightarrow AB = 12$	2p
	$BC = 15 \Rightarrow P_{\Delta ABC} = 36$	3 p

1.	$4 \circ 2 = 4 \cdot 2 - 2 \cdot 4 - 2 \cdot 2 + 6 =$	3p
	= 2	2 p
2.	$y \circ x = yx - 2y - 2x + 6 =$	2p
	$= xy - 2x - 2y + 6 = x \circ y$, pentru orice numere reale x şi y	3 p
3.	$x \circ y = xy - 2x - 2y + 4 + 2 =$	2p
	= x(y-2)-2(y-2)+2=(x-2)(y-2)+2, pentru orice numere reale x şi y	3p
4.	$2 \circ x = (2-2)(x-2) + 2 =$	3p
	=0+2=2, pentru orice număr real x	2p
5.	$x \circ x \circ x = (x-2)^3 + 2$	2p
	x = 4	3 p
6.	$m \circ n = 3 \Leftrightarrow (m-2)(n-2) = 1$	2p
	Cum m și n sunt numere întregi, obținem perechile $(m, n) = (1,1)$ și $(m, n) = (3,3)$	3 p

1.	Pentru $x = 0$, $A(0) = \begin{pmatrix} 1 - 0 & 0 \\ -2 \cdot 0 & 1 + 2 \cdot 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$	2p
2.	$A(1) = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 \\ -2 & 3 \end{vmatrix} =$	2p
	=2	3p
3.	$A(x^{2}) = \begin{pmatrix} 1 - x^{2} & x^{2} \\ -2x^{2} & 1 + 2x^{2} \end{pmatrix}, \ A(2x) = \begin{pmatrix} 1 - 2x & 2x \\ -4x & 1 + 4x \end{pmatrix}, \ A(x^{2}) - A(2x) = \begin{pmatrix} -x^{2} + 2x & x^{2} - 2x \\ -2x^{2} + 4x & 2x^{2} - 4x \end{pmatrix}$	3p
	$\begin{pmatrix} -x^2 + 2x & x^2 - 2x \\ -2x^2 + 4x & 2x^2 - 4x \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow x_1 = 0 \text{ si } x_2 = 2$	2p
4.	$\det(A(x)) = \begin{vmatrix} 1-x & x \\ -2x & 1+2x \end{vmatrix} = 1+x$	3p
	$1 + x \neq 0 \Leftrightarrow x \in \mathbb{R} \setminus \{-1\}$	2 p
5.	$A(x) \cdot A(y) = \begin{pmatrix} 1 - x - y - xy & x + y + xy \\ -2x - 2y - 2xy & 1 + 2x + 2y + 2xy \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (x + y + xy) & x + y + xy \\ -2(x + y + xy) & 1 + 2(x + y + xy) \end{pmatrix} = A(x + y + xy), \text{ pentru orice numere reale } x \text{ şi } y$	2p
6.		3р
	$=A\left(\left(x+1\right)^{4}-1\right)$	- 1
	$(x+1)^4 - 1 = 0 \Rightarrow x_1 = -2 \text{ si } x_2 = 0$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_pedagogic* Clasa a XII-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(-3 + \left(-\frac{1}{2}\right)^2\right) : \left(-\frac{11}{2}\right) = \frac{1}{2}$.
- **5p 2.** Determinați coordonatele punctului de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -\frac{1}{3}x + \frac{2}{3}$ cu axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{x^2-3x} = 4^{x-2}$.
- **5p** | **4.** După o scumpire cu 10% un obiect costă 594 lei. Calculați prețul obiectului înainte de scumpire.
- **5p 5.** În reperul cartezian xOy se consideră punctele D(2,4), E(-2,-2) și F(6,-2). Determinați coordonatele mijlocului medianei din vârful D al triunghiului DEF.
- **5p 6.** Calculați perimetrul triunghiului *ABC* dreptunghic în *A*, știind că tg $B = \frac{3}{4}$ și AC = 9.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = xy - 2x - 2y + 6$.

- **5p 1.** Calculati $4 \circ 2$.
- **5p 2.** Verificați dacă legea de compoziție "o" este comutativă.
- **5p** | **3.** Arătați că $x \circ y = (x-2)(y-2)+2$, pentru orice numere reale $x \neq y$.
- **5p 4.** Arătați că $2 \circ x = 2$, pentru orice număr real x.
- **5p** | **5.** Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x = 10$.
- **5p** | **6.** Determinați perechile de numere întregi (m,n), știind că $m \circ n = 3$.

- Se consideră mulțimea $G = \left\{ A(x) = \begin{pmatrix} 1-x & x \\ -2x & 1+2x \end{pmatrix} \middle| x \in \mathbb{R} \right\}.$
- **5p 1.** Arătați că matricea $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ aparține mulțimii G.
- **5p** 2. Calculați $\det(A(1))$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $A(x^2) A(2x) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p 4.** Determinați valorile reale ale lui x pentru care matricea A(x) este inversabilă.
- **5p 5.** Arătați că $A(x) \cdot A(y) = A(x + y + xy)$, pentru orice numere reale x și y.
- **5p 6.** Rezolvați în mulțimea numerelor reale ecuația $A(x) \cdot A(x) \cdot A(x) \cdot A(x) = A(0)$.

Proba E. c)

Matematică $M_pedagogic$

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2^{-2} = \frac{1}{4}, \left(\frac{1}{4}\right)^0 = 1$	2p
	$\frac{1}{4} \cdot 3 - 1 = -\frac{1}{4}$	3p
2.	f(-2)+f(2)=2, $f(-1)+f(1)=2$, $f(0)=1$	3p
	f(-2) + f(-1) + f(0) + f(1) + f(2) = 2 + 2 + 1 = 5	2p
3.	$x^2 - 5x + 3 = -1$	2p
	$x^2 - 5x + 4 = 0 \Leftrightarrow x_1 = 1$ şi $x_2 = 4$, care verifică ecuația	3 p
4.	Sunt 12 numere pare în mulțimea {1, 2,, 25}, deci sunt 12 cazuri favorabile	2p
	Sunt 25 de numere în mulțimea {1, 2,, 25}, deci sunt 25 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{25}$	2p
5.	$\frac{3}{3} = \frac{a+5}{2}$	3p
	$\begin{vmatrix} 3 & 2 \\ a = -3 \end{vmatrix}$	2p
6.	$l_{\text{pătrat}} = 3\sqrt{2} \text{ dm}$	3p
	$\mathcal{A}_{\text{pătrat}} = \left(3\sqrt{2}\right)^2 = 18 \text{ dm}^2$	2p

1.	$0*2 = 0 \cdot 2 - 3 \cdot 0 - 3 \cdot 2 + 12 =$	3 p
	= 6	2p
2.	x * y = xy - 3x - 3y + 9 + 3 =	2p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
3.	x*4=(x-3)(4-3)+3=x	2p
	4*x = (4-3)(x-3)+3=x, pentru orice număr real x	3 p
4.	$(2x-3)(x-3)+3=3 \Leftrightarrow (2x-3)(x-3)=0$	3 p
	$x_1 = \frac{3}{2} \text{ si } x_2 = 3$	2p
5.	x*(-x)=(x-3)(-x-3)+3=	2p
	$=12-x^2 \le 12$, pentru orice număr real x	3 p
6.	Pentru $x = 3m$ și $y = 3n$, cu m și n numere întregi, numărul $x * y = (3m - 3)(3n - 3) + 3 =$	2p
	=3(m-1)(3n-3)+3=3((m-1)(3n-3)+1) este întreg, multiplu de 3	3 p

SUBIECTUL al III-lea (ncte)
1.	$\hat{2} \cdot \hat{4} = \hat{0}$	3p
	$\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} \cdot \hat{5} = \hat{0}$	2p
2.	$\hat{4} \cdot \left(\hat{3} + \hat{5}\right) = \hat{4} \cdot \hat{0} = \hat{0}$	2p
	$\hat{4} \cdot \hat{3} + \hat{4} \cdot \hat{5} = \hat{4} + \hat{4} = \hat{0} \Rightarrow \hat{4} \cdot (\hat{3} + \hat{5}) = \hat{4} \cdot \hat{3} + \hat{4} \cdot \hat{5}$	3 p
3.	3 și 7 sunt soluții ale ecuației	3p
	Celelalte elemente ale lui \mathbb{Z}_8 nu sunt soluții ale ecuației	2p
4.	$\hat{3} \cdot \hat{3} = \hat{1}$	3 p
	Simetricul elementului $\hat{3}$ în raport cu operația de înmulțire din \mathbb{Z}_8 este $\hat{3}$	2p
5.	$\hat{0}^3 = \hat{0}, \hat{1}^3 = \hat{1}, \hat{2}^3 = \hat{0}, \hat{3}^3 = \hat{3}, \hat{4}^3 = \hat{0}, \hat{5}^3 = \hat{5}, \hat{6}^3 = \hat{0} \text{ și } \hat{7}^3 = \hat{7}$	3p
	$A = \left\{\hat{0}, \hat{1}, \hat{3}, \hat{5}, \hat{7}\right\}$	2p
6.	$\begin{cases} \hat{2}x + y = \hat{5} \\ \hat{3}x + \hat{7}y = \hat{1} \end{cases} \Rightarrow \hat{5}x = \hat{6}$	3p
	$x = \hat{6}$, $y = \hat{1}$, care verifică ecuațiile sistemului	2p

Examenul de bacalaureat național 2015 Proba E. c)

Matematică *M_pedagogic* Clasa a XI-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați $2^{-2} \cdot 3 \left(\frac{1}{4}\right)^0$.
- **5p** 2. Calculați f(-2) + f(-1) + f(0) + f(1) + f(2), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = -4x + 1.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{x^2 5x + 3} = -1$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea {1, 2,..., 25}, acesta să fie număr par.
- **5p** | **5.** Determinați numărul real a, știind că dreptele $d_1: 3x + (a+5)y 4 = 0$ și $d_2: 3x + 2y 5 = 0$ sunt paralele.
- 5p | 6. Calculați aria unui pătrat, știind că lungimea uneia dintre diagonale este egală cu 6dm.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție asociativă x * y = xy - 3x - 3y + 12.

- **5p 1.** Calculați 0 * 2.
- **5p** 2. Arătați că x * y = (x-3)(y-3)+3, pentru orice numere reale x si y.
- **5p 3.** Verificați dacă e = 4 este element neutru al legii de compoziție ,,*".
- **5p 4.** Rezolvați în mulțimea numerelor reale ecuația (2x)*x = 3.
- **5p** | **5.** Arătați că $x*(-x) \le 12$, pentru orice număr real x.
- **5p 6.** Arătați că dacă x și y sunt numere întregi, multipli de 3, atunci numărul x*y este întreg, multiplu de 3.

SUBIECTUL al III-lea (30 de puncte)

Se consideră $\mathbb{Z}_8 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}, \hat{7}\}$, mulțimea claselor de resturi modulo 8.

- **5p 1.** Calculați $\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} \cdot \hat{5}$ în \mathbb{Z}_8 .
- **5p 2.** Arătați că $\hat{4} \cdot (\hat{3} + \hat{5}) = \hat{4} \cdot \hat{3} + \hat{4} \cdot \hat{5}$ în \mathbb{Z}_8 .
- **5p 3.** Rezolvați în \mathbb{Z}_8 ecuația $\hat{2}x + \hat{2} = \hat{0}$.
- **5p** 4. Determinați simetricul elementului $\hat{3}$ în raport cu operația de înmulțire din \mathbb{Z}_8 .
- **5p 5.** Determinați mulțimea $A = \{x \in \mathbb{Z}_8 | x^3 = x\}$.
- **5p 6.** Rezolvați în \mathbb{Z}_8 sistemul $\begin{cases} \hat{2}x + y = \hat{5} \\ \hat{3}x + \hat{7}y = \hat{1} \end{cases}$