Feuille d'exercices « Dérivées Partielles »

Exercice 1: Fonctions exponentielles

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $(x,y) \mapsto (x^2+y^2)^x$ pour $(x,y) \neq (0,0)$ et f(0,0)=1.

- Pour y_0 fixé, calculer la limite de $x \mapsto f(x, y_0)$ en 0.
- Pour x_0 fixé, calculer la limite de $y \mapsto f(x_0, y)$ en 0.
- Calculer les dérivées partielles de f en tout point de $\mathbb{R}^2 \setminus (0,0)$.

Exercice 2: Composées

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 (c'est à dire dont toutes les dérivées partielles existent et sont continues). On considère la fonction $g: \mathbb{R}^3 \to \mathbb{R}$ définie par

$$g(x, y, z) = f(x - y, y - z, z - x)$$

Montrer que

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z} = 0$$

Exercice 3: Dérivée d'ordre 2

Calculer les dérivées partielles aux ordres 1 et 2 de la fonction f définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par

$$f(x,y) = \frac{x^3 y^3}{x^2 + y^2}$$

Exercice 4: Dérivée d'ordre 2

Soit f une fonction de classe C^2 (c'est à dire dont les dérivées secondes existent et sont continues) telle que pour tout $(x, y) \in \mathbb{R}^2$, on a f(x, y) = -f(y, x).

- Donner un exemple de telle fonction
- Montrer que la fonction f vérifie $\frac{\partial^2 f}{\partial y \partial x}(a,a) = 0$ pour tout $a \in \mathbb{R}$.

Exercice 5: Contrainte

On considère une casserole de rayon R et de hauteur h. On note V le volume de la casserole et S sa surface.

- Exprimer V et S en fonction de R et h.
- Calculer les différentielles totales dV et dS.
- On suppose que le volume est fixe $(V = V_0)$. Trouver une relation entre dh et dR.
- En déduire une expression simple de dS en fonction de dh ou dR (un seul des deux, celui qui vous semble le plus simple)
- En déduire les couples (h, R) qui annulent dS.

Les différentes étapes de l'exercice précédent permettent de minimiser la surface à volume constant sans jamais donner la forme explicite de S en fonction de R. C'est une approche différente de celle vue au S1 pour le même exercice, qui consistait à substituer h à R dans l'expression de R. Ici on subsitue les différentielles.