A Chain Rule for Randomness Deficiency

Samuel Epstein*

October 13, 2023

Abstract

This paper is an exposition of the addition equality theorem for algorithmic entropy in [G01], applied to the Cantor space. This application implies that randomness deficiency of infinite sequences obeys the chain rule, analgous to the finite Kolmogorov complexity case. This is a generalization of van Lambalgen's Theorem. It is unclear whether this result is folklore, but in any case, this paper presents a dedicated proof of the equality.

1 Introduction

Prefix free Kolmogorov complexity, **K**, obeys the chain rule, with for $x, y \in \{0, 1\}^*$,

$$\mathbf{K}(x,y) =^+ \mathbf{K}(x) + \mathbf{K}(y|x,\mathbf{K}(x)).$$

In this paper, we apply the addition equality theorem for algorithmic entropy in [G01] to the specific case of infinite sequences. The consequence to this is a result about randomness deficiency \mathbf{D} , where for computable probability μ , for infinite sequences, $\mathbf{D}(\alpha|\mu,x) = \sup_n -\log \mu(\alpha[0..n] - \mathbf{K}(\alpha[0..n]|x)$. The randomness deficiency over the space $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$, is $\mathbf{D}(\alpha,\beta|\mu,\nu) = \sup_n -\log \mu(\alpha[0..n]) -\log \nu(\beta[0..n]) - \mathbf{K}(\alpha[0..n]\beta[0..n])$. The discrete case for $\mathbf{d}(x|p) = -\log p(x) - \mathbf{K}(x)$ is trivial. The result detailed in this paper is as follows.

Theorem. ([GÓ1]) Relativized to probabilities μ and ν over $\{0,1\}^{\infty}$,

$$\mathbf{D}(\alpha, \beta | \mu, \nu) =^{+} \mathbf{D}(\alpha | \mu) + \mathbf{D}(\beta | \nu, (\alpha, \lceil \mathbf{D}(\alpha | \mu) \rceil)).$$

This is a generalization of van Lambalgen's Theorem, which states (α, β) is ML random iff α is ML random and β is ML random with respect to α . If one were to take the complexities of the probabilities μ and ν into account (that is, they are no longer O(1)) then the theorem statement and proof become more nuanced. This generalization can be seen in [G01].

2 Results

As shown in [G01], $2^{\mathbf{D}(\alpha|\mu)} \stackrel{*}{=} \mathbf{t}_{\mu}(\alpha)$ where \mathbf{t}_{μ} is a universal lower computable μ -test. Furthermore, similar arguments can be used to show that $2^{\mathbf{D}(\alpha,\beta|\mu,\nu)} \stackrel{*}{=} \mathbf{t}_{\mu,\nu}(\alpha,\beta)$, where $\mathbf{t}_{\mu,\nu}$ is a universal lower computable test over $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$. This can be seen in Proposition 1. For measure μ and lower continuous function f over $\{0,1\}^{\infty}$, we use the notation $\mu^x f(x) = \int_{x \in \{0,1\}^{\infty}} f(x) d\mu(x)$. Throughout this section, the universal Turing machine is assumed to be relativized to probabilities μ and ν over $\{0,1\}^{\infty}$. This means that there is an O(1) sized program that can compute $\mu(x\{0,1\}^{\infty})$ uniformly in $x \in \{0,1\}^*$, and similarly for ν . The following proposition generalizes Theorem 2.3.4 to the $\{0,1\}^{\infty} \times \{0,1\}^{\infty}$ space.

^{*}JP Theory Group. samepst@jptheorygroup.org

Proposition 1 $2^{\mathbf{d}(\alpha,\beta|\mu,\nu)} \stackrel{*}{=} \mathbf{t}_{\mu,\nu}(\alpha,\beta)$.

Proof. For the * inequality, note that

$$f_{\mu,\nu}(\alpha,\beta) = \sum_{n=1}^{\infty} \sum_{x,y \in \{0,1\}^n} 1_{x\{0,1\}^{\infty},y\{0,1\}^{\infty}}(\alpha,\beta) \frac{\mathbf{m}(x,y)}{\mu(x)\nu(y)}$$

$$= \sum_{n=1}^{\infty} \sum_{x,y \in \{0,1\}^n}) \frac{\mathbf{m}(\alpha[0..n]\beta[0..n])}{\mu(x)\nu(y)}$$

$$\geq \sup_{n} \frac{\mu(\alpha[0..n]\beta[0..n])}{\mu(\alpha[0..n])\nu(\beta[0..n])}.$$

So

$$\log \mathbf{t}_{\mu,\nu}(\alpha,\beta) >^+ \log f_{\mu,\nu}(\alpha,\beta) >^+ \mathbf{D}(\alpha,\beta|\mu,\nu).$$

The $>^+$ inequality is as follows. Note that $1_{x,y}(\alpha,\beta) = 1_{x\{0,1\}^{\infty},y\{0,1\}^{\infty}}(\alpha,\beta)$. Since $d(\alpha,\beta) = \lceil \log \mathbf{t}_{\mu,\nu}(\alpha,\beta) \rceil$ takes only integer values and is lower computable,

$$2^{d(\alpha,\beta)} = \sup_{i} 2^{k_i} 1_{x_i,y_i}(\alpha,\beta) \ge \frac{1}{2} \sum_{i} 2^{k_i} 1_{x_i,y_i}(\alpha,\beta),$$

with the property that for all i, $||x_i|| = ||y_i||$, and if $1_{x_i,x_j}(\alpha,\beta) = 1_{x_j,x_j}(\alpha,\beta) = 1$ and i < j then $k_i < k_j$. Let $\gamma(x,y) = \sum_{y_i = y, x_i = x} 2^{k_i}$.

$$\sum_{i} 2^{k_i} 1_{x_i, y_i}(\alpha, \beta) = \sum_{n=1}^{\infty} \sum_{x, y \in \{0, 1\}^n} 1_{x, y}(\alpha, \beta) \gamma(x, y).$$

Since $\mu^x \nu^y 2^{d(\alpha,\beta)} \le 2$, we have that $\sum_{x,y \in \{0,1\}^*} \mu(x)\nu(y)\gamma(x,y) \le 2$, so $\mu(x)\nu(y)\gamma(x,y) \stackrel{*}{<} \mathbf{m}(x,y)$ and $\gamma(x,y) = 0$ if $||x|| \ne ||y||$. So

$$2^{d(\alpha,\beta)} \stackrel{*}{<} \sup_{n \ge 1, x, y \in \{0,1\}^n} 1_{x,y}(\alpha,\beta) \frac{\mathbf{m}(x,y)}{\mu(x)\nu(y)} \stackrel{*}{=} \sup_{n} \frac{\mathbf{m}(\alpha[0..n]\beta[0..n])}{\mu(\alpha[0..n])\nu(\beta[0..n])}.$$

Proposition 2 $\log \nu^y 2^{\mathbf{D}(x,y|\mu,\nu)} <^+ \mathbf{D}(x|\mu)$.

Proof. Let $f(x, \mu, \nu) = -\log \nu^y 2^{\mathbf{D}(x, y | \mu, \nu)}$. The function f is upper computable and has $\mu^x 2^{-f(x, \mu, \nu)} \le 1$. The proposition follows from the universal properties of \mathbf{t}_{μ} , where $2^{-f} \stackrel{*}{<} \mathbf{t}_{\mu}$.

Proposition 3 For a computable function $f: N^2 \to \mathbb{N}$,

$$\mathbf{D}(x|\mu, f(y, z)) <^+ \mathbf{K}(z) + \mathbf{D}(x|\mu, y).$$

Proof. The function

$$g_{\mu}(x,y) = \sum_{z} 2^{\mathbf{D}(x|\mu,f(y,z)) - \mathbf{K}(z)},$$

is lower computable and $\mu^x g_{\mu}(x,y) \leq \sum_z 2^{-\mathbf{K}(z)} \leq 1$. So $g_{\mu}(x,y) \stackrel{*}{<} 2^{\mathbf{D}(x|\mu,y)}$. The left hand side is a summation, so the inequality holds for each element of the sum, proving the proposition.

Proposition 4 If i < j, then

$$i + \mathbf{D}(x|\mu, j) <^+ j + \mathbf{D}(x|\mu, i).$$

Proof. Using Proposition 3, with f(i, n) = i + n, we have

$$-\mathbf{D}(x|\mu, i) + \mathbf{D}(x|\mu, j) <^+ \mathbf{K}(j-i) <^+ j-i.$$

Definition 1 Let $F: \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$ be an upper semicomputable function. An (μ, F) -test is a function $t: \{0,1\}^{\infty} \times \{0,1\}^{\infty} \to \mathbb{Z} \cup \{-\infty,\infty\}$ that is lower semicomputable and $\mu^x t(x,y) \le 2^{-F(y)}$. There exists a maximal (μ, F) test, $\mathbf{t}_{(\mu,F)}$, such that $t < \mathbf{t}_{(\mu,F)}$.

Proposition 5 Let $F: \{0,1\}^{\infty} \to \mathbb{Z} | \cup \{-\infty,\infty\}$ be an upper semicomputable function,. For all x and with $\mathbf{t}_{(\nu,F)}(y) > -\infty$,

$$\mathbf{t}_{(\nu,F)}(x,y) \stackrel{*}{=} 2^{-F(y)} \mathbf{t}_{\nu}(x|y,F(y)).$$

Proof. To prove the inequality $\stackrel{*}{>}$, let $g(x,y,m) = \max_{i\geq m} 2^{-i}\mathbf{t}_{\nu}(x|y,i)$. This function is lower computable, and decreasing in m. Let $g(x,y) = g_{\nu}(x,y,F(y))$ is lower semicomputable since F is upper semi-computable. The multiplicative form of Proposition 4 implies

$$g(x, y, m) \stackrel{*}{=} 2^{-m} \mathbf{t}_{\nu}(x|y, m)$$
$$g(x, y) \stackrel{*}{=} 2^{-F(y)} \mathbf{t}_{\nu}(x|y, F(y)).$$

Since \mathbf{t}_{ν} is a test:

$$\nu^x 2^{-m} \mathbf{t}_{\nu}(x|y,m) \le 2^{-m}$$

$$\nu^x q(x,y) \stackrel{*}{<} 2^{-F(y)},$$

which implies $g(x,y) \stackrel{*}{<} \mathbf{t}_{(\nu,F)}(x,y)$ by the optimality of $\mathbf{t}_{(\nu,F)}$. We now consider the upper bound. Let $\mathbf{t}'_{(\nu,F)}(x,y,m)$ be the modification of $\mathbf{t}_{(\nu,F)}$, which is a lower computable function such that $\nu^x \mathbf{t}'_{(\nu,F)}(x,y,m) \leq 2^{-m+1}$ and if $\nu^x \mathbf{t}_{(\nu,F)}(x,y) \leq 2^{-m}$ then $\mathbf{t}'_{(\nu,F)}(x,y,m) = \mathbf{t}_{(\nu,F)}(x,y)$. The function $2^{m-1}\mathbf{t}'_{(\nu,F)}(x,y,m)$ is a test conditioned on y,m so it has $\stackrel{*}{<} \mathbf{t}_{\nu}(x|y,m)$. Substituting F(y) for m, we have that $\nu^x \mathbf{t}_{(\nu,F)} \leq 2^{-m}$ and so

$$\mathbf{t}_{(\nu,F)}(x,y) = \mathbf{t}'_{(\nu,F)}(x,y,F_{\nu}(y)) \stackrel{*}{<} 2^{-F(y)+1} \mathbf{t}_{\nu}(x|y,F(y)).$$

The following Theorem is a specific case of Theorem 4.5.2 in [G01], to the Cantor space and with O(1) complexities for the probabilities.

Theorem 1 Relativized to computable probabilities μ and ν over $\{0,1\}^{\infty}$,

$$\mathbf{D}(x,y|\mu,\nu) =^+ \mathbf{D}(x|\mu) + \mathbf{D}(y|\nu,(x,\lceil \mathbf{D}(x|\mu)\rceil)).$$

Proof. We first prove the $<^+$ inequality. Let $G(x, y, m) = \min_{i \geq m} i - \mathbf{D}(y|\nu, (x, i))$, which is upper computable and increasing in m. So the function

$$G(x, y) = G(x, y, \lceil -\mathbf{D}(x|\mu) \rceil).$$

which is also upper computable because m is replaced with an upper computable function $\lceil -\mathbf{D}(x|\mu) \rceil$. Proposition 3 implies

$$G(x, y, m) = {}^{+} m - \mathbf{D}(y|\nu, (x, m)),$$

$$G(x, y) = {}^{+} - \mathbf{D}(x|\mu) - \mathbf{D}(y|\nu, (x, \lceil -\mathbf{D}_{\mu}(x|\nu) \rceil)).$$

So

$$\nu^{y} 2^{-m + \mathbf{D}(y|\nu,(x,m))} \le 2^{-m}$$

$$\nu^{y} 2^{-G(x,y)} \stackrel{*}{<} 2^{\mathbf{D}(x|\mu)}.$$

Integrating over x gives $\mu^x \nu^y 2^{-G(x,y)} \stackrel{*}{<} 1$, implying $-\mathbf{D}(x,y|\mu,\nu) <^+ G(x,y)$.

To prove the >+ inequality, let $f(x,y) = 2^{\mathbf{D}(x,y|\mu,\nu)}$. Proposition 2 implies there exists $c \in \mathbb{N}$ with $\nu^y f(x,y) \leq 2^{\mathbf{D}(x|\mu)+c}$. Let $F(x,\mu) = \lceil -\mathbf{D}(x|\mu) \rceil$. Note that if h is a lower computable function such that $\nu^y h(x,y) \stackrel{*}{<} 2^{\mathbf{D}(x|\mu)}$, then $\mu^x \nu^y h(x,y) \stackrel{*}{<} \mu^x \mathbf{t}_{\mu}(x) \stackrel{*}{<} 1$, so $h \stackrel{*}{<} f$, so f is a universal F-test. Proposition 5 (swapping x and y) gives

$$-\mathbf{D}(x, y | \mu, \nu) = -\log f(x, y) >^{+} F(x) - \mathbf{D}(y | \nu, (x, F(x))).$$

References

[GÓ1] P. Gács. Quantum Algorithmic Entropy. Journal of Physics A Mathematical General, 34(35), 2001.