t-Stochastic Neighbor Embedding

Complete 80-Slide Presentation

Prof.Asc. Endri Raco

Polytechnic University of Tirane

October 2025

What is Dimensionality Reduction?

Definition

Transforming high-dimensional data into lower-dimensional representations while preserving meaningful structure

Why We Need It:

- Visualization: Human perception limited to 3D
- Curse of dimensionality: Distance becomes meaningless in high-D
- Computational efficiency: Reduce processing requirements
- Feature extraction: Identify essential patterns

The Central Challenge:

How do we decide what to preserve when we must lose information?

Traditional answer: Preserve distances

t-SNE answer: Preserve neighborhoods

The Fundamental Challenge of Dimensionality Reduction

784 DimensionsMNIST digit

2 Dimensions
Your screen

The Crowding Problem: Why Linear Methods Fail

Definition

Crowding Problem: The geometric impossibility of preserving moderate-range distances when projecting from high to low dimensions, causing distinct distance scales to collapse.

High-D Space (10D)

After Linear Projection to 2D

Ratio: 1: 1.1: 1.2

The Paradigm Shift: From Geometry to Information

Traditional Methods

Preserve distances or variance

t-SNE

The Paradigm Shift: Concrete Example

Traditional: Preserve Distances

Problem: All distances treated equally

No context about local density

t-SNE: Preserve Probabilities

Solution: Likelihood encodes context Adapts to local density automatically

Key Insight: Same distance \rightarrow different probabilities based on neighborhood density

Building Intuition: From Distances to Neighborhoods

The Problem with Raw Distances:

- Point A: 1 unit from B, 10 units from C
- But what if A is in dense region?
- And C is in sparse region?
- Raw distance loses context!

The Solution - Relative Similarity:

- Convert distances to probabilities
- "How likely is B to be A's neighbor?"
- Adapt to local density automatically
- Use Gaussian decay (smooth, differentiable)

Key Idea: Each point gets its own "neighborhood size" (σ_i) based on local density

From Distances to Probabilities

Key Transformation:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Insight: σ_i adapts to local density automatic

Why Gaussian? The Natural Choice for Neighborhoods

What We're Building

Our Goal:

- Convert distances to probabilities
- "How likely is j to be i's neighbor?"
- Must adapt to local density

Three Key Requirements:

- Smooth decay no sudden cutoffs
- 2 Local focus neighbors matter most
- Unbiased don't assume patterns

The Winner: Gaussian $p_{i|i} \propto e^{-d_{ij}^2/2\sigma_i^2}$

Visual Comparison

Analogy: Friendship strength strongest nearby, fading smoothly

The Mathematics Behind Gaussian: Maximum Entropy Principle

The Core Principle

The Question:

Which distribution makes the *fewest assumptions* while matching our constraints?

Answer: Maximum Entropy

The distribution with highest uncertainty (entropy) given the constraints

Why This Matters:

- Most "honest" no hidden bias
- Adds no assumptions
- Principled approach

Entropy Comparison

Gaussian = Maximum Entropy

 ${\sf Most\ uncertain} = {\sf Least\ biased}$

The Mathematical Derivation: Problem Setup

Optimization Problem

Maximize Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Subject to Constraints:

- **1** Normalization: $\sum_{i} p_{j|i} = 1$
- **2** Fixed Variance: $\sum_{j} p_{j|i} d_{ij}^2 = \sigma_i^2$

The goal is to find the most unbiased probability distribution $(p_{j|i})$ that meets our constraints.

The Mathematical Derivation: Solution

Solution via Lagrange Multipliers

1. The Lagrangian:

$$\mathcal{L} = \mathcal{H}(P_i) + \lambda \left(\sum p_{j|i} - 1 \right) \ + \mu \left(\sum p_{j|i} d_{ij}^2 - \sigma_i^2 \right)$$

- 2. Taking derivatives and solving for $\frac{\partial \mathcal{L}}{\partial p_{\text{BH}}} = 0$ yields the result.
- 3. Result (The Gaussian Distribution):

$$p_{j|i} = rac{e^{-rac{d_{ij}^2}{2\sigma_i^2}}}{\sum_k e^{-rac{d_{ik}^2}{2\sigma_i^2}}}$$

Perplexity: Setting the Neighborhood Size

The Problem We're Solving

Question: How many neighbors should each point consider?

Challenge: Different regions have different densities!

- ullet Dense areas: Small σ needed
- ullet Sparse areas: Large σ needed

Solution: Perplexity - a user parameter that sets "effective" number of neighbors

Adaptive Neighborhoods

Dense: $\sigma = 0.1$ Sparse: $\sigma = 0.5$

Both have same perplexity = 5 Different σ values!

Key Insight: Perplexity is constant across all points, but σ_i adapts to achieve it

Perplexity: The Mathematics and Algorithm

Mathematical Definition

From Shannon Entropy:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Perplexity:

$$Perp(P_i) = 2^{H(P_i)}$$

Interpretation:

- ullet Perp = 5 ightarrow "acts like" 5 neighbors
- Perp = $30 \rightarrow$ "acts like" 30 neighbors

Finding σ_i : Binary Search

Why Binary Search?

Perplexity increases with σ monotonically

Algorithm:

- **1** Start with $\sigma = 1$
- 2 Compute current perplexity
- **3** Too high? \rightarrow Decrease σ

Measuring Information Loss: KL Divergence

What is KL Divergence?

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log rac{p_{j}}{q_{j}}$$

Extra bits needed when using Q instead of true P

Critical Asymmetry Example

Consider point B with true probability 0.3:

Missing a true neighbor:

True: p = 0.3, Embedded: q = 0.01Penalty: $0.3 \times \log(30) \approx 1.02$ bits

Creating a false neighbor:

True: p=0.01, Embedded: q=0.3Penalty: $0.01 \times \log(0.033) \approx$ **-0.035 bits**

Visual Example

Original SNE: The Precursor to t-SNE

A Brief History of Dimension Reduction

SNE's Innovation SNE's Fatal Flaw • First to use probabilities • Used Gaussian in low-D space • Adaptive neighborhoods (σ_i) • Cannot represent moderate distances • Information-theoretic approach • Led to "crowding problem" • KL divergence for optimization • All points collapse together Prof.Asc. Endri Raco (Polytechnic University of Tirane) t-Stochastic Neighbor Embedding

SNE's Mathematics: Where It Went Wrong

The Formulation

• **High-D Similarity** (P):
Gaussian with adaptive variance σ_i

$$p_{j|i} = rac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_k \exp(-d_{ik}^2/2\sigma_i^2)}$$

Low-D Similarity (Q):
 Gaussian with fixed variance

$$q_{j|i} = \frac{\exp(-d_{ij}^2)}{\sum_k \exp(-d_{ik}^2)}$$

• Cost Function: $C = \sum_i \mathrm{KL}(P_i||Q_i)$

Why Gaussian Fails in 2D

Problem: Moderate distances in high-D get exponentially tiny similarities in low-D, causing crowding.

The Curse: Why High-D Breaks Our Intuition

The Volume Problem

Question: In a D-dimensional sphere, what fraction of volume is in the outer shell (radius 0.9 to 1.0)?

Your intuition (2D):

$$\frac{\pi \cdot 1^2 - \pi \cdot 0.9^2}{\pi \cdot 1^2} = 19\%$$

Reality in high-D:

• 5D: 41%

• 10D: 65%

• 50D: 99.5%

• 100D: 99.997%

Volume Distribution by Dimension

18 / 31

SNE's Fatal Flaw Visualized

High-D: Room for all

Distinct distances

2D with Gaussian: Crushed!

Cannot represent moderate distances

Solution: Use distribution with heavier tails!

The t-SNE Innovation: Student-t Distribution

The Key Change

SNE (Gaussian in 2D):

$$q_{ij} = \frac{e^{-d_{ij}^2}}{\sum_{k \neq I} e^{-d_{kl}^2}}$$

t-SNE (Student-t in 2D):

$$q_{ij} = rac{(1+d_{ij}^2)^{-1}}{\sum_{k
eq l} (1+d_{kl}^2)^{-1}}$$

Mathematical Properties:

Prof.Asc. Endri Raco (Polytechnic University of Tirane)

- Polynomial decay: $O(d^{-2})$ vs exponential
- Heavy tails preserve moderate distances
- Cauchy distribution (df = 1)

Decay Comparison

Quantifying the Solution

Similarity Ratio Analysis

For distances $d_1 = 1$ and $d_2 = 3$:

Gaussian:

$$\frac{q(d_1)}{q(d_2)} = \frac{e^{-1}}{e^{-9}} = e^8 \approx 2981$$

Moderate distance becomes "infinite"

Student-t:

$$\frac{q(d_1)}{q(d_2)} = \frac{1/(1+1)}{1/(1+9)} = 5$$

Moderate distance preserved

600× difference in representation capacity!

From SNE to t-SNE: Three Critical Changes

The Evolution

Modification 1: Symmetrization

SNE: Asymmetric $p_{i|i} \neq p_{i|i}$ **t-SNE:** Symmetric $p_{ii} = p_{ii} = \frac{p_{j|i} + p_{i|j}}{2p}$

- Simplifies gradient (one term instead of two)
- Ensures outliers get fair representation
- More elegant optimization

Modification 2: Student-t in Low-D

SNE:
$$q_{ij} = \frac{\exp(-d_{ij}^2)}{\sum_{k \neq l} \exp(-d_{kl}^2)}$$
 (Gaussian)
t-SNE: $q_{ij} = \frac{(1+d_{ij}^2)^{-1}}{\sum_{k \neq l} (1+d_{kl}^2)^{-1}}$ (Student-t)

t-SNE:
$$q_{ij} = \frac{(1+d_{ij}^2)^{-1}}{\sum_{i} (1+d_{i}^2)^{-1}}$$
 (Student-t)

Whv?

The Complete t-SNE Algorithm

$\mathsf{Input} \to \mathsf{Probabilities}$

1. Compute pairwise affinities:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_k \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

2. Symmetrize:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

3. Early exaggeration:

$$p_{ij} \leftarrow 4 \cdot p_{ij}$$
 (first 250 iter)

Optimization

4. Initialize: $y_i \sim \mathcal{N}(0, 10^{-4})$

5. Compute low-D similarities:

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

6. Update via gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + d_{ij}^2)^{-1}$$

7. Iterate until convergence

Result: An elegant algorithm that preserves local structure while solving crowding

Understanding the Gradient: Force Interpretation

$$\nabla C = 4 \sum_{j} \underbrace{(p_{ij} - q_{ij})}_{\text{error}} \underbrace{(y_i - y_j)}_{\text{direction}} \underbrace{(1 + d_{ij}^2)^{-1}}_{\text{adaptive weight}}$$

Insight: Weight term prevents distant clusters from merging

Optimization Trick 1: Early Exaggeration

The Technique

What: Multiply *P* by 4 for first 250 iterations

$$p_{ij}^{\mathsf{early}} = 4 \cdot p_{ij}$$

Effect on forces:

- True neighbors pull 4× harder
- Clusters form quickly
- Global structure emerges first

Visual Effect

Random start

After 250 iter

Strong initial forces prevent poor local arrangements

Optimization Trick 2: Momentum

The Technique

Update equation:

$$\Delta y_i^{(t)} = -\eta \nabla_i + \alpha(t) \Delta y_i^{(t-1)}$$

Schedule:

$$\alpha(t) = \begin{cases} 0.5 & t < 250 \\ 0.8 & t \ge 250 \end{cases}$$

Benefits:

- Escapes local minima
- Smooths optimization
- Reduces oscillations

Effect on Optimization

Analogy: Ball rolling downhill - momentum carries it over bumps

Optimization Trick 3: Adaptive Learning Rate

The Technique

Adaptation rule:

- Same direction: $\eta \times 1.2$
- Direction change: $\eta \times 0.8$
- Min: $\eta_{\min} = 0.01$
- Max: $\eta_{\text{max}} = 1000$

Benefits:

- Fast in flat regions
- Careful near minima
- Automatic adjustment

Learning Rate Evolution

Combined: $5 \times$ speedup ($5000 \rightarrow 1000$ iterations)

Barnes-Hut: Scaling to Large Datasets

The Algorithm

Key Idea: Treat distant clusters as single points

Steps:

- Build quadtree (2D) or octree (3D)
- For each point, traverse tree
- **3** Apply criterion: $\frac{r_{\rm cell}}{d_{\rm to~cell}} < \theta$
- If satisfied, use center of mass

Parameter: $\theta \in [0.5, 0.8]$

(higher = faster but less accurate)

Tree Approximation

Points	Exact	Barnes-Hut
1,000	1 sec	0.1 sec
10,000	100 sec	2 sec
100,000	10,000 sec	50 sec

Debugging t-SNE: Visual Diagnosis Guide

Common Problems and Their Fixes

Golden Rule: Run multiple times with different seeds. Trust what's consistent.

Perplexity: Your Main Control Parameter

How to Choose?

Rule of thumb: Perp = $\sqrt{N}/10$ to $\sqrt{N}/2$

(N = number of points)

Examples:

- 1,000 points: 5-15
- 10,000 points: 20-50
- 100,000 points: 50-150

Strategy:

- 1 Try 3 values (low, mid, high)
- 2 Look for consistency
 - Trust stable structures

Critical: What You CANNOT Interpret

The Three Deadly Sins of t-SNE

Remember: Only local neighborhoods are meaningful. Everything else is artifact.