ЛЕКЦІЯ 14 2. ОСНОВНІ РОЗПОДІЛИ

2.1. Розподіл χ^2

<u>Означення 8.</u> Нехай $x_1, x_2, ..., x_n$ - незалежні нормально розподілені ВВ з параметрами (0;1). Тоді ВВ $\chi_n^2 = \sum_{i=1}^n x_i^2$ має розподіл χ^2 з n степенями свободи,

що позначається як $\chi^2(n)$.

Щільність ймовірності:

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, x \ge 0 \\ 0, x < 0 \end{cases}, \qquad \text{де } \Gamma(m) = \int_{0}^{+\infty} y^{m-1} e^{-y} dy - \text{гамма-функція.}$$

Числові характеристики.

$$m(\chi^{2}) = n$$

$$D(\chi^{2}) = 2n$$

$$A_{s} = \frac{2^{\frac{3}{2}}}{\sqrt{n}}$$

$$E_{k} = \frac{12}{n}$$

Застосовується: при побудові довірчих інтервалів і перевірці статистичних гіпотез.

2.2. Розподіл Стьюдента

<u>Означення 9.</u> Нехай ξ і ${\chi_n}^2$ – незалежні випадкові величини, причому ${\chi_n}^2 \sim {\chi}^2(n)$.

Тоді ВВ $t_n = \frac{\xi}{\sqrt{\frac{n}{\chi_n^2}}}$ має розподіл Стьюдента (t—розподіл) з n ступенями свободи, що

позначається як $t_n \sim S(n)$.

Щільність ймовірності:

$$f(x) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{\frac{n+1}{2}}$$

Зауваження 6. Можна показати, що при $n \to \infty$ щільність ймовірності ВВ $t_n \approx S(n)$ збігається до щільності стандартного нормального розподілу N(0;1), тобто

$$f_{t_n}(x) \rightarrow \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad n \rightarrow +\infty$$

При n > 30 розподіл Стьюдента практично не відрізняється від N(0;1) $m(t_n) = 0$

$$D(t_n) = \frac{n}{n-2}, (n > 2)$$

$$A_S = 0$$

$$E_K = \frac{6}{n \cdot 4}$$

Застосовується: При побудові довірчих інтервалів і перевірці статистичних гіпотез.

2.3. Розподіл Фішера

Означення 10. Нехай χ_n^2 і χ_m^2 має розподіл χ^2 з n та m ступенями свободи відповідно. Тоді ВВ $F_{n,m} = \frac{\chi_n^2}{\chi_m^2} \cdot \frac{m}{n}$ має розподіл Фішера (F-розподіл) з n та m ступенями свободи, що записується як $F_{n,m} \sim F(n,m)$. Щільність ймовірності.

$$f(x) = \begin{cases} \frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} n^{\frac{n}{2}} m^{\frac{m}{2}} \frac{x^{\frac{n}{2}-1}}{x^{\frac{n+m}{2}}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Числові характеристики:

$$m(F) = \frac{m}{m-2}, (m > 2)$$

$$D(F) = \frac{2m^{2}(n+m-2)}{n(m-2)^{2}(m-4)}$$

$$A_{s} = \frac{(2n+m-2)\sqrt{8(m-4)}}{(m-6)\sqrt{n+m-2}}, (m > 6)$$

3.2. СТАТИСТИЧНІ ОШНКИ ПАРАМЕТРІВ РОЗПОЛІЛУ

3.2.1. Точкові оцінки параметрів та їх властивості

По обмеженому статистичному матеріалу вибірки досить складно знайти невідомий закон розподілу досліджуваної ознаки генеральної сукупності, яка ототожнюється з випадковою величиною X. Проте з цього обмеженого матеріалу можна одержати досить важливі відомості про випадкову величину, зокрема, оцінити принаймні наближено її числові характеристики — математичне сподівання, дисперсію. Крім того, якщо вид закону розподілу хоча б припустимо відомий, то за вибіркою можна оцінити його параметри, зокрема, a і σ для нормального закону, λ для розподілу Пуассона тощо.

3 цією метою застосовуються точкові статистичні оцінки.

Нехай X — випадкова ознака генеральної сукупності з функцією розподілу $F(x,\Theta)$, де Θ — параметр розподілу, числове значення якого невідоме. Припустимо, що з генеральної сукупності зроблена вибірка об'єму n і за цією вибіркою знайдена статистична оцінка Θ^* параметра Θ . Природно припустити, що ця оцінка залежить від вибірки, тобто, якщо зроблено k різних вибірок об'єму n, то буде одержано k статистичних оцінок $\Theta_1^*, \Theta_2^*, ..., \Theta_k^*$ параметра Θ , які в загальному випадку відрізняються одна від одної. Таким чином, статистична оцінка Θ^*

невідомого параметра Θ є величиною випадковою і являється функцією від вибірки $x_1, x_2, ..., x_n$.

Оцінки, які в кожній вибірці визначаються одним певним числом, називаються *точковими* і характеризуються трьома властивостями: незміщеністю, ефективністю і спроможністю.

<u>Означення 3.5.</u> Точкова оцінка Θ^* параметра Θ називається *незміщеною*, якщо її математичне сподівання дорівнює оцінюваному параметру:

$$M(\Theta^*) = \Theta. \tag{3.8}$$

В протилежному випадку оцінка Θ^* називається зміщеною. Наприклад, вимірювання фізичної величини приладом, у якого не виставлене нульове значення, дає зміщену оцінку Θ^* справжнього значення Θ цієї величини.

Проте виконання умови (3.8) не дає підстав вважати незміщену оцінку достатньо точним наближенням параметра Θ . Якщо можливі значення Θ^* істотно розсіяні навколо свого середнього значення $M(\Theta^*)$, тобто мають велику дисперсію $D(\Theta^*)$, то знайдена за однією вибіркою оцінка Θ^* може суттєво відрізнятися від оцінюваного параметра Θ . Тому важливу роль відіграє друга властивість точкової оцінки — її ефективність.

<u>Означення 3.6.</u> Точкова оцінка Θ^* параметра Θ називається *ефективною*, якщо дисперсія $D(\Theta^*)$ мінімальна при заданому обсязі вибірки.

Наприклад, ефективність вимірювання фізичної величини приладом буде тим вищою, чим менша вказана в технічному паспорті приладу допустима похибка вимірювань.

Означення 3.7. Точкова оцінка Θ^* параметра Θ називається *спроможною*, якщо при зростанні об'єму вибірки n вона прямує за ймовірністю до оцінюваного параметра:

$$\lim_{n\to\infty} P\left\{\left|\Theta-\Theta^*\right|<\epsilon\right\}=1\quad\text{при довільному }\epsilon>0.$$

Наприклад, частота появи події в схемі Бернуллі є спроможною оцінкою ймовірності p появи події в кожному випробуванні, що випливає з теореми Бернуллі (п.2.6.3).

3.2.2. Точкові оцінки математичного сподівання і дисперсії

Якщо для дослідження ознаки X генеральної сукупності проведена вибірка об'єму n і за нею складені дискретний і інтервальний статистичний розподіли, то за оцінку математичного сподівання M(X) ознаки X приймається середнє арифметичне \overline{x}_B варіант вибірки

$$\overline{x}_{B} = \frac{1}{n} \sum_{i=1}^{k} x_{i} n_{i} , \qquad (3.9)$$

де x_i — варіанти в дискретному розподілі або центри інтервалів в інтервальному розподілі, n_i — відповідні частоти.

Число \overline{x}_B називається емпіричним або вибірковим математичним сподіванням або вибірковою середньою $M(X) \approx \overline{x}_B$. Ця оцінка є незміщеною, спроможною і ефективною.

По аналогії з математичним сподіванням за точкову оцінку для дисперсії D(X) випадкової ознаки X природно прийняти величину

$$D_B = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_B)^2 n_i.$$
 (3.18)

яка називається вибірковою або емпіричною дисперсією.

Проте вибіркова дисперсія D_B є зміщеною оцінкою для D(X), тобто для неї $M(D_B) \neq D(X)$.

Для виконання умови незміщеності (3.8) за оцінку для дисперсії D(X) обирається величина, яка позначається s^2 :

$$s^{2} = \frac{n}{n-1}D_{B} = \frac{1}{n-1}\sum_{i=1}^{k}(x_{i} - \overline{x}_{B})^{2}n_{i}, \qquad (3.23)$$

і називається виправленою вибірковою дисперсією.

Оцінки $D_{\scriptscriptstyle B}$ і s^2 є спроможними та ефективними для дисперсії D(X).

За точкову оцінку середнього квадратичного відхилення $\sigma(X)$ приймають вибіркове середнє квадратичне відхилення $\sigma_B = \sqrt{D_B}$ або виправлене вибіркове середнє квадратичне відхилення $s = \sqrt{s^2}$.

3.2.3. Поняття інтервальної оцінки. Довірча ймовірність та довірчий інтервал

Використання точкових оцінок параметрів розподілу має два недоліки:

- при малому об'ємі вибірки точкова оцінка може дати велику похибку;
- імовірність того, що випадкова величина (в даному випадку оцінка Θ^*) прийме значення, точно рівне оцінюваному параметру Θ , для дискретних випадкових величин мала, а для неперервних взагалі рівна нулю.

Тому для оцінки параметра Θ застосовується деякий інтервал $(\Theta^* - \delta; \, \Theta^* + \delta)$, який з досить великою ймовірністю γ покриває цей параметр, тобто

$$P\{\Theta^* - \delta < \Theta < \Theta^* + \delta\} = P\{|\Theta - \Theta^*| < \delta\} = \gamma.$$

Такий інтервал називається довірчим інтервалом для параметра Θ , а число γ — довірчою ймовірністю або надійністю знайденої оцінки. Надійність γ обирається, як правило, рівною 0,95, 0,99 або 0,999. При таких значеннях γ покривання параметра Θ довірчим інтервалом є практично достовірною подією. Величина δ визначає точність оцінки.

Як частинні приклади розглянемо побудову довірчого інтервалу для невідомого параметра a випадкової ознаки X, яка в генеральній сукупності має нормальний розподіл з відомим або невідомим параметром σ .

3.2.4. Довірчий інтервал для математичного сподівання a нормально розподіленої ознаки X при відомому σ

Оцінкою математичного сподівання a є вибіркова середня \overline{x}_B , тому за довірчий інтервал для a вибирається інтервал ($\overline{x}_B - \delta$; $\overline{x}_B + \delta$), для якого виконується умова

$$P\{\overline{x}_{B} - \delta < a < \overline{x}_{B} + \delta\} = P\{|\overline{x}_{B} - a| < \delta\} = \gamma. \tag{3.24}$$

Для визначення δ розглянемо наступну теорему.

Теорема 3.1. Якщо випадкова величина X підпорядкована нормальному закону розподілу з параметрами a і σ , а $x_1, x_2, ..., x_n$ — ряд незалежних спостережень над

величиною X, кожне з яких має ті ж числові характеристики, що і X, тобто $M(x_i) = a, \ D(x_i) = \sigma^2$, то вибіркова середня \overline{x}_B також має нормальний розподіл з параметрами a і σ/\sqrt{n} .

Для нормально розподіленої вибіркової середньої \overline{x}_B з урахуванням $\sigma(\overline{x}_B) = \sigma/\sqrt{n}$ одержимо

$$P\{|\overline{x}_B - a| < \delta\} = 2\Phi\left(\frac{\sqrt{n\delta}}{\sigma}\right),\tag{3.26}$$

а з порівняння формул (3.24) і (3.26) маємо

$$2\Phi\left(\frac{\sqrt{n}\delta}{\sigma}\right) = \gamma$$
.

Позначимо $\frac{\sqrt{n\delta}}{\sigma} = t$, тоді $2\Phi(t) = \gamma$.

Задаючи значення надійності γ , за таблицею для функції $\Phi(x)$ (додаток 2) знайдемо відповідне значення t, а з формули

$$\delta = \frac{\sigma t}{\sqrt{n}}. (3.28)$$

— значення δ.

Формула (3.24) набуває вигляду

$$P\{\overline{x}_B - \frac{\sigma t}{\sqrt{n}} < a < \overline{x}_B + \frac{\sigma t}{\sqrt{n}}\} = \gamma \tag{3.29}$$

і задає довірчий інтервал, який з заданою надійністю γ покриває невідомий параметр a нормально розподіленої ознаки X генеральної сукупності.

3.2.5. Довірчий інтервал для математичного сподівання нормально розподіленої ознаки при невідомому о

Нехай ознака X генеральної сукупності має нормальний розподіл з невідомими параметрами a і σ , і з генеральної сукупності зроблена вибірка об'єму n і обчислені вибіркова середня \overline{x}_B і виправлена вибіркова дисперсія s^2 , які є випадковими величинами.

Для побудови довірчого інтервалу, який з заданою надійністю γ покриває невідоме математичне сподівання a ознаки X, в цьому випадку розглядається випадкова величина

$$t = \frac{\overline{x}_B - a}{s / \sqrt{n}},$$

яка має розподіл Стьюдента з (n-1) степенями свободи.

За заданою довірчою ймовірністю γ і об'ємом вибірки n по таблиці (додаток 4), складеній за таблицею розподілу Стьюдента, знаходиться значення t_{γ} , для якого виконується умова

$$P\left\{\left|\frac{\overline{x}_{B}-a}{s/\sqrt{n}}\right| < t_{\gamma}\right\} = \gamma$$
або
$$P\left\{\overline{x}_{B}-t_{\gamma}\frac{s}{\sqrt{n}} < a < \overline{x}_{B}+t_{\gamma}\frac{s}{\sqrt{n}}\right\} = \gamma. \tag{3.30}$$

Одержана умова визначає довірчий інтервал, який з заданою надійністю γ покриває невідоме математичне сподівання a ознаки X генеральної сукупності.

3.2.6. Довірчий інтервал для дисперсії σ^2 нормально розподіленої ознаки

Якщо ознака X генеральної сукупності має нормальний розподіл з невідомою дисперсією σ^2 і сформована вибірка $x_1, x_2, ..., x_n$ об'єму n, де варіанти x_i мають той же розподіл, що і X, то для побудови довірчого інтервалу для σ^2 розглядається випадкова величина

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2},\tag{3.31}$$

яка має **розподіл хі-квадрат** з n-1 степенями свободи.

Для заданої великої надійності γ вибираються такі два значення χ_1^2 і χ_2^2 , щоб виконувалась умова

$$P\left\{\chi_{1}^{2} < \frac{(n-1)s^{2}}{\sigma^{2}} < \chi_{2}^{2}\right\} = \gamma$$

або для оцінки σ^2 – відповідно умова

$$P\left\{\frac{(n-1)s^2}{\chi_2^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_1^2}\right\} = \gamma. \tag{3.32}$$

Значення χ_1^2 і χ_2^2 вибираються, як правило, такими, що задовольняють умовам

$$P\{\chi^2 < \chi_1^2\} = P\{\chi^2 > \chi_2^2\} = \frac{1 - \gamma}{2}, \qquad (3.33)$$

тобто, щоб імовірність виходу випадкової величини (3.31) за межі інтервалу $(\chi_1^2;\chi_2^2)$ була незначною, оскільки надійність у вибирається близькою до одиниці. Якщо F(x) функція розподілу величини (3.31), то з умов (3.33) випливає

$$F(\chi_1^2) = P\{\chi^2 < \chi_1^2\} = \frac{1 - \gamma}{2},$$

$$F(\chi_2^2) = 1 - P\{\chi^2 > \chi_2^2\} = 1 - \frac{1 - \gamma}{2} = \frac{1 + \gamma}{2}.$$

Величини χ_1^2 і χ_2^2 вибираються з таблиці розподілу χ^2 (додаток 3) за відомими (n-1) степенями свободи і значеннями $\alpha_1 = \frac{1+\gamma}{2}$ і $\alpha_2 = \frac{1-\gamma}{2}$, а за формулою (3.32) знаходиться довірчий інтервал для дисперсії σ^2 :

$$\frac{(n-1)s^2}{\chi_2^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_1^2}$$

або для середнього квадратичного відхилення σ:

$$s\sqrt{\frac{(n-1)}{\chi_2^2}} < \sigma < s\sqrt{\frac{(n-1)}{\chi_1^2}}$$
 (3.34)

3.2.6. Методи точкового оцінювання

3.2.6.1. Метод моментів

Нехай $x_1, x_2, ..., x_n$ — вибірка з розподілу $F(x, \theta_1, \theta_2, ..., \theta_s)$. Необхідно одержати оцінки для невідомих параметрів $\theta_1, \theta_2, ..., \theta_s$. Першим загальним методом оцінки є метод моментів, запропоновані К. Пірсоном.

Суть методу полягає в прирівнюванні певної кількості вибіркових моментів \tilde{m}_k відповідним теоретичним моментам $m_k = \int_0^\infty x^k f(x, \theta_1, \theta_2, ..., \theta_5) dx$

Розглянемо кількість моментів, що дорівнює кількості невідомих параметрів та

одержимо систему рівнянь
$$\begin{cases} \widetilde{m}_1 = \int\limits_{-\infty}^{\infty} xf(x,\theta_1,\theta_2,...,\theta_n) dx \\ \widetilde{m}_2 = \int\limits_{-\infty}^{\infty} xf(x,\theta_1,\theta_2,...,\theta_n) dx \\ ... \\ \widetilde{m}_k = \int\limits_{-\infty}^{\infty} xf(x,\theta_1,\theta_2,...,\theta_n) dx \end{cases}$$

3.2.6.2. Метод максимальної правдоподібності

Метод запропонований Фішером:

<u>Дискретні ВВ.</u> Нехай $x_1, x_2, ..., x_n$ - вибірка з дискретної випадкової величини X із заданим законом розподілу $F(x, \theta)$. Необхідно оцінити невідомий параметр θ .

Позначимо через $p(x_i, \theta)$ ймовірність того, що в результаті випробування випадкова величина X набуде значення x_i .

<u>Означення 16.</u> Функцією правдоподібності дискретної випадкової величини X називається функція аргументу θ :

 $L(x_1;x_2;...;x_n;\theta)=p(x_1;\theta)p(x_2;\theta)...p(x_n;\theta)$, де $x_1,x_2,...,x_n$ - фіксовані числа.

Означення 17. Оцінка $\theta^* = \theta^*(x_1; x_2; ...; x_n)$ знайдену за умови максимуму функції правдоподібності, тобто $L(x_1; x_2; ...; x_n; \theta) \rightarrow$ тах називається оцінкою максимальної правдоподібності.

 Φ ункції L і $\ln L$ досягають максимуму при одному і тому ж значенні, тому зручніше шукати тах функції $\ln L$.

Означення 18. Логарифмічною функцією правдоподібності називається функція $\ln L = \ln p(x_1; \theta) + \ln p(x_2; \theta) + ... + \ln p(x_n; \theta)$

Етапи пошуку $\max \ln L$:

- 1.) Знаходимо $\frac{d \ln L}{d\Theta}$;
- 2.) Знаходимо критичну точку θ^* з розв'язку рівняння: $\frac{d \ln L}{d\theta} = 0$;
- 3.) Знаходимо $\frac{d^2 \ln L}{d\theta^2}$. Якщо $\frac{d^2 \ln L}{d\theta^2} < 0$ в точці θ^* , то θ^* точка \max .