

Abgabe: 10. November 2017

3. Übungsblatt zur Vorlesung Informatik III

Aufgabe 1: k-tes Symbol

2 Punkte

Betrachten Sie die folgende in k > 0 parametrisierte Sprache über $\Sigma = \{a, b\}$.

$$L_k = \{ w \in \Sigma^* \mid \text{das } k\text{-te Symbol in } w \text{ ist ein } a \}$$

Geben Sie einen DEA \mathcal{A}_k für ein beliebiges, gegebenes k an, der L_k akzeptiert. Stellen Sie \mathcal{A}_k als Struktur dar; ein Zustandsdiagramm genügt nicht.

Aufgabe 2: Minimale Anzahl der Zustände

3 Punkte

Aus der Vorlesung kennen Sie bereits die in n > 0 parametrisierte Sprache über $\Sigma = \{0, 1\}$

$$L_n = \{ w \in \Sigma^* \mid \text{das } n\text{-letzte Zeichen von } w \text{ ist eine } 1 \}.$$

Zeigen Sie, dass jeder DEA, der L_n akzeptiert, mindestens 2^n Zustände hat.

Aufgabe 3: Pumping Lemma I

2 Punkte

Das Pumping Lemma hat die Form einer Implikation $A \Rightarrow B$. Wir wenden es aber typischerweise in der umgekehrten (aber äquivalenten) Variante $\neg B \Rightarrow \neg A$ an.

Formulieren Sie das Pumping Lemma in der Form $\neg B \Rightarrow \neg A$, indem Sie in den Ausdrücken $\neg B$ und $\neg A$ die Negationen nach innen ziehen. Das heißt, dass keine Negation vor einem Quantor oder einem "und" bzw. "oder" stehen darf.

Hinweis: Eine kompakte Form des Pumping Lemmas:

L ist regulär \Rightarrow

$$(\exists n \in \mathbb{N}. \ n > 0 \land \forall z \in L. \ |z| \ge n \Rightarrow \exists u, v, w \in \Sigma^*. \ z = uvw \land |uv| \le n \land |v| \ge 1$$

 $\land \forall i \in \mathbb{N}. \ uv^i w \in L)$

Aufgabe 4: Pumping Lemma II

4 Punkte

Zeigen Sie mithilfe des Pumping Lemmas, dass die folgende Sprache über $\Sigma = \{a, b\}$ nicht regulär ist.

$$L = \{a^m b^n \mid m < n\}$$

Aufgabe 5: NEA

2 Punkte

Geben Sie einen NEA an, der die folgende Sprache über $\Sigma = \{a, b\}$ akzeptiert.

$$L = \{ w \in \Sigma^* \mid \exists u, v \in \Sigma^*. \ w = uabav \}$$

Hinweis: Ein NEA akzeptiert eine Sprache L, wenn gilt:

 $L = \{w \in \Sigma^* \mid \text{es gibt einen initialen, akzeptierenden Lauf über } w\}$