

Chương 5: Điều chế góc sóng mang liên tục

5.1 Điều chế FM & PM

- 5.1 Điều chế tần số (FM) và điều chế pha (PM)
- 5.2 Băng thông truyền FM/PM
- 5.3 Sơ đồ điều chế FM/PM
- 5.4 Giải điều chế FM/PM

- Thông số
- $f_{\Delta} << f_c$ $0 < \phi_{\Delta} \le 180^{\circ}$
- Biểu thức
- Dang sóng
- Công suất
- Phổ
- Băng thông

Th.S. Nguyễn Thanh Tuấn

Th.S. Nguyễn Thanh Tuấn

Điều chế góc

Biểu thức FM/PM

 $x_c(t) = A_c \cos(\omega_c t + \phi(t)) = A_c \cos\Theta_c(t) = A_c \operatorname{Re} \left[e^{j\Theta_c(t)}\right]$

- Góc tức thời: $\Theta_{c}(t)$
- Tần số tức thời: $f(t) = \frac{\dot{\Theta}_c(t)}{2\pi} = f_c + \frac{\dot{\phi}(t)}{2\pi}$
- Pha tức thời: $\phi(t)$

 $\dot{\phi}(t) = \frac{d\phi(t)}{dt}$

3

Instantaneous phase Instantaneous frequency

PM
$$\phi_{\Delta}x(t)$$
 $f_{c} + \frac{\phi_{\Delta}\dot{x}(t)}{2\pi}$

FM $2\pi f_{\Delta}\int_{t_{0}}^{t}x(\lambda)d\lambda$ $f_{c} + f_{\Delta}x(t)$

$$x_{c}(t) = A_{c} \cos(\omega_{c}t + \phi_{\Delta}x(t)) \quad x_{c}(t) = A_{c} \cos(\omega_{c}t + 2\pi f_{\Delta} \int_{t_{0}}^{t} x(\lambda)d\lambda)$$

$$S_{T} = \frac{A_{c}^{2}}{2}$$

Th.S. Nguyễn Thanh Tuấn

Th.S. Nguyễn Thanh Tuấn

2

Dạng sóng FM/PM

Ví dụ

Th.S. Nguyễn Thanh Tuấn

hiệu điều chế FM với hệ số f_{Λ} và sóng mang A_{c} . $cos(w_{c}.t)$

$$\rightarrow x_{FM}(t) =$$

2) Cho tín hiệu thông tin $x(t) = A_m \cdot \sin(w_m \cdot t)$, viết biểu thức tín hiệu điều chế PM với hệ số ϕ_{Λ} và sóng mang $A_c.\cos(w_c.t)$

1) Cho tín hiệu thông tin $x(t) = A_m \cdot \cos(w_m \cdot t)$, viết biểu thức tín

$$\rightarrow x_{PM}(t) =$$

Th.S. Nguyễn Thanh Tuấn

Phổ FM/PM đơn tần

$$x(t) = \begin{cases} A_m \sin \omega_m t & \text{PM} \\ A_m \cos \omega_m t & \text{FM} \end{cases}$$

$$\phi(t) = \beta \sin \omega_m t$$
, with $\beta = \begin{cases} \phi_{\Delta} A_m & \text{PM} \\ \frac{A_m}{f_m} f_{\Delta} & \text{FM} \end{cases}$

$$x_{c}(t) = A_{c}\cos(\omega_{c}t + \phi(t)) = x_{ci}(t)\cos\omega_{c}t - x_{cq}(t)\sin\omega_{c}t$$

$$= A_c \left\{ \underbrace{\cos(\beta \sin \omega_m t)}_{\downarrow} \cos \omega_c t - \underbrace{\sin(\beta \sin \omega_m t)}_{\downarrow} \sin \omega_c t \right\}$$

Periodic functions

5

Biểu thức (dạng có thế vẽ phố) của tín hiệu sau điều chế góc

$$\cos(\beta \sin \omega_m t) = J_0(\beta) + \sum_{n \text{ even}}^{\infty} 2 J_n(\beta) \cos n\omega_m t$$

$$\sin(\beta \sin \omega_m t) = \sum_{n \text{ odd}}^{\infty} 2 J_n(\beta) \sin n\omega_m t$$

$$x_c(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos(\omega_c + n\omega_m)t$$

 Kết quả trên không đổi cho phổ biên độ trong trường hợp thay đổi pha của sóng mang và tín hiệu thông tin (với điều kiện phố không trùng lặp).

Đồ thị hàm Bessel loại 1

Th.S. Nguyễn Thanh Tuấn

Bảng hàm Bessel loại 1 (sai số 1%)

n	$J_a(0.1)$	$J_{s}(0.2)$	$J_n(0.5)$	$J_n(1.0)$	$J_n(2.0)$	$J_n(5.0)$	$J_n(10)$	n
0	1.00	0.99	0.94	0.77	0.22	-0.18	-0.25	0
1	0.05	0.10	0.24	0.44	0.58	-0.33	0.04	1
2			0.03	0.11	0.35	0.05	0.25	2
3				0.02	0.13	0.36	0.06	3
4			,		0.03	0.39	-0.22	4
5						0.26	-0.23	5
6						0.13	-0.01	6
7						0.05	0.22	7
8						0.02	0.32	8
9							0.29	9
10			$1 \ell^{\pi}$	os(βsin			0.21	10
11	$J_n($	$(\beta) = \frac{1}{2}$	_ co	os(β sin	$(\lambda - n)^2$	l) dλ	0.12	. 11
12		2	$\pi J_{-\pi}$				0.06	12
13							0.03	13
14							0.01	14

Th.S. Nguyễn Thanh Tuấn

10

12

$$x_c(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos(\omega_c + n\omega_m) t \quad \text{Vi du 1}$$

Consider tone-modulated FM with $A_c = 100$, $A_m f_{\Delta} = 8$ kHz, and $f_m = 4$ kHz. Draw the line spectrum for $f_c = 30 \text{ kHz}$ and for $f_c = 11 \text{kHz}$.

$$\beta = 8 \text{ kHz}/4 \text{ kHz} = 2$$
 $f_c = 30 \text{ kHz}$
 $f_c = 11 \text{ kHz}$

Note "folded" terms at $\begin{vmatrix} 11 - 12 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 11 - 16 \end{vmatrix} = 5 \text{ kHz}$
 $\begin{vmatrix} 11 - 16 \end{vmatrix} = 5 \text{ kHz}$
 $\begin{vmatrix} 11 - 16 \end{vmatrix} = 5 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ kHz}$
 $\begin{vmatrix} 1 - 13 \end{vmatrix} = 1 \text{ k$

11

Phổ FM/PM đa tần

$$x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

$$\Rightarrow x_c(t) = A_c \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} J_n(\beta_1) J_m(\beta_2) \cos(\omega_c + n\omega_1 + m\omega_2) t$$

Th.S. Nguyễn Thanh Tuấn

5.2 Băng thông FM/PM

Băng thông theo tần số tức thời

- Khi A_m cố định và f_m cố định
 - Trường hợp β có trong bảng tra (sai số ε)

$$0.01 < \varepsilon < 0.1$$

$$J_M(\beta) \ge \varepsilon \quad J_{M+1}(\beta) \le \varepsilon$$

- Trường hợp β không có trong bảng tra → ước lượng $B = 2M(β) f_m$
 - Tiêu chuẩn Carson: $B = 2.(1 + \beta).f_m$
- Khi A_m thay đổi $[0 \div 1]$ và f_m thay đổi $[0 \div W] \rightarrow$ tính băng thông tối đa theo tiêu chuẩn Carson
 - FM (f_m = W và A_m = 1): B_{FM} = 2.(f_m + A_m . f_Δ) → B_{FMmax} = 2.(W + f_Δ) = 2.(1 + D).W với tỉ số di tần tối đa D = f_Δ /W
 - PM ($f_m = W \text{ và } A_m = 1$): $B_{PMmax} = 2.(1 + \phi_A).W$

- Độ di tần (Δf): phạm vi thay đổi tần số tức thời quanh tần số sóng mang (thường đối xứng)
- Băng thông theo tần số tức thời = $2 \times \Delta f$

Th.S. Nguyễn Thanh Tuấn

13

Th.S. Nguyễn Thanh Tuấn

14

16

Các thuật ngữ FM đơn tần

Ví dụ 2

Carrier signal $A_c \cos(\omega_c t)$ Carrier frequency $\omega_c = 2\pi f_c$

Modulating wave m(t) $A_{m}\cos(\omega_{m}t)$ A single tone frequency

 $\omega_m = 2\pi f_m$ (radians/sec) Modulating frequency

Deviation sensitivity k_f (f_A) Deviation

 $\Delta f = k_f A_m$

Modulation Index

Instantaneous frequency $f_i = f_C + k_f A_m \cos(\omega_m t) = f_C + \Delta f \cos(\omega_m t)$

 $\varphi_{FM}(t) = A_C \left| \cos \left(\omega_C t + k_f \left(\int_{-\infty}^{t} m(\alpha) d\alpha \right) \right) \right|$, generally

 $\varphi_{\text{FM}}(t) = A_{\text{C}} \left[\cos \left(\omega_{\text{C}} t + \frac{k_f A_m}{f_{-}} \sin(\omega_m t) \right) \right]$ Modulated wave $\varphi_{\text{EM}}(t) = A_{c} \left[\cos(\omega_{c}t + \beta \sin(\omega_{m}t)) \right]$

 $\varphi_{FM}(t) = 10 \left[\cos \left(2\pi (10^6)t + 8\sin(2\pi (10^3)t) \right) \right]$

Determine

- a) the carrier frequency f.
- the modulation index β
- the peak frequency deviation Δf
- d) the bandwidth of $\varphi_{FM}(t)$

Th.S. Nguyễn Thanh Tuấn 15 Th.S. Nguyễn Thanh Tuấn

Phổ FM/PM đơn tần

Băng hẹp FM/PM

 $x(t) = \begin{cases} A_m \sin \omega_m t & \text{PM} \\ A_m \cos \omega_m t & \text{FM} \end{cases}$

$$\phi(t) = \beta \sin \omega_m t, \quad with \quad \beta = \begin{cases} \phi_{\Delta} A_m & \text{PM} \\ \frac{A_m}{f_m} f_{\Delta} & \text{FM} \end{cases}$$

$$x_{c}(t) = A_{c} \cos(\omega_{c}t + \phi(t)) = x_{ci}(t) \cos(\omega_{c}t - x_{cq}(t)) \sin(\omega_{c}t)$$

$$= A_{c} \left\{ \underbrace{\cos(\beta \sin(\omega_{m}t))}_{\downarrow} \cos(\omega_{c}t - \underbrace{\sin(\beta \sin(\omega_{m}t))}_{\downarrow}) \sin(\omega_{c}t) \right\}$$

Periodic functions

Th.S. Nguyễn Thanh Tuấn

17

• Narrow band: $\beta \ll 1$ and thus (from Taylor expansion):

$$x_{ci}(t) \cong A_c \qquad x_c(t) \cong A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

$$x_{cq}(t) \cong A_c \phi(t) \qquad = A_c \cos \omega_c t - \frac{A_c \beta}{2} \cos(\omega_c - \omega_m) t + \frac{A_c \beta}{2} \cos(\omega_c + \omega_m) t$$

Th.S. Nguyễn Thanh Tuấn

18

20

5.3 Sơ đồ điều chế

• Điều chế trực tiếp/ gián tiếp

• Điều chế băng hẹp/ băng rộng

Điều chế NBPM (độ nhạy pha nhỏ)

$$x_c(t) \approx A_c \cos \omega_c t - A_c \phi_{\Delta} x(t) \sin \omega_c t$$

Th.S. Nguyễn Thanh Tuấn 19 Th.S. Nguyễn Thanh Tuấn

Điều chế WBFM (gián tiếp)

$$f_{1}(t) = f_{c_{1}} + \frac{\phi_{\Delta}}{2\pi T}x(t)$$

$$f_{2}(t) = nf_{1}(t) = nf_{c_{1}} + n\frac{\phi_{\Delta}}{2\pi T}x(t)$$

$$\frac{\phi_{\Delta}}{2\pi T} = 15 \text{ Hz}$$

$$f_{2}(t) = nf_{1}(t) = nf_{c_{1}} + n\frac{\phi_{\Delta}}{2\pi T}x(t)$$

$$f_{2}(t) = nf_{1}(t) = nf_{c_{1}} + n\frac{\phi_{\Delta}}{2\pi T}x(t)$$

$$\frac{\varphi_{\Delta}}{2\pi T} = 15 \text{ Hz} \qquad f_{c_1} = 200 \text{ kHz} \qquad f_{\Delta} = 75 \text{ kH}$$

$$\Rightarrow n = 75 \text{ kHz/}_{15 \text{ Hz}} = 5000 \qquad nf_{c_1} \cong 1000 \text{ MHz} \Rightarrow f_{LO} = 900 \text{ MHz}$$

Th.S. Nguyễn Thanh Tuấn

5.4 Giải điều chế FM/PM

- **Tách sóng pha:** cho ra thành phần chênh lệch pha tức thời giữa tín hiệu ngõ vào và tín hiệu sóng mang.
- Tách sóng tần số: cho ra đạo hàm của thành phần chênh lệch pha tức thời giữa tín hiệu ngõ vào và tín hiệu sóng mang.
- Đều là các tách sóng đồng bộ (cần đồng bộ sóng mang điều chế)

Th.S. Nguyễn Thanh Tuấn

22

24

Các loại tách sóng

	x(t) is input to an ideal	Detector output proportional to			
i)	Coherent detector	x _c (t)			
ii)	Envelope detector	A(t)			
iii)	Phase detector	φ(t)			
iv)	Frequency detector	$\frac{1}{2\pi}\frac{d\varphi(t)}{dt}$			

Tóm tắt

- Đặc tính và phân loại điều chế góc?
- Thông số, biểu thức, dạng sóng, phổ, băng thông, công suất, SNR và sơ đồ điều chế/giải điều chế?
- Mối quan hệ giữa các loại điều chế?
- So sánh ưu nhược điểm của mỗi loại điều chế?
- Úng dụng của mỗi loại điều chế?
- Hàm Bessel loại 1 dùng trong FM/PM?

Th.S. Nguyễn Thanh Tuấn 23 Th.S. Nguyễn Thanh Tuấn

Bài tập 1

Bài tập 2

- Cho tín hiệu đơn tần cần điều chế $x(t) = 0.8\cos 4\pi t$ (t:ms) và sóng mang $10\sin 20\pi t$ (t:ms).
- a) Tín hiệu x(t) được điều chế tần số (FM) với độ nhạy di tần f_{Δ} = 2.5KHz. Vẽ phổ biên độ (tần số dương) của tín hiệu sau điều chế.
- b) Tín hiệu x(t) được điều chế pha (PM) với độ nhạy di pha ϕ_{Δ} = 2.5rad. Xác định băng thông của tín hiệu sau điều chế.
- c) Thiết kế 1 sơ đồ nguyên lý của bộ điều chế FM với độ nhạy di tần f_{Δ} từ các bộ điều chế PM (độ nhạy di pha ϕ_{Δ}), bộ tạo sóng mang, bộ tích phân/vi phân, bộ khuếch đại và bộ cộng.
- d) Thiết kế 1 sơ đồ nguyên lý của bộ giải điều chế FM từ các bộ giải điều chế PM, bộ tích phân/vi phân, bộ khuếch đại và bộ cộng.

• Cho sóng mang có biểu thức 10cos10πt (t:ms).

- a) Cho tín hiệu sau điều chế tần số $x_{FM}(t) = 10\cos(10\pi t + 2\sin\pi t)$ (t:ms) với độ nhạy di tần f_Δ = 2KHz. Xác định băng thông của tín hiệu sau điều chế và tính công suất của tín hiệu thông tin cần điều chế.
- b) Cho tín hiệu $x(t) = 0.5 \sin 2\pi t$ (t:ms) được điều chế pha (PM) với độ nhạy di pha $\phi_{\Delta} = 90^{\circ}$. Vẽ dạng sóng và ước lượng băng thông truyền theo tiêu chuẩn Carson của tín hiệu sau điều chế.

Th.S. Nguyễn Thanh Tuấn

25

Th.S. Nguyễn Thanh Tuấn

26

28

Bài tập 3

Vẽ dạng sóng điều chế FM và PM cho tín hiệu

sau:

Bài tập 4

Cho tín hiệu đơn tần 100 Hz điều chế FM với chỉ số điều chế $\beta = 1$ sau đó đi qua bộ lọc thông dải lý tưởng có băng thông 250 Hz xung quanh tần số sóng mang 500 Hz.

- a) Xác định các tần số ngõ vào và ngõ ra bộ lọc?
- b) Tính tỉ số công suất tín hiệu ngõ ra và ngõ vào bộ lọc?

Th.S. Nguyễn Thanh Tuấn 27 Th.S. Nguyễn Thanh Tuấn