Deep Learning

03 – Gradient-Based Training
Part 0: Overview

Prof. Dr. Rainer Gemulla

Universität Mannheim

Version: 2024-1

Supervised training of FNNs

- In principle: like any other ML model
- Often: empirical risk minimization (our focus)
 - lacktriangle Frequentist approach, obtains point estimate $\hat{m{ heta}}$ of FNN parameters $m{ heta}$
 - Use non-negative, real-valued loss function $L(\hat{y}, y)$ between a prediction \hat{y} and a true answer y
 - lacktriangle Minimize empirical risk = average loss on training data $ig\{(m{x}_i, m{y}_i)_{i=1}^Nig\}$

$$R_{\mathsf{emp}}(oldsymbol{ heta}) = rac{1}{N} \sum_i L(\hat{oldsymbol{y}}_i, oldsymbol{y}_i) \qquad \mathsf{where} \,\, \hat{oldsymbol{y}}_i = f(oldsymbol{x}_i; oldsymbol{ heta})$$

- Some common loss functions
 - ► Squared error (for regression)
 - ► Log loss / binary cross entropy (for binary / multi-label classification)
 - Cross entropy / KL divergence (for multi-class classification)
 - ► Hinge loss (for margin-based classification)
 - ▶ 0-1 loss / misclassification rate (for classification)
- Generally: use cost function $J(\theta)$
 - ► E.g., regularized risk to prevent overfitting

Gradient-based methods

- Gradient-based methods are dominant
 - Large datasets, many parameters
 - Many tricks used to make these methods work empirically
- General approach
 - 1. Construct a batch (e.g., a subset of examples)
 - 2. Compute gradients of cost function on batch
 - 3. Update parameters using an optimizer
 - 4. Repeat

Training Techniques

- Gradient-based methods are a tool to minimize some cost function (backpropagation, optimizers)
- Training FNNs successfully is also an art; generally, goals include
 - Improve performance of gradient-based methods
 - ► Reduce overfitting, improve generalizability
 - Leverage additional data
 - ► Reduce (task-specific) costs such as model size, computational costs, amount of required supervision, . . .
- In this part of the lecture, we look at
 - ► Compute graphs, automatic differentiation
 - ► Gradient computation via **backpropagation** ("backprop"): chain rule + reuse of computations
 - Optimizers beyond plain SGD
 - Challenges in gradient-based training (vanishing/exploding gradients) and impact of architectural choices

Outline (Gradient-Based Training)

- 0. Overview
- 1. Backpropagation
- 2. Optimizers
- 3. Architecture design

Summary

- Gradient-based methods dominant for training deep learning models
- Backpropagation
 - ► Technique to compute gradient of a computation w.r.t. its inputs
 - Computation modeled via a compute graph
 - ► Chain rule + reuse of computations
 - Forward pass to compute all outputs (forward propagation)
 - ► Backward pass to compute all gradients (backward propagation)
 - Used to support automatic differentiation in DL frameworks
- Training deep FNNs is an art
 - Complex models, many hyperparameters, many techniques, expensive
 - Use optimizers with adaptive learning rates and momentum
 - ► Vanishing/exploding gradients can be problematic
 - Architectural choices matter (e.g., saturating units, residual units, skip connections)

Suggested reading

- Drori, Ch. 2, 3
- Goodfellow et al., Ch. 6, 8
- Murphy 1, Ch. 13.3, 13.4