```
Dirac Fermion
```

Probability of orcupred/unouppred states.

For a gen of non interacting fermious, we derived in class the partition function:

The probability of any state is:

$$P_{\nu} = \frac{1}{2} e^{-\beta E_{\nu} + \beta \mu N_{\nu}} \quad \text{wik} : \int_{\kappa} E_{\nu} = \sum_{\kappa} u_{\kappa} \epsilon_{\kappa}$$

$$N_{\nu} = \sum_{\kappa} n_{\kappa}$$
Hence:
$$P_{\nu} = \frac{1}{2} \frac{1}{\kappa} e^{-\beta E_{\nu} + \beta \mu}$$

and there for the probability of a state k (they are to be treated as independent in the grand esnounced setting)

Since m=0,1 for a gas of Fermions, we have:

$$\frac{f_{k}\left(u_{k}=0\right)}{1+e^{f\left(\mu-G_{k}\right)}}\tag{1}$$

$$P_{\mu}\left(m_{\mu}=1\right) = \frac{e^{\beta(\mu-\epsilon_{\mu})}}{1+e^{\beta(\mu-\epsilon_{\mu})}} \tag{2}$$

meall
$$\langle m_k \rangle = \frac{1}{1 + e^{\beta(\epsilon_k - \mu)}}$$

The feacher (un) is rejunctive around $e = \mu$: $\langle u_{n} \rangle = \frac{1}{1 + e^{\beta(E_{n} - \mu)}}$ $\langle u_{n} \rangle = \frac{1}{1 + e^{\beta(E_$	
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_{\uparrow}$ $p_{ajk}(z)$ $1 + e^{\beta(-6-\mu)}$	
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_{\uparrow}$ $p_{ajk}(z)$ $1 + e^{\beta(-6-\mu)}$	
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_{\uparrow}$ $p_{ajk}(z)$ $1 + e^{\beta(-6-\mu)}$	-
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_{\uparrow}$ $p_{ajk}(z)$ $1 + e^{\beta(-6-\mu)}$	
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_{\uparrow}$ $p_{ajk}(z)$ $1 + e^{\beta(-6-\mu)}$	- 1 (LG)
(See paph on $\langle m_k \rangle = 1 - \langle u_k \rangle_+$ $p_{4k}(z)$ $1 + e^{p(-\epsilon-\mu)}$ $1 + e^{p(\epsilon-\mu)}$	0/ (1-0)
$\frac{1}{1+e^{\beta(-6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$ $\Rightarrow 1+e^{\beta(-6-\mu)} = e^{\beta(6-\mu)} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$	
$\frac{1}{1+e^{\beta(-6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$ $\Rightarrow 1+e^{\beta(-6-\mu)} = e^{\beta(6-\mu)} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$	
$\frac{1}{1+e^{\beta(-6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$ $\Rightarrow 1+e^{\beta(-6-\mu)} = e^{\beta(6-\mu)} \frac{1+e^{\beta(6-\mu)}}{1+e^{\beta(6-\mu)}}$	/
$\frac{1+e^{\beta(-\epsilon-\mu)}}{1+e^{\beta(\epsilon-\mu)}} \frac{1+e^{\beta(\epsilon-\mu)}}{1+e^{\beta(\epsilon-\mu)}} \frac{1+e^{\beta(\epsilon-\mu)}}{1+e^{\beta(\epsilon-\mu)}}$ $\Rightarrow 1+e^{\beta(\epsilon-\mu)} = e^{\beta(\epsilon-\mu)} \frac{1+e^{\beta(\epsilon-\mu)}}{1+e^{\beta(\epsilon-\mu)}}$	
$1+e^{\gamma(\epsilon-\mu)}=e^{\gamma(\epsilon-\mu)}$	
$= 1 + e^{\int_{-\infty}^{\infty} (e^{-\mu})} = e^{\int_{-\infty}^{\infty} (e^{-\mu})} $	
	21.0
= e + e = 1 / = e	or / m=0)
	(
(c) Energy of an excitation at finite T	any propretent,
An excitation means a (-) particle leaves the state and occupie	s a (+)
state. Hence:	. of occupred +
(E)(T) (m(u)) e((k) # +
A K -	
(Mitth 2u(N)) E_C	k)
$= 2 \sum_{k} \langle n_{n}^{+} \rangle \varepsilon_{k}^{+} - \varepsilon_{n}^{+} \left(1 - \langle n_{k}^{+} \rangle \right) $ prob. I unoclupred	
(-) state.	
Gover that 1- (un) = (un)+	
$= 2\sqrt{2} \int 2Z(2\langle n_k^{\dagger} \rangle \epsilon_k^{\dagger} - \epsilon_k^{\dagger})$	15
$\Rightarrow \langle E \rangle \langle T \rangle - \langle E \rangle \langle T \rangle = 2 \sum_{k} Z \langle u(k) \rangle_{+} \in_{+}(h)$	
$2V\left(\frac{3^{3}k}{6}\right)^{2}$	1+22 EK
$\frac{J(2n)^{2}}{\sqrt{\left(\frac{3}{4}\right)^{2}}} \in \mathcal{L}(h) \qquad \text{with the}$	
$2V \int \frac{d^3k}{(2n)^3} \frac{\mathcal{E}_{+}(h)}{(2n)^3} = \frac{1}{1 + e^{\beta \mathcal{E}_{+}(h)}} $ with the	usual transfor -

$$\langle E \rangle = 2 \overline{Z} \left[\langle u_{h}^{+} \rangle \epsilon_{h}^{+} + \langle u_{n}^{-} \rangle \epsilon_{h}^{-} \right]$$

$$= 2 \overline{Z} \left[\langle u_{h}^{+} \rangle \epsilon_{h}^{+} + (1 - \langle u_{h}^{+} \rangle) \epsilon_{h}^{-} \right]$$

$$= 2 \overline{Z} \left[\langle u_{h}^{+} \rangle \epsilon_{h}^{+} - (1 - \langle u_{h}^{+} \rangle) \epsilon_{h}^{+} \right] =$$

$$= 2 \overline{Z} \left[2 \langle u_{h}^{+} \rangle \epsilon_{h}^{+} - \epsilon_{h}^{+} \right] = 2 \overline{Z} \langle u_{h}^{+} \rangle \epsilon_{h}^{+} + 2 \overline{Z} \epsilon_{h}^{-}$$

$$| \langle E \rangle - 2 \overline{Z} \epsilon_{h}^{-} = 4 \overline{Z} \langle u_{h}^{+} \rangle \epsilon_{h}^{+} \right] = 2 \overline{Z} \epsilon_{h}^{-}$$

$$| \langle E \rangle - 2 \overline{Z} \epsilon_{h}^{-} = 4 \overline{Z} \langle u_{h}^{+} \rangle \epsilon_{h}^{+} \right] = 2 \overline{Z} \epsilon_{h}^{-}$$

Backwards:

$$\begin{aligned}
\langle \mathcal{E} \rangle - \mathcal{E} \langle 0 \rangle &= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{k}^{\dagger} + \langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} \right] - 2 \sum_{k} \mathcal{E}_{n}^{\dagger} \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{k}^{\dagger} + \langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} - \mathcal{E}_{n}^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} - \left(1 - \langle u_{n}^{\dagger} \rangle \right) \mathcal{E}_{n}^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} - \left(1 - \langle u_{n}^{\dagger} \rangle \right) \mathcal{E}_{n}^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} - \langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} - \langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} + \langle u_{n}^{\dagger} \rangle \mathcal{E}_{n}^{\dagger} \right]
\end{aligned}$$

$$\langle E \rangle = 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \langle n_{h}^{-} \rangle \epsilon_{h}^{-} \right]$$

$$\langle n_{h}^{-} \rangle = \left(1 - \langle n_{h}^{+} \rangle \right)$$

$$\langle E \rangle = 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \left(1 - \langle n_{h}^{+} \rangle \right) \epsilon_{h}^{-} \right]$$

$$= 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \left(1 - \langle n_{h}^{+} \rangle \right) \epsilon_{h}^{-} \right]$$

$$\langle E \rangle = 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \left(1 - \langle n_{h}^{+} \rangle \right) \epsilon_{h}^{-} \right]$$

$$\langle E \rangle = 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \left(1 - \langle n_{h}^{+} \rangle \right) \epsilon_{h}^{-} \right]$$

$$\langle E \rangle = 2 \sum_{h} \left[\langle n_{h}^{+} \rangle \epsilon_{h}^{+} + \left(1 - \langle n_{h}^{+} \rangle \right) \epsilon_{h}^{-} \right]$$

$$\begin{split}
\langle E \rangle - E(T_0) &= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} + \langle u_h^{\dagger} \rangle \epsilon_h^{\dagger} - \epsilon_k^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} + \langle (n_h^{\dagger} \rangle - 1) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (1 - \langle n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} - \langle (n_h^{\dagger} \rangle) \epsilon_h^{\dagger} \right] \\
&= 2 \sum_{k} \left[\langle n_h^{\dagger} \rangle \epsilon_h^{\dagger} + \langle (n$$

(4) Evaluate the integral for small
$$k$$
:

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} (1 + \sin^{2} k)} = \sec^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} (1 + \sin^{2} k)} = \sec^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$E_{+}(k) = \sqrt{\sin^{2} + \sin^{2} k} = \sqrt{\sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} (1 + \sin^{2} k)$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \sin^{2} k} = \cos^{2} k = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \cos^{2} k} = \cos^{2} k = \cos^{2} k = \cos^{2} k = \cos^{2} k$$

$$= \sqrt{\sin^{2} + \cos^$$