

Inteligência Artificial

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Grupo da turma 2024.2

https://chat.whatsapp.com/JFB6CgOI7IMCoYmoIKEK62

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Na aula anterior...

Realizamos uma dinâmica para conhecer um ao outro

Discutimos sonhos e desejos

A importância de ter um objetivo definido

Discutimos boas práticas de estudo

Importância de um cronograma
Importância do foco
Importância de revisões periódicas
Alimentação e exercício

Na aula anterior...

Avaliações

🗽 Sala: Atividades(10%) presença (10%)

2 provas (40%) + 1 Trabalho(30%) +?

Objetivos de hoje

Apresentar a disciplina;

Ao final da aula, os alunos serão capazes de ter uma visão geral dos principais tópicos e conteúdo programático da disciplina (ementa).

Roteiro: Programação Orientada a Agentes

Contexto Histórico

Surgimento do Paradigma

- Marco Inicial: Apresentação do artigo seminal "Agent-Oriented Programming" (1993) de Yoav Shoham
- <u>Inspiração</u>: necessidade de criar sistemas capazes de resolver problemas complexos em ambientes dinâmico
- <u>Fundamentos Teóricos</u>: Relação entre os conceitos de Inteligência Artificial Distribuída (IAD) e Sistemas Multiagentes (SMAs)

Evolução do Paradigma

- De sistemas rígidos baseados em regras para arquiteturas adaptativas
- Inicialmente limitado a simulações teóricas

Contexto Histórico

- Evolução do Paradigma: conexão com a IA moderna
 - <u>Aprendizado por Reforço</u>: gentes aprendem com interações no ambiente para maximizar recompensas (ex.: jogos como xadrez ou Go)
 - <u>IA Generativa</u>: Utilização de agentes para gerar conteúdos criativos, como música ou arte
 - <u>Planejamento e Raciocínio</u>: Algoritmos de agentes que conseguem simular cenários futuros para tomar melhores decisões (ex.: planejamento urbano).
- Exemplo de Aplicação Moderna: Veículos Autônomos
 - Cada carro é tratado como um agente cognitivo
 - Toma decisões em tempo real (frear, acelerar, mudar de faixa)
 - Coordena com outros veículos (evitar colisões e melhorar o fluxo de trânsito)

Contexto Histórico –

Exemplo de Aplicação Moderna

Sistemas de Transporte Inteligente

• Coordenação de semáforos para otimizar o fluxo de tráfego

Jogos Multiplayer

 Personagens não jogáveis (NPCs) como agentes que colaboram ou competem com jogadores

Gerenciamento de Energia

 Agentes em redes elétricas inteligentes ajustando consumo e distribuição com base na demanda

• O que é Inteligência Artificial Distribuída (IAD)?

• <u>Definição</u>: ramo da IA que estuda sistemas compostos por várias entidades autônomas (agentes) que colaboram ou competem para resolver problemas

Principais características

- <u>Descentralização</u>: diferente de sistemas centralizados, o controle é distribuído entre agentes
- **Escalabilidade**: agentes podem ser adicionados ou removidos sem comprometer a funcionalidade
- <u>Autonomia</u>: cada agente opera de forma independente, baseando suas decisões em percepções locais

Exemplo prático

 Coordenação de drones em missões de pulverização, onde cada drone opera autonomamente, mas colabora com os outros para completar o objetivo

O Que são Sistemas Multiagentes (SMAs)?

- <u>Definição</u>: Sistemas compostos por várias entidades autônomas (agentes) interagindo em um ambiente compartilhado
- Cada agente possui capacidades limitadas
- Colaboram para alcançar objetivos globais ou competir em cenários específicos

Principais características

- <u>Autonomia</u>: tomam decisões independentes com base em percepções e objetivos
- <u>Percepção Limitada</u>: percebe apenas uma parte do ambiente e toma decisões com base nessas informações parciais
- <u>Comunicação</u>: coordena ações compartilhando informações

Conceitos Introdutórios - SMAs

- Principais características (exemplos)
 - <u>Autonomia</u>: Um robô de limpeza identifica sujeira e decide, sem intervenção externa, como removê-la
 - Percepção Limitada: Drones em uma área de busca que compartilham dados para cobrir um território maior
 - <u>Comunicação</u>: Agentes financeiros negociando em mercados

Componentes Essenciais

- Agentes: entidades autônomas que percebem e atuam no ambiente
- Ambiente: espaço no qual os agentes operam e interagem
- Interação: Comunicação e coordenação entre agentes para alcançar objetivos

SMAs - Comparação com Paradigmas Tradicionais

Objetos x Agentes

- Objetos dependem de chamadas explícitas de métodos
- Agentes tomam decisões baseados em suas "crenças, desejos e intenções".

SMAs x Sistemas Centralizados

- Vantagens: robustez e escalabilidade em ambientes dinâmicos e imprevisíveis
- **Desafios**: coordenação e gerenciamento de conflitos entre agentes

SMAs - Arquiteturas Reativas e Cognitivas

Agentes Reativos

- Reativos são agentes que não possuem um modelo interno complexo. Eles respondem diretamente a estímulos do ambiente com base em regras prédefinidas
- Aplicações: robótica simples, sistemas de enxame e controle básico de processos

Agentes Cognitivos

- Modelos baseados em raciocínio simbólico e arquiteturas BDI
- Aplicações: assistentes virtuais, veículos autônomos e agentes financeiros

SMAs - Arquiteturas Reativas e Cognitivas

Agentes Reativos

- Respostas simples: respondem diretamente a estímulos do ambiente com base em regras pré-definidas
- <u>Decisões simples</u>: Sua lógica é baseada no esquema "se isso, então aquilo" não tomam decisões deliberativas ou planejam ações futuras.
- Inspiração em Modelos Biológicos: inspiração vem de comportamentos observados em sistemas biológicos, como colônias de formigas ou enxames de abelha
 - Formigas encontram o caminho mais curto para uma fonte de alimento depositando feromônios.
 - Obs: Apesar de cada formiga seguir regras simples, o comportamento coletivo é eficiente e adaptativo.

SMAs - Arquiteturas Reativas e Cognitivas

- Agentes Reativos Aplicações Práticas
 - Robótica Simples: robôs que aspiram pó (ex.: Roomba)
 - Ajustam seu movimento ao encontrar obstáculos, baseando-se em sensores básicos

- <u>Sistemas de Enxame</u>: drones trabalhando juntos para mapear um ambiente ou pulverizar uma plantação.
 - Cada drone opera de forma autônoma, mas colabora seguindo regras simples
- Controle Básico de Processos: linhas de produção industrial
 - Máquinas ajustam sua operação com base em sensores que detectam condições específicas, como temperatura ou pressão

SMAs - Arquiteturas Reativas e Cognitivas

Agentes Cognitivos

- Respostas complexas: respondem baseado em raciocínio simbólico
- <u>Decisões Complexas</u>: analisam o ambiente, planejam ações, avaliam consequências e tomam decisões deliberativas.
- Arquitetura BDI (Beliefs-Desires-Intentions)
 - *Crenças* representem o estado atual do mundo.
 - Desejos sejam os objetivos que o agente busca.
 - Intenções sejam as ações escolhidas para atingir esses objetivos.

SMAs - Arquiteturas Reativas e Cognitivas

- Agentes Cognitivos Aplicações Práticas
 - Assistentes Virtuais: Alexa, Siri, Google Assistant
 - Interpretam linguagem natural, entendem intenções do usuário e executam tarefas, como tocar música ou ajustar luzes
 - Veículos Autônomos: carros como os da Tesla
 - Utilizam agentes cognitivos para interpretar dados de sensores, tomar decisões (ex.: mudar de faixa, frear) e planejar rotas seguras
 - Agentes Financeiros: sistemas que analisam mercados em tempo real
 - Identificam oportunidades de investimento e realizam transações automatizadas

SMAs - Arquiteturas Reativas e Cognitivas

• Comparação entre Agentes Reativos e Cognitivos

Aspecto	Agentes Reativos	Agentes Cognitivos
Complexidade	Simples	Elevada
Base de Decisão	Regras fixas ("se-then")	Raciocínio simbólico e planejamento
Inspiração	Biológica (enxames, formigas)	Cognitiva (comportamento humano)
Tempo de Resposta	Imediato	Pode ser mais lento devido ao processamento
Exemplo de Aplicação	Robôs aspiradores, drones simples	Assistentes virtuais, veículos autônomos

SMAs - Arquiteturas Reativas e Cognitivas

Quando escolher agentes reativos?

- Simplicidade e resposta rápida são essenciais
- Ambientes dinâmicos com poucos recursos computacionais (ex.: enxames de drones para busca e resgate)

Quando escolher agentes cognitivos?

- Ambiente exige tomadas de decisão mais elaboradas e planejamento
- Exemplo: prever tráfego para otimizar rotas em um carro autônomo

SMAs - Interação em Ambientes Compartilhado

- Coordenação de Agentes
 - Estratégias de comunicação: redes P2P, trocas de mensagens (por protocolos)
 - Mecanismos de **negociação** e **cooperação**
- Ambientes Competitivos x Cooperativos
 - Competição: simulações de mercado
 - Cooperação: sistemas de transporte público integrados

Conceitos Introdutórios - SMAs

Benefícios

- Escalabilidade: adição de agentes aumenta a capacidade do sistema
- Robustez: falhas em agentes individuais não comprometem o sistema inteiro
- Flexibilidade: fácil adaptação a novos ambientes ou objetivos

Desafios

- <u>Coordenação</u>: garantir que agentes trabalhem em harmonia sem conflitos
- Complexidade Computacional: Aumenta com o número de agentes e interações
- <u>Ambiguidade em Percepções</u>: Agentes nem sempre possuem informações completas, o que pode levar a decisões subótimas

SMAs - Ambiente Dinâmico e o Problema da Descentralização

• Cenário Real: Gerenciamento de tráfego aéreo

• <u>Problema</u>: Em aeroportos movimentados, há centenas de voos chegando e partindo ao mesmo tempo. Um sistema centralizado teria dificuldade em gerenciar essas operações em tempo real, devido à enorme quantidade de dados e à necessidade de respostas rápidas

Solução com IAD

- Cada avião é modelado como um agente autônomo que se comunica com outros aviões (agentes) e com a torre de controle
- Agentes decidem rotas, velocidades e horários de pouso baseados em informações locais, como posição, altitude e clima
- A colaboração entre agentes evita colisões e otimiza o fluxo aéreo

SMAs - Ambientes Dinâmicos e Complexidade

Cenário Real: Redes de energia inteligente (smart grids)

• <u>Problema</u>: O fornecimento de energia em grandes cidades enfrenta variações constantes na demanda e na oferta, além de falhas inesperadas, como quedas de energia

Solução com IAD

- Cada unidade de geração (ex.: painel solar, turbina eólica) é modelada como um agente que monitora sua capacidade e se comunica com a rede.
- Consumidores podem ser representados como agentes que negociam consumo com os provedores, buscando otimizar custos
- A rede de agentes distribui energia eficientemente, mesmo em situações de sobrecarga ou falha

SMAs - Decisões Colaborativas em Escala

• Cenário Real: Robôs de busca e resgate em desastres naturais

• <u>Problema</u>: Após um terremoto, a busca por sobreviventes em uma área devastada é um ambiente dinâmico, onde informações mudam rapidamente e decisões devem ser tomadas com base em dados incompleto

Solução com IAD

- Cada robô é um agente que percebe o ambiente local (ex.: detecção de calor, som ou gases)
- Os robôs compartilham informações uns com os outros para criar um mapa colaborativo da área
- O sistema distribuído garante que mesmo se um robô falhar, o restante continuará a busca

Modelo genérico de um Agente Definição

- É a base teórica para o desenvolvimento de sistemas que percebem, raciocinam, tomam decisões e agem em um ambiente dinâmico
- **Define as capacidades fundamentais** que um agente deve possuir para operar de maneira **autônoma** e eficaz
- Um agente inteligente é uma entidade computacional que
 - Percebe o ambiente (via sensores)
 - Raciocina sobre suas percepções para decidir ações
 - Atua no ambiente (via atuadores) para alcançar objetivos específicos
 - Pode possuir uma memória interna para armazenar experiências e/ou crenças

Modelo genérico de um Agente

Modelo genérico de um Agente Ambiente

- Realidade externa onde o agente opera
- O agente *percebe* o ambiente e *atua* sobre ele, *modificando-o* de acordo com seus *objetivos*
 - Exemplo: em um sistema de casa inteligente, o ambiente inclui sensores de temperatura, luzes, portas, e dispositivos conectados

Modelo genérico de um Agente Percepção

- A capacidade de *coletar* informações do *ambiente* através de *sensores* (físicos ou virtuais)
- Observa mudanças no ambiente e as envia para o componente de raciocínio ("Próximo")
- Essas informações são usadas para atualizar as crenças do agente sobre o estado atual do ambiente
 - Exemplo: Em um robô de limpeza, os sensores detectam obstáculos e sujeira no chão

Modelo genérico de um Agente

Próximo (Decisão e Raciocínio)

- Cérebro do agente, onde as decisões são tomadas com base nas informações percebidas e no estado atual
 - Recebe dados da Percepção e os compara com o Estado interno do agente para decidir qual ação tomar em seguida
- Subfunções do módulo Próximo
 - Atualizar Estado: Integra as novas informações ao conhecimento atual
 - Deliberar Ações: Avalia diferentes opções e seleciona a ação mais adequada

Modelo genérico de um Agente

Próximo (Decisão e Raciocínio)

- Cérebro do agente, onde as decisões são tomadas com base nas informações percebidas e no estado atual
 - Recebe dados da Percepção e os compara com o Estado interno do agente para decidir qual ação tomar em seguida
- Subfunções do módulo Próximo
 - Atualizar Estado: Integra as novas informações ao conhecimento atual
 - Deliberar Ações: Avalia diferentes opções e seleciona a ação mais adequada

 Exemplo prático: termostato, ao perceber que a temperatura está abaixo de 20°C, decide ligar o aquecedor.

Modelo genérico de um Agente Estado

- Representa a memória interna do agente, onde ele armazena suas crenças sobre o ambiente.
- Serve como referência para o componente de raciocínio ("Próximo") ao tomar decisões
 - Exemplo: O estado do termostato inclui informações como temperatura atual, horários preferidos e configurações de economia de energia

Modelo genérico de um Agente

- A saída do agente, onde ele executa mudanças (ou não) no ambiente com base na decisão tomada
- Após o raciocínio, o agente executa a ação que acredita ser a melhor para alcançar seus objetivos
 - Exemplo: o termostato aciona o aquecedor para ajustar a temperatura ao nível desejado

Modelo genérico de um Agente

Ciclo Contínuo

- O processo de Percepção → Decisão →
 Ação → Feedback é contínuo,
 permitindo que o agente
 - Adapte-se a mudanças no ambiente
 - Aprenda com novos dados e refine suas ações ao longo do tempo
- Exemplo completo (um robô aspirador)
 - Percebe a sujeira no chão e atualiza seu Estado (local exato da sujeira)
 - Decide mover-se até o local para limpar
 - Executa a ação de aspiração
 - Avalia o sucesso e ajusta suas rotas futuras

Arquitetura BDI

Componentes principais

Crenças (Beliefs)

- Representam o que o agente acredita ser verdade sobre
 - O ambiente
 - Outros agentes
 - Si mesmo
- Exemplo: Um agente em um jogo de xadrez acredita que a peça adversária está em uma posição específica no tabuleiro

Componentes principais

Desejos (Desires)

- Representam os estados do mundo que o agente quer atingir, ou seja, ou seja, aquilo que o agente quer que passe a ser verdade.
 - Objetivos são subconjunto de desejos
- Exemplo: Em um carro autônomo, um desejo pode ser "chegar ao destino o mais rápido possível".

Componentes principais

Intenções (Intentions)

- Representam sequências de ações específicas que um agente se compromete a executar para atingir um determinado objetivo.
- Exemplo: O carro autônomo decide seguir uma rota específica, baseada em tempo e tráfego

• Revisão de Crenças (Belief Revision)

- FRC: Função Revisora de Crenças
- O agente percebe mudanças no ambiente, consultando suas crenças anteriores e atualiza suas crenças
- Crenças do agente devem refletir o estado atualizado do ambiente
- Exemplo: O carro autônomo decide seguir uma rota específica, baseada em tempo e tráfego

Geração de Opções (Option Generation)

- FGO: Função Geradora de Opções
- Com base nas crenças atualizadas, o agente gera um conjunto de desejos ou objetivos relevantes
- A atualização dos objetivos se dá de duas maneiras
 - Observação do ambiente para determinar novos objetivos
 - Necessidades de executar objetivos específicos para atingir objetivos maiores

Geração de Opções (Option Generation)

- Verifica quais as novas alternativas de estados a serem atingidos são relevantes para os interesses do agente
- Exemplo: Um robô de resgate considera dois objetivos: "encontrar sobreviventes" e "retornar à base para recarregar".

Função Filtro

- Atualiza o conjunto de intenções do agente, com base nas crenças e desejos atualizados e nas intenções já existentes.
- A função filtro pode ser considerada a função deliberativa do agente
- Com o conjunto de intenções já atualizado, a escolha de qual ação específica será executada, entre aqueles pretendidas, será feita pela Função de Ação

Ciclo Operacional BDI Detalhado

- A arquitetura BDI reflete uma abordagem antropomórfica
 - Tenta modelar o "raciocínio humano" em termos computacionais

1. Percepção do Ambiente

- O agente coleta dados do ambiente usando sensores ou fontes de informação digitais.
- Exemplo: Um assistente virtual percebe que um comando foi dado pelo usuário.

Ciclo Operacional BDI Detalhado

2. Atualização de Crenças

- As crenças do agente são atualizadas com base nos dados percebidos.
- Exemplo: O assistente sabe que o usuário pediu "encomendar uma pizza", mas atualiza sua crença ao perceber que o pedido anterior era para pizza sem glúten.

3. Definição de Desejos

- O agente gera possíveis objetivos a partir de suas crenças.
- Exemplo: Desejo 1: Encontrar uma pizzaria que entregue rapidamente. Desejo 2: Garantir que a pizza seja sem glúten.

Ciclo Operacional BDI Detalhado

4. Deliberação de Intenções

- Os desejos são filtrados e priorizados com base na viabilidade e na importância.
- Exemplo: Intenção final: Pedir uma pizza sem glúten na pizzaria mais próxima.

5. Execução de Ações

- As intenções escolhidas são transformadas em ações concretas no mundo real.
- Exemplo: O assistente faz o pedido na pizzaria escolhida.

Ciclo Operacional BDI Detalhado

6. Reavaliação

- Após a execução, o agente verifica o sucesso da ação e atualiza suas crenças.
- Exemplo: O assistente confirma com o restaurante que o pedido foi recebido corretamente.

Antes –

SMAs - Arquiteturas Reativas e Cognitivas

• Comparação entre Agentes Reativos e Cognitivos

Aspecto	Agentes Reativos	Agentes Cognitivos	
Complexidade	Simples	Elevada	
Base de Decisão	Regras fixas ("se-then") Raciocínio simbólico planejamento		
Inspiração	Biológica (enxames, formigas)	Cognitiva (comportamento humano)	
Tempo de Resposta	Imediato	Pode ser mais lento devido ao processamento	
Exemplo de Aplicação	Robôs aspiradores, drones simples	Assistentes virtuais, veículos autônomos	

Arquitetura BDI (Beliefs, Desires, Intentions) Comparação com Outras Arquiteturas

	BDI (Beliefs-Desires-		
Aspecto	Intentions)	Agentes Reativos Simples	Agentes Cognitivos
Complexidade do	Alta (baseado em raciocínio	Baixa (ações baseadas em regras	Alta (baseado em raciocínio
Agente	simbólico)	fixas)	deliberativo)
			Raciocínio simbólico e
Base de Decisão	Crenças, desejos e intenções	Regras simples ("se-then")	planejamento
	Elevada, reavaliação		Elevada, mas com maior
Adaptabilidade	constante	Limitada a estímulos imediatos	custo computacional
	Médio (deliberativo, precisa		Pode ser mais lento devido
Tempo de Resposta	processar intenções)	Imediato	ao planejamento
	Cognitiva (comportamento	Biológica (comportamento	
Inspiração	humano)	emergente, ex.: formigas)	Cognitiva e simbólica
Capacidade de	Possível com integração de IA		Geralmente ausente, mas
Aprendizado	moderna	Geralmente ausente	integrável
	Assistentes virtuais, robôs	Robôs aspiradores, drones	Veículos autônomos,
Exemplo de Uso	autônomos	simples	sistemas de diagnóstico

Diferença entre "Robôs Autônomos" no BDI e "Veículos Autônomos" em Agentes Cognitivos

- → Complexidade do raciocínio e no tipo de decisão deliberativa realizada
- BDI Robôs Autônomos
 - Robôs autônomos usando BDI geralmente operam em ambientes dinâmicos, onde precisam tomar decisões complexas com base em crenças, desejos e intenções

• Exemplo prático:

• Um robô em uma missão de resgate. Ele analisa constantemente sua crença sobre o ambiente (mapa do desastre), delibera entre salvar pessoas ou retornar para recarregar e escolhe a melhor ação com base em suas intenções.

Diferença entre "Robôs Autônomos" no BDI e "Veículos Autônomos" em Agentes Cognitivos

- → Complexidade do raciocínio e no tipo de decisão deliberativa realizada
- Agentes Cognitivos Veículos Autônomos
 - Precisam integrar raciocínio simbólico e tomada de decisão deliberativa
 - Exemplo prático: Diferentemente de BDI, eles podem não usar crenças ou desejos explícitos, mas dependem de modelos cognitivos para planejar rotas e responder a eventos, como mudanças de tráfego
 - Exemplo prático
 - Um carro autônomo analisa múltiplas variáveis (tráfego, semáforos, pedestres) e decide como se mover, mas sem a necessidade de conceitos como "intenções" ou "desejos".

Por que os Agentes Cognitivos não têm Capacidade de Aprendizado, mas são integráveis?

→ Sem aprendizado

→ Por padrão, agentes cognitivos dependem de regras fixas e raciocínio lógico

- Baseados em regras ou modelos simbólicos fixos
 - Eles seguem instruções predefinidas para raciocinar e tomar decisões
- Não aprendem automaticamente com novas informações
 - Como os sistemas baseados em aprendizado de máquina

Por que os Agentes Cognitivos não têm Capacidade de Aprendizado, mas são integráveis?

→ Com aprendizado

→ A integração de aprendizado permite que esses agentes evoluam, tornando-se mais flexíveis

Como funciona a integração?

 Adicionando componentes de aprendizado por reforço ou aprendizado supervisionado para permitir que agentes cognitivos ajustem suas regras ou raciocínio

Exemplo prático

• Um agente cognitivo em um jogo pode aprender estratégias melhores ao analisar o comportamento dos oponentes.

Dúvidas?

Até a próxima...

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com

Referências

- Artigos referenciados nos respectivos slides.
- T.B. Borchartt . *Introdução à Inteligência Artificial*. 2024. 37 slides. Universidade Federal do Maranhão.
- A.O. B. Filho. Inteligência Artificial Introdução. 2024. 31 slides.
 Universidade Federal do Maranhão.
- S. Lago. *INTRODUÇÃO À LINGUAGEM PROLOG*. Universidade de São Paulo. Disponível em <u>Microsoft Word slago-prolog.doc</u>.
- C. A. M. Lima. Aula 04 Redes Neurais Artificiais. 2015. 39 slides.
 Universidade Federal do Maranhão. Disponível em <u>Aula 04 Redes Neurais Artificiais</u>