

জীবনবিজ্ঞান অন্তম শ্রেণীর জন্য

This beek was taken from the Library of Extension Services Department on the date last stamped. It is returnable within 3383 • 7 days .

জীবনবিজ্ঞান

एहेब्बिट्सिखान

পশ্চিমবন্ধ মধ্যশিক্ষা পর্ষদ প্রবর্তিত জীবনবিজ্ঞানের নৃতন পাঠ্যস্থচী সক্রম অনুযায়ী অষ্টম শ্রেণীর জন্ম লিখিত।

জীবনবিজ্ঞান

(অষ্টম শ্রেণীর জন্য)

ভক্তর তারক মোহন দাস, এম. এস-সি., পি-এইচ. ডি. (লণ্ডন), ডি. আই. সি.,

কনভেনার, লাইফ সায়েন্স সেণ্টার, কলিকাতা বিশ্ববিচ্ছালয়; অধ্যাপক, কৃষি বিভাগ, কলিকাতা বিশ্ববিষ্ঠালয় ; ি এর Lesoin যুগা-সম্পাদক, 'ইণ্ডিয়ান বায়োলজিস্ট'; তার বিভারত দিল্লী বিশ্ববিভালয়ের নরসিং দাস পুরস্কারপ্রাপ্ত বিজ্ঞান গ্রন্থ

'আমার ঘরের আশেপাশে'র লেখক

দি ম্যাকমিলান কোম্পানি অফ ইণ্ডিয়া লিমিটেড 294, বিপিন বিহারী গাঙ্গুলী শ্রীট, কলিকাতা-12 250001-engold day 1975 and H

THE MACMILLAN COMPANY OF INDIA LIMITED

DELHI MADRAS CALCUTTA

BOMBAY

Associate companies throughout the world

Copyright @ Mrs. Namita Das, 1975

First Edition 1975

"This book has been published on the paper supplied through the Government of India at concessional rate."

উৎসর্গ শ্রেদ্ধের অধ্যাপক সোরীন্দ্রমোহন সরকারের করকমলে

Made in India
Printed by B. Mukherji at Kalika Press Private Ltd.
25, D. L. Roy Street, Calcutta-700006 and
Published by U. N. Banerjee, for The Macmillan Co. of India Ltd.
294, B. B. Ganguly Street, Calcutta-700012

ভূমিকা

জীবনবিজ্ঞানের মৌল বিষয়গুলির চর্চার উদ্দেশ্যে আমরা কলিকাতা বিশ্ববিত্যালয়ে 1968 খুষ্টাব্দে ''লাইফ সায়েন্স সেণ্টারের" প্রতিষ্ঠা করি। 1971 সনে বিশ্ববিত্যালয় গ্রাণ্টস্ কমিশনের তদানীন্তন চেয়ারম্যান অধ্যাপক ডি. এস. কোঠারীর সক্রিয় সহামুভূতি ও আমুকুল্যে উৎসাহিত হয়ে আমরা শিক্ষার সকল স্তরে জীবনবিজ্ঞান চর্চার প্রসারে উত্যোগী হই।

বর্তমান পরিবেশে পৃথিবীতে বাস করতে হ'লে জীবনবিজ্ঞান সম্পর্কে ন্যুনতম প্রয়োজনীয় জ্ঞান প্রত্যেক শিক্ষার্থীর কাছেই অপরিহার্য, যেমন— সকল জীবের মূল প্রকৃতি, জীবনের সঙ্গে পরিবেশের সম্পর্ক, পরিবেশের সম্পদগুলি কিভাবে আমরা ব্যবহার করছি, পৃথিবীর জল, বায়ু, মাটি, জীবাণু, উদ্ভিদ ও পশুপক্ষীরা কিভাবে আমাদের জীবনধারণে সাহায্য করছে, পৃথিবীতে জীবন যাপনের বিজ্ঞানদন্মত পদ্ধতি কি হওয়া উচিত, আমরা তা ঠিক্মত পালন করছি কিনা ইত্যাদি। অত্যন্ত স্থথের বিষয়, পশ্চিমবঙ্গ মধ্যশিক্ষা পর্ষদের দূরদৃষ্টিসম্পন্ন স্থযোগ্য নেভূত্বে আজ জীবনবিজ্ঞান মাধ্যমিক শিক্ষাক্রমে এক বিশেষ মর্যাদার আসন লাভ করেছে। পর্ষদের দশম শ্রেণীর শিক্ষাক্রম অন্থবায়ী অত্যন্ত মনোযোগ ও সতর্কতার সঙ্গে এই পুস্তকটি রচনা করা হয়েছে। বিজ্ঞান শিক্ষার যা শ্রেষ্ঠ পন্থা,—পর্যবেক্ষণ, পরীক্ষা, যুক্তি ও প্রমাণ সংগ্রহের মাধ্যমে অগ্রসর হওয়া—সেই সোজা পথে, সহজ ভাষায় বইটি লেখবার চেষ্টা করা হয়েছে। তরুণ শিক্ষার্থীদের কোন তথ্য মুখস্থ করবার প্রয়োজন যাতে না হয় সেই বিষয়ে বিশেষ লক্ষ্য রাখা হয়েছে। শিক্ষার্থীর জীবন ও পরিবেশ সম্পর্কে প্রকৃত কেতি্হল, আগ্রহ ও মনোযোগ যাতে বৃদ্ধি পায়, সেই বিষয়েই প্রধানতঃ লক্ষ্য রাখা হয়েছে।

এই পুত্তকরচনার অধিকাংশ কার্যের জন্ম স্বীকৃতি জানাই আমার সহধর্মিণী শ্রীমতী নমিতা দাসকে।

> ইতি— **শ্রীতারক মোহন দাস**

1 ডিসেম্বর, 1975

অণুবীক্ষণ যন্ত্ৰ

প্রথম অধ্যার

(Structure of Plant and Animal Cells)

জীবকোষ, জীবনের এককঃ

পৃথিবীতে নানা রকম জীবাণু থেকে সুরু করে নানা বিচিত্র আকারের গাছপালা, কীটপতঙ্গ, মংস্থ-সরীস্প্-পক্ষী ও মনুযুসমেত বক্ত রকম জীব সকলেই আজ একদঙ্গে বসবাস করছে। তাদের আকার ও জীবনধারা অত্যন্ত বৈচিত্রাময় হলেও কতকগুলি মৌল विषएं जारनत मार्था विश्वासकत मानुषा राज्या यात्र, या रनर्थ मान इस ভারা যেন একই পরিবারের অন্তর্ভু ত ও পরস্পর নিবিড় আত্মীয়তা-সূত্রে আবদ্ধ। অণুবীক্ষণ যন্ত্রের তলায় একটি উদ্ভিদের অংশ পরীক্ষা করলে দেখা যাবে তা অসংখ্য ছোট ছোট বস্তুর সাহায্যে তৈরী। এগুলিকে কোষ (Cell) বলে। যেমন ছোট ছোট অসংখ্য ইটের সাহায্যে তৈরী, তেমনি পৃথিবীর বিভিন্ন উদ্ভিদ ও প্রাণীর দেহ ক্ষুদ্র ক্ষুদ্র কোষের সমন্বয়ে তৈরী। ইট যেমন বাড়ীর একক (Unit), তেমনি জীবদেহের একক (Unit) হল এই কোষ (Cell)। পৃথিবীর সকল জীবেরই দেহ, অতি সুক্ষ জীবাণু থেকে পৃথিবীর সর্ববৃহৎ প্রাণী নীল তিমির (Blue Whale) দেহ অবধি, এই এক ই মূল একক—জীরকোষের দ্বারা গঠিত। অ্যামিবা, ব্যাকটিরিয়া, ইউগলেনা প্রভৃতি নিম্নস্তরের জীবদেহ একটি মাত্র কোষের দারা গঠিত, উচ্চস্তরের উদ্ভিদ ও প্রাণীর দেহ অসংখ্য কোষের দ্বারা গঠিত। আমাদের দেহের রক্তকণিকাগুলিও এক-একটি স্বতন্ত্র কোষ ছাড়া আর কিছু নয়।

জীবকোষের আবিফার:

তিনশ' বছরের কিছু বেশী সময় হল, 1665 খ্রীষ্টাব্দে বিখ্যাত ইংরাজ বৈজ্ঞানিক রবার্ট হুক (Robert Hooke) প্রথম জীবকোষের

SYLLABUS IN LIFE SCIENCE

CLASS VIII

- (1) Structure of plant and animal cells.
- (2) Histology:—Plant tissue, structure of stem (dicot and monocot), root (dicot and monocot) and leaf.
- (3) Animal tissues and organs.
- (4) Outline idea of different systems with functions:—
 (a) Invertebrate—cockroach and earthworm.
 - (b) Vertebrate—toad (frequent reference will have to be made to the organ systems in human being).
- (5) Phenomenon of diffusion, osmosis, absorption, conduction and transpiration in plants.
 - (6) Students should acquire individual experience by experimentation on the following items:

 Section of stem, root and leaf. External structure of cockroach. External structure and general viscera of toad.

স্থচীপত্ৰ

প্রথম অধ্যায়ঃ পৃষ্ঠ						
	উদ্ভিদ ও প্রাণিকোষের গঠন				1.	
দিতীয় অধ্যায়ঃ						
	উদ্ভিদের কলাস্থান		••	•	12	
	কাণ্ডের আভ্যন্তরীণ গঠন		• •	• •	17	
	মূলের আভ্যন্তরীণ গঠন		••	• •	22	
	পাতার আভ্যন্তরীণ গঠন			• •	24	
তৃতীয় অধ্যায়ঃ						
	প্রাণিদেহের কলা ও অঙ্গ			••	28	
চতুর্থ অধ্যায়ঃ						
	কয়েকটি প্রাণীর বিভিন্ন তন্ত্র	ও তার কাজের	সংক্ষিপ্ত			
	বিবরণ				40	
	অমেক্রদণ্ডী: আরশোলা				40	
	অমেক্দণ্ডী: কেঁচো		The same	•	48	
	মেক্লণণ্ডী: কুনো ব্যাঙ		To proper series		54	
পঞ্চম অধ্যায়ঃ						
	ব্যাপন ••				72	
	অভিস্রবণ ·		1		73	
in the same of	শোষণ			•••	79	
	পরিবহন			1	81	
	व्ययमन ••			•••1	85	
यर्ष्ठ व्यक्षायः						
	পর্যবেক্ষণ ও পরীক্ষা		and the same of th		88	
	अवत्यका ल भागाना		No. of the same of	• •	00	

আবিন্ধার করেন। তাঁর নিজের তৈরী একটি সাধারণ অণুবাক্ষণ যন্ত্রের তলায় বোতলের ছিপি বা কর্কের (ওক গাছের ছাল থেকে

রবার্ট হুকের তৈরী অণুবীক্ষণ যন্ত্র

কর্ক তৈরী হয়) একটি ছেদ পরীক্ষা করে দেখেছিলেন তা অসংখ্য দারি সারি বাক্স বা ঘরের সাহায্যে গঠিত। তিনি সযত্নে তার ছবি এঁকেছিলেন এবং ঐ ঘরগুলির নাম দিয়েছিলেন সেল (Cell)। ইংলণ্ডে সেই যুগে ধর্মযাজকরা সারি সারি যে ঘরের মধ্যে বাস করতেন তারও নাম ছিল সেল। এই থেকেই তিনি ঐ নামকরণ করেন। রবার্ট হুক তাঁর সাদাসিধা অণুবীক্ষণ যন্ত্রের তলায় শুধু উদ্ভিদকোষের দেওয়ালগুলিই (Cell wall) দেখেছিলেন, ভিতরের কোন অংশ দেখা সম্ভব হয়নি। ছবিসহ উদ্ভিদকোষের এই বিবরণ তাঁর লেখা পুস্তক মাইক্রোগ্রাফিয়াতে 1665 গ্রীষ্টাকে প্রকাশ করেন।

আমরা থালি চোথে দাধারণতঃ এক মিলিমিটারের দশ ভাগের এক ভাগের চেয়ে ছোট জিনিস দেখতে পাই না, কিন্তু অধিকাংশ জীবকোষই তার থেকে ছোট, খালি চোখে তাদের দেখা যায় না, তাই

পুরবার্ট হুকের নিজের হাতে আঁকা জীবকোবের প্রথম ছবি (বোতলের কর্কের প্রস্থচ্ছেদ থেকে)

অণুবীক্ষণ যন্ত্রের দরকার হয়। তবে থালি চোখে দেখা যায় এমন অনেক জীবকোষ আছে, যেমন পাথি ও অস্থান্য প্রাণীর অনিষিক্ত ডিম। পাথির একটি ডিম একটিমাত্র জীবকোষ, সেই হিসাবে উট পাথির ডিমকে পৃথিবীর সবচেয়ে বিরাট প্রাণিকোষ বলা যায়। তুলার আঁশগুলিও (Cotton fibre) এক-একটি স্বতন্ত্র কোষ, যার গড় দৈর্ঘ্য হল প্রায় 30 মিলিমিটার।

উদ্ভিদকোৰ:

একটি পোঁয়াজ সংগ্রহ কর। ঐ পোঁয়াজের একটি অংশ থেকে পাতলা একটি আঁশ তুলে একটি স্লাইড তৈরী কর (ছবি দেখ)। অণুবীক্ষণ যন্ত্রে পরীক্ষা করে দেখ, ঐ পাতলা পোঁয়াজের আঁশটি অসংখ্য কোষের সাহায্যে গঠিত। প্রতিটি কোষ এক-একটি বাক্সের মত, তার

পেঁয়াজের আঁশ থেকে স্লাইড তৈরী এবং অণুবীক্ষণ যন্ত্রের মধ্যে পেঁয়াজকোষের দৃশ্য।

নির্দিষ্ট দৈর্ঘ্য, প্রস্থ ও বেধ আছে। প্রতিটি উদ্ভিদকোষ একটি পাতলা, স্বচ্ছ আবরণে ঢাকা থাকে। এই আবরণকে বলে কোমপ্রাচীর (Cell wall)। তরুণ কোমপ্রাচীর সেলুলোজ (Cellulose) নামক

পেঁয়াজকোষগুলি আরো বড় করে দেখান হয়েছে। লক্ষ্য কর, এগুলির এক-একটি বাক্স বা ইটের মত দৈর্ঘ্য, প্রস্থ ও বেধ আছে।

এক রকম রাসায়নিক পদার্থের দারা তৈরী। কোষপ্রাচীরটি ভিতরের দ্বীবস্ত অংশকে রক্ষা করে এবং কোষের আকৃতি ও দৃঢ়তাদানে সহায়তা করে। প্রাণিকোষের চারিপাশে এই ধরনের কোন কোষপ্রাচীর (Cell wall) নেই।

কোষপ্রাচীর দারা বেপ্তিত কোষের ভিতরে জেলির মত ঘন ও স্বচ্ছ্র্ পদার্থ প্রোটোপ্লাজম (Protoplasm) আছে। প্রোটোপ্লাজম কোষের জীবন্ত পদার্থ (Living matter)। প্রোটোপ্লাজমের প্রধান ছইটি অংশ, (1) নিউক্লিয়স সহ স্থল্ম কণিকারাজী (Cell organelles) এবং (2) সাইটোপ্লাজম (Cytoplasm)। প্রোটোপ্লাজমের মধ্যে অপেক্ষাকৃত ঘন, গোলাকার অংশের নাম নিউক্লিয়স (Nucleus)। উদ্ভিদ ও প্রাণীর উভয়েরই কোষের এই প্রোটোপ্লাজমের উপর স্থল্ম একটি পর্দা আছে, তাকে প্রোটোপ্লাজমিক মেমব্রেন (Protoplasmic membrane) বা প্লাজমা মেমব্রেন (Plasma membrane) বলে। এটি প্রোটোপ্লাজমেরই অংশ এবং জীবন্ত। এটি প্রয়োজন অনুসারে কোষের বাইরে থেকে কোষের মধ্যে নানারকম পদার্থের যাতায়াত নিয়ন্ত্রণ করে থাকে। কোষপ্রাচীরটির এই ধরনের কোন নিয়ন্ত্রণক্ষমতা নেই, তার মধ্য দিয়ে জল ও যাবভীয় দ্রবণ অনায়াসেই যাতায়াত করে থাকে। উদ্ভিদ ও প্রাণীর উভয়েরেই দেহের যাবভীয় বিক্রিয়ায় এই প্রোটোপ্লাজমিক মেমব্রেনের ভূমিকা খুবই গুরুত্বপূর্ণ।

তোমার তৈরী স্লাইডে পেঁয়াজের আঁশের ওপর এক ফোঁটা আয়োডিন রং দাও। এবার প্রত্যেকটি কোষের মধ্যে একটি নিউক্লিয়স কালচে বাদামী রং ধারণ করে দৃশ্যমান হবে। কোষমধ্যস্থ নিউক্লিয়সকে খিরেও একটি নিউক্লিয় মেমত্রেন (Nuclear membrane) আছে যার মধ্যে ঘন নিউক্লিয়প্লাজম (Nucleoplasm) থাকে। নিউক্লিয়প্লাজমের মধ্যে এক প্রকার স্ক্র্ম স্থৃতার মত পদার্থ জ্ঞালের আকারে ছড়িয়ে থাকে। তাকে নিউক্লিয় রেটিকিউলাম (Nuclear reticulum) বলে। কোষ বিভাজনের সময় এই নিউক্লিয় রেটিকিউলাম ছোট ছোট খণ্ডে ভাগ হয়ে যায়, তার প্রত্যেকটি খণ্ডকে ক্রোমোজোম (Chromosome) বলে। সহজে রং ধরে বলে এর নাম দেওয়া হয়েছে

ক্রোমোজাম (Chromosome, গ্রীক শব্দ, Kroma=রঙ+Soma=দেহ)। এই ক্রোমোজামগুলির সংখ্যা এক-এক জীবের এক-এক রকম। মান্থবের দেহের ক্রোমোজোম সংখ্যা 23 জোড়া বা 46টি, ভূটা গাছের 5 জোড়া বা 10টি। এই ক্রোমোজোমগুলিই জীবের বৈশিষ্ট্য বংশপরম্পরায় বহন করে থাকে। ক্রোমোজোমের প্রধান উপাদান হল DNA (Deoxyribonucleic acid) ও প্রোটিন (Protein)। DNAই জীবের নানারকম বৈশিষ্ট্যের ধারক ও বাহক। নিউক্লিয়েসের মধ্যেও আবার এক বা একাধিক ঘন অংশ থাকে। তাকে বলে নিউক্লিওলাস্ (Nucleolus)। নিউক্লিওলাসের মধ্যে RNA (Ribonucleic acid) তৈরী হয়। এই RNA কোষের মধ্যে প্রোটিন তৈরীজে সাহায্য করে। শুধু প্রোটিন নয়, কোষের মধ্যে নানারকম শর্করা, স্নেহজাতীয় পদার্থ ও অন্যান্থ বহুরকম জৈব পদার্থ তৈরী হয়। তা ছাড়া জীবের বৃদ্ধি (Growth), শ্বসন (Respiration) ও কোষবিভাজন (Cell division) প্রভৃতি জৈব ক্রিয়া ঘটে থাকে কোষের সাহায্যেই।

প্রাণিকোষ ও উদ্ভিদকোষের চিত্র। সাদৃশুগুলি কেন্দ্রে ও পার্থক্যগুলি উভয় প্রান্তে দেখান হয়েছে।

এই সকল জৈব ক্রিয়া নিউক্লিয়সই নিয়ন্ত্রণ করে থাকে। নিউক্লিয়সকে তাই বলা হয় কোষের নিয়ন্ত্রণ কেন্দ্র বা মস্তিক।

কোষের প্রোটোপ্লাজমের মধ্যে আরো কয়েক রকম পুক্ম কণিকা (Cell organelles) ছড়িয়ে থাকে, তার মধ্যে প্রধান হল মাইটোকন- ডুয়ন (Mitochondrion, Plural—Mitochondria)। এরা দেখতে লম্বা রডের মত অথবা দানার মত। মাইটোকনড্রিয়নের মধ্যে শক্তি দক্ষিত থাকে এবং শ্বাসক্রিয়ায় সহায়তা করে থাকে। একটি কোষে বহু মাইটোকনড্রিয়ন থাকে।

উন্তিদকোষের আর একটি বৈশিষ্ট্য হল, প্রোটোপ্লাজমের মধ্যে প্লাসটিডের (Plastid) অবস্থান। এগুলিও এক প্রকার স্ক্র কণিকা। এই প্লাসটিডের মধ্যে সবুজ কণা বা ক্লোরোফিল (Chlorophyll) থাকে, আমরা তাই গাছের পাতার রং সবুজ দেখি। এই প্লাসটিডের মধ্যে যখন সবুজ ক্লোরোফিল থাকে তখন তাকে ক্লোরোপ্লাস্টা (Chloroplast) বা ক্লোরোপ্লাসটিড (Chloroplastid) বলে। এই ক্লোরোপ্লাসটিডের মধ্যেই স্থিকিরণের সাহায্যে শর্করা তৈরী হয়, যাকে আমরা সালোকসংশ্লেষ বা Photosynthesis বলি। এটি উন্তিদকোষের প্রধান বৈশিষ্ট্য, যা কোন প্রাণিকোষে হয় না।

প্লাসটিডের বং অনেক সময় হলুদ বা কমলা হয়, তাকে বলে কোমোপ্লাস্ট (Chromoplast) বা কোমোপ্লাসটিড (Chromoplastid)। ফুলের পাপড়িতে ক্রোমোপ্লাস্ট থাকে। যে প্লাসটিডের কোন রং নেই তাকে বলে লিউকোপ্লাস্ট (Leucoplast) বা লিউকোপ্লাসটিড (Leucoplastid)। সাধারণতঃ গাছের শিকড়ের মধ্যে লিউকোপ্লাস্ট দেখা যায়। প্রাণিকোষের মধ্যে কোন প্লাসটিড নেই।

কোষের প্রোটোপ্লাজমের মধ্যে এক বা একাধিক গহবর বা ভ্যাকুওল (Vacuole) থাকে, তার মধ্যে জল, নানারকম খাতত্রকণা ও অপ্রয়োজনীয় পদার্থ সঞ্চিত থাকে।

তরুণ উদ্ভিদকোষে অনেকগুলি ভ্যাকুওল থাকে, পরে সেগুলি মিলেমিশে একটি বড় কেন্দ্রীয় ভ্যাকুওলে (Central Vacuole) পরিণত হয়, তার চারপাশে প্রোটোপ্লাজমের পাতলা স্তর ঘিরে থাকে (ছবি দেখ)। প্রাণিকোষে ভ্যাকুওলের আকার অনেক ছোট এবং সংখ্যায় বেশী।

কোমের মধ্যে প্রোটোপ্লাজম কখনও স্থির থাকে না। সব সময়ই ধীরে ধীরে সঞ্চরণ করে, প্রোটোপ্লাজমের অন্তর্গত অন্যান্ত স্ক্র কণিকাগুলিও সঞ্চরণশীল অবস্থায় থাকে। কোষের মৃত্যু ঘটলে এই সঞ্চরণ স্থায়ীভাবে বন্ধ হয়ে যায়।

প্রাণিকোষের গঠন ঃ

তোমার হাতের আঙুলের ডগায় জীবাণুম্ক্ত ছুঁচ (Sterilized needle) ফুটিয়ে এক ফোঁটা রক্ত একটি পরিক্ষার স্লাইডের ওপর নাও, তারপর আর একটি পরিক্ষার স্লাইডের শীর্যদেশের সাহায্যে ঐ রক্তটি স্লাইডের ওপর ছড়িয়ে দাও এবং অণুবীক্ষণ যন্ত্রের তলায় স্লাইডিট পরীক্ষা করে দেখ। অসংখ্য গোল গোল রক্তকণিকা দেখা যাবে। এগুলি এক-একটি স্বতন্ত্র কোষ। লক্ষ্য কর, এই প্রাণিকোযের চারপাশে কোন কোষপ্রাচীর (Cell wall) নেই। এর প্রোটো-প্রাজমিক মেমত্রেনটিই (Protoplasmic membrane) কোষের ভিতরের অংশটিকে ঘিরে রাখে। উদ্ভিদকোষের সঙ্গে প্রাণিকোষের অধিকাংশ বিষয়েই মিল আছে, উভয়ের নিউক্লিয়স ও সাইটোপ্লাজমের

প্রাণিকোষ

মধ্যে কোন মূলগত প্রভেদ নেই। প্রাণিকোষের মধ্যে কোন প্লাসটিড এবং ক্লোরোফিল নেই, তাই তারা সালোকসংশ্লেষ করতে অক্ষম। প্রাণিকোষের আর একটি বৈশিষ্ট্য হল এতে সেন্ট্রোজোম (Centrosome) থাকে, এটি নিউক্লিয়সের নিকটে থাকে এবং এতে সেন্ট্রিওল (Centriole) আছে। কোষ-বিভাজনের সময় সেন্ট্রোজোমের ভূমিকা খুবই গুরত্বপূর্ণ। উদ্ভিদকোষের তুলনায় প্রাণিকোষে ভ্যাকুওলের (Vacuole) আকার অনেক ছোট এবং সংখ্যায় বেশী।

উদ্ভিদকোষ ও প্রাণিকোষের পার্থক্য

উদ্ভিদকোষ

51	কোষপ্রাচীর আছে	কোষপ্রাচীর নেই
١ ۶	প্লাসটিড আছে	প্লাসটিড নেই
91	সেণ্ট্রোজোম নেই	সেণ্ট্রোজোম আছে
	ভ্যাকুওৰ আয়তনে বড়	ভ্যাকুওল আয়তনে ছোট
	কিল সংখ্যাস কয	কিল সংখ্যায় বেশী

জীবকোষের রাসায়নিক উপাদান

জীবকোষের মধ্যে বহুবিধ জৈব পদার্থ পাওয়া যায়, তা প্রধানতঃ হল শ্বেতসারজাতীয় পদার্থ (Carbohydrates), স্নেহ ও তৈলজাতীয় পদার্থ (Fats and Oils), প্রোটিন (Protein) ও নিউক্লিক আাদিড (Nucleic acid)। জীবকোষের প্রোটোপ্লাজম প্রোটিনজাতীয় পদার্থে তৈরী। জীবকোষের জলের পরিমাণ সাধারণতঃ শতকরা 70 থেকে 95 ভাগ। জীবকোষকে রাসায়নিক বিশ্লেষণ করলে যে 10টি প্রধান মৌল পদার্থ পাওয়া যায় তা হল কার্বন, হাইড্রোজেন, অক্সিজেন, ফসফরাস, সালফার, পটাশিয়াম, নাইট্রোজেন, ক্যালসিয়াম, আয়রন ও ম্যাগনেসিয়াম। এই মৌল পদার্থগুলের নাম সহজে মনে রাথবার জন্ম একটি সাংকেতিক নাম মনে রাখা যেতে পারে। তা হলঃ

C. HOPSKN Ca, Fe, Mg.

এই প্রধান মৌল পদার্থগুলির কোন একটির অভাব হলে জীবকোষের পক্ষে বেঁচে থাকা সম্ভব নয়। এই মৌল পদার্থগুলির সহায়তায়ই কার্বোহাইডেট, প্রোটিন, ফ্যাট ইত্যাদি যাবতীয় জৈব পদার্থ উদ্ভিদ-কোষের মধ্যে তৈরী হয়। উদ্ভিদকোষের মধ্যে উৎপন্ন ঐ সব জৈব পদার্থ আহার করেই অক্যান্ত প্রাণীরা বেঁচে থাকে।

कीवत्नत स्थान देविशिष्टेर :

এই কোষের মধ্যেই জীবদেহের যাবতীয় জটিল বিক্রিয়া ঘটে থাকে। পরিবেশের নানা রকম উপাদানের সহায়তায় অসংখ্য জৈব পদার্থ তৈরী হয় এই কোষের মধ্যেই, সেই সঙ্গে জীবের পরিপাক, পুষ্টি, বৃদ্ধি, বংশবৃদ্ধি, শ্বাসকার্য সবই ঘটে এই কোষের মধ্যে এবং এই কোষের সাহায্যে। এই প্রসঙ্গে সবচেয়ে উল্লেখযোগ্য বিষয় হল এইসব জৈব বিক্রিয়ার মূল বৈশিষ্ট্য ও প্রাকৃতি সকল জীবেরই এক। উদ্ভিদ ও প্রাণীর শ্বাসকার্য, মংস্তা ও মান্তবের পৃষ্টি, ছুঁচো ও তিমির সংবহনতন্ত্রে বিশেষ কোন মৌল প্রভেদ নেই। দ্বিতীয়তঃ কোষের মধ্যে এই জৈব ক্রিয়াগুলি এমন সুচারুভাবে নিষ্পান্ন হয় যা শুধু প্রাণীর আত্মনির্ভরতায় সাহায্য করে তাই নয়, অক্সান্য প্রাণীর জীবনধারণেরও সহায়ক হয়। যেমন, উদ্ভিদরা যা ফলমূল, শস্তা উৎপন্ন করে, তা সংগ্রহ করে অত্যাত্য প্রাণীরা জীবন ধারণ করে। আবার ঐ সকল প্রাণীদের শ্বাসকার্যের ফলে যে কার্বন ডাইঅক্সাইড উৎপন্ন হয়, তা সংগ্রহ করে উদ্ভিদরা বেঁচে থাকে এবং ঐ ফলমূল, শস্ত উৎপাদন করে থাকে। স্ত্রাং পৃথিবীর সকল জীবের মধ্যে আত্মীয়তার সীমা যে শুধু তাদের প্রোটোপ্লাজমের গঠন ও নানা রকম জৈব ক্রিয়ার সাদৃশ্যের মধ্যেই সীমবদ্ধ তা নয়, বরং তা আরো অর্থপূর্ণ, গভীরতর মাত্রায় পরিব্যাপ্তি লাভ করেছে। পৃথিবীর সকল জীবেরই জীবনধারণের মূল ভিত্তি গড়ে উঠেছে অগ্রান্ত জীবের নানারকম জৈব ক্রিয়ার ওপর নির্ভর করে, অর্থাৎ প্রত্যেক জীবের অস্তিত্ব নির্ভর করছে

অন্তের অন্তিত্বের ওপর। পৃথিবীতে কোন জীবই স্বয়স্তু নয়, স্বয়ংসম্পূর্ণও নয়। প্রত্যেক জীবই বছ বিচিত্র পদ্ধতিতে অন্তান্ত জীবকে সাহায্য করে থাকে এবং বছ অভিনব উপায়ে অপরিমেয় সাহায্য নিয়েও থাকে, যার কলে এই পৃথিবীতে সকলেরই অন্তিত্ব রক্ষা করা সন্তব হয়। এই পরম্পর নির্ভরতাও ব্যাপক অর্থে জীবনের অন্ততম মোল বৈশিষ্ট্য।

विकास प्रकार के एक मार्च अनुमाननी विकास का एक विकास का कार्य

- কোষকে জীবদেহের একক বলা হয় কেন ? জীবকোষের আবিকারকের
 নাম লেখ। অল্প কথায় তাঁর আবিকারের ঘটনাটি বর্ণনা কর।
 জীবকোষ দেখতে অণুবীক্ষণ যয়ের প্রয়োজন হয় কেন ? খালি চোখে
 দেখা যায় এমন একটি উদ্ভিদকোষ ও একটি প্রাণিকোষের নাম লেখ।
- একটি জাবকোষের ছবি আঁক ও তার বিভিন্ন প্রধান অংশগুলির নাম ছবিতে দেখাও ও তাদের কার্য বর্ণনা কর।
- 3. একটি উদ্ভিদকোষ ও একটি প্রাণিকোষের ছবি আঁক ও তাদের প্রধান আংশগুলির নাম ছবিতে দেখাও। ছুইটি কোষের পার্থক্য বর্ণনা কর।
 - জীবকোষ যে প্রধান দশটি মৌল পদার্থে গঠিত তাদের নাম উল্লেখ কর। জীবকোষের প্রধান জৈব উপাদানগুলির নাম লেখ।
 - 5. জীবনের মৌল বৈশিষ্ট্য বলতে কি বোঝ ? কয়েকটি উদাহরণ দিয়ে তা বুঝিয়ে দাও।
 - টীকা লেখ:

 নিউক্লিয়স, প্রাসটিড, ক্রোমোজোম, মাইটোকনিজয়া, প্রোটোপ্রাজমিক
 রেমব্রেন ও সাইটোপ্রাজম।

দ্বিতীয় অধ্যায়

উদ্ভিদের কলাস্থান (Plant Histology)

উদ্ভিদের দেহ অসংখ্য কোষের (Cell) সমন্বয়ে তৈরী । গাছের কাণ্ডের ডগা ও শিকড়ের ডগাগুলি থুব নরম, হাতের আঙ্গুলের চাপেই ভেঙ্গে যায়। কাণ্ডের গোড়াটি কিন্তু খুব শক্ত । আম, জামের মত বড় গাছ হলে কুড়ুলের প্রয়োজন হয় তা কাটবার জহ্য । তোমরা একটা জিনিস লক্ষ্য কর, আমাদের দেহের মধ্যে যেমন একটা হাড়ের কন্ধাল আছে, যার সাহায্যে দেহটা সোজা হয়ে দাঁড়িয়ে থাকে, উদ্ভিদের দেহের মধ্যে তেমন কোন কন্ধাল নেই; অথচ আম, জাম, তাল, নারিকেল বড় বড় গাছগুলি কেমন শক্ত ও সোজাভাবে দাঁড়িয়ে থাকে। এদের গুঁড়ির কোষসমষ্টিগুলি নিশ্চয়ই অত্যন্ত কঠিন, তাই গাছের গুঁড়িটি অত শক্ত । কাণ্ড ও শিকড়ের ডগার কোষগুলি নিশ্চয়ই খুব নরম তাই সহজেই তা ভাঙ্গা যায়। উদ্ভিদের দেহের মধ্যে কোষছাড়া আর কিছু নেই, তা হলে দেখা যাচ্ছে—এই কোষগুলি দেহের বিভিন্ন স্থানে বিভিন্ন আকারের এবং বিভিন্ন প্রকারের (নরম বা কঠিন) এবং বিভিন্ন রকম কাজ করে থাকে, অর্থাৎ একই কোষ তরুণ অবস্থায় এক রকম কাজ করে, পরিণত অবস্থায় অহ্য রকম কাজ করে থাকে।

আমরা উদ্ভিদকোষের গঠন আলোচনার সময় জেনেছি প্রত্যেকটি কোষের চারিপাশে একটা কোষপ্রাচীর আছে, তরুণ কোষগুলির প্রাচীর নরম সেলুলোজে (Cellulose) তৈরী, তাই সহজেই তা ভাঙ্গা যায়। কিন্তু ঐ কোষগুলির বয়স যখন ক্রমশঃ বাড়ে, তখন ঐ নরম কোষপ্রাচীরের ভেতরের গায়ে প্রোটোপ্লাজম (Protoplasm) থেকে নিঃস্ত নানা রকম রাসায়নিক পদার্থ সঞ্চিত হতে থাকে। তার ফলোকোষপ্রাচীরগুলি ক্রমশঃ মোটা ও শক্ত হতে থাকে, প্রোটোপ্লাজমের

পরিমাণ কিন্তু ক্রেমশঃ কমে আসে এবং কোষগুলির অবশেষে মৃত্যু খটে। এই সঞ্চিত রাসায়নিক পদার্থের মধ্যে অন্যতম প্রধান হল লিগনিন (Lignin)। আমরা গাছের গুঁডি কাটলে যে শক্ত কাঠ পাই তার প্রায় সবটাই এই লিগনিনের তৈরী কোষপ্রাচীরের সমষ্টি ছাড়া আর কিছুই নয়। লিগনিনের ভৈরী কোষপ্রাচারগুলি ভ ডিটিকে কাঠিন্য দান করে। গাছের ছালের কোষপ্রাচীরের গায়ে কর্ক বা স্থবেরিন (Suberin) নামে আর এক রকম জলনিরোধক পদার্থ জনা হয়, যার ফলে বাইরে থেকে জল সহজে গাছের গুঁডির মধ্যে প্রবেশ করতে পারে না, ভেতরের জলও বেরিয়ে যেতে পারে না। কোন কোন গাছের ছালে এই কর্ক এত পুরু হয়ে জমা হয় যা থেকে বোতলের ছিপি তৈরী হয়। রবার্ট ছক (Robert Hooke) এই রকম একটি কর্কের ছিপি থেকেই প্রথম জীবকোষের সন্ধান পেয়েছিলেন সে কথা আগেই বলা হয়েছে। কাণ্ড ও পাতার ত্বকের (Cuticle) কোষপ্রাচীরগুলির গায়ে কিউটিন (Cutin) নামে আর এক রকম পদার্থ জমা হয়। এই কিউটিনের মধ্যদিয়ে জল সহজে যাতায়াত করতে পারে না, তার ফলে উদ্ভিদের দেহ থেকে জলের অপচয় হাস পায়।

উদ্ভিদের দেহকোষগুলিকে আরও কয়েক রকম বিশেষ কাজ করতে দেখা যায়। মাটি থেকে জল ও সারপদার্থ দেহের সর্বত্র সরবরাহের জন্য কয়েক রকম কোষ পর পর জুড়ে দার্ঘ নলিকার স্থৃষ্টি হয়, যাকে বলা হয় জাইলেম (Xylem) নলিকা। তেমনি গাছের পাতায় যে খাদ্য তৈরী হয় তা বর্ধ নশীল অংশগুলিতে চালান দেবার জন্য কয়েক রকম কোষ পরস্পার জোড়া বেঁধে ফ্লোয়েম (Phloem) নলিকা তৈরী হয়।

স্থতরাং দেখা যাচ্ছে উদ্ভিদ দেহে বিভিন্ন রকম কাজের জন্য বিভিন্ন রকম কোষসমষ্টি আছে। এই এক এক রকম কোষসমষ্টিকে এক একটি কলা বা টিম্ব (Tissue) বলে (Tissue: ল্যাটিন Texo = বয়ন করা)। একটি কলা বা টিস্থ (Tissue) যে সকল কোষ
নিয়ে তৈরী তারা সাধারণতঃ একই রকম দেখতে হয়, একই রকম
কাজ করে এবং তাদের উৎপত্তিস্থানও একই হয়। তাই বলা যায়,
আক্বতি, কাজ ও উৎপত্তিস্থান একই এমন কভকগুলি কোষের
সমষ্টিকে কলা বা টিস্থ (Tissue) বলে।

জীববিজ্ঞানের যে বিভাগে উদ্ভিদ ও প্রাণীর দেহকলা বা টিস্থ (Tissue) সম্পর্কে আলোচনা করা হয় তাকে বলে কলান্দান বা হিস্টোলজি (Histology)।

উদ্ভিদের দেহকলা ছুইটি প্রধান শ্রেণীতে বিভক্ত: (1) ভাজক কলা বা মেরিস্টেম্যাটিক টিস্থ (Meristematic tissue); (2) স্থায়ী কলা বা পারমানেন্ট টিস্থ (Parmanent tisssue)।

ভাজক কলা: উদ্ভিদের শিকড়ের ডগা ও কাণ্ডের ডগার কোষ-গুলি অতি তরুণ ও বর্ধনশীল এবং তারা বিভক্ত হয়ে আরো আপত্য কোষ তৈরী করতে পারে। তাই তাদের বলা হয় ভাজক কলা বা মেরিস্টেম্যাটিক টিস্থ (Meristematic tissue)। শিকড় ও কাণ্ডের প্রান্ত ছাড়াও পর্বসন্ধি (Node) ও কাণ্ডের বিশেষ অংশে ভাজক কলা থাকে; সেখান থেকে নূতন নূতন কোষ তৈরী হয়, নূতন শাখা-প্রশাখা নির্গত হয়। কাণ্ডের ক্যামবিয়াম কলা (Cambium tissue) এই ভাজক কলার অন্তর্গত।

স্থায়ী কলা: যে কলার কোষগুলি পরিণত অবস্থায় পৌছেছে, যাদের বিভক্ত হবার আর কোন ক্ষমতা নেই, তাদের স্থায়ী কলা বা পারমানেণ্ট টিস্থ (Parmanent tissue) বলে। লিগনিনযুক্ত গাছের গুঁড়ির মৃত কোষগুলি এই স্থায়ী কলার অন্তর্গত।

বিভিন্ন রকম স্থায়ী কলা : স্থায়ী কলা ছই প্রকারের। 1. সরল কলা (Simple tissue)। 2. জটিল কলা (Complex tissue)।

যখন একই আকৃতির কোষ দিয়ে তৈরী স্থায়ী কলা একই কাজ করে তাকে বলা হয় সরল কলা। সরল কলা তিন প্রকার: প্যারেনকাইমা (Parenchyma), কোলেনকাইমা (Collen-

chyma) ও স্ক্রেনকাইমা (Sclerenchyma)।

প্যারেনকাইমা (Parenchyma): সেলুলোজের তৈরী
পাতলা কোষপ্রাচীর দ্বারা বেষ্টিত
দ্বীবস্ত কোষসমষ্টিকে প্যারেনকাইমা কলা বলে। কোষগুলি
গোলাকার বা ডিম্বাকার এবং
এই সব কোষের অন্তর্বতী স্থান
(Intercellular space) ফাঁকা
থাকে। সাধারণতঃ গাছের কোমল
অংশ এই কলা দ্বারা গঠিত।

(া) কোলেনকাইমা কলার প্রস্থচ্ছেদ

প্যারেনকাইমা কলা

কোলেনকাইমা (Collenchyma) ঃ এই কলা লম্বাটে ধরনের কোষে তৈরী, কোষ-প্রাচীর পাতলা, কিন্তু কোষের প্রতিটি কোণ স্থূল, তাই গাছকে কিছুটা দৃঢ়তা দান করে। এর কোষগুলিও জীবন্ত এবং তার মধ্যে ক্লোরোপ্লান্ট থাকে, তাই এরা খাছ্য তৈরী করতে পারে। ছকের নীচেই এই কলার অবস্থিতি।

⁽²⁾ কোলেনকাইমা কলার লম্বচ্ছেদ

স্ক্রেরেনকাইমা (Sclerenchyma) : এই কলার কোষগুলির প্রাচীর অত্যন্ত মোটা ও লিগনিন দ্বারা তৈরী। কোষে কোন

স্ক্রেরেনকাইমা কলার প্রস্থচ্ছেদ ও লম্বচ্ছেদ

প্রোটোপ্লাজম থাকে না,
সেজন্য কোষগুলি মৃত। গাছের
গুঁ ড়ির কাঠিন্য ও দৃঢ়তা এই
কলার জন্মই হয়। এটা মনে
রাখা দরকার একই প্যারেনকাইমা টিস্থ বয়স বাড়ার সঙ্গে
সঙ্গে ক্রমশঃ মৃত স্ক্রেরেনকাইমা টিস্থতে পরিণত হতে
পারে।

জটিল কলা (Complex tissue): যে কলার কোষ-গুলির গঠন এক প্রকার নয় কিন্তু তাদের উৎপত্তিস্থান এক এবং তারা সকলে মিলে একটি নির্দিষ্ট কাজ করে, তাকে

জিটিল কলা বলে। উদ্ভিদদেহে জাইলেম (Xylem) ও ফ্লোয়েম (Phloem) নলিক। এই জটিল কলার অন্তর্গত। জাইলেম ও জোয়েম উভয়ই বিভিন্ন রকম কোষ দ্বারা গঠিত। জাইলেমের মধ্য দিয়ে উদ্ভিদের বিভিন্ন অংশে জল ও লবণ সরবরাহ হয়। ফ্লোয়েমের মধ্য দিয়ে পাতায় তৈরী খাত্য বিভিন্ন অংশে সরবরাহ হয়। উদ্ভিদের দেহে গুচ্ছ বা বাণ্ডিলের আকারে এই জাইলেম ও জ্লোয়েম নলিগুলি থাকে, তাই এদের বলা হয় ভ্যাসকুলার বাণ্ডল (Vascular bundle)।

কাণ্ডের আভ্যন্তরীণ গঠন (Internal Structure of Stem)

দ্বিবীজপত্রী উদ্ভিদের কাগু

সূর্যমুখী ফুলের গাছের একটি কচি কাণ্ডের টুকরো সংগ্রহ কর, তা থেকে সাবধানে কতকগুলি প্রস্থচ্ছেদ কাট এবং ঐগুলি একটি

ফ্লোয়েম ও জাইলেম জটিল কলা, এই কলার সাহায্যে ভ্যাসকুলার বাণ্ডল গঠিত। ভ্যাসকুলার বাণ্ডলগুলি দ্বিনীজপত্রী উদ্ভিদের কাণ্ডে চক্রাকারে সাজান থাকে।

পাত্র বা ওয়াচ-য়াসের জলের মধ্যে রাখ। ঐগুলি থেকে একটি সর্বাংশে সমান পাতলা ছেদ (Section of uniform thickness) বেছে নিয়ে এক ফোঁটা জলের সঙ্গে স্লাইডের ওপর রাখ, কভার স্লিপ চাপা দাও এবং অণুবীক্ষণ যন্ত্রের তলায় পরীক্ষা করে দেখ। এই ছেদটি প্রায় গোলাকার এবং কতকগুলি কলার সাহায্যে গঠিত, সেগুলি হল ঃ—

বিছঃত্বক (Epidermis): কাণ্ডের বাইরের দিক একটি

মাত্র কোষস্তরে গঠিত। এটি প্যারেনকাইমা কলা, এর ওপর পাতলা

কিউটিক্ল-এর একটি আবরণী আছে এবং কতকগুলি বছকোষী রোম

আছে।

II. কর্টেকা : (Cortex) : বহিঃত্বকের ভিতরে স্টেলি (Stele) পর্যন্ত বিস্তৃত অংশকে কর্টেকা (Cortex) বলে (ছবি দেখ)। কর্টেকা-এর অংশগুলি হল : (1) অধঃত্বক (Hypodermis), এটি বহিঃত্বকের

দ্বিজপত্রী উদ্ভিদ স্বর্যম্থীর কচি কাণ্ডের প্রস্থচ্ছেদ (আংশিক)

ভিতরে কয়েক স্তর কোলেনকাইমা দিয়ে গঠিত। (2) প্যারেনকাইমা অংশ, অধ্যত্বকের ভিতর বড় আকারের প্যারেনকাইমা দিয়ে গঠিত, এখানে একাধিক রেজিন নালী আছে। (3) অন্তঃত্বক (Endodermis) বা স্টার্চ দিথু (Starch Sheath), এটি কর্টেক্স-এর সবচেয়ে ভিতরের স্তর, অত্যন্ত বৈশিষ্ট্যময় ও ঢেউখেলান আকৃতির। এই স্তরের কোবগুলির মধ্যে প্রচুর শ্বেতসার-কণিকা পাওয়া যায় এবং আয়োডিন রং ছোঁয়ালে এগুলি নীলবর্ণ ধারণ করে।

III. স্টেলি (Stele): কর্টেক্স-এর পর স্টেলি বা কেন্দ্রের

অংশ। স্টেলির মধ্যে অনেকগুলি ভ্যাসকুলার বাণ্ডল (Vascular bundle) চক্রাকারে সাজানো থাকে, দ্বিনীঙ্গপত্রী কাণ্ডের এইটিই বৈশিষ্ট্য। প্রত্যেক বাণ্ডল-এর মাথায় অর্থাৎ বাইরের দিকে কতকগুলি স্ক্রেরেনকাইমার স্তর থাকে, এগুলিকে বাণ্ডল ক্যাপ (Bundle Cap) বলে। এগুলিকে বিশেষ প্রকার পেরিসাইক্ল্ বলা যায়। ভ্যাসকুলার বাণ্ডল-এর প্রত্যেকটিতে থাকে: (1) ফ্লোয়েম (Phloem), বাণ্ডল ক্যাপের ভিতর দিকে অবস্থিত কোষসমষ্টি, এর মধ্য দিয়ে

দ্বিবীজপত্রী উন্তিদের কাণ্ডে ভ্যাসকুলার বাণ্ডলের লম্বচ্ছেদ ও অস্থান্য কলার অবস্থান দেখান হয়েছে।

খাত্যবস্তু সরবরাহ হয়। এর কোষগুলি জীবিত। (2) জাইলেম (Xylem): বাণ্ডল-এর ভিতরের দিকে অর্থাৎ কেন্দ্রের দিকে থাকে জাইলেম, এর মূল কোষগুলি মৃত, এর মধ্য দিয়ে জল ও লবন সরবরাহ হয়। এগুলিকে ভেসল বলা হয়। (3) ক্যামবিয়াম (Cambium) ঃ ফ্রায়েম ও জাইলেমের অন্তর্বর্তী স্থানে আয়তাকার জীবিত কোষের কয়েকটি স্তর নিয়ে ক্যামবিয়াম গঠিত, এটি ভাজক কলা, স্থতরাং ক্যামবিয়াম থেকে নৃতন নৃতন জাইলেম ও ফ্লোয়েম তৈরী হয় । দ্বিবীজপত্রী কাণ্ডের এটি একটি বৈশিষ্ট্য । (4) পিথ (Pith) বা মজ্জা, স্টেলির কেন্দ্রে এটি প্যারেনকাইমা কলা দিয়ে গঠিত।

একবীজপত্রী উদ্ভিদের কাণ্ডঃ

ভূটা গাছের কচি কাণ্ডের একটি প্রস্থাচ্ছেদ অণুবীক্ষণ যন্ত্রের তলায় পরীক্ষা করে দেখ। নিম্নলিখিত অংশগুলি দেখতে পাবে:

- বহিঃত্বক (Epidermis) ঃ কাণ্ডের বাইরের দিকে এক সারি কোমদারা গঠিত। এর ওপর কিউটিকল্-এর একটি আবরণ আছে কিন্তু কোন রোম নেই।
- II. কর্টেক্স (Cortex): এখানে কর্টেক্স দ্বিনীজপত্রী উদ্ভিদের কাণ্ডের মত পরিষ্কারভাবে আলাদা করা যায় না। বহিঃত্বকের ঠিক তলায় কয়েক স্তর পুরু প্রাচীরবিশিপ্ত স্ক্রেরেনকাইমা কলা দ্বারা গঠিত, এটাই হল অধঃত্বক। অধঃত্বকের ভিতরে পরিধি থেকে পরিধি পর্যস্ত বিস্তৃত প্যারেনকাইমা আছে। এটিকে বলে গ্রাউণ্ড টিস্থ (Ground tissue) বা জেনারেল কর্টেক্স (General cortex)।
- III. ভ্যাসকুলার বাগুল (Vascular bundle): গ্রাউণ্ড টিস্থর সর্বত্র ভ্যাসকুলার বাগুলগুলি এলোমেলোভাবে ছড়ান থাকে, এটি একবীজপত্রী উদ্ভিদের বৈশিষ্ট্য। ভ্যাসকুলার বাগুল-এর ওপর দিকে ক্লোয়েম ও নীচের দিকে জাইলেম থাকে। ক্লোয়েম ও জাইলেমের মধ্যে কোন ক্যামবিয়াম নেই, এটাও একবীজপত্রী গাছের একটি উল্লেখযোগ্য বিশেষত্ব। প্রত্যেকটি ভ্যাসকুলার বাগুল আলাদা আলাদা হয়ে স্ক্লেরেনকাইমা কলায় ঢাকা থাকে।

একবীজপত্রী উদ্ভিদ ভুটার কচি কাণ্ডের প্রস্থচ্ছেদ (আংশিক)

দ্বিবীজপত্রী ও একবীজপত্রী উদ্ভিদের কাণ্ডের কয়েকটি প্রধান পার্থক্য

দিবীজপত্রী উদ্ভিদের কাণ্ড

- 1. বহিঃত্বকে রোম আছে,
- 2. অন্তঃত্বক আছে,
- 3. ভ্যাসকুলার বাণ্ডল চক্রাকারে সাজান থাকে,
- 4. ফ্লোয়েম ও জাইলেমের মাঝে ক্যামবিয়াম আছে.

একবীজপত্রী উদ্ভিদের কাণ্ড বহিঃত্বকে রোম নেই।

অন্তঃত্বক নেই।

ভাগেকুলার বাওল এলোমেলো-ভাবে ছড়ান থাকে।

ফ্লোয়েম ও জাইলেমের মাঝে ক্যামবিয়াম নেই।

মূলের আভ্যন্তরীণ গঠন (Internal Structure of Root)

षिवीजशेजी উद्धिरमत गून :

একটি ছোলাগাছের কচি শিকড় থেকে পাতলা একটি প্রস্থচ্ছেদ নাও। ছেদটি সেফ্রানিন রং-এ ডুবিয়ে স্লাইডের ওপর রাখ এবং কভার স্লিপ চাপা দাও। অণুবীক্ষণ যন্ত্রের সাহায্যে এবার পরীক্ষা কর। নিম্নলিখিত অংশগুলি দেখতে পাবে।

 বহিঃত্বক (Epidermis) ঃ বাইরের স্তর্টি এক সারিতে সাজান পাতলা প্যারেনকাইমা দিয়ে গঠিত, এটাই হল বহিঃত্বক বা এপিরেমা।
 বহিঃত্বকে কতকগুলি এককোষী মূলরোম আছে।

দ্বিবীজপত্রী উদ্ভিদ ছোলার কচি মূলের প্রস্থচ্ছেদ (আংশিক)

II, কর্টেক্স (Cortex): বহিঃত্বকের ভিতরের কোষগুলি বড়

আকারের প্যারেনকাইমা দিয়ে গঠিত, এই অংশ বেশ বিস্তৃত। কর্টেক্সের ভিতর এক সারিতে সাজান ব্যারেলাকৃতির স্তর্টিকে অন্তঃত্বক বলে।

III. কেলি (Stele): এটি মূলের কেন্দ্রীয় অংশ। অন্তঃছকের ভিতর এই অংশ থাকে। এটি নিম্নলিখিত অংশ দ্বারা গঠিত: (1) পেরিসাইক্ল—পাতলা কোষপ্রাচীরবিশিষ্ট একটি কোষস্তর স্টোলকে দিরে থাকে। (2) ভ্যাসকুলার বাণ্ডল—চারিটি জাইলেমগুচ্ছ এবং এগুলির অন্তর্বর্তী স্থানে চারিটি ক্লোয়েমগুচ্ছ নিয়ে ভ্যাসকুলার বাণ্ডল বর্তমান। (3) পিথ (Pith) বা মজ্জা—মূলের কেন্দ্রস্থলে ঘনসন্নিবিষ্ট প্যারেনকাইমা দিয়ে গঠিত পিথ বা মজ্জা আছে।

একবীজপত্রী উদ্ভিদের মূল:

পূর্ববর্ণিত পদ্ধতিতে কচি ভূটামূলের একটি প্রস্থচ্ছেদ অণুবীক্ষণ যন্ত্রের তলায় পরীক্ষা করলে নিমূলিথিত অংশগুলি দেখা যাবে।

একবীজপত্রী উদ্ভিদ ভূটার কচি মূলের প্রস্থচ্ছেদ (আংশিক)

I. বৃহিঃত্বক (Epidermis, also known as Epiblema) ঃ এক সারি প্যারেনকাইমা দিয়ে তৈরী এই স্তরকে বলে বহিঃত্বক। এই স্তরের কতকগুলি কোষ বাইরের দিকে প্রসারিত হরে এককোষী মূল রোম তৈরী করে।

II. কর্টেক্স (Cortex) ঃ বহিঃত্বকের নীচে কর্টেক্স প্যারেনকাইম। কলা দারা গঠিত, দ্বিনীজপত্রী মূলের চেয়ে এটি অধিক বিস্তৃত এবং সবচেয়ে ভিতরের স্তর্রটি ব্যারেলের মত এক সারি কোষ দারা তৈরী, এটি অস্তঃত্বক (Endodermis)।

III. স্টেলি (Stele): এটি মূলের কেন্দ্রীয় অংশ এবং এতে আছে

(1) পেরিসাইক্ল—এক সারি প্যারেনকাইমা যা স্টেলির অপর
অংশগুলিকে বিরে রাখে। (2) ভ্যাসকুলার বাগুল—সংখ্যা ছয়-এর
বেশী, জাইলেম ও ফ্লোয়েম আলাদা আলাদা গুচ্ছে পাশাপাশি বিশুস্ত
থাকে। (3) স্টেলির কেন্দ্রটি প্যারেনকাইমা দিয়ে তৈরী, এটিকে
মজ্জা বা পিথ (Pith) বলে। একবীজপত্রী মূলের মজ্জা দ্বিবীজপত্রী
মূলের থেকে বড়।

দ্বিবীজপত্রী ও একবীজপত্রী উদ্ভিদের মূলের কয়েকটি প্রধান পার্থক্য

দ্বিবীজপত্রী উদ্ভিদের মূল

1. কর্টেক্স ছোট,

2. ভ্যাসকুলার বাগুল-এর সংখ্যা
ভার থেকে ছয়,

3. মজ্জা সংক্ষিপ্ত,

একবীজপত্রী উদ্ভিদের মূল
কর্টেক্স বড়।
ভ্যাসকুলার বাগুল-এর সংখ্যা
ভ্যাসকুলার বাগুল-এর সংখ্যা
হয়-এর বেশী।
মজ্জা বিস্তৃত।

পাতার আভ্যন্তরীণ গঠন

(Internal Structure of a Leaf)

দ্বিবীজপত্রা গাছের একটি কচি পাতা সংগ্রহ কর, তার একটি পাতলা প্রস্থচ্ছেদ নাও। পাতার প্রস্থচ্ছেদ করা শক্ত, তাই আলু অথবা গাজরের একটি টুকরো ব্লেড চালিয়ে হুভাগ করে তার মধ্যে পাতার একটি টুকরো নিয়ে প্রস্থচ্ছেদ কাটলে স্থবিধা হয়। অণুবীক্ষণ যন্ত্রের তলায় প্রস্থচ্ছেদটি পরীক্ষা করলে নিম্নলিখিত অংশগুলি দেখা যাবে।

অসংখ্য পত্রবন্ধ্র পাতার বহিঃত্বকে অবস্থিত।

I. বহিঃত্বক (Epidermis) ঃ পাতার ছটি বহিঃত্বক আছে, একটি উপর দিকে—উপ্রবহিঃত্বক (Upper Epidermis), আর একটি নীচের দিকে—নিমবহিঃত্বক (Lower Epidermis)। ছটি বহিঃত্বকই এক সারি ব্যারেল আকৃতির প্যারেনকাইমা দারা গঠিত এবং ছটি স্তরের ওপরই কিউটিকলের আবরণ আছে। লক্ষ্য কর, এই বহিঃত্বকের মাঝে ফাঁকা স্থান আছে, ঐ স্থানগুলিতে পত্রবন্ধ বা স্টোমা (Stoma, plural—stomata) আছে, যার মধ্য দিয়ে গ্যানের আদান প্রদান ঘটে।

II. মেসোফিল কলা (Mesophyll tissue): তুই ত্কের মধ্যবর্তী অংশ যে কোষগুলি দিয়ে তৈরী, তাকে মেসোফিল কলা বলে। উপ্র-বহিঃত্বকের সঙ্গে স্বন্ধানরে বিন্যস্ত প্যারেনকাইমা স্তরকে প্যালিসেড প্যারেনকাইমা আর তার নীচের ছড়ান প্যারেনকাইমা স্তরগুলিকে বলে স্পঞ্জি প্যারেনকাইমা। এগুলিতে ক্লোরোপ্লাস্ট যথেষ্ট থাকাতে এরা খাত্য তৈরী করতে সক্ষম। পত্রবন্ত্র সংলগ্ন গহবরটিকে খাস গহুরর বলে (Respiratory cavity)।

III. ভ্যাসকুলার বাগুল (Vascular bundle): পাতার প্রধান শিরার মধ্য দিয়ে ভ্যাসকুলার বাগুল বিস্তৃত হয়েছে, শিরা-উপশিরার সংখ্যা অহুসারে ভ্যাসকুলার বাগুল-এর সংখ্যার তার্তম্য ঘটে। প্রত্যেক বাণ্ডলকে ঘিরে একটি প্যারেনকাইমা স্তরের আচ্ছাদন আছে। এটিকে বাণ্ডল আচ্ছাদন (Bundle sheath) বলে। পাতার ওপর দিকে জাইলেম থাকে, নীচের দিকে ফ্লোয়েম থাকে, এর মধ্যে কোন ক্যামবিয়াম নেই।

দিবীজপত্রী উদ্ভিদের পাতার প্রস্থচ্ছেদ :

- কিউটিকলসহ বহিঃত্বক 2. প্যালিসেড প্যারেনকাইমা
 3. ভ্যাসকুলার বাণ্ডল 4. জাইলেম 5. ফ্লোয়েম
 - 6. স্পঞ্জী প্যারেনকাইমা 7. পত্রবন্ধ ও খাসগহ্বর ৪. বায়ুগহ্বর ।

<u>जबूबी</u> ननी

- শাহ্রবের দেহের মধ্যে যেমন একটা হাড়ের কংকাল আছে উদ্ভিদের দেহের মধ্যে তেমন কিছু নেই; তবু বট, নারিকেল প্রভৃতি বিরাট বিরাট বৃক্ষগুলি মাটির ওপর, কি করে এবং কিসের সাহায্যে দাঁড়িয়ে থাকে? বড় বড় বুক্লের শাখার প্রান্তগুলি নরম কিন্ত কাগুটি শক্ত মনে হয় কেন?
- 2. কলা কাকে বলে ? ভাজক কলা উদ্ভিদের কোন কোন অংশে পাওয়া যায় ছবি এঁকে দেখাও।

- উদ্ভিদের সরল স্থায়ী কলার বিভিন্ন ভাগগুলি ছবি এঁকে বর্ণনা কর।
- 4. একটি স্থ্যম্থী গাছের কাণ্ডের প্রস্থচ্ছেদের ছবি এঁকে বিভিন্ন অংশগুলির নাম লেখ এবং কোনগুলি সরল কলা এবং কোনগুলি জটিল কলা তা লেবেল করে দেখাও।
- একটি ভূটা গাছের কাণ্ডের প্রস্থচ্ছেদ এঁকে বিভিন্ন জংশের নাম লেখ, স্থ্যমুখীর কাণ্ডের সঙ্গে এর পার্থক্যগুলি বর্ণনা কর।
- 6. একটি দ্বিবীজপত্রী উদ্ভিদমূলের প্রস্থচ্ছেদ এঁকে বিভিন্ন আংশের বর্ণনা কর।
- 7. একটি পাতার আভ্যন্তরীণ গঠনের ছবি আঁক।
- টীকা লেখ:
 ক্যামবিয়াম, লিগনিন, কিউটিন, পত্রবন্ত্র, স্ক্রেরেনকাইমা, জাইলেম, জটিল কলা, কর্টেক্স, স্টেলি, পিথ, কর্ক টিস্থ।

Topical and an advisor of the Manufacture of the state of

e water grown at come tall that I have deploy

তৃতীয় অধ্যায়

প্রাণিদেহের কলা ও অঙ্গ

(Animal tissues and organs)

উদ্ভিদের মত প্রাণিদেহও বিভিন্ন রকম কলার সাহায্যে গঠিত।
উদ্ভিদের প্রসঙ্গে আমরা জেনেছি, যে-সকল কোষের আকৃতি, উৎপত্তি-স্থান ও কার্যপ্রণালী এক, সেইরকম কোষের সমষ্টিকে কলা বা টিস্থ (Tissue) বলে। এই সংজ্ঞা প্রাণিদেহের পক্ষেও প্রযোজ্য। প্রাণি-দেহেও বিভিন্ন কাজ বিভিন্ন কলার সাহায্যে অমুষ্ঠিত হয়ে থাকে এবং একটি নির্দিষ্ট প্রমবিভাগের রীতি তাদের কাজের মধ্যে দেখা যায়।

প্রাণিদেহে চার রক্ষ কলা আছে ঃ

- I. আবরণী কলা বা এপিথেলিয়াল টিস্থ (Epithelial tissue)
- II. যোগকলা বা কানেকটিভ টিস্থ (Connective tissue)
- III. পেশীকলা বা মাসকুলার টিম্ব (Muscular tissue)
- IVa নাৰ্ভকলা বা নাৰ্ভ টিস্থ (Nerve tissue)
- I. আবরণী কলা (Epithelial tissue) ঃ দেহের বাহির ও ভিতরের অঙ্গগুলির একটা আবরণ সৃষ্টি করাই এই কলার কাজ। আমাদের শরীরের ওপরের ত্বক, পাকনালীর ভিতরের পর্দা ইত্যাদি আবরণী কলার উদাহরণ। এই কলার একটি বৈশিষ্ট্য হল এর কোষগুলি পরস্পর ঘনসন্নিবিষ্ট। এই কোষগুলি কখন একটি মাত্র স্তরে (Simple), আবার কখনও বহু স্তরে (Stratified) বিশুস্ত থাকে। কোষের আকৃতি অনুযায়ী আবরণী কলাকে চার ভাগে ভাগ করা যায়।

 কলাম্নার এপিথেলিয়াম (Columnar = স্তম্ভাকৃতি) ঃ এর কোষগুলি স্তম্ভাকার, এই কলার বহির্ভাগে স্কল্প স্কল্প খাঁজ আছে, মেরুদণ্ডী প্রাণীর পাকস্থলী ও অন্ত্রের ভিতরের স্তর এই কলা দারা গঠিত।

কলামনার এপিথেলিয়াম

ক্লোয়ায়াস এপিথেলিয়ায় (Squamous=আঁইশাকৃতি) ঃ
 এই কলার কোষগুলি প্রায় চ্যাপ্টা ও মাছের আঁইশের মত

স্বোয়ামাস এপিথেলিয়াম

সাজান থাকে। দ্রুৎপিগু, ফুসফুস প্রভৃতি অঙ্গের বাহিরে এই কলা দেখা যায়। আমাদের দেহত্বক, মুখগহ্বর ও নাসিকাগছ্বরের আবর্ণী স্তরীভূত স্কোয়ামাস এপিথেলিয়ামে গঠিত। 3. কিউবিক্যাল এপিথেলিয়াম (Cubical=ঘনক্ষেত্রাকার) ঃ এই কলার কোষগুলি প্রায় ঘনক্ষেত্রাকার। লালাগ্রন্থি, বৃক্কমলিকা ও থাইরয়েড গ্রন্থির আবরণীতে এই রকম কলা আছে।

কিউবিক্যাল এপিথেলিয়াম

4. সিলিয়েটেড এপিথেলিয়াম (Ciliated = রোমশ)ঃ এই কলার কোষগুলি স্তম্ভাকার কিংবা ঘনক্ষেত্রাকার। এই কোষগুলিয় বহির্ভাগে স্ক্র স্ক্র সিলিয়া (Cilia) বা রোম আছে। এই কলা শ্বাসনালীর আবরণীতে আছে।

मिनिरয়रऎष এপিথেলিয়াম

II. যোগকলা বা কানেকটিভ টিস্থ (Connective tissue) ঃ আবরণী কলার মত এই কলার কোষগুলি ঘনসন্নিবিষ্ট নয়। এই কলায় কোষের সংখ্যা কম, কিন্তু প্রতি তুইটি কোষের মধ্যবর্তী স্থানে অন্তঃ-কোষ পদার্থের পরিমাণ বেশী। এই কলা যেমন একটি অঙ্গকে আর একটি অঙ্গের সঙ্গে যুক্ত করে রাখে, তেমনি একই অঙ্গের বিভিন্ন

অংশকেও পরস্পারের সঙ্গে যুক্ত করে রাখে। এই কলা দেহের ভার বহনের কাজও করে। প্রকৃতি অনুসারে যোগকলাকে প্রধান তিন

ভন্তময় যোগকলা

ভাগে ভাগ করা যায়: (1) ভল্তময় যোগকলা, (2) মেদকলা,

- (3) বিশিষ্ট যোগকলা। বিশিষ্ট যোগকলা আবার তিন প্রকারের ঃ
- (a) কোমলাস্থি, (b) অস্থি, (c) রক্ত।
- 1. তন্তুময় যোগকলা (Fibrous connective tissue): মেরুদণ্ডী প্রাণীদের দেহত্বকের নীচে বা অন্তের প্রাচীরের ভিতর এই কলা দেখা যায়। এই কলায় কোষের সংখ্যা কম এবং কোষগুলির সঙ্গে একক বা গুচ্ছবদ্ধভাবে তন্তু দেখতে পাওয়া যায়। লিগামেণ্ট ও টেনডন তন্তুময় কলা দিয়েই তৈরী।
- 2. মেদকলা (Adipose connective tissue): এই কলার কোষ-গুলি বেশ বড় এবং কোষের বেশীর ভাগ জায়গা জুড়ে চর্বিকণা ভর্তি থাকে। আমাদের ঘাড় ও পেটের চামড়ার নীচে এই কলা বেশী থাকে।
 - 3. বিশিষ্ট যোগকলা ঃ
- (a) কোমলান্থি (Cartilage) : এই কলা অপেক্ষাকৃত কঠিন কিন্তু নমনীয়, তাই আঘাতে বা চাপে ভাঙ্গে না। স্তন্যপায়ী প্রাণীদের কানের পাতায় এই কলা থাকে। পাঁজরের হাড়ের প্রান্তে ও শ্বাস-

মেদ কলা

নালীতেও এই কলা থাকে। এই কলার কোষগুলি গুচ্ছে গুচ্ছে কনড্রিন (Condrin) নামে এক প্রকার অন্তঃকোষীয় জৈব পদার্থের মধ্যে ছড়িয়ে থাকে। কোমলাস্থিকে ঘিরে একটা তন্তুময় পদা থাকে।

অস্থিকলার লম্বচ্ছেদে হাভারসিয়ান নালীর অবস্থান দেখান হয়েছে

অস্থিকলার প্রস্থচ্চেদে অস্থিকোষ ও হাভারসিয়ান নালীর অবস্থান দেখান হয়েছে

(b) অন্থি (Bone): এই কলার অন্তঃকোষ পদার্থ অত্যন্ত কঠিন, তা প্রধানতঃ ক্যালসিয়াম ফসফেট দ্বারা তৈরী। তাই অস্থি যথেষ্ট আঘাত ও চাপ সহ্য করতে পারে। অস্থিই আমাদের দেহের ভার বহন করে থাকে। অস্থির মধ্যস্থিত গহ্বর অস্থিমজ্জায় পূর্ণ অস্থিকোযগুলি দেখতে মাকড্সার মত এবং এর মধ্যস্থলে একটি রব্ধ (Haversian canal—হ্যাভারসিয়ান ক্যানাল) থাকে এবং তা সক্ষ সক্ষ নালীর সাহায্যে অস্থিমজ্জার সঙ্গে সংযুক্ত। অস্থির বহির্ভাগ একটি পাতলা পর্দাদ্বারা আর্ত থাকে। লাল অস্থিমজ্জা রক্তের লোহিত কণিকা তৈরীতে সাহায্য করে।

লোহিত রক্তকণিকা, খেত রক্তকণিকা ও অণুচক্রিকা

(c) রক্ত (Blood): আমাদের রক্তও একটি যোগকলা।
অন্তান্ত যোগকলার দক্ষে এর তফাত এই যে এর অন্তঃকোষ পদার্থ
তরল,—যার নাম রক্তরস বা প্লাজমা (Plasma)। তরল প্লাজমার
মধ্যেই ক্ষুদ্র ক্ষুদ্র অসংখ্য রক্তকণিকা থাকে এবং বিশেষ নালীপথে
সারা দেহে চলাচল করে। রক্তকণিকাগুলি এক-একটি স্বতন্ত্র
জীবকোষ ছাড়া আর কিছু নয়। রক্তকণিকা প্রধানতঃ তুই প্রকার,
লোহিত কণিকা ও শ্বেত কণিকা। এই তুই প্রকার রক্তকণিকা ছাড়াও
আরও এক প্রকার ক্ষুদ্রাকার কণিকা রক্তে বর্তমান, তাকে অণুচ্ক্রিকা

বলে। লোহিত কণিকায় হিমোগ্লোবিন নামে এক প্রকার লোহঘটিত পদার্থ থাকায় লোহিত কণিকাগুলিকে লাল দেখায়, সেইজন্ম রক্তের রং লাল। আমাদের রক্তে লোহিত কণিকার সংখ্যা বেশী, শতকরা 99 ভাগ। শ্বেত কণিকার সংখ্যা সাধারণতঃ শতকরা 0·12 ভাগ মাত্র। প্রতি ঘন মিলিমিটার রক্তে লোহিত কণিকা থাকে প্রায় পঞ্চাশ লক্ষ, সেখানে শ্বেত কণিকার সংখ্যা মাত্র ছয় থেকে দশ হাজার।

III. পেশীকলা বা মাসকুলার টিস্থ (Muscular tissue) ঃ এই

পেশীকলা

কলা সংকোচনশীল ও স্থিতিস্থাপক (Elastic), অর্থাৎ রবারের মত টানলে বাড়ে এবং ছেড়ে দিলে আবার পূর্বাবস্থায় ফিরে আসে। পেশীকলার সম্বোচন ও প্রসারণের ফলেই আমরা হাত-পা নাড়তে পারি। মৃত্যুর পর পেশীর এই স্থিতিস্থাপকতা নষ্ট হয়ে যায়, তার

ফলে হাত-পা শক্ত হয়ে যায়, সহজে নাড়ান যায় না। মৃত্যুর পর পেশীর এই পরিবর্তনকে মরণ-সঙ্কোচ বা রিগার মরটিস্ (Rigor mortis) বলে। দেহের বেশীর ভাগ অংশ পেশীকলার সাহায্যেই গঠিত। পুরুষের দেহের ওজনের শতকরা প্রায় 42 অংশ এবং নারী-দেহের শতকরা 36 অংশ পেশীকলার দারা গঠিত, তাই একই ওজনের পুরুষ ও নারীর মধ্যে পুরুষই বেশা শক্তিশালী হয়। সাধারণতঃ তিন রকম পেশীকলা দেখা যায়।

এছিক পেনী (Voluntary muscle): হাত, পা প্রভৃতির
অন্তির সঙ্গে সংযুক্ত পেনীগুলি আমাদের ইচ্ছাধীন, কারণ নার্ভের
সাহায্যে আমরা এই পেনীগুলির সঙ্কোচন ও প্রসারণ করতে পারি,
তার ফলে আমরা ইচ্ছামত চলাকেরা, ওঠাবসা করতে পারি। এচ্ছিক
পেনীর প্রতিটি তন্ততে (Fibre) অনেকগুলি নিউক্লিয়স থাকে এবং

তন্ত্বগুলি একটি পাতলা আচ্ছাদনে আবৃত। ঐচ্ছিক পেশীগুলির গায়ে প্রস্থের দিকে সাদা-কালো ডোরা ডোরা দাগ দেখা যায়, অণুবীক্ষণ যন্ত্রের সাহায্যে তা দেখা যায়। সেইজন্ম এই পেশীকে সরেখ, বা চিহ্নিত পেশীও (Striped or Straited muscle) বলে।

- (ক) অনৈচ্ছিক পেশী বা অচিহ্নিত পেশী
- (খ) এচ্ছিক পেশী বা চিহ্নিত পেশী
- (গ) হুৎপিণ্ডের পেশী
- 2. অনৈচ্ছিক পেশী (Involuntary muscle) ঃ আমাদের খাতনালী, রক্তবাহ নালীগুলি, মৃত্রাশয় প্রভৃতি আভ্যন্তরীণ অঙ্গের পেশীর
 সঙ্কোচন ও প্রসারণ আমাদের ইচ্ছাধীন নয়। সেইজন্ত এদের অনৈচ্ছিক
 পেশী (Involuntary muscle) বলে। এই পেশার কোষ বা তন্তুগুলি মাকুর মত দেখতে, মাঝখানে একটি মাত্র নিউক্লিয়স থাকে এবং
 কোন আচ্ছাদন থাকে না। ঐচ্ছিক পেশীর মত এগুলিতে সাদা-কালো
 ডোরা দাগ দেখা যায় না, তাই এদের রেখাবিহীন পেশা বা অচিহ্নিত
 পেশী (Unstriped or unstriated muscle) বলে। অনেক সময়
 একে মস্প পেশীও (Plain or smooth muscle) বলা হয়।
 নিজাকালে বা জাগ্রত অবস্থায় আমাদের ইচ্ছার ওপর নির্ভর না করেই
 এই অনৈচ্ছিক পেশীগুলি ধীরে ধীরে সঙ্কুচিত ও প্রসারিত হয়, তার
 ফলেই এদের কাজ সুষ্ঠভাবে চলে।

3. ছৎপিণ্ডের পেশী (Cardiac muscle) ঃ মেরুদণ্ডী প্রাণীর ফংপিণ্ডে এই ধরনের পেশী দেখা যায়। ঐচ্ছিক পেশীর মত এগুলি সরেখ বা রেখান্কিত, কিন্তু কোষের মধ্যে একটি মাত্র নিউক্লিয়স থাকে, এবং পেশীতন্তুর ওপর কোন আচ্ছাদন থাকে না। এগুলি পরস্পার যুক্ত হয়ে একটি জালের মত দেখায়। প্রাণী যতদিন জীবিত থাকে ততদিন অনৈচ্ছিক পেশীর মত এই পেশী অবিরাম সম্কৃচিত ওপ্রসারিত হয়ে থাকে।

IV. নার্ভকলা (Nervous tissue) ঃ নার্ভকলা অসংখ্য নিউরন (Neurone) বা নার্ভকোষ দ্বারা গঠিত। নিউরনের আকার অনেকটা

নিউরন

লেজওয়ালা ঘুড়ির মত। প্রত্যেকটি নিউরনের প্রধান অংশ হল কোষদেহ; কোষদেহের মধ্যে নিউক্লিয়স নিউক্রিয়সকে খিরে থাকে সাইটোপ্লাজম। কোষদেহ থেকে একটি লম্বা শাখা বেরিয়ে এসেছে, তাকে বলে অ্যাক্সন (Axon)। এছাডা নিউরনের অনেকগুলি ছোট ছোট শাখা থাকে, তাদের নাম ডেন্ড্রন (Dendron)। আ্যাক্সনগুলিই শেষে নার্ভতন্ততে পরিণত হয়। নার্ভতন্তর বাইরে একটা পাতলা আবরণী থাকে, তাকে নিউরোলেমা (Neurolemma) বলে। অনেকগুলি নার্ভতন্তু যোগকলার আচ্ছাদিত হয়ে দডির মত আবরণে নার্ভের (Nerve) সৃষ্টি করে থাকে। ডেন্ড্রনগুলির কাজ হল কোষদেহের মধ্যে অনুভৃতি বহন করে নিয়ে যাওয়া আর অ্যাক্সনের কাজ হল ভার নির্দেশ বহন করে পেশীতে নিয়ে যাওয়া। অ্যাক্সনের তন্তগুলি পেশীর সঙ্গে যুক্ত থাকে এবং ঐ নির্দেশ অনুযায়ী পেশীগুলি সঙ্কুচিত বা প্রসারিত হয় এবং তার ফলে নানা রকম কার্য নিষ্পন্ন হয়।

কতকগুলি কলা বা টিসু (Tissue) সম্মিলিতভাবে গঠন করে একটি দেহযন্ত্র বা অঙ্গ (Organ)। যেমন আমাদের ফুসফুস একটি অঙ্গ; এটি আবরণীকলা, নার্ভকলা, যোগকলা, পেশীকলার সমন্বয়ে তৈরী। তেমনি কতকগুলি অঙ্গ সম্মিলিতভাবে গঠন করে একটি ভন্ত্র (System), যেমন শ্বসনতন্ত্র (Respiratory system)। এটি আমাদের ফুসফুস, নাসারন্ত্র ও শ্বাসনালী প্রভৃতি অঙ্গ নিয়ে গঠিত। নাচে প্রাণিদেহের নয়টি তন্ত্রের নাম ও কার্যের সংক্ষিপ্ত বিবরণ দেওয়। হল।

- া. অন্থি তন্ত্র (Skeletal system or Osseous system):— যে
 তন্ত্র দেহের কাঠামো গঠন করে, দেহের ভার বহন করে, তাকে
 অন্থিতন্ত্র বলে। অন্থি, কোমলান্থি বা কার্টিলেজ (Cartilage) ও নানা
 শক্ত আবরণ নিয়ে অন্থিতন্ত্র গঠিত। শামুক, ঝিমুক ও নানা রকম
 পতক্ষের দেহের বাহিরের আবরণটি শক্ত, এদের বলে বহিঃকন্ধাল
 (Exoskeletal) প্রাণী। মেরুদণ্ডী প্রাণীর কিন্তু দেহের ভেতরেই
 কন্ধালটা থাকে, তাদের তাই বলা হয় অন্তঃকন্ধাল (Endoskeletal)
 প্রাণী।
- 2. পেশী তন্ত্র (Muscular system)ঃ—এই তন্ত্রের প্রধান
 উপাদান পেশী। পেশীকলা আলোচনার সময় ঐচ্ছিক, অনৈচ্ছিক
 ও হৃৎপিণ্ডের পেশীর কথা আলোচনা করা হয়েছে। বিভিন্ন অঙ্গের
 নড়াচড়া ও স্থানান্তরে গমনাগমন এই পেশীতন্ত্রের ওপর নির্ভরশীল।
 আমাদের দেহে অনেক পেশী আছে। আগেই বলা হয়েছে, পুরুষের
 দেহের ওজনের শতকরা প্রায় 42 অংশই পেশী; নারীদেহের
 শতকরা 36 অংশ পেশী। তাই একই ওজনের পুরুষ ও নারীর
 মধ্যে পুরুষই বেশী শক্তিশালী হয়। পুরুষদের মধ্যে সকলের পেশীর
 সংখ্যা প্রায় সমান, তবুও কেউ বেশী শক্তিশালী, কেউ কম শক্তিশালী

হয় কেন ? নানা রকম কাজকর্ম ও নিয়মিত ব্যায়ামের ফলে পেশীগুলি পুষ্ট হয়; তাদের কাজ করবার শক্তি বাড়ে; মানুষও সেই অনুপাতে শক্তিশালী হয়।

- 3. পৌষ্টিক তন্ত্র বা পাচন তন্ত্র (Alimentary system or Digestive system) ঃ খাতাগ্রহণ, পরিপাক, সেইসক্তে জীর্ণ খাতাকণার শোষণ ও অপাচ্য অংশের বহিন্ধরণ এই তন্ত্রের মাধ্যমে সম্পাদিত হয়। মুখ থেকে আরম্ভ করে পায়্ পর্যন্ত খাতানালীর বিভিন্ন অংশ, যেমন—শ্বাসনালী, পাকস্থলী, অন্ত্র, তা ছাড়া যকুৎ, অগ্ন্যাশয় প্রভৃতিও পৌষ্টিক তন্ত্রের বিভিন্ন অংশ।
- 4. সংবহন তন্ত্র (Circulatory system) ঃ হাদ্যন্ত্র ও রক্তবাহ
 নালী নিয়ে এই তন্ত্র গঠিত। এই তন্ত্রের সাহায্যে দেহের সর্বত্র রক্ত
 সঞ্চালিত হয়। হাদ্যন্ত্র একটি পাল্পের মত দিবারাত্র কাজ করে।
 রক্তের মাধ্যমে দেহের প্রতিটি জীবকোষে অক্সিজেন সরবরাহ হয় ও
 দূষিত পদার্থ পরিত্যক্ত হয়। রক্তই জীর্ণ খাদ্য বস্তু ও হরমোন নামক
 উত্তেজক রস বিভিন্ন অংশে পৌছে দিয়ে দেহের বিপাক ও পুষ্টি সাধনে
 সাহায্য করে।
- 5. শ্বসন তন্ত্র (Respiratory system) ঃ এই তন্ত্রের সাহায্যে অক্সিজেন গ্রহণ ও দেহের ভেতর থেকে দূষিত কার্বন ডাইঅক্সাইড গ্যাস বের করে দেওয়া হয়ে থাকে। আমাদের শ্বসন তন্ত্র প্রধানতঃ ফুসফুস, নাসারব্ধ ও শ্বাসনালী নিয়ে গঠিত। মাছেদের শ্বাসযন্ত্র হল ফুলকা। কীট-পতঙ্গের বেলায় শ্বাসনালীই তাদের বিশেষ শ্বাসযন্ত্র।
- 6. রেচন তন্ত্র (Excretory system) ঃ এই তন্ত্রের মাধ্যমে দূষিত বর্জ্য পদার্থ দেহ হতে বের হয়ে আসে। মেরুদণ্ডী প্রাণীর ক্ষেত্রে বৃক্ক, মৃত্রন্থলী ও পতঙ্গাদির ক্ষেত্রে ম্যাল্পিজিয়ান নালী (Malpighian tubules) ইত্যাদি এর প্রধান অঙ্গ।
- 7. **নার্ভ ভন্ত (Nervous system) ঃ মস্তিক, স্থামাকাণ্ড ও** বিবিধ নার্ভের সাহায্যে এই ভন্ত গঠিত। এ ছাড়া চোখ, কান, নাক

প্রভৃতি জ্ঞানেন্দ্রিয়কেও এই তন্ত্রের অন্তর্ভুক্ত করা হয়। বাইরের উত্তেজনায় সাড়া দেওয়া, দেহের বিভিন্ন তন্ত্রের ক্রিয়াকলাপের মধ্যে সমন্বয় সাধন করা, মান্থুবের ক্ষেত্রে চিস্তা করা এর প্রধান কার্য।

- 8. অন্তর্নিস্রাবী গ্রন্থি তন্ত্র বা এণ্ডোক্রিন তন্ত্র (Endocrine system): প্রাণিদেহে কতকগুলি নালীবিহীন গ্রন্থি আছে, তাদের এণ্ডোক্রিন গ্রাণ্ড বলে, এই গ্রন্থি থেকে হরমোন বা উত্তেজক রস নির্গত হয়। এই হরমোন বৃদ্ধি ও নানা বিপাকক্রিয়ায় সাহায্য করে এবং নার্ভ তন্ত্রের সহায়তায় প্রাণিদেহের বিভিন্ন তন্ত্রগুলি যাতে মিলে-মিশে পরস্পারের সঙ্গে সঙ্গতি রেখে কাজ করে সে বিষয়ে সাহায্য করে।
- 9. জনন তন্ত্র (Reproductive system) ঃ যে তন্ত্রের সাহায্যে প্রাণী বংশবিস্তারে সমর্থ হয় তাকে জনন তন্ত্র বলে। এই তন্ত্রের প্রধান অঙ্গ হল শুক্রাশয়, ডিম্বাশয় ও তৎসংক্রান্ত নালী।

जनू भी ननी

- কলা কাকে বলে ? প্রাণিদেহে কত রকম কলা দেখতে পাওয়া যায় ?
 চিত্রসহ একটি করে উদাহরণ দাও।
- 2. আবরণী কলার কাজ কি ? চিত্রসহ বিভিন্ন প্রকার আবরণী কলার বিবরণ দাও।
- 3. যোগকলা বলতে কি বোঝ ় বিভিন্ন প্রকার যোগকলার ছবি আঁক ও তাদের বিভিন্ন অংশ লেবেল কর।
- 4. একটি নিউরনের ছবি আঁক ও বিভিন্ন অংশ লেবেল কর।
- 5. অঙ্গ ও তন্ত্র বলতে কি বোঝ ? উদাহরণ দিয়ে বুঝিয়ে দাও।
- 6. টীকা লেখ: কোমলাস্থি, অস্থি, রক্ত, ঐচ্ছিক পেশী, অনৈচ্ছিক পেশী, অ্যাক্সন, ডেনড়ন, নার্ভ, সংবহন তন্ত্র, পৌষ্টিক তন্ত্র।

চতুৰ্থ অধ্যায়

কয়েকটি প্রাণীর বিভিন্ন তন্ত্র ও তার কাজের সংক্ষিপ্ত বিবরণ (Outline idea of different systems with functions)

অমেরুদণ্ডীঃ আরশোলা (Invertebrate Cockroach)

আরশোলা মেরুদগুহীন প্রাণী। এটি একটি ডানাযুক্ত, সন্ধিপদ প্রাণী—পতঙ্গ (Insect)। আরশোলার দেহের বিভিন্ন তন্ত্র ও তার কাজের সংক্ষিপ্ত বিবরণ নীচে দেওয়া হল।

- 1. কঙ্কাল তন্ত্রঃ পতঙ্গ মাত্রই বহিঃকদ্ধাল প্রাণী, অর্থাৎ তার দেহের ওপরে একটি খোলস বা আবরণী (Cuticle) থাকে, তার দেহের মধ্যে কোন কঙ্কাল থাকে না। আরশোলার দেহও মেহগিনী রং-এর শক্ত একটি খোলস বা আবরণীতে ঢাকা, দেহের ভেতরের তন্ত্রগুলিকে রক্ষা করা ও বিভিন্ন পেশীকে ধরে রাখাই এর প্রধান কাজ।
- 2. পৌষ্টিক তন্ত্রঃ আরশোলার পৌষ্টিক তন্ত্রঃ (ক) পৌষ্টিক নালী ও (খ) লালাযন্ত্র নিয়ে গঠিত।
- (ক) পৌষ্টিক নালী ঃ—পৌষ্টিক নালী মুখছিদ্র হতে সুরু করে পায়ুতে শেব হয়েছে, এটি নিম্নলিখিত অংশ নিয়ে গঠিত।
- (1) মুখছিদ্র: মুখছিদ্র কতকগুলি উপাঙ্গ দ্বারা বেষ্টিত, যেমন— এক জোড়া চোয়াল (ম্যানডিবল), উপরোষ্ঠ (লেবাম), নিমোষ্ঠ (লেবিয়াম), একটি মাংসল জিহ্বা (হাইপোফ্যারিংস্)। এই উপাঙ্গগুলিই থাছাবস্তু গ্রহণে সহায়তা করে এবং আংশিকভাবে খাছা পেষণে সাহায্য করে।

- (2) মুখবিবরঃ মুখছিদ্রের পরের অংশকে মুখবিবর বলে।
- (3) গলবিলঃ মুখবিবরের পরে পৌষ্টিক নালীর সরু অংশকে গলবিল বলে।

গ্রাসনালীঃ গলবিলের পরের অংশ হল গ্রাসনালী।

(5) ক্রপঃ গ্রাসনালীর পরের অংশ চওড়া হয়ে পাতলা প্রাকারবিশিষ্ট থলিতে পরিণত হয়েছে, একে ক্রপ বলে। এখানে খাত্যবস্তু সাময়িকভাবে জমা থাকে।

আরশোলার পৌষ্টিক নালী

(6) গিজার্ড ঃ ক্রপের পরের পেশীবহুল অংশকে গিজার্ড বলে।
গিজার্ডের অন্তঃপ্রাকার শক্ত আবরণীতে ঢাকা এবং এই শক্ত আবরণী
ছয়টি ভাঁজের স্পষ্টি করেছে, এগুলিকে গিজার্ডের দাঁত বলে। আমরা
মুখের মধ্যে যেমন খাত বস্তু চর্বণ করি, আরশোলারা তেমনি গিজার্ডের

মধ্যে এই শক্ত পেশীর সাহায্যে খাতাবস্তু পিষ্ঠ করে অর্ধ তরল অবস্থায় পরিণত করে।

- (7) মেসেনটেরনঃ গিজার্ডের পর পৌষ্টিক নালীর সরু অংশকে মেসেনটেরন বলে। মেসেনটেরনের অগ্রভাগে 7-৪টি সরু নলের মত অংশ দেখা যায়, এদের হেপার্টিক সিকা বলে। পৌষ্টিক নালীর এই অংশে খাদ্য আংশিকভাবে পরিপাক ও শোষিত হয়। মেসেনটেরনের মাঝখানে অনেকগুলি সুন্দা হাল্ফা হলুদ রঙের নালিকা আছে, এগুলিকে ম্যালপিজিয়ান নালিক বলে। এগুলি আরশোলার রেচন অঙ্গ হিসাবে পরিচিত।
- (৪) কোলন বা বৃহদন্তঃ মেসেনটেরনের পরেই কোলন, এখানে জল ও কিছু খাত শোষিত হয়।
- (9) মলাশয়ঃ পৌষ্টিক নালীর শেষ অংশই হল মলাশয়। এখানে জল শোষিত হয় ও অপাচ্য খায়্ত মলয়পে সঞ্চিত থাকে।
- (10) পায়ুঃ পৌষ্টিক নালী শেষ হয়েছে পায়ুছিদ্রতে। মলাশয় হতে মল নির্গত হয় এই ছিদ্রের মধ্য দিয়ে।
- (খ) লালাযন্ত্রঃ গ্রাসনালী ও ক্রপের ছই দিকে লালাযন্ত্র আছে। এটি লালাগ্রন্থি ও লালাধার নিয়ে গঠিত। লালাগ্রন্থি থেকে নিঃস্ত লালা প্রথমে লালাধারে জমা হয়, তারপর নালীপথে মুখবিবরে এসে খাছের সঙ্গে মেশে ও খাছ্য পরিপাক ও সিক্ত করার কাজে লাগে। হেপাটিক সিকার কথা আগেই বলা হয়েছে। এই নালীগুলি থেকে নিঃস্ত রস মেসেনটেরনে এসে খাছের সঙ্গে মিশে খাছ্য পরিপাকে সহায়তা করে।
- 3. শ্বসন তন্ত্রঃ আরশোলারা অক্সান্ত পতঙ্গদের মতই বাতাস থেকে অক্সিজেন নিয়ে শ্বাসকার্য চালায়। এজন্য এদের দেহের মধ্যে দশ জ্বোড়া শ্বাসছিদ্র ও শাখা-প্রশাখাযুক্ত শ্বাসনালী আছে। শ্বসনের সময় আরশোলার দেহ নিয়মিতভাবে একবার সঙ্কুচিত তারপর আবার প্রসারিত হয়, তার ফলে বাইরের বাতাস শ্বাসছিদ্রের পথে দেহের মধ্যে

প্রবেশ করে। প্রত্যেকটি খাসছিদ্রের সঙ্গে এক বা একাধিক খাসনালী

যুক্ত আছে। এই শ্বাসনালীগুলি ক্রমাগত শাখাপ্রশাখায় বিভক্ত হয়ে দেহের সর্বত্র ছড়িয়ে আছে
এবং নালীর স্ক্র্ম অংশগুলি দেহকোষের সঙ্গে যুক্ত
আছে। তার ফলে দেহের প্রতিটি কোষই ঐ
বাতাস থেকে অক্সিজেন গ্রহণ করে এবং কোষ
থেকে কার্বন ডাইঅক্সাইড দেহের বাইরে বার করে
দেয়। গ্যাসের এই আদান-প্রদানে আরশোলার
রক্ত কোন অংশ গ্রহণ করে না।

আরশোলার শ্বদন তন্ত্র

4. রক্ত-সংবহন তন্তঃ আরশোলার রক্ত-সংবহন তন্ত্র আদৌ জটিল ও উন্নত নয়। এই তন্ত্র রক্ত, হৃৎপিণ্ড ও মহাধমনী (অ্যাওটা) ও অসংখ্য দেহগহর নিয়ে গঠিত। আরশোলার রক্ত জলের মত বর্ণহীন, কারণ এতে হিমোগ্রোবিন থাকে না। আরশোলার রক্ত রক্তরস (প্লাজমা) ও শেতকণিকা (হিমোসাইট) নিয়ে গঠিত। খাত ও বর্জ্য পদার্থ বহন করে নিয়ে যাওয়াই আরশোলার রক্তের মুখ্য কাজ। আরশোলার রক্তকে হিমোলিম্প বলে।

আরশোলার রক্ত-সংবহন তন্ত্র অস্থান্থ পতঙ্গদের রক্ত সংবহন-তন্ত্রের মতই মুক্ত (Open System)। রক্তনালীর মধ্য দিয়ে কিছু দূর প্রবাহিত হবার পর আরশোলার রক্ত শাখায়-প্রশাধায় বিভক্ত দেহগহবরের মধ্য দিয়ে, দেহের নানা কোষ ও কলার (Tissue) মাঝ দিয়ে মুক্ত অবস্থায় প্রবাহিত হতে থাকে; এই ধরনের ব্যবস্থাকে মুক্ত সংবহন তন্ত্র (Open Circulation System) বলে।

আরশোলার হৃৎপিগুটি লম্বা নলের আকারে তেরটি ফানেলের মত প্রকোষ্ঠের সাহায্যে গঠিত। তুইটি প্রকোষ্ঠের সংযোগস্থলে একটি করে কপাটিকা বা ভালভ্ আছে, এবং প্রতি প্রকোষ্ঠে এক জোড়া করে ছিদ্র আছে। এই ছিদ্রগুলিতেও কপাটিকা বা ভালভ্ আছে, তার ফলে রক্ত একটি বৃত্তাকার পথে কেবল একই দিকে প্রবাহিত হতে

আরশোলার হৃদ্যন্ত্রও মহাধমনী (অ্যাওর্টা)

পারে। হৃৎপিণ্ডের ছই পাশের পেশীগুলিকে অ্যালারি পেশী বলে, এই পেশীগুলির সাহায্যে হৃৎপিণ্ডটি বার বার সম্পুচিত ও প্রসারিত হয়ে থাকে এবং তার ফলে রক্ত হৃৎপিণ্ড থেকে হৃৎপিণ্ডের সন্মুখে অবস্থিত মহাধমনীর মধ্যে প্রবেশ করে; তারপর ঐ রক্ত অসংখ্য শাখায়-প্রশাখায় বিভক্ত দেহগহ্বরের মধ্য দিয়ে মস্তক ও দেহের অন্যান্থ অংশে প্রবাহিত হয় এবং পরিশেষে হৃৎপিণ্ডের পার্শ্বদেশের তের জোড়া ছিদ্র দিয়ে আবার হৃৎপিণ্ডের মধ্যে

ফিরে আসে। এইভাবে একটি বৃত্তাকার পথে আরশোলার রক্ত প্রবাহিত হয়ে থাকে।

5. রেচন তন্ত্রঃ আরশোলার রেচনতন্ত্রের প্রধান অঙ্গ হল ম্যালপিজিয়ান নালিকা। আরশোলার পৌষ্টিক তন্ত্র আলোচনার সময় আমরা জেনেছি পৌষ্টিক নালীর মেসেনটেরনের অংশ থেকে অনেকগুলি স্ক্র্ল হাল্কা হলুদ রঙের নালিকা বের হয়েছে, এগুলিকে ম্যালপিজিয়ান নালিকা বলে এই নালিগুলির শেষ প্রান্ত বন্ধ। এই নালিকাগুলির প্রাকার খুব পাতলা, দেহর্ম থেকে বর্জ্য পদার্থ সংগ্রহ করে অন্ত্রে নিক্ষেপ করাই এর প্রধান কাজ। এই সংগৃহীত রস থেকে জলীয় অংশ পুনরায় শোষিত হয় এবং প্রায় শুক বর্জ্য পদার্থ অন্ত্র থেকে পায়্পথের মাধ্যমে দেহের বাইরে নিক্ষিপ্ত হয়। আরশোলারা নাইট্রোজেন-ঘটিত পদার্থ ইউরিক অ্যাসিড বর্জ্য পদার্থক্র বর্জ্য

পদার্থরূপে ত্যাগ করে, এজন্ম দেহ থেকে খুব কম জলই তাদের ত্যাগ করতে হয়। আরশোলারা অতি অল্প জলে কাজ চালিয়ে নিয়ে তাই বেঁচে থাকতে সক্ষম হয়।

6. নার্ভ তন্ত্র আরশোলার নার্ভ তন্ত্র প্রধানতঃ মন্তিক ও অঙ্কীয় নার্ভসূত্র নিয়ে তৈরী। আরশোলার মাথার মধ্যে বড় আকারের এক জোড়া নার্ভগ্রন্থই হল আরশোলার মন্তিক। মন্তিক্ষের ত্রপাশ থেকে ছটি মোটা নার্ভসূত্র বের হয়ে বক্ষ ও উদরের দিকে চলে গেছে; এই ছটিকে অঙ্কীয় নার্ভসূত্র বা ভেল্টাল নার্ভ কর্ড বলে। আরশোলার ছটি চোখ (পুঞ্জাক্ষি) আছে।

অনেকগুলি ক্ষুদ্র ক্ষুদ্র দর্শন-যন্ত্র
নিয়ে এই চোথ ছটি তৈরী, এইজন্ম এদের বলা হয় পুঞ্জাক্ষি
(Compound eye)। পভঙ্গদের
এটা বৈশিষ্ট্য। পুঞ্জাক্ষি ছটি
বৃস্তহীন। আরশোলার ছটি শুঙ্গ
ভাণেন্দ্রিয় ও স্পর্শেন্দ্রিয়ের কাজ
করে। স্পর্শ অনুভূতি প্রধানতঃ
শুক্ত দিয়ে গ্রহণ করলেও সমস্ত
দেহ দিয়েই আরশোলারা তা গ্রহণ
করত্তেপারে। আরশোলাদের কোন

আরশোলার নার্ভ তন্ত্র

শ্রবণেন্দ্রিয় নেই, আরশোলারা তাই কোন শব্দ শুনতে পায় না। বাইরে যতই গোলমাল হোক না কেন, আরশোলারা পরম শান্তিতে বাস করতে পারে।

7. জনন তন্ত্র ঃ আরশোলারা একলিন্স প্রাণী, অর্থাৎ স্ত্রী ও পুরুষ ছুই ধরনের আরশোলা আছে। পুরুষ আরশোলার দেহে পুংজনন তন্ত্র এবং স্ত্রী আরশোলার দেহে স্ত্রীজনন তন্ত্র আছে। স্ত্রী ও পুরুষ আর-শোলাদের সহজেই আলাদা করে চেনা যায়। পুরুষ আরশোলার

দেহের পশ্চাদ্ভাগে এক জোড়া অতিরিক্ত শলাকা (Style) আছে এবং স্ত্রী আরশোলার উদর পুরুষ আরশোলার থেকে বেশী চওড়া হয়।

পুরুষ আরশোলার পুংজনন তন্ত্র (1) শুক্রাশয় (2) শুক্রনালী (3) শুক্রথলি, (4) ক্ষেপণনালী, (5) জননথলি, (6) পুংজনন ছিদ্র ও (7) কনগ্লোবেট গ্রন্থি নিয়ে গঠিত।

পুরুষ আরশোলার দেহে ছটি শুক্রাশয় আছে, শুক্রাশয়ে শুক্রাণু তৈরী হয়। ঐ শুক্রাণুগুলি ছটি শুক্রনালীপথে নেমে এসে ছটি

আরশোলার পুংজনন তন্ত্র

শুক্রথলিতে সাময়িকভাবে জমা হয়। এ ছটি থলি পরস্পর কাছাকাছি অবস্থিত এবং অনেকটা ব্যাঙের ছাতার মত দেখতে, এজন্য একে মাশরুম গ্রন্থি বলে। শুক্রথলি থেকে অপেক্ষাকৃত একটি মোটা নালী আরো নীচের দিকে নেমে গেছে, এটিকে ক্ষেপণ নালী

বলে। এটির সঙ্কোচন ও প্রসারণের সাহায্যে শুক্রাণু জনন থলি ও পুংজনন ছিদ্রপথে বাইরে নিক্ষিপ্ত হয়। কনগ্নোবেট গ্রন্থিটি ক্ষেপ্ণ নালীর অঙ্কদেশের পশ্চাৎ প্রান্তে অবস্থিত, এ থেকে এক রকম বিশেষ গন্ধ নির্গত হয়, যাতে স্ত্রী আরশোলারা আকৃষ্ট হয়।

ন্ত্রী আরশোলার স্ত্রীজনন তন্ত্র (1) ডিম্বাশয়, (2) ডিম্বনালী, (3) জননথলি, (4) জননছিজ, (5) শুক্রধানী ও (6) কোলেটা-রিয়েল নামক গ্রন্থির সাহায্যে গঠিত।

ন্ত্রী আরশোলার পৌষ্টিক নালীর শেষের দিকে ছই পাশে ছুইটি ডিম্বাশয় থাকে, ডিম্বাশয়ের মধ্যে ডিম্বাণু তৈরী হয়। ঐ ডিম্বাণুগুলি ছটি ডিম্বনালী-পথে নিঃস্ত হয়। ঐ ডিম্বনালী ছুইটির শেষ প্রান্ত একসঙ্গে মিলিত হয়ে একটি সাধারণ নালীতে পরিণত হয়েছে এবং তা জননথলির সঙ্গে যুক্ত হয়েছে। জননথলি আবার জননছিজের সঙ্গে যুক্ত হয়েছে। ডিম্বনালী ছইটির মাঝখানে এক জোড়া শুক্রধানী থাকে, পুরুষ আরশোলার শুক্রাণু সাময়িকভাবে এই শুক্রধানীতে সঞ্চিত

আরশোলার স্ত্রীজনন তন্ত্র

থাকে। শুক্রধানী ছুইটি আবার নালিকার সাহায্যে জননথলির সঙ্গে যুক্ত থাকে। জননের সময় শুক্রাণুর সঙ্গে ডিম্বাণুর মিলনের ফলে জ্রূপাণুর সৃষ্টি হয়। একে নিষেক (Fertilization) বলে। জননথলির মধ্যে এই নিষেক নিষ্পন্ন হয়। কোলেটারিয়াল গ্রন্থি থেকে নিঃস্ত

আরশোলার ভিম্বথলিতে ছই সারিতে মোট বোলটি ভিম্ব থাকে।
রাসায়নিক পদার্থ নিষিক্ত ভিমগুলির চারিদিক ঘিরে একটি শক্ত খোলস
স্থৃষ্টি করে। এটি অনেকটা ছোট ব্যাগের মত দেখতে, এক দিক
করাতের মত খাঁজ কাটা, জননথলির মধ্যেই এই ব্যাগটি কিছুদিন
থাকে। তারপর স্ত্রী আরশোলা স্থৃবিধামত জায়গায় এই ব্যাগটি
প্রেসব করে। এর মধ্যে 16টি নিষিক্ত ভিম্ব ছই সারিতে পাশাপাশি
সাজান থাকে, এ থলের মধ্যেই নিষক্ত ভিমগুলি শিশু আরশোলায়
পরিণত হয় এবং খোলটি ফেটে গেলে তারা বাইরে বেরিয়ে আসে।

অমেরুদণ্ডী ঃ কেঁচো (Earthworm)

কেঁচো অঙ্গুরীমাল পর্বভুক্ত একটি অমেরুদণ্ডী প্রাণী। কেঁচোর

কেঁচোর বহিরাক্বতি

দেহ অঙ্গুরীর মত, দেহখণ্ড অনেকগুলি পর পর জুড়ে গঠিত। কেঁচোর দেহ একটি পাতলা, স্বচ্ছ, নরম আবরণীতে (Cuticle) ঢাকা। এই আবরণীর নীচেই রয়েছে বহিঃত্বক। এই বহিঃত্বকের কিছু অংশ গ্রন্থিতে রূপান্তরিত হয়ে শ্রেমা স্পষ্টি করে। এই শ্রেমা গমনপথকে পিচ্ছিল করে কেঁচোর গমনে সাহায্য করে, শ্বাসকার্যেও তা সাহায্য করে, ভিজা বহিঃত্বকের মধ্য দিয়ে বাতাস সহজে দেহের মধ্যে প্রবেশ করে। বহিঃত্বকের কিছু কোষ জ্ঞানেন্দ্রিয়ের কাজও করে। বহিঃত্বকের নীচে আছে এক স্তর চক্রপেশী। চক্রপেশীর নীচে রয়েছে এক স্তর অনুদৈর্ঘ্য পেশী। চক্রপেশীর সঙ্কোচনের ফলে দেহ প্রসারিত হয় এবং অনুদৈর্ঘ্য পেশীর

সঙ্কোচনের ফলে দেহ সঙ্কুচিত হয়। কেঁচোর গমনে এই প্রক্রিয়াটি সাহায্য করে। কেঁচোর দেহের বিভিন্ন তন্ত্র ও তার কাজের সংক্রিপ্ত বিবরণ নীচে দেওয়া হল।

- পৌষ্টিক ভন্তঃ কেঁচোর পৌষ্টিক তন্ত্র (ক) পৌষ্টিক নালী
 লালাগ্রন্থি নিয়ে তৈরী।
- (ক) পৌষ্টিক নালী: পৌষ্টিক নালী মুখছিত্র হতে সুরু করে পায়ুতে গিয়ে শেষ হয়েছে। এটি নিম্নলিখিত অংশ নিয়ে গঠিত।
- (1) মুখছিদ্র : এটি অর্ধ চন্দ্রাকার একটি ছিদ্র। এই পথে কেঁচো খান্ত গ্রহণ করে।

- (2) মুখবিবরঃ মুখবিবরের প্রাচীর ভাঁজযুক্ত এবং সঙ্কোচন ও প্রসারণে সক্ষম, খাত্যগ্রহণে এই অংশ সাহায্য করে।
- (3) গলবিল: মুখবিবরের পরের এই অংশকে গলবিল বলে। এই অংশে খাভের সঙ্গে লালা মিশ্রিত হয়।
- (4) গ্রাসনালী ঃ গলবিলের পরের অংশ হল গ্রাসনালী। এর শেষ অংশে একটি পেশীবহুল চর্বণযন্ত্র বা গিন্ধার্ড আছে, এই অংশে খাছা নিম্পেষিত হয়।
- (5) পাকস্থলীঃ গিজার্ডের পর থেকে পাকস্থলী আরম্ভ হয়েছে। গলবিল, গ্রাসনালী ও পাকস্থলীতে নানারকম এনজাইমের সহায়তার খাত্য পরিপাক হয়।

কেঁচোর পোষ্টিক নালী

- (6) অন্ত্রঃ পাকস্থলীর পর থেকে মলাশর পর্যন্ত অংশকে অন্ত্র বলে। অন্ত্রের কাজ হল খাত পরিপাক ও শোষণ।
- (7) মলাশয়ঃ পৌষ্টিক নালীর শেষ অংশকে মলাশয় বলে। এই অংশে মল সঞ্চিত থাকে।
- (৪) (ক) পায়ুঃ পৌষ্টিক নালীর শেষে একটি গোলাকার ছিদ্রযুক্ত পায়ু আছে। খাছের যে অংশ জীর্ণ হয় না বা প্রয়োজনে লাগে না তা পায়ু দিয়ে বেরিয়ে যায়। আমরা কেঁচোর গর্ভমুখে এই অজীর্ণ মলই দেখতে পাই।

- ্থ) লালা গ্রন্থিঃ গলবিলের ওপরে লালা গ্রন্থি আছে। লালা খাত্যবস্তুকে গিলতে ও প্রোটিন পরিপাকে সাহায্য করে।
- 2. রক্ত-সংবহন তন্ত্র ঃ কেঁচোর রক্ত-সংবহন তন্ত্র আরশোলার চেয়ে জটিল। কেঁচোর দেহে রক্তা সঞ্চালনের মাধ্যমে সরল খাত্য উপাদানগুলি পাকস্থলী থেকে প্রতিটি জীবকোষে পরিবাহিত হয়। কেঁচোর দেহে আরশোলার মত কোন হৃৎপিও নেই, তার বদলে চার জোড়া স্পন্দনশীল রক্তনালী আছে, যাদের অনবরত স্পন্দনের ফলে দেহের সকল রক্তনালী (Blood Vessel) দিয়ে কেঁচোর রক্ত চক্রাকারে আবর্তিত হয়ে থাকে। এই রক্তনালীগুলি অসংখ্য শাখা-প্রশাখায় বিভক্ত হয়ে প্রক্ম ও অতি পাতলা দেওয়ালবিশিপ্ত রক্তজালক বা ক্যাপিলারীতে পরিণত হয়। এই ক্যাপিলারীগুলিই দেহের প্রতিটি কোষ ও পাকস্থলীর ভেতরের আবরণের সঙ্গে যুক্ত থাকে। রক্ত-সংবহন প্রক্রিয়ায় এই ক্যাপিলারীগুলির ভূমিকা খুবই গুরুত্বপূর্ণ। ক্যাপিলারার পাতলা দেওয়ালের মধ্য দিয়ে খাত্য ও জলের অংশ পাকস্থলী থেকে রক্তের মধ্যে এদে প্রবিষ্ঠ হয়় এবং রক্ত থেকে জীবকোষের মধ্যে প্রবিষ্ঠ হয়়।

কেঁচোর রক্ত সব সময় রক্তনালীর মধ্যেই আবদ্ধ থাকে। এই ধরনের সংবহন তন্ত্রকে বন্ধ সংবহন তন্ত্র বা ক্লোজড্ সিস্টেম বলে। আমাদের দেহের রক্ত-সংবহন তন্ত্র কিন্তু মুক্ত সংবহন তন্ত্র—সে কথা আগেই বলা হয়েছে। কেঁচোর রক্তনালীর মধ্যে কপাটিকা বা ভাল্ব্ থাকায় রক্ত কেবল একই পথে চক্রাকারে বারবার আবর্তিত হয়ে থাকে। কেঁচোর রক্তে হিমোগ্রোবিন আছে, তাই তাদের রক্তের রং লাল। খাগ্রবস্ত্র ছাড়াও এই রক্তের সাহায্যে অক্সিজেন পরিবাহিত হয়ে থাকে যা শ্বসনক্রিয়ায় কাজে লাগে।

3. শ্বসন তন্ত্র ঃ কেঁচো ভিজা বহিঃত্বক বা কিউটিকলের মধ্য দিয়ে শ্বসনের জন্ম বাতাস গ্রহণ করে থাকে। শাখায়-প্রশাখায় বিভক্ত অসংখ্য রক্তজালক জালের আকারে কেঁচোর দেহের মধ্যে বিস্তৃত আছে এবং তার মধ্য দিয়ে রক্ত যখন চক্রাকারে পরিবাহিত হয়ে থাকে তখন রক্তের হিমোগ্লোবিনের অংশ বাতাস থেকে অক্সিজেন সংগ্রহ করে কোষগুলিতে পেঁছে দেয় শ্বসনক্রিয়ার জন্ম। শ্বসনক্রিয়ার সময় যে দ্বিত কার্বন ডাইঅক্সাইড উৎপন্ন হয় তাও এ রক্তের মাধ্যমে পরি-বাহিত হয়ে বাইরে পরিত্যক্ত হয়।

ভিজা বহিঃ ছকের সাহায্যে কেঁচোর খাসকার্য

4. রেচন তন্ত্রঃ কেঁচোর রেচন তন্ত্র সরল ও অসম্পূর্ণ। কেঁচোর দেহের বর্জ্য পদার্থ নিক্ষাশনের জন্য বিশেষ ধরনের কুণ্ডলীকৃত নালিকা আছে যার নাম নেক্রিডিয়াম (Nephridium, plural—Nephridia)। নেক্রিডিয়ামের তুই প্রান্তই উন্মৃক্ত, যে প্রান্ত দেহগহরের মধ্যে থাকে তা ফানেলের আকারবিশিষ্ট ও সিলিয়াযুক্ত। অন্য প্রান্ত সাধারণতঃ রেচন নালীর সঙ্গে মিশেছে। অসংখ্য কৌশিক নালী বা রক্তজালকের সঙ্গে এই নেফ্রিডিয়ামগুলির সংস্পর্শ আছে, যার ফলে রক্তমধ্যস্থ বর্জ্য পদার্থগুলি নিয়মিতভাবে নেফ্রিডিয়ামের মধ্যে জমা হয়ে থাকে, তারপর রেচননালী-পথে অন্তে আদে এবং অবশেষে পায়ুপথে দেহ হতে বের হয়ে যায়। কেঁচোর দেহে অসংখ্য নেফ্রিডিয়াম আছে। কতকগুলি নেফ্রিডিয়ামের প্রান্ত আবার দেহগাত্রের স্ক্র ছিদ্রের সঙ্গেও যুক্ত

থাকে যার মধ্য দিয়ে দেহের বর্জ্য পদার্থগুলি নিয়মিতভাবে দেহের বাইরে পরিত্যক্ত হয়।

5. নার্ভ তন্ত্রঃ কেঁচোরা আলো, তাপ ও স্পর্শের অনুভূতি গ্রহণ করতে সক্ষম। এদের কোন চোখ বা শুঁড় নেই। এদের বহিঃছকে অনেকগুলি লম্বা লম্বা গ্রাহক কোষ আছে, ঐগুলির সাহায্যেই তারা আলো, উত্তাপ ও স্পর্শের অনুভূতি গ্রহণ করে থাকে। মুখের মধ্যে এদের স্বাদ ও গন্ধ গ্রহণ করবার জন্ম গ্রাহক কোষ আছে, যার সাহায্যে কেঁচোরা কোন বস্তুর স্বাদ ও গন্ধ বুঝতে পারে।

কেঁচার দেহের স্নায়্তন্ত্রের প্রধান অংশটি খাগ্যনালীর নীচে লম্বালম্বিভাবে অবস্থিত। এটিকে ভেণ্ট্রাল নার্ভকর্ড বলে। এটি একটি
লম্বা স্থতার মত দেখতে হলেও বাস্তবিক পক্ষে ছটি নার্ভকর্ডের মিলনে
তৈরী হয়েছে। এই ভেণ্ট্রাল নার্ভকর্ডের মাঝে মাঝে অনেকগুলি
স্থল অংশ আছে। এগুলিকে নার্ভগ্রন্থি বা নার্ভ গ্যাংগ্লিয়ন বলে
(অনেকগুলি নার্ভ-দেহকোষের একত্র মিলনে নার্ভ গ্যাংগ্লিয়ন তৈরী হয়)।
এই নার্ভগ্রন্থি থেকে স্ক্র্ম স্ক্র্ম নার্ভ বেরিয়ে দেহের বিভিন্ন অংশে বিষ্ণৃত
হয়েছে এবং কেঁচোর দেহের বিভিন্ন গ্রাহক কোষগুলির সঙ্গে যুক্ত
হয়েছে। কেঁচোর দেহের তৃতীয় খণ্ডে খাদ্যনালীর ওপরে এক জোড়া
পরম্পরযুক্ত স্থল নার্ভগ্রন্থি আছে, এটিকে কেঁচোর মস্তিষ্ক বলে। এই
ছটি নার্ভগ্রির প্রত্যেকটি থেকেই একটি করে স্তার মত নার্ভ বেরিয়ে
পরম্পর মিলিত হয়ে ভেণ্ট্রাল নার্ভকর্ড গঠন করেছে।

6. জনন তন্ত্রঃ কেঁচো উভলিন্স প্রাণী। অর্থাৎ প্রত্যেকটি কেঁচোর দেহের মধ্যে পুরুষ ও স্ত্রী উভয় অঙ্গই বর্তমান।

পুংজনন তন্ত্রঃ কেঁচোর পুংজনন তন্ত্র ছুইজোড়া শুক্রাশর, ছুই জোড়া শুক্রথলি, শুক্রচুলী, শুক্রনালিকা, প্রোফেট গ্রন্থি, ছুটি পুংজনন ছিদ্র ও চারিটি জনন পিছিকা নিয়ে গঠিত। শুক্রাশয়ে শুক্রকোষ উৎপন্ন হয় এবং তা শুক্রথলিতে এদে সাময়িকভাবে জনা থাকে এবং শুক্রথলির রুসে শুক্রাণুগুলি পুষ্টিলাভ করে। জননের সময় ঐ শুক্রাণু শুক্রচুঙ্গী ও শুক্রনালিকার মধ্য দিয়ে পুংজনন ছিদ্রপথে নির্গত হয়। জনন পিড়িকা জননকার্যে সাহায্য করে।

ন্ত্রীজনন তন্ত্র: কেঁচোর স্ত্রীজনন তন্ত্র ছটি ডিস্বাশয়, ছটি ডিস্ব-চুক্তী, ছটি ডিম্বনালী, একটি স্ত্রীজনন ছিদ্র ও আটটি শুক্রধানী নিয়ে

গঠিত। ডিম্বাশয়ে ডিম্বাণু তৈরী হয়, ঐ ডিম্বাণু ডিম্বচুঙ্গীর মধ্য দিয়ে ডিম্বনালীর মধ্যে আসে। আটিটি শুক্রধানীর মধ্যে অসংখ্য শুক্রাণু সাময়িকভাবে জমা থাকে। ডিম্বনালীর মধ্যে একটি ডিম্বাণুর সঙ্গে একটি শুক্রাণুর মিলনের ফলে একটি শুক্রাণুর স্পৃষ্টি হয়। একে নিষেক্ত ডিম্বগুলি তারপর স্রীজনন ছিদ্র দিয়ে বাইরে বেরিয়ে আসে। একটি কেঁচো এইভাবে অসংখ্য ডিম দিয়ে থাকে। প্রতিটি নিষক্ত ডিম থেকে একটি কেঁচো নিষক্ত

কেঁচোর জনন তন্ত্র ও নার্ভ তন্ত্র

ডিমগুলি একটি গুটি বা ককুনের মধ্যে রেখে দেয়, পরে গুটি ভেঙে কেঁচোর বাচ্চারা বেরিয়ে আসে।

কেঁচো উভলিঙ্গ প্রাণী হলেও একই সময় একই কেঁচোর দেহে
পুংজনন তন্ত্র ও স্ত্রীজনন তন্ত্র পরিপূর্ণতা লাভ করে না। তাই জননের
সময় হুটি কেঁচোর পরস্পর মিলিত হবার প্রয়োজন হয় এবং একটি
কেঁচোর শুক্রাণুর সঙ্গে অপর কেঁচোর ডিম্বাণুর মিলনে জ্রুণাণুর সৃষ্টি
হয়।

মেরুদণ্ডীঃ কুনো ব্যাঙ

(Vertebrate: Toad)

যে-সব প্রাণীর শিরদাঁড়া বা মেরুদণ্ড থাকে তাদের মেরুদণ্ডী (Vertebrate) প্রাণী বলে। মাছ, সরীস্পা, পক্ষী, স্তন্যপায়ী ও উভচর ব্যান্ড—এরা সবাই মেরুদণ্ডী প্রাণী। মেরুদণ্ডী প্রাণীর দেহের মধ্যেই কন্ধাল থাকে, তাই তাদের অন্তঃকন্ধাল (Endoskeleton) প্রাণী বলে। এই কন্ধালটিই দেহের নরম অংশগুলিকে ধরে রাখে, বাইরের আঘাত থেকে সেগুলিকে রক্ষা করে, প্রাণীকে নির্দিষ্ট একটি আকার প্রদান করে, সেই সঙ্গে দেহের ভার বহন করেও থাকে। শিশু অবস্থা থেকে একটি নির্দিষ্ট বয়স অবধি এই কন্ধালটি ধীরে ধীরে বড় হতে থাকে, মেরুদণ্ডী প্রাণীর আকারও সেই সঙ্গে বড় হয়।

কুনো ব্যাঙের অস্থির কাঠামো

অস্থি তন্ত্ৰ (Skeletal system): কুনো ব্যাঙের অস্থি তন্ত্ৰ কতক-গুলি কঠিন অস্থি ও তক্তণ অস্থির সমন্বয়ে গঠিত এবং তুইটি প্রধান ভাগে বিভক্ত, যথা: অক্ষীয় কন্ধাল (Axial skeleton) ও উপাজিক কন্ধাল (Appendicular skeleton)।

তাক্ষীয় কন্ধালঃ কন্ধালের যে অংশটি মাথার খুলি বা করোটি ও মেরুদণ্ড নিয়ে গঠিত এবং দেহের মধ্যরেখা বরাবর অবস্থিত তাকে অক্ষীয় কন্ধাল বলে।

(ক) করোটি (Skull) : করোটিকে সাধারণ কথায় মাথার খুলি বলে। এটি একটি অস্তিময় বান্সের মত, ভিতরের অংশ ফাঁপা, যার মধ্যে বেন বা মস্তিচ্চ থাকে। করোটিটি করোটিকা (Cranium), ওপরের চোয়াল, নীচের চোয়ালও হাওয়েড যন্ত্র (Hyoid apparatus) নিয়ে গঠিত। করোটির প্রধান অংশটি অর্থাৎ যে অংশটি মস্তিদকে আবদ্ধ রাখে তাকে করোটিকা (Cranium or Brain-box) বলে। এই করোটিকার পশ্চাৎ প্রান্তে একটি বড় ছিব্রু আছে। এই ছিব্রুকে বলে ফোরামেন ম্যাগনাম (Foramen magnum)। এই ছিদ্রটির মধ্য দিয়ে মন্তিক্ষের একটি অংশ প্রলম্বিত হয়ে স্বযুদ্ধা কাণ্ড বা স্পাইনাল কর্ড রূপে (Spinal cord) মেরুদণ্ডের ভেতর প্রবেশ করেছে। করোটিকা কয়েক জোড়া অন্থির সাহায্যে গঠিত। এই অস্থিগুলি এমনভাবে জোড়া যে দেগুলি অচল বা স্থির থাকে, অর্থাৎ নাড়ান যায় না। ব্যাভের উপরের চোয়াল (Upper jaw) করোটিকার সঙ্গে যুক্ত; অর্থাৎ উপরের চোয়ালটি নাড়ান যায় না। ব্যাঙ যখন খাবার সময় হাঁ করে তথন নীচের চোয়ালটিই নামায়, উপরের চোয়ালটি স্থির থাকে। এই নীচের চোয়ালটিও (Lower jaw) করোটির একটি অংশ এবং এটি করোটির সঙ্গে এমনভাবে সংলগ্ন যা সহজে নাড়ান যায়। আমরাও ঠিক এইভাবে মুখের হাঁ করি। কুনো ব্যাঙের চোয়ালে দাঁত নেই, সোনা ব্যাঙের চোয়ালে দাঁত আছে। করোটিতে কয়েকটি ইন্দ্রিয় কোটর আছে; যথা—চক্ষু কোটর, কর্ব কোটর, নাসিকা কোটর। করোটির আর একটি অংশ হাওয়েড অ্যাপারেটাস (Hyoid apparatus) মুখবিবরের তলায় অবস্থিত, এটি ভিতরের অংশগুলিকে ধরে রাখে এবং এটি তরুণাস্থি দ্বারা গঠিত।

মেরুদণ্ড ঃ কুনো ব্যাঙের মেরুদণ্ডটি দশটি অস্থিখণ্ড বা কুশেরুক।

(Vertebrae) নিয়ে গঠিত। লম্বা দণ্ড আকারের দশম কশেরুকাকে ইউরোস্টাইল (Urostyle) বলে। এই মেরুদণ্ডটি করোটির

কুনো ব্যাঙ্কের মেরুদণ্ড

নীচ থেকে ধড়ের শেষ প্রান্ত পর্যন্ত বিস্তৃত।
এই মেরুদণ্ডটির ওপর করোটিটি এমনভাবে
বসান থাকে যা সহজে নাড়ান যায়।
প্রত্যেকটি কশেরুকার মধ্যে গোলাকার
গর্ত আছে, কশেরুকাগুলি আংটির মন্ড
এবং ঐগুলি পর পর সজ্জিত থাকার ফলে
তাদের মধ্যে একটি সুড়ঙ্গ বা নলের মত
লম্বা গহ্ররের স্পৃষ্টি হয়, তার মধ্যে
স্বযুদ্ধাকাণ্ড বা স্পাইনাল কর্ড থাকে।
ইউরোস্টাইলের মধ্যেও সরু গহ্রর আছে,
তার মধ্যে সুযুদ্ধাকাণ্ডের শেষ প্রান্তিটি
থাকে। কশেরুকাগুলি বন্ধনীবা লিগামেন্টের
সাহায্যে পরস্পর আবদ্ধ থাকে, মেরুদণ্ডটি

তাই সামান্য বাঁকান যায়। তুইটি কশেরুকা যেখানে পরস্পার সংলগ্ন সেখানে প্রত্যেক পাশে কাঁক থাকে। এই ফাঁক দিয়ে সুষুমাকাণ্ডের সঙ্গে বুক্ত নার্ভ বেরিয়ে আসে এবং দেহের অন্যত্র পরিব্যাপ্ত হয়। মানুষের মেরুদণ্ডে 33টি কশেরুকা আছে। মানুষের মেরুদণ্ডটি অনেক বেশী লম্বা।

উপান্ধিক কঙ্কাল: কুনো ব্যাত্তের উপান্ধিক কঙ্কাল অগ্র ও পশ্চাৎপদের অচ্ছির কাঠামো, উরশ্চক্র ও জ্রোণীচক্র নিয়ে গঠিত।

অগ্রপদের অস্থিঃ অগ্রপদের ওপরের অংশের অস্থিকে হিউমেরস (Humerus) বলে। তার ঠিক নীচেই রেডিয়স ও আলনা নামে তুইটি অস্থির মিলনে একটি অস্থি অবস্থিত, তার নাম রেডিয়ো-আলনা। এর পরেই কব্ধির অংশে প্রতি সারিতে তিনটি করে মোট ছয়টি ছোট ছোট অস্থি ছুইটি সারিতে সাজান থাকে, এগুলিকে করপাল (Carpals) বলে। ব্যাঙের করতল অংশে চারিটি লম্বা মেটাকরপাল (Metacarpal) অস্থি আছে এবং চারিটি আঙ্গুলে ছোট ছোট অনেকগুলি অঙ্গুলাস্থি বা ফ্যালেনজেস (Phalanges) আছে।

পশ্চাৎপদের অন্দ্র ঃ পশ্চাৎপদের উরুদেশের অস্থিকে ফিমার (Femur) বলে। তার ঠিক নীচেই টিবিয়া ও ফিবিউলা নামক ছুইটি অস্থির মিলনে টিবিয়ো-ফিবিউলা নামে একটি অস্থি আছে। গোড়ালির ভেতরকার অস্থিগুলিকে টারসাল বলে এবং তা ছুই সারিতে অবস্থিত। প্রথম সারির ছুইটি অস্থি বেশ লম্বা ও ছুপ্রান্তে পরস্পর যুক্ত, পরের সারির অস্থি ছুটি খুবই ছোট। পদতলে পাঁচটি মেটাটারসাল এবং পেছনের পায়ের পাঁচটি আঙ্গুলে অনেকগুলি ছোট ছোট ফ্যালেনজেস আছে।

উরশ্চক্র ঃ কুনো ব্যাঙের ধড়কে খিরে যে অস্থিগুলি রয়েছে তাই
নিয়ে উরশ্চক্র বা বক্ষবেষ্ট্রনী (Pectoral girdle) গঠিত। এটি
ভেতরের কোমল অংশগুলিকে রক্ষা করে বাইরের আঘাত থেকে।
ব্যাঙের অগ্রপদের হিউমেরসের বর্তুলাকার প্রান্তটি বল ও সকেট
পদ্ধতিতে এই উরশ্চক্রের সঙ্গে যুক্ত, তার ফলে সামনের পা ছটি
ইচ্ছামত এদিক-ওদিক খোরান যায়।

শ্রোণীচক্র : দেহের কোমরের অংশের অস্থিচক্রকে শ্রোণীচক্র (Pelvic girdle) বলে। দেখতে এটি ইংরাজী V অক্ষরের মত। এই শ্রোণীচক্রের সঙ্গে পেছনের পায়ের ফিমার অস্থির বর্তু লাকার প্রান্তটি বল ও সকেট পৃদ্ধতিতে যুক্ত থাকায় সামনের পায়ের মত পেছনের পা তৃটিও ব্যাঙেরা ইচ্ছামত সঞ্চালন করতে পারে। মানুষের কন্ধাল তল্ত্রের এই অংশগুলি অর্থাৎ হাত, পা, উরশ্চক্র ও শ্রোণীচক্র মোটামুটি একই পদ্ধতিতে গঠিত।

পৌষ্টিক তন্ত্র (Alimentary system) ঃ কুনো ব্যান্তের পৌষ্টিক তন্ত্র পৌষ্টিক নালী ও পরিপাক ক্রিয়ার সহায়ক কয়েকটি গ্রন্থি নিয়ে গঠিত। ব্যাঙের পৌষ্টিক নালিটি মুখ থেকে আরম্ভ হয়ে পশ্চাদ্-ভাগের ছিদ্রটি পর্যন্ত বিস্তৃত। মানুষেরও পৌষ্টিক নালী মুখছিদ্র

কুনো ব্যাঙ্কের পৌষ্টিক তন্ত্র

থেকে পায়ুছিদ্ৰ পর্যন্ত বিস্তৃত। এই পৌষ্টিক নালীটি খাভানালী নামেও পরিচিত। পৌষ্টিক নালীটি নিম্নলিখিত অংশ নিয়ে গঠিত।

মুখছিদ্র : কুনো ব্যাঙের মুখছিদ্রটি বেশ চওড়া এবং দন্তহীন ত্বইটি চোয়াল দ্বারা বেষ্টিত।

মুখবিবর ঃ কুনো ব্যাঙের মুথের ভেতরের প্রশস্ত অংশকে মুখবিবর বলে। মুখবিবরের মেঝেতে একটি মাংসল জিব আছে। ব্যাঙের জিবটি খুবই বিচিত্র, এর সামনের অংশটি মুখবিবরের সামনের অংশের সঙ্গে জোড়া থাকে, কিন্তু জিবের পেছনের অংশটি মুক্ত থাকে এবং গলার দিকে প্রসারিত থাকে। ব্যাঙের কোন পতঙ্গ ধরবার প্রয়োজন হলে হঠাৎ দীর্ঘ জিবটি মূখ থেকে উপ্টে বার করে পতঙ্গকে ধরে, তারপর আবার জিবটি উপ্টে মুখের মধ্যে টেনে নেয়। ব্যাঙের মুখবিবরের ওপর দিকে তুইটি অন্তঃনাসারন্ধের ছিদ্র আছে। মুখবিবরের মেঝেতে, জিবের গোড়ায় একটি ছোট ছিদ্র থাকে। এটি খাসছিদ্র বা প্রটিস (Glottis)। খাসছিদ্রের মাধ্যমে মুখবিবর খাসনালীর সঙ্গে যুক্ত।

গ্রাসনালী ঃ মুখবিবরটি ক্রমশঃ সরু হয়ে গ্রাসনালীতে পরিণত হয়েছে। খাগ্যবস্তু পাকস্থলীতে চালনা করাই এর প্রধান কাজ।

পাকস্থলী ঃ গ্রাসনালীর পরেই পুরু প্রাচীরযুক্ত থলির মত পৌষ্টিক নালীর অংশটিকে পাকস্থলী বলে। পাকস্থলীর প্রাচীরে বহু গ্রন্থি আছে। এই গ্রন্থি থেকে পাচক রস নির্গত হয়। এই পাচক রসের সাহায্যে পাকস্থলীতে খাভ আংশিকভাবে জীর্ণ হয় এবং তা সাময়িকভাবে জমা থাকে।

ক্ষুদ্রান্ত গাকস্থলীর পর থেকে ক্ষুদ্রান্তর স্থক হয়েছে। ক্ষুদ্রান্ত্র সরু ও আংশিকভাবে কৃণ্ডলী পাকান। ক্ষুদ্রান্ত্রের প্রথমাংশের নাম ডিওডিনাম ও পরের অংশের নাম ইলিয়াম। ইলিয়ামের অংশটিই কুণ্ডলী পাকান ও মেসেনটারী নামক পর্দার সাহায্যে দেহপ্রাচীরের সঙ্গে যুক্ত। ক্ষুদ্রান্ত্রের ভিতরই খাছাবস্তুর সম্পূর্ণ পরিপাক এবং তার শোষণ প্রায় সম্পূর্ণ হয়।

বৃহৎ অন্তঃ ক্ষুদ্রান্তের পরে পৌষ্টিক নালী মোটা নলের মত অংশটিকে বৃহৎ অন্ত বলে। একে মলাশয়ও বলা হয়। খাতের অপাচ্য অংশ এখানে জমা থাকে এবং তা মলে পরিণত হয়। বৃহৎ অন্তের সাহায্যে কিছু জল ও লবণ শোষিত হয়। পৌষ্টিক নালীর শেষ প্রান্তে অবসারণীর ছিদ্রপথে মল দেহের বাইরে নিক্ষিপ্ত হয়।

পৌষ্টিক গ্রন্থি: ব্যাঙের দেহে ছুইটি প্রধান পৌষ্টিক গ্রন্থি আছে, যথা যক্কৎ (Liver) ও অগ্ন্যাশয় (Pancreas)। এ ছাড়াও পাকস্থলী ও ক্ষুজান্ত্রের দেহস্তরে অসংখ্য সূক্ষ্ম গ্রন্থি আছে। যকৃৎ: ব্যান্তের হৃৎপিণ্ডের ছই পাশে গাঢ় খয়েরি রভের ছইটি বড় খণ্ড ও সংযোগকারী একটি মধ্যখণ্ড নিয়ে যকৃৎ গঠিত। যকৃতে পিত্ত উৎপন্ন হয় এবং ঐ পিত্ত যকৃতের মধ্যখণ্ডের ওপর অবস্থিত একটি পিত্তথলিতে সাময়িকভাবে জমা হয় এবং পরিশেষে একটি পিত্তনালীর সাহায্যে তা ক্ষুদ্রান্তের ডিওডিনামের মধ্যে বাহিত হয়। এই পিত্তরস খাছা পরিপাকে সাহায্য করে।

অগ্নাশয়ঃ এই গ্রন্থির আকার লম্বা ও ফিকা হলুদ রঙের।
এটি পাকস্থলী ও ডিওডিনামের মধ্যস্থলে অবস্থিত। অগ্নাশয় থেকে
অগ্নাশয় রস নিঃস্ভহয় এবং তা পিত্তনালীর মধ্য দিয়েই ডিওডিনামের
মধ্যে বাহিত হয়। এই অগ্নাশয় রসও খাত্য পরিপাকে বিশেষভাবে
সাহায্য করে। মানুষের দেহেও এই যকুং ও অগ্নাশয় আছে এবং
এই ছইটি গ্রন্থি থেকে নিঃস্ত রস আমাদের খাত্য পরিপাকে সাহায্য
করে।

শ্বসন তন্ত্র (Respiratory system) ঃ শ্বাসকার্য জীবনের অন্তত্তম প্রধান লক্ষণ। জীবমাত্রই শ্বসনের সময় অক্সিজেনের সাহায্যে থাত্ত-বস্তু জারিত (Oxidized) করে শক্তি সংগ্রহ করে থাকে। ঐ শক্তির সাহায্যে জীব নানা রকম কাজকর্ম করে থাকে। শ্বসনের সময় জীব সাধারণতঃ বাতাস অথবা জল থেকে অক্সিজেন সংগ্রহ করে থাকে। ব্যাঙ্গ উভচর প্রাণী। ডিম ফোটবার পর ব্যাঙাচিরা জলের মধ্যে কিছুকাল বাস করে, তখন শ্বসনের সময় ব্যাঙাচিরা মাথার পিছনের তিন জোড়া বহিঃস্থ ফুলকোর (External gill) সাহায্যে মাছের মত জল থেকেই অক্সিজেন সংগ্রহ করে থাকে। ব্যাঙাচিরা শুধু বহিঃস্থ ফুলকোর সাহায্যেই নয়, দেহের পাতলা চামড়ার মধ্য দিয়েও অক্সিজেন নিয়ে শ্বাসকার্য করে।

ব্যাঙাচি অবস্থার শেষের দিকে ফুলকোগুলি লুপ্ত হয়, তখন ব্যাঙ তার সন্তস্প্ত প্লটি ফুসফুসের (Lungs) সাহায্যে খাসকার্য স্থরু করে। এই ফুসফুস উচ্চত্রোণীর প্রাণীর একটি বৈশিষ্ট্য। ব্যাঙের ছুইটি ফুসফুস হৃৎপিণ্ডের ছুই পাশে থাকে। ব্যাঙের এই

ফুসফুস তুইটিতে স্পঞ্জের মত অসংখ্য ছোট ছোট প্রকোষ্ঠ আছে, এগুলিকে অ্যালভিওলি বলে । এই প্রকোষ্ঠগুলির প্রাচীর অতান্ত পাতলা এবং অসংখ্য রক্তজালক এই প্রাচীরের গাত্রে অবস্থিত। শ্বাসগ্রহণের সময় व्याखित नात्कत इपि ছिप्प मिर्य মুখবিবরের মধ্যে বাতাস প্রবেশ করে, ব্যাঙ তখন মুখ বুজে থাকে। মুখবিবরের তলায় পেশীর সঙ্কোচন-প্রসারণের ফলে ঐ বাতাসের ওপর যে চাপ সৃষ্টি হয় তার ফলে ঐ বাতাস খাননালী দিয়ে ফুসফুসের মধ্যে প্রবেশ করে।

কুনো ব্যাঙের ফুসফুস

ফুসফুসের মধ্যে ঐ বাতাস প্রবেশ করার পর তা অ্যালভিওলির রক্তজালকের পাতলা প্রাচীর ভেদ করে রক্তের সংস্পর্শে আসে, এবং

ব্যাঙের শ্বাস গ্রহণ

রক্তের লোহিত কণিকার হিমোগোবিনের অংশ ঐ বাতাস থেকে অক্সিজন শোষণ করে নেয় এবং রক্ত যে দৃষিত কার্বন ডাইঅক্সাইড গ্যাস দেহের অস্থান্থ কোষ থেকে বহন করে আনে তা এই স্থানে ঐ বাতাসে যোগ হয়। এইভাবে ফুসফুসের মধ্যেই বাতাস থেকে অক্সিজেনের অংশ রক্তের মধ্যে যোগ হয় এবং দৃষিত কার্বন ডাইঅক্সাইড রক্ত থেকে পরিত্যক্ত হয়ে বাতাসে যোগ হয়। এই সময় ব্যাঙ্কের উদরের পেশী ও ফুসফুসের পেশীর সঙ্কোচনের ফলে ফুসফুসের মধ্যে আবদ্ধ বাতাসের ওপর যে চাপ স্ঠিইয় তার ফলে এ বাতাস নাসারক্রপথে বাইরে বেরিয়ে আসে। এইভাবে ব্যাঙ্ক শ্বাস ত্যাগ করে।

রক্ত ফুসফুসের মধ্যস্থ বাতাস থেকে অক্সিজেন সংগ্রহ করে প্রতিটি কোষে পৌছে দেয়। ঐ অক্সিজেনের সহায়তায়ই প্রতিটি কোষে সরল খাত্তকণা জারিত হয়ে শক্তি সংগৃহীত হয়। এইভাবে প্রতিটি কোষের মধ্যেই শ্বসনক্রিয়া ঘটে থাকে।

ব্যাঙ ফুসফুস ছাড়াও মুখবিবর ও গলবিলের শ্লেম্বাবিল্লি এবং ভিজা ত্বকের মধ্য দিয়েও শ্বাসকার্যের জন্ম গ্যাসের আদান-প্রদান করে থাকে। ত্বকের মধ্য দিয়ে গ্যাসের আদান-প্রদান সাধারণতঃ অতি অল্ল হয়। তবে শীতকালে ব্যাঙ যখন সম্পূর্ণ নিজ্রিয় হয়ে দীর্ঘ শীতমুমে (Hybernation) আচ্ছন্ন থাকে তখন ত্বকের মধ্য দিয়েই তার শ্বাসকার্য চলে।

মানুষ কেবল ফুসফুসের সাহায্যেই খাসকার্য করে, মানুষের ছক বা ফুলকোর সাহায্যে খাসকার্যের কোন ব্যবস্থা নেই। মানুষের বক্ষগহরের তলায় যে পেশীবহুল মধ্যচহুদাটি আছে তার সঙ্কোচন ও প্রসারণের সাহায্যে ফুসফুসের সঙ্কোচন ও প্রসারণ যান্ত্রিক উপায়ে ঘটে থাকে।

রক্ত-সংবছন তন্ত্র (Circulatory system) ঃ কুনো ব্যাঙের রক্ত-সংবহন তন্ত্র রক্ত, ধমনী, শিরা, জালক ও হৃৎপিশু নিয়ে গঠিত।

রক্তঃ তৃতীয় অধ্যায়ে আমরা জেনেছি, রক্ত এক প্রকার যোগকলা (Connective tissue)। অন্যান্ত যোগকলার সঙ্গে এর প্রধান পার্থক্য হল একটি তরল মাধ্যমে এর কোষগুলি ভাসমান অবস্থায় থাকে, এই তরল মাধ্যমকে বলে রক্তরস বা প্লাজমা এবং ভাসমান কোষগুলিকে বলে রক্তকণিকা। একটি অণুবীক্ষণ যন্ত্রের তলায় ব্যাঙের এক বিন্দু রক্ত পরীক্ষা করলে দেখা যাবে তাতে অসংখ্য গোল বা ডিম্বাকার রক্তকোষ বা রক্তকণিকা রয়েছে। এই রক্তকণিকাগুলি তিন প্রকারের।

- (ক) লোহিত রক্তকণিকা: এগুলি আকারে ডিম্বাকার এবং
 নিউক্লিয়াসযুক্ত, এতে হিমোগ্রোবিন (Haemoglobin) নামে এক বরকম
 লোহঘটিত জৈব পদার্থ থাকায় এগুলি লাল দেখায়, সেইজন্ম রক্তর
 রঙও লাল। এদের সংখ্যা অন্যান্ম কণিকার থেকে অনেক বেশী।
 মানুষের দেহের লোহিত রক্তকণিকায় কোন নিউক্লিয়াস থাকে না,
 আকারেও সেগুলি ছোট।
- (খ) শ্বেত রক্তকণিকাঃ কুনোব্যাঙের শ্বেত কণিকাগুলি জলের মত বর্ণহীন, নিউক্লিয়াসযুক্ত ও অ্যামিবার মত চলাচল করতে পারে। এদের সংখ্যা লোহিত রক্তকণিকার থেকে অনেক কম।
- (গ) অণুচক্রিকা এই কোষগুলির আকার মাকুর মত এবং এতেও নিউক্লিয়াস আছে, এদের সংখ্যাও বেশী নয়।

রক্তের কাজঃ রক্তের প্রধান কাজ হল (ক) খাসকার্যের সময় বাতাস থেকে অক্সিজেন সংগ্রহ করে দেহের সকল জীবিত কোষে সরবরাহ করা এবং সেখান থেকে দৃষিত কার্বন ডাইঅক্সাইড সংগ্রহ করে দেহের বাইরে নিজ্রান্ত হতে সাহায্য করা। (খ) পৌষ্টিক তন্ত্র থেকে সরল খাদ্যবস্তু সংগ্রহ করে দেহের সকল জীবিত কোষে সরবরাহ করা। (গ) দেহের গ্রন্থিগুলি থেকে নানা রকম রস ও হরমোন দেহের বিভিন্ন কোষে সরবরাহ করা। (ঘ) দেহকোষের মধ্যে বিপাকক্রিয়ার ফলে যে-সব দৃষিত পদার্থ উৎপন্ন হয় তা ঘর্ম ও মৃত্রের সঙ্গে শরীরের বাইরে বেরিয়ে যেতে সাহায্য করা। (গ্র) শ্বেত রক্তকণিকাগুলির সাহায্যে রক্তের মধ্যে ক্ষতিকারক পদার্থ ও রোগ বীজাণু ধ্বংস করা। (চ) অণুচক্রিকাগুলির সাহায্যে রক্তে জমাট বাঁধার কাজ নিষ্পন্ন করা।

ধ্যনী, শিরা ও জালকঃ রক্ত হৃৎপিও থেকে কতকগুলি রক্তবাহ নালাপথে দেহের সর্বত্র ছড়িয়ে পড়ে। এই নালীগুলি শাখায়-প্রশাখায় বিভক্ত হয়ে শেষ প্রান্তগুলি সৃক্ষা জালকের আকার

ধমনী, রক্তজালক ও শিরা

ধারণ করে। এই জালক বা কৈশিক নালীগুলির (Capillaries) আকার চুলের থেকেও সরু এবং এদের দেওয়াল খুবই পাতলা। এই পাতলা দেওয়াল ভেদ করে রক্ত থেকে গ্যাস ও সরল খাছাকণিকার আদান-প্রদান ঘটে দেহের প্রতিটি কোষের সঙ্গে। তারপর ঐ রক্ত সম্পূর্ণ ভিন্ন পথে জালক ও রক্তবাহ নালী দিয়ে হৃৎপিণ্ডে ফিরে আসে। হৃৎপিণ্ড থেকে যে নালীপথে রক্ত কোষকলায় পোঁছায় ভাকে ধমনী (Artery) বলে। ধমনীর মধ্য দিয়ে অক্সিজেনযুক্ত বিশুদ্ধ রক্ত প্রবাহিত হয়। যে নালীপথে কার্বন ডাইঅক্সাইডয়ুক্ত দ্বিত রক্ত জালক থেকে হৃৎপিণ্ডে ফিরে আসে তাকে শিরা (Vein)বলে। ধমনীর প্রাচীর শিরার থেকে মোটা, তাই ভেতরের গহ্মরের ব্যাস শিরা থেকে ছোট। শিরার মধ্যে একমুখী কপাটিকা বা ভাল্ব (Valve) আছে, যার জন্ম রক্ত শিরার মধ্যে কেবল এক দিকে অর্থাৎ হৃৎপিণ্ডের দিকেই প্রবাহিত হয়। ধমনীর মধ্যে এই রকম কোন কপাটিকা নেই। হৃৎপিণ্ডের মধ্যেও এই রকম একমুখী কপাটিকা আছে, তার ফলে হৃৎপিণ্ডের মধ্যেও এই রকম একমুখী কপাটিকা আছে,

তখন রক্ত হাংপিও থেকে নির্গৃত হয়ে ধমনী, জালক ও শিরার মধ্য দিয়ে আবার হাংপিওে ফিরে আসে। এইভাবে একই দিকে একটি চক্রাকার পথে রক্ত দিবারাত্রি নিয়ত আবর্তিত (Circulated) হয়ে থাকে, একেই রক্ত সঞ্চালন বলে। গ্যাস বিনিময়ের ফলে এবং কোষ

একমুখী কপাটিকার গঠন ও কার্যপ্রণালী

থেকে নানা দূষিত পদার্থ গ্রহণের ফলে জালকের মধ্যেই বিশুদ্ধ রক্ত দূষিত রক্তেরপান্তরিত হয়, (ছবি দেখ)। ফুসফুসের সাহায্যে এবং রেচন তন্ত্রের সাহায্যে ঐ দৃষিত রক্ত যথাক্রমে কার্বন ডাইঅক্সাইড ও রেচনজাত পদার্থ মোচন করে পুনরায় বিশুদ্ধ রক্তে পরিণত হয়।

হৃৎপিও: ব্যাঙের হৃৎপিওটি দেখতে ত্রিকোণাকার, এটি একটি

পাতলা পর্দাদারা ঢাকা থাকে, এই পর্দাটিকে পেরিকার্ডিয়াম বলে। এই পর্দাটি সরালে হং-পিগুটি বেশ ভাল করে দেখা যায়। ব্যাঙের হুংপিগুটি কয়েকটি কুঠুরী বা প্রকোষ্ঠ নিয়ে গঠিত, যেমন (1) লাইনাস ভেনোসাস, (2) ভান অলিন্দ, (3) বাম অলিন্দ, (4) নিলয়, (5)

ব্যাঙ্কের হৃৎপিত

L. S.-5

কোনাস্ আর্টিরিওসাস্। বাস্তবিকপক্ষে ডান অলিন্দ, বাম অলিন্দ ও নিলয়ই হল আসল প্রকোষ্ঠ। সাইনাস ভেনোসাস এবং কোনাস্ আর্টিরিওসাস্ যথাক্রমে শিরা এবং ধমনীর সমন্বয়ে গঠিত।

স্থৎপিণ্ড একটি পাম্পের মত কাজ করে। আমরা পাম্পের সাহায্যে জল বা কোন তরল পদার্থ এক স্থান থেকে অন্যাস্থানে সরবরাহ করে থাকি, হৃৎপিণ্ডটিও তেমনি দেহের সর্বত্র একটি চক্রাকার পথে রক্ত সঞ্চালিত করে থাকে। হৃৎপিণ্ডটি যখন পর্যায়ক্রমে সঙ্কুচিত ও প্রসারিত হতে থাকে তখন রক্ত নিলয় নামক প্রকোষ্ঠটি থেকে কোনাস্ আর্টিরিওসাস্ প্রকোষ্ঠে আসে এবং তারপর মোটা মহাধমনী ও পরে শাখায়-প্রশাখায় বিভক্ত অসংখ্য ধমনীর মধ্য দিয়ে ঐ রক্ত দেহের সর্বত্র ছড়িয়ে পড়ে এবং সবশেষে যখন অসংখ্য স্ক্র্ম জালকের মধ্যে রক্ত পেঁছায়, তখন গ্যাসের আদান-প্রদান ঘটে দেহকোষগুলের সঙ্গে, সে কথা আগেই বলা হয়েছে। বিশুদ্ধ রক্ত এই প্রক্রিয়ার ফলে দূষিত হয়। ঐ দূষিত রক্ত তারপর সম্পূর্ণ ভিন্ন পথে জালক, শিরাও ভিনটি মহাশিরার মধ্য দিয়ে হৃৎপিণ্ডের সাইনাস ভেনোসাস নামক প্রকোষ্ঠে ফিরে আসে।

এখন তোমাদের মনে প্রশ্ন জাগতে পারে, দূষিত রক্ত যা হৃৎপিণ্ডের মধ্যে ফিরে এল তা আবার বিশুদ্ধ রক্তে পরিণত হয় কি করে ? শ্বসন তন্ত্র আলোচনার সময় আমরা জেনেছি, ব্যাঙের ফুসফুসের মধ্যে দূষিত রক্ত গ্যাস বিনিময়ের ফলে কিভাবে বিশুদ্ধ রক্তে পরিণত হয়। স্থতরাং হৃৎপিণ্ড থেকে দৃষিত রক্ত প্রথমে যায় ফুসফুসে বিশুদ্ধীকরণের জন্ত, তারপর সেখানে গ্যাস বিনিময়ের ফলে। রক্ত বিশুদ্ধ হলে ঐ বিশুদ্ধ রক্ত আবার হৃৎপিণ্ডে ফিরে আসে এবং দেহের অত্যাত্য স্থানে তা আবার পরিবাহিত হয়। এইখানে মনে রাখা দরকার, ব্যাঙের বাম ও দক্ষিণ অলিন্দে একটি সাধারণ ছিদ্রপথে নিলয়ে মুক্ত হয়েছে। ব্যাঙের বাম অলিন্দে যখন ফুসফুস থেকে বিশুদ্ধ অক্সিজেনযুক্ত রক্ত প্রবেশ করে, ঠিক ঐ সময়ই ব্যাঙের দক্ষিণ অলিন্দে দেহের অত্যান্ত কলা-

কোষ থেকে আগত দ্যিত কার্বন ডাইঅক্সাইডযুক্ত রক্ত প্রবেশ করে। এই অলিন্দ ছটি সঙ্কোচনের ফলে ঐ বিশুদ্ধ এবং দৃষিত রক্ত সাধারণ নালীপথে একই সময়ে নিলয়ের মধ্যে প্রবেশ করে; তারপর ঐ রক্ত কোনাস্ আর্টিরিওসাস্, মহাধমনী ও অক্সান্থ ধমনীর মাধ্যমে সারা দেহে পরিবাহিত হয়। সুতরাং, নিলয় ও কোনাস্ আর্টিরিওসাসের মধ্যে বিশুদ্ধ ও দৃষিত রক্ত কিছুটা মিশ্রিত হয়ে যায়। ব্যাঙের দেহে এইভাবে মিশ্রিত রক্ত পরিবাহিত হয়।

রক্তের গতিপথ নিয়ন্ত্রণ করে কপার্টিকা (Valve)। স্থংপিণ্ড ও শিরায় অনেকগুলি কপার্টিকা থাকায় রক্ত বিপরীত পথে প্রবাহিত হতে পারে না। অর্থাৎ একই চক্রাকার পথে বারংবার আবর্তিত হয়ে থাকে।

মানুষের দেহের রক্ত-সঞ্চালন তন্ত্রের মোটাম্টি এই একই কাঠামো।
মানুষের হৃৎপিণ্ডের চারিটি প্রকোষ্ঠ, যথা ছুটি অলিন্দ ও ছুটি নিলয়।
বাম নিলয় থেকে বিশুদ্ধ রক্ত দেহে সঞ্চালিত হয় এবং দূবিত রক্ত
দক্ষিণ অলিন্দে ফিরে আসে এবং তা ফুসফুসের সাহায্যে বিশোধিত
হয়ে পুনরায় নিলয়ে যায়। মানুষের হৃৎপিণ্ডে ছুইটি নিলয় থাকায়
এবং তাদের মধ্যে কোন সংযোগ না থাকায় মানুষের হৃৎপিণ্ডের মধ্যে
ব্যাঙ্কের মত বিশুদ্ধ ও দূবিত রক্তের কোন মিশ্রণ ঘটে না।

রেচন তন্ত্র (Excretory system) ঃ কুনো ব্যাঙের রেচন তন্ত্রের প্রধান অঙ্গ হল বৃক্ক বা কিডনী। ব্যাঙের বৃক্কছটি লম্বাটে ধরনের, গাঢ় বাদামী রঙের ও মেরুদণ্ডের ছই পাশে অবস্থিত। প্রতিটি বৃক্ক থেকে একটি করে ইউরেটার নামক নালী বেরিয়েছে। ইউরেটার ছটি পরে একসঙ্গে মিলিত হয়ে একটি সাধারণ নালীতে পরিণত হয়েছে এবং তা অবসারণীর মধ্যে মৃক্ত হয়েছে। অবসারণীর অঙ্কীয় দেশেই মূত্রাশায় আছে। মূত্রাশায়ে মৃত্র সাময়িকভাবে জনা থাকে, পরে তা অবসারণীর ছিদ্রপথ দিয়ে বাইরে নির্গত হয়।

বৃক্কের মধ্যে মূত্র তৈরী হয়। এই বৃক্ক পাতলা দেওয়ালবিশিষ্ঠ অসংখ্য সূক্ষম নালিকার সমন্বয়ে গঠিত। ব্যাঙের রক্তবাহ শিরার জালকের অংশ ঘনিষ্ঠভাবে এই বৃক্ক-নালিকার সঙ্গে যুক্ত, তার ফলে রক্ত্র্রেকে জল, সরল খাছ্যকণা ও দূষিত পদার্থগুলি এই বৃক্ক-নালিকার মধ্যে সংগৃহীত হয়, কিন্তু অধিকাংশ জল ও খাছ্যকণাগুলি পুনরায় রক্ত্রের মধ্যে শোষিত হয়, কেবল দূষিত পদার্থগুলি ও অতিরিক্ত জল ও লবণের অংশ মূত্ররূপে ইউরেটারের মধ্য দিয়ে অতিক্রান্ত হয়ে মূত্রাশয়ে জমা হয়। বৃক্ক প্রধানতঃ তুইটি কাজ করে, প্রথমতঃ রক্ত থেকে অতিরিক্ত্রজল, অপ্রয়োজনীয় লবণ ও নানা রক্ম দূষিত পদার্থ বার করে দিয়ে রক্তকে বিশোধিত করে। দিতীয়তঃ বছ প্রয়োজনীয় পদার্থ পুনরায় শোষণ করে রক্তের উপাদানগুলি নির্দিষ্ট পরিমাণে রক্ষা করে।

ব্যাঙ্কের রেচন-জনন তন্ত্র

ব্যাঙ্কের বৃক্তের অগ্রভাগে কতকগুলি ফ্যাট বভি থাকে, এতে ব্যাঙ্কের সঞ্চিত খাদ্য থাকে। শীতকালে দীর্ঘ শীতঘুমের সময় এই খাত তাদের কাজে লাগে। সঞ্চিত খাত্যের পরিমাণ অনুযায়ী এই ফ্যাট বডির আকার ছোট বড় হয়।

মান্থ্যের রেচন তন্ত্র মোটামূটি এই একই পদ্ধতিতে কাজ করে। মান্থ্যের বৃক্ত্টি বাংলা ৫-এর মত এবং তা অসংখ্য বৃক্কনালী বা লেফ্রনের সাহায্যে গঠিত। ব্যাঙ্কের জনন তন্ত্র আলোচনার সময় দেখা যাবে, ব্যাঙ্কের দেহে জনন তন্ত্র ও রেচন তন্ত্রের যোগ যত বেশী মাহুষের তা নয়।

জনন তন্ত্র (Reproductive System) ঃ ব্যাপ্ত আরশোলার মত একলিঙ্গ প্রাণী। পুরুষ ও স্ত্রী ব্যাপ্ত আলাদা। পুরুষ ব্যাপ্তের দেহে পুংজনন তন্ত্র ও স্ত্রী ব্যাপ্তের দেহে স্ত্রীজনন তন্ত্র আছে।

পুংজনন তন্ত্রঃ ব্যাঙের পুংজনন তন্ত্র এক জোড়া শুক্রাশার,
শুক্রনালী, এক জোড়া ইউরেটার ও অবসারণী ছিল্র নিয়ে গঠিত।
শুক্রাশারত্তি লম্বা আকারের হান্ধা ও বাদামী রংএর এবং একটি
পাতলা পর্দাঘারা এক-একটি বৃক্কের (কিডনী) সঙ্গে যুক্ত। শুক্রাশারে
শুক্রাণু (Sperm) তৈরী হয়। এই শুক্রাণু কয়েকটি স্ক্র্ম নালীঘারা
বাহিত হয়ে বৃক্কনালীতে মুক্ত হয়, তার পর বৃক্কনালী থেকে
শুক্রাণুগুলি ইউরেটারে প্রবেশ করে। পুরুষ ব্যাঙের ইউরেটার
ছটি মুত্র ও শুক্রাণু বহন করে। পুরুষ ব্যাঙের ইউরেটার ছটি
মৃত্র ও শুক্রাণু বহন করে। পুরুষ ব্যাঙের ইউরেটার ছটি
একটি সাধারণ নালীতে মিলিত হয়ে অবসারণীতে মুক্ত হয়েছে,
শুক্রাণুগুলিও ঐ পথে অবসারণীর মাধ্যমে দেহের বাইরে নিক্ষিপ্ত হয়।

প্রতিটি শুক্রাশয়ের অগ্রভাগে একটি গোলাকার অঙ্গ দেখা যায়। একে বিভার্স অঙ্গ (Bidder's organ) বলে, ঐটি বস্তুতঃ একটি অপরিণত ডিম্বাশয়। কেবল পুরুষ ব্যাঙের এই বিভার্স অঞ্জ আছে।

স্ত্রীজনন তন্ত্র ঃ ব্যাঙের স্ত্রীজনন তন্ত্র এক জোড়া ডিম্বাশয় (Ovary), এক জোড়া ডিম্বাশয় নালী, এক জোড়া ইউটেরাস্ ও জননছিদ্র নিয়ে গঠিত।

ভিদ্বাশয় হুটি ক্ষীত থলির মত, ডিস্বাশয়ের মধ্যে অসংখ্য ভিদ্বাণু থাকে। প্রতিটি ডিম্বাশয়ের পাশে একটি করে ভিম্বাশয় নালী আছে। ডিম্বাশয় নালীটি স্প্রীং-এর মত পাকান এবং মুখটি

স্ত্রী ব্যাঙের রেচন-জনন তন্ত্র

1. ডিম্বাশর-নালীর ফানেলের
মত মুখ,

2. ডিম্বালী, 3.
ডিম্বাশর, 4. বুক, 5. ইউরেটার,

6. ইউটেরাস,

7.
মূত্রাশর,

8. জননছিদ্র,

9. রেচনছিদ্র,

10. অবসারণী,

11. অবসারণী-ছিদ্র।

ফানেলের মত প্রসারিত। ডিম্বাশয় নালীর নীচের অংশ ইউটেরাস, ছটি ইউটেরাস্ মিলিত হয়ে একটি সংযুক্ত নালীতে পরিণত হয়েছে এবং তা একটি ছিদ্রপথে অবসারণীতে মুক্ত হয়েছে। এই ছিদ্রটিকে জননছিদ্র বলা হয়। জননের সময় ডিম্বাশয় থেকে পরিণত ডিম্বাণ গুলি বিচ্ছিন্ন হয়ে ব্যাঙের দেহগহ্বরের মধ্যে আসে এবং তার পর ডিম্বনালীর ফানেলের মত মুখ দিয়ে ইউটেরাসের মধ্যে প্রবেশ করে, সেখানে সাময়িকভাবে অবস্থান করবার পর জননছিদ্রপথে দেহের বাইরে নিজ্ঞান্ত হয়। স্ত্রী ব্যাঙ জলের মধ্যে এইভাবে অসংখ্য ডিম্বাণু ছাড়ে। পুরুষ ব্যাঙও জলে শুক্রাণু ছাড়ে, একটি ডিম্বাণুর সঙ্গে

একটি শুক্রাণুর মিলনের ফলে জ্রণাণুর স্থি হয়। এরই নাম জনন (Fertilization)। দেহের বাইরে ডিম্বাণুর সঙ্গে শুক্রাণুর এই সংযোগ হয় বলে একে বলা হয় দেহের বাইরে জনন (External fertilization)। ঐ জ্রনাণু থেকে ব্যাঙাচির স্থি হয়। ব্যাঙাচি রূপান্তরিত হয়ে ব্যাঙে পরিণত হয়।

अनुगीननी

আরশোলার পৌষ্টিক তন্ত্র কি কি প্রধান অঙ্গের সাহায্যে গঠিত ?
 ভারশোলার পৌষ্টিক নালীর একটি ছবি আঁক এবং তার বিভিন্ন অংশ
 লবেল কর।

- আরশোলার রক্ত ও রক্তসংবহন ও শ্বসন সম্পর্কে যা জান সংক্ষেপে বর্ণনা কর।
- আরশোলার জনন তন্ত্র সংক্ষেপে বর্ণনা কর।
- 4. রেচন বলতে কি বোঝ ? একটি অমেরুদণ্ডী প্রাণীর রেচন পদ্ধতি বর্ণনা কর।
- 5. ব্যাঙ কত রকমে খাসকার্য করে ? খাসকার্যের উদ্দেশ্য কি ? ব্যাঙের ফুসফুস সম্পর্কে যা জান লেখ।
- 6. ব্যাঙের রক্ত ও তার কার্য সম্পর্কে যা জান লেখ।
- ব্যাঙ্কের হৃৎপিণ্ডের গঠন ও তার কার্য সম্পর্কে যা জান লেখ।
- পুরুষ ব্যাঙের রেচন-জনন তন্ত্রের একটি ছবি আঁক ও তার বিভিন্ন অংশের নাম লেখ।
- 9. বহিঃকঙ্কাল ও অন্তঃকঙ্কাল প্রাণী কাকে বলে ? একটি করে উদাহরণ দাও। ব্যাঙের মেরুদণ্ডের একটি ছবি আঁক ও তার সংক্ষিপ্ত বিবরণ দাও।
- 10. गिका त्नथः

হিমোগ্লোবিন, ম্যালপিজিয়ান নালিকা, আরশোলার হৃৎপিও, নেফ্রিডিয়াম, কশেককা, ডিওডিনাম, অ্যালভিওলাই, অগ্ন্যাশয়, যকুৎ,

পঞ্চম অধ্যায়

আগের অধ্যায়গুলিতে উদ্ভিদ, কেঁচো, আরশোলা ও ব্যাপ্ত প্রভৃতি জীবের আভ্যন্তরিক গঠন ও বিভিন্ন তন্ত্র (System) সম্পর্কে আলোচনা করা হয়েছে। ঐ সকল তন্ত্র নানা প্রকার শারীরবৃতীয় কাজ করে থাকে। এই সকল শারীরবৃতীয় কাজ আবার নিষ্পন্ন হয় কতক-গুলি ভৌত ও রাসায়নিক বিক্রিয়ার সাহায্যে। এখানে কয়েকটি ভৌত ও শারীরবৃত্তীয় ক্রিয়ার বিবরণ দেওয়া হল।

ব্যাপন (Diffusion)

আতর বা সেন্টের শিশি যখন খোলা হয় তখন তার স্থান্ধ চারদিকে ছড়িয়ে পড়ে। ঐ গন্ধের তীব্রতা শিশির মুখের কাছেই বেশী, শিশির কাছ থেকে যতই দূরে দরে যাওয়া যায় ততই গন্ধের তীব্রতা কমে আসে। এক প্লাস জলে যদি একখণ্ড তুঁতে রাখা হয়, তাহলে দেখা যাবে তুঁতেটি ধীরে ধীরে গলে যাছে এবং প্লাসের জলের মধ্যে তুঁতের নীল রং ক্রমশঃ চারদিকে ছড়িয়ে পড়ছে। এক্ষেত্রেও দেখা যাবে নীল রং-এর ঘনত তুঁতের কাছাকাছি জলেই বেশী, তারপর ঐ রং ক্রমশঃ পাতলা হয়ে চারদিকে ছড়িয়ে পড়েছে। অনেকক্ষণ যদি অপেক্ষা করা যায় তাহলে দেখা যাবে প্লাসের সব জলটাই সমানভাবে নীলবর্ণ ধারণ করেছে। এছটি ক্ষেত্রেই মূল প্রাক্রিয়াটির স্বরূপ এক। পদার্থের স্ক্র অনুগুলি বেশী ঘনত থেকে অল্প ঘনতের দিকে ধাবিত হওয়ার ফলেই এটা ঘটে, একেই বলা হয় ব্যাপন বা Diffusion; সেন্টের মত উদ্বায়ী (Volatile) পদার্থ

^{*}পদার্থের যে ক্ষুদ্রতম কণা পদার্থের ধর্ম বজায় রেখেও স্বতন্ত্রভাবে থাকতে পারে ভাকে অণু (Molecule) বলে।

ম্পিরিট, পেট্রোল, কপূর বা স্থাপথালিনের সৃদ্ধ অণুগুলিও ঐ একই নিয়মে অর্থাৎ ব্যাপনক্রিয়ায় চারদিকে ছড়িয়ে পড়ে, তাই তাদের গন্ধ দূর থেকেই পাওয়া যায়।

ভূঁতের মত চিনির দানাও যখন জলের মধ্যে ফেলা হয় তখন তার মিপ্তত্ব ক্রমশঃ সমস্ত জলে ছড়িয়ে পড়ে। চিনির স্ক্র অণুগুলি অধিক ঘনত্ব থেকে অল্ল ঘনত্বের দিকে ছড়িয়ে পড়ার ফলেই এটা ঘটে। যতক্ষণ ঘনত্বের অসাম্য থাকে ততক্ষণ ব্যাপনক্রিয়া ঘটে। সমান অবস্থা এলেই, অর্থাৎ সমস্ত জল সমঘনত্বপূর্ণ হলেই ব্যাপন বন্ধ হয়ে যায়।

উদ্ভিদ ও প্রাণীর জীবনে এই ব্যাপনক্রিয়ার গুরুত্ব খুবই বেশী।
বছ রকম শারীরবৃত্তীয় কাজে এই ব্যাপনক্রিয়ায় উল্লেখযোগ্য ভূমিকা
আছে। যেমন উদ্ভিদ ও প্রাণিকোষের মধ্যে জল, অক্সিজেন, কার্বন
ডইাঅক্সাইড ও জৈব ও অজৈব পদার্থের প্রবেশ, নির্গমন ও কোষের
মধ্যে ঐ সকল পদার্থের ব্যাপ্তি ইত্যাদি যা ঘটে তা এই ব্যাপনক্রিয়ার
সাহায্যেই ঘটে থাকে। স্কুতরাং উদ্ভিদ ও প্রাণীর শ্বাসকার্য, পরিপাক
ক্রিয়া, রেচন, জনন এবং উদ্ভিদের শিকড়ের সাহায্যে জল শোবণ,
বাষ্পমোচন, সালোকসংশ্লেষ প্রভৃতি প্রায় সকল শারীরবৃত্তীয় কাজেই
ব্যাপনক্রিয়ার ভূমিকা আছে।

অভিস্ৰবণ (Osmosis)

ব্যাপনক্রিয়ার সময় আমরা দেখেছি, পদার্থের সুক্ষ অণুগুলি অধিক ঘনত্ব থেকে চারদিকে ছড়িয়ে পড়ে। এই কারণে চিনির দানা বা চিনির রস যখন জলের সঙ্গে মিলিয়ে দেওয়া হয় তখন সমস্ত জলই ধীরে ধীরে মিষ্ট হয়ে ওঠে। কিন্তু ঐ চিনির রস সরাসরি জলে না মিলিয়ে যদি একটি কাঁচের থিসিল ফানেলের মধ্যে রাখা হয় এবং ফানেলের মুখে একটি পার্চমেন্ট পেপার বা মাছের পটকার পাতলা পর্দা বেঁধে ঐ ফানেলের মুখটি জলের মধ্যে রাখা হয় (ছবি দেখ),

তা হলে দেখা যাবে ঐ চিনির স্ক্র অংশগুলি জলের মধ্যে ছড়িয়ে না পড়ে জলের অংশই থিসিল ফানেলের মধ্যে চুকছে, যার ফলে ফানেলের মধ্যে জলের ভাগ ক্রমশঃ বেড়ে যাচ্ছে এবং চিনির রস ক্রমশঃ তরল হয়ে পড়ছে। ফানেলের মধ্যে কতটা জল চুকল তা সহজেই জানা যেতে পারে ফানেলের গায়ে যদি আগে থেকে

অর্থভেন্ত পর্দার (প্রোটোপ্লাজমিক মেমত্রেন) মধ্য দিয়ে বড় সাইজের অণুগুলি পার হতে পারে না, কিন্ত ছোট সাইজের অণুগুলি অনায়াদে পার হয়ে যায়।

একটি চিহ্ন দিয়ে রাখা হয়,—চিনির রঙ্গ যতটা নেওয়া হয়েছিল তার তল অমুযায়ী। এটিও এক বিশেষ ধরনের ব্যাপনক্রিয়া। এখানে একটি বিশেষ ধরনের পাতলা পদা ভেদ করে জল বা দ্রাবকের (Solvent) অণু অপেক্ষাকৃত ঘন দ্রবণের (Solution) মধ্যে প্রবেশ করছে, এটাই হল অভিস্রবণ বা অসমোসিসের (Osmosis) বৈশিষ্ট্য। অভিস্রবণ ক্রিয়ায় এই বিশেষ ধরনের পাতলা পদার ভূমিকা খুবই উল্লেখযোগ্য। পদা তিন ধরনের হতে পারে, এক হল অভেদ্য (Impermeable) পদা, যার মধ্য দিয়ে কোন পদার্থের অণুই যাতায়াত করতে পারে না; ছই হল ভেদ্য (Permeable) পদা, যার মধ্য দিয়ে

সকল পদার্থের অণুই অনায়াসে যাতায়াত করে থাকে। তিন হল, অর্ধভেন্ত (Semipermeable) পদা, যার মধ্য দিয়ে জল বা ঐ জাতীয় দাবকের সূজ্ম অণুগুলিই কেবল যাতায়াত করতে পারে, কিন্তু চিনি বা চিনির মত পদার্থের বড় সাইজের অণুগুলি পদার স্কু গর্ত দিয়ে আদৌ পার হতে পারে না। উদ্ভিদ ও প্রাণীর প্রতিটি জীবকোষের প্রোটোপ্লাজমিক মেমব্রেন এই জাতীয় অর্ধভেন্ত পদার (Semipermeable membrane) সাহায্যে তৈরী।

থিসিল ফানেলের মুখে যে পার্চমেন্ট পেপার বা মাছের পটকার পর্দা লাগান হয়েছে তা ঐ জাতীয় অভেছ্য পর্দা, যার মধ্য দিয়ে বড় সাইজের চিনির অণুর পার হবার কোনই সম্ভাবনা নেই, কিন্তু ঐ পর্দা ভেদ করে অপেক্ষাকৃত ক্ষুদ্র সাইজের জলের অণুর যাতায়াত্তের কোনই বাধা নেই। তাই ফানেলের মধ্যস্থিত চিনির দ্রবণ থেকে কোন চিনি ঐ পর্দা ভেদ করে পাত্রের জলে গিয়ে মিশ্রিত হয়নি, কিন্তু পাত্রের জল ঐ পর্দা ভেদ করে চিনির দ্রবণের সঙ্গে মিশ্রিত হয়েছে। চিনির দ্রবণ থেকেও অবশ্য কিছু জলের অণু পাত্রের জলে মিশ্রিত হয়েছে। চিনির দ্রবণ থেকেও অবশ্য কিছু জলের অণু পাত্রের জলে মিশ্রিত হয়েছে তবে তার পরিমাণ তুলনায় খুবই সামান্য (পূর্বপূর্চার ছবি দেখ)। পাত্রে বিশুদ্ধ জলের পরিবর্তে অপেক্ষাকৃত অল্প ঘনত্বযুক্ত চিনির দ্রবণ নিলেও ফলাফল একই হত।

অভিস্রবণ বা অসমোসিস ক্রিয়াটিকে তাই সংক্রেপে বলা যায়,—
তুইটি বিভিন্ন ঘনত্বযুক্ত দ্রবণ (Solution) যথন একটি অর্ধভেত্য পর্দার
(Semipermeable membrane) দ্বারা পরস্পার বিচ্ছিন্ন থাকে তখন
কম ঘনত্বপূর্ণ দ্রবণ থেকে জল বা দ্রাবক (Solvent) ঐ পর্দা ভেদ করে
অধিক ঘনত্বপূর্ণ দ্রবণের সঙ্গে মিশ্রিভ হতে থাকে, তার ফলে অধিক
ঘনত্বপূর্ণ দ্রবণের মধ্যে জলের বা দ্রাবকের ভাগ বাড়তে থাকে এবং
তার ঘনত্ব ধীরে ধীরে কমতে থাকে এবং অন্ত দিকে অল্ল ঘনত্বপূর্ণ
দ্রবণের মধ্যে জলের ভাগ ক্রমশঃ কমতে থাকে এবং তার ঘনত্ব ধীরে
ধীরে বাড়তে থাকে; এবং যতক্ষণ না পর্দার তুই পাশে তুইটি দ্রবণের

বনত্ব একই মাত্রায় পৌছচ্ছে ততক্ষণ এই ক্রিয়া চলতে থাকে। অভিস্রবণ ক্রিয়ার সময় জল বা দাবক যথন অর্ধভেত্ত পর্দা অতিক্রম করে অধিক ঘনত্বযুক্ত দ্রবণের মধ্যে প্রবেশ করতে থাকে তথন সেখানে একটি বিশেষ ধরনের চাপের (Pressure) সৃষ্টি হয়, তাকে বলে অসমোটিক প্রেসার (Osmotic pressure)।

অভিস্রবণ বা অসমোসিস প্রক্রিয়াটি নিম্নলিথিত পরীক্ষার সাহায্যে দেখান যেতে পারে।

অসমোসিস পরীক্ষার চিত্র

পরীক্ষাঃ একটি কাঁচের থিসিল ফানেলের মুথে মাছের পটকার একটি পর্দা অথবা পার্চমেন্ট পেপার ভাল করে বেঁধে নাও, থিসিল ফানেলের সরু মুখ দিয়ে অধিক ঘনত্বযুক্ত চিনির দ্রবণ (10% চিনির দ্রবণ) ফানেলের মধ্যে ভতি কর এবং যতটা ভতি হল তার তল ফানেলের গায়ে দাগ দিয়ে চিহ্নিত করে রাখ। একটি বীকারে আগে থেকেই অল্প ঘনত্বযুক্ত একটি চিনির দ্রবণ (1% চিনির দ্রবণ) প্রস্তুত্ত করে রাখ এবং অবিলম্বে থিসিল ফানেলের পর্দা-ঢাকা প্রশস্ত মুখটি

বীকারের দ্রবণের মধ্যে নিমজ্জিত কর। (থিসিল ফানেলের মধ্যে যতটা চিনির দ্রবণ নেওয়া হয়েছে ততদূর অবধি যেন ফানেলটি বীকারের দ্রবণের মধ্যে নিমজ্জিত হয় অর্থাৎ ঐ বীকার ও ফানেলের মধ্যস্থিত দ্রবণ যেন একই তলে থাকে।)

কিছুক্ষণ পরেই দেখা যাবে থিসিল ফানেলের গায়ের চিহ্নটি ছাড়িয়ে ফানেলের মধ্যস্থিত জবণের তল ক্রমশঃ ওপরের দিকে উঠে যাচ্ছে, তার অর্থ হল বীকারের জল ক্রমশঃ ফানেলের মধ্যে প্রবেশ করছে। এই ফানেলের সরু মুখের মাথায় যদি চাপ নিদেশিক কোন যন্ত্র (মারকারি ম্যানোমিটার) বসিয়ে রাখা যায় তা হলে দেখা যাবে ঐ জবণের মধ্যে একটি বিশেষ চাপ সৃষ্টি হচ্ছে, একেই বলে ভাসমোটিক

প্রেসার (Osmotic pressure)। বাইরে থেকে জলের অণুগুলি জোর করে অধিক ঘনত্বপূর্ণ দ্রবণের মধ্যে প্রবেশ করতে চেষ্টা করছে বলেই এই চাপের স্পৃষ্টি হচ্ছে। তুইটি দ্রবণের মধ্যে ঘনত্বের পার্থক্য যত বেশী হবে, চাপের মাত্রা তত বেশী হবে। অভিস্রবণ ক্রিয়া চলবার সময় এই চাপের মাত্রা ধীরে ধীরে কমতে থাকে, কেননা জলের অণুর প্রবেশের ফলে তুইটি দ্রবণের মধ্যে ঘনত্বের পার্থক্যও কমতে থাকে, শেষে তুইটি দ্রবণের ঘনত্বের মাত্রা যথন একই পর্যায়ে উপনীত হয় তখন অভিস্রবণ ক্রিয়াও বন্ধ হয়ে যায়।

মূলরোমের মধ্য দিয়ে উদ্ভিদ-মূলের জল শোষণ।

কি উদ্ভিদ, কি প্রাণী সকলেরই নানা শারীরবৃত্তীয় কার্যে এই অভিস্রবণ বা অসমোসিসের ভূমিকা খুবই গুরুত্বপূর্ণ, কেননা প্রত্যেকটি জীবকোষের প্রোটোপ্লাজমিক মেমবেন এই ধরনের অর্ধভেগ্ন পর্দার সাহায্যে তৈরী। উদ্ভিদের শিকড়ের মূলরোমের কোষের মধ্যে অধিক ঘনস্বযুক্ত কোষরস (Cell sap) থাকে এবং তার চারপাশে অধ ভেল্ল পর্দার আবরণ থাকায় ঐ মূলরোম যখন মাটির ভেতর জলীয় জবণের সংস্পর্শে আসে (যার ঘনত্ব প্রায় সব সময়ই কোষরসের ঘনত্ব থেকে কম) তখন ঐ জলীয় জবণ থেকে জলের ভাগ অসমোসিস্ প্রক্রিয়ায় মূলরোমের মধ্যে প্রবেশ করে। এই একই প্রক্রিয়ায় কোষ থেকে কোষান্তরে জলের পরিবহন ঘটে থাকে। এই একই প্রক্রিয়ায় সঞ্চিত্ত জল কোষের বাইরেও বেরিয়ে যেতে পারে, যদি কোষগুলি অধিক ঘনত্বমুক্ত জবণের মধ্যে নিমজ্জিত হয়,—একে প্লাজমোলিসিস (Plasmolysis) বলে।

অসমোসিস প্রক্রিয়ায় কিভাবে উদ্ভিদের মধ্যে জল প্রবেশ করে এবং জল বাইরে বেরিয়ে যায় তা একটি সহজ পরীক্ষা করে দেখান যায়। একটি শুকনো কিসমিসকে যদি জলের মধ্যে রাখা যায় তা হলে কয়েক

অসমোসিস প্রক্রিয়ায় মূলরোম ও শিকড়ের কোবের মধ্য দিয়ে মৃত্তিকাস্থ জল শোবিত হয়।

ঘণ্টার মধ্যেই দেখা যাবে তা ফুলে উঠে আঙুরের আকার ধারণ করেছে। একটি কচি আঙুরকে যদি আবার আরো অধিক ঘনত্বপূর্ণ চিনির দ্রবণের মধ্যে রাখা যায় তা হলে তার মধ্য থেকে জল বেরিয়ে আসবে এবং আঙুরটি সঙ্কুচিত হয়ে কিসমিসের আকার ধারণ করবে।

চিনির মিঠাই-এর ওপর তাই জীবাণুরা সহজে বংশ বিস্তার করতে
পারে না, ঐ চিনি জীবাণু-কোষ থেকে জল টেনে নেয়, জীবাণুদের

য়ৃত্যু ঘটে। বিজ্ঞানীদের অসমোসিস ক্রিয়া আবিষ্কারের বহু পূর্ব
থেকেই আমরা ব্যবহারিক জাবনে জীবাণুদের হাত থেকে ফল ইত্যাদি

সংরক্ষণের কাজে ঘন চিনির দ্রবণ ব্যবহার করে আসছি।

্ৰেণ্যণ (Absorption)

উদ্ভিদ শিকড়ের সাহায্যে মাটি থেকে অসমোসিস প্রক্রিয়ায় জল শোষণ করে থাকে একথা আগেই আমরা জেনেছি। জীবকোষকে বেঁচে থাকতে হলে পরিবেশ থেকে প্রচুর জল, লবণ, অক্সিজেন ও খাত্যকণিকা শোষণ করতে হয়। শোষণ কথাটির অর্থ অত্যন্ত ব্যাপক। জাবকোষের শতকরা 70-80 ভাগই জল, এই জল কোষের নানা কাজে প্রচুর ব্যয় হয়ে থাকে, স্থতরাং এ ব্যয় প্রণের জন্ম জীবকোষকে প্রচুর জল শোষণ করতে হয়। সক্রিয় জীবকোষ মাত্রই জলের সংস্পর্কে এলে জল শোষণ করে। উচ্চ শ্রেণীর উদ্ভিদ সাধারণতঃ শিকড়ের সাহায্যে জল শোষণ করে, তা ছাড়া কিছু পরিমাণ জল পাতা ও কুঁড়ির সাহায্যেও শোষিত হয়, শুকনো বীজও প্রচুর জল শোষণ করে থাকে। আমরা অন্ত্রের ভেতরের কোষের সাহায্যে জল ও খাতকণিকা শোষণ করে থাকি। অনেক জীব সারা দেহ দিয়েই <mark>জল শোষণ করে, যেমন</mark> অ্যামিবা, শেওলা ইত্যাদি। অধিকাংশ ক্ষেত্রে অসমোসিস ক্রিয়ার সাহায্যেই এই জল কোষের মধ্যে প্রবেশ করে থাকে। ঐ জলের সঙ্গে যে লবণ কোষের মধ্যে প্রবেশ করে তার শোষণের পদ্ধতিটি অবশ্য আরো জটিল ও স্বতন্ত্র। তবে সামান্য লবণ ব্যাপনক্রিয়ার ফলেই কোষের মধ্যে প্রবেশ করে সে বিষয়ে কোন সন্দেহ নেই। নীচে ছটি পরীক্ষার বিবরণ দেওয়া হল, যার সাহায্যে প্রমাণ করা যায় উদ্ভিদ শিকড়ের সাহায্যে ও বীজের অফুরোদগমের সময় জল শোষণ করে থাকে।

পরীক্ষা 1. ছটি কাঁচের কনিকাল ফ্লাস্ক নাও এবং তাদের গলা অবধি জলপূর্ণ কর। একটি ফ্লাস্কের জলে শিকড়সমেত একটি

উদ্ভিদ কর্ত ক জলশোষণের পরীক্ষা

হোট চারাগাছ প্রবেশ করাও (ছবি দেখ) এবং জলের ওপর কয়েক ফোঁটা বাদামবা সরিষার তেল দাও, এতে জলের বাষ্পীভবন ৰন্ধ হবে। কিছু তুলা নিয়ে ফ্লাঙ্কের মুখে ভালভাবে গুঁজে দাও যাতে গাছটি খাড়াভাবে দাঁড়িয়ে থাকে। অহা ফ্লাম্বের জলের ওপরও

কয়েক ফেঁটা তেল দাও এবং মুখে তুলা গুঁজে দাও। ছটি ফ্লাক্ষই জানলার ধারে রেখে দাও। পরদিন দেখবে যে ফ্লাক্ষে গাছটি আছে তার জল অনেক কমে গেছে, কিন্তু যে ফ্লাঙ্কে গাছ নেই তার জল আদৌ কমেনি, এতেই বোঝা যাচ্ছে উদ্ভিদ জল শোষণ করে থাকে। পরীক্ষার স্কুরতে এবং শেষে জলসমেত ফ্লাস্কগুলি যদি ওজন কর। হয় তা হলে জানা যাবে ঠিক কতটা জল উন্ভিদ শোষণ করেছে।

পরীক্ষা 2. কিছু শুকনো ছোলা (10 গ্রাম বা তার কাছাকাছি) বীক্ষণাগারের দাঁড়িপাল্লার সাহায্যে সঠিকভাবে ওজন কর, ওজনটি লিখে রাখ এবং ঐ ছোলাগুলি একটি ডিসের জলের মধ্যে ডুবিয়ে রাখ। পরদিন দেখবে ঐ ছোলাগুলি ফুলে উঠেছে। ছোলাগুলি তখন জল থেকে তুলে নিয়ে একটি ব্রটিং পেপারের ওপর রেখে তাদের গা থেকে অতিরিক্ত জল মুছে নিয়ে পুনরায় ওজন কর। দেখবে, ওজন অনেক বেড়ে গেছে, যতটা ওজন বাড়ল ততটা জলই ছোলাগুলি শোষণ করেছে। এই পরাক্ষার সাহায্যে বোঝা গেল, শুকনো বীজ্ঞ জল শোষণ করে থাকে।

পরিবহন (Conduction)

উদ্ভিদ বা প্রাণীর দেহ যদি একটি বা কয়েকটি মাত্র কোষ নিয়ে গঠিত হত তা হলে ব্যাপনক্রিয়ার (Diffusion) সাহায্যে এক কোষ

জল ও তরল খান্ত পরিবহনের জক্ত জাইলেম ও ফ্লোয়েম

হতে অন্থ কোষে জল, লবণ ও সরল খাগ্যকণাগুলির যাতায়াতের কোনই অসুবিধা হত না, যেমন নানা রকম ব্যাকটিরিয়া, শেওলা ও ছত্রাকজাতীয় উদ্ভিদের দেহে ঘটে থাকে, কিন্তু উদ্ভিদ বা প্রাণিদেহের আকার যখন বেশ বড় ও জটিল হয় তখন দেহের বিভিন্ন কোষে জল, অক্সিজেন ও খাগ্যবস্তু দ্রুত ও নিয়মিতভাবে পৌছে দেবার জন্ম একটা স্বতন্ত্র পরিবহন ব্যবস্থার প্রয়োজন হয়। উন্নত শ্রেণীর উদ্ভিদ ও প্রাণিদেহে এই ব্যবস্থা আছে।

উদ্ভিদঃ আমরা বট, অশ্বত্থ, তাল, নারিকেল প্রভৃতি যে-সব
বৃক্ষ দেখি, সাধারণ যে-কোন প্রাণী অপেক্ষা তারা আকারে অনেক
দীর্ঘ। একটি তিন-চার তলা সমান উঁচু নারিকেল গাছের মাথার ওপর
জল কিভাবে পোঁছায় এবং কিভাবে পাতার মধ্যে তৈরী জৈব খাগ্যই বা
শিকড় ও দেহের সর্বত্র পোঁছায় তার প্রকৃত রহস্ত আজও উদ্যাটিত
হয়নি। প্রাণিদেহের মত উদ্ভিদ-দেহে একটি হৃৎপিও (Heart) বা
পাম্পের কোন অন্তিত্ব নেই এবং এই পাম্প না থাকা সত্ত্বেও প্রচুর
পরিমাণ জল ও খাগ্যবস্তু উদ্ভিদ-দেহের মধ্যে 30-40 মিটার দূরত্ব পর্যন্ত
স্কাছন্দে যাতায়াত করে থাকে।

আমরা দ্বিতীয় অধ্যায়ে উদ্ভিদের কলাসংস্থান সম্পর্কে আলোচনা করবার সময় জেনেছি, উচ্চ শ্রেণীর উদ্ভিদের দেহে জাইলেম (Xylem)

षारेलम नानीत गर्रन

ও ফ্লোরেম (Phloem) নামে ছই ধরনের নালী বা টিউব আছে। জাইলেম নালীটি প্রধানতঃ ভেসেল (Vessel) নামে এক ধরনের পুরু প্রাচীরযুক্ত লম্বা আকারের মৃত কোষের দ্বারা গঠিত। জাইলেম নালীর কাজ হল মাটি থেকে জল ও জলের সঙ্গে দ্রবীভূত অবস্থায় মাটির নানা অজৈব লবণ (সার পদার্থ) দেহের অন্যান্ত অংশে পৌছে দেওয়া। ফ্লোয়েম নালীটি প্রধানতঃ সিভ্লটিউব (Sieve tube) নামে এক ধরনের লম্বা আকারের কোষের সাহায্যে গঠিত। ফ্লোয়েমের কাজ হল পাতার মধ্যে তৈরী জৈব থাছা দেহের অন্যান্ত অংশে পৌছে

দেওয়া। উদ্ভিদ-দেহের যে-সমস্ত অংশে খাতা সঞ্চিত থাকে, যেমন মাটির তলায় কাণ্ড, শিকড় ইত্যাদি—সেখান থেকেও ঐ খাতা ফ্লোয়েমের মধ্য দিয়ে দেহের অক্যান্য জীবিত কোষগুলিতে পৌছায়। ফ্লোয়েমের মূল উপাদান সিভ টিউবগুলি জীবিত, জাইলেম ভেসেলগুলি মৃত।

প্রাণীঃ উন্নত শ্রেণীর প্রাণিদেহের বিভিন্ন কোষে জল, খাছ্য ও অক্সিজেন সরবরাহের জন্ম এবং ঐ সকল কোষ থেকে বিপাকক্রিয়ায়

দোপাটির চারা লাল রং-মিশ্রিত জলে রাখা হয়েছে।

উৎপন্ন নানা দূষিত পদার্থ মোচনের জন্ম সংবহন তন্ত্রের ব্যবস্থা আছে। এই সংবহন তন্ত্র হৃৎপিণ্ড, রক্ত, শিরা, ধমনী ও রক্তজালক নিয়ে

লাল রং-মিশ্রিত জলে দোপাটির পাতা ও কাণ্ড গঠিত। এই সংবহন তন্ত্রের আলোচনা তৃতীয় ও চতুর্থ অধ্যায়ে

বিস্তৃতভাবে করা হয়েছে। নিম্নলিখিত পরীক্ষার সাহায্যে উদ্ভিদের জাইলেম টিস্থর মধ্য দিয়ে জল পরিবাহিত হয় তা প্রমাণ করা যায়।

পরীক্ষাঃ একটি পাত্রে জল নিয়ে তাতে কিছু ইয়োসিন রং অথবা লাল কালি মেশাও। তারপর মূলসমেত একটি দোপাটি ফুলের চারা,

লাল রং-মিশ্রিত জলে রজনীগন্ধার ডাঁটা

মূল থেকে মাটি পরিষ্কার করে ধুয়ে, ঐ জলপূর্ণ পাত্রে খাড়া করে দাঁড করিয়ে রাখ। কয়েক ঘণ্টা পরে মূল, কাণ্ড পাতার প্রস্থচ্ছেদ নাও এবং অণুৰীক্ষণ যন্ত্ৰের সাহায্যে পরীক্ষা করে দেখ। দ্বিতীয় অধ্যায় পড়বার সময় তোমাদের জাইলেম টিসুর সঙ্গে পরিচয় ঘটেছে। এখন লক্ষ্য কর, মূল, কাণ্ড ও পাতার জাইলেম অংশগুলিই কেবল লাল বং ধারণ করেছে। এতে প্রমাণিত হল, কেবল জাইলেম অংশের মধ্য मिर्युटे উদ্ভिদ भार्षि थ्या जन निर्यु কাঞ্চ ও পাতায় চালিত করে থাকে। এই ইয়োসিনমিশ্রিত লাল জলে যদি ফুলসমেত রজনীগন্ধার একটি ডাঁটি রাখ তা হলেও কয়েক ঘণ্টা পরে দেখা यात्, त्रज्ञनीशकात्र मामा यूनश्रमि नान রং ধারণ করেছে। রজনীগন্ধার ভাঁটির প্রস্থচ্ছেদ নিয়ে অণুবীক্ষণ যন্ত্রের তলায় পরীক্ষা করলে দেখা যাবে, তার জাইলেম অংশগুলির মধ্য দিয়েই লাল জল পরিৰাহিত হয়েছে।

क्ष्मिक हरेड कि । कहार हा **अस्थितन** हरेडिया पड़ी है कि हा है

(Transpiration)

উদ্ভিদের প্রস্থেদন (Transpiration) একটি উল্লেখযোগ্য শারীর-বৃত্তীয় ক্রিয়া। এই প্রস্থেদনের সময় প্রয়োজনের অভিরিক্ত জল যা উদ্ভিদ মাটি থেকে শোষণ করে তা বাষ্পাকারে পাতার অজস্র রন্ধ্রপথে (Stoma) দেহের বাইরে বার করে দেয়। উদ্ভিদ মাটি থেকে জলের সঙ্গে দ্রবীভূত অবস্থায় নানা রকম লবণ শোষণ করে পুষ্ট হয়, এজন্য প্রচুর জল তাকে শোষণ করতে হয়। অত জল তার কাজে

প্রয়েদন পরীক্ষা

লাগে না, শরীরের মধ্যে তা জমিয়ে রাখবার মত কোন বিশেষ ব্যবস্থাও নেই; তাই ঐ জল পাতার অজস্র স্ক্রা রন্ত্রের (Stoma) মধ্য দিয়ে বায়ুমণ্ডলে মোচন করে থাকে। পাতার রক্ত্র ছাড়াও ভিজা ত্বক বা কিউটিকলের (Cuticle) মধ্য দিয়েও এই প্রস্থেদনক্রিয়া চলে।

প্রস্থেদনের জন্ম উদ্ভিদের প্রচুর জলের প্রয়োজন হয়। সাধারণতঃ যখন উদ্ভিদের ওজন এক গ্রাম মাত্র বাড়ে তখন 300 থেকে 1000 গ্রাম জল উদ্ভিদ বাষ্পাকারে মোচন করে থাকে। তা হলে কল্পনা কর, একটি ধান বা গমের ক্ষেত থেকে কি বিপুল পরিমাণ সেচের জল এই প্রস্থেদনক্রিয়ায় অপচয় হয়ে থাকে। বৈজ্ঞানিকরা চেষ্টা করছেন, উদ্ভিদের এই প্রস্থেদনক্রিয়ার হার নিয়ন্ত্রণ করে জলের এই অপচয় কিছুটা বন্ধ করতে। উদ্ভিদের যাতে ক্ষতি না হয় সেটাও দেখা হচ্ছে, কেননা প্রস্থেদনক্রিয়ার ফলে উদ্ভিদের কয়েকটি স্থ্রিধা হয়, যেমন মাটি থেকে জল ও লবণ শোষণের স্থ্রিধা হয়, দেহ-কোষের মধ্যে নির্দিষ্ট ঘনত্বে কোষরস (Cell sap) রক্ষায় স্থ্রিধা হয়, তাতে দেহের সর্বত্ত জলের সংবহন সহজ হয়; ফুল ও ফলগুলির পরিপুষ্টির স্থ্রিধা হয়। উদ্ভিদের প্রস্থেদনক্রিয়াটি নিম্নলিখিত পরীক্ষার সাহায্যে দেখান যেতে পারে।

পরীক্ষা ঃ একটি ছোট টবের তাজা চারা গাছ নাও, ঐ টবের মাটিতে অল্প জল দাও, তারপর একটি বড় পলিথিন কাগজের সাহায্যে পুরো টবটি ও টবের ওপরের মাটিটি ভাল করে ঢেকে ফেল এবং স্ভাদিয়ে বাঁধ, যাতে কোন ফাঁক না থাকে। তারপর একটি আলোকিত স্থানে টবটি রেখে তার ওপর বেলজার চাপা দাও (ছবি দেখ)। কয়েক ঘণ্টা পরেই দেখবে বেলজারের ভেতরের গায়ে শিশিরের মত জলবিন্দু জমেছে। এ থেকে এটাই প্রমাণ হয় যে গাছ থেকেই ঐ জল বাষ্পাকারে নির্গত হয়ে বেলজারের গায়ে সঞ্চিত হয়েছে। টবের মাটি পলিথিন কাগজে ঢাকা ছিল, সুতরাং ঐ মাটি থেকে কোন জল বাষ্পাকারে নির্গত হয়ে বেলজারের গায়ে জমেনি।

- 1. ব্যাপন বলতে যা বোঝ ছটি উদাহরণ দিয়ে বুঝিয়ে দাও। এই প্রক্রিয়াটির সলে উদ্ভিদ-জীবনের সম্পর্ক কি ?
- 2. অসমোসিস বলতে কি বোঝ ? চিত্রসহ অসমোসিসের একটি পরীক্ষা বর্ণনা কর। এই প্রক্রিয়ার সঙ্গে উদ্ভিদ-জীবনের সম্পর্ক কি ?

- মূলদ্বারা উদ্ভিদের জল শোষণের একটি পরীক্ষা বর্ণনা কর।
- পরিবহন পদ্ধতিটি কি? উদ্ভিদ-দেহে কি ধরনের নালিকা দ্বারা জল ও খাছ্যবস্তু পরিবাহিত হয়? উদ্ভিদ-দেহে জল পরিবহনের একটি সহজ পরীক্ষা বর্ণনা কর।
- 5. প্রস্থেদন কাকে বলে ? প্রস্থেদনের একটি পরীক্ষা বর্ণনা কর। উদ্ভিদ-দেহে প্রস্থেদনের কি কোন প্রয়োজনীয়তা আছে ?

कार्या के किसी व स्थाप के स्थाप के स्थाप के कार्या के कार्या के स्थाप

माना पाट कराज राज केशन जिल्ला हार व्यापन जी मेरान

6. টীকা লেখ :
ব্যাপন, প্রস্থেদন, অভিস্রবণ, মূলরোম, অসমোটিক প্রেসার।

ষষ্ঠ অধ্যায়

ভারত বিদ্যাল বিশ্ব পর্যবেক্ষণ ও পরীক্ষা বিদ্যাল হিচা

বিজ্ঞান শিক্ষার প্রথম ও প্রধান বিষয় হল নিজের চোখে খুঁটিয়ে পর্যবেক্ষণ করা, নিজ হাতে বিষয়টি পরীক্ষা করে দেখা এবং একটি যুক্তিসম্মত সিদ্ধান্তে উপনীত হওয়া। হাতে-কলমে পরীক্ষা ছাড়া বিজ্ঞান শিক্ষা সম্ভব নয়।

প্রথম ও দ্বিতীয় অধ্যায়ে আলোচিত কোষ ও কলা সম্পর্কে সম্যক ধারণা লাভ করতে হলে ঐগুলি নিজ চোখে পর্যবেক্ষণ করা দরকার। এজন্য অণুবীক্ষণ যন্ত্রটির গঠন ও ব্যবহার সম্পর্কে কিছু প্রাথমিক ধারণা থাকা দরকার। শিক্ষকমহাশয় এই বিষয়ে যথাযথ সাহায্য করবেন। তোমরা অণুবীক্ষণ যন্ত্রের একটি ছবি আঁকবে ও কেবলমাত্র প্রধান অংশগুলির লেবেল করবে। নীচু ও উচু ক্ষমতার অভিলক্ষ্য (Low power ও High power Objectives) কখন ও কিভাবে ব্যবহার করতে হয় তা শিখে নেবে। ছবি ও পর্যবেক্ষণের ফলাফল লেখবার জন্য একটি ব্যবহারিক খাতা রাখবে। তাতে পর্যবেক্ষণের তারিখ ও শিক্ষকমহাশয়ের সই যেন অবশ্যই থাকে।

উদ্ভিদের কাণ্ড, মূল ও পাতার প্রস্থাচ্ছেদ ঃ কাণ্ড, মূল ও পাতার অন্তর্গঠন পরীক্ষা করে দেখতে হলে তাদের প্রস্থাচ্ছেদ কাটা দরকার। প্রস্থাচ্ছেদ যথাসম্ভব পাতলা হওয়া দরকার এবং সর্বাংশে সমান পাতলা হওয়া দরকার। ছেদ মোটা হলে তার মধ্য দিয়ে আলো যেতে পারেনা, স্তুতরাং অগুবীক্ষণ যন্ত্রে তা দেখা যায় না। পাতলা ছেদ ভাল করে কাটা যথেষ্ট অভ্যাসের প্রয়োজন।

কাণ্ড বা মূলের প্রস্থচ্ছেদ কাটতে হলে তার নরম, কচি অংশ থেকে 3-4 সেন্টিমিটার লম্বা টুকরো নিয়ে একটি পাত্রে জলের মধ্যে ভূবিয়ে রাখতে হবে। তারপর একটি টুকুরো বাঁ হাতে খাড়া করে ধরে ডান হাতে ক্লুর দিয়ে প্রস্থচ্ছেদ কাটতে হবে। এজন্য একটি প্লেনো-কনকেভ (Plano-concave) ক্লুর হলে ভাল হয়, তবে ব্লেডও

ক্ষুরের সাহায্যে কাণ্ডের প্রস্থচ্ছেদ কাটবার পদ্ধতি

ব্যবহার করা যায়। প্রস্তুচ্ছেদ কাটবার সময় কাণ্ডের অংশ এমনভাবে ধরতে হবে যাতে বাঁ হাতের বুড়ো আঙ্গুল নিজের দিকে থাকে এবং অত্যাত্য আনুলগুলি বিপরীত দিকে থাকে। এইবার তর্জনীর সামাত্য উপরে ক্ষুরের সমতল পৃষ্ঠটি রেখে ক্ষুরটি দ্রুত চালিয়ে অনেকগুলি প্রস্থাচ্ছদ কাটতে হবে। ছেদগুলি ওয়াচ গ্লাসের জলের মধ্যে রাখতে হবে। এইবার একটি সর্বাংশে সমান পাতলা ছেদ একটি পরিফার কাঁচের স্লাইডের মাঝখানে এক ফোঁটা জল অথবা 5% গ্রিসারিনের মধ্যে নিতে হবে এবং একটি কাঁচের কভার স্লিপ সাবধানে নীডলের সাহায্যে ছেদটির ওপর চাপা দিতে হবে। এই সময় লক্ষ্য রাখতে হবে, কোন বুদ্বুদ্ যেন তার মধ্যে না থাকে। স্লাইডের ওপর, কভার ল্লিপের বাইরে অতিরিক্ত জল যা থাকবে তা ব্লটিং কাগজের সাহায্যে মুছে নিতে হবে এবং তারপর অণুবীক্ষণ যন্ত্রের তলায় স্লাইডটি পরীক্ষা করে দেখতে হবে। পরিশেষে ব্যবহারিক খাতায় তারিখনহ তার ছবি ও বিভিন্ন অংশের নাম লিখতে হবে এবং তা শিক্ষকমহাশয়কে দেখিয়ে সই করিয়ে নিতে হবে। পাতার প্রস্থচ্ছেদ কাটতে হলে তা কিভাবে আলু বা গাজরের টুকরোর মধ্যে রেখে কাটতে হয় তা দ্বিতীয় অধ্যায়ে

বর্ণনা করা হয়েছে। যদি শিকড়ের অংশ খুব সরু ও নরম হয় তাহলেও তা আলু অথবা গাজরের টুকরোর মধ্যে রেখে কাটা যেতে পারে।

আরশোলার বহিরাক্বভিঃ কয়েকটি আরশোলা সংগ্রহ করে একটি কাঁচের জারের ভিতরে রাখতে হবে। পরে কিছু তুলোতে

উপরের দিক ও নীচের দিক থেকে আরশোলার বহিরাক্বতি

ক্রোরোফর্ম মিশিয়ে জারের মধ্যে রেখে জারের মুখটি চাপা দিয়ে রাখতে হবে। কিছুক্ষণ পরে আরশোলাগুলি সংজ্ঞাহীন হয়ে পড়লে অর্থাৎ তাদের নড়াচড়া সম্পূর্ণ বন্ধ হয়ে গেলে জার থেকে তাদের বার করে নিয়ে একটি ট্রের ওপর রেখে চিমটা ও নীডলের সাহায্যে তাদের বিভিন্ন অংশ দেখতে হবে। তারপর ব্যবহারিক খাতায় উপর দিক থেকে ও নীচের দিক থেকে আরশোলার বহিরাকৃতির ত্ইটি ছবি আঁকতে হবে ও বিভিন্ন অংশের নাম লেবেল করতে হবে এ ছবিতে।

কুনো ব্যাঙের বহিরাকৃতিঃ কুনো ব্যাঙের বহিরাকৃতি দেখতে হলে পূর্বোক্ত পদ্ধতিতে ব্যাঙটিকে ক্লোরোফর্মের সাহায্যে অজ্ঞান বা নিহত করে একটি ট্রের ওপর রেখে চিমটা ও নীডলের সাহায্যে তার বিভিন্ন অংশ পর্যবেক্ষণ করতে হবে। তারপর ব্যাঙের বহিরাকৃতির একটি ছবি আঁকতে হবে এবং দেহের বিভিন্ন অংশের নাম ঐ ছবিতে দেখাতে হবে।

কুনো ব্যাঙ

কুনো ব্যাঙের অন্তর্গঠনঃ কুনো ব্যাঙের অন্তর্গঠন পর্যবেক্ষণ করতে হলে পূর্ববর্ণিত পদ্ধতিতে ব্যাঙটিকে ক্লোরোফর্মের সাহায্যে অজ্ঞান অথবা নিহত করে একটি মোম-জমানো ডিসেকটিং ট্রের ওপর চিত করে শায়িত কর। তারপর সামনের ছটি পা ও পেছনের ছটি পা আলপিনের সাহায্যে টান টান করে ট্রের মোমের সঙ্গে আটকে দাও। এরপর জল দিয়ে ট্রেটি পূর্ণ কর।

এখন বাঁ হাতে চিমটার সাহায্যে চামড়াটি তুলে ডান হাতে কাঁচি দিয়ে ব্যাঙের অঙ্কীয় মধ্যরেখা বরাবর চামড়াটিতে ছোট একটি ছিড কর। চামড়ার এই ছিদ্র থেকে অঙ্কীয় মধ্যরেখা বরাবর চামড়াটি লম্বালম্বিভাবে কেটে ফেল। এইভাবে সামনের ও পেছনের পায়ের চামড়াও মাঝ বরাবর কেটে ফেল। এইবার ছুরির সাহায্যে চামড়ার কাটা অংশগুলি পেশীস্তর থেকে ছাড়িয়ে নিয়ে দেহের ছ'পাশে আল-পিনের সাহায্যে ট্রের সঙ্গে টান টান করে আটকে দাও। এখন বড় কাঁচির সাহায্যে যেভাবে চামড়া-কাটা হয়েছে সেইভাবে পেশীস্তর্টি কেটে ফেল। পেশীস্তর কাটবার সময় কাঁচির ভেঁাতা দিকটি ভেতরে

কুনো ব্যাঙ্কের অন্তর্গঠন

প্রবেশ করাতে হয়, তাহলে অসতর্কতাবশতঃ কাঁচি চালাবার জন্ম ভেতরের অঙ্গগুলির ক্ষতি হবার সম্ভাবনা কম থাকে। লম্বালম্বিভাবে পেশীস্তরটি কাটবার ফলে পেকটোরাল গার্ডেলটিও দ্বিধাবিভক্ত হবে। এরপর পেশীস্তরটিও চিমটা ও কাঁচির সাহায্যে কেটে চামড়ার মত টান টান করে ট্রের সঙ্গে আটকে দাও। এখন দেহগহুরটি উন্মুক্ত হওয়ায় ভেতরের অংশগুলি দেখা যাবে। ট্রের নোংরা জল বারবার ফেলে দিয়ে পরিকার জলে ব্যাঙের বিভিন্ন অংশ পর্যবেক্ষণ কর। ব্যবহারিক খাতায় তারিখসমেত ব্যবচ্ছেদিত ব্যাঙটির একটি ছবি আঁক এবং বিভিন্ন অংশের নাম লেখ। শিক্ষকমহাশয়কে দেখিয়ে সই করিয়ে নাও।

