Date 17.9.2019
Page 1

CARDINALITY OF SETS

dan inverse: let 6: A > B be a 1-1 correspondence. (bijection) the inverse for of f is ft: B->A such that f-1(b) = a (=> f(a) = b oldn let g: A > B and f: B > c be functions then fog: A > c is called the composition of g with tach fog a) = f(ga) ex let f: R -> R be f(x) = 22+2 g: R > R be g(x) = 3x+4 then: gof: R -> R gof (x) = g(f(x)) = 3(22+2) +4 $= 3x^2 + 10$ fog: R→R log(x) = ((g(x)) = (3x+4)2+2 = 9x2+16+24x+2 = 922 +242 +18 note fog(x) 7 gof(x) thm to let f: A > B and g: B > C

cit of maps A onto B, and g maps B onto C

. gof maps A onto C.

(hottosilia)	
2 4 5 5 1	
1 1 1 1 ond &	
Med a dildate of loss 1 P r 2 & 1	
o the first will be a section.	
countable det.	
2) 2 Hopethis aviting hold go the ent tout work?	(0)
alphabet ()	-
(+4000 -4012) custable 2 = 1851	
राभिरामान क्षमा द्वी रह त्वरागन वर्षा	
	-
mother sign in the salt	-
between the and	-
(-(corresp.	e'nblinite
slaptnuon . Shaptnuon . Shaptnuon	मीनभगतक
chfinite nos of elements	
DIALE SELS	
(A) 2 A	11
the cardinality relationship	
if there is a 1-1 bonction Cinjection) from A > B	uyp
Plas 10 7 stad	
classmate	

consider: f(n) = 2n - 1 sets up 1-1 correspondence to prave 1-1 and onto.

show that f is a 1-1 function $f(n) = f(m) \quad \text{where} \quad n, m \in iN$

Show that N=M 2n-1=2m-1 $\Rightarrow n=m$ Conjective)

show that fis onto. (ii) verify that fis anto.

+mes; ∃neIN → i can find a pre image in domain

→ f(n)=m

> man = m+1 Use k strategy.

since fix 1-1 and onto, it is bejection.

2N-1=M

ex set of all integers It is countable.

classmate Date 17.9.2019 Page 6	1, 1, 2, 1, 1, 2, 3, 4 (2, 1, 3, 1, 3, 2, 1, 4, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	ce gil the tre, rational nos, are listed once. an veriby) => (o+ is countable. is in the bunch where p+9 = 46.	to show that this is a bijection all the real has not contable	Cantor's diagonalization argument)	B 1	conditionality on the countable. Subset (o, 1) is also countable elements of (o, 1) can be listed in netural order.
0	8	Since Since		Can		からなる
Š	Ž.	VERIEY	న∥		Hum	2

V1 = 0, du d12 d13 d14. V2 = 0. d2 d22 d28 d24 r3 = 0. d3, d32 d33 d34 where di 6 80,1, 93. now, construct a roal no. V = 6. did2 where di = \$ 3 if dir \$ 3 4 if dic 1=3 VI = 0.341259 V= 0.484... r2 = 0.481219 V3 = 0. 12 (3 456+ 000 +000 12) the new real non vis not equal to any of r, r2, ... as r differs from decimal expansion of ri in the dith position; ti I a real number r E (o,1) that is not on the list. > contradiction with the enumerability assumption of (6,1) Set of real nos. in (Os1) is on countable. Since Co, 1) c R and uncountable, therefore Ris also un countable Cantor's diagonalization argument

The if A and B are countable sets, then AUB is also obnitable (check rosen book for proof).

	3
+hm	(schröder - bernstein theorm).
	if A and B are sets with the cardinality
	A &B and B & A , than A = B (bijection)
ex	Show that (0, 1) = (0, 1]
	-bind an injective bn: f(o,1) -> (o,1]
	consider $\beta(x) = x$ $(0,1) \subset (0,1]$
	> 1(0,1) 5 (0,17 1000 10 10 10 10 10 10 10 10 10 10 10 1
	or a marinal alla Allandaria de Allanda
	find an injective in: g(o,1) -> (o,1)
	Consider $g(x) = \frac{x}{2}$ (0, $\frac{1}{2}$] C (0,1)
	> 1 Co, 17 1 × 1 (6,1)
	1 don't house house
	Schröder B.
	1(0,1) = 1(0,1]