LINEAR MODELS FOR LONGITUDINAL DATA

Notation and Overview and Simple Examples

- Simple marginal (population average) mean model specification and interpretation
- Simple variance-covariance-correlation model examples

Notation

• The general model for subject *i* is:

$$\boldsymbol{Y}_i = X_i \boldsymbol{\beta} + \boldsymbol{\epsilon}_i \tag{1}$$

where

$$egin{aligned} oldsymbol{Y}_i &= (Y_{i1}, \dots, Y_{in_i})^T \ X_i &= (oldsymbol{x}_{i1}, \dots, oldsymbol{x}_{in_i})^T \ oldsymbol{x}_{ij}^T &= (1, x_{ij1}, \dots, x_{ijp}) \ oldsymbol{\epsilon}_i &= (\epsilon_{i1}, \dots, \epsilon_{in_i})^T \end{aligned}$$

What goes into the predictor vector x_{ij} will vary widely from context to context (but will generally include time, baseline covariates, functions thereof,...)

ullet For the vector $oldsymbol{\epsilon}_i$ of error terms, assume

$$\epsilon_i \sim MVN(0, V_i) \;, \;\; \epsilon_i \coprod X_i \;,$$
 (2)

(II means "independent of") where V_i is the **variance-covariance** matrix of $oldsymbol{\epsilon}_i$

• Note: The **multivariate normality** assumption will sometimes be important and other times not be so critical, depending on the analysis

For now, take multivariate normality as a **working model**, with the critical components being

$$E(\epsilon_i) = 0$$
 and $var(\epsilon) = V_i$ (3)

• V_i is a matrix of dimension $n_i \times n_i$

$$\mathbf{V_i} = \left(\begin{array}{ccc} v_{i11} & v_{i12} & \dots \\ v_{i21} & v_{i22} & \dots \\ \vdots & \vdots & \ddots \end{array} \right)$$

with diagonal elements

$$v_{ijj} = \operatorname{var}(\epsilon_{ij}) = \sigma_{ij}^2$$

and off-diagonal elements

$$v_{ijk} = cov(\epsilon_{ij}, \epsilon_{ik}) = \sigma_{ij}\sigma_{ik}\rho_{ijk}$$
,

where

$$-\sigma_{ij}^{2} = \operatorname{var}(\epsilon_{ij})$$

$$-\rho_{ijk} = \operatorname{corr}(\epsilon_{ij}, \epsilon_{ik})$$

$$-\sigma_{ij}\sigma_{ik}\rho_{ijk} = v_{ijk} = \operatorname{cov}(\epsilon_{ij}, \epsilon_{ik})$$

- ullet We may sometimes write σ^2 without the subscripts i or j and ρ_{jk} without the subscript i, for simplicity
- ullet Often we will place **model structure** on V_i (examples later)

- Model (1), with (2) or (3), form a **marginal model** with the two components:
 - A mean model: $E(\mathbf{Y}_i|X_i) = X_i\boldsymbol{\beta}$, expressing the **trend** over time or other variation in Y_{ij} with respect to predictors
 - A variance-covariance model: $var(\boldsymbol{Y}_i|X_i) = var(\boldsymbol{\epsilon}_i) = V_i$, capturing variability and covariability in components of \boldsymbol{Y}_i not explained by X_i
- Important note: in a basic **marginal model**, the β -coefficients take the same interpretation as in an ordinary linear regression model for cross-sectional data (as if all Y_{ij} 's were independent)
- In this lecture, we will consider $E(\mathbf{Y}_i|X_i)$ to be a basic marginal model, and then in future lectures, we will extend this to incorporate:
 - time profile analysis, perhaps with key covariates of interest
 - longitudinal models for time-varying covariates, incorporating within- and between-subject terms
 - variations and combinations
- We will also consider various **models** for the variance σ_{ij}^2 and the correlation ρ_{ijk} or covariance, including
 - **Unstructured** correlation models: Allowing the correlation to be different for

each pair of time points

- Correlation structure or correlation pattern models: Modeling the correlation as a function of the two time points t_{ij} and t_{ik}
- Random effects models: Modeling each subject's trajectory with random intercepts, slopes, etc., specific to that subject . . . here, the covariance structure will arise implicitly
- In addition, modelling the variance-covariance might be completely avoided in a fixed effects model
- Note: Sometimes you see $E(Y_i)$ and $var(Y_i)$, but conditioning on X_i is a more precise description of the actual model
- We will generally assume that subjects are **independent**, so we do not need to be concerned with correlation among observations on different subjects

Mean Model Example

- Example: Protein content in cows' milk depends on diet
- Scientific goal: Relationship of time profile (since calving) of protein content of milk to diet (lupins, barley, mixed)
- Examine mean response profile for each diet group

- Preliminary observations:
 - Protein content drops strongly over first several weeks after calving and then levels off
 - Cows on diets with higher barley content have higher protein content (on average)
 - Mean response profiles for each group follow a somewhat similar pattern over time
- Linear model for each dietary group:
- What does the model look like and what are the key parameters in this model?

$$\begin{split} \mathrm{E}(Y_{ij}|X_{ij}) &= \beta_0 + \beta_1(\mathsf{week}_{ij}-1) + \beta_2 I(\mathsf{diet}_i=2) + \beta_3 I(\mathsf{diet}_i=3) \\ &+ \beta_4 I(\mathsf{diet}_i=2) \times (\mathsf{week}_{ij}-1) \\ &+ \beta_5 I(\mathsf{diet}_i=3) \times (\mathsf{week}_{ij}-1) \;, \end{split}$$

where Y_{ij} is protein content for ith cow on jth time point

Then

– $\beta_1=$ difference in mean response for each unit difference in time (time slope) among cows on diet 1

- β_2 = difference in mean response comparing cows on diet 2 to those in diet 1, at week 1 (baseline treatment effect)
- β_4 = difference in time slope of mean response comparing diet 2 to diet 1 (response drops more quickly on diet 2 than diet 1)

or

estimated difference in treatment effect comparing diet 2 to diet 1 for each unit difference in time (slope of treatment effect; treatment effect greater with increasing time)

- Note that interpretation of β 's is just as it is in OLS
- This is an example of a **profile analysis model**, which is often employed when comparing trajectories across treatment groups. It is probably not a very good model for these data (linearity assumption not appropriate); we will explore ways to improve it later.

- **Example:** Arm circumference in Nepalese children is related to weight, with potential confounders age and sex
- Linear regression model of arm circumference on weight, age and sex:

$$Y_{ij} = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 x_{ij3} + \epsilon_{ij}$$

where

- $-Y_{ij} = \text{arm circumference}$
- $-x_{ij1} = weight$
- $-x_{ij2} = age$
- $-x_{ij3} = x_{i\cdot 3} = \sec x$
- Marginal model interpretation of β_1 (coefficient of weight): Estimated difference in mean arm circumference comparing two children (actually, two randomly-selected children & time-points from population) differing in weight by 1 kg, adjusting for age and sex

- This is the **same interepretation** as β_1 with **cross-sectional** data (marginal model interpretation)
- This is a simple example of models for the mean response $\mathrm{E}(Y_{ij}|X_{ij})$. We need to complement our **mean model** with a **variance-covariance-correlation model**, in order to do estimation and inference

Simple Variance-Covariance-Correlation Model Examples Equal Variance and Exchangeable Correlation

- Assume $\rho_{jk} = \rho$ (same for all pairs of observations on a typical subject) and also that $var(Y_{ij})$ is constant over j
- ullet The variance-covariance matrix V_0 (the variance-covariance matrix for a "typical" subject) for five observations on a subject in the Nepal data is then

$$V_0 = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho$$

• This is called the **uniform**, **exchangeable** or **compound symmetry** correlation model

- In the Nepal data, the **within-subject** correlation coefficient is about $0.75 = \hat{\rho}$. (we will see how we get this)
 - the correlation between two arm circumference measures on the same child is about 0.75
 - the foregoing mean model removes any similarities in arm circumference due to weight, age or sex. i.e., $\hat{\rho}$ is adjusted for weight, age and sex
 - the correlation is **adjusted for the mean model**, i.e., the correlation applies to what is left over after removing trend due to x_{ij}
- In this model, the variance σ_{ij}^2 is constant over time.
 - Most non-random effects models we will examine have constant variance
- Models with variance σ_{ij}^2 changing over time:
 - unstructured variance-covariance model
 - random effects models with random slopes

• How does the exchangeable correlation model arise? Suppose that

$$\epsilon_{ij} = U_i + Z_{ij}$$

where $U_i \sim N(0, \nu^2)$ and is constant over time within subject, $Z_{ij} \sim N(0, \tau^2)$ and varies over time within subject, and the U_i 's and Z_{ij} 's are all independent of one another

• Then:

$$\operatorname{var}(\epsilon_{ij}) = \operatorname{var}(U_i + Z_{ij}) = \operatorname{var}(U_i) + \operatorname{var}(Z_{ij}) = \nu^2 + \tau^2$$

$$\operatorname{cov}(\epsilon_{ij}, \epsilon_{ik}) = \operatorname{E}(\epsilon_{ij}\epsilon_{ik})$$

$$= E[(U_i + Z_{ij})(U_i + Z_{ik})] = E(U_i^2)$$

$$= \nu^2$$

$$\rho_{jk} = \rho = \frac{\operatorname{cov}(\epsilon_{ij}, \epsilon_{ik})}{\operatorname{var}(\epsilon_{ij})} = \frac{\nu^2}{\nu^2 + \tau^2}$$

(same for all pairs of time points)

ullet The U_i allows each child to have his/her own intercept, given by

$$\beta_0 + U_i$$

the term U_i is called a **random effect**; random effects are one way to generate v-c-c models

• In this model, estimates are approximately

$$\widehat{\operatorname{var}}(U_i) = \hat{\nu}^2 = 0.41$$

and

$$\widehat{\operatorname{var}}(Z_{ij}) = \hat{\tau}^2 = 0.13$$

and

$$\hat{\rho} = \frac{.41}{.41 + .13} \approx 0.76$$

- This is the same set-up as the variance structure model we introduced earlier in our exploratory techniques:
 - $-\nu^2=$ between-subject variance
 - τ^2 = within-subject variance

- More details about estimation in coming lectures
- This **mean** and **variance-covariance-correlation** model can be fitted in SAS:

```
proc mixed data=nepal method=ML;
class id sex;
model arm=wt age sex/ s;
random intercept/ subject=id;
run;
```

• Notes on the syntax:

```
proc mixed: Fit a linear mixed-effects model random intercept: add a random intercept U_i method=ML: estimate the model using maximum likelihood
```

• In R: can use lmer() function in lme4 package

• Part of results:

Covariance Parameter Estimates

Cov Parm	Subject	Estimate		
Intercept	id	0.4106		
Residual		0.1275		

Solution for Fixed Effects

Effect				Standard			
	sex		Estimate	Error	DF	t Value	Pr > t
Intercept			8.9626	0.1633	195	54.89	<.0001
wt			0.6630	0.02326	678	28.51	<.0001
age			-0.05949	0.003620	678	-16.43	<.0001
sex		1	-0.2920	0.09528	678	-3.06	0.0023
sex		2	0	•	•	•	•

- \bullet Interpretation of $\hat{\beta}_1=0.663$ is the same as in an ordinary linear regression model
- The variance parameter estimates are

$$\widehat{\operatorname{var}}(U_i) = \hat{\nu}^2 = 0.4106$$

and

$$\widehat{\text{var}}(Z_{ij}) = \hat{\tau}^2 = 0.1275$$

• The estimated within-subject correlation coefficient is therefore

$$\widehat{\rho} = \frac{.4106}{.4106 + .1275} = \frac{\text{between-subj variance}}{\text{total variance}} = 0.763$$

Equal Variance and Exponential Correlation

- A different model is to assume that the correlation of observations closer together in time is larger than that of observations farther apart
- One model for this is the **exponential** or **AR** (1) correlation model

$$\rho_{jk} = \alpha^{|t_j - t_k|}$$

ullet In the data on Nepalese children, if we let t indicate a four-month interval, then $t_1=1,\,t_2=2,\,{\rm etc.}$, and

 $\alpha = \rho_{j,j-1} = \text{correlation between observations } j \ \& \ j-1$

 $\alpha^2 = \rho_{j,j-2} = \text{correlation between observations } j \ \& \ j-2$

etc.

ullet So, the covariance matrix V_i for the five observations each one unit apart on a subject i is

$$\mathbf{V_0} = \sigma^2 \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 \\ \alpha & 1 & \alpha & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha & 1 & \alpha & \alpha^2 \\ \alpha^3 & \alpha^2 & \alpha & 1 & \alpha \\ \alpha^4 & \alpha^3 & \alpha^2 & \alpha & 1 \end{pmatrix}$$

• In these data, the estimated **within-subject** correlation coefficient for two observations separated by 4 months is approximately

$$\widehat{\operatorname{corr}}(\epsilon_{ij}, \epsilon_{i,j-1}) = \hat{\alpha} = 0.80$$

(again, adjusted for weight, age and sex)

ullet How does this model arise? Suppose that $\epsilon_{ij}=W_{ij}$, and

$$W_{i1} \sim N(0, \delta^2)$$

$$W_{ij} = \alpha W_{i,j-1} + E_{ij}, \quad j = 2, 3, \dots$$

where $E_{ij} \sim N\{(0, \delta^2(1-\alpha^2))\}$ are all independent of one another

- This is sometimes called a **first order autoregressive** (AR(1)) model
- ullet W_{ij} is a first-order autoregressive process with

$$\operatorname{var}(\epsilon_{ij}) = \operatorname{var}(W_{ij}) = \operatorname{var}(\alpha W_{i,j-1} + E_{ij})$$
$$= \alpha^{2} \operatorname{var}(W_{i,j-1}) + \operatorname{var}(E_{ij})$$
$$= \alpha^{2} \delta^{2} + \delta^{2} (1 - \alpha^{2}) = \delta^{2}$$

$$cov(\epsilon_{ij}, \epsilon_{i,j-1}) = E[(\alpha W_{i,j-1} + E_{ij})W_{i,j-1}] = \alpha var(W_{i,j-1}) = \alpha \delta^2$$

$$\rho_{j,j-1} = \frac{\operatorname{cov}(\epsilon_{ij}, \epsilon_{i,j-1})}{\operatorname{var}(\epsilon_{ij})} = \alpha$$

$$\rho_{j,j-2} = \alpha^2$$
 (work out at home!)

- ullet This model allows each subject's error term ϵ_{ij} at a given time to be a function of his/her error term $\epsilon_{i,j-1}$ at the **previous** time
- This is a type of **transition** model for discrete times
- More generally, we could write $W_{ij}=W_i(t_{ij})$ where $W_i(\cdot)$ is a random Gaussian process with:
 - $\operatorname{E}\{W_{ij}(\cdot)\} = 0,$
 - $-\operatorname{var}\{W_i(\cdot)\}=\delta^2$,
 - $-\operatorname{corr}\{W_i(t), W_i(t+u)\} = \alpha^u, u > 0$

Unstructured Correlation Model

- Suppose that:
 - We did not want to make any assumptions about the correlation of the repeated observations on an individual, not even stationarity
 - We had approximately balanced data
- Then, we might fit a model with no structure on the correlation matrix (i.e., an unstructured model)
- To do this, we need a finite number of time points (nearly balanced data), because the correlation between each two time points will be estimated separately
- We could fit such a model with the Nepal data, using obs as the time variable (Why wouldn't age work?)
- This model could be generalized even further to allow for different variances at each time point

Important Themes in This and Coming Lectures

- These are **marginal models**: The interpretation of the regression coefficients is the **same** as that in cross-sectional data
- Accounting for the association / correlation in LD is important for correct inferences on regression coefficients (β)
 - statistical efficiency
 - correct standard errors
- Association can be included via:
 - structured correlation models (exchangeable, exponential, . . .)
 - unstructured correlation models (for balanced data)
 - random effects model (e.g., random intercept, could add slope)
 - fixed effects models
- Correlation can arise by way of subject-specific models (U_i) and/or transition models (W_{ij})
 - Exchangeable correlation model: subject-specific formulation
 - Exponential correlation model: transition model formulation

- Incorporating correlation into estimation of regression models is achieved via Weighted Least Squares, coming up
- V-C-C model parameters will be estimated via **Restriced Maximum Likelihood Estimation**, also coming up
- Correlation models can be approximate
 - We will call these working correlation models ("our best shot")
 - Regression coefficients estimates will still be correct
 - We will see how to "fix up" standard errors to account for inaccuracies in correlation models