Lineær algebra

2024-09-12

Lineær algebra

Hvorfor lineær algebra?

- Et væsentligt matematisk værktøj
- Lineære ligningssystemer dukker op mange steder
- Bruges til
 - 3D visualisering
 - Skifte mellem koordinatsystemer

Eksempler på lineære ligningssystemer

Afstemning af kemiske reaktioner (kemi)

Bestemme strømme i et elektrisk kredsløb (elektronik)

Styring af robotters bevægelse (robtek)

Afstemning af kemiske reaktioner

$$a\,\mathrm{H_2O} + b\,\mathrm{CO_2}
ightarrow \mathrm{C_6H_{12}O_6} + d\,\mathrm{O_2}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ d \end{pmatrix} = \begin{pmatrix} 12 \\ 6 \\ 6 \end{pmatrix}$$

Hvor mange reaktioner?

$$a\,{
m H}_{2}{
m O} + b\,{
m CO}_{2}
ightarrow c\,{
m C}_{6}{
m H}_{12}{
m O}_{6} + d\,{
m O}_{2}$$

$$egin{pmatrix} 2 & 0 & -12 & 0 \ 0 & 1 & -6 & 0 \ 1 & 2 & -6 & -2 \end{pmatrix} \cdot egin{pmatrix} a \ b \ c \ d \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 1 \\ 6 \end{pmatrix} \cdot t$$

Styring af robotter bevægelse

Bestemme strømme i et elektrisk kredsløb

Frem med telefonen!

Hvor kommer I fra?

Indtegn en vektor 1

$$ec{x} = egin{pmatrix} 3 \ 1 \end{pmatrix} \ ec{y} = egin{pmatrix} 0.5 & 0 \ 0 & -1 \end{pmatrix} \cdot egin{pmatrix} 3 \ 1 \end{pmatrix}$$

Indtegn en vektor 2

$$ec{x} = egin{pmatrix} -2 \ 3 \end{pmatrix} \ ec{y} = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \cdot egin{pmatrix} -2 \ 3 \end{pmatrix}$$

Matrix addition

Matricer

En matrix

$$A = [a_{jk}] = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ \dots & & & & \ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Elementerne $a_{11}, a_{12}, a_{13}, \ldots, a_{mn}$ udgør matricen.

Hvad hedder en matrix hvor m = n?

Addition

Hvis A og B har samme dimensioner

Formel for elementerne

$$A + B = [a_{jk} + b_{jk}]$$

Addition - visualisering

Matrix multiplikation

Matricer kan ganges sammen på flere måder.

- Indre produkt
- Ydre produkt
- Matrix multiplikation

Det indre produkt som matrix vektor produkt

prik produkt / dot product.

Eksempel

$$(3 \ 6 \ 1) \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = (3 \cdot 1 + 6 \cdot 2 + 1 \cdot 4) = 19$$
 1×3
 3×1
 1×1

Det indre produkt er en skalar.

Det indre produkt benyttes meget i forbindelse med neurale netværk / deep learning. **SDl**

Længden af en vektor

$$|\vec{x}| = \sqrt{\vec{x}^T \cdot \vec{x}}$$

Det ydre produkt af to vektorer

Resultatet bliver en matrix

Eksempel

$$\underbrace{\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}}_{3 \times 1} \cdot \begin{pmatrix} 3 & 6 & 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \cdot 3 & 1 \cdot 6 & 1 \cdot 1 \\ 2 \cdot 3 & 2 \cdot 6 & 2 \cdot 1 \\ 4 \cdot 3 & 4 \cdot 6 & 4 \cdot 1 \end{pmatrix}}_{3 \times 3} = \underbrace{\begin{pmatrix} 3 & 6 & 1 \\ 6 & 12 & 2 \\ 12 & 24 & 4 \end{pmatrix}}_{3 \times 3}$$

Matrix multiplikation

Matricerne $A_{m imes n}$ og $B_{p imes q}$ kan ganges sammen hvis og kun hvis n=p.

Formel for elementerne

$$A\cdot B = [c_{jk}] = \sum_{t=1}^n a_{jt}\cdot b_{tk}$$

Matrix multiplikation – eksempel

$$\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} * \begin{pmatrix} 0 & 2 & 1 \\ 4 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 0 + 3 \cdot 4 & 2 \cdot 2 + 3 \cdot (-2) & 2 \cdot 1 + 3 \cdot 3 \\ 4 \cdot 0 + 1 \cdot 4 & 4 \cdot 2 + 1 \cdot (-2) & 4 \cdot 1 + 1 \cdot 3 \end{pmatrix}$$

Matrix multiplikation – eksempel 2

$$\begin{pmatrix} 4 & 3 \\ 0 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 2.4 + 3.0 & 2.3 + 3.7 \\ 1.4 + 5.0 & 1.3 + 5.7 \end{pmatrix}$$

Matrix vektor multiplikation

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 6 \\ 3 \cdot 5 + 4 \cdot 6 \end{pmatrix}$$
$$= \begin{pmatrix} 5 + 12 \\ 15 + 24 \end{pmatrix}$$
$$= \begin{pmatrix} 17 \\ 39 \end{pmatrix}$$

Matrix vektor multiplikation - interaktiv demo

Lineære ligningssystemer

Lineære ligningssystemer

Handler om at løse lineære ligningssystemer vha. matricer.

Eksempelvis kan ligningssystemet

$$2x_1 + 5x_2 = 2$$
 $-4x_1 + 3x_2 = -30$

også skrives på matrix form $A\cdot ec{x}=ec{b}$

$$\left(egin{array}{cc}2&5\-4&3\end{array}
ight)\cdot\left(egin{array}{c}x_1\x_2\end{array}
ight)=\left(egin{array}{c}2\-30\end{array}
ight)$$

Udviddet matrix form

$$\left(egin{array}{c|ccc} 2 & 5 & 2 \ -4 & 3 & -30 \end{array}
ight)$$

Regneregler og løse ender

Regneregler 1

Associative lov

$$(k \cdot A) \cdot B = k \cdot (A \cdot B) = A(k \cdot B)$$
$$(AB)C = A(BC)$$

Distributive lov

$$(A+B)C = AC + BC$$
$$C(A+B) = CA + CB$$

Regneregler 2

Kummutative lov

$$AB = BA$$

Holder IKKE

Modeksempel

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Transponering

Søjler bliver til rækker og rækker bliver søjler

Definition

$$A = [a_{jk}] \qquad (m \times n)$$

$$egin{aligned} A &= [a_{jk}] & (m imes n) \ A^T &= [a_{kj}] & (n imes m) \end{aligned}$$

Transponering - eksempel

Eksempel 7 s. 282

$$A = egin{pmatrix} 5 & -8 & 1 \ 4 & 0 & 0 \end{pmatrix} \ A^T = egin{pmatrix} 5 & 4 \ -8 & 0 \ 1 & 0 \end{pmatrix}$$

Regler for transponering

$$egin{aligned} \left(A^T
ight)^T &= A \ & \left(A+B
ight)^T &= A^T+B^T \ & \left(cA
ight)^T &= cA^T \ & \left(AB
ight)^T &= B^T \cdot A^T \end{aligned}$$

Specielle matricer

- Symmetrisk matrix
- Skæv (skew) symmetrisk matrix

Symmetrisk matrix

En symmetrisk matrix opfylder

$$A = A^T$$

Et eksempel

$$egin{pmatrix} 1 & 5 & -2 \ 5 & 7 & 3 \ -2 & 3 & 4 \end{pmatrix}$$

Skæv (skew) symmetrisk matrix

En skæv symmetrisk matrix opfylder

Eksempel

$$A = \left(egin{array}{cccc} 0 & 5 & -2 \ -5 & 0 & 3 \ 2 & -3 & 0 \end{array}
ight)$$

Løsning af lineære ligningssystemer

Eliminering af variable

Givet ligningerne

$$2x_1 + 5x_2 = 2 (1)$$

$$-4x_1 + 3x_2 = -30 (2)$$

 x_1 kan isoleres i ligning (1)

$$x_1=1-\frac{5}{2}x_2$$

udtrykket kan nu indsættes i ligning (2)

$$-4 \cdot \left(1 - rac{5}{2} x_2
ight) + 3 x_2 = -30$$

Eliminering af variable - fortsat

Der ganges ind i parentesen

$$-4 + 10x_2 + 3x_2 = -30$$

Ens led samles

$$13x_2 = -26$$

Der deles med 13

$$x_2 = -2$$

Eliminering af variable - fortsat 2

Nu kan x_1 bestmmes

$$egin{aligned} x_1 &= 1 - rac{5}{2} x_2 \ &= 1 - rac{5}{2} \cdot (-2) \ &= 1 + 5 \ &= 6 \end{aligned}$$

Gauss elimination - et eksempel

Givet ligningerne

$$2x_1 + 5x_2 = 2 (1)$$

$$-4x_1 + 3x_2 = -30 (2)$$

Vi ganger ligning (1) med 2:

$$4x_1 + 10x_2 = 4 \tag{1}$$

$$-4x_1 + 3x_2 = -30 (2)$$

Vi lægger ligning (1) til (2)

$$4x_1 + 10x_2 = 4$$
 (1)
 $0x_1 + 13x_2 = -26$ (2)

Gauss elimination - eksempel fortsat

Vi dividerer ligning (2) med 13

$$4x_1 + 10x_2 = 4 \tag{1}$$

$$0x_1 + 1x_2 = -2 (2)$$

Vi trækker 10 gange ligning (2) fra (1)

$$4x_1 + 0x_2 = 24 (1)$$

$$0x_1 + 1x_2 = -2 (2)$$

Vi dividerer ligning (1) med 4

$$1x_1 + 0x_2 = 6$$
 (1)
 $0x_1 + 1x_2 = -2$ (2)

Matrix notation

Matrix notation - med brøker

$$egin{pmatrix} 2 & 5 & 2 \ -4 & 3 & -30 \end{pmatrix} \ rac{R1/2 o R1}{\longrightarrow} egin{pmatrix} 1 & 5/2 & 1 \ -4 & 3 & -30 \end{pmatrix} \ rac{R2+4R1 o R2}{\longrightarrow} egin{pmatrix} 1 & 5/2 & 1 \ 0 & 13 & -26 \end{pmatrix} \ rac{R2/13 o R2}{\longrightarrow} egin{pmatrix} 1 & 5/2 & 1 \ 0 & 1 & -2 \end{pmatrix} \ rac{R1-5/2R2 o R1}{\longrightarrow} egin{pmatrix} 1 & 0 & 6 \ 0 & 1 & -2 \end{pmatrix} \ \end{array}$$

Regneregler - ligninger

Når vi løser ligninger må vi

- bytte om på rækkefølgen af ligningerne
- addere en ligning (eller et multiplum heraf) til en anden
- ullet multiplicere en ligning med en konstant c
 eq 0

Regneregler - matrixform

På matrixform svarer det til

- bytte om på rækker
- lægge en række (evt. ganget med en konstant) til en anden
- ullet gange en række med en konstant c
 eq 0

Multiple choice opgaver

Test jeres viden.

Praktisk omkring undervisningen

Øvelsestimerne

Formål: Bygge et solidt fundament til forelæsningen.

Brug god notation på whiteboards, således at det er let at følge med i hvad der sker i beregningerne.

- Fordel for jer selv og for andre
- Få gerne styr på notation og fremgangsmåde i de første opgaver. Det vil ofte være en stor fordel senere!

Indtryk fra første video aflevering

Mange forskellige tilgange

- Notes bog på bordet
- Papir sat op på væggen
- Skærm optagelse (husk velkomst først hvor man kan se ansigtet)
- Mobil optagelse af en tablet hvor beregningerne udføres
- Brug en terning til at vælge opgave

Jeg vil gerne se at I laver beregningerne undervejs.

Video afleveringen - rammer

Der kommer til at være 12 video afleveringer i løbet af semestret.

For aflevering kan I tjene et point. I kan maksimalt tage 10 point med til eksamen.

Afleveringstidspunktet er søndag kl. 23.59. Der gives ikke forlængelser.

Outro

Overblik over undervisningen

Outro

Quote

"The only secret of magic is I'm willing to work harder on it than you think it's worth" Penn Jilette (1986)