

Optimal P/N Sizing Increasing Wp: Reduces R_p, increases C_{in,p} Reduces t_{p,l,H} Increases t_{p,HL} Optimum Wp/Wn = 2 in older technologies, with velocity saturation (like 130nm) Wp/Wn = 1.6 in technologies with strained silicon (e.g. 28nm) Wp/Wn = 1 in finFET technologies

14

_

Generalizing to Arbitrary Gates

- Delay has two components: d = f + p
- f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - g = 1 for inverter
- h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

EECS151 L13 DELAY

Nikolić Fall 202

25 Berkeley © ®

25

Inverter Delay

- Parasitic p is the ratio of intrinsic capacitance to an inverter
 - p(inverter) =
- Logical Effort g is the ratio of input capacitance to an inverter
 - g(inverter) =
- Electrical Effort h is the ratio of the load capacitance to the input capacitance
 - h(inverter) =
- Delay = p + f = p + g * h = 1 + f

Nikolić Fall 2021

26 Berkeley @080

26

EECS151 L13 DELAY

Total Delay: $d_{total} = 2*N$

d = 2

Parasitic Delay: p = 1

EECS151 L13 DELAY

Stage Delay:

Berkeley @@@

31

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

EECS151 L13 DELAY

Nakalić Fall 2021 Ley @ 08

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

EECS151 L13 DELAY

Na lić Fall 2021 Ley @ 06

33

Multi-stage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
- $F = \prod f_i = \prod g_i h_i$ • Path Effort

EECS151 L13 DELAY

34 Berkeley 6086

Branching Effect

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}} \qquad B = \prod b_i$$

$$G = 1$$

$$H = 90 / 5 = 18$$

$$GH = 18$$

$$h_1 = (15 + 15) / 5 = 6$$

$$h_2 = 90 / 15 = 6$$

$$\mathsf{B} = 2$$

$$F = g_1g_2h_1h_2 = 36 = BGH$$

ECS151 L13 DELAY

Nikolić Fall 202

35 Berkeley 6 1 No.

35

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

• Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

• Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

EECS151 L13 DELAY

Nikolić Fall 2021

36 Berkeley @@@@

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

37 Berkeley @06

EECS151 L13 DELAY

EECS151 L13 DEL/

37

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

EECS151 L13 DELAY

Best Stage Effort

- How many stages should a path use?
 - To drive given capacitance

- Define best stage effort
- Neglecting parasitics (p_{inv} = 0%, $\overline{w}e^{F_{ind}^{\frac{1}{N}}}$ ρ = e = 2.718
- \bullet For $p_{\text{inv}}=$ 1, solve numerically for $\rho=$ 3.59
- Choose 4 less stages, less energy

EECS151 L13 DELAY

Nikolić Fall 202

39 Berkeley @ S & R NO S

39

Logical Efforts Method

1) Compute path effort

- F = GBH
- 2) Estimate best number of stages
- $N = \log_4 F$
- 3) Sketch path with N stages
- $D = NF^{\frac{1}{N}} + P$

4) Estimate least delay

- $\hat{f} = F^{\frac{1}{N}}$
- 5) Determine best stage effort
- $C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$

6) Find gate sizes

EECS151 L13 DELAY

Nikolić Fall 2021

40 Berkeley @@@@

Summary

- $^{\bullet}$ Delay is a linear function of R and C
- Delay optimization is critical to improve the frequency of the circuit.
- The dimensions of a transistor affect its capacitance and resistance.
- We use RC delay model to describe the delay of a circuit.
- Two delay components:
 - Parasitic delay (p)
 - Effort delay (F)
 - Logical effort (g): intrinsic complexity of the gate
 - Electrical effort (h): load capacitance dependent

EECS151 L13 DELAY

Nikolić Fall 202

