Surface area of revolution of a parametric curve, horizontal axis

The surface area of the solid created by revolving a parametric curve around the x-axis is given by

$$S_{x} = \int_{a}^{b} 2\pi y \sqrt{\left[f'(t)\right]^{2} + \left[g'(t)\right]^{2}} dt$$

where the curve is defined over the interval [a, b],

where f'(t) is the derivative of the curve f(t)

where g'(t) is the derivative of the curve g(t)

Example

Find the surface area of revolution of the solid created when the parametric curve is rotated around the given axis over the given interval.

$$x = \cos^3 t$$

$$y = \sin^3 t$$

for
$$0 \le t \le \frac{\pi}{2}$$
, rotated around the *x*-axis

We'll call the parametric equations

$$f(t) = \cos^3 t$$

$$g(t) = \sin^3 t$$

The limits of integration are defined in the problem, but we need to find both derivatives before we can plug into the formula.

$$f'(t) = -3\cos^2 t \sin t$$

$$g'(t) = 3\sin^2 t \cos t$$

Now we'll plug into the formula for the surface area of revolution.

$$S_x = \int_0^{\frac{\pi}{2}} 2\pi (\sin^3 t) \sqrt{(-3\cos^2 t \sin t)^2 + (3\sin^2 t \cos t)^2} dt$$

$$S_{x} = \int_{0}^{\frac{\pi}{2}} 2\pi \sin^{3} t \sqrt{9 \cos^{4} t \sin^{2} t + 9 \sin^{4} t \cos^{2} t} dt$$

$$S_x = \int_0^{\frac{\pi}{2}} 2\pi \sin^3 t \sqrt{9 \sin^2 t \cos^2 t \left(\cos^2 t + \sin^2 t\right)} dt$$

Since $\sin^2 t + \cos^2 t = 1$, we get

$$S_x = \int_0^{\frac{\pi}{2}} 2\pi \sin^3 t \sqrt{9 \sin^2 t \cos^2 t (1)} \ dt$$

$$S_x = \int_0^{\frac{\pi}{2}} 2\pi \sin^3 t \sqrt{9 \sin^2 t \cos^2 t} \ dt$$

$$S_x = \int_0^{\frac{\pi}{2}} 2\pi \sin^3 t \left(3 \sin t \cos t \right) dt$$

$$S_x = 6\pi \int_0^{\frac{\pi}{2}} \sin^4 t \cos t \ dt$$

We'll use u-substitution, letting

$$u = \sin t$$

$$du = \cos t \, dt$$

We'll make the substitution.

$$S_x = 6\pi \int_{x=0}^{x=\frac{\pi}{2}} u^4 \ du$$

$$S_x = \frac{6\pi}{5} u^5 \bigg|_{x=0}^{x=\frac{\pi}{2}}$$

Back-substituting for u, we get

$$S_x = \frac{6\pi}{5} \sin^5 t \Big|_0^{\frac{\pi}{2}}$$

$$S_x = \left(\frac{6\pi}{5}\sin^5\frac{\pi}{2}\right) - \left(\frac{6\pi}{5}\sin^50\right)$$

$$S_x = \frac{6\pi}{5}(1)^5 - \frac{6\pi}{5}(0)^5$$

$$S_x = \frac{6\pi}{5}$$

