Introduction to Machine Learning for Social Science

Class 13: Clustering

Rochelle Terman

Postdoctoral Fellow Center for International Security Cooperation Stanford University

February 27, 2018

Today (and Tuesday): Cluster press releases Goal: partition documents such that:

- similar documents are together
- dissimilar documents are apart

Method: Clustering methods Game Plan:

- 1) What makes two data points (i.e. documents) similar?
- 2) How do we find a good partition?
- 3) How do we interpret the clusters?

Key Terms:

- (Multidimensional) Space
- Distance
- Euclidean Distance
- Cosine Distance
- Cluster Analysis / Clustering
- K-means
- Centroid

K-means clustering is popular method to partition a data set into K distinct, non-overlapping clusters.

K-means clustering is popular method to partition a data set into K distinct, non-overlapping clusters.

Inputs

- 1 A document term matrix (or any multidimensional dataset)
- **2** *K*: the desired number of clusters.

K-means clustering is popular method to partition a data set into K distinct, non-overlapping clusters.

Inputs

- A document term matrix (or any multidimensional dataset)
- **2** K: the desired number of clusters.

Then the K-means algorithm will assign each observation into exactly one of the K clusters.

K-means clustering is popular method to partition a data set into K distinct, non-overlapping clusters.

Inputs

- A document term matrix (or any multidimensional dataset)
- **2** K: the desired number of clusters.

Then the K-means algorithm will assign each observation into exactly one of the K clusters.

Outputs

- **1** C_k : The set of observations assigned to each cluster.
- $2 \mu_k$: The mean for each K a vector representing the average values of all observations in that cluster. Also called centroid.

Centroid (μ_k) : The mean for each K – a vector representing the average values of all observations in that cluster.

Centroid (μ_k) : The mean for each K – a vector representing the average values of all observations in that cluster.

Consider the following cluster with two vectors:

$$X_1 = [1, 0, 3]$$

$$X_2 = [0,4,1]$$

Centroid (μ_k) : The mean for each K – a vector representing the average values of all observations in that cluster.

Consider the following cluster with two vectors:

$$X_1 = [1,0,3]$$

$$X_2 = [0,4,1]$$

Then its mean is:

$$\mu = [\text{mean}(X_{1,1}, X_{2,1}), \text{mean}(X_{1,2}, X_{2,2}), \text{mean}(X_{1,3}, X_{2,3})]$$

Centroid (μ_k) : The mean for each K – a vector representing the average values of all observations in that cluster.

Consider the following cluster with two vectors:

$$X_1 = [1,0,3]$$

 $X_2 = [0,4,1]$

Then its mean is:

$$\mu = [\text{mean}(X_{1,1}, X_{2,1}), \text{mean}(X_{1,2}, X_{2,2}), \text{mean}(X_{1,3}, X_{2,3})]$$

$$\mu = [0.5, 2, 2]$$

Centroid (μ_k) : The mean for each K – a vector representing the average values of all observations in that cluster.

Consider the following cluster with two vectors:

$$X_1 = [1,0,3]$$

 $X_2 = [0,4,1]$

Then its mean is:

$$\mu = [\text{mean}(X_{1,1}, X_{2,1}), \text{mean}(X_{1,2}, X_{2,2}), \text{mean}(X_{1,3}, X_{2,3})]$$
 $\mu = [0.5, 2, 2]$

The K-means algorithm will assign each observation to the cluster with the closest mean.

Goal: Cluster the following documents:

- I like to eat broccoli and bananas.
- I eat a banana smoothie for breakfast.
- Hamsters and kittens are cute.
- She adopted a cute kitten.

Inputs

1 A document term matrix

	adopt	banana	breakfast	broccoli	cute	eat	hamster	kitten	like	smoothi
1	0	1	0	1	0	1	0	0	1	0
2	0	1	1	0	0	1	0	0	0	1
3	0	0	0	0	1	0	1	1	0	0
4	1	0	0	0	1	0	0	1	0	0

Inputs

1 A document term matrix

	adopt	banana	breakfast	broccoli	cute	eat	hamster	kitten	like	smoothi
1	0	1	0	1	0	1	0	0	1	0
2	0	1	1	0	0	1	0	0	0	1
3	0	0	0	0	1	0	1	1	0	0
4	1	0	0	0	1	0	0	1	0	0

2 K: 2

Inputs

1 A document term matrix

	adopt	banana	breakfast	broccoli	cute	eat	hamster	kitten	like	smoothi
1	0	1	0	1	0	1	0	0	1	0
2	0	1	1	0	0	1	0	0	0	1
3	0	0	0	0	1	0	1	1	0	0
4	1	0	0	0	1	0	0	1	0	0

2 **K**: 2

Outputs

1 C_k : Cluster assignment:

■ C₁: [1, 2]

■ C₂: [3, 4]

Inputs

1 A document term matrix

	adopt	banana	breakfast	broccoli	cute	eat	hamster	kitten	like	smoothi
1	0	1	0	1	0	1	0	0	1	0
2	0	1	1	0	0	1	0	0	0	1
3	0	0	0	0	1	0	1	1	0	0
4	1	0	0	0	1	0	0	1	0	0

2 **K**: 2

Outputs

1 C_k : Cluster assignment:

■ C₁: [1, 2]

■ **C**₂: [3, 4]

2 μ_k : Cluster means / centroids:

	adopt	banana	breakfast	broccoli	cute	eat	hamster	kitten	like	smoothi
μ_1	0.0	1.0	0.5	0.5	0.0	1.0	0.0	0.0	0.5	0.5
μ_2	0.5	0.0	0.0	0.0	1.0	0.0	0.5	1.0	0.0	0.0

A chicken and egg problem:

A chicken and egg problem:

■ Means ~ Assignments

A chicken and egg problem:

- Means → Assignments
- Assignments ~> Means

A chicken and egg problem:

- Means ~ Assignments
- Assignments ~> Means

How do we find a good partition?

- 1) Randomly initialize K cluster centroids $(\mu_1, \mu_2, \dots, \mu_k)$ in random locations.
- 2) Repeat:
 - Assignment: Assign each observation \boldsymbol{X} to cluster with closest mean μ_k .
 - Update: Calculate new centroids μ_k by averaging all points assigned to each cluster.

Stop when cluster assignments stop changing.

- 1) How should we preprocess the data?
 - k-means are very sensitive to feature scaling / weighting.
 - Common to normalize the DTM in some way, e.g. by dividing each vector by the vector length.

- 1) How should we preprocess the data?
 - k-means are very sensitive to feature scaling / weighting.
 - Common to normalize the DTM in some way, e.g. by dividing each vector by the vector length.
- 2) How to chose *K*?
 - User must assign the number of clusters (K)
 - Different values of K will lead to different partitions.

- 1) How should we preprocess the data?
 - k-means are very sensitive to feature scaling / weighting.
 - Common to normalize the DTM in some way, e.g. by dividing each vector by the vector length.
- 2) How to chose *K*?
 - User must assign the number of clusters (K)
 - Different values of K will lead to different partitions.
- 3) Random starting values!
 - Results will depend on the initial (random) cluster centroid assignment (in step 1).
 - Important to run the algorithm multiple times from different random starting values.

Small Decisions with Big Consequences:

- 1) How should we preprocess the data?
 - k-means are very sensitive to feature scaling / weighting.
 - Common to normalize the DTM in some way, e.g. by dividing each vector by the vector length.
- 2) How to chose *K*?
 - User must assign the number of clusters (K)
 - Different values of K will lead to different partitions.
- 3) Random starting values!
 - Results will depend on the initial (random) cluster centroid assignment (in step 1).
 - Important to run the algorithm multiple times from different random starting values.

How do we decide?

What makes a good partition?

What makes a good partition?

Two kinds of validation criteria:

What makes a good partition?

Two kinds of validation criteria:

- 1 Quantitative evaluation:
 - A good clustering is one for which the within-cluster variation is as small as possible.

What makes a good partition?

Two kinds of validation criteria:

- 1 Quantitative evaluation:
 - A good clustering is one for which the within-cluster variation is as small as possible.
- 2 Qualitative evaluation:
 - A good clustering is one for which clusters are substantially / semantically interpretable.

Quantitative evaluation: within-cluster variation is as small as possible.

- Within-cluster variation: a measure of the amount by which the observations within a cluster differ from each other.
- Common metric: Sum of Squared Euclidean Distance

For a given document X in cluster k, the squared Euclidean distance is:

$$D(\mathbf{X}, \mu_k)^2 = \sum_{p=1}^{P} (x_p - \mu_{kp})^2$$

For a given document X in cluster k, the squared Euclidean distance is:

$$D(\mathbf{X}, \mu_k)^2 = \sum_{p=1}^{P} (x_p - \mu_{kp})^2$$

The within-cluster sum of squared distances for a given cluster C_k is:

$$W(C_k) = \sum_{i \in C_k} D(\boldsymbol{X}_i, \boldsymbol{\mu_k})^2$$

For a given document X in cluster k, the squared Euclidean distance is:

$$D(\mathbf{X}, \mu_{\mathbf{k}})^2 = \sum_{p=1}^{P} (x_p - \mu_{kp})^2$$

The within-cluster sum of squared distances for a given cluster C_k is:

$$W(C_k) = \sum_{i \in C_k} D(\boldsymbol{X}_i, \boldsymbol{\mu_k})^2$$

Thus our goal is to minimize the total within-cluster sum of squares:

$$\sum_{k=1}^K W(C_k)$$

- 1 Manual identification
 - Sample set of documents from same cluster
 - Read documents
 - Assign cluster "label" by hand
 - \blacksquare I like to eat broccoli and bananas. \leadsto "food"
 - Hamsters and kittens are cute. → "pets"

- 1 Manual identification
 - Sample set of documents from same cluster
 - Read documents
 - Assign cluster "label" by hand
 - I like to eat broccoli and bananas. → "food"
 - Hamsters and kittens are cute. → "pets"
- 2 Automatic identification
 - Use methods to identify separating words between clusters
 - Use these to help infer differences across clusters

- Manual identification
 - Sample set of documents from same cluster
 - Read documents
 - Assign cluster "label" by hand
 - I like to eat broccoli and bananas. → "food"
 - Hamsters and kittens are cute. → "pets"
- 2 Automatic identification
 - Use methods to identify separating words between clusters
 - Use these to help infer differences across clusters
- 3 Be Transparent
 - Provide documents + code
 - Detail labeling procedures
 - Acknowledge ambiguity

Today (and Tuesday): Cluster press releases Goal: partition documents such that:

- similar documents are together
- dissimilar documents are apart

Method: Clustering methods Game Plan:

- 1) What makes two data points (i.e. documents) similar?
- 2) How do we find a good partition?
- 3) How do we interpret the clusters?

Key Terms:

- (Multidimensional) Space
- Distance
- Euclidean Distance
- Cosine Distance
- Cluster Analysis / Clustering
- K-means
- Centroid