Tarea 01 Enteros

Larios Ponce Héctor Manuel Valencia Morales Indra Gabriel

24 de febrero de 2025

1 Sea k un número natural. Demuestra por inducción matemática que si $n \ge 2$, entonces $\sum_{i=1}^{n} k = nk$

Demostraremos por inducción matemática sobre n, con $n \in \mathbb{N}$, que si $n \ge 2$, entonces $\sum i = 1^n k = nk$

Base de inducción:

Si n=2 entonces:

Calculando la suma tenemos: $\sum_{i=1}^{2} k = k + k = 2k$

... La base de inducción se satisface.

Hipótesis de inducción:

Supongamos que para algún $n \in \mathbb{N}$, que si $n \geq 2$ entonces $\sum_{i=1}^{n} k = nk$

Paso inductivo:

Si
$$n \in \mathbb{N}$$
, entonces $\sum_{i=1}^{n+1} k = (n+1)k$

Dem.

Sea $n+1 \in \mathbb{N}$, podemos expresar (n+1)k como $\sum_{i=1}^{n} k+k$, entonces tenemos:

$$\sum_{i=1}^{n+1} k = \sum_{i=1}^{n} k + k$$

$$\sum\limits_{i=1}^{n+1}k=nk+k$$
-Por hipótesis de inducción, $nk=\sum\limits_{i=1}^{n}k$

$$\sum_{i=1}^{n+1} k = (n+1)k \text{ -}Factorizando k$$

 \therefore Por el principio de inducción matematica queda demostrado que $\forall n$ si $n \geq 2$, entonces $\sum_{i=1}^{n} k$