Redes de Computadores I

Prof Felipe Cunha felipe@uit.br

CAMADA DE REDE

Camada de Rede

- A camada de enlace tem o objetivo de mover quadros de uma extremidade de um fio até a outra
- A camada de rede tem o objetivo de fazer a transferência de pacotes da origem para o destino
- A camada de rede deve conhecer a topologia da sub-rede de comunicações e escolher os caminhos mais apropriados através dela

Camada de Rede

A Camada de Rede da Internet

A Camada de Rede da Internet

A Camada de Rede da Internet

- Comutação de pacotes store-and-forward
- O elemento que mantém a Internet unida é o protocolo IP (Internet Protocol)
 - Foi projetado tendo como objetivo a interconexão de redes
 - Fornece a melhor forma possível de transportar pacotes da origem para o destino, independentemente das máquinas estarem na mesma rede ou de haver outras redes entre elas

O Protocolo IP

- Entrega será feita com o "melhor esforço" (besteffort delivery)
- No IP não há garantia:
 - de que a temporização entre pacotes seja preservada;
 - de que os pacotes sejam recebidos na ordem em que foram enviados;
 - da eventual entrega dos pacotes transmitidos;
- Protocolos de outros níveis devem tratar desses problemas

O Protocolo IP

- •IPv4 (versão corrente), ou simplesmente IP, permite um pacote de até 64 Kbytes
- O pacote IP consiste:
 - Cabeçalho
 - Fixa: 20 bytes
 - Opcional: tamanho variável
 - Carga útil

O Protocolo IP

O cabeçalho IPv4

- Version (4 bits):
 - Indica o número da versão corrente
 - Permite uma transição "suave" entre versões

- IHL (4 bits):
 - Informa o tamanho do cabeçalho em palavras de 32 bits
 - Mínimo: 5 (sem nenhuma opção)
 - Máximo: 15 (60 bytes sendo 40 bytes no campo Options)

- Type of service (6 bits):
 - Fazer a distinção entre diferentes classes de serviço
 - Indica o que é mais importante para a aplicação: menor atraso, maior vazão, maior confiabilidade
 - Na prática, os roteadores tendem a ignorar este campo

- •Total Length (16 bits):
 - Tamanho, em bytes, de todo o pacote: cabeçalho e dados
 - Valor máximo 65535

- •Identification (16 bits), Bit DF, Bit MF e Fragment Offset (13 bits)
 - Usados na fragmentação e remontagem de pacotes IP

- Fragmentação:
 - Nem todos os protocolos da camada de enlace podem carregar pacotes do mesmo tamanho
 - Exemplo: Ethernet não podem carregar mais do que 1500 bytes de carga útil
 - Os pacotes para muitos enlaces de longa distância não podem carregar mais do que 576 bytes
 - A quantidade máxima de dados que um pacote da camada de enlace pode carregar é chamada de unidade máxima de transferência (MTU)

- Pacotes IP grandes devem ser divididos dentro da rede (fragmentados)
 - Um pacote dá origem a vários pacotes (fragmentos)
 - "Remontagem" ocorre apenas no destino final
 - O cabeçalho IP é usado para identificar e ordenar pacotes relacionados
 - Se um ou mais fragmentos não chegarem ao destino, o pacote será descartado e não será passado à camada de transporte

- Cada pacote criado é marcado pelo hospedeiro remetente com um número de identificação
- O hospedeiro remetente incrementa o número de identificação para cada pacote que envia

- Identification (16 bits):
 - Identifica o pacote ou o fragmento de um pacote
 - Usado pelo destinatário para remontagem
 - Todos os fragmentos de um pacote contêm o mesmo valor de Identification

- Bit DF (don't fragment):
 - Indica que o pacote não deve ser fragmentado
- Bit MF (more fragments):
 - Todos os fragmentos de um pacote, exceto o último, marcam este bit

- Fragment Offset (13 bits):
 - Indica onde (byte igual ao seu conteúdo multiplicado por 8) o fragmento se encaixa dentro do pacote
 - A carga útil de cada fragmento, exceto o último, deve ser múltiplo de
 8
 - Existem no máximo 8.192 fragmentos por pacote, resultando em um tamanho máximo de pacote igual a 65.536 bytes

Fragmentação de Pacotes IP – Exemplo

 Segmento de 3.980 bytes em uma rede com MTU de 1500 bytes

- A fragmentação e a remontagem colocam uma carga adicional sobre os roteadores da Internet (fazem a fragmentação) e sobre os hospedeiros (fazem a remontagem)
 - É desejável que se minimize a quantidade de fragmentação
 - Limita-se os segmentos TCP e UDP a tamanhos relativamente pequenos de modo que a fragmentação dos pacotes seja pouco provável
 - Todos os protocolos suportados pelo IP têm MTU de, no mínimo, 576 bytes
 - Na prática, o TCP e o UDP passam para o IP segmentos de no máximo 556 bytes

- Time To Live (8 bits):
 - Contador usado para limitar a vida útil dos pacotes
 - Indica o número máximo de roteadores (hops) que pode passar
 - Quando chega a zero, o pacote é descartado e um pacote de advertência é enviado ao computador de origem

- •Protocolo (8 bits):
 - Indica o protocolo para o qual deve-se passar o pacote (TCP ou UDP)

- Header Checksum (16 bits):
 - Total de verificação do cabeçalho
 - Deve ser calculado novamente em cada roteador porque o campo Time To Live sempre se altera

- Source Address (32 bits) e Destination Address (32 bits)
 - Endereços IP dos computadores origem e destino

- •Options:
 - Forma de incluir informações não presentes na versão

Exercício

22. Suponha que o host A esteja conectado a um roteador R1, que R1 esteja conectado a outro roteador R2, e que R2 esteja conectado ao host B. Suponha que uma mensagem TCP contendo 900 bytes de dados e 20 bytes de cabeçalho TCP seja repassada ao código IP do host A para ser entregue a B. Mostre os campos Total length, Identification, DF, MF e Fragment offset do cabeçalho IP em cada pacote transmitido pelos três enlaces. Suponha que o enlace A-R1 possa admitir um tamanho máximo de quadro de 1.024 bytes, incluindo um cabeçalho de quadro de 14 bytes, que o enlace R1-R2 possa admitir um tamanho máximo de quadro de 512 bytes, incluindo um cabeçalho de quadro de 8 bytes, e que o enlace R2-B possa admitir um tamanho máximo de quadro de 512 bytes, incluindo um cabeçalho de quadro de 12 bytes.