Credit Card Approval Prediction

Muhammad Ahmed Rao Senior Data Scientist

Introduction

- This exercise is to analyze customer application and credit information to extrapolate the type of applicants which makes a Good or Bad Candidate for a Credit Card.
- The dataset is from Kaggle.
 - application_record.csv contains appliers personal information, which you could use as features for predicting.
 - credit_record.csv records users' behaviors of credit card.

Dataset	# of records
Application	438,557
Credit	1,048,575
After merging both datasets by ID	77,715
Unique ID (Client Number)	36,457

Credit Card Approval Process

Problem

- A Credit Scorecard is a type of Risk Model used in the classification (scoring) of Credit Risk for individuals, corporations or other legal entities.
- Bad applicants are a major risk for the bank since they are not able to pay and get default at the end hence loss of the bank.
- In order to make this process more robust and lower the magnitude of risk, we need to pass on the historical data and train the model.
 This will supplement the business make correct decisions.

Data Analysis

Education Type (69%-27%-3%)

Income Type (52%-23%-17%-18%)

Family Status (68%-13%-8%-6%-4%)

Children Count

300000 400000 500000

House Type (90%-4%-3%)

Is Employed (84%-16%')

The age ranges from 20.5 to 69 years

- 25% of applicants are under 35 years of age
- 50% are under 45 years of age
- 95% are under 64 years of age

Data Cleaning

- I dropped column FLAG_MOBIL since it only contained 1 constant value which does not give any information to separate Bad and Good application added field.
- Occupation type contained 240,048 missing values. I put them with 'Other' occupation types

Feature Engineering

- Computed following columns:
 - AGE from DAYS_BIRTH
 - IS_EMPLOYED from DAYS_EMPLOYED
 - EMPLOYMENT_YEARS from DAYS_EMPLOYED
 - EMPLOYMENT_START_DT from DAYS_EMPLOYED (later I removed it since I did not used it in training the model)

Data Labelling and distribution

• The labelling below is based on the description provided and also had feedback with my past colleagues who are in this domain.

Status	Description	Label	# Applicants	% Applicants
0	1-29 days due	Good	290,654	37.37%
1	30-59 days past due	Good	8,747	1.12%
2	60-89 days overdue	Bad	801	0.10%
3	90-119 days overdue	Bad	286	0.04%
4	120-149 days overdue	Bad	214	0.03%
5	Overdue or bad debts, write- offs for more than 150 days	Bad	4 527	0.200/
	ons for more than 150 days		1,527	0.20%
С	Paid off that month	Good	329,536	42.37%
X	No loan for the month	Good	145,950	18.77%
Total			77,715	100%

Good	774,887	99.36%
Bad	2,828	0.36%

Data Splitting & Model Training

- I split the data in train and test in stratified fashion
- At first, I trained the un-balanced data using Decision Tree and as expected the model did not classify the 64.66% Bad Applicants correctly.

Random Oversampling

- I applied Random Oversampling technique to overcome the un-balancing issue. Then I trained Decision Tree and Random Forest.
- Decision Tree misclassified 57% of the Bad Applicants whereas Random Forest misclassified 55.8% of the Bad Applicants.
- We need further improvement to reduce the misclassification rate

SMOTE

- To further improve I used SMOTE method for oversampling since it maps minority class by generating synthetic examples rather than by oversampling with replacement.
- The results significantly improved using this technique since all bad applicants were classified correctly.

Decision Tree & Random Forest

Feature Importance

- Following top 5 attributes had highest importance after training random forest.
 - AGE
 - EMPLOYMENT_YEARS
 - AMT_INCOME_TOTAL
 - MONTHS_BALANCE
 - CNT_FAM_MEMBERS

Further Work

- If this project had to go on full scale:
 - Filter out the features with less importance.
 - I would work on reducing the Good applicants misclassification rate using Hyper-parameter tuning.
 - Will create automated pipeline of the model and integrate with the system so that this model can supplement business with their decision.