$\ensuremath{\mathsf{STP}}$ - Projekt 2.24

Jakub Postępski 18 stycznia 2018

Kolejne pliki z katalogu matlab odpowiadają zadaniom w kolejnych podsekcjach sprawozdania.

1 Wyznaczanie modeli rekurencyjnych

Dla podanych danych wyznaczono modele rekurencyjne (tab. 1).

Wybrano najlepszy model dla $\tau = 6$ (rys. 1).

Dla najlepszego modelu: $b_6 = -0.1854, \, b_7 = -0.918, \, a_1 = -1.0403, \, a_2 = 0.1135.$

Mamy:

$$y(k) + a_1 y(k-1) + a_2 y(k-2) = b_6 u(k-6) + b_7 u(k-7)$$

Po zastosowaniu transformaty Z:

$$(1 + a_1 z^{-1} + a_2 z^{-2})Y(z) = (b_6 z^{-6} + b_7 z^{-7})U(z)$$

Więc transmitancja:

$$G(z) = \frac{Y(z)}{U(z)} = \frac{b_6 z^{-6} + b_7 z^{-7}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{-0.1854 z^{-6} - 0.918 z^{-7}}{1 - 1.0403 z^{-1} + 0.1135 z^{-2}}$$

au	$b_{ au}$	$b_{\tau+1}$	$-a_1$	$-a_2$	E
1	-0.0082	-0.0679	1.6619	-0.6799	79.2282
2	0.0027	-0.1003	1.5901	-0.6135	54.2224
3	-0.0014	-0.1337	1.4685	-0.5010	39.9572
4	-0.0568	-0.1271	1.3107	-0.3552	32.3080
5	-0.1188	-0.1281	1.1146	-0.1763	20.9694
6	-0.1854	-0.0918	1.0403	-0.1135	16.3988
7	-0.1575	-0.0517	1.2836	-0.3445	46.8691
8	-0.1146	0.0001	1.5764	-0.6144	176.8823

Tablica 1: Porównanie modeli rekurencyjnych

Rysunek 1: Wyjścia modelu dla $\tau=6$

2 Odpowiedz skokowa

Obliczono ze wzoru odpowiedz skokową (rys. 2). Wzmocnienie statyczne:

$$K_{stat} = \lim_{z \to 1} G(z) = -3.7848$$

Rysunek 2: Odpowiedz skokowa modelu

3 Regulator PID

Dla regulatora postaci:

Mamy:

$$G_r(z) = \frac{u(k)}{e(k)} = \frac{r_2 z^{-2} + r_1 z^{-1} + r_0}{1 - z^{-1}}$$

$$r_0 = K(1 + \frac{T}{2T_i} + \frac{T_d}{T})$$

$$r_1 = K(\frac{T}{2T_i} - 2\frac{T_d}{T} - 1)$$

$$r_2 = K\frac{T_d}{T}$$

Gdzie T=0.1 oznacza okres próbkowania.

Brak regulacji metodą Zieglera-Nicholsa. Dobrano nastawy (rys. reffig:z3:

$$K = -0.1$$
$$T_i = -0.4$$
$$T_d = -0.05$$

Rysunek 3: Symulacja regulatora PID

4 Regulator DMC

4.1 Strojenie nastawów

Przyjęto $Y_{zad}=5$. Dla podpunktów a) do d
) dobrano regulator ($D=70,~N=20,~N_u=6,~\lambda=1$) o odpowiednio małych horyzontach niepogarszających regulacji (rys. 4). Uzyskano $J_y=4.23$ oraz $J_y=184.99$.

Rysunek 4: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=1$

Przy zmniejszaniu wartości parametru λ uzyskiwano gorszej jakości wyjście modelu (większe oscylacje) oraz mniejsze zmiany sterowania (np. $J_y=5.60,\ J_u=180.31$ dla symulacji z rys. 5)

Rysunek 5: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=0.6$

Przy zwiększaniu wartości parametru λ uzyskiwano lepszej jakości wyjście modelu (mniejsze oscylacje, brak przeregulowania) i wejście o większych zmianach (np. $J_y=1.63,\ J_u=210.50$ dla symulacji z rys. 6

Rysunek 6: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=6$

Ostatecznie ustalono optymalne nastawy dla $\lambda=3$ ($J_y=2.43,\,J_u=198.40,\,\mathrm{rys.}$ 7).

Rysunek 7: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=3$

4.2 Niemierzalne zakłócenie wyjścia

Do wyjścia modelu dodano zakłócenie wartości $Y_{szum}=1$ od chwili T=40 (rys. 8). Spowodowało to zmianę w sterowaniu modelem przez regulator i zmianę w przebiegu wyjścia modelu lecz ostatecznie poprawną regulację. Nawet podczas dalszego zwiększania (np. $Y_{szum}=6$, rys. 9) obiekt był regulowany poprawnie, co spowodowane wykorzystaniem różnic poprzednich sterowań w regulatorze.

Rysunek 8: Symulacja regulacji z niemierzalnym zakłóceniem wartości 1.

Rysunek 9: Symulacja regulacji z niemierzalnym zakłóceniem wartości 6.

4.3 Testowanie odporności

Przyjęto w/w przyjęte parametry regulacji. Dla zmniejszonego czasu odpowiedzi występują oscylacje wejścia i wyjścia modelu (rys. 10, rys.11, rys.12). Dla zwiększonego czasu odpowiedzi występują oscylację sygnału wejściowego i pogorszenie regulacji (rys. 13, 14, 15). Dla opóźnień oraz małych przyspieszeń inercji obiektu udaje się uzyskać regulację.

Rysunek 10: Testowanie odporności dla $y(k) = b_6 u(k-5) + b_7 u(k-6) - a_1 y(k-1) - a_2 y(k-2) =$

Rysunek 11: Testowanie odporności dla $y(k) = b_6 u(k-3) + b_7 u(k-4) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 12: Testowanie odporności dla $y(k) = b_6 u(k-1) + b_7 u(k-2) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 13: Testowanie odporności dla $y(k) = b_6 u(k-7) + b_7 u(k-8) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 14: Testowanie odporności dla $y(k) = b_6 u(k-9) + b_7 u(k-10) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 15: Testowanie odporności dla $y(k) = b_6 u(k-16) + b_7 u(k-17) - a_1 y(k-1) - a_2 y(k-2)$.

Ograniczenia wartości i zmiany sygnału sterującego

Dla wyżej przyjętych optymalnych parametrów regulacji:

- Dla ograniczeń wyłączenie wartości nie zawsze udaje się osiągnąć regulację (np. rys. 16) lub regulacja jest wolniejsza (np. rys. 17). Może nastąpić zmniejszenie wydatku energetycznego. J_u . Zmniejszenie stabilności.
- Dla ograniczeń wyłącznie zmiany synału sterującego większe przeregulowanie (np. rys. 18). W skrajnych przypadkach brak regulacji, oscylacje wejścia i wyjścia (np. rys. 19). Zmniejszenie szybkości regulacji i reagowania na zmiany.
- Najlepszy przebieg otrzymujemy bez wprowadzania ograniczeń (rys. 7).

Rysunek 16: Ogranicznenie -1 < u(k) < 1

Rysunek 17: Ograniczenie -2 < u(k) < 0

Rysunek 18: Ograniczenie $\Delta u < 1$

Rysunek 19: Ogranicznenie $\Delta u < 0.1$