

从BP网络到深度学习 & TensorFlow

张敏

17/10/26

分类与聚类

分类:学习/训练过程有监督,训练样本有明确标签

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	T-class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

分类与聚类

聚类:学习/训练过程无监督,样本无明确标签

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
7	3.2	4.7	1.4
6.4	3.2	4.5	1.5
6.3	3.3	6	2.5
5.8	2.7	5.1	1.9
6.5	3	5.8	2.2
6.2	2.9	4.3	1.3

巴普洛夫关于神经反射的实验

生物神经元结构

数学神经元结构

 x_j 为输入信号, f为传递函数, $w_{i,j}$ 表示与神经元 x_j 连接的权值, y_i 表示输出值, θ 表示阈值

BP网络结构

 y_1 y_j y_l 输出层 W_{1j} $\mathcal{W}_{ ext{qj}}$ $W_{\rm hi}$ b_1 b_2 $b_{\scriptscriptstyle h}$ b_q 隐层 输入层

 χ_i

 χ_d

> 第j个输出层神经元的输出:

$$\hat{y}_j = f(\beta_j - \theta_j)$$

第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

 χ_1

BP网络结构

$$E = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j - y_j)^2$$

输出层

 χ_i

 χ_d

→第j个输出层神经元的输出:

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

 $b_{\scriptscriptstyle q}$

→第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

输入层

 χ_1

BP网络结构

$$E = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j - y_j)^2$$

网络训练目标:

> 找出合适的权值和阈值,使得误差 *E* 最小

BP网络结构

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$f'(x) = f(x)(1 - f(x))$$

$$\hat{y}_j = f(\beta_j - \theta_j)$$

$$E = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j - y_j)^2 \longrightarrow \frac{\partial E}{\partial \hat{y}_j} = \hat{y}_j - y_j^{\text{th}} \wedge E$$

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}} \qquad \frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{h}}$$

→ 第j个输出层神经元的输出:

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

▶第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

 D_q

→ 第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

→第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

BP网络结构

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}}$$

$$\frac{\partial \beta_{j}}{\partial w_{hj}} = b_{h} \quad \frac{\partial E}{\partial \hat{y}_{j}} = \hat{y}_{j} - y_{j}$$

$$\frac{\partial \hat{y}_{j}}{\partial \beta_{j}} = f'(\beta_{j} - \theta_{j}) \qquad f'(x) = f(x)(1 - f(x))$$

$$= f(\beta_{j} - \theta_{j})(1 - f(\beta_{j} - \theta_{j}))$$

$$= \hat{y}_{j}(1 - \hat{y}_{j})$$

输出层

> 第i个输出层神经元的输出:

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

▶第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

隐层

▶第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

→第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

输入层

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -(\hat{y}_{j} - y_{j})\hat{y}_{j}(1 - \hat{y}_{j}) \longrightarrow = -\eta \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}} \longrightarrow \Delta w_{hj} = \eta \hat{y}_{j}(1 - \hat{y}_{j})(y_{j} - \hat{y}_{j})b_{h}$$

$$= \hat{y}_{i}(1 - \hat{y}_{i})(y_{i} - \hat{y}_{i})$$

 $g_{j} = -\frac{\partial E}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{i}}$

BP网络结构

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}}$$

$$= \eta g_{j} b_{h}$$

$$= \eta \hat{y}_{j} (1 - \hat{y}_{j}) (y_{j} - \hat{y}_{j}) b_{h}$$

$$\Delta \theta_j = -\eta g_j$$

= $-\eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j)$

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

→第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

▶第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

BP网络结构

$$\Delta v_{ih} = \eta e_h x_i$$

$$= -\eta \frac{\partial E}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h} x_i$$

$$= \eta b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j x_i$$

$$\Delta \gamma_h = -\eta e_h$$

$$= \eta \frac{\partial E}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h}$$

$$= -\eta b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j$$

→第j个输出层神经元的输出:

$$\hat{\mathbf{y}}_j = f(\beta_j - \theta_j)$$

▶第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

▶\$h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

BP网络结构

$$\Delta w_{hj} = \eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j) b_h$$

$$\Delta\theta_j = -\eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j)$$

$$\Delta v_{ih} = \eta b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j x_i$$

$$\Delta \gamma_h = -\eta b_h (1 - b_h) \sum_{i=1}^l w_{hj} g_j$$

新出层 W_{1j} W_{2j} W_{hj} ト B E D₁

输入层

→ 第*j* 个输出层神经元的输出:

$$\hat{y}_j = f(\beta_j - \theta_j)$$

●第j个输出层神经元的输入:

$$\beta_j = \sum_{h=1}^q w_{hj} b_h$$

 b_q

→ 第h个隐层神经元的输出:

$$b_h = f(\alpha_h - \gamma_h)$$

第h个隐层神经元的输入:

$$\alpha_h = \sum_{i=1}^d v_{ih} x_i$$

网络训练过程

输入:训练集数据、学习速率yita

过程:

- 在(0,1)范围内随机初始化网络中所有连接权和阈值
- repeat
 - 根据网络输入和当前参数计算网络输出值y
 - 计算输出层神经元梯度项 g_i
 - 计算隐层神经元梯度项 e_h
 - 跟新连接权值和阈值
- until达到停止条件
- 输出:连接权值和阈值

分类:学习/训练过程有监督,训练样本有明确标签

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	T-class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

代码实现

Python (sklearn)

- Net = MLPClassifier(hidden_layer_sizes=10,max_iter=1000).fit(tr_data.ix[:,0:6],tr_data.ix[:,6])
- res = Net.predict(te_data.ix[:,0:6])

R (nnet)

nnet(x, y, size, softmax = FALSE, maxit = 100)

附录:BP神经网络自编代码

$$y = x_1^2 + x_2^2$$

训练集数据:BPdata_tr.txt

测试集数据:BPdata_te.txt

	x_1	x_2	у
0	0.29	0.23	0.14
1	0.50	0.62	0.64
2	0.00	0.53	0.28
3	0.21	0.53	0.33
4	0.10	0.33	0.12
5	0.06	0.15	0.03
6	0.13	0.03	0.02
7	0.24	0.23	0.11
8	0.28	0.03	0.08
9	0.38	0.49	?
10	0.29	0.47	?

K-Means算法步骤

- 1、随机选取K个样本作为类中心;
- 2、计算各样本与各类中心的距离;
- 3、将各样本归于最近的类中心点;
- 4、求各类的样本的均值,作为新的类中心;
- 5、判定: 若类中心不再发生变动或达到迭代次数, 算法结束, 否则回到第2步。

K-Medoids算法步骤

- 1、随机选取K个样本作为类中心;
- 2、计算各样本与各类中心的距离;
- 3、将各样本归于最近的类中心点;
- 4、在各类别内选取到其余样本距离之和最小的样本作为新的类中心;
- 5、判定: 若类中心不再发生变动或达到迭代次数, 算法结束, 否则回到第2步。

层次聚类(系谱聚类 Hierarchical Clustering, HC)

- ➤ 不需事先设定类别数k
- > 每次迭代过程仅将距离最近的两个样本/簇聚为一类
- ➤ 得到k=n至k=1(n为待分类样本总数)个类别的聚类结果

DBSCAN(密度聚类)

样本(对象点)的区域半径Eps和区域内点的个数的阈值MinPts

▶ 核心点:如果点p的密度等于或者大于阈值MinPts,则P为核心点。

▶ 边界点:如果点p不是核心点,但落在其他核心点的区域内,那么p点为边界点。

噪声点:如果点p既不是核心点,也不是边界点,则p点为噪声点。

A为噪声点 B为边界点 C为核心点

DBSCAN(密度聚类)

DBSCAN算法原理直观图

1.密度直达:点q距核心点m距离小于等于eps,从m到q密度直达。不对称

2.密度可达:若从p到m密度直达,从m到q密度直达,则从p到q密度可达。不对称

3.密度相连:若从o到s密度可达,且从o到r密度可达的,所有o,r和s都是密度相连的。对称

DBSCAN聚类步骤

定义半径和MinPts

从对象集合D中抽取未被访问过的样本点q

检验该样本点是否为核心对象,如果是则进入下一步,否则返回上一步

找出该样本点所有从该点密度可达的对象,构成聚类Clq

如果全部样本点都已被访问,则结束算法, 否则返回第2步骤

EM步骤与流程

最大期望算法经过两个步骤交替进行计算:

- ▶ 第一步是计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;
- ▶ 第二步是最大化(M),利用E步上求得的隐藏变量的期望,对参数模型进行最大似然估计。
- M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

总体来说,EM的算法流程如下:

- ▶ 1.初始化分布参数
- ▶ 2.重复直到收敛:
- ▶ E步骤:估计未知参数的期望值,给出当前的参数估计。
- M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。

双硬币问题

- ➤ 假设有两枚硬币A、B,以相同的概率随机选择一个硬币,进行如下的抛硬币实验:共做5次实验,每次实验独立的抛十次,结果如图中a所示,例如某次实验产生了H、T、T、T、H、H、T、H、T、H,H代表正面朝上。
- ▶ 假设试验数据记录员可能是实习生,业务不一定熟悉,造成a和b两种情况
- ▶ a表示实习生记录了详细的试验数据,我们可以观测到试验数据中每次选择的是A还是B
- ▶ b表示实习生忘了记录每次试验选择的是A还是B,我们无法观测实验数据中选择的硬币是哪个
- 问在两种情况下分别如何估计两个硬币正面出现的概率?

双硬币问题

- ▶ 已知是A硬币还是B硬币抛出的结果的时候,可以直接采用概率的求法来进行求解
- > 对于含有隐变量的情况,也就是不知道到底是A还是B就需要采用EM算法进行求解了

a Maximum likelihood

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_A = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

双硬币问题

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

Thank you!

泰迪科技:www.tipdm.com

热线电话:40068-40020

