1 Q1

 $C_1 = \phi$ 是开集, 闭集, 有界集, 紧集, 它的内点集, 闭包, 边界和聚点集都是 ϕ .

 $C_2 = \mathcal{R}^n$ 是开集, 闭集, 无界集, 不是紧集, 它的内点集, 闭包, 边界和聚点集都是 \mathcal{R}^n .

 $C_3 = [0,1) \cup [2,3] \cup (4,5]$ 不是开集, 不是闭集, 有界, 不紧, 它的内点集是 $(0,1) \cup (2,3) \cup (4,5)$, 它的闭包是 $[0,1] \cup [2,3] \cup [4,5]$, 它的边界是 $\{0,1,2,3,4,5\}$, 它的聚点集是 $[0,1] \cup [2,3] \cup [4,5]$.

 $C_4 = \{(x,y)^T | x \ge 0, y > 0\}$ 不开,不闭,无界,不紧,它的内点集是 $\{(x,y)^T | x > 0, y > 0\}$,它的闭包是 $\{(x,y)^T | x \ge 0, y \ge 0\}$,它的边界是 $\{(0,y)^T | y \ge 0\} \cup \{(x,0)^T | x \ge 0\}$,它的聚点集是 $\{(x,y)^T | x \ge 0, y \ge 0\}$.

 $C_5 = \{k | k \in \mathcal{Z}\}$ 不是开集, 是闭集, 无界, 不紧, 它的内点集是 ϕ , 它的闭包和边界集都是它自身, 也就是 $\{k | k \in \mathcal{Z}\}$, 它的聚点集是它自身(按讲义中定义, 孤立点算作聚点).

 $C_6 = \{k^{-1} | k \in \mathcal{Z}\}$ 不开, 不闭, 有界, 不紧, 它的内点集是 ϕ , 它的闭包和边界集都是 $\{k^{-1} | k \in \mathcal{Z}\} \cup \{0\}$, 它的聚点集是 $C_6 \cup \{0\}$.

 $C_7 = \{(1/k, \sin k)^T | k \in \mathcal{Z}\}$ 不开,不闭,有界,但不紧,它的内点集是 ϕ ,它的闭包和边界集都是 $\{(1/k, \sin k)^T | k \in \mathcal{Z}\} \cup \{(0, y) | -1 \le y \le 1\}$,它的聚点集是 $C_7 \cup \{(0, y) | -1 \le y \le 1\}$.

2 Q2

1. 若 \mathcal{C} 是闭集, 如果存在 x^* 是 \mathcal{C} 中一个收敛序列的极限点, 但 $x^* \notin \mathcal{C}$, 所以有 $x^* \in \mathcal{C}^c$, 而 \mathcal{C}^c 是一个开集, 所以有

$$\exists \epsilon \ s.t. \ (\cup(x^*, \epsilon)) \cap \mathcal{C} = \phi \tag{1}$$

因为 $\cup (x^*, \epsilon) \subseteq \mathcal{C}^c$. 但存在 $\{x_k\}_1^\infty \subseteq \mathcal{C}$ 也即 $\lim_{k \to \infty} x_k = x^*$, 也就是说,

$$\forall \epsilon \ (\cup(x^*, \epsilon)) \cap \mathcal{C} \neq \phi \tag{2}$$

矛盾! 所以对于所有 x^* 是 C 中一个收敛序列的极限点, 都有 $x^* \in C$.

2. 如果 C 包含其中所有收敛序列的极限点, 但 C 并不是闭集, i.e. C^c 不是开集, 也就是,

$$\exists x^* \in \mathcal{C}^c , s.t. \ \forall \ \epsilon > 0 \ (\cup (x^*, \epsilon)) \cap \mathcal{C} \neq \phi$$
 (3)

因为 $(\mathcal{C}^c)^c = \mathcal{C}$. 选定一列 $\epsilon_k \to 0$ 并选取 $x_k \in (\cup(x^*, \epsilon_k)) \cap \mathcal{C}$, 有 $\lim_{k \to \infty} x_k = x^*$, 由假设得到 $x^* \in \mathcal{C}$, 矛盾! 所以 \mathcal{C} 是闭集.

3. 由1和2, 我们证明了 $\mathcal{C} \subset \mathcal{R}^n$ 是闭集 $\iff \mathcal{C}$ 包含其中所有收敛序列的极限点.

3 Q3

 $x \in \partial \mathcal{C} = \bar{\mathcal{C}} \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \setminus \mathcal{C}^o = ((\mathcal{C}^c)^o)^c \cap (\mathcal{C}^o)^c$

由定义, $x \in \mathcal{C}^o \iff \exists \epsilon > 0 \cup (x, \epsilon) \subseteq \mathcal{C}$, 所以

$$x \in (\mathcal{C}^o)^c \iff \forall \epsilon > 0 \ \exists z \notin \mathcal{C} \ |z - x|_2 < \epsilon$$
 (4)

把等式(4)中 C 替换成 C^c , 得到

$$x \in ((\mathcal{C}^c)^o)^c \iff \forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y - x|_2 < \epsilon$$
 (5)

合并两个等式, 所以 $x \in \partial \mathcal{C} = ((\mathcal{C}^c)^o)^c \cap (\mathcal{C}^o)^c \iff \forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y-x|_2 < \epsilon \ \exists z \notin \mathcal{C} \ |z-x|_2 < \epsilon$

4 Q4

1.1 如果 \mathcal{C} 是闭集, 那么 $\forall x^* \in \partial \mathcal{C}$, 由 Q3, 得到 $\forall \epsilon > 0$ $\exists y \in \mathcal{C} |y - x^*|_2 < \epsilon$, 那么 x^* 一定是 \mathcal{C} 中一个收敛序列的极限点, 又由 Q2, 得到 $x^* \in \mathcal{C}$, 所以 $\mathcal{C} \supseteq \partial \mathcal{C}$.

1.2 如果 $\mathcal{C} \supseteq \partial \mathcal{C}$, 但 \mathcal{C} 并不是闭集, 由 Q2 的逆否命题, 至少存在一个点 x^* 是 \mathcal{C} 中一个收敛序列 的极限点, 但 $x^* \not\in \mathcal{C}$, 所以有

$$\forall \epsilon > 0 \ \exists y \in \mathcal{C} \ |y - x^*|_2 < \epsilon \ \exists z \notin \mathcal{C} \ |z - x^*|_2 < \epsilon, \tag{6}$$

只需再等式(6)中选择 $z = x^*$, 那由 Q3, $x^* \in \partial C \subseteq C$, 矛盾! 所以 C 是一个闭集.

- **2.1** 如果 \mathcal{C} 是开集, 假设存在 $x^* \in \mathcal{C} \cap \partial \mathcal{C}$, 那么 $\exists \epsilon > 0 \cup (x^*, \epsilon) \subseteq \mathcal{C}$ (这是因为 \mathcal{C} 是一个开集) 并且 $\forall \epsilon > 0 \exists z \notin \mathcal{C} | z x^* |_2 < \epsilon$ (因为 x^* 在边界上), 矛盾! 所以 $\mathcal{C} \cap \partial \mathcal{C} = \phi$.
- **2.2** 如果 $\mathcal{C} \cap \partial \mathcal{C} = \phi$, 假设 \mathcal{C} 不是开集, *i.e.* $\exists x^* \in \mathcal{C} \ \forall \epsilon > 0 \ \exists z \notin \mathcal{C} \ |z x^*|_2 < \epsilon$, 那么类似的, 在等式(6)中取 $y = x^*$, 由 Q3, $x^* \in \partial \mathcal{C}$, 矛盾! 所以 \mathcal{C} 是开集.

5 Q5

a.1

$$\overline{A \cup B} = (((A \cup B)^c)^o)^c
= ((A^c \cap B^c)^o)^c \quad (De \ Morgan)
= ((A^c)^o \cap (B^c)^o)^c \quad (*)
= ((A^c)^o)^c \cup ((B^c)^o)^c \quad (De \ Morgan)
= \overline{A} \cup \overline{B}$$
(7)

下证(*)式, 只需证明 $(P \cap Q)^o = P^o \cap Q^o$

$$\forall x \in \mathcal{R}^{n}$$

$$x \in (P \cap Q)^{o}$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq P \cap Q$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq P \land \exists \epsilon \quad \cup (x, \epsilon) \subseteq Q$$

$$\iff x \in P^{o} \land x \in Q^{o}$$
(8)

所以 $(P \cap Q)^o = P^o \cap Q^o$.

a.2 $\forall x \in \overline{A \cap B}$, 存在 $\{x_k\}_1^{\infty} \subseteq A \cap B$, 并且 $\lim_{k \to \infty} x_k = x$ (为得到这个式子, 只需证明 $\overline{C} = C \cup C'$, 其中, C'是导集(聚点集), 由Q2, $C \cup C' \subseteq C$, 即一个集合的闭包必然包含其导集(收敛点的集合), 又 $C \cup C'$ 是闭集(下证它是闭集 $\forall x \in (C \cup C')^c$, 若 $\forall \epsilon > 0$ 都有 $(\cup(x,\epsilon)) \cap (C \cup C') \neq \phi$ 则可以构造一列 $x_k \in C$ (构造方法: 如果 $x_k \in C$, 直接选取它, 如果在导集中, 可以选取离他足够近的C中的点), $\lim_{k \to \infty} x_k = x$, 即 $x \in C'$, 矛盾!) 所以 $\overline{C} = C \cup C'$, 这是因为闭包是最小闭集, 证毕)

所以 $\exists \{x_k\} \subseteq \mathcal{A}, \lim_{k \to \infty} x_k = x, \exists \{y_k\} \subseteq \mathcal{B}, \lim_{k \to \infty} y_k = x,$

所以 $x \in \mathcal{A}' \subseteq \overline{\mathcal{A}}, x \in \mathcal{B}' \subseteq \overline{\mathcal{B}}, \ \mathbb{D}x \in \overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \ \mathbb{D} \ \overline{\mathcal{A} \cap \mathcal{B}} \subseteq \overline{\mathcal{A}} \cap \overline{\mathcal{B}}$

例子: \mathcal{R} 中, $\mathcal{A} = \{x | x < 0\}$, $\mathcal{B} = \{x | x > 0\}$, 则 $\overline{\mathcal{A} \cap \mathcal{B}} = \phi$, 但 $\overline{\mathcal{A}} \cap \overline{\mathcal{B}} = \{0\}$.

b.1 在Q5.a.1中已经证过

$$\forall x \in \mathcal{R}^{n}$$

$$x \in (P \cap Q)^{o}$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq P \cap Q$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq P \land \exists \epsilon \quad \cup (x, \epsilon) \subseteq Q$$

$$\iff x \in P^{o} \land x \in Q^{o}$$

$$(9)$$

将P,Q替换成A,B 即为本题所求

b.2 类似的

$$\forall x \in \mathcal{R}^{n}$$

$$x \in \mathcal{A}^{o} \cup \mathcal{B}^{o}$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq \mathcal{A} \vee \cup (x, \epsilon) \subseteq \mathcal{B}$$

$$\iff \exists \epsilon \cup (x, \epsilon) \subseteq \mathcal{A} \cup \mathcal{B}$$

$$\iff x \in (\mathcal{A} \cup \mathcal{B})^{o}$$

$$(10)$$

取 $A = [0,1), \mathcal{B} = [1,2], 则有 (A \cup \mathcal{B})^o = (0,2), 但是 A^o \cup \mathcal{B}^o = (0,1) \cup (1,2).$

6 Q6

a
$$\lim_{k\to\infty} x_k = 0$$
, 又 $\frac{|e_{k+1}|}{|e_k|} = 0.5 < +\infty$, 所以 $r = 1, c = 0.5$

b
$$\lim_{k\to\infty} x_k = 1$$
, $\mathbb{X} \frac{|e_{k+1}|}{|e_k|} = 0.01 < +\infty$, $\mathbb{M} \ \mathbb{X} r = 1$, $c = 0.01$

$$\mathbf{c}$$
 $\lim_{k\to\infty} x_k = 0$, \mathbb{X} $\frac{|e_{k+1}|}{|e_k|^2} = 1 < +\infty$, 所以 $r = 2, c = 1$

d
$$\lim_{k\to\infty} x_k=0$$
,又 $\frac{|e_{k+1}|}{|e_k|}=3^{-2k-1}\to 0<+\infty$,所以 $r=1,c=0$

e $\forall k, |e_k| \leq 2^{-k}$, 由Q6.a得 r = 1, c = 0.5.

7 Q7

可以确定

不妨设 $\lim_{k\to\infty} x_k = x^*$, 类似的, 约定 $y^*, r_u, c_u, r_x, r_c, c_x, c_c$

$$\frac{|y_{k+1} - y^*|}{|y_k - y^*|^{r_y}} = \frac{|c_{k+1}x_{k+1} - c_{k+1}x^* + c_{k+1}x^* - cx^*|}{|c_k x_k - c_k x^* + c_k x^* - cx^*|^{r_y}}$$

$$= \frac{|c_{k+1}e_{x,k+1} + e_{c,k+1}x^*|}{|c_k e_{x,k} + e_{c,k}x^*|^{r_y}}$$

$$= \frac{|ce_{x,k+1} + e_{c,k+1}x^*|}{|ce_{x,k} + e_{c,k}x^*|^{r_y}} \quad (c_k = c + e_{c,k} = c + o(c))$$
(11)

 $x^* = 0$ 时, 上式等于 $|e_{x,k+1}|/|e_{x,k}|^{r_y}$, 则有 $r_y = r_x, c_y = c_x$.

 $x^* \neq 0$ 时, 分析各项的阶, r越大则对应变量的阶越小, 则成为可以忽略的无穷小量, 所以

$$r_y = min\{r_x, r_c\}, \quad c_y = \begin{cases} c_x, \ r_x < r_c \\ c_c, \ r_c < r_x \end{cases}$$
 (12)

而当 $r_c = r_x$ 时, c越大, 它的阶越大 $(e_{k+1} \approx c|e_k|^r)$

$$c_y = \max\{c_x, c_c\} \text{ (when } r_x = r_c)$$
(13)

综上所述 $x^* = 0$ 时

$$r_y = r_x, \ c_y = c_x \tag{14}$$

 $x^* \neq 0$ 时

$$r_{y} = min\{r_{x}, r_{c}\}, \quad c_{y} = \begin{cases} c_{x} & (r_{x} < r_{c}) \\ c_{c} & (r_{c} < r_{x}) \\ max\{c_{x}, c_{c}\} & (r_{x} = r_{c}) \end{cases}$$
(15)