Course Code - EEE-401 Course Title – Energy Conversion and Special Machine Lecture- Universal Motor

Basic Law

Four basic principles describe how magnetic fields are used in different devices

- A current-carrying wire produces a magnetic field in the area around it.
- A time-changing magnetic field induces a voltage in a coil of wire if it passes through that coil. (This is the basis of transformer action.)
- A current-carrying wire in the presence of a magnetic field has a force induced on it. (This is the basis of motor action.)
- A moving wire in the presence of a magnetic field has a voltage induced in it. (This is the basis of generator action.)

Basic Law

Instant in time when voltage is zero, during continuous operation.

Basic of motor

Single Phase Motor

Single Phase Motor

- Single phase motor is designed to operate from a single- phase supply,
- These are manufactured in a large number of types to perform a wide variety of useful services in home, offices, factories, workshops and in business establishments etc.

Types of Single Phase Motor

- 1. Induction Motors (split-phase, capacitor and shaded-pole etc.)
- 2. **Repulsion Motors** (sometime called Inductive-Series Motors)
- 3. A.C. Series Motor
 - i. Universal Motor
- 4. Un-excited Synchronous Motors
 - i. Reluctance Motor
 - ii. Hysteresis Motor

Universal Motor

Universal Motor

- A universal motor is a special type of motor which is designed to run on either DC or single phase AC supply.
- These motors are generally series wound (armature and field winding are in series), and hence produce high starting torque.

- Universal motors find their use in various home appliances like vacuum cleaners, drink and food mixers, domestic sewing machine etc.
- The higher rating universal motors are used in portable drills, blenders etc.

Types of Universal Motor

- Non-Compensated type(concentrated pole, low power rating)
- Compensated type(distributed field, high power rating)

Construction of Universal motor

Construction

- It consists of a stator on which field poles are mounted.
- Field coils are wound on the field poles.
- The whole magnetic path (stator field circuit and also armature) is laminated.
 Lamination is necessary to minimize the eddy currents which induce while operating on AC.
- The rotary armature is of wound type having straight slots and commutator with brushes resting on it.
- The commutation on AC is poorer than that for DC. because of the current induced in the armature coils. For that reason brushes used are having high resistance.

Working principle of Universal motor

Working principle(DC)

- A universal motor works on either DC or single phase AC supply. When the universal motor is fed with a DC supply, it works as a DC series motor.
- When current flows in the field winding, it produces an electromagnetic field. The same current also flows from the armature conductors. When a current carrying conductor is placed in an electromagnetic field, it experiences a mechanical force.
- Due to this mechanical force, or torque, the rotor starts to rotate. The direction of this force is given by Fleming's left hand rule.

https://www.youtube.com/watch?v=0PDRJKz-mgE

Working principle of Universal motor

Working principle(AC)

- When fed with AC supply, it still produces unidirectional torque. Because, armature winding and field winding are connected in series, they are in same phase.
- Hence, as polarity of AC changes periodically, the direction of current in armature and field winding reverses at the same time.
- Thus, direction of magnetic field and the direction of armature current reverses in such a way that the direction of force experienced by armature conductors remains same.
- Thus, regardless of AC or DC supply, universal motor works on the same principle that DC series motor works.

Speed/load characteristics

Speed/load characteristics

- The speed of a universal motor is low at full load and very high at no load.
- Usually, gears trains are used to get the required speed on required load.

Speed control of Universal Motor

- Resistance method
- Tapping field method
- Centrifugal method

Resistance method

- The motor speed is controlled by connecting variable resistance in series with the motor.
- Use in sewing machines

Tapping field method

 Field pole is tapped at various point and speed is controlled by varying the field strength.

Speed control of Universal Motor

 They are commonly used in portable power tools and equipment, as well as many household appliances.

Centrifugal method

- Centrifugal switch is located inside the motor.
- This centrifugal switch can be controlled by means of an external lever.
- When motor runs too slowly, the centrifugal device will close the two contacts and when runs too fast then open the two contacts.
- A capacitor C is used across the contact points in order to reduce sparking produced due to the opening and closing of these points.
- Use in food and drink mixers.

Advantages and Disadvantages of Universal Motor

Advantages

- Universal motor can be operated from both DC and AC voltage sources.
- Cost-effective and no requirement of permanent magnets.
- Capable to provide good torque at low speed.
- Field winding and armature winding is connected in series so it can rotate at very high speed.
- Small size and less weight.
- High power ratings ranging from 5W to 500W.
- The universal motor also has the capability to run at adjustable speeds.

Disadvantages

- Higher noise and the sound of noise also increases with the increase in the speed of the universal motor.
- Difficult to reverse the universal motor to run in the opposite direction.
- Slight unbalancing can cause severe vibrations possibly damaging motor or surroundings.
- At no load very high current will flow causing the motor to attain dangerously high speed so starting mechanism is required.
- Require frequent service and maintenance for carbon brushes and commutators.
- Overheating and usually require an environment with fresh air to avoid heating and cooling down.

Mathematical problems of Universal motor

Problem-01

A 250-W, single-phase, 50-Hz, 220-V universal motor runs at 2000 rpm and takes 1.0 A when supplied from a 220-V dc. supply. If the motor is connected to 220-V ac supply and takes 1.0 A (r.m.s), calculate the speed, torque and power factor.

Assume Ra = 20 ohm and La = 0.4 H.

Here

Motor

Motor rating=250W, 50Hz, 220V Motor armature resistance Ra=20 ohm Motor armature Inductance La=0.4 H

Supply DC

DC supply voltage = 220V Motor armature current la=1 A Motor speed= 2000rpm

Supply AC

AC Supply frequency, f= 50Hz AC Supply Voltage= 220V Motor armature current Ia=1 A(rms)

Calculate

 $\mathsf{Speed}(\mathbf{N})$, $\mathsf{Torque}(\mathbf{T})$ and power factor($\boldsymbol{\phi}$) at AC

Equations

Eb = V - IaRa

 $\frac{Eb,dc}{Eb,ac} = \frac{N,dc}{N.ac}$

P,mech = Eb*la

 $T = 9.55* \frac{P,mech}{N,ac}$ Eb,ac + IaR

Solution

For DC input:

$$Eb,dc = V - IaRa = 220-1*20 = 200V$$

For AC input:

$$Xa = 2^*\pi^*f^*La =$$

$$V^2$$
=(IaRa+Eb,ac)²+(IaXa)²

Eb,ac =

Speed

$$\frac{\text{Eb,dc}}{\text{Eb,ac}} = \frac{\text{N,dc}}{\text{N,ac}}$$

N,ac =

Power Factor

$$Cos\phi = \frac{Eb,ac + IaRa}{V}$$

φ =

Torque

P,mech = Eb*la =

$$T = 9.55^* \frac{P,mech}{N.ac}$$

T =

Ans.....

Mathematical problems of Universal motor

Problem-02

A universal series motor has resistance of 30 ohm and an inductance of 0.5 H. When connected to a 250 V DC supply and loaded to take 0.8 A, it runs at 2000 r.p.m. Estimate its speed and power factor, when connected to a 250-V, 50-Hz AC supply and loaded to take the same current.