Contents

1	Syste	ems of Linear Equations and Matrices	3			
	1.1	Introduction to Systems of Linear Equations	3			
	1.2	Gaussian Elimination	4			
	1.3	Matrices and Matrix Operations	4			
	1.4	Inverses and Properties of Matrices	5			
	1.5	Elementary Matrices and Finding A^{-1}	7			
	1.6	More on Linear Systems and Invertible Matrices	8			
	1.7	Diagonal, Triangular, and Symmetric Matrices	9			
2	Determinants 1					
	2.1	Determinants by Cofactor Expansion	11			
	2.2	Evaluating Determinants by Row Reduction	12			
	2.3	Properties of Determinants	12			
3	Euclidean Vector Spaces 15					
	3.1	Vectors in 2-Space, 3-Space and n -Space	15			
	3.2	Norm, Dot Product, and Distance in $\mathbb{R}^{\mathbf{n}}$	16			
	3.3	Orthogonality	18			
	3.4	Geometry of Linear Systems	19			
4	General Vector Spaces 21					
	4.1	Real Vector Spaces	21			
	4.2	Subspaces	22			
	4.3	Linear Independence	23			
	4.4	Coordinates and Bases	23			
	4.5	Dimension	24			
	4.6	Change of Basis	24			
	4.7	Row Space, Column Space, Null Space	26			
	4.8	Rank, Nullity, and Fundamental Matrix Spaces	27			
	4.9	Matrix Transformations from \mathbb{R}^n to \mathbb{R}^m	27			
		Properties of Matrix Transformations	28			
5	Eige	nvalues and Eigenvectors	29			
-		Eigenvalues and Eigenvectors	29			
	5.2	Diagonalization	30			

6	Inner Product Spaces			
	6.1	Inner Products	33	
	6.2	Angle and Orthogonality	34	
	6.3	Orthogonal and Orthonormal Sets	35	
	6.4	Best Approximation & Least Squares	37	
7	Diagonalization and Quadratic Forms			
	7.1	Orthogonal Matrices	39	

Chapter 1

Systems of Linear Equations and Matrices

1.1 Introduction to Systems of Linear Equations

Definition. A linear equation can be written as

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

A homogenous linear equation has b = 0, so

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

Definition. A system of linear equations or linear system is a finite set of linear equations.

A *solution* of a system of linear equations is a system sequence of *n* numbers

$$x_1 = s_1, \dots, x_n = s_n$$

that makes each equation a true statement.

We often write solutions as $(s_1, s_2 \dots, s_n)$, called an *ordered n-tuple*.

Go over two and three variables and number of solutions. Cover *consistent* and *inconsistent*. Maybe *dependent*.

$$\begin{cases} x + y = 6 \\ x - y = 2 \end{cases}$$

Talk about parametric solutions x = f(t) and y = t.

$$\bullet \begin{cases}
5x - 2y - 5z = 1 \\
10x - 4y - 10z = 2 \\
15x - 6y - 15z = 3
\end{cases}$$

Talk row operations. Do a few examples with solutions.

1.1.1 Homework

#10, 15

1.2 Gaussian Elimination

Define row echelon form and reduced row echelon form.

Ex 1.
$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 = -1 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = -2 \\ -x_1 + 2x_2 - 4x_3 + x_4 = 1 \\ 3x_1 - 3x_4 = -3 \end{cases}$$

1.2.1 Homework

#7,21,22,25

1.3 Matrices and Matrix Operations

Definition. A *matrix* is a rectangular array of numbers. The numbers in the array are called *entries*.

Size is the number of rows and columns.

Scalars are numbers.

Notation:

$$A = \left[a_{ij} \right]_{m \times n} = \left[a_{ij} \right]$$

Talk about row and column vectors.

$$\mathbf{a} = \begin{bmatrix} a_1 \, a_2 \, \cdots \, a_n \end{bmatrix}$$

Define

- Square matrix
- Equality
- · Addition and Subtraction
- Scalar Multiplication
- Multiplication
- · Linear combinations

- System of linear equations as a matrix product
- Transpose
- Trace of a matrix (only for square matrices)

1.3.1 Homework

#3

1.4 Inverses and Properties of Matrices

Properties:

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$A(BC) = (AB)C$$

4.
$$A(B + C) = AB + AC$$

5.
$$(B + C)A = BA + CA$$

6.
$$a(B + C) = aB + aC$$

7.
$$(a + b)C = aC + bC$$

8.
$$a(bC) = (ab)C$$

9.
$$a(BC) = (aB)C$$

10.
$$(-1) \cdot A = -A$$

Show order matters in multiplication

Definition. A matrix whose entries are all zero is a zero matrix

Properties

1.
$$A + 0 = 0 + A = A$$

2.
$$A - 0 = A$$

3.
$$A - A = A + (-A) = 0$$

4.
$$0A = 0$$

5. If
$$cA = 0$$
, then $c = 0$ or $A = 0$.

Ex 2.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}.$$

Show AB = AC.

Ex 3.
$$M = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
 and $N = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$.

Definition. Define the identity matrix, I_n .

Theorem. If R is the reduced row echelon form of an $n \times n$ matrix, then either R has at least one row of zeroes or $R = I_n$.

Definition. If A is a square matrix and if a matrix B of the same size can be found such that AB = BA = I, then A is *invertible* or *nonsingular* and B is the inverse of A. If no such matrix can be found, then A is *singular*.

Ex 4.
$$A = \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix},$$

Theorem. If B and C are inverses of A, then B = C.

Proof.
$$BA = I$$
, so $(BA)C = IC = C$. But $(BA)C = B(AC) = BI = B$. so $B = C$.

Theorem. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has an inverse, then

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

Theorem. If A and B are invertible matrices of the same size, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. Just multiple them out.

1.4.1 Powers of a Matrix

Definition. 1. $A^0 = I$

2.
$$A^n = AA \cdots A$$
 (n factors)

3.
$$A^{-n} = (A^{-1})^n = A^{-1}A^{-1} \cdots A^{-1}$$

Theorem. 1. $A^r A^s = A^{r+s}$ for $r, s \ge 0$

2.
$$(A^r)^s = A^{rs}$$
 for $r, s \ge 0$

3.
$$(A^{-1})^{-1} = A$$

4.
$$A^{-n} = (A^{-1})^n = (A^n)^{-1}$$

1.4.2 Matrix Polynomials

Go over an example.

1.4.3 Transposes

Theorem. 1. $(A^T)^T = A$

2.
$$(A + B)^T = A^T + B^T$$

3.
$$(kA)^T = kA^T$$

$$4. \ (AB)^T = B^T A^T$$

5.
$$(A^T)^{-1} = (A^{-1})^T$$

Proof.
$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

 $(A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I^{T} = I$

1.4.4 Homework

#4, #10, #18

1.5 Elementary Matrices and Finding A^{-1}

1.5.1 Elementary matrices

Theorem. Every elementary matrix is invertible and the inverse is also an elementary matrix.

1.5.2 Equivalence Theorem

Theorem. If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is nonsingular.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.

Proof. $a \to b$: Assume A^{-1} exists and let \mathbf{x}_0 be any solution to $A\mathbf{x} = \mathbf{0}$. Then $A\mathbf{x}_0 = \mathbf{0}$. Multiply both sides by A^{-1} to show that $\mathbf{x}_0 = \mathbf{0}$.

 $b \to c$: The solution to $A\mathbf{x} = \mathbf{0}$ has to look like $x_1 = 0$, $x_2 = 0$ and so on. Thus the augmented matrix can be reduced to $[I_n|\mathbf{0}]$.

 $c \to d$: Using the theorem that all row operations are just elementary matrices, we know that $E_k \cdots E_2 E_1 A = I_n$. But we also know that all elementary matrices are invertible (with elementary inverses), so $A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} I_n = E_1^{-1} E_2^{-2} \cdots E_k^{-1}$.

 $d \rightarrow a$: Use the theorem about multiplication and inverses.

1.5.3 Inverting Matrices

If $A = E_1 E_2 \cdots E_k I_n$, then $A^{-1} = E_k^{-1} \cdots E_2^{-1} E_1^{-1} I_n$. The same row operations that reduce A to I_n will also transform I_n into A^{-1} .

Theorem. To find the inverse of a nonsingular matrix A, find the sequence of row operations that reduces A to I_n and perform that exact same sequence on I_n to

Ex 5.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

Ex 6.
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$

Ex 7.
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 4 & 1 & 4 \end{bmatrix}$$

1.6 More on Linear Systems and Invertible Matrices

1.6.1 More About Solutions

Theorem. A system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities.

Proof. If $A\mathbf{x} = \mathbf{b}$ is a system of linear equations, then it must have zero, one, or more than one solution. Assume that it has more than one solution. Let \mathbf{x}_1 and \mathbf{x}_2 be two different solutions.

Let $\mathbf{x}_0 = \mathbf{x}_1 - \mathbf{x}_2$. Since \mathbf{x}_1 and \mathbf{x}_2 are different, $\mathbf{x}_0 \neq \mathbf{0}$.

$$A\mathbf{x}_0 = A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

Now let k be any scalar. Then

$$A(\mathbf{x}_1 + k\mathbf{x}_0) = A\mathbf{x}_1 + kA\mathbf{x}_0 = \mathbf{b} + k\mathbf{0} = \mathbf{b}$$

This means that $\mathbf{x}_1 + k\mathbf{x}_0$ is a solution for *any* scalar k. Thus there are infinitely many solutions \Box

We can solve multiple systems at once by doing $[A|\mathbf{b}_0|\mathbf{b}_1|\cdots|\mathbf{b}_k]$.

1.6.2 Consistency

Determine which values of **b** make the following consistent.

Ex 8.

$$\begin{cases} x_1 - 2x_2 - x_3 = b_1 \\ -4x_1 + 5x_2 + 2x_3 = b_2 \\ -3x_1 + 3x_2 + x_3 = b_3 \end{cases}$$

1.6.3 Homework

#6, 15

1.7 Diagonal, Triangular, and Symmetric Matrices

1.7.1 Diagonal Matrices

Definition. A square matrix in which all the entries off the main diagonal are zero is a *diagonal* matrix.

Compute an inverse and do some powers.

1.7.2 Triangular Matrices

Definition. A square matrix in which all the entries above (or to the right of) the main diagonal are zero is *lower triangular*. If all the entries below (or to the left of) the main diagonal are zero is *upper triangular*.

Theorem. 1. The transpose of a lower triangular matrix is upper triangular, and vice versa.

- 2. The product of lower triangular matrices is lower triangular. Same for upper.
- 3. A triangular matrix is invertible iff its diagonal entries are all nonzero.
- 4. The inverse of an invertible lower triangular matrix is lower triangular. Same for upper.

1.7.3 Symmetric Matrices

Definition. A square matrix A is symmetric if $A = A^T$.

Theorem. If A and B are symmetric matrices with the same size, and if k is any scalar, then

- 1. A^T is symmetric.
- 2. A + B and A B are symmetric.
- 3. kA is symmetric.
- 4. AB is symmetric iff AB = BA.
- 5. If A is invertible, then A^{-1} is also symmetric.

1.7.4 Homework

32, 37

Chapter 2

Determinants

2.1 Determinants by Cofactor Expansion

2.1.1 Minors and Cofactors

A 2×2 matrix, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, is invertible iff $ad - bc \neq 0$. The expression ad - bc is the *determinant* of A. We write

$$det(A) = ad - bc$$
 or $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Definition. If A is a square matrix, then the *minor of entry* a_{ij} is denoted by M_{ij} and is defined to be the determinant of the submatrix that remains after the ith row and jth column are removed from A.

The number $(-1)^{i+j}M_{ij}$ is denoted by C_{ij} and is called the *cofactor of entry* a_{ij} .

Ex 9. Write a 3x3 and find some minors.

Theorem. If A is an $n \times n$ matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the entries in that row or column by the corresponding cofactors and adding the resulting products is always the same.

2.1.2 The Determinant

Definition. If A is an $n \times n$ matrix, then the number obtained from Theorem 2.1.1 is the *determinant of A*. The sums themselves are called *cofactor expansions of A*.

Ex 10. Do a basic 3x3 example. Do a 4x4 example where one column has a bunch of zeroes. Do an upper triangular matrix.

Theorem. If A is an $n \times n$ triangular matrix, then det(A) is the product of the entries on the diagonal.

2.1.3 Homework

#15, 23,33

2.2 Evaluating Determinants by Row Reduction

2.2.1 Basic Theorems

Theorem. Let A be a square matrix. If A has a row or column of zeroes, then det(A) = 0.

Theorem. Let A be a square matrix. Then $det(A^T) = det(A)$.

2.2.2 Elementary Row Operations

Theorem. Let A be an $n \times n$ matrix.

- 1. If B is the matrix that results when a single row or column is multiplied by a scalar k, then det(B) = k det(A).
- 2. If B is the matrix that results when two rows or columns of A are swapped, then det(B) = -det(A).
- 3. If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one column is added to another column, then det(B) = det(A).

Show this via some examples.

Show how this applies to elementary matrices.

Evaluate some by row reduction. Mention that using cofactor expansion to calculate the determinant of an $n \times n$ matrix takes $\sum_{k=1}^{n-1} \frac{n!}{k!}$ operations.

2.2.3 Homework

#10,14

2.3 Properties of Determinants

2.3.1 $\det(kA)$

Theorem. $det(kA) = k^n det(A)$

2.3.2 $\det(A + B)$

Ex 11.

$$A = \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

Ex 12.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, B = \begin{bmatrix} a_{11} & a_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Theorem. Let A, B, and C be $n \times n$ matrices that differ only in the r^{th} row. Assume that the r^{th} row of C can be obtained by adding corresponding entries of the r^{th} rows of A and B. Then

$$\det(C) = \det(A) + \det(B)$$

Maybe skip this one.

2.3.3 $\det(AB)$

Lemma. If B is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then det(EB) = det(E) det(B).

Proof. If E results from multiplying a row of I_n by k, then EB results by multipling that same row in B by k. This means that

$$det(EB) = k det(B)$$

But we also know that $det(E) = k det(I_n) = k$, so

$$det(EB) = det(E) det(B)$$

The other cases are the same.

Mention writing matrices as the product of E_i . But what about noninvertible matrices?

Theorem. A square matrix A is invertible if and only if $det(A) \neq 0$.

Proof. Let R be the reduced row echelon form of A and let E_1, E_2, \ldots, E_r be the elementary matrices that correspond to the row operations that produce R. So

$$R = E_r \cdots E_2 E_1 A$$

and so

$$\det(R) = \det(E_r) \cdots \det(E_2) \det(E_1) \det(A)$$

Case 1: Assume that *A* is invertible. Then we know that R = I and so det(R) = 1. Thus, $det(A) \neq 0$. **Case 2:** Assume that $det(A) \neq 0$. This means that $det(R) \neq 0$. This also tells us that *R* cannot have a row of zeroes. From a previous theorem, this means that R = I and hence *A* is invertible. \Box

Do an example.

Theorem. If A and B are square matrices of the same size, then

$$\det(AB) = \det(A)\det(B)$$

Proof. **Case 1:** Assume *A* is not invertible. Then *AB* is also not invertible. By the previous theorem, det(AB) = 0 and since det(A) = 0 we can say that det(AB) = det(A) det(B)

Case 2: Assume that A is invertible. Then we can write it as

$$A = E_1 E_2 \cdots E_r$$

so

$$AB = E_1 E_2 \cdots E_r B$$

Using the lemma, we can say that

$$\det(AB) = \det(E_1) \det(E_2) \cdots \det(E_r) \det(B)$$
$$= \det(E_1 \cdots E_r) \det(B)$$
$$= \det(A) \det(B)$$

Theorem. *If A is invertible, then*

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Proof. $A^{-1}A = I$, so $\det(A^{-1}A) = \det(I) = 1$. So $\det(A^{-1})\det(A) = 1$. Since A is invertible, $\det(A) \neq 0$ so we can divide.

Theorem (Equivalent Statements). If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I.
- (d) A can be expressed as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $det(A) \neq 0$.

2.3.4 Homework

#9,10,15

Chapter 3

Euclidean Vector Spaces

3.1 Vectors in 2-Space, 3-Space and *n*-Space

Definition. Define 2-space and 3-space. Talk about vectors as arrows with *direction* and *length/magnitude*. These are *geometric vectors*. Talk about *initial point* and *terminal point*

Notation: **a**, **b**, **v**, **w**, **u**, **x** or \vec{x}

Definition. Vectors with the same direction and length are *equivalent*. This is how we define equality, so $\mathbf{v} = \mathbf{w}$.

Definition. Parallelogram definition for addition. Then do triangle definition.

Either way we get:

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

Definition. Define addition as translation.

Definition. Define *negative* of a vector and subtraction.

Definition. Define scalar multiplication. Talk about |k| and direction. If k = 0 or $\mathbf{v} = \mathbf{0}$, then $k\mathbf{v} = \mathbf{0}$. $\mathbf{0}$ has no direction, but we may sometimes think of it as parallel to all vectors.

Definition. Vector addition is associative.

Definition. Define components in terms of vectors that start at the origin. Then talk about equality of vectors.

Definition. Define the vector between two points.

3.1.1 *n*-space

Definition. If n is a positive integer, then an *ordered n-tuple* is a sequence of n real numbers (v_1, v_2, \dots, v_n) . The set of all ordered n-tuples is called n-space and is denoted by R^n .

Give some examples of non-physics related *n*-tuples.

Define \mathbf{v} notation and $\mathbf{0}$.

Definition. Define equality. Define component-wise operations.

Theorem. Show commutativity, associativity, and scalar multiplication stuff.

Theorem. $0\mathbf{v} = \mathbf{0}, k\mathbf{0} = \mathbf{0}, (-1)\mathbf{v} = -\mathbf{v}$

Definition. If **w** is a vector in \mathbb{R}^n , then **w** is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed as

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

where k_i are scalars. The scalars are *coefficients* of the linear combination.

3.1.2 Homework

#8, 14,26

3.2 Norm, Dot Product, and Distance in \mathbb{R}^n

3.2.1 Norm

Talk about norm and magnitude in 2- and 3-space.

Definition. If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the *norm* of \mathbf{v} (also called the *length* or *magnitude*) is denoted by $||\mathbf{v}||$ and is defined by the formula

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Theorem. If **v** is a vector in \mathbb{R}^n and if k is any scalar, then

- $\|{\bf v}\| \ge 0$
- $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $||k\mathbf{v}|| = |k|||v||$

Definition. A vector of norm 1 is a *unit vector*.

Theorem. If **v** is any nonzero vector, then $\mathbf{u} = \frac{1}{\|v\|} \mathbf{v}$ is the unit vector in the same direction as **v**.

Normalize some vectors.

Definition. Define the standard unit vectors: $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$. Define the standard unit vectors in \mathbb{R}^n : e_i .

3.2.2 Distance

Define distance in terms of the norm.

3.2.3 Dot Product

Define the angle θ between two vectors in \mathbb{R}^2 and \mathbb{R}^3 . Note that $0 \le \theta \le \pi$.

Definition. If **u** and **v** are nonzero vectors in 2- or 3-space and if θ is the angle between **u** and **v**, then the *dot product* (also called the *Euclidean inner product*) of **u** and **v** is denoted by **u** · **v** and is defined as

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = 0$.

Ex 13. Find the angle of (x, x, x) and (0, 0, 1).

Let **u** and **v** be two vectors in 2-space with angle θ . Let **u** and at *P* and **v** at *Q*. Then using the law of cosines

$$|PQ|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 - 2|\mathbf{u}||\mathbf{v}|\cos\theta$$

So

$$|\mathbf{u}||\mathbf{v}|\cos\theta = \frac{1}{2}(|\mathbf{u}|^2 + |\mathbf{v}|^2 - |PQ|^2)$$

$$= \frac{1}{2}(|\mathbf{u}|^2 + |\mathbf{v}|^2 - |\mathbf{v} - \mathbf{u}|^2)$$

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}(u_1^2 + u_2^2 + v_1^2 + v_2^2 - (v_1 - u_1)^2 - (v_2 - u_2)^2)$$

$$= \frac{1}{2}(u_1^2 + u_2^2 + v_1^2 + v_2^2 - v_1^2 + 2v_1u_1 - u_1^2 - v_2^2 + 2v_2u_2 - u_2^2)$$

$$\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2$$

Definition. If $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ are vectors in \mathbb{R}^n , then the *dot product* or *inner product* of \mathbf{u} and \mathbf{v} is

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i$$

Theorem. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n and k is any scalar, then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 3. $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$
- 4. $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = 0$.
- 5. $\mathbf{0} \cdot \mathbf{v} = 00$
- 6. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 7. $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

3.2.4 Geometry

Theorem (Cauch-Schwarz Inequality). *If* \mathbf{u} *and* \mathbf{v} *are vectors in* \mathbb{R}^n , *then*

$$|u\cdot v|\leq \|u\|\|v\|$$

Theorem (Triangle Inequality). If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , then:

- $||u + v|| \le ||u|| + ||v||$
- $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$

Theorem (Parallelogram Equation). If **u** and **v** are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(|\mathbf{u}|^2 + |\mathbf{v}|^2)$$

Theorem. If **u** and **v** are vectors in \mathbb{R}^n , then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} |\mathbf{u} + \mathbf{v}|^2 - \frac{1}{4} |\mathbf{u} - \mathbf{v}|^2$$

3.2.5 Matrices

If **u** and **v** are column matrices, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$.

If they're row matrices/vectors, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v}^T = \mathbf{v}\mathbf{u}^T$.

3.2.6 Homework

12, 16, 24, 26

3.3 Orthogonality

Recall that $\theta = \arccos\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$

Definition. Two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are said to be *orthogonal* if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to every vector. A nonempty set of vectors in \mathbb{R}^n is called an *orthogonal set* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is an *orthonormal set*.

3.3.1 Lines and Planes

Define them in terms of a point and a normal vector.

3.3.2 Projection

Theorem. If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq 0$, then **u** can be expressed in exactly one way of the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$ where \mathbf{w}_1 is a scalar multiple of **a** and \mathbf{w}_2 is orthogonal to **a**.

Proof. We know that $\mathbf{w}_1 = k\mathbf{a}$, where k is a scalar. This means we want

$$\mathbf{u} = k\mathbf{a} + \mathbf{w}_2$$

To find k, we do

$$\mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a}$$
$$= k(\mathbf{a} \cdot \mathbf{a}) + \mathbf{w}_2 \cdot \mathbf{a}$$
$$= k||\mathbf{a}||$$
$$k = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2}$$

This is the *only* possible value for k. Thus

$$\mathbf{w}_2 = \mathbf{u} - \mathbf{w}_1$$
$$= \mathbf{u} - k\mathbf{a}$$
$$= \dots$$

Definition. • $\operatorname{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$ is the vector component of \mathbf{u} along \mathbf{a}

Do the orthogonal.

Do examples

3.3.3 Homework

22, 28

3.4 Geometry of Linear Systems

3.4.1 Lines

Let L be a line that contains the point \mathbf{x}_0 and is parallel to \mathbf{v} . If \mathbf{x} is any point on L, then

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$$

. We let *t* vary from $-\infty$ to ∞ and it is a *parameter*.

Definition. If \mathbf{x}_0 and \mathbf{v} are vectors in \mathbb{R}^n , and if $\mathbf{v} \neq \mathbf{0}$, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$$

defines the line through \mathbf{x}_0 that is parallel to \mathbf{v} .

Definition. If \mathbf{x}_0 , \mathbf{v}_1 , and \mathbf{v}_2 are vectors in \mathbb{R}^n and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

defines the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 .

These are *vector forms* of a line and plane in \mathbb{R}^n .

Ex 14.
$$\mathbf{x}_0 = (-2, 3)$$
 and $\mathbf{v} = (1, 3)$.

Now do one about a plane.

Ex 15. Find the parametric equations of 3x - y - 2z = 7

Do some 4d examples.

Definition. If \mathbf{x}_0 and \mathbf{x}_1 are distinct points in \mathbb{R}^n , then the line determined by these points is parallel to $\mathbf{v} = \mathbf{x}_1 - \mathbf{x}_0$, so

$$\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0)$$

or

$$\mathbf{x} = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1$$

Do some examples.

Do line segment $(0 \le t \le 1)$

3.4.2 Linear Systems

Write a linear equation as a dot product. Look specifically at = 0.

Theorem. If A is an $m \times n$ matrix, then the solution set of the homogeneous system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A.

Ex 16. $A = \begin{bmatrix} 3 & 2 & -1 \\ 6 & 4 & -2 \\ -3 & -2 & 1 \end{bmatrix}$ and $\mathbf{b} = (2, 4, -2)$. Do general solution of the homogeneous first. Find

general solution to $A\mathbf{x} = \mathbf{b}$. Write it as homogeneous plus specific solution.

Theorem. The general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding any specific solution of $A\mathbf{x} = \mathbf{b}$ to the general solution to $A\mathbf{x} = \mathbf{0}$.

Chapter 4

General Vector Spaces

4.1 Real Vector Spaces

Definition. Let V be an arbitrary nonempty set of objects on which two operations are defined: addition and scalar multiplication. If the following axioms are satisfied by all objects \mathbf{u} and \mathbf{v} in V and all scalars k and m, then we call V a vector space and elements of V vectors.

- 1. If **u** and **v** are elements of V, then $\mathbf{u} + \mathbf{v}$ is in V.
- 2. u + v = v + u
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. There is an object **0** in V, called a zero vector for V, such that $\mathbf{0} + \mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- 5. For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V, called the *negative* of \mathbf{u} , such that $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = \mathbf{0}$.
- 6. If k is any scalar and \mathbf{u} is an element of V, then $k\mathbf{u}$ is in V.
- 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- 8. (k + m)u = ku + mu
- 9. $k(m\mathbf{u}) = (km)(\mathbf{u})$
- 10. 1**u**=**u**

Ex 17.

- $V = \{0\}$
- $V = \mathbb{R}^n$
- $V = \mathbb{R}^{\infty}$
- · Matrices
- Real-valued functions: $F(-\infty, \infty)$

- (not) $V = \mathbb{R}^2$, $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$, and $k\mathbf{u} = (0, ku_2)$
- The set of all invertible 2x2 matrices.
- (1, x), $\mathbf{u} + \mathbf{v} = (1, u_1 + v_1)$, $k\mathbf{u} = (1, u_1)$

4.1.1 Homework

2, 4, 6

4.2 Subspaces

Definition. A (proper) subset W of a vector space V is called a *subspace* of V if W is itself a vector space under the addition and scalar multiplication of V.

Note: Only need to verify 1, 4, 5, and 6.

Ex 18.

- · The zero subspace
- Lines through the origin in \mathbb{R}^2 and \mathbb{R}^3
- Planes through the origin in \mathbb{R}^3 .
- (not) Upper half-plane
- Symmetric matrices.
- Continuous functions: $C(-\infty, \infty)$
- Polynomials of degree n. Of degree $\leq n$.

Theorem. If W_1, W_2, \ldots, W_r are subspaces of V, then the intersection of these spaces is also a subspace.

Definition. If **w** is a vector in V, then **w** is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ if we can write

$$\mathbf{w} = k_1 \mathbf{v}_1 + \dots + k_r \mathbf{v}_r$$

where k_i are scalars. The scalars are *coefficients*

Theorem. If $S = \{\mathbf{w}_1, \dots, \mathbf{w}_r\}$ is a nonempty set of vectors in V, then

- 1. The set W of all linear combinations of vectors in S is a subspace of V.
- 2. The set W in part (1) is the "smalles" subspace of V that contains all of the vectors in S.

Definition. The subspace of a vector space V that is formed from all possible linear combinations of the vectors in a nonempty set S is called the *span of* S and we say that the vectors of S *span* that subspace.

4.2.1 Homework

#3, 9, 16

4.3 Linear Independence

4.3.1 Homework

2, 10, 12

4.4 Coordinates and Bases

Do an example of coordinates with a different basis in \mathbb{R}^2 .

Definition. If *V* is any vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a finite set of vectors in *V*, then *S* is called a *basis* for *V* if the following two conditions hold:

- 1. *S* is linearly independent.
- 2. S spans V.

Ex 19. Standard basis for \mathbb{R}^n and P_n .

Ex 20. $\mathbf{u} = (2, 3)$ and $\mathbf{v} = (4, 5)$ for \mathbb{R}^2 .

Ex 21. $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 9, 0), \text{ and } \mathbf{v}_3 = (3, 3, 4)$

Ex 22. P_{∞} has no finite basis. It is *infinite dimensional*

Theorem. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed uniquely as $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$.

Definition. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for V, and

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

is the expression for \mathbf{v} in terms of S, then the scalars c_1, \ldots, c_n are called the *coordinates* of \mathbf{v} relative to S. The vector (c_1, \ldots, c_n) in \mathbb{R}^n is the *coordinate vector of* \mathbf{v} *relative to* S. It is denoted by

$$(\mathbf{v})_S = (c_1, \dots, c_n)$$

Ex 23. Go back to previous examples.

4.4.1 Homework

#5,11

4.5 Dimension

Theorem. Let V be a finite-dimensional vector space and let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be any basis.

- 1. If a set has more than n vectors, then it is linearly dependent.
- 2. If a set has fewer than n vectors, then it does not span V.

Definition. The *dimension* of a finite-dimensional vector space V is denoted by $\dim(V)$ and is defined to be the number of vectors in a basis for V. The zero vector space is defined to have dimension 0.

Ex 24.

$$\dim (\mathbb{R}^n) = n$$

 $\dim (P_n) = n + 1$
 $\dim (M_{m \times n}) = mn$

Ex 25. Make up an infinite solution.

Theorem (Plus/Minus Theorem). Let S be a nonempty set of vectors in V.

- 1. If S is a linearly independent set, and if \mathbf{v} is a vector in V that is outside of span(S), then the set $S \cup \{\mathbf{v}\}$ that results by inserting \mathbf{v} into S is still linearly independent.
- 2. If \mathbf{v} is a vector in S that is expressible as a linear combination of other vectors in S, and if $S \setminus \{\mathbf{v}\}$ is the set obtained by removing \mathbf{v} from S, then S and $S \setminus \{\mathbf{v}\}$ span the same space; that is,

$$\mathrm{span}(S) = \mathrm{span}(S \backslash \mathbf{v})$$

Theorem. Let S be a finite set of vectors in a finite-dimensional vector space V.

- 1. If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- 2. If S is linearly independent but is not a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S.

Theorem. If W is a subspace of a finite-dimensional vector space V, then:

- $1. \ \ W \ is finite-dimensional$
- $2. \ \dim(W) \le \dim(V)$
- 3. W = V iff dim(W) = dim(V)

4.6 Change of Basis

If **v** is a vector in a finite-dimensional vector space V, and if we change the basis for V from B to B', how are the coordinate vectors $[\mathbf{v}]_B$ and $[\mathbf{v}]_{B'}$ related?

Let $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $B' = \{\mathbf{u}'_1, \mathbf{u}'_2\}$. Suppose

$$\begin{bmatrix} \mathbf{u}_1' \end{bmatrix}_B = \begin{bmatrix} a \\ b \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{u}_2' \end{bmatrix}_B = \begin{bmatrix} c \\ d \end{bmatrix}$

in other words

$$\mathbf{u}_1' = a\mathbf{u}_1 + b\mathbf{u}_2$$

$$\mathbf{u}_2' = c\mathbf{u}_1 + d\mathbf{u}_2$$

Now let \mathbf{v} be any vector in V and let

$$[\mathbf{v}]_{B'} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

be the new coordinate vector. So

$$\mathbf{v} = k_1 \mathbf{u}_1' + k_2 \mathbf{u}_2'$$

Working our way backwards

$$\mathbf{v} = k_1 \mathbf{u}'_1 + k_2 \mathbf{u}'_2$$

= $k_1 (a\mathbf{u}_1 + b\mathbf{u}_2) + k_2 (c\mathbf{u}_1 + d\mathbf{u}_2)$
= $(k_1 a + k_2 c)\mathbf{u}_1 + (k_1 b + k_2 d)\mathbf{u}_2$

Thus, the old coordinate vector for \mathbf{v} is

$$[\mathbf{v}]_B = \begin{bmatrix} k_1 a + k_2 c \\ k_1 b + k_2 d \end{bmatrix}$$

This means that

$$[\mathbf{v}]_B = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} [\mathbf{v}]_{B'}$$

If we change the basis for V from B to B', then for each vector \mathbf{v} in V, the old coordinate vector $[\mathbf{v}]_B$ is related to the new coordinate vector $[\mathbf{v}]_{B'}$ by the equation

$$[\mathbf{v}]_B = P[\mathbf{v}]_{B'}$$

where the columns of *P* are the coordinate vectors of the new basis relative to the old basis.

Definition. P is the transition matrix from B' to B. We often write it as $P_{B'\to B}$

Ex 26. Let
$$B = \{(1,0),(0,1)\}$$
 and $B' = \{(1,1),(2,1)\}$. Find $P_{B'\to B}$ and $P_{B\to B'}$

Talk about
$$P_{B' \to B} P_{B \to B'} = P_{B \to B} = I$$

Theorem. If P is the transition matrix from a basis B' to a basis B for a finite-dimensional vector space V, then P is invertible and P^{-1} is the transition matrix from B to B'.

[new basis|old basis] \rightarrow [I|transition from old to new]

Redo the previous example.

4.6.1 Homework

#2, 8, 16

4.7 Row Space, Column Space, Null Space

Definition. Define row and column vectors

Definition. If *A* is an $m \times n$ matrix, then the subspace of \mathbb{R}^n spanned by the row vectors of *A* is called the *row space* of *A*. The subspace of \mathbb{R}^m spanned by the column vectors of *A* is called the *column space* of *A*. The solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$, which is a subspace of \mathbb{R}^n , is the *null space* of *M*.

Theorem. A system of linear equations $A\mathbf{x} = \mathbf{b}$ is consistent iff \mathbf{b} is in the column space of A.

Proof. Straightforward

Ex 27.
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 6 & -2 & 2 \end{bmatrix}$. $\mathbf{x} = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$

Theorem. If \mathbf{x}_0 is any solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ and if $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for the null space of A, then every solution of $A\mathbf{x} = \mathbf{b}$ can be expressed as

$$\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k \tag{4.1}$$

Conversely, for all choices of scalars c_1, \ldots, c_k , **x** is a solution of A**x** = **b**

This equation (4.1) gives us the *general solution* to $A\mathbf{x} = \mathbf{b}$. \mathbf{x}_0 is a *particular solution* of $A\mathbf{x} = \mathbf{b}$ and the remaining bit is the *general solution* of $A\mathbf{x} = \mathbf{0}$. Talk about translations

Theorem. Elementary row operations of a matrix do not change the null space.

Theorem. Elementary row operations do not change the row space of a matrix.

NOT TRUE FOR COLUMN SPACE

Theorem. If a matrix R is in row echelon form, then the row vectors with the leading 1s form a basis for the row space of R, and the column vectors with the leading 1s of the row vectors form a basis for the column space of R.

Even though we can find a basis of the row space with row ops, we can't do that for the column space. But, elementary row operations do not alter dependence relationships among the vectors.

Suppose that $\mathbf{w}_1, \dots, \mathbf{w}_k$ are linearly dependent column vectors of A. Thus there are scalars c_1, \dots, c_k that are not all zero such that

$$c_1 \mathbf{w}_1 + \cdots c_k \mathbf{w}_k = \mathbf{0}$$

When we do elementary row operations, these become \mathbf{w}'_1 , etc. It turns out that

$$c_1 \mathbf{w}_1' + \cdots c_k \mathbf{w}_k' = \mathbf{0}$$

Theorem. If A and B are row-equivalent matrices, then

- 1. A given set of vectors of A is linearly independent iff the corresponding columns of B are linearly independent.
- 2. A given set of column vectors of A form a basis of the column space iff the corresponding columns of B do as well.

4.7.1 Homework

#6(a,d), 7c, 12b

4.8 Rank, Nullity, and Fundamental Matrix Spaces

Theorem. The row space and column space of a matrix A have the same dimension.

Definition. The *rank* of a matrix A, denoted rank(A), is the dimension of the row/column space. The dimension of the null space of A is the *nullity*.

4.8.1 Homework

2ac, 9

4.9 Matrix Transformations from \mathbb{R}^n to \mathbb{R}^m

Go over function, image, value, domain, codomain, range.

Definition. If V and W are vector spaces, and if f is a function with domain V and codomain W, we say that f is a *transformation* from V to W or that f maps V to W.

$$f:V\to W$$

If V = W, f is also called an operator.

Build one out of other functions. Talk about linear and thus $\mathbf{w} = T(\mathbf{x})$ becomes $\mathbf{w} = A\mathbf{x}$. This is a *matrix transformation/operator*. We denote it as T_A and $\mathbf{x} \xrightarrow{T_A} \mathbf{w}$. A is the *standard matrix* Give a brief example.

The standard matrix of T is T

Theorem.

1.
$$T_A(\mathbf{0}) = \mathbf{0}$$

2.
$$T_A(k\mathbf{u}) = kT_A(\mathbf{u})$$

3.
$$T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$$

4.
$$T_A(\mathbf{u} - \mathbf{v}) = T_A(\mathbf{u}) - T_A(\mathbf{v})$$

Do reflections about axes in 2 and 3. Project onto axes and planes.

Definition.
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Do contractions and dilations.

Do compressions and expansions (one direction)

Shear
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$

Project onto the line with angle
$$\theta$$
, $P_{\theta} = \begin{bmatrix} \cos^2 \theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & \sin^2 \theta \end{bmatrix}$

4.9.1 Homework

#10ac

4.10 Properties of Matrix Transformations

Define composition and show $T_B \circ T_A = T_{BA}$

Theorem. $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for every scalar k.

•
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

•
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

Any such transformation is also called a linear transformation.

4.10.1 Homework

Chapter 5

Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

5.1.1 Eigenvalues

Definition. If *A* is an $n \times n$ matrix, then a nonzero vector \mathbf{x} in \mathbb{R}^n is called an *eigenvector* of *A* (or of T_A) if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} . That is,

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is an *eigenvalue* of A (or T_A) and \mathbf{x} is said to be an eigenvector corresponding to A.

Theorem. If A is an $n \times n$ matrix, then λ is an eigenvalue of A iff it satisfies

$$\det\left(\lambda I_n - A\right) = 0$$

This is the characteristic equation of A.

Ex 28.
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Ex 29.
$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Ex 30. Do a big upper-triangular.

Theorem. If A is an $n \times n$ triangular matrix, then the eigenvalues of A are the entries on the main diagonal.

5.1.2 Eigenvalues

Eigenvectors satisfy $(\lambda I_n - A)\mathbf{x} = \mathbf{0}$, so these belong to the null space. This is the *eigenspace* of A corresponding to λ .

Ex 31. Do previous examples.

Theorem. If k is a positive integer, λ is an eigenvalue of A, and \mathbf{x} is an eigenvector for λ , then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

Ex 32. Do the 2×2 from before.

Ex 33. A square matrix A is invertible iff $\lambda = 0$ is not an eigenvalue of A.

5.1.3 Homework

3d, 4d, 6a, 7a

5.2 Diagonalization

- 1. Given an $n \times n$ matrix A, does there exist an invertible matrix P such that $P^{-1}AP$ is diagonal.
- 2. Given an $n \times n$ matrix A, does A have n linearly independent eigenvectors?

Definition. If A and B are square matrices and there is an invertible matrix P such that $B = P^{-1}AP$, then A and B are similar matrices.

A matrix *A* is said to be *diagonalizable* if it is similar to a diagonal matrix.

The following properties are invariant under similarity.

- Determinant
- Invertibility
- Rank
- · Nullity
- Trace
- Characteristic polynomial
- Eigenvalues
- Eigenspace dimension.

Theorem. If A is an $n \times n$ matrix, the following statements are equivalent.

- 1. A is diagonalizable
- 2. A has n linearly independent eigenvectors.

Proof. (1) \rightarrow (2): Let $P = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]$ and let λ_i be the entries of $D = P^{-1}AP$.

- (2) \rightarrow (1): Let *P* be made up of the eigenvectors. Let *D* be made up of the eigenvalues.
 - 1. Find n linearly independent eigenvectors.

- 2. Let *P* be made up of the eigenvectors.
- 3. The matrix $P^{-1}AP$ will be diagonal and have eigenvalues $\lambda_1, \ldots, \lambda_n$ corresponding to $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

Ex 34. Do previous 3×3

Ex 35.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 3 & 3 \end{bmatrix}$$

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Ex 36. If $A = 3 \times 3$ from before, find A^8 .

5.2.1 Homework

14, 23

Chapter 6

Inner Product Spaces

6.1 Inner Products

Definition. An *inner product* on a real vector space V is a function that associates a real number $() < \mathbf{u}, \mathbf{v} >$ with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and all scalars k.

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$.

The dot product is the Euclidean inner product.

Definition. If *V* is a real inner product space, then the *norm* of a vector \mathbf{v} in *V* is denoted by $\|\mathbf{v}\|$ and is defined by

$$\|v\| = \sqrt{\langle v,v\rangle}$$

and the distance between two vectors is

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

A vector of norm 1 is a unit vector

Theorem. If \mathbf{u} and \mathbf{v} are vectors in a real inner product space V, and if k is a scalar, then

- 1. $\|\mathbf{v}\| \ge 0$ with equality iff $\mathbf{v} = \mathbf{0}$
- $2. ||k\mathbf{v}|| = |k| ||\mathbf{v}||$
- 3. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
- 4. $d(\mathbf{u}, \mathbf{v}) \ge 0$ with equality iff $\mathbf{u} = \mathbf{v}$.

Ex 37. Do a weighted Euclidean inner product.

6.1.1 Inner Products Generated by Matrices

Definition. For \mathbb{R}^n , we can do $\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$. If \mathbf{u} and \mathbf{v} are in column form, then $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u}$.

Ex 38. Show that weighted products come from diagonal matrices.

6.1.2 Other Inner Products

Ex 39. If *U* and *V* are $n \times n$ matrices, then $\langle U, V \rangle = \operatorname{tr} (U^T V)$

Ex 40. The standard inner product on P_n

If
$$\vec{p} = a_0 + a_x x + \dots + a_n x^n$$
 and $\vec{q} = b_0 + b_1 x + \dots + b_n x^n$, then $\langle \vec{p}, \vec{q} \rangle = a_0 b_0 + a_1 b_1 + \dots + a_n b_n$.

Ex 41. Let $\vec{f} = f(x)$ and $\vec{g} = g(x)$ be two function on C[a, b]. Then

$$\left\langle \vec{f}, \vec{g} \right\rangle = \int_{a}^{b} f(x)g(x) \, dx$$

6.1.3 Homework

#24

6.2 Angle and Orthogonality

6.2.1 Cauchy-Schwarz

Recall:

$$\theta = \arccos\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Theorem (Cauchy-Schwarz). If \mathbf{u} and \mathbf{v} are vectors in an inner product space V, then

$$|\langle u,v\rangle|=\|u\|\|v\|$$

Proof. If $\mathbf{u} = \mathbf{0}$, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ and $\|\mathbf{u}\| = 0$, so we have equality. Assume that $\mathbf{u} \neq \mathbf{0}$. Let

$$a = \langle \mathbf{u}, \mathbf{u} \rangle, b = 2\langle \mathbf{u}, \mathbf{v} \rangle, c = \langle \mathbf{v}, \mathbf{v} \rangle$$

Since the inner product of a vector with itself is nonnegative,

$$0 \le \langle t\mathbf{u} + \mathbf{v}, t\mathbf{u} + \mathbf{v} \rangle$$

=\langle \mathbf{u}, \mathbf{u} \rangle t^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle t + \langle \mathbf{v}, \mathbf{v} \rangle
=at^2 + bt + c

Since $at^2 + bt + c \ge 0$, it has either no real roots or a repeated real root. That means $b^2 - 4ac \le 0$. Writing this back in vector form, we get $4\langle \mathbf{u}, \mathbf{v} \rangle^2 - 4\langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle \le 0$. Thus

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 \le \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$$

But $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$. That means we can take the square root of both sides and get

$$|\langle u, v \rangle| \le ||u|| ||v||$$

This means

Definition.

$$\theta = \arccos\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

6.2.2 Properties of length and distance

Theorem. If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in an inner product space V, then

- 1. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
- 2. $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$

Definition. Two vectors **u** and **v** in an inner product space are *orthogonal* if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Theorem. If **u** and **v** are orthogonal vectors in an inner product space, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Definition. If W is a subspace of an inner product space V, then the set of all vectors in V that are orthogonal to every vector in W is called the *orthogonal complement* of W and is denoted W^{\perp}

6.2.3 Homework

#9,12

6.3 Orthogonal and Orthonormal Sets

Definition. Define orthogonal and orthonormal.

Theorem. If S is an orthogonal set of nonzero vectors in an inner product space, then S is independent. **Theorem.**

1. If S is an orthogonal set in an inner product space V and \mathbf{u} is any vector in V, then

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \cdots$$

2. If S is an orthonormal set in an inner product space V and \mathbf{u} is any vector in V, then

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \cdots$$

Theorem. If W is a finite-dimensional subspace of an inner product space V, then every vector \mathbf{u} in V can be expressed in exactly one way as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where \mathbf{w}_1 is in W and \mathbf{w}_2 is in W^{\perp} .

Theorem. Let W be a finite-dimensional subspace of an inner product space V.

1. If $\{\mathbf v_1,\dots,\mathbf v_r\}$ is an orthogonal basis for W and $\mathbf u$ is any vector in V, then

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \cdots$$

2. If $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is an orthonormal basis for W and \mathbf{u} is any vector in V, then

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \cdots$$

6.3.1 Gram-Schmidt Process

Theorem. Every nonzero finite-dimensional inner product space has an orthonormal basis.

Definition (The Gram-Schmidt Process). To convert a basis $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$, perform the following steps.

Step 1: Let $\mathbf{v}_1 = \mathbf{u}_1$.

Step 2: Let
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3: Let
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

Step 4: Let
$$\mathbf{v}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

(continue for *r* steps)

To convert to an orthonormal basis, just normalize the vectors.

Ex 42.
$$\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (-1, 1, 0), \mathbf{u}_3 = (1, 2, 1)$$

Ex 43. Legendre polynomials for P_3 . Start with $\{1, x, x^2, x^3\}$. Get $\{1, x, x^2 - \frac{1}{3}, x^3 - \frac{3}{5}x\}$. Scale to get Legendre polynomials.

6.3.2 QR-Decomposition

If A is an $m \times n$ matrix with linearly independent column vectors and if Q is the matrix that results by applying the Gram-Schmidt process to the column vectors of A, what relationship is there between A and Q.

Look at this in block form.

Theorem. If A is an $m \times n$ matrix with linearly independent column vectors, then A can be factored as

$$A = QR$$

where Q is an $m \times n$ matrix with orthonormal column vectors and R is an $n \times n$ invertible upper-triangular matrix.

Ex 44.
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

6.4 Best Approximation & Least Squares

Suppose that $A\mathbf{x} = \mathbf{b}$ is an inconsistent linear system of m equations in n unknowns in which we suspect the inconsistency is caused by measurement errors. We want to find \mathbf{x} that comes as close as possible to being a solution. $\|\mathbf{b} - A\mathbf{x}\|$ is minimized wrt the Euclidean norm on \mathbb{R}^m .

Such an **x** is the *least-squares solution* of the system. Note: it's least squares because something that minimizes $\|\mathbf{b} - A\mathbf{x}\|$ also minimizes $\|\mathbf{b} - A\mathbf{x}\|^2$

6.4.1 Best Approximation

Suppose that **b** is some vector in \mathbb{R}^n and we would like to approximate it be a vector **w** in some subspace W of \mathbb{R}^n .

Theorem. If W is a finite-dimensional subspace of an inner product space V, and if \mathbf{b} is a vector in V, then $\operatorname{proj}_W \mathbf{b}$ is the **best approximation** to \mathbf{b} from W in the sense that

$$\|\mathbf{b} - \operatorname{proj}_W \mathbf{b}\| < \|\mathbf{b} - \mathbf{w}\|$$

for every vector \mathbf{w} in W that is not $\operatorname{proj}_W \mathbf{b}$.

Proof. Using a dirty trick, we can write $\mathbf{b} - \mathbf{w}$ as $\mathbf{b} - \operatorname{proj}_W \mathbf{b} + \operatorname{proj}_W \mathbf{b} - \mathbf{w}$.

But $\operatorname{proj}_W \mathbf{b} - \mathbf{w}$ is in W and $\mathbf{b} - \operatorname{proj}_W \mathbf{b}$ is in W^{\perp} , so they are orthogonal. This means we can use the generalized Pythagorean theorem to get

$$\begin{aligned} \left\| \mathbf{b} - \operatorname{proj}_{W} \mathbf{b} \right\|^{2} + \left\| \operatorname{proj}_{W} \mathbf{b} - \mathbf{w} \right\|^{2} &= \left\| \mathbf{b} - \mathbf{w} \right\|^{2} \\ \left\| \mathbf{b} - \operatorname{proj}_{W} \mathbf{b} \right\|^{2} &< \left\| \mathbf{b} - \mathbf{w} \right\|^{2} \\ \left\| \mathbf{b} - \operatorname{proj}_{W} \mathbf{b} \right\| &< \left\| \mathbf{b} - \mathbf{w} \right\| \end{aligned}$$

6.4.2 Least-Squares Solutions to Linear Systems

To find the least squares solution to $A\mathbf{x} = \mathbf{b}$, we project \mathbf{b} onto the column space W of A and instead solve

$$A\mathbf{x} = \operatorname{proj}_W \mathbf{b}$$

$$A\mathbf{x} = \operatorname{proj}_{W} \mathbf{b}$$

$$\mathbf{b} - A\mathbf{x} = \mathbf{b} - \operatorname{proj}_{W} \mathbf{b}$$

$$A^{T} (\mathbf{b} - A\mathbf{x}) = A^{T} (\mathbf{b} - \operatorname{proj}_{W} \mathbf{b})$$

$$A^{T} (\mathbf{b} - A\mathbf{x}) = \mathbf{0}$$

$$A^{T} A\mathbf{x} = A^{T} \mathbf{b}$$

Definition. $A^T A \mathbf{x} = A^T \mathbf{b}$ is the normal equation or normal system associated with $A \mathbf{x} = \mathbf{b}$.

Theorem. $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$

Theorem. $Q^TQ = I$

Proof. The columns are all orthonormal.

Theorem. If A is an $m \times n$ matrix with linearly independent column vectors, and if A = QR is the QR-decomposition of A, then the least squares solution is $\mathbf{x} = R^{-1}Q^T\mathbf{b}$.

Proof.

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

$$= ((QR)^T QR)^{-1} (QR)^T \mathbf{b}$$

$$= (R^T Q^T QR)^{-1} R^T Q^T \mathbf{b}$$

$$= (R^T R)^{-1} R^T Q^T \mathbf{b}$$

$$= R^{-1} (R^T)^{-1} R^T Q^T \mathbf{b}$$

$$= R^{-1} Q^T \mathbf{b}$$

Chapter 7

Diagonalization and Quadratic Forms

7.1 Orthogonal Matrices

Definition. A square matrix A is said to be *orthogonal* if $AA^T = A^TA = I$.

Ex 45. Rotation matrix
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Theorem. The following are equivalent for an $n \times n$ matrix A.

- 1. A is orthogonal.
- 2. The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.