

Hidrokarbon

A. PENDAHULUAN

- Hidrokarbon adalah senyawa organik yang mengandung atom karbon (C) dan hidrogen (H).
- Nerbedaan senyawa organik dan anorganik:

Senyawa organik	Senyawa anorganik
atom karbon sebagai	atom selain karbon
atom pusat	sebagai atom pusat
ikatan kovalen non- polar	umumnya ikatan ion
kurang reaktif (kecuali pembakaran)	reaktif
mudah terbakar/	tidak mudah
terurai (gosong)	terbakar/terurai
larut dalam pelarut	larut dalam pelarut
non-polar dan organik	polar dan anorganik
titik cair dan didih	titik cair dan didih
rendah	tinggi
Contoh: C ₂ H ₅ OH,	Contoh: CO ₂ , H ₂ O,
C ₆ H ₁₂ O ₆ , CH ₄ , C ₂ H ₆ ,	CaCO₃, KOH, NaCl,
C_2H_2 , C_6H_6 , CCl_4	LiMnO₄

- Keistimewaan atom karbon sebagai penyusun utama senyawa organik:
 - Terletak pada golongan IVA sehingga memiliki elektron valensi 4 yang dapat membentuk 4 ikatan kovalen.
 - 2) Terletak pada periode 2 sehingga memiliki jari-jari atom yang relatif kecil, sehingga memiliki ikatan kovalen yang kuat.
- Berdasarkan homolog (keluarga), hidrokarbon terbagi menjadi alkana, alkena dan alkuna.
- Berdasarkan ikatan atom karbon, hidrokarbon terbagi menjadi:
 - 1) **Hidrokarbon jenuh**, atom karbonnya seluruhnya adalah ikatan tunggal.

Contoh: homolog alkana dan sikloalkana.

 Hidrokarbon tak jenuh, atom karbonnya memiliki setidaknya satu ikatan rangkap.

Contoh: homolog alkena, alkuna dan alkadiena.

- Berdasarkan bentuk rantai karbon, hidrokarbon terbagi menjadi:
 - Hidrokarbon alifatik, bentuk rantai karbon memanjang atau terbuka.

Contoh: homolog alkana, alkena dan alkuna.

2) **Hidrokarbon alisiklik**, bentuk rantai karbon cincin melingkar.

Contoh: homolog sikloalkana.

3) **Hidrokarbon aromatik**, bentuk rantai karbon cincin konjugat.

Contoh: benzena (C_6H_6).

FUN FACT

Logo SMA Negeri 78 Jakarta berbentuk seperti struktur benzena (C_6H_6) yang memiliki Mr (massa molekul relatif) 78.

Pada rantai karbon, terdapat empat macam atom karbon.

- 1) Atom C primer (1°), adalah atom karbon yang berikatan dengan 1 atom karbon lain.
- 2) Atom C sekunder (2°), adalah atom karbon yang berikatan dengan 2 atom karbon lain.
- 3) Atom C tersier (3°), adalah atom karbon yang berikatan dengan 3 atom karbon lain.
- 4) Atom C kuartener (4°), adalah atom karbon yang berikatan dengan 4 atom karbon lain.

B. HIDROKARBON

Nidrokarbon rantai lurus menurut aturan IUPAC:

Atom C	Nama	Atom C	Nama
1	met-	6	heks-
2	et-	7	hept-
3	prop-	8	okt-
4	but-	9	non-
5	pent-	10	dek-

Alkana adalah hidrokarbon alifatik jenuh dengan rumus umum:

C_nH_{2n+2}

Rumus	Nama	Rumus	Nama
CH ₄	met ana	C ₄ H ₁₀	but ana
C ₂ H ₆	et ana	C ₅ H ₁₂	pent ana
C ₃ H ₈	propana	C ₆ H ₁₄	heks ana

Alkena adalah hidrokarbon alifatik tak jenuh dengan 1 ikatan rangkap dua dan rumus umum:

C_nH_{2n}

Rumus	Nama	Rumus	Nama
-	-	C ₄ H ₈	but ena
C ₂ H ₄	et ena	C ₅ H ₁₀	pent ena
C ₃ H ₆	prop ena	C ₆ H ₁₂	heks ena

▲ Alkuna adalah hidrokarbon alifatik tidak jenuh dengan 1 ikatan rangkap tiga dan rumus umum:

C_nH_{2n-2}

Rumus	Nama	Rumus	Nama
-	-	C ₄ H ₆	but una
C ₂ H ₂	et una	C ₅ H ₈	pent una
C ₃ H ₄	prop una	C ₆ H ₁₀	heks una

- Nentuk lain dari ketiga homolog hidrokarbon:
 - 1) **Sikloalkana**, alkana yang membentuk hidrokarbon alisiklik jenuh, rumus umum:

C_nH_{2n}

2) Alkadiena, alkena yang memiliki 2 ikatan rangkap dua, rumus umum:

 C_nH_{2n-2}

C. TATA NAMA HIDROKARBON

- Aturan penamaan IUPAC hidrokarbon:
 - Penamaan didasarkan atas rantai utama/ induk. Rantai utama adalah rantai karbon terpanjang yang dapat dibuat.

 Pada alkena, alkuna dan alkadiena, rantai utama harus mengandung ikatan rangkap.

Jika terdapat >1 rantai utama, pilih rantai utama dengan cabang terbanyak.

- b. **Pada sikloalkana**, rantai utama adalah rantai alisikliknya.
- 2) **Cabang** diberinama dengan nama gugus alkil, dan jika tidak dapat memenuhi aturan IUPAC dapat menggunakan nama trivial.
- 3) **Posisi cabang** ditentukan dengan penomoran atom karbon rantai utama.

Ketentuan penomoran:

- a. Pada alkana, penomoran dilakukan sedemikian rupa sehingga cabang memiliki nomor kecil.
 - Jika tidak memiliki cabang, nama rantai utama diberi n-.
- b. **Pada alkena dan alkuna**, penomoran dimulai dari atom C yang paling dekat dekat ikatan rangkap.

Jika penomoran dari kedua sisi sama saja, maka penomoran dimulai dari sisi yang cabangnya paling banyak.

- c. **Pada sikloalkana**, penomoran dilakukan jika cabang berjumlah > 1, dan dilakukan searah jarum jam.
- 4) **Posisi ikatan rangkap** juga ditentukan dengan angka.
- 5) **Cabang sejenis** yang jumlahnya >1 cukup ditulis sekali, namun diberi indeks (di-, tri-, tetra-, dst.).
- 6) **Jika terdapat lebih dari satu** macam jenis cabang, maka urutan penamaan cabang diurut berdasarkan abjad (sebelum diberi indeks, sek-, ters-, dan neo-).
- Gugus alkil adalah cabang dengan rumus umum:

 C_nH_{2n+1}

Nacam-macam gugus alkil (cabang):

HIDROKARBON

Rumus	Nama	
-CH ₃	metil	metil
$-C_2H_5$	et il	etil
$-C_3H_7$	propil	n-propil
$-C_4H_9$	butil	n-butil
-C ₅ H ₁₁	pentil/amil	n-pentil
−CH−CH₃ CH₃	isoprop il	1-metiletil
- CH ₂ -CH-CH ₃ CH ₃	isobut il	2-metilpropil

- CH-CH ₂ -CH ₃ CH ₃	sekbut il	1-metilbutil
CH ₃ - CH-CH ₃ CH ₃	tersbut il	1,1-dimetiletil
-CH ₂ -CH ₂ -CH-CH ₃ CH ₃	isoam il	3-metilbutil
- CH-CH ₂ -CH ₂ -CH ₃ CH ₃	sekam il	1-metilbutil
CH ₃ - C-CH ₂ -CH ₃ CH ₃	tersam il	1,1-dimetil propil
CH ₃ -CH ₂ -C-CH ₃ CH ₃	neoam il	2,2-dimetil propil

Contoh:

$$\begin{array}{c|ccccc} \textbf{CH}_3 & \textbf{C}_2\textbf{H}_5 \\ & & | & 4 & | & |_5 \\ \textbf{CH}_3 - \textbf{C} - & \textbf{CH} - \textbf{CH} - \textbf{CH}_2 - \textbf{CH}_2 - \textbf{CH}_3 \\ & & | & | & |_3 \\ \textbf{CH}_3 - & \textbf{CH}_3 & | & |_{} \\ \textbf{CH}_2 - & \textbf{CH}_3 & | & |_{} \\ \textbf{CH}_2 - & \textbf{CH}_3 & | & |_{} \end{array}$$

4-tersbutil-5-etil-3-metiloktana

$$\begin{array}{c|ccccc} \textbf{CH}_{3} & \textbf{CH}_{2} - \textbf{CH}_{3} \\ & | 6 & | 4 & 1 \\ \textbf{CH} - \textbf{CH}_{2} - \textbf{C} - \textbf{CH}_{2} - \textbf{CH} = \textbf{CH}_{2} \\ | & | & | \\ \textbf{CH}_{3} & \textbf{CH}_{3} \\ \end{array}$$

4-etil-4,6-dimetil-1-heptena

2,5-dimetil-3-oktuna

1-etil-3-metilsiklopropana

$$\begin{array}{c|c}
1 & 2 & 3 \\
CH_2 = C - C = CH_2 \\
\hline
CH_2 - CH_3
\end{array}$$

2-etil-1,3-butadiena

- Penulisan rumus bangun hidrokarbon dapat dipersingkat menggunakan garis-garis.
 - 1) Garis lurus mewakili 1 ikatan antara dua atom karbon.
 - 2) Ujung dan pangkal garis adalah atom karbon.
 - Atom karbon yang masih memiliki sisa ikatan kovalen berarti mengikat atom H.

D. KEISOMERAN HIDROKARBON

- Isomer adalah senyawa-senyawa yang memiliki rumus struktur/rumus bangun berbeda namun rumus molekulnya sama.
- Neisomeran hidrokarbon terdiri dari:
 - 1) **Isomer struktur**, isomer yang terjadi akibat perbedaan struktur molekul.
 - 2) **Isomer ruang**, isomer yang terjadi akibat perbedaan sudut pandang/ruang molekul.

Isomer	Perbedaan	Homolog	
Struktur			
Rantai/ rangka	beda rantai utama/induk	seluruh	
Posisi	beda posisi ikatan rangkap atau cabang	hidrokarbon	
Fungsi	beda homolog, namun sama rumus umum	alkena-sikloalkana, alkuna-alkadiena, turunan h.k.	
Ruang	Ruang		
Geometri	beda posisi gugus di sekitar ikatan rangkap	alkena	
Optis	beda pemutar polarimetri	turunan h.k.	

Rumus	Isomer	Rumus	Isomer
CH₄	1	C ₆ H ₁₄	5
C ₂ H ₆	1	C ₇ H ₁₆	9
C ₃ H ₈	1	C ₈ H ₁₈	18
C ₄ H ₁₀	2	C ₉ H ₂₀	35
C ₅ H ₁₂	3	C ₁₀ H ₂₂	75

- Pada isomer rantai, dua buah rumus bangun memiliki rumus molekul yang sama namun rantai utama yang berbeda.
- Contoh isomer rantai:

Alkana, contoh: berikut ini isomer rantai C7H16,

- 1. n-heptana (rantai utama C₇)
- 2. 2-metilheksana (rantai utama C₆)

2,2,3-trimetilbutana (rantai utama C_4)

Alkena, contoh: berikut ini isomer rantai C₆H₁₂,

- 1. 1-heksena (rantai utama C₆)
 - (rantai utama C₅)

2. 2-metil-1-pentena

3. 2-etil-1-butena (rantai utama C₄)

Alkuna, contoh: berikut ini isomer rantai C₆H₁₀,

- 1. 1-heksuna (rantai utama C₆)
- 2. 3-metil-1-pentuna (rantai utama C₅)

3. 3,3-dimetil-1-butuna (rantai utama C₄)

- 🔪 **Pada isomer posisi**, dua buah rumus bangun memiliki rantai utama yang sama namun posisi atau jenis cabang yang berbeda.
- 🔪 Contoh isomer posisi:

Alkana, contoh: berikut ini isomer posisi C₇H₁₆, Pada rantai utama C₆ (rantai heksana),

1. 2-metilheksana

Pada rantai utama C₅ (rantai pentana),

1. 2,2-dimetilpentana 2. 2,3-dimetilpentana

3. 3,3-dimetilpentana 4. 3-etilpentana

Alkena, contoh: berikut ini isomer posisi C₆H₁₂, Berdasarkan posisi ikatan rangkap,

1. 1-heksena

3. 3-heksena

Berdasarkan cabang,

1. 2-metil-1-pentena 2. 3-metil-1-pentena

Alkuna, contoh: berikut ini adalah isomer posisi dari C₆H₁₀,

Berdasarkan ikatan rangkap,

- 1. 1-heksuna
- 2. 2-heksuna

3. 3-heksuna

Berdasarkan cabang,

1. 3-metil-1-pentuna 2. 4-metil-1-pentuna

- 🔌 Pada isomer fungsi, dua buah rumus bangun memiliki rumus umum yang sama namun homolog (keluarga) yang berbeda.
- 🔌 Contoh isomer fungsi:

Senyawa dengan rumus molekul C₆H₁₂, misalnya

1-heksena

3-metil-1pentena

dengan:

1. sikloheksana

2. 1,2,3-trimetil

siklopropana

Senyawa dengan rumus molekul C₆H₈, misalnya

1-heksuna

4-metil-2-pentuna

dengan: 1. 1,2-heksadiena

2. 1,3-heksadiena

- 3. 4-metil-1,2pentadiena
- 4. 2,3-dimetil-1,3-butadiena

- Pada isomer geometri, dua buah rumus bangun memiliki nama yang sama. Hal ini disebabkan oleh ikatan rangkap yang tidak dapat memutar posisi gugus-gugus di sekitarnya.
- Syarat isomer geometri adalah terdapat minimal dan maksimal dua gugus yang sama di sekitar ikatan rangkap.
- **Untuk membedakannya**, kedua rumus bangun diberi notasi cis- dan trans-.
 - 1) Bentuk cis, gugus yang sama ada pada satu sisi.
 - 2) **Bentuk trans**, gugus yang sama terletak berseberangan.
- Contoh isomer geometri:

2-butena (C₄H₈)

$$CH_3 - CH = CH - CH_3$$

$$CH_3$$
 $C = C$ H

$$CH_3$$
 $C = C$ CH

cis-2-butena

trans-2-butena

2-pentena (C₅H₁₀)

$$CH_3 - CH = CH - C_2H_5$$

$$CH_3$$
 $C = C$

$$CH_3$$
 $C = C$ H C_2H_5

cis-2-pentena

trans-2-pentena

E. SIFAT-SIFAT FISIS HIDROKARBON

Sifat-sifat fisis hidrokarbon berbeda-beda tergantung struktur molekulnya.

Sifat fisis	Keterangan
T.L. dan T.D.	>> jumlah atom C/Mr
T.L. dall T.D.	<< jumlah cabang
Massa jenis	>> jumlah atom C/Mr
Volatilitas	<< jumlah atom C/Mr
Kepolaran	non-polar
Kelarutan	larut dalam pelarut non-polar

F. REAKSI-REAKSI HIDROKARBON

- ► Hidrokarbon hanya reaktif terhadap senyawa non-polar dan pada suhu tinggi.
- Reaksi-reaksi hidrokarbon terdiri dari:
 - 1) Reaksi pembakaran

Adalah reaksi redoks dengan jalan pembakaran menggunakan O₂.

$$C_xH_v + O_2 \rightarrow CO_2 + H_2O$$

Reaksi pembakaran terjadi pada homolog alkana, alkena dan alkuna. Makin tinggi suku, maka O₂ yang dibutuhkan makin banyak.

Contoh reaksi pembakaran:

- a. **Pembakaran sempurna**, menghasilkan CO_2 dan H_2O .
- b. **Pembakaran tidak sempurna**, menghasilkan C (jelaga), CO, CO₂ dan H₂O.

2) Reaksi substitusi/halogenasi

Adalah reaksi penggantian 1 atom H dengan unsur lain (biasanya halogen).

$$3+2 \rightarrow 4+1$$

Reaksi substitusi terjadi pada homolog alkana. **Contoh reaksi substitusi**:

$$CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$$

$$CH_4 + 4Cl_2 \rightarrow CCl_4 + 4HCl$$
 (tetraklorometana)
 $CH_2Cl_2 + 2F_2 \rightarrow CF_2Cl_2 + 2HF$ (freon)

3) Reaksi adisi

Adalah reaksi penjenuhan/pemutusan ikatan rangkap oleh H_2 , X_2 (halogen) atau HX (asam halida).

$$3+2 \rightarrow 5$$

Reaksi adisi terjadi karena salah satu ikatan pada ikatan rangkap (ikatan π) bersifat lemah, mudah putus dan reaktif.

Reaksi adisi terjadi pada homolog alkena dan alkuna. Homolog alkuna membutuhkan pereaksi 2 kali lipat dari alkena.

Pada reaksi adisi dengan HX berlaku **aturan Markovnikov** tentang arah adisi:

Atom H dari HX berikatan pada atom C ikatan rangkap yang telah lebih banyak mengikat atom H (kaya makin kaya).

Jika sama, maka atom X dari HX akan berikatan pada atom C ikatan rangkap yang sisinya telah lebih banyak mengikat

atom H (lebih positif).

Contoh reaksi adisi:

4) Reaksi eliminasi

Adalah reaksi pembentukan ikatan rangkap dengan melepas dua gugus di sekitar 2 atom C yang berikatan, dan melepas H₂, X₂ atau HX. Reaksi eliminasi menggunakan dehidrator berupa H₂SO₄ pekat pada suhu 180°C.

$$5 \rightarrow 3 + 2$$

Reaksi eliminasi terjadi pada homolog alkana. Pada reaksi eliminasi HX berlaku **aturan Saytzeff** tentang arah eliminasi.

Atom H yang tereliminasi adalah yang terikat pada atom C yang mengikat lebih sedikit atom H (miskin makin miskin).

Contoh reaksi eliminasi:

$$CH_3 - CH_2 - CH_3 \qquad dapat \ ditulis$$

$$H \quad H \quad H \quad H \quad H_2SO_4 \quad CH_3 - CH = CH_2 \quad + H_2$$

$$CH_3 - CH - CH_2 \qquad dapat \ ditulis$$

$$CH_3 - CHBr - CH_3 \qquad dapat \ ditulis$$

$$CH_3 - CH - CH_2 \qquad H_2SO_4 \quad CH_3 - CH = CH_2 \quad + HBr$$

$$CH_3 - CH - CH_2 \qquad H_2SO_4 \quad CH_3 - CH = CH_2 \quad + HBr$$

5) Reaksi perengkahan (cracking)

Adalah reaksi pemutusan rantai karbon menjadi rantai-rantai yang lebih pendek.

$$5 \rightarrow 4 + 3 + 2 + 1$$

Reaksi perengkahan terjadi pada homolog alkana. Reaksi perengkahan alkana menghasilkan alkena, alkuna, dan H₂.

Reaksi perengkahan terjadi melalui cara:

- a. Thermal cracking/pirolisis (suhu dan tekanan tinggi tanpa O_2).
- b. Catalytic cracking (katalis SiO₂ atau Al₂O₃).

Contoh reaksi perengkahan:

$$C_{30}H_{62} \rightarrow C_7H_{16} + C_8H_{19} + C_{10}H_{20} + C_4H_8$$

 $C_{10}H_{22} \rightarrow C_8H_{18} + C_2H_4$
 $C_4H_{10} \rightarrow C_4H_8 + H_2$

6) Reaksi isomerisasi (reforming)

Adalah reaksi penyusunan isomer rantai lurus menjadi rantai bercabang.

Reaksi isomerisasi terjadi pada homolog alkana, alkena dan alkuna. Reaksi isomerisasi terjadi pada suhu dan tekanan tinggi dengan bantuan katalis.

7) Reaksi polimerisasi

Adalah reaksi penggabungan molekul kecil (monomer) menjadi molekul besar (polimer). **Reaksi polimerisasi** terjadi pada homolog alkena dan alkuna. Reaksi polimerisasi memutuskan ikatan rangkap dan menghasilkan polimer.

(akan dipelajari di bagian Polimer)

G. SUMBER DAN KEGUNAAN HIDROKARBON

- ▲ Alkana bersumber dari minyak bumi dan batu bara (seluruh suku) dan gas alam (suku rendah). (akan dipelajari di bagian Bahan Bakar Fosil)
- Negunaan alkana antara lain:
 - 1) Bahan bakar.
 - 2) Bahan baku industri dan senyawa lain.
 - 3) Sumber hidrogen.
 - 4) Pelumas mesin.
 - 5) Pencucian kering (*dry cleaning*).
 - 6) Pelarut non-polar.
- Alkena sangat sulit didapat dari alam dan kebanyakan bersumber dari reaksi perengkahan alkana.
- Kegunaan alkena adalah untuk bahan baku industri dan senyawa lain, misalnya plastik, karet sintesis, alkohol, dan insektisida.
- Alkuna dapat ditemukan di gas rawa, minyak bumi, dan batu bara, dan kebanyakan bersumber dari reaksi perengkahan alkana.
- 🔦 Kegunaan alkuna, antara lain:
 - 1) Bahan bakar obor.
 - 2) Las karbid dan pemotongan logam.
 - 3) Bahan baku untuk senyawa lain, misalnya etanol, asam asetat, dan vinilklorida.