Decision trees

Intelligence can be captured in a set of if then else rules that provide branching for classification.

Trees as alrays:

parents Orray

Logical propositions

(A&B) | (¬A&¬B)

Animal Recognition

Decision trees and owl Eagl
Classification

DTs nodes verify/evolutate attributes.

branches that embody aftribute values.

leaves categorize/classify instances

Why Drs could be a good AI choice?

- output is discrete

- no large data is available
- data is noisy
- classes are disjoint

* How do I grow a tree? When I have many attributes

* How to select the best attribute to generate the most compact branching?

Lets restrict things to binary.

S: Set of training samples

So: Positive samples

- (· g2 = 21

So: Negative samples

Entropy (s) = - & log_2 & - & log_2 Po

we know (from information theory) that the optimal length node for a message with probability p is -log_p bits.

Entropy quantifies the (expected) number of bits to encode a class of randomly drawn samples. But to construct a free, we need to know how much we gain, when we add a specific attribute. Suc S

Grain $(S, A) = \text{Entropy}(S) - \sum_{v \in V_A} \frac{|S_v|}{|S|}$. Entropy (S_v) expected reduction in all values of all attributes entrophy upon sorting on A

Play '	Tennis			
	attributes			decision
			1	
Day	outlook	Temp		Play
0				Υ
				Ν

$$S = [9^{\dagger}, 5^{-}]$$
 $E(S) = 0.94$
 $P^{\oplus} = 9 = 0.6429$
 $P^{\Theta} = 5 = 0.3571$

Gain(5, outlook) = 0.94 -
$$\left(\frac{5}{14} \times 0.97 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.97\right) = 0.246$$

* calculate gain for other attributes

Gain (s, Temp) =
$$0.94 - \left(\frac{4}{14} \times 1 + \frac{6}{14} \times 0.02 + \frac{4}{16} \times 0.81\right) = 0.029$$

Intelligence: Entropy and info gain

DT construction algorithms

* IDB (Iterative Dichotomizer V3) What we

* C45 and C5

Overfitting? very large tree (eg: million trees)
We prefer short/small trees (compact trees)

Avoid overfitting!

1 Grow full tree ---- post pruning

② Stop when branching not statistically <u>significant</u>

Kfold cross

validation