Решение систем линейных алгебраических уравнений в идемпотентной алгебре

Колесник Дмитрий Владимирович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Н.К. Кривулин Рецензент: д.ф.-м.н., профессор Ю.А. Сушков

Санкт-Петербург 2007г.

- Области применения идемпотентной алгебры:
 - задачи оптимизации и оптимального управления,
 - задачи классической механики и экономики,
 - задачи синхронизации различных процессов,
 - описание технических, экономических, производственных моделей.

• Цели работы:

- изучение методов решения систем линейных
- разработка алгоритмов решения СЛАУ,
- разработка програмных средств, включающих

- Области применения идемпотентной алгебры:
 - задачи оптимизации и оптимального управления,
 - задачи классической механики и экономики,
 - задачи синхронизации различных процессов,
 - описание технических, экономических, производственных моделей.

• Цели работы:

- изучение методов решения систем линейных алгебраических уравнений (СЛАУ) в идемпотентной алгебре,
- разработка алгоритмов решения СЛАУ,
- разработка програмных средств, включающих пользовательский интерфейс.

$$\mathbb{R}_{\varepsilon} = \left\{ \mathbb{R} \cup \left\{ \varepsilon = -\infty \right\}, \oplus, \otimes \right\},$$
 где
$$\begin{cases} x \oplus y = max(x, y), \\ x \otimes y = x + y. \end{cases}$$

- Свойства алгебраической структуры \mathbb{R}_{ε} :
 - коммутативность, ассоциативность, дистрибутивность \oplus относительно \otimes ,
 - существуют нейтральные элементы относительно ⊕ и ⊗,
 - существует обратный относительно ⊗,
 - идемпотентность $x \oplus x = x$,
 - свойство поглощения $x \otimes \varepsilon = \varepsilon \otimes x = \varepsilon$,
 - не существует обратного относительно \oplus .

Системы линейных алгебраических уравнений

- Общий вид систем: $A \otimes \mathbf{x} \oplus \mathbf{b} = C \otimes \mathbf{x} \oplus \mathbf{d}$.
- Стандартные методы решения неприменимы:
 - отсутствие обратного элемента относительно \oplus ,
 - отсутствие возможности сокращения,
 - уравнение $a \otimes x = b$ неоднозначно неразрешимо,
 - нельзя переносить через знак равенства.
- Возможные методы решения:
 - методы без участия дополнительных конструкций,
 - + решение в терминах \mathbb{R}_{ε} ;
 - методы с дополнительными конструкциями, метод симметризации,
 - возможность применения некоторых стандартных алгоритмов.

Известны методы решения следующих уравнений:

$$\bullet \ A \otimes \mathbf{x} = \mathbf{b}, A \in \mathbb{R}^{n \times m}_{\varepsilon},$$

решение: Если
$$\mathbf{b}\in L(A)$$
 — линейная оболочка \Rightarrow $\mathbf{x}=(\mathbf{b}^-\otimes A)^-$ — решение, но возможно не единственное, $a^-=-a,\ \varepsilon^-=\varepsilon;$

• $A \otimes \mathbf{x} \oplus \mathbf{u} = \mathbf{x}, \ A \in \mathbb{R}^{n \times n}, \ A$ — неразложимая матрица.

решение:
$$\mathbf{x} = \begin{cases} A^+ \otimes \mathbf{b}, \ \textit{если} \ det(A) < 0; \\ A^+ \otimes \mathbf{b} \oplus A^* \otimes \mathbf{v}, \mathbf{v} \in \mathbb{R}^n_{\varepsilon}, \ \textit{если} \ det(A) = 0; \\ \varepsilon, \ \textit{если} \ det(A) > 0. \end{cases}$$

$$A^*, A^+$$
 — вспомогательные матрицы, полученные из A , $\det(A) = \bigoplus_{m=1}^n tr(A^m), \quad tr(A) = \bigoplus_{i=1}^n a_{ii}$

Также можно решать уравнения вида:

$$A \otimes \mathbf{x} = \lambda \otimes \mathbf{x}$$
. $A \otimes \mathbf{x} \oplus \mathbf{b} = C \otimes \mathbf{x}$.

Группа ученых INRIA (F. Baccelli, G. Cohen, Olsder G. J.)(1992) предложила расширить множество \mathbb{R}_{ε} .

Был применен метод присоединения обратных элементов.

$$\bullet \begin{cases}
(x', x'') \oplus (y', y'') = (x' \oplus y', x'' \oplus y''), \\
(x', x'') \otimes (y', y'') = (x'y' \oplus x''y'', x'y'' \oplus x''y'),
\end{cases}$$

- $x = (x', x'') \Leftrightarrow \ominus x = (x'', x'),$
- $x \nabla y$ (x балансирует y), если $x' \oplus y'' = x'' \oplus y'$.

Но ∇ не является отношением эквивалентности, так как \oplus не удовлетворяет свойству сокращения.

Модифицированное отношение эквивалентности:

$$(x',x'')\mathcal{R}(y',y'')\Leftrightarrow egin{cases} x'\oplus y''=x''\oplus y', \ \text{если}\ x'\neq x'',y'\neq y'', \ (x',x'')=(y',y''), \ \text{иначе}. \end{cases}$$

Симметризацией \mathbb{S} называется $\mathbb{R}^2_{\varepsilon}/\mathcal{R}$.

S можно разбить на три множества классов:

$$\begin{cases} S^{\oplus} : (t, \varepsilon) = \{(t, x'') \mid x'' < t\}; \\ S^{\ominus} : (\varepsilon, t) = \{(x', t) \mid x' < t\}; \\ S^{\bullet} : (t, t) = \{(t, t)\}. \end{cases}$$

Искомое расширение: $\{\mathbb{S}, \oplus, \otimes, \ominus, \nabla\}$

 $\mathbb{R}_{\varepsilon} \hookrightarrow \mathbb{S}$: $t \in \mathbb{R}_{\varepsilon} \longleftrightarrow (t, \varepsilon) \in \mathbb{R}_{\varepsilon}^2$ вложение сохраняет операции \oplus , \otimes , $(\cdot)^{-1}$ (взятие обратного относительно \otimes).

В \mathbb{S} нет обратного относительно \oplus , но:

$$\checkmark \forall a \in \mathbb{S} \ a \ominus a \nabla \varepsilon; \qquad \checkmark \ a \nabla b, c \nabla d \Rightarrow a \oplus c \nabla b \oplus d;$$

$$\checkmark \ a \nabla b \Leftrightarrow a \ominus b \nabla \varepsilon; \qquad \checkmark \ a \nabla b \Rightarrow a \otimes c \nabla b \otimes c;$$

поэтому вместо решения линейных систем целесообразно рассматривать уравнения линейного баланса.

В работах группы INRIA показано:

$$\mathbf{x}$$
 — решение $(A \ominus C) \otimes \mathbf{x} \nabla (\mathbf{d} \ominus \mathbf{b}) \varepsilon$ и $\mathbf{x} \in \mathbb{S}^{\oplus}, \Leftrightarrow \mathbf{x}$ — решение $A \otimes \mathbf{x} \oplus \mathbf{b} = C \otimes \mathbf{x} \oplus \mathbf{d}$ в \mathbb{R}_{ε} .

Благодаря свойствам S:

- разрешимость уравнения $a \otimes x \oplus b \ \nabla \ \varepsilon$,
- ullet возможность переноса $a \nabla b \Leftrightarrow a \ominus b \nabla arepsilon$,
- подстановка: $x \nabla a, c \otimes x \nabla b \Rightarrow c \otimes x \nabla b$,
- транзитивность: $a\nabla x, x\nabla b, x \in \mathbb{S}^{\vee} \Rightarrow a\nabla b,$
- ullet приведение баланса: $x \nabla y$, $x,y \in \mathbb{S}^{\vee} \Rightarrow x = y$,

для уравнений линейного баланса применима теорема Крамера (с классическим определителем).

Разработаны:

- библиотека классов:
 - классы объектов идемпотентной алгебры,
 - переопределенные операции ⊕ и ⊗,
 - реализованы методы решения уравнений:
 - $\bullet A \otimes \mathbf{x} = \mathbf{b},$
 - $A \otimes \mathbf{x} \oplus \mathbf{u} = \mathbf{x}$,
 - $A \otimes \mathbf{x} \oplus \mathbf{b} = C \otimes \mathbf{x} \oplus \mathbf{d}$;
- пользовательский интерфейс:
 - формы для задания указанных видов уравнений,
 - формы для проведения матричных вычислений,
 - файл помощи.

Библиотека классов включает в себя:

- ullet класс element, представляющий элемент из $\mathbb{R}^2_{\varepsilon}$:
 - переопределены операции + и * в соответствии с определениями ⊕ и ⊗,
 - определены методы сравнения;
- класс matrix, представляющий матрицу элементов из \mathbb{R}^2 :
 - переопределены операции ⊕ и ⊗ для матриц,
 - реализованы дополнительные методы работы с матрицами;
- класс calculator:
 - определены методы решения СЛАУ различных видов,
 - реализованы дополнительные методы работы с несколькими матрицами.

Пользовательский интерфейс

Среда: C++ Builder. Тип: многооконное приложение.

Рассмотрим решения двух систем различного типа. Системы эквивалентны \Rightarrow решения совпадают.

В рамках дипломной работы:

- изучены методы решения уравнений вида:
 - $A \otimes \mathbf{x} = \mathbf{b}$,
 - $\bullet \ A \otimes \mathbf{x} \oplus \mathbf{u} = \mathbf{x},$
 - $A \otimes \mathbf{x} \oplus \mathbf{b} = C \otimes \mathbf{x} \oplus \mathbf{d}$;
- разработаны программные средства для решения уравнений:
 - библиотека классов,
 - пользовательский интерфейс.