Est-ce que le motif σ est dans la permutation π

1 Le problème

Étant donné une permutations π de n et une permutation σ de k < n, on se demande si le motif σ apparaît à l'intérieur de la permutation π dans le sens discuté cette après-midi.

Par exemple si

$$\pi = 10\ 1\ 4\ 8\ 7\ 5\ 6\ 2\ 3\ 9$$
 et $\sigma = 4\ 1\ 2\ 3$ pos = 1 2 3 4 5 6 7 8 9 10

alors σ apparaît à l'intérieur de la permutation π à la position (1,2,3,4) (i.e σ_1 à la position 1, σ_2 à la position 2, σ_3 à la position 3 et σ_4 à la position 4). Ce n'est pas la seule occurrence de σ dans π . σ apparaît aussi aux positions suivantes: $\{(1,2,3,5),(1,2,3,6),(1,2,3,7),(1,2,3,10),(4,6,7,10),(4,8,9,10)\}$

2 L'algorithme brute force

On regarde pour chaque k-tuplet de position dans π , on regarde si on a une occurrence de siqma.

3 L'idée pour réduire le temps de calcul

Pour la permutation π et le motif σ , on calcul deux *codes*. Intuitivement, pour une position i dans une permutation π , le code gauche (resp. droit) pour cette position est simplement le nombre d'éléments plus grand (resp. plus petit) que π_i à sa gauche (resp. sa droite). Plus formellement, on a

Definition 1. Étant donné une permutation $\pi = \pi_1 \dots \pi_n$, le code gauche de l'élément π_i de π , dénoté $cg(\pi_i)$, est

$$cg(\pi_i) = |\{\pi_i \mid \pi_i > \pi_i \text{ and } 0 \le j \le i-1\}|, \text{ for } 1 \le i \le n,$$

De façon similaire, le code droit de l'élément π_i de π , dénoté $cd(\pi_i)$, est

$$cd(\pi_i) = |\{\pi_i \mid \pi_i < \pi_i \text{ and } i+1 \le j \le n+1\}|, \text{ for } 1 \le i \le n.$$

Le code gauche (resp. droit) d'une permutation π est alors défini comme la suite des cg (resp. cd) de ces éléments.

L'idée est d'utiliser ces codes pour réduire le nombre de positions dans π où on peut possiblement trouver notre motif.

Voici les étapes de cette idée:

1. Calculer les codes gauche et droit de la permutation et du motif Par exemple, on a les codes gauche et droit suivants pour π et les motifs σ et ρ :

2. Regarder pour chaque position de π si cette position pourrait être une position pour σ_i , $1 \leq i \leq k$. Une position j de π peut être une position pour σ_i si $cg(\pi_j) > cg(\sigma_i)$ et $cd(\pi_j) > cd(\sigma_i)$. Dans le tableau ci-dessous, la ligne $pos(\sigma)$ (resp. $pos(\rho)$) contient pour chaque position de π l'ensemble des positions de σ (resp. ρ) pouvant possiblement être correctes.

3. à suivre