DSE 算法测试

1. 测试函数

1. Goldstein-price Function.

该函数表达式如下所示,在测试过程中选择定义域为 $x_{i=1,2} \in [-2,2]$ 。并且从该函数图像中可以看出其具有多个局部最小值。

$$f(\mathbf{x}) = \left[1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)\right] \times \left[30 + (2x_1 - 3x_2)^2 (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)\right]$$

2. Rastrigin Function

该函数表达式如下所示,在测试过程中选择定义域为 $x_{i=1,2} \in [-5,5]$ 。并且从该函数图像中可以看出其具有多个局部最小值。(d=2)

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i)]$$

图 1 测试函数图像

2. DSE 算法及训练策略

1. Naive_search

该算法是在拿到题目以后最直接的思路,即通过遍历定义域,暴力枚举出所有的结果以求得函数的最小值。只要遍历的步幅足够小就能够得到足够准确的结果。所以在最开始测试的时候对两个函数都选择了 0.001 的步幅进行遍历,虽然可以得到较为准确的结果,但是该方法耗时太长,是目前所有算法里耗时最长的。不过考虑到 0.001 的步幅可能存在冗余,就将步幅调整到了 0.01 进行测试发现此时得到的结果仍然准确,同时消耗时间明显缩短。其实后来发现即使把步幅调整到 0.1 也能得到一个准确的结果,因为这里测试的两个函数都有很特殊的性质,都是在整数点取得最小值,所以对于穷举法而言必然可以准确的得到它们的最小值。由于该方案过于特殊在统计运算时间时还是采用了步幅为 0.01 的测试结果。

2. Grid search

该算法核心思想与 Naïve_search 一致都是通过遍历得到函数最小值,相比于 Naïve_search 速度基本相当甚至还要略慢一些,是耗时较长的算法。在测试过程中选用步幅为 0.01。

3. Random_search

从该算法开始后面将要介绍的四种算法基本都是各有各的特点了,同时速度也较快,但是精度其实都有待考量。

Random_search 的核心思想是对输入的 x_i 进行随机取值比较,通过大量的随机取值得到函数的最小值,具有一定的随机性,但速度较快。

测试过程中选择进行 1000 次测试。对两个函数各进行了 8 次测量,结果如下所示。可以看到对于 Goldstein_price 函数,误差小于 0.1,耗时集中在 0.074s 左右。但对于 Rastrigin 函数,相较于准确值 0 而言,误差则较大了,耗时集中在 0.082s 左右。

Goldstein_price	times
3	0.079004s
3. 0925	0. 081363s
3. 0254	0.074438s
3. 0427	0.074972s
3. 0254	0.072248s
3	0.074495s
3. 0427	0.074478s
3. 0925	0.07404s

表格 1 Goldstein price

Rastrigin	times
0. 178	0.082369s
1. 4712	0.081462s
0. 3561	0.082834s
0. 2573	0.083447s
0.0397	0.079583s
0. 178	0.085398s
1. 355	0.084990s
0. 6315	0. 083225s

表格 2 Rastrigin

4. Greedy

贪心算法的思路与 SGD 算法的思路较为类似都是采用了所谓寻找"下山路径"的方式,不同的是 SGD 算法是根据导数严格下降,而贪心算法则是对各个方向寻找最小值。因为本次用于测试的函数都是二元函数,所以在编写贪心算法的时候采用了四个方向进行比较,以寻找"下山路径"。不过与 SGD 一样也会存在只能找到局部最小值

而不是全局最小值的问题。在测试时,采用的步幅为 0.01,起始点则随机生成。测试结果如下所示,同样对两个函数进行 8 次测试。从下表结构可以看到和预期的一样,贪心算法虽然很快但是很容易陷入局部最小值中。

Goldstein_price	times
30. 1963	0.001619s
30	0.001812s
30. 1963	0.003573s
94. 7619	0.000754s
30	0.001773s
840	0.000949s
3	0.006260s
95. 5089	0.000283s

表格 3 Goldstein_price

Rastrigin	times
12. 9391	0.000962s
24. 8785	0.000581s
24. 8785	0.000859s
16. 9191	0.000994s
28. 8579	0.000444s
8. 9593	0.001379s
0	0.000826s
19. 8991	0.001075s

表格 4 Rastrigin

5. Simulated_Annealing

该算法原理借鉴了固体退火原理,随着固体温度的下降固体内能 会不断减小,直到达到室温不在降低,此时固体的内能最小。

模拟退火算法从某一个高温点出发,在预设的定义域中产生一个 微扰量如果经过微扰后的函数值小于原函数值则在此状态的基础上 继续进行微扰比较函数值;如果经过微扰后的函数值大与原函数值则

通过一定的概率准则进行转移。在本次测试过程中,采用的概率准则函数如下所示:

$$p = \begin{cases} 1, E(x_{new}) < E(x_{old}) \\ exp(-\frac{E(x_{new}) - E(x_{old})}{T}), E(x_{new}) \ge E(x_{old}) \end{cases}$$

其中 T 为冷却进度表函数,如下所示:

$$T(t) = \frac{T_0}{(1+t)}$$

其中 T_0 为初始温度,按照经验而言初始温度越大,获得准确解的概率越大,在测试时取 $T_0 = 50$ 。对于两个函数各进行了 8 次测量,测试是迭代 5000 次,微扰小于 0.5。结果如下表所示。

Goldstein_price	times
3.0016	0.062122s
3. 0501	0.057004s
3. 0113	0.059840s
3. 0022	0.058630s
3.0049	0.060069s
3. 0004	0.061014s
3. 0036	0.066647s
3. 0316	0.061491s

表格 5 Goldstein_price

Rastrigin	times
0. 266	0. 375656s
0.0756	0. 375557s
1. 2225	0. 374722s
1.0473	0. 375035s
0. 9951	0. 381969s
0. 3452	0. 376223s
0. 3229	0. 373914s
1. 286	0. 375985s

表格 6 Rastrigin

从以上结果来看,退火算法在两个函数的测试结果中出现了明显的差异,对于 Goldstein_price 函数而言精度还可以,但是对于 Ras-trigin 而言精度就较低了,根据两个函数的图像进行分析推测出 现这种现象的原因在于 Rastrigin 函数就有较多的局部最小值,所以 会导致测量难度变大。

6. Genetic_Algorithm

该算法是本次测试的六种算法中最复杂的一个。在实现的时候参 考了<u>这篇博客</u>的代码。

遗传算法起源于对生物系统所进行的计算机模拟研究,它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说,其本质是一种高效、并行、全局搜索的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最佳解。遗传算法寻优迭代流程如下图所示:

其中计算个体的适应度即计算函数值,根据适应度排序在该工程中就是根据数值由小到大排序。选择则是根据轮盘赌法选择最优解。产生新的迭代数则是采用交叉,复制,变异产生。测试过程中选择的交叉概率为 0.3,变异概率为 0.05,原本是准备测试 8 次,但是在测试过程中发现出现了陷入局部最小值的问题,为测试陷入局部最小值的概率增大了实验次数为 15 次,但对于 Rastrigin 还是进行了 8 次测量,因为发现还是有较大概率陷入局部最小值。

Goldstein_price	times
3.0088	0. 693728s
3.0009	0. 699202s
30. 2844	0. 697807s
3. 0041	0. 722031s
3. 0457	0.688009s
3. 0221	0. 708471s
3. 0717	0. 698466s
3. 1293	0. 724919s
3. 0502	0. 693394s
3. 0584	0. 702063s
3. 0078	0.710753s
3. 7425	0. 700993s
3. 2721	0. 699582s
3. 0858	0. 698385s
30. 7546	0. 732359s

表格 7 Goldstein_price

Rastrigin	times
0.0008	0.722801s
0.0008	0.690941s
0. 1134	0. 693736s
0. 0137	0. 702615s
1.0638	0.744115s
1.004	0.697986s
0.0008	0. 700793s
1.015	0.740029s

表格 8 Rastrigin