Topos de la mesure créatrice (measurement as creation)

Idée directrice

Une mesure quantique n'est **pas** un « effondrement » destructif d'information, mais un **acte de création** : elle **enrichit** l'univers des vérités disponibles en raffinant le contexte logique — **sans** présupposer un temps externe. Formellement, une mesure est modélisée par un *morphisme géométrique* qui transforme le topos des états *avant* la mesure en un topos *après* la mesure, où le résultat devient **décidable** (booléen) dans le contexte pertinent. Cette opération est **atemporale** (pas de paramètre de temps) et s'accorde avec une lecture de l'équation de Wheeler–DeWitt.

1 Cadre de départ

- Topos quantique \mathcal{E} (par exemple presheaves contravariants sur V(A)) avec :
 - spectral presheaf Σ ,
 - classificateur Ω (Heyting),
 - valuation interne $\mu : \operatorname{Sub}(\Sigma) \to [0,1]^{\leftrightarrow}$ (règle de Born internalisée).
- Un événement de mesure est représenté par un sous-objet $U \hookrightarrow \Sigma$ (la proposition « le résultat appartient à U »).

2 Mesure = localisation + slicing (création de décidabilité)

On associe à U deux étapes canoniques:

1) Slicing (conditionnement interne)

On passe au slice topos \mathcal{E}/U , qui internalise le fait que l'univers est considéré sous la condition U.

- La valuation se conditionne : $\mu \rightsquigarrow \mu_{|U}$ sur $Sub(\Sigma)_{|U}$.
- Les vérités deviennent contextuelles relatives à <math>U.

2) Localisation logique (sheafification via Lawvere-Tierney)

On choisit une topologie interne $j_U: \Omega \to \Omega$ rendant $d\acute{e}cidable$ (stable/fermée) la proposition U.

- On forme le sous-topos $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$ avec foncteur de sheafification $a_{j_U}: \mathcal{E}/U \to \operatorname{Sh}_{j_U}(\mathcal{E}/U)$ (gauche exacte).
- Dans $\operatorname{Sh}_{j_U}(\mathcal{E}/U)$, la proposition « U » est **booléenne** (on a créé la décidabilité du résultat).

Définition (Mesure créatrice). Une mesure créatrice est le morphisme géométrique composé

$$\mathcal{E} \xrightarrow{/U} \mathcal{E}/U \xrightarrow{a_{j_U}} \mathcal{E}_U^{\text{meas}} := \operatorname{Sh}_{j_U}(\mathcal{E}/U),$$

où j_U est choisi de sorte que U devienne **décidable** dans $\mathcal{E}_U^{\mathrm{meas}}$.

Intuition. Le passage $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ crée un nouvel univers logique où le résultat est tranché dans le bon contexte — sans violer Kochen-Specker (on ne fabrique pas une section globale de Σ dans \mathcal{E} ; on travaille dans \mathcal{E}/U puis on booléanise localement).

3 Création d'information (indépendante de l'entropie)

On distingue information logique contextuelle et entropie thermodynamique.

Information logique créée

Le choix d'un résultat U raffine la Heyting-algèbre interne : on passe d'une valeur de vérité ouverte (« possible ») à une valeur décidable (oui/non) dans $\mathcal{E}_U^{\text{meas}}$. On peut quantifier ce gain (à la Shannon/algorithmique) par

$$\Delta \mathcal{I}(U) := -\log \boldsymbol{\mu}(U)$$
 (en bits, interne via $[0,1]^{\leftrightarrow}$).

C'est un gain sémantique (raffinement de la vérité), pas un coût thermodynamique.

Indépendance vis-à-vis de l'entropie

L'opération $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ est logique/catégorique. Elle n'implique pas, en soi, de variation de l'entropie de von Neumann d'un état physique fermé.

4 Axiomes (CM) pour la mesure créatrice

- (CM1) Atemporalité. Le foncteur $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ ne dépend d'aucun paramètre temporel externe.
- (CM2) Monotonie de l'information. Si $U \leq V$ (raffinement), alors $\Delta \mathcal{I}(U) \geq \Delta \mathcal{I}(V)$.
- (CM3) Compatibilité Born interne. $\mu_{|U}(X) = \mu(X \wedge U)/\mu(U)$.
- (CM4) Localité contextuelle. La décidabilité créée par j_U est locale au slice \mathcal{E}/U ; elle n'engendre pas de point global de Σ dans \mathcal{E} .
- (CM5) Naturalisme (covariance RG). Sous changement de cadre (diffeomorphismes, raffinement de région, changement de contexte abélien), la construction est *pseudonatu-* relle (fonctorielle) : elle ne dépend pas d'un fond temporel.

5 Lecture « hors-temps » et Wheeler-DeWitt

Dans une théorie où les états satisfont une contrainte globale

$$\widehat{\mathcal{H}}\Psi=0.$$

(Wheeler-De Witt), l'« évolution » n'est pas temporelle mais un ordre de raffinement des vérités :

- L'univers interne des solutions est un objet $\mathcal{S} = \ker(\mathcal{H})$ dans \mathcal{E} .
- Une mesure créatrice sélectionne un sous-objet décidable $\mathcal{S}_U \hookrightarrow \mathcal{S}$ via $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$.
- Ce passage ne fait pas évoluer Ψ dans le temps; il raffine la description de manière atemporelle : on conditionne la vérité de propositions sur S.

Moralité. Le sens de Wheeler-DeWitt est préservé : la dynamique fondamentale est sans temps ; ce que l'on appelle « devenir » est la montée dans le treillis des contextes (mesures créatrices) qui augmentent l'information logique disponible.

6 Interface avec CFS

Dans CFS, ρ et les closed chains A_{xy} codent la causalité. Avec la mesure créatrice :

- Le résultat U (proposition sur spectres/invariants) devient **décidable** dans $\mathcal{E}_U^{\mathrm{meas}}$.
- Les types causaux (time-/space-/light-like) sont des *prédicats internes* qui, une fois localisés, s'évaluent sans ambiguité pour le contexte mesuré.
- L'action causale interne $\mathbf{S}[\boldsymbol{\mu}]$ s'évalue conditionnellement et peut être réoptimisée dans $\mathcal{E}_{U}^{\text{meas}}$ (lecture : back-reaction informationnelle).

7 Exemple minimal (qubit, σ_z)

- \mathcal{E} : presheaves sur les contextes $\{\langle \sigma_x \rangle, \langle \sigma_y \rangle, \langle \sigma_z \rangle\}$.
- Résultat $U = {\sigma_z = +1} \hookrightarrow \Sigma$.
- Slice \mathcal{E}/U : on conditionne toutes les propositions par U.
- j_U : topologie interne rendant U décidable.
- $\mathcal{E}_U^{\text{meas}}$: topos où « $\sigma_z = +1$ » est **vrai booléen** (localement), sans fabriquer de vérité globale pour σ_x, σ_y .
- Information créée :

$$\Delta \mathcal{I}(U) = -\log \boldsymbol{\mu}(U).$$

Résumé

Une mesure créatrice est un morphisme géométrique $\mathcal{E} \to \mathcal{E}_U^{\text{meas}}$ (slicing + localisation) qui **rend décidable** le résultat dans le contexte adéquat, **augmente l'information logique** (sans préjuger de l'entropie) et **respecte l'atemporalité** attendue d'une théorie contrainte de type Wheeler–DeWitt.