

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

TRANSCEIVER

MODEL NUMBER: TR-201

FCC ID: 2AB8I-TR-20-214

IC ID: 20949-TR20214

REPORT NUMBER: 15U21185-E1V3

ISSUE DATE: FEBRUARY 11, 2016

Prepared for

P.O. BOX 360 TYBEE ISLAND, GA 31328 U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

DATE: FEBRUARY 11,2016 IC ID: 20949-TR20214

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	01/11/16	Initial Issue	H. Mustapha
V2	02/05/16	Updated FCC ID Updated IC reference to RSS-247 Issue 1 Updated reference to ANSI C63.10-2013 in section 2 Updated section 5.2 to indicate low frequency at 910.2 MHz Updated average power measurements in section 8.7 Updated section 9.1 with test procedure	H. Mustapha
V3	02/11/16	Updated calibration date for Micro-Tronics HPM50114 filter Updated output power value for low channel on page 27 Updated section 9 by removing reference to KDB 558074 from results table for average measurements	H. Mustapha

TABLE OF CONTENTS

1.	A٦	TTESTATION OF TEST RESULTS	. 5
2.	TE	EST METHODOLOGY	. 7
3.	FA	ACILITIES AND ACCREDITATION	. 7
4.	C	ALIBRATION AND UNCERTAINTY	. 7
	4.1.	MEASURING INSTRUMENT CALIBRATION	. 7
	4.2.	SAMPLE CALCULATION	. 7
•	4.3.	MEASUREMENT UNCERTAINTY	. 8
5.	E	QUIPMENT UNDER TEST	. 9
	5.1.	DESCRIPTION OF EUT	. 9
	5.2.	MAXIMUM OUTPUT POWER	. 9
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	. 9
	5. <i>4</i> .	SOFTWARE AND FIRMWARE	. 9
	5.5.	WORST-CASE CONFIGURATION AND MODE	. 9
	5.6.	DESCRIPTION OF TEST SETUP	10
6.	TE	EST AND MEASUREMENT EQUIPMENT	12
7.		EASUREMENT METHODS	
8.		NTENNA PORT TEST RESULTS	
	8.1.		
•		1.1. ON TIME AND DUTY CYCLE RESULTS	14
	_	1.2. DUTY CYCLE PLOTS	
ć		20 dB and 99% BANDWIDTH20 dB BANDWIDTH	
		2.2. 99% BANDWIDTH	
ě	3.3.	CARRIER FREQUENCY SEPARATION	21
ě	3. <i>4</i> .	NUMBER OF HOPPING FREQUENCIES	23
ě	3. <i>5</i> .	AVERAGE TIME OF OCCUPANCY	25
ě	B. <i>6</i> .	PEAK OUTPUT POWER	27
ě	3. <i>7</i> .	AVERAGE POWER	30
ć	8.8.	CONDUCTED SPURIOUS EMISSIONS	31
9.	R	ADIATED TEST RESULTS	36
,	9.1.	LIMITS AND PROCEDURE	36
,	9.2.	TRANSMITTER ABOVE 1 GHz	37
,	9.3.	WORST-CASE BELOW 1 GHz	43

Page 3 of 49

10.	SETUP	P PHOTOS4	45
		NTENNA PORT CONDUCTED RF MEASUREMENT SETUP4	
10.	2. RA	ADIATED RF WORST CASE PHOTO SETUP	46
10	3 RA	ADIATED RE MEASUREMENT SETUP	48

DATE: FEBRUARY 11,2016 IC ID: 20949-TR20214

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: NEXT CENTURY SUBMETERING SYSTEMS, LLC

P.O. BOX 360

TYBEE ISLAND, GA 31328, U.S.A.

EUT DESCRIPTION: TRANSCEIVER

MODEL: TR-201

SERIAL NUMBER: BA000FD0 (Radiated sample)

BA000FCF (Conducted sample)

DATE TESTED: NOVEMBER 06 to 17, 2015

FEBRUARY 5, 2016

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-247 Issue 1 Pass

INDUSTRY CANADA RSS-GEN Issue 4 Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

Huda Mustapha

HUDA MUSTAPHA PROJECT LEAD UL Verification Services Inc. JUDE SEMANA Lab EMC ENGINEER UL Verification Services Inc.

FRANK IBRAHIM PROGRAM MANAGER UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, DA 00-75, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA

47173 Benicia Street	47266 Benicia Street
☐ Chamber A	☐ Chamber D
☐ Chamber B	☐ Chamber E
	☐ Chamber F
	☐ Chamber G
	☐ Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

DATE: FEBRUARY 11,2016

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: FEBRUARY 11,2016

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Transceiver, submetering RF device designed to collect data from customer's devices and send them to their cloud servers.

The transceiver is a frequency hopping system operating in the 902-928 MHz band and operated by CRC123 3v battery.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
910.2-920	2GFSK	19.48	88.72

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an PCB antenna, with a maximum gain of 1.25 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was PuTTY, rev. 0.63.0.0.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1 GHz emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations (X, Y and Z). It was determined that X orientation was worst case. All final measurements were taken in X orientation.

The EUT was operated by CRC123 3v battery; therefore AC Mains Line Conducted was not applicable.

DATE: FEBRUARY 11,2016

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
Laptop (Remote)	Lenovo	T420	4236B92	N/A			
AC Adapter (Remote)	Lenovo	45N0121	11S45N0121Z1ZHXU242DMN	N/A			
Remote Controller (Remote)	Next Century	TR-201	BA000F35				

I/O CABLES

	I/O Cable List						
Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks	
No		ports	Туре		(m)		
1	AC	1	US115V	Unshielded	1		
2	DC	1	VDC	Unshielded	1.5		
3	USB	1	USB	Unshielded	1		

TEST SETUP

The EUT was connected to a host laptop computer through USB Remote Controller wirelessly during the tests (See setup diagram).

The USB Remote Controller was used to remotely set testing into different test modes. It was used to change the testing devices: Frequency (Channel), Tx Power Levels, Active antenna, FEMs, Modulation.

The PuTTY Test software exercised the radio card.

DATE: FEBRUARY 11,2016

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	Asset	Cal Due
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/16
Antenna, Horn, 18GHz	ETS-Lindgren	3117	C01006	01/15/16
RF Preamplifier, 100KHz -> 1300MHz	НР	8447D	T10	01/06/16
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/16
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15
Spectrum Analyzer 3kHz - 44GHz	Agilent	N9030A	907	01/16/16
EMI Test Receiver	Rohde & Schwarz	ECSI 7	212	08/07/16
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/16
Power Meter	Agilent	N1911A	1268	06/06/16
Power Sensor	Agilent	N1921A	1223	06/16/16
Filter, Highpass 1.5GHz	Micro-Tronics	HPM50114	T0	11/17/15
Radiated Software	UL	UL EMC	Ver 9.5, July	/ 24, 2015
Conducted Software	UL	UL EMC	Ver 9.5, Jun	e 26, 2015
Antenna Port Software	UL	UL RF	Ver 3.6, Oct	ober 26, 2015

DATE: FEBRUARY 11,2016

7. MEASUREMENT METHODS

Radiated emissions: ANSI C63.10-2013, Sections 6.5 and 6.6.

Conducted spurious emissions: ANSI C63.10-2013, Sections 7.8.8.

Occupied bandwidth (20 dB): ANSI C63.10-2013, Sections 6.9.2.

Occupied bandwidth (99% dB): ANSI C63.10-2013, Sections 6.9.3.

Band-edge measurements for RF conducted emissions: ANSI C63.10-2013, Sections 7.8.6.

Carrier frequency separation: ANSI C63.10-2013, Sections 7.8.2.

Number of hopping frequencies: ANSI C63.10-2013, Sections 7.8.3.

Average time of occupancy (dwell time): ANSI C63.10-2013, Sections 7.8.4.

Peak output power: ANSI C63.10-2013, Sections 7.8.5.

On time and duty cycle: ANSI C63.10-2013, Section 11.6.

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

8.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle
	В		x	Cycle	Correction Factor
	(msec)	(msec)	(linear)	(%)	(dB)
902-928 MHz Band/2GFSK	100.000	100	1.000	100.00%	0.00

8.1.2. DUTY CYCLE PLOTS

DATE: FEBRUARY 11,2016

8.2. 20 dB and 99% BANDWIDTH

8.2.1. 20 dB BANDWIDTH

<u>LIMIT</u>

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

RESULTS

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	910.20	38.899
Middle	915.00	38.805
High	920.00	38.903

DATE: FEBRUARY 11,2016

8.2.2. 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
Low	910.20	37.4209
Middle	915.00	37.7801
High	920.00	37.4872

DATE: FEBRUARY 11,2016

8.3. CARRIER FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-247 Clause 5.1 (2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

DATE: FEBRUARY 11,2016

RESULTS

HOPPING FREQUENCY SEPARATION

8.4. NUMBER OF HOPPING FREQUENCIES

<u>LIMIT</u>

FCC §15.247 (a) (1) (i)

IC RSS-247 Clause 5.1(4)

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

RESULTS

Normal Mode: 50 Channels observed.

DATE: FEBRUARY 11,2016

AVERAGE TIME OF OCCUPANCY 8.5.

LIMIT

FCC §15.247 (a) (1) (i)

IC RSS-247 Clause 5.1(4)

For frequency hopping systems in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period.

RESULTS

Mode of Operation	Pulse Width (msec)	Number of Pulses in 20 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)
2GFSK	371.6	1	0.372	0.4	-0.028

DATE: FEBRUARY 11,2016

PULSE WIDTH

NUMBER OF PULSES IN 20 SECOND OBSERVATION PERIOD

8.6. **PEAK OUTPUT POWER**

LIMIT

§15.247 (b) (2)

For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247 Clause 5.4 (1)

For frequency hopping systems operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Channel	Frequency	Output Power	Directional Gain	Limit	Margin
	(MHz)	(dBm)	(dBi)	(dBm)	(dB)
Low	910.2	19.48	1.25	30	-10.52
Middle	915.0	19.30	1.25	30	-10.71
High	920.0	19.19	1.25	30	-10.81

DATE: FEBRUARY 11,2016

AVERAGE POWER 8.7.

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Average Power				
	(MHz)	(dBm)				
Low	910.2	19.3				
Middle	915.0	19.2				
High	920.0	19.0				

DATE: FEBRUARY 11,2016

8.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-247 Clause 5.5

Limit = -20 dBc

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 3MHz video bandwidth with average detector for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

DATE: FEBRUARY 11,2016

TRANSMITTER ABOVE 1 GHz 9.2.

LOW CHANNEL

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.731	45.58	PK2	32.4	-22	55.98	-	-	74	-18.02	304	141	Η
		38.48	MAv1	32.4	-22	48.88	54	-5.12	-	-	304	141	Н
3	* 3.641	44.64	PK2	32.9	-30.2	47.34	-	-	74	-26.66	326	336	Н
		38.04	MAv1	32.9	-30.2	40.74	54	-13.26	-	-	326	336	Н
5	* 7.281	44.65	PK2	35.6	-27.3	52.95	-	-	74	-21.05	120	328	V
		39.84	MAv1	35.6	-27.4	48.04	54	-5.96	-	-	120	328	V
6	* 8.192	46.21	PK2	35.8	-26.6	55.41	-	-	74	-18.59	252	364	V
		42.41	MAv1	35.8	-26.6	51.61	54	-2.39	-	-	252	364	V
1	1.821	44.02	Avg	30.4	-22.6	51.82	-	-	-	ı	0-360	200	Η
4	5.461	42.4	Avg	34.6	-29.6	47.4	-	-	-	-	0-360	200	V

^{* -} indicates frequency in CFR15.205/IC8.10 Restricted Band

Avg - Video bandwidth < Resolution bandwidth

PK2 - Method: Maximum Peak MAv1 - Maximum RMS Average DATE: FEBRUARY 11,2016

⁻ Compliance for emissions in non-restricted bands is shown under conducted spurious emissions.

MID CHANNEL

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.745	46.4	PK2	32.4	-21.9	56.9	-	-	74	-17.1	298	151	Н
		37.78	MAv1	32.4	-21.9	48.28	54	-5.72	-	-	298	151	Н
3	* 4.575	43.25	PK2	33.8	-29.6	47.45	-	=	74	-26.55	113	329	Н
		35.79	MAv1	33.8	-29.6	39.99	54	-14.01	-	-	113	329	Н
6	* 8.235	44.98	PK2	35.8	-26.8	53.98	-	-	74	-20.02	269	100	V
		40.89	MAv1	35.8	-26.8	49.89	54	-4.11	-	-	269	100	V
1	1.83	41.79	Avg	30.5	-22.6	49.69	-	-	-	-	0-360	200	Н
4	5.49	42.43	Avg	34.6	-29.5	47.53	-	-	-	-	0-360	100	V
5	6.405	41.59	Avg	35.5	-27.7	49.39	-	-	-	-	0-360	200	V

^{* -} indicates frequency in CFR15.205/IC8.10 Restricted Band

Avg - Video bandwidth < Resolution bandwidth

PK2 - Method: Maximum Peak MAv1 - Maximum RMS Average DATE: FEBRUARY 11,2016

⁻ Compliance for emissions in non-restricted bands is shown under conducted spurious emissions.

HIGH CHANNEL

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.76	46.32	PK2	32.5	-21.9	56.92	-	-	74	-17.08	26	384	Н
		39.44	MAv1	32.5	-21.9	50.04	54	-3.96	-	-	26	384	Н
3	* 3.68	46.62	PK2	33	-29.7	49.92	-	-	74	-24.08	71	362	Н
		42.17	MAv1	33	-29.7	45.47	54	-8.53	-	-	71	362	Η
5	* 7.36	44.69	PK2	35.6	-26.5	53.79	-	-	74	-20.21	211	268	V
		40.85	MAv1	35.6	-26.5	49.95	54	-4.05	-	-	211	268	V
6	* 8.28	45.22	PK2	35.8	-26.5	54.52	-	-	74	-19.48	350	315	V
		40.63	MAv1	35.8	-26.5	49.93	54	-4.07	-	-	350	315	V
1	1.84	39.29	Avg	30.6	-22.6	47.29	-	-	-	-	0-360	100	Н
4	5.52	41.81	Avg	34.6	-29	47.41	-	-	-	-	0-360	100	V

^{* -} indicates frequency in CFR15.205/IC8.10 Restricted Band

Avg - Video bandwidth < Resolution bandwidth

PK2 - Method: Maximum Peak MAv1 - Maximum RMS Average DATE: FEBRUARY 11,2016

⁻ Compliance for emissions in non-restricted bands is shown under conducted spurious emissions.

9.3. **WORST-CASE BELOW 1 GHz**

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION

Radiated Emissions

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T185 (dB/m)	Amp/CbI (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 123.7338	27.78	Pk	14	-26	15.78	43.52	-27.74	0-360	100	Н
5	* 135.5275	29.36	Pk	13.4	-25.9	16.86	43.52	-26.66	0-360	100	V
1	30.2975	39.32	Pk	21.5	-27.2	33.62	40	-6.38	0-360	100	Н
4	38.33	41.17	Pk	15.5	-27.2	29.47	40	-10.53	0-360	100	V
3	415.1	28.68	Pk	15.7	-24.8	19.58	46.02	-26.44	0-360	200	Н
6	620.4	28.29	Pk	19	-24.6	22.69	46.02	-23.33	0-360	300	V
7	**915	111.19	Pk	22.2	-22.6	110.79	-	-	0-360	100	Н

^{* -} Indicates frequency in CFR15.205/IC8.10 Restricted Band ** Indicates fundamental frequency

Pk - Peak detector

DATE: FEBRUARY 11,2016