# **CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling**

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, Lei Li



#### Content

- Motivation
  - Constrained generation is useful
  - Constrained generation is difficult for current methods
- > Introduction
  - Metropolis-Hastings sampling
- Method
  - Stationary distribution
  - Proposal
  - Accept/Reject
- Experiment
  - Keywords2Sentence generation
  - Unsupervised paraphrase generation
  - Sentence correction

- > We often need to add constrains to sentence generation.
  - Hard constrains (eg. keyword2sentence)
    - Juice -> Brand natural juice, specially made for you

- > We often need to add constrains to sentence generation.
  - Hard constrains (eg. keyword2sentence)
     Juice -> Brand natural juice, specially made for you
  - Soft constrains (eg. paraphrase)
    The movie is a great success -> It is one of my favorite movies

> It's difficult to add constraints to sequential language models.



- Methods dedicated for constrained sentence generation can only handle a specific kind of constraints.
  - Grid Beam Search(GBS)<sup>1</sup>
  - Constrained Beam Search(CBS)<sup>2</sup>



Input: Rights protection should begin before their departure.

- Methods dedicated for constrained sentence generation can only handle a specific kind of constraints.
  - VAE-SVG<sup>3</sup>



- Current models don't perform well
  - LSTM w/ sep-B/F<sup>4</sup> generates
     independent backward and forward
     sequences from the given word.

Eg: demand -> this is what it does in <u>demand</u> is very necessary.



- > Current models don't perform well
  - LSTM w/ asyn-B/F<sup>4</sup> first generates the first half of a sentence and then generates another half conditioned on the first half.

Eg: player -> The best name of the <u>player</u> is not making a year.



- > Current models don't perform well
  - VAE<sup>5</sup> We can perform paraphrasing by
    - 1. Encode a sentence into a distributional representation
    - 2. Add some noise to the representation
    - 3. then decoding the disturbed representation.

Unfortunately, the generated sentences of this method is of low quality.



➤ We need a practical method for sentence generation under both hard and soft constraints! So we propose Constrained Generation by Metropolis-Hastings sampling (CGMH).

#### Introduction

➤ The main idea of CGMH is performing Metropolis-Hastings sampling directly in sentence space. The figure on the right illustrates CGMH by an example of generating advertisement from keywords.



# Introduction - Metropolis-Hastings Sampling

➤ Metropolis-Hastings(MH) sampling is a 2-step Markov Chain Monte Carlo (MCMC) algorithm



# Introduction - Metropolis-Hastings Sampling

- Metropolis-Hastings(MH) sampling is a 2-step Markov Chain Monte-Carlo (MCMC) algorithm
- ➤ MH first **proposes** a transition, and then **accepts or rejects** the transition. (Gibbs sampling is a special case of MH sampling which always accepts transitions.)





➤ We set the stationary distribution as:

$$\pi(x) = P(x) \cdot P_{\mathcal{C}}(x)$$

➤ We set the stationary distribution as:

$$\pi(x) = P(x) \cdot P_{\mathcal{C}}(x)$$

•  $P(x) = \prod_t P(x_t | x_{0:t-1})$  is the probability of sentence in a general-purpose language model.

➤ We set the stationary distribution as:

$$\pi(x) = P(x) \cdot P_{\mathcal{C}}(x)$$

- $P(x) = \prod_t P(x_t | x_{0:t-1})$  is the probability of sentence in a general-purpose language model.
- $P_C(x) = \prod_i P_C^i(x)$  is the indicator function showing whether constraints are satisfied.

➤ We set the stationary distribution as:

$$\pi(x) = P(x) \cdot P_{\mathcal{C}}(x)$$

- $P(x) = \prod_t P(x_t | x_{0:t-1})$  is the probability of sentence in a general-purpose language model.
- $P_C(x) = \prod_i P_C^i(x)$  is the indicator function showing whether constraints are satisfied.
- For different tasks, we use different  $P_C(x)$ :
  - Keywords2Sentence:  $P_C(x) = 1_{\{x \text{ contains the keywords}\}}$
  - Paraphrase:  $P_C(x) = 1 / P_C^{KW}(x) / P_C^{KW}(x) P_C^{SIM}(x)$
  - Correction:  $P_C(x) = 1 / P_C^{WMA}(x)$

## Method – Proposal

- We use MH algorithm to sample from  $\pi(x)$ 
  - From a sentence  $x_{t-1}$ , we propose a new sentence x' by replacement / insertion / deletion of a position from  $x_{t-1}$



# Method –Accept/Reject

Calculate the acceptance rate:

$$A(x'|x_{t-1}) = \min(1, \frac{\pi(x') \cdot g(x_{t-1}|x')}{\pi(x_{t-1}) \cdot g(x'|x_{t-1})})$$

# Method –Accept/Reject

• Calculate the acceptance rate:

$$A(x'|x_{t-1}) = \min(1, \frac{\pi(x') \cdot g(x_{t-1}|x')}{\pi(x_{t-1}) \cdot g(x'|x_{t-1})})$$

• Accept x' with probability  $A(x'|x_{t-1})$ 

# Method –Accept/Reject

Calculate the acceptance rate:

$$A(x'|x_{t-1}) = \min(1, \frac{\pi(x') \cdot g(x_{t-1}|x')}{\pi(x_{t-1}) \cdot g(x'|x_{t-1})})$$

• Accept x' with probability  $A(x'|x_{t-1})$ 



- ➤ Keywords2Sentence Generation
  - Aim: To generate fluent sentences containing the given set of words.
  - Dataset: A subset of One-Billion-Word Corpus (5M)

- ➤ Keywords2Sentence Generation
  - Aim: To generate fluent sentences containing the given set of words.
  - Dataset: A subset of One-Billion-Word Corpus (5M)
- ➤ Unsupervised Paraphrase Generation
  - Aim: To generate sentences with similar meaning of the given one.
  - Dataset: Quora(140k pairs of paraphrase sentences)

- ➤ Keywords2Sentence Generation
  - Aim: To generate fluent sentences containing the given set of words.
  - Dataset: A subset of One-Billion-Word Corpus (5M)
- ➤ Unsupervised Paraphrase Generation
  - Aim: To generate sentences with similar meaning of the given one.
  - Dataset: Quora(140k pairs of paraphrase sentences)
- > Sentence Correction
  - Aim: To correct the errors in the given sentence.
  - Dataset: A subset of One-Billion-Word Corpus (5M, base language model) and JFLEG(1501 sentences, for test only)

## Experiment - Keywords2Sentence Generation

➤ To generate sentences from a variable number of keywords, we simply start sampling from the given keywords. Experimental results show that CGMH outperforms previous work in both NLL and human evaluations.



## Experiment - Keywords2Sentence Generation

➤ To generate sentence from a variable number of keywords, we simply start sampling from the given keywords. Experimental results show that CGMH outperforms previous work in both NLL and human evaluations.



#### Scores of human evaluation (↑)



## Experiment - Keywords2Sentence Generation

➤ To generate sentence from a variable number of keywords, we simply start sampling from the given keywords. Experimental results show that CGMH outperforms previous work in both NLL and human evaluations.





| Keyword(s)                         | Generated Sentences                                   |
|------------------------------------|-------------------------------------------------------|
| friends                            | My good friends were in danger .                      |
| project                            | The first project of the scheme .                     |
| have, trip                         | But many people have never made the trip .            |
| lottery, scholarships              | But the lottery has provided scholarships.            |
| decision, build,<br>home           | The decision is to build a new home.                  |
| attempt, copy, painting, denounced | The first attempt to copy the painting was denounced. |

 $\triangleright$  In order to generate paraphrases, we set  $P_C(x)$  to be a measure of semantical similarity between generated sentences x and the given one  $x_0$ . We tried several kinds of similarity measures.

- $\triangleright$  In order to generate paraphrases, we set  $P_C(x)$  to be a measure of semantical similarity between generated sentences x and the given one  $x_0$ . We tried several kinds of similarity measures.
  - CGMH w/o matching,  $P_C(x)$  always equals 1. We use it for comparison..

- In order to generate paraphrases, we set  $P_C(x)$  to be a measure of semantical similarity between generated sentences x and the given one  $x_0$ . We tried several kinds of similarity measures.
  - CGMH w/o matching,  $P_{\mathcal{C}}(x)$  always equals 1. We use it for comparison.
  - **CGMH w/ KW**,  $P_C(x) = P_C^{KW}(x)$ ,  $P_C^{KW}(x) = 1$  if x still contains the keywords of  $x_0$ , which ensures that important information of  $x_0$  won't be forgotten.

- $\triangleright$  In order to generate paraphrases, we set  $P_C(x)$  to be a measure of semantical similarity between generated sentences x and the given one  $x_0$ . We tried several kinds of similarity measures.
  - CGMH w/o matching,  $P_{\mathcal{C}}(x)$  always equals 1. We use it as a baseline.
  - **CGMH w/ KW**,  $P_C(x) = P_C^{KW}(x)$ ,  $P_C^{KW}(x) = 1$  if x still contains the keywords of  $x_0$ , which ensures that important information of  $x_0$  won't be forgotten.
  - **CGMH w/ KW+**SIM,  $P_C(x) = P_C^{KW}(x) P_C^{SIM}(x)$ ,  $P_C^{SIM}(x)$  is the cosine similarity of sentences embeddings. If SIM=**WVA**, sentence embeddings are calculated as the mean vectors of word embeddings. If SIM=**ST**, we get sentence embeddings by SkipThoughts. And if SIM=**WVM**, we calculate maximal word similarities between each word in x with words in  $x_0$ , and use their average value as  $P_C^{WVM}(x)$ .

> CGMH is the first unsupervised model to achieve comparable results with supervised models.



> CGMH is the first unsupervised model to achieve comparable results with supervised models.



#### **Examples**

- 1,what 's the best plan to lose weight -> what 's the best way to slim down quickly
- 2. how should i control my emotion -> how do i control my anger
- 3. why do my dogs love to eat tuna fish -> why do my dogs like to eat raw tuna and raw fish

## **Experiment - Unsupervised Error Correction**

> CGMH outperforms some of the supervised models trained on large parallel corpus.



# **Experiment - Unsupervised Error Correction**

CGMH outperforms some of the supervised models trained on large parallel corpus.



| Erroneous sen1 | Even if we are failed, we have to try to get a new things.    |  |
|----------------|---------------------------------------------------------------|--|
| Reference sen1 | Even if we all failed, we have to try to get new things.      |  |
| Output sen1    | Even if we are failing, we have to try to get some new things |  |
| Erroneous sen2 | In the world oil price very high right now .                  |  |
| Reference sen2 | In today 's world , oil prices are very high right now .      |  |
| Output sen2    | In the world , oil prices are very high right now .           |  |

## **Analysis**

- ➤ Why CGMH outperforms sequential models?
  - RNN can be thought of as an autoregressive Bayesian network generating words conditioned on previous ones. Hence **error will accumulate** during generation.



#### Analysis

- Why CGMH outperforms sequential models?
  - RNN can be thought of as an autoregressive
    Bayesian network generating words conditioned
    on previous ones. Hence error will accumulate
    during generation.
  - CGMH doesn't generate sequentially, so error won't accumulate.



## **Analysis**

- Why CGMH outperforms sequential models?
  - RNN can be thought of as an autoregressive
    Bayesian network generating words conditioned
    on previous ones. Hence error will accumulate
    during generation.
  - CGMH doesn't generate sequentially, so error won't accumulate.
  - At the same time, CGMH has the ability of **self-correction**. Please refer to the part of sentence correction.



#### Reference

- [1] Hokamp, C., and Liu, Q. 2017. Lexically constrained decoding for sequence generation using grid beam search. In ACL.
- [2] Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S. 2017. Guided open vocabulary image captioning with constrained beam search. In EMNLP.
- [3] Gupta, A.; Agarwal, A.; Singh, P.; and Rai, P. 2017. A deep generative framework for paraphrase generation. *arXiv* preprint *arXiv*:1709.05074.
- [4] Mou, L.; Yan, R.; Li, G.; Zhang, L.; and Jin, Z. 2015. Backward and forward language modeling for constrained sentence generation. *arXiv* preprint arXiv:1512.06612.
- [5] Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A.; Jozefowicz, R.; and Bengio, S. 2016. Generating sentences from a continuous space. In CoNLL.
- [6] Li, Z.; Jiang, X.; Shang, L.; and Li, H. 2017. Paraphrase generation with deep reinforcement learning. *arXiv* preprint *arXiv*:1711.00279.
- [7] Junczys-Dowmunt, M., and Grundkiewicz, R. 2016. Phrasebased machine translation is state-of-the-art for automatic grammatical error correction. *arXiv* preprint *arXiv*:1605.06353.
- [8] Felice, M.; Yuan, Z.; Andersen, Ø. E.; Yannakoudakis, H.; and Kochmar, E. 2014. Grammatical error correction using hybrid systems and type filtering. In *CoNLL*.
- [9] Napoles, C.; Sakaguchi, K.; Post, M.; and Tetreault, J. 2015. Ground truth for grammatical error correction metrics. In ACL.

THANKS.

Byte Dance 字节跳动