stRutture di dati

Ottavia M. Epifania, Ph.D

Lezione di Dottorato @Università Cattolica del Sacro Cuore (MI)

8-9 Giugno 2023

Table of contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Vengono creati concatenando diverse variabili insieme

Si usa la funzione c()

Tutte le variaili all'interno della funzione c() vanno separate da una virgola

Diversi tipi di variabili \rightarrow diversi tipi di vettori:

- int: vettori numerici (numeri interi)
- num: vettori numerici (numeri continui)
- logi: vettori logici
- chr: vettori character
- factor: vettori factor con diversi livelli

int: numeri interi: -3, -2, -1, 0, 1, 2, 3

mesi = c(5, 6, 8, 10, 12, 16)

peso = seq(3, 11, by = 1.5)

[1] 3.0 4.5 6.0 7.5 9.0 10.5

```
[1] 5 6 8 10 12 16 num: tutti i valori numerici tra -\infty e +\infty: 1.0840991, 0.8431089, 0.494389, -0.7730161, 2.9038161, 0.9088839
```

logi

0000000000000

Vettori

Valori logici possono essere veri TRUE (T) o falsi FALSE (F):

v logi = c(TRUE, TRUE, FALSE, FALSE, TRUE)

TRUE TRUE FALSE FALSE TRUE

Si usano per testare delle condizioni:

mesi > 12

Г1]

[1] FALSE FALSE FALSE FALSE TRUE Vettori

00000000000000

```
chr: characters: a, b, c, D, E, F
v chr = c(letters[1:3], LETTERS[4:6])
[1] "a" "b" "c" "D" "E" "F"
factor: Usa numeri o carattarri per identificare i livelli della variabile:
ses = factor(c(rep(c("low", "medium", "high"), each = 2)))
[1] low low medium medium high high
Levels: high low medium
Si può cambaire l'ordine dei livelli:
ses1 = factor(ses, levels = c("medium", "high", "low"))
```

[1] low low medium medium high high Levels: medium high low

Vettori

Concatenare le variabili con c(): vec = c(1, 2, 3, 4, 5)

Utilizzando le sequenze:

-5:5 # vector of 11 numbers from -5 to 5

seq(-2.5, 2.5, by = 0.5) # sequence in steps of 0.5

Ripetendo gli elementi:

[1] 1 2 3 1 2 3 1 2 3 1 2 3

[1] "item1" "item2" "item3" "item4"

Creare i vettori II

Vettori

00000000000000

```
rep(c("condA", "condB"), each = 3)
[1] "condA" "condA" "condA" "condB" "condB" "condB"
rep(c("on", "off"), c(3, 2))
[1] "on" "on" "off" "off"
paste0("item", 1:4)
```

Non mischiate i vettori! a meno che non lo vogliate davvero

```
\begin{array}{l} \verb|int+num+num|\\ \verb|int/num+logi+| \rightarrow \verb|int/num|\\ \verb|int/num+| factor+| \rightarrow \verb|int/num|\\ \verb|int/num+| chr+| \rightarrow chr\\ \verb|chr+| logi+| \rightarrow chr \end{array}
```

Vettori e operazioni

I vettori possono essere sommati/divisi/moltiplicati tra di loro o anche per un numero singolo

Array

```
a = c(1:8) # vettore di lunghezza 8
а
```

```
[1] 1 2 3 4 5 6 7 8
```

```
b = c(4:1) # vettore di lunghezza 4
b
```

```
[1] 4 3 2 1
```

Vettori

0000000000000000

a - b # il vettore b è "riciclato" sul vettore a

```
[1] -3 -1 1 3 1 3 5 7
```

Se i vettori non hanno la stessa lunghezza (o uno non è un multiplo dell'altro) ottenete un warning

Applicando una funzione a un vettore \rightarrow viene applicata a ${\bf tutti}$ gli elementi del vettore

```
sqrt(a)
```

Vettori

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.6

La stessa operazione si può applicare a ogni singolo elemento del vettore

```
(a - mean(a))^2 # squared deviation
```

[1] 12.25 6.25 2.25 0.25 0.25 2.25 6.25 12.25

Come si va a "raggiungere" un particolare elemento all'interno del vettore?

nomi = c("Pasquale", "Egidio", "Debora", "Luca", "Andrea")

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

Come si va a "raggiungere" un particolare elemento all'interno del vettore?

nomi = c("Pasquale", "Egidio", "Debora", "Luca", "Andrea")

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

nome_vettore[indice]

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	Д	<u>-</u> 5

Matrici 0000000 Array 0000 Liste 000 Data frames

Indicizzare i vettori II

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

 ${\tt nomi[1]} \, \to \,$

Pasquale	Egidio	Debora	Luca	Andrea
1	2	2	1	E

 $nomi[1] \rightarrow Pasquale$

$$\mathtt{nomi[3]} \, \to \,$$

Pasquale	Egidio	Debora	Luca	Andrea	
1	2	3	4	5	
	nom	i[1] $ ightarrow$ Pasqua	ale		
$\mathtt{nomi} [\mathtt{3}] \to Debora$					

nomi[seq(2, 5, by = 2)] \rightarrow

Pasquale	Egidio	Debora	Luca	Andrea		
1	2	3	4	5		
${\tt nomi[1]} \to {\sf Pasquale}$						
${\tt nomi[3]} \to {\sf Debora}$						
nomi[seq(2, 5, by = 2)] $ ightarrow$ Egidio, Luca						

Indicizzare i vettori: Esempi

Vettori

peso

00000000000000

[1] 3 6 9

```
[1] 3.0 4.5 6.0 7.5 9.0 10.5
peso[2]
      # secondo elemento del vettore peso
[1] 4.5
(peso[6] = 15.2) # sostituisce il sesto elemento del v. peso
[1] 15.2
peso[seq(1, 6, by = 2)] # elementi 1, 3, 5
```

```
peso[2:6] # dal 2 al 6 elemento di peso
[1] 4.5 6.0 7.5 9.0 15.2
```

peso[-2] # vettore peso senza il secondo elemento

Indicizzare i vettori usando la logica

peso

[1] 3.0 4.5 6.0 7.5 9.0 15.2

Indicizzare i vettori usando la logica

peso

[1] 3.0 4.5 6.0 7.5 9.0 15.2

Quali sono i valori maggiori di 7?

peso > 7

[1] FALSE FALSE FALSE TRUE TRUE TRUE

Indicizzare i vettori usando la logica

```
peso
```

Vettori

```
[1] 3.0 4.5 6.0 7.5 9.0 15.2
```

Quali sono i valori maggiori di 7?

```
peso > 7
```

```
[1] FALSE FALSE FALSE TRUE TRUE TRUE
```

Usiamo questa informazione per filtrare il nostro vettore:

```
peso[peso > 7] # valori in peso maggiori di 7
```

```
[1] 7.5 9.0 15.2
```

```
peso[peso >= 4.5 & peso < 8] # valori tra 4.5 e 8
```

```
[1] 4.5 6.0 7.5
```

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Un vettore che ci ha creduto abbastanza

Quel che basta per vincere una seconda dimensione

WARNING: i dati all'interno della matrice devono essere tutti dello stesso tipo

Etichette

Vettori

```
rownames(A) = c(paste("riga", 1:nrow(A), sep = "_"))
colnames(A) = c(paste("colonna", 1:ncol(A), sep = "_"))
Α
```

```
colonna_1 colonna_2 colonna_3 colonna_4
riga_1
                                               10
riga_2
                                              11
                                              12
riga_3
```

Trasposta della matrice:

```
Α
```

```
      colonna_1
      colonna_2
      colonna_3
      colonna_4

      riga_1
      1
      4
      7
      10

      riga_2
      2
      5
      8
      11

      riga_3
      3
      6
      9
      12
```

t(A)

	riga_1	riga_2	riga_3
colonna_1	1	2	3
colonna_2	4	5	6
colonna_3	7	8	9
colonna_4	10	11	12

Le matrici si possono anche creare concatenando vettori colonna:

```
cbind(a1 = 1:4, a2 = 5:8, a3 = 9:12)

a1 a2 a3

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12
```

o vettori riga:

Vettori

```
rbind(a1 = 1:4, a2 = 5:8, a3 = 9:12)
```

```
[,1] [,2] [,3] [,4]
a1 1 2 3 4
a2 5 6 7 8
a3 9 10 11 12
```

Indicizzare le matrici

Abbiamo due dimensioni:

$$\begin{array}{c|cccc} & [,1] & [,2] & [,3] \\ \hline [1,] & 1,1 & 1,2 & 1,3 \\ [2,] & 2,1 & 2,2 & 2,3 \\ [3,] & 3,1 & 3,2 & 3,3 \\ \end{array}$$

my_matrix[righe, colonne]

Α

```
      colonna_1
      colonna_2
      colonna_3
      colonna_4

      riga_1
      1
      4
      7
      10

      riga_2
      2
      5
      8
      11

      riga_3
      3
      6
      9
      12
```

```
A[1, ] 
ightarrow
```

A[2,]
$$\rightarrow$$

A[2, 3]
$$\rightarrow$$

Α

```
      colonna_1
      colonna_3

      riga_1
      1
      4
      7
      10

      riga_2
      2
      5
      8
      11

      riga_3
      3
      6
      9
      12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] ightarrow

A[2, 3] \rightarrow

Α

```
      colonna_1
      colonna_3

      riga_1
      1
      4
      7
      10

      riga_2
      2
      5
      8
      11

      riga_3
      3
      6
      9
      12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] \rightarrow 2, 5, 8, 11

A[2, 3] \rightarrow

Α

```
      colonna_1
      colonna_3

      riga_1
      1
      4
      7
      10

      riga_2
      2
      5
      8
      11

      riga_3
      3
      6
      9
      12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] \rightarrow 2, 5, 8, 11

A[2, 3] \rightarrow 8

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Una matrice che ci ha creduto davvero

Davvero troppo

```
array(data, c(nrow, ncol, ntab))
```

Avendo 3 argomenti oltre i dati nrow, ncol, ntab, la loro indicizzazione prevede l'utilizzo di due virgole per accedere ai singoli argomenti: nome_array[righe, colonne, tab]

Un array

Vettori

```
my_array = array(1:20, c(2, 5, 3)) # 2 x 5 x 3 array
my_array
```

```
, , 1
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
     1
          3
              5
                       9
[2,] 2
          4
              6
                8
                    10
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
   11 13
            15
                  17
                     19
[2,] 12
          14
            16
                  18
                      20
```

```
, , 3
```

, , 2

```
[,1] [,2] [,3] [,4] [,5]
[1,]
              3
                   5
                              9
[2,]
              4
                             10
```

Indicizzare l'array

my_array[1, ,]

my_array[, 2,]

my_array[, , 3]

Array

0000

Indicizzare l'array

Vettori

```
my_array[1, , ]
    [,1] [,2] [,3]
[1,]
          11
[2,]
      3 13
[3,] 5 15
[4,]
        17
[5,]
         19
my_array[, 2, ]
```

```
my_array[, , 3]
```

Indicizzare l'array

Vettori

```
my_array[1, , ]
    [,1] [,2] [,3]
[1,]
          11
[2,] 3 13
[3,] 5 15
[4,]
        17
[5,]
         19
my_array[, 2, ]
    [,1] [,2] [,3]
[1,] 3 13
[2,] 4
        14
my_array[, , 3]
```

Indicizzare l'array

my_array[1, ,]

```
[,1] [,2] [,3]
[1,] 1 11 1
[2,] 3 13 3
[3,] 5 15 5
[4,] 7 17 7
[5,] 9 19 9

my_array[, 2, ]
```

[,1] [,2] [,3]

14

[1,] 3 13

[2,] 4

my_array[, , 3]
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Un array con più senso

Sono dei contenitori per diversi tipi di oggetti (e.g., vettori, data frames, altre liste, matrici, array ecc.)

Ai loro elementi possono essere assegnati dei nomi:

```
my_list = list(w = peso, m = mesi, s = ses1, a = A)
names(my list)
```

```
[1] "w" "m" "s" "a"
```

str(my list)

```
List of 4
```

- \$ w: num [1:6] 3 4.5 6 7.5 9 15.2 \$ m: num [1:6] 5 6 8 10 12 16
- \$ s: Factor w/ 3 levels "medium", "high", ...: 3 3 1 1 2 2
- \$ a: int [1:3, 1:4] 1 2 3 4 5 6 7 8 9 10- attr(*, "dimnames")=List of 2
 -\$: chr [1:3] "riga_1" "riga_2" "riga_3"
-\$: chr [1:4] "colonna_1" "colonna_2" "colonna_3" "colonna_4

Indicizzare le liste

Gli elementi della lista possono essere indicizzati con \$ (se la lista ha dei nomi):

```
my_list$m # vettore dei mesi
[1] 5 6 8 10 12 16
```

oppure con [[]]:

Nome dell'elemento

my_list[["m"]]

[1] 5 6 8 10 12 16

Posizione dell'elemento:

my_list[[2]]

[1] 5 6 8 10 12 16

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- 5 Data frames

Una lista più ordinata

I data frames sono delle liste di vettori di uguale lunghezza

I diversi vettori possono contenere informazioni di diverse natura

I data frame più comuni sono i data frame in versione wide (i.e., $soggetti \times variabili) \rightarrow nrow(data) = numero di soggetti:$

```
id = paste0("sbj", 1:6)
babies = data.frame(id, mesi, peso)
```

babies

Vettori

```
id mesi peso
1 sbj1
        5 3.0
2 sbj2 6 4.5
3 sbj3 8 6.0
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 15.2
```

Prima riga del data frame babies

Prima colonna del data frame babies babies[, 1]

In più: babies\$mesi # colonna mesi di babies

babies\$mesi[2] # secondo elemento del vettore colonna

babies[, "id"] # column id

babies[2,] # second row of babies (obs on baby 2)

Logic applies:

babies[1,]

Vettori

babies[babies\$peso > 7,] # filtra per tutte le righe con pes Vettori

[1] 6 3

Working with data frames II

```
dim(babies) # data frame con 6 righe e 3 colonne
```

```
names(babies) # = colnames(babies)
```

```
[1] "id" "mesi" "peso"
```

View(babies) # open data viewer

Questi comandi possono essere usati anche su altri oggetti R