Elementos de Reconocimiento Visual

Práctica operadores puntuales e histograma

- 1. Implementar la compresión del rango dinámico: sean r el nivel de gris de la imagen de entrada y s el nivel de gris de la imagen de salida, tal que s = f(r), $r \in [0, R]$. Entonces la función de compresión del rango dinámico es $f(r) = c \cdot \log(r+1)$, eligiendo c de manera tal que $f(r) \in [0, 255]$.
- 2. Implementar una función que devuelva el negativo de una imagen.
- 3. Implementar una función que devuelva el histograma de niveles de gris de una imagen.
- 4. Examinando el histograma, implementar una función que devuelva una imagen que tenga aumento del contraste.
- 5. Implementar una función que aplique un umbral a una imagen, devolviendo una imagen binaria.
- 6. Dada una imagen a la cual se le ecualizó su histograma, aplicar la ecualización del histograma por segunda vez a la misma imagen. Observar el resultado y dar una explicación de lo sucedido.
- 7. Realizar la modificación de histograma¹ resolviendo el problema de minimización

$$\widetilde{\mathbf{h}} = \operatorname*{arg\,min}_{\mathbf{h}} \|\mathbf{h} - \mathbf{h}_0\|_2^2 + \lambda \|\mathbf{h} - \mathbf{u}\|_2^2 + \gamma \|D\mathbf{h}\|_2^2$$

donde \mathbf{h}_0 corresponde al histograma original de la imagen, \mathbf{u} es el histograma uniforme, y la matriz D es una matriz bidiagonal de diferencias con el objetivo de suavizar \mathbf{h} .

Utilizar el $\hat{\mathbf{h}}$ hallado como entrada para la ecualización de histograma y considerar diferentes valores de λ y γ .

¹T. Arici, S. Dikbas and Y. Altunbasak, 'A Histogram Modification Framework and Its Application for Image Contrast Enhancement', in IEEE Transactions on Image Processing, vol. 18, no. 9, pp. 1921-1935, Sept. 2009.