洲江水学

电磁场与电磁波课程实验报告

实验名称:	微带传输线负载特性矢网测量
姓名学号:	
年级专业:	20级 电子科学与技术
指导教师:	王子立

2022年5月8日

目录

1	须	测试数据	2
	1.1	微带线负载反射特性	2
		1.1.1 传输线开路	2
		1.1.2 传输线短路	3
		1.1.3 传输线负载 49.9Ω	4
		1.1.4 传输线负载为 1pF 电容	5
		1.1.5 传输线为 3.3nH 电感	6
	1.2	天线的驻波比特性曲线	7
	1.3	微带耦合滤波器的滤波特性	8
2	E	思考题	10
3	<u> </u>	Ç验的收获与体会	10
Δ	2	1. 公建议 与音风	11

1 测试数据

1.1 微带线负载反射特性

1.1.1传输线开路

频率 f/GHz	电阻 R/Ω	电抗 X/Ω	感容性	实验值	理论值
2.3	28.818	239.338	感性	0.876+j0.377	1
2.4	346.813	-675.883	容性	0.935-j0.11	1
2.5	19.307	-148.922	容性	0.743-j0.551	1
2.6	7.298	-74.989	容性	0.3567-j0.842	1
2.7	4.052	-44.603	容性	-0.1-j0.908	1

负载端开路时,由 $\Gamma = \frac{Z_m - Z_0}{Z_m + Z_0}$ 得,理论上反射系数应该为 1。此时由于传输线自身损耗,实验数据向负载端移动,没有与史密斯圆图的最外圈完全重合。

1.1.2传输线短路

频率 f/GHz	电阻 R/Ω	电抗 X/Ω	感容性	实验值	理论值
2.3	4.411	-23.074	容性	-0.558-j0.661	-1
2.4	3.772	-6.077	容性	-0.836-j0.208	-1
2.5	3.830	9.456	感性	-0.802+j0.317	-1
2.6	4.666	27.505	感性	-0.460+j0.735	-1
2.7	7.087	52.139	感性	0.045+j0.872	-1

传输线短路时的理论反射系数应该为-1。此时由于实验所用的短路电阻非焊接,而是徒手压在模型上的,存在电感,距离越远,电感越大。在 2.5GHz 频率左右最接近理论值。

1.1.3传输线负载 49.9Ω

频率 f/GHz	电阻 R/Ω	电抗 X/Ω	感容性	实验值	理论值
2.3	66.587	-25.454	容性	0.181-j0.179	0
2.4	50.838	-22.932	容性	0.057-j0.214	0
2.5	42.060	-16.361	容性	-0.053-j0.187	0
2.6	37.607	-9.207	容性	-0.129-j0.119	0
2.7	36.580	-2.664	容性	-0.154-j0.036	0

负载为 49.9 欧姆时与标准负载接近,反射系数理论值为 0, 史密 斯图应该接近原点处。

1.1.4传输线负载为 1pF 电容

频率 f/GHz	电阻 R/Ω	电抗 X/Ω	感容性	实验值	理论值
2.3	3.961	-85.598	容性	0.473-j0.836	0.314-j0.949
2.4	2.854	-46.119	容性	-0.074-j0.937	0.275-j0.961
2.5	2.183	-24.039	容性	-0.581-j0.728	0.237-j0.971
2.6	1.703	-7.369	容性	-0.896-j0.27	0.199-j0.979
2.7	1.442	7.269	感性	-0.906-j0.269	0.163-j0.987

负载为 1pF 电容时, 低频反射系数与理论值符合较好, 频率升高 时实验得到的反射系数误差较大。

1.1.5传输线为 3.3nH 电感

频率 f/GHz	电阻 R/Ω	电抗 X/Ω	感容性	实验值	理论值
2.3	2.484	41.139	感性	-0.180+j0.925	-0.047+j0.999
2.4	3.969	73.892	感性	0.355+j0.883	-0.005+j
2.5	14.816	155.389	感性	0.771+j0.548	0.036+j0.999
2.6	1159	579.381	感性	0.933+j0.032	0.075+j0.997
2.7	27.228	-181.674	容性	0.812-j0.466	0.112+j0.994

当负载为 3.3nH 时, 频率低时实验值比较接近理论值, 频率高时 误差较大,可能是测量误差和高频率误差综合导致的结果。

1.2 天线的驻波比特性曲线

如上图为天线的对数幅度图和驻波比图像。可以看到,当频率为 2.88GHz 时,天线的驻波比达到最小值 1.483。与一般的应用天线要求的驻波系数小于 1.5 比较而言,该天线的性能一般。

1.3 微带耦合滤波器的滤波特性

滤波器滤波特性图

S 参数与 ω 相位关系图

滤波器阻带衰减图

中心频率	2.395GHz
3dB 带宽	134.589MHz
插入损耗	-8.529dB
带内纹波	≈0
阻带衰减	-40dB~-43dB

由上表参数可以看出,该滤波器为带通滤波器,带宽较小。在 2.3GHz~2.7GHz 范围内,相位图中心频率范围内有较好的线性度,频 率更小或更大的区域内产生非线性失真。总体而言可以有效实现滤波 功能,在部分参数上有待提高。

2 思考题

1、什么是 S 参数?

S 参数,也就是散射参数。是微波传输中的一个重要参数。S12 为 反向传输系数,也就是隔离。S21 为正向传输系数,也就是增益。S11 为输入反射系数,也就是输入回波损耗,S22 为输出反射系数,也就是输出回波损耗。

S11: 端口 2 匹配时, 端口 1 的反射系数。

S22: 端口 1 匹配时, 端口 2 的反射系数。

S12: 端口 1 匹配时, 端口 2 到端口 1 的反向传输系数。

S21: 端口 2 匹配时, 端口 1 到端口 2 的正向传输系数。

2、如果不校准,直接接入射频电缆和电路模块测量会对结果有什么影响?

结果会不准确, 甚至完全无效。

3、如何测量转接头对测试曲线的影响。

对比接与不接转接头的开路曲线中史密斯图像的偏移。

4、利用实验内容 2 中已知的设计参数, 计算 50 欧半波长微带线的长度和宽度。

$$\epsilon_r = 4.6, \ h = 0.765mm, \ d = 0.035mm, \ 损耗正切0.015$$

$$\frac{W}{L} = 0.424, \ L = 32.56mm, \ W = 1.38mm$$

3 实验的收获与体会

通过这次实验, 我了解了基本传输线、微带线的特性, 熟悉网络

参量测量, 掌握矢量网络分析仪的基本使用方法。在实验中, 我学习 并使用了矢量网络分析仪, 动手测量了传输线模块在不同负载下的反 射特性、天线的驻波比、微带滤波器的网络特性等内容。在实验中, 不仅让我回顾、巩固了课上学习的理论知识, 更帮助我将理论与实际 结合起来,让我对理论知识的理解更加深入。

4 实验建议与意见

实验前的理论讲解过多,实际操作的讲解过少,开始实验时需要 看视频来学习,希望可以借鉴大物实验的教学方式,在讲解原理之后 进行适当的演示。