Formula and data book

Physics v1.2

Formulas

Processing of data

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$

Percentage error (%) = $\left| \frac{\text{measured value} - \text{true value}}{\text{true value}} \right| \times 100$

Heating processes

$T_{\rm K} = T_{\rm C} + 273$	
-------------------------------	--

$$Q = mL$$

$$Q = mc\Delta T$$

$$\Delta U = Q + W$$

$$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$$

Ionising radiation and nuclear reactions

$$N = N_0 \left(\frac{1}{2}\right)^n$$

$$\Delta E = \Delta mc^2$$

Electrical circuits

$$I = \frac{q}{t}$$

$$P = I^2 R$$

$$V = \frac{W}{q}$$

$$V_t = V_1 + V_2 + \dots V_n$$

$$P = \frac{W}{t}$$

$$R_t = R_1 + R_2 + \dots R_n$$

$$R = \frac{V}{I}$$

$$I_t = I_1 + I_2 + \dots I_n$$

$$P = VI$$

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Linear motion and force	
v = u + at	$W = \Delta E$
$s = ut + \frac{1}{2}at^2$	W = Fs
$v^2 = u^2 + 2as$	$E_k = \frac{1}{2} m v^2$
$a = \frac{F_{net}}{m}$	$\Delta E_{\rm p} = mg\Delta h$
p = mv	$\sum \frac{1}{2} m v_{\text{before}}^2 = \sum \frac{1}{2} m v_{\text{after}}^2$
$\sum mv_{\text{before}} = \sum mv_{\text{after}}$	

Waves	
$v = f\lambda$	$L = (2n-1)\frac{\lambda}{4}$
$f = \frac{1}{T}$	$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$
$L = n\frac{\lambda}{2}$	$I \propto \frac{1}{r^2}$

Gravity and motion	
$v_y = gt + u_y$	$v = \frac{2\pi r}{T}$
$s_y = \frac{1}{2}gt^2 + u_y t$	$a_{\rm e} = \frac{v^2}{r}$
$v_y^2 = 2gs_y + u_y^2$	$F_{\text{net}} = \frac{mv^2}{r}$
$v_x = u_x$	$F = \frac{GMm}{r^2}$
$s_x = u_x t$	$g = \frac{F}{m} = \frac{GM}{r^2}$
$F_g = mg$	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$

Electromagnetism	
$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$	$F = qvB\sin\theta$
$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$	$\phi = BA\cos\theta$
$V = \frac{\Delta U}{q}$	$emf = -\frac{n\Delta(BA_{\perp})}{\Delta t}$
$B = \frac{\mu_0 I}{2\pi r}$	$emf = -n\frac{\Delta\phi}{\Delta t}$
$B = \mu_0 nI$	$I_{p}V_{p} = I_{s}V_{s}$
$F = BIL \sin \theta$	$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$

Special relativity	
$t = \frac{t_0}{\sqrt{(1 - \frac{v^2}{c^2})}}$	$p_v = \frac{m_0 v}{\sqrt{(1 - \frac{v^2}{c^2})}}$
$L = L_0 \sqrt{(1 - \frac{v^2}{c^2})}$	$\Delta E = \Delta mc^2$

Quantum theory	
$\lambda_{\max} = \frac{b}{T}$	$\lambda = \frac{h}{p}$
E = hf	$n\lambda=2\pi r$
$E_{\mathbf{k}} = hf - W$	$mvr = \frac{nh}{2\pi}$
$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$	

Physical constants and unit conversions

Heating processes	
Latent heat of fusion for water	$L_{\rm f} = 3.34 \times 10^5 \text{ J kg}^{-1}$
Latent heat of vaporisation for water	$L_{\rm v} = 2.26 \times 10^6 \mathrm{Jkg^{-1}}$
Specific heat capacity of ice	$c_{\rm i} = 2.05 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$
Specific heat capacity of steam	$c_{\rm s} = 2.00 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$
Specific heat capacity of water	$c_{\rm w} = 4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Ionising radiation and nuclear reactions	
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Electron volt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Mass of an alpha particle	$m_{\alpha} = 6.6446572 \times 10^{-27} \text{ kg}$
Mass of an electron	$m_{\rm e} = 9.1093835 \times 10^{-31} \text{ kg}$
Mass of a neutron	$m_{\rm n} = 1.6749275 \times 10^{-27} \text{ kg}$
Mass of a proton	$m_{\rm p} = 1.6726219 \times 10^{-27} \text{ kg}$
Speed of light in a vacuum	$c = 3 \times 10^8 \text{ m s}^{-1}$

Electrical circuits	
Charge on an electron	$e = -1.60 \times 10^{-19} \text{ C}$

Linear motion and force	
Mean acceleration due to gravity on Earth	$g = 9.8 \text{ m s}^{-2}$

Waves	
Speed of sound in air at 25 °C	$v_{\rm s} = 346 \text{ m s}^{-1}$

Gravity and motion	
Gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Mass of the Earth	$m_{\rm E} = 5.97 \times 10^{24} \text{ kg}$

Electromagnetism	
Coulomb's constant	$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7} T A^{-1} \text{ m}$

Quantum theory	
Wien's displacement constant	$b = 2.898 \times 10^{-3} \text{ m K}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
Rydberg's constant	$R = 1.097 \times 10^7 \text{ m}^{-1}$

Scientific notation

Ratio to basic unit	Prefix	Abbreviation
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d
10	deca	da
10^2	hecto	h
10^3	kilo	k
10 ⁶	mega	M
10 ⁹	giga	G
10 ¹²	tera	Т

List of elements

Name	Atomic no. Symbol	Symbol	Name	Atomic no.	Symbol	Name	Atomic no. Symbol	Symbol	Name	Atomic no. Symbol	Symbol
Hydrogen	1	Н	Gallium	31	Ga	Promethium	61	Pm	Protactinium	91	Pa
Helium	2	He	Germanium	32	Ge	Samarium	62	Sm	Uranium	92	n
Lithium	3	Li	Arsenic	33	As	Europium	63	Eu	Neptunium	93	Np
Beryllium	4	Be	Selenium	34	Se	Gadolinium	64	Cd	Plutonium	94	Pu
Boron	5	В	Bromine	35	Br	Terbium	9	ТЬ	Americium	95	Am
Carbon	9	C	Krypton	36	Kr	Dysprosium	99	Dy	Curium	96	Cm
Nitrogen	7	Z	Rubidium	37	Rb	Holmium	<i>L</i> 9	Но	Berkelium	26	Bk
Oxygen	~	0	Strontium	38	Sr	Erbium	89	Er	Californium	86	Cf
Fluorine	6	Н	Yttrium	39	Y	Thulium	69	Tm	Einsteinium	66	Es
Neon	10	Ne	Zirconium	40	Zr	Ytterbium	70	Yb	Fermium	100	Fm
Sodium	11	Na	Niobium	41	Nb	Lutetium	71	Lu	Mendelevium	101	Md
Magnesium	12	Mg	Molybdenum	42	Mo	Hafnium	72	Hf	Nobelium	102	No
Aluminium	13	Al	Technetium	43	Тс	Tantalum	73	Та	Lawrencium	103	Lr
Silicon	14	Si	Ruthenium	44	Ru	Tungsten	74	W	Rutherfordium	104	Rf
Phosphorus	15	Ь	Rhodium	45	Rh	Rhenium	75	Re	Dubnium	105	Db
Sulfur	16	S	Palladium	46	Pd	Osmium	9/	Os	Seaborgium	106	Sg
Chlorine	17	CI	Silver	47	Ag	Iridium	77	Ir	Bohrium	107	Bh
Argon	18	Ar	Cadmium	48	Cd	Platinum	78	Pt	Hassium	108	Hs
Potassium	19	K	Indium	49	In	Gold	62	Au	Meitnerium	109	Mt
Calcium	20	Ca	Tin	50	Sn	Mercury	80	Hg	Darmstadtium	110	Ds
Scandium	21	Sc	Antimony	51	Sb	Thallium	81	П	Roentgenium	111	Rg
Titanium	22	Ti	Tellurium	52	Te	Lead	82	Pb	Copernicium	112	Cn
Vanadium	23	>	Iodine	53	I	Bismuth	83	Bi	Nihonium	113	Nh
Chromium	24	Cr	Xenon	54	Xe	Polonium	84	Po	Flerovium	114	F1
Manganese	25	Mn	Cesium	55	Cs	Astatine	85	At	Moscovium	115	Mc
Iron	26	Fe	Barium	99	Ba	Radon	98	Rn	Livermorium	116	Lv
Cobalt	27	Co	Lanthanum	57	La	Francium	87	Fr	Tennessine	117	Ts
Nickel	28	ïZ	Cerium	58	Ce	Radium	88	Ra	Oganesson	118	Og
Copper	29	Cu	Praseodymium	59	Pr	Actinium	68	Ac			
Zinc	30	Zn	Neodymium	09	pN	Thorium	06	Th			

Periodic table of the elements

18 2 He	4.00	10	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Ru	(222.0)	118	O pt	(294)		71	Lu	174.97	103	Lr	(262.1)
	17	9	19.00	17	C	35.45	35	Br	79.90	53		126.90	85	At	(210.0)	117		(294)	-	70	Vb	173.05	102	2 N	(259.1)
	16	~ ~	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60		<u> </u>	(210.0)	116	Lv	(293)	-	69	Tm	168.93	101	Md	(258.1)
	15	<u></u>	14.01		Ь	30.97	33	As	74.92	51	Sp	121.76	83	Bi	208.98	115	Mc	(288)	-	89	Er	167.26	100	Fm	(252.1)
	41	و ر	12.01	14	S	28.09	32	Ge	72.63	50	Sn	118.71	82	Pb	207.2		三	(289)	-	29	Ho	164.93		ES	(252.1)
	13	2	10.81	13	A	26.98	31	<u>G</u> a		49	二	114.82	81	Ξ	204.38	113	Z	(284)	-	99	Dy	162.50	86	Cf	(252.1)
						12	30	Zn	65.38	48	Cq	112.41	80	Ho	200.59	112	Cn	(285)			Tp	158.93	76	Bķ	(249.1)
		*	. SS1			11		J	~	47	Ag	107.87	79	Au	196.97	111	K pt	$(27\bar{2})$		64	P D	157.25	96	Cm	(244.1)
mber						10	28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(281)		63	Eu	151.96	95	Am	(241.1)
Atomic number	Symbol		Kelative atomic mass			6	27	C	58.93		Rh	102.91	77	ľ	192.22	109	Mt	(268)		62	Sm	150.36	94	Pu	(239.1)
A	Ś	י, ר	2			∞	26	Fe	55.85	44	Ru	101.07	92	SO	190.23		HS	(265.1)		61	Pm	(146.9)	93	d N	(237.0)
		— ⊣ :	 			7	25	Mn	54.94	43	Lc	(98.91)	75	Re		107		_		09	Nd	144.24	92		238.0
		,				9	24	Cr	52.00	42	Mo	95.95	74	>	183.84	106	S pt	(263.1)		59	Pr	140.91	91	Pa	231.0
						2	23	>	50.94	41	S	92.91	73	La		105		_		58	Ce	140.12	06	Th	232.0
						4	22	ij			Zr	91.22	72	Ht		104	Rf	(261.1)		57	La	138.91	68	Ac	(227.0)
						3	21	Sc		39		88.91	57–71	Lantha-	noids	89–103	Acti-	nolas -							
_	2	R o	9.01	12	Mg	24.31	20	Ca			Sr		99	Ba	137.33	88	Ra	(226.1)							
\mathbf{H}	1.01	3	6.94	11	Na	22.99	19	Y	39.10	37	Rb	85.47	55	S	132.91	87	Ξ	(223.0)							

Groups are numbered according to IUPAC convention 1-18.

^{*}Values in brackets are for the isotope with the longest half-life.

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK