Problems

1. Based on 3-nearest neighbor, the data point, x = 3.2, has (3,5), (3,8), and (2,11) neighbors. By averaging the y value we can get,

$$g(x) = \frac{1}{3} \sum_{i=1}^{3} y_{[i]}(x) = 8$$

2. The examples map from $[x_1, x_2]$ to $[x_1, x_1x_2]$ coordinates as follows:

[-1, -1] (negative) maps to [-1, +1]

[-1,+1] (positive) maps to [-1,-1]

[+1, -1] (positive) maps to [+1, -1]

[+1, +1] (negative) maps to [+1, +1]

In the parenthesis are XOR function. The positive examples have $x_1x_2 = -1$, the negative examples have $x_1x_2 = +1$. The maximum margin separator is the line x_1x_20 , with the margin of 1.

Transforming from x_1, x_1x_2 space back to x_1, x_2 the separator becomes either $x_1 = 0$ or $x_2 = 0$

3.

$$K(x_{i}, x_{j}) = \Phi(x_{i})\Phi(x_{j})$$

$$= (\Phi(x_{i}) - Phi(x_{j}))^{2}$$

$$= (\Phi(x_{i}))^{2} - 2\Phi(x_{i})\Phi(x_{j}) + (\Phi(x_{j}))^{2}$$

$$= K(x_{i}, x_{i}) + 2K(x_{i}, x_{j}) + K(x_{i}, x_{j})$$
(1)

Based on the equation above, we conclude that a kernel function, which is used to compute squared Euclidean distance in the projected space, can be simplified to compute dot product of two transformed dimensions.

Problem

Collaboration Statement

I didn't collaborate with anyone for this assignment.