

Univ.-Prof. Dr. Radu Ioan Boţ

Nonlinear Optimization

Exercise session 2

7. For the functions $g: \mathbb{R}^2 \to \mathbb{R}^2$ and $x_0 \in \mathbb{R}^2$ given below, find $X = \{(x,y) \in \mathbb{R}^2 : g(x,y) \le 0\}$, the tangent cone and the linearized tangent cone to X at x_0 and find out if x_0 fulfills (ABADIE-CQ):

(i)
$$g(x,y) = (y-x^3, -y)^T, x_0 = (0,0)^T$$
;

(ii)
$$g(x,y) = (y^2 - x + 1, 1 - x - y)^T, x_0 = (1,0)^T.$$

(3 points)

8. Let (x^*, λ^*, μ^*) be a KKT point of the optimization problem

(P) min
$$f(x)$$
,
s.t. $g_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$,
 $x \in \mathbb{R}^n$

with $f, g_i, h_j : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, j = 1, ..., p, continuously differentiable functions. Prove that x^* is a *critical point* of (P), namely, it holds

$$\nabla f(x^*)^T d \ge 0 \ \forall d \in T_X(x^*),$$

where $X = \{x \in \mathbb{R}^n : g_i(x) \le 0, i = 1, ..., m, h_j(x) = 0, j = 1, ..., p\}$. Given a critical point x^* of (P), when do Lagrange multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ exist, such that (x^*, λ^*, μ^*) is a KKT point of (P)? (3 points)

9. Consider the optimization problem

min
$$x_1^2 + (x_2 + 1)^2$$
.
s.t. $x_2 - x_1^2 \le 0$
 $-x_2 \le 0$

Show that $x^* = (0,0)^T$ fulfills (ABADIE-CQ) and that it does not fulfill (MFCQ).(2 points)

10. Consider the optimization problem

min
$$x_1^2 + (x_2 + 1)^2$$
.
s.t. $-x_1^3 - x_2 \le 0$
 $-x_2 \le 0$

Show that $x^* = (0,0)^T$ fulfills (MFCQ) and that it does not fulfill (LICQ). (2 points)

- 11. Let $U \subseteq \mathbb{R}^n$ be a nonempty, open and convex set and $f: U \to \mathbb{R}$ a differentiable function on U. Prove that the following statements are equivalent:
 - (i) f is convex on U;
 - (ii) $\langle \nabla f(x), y x \rangle \le f(y) f(x) \ \forall x, y \in U;$
 - (iii) $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0 \ \forall x, y \in U;$
 - (iv) if f is twice differentiable on U, then $\nabla^2 f(x)$ is positively semidefinite for every $x \in U$.

(4 points)

12. Let be the functions $c: \mathbb{R} \to \mathbb{R}$,

$$c(y) = \begin{cases} (y+1)^2, & y < -1, \\ 0, & -1 \le y \le 1, \\ (y-1)^2, & y > 1, \end{cases}$$

and $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$, $g_1(x_1, x_2) = c(x_1) - x_2$, $g_2(x_1, x_2) = c(x_1) + x_2$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a convex and continuously differentiable function. Show that for the convex optimization problem

min
$$f(x)$$

s.t. $x \in \mathbb{R}^2$
 $g_1(x) \le 0$
 $g_2(x) \le 0$

(ABADIE-CQ) holds at $x^* = (0,0)^T$, while (SLATER-CQ) is not satisfied. (2 points)