MA1506

Mathematics II

Chapter 5
Matrices and their uses

This chapter consists of two parts.

Chapter 5 PART ONE

2

In part one, we shall study

Matrix operations

Some special matrices

Inverse matrix and unique solution of AX=B

Determinant and inverse matrix

Leontief Input-Output model

5.1 What is a Matrix?

can be rewritten as

The system of equations

2x + 7y = 3

4x + 8y = 11

2x2 Matrix 2x1 matrix

3

3x3 Matrix $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

m x n Matrix: m rows, n columns

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

We may write $A = (a_{ij})$

Entry at i-th row j-th column

5.2 Matrix operations

- · Matrix addition
- Scalar multiplication
- · Matrix multiplication
- matrix transposition

Matrix Addition

$$A = (a_{ij})
B = (b_{ij})$$
m x n matrices

Term by term addition

$$A+B=\left(a_{ij}+b_{ij}\right)$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 3 \\ 6 & 9 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 10 & 17 \end{bmatrix}$$

Scalar multiplication

 $A = (a_{ij})$ $m \times n$ matrix

C real or complex number

Term by term multiplication

$$cA = (ca_{ij})$$

$$3\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 12 & 24 \end{bmatrix}$$

Matrix multiplication

$$A = (a_{ij})$$

 $B = (b_{ii})$

m x n matri

n x p matrix

$$AB = C$$

$$C = (c_{ij})$$

m x p matrix

Multiplication is not term by term

but row to column as below

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$

 $= \frac{\left(1 \times 1 + 2 \times 2 + 3 \times (-1)\right)}{4 \times 1 + 5 \times 2 + 6 \times (-1)} \frac{1 \times 1 + 2 \times 3 + 3 \times (-2)}{4 \times 1 + 5 \times 3 + 6 \times (-2)}$

 $= \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}$

10

In general $AB \neq BA$

$$AB = \begin{bmatrix} 2 & 7 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 16 & -1 \\ 20 & 4 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 31 \\ 0 & 6 \end{bmatrix}$$

Matrix transposition

Let

$$A = (a_{ii})$$

be a $m \times n$ matrix.

If we swap the rows with columns in A, we get

$$A^T = (a_{ii})$$

which is now a n x m matrix.

We call A^T the transpose of A.

Example

$$\begin{bmatrix} 1 & 2 & 4 \\ 6 & 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 1 & 6 \\ 2 & 8 \\ 4 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 7 & 9 \\ 6 & 8 & 2 \\ 4 & 10 & 12 \end{bmatrix}^T = \begin{bmatrix} 1 & 6 & 4 \\ 7 & 8 & 10 \\ 9 & 2 & 12 \end{bmatrix}$$

Properties of transpose

$$\left(A^T\right)^T = A$$

$$(A+B)^T = A^T + B^T$$

$$(cA)^T = cA^T$$

$$(AB)^T = B^T A^T$$

5.3 Special matrices

Symmetric matrix

A n x n matrix A is symmetric if

$$A^T = A$$

$$\begin{bmatrix} 1 & 7 & 9 \\ 7 & 8 & 2 \\ 9 & 2 & 12 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 7 & 9 \\ 7 & 8 & 2 \\ 9 & 2 & 12 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Anti-Symmetric matrix

A n x n matrix A is anti-symmetric or skew symmetric if

$$A^T = -A$$

$$\begin{bmatrix} 0 & 7 & -9 \\ -7 & 0 & -2 \\ 9 & 2 & 0 \end{bmatrix}$$

Identity matrix

$$I=I_n=\begin{bmatrix}1&0&\cdots&0\\0&1&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&0&1\end{bmatrix}$$

n x n identity matrix

In general, we have

$$AI = IA = A$$

Orthogonal matrix

An $n \times n$ matrix, B is orthogonal if $BB^T = I$

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad \text{is orthogonal because}$$

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & 0\\ 0 & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = I$$

Vectors as special matrices

Matrices containing only one column are often called column vectors or vectors Matrices containing only one row are often called row vectors or vectors

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \boxed{}$$

19

Vectors
$$\hat{\boldsymbol{i}}$$
 $\hat{\boldsymbol{j}}$ $\hat{\boldsymbol{k}}$

$$\hat{\boldsymbol{i}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \hat{\boldsymbol{j}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad (0,0,1)$$

$$(0,0,1) \quad \hat{\boldsymbol{k}}$$

$$(1,0,0) \quad \hat{\boldsymbol{i}} \quad \hat{\boldsymbol{j}} \quad (0,1,0)$$

$$\hat{\boldsymbol{i}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \hat{\boldsymbol{j}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \hat{\boldsymbol{k}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a\hat{i} + b\hat{j}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = a\hat{i} + b\hat{j} + c\hat{k}$$

21

Shear parallel to x-axis

Let $S = \begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix}$

Then

$$S\hat{i} = \begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \hat{i}$$

$$S\hat{j} = \begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \tan \theta \\ 1 \end{bmatrix} = \tan \theta \hat{i} + \hat{j}$$

Thus

$$S\,\hat{i} = \hat{i}$$
 $S\,\hat{j} = \tan\theta\,\hat{i} + \hat{j}$

22

Thus
$$S\hat{i} = \hat{i}$$
 $S\hat{j} = \tan\theta \hat{i} + \hat{j}$

and we call S a shear matrix (with shear parallel to the x-axis).

Example

S: shear 45 degrees parallel to x axis

Recall

$$S(\theta) = \begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix}$$

Then

$$S(45^{\circ}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Rotation

Let

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Then

$$R\hat{i} = \cos\theta\hat{i} + \sin\theta\hat{j}$$

$$R\hat{j} = -\sin\theta\hat{i} + \cos\theta\hat{j}$$

We call $R(\theta)$ a rotation matrix (through an anti-clockwise angle θ)

25

Example

R: rotate 90 degrees anticlockwise

Recall

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Then

$$R(90^\circ) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

27

Summary

symmetric matrix

$$A^T = A$$

anti symmetric matrix

$$A^T = -A$$

identity matrix

$$BB^T = I$$

orthogonal matrix vector

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2 \end{bmatrix}$

shear matrix

$$S(\theta) = \begin{bmatrix} 1 & \tan \theta \end{bmatrix}$$

rotation matrix

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

5.4 Inverse matrix and unique solution

Let
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 be a $n \times n$ matrix

If C is a matrix such that $AC = CA = I_n$

then C is called the inverse matrix of A.

The inverse matrix of A is also denoted by A^{-1}

Thus

$$AA^{-1} = A^{-1}A = I_n$$

29

Example

Let

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & -8 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

Suppose that we know that A has an inverse.

Then we can use row operations (next slide)

to find A^{-1}

First write

$$\begin{pmatrix}
1 & 4 & 2 & | 1 & 0 & 0 \\
-2 & -8 & 3 & | 0 & 1 & 0 \\
0 & 1 & 1 & | 0 & 0 & 1
\end{pmatrix}$$

Try to get zero as many as possible for the lower triangular part.

$$\begin{array}{c} \xrightarrow{2R_1+R_2} & \begin{pmatrix} 1 & 4 & 2 & | 1 & 0 & 0 \\ 0 & 0 & 7 & | 2 & 1 & 0 \\ 0 & 1 & 1 & | 0 & 0 & 1 \end{pmatrix}$$

31

Now get 1 on diagonal

32

Next we try to get as many zeroes as possible for the upper triangular part.

Hence we have

$$A^{-1} = \begin{pmatrix} 11/7 & 2/7 & -4 \\ -2/7 & -1/7 & 1 \\ 2/7 & 1/7 & 0 \end{pmatrix}$$

2.4

Consider linear system AX=B where

$$A = \begin{pmatrix} 1 & 4 & 2 \\ -2 & -8 & 3 \\ 0 & 1 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad B = \begin{pmatrix} -2 \\ 32 \\ 1 \end{pmatrix}$$

Since the inverse of A exists, we have

$$AX = B$$
 \longrightarrow $A^{-1}AX = A^{-1}B$ $IX = A^{-1}B$ $X = A^{-1}B$

5.5 Determinants and inverse

In this section, we introduce determinants, and study some of its properties.

Consider

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Ther

$$a_{11}x_1 + a_{12}x_2 = b_1 \tag{1}$$

$$a_{21}x_1 + a_{22}x_2 = b_2 \tag{2}$$

37

Perform

 $a_{22}(1) - a_{12}(2)$

and get

 $(a_{11}a_{22} - a_{12}a_{21})x_1 = b_1a_{22} - a_{12}b_2$

Similarly

$$(a_{21}a_{12} - a_{22}a_{11})x_2 = b_2a_{12} - a_{22}b_1$$

Therefore the linear system of equations has unique solution if and only if

$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$

38

We define the determinant of $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

to be $a_{11}a_{22} - a_{12}a_{21}$

We write

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \ = \ a_{11}a_{22} - a_{12}a_{21}$$

or

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

39

Inverse of a 2x2 matrix

Let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Inverse of A

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Note that

$$AA^{-1} = A^{-1}A = I$$

40

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Then we define the determinant of A, (denoted by det(A) or |A|) as

$$\det(\mathbf{A}) = a_{11} \begin{vmatrix} a_{22} a_{23} \\ a_{32} a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} a_{23} \\ a_{31} a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} a_{22} \\ a_{31} a_{32} \end{vmatrix}$$

$$= (a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{12}a_{23}a_{31}) - (a_{13}a_{22}a_{31} + a_{23}a_{32}a_{11} + a_{12}a_{21}a_{33})$$

41

Important Properties of Determinants

$$det(ST) = (det S)(det T) = det(TS)$$

$$\det M^T = \det M$$

$$\det(cM) = c^n \det M$$

where M is a nxn matrix.

Theorem 1 (proof omitted)

A nxn matrix A has an inverse if and only if det(A)≠0

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

$$\det A = 1 \times 2 \times 3 = 6$$

A has an inverse

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\det B = 1 \times 0 \times 2 = 0$$

B has no inverse

43

Theorem 2 (proof omitted)

Let A be an nxn matrix. Then AX=B has a unique solution if and only if $\det(A)\neq 0$

Thus

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

has a unique solution

because

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} = 1 \times 2 \times 3 = 6 \neq 0$$

44

5.6 Leontief Input-Output Model

A way to analyze **economics of interdependent sectors**Example ---Oil and Transportation industries

- (1) Transportation industry requires
 - (i) gasoline from the oil industry
 - (ii) transportation of equipment from the transportation industry
- (2) Oil industry requires
 - (i) transportation of gasoline from the transportation industry
 - (ii) oil-based fuels for processing from the oil industry

We will look at a single oil company and a single transportation company as a closed system

45

Information

Oil Industry

Cost of producing \$1 worth of gas:

- \$0.32 in oil costs
- \$0.12 in transportation costs

Transportation industry

Cost of producing \$1 worth of transportation:

- \$0.50 in gas costs
- \$0.20 in transportation costs

Suppose that the demand from the outside sector of the economy (all consumers outside of oil and transportation)

- \$15 billion for oil
- \$1.2 billion for transportation

46

Leontief model allows us to calculate how much each company should produce to meet a given demand

Let x =the total output from oil company

Let y = the total output from transportation company

•	•	•	
	Internal		External
	From oil	From	
	company	transportation	
		company	
Oil demand	.32x	.50y	d1 = \$15 b
Transportation demand	.12x	.20y	d2 = \$12 b

The internal demand for each is the combined demand from the oil industry and from the transportation industry

47

Setting up the demand equations

 The total output of each company will equal the sum of the internal and external demands:

$$\begin{cases} x = .32x + .50y + d_1 \\ y = .12x + .20y + d_2 \end{cases}$$

• Expressed as a matrix equation:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} .32 & .50 \\ .12 & .20 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$
$$X = MX + D$$

Solving the demand equations

• Solve for X: X = MX + D $X = (I - M)^{-1} D$

$$X = MX + D$$
$$IX - MX = D$$
$$(I - M)X = D$$

• In our example:
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} .32 & .50 \\ .12 & .20 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

$$M = \begin{bmatrix} .32 & .50 \\ .12 & .20 \end{bmatrix} \qquad I - M = \begin{bmatrix} .68 & -.50 \\ -.12 & .80 \end{bmatrix}$$
Technology matrix
$$(I - M)^{-1} = \begin{bmatrix} 1.65 & 1.03 \\ 0.25 & 1.40 \end{bmatrix}$$

The solution

5.6 Leontief Input-Output Model

 $D = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 15 \\ 1.2 \end{bmatrix}$ Putting all together:

$$X = (I - M)^{-1} D = \begin{bmatrix} 1.65 & 1.03 \\ 0.25 & 1.40 \end{bmatrix} \begin{bmatrix} 15 \\ 1.2 \end{bmatrix} = \begin{bmatrix} 26.0 \\ 5.4 \end{bmatrix}$$

- · In order to meet the demand the companies need to produce
 - \$26,0 billion of oil
 - \$5.4 billion of transportation

End of part I

Chapter 5 **PART TWO**

In part II, we shall study

Eigenvalues and eigenvectors Diagonalization of matrix

Weather forecasting model

Discrete linear population model

5.7 Eigenvalues and eigenvectors

 $\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & -\mathbf{2} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{2} \\ -\mathbf{2} \end{bmatrix}$ Vectors are in different directions

$$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
Vectors are in same direction

We rewrite what we have discussed by letting

$$T = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$

Then

$$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix} \qquad T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}2\\-2\end{bmatrix} \qquad T\begin{bmatrix}2\\1\end{bmatrix} = 2\begin{bmatrix}2\\1\end{bmatrix}$$

We are interested in the last case, i.e.,

$$T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Eigenvector

Let T be a nxn matrix. Suppose there is a non zero vector \vec{u} and a real number λ such that

$$T\vec{u} = \lambda \vec{u}$$

 $T ec{u} = \lambda ec{u}$ eigenvalue eigenvector

Then we call λ an eigenvalue for T and

 \vec{u} the corresponding eigenvector.

Note that the zero vector $\vec{0}$

is not an eigenvector though $T\vec{0} = \lambda \vec{0}$

How to find Eigenvalues and Eigenvectors

First note that

$$T\vec{u} = \lambda \vec{u} = \lambda I \vec{u}$$

$$(T - \lambda I)\vec{u} = \vec{0}$$

we want nonzero vector

To find a non-zero vector \vec{u} we have to solve

$$\det(T - \lambda I) = 0$$

Example

Find the eigenvalues of $T = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$

$$\det\left(\left[\begin{array}{cc} 1 & 2 \\ 2 & -2 \end{array}\right] - \lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) = 0$$

$$\implies \det\left(\left[\begin{array}{cc} 1-\lambda & 2 \\ 2 & -2-\lambda \end{array}\right]\right) = 0$$

Finding Eigenvectors

Let
$$\vec{u} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

be an eigenvector corresponding to $\lambda = 2$.

Then
$$(T-2I)\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1-2 & 2 \\ 2 & -2-2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-\alpha + 2\beta = 0$$

$$2\alpha - 4\beta = 0$$
Two identical equations

Thus there are infinitely many solutions, i.e., there are infinitely many eigenvectors.

In fact, the eigenvectors associated to $\lambda = 2$ are of the form

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{\alpha}{2} \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \qquad \alpha \neq 0$$

Thus all the eigenvectors are parallel.

Now we may choose $\alpha = 1$

and get the eigenvector

Note that we need only one eigenvector.

Next we let $\vec{u} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ be an eigenvector

corresponding to $\lambda = -3$

$$(T - (-3)I)\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1+3 & 2 \\ 2 & -2+3 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c}
4\alpha + 2\beta = 0 \\
2\alpha + \beta = 0
\end{array}$$
 two identical equations

Thus the eigenvectors associated to $\lambda = -3$ are of the form

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ -2\alpha \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -2 \end{bmatrix} \qquad \alpha \neq 0$$

Now choose $\alpha = 1$

and get the eigenvector $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Example

Let

$$T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Then

$$\det(T - \lambda I) = 0$$

$$\begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 + 1 = 0$$

Consider $\lambda = i$

$$(T - \lambda I) \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = 0$$

$$\begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = 0$$

$$-i\alpha - \beta = 0$$
 two identical equations

Since $\alpha - i\beta = 0$

eigenvector

$$\begin{bmatrix} i\beta \\ \beta \end{bmatrix} = \beta \begin{bmatrix} i \\ 1 \end{bmatrix}$$

choose

$$\beta = 1$$

and get the complex eigenvector $\begin{bmatrix} i \\ 1 \end{bmatrix}$

Next we consider second eigenvalue $\lambda = -i$ and get

$$\begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = 0 \qquad \Longrightarrow \qquad i\alpha - \beta = 0$$
$$\alpha + i\beta = 0$$

$$i\alpha - \beta$$

$$\alpha + i\beta = 0$$

Use $\alpha + i\beta = 0$

and get the eigenvector $\begin{bmatrix} -i\beta \\ \beta \end{bmatrix} = \beta \begin{bmatrix} -i \\ 1 \end{bmatrix}$

$$\begin{bmatrix} -i\beta \\ \beta \end{bmatrix} = \beta \begin{bmatrix} -i \\ 1 \end{bmatrix}$$

Choose $\beta = i$

and get complex eigenvector

Recall $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

5.7 Eigenvalues and eigenvectors

So the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents a rotation

through 90 degrees.

are the eigenvectors which are complex.

In fact, when rotating through 90 degrees, every real vector should change direction, so NO real eigenvector exists.

$$P^{-1} \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} P = -\frac{2}{5} \begin{bmatrix} -2 & -1 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \frac{1}{2} & -2 \end{bmatrix}$$
$$= -\frac{2}{5} \begin{bmatrix} -2 & -1 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 6 \end{bmatrix}$$
$$= -\frac{2}{5} \begin{bmatrix} -5 & 0 \\ 0 & -\frac{15}{2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$

Example
$$\begin{bmatrix} \mathbf{1} & \tan \theta \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \text{ has only one eigenvalue since}$$

$$\det \left(\begin{bmatrix} \mathbf{1} - \lambda & \tan \theta \\ \mathbf{0} & \mathbf{1} - \lambda \end{bmatrix} \right) = (\mathbf{1} - \lambda)^2 = \mathbf{0}$$
 Since we have only one eigenvector
$$\begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}$$
 it is not possible to diagonalize the matrix.

Finding
$$M^n$$

$$M = PDP^{-1}$$

$$M^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$$

$$M^3 = MM^2 = PDP^{-1}PD^2P^{-1} = PD^3P^{-1}$$

$$M^n = PD^nP^{-1} = P\begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix} P^{-1}$$

Today	Tomorrow	Probability
Rainy	Rainy	60%
	Sunny	40%
Sunny	Rainy	30%
	Sunny	70%

Current: R S Next:
$$M = \begin{bmatrix} R \rightarrow R & S \rightarrow R \\ R \rightarrow S & S \rightarrow S \end{bmatrix} = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}. R$$
Transition matrix
$$\text{columns add to 1}$$
The problem we consider here is an example of Markov Chains}

Transition matrix

Current: R S Next:

[0.3 0.8] R
[0.7 0.2] S

columns add to 1

$$M = \begin{bmatrix} R \to R & S \to R \\ R \to S & S \to S \end{bmatrix} = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}.$$
Today is Sunny, will it be rainy 2 days later?
$$0.7 \quad S \quad 0.49 \\ 0.3 \quad R \quad 0.21 \\ 0.4 \quad S \quad 0.12 \\ 0.6 \quad R \quad 0.18$$

$$M = \begin{bmatrix} R \to R & S \to R \\ R \to S & S \to S \end{bmatrix} = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}.$$
Today is Rainy, will it be rainy 4 days later?
$$M^{4} = \begin{bmatrix} R \to R_{4} & S \to R_{4} \\ R \to S_{4} & S \to S_{4} \end{bmatrix}$$

$$M^{4} = \begin{bmatrix} 0.4332 & 0.4251 \\ 0.5668 & 0.5749 \end{bmatrix}$$

Today is Rainy, will it be rainy 30 days later?

Find M^{30} Should use $M^{30} = PD^{30}P^{-1}$

Eigenvalues of
$$M = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$$

are
$$\lambda_1 = 0.3$$
 $\lambda_2 = 1$

Corresponding eigenvectors are

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{4} \\ \frac{4}{3} \end{bmatrix}$$

79

$$P = \begin{bmatrix} 1 & 1 \\ -1 & \frac{4}{3} \end{bmatrix} \qquad P^{-1} = \begin{bmatrix} \frac{4}{7} & -\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} \end{bmatrix}$$

$$D^{30} = \begin{bmatrix} 0.3^{30} & 0 \\ 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 2 \times 10^{-16} & 0 \\ 0 & 1 \end{bmatrix}$$

$$M^{30} = \begin{bmatrix} 1 & 1 \\ -1 & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 2 \times 10^{-16} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{4}{7} & -\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} \end{bmatrix}$$

$$\approx \begin{bmatrix} \frac{3}{7} & \frac{3}{7} \\ \frac{7}{7} & \frac{7}{7} \end{bmatrix}.$$

80

Transition matrix

current S R Next

$$M = \begin{bmatrix} S & M = \begin{bmatrix} S \to S & R \to S \\ S \to R & R \to R \end{bmatrix}$$

$$M^{6} = \begin{bmatrix} S \to S_{6} & R \to S_{6} \\ S \to R_{6} & R \to R_{6} \end{bmatrix}$$

Q1

5.10Trace of a Matrix

Let **M** be a square matrix.

The trace of M, denoted Tr(M), is the sum of the diagonal entries

$$Tr\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 2$$
, $Tr\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = 15$,

$$Tr \left[\begin{array}{ccc} 1 & 5 & 16 \\ 7 & 2 & 15 \\ 11 & 9 & 8 \end{array} \right] = 11$$

92

$$Tr(MN) = Tr(NM)$$

$$Tr(M) = Tr(PDP^{-1}) = Tr(D)$$

Given matrix

Representation of M wrt new basis

For a diagonalizable matrix M,

Tr(M) = Tr(D) = sum of its eigenvalues.

Use this to check your calculations of eigenvalues and to find the remaining eigenvalue

83

$$M = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$$

eigenvalue $\lambda_1 = 0.3$

Tr(M)=0.6+0.7=1.3

Hence the 2nd eigenvalue is

$$\lambda_2 = 1$$

5.11 Discrete Linear Population Models

Discrete data of pigeon population

Year	Juveniles	Adults
1	J_1	A_1
2	J_2	A_2
k	J_k	A_k

85

 $oldsymbol{J}_{k}$ # of Juvenile at year k $oldsymbol{A}_{k}$ # of adult at year k Reproduction Rules

- A) Juvenile becomes Adult after 1 year
- 1) Reproduction rate = 2 $J_{k+1} = 2A_k$
- 2) Half of adults die each year 3) A quarter of juveniles survive $A_{k+1} = \frac{A_k}{2} + \frac{J_k}{4}$
- If a building has 100 adults and 10 invention

If a building has 100 adults and 40 juveniles in year 0, how does the population change?

06

$$\vec{V}_{k} = \begin{bmatrix} A_{k} \\ J_{k} \end{bmatrix} B = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 0 \end{bmatrix} \vec{V}_{k} = B^{k} \vec{V}_{0}$$
Eigenvalues
$$\vec{V}_{k} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} \end{bmatrix}$$

$$\vec{B}^{k} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & (-\frac{1}{2})^{k} \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{6} \\ -\frac{1}{3} & \frac{6}{6} \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 4 + 2(-\frac{1}{2})^{k} & 1 - (-\frac{1}{2})^{k} \\ 8 - 8(-\frac{1}{2})^{k} & 2 + 4(-\frac{1}{2})^{k} \end{bmatrix}$$
so

$$\vec{V}_k = \begin{bmatrix} A_k \\ J_k \end{bmatrix} B = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{bmatrix} \vec{V}_k = B^k \vec{V}_0$$

$$\vec{V}_0 = \begin{bmatrix} 100 \\ 40 \end{bmatrix}$$

$$A_k = \frac{220}{3} + \frac{80}{3} (-\frac{1}{2})^k$$

$$J_k = \frac{440}{3} - \frac{320}{3} (-\frac{1}{2})^k$$
In the long run $(-\frac{1}{2})^k \rightarrow 0$
Adults = 73.33, Juveniles = 146.66

$$B^k = P \begin{bmatrix} \frac{\lambda_1^k}{2} & 0 \\ 0 & \frac{\lambda_2^k}{2} \end{bmatrix} p^{-1}$$

 In this case (eigenvalue=1 and eigenvalue=-1/2), population will oscillate but eventually converge to some fixed value.

Summary

In general
 If abs. value |eigenvalue| of one of eigenvalues > 1, population explosion
 If both |eigenvalues| < 1, population goes to zero

Appendix

Taylor's Theorem

1 variable:

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots$$

2 variable:

$$f(x,y) = f(0,y) + x \frac{\partial f}{\partial x}(0,y) + \dots$$

Keep y fixed, expand about x

91

$$f(x,y) = f(0,y) + \frac{\partial f}{\partial x}(0,y) + ...$$

$$= \left(f(0,0) + y \frac{\partial f}{\partial y}(0,0) + ... \right)$$

$$+ x \left(\frac{\partial f}{\partial x}(0,0) + y \frac{\partial^2 f}{\partial y \partial x}(0,0) + ... \right)$$

$$= f(0,0) + y f_y + x f_x + \frac{1}{2} (y^2 f_{yy} + 2xy f_{xy} + x^2 f_{xx}) + ...$$

Taylor's Theorem

$$f(x,y,z) = f(0,0,0) + xf_x + yf_y + zf_z \dots$$

$$g(x,y,z) = g(0,0,0) + xg_x + yg_y + zg_z \dots$$

$$h(x,y,z) = h(0,0,0) + xh_x + yh_y + zh_z \dots$$

$$ec{m{u}} = \left| egin{array}{c} f(m{x},m{y},m{z}) \ g(m{x},m{y},m{z}) \ h(m{x},m{y},m{z}) \end{array}
ight|_{ ext{Vector function}}$$

93

$$f(x,y,z) = f(0,0,0) + xf_x + yf_y + zf_z \dots$$

$$g(x,y,z) = g(0,0,0) + xg_x + yg_y + zg_z \dots$$

$$h(x,y,z) = h(0,0,0) + xh_x + yh_y + zh_z \dots$$

$$\begin{bmatrix} f \\ g \\ h \end{bmatrix} = \begin{bmatrix} f(\vec{0}) \\ g(\vec{0}) \\ h(\vec{0}) \end{bmatrix} + \begin{bmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \dots$$
+ negligible terms

Strain Tensor

Underground rock, distorted by stress

$$\begin{bmatrix} f \\ g \\ h \end{bmatrix} = \begin{bmatrix} f(\vec{0}) \\ g(\vec{0}) \\ h(\vec{0}) \end{bmatrix} + \begin{bmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \dots$$

$$\vec{u} = \begin{bmatrix} f \\ g \\ h \end{bmatrix} \approx \begin{bmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{bmatrix} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix}$$
Strain Tensor: $S = (S_{ij})$ $\vec{\tau}$

$$\delta x, \delta y, \delta z \quad \text{small, 2}^{\text{nd}} \text{ order terms vanishes}$$

Strain Tensor
$$ec{u} = egin{bmatrix} f \\ g \\ h \end{bmatrix} pprox egin{bmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{bmatrix} egin{bmatrix} \delta x \\ \delta y \\ \delta z \end{bmatrix} = S \vec{r} \\ u_i = \sum_{j=1}^3 S_{ij} r_j & S = (S_{ij}) \\ \sum_{i=1}^3 S_{ii} = f_x + g_y + h_z = \operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u} \\ & = \vec{v} \cdot \vec{u} \end{bmatrix}$$

Strain Tensor Recall: Div, Grad, Curl
$$S = \begin{bmatrix} f_x & f_y & f_x \\ g_x & g_y & g_x \\ h_x & h_y & h_x \end{bmatrix}$$

$$\sum_{i=1}^3 S_{ii} = f_x + g_y + h_z = \text{div } \vec{u} = \vec{\nabla} \cdot \vec{u}$$

$$\vec{\nabla} = \begin{bmatrix} \frac{d}{dg} \\ \frac{d}{dg} \\ \frac{d}{dg} \end{bmatrix} \implies \vec{\nabla}(\vec{u}) = \begin{bmatrix} \frac{df}{dg} \\ \frac{dg}{dg} \\ \frac{dg}{dg} \end{bmatrix}$$

$$\vec{\nabla} \times \vec{u} = \begin{bmatrix} \frac{d}{dg} \\ \frac{d}{dg} \\ \frac{d}{dg} \end{bmatrix} \times \begin{bmatrix} f \\ g \\ h \end{bmatrix}$$

$$S = \begin{bmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{bmatrix}$$

$$S - S^T = \begin{bmatrix} 0 & -(g_x - f_y) & (f_z - h_x) \\ (g_x - f_y) & 0 & -(h_y - g_z) \\ -(f_z - h_x) & (h_y - g_z) & 0 \end{bmatrix}$$

$$\cdot \text{ Anti-symmetric}$$

$$\cdot \text{ Associated to a vector}$$

$$\begin{bmatrix} h_y - g_z \\ f_z - h_x \\ g_x - f_y \end{bmatrix} = \vec{\nabla} \times \vec{u} = \begin{bmatrix} \frac{d}{dx} \\ \frac{d}{dy} \\ \frac{d}{dy} \end{bmatrix} \times \begin{bmatrix} f \\ g \\ h \end{bmatrix}$$

Strain Tensor

Relationship between stress and strain

$$T_{ij} = \sum_{k} \sum_{j} Y_{ijkl} S_{kl}$$

103

Orthogonal matrix

An $n \times n$ matrix, B is orthogonal if $BB^{T} = I$ $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{ is orthogonal}$ $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $= \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & 0 \\ 0 & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix} = I$

Composing two shears

S: shear **\theta** degrees parallel to x axis

S: shear ϕ degrees parallel to x axis

$$S(\phi)S(\theta) = \begin{bmatrix} 1 & \tan \phi \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \tan \phi + \tan \theta \\ 0 & 1 \end{bmatrix}.$$

Still a shear but note that $tan(\phi + \theta) \neq tan \phi + tan \theta$

Rotation in 3D

Rotate 90 degrees (anticlockwise) about z-axis
$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotate 90 degrees (anticlockwise) about x-axis
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Determinant of Orthogonal Matrix $MM^T = I$ $\det(MM^T) = \det(M) \det(M^T)$ $= \det(M) \times \det(M)$ $= (\det M)^2$ $\det M = \pm 1$ $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Moment of Inertia Tensor $J\left(\frac{d\vec{\Omega}}{dt}\right) + \vec{\Omega} \times J(\vec{\Omega}) = \vec{0}$ Freely rotating objects spin steadily only around an axis defined by an eigenvector of the moment of inertia tensor