

VALIDATION OF ADVANCED FLIGHT SIMULATORS FOR OPERATIONAL EVALUATION

AND TRAINING PROGRAMS

OCTOBER 12, 2002

Briefing prepared by:

Dr. A. E. Dillard

**Federal Aviation Administration
National Resource Specialist,
Simulation Engineering, AFS-
408**

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Definitions:**

- **Simulator** - A flight training device with full six-degree of freedom motion system, a visual system that meets FAA Level D requirements and meets performance standards of AC 120-40.
- **Operational Evaluation Program** - Test programs to support operational or equipment approval conducted in a realistic operational environment using advanced flight simulators
- **Aircraft Data Base** - Aircraft performance data base representing flight test data from the aircraft manufacturer
- **Simulator Approval** - Granting approval or certification for a simulator device meeting the requirements of FAA AC 120-40 or ICAO equivalent.

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Types of Simulation**
 - **Full Flight Simulators – Levels A thru D**
 - **Training Devices – Levels 1 thru 7**
 - **Part Task Simulators**
 - **Laboratory Simulators**
 - **Unmanned Integrated Modeling**
 - **Mathematical Modeling**

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **History of Flight Simulators**
 - World War II
 - Application to Civilian Pilot Training
 - Development of Computers
 - Development of Motion Bases
 - Development Of Visual Systems
 - Advanced Simulator Program in 1970s
 - Application of Actual Aircraft Performance Data Bases

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Uses of Full Flight Simulators**
 - **Advanced Training Program**
 - **Level A thru D**
 - **Level D requires no Aircraft flight time for transition training with approved training program**
 - **Aircraft and systems modeling to highest level of fidelity possible - no effort to model pilot**
 - **Attributes - Discussion**
 - **Operation Evaluation Programs**
 - **Networking**

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Simulator Costs**
 - Approximately \$14M for Level D Device
 - **Includes:**
 - Spares
 - Training
 - Tolls and Test Equipment
 - Instructors/Operators Facilities
 - HLA/DIS Compatible
 - Delivery/Installation/Certification
 - Warranty

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Issues for Using Simulators for Operational Evaluation Programs**
 - Flight performance fidelity throughout flight envelope under test
 - Systems Fidelity
 - Realistic environmental conditions
 - Realistic faults/failures
 - Realistic operating environment
 - Realistic pilot workload

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- Primary drivers for operational evaluation programs
 - New equipment certification and operational approval
 - New procedures – closely spaced runways, land and hold short, increased system through-put
 - New Air traffic procedures and rules
 - New airport design and infrastructure
 - Testing for operating environment phenomena

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Pilots as test subjects**
 - System is set up to define minimum pilot performance requirements
 - Highly trained and retrained
 - Select group - changing in civil world
 - Cadre of pilot test subjects must be representative of pilot population at large
 - age distribution, current in aircraft type, line pilot.
 - Active to age 60 – then forced to retire under current law

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Validation of aircraft flight performance**
 - Advanced simulator program ensures performance against known aircraft data
 - Confirmed by objective comparison of plotted performance variables plus expert subjective testing
 - Advanced simulators checked twice annually against selected maneuvers
 - Includes visual, motion and throughput/latency testing

VALIDATION OF ADVANCED FLIGHT SIMULATORS

Qualification Test Guide

Initial Conditions

Mass Properties/Configuration		Speed/Altitude/Atmosphere	
Gross Weight	40082.29 lbs	Calibrated Airspeed	50.28 kts
Fuel Weight	2000.00 lbs	Max Number	0.09 -
Longitudinal C.G.	0.15 frac mac	Ground Speed	44.23 kts
XX Moment of Inertia	192239.97 slug-ft ²	Rate of Climb	1.61 fpm
YY Moment of Inertia	322323.12 slug-ft ²	Rate of Descent	-16.21 fpm
ZZ Moment of Inertia	543893.12 slug-ft ²	Height Above Ground	7.99 ft
Landing Gear Product	15677.16 slug-ft ²	Height Above Sea Level	50.95 ft
Landing Gear Position	1.00 detent	Ambient Temperature	50.00 deg
Landing Gear Position	Down	Wind Speed	21.50 deg
Vaw Damper	Off	Wind Direction	284.36 deg
Powerplant : Pratt&Whitney PW127F Turboprop		<u>Flight Controls and Surfaces</u>	
<u>Ruler & Aero Angles/Accelerations</u>		Column Position (+ANU)	-0.25 deg
Pitch Angle	-1.07 deg	Left Elevator Deflection (+AND)	0.66 deg
Roll Angle	1.22 deg	Right Elevator Deflection (-AND)	0.55 deg
Heading Angle	324.52 deg	Elevator Tab Deflection (-AND)	1.67 deg
Bank Angle / Attack	0.00 deg	Wheel Position (+RWD)	-5.00 deg
Angle of Sideslip	-10.58 deg	Left Aileron Deflection (-RWD)	-1.09 deg
Body Axis Roll Rate	0.14 deg/sec	Right Aileron Deflection (+LWD)	0.00 deg
Body Axis Pitch Rate	0.00 deg/sec	Left Spoiler Deflection	0.00 deg
Body Axis Yaw Rate	0.00 deg/sec	Right Spoiler Deflection	0.00 deg
<u>Engines</u>		Pedal Position (+ANR)	-1.55 deg
Engine #1 Controller PLA	74.90 deg	Right Brake Pedal Position (-ANR)	-4.16 deg
Engine #1 Controller PLA	74.90 deg	Nosewheel Deflection (+ANR)	0.00 deg
Engine #1 Controller CLA	99.00 deg	Left Brake Pedal Position	0.00 deg
Engine #2 Controller CLA	99.00 deg	Right Brake Pedal Position	0.00 -
Engine #1 Torque	90.01 %	<u>Aircraft Control Status</u>	
Engine #2 Torque	90.00 %	Column Driven	
Engine #1 Propeller Speed	1199.55 RPM	Wheel Driven	
Engine #2 Propeller Speed	1199.55 RPM	Rudder Pedal Driven	
Engine #1 Status Flag	On	Spoiler Free	
Engine #2 Status Flag	On	<u>Closed-Loop Controllers</u>	
Pitch Axis	Inactive	Gear Lever Driven	
Roll Axis	Inactive	Engine #1 Controller PLA Driven	
Yaw Axis	Inactive	Engine #1 Controller CLA Driven	
		Engine #2 Controller CLA Driven	
		Engine #2 Controller PLA Driven	
		Bossard Driven	
		Brake Pedals Free	

4.1.B.3 - Minimum Unstick Speed Flap 15, Gear DOWN

Date & Time : 2002-Sep-09 16:15:55	Result Type : Auto Driven
Airline/Operator : CAT - Maastricht	Simulator : NTR 72-500 STF
Reference : S00214500, pages 1b(311-1 to 3 (RTB 72-500 Aerospatiale Flight Test Data)	Page 1/8

VALIDATION OF ADVANCED FLIGHT SIMULATORS

VALIDATION OF ADVANCED FLIGHT SIMULATORS

— Reference Data
-○--- CAE Simulator Data

4.1.B.3 - Minimum Unstick Speed Flap 15, Gear DOWN

Date & Time : 2002-Sep-09 16:15:55

Result Type : Auto Driven

Airline/Operator : CAT - Maastricht

Simulator : ATR 72-500 STF

Reference : S00214500, pages 1b(3)1-1 to 3
(ATR 72-500 Aerospatiale Flight Test Data)

Page 3 / 8

VALIDATION OF ADVANCED FLIGHT SIMULATORS

Reference Data
-○--○ CAE Simulator Data

4.1.B.3 - Minimum Unstick Speed Flap 15, Gear DOWN

Date & Time : 2002-Sep-09 16:15:55	Result Type : Auto Driven
Airline/Operator : CAT - Maastricht	Simulator : ATR 72-500 STF
Reference : S00214500, pages 1b(3)1-1 to 3 (ATR 72-500 Aerospatiale Flight Test Data)	

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Systems Validation**
 - Navigation performance tested as part of approval process against terminal area geographical data base (Runway positioning and visual scene)
 - On commercial simulators you must confirm en-route geo positioning
 - Must validate specific system fidelity if critical to current evaluation

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **System Modeling**
 - **Uses actual equipment manufacturers design data**
 - **Emulation (uses actual aircraft display software with non-airworthy hardware) of flight deck displays preferred to simulated instruments if actual aircraft hardware not used.**
 - **May need to develop test plan to test specific critical systems**

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Distributed Interactive Simulation**
 - Commercial simulators generally not HLA compliant
 - Much less data typically transferred than with military DIS
 - Simulators manufactured to different hardware specs
 - Extremely price competitive – Hence, few bells and whistles
 - Little interest for normal training requirements

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Typical Operational evaluation programs**
 - Low visibility operations
 - New technology
 - New procedures
 - Airport Infrastructure
 - New airport designs
 - Navigation
 - Communications

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Analysis of results**
 - Collect data on critical performance variables
 - Attitude
 - Airspeed
 - Altitude
 - Three dimensional track data (X, Y, Z or Lat/Long)
 - Monitor for pilot actions
 - Video
 - Audio

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Advantages of using advanced flight simulators**
 - Collaborative research environment
 - High fidelity operational environment
 - Low risk to equipment and personnel
 - Much cheaper than actual aircraft
 - Better control of test environment
 - Scenario repeatability
 - Equipment availability
 - Ability to modify and manipulate system performance through software
 - Ability to network
 - Data collection capabilities

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Disadvantages of using approved advanced simulators**
 - Cheaper than aircraft but still costly (\$300 to \$1200 flight hour)
 - Limited availability
 - Requires expert technical support
 - Can require special system validation
 - Changes to hardware and software on approved simulators cannot affect approved performance or equipment configuration
 - Must compete with training programs for time

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- Examples of a recent program
 - Laser Visual Interference
 - Worked with Brooks AFB Labs, FDA, Others
 - Worked with Laser industry
 - Supported by SAE G-10 HBET Committee to provide technical oversight and expert guidance
 - Used live laser coupled via fiber optic cable to cockpit
 - Illuminated pilot at critical junctures in typical flight operations in the terminal airspace

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Laser - Continued**
 - Approximately 40 pilots tested
 - Three levels of exposure
- **Results**
 - New standards for use of lasers in commercial airspace
 - New Advisory Circular for education of FAA and pilot community
 - Used to develop new international (ICAO) standards

VALIDATION OF ADVANCED FLIGHT SIMULATORS

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **New Technology on the Flight Deck**
 - Head-Up Display
 - Cockpit display of traffic information
 - Multi-function displays
 - ADS-B
 - Data link communications
 - Hazard avoidance/detection
 - Navigation - GPS, LAAS, WAAS
 - Communications
 - Fly-by-wire technology

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Airport Design and Infrastructure**
 - New Denver Airport
 - Approach lighting
 - High-speed exits
 - Markings and signage
 - Land and Hold Short operations
 - Runway incursions
 - Contaminated runways
 - Over-run protection

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Environmental Phenomena**
 - Wake Vortex
 - Icing
 - Unusual attitudes
 - Low visibility operations
 - Wind shear detection and recovery

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Summary -**
 - Open, collaborative test environment
 - Enhanced data collection capabilities
 - Serve as a bridge between the laboratory and the aircraft
 - Widely distributed geographically
 - Lower risk than using actual aircraft
 - Repeatability

VALIDATION OF ADVANCED FLIGHT SIMULATORS

- **Summary - Continued**
 - Advanced simulators available for virtually all commercial aircraft
 - More cost effective than using actual aircraft
 - Lower operating cost - \$300 to \$1200/hr, than actual aircraft (Typically 1/10 th the cost)
 - Offer a high fidelity, realistic operating environment
 - Able to modify software and hardware within defined constraints