Programmation Stochastique avec Recours

P. Hénaff

Version: 09 Mar 2025

Arbre de décision

Solution

Table 1: Optimal asset allocation at each node in the 3-period tree

Node	Stock	Bond	
1	41479	13521	
2	65095	2168	
3	36743	22368	
4	83840	0	
5	0	71429	
6	0	71429	
7	64000	0	

Surplus or Shortfall by scenario

Table 2: Shortfall or excess by scenario

rtfall 0	Excess 24800
0	24000
	∠ 4 000
0	8870
0	1429
0	0
0	1429
0	0
0	0
2160	0
	0 0 0 0

Stochastic vs Myopic Solution

Table 3: Expected Value vs. Recourse solutions of the asset allocation problem.

	EV solution		Recourse solution	
Scenario	Shortfall	Surplus	Shortfall	Surplus
1		27422		24800
2		11094		8870
3		11094		1429
4	2752			
5		11094		1429
6	2752			
7	2752			
8	14494		12160	

Augmented Lagrangian

Algorithm 1: Augmented Lagrangian algorithm

```
Input : \rho, tol, k_{\text{max}}
   Output: x^*
1 k \leftarrow 0: \lambda \leftarrow 0
2 while k < k_{max} and t > tol do
3
        x_{k+1} \leftarrow \operatorname{argmin} \phi_k(x)
         \lambda_{k+1} \leftarrow \lambda_k - \rho g(x_{k+1})
4
         k \leftarrow k + 1
5
       t_1 \leftarrow ||\lambda_{k+1} - \lambda_k||
6
      t_2 \leftarrow ||g(x_{k+1})||
        t \leftarrow \max(t_1, t_2)
```

9 end

Algo Progressive Hedging

Algorithm 2: Progressive Hedging algorithm

```
Input : \rho, tol, i_{max}
```

Output: x^*

```
1 i ← 0; \lambda_i ← 0; converged ← False
```

2 while $k < k_{max}$ and !converged do

```
3 | Solve the K subproblems to obtain x_k^{i+1}, k = 1, ..., K
```

4 Compute
$$\hat{x}^{i+1} = \sum_{k=1}^{K} \pi_k x_k^{i+1}$$

5 Update the multipliers:
$$\lambda_k^{i+1} = \lambda_k^i - \rho(x_k^{i+1} - \hat{x}^{i+1})$$

6
$$i \leftarrow i + 1$$

7
$$|t_1 \leftarrow ||\lambda^{i+1} - \lambda^i|| < \mathsf{tol}_1$$

8
$$|t_2 \leftarrow ||g^1(x^{i+1})| < \text{tol} < \text{tol}_2$$

9
$$|t_3 \leftarrow ||g^2(x^{i+1})| < \text{tol} < \text{tol}_3$$

10 converged
$$\leftarrow \max(t_1, t_2, t_3)$$

11 end

First Example

Figure 1: Progressive Hedging Iterations

Second example: A 3-stage optimization problem

Linear Convergence of the Progressive Hedging Algorithm

