FORMULARIO DE ESTADÍSTICA

Facultad de Ciencias Económicas

Rufasto C. Andy

CONTENIDO

DISTRIBUCIÓN DE FRECUENCIAS

1.1 Distribuciónes de Frecuencias

 $R = V_{max} - V_{min}$

 $\mathbf{C} = \ \frac{R}{K}$

 $\mathrm{K} = 1 + 3.332\mathrm{log}\,N$

F = K * C - R

R: Rango

V: Valor

C: Amplitud de intervalo

K: Número de clase

 $k \in [5; 20]$

F: Factor de centralización

N: Número de datos

1.2 Tabla de Frecuencias

	x_i	f_i	F_i	h_i	H_i
i=1	$ V_{min};V_{min}+c\rangle$	f_1	f_1	f_1/N	F_1/N
i=2	$[L_{i2};L_{i2}+c\rangle$	f_2	$F_1 + f_2$	f_2/N	F_2/N
i=3	$[L_{i3};L_{i3}+c\rangle$	f_3	$F_2 + f_3$	f_3/N	F_3/N
:	i:	•	:	•	:
i=k	$ L_{ik};L_{ik}+c\rangle$	F_k	N	f_k/N	1

Tabla 1.1: Tabla de Distribución de Frecuencias

MEDIDAS DE TENDENCIA CENTRAL

2.1 Media

2.1.1 Media Aritmética

Método Largo

$$\bar{x} = \sum_{i=1}^{N} \frac{x_i}{N}$$
$$= \sum_{i=1}^{N} \frac{x_i f_i}{N}$$

Método Corto

$$Si \quad x_i = d_i + A$$

$$\bar{x} = \overline{d + A}$$

$$= \overline{d} + A$$

$$\bar{x}_i = \sum_{i=1}^{N} \frac{x_i d_i}{N} + A$$

Método Clave

$$d_i = cu_i$$

$$x = cu_i + A$$

$$\bar{x} = c \left[\sum_{i=1}^{N} \frac{f_i u_i}{N} \right] + A$$

2.1.2 Media Geométrica

$$G = \sqrt[n]{X_1^{f_1}.X_2^{f_2}.X_3^{f_3}...X_n^{f_n}}$$

2.1.3 Media Armónica

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i \cdot f_i}}$$

2.2 Mediana

$$Med = L_i + c \left[\frac{\frac{n}{2} - F_{i-1}}{F_i - F_{i-1}} \right]$$

 L_i : Límite inferior de la clase modal.

 F_i : frecuencia acumulada del intervalo mediano.

2.3 Moda

$$\tilde{x} = L_i + c \left[\frac{\Delta_1}{\Delta_1 + \Delta_2} \right]$$

$$\Delta_1: f_i - f_{i-1}$$

$$\Delta_2: f_i - f_{i+1}$$

MEDIDAS DE DISPERSIÓN

3.1 Varianza

$$\sigma^2 = \sum_{i=1}^{N} \frac{(x_i - \overline{x})^2}{N} f_i$$

3.2 Cuasivarianza

$$S^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \overline{x})^{2}}{N - 1}$$

3.4 Intervarianza

$$\sigma_b^2 = V(\overline{x}_b)$$

$$= \sum_{n=1}^l \frac{(\overline{x}_h - \overline{x}) \times N_h}{N}$$

$$\sigma^{2} = \sum_{i=1}^{N} \frac{x_{i}^{2} f_{i}}{N} - \sum_{i=1}^{N} \left(\frac{x_{i} f_{i}}{N}\right)^{2}$$

3.3 Coeficiente de Variación

$$CV = \frac{\sigma_x}{r} \times 100\%$$

3.5 Intravarianza

$$\sigma_w^2 = M(\sigma_h^2)$$
$$= \sum_{n=1}^l \frac{\sigma_n^2 \times N_h}{N}$$

3.6 Asimetría

$$As = \frac{3\left(\overline{x} - Med\right)}{s}$$

FUNCIÓN GENERADORA DE MOMENTOS

4.1 Densidad

$$f\left(x\right) > 0$$

4.2 Esperanza

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

$$\int_{a}^{b} f(x)dx = 1$$

4.3 Varianza

$$\sigma^{2} = E\left[(x-\mu)^{2}\right]$$
$$= \sum_{n} (x-\mu)^{2} f(x)$$

4.4 Momentos

$$\mu_{k,a} = E\left[(x-a)^k\right]$$
$$= \int e^{(x-a)^k} f(x) dx$$

Distribuciones de Probabilidad

5.1 Distribuciones de Probabilidad Discretas

5.1.1 Distribución de Bernulli

La distribución de Bernulli es una distribución de probabilidad discreta en el que existen solo probabilidad de éxito (**p**) y de fracaso (**q**)

$$0$$

Sea X una variable aleatoria, que mide el número de éxitos cuando se realiza un único experimento con dos resultados posibles, entonces X se distribuye como una Bernulli de parámetro \mathbf{p} .

 $X \sim Be(p)$ con función de probabilidad $f(x) = p^x(1-p)^{1-x}$

$$\mu := E(X) = 0 \times q + 1 \times p$$
 $\sigma^2 := var(X) = p - p^2$
 $= p$
 $= p(1-p)$

5.1.2 Distribución Binomial

Sea X una variable aleatoria que mide el número de éxitos en n experimentos con dos resultados posibles p y q, entonces X se distribuye como una Binomial de parámetros n y p.

$$0$$

$$X \sim B(n, p)$$
 con función de robabilidad f $(x) = \binom{n}{x} p^x (1-p)^{1-x}$
 (n) $n!$

$$\binom{n}{x} = \frac{n!}{x! (n-x)!}$$

$$\mu := E(X) = np$$

$$\sigma^2 := var(X) = np(1-p)$$

n	x	p 0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1	0	0.9900	0.9800	0.9700	0.9600	0.9500	0.9400	0.9300	0.9200	0.9100
	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0	0.9801	0.9604	0.9409	0.9216	0.9025	0.8836	0.8649	0.8464	0.8281
	1	0.9999	0.9996	0.9991	0.9984	0.9975	0.9964	0.9951	0.9936	0.9919
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.9703	0.9412	0.9127	0.8847	0.8574	0.8306	0.8044	0.7787	0.7536
	1	0.9997	0.9988	0.9974	0.9953	0.9928	0.9896	0.9860	0.9818	0.9772
	2	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9995	0.9993
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0	0.9606	0.9224	0.8853	0.8493	0.8145	0.7807	0.7481	0.7164	0.6857
	1	0.9994	0.9977	0.9948	0.9909	0.9860	0.9801	0.9733	0.9656	0.9570
	2	1.0000	1.0000	0.9999	0.9998	0.9995	0.9992	0.9987	0.9981	0.9973
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0	0.9510	0.9039	0.8587	0.8154	0.7738	0.7339	0.6957	0.6591	0.6240
	1	0.9990	0.9962	0.9915	0.9852	0.9774	0.9681	0.9575	0.9456	0.9326
	2	1.0000	0.9999	0.9997	0.9994	0.9988	0.9980	0.9969	0.9955	0.9937
	3	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla 5.1: Función de distribución acumulativa binomial

5.1.3 Distribución de Poisson

Sea \mathbf{k} el número de ocurrencias del evento o fenómeno, y sea λ un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo de tiempo dado.

$$\begin{array}{ccc} \lambda & \in & \{0, \infty\} \\ & k & \in & \mathbb{N} \end{array}$$

e :=
$$\lim_{n\to\infty} (1+\frac{1}{n})^n$$

= 2.7182818284 ...

X la variable aleatoria que mide la probabilidad de dicho suceso, entonces X tiene una distribución Poisson.

 $X \sim Poi(\lambda)$ con funcion de probabilidad $f(x) = \frac{e^{-x}\lambda^x}{x!}$

$$\mu := E(X) \qquad \sigma^2 := var(X)$$
$$= \lambda \qquad = \lambda$$

5.1.4 Distribución Hipergeométrica

Si ${\bf N}$ es el tamaño de la población, ${\bf n}$ el tamaño de la muestra extraída, m el número de elementos de la población original deseada, ${\bf X}$ es el número de elementos en la muestra que pertenecen dicha categoría, Se tiene una distribución Hipergeométrica.

$$X \sim H(N, m, n)$$
 con función de probabilidad $f(x) = \frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$

$$\mu := E(X) \qquad \sigma^2 := var(X) = \frac{nm}{N} \qquad = n\frac{m}{N} \left(\frac{N-m}{N}\right) \left(\frac{N-m}{N-1}\right)$$

5.2 Distribuciones de Probabilidad Continuas

5.2.1 Distribución Normal

Sea ${\bf X}$ es una variable aleatoria continua se dice que X sigue una ley normal con media μ y varianza σ^2

$$X \sim N(\mu, \sigma^2)$$
 con función de probabilidad $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

ESTIMACION DE INTERVALO PARA MEDIA POBLACIONAL

6.1 Varianza Conocida

$$Z = \frac{x - \mu}{\sigma \sqrt{n}}$$

$$P\left[\overline{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{n} < \mu > \overline{x} + Z_{\frac{\alpha}{2}} \frac{\sigma}{n}\right] = 1 - \alpha$$

$$\operatorname{Población} \begin{cases} N \sim Normal\left(\mu \; ; \; \sigma^2\right) \\ \mu \; : \; Desconocida \\ \sigma^2 \; : \; Desconocida \end{cases}$$

$$X \sim Z \sim t_{(v,\frac{\alpha}{2})}$$

$$Z = \frac{x - \mu}{\sigma \sqrt{n}}$$

$$P\left[\overline{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{n} < \mu > \overline{x} + Z_{\frac{\alpha}{2}} \frac{\sigma}{n}\right] = 1 - \alpha$$