1sttheory: An R Package for Fast Computation of State Trait Models

Axel Mayer Ghent University

February 23, 2014

Abstract

This R (?, ?) package is a supplement for the article 'A Theory of States and Traits – Revised' (SMGC; Steyer, Mayer, Geiser, & Cole, in press). It is based on the structural equation modeling R package lavaan (Rosseel, 2012) and provides a convenient interface to compute some common models of the revised latent state-trait theory (LST-R theory). The main function of the package allows for easy specification of multistate, multistate-singletrait, and multistate-multitrait models. It automatically generates lavaan syntax for these models, runs the models, and returns model estimates together with reliability, occasion specificity, and consistency coefficients for the respective models.

Keywords: states, traits, reliability, occasion specificity, consistency

Cautionary Note: The package is currently under development and some things may change in the future. We are at an early stage of development and it is likely that the structure and key aspects of the two packages will change. We also plan to release the package on CRAN, once we are a bit further in the development process. Please report any bugs.

Contents

1	Introduction					
2	Installation					
	2.1	Windows Installation	3			
	2.2	Linux Installation	3			
	2.3	Loading the Package	3			
3	Mu	ltistate Models	5			
	3.1	Multistate Model with η_t -Congenericity	5			
	3.2	Multistate Model with Essential η_t -Equivalence	8			
	3.3	Multistate Model with η_t -Equivalence	8			
	3.4	Multistate Models with Scale Invariance	9			
4	1 Multistate-Singletrait Models					
	4.1	Multistate-Singletrait Models with θ -Congenericity	10			
	4.2	Multistate-Single trait Models with $\theta\textsc{-}\mbox{Equivalence}$	11			
5	Mu	ltistate-Doubletrait Models	13			
	5.1	Multistate-Double trait Models with θ_1, θ_2 -Congenericity	13			
6	Plo	t LST-R Theory Models with semPlot	15			

1 Introduction

1sttheory allows for easy specification of multistate, multistate-singletrait, and multistate-multitrait models. This vignette is structured as follows: We first describe the installation process in detail for nonexperienced users of R. Users who are familiar with package installation from local .zip files or from source (via Github) may wish to skip this section. We then present various kinds of LST-R theory models with syntax and model results.

2 Installation

The R package 1sttheory can be installed from a local file. Therefore, we need to install the dependencies first. The installation has been tested under Windows 7 and under Linux (Ubuntu 11.10). It should also work under Mac OS X but we haven't tested it yet. Please make sure that you are using R version 3.0.1 or higher.

2.1 Windows Installation

For a Windows installation (without Rtools) we suggest installing the dependencies from a CRAN mirror first by executing

```
install.packages("lavaan") ## for lsttheory
install.packages("shiny") ## for user Interface
install.packages("semPlot") ## for plots
```

in the console and then selecting a mirror next to you. After that, the R package lsttheory can be installed using the Windows binary file (with file ending .zip) as follows:

```
install.packages("D:/workspace/lsttheory_0.1-1.zip")
```

Please adjust the file path and version number accordingly.

2.2 Linux Installation

We assume that Linux users are familiar with installing R packages from source. The source files is lsttheory_0.1-1.tar.gz and can be downloaded from GitHub.

2.3 Loading the Package

After having successfully installed the package, we need to load them:

```
library("lsttheory")

## Loading required package: lavaan

## This is lavaan 0.5-16

## lavaan is BETA software! Please report any bugs.
```

3 Multistate Models

The lsttheory pacakee contains several simulated example datasets. The first one that we use is the dataset multistate. It contains 4 manifest variables Y_{it} , where the index refers to the *i*th manifest variable assessed at occasion *t*. This dataset has been used in Supplement C of Steyer, Mayer, Geiser & Cole (in press) to describe software input for lavaan for LST-R models.

```
data(multistate)
head(round(multistate, 2))
##
      y11
            y21
                  y12
                       y22
     3.03
          3.76 4.15 5.26
## 2 -1.95 -1.11 -1.99 -0.52
     0.94
           0.53 1.10
     2.44
           2.45
                 1.36
                       2.03
     3.72 3.59
## 5
                 0.33
                       1.56
## 6 3.16 3.64
                2.25
                       2.79
```

3.1 Multistate Model with η_t -Congenericity

First, we use this dataset to fit a multistate model with η_t -congenericity and conditional mean independence (see Box 4.1 of SMGC). The main function of our package to be called by the user is 1sttheory. See ?1sttheory for details. It is used to fit all models. The multistate model with η_t -congenericity can be specified as follows:

```
m1 <- lsttheory(neta = 2, data = multistate)</pre>
print(m1)
##
##
    Multistate Model
##
##
       rely spey cony
## y11 0.92
               NA
                    NA
## y21 0.92
               NA
                     NA
## y12 0.93
               NA
                    NA
## y22 0.91
               NA
##
```

The lst theory function just requires two mandatory arguments: The number of common state variables η_t and the dataset to use. In the current version of our package, the dataset may only include the manifest variables Y_{it} and these should be ordered by occasion t and indicator i, i.e., $Y_{11},Y_{21},\ldots,Y_{12},Y_{22},\ldots,Y_{13},Y_{23},\ldots$ The lsttheory function returns an object of class lsttheory for which several methods are available. print(m1) shows reliability, occasion specificity, and consistency coefficients (see Box 3.1 of SMGC). For the multistate model only reliability coefficients are available, because traits are not modeled.

The function lsttheory has automatically generated lavaan input syntax:

```
cat(m1@lavaansyntax)
## eta1 =^{\sim} 1*y11
## eta1 =~ la211*y21
## eta2 =~ 1*y12
## eta2 =~ la221*y22
## y11 ~ 0*1
## y21 ~ la210*1
## y12 ~ 0*1
## y22 ~ la220*1
## eta1 ~ ga10*1
## eta2 ~ ga20*1
## y11 ~~ eps11*y11
## y21 ~~ eps21*y21
## y12 ~~ eps12*y12
## y22 ~~ eps22*y22
## eta1 ~~ psi1*eta1
## eta2 ~~ psi2*eta2
##
##
##
##
## vareta1 := psi1
## vareta2 := psi2
## vary11 := 1^2 * vareta1 + eps11
## vary21 := la211^2 * vareta1 + eps21
## vary12 := 1^2 * vareta2 + eps12
## vary22 := la221^2 * vareta2 + eps22
## rely11 := 1^2 * vareta1 / vary11
## rely21 := la211^2 * vareta1 / vary21
## rely12 := 1^2 * vareta2 / vary12
## rely22 := la221^2 * vareta2 / vary22
```

and the lavaan output can be seen by calling:

```
summary(m1@lavaanres)

## lavaan (0.5-16) converged normally after 38 iterations
##
```

```
##
     Number of observations
                                                         400
##
##
     Estimator
                                                          ML
##
     Minimum Function Test Statistic
                                                       0.894
##
     Degrees of freedom
                                                           1
##
     P-value (Chi-square)
                                                       0.344
##
## Parameter estimates:
##
     Information
                                                    Expected
##
##
     Standard Errors
                                                    Standard
##
##
                       Estimate Std.err Z-value P(>|z|)
## Latent variables:
##
     eta1 =~
##
       y11
                          1.000
##
       y21
               (1211)
                          0.968
                                    0.030
                                            32.385
                                                       0.000
     eta2 =~
##
##
                          1.000
       y12
##
       y22
               (1221)
                          0.952
                                    0.029
                                            33.020
                                                       0.000
##
## Covariances:
##
     eta1 ~~
##
                          2.240
                                    0.208
                                            10.794
       eta2
                                                       0.000
##
## Intercepts:
##
       y11
                          0.000
##
       y21
               (1210)
                          0.518
                                    0.038
                                            13.504
                                                       0.000
                          0.000
##
       y12
##
       y22
               (1220)
                          0.732
                                    0.045
                                            16.215
                                                       0.000
##
       eta1
               (ga10)
                          0.466
                                    0.092
                                             5.076
                                                       0.000
##
               (ga20)
                          0.952
                                    0.095
                                              9.989
                                                       0.000
       eta2
##
## Variances:
##
       y11
              (ep11)
                          0.261
                                    0.074
                          0.265
                                    0.070
##
       y21
               (ep21)
##
       y12
               (ep12)
                          0.254
                                    0.079
##
       y22
               (ep22)
                          0.285
                                    0.072
##
                          3.103
                                    0.248
       eta1
               (psi1)
##
                          3.380
       eta2
               (psi2)
                                    0.268
##
## Defined parameters:
##
       vareta1
                          3.103
                                    0.248
                                            12.523
                                                       0.000
##
       vareta2
                          3.380
                                    0.268
                                            12.633
                                                       0.000
                          3.365
                                    0.238
                                            14.142
                                                       0.000
##
       vary11
```

```
0.225
##
       vary21
                           3.176
                                              14.142
                                                         0.000
##
       vary12
                           3.634
                                     0.257
                                              14.142
                                                         0.000
       vary22
                           3.347
                                     0.237
                                                         0.000
##
                                              14.142
       rely11
                                     0.023
##
                           0.922
                                              40.825
                                                         0.000
##
       rely21
                           0.917
                                     0.023
                                              40.472
                                                         0.000
       rely12
                                     0.022
                                              42.008
                                                         0.000
##
                           0.930
##
       rely22
                           0.915
                                     0.022
                                              41.052
                                                         0.000
```

The slot lavaanres in the m1 object contains the fitted lavaan object of class lavaan. See ?"lavaan-class" for more information and available methods.

3.2 Multistate Model with Essential η_t -Equivalence

The default setting of the lsttheory function is to assume η_t -congenericity. If we want to assume essential η_t -equivalence, we need to specify an additional argument, namely the equiv.assumption argument, which is a list of equivalence assumptions. For the multistate model, the theta argument will be ignored. By specifying tau="ess", we assume essential η_t -equivalence:

```
m1 <- lsttheory(neta = 2, data = multistate, equiv.assumption = list(tau = "ess",
    theta = "equi"))
coef(m1@lavaanres, type = "user")
    eta1=~y11
               eta1=~y21
                           eta2=~y12
                                       eta2=~y22
                                                       y11~1
                                                                    la210
##
                                                       0.000
##
        1.000
                    1.000
                                1.000
                                            1.000
                                                                    0.503
##
        y12~1
                    1a220
                                 ga10
                                             ga20
                                                        eps11
                                                                    eps21
##
        0.000
                    0.687
                                0.466
                                            0.952
                                                        0.313
                                                                    0.217
##
        eps12
                    eps22
                                 psi1
                                            psi2 eta1~~eta2
                                                                  vareta1
        0.343
                    0.204
                                2.997
                                                                    2.997
##
                                            3.198
                                                        2.132
##
      vareta2
                   varv11
                               vary21
                                           varv12
                                                       vary22
                                                                  relv11
                                            3.541
                                                                    0.906
##
        3.198
                    3.310
                                3.214
                                                        3.402
##
       rely21
                   rely12
                               rely22
##
        0.933
                    0.903
                                0.940
```

3.3 Multistate Model with η_t -Equivalence

Similarly, if we want to assume η_t -equivalence, we specify the equivalence assumption as follows:

##	1.000	1.000	1.000	1.000	0.000	0.000
##	y12~1	y22~1	ga10	ga20	eps11	eps21
##	0.000	0.000	0.762	1.383	0.462	0.320
##	eps12	eps22	psi1	psi2	eta1~~eta2	vareta1
##	0.639	0.379	2.936	3.088	2.132	2.936
##	vareta2	vary11	vary21	vary12	vary22	rely11
##	3.088	3.398	3.256	3.727	3.467	0.864
##	rely21	rely12	rely22			
##	0.902	0.829	0.891			

3.4 Multistate Models with Scale Invariance

In order to add scale invariance assumptions over time, we need to specify the scale.invariance argument. The default is not to assume scale invariance. The scale invariance argument is a list of four entries. For the multistate models, only the first and the second entry are relevant. The first entry refers to scale invariance of intercepts and the second entry refers to scale invariance of loadings. For example, if we want to specify a multistate model with η_t -congenericity and scale invariance of intercepts and loadings, the function call is:

```
m1 <- lsttheory(neta = 2, data = multistate, scale.invariance = list(lait0 = TRUE,
    lait1 = TRUE, lat0 = TRUE, lat1 = TRUE))
coef(m10lavaanres, type = "user")
    eta1=~y11
                    la211
                            eta2=~y12
                                            la211
                                                                     1a210
##
                                                        y11~1
##
        1.000
                    0.979
                                1.000
                                             0.979
                                                         0.000
                                                                     0.608
##
                    la210
                                                                     eps21
        y12~1
                                  ga10
                                              ga20
                                                         eps11
##
        0.000
                    0.608
                                0.415
                                            1.007
                                                         0.282
                                                                     0.254
##
        eps12
                    eps22
                                 psi1
                                             psi2 eta1~~eta2
                                                                   vareta1
        0.310
                    0.243
                                3.068
                                             3.280
                                                         2.194
                                                                     3.068
##
##
      vareta2
                   vary11
                               vary21
                                           vary12
                                                       vary22
                                                                    rely11
                                             3.590
                                                                     0.916
##
        3.280
                    3.350
                                3.193
                                                         3.385
##
       rely21
                   rely12
                               rely22
##
        0.920
                    0.914
                                0.928
```

Of course, the scale invariance argument can also be used for a multistate model with essential η_t -equivalence. Then, the lait1 entry is ignored.

For a multistate model with η_t -equivalence, all scale invariance settings are ignored.

4 Multistate-Singletrait Models

4.1 Multistate-Singletrait Models with θ -Congenericity

The same function lst theory can also be used to fit multistate-singletrait models in LST-R theory. We only need to specify that there is one θ variable in addition to the specification of the corresponding multistate model. The following syntax specifies a multistate-singletrait model with these assumptions:

- η_t -congenericity (Box 4.1 of SMGC)
- conditional mean independence (Box 4.1 of SMGC)
- θ -congenericity (Box 5.1 of SMGC)

```
m1 <- lsttheory(neta = 3, ntheta = 1, data = multistate02)
print(m1)
##
##
    Singletrait-Multistate Model
##
##
       rely spey cony
## y11 0.73 0.25 0.47
## y21 0.83 0.29 0.54
## y31 0.64 0.22 0.42
## y12 0.77 0.20 0.57
## y22 0.81 0.21 0.60
## y32 0.65 0.17 0.48
## y13 0.74 0.26 0.48
## y23 0.79 0.28 0.51
## y33 0.68 0.24 0.44
##
##
```

Note that we use the multistate02 data set for this model – it contains three indicators at three occasions of measurement. We now also get estimates for the occasion specificity and consistency coefficients in addition to the reliability coefficients. To see all parameters of the model:

```
coef(m1@lavaanres, type = "user")
                                                 eta2=~y12
##
      eta1=~y11
                         la211
                                                                    la221
                                       la311
           1.000
                                       0.801
                                                     1.000
##
                         1.221
                                                                    1.211
##
           la321
                    eta3=~y13
                                       la231
                                                     la331
                                                                    y11~1
                         1.000
##
           0.772
                                       1.233
                                                     0.828
                                                                    0.000
##
           la210
                         la310
                                       y12~1
                                                     1a220
                                                                    1a320
```

##	0.217	0.570	0.000	0.212	0.578
##	y13~1	la230	la330	eta1~1	ga20
##	0.000	0.262	0.574	0.000	0.400
##	ga30	eps11	eps21	eps31	eps12
##	-0.115	1.070	0.874	1.029	0.932
##	eps22	eps32	eps13	eps23	eps33
##	1.036	0.956	1.028	1.146	0.944
##	psi1	psi2	psi3	theta1=~eta1	ga21
##	0.988	0.792	1.014	1.000	1.099
##	ga31	vartheta1	mtheta1	vareta1	vareta2
##	0.999	1.857	0.611	2.845	3.035
##	vareta3	vary11	vary21	vary31	vary12
##	2.869	3.914	5.116	2.853	3.967
##	vary22	vary32	vary13	vary23	vary33
##	5.483	2.765	3.897	5.511	2.912
##	rely11	rely21	rely31	rely12	rely22
##	0.727	0.829	0.639	0.765	0.811
##	rely32	rely13	rely23	rely33	spey11
##	0.654	0.736	0.792	0.676	0.252
##	spey21	spey31	spey12	spey22	spey32
##	0.288	0.222	0.200	0.212	0.171
##	spey13	spey23	spey33	cony11	cony21
##	0.260	0.280	0.239	0.474	0.541
##	cony31	cony12	cony22	cony32	cony13
##	0.417	0.565	0.599	0.483	0.476
##	cony23	cony33			
##	0.512	0.437			

4.2 Multistate-Singletrait Models with θ -Equivalence

We don't show all possible combinations of assumptions. We just give one more example of a multistate-singletrait model with this set of assumptions:

- essential η_t -equivalence (Box 4.1 of SMGC)
- ullet scale invariance over time
- conditional mean independence (Box 4.1 of SMGC)
- θ -equivalence (Box 5.1 of SMGC)

##	eta1=~y11	eta1=~y21	eta1=~y31	eta2=~y12	eta2=~y22
##	1.000	1.000	1.000	1.000	1.000
##	eta2=~y32	eta3=~y13	eta3=~y23	eta3=~y33	y11~1
##	1.000	1.000	1.000	1.000	0.000
##	la210	la310	y12~1	la210	la310
##	0.385	0.421	0.000	0.385	0.421
##	y13~1	la210	la310	eta1~1	eta2~1
##	0.000	0.385	0.421	0.000	0.000
##	eta3~1	eps11	eps21	eps31	eps12
##	0.000	1.064	1.381	0.961	1.004
##	eps22	eps32	eps13	eps23	eps33
##	1.591	0.878	1.090	1.673	0.831
##	psi1	psi2	psi3	theta1=~eta1	theta1=~eta2
##	0.861	0.939	0.963	1.000	1.000
##	theta1=~eta3	vartheta1	mtheta1	vareta1	vareta2
##	1.000	1.855	0.727	2.716	2.794
##	vareta3	vary11	vary21	vary31	vary12
##	2.817	3.780	4.097	3.677	3.797
##	vary22	vary32	vary13	vary23	vary33
##	4.384	3.672	3.908	4.490	3.648
##	rely11	rely21	rely31	rely12	rely22
##	0.719	0.663	0.739	0.736	0.637
##	rely32	rely13	rely23	rely33	spey11
##	0.761	0.721	0.627	0.772	0.228
##	spey21	spey31	spey12	spey22	spey32
##	0.210	0.234	0.247	0.214	0.256
##	spey13	spey23	spey33	cony11	cony21
##	0.246	0.214	0.264	0.491	0.453
##	cony31	cony12	cony22	cony32	cony13
##	0.504	0.488	0.423	0.505	0.475
##	cony23	cony33			
##	0.413	0.508			

5 Multistate-Doubletrait Models

For the mulistate double trait models, we need to use a different data set, because we need at least two common state variables for each of the θ variables. The simulated data set is called multitrait multistate and contains 8 manifest variables Y_{it} distributed across 4 occasions of measurement:

```
data(multitraitmultistate)
head(round(multitraitmultistate, 2))
            y21
##
      y11
                  y12
                        y22
                            y13
                                   y23
                                         y14
                                               y24
## 1
           1.99 0.63 0.02
                            1.61
                                  2.26
                                              3.55
     1.55
                                        4.85
     1.92
          3.43 -0.66 -0.58
                            2.81
                                  4.27
                                        1.58
                                              0.97
## 3 -0.07 0.32 1.81 1.83 1.73 4.05 0.70
                                              2.93
## 4 -0.67 -1.67 1.01 1.55 -1.79 -2.35 -0.67 0.79
                0.11 -0.47 -1.10 -1.03
                                        2.91 - 0.56
## 5 0.53 0.65
## 6 -1.90 -2.47 1.46 3.04 1.02 -0.08 0.88 1.39
```

5.1 Multistate-Doubletrait Models with θ_1, θ_2 -Congenericity

The first model that we want to show with this dataset is a multistate-doubletrait model with these assumptions:

- η_t -congenericity (Box 4.1 of SMGC)
- conditional mean independence (Box 4.1 of SMGC)
- θ_1 -congenericity (Box 6.1 of SMGC)
- θ_2 -congenericity (Box 6.1 of SMGC)

The model syntax is:

```
m1 <- lsttheory(neta = 4, ntheta = 2, data = multitraitmultistate)
coef(m10lavaanres, type = "user")
##
        eta1=~y11
                             la211
                                         eta2=~y12
                                                             la221
                                                                          eta3=~y13
##
            1.000
                             1.203
                                             1.000
                                                             1.195
                                                                              1.000
##
            la231
                         eta4=~y14
                                             la241
                                                             y11~1
                                                                              la210
                                             1.080
                             1.000
##
            1.204
                                                             0.000
                                                                              0.313
##
             v12~1
                             1a220
                                             v13~1
                                                             1a230
                                                                              v14~1
##
                             0.380
                                             0.000
                                                             0.307
                                                                              0.000
             0.000
##
             la240
                            eta1~1
                                              ga20
                                                            eta3~1
                                                                               ga40
                                                                              0.234
##
             0.382
                             0.000
                                             0.398
                                                             0.000
                                             eps12
                                                              eps22
                                                                              eps13
##
             eps11
                             eps21
##
             0.941
                             1.020
                                             1.136
                                                              0.857
                                                                              0.915
```

##	eps23	eps14	eps24	psi1	psi2
##	1.038	0.901	1.158	0.955	1.141
##	psi3	psi4	theta1=~eta1	ga21	theta2=~eta3
##	1.390	0.681	1.000	0.649	1.000
##	ga41	vartheta1	vartheta2	mtheta1	mtheta2
##	0.858	2.694	2.580	0.450	0.928
##	theta1~~theta2	vareta1	vareta2	vareta3	vareta4
##	1.721	3.649	2.277	3.970	2.583
##	vary11	vary21	vary12	vary22	vary13
##	4.590	6.303	3.413	4.106	4.885
##	vary23	vary14	vary24	rely11	rely21
##	6.795	3.484	4.173	0.795	0.838
##	rely12	rely22	rely13	rely23	rely14
##	0.667	0.791	0.813	0.847	0.741
##	rely24	spey11	spey21	spey12	spey22
##	0.722	0.208	0.219	0.334	0.397
##	spey13	spey23	spey14	spey24	cony11
##	0.284	0.297	0.196	0.191	0.587
##	cony21	cony12	cony22	cony13	cony23
##	0.619	0.333	0.395	0.528	0.551
##	cony14	cony24			
##	0.546	0.532			

Figure 1: Multistate-Doubletrait Model.

6 Plot LST-R Theory Models with semPlot

The package semPlot by Sacha Epskamp can be used to plot such LST-R models as shown in this vignette. To plot the multistate-doubletrait model shown in last section, we call:

```
library(semPlot)
semPaths(m1@lavaanres, style = "lisrel", intercepts = F, layout = "tree2", rotation = 4,
    nCharNodes = 4, nCharEdges = 4, optimizeLatRes = F, residScale = 10)
```

which gives the figure shown in Figure 1.

References

Epskamp, S. (2013). semPlot: Path diagrams and visual analysis of various SEM packages' output. R package version 0.3.2. http://CRAN.R-project.org/package=semPlot

- R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. URL http://www.jstatsoft.org/v48/i02/.
- Steyer, R., Mayer, A., Geiser, C., & Cole, D.A. (in press). A theory of states and traits revised. Annual Review of Clinical Psychology.