

计算机组成原理

第6讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心 5. 补码乘法

2.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

同原码乘 但加和移位按补码规则运算 乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 2.3

④ Booth 算法递推公式

$$\begin{split} &[z_0]_{\nmid h} = 0 \\ &[z_1]_{\nmid h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\nmid h} = 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = [z_n]_{\nmid h} + (y_1 - y_0)[x]_{\nmid h}$$

最后一步不移位

如何实现 y_{i+1} - y_i ?

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	→1
0 1	1	$+[x]_{\not k} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→1

例6.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{\mbox{\tiny h}}$ **2.3**

解: 00.0000 +11.1101	1.0101	0	 +[- <u>-</u> x] _补	$[x]_{\not =} = 0.0011$
补码 11.1101 右移 11.110 + 00.0011	1 1010	1	$\begin{array}{c} \rightarrow 1 \\ +[x]_{\not \uparrow \uparrow} \end{array}$	$[y]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$
补码 00.0001 右移 00.000 +11.1101	1 11 10 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{\stackrel{?}{\Rightarrow}}$	
补码 11.1101 右移 11.1110 +00.0011	1 1 1 1 1 <u>0</u>	1	$\rightarrow 1$ + $[x]_{\nmid h}$	$∴ [x \cdot y]_{*}$ =1.11011111
补码 右移 200.000 +11.1101	111 1111 1	0	$\begin{array}{c} \longrightarrow 1 \\ +[-x]_{*} \end{array}$	
11.1101	1111		最后一步	不移位

(2) Booth 算法的硬件配置

2.3

A、X、Q 均 n+2 位 移位和加法操作受乘数末两位控制

累加器乘法小结

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

乘法运算实现方法

- 执行乘法运算子程序实现乘法运算
 - •零成本、Intel 8008/8080、RISCV32-I指令集
- 利用加法器多次累加实现乘法运算
 - •原码一位乘法的运算方法与逻辑实现
 - •补码一位乘法的运算方法与逻辑实现
 - •成本低
- > 设置专用乘法器实现乘法运算
 - •成本高 (原码、补码乘法器)

二进制手工乘法运算

先计算相加数, 然后逐列相加

一位乘法逻辑实现

• R=X*Y

• 1
$$\times$$
 1 = 1

$$\cdot$$
1 \times 0 = 0

$$\cdot 0 \times 1 = 0$$

$$\cdot 0 \times 0 = 0$$

- 与门实现一位乘法
- 25个与门并发
- 一级门延迟, 生成所有相加数

横向进位无符号阵列乘法器

乘法器性能提升

- ▶核心算法: n个部分积累加
- ▶Booth一位乘 → Booth两位乘
 - 一位乘法: n个全加器, n²个全加器时延, 面积小 (Intel 8086)
 - •两位乘法:减少相加数,速度更快,增加额外电路
- ▶斜向进位阵列乘法器 → 华莱士树
 - •斜向进位: (n²-n) 个全加器, n级全加器时延, 面积大
 - 华莱士树: 更多全加器,log₂n级全加器时延,面积更大
- ▶主流乘法器
 - •二位booth算法 + 华莱士树 + 流水

▶快速的乘法运算主要思想:为乘数的每一位提供一个32位的加法器; 一个用来输入被乘数和一乘数位相与的结果;一个是上一个加法器的 输出。

- 方法: 将31个加法器组织成一个并行树
- 优点:易于应用流水线设计执行,可以同步支持多个乘法。

四、除法运算

2.3

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c|c}
0.1101 \\
\hline
0.1101 \\
0.10110 \\
\hline
0.01101 \\
0.010010 \\
\hline
0.001101 \\
0.0001101 \\
\hline
0.00001101 \\
0.00001111 \\
\hline
\end{array}$$

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

2. 笔算除法和机器除法的比较

2.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器上商位置不固定

机器除法

符号位异或形成

$$|x| - |y| > 0$$
 上商 1

$$|x| - |y| < 0$$
上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

3. 原码除法

2.3

以小数为例

$$[x]_{\mathbb{F}} = x_{0}. x_{1}x_{2} \dots x_{n}$$

$$[y]_{\mathbb{F}} = y_{0}. y_{1}y_{2} \dots y_{n}$$

$$[\frac{x}{y}]_{\mathbb{F}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$
式中 $x^{*} = 0. x_{1}x_{2} \dots x_{n}$ 为 x 的绝对值 $y^{*} = 0. y_{1}y_{2} \dots y_{n}$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

除数不能为0

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0

(1)恢复余数法

2.3

例 6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\mathbb{R}} = 0.1101$ $[-y^*]_{\mathbb{R}} = 1.0011$

① $x_0 \oplus y_0 = 1 \oplus 1 = 0$

② 被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[- <i>y</i> *] _{*\}
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	← 1
+ 1.0011		+[-y*] _*
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	← 1
$_{2024/4/29}$ + 1.0011		+[-y*] _{*\}

被除数(余数)	商	说明	2.3
0.0101	011	余数为正,上商1	_
逻辑左移 0.1010	011	←1	
$+ \overline{1.0011}$		+[- <i>y*</i>]*	
1.1101	0110	余数为负,上商 0	_
+ 0.1101		恢复余数+[y*] _补	
0.1010	0110	恢复后的余数	
逻辑左移 1.0100	0110	←1	
+ 1.0011		+[- <i>y*</i>]*	
0.0111	01101	余数为正,上商1	_
- *	•	•	

 $\frac{x^*}{y^*} = 0.1101$ $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

余数为正 上商1

上商5次

第一次上商判溢出

移 4 次

。金数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

2.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i - y^*$$
 加减交替上商"0" $2R_i + y^*$

例 6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 2.3

解: 0.1011	0.0000		[x
+1.0011		+[- <i>y</i> *] _补	_
逻辑 1.1110	0	余数为负,上商0	[y
左移 1.1100	0	←1	$[x^*]$
+0.1101		+[y*] _{*h}	[y*
逻辑	0 1	余数为正,上商1	IJ
1.0010	0 1	← 1	[-y*
+1.0011		+[- <i>y*</i>] _补	
逻辑 0.0101 左移	011	余数为正,上商1	
0.1010	011	←1	
+1.0011		+[- <i>y</i> *] _补	
逻辑 1.1101	0110	余数为负,上商0	
1.1010	0110	← 1	
+0.1101		+ [y*] _补	
0.0111	01101	余数为正,上商1	

 $[x]_{\mathbb{R}} = 1.1011$

 $[y]_{\text{g}} = 1.1101$

 $[x^*]_{\nmid h} = 0.1011$

 $[y^*]_{\mbox{\tiny k}} = 0.1101$

 $[-y^*]_{n} = 1.0011$

例6.25 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right] \not \equiv 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位

用 Q_n 控制加减交替

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \exists x \land y \land x \land S_x \leftarrow 1, j_x - 1 \\ > 0 & j_x > j_y \end{cases} \begin{cases} x \land y \land x \land x \land S_y \rightarrow 1, j_y + 1 \\ y \land x \land x \land x \land S_x \rightarrow 1, j_x + 1 \end{cases}$$

$$< 0 & j_x < j_y \end{cases} \begin{cases} x \land y \land x \land S_x \rightarrow 1, j_x + 1 \\ y \land x \land x \land S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ **2.4** 求 x+y

解:
$$[x]_{\stackrel{?}{\uparrow}} = 00, 01; 00.1101$$
 $[y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{n}} = [j_x]_{\hat{n}} - [j_y]_{\hat{n}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2) $: S_x \longrightarrow 2$ j_x+2

② 对阶 $[x]_{*} = 00, 11; 00.0011$

2. 尾数求和

2024/4/29

3. 规格化

2.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

2.4

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{*} = [1.1] 0 0 \cdots 0$$

 $: [-\frac{1}{2}]_{\uparrow}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = [1.0] 0 0 \cdots 0$$

∴ [-1] → 是规格化的数

2.4

(3) 左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{\stackrel{?}{\Rightarrow}} = 00, 11; 11.1001$

左规后 $[x+y]_{\stackrel{?}{=}} = 00, 10; 11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

例6.27
$$x = 0.1101 \times 2^{10}$$
 $y = 0.1011 \times 2^{01}$ 2.4

x+y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$[x]_{*} = 00,010;00.110100$$

 $[y]_{*} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\gg}} = [j_x]_{\stackrel{?}{\gg}} - [j_y]_{\stackrel{?}{\gg}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
 阶差为 +1 $\therefore S_y \longrightarrow 1, j_y + 1$ $\therefore [y]_{\stackrel{?}{\gg}} = 00,010;00.010110$

②尾数求和

$$[S_x]_{\stackrel{}{ ilde{\wedge}}}=00.\ 110100 \ + [S_y]_{\stackrel{}{ ilde{\wedge}}}=00.\ 010110 \$$
 对阶后的 $[S_y]_{\stackrel{}{ ilde{\wedge}}}$ 足数溢出需右规

2024/4/29

③ 右规

2.4

 $[x+y]_{\nmid h} = 00, 010; 01.001010$

右规后

 $[x+y]_{36} = 00, 011; 00. 100101$

 $x+y=0.100101\times 2^{11}$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

19 6.28 $x = (-\frac{5}{8}) \times 2^{-5}$ $y = (\frac{7}{8}) \times 2^{-4}$

 \vec{x}_{x-y} (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$$

$$[y]_{3} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 11,011$$
 $+ 00,100$
 $11,111$

阶差为
$$-1$$
 : $S_x \longrightarrow 1$, j_x+1

$$|x|_{*} = 11, 100; 11.101100$$

② 尾数求和

2.4

$$[S_x]_{\not{\uparrow}}$$
 = 11. 101100
+ $[-S_y]_{\not{\uparrow}}$ = 11. 001000
110. 110100

③ 右规

$$[x-y]_{\mbox{\tiny h}}=11,100;10.110100$$
右规后

$$[x-y]_{36} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

2.4

设机器数为补码,尾数为 规格化形式,并假 设阶符取 2 位, 阶码的数值部分取 7 位, 数符取 2位,尾数取n位,则该补码在数轴上的表示为

