

Pre-Algebra Workbook Solutions

Numbers and negative numbers

NUMBER SETS
■ 1. The number 0 is included in all the number sets except numbers.
Solution:
natural and irrational
■ 2. Positive and negative whole numbers are called
Solution:
integers
■ 3. Fractions and decimals can be considered numbers.
Solution:
real

■ 4. The number set {2,4,6,8} shows a set of	numbers.
Solution:	
even	
■ 5. What is the real number that's halfway between	1 and 2?
Solution:	
$1\frac{1}{2}$	
■ 6. The number sets that include negative numbers	
,, and numbers	.
Solution:	
real, rational, irrational, integer	

IDENTITY NUMBERS

■ 1. Find the sum.

$$4 + 0 =$$

Solution:

4

■ 2. Find the product.

15 · 1

Solution:

15

 \blacksquare 3. The identity number for addition is 0 because when we add 0 to a number the value does _____ change.

not	
■ 4. The number multiply a number by 1, the va	for multiplication is 1 because when we lue does not change.
Solution:	
identity	
■ 5. Given the problem 10 + 0 =	= 10, the 0 is the identity number for
Solution:	
addition	
■ 6. Given the problem 20 · 1 =	20, the 1 is the identity number for
Solution:	

multiplication

OPPOSITE OF A NUMBER

■ 1. What is the opposite of -15?

Solution:

15

 \blacksquare 2. What is the opposite of 2/3?

Solution:

 $-\frac{2}{3}$

■ 3. Opposites are numbers that are equal distance from ______.

Solution:

0 or the origin

■ 4. What is the only number that is its own opposite?
Solution:
■ 5. When looking at a number line, the negative numbers are to the of 0 and the positive numbers are to the of 0.
Solution:
left, right
■ 6. We know 5 and -5 are opposite numbers because they are both units away from 0 .
Solution:
5

ABSOLUTE VALUE

■ 1. Simplify the expression.

Solution:

The absolute value bars change a negative value inside them into a positive value, so |-4| becomes 4.

■ 2. Simplify the expression.

Solution:

The value inside the absolute value bars is already positive, so |75| becomes 75.

■ 3. Write the numbers from least to greatest.

$$|-4|$$
, $|1|$, $|0|$, $|-8|$, $|9|$

Solution:

The absolute value bars change a negative value inside them into a positive value, so |-4| becomes 4, and |-8| becomes 8.

Some values inside the absolute value bars are already positive, so |1| becomes 1, |9| becomes 9, and |0| becomes 0.

Putting these in order from least to greatest, we get

$$|0|, |1|, |-4|, |-8|, |9|$$

■ 4. Write the values from greatest to least.

$$|7|, |-3|, |0|, |-9|, |5|$$

Solution:

The absolute value bars change a negative value inside them into a positive value, so |-3| becomes 3, and |-9| becomes 9.

Some values inside the absolute value bars are already positive, so |7| becomes 7, |5| becomes 5, and |0| becomes 0.

Putting these in order from greatest to least, we get

$$|-9|, |7|, |5|, |-3|, |0|$$

■ 5. Absolute	and negative		
numbers			

Solution:

positive, positive

■ 6. Simplify the expression.

Solution:

The absolute value bars change a negative value inside them into a positive value, so |-3| becomes 3.

ADDING AND SUBTRACTING SIGNED NUMBERS

■ 1. Simplify the expression.

$$-4 + 2$$

Solution:

Here, the negative number is -4 and the positive number is 2. 4 is larger than 2, so the absolute value of the negative number is larger, which means the answer will be negative. So we subtract 2 from 4 to get 2. The sign needs to be negative, so we get -2.

■ 2. Simplify the expression.

$$-11 - 8$$

Solution:

Add the numbers as if they were both positive, but make the sign negative.

$$-11 - 8 = -19$$

■ 3. When	we add tw	o negative n	umbers, w	e'll always	get a	
number.						

Solution:

negative

■ 4. Simplify the expression.

$$-19 - 26$$

Solution:

Add the numbers as if they were both positive, but make the sign negative.

$$-19 - 26 = -45$$

■ 5. Simplify the expression.

$$5 - 8$$

Here, the first number is 5 and the second number is 8. Since 5 is less than 8, the second number is larger so the result is negative.

$$5 - 8 = -3$$

■ 6. Simplify the expression.

$$3 - (-6)$$

Solution:

When we subtract a negative number from a positive number, the result will always be positive, because of the fact that the negative signs will cancel, leaving just the addition of two positive numbers.

$$3 + 6 = 9$$

MULTIPLYING SIGNED NUMBERS
■ 1. Multiplying two negative numbers will always result in a number.
Solution:
positive
■ 2. Multiplying a negative and a positive number will always result in a number.
Solution:
negative
■ 3. Multiplying two positive numbers will always result in anumber.
Solution:
nositive

■ 4. Simplify the expression.

$$12 \cdot -5$$

Solution:

Multiplying 12 by 5 gives 60. Because we're multiplying one positive number by one negative number, the result must be negative, so

$$12 \cdot -5 = -60$$

■ 5. Simplify the expression.

$$-8 \cdot -6$$

Solution:

Multiplying 8 by 6 gives 48. Because we're multiplying one negative number by another negative number, the result must be positive, so

$$-8 \cdot -6 = 48$$

■ 6. Simplify the expression.

25 · 3

Solution:

Multiplying 25 by 3 gives 75. Because we're multiplying one positive number by another positive number, the result must be positive, so

$$25 \cdot 3 = 75$$

DIVIDING SIGNED NUMBERS

■ 1. Dividing a negative number by a negative number will always result in a _____ number.

Solution:

positive

2. Dividing a positive number by a negative number will always result in a ______ number.

Solution:

negative

■ 3. Simplify the expression.

$$-12 \div 2$$

-6

■ 4. Simplify the expression.

$$0 \div -8$$

Solution:

0

■ 5. Simplify the expression.

$$24 \div -6$$

Solution:

-4

■ 6. Simplify the expression.

$$-144 \div -12$$

	Pre-Algebra Workbook
12	

ABSOLUTE VALUE OF AN EXPRESSION

■ 1. Simplify the expression.

$$|-6|+|-5\cdot 2|$$

Solution:

First simplify the multiplication inside the absolute value bars.

$$|-6|+|-10|$$

The absolute value bars change a negative value inside them into a positive value, so |-6| becomes 6 and |-10| becomes 10.

$$6 + 10$$

16

■ 2. Simplify the expression.

$$|-6|-|7|$$

First simplify each set of absolute value bars separately. The absolute value bars change a negative value inside them into a positive value, so |-6| becomes 6, but 7 is already positive so |7| becomes 7.

$$|-6|-|7|$$

$$6 - 7$$

Now finish the subtraction.

-1

■ 3. Simplify the expression.

$$|-5 \cdot 4|$$

Solution:

First simplify the multiplication inside the absolute value bars. Multiplying -5 by 4 gives -20, so

$$|-5 \cdot 4|$$

$$|-20|$$

The absolute value bars change a negative value inside them into a positive value, so |-20| becomes 20.

■ 4. Simplify the expression.

$$|-5\cdot-4\cdot2|$$

Solution:

First simplify the multiplication inside absolute value bars.

The absolute value bars change a negative value inside them into a positive value, so |40| becomes 40.

■ 5. Simplify the expression.

$$|-11+3| \cdot |-9|$$

Solution:

First simplify the addition inside the first set of absolute value bars.

$$|-8| \cdot |-9|$$

Then simplify each set of absolute value bars separately. The absolute value bars change a negative value inside them into a positive value, so |-8| becomes 8, and |-9| becomes 9.

8.9

72

■ 6. Simplify the expression.

$$|-8-2| \cdot |-4-3|$$

Solution:

First simplify the subtraction inside both sets of absolute value bars.

$$|-10| \cdot |-7|$$

Then simplify each set of absolute value bars separately. The absolute value bars change a negative value inside them into a positive value, so |-10| becomes 10, and |-7| becomes 7.

10 · 7

70

