

Interpolation polynomiale

1. Interpolation de Lagrange

1.1. Base de Lagrange

Soit x_0, x_1, \ldots, x_n n+1 réels donnés **distincts**. On définit n+1 polynômes l_i pour i=0 à n par

$$l_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}$$

Le numérateur de chacun de ces polynômes est un produit de n termes $(x-x_k)$ et est donc un polynôme de degré n. Le dénominateur est une constante. On a donc

- i) l_i est un polynôme de degré n
- ii) $l_i(x_k) = 0$ si $i \neq k$ et $0 \leq k \leq n$
- iii) $l_i(x_i) = 1$.

Réciproquement, pour i fixé, il existe un unique polynôme l_i vérifiant les trois propriétés précédentes. En effet, on en a déjà construit un qui convenait. Supposons qu'il y en ait deux l_i et p_i , alors l_i-p_i est un polynôme de degré au plus n et ayant n+1 racines distinctes x_0,\ldots,x_n , c'est donc le polynôme nul.

Définition 1 – Les polynômes $l_i(x)$ sont les polynômes de Lagrange de $\mathbb{R}_n[X]$ associés aux points x_0, \ldots, x_n .

Proposition 2 – Les polynômes $l_0(x), l_1(x), \ldots, l_n(x)$ forment une base de $\mathbb{R}_n[X]$.

Démonstration : il suffit de montrer que ce système de polynômes est libre, puisqu'il est formé de n+1 éléments d'un espace de dimension n+1; supposons qu'il existe n+1 réels α_0,\ldots,α_n tels que, pour tout réel x

$$\sum_{i=0}^{n} \alpha_i l_i(x) = 0 \text{ alors, pour } x = x_k$$

Ш

$$\sum_{i=0}^{n} \alpha_i l_i(x_k) = \alpha_k = 0.$$

On a prouvé le résultat.

1.2. Interpolation de Lagrange

Soit f une fonction donnée définie sur $\mathbb R$ à valeurs dans $\mathbb R$ et x_0, x_1, \ldots, x_n n+1 réels donnés distincts.

Interpoler la fonction f par un polynôme de degré n aux points x_0, x_1, \ldots, x_n consiste à résoudre le problème suivant

Problème (1.3)
$$\begin{cases} \text{Trouver un polynôme } p \text{ de degré } \leq n \text{ tel que} \\ p(x_i) = f(x_i), \quad 0 \leq i \leq n. \end{cases}$$

Si un tel polynôme existe, il s'écrit de manière unique

$$p(x) = \sum_{i=0}^{n} \alpha_i l_i(x)$$

car les l_i forment une base de $\mathbb{R}_n[X]$. En prenant $x=x_k$ pour $0 \le k \le n$ et en utilisant que $l_i(x_k)=0$ si $k \ne i$ et $l_k(x_k)=1$, on obtient

$$\alpha_k = p(x_k) = f(x_k).$$

Proposition 4 – L'unique solution du problème (3) est donc

$$p(x) = \sum_{i=0}^{n} f(x_i)l_i(x).$$

Définition 5 – Ce polynôme s'appelle l'interpolant de la fonction f de degré n aux points x_0, x_1, \ldots, x_n .

Remarque - Le polynôme d'interpolation de Lagrange aux points x_0, x_1, \ldots, x_n d'un polynôme de degré $\leq n$ est lui-même.

Si l'on prend pour f le polynôme constant égal à 1, d'après la remarque précédente, f est égale à son interpolant et on obtient

$$\sum_{i=0}^{n} l_i(x) = 1.$$

Le but de l'interpolation est de remplacer une fonction f plus ou moins compliquée par une fonction plus simple car polynômiale, mais pour justifier cet échange, il nous faut une estimation de l'erreur commise. On rappelle le théorème de Rolle :

Théorème 6 - Théorème de Rolle

Soit $f:[a,b]\to\mathbb{R}$ une application continue sur [a,b] et dérivable sur]a,b[telle que f(a)=f(b), alors il existe $c\in]a,b[$ tel que f'(c)=0.

1.3. Estimation de l'erreur dans l'interpolation de Lagrange

Avant de donner une estimation de l'erreur, nous allons démontrer le lemme suivant

Lemme 7 – Soit $f:[a,b] \longmapsto \mathbb{R}$ dérivable sur [a,b] alors, si f possède au moins n+2 zéros distincts sur [a,b], f' possède au moins n+1 zéros distincts sur [a,b].

 $D\'{e}monstration$: il suffit d'appliquer le théorème de Rolle entre deux zéros consécutifs de f

Corollaire 8 – Soit $f \in \mathcal{C}^{n+1}([a,b])$. Si f possède au moins n+2 zéros distincts sur [a,b], alors $f^{(n+1)}$ a au moins un zéro sur [a,b].

Démonstration : il suffit de faire une récurrence en appliquant le lemme précédent Soit f une fonction réelle définie sur un intervalle [a,b] et soit $a \leq x_0 < \ldots < x_n \leq b$, n+1 points de [a,b]. On note P le polynôme d'interpolation de Lagrange de f aux points x_0,\ldots,x_n .

Théorème 9 – On suppose $f \in \mathcal{C}^{n+1}([a,b])$, alors

$$\forall x \in [a,b], \ \exists \xi \in [a,b], \ f(x) - P(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_n)}{(n+1)!} f^{(n+1)}(\xi).$$

 $D\'{e}monstration$: si $x=x_i$, alors la relation est vérifiée.

Soit $x \in [a, b]$ fixé, x différent de tous les x_i . Posons $q(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ et

$$W(t) = f(t) - P(t) - \frac{q(t)}{q(x)} (f(x) - P(x)).$$

La fonction W est de classe \mathcal{C}^{n+1} comme f et s'annule pour $t=x,x_0,x_1,\ldots,x_n$; elle admet donc au moins n+2 zéros. D'après le corollaire 8, il existe au moins un nombre $\xi\in[a,b]$ tel que $W^{(n+1)}(\xi)=0$. On en déduit la relation.

Le point ξ étant inconnu, on cherche une majoration et on a le corollaire immédiat :

Corollaire 10 – Si $f^{(n+1)}$ est continue sur [a,b], alors

$$\forall x \in [a,b], \mid f(x) - P(x) \mid \leq \frac{\mid (x-x_0)(x-x_1) \dots (x-x_n) \mid}{(n+1)!} \sup_{x \in [a,b]} \mid f^{(n+1)}(x) \mid.$$

2. Polynômes de Chebyshev

2.1. Choix des points d'interpolation

D'après le corollaire 10, pour obtenir la meilleure estimation possible pour une fonction f donnée, il faut choisir les n+1 points d'interpolation x_0,\ldots,x_n de manière à minimiser le maximum sur [a,b] de la fonction $|(x-x_0)\ldots(x-x_n)|$. Si on appelle $E_{n+1}([a,b])$ l'ensemble des polynômes de degré n+1 unitaires, le meilleur choix des x_i est donné par le polynôme $q\in E_{n+1}([a,b])$ tel que

$$\forall p \in E_{n+1}([a,b]), \quad \sup_{x \in [a,b]} |q(x)| \le \sup_{x \in [a,b]} |p(x)|.$$

Il faudra de plus s'assurer que le polynôme q trouvé admet bien n+1 racines distinctes sur l'intervalle [a,b]. On va montrer l'existence de ce polynôme qu'on appellera polynôme de Chebyshev normalisé.

Remarque - En faisant le changement de variable

$$t = \frac{2}{b-a}x - \frac{b+a}{b-a} \Longleftrightarrow x = \frac{b-a}{2}t + \frac{b+a}{2}$$

on peut toujours se ramener à une étude sur l'intervalle [-1,1].

Définition 11 — On appelle polynôme de Chebyshev de degré n le polynôme T_n défini sur [-1,1] par

$$\underline{T_n(x)} = \cos(n \operatorname{Arccos}(x)).$$

La formule donnée dans le théorème ne fait pas apparaître de manière évidente un polynôme. Cependant, on peut tout de suite noter que, pour tout $x \in [-1,1]$, $T_n(x) \in [-1,1]$. Considérons la formule de Moivre : $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$. Pour $\theta \in [0,\pi]$, posons $x = \cos \theta$, alors $\sin \theta = \sqrt{1-x^2}$. On en déduit que

$$\cos n\theta = \cos(n \operatorname{Arccos}(x)) = \sum_{i=0}^{[n/2]} C_n^{2i} (-1)^i x^{n-2i} (1-x^2)^i.$$

En particulier T_n est un polynôme de degré n.

Exemple -

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_2(x) = 2x^2 - 1$

Les formules d'addition des fonctions trigonométriques donnent

$$\cos(n+1)\theta + \cos(n-1)\theta = 2\cos\theta\cos n\theta.$$

On en déduit immédiatement que

Proposition 12 – Les polynômes de Chebyshev vérifient la relation de récurrence

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x).$$

Le coefficient du terme en x^n de T_n est 2^{n-1} .

Démonstration : le coefficient s'obtient par récurrence.

Théorème 13 – T_n a des zéros simples aux n points

$$x_k = \cos(\frac{2k-1}{2n}\pi), \quad k = 1, 2, \dots, n.$$

 T_n atteint son extremum sur l'intervalle [-1,1] aux n+1 points

$$x'_k = \cos\left(\frac{k}{n}\pi\right), \quad k = 0, 1, \dots, n$$

pour lesquels il prend alternativement les valeurs 1 et -1.

Démonstration : calculons $T_n(x_k)$.

$$T_n(x_k) = \cos(n \operatorname{Arccos}(\cos \frac{2k-1}{2n}\pi)) = \cos(\frac{2k-1}{2}\pi) = 0 \operatorname{car} \frac{2k-1}{2n}\pi \in [0,\pi].$$

On a donc trouvé n racines distinctes, or \mathcal{T}_n est un polynôme de degré n; on les a donc toutes. On montre de même $T_n(x'_k) = (-1)^k$.

Définition 14 – On appelle polynôme normalisé de Chebyshev le polynôme \overline{T}_n défini par $\overline{T}_n = \frac{1}{2^{n-1}} T_n.$

2.2. Estimation de l'erreur avec les polynômes de Chebyshev

On va montrer que ce polynôme \overline{T}_n est le polynôme que l'on cherchait.

Théorème 15 – Pour tout polynôme p de $E_n([-1,1])$, on a

$$\frac{1}{2^{n-1}} = \sup_{x \in [-1,1]} |\overline{T}_n(x)| \le \sup_{x \in [-1,1]} |p(x)|.$$

Démonstration : supposons qu'il existe $p \in E_n$ tel que $\sup_{x \in [-1,1]} |p(x)| < 1/2^{n-1}$.

Considérons le polynôme \overline{T}_n-p . C'est un polynôme de degré $\leq n-1$. De plus, $r(x_k')=\overline{T}_n(x_k')-p(x_k')=\frac{(-1)^k}{2^{n-1}}-p(x_k')$ pour $k=0,\ldots,n$. Cette quantité prend alternativement le signe + ou -. On en déduit que r a au moins n racines, or c'est un $\overline{T}_n(x_k')$ polynôme de degré inférieur ou égal à n-1, donc r=0. On obtient $\overline{T}_n=p$. Contradiction.

En utilisant le changement de variable définie plus haut, on a donc montré le théorème

Théorème 16 – Sur l'intervalle [a, b], en choisissant les points d'interpolation

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{2k+1}{2(n+1)}\pi \text{ pour } k = 0,\dots,n$$

on obtient la majoration suivante :

$$|f(x) - P(x)| \le \frac{(b-a)^{n+1}}{(n+1)!2^{2n+1}} \sup_{x \in [a,b]} |f^{(n+1)}(x)|.$$

C'est la meilleure majoration globale que l'on puisse obtenir.

Remarque - La formule de Taylor-Lagrange montre que, si l'on approche la fonction f par la fonction polynômiale

$$P_f: x \longrightarrow f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

on a alors

$$|f(x) - P_f(x)| \le \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in [a,b]} |f^{(n+1)}(x)|.$$

Cette estimation montre la supériorité de la méthode de Chebychev.

3. Introduction aux polynômes orthogonaux

3.1. Définition des polynômes orthogonaux

On se donne une fonction w définie sur]a,b[, intégrale sur [a,b] et à valeurs positives ou nulles. Cette fonction est appelée **poids**.

On définit un produit scalaire sur l'ensemble des fonctions continues sur [a, b] par la relation

$$(f,g) = \int_a^b f(t)g(t)w(t) dt.$$

A ce produit scalaire, on associe la norme $||f||^2 = \int_a^b [f(t)]^2 w(t) dt$.

Définition 17 – On appelle **polynômes orthogonaux** relativement au poids w la suite des polynômes $P_0, P_1, \ldots, P_n, \ldots$ ayant les propriétés suivantes

1 – Pour tout n, P_n est de degré n et le coefficient de son terme de plus haut degré est 1. 2 – (P_0, \ldots, P_n) forme une base orthogonale de $\mathbb{R}_n[X]$.

On admet la proposition suivante

Proposition 18 – Quelquesoit la fonction poids w, il existe une unique suite de polynômes orthogonaux.

3.2. Exemple : les polynômes de Chebyshev

On prend $a=1,\,b=-1$ et $w(x)=1/\sqrt{1-x^2}$. La fonction w est bien définie sur]-1,1[à valeurs positives et $\int_{-1}^1 w(x)\,dx=\left[\operatorname{Arcsin}(x)\right]_{-1}^1=\pi$.

On a vu que \overline{T}_n est de degré n et que le coefficient de son terme de plus haut degré est 1. Il reste à montrer que $(\overline{T}_0,\ldots,\overline{T}_n)$ forme une base orthogonale de $\mathbb{R}_n[X]$ pour le produit

scalaire
$$(P,Q) = \int_{-1}^{1} P(t)Q(t) \frac{dt}{\sqrt{1-t^2}}$$

Le changement de variables $t = \cos \theta$ donne

$$(P,Q) = \int_{-1}^{1} P(t)Q(t) \frac{dt}{\sqrt{1-t^2}} = \int_{0}^{\pi} P(\cos\theta)Q(\cos\theta) d\theta.$$

On en déduit que, si $n \neq l$,

$$(T_n, T_l) = \int_0^{\pi} \cos(n\theta) \cos(l\theta) d\theta = \frac{1}{2} \int_0^{\pi} (\cos(n+l)\theta + \cos(n-l)\theta) d\theta$$
$$= \frac{1}{2} \left[\frac{\sin(n+l)\theta}{b+l} + \frac{\sin(n-l)\theta}{n-l} \right]_0^{\pi} = 0.$$

3.3. Approximation au sens des moindres carrés

Soit f une fonction définie sur l'intervalle réel [a,b] et w une fonction poids. L'approximation au sens des moindres carrés consiste à trouver un polynôme P de degré n qui minimise la valeur de $\int_a^b \left|f(x)-P(x)\right|^2 w(x)\,dx = \|f-P\|^2$. Ce polynôme, s'il existe, est appelé approximation de f de degré au plus n au sens des moindres carrés. On admettra qu'un tel polynôme existe et qu'il est unique.

C'est en fait la projection orthogonale de f sur $\mathbb{R}_n[X]$ et il est donné par $P = \sum_{i=0}^n (f, P_i) P_i$ où $(P_0, \dots P_n)$ est la base orthonormale de $\mathbb{R}_n[X]$ associée à w.
On est alors ramené à un calcul d'intégrales.

INTERPOLATION POLYNOMIALE

1.	Interpolation de Lagrange
	1.1. Base de Lagrange
	1.2. Interpolation de Lagrange
	1.3. Estimation de l'erreur dans l'interpolation de Lagrange
2.	Polynômes de Chebyshev
	2.1. Choix des points d'interpolation
	2.2. Estimation de l'erreur avec les polynômes de Chebyshev
3.	Introduction aux polynômes orthogonaux 5
	3.1. Définition des polynômes orthogonaux
	3.2. Exemple : les polynômes de Chebyshev
	3.3. Approximation au sens des moindres carrés