INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

LEIC, LEETC Arquitetura de Computadores

2º Teste (30/jan/2018)

Duração do Teste: 2 horas e 30 minutos

[1] Considere um processador, de ciclo único, com o diagrama de blocos apresentado na figura.

O processador suporta a execução do seguinte conjunto de instruções, em que as constantes consts e address8 representam números naturais e a constante offset6 representa um número relativo:

N.º	Instrução	Codificação												Descrição
		b ₁₁	b ₁₀	b ₉	b ₈	b ₇	b_6	\mathbf{b}_5	b_4	b ₃	b ₂	\mathbf{b}_1	b ₀	
1	ldi rx,#const5	A definir												rx = const ₅
2	ld rx,[ry]	A definir											rx = M[ry]	
3	st rx,[ry]	0	0	0	rx2	rx1	rx ₀	ry2	ry1	ryo	0	0	0	M[ry] = rx
4	adc rx,ry,rz	0	1	0	ry2	ry1	ry0	rz ₂	rz ₁	rz ₀	rx2	rx1	rx ₀	rx = ry + rz + cin
5	sbb rx,ry,rz	0	1	1	ry2	ry1	ryo	rz ₂	rz ₁	rz ₀	rx2	rx1	rx ₀	rx = ry - rz - cin
6	jz address8	A definir												(Z==1) ? PC=address8 : PC = PC + 1
7	jmp offset6	A definir												PC = PC + offset6

- a) Codifique as instruções ldi, ld, jz e jmp utilizando uma codificação linear a 3 bits. Explicite os bits do código de instrução que correspondem aos sinais AA, AB, AD, OP_ALU e OPCODE. [2 val.]
- b) Considere que o PC = 0x40. Indique a gama de endereços possíveis de alcançar com a instrução JMP. [0,5 val.]
- c) Considerando que o módulo Descodificador Instruções é implementado usando exclusivamente uma ROM, indique a programação da mesma. [1,5 val.]
- d) Indique a dimensão em bits da memória de código e da ROM do módulo Descodificador Instruções, apresentando os cálculos realizados. [0,5 val.]
- e) Proponha, justificando, um diagrama lógico para o módulo constExt. [0,5 val.]

[2] Considere o sistema computacional baseado no PDS16 representado na figura.

- a) Quais os endereços base e dimensões que os módulos ROM, RAM e portos de entrada e saída ocupam no espaço de endereçamento? Indique eventuais zonas em *foldback*. [1,5 val.]
- b) Desenhe o esquema de um módulo de RAM adicional com 16Kbyte de dimensão e ocupando a gama de endereços 0x6000-0x9FFF, usando módulos RAM de 4Kx8. [2 val.]
- c) Desenhe o esquema de um porto de saída adicional com 8 bits de modo a que possa formar, junto com o existente, um porto de saída acessível a 8 ou a 16 bits [1 val.]
- d) Porque é que os portos de entrada/saída representados na figura não podem ser acedidos pelas instruções que utilizam endereçamento direto? [0.5 val.]

[3] Considerando as convenções definidas para a passagem de parâmetros, retorno de valores e preservação de registos e que os tipos int16 e uint16 representam inteiros a 16 bits com e sem sinal, respetivamente, considere as definições seguintes:

```
uint16 valabs( int16 val ) {
   if( val < 0 ) {
      return -val;
   }
   return val;
}

void copyabs( uint16 d[], int16 s[], uint16 n ) {
   while( n != 0 ) {
      --n;
      d[n] = valabs( s[n] );
   }
}</pre>
```

Com vista ao alojamento de variáveis, assuma que a secção ".data" está localizada na gama de memória com endereçamento direto.

Escreva, em assembly do PDS16, o alojamento das variáveis em memória, se necessárias, e a tradução do código:

- a) Da função valabs. [2,5 val.]
- b) Da função copyabs. [2,5 val.]

[4] Tendo como base o sistema SDP16, pretende-se implementar um sistema de contagem de objetos com a seguinte especificação:

- O sistema inicia-se com os dois sensores, S1 e S2, inativos e o valor 0x00 afixado no porto de saída.
- Enquanto o sensor S1 estiver ativo, o sistema conta as transições ascendentes no sensor S2;
- Quando o sensor S1 ficar inativo, o sistema deve fixar no porto de saída o valor da contagem. Este valor deve ser mantido até à próxima contagem de objetos.
- Os sensores S1 e S2 estão ligados aos bits de índice 0 e 7, respetivamente, do porto de entrada disponível no SDP16.
 - a) Desenhe um fluxograma da máquina de estados do sistema. [1 val.]
 - b) Programe em assembly do PDS16 o sistema de contagem enunciado. [4 val.]