Processamento Paralelo e Distribuído

Marcelo Trindade Rebonatto

Medidas de desempenho & obtenção de resultados de aplicações paralelas

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

- Medidas de desempenho
 - → Tempo de execução
 - → Tempo de execução paralelo
 - **⇒** Speedup
 - → Eficiência
 - → Custo computacional
 - **→** Grão
 - **⇒** Escalabilidade
 - → Facilidade de programação
- Obtenção de resultados

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdade Rebonatto

Tempo de Execução

- Tempo de execução seqüencial
 - → Simbologia: T* ou T_s
 - → Unidade: s ou us
 - → Diferença entre início e o fim da execução
 - → Varia geralmente de acordo a entrada

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdalle Rebonatto

Roteiro

didas de Desempenho

Tempo de Execução

- Tempo de execução paralelo
 - → Depende também da arquitetura em que foi executado
 - ► T_p onde p é o número de processadores
 - → T_5 é o tempo de execução em 5 processadores
 - → Medição
 - ☆ Após o primeiro
 - Até o último

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

4/27

edidas de Desempenh

Speedup

- Razão dos tempos de execução: seqüencial pelo paralelo
- Representa a **ACELERAÇÃO** conseguida
- Variação com o número de processadores
- Aceleração
 - → Geralmente não alcança o número de processadores
 - → Escala proporcional ao número de processadores: difícil

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdelle Rebonatto

Speedup

- Onde T*: tempo de execução seqüencial
 - T_p : tempo de execução paralelo em "p" processadores
- Speedup geralmente obtido: $S_p \le p$
- Speedup buscado: $S_p \cong p$

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindale Rebonatto

6/27

Speedup

- Utilizar o melhor algoritmo seqüencial disponível
 - → Possível de ser implementado
 - → Viável de se obter o tempo de execução
- Não utilizar o programa paralelo em 1 processador
 - → Falsa ilusão de aceleração
 - → Comunicação e controles de sincronização
- Speedup seqüencial = 1

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

Eficiência

Medidas de Desempenho

- Razão do speedup pelo número de processadores
- Porção de tempo
 - → Processadores empregados de forma útil
 - → Resolução do problema
- Variação com o número de processadores
- Eficiência seqüencial = 1

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribidade Rebonatto

Eficiência

- $\bullet E_p = \frac{S_p}{p}$
- Onde S_p: speedup em "p" processadores
 p: número de processadores
- Eficiência buscada = 1 (100%)
- Eficiência geralmente conseguida [0..1]
- $E_p = 0.78$
- → 78%

Processamento Paralelo e Distribuído - Prof.: Marcelo Trikul48le Rebonatto

10/27

s de Desempenh

Custo computacional

- Produto do tempo de processamento pelo número de processadores
 - ➤ Cômputo dos tempos de processamento utilizados em cada processador
 - → Custo seqüencial = tempo seqüencial
- Medida
 - → Segundos ou us

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

11/27

Custo computacional

- Sistema paralelo de custo ótimo
 - \Rightarrow $S_p = p$
- Alguns autores consideram a quantia de RAM
 - → Análises de complexidade

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

Grão Tamanho da tarefa 2 definições: Tempo de execução de uma tarefa alocada a um processador Tempo de execução Entre 2 comunicações consecutivas de uma tarefa Tarefa sem comunicação Processamento Paralelo e Distribuído - Prof.: Marcelo TriàMare Rebonatio Grão Ideal Grãos idênticos; Quantidade igual à de processadores (múltiplo); Pouca (sem) comunicação

Escalabilidade Aumento do número de processadores: Reduz o speedup Reduz a eficiência Aumenta o custo Aumento do grão (entrada): Aumenta o speedup Aumenta a eficiência

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

 Quanto maior puder ser o grão, maior o speedup que poderá ser obtido

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

Escalabilidade

- Medidas de Desempenho
- Aumento simultâneo do grão e "p"
 - → Manter fixo o speedup e a eficiência

A escalabilidade é a medida da capacidade de um sistema aumentar o speedup em proporção linear ao número de processadores

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribal48le Rebonatto 16

· i

das de Desempenh

Escalabilidade

Um sistema escalável mantém sua eficiência com o aumento do número de processadores e do grão computacional

- Variações
 - → de uma arquitetura para outra
 - → de um problema para outro

Processamento Paralelo e Distribuído - Prof.: Marcelo Trifid#de Rebonatto 17/

didas de Desempenho

Escalabilidade

	п	p = 1	p = 4	p = 8	p = 16	p = 32
i	64	1.0	.80	.57	.33	.17
	192	1.0	.92	.80	.60	.38
-	320	1.0	.95	.87	.71	.50
l	512	1.0	.97	.91	.80	.62

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto 18/2

esemben

Escalabilidade

- Sistema escalável
 - ➤ Desempenho varia linearmente com o custo do sistema
- Realísticamente
 - → Manter constante a relação custo/desempenho
- Arquiteturas escaláveis
 - → Multiprocessadores de memória distribuída
 - → Multicomputadores

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribulada Rebonatto

didas de Desempenho

Facilidade de programação

- Conceito subjetivo
 - → Dependente de diversos fatores
 - ☆Hábito do programador
 - ☆ Preferências pessoais
 - ☆Experiência com um ou outro paradigma de programação
 - → Desempenho não relacionado
- Literatura tradicional
 - → Memória compartilhada (SM) é mais fácil do que trocas de mensagens (MP)

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribidade Rebonatto 21

1/27

didas de Desempenho

Obtenção dos resultados

- Tempo de execução
 - → Aplicações seqüenciais
 - ☆Dificilmente varia
 - ☆ Mudanças mínimas
 - → Aplicações paralelas/distribuídas
 - ☆Grandes variações nos resultados
 - ☆Rede de comunicação não confiável
 - ☆Cuidados especiais com o final da aplicação

Processamento Paralelo e Distribuído - Prof.: Marcelo Trandalle Rebonatto

22/27

didas de Desempenh

Obtenção dos resultados

- Metodologia de extração para aplicações paralelas/distribuídas
 - Não tomar por base uma execução
 ☆Nem em aplicações seqüenciais
 - → Utilizar repetições
 - ☆Mínimo de 5
 - ☆Calcular média, desvio padrão, ...

Processamento Paralelo e Distribuído - Prof.: Marcelo Tr20d480e Rebonatto

23/27

idas de Desempenho

Exemplo

- Aplicação: Multiplicação de matrizes
 - → Aplicação com grande potencial de paralelismo

- Resultados apresentados: médias de 5 execuções
- Tempo seqüencial: 624s

Processamento Paralelo e Distribuído - Prof.: Marcelo Tradade Rebonatto

.0
25/27

Exercícios

idas de Desemper

- Utilizando os software de planilha eletrônica (excel, StarCalc, ...), resolver
- Calcular o speedup em todas as execuções
- Calcular a eficiência em todas as execuções
- Calcular o custo computacional em todas as execuções

Processamento Paralelo e Distribuído - Prof.: Marcelo Tradalle Rebonatto 26/22

Exercícios

idas de Desempenho

- Traçar um gráfico de linhas com os resultados do speedup
 - → Adicionar uma linha com o speedup linear
- Traçar um gráfico de linhas com os resultados da eficiência
- Traçar um gráfico de colunas com os resultados do custo computacional

Processamento Paralelo e Distribuído - Prof.: Marcelo Tribidade Rebonatto 27/2