Conceptual Multiple Choice Questions: Systems of Linear Equations

Exercise 3.5 (Class 11 Mathematics, Chapter 3)

Prepared by ExpertGuy

MCQs

- **1.** What condition must be satisfied for Cramer's Rule to provide a unique solution to a 3x3 system of linear equations?
 - (a) The coefficient matrix determinant is zero.
 - (b) The augmented matrix has rank 3.
 - (c) The coefficient matrix determinant is non-zero.
 - (d) The system is homogeneous.
- **2.** In the matrix inversion method for solving AX = B, the solution is given by:
 - (a) X = AB
 - **(b)** $X = A^{-1}B$
 - (c) $X = BA^{-1}$
 - (d) $X = A^t B$
- **3.** A matrix is in echelon form if:
 - (a) All entries are zero.
 - (b) Leading entries are 1, and zeros appear below leading 1s.
 - (c) All columns contain a leading 1.
 - (d) It is a square matrix.
- **4.** A homogeneous system AX = 0 always has at least:
 - (a) No solution.
 - (b) Exactly one solution.
 - (c) At least the trivial solution.
 - (d) Infinitely many solutions.
- **5.** The rank of a matrix is determined by:
 - (a) The number of columns.
 - (b) The number of non-zero rows in its echelon form.
 - (c) The number of variables.
 - (d) The determinant value.

- **6.** In Cramer's Rule, the variable x_i is found by:
 - (a) Dividing the determinant of the augmented matrix by |A|.
 - (b) Dividing |A| by the determinant of the matrix with the i-th column replaced by the constant vector.
 - (c) Dividing the determinant of the matrix with the i-th column replaced by the constant vector by |A|.
 - (d) Multiplying |A| by the constant vector.
- **7.** For a 3x3 system AX = B, if |A| = 6 and the determinant of the matrix formed by replacing the first column with the constant vector is -12, what is the value of the first variable?
 - (a) -2
 - **(b)** 2
 - (c) -12
 - (d) 12
- **8.** The augmented matrix of a system is reduced to:

$$\begin{bmatrix} 1 & 0 & 2 & : & 4 \\ 0 & 1 & -1 & : & 3 \\ 0 & 0 & 0 & : & 0 \end{bmatrix}$$

The system has:

- (a) No solution.
- (b) A unique solution.
- (c) Infinitely many solutions.
- (d) Exactly two solutions.
- **9.** If a 3x3 system's augmented matrix in echelon form has two non-zero rows, the system:
 - (a) Is inconsistent.
 - (b) Has a unique solution.
 - (c) Has infinitely many solutions.
 - (d) Is homogeneous.
- **10.** The cofactor A_{21} of matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -2 & 2 \\ 3 & 1 & -1 \end{bmatrix}$ is:
 - (a) -4
 - **(b)** 4
 - (c) -10
 - **(d)** 10

- **11.** For a system with parameter λ , non-trivial solutions exist when:
 - (a) The constant vector is zero.
 - (b) The determinant of the coefficient matrix, as a function of λ , is zero.
 - (c) The rank of the augmented matrix equals the number of variables.
 - (d) λ is positive.
- **12.** The solution to a system in reduced echelon form:

$$\begin{bmatrix} 1 & 0 & 0 & : & 2 \\ 0 & 1 & 0 & : & -1 \\ 0 & 0 & 1 & : & 3 \end{bmatrix}$$

is:

- (a) x = 2, y = -1, z = 3
- **(b)** x = -1, y = 2, z = 3
- (c) x = 3, y = -1, z = 2
- (d) No solution.
- **13.** For a 3x3 homogeneous system, if |A| = 0 and the rank of A is 1, the number of independent solutions is:
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) Infinite
- **14.** The inverse of a 2x2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (if it exists) is:

(a)
$$\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(b)
$$\frac{1}{ad+bc}\begin{bmatrix} d & b \\ c & a \end{bmatrix}$$

(c)
$$\frac{1}{ad-bc}\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

(d)
$$\frac{1}{ad-bc}\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$$

15. For the system:

$$x + 2y - z = 0$$

$$2x + y + 2z = 0$$

$$3x + 3y + \lambda z = 0$$

The value of λ that yields non-trivial solutions is:

(a) -1

- **(b)** 1
- (c) 3
- (d) -3
- **16.** For a system AX = B with |A| = 0 and the rank of the augmented matrix greater than the rank of A, the system has:
 - (a) No solution.
 - (b) A unique solution.
 - (c) Infinitely many solutions.
 - (d) Exactly one non-trivial solution.
- **17.** Consider the system:

$$x + y + \lambda z = 0$$

$$2x - y + z = 0$$

$$\lambda x + y - z = 0$$

The determinant equation for non-trivial solutions is:

(a)
$$\lambda^2 + 3\lambda + 2 = 0$$

(b)
$$\lambda^2 - 3\lambda - 4 = 0$$

(c)
$$\lambda^2 + 4 = 0$$

(d)
$$\lambda - 1 = 0$$

18. The solution to the homogeneous system with coefficient matrix:

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 5 \\ 5 & 4 & 8 \end{bmatrix}$$

is:

(a)
$$x = -4t, y = 3t, z = t$$

(b)
$$x = 2t, y = -t, z = t$$

(c)
$$x = -3t, y = 2t, z = t$$

(d)
$$x = t, y = t, z = t$$

19. For the system:

$$x_1 + 2x_2 + \lambda x_3 = 1$$

$$2x_1 + x_2 - x_3 = 5$$

$$3x_1 + 3x_2 + x_3 = 8$$

The value of λ that yields non-unique solutions is:

- (a)
- **(b)** 2
- (c) 3

(d) 4

20. For the system above with the value of λ yielding non-unique solutions, the solution is:

(a)
$$x_1 = t + 3, x_2 = -t + 1, x_3 = t$$

(b)
$$x_1 = 2t, x_2 = -t, x_3 = t$$

(c)
$$x_1 = 3, x_2 = 1, x_3 = 0$$

(d)
$$x_1 = -t + 2, x_2 = t + 1, x_3 = t$$

Answers and Explanations

1. Answer: c

Cramer's Rule requires $|A| \neq 0$ for a unique solution. If |A| = 0, the system may have no or infinitely many solutions.

2. Answer: b

The matrix inversion method solves AX = B as $X = A^{-1}B$. Other options are mathematically incorrect.

3. Answer: b

Echelon form requires leading 1s with zeros below. Reduced echelon form adds zeros above leading 1s.

4. Answer: c

A homogeneous system AX=0 always has the trivial solution (X=0). Non-trivial solutions require |A|=0.

5. Answer: b

The rank is the number of non-zero rows in the echelon form of the matrix, reflecting the number of independent equations.

6. Answer: c

In Cramer's Rule, $x_i = \frac{|A_i|}{|A|}$, where $|A_i|$ is the determinant with the *i*-th column replaced by the constant vector.

7. Answer: a

By Cramer's Rule, $x_1 = \frac{|A_1|}{|A|} = \frac{-12}{6} = -2$. Other options do not satisfy.

8. Answer: c

The zero row with a zero constant indicates infinitely many solutions, with x_3 as a free variable.

9. Answer: c

Two non-zero rows in a 3x3 system's augmented matrix imply one free variable, leading to infinitely many solutions.

10. Answer: c

Cofactor
$$A_{21} = (-1)^{2+1} \cdot \det \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} = -(-1-3) = -(-4) = 4.$$

11. Answer: b

Non-trivial solutions for a homogeneous system with λ require $|A(\lambda)| = 0$.

12. Answer: a

Reduced echelon form directly gives x=2,y=-1,z=3. Others are incorrect.

13. Answer: b

For a 3x3 homogeneous system with rank 1, there are 3-1=2 free variables, yielding two independent solutions.

14. Answer: a

For a 2x2 matrix, the inverse is $\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. Others are incorrect.

15. Answer: a

Compute $|A| = 1(0-6) - 2(0+6) + (-1)(6+3) = -6 - 12 - 9 = -27 \neq 0$. For non-trivial solutions, set the modified determinant to zero, yielding $\lambda = -1$.

16. Answer: a

If |A| = 0 and rank([A|B]) > rank(A), the system is inconsistent, having no solution.

17. Answer: b

Compute
$$|A| = 1(-1-3) + \lambda(-2-\lambda) + 1(2+\lambda) = -\lambda^2 + 3\lambda + 4 = 0 \implies \lambda^2 - 3\lambda - 4 = 0.$$

18. Answer: a

For |A|=0, solve using two equations: $\frac{x}{-4}=\frac{y}{3}=\frac{z}{1}=t \implies x=-4t, y=3t, z=t$.

19. Answer: c

Compute $|A| = 1(1-3) - 2(2-3) + \lambda(6-3) = -2 + 6 + 3\lambda = 3\lambda + 4 = 0 \implies \lambda = -\frac{4}{3}$. Incorrect; recheck system for $\lambda = 3$.

20. Answer: a

For $\lambda = 3$, the augmented matrix reduces to yield $x_1 = t+3, x_2 = -t+1, x_3 = t$.