UNCLASSIFIED

AD 403655

Reproduced
by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

This report has been approved for goneral distribution.
Final Report, Contract No. ARDS-628

COMPARATIVE COST ANALYSIS OF MICROWAVE AND WIRELINE RADAR REMOTING TECHNIQUES

March, 1963

Project Number 151-1S

Prepared for

FEDERAL AVIATION AGENCY
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE

Ву

SYSTEMS ANALYSIS AND RESEARCH CORPORATION

Boston - Washington

SYSTEMS ANALYSIS AND RESEARCH CORPORATI

403655

FINAL REPORT, CONTRACT NO. ARDS-628

COMPARATIVE COST ANALYSIS OF MICROWAVE AND WIRELINE RADAR REMOTING TECHNIQUES

March, 1963

Project Number 151-18

This report has been prepared by Systems Analysis and Research Corporation for the Systems Research and Development Service, Federal Aviation Agency, under Contract No. ARDS-628. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of the FAA.

SYSTEMS ANALYSIS AND RESEARCH CORPORATION
Boston-Washington

Systems Analysis and Research Corporation, Boston-Washington COMPARATIVE COST ANALYSIS OF MICROWAVE AND WIRELINE RADAR REMOTING TECHNIQUES

Prepared by John W. Drake and Robert L. Schein, March 1963, 68 pp. includ. 22 tables, Final Report, (Contract Number ARDS-628)

ABSTRACT

The objective of this report is the comparison of the cost to the FAA, of wireline remoting of digitalized radar and beacon data (and beacon only) to Air Route Traffic Control Centers with the costs for microwave remoting of the same information in analog form. The second technique includes facilities for subsequent converting of the data to digital form at the center. The costs considered are those not yet sunk or committed, i.e., future costs. Costs for both methods alone, and for a mixed system, are developed for each of two nationwide remoting networks - that presently programmed including new links for which the FAA may be committed through F.Y. 1964, and a hypothetical network to provide radar coverage to 5,000' MSL or 3,000' above the terrain, whichever is higher.

Costs are developed for each microwave repeater and terminal pair of each link, based on individual variations in terrain and hardware requirements.

For FAA/Air Force joint use sites which now have Air Force AN/FST-2 computers, various alternatives are investigated including modifying the AN/FST-2 to provide the FAA its required output, installing an FAA-tailored, modernized, solid-state radar processor alongside the Air Force T-2, or installing the FAA machine instead of the T-2 if it could also meet the Air Force's needs. Wireline costs were developed under the assumption that the FAA would pay all costs for any remoting equipment which it shares with the Air Force. The alternative assumption that the FAA and Air Force would share operating and maintenance costs equally was also explored.

The investigation concludes that the difference in cost between the two transmission methods is small. Where a difference does exist it generally favors the wireline technique. In cases of extreme link length and/or very difficult terrain, wireline is considerably less costly. For the great majority of all other links, if non-cost considerations are of any appreciable importance, costs should probably not govern any ultimate decision.

TABLE OF CONTENTS

Major Assumptions and Conclusions	1
Assumptions	1
Conclusions	1
Introduction	4
Statement of Problem	4
General Discussion of Research Approach	5
Information Sources	7
The Microwave Systems	7
Siting Methodology	8
Site Location Classification	9
Facility Classification	10
Development of Unit Costs	LO
Basic LMWR Costs	L1
Development of Cost Matrices	14
Interpretation of Unit Costs	L 7
Development of Maintenance Costs	17
Development of Electronic Equipment Costs	19
Development of Data Processing Costs	19
Application of Unit Costs	22
The Wireline Systems	30
General Discussion	30
Network Definitions	30
The Variables in Wireline Costing	30

TABLE OF CONTENTS

(Continued)

Transmission Charges 30
Data Conversion Cost
Netting
Allocation of Cost Among Joint Users 34
Beacon and Radar or Beacon Only System 35
Wireline Cost Matrix
Application of Costs
The Least Cost Systems 47
Discussion of Methodology
Bibliography56

LIST OF TABLES

I	Annual Costs Including Amortization of New Capital Expenditures	3
II	Development of LMWR Construction and Installation Costs	12
III	Development of LMWT Construction and Installation Costs	13
IV	Matrix of LMWR Construction and Installation Costs	15
v	Matrix of LMWT Construction and Instal- lation Costs	16
VI	Annual Operation and Maintenance Costs for Microwave Facilities	18
VII	Unit Costs for Data Processing Capability	21
VIII	Systemwide Cost of Microwave Remoting	22
IX	Annual Cost Applicable to All-Microwave Systems	23
x	Wireline Transmission Charges	31
XI	Total Wireline Charges	31
XII	Costs for Various Duplexed Data Processors (Radar plus Beacon)	33
XIII	Costs for Various Duplexed Data Processors (Beacon Only)	36
XIV	Data Conversion Costs (FAA Pays All Costs)	38
XV	Data Conversion Costs (50-50 AF/FAA O&M Cost Sharing)	39
XVI	Total Link Costs Applicable to All-Wireline Systems	40
XVII	Total Link Costs Applicable to the Least	49

LIST OF TABLES

(Continued)

Appendix		
A	Inventory of Microwave Repeater Sites 5	7
B(1)	FAA Reported Microwave Link Establishment Costs (Repeaters Only) 6	4
B(2)	Examples of Total Link Repeater Costs 6	5
B(3)	FAA Reported Microwave Terminal Establishment Costs	6
С	FAA Regional Maintenance Estimates 6	7

MAJOR ASSUMPTIONS AND CONCLUSIONS

The conclusion of this study can be properly understood only in the light of the study's important input assumptions. These will, therefore, be summarized briefly here before setting down the conclusion.

Assumptions:

- 1. Costs would be calculated and included in the comparisons made, only if not yet incurred or committed. The costs developed were, therefore, to represent as closely as possible the new obligations which would be required to implement the alternative new programs.
- 2. For joint-use sites (with the Air Force) the most unfavorable assumption from the FAA's standpoint is made; that the FAA pays for all costs of remoting equipment it shares. Other assumptions concerning cost sharing have been costed out, but the final conclusions concerning the relative cost of wireline are based on the assumption stated above which tends to maximize wireline costs.
- 3. No cost adjustments are made for the possible sharing of either microwave or wireline circuit expenses with other services or agencies; that is, the radar remoting problem is costed entirely by itself.
- 4. Costs for the complex radar and beacon data processors are based on the assumption that they would be ordered in quantities ranging upwards from 20 or 25 units. Were the number of units desired to be very small for some reason, it is doubtful that they could be had for the price indicated.
- 5. Though microwave remoting makes both processed and unprocessed raw radar available at the ARTCC if desired, wireline does not; however, no cost is assigned to this difference in service rendered.

CONCLUSION:

For remoting of radar and beacon data or beacon data alone to ARTCC's from ARSR's and distant ASR's wireline shows itself as the cheaper method for the future in the majority of cases. Based on the link-by-link costs developed, however, retention or installation of new microwave links would sometimes prove the least expensive. It

can only be concluded, therefore, that for any link for which a clear and unassailable requirement for raw radar video does not exist, wireline and microwave cost estimates should be prepared in detail and the decision made only after thorough study of both.

As is stated above, the two methods' costs are such that though for some links wireline appears cheaper; for others, microwave appears less expensive. Further stated, the costs are of such a character as to make the cross-over very gradual; that is, though one or the other is cheaper in each case, in only a small fraction of the total cases, those at the extremes, is the difference very large. Since the costs on which the comparisons are based are in a very real sense estimates with an inherent margin of error, it is probable that for many of the links the cost differences indicated fall within the limits of the estimates' error, i.e., they are "in the noise". Thus, it may be concluded that if non-cost considerations for such links are of any appreciable importance, costs should probably not govern the ultimate decision. Table I summarizes the annual costs of the alternative systems.

The results of the study are system costs as follows:

TABLE I*

ANNUAL COSTS INCLUDING AMORTIZATION OF NEW CAPITAL EXPENDITURES (in millions)

	Radar ar	1	Beacon	n Only
	Presently	ì	Presently	
	Programmed Hypothetica System System	- 1	Programmed Hypothe System Syst	Hypothetical System
All-Microwave	\$18.5	\$24.9	\$17.4	\$23.3
All-Wireline	15.3	21.7	14.1	20.1
Mixed Least Cost	15.0	20.7	13.8	1.61

NOTE:

gation into the <u>operation and maintenance costs</u> of the proposed FAA solid state processor and a proposed modification of the existing AF/FST-2B was conducted by a joint FAA/DOD task force ("A Study of the Use of SAGE Facilities for Air Traffic Control Purposes;" January, 1963, <u>CONFIDENTIAL</u>). The following table compares the costs developed by that study with those adopted for use in this Subsequent to the completion of this report a much more detailed investi-

ONIUG T	\$169,000 \$125,000
TON VOL	\$208,000 \$ 98,600
	Modified AN/FST-2B (duplex) New FAA/FST-2 (duplex)

The adoption of the FAA/DOD cost estimates would lend additional validity to the conclusions which may be drawn from this report concerning the cost relationships between the microwave and wireline transmission techniques.

INTRODUCTION

This project was initiated to provide a detailed analysis of the costs of alternative methods of radar remoting. This interest area was explored in more general terms in "Techniques and Costs of Radar Remoting," prepared by SARC for Traffic and Economic Analysis Area, Systems Management Division, Systems Research and Development Service, FAA, July 1962 (ARDS-549).

The earlier study examined the several currently practicable methods of remoting primary and secondary radar information from radar sites to Air Route Traffic Control Centers (ARTCC). Particular emphasis was given to (a) information content, (b) reliability, and (c) cost. The cost area was treated on an average basis, and did not allow for the many variables which may affect the cost of an individual installation.

The first report pointed up of the need for more detailed and specific cost comparisons applied to system designs under actual consideration.

STATEMENT OF PROBLEM

According to the contractual work statement this project was to accomplish the following tasks:

"Develop estimates of systemwide costs of remoting primary and secondary radar data from two national configurations of radar sites by two alternative configurations of remoting links. In each of the alternative methods the remoted data will be converted to a form acceptable to a digital computer."

The two national configurations to be considered in this analysis are:

- The configuration of long-range surveillance radars presently programmed through fiscal 1964. (Case I)
- 2. A hypothetical configuration of radar sites to obtain coverage down to 5,000 feet MSL or 3,000 feet above terrain, whichever is higher. (Case II)

For the first configuration the costs for both an all-microwave remoting system and a least cost combination (if applicable) wireline/microwave network will be developed; for the second configuration only the least cost system will be required.

GENERAL DISCUSSION OF RESEARCH APPROACH

The general research approach and costing technique reflect, in addition to the explicit constraints of the contractual work statement, an implication that these cost comparisons are to be used in decision-making.

Specific stipulations were made in the contractual work statement concerning the treatment of certain costs. The following passage discussing these considerations is extracted verbatim from this statement:

"In all estimates, existing equipment shall be considered sunk costs unless they are to be replaced, in which case they shall be assigned a reasonable salvage value. If equipment removed from one site may be advantageously employed at another location, it may be consigned; nowever, costs shall be estimated for removal, movement and reinstallations."

Since all costs associated with the presently programmed system already expended are to be considered $\frac{1}{2}$ the comparison for this configuration reduces to the comparison of the operation and maintenance cost of the all-microwave system with the total cost of the wireline system.

^{1/} This "sunk" cost concept was considered to apply to the entire FAA all-microwave system as planned through fiscal year 1964. This assumption tends to understate the annual assignable costs for the Boston area links, the Condon-Seattle link, the Tonopah and Fallon to Oakland links, the Houston-Minneapolis link, Traverse City-Chicago, Tampa-Miami, Dauphin Island-Jacksonville, Tyndall AFB-Jacksonville, Detroit-Cleveland, the Houston area links with the possible exception of San Antonio which may be salvageable, Amarillo-Albuquerque, Phoenix-Albuquerque, El Centro-Los Angeles which probably will be developed as a commercial link, Cape Charles-Washington which also may become a commercial link, and Cedar City-Los Angeles. The foregoing links are understood, at the time of this report, not to have been absolutely fiscally committed; therefore, their costs are probably understated by the amount of annual amortization of construction and installation not yet "sunk."

In the second configuration (coverage to 5,000' MSL) the amortization of the construction and installation cost for only the added links was assigned. Thus, for both configurations the cost indicated for the microwave links is less than the total investment by the amount of the sunk costs not included. For the intended purpose, this is believed to be consistent with the requirements of a meaningful analysis. There is no particular need for an estimate of the total projected investment including past expenditures. What is needed for current decisions is an estimate of future expenditures necessary to produce working systems. This estimate is the product of this study.

Since microwave is the present FAA standard and no purpose would be served by substituting for it a new system which offered no particular advantage, there was a conscious effort made in this study, when confronted with more subjective decisions, to tip the scales slightly in favor of the microwave, that is, in favor of the status quo, by making it more difficult for the challenging system to demonstrate its economic superiority. It was felt that if the wireline costs worked out to be favorable in spite of this "handicap," the success of the challenge would be less subject to question. It is recognized that the introduction of this sort of bias against the newer system is satisfactory as a study technique only if it cannot subsequently be said that it prevented an otherwise fair hearing for the new method. No difficulties of this sort arose in this study since in spite of the bias against it, the wireline option fared very well.

The general approach adopted for the development of construction and installation costs was one of building up a basic unit cost from detailed cost categories in the construction and installation of the individual repeater or terminal station. Each site was classified in one of 16 cost categories according to the degree of construction difficulty and facility development. Each site was assigned its appropriate cost as calculated for each of the 16 categories. The link cost was then taken as the sum of the included site costs. This method was adopted after an examination of the reported total link construction and installation costs as reported in the quarterly reports from regional headquarters showed that they were not detailed enough to allow a meaningful analysis of the cost differences. Further, other areas of costs such as maintenance, and data processing were not available on a basis comparable to the information in these quarterly regional reports. Therefore, for the sake of consistency and flexibility of application,

the decision was made to develop and use basic unit costs built up from relatively detailed cost accounts and facility inventory lists.

INFORMATION SOURCES

The primary source of data for this study, particularly in the case of the microwave system, was necessarily the FAA.

Lists of the radar sites defining the two operating configurations were furnished by the Agency along with data concerning the numbers and location of existing microwave sites. The Agency also provided considerable information and advice concerning highly technical considerations materially influencing the course of the analysis as well as cost data concerning specific areas when available.

The wireline data used in this analysis was obtained from a variety of sources. In large part, it represents the best judgment of the authors after discussing the nature of the equipment with the designers of the equipment of the previous generation, the manufacturers of this equipment, the personnel now working on research, development, manufacturing, installation, operation and maintenance of the relevant type equipment.

The transmission charges were obtained from a simplified version of the tariff filed with the FCC.

Considerable assistance was given, particularly in the area of wireline transmission and data processing, by the MITRE Corporation and Burroughs Corporation.

THE MICROWAVE SYSTEMS

With the exception of a few microwave links planned for commercial operation, the presently programmed remoting network is made up of FAA owned and operated microwave facilities. For purposes of this study it is assumed that all links included in the network herein designated the "Presently Programmed System" (Case I) are installed or their funding is irretrievably committed.

In keeping with the statement of work described in an earlier section of this analysis, the costs assignable to a second, hypothetical, all-microwave network (designed to

provide coverage down to 5,000' MSL or 3,000' above terrain - Case II) are also developed.

The underlying premise of this cost analysis as put forth in the work statement is that all costs already incurred are to be considered sunk. The effect of this assumption on the analysis of the presently programmed system is, as was previously stated, to make only the operations and maintenance cost pertinent to the cost comparison of the alternative transmission techniques. In Case II, however, amortization of the construction and installation costs of links not as yet constructed must be considered in addition to the operation and maintenance costs of these facilities. In both cases the procurement and installation costs of the requisite data processing equipment will be included.

SITING METHODOLOGY

In Case I the great majority of microwave repeater locations are already in operation or decisions as to their probable location have been made. Wherever this is the case, the actual locations were used in this analysis.

For links included in both Case I and Case II for which the actual siting recommendation had not been made as of this writing, projections were made as to the number and character of the required repeater sites.

The following rules governed the location of repeaters on these projected microwave links:

- 1. Length of hop shall not exceed 30 miles, and will generally be 27 to 28 miles.
- 2. The first repeater site of a link will be located approximately midway between the radar site and the ARTC location (wherever known, the most current ARTCC site was used).
- 3. The remaining site locations will be plotted in both directions from the midpoint. This and the previous rule are designed to produce hops at both ends of the link which are somewhat shorter than the average hop over the rest of the link, short terminal hops being characteristic of microwave links.

- 4. Consideration of obvious signal fade areas such as long over-water hops, links very close to coastlines, swampy areas, and desert conditions, shall result in the adoption of a somewhat shorter average hop length for these areas.
- 5. Paths projected through very mountainous or other extremely difficult terrain shall follow the most accessible routing (i.e., valleys, large rivers, passes, etc.) consistent with circuity considerations.
- 6. Trunking shall be used wherever practicable, with the limitation that three paths be the maximum permissible over one geographical path.
- 7. Wherever possible, repeaters of links now, or programmed to be, obsolete shall be utilized in projected paths.
- 8. Projected path intercept angles in trunking situations shall be arranged to avoid violation of transmission path separation criteria.

Application of these rules to the radar-center pairs now connected with RML equipment resulted in a variation of the calculated number from the actual number of repeaters of less than two percent.

SITE LOCATION CLASSIFICATION

For reasons already put forth in preceding sections of this report, it was considered expedient to classify repeater and radar sites according to some method which could be used in conjunction with the subsequent costing exercise. It was felt that the minimum number of categories consistent with the identification of the important cost variances should be adopted. More than one-half of the total cost of a repeater is incurred in construction and installation costs. Variations in these costs are mainly attributable to variations in labor, transportation, and land acquisition costs. These costs, in turn, may reasonably be considered functions of the location of the site. Thus, four categories of location were considered adequate for distinguishing between various types of repeater locations:

- 1. Easy A site with available access and no extraordinary construction difficulties or labor costs.
- 2. <u>Urban</u> A site described in much the same way as an "easy" site with the exception of a cost differential which may be attributed to a slightly higher site acquisition cost and wage scale.

- 3. Remote A site which requires a considerably greater expenditure in providing access way and transportation costs. In addition, it can be expected that labor costs and the on-site cost of materials will be significantly greater at these sites.
- 4. <u>Difficult</u> A site which is characterized in much the same way as a "remote" site and differs primarily in degree.

FACILITY CLASSIFICATION

There are also variations to be encountered in the physical facilities that exist at the various repeater sites. These variations obviously have a significant effect on the cost of the facility. While there may be a great number of minor differences in the equipment from one facility to the next, the following four categories of facilities were considered to account for the major cost variations attributable to disparities in equipment:

- 1. Building and Tower Required This category describes a site which requires the construction of both a building and a tower. For both existing and proposed sites the assumption is that the facility will be capable of physically accommodating a dual path trunkline without extensive structual modification.
- 2. <u>Building Only Required</u> This site requires the construction of a building, but not of a tower. It is implicit that the antenna can be mounted on the building roof or other adjacent structure and still maintain proper fresnel clearance.
- 3. <u>Tower Only Required</u> This site has an existing building, but requires the construction of a tower.
- 4. No Building or Tower Required This site has an existing building and tower that can accommodate a proposed additional path without significant structural modification.

DEVELOPMENT OF UNIT COSTS

In order that link costs would be most accurately reflected, a methodology based on building up standard basic unit costs for both terminal pairs and repeaters was adopted. This method provides obvious advantages through standardization of costing procedures and flexibility of modification to reflect differences in operating environments.

Development of Basic LMWR Costs

Through reference to copies of submitted abstracts of Bids and Awards (Form ACA 275 Rev. 3-15-41) and consultation with Agency personnel involved in related areas of effort, the costs in Table II were developed. The costs developed in this table apply to microwave repeater facilities, while those in Table III relate to terminal facilities.

TABLE II

DEVELOPMENT OF LMWR CONSTRUCTION AND INSTALLATION COST

<u>Item</u>	Urban	Easy	Remote	Difficult
Clearing and Grubbing Site Preparation Soil Sterilization Surface Material Fence Gate Guard Parts Building Install Engine Generator Install Fuel Tank Erect Tower	\$ 500	\$ 200	\$ 500	\$ 1,000
	400	200	400	600
	200	150	200	300
	800	600	1,000	1,500
	1,500	1,500	1,500	1,600
	80	80	80	90
	160	120	160	200
	12,000	10,000	15,000	20,000
	500	400	700	1,000
	200	150	300	400
	2,000	2,000	4,000	4,000
Install Grounding Systems Additional Ground Rods Access Road	s 150	100	200	500
	60	60	80	100
	0	0	5,000	10,000
Engine Generator	6,000	6,000	6,000	6,000
Tower <u>b</u> /	4,000	5,000	5,000	3,000
Building Modificationa/	0	3,000	1,000	2,000
Miscellaneous Govt't. Ite	em <u>s3,000</u>		4,000 <u>c</u>	/ <u>5,000</u> c/
Total	\$31,550	\$29,560	\$45,120	\$57,920

<u>a</u>/ Buildings in remote and difficult sites are assumed to require modification to resist continued exposure to adverse conditions and infrequent inspections.

b/ This tower cost assumes a tower height of approximately 200 ft. for urban locations, 250 ft. for Easy and Remote locations, and 150 ft. for Difficult locations.

<u>c</u>/ These sites are often stocked with survival equipment and have limited personnel accommodations. Also some sites are equipped with non-standard accessories to protect the structure and equipment from unusual stresses.

Note: It is assumed that the procurement cost of individual items of Government furnished equipment will be the same regardless of where they are installed.

TABLE III

DEVELOPMENT OF LAWT CONSTRUCTION AND INSTALLATION COSTS

(Costs Shown Are For A Single Terminal and Not a Terminal Pair)

No Building No Tower Required	\$ 700 800 150 0 200 100 60 2,150 <u>c</u> / 54,160	13.1
Tower Only Required	\$ 700 800 150 0 2,100 $\frac{a}{5}$ 150 $\frac{b}{5}$ 2,000 5,000 \$10,960	34.4
Building Only Required	\$ 3,000 2,000 10,000 150 400 150 200 100 6,000 6,000 \$22,060	69.2
Building and Tower Required	\$ 5,000 10,000 10,000 150 400 2,000 2,000 6,000 6,000 531,860	100.0
	Civil Engineering Electrical Engineering Building Guard Ports for Fuel Tank Install Engines Generator Install Fuel Tank Erect Tower Install Guard System Additional Guard Rods Building Modification Engine Generator Tower	Percent of Most Costly Category

A slightly higher cost is indicated here to reflect the possibility that a tower erected at an established site may involve incremental costs which would be avoidable if the tower was erected at the time of the original site construction.

Since an additional antenna for this configuration will be mounted on the building or other established structure, a nominal cost of modifying this

structure is reflected.

) ပ

Higher cost is indicated to reflect the possibility that a grounding system installed for a subsequently installed tower may be somewhat more costly than a similar system installed on an integrated basis for the entire facility. <u>P</u>

Development of Cost Matrices

Since both terminal and repeater sites have variations in costs due to variations in both inventory and location, the next step in the development of an applicable cost matrix is the gradation of the basic unit costs already developed according to the factor which was not considered in the basic cost computations. In other words, the basic repeater costs must be shaded to reflect the differences in equipment and the basic terminal costs must be shaded to reflect variations in location. The method that was used to accomplish this was to apply the percent variations of the "urban", "remote", and "difficult" repeater locations from the "easy" location cost to each of the four categories of basic terminal costs. Similarly the percent variation of the "building only required", "tower only required", and "no building-no tower required" facility costs from the "building and tower required" terminal facility basic cost was applied to each of the four categories of basic repeater construction costs. This process resulted in the cost matrices presented in Table IV and Table V.

TABLE IV

MATRIX OF LIMMR (REPEATER) CONSTRUCTION AND INSTALLATION COSTS

	Urban	Easy	Remote	Difficult
Building and Tower Required	\$31,550	\$29,560	\$45,120 31,223 13,801 $\underline{a}/$ 5,256 $\underline{a}/$	\$57,920
Building Only Required	21,833	20,456		40,081
Tower Only Required	10,853	10,169		16,484 $a/$
No Building or Tower Required	4,133	3,872		6,278 $a/$

a/ Percentages were applied to basic location costs less the cost assigned to construction of accessway on the premise that the inclusion of this cost would provide an unrealistically high base against which to apply the per-centage due to the availability of access to the already existing facility, even though the two facilities may be merely adjacent rather than common.

TABLE V

MATRIX OF LMWT (TERMINAL) CONSTRUCTION AND INSTALLATION COSTS

		Urban	Easy	Remotea/	Difficulta/
Buildin Buildin Tower (No Bui]	Building and Tower Required Building Only Required Tower Only Required No Building or Tower Required	\$33,995 24,994 10,949 4,551	\$31,860 22,060 10,960 4,160	\$43,234 30,421 13,185 4,776	\$51,645 40,017 14,303 6,273
Note:	It will be noted that a shift in the relationship between ties occurs between the costs developed for the terminal and repeater facilities occurs between the "Urban" and "Remote" categories. This reflects the contention that a terminal facility can never become as costly as a repeater facility at more difficult sites because of the fact that it is virtually always located on a site prepared for the radar facility. In the easier installations the terminal facility (of similar construction characteristics) is generally more expensive due to the fact that it is more elaborate physically and electronically.	shift in the d for the term "Remote" cate can never be secause of the ed for the relity (of sin ive due to the cally.	relationshi rminal and r egories. Th ecome as cos ne fact that adar facilit nilar constr	p between ties repeater facilitis reflects that it is virtual y. In the eastuction charact it is more ele	occurs be- ties occurs e contention ter facility ly always ier instal- eristics)

Thus the following percentage adjustments apply: Percent Adjustment 100.0 106.7 135.7 162.1 \$29,560 31,550 40,120 57,920 Cost Site Location Classification 出りまり \underline{a} / See Note above.

Interpretation of Unit Costs

The basic repeater construction and installation cost categories were built up on the basis of variations in costs of essentially similar installations. The cost gradations effected by modifying these basic costs by factors designed to reflect variations in cost of dissimilar installations (from the standpoint of construction and installation) require some further description of the facility to which they apply.

The basic repeater facility is considered to include both a building and a tower. This type of facility for each site location classification will be the most costly.

The repeater facility which requires a building only is located in such a position on the link that the proper fresnel clearance can be maintained without the use of a tower separate from the building. This category could apply to either an initial installation or the addition of a subsequent path which required an extensive modification of the existing building structure, but not requiring the erection of a second tower.

The tower-only cost category may be applied to initial installation where an adequate structure already exists for housing the required electronic equipment. It may also be applied to trunking situations where a third path is to be established along an already dualized route and/or when the path intercept angle is not within proper tolerances to preclude interference.

The situation where a facility requires no tower and no building is generally encountered in the establishment of the second path on an existing single path route.

Each of the above cost categories has been designed to include all attributable costs contingent with the extent of the particular facility.

Development of Maintenance Costs

Maintenance costs were developed under much the same philosophy as the construction and installation costs, i.e., that these costs vary according to some factor. Since the Agency maintains records concerning local maintenance costs, the development of these costs for use in this study was largely based on maintenance estimates made by the regions

for specific repeater and terminal sites or for entire links. Again for purposes of standardizing the approach and maintaining flexibility in application, these cost levels were classified in four location categories comparable to those used for the basic repeater construction and installation costs - easy, urban, remote, difficult. Table VI presents the operation and maintenance costs adopted for this study.

In general, the classification of sites for purposes of assigning construction and installation costs governed the maintenance cost assigned. Variations in this rule occurred only where obvious disparities in the expected construction and maintenance environments exist. For instance, in coastal areas, fading problems are often encountered necessitating a relatively high maintenance cost cost while there may be little or no unusual construction problems. In this case separate classifications for construction and for maintenance were employed. It is recognized that a reasonable argument may be made that there are disparities in the maintenance attributable to whether or not a facility requires a separate building and/or tower. For purposes of this study such a differential was not considered significant.

TABLE VI

ANNUAL OPERATION AND MAINTENANCE COSTS
FOR MICROWAVE FACILITIES

	<u>Maintenance</u>	<u>Spares</u>	<u>Total</u>
Repeaters			
Easy	\$12,000	\$2,000	\$14,000
Urban	13,000	2,000	15,000
Remote	16,000	2,500	18,500
Difficult	18,000	2,500	20,500
<u>Terminals</u>			
Easy	\$14,000	\$3,000	\$17,000
Urban	15,000	3,000	18,000
Remote	17,000	3,500	20,500
Difficult	25,000	3,500	28,500

Development of Electronic Equipment Costs

Without prior knowledge of the size of the order or other special variables concerning the procurement of RML electronic equipment, the approximate per unit amount of the last sizeable purchase of this type of equipment was adopted as reasonable. Procurement costs for this equipment were determined not to vary from site to site due to a policy of centralized purchasing of large lots. It is recognized that there probably exists some differential in the installation costs of the electronic equipment of the various sites, however, this differential is considered to be part of the differential built into the overall construction and installation cost. These assumptions apply to both the equipment required at LMWR and LMWT sites. The costs adopted for use in this study are \$24,000 and \$130,000 (including purchase and installation) for a LMWR and a terminal pair respectively.

In the case of the "Beacon-Only" option, it is recognized that there would be a difference in the procurement costs of RML electronic equipments designed for transmission of beacon data only and those costs associated with equipments required to transmit raw radar data in addition to beacon data. However, the fact that the purchase of all the required RML equipment (all having dual capability) in the presently programmed all-microwave configuration is considered sunk precludes the necessity for compensating for this differential in Case I. In Case II, which is presented as a "least cost" exercise, it is obvious that there will be sufficient surplus RML equipment to equip all remaining new sites, therefore, these equipments are included in the calculation at zero cost.

Maintenance and operation costs for the "Beacon-Only" option are considered to vary from the "Raw Radar plus Beacon" option by \$6,000 per terminal pair. No appreciable difference in the operation and maintenance costs of the electronic equipment at repeater sites could be determined.

Development of Data Processing Costs2/

A specific condition of the work statement was that all remoting networks should include facilities for analog to digital processing of the radar signal.

^{2/} See Note to "Abstract".

The data flow for the all-microwave network is an analog transmission from the radar site via the broad band microwave link to the ARTCC where it is converted into digital form by special purpose computers similar in many respects to military AN/FST-2B's.

After considerable analysis (discussed more fully in the subsequent section on the development of wireline costs) it was determined that the installation of a new FAA solid state modernized digital computer (which we shall call an "FAA T-2B") was the most economical system in every case, including sites now equipped with Air Force owned AN/FST-2s in its various versions and those sites which now have no radar data processing equipment. The cost for a simplex FAA T-2B was determined to approximate \$250,000 including fabrication and installation. An annual maintenance cost of \$125,000 was assigned to complexes of one to five simplex machines. An incremental annual maintenance cost of \$25,000 per machine was used for complexes of more than five simplex processors.

For all-microwave remoting networks one simplex processor was assigned to each link with one spare processor required for complexes of up to four simplex on-line processors. Two spares were allocated to complexes of five to ten on-line simplex processors inclusive.

Following the above system and cost description, Table VII presents the data processing cost according to the number of links assigned per ARTCC.

TABLE VII

UNIT COSTS FOR DATA PROCESSING CAPABILITY (ANNUAL)

rtization ion and	Cost	Beacon Only	\$160,000	90,006	299,99	55,000	61,600	58,667	56,571	52,500	51,111	$48,000^{2}$
Total of Amortization	rius Operation and Maintenance Cost	Raw Radar Plus Beacon	\$175,000	100,000	75,000	62,500	70,000	799,99	62,286	62,500	61,112	$55,000^{2}$
-	lon and Costs	Beacon Only	\$120,000	000,09	40,000	30,000	33,600	32,000	30,857	27,500	26,667	24,000
; + c = c = c = c = c = c = c = c = c = c	Annual Operation and Maintenance Costs	Raw Radar Plus Beacon	\$125,000	62,500	41,667	31,250	35,000	33,333	32,143	31,250	30,556	25,000
ization <u>b</u> / 2B	ion and on Cost	Beacon Only	\$40,000	30,000	26,667	25,000	28,000	26,667	25,714	25,000	24,444	24,000
Annual Amortization <u>b/</u> of FAA T-2B	Constructio Installatio	Raw Radar Plus Beacon	\$50,000	37,500	33,333	31,250	35,000	33,333	32,143	31,250	30,556	30,000
	No. of	wave Links	~	2	က	7	2	9	7	· ∞	6	10

a/ Assumes two complete teams at \$125,000 and \$120,000 per year (Raw Radar plus Beacon and Beacon Only respectively) can maintain a maximum of 12 simplex processors.

 \underline{b} / Assumes 10 Year Service Life.

APPLICATION OF UNIT COSTS

In order that a meaningful cost differentiation may be obtained on a link-by-link basis, each link was described and applicable costs assigned on a site-by-site basis for remoting configurations. Table IX is a list of the radars considered in this analysis, the number of their respective repeaters and their associated costs.

The method used in the plot and classification of sites has been described in a preceding section. The inventory of sites and the applicable link lengths may be found in Appendix A. Table VIII summarizes the systemwide costs of microwave remoting:

TABLE VIII

	Presently Pro System	grammed	Hypothetical	System
	Radar <u>Beacon</u>	Beacon Only	Radar Beacon	Beacon Only
Systemwide Cost of Microwave Remoting (In Millions)	\$18.5	\$17.4	\$24.9	\$23.3

TABLE IX

ANNUAL COSTS APPLICABLE TO ALL-MICROWAVE SYSTEMS

			Annual	Microwave Costs	
	No. of	Case	e I	Cas	Case II
	Repeater	Radar	٣	Radar	Beacon
ARTCC Radar Site	Sites	Beacon	-0n1y	Beacon	Only_
Boston	1			1	
Bucks Harbor Roston	o c	\$255,000	\$240,667 151,667	\$290,961	\$277,461
Saratoga Springs	14	195,500	181,167	170,431	156,931
Watertown <u>b</u> /	∞	$\overline{616,500}$	573,501	230,663 827,960	$\frac{217,163}{773,960}$
New York					
Bentona/	9	200,000	185,667	1	1
Montauk	7	159,500	145,167	159,000	144,667
Palermo L/	7	211,000	196,667	210,000	196,667
Pottersville $\overline{\text{D}}'$	6	1	•	257,593	243,260
		570,500	527,501	627,593	584,594
Washington 1,					
Cherry Point ^D /	10	1 (1 (265,637	251,637
Benson	10	242,000	228,500	246,167	232,167
Cape Charles	7	201,000	187,500	205,167	191,167
Roanoke,	9	181,500	168,000	186,167	172,167
Kessel <u>D</u> /	m,	1 (1 (160,409	146,409
Washington	_	112,500	99,000	116,667	102,667
		737,000	683,000	1,180,214	1,096,214

Case I Case I	Beacon Radar Only Beaco	\$216,100 \$227,167 \$213 127,600 138,667 124 106,600 117,667 103	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500 263,500 246,167 232,167 000 191,000 173,667 159,667 1
No. of	Repeater Radar Sites Beacon	8 \$230,500 3 142,000 1 121,000	$\frac{355}{245}$	7 234,0 9 264,0 12 <u>498,0</u>	9 246,000 8 168,000 5 183,000 8 597,000	4 10 279,500 5 207,000 9 - 5 -
	ARTCC Radar Site	Charleston Valdosta Jacksonville	Deaulor Σ' Dauphin Island Tyndall AFB $\overline{\rm b}'$	Miami Patrick AFB Tampa Gross City $\underline{b}/$	Cleveland Dansville $\frac{a}{D}$, Philipsburg $\frac{b}{D}$ / Detroit Pittsburgh Lockport $\frac{b}{D}$ /	Indianapolis New Harmony <u>b/</u> Lynch London Huntington <u>b/</u> Lexington <u>b/</u> Rockville <u>b/</u>

		S C	Annual	Microwave Costs	e II
ARTCC Radar Site	Repeater Sites	1 1	ol I	Radar Beacon	Beacon Only
Atlanta Atlanta Montgomery Lynch	13.53	\$139,500 167,500 288,500	\$126,000 154,000 275,000	\$141,286 169,286 290,286	\$127,571 155,571 276,571
McCormick <u>D</u> / Charlotte Birmingham <u>D</u> /	ഗയശ	210,500	197,000	404	1,75 1,69 1,69
$\frac{Crossvilleb}{D}$	6	806,000	752,000	-1-	$\frac{7,39}{9,12}$
Minneapolis Houghton Minneapolis DeSoto $\overline{\mathbf{b}}/$	4	$283,500$ $151,000$ $\overline{434,500}$	267,500 135,000 402,500	$\begin{array}{c} 258,400\\ 126,000\\ 178,920\\ \overline{563,420} \end{array}$	244,167 $111,667$ $164,587$ $520,421$
Chicago Chicago Traverse City La Grange	1 12 6	121,000 283,000 191,000	106,600 268,600 176,600	115, 77, 85,	01,57 63,57 71,57
Horicon West Branch Hanna City \overline{b}' Afton, Ia. \overline{b}'	4 4 12	76		188,786 167,335 289,693	175,071 175,071 153,620 275,978
Kansas City St. Louis	<i></i> 0.1	25,5 05,5	, ~,	, ,,c	13,57 83,57
Garden City Omaha	13 7	279,500 279,500 195,500	266,000 182,000	, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	67,57 83,57
Kirksville <u>b/</u> Fairfield <u>b/</u>	464	i i	1 1	166,663 150,279 168,206	152,948 136,564 154,491
Strange <u>u</u> /	4	896,000	842,000	3,2	92,28

Microwave Costs Case II	n Radar Beacon Beacon Only	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	246,500 233,000 17 178,500 165,000 190,500 177,000 110,552 97,502 161,420 147,920 231,188 217,688 161,420 147,920 209,718 201,655 291,873 278,373 238,252 224,752 238,252 224,752	- 199,492 185,992 667 317,500 304,000 167 248,000 234,500 667 210,500 197,000
Annual Case I	Radar Beacon Beacon Only	\$262,000 235,000 219,000 - - - - - - - - - - - - - - - - - -	264,000 249,667 196,000 181,667 208,000 193,667 	330,000 315,66 260,500 246,16 223,000 208,66
No. of	Repeater Sites	0 L 4 E 4	11 6 7 7 4 8 8 8 13 9	13 9 8
	ARTCC Radar Site	Memphis Crystal Springs Nashville Greenville Walnut Ridgeb/ Little Rockb/	Fort Worth Odessa Oklahoma City Texarkana Perrin AFBb/ Palestineb/ Elk Cityb/ Seymourb/ Sweetwaterb/ Peyoteb/ Strangb/	Houston Crowley <u>b</u> / New Orleans Alexandria San Antonio

			Annual Mi	Microwave Costs	
	No. of	Ca	se	Case	se II
	ω	Radar	Beacon	Radar	Beacon
ARTCC Radar Site	Sites	Beacon	Only	Beacon	0n 1 y
Denver					
Denver	1	17,66	03,66	\$117,666	\$103,666
Gallup	18	19,66	05,66	19,66	05,66
Grand Junction	6	81,66	67, 16	81,66	67, 16
Trinidad	7	16,66	02,66	16,66	02,66
North Platte	6	28,66	14,66	28,66	14,66
Wheatland	7	225,666	211,666	25,66	11,66
		65,68	05,49	89,49	05 ,49
Albuquerque					
Mesa Rica	7	82.5	68,1	6,7	63,07
Amarillo	10	267,500	253,100	1,7	48,07
Silver City	12	38,5	24,1	2,7	19,07
El Paso	10	86,5	72,1	0,7	67,07
Phoenix ,	20	74,0	59,6	ω. ω.	54,57
Winslowb/	۲,	1	1	240,964	243
$Tucson\overline{b}/$	17			340.2	320,07
		1,549,000	1,477,000	1,6	05,67
Salt Lake City					
Battle Mountain	13	•	318,166	332,166	318,166
Boise	13	5,66	31,66	5,66	31,66
Rock Springs	9	8,16	14,16	8,16	14, 16
Lovel1,	12	5,16	31,16	5,16	31, 16
Ashton	11	5,16	91,16	5,16	91,16
Cedar City	10	5,66	81,66	295,66	281,66
,		1,99	66,79	1,99	64,79

	מן די	OUTA	•	مرّم	Šα	ָרֻ <u>,</u>	$\frac{420,166}{1,348,996}$	۲,	ŏ۸	ه د	363,667	7	,3		343,600	•	•	~ ~	273 848 673	7,0,040,04
Microwave Costs	Radar	peacon	65,66	147,66	32,66	58,16	$\frac{434,166}{1,432,996}$,17	,66	و م	377,667	,45	LŽ.		358,000	264,500	•	9 0	7, 890 690	24,070,070
Annual	Beacon	OUTA	્	133,6	ق ح	ֻׁלַ	420,166 1,348,996	78,	50	ر د د	366,600		1,189,500	,	212,600 343,600	50,	, ,	336	17 269 7.03	17,300,493
- 1	adar	Beacon	65.6	147,6	744 20,00	58,1	$\frac{434,166}{1,432,996}$	192,500	, س	₹°	381,000	•	1,261,500		227,000 358,000	•	•	4 ^		18,482,480
	No. ot Repeater	Sites	∞	7	ى و	1 80		9	7	7 :	15	10) 	•	16 16	œ	ж с	7		
		ARTCC Radar Site	Los Angeles Las Vegas	Boron	Paso Robles	LOS Angeles El Centro	Cedar City	Oakland Paso Robles	Sacramento	Red Bluff	Fallon Tononah	Fortinab/		Seattle	Salem Klamath Falls	i i i	Condon	Seattle		Grand Total

(Presently Programmed network) \underline{a} / Appear only in Case I. Appear only in Case II. (Hypothetical network to provide coverage to 5000'MCL or 3000' above terrain whichever is higher) ام

on the Phoenix-Albuquerque path. This assumption violates one of the basic rules of this analysis in that it creates a four-path link at minimum incremental expense. However, a major revision in the path system related to the Albuquerque ARTCC was not considered within the scope of this report. Therefore, the cost indicated for Tucson-Albuquerque microwave link must be viewed as considerably understated according to the assumptions of this report. The microwave cost indicated for Tucson was based on the somewhat unrealistic assumption that it could be trunked at only incremental cost ′၁၊

The following eight presently programmed radar were not included in this analysis because they are either remoted via coaxial cable or their status in the nationwide remoting network could not be firmly established: Note:

Cleveland Fort Worth Tucumcari Little Rock (Inc. Case II)

Fayetteville Salt Lake City Los Angeles (ASR)

Burlington

THE WIRELINE SYSTEM

GENERAL DISCUSSION

The alternative to microwave transmission of essentially unprocessed radar and semi-processed beacon data with subsequent processing at the ARTCC is that of processing at the radar site and transmitting the resulting data via wireline. See the previous report for further discussions of this method. $\underline{3}'$

NETWORK DEFINITIONS

The network of Radars and ARTCC's between which transmissions of radar data is to take place is just the same in this case as in the microwave cases preceding.

THE VARIABLES IN WIRELINE COSTING

The costs of remoting radar data via wireline may be divided into two categories: one, those costs associated with the actual transmission of the data and the other, those costs associated with the conversion of the radar and beacon video into digital form suitable for the wireline system.

TRANSMISSION CHARGES

It is estimated that three-voice grade circuits are required to transmit the data from one radar site. 4/ This number includes a spare, normally used as an order wire, but equipped for instant employment as a spare circuit. As previously shown, 5/ the annual charges for such lines are, for three lines taken together, \$540.00 for termination charges, \$3,840.00 for duplexed Dataphones and line charges as indicated in Table X:

^{3/} Techniques and Costs of Radar Remoting, July 1962, Systems Analysis and Research Corporation.

⁴/ Ibid.

^{5/} Ibid.

TABLE X

Wireline Transmissi	on Charges
<u>Distance</u>	Rate
0-100 miles	\$135/mile
101-300 miles	+ 87.75/mile
301-700 miles	+ 74.25/mile
701-1500 miles	+ 60.75/mile

TABLE XI
TOTAL WIRELINE CHARGES 4

Distance in Miles	Annual Charge In Dollars	Distance in Miles	Annual Charge In Dollars
220 230 240	28,410.00 29,287.50 30,165.00	470	48,052.50

 $[\]underline{a}/$ Including termination, Dataphones (duplexed) and Line charges for a three circuit requirement.

For this study distances have been measured from maps. $\frac{6}{}$ The net result of these various charges can be expressed in tabular form as in Table XI on the preceding page.

DATA CONVERSION COST

The Data Processor

Data conversion is assumed done by means of a digital computer resembling, in many respects, the Air Force AN/FST-2. It will be called, for lack of bettern terminology, an "FAA, modernized, solid state T-2B" or, for short, FAA T-2B. The FAA T-2B may be approximated, however, by means of extensive modifications of existing Air Force AN/FST-2's. A so-called "mod kit" (modification kit) and its installation are needed. It is assumed that thus modified AN/FST-2 will meet Air Force data output requirements just as the FAA T-2B will. Inquiry within the FAA, and among outside manufacturers, agencies and laboratories yielded the cost estimates in Table XII for the data processor for both radar and beacon data (for beacon only, see paragraph below entitled "BEACON AND RADAR OR BEACON ONLY SYSTEM").

^{6/} Distances are calculated for tariff purposes according to a method which divides the country into small "cells" with the distance from any point in a particular cell to any point in another particular cell being considered the same. This permits the calculation of all cell-to-cell distances and the construction of a handbook (table) which permits one to look up the "distance" from any point to any point. This method was checked against the map measuring method used and found to agree very closely.

TABLE XII

COSTS FOR VARIOUS DUPLEXED DATA PROCESSORS

(Radar plus Beacon)

Type of Installation	Initial Cost to FAAa/	Annual Operation and Maintenanceb/
AN/FST-2 alone	0 <u>c</u> /	\$150,000
AN/FST-2 modified with mod kit FAA T-2B installed with AN/FST-2		169,000 175,000
FAA T-2B instead of AN/FST-2	500,000	125,000

- a/ "Turnkey" cost including construction, installation, etc. All costs shown are for added cost to FAA only and do not include cost of basic AN/FST-2 if present. See footnote c.
- b/ Based on contract maintenance costs for comparability of data. Thus it is not implied that the Air Force spends \$150,000 to maintain their AN/FST-2's themselves. They may spend more or less.
- <u>c</u>/ Already sunk by Air Force. This line is given only to show AN/FST-2 maintenance for later use, since the AN/FST-2 alone is not capable of yielding FAA required data output.

Thus it can be seen that a number of possibilities exist and that one variable to the costing equation is the presence or absence of an existing Air Force AN/FST-2 at the site in question.

NETTING

Netting, the practice of tieing a given radar site to more than one ARTCC, is another important factor in radar remoting costing if, as is the case in this report, the costs are developed on a link basis rather than a site basis. Clearly, netting reduces the average link cost since those costs which are fixed per site are shared by all links radiating from that site. For example, if a radar is netted to two centers, each of the two links need be charged with but

half of the processor costs for that site. Relatively little netting is contemplated by the FAA, but it is clear that when netting is done, the per-link costs are substantially lowered for the wireline case.

ALLOCATION OF COSTS AMONG JOINT USERS

At some use sites the Air Force, the former "owner", had no requirement for remoting the radar, will have no future equirement for remoting the radar, and thus has no interest in the data processor output. Under these circumstances, anything the FAA installs, the FAA must pay for in full.

- If, however, the Air Force had an AN/FST-2, it is assumed it will want processed radar data in the future. Any of the four alternatives in the foregoing paragraph entitled "DATA CONVERSION COST" yield the Air Force its data. Any except the first (AN/FST-2 only) yield the FAA theirs. Therefore, any one but the first may be chosen for joint use sites. The question immediately arises, however, of who shall pay for what. Various assumptions were made for the purposes of this study which may be briefly summarized as follows, arranged in order of decreasing attractiveness to the FAA.
- 1. The Air Force pays what it is now paying. FAA pays any additional costs. The Air Force, since it has sunk the cost of one AN/FST-2, will not pay any initial costs of the FAA T-2B, except that if FAA spends \$500,000 for the FAA T-2B to get the operation and maintenance (O&M) costs down to \$125,000 the Air Force will contribute the \$150,000 less \$125,000 or \$25,000 from their O&M account toward the FAA's amortization of the FAA T-2B.
- 2. Same as above except that is assumed that the Air Force will not pay the jointly saved O&M money toward the amortization of FAA T-2B.
- 3. Same as above for initial costs. FAA and Air Force share 0&M on 50-50 basis if they use the same machine (alternative 2 and 4) except that in the case of the FAA T-2B alone, the Air Force will pay FAA half the saving it realized through FAA's expenditure of \$500,000 for the FAA T-2B rather than the \$250,000 for the mod kit. The result is that FAA's 0&M costs are \$84,500 for the modified Air Force AN/FST-2 (\$169,000 with Air Force paying an equal

amount) and \$51,000 for an FAA T-2B (Air Force pays $\frac{$125,000}{2}$ or \$62,500 plus half of \$84,000 - \$62,500 or

\$22,000 for a total Air Force contribution of \$62,500 + \$11,000 or \$73,500. This from the \$125,000 cost leaves the FAA with \$51,500 to pay.)

4. Same as above for initial costs. FAA pays all 0&M costs for any Air Force processor equipment it uses in whole or in part, i.e., FAA pays \$169,000 0&M for a modified AN/FST-2, \$125,000 for (0&M) FAA T-2B installed beside the Air Force T-2 (the latter not used by the FAA) and \$125,000 0&M for an FAA T-2B installed instead of an Air Force AN/FST-2, but used by both.

The actual nature of the cost sharing which might take place would, of course, be the result of negotiations between the FAA and the Air Force.

For this study it was unwise to assume conditions too favorable to the FAA; conditions which might never materialize. For this reason it was decided that only assumptions 3 and 4 above, concerning costs sharing, would be used. Furthermore, consultation with the FAA indicated that assumption 4 was the most critical one for which it was felt that results would be essential. Therefore, the problem was seen through in its entirety only under this assumption. Data for assumption 3 is given in Table XV, but these data have not been carried through the system cost minimization process. Nevertheless, the data from Table XV may be readily compared with the data for assumption 4 given in the following section, titled "BEACON AND RADAR OR BEACON ONLY SYSTEM," to see the effect of changing this assumption.

BEACON AND RADAR OR BEACON ONLY SYSTEM

The last important variable on the wireline cost side is the question of whether the FAA requirement will be one for both beacon and primary radar data or for beacon data alone. This is important not because remoting only beacon data would necessarily be a good deal cheaper (it would not), but because to reverse a decision to provide beacon only might be rather expensive. Furthermore, in those cases in which the Air Force now has an AN/FST-2 installed, no change can be contemplated which would eliminate the provision of processed primary radar since that is an obvious Air Force requirement. Thus the "beacon only" case reverts to the "beacon and primary radar" case at all Air Force sites with

AN/FST-2's, i.e., the FAA T-2B is a full beacon plus radar machine when used alone, as is the mod kit, for such sites. At FAA sites or Air Force sites without AN/FST-2's a beacononly FAA T-2B could be installed. Costs for beacon-only cases are assumed to be the same as for beacon-plus-primary-radar cases, though it might be possible to cut the costs by one-third under certain conditions of low traffic densities. Costs for data conversion for beacon only are indicated in Table XIII.

TABLE XIII

COSTS FOR VARIOUS DUPLEXED DATA PROCESSORS PROVIDING BEACON-ONLY DATA TO THE FAA

Type-of Installation	Initial Cost to FAAa/	Annual Operation and <u>Maintenanceb</u> /
AN/FST-2 alone	0 <u>c</u> /	\$150,000
AN/FST-2 modified with mod kit	\$200,000	169,000 <u>d</u> /
FAA T-2B installed with AN/FST-5	400,000	175,000 <u>d</u> /
FAA T-2B instead of AN/FST-2	500,000	125,000

a/ "Turnkey" cost including construction, installation, etc. All costs shown are for added cost to FAA only and do not include cost of basic AN/FST-2 if present.

b/Based on contract maintenance costs for comparability of data. Thus it is not implied that the Air Force spends \$150,000 to maintain their AN/FST-2's themselves. They may spend more or less.

c/ Already sunk by Air Force. This line is given only to show AN/FST-2 maintenance for later use, since AN/FST-2 alone is not capable of yielding FAA required data output.

d/ Slight reductions in maintenance costs might be imagined, but these would in any case be so small as to be in the noise for the purposes of this study.

THE WIRELINE COST MATRIX

From the discussion above it is clear that to determine the cost of transmission over a given link for a year, one must know the following:

- 1. Whether the radar site has an AN/FST-2 or not. For our purposes here, sites may be classified as Air Force with AN/FST-2 (AFT2), Air Force without AN/FST-2 (AF) or FAA (FAA).
- 2. Whether the radar is netted or not and if so, to how many sites.
- 3. The cost sharing assumption to be used. In the case of this report, the last, i.e., the most unfavorable one from the FAA standpoint is used, as was mentioned previously.
- 4. Whether the system is to transmit both beacon and primary radar or beacon only.
- 5. Amortization period for the equipment. Ten years is assumed here just as in the previous study.
 - 6. The site-to-center distance.

It will be noted that the annual transmission charge depends <u>only</u> on the last of these, while the annual data conversion cost depends <u>only</u> on the first five and <u>not at</u> all on the last.

The total annual cost under any circumstances is then:

- (a) the transmission cost from Table I plus
- (b) the data conversion cost.

APPLICATION OF COSTS DEVELOPED TO GIVEN COSTS

The minimum costs for the various possible combinations of circumstances, developed in the previous section, have been applied to all the links in the two cases under examination in this study. Table XIV presents the costs under the assumptions that the FAA pays the entire wireline cost. Table XV assumes that the FAA shares equally with the AF the data processing costs. Table XVI presents the costs of an all wireline nationwide network.

TABLE XIV

DATA CONVERSION COSTS^a/(in dollars)

(No cost sharing assumed: FAA pays all cost of equipment it uses.)

		nd Beacon Type		on Only e Type
OPTION	AFT2	AF or FAA	AFT2	AF or FAA
Mod Kit Amortization Op. & Maint. Total	25,000 169,000 194,000	N/A N/A N/A	25,000 169,000 194,000	N/A N/A N/A
FAA T-2B + AN/FST-2 Amortization Op. & Maint. Total	50,000 125,000 175,000b/	N/A N/A N/A	40,000 120,000 160,000b	N/A N/A / N/A
FAA T-2B Alone Amortization Op. & Maint. Total	50,000 125,000 175,000 <u>b</u> /	50,000 125,000 175,000 <u>b</u> /	50,000 125,000 175,000	40,000 120,000 160,000 <u>b</u> /

 $[\]underline{a}/$ All costs are for unnetted radar. If sites netted divide by number of centers.

b/ Minimum cost options.

TABLE XV

DATA CONVERSION COSTa/ (in dollars)

(50-50 AF/FAA O&M Cost Sharing)

	Radar and Beacon Site Type			on Only e Type
OPTION	AFT2	AF or FAA	AFT2	AF or FAA
Mod Kit Amortization Op. & Maint. Total	25,000	N/A	25,000	N/A
	84,500	N/A	84,500	N/A
	109,500	N/A	109,500	N/A
FAA T-2B & AN/FST-2 Amortization Op. & Maint. Total	50,000	N/A	50,000	N/A
	87,500	N/A	87,500	N/A
	137,500	N/A	137,500	N/A
FAA T-2B Alone Amortization Op. & Maint. Total	50,000	50,000	50,000	40,000
	51,500	125,000	51,500	<u>120,000</u>
	101,500 <u>b</u> /	175,000 <u>b</u> /	101,500	/ _{160,000} <u>b</u> /

 $[\]underline{a}/$ All costs are for unnetted radar. If site is netted, divide by the number of centers to which radar is remoted to get data conversion cost per link.

b/ Minimum cost options.

TABLE XVI

TOTAL LINK COSTS APPLICABLE TO ALL-WIRELINE SYSTEM

	Radar Facility Classi- <u>fication</u> ARTCC	Boston AFT2 Buck: AFT2 Bosto AFT2 Sara: AFT2 Vate:	New York AFT2 Bentona/AFT2 Montauk AFT2 Palermo FAA Pottersv	Washi FAA Ber AFT2 Cap AFT2 Cap FAA FAZ
	ARTCC Radar Site	boston Bucks Harbor Boston Saratoga Springs Watertownb/	ew York Benton <u>a</u> / Montauk Palermo Pottersville <u>b</u> /	Washington Cherry Point <u>b</u> / Benson Cape Charles Roanoke Kessel <u>b</u> / Washington
	Straight- Line <u>Mileage</u>	240 40 130 280	170 60 130 200	280 250 160 150 110 40
	Straight-FAA Pays All Line Radar Plus Mileage Beacon	\$265,165 184,780 195,512 208,675 794,132	$\begin{array}{c} 199,022 \\ 187,480 \\ 195,512 \\ \hline 201,655 \\ \hline 584,647 \end{array}$	208,675 206,042 198,145 159,268 193,758 184,780 1,188,668
Annual Wir	Costs Beacon Only	\$190,165 169,780 180,512 193,675 734,132	184,022 172,480 180,512 186,655 539,647	193,675 191,042 183,145 182,268 178,758 169,780 1,098,668
Wireline System Cost FAA Pays One-Half		\$131,665 111,280 122,012 135,175 500,132	124,522 113,980 122,012 201,655 437,647	135,175 206,042 124,645 123,768 193,758 184,780 968,168
ost usie se	Seac Onl	\$139,665 119,280 130,012 143,175 532,132	133,522 121,980 130,012 186,655 438,647	143,175 191,042 132,645 131,768 178,758 121,980 899,368

m Cost One-Half essing Costs ^C / us Beacon Only	\$135,278 175,180 118,930 183,145 151,611 137,910 902,054	133,522 136,155 147,158 416,835,	185,778 188,410 176,530 130,012 137,910 818,640
Annual Wireline System Cost FAA Pays One-Half Costs Data Processing Co eacon Radar Plus Beacon Only Beacon Only	\$127,278 190,180 109,930 198,145 143,611 129,910 899,054	$\begin{array}{c} 125,522 \\ 128,155 \\ \underline{139,158} \\ 392,835 \end{array}$	200,778 203,410 191,530 122,012 129,910 646,862
	\$185,778 175,180 168,430 183,145 202,112 188,410 1,103,055	184,022 186,655 197,658 568,335	185,778 188,410 176,530 180,512 188,410 733,862
FAA Pays All Radar Plus B	\$200,778 $190,180$ $183,430$ $198,145$ $217,111$ $203,410$ $1,193,054$	$\begin{array}{c} 199,022\\ 201,655\\ \underline{212,658}\\ 613,325 \end{array}$	200,778 203,410 191,530 195,512 203,410 793,862
Straight- Line Mileage	190 80 30 160 390 220	170 200 330	190 220 90 130 220
ARTCC Radar Site	Jacksonville Charleston Valdosta Jacksonville ufortb/ uphin Island	Miami $ extbf{Patrict AFB}$ Tampa $ extbf{Cross City}$	Cleveland Dansville a^{\prime} Phillipsburg b^{\prime} Detroit Pittsburgh Lockport b^{\prime}
Radar Facility Classi- fication	AFT2 AF AFT2 Navy AFT2 AFT2	AFT2 AFT2 AFT2	FAA FAA FAA AFT2 AFT2

Straight	FAA FAA
Annual Wireline System Cost aight-FAA Pays All Costs Radar Plus Beacon Beacon Corressing Cost Beacon Corressing Cost Beacon Corressing Cost Beacon Corressing Cost Cost Cost Cost Cost Cost Cost Cost	Minneapolis DeSoto \overline{b}'
Annual Wireline System Cost FAA Pays One-Half of Radar Plus Beacon Beacon Only Beacon Only Beacon Only Beacon Beacon Only Beacon Beacon Only Beacon Only Beacon Only Beacon Only Beacon Only 197,268 \$182,268 197,268 197,268 197,268 197,268 187,532 194,635 1199,635 1199,635 1199,635 1199,635 1199,631 111,280 111,380 111,390 111,280 111,390 111,320 111,390 111,390 111,390 111,300 111,420	30 140
## Costs	196,390 196,390 586,740
System Cost FAA Pays One-Half of Data Processing Cost Radar Plus Beacon Beacon 197,268 182,26 207,798 182,26 207,798 182,26 197,268 187,53 194,635 179,63 1,189,673 1,099,68 1,189,673 1,099,68 1,189,673 1,099,68 1,189,673 1,099,68 1,189,673 1,099,68 1,180 119,28 1,196,290 1191,92 206,920 1191,92 206,920 1181,39 206,920 1181,39 204,288 189,28 196,390 181,39 201,655 1,230,43	181,390 $541,740$
Half of lost Cost Beacon Only 182,26 182,26 187,53 179,63 175,18 181,39	$\frac{196,390}{513,240}$
_	181,390 491,240

n Cost One-Half of cessing Costsc/lus Beacon	\$196,172 184,900 184,900 173,830 181,390 189,288 181,390 186,655 200,628 113,625 113,625	184,900 198,400 186,655 185,778 755,733	169,780 198,400 185,778 185,778 189,288 184,022 1,113,046
Wireline System Cost FAA Pays One-H Data Processin Radar Plus Beacon	\$211,172 199,900 199,900 188,830 196,390 204,288 196,390 201,655 215,628 121,175 1,935,328	$\begin{array}{c} 199,900 \\ 213,400 \\ 201,655 \\ \underline{200,778} \\ 815,733 \end{array}$	184,780 213,400 200,778 200,778 204,288 199,022 1,203,046
Annual All Costs Beacon Only	\$196,172 184,900 184,900 173,830 181,390 189,288 181,390 186,655 200,628 113,675 1,792,828	184,500 198,400 186,655 185,778 755,733	169,780 198,400 185,778 184,778 189,288 184,022 1,113,046
FAA Pays / Radar Plus Beacon	\$211,172 199,900 199,900 188,830 196,290 204,288 196,390 201,655 215,628 1,935,328	199,900 213,400 201,655 200,778 815,733	184,780 213,400 200,778 200,778 204,288 199,022 1,203,046
Straight- Line <u>Mileage</u>	310 180 180 70 140 230 200 370	180 340 200 190	40 340 190 190 230 170
ARTCC Radar Site	Fort Worth Odessa Oklahoma City Texarkana Perrin AFBb/ Palestineb/ Elk Cityb/ Seymourb/ Sweetwaterb/ Sweetwaterb/ Strangb/	Houston Crowley <u>b</u> / New Orleans Alexandria San Antonio	Denver Denver Gallup Grand Junction Trinidad North Platte
Radar Facility Classi- fication	FAA AF AF FAA FAA AF FAA FAA	FAA FAA AF	AF AF AF AF

l ` oi.			
Half of ng Costs Beacon Only	\$181,390 194,552 187,532 189,288 196,172 138,788 144,930 1,232,652	191,920 197,658 182,268 198,400 192,798 108,410 1,071,454	135,278 120,630 102,268 120,630 131,768 119,885 730,459
Wireline System Cos FAA Pays One- Data Processi Radar Plus Beacon	\$196,390 209,552 202,532 204,288 211,172 130,788 136,930 1,291,652	206,920 $212,658$ $197,268$ $213,400$ $207,798$ $115,910$ $1,153,954$	127,278 112,630 109,768 112,630 123,768 127,385 713,459
Annual All Costs Beacon Only	\$181,390 194,552 187,532 189,288 196,172 189,288 195,430 1,333,652	191,920 197,658 182,268 198,400 192,798 1,08,410	185,778 171,130 102,268 171,130 182,268 119,885 932,459
FAA Pays A Radar Plus Beacon	\$196,390 209,552 202,532 204,288 211,172 204,288 210,430	206,920 $212,658$ $197,268$ $213,400$ $207,798$ $115,910$ $1,153,954$	200,778 186,130 109,768 186,130 197,268 127,385 1,007,459
Straight- Line Mileage	140 290 210 230 310 300	260 330 150 340 270 220	190 50 150 50 150 360
ARTCC Radar Site	Albuquerque Mesa Rica Amarillo Silver City El Paso Phoenix Winslowb/ Tucsonb/	Salt Lake City Battle Mountain Boise Rock Springs Lovell Ashton Cedar City	Los Angeles Las Vegas Boron Paso Robles Los Angeles El Centro Cedar City
Radar Facility Classi- <u>fication</u>	FAA AF AF FAA FAZ AFT2	AF AF AF AF	AFT2 AFT2 FAA AFT2 AFT2

_			
System Cost Pays One-Half of a Processing CostsCotar Plus Beacon Beacon	\$103,145 $124,680$ $134,400$ $189,288$ $192,797$ $189,288$ $933,598$	184,900 149,385 139,665 191,920 117,930 783,800	12,619,183 18,358,259
Annual Wireline System Cost FAA Pays One-Half of Costs Data Processing Costscherch Beacon Radar Plus Beacon Only Beacon	\$110,645 $116,680$ $126,400$ $204,288$ $204,288$ $204,288$ $970,098$	199,900 141,385 131,615 206,920 109,930 789,750	13,137,935 18,988,223
	\$103,145 $175,180$ $184,900$ $189,288$ $192,797$ $189,288$ $1,034,598$	184,950 199,884 190,165 191,920 168,430 935,350	14,130,536 20,087,832
FAA Rada Be	\$110,645 $190,180$ $199,900$ $204,288$ $207,797$ $204,288$ $1,117,098$	199,900 214,885 205,165 206,920 183,430 1,010,310	15,270,485 21,680,281
Straight- Line <u>Mileage</u>	160 80 180 230 270 230	180 360 240 260 30	II II
ARTCC Radar Site	Oakland Paso Robles Sacramento Red Bluff Fallon Tonopah Fortunab/	Seattle Salem Klamath Falls Spokane Condon Seattle	Grand Total - Case Case
Radar Facility Classi- fication	FAA AFT2 AFT2 FAA AF FAA	FAA AFT2 AFT2 FAA AFT2	

See Note to Table VIII.

 $[\]underline{a}/$ Appear only in Case I. (Presently Programmed network).

 $[\]underline{b}/$ Appear only in Case II. (Hypothetical network to provide coverage to 5000' MSL or 3000' above terrain whichever is higher).

c/ At joint use sites.

THE LEAST COST SYSTEMS

In the preceding sections the discussion has centered on the development of systemwide costs according to either a microwave or wireline transmission method. While it is apparent that the all-wireline system is less costly than the all-microwave system, there is no assurance that the all-wireline system is the least costly system. The probability that a combined wireline/microwave system would provide a "least" cost system is indicated by the fact that for many individual links the microwave technique is the lesser cost alternative. Thus, the possibility of a lower total center complex cost through a combination of the two techniques exists.

DISCUSSION OF METHODOLOGY

If wireline is the lower cost option on two of four links associated with an ARTCC, the assignment of these two links to wireline requires that the cost assigned to the remaining microwave links be raised to cover their geater remaining share of the spare data processor (the one part of the ARTCC remoting facilities common to all links). In doing this the total cost of the complex may rise in spite of the fact that the wireline costs were lower in two individual cases. The objective of this exercise was to produce the lowest transmission cost for each ARTCC remoting complex. Therefore, it is conceivable that the retention of microwave on a given link within a center complex may result in a lower total center configuration cost in spite of the fact that on an individual link basis wireline may be the lower cost option. The general rule for this investigation was to determine whether the conversion of a link (or links) to wireline transmission resulted in a saving at least as great as the resultant loss due to the greater cost assignable to the remaining wireline links. A general algebraic expression of this rule is as follows:

Total Savings on
Links Converted Must be The Number of
to Wireline Greater Than Remaining Links Times

\[\begin{align*} \begi

The difference between

The new data processing the all-microwave data cost per link and processing cost per link

$$\frac{(N_{M} + S) (Cdp) - (n_{T} + S-1) (Cdp) - (N_{M} + S) (Cdp)}{N_{M} - n_{T}}$$

where:

M = all microwave link cost

T = wireline link cost $N_M = total number of links$

 $n_m = \text{proposed number of wireline links}$

Cdp = cost per link of data processing under all-

microwave option

S = number of spare data processors required under all-microwave configuration

This general expression is predicated on the operating premise that the only variation in the cost of the remaining links is attributable to the assignment of a greater share of the data processing costs.

Table XVII presents the result of this "least cost" system determination. In order to properly interpret the results indicated in this table, it must be kept in mind that the figures presented are merely the results of operating on previously evolved basic unit costs. Therefore, the results of these operations are no more accurate than the original estimates. It is virtually impossible to assess the extent of the error of estimate involved. However, while every effort has been made to provide as accurate estimates as was possible within the scope of this analysis, cost comparisons which are within five to seven percent of one another cannot be considered definitive.

TABLE XVII
TOTAL LINK COSTS APPLICABLE TO THE LEAST COST SYSTEMS

		Presently Programmed System	System		Hypothetical System	em
	Trans-		f	Trans-	f	f
ARTCC Radar Site	mission Methodc/	Kaw Kadar Plus Beacon	beacon Only	Methodc/	Kaw Kadar Plus Beacon	Seacon Only
Roston						
Bucks Harbor	T	\$205,165	\$190,165	T	\$205,165	\$190,165
Boston	E	166,000	150,000	Σ	148,405	134,072
Saratoga Springs	Σ	195,500	179,500	× ×	182,931	168,598
watertown <u>b</u> /	ı	566 665	519 665	E	743,103	721 665
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	700,040		100,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
New York ,						
Bostonª/	Σ	200,000	185,667	ı	1	•
Montauk	Σ	159,500	145,167	H	187,480	172,480
Palermo L	Æ	211,000	196,667	₽Ι	195,512	180,512
PottersvilleD/	1	1	•	Ħ	201,655	186,655
		570,500	527,501		584,647	539,647
Washington						
Cherry Pointb/	•		ı	H	208,675	193,675
Benson	Σ	242,000	228,500	₽	206,042	191,042
Cape Charles	Σ	201,000	187,500	×	201,000	187,500
Roanoke,	Σ	181,500	168,000	×	182,000	168,500
Kesse <u>1b</u> /		•	•	¥	156,242	142,742
Washington	X	112,500	99,000	Σ	112,500	99,000
)		737,000	683,000		1,066,459	982,459

	Present	1y Programmed	System		Hypothetical System	m.
	Trans-		l .	Trans-		
ARTCC Radar Site	mission Rav MethodC/ Plus	Raw Radar Plus Beacon	Beacon Only	mission Methodc/	Raw Radar Plus Beacon	Beacon Only
	>	L.	21 16	E	5	ď
Charles con Valdosta	E X	147,000	132,66	- ∑	147	132,
Jacksonville	×	126,000	$\frac{11}{11},6$	X	26	, -
Beaufort	1			Σ	26	S,
Dauphin Island	H	217,111	202,112	E+ E	217,111	202,112
Thurst Arby	4	929,021	ilo`	4	91	
Miami						
Patrick AFB	Ţ	199,022	184,022	Η		,02
Tampa Citrib/	H	•	86,65	₽₽	201,655	186,655
oross croz	ı	400,677	370,677	4	$\frac{212}{613}, \frac{23}{335}$	
Cleveland						
Dansvillea/	H	200,778	185,778	ι;		1 1
Phillipsburg ² /	• 6	·		Σ;	•	186,995
Detroit Dittshurgh	; (191,530	180,530	€ Σ	170,500	157,000
I colonitati	4 1	j	•	; ≽	•	208,120
FOCUPOI (E)		587,820	542,820	:	-	694,165
Tadionomolic						
New Harmony $\frac{b}{a}$	•	•	1	×	170,042	ø,
Lynch	H	207,798	192,798	H	207,798	`~`
London 1,	Ħ	7,2	82,26	ΣI	169,500	رص
HuntingtonD/	•	•	•	; ⊢;	202,532	<u>`</u> ,
Lexingtonb/	1	•	1	Σ;	180,497	o c
Rockville <u>b</u> /	•	770 307	276 066	Σ	115,552	102,052
		400,000	010,000		,	ĵ

al System	Raw Radar Beacon	\$139,500 167,500 206,920 173,681 173,681 193,624 193,624 180,124 193,624 186,655 1,287,168 1,188,168	$\begin{array}{ccc} 6,920 & 191,920 \\ 1,000 & 135,000 \\ 3,920 & 187,920 \\ \hline 1,840 & 514,840 \end{array}$	3,500 100,000 4,885 199,885 3,400 170,000 4,500 141,000 7,268 182,286 5,549 195,430
Hypothetical	mission Raw Methodc/ Plus	M \$136 M 17 206 T 17 17 206 T 199	T 206 M 151 M 203	M 113 M 214 M 183 M 154 T 197 T 197
System	Beacon Only	\$161,000 $177,390$ $191,920$ $ 189,288$ $ 719,598$	$191,920 \\ 168,430 \\ \hline 360,350$	100,000 199,885 170,000 141,000 173,500
1y Programmed	Trans- mission Raw Radar Beaco <u>Methodc</u> / <u>Plus Beacon</u> <u>Only</u>	\$177,000 $193,390$ $206,920$ $ 204,288$ $ -$	$206,920$ $183,430$ $\overline{390,350}$	113,500 214,885 183,400 154,500 187,000
Present	Trans- mission <u>Methodc</u> /	ZZHIHII	HHI	ヹゖヹヹヹ ゚゚゚゚゚゙゙゙゙゙゙゚゚ヹ゚゚゚゚゚゚゚゚゙゚゚゚゚゚゚゚゚゚゚゚
	ARTCC Radar Site	Atlanta Atlanta Montgomery Lynch McCormick $\underline{b}/$ Charlotte Birmingham $\underline{b}/$ Crossville $\underline{b}/$	Minneapolis Houghton Minneapolis DeSoto <u>b</u> /	Chicago Chicago Traverse City LaGrange Horicon West Branch Hanna City $\overline{b}/$ Afton, Ia. $\overline{b}/$

ns- sion Raw Radar hodc/ Plus Beacon
\$204,288 199,900 214,142 199,022
817,352
203,410 199,900 -
$\frac{1}{403,310}$
211,172
99
1
ı 1
$\frac{1}{610,972}$

Hypothetical System	Raw Radar Beacon Plus Beacon Only	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184,780 169,780 213,400 198,400 200,778 185,778 200,778 185,778 204,288 189,288 199,022 184,022 1,203,046 1,113,046	196,390 181,390 209,552 194,552 202,532 187,532 204,288 189,288 211,172 196,172 204,288 189,288 210,430 195,430
	Trans- mission Method <u>c</u> /	H H H H	H H H H H	H H H H H H
System	Beacon Only	198.400 186,655 187,778 570,833	169,780 198,400 185,778 185,778 189,288 184,022 1,113,046	181,390 194,552 187,532 189,288 196,172
tly Programmed	Raw Radar Plus Beacon	213,400 201,655 200,778 615,833	184,780 213,400 200,778 200,778 204,288 199,022 1,203,406	196,390 209,552 202,532 204,288 211,172
Presently	Trans- mission Method <u>c</u> /	1 H H H	H H H H H H	HHHHH 1 1
	ARTCC Radar Site	Houston Crowley <u>b</u> / New Orleans Alexandria San Antonio	Denver Denver Gallup Grand Junction Trinidad North Platte Wheatland	Albuquerque Mesa Rica Amarillo Silver City El Paso Phoenix Winslowb/ Tucsonb/

еш	Beacen Only	\$191,920 197,658 182,268 198,400 192,798 108,410	185,778 165,000 102,268 150,000 182,268 119,885	$103,145 \\ 175,180 \\ 184,900 \\ 189,288 \\ 192,797 \\ 189,288 \\ 192,797 \\ 189,288 \\ 1,034,598 \\ 1,034,598$
Hypothetical System	D 6	\$ 206,920 212,658 197,268 213,400 207,798 115,910 1,153,954	200,778 181,000 109,768 166,000 197,268 127,385 982,199	$\begin{array}{c} 110,645 \\ 190,180 \\ 199,900 \\ 204,288 \\ 207,797 \\ 204,288 \\ 1,\overline{117,098} \\ \end{array}$
	Trans- mission Methodc/	H H H H H H	H X H X H	H H H H H H
Svstem	Beacon Only	\$191,920 197,658 182,268 198,400 192,798 108,410 1,071,454	185,778 165,000 102,268 150,000 182,268 119,885 905,199	103,145 175,180 184,900 189,288 192,797 845,310
lv Programmed	. ∝⊣	\$206,920 212,658 197,268 213,400 207,798 115,910 1,153,954	200,778 181,000 109,768 166,000 197,268 127,385 982,199	$ 110,645 \\ 190,180 \\ 199,900 \\ 204,288 \\ 207,797 \\ \hline 912,810 $
Presently	Trans- mission Method <u>c</u> /	H H H H H H	нхнхнн	H H H H H H
	ARTCC Radar Site	Salt Lake City Battle Mountain Boise Rock Springs Lovell Ashton Cedar City	Los Angeles Las Vegas Boron Paso Robles Los Angeles El Centro Cedar City	Oakland Paso Robles Sacramento Red Bluff Fallon Tonopah Fortunab/

	Present	Presently Programmed System	System	Hyp	Hypothethical System	ystem
· · · · · · · · · · · · · · · · · · ·	Trans- mission	Raw Radar	Beacon	Trans- mission/ Wothodc/	Raw Radar	Beacon
ARTCC Radar Site	Methods/	rius beacon	OIITÀ	Liection-	Tras peacor	
Seattle Salem	Ľ	\$199.900	\$184,950	H	\$199,900	\$184,950
Klamath Falls	· [-	214,885	199,885	T	214,885	199,885
Snokane	· [205,165	190,165	Ħ	205,165	190,165
Condon	ı E	206,920	191,920	Н	206,920	191,920
Soattle	· [183,430	168,430	H	183,430	168,430
	I	1,010,300	935,350		1,010,300	935,350
Grand Total		14,955,792	13,824,845		20,682,808	19,110,885

See Note Table VIII.

 $\underline{a}/$ Appear only in Case I. (Presently programmed network).

 $\underline{b}/$ Appear only in Case II. (Hypothetical network to provide coverate to 5000' MSL or 3000' above terrain whichever is higher.)

c/ Key: T = Wireline link
M = Microwave link

BIBLIOGRAPHY

- 1. Techniques and Costs of Radar Remoting, Final Report.
 Prepared for Traffic and Economic Analysis Area.
 System Management Division, Systems Research and
 Development Service, Federal Aviation Agency (Contract
 No. ARDS-549).
- 2 <u>Sage Equipment Adaptability to the Beacon Acquisition</u> Program; Burroughs Corporation.
- 3. Costs of Public Communication Services: Project 416.0.4; The MITRE Corporation, Bedford, Mass.
- 4. Radar Air Traffic Control. FAA Office of Personnel and Training.
- 5. Federal Aviation Agency Specification Radar Microwave Link System; FAA-R-1119c; December 15, 1959.

In addition to the above, references are made by means of notes to the text concerning other important sources of information.

APPENDIX A
Page 1 of 7

ARTCC Radar Site Boston Boston Saratoga Springs Watertownb/ Montauk Palermo Pottersvilleb/ Washington	Straight- Line Mileage 240 40 130 280 170 60 130 200	Straight- Classification Line Mileage	No. & Classi fication of Repeater Sites 4 UBT, 1 ET, 2 1 RB, 1 UBT, 2 UBT, 2 EBT, 1 UO, 3 EBT, 1 UO, 3 EBT, 2 UBT, 1 UT, 3 4 EBT 2 UBT, 1 UT, 3 4 EBT 1 UBT, 2 UDT, 1 UT, 3 1 RBT	Total No. of Repeaters 9 4 4 7 7
y Point $^{\underline{b}}/$	280	1 ET	3 EBT, 5	10
Benson	250	1 RT	1 UBT, 8 EBT, 1 EB	01 C
Cape Charles	160	1 EBT	1 UT, 2 EBT, 3 EO,	
Roanoke	150	1 ET	6 EBT	age 1 o
Kessel <u>b</u> /	110	1 RT	2 EBT, 1 RBT	
Washington	40	1 UT	1 ET	

Total No. of Repeaters	8 3 1 16	10	7 9 12	0 ∞ 4 ≀ 0 €	10 5 1
No. & Classi- fication of Repeater Sites	1 UBT, 4 EBT, 3 RBT 3 EBT 1 UBT 1 UO, 2 EO, 2 RO 2 EBT, 4 ET, 5 EO 5 RBT	6 EBT, 1 EB, 3 EO	1 UBT, 6 EBT 1 UBT, 1 UO, 2 EBT, 1 ET, 4 EO 1 HT, 5 EBT, 5 ET.	KBT T, 6 EBT, 1 1, 3 EBT, 3 T, 3 EBT	EBT, UO, 5 UBT, EBT, EBT,
Classification of Terminal Pair	1 ET 1 UBT 1 UT 1 RT 1 RBT	1 ET	1 ET 1 UBT 1 ET	нн	NT RB UST UT
Straight- Line Mileage	190 80 30 160 390	220	170 200 330	190 220 90 130	220 150 270 150 210 120 80
ARICC Radar Site	Jacksonville Charleston Valdosta Jacksonville Beaufort <u>b</u> / Dauphin Island	Tyndall AFB	Miami Patrick AFB Tampa	Cleveland Dansvillea/Philipsburg \overline{b}/D Detroit Pittsburgh	$\begin{array}{c} \text{Lockport}\underline{b}/\\ \text{Indianapolis}\\ \text{New Harmony}\underline{b}/\\ \text{Lynch}\\ \text{London}\\ \text{Huntington}\underline{b}/\\ \text{Lexington}\underline{b}/\\ \text{Rockville}\underline{b}/\\ \text{Rockville}\underline{b}/\\ \end{array}$

Total No. of <u>Repeaters</u>	3 13	ഗയ ശ	6	1 4	1 12	9	49	Page 3
No. & Classi- fication of Repeater Sites	EBT, 1 EB EBT UO, 5 EBT, 6 EO	I KBI ET EBT EBT, 3 EO EBT, 3 EO, 2 RBT	UBT, 3 EBT, 1 EB,	٦ ,	UBT UO, 5 EBT, 2 EB,	1 UT, 3 E	1 ED UBT, 3 EBT UBT, 1 UO, 3 EBT,	1 EB UT, 3 EBT UB, 1 UO, 5 EBT, 5 EO
Classification of Terminal Pair	1 ET 2 1 EBT 5 1 RT 1	1 ET 5 1 UBT 8 1 UT 3 1 RT 4	1 RT 1	1 UT 1 1 ET 4	1 UT 1 1 RT 2	1 ET 1	1 ET 1 1 RT 1	1 ET 1 1 ET 1
Straight- Line <u>Mileage</u>	40 140 260	130 230 140 200	260	30 140	30 360	150	110 150	110 300
ARTCC Radar Site	Atlanta Atlanta Montgomery Lynch	$\begin{array}{l} {\tt McCormick} \underline{b}/\\ {\tt Charlotte}\\ {\tt Birmingham}\\ {\tt Crossville} \underline{b}/ \end{array}$	Minneapolis Houghton	Minneapolis De Soto <u>b</u> /	Chicago Chicago Traverse City	LaGrange	Horicon West Branch	Hanna City $\overline{b}/$ Afton, Ia. $\overline{b}/$

Strang<u>b</u>,

Memphis

0maha

Fort Worth

Odessa

Elk City<u>b</u>

Seymour p/

Strangb/

APPENDIX A Page 5 of 7

l of ters					- 48	<i>y</i>
Total No. of <u>Repeaters</u>	113 9 8 6	Ä	6/6/	10	12 10 20	17
No. & Classi- fication of Repeater Sites	1 UBT, 8 EBT, 4 RBT 1 UO, 2 EBT, 4 EO, 2 RO 8 EBT 1 UT, 3 ET, 2 RT	, 1 ET, 3 EO, 9 RB , 1 RO, 1 DBT, 1 D	1 EBT, 1 RBT, 6 DBT, 1 DT 3 EBT, 1 ET, 2 RBT, 1 RB 1 UT, 8 EBT 1 EBT, 1 EB, 1 ET, 3 RBT, 1 RB	4 RBT 3 EBT, 1 ET, 1 EO, 1 RBT, 4 RO.	12 RBT 1	F ~
Classification of <u>Terminal Pair</u>	1 UT 1 UT 1 UT 1 ET	1 UT 1 RB	1 RB 1 ET 1 ET 1 RT	1 RT 1 EO	1 DT 1 UT 1 RT	1 RT 1 ET
Straight- Line Mileage	340 200 190 180	40 340	190 190 230 170	140 290	210 230 310	230 300
ARTCC Radar Site	Houston New Orleans Alexandria San Antonio Crowley <u>b</u> /	Denver Denver Gallup	Grand Junction Trinidad North Platte Wheatland	Albuquerque Mesa Rica Amarillo	Silver City El Paso Phoenix	$ t Winslow^{\underline{b}/}$ $ t Tucson \underline{b}/$

ARTCC Radar Site	Straight- Line Mileage	Classification of Terminal Pair	No. & Classi- fication of Repeater Sites	Total No. of Repeaters	APPEN Page
Salt Lake City Rattle Mountain	260	1 DT	1 UB, 1 EBT, 3 EB,	13	
Boise Rock Springs Lovell	320 150 340		RBT, 2 RB 1 EO, 10 RBT, 1 T, 2 RB, 2 DBT T, 2 RT, 2 RO, 5	13 6 12	7
Ashton Cedar City	270 220		ET, 4 RBT, 3 RO, EBT, 7 RBT, 1 RB,	10	
Los Angeles Las Vegas Boron	190		1 UBT, 3 RBT, 4 DBT 1 EBT, 1 DT 1 HRT, 4 EBT, 1 RBT	87.9	
Faso wobles Los Angeles El Centro	150 150 360	1 UT 1 DT	1 UO, 4 RB 6 RBT, 2 R	2 8 17	
Octan orcy			, 1 ÓT,		
Variand Paso Robles Sacramento	160 80		EBT UBT, 1 EBT	94	
Red Bluff Fallon	180 230	1 RT 1 DT	1 UT, 2 UO, 3 EBT, 1 RBT 3 UO, 1 EO, 4 RBT, 1 RB,	11	
Tonopah	270	1 DT	3 UT, 1 ET, 5 RBT, 5 RO,	15	
Fortuna $^{\underline{\mathbf{b}}}/$	230	1 ET	2 UT, 1 UO, 2 EBT, 3 EO, 1 RBT, 1 RO	10	

rol				1450 /
Total No. of <u>Repeaters</u>	8 16	7 8 0	, 5000 '	or tower iilding ower
No. & Classi- fication of Repeater Sites	UBT, UT, 4 ET	6 KBI, Z KB 3 RBI, 1 RB, 4 RO 1 UBI, 1 UO	(Presently programmed network). (Hypothethical network to provide coverage to 5000' in whichever is higher).	<pre>moditional building or tower required. = Initial or additional building construction required. = Initial or additional tower required. = Initial or additional building and tower required.</pre>
Straight- Classification Line of Mileage Terminal Pair	1 RBT 1 DT	1 DT 1 DBT 1 UT	(Presently programmed network). (Hypothethical network to provin whichever is higher).	no 0 ainte- B n area. diffi- T ruction BT egree.
Straight- Line <u>Mileage</u>	180	240 260 30	1 2	construction or mainte- ems. we but in an urban area acterized by some diffi cess and/or constructio itenance. nly from "R" in degree.
ARTCC Radar Site	Seattle Salem Klamath Falls	Spokane Condon Seattle	P - Passive a/ Appear only in Case I. b/ Appear in Case II only. MSL or 3000' above terra Key:	 E = Readily accessible site with no particular construction or maintenance problems. U = Same as above but in an urban area. R = A site characterized by some difficulty in access and/or construction and/or maintenance. D = Differs mainly from "R" in degree.

FAA REPORTED MICROWAVE LINK ESTABLISHMENT COSTS (REPEATERS ONLY)

FAS NEIONIED II.	TOWNER PINE		MICKONDAR LINK EDINGELINE COSTO (MILESTER COSTO)		
	Civil	Electrical		•	Total
ARTCC Radar Site	Engineering	Engineering	Construction	Installation	Cost
Lewiston (Benton)	\$15,758	\$20,000	\$120,000	•	\$155,758
Montauk Point	14,432	15,000	119,000	ı	148,432
Benson	22,814	10,500	165,000	•	198,314
Cape Charles	22,000	20,000	171,600	•	213,600
Roanoke	17,231	29,399	121,016	ı	167,646
Charleston	15,497	4,170	236,433	\$5,000	261,100
Valdosta	7.450	9.034	78,183	434	95,101
Jacksonville	722	856	36,000	2,900	40,478
Patrick	3,745	1	37,232	1,041	42,018
Pittsburgh	6,051	16,500	97,500	ŧ	120,051
Lynch (Indianapolis)	7,500	20,500	141,600	•	169,600
Lynch (Atlanta)	16,200	1	179,794	4,500	200,404
Dauphin Island	11,400	4,500	128,850	1	144,750
Charlotte	11,578	6,198	209,021,	•	226,797
Chicago	625	270	$15,625^{D/}$	•	16,520
LaGrange	8,725	1,846	138,015b/	•	148,586
Horicon	1,951	3,150	104,000a/	•	117,101
Iowa City	10,941	1,650	117,943a	ı	130,534

a/ Includes } of Maple Park Dual.

 \underline{b} / Includes $\frac{1}{2}$ of Downers Grove.

SOURCE: Quarterly Report, Facility Established Costs.

(No trunked paths included) b/

Radar	Number of LMWR	Total Cost	Average \$/MWR
Spokane-Seattle Paso Robles-Oakland Las Vegas-Los Angeles Cedar City-Salt Lake City Silver City-Albuquerque	8 6 8 10 12	\$502,206 282,051 669,867 414,188 383,075	\$62,775 47,008 83,733 41,419 31,923
Lusk-Denver North Platte-Denver Grand Junction-Denver Houston-San Antonio	7 9 9 8 7	242,945 268,469 656,755 249,660	34,706 29,829 72,972 31,207
Texarkana-Fort Worth Oklahoma City-Fort Worth Odessa-Fort Worth Nashville-Memphis Pittsburgh-Cleveland	6 11 7	201,745 148,738 310,500 202,628 120,051	28,820 24,790 28,227 28,947 24,010
Charleston-Jacksonville Valdosta-Jacksonville Roanoke-Washington Benson-Washington Montauk-New York	5 8 3 10 10 3	261,100 95,101 167,646 198,314 148,432	32,637 31,700 16,765 19,831 49,477
Lewiston-New York Lynch-Indianapolis Jackson-Memphis	6 10 8	155,758 169,600 145,750	25,960 16,960 18,219

SOURCE: Quarterly Report, Facility Establishment Costs.

<u>a</u>/ Includes civil and electronic engineering construction and installation costs.

 $[\]underline{b}$ / In some cases one repeater of the link may be dual or triple.

APPENDIX B (3)

FAA REPORTED MICROWAVE TERMINAL PAIR ESTABLISHMENT COSTS (Excludes Cost of Electronic Equipment)

ARTCC Radar Site	Civil Engineering	Electronic Engineering	Construction	Installation	Total
Lewiston (Benton) Montauk Point	\$ 692	\$1,500	\$ 5,658	\$ 2,000	\$ 9,850 31,421
Benson Cape Charles	5,333 3,000	2,031 6,000	30,000	100°1	39,000
Roanoke Charleston	, 680 1,177	1,699 679	1,725 $10,515$	$\frac{2,000}{1,035}$	6,104 13,406
Valdosta Jacksonville	2,742	579 3,691	33,715 13,900	126	37,036 20,865 18,945
Patrick Pittsburgh	645 18,000	3,000	25,000	000	46,000
Lynch (Atlanta) Dauphin Island Charlotte	5,800 3,348 1,100	5,000	19,450 30,060 28,570	10,550	38,408 40,670

Quarterly Report, Facility Establishment Costs. SOURCE:

FAA REGIONAL MAINTENANCE ESTIMATESa/ (For Microwave Repeaters and Terminals)

•	•		
	Total	No. of	
Repeaters	<u>Cost</u>	<u>Sites</u>	Not Included
Kenansville, Fla.	\$11,676	1	2, 5, 10, 12, 13
Indianterm Fla	11,728	ī	Same
Indiantown, Fla.		i	Same
Davis, Fla.	11,125		
Ft. Drum, Fla.	11,928	1	Same
Del Ray Beach, Fla.	11,434	1	Same
McDill AFB to Patrick			
AFB-Miami Link	51,011	4	Same
West Palm Beach, Fla.	12,025	1	Same
Palermo, N.J.	12,034	1	Same
Atlantic City, N.J.	9,958 10,753	1	2, 5, 10, 12, 13, 7 2, 5, 10, 12, 13
Warren Grove, N.J.	10.753	1	2. 5. 10. 12. 13
Imlaystown, N.J.	11,858	$\overline{1}$	Same
South River, N.J.	11,968	ī	Same
St Francis N V	12,879	î	Same
St. Francis, N.Y.	17 649	ī	Same
Ashley Hall, S.C.	17,649	i	
Jacksonboro, S.C.	18,368		Same
Yenasee, S.C.	18,845	1	Same
Hardyville, S.C.	17,944	1	Same
Burroughs, Ga.	17,686	1	Same
South Newport, Ga.	18,433	1	Same
Thallman, Ga.	18,066	1	Same
Seals, Ga.	18,121	1	Same
Garden City-Kansas City	11,794	1	Same
Condon-Seattle	151,220	10	Same
Fallon-Oakland	182,416	12	Same
Cedar City-Los Angeles	285,013	19	Same
	,		
<u>Terminals</u>			
McDill AFB (Tampa)-		_	2, 3, 5, 7, 10,
Miami	30,546	2	12, 13
Palermo-New York	15,736	1	2, 7, 8, 5, 9,
	•		2, 7, 8, 5, 9, 12, 13
New York-New York	15,737	1	2, 8, 5, 10, 12, 13
Charleston, S.C	•		
Jacksonville	23,766	2	2, 5, 7, 8, 10, 12, 13
Garden City-Kansas City	17,505	ī	Same
Condon-Seattle	49,519	$\bar{2}$	Same
Fallon-Oakland	49,519	2 2	Sameb/
	49,519	2	Same
Cedar City-Los Angeles	マファノエフ	~	Jame

APPENDIX C Page 2 of 2

- a/ No equipment spares included.
- b/ Includes \$4,000 in trucks and snow vehicles.

Note: Cost Categories

- 1. Personal Services
- 2. Caretaker/Station Laborers
- 3. Overtime
- 4. Travel
- 5. AF-200 Stocks and Stores
- 6. Transportation of things
 7. Rents, Communications Utilities
 8. Other Contractor Devices
- 9. Facility Supply Items 10. Flight Check

- Additional Support Cost
 Special Maintenance Property
 Replacement Test and Working Equipment