

Splicing, Testing, & Labeling

TAC Team Approval

Tac Team	Approved
Brett Judnick	mm-ddd-yyyy
Ryan Zakany	mm-ddd-yyyy
Harrison Golson	mm-ddd-yyyy
Michael Koch	mm-ddd-yyyy
Travis Mitchell	mm-ddd-yyyy
Michael Correia	mm-ddd-yyyy
Mike Byrum	mm-ddd-yyyy
JP Fensham	mm-ddd-yyyy
Jonathan Lawton	mm-ddd-yyyy

Director Approval

State	Director	Approved
National	Brett Judnick	mm-ddd-yyyy
National	Ryan Zakany	mm-ddd-yyyy
Illinois	James Marker	04-09-2025
Massachusetts	Todd Fargnoli	mm-ddd-yyyy
Michigan	Brandon Miuccio	mm-ddd-yyyy
North Carolina	Tim Dreher	mm-ddd-yyyy
	James Marker	04-09-2025
South Carolina	James Marker	04-09-2025
South Carolina	Todd Fargnoli	mm-ddd-yyyy
New Mexico	Thomas Bobian	mm-ddd-yyyy

Splicing & Testing Agenda:

- SP-01 Introduction
- **SP-02 Acceptance Parameters**
- SP-03 Fiber Management Inside Enclosure
 - A. Closure Entry
 - B. Slack Basket
 - C. Fiber Management [Basket]
 - D. Fiber Management [Tray]
- SP-04 Feeder, Distribution, and Drop Fiber Testing Scenarios
 - A. M4A 350 Pedestal & Slack Structure
 - B. M4A 350 Pedestal [Splitter Placement]
 - C. M4A 350 Pedestal [Conduit Labeling]
 - D. M4 Splitter Diagram / Fiber Management
 - E. M4 Splitter [Cable Entry]
 - F. M4 Splitter [Splice Tray]
 - G. M4 Splitter Closure [Vault]
 - H. Cabinet [Legacy Deployment]
 - I. In Structure Splice Dome [Legacy Deployment]
 - J. Vault Lid Security [Legacy Deployment]
 - K. Splice Dome Fiber Management [Legacy Deployment]
 - L. Splice Dome [Legacy Deployment]

- SP-05 Feeder, Distribution, and Drop Fiber Testing [Testing Scenarios]
 - A. Fiber Testing
 - B. Feeder Fiber Testing
 - C. Distribution Fiber Testing
 - D. Drop Fiber Testing
 - E. Optical Light Level Budget
 - F. Connector Types
- SP-06 Feeder, Distribution, and Drop Fiber Testing [Testing Considerations]
 - A. Testing Considerations
 - **B.** Distribution Fiber Testing Considerations
 - C. Access Fiber Testing Considerations
 - **D.** Drop Fiber Testing Considerations

Labeling Agenda:

LB-01 - Introduction

- A. Introduction
- B. Network Overview
- C. Fiber Cable Naming Scheme
- D. Fiber Structure & Enclosure Naming Scheme

LB-02 - Field Labeling Objectives

LB-03 - Components Requiring Field Labels

- A. Fiber Cable
- B. Fiber Enclosure
- C. NID Labeling

LB-04 - Cabinet Types & Locations

A. POP

LB-05 - Splice Point Locations & Enclosures

- A. FDH Splice Tray Label [Labeling Example]
- B. M4 Internal Labeling
- C. M4 Tray External Labeling [Labeling Example]

LB-06 - Fiber Cabling Labels

- A. Cable Tag [Example]
- B. Cable Tag Attached to a Core Cable Input Side [Example]
- C. Cable Tag Attached to a Core Cable Output Side [Example]
- D. Splice Dome Labeling [Example]
- E. Fiber Cable Labeling [Pedestal Example]

Introduction Section SP-01

SP-01 - Splicing & Testing Standards

Introduction

Various fiber testing methods should be used to determine the splicing quality, cable management, and the condition of the fiber itself. This guide covers the various testing methods, when these testing methods should be deployed, and the acceptance criteria in accordance with **Ripple Fibers Splicing and Testing Standards**. Additionally this guide will cover the **Splicing and Testing Deliverables** required for the close out process.

Acceptance Parameters Section SP-02

SP-02 – Acceptance Parameters

SP-02 - Fiber Optic Splicing & Testing Acceptance Parameters

Acceptance parameters ensure Ripple Fiber's adherence to industry standards for fiber optic splicing and testing. These parameters establish quality criteria for maximum cable lengths, engineered loss thresholds, and performance reliability for XGS-PON networks.

Splicing & Installation Acceptance Criteria

- **Closure Assembly**
 - All closures must be properly sealed to prevent environmental ingress.
 - Correct grommets and sealing kits must be used.
 - No excessive slack inside the closure.
- **Cable Management**
 - Cables must be properly secured and dressed inside closures, splice trays, and panels.
 - No microbends, macrobends, or excessive coiling.
 - Proper slack storage with defined bend radius requirements.
- **Fiber Management**
 - No buffer tube violations; ensure proper stripping and routing.
 - Fibers neatly routed with sufficient slack in trays.
 - All fusion splices properly protected with heat-shrink sleeves.
 - No broken or exposed fibers inside closures.

Labeling & Documentation

- All cables and splice trays must be labeled according to network design and standards.
- Labels must be legible, durable, and placed at designated points.
- Accurate splice matrix documentation must be maintained.

Testing & Performance Criteria

- **Optical Time-Domain Reflectometer (OTDR) Testing**
 - Bi-directional OTDR testing must be performed at 1577nm.
 - Splice loss must not exceed 0.05 dB per splice.
 - Connectorized terminations must not exceed 0.30 dB per connection.
 - Trace analysis must confirm no excessive reflectance (-55 dB or better).
- **Power Meter Testing**
 - End-to-end loss must not exceed engineered design loss budgets.
 - Measured loss should align with OTDR loss measurements.
 - Testing must be conducted at 1577nm.

By adhering to these acceptance parameters, Ripple Fiber ensures the highest quality standards for fiber network performance, longevity, and reliability.

Fiber Management - Inside Enclosure **Section SP-03**

SP-03.A - Closure Entry

SP-03.B - Slack Basket

SP-03.C - Fiber Management [Basket]

SP-03.D - Fiber Management [Tray]

SP-03.A - Closure Entry

#	Cable Strength Member Attached To Closure Brackets	Error Codes
1	Ensure all cable strength members are secured to the manufacturer provided closure mounting brackets	EC-SP-03.A.1
2	Ensure unused access ports have plugs in place to prevent water from entering the closure	EC-SP-03.A.2
3	Conduits containing blown fiber MUST have a strain relief plug installed to aid in keeping water out of the conduit	EC-SP-03.A.3

SP-03.B - Slack Basket

#	Securing the Buffer Tubes In the Basket	Error Codes
1	Ensure the buffer tubes that enter the basket are secured with Velcro	EC-SP-03.B.1
S	What not to do: Buffer & Transfer tubes are not secured in the basket with Velcro	EC-SP-03.B.1
	Note: Do not place zip-ties directly on a buffer tube or transfer tube without first applying felt	

SP-03.B - Slack Basket

#	Securing the Buffer Tubes In the Pedestal	Error Codes
2	Buffer tubes should be routed from the left to the right (input to output) in a figure 8 format	EC-SP-03.B.2
3	Wrap the buffer tube slack in felt and zip- tie to the pedestal frame	EC-SP-03.B.3
4	Ensure the cable strength member is secured to the pedestal via zip-ties	EC-SP-03.B.4
ВР	Spare trays should be stored on the outside while the feeder tray stored closest to the pedestal frame	

SP-03.C - Fiber Management [Basket]

	#	Buffer / Fiber Management In the Basket	Error Codes
•	1	Ensure there are between 2.5 or 3.5 wraps of buffer tube slack in the basket – under the splice tray(s) Note: Manufacturer specifications must be adhered	EC-SP-03.C.1
4	2	Ensure the buffer tubes are secured with felt and zip-ties Note: Tape should not be considered suitable for securing buffer tubes into the splice tray.	EC-SP-03.C.2
	3	Ensure the buffer tubes are routed neatly, without kinks or hard bends, in the basket	EC-SP-03.C.3
	S	What not to do: Ensure all buffer tubes that enter / exit the basket are secured with zip-ties	EC-SP-03.C.2
•	S	What not to do: Buffer tubes are missing felt	EC-SP-03.C.2

SP-03.D - Fiber Management [Tray]

#	Securing the Buffer Tubes In the Basket	Error Codes
1	Ensure the buffer & transition tubes have felt around them for protection from the zip-ties.	EC-SP-03.D.1
ВР	Note: Install buffer tubes in such a way that it reflects the "fiber color code"	

SP-03.D - Fiber Management [Tray]

	#	Securing the Buffer Tubes In the Basket	Error Codes
	2	Ensure 2 to 3 wraps of fiber slack are routed & stored in a manner that allows for ease of access	EC-SP-03.D.2
•	S	What not to do: Ensure all buffer tubes and / or splitter tails are secured with felt and zip-tied to the tray	EC-SP-03.D.1
	ВР	(Note: *Feeder fibers should be stored on the bottom tray in dome infrastructure and in a **Feeder fibers should be stored in the trop tray for Pedestal infrastructure) ***Arrange splice trays in such a manor that someone will not need to move past spliced fiber trays to get to the spare fibers	

Fiber Management & Enclosure Types

Section SP-04

SP-04.A - M4A 350 Pedestal & Slack Structure

SP-04.B - M4A 350 Pedestal [Splitter Placement]

SP-04.C - M4A 350 Pedestal [Conduit Labeling]

SP-04.D - M4 Splitter Diagram / Fiber Management

SP-04.E - M4 Splitter [Cable Entry]

SP-04.F - M4 Splitter [Splice Tray]

SP-04.G - M4 Splitter Closure [Vault]

SP-04.H - Cabinet [Legacy Deployment]

SP-04.I - In Structure Splice Dome [Legacy Deployment]

SP-04.J - Vault Lid Security [Legacy Deployment]

SP-04.K - Splice Dome Fiber Management [Legacy Deployment]

SP-04.L - Splice Dome [Legacy Deployment]

SP-04.A - M4A 350 Pedestal & Slack Structure

	#	M4A 350 Pedestal	Error Codes
	1	Ensure cable slack is stored in the slack structure [3 <mark>0'</mark>]	EC-SP-04.A.1
	2	Feeder & Distribution Fiber should be brought in on the splitter side (network side of the structure) Note: The feeder cable should brought in on the righthand side of the structure	EC-SP-04.A.2
	3	Splitters are to be attached on the street side of the structure and centered on the mounting bracket	EC-SP-04.A.3
	4	Splice trays are to be attached on the customer facing side of the structure	EC-SP-04.A.4
•	5	Conduits containing fiber MUST have a strain relief plug installed to aid in keeping water out of the conduit	EC-SP-04.A.5

SP-04.B - M4A 350 Pedestal [Splitter Placement]

#	M4A 350 Pedestal	Error Codes
S	What Not To DO: Feeder cables should NEVER be stored in the pedestal	EC-SP-04.A.1
S	What Not To DO: Splitters must be attached to the structure in the center of the mounting bracket so the lid can be placed / removed without damaging the fiber inside	EC-SP-04.A.3

SP-04.C - M4A 350 Pedestal [Conduit Labeling]

SP-04.D - M4 Splitter Diagram / Fiber Management

Error Codes

EC-SP-

04.D.1

EC-SP-

04.D.2

EC-SP-

04.D.3

EC-SP-

04.D.4

EC-SP-

04.D.5

SP-04.E - M4 Splitter [Cable Entry]

SP-04.E - M4 Splitter [Cable Entry]

#		Error Codes
ВР	Note: Be sure to remove the bulkhead from the closure and complete a straight splice onto the splitter input fiber	

SP-04.F - M4 Splitter [Splice Tray]

#		Error Codes
1	Fix the splitter in the manufacturer provided slot found in the splice tray Note: In the event the splitter is not secured, Velcro may be affixed to the back side of the splitter and splice tray to better secure the splitter	EC-SP-04.F.1
2	Once splicing work is complete remove the closure sealing tape to expose the adhesive sealing material	EC-SP-04.F.2
3	Ensure the port seals are in place when drop cables are not present	EC-SP-04.F.3

SP-04.G - M4 Splitter Closure [Vault]

1 Strip of Purple Tape = Signal Input 2 Strips of Purple Tape = Signal Output

	#	M4 Splitter Closure	Error Codes
•	1	Ensure there is 15 feet of slack on both the input & output side of the closure for a total of 30' of slack in the vault	EC-SP-04.G.1
	2	Ensure the tracer wire is present in the photo	EC-SP-04.G.2
•	3	Ensure the properly colored tape is applied	EC-SP-04.G.3
	S	Cable is missing proper labeling	
•	S	Ensure the spare conduit entry points have proper caps in place for sealing purposes	
	S	Tracer wire is missing in this photo	
\	ВР	Ensure that the conduit jacket is brought into the structure and is trimmed / tapped	

SP-04.H - Cabinet [Legacy Deployment]

#		Error Codes
1	Ensure all empty conduits are capped	EC-SP-04.H.1
2	Ensure any conduits containing fiber have the strain relief plugs installed	EC-SP-04.H.2
3	Ensure all conduits containing the microducts are sealed with "Duct Seal"	EC-SP-04.H.3

SP-04.I - In Structure Splice Dome [Legacy Deployment]

#		Error Codes
1	Ensure all domes are properly attached to the vault sidewall	EC-SP-04.I.1
2	Ensure all conduit bundles are of the same length and tapped together properly	EC-SP-04.1.2
S	What not to do: The conduit bundles are not secured together with tape	

SP-04.J - Vault Lid Security [Legacy Deployment]

#	Toby Box	Error Codes
1	Ensure all vault lids are secured with bolts (<mark>7/16th</mark> or <mark>9/16th</mark> bolt head)	EC-SP-04.J.1
s	What not to do: Lid missing bolts	

SP-04.K - Splice Dome Fiber Management [Legacy Deployment]

#		Error Codes
1	Ensure the rubber grommet is in place prior to replacing the lid	EC-SP-04.K.1
2	Ensure the unused conduits are capped	EC-SP-04.K.2
3	Ensure conduits with fiber have the strain relief plugs installed	EC-SP-04.K.3
S	What not to do: Poor fiber management in the tray	
S	What not to do: Empty conduits are not capped	
S	What not to do: Conduits with fiber are missing the strain relief plugs	

SP-04.L - Splice Dome [Legacy Deployment]

#	Toby Box	Error Codes
1	Ensure all unused ports are properly capped	EC-SP-04.K.1
S	Ensure all unused conduits are capped	
S	Ensure the "O" ring, rubber, grommet is placed prior to securing the closure lid	
	Note: Due to the missing conduit caps and "O" ring, rubber, grommet – the integrity of this closure has been compromised via the intrusion of water	

Feeder, Distribution, and Drop Fiber [Testing Scenarios] **Section SP-05**

SP-05.A - Fiber Testing

SP-05.B - Feeder Fiber Testing

SP-05.C - Distribution Fiber Testing

SP-05.D - Drop Fiber Testing

SP-05.E - Optical Light Level Budget

SP-05.F - Connector Types

SP-05.A - Fiber Testing

Testing Scenarios

The following testing scenarios are based on when fiber is installed and / or spliced into Ripple fibers network. In the context of this guide, a splice is inclusive of fiber to fiber, or fiber to connector. Testing scenarios will include use of organic light and segment testing in a 1x32 architecture, and a 1x64 (in-line splitter only) architecture.

SP-05.B - Feeder Fiber Testing

#	Feeder Fiber Testing	Error Codes
1	Ensure all light levels are tested at 1490nm & 1577nm (1577nm for customers that order 2gig speeds)	EC-SP-05.B.1
2	Light Level testing via a power meter must occur on all newly spliced fibers, 2 per buffer tube, between the feeder hub and FDH	EC-SP-05.B.2
3	Additionally, feeder splice points designated for mid-cable access splices must be light level tested via a power meter when organic light is present from the POP to the distribution hub	EC-SP-05.B.3
ВР	Un spliced Fibers Will Not Require Testing.	

SP-05.C - Distribution Fiber Testing

#	Distribution Fiber Testing	Error Codes
1	Ensure all light levels are tested at 1490nm & 1577nm (1577nm for customers that order 2gig speeds)	EC-SP-05.C.1
2	Light Level testing via a power meter must be captured on one newly spliced fiber per fiber tube spliced from the FDH to the corresponding access handhole closures.	EC-SP-05.C.2
ВР	Un spliced Fibers Will Not Require Testing.	

SP-05.D - Drop Fiber Testing

OSP Construction - Splicing & Testing [RIPPLE Fiber Confidential and Proprietary] 36

Error Codes

EC-SP-05.D.1

EC-SP-05.D.2

SP-05.E - Optical Light Level Budget (1x64)

			_	
OPTICAL BU	JDGET ON	1:64 SPL	IT RATIO	
Loss Budget [•]	Table		MIN	MAX
Total Splitter Ratio	dB Loss	UOM	1:128	1:128
Fusion Splice	.1 dB	each	10	20
Connector LC/APC	.3 dB	each	4	4
1:2 Splitter	3.0 dB	each	1	1
1:4 Splitter	6.0 dB	each	1	1
1:8 Splitter	9.0 dB	each	1	1
1:16 Splitter	12.0 dB	each	0	0
1:32 Splitter	15.0 dB	each	0	0
Single Mode Fibre P/Km	.2 dB	p/km	0.1	10
To	otal Optica	l dB Loss	-26 dB	-29 dB
Transmitter OLT Output XGS-PON		+7.0 dBm	+7.0 dBm	
			-16.5	-19.2
	Receive	er Power	dBm	dBm

#	Optical Light Level Budget	Error Codes
ВР	The Nokia XGS-PON equipment has a light sensitivity of between – 8dBm & -23dBm.	
ВР	The OLT has a launching power of between +7dBm or +5dBm where as the ONT launches a returning light of around +3dBm or +2dBm.	
ВР	Tx refers to the transmitting signal of the point in place where you are testing	
ВР	Rx refers to the receiving signal of the point in place where you are testing (ex: At the ONT the TX is the signal from the ONT to the OLT and RX is the signal from the OLT to the ONT)	
ВР	Note: The ideal threshold is to not exceed a distance of 10km (or 6.2 miles from the OLT to the final ONT	

SP-05.E - Optical Light Level Budget (1x128)

OPTICAL BUDGET ON 1:128 SPLIT RATIO					
Loss Budget 1	120 JF	MIN	MAX		
_					
Total Splitter Ratio	dB Loss	UOM	1:128	1:128	
Fusion Splice	.1 dB	each	10	20	
Connector LC/APC	.3 dB	each	4	4	
1:2 Splitter	3.0 dB	each	0	0	
1:4 Splitter	6.0 dB	each	2	2	
1:8 Splitter	9.0 dB	each	1	1	
1:16 Splitter	12.0 dB	each	0	0	
1:32 Splitter	15.0 dB	each	0	0	
Single Mode Fibre P/Km	.2 dB	p/km	0.1	10	
Total Optical dB Loss -26 dB -29 dB					
Transmitter OLT Output XGS-PON			+7.0 dBm	+7.0 dBm	
			-18.5	-22.2	
	Receive	Power	dBm	dBm	

#	Optical Light Level Budget	Error Codes
ВР	The Nokia XGS-PON equipment has a light sensitivity of between – 8dBm & -23dBm.	
ВР	The OLT has a launching power of between +7dBm or +5dBm where as the ONT launches a returning light of around +3dBm or +2dBm.	
ВР	Tx refers to the transmitting signal of the point in place where you are testing	
ВР	Rx refers to the receiving signal of the point in place where you are testing (ex: At the ONT the TX is the signal from the ONT to the OLT and RX is the signal from the OLT to the ONT)	
ВР	Note: The ideal threshold is to not exceed a distance of 10km (or 6.2 miles from the OLT to the final ONT	

SP-05.F - Connector Types

#	Connector Types	Error Codes
1	APC Connector – These are typically green with an angled tip.	EC-SP-05.F.1
2	UPC connector – These are typically blue with a straight tip.	EC-SP-05.F.2
3	Note: These two types of connectors should NEVER be used in the same bulkhead	EC-SP-05.F.3

Feeder, Distribution, and Drop Fiber [Testing Considerations] **Section SP-06**

SP-06.A - Testing Considerations

SP-06.B - Distribution Fiber Testing Considerations

SP-06.C - Access Fiber Testing Considerations

SP-06.D - Drop Fiber Testing Considerations

SP-06.A - Testing Considerations

Testing Considerations:

This section describes the various tests that must be performed during the aforementioned testing scenarios. Each section below corresponds to the testing scenario above.

- OTDRs, with a launch cable, must be used to validate the integrity of the cable and splicing work.
 - Each live fiber must have a OTDR test.
 - OTDR test the first and last fiber, per buffer tube, for dark or spare fibers.
- Testing deliverables must include PDF or image file (jpeg, png, etc.) test results showing passing test results.
- The addition of an optical attenuator (1dB, 5dB, 7dB, etc) should be considered under the following Presumptions:
 - Power meter measurements exceeding the upper parameters of the acceptance criteria covered in the Acceptance Parameters effectively causing packet loss issues.
 - Attenuators can be installed at Ripple-owned infrastructure such as an FDH. Limited access facilities should not be considered suitable for housing attenuators.
 - Attenuators should not be installed too close to the laser source which can occur at the POP.

SP-06.A - Testing Considerations

G-PON

wavelengths: Over a single bidirectional fiber – in this case GPON use Wavelength Division Multiplexing (WDM) with 1490 nm wavelength for downstream traffic and 1310 nm wavelength for upstream traffic

XGS-PON

- 3. Wavelengths:
- Upstream and Downstream: XGS-PON operates at specific wavelengths, with the downstream at 1577 nm and the upstream at 1270 nm. These wavelengths are part of the PON transmission window (1260-1650 nm), allowing XGS-PON to coexist with other PON standards, like G-PON and NG-PON2, on the same fiber.

SP-06.B - Feeder Fiber Testing Considerations

#	Feeder Fiber Testing Considerations	Error Codes
1	The splitter input fiber should be tested to document the input light level. 2 of the output splitter tails should be tested to ensure the integrity of the splitter and splice	EC-SP-06.B.1
2	Conduct a OTDR test on 2 of the splitter tails to ensure a clean fiber path and splice has occurred	EC-SP-06.B.2

SP-06.C - Distribution Fiber Testing Considerations

SP-06.D - Drop Fiber Testing Considerations

#	Drop Fiber Testing Considerations	Error Codes
1	In the event a poor light level test is captured, utilize a VFL to verify that the splice is good and the fiber is undamaged	EC-SP-06.D.1
2	Test the light level at 1550nm (1490 or 1577)	EC-SP-06.D.2

OSP Labeling Section LB-01

LB-01.A - Introduction

LB-01.B - Network Overview

LB-01.C - Fiber Cable Naming Scheme

LB-01.D - Fiber Structure & Enclosure Naming Scheme

LB-01.A - Introduction

Introduction

This document covers field labeling standards on Ripple Fibers OSP infrastructure from the POP to the customer premises. Field labeling covered within this document is intended to support construction tracking, new service installation, and troubleshooting processes.

LB-01.B - Network Overview

Full Network Overview [Engineering Layers]			
OLT Zone	The total area covered by a single OLT		
FDA	A manageable cluster of FDH's within an OLT zone used for permitting and construction		
FDH	A cluster of homes within an FDA and OLT zone that are connected back to a common handhole or pedestal.		
Full Network Overview [Physical Layers]			
Backhaul Layer	The connection between the data center and the POP's / OLTS commonly referred to as the core transport layer.		
Feeder Layer	The optical fiber network layer feeding from the OLT active equipment throughout the greater area allocated to be converged by the designated OLT equipment to the FDH handholes.		
Distribution Layer	The optical layer that runs from the FDH past the homes and terminates outside the allocated homes in an access box / handhole.		

LB-01.C - Fiber Cable Naming Scheme

Fiber Cable Naming Convention

- The following Cable Names will be implemented
- Project Code Cable Size Cable Type Cable Number

Description	Project Code	Cable Size	Cable Type	Example
Transport Cable	Project Code from Primary OLT Project 6 Digit Project Code (OLT Level)	24F	Т	MIWC13-MIWC12-24F-T1
Core Feeder Cables	6 Digit Project Code (OLT Level)	288F 144F 72F	С	MIWC13-288F-C1
Link Feeders Cables	8 Digit Project Code (FDA Level)	48F 24F 12F	F	MIWC1310-24F-F1
Distribution Cables	10 Digit Project Code (FDH Level)	24F 12F	D	MIWC131004-24F-D1

Ripple Fiber Naming Convention		
XXYYZZaabb Exp: NCUC031004	XX - North Carolina	
	YY - Union County	
	ZZ - OLT 3	
	aa - FDA 10	
	bb - FDH 4	

LB-01.D - Fiber Structure & Enclosure Naming Scheme

Chamber [Structure] Naming Convention Project Code (10 Digit) – Chamber Type Chamber Number (3 Digits)			
Description	Handhole Type	Example	
Large Handhole	LH	MIWC131004-LH001	
Medium Handhole	МН	MIWC131008-MH001	
Access Handhole (UG300 and Rhi-Node)	АН	MIWC131002-AH001	

Fiber Enclosure Naming Convention Handhole Name – Enclosure Type - Enclosure Number (1 Digit)				
Description	Enclosure Type	Example		
Enclosure used for Transport Cable	TE	MIWC131004-LH001-TE1		
Enclosure used for Feeder Cable	FE	MIWC131004-LH001-FE1		
Enclosure used for Distribution Cable	DE	MIWC131002-AH003-DE1		

Splitter Naming Convention Project Code (10 Digit) – Splitter Type - Splitter Number (3 Digits)						
Description	Splitter Type	Example				
1:4 Splitter	SP4	MIWC131004-SP4-001				
1:8 Splitter	SP8	MIWC131008-SP8-026				
1:X Splitter	SPX	MIWC131009-SPX-041				

Field Labeling Objectives

Section LB-02

LB-02.A - Field Labeling Objectives

Ripple Fiber's field labeling objectives are as follows:

- Deploy a standardized method of labeling that appropriately fits the environment in which the field label will reside (ex. Tag selection based on indoor / outdoor application).
- Standardize field labeling best practices that are consistent across all Ripple Fiber markets to support both internal and external personnel.
- Prioritize where and when field labels will be utilized for the sake of labeling efficiency.
- Create a system of field labeling that will support future integration of real time GIS construction tracking and OSP asset management.

Components Requiring Field Labels

Section LB-03

LB-03.A - Fiber Cable

LB-03.B - Fiber Enclosure

LB-03.C - NID Labeling

LB-03.A - Fiber Cable

- Transport Cable (Blue Tape) [Slack Vault Locations]
 - Affix the tag with the cable ID, machine printed black ink on white label, to the cable with zip-ties
 - Place a single strip of Purple Tape (Input Side) just before the first zip-tie
 - Place 2 strips of Purple Tape (Output Side) just after the second zip-tie
- Core Feeder Cables (Orange Tape) [Slack Vault Locations]
 - Affix the tag with the cable ID, machine printed black ink on white label, to the cable with zip-ties
 - Place a single strip of Purple Tape (Input Side) just before the first zip-tie
 - Place 2 strips of Purple Tape (Output Side) just after the second zip-tie
- Link Feeder Cables (Yellow Tape) [Slack Vault Locations]
 - Affix the tag with the cable ID, machine printed black ink on white label, to the cable with zip-ties
 - Place a single strip of Purple Tape (Input Side) just before the first zip-tie
 - Place 2 strips of Purple Tape (Output Side) just after the second zip-tie
- Distribution Cables (Red Tape) [Slack Vault Locations]
 - Affix the tag with the cable ID, machine printed black ink on white label, to the cable with zip-ties
 - Place a single strip of Purple Tape (Input Side) just before the first zip-tie
 - Place 2 strips of Purple Tape (Output Side) just after the second zip-tie

LB-03.B - Fiber Enclosure

Transport Enclosure

- Input
 - Place 1 strip of Purple Tape on the cable, \Leftrightarrow 6 inches from the cable entry point into the closure, indicating the Input signal path
- Output
- Place 2 strips of Purple Tape on the cable, <> 6 inches from the cable exit point leaving the closure, indicating the Output signal path
- Tag C.
 - Place the machine printed, black ink on a white label, onto the input cable (via zip-ties) <> 12 inches from the closure entry point
 - Place the machine printed, black ink on a white label, onto the output cable (via zip-ties) <> 12 inches from the closure exit point

Core Feeder Enclosure

- Input
 - Place 1 strip of Purple Tape on the cable, < 6 inches from the cable entry point into the closure, indicating the Input signal path
 - Output
 - Place 2 strips of Purple Tape on the cable, \Leftrightarrow 6 inches from the cable exit point leaving the closure, indicating the Output signal path
 - Tag
 - Place the machine printed, black ink on a white label, onto the input cable (via zip-ties) <> 12 inches from the closure entry point
 - Place the machine printed, black ink on a white label, onto the output cable (via zip-ties) <> 12 inches from the closure exit point

Feeder Enclosure

- Input
 - Place 1 strip of Purple Tape on the cable, <> 6 inches from the cable entry point into the closure, indicating the Input signal path i.
 - Output
 - Place 2 strips of Purple Tape on the cable, < 6 inches from the cable exit point leaving the closure, indicating the Output signal path
 - Tag
 - Place the machine printed, black ink on a white label, onto the input cable (via zip-ties) <> 12 inches from the closure entry point
 - Place the machine printed, black ink on a white label, onto the output cable (via zip-ties) <> 12 inches from the closure exit point

Distribution Enclosure

- Input
 - Place 1 strip of Purple Tape on the cable, <> 6 inches from the cable entry point into the closure, indicating the Input signal path
- Output
- Place 2 strips of Purple Tape on the cable, <> 6 inches from the cable exit point leaving the closure, indicating the Output signal path

LB-03.C - NID Labeling

NID Labeling:

The following labels must be added at the time light level testing occurs at the NID. Labeling must be legible, permanent, and not directly exposed to UV light. Labeling should be machine printed, black ink on a white label, and placed on the inside of the NID door. (See NID Labeling) Marking must include the following:

- Address Number & / or Unit Number
 - Labeling should be located near the top of the door to leave space for retests, new fiber drops to NID, or future additional units (ADUs).
 - Unit Number must be used if there are multiple units at the same street address.
- Date of Install
 - Date should be formatted to read "mm/dd/yyyy".

Cabinet Types & Locations Section LB-04

LB-04.A - Cabinets

POP

Splice Point Locations & Enclosures Section LB-05

LB-05.A - FDH Splice Tray Label [Labeling Example]

LB-05.B - M4 Internal Labeling

LB-05.C - M4 Tray External Labeling [Labeling Example]

LB-05.A - FDH Splice Tray Label [Labeling Example]

Error Codes

LB-05.B - M4 Internal Labeling

#	M4 Closure	Error Codes
1	This is the Enclosure ID	EC-LB-05.B.1
2	This is the Input Cable ID & Fiber Count	EC-LB-05.B.2
3	 (1) This is the Input Fiber that feeds the internal splitter and the (109) The feeder fiber that is spliced to the splitter in the upstream FDH 	EC-LB-05.B.3

LB-05.C - M4 Tray External [Labeling Example]

Fiber Cabling Labels Section LB-06

LB-06.A - Cable Tag [Example]

LB-06.B - Cable Tag Attached to a Core Cable - Input Side [Example]

LB-06.C - Cable Tag Attached to a Core Cable — Output Side [Example]

LB-06.D - Splice Dome Labeling [Example]

LB-06.E - Fiber Cable Labeling [Pedestal Example]

LB-06.A - Cable Tag [Example]

#	FDH
1	Cable ID and Fiber count
2	Input Fibers assigned to the closure

LB-06.B - Cable Tag Attached to a Core Cable - Input Side [Example]

LB-06.C - Cable Tag Attached to a Core Cable - Output Side [Example]

LB-06.D - Splice Dome Labeling [Example]

LB-06.E - Fiber Cable Labeling [Pedestal Example]

00	CONTRACTOR OF THE PERSON NAMED IN		
4	#		Error Codes
	1	Single stripe of blue tape indicates the input feeder cable	EC-LB-06.E.1
W	2	Orange tag has the cable ID, fiber count, and input fibers assigned to the splitter(s)	EC-LB-06.E.2
	3	2 stripes of green tape indicates the output distribution cable	EC-LB-06.E.3
	4	Orange tag has the cable ID, fiber count, and the downstream closure ID	EC-LB-06.E.4