

CSC380: Principles of Data Science

Probability 1

Xinchen Yu

Outline

- What is probability?
- Events
- Calculating probabilities
- Set Theory
- Law of Total Probability

What is probability?

What is probability?

- Suppose I flip a coin, What is the probability it will come up heads?
 Most people say 50%, but why?
- "Nolan's new movie is coming out next weekend! There's a 100% chance you're going to love it."

Interpreting probabilities

Basically two different ways to interpret:

- Objective probability
 - based on logical analysis or long-run frequency of an event. It's derived from known facts, symmetry, or repeated experiments.
- Subjective probability
 - based on personal belief, opinion, or information about how likely an event is, especially when there's uncertainty or limited data.

Objective or Subjective?

It is a subjective probability: a belief based on their perception of how rare or meaningful the coincidence is, not a calculation based on statistical data.

Objective probability

- The probability of an event represents the long run proportion of the time the event occurs under repeated, controlled experimentation.
 - o e.g. 00011101001111101000110
- Famous experiments in history on coin tosses

Experimenter	# Tosses	# Heads	Half # Tosses
De Morgan	4092	2048	2046
Buffon	4040	2048	2020
Feller	10000	4979	5000
Pearson	24000	12012	12000

Subjective probability

- Probabilities aren't in the world itself; they're in our knowledge/beliefs about the world.
- Can assign a probability to the truth of any statement that I have a degree of belief about.

We will focus on objective probability in this class.

Outcome, Event and Probability

Outcome

- Outcome is a single result/observation of a random experiment.
- Example 1: You flip a coin once.
 - The outcomes are: "Heads" or "Tails"
- Example 2: You roll a 6-sided die.
 - The outcomes are: 1, or 2, or 3, or 4, or 5, or 6
- Example 3: You tap "shuffle play" on your favorite Spotify playlist with 100 songs and the first song played.
 - The outcomes are: the 1st song in the list, or the 2nd song,

Random Events and Probability

Suppose we roll two fair dice...

Random Events and Probability

Suppose we roll two fair dice...

- ◆ What are the possible outcomes?
- ♦ What is the *probability* of rolling **even** numbers?
- What is the *probability* of having two numbers sum to 6?
- ◆ If one die rolls 1, then what is the probability of the second die also rolling 1?

...this is a **random process**.

How to formalize all these quantitatively?

The Sample Space

- The set of all possible outcomes of a random experiment is called the sample space, written as S.
- In math, the standard notation for a set is to write the individual members in curly braces:
 - S = {Outcome1, Outcome2, . . . , }
- Useful to visualize the sample space with an actual space.

The Sample Space

Probability very closely tied to area:

Figure: Visualization of a Sample Space

What's the sample space for a single coin flip?

S = {Heads, Tails}

What is the sample space of rolling a die?

• $S = \{1, 2, 3, 4, 5, 6\}$

1	2	3
4	5	6

What is the sample space of drawing a ball out of a box containing 30 pink, 25 yellow, and 25 blue balls?

• S = {P1, P2, ..., P30, Y1, ..., Y25, B1, ..., B25}

What's the sample space for...

- Randomly choosing a student from UA? S = {Aarhus, Amaral, Balkan, . . . , Yao, Zielinski}
- Flipping two different coins? ○ S = {HH, HT, TH, TT}
- Flipping one coin twice? ○ S = {HH, HT, TH, TT}
- Observing the number of earthquakes in San Francisco in a particular year?

 \circ S = {0, 1, 2, 3, ...}

Events

- An event E is a subset of the sample space.
- An event E is a set of outcomes
- When we make a particular observation, it is either "in" E or not. Helpful to think about events as propositions (TRUE/FALSE).
 - The proposition is TRUE when the outcome is among the elements of the event set, and FALSE otherwise.
 - Is 4 in event E = {2, 4, 6}? ✓ YES → the proposition is TRUE
 - Is 4 in event $F = \{1, 3, 5\}$? \times NO \rightarrow the proposition is FALSE

Examples of Events

What's the event set corresponding to the following propositions?

- "The coin comes up heads"
- E = {Heads}

Examples of Events

What's the event set corresponding to the following propositions?

- "The die comes up an even number"
- $E = \{2, 4, 6\}$

		S
1	2	3
4	5	6

Examples of Events

What's the event set corresponding to the following propositions?

- "A yellow ball is chosen"
- $E = \{Y1, Y2, ..., Y25\}$

Special events

- The sample space (S) includes all possible outcomes.
 - If an event E = S, then no matter what outcome occurs it's always in E.
 - e.g., E = {Heads, Tails}
- The empty set Ø is also an event
 - It is an event that never happens
 - e.g. "the die comes up 7", E = {7}

Calculating Probabilities

Calculating probability

- We can think of the probability of an event E as its area, where S (sample space) always has a total area of 1.0
- So, the probability of E is the fraction of S that it takes up.

Calculating probability using symmetry

- If we have a sample space for which every outcome is equally likely, then we can find event probabilities easily.
- Classic probability model: if every outcome has the same "area", we can just count:

$$P(E) = \frac{\text{#outcomes in } E}{\text{#outcomes in } S}$$

What is the probability of

$$P(E) = \frac{\text{#outcomes in } E}{\text{#outcomes in } S}$$

- Rolling a fair die and see an even number?
- \cdot E = {2,4,6}
- $P(E) = \frac{\#\{2,4,6\}}{\#\{1,2,3,4,5,6\}} = \frac{3}{6} = \frac{1}{2}$

1
$$\begin{vmatrix} 2 \\ P(2) = 1/6 \end{vmatrix}$$
 3 $\begin{vmatrix} 4 \\ P(4) = 1/6 \end{vmatrix}$ $\begin{vmatrix} 5 \\ P(6) = 1/6 \end{vmatrix}$

$$P(S) = 1$$

P(Even) = P(2) + P(4) + P(6) = 3/6

Elementary events

 Notice that we can find the total probability of an event by breaking it into pieces and adding up the probabilities of the pieces:

$$P(Even) = P(2) + P(4) + P(6)$$

1	2 P(2) = 1/6	3
4 P(4) = 1/6	5	6 P(6) = 1/6

These pieces are called 'elementary events':
 Events that correspond to exactly one outcome

What is the probability of

- Selecting a yellow ball?
- $E = \{Y1, Y2, ..., Y25\}$

•
$$P(E) = \frac{\# E}{\# S} = \frac{25}{30 + 25 + 25} = \frac{5}{16}$$

$$P(Yellow) = P(Y1) + ... + P(Y25) = 25 * (1/80)$$

Random Events and Probability

- Suppose we throw two fair dice
 - What is the sample space S (space of all possible outcomes)?

Event E: the two dice's outcomes sum to 6

- What is the size of E?
- What is the probability of E?

Random Events and Probability

What is the probability of having two numbers sum to 6?

$$P(E) = \frac{\text{#outcomes in } E}{\text{#outcomes in } S}$$

$$S = \{(a,b) \colon a,b \in \{1,\dots,6\}\}$$

Each outcome is equally likely

of outcomes that sum to 6: 5

answer:

5/36 = 0.13888...

Disjoint events

- In general, breaking an event into disjoint events preserves the total probability
- Disjoint: E and F are disjoint if they cannot happen simultaneously,
- e.g. $E = \{2, 4\}, F = \{1, 3, 5\}$
- In such cases,

$$P(E \text{ or } F) = P(E) + P(F)$$

Partition

- We say that disjoint events E_1 , ..., E_n form a partition of E if any outcome in E lies in exactly one E_i
- e.g.
 - {Fr.} E_1 , {Soph.} E_2 form a partition of {Lower division} E
 - {Fr.}, {Soph.} {J.} {Sen.} form a partition of *S* (sample space)

Freshmen	Sophomores	Juniors	Seniors

For disjoint events *E*, *F*:

$$P(E \text{ or } F) = P(E) + P(F)$$

If disjoint events E_1, \dots, E_n forms a partition of E:

$$P(E) = P(E_1) + P(E_2) + \dots + P(E_n)$$

If disjoint events $E_1, ..., E_n$ forms a partition of S, for event F (law of total probability):

$$P(F) = P(E_1, F) + P(E_2, F) + \dots + P(E_n, F)$$

Notation: P(A, B) is a shorthand for P(A and B)

Examples

• P(CS) = P(Fr., CS) + P(Soph., CS) + P(J., CS) + P(Sen., CS)Notation: P(A, B) is a shorthand for P(A and B)

• $P(Soph.) = P(CS, Soph.) + P(nonCS, Soph.)_{S}$

	CS I	Maj	
Freshmen	Sophomores	Juniors	Seniors
	,		

If events E, F are non-disjoint, what is P(E or F)?

- P(Soph.or CS)?
- Note: events "Sophomore" and "CS Major" may overlap

CS Maj

Freshmen Sophomores Juniors Seniors

S

- \cdot E = { Soph OR CS }
- Is P(E) = P(Soph) + P(CS)?
 - No
- · Which one is larger?
 - · Let's see..

S

$$P(Soph) + P(CS) =$$

CS Maj

Sophomores

CS Maj

P(Soph or CS) =

Sophomores

$$P(Soph) + P(CS)$$

= $P(CS, Soph.) + P(Non-CS, Soph.) +$
 $P(Fr. CS) + P(Soph. CS) + P(J. CS) + P(Sen. CS)$

Soph. CS is counted twice

So, P(Soph OR CS) = P(Soph) + P(CS) - P(Soph. CS)

S

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle For any events E and F,

$$P(E \text{ or } F) = P(E) + P(F) - P(E \text{ and } F)$$

Accounting for overlap between E and F

S

