DOCUMENTS

2432

08 712058

NWL TECHNICAL REPORT TR-2432 July 1970

POLAR MOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS

R. J. Anderle

20070122015

U.S. NAVAL WEAPONS LABORATORY DAHLGREN, VIRGINIA

U. S. NAVAL WEAPONS LABORATORY

Dahlgren, Virginia

22448

Steven N. Anastasion, Capt., USN Commander

Bernard Smith Technical Director

POLAR MOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS

R. J. Anderle

Warfare Analysis Department

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

Best Available Copy

FOREWORD

The axis of rotation of the earth is not fixed in the earth; the imaginary point where the axis intersects the earth's crust describes a roughly circular motion, five to ten meters in radius, with a period of 400 days. This "Chandler Wobble" has been precisely measured by astronomical techniques for many years. In 1969, U.S. Navy scientists found that the motion could be determined with the use of Doppler observations of an artificial earth satellite. This report reviews the results obtained during the past year. It was prepared in response to an invitation by Professor P. Melchior to discuss the results during meetings of the Commission on the Rotation of the Earth at the Brighton General Assembly of the International Astronomical Union in August 1970.

The satellite orbits upon which these results are based were computed under the direction of Steve J. Smith using computer programs prepared largely by Treva B. Daniels. Larry Beuglass collaborated with the author in determining the position of the pole from these data with the able assistance of V. Louise Brooks. We are particularly grateful to Charles J. Cohen for his technical guidance in all aspects of the satellite geodesy program.

22 July 1970

RELEASED BY:

RALPH A. NIEMANN, Head Warfare Analysis Department

Rayh a neman

ABSTRACT

The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no larger than differences between results for different groups of observatories as reported by the Bureau International de L'Heure and by the International Polar Motion Service.

INTRODUCTION

Doppler satellite observations have been used in the development and operation of the Navy Navigation Satellite System (Kershner, 1967) since the launch of the Transit 1B satellite in 1960. The usefulness of such observations for geodetic applications, indicated in 1963 (Anderle and Oesterwinter), was exploited in succeeding years (Anderle 1967). During the course of these geodetic operations, it was found that the relation between the earth's geographic pole and the earth's instantaneous spin axis could be obtained as a by-product of this work (Anderle and Beuglass, 1970 a,b). The use of Doppler observations for such determinations of the position of the pole is described below. It should be emphasized that the determination is made from intermediate output of the geodetic operations at minimum cost; improved computational procedures applied to the original observational data would produce somewhat more accurate values for the position of the pole. A considerable improvement in results is evident over the course of the last three years as a result of computational changes designed to improve geodetic operations. Changes in computational procedures specifically designed to improve polar motion results are also being made.

OBSERVING EQUIPMENT

Thirteen semi-permanent satellite observing stations have been used to obtain Doppler data for geodetic applications; but at any given time, observations may also be received from a dozen mobile or cooperating stations. For the sake of consistency, the polar motion results reported to date primarily reflect the observations made at the 13 geodetic stations. While details of the design of the Doppler equipment varies from station to station, the measurements obtained are essentially the same. The Howard County, Maryland, station is one of the most elaborate sites. It includes two complete: stations which permits controlled tests of modifications to the equipment. The Applied Physics Laboratory of Johns Hopkins University, which has responsibility for the technical operation of the observing net, operates a control center also located at Howard County, Maryland. control center receives the observations from all sites daily by teletype and advises the stations of the quality of the observations. The operation and logistic support for the field stations is the responsibility of the Doppler Satellite Office at the Pacific Missile Range (PMR), California. The majority of the sites are actually operated by the faculty and students of the New Mexico State University under contract to PMR. Figure (1) shows one of the mobile vans used in operations such as determining the position of LORAN navigation beacons. The van is the most compact equipment used to date in such geodetic operations. New equipment, designated GEOCEIVERS, are now in production. The equipment, shown in figure (2), weighs under 100 pounds, exclusive of the power source. This equipment will produce data which are different in form, but equivalent in accuracy, to those from the current system. But, since the equipment has not been used in polar motion calculations to date, its data format will not be discussed here.

2

Each station is capable of receiving on at least four frequencies which are approximately 150, 162, 324 and 400 Mhz. Polar motion results have been based on observations of the Navy navigation satellites which transmit at about 150 and 400 Mhz. The receiving stations combine these signals by analog means to obtain a signal which is free of first order ionospheric refraction effects (Newton 1967). The combined signal is then mixed with a reference signal and the time required to count a preset number of beats between the frequencies is measured. The measurements. started each four seconds of time and lasting almost a second, are automatically punched on teletype tape. The time at which satellite time pulses are received are interspersed among these measurements at two minute intervals for use in synchronizing the ground station clocks. The 300 or so observations are preceded by a manually punched header message which includes calibration constants and identifies the station, satellite, date, The entire message is transmitted by teletype to the control center shortly after the pass is completed. The control center transfers the data from paper tape to magnetic tape for use in the computers.

GEODETIC COMPUTATIONS

The satellite observations are transmitted from the control center in Maryland to the computational facility at the Naval Weapons Laboratory, Dahlgren, Virginia, every 24 hours over a telephone line in a magnetic tape-to-magnetic tape transmission. It is convenient for the geodetic computations to compute the orbit of any selected satellite every second day based on 48 hours of observations. This interval is long enough to permit a determination of the position of mobile observing stations but short enough to maintain a regular check of the performance of the equip-The raw observations are converted to frequency measurements, and various calibration, filtering and aggregating operations are performed (Anderle, 1965). The time pulses received from the satellite by the Howard County observing station are used to calibrate the epoch and rate of the satellite clock against UTC; the calibrated clock transmissions are then used to synchronize the clocks at the other observing stations. filtering process eliminates observations which are bad due to loss of lock of the satellite signal or transmission errors; the filtering also detects entire passes which show systematic errors. Finally, groups of eight filtered observations are aggregated in an averaging process to obtain about 40 observations of frequency with associated scandard errors for each satellite pass for use in the orbit refinement. In the least squares orbit determination, the earth's gravity field and the coordinates of the thitteen base stations are fixed at values obtained in a general geodetic solution. Changes in these parameters were made in recent years on:

Gravity Field

Station Coordinates

20 Feb 1967

20 Feb 1967 19 Jan 1968

18 Apr 1968

13 Feb 1970*

Unknowns in the solution are the six orbit constants, a drag scaling factor, the coordinates of each mobile observing station, and a frequency and frequency drift bias for each pass. The orbit computation is done by a 10th order Cowell integration and includes effects of lunar-solar gravitational attraction, effect of land tides on the potential (but not on station position), effect of nominal solar radiation pressure, effect of tropospheric refraction for a nominal atmosphere, and the effect of earth's precession and nutation. Extrapolated values for the polar motion and variation in earth's rotation are used. The accuracy of this computed orbit is estimated to be about 10 meters (Anderle, Malyevac and Green 1969) in an earth-fixed coordinate frame. A significant bias in right ascension of the satellite is present because the conversion from UTC to UT-1 time is done using poorly extrapolated values for the difference; however, the longitude of the satellite relative to longitude of the stations is not subject to errors in the difference. Upon completion of the least squares solution for orbit constants and the other parameters described above, the final satellite orbit is used to obtain a measure of the quality of the solution. For this purpose, the orbit and the data obtained on each satellite pass is used to make a least squares solution for frequency bias and for two components of station position: one component is parallel to the satellite velocity vector at closest approach of the satellite to the station while the other component is parallel to the sight line from the station to the satellite at the same time. The standard deviation in these quantities obtained during a month is plotted in figure (3) versus elevation angle to the satellite at closest approach. The graph shows that the errors for passes at high elevation angles are two meters and seven meters in the slant range and tangential directions, respectively, while the errors at low elevation angles are about twice as large due to the greater distance from the station to the satellite and higher residual refraction errors. These errors are a composite of the errors in satellite position, errors in station position, and instrumentation errors. In 1969, it was found that errors in the assumed position of the pole can be found by analysis of these tangential errors.

^{*}For satellite 1967-34A and 1968-12A; 3 Feb and 6 Feb for satellite 1967-92A and 1967-48A, respectively.

POLE POSITION COMPUTATIONS

The tangential component of the error in the computed satellite orbit determined from each pass of the satellite over each observing station during a two day span is shown in figure (4). The figure shows a sinusoidal error of about 5 meters amplitude with a 24 hour period which was due to the use of an incorrect pole position in the computations. this effect arises for a satellite in a polar orbit is shown by the diagrams in figure (5): Assume the true pole is on the spin axis, and assuming that the true pole and the assumed pole lie in the plane of the orbit at some instant of time, as shown in the left side of the figure. Then there will be a tangential error in the computed satellite position (or navigated station position) for any station lying in the orbit plane; six hours later, the assumed pole will have rotated 90 degrees, as shown on the right hand side of the figure, so that there will be zero error in the tangential direction. Thus an error with a 24 hour period is introduced which cannot be absorbed in the solution for orbit constants. The pole position computation consists of the solution for the phase and amplitude of this error and conversion of these quantities to pole position displacement (figure (6)). Such a solution ignores the information on pole position which is contained in the errors in the slant range direction. The slant range errors yield weaker information on pole position because of low sensitivity of slant range to pole position error for stations at low latitudes or for satellite passes at high elevation angle. Until the middle of 1970, the solution for the phase and amplitude of the tangential error also included a constant and a linear term in the least squares solution. The four parameters were used on the theory that imperfect distribution of observations, together with an error in the pole position, may have yielded erroneous values for the mean anomaly and mean motion of the satellite in the fit of orbit constants. Under this assumption, it was necessary to solve for the four parameters using the observations made in the same 48 hour span considered in the orbit It was subsequently found that solutions for the two periodic coefficients based on each 24 hours of observations gave results equivalent to the four parameter solutions based on 48 hours of data. Since more frequent solutions are desirable, future solutions for pole position will probably be based on 24 hours of observations regardless of the time span of data used in the original orbit fit. As shown in figure (3), the accuracy of determination of the tangential errors varies with elevation angle to the satellite at closest approach. The accuracy also varies with the size of the random error of the original frequency observations. Therefore each observation used in the two or four parameter solution is weighted inversely according to the empirical formula $(.004^2 + \sigma^2)$ $(6 + 2 \times 10^{-6} (80 - \phi)^3)^2$ where σ is the random error in the frequency observations in Hz per 108 Mhz and φ is the elevation angle in degrees. The standard error of each solution for pole position is computed from the residuals of fit and covariance of the solution for the nominal weighting of the observations. The standard error of the corrected pole position is about a meter on the average. Means and standard deviations of solutions made in five or six day intervals are also obtained in order to express the results in more compact form.

Figure (5)

POLE POSITION COMPUTATION

ERROR = A COS λ + B SIN λ λ = HOUR ANGLE OF GREENWICH P_N = NOMINAL POLE POSITION P_T = TRUE POLE POSITION

PNPT IS NORMAL TO ORBIT PLANE WHEN λ = tan - B

S = SPIN AXIS $\Omega \sim RIGHT$ ASCENSION OF NODE $\alpha' \sim \alpha$

so
$$\alpha \sim \Omega - \gamma^0 + 30$$
°

Figure (6a)

DETAIL OF POLE POSITION COMPUTATION

ERROR SOURCES

Consideration has been given to the following sources of error in the pole positions computed from Doppler observations of artificial earth satellites:

- 1. Origin of the coordinate system.
- 2. Errors in UTC-UT1.
- 3. Changes in station distribution.
- 4. Other computational errors.

An attempt was made to refer the coordinates of the Doppler observing stations to the CTO pole through BIH values for the instantaneous pole position at various points during the period 1961-1967 (Anderle and Beuglass 1970a). However, recent Doppler solutions for the position of the pole based on these coordinates show a bias with respect to TPMS and BIH results, particularly in the Y direction. Therefore the following arbitrary corrections must be added to the coordinates reported by the Dahlgren Polar Motion Service to achieve consistency with astronomic results:

 $X_{IPMS} - X_{DAHLGREN} = 0.0 M$

 $Y_{IPMS} - Y_{DAHLGREN} = 2.0 M$

The values for UTC-UT1 used in the Doppler calculations have at best contained significant errors of extrapolation and at worst ignored the (UT2-UT1) correction. In principle, this error should simply yield a different orbit plane in inertial space, leaving earth fixed computations, (including pole position computations) unaffected. Numerical experiments with gross errors in UTC-UTl have substantiated this theory. While the reference orbits include data from varying numbers of observing stations, pole position calculations have been based on residuals from these orbits for a group of thirteen stations. Only one station in this network has been changed in recent years (Hawaii was moved to Wake). Experiments conducted omitting data from subsets of the station net have shown that (1) significant changes could be made to the station net without biasing the results but that (2) deleting a selected set of four stations from the net would seriously bias the results (Anderle and Beuglass 1970b). effects of any future changes in the net will have to be tested. Experiments showed that the adoption of a new gravity field for the computations in February 1970 produced a bias in the pole position of about a meter. The bias may result from readjustment of the first order gravity terms which also produces a diurnal effect on the residuals. All reported results have been corrected for this bias, but the value of the bias is uncertain to few tenths of meters as shown by the results for the following test cases:

	New* Minus Old					
	<u>x</u>	<u>Y</u>				
Day 46 1969 Day 154 1969 Day 258 1969 Day 328 1969 Day 50 1970	-0.1 M -0.6 -0.3 0.2 1.0	0.5 M -0.2 -0.1 -0.5 0.2				
Mean	0.0	0.0				
Std Dev	•5	.3				
Std Error	.3	.1				

Effects on pole position of earlier changes in the gravity field have not been evaluated. However, the earlier results are subject to larger random errors and possible biases due to a variety of deficiencies in the orbit computation program which were corrected in mid-1968.

POLE POSITION RESULTS

The pole positions computed from the results of each orbit computation available from January 1967 through mid 1970 are tabulated in Appendix A. Means and standard errors of results obtained within six day spans are also shown on the tables. The values for the Y coordinates were found to be about two meters lower than the astronomic results. Since the origin of the coordinate system is relatively arbitrary, this bias was corrected before the results were plotted in figures (7) and (8). Starting in mid 1968, the argreement between the Doppler and Astronomic results is about as good as the agreement between the BIH and IPMS results. The agreement for 1969 is especially striking. The Doppler biases in 1967 and early 1968 are probably due to poorer computational techniques used in computing the satellites orbits. The Doppler results for the X coordinate in 1969 are in much better agreement with the IPMS data than the BIH data. However in other places, such as for the Y coordinate in 1967, the Doppler results seem to reflect the trends in the BIH data better than those in the IPMS data. The path of the pole for 1969 determined on the basis of the Doppler observations is shown in figure (9) along with that obtained by the BIH and the IPMS. The ellipses show the standard error of the Doppler observations. The diameter of the Doppler curve in the X - direction is larger than that of the IPMS which in turn is larger than that of the BIH.

^{*}After bias correction

20

DISEPACEMENT TOWARD CREENWICH (METERS)

SUMMARY

The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no larger than differences between results for different groups of observatories as reported by the Bureau International de L'Heure and by the International Polar Motion Service.

REFERENCES

- 1. Anderle, Richard J. and Claus Oesterwinter, "A Preliminary Potential for the Earth from Doppler Observations on Satellites", presented at COSFAR Meeting, June 1963.
- 2. Anderle, Richard J., "Doppler observations on the ANNA 1B Satellite", Transactions, American Geophysical Union, Vol 46, No 2, 385-387, June 1965.
- 3. Anderle, Richard J., "Geodetic Parameter Set NWL 5E 6 Based on Doppler Satellite Observations", in <u>Use of Artificial Satellites for Geodesy</u>, Vo. 2 G. Veis ed, University of Athens, 1967 p 197-220.
- 4. Anderle, R. J., C. A. Malyevac and H. L. Green, Jr., "Effect of Neglected Gravity Coefficients on Computed Satellite Orbits and Geodetic Parameters", <u>Journal of Spacecraft and Rockets</u>, Vol 6 No 8, p 951-954 Aug 1969.
- 5. Anderle, Richard J. and Larry K. Beuglass, "Doppler Satellite Observations of Polar Motion", Bulletin Geodesique, No. 96, p 125-141, June 1970a.
- 6. Anderle, Richard J. and Larry K. Beuglass, "Polar Motion for 1967 and 1968 Derived from Doppler Satellite Observations", preprint of paper presented at 51st Annual Meeting of the American Geophysical Union, April 1970b.
- 7. Kershner, Richard B., "Status of the Navy Navigation Satellite System", in <u>Practical Space Applications</u>, Vol 21, American astronautical Society, 1967.
- 8. Newton, Robert R., "The Navy Navigation Satellite System", in <u>Space Research VII</u>, North-Holland, 1967.

APPENDIX A

Table 1

REPORT O REVISION O DAHLGREN POLAR MONITORING SERVICE

TABLE 1

MEAN STD DEV STD ERR	DAYS 1 3 5 7 9 1	1967 2 4 6 8 10 10 10		POSITION METERS X 5.97 1.69 4.15 1.00 -5.16 1.53 4.23 1.89	METERS '	RD ERROR Y METERS 1.91 1.85 1.78 2.98 2.54 2.21	SATELLITE 1966-76A
MEAN STD DEV STD ERR	11 13 15 17 19 11 11	12 14 16 18 20 20 20	7.51 5.70 5.49 7.76 10.92 7.48 2.18 0.98	66 1.63 2.14 2.33 2.15 1.52 1.52 0.56	1.86 1.83 1.43 1.56 1.41 1.62	1.89 1.84 1.52 1.46 1.41	
MEAN STD DEV STD ERR	21 23 25 27 29 21 21	22 24 26 28 30 30 30	9.62 7.82 6.77 3.95 3.55 6.34 2.58 1.15	1.65 1.85 73 -2.95 2.06 0.38 2.17 0.97	1.55 1.75 2.25 2.32 1.53 1.88	1.47 1.66 2.18 2.13 1.48 1.78	
MEAN STD DEV STD ERR	31 33 35 37 39 31 31	32 34 36 38 40 40 40	4.93 7.66 5.68 7.53 9.15 6.99 1.69	-2.25 1.73 0.78 24 3.37 0.68 2.11 0.94	1.93 1.55 1.24 1.56 1.67 1.59	1.97 1.44 1.16 1.42 1.56 1.51	
MEAN STD DEV STD ERR	41 43 45 47 49 41 41	42 44 46 48 50 50 50	8.65 3.52 2.86 2.54 4.69 4.45 2.49	6.47 33 -2.18 -2.20 2.46 0.84 3.68 1.64	1.86 2.53 1.61 1.92 1.78 1.74	1.77 1.44 1.52 1.78 1.67	

REPORT 0 REVISION O
DAHLGREN POLAR MONITORING SERVICE

			POLE	POSITION	STANDA	RD ERROR	
	DAYS	1 067	X METERS Y		METERS	Y METERS	SATELLITE
	59	60	2.17	0.06	2.17	2.31	1966-76A
	61	62	2.89	11	1.92	1.95	
	63	64	2.48	-1.93	2.22	2.20	
	65	66	4.85	3.76	1.76	1.93	•
		68	4.49	0.44	1.56	1.53	
	67 50	68	3.38	0.44	1.93	1.98	
MEAN	59		1.22	2.07			
STD DEV	59	68	0.54	0.92			
STD ERR	59	68	0.54	0.72			
				2 05	1.94	1.96	
	69	70	4.44	2.05	1.88	2.00	
	71	72	3.25	5.54		1.90	
	73	74	1.99	4.88	1.81	1.88	
	7 5	76	66	4.83	1.86		
	77	78	0.17	4.46	1.95	1.96	
MEAN	69	78	1.84	4.35	1.89	1.94	
STD DEV	69	78	2.11	1.34			
STD ERR	69	78	0.94	0.60			
310 2111	· ·	, -					
	7 9	80	2.61	2.56	1.94	1.96	
	81	82	1.95	0.99	1.61	1.69	
	83	84	5.33	3.10	1.52	1.75	
		86	4.11	2.77	1.70	2.04	
	85		5.86	7.70	2.33	2.37	
	87	88	3.97	3.42	1.82	1.96	
MEAN	79	88		2.52			
STD DEV	79	88	1.69				
STD ERR	7 9	88	0.75	1.13			
				1 06	2.04	2.30	
	89	90	2.53	1.96		1.75	
	91	92	1.19	0.84	1.65	1.70	
	93	94	13	0.66	1.48	2.21	
	95	96	1.77	1.60	1.97	2.01	
	97	98	2.79	0.72	1.86		
MEAN	89	98	1.63	1.16	1.80	1.99	
STD DEV	89	98	1.17	0.59			
STD ERR	89	98	0.52	0.26			
	9 9	100	3.01	0.39	1.77	2.02	
	101	102	8.32	4.01	1.83	2.20	
	103	104	4.39	6.43	1.69	1.93	
	105	106	3.49	1.54	1.83	2.25	
			5.19	0.87	1.86	2.30	
445. 441	107	108	4.88	2.65	1.80	2.14	
MEAN	99	108	2.10	2.53			
STD DEV	99	108		1.13			
STD ERR	99	108	0.94	1.4.1.2			

REPORT 0 REVISION 0 DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	113 11 115 11 117 11	57 X METERS Y 10 1.46 12 3.48 14 5.66 16 4.36 18 6.90 18 4.37 18 2.08	POSITION METERS X 0.48 2.26 0.58 2.98 6.82 2.62 2.58 1.15	STANDARD METERS Y 1.64 1.52 1.76 1.90 2.11 1.79	ERROR METERS 1.92 1.83 2.16 2.32 2.53 2.15	SATELLITE 1966-76A
MEAN STD DEV STD ERR	119 12 121 12 123 12 125 12 127 12 119 12 119 12	22 1.91 24 2.34 26 3.31 28 2.26 28 2.75 28 0.84	8.63 4.87 4.04 3.41 1.53 4.50 2.62 1.17	1.81 1.71 1.71 1.99 1.77 1.80	2.05 2.21 2.35 2.67 2.08 2.27	
MEAN STD DEV STD ERR	129 13 131 13 133 13 135 13 137 13 129 13 129 13	32 0.93 34 1.77 36 -1.47 38 3.96 38 1.14 38 1.97	4.31 6.53 10.85 5.84 3.05 6.12 2.97 1.33	1.72 1.61 1.43 1.51 1.68 1.59	2.22 2.06 1.66 1.82 1.93 1.94	
MEAN STD DEV STD ERR	139 14 141 14 143 14 145 14 147 14 139 14 139 14	2 2.05 44 0.64 46 1.44 48 1.36 48 1.84 48 1.15	4.15 1.66 0.99 2.05 2.90 2.35 1.22 0.55	1.84 2.23 2.13 2.09 1.93 2.04	2.12 2.46 2.37 2.51 2.24 2.34	
MEAN STD DEV STD ERR	149 15 151 15 153 15 155 15 157 15 149 15 149 15	0.67 54 -3.09 56 -1.07 58 1.06 5805 58 2.06	4.35 5.50 4.97 4.48 1.18 4.10 1.69 0.76	2.24 2.03 2.23 1.83 1.96 2.06	2.71 2.39 2.62 2.04 2.24 2.40	ew Mili

REPORT C REVISION ODAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 159 161 159 159	1967 160 162 161 161 161		PCSITION METERS X 4.82 8.00 6.41 2.25 1.59		RD ERROR Y METERS 2.06 1.92 1.99 C.10	SATELLITE 59 59
MEAN STD DEV STD ERR	163 165 167 163 163	164 166 168 167 167 167	1.34 1.11 0.63 1.03 0.36 0.21	5.10 5.83 4.39 5.11 C.72 C.41	1.90 1.56 1.51 1.66 0.21	2.27 1.85 1.68 1.93 0.30	5 9 5 9 5 9
MEAN STD DEV STD ERR	169 171 173 169 169	170 172 174 173 173	67 0.18 60 36 0.47	2.44 4.08 8.07 4.86 2.90 1.67	1.57 1.85 1.88 1.76 0.17	1.73 2.17 2.27 2.06 0.29	59 59 59
MEAN STD DEV STD ERR	175 177 179 175 175	176 178 180 179 179	77 C.88 4.65 1.59 2.78	7.04 5.19 4.31 5.51 1.39 C.80	1.36 1.35 1.92 1.55 C.33	1.6C 1.68 2.C7 1.79 C.25	5 9 5 9 5 9

REPORT O REVISION CONTROL OF CONT

				PCL	.E	POSITION	STAND	ARD ERRCR	
	DAYS	1967	Х	METERS	Υ	METERS X	METERS	Y METERS	SATELLITE
	181	182		C.58		1.83	1.71		59
	183	184		2.91		5.92	1.72	1.87	59
	185	186		21		5.84	1.62	1.95	59
MEAN	181	185		1.09		4.53	1.68	1.96	
STD DEV	181	185		1.62		2.34	0.05	C.C9	
STD ERR	181	1.8 5		C.94		1.35			
	187	188		55		6.65	1.41		59
	189	190		0.28		4.60	1.77		59
	191	192		1.21		5.24	1.74		59
MEAN	187	191		0.31		5.5C	1.64	1.90	
STD DEV	187	191		88.0		1.05	0.20	0.29	
STD ERR	187	191		C.51		C.61			
	193	194		74		6.14	1.36	1.50	5,9
	195	196		1.04		7.25	1.33	1.42	5.9
	197	198		0.99		5.18	1.71		59
MEAN	193	197		0.43		6.19	1.47	1.61	
STD DEV	193	197		1.01		1.03	0.21	0.26	
STD ERR	193	197		0.58		C.6C			
	199	20C		1.50		7.97	1.90	2.08	59
	201	202		1.15		4.59	1.48	1.57	59
•	203	204		. C.43		6.96	1.36	1.56	59
MEAN	199	203		1.02		6.50	1.58	1.74	
STD DEV	199	203		0.55		1.73	0.29	0.30	
STD ERR	199	203		0.32		1.00			

REPORT O REVISION ODAHLGREN PCLAR MCNITCRING SERVICE

			PCLE	PESITION	STAND	ARD ERRCR	
		1967	X METERS Y	METERS X	METERS	Y METERS	SATELLITE
	205	206	3.09	6.64	1.50	1.87	59
	207	208	5.04	3.35	1.84	2.14	59
	209	21C	87	5.87	1.56	1.64	59
MEAN	205	209	2 • 4 2.	5.29	1.63	1.88	
STD DEV	205	209	3.01	1.72	C.18	0.25	
STD ERR	205	209	1.74	C.99			
	211	212	50	4.26	1.90	1.91	59
	213	214	C8	4.23	1.78	1.67	59
	215	216	30	4.63	1.49	1.58	59
MEAN	211	215	25	4.37	1.73	1.72	
STD DEV	211	215	0.21	0.22	0.21	C.17	
STD ERR	211	215	0.12	0.13			
	217	218	1.64	5.10	1.61	1.52	59
	219	22C	2.45	6.11	1.55	1.46	59
	221	222	1.70	4.87	1.03	1.C5	59
MEAN	217	221	1.93	5.36	1.40	1.34	
STC DEV	217	221	C•46	C.66	0.32	0.26	
STD ERR	217	221	C•26	0.38			
	223	224	3.41	4.17	1.19	1.32	59
	225	226	1.11	2.62	1.35	1.32	59
***	227	228	C.68	5.21	1.32	1.37	59
MEAN	223	227	1.73	4.00	1.29	1.34	
STD DEV	223	227	1.47	1.30	0.09	0.03	
STD ERR	223	227	C.85	C.75			

REPORT O REVISION C
DAHLGREN PCLAR MCNITCRING SERVICE

	DAYS	1967	PCLE X METERS Y	POSITION X		ARD ERROR Y METERS	SATELLITE
	229	23C	1.72	5.14	1.14	1.1C	59
	231	232	1.54	3.69	1.27	1.18	59
	233	234	 73	5.24	1.15		5.59
MEAN	229	233	0.84	4.69	1.19		
STD DEV	229	233	1.36	0.87	0.07	0.04	
STD ERR	229	233	C.79	0.50			
	235	236	3.4C	4.46	1.25	1.16	59
	237	238	2.30	5.71	1.20	1.14	59
	239	24C	2.09	4.36	1.30	1.20	59
MEAN	235	239	2.60	4.84	1.25		
STD DEV	235	239	C.7C	0.75	0.05	0.03	
STD ERR	235	239	C.41	0.43			
	241	242	2•C3	5.45	1.15	1.14	59
	243	244	22	4.40	1.55	1.48	59
	245	246	2.13	4.22	1.34		59
MEAN	241	245	1.31	4.69	1.35		
STD DEV	241	245	1.33	0.67	0.20	0.17	
STD ERR	241	245	C. 77	0.38			
	247	248	2.96	4.89	1.24	1.22	59
	249	25C	2.82	4.63	1.04	1.14	59
	251	252	1.68	4.36	1.02	0.93	59
MEAN	247	251	2.49	4.63	1.10	1.10	•
STD DEV	247	251	C.7C	0.26	0.12	0.15	
STD ERR	247	251	0.4Ć	0.15			

REPORT O REVISION C DAHLGREN PCLAR MCNITCRING SERVICE

			PCL	E POSITION	STAND	ARC ERROR	
		1967	X METERS	Y METERS X	METERS	Y METERS	SATELLITE
	253	254	0.64	5.76	1.53	1.47	59
	255	256	55	4.88	1.62	1.64	59
	257	258	-1.50	5.53	2.16	2.11	59
MEAN	253	257	47	5.39	1.77	1.74	
STD DEV	253	257	1.07	G•46	C.34	0.33	
STD ERR	253	257	0.62	0.26			
	259	260	1.20	2.29	2.22	2.22	5,9
	261	262	2.22	2.88	1.85	1.81	59
	263	264	2.27	3.C7	1.84	1.85	59
MEAN	259	263	1.90	2.74	1.97	1.96	
STD DEV	259	263	0.60	0.41	0.22	0.23	
STD ERR	259	263	0.35	0.23			
	265	266	0.50	5.48	1.81	1.72	59
	267	268	0.87	3.7C	2.11	1.97	59
	265	27C	52	3.22	2.45	2.45	59
MEAN	265	269	C.28	4.13	2.13	2.C5	
STD DEV	265	269	C.72	1.19	0.32	0.37	
STD ERR	265	269	C•42	0.69			
	271	272	1.24	1.36	2.22	2 05	59
	273	274	86	5.82	2.22	2.05 2.16	5 9 5 9
	275	276	4.06	7.83	2.50	2.46	59 59
MEAN	271	275	1.48	5.01	2.31	2.23	2 3
STD DEV	271	275	2.47	3.31	0.17	0.21	
STD ERR	271	275	1.43	1.91	0.11	0.21	
J.O LININ	~ 1 1	- 1 -	1047	1071			¥

REPORT O REVISION C DAHLGREN PCLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 277 279 281 277 277	1967 278 280 282 281 281 281		PCSITION METERS X 6.35 3.70 6.52 5.52 1.58 0.91	STAND METERS 2.39 2.59 2.33 2.44 0.14	ARD ERROR Y METERS 2.52 2.42 2.36 2.43 0.08	SATELLITE 59 59 59
MEAN STD DEV STD ERR	283 285 287 283 283 283	284 286 288 287 287 287	2.38 -2.01 0.16 0.18 2.20 1.27	5.81 6.06 8.32 6.73 1.38 0.80	2.15 2.33 2.51 2.33 C.18	2.19 2.30 2.60 2.36 0.21	59 59 59
MEAN STD DEV STD ERR	289 291 293 289 289 289	29C 292 294 293 293 293	-2.59 -1.75 -1.49 -1.94 0.57	6.25 1.08 3.34 3.56 2.59 1.49	2.38 2.66 2.46 2.50 C.15	2.55 2.78 2.61 2.65 0.12	59 59 59
MEAN STD DEV STD ERR	295 297 299 295 295	296 298 300 299 299 299	-2.92 67 33 -1.31 1.41 0.81	4.18 7.30 8.62 6.70 2.28 1.32	2.56 2.19 1.99 2.25 0.29	2.76 2.40 2.13 2.43 0.32	59 59 59

REPORT O REVISION ODAHLGREN POLAR MONITORING SERVICE

	DAYS 301	1967 302	X		PESITIC METERS 3.77	METERS	ARD ERRCR Y METERS	SATELLITE
	303	304		1.30	5.75	2.26 2.52	2.39 3.07	59 59
	305	306		2.06	6.28	2.32	2.60	59 59
MEAN	301	305		0.27	5.26	2.36	2.69	27
STD DEV	301	305		2.48	1.33	C.14	0.35	
STD ERR	301	305		1.43	C.77			
	307	308		-1.20	C.66	2.19	2.59	59
	309	31C		0.65	3.36	2.09	2.45	59
	311	312		72	6.32	2.27	2.69	59
MEAN	307	311		42	3.44	2.19	2.57	
STD DEV STD ERR	307 307	311 311		0.96 0.55	2.83	0.09	0.12	
JIU CAR	307	311		G • 55	1.64			
	313	314		-3.75	6.11	2.26	2.65	59
	315	316		-1.98	8.49	2.63	3.01	59
	317	318		2.81	5.87	2.11	2.32	59
MEAN	313	317		97	6.83	2.33	2.66	
STD DEV STD ERR		317		3.4C	1.45	0.27	0.35	
SID EKK	313	317		1.96	0.84			
	319	32C		-1.67	5.05	1.98	2.60	59
	321	322		57	7.02	1.82	2.19	59
MEAN	323	324		70	6.09	1.99	2.44	59
MEAN STD DEV	319	323		98	6.05	1.93	2.41	
STD DEV STD ERR	319 319	323 323		0.60 0.35	0.99 0.57	0.10	0.21	
J.O LINK	J = 1	ر ے ر		رر و	1 4 0			

REPORT O REVISION C DAHLGREN PCLAR MCNITCRING SERVICE

			Pi	CLE POSITION	STAND	ARD ERRCR	
	DAYS	1967	X METERS	Y METERS X	METERS	Y METERS	SATELLITE
	325	326	09	5.62	2.04	2.52	59
	327	328	66	5.92	1.81	2.39	59
	329	33C	-1.43		2.08	2.5C	59
MEAN	325	329	72	5.10	1.97	2.47	4
STD DEV	325	329	C.67	1.16	0.14	0.07	
STD ERR	325	329	0.39				
	331	332	38	5.56	1.93	2.38	59
	333	334	79		1.67	1.90	59
	335	336	C.31		1.51	1.75	55
MEAN	331	335	29		1.70	2.01	
STD DEV	331	335	0.55		0.21		
STD ERR	331	335	0.32	C.30			
	337	338	94		1.67	2.11	59
	339	34C	19		1.84	2.26	5 9
	341	342	1.42	4.97	2.21	2.75	59
MEAN	337	341	0.10	5.91	1.91	2.37	• *
STD DEV	337	341	1.20	1.09	0.28	0.33	
STD ERR	337	341	0.70	C.63			
		- · · ·		7 21			5.0
	343	344	64		1.53	1.88	59 50
•	345	346	-2.55		1.37	1.71	59
M F AA!	347	348	-1.70	7.29	1.40	1.78	59
MEAN	343	347	-1.63		1.43	1.79	
STD DEV	343	347	0.96	0.93	0.08	0.09	
STD ERR	343	347	0.55	0.54			

REPORT O REVISION ODAHLGREN POLAR MONITORING SERVICE

				PCL	E POSITION	STAND	ARD ERRCR	
	DAYS	1967	X	METERS '	Y METERS X	METERS	Y METERS	SATELLITE
	349	35C		58	5.65	1.79	2.16	59
	351	352		-1.88	6.78	1.49	1.76	59
	353	354		88	7.46	1.35	1.67	59
MEAN	349	353		-1.12	6.63	1.54	1.87	
STD DEV	349	353		C.68	0.91	0.23	0.26	
STD ERR	349	353		0.39	C.53			
	,							
	355	356		25	7.34	1.15	1.33	59
	357	358		33	8.23	1.35	1.54	59
	359	36C		10	9.03	2.16	2.38	59
MEAN	355	359		23	8.20	1.55	1.75	*
STD DEV	355	359		0.11	0.84	0.54	0.56	
STD ERR	355	359		0.C7	· C • 49			

DAHLGREN POLAR MONITORING SERVICE

MEAN Sid dev Sid err	DAYS 1 3 5 1 1	1968 2 4 6 5 5	PØLE X METERS Y #1,20 0,51 4,02 1,11 2,66 1,54	PUSITION METERS X 5,09 8:17 6:20 6:49 1:56	STANDA METERS 1.43 1.23 1.98 1.55 0.39	RD ERRØR Y METERS 1,63 1.31 2.25 1.73 0,48	SATELLITE 59 59 59
MEAN STD DEV STD ERR	7 9 11 7 7 7	8 10 12 11 11	0,42 1,34 0,37 0,71 0,54 0,31	7:95 6:83 7:11 7:30 0:58 0:34	0.97 0.89 1.12 0.99 0.12	1,04 0,94 1,23 1,07 0,15	59 59 59
MEÁN SÝO DEV STO ERR	13 15 17 13 13	14 16 18 17 17	1.85 4.42 0.85 2.37 1.84 1.06	7:57 10:83 7:65 8:68 1:86 1:07	1.28 1.60 1.96 1.61 0.34	1,37 1,65 1,85 1,62 0,24	59 59 59
MEÄN STO DEV STO ERR	19 21 23 19 19	20 22 24 23 23	1:78 2:40 1:93 2:04 0:32 0:19	8:81 8:97 7:48 8:42 0:82 0:47	1.41 1.73 1.49 1.54 0.17	1,44 1,61 1,44 1,50 0,10	59 59 59

REPORT 1 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEÃN STD DEV STD ERR	PAYS 25 27 29 25 25 25	1968 26 28 30 29 29		PMSITIMN METERS X 5,76 7,77 8:03 7:19 1:24 0:72	STAND METERS 1.46 1.44 1.57 1.49 0.07	ARD ERRØR Y METERS 1,39 1,35 1,42 1,38 0,03	SATELLITE 59 59 59 59
MEAN SÍD DEV SÍD ERR	33 35 33 33 33	34 36 35 35 35	1,67 3,92 2,79 1,60 1,13	7:15 4:78 5:96 1:68 1:19	1.60 1.73 1.66 0.09	1.44 1.56 1.50 0.08	59 59
MĘĂN SŢD DEV STD ERR	37 39 41 37 37 37	38 40 42 41 41 41	4.10 2.46 7.56 2.00 2.36 1.36	10:73 5:61 8:12 8:15 2:56 1:48	1.89 1.25 1.32 1.49 0.35	1.70 1.20 1.18 1.36 0.29	59 59 59
MEÁN STO DEV STO ERR	43 45 47 43 43	44 46 48 47 47	1,19 0,53 1,19 0,97 0,38 0,22	6,53 6,34 6,98 6,62 0,33 0,19	1.13 1.33 1.15 1.20 0.11	1,05 1,26 1,07 1,13 0,12	59 59 59

REPORT 1 REVISION 1
NAHLGREN POLAR HOUITORING SERVICE

MEÄN SID DEV SID ERR	DAYS 49 51 53 49 49	1968 50 52 54 53 53	PØL X METERS 2,92 2,48 0,12 1,84 1,50 0,87		STANDA METERS 1.35 1.26 1.17 1.26 0.09	RD ERRØR Y METERS 1,29 1,22 1,03 1,18 0,14	SATELLITE 59 59 59
MEÁN SÍD DEV SÍD ERR	57955555555555555555555555555555555555	56 58 60 59 59	2.03 	7,63 6,93 4,41 6,32 1,69 0,98	1.24 1.04 1.34 1.21 0.15	1,23 0,93 1,25 1,14 0,18	5 ç 5 9 5 9
MEAN STO DEV STO ERR	61 63 65 61 61	62 64 66 65 65	2,24 0,44 1,47 1,38 0,90 0,52	10:30 8:35 6:60 8:42 1:85 1:07	1.40 1.16 1.20 1.25 0.13	1.25 1.08 1.16 1.17 0.08	59 59 59
MGÄN STO DEV STO ERR	67 69 71 67 67	68 70 72 71 71 71	*1.39 0.51 2.21 0.44 1.80 1.04	6:05 6:35 7:84 6:75 0:96 0:55	1.32 1.20 1.16 1.23 0.08	1,27 1,22 1,08 1,19 0,10	50 50 50

REPORT 1 REVISION 1
DAHLGREN PALAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 1968 73 74 75 76 77 78 73 77 73 77 73 77	PALE X METERS Y 3,49 1:28 0:10 1:62 1:72 0:99	POSITION METERS X 8:91 8:33 8:04 8:43 0:44 0:25		RD ERRØR Y METERS 1,50 1,09 0,98 1,19 0,28	SATELLITE 59 59 59 59
MEAN SID DEV SID ERR	79 80 81 82 83 84 79 83 79 83 79 83	0,22 0,71 3,95 1,63 2,03 1,17	6:07 6:28 8:65 7:00 1:43 0:83	1.95 2.06 2.09 2.04 0.07	1.81 2.04 1.99 1.95 0.12	59 59 59
MEAN SID DEV SID ERR	85 86 87 88 89 90 85 89 85 89	0,87 3,45 2,30	11:39 6:44 5:62 7:82 3:12 1:80	2.49 1.84 1.57 1.96 0.47	2,18 1,91 1,55 1,88 0,32	59 59 59
MEAN STO DEV STO ERR	91 92 93 94 95 96 91 95 91 95	8,40 5,38 4,97 3,66	6:09 4:62 9:32 6:68 2:40 1:39	2,07 2,20 2,52 2,26 0,23	2,13 2,58 2,39 2,37 0,23	59 59 59

DAHLGREN POLAR MUNITURING SERVICE

MEAN STO DEV STO ERR	DAYS 1969 97 98 99 100 101 102 97 101 97 101	PULE X METERS Y 6,32 3,75 2,46 4,17 1,97 1,14	FUSITION METERS X 7:08 7:54 4:56 6:39 1:60 0:92	STAND METERS 2.02 2.01 2.22 2.08 0.12	ARD ERROR Y METERS 2,05 2,13 2,48 2,22 0,23	SATELLITE 59 59 59
MEAN STO DEV STO ERR	103 104 105 106 107 108 103 107 103 107 103 107	2,27 5,44 7,55 5,09 2,66 1,54	8:39 3:65 6:75 6:26 2:40 1:39	2.11 2.76 2.17 2.35 0.36	2:02 3:06 2:39 2:49 0:53	59 59 59
MEAN SID DEV SID ERR	109 110 111 112 113 114 109 113 109 113 109 113	6,02 5,59 2,85 4,82 1,72 0,99	8:54 5:38 4:43 6:12 2:15 1:24	2.45 2.32 2.47 2.41 0.08	2,43 2,49 2,54 2,49 0,05	59 59 59
MFÄN Sin dev Sin err	115 116 117 118 119 120 115 119 115 119	3,85 5,68 4,95 4,82 0,92 0,53	6:70 4:09 6:89 5:89 1:57	2.55 2.75 2.22 2.51 0.27	2.98 3.05 2.63 2.89 0.23	59 59 59

DAHLGREN POLAR MUNITURING SERVICE

MĘÁN SŢD DEV SŢD ERR	DAYS 121 123 125 121 121 121	1960 122 124 126 125 125	PALE X METERS Y 2,35 1,70 5,06 3,04 1,78 1,03	PØSITIØN METERS X 4,62 4,45 8:33 5:80 2:19 1:27	STANDAR METERS Y 2.40 2.32 2.58 2.43 0.14	D ERRØR METERS 2.70 2.60 3.10 2.80 0.26	SATELLITE 59 59 59 59
MEAN SID DEV SID ERR	127 129 131 127 127 127	128 130 132 131 131 131	4:06 5:97 7:35 3:23 3:25 1:87	4:45 3:55 4:51 4:17 0:54 0:31	2.58 2.73 2.56 2.62 0.10	2,93 3,00 3,21 3,05 0,15	59 59 59
MEÄN STD DEV STD ERR	133 135 137 133 133	134 136 138 137 137	0:27 4:22 3:12 2:54 2:04 1:18	6,06 5,30 =1,94 3,14 4,41 2,55	2.56 2.01 2.76 2.44 0.39	2,95 2,75 3,39 3,03 0,33	59 59 59
MEAN Sid dev Sid err	139 141 143 139 139	142 144 143 143	6,16 5,01 4,92 5,36 0,69 0,40	1:60 2:66 2:44 2:23 0:56 0:32	2.36 2.15 2.63 2.38 0.24	2.74 2.63 2.96 2.78 0.17	59 59 59

REPORT 1 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STO DEV STO ERR	DAYS 145 147 149 145 145	1968 146 148 150 149 149		PUSITION METERS X 1,82 5,09 5,21 4,04 1,92 1,11		₹D ERRØR Y METERS 3,67 1.09 1.59 2.12 1.37	SATELLITE 59 59 59
MEAN SIN DEV SID ERR	151 153 155 151 151	152 154 156 155 155	4:80 4:49 3:87 4:39 0:47 0:27	7.47 5.70 4.96 6.04 1.29 0.74	1.08 0.90 1.35 1.11 0.23	1,30 1,13 1,56 1,33 0,22	59 59 59
MEAN STO DEV STO ERR	157 159 161 157 157 157	. 158 160 162 161 161 161	3,74 3,71 3,86 3,77 0,08 0,05	6:19 5:20 5:38 5:59 0:53	0.95 0.97 1.08 1.00 0.07	1.23 1.18 1.33 1.25 0.07	59 59 59
MEAN SID DEV SID ERR	163 165 167 163 163 163	164 166 168 167 167	2,77 4,72 1,91 3,13 1,44 0,83	5:59 5:00 4:35 4:98 0:62 0:36	1.10 1.06 0.95 1.04 0.08	1.28 1.28 1.16 1.24 0.07	59 59 59

REPURT 1 REVISION 1

DAHLGREN POLAR MONITURING SERVICE

MEAN SÎD DEV SÎD ERR	DAYS 169 171 173 169 169	1968 170 172 174 173 173	PULE X METERS Y 2,28 2,39 2,35 2,34 0,06 0,03		STAND METERS 0.97 1.11 0.92 1.00 0.10	ARD ERROR Y METERS 1,09 1,33 1,24 1,22 0,12	SATELLITE 59 59 59
MEÄN SID DEV SID ERR	175 177 179 175 175	176 178 180 179 179	2:16 3:83 2:56 2:85 0:87 0:50	5:40 4:07 4:74 4:74 0:67 0:38	0.97 0.93 0.89 0.93 0.04	1:12 1:03 1:08 1:07 0:05	59 59 59
MEAN SID DEV SID ERR	181 183 185 181 181	182 184 186 185 185 185	3,78 4,18 3,80 3,92 0,23 0,13	5:21 4:63 4:59 4:61 0:35 0:20	0.88 0.94 1.08 0.96 0.10	1.01 1.04 1.27 1.11 0,14	59 59 59
MFAN STD DEV STD ERR	187 189 191 187 187	188 190 192 191 191	3,60 3,22 2,75 3,19 0,43 0,25	3.90 4.31 2.32 3.51 1.05 0.61	0.91 0.80 0.98 0.90 0.09	1.02 0.92 1.06 1.00 0.07	59 59 59

REPORT 1 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STO DEV STO ERR	195 197 193 193	968 X 194 196 198 197 197	PØLE METERS Y 4,72 3,41 3,63 3,92 0,70 0,40	PØSITIØN METERS X 3,29 3,56 4,98 3,95 0,91 0,52	STAND METERS 0.86 0.83 0.80 0.83 0.03	ARD ERRUR Y METERS 0,91 0,88 0.85 0.88 0.03	SATELLITE 59 59 59
MEAN STO DEV STO ERR	201 203 199 199	200 202 204 203 203 203	4,04 4,33 4,38 4,25 0,18 0,10	4.75 3.44 3.14 3.78 0.85 0.49	0.94 0.86 0.94 0.91 0.04	1,01 0,88 0,95 0,94 0,06	59 59 59
MEÁN STO DEV STO ERR	207 209 205 205	206 208 210 209 209 209	5:55 3:57 4:07 4:40 1:03 0:60	4:86 3:57 4:34 4:26 0:65 0:38	1.05 0.99 0.93 0.99 0.06	1,07 0,92 0,96 0,98 0,07	59 59 59
MEAN SID DEV SID ERR	213 215 211	212 214 216 215 215 215	3.07 3.08 4.89 3.68 1.05 0.61	2:98 3:60 0:66 2:42 1:55 0:90	1.02 0.94 0.93 0.96 0.05	1.01 0.97 0.91 0.96 0.05	59 59 59

REPURT 1 REVISION 1
DAHLGREN PULAR MUNITURING SERVICE

MFAN STD DEV STD ERR	DAYS 217 219 221 217 217 217	1969 218 220 222 221 221 221		PMSITIAN METERS X 1,91 1,98 3,76 2,55 1,05 0,61	STANDA METERS 1.18 1.06 1.08 1.11 0.07	ARD ERRØR Y METERS 1,13 1.01 1.06 1.07 0.06	SATELLITE 59 59 59
MEÄN STO DEV STO ERR	223 225 227 223 223 223	224 226 228 227 227 227	2,04 2,88 3,28 2,73 0,63 0,36	1:21 2:48 3:23 2:30 1:02 0:59	0.98 1.09 0.86 0.98 0.11	0,92 1.02 0,86 0,94 0.08	59 59 59
MEAN SÍD DEV SÍD ERR	229 231 233 229 229 229	230 232 234 233 233 233	3.00 2.12 2.11 2.41 0.51 0.30	1:75 0:53 2:61 1:63 1:05 0:60	1.24 1.11 0.89 1.08 0.18	1.04 1.07 0.84 0.98 0.13	5 y 5 y
MEAN SID DEV SID ERR	235 237 239 235 235 235	236 238 240 239 239 239	2,47 3,73 3,71 3,30 0,72 0,42	1,35 2,08 3,11 2,18 0,89 0,51	0.99 0.95 0.92 0.95 0.03	0,95 0,87 0,88 0,90 0,04	50 50 59

REPØRT 1 REVISION 1
DAHLGREN PØLAR MØNITØRING SERVICE

MEĂN SÍD DEV SÍD ERR	DAYS 241 243 245 241 241 241	1968 242 244 246 245 245 245		PMSITIMMETERS 3,52 2:41 0:79 2:24 1:37 0:79	STANDA X METERS 0.97 0.99 0.98 0.98 0.01	RD ERRUR Y METERS 0,97 0,99 0,93 0,96 0,03	SATELLITE 59 59 59
MEAN STO DEV STO ERR	247 249 251 247 247 247	248 250 252 251 251 251	1.78 1.98 3.35 2,37 0.86 0.49	3:60 1:59 2:56 2:58 1:00 0:58	0.91 0.98 1.02 0.97 0.06	0,87 0,99 1,02 0,96 0,08	59 59 59
MÇÂN STD DEV STD ERR	253 255 257 253 253 253	254 256 258 257 257 257	1.91 0.90 1.55 1.45 0.51 0.30	2:50 2:80 1:66 2:32 0:59 0:34	0.94 0.96 0.91 0.94 0.03	0,91 0,96 0,88 0,92 0,04	59 59 59
MEÁN STO DEV STO ERR	259 241 263 259 259 259	260 262 264 263 263 263	2,59 1,30 3,00 2,30 0,89 0,51	0:63 0:10 2:04 0:92 1:00 0:58	1.02 1.05 0.89 0.99 0.08	0,99 1,12 0,95 1,02 0,09	59 59 59

REPØRT 1 REVISIØN 1
DAHLGREN PØLAR MØNITØRING SERVICE

MEÁN STĎ DEV STD ERR	DAYS 265 267 269 265 265 265	1968 266 268 270 269 269 269	PØLE X METERS Y 0,91 7,68 0,66 0,30 0,86 0,49	PMSITIØN METERS X 2,33 2,26 0,32 1,64 1,14 0,66	STAND METERS 0.97 1.16 1.10 1.08 0.09	ARD ERFOR Y METERS 1,12 1,30 1,11 1,18 0,11	SATELLITE 59 59 59
MEÂN SÎD DEV SÎD ERR	271 273 275 271 271 271	272 274 276 275 275 275	1,56 2,81 0,39 2,23 1,29	1:52 2:92 1:36 1:65 0:96	0.92 0.98 0.85 0.92 0.06	1.01 1.11 0.92 1.02 0.10	59 59 59
MEAN SID DEV SID ERR	277 279 281 277 277 277	278 280 282 281 261 281	#1,65 #3,32 0,19 #1,59 1,76 1,01	2:82 2:65 2:25 2:57 0:29 0:17	1.26 1.03 1.07 1.12 0.12	1,39 1,16 1,29 1,28 0,12	59 59 59
MEAN STO DEV STO ERR	283 285 287 283 283 283	284 286 288 287 287 287	0,41 0,96 0,30 0,56 0,35 0,20	2:85 3:95 1:48 2:76 1:24 0;72	0.98 1.00 1.07 1.02 0.05	1,25 1,45 1,45 1,38 0,12	59 59 59

REPØRT 1 REVISION 1 NAHLGREN PØLAR MØNITØRING SERVICE

MEAN SID DEV SID ERR	DAYS 289 291 293 289 289 289	1968 290 292 294 293 293 293	PØLE X METERS Y ************************************	PØSITIØN METERS X 3,23 1,90 3,33 2,82 0,80 0,46	STANDA METERS 1.05 1.06 0.97 1.03 0.05	ARD ERRØR Y METERS 1,30 1:23 1:11 1:21 0:10	SATELLITE 59 59 59
MEÄN STO-DEV STO ERR	295 297 299 295 295 295	296 298 300 299 299 299	0,82 0,53 0,32 0,63 0,37	2:62 0:62 6:34 3:19 2:90 1:68	1.06 1.27 0.99 1.11 0.15	1,25 1,83 1,51 1,53 0,29	59 59 59
MEAN SID DEV SID ERR	301 303 305 301 301 301	302 304 306 305 305 305	#2:60 #2:36 #2:09 #2:35 0:25 0:15	4:28 *1:98 *3:02 *:24 3:95 2:28	1.05 1.23 0.93 1.07 0.15	1.49 1.77 1.39 1.55 0.20	59 59 59
MEAN STO DEV STO ERR	307 309 311 307 307	308 310 312 311 311 311	#1,87 #1,83 #1,86 Q,88 Q,51	0:56 1:37 3:86 1:93 1:72 0:99	1.27 1.06 0.93 1.09 0.17	1,60 1,26 1,25 1,37 0,20	59 59 59

REPORT 1 REVISION 1 - BAHLGREN POLAR MONITORING SERVICE

MEÁN SID DEV SID ERR	DAYS 313 315 317 313 313 313	1968 314 316 318 317 317 317	PØLE X METERS Y #.91 #2.57 #1.96 #1.81 0.84 0.48	PØSITIØN METERS X 1,91 -,55 3,04 1,47 1,83 1,06	STANDA METERS 0.91 1.05 0.89 0.95 0.09	RD ERRØR Y METERS 1,15 1,36 1,18 1,23 0,12	SATELLITE 59 59 59
MEAN SID DEV SID ERR	319 321 323 319 319 319	320 322 324 323 323 323	#1:16 #1:60 #2:03 #1:60 0:43 0:25	4:15 3:58 2:05 3:26 1:09 0:63	1.07 0.86 0.93 0.95 0.11	1,34 1,09 1,17 1,20 0,13	59 59 59
MEAN STD DEV STD ERR	325 327 329 325 325 325	326 328 330 329 329 329	0:98 =2:86 =1:86 =1:25 1:99 1:15	-:83 -:32 3:76 0:87 2:52 1:45	0.88 0.95 0.88 0.90 0.04	1,07 1,19 1,03 1,10 0,09	59 59 59
MEAN STO DEV STO ERR	331 333 335 331 331 331	332 334 336 335 335 335	#2,74 #2,98 #4,29 #3,34 0,83 0,48	3:25 5:90 5:13 4:76 1:36 0:79	1.11 0.88 1.28 1.09 0.20	1,37 1,09 1,32 1,26 0,15	59 59 59

REPORT 1 REVISION 1 DAHLGREN POLAR MONITORING SERVICE

·			P	LE POSITION	STANDAI	D ERRØR	
	DAYS	10:0	X METERS			METERS	SATELLITE
							59
•	337	338	- 3,53	1,35	1.11	1,34	
	339	340	54:19	1,62	1.19	1.41	59
	341	342	a3,18	4199	1.24	1.37	59
MEÁN	337	341	=3. 63	2:65	1.18	1.38	
STO DEV	337	341	0,51	2:03	0.07	0.04	
STD ERR	337	341	0,29	1:17			
210 0/11			• • • •				
•							
	343	344	-2,15	6,21	1,39	1,54	59
	345	346		5,43	1.09		59
			±2,63			1.23	59
	347	348	=2.83	5,56	1.19	1,36	27
MEAN	343	347	=2,54	5,74	1.22	1.38	
STD DEV	343	347	0,35	0:42	0.15	.0 . 16	
STD ERR	343	347	0. 20	0:24			
	349	350	#2,66	3:86	1.13	1.29	59
	351	352	99	3,85	1.06	1,10	59
	353	354	=1.94	5,10	0.87	0,98	5 9
MEÀN	349	353	~1.87	4:27	1.02	1,12	
STO DEV	349	353	0,84	0.72	0.13	0,16	
STO ERR	349	353	0.48	0.42	V.10	-110	
SIU EKN	319	373	0110	01.12			
	355	356	#4:37	5.01	0.99	1.08	59
	357	358	*1. 68	6.79	1.05	1.11	59
	359	360	#1:54	5:32	1.32	1.47	59
Mari M							2 9
MEAN	355	359	#2,53	5.71	1.12	1,22	
STD DEV	355	359	1.59	0,95	0.17	0,22	
STO ERR	355	359	0.92	0,55			
	26.	منہ	0.45	'E 0.6		ە شە	59
	361	362	7 2,40	5,98	1.14	1,18	59
M == 1.51	363	364	#2:50	5.92	0.98	0,98	24
MEAN	361	363	=2,45	5,95	1.06	1.08	
STO DEV	361	363	0,07	0:04	0.11	0,14	
STO ERR	361	363	0.05	0:03			

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

·	DAYS	1969	PO X METERS	LE POSITIO Y METERS	N STAND X METERS	ARD ERROR Y METERS	SATELLITE
	15	16	-5.24	6.20	1.14	1.05	59
	16	17	-3.74	5.77	1.52	1.66	60
	17	18	-2.88	6.99	.0.95	0.90	59
MEAN	18	19	-3.78	9.38	1.17	1.26	60
MEAN	15	18	-3.91	7.08	1.19	1.22	
STD DEV STD ERR	15	18 18	0.98	1.61	0.24	0.33	
SID EKK	15	10	0.49	0.81			
	19	20	29	5.52	1.00	0.96	59
	20	21	-5.85	4.45	1.14	1.27	60
	21	22	-5.98	7.19	1.19	1.21	59
	22	23	-3.17	9.46	1.17	1.25	60
	23	24	-1.11	8.95	1.12	1.16	59
	24	25	-2.04	7.05	1.20	1.26	60
MEAN	19	24	-3.07	7.10	1.14	1.18	
STD DEV	19	24	2.40	1.92	0.07	0.12	
STD ERR	19	24	0.98	0.7 9			
	25	26	-1.14	4.96	1.01	1.06	59
	26	27	-2.55	7.64	1.06	1.15	60
	27	28	-4.25	7.42	1.33	1.36	5 9
	28	29	-5.58	6.76	1.43	1.43	60
	29	30	-5.19	7.82	1.17	1.14	5 9
	30	31	-6.44	4.28	1.26	1.44	60
MEAN	25	30	-4.19	6.48	1.21	1.26	
STD DEV	25	30	2.00	1.50	0.16	0.17	
STD ERR	25	30	0.82	0.61			
		2.2			• • •		
	31	32	-2.14	6.77	0.89	0.89	59
	32	33	-4.18	4.50	1.34	1.54	60
	33	34	0.27	10.05	1.29	1.27	59
	34	35	-3.14	7.71	1.14	1.26	60
	35	36 27	-1.20	8.80	0.97	0.95	59
MEAN	36 31	37 36	-2.80 -3.30	7.18	1.17	1.33	, 60
STD DEV	_	36 36	-2.20 1.57	7.50	1.13	1.21	
STD ERR	31 31	36	0.64	1.89 0.77	0.18	0.24	
SID EKK	31	90	0.04	0.11			

REPORT 2 REVISION 1

DAHLGREN POLAR MONITORING SERVICE

			POL	E POSITION	STANDA	ARD ERROR	
	DAYS	1969			METERS	Y METERS	SATELLITE
	37	38	43	10.27	1.72	1.72	59
	38	39	-3.42	8.62	1.38	1.54	60
	39		-1.51	9.44	1.47	1.51	59
	40	41	-2.73	8.77	1.31	1.58	60
	41	42	-3.57	6.56	1.26	1.33	59
	42	43	-3.05	5.70	1.51	1.67	60
MEAN	37	42	-2.45	8.23	1.44	1.56	
STD DEV	37	42	1.23	1.75	0.17	0.14	
STD ERR	37	42	0.50	0.71			
					•		
	43	44	-2.56	8.22	1.20	1.27	59
	44	45	-3.01	5.93	1.43	1.63	
	45		-5.01 95		1.17	1.19	60 5 9
	46	47	-4.49	7.48 7.75	1.21	1.19	
•	47	48	-1.43	7.75	1.31	1.24	60 59
	48	49	-5.17	8.47	1.35	1.52	60
MEAN	43	48	-2.93	7.60	1.33	1.37	80
STD DEV	43	48	1.66	0.89	0.10	0.17	
STD ERR	43	48 48	0.68	0.36	0.10	0.11	
SID ERK	43	40	U•60	0.36			
	49	50	-3.71	7.51	1.32	1.32	59
	50	51	61	9.79	1.49	1.73	60
	51	52	-2.56	7.84	1.14	1.06	59
	52	53	-2.83	7.12	1.70	2.04	60
	53	54	-1.45	5.13	1.09	0.98	59
	54	55	-2.17	5.23	1.46	1.85	60
MEAN	49	54	-2.22	7.10	1.37	1.50	
STD DEV	49	54	1.09	1.75	0.23	0.44	
STD ERR	49	54	0.44	0.71			
	55	56	-1.00	6.63	1.12	1.17	59
	56	57	0.51	7.73	1.68	1.85	60
	57	58	-4.89	7.28	1.11	1.05	59
	58	59	45	6.26	1.51	1.70	60
	59	60	-1.79	6.97	1.43	1.53	59 ·
	60	61	-2.28	7.12	1.73	1.91	60
MEAN	55	60	-1.65	7.00	1.43	1.53	
STD DEV	55	60	1.87	0.51	0.27	0.36	
STD ERR	55	60	0.76	0.21	- - ·	+	

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 61 62 63 64 65 66 61 61	65 66	POI X METERS -1.26 -3.12 -3.77 -6.64 -1.53 -1.58 -2.98 2.05 0.84	POSITION Y METERS X 10.06 6.70 7.97 6.15 7.09 9.43 7.90 1.56 0.64	STAND METERS 1.58 1.17 1.44 3.03 1.39 1.41 1.67 0.68	ARD ERROR Y METERS 1.65 1.24 1.53 4.68 1.48 1.66 2.04 1.30	SATELLITE 59 60 59 60 59 60
MEAN STD DEV STD ERR	67 68 69 70 71 72 67 67	69 70 71 72 73 72 72	-1.79 -1.78 03 -1.45 06 21 89 0.87 0.36	7.09 9.22 9.73 8.51 10.68 7.98 8.87 1.28 0.52	1.08 1.26 1.49 1.29 1.28 1.40 1.30 0.14	1.12 1.46 1.51 1.53 1.33 1.68 1.44	59 60 59 60 59 60
MEAN STD DEV STD ERR	74 75 76 77 78 74 74	76 77 78 79 78	2.03 -2.94 11 -3.15 -3.38 -1.51 2.38 1.07	11.69 9.11 11.12 12.40 11.71 11.21 1.26 0.56	1.75 1.22 1.39 1.69 1.71 1.55 0.23	1.96 1.30 1.60 1.83 1.94 1.73	60 59 60 59 60
MEAN STD DEV STD ERR	79 80 81 82 83 84 79 79	81 82 83 84 85 84	-1.48 14 11 2.57 3.61 0.26 0.78 1.91 0.78	9.41 7.73 10.23 17.17 8.23 7.62 10.06 3.63 1.48	1.72 1.43 1.22 1.76 1.17 1.56 1.48 0.25	1.80 1.53 1.36 1.94 1.38 1.61 1.60	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

			PO	LE POSITION	STAND	ARD ERROR	
	DAYS	1969	X METERS			Y METERS	SATFLLITE
	85	86	1.00	10.17	1.47	1.69	59
	86	87	93	10.70	1.15	1.28	60
	87	88	-1.52	11.01	1.37	1.60	59
	88	89	0.25	8.26	1.47	1.66	60
	89	90	67	9.75	1.32	1.62	59·
	90	91		10.11	1.89	2.01	60
MEAN	85	90	52	10.00	1.44	1.64	
STD DEV	85	90	0.97	0.96	0.25	0.23	
STD ERR	85	90	0.39	0.39			
	91	92	-1.61	13.40	1.80	2.89	59
	92	93	1.31	11.61	1.14	1.27	60
	93	94	1.44	11.61	1.16	1.32	5 9
	94	95	14	7.94	1.27	1.33	60
	95	96	1.28	12.55	1.24	1.39	5 9
	96	.97	55	11.55	1.48	1.63	60
MEAN	91	96	0.29	11.44	1.35	1.64	
STD DEV	91	96	1.25	1.87	0.25	0.63	
STD ERR	91	96	0.51	0.76			
		•					
	97	98	1.67	12.08	1.30	1.60	59
	98	99	0.97	11.30	1.51	1.69	60
	99	100	49	10.43	1.19	1.30	59
	100	101	0.13	10.18	1.05	1.15	60
	101	102	2.07	8.42	1.05	1.20	59
	102	103	0.99	11.04	1.28	1.38	60
MEAN	97	102	0.89	10.57	1.23	1.39	
STD DEV	97	102	0.95	1.25	0.17	0.22	
STD ERR	97	102	0.39	0.51			
	103	104	1.08	9.65	1.11	1.21	59
	104	105	0.33	10.32	1.04	1.16	60
	105	106	2.84	9.82	1.35	1.44	59
	106	107	-1.05	10.77	1.11	1.19	60
	107	108	1.62	10.76	0.95	1.04	59
	108	109	2.10	10.98	1.16	1.22	60
MEAN	103	108	1.15	10.38	1.12	1.21	
STD DEV	103	108	1.38	0.55	0.13	0.13	
STD ERR	103	108	0.56	0.22			

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

				P 0	LE	POSITION	STAND	ARD ERROR	
	DAYS	1969	X	METERS			METERS	Y METERS	SATELLITE
	109	110		0.97		12.05	1.36	1.61	59
	110	111		1.28		8.53	1.18	1.25	60
	111	112		59		9.76	1.14	1.42	59
	112	113		2.95		8.25	1.26	1.40	60
	113	114		2.09		11.97	1.37		59
	114	115		2.58		9.59	1.01	1.07	60
MEAN	109	114		1.55		10:02	1.22		
STD DEV	109	114		1.29		1.64	0.14		
STD ERR	109	114		0.53		0.67			
	115	116		1.42		11.21	1.14	1.26	59
	116	117		2.17		10.37	1.55	1.65	60
	117	118		2.16		9.28	1.10	1.25	5 9
	118	119		2.71		9.52	1.06	1.05	60
	119	120		0.73		4.67	1.51	2.49	59
	120	121		3.75		12.40	1.16	1.25	60
MEAN	115	120		2.16		9.57	1.25	1.49	
STD DEV	115	120		1.04		2.66	0.22	0.53	
STD ERR	115	120		0.43		1.09			
	10 10 10								
	121	122		63		10.34	1.20	1.41	5 9
	122	123		2.36		10.00	1.05	1.03	60
	123	124		1.97		14.34	1.51	1.74	59
	124	125		2.54		10.03	1.39	1.29	60
	125	126		5.67		13.10	1.41	1.72	5 9
	126	127		2.02		9.54	1.32	1.37	60
MEAN	121	126		2.32		11.22	1.31	1.43	
STD DEV	121	126		2.01		1.99	0.17	0.27	
STD ERR	121	126		0.82		0.81		·	
	127	128		2.28		8.80	1.30	1.69	59
	128	129		2.45		9.14	0.90	0.93	.60
	129	130		2.75		11.39	1.12	1.34	59
	130	131		4.96		9.70	1.00	1.09	60
	131	132		2.26		13.44	1.24	1.47	59
	132	133		5.21		8.19	1.10	1.14	60
MEAN	127	132		3.32		10.11	1.11	1.28	
STD DEV	127	132		1.38		1.96	0.15	0.28	
STD ERR	127	132		0.56		0.80			

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 133. 134 135 136 137 138 133 133	134 135 136 137 138		POSITIO METERS 9.70 11.33 12.11 10.73 12.39 9.58 10.97 1.19 0.48	N STAND X METERS 1.36 0.97 1.24 1.03 1.54 0.84 1.16 0.26	ARD ERROR Y METERS 1.71 0.98 1.43 1.09 1.78 0.87 1.31 0.39	SATELLITE 59 60 59 60 59 60
MEAN STD DEV STD ERR	139 140 141 142 143 144 139 139	140. 141. 142. 143. 144. 145. 144. 144.	3.21 3.38 2.73 3.68 1.17 4.63 3.13 1.15	11.97 9.92 10.90 9.49 9.18 7.86 9.89 1.42 0.58	1.14 1.04 1.00 1.09 0.94 0.96 1.03 0.08	1.29 1.05 1.20 1.06 1.09 0.96 1.11	59 60 59 60 59 60
MEAN STD DEV STD ERR	145 146 147 148 150 145 145	146 147 148 149 151 150 150	3.58 6.61 3.10 4.53 6.78 4.92 1.70 0.76	9.14 7.94 10.19 8.52 9.13 8.98 0.84 0.37	1.12 0.99 1.19 1.00 1.01 1.06 0.09	1.24 0.99 1.26 1.04 1.04 1.11	59 60 59 60 60
MEAN STD DEV STD ERR	152 153 154 155 156 151	152 153 154 155 156 156 156	3.52 4.92 4.63 4.05 2.62 5.19 4.15 0.96 0.39	9.24 7.09 9.69 7.15 7.88 8.90 8.32 1.11 0.45	0.98 0.93 0.92 0.98 0.93 0.93 0.94	1.09 0.94 1.06 0.96 1.05 0.95 1.01	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	158 1 159 1 160 1 161 1 162 1 157 1	269 X MI 158 159 160 161 162 163 162 162		POSITION METERS X 9.04 8.53 8.49 8.73 9.69 8.07 8.76 0.56 0.23		RD ERROR Y METERS 1.08 1.18 1.08 1.69 1.07 1.23 0.24	SATELLITE 59 60 59 60 59 60
MEAN STD DEV STD ERR	164 1 165 1 166 1 167 1 168 1 163 1	64 65 66 67 68 69 68 68	3.07 4.72 3.92 5.96 3.99 4.72 4.40 0.98 0.40	7.66 6.34 8.88 8.03 9.98 6.65 7.92 1.37 0.56	1.06 1.24 1.04 1.28 1.46 1.03 1.18 0.17	1.22 1.18 1.22 1.59 1.06 1.25 0.18	59 60 59 60 59 60
MEAN STD DEV STD ERR	170 1 171 1 172 1 173 1 174 1 169 1	70 71 72 73 74 75 74 74	4.68 4.94 6.12 5.16 6.01 3.41 5.05 0.99 0.40	8.28 7.47 8.14 8.14 7.86 10.75 8.44 1.17 0.48	1.28 0.97 1.02 1.17 1.05 1.27 1.13 0.13	1.34 0.97 1.17 1.17 1.21 1.26 1.19 0.12	59 60 59 60 59 60
MEAN STD DEV STD ERR	176 1 177 1 178 1 179 1 180 1 175 1	76 77 78 79 80 81 80 80	4.84 5.51 3.99 3.21 5.02 4.76 4.55 0.82 0.34	9.68 6.74 8.91 9.03 10.29 7.41 8.68 1.35 0.55	0.98 0.89 1.19 1.10 1.16 1.01 1.05 0.12	1.09 0.89 1.34 1.10 1.23 1.02 1.11	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 181 182 183 184 185 186 181 181	1969 182 183 184 185 186 187 186 186		POSITION METERS X 8.02 9.43 7.49 6.46 7.45 6.29 7.52 1.14 0.47	STAND: METERS 1.10 1.25 1.13 1.09 1.06 1.1? 1.13 0.07	ARD ERROR Y METERS 1.14 1.35 1.21 1.14 1.10 1.20 1.19 0.09	SATELLITE 59 60 59 60 59 60
MEAN SID DEV SID ERR	187 188 189 190 191 192 187 187	188- 189- 190- 191- 192- 193- 192- 192-	4.14 6.46 3.97 6.00 4.94 5.12 5.10 0.99	6.14 7.82 7.89 6.71 7.02 6.96 7.09 0.67 0.27	1.01 1.05 1.11 1.04 1.10 1.14 1.07 0.05	1.04 1.09 1.14 1.10 1.14 1.20 1.12 0.05	59 60 59 60 59
MEAN STD DEV STD ERR	193 194 195 196 197 198 193 193	194 195 196 197 198 199 198 198	4.70 4.65 4.99 5.76 4.76 5.98 5.14 0.58	5.38 4.50 5.46 4.38 4.91 5.58 5.03 0.52 0.21	1.15 1.02 1.55 1.33 1.17 1.05 1.21 0.20	1.22 1.07 1.61 1.39 1.21 1.19 1.28 0.19	59 60 59 60 59 60
MFAN STO DEV STO FRR	199 200 201 202 203 204 199 199	200 201 202 203 204 205 204 204 204	4.33 5.62 4.61 3.11 5.56 5.87 4.85 1.05 0.43	5.39 5.20 5.56 7.31 5.66 5.44 5.76 0.78 0.32	1.02 0.98 1.09 1.42 1.04 0.93 1.08 0.18	1.01 1.08 1.15 2.32 0.95 1.05 1.26 0.52	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 205 206 207 209 210 205 205 205	1969 206 207 208 210 211 210 210 210		PGSITION METERS X 5.54 5.40 5.50 4.38 2.55 4.67 1.28 0.57		APD ERROR Y METERS 1.09 0.97 0.99 0.97 1.20 1.04 0.10	SATELLITE 59 60 59 59 60
MFAN STD DEV STD ERR	211 212 213 214 215 216 211 211	212 213 214 215 216 217 216 216 216	4.08 5.97 7.16 5.23 6.20 4.55 5.53 1.14 0.46	7.02 4.81 7.91 3.93 5.12 6.12 5.82 1.48 0.60	0.97 0.99 1.06 1.15 0.96 1.09 1.03 0.09	0.93 1.05 1.04 1.28 1.00 1.18 1.08 0.13	59 60 59 60 59 60
MEAN STD DEV STD ERR	217 218 219 220 221 222 217 217 217	218 219 220 221 222 223 222 222 222	5.51 7.29 4.16	4.76 6.14 2.51 4.34 5.52 3.26 4.42 1.36 0.56	0.92 1.10 1.05 1.20 0.99 1.00 1.04 0.10	0.93 1.28 1.08 1.41 1.02 1.20 1.15 0.18	59 60 59 60 59 60
MEAN STD DEV STD ERR	223 224 225 226 227 228 223 223 223	224 225 226 227 228 229 228 228 228	4.44 6.28 4.05 5.30 3.77 5.26 4.85 0.04	4.89 4.23 3.21 3.43 4.11 3.19 3.84 0.58	1.01 1.03 0.92 1.14 1.11 0.96 1.01	1.04 1.21 0.96 1.28 1.13 0.95 1.09	59 60 59 60 59 60

REPØRT 2 REVISIØN 1
DAHLGREN PØLAR MØNITØRING SERVICE

*				•			
MEAN STD DEV STD ERR	DAYS 229 230 231 232 233 234 229 229	230 231 232 233 234 235 234 234	PØLE X METERS 5.14 6.52 6.71 5.52 4.92 5.09 5.65 0.78 0.32	PUSITION METERS X 4,52 2,69 2,48 3,35 5,19 4,29 3,75 1,08 0,44	METERS Y 0.92 0.95 1.06 1.00	D ERRØR METERS 0.99 1.05 1.11 1.12 1.06 1.27 1.10 0.10	SATELLITE 59 60 59 60 59 60
MEAN STD DEV STD ERR	235 2367 2389 239 240 235 235	236 237 238 239 240 241 240 240 240	3.51 4.93 4.52 2.33 6.71 5.55 4.59 1.54 0.63	- 121 5.27 2.96 - 196 3.21 4.87 2.52 2.58 1.05	1.34 1.40 1.03 1.63 1.13 1.23 1.29	1,63 1,60 1,09 2.83 1.19 1.46 1,63 0,63	59 60 59 60 59 60
MEAN STD DEV STD ERR	241 243 2445 2445 2441 2411 241	242 243 244 245 246 247 246 246 246	5.29 3.22 4.02 4.00 6.20 8.30 5.17 1.86 0.76	5,04 3,69 7,00 3,40 2,50 5,42 4,51 1,63	0.91 1.11 2.37 2.10 0.99 2.87 1.72 0.83	0,89 1,27 2,41 3,65 1,06 3,36 2,11 1,21	59 60 59 60 59
MEAN STD DEV STD ERR	247 248 249 250 251 252 247 247 247	248 249 250 251 252 253 252 252 252	2,54 5,58 4,94 2,52 3,37 2,94 3,65 1,30 0,53	1.24 2.80 1.03 3.28 1.81 4.95 2.52 1.48	1.32 0.87 1.04 1.10 1.02 0.90 1.04 0.16	1.40 0.99 1.12 1.22 1.06 1.02 1.13	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

ME AN STO DEV STD ERR	DAYS 253 254 255 256 257 258 253 253	1969 254 255 256 257 258 259 258 258 258	POLE X METERS Y 4.88 3.96 6.78 3.88 3.10 4.89 4.58 1.27 0.52		STAND METERS 0.95 1.07 1.03 1.02 0.96 1.03 1.01 0.05	ARD ERROR Y METERS 1.03 1.18 1.14 1.20 1.06 1.18 1.13 0.07	SATELLITE 59 60 59 60 59 60
MEAN STD DEV STD ERR	259 261 262 263 264 259 259 259	260 262 263 264 265 264 264 264	1.04 3.16 7.50 2.53 6.12 4.07 2.66 1.19	2.77 2.42 0.57 2.90 2.81 2.29 0.98 0.44	1.30 1.10 1.16 1.18 1.15 1.18 0.07	1.32 1.23 1.30 1.29 1.30 1.29 0.03	59 59 60 59 60
MFAN STD-DEV STD ERR	265 266 267 268 269 270 265 265 265	266 267 268 269 270 271 270 270 270	3.99 3.96 3.94 4.72 1.48 5.01 3.35 1.25 0.51	2.26 0.69 2.45 2.86 -1.28 -1.23 0.96 1.87 0.76	1.20 1.26 1.08 1.32 1.38 1.39 1.27 0.12	1.29 1.38 1.20 1.52 1.53 1.60 1.42 0.16	59 60 59 60 59 60
MEAN STD DEV STD ERR	271 272 273 274 275 276 271 271	272 273 274 275 276 277 276 276 276	79 2.76 2.91 3.62 2.11 3.55 2.36 1.64 0.67	0.67 3.82 1.40 2.03 2.02 56 1.56 1.47	1.09 1.22 1.14 1.15 1.06 1.07 1.12 0.06	1.23 1.30 1.21 1.23 1.13 1.15 1.21	59 60 59 60 59 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 278 280 282 278 278 278	1969 279 281 283 282 282 282	POL X METERS 3.25 5.23 4.91 4.46 1.06 0.61	POSITION Y METERS 0.8302 2.44 1.08 1.25 0.72	N STAND X METERS 1.05 0.78 0.91 0.91 0.14	ARD ERROR Y METERS 1.06 0.87 1.07 1.00 0.11	SATELLITE 60 60 60
MEAN STD DEV STD ERR	284 286 288 284 284 284	285 287 239 288 288 288	2.45 1.39 2.30 2.05 0.57 0.33	1.19 0.67 1.97 1.28 0.65 0.38	0.95 0.81 0.88 0.88 0.07	0.99 0.84 0.94 0.92 0.08	60 60 60
MEAN STD DEV STD ERR	290 292 294 290 290 290	291 293 295 294 294 294	3.24 1.78 2.82 2.61 0.75 0.43	0.62 29 0.02 0.12 0.46 0.27	0.82 0.83 0.90 0.85 0.04	0.89 0.93 0.97 0.93 0.04	60 60 60
MEAN STO DEV STO ERR	296 298 300 296 296 296	297 299 301 300 300 300	3.79 4.09 2.28 3.39 0.97	0.11 74 0.74 0.04 0.74 0.43	0.87 1.00 0.91 0.93 0.07	0.92 0.99 0.87 0.93 0.06	60 60 60

REPORT 2 REVISION 1
DAHLGREN POLAR MONITORING SERVICE

			PØLE	PØSITIØN	STAND	ARD ERRØR	
	DAYS	1969	X METERS Y	METERS X		Y METERS	SATELLITE
	302	303	0.31	- 05	1.00	0.94	60
	304	305	=,70	- 99	9.85	0.88	60
	306	307	1.80	3.07	0.94	0.90	60
MEAN	302	306	9.47	32	0.93	0.91	•
STD DEV	302	306	1,26	€,58	0.08	0.03	
STD ERR	302	306	0,73	0:34			
i .							
	308	309	2,50	-,43	0.90	0.82	60
	310	311	1,18	0,15	0.95	0.89	60
	312	313	1.24	0 82	0.95	0,90	60
MEAN	30e	312	1,64	3,18	0.93	0.87	-
SYD DEV	308	312	0.75	0,63	0.03	0.04	
STO ERR	308	312	Q,43	0,36			
	314	315	1:74	1:40	0.85	0.79	60
	316	317	* • 60	1.77	0.98	0.91	60
	318	319	≈ , 83	1.40	1.02	0.87	60
MEAN	314	318	0.10	1,52	0.95	0,86	
STD DEV	314	3 <u>1</u> 8	1,42	0,21	0.09	0,06	
STD ERR	314	318	0.82	0 ,12 .			
	320	321	#2:11	0,82	1.05	0.95	60

REPORT 3 REVISION 2
DAHLGREN PCLAR MONITCRING SERVICE

MEAN STD DEV STD ERR	DAYS 12 13 14 15 13 13	1970 12 13 14 15		POSITION METERS 2.87 4.21 2.31 5.08 3.62 1.26 0.63		RD ERROR Y METERS 1.46 1.47 1.32 1.31 1.39 0.09	SATELLITE 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	16 17 18 19 20 18 18	16 17 18 19 20	-5.26 -2.84 -2.58 -4.76 -3.85 -3.86 1.17 0.52	2.27 4.71 4.31 5.06 3.22 3.91 1.15 0.51	1.40 1.52 1.45 1.12 1.53 1.40	1.47 1.54 1.59 1.19 1.58 1.48	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	21 22 23 24 25 23 23 23	21 22 23 24 25	-5.80 -5.20 -5.53 -4.38 -5.30 -5.24 0.54 0.24	5.95 4.92 5.76 6.82 8.02 6.29 1.18 0.53	1.14 1.31 1.33 1.37 1.37 1.30 0.10	1.23 1.41 1.39 1.42 1.42 1.38 0.08	1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	26 27 28 29 30 28 28 28	26 27 28 29 30	-5.71 -4.39 -7.08 -7.36 -7.47 -6.40 1.33 0.59	4.94 5.82 4.58 5.97 3.48 4.96 1.01	1.08 1.37 1.42 1.54 1.62 1.41 0.20	1.21 1.33 1.47 1.58 1.92 1.50 0.27	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A

REPORT 3 REVISION 2
DAHLGREN PCLAR MCNITORING SERVICE

MEAN STO DEV STO ERR	DAYS 31 32 33 34 35 33 33	1970 31 32 33 34 35		POSITION METERS X 5.89 5.24 6.16 4.06 4.08 5.08 0.99 0.44		Y METERS 1.51 1.67 1.62 1.21 1.39 1.48 0.18	SATELLITE 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	36 37 38 39 40 40 40 38 38 38	36 37 38 39 40 40 40	-5.92 -4.93 -6.02 -6.08 -5.86 -1.10 -3.78 -4.81 1.84 0.70	3.84 4.47 4.57 4.21 2.03 4.44 2.72 3.75 0.99 0.38	1.36 1.23 1.13 1.35 1.68 2.23 1.48 1.49 C.37	1.48 1.26 1.21 1.40 1.92 2.68 1.50 1.64 0.51	1967-92A 1967-92A 1967-92A 1967-92A 1967-48A 1967-34A 1967-92A
MEAN STD DEV STD ERR	41 42 44 45 44 45 44 45 44 45 43 44 45 43 44 45 43 44 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	412 444 445 445 445 445 445 445 445 445 44	-4.75 -4.25 -6.49 -8.11 -2.76 -4.08 -6.70 -4.84 -3.07 -2.35 -5.61 -5.51 3.97 -6.40 -4.35 2.90 0.78	0.48 7.79 7.14 8.58 4.44 4.42 4.90 3.39 3.45 5.07 6.25 6.46 5.90 6.75 5.36 2.10 0.56	1.49 2.31 1.18 1.21 1.33 1.11 1.27 1.44 1.96 1.57 1.31 1.30 1.77 1.41 1.48 0.33	1.65 2.40 1.31 1.41 1.41 1.23 1.33 1.67 2.19 1.51 1.52 1.56 2.07 1.64 1.64 0.35	1967-34A 1967-34A 1967-48A 1967-48A 1967-92A 1967-92A 1967-34A 1967-34A 1967-92A 1967-92A 1967-92A

REPORT 3 REVISION 2 DAHLGREN POLAR MONITORING SERVICE

			ncic	DOCTION	STANS		
	DAYS	197C		POSITION	STAND	ARD ERRER	
	46	46	-7.48		METERS	Y METERS	SATELLITE
	47	47	-3.28	7.36	1.36	1.39	1967-48A
	48	48		5.81	1.09	1.25	1967-48A
	49	49	-4.67 -3.29	6,80	1.13	1.25	1967-48A
	50	50	-3.29 -4.99	7.08	1.57	1.70	1967-34A
	46		-4.99	6.66	1.14	1.32	1967-48A
	47	46 47	-4.41	7.63	1.84	2.03	1967-34A
	48	48	-2.02	5.87	1.50	1.61	1967-34A
	49	49	-3.65	8.28	1.61	1.71	1967-34A
	50		-1.69	3.88	1.70	2.13	1968-12A
		50	-2.67	7.90	1.45	1.72	1967-34A
	46 47	46	-6.57	8.02	1.62	1.81	1968-12A
	48	47	-2.93	5.93	1.70	1.98	1968-12A
		48	-7.27	9.04	1.74	1.91	1968-12A
	49	49	4.88	6.73	1.42	1.71	1967-92A
	50	5 C	-4.20	7.40	1.64	1.74	1968-12A
	46 47	46	-3.83	4.25	1.58	1.51	1967-92A
	47	47	-3.27	6.42	1.26	1.42	
	50	48	-3.63 	5.69	1.38	1.66	1967-92A
MEAN	48	50	-4.85	6.97	1.34	1.62	1967-92A
STD DEV	48		-4.19	6.72	1.48	1.66	
STD ERR	48		1.60	1.30	0.22	0.26	
31D EKK	40		0.37	0.30			
							•
	51	51	- 5.77	8.12	1.53	1.80	1967-484
•	52	5.2	-4.01	7.54	1.17	1.28	1967-48A
	53	53	-6.65	8.69	1.06	1.22	1967-48A
	54	54	-5.52	8.24	1.20	1.45	1967-48A
	55	55	-4.04	7.42	1.06	1.20	1967-48A
	51	51	-4.49	5.13	1.30	1.45	1967-34A
	52	52	-5.66	8.49	1.42	1.71	1967-34A
	53	53	-4.21	8.15	1.78	2.00	1967-34A
	54	54	-5.93	8.41	1.16	1.28	1967-34A
	55	55	-4.44	5.00	1.57	1.65	1967-34A
	51	51	-2.36	8.18	1.74	2.02	1968-12A
	52	52	-3.78	7.75	1.86	2.09	1968-12A
	53	53	-2.75	3.94	1.39	1.73	1968-12A
	54	54	-7.33	6.25	1.43	1.76	1968-12A
	55	55	11	5.07	1.23	1.49	1968-12A
	51	51	-6.46	5.56	1.09	1.23	1967-92A
	52	52	-4.22	5.08	1.03	1.31	1967-92A
	53	53	-4.82	7.25	1.15	1.39	1967-92A
	54	54	-5.29	5.00	1.43	1.69	1967-92A
	55	55	-9.81	8.20	1.22	1.48	1967-92A
MEAN	53		-4.88	6.87	1.34	1.56	
STD DEV	53		2 • C1	1.55	0.25	0.28	
STD ERR	53		0.45	0.35			

REPORT 3 REVISION 2
DAHLGREN PCLAR MONITCRING SERVICE

			PCLI	POSITION	STAND	ARD ERROR	
		1970	X METERS '		METERS	Y METERS	SATELLITE
	56	56	-3.28	7.1C	1.28	1.32	1967-48A
	57	57	-2.99	5.31	1.40	1.59	1967-48A
	58	5€	-5.80	7.84	1.46	1.54	1967-48A
	59	59	-3.98	6.12	1.40	1.58	
	60	6 C	-3.96	4.56	1.21	1.42	1967-48A
	56	56	-5.06	10.13	1.45		1967-48A
	57	57	-3.30	4.42	1.99	1.53	1967-344
•	58	58	-3.48	10.30		2.16	1967-34A
	59	59	87	10.62	1.36	1.56	1967-34A
	60	6 C	-3.59	7.27	2.19	2.10	1967-34A
	56	5 <i>6</i>	-6.11		1.75	1.93	1967-34A
	57	57		6.62	1.82	2.09	1968-12A
	58	58	-2.78	6.95	1.64	1.87	1968-12A
	59		-7.74	4.28	2.19	2.16	1968-12A
		59	1.47	6.38	2.36	3.14	1968-12A
	60	6C	-7.05	8.01	1.60	1.78	1968-12A
	56	56	-3.12	6.59	1.21	1.30	1967-924
	57 50	57	-5.89	7.77	1.26	1.61	1967-92A
	58	58	-4.32	7.45	1.10	1.28	1967-924
	59	59	-4.40	7.44	0.97	1.27	1967-92A
44 = 441	60	60	-6.25	4.72	1.28	1.42	1967-92A
MEAN	58		-4.13	7.CC	1.55	1.73	
STD DEV	58		2.12	1.87	0.39	0.45	
STD ERR	58		0.47	0.42			
	61	61	-1.66	7.17	1.22	1.34	1047-404
	62	62	-3.37	9.23	1.28	1.37	1967-484
	63	63	-4.33	7.41	1.64	1.51	1967-484
	64	64	-3.60	10.51	0.99		1967-484
	65	65	-4.39	7.03	1.37	1.11	1967-484
	61	61	-3.11	6.93	2.33	1.61	1967-92A
	62	62	74	4.31	1.87	2.19	1967-34A
	63	63	-2.C6	7.68		2.23	1967-344
	64	64	-3.64	7.71	1.43	1.75	1967-34A
	61	61	-4.64	9.17	1.42	1.72	1967-92A
	62	62	-4.97	5.86	1.84	2.24	1968-12A
	63	63	-1.91		1.55	1.68	1968-12A
	61	61	-2.32	8.67	1.48	1.82	1968-12A
	62	62	-5.52	8.44	1.29	1.48	1967-92A
	63	63		6.16	1.51	1.49	1967-92A
MEAN	63	0.5	-5.25	4.05	1.57	1.85	1967-92A
STD DEV	63		-3.43	7.36	1.52	1.69	
STD ERR			1.44	1.77	0.32	0.34	
SID EKK	63		0.37	C•46			

REPORT 3 REVISION 2
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 66 67 68 69 70 66 67 68 68 68	197C 66 67 68 69 70 66 67 68		PCSITION METERS X 5.55 9.03 13.94 7.95 7.98 5.76 6.16 7.92 8.04 2.69 C.95	STAND METERS 1.46 1.39 1.65 1.20 1.08 1.32 1.73 1.12 1.37 0.24	ARD ERROR Y METERS 1.68 1.69 1.88 1.31 1.44 1.67 1.87 1.35 1.61	SATELLITE 1967-48A 1967-48A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	71 72 73 74 75 73 73	71 72 73 74 75	-5.43 -3.78 -4.58 -1.95 -3.54 -3.85 1.30 0.58	9.10 5.69 9.62 6.87 10.07 8.27 1.89 0.85	1.22 1.21 1.22 1.47 1.10 1.24 0.13	1.48 1.64 1.62 1.65 1.41 1.56	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STC DEV STD ERR	76 77 78 79 80 78 78 78	76 77 78 79 80	-2.23 -4.78 -2.26 -3.64 -2.10 -3.00 1.17 0.53	8.23 8.75 8.93 9.46 6.67 8.41 1.07 C.48	1.75 1.07 1.14 1.42 1.28 1.33 0.27	2.02 1.44 1.36 1.76 1.43 1.60	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	81 82 83 84 85 83 83	81 82 83 84 85	-1.51 89 -2.31 -1.85 -4.73 -2.26 1.48 0.66	8.98 8.06 8.98 9.66 9.07 8.95 0.57	1.16 1.09 1.44 0.97 1.28 1.19 0.18	1.54 1.41 1.73 1.06 1.35 1.42	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A

REPORT 3 REVISION 2 - DAHLGREN PCLAR MONITORING SERVICE

			PC	LE POSITIO	N STAND	ARD ERROR	
	DAYS	1970	X METERS	Y METERS	X METERS	Y METERS	SATELLITE
	86	86	-2.52	11.06	1.18	1.38	1967-92A
	87	87	-4.86	10.11	1.39	1.58	1967-92A
	88	88	83	12.29	1.06	1.35	1967-92A
	89	,89	-4.71	11.15	1.33	1.61	1967-92A
	90	90	-1.17	9.88	1.16	1.27	1967-92A
MEAN	88		-2.82	1C.90	1.22	1.44	
STD DEV	88		1.90	0.96	0.13	0.15	
STD ERR	88		0.85	C.43			
	91	91	-2.21	11.73	1.22	1.37	1967-92A
	92	92	-1.90	12.47	1.75	1.89	1967-92A
	93	93	-4.37	11.02	.1.11	1.28	1967-92A
	94	94	51	11.00	1.16	1.19	1967-92A
	95	95	-3.49	8.19	1.21	1.51	1967-92A
MEAN	93		-2.50	10.88	1.29	1.45	
STD DEV	93		1.49	1.62	C.26	0.27	
STD ERR	93		0.67	0.73			
	96	96	-1.42	8.95	1.21	1.39	1967-924
	97	97	-1.77	11.84	1.15	1.38	1967-92A
	98	9.8	81	9.15	1.15	1.32	1967-92A
	99	99	-3.32	11.55	1.38	1.61	1967-92A
	100	100	40	12.94	1.49	1.63	1967-92A
MEAN	98		-1.54	10.89	1.28	1.47	I JOI JAA
STD DEV	98		1.13	1.76	0.15	0.14	
STD ERR	98		0.50	C.79			
	101	101	-1.34	11.58	1.55	1.94	1967-92A
	102	102	26	10.37	1.34	1.61	1967-92A
	103	103	-1.93	11.58	1.18	1.34	1967-92A
	104	104	3C	9.16	1.24	1.37	1967-92A
145 441	105	105	-3.19	12.93	1.26	1.55	1967-92A
MEAN	103		-1.41	11.12	1.31	1.56	
STD DEV	103		1.22	1.42	C.15	0.24	
STD ERR	103		0.55	0.64			

REPORT 3 REVISION 2
DAHLGREN POLAR MONITCRING SERVICE

	DAYS		X METERS Y		METERS	ARD ERROR Y METERS	SATELLITE
•	106	106	0.69	13.06	1.40	1.52	1967-92A
	107 108	107 108	-2.39 -1.01	13.31 12.69	1.26 1.61	1.55 1.66	1967-92A 1967-92A
	109	109	-2.74	10.56	1.40	1.59	1967-92A
	110	110	-2.73	14.97	1.08	1.22	1967-92A
MEAN	108		-1.64	12.92	1.35	1.51	
STD DEV	108		1.48	1.58	0.20	0.17	
STD ERR	108		0.66	0.71			
•			• • •				
	111	111	-2.05	9.11	1.37	1.68	1967-92A
	112 113	112 113	-2.44 -1.68	11.00 13.49	1.03 1.08	1.21 1.26	1967-92A 1967-92A
	114	114	0.81	9.34	1.29	1.39	1967-92A
	115	115	-2.36	12.21	1.35	1.66	1967-92A
MEAN	113		-1.54	11.03	1.22	1.44	
STD DEV	113		1.35	1.87	0.16	0.22	
STD ERR	113		0.60	0.84			
	116	116	1.08	10.27	1.26	1.40	1967-92A
	117	117	0.44	13.29	1.39	1.54	1967-92A
	118 119	118 119	46 -1.54	12.84 12.11	0.98 0.97	1.12 1.12	1967-92A 1967-92A
	· 120	120	3.79	10.77	1.31	1.51	1967-92A
MEAN	118	120	0.66	11.86	1.18	1.34	1701 724
STD DEV	118		2.01	1.30	0.20	0.20	
STD ERR	118		0.90	C•58			
•		,					
	121	121		13.73	1.17	1.37	1967-92A
	122	122	0.43	11.29	1.15	1.29	1967-92A
	123 124	123 124	0.47 75	11.14 13.76	1.12 1.09	1.27 1.30	1967-92A 1967-92A
	125		0.64	9.75	1.09	1.20	1967-92A
MEAN	123	162	18	11.94	1.11	1.29	2701 72M
STD DEV	123		1.01	1.76	0.06	0.06	
STD ERR	123		0.45	0.79			

REPORT 3,4 REVISION 2
DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 126 127 128 129 130 128 128	1970 126 127 128 129 130				RD ERRCR Y METERS 1.10 1.15 1.67 1.30 1.36 1.32 0.22	SATELLITE 1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	131 132 133 134 135 133 133	131 132 133 134 135	3.14 1.74 58 3.64 C.94 1.78 1.70	12.77 10.74 13.38 11.81 12.80 12.30 1.04 0.46	0.92 1.27 C.97 1.23 1.25 1.13 0.17	1.05 1.48 1.05 1.39 1.36 1.27 0.20	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	136 137 138 139 140 138 138	136 137 138 139 140	1.91 0.73 2.21 58 3.11 1.48 1.43 0.64	10.32 12.04 11.56 10.53 14.82 11.86 1.80 0.81	1.39 1.17 1.27 0.76 1.43 1.20 0.27	1.56 1.21 1.33 0.88 1.58 1.31 0.29	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	141 142 143 144 145 143 143	141 142 143 144 145	2.51 3.82 3.45 1.52 2.17 2.69 0.94 0.42	13.14 14.29 9.65 15.08 10.98 12.63 2.27 1.02	0.91 1.14 1.31 1.15 1.09 1.12 0.14	1.03 1.45 1.49 1.29 1.23 1.30 0.18	1967-92A 1967-92A 1967-92A 1967-92A

REPORT 4,5,6 REVISION 2 DAHLGREN POLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 146 147 148 149 150 148 148		PCLE X METERS Y 2.88 1.72 5.34 2.46 4.10 3.30 1.43 0.64		STAND METERS 1.43 1.50 1.13 1.05 1.41 1.30 0.20	Y METERS 1.52 1.80 1.17 1.20 1.39 1.42 0.26	SATELLITE 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	151 152 153 154 155 153 153	151 152 153 154 155	3.33 6.35 3.73 3.56 2.70 3.94 1.41 0.63	13.81 10.78 15.46 11.50 15.16 13.34 2.12 0.95	1.20 1.73 1.02 1.38 1.07 1.28 0.29	1.32 1.67 1.11 1.60 1.15 1.37 0.26	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	156 157 158 159 160 158 158	156 157 158 159 160	3.90 4.45 2.76 4.26 0.05 3.08 1.82 0.81	12.80 11.30 13.50 10.92 14.26 12.56 1.42 0.64	1.32 0.93 1.04 1.03 1.63 1.19 0.28	1.51 1.04 1.15 1.21 1.76 1.34 0.30	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	161 162 163 164 165 163 163	161 162 163 164 165	5.85 2.57 5.72 5.69 3.59 4.69 1.51	10.17 11.37 11.36 10.52 12.58 11.20 C.93 C.42	1.33 1.39 1.53 1.36 1.16 1.36 0.14	1.49 1.50 1.63 1.52 1.25 1.48 0.14	1967-92A 1967-92A 1967-92A 1967-92A 1967-92A

REPORT 6 REVISION 2
DAHLGREN PCLAR MONITORING SERVICE

MEAN STD DEV STD ERR	DAYS 166 167 168 169 170 168 168	1970 166 167 168 169 170		PCSITION METERS X 13.11 12.75 12.70 11.94 9.88 12.08 1.30 0.58		RD ERROR Y METERS 1.70 1.23 1.48 1.54 1.73 1.54 0.20	SATELLITE 1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	171 172 173 174 175 173 173	171 172 173 174 175	4.57 5.71 3.91 5.31 6.17 5.13 C.9C 0.40	12.30 11.41 10.27 11.10 11.89 11.39 0.78 0.35	0.90 1.49 0.94 1.21 0.97 1.10	0.97 1.55 1.07 1.38 1.07 1.21	1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD EER	178 179 180 179 179	178 179 180	5.47 4.58 4.35 4.80 0.59	10.43 14.65 12.24 12.44 2.12 1.22	1.06 1.07 1.08 1.07 0.01	1.05 1.28 1.22 1.18 0.12	1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	181 182 183 184 185 183 183	181 182 183 184 185	4.52 6.64 5.41 8.34 5.42 6.07 1.48 C.66	9.87 10.63 13.01 10.86 10.95 11.06 1.17 0.52	1.32 1.35 1.84 1.05 1.53 1.42 0.29	1.61 1.34 1.94 0.98 1.54 1.48	1967-92A 1967-92A 1967-92A 1967-92A
MEAN STD DEV STD ERR	187 188	186 187 188 189	6.14 3.52 5.86 2.80 4.58 1.67	10.22 11.93 8.53 9.63 10.08 1.42 0.71	1.43 1.31 1.60 0.93 1.32 0.29	1.49 1.25 1.76 0.98 1.37 0.33	1967-92A 1967-92A 1967-92A 1967-92A

APPENDIX B

DISTRIBUTION

DISTRIBUTION

Naval Air Systems Command Department of the Navy Washington, D. C. 20360 Attn: Mr. T. F. Griffin (Code 538) Attn: Mr. J. Kay (Code 5382) Attn: Mr. P. Kuldell Attn: Technical Library	1 1 1 1
Special Projects Office Department of the Navy Washington, D. C. 20360	
Attn: Technical Library	1
Naval Oceanographic Office Washington, D. C. 20390	
Attn: Mr. D. K. Jenkins	1
Attn: Mr. A. Campbell Attn: Mr. J. Reshew	1 1
Attn: Mr. E. Diehlman	1
National Aeronautics & Space Administration 400 Maryland Avenue, S. W. Washington, D. C. 20546 Attn: Mr. Jerry Rosenberg Attn: Mr. Glenn A. Reiff Attn: Technical Library	1 1 1
National Aeronautics & Space Administration Scientific & Technical Information Facility Attn: NASA Representative (S-AK/DL) P. O. Box 5700 Bethesda, Maryland 20014	
National Aeronautics & Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771	
Attn: Mr. John Berbert	1
Attn: Dr. J. W. Siry Attn: Technical Library	1 1
National Aeronautics & Space Administration Langley Research Center Langley, Virginia 23365	
Attn: Technical Library	1

Rendezvous Analysis Branch Office of Flight Operations Manned Spacecraft Center Houston, Texas Attn: Alan J. Moore	1
National Aeronautics & Space Administration Lewis Flight Propulsion Laboratory Cleveland, Ohio 44121 Attn: Technical Library	1
Military Airlift Command F. E. Warren AFB, Wyoming 82003 Attn: Capt Larry D. Beers	
Commander Military Airlift Command Scott AFB, Illinois 62226 Attn: J. Hinely Attn: MAXPGA	1 1
SAMSO (SMTGA) Norton AFB, California 92409 Attn: Col. Lindell	1
Navy Space Systems Activity Air Force Unit Post Office Los Angeles, California 90024	1
Hq. USAF (AFRDDG) Science & Technology Division Pentagon, Washington, D. C. 20360 Attn: Col. William Lake	
Dept. of the Air Force Assistant Chief of Staff, Intelligence Mr. Marcus A. Rosenbaum, AFNINCB 4B 139 Pentagon Washington, D. C. 20360	1
Secretary of the Air Force for Space Systems ABSAFSS 4C-1000 Pentagon, Washington, D. C. 20360	. 1

Applied Physics Laboratory	
The Johns Hopkins University	
8621 Georgia Avenue Silver Spring, Maryland 20910	
Attn: Dr. R. B. Kershner	1
Attn: Dr. H. Black	1
Attn: Dr. R. R. Newton	ī
Attn: Dr. S. M. Yionoulis	ī
Attn: Mr. P. E. P. White	1
Attn: Mr. Charles Dunnel	1
Attn: Technical Library	1
Central Intelligence Agency	
Washington, D. C. 20505	
Attn: Mr. R. M. Harding	1
Attn: Mr. Henry Lutz	1
Defense Documentation Center	
Cameron Station	
Alexandria, Virginia 22314	20
Commanding General	
Aberdeen Proving Ground	
Aberdeen, Maryland 21005 Attn: Ballistics Research Laboratories	1
Attn: Ballistics Research Laboratories Attn: Technical Information Section	1
Attn: Development and Proof Services	1
Acti. Development and 11001 belvices	ı
U. S. Navy Astronautics Group	
Point Mugu, California 93041 Attn: Code AG33	1
Attn: Code SPMOO	1
Attn: Mr. Campbell	1
Nech. II. Campbell	1
Commander Pacific Missile Range	
Point Mugu, California 93041	
Attn: Code 330 - Mark Jones	1
Attn: Code 3274, Box 8 - M. A. Bondelid	1
Commander	
U. S. Naval Missile Center (N23)	
NAS Point Mugu, California 93041 Attn: Technical Library	. 1
ALLII. IECHHICAI DIDIAIY	· 1

Aeronautical Chart & Information Center USAF, Second & Arsenal Streets St. Louis, Missouri 63118	
Attn: ACDEG	6
Aeronautical Chart & Information Center Detachment #1 1221 S. Fern Street	
Arlington, Virginia 22202	1
Director	
Defense Intelligence Agency	
Washington, D. C. 20360	•
Attn: Mr. C. F. Gilchrist Attn: Mr. P. M. Schwimmer	1
Attn: Col. L. Knipling	1 1
Attn: Mr. Doyle Frederick	1
U. S. Army Engineers Topographic Laboratory Research Institute for Geodetic Sciences 701 Prince Street Alexandria, Virginia 22314	. 1
U. S. Army Engineers Topographic Laboratory	
Ft. Belvoir, Virginia 22060	
Attn: L. A. Gambino	1
U. S. Topographic Command	
6500 Brooks Lane	
Washington, D. C. 20315	_
Attn: Mr. John McCall - Code 92000 Attn: Code 14201	1
Attn: Code 14201 Attn: Code 14560	1 1
Attn: Mrs. I. Fischer	1
Attn: Mr. George Dudley	1
Attn: Mr. C. Born	1
Attn: Mr. E. H. Rutscheidt	1
Attn: Mr. R. Peat	1
Oceanographer of the Navy	
The Madison Bldg.	
732 N. Washington Street	_
Alexandria, Va. 22314	1

Chief of Naval Operations OP761 Room 50768 The Pentagon Washington, D. C. 20350	1
Naval Ordnance Systems Command Department of the Navy Washington, D. C. 20360	1
Institute for Defense Analysis 400 Army-Navy Drive Arlington, Virginia 22202 Attn: Technical Library	1
Director National Security Agency Fort George G. Meade, Maryland 20755 Attn: R312	1
Air Force Systems Command, Code SCGRH Andrews Air Force Base Washington, D. C. 20331	1
U. S. Coast & Geodetic Survey Geodetic Laboratory Institute for Earth Sciences Washington Science Center	
Rockville, Maryland 20850 Attn: Dr. H. Schmid Attn: Mr. B. Chovitz	1
Chief of Naval Research Department of the Navy Washington, D. C. 20360	1
U. S. Naval Observatory Washington, D. C. 20390 Attn: Dr. Raynor L. Duncombe Attn: Dr. Glen Hall	1 3
Director Naval Research Laboratory Washington, D. C. 20360	J
Attn: Code 4130 Attn: R. Easton Attn: Fred Raymond	1 1 1

Commander U. S. Naval Ordnance Laboratory White Oak, Maryland 20390 Attn: Technical Library	1
Naval Ship Systems Command Department of the Navy Washington, D. C. 20360 Attn: Technical Library	1
Director Naval Ship Research & Development Center Washington, D. C. 20007 Attn: Technical Library	1
Superintendent U. S. Naval Postgraduate School Monterey, California 93940 Attn: Library, Technical Reports Section	1
Commander U. S. Naval Ordnance Test Station China Lake, California 93555 Attn: Technical Library	1
Superintendent U. S. Naval Academy Annapolis, Maryland 21402 Attn: Technical Library	1
National Science Foundation 1951 Constitution Avenue, N. W. Washington, D. C. 20550 Attn: Dr. E. R. Dyer, Jr. Attn: Engineering Division Attn: Attn: Mathematical Sciences Division	1 1 1
Director National Bureau of Standards Washington, D. C. 20360 Attn: Technical Library	1
Commanding Officer Naval Applied Science Laboratory Attn: Code 9510 Flushing & Washington Avenue Brooklyn, New York 11251	1

Hq., Ballistic Systems Division Trageting Branch		
Guidance & Control Division	*	
Norton AFB, California 92409		
Attn: Capt L. B. Thompson		_
SAMSO(SMQNI-2) - Space & Missile Systems Organization		. 1
Hq., National Range Division		
Patrich Air Force Base, Florida 32925		
Attn: Code NRPPS	•	1
Attn: Maj. Mike Mitchell		1
AFETR (ETEG)		
Patrick AFB, Fla. 32925		
Commanding Officer		
U. S. Naval Space Surveillance System		
Dahlgren, Virginia 22448		1
Smithsonian Astrophysical Observatory		
60 Garden Street		
Cambridge, Massachusetts 02138		
Attn: Dr. Fred L. Whipple		1
Attn: Dr. C. Lundquist		1
Attn: Mr. E. M. Gaposchkin		1
Mr. W. M. Kaula		٠
Institute of Geophysics & Planetary Physics		
University of California		_
Los Angeles, California 90024		. 1
The Ohio State University		
Department of Geodetic Science		
164 W. Nineteenth Avenue		
Columbus, Ohio 43210		4
Attn: Dr. Ivan I. Mueller Attn: Dr. U. A. Uotila	•	$1 \\ 1$
Attn: Dr. R. Rapp		1
• •		
C. Byron Winn		
Colorado State University Fort Collins, Colorado 80521		1
rott dollins, dolorade odsza		1
Aerospace Corporation		
2400 East El Segundo Boulevard		
El Segundo, California 90245 Attn: Mr. Richard Farrer	,	1
Attn: Mr. Richard Farrer		1

Radio Corporation of America Locust Corner Princeton, New Jersey 98540 Attn: Dr. Lowell Krawitz	1
Radio Corporation of America 9430 Lanham Severn Rd. Seabrook, Md. 20801 Attn: Mr. H. C. Parker	1
TRW Systems One Space Park Redondo Beach, California 90278 Attn: Mr. Duane V. Olinger	1
Massachusetts Institute of Technology Computer Center Cambridge, Massachuesetts 02139 Attn: Technical Library Attn: Dr. C. C. Counselman, Bldg. 54	1
Dr. Irwin I. Shapiro Lincoln Laboratory Massachusetts Institute of Technology 244 Wood Street Lexington, Mass. 02173	1
Dr. John D. Nicolaides Department of Aero-Space Engineering Notre Dame University Notre Dame, Indiana 46556	1
Directorate of Military Survey Feltham, England Attn: John Racolence	1
Directorate of Ordnance Southhampton, England Attn: Brig. John Kelsey	1
Hawaii Institute of Geophysics University of Hawaii Honolulu, Hawaii 96822 Attn: Dr. Mohammad Asadvllah Khan	1
Attn: Mr. K. I. Daugherty	1

Purdue University Lafayette, Indiana Attn: Prof L. A. Kivioja	1
Yale University Observatory 135 Prospect Street New Haven, Connecticut 06520	
Attn: Prof. G. M. Clemence	. 1
Attn: Dr. Jay Lieske	1
Attn: Dr. Boris Garfinkel	1
Attn: Technical Library	1 1
	_
Cincinnati Observatory	
Observatory Place	
Cincinnati, Ohio 45201	
Attn: Prof. Paul Herget	1
Attn: Eugene Rabe	1 1
Attn: Technical Library	1
University of California at Los Angeles Dept. of Engineering, Astrodynamics Los Angeles, California 90024 Attn: Prof. Samuel Herrick 4731 Boelter Hall	1
Jet Propulsion Laboratory 4800 Oak Grove Drive, Mail Stop 156-220 Pasadena, California 91109	
Attn: Dr. Charles Lawson	1
Attn: Dr. J. Derral Mulholland	1
Attn: Dr. Roger Broucke	1
Attn: Dr. William G. Melbourne	1
Attn: Mr. Carleton B. Solloway	1
Attn: Technical Library Attn: Dr. Douglas A. O'Handley	1 1
Attn: Dr. Douglas A. O'Handley Attn: Dr. Fred Peters	1
necii. Di i led leccis	_
Prof. V. G. Szehehely	
Taylor Hall, Dept. of Aerospace Eng.	
University of Texas	-
Austin, Texas 78712	1
Space Technology Laboratories, Inc.	
5739 Arbor Vitae Street	
Los Angeles, California 90045	1

UNIVAC Division of Sperry Rand Corporation Box 500 Blue Bell, Pa. 19422	1
The RAND Corporation 1700 Main Street Santa Monica, California 90406 Attn: Mr. R. T. Gabler	1
Applied Research Department AVCO Manufacturing Corporation Lawrence, Massachusetts 01842	1
Lockheed Aircraft Corporation Sunnyvale, California 94086 Attn: Technical Library	1
General Electric Corp. Missile & Space Vehicle Dept. Valley Forge Space Technology Center P. O. Box 8555 Philadelphia, Pa.	1
Texas Instrument Inc. Box 6015 Dallas, Texas 75222 Attn: W. E. Chrisman, Jr.	1
Computer Usage Development Corp. 7315 Wisconsin Avenue N. W. Washington, D. C. 20014	1
Autonetics 3370 Mira Loma Avenue Annaheim, California 92803 Attn: Mr. Ken Gow Building 231, Dept. 247	1
Computer Sciences Corp. 8121 Georgia Avenue Silver Spring, Maryland 20910	1
Computer Sciences Corp. 650 N. Sepulveda Blvd. El Segundo, California 90245 Attn: Dr. Robert Baker	. 1

System Development Corporation 2500 Colorado Avenue	
Santa Monica, California 90406	1
Itek Corporation Third Avenue Burlington, Massachusetts 01803	1
Douglas Space Center 5301 Bolsa Avenue Huntington Beach, California 92647 Attn: Helen A. Holman A3-813, E610	1
Douglas Aircraft Co., Inc. Missile & Space Systems Division Santa Monica, California 90406 Attn: Mr. J. C. Walker Dept. A830, Group BBEO Delivery Station 8	1
International Business Machines Corp. Watson Laboratory 612 W. 116th Street New York, N. Y. 10027 Attn: Dr. W. J. Eckert	1
General Electric Co. 1 River Road Schenectady, N. Y.	1
Mr. John Hinely Air Photographic and Charting Service Orlando Air Force Base, Florida 32813	1
USSR Academy of Sciences 20 Vavilova Street Moscow G-242, USSR Attn: Prof. A. G. Massevitch	1
Batelle Institute 505 King Columbus, Ohio	•

Institue of Theoretical Astronomy Academy of Sciences of the USSR Mendeleevskaya Liniya, 1 Leningrad, V-164, USSR Attn: Dr. V. A. Brumberg Attn: Dr. G. A. Chebotarev Attn: Dr. N. A. Budnikova Attn: Dr. Sh. G. Sharaf	1 1 1 1
Dr. Giorgio E. O. Giacaglia Instituto de Pesquisas Matematica Caixa Postal 8174 - B Sao Paulo S. P. Brazil	1
Prof. Yusuke Hagihara Tokyo Imperial University Observatory Tokyo, Japan	1
Geophysical Institute University of Tokyo, Bunkyoku, Tokyo, Japan Attn: Dr. Hitoski Hakeuchi Attn: Dr. Gen-ichiro Hori	1
Dr. Desmond G. King-Hele Ministry of Aviation Space Department Royal Aircraft Extablishment Farnborough, Hants, England	1
Prof. P. Muller Observatoire de Meudon Seine et Oise France	1
Dr. K. Arnold Geodatisches Institut Potsdam, E. Germany (German Democratic Republic)	1
Dr. J. Kovalevsky Bureau des Longitudes 3 Rue Mazarine Paris 6e, France	1
Dr. Y. Kozai Tokyo Astronomical Observatory Tokyo, Japan B-12	1

Dr. A. E. Roy Department of Astronomy Glasgow University Glasgow, Scotland	. 1
Dr. Ian Halliday Dominion Observatory Ottawa, Canada	1
Royal Greenwich Observatory Herstmonceux Castle, Sussex, England Attn: Mr. D. H. Saddler Dr. G. A. Wilkins	1 1
Prof. Dr. Karl Ramsayer Institut fur Flugnavigation Der Technischen Hobschschule Stuttgart, Germany	1
Dr. O. Weber Deutsche Forschungssanstalt fur Luft-und Raumfahrt Flughafen 33 Braunschweig, Germany	1
Laboratory of Astronomy Athens University Athens, Greece Attn: Dr. Gregory Antonacopoulos Attn: Dr. Charalabos Fragakis	1
Dr. Willem Baarda	1
Geodetic Institute of the Delft Technological University Delft, Netherlands	1
Dr. Paul-Louis Baetsle Universite Libre de Bruxelles et ecole Royale Militaire, Bruxelles, Belgium	1
Dr. F. Barlier Observatoire De Paris Meudon, France	1
Dr. Berard Bruins Technological University Julianalaan 134, Delft	_

Royal Institute of Technology Stockholm 70 Sweden	1
Observatoire Royal De Belgique Bruxelles 18 Belgium Attn: Dr. P. Melchior Attn: Dr. Henri Devehogne Attn: Dr. Paul Paquet	10 1 1
Dr. Konstantinos Adraktas Research Division Doxiadix Associates Athens, Greece	1
Dr. Lyssimahos Mavridis Department of Geodetic Astronomy University of Thessaloniki Thessaloniki, Greece	
Greek Geodetic and Geophysic Commission Athens, Greece Attn: Dr. George Spiliotopoulos Attn: Dr. Nicolas Pierrakeas	1 1
Dr. John Xanthakis Research and Computing Center Academy of Athens 44 Panapistimiou Street Athens, Greece	
Radio Research Station Slough, Buckinghamshire, England Attn: Dr. J. A. Ratcliffe	1
Prof. S. K. Runcorn Physics Department The University Newcastle-Upon-Tyne,1	
England Dr. Henri Marcel Dufour Institut Geographque National Paris. France	1

Astronomical Institute National Observatory of Athens	
Athens, Greece Attn: Dr. Demetrius Elias	1
Attn: Dr. Photios Karapiperis	1
Attn: Dr. Constantinos Chassapis	1
Dr. Jean Evangelidis	
Invite-Firecteur du quotidien "Dimokratiki Allagi" Greece	1
Dr. Michael Frangopoulos	
Ministry of Public Works	
National Technical University Athens, Greece	1
Dr. Apostolos Frangos	
Scientific Rockets Research	
Group on Space	
Athens, Greece	1
Dr. Joseph Hewitt	
Royal Radar Establishment	
Malvern Woreschester, England	1
Dr. Reino Hirvonen	
Finnish Institute of Technology Abrahaminkatu 1-5, Helsinki	
Finland	1
Dr. Elvin Kejlsoe	
Geodetic Institute	
Copenhagen, Denmark	1
Dr. Stanislaw Krynski	
Institute of Geodesy and Cartography Warsaw, Poland	1
Dr. Karl Ledersteger Technische Hochschule	
Wien, Austria	1
Dr. Eugen Kuntz	
Technische Hochschule	
Karlerine Communi	

Dr. Jean-Jacques Levallois Association Internationale de Geodesie Secretaire general	
Paris, France	1
Dr. Wilfried Loescher Wild Heerbrugg AG Heerbrugg, Switzerland	1
Dr. Jacques Loopts Institut Geographique Militaire, Bruxelles, Belgique	1
Dr. Antonio Marussi University of Trieste Trieste, Italy	1
Dr. Olav Mathisen Geographical Survey of Norway Oslo, Norway	1
Dr. Corrado Mazzon Italian Commission of Geodesy Institute di Geodesia Politecnico Milano, Italy	1
Dr. George Nikolitsas School of Agriculture Athens, Greece	1
Dr. Liisi Oterma Astronomia Optika Institucio de Universitate do Turku Turku, Finland	1
Dr. Galin Popovici Academia Republicei Populve Romine Bucharest Observatory Bucharest, Rumania	1
David Coog Immunit	.
Geodatisches Institut der Technischen Hochschule Stuttgart, Germany	1
Dr. Rafael Sanchez National University of Tucuman Aycucho 482, Tucuman	
Argentina	1

Dr. Joie Turroja University of Madrid Madrid, Spain	. 1
Dr. Rasa Vodusek University of Ljubljana Trg Revolucije 11, Ljubljana Yugoslavia	. 1
Deutsche Forschungsanstalt fur Luft-und Raumfahrt (DEL), Germany	1
Dr. Jack Weightman Geodetic Office Ministry of Defense London, England	1
Technical University of Berlin Hardenbergstr. 34, Berlin-Charlottenburg Germany Attn: Dr. Helmut Moritz Attn: Dr. Karl Zeiske Attn: Dr. Reinhard Schlichting	1 1 1
Centre Spatial De Bretigny Boite Postale N ^O 4 Bretigny 1 Orge 91 France Attn: Dr. M. Lefebvre	. 1
Dr. B. Guinot Bureau International De L'Heure 61, Avenue de L'Observatoire 75 - Paris (14eme) France	10
Dr. Shigeru Yumi Director Central Bureau of the IPMS International Latitude Observatory	
Mizusawa-shi, Iwate-ken Japan	10

Dr. D. E. Smylie Department of Geophysics The University of British Columbia Vancouver 8, Canada	1
Alton B. Moody Western Geophysical Company 8100 Westpark Drive P. O. Box 2469 Houston, Texas 77001	1
Dr. G. Hartmann Max-Planck-Institut Für Aeronomie Abteilung Für Weltraumphysik 3411 Linda/Harz Postfach 70 Germany	1
Professor John Danby North Carolina State University Raleigh, North Carolina 27607	1

Local:	
KA	100
MAM	1
MAL	6
KR	1
KX Z	1

Security Classification						
·	DOCUMENT CONTROL DATA - R & D					
(Security classification of title, body of abstract and indexing a	annotation must be entered when the overall report is classified)					
1. ORIGINATING ACTIVITY (Corporate author)	28. REFORT SECURITY CLASSIFICATION					
U. S. Naval Weapons Laboratory	UNCLASSIFIED					
Dahlgren, Virginia	2b. GROUP					
- , -						
3. REPORT TITLE						
POLAR MOTION DETERMINATIONS BY U. S. NAVY	DOPPLER SATELLITTE OBSERVATIONS					
TOURING FROM DESIGNATION OF THE PROPERTY OF TH	DOLLARIE OFFICE ADDRESS OF THE OFFI					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
5. AUTHOR(S) (First name, middle initial, last name)						
т т Ааа.	·					
R. J. Anderle						
6. REPORT DATE	78. TOTAL NO. OF PAGES 7b. NO. OF REFS					
July 1970	95					
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)					
	TR-2432					
b. PROJECT NO.	·					
!	٠.					
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)					
l .						
d.						
10. DISTRIBUTION STATEMENT						
i						
Distribution of this document is unlimited	1.					
The street principles of the street page.						
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY					
	·					
13. ABSTRACT						

The irregular motion of the earth's axis of rotation, know as Chandler Wobble, has been determined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differences between results for different groups of observatories as reported by the Bureau International de L'Heure and the International Polar Motion Service.

DD FORM 1473 (PAGE 1) S/N 0101-807-6811

UNCLASSIFIED
Security Classification

1. Satellites - Doppler position finding 2. Satellites - Polar orbits I. Anderle, R. J.	UNCLASSIFIED CARD	1. Satellites - Doppler position finding 2. Satellites - Polar orbits I. Anderle, R. J.	UNCLASSIFIED CARD		
U. S. Naval Weapons Laboratory (NWL TR-2432) POLAR MOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS, by R. J. Anderle, July 1970, 95 pages. UNCLASSIFIED REPORT The irregular motion of the earth's axis of actermined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions ob about 0.5 meters have been obtained for averaging these of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differences between results for different groups of observatories as reported by the Bureau international de L'Heure and by the International		U. S. Neval Weapons Laboratory (NWL TR-2432) POLAR WOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS, by R. J. Anderle, July 1970, 95 pages. UNCLASSIFIED REPORT The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differences between results for different groups of observatories as reported by the Mileonal dell'Heure and by the Mileonal dell'Heure and by the <a dell'heure"="" href="Mileonal-International dell'Heure and by the Mileonal dell'Heure and by the Mileonal dell'Heure and by the <a href="Mileonal-International-Interna</td><td></td></tr><tr><td>1. Satellites - Doppler position finding 2. Satellites - Polar orbits I. Anderle, R. J.</td><td>UNCLASSIFIED CARD</td><td>1. Satellites - Doppler position finding 2. Satellites - Polar orbits I. Anderle, R. J.</td><td>UNCLASSIFIED CARD</td></tr><tr><td>U. S. Naval Weapons Laboratory (NWL TR-2432) POLAR MOTION DETENTIMATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS, by R. J. Anderle, July 1970, 95 pages. UNCLASSIFIED REPORT The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observations of Navy Navigation Satellites. Measurement precisions of about 0.5 meters have been ment precisions of about 0.5 meters have been distanced for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differences between results for different groups of observatories as reported by the <a href=" https:="" liber.com="" liber<="" td=""><td></td><td>U. S. Naval Weapons Laboratory (NWL TR-2432) POLAR MOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS, by R. J. Anderle, July 1970, 95 pages. UNCLASSIFIED REPORT The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observa- ment precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differ- ences between results for different groups of observatories as reported by the Bureau International de L'Heure and by the Interna- tional Polar Motion Service.</td><td></td>		U. S. Naval Weapons Laboratory (NWL TR-2432) POLAR MOTION DETERMINATIONS BY U.S. NAVY DOPPLER SATELLITE OBSERVATIONS, by R. J. Anderle, July 1970, 95 pages. UNCLASSIFIED REPORT The irregular motion of the earth's axis of rotation, known as Chandler Wobble, has been determined on the basis of Doppler observa- ment precisions of about 0.5 meters have been obtained for averaging times of six days. Agreement with astronomical determinations is better than one meter over the last two years. The discrepancies are no longer than differ- ences between results for different groups of observatories as reported by the Bureau International de L'Heure and by the Interna- tional Polar Motion Service.	

12. .