Теория проектирования реляционных баз данных

Дж.Ульман Основы систем баз данных Глава 5

Проблемы проектирования - аномалии

Поставщики(назв_пост, адрес_пост, товар, цена)

АНОМАЛИИ

- Избыточность (повторяется АДРЕС)
- Включение

(нельзя вставить ПОСТАВЩИКА, если нет поставляемого товара)

- Удаление
 - (если удалить все ТОВАРы, то и поставщика НЕ БУДЕТ)
- Обновление (НУЖНО следить за тем, чтобы обновление было проведено на всех кортежах БД).
 - Например, при изменении адреса у некоторого поставщика необходимо изменить значение поля «адрес_пост» для всех кортежей этого поставщика в БД)

Ограничения на отношения

- **♦** Отношения могут *различными способами* использоваться для моделирования «реального мира»
- ❖ Каждый кортеж отношения может, например, представлять НЕКОТОРЫЙ ОБЪЕКТ или СВЯЗЬ между объектами.
- № Из фактов о реальном мире следует, что НЕ КАЖДОЕ конечное множество кортежей может быть текущим значением отношения, даже если бы они имели правильную арность и были выбраны из правильных доменов.

```
Персонал (фамилия, дата рождения, ном_пасп, отдел, должность) Иванов 13.09.1990 5001793549 1 м.н.с. Петров 09.13.1980 500284334 3 с.н.с.
```

Отделы (код, название)

- 1 операционных систем
- 2 баз данных
- ❖ Существует 2 вида ограничений на отношения:
 - ✓ Ограничения, которые зависят от семантики элементов домена («дата рождения», «ном_пасп» и т.п.)
 - ✓ Ограничения, которые накладываются в виде равенства или неравенства значений атрибутов, например, «отдел» (Персонал) «код» (Отделы) или вообще в виде некоторой функциональной зависимости

Функциональные зависимости

Пусть $R(A_1, A_2, ..., A_n)$ - отношение, X, Y являются подмножествами $\{A_1, A_2, ..., A_n\}$ Определение

Множество атрибутов Y функционально зависит от X на R, (X o Y)

если в отношении R не могут содержаться

2 кортежа, компоненты которых

- ◆ совпадают по всем атрибутам из X,
- но не совпадают по одному или более атрибутам из Y

То есть
$$\exists r_1, r_2 (r_1, r_2 \in R, \pi_x(r_1) = \pi_x(r_2) > \pi_y(r_1) \neq \pi_y(r_2)$$
) или $\forall r_1, r_2 (r_1, r_2 \in R, \pi_x(r_1) = \pi_x(r_2) \Rightarrow \pi_y(r_1) = \pi_y(r_2)$)

Функциональные зависимости отражают

- а) зависимость неключевых атрибутов от КЛЮЧА,
- б) отношение N:1 разных групп объектов

Логические следствия функциональных зависимостей

Пусть R - схема отношения, а A, B, C – некоторые атрибуты.

Пусть известно, что Φ 3 $A \to B$ и $B \to C$ выполняются на R.

Можно утверждать, что тогда А -> С.

Доказательство от противного.

Пусть (a_1,b_1,c_1) и (a_2,b_2,c_2) кортежи, в которых $a_1=a_2$.

Предположим, что при этом $c_1 \neq c_2$.

Ho тогда, если $b_1 \neq b_2$, то возникает противоречие с ФЗ A → B.

A если $b_1 = b_2$ и при этом $c_1 \neq c_2$, то возникает противоречие с $B \rightarrow C$.

И, <u>следовательно</u>, $c_1 = c_2$.

Пусть F- множество ФЗ в R.

Функциональная зависимость $X \to Y$ логически следует из F, если для каждого отношения r со схемой R, на котором выполняются зависимости F выполняется и $X \to Y$

F⁺ - замыкание F – множество функциональных зависимостей, которые логически следуют из F.

Примеры

- Функциональные зависимости декларируются при проектировании БД (один раз).
- Необходим анализ семантики атрибутов (эксперт).

База КООПЕРАТИВ

```
Члены (фамилия, адрес, баланс)
Заказы (фамилия, товар, количество)
Поставщики (назв_пост, адрес_пост, товар, цена)
Определяем ФЗ
```

```
В «Заказы» фамилия, товар → количество В «Поставщики» назв_пост, товар → цена назв_пост → адрес_пост Можно вывести зависимость назв пост, товар → адрес пост, цена
```

Пример замыкания функциональных зависимостей

Пусть R - схема отношения, а A, B, C – атрибуты.

Пусть известно, что на R выполняются функциональные зависимости $A \to B$ и $B \to C$.

Тогда замыкание F⁺ состоит из всех зависимостей X -> Y, таких что выполняется одно из следующих условий:

- 1. Х содержит А, например, АВС->АВ, АВ->ВС или А->С
- 2. X содержит B, но не A, и Y не содержит A, например, $BC \rightarrow B$, $B \rightarrow C$ или $B \rightarrow \emptyset$.
- 3. $X \to Y$ одна из двух зависимостей: $C \to C$ или $C \to \emptyset$

Ключи

Пусть $R(A_1, A_2, ..., A_n)$ - отношение, $F - \Phi 3$, а X подмножество $\{A_1, A_2, ..., A_n\}$. X называется ключом, если

- 1. $X \to A_1, A_2, ..., A_n$ принадлежит F^+ ,
- 2. Ни для какого собственного подмножества $Y \subset X$, $Y \to A_1, A_2, ..., A_n$ не принадлежит F^+ .

Множество атрибутов, содержащее ключ в качестве подмножества, называется <u>суперключем</u>.

Иногда используется термин возможный ключ

M

Пример. Ключи

В <u>примере</u> на с. 7 только атрибут А является ключом, так как только А → ABC и никакое подмножество А не определяет функционально ABC.

<u>Другой пример</u> R (Город, Адрес, Индекс), где Адрес – название улицы, номер дома, номер квартиры, Индекс – почтовый индекс отделения связи

Если имеем ФЗ:

Город, Адрес → Индекс

Индекс → Город

То можно проверить, что {Город, Адрес} и {Адрес, Индекс} одновременно являются ключами.

Из определения ключа

1. должны иметь место следующие ФЗ:

```
\{\Gamma opod, Adpec\} \rightarrow \{\Gamma opod, Adpec, Индекс\}
\{Adpec, Индекс\} \rightarrow \{\Gamma opod, Adpec, Индекс\}
```

2. ни один из атрибутов {Адрес}, {Город}, {Индекс} отдельно не определяет кортеж в отношении.

Проверить это самостоятельно и уметь показать, как это получается!

Аксиомы функциональных зависимостей

Чтобы определить ключи, нужно вычислить F⁺ из F или, по крайней мере, для всякой функциональной зависимости знать содержится ли она в F⁺!

Для этого нужно иметь правила, которые указывают, как из одной или более зависимостей выводить другие.

На самом деле можно задать **полное множество правил** для вывода из F множество F⁺

Аксиомы АРМСТРОНГА

Пусть дана некоторая схема отношения с универсальным множеством атрибутов **U** и множеством функциональных зависимостей **F**

• А1. Рефлексивность.

Если
$$Y \subseteq X \subseteq U$$
 , то $X \to Y$,

А2. Пополнение.

Если
$$X \to Y$$
 и $Z \subseteq U$, то $XZ \to YZ$

А3. Транзитивность.

Если
$$X \to Y$$
 и $Y \to Z$, то $X \to Z$

Надежность и полнота аксиом (1)

Мы определили аксиомы (правила) вывода из одних функциональных зависимостей - другие. Эти аксиомы (правила) являются <u>надежными</u> и <u>полными</u>.

Надежными они являются потому, что все выводимые с помощью этих правил функциональные зависимости принадлежат F⁺.

Полными они являются потому, что любая функциональная зависимость из F⁺ может выведена из F с помощью этих аксиом.

<u>Лемма 1.</u> Аксиомы APMCTPOHГA являются <u>надежными</u>.

Если зависимость $X \to Y$ выведена из F с помощью этих аксиом, то она **справедлива в любом отношении**, в котором выполняются F.

То есть мы не можем, используя аксиомы, вывести Ф3, не принадлежащую F⁺

Доказательство.

Аксиома А1 (Если Y \subseteq X \subseteq U , то X \rightarrow Y) очевидно является надежной. Мы не можем иметь отношение R, в котором 2 кортежа совпадают по X, но не совпадают по некоторому подмножеству X.

Для доказательства надежности **аксиомы A2** (Если $X \to Y$ и $Z \subseteq U$, то $XZ \to YZ$) предположим, что существуют 2 кортежа t и u, которые совпадают по XZ и не совпадают по YZ. Но так как они не могут не совпадать по Z, то значит они не совпадают по Y, что противоречит тому факту, что $X \to Y$ справедлива для R.

Доказательство надежности **аксиомы А3** (Если $X \to Y$ и $Y \to Z$, то $X \to Z$) можно воспользоваться методом от противного, как мы это сделали раньше.

Надежность и полнота аксиом (2)

Лемма 2. Справедливы следующие правила.

- 1. Правило **объединения**. Если $X \to Y$ и $X \to Z$, то $X \to YZ$.
- 2. Правило псевдотранзитивности.

Если
$$X \rightarrow Y$$
 и $WY \rightarrow Z$, то $WX \rightarrow Z$

3. Правило **декомпозиции**. Если $X \to Y$ и $Z \subseteq Y$, то $X \to Z$

Правила объединения и декомпозиции порождают важное следствие: если $A_{l}, A_{2}, \dots A_{n}$ – атрибуты, то зависимость $X \to A_{l}, A_{2}, \dots A_{n}$ справедлива, если и только если зависимость $X \to A_{i}$ справедлива для каждого i.

Перед обсуждением полноты аксиом определим замыкание множества атрибутов относительно множества функциональных зависимостей.

Пусть F – множество ФЗ на множестве атрибутов U и пусть $X \subseteq U$. Тогда **множество атрибутов A**, таких, что зависимость $X \to A$ может быть выведена из F по аксиомам Армстронга называется **замыканием X относительно F** и обозначается X^+ .

Надежность и полнота аксиом (3)

<u>Лемма 3</u>

Функциональная зависимость $X \rightarrow Y$ следует из аксиом Армстронга, если и только если $Y \subseteq X^+$.

Доказательство.

Пусть $Y \subseteq A_p, A_2, \dots A_n$. И кроме того $Y \subseteq X^+$.

Покажем, что в этом случае X→Y выводится с помощью аксиом Армстронга.

По определению X^+ функциональные зависимости $X \!\! \to \!\! A_i$ выводятся для каждого i с помощью аксиом Армстронга.

Из правила объединения (п.1 лемма 2) следует, что X→Y выводится с помощью аксиом Армстронга.

Наоборот, предположим, что $X \rightarrow Y$ следует из аксиом Армстронга.

Тогда для каждого A_i из Y по правилу декомпозиции (п.3 Лемма 2) имеет место зависимость $X\!\!\to\! A_i$

Георема надежности и полноты

Теорема. Аксиомы АРМСТРОНГА являются надежными и полными.

<u>В лемме 1</u> показано, что аксиомы APMCTPOHГA являются надежными.

Доказательство полноты ведется от противного. Самостоятельно разобрать доказательство. (Ульман. Стр. 159) Следствия:

- X⁺- множество атрибутов A, таких, что X→A логически следует их F (а также по аксиомам Армстронга)
- 2. F⁺ множество зависимостей, следующих из F по аксиомам Армстронга (вместо логически следующих из F)

У нас появляется конструктивный алгоритм, позволяющий проверять является ли ФЗ X→Y логически выводимой (выводимой по аксиомам Армстронга) из множества функциональных зависимостей F уже определенных на отношении

Таким образом, **можно проверить является** ли некоторый набор атрибутов **ключом отношения**, или находится ли отношение в **нормальной форме.**

Декомпозиция отношений

Декомпозиция отношений – разбиение отношения на несколько других.

$$R (A_1, A_2, ... A_n)$$
 разбивается на $S (B_1, B_2, ... B_m)$ и $T(C_1, C_2, ... C_k)$ если:

- 1. $\{A_1, A_2, ... A_n\} = \{B_1, B_2, ... B_m\} \cup \{C_1, C_2, ... C_k\}$
- Кортежи S являются проекцией кортежей R на атрибуты B₁,В₂, ...В_m
- 3. Кортежи Т являются проекцией кортежей R на атрибуты C₁,C₂, ...C_к

Отношение проекты

N_про екта	N_сотр	N_эт	Дата_нач	Дата_кон	Назв_проекта	N_от дела	Назв_отдела
12-08	1104	1	1.01.2012	31.03.2012	Лексический анализ	5	Разработки компиляторов
12-08	1105	1	1.01.2012	31.03.2012	Лексический анализ	5	Разработки компиляторов
12-09	1106	2	1.04.2012	30.06.2012	Синтаксический анализ	5	Разработки компиляторов
12-09	1107	2	1.04.2012	30.06.2012	Синтаксический анализ	5	Разработки компиляторов

N_прое кта	N_сот р	N_ эт	Дата_нач	Дата_кон	N_от дела	Назв_отдела
12-08	1104	1	1.01.2012	31.03.2012	5	Разработки компиляторов
12-08	1105	1	1.01.2012	31.03.2012	5	Разработки компиляторов
12-09	1106	2	1.04.2012	30.06.2012	5	Разработки компиляторов
12-09	1107	2	1.04.2012	30.06.2012	5	Разработки компиляторов

N_про екта	Назв_проекта
12-08	Лексический анализ
12-09	Синтаксическ ий анализ

Нормальные формы отношений (1)

- Отношение R находится в I НФ, если все атрибуты R определены на простых доменах.
 Выполняется по определению.
- Отношение R находится в II НФ, если оно находится в I НФ и все неключевые атрибуты R функционально полно зависят от ключа.

Множество атрибутов X функционально полно зависит от ключа K, если

- \bullet ¬∃ $Z \subset K$, что $Z \to X$

```
Проект(<u>N_проекта, N_сотр, N_эт</u>,
```

ΑΠΙΙΛΓΑ ΩΤΝΙΙΚΙΛΤΩ

Дата_нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела)

Ф3:

- - Нарушение II НФ **НЕ ВОЗМОЖНО**, если ключ состоит из

Нормальные формы отношений (2)

 Отношение R находится в III НФ, если оно находится в II НФ и все неключевые атрибуты R нетранзитивно зависят от ключа.

```
Проект(<u>N_проекта, N_сотр, N_эт,</u>
Дата_нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела)
```

Ф3:

```
N_проекта, N_сотр, N_эт → Дата_нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела N_проекта → Назв_проекта N_отдела → Назв_отдела
```

<u>Транзитивность</u>

N_проекта, **N**_сотр, **N**_эт → **N**_отдела → Назв_отдела

Нормальная формы Бойса-Кодда (BCNF)

- <u>Тривиальные ФЗ</u>. Говорят, что функциональная зависимость $A_1 A_2 \dots A_n \to B$ является тривиальной, если атрибут В совпадает с любым из атрибутов A_i , i=1,...n
- Нетривиальные ФЗ. $A_1A_2...A_n \to B_1B_2,...,B_k$ называется нетривиальной, если по меньшей мере один из атрибутов B_i не является элементом множества $\{A_1,A_2,...,A_n\}$
- Отношение R удовлетворяет BCNF, т. и т. т., когда для любой нетривиальной зависимости R вида $A_1A_2...A_n \to B$ множество $\{A_1,A_2,...,A_n\}$ образует суперключ для R.

приведение к нормальным формам

- Поиск нетривиальных функциональных зависимостей $A_1 A_2 ... A_n \to B_1, B_2, ... B_k$ нарушающих НФ.
- Разбиение на 2 отдельных отношения

 Исходное отношение должно восстанавливаться из 2-ух получившихся отношений с помощью НАТУРАЛЬНОГО СОЕДИНЕНИЯ

Отношение проекты

Проекты (<u>N_проекта, N_сотр, N_эт, Дата_нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела)</u>

Ф3:

- 1. N_проекта, N_сотр, N_эт → Дата_нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела
- 2. № проекта
 → Назв_проекта, Дата_нач, Дата_кон
- 3. N_отдела → Назв_отдела

Проекты (<u>N_проекта, N_сотр, N_эт, Дата</u>нач, Дата_кон, Назв_проекта, N_отдела, Назв_отдела)

1. По ФЗ 2 разбиваем отношение **ПРОЕКТЫ** на 2 отношения (приводим к II НФ):

```
Проекты (<u>N_проекта</u>, Назв_проекта, Дата_нач, Дата_кон) 
Участие (<u>N_проекта, N_сотр, N_эт</u>, N_отдела, Назв_отдела)
```

2. По ФЗ 3 разбиваем отношение УЧАСТИЕ на 2 отношения (приводим к ІІІ НФ):

```
Проекты (<u>N_проекта</u>, Назв_проекта , Дата_нач, Дата_кон )
Отделы (<u>N_отдела</u>, Назв_отдела )
Сотрудники-проекты (<u>N_проекта, N_сотр, N_эт</u>, N_отдела)
```

BCE?

N_проекта	Назв_проекта	Дата_нач	Дата_кон
12-08	Лексический анализ	1.01.2012	31.03.2012
12-09	Синтаксический анализ	1.04.2012	30.06.2012

N_проекта	N_сотр	N_эт	N_отдела
12-08	1104	1	5
12-08	1105	1	5
12-09	1106	2	5
12-09	1107	2	5

N_отдела	Назв_отдела
5	Разработки компиляторов

Отношение Сессия

Сессия (<u>N_зач, N_пред</u>, Фам, Имя, Отч, Назв_предмета, Дата, Оценка)

```
Ф3:
```

```
По ФЗ N_3ay \rightarrow \Phi am, Имя, Отч разбиваем отношение Сессия на 2 отношения ( первый шаг к II НФ):
```

```
Студент (<u>N_зач, Фам, Имя, Отч</u>)
Сессия (<u>N_зач, N_пред, Назв_предмета, Дата, Оценка)</u>
```

```
По ФЗ N_пред → Назв_предмета разбиваем отношение Сессия на 2 отношения (второй шаг к II НФ):
```

<u>Итоговая схема (в III НФ) почему ?</u>

Студент (<u>N_зач</u>, Фам, Имя, Отч)
Предмет (<u>N_пред</u>, Назв_предмета)
Сессия (<u>N_зач, N_пред</u>, Дата, Оценка)