Matrix algebra

and

¹ Please send comments, tions and clarifications to peter.stewart@glasgow.ac.uk

gregory.stevenson@glasgow.ac.uk.

Section Overview

• Key Points: Matrix algebra

- Definition of a matrix
- Matrix addition and scalar multiplication
- Matrix multiplication
- Matrix powers
- Transpose of a matrix
- Inverse of a matrix
- Determinant of a matrix

• Associated sections of the book:

- Poole Section 3.1 (p138 152) (Omit partitioned matrices p145-149)
- Poole Section 3.2 (P160) (Omit column operations)
- Poole Section 3.3 (P169)

3.1: Matrix Operations

Definition A matrix is a rectangular array of numbers called the entries or elements of the matrix.

For a matrix
$$A$$
 we write the i , j^{th} entry as a_{ij} .
For the matrix $A = \begin{bmatrix} 2 & 0 & 5 \\ 1 & 4 & -1 \end{bmatrix}$ then $a_{11} = 2$, $a_{23} = -1$, $a_{21} = 1$ and $a_{12} = 0$.

Symbolically this is expressed by $A = (a_{ij})$. So if A is an $m \times n$ matrix then

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

If the columns of *A* are the column vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n in \mathbb{R}^m we write

$$A = [\mathbf{a}_1 \cdots \mathbf{a}_n],$$

and if the rows are row vectors \mathbf{b}_1 , \mathbf{b}_2 , \cdots , \mathbf{b}_m in \mathbb{R}^n we write

$$A = \left[egin{array}{c} \mathbf{b}_1 \ dots \ \mathbf{b}_m \end{array}
ight].$$

A square matrix (m = n) is diagonal iff its off-diagonal elements are zero. The $n \times n$ identity matrix I_n is the diagonal matrix with all diagonal entries 1.

Example Consider the matrices
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 4 \\ 0 & 0 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Two matrices are equal if and only if they have the same size and their corresponding entries are equal.

Matrix addition and scalar multiplication

If $A = (a_{ij})$ and $B = (b_{ij})$ are $m \times n$ matrices and c is a scalar ² and *c* is a scalar, then we can define new $m \times n$ matrices A + B and cA componentwise: ³

$$A + B = (a_{ij} + b_{ij}),$$

$$cA = c(a_{ij}) = (ca_{ij}).$$

Matrix multiplication

If *A* is an $m \times n$ matrix and *B* is an $n \times r$ matrix then C = AB is the $m \times r$ matrix with $(i, j)^{th}$ entry given by⁴

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

Theorem **3.1** Let A be an $m \times n$ matrix, and

$$\mathbf{e}_i = [0, \cdots, 0, 1, 0, \cdots, 0],$$

- ² Note that matrices must be the same size for addition of two matrices to be defined.
- ³ Note that we have the same two operations: addition and scalar multiplication defined for $m \times n$ matrices as we had in \mathbb{R}^n . These operations satisfy the same rules as our vectors did in Theorem 1.1 (see Theorem 3.2 below). So, the collection of $m \times n$ matrices is a vector space in the sense that we will define in chapter 6. We're starting to see the potential value in generalisation: the additive structure of matrices and of vectors is the same: we can (and will) prove general theorems which will simultaneously cover both situations.
- ⁴ Again note that matrix multiplication is not defined for every pair (A, B) of matrices. It is only defined when the number of rows of A is equal to the number of columns of B. Mathematics is heavily typed: operations can only be performed when objects have the right type (which of course depends on the operation).

with the 1 in the i^{th} position, and

$$\mathbf{e}_{j} = \left[egin{array}{c} 0 \\ dots \\ 0 \\ 1 \\ 0 \\ dots \\ 0 \end{array}
ight],$$

with the 1 in the j^{th} position. Then

- (a) $\mathbf{e}_i A$ is the i^{th} row of A,
- (b) $A\mathbf{e}_j$ is the j^{th} column of A.

Proof: Omitted.

Matrix Powers

If *A* is an $n \times n$ matrix and *k* is a positive integer then

$$A^0 = \mathbb{I}_n,$$
 $A^2 = AA,$ $A^k = \underbrace{AA \cdots A}_{k \text{ times}}.$

Example If
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 then compute A^2 and A^3 .

The transpose of a matrix

Definition The *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} obtained by interchanging the rows and columns of A.

Definition A square matrix is *symmetric* if $A^{T} = A$. That is, A is equal to its own transpose.

Example Are the matrices $A = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 7 \\ 1 & 7 & 5 \end{bmatrix}$ symmetric?

3.2: Matrix Algebra

The addition and scalar multiplication rules for $m \times n$ matrices obey the following algebraic properties.⁵

Theorem 3.2 Let A, B and C be $m \times n$ matricies and c and d be scalars. Then

(a)
$$A + B = B + A$$
,

(b)
$$(A+B)+C=A+(B+C)$$
,

(c)
$$A + 0 = A$$
,

⁵ Note the similarity between this and Theorem 1.1.

- (d) A + (-A) = 0,
- (e) c(A + B) = cA + cB,
- (f) (c+d)A = cA + dA,
- (g) c(dA) = (cd)A,
- (h) 1A = A.

Proof:

Properties of matrix multiplication

Matrix multiplication behaves differently from multiplication of numbers. In general multiplication is not commutative. 6 Also, we could have $A^2 = 0$ even if $A \neq 0.7$

Theorem 3.3 Let A, B and C be matrices and k be a scalar. The following identities hold whenever the operations involved can be performed.

- (a) A(BC) = (AB)C,
- (b) A(B+C) = AB + AC,
- (c) (A + B)C = AC + BC,
- (d) k(AB) = (kA)B = A(kB),
- (e) $I_m A = A = A I_n$ if *A* is $m \times n$.

Proof: Omitted.

Similarly we have algebraic rules for the transpose.

Theorem 3.4 Let *A* and *B* be matrices. The following identities hold whenever the operations involved can be performed.

(a)
$$(A^{T})^{T} = A$$
,

(b)
$$(A + B)^{T} = A^{T} + B^{T}$$
,

(c)
$$(kA)^{T} = k(A^{T}),$$

(d)
$$(AB)^{T} = B^{T}A^{T}$$
,

(e)
$$(A^m)^T = (A^T)^m$$
 for all integers $m \ge 0$.

⁶ i.e. even for square $n \times n$ matrices Aand B (so that AB and BA are defined and are matrices of the same size), it does not follow that AB and BA are equal.

⁷ Can you give an example where this happens?

Proof: Omitted.

Theorem 3.5

- (a) If A is a square matrix then $A + A^{T}$ is a symmetric matrix,
- (b) For any matrix A, AA^{T} and $A^{T}A$ are symmetric matrices.

Proof: Omitted.

3.3: The inverse of a matrix

Definition If *A* is an $n \times n$ matrix, the *inverse* of *A* is an $n \times n$ matrix A' such that

$$AA' = I_n$$
, and $A'A = I_n$.

If A' exists we say A is *invertible*. If no inverse exists, then we say that A is not invertible.

Example Consider the matrices
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Theorem 3.6 If an $n \times n$ matrix A is invertible then its inverse is unique.

Proof: Omitted.

Notation If A is invertible we write A^{-1} for its inverse. **Important Warning.** We are not allowed to write $\frac{1}{A}$ for the inverse of A. Matrices are not numbers, we have defined a notion of multiplication but not of division.

Theorem 3.7 If *A* is an invertible $n \times n$ matrix then the system of linear equations given by Ax = b has the unique solution given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: Omitted.

Theorem 3.8 If

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

then *A* is invertible if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

If ad - bc = 0 then A is not invertible.

Proof: Omitted.

For general $n \times n$ matrices, there are algorithms (using row reduction) for finding the inverse, but not convenient general formula as we have in the 2×2 case.

Definition For a 2×2 matrix

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right],$$

we call ad - bc the determinant⁸ of A, so that

$$det(A) = ad - bc$$
.

8 See section 4.2, where we will discuss the determinant of general square matrices

Example Find the inverses if they exist of $A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 5 \\ 2 & 10 \end{bmatrix}.$

Example Solve the system

$$x + 5y = 3, 2x + 4y = 1$$

using the inverse of the coefficient matrix.

Theorem 3.9

(a) If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A.$$

(b) If A is an invertible matrix and $c \neq 0$ is a scalar then cA is invertible and

$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

(c) If A and B are invertible matrices of the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

(d) If A is an invertible matrix, then A^{T} is invertible and

$$(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}.$$

(e) If *A* is invertible matrix then A^n is invertible for all integers $n \ge 0$ and

$$(A^n)^{-1} = (A^{-1})^n.$$

Proof: Omitted.

Definition If *A* is invertible and $n \ge 0$ an integer we define

$$A^{-n} = (A^{-1})^n = (A^n)^{-1}.$$