Занятие от 7.09. Теоретическая информатика. 2 курс. Решения.

Глеб Минаев @ 204 (20.Б04-мкн)

15 сентября 2021 г.

Содержание		Задача 4	3
		Задача 6	3
Задача 1	1	Задача 9	4
Задача 2	1	Задача 10	6
Задача 3			

Задача 1.

$Q\backslash\Gamma$	a	b	J
q_0	q _{0, a} , _□ , +1	$q_{0, b, c}, +1$	Acc
$q_{0, \; \mathrm{a}}$	$q_{0, a}, a, +1$	$q_{0, a}, b, +1$	$q_{1, a}, $ _, -1
$q_{0,\;\mathrm{b}}$	$q_{0, b}, a, +1$	$q_{0, b}, b, +1$	$q_{1, b}, $ _, -1
$q_{1,\;\mathrm{a}}$	$q_1, _, -1$	Rej	Acc
$\overline{}_{q_{1,\;\mathrm{b}}}$	Rej	$q_1, _, -1$	Acc
q_1	$ q_1, a, -1 $	$q_1, b, -1$	$q_0, _, +1$

Задача 2. В данном случае машина получает a и b разделённые пробелом, а выдаёт a, b и ab, разделённые пробелом.

$Q\backslash\Gamma$	1	1'	Ü.
q_0	$q_{0, 1}, 1', +1$	Error	Halt
$q_{0,\ 1}$	$q_{0,1},1,+1$	Error	$q_{0, 2m}, _, +1$
$q_{0,\;2\mathrm{m}}$	$q_{0, 2}, 1', +1$	Error	$q_{0, \text{ rev}}, \underline{}, -2$
$q_{0, m rev}$	$q_{0, \text{ rev}}, 1, -1$	$q_{0, \text{ rev}}, 1, -1$	Halt
$_\0,\ _2$	$q_{0,2},1,+1$	Error	$q_{0, 3}, \square, +1$
q_0 , $_3$	Error	Error	$q_{1, 3 \to 2e}, 1, 0$
$q_{1,\;3 o 2\mathrm{e}}$	$q_{1, 3 \to 2e}, 1, -1$	$q_{1, 3 \to 2e}, 1', -1$	$q_{1, 2e}, _, -1$
$q_{1,\;2\mathrm{e}}$	$q_{1, 2 \to 1e}, 1, -1$	$q_{1,\;2 \to 1\mathrm{e},\;2\;\mathrm{full}},\;1',\;-1$	Error
$q_{1,\;2 o 1\mathrm{e}}$	$q_{1, 2 \to 1e}, 1, -1$	$q_{1, 2 \to 1e}, 1', -1$	$q_{1, 1e}, _, -1$
$q_{1,\;2 o 1\mathrm{e},\;2 ext{ full}}$	$q_{1, 2 \to 1e, 2 \text{ full}}, 1, -1$	$q_{1, 2 \to 1e, 2 \text{ full}}, 1', -1$	$q_{1, 1e, 2 \text{ full}}, _, -1$
$q_{1, \; 1\mathrm{e}}$	$q_{1, 1 \to 1}, 1, -1$	$q_{1, 1 \to 1b, \text{ drop } 1}, 1, -1$	Error
$q_{1, 1\mathrm{e}, 2 \mathrm{\ full}}$	$q_{1, 1 \to 1}, 1, -1$	$q_{2, 1 \to 2}, 1, +1$	Error
$q_{1,\ 1\rightarrow\ 1},$	$q_{1, 1 \to 1}, 1, -1$	$q_{1, \text{ new } 1}, 1, +1$	Error
$q_{1, \mathrm{\ new\ 1'}}$	$q_{1, 1 \to 3e}, 1', +1$	Error	Error
$q_{1,\ 1 o 3\mathrm{e}}$	$q_{1, 1 \to 3e}, 1, +1$	$q_{1, 1 \to 3e}, 1', +1$	$q_{1, 2 \to 3e, -}, +1$
$q_{1,\;2 o 3\mathrm{e}}$	$q_{1, 2 \to 3e}, 1, +1$	$q_{1, 2 \to 3e}, 1', +1$	$q_{1, 3 \to 3e}, _, +1$
$q_{1,\;3\to\;3\mathrm{e}}$	$q_{1, 3 \to 3e}, 1, +1$	$q_{1, 3 \to 3e}, 1', +1$	$q_{1, 3 \to 2e}, 1, 0$
$q_{1,\;1 o 1 ext{b, drop }1}$	$q_{1, 1 \to 1b, drop 1}, 1, -1$	$q_{1, 1 \to 1b, \text{ drop } 1}, 1', -1$	$q_{1, 1b, drop 1}, L, +1$
$q_{1, \ 1\mathrm{b}, \ \mathrm{drop} \ 1}$	$q_{1,\ 1 \to 2',\ 2++},\ 1',\ +1$	Error	Error
$q_{1,\;1\to2',\;2++}$	$q_{1,\ 1 \to 2',\ 2++},\ 1,\ +1$	$q_{1, 1 \to 2', 2++}, 1', +1$	$q_{1, 2 \to 2', 2++}, 1, 1$
$q_{1,\;2\rightarrow2\textrm{'},\;2++}$	$q_{1,\;2 o 2',\;2++},\;1,\;+1$	$q_{1, \text{ new } 2}, 1, +1$	Error
$q_{1, \mathrm{\ new\ 2}}$	$q_{1, 2 \to 3e}, 1', +1$	Error	Error
$q_{2,\ 1}\rightarrow 2,$	$q_{1, 1 \rightarrow 2'}, 1, +1$	$q_{1, 1 \to 2}, 1', +1$	$q_{1, 2 \to 2'}, \ldots, +1$
$q_{2,\;2 ightarrow 2},$	$q_{2,\;2 \to \;2^{,}},\;1,\;+1$	$Halt, 1, \dots$	Error

Задача 3. Напишем машину, которой подаются битовые строки \bar{w}_1 и \bar{w}_2 , разделённые двумя пробелами, а она оставляет на ленте $\bar{w}_1^R\bar{w}_2$ и возвращает головку в исходное положение.

$Q\backslash\Gamma$	0	1	, ,
q_0	$q_{\text{copy 0, 1} \to 2b, -}, +1$	$q_{\text{copy 1, 1} \to 2b, 2b}, 1, +1$	$q_{\mathrm{shift}2,\rightarrow2\mathrm{e},\smile},+2$
$q_{\mathrm{copy}\ 0,\ 1 \rightarrow 2\mathrm{b}}$	$q_{\text{copy 0, 1} \to 2b}, 0, +1$	$q_{\text{copy 0, 1} \to 2b}, 1, +1$	$q_{\text{copy 0}}, \downarrow, +1$
$q_{\mathrm{copy}\ 1,\ 1 \rightarrow 2\mathrm{b}}$	$q_{\text{copy 1, 1} \to 2b}, 0, +1$	$q_{\text{copy 1, 1} \to 2b}, 1, +1$	$q_{\text{copy }1}, \square, +1$
$q_{ m copy~0}$	Error	Error	$q_{\mathrm{shift}},0,-2$
$q_{ m copy\ 1}$	Error	Error	$q_{ m shift},1,-2$
$q_{ m shift}$	$q_{\mathrm{shift}, 0}, _, -1$	$q_{\mathrm{shift},\;1},\; _,\; -1$	$q_0, _, 0$
$q_{ m shift,\ 0}$	$q_{\rm shift, \ 0}, \ 0, \ -1$	$q_{\text{shift}, 1}, 0, -1$	$q_0, _, 0$
$q_{ m shift,\ 1}$	$q_{ m shift, \ 0}, \ 1, \ -1$	$q_{ m shift, 1}, 1, -1$	$q_0, \lrcorner, 0$
$q_{ m shift2, ightarrow 2e}$	$q_{\mathrm{shift}2, ightarrow2\mathrm{e}},0,+1$	$q_{\mathrm{shift}2,\rightarrow2\mathrm{e}},1,+1$	$q_{\text{shift2}, \cup, \cup}, 0, -1$
$q_{ m shift2,\ U,\ U}$	$q_{\mathrm{shift2, 0, 2}, 2}, -1$	$q_{\mathrm{shift2, 1, 1}}, 1, 1$	$q_{\mathrm{shift}2, J}, J, -1$
$q_{ m shift2,\ 0,\ L}$	$q_{\text{shift2, 0, 0, }}, -1$	$q_{\rm shift2, 1, 0}, _, -1$	$q_{\mathrm{shift}2,\;0},\;\lrcorner,\;-1$
$q_{ m shift2,\ 1,\ \cup}$	$q_{\rm shift2, \ 0, \ 1, \ \cup}, \ -1$	$q_{\rm shift2, 1, 1, 1}, 1, 1, 1$	$q_{\mathrm{shift}2,\;1},\; \lrcorner,\; -1$
$q_{ m shift2,\ 0,\ 0}$	$q_{\text{shift 2, 0, 0}}, 0, -1$	$q_{\text{shift2, 1, 0}}, 0, -1$	$q_{\text{shift 2, 0}}, 0, -1$
$q_{ m shift2,\ 0,\ 1}$	$q_{\rm shift2, \ 0, \ 0}, \ 1, \ -1$	$q_{\rm shift2, \ 1, \ 0}, \ 1, \ -1$	$q_{ m shift 2, \ 0}, \ 1, \ -1$
$q_{ m shift2,\ 1,\ 0}$	$q_{\text{shift 2, 0, 1}}, 0, -1$	$q_{\text{shift2, 1, 1}}, 0, -1$	$q_{\text{shift } 2, \ 1}, \ 0, \ -1$
$q_{ m shift2,\ 1,\ 1}$	$q_{\text{shift 2, 0, 1}}, 1, -1$	$q_{\text{shift2, 1, 1}}, 1, -1$	$q_{\text{shift 2, 1}}, 1, -1$
$q_{ m shift}{}_{2,}$.	Error	Error	Halt, _, 0
$q_{ m shift}{}_{2,\;0}$	Error	Error	Halt, 0, 0
$q_{ m shift}{}_{2,\;1}$	Error	Error	Halt, 1, 0

Состояния $q_0, q_{\text{сору}}\dots, q_{\text{shift}}$ и q_{shift},\dots выполняют сведение задачи для $a\bar{w}_1$ и \bar{w}_2 к задаче для \bar{w}_1 и $a\bar{w}_2$. Таким образом мы сводим задачу к задаче ε и $\bar{w}_1^R\bar{w}_2$. Значит остаётся сдвинуть получившуюся строку на два влево; за это отвечают состояния $q_{\text{shift}2},\dots$.

Теперь напишем машину, которая прибавляет единицу к числу в развёрнутой двоичной записи.

$Q \backslash \Gamma$	0	1	J	
q_0	$q_{ m return}, 1, -1$	$q_0, 0, +1$	$q_{ m return}, 1, -1$	
$q_{ m return}$	$q_{\text{return}}, 0, -1$	$q_{ m return}, 1, -1$	Halt, _, +1	

Задача 4. Сделаем машину, которая находит (первое) вхождение a и удаляет его, а затем поставим её на повтор по условию присутствия a в строке.

$Q\backslash\Gamma$	a	b	c	J.
q_0	$q_{\mathrm{shift}, \rightarrow e, _}, +1$	$q_0, b, +1$	$q_0, c, +1$	Halt
$q_{ m shift, ightarrow e}$	$q_{\text{shift}, \rightarrow e}, a, +1$	$q_{\mathrm{shift}, \to \mathrm{e}}, b, +1$	$q_{\mathrm{shift}, \to \mathrm{e}}, c, +1$	$q_{\mathrm{shift}, \cup}, \cup, -1$
$q_{ m shift},$.	$q_{\mathrm{shift, a}, \square}, -1$	$q_{\mathrm{shift, b, c}}, -1$	$q_{\mathrm{shift, c, c}}, -1$	$q_0, _, 0$
$q_{ m shift,\ a}$	$q_{\mathrm{shift, a}}, a, a, -1$	$q_{\rm shift, b}, a, -1$	$q_{\rm shift, c}, a, -1$	$q_0, a, 0$
$q_{ m shift,\ b}$	$q_{\mathrm{shift, a}}, b, -1$	$q_{\mathrm{shift, b}}, b, -1$	$q_{\mathrm{shift, c}}, b, -1$	$q_0, b, 0$
$q_{ m shift,\ c}$	$q_{\rm shift, a}, c, -1$	$q_{\rm shift, \ b}, \ c, \ -1$	$q_{\mathrm{shift, c}, c, c, -1}$	$q_0, c, 0$

Задача 6. Заметим, что можно переформулировать задачу следующим образом. Постройте машину, которая

1. проверяет присутствие ровно одной буквы c в строке,

- 2. заменяет её на пробел (в итоге получаются строки \bar{u} и \bar{v} из Σ^* , разделённые пробелом),
- 3. проверяет равенство \bar{u} и \bar{v} .

Проверку равенства \bar{u} и \bar{v} реализуем так: слева от \bar{u} и справа от \bar{v} напишем по букве c, сделав отступ (т.е. на ленте через пробел будут написаны c, \bar{u} , \bar{v} и c), а затем с концов u и v будем стирать по букве, в итоге устанавливая равенство \bar{u} и \bar{v} .

$Q \Gamma$	a	b	c	J
q_0	$q_{c1}, a, -2$	$q_{c1}, a, -2$	$q_{c1}, a, -2$	$q_{c1}, _, -2$
$q_{ m c1}$	$q_{\rm find c}, c, +2$	$q_{\text{find c}}, c, +2$	$q_{\rm find c}, c, +2$	$q_{\text{find c}}, c, +2$
$q_{ m find\ c}$	$q_{\rm find c}, a, +1$	$q_{\rm find c}, b, +1$	$q_{\mathrm{found\ c}},$ $_{\mathtt{c}},$ $+1$	Rej
$q_{ m found\ c}$	$q_{\text{found c}}, a, +1$	$q_{\text{found c}}, b, +1$	Rej	$q_{c2}, _, +1$
$q_{ m c2}$	$q_1, c, -2$	$q_1, c, -2$	$q_1, c, -2$	$q_1, c, -2$
q_1	$q_{1, a, c}, -1$	$q_{1, b}, z, -1$	Error	$q_{2,\varepsilon},\lrcorner,-1$
$q_{1,\;\mathrm{a}}$	$q_{1, a}, a, -1$	$q_{1, a}, b, -1$	Error	$q_{2, a}, L, -1$
$q_{1,\;\mathrm{b}}$	$q_{1, b}, a, -1$	$q_{1, b}, b, -1$	Error	$q_{2, b}, z, -1$
$q_{2,\;arepsilon}$	Rej	Rej	Acc	$q_{2,\varepsilon}, \square, -1$
$q_{2,\;\mathrm{a}}$	$q_3, _, +1$	Rej	Rej	$q_{2, a}, _, -1$
$q_{2,\;\mathrm{b}}$	Rej	$q_3, _, +1$	Rej	$q_{2, b}, _, -1$
q_3	$q_4, a, +1$	$q_4, b, +1$	$q_{2, \varepsilon}, c, -1$	$q_3, _, +1$
q_4	$q_4, a, +1$	$q_4, b, +1$	Error	$q_1, _, -1$

Задача 9. Решим такую задачу.

Пусть головка стоит на клетке 0, слева от неё написана троичная запись \bar{n} некоторого числа, а справа — унарная запись числа u. Мы хотим, чтобы головка вернулась на место, слева было написано $k\bar{n}$, а справа — унарная запись числа v, где v и k — неполное частное и остаток при делении u на 3. Пусть также в клетке 0 по умолчанию стоит знак \times ; его нельзя будет писать и стирать, он будет ровно в одном экземпляре.

Рассмотрим следующую машину M_1 .

$Q\backslash\Gamma$	×	a	0	1	2	<u> </u>
$q_0 = q_{0, 0}$	$q_{0, 0}, \times, +1$	$q_{0,1}, _, +1$	Error	Error	Error	$q_{1, 0, \cup}, -1$
$q_{0,\ 1}$	Error	$q_{0,2}, _, +1$	Error	Error	Error	$q_{1, 1}, _, -1$
$q_{0,\;2}$	Error	$q_{0, 0}, a, +1$	Error	Error	Error	$q_{1, 2, 2}, -1$
$q_{1,\;0}$	$q_{2, 0}, \times, -1$	$q_{1, 0}, a, -1$	Error	Error	Error	$q_{1, 0}, _, -1$
$q_{1,\;1}$	$q_{2, 1}, \times, -1$	$q_{1, 1}, a, -1$	Error	Error	Error	$q_{1, 1}, _, -1$
$q_{1,\;2}$	$q_{2, 2}, \times, -1$	$q_{1, 2}, a, -1$	Error	Error	Error	$q_{1, 2}, _, -1$
$q_{2,\;0}$	Error	Error	$q_{2, 0}, 0, -1$	$q_{2, 0}, 1, -1$	$q_{2, 0}, 2, -1$	$q_3, 0, +1$
$q_{2,\ 1}$	Error	Error	$q_{2, 1}, 0, -1$	$q_{2, 1}, 1, -1$	$q_{2, 1}, 2, -1$	$q_3, 1, +1$
$q_{2,\;2}$	Error	Error	$q_{2, 2}, 0, -1$	$q_{2, 2}, 1, -1$	$q_{2, 2}, 2, -1$	$q_3, 2, +1$
q_3	$q_{3'}, \times, +1$	Error	$q_3, 0, +1$	$q_3, 1, +1$	$q_3, 2, +1$	Error
$q_{3'}$	Error	Error	Error	Error	Error	$q_{4, \ 0}, \ 0, \ _$
$q_{4,\;0}$	Error	Error	$q_{4, \text{ check}}, 0, +3$	Error	Error	Error
$q_{4, m \ check}$	Error	$q_{4,\rightarrow \mathrm{end}}, a, +3$	Error	Error	Error	$q_{4'}, _, -3$
$q_{4, ightarrow\mathrm{end}}$	Error	$q_{4, \rightarrow \text{end}}, a, +3$	Error	Error	Error	$q_{4, \text{ shift}}, _, -3$
$q_{4, m \ shift}$	Error	$q_{4, \text{ shifted}}, _, -2$	Error	Error	Error	Error
$q_{4, m \ shifted}$	Error	Error	$q_{4, \text{ shifted'}}, a, +1$	Error	Error	$q_{4, \text{ shift}}, a, -1$
$q_{4, m shifted}$	Error	Error	Error	Error	Error	$q_{4, 0}, 0, 0$
$q_{4'}$	Error	Error	$q_5, _, -1$	Error	Error	Error
q_5	Halt	$q_5, _, -1$	Error	Error	Error	Error

Заметим, что вся машина состоит из "подзадач".

- 1. Состояния $q_{0...}$ (т.е. $q_{0,0}$, $q_{0,1}$ и $q_{0,2}$) составляют подзадачу 0, которая "компрессирует" унарную запись. Т.е. она идёт по ней слева направо стирает a-шки и записывает остаток (второе число в номере состояния) число стёртых a-шек; при этом если остаток сбрасывается в 0, то a-шка не стирается. Таким образом она разбивает a-шки на тройки последовательных, стирает в каждой тройке первые две, а неразбитые на тройки a-шки съедает, и запоминает их число. Следовательно останется неполное частное при дилении u на 3 a-шек и остаток при том же делении будет запомнен. Так например строка aaaaaaa (7 a-шек) будет превращена в строку aaaaaaa с конечным состоянием aaaaaaa
- 2. Состояния $q_{1...}$ составляют подзадачу 1, которая сдвигает головку к символу \times . По сути это три одинаковые подзадачи, но их три, так как нужно хранить остаток при делении, полученный из подзадачи 0.
- 3. Состояния $q_{2...}$ составляют подзадачу 2, которая сдвигается в конец уже записанного троичного числа и пишет цифру, соответствующую запомненному остатку.
- 4. Состояние q_3 как подзадача 3 сдвигает головку к символу \times . Состояние $q_{3'}$ делает последнее действие данной подзадачи, готовя условия для подзадачи 3.
- 5. Состояния $q_{4...}$ составляют подзадачу 4, которая собирает разъехавшиеся a-шки в одно унарное число. Делает она это повторяя такую подзадачу:

Пусть написаны несколько a-шек (может быть, ни одной) подряд, затем 0, а после него несколько раз (может быть, ни одного) повторена запись $_a_$. Т.е. имеется запись наподобие $a \dots a0_a__a__a\dots_a$. При этом головка стоит на нуле. Мы хотим, чтобы, если справа от нуля есть a-шка, слева от нуля было на одну a-шку больше, а справа — на одну меньше.

Таким образом подзадача поставила 0 и привела нас к формулировке задачи, где слева a-шек нет. Теперь несложно видеть, что $q_{4,0}$ — начальное состояние, из которого мы двигаемся на +3, чтобы посмотреть, есть ли смысл выполнять подзадачу. Если нет, то производится откат к изначальной задаче: $q_{4'}$ убирает ноль, q_5 сдвигает нас к символу \times . Если же да, то мы переходим в состояние $q_{4, \to \text{end}}$, прыгающее на +3 каждый раз и ищущее последнюю a-шку. Как только она a-шки не обнаруживает, она прыгает назад на последнюю a-шку, после чего запускает алгоритм сдвига каждой a-шки правее нуля на -2: на a-шке мы попадаем в состояние $q_{4, \text{shift}}$, которое удаляет a-шку и прыгает на -2, там мы ставим в состоянии $q_{4, \text{shifted}}$ новую a-шку, и если там был ноль, то заканчиваем сдвиги и в состоянии $q_{4, \text{shifted}}$ ставим новый ноль — на 1 правее. После этого подзадача завершена, а значит её можно начать снова — мы переходим в $q_{4,0}$.

Теперь осталось написать слева символ \times , зациклить эту машину на условии присутствии a-шки справа и сдвинуть полученное число в правильное место ленты. Получаем следующую машину M.

$Q\backslash\Gamma$	×	a	0	1	2	
q_0	Error	$q_{0'}, a, -1$	Error	Error	Error	Halt, 0, 0
$q_{0'}$	Error	Error	Error	Error	Error	$q_{1,0}, \times, 0$
$q_{1,0}$	$q_{1, \text{ check}}, \times, +1$	Error	Error	Error	Error	Error
$q_{1, \mathrm{check}}$	Error	$q_{1, M_1}, a, -1$	Error	Error	Error	$q_2, _, -1$
$q_{1,\;M_1}$	$M_1: \{ \text{Halt} \rightarrow q_{1,0}, \times, 0 \}$	Error	Error	Error	Error	Error
q_2	$q_{2,\times}, \times, -1$	Error	$q_{2,0}, \times, -1$	$q_{2,1}, \times, -1$	$q_{2,2}, \times, -1$	Error
$q_{2,\times}$	$q_{2,\times}, \times, -1$	Error	$q_{2,0}, 0, -1$	$q_{2,1}, 1, -1$	$q_{2,2}, \times, -1$	$q_4, _, +1$
$q_{2,0}$	$q_{2,\times}, \times, -1$	Error	$q_{2,0}, 0, -1$	$q_{2,1}, 1, -1$	$q_{2,2}, 2, -1$	$q_{3,0}, , +1$
$q_{2,1}$	$q_{2,\times}, \times, -1$	Error	$q_{2,0}, 0, -1$	$q_{2,1}, 1, -1$	$q_{2,2}, 2, -1$	$q_{3,1}, _, +1$
$q_{2,2}$	$q_{2,\times}, \times, -1$	Error	$q_{2,0}, 0, -1$	$q_{2,1}, 1, -1$	$q_{2,2}, 2, -1$	$q_{3,2}, _, +1$
$q_{3,0}$	$q_{3,0}, \times, +1$	Error	$q_{3,0}, 0, +1$	$q_{3,0}, 1, +1$	$q_{3,0}, 2, +1$	$q_{2,0}, 0, -1$
$q_{3,1}$	$q_{3,1}, \times, +1$	Error	$q_{3,1}, 0, +1$	$q_{3,1}, 1, +1$	$q_{3,1}, 2, +1$	$q_{2,1}, 1, -1$
$q_{3,2}$	$q_{3,2}, \times, +1$	Error	$q_{3,2}, 0, +1$	$q_{3,2}, 1, +1$	$q_{3,2}, 2, +1$	$q_{2,2}, 2, -1$
q_4	$Halt, _, 0$	Error	Error	Error	Error	Error

Здесь q_0 и $q_{0'}$ ставят знак \times . $q_{1, \, {\rm check}}$ проверяет присутствие a-шки справа. q_{1,M_1} запускает машину M_1 . $q_{2...}$ идут налево, запоминая последний увиденный (непробельный) символ. $q_{3...}$ (после того как $q_{2...}$ напоролись на пробел) идут до конца направо, пишут соответствующий символ и опять запускают спуск по $q_{2...}$. q_4 стирает оставшийся символ \times и завершает работу.

Задача 10. Давайте рассмотрим биекцию $f: \mathbb{N} \to \mathbb{Z}$, которая изображается последовательностью $(0,1,-1,2,-2,\dots)$. Таким образом мы получаем следующую простую таблицу.

$\underline{}$	 -2	-1	0	1	2	3	
$f^{-1}(n)$	 4	2	0	1	3	5	
$f^{-1}(n+1) - f^{-1}(n)$	 -2	-2	1	2	2	2	
$f^{-1}(n-1) - f^{-1}(n)$	 2	2	2	-1	-2	-2	

Эта таблица нужна нам для того, что мы хотим эмулировать двухсторонне бесконечную полосу с помощью перерасположения её клеток в односторонней. При чём мы хотим, чтобы f

задавала это соответствие. Но в таком случае нужно правильно эмулировать шаг вправо (т.е. $f^{-1}(n+1) - f^{-1}(n)$) и шаг влево $(f^{-1}(n-1) - f^{-1}(n))$.

Давайте сделаем вместо одного барьера \vdash — два подряд, а справа от них уже будем уже нумеровать клетки по правилу функции f. Разделим числа на две группы $S_+ := \mathbb{N}_{\geqslant 1}$ и $S_- := \mathbb{N}_{\leqslant 0}$. Таким образом если мы, например, в S_+ , то если надо пойти направо, то просто прибавим 2, а если налево — то -2. При этом если мы были в единице и пошли налево, прибавлением -2 к координате мы попали в первый (правый) барьер; в таком случае несложно понять, что надо прибавить ещё 1. С S_- аналогично. Т.е. формально правило следующее.

- 1. Пусть мы в S_{+} и идём вправо. Тогда нужно прибавить +2.
- 2. Пусть мы в S_{-} и идём влево. Тогда нужно прибавить +2.
- 3. Пусть мы в S_+ и идём влево. Тогда нужно прибавить -2. При попадании в барьер прибавить +1.
- 4. Пусть мы в S_{-} и идём вправо. Тогда нужно прибавить -2. При попадании в барьер прибавить +3.

При этом понятно, что мы меняем наше множество тогда и только тогда, когда влетаем в барьер. Следовательно вместо множества состояний Q возьмём множество состояний $Q' := \{q_+; q_-\}_{q \in Q}$ состоящее из состояний q_+ и q_- для всякого $q \in Q$ (\pm в индексе значит принадлежность местоположения головки множеству S_\pm соответственно). Таким образом если из q при символе l мы переходили в p, то из q_\pm при символе l мы будем переходить в p_\pm . При этом после всякого q_\pm нужно поставить несколько состояний (для каждых q_\pm и l набор дополнительных состояний индивидуальный), что по понятным правилам выполнение может раздвоиться, и в одном случае переход надо поставить на p_+ , а в другом — на p_- . Например, как в таблице далее изображено поднятия $(q,l) \to (p,k,+1)$ и $(q',l) \to (p',k,-1)$.

$Q \Gamma$	l		<u> </u>
q_+	$p_+, k, +2$		Error
q_{-}	$s_{q-,l,+1}, k, -2$		Error
$s_{q,l,+1}$	$p_+, l, 0$	$p_+,\ldots,0$	$p, \vdash, +3$
q'_{-}	$p'_{-}, k, -2$		Error
q'_+	$s_{q'_{+},l,-1}, k, -2$		Error
$s_{q',l,-1}$	$p'_{-}, l, 0$	$p, \ldots, 0$	$p'_+, \vdash, +1$

В принципе везде можно было дать общее правило: прибавить 2 со знаком, равным произведению знака группы и знака сдвига, если попали в барьер, прибавить +1, если опять попали, прибавить +2. В таком случае можно было бы не рассматривать 4 случая, а сразу запихнуть два дополнительных состояния. Но это довольно некрасиво.