Convergent Adaptive Gradient Methods in Decentralized Optimization

Anonymous Author(s)

Affiliation Address email

Abstract

Adaptive gradient methods including Adam, AdaGrad, and their variants have been very successful for training deep learning models, such as neural networks, in the past few years. Meanwhile, given the need for distributed training procedures, distributed optimization algorithms are at the center of attention. With the growth of computing power and the need for using machine learning models on mobile devices, the communication cost of distributed training algorithms needs careful consideration. In response to this, more and more attention is shifted from the traditional parameter server training paradigm to the decentralized one, which usually requires lower communication costs. In this paper, we try to rigorously incorporate adaptive gradient methods into decentralized training procedures, coming up with convergent decentralized adaptive gradient methods. Specifically, we propose a general algorithmic framework that can convert existing adaptive gradient methods to their decentralized counterparts. In addition, we rigorously analyze the convergence behavior of the proposed algorithmic framework and show that if a given adaptive gradient method converges, under some specific conditions, then its decentralized counterpart is also convergent.

1 Introduction

2

5

6

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

33

34

35

36

37

Distributed training of machine learning models is drawing growing attention in the past few years due to its practical benefits and necessities. Given the evolution of computing capabilities of CPUs and GPUs, computation time in distributed settings is gradually dominated by the communication time in many circumstances [Chilimbi et al., 2014, McMahan et al., 2016]. As a result, a large amount of recent works has been focussing on reducing communication cost for distributed learning [Alistarh et al., 2017, Lin et al., 2017, Wangni et al., 2018, Stich et al., 2018, Wang et al., 2018, Tang et al., 2019]. In the traditional parameter (central) server setting, where a parameter server is employed to manage communication in the whole network, many effective communication reductions have been proposed based on gradient compression [Aji and Heafield, 2017] and quantization [Chen et al., 2010, Ge et al., 2013, Jegou et al., 2010] techniques. Despite these communication reduction techniques, its cost still, usually, scales linearly with the number of workers. Due to this limitation and with the sheer size of decentralized devices, the decentralized training paradigm [Duchi et al., 2011b], where the parameter server is removed and each node only communicates with its neighbors, is drawing attention. It has been shown in Lian et al. [2017] that decentralized training algorithms can outperform parameter server-based algorithms when the training bottleneck is the communication cost. The decentralized paradigm is also preferred when a central parameter server is not available. In light of recent advances in nonconvex optimization, an effective way to accelerate training is by using adaptive gradient methods like AdaGrad [Duchi et al., 2011a], Adam [Kingma and Ba, 2014] or AMSGrad [Reddi et al., 2019]. Their popularity are due to their practical benefits in training neural networks, featured by faster convergence and ease of parameter tuning compared with Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951]. Despite a large amount of studies

within the distributed optimization literature, few works have considered bringing adaptive gradient methods into distributed training, largely due to the lack of understanding of their convergence behaviors. Notably, Reddi et al. [2020] develop the first decentralized ADAM method for distributed optimization problems with a direct application to federated learning. An inner loop is employed to computed mini-batch gradients on each node and a global adaptive step is performed to update the global parameter at each outer iteration. Yet, in the settings of our paper, nodes can only communicate to their neighbors on a fixed communication graph while a server/worker communication is needed in [Reddi et al., 2020]. Designing adaptive methods in such settings is highly non-trivial due to the already complicated update rules and to the interaction between the effect of using adaptive learning rates and the decentralized communication protocols. This paper is an attempt at bridging the gap between both realms in nonconvex optimization. Our contributions are summarized as follows:

- In this paper, we investigate the possibility of using any adaptive gradient methods in the decentralized, and gossip-based (nodes have only a local view of the whole communication graph), training paradigm. We develop a general technique that converts an adaptive gradient method from a centralized method to its decentralized variant.
- By using our proposed technique, we present a new decentralized optimization algorithm, called decentralized AMSGrad, as the decentralized counterpart of AMSGrad.
- We provide a theoretical verification interface, in Theroem 2, for analyzing the behavior of decentralized adaptive gradient methods obtained as a result of our technique. Thus, we characterize the convergence rate of decentralized AMSGrad, which is the first convergent decentralized adaptive gradient method, to the best of our knowledge.

A *novel technique* in our framework is a mechanism to enforce a consensus on adaptive learning rates at different nodes. We show the importance of consensus on adaptive learning rates by proving a divergent problem instance for a recently proposed decentralized adaptive gradient method, namely, DADAM [Nazari et al., 2019], a decentralized version of ADAM, which lacks of consensus mechanisms on the adaptive learning rates of each node.

After having presented existing related work and important concepts of decentralized adaptive methods in Section 2, we develop our general framework for converting any adaptive gradient algorithm in its decentralized counterpart along with their rigorous finite-time convergence analysis in Section 3 concluded by some illustrative examples of our framework's behavior in practice.

Notations: $x_{t,i}$ denotes variable x at node i and iteration t. $\|\cdot\|_{abs}$ denotes the entry-wise L_1 norm of a matrix, i.e. $\|A\|_{abs} = \sum_{i,j} A_{i,j}$. We introduce important notations used throughout the paper: for any t >, $G_t := [g_{t,N}]$ where $[g_{t,N}]$ denotes the vector $[g_{t,1}, g_{t,2}, \cdots, g_{t,N}]$, $M_t := [m_{t,N}]$, $X_t := [x_{t,N}]$, $\overline{\nabla f}(X_t) := \frac{1}{N} \sum_{i=1}^N \nabla f_i(x_{t,i})$, $U_t := [u_{t,N}]$, $\tilde{U}_t := [\tilde{u}_{t,N}]$, $V_t := [v_{t,N}]$, $\hat{V}_t := [\hat{v}_{t,N}]$, $X_t := \frac{1}{N} \sum_{i=1}^N x_{t,i}$

2 Decentralized Adaptive Training and Divergence of DADAM

2.1 Related Work

Decentralized optimization: Traditional decentralized optimization methods include well-know algorithms such as ADMM [Boyd et al., 2011], Dual Averaging [Duchi et al., 2011b], Distributed Subgradient Descent [Nedic and Ozdaglar, 2009]. More recent algorithms include Extra [Shi et al., 2015], Next [Di Lorenzo and Scutari, 2016] and Prox-PDA [Hong et al., 2017]. While these algorithms are commonly used in applications other than deep learning, recent algorithmic advances in the machine learning community have shown that decentralized optimization can be useful for training deep models such as neural networks as well. Lian et al. [2017] demonstrate that a stochastic version of Decentralized Subgradient Descent can outperform parameter server-based algorithms when the communication cost is high. Tang et al. [2018] propose the D² algorithm improving the convergence rate over Stochastic Subgradient Descent. Assran et al. [2018] propose the Stochastic Gradient Push that is more robust to network failures for training neural networks. The study of decentralized training algorithms in the machine learning community is only at its initial stage. No existing work, to our knowledge, has seriously considered integrating *adaptive gradient methods* in the setting of decentralized learning. One noteworthy work [Nazari et al., 2019] propose a decentralized version of AMSGrad [Reddi et al., 2019] and is proven to satisfy some non-standard regret.

Adaptive gradient methods: Adaptive gradient methods have been popular in recent years due to 91 their superior performance in training neural networks. Most commonly used adaptive methods 92 include AdaGrad [Duchi et al., 2011a] or Adam [Kingma and Ba, 2014] and their variants. Key 93 features of such methods lie in the use of momentum and adaptive learning rates (which means 94 that the learning rate is changing during the optimization and is anisotropic, i.e. depends on the 95 dimension). The method of reference, called Adam, has been analyzed in [Reddi et al., 2019] where 96 the authors point out an error in previous convergence analyses. Since then, a variety of papers have been focusing on analyzing the convergence behavior of the numerous existing adaptive gradient 98 methods. Ward et al. [2018], Li and Orabona [2018] derive convergence guarantees for a variant of 99 AdaGrad without coordinate-wise learning rates. Chen et al. [2018] analyze the convergence behavior 100 of a broad class of algorithms including AMSGrad and AdaGrad. Zou and Shen [2018] provide a 101 unified convergence analysis for AdaGrad with momentum. Noticeable recent works on adaptive 102 gradient methods can be found in [Agarwal et al., 2018, Luo et al., 2019, Zaheer et al., 2018].

2.2 Decentralized Optimization

104

105

128

In distributed optimization (with N nodes), we aim at solving the following problem

$$\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N f_i(x), \tag{1}$$

where x is the vector of parameters and f_i is only accessible by the ith node. Through the prism of empirical risk minimization procedures, f_i can be viewed as the average loss of the data samples located at node i, for all $i \in [N]$. Throughout the paper, we make the following mild assumptions required for analyzing the convergence behavior of the different decentralized optimization algorithms:

110 **A1.** For all $i \in [N]$, f_i is differentiable and the gradients is L-Lipschitz, i.e., for all $(x,y) \in \mathbb{R}^d$, 111 $\|\nabla f_i(x) - \nabla f_i(y)\| \le L\|x - y\|$.

112 **A2.** We assume that, at iteration t, node i accesses a stochastic gradient $g_{t,i}$. The stochastic gradients and the gradients of f_i have bounded L_{∞} norms, i.e. $\|g_{t,i}\| \leq G_{\infty}$, $\|\nabla f_i(x)\|_{\infty} \leq G_{\infty}$.

114 **A3.** The gradient estimators are unbiased and each coordinate have bounded variance, i.e. $\mathbb{E}[g_{t,i}] = \nabla f_i(x_{t,i})$ and $\mathbb{E}[([g_{t,i} - f_i(x_{t,i})]_j)^2] \leq \sigma^2, \forall t, i, j$.

Assumptions A1 and A3 are standard in distributed optimization literature. A2 is slightly stronger than the traditional assumption that the estimator has bounded variance, but is commonly used for the analysis of adaptive gradient methods [Chen et al., 2018, Ward et al., 2018]. Note that the bounded gradient estimator assumption in A2 implies the bounded variance assumption in A3. In decentralized optimization, the nodes are connected as a graph and each node only communicates to its neighbors. In such case, one usually constructs a $N \times N$ matrix W for information sharing when designing new algorithms. We denote λ_i to be its ith largest eigenvalue and define $\lambda \triangleq \max(|\lambda_2|, |\lambda_N|)$. The matrix W cannot be arbitrary, its required key properties are listed in the following assumption:

124 **A4.** The matrix W satisfies: (I) $\sum_{j=1}^{N} W_{i,j} = 1$, $\sum_{i=1}^{N} W_{i,j} = 1$, $W_{i,j} \geq 0$, (II) $\lambda_1 = 1$, $|\lambda_2| < 1$, 125 $|\lambda_N| < 1$ and (III) $W_{i,j} = 0$ if node i and node j are not neighbors.

We now present the failure to converge of current decentralized adaptive method before introducing our proposed framework for general decentralized adaptive gradient methods.

2.3 Divergence of DADAM

Recently, Nazari et al. [2019] initiated an attempt to bring adaptive gradient methods into decentral-129 ized optimization, the resulting algorithm is DADAM, which is shown in Algorithm 1. DADAM is 130 essentially a decentralized version of ADAM and the key modification is the use of a consensus step on 131 optimization variable x to transmit information across the network, encouraging convergence. The ma-132 trix W is a doubly stochastic matrix (which satisfies A4) for achieving average consensus of x. Intro-133 ducing such mixing matrix is a standard approach for decentralizing an algorithm, such as distributed 134 gradient descent [Nedic and Ozdaglar, 2009, Yuan et al., 2016]. It is proven in Nazari et al. [2019] that 135 DADAM admits a non-standard regret bound in the online setting, however, whether the algorithm can converge to stationary points in standard offline settings such training neural networks is still unknown. In the following, we show the DADAM may fail to converge in the offline optimization settings.

Theorem 1. There exist a problem satisfying
Al-A4 where DADAM fail to converge.

Proof. Consider a 1 dimensional optimiza-tion problem distributed on two nodes $\min_x \frac{1}{2} \sum_{i=1}^2 f_i(x)$ where $f_i(x) = \frac{1}{2}(x - a_i)^2$ and $a_1 = 0$, $a_2 = 1$. The network contains only two nodes and the matrix W satisfies $W_{ij} = \frac{1}{2}$ for all indices i, j. For simplicity, we consider running DADAM algorithm with $\beta_1 = \beta_2 = \beta_3 = 0$ and $\epsilon = 0.6$. Suppose we initialize DADAM at $x_{1,i} = 0$ for all $i \in [N]$ and use the following learning rate $\alpha = 0.001$.

Algorithm 1 DADAM (with N nodes)

```
1: Input: \alpha, current point X_t, u_{\frac{1}{2},i} = \hat{v}_{0,i} = \epsilon \mathbf{1}, m_0 = 0 and mixing matrix W

2: for t = 1, 2, \cdots, T do

3: for all i \in [N] do in parallel

4: g_{t,i} \leftarrow \nabla f_i(x_{t,i}) + \xi_{t,i}

5: m_{t,i} = \beta_1 m_{t-1,i} + (1 - \beta_1) g_{t,i}

6: v_{t,i} = \beta_2 v_{t-1,i} + (1 - \beta_2) g_{t,i}^2

7: \hat{v}_{t,i} = \beta_3 \hat{v}_{t,i} + (1 - \beta_3) \max(\hat{v}_{t-1,i}, v_{t,i})

8: x_{t+\frac{1}{2},i} = \sum_{j=1}^{N} W_{ij} x_{t,j}

9: x_{t+1,i} = x_{t+\frac{1}{2},i} - \alpha \frac{m_{t,i}}{\sqrt{\hat{v}_{t,i}}}

10: end for
```

We observe that at $x_{1,i} = 0$, $\nabla f_1(x_{1,1}) = 0$, we have $\nabla f_2(x_{1,2}) = 1$, leading to $\hat{v}_{1,1} = 0.6$ and $\hat{v}_{1,2} = 1$. Thus, from step 1, we will obtain $\hat{v}_{1,2} \geq 1$. In addition, it is can be easily proved that, with the above selected stepsize, we always have $\hat{v}_{1,1} < 1$, in fact, it will never reach the value of 0.6. Thus, in the next iterations, the gradient of losses on node 1 and 2 will be scaled differently. This scaling is equivalent to running gradient descent on a objective where the losses of the two nodes are scaled by different factors. In such case, the algorithm will converge to a stationary point of a weighted average of the loss on node 1. Recall that the problem we tackle to illustrate Theorem 1 is a quadratic problem with only one minimizer. Then, since the weight of the losses on the two nodes are different and that the unbalanced weights on the two functions yields a different minimizer, the algorithm will not converge to the unique stationary point of the original loss (which is x = 0.5). \square

Theorem 1 claims that even though DADAM is proven to satisfy some regret bounds, see [Nazari et al., 2019], it can fail to converge to stationary points in the nonconvex offline setting, which is a common setting for training neural networks. We conjecture that this inconsistency is due to the definition of the regret in [Nazari et al., 2019]. In the next section, we design decentralized adaptive gradient methods that are guaranteed to converge to stationary points of some defined objective and provide a characterization of that convergence in finite-time and independently of the initialization.

3 Decentralized Adaptive Gradient Methods and their Convergence

In this section, we discuss the difficulties of designing adaptive gradient methods in decentralized optimization and introduce an algorithmic framework that converts existing convergent adaptive gradient methods to their decentralized counterparts. We also develop the first convergent decentralized adaptive gradient method, converted from AMSGrad, as an instance of this proposed framework.

3.1 Importance and Difficulties of Consensus on Adaptive Learning Rates

The divergent example in the previous section implies that we should synchronize the adaptive learning rates on different nodes. This can be easily achieved in the parameter server setting where all the nodes are sending their gradients to a central server at each iteration. The parameter server can then exploit the received gradients to maintain a sequence of synchronized adaptive learning rates when updating the parameters, see [Reddi et al., 2020]. However, in our decentralized setting, every node can only communicate with its neighbors (gossip-based) and such central server does not exist. Under that setting, the information for updating the adaptive learning rates can only be shared locally instead of broadcasted over the whole network. This makes it impossible to obtain, in a single iteration, a synchronized adaptive learning rate update using all the information in the network.

Systemic Approach: On a systemic level, one way to alleviate this bottleneck is to design communication protocols in order to give each node access to the same aggregated gradients over the whole network, at least periodically if not at every iteration. Therefore, the nodes can update their individual adaptive learning rates based on the same shared information. However, such solution may introduce an extra communication cost since it involves broadcasting the information over the whole network.

Algorithmic Approach: Our contributions being on an algorithmic level, another way to solve the aforementioned problem is by letting the sequences of adaptive learning rates, present on different

nodes, to gradually *consent*, through the iterations. Intuitively, if the adaptive learning rates can consent fast enough, the difference among the adaptive learning rates on different nodes will not affect the convergence behavior of the algorithm. Consequently, no extra communication costs need to be introduced. We now develop this exact idea within the existing adaptive methods stressing on the need for a relatively low-cost and easy-to-implement consensus of adaptive learning rates.

3.2 Decentralized Adaptive Gradient Unifying Framework

As mentioned before, we need to choose a method to implement consensus of adaptive learning rates. While each node can have different $\hat{v}_{t,i}$ in DADAM, one can keep track of the min/max/average of these adaptive learning rates and use this quantity to update the adaptive learning rates. The predefinition of some convergent lower and upper bounds may also lead to a gradual synchronization of the adaptive learning rates on different nodes as developed for AdaBound in [Luo et al., 2019]. In this paper, we opt for the average consensus on $\hat{v}_{t,i}$, see operator r_t line 6 of Algorithm 2. Since for adaptive gradient methods such as AdaGrad or Adam, $\hat{v}_{t,i}$ approximates the second moment of the gradient estimator, the average of the estimations of those second moments from different nodes is an estimation of second moment on the whole network. Also, this design will not intro-

195

196

197

198

199

200

201

202

203

204

207

208

209

210

211

212

214

215

216

224

225

226

227

228

229

231

232

233

234

235

Algorithm 2 Decentralized Adaptive Gradient Method (with N nodes)

```
1: Input: \alpha, initial point x_{1,i} = x_{init}, u_{\frac{1}{2},i} = \hat{v}_{0,i}, m_{0,i} = 0, mixing matrix W
2: for t = 1, 2, \cdots, T do
3: for all i \in [N] do in parallel
4: g_{t,i} \leftarrow \nabla f_i(x_{t,i}) + \xi_{t,i}
5: m_{t,i} = \beta_1 m_{t-1,i} + (1 - \beta_1) g_{t,i}
6: \hat{v}_{t,i} = r_t(g_{1,i}, \cdots, g_{t-1,i})
7: x_{t+\frac{1}{2},i} = \sum_{j=1}^{N} W_{ij} x_{t,j}
8: \tilde{u}_{t,i} = \sum_{j=1}^{N} W_{ij} \tilde{u}_{t-\frac{1}{2},j}
9: u_{t,i} = \max(\tilde{u}_{t,i}, \epsilon)
10: x_{t+1,i} = x_{t+\frac{1}{2},i} - \alpha \frac{m_{t,i}}{\sqrt{u_{t,i}}}
11: \tilde{u}_{t+\frac{1}{2},i} = \tilde{u}_{t,i} - \hat{v}_{t-1,i} + \hat{v}_{t,i}
12: end for
```

duce any extra hyperparameters that can potentially complicate the tuning process. Our method is presented Algorithm 2. We now present the main convergence result for our class of methods:

Theorem 2. Assume A]-A4. Set $\alpha = 1/\sqrt{Td}$. When $\alpha \leq \frac{\epsilon^{0.5}}{16L}$, Algorithm 2 yields the following regret bound

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[\left\| \frac{\nabla f(\overline{X}_{t})}{\overline{U}_{t}^{1/4}} \right\|^{2} \right] \leq C_{1} \frac{\sqrt{d}}{\sqrt{T}} \left(\mathbb{E}[f(Z_{1})] - \min_{z} f(z) + \frac{\sigma^{2}}{N} \right) + \frac{C_{2}}{T} + \frac{C_{3}}{T^{1.5} d^{0.5}} + \left(\frac{C_{4}}{TN^{0.5}} + \frac{C_{5}}{T^{1.5} d^{0.5} N^{0.5}} \right) \mathbb{E} \left[\sum_{t=1}^{T} \| (-\hat{V}_{t-2} + \hat{V}_{t-1}) \|_{abs} \right], \quad (2)$$

219 where $\|\cdot\|_{abs}$ denotes the entry-wise L_1 norm of a matrix (i.e $\|A\|_{abs} = \sum_{i,j} |A_{ij}|$). The constants 220 $C_1 = \max(4, 4L/\epsilon), C_2 = 6((\beta_1/(1-\beta_1))^2 + 1/(1-\lambda)^2)LG_\infty^2/\epsilon^{1.5}, C_3 = 16L^2(1-\lambda)G_\infty^2/\epsilon^2$, 221 $C_4 = 2/(\epsilon^{1.5}(1-\lambda))(\lambda+\beta_1/(1-\beta_1))G_\infty^2, C_5 = 2/(\epsilon^2(1-\lambda))L(\lambda+\beta_1/(1-\beta_1))G_\infty^2 + 4/(\epsilon^2(1-\lambda))LG_\infty^2$ are independent of d, T and T. In addition, $\frac{1}{N}\sum_{i=1}^N \|x_{t,i} - \overline{X}_t\|^2 \le \alpha^2 \left(\frac{1}{1-\lambda}\right)^2 dG_\infty^2 \frac{1}{\epsilon}$ which quantifies the consensus error.

Theorem 2 shows that if $\mathbb{E}[\sum_{t=1}^T \|(-\hat{V}_{t-2} + \hat{V}_{t-1})\|_{abs}] = o(T)$ and \bar{U}_t is upper bounded, then Algorithm 2 is guaranteed to converge to stationary points of the regret function. Intuitively, this means that if the adaptive learning rates on different nodes do not change too fast, the algorithm can converge. This assertion is backed in [Chen et al., 2018] where it is shown that if such condition is violated, the algorithm may diverge. Furthermore, Theorem 2 conveys the benefits of using more nodes in the communication graph. Indeed, as N becomes larger, the term σ^2/N will be small. This is also strengthened by the fact that with a larger N, the training process tends to be more stable.

We now present, in Algorithm 3, a notable special case of our algorithmic framework, namely Decentralized AMSGrad, which is a decentralized variant of AMSGrad. Compared with DADAM, the above algorithm exhibits a dynamic average consensus mechanism to keep track of the average of $\{\hat{v}_{t,i}\}_{i=1}^{N}$, stored as $\tilde{u}_{t,i}$ on ith node, and uses $u_{t,i} = \max(\tilde{u}_{t,i}, \epsilon)$ for updating the adaptive learning rate for ith node. As the number of iteration grows, even though $\hat{v}_{t,i}$ on different nodes can converge to different constants, all the $u_{t,i}$ will converge to the same number $\lim_{t\to\infty} 1/N \sum_{i=1}^N \hat{v}_{t,i}$ if the limit exists.

Using this average consensus mechanism en-237 ables the consensus of adaptive learning rates 238 on different nodes, which accordingly guaran-239 tees the convergence of the method to station-240 ary points of a given suboptimality condition. 241 The consensus of adaptive learning rates is the 242 key difference between decentralized AMSGrad 243 and DADAM and is the reason why decentral-244 ized AMSGrad is a convergent algorithm while 245 DADAM is not. One may notice that decentral-246 ized AMSGrad does not deduce to AMSGrad 247 since the quantity $u_{t,i}$ in line 10 is calculated 248 based on $v_{t-1,i}$ instead of $v_{t,i}$. This encourages 249 the execution of gradient computation and com-250 munication in a parallel manner. Specifically, 251 line 4-7 in Algorithm 3 and Algorithm 2 can 252 be executed in parallel with line 8-9 to overlap 253 communication and computation time. If $u_{t,i}$ 254 depends on $v_{t,i}$ which in turn depends on $g_{t,i}$, 255 the gradient computation must finish before the 256 consensus step of the adaptive learning rate in 257

Algorithm 3 Decentralized AMSGrad (with N nodes)

```
1: Input: learning rate \alpha, initial point x_{1,i} = x_{init}, u_{\frac{1}{2},i} = \hat{v}_{0,i} = \epsilon \mathbf{1} (with \epsilon \geq 0), m_{0,i} = 0, mixing matrix W

2: for t = 1, 2, \cdots, T do

3: for all i \in [N] do in parallel

4: g_{t,i} \leftarrow \nabla f_i(x_{t,i}) + \xi_{t,i}

5: m_{t,i} = \beta_1 m_{t-1,i} + (1 - \beta_1) g_{t,i}

6: v_{t,i} = \beta_2 v_{t-1,i} + (1 - \beta_2) g_{t,i}^2

7: \hat{v}_{t,i} = \max(\hat{v}_{t-1,i}, v_{t,i})

8: x_{t+\frac{1}{2},i} = \sum_{j=1}^{N} W_{ij} x_{t,j}

9: \tilde{u}_{t,i} = \sum_{j=1}^{N} W_{ij} \tilde{u}_{t-\frac{1}{2},j}

10: u_{t,i} = \max(\tilde{u}_{t,i}, \epsilon)

11: x_{t+1,i} = x_{t+\frac{1}{2},i} - \alpha \frac{m_{t,i}}{\sqrt{u_{t,i}}}

12: \tilde{u}_{t+\frac{1}{2},i} = \tilde{u}_{t,i} - \hat{v}_{t-1,i} + \hat{v}_{t,i}

13: end for
```

line 9. This can slow down the running time per-iteration of the algorithm. To avoid such delayed adaptive learning, adding $\tilde{u}_{t-\frac{1}{2},i} = \tilde{u}_{t,i} - \hat{v}_{t-1,i} + \hat{v}_{t,i}$ before line 9 and get rid of line 12 in Algorithm 2 is an option. Similar convergence guarantees will hold since one can easily modify our proof of Theorem 2 for such update rule. As stated above, Algorithm 3 converges, with the following rate:

Theorem 3. Assume A1-A4. Set $\alpha=1/\sqrt{Td}$. When $\alpha\leq\frac{\epsilon^{0.5}}{16L}$, Algorithm 3 yields the following regret bound

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\| \frac{\nabla f(\overline{X}_{t})}{\overline{U}_{t}^{1/4}} \right\|^{2} \right] \leq C_{1}' \frac{\sqrt{d}}{\sqrt{T}} \left(\mathbb{E}[f(Z_{1})] - \min_{z} f(z)] + \frac{\sigma^{2}}{N} \right) + \frac{C_{2}'}{T} + \frac{d}{T} \sqrt{N} C_{4}' + \frac{\sqrt{d}}{T^{1.5}} \sqrt{N} C_{5}',$$

where $C_1'=C_1$, $C_2'=C_2$, $C_3'=C_3$, $C_4'=C_4G_\infty^2$ and $C_5'=C_5G_\infty^2$. C_1,C_2,C_3,C_4,C_5 are constants independent of d, T and N defined in Theorem 2. In addition, the consensus of variables at different nodes is given by $\frac{1}{N}\sum_{i=1}^{N}\left\|x_{t,i}-\overline{X}_t\right\|^2\leq \frac{1}{T}\left(\frac{1}{1-\lambda}\right)^2G_\infty^2\frac{1}{\epsilon}$.

Theorem 3 shows that Algorithm 3 converges with a rate of $\mathcal{O}\sqrt{d}/\sqrt{T}$) when T is large, which is the best known convergence rate under the given assumptions. Note that in some related works, SGD admits a convergence rate of $\mathcal{O}(1/\sqrt{T})$ without any dependence on the dimension of the problem. Such improved convergence rate is derived under the assumption that the gradient estimator have a bounded L_2 norm, which can thus hide a dependency of \sqrt{d} in the final convergence rate.

3.3 Convergence Analysis

272

273

The detailed proofs of this section are reported in the supplementary material.

Proof of Theorem 2: We now present a proof sketch for out main convergence result of Algorithm 2.

Step 1: Reparameterization. Similarly to [Yan et al., 2018, Chen et al., 2018] with SGD (with momentum) and centralized adaptive gradient methods, define the following auxiliary sequence:

$$Z_t = \overline{X}_t + \frac{\beta_1}{1 - \beta_1} (\overline{X}_t - \overline{X}_{t-1}), \qquad (3)$$

with $\overline{X}_0 \triangleq \overline{X}_1$. Such an auxiliary sequence can help us deal with the bias brought by the momentum and simplifies the convergence analysis. An intermediary result needed to conduct our proof reads:

Lemma 1. For the sequence defined in (3), we have

$$Z_{t+1} - Z_t = \alpha \frac{\beta_1}{1 - \beta_1} \frac{1}{N} \sum_{i=1}^{N} m_{t-1,i} \odot \left(\frac{1}{\sqrt{u_{t-1,i}}} - \frac{1}{\sqrt{u_{t,i}}} \right) - \alpha \frac{1}{N} \sum_{i=1}^{N} \frac{g_{t,i}}{\sqrt{u_{t,i}}}.$$

Lemma 1 does not display any momentum term in $\frac{1}{N}\sum_{i=1}^{N}\frac{g_{t,i}}{\sqrt{u_{t,i}}}$. This simplification is convenient

since it is directly related to the current gradients instead of the exponential average of past gradients.

282 Step 2: Smoothness. Using smoothness assumption A1 involves the following scalar product term:

283 $\kappa_t:=\langle \nabla f(Z_t), rac{1}{N}\sum_{i=1}^N \nabla f_i(x_{t,i})/\sqrt{\overline{U}_t}
angle$ which can be lower bounded by:

$$\kappa_t \geq \frac{1}{2} \left\| \frac{\nabla f(\overline{X}_t)}{\overline{U}_t^{1/4}} \right\|^2 - \frac{3}{2} \left\| \frac{\nabla f(Z_t) - \nabla f(\overline{X}_t)}{\overline{U}_t^{1/4}} \right\|^2 - \frac{3}{2} \left\| \frac{\frac{1}{N} \sum_{i=1}^N \nabla f_i(x_{t,i}) - \nabla f(\overline{X}_t)}{\overline{U}_t^{1/4}} \right\|^2.$$

The above inequality substituted in the smoothness condition $f(Z_{t+1}) \leq f(Z_t) + \langle \nabla f(Z_t), Z_{t+1} - Z_t \rangle + \frac{L}{2} \|Z_{t+1} - Z_t\|^2$ yields:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\frac{\nabla f(\overline{X}_{t})}{\overline{U}_{t}^{1/4}}\right\|^{2}\right] \leq \frac{2}{T\alpha} (\mathbb{E}[\Delta_{f}]) + \frac{L}{T\alpha} \sum_{t=1}^{T} \mathbb{E}\left[\left\|Z_{t+1} - Z_{t}\right\|^{2}\right] + \frac{2}{T} \frac{\beta_{1}}{1 - \beta_{1}} T_{1} + \frac{2}{T} T_{2} + \frac{3}{T} T_{3},$$
(4)

where $\Delta_f := \mathbb{E}[f(Z_1)] - \mathbb{E}[f(Z_{T+1})] T_1, T_2$ and T_3 are three terms, defined in the supplementary material, and which can be tightly bounded from above. We first bound T_3 using the following quantities of interest:

$$\sum_{t=1}^T \left\| Z_t - \overline{X}_t \right\|^2 \leq T \left(\frac{\beta_1}{1-\beta_1} \right)^2 \alpha^2 d \frac{G_\infty^2}{\epsilon} \ \text{ and } \ \sum_{t=1}^T \frac{1}{N} \sum_{i=1}^N \left\| x_{t,i} - \overline{X}_t \right\|^2 \leq T \alpha^2 \left(\frac{1}{1-\lambda} \right)^2 d G_\infty^2 \frac{1}{\epsilon} \ .$$

where $\lambda = \max(|\lambda_2|, |\lambda_N|)$ and recall that λ_i is *i*th largest eigenvalue of W.

Then, concerning the term T_2 , few derivations, not detailed here for simplicity, yields:

$$T_2 \le \frac{G_{\infty}^2}{N} \mathbb{E} \left[\sum_{t=1}^T \frac{1}{2\epsilon^{1.5}} \| - \sum_{l=2}^N \tilde{U}_t q_l q_l^T \|_{abs} \right] ,$$

where q_l is the eigenvector corresponding to lth largest eigenvalue of W and $\|\cdot\|_{abs}$ is the entry-wise L_1 norm of matrices. We can also show that

$$\sum_{t=1}^{T} \| - \sum_{l=2}^{N} \tilde{U}_{t} q_{l} q_{l}^{T} \|_{abs} \leq \sqrt{N} \sum_{o=0}^{T-1} \frac{\lambda}{1-\lambda} \| (-\hat{V}_{o-1} + \hat{V}_{o}) \|_{abs},$$

resulting in an upper bound for T_2 proportional to $\sum_{o=0}^{T-1} \|(-\hat{V}_{o-1} + \hat{V}_o)\|_{abs}$. Similarly:

$$T_1 \leq G_{\infty}^2 \frac{1}{2\epsilon^{1.5}} \frac{1}{\sqrt{N}} \mathbb{E} \left[\frac{1}{1-\lambda} \sum_{t=1}^T \| (-\hat{V}_{t-2} + \hat{V}_{t-1}) \|_{abs} \right].$$

294 Step 3: Bounding the drift term variance. An important term that needs upper bounding in our proof is the variance of the gradients multiplied (element-wise) by the adaptive learning rate:

$$\mathbb{E}\left[\left\|\frac{1}{N}\sum_{i=1}^{N}\frac{g_{t,i}}{\sqrt{u_{t,i}}}\right\|^{2}\right] \leq \mathbb{E}[\|\Gamma_{u}^{f}\|^{2}] + \frac{d}{N}\frac{\sigma^{2}}{\epsilon},$$

where $\Gamma_u^f := 1/N \sum_{i=1}^N \nabla f_i(x_{t,i})/\sqrt{u_{t,i}}$. Two consecutive and simple bounding of the above yields:

$$\sum_{t=1}^{T} \mathbb{E}[\|\Gamma_{u}^{f}\|^{2}] \leq 2 \sum_{t=1}^{T} \mathbb{E}[\|\Gamma_{\overline{U}}^{f}\|^{2}] + 2 \sum_{t=1}^{T} \mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} G_{\infty}^{2} \frac{1}{\sqrt{\epsilon}} \left\| \frac{1}{\sqrt{u_{t,i}}} - \frac{1}{\sqrt{\overline{U_{t}}}} \right\|_{1}\right]$$

297 and

$$\sum_{t=1}^{T} \mathbb{E}[\|\Gamma_{\overline{U}}^{\underline{f}}\|^{2}] \leq 2 \sum_{t=1}^{T} \mathbb{E}\left[\left\|\frac{\nabla f(\overline{X}_{t})}{\sqrt{\overline{U}_{t}}}\right\|^{2}\right] + 2 \sum_{t=1}^{T} \mathbb{E}\left[\left\|\frac{1}{N} \sum_{i=1}^{N} \frac{\nabla f_{i}(\overline{X}_{t}) - \nabla f_{i}(x_{t,i})}{\sqrt{\overline{U}_{t}}}\right\|^{2}\right]. \tag{5}$$

Then, by plugging the LHS of (5) in (4), and further bounding as operated for T_2 , T_3 (see supplement), we obtain the bound in Theorem 2.

Proof of Theorem 3: Recall the bound in (2) of Theorem 2. Since Algorithm 3 is a special case of Algorithm 2, the remaining of the proof consists in characterizing the growth rate of $\mathbb{E}[\sum_{t=1}^T \|(-\hat{V}_{t-2}+\hat{V}_{t-1})\|_{abs}]$. By construction, \hat{V}_t is non decreasing, then it can be shown that $\mathbb{E}[\sum_{t=1}^T \|(-\hat{V}_{t-2}+\hat{V}_{t-1})\|_{abs}] = \mathbb{E}[\sum_{i=1}^N \sum_{j=1}^d (-[\hat{v}_{0,i}]_j + [\hat{v}_{T-1,i}]_j)]$. Besides, since for all $t,i,\|g_{t,i}\|_{\infty} \leq G_{\infty}$ and $v_{t,i}$ is an exponential moving average of $g_{k,i}^2, k=1,2,\cdots,t$, we have $|[v_{t,i}]_j| \leq G_{\infty}^2$ for all t,i,j. By construction of \hat{V}_t , we also observe that each element of \hat{V}_t cannot be greater than G_{∞}^2 , i.e. $|[\hat{v}_{t,i}]_j| \leq G_{\infty}^2$ for all t,i,j. Given that $[\hat{v}_{0,i}]_j \geq 0$, we have

$$\mathbb{E}\left[\sum_{t=1}^{T} \|(-\hat{V}_{t-2} + \hat{V}_{t-1})\|_{abs}\right] = \mathbb{E}\left[\sum_{i=1}^{N} \sum_{j=1}^{d} (-[\hat{v}_{0,i}]_j + [\hat{v}_{T-1,i}]_j)\right] \leq \sum_{i=1}^{N} \sum_{j=1}^{d} \mathbb{E}[G_{\infty}^2] = NdG_{\infty}^2.$$

Substituting into (2) yields the desired convergence bound for Algorithm 3.

3.4 Illustrative Numerical Experiments

In this section, we conduct some experiments to test the performance of Decentralized AMSGrad, developed in Algorithm 3, on both *homogeneous* data and *heterogeneous* data distribution (i.e. the data generating distribution on different nodes are assumed to be different). Comparison with DADAM and the decentralized stochastic gradient descent (DGD) developed in [Lian et al., 2017] are conducted. We train a Convolutional Neural Network (CNN) with 3 convolution layers followed by a fully connected layer on MNIST [LeCun, 1998]. We set $\epsilon = 10^{-6}$ for both Decentralized AMSGrad and DADAM. The learning rate is chosen from the grid $[10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}]$ based on validation accuracy for all algorithms. In the following experiments, the graph contains 5 nodes and each node can only communicate with its two adjacent neighbors forming a cycle. Regarding the mixing matrix W, we set $W_{ij} = 1/3$ if nodes i and j are neighbors and $W_{ij} = 0$ otherwise. More details and experiments can be found in the supplementary material of our paper.

Figure 1: Training loss and Testing accuracy for homogeneous and heterogeneous data

Homogeneous data: The whole dataset is shuffled and evenly split into different nodes. We see, Figure 1(a), that decentralized AMSGrad and DADAM perform quite similarly while DGD is much slower both in terms of training loss and test accuracy. Though the (possible) non convergence of DADAM, mentioned in this paper, its performance are empirically good on homogeneous data. The reason is that the adaptive learning rates tend to be similar on different nodes in presence of homogeneous data distribution. We thus compare these algorithms under the heterogeneous regime. Heterogeneous data: Here, each node only contains training data with two labels out of ten. We can see that each algorithm converges significantly slower than with homogeneous data. Ferecially

can see that each algorithm converges significantly slower than with homogeneous data. Especially, the performance of DADAM deteriorates significantly. Decentralized AMSGrad achieves the best training and testing performance in that setting as observed Figure 1(b).

4 Conclusion

This paper studies the problem of designing adaptive gradient methods for decentralized training. We propose a unifying algorithmic framework that can convert existing adaptive gradient methods to decentralized settings. With rigorous convergence analysis, we show that if the original algorithm satisfies converges under some minor conditions, the converted algorithm obtained using our proposed framework is guaranteed to converge to stationary points of the regret function. By applying our framework to AMSGrad, we propose the first convergent adaptive gradient methods, namely Decentralized AMSGrad. Experiments show that the proposed algorithm achieves better performance than the baselines.

5 Broader Impact

- 340 We hope that efforts towards developing decentralized optimization methods can be put to good use
- for practical applications where data can not be shared in a central server for privacy reasons. Indeed,
- when the data is sensible and captured on several devices (nodes), we must come up with efficient
- and low-cost optimization methods for fitting complex models. We believe our work is a step forward
- leveraging current state-of-the-art optimization methods for decentralized optimization.

References

- Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
 The case for full-matrix adaptive regularization. *arXiv preprint arXiv:1806.02958*, 2018.
- Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. *arXiv* preprint arXiv:1704.05021, 2017.
- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communicationefficient sgd via gradient quantization and encoding. In *Advances in Neural Information Processing* Systems, pages 1709–1720, 2017.
- Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rabbat. Stochastic gradient push for distributed deep learning. *arXiv preprint arXiv:1811.10792*, 2018.
- Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends*(R) *in Machine learning*, 3(1):1–122, 2011.
- Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type algorithms for non-convex optimization. *arXiv preprint arXiv:1808.02941*, 2018.
- Yongjian Chen, Tao Guan, and Cheng Wang. Approximate nearest neighbor search by residual vector quantization. *Sensors*, 10(12):11259–11273, 2010.
- Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
 Building an efficient and scalable deep learning training system. In 11th {USENIX} Symposium
 on Operating Systems Design and Implementation ({OSDI} 14), pages 571–582, 2014.
- Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. *IEEE Transactions on Signal and Information Processing over Networks*, 2(2):120–136, 2016.
- John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(Jul):2121–2159, 2011a.
- John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:
 Convergence analysis and network scaling. *IEEE Transactions on Automatic control*, 57(3):
 592–606, 2011b.
- Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate nearest neighbor search. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2946–2953, 2013.
- Mingyi Hong, Davood Hajinezhad, and Ming-Min Zhao. Prox-pda: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks. In *Proceedings* of the 34th International Conference on Machine Learning-Volume 70, pages 1529–1538. JMLR. org, 2017.
- Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
 arXiv:1412.6980, 2014.
- Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

- Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. *arXiv preprint arXiv:1805.08114*, 2018.
- Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In *Advances in Neural Information Processing Systems*, pages 5330–5340, 2017.
- Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
 Reducing the communication bandwidth for distributed training. *arXiv preprint arXiv:1712.01887*,
 2017.
- Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of learning rate. *arXiv preprint arXiv:1902.09843*, 2019.
- H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient learning of deep networks from decentralized data. *arXiv preprint arXiv:1602.05629*, 2016.
- Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Dadam: A consensus-based distributed adaptive gradient method for online optimization. *arXiv preprint arXiv:1901.09109*, 2019.
- Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. *IEEE Transactions on Automatic Control*, 54(1):48, 2009.
- Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint* arXiv:2003.00295, 2020.
- Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv* preprint arXiv:1904.09237, 2019.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical* statistics, pages 400–407, 1951.
- Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
 consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.
- Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In *Advances in Neural Information Processing Systems*, pages 4447–4458, 2018.
- Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D²: Decentralized training over decentralized data. *arXiv preprint arXiv:1803.07068*, 2018.
- Hanlin Tang, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic gradient
 descent with double-pass error-compensated compression. arXiv preprint arXiv:1905.05957, 2019.
- Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
 Wright. Atomo: Communication-efficient learning via atomic sparsification. In *Advances in Neural Information Processing Systems*, pages 9850–9861, 2018.
- Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communicationefficient distributed optimization. In *Advances in Neural Information Processing Systems*, pages 1299–1309, 2018.
- Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes, from any initialization. *arXiv preprint arXiv:1806.01811*, 2018.
- Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic momentum methods for deep learning. *arXiv preprint arXiv:1808.10396*, 2018.
- Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
 Journal on Optimization, 26(3):1835–1854, 2016.

- Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
 for nonconvex optimization. In *Advances in Neural Information Processing Systems*, pages
 9793–9803, 2018.
- Fangyu Zou and Li Shen. On the convergence of weighted adagrad with momentum for training deep neural networks. *arXiv preprint arXiv:1808.03408*, 2018.