Отчет о текущем прогрессе в изучении процесса восстановления параметров модели Курамото

24 июня 2017 г.

Аннотация

В настоящем отчете попытаемся ответить на вопросы, которые возникли в предыдущем отчете, в следующем порядке: восстанавливаются ли параметры к постшоковому значению через значительные промежутки времени (на малых промежутках времени в прошлом отчете была приведена картинка, по которой неясно, так ли это); правда ли, что найденные максимумы и флуктуации различных метрик при длительных шоках есть следствия близости конца отрезка интегрирования; как выглядит аналогичный набор картинок для отрицательных шоков, в процессе которых нарушается основное Курамото-неравенство (приведено исследование на двух разных отрезках интегрирования).

Части отчета выглядят следующим образом: в первой части помещены все используемые обозначения (они в точности повторяют предыдущие, но разумнее держать их в одном файле); последующие части содержат ответы на вопросы выше с указанием значений используемых параметров. Возникающие в процессе работы вопросы отмечены, как и раньше, курсивом.

1 Напоминание: параметры и обозначения

Зададим набор используемых переменных и функций:

- частоту $\Omega = 2\pi$ и их разницу $\Delta \omega = 0.1$;
- период $T = \frac{2\pi}{\Omega} = 1$;
- общее время исследования положим L=nT, где переменная $n\in\mathbb{N}$ есть количество периодов в изучаемом отрезке времени;
- функция $k_0(t)$ первое приближение параметров системы:

$$k_0(t) = \begin{cases} d, & 0 \le t \le 2T \land t \ge 2T + \tau \\ d + \Delta d, & 0 \le t \le 2T + \tau \end{cases}$$

Здесь d положим невозмущенным значением; Δd - амплитудой шока; τ - длительностью шока;

• результат работы процесса восстановления при помощи квазистационарного решения, который мы описали в предыдущем отчете, обозначим $\hat{k}(t)$.

Также в рамках работы мы будем ссылаться на основное Курамото-неравенство:

$$\left| \frac{2\Delta w}{k_0(t)} \right| \le 1,\tag{1}$$

Starting approximation of the parameter function

Рис. 1: График исследуемой функции $k_0(t)$ на за время L=5T с шоком $\Delta d=d$ длительностью $\tau=T/2$.

причем будем считать, что в момент времени t=0 неравенство выполняется (однако может нарушаться во время шока.

На всякий случай напомним изучаемые метрики:

1. jumpK — отклонение восстановленной функции $\hat{k}(t)$ на выходе из шока относительно ампилтуды шока, т.е.

$$jumpK = \frac{\left|\hat{k}(2T + \tau) - d\right|}{\Delta d}$$

2. jumpKC — аналог С-метрики на отрезке времени после шока; формально это поправка на то, что наибольшее отклонение от $k_0(t)$ функция $\hat{k}(t)$ может реализовывать не на выходе из шока, а несколько позже:

$$jumpKC = \frac{1}{\Delta d} \left(\max_{t \ge 2T + \tau} \left| \hat{k}(t) - d \right| \right)$$

3. jumpKR — обычная \mathbb{L}_2 -метрика на функции, за исключением того, что мы нормируем ее на длину изучаемого времени:

$$jumpKR = \frac{1}{L} \sqrt{\int_{0}^{L} \left(\hat{k}(\tau) - k_0(\tau)\right)^2 d\tau}$$

4. jumpKR0 — модифицированная предыдущая метрика, которая учитывает дисперсность $k_0(t)$ (полагаю, что сильно зашумленные функции она бы спасла):

$$jumpKR0 = \frac{\frac{1}{L} \sqrt{\int\limits_{0}^{L} \left(\hat{k}(\tau) - k_0(\tau)^2 d\tau\right)}}{\sigma(k_0(t))}$$

Отметим также, что вопросы касательно корректности метрик jumpKR и jumpKR0 мы обсудим ниже (теперь они вызывают вопросы).

2 Релаксация к невозмущенному значению

Первую серию реконструкций проведем при следующих параметрах: $\Omega=2\pi,\ \Delta w=0.1,\ T=1,\ L=nT;$ невозмущенное значение параметра $k_0(t)$ было выбрано d=0.25, амплитуда шока $\Delta d=0.25,$ начало шока — момент времени 2T; длительность шока $\tau=T/2.$ Количество периодов на всем отрезке интегрирования будем варьировать $n=5,\ 10,\ 15.$

Результаты приведены на рисунке 3; следует заметить, что восстановленная параметрфункция достаточно долго приходит к постшоковому значению, в то же время характер восстановленной функции в рамках нашего эксперимента существенно не меняется при увеличении отрезка интегрирования¹.

Рис. 2: Релаксация к невозмущенному значению при длительности шока в несколько периодов на разных отрезках интегрирования

Рис. 3: Релаксация к невозмущенному значению при длительности шока в полпериода на разных отрезках интегрирования

Согласно прошлому отчету мы ожидали некоторого эффекта от близкого конца отрезка интегрирования. Положим теперь длину шо-

¹отдельно отметим, что в рамках увеличения отрезка используемый численный метод реализован без потери точности, т.е. с сохранением плотности точек сетки на единицу отрезка времени

ка $\tau=3T$; в случае n=5 это будет означать, что параметр-функция нулевого приближения $k_0(t)$ не возвращается к постшоковому значению. Из рисунка 2 можно сделать два наблюдения: согласно 2а процесс восстановления к шоковому значению тоже может быть достаточно продолжительным (этому посвящен рисунок 4); в то же время рисунок 2b показывает, что после такого длительного шока все равно наблюдается релаксация к невозмущенному значению (тоже, как видно, довольно долгая; существенно дольше, чем при относительно коротком шоке) без существенных изменений восстановленной функции на совпадающих отрезках времени (t < 5T).

Соответственно продемонстрируем еще один случай $\tau = L - 2T$, т.е. ситуации, в которых параметр-функция не возвращается к невозмущенному состоянию в рамках отрезка интегрирования (набором картинок для разных отрезков интегрирования следует считать рисунки 2a, 4a и 4b). Приведенные графики в общем и целом повторяют картину, наблюдаемую на рисунке 3: наблюдается акцентированное стремление восстановленной параметрфункции k(t) к «финальному» значению нулевого приближения параметр-функции $k_0(t)$, однако окончательный выход на ассимптоту происходит через довольно долгое время.

Рис. 4: Релаксация к возмущенному значению при невозвратном шоке на разных отрезках интегрирования

3 Влияние длины отрезка интегрирования на описанные метрики относительно длительности шока

В прошлом нашем отчете возник вопрос о том, насколько наблюдаемые эффекты на перечисленных метриках относительно изменения длительности шока (в единицу периода, τ/T) зависят от того, насколько близко к времени окончания шока попадает конец отрезка интегрирования (в особенности вопрос касался метрик jumpKR и jumpKR0).

Чтобы ответить на данный вопрос проведем две серии численных экспериментов: положим $\Omega=2\pi,\ \Delta w=0.1,\ T=1,\ L=nT;$ невозмущенное значение параметра $k_0(t)$ было выбрано d=0.25, амплитуда шока $\Delta d=0.25,$ начало шока — момент времени 2T, таким образом длительность шока лежит в пределах $0\leq\tau\leq(n-2)T;$ напомним, что в связи с особенностью процесса восстановления (а точнее подсчета скользящей корреляции, подробнее см. предыдущий отчет) реальная максимальная длительность меньше на T/2. Отличаться проводимые серии экспериментов будут только количеством периодов на отрезке интегрирования: в первой серии, совпадающий с экспериментом из прошлого отчета, положим n=10; во второй же отнесем конец отрезка интегрирования дальше по времени, чтобы изучить, насколько найденные эффекты зависят от ограничения на L, положим n=15. Для большей наглядности приведем графики для совпадающих метрики на одном рисунке.

Обсудим то, что видно на графиках:

Рис. 5: Амплитуда отклонения после шока

Рис. 6: Качество восстановления

- как видно на графиках 5а и 5b увеличение отрезка интегрирования на данные метрики не оказывает абсолютно никакого влияния;
- в то же время заметно, что построенная метрика выходит на ассимптоту, приближаясь к относительной амлитуде на постшоковом отрезке времени, равной 1; по сути, наблюдается

релаксация к возмущенному значению, которую мы наблюдали на рисунке 4; с другой стороны, этот выход сопровождается колебаниями, наличие которых ранее мы списывали на эффекты близости конца отрезка интегрирования; теперь же, видимо, следует считать, что это именно содержательная особенность приближения данной метрики к ассимптоте;

• обратная картина наблюдается при сравнении двух оставшихся метрик на рисунках 6а и 6b — получающиеся графики *абсолютно* не похожи. Куда более любопытным выглядит тот факт, что на малых временах t < 4T можно заметить

$$\frac{jumpKR_{10}(\tau)}{jumpKR_{15}(\tau)} \approx \frac{L_{15}}{L_{10}} = \frac{n_{15}T}{n_{10}T} = \frac{15}{10}$$

что легко угадывается из определения:

$$jumpKR = \frac{1}{L} \sqrt{\int_{0}^{L} \left(\hat{k}(\tau) - k_0(\tau)\right)^2 d\tau}$$

Т.о. можно внести два предложения:

- метрики jumpKR и jumpKR0 можно использовать только для сравнения качества восстановления для восстановлений, проведенных при одном u том жее L;
- можно изменить саму метрику, заменив нормировочный коэффциент на нечто, не зависящее от n или L. Мы намеренно сейчас не будем вдаваться в то, что же это должно быть за число и для следующей картинки положим его равным 1, т.е. изменим масштаб оси ординат, неформально говоря;
- аналогичное рассуждение можно привести и для jumpKR0, с учетом того, что влияение отрезка интегрирования присутствует также и в дисперсии нулевого приближения, поэтому просто закрепим эту дисперсию одной и той же в обоих случаях (формально, конечно, следует подумать над более корректной нормировкой)

(а) Сравнение в метрике jumpKR

(b) Сравнение в метрике jumpKR0

Рис. 7: Качество восстановления (нормированный случай)

• в то же время приведенные на рисуках 7а и 7b графики позволяют понять следующее: как бы не относились к предложенным изменениям на нормы, в их случае близость конца отрезка интегрирования существенно влияет на характер метрики; в частности, следствием именно этого эффекта являются возникающие максимумы.

4 Случай шока с отрицательной амплитудой, нарушающей основное Курамото-неравенство

В данной части рассмотрим случай отрицательного Δd , причем заведомо отметим, что для введение такой амплитуды не нарушает основное неравенство (1), то процесс восстановления не сообщает нам никакой существенно новой информации. Поэтому положим Δd таким, что на время шока основное Курамото-неравенство не выполняется.

Для вычислений было выбрано: $\Omega=2\pi,\ \Delta w=0.1,\ T=1,\ n=10,\ L=nT;$ невозмущенное значение параметра $k_0(t)$ было выбрано d=0.25, амплитуда шока $\Delta d=-0.2,$ начало шока — момент времени 2T (можно заметить, что такая амплитуда как раз подходит под желаемое нарушение).

На самом деле здесь в некотором смысле можно было бы ожидать графиков о разовых запусках на таких данных, однако мы сразу обратимся к знакомым графикам о метриках, эффекты на которых будем пояснять при помощи наших разовых запусков.

Рис. 8: Амплитуда отклонения после шока

- Несложно заметить, что характер рисунков 8a и 8b существенно отличается от рисунков 5a и 5b соответственно. Бросаются в глаза две ключевые разницы:
 - графики растут существенно медленнее, чем при положительных шоках;
 - существует некоторая точка-перелом, после которой процедура восстановления перестает вести себя адекватно. Здесь существует соблазн попытаться объяснить это явление уже упомянутой близостью конца отрезка интегрирования, однако это не так:

во-первых, можно построить аналогичные картинки для более длительного отрезка интегрирования (что мы сделали, но они вряд ли являются наглядными, поэтому отсутствуют в данном отчете); во-вторых давайте изучим, что происходит с процессом восстановления при разных длительностях;

Рис. 9: Качество восстановления

Рис. 10: Сравнение метрик jumpK и jumpKC

— для порядка также приведем графики для оставшихся метрик (рис. 9a и 9b), а также

сравнение для метрик jumpK и jumpKC (рис. 10), которое наглядно демонстрирует еще одну особенность отрицательных шоков с нарушением: различия между данными метриками довольно серьезны.

Однако более важной задачей является необходимость разобраться, почему же процесс восстановления в таких условиях выдает неадекватные результаты.

Приведем несколько отдельных запусков: все параметры сохраним прежними, но для наглядности и избежания разговоров о близости конца отрезка интегрирования увеличим отрезок интегрирования, n=15, для различных длительностей шока:

Рис. 11: Восстановление параметр-функции при разных длительностях шоков, нарушающих основное Курамото-неравенство

Как мы видим, рисунки 11а и 11b во многом повторяют ранее изученный процесс восстановления: к моменту выхода из шока параметр достигает наибольшего (или наибольшего в рамках периода) отклонения от невозмущенного состояния, после чего начинает к нему долго, но успешно релаксировать. Однако основная проблема заключается в рисунке 11c: как видно по нему, заявленная «неадекватность» процесса восстановления здесь заключена в том, что восстановленная функция $\hat{k}(t)$ перестает пытаться релаксировать к шокому значению в течение шока! Собственно этот эффект разумно объяснить тем, что система слишком долго находилась в nedonycmumom

согласно основному Курамото-неравенству состоянии, что делает ее непригодной для процесса восстановления.

Чтобы развеять оставшиеся сомнения, продлим отрезок интегрирования до n=50.

Рис. 12: Восстановление параметров при $\tau = 6T, \, n = 50$

Сохраняя предыдушую длительность шока $\tau=6T$, для которой наблюдался сомнительный результат, заметим, что несмотря на возникший существенный эффект некорректности восстановления, параметр-функция все равно через крайне долгое время приходит к невозмушенному значению (рис. 12).

С другой стороны, разрешая более длительные шоки, например, $\tau = 23T$ (рис. 13), мы получаем восстановленную параметр-функцию с сингулярностями во время шока («передержали» в недопустимом состоянии). И хотя в итоге восстановленная функция все равно приходит к невозмущенному значению, результат вряд ли следует считать приемлимым или корректным. Все это ставит перед нами вопрос о том, когда же длительность шока, нарушающего основное Курамото-неравенство, становится критической и приводит к некорректным результатам процесса восстановления: при смене монотонности jumpK или jumpKC метрик или же позже, а эффекты, сходные puc. 12 cmoum cumamb cumamb cumamb

Рис. 13: Восстановление параметров при $\tau = 23T$, n = 50