Zahlenformate 1

		Numeric		Dynamic
Bits	Format	Range	Precision	Range
8	Unsigned integer	$0 \rightarrow +255$	1	$\approx 48~\mathrm{dB}$
8	Signed integer	$-128 \rightarrow +127$	1	$\approx 48~\mathrm{dB}$
16	Unsigned integer	$0 \to +65,536$	1	$\approx 96~\mathrm{dB}$
16	Signed integer	$-32,768 \to +32,767$	1	$\approx 96~\mathrm{dB}$
16	Fixed-point (Q12)	$-8.0 \rightarrow \approx +7.999756$	≈ 0.000244	$\approx 96~\mathrm{dB}$
16	Fixed-point (Q15)	$-1.0 \rightarrow \approx +0.9999695$	≈ 0.0000305	$\approx 96~\mathrm{dB}$
32	Unsigned integer	$0 \to +4,294,967,296$	1	$\approx 193 \text{ dB}$
32	Signed integer	$-2, 147, 483, 648 \rightarrow +2, 147, 483, 647$	1	$\approx 193~\mathrm{dB}$
32	Single-precision	$\approx \pm 3.402823 \times 10^{38}$	$\approx 1.19 \times 10^{-7}$	$\approx 138~\mathrm{dB}$
64	Double-precision	$\approx \pm 1.797693 \times 10^{308}$	$\approx 2.22 \times 10^{-16}$	$\approx 314 \text{ dB}$

Zweierkomplement

Umwandlung: Bsp. 8-Bit $(-4)_{10}$ (Funktioniert in beide Richtungen)

- Vorzeichen Ignorieren $(4)_{10} = (00000100)_2$
- Bits Invertieren $(0000\ 0100)_2 \rightarrow (1111\ 1011)_2$
- Eins Addieren $(1111\ 1011)_2 + (0000\ 0001)_2 = (1111\ 1100)_2$ Vorteil: Kein Kopieren nötig

Fixed Point (unsigned)

Qk.l mit k = Vorkomma und l = Nachkomma

$$x_{(10)} = \sum_{i=0}^{k-1} b_i \cdot 2^i + \sum_{j=-l}^{-1} b_j \cdot 2^j$$
 (1)

Bsp Q4.5
$$a = (01010110)_2$$

 $0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 0 \cdot 2^{-4} = 5.375$

Fixed Point (signed)

Bsp. $Q3.3 (100.001)_2$

- Vorzeichen Merken (100.001) \rightarrow -1
- Bits Invertieren $(100\ 001)_2 \rightarrow (011\ 110)_2$
- $1 \cdot 2^{-k}$ Addieren $(011\ 110)_2 + (000\ 001)_2 = (011\ 111)_2 =$ -3.875

2 Filter in C

2.1**FIR**

Blockschaltbild und math. Zusammenhänge:

$$A(0)y(k) = \sum_{i=0}^{N} B(i)x(k-i)$$
 (2)

Realisierung des FIR in C (Brute-Force): 2.1.2

```
void fir()
    CodecDataIn.UINT = ReadCodecData();
                                             // get input data samples
    int i:
    xLeft[0] = CodecDataIn.Channel[LEFT];
                                             // current input value
    yLeft = 0 ;
                                             // initialize the output
    for ( i = 0 ; i <= N ; i++) {
                                             // x is length N+1
        yLeft += xLeft[i] * B[i];
                                             // perform the dot-product
    for ( i = N ; i > 0 ; i--) {
        xLeft[i] = xLeft[i-1];
                                             // shift for the next input
    CodecDataOut.Channel[LEFT] = yLeft;
                                             // output the value
```

- nach jedem dot-product ineffizientes Shiften von xLeft
- Problem kann mit Ringbuffer behoben werden

2.1.3 FIR Ringbuffer

Realisierung des FIR-Ringpuffers in C:

```
void firRing()
    float xLeft[N+1];
    float pLeft = xLeft;
    *pLeft = CodecDataIn.Channel[LEFT]; // store input value
    output = 0 ;
                                             // set up for channel
                                             // save current sample pointer
    p = pLeft ;
    if(++pLeft > &xLeft[N])
                                             // update pointer
    pLeft = xLeft;
for(i = 0 ; i <= N ; i++) {
    output+=(*p--) * B[i];
                                             // and store
                                                do LEFT channel FIR
                                                multiply and accumulate
         if(p < &xLeft[0])
                                             // check for pointer wrap around
            &xLeft[N];
    CodecDataOut.Channel[LEFT] = output; // store filtered value
```

2.2 IIR

2.2.1 Blockschaltbild und math. Zusammenhänge:

Direktform I:

Direktform II:

3. Kanonische Form:

Dritte kanonische Form, serial second order sections, SOS (Biquad)

4. Kanonische Form:

$$A(0)y(k) = \sum_{i=0}^{N} B(i)x(k-i) - \sum_{i=0}^{N} A(i)y(k-i)$$
 (3)

2.2.2 Realisierung des IIR in C:

2.3 Notch-IIR-Filter

2.3.1 Allgemeines:

SOS-IIR-Notch-Filter (Beispiel):

$$H(z) = k \frac{(z - \beta_1)(z - \beta_2)}{(z - \alpha_1)(z - \alpha_2)} = k \frac{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$$
(4)

 f_0 = Kerbfrequenz, f_s = Abtastfrequenz B_{3dB} = Kerbbreite

$$k = \frac{1 - 2r\cos(\Omega_0) + r^2}{1 - 2\cos(\Omega_0) + 1} \tag{5}$$

$$\Omega_0 = 2\pi \frac{f_0}{f_s} \tag{6}$$

$$r = 1 - \left(\frac{B_{3dB}}{f_s}\right)\pi\tag{7}$$

2.3.2 Anwendungsbeispiel:

- 1. Ermitteln des spektralen Maximum in durch die FFT generierten Daten
- 2. Ermitteln der entsprechenden Störfrequenzen
- 3. Errechnen der Koeffizienten des Notch-Filters mit der Störfrequenz als Kerb-Frequenz
- 4. Filtern des diskretisierten Signales mit errechnetem Filter
- 5. Ausgabe der bearbeiteten Audio-Sequenz

3 Spektralschätzung

3.1 Fensterfunktionen

Name	Breite Hauptzipfel	Nebenzipfel- Pegel (dB)	Transitions- bandbreite (dB)	Ripple im Passband (dB)	Dämpfung im Stoppband (dB)
Rectangular	4π/N	-13.5	1.8 π / N	0.75	21
Bartlett	8 π / N	-27	6.1π/N	0.45	25
von Hann	8 π / N	-32	6.2π/N	0.055	44
Hamming	8 π/N	-43	6.6π/N	0.019	53
Blackman	12 π / N	-57	11 π/N	0.0017	74
Kaiser, α = 4	6.8 π/N	-30	5.2π/N	0.049	45
Kaiser, α = 8	10.8 π / N	-58	10.2π/N	0.00077	81
Kaiser, α =12	16π/N	-90	15.4π/N	0.000011	118

4 Oszillatoren / Signalgeneratoren

4.1 IIR-Oszillator (Digital Resonator)

4.1.1 Allgemeines:

- Oszillator auf Basis einer z-Transformation
- Anregung des Systems mit Impuls bei k=0
- System mit Polen auf Einheitskreis
 - \rightarrow Grenzstabiles System
 - \rightarrow System schwingt mit konst. Frequenz

Vorgehen:

- 1. z-Transformation des kontinuierlichen Systems
- 2. Ausmultiplizieren von H(z) mit Y(z) bzw. X(z)
- 3. Anwenden von $Y(z)\cdot z^{-1}=y[n-1] \text{ bzw. } x(z)\cdot z^{-1}=x[k-1]$
- 4. Auflösen nach y(k)
- 5. Impuls als Eingangssignal x[k] = [1, 0, 0, ...]

Vorteil:

- Minimaler Verbrauch von Speicher und Rechenleistung
- Anpassbarkeit an beliebige Funktionen
- Hohe Auflösung und Flexibilität

Nachteil:

- Frequenz muss vor Start festgelegt werden
- durch Quantisierung kann Pol aus dem Einheitskreis rutschen und instabil werden
- Oszillator muss einschwingen

$$sin(\Omega_{0}k) \leftrightarrow \frac{sin(\Omega_{0})z^{-1}}{1 - 2\cos(\Omega_{0})z^{-1} + z^{-2}}$$
(8)
$$y(n) = sin(\Omega_{0})x(n-1) + 2cos(\Omega_{0})y(n-1) - y(n-2)$$
(9)

4.1.2 Realisierung des IIR-Oszillators in C:

```
enum lrtype {LEFT, RIGHT};
volatile union {unsigned UINT; short Channel[2];}
CodecDataIn, CodecDataOut;
float fDesired = 1000; // your desired signal frequency
float A = 32000; // your desired signal amplitude
float pi = 3.1415927; // value of pi
float theta; // digital frequency (omegaO in textbook)
float y[3] = {0, 1, 0}; // the last 3 output values.
unsigned fs = 48000; // sample frequency

void isr_resonator(){
   CodecDataIn.UINT = ReadCodecData(); // get input data samples
   theta = 2 * pi * fDesired / fs; // calc. the digital frequency
   y[0] = 2 * cosf(theta) * y[1] - y[2]; // calculate the output
   y[2] = y[1]; // prepare for the next ISR
   y[1] = y[0]; // prepare for the next ISR
   CodecDataOut.Channel[LEFT] = A * sinf(theta) * y[0]; // just scale
   CodecDataOut.Channel[RIGHT] = CodecDataOut.Channel[LEFT];
}
```

4.2 DDS-Oszillator

4.2.1 Allgemeines:

- Direct Digital Synthesizer
- Errechnen des Funktionsverlaufs
- Verwendung von Accumulator und Modulo-Operator
- sin() kann berechnet oder mittels Lookup-Table realisiert werden

Vorteil:

• Kann einfach bei FPGA verwendet werden

- Robuster Phasen- oder Frequenzwechsel mit sofortiger Wirkung
- kontinuierliche Signalform
- keine Einschwingzeit

Nachteil:

- Höherer Speicher- und Rechenleistungs-Bedarf
- Frequenzauflösung abhängig im Wesentlichen von Auflösung der Lookup ab

z.B NCO

- Direct Digital Synthesizer
- Errechnen des Funktionsverlaufs
- Verwendung von Accumulator und Modulo-Operator
- $\sin()$ kann berechnet oder mittels Lookup-Table realisiert werden
- Frequenzauflösung abhängig von Wortbreite des Phasenakkumulators $\frac{f_{clk}}{2^N_{Bits}}$

Vorteil:

- Kann einfach bei FPGA verwendet werden
- Robuster Phasen- oder Frequenzwechsel mit sofortiger Wirkung
- kontinuierliche Signalform
- keine Einschwingzeit

Nachteil:

- Höherer Speicher- und Rechenleistungs-Bedarf
- Frequenzauflösung abhängig im Wesentlichen von Auflösung der Lookup ab

$$\varphi_{inc} = 2\pi \frac{f_0}{f_s} \tag{10}$$

$$\varphi = \varphi + \varphi_{inc} \tag{11}$$

$$\varphi_{inc} < \pi(sonstAliasing)$$
(12)

$$x(n) = Asin(n\varphi) \tag{13}$$

4.2.2 Realisierung des DDR-Oszillators in C:

```
= 32000; //signal's amplitude
float fDesired = 1000; // signal's frequency
float phase = 0; // signal's initial phase
float pi = 3.1415927; // value of pi
float phaseIncrement; // incremental phase
int fs = 48000; // sample frequency
CodecDataIn.UINT = ReadCodecData();
// algorithm begins here
phaseIncrement = 2*pi*fDesired/fs;
phase += phaseIncrement;
if (phase >= 2*pi) phase
   get input data samples
   calculate the phase increment
// calculate the next phase
// modulus 2*pi operation
CodecDataOut.Channel[ LEFT] = A*sinf(phase); // scaled L output
CodecDataOut.Channel[RIGHT] = A*cosf(phase); // scaled R output
   algorithm ends here
```

4.2.3 Spezialfälle:

WriteCodecData(CodecDataOut.UINT);

1. Niquist-Frequenz: $f = \frac{f_s}{2} \rightarrow \varphi_{inc} = \pi$ $\rightarrow sin(n \cdot \pi) = 0$ bzw. $cos(n \cdot \pi) = [1, -1, 1, -1, ...]$

2.
$$f = \frac{f_s}{4} \to \varphi_{inc} = \frac{\pi}{2}$$

 $\to sin(n \cdot \pi) = [0, -1, 0, -1, ...]$
 $\to cos(n \cdot \pi) = [1, 0, -1, 0, ...]$

3. $f_s = N \cdot f$ (Ganzzahliges Vielfaches): \rightarrow nur N Werte müssen berechnet werden $\rightarrow cos(\varphi_{inc} \cdot n)$ für n = 0, 1, ..., N

5 Blocksignalverarbeitung:

5.1 Dreifach-Puffer:

Allgemein:

- Kein Kopieren notwendig
- 3 unabhängige Buffer nötig
- 3 Pointer zeigen welcher Buffer befüllt, verarbeit bzw. entleert wird

 $ISR\ schreibt\ N\ samples\ nach\ buffer[fill_index]\ und\ setzt\ ready_index\ \ DMA\ kopiert\ Processed\ von\ Ausgangsbuffer\ nach\ DAC$ = fill index.

buffer[fill_index] ist jetzt dran mit ProcessBuffer. Jeder Frame generiert einen Interrupt.

Block

- fill index wird von ADC gefüllt
- dump index wird an DAC geschrieben
- ready index Buffer für Blocksignalverarbeitung

5.1.1Realisierung eines Dreifach-Puffers in C:

```
#define BUFFER LENGTH
                                1024
                                            // buffer length in samples
#define NUM BUFFERS
volatile float buffer[NUM_BUFFERS][2][BUFFER_LENGTH];
void ProcessBuffer()
  Processes the data in buffer[ready_index]
    volatile float *pL = buffer[ready_index] [LEFT];
    volatile float *pR = buffer[ready_index] [RIGHT];
    // Do the Process
    buffer_ready = 0;
                       // means were done here
}
interrupt void Codec_ISR()
    static Uint8 fill_index = INITIAL_FILL_INDEX; // index to fill
    static Uint8 dump_index = INITIAL_DUMP_INDEX; // index to dump
    static Uint32 sample_count = 0; // current sample count in buffer
       get input data samples
          CodecDataIn.UINT = ReadCodecData();
           // IN
    buffer[fill_index][ LEFT][sample_count] = LEFT + RIGHT; // cropped
    buffer[fill_index] [RIGHT] [sample_count] = RIGHT + LEFT; // cropped
    CodecDataOut.channel[ LEFT] = buffer[dump_index][LEFT][sample_count];
    CodecDataOut.channel[RIGHT] = buffer[dump_index][RIGHT][sample_count];
       update sample count and swap buffers when filled
    if(++sample_count >= BUFFER_LENGTH) {
        sample_count = 0;
        ready_index = fill_index;
        if(++fill_index >= NUM_BUFFERS)
            fill_index = 0;
        if(++dump_index >= NUM_BUFFERS)
            dump_index = 0;
```

if(buffer_ready == 1) // sover_run-Flag

```
over_run = 1;
buffer_ready = 1;
WriteCodecData(CodecDataOut.UINT):// send output data to port
```

5.1.2 Blocksignalverarbeitung mit DMA

Vorteil: Prozessor muss sich nicht mit Befüllen beschäftigen sondern kann verarbeiten

- \rightarrow Geschwindigkeitsvorteil
 - DMA kopiert Sample von ADC nach Eingangsbuffer

DMA generiert Interrupt, wenn N Samples transfert $wurden \rightarrow Buffer-Swap$

```
interrupt void EDMA_ISR()
    if(++ready_index >= NUM_BUFFERS)
        ready_index = 0;
    if(buffer_ready ==1) //buffer isnt processed in time
    over_run = 1;
buffer_ready = 1; //buffer is now ready for processing
```

FIR mit Blocksignalverarbeitung

5.2.1 Allgemeines:

Bsp. Ordnung Filter N = 4, Framesize = 8

Problem: Die Start und Endzustände müssen jeweils berücksichtigt werden, um den FIR korrekt zu implementieren.

- ightarrow Bei Frame-Übergängen müssen die N-1 letzten Werte des letzten Frames berücksichtigt werden.
- \rightarrow Audiotechnisch würde dies ein "Knacken-" und "Klicken" hervorrufen

»»»> christoph Lösung: Der Puffer muss groß genug sein, um sowohl die Frame-Werte als auch die nötigen Randwerte speichern zu können (Framesize += N).

Latenz: $\frac{2N}{f_c l k}$ 2N: Eingangs-und Verarbeitungsbuffer

- Left[N|FRAMESIZE], buffer[FRAMESIZE]
- Left[N:FRAMESIZE+N] = buffer[0:FRAMESIZE]
- buffer[0:FRAMESIZE] = Left * B (B wird drüber FRAMESIZE-mal drüber geschoben s.o)
- Left[0:N] = Left[FRAMESIZE:FRAMESIZE+N]

5.2.2 Realisierung eines FIR mit Blocksignalverar. 5.2.3 in C:

```
»»»> christoph
void ProcessBuffer()
     short *pBuf = buffer[ready_index];
    // extra buffer room for convolution "edge effects"
// N is filter order from coeff.h
    static float Left[BUFFER_COUNT+N]={0}, Right[BUFFER_COUNT+N]={0};
    float *pL = Left, *pR = Right;
    float yLeft, yRight;
    // offset pointers to start filling after N elements
    pR += N;
    pL += N;
     // extract data to float buffers
    for(i = 0; i < BUFFER_COUNT; i++)</pre>
          *pR++ = *pBuf++;
          *pL++ = *pBuf++;
     // reinitialize pointer before FOR loop
    pBuf = buffer[ready_index];
     // Implement FIR filter
    for(i=0; i < BUFFER_COUNT; i++)</pre>
         yLeft = 0; // initialize the LEFT output value
         yRight = 0; // initialize the RIGHT output value
         for(j=0,k=i+N; j <= N; j++,k--)
              yLeft += Left[k] * B[j]; // perform the LEFT dot-product
yRight += Right[k] * B[j]; // perform the RIGHT dot-product
          // pack into buffer after bounding (must be right then left)
         *pBuf++ = _spint(yRight * 65536) >> 16;
*pBuf++ = _spint(yLeft * 65536) >> 16;
     // save end values at end of buffer array for next pass
    // by placing at beginning of buffer array for(i=BUFFER_COUNT,j=0; i < BUFFER_COUNT+N; i++,j++)
         Left[j] = Left[i];
         Right[j] = Right[i];
    buffer_ready = 0; // signal we are done
```

5.2.3 Allgemein:

Vorteile:

- Kein Kopieren zu Float-Arrays
- Robuste Buffer-Identifizierung, die Breakpoints unterstützt

Nachteile: Aufwendiges Schieben in dem Filterspeicher

- gleiche Latenz (=Durchlaufzeit 2 Buffer)
- Ping-Pong einfacher zu verwalten mit DMA

6 FFT

6.1 Allgemein:

- basiert auf dem Devide-and-Conquer Prinzip,
- Zwischenergebnisse werden wiederverwendet
- wesentliche Beschleunigung im Vergleich zur DFT
- Ordnung DFT: $N^2 \to$ Ordnung FFT: $N \cdot log_2(N)$

Mögliche Realisierungsformen:

- Decimation in Frequency
- Decimation in Time

6.2 Decimation in Time (DIT)

Butterfly-Diagramm DIT-FFT radix-2 (N=8):

1. Aufteilung in $Y(n) = Y_{even}(n) + Y_{odd}(n)$

Twiddle-Faktor:
$$w_N^{nk} = e^{-j\frac{2\pi nk}{N}}$$
 (14)

$$w_N^{2nk} = e^{-j\frac{4\pi nk}{N}} = w_{\frac{N}{2}}^{nk}$$
 (15)

$$Y(n) = \sum_{k=0}^{N/2-1} y(2k) w_N^{2nk} + \sum_{k=0}^{N/2-1} y(2k+1) w_N^{(2k+1)n}$$
 (16)

$$Y(n) = \sum_{k=0}^{N/2-1} y(2k) w_N^{2nk} + w_N^n \sum_{k=0}^{N/2-1} y(2k+1) w_N^{2kn}$$
 (17)

$$Y(n) = \sum_{k=0}^{N/2-1} y(2k) w_{\frac{N}{2}}^{nk} + w_N^n \sum_{k=0}^{N/2-1} y(2k+1) w_{\frac{N}{2}}^{nk}$$
 (18)

2. Aufteilung in $Y(n) = Y_{left}(n) + Y_{right}(n)$

$$Y(n) = \sum_{k=0}^{N/2-1} y(2k) w_{\frac{N}{2}}^{nk} + w_N^n \sum_{k=0}^{N/2-1} y(2k+1) w_{\frac{N}{2}}^{nk}$$

$$Y(n+\frac{N}{2}) = \sum_{k=0}^{N/2-1} y(2k) w_{\frac{N}{2}}^{(n+\frac{N}{2})k} + w_N^{n+\frac{N}{2}} \sum_{k=0}^{N/2-1} y(2k+1) w_{\frac{N}{2}}^{(n+\frac{N}{2})k}$$

$$(21)$$

mit

$$\begin{aligned} \textbf{Twiddle-Faktor:} \ w_{\frac{N}{2}}^{(n+\frac{N}{2})k} &= w_{\frac{N}{2}}^{nk} \cdot \underbrace{w_{\frac{N}{2}}^{k\frac{N}{2}}}_{=1} = w_{\frac{N}{2}}^{nk} \quad (22) \\ w_{N}^{n+\frac{N}{2}} &= w_{N}^{n} \cdot \underbrace{w_{N}^{\frac{N}{2}}}_{=-1} = -w_{N}^{n} \quad (23) \end{aligned}$$

folgt

$$Y(n) = \sum_{k=0}^{N/2-1} y(2k) w_{\frac{N}{2}}^{nk} + w_{\frac{N}{2}}^{n} \sum_{k=0}^{N/2-1} y(2k+1) w_{\frac{N}{2}}^{kn}$$
(24)
$$Y(n+\frac{N}{2}) = \sum_{k=0}^{N/2-1} y(2k) w_{\frac{N}{2}}^{nk} - w_{\frac{N}{2}}^{n} \sum_{k=0}^{N/2-1} y(2k+1) w_{\frac{N}{2}}^{kn}$$
(25)

$$Y_{left}(n) = Y_{even}(n) + w_{\frac{N}{2}}^{n} Y_{odd}(n)$$
 (26)

$$Y_{right}(n) = Y_{even}(n) - w_{\frac{N}{2}}^{n} Y_{odd}(n)$$
 (27)

Die Komplexität ist $O(N \log_2(N))$: Es gibt 2 $log_2(N)$ Splitting-Steps mit je O(n)

7 Multirate:

7.1 Änderung der Abtastfrequenz:

Wunsch: Annpassung der Sample-Rate an das abzutastende Signal \rightarrow Variable Abtastfrequenz mit gegebenen Samples

7.1.1 Dezimieren:

(19)

Vorteile einer Reduzierten Taktzahl:

- geringerer Energieverbrauch
- Reduzieren des Frequenzbandes ("nur was interessiert")

ACHTUNG: Anti-Aliasing-Filter sollte vorgeschalten werden

$$x(n) \longrightarrow \bigvee M \longrightarrow y(n) = x(n \cdot M)$$
 $y(n) = \begin{bmatrix} x|n & \text{für } n = 0, \pm M, \pm 2M, \dots \\ 0 & \text{sonst} \end{bmatrix}$

Die Abtastfrequenz M-mal reduzieren. Aus M Abtastwerten behält man nur einen (decimation, downsampling, compression).

7.1.2 Interpolation:

$$x(n) \longrightarrow \uparrow \bigsqcup \qquad y(n) = \begin{cases} x\left(\frac{n}{L}\right) & \text{für } n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{sonst} \end{cases}$$

Die Abtastfrequenz L-mal erhöhen. Nach jedem Abtastwert L-1 Nullen einfügen (interpolation, expansion).

Filterung nach Interpolation:

7.1.3 Problem bei Interpolation oder Dezimierung: Problem:

- eingesetzten Filter haben harte Anforderungen
- Phasenlinearität verlangt nach komplexen FIR-Filtern

Lösung:

- Dezimieren / Interpolieren in mehreren Stufen (einfachere Filter)
- Verwendung von Alternativlösungen für Filterung \rightarrow z.B.: CIC-Filter

7.2 Cascaded Integrator Comb (CIC):

7.2.1 Allgemeines:

• effiziente Architektur zum Filtern bei hohen Dezimations-/ Interpolations-Raten

- Verhalten: Moving-Average-Filter
- benötigt keine Koeffizienten-Speicher
- vergleichbarer nichtrekursiver FIR-Filter würde 5 $(z^{-6} \rightarrow D 1 = 6 1 = 5)$ Addierer benötigen

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-6}}{1 - z^{-1}} = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5}$$
 "moving average"

7.2.2 Verbesserungen:

- Kaskadierung von CIC-Filtern (Verbesserung der Filterwirkung)
- Anwendung der Noble-Äquivalenzen (Reduziert Speicherzellen-Anzahl)

CIC-Dezimator (Noble):

CIC-Interpolator (Noble):

8 FIR in FPGA

Pro Takt müssen 1 Multiplizierer und N Addierer durchlaufen

Die max. Taktfrequenz f_{clk} ist

$$f_{clk} = \frac{1}{T_{mul} + NT_{add}} \tag{28}$$

FIR - Pipelined 8.1

Jede Operationsstufe wird mit einem Pipelineregister gebuffert. Die Maximale Taktfrequenz des FPGA f_{clk} hängt von der Vorteil: Massive Erhöhung der Taktfrequenz

Nachteil: zusätzliche Register, Latenz (Zeitl. Versatz (hier 4))

Die max. Taktfrequenz f_{clk} annähernd durch T_{mul} definiert:

$$f_{clk} = \frac{1}{max(T_{mul}, T_{add})} = \frac{1}{T_{mul}}$$
 (29)

FIR - transposed (DF1) 8.2

Bevorzugte Implementierungsvariante

Vorteil: Pipeline-Register für Addierer werden eingspart, keine Latenz

$$f_{clk} = \frac{1}{T_{mult} + T_{add}} \tag{30}$$

8.3 FIR - lineare Phase

Voraussetzung: NST "gespiegelt" am Einheitskreis

Vorteil: Koeffizienten sind symmetrisch \rightarrow Anzahl an Multiplizierer kann halbiert werden

8.4 FIR - seriell

Addierer und Multiplizierer sind teuere Ressourcen im FPGA. Ein Controller Steuert einen MUX(Inputwerte) und RAM(Koeffs) und AKKU an.

Filterordnung N und der Abtastfrequenz f_A ab und muss min.

$$f_{clk} = M \cdot f_A = (N-1) \cdot f_A \tag{31}$$

8.5 FIR - semi-parallel

Bei der Seriellen Architektur ist die max. Filterordnung stark begrenzt. ($f_{max,FPGA}$ im 3st. MHz-Bereich) Für höhere Filterordnung kann die semi-parallele Architektur verwendet werden.

K: Sektionen M: Multiplizierer

Die max. Taktfrequenz des FPGA muss jetzt nur noch ein K-tel so hoch sein:

$$f_{clk} = \frac{M}{K} \cdot f_A = \frac{N-1}{K} \cdot f_A \tag{32}$$

NCO 9

- NCO = "Numerically Controlled Oscillator"
- Phasenakkumolator, der Jeden Takt um ein Phaseninkrement μ erhöht wird
- Ausgang des Counters wird mit Look-Up-Table (LUT) in Signalform (sin,cos,sägezahn) umgewandelt (**PAC:** Phase Amplitude Converter)
- LUT ist mit $N=2^n$ 12-bit breiten Werten gefüllt

$$\mu = N \frac{f_d}{f_s} \tag{33}$$

10 Quantisierung

Ein ADC gibt Ganzzahlwerte von 0 bis N zurück. Wir müssen diese Ganzzahl auf die Referenzspannung U_{Ref} beziehen. Der exakte Spannungswert $U(k) = U_{Ref} \cdot \frac{k}{N}$.

Dieses Ergebnis wird in gewisser Weise durch eines der Verfahren quantisiert:

- Runden (Bevorzugte Variante)
- Abschneiden (Wert fällt auf nächstiefere)
- Betragsabschneiden (Wert fällt Richtung 0)

10.1 Quantisierung mit Runden

Es ensteht ein Fehler beim Quantisieren e(n)

$$e(n) = Q\{x(n)\} - x(n)$$
 (34)

$$-\frac{\Delta}{2} < e(n) \le \frac{\Delta}{2} \tag{35}$$

Eingangsbereich (Range Full Scale) = 8

$$\Delta = \frac{R_{FS}}{2^B}$$
 B = 3

Der Volle Eingangsbereich R_{FS} teilt sich auf 2^B-1 Teile der Länge Δ auf.

$$R_{FS} = \Delta \cdot 2^B \tag{36}$$

10.2 Modelierung des Quantisierungsfehlers

Versuch den Quantisierungsfehlers zahlenmäßig zu erfassen. e(n) kann durch unkorreliertes, mittelwertfreies, gleichverteiltes, weißes Rauschen modeliert werden. Dieses Modell ist zulässig wenn

- Quantisierungsstufe Δ klein in Vergleich zur Signalamplitude
- Das Signal soll einige Q-Stufen zwischen zwei Abtastwerten überqueren
- Kein Überlauf und keine Saturation
- x(n) nicht periodisch mit Vielfaches von f_A
- Rauschen muss vom Signal kommen

10.3 Quantisierungsrauschleistung

$$E_e = \sigma_e^2 = \frac{\Delta^2}{12} = \frac{R_{FS}^2}{12 \cdot 2^{2B}}$$
 (37)

Bsp:

Werte für Q1.15: R_{FS} = 2, B=16
$$\sigma_e^2 = \frac{2^2}{12 \cdot 2^{2 \cdot 16}} = 77.61 \cdot 10^{-12}$$

$$\sigma_e^2 [dB] = 10 \log_{10} (77.61 \cdot 10^{-12}) = -101 dB$$

10.4 Signal-to-Quantization Noise Ratio SQNR

$$S_{max} = \frac{A_{max}^2}{2} \approx \frac{R_{FS}}{8} = 2^{2B-3} \cdot \Delta^2$$
 (39)

mit Quantisierungsrauschleistung σ_e^2 ergiebt sich

$$SQNR_{max} = \frac{S_{max}}{\sigma_e^2} = \frac{2^{2B-3} \cdot \Delta^2}{\frac{\Delta^2}{12}} = (6,02B+1,76)dB$$
 (40)

Es ergiebt sich eine Verschlechterung von $\frac{6dB}{Bit}$

10.5 Addieren

Pro Addition verlängert sich das Ergebnis um 1 Bit

- 1. im FPGA die Wortbreite nach jedem Addierer erhöhen
- 2. auf dem DSP wählt man die Wortlänge (16 / 32 Bits)
- 3. Wenn zu lang, herunter skalieren (LSBs abschneiden)
- 4. Bedingt herunter skalieren und die Anzahl der Skalierungen merken ("block floating point")
- 5. Nichts tun, wenn die Signale klein genug sind

10.6 Multiplizieren

Beim Multiplizieren ist die Ergebnislänge die Summe der Längen der Faktoren.

Konsequenzen:

- 1. Nach jeder Multiplikation ist eine Skalierung wegen der schnell wachsender Länge denkbar
- 2. In FPGA ist es ratsam, die Längen der fest implementierten Multiplizierer auszunutzen (z.B. 18x18)
- 3. Wenn sinnvoll, Multiplikation mit Konstanten als CSD implementieren (dann nur Additionen)

10.7 Overflow

Wie viele Bits brauchen wir für den max. Ausgang y(n)

Pessimistisch:

Wenn der Betrag des Eingangssignals ≤ 1 , dann kann schlimmsten Falls bei der Faltung die komplette Impulsantwort h(k) unter dem Eingangssignal sein. Daraus folgt:

$$|x(n)| \le 1 \to |y(n)| \le \sum_{k=0}^{N} |h(k)|$$
 (41)

Für ein Schmalbandiges Signal (Sinus) ist das Ausgangssignal höchstens der größte Spektralwert der Impulsantwort.

$$|x(n)| \le 1 \to |y(n)| \le \max\{\left|H(e^{j\Omega)}\right|\}$$
 (42)

Durch die Quantisierung überlagert sich der Fehler mit der Übertragungsfunktion $H(e^{j\Omega})$

$$\left|\Delta H(e^{-j\Omega}\right| \le \sum_{k=0}^{N} |\Delta h(k)| \left|e^{-jk\Omega}\right|$$
 (43)

10.8 Grenzzyklus

Schwingungen die sich durch die Quantisierung einstellen.

11 Nützliche Code-Ausschnitte:

Maximalwert-Ermittlung z.B. für Sepktralauswertung:

```
max_value = 0 ; //Startwert des Vergleichs
max_idx = 2 ; //Startindex des Vergleichs
for(int i = 2; i<(N-1); i++){
   if( y[i] > max_value){
      max_value = y[i];
      max_idx = i;
   }
```