1. (2 punts) Trobeu tots els nombres reals x que satisfan la desigualtat següent:

$$|2x + 8| \ge x^2.$$

Representeu el conjunt de solucions sobre la recta real y digueu si tal conjunt és fitat. En cas afirmatiu, trobeu-ne el suprem i l'ínfim. Digueu si tal conjunt té màxim o mínim. Quins són?

- **2.** (2 punts) Sigui $\{a_n\}$ una successió tal que $a_1 = \frac{1}{2}$ i $a_{n+1} = \sqrt{a_n + 2}$ si $n \ge 1$.
 - a) Demostreu que $0 \le a_n \le 2$, $\forall n \ge 1$.
 - b) Demostreu que $\{a_n\}$ és monótona.
 - c) Demostreu que $\{a_n\}$ és convergent i calculeu el seu límit.
 - d) Calculeu $\lim_{n\to+\infty} (a_n^2 3)^{\frac{1}{2a_n-4}}$.
- 3. (3 punts) Considerem la funció $f(x) = x^3 + x^2 + x + 2$.
 - a) Demostreu que la gràfica de la funció f talla exactament una vegada l'eix d'abscisses.
 - b) Trobeu un interval de longitud menor o igual a 1 que contingui el zero de f. Partint d'aquest interval i usant el mètode de la bisecció calculeu el zero de f amb un error absolut menor que 0.1 i el nombre d'iteracions necessàries.
- **4.** (3 punts) Siguin $f(x) = \ln x$.
 - a) Escriviu el polinomi de Taylor de grau n de la funció f en el punt $x_0 = 1$ i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Determineu el grau del polinomi de Taylor de la funció f per obtenir el valor de la 1.25 amb error més petit que 10^{-3} .
 - c) Calculeu el valor aproximat de ln 1.25 utilitzant el polinomi de l'apartat b).