Revenimento Paralelo Aplicado ao Problema de Minimização de Pilhas Abertas

Mauro Lúcio Afonso Paulino dos Santos Filho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

1 de setembro de 2025

Sumário

- Introdução
- 2 Problema
- Método
- 4 Desenvolvimento
- 5 Experimentos e Resultados
- 6 Conclusão e Trabalhos Futuros

Contexto

- Ambiente industrial;
- Armazenagem e manuseio;
- Otimização.

Definições

- Padrão: esquema de corte;
- Peça: unidade produzida a partir do corte;
- Pilhas: agrupamento temporário de peças.

MOSP

Objetivo

Sequenciar os padrões de corte de forma a minimizar o número máximo de pilhas abertas simultaneamente.

Matriz de Incidência

Tabela: Matriz de incidência (A).

Peça/Padrão	P_{a_1}	P_{a_2}	P_{a_3}	P_{a_4}	P_{a_5}	P_{a_6}
P_{e_1}	1	0	0	1	0	0
P_{e_2}	1	0	0	1	1	0
P_{e_3}	0	1	1	1	1	1
P_{e_4}	0	1	0	0	0	1
P_{e_5}	0	0	1	0	0	1
P_{e_6}	0	1	0	0	1	0

Matriz de Pilhas Abertas 1

Exemplo de solução

$$\pi_1 = [P_{a_1}, P_{a_2}, P_{a_3}, P_{a_4}, P_{a_5}, P_{a_6}]$$

Tabela: Matriz de pilhas abertas (B^{π_1}) .

Pilha/Estágio	1	2	3	4	5	6
P_{e_1}	1	1	1	1	0	0
P_{e_2}	1	1	1	1	1	0
P_{e_3}	0	1	1	1	1	1
P_{e_4}	0	1	1	1	1	1
P_{e_5}	0	0	1	1	1	1
P_{e_6}	0	1	1	1	1	0

Matriz de Pilhas Abertas 2

Exemplo de solução

$$\pi_2 = [P_{a_3}, P_{a_6}, P_{a_2}, P_{a_5}, P_{a_4}, P_{a_1}]$$

Tabela: Matriz de pilhas abertas (B^{π_2}) .

Pilha/Estágio	1	2	3	4	5	6
P_{e_1}	0	0	0	0	1	1
P_{e_2}	0	0	0	1	1	1
P_{e_3}	1	1	1	1	1	0
P_{e_4}	0	1	1	0	0	0
P_{e_5}	1	1	0	0	0	0
P_{e_6}	0	0	1	1	0	0

Estado da Arte

Artigo

Frinhani, Carvalho e Soma (2018)

Principais Contribuições

- PageRank e grafo MOSP;
- ► Instâncias significativamente maiores (cerca de 5 vezes maiores que as anteriores), ampliando o escopo dos testes;
- O método superou heurísticas clássicas em termos de qualidade das soluções e tempo de execução.

Fundamentação Teórica

- MCMC;
- ► Algoritmo de Metropolis;
- Distribuição de Boltzmann;
- Algoritmo de Metropolis-Hastings.

Justificativa

O PT permite explorar amplamente o espaço de soluções;

Sua implementação paralela possui bons resultados preliminares, mostrando que o método alcança soluções competitivas.

Propostas de Troca de Temperatura

Figura: Almeida, de Castro Lima e Carvalho (2025)

Soluções Iniciais e Codificação/Decodificação

- Solução aleatória;
- ► MCNH.
- Sequenciamento de Padrões;
- Sequenciamento de Peças.

Estruturas de Vizinhança Swap

Figura: Exemplo de movimento swap entre as posições 2 e 5.

Estruturas de Vizinhança 2-opt

Figura: Exemplo de movimento 2-opt entre as posições 2 e 5.

Estruturas de Vizinhança Inserção aleatória

Figura: Exemplo de movimento de inserção do elemento da posição 2 na posição 5.

Experimentos

Configurações

- ▶ Intel i7-10700 (8 núcleos / 16 threads), 16 GB RAM, Ubuntu 20.04;
- Implementação em C++ com compilador g++ -O3;
- PT configurado para 5 threads;
- Execuções: 5 repetições para cada instância.

Instâncias

- ► 610 Instâncias;
- ► 400×400; 600×600; 800×800; 1000×1000;
- Conjuntos 2, 4, 6, 8, 10, 14, 18, 20, 24, 28, 30, 34, 38, 40, 44, 48, 50, 54.

Calibragem

Parâmetro	Valores possíveis
T_0 (temperatura inicial)	{0,01 ; 0, 1; 1}
T_f (temperatura final)	${3;5;10}$
N_{kmax} (comprimento da cadeia de Markov)	{300; 400; 500; 600 }
Distribuição de temperatura ^a	$\{1; 2; 3; 4\}$
Forma de gerar soluções vizinhas ^b	{0;1;2}
Tipo de atualização de temperatura ^c	{0 ; 1; 2; 3}
Taxa de ajuste das temperaturas ^d	{3;4; 5 }

^a 1: linear, 2: linear inteira, 3: exponencial, 4: geométrica.

^b 0: swap, 1: 2-opt, 2: inserção aleatória.

 $^{^{\}circ}$ 0: sem ajuste; 1: ajusta para taxa de troca $\approx 23,4\%$, 2: equaliza probabilidade de troca entre réplicas vizinhas, 3: otimiza o tempo de ida e volta entre temperaturas extremas (ALMEIDA; de Castro Lima; CARVALHO, 2025).

^d Calculada como o número total de trocas dividido pelo valor da taxa.

Resultados

Comparação com Estado da Arte

- Melhor desempenho do PT-MOSP em praticamente todos os casos (2,4% de gap médio);
- Ganhos mais expressivos em instâncias menos densas (até 14 peças/padrão, gap de até 15,55%, com 5% de gap médio);
- Tempo de execução: de segundos até 15 minutos.

Estatísticas

- Shapiro-Wilk indica não-normalidade;
- ightharpoonup Wilcoxon p < 0.001 para todos os tamanhos;
- Indica diferenca estatística entre os métodos.

Conclusão

Conclusão

- ▶ PT-MOSP supera consistentemente o PieceRank;
- Vantagem mais relevante em instâncias menos densas.

Trabalhos Futuros

- Melhorias na implementação paralela;
- Novas estratégias de vizinhança;
- Aplicação a problemas combinatórios correlatos.

Fim

Referências

ALMEIDA, A. L. B.; de Castro Lima, J.; CARVALHO, M. A. M. Revisiting the parallel tempering algorithm: High-performance computing and applications in operations research. *Computers & Operations Research*, v. 178, p. 107000, 2025. ISSN 0305-0548. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305054825000280.

FRINHANI, R. d. M. D.; CARVALHO, M. A. M.; SOMA, N. Y. A pagerank-based heuristic for the minimization of open stacks problem. *Plos one*, Public Library of Science San Francisco, CA USA, v. 13, n. 8, p. e0203076, 2018.

21/21