

Status report #23

2020. 04. 17 (Fri)

M1 FUJIWARA Tomomasa

Purpose: measurement of timing resolution for MPPC × n series connection

✓ Raw. TOF vs. QDC

✓ Dec. TOF vs. QDC

Result

✓ 前ほどではないがそこそこいる...

✓ カウンター部屋の電気を点けると,その前後で, スケーラ上での ToF 全ch コインシデンス のカウントが ~100 イベント増えていた

電気点灯時の何らかのノイズ的なものの影響? Threshold の切りすぎか?

Cosmic-ray

- ✓ Decision of threshold
- Measure MIP signal for each MPPC output
- Trigger: Discri
- Tuning ~ 1/10 of MIP+ Offset.
- 前回合わせたとき → オシロ上での 電圧とディスクリミネータの電圧が 一致していなかった

オシロ上での生の信号からスレッショルドを決めた

- 同じ手順でスレッショルドを再確認した.
- が, 前回の調整時にオシロの入力インピーダンスを 1MΩとして合わせてしまっていた...

-10.10ns

0

✓ こちらでは見える電圧レベルも同じだった

✓ Raw. TOF vs. QDC

✓ Dec. TOF vs. QDC

- Run131: Pedestal
- R-1, 2 (MPPC×1こ)でペデスタルが やや太め
- L-1,2: (MPPC×4) 比較的細い

 R(MPPC×1)側の電圧を 47.7 → 44.7 [V]
に変更してみる

Status report #23

✓ Raw. TOF vs. QDC

✓ Dec. TOF vs. QDC

G4 simulation (hyperNKS)

√ やるべきこと

- NKS2後方のToFの配置最適化
- 上下の間隙, 横のセグメント数, NKS2からの距離 etc.

とりあえず動かしてみた

〈条件〉

- K+, 10万発
- 位置
 - x, y: 0で固定
 - z: 標的セル内で一様
- 運動量: 280 520 MeV/c で一様生成
- 天頂角: 0°-10°で cosθ を一様生成
- 磁場: 0.4Tで一定
- Decay 無
- 真空

• vd[2][0] でのヒット相関を調べた

G4 simulation

• vd[2][0] でのヒット相関を調べた

Status report #23

vd[0][0], vd[2][0]で飛行時間差を求めてみた

- ✓ G4 simulation
- Include material, B field of 680 magnet
- 運動学もより現実的に (どうするか→ KMaid を理解する必要有??)

• どのような運動量, 放出角度で飛ばすのがよいかを考えるため, p(γ, K+)Λ の運動学を計算してみた (が, いまいちよくわからない)

aaaa

- K+, 10000
- Momentum: 280 520 MeV/c
- Theta: -10° +10°

電源·検出器

モジュール群

ToF

(実際はブラックシートで覆っている)

※シンチ-MPPC間の遮光自体は 非常に甘くなっているため 中を開ける際は HVを切る必要あり

	特 性 (20℃)										構 造									
品 名	静電	特性	減衰量標準值 dB/km						波長	使用最大	内部導体構成	絶縁体		外部導体		シース		外装	仕上	概算
M 4	容量	インビー ダンス	1	10	30	100	200	2,000	短縮	電圧	及び外径	標準外径	構成	外径	横成	標準外径	材質		外径	質量
	約nF/km	標準Ω	MHz	MHz	MHz	MHz	MHz	MHz	率%	kVeff	mm	mm		mm		mm		種別	mm	kg/km
174/U	101	50	54	110	155	260	380	1,350	67	1.5	7/0.160CW	1.5	PE	2.0	Т	2.5	PVC(黒)	_	2.5	12
177/U	98	50	2.3	7.9	15	30	49	250	67	11	4.953	17.3	PE	18.9	SS	22.7	PVC(黑)	-	22.7	780
178B/U	97	50	85	180	280	320	650	2,300	70	1.0	7/0.102SCW	0.86	TFE	1.3	S	1.8	FEP(茶)	_	1.8	9
179B/U	64	75	98	180	230	325	430	1,150	70	1.2	7/0.102SCW	1.5	TFE	2.0	S	2.5	FEP(茶)	_	2.5	16
180B/U	52	95	79	110	130	185	245	890	70	1.5	7/0.102SCW	2.6	TFE	3.1	S	3.5	FEP(茶)	_	3.5	28