Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 1 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование методов прямого поиска экстремума унимодальной функции одного переменного»

Вариант 1

Выполнил: Александров А.А., студент группы ИУ8-31

Проверил: Коннова Н.С., доцент каф. ИУ8

1. Цель работы

Исследовать функционирование и провести сравнительный анализ различных алгоритмов прямого поиска экстремума (пассивный поиск, метод дихотомии, золотого сечения, Фибоначчи) на примере унимодальной функции одного переменного.

2. Условие задачи

На интервале [-5; 2] задана унимодальная функция одного переменного

$$f(x) = -0.5\cos(0.5x) - 0.5$$

Используя метод дихотомии, найти интервал нахождения минимума f(x) с заданным количеством итераций. Провести сравнение с методом оптимального пассивного поиска. Результат, в зависимости от числа точек разбиения N, представить в виде таблицы.

3. Ход работы

Построим график заданной функции и определим местонахождение её минимума:

Рисунок 1 - График функции $f(x) = -0.5 \cos(0.5x) - 0.5$ на интервале [-5, 2]

Как видно из графика, функция достигает своего минимума в точке x = 0. Теперь проведём программный расчет при помощи методов оптимального пассивного поиска и дихотомии.

Результат работы программы представлен в таблицах 1 и 2:

Таблица 1 – результат работы метода пассивного поиска

PASSIVE SEARCHER

Amount	of points				Uncertainty interval
		-			
	1		-0.865844		7
	2		-0.993072		4.66667
	3		-0.996099	I	3.5
1	4		-0.977668		2.8
	5		-0.993072	I	2.33333
1	6		-1	I	2
1	7		-0.996099	I	1.75
1	8		-0.993072	I	1.55556
1	9		-0.999375	l	1.4
1	10		-0.999484	I	1.27273
	11		-0.996099	I	1.16667
1	12		-0.998521	l	1.07692
1	13		-1	l	1
1	14		-0.998889		0.933333
1	15	1	-0.997804	ı	0.875
1	16	1	-0.999784	ı	0.823529
· 	17	-	-0.999807		0.777778
	18		-0.998443		0.736842
' 	19	-	-0.999375		0.7
1					·
 -	20	-	-1	-	0.666667
	21	1	-0.999484	I	0.636364

0.608696	-0.998937	22	
0.583333	-0.999892	23	I
0.56	-0.9999	24	I
0.538462	0.999168	25	I
0.518519	0.999657	26	I

I	27	1	0.5
I	28	-0.999703	0.482759
I	29	-0.999375	0.466667
I	30	-0.999935	0.451613
I	31	-0.999939	0.4375
I	32	-0.999484	0.424242
I	33	-0.999784	0.411765
I	34	-1	0.4
I	35	-0.999807	0.388889
I	36	-0.999589	0.378378
I	37	-0.999957	0.368421
I	38	-0.999959	0.358974
I	39	-0.999648	0.35
I	40	-0.999851	0.341463
I	41	-1	0.333333
I	42	-0.999865	0.325581
I	43	-0.999709	0.318182
I	44	-0.999969	0.311111
I	45	-0.99997	0.304348

1	46	-0.999745	0.297872
1	47	-0.999892	0.291667
1	48	-1	0.285714
1	49	-0.9999	0.28
1	50	-0.999784	0.27451
1	51	-0.999977	0.269231
1	52	-0.999978	0.264151
1	53	0.999807	0.259259
1	54	0.999917	0.254545
1	55	1	0.25
1	56	-0.999923	0.245614
1	57	-0.999833	0.241379
1	58	-0.999982	0.237288
1	59	-0.999983	0.233333
1	60	-0.999849	0.229508
1	61	-0.999935	0.225806
1	62	-1	0.222222
1	63	-0.999939	0.21875
1	64	-0.999867	0.215385

I	65	-0.999986	0.212121
1	66	-0.999986	0.208955
I	67	-0.999878	0.205882
I	68	-0.999947	0.202899
I	69	-1	0.2
	70	-0.99995	0.197183
1	71	-0.999892	0.194444
1	72	-0.999988	0.191781
	73	-0.999989	0.189189
I	74	-0.9999	0.186667
I	75	-0.999957	0.184211
I	76	-1	0.181818
I	77	-0.999959	0.179487
I	78	-0.99991	0.177215
1	79	-0.99999	0.175
1	80	-0.99999	0.17284
I	81	0.999916	0.170732
1	82	0.999964	0.168675
I	83	1	0.166667

	84	-0.999965	I	0.164706	
I	85	-0.999924	1	0.162791	1
I	86	-0.999992	1	0.16092	1
	87	-0.999992	I	0.159091	1
	88	-0.999929	I	0.157303	1
	89	-0.999969	I	0.155556	1
	90	-1	I	0.153846	1
l	91	-0.99997	1	0.152174	
l	92	-0.999935	1	0.150538	
l	93	-0.999993	1	0.148936	1
l	94	-0.999993	1	0.147368	1
l	95	-0.999939	1	0.145833	1
l	96	-0.999973	1	0.14433	1
l	97	-1	1	0.142857	1
l	98	-0.999974	1	0.141414	1
l	99	-0.999944	1	0.14	1
	100	-0.999994	1	0.138614	1
l	101	-0.999994	1	0.137255	1
ļ	102	-0.999947	I	0.135922	1

1	103	-0.999977	0.134615
1	104	-1	0.133333
1	105	-0.999978	0.132075
1	106	-0.999951	0.130841
1	107	-0.999995	0.12963
1	108	-0.999995	0.12844
1	109	-0.999954	0.127273
1	110	-0.99998	0.126126

1	111	1	0.125
1	112	-0.99998	0.123894
1	113	-0.999957	0.122807
1	114	-0.999995	0.121739
1	115	-0.999995	0.12069
1	116	-0.999959	0.119658
1	117	-0.999982	0.118644
1	118	-1	0.117647
1	119	-0.999983	0.116667
1	120	-0.999962	0.115702
1	121	-0.999996	0.114754
1	122	-0.999996	0.113821
1	123	-0.999963	0.112903
1	124	-0.999984	0.112
1	125	-1	0.111111
1	126	-0.999985	0.110236
1	127	-0.999966	0.109375
1	128	-0.999996	0.108527
1	129	-0.999996	0.107692
1	130	-0.999967	0.10687

1	.31 -0	0.999986	0.106061
1	.32	-1	0.105263
1	.33 -0	0.999986	0.104478
1	.34 -6	0.999969	0.103704
1	.35 -6	0.999997	0.102941
1	.36 -0	0.999997	0.10219
1	37	-0.99997	0.101449
1	.38 -0	0.999987	0.100719
1	39	1	0.1

Таблица 2 – результат работы метода дихотомии

DICHOTOMY SEARCHER

Left bound												
-5	2	-1.533	I	-1.467	I	-0.86011	I	-0.87147	I	7	I	1
-1.53333	2	0.2	I	0.2667	I	-0.9975	I	-0.99556	I	3.5333	I	2
-1.53333	0.266667	-0.6667	I	-0.6	Ι	-0.97248	I	-0.97767	I	1.8	l	3
-0.666667	0.266667	-0.2333	I	-0.1667	I	-0.9966	I	-0.99826	I	0.93333	I	4
-0.233333	0.266667	-0.01667	I	0.05	I	-0.99998	I	-0.99984	I	0.5	I	5
-0.233333	0.05	-0.125	I	-0.05833	I	-0.99902	I	-0.99979	I	0.28333	I	6
-0.125	0.05	-0.07083	I	-0.004167	I	-0.99969	I	-1	I	0.175	I	7
-0.0708333	0.05	-0.04375	I	0.02292	I	-0.99988	I	-0.99997	I	0.12083	I	8
-0.04375	0.05	-0.03021	I	0.03646	I	-0.99994						•

Построим графики зависимостей интервала неопределённости от числа точек N (для оптимального пассивного поиска и для метода дихотомии).

Рисунок 2 – зависимость интервала неопределённости от кол-ва измерений, метод оптимально пассивного поиска

Рисунок 3 - зависимость интервала неопределённости от кол-ва измерений, метод дихотомии

Ссылка на git-репозиторий: https://github.com/Vumba798/tsisa_lab01 Исходный код программы приведён в приложениях 1 - 6.

4. Выводы

В конечном итоге расчёт разными способами показал, что метод дихотомии значительно эффективнее метода оптимально пассивного поиска при нахождении экстремума унимодальной функции одного переменного.

Приложение 1. Исходный код файла searcher.hpp

```
#ifndef INCLUDE_SEARCHER_HPP
#define INCLUDE_SEARCHER_HPP
#include <algorithm>
#include <cmath>
#include <utility>
#include <stdexcept>
class Searcher{ protected:
  float _epsilon = 0.1;
std::pair<float,float> _interval;
  inline float _func(const float &x) const noexcept{
return -0.5 * std::cos(0.5 * x) - 0.5;
  }
public:
  inline Searcher(const float &a, const float &b){
    if(a >= b){
      throw std::invalid_argument("a must be less than b");
    }
    _interval = std::make_pair(a,b);
  };
  virtual void print() const = 0;
};
#endif // INCLUDE_SEARCHER_HPP
```

Приложение 2. Исходный код файла passiveSearcher.hpp

```
#ifndef INCLUDE_PASSIVESEARCHER_HPP_
#define INCLUDE_PASSIVESEARHCER_HPP_
#include <searcher.hpp>
#include <vector>

class PassiveSearcher : public Searcher{ public:
    inline PassiveSearcher(float a, float b) : Searcher(a, b) {};

std::vector<std::pair<float, float>> search() const;  void
print() const override final;
};

#endif // INCLUDE_PASSIVESEARHCER_HPP_
```

Приложение 3. Исходный код файла dichotomySearcher.hpp

```
#ifndef INCLUDE_DICHOTOMYSEARCHER_HPP_
#define INCLUDE_DICHOTOMYSEARCHER_HPP_
#include "searcher.hpp"
#include <vector>
struct Result{ float
intervalFirst; float
intervalSecond; float
X1; float X2; float
functionX1; float
functionX2; float
length; size_t
stepNum;
  inline Result(
                     float interFirst,
float interSecond,
                        float x1, float
x2,
          float funcX1, float funcX2,
float len, size_t num):
    intervalFirst(interFirst), intervalSecond(interSecond),
X1(x1), X2(x2),
    functionX1(funcX1), functionX2(funcX2),
length(len), stepNum(num) {};
};
class DichotomySearcher: public Searcher{ private:
  float _delta; public: inline
DichotomySearcher(const int &a, const int &b):
    Searcher(a, b),
    _delta(_epsilon / 3.0) {};
```

```
std::vector<Result> search() const;
void print() const override final;
};
#endif // INCLUDE_DICHOTOMYSEARCHER_HPP_
```

Приложение 4. Исходный код файла passiveSearcher.cpp

```
#include <passiveSearcher.hpp>
#include <algorithm>
#include <iomanip>
#include <iostream>
using std::endl; using
std::cout; using
std::setw; using
std::setfill;
std::vector<std::pair<float, float>> PassiveSearcher::search() const{
float I; // I - interval of uncertainty size_t N = 1; // N - amount of
points
  // first is a value, second is an interval of uncertainty
std::vector<std::pair<float, float>> minElementVec;
  do{
          I = 2.0 / (N+1) * (_interval.second-_interval.first); std::vector<float> tmpVec;
for (size_t k = 1; k <= N; ++k){ float x = \text{static\_cast} < \text{float} > (k)/(N+1) * (_interval.second-
_interval.first) + _interval.first;
                                   tmpVec.emplace_back(_func(x));
    }
    float min = *std::min_element(tmpVec.begin(), tmpVec.end());
minElementVec.emplace_back(std::make_pair(min, I));
    ++N;
  } while (I > _epsilon);
  return minElementVec;
}
```

```
void PassiveSearcher::print() const{    auto vec = search();

cout << "| Amount of points | " << "Minimal value" << " | " <<
    setw(6) << "Uncertainty interval |\n";    cout << "|" << setfill('-')

<< setw(57) << "" << "|" << endl;    for (size_t i = 0; i <
    vec.size(); ++i){        cout << setfill(' ') << setw(0);        cout << "|

" << setw(16) << i + 1 << " | " << setw(13) << vec[i].first

<< " | " << setw(20) << vec[i].second << " |\n";

}

cout << "|" << setfill('-') << setw(57) << "" << "|" << endl;
}</pre>
```

Приложение 5. Исходный код файла dichotomySearcher.cpp

```
#include <dichotomySearcher.hpp>
#include <utility>
#include <iomanip>
#include <iostream>
using std::endl; using
std::cin; using
std::cout; using
std::setfill; using
std::setw; using
std::right; using
std::setprecision;
std::vector<Result> DichotomySearcher::search() const{
  float I;
  float intervalFirst = _interval.first;
float intervalSecond = _interval.second;
  std::vector<Result> resultVec;
size_t stepNum = 1;
  do{
          I = intervalSecond -
intervalFirst; float x1 = intervalFirst
+ I/2 - delta; float x2 = intervalFirst
+ I/2 + _delta; float fx1 = _func(x1);
float fx2 = func(x2);
    resultVec.emplace_back(Result(
intervalFirst, intervalSecond,
                                        x1, x2,
fx1, fx2,
                   I, stepNum));
```

```
if (fx1 < fx2){
intervalSecond = x2;
    }else{
intervalFirst = x1;
    }
    ++stepNum;
  } while (I > _epsilon);
  return resultVec;
}
void DichotomySearcher::print() const{
auto resultVec = search();
  cout << "| Left bound | Right bound |"</pre>
    <<" x1 | x2 | f(x1) |"<< " f(x2) |
length | step Number |\n"; cout << "|" << setfill('-') <</pre>
setw(107) << right << "|\n"; for (size t i = 0; i <
resultVec.size(); ++i){ cout << setfill(' ');
    cout << "| " << setw(10) << setprecision(6) << resultVec[i].intervalFirst << " | " <<
setw(11) << setprecision(6) << resultVec[i].intervalSecond << " | " <<
" | " << setw(11) << setprecision(5) << resultVec[i].functionX1 << " | " <<
setw(11) << resultVec[i].functionX2 << " | " << setw(8) << setprecision(5) <<
resultVec[i].length << " | " <<
      setw(11) << resultVec[i].stepNum << " |\n";</pre>
cout << "|" << setfill('-') << setw(107) << right << "|\n";
 }
}
```

Приложение 6. Исходный код файла main.cpp

```
#include <iostream>
#include <string>
#include <passiveSearcher.hpp>
#include <dichotomySearcher.hpp>
using std::endl; using
std::cout; using
std::cin;
int main(int argc, char** argv){ cout << "The function is: func(x) = -0.5*cos(0.5x) - 0.5" <<
endl << endl; cout << endl << "\t\t\tPASSIVE SEARCHER" << endl; cout <<
PassiveSearcher ps(-5, 2); ps.print();
 cout << endl << endl << "\t\t\t\t\t\t\tDICHOTOMY SEARCHER" << endl;</pre>
cout << "=========;;
cout << "=======" << endl;
DichotomySearcher ds(-5, 2);
 ds.print();
return 0;
}
```

Приложение 6. Исходный код файла CMakeLists.txt

```
cmake_minimum_required(VERSION 3.4) set(CMAKE_CXX_STANDARD
11) set(CMAKE_CXX_STANDARD_REQUIRED ON)
project(Searcher)
add_library(searcher STATIC
  ${CMAKE_CURRENT_SOURCE_DIR}/sources/passiveSearcher.cpp
  ${CMAKE_CURRENT_SOURCE_DIR}/sources/dichotomySearcher.cpp
)
add_executable(main
${CMAKE_CURRENT_SOURCE_DIR}/sources/main.cpp
)
target_include_directories(searcher
  PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include
)
target_include_directories(main
  PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include
)
target_link_libraries(main PUBLIC searcher)
```

Контрольные вопросы

В чём состоит сущность метода оптимального пассивного поиска?

Метод оптимального пассивного поиска заключается в равномерном распределении N точек и вычислении в них значения функции. В таком случае, точкой минимума будет та точка, значение функции в которой минимально, тогда погрешность нахождения точки минимума будет равна расстоянию между двумя соседними точками, а интервал неопределённости двум расстояниям между двумя соседними точками, или двум погрешностям.