Panel Data

Po-Chun Huang

National Chengchi University

May 13, 2021

Today

- ► Panel Data (Wooldridge Ch13 and Ch14)
 - ► Why use panel data?
 - ► First Difference Estimation
 - ► Fixed Effects Estimation
 - ► STATA

Panel Data

- Recall that panel data are repeated observations of a given unit of observation over time
- Examples:
 - ▶ Data on 22 cities/counties in Taiwan, each state is observed in 3 years, for a total of 66 observations
 - ▶ Data on 1,000 individuals in four different years, for 4,000 observations total
 - ▶ Data on 10,000 firms in ten different years, for 100,000 observations total

Panel Data

▶ We can use use panel data to test whether various laws—like increasing beer taxes and raising the minimum legal drinking age—affect traffic fatalities

$$vfrall_{it} = \beta_0 + \beta_1 beertax_{it} + \beta_2 mlda_{it} + ... + u_{it}$$

► Another example using state-level panel would be an examination of the effect of a change in the minimum wage on employment

$$emp_{it} = \beta_0 + \beta_1 minwage_{it} + ... + u_{it}$$

 Other panel studies use individuals, employers, cities, or industries, as the unit of observations

Why Panel Data are Useful?

- ▶ With panel data we can control for factors that
 - vary across entities (states) but do not vary over time
 - could cause omitted variable bias if they are omitted
 - are unobserved or unmeasured—and therefore cannot be included in the regression using multiple regression
- Here's the key idea
 - An individual person, state, or any entity can **serve as its own** "**control**" if the unobserved characteristics associated with each observation do not change over time

Notations for Panel Data

- ► A double subscript distinguishes entities (states) and time periods (years)
- $ightharpoonup i = ext{entity (state)}, n = ext{number of entities, so } i = 1, ..., n$
- $t = time\ period\ (year),\ T = number\ of\ time\ periods\ so\ t = 1,...,\ T$

Some Panel Jargon

- Another term for panel data is longitudinal data
- A "balanced panel" has no missing observations
- ► An "unbalanced panel" has some entities (states) that are not observed for some time periods (years)

Example: Ruhm's study of "Alcohol Policies and Highway Vehicle Fatalities"

- Christopher Ruhm (1996) examined the impact of several policies that were intended to reduce alcohol-related traffic deaths
 - increasing the tax on beer
 - raising the minimum legal drinking age (MLDA)
 - automatically suspending the driver's' license of a drunk driver
 - automatically suspending the license of a driver who refuses to take a blood alcohol test
 - permitting people who are injured by a drunk driver to sue whoever served alcohol to the driver

Example: Ruhm's study of "Alcohol Policies and Highway Vehicle Fatalities"

- ▶ Unit of observation: a US state in a given year
- \triangleright 48 U.S. states, so n = number of entities = 48
- ▶ 7 years (1982, ..., 1988), so T = number of time periods = 7
- ▶ Balanced panel, so total number of observations = 7 · 48
 = 336

Example: Ruhm's study of "Alcohol Policies and Highway Vehicle Fatalities"

Variables

- ► Traffic fatality rate (number of traffic deaths in that state in that year, per 10,000 residents)
- Tax on a case of beer
- Legal driving age
- Drunk driving laws, etc.

FIGURE 8.1 The Traffic Fatality Rate and the Tax on Beer Panel a is a scatterplot of traffic **Fatality Rate** fatality rates and the real tax on (Fatalities per 10,000) a case of beer (in 1988 dollars) for 48 states in 1982. Panel b 4.0 shows the data for 1988. Both 3.5 plots show a positive relation-3.0 ship between the fatality rate FatalityRate = 2.01 + 0.15BeerTaxand the real beer tax. 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Beer Tax (Dollars per case \$1988) (a) 1982 data

FIGURE 8.1 The Traffic Fatality Rate and the Tax on Beer

Panel a is a scatterplot of traffic fatality rates and the real tax on a case of beer (in 1988 dollars) for 48 states in 1982. Panel b shows the data for 1988. Both plots show a positive relationship between the fatality rate and the real beer tax.

In both cases: higher alcohol taxes, more traffic deaths?

- ▶ Why might there be higher more traffic deaths in states that have higher alcohol taxes?
- Lots of other factors determine traffic fatality rates and correlate to beer taxes
 - "culture" around drinking and driving
 - density of cars on the road

Cultural attitudes towards drinking and driving

- Arguably are a determinant of traffic deaths AND
- ► Are potentially are correlated with the beer tax
- So beer taxes could be picking up cultural differences (omitted variable bias)
- Then the two conditions for omitted variable bias are satisfied
 - Specifically, "high taxes" could reflect "cultural attitudes towards drinking"

Traffic density

- Suppose
 - ► High traffic density means more traffic deaths
 - Western states with lower traffic density have lower alcohol taxes
- Then the two conditions for omitted variable bias are satisfied
 - Specifically, "high taxes" could reflect "high traffic density"
- ▶ Panel data lets us eliminate omitted variable bias when the omitted variables are constant over time within a given state

Panel Data Methods

Wooldridge Ch 13.3-13.5

- Start with a simple two-period model
 - ► For example, 1982 and 1988
- ▶ Then write the following model:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta D 2_t + a_i + u_{it}$$

- ► This could be a model of the effect of the beer tax (X) on the vehicle fatality rate (Y)
- Two things are new in this equation
- ightharpoonup First, $D2_t$ is a dummy variable
 - t=0 if the observation comes from the first period (t=1)
 - t=1 if it comes from the second period (t=2)

Panel Data Methods

Wooldridge Ch 13.3-13.5

- Second, a_i denotes an unobserved effect or a fixed effect
 it is meant to capture anything about observation i
 that is fixed over time and is otherwise unobserved
- ▶ a_i denotes an unobserved effect or a fixed effect
- You could think of a_i as representing a whole set of dummy variables, one for each cross-sectional observation in the data
 - ▶ In fact, one way to handle panel data is to include a dummy for each cross-sectional observation—for example, you could think of including one dummy variable for Alabama, one for Arkansas, and so on
 - ▶ We will see this later—it is called the "fixed-effects" estimator

The Problem

▶ If you simply pool your two years of panel data and estimate by OLS, you end up estimating this:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta D 2_t + v_{it}$$

► Compare this with the model we are considering:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta D 2_t + a_i + u_{it}$$

and you can see that

$$v_{it} = a_i + u_{it}$$

- ightharpoonup So if a_i is correlated with X_{it} you have a problem
- ▶ Why? Because then v_{it} will be correlated with X_it and OLS will be biased and inconsistent

Estimation

- ▶ Three ways of estimating fixed effects models:
- 1 First Difference Estimator
- 2 Demeaning (Fixed Effects Estimator)
- 3 Dummy Variable Estimator

First Difference (FD) Estimator

Again, the model is:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta D 2_t + a_i + u_{it}$$

▶ Write down separate a equation for year 2 and for year 1:

$$Y_{i2} = (\beta_0 + \delta) + \beta_1 X_{i2} + a_i + u_{i2}$$
$$Y_{i1} = \beta_0 + \beta_1 X_{i1} + a_i + u_{i1}$$

▶ Now subtract the second equation from the first:

$$Y_{i2} - Y_{i1} = \delta + \beta_1(X_{i2} - X_{i1}) + (u_{i2} - u_{i1})$$

► You can rewrite this using deltas:

$$\Delta Y_i = \delta + \beta_1 \Delta X_i + \Delta u_i$$

► This is a "first-differenced" equation, and is easy to estimate

Note three things

▶ First, β_1 in the FD equation has exactly the same interpretation as β_1 in the first equation

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \delta D 2_t + a_i + u_{it}$$
$$\Delta Y_i = \delta + \beta_1 \Delta X_i + \Delta u_i$$

- This seems a little odd, but review the derivation, and you will see that it makes sense
- ▶ By taking first differences, you eliminate the unobserved fixed effects that might be correlated with the error term

Scatterplot of $\triangle beertax_i$ and $\triangle vfrall_i$

Here is the underlying story: first Pooled OLS

Now FD (or FE)

Beer tax

Finally, POLS and FD together

Demeaning (Fixed Effects Estimator)

- We have discussed the first-difference estimator. Next, I will introduce the "fixed effects" estimator
 - You can think of the FE estimator in either of two ways:
 - adding a dummy variable for each cross-sectional observation to the model—the least squares dummy variable (LSDV) approach
 - "time de-meaning" the data—the fixed-effects transformation approach
- ► LSDV gives us exactly the same estimates that we would obtain from the regression on time-demeaned data, and the standard errors are identical

Least squares dummy variable approach (LSDV)

► To estimate fixed effects using the LSDV approach, start with the following model:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + a_i + u_{it}$$

- For example, this could be a model of how the traffic fatality rate (Y) is affected by the beer tax (X) in a state
- ▶ Remember that as denotes an unobserved effect or "fixed effect" that captures anything about state i that is fixed over time and is otherwise unobserved (aspects of a state's road that lead to traffic fatalities)

Least squares dummy variable approach (LSDV)

- A simple way to capture a fixed effect in a model is to add a dummy variable for each state (or individual, firm, etc.)
- ▶ Again, if we are estimating a model using panel of states

$$Y_{it} = \beta_0 + \beta_1 X_{it} + a_i + u_{it}$$

then we could add a dummy variable for each state to capture the state fixed effects we are estimating a model using panel of states

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \psi_2 S_{2i} + \psi_3 S_{3i} + \psi_4 S_{4i} + \dots + \psi_4 S_{4i} + u_{it}$$

▶ In this case, we are assuming we have 48 states in the sample, so we can include only 47 dummies

The fixed-effects transformation

Suppose you take the average of Y and X over time for each observation in the sample (state, individual, or whatever):

where

$$\bar{Y}_i = \frac{\sum_{t=1}^T Y_{it}}{T}$$

$$\bar{X}_i = \frac{\sum_{t=1}^T X_{it}}{T}$$

► This is just the average of the dependent variable and independent variable for observation *i*

The fixed-effects transformation

Now subtract this new equation from the original one

$$Y_{it} - \bar{Y}_i = \delta + \beta_1 (X_{it} - \bar{X}_i) + (u_{it} - \bar{u}_i)$$

You can rewrite the last equation as:

$$\ddot{Y}_i = \delta + \beta_1 \ddot{X}_i + \ddot{u}_i$$

► This is the "fixed-effects" estimator

Notice two things

- First, β_1 in the FE equation has exactly the same interpretation as the β_1 in the first equation (we saw something just like this with the FD estimator)
- ➤ Second, by using the FE estimator, you eliminate the unobserved fixed effects that might be correlated with the error term (again, just as with the FD estimator)

Random Effects (RE)

- ► FE assumes $Cov(x_{it}, a_i) \neq 0$: individual-specific effect is a random variable that is allowed to be correlated with the explanatory variables
- ▶ RE assumes $Cov(x_{it}, a_i) = 0$: individual-specific effect is a random variable that is assumed to be uncorrelated with the explanatory variables (of all past, current and future time periods)
- ▶ Do not use it for observational data if you want to make a causal claim!

Notes on Identification

▶ To consistently estimate β_1 using FE, FD or RE, the key assumption is strict exogeneity (holding a_i constant):

$$E(u_{it}|x_{i1},x_{i2},...,x_{iT},a_i)=0, t=1,...,T$$
 (1)

- It means that u_{it} is uncorrelated to all periods of x once a_i is controlled for. Alternatively, only x_{it} affects the expected value of y_{it} once a_i is controlled for.
- This assumption will be violated if
 - there is feedback problem (x_{it} changes due to changes in u_{it-p} , p > 0)
 - lagged effects of x are not correctly specified

Estimation in STATA

1 First Difference Estimator:

2 Dummy Variable Estimator:

xi: reg Y X i.id

3 Fixed Effects Estimator:

xtreg Y X, fe

Notes on FD and FE in STATA

- ► The key to doing FD and FE in Stata is to first "tsset" your data
- Doing FD requires you to generate first differences, which are simply changes in a given variable between two points in time (within a given unit of observation, like a state or individual)— this is much easier if you tsset your data (see the example above)
- Also, you may want to estimate a dynamic model (a model with lags) using either panel data or a time series—this is easy if you tsset your data

Note on heteroskedasticity and serial correlation in panel data

- ➤ To obtain standard errors that are robust to heteroskedasticity, specify the "robust" option in your regression command
- ➤ To obtain standard errors that are robust to serial correlation and heteroskedasticity, add the option "cluster(panelvar)" in your regression command, where "panelvar" is the variable identifying the cross-sectional unit of observation
- Remember that robust or cluster command does not change your estimates!

- Suppose we wish to evaluate the effect of a job training program on worker productivity of manufacturing firms
- ➤ We have data from 54 firms for two years (1987 and 1988)
- Consider the following model

$$scrap_{it} = \beta_0 + \delta y 88_t + \beta_1 grant_{it} + a_i + u_{it}$$

 $scrap_{it}$: the scrap rate of firm i during year t (the number of items, per 100, that must be scrapped due to defects). Let

 $grant_{it}$: a binary indicator equal to one if firm i in year t received a job training grant.

a_i: the unobserved firm effect (the firm fixed effect)

- ➤ The unobserved effect contains such factors as average employee ability, capital, and managerial skill; these are roughly constant over a two-year period
- For example, administrators of the program might give priority to firms whose workers have lower skills (upward bias).
- ➤ Or, to make the job training program appear effective, administrators may give the grants to employers with more productive workers (downward bias).

OLS

. reg lscrap grant d88

Source	ss	df	MS		er of obs	=	108
Model Residual	.810536068 240.098947	2 105	.405268034 2.28665664	Prob	105) > F uared R-squared	= =	0.18 0.8378 0.0034 -0.0156
Total	240.909484	107	2.2514905	_	*	=	1.5122
lscrap	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
grant d88 _cons	.0566004 1889081 .5974341	.43091 .3281441 .2057802	-0.58	0.896 0.566 0.005	797814 839557 .189409	2	.9110152 .461741 1.005458

tsset

tsset fcode year

panel variable: fcode (strongly balanced)

time variable: year, 1987 to 1988

delta: 1 unit

FD

. reg D.(lscrap grant)

Source	SS	df	MS	Number of o		54
Model Residual	1.23795567 17.1971851	1 52	1.23795567		= = = = be	3.74 0.0585 0.0672 0.0492
Total	18.4351408	53	.347832845		=	.57508
D.lscrap	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
grant D1.	3170579	.1638751	-1.93	0.058645	8974	.0117816
_cons	0574357	.097206	-0.59	0.557252	4938	.1376224

```
. xtreg lscrap grant d88, fe
```

Fixed-effects Group variable		ression			of obs = of groups =	
R-sq: within between overall	= 0.0049			Obs per	group: min = avg = max =	= 2.0
corr(u_i, Xb)	= -0.0674			F(2,52) Prob >		
lscrap	Coef.	Std. Err.	t	P> t	[95% Coni	f. Interval]
grant d88 _cons	0574357	.1638751 .097206 .0553369	-0.59	0.557		.1376224
sigma_u sigma_e rho	1.4833025 .4066418 .93009745	(fraction	of variar	nce due t	o u_i)	

F test that all $u_i=0$: F(53, 52) = 26.42

Prob > F = 0.0000

STATA LSDV

. reg lscrap grant d88 i.fcode

	Source	SS	df	MS	Numb	er of obs	=	108
					- F(55	, 52)	=	25.54
	Model	232.310891	55	4.22383438	3 Prob	> F	=	0.0000
I	Residual	8.59859282	52	.16535755	4 R-sq	uared	=	0.9643
					- Adi	R-squared	=	0.9266
	Total	240.909484	107	2.2514905	5 Root	MSE	=	.40664
	lscrap	Coef.	Std. Err.	t	P> t	[95% Con	nf.	Interval]
	grant	3170579	.1638751	-1.93	0.058	6458975	5	.0117816
	d88	0574357	.097206	-0.59	0.557	2524938	3	.1376224
	fcode							
	410538	3.89394	.4066418	9.58	0.000	3.07795	1	4.709926
	410563	4.773406	.4066418	11.74	0.000	3.95742	2	5.589393
	410565	5.62578	.4066418	13.83	0.000	4.80979	1	6.441767
	410566	4 682246	4066418	11 51	0 000	3 866259	a	5 498232

Cluster SF

. reg lscrap grant d88 i.fcode, cl(fcode)

Linear regression

Number of obs	=	108
F.(1, .53)	=	
Prob > F	=	
R-squared	=	0.9643
Root MSE	=	.40664

(Std. Err. adjusted for 54 clusters in fcode)

lscrap	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
grant d88	3170579 0574357	.2435688	-1.30 -0.44	0.199 0.661	8055951 3185038	.1714792
fcode 410538 410563 410565 410566 410567 410577 410572	3.89394 4.773406 5.62578 4.682246 2.557998 3.389506 6.194197	2.86e-14 2.86e-14 2.86e-14 2.86e-14 2.86e-14 2.86e-14	1.4e+14 1.7e+14 2.0e+14 1.6e+14 8.9e+13 1.2e+14	0.000 0.000 0.000 0.000 0.000 0.000	3.89394 4.773406 5.62578 4.682246 2.557998 3.389506 6.194197	3.89394 4.773406 5.62578 4.682246 2.557998 3.389506 6.194197

Use data from 1987, 1988, and 1989

rho

.89313867

```
. xtreg lscrap grant grant 1 d88 d89, fe cl(fcode)
Fixed-effects (within) regression
                                               Number of obs
                                                                         162
                                               Number of groups =
Group variable: fcode
                                                                          54
R-sq:
                                               Obs per group:
    within = 0.2010
                                                             min =
    between = 0.0079
                                                             avσ =
                                                                          3.0
    overall = 0.0068
                                                             max =
                                               F(4,53)
                                                                         7.07
corr(u i, Xb) = -0.0714
                                               Prob > F
                                                                       0.0001
                                (Std. Err. adjusted for 54 clusters in fcode)
                            Robust.
     lscrap
                           Std. Err.
                                               P>|t|
                                                        [95% Conf. Interval]
                   Coef.
                                          t
               -.2523149
                           .1434399
                                       -1.76
                                              0.084
                                                        -.5400188
                                                                     .035389
      grant
    grant 1
               -.4215895
                           .2824604
                                      -1.49
                                              0.141
                                                       -.9881333
                                                                     .1449543
         488
               -.0802157
                           .0978408
                                      -0.82 0.416 -.2764594
                                                                     .1160281
         d89
               -.2472028
                            .1967819
                                      -1.26
                                              0.215
                                                       -.6418973
                                                                     .1474917
      cons
                 .5974341
                            .0638746
                                       9.35
                                               0.000
                                                        .4693177
                                                                     .7255504
     sigma u
               1.438982
     sigma e
               .49774421
```

(fraction of variance due to u i)

Use data from 1987, 1988, and 1989

. reg lscrap grant grant 1 d88 d89 i.fcode, cl(fcode)

Linear regression

Number of obs	=	162
F.(3, 53)	=	
Prob > F	=	
R-squared	=	0.9276
Root MSE	=	.49774

(Std. Err. adjusted for 54 clusters in fcode)

lscrap	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
grant grant_1 d88 d89	2523149 4215895 0802157 2472028	.1762394 .3470489 .1202135 .2417789	-1.43 -1.21 -0.67 -1.02	0.158 0.230 0.507 0.311	6058063 -1.117682 3213333 7321498	.1011766 .2745025 .160902 .2377442
fcode 410538 410563 410565 410566 410567 410577 410592 410593	3.905259 4.717328 4.443668 4.621434 2.279588 3.423147 6.12662 2.934958	1.83e-14 1.83e-14 1.83e-14 1.83e-14 1.83e-14 1.83e-14 1.83e-14	2.1e+14 2.6e+14 2.4e+14 2.5e+14 1.2e+14 1.9e+14 3.3e+14 1.6e+14	0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.905259 4.717328 4.443668 4.621434 2.279588 3.423147 6.12662 2.934958	3.905259 4.717328 4.443668 4.621434 2.279588 3.423147 6.12662 2.934958

Use data from 1987, 1988, and 1989

. reg D.(lscrap grant grant 1 d88), cl(fcode)

Linear regression

Number of obs	=	108
F(3, 53)	=	1.98
Prob > F	=	0.1284
R-squared	=	0.0365
Root MSE	=	.57672

(Std. Err. adjusted for 54 clusters in fcode)

D.lscrap	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
grant D1.	222781	.1316461	-1.69	0.096	4868297	.0412676
grant_1 D1.	3512459	.2709732	-1.30	0.201	8947493	.1922575
d88 D1.	.0481041	.0568246	0.85	0.401	0658717	.1620798
_cons	1387113	.0953842	-1.45	0.152	3300278	.0526053

- ► FD, FE, LSDV are equivalent if there are only two periods of data
- ► FE and LSDV are equivalent regardless of time periods.
- ▶ FD and FE do not generate the same results in general.
- ► Most importantly, FD, FE, and LSDV are more convincing than OLS because they remove unobserved heterogeneity.