Longitudinal Analysis of Disease Progression Using Image and Laboratory Data for Covid-19 Patients

Additional Material

Verena Bentele^{1,†}, Francesca De Benetti^{1,†}, Egon Burian^{2,3}, Marcus Makowski², Nassir Navab^{1,4}, Rickmer Braren², Thomas Wendler¹

 ¹Chair for Computer Aided Medical Procedures and Augmented Reality, TU Munich
 ²Department of Diagnostic and Interventional Radiology, TU Munich
 ³Department of Diagnostic and Interventional Neuroradiology, TU Munich
 ⁴Computer Aided Medical Procedures Lab, Laboratory for Computational Sensing+Robotics, Johns Hopkins University

† These authors contributed equally to this work. francesca.de-benetti@tum.de

1 List of features

1.1 Demografic features

Sex categories: male [0], female [1]

Age in years

1.2 Clinical features

Hospital stay in days - Duration of the complete in-house

hospital stay; sum of "Stationary stay" and

"ICU stay"

Stationary stay in days - Duration of the stationary in-house

hospital stay

ICU stay in days - Duration of the in-house intensive

care unit (ICU) stay

Duration of intubation in days - Period during which the patient was

intubated

Duration of invasive ventilation in days - Period during which the patient was

invasively ventilated through a tube or tra-

cheostoma.

Time: symptoms to hospital admission in days Time: symptoms to ICU admission in days Time: hospital admission to ICU in days

admission

Outcome (30 days) categories: the patient passed away [1], the

patient is hospitalized with extracorporal membrane oxygenation (ECMO) therapy [2],

the patient is hospitalized with invasive ventilation support[3], the patient is hospitalized with non-invasive ventilation support [4], the patient is hospitalized without oxygen requirement [5], the patient was meanwhile moved to another health care facility [6], the patient was meanwhile discharged home [7] - Description of the patient's health care status 30 days after Covid-19 disease has been

diagnosed

Death categories: the patient did not die during the

observed hospital stay [0], the patient died

during the observed hospital stay [1]

SpO2 in % - All measurements were performed at

the time of hospital admission when the patients did not experience any additional ventilation; data imputation of 6%, missing values were replaced by cohort's (gender- and

wave-specific) median

Use of invasive ventilation categories: no [0], yes [1]

Use of ECMO categories: no [0], yes [1]; ECMO = extra-

corporal membrane oxygenation

Use of proningcategories: no [0], yes [1]Use of tracheotomycategories: no [0], yes [1]Use of hemodialysiscategories: no [0], yes [1]

Use of ADVOS categories: no [0], yes [1]; ADVOS = ad-

vanced organ support

Use of catecholamine treatmentcategories: no [0], yes [1]Use of dexamethasone treatmentcategories: no [0], yes [1]

1.3 Laboratory features

For each listed laboratory parameter we collected values at two times, namely \pm 1 day to the corresponding lung CT scan at T_0 (initial CT) and T_1 (follow up CT). The Δ of the values was computed by subtracting the initial value from the follow up value. If a value was not analyzed for a patient at the required time we applied data imputation and replaced the missing value by the cohort's (gender- and wave-specific) mean.

Hemoglobin in g/dl for $T_0/T_1/\Delta$; data imputation of 1% **Leukocytes** in G/l for $T_0/T_1/\Delta$; data imputation of 1%

Neutrophiles in % of leukocytes for $T_0/T_1/\Delta$; data imputation of 14% **Lymphocytes** in % of leukocytes for $T_0/T_1/\Delta$; data imputation of 13% in % of leukocytes for $T_0/T_1/\Delta$; data imputation of 14%

Thrombocytes in G/l for $T_0/T_1/\Delta$; data imputation of 1%

ALT in U/l for $T_0/T_1/\Delta$; data imputation of 5%, Alanine Aminotransferase

Creatinine in mg/dl for $T_0/T_1/\Delta$; data imputation of 1%

CK-MB in U/I for $T_0/T_1/\Delta$; data imputation of 30%, CK-MB = Creatine Kinase

Myocardial Band

LDH in U/I for $T_0/T_1/\Delta$; data imputation of 10%, LDH = Lactate Dehydro-

genase

Troponin T in ng/ml for $T_0/T_1/\Delta$; data imputation of 27%

CRP in mg/dl for $T_0/T_1/\Delta$; data imputation of 1%

IL-6 in pg/ml for $T_0/T_1/\Delta$; data imputation of 23%, IL-6 = Interleukin-6

Procalcitonin in ng/ml for $T_0/T_1/\Delta$; data imputation of 6%

APTT in seconds for $T_0/T_1/\Delta$; data imputation of 3%, Activated Partial

Thromboplastin Time

Fibrinogen in mg/dl for $T_0/T_1/\Delta$; data imputation of 34%

INR no unit for $T_0/T_1/\Delta$; data imputation of 2%, INR = Prothrombin Time

International Normalized Ratio

D-dimer in μ g/ml for $T_0/T_1/\Delta$; data imputation of 13%

1.4 Image-derived features

We computed the volume of the following five CT labels at two times, namely T_0 (initial CT) and T_1 (follow up CT) and computed their Δ by subtracting the first volume from the follow up volume.

Lung in ml for $T_0/T_1/\Delta$; in % of initial lung volume for Δ

Healthy in ml for $T_0/T_1/\Delta$; in % of initial lung volume for T_0/Δ ; in % of

follow up lung volume for T_1]

GGO in ml for $T_0/T_1/\Delta$; in % of initial lung volume for T_0/Δ ; in % of

follow up lung volume for T_1], GGO = ground glas opacity

Consolidation in ml for $T_0/T_1/\Delta$; in % of initial lung volume for T_0/Δ ; in % of

follow up lung volume for T_1]

Pleural effusion in ml for $T_0/T_1/\Delta$; in % of initial pleural effusion volume for Δ

After registration we detected the status transition of the lung parenchyma from the the initial CT (T_0) to the follow up CT (T_1) voxel-wise. The status options are consolidation (cons), ggo (ggo) and healthy lung tissue (healthy). The different status transition options (see below) are named after the following system: "(voxel status at T_0) 2 (voxel status at T_1)" The number 2 is just seen as synonym of the word "(in)to", like one status turns "into" another status. Summing up voxels with the same status transition we calculated the volume for each lung. As "common lung" we defined the intersection of the two label maps at T_0 and T_1 after their registration.

Healthy2Healthy in ml; in % of "common lung" in ml; in % of "common lung"

Healthy2Cons
GGO2GGO
in ml; in % of "common lung"
Cons2Cons
Cons2GGO
in ml; in % of "common lung"
in ml; in % of "common lung"
in ml; in % of "common lung"

Lung improving in % of "common lung"; this feature is defined as the sum of status

"Cons2GGO", "Cons2Healthy" and "GGO2Healthy"

Lung worsening in % of "common lung"; this feature is defined as the sum of status

"Healthy2GGO", "Healthy2Cons" and "GGO2Cons"

2 Correlation of longitudinal imaging and dynamic inflammatory data

Fig. 1. Correlation (and its significance) between dynamic change of image-features and dynamic change of inflammatory parameters; lung improving/worsening and state transition in percentage of common lung, lung/cons/ggo/healthy Δ in percentage of initial lung volume and plef Δ in ml (left to right: both waves, 1st wave, 2nd wave).