2. Proofs of correctness.

1-7. Prove that for all $c, y, z \in \mathbb{N}$ where $c \geq 2$, it follows that $S_z : yz = \text{multiply}(y, z)$.

Proof. (1) Note that by def. of division algorithm, $z = c \lfloor z/c \rfloor + (z \mod c) \iff (z \mod c) = z - c \lfloor z/c \rfloor$. Suppose z = 1 and $c, y \in \mathbb{Z}$ where $c \geq 2$. Observe that

Thus S_1 . Now suppose S_m for all $m, z \in \mathbb{N}$ such that $m \leq z$. We will now show $S_m \Longrightarrow S_{z+1}$.

Thus S_{z+1} . It follows by induction that S_z for all $c, y, z \in \mathbb{N}$ where $c \geq 2$.

1-8. Let A be a list where $A_{i \in [0,n]}$ for some $n \in \mathbb{N}$. Prove that horner $(A,x) = A_n x^n + A_{n-1} x^{n-1} + ... + A_1 x + A_0$. Proof. Suppose A is a list where $A_{i \in [0,n]}$ for some $n \in \mathbb{N}$. Observe that

horner
$$(A, x) = (...(((A_n)x + A_{n-1})x + A_{n-2})x + ... + A_1)x + A_0$$

$$= (...((A_nx^2 + A_{n-1}x + A_{n-2})x + A_{n-3})x + ... + A_1)x + A_0$$

$$= (A_nx^{n-1} + A_{n-1}x^{n-2} + ... + A_2x + A_1)x + A_0$$
 (Expanding)

$$= A_nx^n + A_{n-1}x^{n-1} + ... + A_1x + A_0.$$

1-9. Prove that for all $n \in \mathbb{N}$, S_n : bubblesort(A : list[1, n]) = A' such that $A'[1] \leq A'[2] \leq ... \leq A'[n]$.

Proof. Suppose n = 1. Then A = (A[1]) = A', thus S_1 . Now suppose S_i for some $i, k \in \mathbb{N}$ where $i \leq k$. We will now show $S_i \Longrightarrow S_{k+1}$. Let i = k+1. Observe that the inner loop swaps the maximum A[j] for $j \in [1, k+1]$ with A[k+1]. We assumed S_i for $i \leq k$, thus $A'[k+1] = \max(A[1], A[2], ..., A[k+1])$ and $A'[k] = \max(A[1], A[2], ..., A[k])$. Thus $A'[k] \leq A'[k+1]$ which implies S_{k+1} . It follows by induction that S_n for all $n \in \mathbb{N}$. ■