

Indefinite Integral

Let f(x) be a function, the family of all its primitives (or antiderivatives) is called the indefinite integral of f(x)and is denoted by $\int f(x)dx$

Standard Intergrals

$$(i) \int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$

$$(ii) \int \frac{1}{x} dx = \log |x| + C$$

$$(iii) \int e^x dx = e^x + C$$

$$(iv) \int a^x dx = \frac{a^x}{\log a} + C$$

$$(v) \int \sin x dx = -\cos x + C$$

(ii)
$$\int \frac{1}{x} dx = \log |x| + C$$

(iii)
$$\int e^x dx = e^x + C$$

(iv)
$$\int a^x dx = \frac{a^x}{\log a} + C$$

$$(v) \int \sin x dx = -\cos x + C$$

(vi)
$$\int \cos x dx = \sin x + C$$

(vii)
$$\int \sec^2 x dx = \tan x + C$$

(viii)
$$\int \csc^2 x dx = -\cot x + C$$

(ix)
$$\int \sec x \tan x dx = \sec x + C$$

(ix)
$$\int \sec x \, dx = \sec x + C$$
 (x) $\int \csc x \, dx = -\csc x + C$ (xi) $\int \cot x \, dx = \log |\sin x| + C$

(xi)
$$\int \cot x dx = \log |\sin x| + C$$

(xii)
$$\int \tan x dx = \log |\sec x| + C$$

$$(xiv) \int \csc x dx = \log |\csc x - \cot x| + C$$

$$(xv) \int \sec x dx = \log |\sec x + \tan x| + C$$

(xv)
$$\int \sec x dx = \log |\sec x + \tan x| + C$$
 (xvi) $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C$

$$(xviii)$$
 $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} tan^{-1} \left(\frac{x}{a}\right) + C$

$$(xx) \int \frac{1}{x\sqrt{x^2-a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) +$$

(xix)
$$\int -\frac{1}{a^2 + x^2} dx = \frac{1}{a} \cot^{-1} \left(\frac{x}{a} \right) + C$$

$$(xxi)\int -\frac{1}{x\sqrt{x^2-a^2}}dx = \frac{1}{a}\csc^{-1}\left(\frac{x}{a}\right) + C$$

Integration By Substitution

Expression Substitution $a^2 + x^2$ $x = a \tan \theta$ or $a \cot \theta$ $a^2 - x^2$ $x = a\sin\theta \text{ or } a\cos\theta$ $x = a \sec \theta$ or $a \csc \theta$ $\sqrt{\frac{a-x}{a+x}}$ or, $\sqrt{\frac{a+x}{a-x}}$ $x = a\cos 2\theta$

 $\sqrt{\frac{x-\alpha}{\beta-x}}$ or, $\sqrt{(x-\alpha)(x-\beta)}$

5.

 $x = \alpha \cos^2 \theta + \beta \sin^2 \theta$

Integration Using Partial Fractions

(i) $\frac{px+q}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}, a \neq b$ (ii) $\frac{px+q}{(x-a)^2} = \frac{A}{x-a} + \frac{B}{(x-a)^2}$

(iii) $\frac{px^2 + qx + r}{(x-a)(x-b)(x-c)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$

(iv) $\frac{px^2 + qx + r}{(x-a)^2(x-b)} = \frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$

 $(v) \frac{px^2 + qx + r}{(x - a)(x^2 + bx + c)} = \frac{A}{x - a} + \frac{Bx + C}{x^2 + bx + c}$

where $x^2 + bx + c$ cannot be factorised further.

Integration By Parts

 $\int u \cdot v dx = u \int v dx - \int \left[\frac{du}{dx} \cdot \int v dx \right] dx$ Follow ILATE

QUIK LOOK

•
$$\int \frac{\mathrm{dx}}{\mathrm{x}^2 - \mathrm{a}^2} = \frac{1}{2\mathrm{a}} \log \left| \frac{\mathrm{x} - \mathrm{a}}{\mathrm{x} + \mathrm{a}} \right| + \mathrm{C}$$

$$\int \frac{\mathrm{dx}}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

•
$$\int e^x \left[f(x) + f'(x) \right] dx = e^x f(x) + C$$

•
$$\int \left[xf'(x) + f(x)\right] dx = xf(x) + C$$

•
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + C$$
 • $\sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$

•
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$

(3) $\int \frac{f'(x)}{f(x)} dx = \log\{f(x)\} + C$ (4) $\int \{f(x)\}^n f'(x) dx = \frac{\{f(x)\}^{n+1}}{n+1}, n \neq -1$

•
$$\sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log |x + \sqrt{x^2 + a^2}| + C$$

Integrals of different forms:

$(1)\int \sin^m x dx$, $\int \cos^m x dx$, where $m \le 4$

express $\sin^m x$ and $\cos^m x$ in terms of sines and cosines of multiples of x by using the following identities:

(i)
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
 (ii) $\cos^2 x = \frac{1 + \cos 2x}{2}$

(ii)
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

(iii)
$$\sin 3x = 3\sin x - 4\sin^3 x$$

$$(iv)\cos 3x = 4\cos^3 x - 3\cos x$$

(2)
$$\int \sin mx \cos nx dx$$
, $\int \sin mx \sin nx dx$, $\int \cos mx \cos nx dx$

use the following trigonometrical identities:

 $2\sin A\cos B = \sin(A+B) + \sin(A-B); 2\cos A\sin B = \sin(A+B) - \sin(A-B)$ $2\cos A\cos B = \cos(A+B) + \cos(A-B); 2\sin A\sin B = \cos(A-B) - \cos(A+B)$

(5)
$$\int \tan^m x \sec^{2n} x dx \int \cot^m x \csc^{2n} x dx : m \in N$$

$$(5) \int \tan^m x \sec^{2n} x dx, \int \cot^m x \csc^{2n} x dx; m, n \in \mathbb{N}$$

Put
$$\tan x = t$$
 and $\sec^2 x dx = dt$

$$(6) \int \sin^m x \cos^n x dx, m, n \in N$$

If the exponent of $\sin x$ is an odd positive integer put $\cos x = t$ If the exponent of $\cos x$ is an odd positive integer put $\sin x = t$.

(7) $\int \sin^m x \cos^n x dx$, Where $m, n \in Q$, m+n is a negative even integer

Change the integrand in terms of $\tan x$ and $\sec^2 x$ by dividing numerator and denominator by $\cos^k x$, where k = -(m+n) then put $\tan x = t$

$$(9)\int \frac{px+q}{ax^2+bx+c}dx$$

To evaluate this,

$$px + q = \lambda \left\{ \frac{d}{dx} \left(ax^2 + bx + c \right) \right\} + \mu \text{ i.e. } px + q = \lambda (2ax + b) + \mu$$

(11)
$$\int \frac{P(x)}{ax^2 + bx + c} dx$$
, where p (x) is a polynomial of degree two or more

to evaluate this, write $\int \frac{P(x)}{ax^2 + bx + c} dx = \int Q(x) dx + \int \frac{R(x)}{ax^2 + bx + c} dx$

$$(13)\int \frac{1}{a\sin x + b\cos x} dx, \int \frac{1}{a + b\sin x} dx, \int \frac{1}{a + b\cos x} dx$$

$$\int \frac{1}{a\sin x + b\cos x + c} dx$$

To evaluate this, put $\sin x = \frac{2 \tan x / 2}{1 + \tan^2 x / 2}$ and, $\cos x = \frac{1 - \tan^2 x / 2}{1 + \tan^2 x / 2}$ and simplify.

(8)
$$\int \frac{1}{ax^2 + bx + c} dx$$

express $ax^2 + bx + c$ as the sum or difference of two squares.

$$(10)\int (px+q)\sqrt{ax^2+bx+c}\,dx$$

In order to evaluate this, write
$$px+q=\lambda\frac{d}{dx}(ax^2+bx+c)+\mu$$
 i.e. $px+q=\lambda(2ax+b)+\mu$

$$(12)\int \frac{1}{a\sin^2 x + b\cos^2 x} dx, \int \frac{1}{a + b\sin^2 x} dx$$

$$\int \frac{1}{a+b\cos^2 x} dx, \int \frac{1}{(a\sin x + b\cos x)^2} dx, \int \frac{1}{a+b\sin^2 x + c\cos^2 x} dx$$

To evaluate this type of integrals, divide numerator and denominator both by $\cos^2 x$

$$(14) \int \frac{a \sin x + b \cos x}{c \sin x + d \cos x} dx$$

To evaluate this, write Numerator $= \lambda(Diff. of denominator) + \mu(Denominator)$

$$(15) \int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C \qquad (16) \int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$

(16)
$$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$$

$$(17)\int (px+q)\sqrt{ax^2+bx+c}dx$$

In order to evaluate this, write

$$px + q = \lambda \frac{d}{dx} (ax^2 + bx + c) + \mu$$
 i.e. $px + q = \lambda (2ax + b) + \mu$

$$(18)\int \frac{1}{(ax+b)\sqrt{cx+d}} dx$$

$$put cx + d = t^2$$

$$(19)\int \frac{1}{\left(ax^2 + bx + c\right)\sqrt{px + q}} \, dx$$

$$put px + q = t^2$$

$$(20)\int \frac{1}{(ax+b)\sqrt{px^2+qx+r}} dx$$

$$put ax + b = \frac{1}{t}$$

$$(21) \int \frac{1}{\left(ax^2 + b\right)\sqrt{cx^2 + d}} dx$$

put
$$x = \frac{1}{t}$$
 to obtain

$$(22)\int \frac{-tdt}{\left(a+bt^2\right)\sqrt{c+dt^2}}$$

substitute
$$c + dt^2 = u^2$$

Reduction formulas

(1) Reduction Formula for Exponential Functions

•
$$\int x^n e^{mx} dx = \left[(1/m) x^n e^{mx} \right] - \left[(n/m) \int x^{n-1} e^{mx} \right] dx$$

•
$$\int e^{mx} / x^n dx = - \int e^{mx} / (n-1)x^{n-1} + \int (m/n-1) \int e^{mx} / x^{n-1} dx, n \neq 1$$

(3) Reduction Formula for Logarithmic Functions

•
$$\int x^n \ln^m x dx = \frac{x^{n+1} \ln^m x}{n+1} - \frac{m}{n+1} \int x^n \ln^{m-1} x dx$$

•
$$\int \frac{ln^m x}{x^n} = -\frac{ln^m x}{(n-1)x^{n+1}} + \frac{m}{n-1} \int \frac{l^{m-1} x}{x^n} dx, n \neq 1$$

(4) Reduction Formula for Inverse Trigonometric Functions

•
$$\int x^{n} \arcsin x dx = \frac{x^{n+1}}{n+1} \arcsin x - \frac{1}{n+1} \int \frac{x^{n+1}}{\sqrt{1-x^2}} dx$$

•
$$\int x^n \cos(x) dx = x^n \sin(x) - n \int x^{n-1} \sin(x) dx$$

•
$$\int x^n \sin(x) dx = -x^n \cos(x) + n \int x^{n-1} \cos(x) dx$$

•
$$\int \sin^n(x) \cos^m(x) dx = \frac{\sin^{n+1}(x) \cos^{m-1}(x)}{n+m} + \frac{m-1}{n+m} \int \sin^n(x) \cos^{m-2}(x) dx$$

•
$$\int \frac{dx}{\sin^n x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{(n-2)}{(n-1)} \int \frac{dx}{\sin^{n-2} x}, n \neq 1$$

•
$$\int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{(n-2)}{(n-1)} \int \frac{dx}{\cos^{n-2} x}, n \neq 1$$

•
$$\int \tan^n(x) dx = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x) dx$$

(5) Reduction Formula for Algebraic Functions

$$\oint \int \frac{dx}{\left(ax^2 + bx + c\right)^n} = \frac{-2ax - b}{(n-1)\left(b^2 - 4ac\right)\left(ax^2 + bx + c\right)^{n-1}} - \frac{2(2n-3)a}{(n-1)\left(b^2 - 4ac\right)} \int \frac{dx}{\left(ax^2 + bx + c\right)^{n-1}}, n \neq 1$$

•
$$\int \frac{dx}{\left(x^2 - a^2\right)^n} = \frac{x}{2(n-1)a^2 \left(x^2 a^2\right)^{n-1}} - \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{\left(x^2 - a^2\right)^{n-1}}, n \neq 1$$

8.

Derived substitutions:

A. Algebraic Twins

B. Trigonometric twins

•
$$\int \sqrt{\tan x} dx$$
, $\int \sqrt{\cot x} dx$,

•
$$\int \sqrt{\tan x} dx$$
, $\int \sqrt{\cot x} dx$, • $\int \frac{1}{\left(\sin^4 x + \cos^4 x\right)} dx$, $\int \frac{1}{\left(\sin^6 x + \cos^6 x\right)} dx$, $\int \frac{\pm \sin x \pm \cos x}{a + b \sin x \cos x} dx$.