Математический Анализ 2, Коллоквиум III

Версия от 18.03.2021 12:11

Содержание

1.	Сооственный интеграл, зависящий от параметра. Теорема о непрерывности по параметру. Теорема о				
	дифференцировании по параметру под знаком интеграла. Теорема об интегрировании по параметру под				
		м интеграла			
	1.1.	Собственный интеграл, зависящий от параметра.	3		
	1.2.	Теорема о непрерывности по параметру	3		
	1.3.	Теорема о дифференцировании по параметру под знаком интеграла	4		
	1.4.	Теорема об интегрировании по параметру под знаком интеграла	5		
2.	Равномерная сходимость семейства функций. Определение. Критерий Коши равномерной сходимости				
	2.1.	TDB	Ę		
3.	Свойс	ства равномерно сходящегося семейства функций. Теорема о предельном переходе. Теорема о непре-			
	рывне	ости по параметру. Теорема об интегрировании по параметру. Теорема о дифференцировании по			
	парам	иетру	Ę		
	3.1.	Теорема о пределльном переходе	Ę		
	3.2.	Теорема о непрерывности по параметру	6		
	3.3.	Теорема об интегрировании по параметру	6		
	3.4.	Теорема о дифференцировании по параметру	7		
4.	Равномерная сходимость несобственного интеграла. Определение. Критерий Коши равномерной сходи-				
	мости несобственного интеграла. Мажорантный признак Вейерштрасса равномерной сходимости несоб-				
	ственного интеграла. Вторая интегральная теорема о среднем (для собственного интеграла). Признаки				
	Дири	хле и Абеля равномерной сходимости несобственного интеграла.	10		
	4.1.	TBD	10		
5.	Свойс	ства равномерно сходящегося несобственного интеграла. Теорема о предельном переходе под знаком			
	несоб	ственного интеграла. Монотонный предельный переход и теорема Дини и равномерной сходимо-			
	сти с	емейства функций. Следствие из теоремы Дини о монотонном предельном переходе под знаком			
		ственного интеграла. Теорема о непрерывности несобственного интеграла по параметру	10		
	5.1.	TBD	10		
6.	Свойс	ства равномерно сходящегося несобственного интеграла. Теорема о дифференцировании по пара-			
	метру	лод знаком несобственного интеграла. Теорема о собственном интегрировании по параметру под			
		м несобственного интеграла. Теорема о несобственном интегрировании по параметру под знаком			
		ственного интеграла	10		
	6.1.	TBD	10		
7.		ровы В- и Г- функции. Определение В-функции, ее область определения и свойства: симметрич-			
		ность, формула понижения, случайно натурально-значных аргументов. Формула Эйлера – Гаусса. Фор-			
		мула дополнения (с использованием разложения sin в бесконечное произведение без доказательства).			
		ь между В- и Г- функциями.	10		
	7.1.	TBD	10		

8.	Абстрактные ряды Фурье. Пространство квадратично-интегрируемых функций \mathcal{R}_2 (определение). Ска-	
	лярное произведение и норма в этом пространстве (определение). Ортогональная и ортонормированная	
	система элементов (определение). Стандартная тригонометрическая система на $[-\pi;\pi]$, ее ортогональ-	
	ность и нормы элементов. Ряд в пространстве квадратично-интегрируемых функций и его сходимость	
	(определение). Непрерывность скалярного произведения. Равенство Парсеваля.	10
	8.1. TBD	10
9.	Абстрактные ряды фурье. Коэффициенты и ряды Фурье (определение). Коэффициенты и ряд Фурье	
	по стандартной тригонометрической системе на $[-\pi;\pi]$. Лемма о перпендикуляре. Неравенство Бесселя.	
	Из полноты пространства следует сходимость ряда Фурье. Ряд и частичная сумма ряда Фурье как наи-	
	лучшее приближение. Полная ортогональная система (определение). Критерии полноты ортогональной	
	системы (представимость любого элемента его рядом Фурье; равенство Парсеваля; отсутствие ненуле-	
	вого элемента, ортогонального всем элементам системы)	10
	9.1. TBD	10
10.	Тригонометрический ряд Фурье. Теорема о сходимости тригонометрического ряда Фурье в средне-	
	квадратичном (без доказательства полноты тригонометрической системы). Представление частичной	
	суммы ряда Фурье через ядро Дирихле. Лемма Римана. Условие Дини и теорема о поточечной сходи-	
	мости ряда Фурье. Разложение sin в бесконечное произведение	10
	10.1. TBD	10
11.	Тригонометрический ряд Фурье. Теорема о почленном дифференцировании ряда Фурье. Теорема о связи	
	гладкости функции и скорости убывания ее коэффициентов Фурье. Теорема о связи гладкости функции	
	и скорости сходимости ее ряда Фурье. Теорема о полноте тригонометрической системы	10
	11.1. TBD	10

1. Собственный интеграл, зависящий от параметра. Теорема о непрерывности по параметру. Теорема о дифференцировании по параметру под знаком интеграла. Теорема об интегрировании по параметру под знаком интеграла.

1.1. Собственный интеграл, зависящий от параметра.

Определение. Собственным интегралом, зависящем от параметра, будем называть интеграл вида

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx,$$

где α и β это некие функции, определенные для y из некоторого отрезка [c;d].

Часто α и β являются константами и интеграл принимает следующий вид:

$$F(y) = \int_{\alpha}^{\beta} f(x, y) dx.$$

1.2. Теорема о непрерывности по параметру

Теорема. Рассмотрим $G = [a; b] \times [c; d]$ и пусть функция $f \colon G \to \mathbb{R}$ — непрерывна на ограниченном замкнутом множестве, откуда следует, что она равномерно непрерывна.

Пусть α , β непрерывны на отрезке [c;d], тогда функция

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx$$

равномерно непрерывна на [c;d].

Доказательство. Докажем непрерывность.

Пусть функция f ограничена каким-то числом M.

В силу непрерывности α и β для любого $\varepsilon > 0$ существует $\delta > 0$, что из условия $|y - y_0| < \delta$ следует $|\alpha(y) - \alpha(y_0)| < \varepsilon$ и $|\beta(y) - \beta(y_0)| < \varepsilon$.

В силу равномерной непрерывности f для любого $\varepsilon > 0$ существует $\delta > 0$, что из условия $|y - y_0| < \delta$ следует $|f(x,y) - f(x,y_0)| < \varepsilon$.

Воспользуемся этим:

$$|F(y) - F(y_0)| = \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$\left[- \text{прибавим и вычтем член} \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x \right]$$

$$= \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x + \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$\leqslant \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x \right| + \left| \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) \mathrm{d}x \right|$$

$$\left[- \text{ оценим слагаемое с модулем интеграла как интеграл модуля } \right]$$

$$\leqslant \left| \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x - \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) \mathrm{d}x \right| + \int_{\alpha(y_0)}^{\beta(y_0)} \left| f(x,y) - f(x,y_0) \right| \mathrm{d}x$$

[— раскроем первое слагаемое; для понимания представьте, что $\alpha(y) < \alpha(y_0) < \beta(y_0) < \beta(y)$]

$$= \left| \int_{\alpha(y)}^{\alpha(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx \right| + \int_{\alpha(y_0)}^{\beta(y_0)} \left| f(x,y) - f(x,y_0) \right| dx$$

$$\leq \int_{\alpha(y)}^{\alpha(y_0)} \underbrace{\left| f(x,y) \right|}_{\leq M} dx + \int_{\beta(y_0)}^{\beta(y)} \underbrace{\left| f(x,y) \right|}_{\leq M} dx + \int_{\alpha(y_0)}^{\beta(y_0)} \underbrace{\left| f(x,y) - f(x,y_0) \right|}_{\leq \varepsilon} dx$$

$$\leq (\alpha(y_0) - \alpha(y)) \cdot M + (\beta(y) - \beta(y_0)) \cdot M + (\beta(y_0) - \alpha(y_0)) \cdot \varepsilon$$

$$= 2 \cdot \varepsilon \cdot M + (\beta(y) - \alpha(y)) \cdot \varepsilon = \varepsilon',$$

то есть выбирая $\delta>0$ мы можем сделать так, что $|F(y)-F(y_0)|<\varepsilon'$ для любого $\varepsilon'>0$.

Теперь немного о том, зачем нам эта теорема. Если вместо отрезка [c;d] рассмотреть $[c;+\infty)$, то утверждение из теоремы остается верным и из равномерной непрерывности f(x,y) на $[a;b] \times [c;+\infty)$ следует

$$\exists \lim_{y \to +\infty} F(y) = \lim_{y \to +\infty} \int_{\alpha(y)}^{\beta(y)} f(x,y) \mathrm{d}x = \int_{\alpha(y)}^{\beta(y)} \lim_{y \to +\infty} f(x,y) \mathrm{d}x.$$

1.3. Теорема о дифференцировании по параметру под знаком интеграла.

Для простоты изложения будем рассматривать $a = \alpha(y)$ и $b = \beta(y)$. Тогда

$$F(y) = \int_{a}^{b} f(x, y) \mathrm{d}x.$$

Теорема. Если f непрерывна на $G = [a; b] \times [c; d]$, а также производная $\frac{\partial f}{\partial y}$ существует и непрерывна на G, то F непрерывно дифференцируема на [c; d].

Причем эта производная может быть вычислена:

$$F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$

Доказательство. Необходимо доказать, что отношение стремится в пределе к интегралу:

$$D = \frac{F(y) - F(y_0)}{y - y_0} - \int_0^b \frac{\partial f}{\partial y}(x, y_0) dx = \int_0^b \frac{f(x, y) - f(x, y_0)}{y - y_0} dx - \int_0^b \frac{\partial f}{\partial y}(x, y_0) dx.$$

По теореме о среднем (теорема Лагранжа, 1 курс) на отрезке $[y_0;y]$ найдется точка y^* такая, что

$$f(x,y) - f(x,y_0) = \frac{\partial f}{\partial y}(x,y^*) \cdot (y-y_0)$$

Подставим в нашу разность:

$$|D| = \dots = \Big| \int_{a}^{b} \frac{f(x,y) - f(x,y_{0})}{y - y_{0}} dx - \int_{a}^{b} \frac{\partial f}{\partial y}(x,y_{0}) dx \Big| = \Big| \int_{a}^{b} \frac{\partial f}{\partial y}(x,y^{*}) dx - \int_{a}^{b} \frac{\partial f}{\partial y}(x,y_{0}) dx \Big|$$

$$= \Big| \int_{a}^{b} \left(\frac{\partial f}{\partial y}(x,y^{*}) - \frac{\partial f}{\partial y}(x,y_{0}) \right) dx \Big| \leqslant \int_{a}^{b} \underbrace{\left| \frac{\partial f}{\partial y}(x,y^{*}) - \frac{\partial f}{\partial y}(x,y_{0}) \right|}_{\leqslant \varepsilon} dx \leqslant (b - a) \cdot \varepsilon.$$

Последний переход получается в силу равномерной непрерывности $\frac{\partial f}{\partial y}$ на G и того, что $|y^*-y^*|\leqslant |y-y_0|<\varepsilon$.

То есть мы доказали, что $\frac{F(y) - F(y_0)}{y - y_0}$ равномерно стремится к числу $\int_a^b \frac{\partial f}{\partial y}(x, y_0) dx$, то есть существует предел, который мы и называем производной F'(y).

Непрерывность производной получается как следствие предыдущей теоремы (о непрерывности по параметру), где в роли непрерывной функции выступает $\frac{\partial f}{\partial u}$.

Иногда мы не можем взять какой-то интеграл, но с помощью этой теоремы мы можем взять производную интеграла, а зная производную потом найти сам интеграл.

1.4. Теорема об интегрировании по параметру под знаком интеграла.

Пусть $F(y) = \int\limits_a^b f(x,y) \mathrm{d}x$. Мы хотим эту функцию проинтегрировать, то есть найти $\int\limits_c^d F(y) \mathrm{d}y$. Возникает вопрос, можно ли переставить интегралы.

Теорема. Если f непрерывна на множестве $G = [a;b] \times [c;d]$ (то есть она интегрируема на G), и выполняются следующие два пункта:

- при любом значении $y \in [c;d]$ функция f(x,y) интегрируема по x, то есть существует $\int\limits_a^b f(x,y)\mathrm{d}x;$
- при любом значении $x \in [a;b]$ функция f(x,y) интегрируема по y, то есть существует $\int\limits_{c}^{d} f(x,y) \mathrm{d}y$;

то эти интегралы равны друг другу, то есть

$$\int_{a}^{b} \int_{a}^{d} f(x,y) dx dy = \int_{a}^{d} \int_{a}^{b} f(x,y) dy dx.$$

Доказательство. Доказательство следует из теоремы Фубини о том, что повторные интегралы равны двойном интегралу по прямоугольнику:

$$\int\limits_a^b \int\limits_c^d f(x,y) \mathrm{d}x \mathrm{d}y = \iint\limits_G f(x,y) \mathrm{d}x \mathrm{d}y = \int\limits_c^d \int\limits_a^b f(x,y) \mathrm{d}y \mathrm{d}x.$$

Интегрирование по параметру также иногда позволяет вычислить интеграл, который по-другому вычислить невозможно.

2. Равномерная сходимость семейства функций. Определение. Критерий Коши равномерной сходимости.

2.1. TDB

- 3. Свойства равномерно сходящегося семейства функций. Теорема о предельном переходе. Теорема о непрерывности по параметру. Теорема об интегрировании по параметру. Теорема о дифференцировании по параметру.
- 3.1. Теорема о пределльном переходе

Теорема (Теорем о предельном переходе).

Пусть:

•
$$f(x,y) \stackrel{y \in H}{\underset{x \to a}{\Longrightarrow}} g(y)$$

•
$$\forall x \in D : f(x,y) \underset{y \to b}{\rightarrow} h(x)$$

•
$$h(x) \underset{x \to a}{\rightarrow} c$$

Тогда $\lim_{y \to b} g(y) = \lim_{x \to a} h(x) = c$

Доказательство теоремы о предельном переходе. Необходимо доказать, что |g(y)-c| мала.

$$|g(y) - c| \le |g(y) - f(x, y)| + |f(x + y) - h(x)| + |h(x) - c|$$

•
$$|g(y) - f(x,y)| < \frac{\varepsilon}{3}$$
, при $0 < |x - a| < \delta_1, \ \forall y \in H$

•
$$|h(x)-c|<rac{arepsilon}{3},$$
 при $0<|x-a|<\delta_2$

• $|f(x,y)-h(x)|<rac{arepsilon}{3}$ при фиксированном x и $0<|y-b|<\delta_3$

Для
$$\delta=min(\delta_1,\delta_2,\delta_3):|g(y)-c|<rac{arepsilon}{3}+rac{arepsilon}{3}+rac{arepsilon}{3}=arepsilon$$

3.2. Теорема о непрерывности по параметру

Теорема (Теорема о непрерывности по параметру). Пусть

- $f(x,y) \stackrel{y \in H}{\underset{x \to a}{\Longrightarrow}} g(y)$
- $f(x,y), \forall x \in D$ непрерывна как функция от y в точке y=b

Тогда g(y) – непрерывна в точке y=b

Доказательство теоремы о непрерывности по парметру. Необходимо доказать, что предел разности |g(y) - g(b)| равен нулю.

$$|g(y) - g(b)| \le |g(y) - f(x,y)| + |f(x,y) - f(x,b)| + |f(x,b) - g(b)|$$

- $|g(y)-f(x,y)|<rac{arepsilon}{3},$ при $0<|x-a|<\delta_1, \forall y\in H$ (в силу условий равномерной сходимости)
- $|f(x,b)-g(b)|<rac{arepsilon}{3}$ это частный случай предыдущего пункта (так как $b\in H$ по условию теоремы)
- $|f(x,y)-f(x,b)|<rac{arepsilon}{3}$ при фиксированном x и, в виду непрерывности f(x,y) по y в точки y=b (условие теоремы), $|y-b|<\delta_2$

Для
$$\delta = min(\delta_1, \delta_2): |g(y) - g(b)| < rac{arepsilon}{3} + rac{arepsilon}{3} + rac{arepsilon}{3} = arepsilon$$

3.3. Теорема об интегрировании по параметру

Теорема (Теорема об интегрировании по параметру). Пусть

- Пусть H жорданово множество
- f(x,y) ограничена на $D \times H$
- $\forall x \in D : f(x,y)$ интегрируема по y
- $f(x,y) \underset{x \to a}{\overset{y \in H}{\Longrightarrow}} g(y)$

Тогда функция g(y) интегрируема и $\int\limits_H g(y)dy = \lim_{x \to a} \int\limits_H f(x,y)dy$

Доказательство теоремы об интегрировании по параметру. Сначала докажем, что функция g(y) – интегрируема. Случай, когда $\mu(H)=0$ – тривиален: любая функция интегрируема на этом множестве и интеграл равен нулю. Поэтому далее рассматриваем случай $\mu(H)\neq 0$.

Для этого воспользуемся критерием Дарбу.

Пусть $\{H_i\}$ – разбиение множества H. Тогда необходимо доказать:

$$\sum_{i}\sup_{y_1,y_2\in H_i}|g(y_1)-g(y_2)|\mu(H_i)=\sum_{i}\omega_g(H_i)\mu(H_i)<\varepsilon,$$
 где $\mu(H_i)$ – мера множества H_i .
$$|g(y_1)-g(y_2)\leqslant |g(y_1)-f(x,y_1)|+|f(x,y_1)-f(x,y_2)|+|f(x,y_2)-g(y_2)|$$

•
$$|g(y_1) - f(x, y_1)| < \frac{\varepsilon}{3\mu(H)}$$
, при $0 < |x - a| < \delta_1, \ \forall y_1 \in H$

•
$$|f(x,y_2) - g(y_2)| < \frac{\varepsilon}{3u(H)}$$
, при $0 < |x-a| < \delta_2$, $\forall y_2 \in H$

Теперь перепишем сумму с учётом оценок выше для $\delta = min(\delta_1, \delta_2)$:

$$\sum_{i} \sup_{y_1, y_2 \in H_i} |g(y_1) - g(y_2)| \mu(H_i) \leqslant \sum_{i} \frac{\varepsilon}{3\mu(H)} \mu(H_i) + \sum_{i} \sup_{y_1, y_2 \in H} |f(x, y_1) - f(x, y_2)| \mu(H_i) + \sum_{i} \frac{\varepsilon}{3\mu(H)} \mu(H_i)$$

• $\sum_{i} \sup_{y_1,y_2 \in H} |f(x,y_1) - f(x,y_2)| \mu(H_i) < \frac{\varepsilon}{3}$ по критерию Дарбу, так как f(x,y) интегрируема по y при фиксированном x (условие теоремы)

Таким образом, $\sum_{i}\sup_{y_1,y_2\in H_i}|g(y_1)-g(y_2)|\mu(H_i)\leqslant \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon\Rightarrow g$ – интегрируема по критерию Дарбу

Теперь докажем вторую часть утверждения – научимся брать интеграл от функции g.

$$\left| \int_{H} (g(y) - f(x, y)) dy \right| \le \int_{H} |(g(y) - f(x, y))| dy$$

• $|(g(y) - f(x,y)| < \varepsilon$ при $0 < |x-a| < \delta$ и $\forall y \in H$

Следовательно,
$$\left|\int\limits_{H}(g(y)-f(x,y))dy\right|<\varepsilon\mu(H)$$

$$\Rightarrow \int\limits_{H}((g(y)-f(x,y))dy\underset{x\to a}{\to}0$$

$$\int\limits_{H}f(x,y)dy=\int\limits_{H}g(y)dy+\int\limits_{H}((g(y)-f(x,y))dy\to\int\limits_{H}g(y)dy$$

3.4. Теорема о дифференцировании по параметру

Теорема (Теорема о дифференцировании по параметру). Пусть

- \bullet H выпуклое ограниченное множество (например: отрезок [c,d])
- $\forall x \in D : f(x,y)$ дифференцируема по $y \in H$
- $f(x,y) \stackrel{y \in H}{\underset{x \to a}{\to}} g(y), a \in \overline{D}$
- $f_y'(x,y) \stackrel{y \in H}{\Longrightarrow} h(y)$

Тогда g(y) – дифференцируема на множестве H и g'(y) = h(y)

Доказательство теоремы о дифференцировании по параметру. Сначала докажем, что $f(x,y) \stackrel{y \in H}{\rightrightarrows} g(y)$. Для этого воспользуемся критерием Коши: хотим доказать, что $|f(x_1,y)-f(x_2,y)| < \varepsilon$ равномерно по всем y, если только x_1 и x_2 достаточно близко к точке a лежат. Тогда будет выполнено условие Коши, а значит, что семейство f(x,y) равномерно сходится к своей предельной функции g.

Возьмём какое-нибудь $y_0 \in H$, тогда:

$$|f(x_1, y) - f(x_2, y)| = |(f(x_1, y) - f(x_2, y)) - (f(x_1, y_0) - f(x_2, y_0))| + |(f(x_1, y_0) - f(x_2, y_0))|$$

Теперь зафиксируем x_1 и x_2 , тогда можем рассматривать функцию $q(y) = (f(x_1, y) - f(x_2, y))$. Так как мы из условия теоремы знаем, что f(x,y) дифференцируема по $y \in H$, то и функции q(y) дифференцируема по $y \in H$. Теперь необходимо применить теорему Лагранжа для функции q(y). Модифицируем равенство дальше:

 $|f(x_1,y)-f(x_2,y)|=|q(y)-q(y_0)|+|q(y_0)|=$ [Теорема Лагранжа] $=|q'(y*)|\cdot|y-y_0|+|q(y_0)|$, где $y*\in [min(y_0,y),max(y_0,y)]$ Вернёмся к записи через функцию f:

$$|f(x_1, y) - f(x_2, y)| = |f'_u(x_1, y^*) - f'_u(x_2, y^*)| \cdot |y - y_0| + |(f(x_1, y_0) - f(x_2, y_0))|$$

- По условию теоремы $f_y'(x,y) \stackrel{y \in H}{\underset{x \to a}{\Longrightarrow}} h(y) \Rightarrow$, применив критерий Коши для производной можем сказать, что $|f_y'(x_1,y*) f_y'(x_2,y*)| < \frac{\varepsilon}{2 \cdot diam(H)}$
- $|y y_0| < diam(H)$
- $|(f(x_1,y_0)-f(x_2,y_0))|<rac{arepsilon}{2},$ так как $f(x,y_0) o g(y_0)$

Итого: $|f(x_1,y)-f(x_2,y)|<\varepsilon$ Теперь хотим доказать $\dfrac{f(x,y)-f(x,b)}{y-b} \rightrightarrows \dfrac{g(y)-g(b)}{y-b}, \ b\in H, y\neq b$

$$\left| \frac{\dot{f}(x_1, y) - \dot{f}(x_1, b)}{y - b} - \frac{f(x_2, y) - f(x_2, b)}{y - b} \right|$$

Для этого давайте снова воспользуемся критерием Коши: $|\frac{f(x_1,y)-f(x_1,b)}{y-b} - \frac{f(x_2,y)-f(x_2,b)}{y-b}|$ Снова введём функцию $F(y)=f(x_1,y)-f(x_2,y)$ как в первой части доказательства и снова воспользуемся для неё

$$|rac{f(x_1,y)-f(x_1,b)}{y-b}-rac{f(x_2,y)-f(x_2,b)}{y-b}|=|rac{F'(y*)\cdot(y-b)}{y-b}|=|F'(y*)|,$$
 где $y*\in[b,y]$

формулой Лагранжа. Перепишем равенство:
$$|\frac{f(x_1,y)-f(x_1,b)}{y-b}-\frac{f(x_2,y)-f(x_2,b)}{y-b}|=|\frac{F'(y*)\cdot(y-b)}{y-b}|=|F'(y*)|, \text{ где }y*\in[b,y]$$
 Тогда, вернувшись к записи с f получаем:
$$|\frac{f(x_1,y)-f(x_1,b)}{y-b}-\frac{f(x_2,y)-f(x_2,b)}{y-b}|=|f'_y(x_1,y*)-f'_y(x_2,y*)|<\varepsilon, \text{ так как по условию теоремы }f'_y(x,y) \overset{y\in H}{\underset{x\to a}{\Longrightarrow}}h(y)$$

Теперь осталось воспользоваться теоремой о внесении предела под знак равномерной сходимости:

Ієперь осталось воспользоваться теоремой о внесений предела под знак равномерной сходимости.
$$\lim_{y \to b} \frac{g(y) - g(b)}{y - b} = [\text{см. пункт 3.1 лекций}] = \lim_{x \to a} \lim_{y \to b} \frac{f(x,y) - f(x,b)}{y - b} = \lim_{x \to a} f'_y(x,b) = h(b) \Rightarrow g'(y) = h(y), \text{ что и требовалось доказать.}$$

4. Равномерная сходимость несобственного интеграла. Определение. Критерий Коши равномерной сходимости несобственного интеграла. Мажорантный признак Вейерштрасса равномерной сходимости несобственного интеграла. Вторая интегральная теорема о среднем (для собственного интеграла). Признаки Дирихле и Абеля равномерной сходимости несобственного интеграла.

4.1. TBD

5. Свойства равномерно сходящегося несобственного интеграла. Теорема о предельном переходе под знаком несобственного интеграла. Монотонный предельный переход и теорема Дини и равномерной сходимости семейства функций. Следствие из теоремы Дини о монотонном предельном переходе под знаком несобственного интеграла. Теорема о непрерывности несобственного интеграла по параметру.

5.1. TBD

6. Свойства равномерно сходящегося несобственного интеграла. Теорема о дифференцировании по параметру под знаком несобственного интеграла. Теорема о собственном интегрировании по параметру под знаком несобственного интеграла. Теорема о несобственном интегрировании по параметру под знаком несобственного интеграла.

6.1. TBD

7. Эйлеровы В- и Г- функции. Определение В-функции, ее область определения и свойства: симметричность, формула понижения, случайно натурально-значных аргументов. Формула Эйлера — Гаусса. Формула дополнения (с использованием разложения sin в бесконечное произведение без доказательства). Связь между В- и Г-функциями.

7.1. TBD

8. Абстрактные ряды Фурье. Пространство квадратично-интегрируемых функций \mathcal{R}_2 (определение). Скалярное произведение и норма в этом пространстве (определение). Ортогональная и ортонормированная система элементов (определение). Стандартная тригонометрическая система на $[-\pi;\pi]$, ее ортогональность и нормы элементов. Ряд в пространстве квадратично-интегрируемых функций и его сходимость (определение). Непрерывность скалярного произведения. Равенство Парсеваля.

8.1. TBD

9. Абстрактные ряды фурье. Коэффициенты и ряды Фурье (определение). Коэффициенты и ряд Фурье по стандартной тригонометрической системе на [-π; π]. Лемма о перпендикуляре. Неравенство Бесселя. Из полноты пространства следует сходимость ряда Фурье. Ряд и частичная сумма ряда Фурье как наилучшее приближение. Полная ортогональная система (определение). Критерии полноты ортогональной системы (представимость любого элемента его рядом Фурье; равенство Парсеваля; отсутствие ненулевого элемента, ортогонального всем элементам системы).

9.1. TBD

10. Тригонометрический ряд Фурье. Теорема о сходимости тригонометрического ряда Фурье в средне-квадратичном (без доказательства полноты тригонометрической системы). Представление частичной суммы ряда Фурье через ядро Дирихле. Лемма Римана. Условие Лини и теорема о поточечной сходимости ряда Фурье. Раздо-