

Full Name: Sarmen Sinanian Email: sarmanmanman@yahoo.com Test Name: **Mock Test** 25 Mar 2022 10:47:56 IST Taken On: Time Taken: 23 min 52 sec/ 24 min Invited by: Ankush 25 Mar 2022 10:09:47 IST Invited on: Skills Score: Tags Score: Algorithms 0/90 Constructive Algorithms 0/90 Core CS 0/90 Greedy Algorithms 0/90 Medium 0/90 Problem Solving 0/90 0/90 problem-solving

0% scored in **Mock Test** in 23 min 52 sec on 25 Mar 2022 10:47:56 IST

Recruiter/Team Comments:

No Comments.

3 4

It is 2×2 and we want to maximize the top left quadrant, a 1×1 matrix. Reverse row 1:

```
1 2
4 3
```

And now reverse column 0:

```
4 2
1 3
```

The maximal sum is 4.

Function Description

Complete the *flippingMatrix* function in the editor below.

flippingMatrix has the following parameters:

- int matrix[2n][2n]: a 2-dimensional array of integers

Returns

- int: the maximum sum possible.

Input Format

The first line contains an integer q, the number of queries.

The next q sets of lines are in the following format:

- The first line of each query contains an integer, n.
- Each of the next 2n lines contains 2n space-separated integers matrix[i][j] in row i of the matrix.

Constraints

- $1 \le q \le 16$
- $1 \le n \le 128$
- $ullet 0 \leq matrix[i][j] \leq 4096$, where $0 \leq i,j < 2n$.

Sample Input

Sample Output

414

Explanation

Start out with the following 2n imes 2n matrix:

$$matrix = egin{bmatrix} 112 & 42 & 83 & 119 \ 56 & 125 & 56 & 49 \ 15 & 78 & 101 & 43 \ 62 & 98 & 114 & 108 \end{bmatrix}$$

Perform the following operations to maximize the sum of the $n \times n$ submatrix in the upper-left quadrant: 2. Reverse column 2 ([83, 56, 101, 114] \rightarrow [114, 101, 56, 83]), resulting in the matrix:

$$matrix = egin{bmatrix} 112 & 42 & 114 & 119 \ 56 & 125 & 101 & 49 \ 15 & 78 & 56 & 43 \ \end{bmatrix}$$

3. Reverse row 0 ([112, 42, 114, 119] ightarrow [119, 114, 42, 112]), resulting in the matrix:

$$matrix = egin{bmatrix} 119 & 114 & 42 & 112 \ 56 & 125 & 101 & 49 \ 15 & 78 & 56 & 43 \ 62 & 98 & 83 & 108 \end{bmatrix}$$

The sum of values in the $n \times n$ submatrix in the upper-left quadrant is 119+114+56+125=414 .

CANDIDATE ANSWER

The candidate did not manually submit any code. The last compiled version has been auto-submitted and the score you see below is for the auto-submitted version.

Language used: Python 3

TESTCASE	DIFFICULTY	TYPE	STATUS	SCORE	TIME TAKEN	MEMORY USED
Testcase 1	Easy	Sample case	⊗ Wrong Answer	0	0.0684 sec	9.39 KB
Testcase 2	Easy	Hidden case	Runtime Error	0	0.1354 sec	12.8 KB
Testcase 3	Easy	Hidden case	Runtime Error	0	0.0422 sec	9.54 KB
Testcase 4	Easy	Hidden case	Runtime Error	0	0.0365 sec	9.47 KB
Testcase 5	Easy	Hidden case	Runtime Error	0	0.1527 sec	13.9 KB
Testcase 6	Easy	Hidden case	Wrong Answer	0	0.1689 sec	13.3 KB
Testcase 7	Easy	Hidden case	⊗ Wrong Answer	0	0.2288 sec	13.4 KB
Testcase 8	Easy	Sample case	⊗ Wrong Answer	0	0.0617 sec	9.38 KB

PDF generated at: 25 Mar 2022 05:44:10 UTC