Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения» Отчёт по лабораторной работе №1 «Разведочный анализ данных. Исследование и визуализация данных»

Выполнила:	Проверил:
Шимолина П.К.,	Нардид А.Н.,
группа ИУ5-61Б	каф. ИУ5
Дата:	Дата:
Подпись:	Подпись:

Разведочный анализ данных. Исследование и визуализация данных.

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных по предсказанию диабета у женщин - https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Цель набора данных - диагностически предсказать, есть ли у пациента диабет или нет, на основе определенных диагностических измерений, включенных в набор данных. На выбор этих экземпляров из более крупной базы данных было наложено несколько ограничений. В частности, все пациенты здесь - женщины в возрасте не менее 21 года индийского происхождения Пима. Эта задача актуальна, т.к. кол-во больных ежегодно растет.

Датасет состоит из одного файла:

• diabetes.csv - обучающая выборка

Файл содержит следующие колонки:

- Pregnancies количество беременностей
- Glucose концентрация глюкозы в плазме крови через 2 часа при пероральном тесте на толерантность к глюкозе.
- BloodPressure диастолическое кровяное давление (мм рт. ст.).
- SkinThickness толщина кожной складки трицепса (мм).
- Insulin 2-часовой сывороточный инсулин (ме Ед/мл).
- ВМІ индекс массы тела (вес в кг/(рост в м)^2).
- DiabetesPedigree Функция родословной диабета.
- Age возраст (годы).
- Outcome переменная класса (0 или 1).

Импорт библиотек

Импортируем библиотеки с помощью команды import.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import scipy as sp
import warnings
```

```
warnings.filterwarnings("ignore")
%matplotlib inline
```

Загрузка данных

Загрузим файлы датасета в помощью библиотеки Pandas.

```
data = pd.read_csv('diabetes.csv')
```

2) Основные характеристики датасета

```
# Первые 5 строк датасета
```

data.head()

D	Pregnancies MI \	Glucose	BloodPressure	SkinThickness	Insulin	
0	6	148	72	35	Θ	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1

```
DiabetesPedigreeFunction Age Outcome
0
                    0.627 50
                                    1
1
                    0.351 31
                                    0
2
                    0.672 32
                                    1
3
                    0.167
                          21
                                     0
                    2.288
                          33
                                    1
```

```
# Размер датасета - 768 строк, 9 колонок data.shape
```

uataisnape

(768, 9)

Список колонок

data.columns

```
Pregnancies
                               0
                               0
Glucose
BloodPressure
                               0
SkinThickness
                               0
                               0
Insulin
BMI
                               0
                               0
DiabetesPedigreeFunction
                               0
Aae
Outcome
                               0
dtype: int64
data[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] =
data[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']].repl
ace(0,np.NaN)
data.isnull().sum()
                                 0
Pregnancies
Glucose
                                 5
BloodPressure
                                35
SkinThickness
                               227
Insulin
                               374
BMI
                                11
DiabetesPedigreeFunction
                                 0
                                 0
Aae
Outcome
                                 0
dtype: int64
data['Glucose'].fillna(data['Glucose'].median(), inplace =True)
data['BloodPressure'].fillna(data['BloodPressure'].median(), inplace
=True)
data['BMI'].fillna(data['BMI'].median(), inplace =True)
by Glucose Age Insulin Grp = data.groupby(['Glucose'])
def fill Insulin(series):
    return series.fillna(series.median())
data['Insulin'] =
by Glucose Age Insulin Grp['Insulin'].transform(fill Insulin)
data['Insulin'] = data['Insulin'].fillna(data['Insulin'].mean())
by BMI Insulin = data.groupby(['BMI'])
def fill Skinthickness(series):
    return series.fillna(series.mean())
data['SkinThickness'] =
by BMI Insulin['SkinThickness'].transform(fill Skinthickness)
```

data['SkinThickness'].fillna(data['SkinThickness'].mean(),inplace= True)

data.isnull().sum()

0 Pregnancies Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0 0 BMI DiabetesPedigreeFunction 0 Age 0 Outcome 0 dtype: int64

Основные статистические характеристки набора данных data.describe()

Pregnancies	Glucose	BloodPressure	SkinThickness
Insulin \			
count 768.000000	768.000000	768.000000	768.000000
768.000000			
mean 3.845052	121.656250	72.386719	28.614922
148.888587			
std 3.369578	30.438286	12.096642	9.648424
100.472514	44 000000	24 22222	7 000000
min 0.000000	44.000000	24.000000	7.000000
14.000000	00 750000	C4 000000	22 000000
25% 1.000000	99.750000	64.000000	22.000000
88.000000 50% 3.000000	117.000000	72.000000	28.614922
130.000000	117.000000	72.00000	20.014922
75% 6.000000	140.250000	80.000000	35.000000
175.250000	140.230000	00.00000	33.000000
max 17.000000	199.000000	122.000000	99.000000
846.000000	133.30000	222700000	33100000

	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	32.455208	0.471876	33.240885	0.348958
std	6.875177	0.331329	11.760232	0.476951
min	18.200000	0.078000	21.000000	0.000000
25%	27.500000	0.243750	24.000000	0.000000
50%	32.300000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

[#] Определим уникальные значения для целевого признака

data['Outcome'].unique()

```
array([1, 0], dtype=int64)
```

Целевой признак является бинарным и содержит только значения 0 и 1.

3) Визуальное исследование датасета

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Не предполагается, что значения упорядочены (например, по времени).

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Glucose', y='Insulin', data=data)
<AxesSubplot:xlabel='Glucose', ylabel='Insulin'>
```


Видим явную линейную зависимость

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Glucose', y='Insulin', data=data,
hue='Outcome')
```

<AxesSubplot:xlabel='Glucose', ylabel='Insulin'>

Гистограмма

Позволяет оценить плотность вероятности распределения данных.

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['Glucose'])

<AxesSubplot:xlabel='Glucose', ylabel='Density'>
```


Jointplot

Koмбинация гистограмм и диаграмм рассеивания.
sns.jointplot(x='Glucose', y='Insulin', data=data)
<seaborn.axisgrid.JointGrid at 0x1bc682d7400>

"Парные диаграммы"

Комбинация гистограмм и диаграмм рассеивания для всего набора данных.

Выводится матрица графиков. На пересечении строки и столбца, которые соответстуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

```
mean_col = ['Glucose', 'BloodPressure', 'Insulin', 'Age', 'Outcome', 'BMI']
sns.pairplot(data[mean_col], palette='Accent')
<seaborn.axisgrid.PairGrid at 0x1bc694f2c40>
```


Ящик с усами

Отображает одномерное распределение вероятности.

```
plt.figure(figsize=(14,10))
sns.set_style(style='whitegrid')
plt.subplot(2,3,1)
sns.boxplot(x='Glucose',data=data)
plt.subplot(2,3,2)
sns.boxplot(x='BloodPressure',data=data)
plt.subplot(2,3,3)
sns.boxplot(x='Insulin',data=data)
plt.subplot(2,3,4)
sns.boxplot(x='BMI',data=data)
plt.subplot(2,3,5)
sns.boxplot(x='Age',data=data)
```

```
plt.subplot(2,3,6)
sns.boxplot(x='SkinThickness',data=data)
```

<AxesSubplot:xlabel='SkinThickness'>

Violin plot

Похоже на предыдущую диаграмму, но по краям отображаются распределения плотности -

```
sns.violinplot(x=data['Glucose'])
```

<AxesSubplot:xlabel='Glucose'>

sns.catplot(y='Glucose', x='Outcome', data=data, kind="violin", split=True)

<seaborn.axisgrid.FacetGrid at 0x1bc6b21ab20>

4) Информация о корреляции признаков data.corr()

	Pregnancies	Glucose	BloodPressure
SkinThickness \ Pregnancies 0.064381	1.000000	0.128213	0.208615
Glucose	0.128213	1.000000	0.218937
0.188996	0 200615	0 010007	1 000000
BloodPressure 0.183123	0.208615	0.218937	1.000000
SkinThickness	0.064381	0.188996	0.183123
1.000000			
Insulin	0.046741	0.566640	0.125499
0.210167	0 001550	0 221040	0 201257
BMI	0.021559	0.231049	0.281257
0.636708	0 000500	0 107007	0 000070
DiabetesPedigreeFunction	-0.033523	0.137327	-0.002378
0.128380			

Age	0.5443	41 0.2669	09 0.324915
0.108672 Outcome 0.232150	0.2218	98 0.4927	82 0.165723
	Insulin	BMI	DiabetesPedigreeFunction
\ Pregnancies	0.046741	0.021559	-0.033523
Glucose	0.566640	0.231049	0.137327
BloodPressure	0.125499	0.281257	-0.002378
SkinThickness	0.210167	0.636708	0.128380
Insulin	1.000000	0.198895	0.114325
BMI	0.198895	1.000000	0.153438
DiabetesPedigreeFunction	0.114325	0.153438	1.000000
Age	0.185146	0.025597	0.033561
Outcome	0.279690	0.312038	0.173844
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome	Age 0.544341 0.266909 0.324915 0.108672 0.185146 0.025597 0.033561 1.000000 0.238356	Outcome 0.221898 0.492782 0.165723 0.232150 0.279690 0.312038 0.173844 0.238356 1.0000000	

Корреляционная матрица содержит коэффициенты корреляции между всеми парами признаков.

Корреляционная матрица симметрична относительно главной диагонали. На главной диагонали расположены единицы (корреляция признака самого с собой).

На основе корреляционной матрицы можно сделать следующие выводы:

• Целевой признак наиболее сильно коррелирует с глюкозой (0.47). Этот признак обязательно следует оставить в модели.

- Целевой признак слабо коррелирует с инсулином (0.13) и функцией родословной (0.17). Скорее всего эти признаки стоит исключить из модели, возможно они только ухудшат качество модели.
- Возраст сильно коррелирует с кол-вом беременностей (0.54). plt.figure(figsize = (12,10))

sns.heatmap(data.corr(), annot =True)

<AxesSubplot:>

