Formal Methods in Software Engineering

Satisfiability Modulo Theories — Spring 2025

Konstantin Chukharev

§1 First-Order Theories

Motivation

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of number theory:

- $\bullet \ \Sigma^S = \{\mathrm{Nat}\}, \Sigma^F = \{0,1,+,<\}$
- $\operatorname{rank}(0) = \operatorname{rank}(1) = \langle \operatorname{Nat} \rangle$
- $rank(+) = \langle Nat, Nat, Nat \rangle$
- $rank(<) = \langle Nat, Nat, Bool \rangle$
- **1.** Consider the Σ -sentence: $\forall x : \mathsf{Nat}. \neg (x < x)$
 - Is it *valid*, that is, true under *all* interpretations?
 - No, e.g., if we interpret < as *equals* or *divides*.
- **2.** Consider the Σ -sentence: $\neg \exists x : \mathsf{Nat}. (x < 0)$
 - Is it *valid*?
 - No, e.g., if we interpret Nat as the set of *all* integers.
- 3. Consider the Σ -sentence: $\forall x : \mathrm{Nat}. \forall y : \mathrm{Nat}. \forall z : \mathrm{Nat}. (x < y) \land (y < z) \rightarrow (x < z)$
 - Is it *valid*?
 - No, e.g., if we interpret < as the *successor* relation.

Motivation [2]

In practice, we often *do not care* about satisfiability or validity in *general*, but rather with respect to a *limited class* of interpretations.

A practical reason:

- When reasoning in a particular application domain, we typically have *specific* data types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, ...).
- More generally, we are typically *not* interested in *arbitrary* interpretations, but rather in *specific* ones.

Theories formalize this domain-specific reasoning: we talk about satisfiability and validity with respect to a theory or "modulo a theory".

A computational reason:

- The validity problem for FOL is *undecidable* in general.
- However, the validity problem for many *restricted* theories, is *decidable*.

First-Order Theories

Hereinafter, we assume that we have an infinite set of variables X.

Definition 1 (Theory): A first-order *theory* $\mathcal T$ is a pair $\langle \Sigma, M \rangle$, where

- $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ is a first-order signature,
- M is a class of Σ -interpretations over X that is closed under variable re-assignment.

Definition 2: M is *closed under variable re-assignment* if every Σ -interpretation that differs from one in M in the way it interprets the variables in X is also in M.

A theory limits the interpretations of Σ -formulas to those from M.

Theory Examples

Example: Theory of Real Arithmetic $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$:

- $\Sigma^S_{\mathrm{RA}} = \{\mathrm{Real}\}$
- $\Sigma_{\mathrm{RA}}^F = \{+, -, *, \leq\} \cup \{q \mid q \text{ is a decimal numeral}\}$
- All $\mathcal{I} \in M_{\mathrm{RA}}$ interpret Real as the set of real numbers \mathbb{R} , each q as the decimal number that it denotes, and the function symbols in the usual way.

Example: Theory of Ternary Strings $\mathcal{T}_{TS} = \langle \Sigma_{TS}, M_{TS} \rangle$:

- $\Sigma_{\mathrm{TS}}^S = \{ \mathrm{String} \}$
- $\Sigma_{TS}^F = \{\cdot, <\} \cup \{a, b, c\}$
- All $\mathcal{I} \in M_{\mathrm{TS}}$ interpret String as the set $\{\mathbf{a},\mathbf{b},\mathbf{c}\}^*$ of all finite strings over the characters $\{\text{``a''},\text{``b''},\text{``c''}\}$, symbol · as string concatenation (e.g., $\mathbf{a} \cdot \mathbf{b} = \mathbf{ab}$), and < as lexicographic order.

\mathcal{T} -interpretations

Definition 3 (Reduct): Let Σ and Ω be two signatures over variables X, where $\Omega \supseteq \Sigma$, that is, $\Omega^S \supset \Sigma^S$ and $\Omega^F \supset \Sigma^F$.

Let \mathcal{I} be an Ω -interpretation over X.

The *reduct* \mathcal{I}^{Σ} of \mathcal{I} to Σ is a Σ -interpretation obtained from \mathcal{I} by resticting it to the symbols in Σ .

Definition 4 (\mathcal{T} -interpretation): Given a theory $\mathcal{T} = \langle \Sigma, M \rangle$, a \mathcal{T} -interpretation is any Ω -interpretation \mathcal{I} for some signature $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$.

Note: This definition allows us to consider the satisfiability in a theory $\mathcal{T} = \langle \Sigma, M \rangle$ of formulas that contain sorts or function symbols not in Σ . These symbols are usually called *uninterpreted* (in \mathcal{T}).

\mathcal{T} -interpretations [2]

Example: Consider again the theory of real arithmetic $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$.

All $\mathcal{I} \in M_{\mathrm{RA}}$ interpret Real as $\mathbb R$ and function symbols as usual.

Which of the following interpretations are \mathcal{T}_{RA} -interpretations?

- 1. Real $\mathcal{I}_1=\mathbb{Q}$, symbols in Σ^F_{RA} interpreted as usual. $\pmb{\mathsf{X}}$
- 2. Real $\mathcal{I}_2 = \mathbb{R}$, symbols in Σ_{RA}^F interpreted as usual, and String $\mathcal{I}_2 = \{0.5, 1.3\}$.
- 3. Real $\mathcal{I}_3 = \mathbb{R}$, symbols in Σ_{RA}^F interpreted as usual, and $\log^{\mathcal{I}_3}$ is the successor function.

\mathcal{T} -satisfiability, \mathcal{T} -entailment, \mathcal{T} -validity

Definition 5 (\mathcal{T} -satisfiability): A Σ -formula α is *satisfiable in* \mathcal{T} , or \mathcal{T} -satisfiable, if it is satisfied by *some* \mathcal{T} -interpretation \mathcal{I} .

Definition 6 (\mathcal{T} -entailment): A set Γ of formulas \mathcal{T} -entails a formula α , if every \mathcal{T} -interpretation that satisfies all formulas in Γ also satisfies α .

Definition 7 (\mathcal{T} -validity): A formula α is \mathcal{T} -valid, if it is satisfied by all \mathcal{T} -interpretations.

Note: A formula α is \mathcal{T} -valid iff $\emptyset \models \alpha$.

Example: Which of the following Σ_{RA} -formulas is satisfiable or valid in \mathcal{T}_{RA} ?

- 1. $(x_0 + x_1 \le 0.5) \land (x_0 x_1 \le 2)$
- **2.** $\forall x_0. (x_0 + x_1 \le 1.7) \rightarrow (x_1 \le 1.7 x_0)$
- 3. $\forall x_0. \forall x_1. (x_0 + x_1 \le 1)$

satisfiable, falsifiable satisfiable, valid unsatisfiable, falsifiable

FOL vs Theory

For every signature Σ , entailment and validity in "pure" FOL can be seen as entailment and validity in the theory $\mathcal{T}_{\text{FOL}} = \langle \Sigma, M_{\text{FOL}} \rangle$ where M_{FOL} is the class of *all possible* Σ -interpretations.

- Pure first-order logic = reasoning over *all* possible interpretations.
- Reasoning modulo a theory = *restricting* interpretations with some domain constraints.
- Theories make automated reasoning *feasible* in many domains.

Axiomatization

Definition 8 (Axiomatic theory): A first-order *axiomatic theory* \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ -sentences, or *axioms*.

In particular, an Ω -formula α is *valid* in an axiomatic theory \mathcal{T} if it is entailed by the axioms of \mathcal{T} , that is, every Ω -interpretation \mathcal{I} that satisfies all axioms of \mathcal{T} also satisfies α .

Given an axiomatic theory \mathcal{T} defined by Σ and \mathcal{A} , we can define a theory $\mathcal{T}' = \langle \Sigma, M \rangle$ where M is the class of all Σ -interpretations that satisfy all axioms in \mathcal{A} .

It is not hard to show that a formula α is valid in \mathcal{T} *iff* it is valid in \mathcal{T}' .

Axiomatization [2]

Note: Not all theories are first-order axiomatizable.

Example: Consider the theory $\mathcal{T}_{\mathsf{Nat}}$ of the natural numbers, with signature Σ with $\Sigma^S = \{\mathsf{Nat}\}$, $\Sigma^F = \{0, S, +, <\}$, and $M = \{\mathcal{I}\}$ where $\mathsf{Nat}^{\mathcal{I}} = \mathbb{N}$ and Σ^F is interpreted as usual.

Any set of axioms for this theory is satisfied by non-standard models, e.g., interpretations $\mathcal I$ where $\operatorname{Nat}^{\mathcal I}$ includes other chains of elements besides the natural numbers, e.g., $\mathbb N^{\mathcal I}=\{0,1,2,\ldots\}\cup\{\omega,\omega+1,\ldots\}$.

These models *falsify* formulas that are *valid* in \mathcal{T}_{Nat} , e.g., $\neg \exists x. (x < 0)$ or $\forall x. ((x \doteq 0) \lor \exists y. (x \doteq S(y)))$.

Completeness of Theories

Definition 9: A Σ -theory \mathcal{T} is *complete* if for every Σ -sentence α , either α or $\neg \alpha$ is valid in \mathcal{T} .

Note: In a complete Σ -theory, every Σ -sentence is either valid or unsatisfiable.

Example: Any theory $\mathcal{T} = \langle \Sigma, M \rangle$ where all interpretations in M only differ in how they interpret the variables (e.g., \mathcal{T}_{RA}) is *complete*.

Completeness of Theories [2]

Example: The axiomatic (mono-sorted) theory of *monoids* with $\Sigma^F = \{\cdot, \varepsilon\}$ and axioms

$$\forall x. \forall y. \forall z. \, (x \cdot y) \cdot z \doteq x \cdot (y \cdot z) \qquad \forall x. \, (x \cdot \varepsilon \doteq x) \qquad \forall x. \, (\varepsilon \cdot x \doteq x)$$

is incomplete.

For example, the sentence $\forall x. \forall y. (x \cdot y = y \cdot x)$ is true in some monoids (e.g. the integers with addition) but false in others (e.g. the strings with concatenation).

Completeness of Theories [3]

Example: The axiomatic (mono-sorted) theory of *dense linear orders without endpoints* with $\Sigma^F = \{ \prec \}$ and axioms

$$\forall x. \forall y. (x \prec y) \rightarrow \exists z. \left((x \prec z) \land (z \prec y) \right) \quad \text{(dense)}$$

$$\forall x. \forall y. \left((x \prec y) \lor (y \prec x) \lor (x \doteq y) \right) \quad \text{(linear)}$$

$$\forall x. \neg (x \prec x) \quad \forall x. \forall y. \forall z. \left((x \prec y) \land (y \prec z) \rightarrow (x \prec z) \right) \quad \text{(orders)}$$

$$\forall x. \exists y. \left(y \prec x \right) \quad \forall x. \exists y. \left(x \prec y \right) \quad \text{(without endpoints)}$$

is *complete*.

Decidability

Recall that a set A is *decidable* if there exists a *terminating* procedure that, given an input element a, returns (after *finite* time) either "yes" if $a \in A$ or "no" if $a \notin A$.

Definition 10: A theory $\mathcal{T} = \langle \Sigma, M \rangle$ is *decidable* if the set of all \mathcal{T} -valid Σ -formulas is decidable.

Definition 11: A fragment of \mathcal{T} is a syntactically-restricted subset of \mathcal{T} -valid Σ -formulas.

Example: The *quantifier-free* fragment of \mathcal{T} is the set of all \mathcal{T} -valid Σ -formulas without any quantifiers.

Example: The *linear* fragment of \mathcal{T}_{RA} is the set of all \mathcal{T} -valid Σ_{RA} -formulas without multiplication (*).

Axiomatizability

Definition 12: A theory $\mathcal{T} = \langle \Sigma, M \rangle$ is *recursively axiomatizable* if M is the class of all interpretations satisfying a *decidable set* of first-order axioms \mathcal{A} .

Theorem 1 (Lemma): Every recursively axiomatizable theory \mathcal{T} admits a procedure $E_{\mathcal{T}}$ that enumerates all \mathcal{T} -valid formulas.

Theorem 2: For every *complete* and *recursively axiomatizable* theory \mathcal{T} , \mathcal{T} -validity is decidable.

Proof: Given a formula α , use $E_{\mathcal{T}}$ to enumerate all valid formulas. Since \mathcal{T} is complete, either α or $\neg \alpha$ will eventually (after *finite* time) be produced by $E_{\mathcal{T}}$.

§2 Introduction to SMT

Common Theories in SMT

SMT traditionally focuses on theories with *decidable* quantifier-free *fragments*.

Recall: a formula α is \mathcal{T} -valid iff $\neg \alpha$ is \mathcal{T} -unsatisfiable.

Checking the (un)satisfiability of quantifier-free formulas in main background theories efficiently has a large number of applications in:

- hardware and software verification
- model checking
- symbolic execution
- compiler validation
- type checking

- planning and scheduling
- software synthesis
- cyber-security
- verifiable machine learning
- analysis of biological systems

Further, we are going to study:

- A few of those theories and their decision procedures.
- Proof systems to reason modulo theories automatically.

From QF to Cubes

The satisfiability of quantifier-free formulas in a theory $\mathcal T$ is decidable iff the satisfiability in $\mathcal T$ of *conjunctions of literals (cubes)* is decidable.

We are going to study a general extension of DPLL to SMT that uses decision procedures for *conjunctions of literals*. Thus, we will mostly focus on *conjunctions of literals*.

Theory of Uninterpreted Functions

Given a signature Σ , the most general theory consists of the class of *all* Σ -interpretations.

In fact, this is a *family* of theories parameterized by the signature Σ .

It is known as the theory of *equality with uninterpreted functions* \mathcal{T}_{EUF} , or the *empty theory*, since it is axiomatized by the empty set of axioms.

Validity, and so satisfiability, in \mathcal{T}_{EUF} is only *semi-decidable* (this is just a validity in FOL).

However, the satisfiability of *conjunctions* \mathcal{T}_{EUF} -literals is decidable, in polynomial time, using the *congruence closure* algorithm.

Example: $(a \doteq b) \land (f(a) \doteq b) \land \neg (g(a) \doteq g(f(a)))$ Is this formula satisfiable in \mathcal{T}_{EUF} ?

Theory of Real Arithmetic

The theory of real arithmetic \mathcal{T}_{RA} is a theory of inequalities over the real numbers.

- $\Sigma^S = \{ \operatorname{Real} \}$
- $\Sigma^F = \{+, -, *, <\} \cup \{q \mid q \text{ is a decimal numeral}\}$
- M is the class of interpretations that interpret Real as the set of *real numbers* \mathbb{R} , and the function symbols in the usual way.

Satisfiability in the full \mathcal{T}_{RA} is *decidable* (in worst-case doubly-exponential time).

Restricted fragments of $\mathcal{T}_{\mathrm{RA}}$ can be decided more efficiently.

Example: Quantifier-free linear real arithmetic (QF_LRA) is the theory of *linear* inequalities over the reals, where * can only be used in the form of *multiplication by constants (decimal numerals)*.

The satisfiability of conjunctions of literals in QF_LRA is *decidable* in *polynomial time*.

Theory of Integer Arithmetic

The theory of integer arithmetic \mathcal{T}_{IA} is a theory of inequalities over the integers.

- $\Sigma^S = \{ \text{Int} \}$
- $\Sigma^F = \{+, -, *, <\} \cup \{n \mid n \text{ is an integer numeral}\}$
- M is the class of interpretations that interpret Int as the set of *integers* \mathbb{Z} , and the function symbols in the usual way.

Satisfiability in \mathcal{T}_{IA} is not even semi-decidable!

Satisfiability of quantifier-free Σ -formulas in $\mathcal{T}_{\mathrm{IA}}$ is *undecidable* as well.

Linear integer arithmetic (LIA, also known as *Presburger arithmetic*) is decidable, but not efficiently (in worst-case triply-exponential time).

Theory of Arrays with Extensionality

The theory of arrays \mathcal{T}_{A} is useful for modelling RAM or array data structures.

- $\Sigma^S = \{A, I, E\}$ (arrays, indices, elements)
- $\Sigma^F = \{ \text{read}, \text{write} \}$, where $\text{rank}(\text{read}) = \langle \mathsf{A}, \mathsf{I}, \mathsf{E} \rangle$ and $\text{rank}(\text{write}) = \langle \mathsf{A}, \mathsf{I}, \mathsf{E}, \mathsf{A} \rangle$

Let a be a variable of sort A, variable i of sort I, and variable v of sort E.

- read(a, i) denotes the value stored in array a at index i.
- write (a, i, v) denotes the array that stores value v at index i and is otherwise identical to a.

Example: read(write $(a, i, v), i) \doteq_{\mathsf{E}} v$

• Is this formula intuitively valid/satisfiable/unsatisfiable in $\mathcal{T}_{\rm A}$?

Example: $\forall i. (\operatorname{read}(a, i) \doteq_{\mathsf{E}} \operatorname{read}(a', i)) \rightarrow (a \doteq_{\mathsf{A}} a')$

• Is this formula intuitively valid/satisfiable/unsatisfiable in $\mathcal{T}_{\mathbf{A}}$?

Theory of Arrays with Extensionality [2]

The theory of arrays $\mathcal{T}_{A} = \langle \Sigma, M \rangle$ is finitely axiomatizable.

M is the class of interpretations that satisfy the following axioms:

- **1.** $\forall a. \forall i. \forall v. (\text{read}(\text{write}(a, i, v), i) \doteq_{\mathsf{E}} v)$
- $\mathbf{2.} \ \, \forall a. \forall i. \forall j. \forall v. \, \neg(i \doteq_{\mathtt{I}} j) \rightarrow (\mathrm{read}(\mathrm{write}(a,i,v),j) \doteq_{\mathtt{E}} \mathrm{read}(a,j))$
- 3. $\forall a. \forall b. (\forall i. (\operatorname{read}(a, i) \doteq_{\mathsf{E}} \operatorname{read}(b, i))) \rightarrow (a \doteq_{\mathsf{A}} b)$

Note: The last axiom is called *extensionality* axiom. It states that two arrays are equal if they have the same values at all indices. It can be omitted to obtain a theory of arrays *without extensionality*.

Satisfiability in \mathcal{T}_{A} is *undecidable*.

There are several *decidable fragments* of \mathcal{T}_{A} .

§3 Extra slides

Decidability and Complexity

Theory	Description	Full	QF	Full complexity	QFC complexity
PL	Propositional logic	yes	yes	NP-complete	$\Theta(n)$
\mathcal{T}_{E}	equality	no	yes	undecidable	$\mathcal{O}(n\log n)$
$\mathcal{T}_{\mathrm{PA}}$	Peano Arithmetic	no	no	undecidable	undecidable
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	yes	yes	$\Omega(2^{2^n}), \mathcal{O}\left(2^{2^{2^{kn}}}\right)$	NP-complete
$\mathcal{T}_{\mathbb{Z}}$	linear integers	yes	yes	$\Omega(2^{2^n}),\mathcal{O}\!\left(2^{2^{2^{kn}}} ight) \ \Omega(2^{2^n}),\mathcal{O}\!\left(2^{2^{2^{kn}}} ight)$	NP-complete
$\mathcal{T}_{\mathbb{R}}$	reals (with \cdot)	yes		$\mathcal{O}\left(2^{2^{kn}}\right)$	$\mathcal{O}\!\left(2^{2^{kn}} ight)$
$\mathcal{T}_{\mathbb{Q}}$	rationals (without \cdot)	yes	yes	$\Omega(2^n), \mathcal{O}(2^{2^{kn}})$	PTIME
$\mathcal{T}_{ ext{RDS}}$	recursive data structures	no	yes	undecidable	$\mathcal{O}(n\log n)$
$\mathcal{T}_{ ext{RDS}}^+$	acyclic recursive data structures	yes	yes	not elementary recursive	$\Theta(n)$
\mathcal{T}_{A}	arrays	no	yes	undecidable	NP-complete
$\mathcal{T}_{ m A}^{=}$	arrays with extensionality	no	yes	undecidable	NP-complete

Decidability and Complexity [2]

- "Full" denotes the decidability of a complete theory with quantifiers.
- "QF" denotes the decidability of a *quantifier-free* theory.
- "Full complexity" denotes the complexity of the satisfiability in a complete theory with quantifiers.
- "QFC complexity" denotes the complexity of the satisfiability in a quantifier-free *conjunctive* fragment of a theory.
- "Not elementary recursive" means the runtime cannot be bounded by a fixed-height stack of exponentials.

§4 Theory Solvers

Theory Solvers

Definition 13 (\mathcal{T} -solver): A *theory solver*, or \mathcal{T} -solver, is a specialized decision procedure for the satisfiability of conjunctions of literals in a theory \mathcal{T} .

Difference Logic

Definition 14: *Difference logic* is a fragment of linear integer arithmetic consisting of conjunctions of literals of the very restricted form:

$$x-y \bowtie c$$

where x and y are integer variables, c is a numeral, and $\bowtie \in \{=,<,\leq,>,\geq\}$.

A solver for difference logic consists of three steps:

- 1. Literals normalization.
- **2.** Conversion to a graph.
- **3.** Cycle detection.

Difference Logic [2]

Step 1: Rewrite each literal using \leq by applying the following rules:

- 1. $(x-y=c) \longrightarrow (x-y \le c) \land (x-y \ge c)$
- $2. \ (x-y \ge c) \longrightarrow (y-x \le -c)$
- 3. $(x-y>c) \longrightarrow (y-x<-c)$
- **4.** $(x y < c) \longrightarrow (x y \le c 1)$

Step 2: Construct a weighted directed graph G with a vertex for each variable and an edge $x \xrightarrow{c} y$ for each literal $(x - y \le c)$.

Step 3: Check for *negative cycles* in G.

- Use, for example, the Bellman-Ford algorithm.
- If G contains a negative cycle, the set of literals is inconsistent (UNSAT).
- Otherwise, the set of literals is *consistent* (SAT).

Difference Logic Example

Consider the following set of difference logic literals:

$$(x-y=5) \wedge (z-y \geq 2) \wedge (z-x > 2) \wedge (w-x=2) \wedge (z-w < 0)$$

Normalize the literals:

•
$$(x-y=5) \longrightarrow (x-y \le 5) \land (y-x \le -5)$$

•
$$(z-y \ge 2) \longrightarrow (y-z \le -2)$$

•
$$(z-x>2) \longrightarrow (x-z \le -3)$$

•
$$(w-x=2) \longrightarrow (w-x \le 2) \land (x-w \le -2)$$

•
$$(z-w<0) \longrightarrow (z-w \le -1)$$

UNSAT because of the negative cycle: $x \xrightarrow{-3} z \xrightarrow{-1} w \xrightarrow{2} x$.

Satisfiability Proof Systems

Definition 15: A literal is *flat* if it if the form:

- $x \doteq y$
- $\neg(x \doteq y)$
- $x \doteq f(z)$

where x and y are variables, f is a function symbol, and z is a tuple of 0 or more variables.

Note: Any set of literals can be converted to an equisatisfiable set of *flat* literals by introducing *new* variables and equating non-equational atoms to true.

Example: Consider the set of literals: $\{x + y > 0, y = f(g(z))\}$.

We can convert it to an equisatisfiable set of flat literals by introducing fresh variables v_1 , v_2 and v_3 :

$$\{\; v_1 \doteq v_2 > v_3, \quad v_1 \doteq {\rm true}, \quad v_2 \doteq x + y, \quad v_3 \doteq 0, \quad y \doteq f(v_4), \quad v_4 \doteq g(z) \; \}$$

Hereinafter, we will assume that all literals are *flat*.

Notation and Assumptions

- We abbreviate $\neg(s = t)$ with $s \neq t$.
- $\bullet \ \ \text{For tuples } \boldsymbol{u} = \langle u_1,...,u_n \rangle \ \text{and} \ \boldsymbol{v} = \langle v_1,...,v_n \rangle, \ \text{we abbreviate} \ (u_1 \doteq v_1) \wedge ... \wedge (u_n \doteq v_n) \ \text{with} \ \boldsymbol{u} = \boldsymbol{v}.$
- Γ is used to refer to the "current" proof state in rule premises.
- $\Gamma, s \doteq t$ is an abbreviation for $\Gamma \cup \{s \doteq t\}$.
- If applying a rule R does not change Γ , then R is not applicable to Γ , that is, Γ is irreducible w.r.t. R.

A Satisfiability Proof System for QF UF

Let QF UF be the quantifier-free fragment of FOL over some signature Σ .

Below is a simple satisfiability proof system R_{UF} for QF_UF:

$$\frac{x \neq y \in \Gamma}{\text{SAT}}$$

$$\frac{x \text{ occurs in } \Gamma}{\Gamma := \Gamma, x \doteq x}$$

SYMM
$$\frac{x \neq y \in \Gamma}{\Gamma := \Gamma, y \doteq x}$$

$$\mathbf{Trans} \ \frac{x \not = y \in \Gamma \quad \ y \doteq z \in \Gamma}{\Gamma \coloneqq \Gamma, x \doteq z}$$

$$\textbf{Cong} \ \frac{x \doteq f(\boldsymbol{u}) \in \Gamma \quad y \doteq f(\boldsymbol{v}) \in \Gamma \quad \boldsymbol{u} = \boldsymbol{v} \in \Gamma }{\Gamma \coloneqq \Gamma, x \doteq y}$$
 SAT
$$\frac{\text{No other rules apply}}{\text{SAT}}$$

Is R_{HF} sound?

Is R_{IIF} terminating?

Example Derivation in $R_{ m UF}$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \textbf{Refl} & \frac{x \text{ occurs in } \Gamma}{\Gamma \coloneqq \Gamma, x \stackrel{.}{=} x} & \textbf{Contr} & \frac{x \stackrel{.}{=} y \in \Gamma & x \not \succeq y \in \Gamma}{\text{UNSAT}} & \textbf{Trans} & \frac{x \not \succeq y \in \Gamma & y \stackrel{.}{=} z \in \Gamma}{\Gamma \coloneqq \Gamma, x \stackrel{.}{=} z} \\ \hline \textbf{Symm} & \frac{x \not \succeq y \in \Gamma}{\Gamma \coloneqq \Gamma, y \stackrel{.}{=} x} & \textbf{Cong} & \frac{x \stackrel{.}{=} f(u) \in \Gamma & y \stackrel{.}{=} f(v) \in \Gamma & u = v \in \Gamma}{\Gamma \coloneqq \Gamma, x \stackrel{.}{=} y} & \textbf{SAT} & \frac{\text{No other rules apply}}{\text{SAT}} \\ \hline \end{array}$$

Example: Determine the satisfiability of the following set of literals: $a \doteq f(f(a))$, $a \doteq f(f(f(a)))$, $g(a, f(a)) \not \succeq g(f(a), a)$. Flatten the literals and construct the following proof:

$$\frac{a \doteq f(a_1), a_1 \doteq f(a), a \doteq f(a_2), a_2 \doteq f(a_1), a_3 \not \succeq a_4, a_3 \doteq g(a, a_1), a_4 \doteq g(a_1, a)}{\underbrace{a_1 \doteq a_1}_{\text{CONG}} \text{ applied to } a \doteq f(a_1), a_2 \doteq f(a_1), a_1 \doteq a_1}_{\text{CONG applied to } a_1 \doteq f(a), a \doteq f(a_2), a \doteq a_2}$$

$$\underbrace{\frac{a_1 \doteq a_2}{a_1 \doteq a}}_{\text{CNMM}} \text{ Symm}}_{\substack{a \doteq a_1 \\ a_3 \doteq a_4 \\ \text{$UNSAT$}}} \text{ Contrapplied to } a_3 \doteq g(a, a_1), a_4 \doteq g(a_1, a), a \doteq a_1, a_1 \doteq a_1$$

Soundness

Theorem 3 (Refutation soundness): A literal set Γ_0 is unsatisfiable if $R_{\rm UF}$ derives UNSAT from it.

Proof: All rules except SAT are satisfiability-preserving.

If a derivation from Γ_0 ends with UNSAT, then Γ_0 must be unsatisfiable.

Theorem 4 (Solution soundness): A literal set Γ_0 is satisfiable if R_{UF} derives SAT from it.

Proof: Let Γ be a proof state to which SAT applies. From Γ , we can construct an interpretation \mathcal{I} that satisfies Γ_0 . Let $s \sim t$ iff $(s \doteq t) \in \Gamma$. One can show that \sim is an equivalence relation.

Let the domain of \mathcal{I} be the equivalence classes $E_1,...,E_k$ of \sim .

- For every variable or a constant t, let $t^{\mathcal{I}} = E_i$ if $t \in E_i$ for some i. Otherwise, let $t^{\mathcal{I}} = E_1$.
- For every unary function symbol f, and equivalence class E_i , let $f^{\mathcal{I}}$ be such that $f^{\mathcal{I}}(E_i) = E_j$ if $f(t) \in E_j$ for some $t \in E_i$. Otherwise, let $f^{\mathcal{I}}(E_i) = E_1$. Define $f^{\mathcal{I}}$ for non-unary f similarly.

We can show that $\mathcal{I} \models \Gamma$. This means that \mathcal{I} models Γ_0 as well since $\Gamma_0 \subseteq \Gamma$.

Termination

Theorem 5: Every derivation strategy for $R_{\rm UF}$ terminates.

Proof: R_{UF} adds to the current state Γ only equalities between variables of Γ_0 .

So, at some point it will run out of new equalities to add.

Completeness

Theorem 6 (Refutation completeness): Every derivation strategy applied to an unsatisfiable state Γ_0 ends with UNSAT.

Proof: Let Γ_0 be an unsatisfiable state. Suppose there was a derivation from Γ_0 that did not end with UNSAT. Then, by the termination theorem, it would have to end with SAT. But then $R_{\rm UF}$ would be not be solution sound.

Theorem 7 (Solution completeness): Every derivation strategy applied to a satisfiable state Γ_0 ends with SAT.

Proof: Let Γ_0 be a satisfiable state. Suppose there was a derivation from Γ_0 that did not end with SAT. Then, by the termination theorem, it would have to end with UNSAT. But then $R_{\rm UF}$ would be not be refutation sound.

TODO

- theory of arrays \mathcal{T}_{A}
- satisfiability proof system for $\mathcal{T}_{\! A}$
- soundness, termination, completeness
- LRA, Linear programming, Simplex algorithm
- Strings solver