Assignment 2

MA08 Applied Algebra

Deadline 05:00 PM, Friday, 20190621

0	а	b	c	d	e	0	а	b	c	d
а	а	b	С	b	d	$\frac{a}{b}$	а	b	С	
b	b	С	а	e	С	b	b	d		С
С	С	а	b	b	а	С	С	а	d	b
\overline{d}	b	e	b	е	d	\overline{d}	d			
e	d	b	а	d	С			1	'	'

Table 1

Table 2

- 1. For a binary operation \circ defined on $S = \{a, b, c, d, e\}$ by means of Table 1.
 - (a) Compute $b \circ d$, $c \circ c$.
 - (b) Compute $(a \circ b) \circ c$, $a \circ (b \circ c)$. Based on this computation, can you say \circ is associative?
 - (c) Compute $(b \circ d) \circ c$, $b \circ (d \circ c)$. Based on this computation, can you say \circ is associative?
 - (d) Is o commutative? Why?
- 2. Complete Table 2 so as to define a commutative binary operation \circ on $S = \{a, b, c, d\}$.
- 3. Compute the indicated product involving the following permutations according to Table 2.2 and Figure 2.3 in page 23 of slides of Lecture 2.
 - (a) $\rho_2 \mu_3$
 - (b) $\mu_3 \rho_2$

Notice: Please write Your Name and Student ID when you submit.