Lijing Yang Project

Part1:

Pre-processing

```
In [1]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(2048)
In [2]: df = pd.read_csv('Data/bank-additional-full.csv',delimiter=';')
df=df.drop_duplicates(keep='first')
```

Step1: Replace missing value with the most frequent value

```
In [3]: df = df[df != 'unknown']
        imputer = SimpleImputer(missing values=np.nan, strategy='most frequent')
        imputer = imputer.fit(df[['job']])
        df['job'] = imputer.transform(df[['job']])
        imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
        imputer = imputer.fit(df[['marital']])
        df['marital'] = imputer.transform(df[['marital']])
        imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
        imputer = imputer.fit(df[['education']])
        df['education'] = imputer.transform(df[['education']])
        imputer = SimpleImputer(missing values=np.nan, strategy='most frequent')
        imputer = imputer.fit(df[['default']])
        df['default'] = imputer.transform(df[['default']])
        imputer = SimpleImputer(missing values=np.nan, strategy='most frequent')
        imputer = imputer.fit(df[['housing']])
        df['housing'] = imputer.transform(df[['housing']])
        imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
        imputer = imputer.fit(df[['loan']])
        df['loan'] = imputer.transform(df[['loan']])
        df=df.drop(columns=['duration'])
        df
```

Out[3]:		age	job	marital	education	default	housing	loan	contact	month
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may
	1	57	services	married	high.school	no	no	no	telephone	may
	2	37	services	married	high.school	no	yes	no	telephone	may
	3	40	admin.	married	basic.6y	no	no	no	telephone	may
	4	56	services	married	high.school	no	no	yes	telephone	may
	•••									
	41183	73	retired	married	professional.course	no	yes	no	cellular	nov
	41184	46	blue-collar	married	professional.course	no	no	no	cellular	nov
	41185	56	retired	married	university.degree	no	yes	no	cellular	nov
	41186	44	technician	married	professional.course	no	no	no	cellular	nov
	41187	74	retired	married	professional.course	no	yes	no	cellular	nov

 $41176 \text{ rows} \times 20 \text{ columns}$

```
In [4]: pd.set_option('display.max_columns', 500)
    df.describe(include='all')# Calss is not balance
```

Out [4]

:		age	job	marital	education	default	housing	loan	contact	mc
	count	41176.00000	41176	41176	41176	41176	41176	41176	41176	41
	unique	NaN	11	3	7	2	2	2	2	
	top	NaN	admin.	married	university.degree	no	yes	no	cellular	1
	freq	NaN	10749	25001	13894	41173	22561	34928	26135	13
	mean	40.02380	NaN	NaN	NaN	NaN	NaN	NaN	NaN	I
	std	10.42068	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ı
	min	17.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ı
	25%	32.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ı
	50%	38.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ı
	75%	47.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	ı
	max	98.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	I

Step2: Use numeric categories to replace the original string categories

```
In [5]: from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
df['job']=encoder.fit_transform(df['job'])
df['marital']=encoder.fit_transform(df['marital'])
df['education']=encoder.fit_transform(df['education'])
df['default']=encoder.fit_transform(df['default'])
df['housing']=encoder.fit_transform(df['housing'])
df['loan']=encoder.fit_transform(df['loan'])
df['contact']=encoder.fit_transform(df['contact'])
df['month']=encoder.fit_transform(df['month'])
df['day_of_week']=encoder.fit_transform(df['day_of_week'])
df['poutcome']=encoder.fit_transform(df['poutcome'])
df['y']=encoder.fit_transform(df['y'])
pd.DataFrame.hist(df,figsize=[14,14])
df
```

age job marital education default housing loan contact month day_of_week Out[5]: ••• ... ••• ••• • • •

41176 rows × 20 columns

Step3: Automatic Feature Selection

```
In [6]: Y=df['y'].values
    X=df.drop('y',axis=1)
    corr = X.corr(method = 'spearman')
    sns.heatmap(corr, annot =False)
    plt.show()
```



```
In [7]: from featurewiz import featurewiz
features, df = featurewiz(df, 'y',corr_limit=0.8)
```

Imported 0.2.03 version. Select nrows to a small number when running on huge datasets.

dask_xgboost_flag=False, nrows=None, skip_sulov=False)
Create new features via 'feature_engg' flag : ['interactions','groupby','target']

######### FAST FEATURE ENGG AND SELECT

I O N ! #######

Be judicious with featurewiz. Don't use it to create too many un-interpret able features!

Correlation Limit = 0.8

```
Skipping feature engineering since no feature engg input...
Skipping category encoding since no category encoders specified in input...
#### Single Label Binary Classification problem ####
  Loaded train data. Shape = (41176, 20)
   Some column names had special characters which were removed ...
#### Single Label Binary Classification problem ####
No test data filename given...
Classifying features using a random sample of 10000 rows from dataset...
#### Single Label Binary Classification problem ####
   loading a random sample of 10000 rows into pandas for EDA
###########
###########
###########
     No variables were removed since no ID or low-information variables f
ound in data set
##########
##### Searching for Uncorrelated List Of Variables (SULOV) in 19 features #
##########
***
###########
   there are no null values in dataset...
   Removing (2) highly correlated variables:
   ['empvarrate', 'nremployed']
   Following (17) vars selected: ['age', 'campaign', 'consconfidx', 'conspr
iceidx', 'contact', 'day of week', 'default', 'education', 'housing', 'job',
'loan', 'marital', 'month', 'pdays', 'poutcome', 'previous', 'euribor3m']
Completed SULOV. 17 features selected
Time taken for SULOV method = 1 seconds
Finally 17 vars selected after SULOV
Converting all features to numeric before sending to XGBoost...
##########
#####
      RECURSIVE XGBOOST: FEATURE SELECTIO
N ######
###########
Current number of predictors before recursive XGBoost = 17
Number of booster rounds = 100
        selecting 8 features in this iteration
        selecting 6 features in this iteration
        selecting 5 features in this iteration
        selecting 3 features in this iteration
        selecting 2 features in this iteration
   Completed XGBoost feature selection in 0 seconds
###########
#####
           FEATURE
                      SELECTION COMPLETED
#######
```

```
###########
         Selected 9 important features:
         ['euribor3m', 'poutcome', 'conspriceidx', 'month', 'pdays', 'contact', 'cons
         confidx', 'day_of_week', 'education']
         Total Time taken for featurewiz selection = 3 seconds
         Output contains a list of 9 important features and a train dataframe
In [8]: print('Selected features: ',features)
         Y=df['y'].values
         X=df.drop('y',axis=1)
         corr = X.corr(method = 'spearman')
         sns.heatmap(corr, annot = False)
         plt.show()
         Selected features: ['euribor3m', 'poutcome', 'cons.price.idx', 'month', 'pd
         ays', 'contact', 'cons.conf.idx', 'day_of_week', 'education']
                                                                                       - 1.0
             euribor3m -
                                                                                       - 0.8
              poutcome -
          cons.price.idx -
                                                                                       - 0.6
                 month -
                                                                                       - 0.4
                 pdays -
                                                                                       - 0.2
                contact -
                                                                                       - 0.0
          cons.conf.idx -
                                                                                        -0.2
           day_of_week -
              education -
                                             month
                           euribor3m
                                 poutcome
                                       cons.price.idx
                                                          contact
                                                                cons.conf.idx
```

Step4: Balancing data

```
In [9]: from imblearn.combine import SMOTEENN
smoteenn=SMOTEENN(random_state=42)
X_B,Y_B=smoteenn.fit_resample(X, Y)
Dataset=X_B
Dataset['y'] = Y_B
pd.DataFrame.hist(Dataset[['y']])
Dataset
```

Out[9]:		euribor3m	poutcome	cons.price.idx	month	pdays	contact	cons.conf.idx	day_of_
	0	4.857000	1	93.994	6	999	1	-36.4	
	1	4.857000	1	93.994	6	999	1	-36.4	
	2	4.857000	1	93.994	6	999	1	-36.4	
	3	4.857000	1	93.994	6	999	1	-36.4	
	4	4.857000	1	93.994	6	999	1	-36.4	
	•••								
	48708	4.857243	1	93.994	6	999	1	-36.4	
	48709	0.649469	2	93.369	5	10	0	-34.8	
	48710	4.856616	1	93.994	6	999	1	-36.4	
	48711	0.739748	0	92.431	8	999	0	-26.9	
	48712	0.879000	1	94.199	9	999	0	-37.5	

48713 rows × 10 columns

Step5: Standardized numerical value

```
In [10]: std= StandardScaler()
    #['euribor3m', 'duration', 'month', 'cons.conf.idx', 'pdays', 'cons.price.ic
    X=std.fit_transform(Dataset[['pdays','cons.price.idx','euribor3m','cons.conf.datset['pdays'] = X[:,0]
    Dataset['cons.price.idx'] = X[:,1]
    Dataset['euribor3m'] = X[:,2]
    Dataset['cons.conf.idx'] = X[:,3]
    #df['nr.employed'] = X[:,9]
    #df['age'] = X[:,0]
    #df['campaign'] = X[:,2]
    #df['previous'] = X[:,4]
    #df['emp.var.rate'] = X[:,5]
```

Step6: Dataset Split (Train Set, Train set without label, Test Set)

```
In [11]: y=Dataset['y'].values
    x=Dataset.drop('y',axis=1)
    x_data,x_test,y_data,y_test = train_test_split(x,y, train_size=0.5, random_s
    A=x_data
    A['y']=y_data
    New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
```

Part2: Supervised learning

```
In [12]: from sklearn.metrics import roc curve
         from sklearn.metrics import plot roc curve
         from sklearn.metrics import classification report
         from sklearn.metrics import confusion matrix
         from sklearn.metrics import accuracy score
         from sklearn.metrics import roc auc score
         from sklearn.metrics import ConfusionMatrixDisplay
         from sklearn.model selection import GridSearchCV
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.linear model import LogisticRegression
         from sklearn.naive bayes import GaussianNB
         from sklearn.svm import SVC
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
```

```
In [13]: def Analyze(Y_pred,Y_test,classifier):
             ACC=accuracy_score(Y_test, Y_pred)
             AUC = roc_auc_score(Y_test, Y_pred)
             print('AUC: {:.4f}'.format(AUC))
             print('Accuracy Score: {:.4f}'.format(ACC))
             print(classification_report(Y_test, Y_pred))
             mat = confusion_matrix(Y_test, Y_pred)
             disp = ConfusionMatrixDisplay(confusion matrix=mat)
             disp.plot()
             plt.show()
              '''sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
             plt.xlabel('True label')
             plt.ylabel('Predicted label')
             plt.show()
             ROC(Y pred,Y test,classifier)'''
          '''def ROC(model, Y_pred,Y_test,classifier):
             false positive rate, true positive rate, threshold = roc_curve(Y_test, Y_
```

```
plt.plot(false positive rate, true positive rate)
   plt.plot(false positive rate, true positive rate, linewidth=2)
   plt.title('ROC curve for '+classifier)
   plt.ylabel('True Positive Rate')
   plt.xlabel('False Positive Rate')
   plt.show()'''
def KNN ROC(x_train,x_test,y_train,y_test,fig):
   knn=KNeighborsClassifier(n neighbors = 5)
   knn.fit(x_train, y_train)
   plot_roc_curve(estimator=knn, X=x_test, y=y_test, ax = fig.ax_)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
def KNN(x train,x test,y train,y test,n=5):
   knn=KNeighborsClassifier(n neighbors = n)
   knn.fit(x train, y train)
   y_pred = knn.predict(x_test)
   classifier='KNN'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=knn, X=x_test, y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
def LRC(x train,x test,y train,y test):
   lr = LogisticRegression()
   lr.fit(x_train, y_train)
   y pred = lr.predict(x test)
   classifier='Logistic Regression Classification'
   Analyze(y pred,y test,classifier)
   fig=plot roc curve(estimator=lr, X=x test, y=y test)
   KNN ROC(x train,x test,y train,y test,fig)
   return y_pred,y_test
def NB(x_train,x_test,y_train,y_test):
   nb = GaussianNB()
   nb.fit(x train, y train )
   y pred = nb.predict(x test)
   classifier='GaussianNB Classification'
   Analyze(y_pred,y_test,classifier)
   fig=plot roc curve(estimator=nb, X=x test, y=y test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y pred, y test
def SVM(x_train,x_test,y_train,y_test):
   svc = SVC(probability=True, gamma="auto")
   svc.fit( x train, y train )
   y pred = svc.predict(x test)
   classifier='SVM'
   Analyze(y pred,y test,classifier)
   fig=plot roc_curve(estimator=svc, X=x_test, y=y_test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y pred, y test
def DecisionTree(x_train,x_test,y_train,y_test):
```

```
parameters = {'splitter':('best', 'random'),
                'criterion':("gini", "entropy"),
                "max_depth":[*range(1, 20)]}
   # Change parameters
   DT = DecisionTreeClassifier()
   model=GridSearchCV(DT,param_grid=parameters,cv=5,scoring='f1')
   model.fit(x_train, y_train )
   y pred = model.best estimator .predict(x test)
   classifier='Decision Tree Classification'
   Analyze(y_pred,y_test,classifier)
   fig=plot roc curve(estimator=model.best estimator ,X=x test,y=y test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y_pred,y_test
def RandomForest(x train,x test,y train,y test):
   RF = RandomForestClassifier()
   parameters = {'criterion':("gini", "entropy"),
                "max_depth":[*range(1, 20)],
                "n_estimators":[5,10,20,40]}
   model=GridSearchCV(RF,param grid=parameters,cv=5,scoring='f1')
   model.fit(x train, y train)
   y_pred = model.best_estimator_.predict(x_test)
   classifier='Random Forest Classification'
   Analyze(y_pred,y_test,classifier)
   fig=plot roc curve(estimator=model.best_estimator_,X=x test,y=y test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y pred, y test
def Gradient Boosting(x train,x test,y train,y test):
   gb = GradientBoostingClassifier()
   parameters = {'max_depth':[*range(1, 10)]}
   model=GridSearchCV(gb,param grid=parameters,cv=5,scoring='f1')
   model.fit(x_train, y_train)
   y pred = model.best_estimator_.predict(x_test)
   classifier='Gradient Boost Classification'
   Analyze(y pred,y test,classifier)
   fig=plot roc curve(estimator=model.best_estimator_,X=x test,y=y test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y pred, y test
def LDA(x train,x test,y train,y test):
   lda = LinearDiscriminantAnalysis()
   lda.fit(x_train,y_train )
   y pred = lda.predict(x test )
   classifier='Linear Discriminant Analysis Classification'
   Analyze(y pred,y test,classifier)
   fig=plot_roc_curve(estimator=lda, X=x_test, y=y_test)
   KNN_ROC(x_train,x_test,y_train,y_test,fig)
   return y pred, y test
```

KNN Classifier

In [14]: y_pred_KNN,y_test_KNN=KNN(x_train1,x_test,y_train1,y_test)

AUC: 0.8989

accuracy 0.91 24357 macro avg 0.91 0.90 0.90 24357 weighted avg 0.91 0.91 0.91 24357

Logistic Regression Classification

In [15]:	y_pred_LI	RC,y_	_test_LRC=LRC	(x_train1	,x_test,y_	train1,y_test		
	AUC: 0.8638							
	Accuracy	Scor	e: 0.8888					
			precision	recall	f1-score	support		
		0	0.86	0.98	0.91	14917		
		1	0.95	0.75	0.84	9440		
	accur	cacy			0.89	24357		
	macro	avg	0.91	0.86	0.88	24357		
	weighted	avα	0.90	0.89	0.89	24357		

GaussianNB Classification

In [16]:	<pre>y_pred_NB,y_test_NB=NB(x_train1,x_test,y_train1,y_test)</pre>								
	AUC: 0.78 Accuracy		e: 0.8173 precision	recall	f1-score	support			
			Processi			24662			
		0	0.81	0.92	0.86	14917			
		1	0.84	0.65	0.73	9440			
	accur	acy			0.82	24357			
	macro	avg	0.82	0.79	0.80	24357			
	weighted	avg	0.82	0.82	0.81	24357			

SVM Classification

Accuracy Score: 0.9080

<pre>In [17]: y_pred_SVM,y_test_SVM=SVM(x_train1,x_test,y_train1,y_test)</pre>	
--	--

AUC: 0.8915

	precision	recall	f1-score	support
0	0.89	0.97	0.93	14917
1	0.94	0.82	0.87	9440
accuracy			0.91	24357
macro avg	0.92	0.89	0.90	24357
weighted avg	0.91	0.91	0.91	24357

Decision Tree Classification

In [18]: y_pred_DT,y_test_DT=DecisionTree(x_train1,x_test,y_train1,y_test)
AUC: 0.9387

Accuracy Scor	e: 0.9472			
	precision	recall	f1-score	support
0	0.94	0.98	0.96	14917
1	0.96	0.90	0.93	9440
accuracy			0.95	24357
macro avg	0.95	0.94	0.94	24357
weighted avg	0.95	0.95	0.95	24357

Random Forest Classification

In [19]:	<pre>y_pred_DF,y_test_RF=RandomForest(x_train1,x_test,y_train1,y_test)</pre>								
	AUC: 0.9350								
	Accuracy Sc	ore: 0.9433							
		precisio	n recall	f1-score	support				
		0 0.9	4 0.97	0.95	14917				
		1 0.9	5 0.90	0.92	9440				
	accurac	У		0.94	24357				
	macro av	g 0.9	5 0.94	0.94	24357				
	weighted av	g 0.9	4 0.94	0.94	24357				

Gradient Boost Classification

In [20]: y_pred_GB,y_test_GB=Gradient_Boosting(x_train1,x_test,y_train1,y_test)

AUC: 0.9506

Accuracy Score: 0.9561 precision recall f1-score support 0 0.98 0.95 0.96 14917 1 0.96 0.93 0.94 9440 0.96 24357 accuracy macro avg 0.96 0.95 0.95 24357 weighted avg 0.96 0.96 0.96 24357

Linear Discriminant Analysis Classification

In [21]:	<pre>y_pred_LDA,y_test_LDA=LDA(x_train1,x_test,y_train1,y_test)</pre>							
	AUC: 0.8636 Accuracy Sco	re: 0.8887						
	1	precision	recall	f1-score	support			
	0	0.86	0.98	0.91	14917			
	1	0.95	0.75	0.84	9440			
	accuracy			0.89	24357			
	macro avg	0.91	0.86	0.88	24357			
	weighted avg	0.90	0.89	0.89	24357			

Part3: Semi-Supervised learning

Self Training Classifier

```
In [14]:
         from sklearn.semi_supervised import SelfTrainingClassifier
In [15]:
         def data_process(x_train1,x_train2,y_train1):
             dataset=x_train1
             dataset['y']=y_train1
             dataset2=x_train2
             dataset2['y']=-1
             dataset=dataset.append(dataset2, ignore_index=True)
             dataset = dataset[np.isfinite(dataset).all(1)]
             dataset.reset_index()
             return dataset
         def SS_KNN(x_train,x_test,y_train,y_test,n=5):
             knn=KNeighborsClassifier(n neighbors = n)
             SS model = SelfTrainingClassifier(knn)
             SS_model.fit(x_train, y_train)
```

```
y pred = SS model.predict(x test)
   classifier='Self Training SS KNN'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=SS_model, X=x_test, y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y_pred,y_test
def SS LRC(x train,x test,y train,y test):
   lr = LogisticRegression()
   SS_model = SelfTrainingClassifier(lr)
   SS model.fit(x train, y train)
   y pred = SS model.predict(x test)
   classifier='Self Training SS Logistic Regression Classification'
   Analyze(y pred,y test,classifier)
   plot roc curve(estimator=SS model, X=x test, y=y test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred,y test
def SS_NB(x_train,x_test,y_train,y_test):
   nb = GaussianNB()
   SS model = SelfTrainingClassifier(nb)
   SS_model.fit(x_train, y_train)
   y pred = SS model.predict(x test)
   classifier='Self Training SS GaussianNB Classification'
   Analyze(y_pred,y_test,classifier)
   plot roc curve(estimator=SS model, X=x test, y=y test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
def SS_SVM(x_train,x_test,y_train,y_test,x,y):
   svc = SVC(probability=True, gamma="auto")
    '''svc.fit(x,y)
   svc.predict_proba(x_test)'''
   SS model = SelfTrainingClassifier(svc)
   SS model.fit(x train, y train)
   y_pred = SS_model.predict(x_test)
   classifier='Self Training SS SVM'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=SS_model, X=x_test, y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
def SS_DecisionTree(x_train,x_test,y_train,y_test,x,y):
   parameters = {'splitter':('best', 'random'),
                'criterion':("gini","entropy"),
                "max_depth":[*range(1, 20)]}
   DT = DecisionTreeClassifier()
   model=GridSearchCV(DT,param grid=parameters,cv=5,scoring='f1')
   model.fit(x, y)
   SS_model = SelfTrainingClassifier(model.best_estimator_)
   SS_model.fit(x_train, y_train)
   y_pred = SS_model.predict(x_test)
    classifier='Self Training SS Decision Tree Classification'
```

```
Analyze(y pred,y test,classifier)
   plot roc curve(estimator=SS model, X=x test, y=y test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
    '''SS_model = SelfTrainingClassifier(DT)
   model=GridSearchCV(SS_model,param_grid=parameters,cv=10,scoring='f1')
   model.fit(x_train, y_train)
   y pred = model.best_estimator_.predict(x_test)
   classifier='Self Training SS Decision Tree Classification'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=model.best_estimator_,X=x_test,y=y_test)'''
   return y pred, y test
def SS_RandomForest(x_train,x_test,y_train,y_test,x,y):
   RF = RandomForestClassifier()
   parameters = {'criterion':("gini", "entropy"),
                "max depth":[*range(1, 20)],
                "n estimators":[5,10,20,40]}
   model=GridSearchCV(RF,param_grid=parameters,cv=5,scoring='f1')
   model.fit(x, y)
   SS model = SelfTrainingClassifier(model.best estimator )
   SS model.fit(x train, y train)
   y_pred = SS_model.predict(x_test)
   classifier='Self Training SS Random Forest Classification'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=SS_model,X=x_test,y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
def SS Gradient Boosting(x_train,x_test,y_train,y_test,x,y):
   gb = GradientBoostingClassifier()
   parameters = {'max_depth':[*range(1, 10)]}
   model=GridSearchCV(gb,param grid=parameters,cv=5,scoring='f1')
   model.fit(x, y)
   SS model = SelfTrainingClassifier(model.best estimator )
   SS model.fit(x train, y train)
   y_pred = SS_model.predict(x_test)
   classifier='Self Training SS Gradient Boost Classification'
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=SS_model, X=x_test, y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
def SS_LDA(x_train,x_test,y_train,y_test):
   lda = LinearDiscriminantAnalysis()
   SS model = SelfTrainingClassifier(lda)
   SS model.fit(x train, y train)
   y_pred = SS_model.predict(x_test)
   classifier='Self Training SS Linear Discriminant Analysis Classification
   Analyze(y_pred,y_test,classifier)
   plot_roc_curve(estimator=SS_model, X=x_test, y=y_test)
   plt.plot([0, 1], [0, 1], linestyle='--', color='r')
   return y pred, y test
```

```
D=data_process(x_train1,x_train2,y_train1)
y_train_SSL=D['y'].values
x_train_SSL=D.drop('y',axis=1)
```

Semi-Supervised Self Training KNN Classification

In [24]: y_pred_SS_KNN,y_test_SS_KNN=SS_KNN(x_train_SSL,x_test,y_train_SSL,y_test)

AUC:	: 0	. 8	982

Accuracy	Scor	e: 0.9097			
		precision	recall	f1-score	support
	0	0.91	0.95	0.93	14917
	1	0.91	0.85	0.88	9440
accur	acy			0.91	24357
macro	avg	0.91	0.90	0.90	24357
weighted	avg	0.91	0.91	0.91	24357

Semi-Supervised Self Training Logistic Regression Classification

In [25]: y_pred_SS_DT,y_test_SS_DT=SS_LRC(x_train_SSL,x_test,y_train_SSL,y_test) AUC: 0.8638 Accuracy Score: 0.8888 precision recall f1-score support 0 0.86 0.98 0.91 14917 0.95 1 0.75 0.84 9440 0.89 24357 accuracy macro avg 0.91 0.86 0.88 24357

0.89

0.89

24357

weighted avg

0.90

Semi-Supervised Self Training GaussianNB Classification

In [26]:	<pre>y_pred_SS_NB,y_test_SS_NB=SS_NB(x_train_SSL,x_test,y_train_SSL,y_test)</pre>					
	AUC: 0.7930					
	Accuracy Score: 0.8219					
		precision	recall	f1-score	support	
	0	0.81	0.92	0.86	14917	
	1	0.84	0.66	0.74	9440	
	accuracy			0.82	24357	
	macro avg	0.83	0.79	0.80	24357	
	weighted avg	0.82	0.82	0.82	24357	

Semi-Supervised Self Training SVM Classification

In [27]:	<pre>y_pred_SS_SVM,y_test_SS_SVM=SS_SVM(x_train_SSL,x_test,y_train_SSL,y_test,x_t</pre>						
	AUC: 0.8930 Accuracy Score: 0.9093						
		precision	recall	f1-score	support		
	0	0.89	0.97	0.93	14917		
	1	0.94	0.82	0.88	9440		
	accuracy			0.91	24357		
	macro avg	0.92	0.89	0.90	24357		
	weighted avg	0.91	0.91	0.91	24357		

Semi-Supervised Self Training Decision Tree Classification

In [28]:	<pre>y_pred_SS_DT,y_test_SS_DT=SS_DecisionTree(x_train_SSL,x_test,y_train_SSL,y_t</pre>							
	AUC: 0.8366							
	Accuracy	Scor	e: 0.8624					
			precision	recall	f1-score	support		
		0	0.84	0.95	0.89	14917		
		1	0.90	0.72	0.80	9440		
	accur	acy			0.86	24357		
	macro	avg	0.87	0.84	0.85	24357		
	weighted	avg	0.87	0.86	0.86	24357		

Semi-Supervised Self Training Random Forest Classification

In [29]:	<pre>y_pred_SS_RF,y_test_SS_RF=SS_RandomForest(x_train_SSL,x_test,y_train_SSL,y_t</pre>							
	AUC: 0.8528 Accuracy Score: 0.8748							
		precision	recall	f1-score	support			
	0	0.86	0.95	0.90	14917			
	1	0.91	0.75	0.82	9440			
	accuracy			0.87	24357			
	macro avg	0.88	0.85	0.86	24357			
	weighted avg	0.88	0.87	0.87	24357			

Semi-Supervised Self Training Gradient Boost Classification

In [30]:	<pre>y_pred_SS_GB,y_test_SS_BG=SS_Gradient_Boosting(x_train_SSL,x_test,y_train_SS</pre>							
	AUC: 0.8702 Accuracy Score: 0.8935							
		precision	recall	f1-score	support			
	0	0.87	0.97	0.92	14917			
	1	0.95	0.77	0.85	9440			
	accuracy			0.89	24357			
	macro avg	0.91	0.87	0.88	24357			
	weighted avo	0.90	0.89	0.89	24357			

Semi-Supervised Self Training Linear Discriminant Analysis Classification

In [31]: y_pred_SS_LDA,y_test_SS_LDA=SS_LDA(x_train_SSL,x_test,y_train_SSL,y_test) AUC: 0.8503 Accuracy Score: 0.8786 precision recall f1-score support 0 0.85 0.98 0.91 14917 1 0.95 0.72 0.82 9440 0.88 24357 accuracy macro avg 0.90 0.85 0.87 24357

0.88

0.87

24357

0.89

weighted avg

Label Propagation Classifier

Semi-Supervised Label Propagation

```
In [16]: from sklearn.semi_supervised import LabelPropagation

def SSLP(x_train,x_test,y_train,y_test):
    model = LabelPropagation()
    model.fit(x_train, y_train)
    y_pred = model.predict(x_test)
    classifier='Semi-Supervised Label Propagation'
    Analyze(y_pred,y_test,classifier)
    x_test=x_test.drop([9169])
    y_test=np.delete(y_test, 9169, 0)
    plot_roc_curve(estimator=model,X=x_test,y=y_test)
    plt.plot([0, 1], [0, 1], linestyle='--', color='r')
    return y_pred,y_test
In [17]: y pred SSLP,y test SSLP=SSLP(x train SSL,x test,y train SSL,y test)
```

AUC: 0.8971

Accuracy Score: 0.9109

-	precision	recall	f1-score	support
0 1	0.90 0.93	0.96 0.84	0.93 0.88	14917 9440
accuracy macro avg weighted avg	0.91 0.91	0.90 0.91	0.91 0.90 0.91	24357 24357 24357

Part4: Test with different number of labeled data

```
In [18]: def plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test):
              knn=KNeighborsClassifier(n neighbors = 5)
              knn.fit(x train1,y train1)
              fig=plot_roc_curve(estimator=knn, X=x_test, y=y_test, name='KNN')
              svc = SVC(probability=True, gamma="auto")
              svc.fit(x_train1,y_train1)
              fig=plot_roc_curve(estimator=svc, X=x_test, y=y_test, ax = fig.ax_, name='SV
              RF = RandomForestClassifier()
              parameters = {'criterion':("gini", "entropy"),
                          "max_depth":[*range(1, 20)],
                          "n_estimators":[5,10,20,40]}
              model=GridSearchCV(RF,param grid=parameters,cv=5,scoring='f1')
              model.fit(x train1,y train1)
              fig=plot_roc_curve(estimator=model, X=x_test, y=y_test, ax = fig.ax_, name=
              D=data_process(x_train1,x_train2,y_train1)
              y train SSL=D['y'].values
              x_train_SSL=D.drop('y',axis=1)
              SS model = SelfTrainingClassifier(knn)
              SS_model.fit(x_train_SSL, y_train_SSL)
              fig=plot_roc_curve(estimator=SS_model, X=x_test, y=y_test, ax = fig.ax_,nam
              SS model = SelfTrainingClassifier(svc)
              SS_model.fit(x_train_SSL, y_train_SSL)
              fig=plot roc curve(estimator=SS model, X=x test, y=y test, ax = fig.ax ,nam
              SS model = SelfTrainingClassifier(model.best estimator )
              SS model.fit(x train SSL, y train SSL)
              fig=plot roc curve(estimator=SS model, X=x test, y=y test, ax = fig.ax ,nam
              model = LabelPropagation()
              model.fit(x train SSL, y train SSL)
              A=x_test.drop([9169])
              B=np.delete(y_test, 9169, 0)
              plot_roc_curve(estimator=model, X=A, y=B, ax = fig.ax_)
              plt.plot([0, 1], [0, 1], linestyle='--', color='r')
              fig.figure_.suptitle("ROC curve comparison at "+str(x_train1.shape[0])+"
              plt.show()
```

```
In [20]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 7 labeled data point


```
In [21]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 15 labeled data point


```
In [22]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 30 labeled data point


```
In [23]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 100 labeled data point


```
In [24]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 500 labeled data point


```
In [25]: New_data=A.sample(n = 10000)
    y_data=New_data['y'].values
    x_data=New_data.drop('y',axis=1)
    x_train1,x_train2,y_train1,y_train2 = train_test_split(x_data,y_data, train_x_test=x_test.reset_index(drop=True)
    plt_roc(x_train1,x_train2,y_train1,y_train2,x_test,y_test)
```

ROC curve comparison at 2000 labeled data point

In []: