Entregable N°7 - Grupo 11

Checkpoint 3 – Architecture

- a. Modelos y principios de solución
- Esquema de funciones

Fig. 1. Esquema de funciones

Matriz morfológica

Solucion				ĺ
Principales sub-funciones		Alternativa 1	Alternativa 2	Alternativa 3
1	Ajustar el agarre	Empuñadura ajustable telescópica	Soporte con correa de sujeción (strap)	Empuñadura ergonómica fija
2	Seleccionar el modo de movimiento	Interruptor ON/OFF físico	Palanca de tres posiciones (adelante/neutro/atrás)	Botón táctil o control remoto
3	Transmitir movimiento del usuario	Sistema de fricción	Tren de engranajes	Transmisión por correa / polea
4	Frenar silla de ruedas	Freno mecánico por presión	Freno automático	Freno electromecánico
5	Regular energía	Control manual de fricción o resorte	Control electrónico	Limitador mecánico de torque
6	Energizar	Fuente por batería recargable	Energía humana directa	Híbrido humano + asistencia eléctrica

			İ	
7	Sensar fuerza aplicada	Sensor piezoeléctrico	Medición por torque	Sensor capacitivo
8	Sensar aceleración del movimiento	MEMS acelerómetro (IMU)	Acelerómetro piezoeléctrico	Encoder rotacional en el eje
9	Sensar ángulo de inclinación	IMU (acel + gyro combinado)	Potenciómetro rotacional	Inclinómetro MEMS
10	Detectar situación de peligro	Límite de inclinacion excedido	Sobrecarga de fuerza detectada	Deslizamiento excesivo en fricción
11	Controlar interfaz del usuario	Pantalla LCD	Aplicación móvil	Indicadores LED
12	Señalizar dispositivo encendido	LED indicador	Notificación en app	Señal sonora corta
13	Señalizar situación de peligro	Alarma sonora	LED intermitente rojo	Vibración en empuñadura
14	Recopilar e identificar datos	Transmisión por Bluetooth a app	Transmisión Wi-Fi a servidor	Almacenamiento local

Solución A: Primera opción a realizar (color rojo)

Solución B: Segunda opción (color azul)

• Tabla de valoración

	Solución			
Principales subfunciones		Criterios	Solución A	Solución B
1	Ajustar el agarre	Usabilidad / Ergonomía	4	3
2	Seleccionar el modo de movimiento	Eficiencia funcional / Seguridad	4	2
3	Transmitir movimiento del usuario	Eficiencia / Simplicidad	3	3
4	Frenar silla de ruedas	Seguridad / Fiabilidad	3	4
5	Regular energía	Control / Seguridad	4	3
6	Energizar	Accesibilidad / Independencia	3	3
7	Sensar fuerza aplicada	Eficiencia / Escalabilidad	3	4
8	Sensar aceleración del movimiento	Seguridad / Control	4	3

9	Sensar ángulo de inclinación	Seguridad / Fiabilidad	4	2
10	Detectar situación de peligro	Seguridad / Fiabilidad	3	3
11	Controlar interfaz del usuario	Usabilidad / Integración	4	3
12	Señalizar dispositivo encendido	Seguridad / Usabilidad	3	3
13	Señalizar situación de peligro	Seguridad / Fiabilidad	4	3
14	Recopilar e identificar datos	Integración / Escalabilidad	4	3
SUMATOR	IA		50	42

b. Espacio de solución

Dibujado por: Goran Acurio	
Boceto en conjunto:	

Descripción funcional:

El boceto representa toda la solución en su conjunto. Una palanca acoplada al sobrearo de la silla de ruedas con un mango para el agarre del usuario. En el sobrearo se encuentra un mecanismo de agarre con fricción para transmitir el movimiento hacia adelante y soltar al retroceder la palanca

Lista de despiece:

Pieza	Nombre	Material
1	Palanca	Aluminio
2	Mango	PLA
3	Placa deslizante	Aluminio / PLA

4	Estructura canal	Aluminio

Dibujado por: Goran Acurio

Boceto en conjunto:

Descripción funcional:

El boceto representa una vista aumentada de la placa deslizante. En esta se muestra la forma interior la cual se acopla al sobrearo y el material de fricción de recubrimiento

Lista de despiece:

Pieza	Nombre	Material
1	Placa deslizante	Aluminio /PLA
2	Material de fricción	Caucho

1	Dibuio	do nor	Goran	Aguria	_
	เวาทบบล	no nor	Croran	Acura	1

Boceto en conjunto:

Descripción funcional:

El boceto representa una vista aumentada del mango del dispositivo, el cual cuenta con un forro de material suave para el agarre del usuario y una correa elástica para asegurar el agarre.

Lista de despiece:

Pieza	Nombre	Material
1	Mango	PLA
2	Recubrimient o del mango	Goma TPR
3	Correa elastica	Velcro
4	Palanca	Aluminio

c. ¿Fabricar o adquirir?

Componentes	Función en el sistema	Fabricado / Adquirido	Método / fuente	Material / tecnología
Estructura canal en forma de C	Alojar aro de rueda y soportar mecanismo interno	Fabricado	Corte láser , soldadura, montaje.	Aluminio
Palanca telescópica (2)	Palancas ajustables que el usuario empuja	Fabricado	Corte láser, soldadura, montaje.	Aluminio
Mango ergonómico (2)	Superficie de agarre para manipular la palanca telescópica y palanca de cambio	Fabricado	Impresión 3D / Corte láser	PLA/ TPU / Aluminio tubular
Funda de mango ergonómico (2)	Funda Ergonómica para agarre cómodo de los mangos.	Adquirido	 https://w ww.vent asortope diawong .pe/prod ucto/rep uesto-ba ston-can adiense- comfort https://bi cifixperu .com/pro duct/ma ngos-erg onomico s/ 	Espuma EVAGoma TPR
Correas de agarre	Asegurar la mano del usuario para un mejor agarre	Adquirido	https://w ww.elect romania. pe/produ cto/corre a-de-vel cro-auto adhesiva -con-heb illa-20x3 00mm/	VelcroVelcroacolchado

	T	1	ı	
			 https://w ww.otto bock.co m/es-es/ product/ 29Y63-6 2447 https://la casadela buelo.pe /product o/correa- universa l-para-ut ensilios/ https://la casadela buelo.pe /product o/correa- universa l-para-ut ensilios/ 	
Láminas de material flexible (2)	Elemento de agarre que genera fricción en los aros de rueda	Adquirido	https://mringeni eriasac.com/pro ducto/caucho-ni trilo-nbr	Caucho de nitrilo NBR
Placa deslizante	Soporta / Expone láminas flexible	Fabricado	Corte láser	Aluminio
Carril de placa deslizante	Estructura que guía el movimiento lateral de la placa deslizante con incluye topes que limitan su recorrido	Fabricado	Impresión 3D / Corte láser	PLA/ TPU / Aluminio
Cable bowden	Transmisión desde palanca de cambio a placa deslizante	Adquirido	• https://m odasa.pe /cable-b owden-d e-8-linea s-r06ely	Cable acero + funda Bowden

			w0018.h tml?srslt id=Afm BOoqZT 1fsW2O bjqpig9 Ch_WAf ju2-WS5 X3am1 DgkiuV pxJ37M KrCA • https://e quiposin dustriale s.pe/sho p/6-431- 258-0-ca ble-bow den-acci onamien to-de-tra ccion-ka rcher-12 913?srslt id=Afm BOookx f67hpbD 79sgCfX BjlwKu 4hxa25	
			79sgCfX BjlwKu	
Palanca de cambio en mango	Usuario selecciona Avance / Neutral / Retroceso	Adquirido	https://gpc.pe/pr oducts/switch-in terruptor-palanc a-4-patas-on-off ?pr_prod_strat= e5_desc≺_rec _id=e97ead5c1 ≺_rec_pid=8 556826689705 ≺_ref_pid=85 56820496553& pr_seq=uniform	Plástico, cobre

Tornilleria	Fijación general de conjunto	Adquirido		
Cubiertas protectoras (PD y cables)	Estética, evitar enganches de ropa y proteger cable	Fabricado	Impresión 3D / Corte láser	PLA/ TPU / Aluminio tubular
Eje	Eje de pivote y unión con canal en C (mecanismo principal)	Fabricado	Corte laser , soldadura	Acero o aluminio

d. <u>Secuencia de procesos</u>

d.1. Montaje del dispositivo:

En primer lugar se debe colocar la silla en una posición estable con los frenos activados. Luego comprobar que el dispositivo se encuentre fijado a los puntos de anclaje del marco principal de la silla. Después colocar al usuario correctamente en el asiento, con una postura adecuada (espalda recta, pies apoyados y cinturón de seguridad). Por último ajustar la altura y ángulo de los mangos o palancas según las dimensiones del usuario a un rango de movimiento cómodo sin sobrecargar sus articulaciones.

d.2. Calibración del sistema:

Para la seguridad del usuario se deben verificar las siguientes partes del dispositivo:

- Mecanismo de propulsión:

Revisar la conexión del sistema de tracción formado por la cinta de fricción y su funcionamiento con el resto del mecanismo. Asegurarse que el mecanismo permita avanzar y retroceder la silla sin complicaciones.

- Ajuste de fricción mecánica:

Se debe regular manualmente la tensión en el punto de anclaje sin causar un movimiento brusco al usuario al momento de su uso.

Además se recomienda una prueba inicial para supervisar el movimiento de la silla de forma estable y segura.

d.3. Sesión de terapia:

El funcionamiento del dispositivo es sencillo, basado en un movimiento tipo "remo", similar al mecanismo de propulsión de una silla de ruedas mecánica convencional. Durante su uso, un terapeuta puede brindar asistencia y supervisión, orientando al usuario en aspectos como la postura corporal, la simetría del esfuerzo y el rango de movimiento articular, además de planificar sesiones progresivas que favorezcan la adaptación física y el fortalecimiento del paciente.

d.4. Desmontaje:

El sistema puede retirarse fácilmente mediante el desmontaje de los módulos y las palancas de propulsión. Una vez completado el proceso, los componentes deben guardarse en su estuche de almacenamiento, garantizando su protección y conservación para futuros usos.

d.5. Limpieza y mantenimiento:

Mantener el dispositivo limpio para prevenir el desgaste de sus componentes. Se recomienda secarlo completamente antes de su guardado, verificar periódicamente el sistema mecánico y lubricar los puntos de fricción. Además, dado que varias piezas están fabricadas mediante impresión 3D, estas pueden sustituirse fácilmente en caso de daño o deformación, garantizando así la continuidad del uso y la durabilidad del sistema.

-Diagrama de flujo:

Para el uso adecuado del dispositivo, el paciente debe seguir el siguiente diagrama de flujo:

Fig. 2. Diagrama de flujo del dispositivo (Fuente: elaboración propia).

e. <u>Técnicas de producción</u>

Componente	Material	Técnica de producción	Justificación
Estructura canal en forma de C	Aluminio	Corte láser y soldadura en aluminio	El corte láser permite precisión en los detalles de la geometría del componente. La soldadura ofrece uniones fuertes y duraderas. El aluminio otorga rigidez, durabilidad y ligereza.
Palanca telescópica (2)	Aluminio	Corte láser y soldadura en aluminio	El corte láser permite precisión en los detalles de la geometría del componente. La soldadura ofrece uniones fuertes y duraderas. El aluminio otorga rigidez, durabilidad y ligereza.
Mango ergonómico (2)	PLA/ TPU / Aluminio tubular	Impresión 3D (TPU / PLA)	La impresión 3D permite manejar con mucho cuidado los detalles de diseño permitiendo personalizar la pieza según la anatomía del usuario.
Placa deslizante	Aluminio	Corte láser en aluminio	El corte láser permite precisión en los detalles de la geometría del componente. El aluminio otorga rigidez, durabilidad y ligereza
Carril de placa	PLA/ TPU /	Impresión 3D, corte	La impresión 3D

deslizante	Aluminio	laser	permite manejar con mucho cuidado los detalles de diseño en geometrías complejas y precisas. El corte láser permite precisión en los detalles de la geometría del componente. El PLA y TPU reducen el peso y los costos, mientras que el aluminio ofrece rigidez.
Cubiertas protectoras (PD y cables)	PLA/ TPU / Aluminio tubular	Impresión 3D/ Corte laser	La impresión 3D permite fabricar cubiertas adaptadas a la forma del mecanismo, protegiendo cables y evitando enganches. El PLA ofrece un diseño personalizado del componente, el TPU ofrece flexibilidad.
Eje	Acero o aluminio	Corte láser y mecanizado	El mecanizado asegura la alineación y ajuste exacto de las partes móviles. El corte láser permite precisión en los detalles de la geometría del componente. Los materiales mecánicos proporcionan durabilidad y resistencia a la corrosión.

El dispositivo puede utilizarse en entornos cotidianos con superficies regulares, en el cual el usuario realiza sus desplazamientos habituales. También es necesario realizar pruebas de funcionalidad o sesiones de entrenamiento inicial en instituciones de terapia física con la monitorización de un especialista. Adicionalmente, previo a su uso se debe verificar el estado mecánico del sistema y realizar una limpieza básica para garantizar su funcionamiento y seguridad.

g. Automatización

Nivel de automatización: Nivel medio → semiautónomo.

El dispositivo es un accesorio mecánico acoplable a sillas de ruedas convencionales, diseñado para facilitar el movimiento mediante palancas. Aunque su funcionamiento es manual, el uso inicial se realizará bajo supervisión de un fisioterapeuta. Aunque el usuario controla directamente las palancas, la intervención y ajuste del terapeuta permiten adaptar el sistema a las capacidades del paciente y garantizar un uso seguro.

Justificación técnica y clínica:

El nivel medio se justifica porque, aunque el dispositivo <u>no posee componentes</u> <u>electrónicos ni automatizados</u>, su implementación requiere asistencia y supervisión profesional. Está diseñado para personas con movilidad limitada en los brazos, que no pueden girar las ruedas de manera convencional.

El sistema de palancas <u>facilita la propulsión con menor esfuerzo</u>, y los mecanismos de freno y retroceso ofrecen un mayor control en el desplazamiento. Clínicamente, esto favorece la rehabilitación activa y segura, al permitir que el paciente participe en el movimiento, mientras el terapeuta ajusta la intensidad o técnica según el progreso.

Escenarios de seguridad:

- Si el paciente se desmaya o pierde el control: el terapeuta puede intervenir rápidamente y accionar el freno mecánico para detener la silla.
- Si ocurre un fallo mecánico: el dispositivo puede desacoplar fácilmente de la rueda, permitiendo que la silla funcione de forma convencional.
- Protocolo de emergencia: el freno manual cumple la función de parada inmediata. Se ubicará en una zona accesible para el usuario o el terapeuta, garantizando una respuesta rápida ante cualquier situación.

h. Interfaz de red global

El sistema no incorpora electrónica ni conectividad, siendo un dispositivo completamente mecánico. No utiliza sensores, controladores ni transmisión de datos.

Por tanto:

- No se recolectan datos fisiológicos ni de desempeño.
- No se requiere conexión a red ni software.
- No se almacenan datos personales ni clínicos.

El enfoque se centra en la interacción física entre el usuario, el dispositivo y el terapeuta, priorizando la ergonomía, seguridad y accesibilidad. Su diseño mecánico

permite una implementación práctica en entornos con recursos limitados, manteniendo una función semi autónoma bajo supervisión profesional.