

Notas de Aula I Matemática Discreta **Moésio M. de Sales**¹

1 Conjuntos

1.1 Noção de Conjunto

A noção de conjunto é mais fundamental e a mais simples das idéias matemáticas e, hoje toda matemática atual é formulada na linguagem de conjunto [1]. Um conjunto é uma coleção de objetos, por exemplo, o conjunto de matérias que compõem a matriz do curso de sistemas de informação.

Um conjunto é formado por elementos. Um elemento ou objeto é um componente de um conjunto, seguindo o exemplo acima temos o elemento "matemática discreta". Para mostrar que um elemento pertence ou não a um conjunto usamos o símbolo de pertinência: ∈ pertence, ∉ não pertence.

De forma geral os conjuntos substituem as "propriedades" e "condições", desta forma em vez de dizer que "o objeto x tem a propriedade P", podemos escrever $x \in A$, onde A é o conjunto dos objetos que tem a propriedade P[1].

Algumas noções importante são as de: conjunto vazio \emptyset , $\{\}$, conjunto sem elemento e o conjunto universo $\mathbb U$, conjunto que contém todos os elementos dos conjuntos do contexto que estamos trabalhando.

1.1.1 O conjunto vazio

Axioma 1.1 ²: Existe um conjunto que não possui elemento algum.

Esse conjunto é chamado CONJUNTO VAZIO, denotado por \emptyset e qualquer que seja x, tem-se $x \notin \emptyset$.

1.1.2 Conjuntos Definidos por Propriedades

Um conjunto definido por propriedade é denotado do seguinte modo:

$$\{x \in \mathbb{U}; P(x)\}$$

onde $\mathbb U$ é o nome do conjunto universo e P(x) é uma especificação da propriedade, envolvendo avariável x

$$\mathbb{P} = \{ x \in \mathbb{N}; x \notin par \}$$

IFCE -1- 31 de janeiro de 2023

¹moesio@ifce.edu.br

²Este axioma é utilizado para garantir a existência do conjunto vazio é conhecido como AXIOMA DE EXISTÊNCIA e faz parte de um conjunto de axiomas conhecidos como Axiomas de Zermelo-Fraenkel(ZF)

1.2 A Relação de Inclusão

Sejam A e B conjuntos. Se todo elemento de A for também elemento de B, diz-se que A é um SUBCONJUNTO de B. Usa-se a notação $A \subset B$. A relação $A \subset B$ chama-se relação de Inclusão.

$$A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$$

Quando A não é subconjunto de B escreve-se $A \not\subset B$. Isto significa existe um $x \in A$ tal que $x \not\in B$.

Há duas inclusões extremas: $A\subset A$ para todo conjunto A e $\varnothing\subset A$ para todo conjunto A.

Definição 1.1 [Subconjunto Próprio] Diz-se que A é um subconjunto próprio de B quando se tem $A \subset B$ com $A \neq \emptyset$ e $A \neq B$.

Propriedade 1.1 Temos três propriedade fundamentais. Dados quaisquer conjuntos A, B e C tem-se:

- $i Reflexividade: A \subset A;$
- ii Anti-simetria: se $A \subset B$ e $B \subset A$ então A = B;
- iii Transitividade: se $A \subset B$ e $B \subset C$ então $A \subset C$.

1.3 Provando Inclusões

Sejam A e B conjuntos definidos por propriedades. Para justificar que $A \subset B$, basta fazer o seguinte:

- 1. Pegar um elemento genérico em A, ou seja, pegar um objeto que satisfaz a propriedade que define A;
- 2. Explicar por que ele satisfaz a propriedade que define B.

Feito isso de forma "convincente" teremos provado que A está contido em B.

1.4 Complementar de um Conjunto

A noção de complementar de um conjunto só faz pleno sentido quando se fixa um conjunto \mathbb{U} , chamado universo do discurso, ou Conjunto-Universo.

Uma vez fixado \mathbb{U} , todos os elementos a serem considerados pertencerão a \mathbb{U} e todos os conjuntos serão subconjuntos de \mathbb{U} [1].

Definição 1.2 Dado um conjunto $A \in \mathbb{U}$ chama-se Complementar de A ao conjunto A^c formados pelos elementos de \mathbb{U} que não pertencem a A, ou seja

$$A^c = \{x \in \mathbb{U}; x \not\in A\}$$

IFCE -2-

1.5 Propriedades de Inclusão de Conjuntos

Propriedade 1.2 1. Para todo $A \in \mathbb{U}$, tem-se $(A^c)^c = A$

2. Se $A \subset B$ então $B^c \subset A^c$.

Na realidade na presença da regra (1), a regra (2) dois pode ser generalizada

$$A \subset B \Leftrightarrow B^c \subset A^c$$

1.6 Reunião e Interseção

Dados dois conjuntos A e B, a reunião $A \cup B$ é o conjunto formados pelos elementos de A mais os elementos de B, enquanto que a interseção $A \cap B$ é o conjunto dos objetos que são ao mesmo tempo elementos de A e de B. Assim,

$$x \in A \cup B \text{ significa } "x \in A \text{ ou } x \in B";$$

 $x \in A \cap B \text{ significa } "x \in A \text{ e } x \in B".$

Usaremos como exemplo os seguintes conjuntos $A=\{1,\ 2,\ 3\}$ e $B=\{2,\ 4,\ 6\}$ Sendo A e B conjuntos definimos:

- 1. A, união com $B: A \cup B = \{x: x \in A \text{ ou } x \in B\} = \{1, 2, 3, 4, 6\}$
- 2. A, intersecção com $B: A \cap B = \{x : x \in A \ e \ x \in B\} = A \ e \ B = \{2\}$
- 3. A, menos (diferença) B: $A B = \{x : x \in A \ e \ x \notin B\} = A B = \{1, 3\}$

Quaisquer que sejam os conjuntos A e B, as proposições abaixo serão verdadeiras:

- i) Reflexiva: $A \cup A = A$ e $A \cap A = A$
- ii) Inclusão: $A \subset A \cup B$, $B \subset A \cup B$, $A \cap B \subset A$, $A \cap B \subset B$.

1.7 Conexões entre operadores \cap e \cup [2]

Propriedade 1.3 1.
$$A \cup B = B \Leftrightarrow$$
 3. $A \subset B \Rightarrow A \cup C \subset B \cup C \forall C$; $A \subset B$;

2.
$$A \cap B = A \Leftrightarrow A \subset B$$
;

4.
$$A \subset B \Rightarrow A \cap C \subset B \cap C \forall C$$
:

Propriedade 1.4 (Morgan) Dados A, B conjuntos:

- 1. $(A \cup B)^c = A^c \cap B^c$;
- 2. $(A \cap B)^c = A^c \cup B^c$.

1.8 Conjunto Diferença A - B ou $A \setminus B$

Definição 1.3 Dados A e B subconjuntos de U definimos:

$$A - B = \{ x \in \mathbb{U}; x \in A \ e \ x \notin B \}.$$

1.9 O conjunto Vazio \varnothing

Um conjunto vazio é um elemento neutro para união: $A \cup \emptyset = A$. Um conjunto vazio e um elemento nulo para intersecção: $A \cap \emptyset = \emptyset$ Logo podemos afirmar que se $A \cap B = \emptyset$, então A - B = A.

1.10 Conjunto de partes

Definição 1.4 Seja A um conjunto. O Conjunto das Partes de A é o conjunto cujos elementos são os objetos do universo \mathbb{U} que são subconjuntos de A.

$$\mathcal{P}(A) = \{ x \in \mathbb{U} : x \subset A \}$$

Exemplo 1.2 Sendo $A = \{1, 2\}$, seu conjunto de partes é igual a $\{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

Propriedade 1.5 Se A tem k elementos, o conjunto de partes tem 2 elevado a k (sendo k o número de elementos de A), ou seja,

$$A = \{x_1, x_2, \cdots, x_k\} \Rightarrow n(\mathcal{P}(A)) = 2^k.$$

Exemplo 1.3 Sendo $B = \{1, 2, 3\}$ o conjunto de partes terá 8 elementos

$$\mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Propriedade 1.6 Para todos os conjuntos A, B e C de \mathbb{U} :

1.
$$A \in \mathcal{P}(A)$$
;

3.
$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B);$$

$$2. \varnothing \in \mathcal{P}(A);$$

4.
$$\mathcal{P}(A \cup B) \supset \mathcal{P}(A) \cup \mathcal{P}(B)$$
;

1.11 Exercícios

Questão 1. Se $A, X \subset E$ são tais que $A \cap X = \emptyset$ e $A \cup X = E$, prove que $X = A^c$.

Questão 2. Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:

$$I. X \supset A \ e \ X \supset B,$$

II. Se
$$Y \supset A$$
 e $Y \supset B$ então $Y \supset X$

Prove que: $X = A \cup B$.

Questão 3. Dados $A, B \subset E$, prove que $A \subset B$ se, somente se, $A \cap B^c = \emptyset$.

Questão 4. Sejam X_1 , X_2 , Y_1 e Y_2 subconjuntos do conjunto universo U. Suponha que $X_1 \cup X_2 = U$ e $Y_1 \cap Y_2 = \emptyset$, que $X_1 \subset Y_1$ e que $X_2 \subset Y_2$. Prove que $X_1 = Y_1$ e $X_2 = Y_2$.

Questão 5. Uma urna contém três bolas vermelhas, duas azuis e uma amarela. Duas bolas são selecionadas aleatoriamente sem reposição. Sejam os eventos:

 $A = \{pelo \ menos \ uma \ bola \ \'e \ vermelha\} \ B = \{pelo \ menos \ uma \ bola \ \'e \ azul\}$

Descreva usando a notação de conjuntos os seguintes eventos:

- (a) Ambas as bolas são amarelas.
- (b) Há uma bola vermelha e uma azul.

Referências

- [1] Elon Lages Lima et al. A Matemática do Ensino Médio. Coleção do Professor de Matemática v. 1. SBM, 2004.
- [2] L. Lovász, J. Pelikán e K. Vesztergombi. *Discrete Mathematics: Elementary and Beyond*. Undergraduate Texts in Mathematics. Springer New York, 2003.