Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 13 - Kernel Trick, Positive Definite
Kernels, Mercer's Theorem

Recap: SVR Dual using only $\phi'(\mathbf{x}_i)\phi(\mathbf{x}_i)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b =$ $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_i - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_i) - \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. be evaluated using $(\mathbf{x}_j, \mathbf{y}_j)$ The dual optimization problem to compute the α 's for SVR is:
- - $\max_{\alpha_i,\alpha_i^*} \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \frac{1}{2} \sum_j (\alpha_i \alpha_j^*)(\alpha_j \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \frac{1}{2} \sum_j (\alpha_j \alpha_j^*)(\alpha_j \alpha_j^*) \phi(\mathbf{x}_j) \phi(\mathbf{x}_j) \frac{1}{2} \sum_j (\alpha_j \alpha_j^*)(\alpha_j \alpha_j^*) \phi(\mathbf{x}_j) \phi(\mathbf{x}_j) \frac{1}{2} \sum_j (\alpha_j \alpha_j^*)(\alpha_j \alpha_j^*) \phi(\mathbf{x}_j) \phi(\mathbf{$ $\sum_{i} v_i(\alpha_i - \alpha_i^*)$ • s.t $\sum_{i} (\alpha_{i} - \alpha_{i}^{*}) = 0 \& \alpha_{i}, \alpha_{i}^{*} \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i)=K(\mathbf{x}_i,\mathbf{x}_i)$, for some i,j

Recap: Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- We call $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ a kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$
- The Kernel Trick: For some important choices of ϕ , compute $K(\mathbf{x}_i, \mathbf{x}_j)$ directly and more efficiently than having to explicitly compute/enumerate $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$
- The expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of α_i is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

Recap: The Kernelized version of SVR

• The kernelized dual problem:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \underline{K(\mathbf{x}_i, \mathbf{x}_j)}$$
$$-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

- such that $\sum_{i}(\alpha_{i}-\alpha_{i}^{*})=0$ and $\alpha_{i},\alpha_{i}^{*}\in[0,C]$
- Kernelized decision function: $f(\mathbf{x}) = \sum_{i} (\alpha_i \alpha_i^*) \underline{K(\mathbf{x}_i, \mathbf{x})} + b$
- Using any \mathbf{x}_j with $\alpha_j \in (0, C)$: $b = y_j \sum_i (\alpha_i \overline{\alpha_i^*}) K(\mathbf{x}_i, \mathbf{x}_i)$
- Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly

Tutorial 5: Kernelizing Ridge Regression

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$
 - $\Rightarrow w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y = \sum_{i=1}^m \alpha_i \phi(x_i)$ where $\alpha_i = ((\Phi \Phi^T + \lambda I)^{-1} y)_i$
 - \Rightarrow the final decision function $f(\mathbf{x}) = \phi^T(\mathbf{x})\mathbf{w} = \sum_{i=1}^m \alpha_i \phi^T(\mathbf{x})\phi(\mathbf{x}_i)$
- Again, We notice that the only way the decision function $f(\mathbf{x})$ involves ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$, for some i,j

Recap: Basis function expansion and Kernel

• We began with functional form called basis function expansion¹

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

And landed up with an equivalent form for Ridge and SVR

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

• Aside: For $p \in [0, \infty)$, with what K, kind of regularizers, loss functions, *etc.*, will these dual representations hold?²

¹Each ϕ_j is called a *basis function*. *b* can be absorbed in ϕ . See Section 2.8.3 of Tibshi

²Section 5.8.1 of Tibshi.

Recap: The Representer Theorem & Reproducing Kernel Hilbert Space (RKHS)

• More specifically, if $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and $K(\mathbf{x}',\mathbf{x}) = \phi^T(\mathbf{x})\phi(\mathbf{x}')$ then the solution $\mathbf{w}^* \in \Re^n$ to the following problem the solution $\mathbf{w}^* \in \Re^n$ to the following problem $\sum_{\mathbf{w},b}^{m} \mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), \mathbf{y}^{(i)}\right) + \Omega(\|\mathbf{w}\|_{2})$ $\sum_{\mathbf{w},b}^{m} \mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), \mathbf{y}^{(i)}\right) + \Omega(\|\mathbf{w}\|_{2})$ $\sum_{i=1}^{m} \alpha_{i}K(\mathbf{x}, \mathbf{x}^{(i)})$ can be always written as $\phi^T(\mathbf{x})\mathbf{w}^* + b^* = \sum_{i=1}^m \alpha_i K(\mathbf{x}, \mathbf{x}^{(i)})$, provided $\Omega(\|\mathbf{w}\|_2)$ is a monotonically increasing function of $\|\mathbf{w}\|_2$. \Re^n is the Hilbert space and $K(.,\mathbf{x}): \mathcal{X} \to \Re$ is the Reproducing (RKHS) Kernel

The Representer Theorem and SVR

• The SVR solution $(\mathbf{w}^*, b^*, \xi_i^*) =$

arg min
$$C \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*}) + \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$

s.t. $y_{i} - \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - b \leq \epsilon + \xi_{i}$, and $\mathbf{w}^{T} \phi(\mathbf{x}_{i}) + b - y_{i} \leq \epsilon + \xi_{i}^{*}$, and $\xi_{i}^{*} \in \mathbf{max}(0, \mathbf{w}^{T} \phi(\mathbf{x}_{i}) + b - y_{i} \leq \epsilon + \xi_{i}^{*}$, and $\xi_{i}^{*} \in \mathbf{max}(0, \mathbf{w}^{T} \phi(\mathbf{x}_{i}) + b - y_{i}^{*})$

2 Can be rewritten as $(\mathbf{w}^{*}, b^{*}, \xi_{i}^{*}) = \mathbf{argmin}(0, \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i}^{*})$

with $\xi_{i}, \xi_{i}^{*} \in \mathbf{max}(0, \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i}^{*})$
 $\mathbf{w}_{i}, \xi_{i}^{*}, \xi_{i}^{*} = \mathbf{max}(0, \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i}^{*})$

The Representer Theorem and SVR

• The SVR solution $(\mathbf{w}^*, b^*, \xi_i^*) =$

$$\arg\min_{\mathbf{w},b,\xi_{i}} C \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*}) + \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i$$
, and $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon + \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, ..., n$

② Can be rewritten as $(\mathbf{w}^*, b^*, \xi_i^*) =$

$$\underset{\mathbf{w},b,\xi_{i}}{\operatorname{arg\,min}} C \sum_{i=1}^{m} \max \left\{ -\epsilon \pm \left(y_{i} - \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - b \right), 0 \right\} + \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$

The Representer Theorem and SVR (contd.)

If $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and $K(\mathbf{x}', \mathbf{x}) = \phi^T(\mathbf{x})\phi(\mathbf{x}')$ and given the SVR solution $(\mathbf{w}^*, b^*, \xi_i^*) =$

$$\underset{\mathbf{w},b,\xi_{i}}{\operatorname{arg\,min}} C \sum_{i=1}^{m} \max \left\{ -\epsilon \pm \left(y_{i} - \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - b \right), 0 \right\} + \frac{1}{2} \left\| \mathbf{w} \right\|_{2}^{2}$$

Setting $\mathbf{E}\left(f\left(\mathbf{x}^{(i)}\right), y^{(i)}\right) = C \max\left\{-\epsilon \pm \left(y_i - \mathbf{w}^{\top}\phi(\mathbf{x}_i) - b\right), 0\right\}$ and $\Omega(\|\mathbf{w}\|_2) = \frac{1}{2} \|\mathbf{w}\|_2^2$, we can apply the Representer theorem to SVR, so that $\phi^T(\mathbf{x})\mathbf{w}^* + b = \sum_{i=1}^m \alpha_i K(\mathbf{x}, \mathbf{x}^{(i)})$

An Example Kernel

• Let
$$K(\mathbf{x}_1,\mathbf{x}_2)=(1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$$
 (1+ $\mathbf{x}_1^{\top}\mathbf{x}_2$)
• Which value of $\phi(\mathbf{x})$ will yield 2 mult + addition $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)=K(\mathbf{x}_1,\mathbf{x}_2)=(1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$ + square + addition

- Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

 For $\beta = 2$, $K(x_1, x_2) = (1 + x_{11}x_2) + x_{12}x_{22}$ $x_1 = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} \quad x_2 = \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = (1 + x_{11}^2 x_{21}^2 + x_{12}^2 x_{22}^2 + 2 x_{11}^2 x_{21}^2 + 2 x_{12}^2 x_{22}^2 + 2 x_{11}^2 x_{21}^2 + 2 x_{12}^2 x_{22}^2 + 2 x_{12}^2 x_{22}$

An Example Kernel

- We can prove that such a ϕ exists
- For example, for a 2-dimensional \mathbf{x}_i :

For example, for a 2-dimensional
$$\mathbf{x}_i$$
:
$$\phi(\mathbf{x}_i) = \begin{bmatrix} 1 \\ x_{i1}\sqrt{2} \\ x_{i2}\sqrt{2} \\ x_{i1}x_{i2}\sqrt{2} \\ x_{i1}^2 \\ x_{i2}^2 \end{bmatrix}$$
Any Permutation is answer.

- $\phi(\mathbf{x}_i)$ exists in a 6-dimensional space
- But, to compute $K(\mathbf{x}_1, \mathbf{x}_2)$, all we need is $x_1^\top x_2$ without having to enumerate $\phi(\mathbf{x}_i)$

More on the Kernel Trick

- **Kernels** operate in a *high-dimensional*, *implicit* feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This operation is often computationally <u>cheaper</u> than the explicit computation of the coordinates

The Gram (Kernel) Matrix

• For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix K is defined as

$$\Phi \Phi = \mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$
• Claim: If $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an

- - $n \times n$ **Gram Matrix** \mathcal{K} then
 - K must be positive semi-definite (for any m & any choice Proof:
 - Proof: $\sqrt{X} = \sum_{i,j} V_i \times (X_i, X_j) V_j$ $= \sum_{i,j} V_i \phi(X_i) \phi(X_j) V_j$

The Gram (Kernel) Matrix

• For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix K is defined as

At the must
$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

• Claim: If $\mathcal{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ Gram Matrix \mathcal{K} then option $\mathbb{C} = \mathcal{K} = \mathbb{C} = \mathbb{C$

$$\langle a_i \rangle$$
, $\sum_j b_j \phi(\mathbf{x}_j) \rangle = ||\sum_j b_i \phi(\mathbf{x}_i)||_2^2 \geq 0$

The integral of the property of the same of the

Existence of basis expansion ϕ for symmetric K?

• Positive definite kernel: For any dataset $\{x_1, x_2, \dots, x_m\}$ and for any m, the Gram matrix K must be positive definite so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of Uare linearly independent and Σ is a positive diagonal matrix

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1$$

We want to extend the eigenvalue decomposition applied to p.d materix K. to "eigen function" decomposition
applied to "P.d function" K(.,.) pm R Recap positive definiteness for matrix: Y b, bTKb>0 Extending this to function K(.,.): \fo(.) \fo(x,) \k(x,x2) \fo(x2) \fo(x2) \fo(x3)

Existence of basis expansion ϕ for symmetric K?

- Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix
- *Mercer kernel:* Extending to eigenfunction decomposition³:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where $\alpha_j \geq 0$ and $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$

 Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact⁴

³Eigen-decomposition wrt linear operators. See

Mercer and Positive Definite Kernels, SMO Algorithm

Mercer's theorem

- Mercer kernel: $K(\mathbf{x}_1, \mathbf{x}_2)$ is a Mercer kernel if $\int \int K(\mathbf{x}_1, \mathbf{x}_2) g(\mathbf{x}_1) g(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$ for all square integrable functions $g(\mathbf{x})$ $(g(\mathbf{x})$ is square integrable iff $\int (g(\mathbf{x}))^2 \, d\mathbf{x}$ is finite)
- Mercer's theorem:
 An implication of the theorem:
 for any Mercer kernel $K(\mathbf{x}_1,\mathbf{x}_2)$, $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$,
 s.t. $K(\mathbf{x}_1,\mathbf{x}_2) = \phi^\top(\mathbf{x}_1)\phi(\mathbf{x}_2)$
 - where *H* is a *Hilbert space*⁵, the infinite dimensional version of the Eucledian space.
 - Eucledian space: $(\Re^n, <.,.>)$ where <.,.> is the standard dot product in \Re^n
 - Advanced: Formally, Hibert Space is an inner product space with

Prove that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is Mercer kernel $(d\in\mathbb{Z}^+,\ d\geq 1)$

- We want to prove that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0,$ for all square integrable functions $g(\mathbf{x})$
- Here, \mathbf{x}_1 and \mathbf{x}_2 are vectors s.t $\mathbf{x}_1, \mathbf{x}_2 \in \Re^t$
- Thus, $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[\sum_{n_1...n_t} \frac{d!}{n_1!...n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

s.t.
$$\sum_{i=1}^{t} n_i = d$$
 (taking a leap)

