COMPUTER NETWORKS

- Chapter 2. The Physical Layer 1

王昊翔 WANG Haoxiang hxwang@scut.edu.cn

School of Computer Science & Engineering 国家双语教学试点项目 广东省精品课

Contents

- Theoretical basis for data communication
 - Fourier analysis
 - Bandwidth-Limited Signals
 - The Maximum data rate of a channel
- Guided transmission media
 - Magnetic media
 - Twisted pair
 - Coaxial cable
- Wireless Transmission
 - Electromagnetic spectrum
 - Radio transmission
 - Microwave transmission
 - Infrared and millimeter waves
 - Light wave transmission

The physical layer

• defines the mechanical, electrical, and timing interfaces to the network, provides the means to transmit bits from sender to receiver, that is, involves a lot on how to use (analog) signals for digital information.

Theoretical Basis

 Information can be transmitted on wires by varying some physical property such as voltage or current. By representing the value of this voltage or current as a single-valued function of time, f(t), we can model the behavior of the signal and analyze it mathematically. This analysis is the subject of the following sections.

Fourier Series

• Any reasonably behaved periodic function, g(t), with period T can be constructed by summing a (possibly infinite) number of sines and cosines:

$$I \quad V = -E + \sum_{P=}^{\infty} C_P \text{UP} \quad \pi P H V + \sum_{P=}^{\infty} D_P \text{EQU} \quad \pi P H V$$

where f=1/T is the fundamental frequency and a_n and b_n are the sine and cosine amplitudes of the *n*th harmonics (terms).

Fourier Series

$$\int_{0}^{T} \sin(2\pi k f t) \sin(2\pi n f t) dt = \begin{cases} 0 \text{ for } k \neq n \\ T/2 \text{ for } k = n \end{cases}$$

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

$$b_n = \frac{2}{T} \int_0^I g(t) \cos(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_{0}^{T} g(t) dt$$

An example

Consider 01100010, 8 bit for ASCII character 'b':

$$a_n = 1/\pi n [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$

$$b_n = 1/\pi n [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

$$C_n = \frac{3}{4}$$

The root mean square amplitudes is $\sqrt{a_n^2 + b_n^2}$

Note: root mean squares (on the right) reflect the dispersed energy at the given frequency.

Bandwidth

- Digital signal transmission is subject to attenuation, distortion, etc. This is partly caused by disallowing high-frequency components to pass through.
- The range of frequency or the number of bits of a transmission medium is called **bandwidth**.

Bandwidth-Limited Signals

- The larger *n* is, the higher the frequency *nf* of the *n*th harmonic.
- All transmission facilities diminish different Fourier components by different amounts, thus introducing distortion.
- Usually, the amplitudes are transmitted undiminished from o up to some frequency f_c (in Hertz, Hz) with all frequencies above this cutoff frequency 截止频率 strongly attenuated.

Bandwidth

- Hz
- bps
- ?

Bit Rate vs. Harmonics

• Given a bit rate of b bits/sec, the time T required to send 8 bits (for example) is 8/b sec, so the frequency f of the first (i.e., n=1) harmonic is b/8 Hz.

Bit Rate vs. Harmonics (cont.)

N	Frequency (Hz)
1	b/8
2	2b/8
•	•
n	nb/8

$$nb/8 \le f_c$$

 $\Rightarrow n \le f_c/(b/8)$

• The number of the highest harmonic passed through is $f_c/(b/8)$ or $8f_c/b$, roughly. That is, the 1st, 2nd, 3rd, ..., and $(8f_c/b)$ -th harmonics could pass through without diminution.

Telephone Line with f_c =3000 Hz

Bit Rate	T	First Harmonic	# Harmonics
(bps)	(msec)	(Hz)	sent
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Signal-to-Noise Ratio

- S/N
 - -S: signal power
 - -N: noise power
- dB
 - $-10 \log_{10} S/N$
 - an S/N ratio of 1000 is 30 dB

Max. Data Rate of a Channel

- Nyquist's Theorem (noiseless channel)
 - -H: bandwidth
 - V: discrete levels
 - Maximum data rate: $2H \log_2 V$ bits/sec
- Shannon's Theorem (noise channel)
 - -H: bandwidth
 - -S/N: signal to noise ratio
 - Maximum number of bits/sec: $H \log_2 (1 + S/N)$

16

Exercise

- Suppose that the bandwidth of a channel is between 3MHz and 4MHz and SN = 24dB.
 - -(1) what is the capacity of this channel?
 - (2) Being able to achieve capacity, how many signaling levels are required?

Exercise solution

- Suppose that the bandwidth of a channel is between 3MHz and 4MHz and SN = 24dB.
 - -(1) what is the maximum data rate?
 - H = 1MHz
 - S/N = 251
 - $C = 10^6 x \log_2(1+251) = 8 Mbps$
 - (2) Being able to achieve capacity, how many signaling levels are required?
 - $C=2H \log_2 V$
 - V=16

Presentations

- Guided transmission media/wires
- Wireless Transmission

