

Logistic Regression

~Abhishek Kumar

Logistic Regression

Supervised

It is not a regression but a Classfication algorithm

- Example:
 - Spam/Not spam,
 - Tumor: Malignant/Benign

In case of Linear Regression

Threshold classifier output

if
$$h(x) \ge 0.5$$
, predicts "y=1"

if
$$h(x) < 0.5$$
, predicts "y=0"

Classification y = 0 or 1

$$h(x)$$
 can be >1 or <0

Logistic Regression 0 <= h(x) <= 1

Logistic Regression

- Want $0 \le h(x) \le 1$
- h(x) = g(mx+c)

$$g(z) = \frac{1}{1 + e^{-z}}$$

- Sigmoid/ Logistic function
- Fit the parsmetrs to our data

Interpretation of our model

h(x) =estimated probability that y = 1, input x

Tumor example

h(x) = 0.7 ---- Pateint has 70% chance of tumor being malignant

$$P(y = 0) + P(y = 1) = 1$$

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

We can suppose:

Decision Boundary

h(x) = g (c +
$$m_1x_1 + m_2x_2$$
)
c = -3, m_1 = 1, m_2 = 1
Predict "y =1" if -3 + x_1 + x_2 >= 0
 $x_1 + x_2$ >= 3

Seprates the region where y = 1 and y = 0

Decision boundary is the property of the parameters of the hypothesis not the property of dataset

Another example

$$h(x) = g (c + m_1x_1 + m_2x_2 + m_3x_1^2 + m_4x_2^2)$$

$$c=0, m_1 = 0, m_2 = 0, m_3 = 1, m_4 = 1$$

Predict "y = 1" if -1 +
$$x_1^2$$
 + x_2^2 >= 0
 x_1^2 + x_2^2 >= 1

Even we can do it for higher polynomial

Cost function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Non – convex function

Come up with a different function that is convex

Logistic regression cost function

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

Discussion

Thank you!