Concept check - Week 1

Ashwin Bhola

CDS, NYU

Concept check Questions

- 1. Describe a subspace S of each vector space V and then a subspace SS of S:
 - $V_1 = all\ combinations\ of\ (1,1,0,0), (1,0,1,0)\ and\ (1,1,1,1)$
 - $V_2 = all \ symmetric \ 2 \ by \ 2 \ matrices$
 - $V_3 = all \ solutions \ to \ the \ equation \frac{d^4y}{dx^4} = 0$
- 2. Start with vectors $v_1 = (1,2,0)$ and $v_2 = (2,3,0)$
 - Are v_1 and v_2 linearly independent?
 - Are they a basis for any space?
 - What space V do they span?
 - What is the dimension of V?
 - Describe all vectors v_3 such that v_1, v_2, v_3 completes a basis of \mathbb{R}^3
- 3. Let w_1, w_2, w_3 be independent vectors. What can you say about the independence of $w_1 w_2$, $w_1 w_3, w_2 w_3$? What about $w_1 + w_2, w_1 + w_3, w_2 + w_3$?

Concept check Questions

- 4. Find the basis for each of these subspaces in \mathbb{R}^4
 - All vectors whose components are equal
 - All vectors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1)
- 5. Choose $x = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) and (x_4, x_2, x_1, x_3) . These 24 vectors span a subspace S. Find the specific vector x such that the dimension of S is (a) zero, (b) one, (c) three, (d) four
- 6. Consider the stacked vectors $v_1 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$, ..., $v_k = \begin{pmatrix} a_k \\ b_k \end{pmatrix}$ where a_1 , ..., a_k are n vectors and b_1 , ..., b_k are m vectors.
 - Suppose $a_1, ..., a_k$ are linearly independent vector. Can we conclude that the stacked vectors $v_1, ..., v_k$ are linearly independent?
 - Suppose $a_1, ..., a_k$ are linearly independent vector. Can we conclude that the stacked vectors $v_1, ..., v_k$ are linearly dependent?