Curso de Lógica Matemática

Cristo Daniel Alvarado

20 de marzo de 2024

Índice general

0.	Introducción	2
	0.1. Temario	2
	0.2. Conectivas Lógicas	2
1.	Lógica Proposicional	4
	1.1. Alfabeto	4
	1.2. Modeos o Estructuras	5
	1.3. Lista de Axiomas Lógicos	9
2.		19
	2.1. Fundamentos	19
	2.2. Axiomas Lógicos	20

Capítulo 0

Introducción

0.1. Temario

Los siguientes temas se verán a lo largo del curso:

- 1. Lógica (Teoría de Modelos).
 - 1.1) Lógica proposicional.
 - 1.2) Lógica de primer orden.
- 2. Teoría de la Computabilidad.
- 3. Teoría de Conjuntos.

Y la bibliografía para el curso es la siguiente:

- Enderton, 'Introducción matemática a la lógica'.
- Enderton, 'Teoría de la computabilidad'.
- Copi, 'Lógica Simbólica' o 'Computability Theory'.
- Rebeca Weber 'Computability Theory'.

0.2. Conectivas Lógicas

La disyunción (\land), conjunción (\lor), negación (\neg), implicación (\Rightarrow) y si y sólo si (\iff) son las conectivas lógicas usadas usualmente.

(Se habló un poco de una cosa llamada forma normal disyuntiva).

A $\{\land, \lor, \neg\}$ se le conoce como un conjunto completo de conectivas lógicas. Nos podemos quedar simplemente con conjuntos completos de disyuntivas con solo dos elementos, a saber: $\{\land, \neg\}$ y $\{\lor, \neg\}$, ya que $P \lor Q$ es $\neg(\neg P \land \neg Q)$. (de forma similar a lo otro $P \land Q$ es $\neg(\neg P \lor \neg Q)$).

También $\{\Rightarrow,\neg\}$ es otro conjunto completo de conectivas lógicas, ya que $P \land Q$ es $\neg(P \Rightarrow \neq Q)$.

Y, {|} es un conjunto completo, donde | es llamado la **barra de Scheffel**, que tiene la siguiente tabla de verdad.

P	Q	P Q
\overline{V}	V	F
V	F	V
F	V	V
F	F	V

con este, se tiene un conjunto completo de conectivas lógicas.

Como muchas veces se usan conectivas de este tipo:

$$(P \Rightarrow \neg Q) \Rightarrow ((P \Rightarrow R) \land \neg (Q \Rightarrow S) \land T)$$

al ser muy largas, a veces es más conveniente escribirlas en forma Polaca. De esta forma, lo anterior quedaría de la siguiente manera:

$$\Rightarrow \Rightarrow P \neg Q \land \land PR \neg \Rightarrow QST$$

Ahora empezamos con el estudio formal de la lógica.

Capítulo 1

Lógica Proposicional

1.1. Alfabeto

El alfabeto de la lógica proposicional es un conjunto que consta de dos tipos de símbolos:

- 1. Variables, denotadas por $p_1, p_2, ..., p_n, ...$ (a lo más una cantidad numerable). Estas representan proposiciones o enunciados (tengo un paraguas, me caí de las escaleras, no tengo café en la cafetera, etc...).
- 2. Conectivas, como \Rightarrow y \neg .

Aceptamos la existencia de estas cosas (pues, al menos debemos aceptar la existencia de algo). Se van a trabajar con sucesiones finitas de símbolos del alfabeto descrito anteriormente. Ahora

Se van a trabajar con sucesiones finitas de simbolos del alfabeto descrito anteriormente. Ahora necesitaremos especificar que tipos de sucesiones van a servirnos para tener un significado formal.

Definición 1.1.1

En el conjunto de sucesiones finitas de símbolos del alfabeto, definimos una **fórmula bien formada** (abreviada como **FBF**) como sigue:

- 1. Cada variable es una **FBF**.
- 2. Si φ, ψ son **FBF**, entonces $\neg \varphi$ y $\Rightarrow \varphi \psi$ también lo son.

Observación 1.1.1

Recordar que usamos la notación Polaca en la definición anterior.

A continuación unos ejemplos:

Ejemplo 1.1.1

 p_{17} , p_{54} y $\Rightarrow p_2p_{25}$ son FBF. Las primeras dos son llamadas **variables aisladas**. También lo es $\neg \Rightarrow p_2p_{25}$ (en este ejemplo, los p_i son variables).

Pero, por ejemplo $\Rightarrow \neg p_1 p_2 p_3$ y $\Rightarrow p_4$ no son FBF.

Viendo el ejemplo anterior, notamos que el operador \Rightarrow es binario (solo usa dos entradas) y \neg es unario (solo una entrada). Por lo cual, añadir o no demás variables a los opeadores dentro de la fórmula, hace que la fórmula ya no sea una FBF.

Observación 1.1.2

Eventualmente se va a sustituir la notación Polaca por la normal, para que se pueda leer la FBF y el proceso no sea robotizado.

Definiremos ahora más conectivas lógicas para poder trabajar más cómodamente.

Definición 1.1.2

Se definirán tres conectivas lógicos adicionales.

- 1. Se define la **disyunción** $\varphi \lor \psi$ como $\Rightarrow \neg \psi \varphi$ (en notación Polaca).
- 2. Se define la **conjunción** $\varphi \wedge \psi$ como $\neg(\neg \psi \vee \neg \varphi)$.
- 3. Se define el si sólo si $\psi \iff \varphi \text{ como } (\psi \Rightarrow \varphi) \land (\varphi \Rightarrow \psi)$.

1.2. Modeos o Estructuras

En el fondo, queremos que las FBF sean cosas verdaderas o falsas. Un Modelo o Estructura es algo que le va a dar significado a las FBF. De alguna manera va a ser una forma de asignarle el valor de verdadero o falso a cada una de las variables.

Definición 1.2.1

Un **Modelo o Estructura** de la lógica proposicional es una función $m: \mathrm{Var} \to \{V, F\}$, donde Var denota al conjunto de símbolos que son variables. Básicamente estamos diciendo que hay variables que son verdaderas y otras que son falsas.

Teorema 1.2.1

Para todo modelo m, existe una única extensión $\overline{m}: FBF \to \{V, F\}$, donde FBF denota al conjunto de las fórmulas bien formadas, tal que $\overline{m}(\neg \varphi) = V \iff \overline{m}(\varphi) = F$ y $\overline{m}(\neg \varphi \psi) = F \iff \overline{m}(\varphi) = V$ y $\overline{m}(\psi) = F$.

Definición 1.2.2

Sea m un modelo, φ una fórmula y Σ un cojunto de fórmulas. Definimos que

- 1. $m \models \varphi \ (m \text{ satisface } \varphi) \text{ si } \overline{m}(\varphi) = V.$
- 2. $m \models \Sigma$ si $m \models \varphi$ para cada φ elemento de Σ .

Ejemplo 1.2.1

Sea m un modelo tal que $m(p_1) = V$ y $m(p_i) = F$, para todo $i \geq 2$. En este caso $m \not\models \neg p_3$, pero $m \models \neg p_5$.

Definición 1.2.3

Decimos que una fórmula φ es:

- 1. Satisfacible si existe un modelo m tal que $m \models \varphi$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \varphi$.
- 3. Una tautología si todo modelo m cumple que $m \models \varphi$.

Ejemplo 1.2.2

Tomemos de ejemplo a $\Rightarrow p_1p_2$. cualquier modelo que haga a p_1 y p_3 verdaderas, o ambas falsas satisfacen la FBF, p_1 , $\neg \Rightarrow p_1p_3$ o $\neg (p_1 \Rightarrow \neg p_1)$. Por lo cual, esta fórmula es satisfacible.

En cambio, $\neg(p_1 \Rightarrow p_1)$ es contradictoria y, por ende $p_1 \Rightarrow p_1$ y $\neg p_1 \Rightarrow \neg p_1$ son tautologías.

Definición 1.2.4

Sea Σ un conjunto de fórmulas. Decimos que Σ es

- 1. Satisfacible si existe un modelo m tal que $m \models \Sigma$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \Sigma$.
- 3. Una tautología si todo modelo m cumple que $m \models \Sigma$.

Ejemplo 1.2.3

El conjunto de fórmulas $\Sigma = \{ \Rightarrow p_1 p_2, p_1, \neg p_2 \}$ no es satisfacible (en este caso, es contradictorio).

Observación 1.2.1

Se tiene lo siguiente:

- 1. Una tautología \Rightarrow satisfacible.
- 2. φ es satisfacible $\iff \neg \varphi$ es una contradicción.
- 3. Satisfacible es lo mismo que no contradictoria.

Definición 1.2.5

Si Σ es un conjunto de FBF y φ es alguna otra fórmula, entonces decimos que φ es **consecuencia lógica** de Σ , o que Σ **implica lógicamente** a φ , escrito como $\Sigma \vDash \varphi$, si para todo modelo m tal que $m \vDash \Sigma$ se tiene que $m \vDash \varphi$.

Ejemplo 1.2.4

El conjunto de FBF $\{ \Rightarrow p_1p_2, p_1 \} \vDash p_2$.

Observación 1.2.2

Se tiene lo siguiente:

- 1. Un conjunto de FBF $\Sigma \nvDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible.
- 2. Además, un conjunto de FBF $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ no es satisfacible.

Lema 1.2.1

Sea Σ un conjunto de fórmulas y sean $Var(\Sigma)$ el conjunto de las variables p_i que aparecen en las fórmulas de Σ . Si m_1 y m_2 son dos modelos tales que

$$m_1|_{\mathrm{Var}(\Sigma)} = m_2|_{\mathrm{Var}(\Sigma)}$$

entonces, $\overline{m_1}|_{\Sigma} = \overline{m_2}|_{\Sigma}$. En particular, para cada fórmula φ que sea elemento de Σ , entonces

Demostración:

Sin pérdida de generalidad, Σ es cerrado bajo subformulas.

Procederemos por inducción sobre $\varphi \in \Sigma$, demostraremos que $\overline{m_1}(\varphi) = \overline{m_2}(\varphi)$. Si φ coincide con algún p_i , entonces $p_i \in \text{Var}(\Sigma)$ y, por tanto

$$\overline{m_1}(p_i) = m_1(p_i) = m_2(p_i) = \overline{m_2}(p_i)$$

Ahora hacemos el paso inductivo.

- 1. Tenemos el caso en que φ es de la forma $\neg \psi$ y suponemos que $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\neg \psi) = F \iff \overline{m_1}(\psi) = V \iff \overline{m_2}(\psi) = V \iff \overline{m_2}(\neg \psi) = F$. Por lo tanto, $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. El caso en que sea verdadero es análogo.
- 2. Tenemos el caso en que φ es de la forma $\Rightarrow \varphi_1 \psi$ y, supontemos que $\overline{m_1}(\varphi_1) = \overline{m_2}(\varphi_1)$ y $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\Rightarrow \varphi_1 \psi) = F \iff \overline{m_1}(\varphi_1) = V$ y $\overline{m_1}(\psi) = F \iff$ (por hipótesis de inducción) $\overline{m_2}(\varphi_1) = V$ y $\overline{m_2}(\psi) = F \iff \overline{m_2}(\Rightarrow \varphi_1 \psi) = F$. El caso en que sean verdaderas es análogo. Por tanto, $\overline{m_1}(\Rightarrow \varphi_1 \psi) = \overline{m_2}(\Rightarrow \varphi_1 \psi)$.

Lo cual completa el paso inductivo.

Corolario 1.2.1

Si Σ es un conjunto finito de fórmulas, entonces se puede verificar 'Mecánicamente' si es el caso, que $\Sigma \vDash \varphi$.

El procedimiento para verificar el modelo, se hace mediante la tabla de verdad de las variables y las FBF de Σ .

Definición 1.2.6

Decimos que un conjunto de fórmulas bien formadas Σ es **finitamente satisfacible** si cualquier subconjunto finito $\Delta \subseteq \Sigma$ es satisfacible.

Teorema 1.2.2 (Teorema de Compacidad de Gödel)

Si Σ es un conjunto (arbitrario) de fórmulas tal que $\Sigma \vDash \varphi$, entonces existe un $\Delta \subseteq \Sigma$ finito tal que $\Delta \vDash \varphi$.

El teorema que Gödel probó originalmente fue este:

Teorema 1.2.3 (Teorema de Gödel)

Un conjunto de fórmulas Σ es satisfacible si y sólo si es finitamente satisfacible.

Veamos por qué el teorema de Gödel implica el teorema de compacidad de Gödel. Se tiene que $\Sigma \nvDash \varphi \iff$ existe un modelo m tal que $m \vDash \Sigma \cup \{\neg \varphi\}$. Es decir, si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible, es decir que es finitamente satisfacible (por el teorema de Gödel), es decir que para todo $\Delta \subseteq \Sigma$ finito se cumple que

$$\Delta \cup \{\neg \varphi\}$$

es satisfacible. Y esto sucede si y sólo si para todo $\Delta \subseteq \Sigma$ finito existe m tal que $m \models \Delta \cup \{\neg \varphi\}$, si y sólo si para todo $\Delta \subseteq \Sigma$ finito $\Delta \nvDash \varphi$, con lo cual

$$\Sigma \nvDash \varphi \iff \Delta \nvDash \varphi$$

para todo $\Delta \subseteq \Sigma$ finito, que es el teorema de compacidad en su forma contrapositiva.

Lema 1.2.2

Sea Σ un conjunto finitamente satisfacible, y sea φ cualquier fórmula, entonces o bien $\Sigma \cup \{\varphi\}$ es finitamente satisfacible o $\Sigma \cup \{\neg \varphi\}$ lo es.

Demostración:

Supongamos que no, es decir que tanto $\Sigma \cup \{\varphi\}$ como $\Sigma \cup \{\neg \varphi\}$ no son finitamente satisfacibles, por lo cual existen $\Delta_1, \Delta_2 \subseteq \Sigma$ finitos tales que $\Delta_1 \cup \{\varphi\}$ y $\Delta_2 \cup \{\neg \varphi\}$ no son satisfacibles. Entonces $\Delta_1 \cup \Delta_2$ no puede ser satisfacible, pues si m es un modelo tal que $m \models \Delta_1 \cup \Delta_2$, entonces $m \models \varphi$ contradice el hecho de que $\Delta_1 \cup \{\varphi\}$ es no satisfacible y si $m \models \neg \varphi$ contradice el hecho de que $\Delta_2 \cup \{\neg \varphi\}$ no es satisfacible, siendo $\Delta_1 \cup \Delta_2 \subseteq \Sigma$, se contradice el hecho de que Σ es finitamente satisfacible#_c. Luego se tiene el resultado.

Ahora procederemos a probar el teorema de Gödel.

Demostración:

Se probará la doble implicación:

- \Rightarrow): Es inmediato.
- \Leftarrow): Sean $\varphi_1, \varphi_2, ...$ una enumeración 'efectiva' de todas las fórmulas (checar la observación). Recursivamente, definimos conjuntos de fórmulas $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots$ tales que $\Sigma_0 = \Sigma$, y
 - 1. Cada Σ_n es finitamente satisfacible.
 - 2. Para cada $n \in \mathbb{N}$, o bien $\varphi_n \in \Sigma_{n+1}$ o bien $\neg \varphi_n \in \Sigma_{n+1}$

en este contexto, definimos:

$$\Sigma_{n+1} = \begin{cases} \Sigma_n \cup \{\varphi_n\} & \text{si este conjunto es finitamente satisfacible} \\ \Sigma_n \cup \{\neg \varphi_n\} & \text{en caso contrario} \end{cases}$$

Esta definición es consistente con la recursión por el lema anterior.

Ahora, definimos $\Sigma_{\infty} = \bigcup_{n \in \mathbb{N}} \Sigma_n$. Analicemos a este conjunto.

- 1. Σ_{∞} es finitamente satisfacible. En efecto, sea $\Delta \subseteq \Sigma$ un subconjunto finito, entonces existe $n \in \mathbb{N}$ tal que $\Delta \subseteq \Sigma_n$, luego como Σ_n es finitamente satisfacible, Δ es satisfacible. Por lo cual Σ_{∞} es finitamente satisfacible.
- 2. Para cada fórmula ψ o bien $\psi \in \Sigma_{\infty}$ ó $\neg \psi \in \Sigma_{\infty}$ y no ambas. Esto es inmediato con la enumeración efectiva de todas las fórmulas bien formadas.
- 3. Σ_{∞} es maximal finitamente satisfacible.

Sea $m: \operatorname{Var}(\Sigma_{\infty}) \to \{V, F\}$, dado por $m(p_n) = V$ si y sólo si $p_n \in \Sigma_{\infty}$. Se probará el siguiente lema:

Lema 1.2.3

Para cualquier fórmula ψ , $\overline{m}(\psi) = V$ si y sólo si $\psi \in \Sigma_{\infty}$ y $\overline{m}(\psi) = F$ si y sólo si $\neg \psi \in \Sigma_{\infty}$.

Demostración:

Procederemos por inducción sobre ψ .

- El caso base es inmediato por definición.
- $\overline{m}(\neg \psi) = V \iff \overline{m}(\psi) = F \iff \psi \notin \Sigma_{\infty} \iff \neg \psi \in \Sigma_{\infty}.$

• $\overline{m}(\Rightarrow \xi \psi) = F \iff \overline{m}(\xi) = F \text{ y } \overline{m}(\psi) = V \iff \neg \xi, \psi \in \Sigma_{\infty} \text{ si y sólo si } \Rightarrow \psi \xi \notin \Sigma_{\infty} \text{ (esto es cierto por la maximalidad de } \Sigma_{\infty} \text{ al ser finitamente satisfacible)}.$

por inducción se tiene lo deseado.

En conclusión, el modelo definido cumple que $m \vDash \psi$ si y sólo si $\psi \in \Sigma_{\infty}$. En particular, $m \vDash \Sigma$, y Σ es satisfacible.

Observación 1.2.3

Tuplas. Considere los números naturales. Podemos establecer una biyección entre las tuplas finitas de números naturales junto con el cero, y los números naturales, de esta forma:

Si $n \in \mathbb{N}$, por el TFA podemos expresar a $n = q_1^{\alpha_1} \cdot ... \cdot q_m^{\alpha_m}$. Establecemos la biyección dada como sigue: $n \mapsto (\alpha_1, ..., \alpha_{m-1}, \alpha_m - 1)$. De esta forma podemos enumerar algo con tuplas. Lo que Gödel hace es que hace ciertas asignaciones: $\neg = 0, \Rightarrow = 1, 2 = p_1, 3 = p_2$, etc... Esta enumeración es llamada enumeración de Gödel.

Cuando decimos lo de enumeración, nos referimos a esto. Básicamente enumeramos a todas las fórmulas bien formadas. Cuando decimos que la enumeración es efectiva, hacemos referencia a que podemos hacerlo de forma mecánica.

1.3. Lista de Axiomas Lógicos

Definición 1.3.1 (Axiomas Lógicos)

Se tienen los siguientes axiomas. Cualquier fórmula que caiga en alguno de los siguientes casos.

- 1. $\varphi \Rightarrow (\psi \Rightarrow \varphi)$.
- 2. $\varphi \Rightarrow ((\psi \Rightarrow \neg \varphi) \Rightarrow \neg \psi)$.
- 3. $\varphi \Rightarrow \varphi'$ siempre que φ' sea el resultado de sustituir una subfórmula de la forma $\neg \neg \psi$ por ψ , o viceversa.
- 4. $\varphi \Rightarrow \varphi[\psi \Rightarrow \xi \iff \neg \xi \Rightarrow \neg \psi]$.
- 5. $\varphi \Rightarrow \varphi[\neg \psi \Rightarrow \psi \leftrightsquigarrow \psi]$.
- 6. $(\varphi \Rightarrow (\xi \Rightarrow \psi)) \Rightarrow ((\varphi \Rightarrow \xi) \Rightarrow (\varphi \Rightarrow \psi))$.

Junto con una única regla de inferencia, llamada Modus Ponens, la cual consiste en que

$$\begin{array}{ccc} \varphi & \Rightarrow & \psi \\ \hline \varphi & & \\ \hline & \ddots & \psi \end{array}$$

Un ejemplo de 3. sería que $(p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow \neg \neg p_2)$. Cuando ponemos [.] al lado de una fórmula, nos referimos a cualquier subfórmula interna dentro de la original. Cuando ponemos \iff es que podemos sustituir uno por otro.

Definición 1.3.2

Sea Γ un conjunto de fórmulas, y sea φ una fórmula.

- 1. Una demostración de φ a partifr de Γ es una sucesión finita de fórmulas $(\varphi_1, ..., \varphi_n)$ tales que, para cada i se cumple una de las siguientes:
 - 1.1) φ_i es un axioma lógico.

- 1.2) φ_i es un elemento de Γ .
- 1.3) Existen j, k < i tales que: φ_j es la fórmula $\varphi_k \Rightarrow \varphi_i$.
- 2. φ es demostrable a partir de Γ , o bien φ es un teorema de Γ , si existe una demostración de φ a partir de Γ . Esto se simboliza por $\Gamma \vdash \varphi$.

Observación 1.3.1

$$\varphi \lor \psi$$
 es $\neg \varphi \Rightarrow \psi$, y $\varphi \land \psi$ es $\neg (\psi \Rightarrow \neg \varphi)$. $\varphi \iff \psi$ es $(\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$

Ejemplo 1.3.1

Se cumple que $\{\neg C, A \Rightarrow C, A \lor (B \Rightarrow C), \neg C \Rightarrow (C \Rightarrow E), B\} \vdash E$. Probemos que esto es cierto:

- $(A \Rightarrow C) \Rightarrow (\neg C \Rightarrow \neg A)$ Ax. 4 $A \Rightarrow C$ Premisa $\neg C \Rightarrow \neg A$ Modus ponens

- $\neg C$ 4)

Premisa

- 5)
- $\begin{array}{ccc}
 \neg A & & \\
 \neg A & & \Rightarrow & (B \Rightarrow C) \\
 \Rightarrow & C & &
 \end{array}$
- 3,4 Modus ponens Premisa

- 6) 7) B
- 6,5 Modus ponens

- B8)

Premisa

- 9) C
- 7,8 Modus ponens Premisa

- $10) \neg C$ 11) C
- $\Rightarrow (C \Rightarrow E)$
- 10,4 Modus ponens

E12)

- 11,9 Modus ponens
- E

Ejemplo 1.3.2

 $\{\varphi \wedge \psi\} \vdash \varphi$. En efecto:

- 1) $\neg(\psi \Rightarrow \neg\varphi)$ 2) $\neg\varphi$ $\Rightarrow \psi \Rightarrow \neg\varphi$ 3) $(\neg\varphi \Rightarrow (\psi \Rightarrow \neg\varphi))$ $\Rightarrow (\neg(\psi \Rightarrow \neg\varphi) \Rightarrow \neg\neg\varphi)$ 4) $\neg(\psi \Rightarrow \neg\varphi)$ $\Rightarrow \neg\neg\varphi$
- Premisa

- Ax. 1

Ax. 4

3,2 M.P.

4,1 M.P.

 $\neg\neg\varphi$ 6)

- Ax. 3

7)

6,5 M.P.

 φ

esta demostración es llamada simplificación.

Hay varias demostraciones que son de utilidad. Como las siguientes:

Ejercicio 1.3.1

Pruebe lo siguiente:

- 1. $\{\varphi \Rightarrow \psi, \neg \psi\} \vdash \neg \varphi$ (llamada **Modus Tollens**).
- 2. $\{\varphi\} \vdash \varphi \lor \psi$ (llamada **Adición**).
- 3. $\{\varphi \lor \psi, \neg \varphi\} \vdash \psi$ (llamada Silogismo Disyuntivo).
- 4. $\{\varphi, \psi\} \vdash \varphi \land \psi$ (llamada Conjunción).

Demostración:

Probemos cada inciso.

De (1):

1)
$$\varphi \Rightarrow \psi$$
 Premisa
2) $(\varphi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \psi)$ Ax. 4
3) $\neg \psi \Rightarrow \neg \psi$ 2,1 M.P.
4) $\neg \psi$ Premisa
5) $\neg \varphi$ 3,4 M.P.

∴ ¬4

De (2):

1)
$$\varphi$$
 Premisa
2) φ \Rightarrow $(\neg \psi \Rightarrow \varphi)$ Ax. 1
3) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
4) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
5) $\neg \varphi \Rightarrow \neg \neg \psi$ \Rightarrow $\neg \varphi \Rightarrow \psi$ Ax. 3
6) $\neg \varphi \Rightarrow \neg \neg \psi$ \Rightarrow $\neg \varphi \Rightarrow \psi$ Ax. 3
7) $\neg \varphi \Rightarrow \psi$ 6,5 M.P.
8) $\varphi \lor \psi$ \Rightarrow $\varphi \lor \psi$

De (3):

De (4):

1)	φ			Premisa
2)	ψ			Premisa
3)	ψ	\Rightarrow	$((\psi \Rightarrow \neg \varphi) \Rightarrow \neg \psi)$	Ax. 2
4)	$(\psi \Rightarrow \neg \varphi)$	\Rightarrow	$\neg \psi$	1,3 M.P.
5)	ψ	\Rightarrow	$ eg \psi$	Ax. 3
6)	$\neg \neg \psi$			2,5 M.P.
7)	$\neg(\psi$	\Rightarrow	$\neg \varphi)$	4,6 M.T.
8)	φ	\wedge	ψ	7)
		·:.	$\varphi \wedge \psi$	

Ejercicio 1.3.2

Demuestre que existe una demostración de lo siguiente:

1.
$$\{F \lor (G \lor H), (G \lor H) \Rightarrow (I \lor J), (I \lor J) \Rightarrow (F \lor H), \neg F\} \vdash H$$
.

2.
$$\{Q \Rightarrow (R \Rightarrow S), (R \Rightarrow S) \Rightarrow T, (S \lor U) \Rightarrow \neg V, \neg V \Rightarrow (R \iff \neg W), \neg T, \neg (R \iff \neg W)\} \vdash \neg Q \land \neg (S \lor U).$$

3.
$$\{A \Rightarrow B, C \Rightarrow D, \neg B \lor \neg D, \neg \neg A, (E \land F) \Rightarrow C\} \vdash \neg (E \land F).$$

4.
$$\{E \Rightarrow (F \land \neg G), (F \lor G) \Rightarrow H, E\} \vdash H$$
.

- 5. $\{J\Rightarrow K, J\vee (L\vee \neg L), \neg K\} \vdash \neg L\wedge \neg K$.
- $6. \ \{(R \Rightarrow \neg S) \land (T \Rightarrow \neg U), (V \Rightarrow \neg W) \land (X \Rightarrow \neg Y), (T \Rightarrow W) \land (U \Rightarrow S), V, R\} \vdash \neg T \land \neg U.$

Demostración:

De (1):

1)	F	\vee	$(G \vee H)$	Premisa
2)	G	\vee	H	Premisa
3)	$(G \vee H)$	\Rightarrow	$(I \vee J)$	Premisa
4)	$(I \vee J)$	\Rightarrow	$(F \vee H)$	Premisa
5)	F	\vee	H	Premisa
6)	$\neg F$			Premisa
7)	G	\vee	H	1,6 S.D.
8)	I	\vee	J	3,7 M.P.
9)	F	\vee	H	4,8 M.P.
10)	H			9,6 S.D.
		•	H	

De (2):

1)	Q	\Rightarrow	$(R \Rightarrow S)$	Premisa
2)	$(R \Rightarrow S)$	\Rightarrow	T	Premisa
3)	$(S \vee U)$	\Rightarrow	$\neg V$	Premisa
4)	$\neg V$	\Rightarrow	$(R \iff \neg W)$	Premisa
5)	$\neg T$			Premisa
6)	$\neg (R$	\iff	$\neg W)$	Premisa
7)	$\neg \neg V$			4,6 M.T.
8)	$\neg \neg V$	\Rightarrow	V	Ax. 3.
9)	V			8,7 M.P.
10)	$\neg(S \lor U)$			3,9 M.T.
11)	$\neg (R \Rightarrow S)$			2,5 M.T.
12)	$\neg Q$			1,11 M.T.
13)	$\neg Q$	\wedge	$\neg(S \lor U)$	12,10 Conj.
		··.	$\neg Q \land \neg (S \lor U)$	

De (3):

1)
$$A$$
 \Rightarrow B Premisa
2) C \Rightarrow D Premisa
3) $\neg B$ \lor $\neg D$ Premisa
4) $\neg \neg A$ Premisa
5) $(E \land F)$ \Rightarrow C Premisa
6) $\neg \neg A$ \Rightarrow A Ax. 3
7) A 6,4 M.P.
8) B 1,7 M.P.
9) B \Rightarrow $\neg \neg B$ Ax. 3
10) $\neg \neg B$ \Rightarrow Ax 3
10) $\neg \neg B$ \Rightarrow Ax 3
11) $\neg D$ 3,9 S.D.
12) $\neg C$ 2,11 M.T.
13) $\neg (E \land F)$ \therefore $\neg (E \lor F)$

De (4):

1)	E	\Rightarrow	$(F \land \neg G)$	Premisa
2)	$(F \vee G)$	\Rightarrow	H	Premisa
3)	E			Premisa
4)	$F \neg G$			1,3 M.P.
5)	F			4 Simp.
6)	$F \vee G$			5 Ad.
7)	H			2,6 M.P.
			Н	

De (5):

1)
$$J$$
 \Rightarrow K Premisa
2) J \vee $(K \vee \neg L)$ Premisa
3) $\neg K$ Premisa
4) $\neg J$ 1,3 M.T.
5) K \vee $\neg L$ 2,4 S.D.
6) $\neg L$ 5,3 S.D.
7) $\neg L$ \wedge $\neg K$ 3,6 Conj.

De (6):

1)	$(R \Rightarrow \neg S)$	\wedge	$(T \Rightarrow \neg U)$	Premisa
2)	$(V \Rightarrow \neg W)$	\wedge	$(X \Rightarrow \neg Y)$	Premisa
3)	$(T \Rightarrow W)$	\wedge	$(U \Rightarrow S)$	Premisa
4)	V			Premisa
5)	R			Premisa
6)	R	\Rightarrow	$\neg S$	1 Simp.
7)	$\neg S$			6,5 M.P.
8)	V	\Rightarrow	$\neg W$	2 Simp.
9)	$\neg W$			8,4 M.P.
10)	T	\Rightarrow	W	3 Simp.
11)	$\neg W$	\Rightarrow	$\neg T$	10 Transp.
12)	$\neg T$			11,9 M.P.
13)	U	\Rightarrow	S	3 Simp.
14)	$\neg S$	\Rightarrow	$\neg U$	13 Transp.
15)	$\neg U$			14,7 M.P.
15)	$\neg T$	\wedge	$\neg U$	12,15 Conj.
		<i>:</i> .	$\neg T \wedge \neg U$	

Observación 1.3.2 (Conmutatividad del \land y \lor)

Es fácil de probar (teniendo en mente la definción) que:

1.
$$\varphi \Rightarrow \varphi[\xi \wedge \psi \longleftrightarrow \psi \wedge \xi]$$
.

2.
$$\varphi \Rightarrow \varphi[\xi \lor \psi \leftrightsquigarrow \psi \lor \xi]$$
.

Demostración:

Proposición 1.3.1 (Leyes de Morgan)

Se cumplen las siguiente (denominadas Leyes de Morgan):

1.
$$\neg(\xi \lor \psi) \iff \neg\xi \land \neg\psi$$
.

2.
$$\neg(\xi \wedge \psi) \iff \neg \xi \vee \neg \psi$$
.

Demostración:

Lema 1.3.1

 $\emptyset \vdash \varphi \Rightarrow \varphi$. Es decir, que sin premisas es válido que $\varphi \Rightarrow \varphi$.

Demostración:

Veamos que:

1)
$$\varphi$$
 \Rightarrow $((\psi \Rightarrow \varphi) \Rightarrow \varphi)$ Ax. 1
1) $(\varphi \Rightarrow ((\psi \Rightarrow \varphi) \Rightarrow \varphi))$ \Rightarrow $((\varphi \Rightarrow (\psi \Rightarrow \varphi) \Rightarrow (\varphi \Rightarrow \varphi)))$ Ax. 6
1) $(\varphi \Rightarrow (\psi \Rightarrow \varphi))$ \Rightarrow $(\varphi \Rightarrow \varphi)$ Ax. 6
4) φ \Rightarrow $(\psi \Rightarrow \varphi)$ Ax. 1
4) φ \Rightarrow φ 4,3 M.P.

Lo cual termina la prueba

Teorema 1.3.1 (Metateorema de Deducción)

Sea Σ un conjunto de fórmulas y φ , ψ dos fórmulas. Entonces, $\Sigma \vdash (\varphi \Rightarrow \psi)$ si y sólo si $\Sigma \cup \{\varphi\} \vdash \psi$.

Demostración:

Probaremos las dos implicaciones:

- \Rightarrow): Suponga que $\Sigma \vdash (\varphi \Rightarrow \psi)$, entonces en $\Sigma \cup \{\varphi\}$ como $\Sigma \vdash (\varphi \Rightarrow \psi)$ entonces por M.P. al tener que $\{\varphi \Rightarrow \psi, \varphi\} \vdash \psi$, se sigue que $\Sigma \cup \{\varphi\} \vdash \psi$.
- \Leftarrow): Supongamos que $\Sigma \cup \{\varphi\} \vdash \psi$. La prueba se hará por inducción sobre la longitud de la demostración de ψ a partir de $\Sigma \cup \{\varphi\}$.

Sean $(\varphi_1, ..., \varphi_n, \psi)$ la demostración, Entonces, la hipótesis inductiva es que: $\Sigma \vdash \varphi \Rightarrow \varphi_k$ para $k \in \{1, ..., n\}$.

Hay 4 casos para ψ :

1. $\psi \in \Sigma$. Se tiene que:

1)
$$\psi$$
 Premisa
2) $\psi \Rightarrow \varphi \Rightarrow \psi$ Ax. 1
3) $\varphi \Rightarrow \psi$ 2,1 M.P

- 2. $\psi = \varphi$) En este caso lo que se quiere probar es que $\Sigma \vdash (\varphi \Rightarrow \varphi)$. Para lo cual se usa el lema anterior se tiene el resultado de forma inmediata (tomando el conjunto vacío).
- 3. ψ es axioma lógico. Es inmediato pues si es un axioma lógico, siempre se tiene que $\emptyset \vdash \varphi \Rightarrow \psi$. Luego, $\Sigma \vdash \varphi \Rightarrow \psi$.
- 4. Algún φ_i es $\varphi_k \Rightarrow \psi$. Como por inducción se tiene que $\varphi \Rightarrow \varphi_k$, en particular para i se tiene que:

```
1) ... ... ... ... Premisa

2) \varphi \Rightarrow \varphi_k Ax. 1

3) \varphi \Rightarrow (\varphi_k \Rightarrow \psi) 2,1 M.P

3) (\varphi \Rightarrow (\varphi_k \Rightarrow \psi)) \Rightarrow ((\varphi \Rightarrow \varphi_k) \Rightarrow (\varphi \Rightarrow \psi)) Ax. 6

3) (\varphi \Rightarrow \varphi_k) \Rightarrow (\varphi \Rightarrow \psi) 3,2 M.P.

3) \varphi \Rightarrow \psi 4,1 M.P.
```

Lo cual termina la demostración por inducción. Esto se abrevia con P.C.

Ejemplo 1.3.3

Considere:

1)
$$M$$
 \Rightarrow N Premisa2) N \Rightarrow O Premisa3) $(M \Rightarrow O)$ \Rightarrow $(N \Rightarrow P)$ Premisa4) $(M \Rightarrow P)$ \Rightarrow Q Premisa5) M Suposición6) N 1,5 M.P.7) O 2,6 M.P.8) M \Rightarrow O 5-7 P.C.9) N \Rightarrow P 3,8 M.P.10) M Suposición.11) N 1,10 M.P.12) P 9,11 M.P.13) M \Rightarrow P 10-12 P.C.

Ejercicio 1.3.3

Complete la demostración:

	1)	V	\Rightarrow	W	Premisa
	2)	X	\Rightarrow	Y	Premisa
	3)	Z	\Rightarrow	W	Premisa
	4)	X	\Rightarrow	A	Premisa
	5)	W	\Rightarrow	X	Premisa
	6)	$(V \Rightarrow Y) \land (Z \Rightarrow A)$	\Rightarrow	$(V \vee Z)$	Premisa
	7)	\dot{V}		,	Suposición
	8)	W			1,7 M.P.
	9)	X			5,8 M.P.
	10)	Y			2,9 M.P.
	11)	V	\Rightarrow	Y	7-10 P.C.
	12)	Z			Suposición
	13)	W			3,12 M.P.
	14)	X			5,13 M.P.
	15)	A			4,14 M.P.
	16)	Z	\Rightarrow	A	12-15 P.C.
	17)	$(V \Rightarrow Y)$	\wedge	$(Z \Rightarrow A)$	11,16 Conj.
_		,		$Y \vee A$	

Ejercicio 1.3.4

Complete las demostraciones:

1.

1)	P	\Rightarrow	Q	Premisa
2)	Q	\Rightarrow	R	Premisa
3)	P			Suposición
4)	Q			1,3 M.P.
5)	R			2,4 M.P.
6)	P	\Rightarrow	R	3-5 P.C.
		•	$P \Rightarrow R$	

2.

1)
$$Q$$
 Premisa
2) $Q \Rightarrow (P \Rightarrow Q)$ Ax. 2
3) $P \Rightarrow Q$ 2,1 M.P.
 $\therefore P \Rightarrow Q$

3.

4.

1)
$$P$$
 \Rightarrow $(Q \land R)$ Premisa2) P Suposición3) $Q \land R$ 1,2 M.P.4) Q 3 Simp.5) P \Rightarrow Q \therefore $P \Rightarrow Q$

5.

1)	$(P \Rightarrow Q)$	\wedge	$(C \Rightarrow D)$	Premisa
2)	$(Q \vee D)$	\Rightarrow	$((E \Rightarrow (E \lor F)) \Rightarrow (P \land C))$	Premisa
3)	P	\Rightarrow	Q	1 Simp.
4)	C	\Rightarrow	D	1 Simp.
5)	E			Suposición.
6)	E	\vee	F	5 Ad.
7)	E	\Rightarrow	$(E \vee F)$	5-6 P.C.
8)	P			Suposición.
9)	Q			3,5 M.P.
10)	$Q \vee D$			6 Ad.
11)	$(E \Rightarrow (E \lor F))$	\Rightarrow	$(P \wedge C)$	7,2 M.P.
		•	$P \iff R$	

Ejemplo 1.3.4

Este es un esquema general en el que se hacen las pruebas por contradicción:

1)	P	\vee	$(Q \wedge R)$	Premisa
2)	P	\Rightarrow	R	Premisa
3)	$\neg R$			Suposición.
4)	$\neg P$			2,3 M.T.
5)	Q	\wedge	R	4,1 S.D.
6)	R			5 Simp.
7)	R	\wedge	$\neg R$	6,3 Ad.
8)	R			3-7 P.I.
			\overline{R}	

Ejercicio 1.3.5

Complete las siguientes demostraciones:

1.

1)	$(P \vee Q)$	\Rightarrow	$(R \Rightarrow D)$	Premisa
2)	$(\neg D \lor E)$	\Rightarrow	$(P \wedge R)$	Premisa
3)	$\neg D$			Suposición
4)	$\neg D$	\vee	E	3 Ad.
5)	P	\wedge	R	2,4 M.P.
6)	P			5 Simp.
7)	P	\vee	Q	6 Ad.
8)	R	\Rightarrow	D	1,7 M.P.
9)	R			5 Simp.
10)	D			8,9 M.P.
11)	D	\wedge	$\neg D$	10, 3 Conj.
12)	$\neg \neg D$			3-11 P.I.
13)	D			12 Ax. 3
		••	D	

2.

1)	$(P \vee Q)$	\Rightarrow	$(R \wedge D)$	Premisa
2)	$(R \vee F)$	\Rightarrow	$(\neg F \wedge G)$	Premisa
3)	$(F \vee H)$	\Rightarrow	$(P \wedge I)$	Premisa
4)	F			Suposición
5)	F	\vee	H	4. Ad.
6)	P	\wedge	I	3,5 M.P.
7)	P			6 Simp.
8)	P	\vee	Q	7 Ad.
9)	R	\wedge	D	7 Ad.
10)	R			9 Simp.
11)	R	\vee	F	10 Ad.
12)	$\neg F$	\wedge	G	2,11 M.P.
13)	$\neg F$			12 Simp.
14)	F	\wedge	$\neg F$	4,13 Conj.
15)	$\neg F$			4-14 P.I.
			$\neg F$	

Definición 1.3.3

Teorema 1.3.2 (Teorema de Completud)

Cualquier conjunto de fórmulas Γ que sea consistente, es satisfacible.

Demostración:

Corolario 1.3.1

Si Γ es un conjunto de fórmulas, entonces $\Gamma \vDash \varphi$ implica $\Gamma \vdash \varphi$.

Demostración:

Ya construimo sun conjunto Γ_{∞} con $\Gamma \subseteq \Gamma_{\infty}$ tal que:

- 1. Γ_{∞} es consistente.
- 2. Para toda fórmula φ , o bien $\varphi \in \Gamma_{\infty}$ ó $\neg \varphi \in \Gamma_{\infty}$.
- 3. $\varphi \in \Gamma_{\infty}$ si y sólo si $\Gamma_{\infty} \vdash \varphi$, y $\varphi \notin \Gamma_{\infty}$ si y sólo si $\neg \varphi \in \Gamma_{\infty}$, si y sólo si $\Gamma_{\infty} \nvdash \varphi$ si y sólo si $\Gamma_{\infty} \vdash \neg \varphi$.

Definimos $M: \text{Var} \to \{V, F\}$ de tal forma que $m(p_k) = V$ si y sólo si $p_k \in \Gamma_{\infty}$ (de forma análoga, $m(p_k) = F$ si y sólo si $p_k \notin \Gamma_{\infty}$).

Afirmamos que para toda fórmula φ , se tiene que $\overline{m}(\varphi) = V$ si y sólo s i $\varphi \in \Gamma_{\infty}$. Procederemos por inducción sobre φ .

- 1. Si φ es atómica, entonces se cumple por definición.
- 2. Paso inductivo: supongamos que se cumple para φ y ψ . Entonces,

$$\overline{m}(\neg \varphi) = V \iff \overline{m}(\varphi) = F$$
$$\iff \neg \varphi \in \Gamma$$

además,

$$\overline{m}(\varphi \Rightarrow \psi) = F \iff \overline{m}(\varphi) = V \text{ y } \overline{m}(\psi) = F$$

$$\iff \varphi \in \Gamma_{\infty} \text{ y } \neg \psi \in \Gamma_{\infty}$$

$$\iff \varphi \Rightarrow \psi \notin \Gamma_{\infty}$$

probaremos una doble implicación.

- \Rightarrow): Suponga que $\varphi, \neg \psi \in \Gamma_{\infty}$. Si $\varphi \Rightarrow \psi \in \Gamma_{\infty}$, entonces $\varphi \Rightarrow \psi \notin \Gamma_{\infty}$.
- \Leftarrow): Suponga que $\varphi \Rightarrow \psi \notin \Gamma_{\infty}$, entonces $\neg(\varphi \Rightarrow \psi) \in \Gamma_{\infty}$, por lo cual $\neg(\varphi \Rightarrow \neg \neg \psi) \in \Gamma_{\infty}$, es decir que $\varphi \land \neg \psi \in \Gamma_{\infty}$, luego $\Gamma_{\infty} \vdash \varphi$ y $\Gamma_{\infty} \vdash \neg \psi$.

por tanto, usando inducción se cumple que $m \models \Gamma_{\infty}$, en particular $m \models \Gamma$.

Capítulo 2

Lógica de primer orden

2.1. Fundamentos

Definición 2.1.1

Un lenguaje de primer orden cuenta con un alfabeto que consta de lo siguiente:

- 1. Variables (denotadas por Var), denotadas por $v_1, v_2, ...$ (a lo sumo una cantidad numerable).
- 2. Conectivas lógicas \neg , \Rightarrow .
- 3. Símbolo de igualdad =.
- 4. Cuantificador \forall , denominado **para todo**.
- 5. Símbolos de predicado (o Símbolo de relación), P_1, P_2, \dots
- 6. Símbolos de función, $f_1, F_2, ...$
- 7. Símbolos de constante $c_1, c_2, ...$

los primeros cuatro son llamados **símbolos lógicos**, y los últimos tres son llamados **símbolos no lógicos**. Puede que un lenguaje de primer orden no conste con alguno de los elementos de 5. a 7. o que conste de una cantidad finita. Cada uno de los 5. a 7. tiene asociada una **aridad** (que es un número entero).

Para que la idea quede más afianzada, se verán algunos ejemplos.

Ejemplo 2.1.1

El lenguaje de la Teoría de Grupos consta de $\{*, (\cdot)^{-1}, e\}$ donde * es una función binaria, $(\cdot)^{-1}$ es una función unaria y e es una constante.

Ejemplo 2.1.2

El lenguaje de la Teoría de Anillos consta de $\{\cdot, +, 0, 1\}$ donde \cdot y + son función binaria, y 0, 1 son constantes.

Eiemplo 2.1.3

El lenguaje de la Aritmética consta de $\{+,\cdot,s,<,1\}$, donde $+,\cdot$ son funciones binarias, s es una función unaria, < es una relación binaria y 1 es una constante.

Ejemplo 2.1.4

El lenguaje de la Teoría de Conjuntos, consta de $\{\in\}$, la cual es una relación binaria.

Definición 2.1.2

Definimos lo siguiente:

1. **Términos** son:

- 1.1) v_i y c_i son términos.
- 1.2) Si F_i es un símbolo de función n-aria, y $t_1, ..., t_n$ son términos, entonces $F_i t_1 \cdots t_n$ es un término (en notación polaca),

2. **Fórmulas** son:

- 2.1) Si t_1, t_2 son términos, entonces = t_1t_2 es una fórmula.
- 2.2) Si R_i es un símbolo de relación de aridad n y tengo n-términos, entonces $R_1t_1\cdots t_n$ es una fórmula.
- 2.3) Si φ, ψ son fórmulas y v_i es una variable, entonces $\neg \varphi, \Rightarrow \varphi \psi$ y $\forall v_i \varphi$ son fórmulas.

Ejemplo 2.1.5

La asociatividad se puede escribir como la siguiente fórmula:

$$\forall x \forall y \forall z = * * xyz * x * yz$$

que básicamente es decir que:

$$\forall x, y, z, (x * y) * z = x * (y * z)$$

en un grupo cualquiera.

2.2. Axiomas Lógicos

Cualquier generalización de

- 1. Los de Lógica proposicional.
- 2. $(\forall x)(\varphi \Rightarrow \psi) \Rightarrow (\forall x\varphi \Rightarrow \forall x\psi)$.
- 3. $\varphi \Rightarrow \forall x \varphi \text{ si } x \text{ no es libre en } \varphi$.
- 4. x = x.
- 5. $z = y \Rightarrow (\varphi \Rightarrow \varphi [y/x])$ si φ es atómica.
- 6. $\forall x \varphi \Rightarrow \varphi[t/x]$ si t es sustitubile por x.

Reglas de inferencia: M.P.

Teorema 2.2.1 (Metateorema)

Se tiene lo siguiente:

1. Instanciación universal. Si $\Sigma \vdash (\forall x)\varphi$ entonces, $\Sigma \vdash \varphi[t/x]$ siempre que t sea sustituible por x en φ .

2. Generalización existencial. Si $\Sigma \vdash \varphi[t/x]$ entonces, $\Sigma \vdash (\exists x) \varphi$ siempre que t sea sustituible por x en φ .

Demostración:

De (1): Como $\Sigma \vdash (\forall x)\varphi$, entonces existe una demostración que prueba $(\forall x)\varphi$. Por el axioma (5), se tiene que al ser t sustituible: $\forall x\varphi \Rightarrow \varphi[t/x]$, luego existe una demostración que prueba a $\varphi[t/x]$, añadiendo esta línea al teorema anterior, se sigue que $\Sigma \vdash \varphi[t/x]$.

De (2): Como $\Sigma \vdash \varphi[t/x]$, entonces existe una demostración que prueba $\Sigma \vdash \varphi[t/x]$. Procederemos por contradicción. Suponga que $\neg(\exists x)\varphi$, es decir $\neg(\exists x)\neg\neg\varphi$, luego $(\forall x)\neg\varphi$. Por (1), se sigue que $\neg\varphi[t/x]$, lo que es una contradicción del renglón de arriba.

Luego, $(\exists x)\varphi$.

Ejercicio 2.2.1

Demuestre que existe una demostración formal de válidez para lo siguiente:

- 1. $(\forall x)(Px \Rightarrow Qx)/$: $Pc \Rightarrow ((\forall y)(Qy \Rightarrow Sy) \Rightarrow Sc)$.
- 2. $(\forall x)(Px \Rightarrow (\forall y)(Qy \Rightarrow Sy))/: (\forall x)Px \Rightarrow (\forall y)(Qy \Rightarrow Sy).$
- 3. $(\exists x)Px \Rightarrow (\exists y)Qy/:(\exists x)(Px \Rightarrow (\exists y)Qy)$.

Demostración:

De (1):

No.			
1)	$(\forall x)(Px \Rightarrow Qx)$		Premisa
2)	Pc		Hipótesis
3)	$(\forall y)(Qy \Rightarrow Sy)$		Hipótesis
4)	$Pc \Rightarrow Qc$		1 I.U.
5)	$Qc \Rightarrow Sc$		3 I.U.
6)	$Qc \Rightarrow Sc$		4,5, S.H.
7)	Sc		6,2 M.P.
8)	$(\forall y)(Qy \Rightarrow Sy)$	$\Rightarrow Sc$	3-7 P.C.
9)	$Pc \Rightarrow$	$((\forall y)(Qy \Rightarrow Sy) \Rightarrow Sc)$	2-8 P.C.
		$\therefore Pc \Rightarrow ((\forall y)(Qy \Rightarrow Sy) \Rightarrow Sc)$	

De (2):

No.			
1)	$(\forall x)(Px \Rightarrow (\forall y)(Qy \Rightarrow Sy))$		Premisa
2)	$(\forall x)Px$		Hipótesis
3)	$(\forall x)(Px \Rightarrow (\forall y)(Qy \Rightarrow Sy))$	$\Rightarrow ((\forall x)Px \Rightarrow (\forall x)((\forall y)(Qy \Rightarrow Sy)))$	1 Ax. 1
4)	$(\forall x)Px \Rightarrow (\forall x)((\forall y)(Qy \Rightarrow Sy))$		1,3 M.P.
5)	$(\forall x)((\forall y)(Qy \Rightarrow Sy))$		2,4 M.P.
6)	$(\forall y)(Qy \Rightarrow Sy)$		5 I.U.
7)	$(\forall x)Px$	$\Rightarrow ((\forall y)(Qy \Rightarrow Sy))$	2-6 P.C.
		$\therefore (\forall x) Px \Rightarrow ((\forall y)(Qy \Rightarrow Sy))$	

De (3):

No.			
1)	$(\exists x)Px \Rightarrow (\exists y)Qy$		Premisa
2)	$\neg(\exists x)(Px \Rightarrow (\exists y)Qy)$		Negación
3)	$\neg(\exists x)(\neg\neg(Px \Rightarrow (\exists y)Qy))$		2 Ax.
4)	$(\forall x)(\neg(Px \Rightarrow (\exists y)Qy))$		Equiv.
5)	$(\forall x)(\neg(\exists y)Qy \Rightarrow \neg Px)$		Equiv.
6)	$(\forall x)((\forall y)\neg Qy \Rightarrow \neg Px)$		Equiv.
7)	$(\forall x)(\forall y)\neg Qy \Rightarrow (\forall x)\neg Px$		Equiv.
8)	$(\forall y)\neg Qy$	$\Rightarrow (\forall x)(\forall y)\neg Qy$	Ax.2
9)	$(\forall y) \neg Qy \Rightarrow (\forall x) \neg Px$		7,8 I.U.
10)	$\neg((\exists y)Qy) \Rightarrow \neg((\exists x)Px)$		Equiv
11)	$(\exists x)(Px \Rightarrow (\exists y)Qy)$		2-10 Contradicción
		$\therefore (\exists x)(Px \Rightarrow (\exists y)Qy)$	

Alternativa (y correcta):

No.			
1)	$(\exists x)Px \Rightarrow (\exists y)Qy$		Premisa
2)	Px		Hipótesis
3)	$(\exists x)Px$		2 G.E.
4)	$(\exists y)Qy$		3,1 M.P.
5)	$(Px \Rightarrow (\exists y)Qy)$		2-4 P.C.
6)	$(\exists x)(Px \Rightarrow (\exists y)Qy)$		5 G.E.
		$\therefore (\exists x)(Px \Rightarrow (\exists y)Qy)$	

Observación 2.2.1

S.H. siginif
ca silogismo hipotético. El I.U (Instanciación universal) y G.E (generalización existencial) son:
 $(\forall x)\varphi\Rightarrow\varphi[t/x]$ y $\varphi[t/x]\Rightarrow(\exists x)\varphi$.

Faltan dos reglas por demostrar. Consdiere Σ un conjunto de fórmulas.

- 1. Generalización universal (G.U.) Si x no aparece libre en ninguna fórmula de Σ , se tiene que $\varphi \Rightarrow \forall x \varphi$.
- 2. Instanciación existencial (I.E.) Se expresa en tabla como sigue:

No.			
1)	$\exists x \varphi$		
2)	$\varphi[w/x]$		
:	:		
n)	ψ		w no es libre en ninguna fórmula de Γ ni en $\exists x\varphi$ y ψ
n+1)	ψ		
		$\therefore \psi$	

Lema 2.2.1 (Lema al metateoreama)

Si Γ es un conjunto de fórmulas tal que $\Gamma \vdash (\forall y)\varphi$ y ζ no aparece libre en Γ y es sustituible en φ , entonces $\Gamma \vdash (\forall \zeta)\varphi[\zeta/x]$.

Demostración:

No.			
:	:		Premisas de Γ
k)	$(\forall x)\varphi$		
(k+1)	$\varphi[\zeta/x]$		I.U.
(k+2)	$(\forall \zeta)\varphi[\zeta/x]$		G.U.
		$\therefore (\forall \zeta) \varphi[\zeta/x]$	

Teorema 2.2.2 (Metateorema)

Se tiene lo siguiente:

- 1. Si Γ es un conjunto de fórmulas, x es una variable que no aparece libre en Γ y $\Gamma \vdash \varphi$, entonces $\Gamma \vdash (\forall x)\varphi$.
- 2. Si $\Gamma \cup \{\varphi[w/x]\} \vdash \psi$ entonces, $\Gamma \cup \{(\exists x)\varphi\} \vdash \psi$ siempre y cuando w no aparezca libre en Γ ni en ψ .

Demostración:

De (1): Mostraremos que el conjunto

$$\left\{\varphi\Big|\Gamma\vdash(\forall x)\varphi\right\}$$

incluye a Γ , todos los axiomas lógicos y, además, es cerrado bajo M.P.

- Axiomas Lógicos: Por definición si φ es axioma lógico entonces $(\forall x)\varphi$ también lo es.
- Elementos de Γ . Entonces,

No.			
1)	φ		Premisa
2)	$\varphi \Rightarrow (\forall x)\varphi$		Ax.2
3)	$(\forall x)\varphi$		1,2 M.P.
		$\therefore (\forall x)\varphi$	

• Cerrado bajo M.P. Supongamos que

$$\Gamma \vdash (\forall x)\varphi \quad \Gamma \vdash (\forall x)(\varphi \Rightarrow \psi)$$

Es decir:

No.

$$\vdots \quad \vdots \\
k) \quad (\forall x)\varphi \\
\vdots \quad \vdots \\
n) \quad (\forall x)(\varphi \Rightarrow \psi) \\
\vdots \quad \vdots \\
n+1) \quad (\forall x)(\varphi \Rightarrow \psi) \quad \Rightarrow ((\forall x)\varphi \Rightarrow (\forall x)\psi) \quad \text{Ax.1} \\
n+2) \quad (\forall x)\varphi \Rightarrow (\forall x)\psi \quad \text{M.P.} \\
n+3) \quad (\forall x)\psi \quad \text{M.P.}$$

lo cual prueba la cerradura.

Luego, por todos los casos, se sigue que $\Gamma \vdash (\forall x)\varphi$.

De (2): Procederemos por contradicción.

No.		
:	:	Premisas de Γ
k)	$(\exists x)\varphi$	
k+1)	$\neg \psi$	Suposición
:	:	Lineas para probar lo de abajo
n)	$\varphi[w/x] \Rightarrow \psi$	Prueba condicional
n+1)	$\neg \varphi[w/x]$	M.T.
n+2	$(\forall w) \neg \varphi[w/x]$	G.U.
n+3	$(\exists w)\varphi[w/x]$	Por k y el lema anterior
n+4)	ψ	Contradicción $k+1$)- $n+3$)
		ψ

Ejercicio 2.2.2

Muestre que existe una demostración en las siguientes fórmulas.

Demostración:

a):

No.			
1)	$(\forall x)(Px \Rightarrow Qx)$		Premisa
2)	Sx		Suposición
3)	$(\forall y)(Sy \Rightarrow Py)$		Suposición
4)	$Sx \Rightarrow Px$		
5)	Px		
6)	$Px \Rightarrow Qx$		
7)	Qx		
8)	$(\forall y)(Sy \Rightarrow Py)$	$\Rightarrow Qx$	P.C.
9)	$Sx \Rightarrow ((\forall y)(Sy \Rightarrow Py) \Rightarrow Qx)$		P.C.
10)	$(\forall x)(Sx \Rightarrow ((\forall y)(Sy \Rightarrow Py) \Rightarrow Qx))$	(1) (2 . (0)) (2	G.U.

 $\therefore (\forall z)(Sz \Rightarrow ((\forall y)(Sy \Rightarrow Py) \Rightarrow Qx))$

b):

No.			
1)	$(\forall x)(Px \Rightarrow Qx)$		Premisa
2)	$(\forall x)(Sx \Rightarrow Tx)$		Premisa
3)	$(\forall x)(Qx \Rightarrow Sx)$		Suposición
4)	$Qy \Rightarrow Sy$		I.U
5)	$Py \Rightarrow Qy$		I.U.
6)	$Py \Rightarrow Sy$		
7)	$Sy \Rightarrow Ty$		I.U.
8)	$Py \Rightarrow Ty$		
9)	$(\forall y)(Py \Rightarrow Ty)$		G.U.
10)	$(\forall x)(Qx \Rightarrow Sx)$	$\Rightarrow (\forall y)(Py \Rightarrow Ty)$	3-10 P.C.
		$\therefore (\forall x)(Qx \Rightarrow Sx) \Rightarrow (\forall y)(Py \Rightarrow Ty)$	

c):

No.			
1)	$(\exists x)Px$	$\Rightarrow (\forall y)((Py \lor Qy) \Rightarrow Sy)$	Premisa
2)	$(\exists x)Px \wedge (\exists x)Sx$		Premisa
3)	$(\exists x)Px$		Simp.
4)	Pz		I.U.
5)	$(\forall y)((Py \lor Qy) \Rightarrow Sy)$		M.P.
6)	$(Pz \lor Qz) \Rightarrow Sz$		I.U.
7)	$(Pz \vee Qz)$		Ad.
8)	Sz		M.P.
9)	$Pz \wedge Sz$		Conj.
10)	$(\exists x)(Px \land Sx)$		G.E.
11)	$(\exists x)(Px \wedge Sx)$		5-10 I.E.
		$\therefore (\exists x)(Px \land Sx)$	

d):

No.			
1)	$(\exists x)Px$	$\Rightarrow (\forall y)(Qy \Rightarrow Sy)$	Premisa
		$\therefore (\exists x)(Px \land Qx) \Rightarrow (\exists y)(Py \land Sy)$	