Exercise 1

Holo

Monday 1st January, 2024

Complex Numbers

Exercise 1.

We know that $(\rho e^{i\varphi})^n = \rho^n e^{in\varphi}$, in particular we have $(\rho e^{i\varphi})^n = re^{i\theta}$ hence

$$\rho^n = r \qquad \Longrightarrow \rho = r^{1/n}$$

$$n\varphi \equiv \theta \pmod{2\pi} \qquad \Longrightarrow \varphi = (\theta + 2\pi k)/n, \ 0 \le k < n$$

(notice that the first row is legal because we know that r, ρ both should be positive reals).

In particular there are n solutions.

Exercise 2.

Part 2.1.

 $1 = 1e^{i0}$, plugin in the solutions from (1) we get

$$\rho = 1$$

$$\varphi = 2\pi k/6, \ 0 \le k \le 6$$

Part 2.2.

 $-1 = 1e^{i\pi}$, hence:

$$\rho = 1$$
 $\varphi = (\pi + 2\pi k)/4 = 3\pi k/4, \ 0 \le k < 4$

Part 2.3.

$$-1+i\sqrt{3}=|-1+i\sqrt{3}|e^{i\arg(-1+i\sqrt{3})}=2e^{i2\pi/3}$$
 hence:
$$\rho=2^{1/4}$$

$$\varphi=(2\pi/3+2\pi k)/4,\ 0\leq k<4$$

Exercise 3.

Part 3.1.

$$\frac{1}{6+2i} = \frac{\overline{6+2i}}{(6+2i)(\overline{6+2i})} = \frac{6}{36+4} + i\frac{-2}{36+4} = \frac{3}{20} + i\frac{-1}{20}$$

Part 3.2.

$$\frac{(2+i)(3+2i)}{1-i} = \frac{(2+i)(3+2i)(\overline{1-i})}{(1-i)(\overline{1-i})} = \frac{-3+11i}{2} = -\frac{3}{2} + i\frac{11}{2}$$

Part 3.3.

$$-\frac{1}{2}+i\frac{\sqrt{3}}{2}=1e^{i2\pi/3}\implies (-\frac{1}{2}+i\frac{\sqrt{3}}{2})^4=e^{i8\pi/3}=e^{i2\pi/3}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$

Part 3.4.

$$-1+i0$$
, $0+i(-1)$, $1+i0$, $0+i1$

Exercise 4.

$$(a^{2} + b^{2})(c^{2} + d^{2}) = a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2} = a^{2}c^{2} - 2abcd + b^{2}d^{2} + a^{2}d^{2} + 2abcd + b^{2}c^{2}$$
$$= (ac - bd)^{2} + (ad + bc)^{2}$$

Closed and Open Sets

Exercise 1.

Let $\{ \mathfrak{B}_i \}_{i \in I}$ be a family of open sets, and let $x \in \bigcup_{i \in I} \mathfrak{B}_i$.

By definition there is some $i \in I$ such that $x \in \mathfrak{B}_i$, because U_i is open there must be some $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq \mathfrak{B}_i$, in particular $B_{\epsilon}(x) \subseteq \bigcup_{i \in I} \mathfrak{B}_i$, hence $\bigcup_{i \in I} \mathfrak{B}_i$ is open.

Let $\{ \mathfrak{B}_j \}_{j \in J}$ be a finite family of open sets, and let $x \in \bigcap_{j \in J} \mathfrak{B}_j$, by definition there exists ϵ_j for each $j \in J$ such that $B_{\epsilon_j}(x) \subseteq \mathfrak{B}_j$. Because J is finite, the set $\{\epsilon_j\}$ has a minimum, let ϵ be this minimum and it is clear that $B_{\epsilon}(x) \subseteq \bigcap_{j \in J} \mathfrak{B}_j$

Exercise 2.

Assume the contrary, that $f^{-1}(U)$ is not open, in particular there exists $x \in f^{-1}(U)$ that witness it.

Because f is continuous we know that for every ϵ there is some δ such that $x' \in B_{\delta}(x) \implies f(x') \in B_{\epsilon}(f(x))$. Let ϵ be sufficiently small so that $B_{\epsilon}(f(x)) \subseteq U$ (it exists because U is open), and let δ be as above, but the above can be restated as $f''B_{\delta}(x) \subseteq B_{\epsilon}(f(x))$, in particular $B_{\delta}(x) \subseteq f^{-1}(U)$, but this contradict the fact that x is witness of the failure of $f^{-1}(U)$ to be open.

Exercise 3.

Assume that $\lim x_n = x \notin C$, we must have then that $x \in \mathbb{R}^n \setminus C$, which is open. Let ϵ be such that $B_{\epsilon}(x) \subseteq \mathbb{R}^n \setminus C$, we know that $B_{\epsilon}(x) \cap C = \emptyset$, so for all $n \in \omega$ we have $x_n \notin B_{\epsilon}(x)$, which contradict the fact that they converge to x.