# Stability Control Theory, Lecture 2

by Sergei Savin

Spring 2023

#### CONTENT

- Critical point (node)
- Stability
- Asymptotic stability
- Stability vs Asymptotic stability
- LTI and autonomous LTI
- Stability of autonomous LTI
- Read more

# CRITICAL POINT (NODE)

Consider the following ODE:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) \tag{1}$$

Let  $\mathbf{x}_0$  be such a state that:

$$\mathbf{f}(\mathbf{x}_0, t) = 0 \tag{2}$$

Then such state  $\mathbf{x}_0$  is called a *node* or a *critical point*.

#### STABILITY

Node  $\mathbf{x}_0$  is called *stable* iff for any constant  $\delta$  there exists constant  $\varepsilon$  such that:

$$||\mathbf{x}(0) - \mathbf{x}_0|| < \delta \longrightarrow ||\mathbf{x}(t) - \mathbf{x}_0|| < \varepsilon$$
 (3)

Think of it as "for any initial point that lies at most  $\delta$  away from  $\mathbf{x}_0$ , the rest of the trajectory  $\mathbf{x}(t)$  will be at most  $\varepsilon$  away from  $\mathbf{x}_0$ ".

Equivalently we can say "the solutions starting from  $\delta$ -sized ball do not diverge".

#### Asymptotic stability

Node  $\mathbf{x}_0$  is called *asymptotically stable* iff for any constant  $\delta$  it is true that:

$$||\mathbf{x}(0) - \mathbf{x}_0|| < \delta \longrightarrow \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_0$$
 (4)

Think of it as "for any initial point that lies at most  $\delta$  away from  $\mathbf{x}_0$ , the trajectory  $\mathbf{x}(t)$  will asymptotically approach the point  $\mathbf{x}_0$ ".

Equivalently we can say "the solutions starting from  $\delta$ -sized ball converge to the node".

#### STABILITY VS ASYMPTOTIC STABILITY

#### Example

Consider dynamical system  $\dot{x} = 0$ , and solution x = 7. This solution is stable, but not asymptotically stable (solution corresponding to  $x(0) = 7 + \delta$  do not diverge, but do not converge to x = 7 either).

#### Example

Consider dynamical system  $\dot{x} = -x$ , and solution x = 0. This solution is stable and asymptotically stable (all solutions converge to x = 0).

#### Example

Consider dynamical system  $\dot{x} = x$ , and solution x = 0. This solution is unstable (all other solutions diverge from x = 0).

#### LINEAR SYSTEMS

Consider the following linear ODE:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{5}$$

This is called a *linear time-invariant system (LTI)*, indicating that **A** and **B** are constant.

Removing the input we find an even simpler equation:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{6}$$

This LTI is an *autonomous system*, since its evolution depends only on the state of the system.

#### Real eigenvalues

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{D}\mathbf{x} \tag{7}$$

where  $\mathbf{D} = \operatorname{diag}(d_1, ..., d_n)$  is a diagonal matrix. This is the same as a system of independent equations:

$$\begin{cases} \dot{x}_1 = d_1 x_1 \\ \dots \\ \dot{x}_n = d_n x_n \end{cases}$$
 (8)

Each of these equations has an exact solution  $x_i = C_i e^{d_i t}$ . It diverges from 0 if  $d_i > 0$ , it does not diverge if  $d_i \le 0$  and it converges to 0 if  $d_i < 0$ .

Real eigenvalues

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{9}$$

where **A** can be decomposed via eigen-decomposition as  $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ , where **D** is a diagonal matrix.

$$\dot{\mathbf{x}} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{x} \tag{10}$$

Multiplying it by  $\mathbf{V}^{-1}$  we get:  $\mathbf{V}^{-1}\dot{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{x}$ . Defining  $\mathbf{z} = \mathbf{V}^{-1}\mathbf{x}$  we transform the equation:  $\dot{\mathbf{z}} = \mathbf{D}\mathbf{z}$ .

Since elements of  $\mathbf{D}$  are real, we can clearly see, that iff they are all negative will the system be asymptotically stable. If they are non-positive, the system is stable. And those elements are eigenvalues of  $\mathbf{A}$ .

#### UPPER TRIANGULAR MATRICES

Examples of upper triangular matrices are:

$$\begin{bmatrix} 1 & 5 & -2 \\ 0 & 3 & 1 \\ 0 & 0 & -2 \end{bmatrix}, \begin{bmatrix} -2 & 0 & 8 \\ 0 & -2 & 8 \\ 0 & 0 & 7 \end{bmatrix}, \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix}$$
(11)

Eigenvalues of upper triangular matrices are the diagonal elements of these matrices.

#### UPPER TRIANGULAR MATRICES

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{x} \tag{12}$$

where **M** is an upper triangular matrices with negative eigenvalues  $m_{1,1}, \ldots m_{n,n}$ .

The last equation is  $\dot{x}_n = m_{n,n} x_n$ , and since  $m_{n,n} < 0$  we can observe that  $\lim_{t \to \infty} x_n(t) = 0$ .

The equation # n-1 is  $\dot{x}_{n-1} = m_{n-1,n-1}x_{n-1} + m_{n-1,n}x_n$ , and since  $m_{n-1,n-1} < 0$  and  $\lim_{t \to \infty} x_n(t) = 0$  we can observe that  $\lim_{t \to \infty} x_{n-1}(t) = 0$ .

This can be repeated for all equations, proving asymptotic stability for the system.

Complex eigenvalues, 2-dimensional case (1)

Let us consider the following system:

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \tag{13}$$

The eigenvalues of the system are  $\alpha \pm i\beta$ . We denote  $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \mathbf{x}$ .

We start by claiming that the system will be stable iff the  $\dot{\mathbf{x}}^{\top}\mathbf{x} < 0$ . Indeed, vector  $\dot{\mathbf{x}}$  can always be decomposed into two components,  $\dot{\mathbf{x}}_{||}$  parallel to  $\mathbf{x}$ , and  $\dot{\mathbf{x}}_{\perp}$  perpendicular to  $\mathbf{x}$ . By definition  $\dot{\mathbf{x}}_{\perp}^{\top}\mathbf{x} = 0$ , and is responsible for the change in orientation of  $\mathbf{x}$ . The value of  $\dot{\mathbf{x}}_{||}$  is responsible for the change in the length of  $\mathbf{x}$ ; the length would shrink iff  $\dot{\mathbf{x}}_{||}$  is of opposite direction to  $\mathbf{x}$ , giving negative value of the dot product  $\dot{\mathbf{x}}^{\top}\mathbf{x}$ .

Complex eigenvalues, 2-dimensional case (2)

Let us compute  $\dot{\mathbf{x}}^{\top}\mathbf{x}$ :

$$\dot{\mathbf{x}}^{\mathsf{T}}\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \tag{14}$$

$$\dot{\mathbf{x}}^{\mathsf{T}}\mathbf{x} = \alpha(\mathbf{x}_1^2 + \mathbf{x}_2^2) \tag{15}$$

From this it is clear that the product  $\dot{\mathbf{x}}^{\top}\mathbf{x} < 0$  is negative iff  $\alpha < 0$ .

#### Definition

As long as the *real parts of the eigenvalues* of the system are *strictly negative*, the system is *asymptotically stable*. If the real parts of the eigenvalues of the system are zero, the system is *marginally stable*.

Complex eigenvalues, 2-dimensional case (3)

Vector field of 
$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$
 is shown below:



General case (1)

Given  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ , where  $\mathbf{A}$  can be decomposed via eigen-decomposition as  $\mathbf{A} = \mathbf{U}\mathbf{C}\mathbf{U}^{-1}$ , where  $\mathbf{C}$  is a complex-valued diagonal matrix and  $\mathbf{U}$  is a complex-valued inevitable matrix.

We multiply both sides by  $U^{-1}$ , then define  $z = U^{-1}x$  to arrive at:

$$\dot{\mathbf{z}} = \mathbf{C}\mathbf{z} \tag{16}$$

which falls into a set of independent equations, with complex coefficients  $c_j$ :

$$\dot{z}_j = c_j z_j \tag{17}$$

General case (2)

Expanding  $c_j = \alpha + i\beta$ , and  $z_j = u + iv$  (we dismiss subscripts for clarity), we find that  $\dot{z}_j = c_j z_j$  can be expanded as:

$$\dot{u} + i\dot{v} = \dot{z}_j = c_j z_j = (\alpha + i\beta)(u + iv) \tag{18}$$

$$\dot{u} + i\dot{v} = \alpha u + i\beta u + i\alpha v - \beta v \tag{19}$$

As we can see,  $\dot{z}_j = c_j z_j$  is asymptotically stable iff  $\operatorname{Re}(c_j) < 0$ , and marginally stable if  $\alpha = \operatorname{Re}(c_j) = 0$ . Same is true for  $\dot{\mathbf{z}} = \mathbf{C}\mathbf{z}$  and hence, for  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ , as  $\mathbf{U}$  is invertible.

#### Condition

Consider an autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{21}$$

#### Definition

Eq. (21) is stable iff real parts of eigenvalues of **A** are non-positive.

#### Definition

Eq. (21) is asymptotically stable iff real parts of eigenvalues of  ${\bf A}$  are negative.

Illustration

Here is an illustration of *phase portraits* of two-dimensional LTIs with different types of stability:



Figure 1: phase portraits for different types of stability

Credit: staff.uz.zgora.pl/wpaszke/materialy/spc/Lec13.pdf



# READ/WATCH MORE

- Control Systems Design, by Julio H. Braslavsky staff.uz.zgora.pl/wpaszke/materialy/spc/Lec13.pdf
- Stability and Eigenvalues, Steve Brunton youtu.be/h7nJ6ZL4Lf0
- MAE509 (LMIs in Control): Lecture 4, part A Stability and Eigenvalues youtu.be/8zYOJbpiT38

#### THANK YOU!

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Control-Theory-Slides-Spring-2023

Check Moodle for additional links, videos, textbook suggestions.

