

Hashing

Cryptography, Autumn 2021

Lecturers: J. Daemen, B. Mennink

October 5, 2021

Institute for Computing and Information Sciences Radboud University

Outline

Hash function applications and requirements

Merkle-Damgård mode and provable security

MD5 and standards SHA-1 and SHA-2

Hash function applications and

requirements

Hash function definition

- ▶ Function h from $\{0,1\}^*$ to $\{0,1\}^\ell$
 - no dedicated key input
 - input *M* has arbitrary length
 - output H, called digest or just hash, has fixed length ℓ
- \blacktriangleright Secure if it behaves as a \mathcal{RO} , with output truncated to ℓ bits
- ightharpoonup So strength defined in terms of output length ℓ

Message compression and collision resistance

- Applications
 - signing M with private key PrK: sign h(M) instead
 - identification of a file M with its hash h(M)
 (e.g., in git, bittorrent)
- ▶ These rely on h(M) being *unique*
- ► Security notion: **collision resistance**
 - hard to find $M \neq M'$ such that h(M) = h(M')

- ▶ For \mathcal{RO} : Pr(success) $\approx N^2/2^{\ell+1}$ with N: # calls h(·)
 - expected cost of generating collision about $2^{\ell/2}$
 - collision resistance security strength $\leq \ell/2$
 - ullet this is the birthday bound on the digest length ℓ

2nd preimage resistance

- Sometimes collision resistance is not required
- Examples
 - using an existing signature on M to forge a signature on M'
 - forge a file M identified by h(M) to M'
- ► Security notion: **2nd preimage resistance**
 - given M and h(M), find M' ≠ M such that h(M') = h(M)

- ▶ Generic attack (on \mathcal{RO}) has succes probability $N/2^{\ell}$
 - security strength limited to ℓ instead of $\ell/2$

Hashing passwords and preimage resistance

- Application
 - storage of hashed passwords on servers: h(password||salt)

- ► Security notion: **preimage resistance**
 - given H, find any M such that h(M) = H

- ▶ Security strength ≤ ℓ
- Sometimes it is not pure preimage resistance that we want
 - M may have to satisfy certain criteria, e.g., ASCII-coded
 - problem may be: given H obtained as $H \leftarrow h(M)$, find that M

Keyed hashing

- ▶ MAC computation: h(K||M) = T
- ▶ Stream cipher: $h(K||D||i) = z_i$ (keystream block)
- ▶ Key derivation $h(Master K || "Bob") = K_{Bob}$
 - different diversifier values give independent subkeys
 - in payment systems: MK in bank, K_i in IC card
 - knowledge of K_i shall not reveal MK
 - also used in TLS for computing symmetric keys . . .

Domain separation

- ▶ Some applications need multiple *independent* hash functions
- ▶ This can be done with a single h using domain separation
 - output of h(M||0) and h(M||1) are independent
 - ...unless h has a cryptographic weakness
- ▶ Generalization to 2^{w} functions with D a w-bit diversifier

$$h_D(M) = h(M||D)$$

► Variable-length diversifiers: suffix-free set of strings

Other applications and requirements

- ▶ There are many other applications of hash functions
 - destroying algebraic structure, e.g.,
 - ► encryption with RSA: OAEP [PKCS #1]
 - ▶ signing with RSA: PSS [PKCS #1]
 - more than 800 uses of hash function MD5 in MS Windows
- Expressing security model is not easy
- Problems:
 - for designer: what to aim for?
 - for user: what are the (claimed) security properties?
- ▶ Design approach: try to build hash function that *behaves like a RO*
 - there exist counterexamples proving this is impossible
 - still the best we can come up with and intuitively kind of clear

Merkle-Damgård mode and

provable security

Classical iterative hashing: Merkle-Damgård

- Mode of use of a fixed-input-length compression function F
- Collision resistance preserving
 - collision in hash function implies collision in F
 - reduces hash function design to fixed-input-length compression function design
 - implies fixing initial value (IV) of chaining value (CV) and conditions on the padding
- Important
 - used in MD5 and standards SHA-1, SHA-2
 - many experts (still) believe this is a good idea

Security of the hashing mode: (black-box) distinguishing setup

- ► Advantage of distinguishing between:
 - real world: mode \mathcal{M} calling the ideal \mathcal{F} : $\mathcal{M}(\mathcal{F})$
 - ideal world: \mathcal{RO}
- ► Can be used to analyze concrete modes like Merkle-Damgård
- ▶ Problem: this adversary model is too weak
 - ullet in real world adversary should be able to query ${\cal F}$
 - ullet we don't want to base hash function security on secrecy of ${\mathcal F}$

Hashing mode security: attempt to fix distinguishing setup

- \blacktriangleright We give adversary access to $\mathcal F$ in real and ideal world
- lackbox Unfortunately, now any ${\mathcal M}$ can be distinguished in a few queries:
 - adversary queries h $(\mathcal{M}(\mathcal{F}) \text{ or } \mathcal{RO})$ with M
 - adversary simulates mode $\mathcal{M}(\mathcal{F})$ by making calls to \mathcal{F} herself
- \blacktriangleright $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ will behave \mathcal{M} -consistently
- \blacktriangleright $(\mathcal{RO}, \mathcal{F})$ both return random responses so not likely \mathcal{M} -consistent
- ▶ Note: keyed modes do not have this problem:
 - ullet unknown key ${\color{blue}K}$ prevents simple ${\color{blue}\mathcal{M}}$ -inconsistency check

Modeling public compression function: indifferentiability

- ► Concept by [Maurer et al. (2004)], for hashing [Coron et al. (2005)]
 - adversary gets access to F in real world
 - ullet introduces counterpart in ideal world: simulator ${\cal S}$
- ▶ Methodology for proving bounds on the advantage:
 - \bullet build $\mathcal S$ that makes left/right distinguishing difficult
 - ullet prove bound for advantage given this simulator ${\cal S}$
 - S may query \mathcal{RO} for acting \mathcal{M} -consistently: $\mathcal{S}(\mathcal{RO})$
- ▶ Advantage in this setting is the benchmark for hash mode security

The limit of iterative hashing: internal collisions

- ▶ There exist inputs $M \neq M'$ leading to same CV
- ▶ Messages M||X| and M'||X| always collide for any string X
- ► This effect does not occur in RO
- ► Security strength upper bounded by birthday bound in *CV* length

Distinguishing iterative hashing modes from \mathcal{RO}

- ▶ Send N queries to $\mathcal{RO}/\mathcal{M}(\mathcal{F})$ of form $M^{(i)}\|X$ with X always same
 - if there is no collision, say \mathcal{RO}
 - otherwise, we have one or more collisions for some $i \neq j$
 - for each, query $M^{(i)}||X'|$ and $M^{(j)}||X'|$ for some $X' \neq X$
 - if equal: say $\mathcal{M}(\mathcal{F})$, otherwise: say \mathcal{RO}
- $Adv \approx N^2 2^{-(|CV|+1)}$
 - security strength of iterative hashing $\leq |CV|/2$
 - ullet truncating output to $\ell < |\mathit{CV}|$ does not affect advantage
- ightharpoonup Attack success probability on hashing mode with ideal $\mathcal F$ at most:
 - (1) success probability of that attack on \mathcal{RO} plus
 - (2) distinguishing advantage $N^2 2^{-(|CV|+1)}$

(2nd) preimage resistance of Merkle-Damgård

- ▶ In Merkle-Damgård: $|CV| = \ell$ (digest length)
- ▶ Success probability of (2nd) preimage attack is upper bounded by:
 - (1) (2nd) preimage attack on \mathcal{RO} truncated to ℓ bits: $N2^{-\ell}$
 - (2) distinguishing advantage: $N^2 2^{-(|CV|+1)} = N^2 2^{-(\ell+1)}$
- ► This leaves room for (2nd) preimage attacks with $Pr(succ.) \gg N2^{-\ell}$
- ▶ 2004-2006: new attacks, much to the surprise of the establishment
 - E.g., 2nd preimage of 2^d -block message in $\approx 2^{|CV|-d} \mathcal{F}$ calls

- ▶ Remedy: take $|CV| = 2\ell$
 - called wide-pipe hashing
 - Merkle-Damgård loses its collision resistance preservation

Merkle-Damgård weakness: length extension

- lacktriangledown Take indifferentiability setup with ${\cal M}=$ Merkle-Damgård
- ▶ Distinguish $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ from $(\mathcal{RO}, \mathcal{S}(\mathcal{RO}))$ in 3 queries:

- ▶ Query construction oracle with M_1 resulting in H_1
- ▶ Query construction oracle with $M_1 || M_2$ resulting in H_2
- ▶ Query primitive oracle with $H_1 || M_2$ resulting in H'
- ▶ For $(\mathcal{M}(\mathcal{F}), \mathcal{F})$ we have $H' = H_2$.
- \blacktriangleright Simulator cannot ensure this as it does not know M_1 to ask \mathcal{RO}
- ▶ This is called the *length extension weakness*:
 - one can compute $h(M_1||M_2)$ from $H_1 = h(M_1)$ and M_2 only
 - generalizes to multi-block strings M_1 and M_2
 - major problem for MAC function $h(K||\cdot)$

Merkle-Damgård weakness: length extension (cont'd)

- ▶ Why does Merkle-Damgård have the length extension weakness?
 - adversary gets CVs (here H_1) by queries to $\mathcal{M}(\mathcal{F})$
 - if $\mathcal{M}(\mathcal{F})$ cannot return CVs, S can be made \mathcal{M} -consistent
- ► Easy fix by dedicating bit in F input to indicate final/non-final
 - $CV \leftarrow F(M_1 || IV || 0)$ for first block
 - $CV \leftarrow F(M_i || CV || 0)$ for intermediate block
 - $H \leftarrow F(M_n \| \text{pad} \| CV \| 1)$ for last block
 - $H \leftarrow F(M||pad||IV||1)$ for short message
- ▶ This was never applied for standard Merkle-Damgård hash functions

Patching length extension: HMAC mode [FIPS 197]

MAC mode with length extension patch for Merkle-Damgård

- ▶ Two calls to the hash function, like $T \leftarrow h(K_{out} || h(K_{in} || M))$
- ▶ Remember: $h(K_{in}||M)$ allows tag forgery by using length-extension
- Wikipedia figure:

Extending the output length: The mode MGF1 [PKCS #1]

- ▶ Repeating hash computation multiple times
- ▶ On message followed by counter
- Only last block must be processed multiple times

MD5 and standards SHA-1 and

SHA-2

MD5 and standards SHA-1 and SHA-2

- ▶ MD5 [Ron Rivest, 1991]
 - based on MD4 that was an original design
 - 128-bit digest
- ► SHA-1 [NIST, 1995] (after SHA-0 [NIST, 1993])
 - inspired by MD5, designed at NSA
 - 160-bit digest
- ► SHA-2 series [NIST, 2001 and 2008]
 - reinforced versions of SHA-1, designed at NSA
 - 6 functions with 224-, 256-, 384- and 512-bit digest
- ► Internally:
 - Merkle-Damgård iteration mode
 - F based on a block cipher in Davies-Meyer mode

The Davies-Meyer mode for building a compression function

MD5, SHA-1 and SHA-2 all use a block cipher internally:

- ► This is called the Davies-Meyer mode
- ► Separation data path and message expansion (key schedule)
- Feedforward
 - due to Merkle-Damgård proof: collision resistance preservation
 - otherwise it is trivial to generate collisions for F
- ▶ Why a block cipher: we don't know how to design a decent compression function from scratch

MD5 internals

- ▶ Software oriented with 32-bit words
- ► 4-word *CV* and datapath
- ▶ 16-word message block
- ▶ 64 rounds, each taking one message word
- Hoped strength by combining arithmetic, rotation and XOR (ARX)

Round function:

SHA-1 internals

- ▶ Similar to MD5 but
 - 5-word state and 80 rounds
 - round i takes a word w[i] of the expanded message
- ▶ Message expansion:
 - i < 16 : w[i] = m[i]
 - $i \ge 16$: $w[i] = (w[i-3] \oplus w[i-8] \oplus w[i-14] \oplus w[i-16]) \ll 1$
 - similar to AES key schedule (this is where we got it)

Round function:

SHA-2 internals

- ▶ 8-word state and nonlinear message expansion
- 6 versions:
 - SHA-256 and SHA-224: 32-bit words and 64 rounds
 - SHA-512, SHA-384, SHA-512/256 and SHA-512/224: 64-bit words and 80 rounds

Round function:

Security status of MD5, SHA-1 and SHA-2

- ► Problems of Merkle-Damgård:
 - ullet perceived: strength against a.o. 2nd preimages below ℓ
 - real: length-extension weakness
- ► MD5
 - 1993: F shown weak (before widespread adoption)
 - 2003-2004: great advances in breaking MD5
 - despite weaknesses, corporate IT co. unwilling to abandon MD5
 - 2005: Lenstra, Wang, and De Weger use MD5 collisions to generate fake TLS certificates
 - 2016: MD5 largely replaced by SHA-256
- ► SHA-1
 - 2004-2007: theoretical collision attacks in effort $\approx 2^{61}$
 - 2017: collisions by Stevens et al. published at shattered.io
- ▶ SHA-2 series: no specific problems outside of length extension

Conclusions

- ► Hash functions are modes built on underlying primitives
- Classical hash standards based on block ciphers
 - industry standard MD5 very badly broken
 - SHA-1 practically broken
 - SHA-2 has Merkle-Damgård length-extension weakness
 - dedicated modes are required: HMAC and MGF1

All in all a messy situation