

# Explorer TDSP Research Poster



# An Analysis of Traffic Crashes in Manhattan using NYC OpenData By: Aadi Bery



#### **INTRODUCTION**



#### **RESEARCH QUESTION:**

In Manhattan what impact do additional factors like denser population and greater # of pedestrians among others have on traffic accidents and their severity? How does this compare to the other boroughs?

#### **BACKGROUND**

This is a part of the last milestone of the Explorer TDSP, the self-guided research question. We work with the NYC open data dataset for motor vehicle collisions —crashes.

#### **OBJECTIVES**

- Perform a deep dive into crash data in Manhattan through various data analysis methods
- Understand the why as well as the implications of these findings

### RESEARCH

#### **ANALYSIS METHODOLOGY**

- Comparative
- Geospatial
- Time Series
- Libraries Used:
- Pandas
- Matplotlib
- Folium

#### **VISUALIZATIONS:**

Json



Comparing proportion of crashes with injuries and deaths within Manhattan



Time series analysis of crashes in zip code #10016(Murray Hill) which contained most crashes



Visualizing different types of crashes through geospatial analysis



Choropleth map indicating number of crashes occurring in Manhattan zip codes

## **CONCLUSION**

#### **RESULTS/ CONCLUSION**

To answer our research question, I was able to see the impact of various factors unique to Manhattan on crashes.

- There was a greater proportion of crashes with pedestrian and cyclist injuries relative to motorist injuries.
- Lot less crashes with injuries compared to Brooklyn and Queens likely due to slower speed of traffic
- Zip codes with greatest # of crashes were in midtown/lower Manhattan which is in agreement with NYC OpenData Pedestrian Demand Map below.
- Analyze zip codes with top crashes



Source: data.cityofne wyork.us

#### RECOMMENDATIONS

- Continue working to increase the number of bike lanes especially in
- pedestrian and cyclist heavy areas
   Do further research into proportion
   of crashes with deaths/injuries per
   1000 residents in different areas



## Acknowledgments/Sources:

- NYC OpenData. (n.d.). *Pedestrian Mobility Plan: Pedestrian Demand Map*. https://data.cityofnewyork.us/Transportation/Pedestrian-Mobility-Plan-Pedestrian-Demand-Map/c4kr-96ik
- LatLong.net. (n.d.). *Manhattan, New York City, NY, USA Lat Long Coordinates*. <a href="https://www.latlong.net/place/manhattan-new-york-city-ny-usa-31886.html">https://www.latlong.net/place/manhattan-new-york-city-ny-usa-31886.html</a>
- Python Graph Gallery. (n.d.). #292 Choropleth map with Folium. https://python-graph-gallery.com/292-choropleth-map-with-folium/
- Udell, M. (2020, May 7). Creating Choropleth Maps with Python's Folium Library. Towards Data Science.

https://towardsdatascience.com/creating-choropleth-maps-with-pythons-folium-library-cfacfb40f56a

- Sentry. (n.d.). *How to change a column type in a DataFrame in Python (Pandas)*. <a href="https://sentry.io/answers/change-a-column-type-in-a-dataframe-in-python-pandas/">https://sentry.io/answers/change-a-column-type-in-a-dataframe-in-python-pandas/</a>
- LearnPython.com. (n.d.). *How to Average in Matplotlib*. https://learnpython.com/blog/average-in-matplotlib/