EPFLx: AlgebreX Algèbre Linéaire (Partie 1)

Pdf Notes

Chapitre 3:

3.1

DÉFINITION 1:

Soit V un ensemble non-vide muni d'une opération binaire + et d'une action des nombres réels \cdot , c'est-à-dire que pour tout $u,v\in V$, il existe un unique élément u+v et pour tout $u\in V$, $\lambda\in\mathbb{R}$, il existe un unique élément $\lambda\cdot v\in V$. On dit que V est un \mathbb{R} -espace vectoriel si les axiômes suivants sont satisfaits, pour tous $u,v,w\in V$, $\lambda,\mu\in\mathbb{R}$.

- 1. u + v = v + u.
- 2. (u+v)+w=u+(v+w).
- 3. $\lambda(u+v) = \lambda u + \lambda v$.
- 4. $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$.
- 5. $\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v$.
- 6. $1 \cdot u = u$.
- 7. Il existe un élément neutre pour la loi +, i.e. un élément $e \in V$ tel que e + u = u pour tout $u \in V$.
- 8. Pour tout $u \in V$, il existe un inverse par rapport à la loi +, i.e. un élément $u' \in V$ tel que u + u' = e.

REMARQUES 2:

- 1. On écrit λu pour $\lambda \cdot u$.
- 2. On appelle $\lambda \cdot u$ la multiplication par scalaire.
- 3. Les éléments de V sont appelés des *vecteurs* et les éléments de $\mathbb R$ des *scalaires*.

PROPOSITION 3:

Soit V un espace vectoriel. Alors les affirmations suivantes sont vérifiées.

- 1. Si $u, v, w \in V$ sont tels que u + v = u + w, alors v = w.
- 2. Il existe un unique élément neutre pour l'addition, que l'on appelle le vecteur nul et que l'on note 0 ou 0_V .
- 3. Pour tout $u \in V$, il existe un unique $u' \in V$ tel que u+u'=0. On l'appelle l'*inverse* de u et on le note -u.
- 4. Pour tout $u \in V$ et tout $\lambda \in \mathbb{R}$, on a $0 \cdot u = 0$ et $\lambda \cdot 0 = 0$.
- 5. Pour tout $u \in V$, on a $(-1) \cdot u = -u$.
- 6. Si $v \in V$ et $\lambda \in \mathbb{R}$ sont tels que $\lambda v = 0$, alors $\lambda = 0$ ou v = 0.

PROPOSITION:

Soit $\mathbb{R}^n=\{(x_1,\ldots,x_n):x_1,x_2,\ldots,x_n\in\mathbb{R}\}$ et considérons l'addition définie par

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

ainsi que la multiplication par scalaire donnée par

$$\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n).$$

Alors l'ensemble \mathbb{R}^n , muni des lois définies ci-dessus, est un \mathbb{R} -espace vectoriel. On appelle cet espace vectoriel l'espace des coordonnées de dimension n.

3.3

DÉFINITION 1:

L'ensemble des fonctions polynômiales à coefficients réels de $\mathbb R$ dans $\mathbb R$ est l'ensemble, noté $\mathbb P(\mathbb R)$ est constitué des fonctions $f:\mathbb R\to\mathbb R$ telles que $f(x)=a_0+a_1x+\cdots+a_nx^n$ pour un certain $n\in\mathbb N$ et certains $a_0,a_1,\ldots,a_n\in\mathbb R$.

PROPOSITION 2:

L'ensemble $\mathbb{P}(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

DÉFINITION 3:

Soit $f\in\mathbb{P}(\mathbb{R})$ une fonction polynômiale de la forme $f=a_0+a_1x+\cdots+a_nx^n$, où $a_n\neq 0$. Alors on appelle l'entier n le degré de f. Le degré du polynôme nul, quant à lui, est égal à $-\infty$ par convention. Aussi, pour $n\in\mathbb{N}$, on désigne par $\mathbb{P}_n(\mathbb{R})$ le sous-ensemble de $\mathbb{P}(\mathbb{R})$ constitué des fonctions polynômiales de degré plus petit ou égal à n.

PROPOSITION 4:

L'ensemble $\mathbb{P}_n(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

NOTATION 5:

L'ensemble $\{f:\mathbb{R} o\mathbb{R}\}$ des fonctions de \mathbb{R} dans \mathbb{R} est désigné par $\mathscr{F}(\mathbb{R})$.

PROPOSITION 5:

L'ensemble $\mathscr{F}(\mathbb{R})$ admet une structure de \mathbb{R} -espace vectoriel.

PROPOSITION 6:

Soit V un \mathbb{R} -espace vectoriel. Si V contient deux éléments disctincts, alors il en contient une infinité.

3.4

DÉFINITION 1:

Soit V un \mathbb{R} -espace vectoriel et $W \subset V$ un sous-ensemble de V. On dit que W est un sous-espace vectoriel de V si les deux conditions suivantes sont vérifiées.

- 1. $W \neq \emptyset$.
- 2. Pour tous $v,w\in W$ et $\lambda\in\mathbb{R}$, on a $\lambda v+w\in W$.

PROPOSITION 2:

Si W est un sous-espace vectoriel d'un \mathbb{R} -espace vectoriel V, alors W, muni de l'addition et de la multiplication par scalaire de V, est un espace vectoriel.

3.5

DÉFINITION 1:

Soient V un \mathbb{R} -espace vectoriel et $v_1,\ldots,v_t\in V$. Une *combinaison linéaire* de v_1,\ldots,v_t est un vecteur de la forme $\lambda_1v_1+\lambda_2v_2+\cdots\lambda_tv_t$, où $\lambda_i\in\mathbb{R}$ pour tout $1\leq i\leq t$.

DÉFINITION 2:

Soient V un \mathbb{R} -espace vectoriel et $S \subset V$ une collection non-vide de vecteurs. On écrit $\mathrm{Vect}(S)$ pour l'ensemble des combinaisons linéaires des vecteurs de S, c'est-à-dire

$$Vect(S) = {\lambda_1 v_1 + \cdots \lambda_t v_t : \lambda_i \in \mathbb{R}, v_i \in S}.$$

REMARQUE 3:

D'autres notations sont parfois utilisées pour désigner l'ensemble $\mathrm{Vect}(S)$. On rencontrera notamment $\mathrm{Vect}(S)$, $\mathrm{span}(S)$ ou encore $\mathrm{lin}(S)$, par exemple.

PROPOSITION 4:

Soient V un \mathbb{R} -espace vectoriel et $S \subset V$ une famille non-vide. Alors $\mathrm{Vect}(S)$ est un sous-espace vectoriel de V. On l'appelle le sous-espace engendré par S. Par convention, on notera $\mathrm{Vect}(\emptyset) = \{0\}$.

3.6

DÉFINITION 1:

Soient V un \mathbb{R} -espace vectoriel et $W_1,W_2\subset V$ deux sous-espaces vectoriels de V. La *somme* de W_1 et W_2 est le sous-ensemble de V défini par

$$W_1+W_2=\{u+v:u\in W_1,v\in W_2\}.$$

PROPOSITION 2:

Soient V un \mathbb{R} -espace vectoriel et $W_1,W_2\subset V$ deux sous-espaces vectoriels de V. Alors $W_1\cap W_2$ et W_1+W_2 sont des sous-espaces vectoriels de V.

DÉFINITION 3:

Soient V un \mathbb{R} -espace vectoriel et $W_1,W_2\subset V$ des sous-espaces vectoriels de V. On dit que la somme W_1+W_2 est directe et on écrit $W_1+W_2=W_1\oplus W_2$ si $W_1\cap W_2=\{0\}$.

3.7

DÉFINITION 1:

Soit $A\in M_{m\times n}(\mathbb{R})$ une matrice de taille $m\times n$ à coefficients réels. On appelle l'espace ligne de A le sous-espace vectoriel de \mathbb{R}^n engendré par les lignes de A, vues comme des vecteurs de \mathbb{R}^n . Autrement dit, si L_1,\ldots,L_m sont les lignes de A (vues comme des vecteurs de \mathbb{R}^n), alors l'espace ligne de A est défini par $\mathrm{Vect}(\{L_1,\ldots,L_m\})$.

DÉFINITION 2:

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de taille $m \times n$ à coefficients réels. On appelle *l'espace colonne de A* le sous-espace vectoriel de \mathbb{R}^m engendré par les colonnes de A, vues comme des vecteurs de \mathbb{R}^m . Autrement dit, si C_1, \ldots, C_n sont les colonnes de A (vues comme des vecteurs de \mathbb{R}^m), alors l'espace colonne de A est défini par $\mathrm{Vect}(\{C_1, \ldots, C_n\})$.