Question Bank-Unit 1 Numerical Methods: MATH 2300 B.Tech , III Sem

(Non-linear equations and system of linear equations)

S. No.	Questions	СО	Bloom 's Taxon omy Level	Diffi cult y Leve	Competi ive Exan Question Y/N	Area	Topic
1	Define Inherent error with example	CO1	K1	L	N	Errors	Types of error
2	Define round off error with example	C01	K1	M	N	Errors	Types of error
3	Define truncation error with example	C01	K1	M	N	Errors	Types of error
4	Define absolute error	CO1	K1	M	N	Errors	Types of error
5	Define relative error	C01	K1	M	N	Errors	Types of error
6	Define percentage error	CO1	K1	L	N	Errors	Types of error
.7	Round off the number 3.6252782 up to 3 decimal places	CO1	K2	М	N	Errors	Accuracy of numbers
8	How many significant digits in the number 35.00537	CO1	K1	М	N	Errors	Accuracy of numbers
9	The number 56.487262is correct up to three decimal places then maximum absolute error is	CO1	К2	L	N	Errors	Accuracy of numbers
10	Let $f(x,y)$ be a function of x and y , write the formula for maximum absolute error in the function	CO1	K1	L	N	Errors	Error in the approximation of a function
.11	Distinguish between round off errors and truncation errors.	CO1	K2	M	N	Errors	Types of error
12	A root of the equation $f(x) = 0$ is that value of x where the graph of the function $y = f(x)$ the x -axis.	CO1	К2	М	N	Non-linear equations	Basic properties of equation
13	What is a transcendental equation? Elaborate with suitable examples.	CO1	K1	L	N	Non-linear equations	Basic properties of equation
14	Differentiate between polynomial and transcendental equations by giving two examples of each.	CO1	K2	М	N	Non-linear equations	Basic properties of equation

1	State the Intermediate Value Theorem. Where do we apply the theorem in	C01	K1	L	N	Non-linear	Basic properties
	our course?	201		7.5		equations	of equation
16	Explain the basic principle of root finding by Bisection method.	C01	K2	M	N	Non-linear equations	Bisection method
17	Find the number of iterations required in finding the root of a equation	CO1	K1	M	N	Non-linear	Bisection method
	$f(x) = 0$ by Bisection method for achieving an accuracy ε .					equations	
18	Find the interval in which a real root of $x^3 - 2x - 5 = 0$ lies.	CO1	К3	L	N	Non-linear	Basic properties
						equations	of equation
1	Write the iteration methods in the descending order of their order of	CO1	K2	L	N	Non-linear	Convergence of
	convergence: Newton- Raphson method, Regula- Falsi method, Secant					equations	iterative methods
	method.						
20	Write condition of convergence of Newton-Raphson method.	CO1	K2	M	N	Non-linear	Convergence of
						equations	iterative methods
21	Under what condition secant method fails to converge to a solution.	CO1	K2	M	N	Non-linear	Secant method
						equations	
22	Give the geometrical interpretation of fixed-point iteration method.	CO1	K2	M	N	Non-linear	Fixed point
						equations	method
	Discuss the situations where the fixed-point iteration process may not	CO1	K2	M	N	Non-linear	Fixed point
	converge to a solution.					equations	method
24	What is difference between direct methods and iterative methods. Give	CO1	K2	M	N	System of linear	System of linear
	some examples	COI	IXΔ	IVI	IN	equations	equations
	Write sufficient condition for the convergence of Gauss Seidel method.	CO1	K1	L	N	System of linear	Gauss Seidel
23	write sufficient condition for the convergence of datass server method.	COI	KI		11	equations	method.
26	Round off the 0.77729, 0.0022218 numbers to four significant digits.	C01	К3	L	N	Errors	Accuracy of
20	Round on the 0.77727, 0.0022210 numbers to four significant digits.	COI	KJ		14	LITOIS	numbers
27		CO1	К3	Н	N	Errors	Accuracy of
	Find the absolute and relative error in $\sqrt{3} + \sqrt{5} + \sqrt{7}$ correct to 4	COI	No	''	11	Eliois	numbers
	significant digits.						numbers
28	Round off the numbers 865250 and 37.46235 to four significant figures	CO1	К3	M	N	Errors	Accuracy of
	and compute absolute, relative and percentage error in each case						numbers
29	Find the absolute error if the number $X = 0.00545828$ is	CO1	К3	M	N	Errors	Accuracy of
	(i) Truncated to three decimal places						numbers
	(ii) Rounded off to three decimal places.						
30	If $y = 4x^2y^3$ and arranging $y = 0.001$, compute the maximum	CO1	К3	M	N	Errors	Error in the
	If $u = \frac{4x}{z^4}$ and errors in x, y, z be 0.001, compute the maximum						approximation of
	absolute, relative, percentage error in u , when $x = 1$, $y = 1$, $z = 1$						a function
31	The error in the measurement of the area of circle is not allowed to	C01	К3	Н	N	Errors	Error in the
	exceed 0.1%. How accurately should the diameter be measured?	301					approximation of
	exceed 0.170. How accurately should the diameter be measured:						I apploatmation of

32	Compute the percentage error in the time period $T=2\pi\sqrt{\frac{l}{g}}$ for $l=1m$, if the error in the measurement of l is 0.01	CO1	К3	M	N	Errors	Error in the approximation of a function
33	Using Regula-Falsi method, compute the real root of $3x + \sin x = e^x$. Perform three iterations.	CO1	КЗ	M	N	Non linear equations	Regula- Falsi method
34	Find a root of the equation $x \cdot \log_{10} x = 1.9$ by secant method. Perform four iterations.	C01	К3	М	N	Non linear equations	Secant method
35	Find a root of $x^3 - x^2 - 1 = 0$ using the Newton-Raphson method correct to three decimal places.	CO1	КЗ	M	N	Non linear equations	Newton- Raphson method
36	The bacteria concentration in a reservoir varies as $C = 4e^{-2t} + e^{-0.1t}$. Using Newton-Raphson method calculate the time required for the bacteria concentration to be 0.5.	CO1	K4	Н	N	Non linear equations	Newton- Raphson method
37	Use the fixed-point iteration method to find a root of the equations: $x^3 - 9x + 1 = 0$	C01	К3	Н	N	Non linear equations	Fixed point method
38	What is the convergence criteria for the Fixed Point method? Can the method be applied to find a real root of the equation: $x = 4 - 10^x$?	C01	K4	Н	N	Non linear equations	Fixed point method
39	Solve the following equations by using Gauss elimination method: $2x+2y+z=6$, $4x+2y+3z=4$, $x-y+z=0$.	CO1	K4	М	N	System of linear equations	Gauss Elimination method
40	Find a root of the equation $\cos x = xe^x$ by Bisection method. Perform six iterations.	CO1	К3	M	N	Non linear equations	Bisection method
41	Using Bisection method, find a negative root of the equation $x^3 - 4x + 9 = 0$. Perform six iterations.	CO1	К3	M	N	Non linear equations	Bisection method
42	Show that rate of convergence of Newton-Raphson method is quadratic	C01	K4	Н	N	Non linear equations	Newton- Raphson method
43	Find a positive root of $x = e^{-x}$ by using fixed-point iteration process with the initial guess as $x_0 = 0.5$, correct up-to four places of decimal.	C01	K4	Н	N	Non linear equations	Fixed point method
44	Define the rate of convergence. Show that the rate of convergence fixed point method is linear.	C01	K4	Н	N	Non linear equations	Convergence of iterative methods

45	Find the positive root of the equation $x^4 - x = 10$ correct to three decimal places, using Newton-Raphson's method.	C01	К3	Н	N	Non linear equations	Newton- Raphson method
46	Find by Newton- Raphson's method, the real root of the equation $3x = \cos x + 1$, correct to four decimal places.	C01	К3	M	N	Non linear equations	Newton- Raphson method
47	Find the root of the equation $x^3 - 2x - 5 = 0$ using secant method correct to three decimal places.	C01	К3	L	N	Non linear equations	Secant method
48	Use the method of False-position, to find the fourth root of 32 correct to three decimal places.	C01	КЗ	Н	N	Non linear equations	Regula- Falsi method
49	Solve the following system of linear equations by Gauss Jordan method: $\begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix}$	CO1	КЗ	M	N	System of linear equations	Gauss Jordan method
50	Solve the following system of linear equations by Gauss Jordan method: $x+y+z=9$, $2x-3y+4z=13$, $3x+4y+5z=40$	C01	K4	M	N	System of linear equations	Gauss Jordan method
51	Find the solution of the system of equations: $45x+2y+3z=58$, $-3x+22y+2z=47$, $5x+y+20z=67$ Perform 3 iterations, using the Gauss-Seidel iteration method.	C01	K4	Н	N	System of linear equations	Gauss Seidel method
52	Test if the following system of equations is diagonally dominant and hence solve this system of equations by using Gauss Seidel method. Perform four iterations: $2x + y + 4z = 7$, $3x + y + 2z = 6$, $-x + 4y + 2z = 5$.	C01	К3	Н	N	System of linear equations	Gauss Seidel method
53	Find the fourth root of 32 by Newton- Raphson's method, correct to four decimal places.	C01	К3	Н	N	Non linear equations	Newton- Raphson method
54	Find the interval in which a real root of equation $x^3 - 17 = 0$ lies.	CO1	КЗ	L	N	Non-linear equations	Basic properties of equation
55	Round off the numbers 32.265 and 0.002358 correct to 2 decimal places.	CO1	К3	L	N	Errors	Accuracy of numbers