Отчёт по лабораторной работе №7

Архитектура компьютера НММбд-03-24

Туева Анастасия Юрьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выполнение самостоятельной работы	14
5	Выводы	19

Список иллюстраций

3.1	Создание файла	7
3.2	Редактирование файла	8
3.3	Запуск исполняемого файла	8
3.4	Редактирование файла	9
3.5	Запуск исполняемого файла	9
3.6	Редактирование файла	10
3.7	Запуск исполняемого файла	10
3.8	Редактирование файла	11
	Запуск исполняемого файла	12
3.10	Файл листинга "lab7-2.asm"	12
3.11	Строка 1	12
3.12	Строка 2	13
3.13	Строка 3	13
3.14	Создание файла без одного операнда	13
3.15	Файл листинга безодного операнда	13
4.1	Редактирование файла	15
4.2	Запуск исполняемого файла	16
4.3	Редактирование файла	17
	Запуск исполняемого файла	18

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов, приобретение навыков написания программ с использованием переходов и знакомство с назначением и структурой файла листинга.

2 Задание

- 1. Изучение команд условного и безусловного переходов
- 2. Выполнение лабораторной работы
- 3. Выполнение самостоятельной работы

3 Выполнение лабораторной работы

Создаём каталог для программам лабораторной работы № 7, переходим в него и создаём файл "lab7-1.asm" (рис. 3.1).

```
Файл Правка Вид Поиск Терминал Справка
aytueva@dk3n33 ~ $ mkdir ~/work/arch-pc/lab07
aytueva@dk3n33 ~ $ cd ~/work/arch-pc/lab07
aytueva@dk3n33 ~/work/arch-pc/lab07 $ touch lab7-1.asm
```

Рис. 3.1: Создание файла

Открываем созданный файл "lab7-1.asm", вставляем в него данный текст в соответствием с листингом 7.1. (рис. 3.2).

```
NAMES OF THE PROPERTY OF THE P
  Файл Правка Вид Поиск Терминал
                                                                                                                                                               Справка
                                                                                            THE PARTY OF
                                                                                                                                                                     (FETTISE)
lab7-1.asm
                                                                                                                                   9 L .: F
%include 'in_out.asm'; поджлючение выещие
SECTION data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: D8 'Сообщение № 3'.0
SECTION THAT
GLOBAL _start
 start:
jmp _label2
 label):
mov eax, msg1 : Вывод на экран строки
call sprintLF : Сообщение W |
 label2:
mov eax, msg2 ; Вывад на экран строки
call sprintLF ; 'Coobmanne W 2'
 label3:
mov eax, msg3 : Вывод на экран строки
call sprintLF : Сообщение № 3'
  end:
call quit
```

Рис. 3.2: Редактирование файла

Создаем исполняемый файл программы и запускаем его (рис. 3.3).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение № 2
Сообщение № 3
```

Рис. 3.3: Запуск исполняемого файла

Изменяем в текст программы в соответствии с листингом 7.2. (рис. 3.4).

```
Файл Правка Вид Поиск Терминал Справка
                   [----] 41 L:E
                                 3+19
lab7-1.asm
msgl: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3'.0
SECTION STOXE
GLOBAL _start
start:
jmp _label2
label1:
mov eax, msg1 : Вывод на экран строки
call sprintLF CoobweHMe N T'
jmp _end
label2:
mov eax, msg2 : Вышод на экран строки
call sprintLF : 'Coobmenue N 2'
jmp _label1
label3:
mov eax, msg3 : Вывод на экран строки
call sprintLF : Сообщение № 3°
end:
call quit : вызов подпрограммы завершени
```

Рис. 3.4: Редактирование файла

Создаем новый исполняемый файл программы и запускаем его (рис. 3.5).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение № 2
Сообщение № 1
```

Рис. 3.5: Запуск исполняемого файла

Вводим в файл текст программы так, чтобы вывод программы был как в задании (рис. 3.6).

```
lab7-1.asm [----] 41 L:[ 1+22 23/
%include 'in_out.asm' : подключение внешнего
SECTION data
msg1: DB 'Сообщение № 1'.0
msg2: DB 'Сообщение № 2'.0
msg3: DB 'Сообщение № 3'.0
SECTION ....
GLOBAL _start
start:
jmp _label3
label1:
mov eax, msg1 : Вывод на экран строки
call sprintLF ; 'Coequenne # 1'
imp _end
label2:
mov сах, msg2 : Вывод на экран строки
call sprintLF : 'Coobmense No 2'
imp label1
label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF : 'Coobmense N 3'
imp label2
end:
call quit ; вызов подпрограммы завершения
```

Рис. 3.6: Редактирование файла

Создаем новый исполняемый файл программы и запускаем его (рис. 3.7).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm

aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o

aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-1

Сообщение № 3

Сообщение № 2

Сообщение № 1
```

Рис. 3.7: Запуск исполняемого файла

Создаем новый файл lab7-2.asm с помощью команды "touch".

Вводим в файл текст другой программы в соответствии с листингом 7.3. (рис. 3.8).

```
lab7-2.asm [-M--] 47 L:[ 1+39 40/ 49] *(147
%include 'in_out.asm'
section data
msg1 db Введите В: ,0h
msg2 db "Наибельшее число: ",0h
dd '20'
dd '50'
section bss
max resb 10
B resb 10
section .....
global _start
_start:
mov eax, msg1
call sprint
mov ecx,B
mov edx, 10
call sread
mov eax,B
call atoi ; Выхов подпрограммы перевода символа в чис
mov [B],eax : запись преобразованного числа в 181
mov ecx,[A] ; 'eex = A'
mov [max],ecx : 'max = A'
стр еск,[С] ; Сравниваем 'А' и 'С'
jg check_B ; всли 'A>C', то переход на метку 'check_B
mov ecx,[C] : www.e 'eex = C'
mov [max],ecx ; 'max = C'
check_B:
mov eax, max
call atoi : Вызов подпрограммы перевода символа в чис
mov [max],eax ; запись преобразованиого числа в \max\
```

Рис. 3.8: Редактирование файла

Создаем исполняемый файл программы и запускаем его. Для проверки работы программы я ввела 3 разных числа (рис. 3.9).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-2

Введите В: 40

Наибольшее число: 50
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-2

Введите В: 10

Наибольшее число: 50
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-2

Введите В: 80

Наибольшее число: 80
```

Рис. 3.9: Запуск исполняемого файла

Создадим файл листинга для программы из файла "lab7-2.asm" и откроем его с помощью любого текстового редактора, например "mcedit" (рис. 3.10).

```
sytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf -l lab7-2.lst lab7-2.asm
sytueva@dk3n33 ~/work/arch-pc/lab07 $ mcedit lab7-2.lst
sytueva@dk3n33 ~/work/arch-pc/lab07 $
```

Рис. 3.10: Файл листинга "lab7-2.asm"

Проанализировав файл, я поняла как он работает и какие значения выводит. Эта строка находится на 21 месте, ее адрес "00000101", Машинный код - "В8 [0A000000]", а "mov eax,В" - исходный текст программы, означающий что в регистр "eax" мы вносим значения переменной В. (рис. 3.11).

Рис. 3.11: Строка 1

Эта строка находится на 35 месте, ее адрес "00000135", Машинный код - "E862FFFFFF", а "call atoi" - исходный текст программы, означающий что символ лежащий в строке выше переводится в число. (рис. 3.12).

Рис. 3.12: Строка 2

Эта строка находится на 47 месте, ее адрес "00000163", Машинный код - "A1[0000000]", а "mov eax,[max]" - исходный текст программы, означающий что число хранившееся в переменной "max" записывается в регистр "eax". (рис. 3.13).

Рис. 3.13: Строка 3

В строке "mov eax,max" я убрала "max" и попробовала создать файл. Выдало ошибку, так как для программы нужно два операнда. (рис. 3.14).

```
iytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf -l lab7-2.lst lab7-2.asm
lab7-2.asm:34: error: invalid combination of opcode and operands
iytueva@dk3n33 ~/work/arch-pc/lab07 $
```

Рис. 3.14: Создание файла без одного операнда

В файле листинга показывает, где именно ошибка и с чем она связана.(рис. 3.15).

Рис. 3.15: Файл листинга безодного операнда

4 Выполнение самостоятельной работы

Создаем новый файл lab7-3.asm с помощью команды "touch".

Напишем программу нахождения наименьшей из 3 целочисленных переменных a, b и c. Мой вариант - 11. (рис. 4.1).

```
lab7-3.asm
                   [-M--] 21 L:[ 1+
%include 'in_out.asm'
SECTION data
A1 DB 'Введите число А: ',0h
В1 DB 'Введите число В: ',0h
C1 DB 'Введите число С: ',0h
otv DB 'Наименьшее число: ',0h
SECTION DES
min RESB 20
A RESB 20
B RESB 20
C RESB 20
SECTION . text
GLOBAL _start
_start:
mov eax, Al
call sprint
mov ecx, A
mov edx,20
call sread
mov eax, A
call atoi
mov [A], eax
xor eax,eax
mov eax,B1
call sprint
mov ecx,B
mov edx, 20
call sread
mov eax,B
call atoi
mov [B], eax
xor eax,eax
mov ecx, [A]
mov [min],ecx
mov eax,[min]
cmp ecx,[B]
jl check_C
mov ecx, [B]
mov [min],ecx
check_C:
mov eax,C1
call sprint
```

Рис. 4.1: Редактирование файла

Создаем исполняемый файл программы и запускаем его. Ответ верный.(рис. 4.2).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-3.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-3 lab7-3.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-3
Введите число A: 21
Введите число B: 28
Введите число C: 34
Наименьшее число: 21
```

Рис. 4.2: Запуск исполняемого файла

Создаем новый файл lab7-4.asm с помощью команды "touch".

Во втором номере необходимо написать программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений. (рис. 4.3).

```
lab7-4.asm
call atoi
mov [A].eax
mov ecx,[X]
mov [F],ecx
emp ecx.8
je check_or
mov eax, [A]
mov ebx,4
mul ebx
add eax,[X]
mov [F].
jmp fin
check_or:
mov eax,[A]
mov ebx,4
mul ebx
mov [F], max
fin:
mov eax, otv
call sprint
mov eax,[F]
call iprintLF
call quit
```

Рис. 4.3: Редактирование файла

Создаем и запускаем исполняемый файл. Ответы верны. (рис. 4.4).

```
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-4.asm
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-4 lab7-4.o
aytueva@dk3n33 ~/work/arch-pc/lab07 $ ./lab7-4
4a ,x≅0
4a+x, x!=0
Введите значение Х:0
Введите значение а:3
Ответ: 12
aytueva@dk3n33 ~/work/arch-pc/lab07 $ nasm -f elf lab7-4.asm
aytueva@dk3n33 =/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-4 lab7-4.o
aytueva@dk3n33 -/work/arch-pc/lab07 $ ./lab7-4
4a ,x=0
4a+x, x!=0
Введите значение Х:1
Введите значение а:2
Ответ: 9
```

Рис. 4.4: Запуск исполняемого файла

5 Выводы

Благодаря данной лабораторной работе я изучила команды условного и безусловного переходов, приобрела навыки написания программ с использованием переходов и познакомилась с назначением и структурой файла листинга.