Assignment 3 MAT 315

Q3a: We will prove the contrapositive. If a is odd, then we have that a^m is also odd, for any $m \in N$. Therefore, a^m+1 is even, and it has factors. Now, if m is a power of 2, we can write it as $m=2^n \cdot q$ for some odd q. Consider the polynomial $f(t)=t^q+1$. This polynomial has a root t=-1 and thus it splits. Letting $t=x^{2^n}$, we see that $g(x)=f(x^{2^n})=x^m+1$ has a proper factor x^{2^n} . Letting x=a we see that $a^{2^n}+1$ is a proper factor of 2^m+1 thus it cannot be prime.

Q3b: First suppose that a > 2. Then we have that $a^m - 1 = (a-1)(a^{m-1} + a^{m-2} + \cdots + 1)$. Therefore, $a-1|a^m-1$. Since (a-1) > 1 we have that a^m-1 is composite. Therefore a=2 Now suppose that m is not prime. Therefore, m=qp for some $q,p \neq 1$. Then we have that

$$a^{m} - 1 = a^{pq} - 1$$

$$= a^{p^{q}} - 1$$

$$= (a^{p} - 1)(a^{p^{q-1}} + a^{p^{q-2}} + \dots + a^{p} + 1)$$

Thus $(a^p-1)|(a^m-1)$. Thus it can not be prime. Therefore if m>1 and a^n-1 is prime, $a\geq 2$ and m is prime.