

SEQUENCE LISTING

<110> Reinhard, Christoph
Garcia, Pablo

<120> TETRASPAN PROTEIN AND USES THEREOF

<130> PP-01700.002/200130.521

<140> US
<141> 2001-07-13

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1388
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> 1285, 1377
<223> n = A,T,C or G

<221> misc_feature
<222> 1285, 1377
<223> n = A,T,C or G

<400> 1
cttcctcggc cgagccgggc cgccgccccg ctgccgccc cgcgcggga ttctgtttct 60
cagaagatgc actattatacg atactctaac gccaaagtca gctgtggta caagtacctc 120
cttttcagct acaacatcat cttctggttg gctggagttg tcttccttgg agtcgggctg 180
tgggcatttgg gcgaaaaggg tgtgtgtcc gacctcacca aagtgaccgg gatgcatttgg 240
atcgaccctg tgggtgttgtt cctgatggtg ggcgtggta tgttcacccct ggggttcggcc 300
ggctgcgtgg gggctctgcg ggagaatatac tgcttgctca actttttctg tggcaccatc 360
gtgctcatct tcttccttgg gctggctgtg gccgtgttgc ctttcctgtt ccaggactgg 420
gtgaggggacc gtttccggga gttcttcgag agcaacatca agtcttaccg ggacgatatac 480
gatctgcaaa acctcatcga ctcccttcag aaagcttacc accgtgttgc cgcataatggc 540
cctgaagact gggacactcaa cgtctacttc aatttgcagcg gtgcagacta cagccgagag 600
aagtgcgggg tcccccttctc ctgctgcgtg ccagatctcg cgcaaaaagt tgtgaacaca 660
cagtgtggat atgatgtcag gattcagctg aagagcaagt gggatgagtc catcttcacg 720
aaaggctgca tccaggcgctt ggaagctgg ctcccgccgg aacatttacat tgggtgttgc 780
gtcttcatcg ccatctcgct gttgcagata tttggcatct tcctggcaag gacgctgatc 840
tcagacatcg aggcaatggaa ggcggccat cacttctgtt gagcagatggt gagggagccg 900
agctgagcca cgctgggggg ccagaccctt tctctgcctt cagccctacg tccagaggga 960
gaggagccga cacccccccaga gccagtgcacc catcttaacg atcagcgtga cgtgaccctct 1020
ctgtttctgc ttgctgggtgc tgaagaccaa gggccccctt tgtaacctgc ccaaacttgt 1080
gactgcattcc ctctggatgc tacccttggaga cagagaatgt gtcttatgtt gggagtggtg 1140
actctgaaatcg acagagagggtt ctccctgtggc tgccaggagg gcttgactca gaccccttc 1200

agctcaagca tgtctgcagg acaccctggc ccccctctcc aytggcwtcc agacatctgc 1260
 tttgggtcat ccacatctgt gggtnngccg tggtagagg gaccacagg cgtggacagg 1320
 gcatctctct ccatcaagca aagcagcatg gggggccttg ccgtaaacgg gaggcgnac 1380
 gttggccc 1388

<210> 2
<211> 270
<212> PRT
<213> Homo sapiens

<400> 2

Met	His	Tyr	Tyr	Arg	Tyr	Ser	Asn	Ala	Lys	Val	Ser	Cys	Trp	Tyr	Lys
1									10					15	
Tyr	Leu	Leu	Phe	Ser	Tyr	Asn	Ile	Ile	Phe	Trp	Leu	Ala	Gly	Val	Val
									20					30	
Phe	Leu	Gly	Val	Gly	Leu	Trp	Ala	Trp	Ser	Glu	Lys	Gly	Val	Leu	Ser
									35					45	
Asp	Leu	Thr	Lys	Val	Thr	Arg	Met	His	Gly	Ile	Asp	Pro	Val	Val	Leu
							50		55				60		
Val	Leu	Met	Val	Gly	Val	Val	Met	Phe	Thr	Leu	Gly	Phe	Ala	Gly	Cys
							65		70			75		80	
Val	Gly	Ala	Leu	Arg	Glu	Asn	Ile	Cys	Leu	Leu	Asn	Phe	Phe	Cys	Gly
							85		90				95		
Thr	Ile	Val	Leu	Ile	Phe	Phe	Leu	Glu	Leu	Ala	Val	Ala	Val	Leu	Ala
							100		105				110		
Phe	Leu	Phe	Gln	Asp	Trp	Val	Arg	Asp	Arg	Phe	Arg	Glu	Phe	Phe	Glu
							115		120				125		
Ser	Asn	Ile	Lys	Ser	Tyr	Arg	Asp	Asp	Ile	Asp	Leu	Gln	Asn	Leu	Ile
							130		135				140		
Asp	Ser	Leu	Gln	Lys	Ala	Asn	Gln	Cys	Cys	Gly	Ala	Tyr	Gly	Pro	Glu
							145		150			155		160	
Asp	Trp	Asp	Leu	Asn	Val	Tyr	Phe	Asn	Cys	Ser	Gly	Ala	Ser	Tyr	Ser
							165		170				175		
Arg	Glu	Lys	Cys	Gly	Val	Pro	Phe	Ser	Cys	Cys	Val	Pro	Asp	Pro	Ala
							180		185				190		
Gln	Lys	Val	Val	Asn	Thr	Gln	Cys	Gly	Tyr	Asp	Val	Arg	Ile	Gln	Leu
							195		200				205		
Lys	Ser	Lys	Trp	Asp	Glu	Ser	Ile	Phe	Thr	Lys	Gly	Cys	Ile	Gln	Ala
							210		215				220		
Leu	Glu	Ser	Trp	Leu	Pro	Arg	Asn	Ile	Tyr	Ile	Val	Ala	Gly	Val	Phe
							225		230			235		240	
Ile	Ala	Ile	Ser	Leu	Leu	Gln	Ile	Phe	Gly	Ile	Phe	Leu	Ala	Arg	Thr
							245		250				255		
Leu	Ile	Ser	Asp	Ile	Glu	Ala	Val	Lys	Ala	Gly	His	His	Phe		
							260		265				270		

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide sequence

<400> 3
tgccatgcgtt cgtgaagatg gactc 25

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide sequence

<400> 4
ccccatgcgtt ctttgcttga tggag 25

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide sequence

<400> 5
gctcagctcg gctccctcaa ctc 23

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide sequence

<400> 6
cacaaggttt ggcaggtaac aagg 25

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide sequence

<400> 7
agagggtcacg tcacgctgtat gctta 25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide sequence

<400> 8

ctcaggtaga agtgctttcc gacgt

25

<210> 9

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide sequence

<400> 9

gaggttagttc gtttcgtcgt acccc

25

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide sequence

<400> 10

ctcaactccc tcggctcgac tcg

23

<210> 11

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide sequence

<400> 11

gggaacaatg gacgggtttg aacac

25

<210> 12

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide sequence

<400> 12

attcgtatgc gcactacgct ggaga

25

<210> 13

<211> 24

<212> PRT

<213> Homo sapiens

<400> 13

Ala Trp Ser Glu Lys Gly Val Leu Ser Asp Leu Thr Lys Val Thr Arg
1 5 10 15
Met His Gly Ile Asp Pro Val Val
20

<210> 14

<211> 120
<212> PRT
<213> Homo sapiens

<400> 14

Phe Leu Phe Gln Asp Trp Val Arg Asp Arg Phe Arg Glu Phe Phe Glu
1 5 10 15
Ser Asn Ile Lys Ser Tyr Arg Asp Asp Ile Asp Leu Gln Asn Leu Ile
20 25 30
Asp Ser Leu Gln Lys Ala Asn Gln Cys Cys Gly Ala Tyr Gly Pro Glu
35 40 45
Asp Trp Asp Leu Asn Val Tyr Phe Asn Cys Ser Gly Ala Ser Tyr Ser
50 55 60
Arg Glu Lys Cys Gly Val Pro Phe Ser Cys Cys Val Pro Asp Pro Ala
65 70 75 80
Gln Lys Val Val Asn Thr Gln Cys Gly Tyr Asp Val Arg Ile Gln Leu
85 90 95
Lys Ser Lys Trp Asp Glu Ser Ile Phe Thr Lys Gly Cys Ile Gln Ala
100 105 110
Leu Glu Ser Trp Leu Pro Arg Asn
115 120