

Exam 1: Review

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

Question Cover Range

- Exam 1 has 10 questions (L: Lecture)
 - Q1: Linear Difference Equations (L2)
 - Q2: z-transform and z-transform inversion (L2 & L3)
 - Q3: Final value theorem (L3)
 - Q4: Solve Difference Equations (L4)
 - Q5: Frequency Response (L4)
 - Q6: Modeling of Digital Control Systems (L5)
 - Q7: Systems with Transport Lag (L6)
 - Q8: Steady-state Errors (L7)
 - Q9: Stability of Digital Control Systems (L8)
 - Q10: Nyquist Criterion, Phase Margin and Gain Margin (L9)

Q1: Linear Difference Equations

Linear Difference Equations:

$$y(k+n) + a_{n-1}y(k+n-1) + \dots + a_1y(k+1) + a_0y(k)$$

= $b_nu(k+n) + b_{n-1}u(k+n-1) + \dots + b_1u(k+1) + b_0u(k)$

• where $a_0, a_1, \dots a_{n-1}$ and b_0, b_1, \dots, b_n are coefficients of y(.) and u(.).

Properties:

- System Order: the difference between the highest and lowest arguments of y(.) and u(.).
- **Time Invariant**: If these coefficients $(a_0, ..., a_{n-1}, b_0, ..., b_n)$ are constants, then this difference equation is **T**ime Invariant.
- Homogeneous: If u(.) = 0, then this difference equation is Homogeneous.

Examples

 For each of the following difference equations, determine the order of the equation. Is the equation (a) linear, (b) time invariant, or (c) homogeneous?

$$y(k+2) + 0.8y(k+1) + 0.07y(k) = u(k)$$

$$y(k+4) + \sin(0.4k)y(k+1) + 0.3y(k) = 0$$

$$y(k+1) = -0.1y^{2}(k)$$

Solution:

- System 1:
 - The order is 2.
 - The system is *linear* and *time invariant* since all coefficients are constant.
 - The system is **not homogeneous** due to u(k).
- The order is 4. The system is *linear* but *time varying* due to the second coefficient. The system is *homogeneous*.
- The order is 1. The right-hand side is a nonlinear function of y(k), but does not include u(k) and coefficients that depend on time explicitly. The system is **nonlinear**, **time invariant**, and **homogeneous**.

Q2: Z-transform and Z-transform Inversion

• The following is the definition of the z-transform:

DEFINITION 2.1

Given the causal sequence $\{u_0, u_1, u_2, \dots, u_k, \dots\}$, its *z*-transform is defined as

$$U(z) = u_0 + u_1 z^{-1} + u_2 z^{-2} + \dots + u_k z^{-k}$$

= $\sum_{k=0}^{\infty} u_k z^{-k}$

- The z^{-1} in the above equation can be regarded as a time delay operator.
- The relationship between z-transform and Laplace transform:

$$z = e^{sT}$$

- Example:
- Solution:
 - Using the z-transform's definition equation, we have:

$$U(z) = 1 + 3z^{-1} + 2z^{-2} + 4z^{-4}$$

HW1-Q3: Long Division

Obtain the inverse z-transform of the function:

$$F(z) = \frac{z - 0.1}{z^2 + 0.04z + 0.25}$$

- Solution:
 - Using long division

$$z^{-1} - 0.14z^{-2} - 0.244z^{-3} + \dots$$

$$z^{-1} - 0.14z^{-2} - 0.244z^{-3} + \dots$$

$$z + 0.04z + 0.25z^{-1}$$

$$-0.14 - 0.25z^{-1}$$

$$-0.14 - 0.0056z^{-1} - 0.035z^{-2}$$

$$-0.244z^{-1} + 0.035z^{-2}$$

$$F(z) = \frac{z}{z^{2} + 0.04z + 0.25} = z^{-1} - 0.14z^{-2} - 0.244z^{-3} + \dots$$

$$\{f(k)\} = \{0,1,-0.14,-0.244,\dots\}$$

Partial Fraction Expansion

- The most convenient method to obtain the partial fraction expansion of a function with simple real roots is the method of residues.
- **Step 1**: For a z-Transform expression F(z), get $\frac{F(z)}{z}$
- Step 2: Express F(z)/z into the sum of individual terms

$$\frac{F(z)}{z} = \sum_{i=0}^{n} \frac{A_i}{z - z_i}$$

• Where A_i is the partial fraction coefficient of the i-th term of the expansion:

$$A_i = (z - z_i) \frac{F(z)}{z} \Big|_{z \to z_i}$$

- Step 3: Restore F(z) via $\frac{F(z)}{Z} \times Z$
- **Step 4**: Get inverse z-Transform of individual terms using z-Transform table (Lecture 2)

HW1 – Q4: Partial Fraction Expansion

 Find the inverse transform of the functions using partial fraction expansion and table look-up.

$$F(z) = \frac{z}{z^2 + 0.3z + 0.02}$$

Solution:

$$\frac{F(z)}{z} = \frac{1}{z^2 + 0.3z + 0.02} = \frac{1}{(z + 0.1)(z + 0.2)} = 10 \left\{ \frac{1}{z + 0.1} - \frac{1}{z + 0.2} \right\}$$

$$F(z) = 10 \left\{ \frac{z}{z + 0.1} - \frac{z}{z + 0.2} \right\} \quad \{f(k)\} = 10 \left[(-0.1)^k - (-0.2)^k \right]$$

Repeated Roots

• For a function F(z) with a repeated root of multiplicity r, r partial fraction coefficients are associated with the repeated root. The partial fraction expansion is of the form:

$$F(z) = \frac{N(z)}{(z-z_1)^r \prod_{j=r+1}^n z - z_j} = \sum_{i=1}^r \frac{A_{1i}}{(z-z_1)^{r+1-i}} + \sum_{j=r+1}^n \frac{A_j}{z-z_j}$$

• The coefficients for repeated roots are:

$$A_{1,i} = \frac{1}{(i-1)!} \frac{d^{i-1}}{dz^{i-1}} (z-z_1)^r F(z) \bigg]_{z \to z_1}, \qquad i = 1, 2, \dots, r$$

Check Lecture 3 Page 13 – Page 16

Q3: Final Value Theorem

- The final value theorem allows us to calculate the limit of a sequence as k tends to infinity from the z-transform of the sequence.
 - If one is only interested in the final value of the sequence, this constitutes a significant shortcut.

Final Value Theorem:

• If a sequence approaches a constant limit as k tends to infinity, then the limit is given by

$$f(\infty) = \lim_{z \to 1} [(z - 1)F(z)]$$

Final Value Theorem

HW1 – Q5: Final Value Theorem

Find the final value for the functions if it exists

$$F(z) = \frac{z}{z^2 - 7z + 6}$$

Solution:

$$f(\infty) = \frac{z}{z^2 - 7z + 6} * (z - 1) \Big|_{z \to 1}$$

$$= \frac{z}{(z - 1)(z - 6)} * (z - 1) \Big|_{z \to 1}$$

$$= \frac{z}{z - 6} \Big|_{z \to 1}$$

$$= -\frac{1}{5}$$

Q4: Solve Difference Equations

Recall linear difference equation expression:

$$y(k+n) + a_{n-1}y(k+n-1) + \dots + a_1y(k+1) + a_0y(k)$$

= $b_nu(k+n) + b_{n-1}u(k+n-1) + \dots + b_1u(k+1) + b_0u(k)$

- Our goal is to solve this equation to get the expression of y(k).
- u(k) will be provided.
- The key to solve this equation is to use z-Transform and its time delay/advance properties.

Time Delay Property:
$$\mathcal{Z}\{f(k-n)\} = z^{-n}F(z)$$

Time Advance Property:
$$\mathcal{Z}\{f(k+1)\} = zF(z) - zf(0)$$

$$\mathcal{Z}\{f(k+n)\} = z^nF(z) - z^nf(0) - z^{n-1}f(1) - \dots - zf(n-1)$$

HW1 – Q6: Solve Difference Equations

Solve the linear difference equation

$$y(k + 1) - 0.8y(k) = 1(k), y(0) = 1$$

with the initial conditions y(0) = 1.

- Solution:
 - **z-transform**: We begin by z-transforming the difference equation using time advance property to obtain

$$zY(z) - zy(0) - 0.8Y(z) = \frac{z}{z - 1}$$

$$zY(z) - z - 0.8Y(z) = \frac{z}{z - 1}$$

$$(z - 0.8)Y(z) = \frac{z}{z - 1} + \frac{z(z - 1)}{z - 1}$$

$$(z - 0.8)Y(z) = \frac{z^2}{z - 1}$$

$$Y(z) = \frac{z^2}{(z - 1)(z - 0.8)}$$

HW1 – Q6: Solve Difference Equations

• Solution:

• Inverse z-transform of Y(z):

$$Y(z) = \frac{z^2}{(z-1)(z-0.8)}$$

$$\frac{Y(z)}{z} = \frac{z}{(z-1)(z-0.8)}$$

$$\frac{Y(z)}{z} = \frac{A}{(z-1)} + \frac{B}{(z-0.8)}$$

$$A = (z-1)\frac{Y(z)}{z}\Big|_{z=1} = \frac{1}{0.2} = 5$$

$$B = (z-0.8)\frac{Y(z)}{z}\Big|_{z=0.8} = \frac{0.8}{-0.2} = -4$$

$$\frac{Y(z)}{z} = \frac{5}{z-1} + \frac{-4}{z-0.8}$$

$$Y(z) = \frac{5z}{z-1} + \frac{-4z}{z-0.8}$$

$$Y(z) = \frac{5}{z-1} + \frac{-4z}{z-0.8}$$

Q5: Frequency Response of Discrete-time Systems

 Frequency Response of discrete-time systems gives the magnitude and phase response of the system to the sinusoids at all frequencies.

$$u(k)=e^{j\omega k}$$
 Discrete-Time System, $h(k)$ Output Signal (Sinusoids) (Sinusoids)

$$y(k) = |H(e^{j\omega})| \cdot \cos(\omega k + \angle H(e^{j\omega})) + j \cdot |H(e^{j\omega})| \sin(\omega k + \angle H(e^{j\omega}))$$
If input $u(t) = \cos(\omega k)$
If input $u(t) = \sin(\omega k)$

HW1-Q9: Frequency Response

• Find the steady-state response of the systems due to the sinusoidal input $u(k) = 0.5 \sin(0.4 k)$

$$H(z) = \frac{z}{z^2 + 0.4z + 0.03}$$

Solution:

 Since the input signal is a sin signal, the output signal should only contain sin part, i.e.,

$$y(k) = j \cdot |H(e^{j\omega})| \sin(\omega k + \angle H(e^{j\omega}))$$

= $j|H(e^{j0.4})|\sin(0.4k + \angle H(e^{j0.4}))$

$$H(e^{j0.4}) = \frac{1}{e^{j0.4} + 0.4 + 0.03e^{-j0.4}} = 0.714 \angle -0.273$$

$$|H(e^{j0.4})| \quad \angle H(e^{j0.4})$$

Q6: Modeling of Digital Control Systems

$$G_{ZAS}(z) = (1 - z^{-1})\mathcal{Z}\left\{\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\}\right\}$$

- Procedures to get $G_{ZAS}(z)$:
 - Step 1: get $\frac{G(s)}{s}$
 - Step 2: check z-transform pairs (in Lecture 2 Page 19) to get $\mathcal{Z}\left\{\mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\}\right\}$
 - **Note:** here, we can omit the \mathcal{L}^{-1} notation to make the equation more concise. $\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$
 - Step 3: multiple $(1-z^{-1})$ with $\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$ to get $G_{ZAS}(z)$

$$G_{ZAS}(z) = (1 - z^{-1}) \mathcal{Z} \left\{ \frac{G(s)}{s} \right\}$$
$$= \frac{z - 1}{z} \mathcal{Z} \left\{ \frac{G(s)}{s} \right\}$$

HW2-Q2

• Known that the dynamic equation of a point mass (m) with force (f) as input and displacement (x) as output is

$$m\ddot{x}(t) = f(t)$$

• Find $G_{ZAS}(z)$ for the system.

Solution:

• First get the transfer function of the system:

$$ms^{2}X(s) = F(s)$$

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^{2}}$$

• Then, follow the equation in the previous page to get $G_{ZAS}(z)$

$$G_{ZAS}(z) = \frac{z-1}{z} z \left\{ \frac{G(s)}{s} \right\} = \frac{z-1}{z} z \left\{ \frac{1}{ms^3} \right\}$$

$$= \frac{z-1}{z} z \left\{ \frac{1}{2m} \frac{2}{s^3} \right\} = \frac{z-1}{z} \frac{1}{2m} z \left\{ \frac{2}{s^3} \right\}$$

$$= \frac{z-1}{z} \frac{1}{2m} \frac{z(z+1)T^2}{(z-1)^3} = \frac{1}{2m} \frac{(z+1)T^2}{(z-1)^2}$$

Q7: System with Transport Lag

- Transport Lag:
 - Time delay in system's response to the input signals
- First model the delay time using

$$T_d = lT - mT$$
, $0 \le m < 1$

- Find l and m
- **Second**, use the equation to model the system with transport lag:

$$G_{ZAS}(z) = \left(\frac{z-1}{z^l}\right) \mathcal{Z}_m \left\{g_s(kT)\right\}$$

- The above equation involves **modified z-transform** ${\mathcal Z}_m$
- Two commonly-used modified z-transform:

$$\mathcal{Z}_m\{1(kT)\} = \frac{1}{z-1} \qquad \qquad \mathcal{Z}_m\{e^{-pkT}\} = \frac{e^{-mpT}}{z-e^{-pT}}$$

HW2-Q3

For a system

$$G(s) = \frac{\varepsilon \tau s + 1}{\tau s + 1}$$

• Where τ is the time constant and ε is a known parameter. If a delay is 25 ms and the sampling period is 10 ms, find the $G_{ZAS}(z)$ for the system.

• Solution:

For a delay of 25 ms with T = 10 ms we have

$$25 = 3 \times 10 - 0.5 \times 10$$

• l = 3 and m = 0.5

$$G_{ZAS}(z) = \left(\frac{z-1}{z^l}\right) \mathcal{Z}_m \left\{g_s(kT)\right\}$$

$$G_{ZAS}(z) = (1 - z^{-1}) \mathbf{Z} \left\{ \frac{G(s)}{s} \right\}$$

$$= (1 - z^{-1}) \left\{ \frac{1}{1 - z^{-1}} + \frac{(\varepsilon - 1)e^{-5/\tau}}{1 - e^{-T/\tau}z^{-1}} \right\} z^{-3}$$

$$= \left[1 + \frac{(\varepsilon - 1)(z - 1)e^{-5/\tau}}{z - e^{-T/\tau}} \right] z^{-3}$$

Q8: Steady State Errors

Signal	Type-0	Type-1	Type-2
Sampled step input	$\frac{1}{1+L(1)} \text{ or } \frac{1}{1+K_p}$	0	0
Sampled ramp input	∞	$\frac{T}{(z-1)L(z) _{z=1}} \text{ or } \frac{1}{K_{v}}$	0
Sampled parabolic input	∞	∞	$\frac{T^2}{(z-1)^2L(z) _{z=1}} \text{ or } \frac{1}{K_a}$

$$L(z) = G_{ZAS}(z)C(z)$$

- $G_{ZAS}(z)$ is the system's transfer function
- C(z) is the controller's transfer function

T is the sampling period

Example

- For the following systems with unity feedback, find
 - The position error constant.
 - The velocity error constants.
 - The steady state error due to a unit step input.
 - The steady-state error due to a unit ramp input.
- Solution:
 - The position error constant:
 - The system is Type 1 and has an infinite position error constant.

 $G(z) = \frac{0.4(z+0.2)}{(z-1)(z-0.1)}$

The velocity error constants:

$$K_v = \frac{1}{T}(z-1)G(z)\Big|_{z=1} = \frac{0.4(1+0.2)}{T(1-0.1)} = \frac{0.5333}{T}$$

- The steady state error due to a unit step input:
 - The system is Type 1 and has zero steady-state error due to step.
- The steady-state error due to a unit ramp input:

$$\bullet \ e(\infty) = \frac{1}{K_{\nu}} = \frac{T}{0.5333}$$

Question 9: Stability Test

- Find Poles for low order systems
- Jury test for high order systems

Practice Question

Determine the stability of the following system:

$$y(k+2) - 0.8y(k+1) + 0.07y(k) = 2u(k+1) + 0.2u(k)$$
 $k = 0, 1, 2, ...$

- Solution:
 - First, find the transfer function $G(z) = \frac{Y(z)}{U(z)}$

$$G(z) = \frac{2z + 0.2}{z^2 - 0.8z + 0.07} = \frac{2(z + 0.1)}{(z - 0.7)(z - 0.1)}$$

• Since |0.7|<1 and |0.1|<1, the system is stable.

Question 10: Nyquist Criterion

Nyquist Criterion

A Closed-Loop system has Z poles **inside** the Nyquist Contour with

$$Z = P - N$$

P is the number of Poles of L(z) inside the Nyquist Contour; N is the number of **anticlockwise contour encirclement** of (-1, 0) given the **Nyquist Curve** of L(z).

Example

Consider the following closed-loop discrete-time

- Where C(z) = 1 and $G(z) = \frac{5z+4}{(z-2)(z-3)}$.
- Given the Nyquist Curve of G(z), determine the stability of this closed-loop system.

Example 2 Solution

- Solution:
 - We first need to determine the value of P.
 - *P* is the number of poles of loop gain outside the unit circle.
 - In this work, loop gain is

$$G(z) = \frac{5z + 4}{(z - 2)(z - 3)}$$

- Two poles are at 2 and 3, which are both outside the unit circle.
 - Thus, P = 2
- For a stable system, Z = P N should be 0
 - Here P = 2, thus, Z = 2 N = 0
 - *N* is the encirclement of (-1, 0) for the Nyquist curve. However, in this diagram, the Nyquist curve does not encircle (-1, 0).
 - Thus, the system is **not stable**.

