Lattice:

A partially ordered set is said to be a lattice if every two elements in the set have a unique glb and unique lub. Let (L, \leq) be a lattice. For any two elements a, b, let

 $a \lor b$: **lub of** a **and** b and $a \land b$: **glb of** a **and** b.

Then (L, \leq, \vee, \wedge) is an algebraic system defined by the lattice (L, \leq) .

Example 1.1.

Let P(S) be the power set of a nonempty set S. Then $(P(S), \subseteq)$ is a lattice where $A \vee B = A \cup B$ and $A \wedge B = A \cap B$. This defines the algebraic system $(P(S), \subseteq, \cup, \cap)$.

Example 1.2.

Let N^+ be the set of all positive integers. Then $(N^+, |)$ (a|b if a divides b) is a lattice where $a \lor b = lcm(a, b)$ and $a \land b = gcd(a, b)$.

Theorem 1.3.

For any elements a, b in a lattice (A, \leq) ,

- $a < a \lor b$ and $b < a \lor b$
- $a \wedge b \leq a$ and $a \wedge b \leq b$

Proof.

Because the join of a and b is an upper bound of a, $a \le a \lor b$. Because the meet of a and b is a lower bound of a, $a \land b \le a$.

Theorem 1.4.

For any elements a, b, c, d in a lattice (A, \leq) , if $a \leq b$ and $c \leq d$

- $a \lor c \le b \lor d$
- $a \wedge c \leq b \wedge d$

Proof.

Given that $a \le b$ and $c \le d$. Since $b \le b \lor d$ and $d \le b \lor d$ then by transitivity $a \le b \lor d$ and $c \le b \lor d$.

In other words, $b \lor d$ is an upperbound of a and c. As $a \lor c$ is the least upper bound of a and c, we have $a \lor c \le b \lor d$.

Since $a \land c \le a$ and $a \land c \le d$ by transitivity $a \land c \le b$ and $a \land c \le d$. In other words, $a \land c$ is a lower bound of b and d. Since $b \land d$ is the greast lower bound of b and d, we have $a \land c \le b \land d$

Duality Principle

Let (A, \leq) be a poset. Let \geq be a binary relation on A such that for any a, b in A, $a \geq b$ if and only if $b \leq a$. We note that (A, \geq) is a poset.

- If (A, \leq) is a lattice, then so is (A, \geq)
- The join operation of the algebraic system defined by the lattice (A, \leq) is the meet operation of the algebraic system defined by (A, \geq) and vice versa.
- Consequently, given any valid statement concerning the general properties of the lattices, we can obtain another valid statement by replacing the relation ≤ with ≥, the meet operation with the join operation and the join operation with the meet operation. This is known as principle of duality for lattices.
- If the statement remains the same after dualism, then such a statement is called self dual.

Properties of aglebraic systems defined by lattices:

Let (A, \leq, \vee, \wedge) be the algebraic system defined by the lattice (A, \leq) . For any elements $a, b, c \in A$,

- Commutative property:
 - $a \lor b = b \lor a$
 - $a \wedge b = b \wedge a$
- Associative property:
 - $(a \lor b) \lor c = a \lor (b \lor c)$
 - $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
- Idempotent property:
 - $a \lor a = a$
 - $a \wedge a = a$
- 4 Absorption property:
 - $a \wedge (a \vee b) = a$
 - $a \lor (a \land b) = a$

Note: Proofs for the above properties are available in the book ELEMENTS OF DISCRETE MATHEMATICS BY C.L. Liu (Page numbers:390-392)

Problems:

Q1. Let a and b be two elements in a lattice (A, \leq) . Show that $a \wedge b = b$ if and only if $a \vee b = a$.

Sol.

Q2. Let a, b, c be elements in a lattice (A, \leq) . Show that

- i. $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$
- ii. $(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c)$

Sol.

i.
$$a \le a \lor b$$
 and $a \le a \lor c \implies a \le (a \lor b) \land (a \lor c) - - - - - - - - - (4)$ $b \le a \lor b$ and $c \le a \lor c \implies b \land c \le (a \lor b) \land (a \lor c) - - - - - - - - (5)$ From (4) and (5), $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$. (By Theorem 2.4)

ii. $(a \land b) \le a$ and $(a \land c) \le a \implies (a \land b) \lor (a \land c) \le a - - - - - - (6)$ $(a \land b) \le b$ and $(a \land c) \le c \implies (a \land b) \lor (a \land c) \le (b \lor c) - - - - - - (7)$ From (6) and (7), $(a \land b) \lor (a \land c) \le a \land (b \lor c)$. (By Theorem 2.4)

- **Q3.** Let a, b, c be elements in a lattice (A, \leq) . Show that if $a \leq b$, then $a \vee (b \wedge c) \leq b \wedge (a \vee c)$.
- **Q4.** Let (A, \vee, \wedge) be an algebraic system where \vee, \wedge are binary operations satisfying absorption law. Show that \vee and \wedge also satisfy the idempotent law.
- **Q5.** Let (A, \vee, \wedge) be an algebraic system where \vee, \wedge are binary operations satisfying commutative, associative and absorption laws. Define a binary relation \leq on A such that for any x and y in A, $x \leq y$ if and only if $x \vee y = y$. Show that \leq is a partial ordering relation.

Distributive lattice: A lattice is said to be a distributive lattice if the meet operation is distributes over the join operation and the join operation distributes over the meet operation. For any a,b,c

- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Example 2.1.

Let $S = \{a, b, c\}$. Then $(P(S), \subseteq)$ is a distributive lattice.

Theorem 2.2.

If the meet operation is distributive over the join operation in a lattice, then the join operation is also distributive over the meet operation. If the join operation is distributive over the meet operation in a lattice, then the meet operation is also distributive over the join operation.

Proof.