HW#2 due February 20th

- Unit cell volume and density of tungsten
- Atoms / volume in gold
- Crystallographic directions
- Crystallographic planes
- Atomic radius of palladium
- BCC-FCC transition in iron

The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures?
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

Energy vs. Temperature

Temperature

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures-rapid cooling

"Amorphous" = Noncrystalline

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal

7 crystal systems

14 crystal lattices

a, b, and c are the lattice constants

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry	
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	aaa	
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$		
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$		
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	a a a	
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$		
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$		
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$		

230 possible combinations of symmetry: space groups

Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

2-dimensions

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be relatively densely packed
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other
- Have the simplest crystal structures

We will examine four such structures...
SC (simple cubic), BCC (body-centered cubic)
FCC (face-centered cubic), HCP (hexagonal-close packed)

Computer models of crystal structures

www.wileyplus.com

Simple Cubic Structure (SC)

- Rare due to low packing density (for pure elements, only Po has this structure)
- Close-packed directions are cube edges

Coordination # = 6 (# nearest neighbors)

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

• APF for a simple cubic structure = 0.52

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

2 atoms/unit cell: 1 center + 8 corners x 1/8

Atomic Packing Factor: BCC

• APF for a body-centered cubic structure = 0.68

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # = 12

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic Packing Factor: FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF

Close-packed directions: length = $4R = \sqrt{2} a$

Unit cell contains:

$$6 \times 1/2 + 8 \times 1/8$$

= 4 atoms/unit cell

atoms
unit cell

APF =
$$\frac{4}{3}\pi (\sqrt{2}a/4)^3$$
 volume
atom

APF = $\frac{4}{3}\pi (\sqrt{2}a/4)^3$ volume
unit cell

FCC Stacking Sequence

ABCABC... Stacking Sequence

• 2D Projection

A sites

B sites

C sites

FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection

- Coordination # = 12
- APF = 0.74
- c/a = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, p

Density =
$$\rho$$
 = $\frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$

$$\rho = \frac{n A}{V_C N_A} \qquad \rho = \frac{\sum n_i A_i}{V_C N_A}$$

where n = number of atoms/unit cell

A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.023 \times 10^{23} \text{ atoms/mol}$

Theoretical Density, p

Densities of Material Classes

Crystals as Building Blocks

Some engineering applications require single crystals:

--diamond abrasives

--silicon electronics

--jet engineturbine blades:Ni-basedsuperalloys

 Properties of crystalline materials related to crystal structure

--Ex: Quartz fractures more easily along some crystal planes than others

(Courtesy P.M. Anderson)

Chapter 3 - 2

Polycrystals

Anisotropic

Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 5e*. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

Nb-Hf-W plate with an electron beam weld

- Each "grain" is a single crystal
- If grains are randomly oriented,
 overall component properties are not directional
- Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers)

Isotropic

Single vs Polycrystals

Single Crystals

-Properties vary with direction: anisotropic

-Example: the modulus of elasticity (E) in BCC iron:

Polycrystals

-Properties may/may not vary with direction

-If grains are randomly oriented: isotropic (E_{poly iron} = 210 GPa)

-If grains are textured, anisotropic

Polymorphism

 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium

 α , β -Ti

carbon diamond, graphite

FCC iron (austenite) is more dense than BCC iron (ferrite), but has a bigger void in the structure, so it dissolves more carbon

Point Coordinates

Point coordinates for unit cell center are

a/2, b/2, c/2 $\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions

Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [uvw]

ex: 1, 0,
$$\frac{1}{2}$$
 => 2, 0, 1 => [201]
-1, 1, 1 => [111] where overbar represents a negative index

families of directions < uvw>

Linear Density

• Linear Density of Atoms \equiv LD = $\frac{\text{Number of atoms}}{\text{Unit length of direction vector}}$

ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

atoms
$$LD = \frac{2}{\sqrt{2}a} = 3.5 \text{ nm}^{-1}$$
length

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions.
- All planes with the same Miller indices are parallel. Planes with higher h,k,l indices are closer together.
- Algorithm
 - 1. Read off intercepts of plane with axes in terms of *a*, *b*, *c*
 - 2. Take reciprocals of intercepts
 - 3. Multiply to make integers if necessary
 - 4. Enclose in parentheses, no commas i.e., (hkl)

<u>example</u>		а	b	С
1.	Intercepts	1	1	∞
2.	Reciprocals	1/1	1/1	1/∞
		_	4	_

3. Miller Indices (110)

<u>example</u>		а	b	С
1.	Intercepts	1/2	∞	∞
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3	Miller Indices	(200)	

If plane passes through origin, pick a different origin in a neighboring unit cell

Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

Linear and Planar Densities

LD = atoms centered on a direction vector / length of direction vector

PD= atoms centered on a plane / area of plane

High density planes tend to slip past one another during plastic deformation

Planes tend to slip in the high density directions

X-Ray Diffraction

- Diffraction gratings have spacings comparable to the wavelength of diffracted radiation.
- Spacing is the distance between parallel planes of atoms.
- For solid materials, often use Cu Kα X-rays: λ=0.154 nm

X-Rays to Determine Crystal Structure

Incoming X-rays diffract from crystal planes.

Measurement of critical angle, θ_c , allows computation of planar spacing, d

X-ray intensity (from detector)

 $d = \frac{n\lambda}{2\sin\theta_{C}}$ θ_{C}

 $Bragg's\ law:\ n\lambda = 2d\ sin(\theta)$

X-Ray Diffraction Pattern

Diffraction pattern for polycrystalline α -iron (BCC)

SUMMARY

- Atoms may assemble into crystalline or amorphous structures
- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP)
- Crystallographic points, directions and planes are specified in terms of indexing schemes
 Crystallographic directions and planes are related to atomic linear densities and planar densities

SUMMARY

 Crystalline materials can be single crystals or polycrystalline.

Material properties may vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains

- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy)
- X-ray diffraction is used for crystal structure and interplanar spacing determinations