A polynomial algorithm for the deterministic mean payoff game

Bruno Scherrer

March 21, 2022

Abstract

...

We consider an infinite-horizon game on a directed graph (X, E) between two players, MAX and MIN. For any vertex x, we write $E(x) = \{y; (x, y) \in E\}$ for the set of vertices that can be reached from x by following one edge and we assume $E(x) \neq \emptyset$. The set of vertices $X = \{1, 2, ..., n\}$ of the graph is partitionned into the sets X_+ and X_- of nodes respectively controlled by MAX and MIN. The game starts in some vertex x_0 . At each time step, the player who controls the current vertex chooses a next vertex by following an edge. So on and so forth, the choices generate an infinitely long trajectory $(x_0, x_1, ...)$. In the mean payoff game, the goal of MAX is to maximize

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t),$$

while that of MIN is to minimize

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t).$$

As a proxy to solve the mean payoff game, our technical developments will mainly consider the γ -discounted payoff for some $0 \le \gamma < 1$, where the goal of MAX is to maximize

$$(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t r(x_t)$$

while that of MIN is to minimize this quantity. LITERATURE

1 Preliminaries

Let M and N be the set of stationary policies for MAX and MIN:

$$M = \{ \mu : X_+ \to X ; \forall x \in X_+, \ \mu(x) \in E(x) \},$$

$$N = \{ \nu : X_- \to X ; \forall x \in X_-, \ \nu(x) \in E(x) \}.$$

For any policies $\mu \in M$ and $\nu \in N$, let us write $P_{\mu,\nu}$ for the transition matrix induced by μ and ν :

$$\forall x \in X_+, \forall y \in X, \quad P_{\mu,\nu}(x,y) = \mathbb{1}_{\mu(x)=y},$$

$$\forall x \in X_-, \forall y \in X, \quad P_{\mu,\nu}(x,y) = \mathbb{1}_{\nu(x)=y}.$$

Seeing the reward $r: X \to 0, 1, \dots, R$ and any function $v: X \to \mathbb{R}$ as vectors of \mathbb{R}^n , consider the following Bellman operators

$$\begin{split} T_{\mu,\nu}v &= (1-\gamma)r + \gamma P_{\mu,\nu}v, \\ T_{\mu}v &= \min_{\nu} T_{\mu,\nu}v, \\ \tilde{T}_{\nu}v &= \max_{\mu} T_{\mu,\nu}v, \\ Tv &= \max_{\mu} T_{\mu}v = \min_{\nu} \tilde{T}_{\nu}v. \end{split}$$

that are γ -contractions with respect to the max-norm $\|\cdot\|$, defined for all $u \in \mathbb{R}^n$ as $\|u\| = \max_{x \in X} |u(x)|$. For any policies $\mu \in M$ and $\nu \in N$, the value $v_{\mu,\nu}(x)$ obtained by following policies μ and ν satisfies

$$v_{\mu,\nu} = (1 - \gamma) \sum_{t=0}^{\infty} (\gamma P_{\mu,\nu})^t r = (1 - \gamma)(I - \gamma P_{\mu,\nu})^{-1} r,$$

and is the only fixed point of the operator $T_{\mu,\nu}$. Given any policy μ for MAX, the minimal value that MIN can obtain

$$v_{\mu} = \min_{\nu} v_{\mu,\nu}$$

is the fixed point of the operator T_{μ} , and it is well known that any policy ν_{+} for MIN such that $T_{\mu,\nu_{+}}v_{\mu}=T_{\mu}v_{\mu}=v_{\mu}$ is optimal. Symmetrically, given any policy ν for MIN, the maximal value that MAX can obtain

$$\tilde{v}_{\mu} = \max_{\nu} v_{\mu,\nu}$$

is the fixed point of \tilde{T}_{ν} , and it is well known that any policy μ_{+} for MAX such that $T_{\mu_{+},\nu}v_{\mu}=\tilde{T}_{\nu}\tilde{v}_{\nu}=\tilde{v}_{\nu}$ is optimal. The optimal value

$$v_* = \max_{\mu} \min_{\nu} v_{\mu,\nu}$$

is the fixed point of the operator T. Let (μ_*, ν_*) be any pair of positional strategies such that $T_{\mu_*, \nu_*} v_* = T v_*$. It is well-known that (μ_*, ν_*) is optimal.

2 Algorithm

Consider the following algorithm that iterates on policies of player MAX.

$$v_k = T_{\mu_k} v_k,$$

$$T^n v_k = T_{\vec{\mu}'_{k+1}} v_k$$

3 Analysis

A local Bellman equation Our main technical result is the following observation.

Lemma 1. For any v, such that $v \leq Tv$,

$$v_* - T^n v \le \frac{T^n v - v}{1 - \gamma}.$$

Proof. First, observe that by the monotonicity of T, and since $v \leq Tv$, we have

$$v \le Tv \le T^2v \le \dots \le T^nv.$$

Let ν_1, \ldots, ν_n be a set of policies such that

$$T^n v = \tilde{T}_{\nu_1} \dots \tilde{T}_{\nu_n} v.$$

Take any starting state x. By the pigeonhole principle, there necessarily exist i, c, y such that $0 \le i < i \le n$ and

$$\mathbb{1}_y = \mathbb{1}_x P_{\mu_*,\nu_1} \dots P_{\mu_*,\nu_i} = \mathbb{1}_x P_{\mu_*,\nu_1} \dots P_{\mu_*,\nu_{i+c}}.$$

Consider a play where MAX uses μ_* and MIN uses the policy $\nu = \nu_1 \dots \nu_i (\nu_{i+1} \dots \nu_{i+c})^{\infty}$: the trajectory formed by this play is a path of length i followed by an infinitely repeated cycle of length i. By a telescoping argument, we have for any i

$$\begin{split} v_{\mu_*,\nu}(x) - w(x) &= \mathbbm{1}_x (T_{\mu_*,\nu_1} \dots T_{\mu_*,\nu_{i+c}} w - w) + \gamma^{i+c} \mathbbm{1}_y (I - \gamma^c P_{\mu_*,\nu_i} \dots P_{\mu_*,\nu_{i+c}})^{-1} (T_{\mu_*,\nu_{i+1}} \dots T_{\mu_*,\nu_{i+c}} w - w) \\ &= \mathbbm{1}_x (T_{\mu_*,\nu_1} \dots T_{\mu_*,\nu_{i+c}} w - w) + \frac{\gamma^{i+c}}{1 - \gamma^c} \mathbbm{1}_y (T_{\mu_*,\nu_{i+1}} \dots T_{\mu_*,\nu_{i+c}} w - w) \\ &\leq \mathbbm{1}_x (\tilde{T}_{\nu_1} \dots \tilde{T}_{\nu_{i+c}} w - w) + \frac{\gamma^{i+c}}{1 - \gamma^c} \mathbbm{1}_y (\tilde{T}_{\nu_{i+1}} \dots \tilde{T}_{\nu_{i+c}} w - w) \end{split}$$

Taking $w = \tilde{T}_{\nu_{i+c+1}} \dots T_{\nu_n} v$, and recalling the definition of ν_1, \dots, ν_n , we obtain

$$v_{\mu_*,\nu}(x) - w(x) \le \mathbb{1}_x(T^n v - v) + \frac{\gamma^{i+c}}{1 - \gamma^c} \mathbb{1}_y(T^{n-i} v - v)$$

 $\begin{aligned} v_{k+1} - v_k &= (I - \gamma^n P_{\vec{\mu}_{k+1}, \vec{\nu}_{k+1}})^{-1} (T_{\vec{\mu}_{k+1}, \vec{\nu}_{k+1}} v_k - v_k) \\ &= \frac{1}{1 - \gamma^n} (T_{\vec{\mu}_{k+1}, \vec{\nu}_{k+1}} v_k - v_k) \\ &\geq \frac{1}{1 - \gamma^n} (T_{\vec{\mu}_{k+1}} v_k - v_k) \\ &= \frac{1}{1 - \gamma^n} (T^n v_k - v_k) \\ &\geq \frac{1}{1 - \gamma^n} (v_* - T^n v_k) \\ &\geq \frac{1}{n} (v_* - T^n v_k) \\ &= \frac{1}{n} (v_* - T_{\vec{\mu}_{k+1}, \vec{\nu}_{k+1}} v_k) \\ &\geq \frac{1}{n} (v_* - v_{k+1}). \end{aligned}$

As a consequence:

$$v_* - v_{k+1} = v_* - v_k - (v_{k+1} - v_k)$$

$$\leq \left(1 - \frac{1}{n}\right)(v_* - v_k).$$