

UNCLASSIFIED

AD NUMBER

AD913127

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 11 JUN 1971. Other requests shall be referred to Electronic Systems Division, L. G. Hanscom Field, Bedford, MA 01730.

AUTHORITY

ESD ltr, 6 Dec 1973

THIS PAGE IS UNCLASSIFIED

Unclassified

AD 913127

AD No.
DDC FILE COPY

Project Report

PA-229-11
(RSP)

Data Reduction Program Documentation
ALERT

(Effective: April 1971)

C. R. Berndtson
R. H. French
D. E. Nessman

11 June 1971 19659

Prepared for the Advanced Research Projects Agency,
the Department of the Army, and the Department of the Air Force
under Electronic Systems Division Contract F19628-70-C-0230 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

Bamirac / 13999

Unclassified

Unclassified

Distribution limited to U.S. Government agencies only; test
and evaluation, 14 June 1971. Other requests for this docu-
ment must be referred to ESD/TR-2.

Unclassified

Unclassified

(1)
90

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

DATA REDUCTION PROGRAM DOCUMENTATION
ALERT

(EFFECTIVE: APRIL 1971)

14 PA-229-11

11 JUN 1971

12 56p.

13 DF-19628-70-C-P230, ARPA Order-600

Distribution limited to U.S. Government agencies only; test
and evaluation; 14 June 1971. Other requests for this docu-
ment must be referred to ESD-TR-2.

LEXINGTON

L. G. Dawson Field
Bedford, Mass 01730

MASSACHUSETTS

Unclassified

207 650 ✓

Unclassified

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology. This work was sponsored by the Advanced Research Projects Agency of the Department of Defense (ARPA Order 600), the Department of the Army, and the Department of the Air Force under Air Force Contract F19628-70-C-0230.

FOREWORD

This is the eleventh report in the Data Reduction Program Documentation series. It is dated according to the date of completion of the documentation. No implication is made that this program will not subsequently be modified, amended, or superseded; on the contrary, the history of radar data processing is one of continuous evolution of techniques, and it is unrealistic to assume that steady-state has been reached.

The preparation of reports in this series is under the Editorship of Charles R. Berndtson of Lincoln, and of D. Nessman and R. French of Philco-Ford Corporation. Inquiries, suggestions, corrections, criticisms, and requests for additional copies should be directed to C. R. Berndtson.

The principal contributor to this report was G. L. Shapiro (Philco-Ford). Due to the intricate, evolutionary manner in which the programs came into being, the editors regret that it is in general impossible to give due credit to all -- mathematicians or radar analysts or programmers -- who contributed to the definition and writing of the programs.

Alan A. Grometstein
Alan A. Grometstein

CONTENTS

	<u>Page</u>
I. PURPOSE AND UTILIZATION	1
A. Source of Data	1
B. Data Input	1
C. Description	1
D. Output	1
II. DESCRIPTION	2
III. OPERATION	8
A. Input	8
B. Output	9
IV. PROGRAM LIMITATIONS	10
V. PROGRAMMING	11
A. ALERT	11
B. HEDADT	11
C. UNPACK	11
D. READJS	12
E. REFC	12
F. STATUS	12
REFERENCES	13
APPENDIX A - ALERT INPUT	14
APPENDIX B - ALERT OUTPUT	15
APPENDIX C - ALERT PROGRAM LISTING	18
APPENDIX D - ALERT FLOW DIAGRAM	25
APPENDIX E - SUBROUTINE HEDADT PROGRAM LISTING	28

CONTENTS (cont'd)

	<u>Page</u>
APPENDIX F - SUBROUTINE UNPACK PROGRAM LISTING	29
APPENDIX G - SUBROUTINE REFC PROGRAM LISTING	39
APPENDIX H - SUBROUTINE STATUS PROGRAM LISTING	40

COMMON SYMBOLS AND ABBREVIATIONS

(The units given for certain quantities are the units commonly used for those quantities, unless otherwise noted.)

ADT	ALCOR Data Tape
ALCOR	ARPA -Lincoln C-band Observables Radar
ALTAIR	ARPA Long-Range Tracking and Instrumentation Radar
Alt	Altitude (km)
APS	Average Pulse Shape
ARS	ALTAIR Recording System
Avg	Average, Averaging
Az	Azimuth (deg)
c	Speed of Light
CADJ	Adjusted Calibration Constant (db)
C-band	ALCOR frequency, 5664 MHz (NB) and 5667 MHz (WB)
DBLT	Wide Band Pulse Doublet
DCO	Designations and Communications Operator
E1	Elevation (deg)
EOF	End of File
GMT	Greenwich Mean Time
h	Hours
Hz	Hertz
IF	Intermediate Frequency
in	Inches
IRV	Inter-Range Vector
LC	Left Circular Polarization
lsb	Least Significant Bit
min	Minutes
NB	Narrow Band
NRTPOD	Non-real Time Precision Orbit Determination Program
POD	Project PRESS Operation and Data Summary Report
Phase	Presented in deg
PRF	Pulse Repetition Frequency (pps)
PRI	Pulse Repetition Interval (s)
pps	Pulses per second
pts	Points

R	Range (km)
\dot{R}	Range Rate (km/s)
rad	Radians
RC	Right Circular Polarization
RCS	Radar Cross Section (dbsm)
RF	Radio Frequency
s	Seconds
SD_w	Standard Deviation of Wake Velocity
SDBLT	Wide Band Slaved Pulse Doublet
S/N	Signal-to-noise Ratio
T	Time
TAL	Time After Launch (s)
Tr	Traverse Angle (deg)
UHF	ALTAIR Frequency; 415 MHz
V	Velocity
V_d	Doppler Velocity
V_w	Mean Wake Velocity
VHF	ALTAIR Frequency; 155.5 MHz
WB	Wide Band
WBS	Wide Band Slaved
WTR	Western Test Range
θ	Total Off-axis Angle (deg)
λ	Wavelength
*	Denotes Multiplication

FLOW DIAGRAM SYMBOLS

PROCESS, ANNOTATION

DECISION

TERMINATOR

SUBROUTINE: where NAME is the entry
call into the subroutine

CONNECTOR: where P specifies a page in the
flow diagram, and L designates
a statement number in the program
listing or a reference point in the
flow diagram

CONNECTOR: where X implies a continuation
of the diagram to the next page

INPUT/OUTPUT OPERATION

MAGNETIC TAPE

PUNCHED CARD

DISK

ALERT

I. PURPOSE AND UTILIZATION

A. Source of Data

ALCOR¹

B. Data Input

ALCOR Data Tape (ADT)

C. Description

ALCOR data tape
ALERT is designed to obtain a summary of the data available on an ADT tape. Output is normally requested every 10th pulse. When WBS, DBLT, or SDBLT waveforms are operative, ALERT should be requested every pulse. The data presented in an ALERT listing are essential to run other ALCOR programs.

D. Output

A listing of metric and radar status data.

*continue
on page 2*

Wide band slaved

wide band pulse doublet

wide band slaved pulse doublet

From page 1

II. DESCRIPTION

ALERT gives a listing of metric and radar status information correlated with pulse ^{numbers} nos. which are necessary to run other ALCOR programs. The program should be run every pulse when WBS, DBLT, or SDBLT waveforms are in use.

The items listed by ALERT are determined as follows:

R, Az, and El are corrected:

$$R = IRANGE + TRBIAS + TTCOR + RRCOR - RCORF$$

$$Az = IAZ + AZBIAS$$

$$El = IEL + ELBIAS - ECORF$$

where

IRANGE is uncorrected R

TRBIAS is range bias

TTCOR (transit time correction) = RR/c

RRCOR is range doppler coupling correction

RCORF is tropospheric refraction correction

IAZ is Az encoder angle

AZBIAS is Az bias (Calibration Record Word 602)

IEL is El encoder angle

ELBIAS is El bias (Calibration Record Word 603)

ECORF is tropospheric refraction correction

Alt is computed as follows:

$$Alt = (R^2 + R_e^2 + 2RR_e \sin El)^{\frac{1}{2}} - R_e$$

where R_e = radius of earth (6378.145 km)

RCS is always the NB real time RCS whether the ADT is NB or WB. It is obtained:

$$\begin{aligned} \text{LC RCS} &= (\text{IPPRCS}) (80/255) - 40 \\ \text{RC RCS}^{\#} &= (\text{IOPRCS}) (80/255) - 40 \end{aligned}$$

where

IPPRCS is Data Record Byte 802

IOPRCS is Data Record Byte 803

A/D count is given for Gate 52 unless IW117 = 1 is input. In the latter case, IMOVP is given.

The angle offsets (ΔTr and ΔEl) are determined:

$$\Delta Tr = AZGRAD (2 \pi) (10^{P_a/20}) (\cos Z1)$$

$$\Delta El = ELGRAD (2 \pi) (10^{P_e/20}) (\cos Z2)$$

where

AZGRAD is the traverse scaling factor (revolutions/unit error),
Calibration Record Word 612

ELGRAD is the elevation scaling factor (revolutions/unit error),
Calibration Record Word 613

$10^{P/20}$ is the normalized error voltage

$$P_a (\text{db}) = \Delta Tr (\text{db}) - \text{REF} (\text{db})$$

$$P_e (\text{db}) = \Delta El (\text{db}) - \text{REF} (\text{db})$$

[#] Not an output at present.

^{##} IMOVP indicates whether primary and offset range gates are being moved manually;
62 to 66 counts: not moved; < 62 or > 66 counts: are moved; the separation between
the primary and offset gates remains constant.²

ΔTr (db), ΔEl (db), and REF (db) are found by indexing the amplitude reference table (Calibration Record Words 256-383) with the log detector counts obtained in the ADT data record for the ΔTr , ΔEl , and reference channels.

$$Z_1 = \Delta Tr \text{ phase} - \text{REF phase} + \text{AGAMA}$$

$$Z_2 = \Delta El \text{ phase} - \text{REF phase} + \text{EGAMA}$$

ΔTr phase, ΔEl phase, and REF phase are found by indexing the phase reference table (Calibration Record Words 1-255) with the phase detector counts obtained in the data record.

AGAMA is a phase offset between the reference channel and the ΔTr channel, found in Calibration Record Word 596

EGAMA is a phase offset between the reference channel and the ΔEl channel, found in Calibration Record Word 597

Peak transmit power is determined:

$$\text{NB POWER} = \text{PWRCN} + \text{PWRSN} \log XPKPWR$$

$$\text{WB POWER} = \text{PWRSN} + \text{PWRSW} \log XPKPWR$$

where

PWRCN is Calibration Record Word 620

PWRSN is Calibration Record Word 621

PWRCW is Calibration Record Word 622

PWRSW is Calibration Record Word 623

XPKPWR is Data Record Byte 344

The type of returned pulse is obtained from Data Record Byte 817, Bits 1-4,

where:

<u>Code</u>	<u>Pulse Return</u>
0	NB
1	WB
2	Phantom (not expected on ADT)
3	WBS

<u>Code</u>	<u>Pulse Return</u>
4	not used
5	DBLT
6	not used
7	SDBLT

Range offset is obtained from Data Record Bytes 832, 833, and 834.

DBLT waveform status information includes:

	<u>Calibration Record</u>
	<u>Word No.</u>
Alt at which DBLT is initiated	643
Alt at which DBLT is terminated	644

The following offset range scan status information is listed:

<u>Exo-atmospheric</u>	<u>Calibration Record</u>
	<u>Word No.</u>
Alt at which slaved mode is initiated	631
Alt at which slaved mode is terminated	632
No. of dwells/scan	633
Initial range offset (m)	634
Range offset increment (m)	635
Total no. of pulses/dwell	636

<u>Endo-atmospheric</u>	<u>Calibration Record</u>
	<u>Word No.</u>
Alt at which slaved mode is initiated	637
Alt at which slaved mode is terminated	638
No. of dwells/scan	639
Initial range offset (m)	640
Range offset increment (m)	641
Total no. of pulses/dwell	642

PRF is IPRF, determined from the transmitted PRF for the particular waveform on the ADT. #

See Ref. 2, Appendix F.

Radar status is obtained:

Type of Information	Column Heading	Code	Status	Source
Range	R	D	Designated mode	Data Record Byte 816, Bits 6-8
		T	Track mode	
		A	Automatic acquisition mode	
		C	Coast mode	
A	O	NB R not slaved to WB R	Data Record Byte 814, Bit 3	
	S	NB R slaved to WB R		
N	N	NB R into target tracker	Data Record Byte 814, Bit 6	
	W	WB R into target tracker		
G	O	Initially set to O	Data Record Byte 814, Bit 7	
	T	Alternates with every track transfer		
Angle	C	Tracking target centroid	Data Record Byte 818, Bit 8	
	E	Tracking leading edge of target		
	D	Designated mode		
	T	Track mode		
	W	Wait mode		
	C	Coast mode		
N	2	Angle servo type 2	Data Record Byte 818, Bit 5	
	1	Angle servo type 1		
G	H	Maximum angle servo bandwidth	Data Record Byte 818, Bit 6	
	L	Minimum angle servo bandwidth		
Miscellaneous	M	*	Not used	
I	O	Skin track mode	Data Record Byte 814, Bit 1	
	B	Beacon track mode		

Type of Information	Column Heading	Code	Status	Source
RD Designation Source	S	N	Detection normal	Data Record Byte 819, Bit 1
	C	O	Detection override	
	C	O	NB transmission only	Data Record Byte 818, Bit 4
	C	W	NB/NB transmission	
	R	D	Designation source selected by DCO	
	P	P	Current track file	Data Record Byte 815, Bits 7 and 8
	C	Manual		
	*	Not used		
	D	T (1-4)	Track files (1-4)	
		N (1-4)	Nominal track files (1-4)	
		I (1-4)	Inflight (IRV) messages	Data Record Byte 815, Bits 1-4
		F (1-3)	Fixed point	
		B*	Boresight tower	
		P*	PRESS track file	
Waveform	W	O	No WBS or SDBLT	Data Record Byte 817, Bit 5
	B	S	WBS or SDBLT	
	B	O	Not used	Data Record Byte 817, Bit 6
		N	Endo offset range scan	
		X	Exo offset range scan	
S	O	O	Not used	
		M	Manual offset range scan	Data Record Byte 817, Bit 7
		A	Automatic offset range scan	
D	O	O	No DBLT or SDBLT	
	D	D	DBLT or SDBLT	Data Record Byte 817, Bit 8

III. OPERATION

A. Input

Title

Launch Time (GMT total ms)

A/D option

First and last pulse nos. of processing intervals

Skip interval (pulses)

No. of processing intervals

A sample input is shown in Appendix A.

CARD 1 (I10, 3I5, 1X, A4)

(Col.)

1-10	ILNCH	Launch time in GMT total ms
11-15	NVALS	No. of processing intervals
16-20	IW117	A/D option: 0 = Gate 52; 1 = IMOVP
21-25	IAUTO [#]	0: NSKIP = 0 during WBS, DBLT, and SDBLT operation 1: NSKIP used as input
27-30	TITL	Title for listing

CARD 2 (6I10)

1-10	NSTART(1)	First pulse no. of initial processing interval
11-20	NSTOP(1)	Last pulse no. of initial processing interval
21-30	NSKIP(1)	No. of pulses between each line output
31-40	NSTART(2)	First pulse no. of second processing interval
41-50	NSTOP(2)	Last pulse no. of second processing interval
51-60	NSKIP(2)	No. of pulses between each line output

Repeat Card 2 as necessary.

[#] Applies only to WB ADT's.

B. Output

All input parameters are summarized at the beginning of the listing. This is followed by a summary of the offset range scan parameters in effect for the mission, and a summary of the meaning of all mnemonics that can appear in an ALERT listing.

The ALERT listing includes the following: time (TAL and GMT h, min, s, and ms), Alt, R, \dot{R} , [#]Az, El, NB LC RCS, A/D count (Gate 52 or IMOVP), Tr error, ^{##}El error, LC attenuation, [†]peak power, range offset, pulse no. and type, and status information. Status information is listed only when a change occurs.

A sample listing is presented in Appendix B.

[#]This \dot{R} is computed by the Real Time Program, and only approximates the true \dot{R} . The best estimate of \dot{R} should be computed by differentiating R, which is accurate.

^{##}Called Az error in listing.

[†]Called AGC in listing.

IV. PROGRAM LIMITATIONS

NVALS ≤ 50 processing intervals

V. PROGRAMMING

A. ALERT (see Appendices C and D.)

ALERT is the control section of ALERT. It reads the input cards, calls the subroutines, and lists the desired data.

B. HEDADT (see Appendix E.)

Subroutine HEDADT unpacks the ADT header record which contains bandwidth, reel no., WTR no., data of mission, and mission designator. The call statement is HEDADT [ISIG, # INBUF(1), IEQM(1)]

INPUT

INBUF(1) First word in the ADT header record ##

OUTPUT

IEQM(1)	IZBAND (bandwidth: 1 = WB, 0 = NB)
IEQM(2)	ITREEL (reel no.)
IEQM(3)	ITWTR (WTR no.)
IEQM(4)	IMTH
IEQM(5)	IDAY (Date of test)
IEQM(6)	IYR
IEQM(7-9)	ITDESG (mission designator)

C. UNPACK (see Appendix F.)²

Subroutine UNPACK unpacks the raw data from the ADT, and translates it into a format usable by the IBM 360/67 computer.

Not used.

INBUF(2) to INBUF (1803) contain the remaining words in the record.

D. READJS²

The first call to subroutine READJS opens the file and reads the ADT header record. The second call to READJS reads the ADT calibration record and stores the values in a buffer area. ALERT extracts the individual calibration values it requires. Each subsequent call to READJS reads an ADT data record consisting of eight ALCOR pulses.

E. REFC (see Appendix G.)

The tropospheric refraction correction subroutine, REFC, is based on tropospheric refraction tables in PPP-36.³ A modified version of this subroutine is now in use.

The call statement is REFC (E, R, DEE, DRR).

E = Uncorrected El (must be between 0° and 90°)

R = Uncorrected R

DEE = El tropospheric correction

DRR = R tropospheric correction

The corrected values to be computed after exiting from the REFC subroutine are:

El = E - DEE

R = R - DRR

F. STATUS (see Appendix H.)

Subroutine STATUS examines the designated status words, checks for changes, and returns to control section for output. The call statement is STATUS.

STORED IN COMMON

ISTAT	Array of status mnemonics
IALSW	Not used
ISTSW	Change of status indicator: 0 = no change; 1 = change

REFERENCES

1. "ALCOR Data Users Manual", LM-86, Lincoln Laboratory, M.I.T. (17 June 1970), UNCLASSIFIED.
2. "Data Reduction Program Documentation, ALCOR Tape Read Package, (Effective: April 1971)", PA-229-7, Lincoln Laboratory, M.I.T. (26 April 1971), UNCLASSIFIED.
3. J. P. Penhune, "Refraction Corrections for the TRADEX Radar", PPP-36 Lincoln Laboratory, M.I.T. (21 April 1965), UNCLASSIFIED.

APPENDIX A

ALERT INPUT

18900972 1 0 0 1105

22401 24001 9

APPENDIX B
ALERT OUTPUT

ALERT-ALCDR	BAND = NB	REEL NO. =	TITLE = 3/371	DATE = 3/195	START	STOP	Skip	START	STOP	Skip	START	STOP	Skip
START	STOP	Skip	9										
22401	24001												
LAUNCH TIME (TOTAL SECS) = 18930.972				INITI = 0	ENDO-ATMOSPHERIC SCAN				UPPER WBS SCAN ALTITUDE (KM) = -0.0				
									LOWER WBS SCAN ALTITUDE (KM) = -0.0				
									NUMBER OF DWELLS PER SCAN = 10.				
									INITIAL RANGE OFFSET (M) = 27.9B				
									RANGE OFFSET INCREMENT (M) = 0.0				
									NO. OF SLAVED PRIS PER DWELL = 40.				
									UPPER DOUBLET MODE ALTITUDE (KM) = -3.0				
									LOWER DOUBLET MODE ALTITUDE (KM) = -0.0				

EXO-ATMOSPHERIC

UPPER WBS SCAN ALTITUDE (KM) = -0.0
 LOWER WBS SCAN ALTITUDE (KM) = -3.0
 NUMBER OF DWELLS PER SCAN = 10.
 INITIAL RANGE OFFSET (M) = 27.9B
 RANGE OFFSET INCREMENT (M) = 0.0
 NO. OF SLAVED PRIS PER DWELL = 40.
 UPPER DOUBLET MODE ALTITUDE (KM) = -3.0

ENDO-ATMOSPHERIC SCAN

UPPER WBS SCAN ALTITUDE (KM) = -0.0
 LOWER WBS SCAN ALTITUDE (KM) = -0.0
 NUMBER OF DWELLS PER SCAN = 78.
 INITIAL RANGE OFFSET (M) = 29.9B
 RANGE OFFSET INCREMENT (M) = 0.0
 NO. OF SLAVED PRIS PER DWELL = 16.
 LOWER DOUBLET MODE ALTITUDE (KM) = -0.0

THE CODE I C) LISTED IN THE OUTPUT HEADING DEFINES THE CURRENT PULSE AS HAVING THE FOLLOWING WAVEFORM :

CODE -----
PULSE RETURN

- D NB RETURN
- 1 NB RETURN
- 2 PHANTOM INDIC TO BE USED)
- 3 NB SLAVEO WINDOW RETURN
- 4 NOT USED!
- 5 NB PULSE DOUBLET RETURN
- 6 (NOT USED)
- 7 NB PULSE DOUBLET SLAVEO WINDOW RETURN

THE CODE (RANGE) LISTED IN THE STATUS OUTPUT DEFINES THE FOLLOWING :

- R = O OESIGNATION
- = T TRACK
- = A AUTO-AQUISITION
- = C COAST
- A = D NB RANGE INPUT ESTIMATOR NOT SLAVED TO WB
- = S NB IS SLAVED TO WB
- N = N NB RANGE INTO TARGET TRACKER
- = W WB RANGE INTO TARGET TRACKER
- G = O D AND T WILL ALTERNATE WITH EVERY TRACK
- = T TRANSFER (FIRST SET = 0)
- E = C CENTER OR CENTROID TRACK
- = E EDGE TRACK

THE CODE (ANG) LISTED IN THE STATUS OUTPUT DEFINES THE FOLLOWING:

A	= D	DESIGNATE
	= T	TRACK
	= W	WAIT
	= C	COAST
N	= 2	ANGLE TYPE 2 SERVO
	= 1	ANGLE TYPE 1 SERVO
G	= H	MAXIMUM SERVO BANDWIDTH
	= L	MINIMUM ANGLE SERVO BANDWIDTH

THE CODE (MISC) LISTED IN THE STATUS OUTPUT DEFINES THE FOLLOWING:

H	= *	INPUT USED
I	= 0	BEACON TRACKER OFF
	= 8	BEACON TRACKER ACTIVE
S	= N	DETECTION NORMAL
	= O	DETECTION OVERRIDE
C	= 0	NB TRANSMISSION ONLY
	= 4	NB/WB TRANSMISSION

THE CODE (R/D) LISTED IN THE STATUS OUTPUT DEFINES THE FOLLOWING:

R	= D	DCO-DESIGNATION SOURCE SELECTED BY DCO
	= P	PRIME TF CURRENTLY TRACKFILE
	= C	CONSOLE JOYSTICK, BUTTONS, ETC.
	= *	INPUT USED
D	DCO SELECTED DESIGNATION SOURCE	
	= T11-4	TRACKFILE
	= N11-4	NOMINAL
	= I11-4	INFIGHT MESSAGES
	= F11-3	FIXED POINT
	= B*	BORELIGHT TOWER
	= P*	PRESS

THE CODE (WBS) LISTED IN THE STATUS OUTPUT DEFINES THE FOLLOWING:

W	= 0	WIDE BAND SLAVED MODE NOT IN EFFECT
	= S	IN EFFECT
B	= 0	BIT NOT BEING USED YET
	= N	END SCAN IN PROGRESS
	= X	EXD SCAN IN PROGRESS
S	= D	BIT NOT BEING USED YET
	= H	MANUAL WBS SCAN
	= A	AUTOMATIC WBS SCAN
O	= 0	DOUBLE MODE OFF
	= 1	DOUBLE MODE ON

BAND = NH										K, OFFSET RANGE AVG MISZ PRF R D MBSG PTL									
TIME (SECS)	HEIGHT (KM)	RANGE (KM)	ROUT (M, SEC)	ALIM DEG	FILEV DEG	LC A/D DBM	LCERR DEG	ACC DEG	PWP C DBM	QMT DEG	HK DEG	HK DBM	4 SCTS	5 SCTS	6 SCTS	7 SCTS	8 SCTS	9 SCTS	10 SCTS
1668.186	382.8	383.3	1076.1	-6441.9	59.91	16.36	-2	50	0.005	0.013	0.0	62	3	5	42	49.158	0.0	22401	
1668.186	382.8	382.8	1076.3	-6441.9	59.91	16.37	0	61	-0.015	0.014	0.0	62	3	5	42	49.358	0.0	22401	
1668.186	382.4	1075.5	-6442.5	59.92	16.38	-8	43	0.012	0.024	0.0	62	3	5	42	49.528	0.0	22431		
1668.186	382.1	1074.2	-6443.1	59.92	16.39	-2	29	-0.073	0.165	0.0	62	3	5	42	49.728	0.0	22441		
1668.186	381.7	1072.9	-6443.7	59.93	16.40	-2	57	-0.019	0.010	0.0	62	3	5	42	49.958	0.0	22451		
1669.186	381.3	1071.6	-6444.4	59.93	16.40	-6	45	0.396	-0.035	0.0	62	3	5	42	50.158	0.0	22461		
1669.186	380.8	1070.3	-6444.0	59.93	16.40	-4	53	0.007	0.039	0.0	62	3	5	42	50.358	0.0	22461		
1669.186	380.4	1069.1	-6444.5	59.93	16.42	-4	43	0.004	0.066	0.0	62	3	5	42	50.558	0.0	22471		
1669.186	380.0	1067.8	-6444.6	59.93	16.43	-5	46	0.033	-0.008	0.3	62	3	5	42	50.758	0.0	22481		
1669.186	379.7	1266.5	-6444.9	59.93	16.44	-7	59	-0.017	0.007	0.0	62	0	5	42	50.958	0.0	22491		
1670.186	379.3	1065.2	-6445.7	59.94	16.45	-3	53	-0.211	-0.013	0.0	62	3	5	42	51.158	0.0	22501		
1670.186	378.9	1063.9	-6446.1	59.94	16.46	-6	70	-0.045	-0.023	0.3	62	3	5	42	51.358	0.0	22511		
1670.186	378.6	1062.6	-6446.6	59.94	16.46	-6	60	-0.002	-0.006	0.0	62	3	5	42	51.558	0.0	22521		
1670.186	378.4	1061.3	-6447.0	59.94	16.47	-4	53	-0.3	-0.201	0.0	62	3	5	42	51.758	0.0	22531		
1670.186	378.0	1060.0	-6447.4	59.94	16.48	-7	44	-0.011	0.012	0.0	62	3	5	42	51.958	0.0	22541		
1670.186	377.7	1058.7	-6447.8	59.94	16.49	-5	62	-0.069	0.042	0.0	62	0	5	42	52.158	0.0	22551		
1671.186	377.2	1058.7	-6448.0	59.94	16.50	-2	62	-0.006	0.006	0.0	62	3	5	42	52.358	0.0	22561		
1671.186	376.8	1057.5	-6448.1	59.95	16.50	-13	39	-0.050	0.040	0.0	62	3	5	42	52.558	0.0	22571		
1671.186	376.4	1056.2	-6448.1	59.95	16.51	-27	16.5	-0.153	0.0	62	0	5	42	52.758	0.0	22581			
1671.186	376.0	1054.9	-6452.6	59.96	16.51	-2	59	-0.324	-0.301	0.0	62	3	5	42	52.958	0.0	22591		
1671.186	375.5	1054.1	-6453.2	59.96	16.52	-1	77	0.000	0.001	0.0	62	3	5	42	53.158	0.0	22601		
1672.186	375.2	1052.3	-6454.3	59.97	16.53	3	61	-0.005	0.020	0.0	62	0	5	42	53.358	0.0	22611		
1672.186	374.8	1051.0	-6454.8	59.97	16.54	0	57	0.305	-0.202	0.0	62	3	5	42	53.558	0.0	22621		
1672.186	374.4	1049.7	-6455.5	59.96	16.54	5	69	-0.014	0.014	0.0	62	0	5	42	53.758	0.0	22631		
1672.186	374.0	1048.4	-6455.6	59.96	16.55	-6	27	0.165	0.153	0.0	62	0	5	42	53.958	0.0	22641		
1672.186	373.6	1047.1	-6456.6	59.97	16.56	-1	53	-0.042	0.031	0.0	62	0	5	42	54.158	0.0	22651		
1673.186	373.2	1044.8	-6457.1	59.97	16.56	0	53	0.339	0.002	0.0	62	0	5	42	54.358	0.0	22661		
1673.186	372.6	1044.5	-6457.6	59.97	16.57	-3	63	-0.006	0.020	0.0	62	0	5	42	54.558	0.0	22671		
1673.186	372.2	1043.3	-6458.2	59.97	16.58	-11	47	0.024	0.024	0.0	62	0	5	42	54.758	0.0	22681		
1673.186	371.8	1042.0	-6458.8	59.97	16.59	-5	51	0.007	0.013	0.0	62	0	5	42	54.958	0.0	22691		
1673.186	371.4	1040.7	-6459.4	59.98	16.60	-11	62	-0.321	0.019	0.0	62	0	5	42	55.158	0.0	22701		
1674.186	371.0	1033.4	-6459.9	59.98	16.61	-17	18	-0.358	-0.207	0.0	62	0	5	42	55.358	0.0	22711		
1674.186	370.6	1030.6	-6460.6	59.99	16.62	-1	28	-0.085	-0.011	0.0	62	0	5	42	55.558	0.0	22721		
1674.186	370.0	1036.8	-6461.1	59.99	16.62	-14	59	-0.300	-0.207	0.0	62	0	5	42	55.758	0.0	22731		
1674.186	369.6	1035.5	-6461.7	59.99	16.63	-1	44	-0.043	0.011	0.0	62	0	5	42	55.958	0.0	22741		
1675.186	369.2	1034.2	-6462.3	59.99	16.64	0	56	-0.008	-0.047	0.0	62	0	5	42	56.158	0.0	22751		
1675.186	368.8	1032.9	-6463.0	59.99	16.64	-5	33	-0.013	0.0285	0.0	62	0	5	42	56.358	0.0	22761		
1675.186	368.4	1031.6	-6463.7	60.00	16.65	1	49	-0.023	0.034	0.0	62	0	5	42	56.558	0.0	22771		
1675.186	368.0	1030.3	-6464.3	60.00	16.66	0	50	-0.344	-0.201	0.0	62	0	5	42	56.758	0.0	22781		
1675.186	367.9	1029.0	-6465.0	60.01	16.67	-2	49	-0.017	0.016	0.0	62	0	5	42	56.958	0.0	22791		
1675.186	367.7	1027.7	-6466.4	60.01	16.67	0	52	0.012	0.001	0.0	62	0	5	42	57.158	0.0	22801		
1676.186	367.3	1026.4	-6467.1	60.01	16.68	-5	50	-0.224	-0.208	0.0	62	0	5	42	57.358	0.0	22811		
1676.186	366.9	1025.2	-6467.8	60.01	16.69	-9	54	-0.010	-0.017	0.0	62	0	5	42	57.558	0.0	22821		
1676.186	366.6	1023.9	-6468.5	60.01	16.70	-1	38	-0.014	0.072	0.0	62	0	5	42	57.758	0.0	22831		
1676.186	366.3	1022.6	-6469.3	60.01	16.71	-2	39	-0.025	-0.023	0.0	62	0	5	42	57.958	0.0	22841		
1676.186	365.9	1021.3	-6469.9	60.01	16.72	1	53	0.005	0.030	0.0	62	0	5	42	58.158	0.0	22851		
1677.186	364.7	1020.0	-6470.3	60.01	16.73	0	46	0.314	-0.215	0.0	62	0	5	42	58.354	0.0	22861		
1677.186	364.3	1018.7	-6471.1	60.01	16.74	0	55	0.032	-0.009	0.0	62	0	5	42	58.554	0.0	22871		
1677.186	364.0	1017.4	-6471.7	60.01	16.75	-6	63	0.015	0.025	0.0	62	0	5	42	58.758	0.0	22881		
1677.186	363.5	1016.1	-6472.0	60.02	16.76	-3	47	-0.212	-0.009	0.0	62	0	5	42	58.958	0.0	22891		
1677.186	363.1	1014.8	-6472.6	60.02	16.76	1	61	0.022	0.016	0.0	62	0	5	42	59.158	0.0	22901		
1678.186	362.8	1013.5	-6474.2	60.02	16.78	0	61	-0.006	0.003	0.0	62	0	5	42	59.358	0.0	22911		
1678.186	362.4	1012.2	-6474.6	60.02	16.79	1	29	-0.255	-0.134	0.0	62	0	5	42	59.558	0.0	22921		
1678.186	362.0	1010.9	-6475.1	60.02	16.80	1	60	0.007	-0.013	0.0	62	0	5	42	59.758	0.0	22921		

APPENDIX C
ALERT PROGRAM LISTING

DOUBLE PRECISION TLNCH,D1000,TAL,TOTL

```

C COMMON/ICCM/INRUF(1803),IAZIEL,INDEX,IPPRCS,IORS,IRANGE,IPKPWR,IRSTA00010
100T,IALT,INDAZ,JNDAZ,INDEL,IRB54,IRB85,ICPRCS,I240B1,I240B2,I240B3STA00020
1,I241B1,I241B2,I241B3,XPPAGC,IBETA,NEWA,IBAND,NSW,RBIAS(8),ISVPRI,
1IHRS,IMIN,ISEC,IMSEC,ISTAT(21),TRBIAS,ISTAT1,ISTAT2,ISTAT3,ISTAT4,STA00D4D
1IALSW,ISTSW,NBWB,ISIGNO,I115B2,JCON,NBEG,NEND,ITST,NUMPRI,XOPAGC,
1ITBAND,ITAPNO,IPRF,IPOLAR,ISSERR,PIFA(16),OIFA(16),PFSA,OFSA,
1PSSA,OSSA,PSSL,OSSL,ICODE,I273B5,I273B6,I273B7,I273B8,IMOVNP,IMCVO,
1IOFFST

C DIMENSION XNBUF(1803),                                     QBIAS(8),XKRC(5)
DIMENSION XATBL(128),XFZLN(255)
DIMENSION IECM(9),ITDESG(3)
DIMENSION NSTART(50),NSTOP(50),NSKIP(50)
DIMENSION DW(14),IOLDS(18)

C EQUIVALENCE(XNPUF(1),INBUF(1))
EQUIVALENCE(IFQM(1),NBAN),(IEQM(2),ITAPEN),(IEQM(3),ITWTR),
2(IEQM(4),IMTH),(IEQM(5),IDAY),(IEQM(6),IYR),
3(IEQM(7),ITDESG(1))

C 2CD8 FORMAT('D',1CX,'THE CODE ( C ) LISTED IN THE OUTPUT HEADING DEFINE
1S THE'//1X,'CURRENT PULSE AS HAVING THE FOLLOWING WAVEFORM O'//
213X,'CODE      PULSE RETURN'/13X,'----- -----'/15X,'0      NB
3 RETURN'/15X,'1      WB RETURN'/15X,'2      PHANTOM (NOT TO BE USED)
4      '/15X,'3      WB SLAVED WINDOW RETURN'/15X,'4      (NOT USED)'/
515X,'5      WB PULSE DOUBLET RETURN'/15X,'6      (NOT USED)'/15X,'7
6      WB PULSE DOUBLET SLAVED WINDOW RETURN'//)

2D04 FORMAT('D',1CX,'THE CODE (RANGE) LISTED IN THE STATUS OUTPUT DEFINES
1S THE FOLLOWING O'//15X,'R      = D DESIGNATION'/21X,'= T TR
2ACK'/21X,'= A AUTO-ACQUISITION'/21X,'= C COAST'//15X,'A
3= O NB RANGE INPUT ESTIMATOR NOT SLAVED TO WB'/21X,'= S NB I
4S SLAVED TO WB'//15X,'N      = N NB RANGE INTO TARGET TRACKER'/
521X,'= W WB RANGE INTO TARGET TRACKER'//15X,'G      = O O AND
6T WILL ALTERNATE WITH EVERY TRACK'/21X,'= T TRANSFER (FIRST SE
7T = O)'//15X,'F      = C CENTER OR CENTROID TRACK'/21X,'= E E
8DGE TRACK'//)

2D05 FORMAT('1',1DX,'THE CODE (ANG) LISTED IN THE STATUS OUTPUT DEFINES
1 THE FOLLOWING'//15X,'A      = D DESIGNATE'/21X,'= T TRACK'/
2 21X,'= W WAIT'/21X,'= C COAST'//15X,'N      = 2 ANGLE T
3YPE 2 SERVO'/21X,'= 1 ANGLE TYPE 1 SERVO'//15X,'G      = H M
4AXIMUM SERVO BANDWIDTH'/21X,'= L MINIMUM ANGLE SERVC BANDWIDTH'
5/ )

2D06 FORMAT('D',1CX,'THE CODE (MISC) LISTED IN THE STATUS OUTPUT DEFINE
1S THE FOLLOWING O'//15X,'M      = * (NOT USED)'//15X,
2I      = O BEACON TRACKER OFF'//21X,'= B BEACON TRACKER ACTIV
3E'//15X,'S      = N DETECTION NORMAL'//21X,'= O DETECTION OVE
4RRIDE'//15X,'C      = O NB TRANSMISSION ONLY'//21X,'= W NB/

```

```

5WB TRANSMISSION'')
2007 FORMAT('O',1CX,'THE CODE (R D) LISTED IN THE STATUS OUTPUT DEFINES
1 THE FOLLOWING O'//15X,'R      = D  DDCS-DESIGNATION SCURCE SELEC
2TED BY DCO'//21X,'= P  PRIME TF (CURRENTLY TRACKFILE) '
3           /21X,'= C  CONSOLE (JOYSTICK,BUTTONS,ETC.) '
4           /21X,'= * (NOT USED)' //21X,'DCO SELECTED DESIGNATIO
5N SCURCE' /15X,'D      = T(1-4)  TRACKFILE '
6           /21X,     '= I(1-4)  NOMINAL '
7           /21X,     '= I(1-4)  INFLIGHT MESSAGES'
8           /21X,     '= F(1-3)  FIXED POINT '
9           /21X,     '= B*    BORESIGHT TOWER '
A           /21X,     '= P*    PRESS  ')'
2009 FORMAT('O',1CX,'THE CODE (WBSD) LISTED IN THE STATUS OUTPUT DEFINE
1S THE FOLLOWING O'//15X,'W      = C  WIDE BAND SLAVED MODE NOT IN
2 EFFECT'//21X,'= S  IN EFFECT'//15X,'B      = C  (BIT NOT BEING
3 USED YET)'//21X,'= N  ENDO SCAN IN PROGRESS'//21X,'= X  EXO SCAN
4 IN PROGRESS'//15X,'S      = O  (BIT NOT BEING USED YET)'//21X,'=
5 M  MANUAL WBS SCAN          '/21X,'= A  AUTOMATIC WBS
6SCAN      '//'15X,'D      = O  DOUBLET MODE OFF '/21X,
7'= D  DOUBLET MODE ON')'
2017 FORMAT('O',1CX,'LAUNCH TIME (TOTAL SECS) = ',F10.3,5X,'IWIIT = ',
1I5///)
3100 FORMAT('IBAND = ',A2)
3200 FORMAT('O TIME HGHGT RANGE RDOT AZIM ELEV LC A/D AZER
1R ELERR AGC PWP C GMT R.CFFST RANGE ANG MISC PRF R D WB
2SD PRI')
3300 FORMAT(' (SECS) (KM) (KM) (M/SEC) DEG DEG DBM CNT DEG
1 DEG DB DPW HR M SECS (M) ',5A1,1X,3A1,1X,2A1,A2,1X,
2I3,1X,A1,1X,A2,1X,4A1,/)
3400 FORMAT(' ',F9.3,A1,F5.1,F7.1,F8.1,F7.2,F6.2,2I4,2F7.3,F5.1,I3,1X,I
11,3I3,'.',I3,1X,F7.1,1X,5A1,1X,3A1,1X,2A1,A2,1X,I3,1X,A1,1X,A2,1X,
24A1,1X,I5)
3600 FORMAT(' ',F9.3,A1,F5.1,F7.1,F8.1,F7.2,F6.2,2I4,2F7.3,F5.1,I3,1X,I
11,3I3,'.',I3,1X,F7.1,29X,1X,I5)
C
DATA ZLC//LC  '//,ZRC//RC  '//,ZWB//WB  '//,ZNB//NB  //
DATA      IFIRST3/D/,IFIRST4/O/,INTAV/1/,IFIRST2/O/,IFIRST5/D/
DATA ER /6378.I45/,IFIRST1/O/,BLNKK/'   '/ ,ZBUSE/'   '/
DATA IAST2/***/IAST/*   '/ ,IBLNK/'   '/
DATA D1000/1C00. D0/
C
C      ITST = 1 ARE NOT WITHIN THE NSTART-NSTOP INTERVAL
C      ITST = 2 ARE WITHIN THE NSTART-NSTOP INTERVAL
C      ITST = 3 AT NSTOP OF THE NSTART-NSTOP INTERVAL
C      NEWA = 0 MISSION FLOWN BEFORE 15 CCT 70 (OLD ATTN.)
C      NEWA = 1 MISSION FLOWN AFTER 15 CCT 70 (NEW ATTN.)
C
READ(5,1)ILNCH,NVALS,IWIIT,IAUTO,TITL,(NSTART(I),NSTOP(I),NSKIP(I)
1~I=1,NVALS)
1 FORMAT(1I10,3I5,1X,A4/(6I10))
C
IF(NVALS.LE.0)NVALS=1
C
IEOF=0
IERR=0
CALL READJS(INPUF,IECF,IERR)
IF(IEOF.EQ.1)GO TO 680

```

```

ISIG=1
CALL HEDACT (ISIG,INBUF(1),IEQM(1))
NEWA=0
IF(IYR.GT.70)GO TO 282
IF(IYR.LT.70)GO TO 283
IF(IMTH.GT.10)GO TO 282
IF(IMTH.LT.10)GO TO 283
IF(IDAY.LT.15)GO TO 283
282 NEWA=1
283 CONTINUE
IF(NWBAN.EQ.0)TAUTO=1
IERR=0
CALL READJS(INPUF,IEOF,IERR)
IF(IEOF.EQ.1)GO TO 680
C
C      STORE THE DESIRED CALIBRATION VALUES
C
DO 21 K=1,255
21 XFZLN(K)=XN8UF(K)
C
N=0
DO 20 K=256,383
N=N+1
20 XATBL(N)=XN8UF(K)
C
N=0
DO 22 K=512,527
N=N+1
22 PIFA(N)=XNBUF(K)
N=0
DO 23 K=528,543
N=N+1
23 OIFA(N)=XNBUF(K)
C
PFSA=XNBUF(592)
PSSA=XNBUF(593)
OFSA=XNBUF(594)
OSSA=XNBUF(595)
AGAMA = XNBUF(596)
EGAMA = XNBUF(597)
C
ABIAS=XNBUF(602)
EBIAS=XN8UF(603)
DEGCON=(180.*.0479369)/3141.59
AZBIAS=DEGCON*hBIAS
ELBIAS=DEGCON*fBIAS
C
DO 25 K=604,611
N=N+1
QDIAS(N)=XNBUF(K)
25 RBIAS(N)=Q8IAS(N)
C
AZGRAD = XNBUF(612)
ELGRAD = XNBUF(613)
C
PWRCN=XNBUF(620)

```

```

PWRSN=XN8UF(621)
PWRCW=XN8UF(622)
PWRSW=XN8UF(623)
C
      N=0
      DO 27 K=624,628
      N=N+1
      27 YKRC5(N)=XNBUFF(K)
C
      PSSL=XNBUF(629)
      OSSL=XNBUF(630)
C
      N=0
      DO 28 K=631,644
      N=N+1
      28 DW(N)=XN8UF(K)
C
      CKCN=14.989625/2048.
      XLX634=DW(4)*CKCN
      XLX635=DW(5)*CKCN
      XLX640=DW(10)*CKCN
      XLX641=DW(11)*CKCN
C
      ISTAT1=0
      ISTAT2=0
      LCNT=0
      DO 280 J=1,21
      ISTAT(J)=IAST2
      280 CCNTINUE
      JCON=-1
      INDEX=0
      ITST=1
      ITDEC=1
      IPOLAR=0
      ITCNT=0
      IPULS=0
C
      DO 120 IJ=1,NVALS
      NBEG=NSTART(IJ)
C
      IF(INSTART(IJ).LE.0)INSTART(IJ)=1
      IF(INSTOP(IJ).LE.0)INSTOP(IJ)=99999
      NNSET=NSKIP(IJ)+1
      NNSVE=NNSET
C
      3 JCON=JCON+1
      IF(JCON.EQ.9.0D+0)JCON=0 GO TO 97
      INDEX=(JCON-1)*900
      GO TO 99
      97 JCON=1
      INDEX=0
      98 IEOF=0
      IERR=0
      IPAR=IBLINK
      CALL READJS(INPBUF,IEOF,IERR)
      IF(IERR.EQ.1)IPAR=IAST
      IF(IEOF.EQ.1)GO TO 680

```

```

99 IALSW=0
C
    CALL UNPACK
    IF(IAUTO.EQ.1)GO TO 100
    NNSET=NNSVE
    IF(I273B5.NE.0.OR.I273B8.NE.0)NNSET=1
100 CONTINUE
C
    IF(IFRST2.EQ.1)GO TO 92
    PWRUS1=PWRCN
    IF(NWBAN.EQ.1)PWRUS1=PWRCW
    PWRUS2=PWRSN
    IF(NWBAN.EQ.1)PWRUS2=PWRSW
    ZBUSE=ZNB
    IF(NWBAN.EQ.1)ZBUSE=ZWB
    RRUSE=-.C0943
    IF(NWBAN.EQ.1)RRUSE=-.00015
C
    WRITE(6,20C)ZBUSE,ITAPEN,TITL,(IEQM(I),I=4,6)
200 FORMAT('IAERT-ALCOR'        4X,'BAND = ',A2,4X,'REEL NO. = '
     1,I5,' TITLE = ',A4,' DATE = ',I2,'/',I2,'/',I2)
    WRITE(6,212)(NSTART(I),NSTOP(I),NSKIP(I),I=1,NVALS)
212 FORMAT('O START STOP SKIP',12X,'START STOP SKIP',12X,'STAR
     1T STOP SKIP',12X,'START STOP SKIP' /( 4(2X,I5,2X,I5,2X,
     2I5,10X)))
    TLNCH=DFLOAT(INCH)/D1COC
    WRITE(6,2017)TLNCH,IW117
    WRITE(6,7431)DW(1),DW(7),DW(2),DW(8),DW(3),DW(9),
    XLX634,XLX640,XLX635,XLX641,DW(6),DW(12),DW(13),DW(14)
7431 FORMAT('O',1CX,'EXO-ATMOSPHERIC',38X,'ENDO-ATMOSPHERIC SCAN'// .
115X,'UPPER WBS SCAN ALTITUDE (KM) = ',F10.2,17X,'UPPER WBS SCAN AL
2TITUDE (KM) = ',F1C.2/
315X,'LOWER WBS SCAN ALTITUDE (KM) = ',F10.2,17X,'LOWER WBS SCAN AL
4TITUDE (KM) = ',F1C.2/
515X,'NUMBER OF DWELLS PER SCAN = ',F10.0,17X,'NUMBER OF DWELLS
6PER SCAN = ',F1C.0/
715X,'INITIAL RANGE OFFSET (M) = ',F10.2,17X,'INITIAL RANGE OFF
8SET (M) = ',F10.2/
915X,'RANGE OFFSET INCREMENT (M) = ',F10.2,17X,'RANGE OFFSET INCR
AEMENT (M) = ',F1C.2/
B15X,'NC.DF SLAVED PRIS PER DWELL = ',F10.0,17X,'NC.CF SLAVED PRIS
C PER DWELL = ',F1C.0//'
B11X,'UPPER DOUBLET MODE ALTITUDE (KM) = ',F10.2 ,
C13X,'LOWER DOUBLET MODE ALTITUDE (KM) = ',F1C.2)
    WRITE(6,8149)
8149 FORMAT(///)
    WRITE(6,2008)
    WRITE(6,2004)
    WRITE(6,2005)
    WRITE(6,20C6)
    WRITE(6,20C7)
    WRITE(6,20C9)
    WRITE(6,31C0)ZBUSE
    WRITE(6,3200)
    WRITE(6,3300)(ISTAT(J),J=1,18)
C
    IFRST2=1

```

```

92 CONTINUE
  IF(NUMPRI.LT.NSTART(IJ).OR.NUMPRI.GT.NSTOP(IJ))GO TO 3
C
  ITOT=(3600*IHRS+60*IMIN+ISEC)*1000+IMSEC
  ITAL=ITOT-ILNCH
  TAL=DFLOAT(ITAL)/D1000
  DO 710 K=1,18
  710 IOLDS(K)=ISTAT(K)
  CALL STATUS
C
  IF(IFRST4.EQ.0)GO TO 10
  IPULS=IPULS+1
  IF(IPULS.GE.NNSET)GO TO 87
  IF(ISTSW.EQ.0)GO TO 118
  WRITE(6,90)TAL,IPAR,(ISTAT(I),I=1,18),NUMPRI
  90 FORMAT(' ',F9.3,A1,87X,5A1,1X,3A1,1X,2A1,A2,1X,I3,1X,A1,1X,A2,1X,
  14A1,1X,I5)
  LCNT=LCNT+1
  GO TO 118
C
  87 IPULS=0
  GO TO 11
  10 IFRST4=1
  11 IADOUT=IRB54-1
  IF(IW117.EQ.1)IADOUT=IMOVP
  IF(ICODE.EQ.5)XOPAGC=XPPAGC
  IF(ICODE.EQ.7)XOPAGC=XPPAGC
  RDOT=(IRDOT/(8192.0))*14.989625
  RANGE=(FLOAT(IPRANGE)/204800.)*14.989625+TRBIAS*.14989625
  TTCCOR=(RANGF/299776.)*(RDOT/1000.)
  RANGE=RANGE+TTCCOR
  RRCOR=RRUSE*RDOT
  RANGE=RANGE+RRCOR/1000.
  APPOP=((IPPRCS/255.0)*80.0)-40.0
  IPPRCS=APPPOP
  APPOP=((IPPRCS/255.0)*80.0)-40.0
  IPPRCS=APPPOP
  AZ=(IAZ*2*3141.59265358)/(2.0**17)
  XAZ=AZ*.0572958
  XAZ=XAZ+AZBI4S
  EL=(IEL*2*3141.59265358)/(2.0**17)
  XEL=EL*.0572958
  XEL=XEL+ELBIAS
  CALL REFC(XEL,RANGE,ECORF,RCORF)
  RNGF=RANGE-RCORF
  ELVF=XEL-ECORF
  RADEL=ELVF*.017453
  CALT=SQRT(RNGF**2+ER*ER+2.*RNGF*ER*SIN(RADEL))-ER
  RANGE=RNGF
  EL=ELVF
  AZ=XAZ
  XPKPWR=IPKPWR
  IF(IPKPWR.LE.0)GO TO 39
  POWERT=PWRUS1+PWRUS2* ALOG10(XPKPWR)
  IPKPWR=POWER
  39 CCNTINUE
  XOFFST=(FLOAT(TOFFST)/2048.)*14.989625

```

```

C
    IF(I241B1.GT.127)GO TO 6310
    I241B1=I241B1+128
    GO TO 6311
6310 CONTINUE
    IF(I241B1.LT.129)GO TO 6311
    I241B1=256-I241B1
6311 CCNTINUE
    IF(I241B2.GT.127)GO TO 6312
    I241B2=I241B2+128
    GO TO 6313
6312 CCNTINUE
    IF(I241B2.LT.129)GO TO 6313
    I241B2=256-I241B2
6313 CCNTINUE
    IF(I241B3.GT.127)GO TO 6314
    I241B3=I241B3+128
    GO TO 6315
6314 CCNTINUE
    IF(I241B3.LT.129)GO TO 6315
    I241B3=256-I241B3
6315 CCNTINUE
C
    Z1=XFZLN(I241B2)-XFZLN(I241B1)+AGAMA
    CUSTA=COS(Z1)
    P=XATBL(I240B2)-XATBL(I240B1)
    AZERR=AZGRAD*2.*3.141593*(10.**((P/20.))*CCSTA)
    AZERR=AZERR*57.2958
C
    Z2=XFZLN(I241B3)-XFZLN(I241B1)+EGAMA
    COSTE=COS(Z2)
    P=XATBL(I240B3)-XATBL(I240B1)
    ELERR=ELGRAD*2.*3.141593*(10.**((P/20.))*CCSTE)
    ELERR=ELERR*57.2958
C
    LCNT=LCNT+1
    IF(LCNT.LT.54)GO TO 689
    WRITE(6,3100)ZPUSE
    WRITE(6,3200)
    WRITE(6,3300)      (10LDS(J),J=1,18)
    LCNT=0
689 CCNTINUE
657 CCNTINUE
    IF(I1STSW.EQ.0)GO TO 645
    WRITE(6,3400)TAL,IPAR,CALT,RANGE,RDOT,AZ,EL,IPPRCS,IADCUT,AZERR,
    1ELERR,XPPAGC,IPKPWR,ICODE,IHRS,IMIN,ISEC,IMSEC,XOFFST,
    1ISTAT(J),J=1,18),NUMPRI
    GO TO 650
645 WRITE(6,3600)TAL,IPAR,CALT,RANGE,RDOT,AZ,EL,IPPRCS,IADCUT,AZERR,
    1ELERR,XPPAGC,IPKPWR,ICODE,IHRS,IMIN,ISEC,IMSEC,XOFFST,NUMPRI
650 CONTINUE
C
    118 IF(INUMPRI.LT.NSTCP(IJ))GO TO 3
    1FRST4=0
    1PULS=0
    1FRST1=0
    119 1FRST3=0
C
    120 CCNTINUE
C
    GO TO 125
    680 WRITE(6,109)NUMPRI
    109 FORMAT(' END OF FILE REACHED LAST NUMPRI VALUE = ',10)
    125 RETURN
    END

```

APPENDIX D
ALERT FLO DIAGRAM

APPENDIX D-2

APPENDIX D-3

APPENDIX E
SUBROUTINE HEDADT PROGRAM LISTING

```

*           CALL HEDADT (ISIG,INBUF,IQU)
*           ISIG = 1      UNPACK THE 20 WORD ADT HEADER
*
START
ENTRY HEDADT
SPACE
XISIG EQU 4
XICAL EQU 5
XIEQU EQU 6
BASE EQU 12
SPACE
HEDADT SAVE (14,12),T,*
BALR 12,C
USING *,BASF
ST 13,SAVEA+4
LA 7,SAVEA
ST 7,8(0,13)
LR 13,7
SPACE
LM XISIG,XIEQU,0(1)
SPACE
L 8,0(XICAL)
ST 8,TEMP1
ST 8,TEMP2
SRL 8,31
ST 8,0(XIEQU) MBAND
L 8,TEMP1
SLL 8,1
SRL 8,25
ST 8,4(XIEQU) MREEL
SPACE
L 8,4(XICAL)
ST 8,TEMP1
SI 8,TEMP2
SRL 8,16
ST 8,8(XIEQU) MWTR
L 9,TEMP1
SLL 8,16
SRL 8,24
ST 8,12(XIEQU) MMNTH
L 8,TEMP2
SLL 8,24
SRL 8,24
ST 8,16(XIEQU) MDAY
SPACE
SR 8,8
IC 8,8(XICAL)
ST 8,20(XIEQU) MYEAR
VC 24(9,XIEQU),9(XICAL) MISSION DES.
SPACE
RETURN L 13,SAVEA+4
RETURN (14,12),T
CNOP 0,4
TEMP1 DC F'0'
TEMP2 DC F'0'
SAVEA DC 18A(*)
END

```

APPENDIX F
SUBROUTINE UNPACK PROGRAM LISTING

```

CSECT
ENTRY UNPACK
UNPACK SAVEL
DROP 15
CNOP 0,4
BALR 2,0
USING START,2,3
START L 3,BASA
L 4,DUBUF
L 5,DUBUF
L 6,DUBUF
A 5,=F'4096'
A 6,=F'8192'
USING DBUF,4,5,6
B START1
DUBUF DC V(ICON)
BASA DC A(START+4096)
START1 L 8,=F'1'
ST 8,IALSW
LA B,INBUF NUMPRI=8*(NPR-1)+JCUN
MVC TEMP(3),0(8)
MVC TEMP2(3),0(8)
L 9,TEMP
SLL 9,8
SRL 9,16
S 9,ONE
SR 8,8
M 8,EIGHT
A 9,JCON
ST 9,NUMPRI
L 9,NBEG
C 9,NUMPRI
BH CCELTAR
SPACE
LA 8,WC233 COMPUTE GMT
A 8,INDFX
MVC TEMP(7),0(8)
L 9,TEMP
N 9,=X'1FC00000'
SRL 9,24
ST 9,IHRS           STORE HRS
L 9,TEMP
N 9,=X'003FC0000'
SRA 9,16
ST 9,IMIN           STORE MINS
L 9,TEMP
N 9,=X'00003F00'
SRA 9,8
ST 9,ISEC           STORE SECS
LA 8,WC234
A 8,INDFX
MVC TEMP(3),0(8)
L 9,TEMP
N 9,=X'7FE00000'
SRL 9,21
ST 9,IMSFC          STORE MSEC
SPACE

```

GOODI	LA	8,WD237	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'7FFFC000'	
	SRL	9,14	
	ST	9,IAZ	STORE A2
	LA	8,WD236	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'7FFFC000'	
	SRL	9,14	
	ST	9,IEL	STORE ELEV
	LA	8,WD268	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'FFC00000'	
	SRL	9,24	
	ST	9,IPPRCS	STORE PP DBSM
GOCGN	LA	8,WD265	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'FFFFE000'	
	SRL	9,13	
	ST	9,TEMP2	
	LA	8,WD267	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'FFFF0000'	
	SRL	9,16	
	A	9,TEMP2	
	SLL	9,11	
	ST	9,TEMP2	
	LA	8,WD266	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'FFE00000'	
	SRL	9,21	
	A	9,TEMP2	
	ST	9,IRANGE	STORE RANGE
	LA	8,WD115	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	N	9,=X'00FFC000'	
	SRA	9,16	
	ST	9,IPKPWR	STORE PEAK PCWER
	LA	8,WD269	
	A	8,INDFX	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	C	9,=F'0'	

```

      BNL    DCTG1
      N    9,=X'7FFFFFFC0'
      SRA    9,8
      LCR    9,9
      B    DCTG2
      SRA    9,8
      COTG1  ST    9,IRDAT
      COTG2  LA    8,WD1A
              A    8,INDFX
              MVC   TEMP(3),0(8)
              L    9,TEMP
              N    9,=X'7FC000000'
              SRL   9,24
              LA    9,1(91
              ST    9,IR854          A/D COUNT-R8 52
              LA    8,WC268
              A    8,INDFX
              MVC   TEMP(3),0(8)
              L    9,TEMP
              N    9,=X'0OFFCOCO'
              SRL   9,16
              ST    9,ICPRCS         STORE OP C8SM
              SPACE
              LA    8,WC117
              A    8,INDFX
              MVC   TEMP(3),0(8)
              L    9,TEMP
              N    9,=X'FFC000000'
              SRL   9,24
              ST    9,IMOVF          ARE PRIMARY AND OFFSET MOVING
              SPACE
              L    9,TEMP
              N    9,=X'00COFF00'
              SRL   9,8
              ST    9,IMOVO          IS OFFSET WINDOW MOVING
              SPACE
              LA    8,WD273
              A    8,INDFX
              MVC   TEMP(3),0(8)
              L    9,TEMP
              N    9,=X'FO000000'
              SRL   9,28
              ST    9,ICORE           COMPUTE THE CCODE FOR PRI
              SPACE
              L    9,TEMP
              N    9,=X'08C000000'
              SRL   9,27
              ST    9,1273B5          WBS MODE INDICATOR
              L    9,TEMP
              N    9,=X'04C000000'
              SRL   9,26
              ST    9,1273B6          ENDO-EXO SCAN INDICATOR
              L    9,TEMP
              N    9,=X'020CCCC00'
              SRL   9,25
              ST    9,1273B7          WBS SCAN MODE INDICATOR
              L    9,TEMP

```

N	9,=X'01000000'	
SRL	9,24	
ST	9,I27388	DCUBLET MODE INDICATOR
SPACE		
SR	9,9	
ST	9,ICFFST	
L	9,ICONE	
C	9,THREE	
BE	OFFCOM	
C	9,SEVFN	
BE	OFFCOM	
8	OFFSKP	
SPACE		
CFFCOM	LA 8,WC278	
	A 8,INDFX	
	MVC TEMP(7),0(8)	
	SR 9,9	
	L 9,TEM	
	C 9,ZERO	
	8NL RPLUS	
	N 9,=X'7FFFFFF00'	
	SRA 9,8	
	LCR 9,9	
	B RNEG	
RPLUS	SRA 9,8	
RNEG	ST 9,ICFFST	RANGE OFFSET FOR SLAVED WINDOW
SPACE		
CFFSKP	LA 8,WC240	
	A 8,INDFX	
	MVC TEMP(7),0(8)	
	L 9,TEMP	
	N 9,=X'7FC00000'	
	SRL 9,24	
	LA 9,1(9)	
	ST 9,I24CB1	
	L 9,TEMP	
	N 9,=X'007F0000'	
	SRL 9,16	
	LA 9,1(8)	
	ST 9,I24082	
	L 9,TEMP	
	N 9,=X'00C07F00'	
	SRL 9,8	
	LA 9,1(9)	
	ST 9,I24083	
	LA 8,WC241	
	A 8,INDFX	
	MVC TEMP(7),0(8)	
	L 9,TEMP	
	N 9,=X'FFC00000'	
	SRL 9,24	
	LA 9,1(9)	
	ST 9,I241B1	
	L 9,TEMP	
	N 9,=X'00F00000'	
	SRL 9,16	
	LA 9,1(9)	

```

ST 9,I241B2
L 9,TEMP
N 9,=X'0CC0FF00'
SRL 9,8
LA 9,I(9)
ST 9,I241B3
LA 8,WC263
A 8,INOFX
MVC TEMP(3),0(8)
L 9,TEMP
N 9,=X'FCC0CC00'
SRL 9,20
LA II,PIFA
LE 0,0(9,II)           GET VALUE FROM PIFA TABLE
STE 0,XPPAGC
L 9,TEMP
N 9,=X'0FC00000'
SRL 9,22
LA II,CIFA
LF 0,0(9,II)           GET VALUE FROM CIFA TABLE
STE 0,XDPAGC
L 9,ZERO
ST 9,ISWSSP
ST 9,ISWSSC
ST 9,ISSFRR
LA 8,WC239
A 8,INOFX
MVC TEMP(3),0(8)
L 9,TEMP
N 9,=X'0CC0C200'      CHECK BIT 23 (PFSA)
C 9,ZERO
BE CKFSOP
LE 0,PFSA
AF 0,XPPAGC
STE 0,XPPAGC           ADD IN PFSA VALUE
CKFSCP L 9,TEMP
N 9,=X'00000100'      CHECK BIT 24 (CFSA)
C 9,ZERO
BE CKSSPP
LE 0,CFSA
AE 0,XCPAGC
STE 0,XCPAGC           ADD IN CFSA VALUE
CKSSPP L 11,TEMP
N 11,=X'00802000'
C 11,=F'0'
BNE CKSSOP
INDET L 8,ONE           INDETERMINATE SITUATION
ST 8,ISSFRR
B CCETAR
CKSSCP L 11,TEMP
N 11,=X'00401000'
C 11,=F'0'
BE INDET
PPTEST LA 9,WC239
A 9,INOFX
MVC TEMP(3),0(9)
L 10,TEMP
LA 9,WC252             AUX.MICR.WORD INTC REG.10
                           AUX.MICROWAVE WORD INTC REG.11

```

	A	9,INDFX	
	MVC	TEMP(3),0(9)	RANGE TR.WORD INTC TEMP
	N	10,=X'0C8C2000'	
	C	10,=X'0C8C0000'	
	BNE	S74	
	LE	0,PSSL	BIT 10 = 0 (COND.A) ADD IN PSSL (COND.B)
	AE	0,XPPAGC	
	STE	0,XPPAGC	
	L	9,ONE	
	ST	9,ISWSSP	
S74	L	8,NEWA	OLD OR NEW ATTEN.
	C	8,ZERO	
	BE	OPTEST	
	L	9,TEMP	
	N	9,=X'00C8CC00'	
	C	9,=F'0'	
	BE	RDBKLC	ATTENLATOR READBACK
	N	11,=X'080CC000'	S74 ARMED
	C	11,ZERO	STATUS READ BACK
	HNE	SLC	
NOATTLC	LE	0,PREVLC	
	STE	0,XPPAGC	
	MVC	JSWLC(4),ONE	
	MVC	ISSERR(4),CNE	
	B	OPTEST	
RDBKLC	N	11,=X'040CCCCC'	S74 NOT ARMED
	C	11,ZERO	STATUS READBACK
	BE	NCATTL	
	B	OPTEST	
SLC	LE	0,PSSA	
	AE	0,XPPAGC	ADD IN PSSA (COND.B)
STORLC	STE	0,XPPAGC	
	MVC	ISWSSP(4),CNE	
CPTEST	LA	9,WC239	
	A	9,INDFX	
	MVC	TEMP(3),0(9)	
	L	10,TEMP	AUX.MICR.WORD INTC REG.10
	LA	9,WC252	AUX.MICROWAVE WORD INTC REG.11
	A	9,INDFX	
	MVC	TEMP(3),0(9)	
	L	11,TEMP	
	LA	9,WC272	
	A	9,INDFX	
	MVC	TEMP(3),0(9)	RANGE TR.WORD INTC TEMP
	N	10,=X'CC4C1000'	
	C	10,=X'004C0C0C'	
	BNE	S75	BIT 10 = 0 (COND.A) ADD IN OSSL (COND.B)
LE	LE	0,OSSL	
	AE	0,XOPAGC	
	STE	0,XOPAGC	
	L	9,ONE	
	ST	9,ISWSSC	

S75	L	8,NEWA	OLD OR NEW ATTEN.
	C	8,ZERO	
	BE	CUT1	
	L	9,TEMP	
	N	9,=X'00040000'	
	C	9,F'0'	
	BE	RDBKRC	ATTENLATOR READBACK
	N	11,=X'02000000'	S75 ARMED
	C	11,ZERO	STATUS READ BACK
	BNE	SRC	
NOATTRC	LE	0,PREVRC	
	STE	0,XUPAGC	
	MVC	JSWRC(4),ONE	
	MVC	ISSERR(4),ONE	
	B	OUT1	
RDBKRC	N	11,=X'0 00000C'	S75 NOT ARMED
	C	11,ZERO	STATUS READBACK
	BE	NCATTPC	
	B	OUT1	
SRC	LE	0,OSSA	
	AE	0,XCPAGC	ADD IN OSSA (COND.B)
STORCC	STE	0,XCPAGC	
	MVC	ISWSSP(4),ONE	
CUT1	L	9,JSWLIC	
	C	9,ZERO	
	BNE	OUT2	
	LE	0,XPPAGC	
	SE	0,=E'16'	
	STE	0,XPPAGC	
	STE	0,PREVLC	
CUT2	L	9,JSWRC	
	C	9,ZERO	
	BNE	ENDALERT	
	LE	0,XCPAGC	
	SE	0,=E'16'	
	STE	0,XCPAGC	
	STE	0,PREVRC	
ENDALERT	MVC	JSWLIC(4),ZERO	
		MVC JSWRC(4),ZERO	
	LA	8,INBUF	
	MVC	TEMP(3),0(8)	
	L	9,TEMP	
	SRL	9,31	
	C	9,ZERO	
	BE	NBAND	
	LE	2,RBIAS+16	WIDE BAND TAPE
	STE	2,TRBIAS	
LCPOLAR	L	9,ISWSSP	
	C	9,ONE	
	BNE	CDELTAR	
	LE	2,RBIAS+24	
	AE	2,TRBIAS	ADD IN PSSA-RBIAS(7)
	STE	2,TRBIAS	
	B	CDELTAR	
NBAND	LE	2,RBIAS	NARROW BAND
	STE	2,TRBIAS	
	LA	8,WC273	CENTER OR EDGE TRACK

A	B, INDEX	
MVC	TEMP(3),0(8)	
L	9, TEMP	
N	9, =X'00C10000'	
C	9, ZERO	
BNE	CKNBEDGE	EDGE TRACKING
8	CDELTAR	
CKNBEDGE	L 8,IRDOT	CHECK SIGN OF R DOT
	C 8,ZERO	
	8H CKNBLOW	
	LE 2,RBIAS+4	LEADING EDGE BIAS
	AE 2,TRBTAS	
	STE 2,TRBTAS	
	B CCELTAR	
CKNBLOW	LE 2,RBIAS+8	TRAILING EDGE BIAS
	AE 2,TRBTAS	
	STE 2,TRBTAS	
CDELTAR	RETL	
TEMP	DC F'0'	
TEMP2	DC F'0'	
IXC	DC F'0'	
PRINUM	DC F'0'	
IPASS	DC F'0'	
ISWSSO	DC F'0'	
ISWSSP	DC F'0'	
JSWLIC	DC F'0'	
JSWRIC	DC F'0'	
PREVLC	DC E'0.0'	
PREVRIC	DC E'0.0'	
ZERO	DC F'0'	
CNE	DC F'1'	
TWO	DC F'2'	
THREE	DC F'3'	
FOUR	DC F'4'	
SEVEN	DC F'7'	
EIGHT	DC F'8'	
C10	DC F'10'	
C100	DC F'100'	
C1000	DC F'1000'	
DBUF	DSECT	
IN8UF	DS CL3	
WD1	DS CL3	PP LOG D.
	DS CL48	
WD18	DS CL3	
WD19	DS CL3	
	DS CL27	
WD29	DS CL3	
WD30	DS CL3	
	DS CL81	
WD58	DS CL171	PP PHASE 0.
WD115	DS CL3	
WD116	DS CL3	
WD117	DS CL3	
WD118	DS CL171	OP LOG D.
WD175	DS CL171	OP PHASE D.
WD232	DS CL3	
WD233	DS CL3	

WD234	DS	CL3
	DS	CL3
WD236	DS	CL3
WD237	DS	CL3
	DS	CL3
WD239	DS	CL3
WD240	DS	CL3
WD241	DS	CL3
WD242	DS	CL3
	DS	CL27
WD252	DS	CL3
WD253	DS	CL3
	DS	CL27
WD263	DS	CL3
WD264	DS	CL3
WD265	DS	CL3
WD266	DS	CL3
WD267	DS	CL3
WD268	DS	CL3
WD269	DS	CL3
WD270	DS	CL3
WD271	DS	CL3
WD272	DS	CL3
WD273	DS	CL3
WD274	DS	CL3
WD275	DS	CL3
WD276	DS	CL3
WD277	DS	CL3
WD278	DS	CL3
WD279	DS	CL3
WD280	DS	CL3
	DS	CL636 ^a
IAZ	DS	1F
IEL	DS	1F
INDEX	DS	1F
IOPRCS	DS	1F
IORS	DS	1F
IRANGE	DS	1F
IPKPWR	DS	1F
IRCOT	DS	1F
IALT	DS	1F
INDAZ	DS	1F
JNCAZ	DS	1F
INDEL	DS	1F
IRB54	DS	1F
IRB85	DS	1F
IOPRCS	DS	1F
I240B1	DS	1F
I240B2	DS	1F
I240B3	DS	1F
I241B1	DS	1F
I241B2	DS	1F
I241B3	DS	1F
XPPAGC	DS	1F
IBETA	DS	1F
NEWA	DS	1F
BAND	DS	1F

NSW	DS	1F
RBIAS	DS	8F
ISVPRI	DS	1F
IHRS	DS	1F
IMIN	DS	1F
ISEC	DS	1F
IMSEC	DS	1F
STAT	DS	21F
TRBIAS	DS	1F
ISTAT1	DS	1F
ISTAT2	DS	1F
ISTAT3	DS	1F
ISTAT4	DS	1F
IALSW	DS	1F
ISTSW	DS	1F
NBWB	DS	1F
ISIGN0	DS	1F
III5B2	DS	1F
JCON	DS	F
NBEG	DS	F
NEND	DS	F
ITST	DS	F
NUMPRI	DS	F
XOPAGC	DS	F
ITBAND	DS	F
ITAPNO	DS	F
IPRF	DS	F
IPCLAR	DS	F
ISSERR	DS	F
PIFA	DS	16F
CIFA	DS	16F
PFSA	DS	1F
CFS4	DS	1F
PSSA	DS	1F
CSSA	DS	1F
PSSL	DS	1F
CSSL	DS	1F
ICODE	DS	F
I273B5	DS	F
I273B6	DS	F
I273B7	DS	F
I273B8	DS	F
IMOVF	DS	F
IMCVC	DS	F
IOFFST	DS	F
	END	

APPENDIX G
SUBROUTINE REFC PROGRAM LISTING

```

SUBROUTINE REFC(E,R,DEE,DRR)           VERSION 6/16/70
DIMENSION CE(16,8),CR(16,8),EO(16),RD(8)
DATA OE/0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,
10.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0313,
20.0303,0.0292,0.0287,0.0282,0.0272,0.0262,0.0253,0.0243,0.0223,
30.0214,0.0195,0.0171,0.0135,0.0075,0.0 ,0.0937,0.0848,0.0770,
40.0732,0.0694,0.0627,0.0571,0.0522,0.0480,0.0412,0.0385,0.0337,
50.0278,0.0205,0.0105,0.0 ,0.1850,0.1520,0.1250,0.1140,0.1050,
60.0904,0.0795,0.0708,0.0636,0.0523,0.0478,0.0405,0.0323,0.0229,
70.0114,0.0 ,0.5310,0.3070,0.2120,0.1830,0.1600,0.1280,0.1060,
80.0899,0.0780,0.0612,0.0550,0.0455,0.0354,0.0246,0.0120,0.0 ,
90.7550,0.3720,0.2400,0.2020,0.1750,0.1370,0.1120,0.0942,0.0811,
A0.0631,0.0566,0.0466,0.0361,0.0250,0.0122,0.0 ,0.9120,0.4110,
B0.2560,0.2140,0.1840,0.1420,0.1150,0.0967,0.0830,0.0643,0.0575,
C0.0472,0.0365,0.0252,0.0122,0.0 ,0.9700,0.4200,0.2600,D.2200,
D0.1900,0.1460,E.1170,0.0980,0.0840,0.0653,0.0584,0.0478,0.0369,
E0.0254,0.0123,F.0 /
DATA DR/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 22.6, 21.5, 20.4, 19.9,
2 19.4, 18.5, 17.6, 16.8, 16.1, 14.8, 14.2, 13.2, 12.0, 10.4, 8.6,
3 7.7, 67.3, 57.9, 50.2, 47.0, 44.1, 39.3, 35.4, 32.1, 29.3, 24.8,
4 22.9, 19.7, 16.3, 12.7, 9.4, 8.1, 13.0, 98.5, 77.4, 69.7, 63.2,
5 52.9, 44.7, 38.4, 33.4, 26.4, 23.9, 20.1, 16.4, 12.7, 9.4, 8.1,
6340.0,167.0,103.0, 86.1, 73.4, 56.7, 46.2, 38.9, 33.6, 26.4, 24.0,
7 20.2, 16.4, 12.8, 9.5, 8.2, 405.0,170.0,104.0, 86.3, 73.6, 56.8,
8 46.3, 38.9, 33.7, 26.5, 24.1, 20.3, 16.5, 12.8, 9.5, 8.2, 421.0,
9171.0,104.0, 86.6, 73.9, 57.1, 46.4, 39.0, 33.8, 26.8, 24.3, 20.5,
A 16.6, 13.0, 9.8, 8.4, 446.0,172.0,105.0, 87.4, 74.0, 58.0, 46.6,
8 39.2, 34.0, 27.0, 24.6, 20.7, 16.7, 13.0, 10.0, 8.4/
DATA EC,RTDED/0.01,2.0,4.0,5.0,6.0,8.0,10.0,12.0,14.0,18.,20.,
124.,30.,40.,60.,90.,57.29578/
DATA RD/0.01,10.,30.,60.,20.,400.,1000.,2000./
IF (R.LE.0.0) GO TO 300
RG=R/1.852D+00
DU 100 IEO=2,15
I=17-IEO
IF (E.LE.ED(I)) GO TC 120
100 CONTINUE
I=1
120 DC 200 JRO=2,8
J=10-JRD
IF (RG.LE.RD(J)) GO TC 220
200 CONTINUE
J=1
220 IF (J.EQ.8) GO TC 340
ZR=ALUD(RD/RD(J))/ALOG(RD(J+1)/RD(J))
IF (E.LE.0.0) GO TC 320
ZE=ALUD(E/EO(I))/ALOG(EO(I+1)/ED(I))
OE1=((CE(I+1,J)-CE(I,J))*(1.-ZR)+(CE(I,J+1)-OE(I,J))*ZR)*ZE
OE2=((CE(I,J+1)-CE(I,J))*(1.-ZE)+(CE(I+1,J+1)-OE(I,J+1))*ZE)*ZR
OEE=DE1+DE2+DE(I,J)
DR1=(CR(I+1,J)-CR(I,J))*(1.-ZR)+(DR(I,J+1)-DR(I,J))*ZR)*ZE
DR2=(CR(I,J+1)-CR(I,J))*(1.-ZE)+(DR(I+1,J+1)-DR(I,J+1))*ZE)*ZR
DRX=(DR1+DR2+DR(I,J))
C0 TO 400
300 DEE=0.0
DRR=0.0
DC TD 400
320 DEE=DE(I,J)+(OF(I,J+1)-DE(I,J))*ZR
DRR=OR(I,J)+(DR(I,J+1)-OR(I,J))*ZR
GO TO 400
340 DELT=(E-ED(I))/(ED(I+1)-ED(I))
OEE=DELT*(CE(I+1,J)-OE(I,J))+DE(I,J)
ORR=DELT*(CR(I+1,J)-DR(I,J))+DR(I,J)
400 DRR=ORR*.30480-03
RETURN
END

```

APPENDIX H
SUBROUTINE STATUS PROGRAM LISTING

```
* THIS ROUTINE DECODES STATUS INFO AND PACKS IT INTO THE OUTPUT BUFFER
*
CSECT
ENTRY STATUS
STATUS SAVEL
DROP 15
CNOP 0,4
BALR 2,D
USING START,2,3
START    L    3,BASA
          L    4,DUBUF
          L    5,DUBUF
          L    6,DUBUF
          A    5,=F'4096'
          A    6,=F'8192'
          USING DBUF,4,5,6
          B    START1
CUBUF   DC   V(ICOM)
BASA    DC   A(START+4096)
SPACE
START1   LA   8,WD239
          A   8,INDEX
          MVC WCRD39(3),0(8)
          LA   8,WD264
          A   8,INDEX
          MVC WCRD64(3),0(8)
          LA   8,WD272
          A   8,INDEX
          MVC WCRD72(3),0(8)
          MVC WCRD73(3),3(8)
SPACE
          L   9,WCRD39
          N   9,=X'00800000'      MASK FOR WCRD 239
          ST  9,WCRD39
          L   9,WCRD64
          N   9,=X'FFFFE000'      MASK FOR WCRD 264
          ST  9,WCRD64
          L   9,WCRD72
          N   9,=X'A7F3C700'      MASK FOR WCRD 272
          ST  9,WCRD72
          L   9,WCRD73
          N   9,=X'0F1FF700'
          ST  9,WCRD73
SPACE
          SR  9,9
          ST  9,ISTSW
          L   9,WCRD39
          C   9,OWORD39
          BNE XFERW
          L   9,WCRD64
          C   9,OWORD64
          BNE XFERW
          L   9,WCRD72
          C   9,OWORD72
          BNE XFERW
          L   9,WCRD73
          C   9,OWORD73
          BNE XFERW
```

CLEAR STATUS PRINT SWITCH

B	RETUR	
SPACE		
XFERW	L 9,WCRD39	
	ST 9,WORD39	
	L 9,WCRD64	
	ST 9,WORD64	
	L 9,WCRD72	
	ST 9,WORD72	
	L 9,WCRD73	
	ST 9,WORD73	
SPACE		
	L 9,ISTAT2	
	LA 9,I(9)	
	ST 9,ISTAT2	
	C 9,=F'101'	
	BL SETSW1	
	ST 9,ISTAT11	
SETSW1	L 9,=F'1'	
	ST 9,ISTSW	SET STATUS PRINT SWITCH
SPACE		
	L 9,WCRD72	
	N 9,=X'00000700'	BIT 22-24
	SRL 9,B	
	A 9,=A(DTAC)	
	MVC STAT(1),0(9)	
	L 9,WORD72	
	N 9,=X'20000000'	
	SRL 9,29	BIT 3
	A 9,=A(SLWB)	
	MVC STAT+4(1),0(9)	
	L 9,WCRD72	
	N 9,=X'04C00000'	
	SRL 9,26	BIT 6
	A 9,=A(NWN)	
	MVC STAT+8(1),0(9)	
	L 9,WCRD72	
	N 9,=X'02000000'	
	SRL 9,25	BIT 7
	A 9,=A(GOT)	
	MVC STAT+12(1),0(9)	
	L 9,WCRD73	
	N 9,=X'00010000'	
	SRL 9,16	BIT 16
	A 9,=A(FEC)	
	MVC STAT+16(1),0(9)	
	L 9,WCRD73	
	N 9,=X'00000700'	
	SRL 9,B	BIT 22-24
	A 9,=A(DTWC)	
	MVC STAT+20(1),0(9)	
	L 9,WCRD73	
	N 9,=X'00080000'	
	SRL 9,19	BIT 13
	A 9,=A(N12)	
	MVC STAT+24(1),0(9)	
	L 9,WCRD73	
	N 9,=X'00040000'	BIT 14

SRL	9,18	
A	9,=A(GHL)	
MVC	STAT+28(1),0(9)	
L	9,WCRD39	
N	9,=X'F0800000'	
SRL	9,23	
A	9,=A(MIC)	
MVC	STAT+32(1),0(9)	
L	9,WCRD72	
N	9,=X'F0000000'	
SRL	9,31	
A	9,=A(S12)	
MVC	STAT+36(1),0(9)	
L	9,WCRD73	
N	9,=X'F00008000'	
SRL	9,15	
A	9,=A(CON)	
MVC	STAT+40(1),0(9)	
L	9,WCRD73	
N	9,=X'00100000'	
SRL	9,20	
ST	9,QTEMP	
A	9,=A(NBC)	
MVC	STAT+41(1),0(9)	
L	9,WCRD64	
N	9,=X'FFFFE000'	
SRL	9,13	
C	9,F'0'	
BNE	NZSTMP	
L	9,F'66666'	
ST	9,STEMP	
B	ZSTMP	
NZSTMP	ST 9,STEMP	
	L 9,F'10000000'	
	SR 8,8	
	D 8,STEMP	
	ST 9,STEMP	
	SPACE	
	L 9,INBUF	
	SRL 9,31	
	C 9,ZERC	
	BNE WBAND	
	SPACE	
N8AND	L 9,WCRD73	IN NARROW BAND
	N 9,=X'F1000000'	BIT 8
	SRL 9,24	
	C 9,ZERP	
	BE SLVDUB1	
	SPACE	
XDIV	L 8,FCUR	IN DOUBLET MODE
XDIVI	ST 8,DIVSR	
	8 NEWPRF	
	SPACE	
SLVDUB1	L 9,WCRD73	
	N 9,=X'F0800000'	BIT 5
	SRL 9,27	

	C	9,ZERO	
	BE	NBNWBN	
	B	XDIV	IN SLAVED DOUBLET MODE
NBNWBN	L	9,WCRD73	
	N	9,=X'CO100000'	BIT 12
	SRL	9,2C	
	C	9,ZERO	*
	BE	NODIVS	
	L	8,TWO	
	B	XCIVI	NB/WB E.C.P.
NODIVS	L	B,ONE	
	B	XCIVI	NB ONLY
	SPACE		
WBAND	L	9,WCRD73	
	N	9,=X'C1000000'	BIT 8
	SRL	9,24	
	C	9,ZERO	
	BNE	SLVDUB2	
	L	8,TWO	IN DOUBLET MODE
	B	XCIVI	
SLVDUB2	L	9,WCRD73	
	N	9,=X'08C00000'	BIT 5
	SRL	9,27	
	C	9,ZERO	
	BNE	XDIV	IN SLAVED DOUBLET MODE
	L	8,TWO	
	B	XCIVI	WB ONLY
	SPACE		
NEWPRF	SR	8,8	
	L	9,STEMP	
	D	8,DIVSR	
	ST	9,STEMP	
ZSTMP	MVC	STAT+44(4),STEMP	
	SPACE		
	L	9,WCRD72	
	N	9,=X'00C30C00'	
	SRA	9,16	
	A	9,=A(DPC)	
	MVC	STAT+4B(1),0(9)	
	L	9,WCRD72	
	N	9,=X'01F00000'	BIT 8-12
	SRL	9,19	RIGHT JUSTIFY AND MULTI BY 2
	C	9,=F'40'	
	BL	1NRANGE	
	L	9,=F'0'	
INRANGE	A	9,=A(CTN)	
	MVC	STAT+52(2),0(9)	
	L	9,WCRD73	BITS
	N	9,=X'0BC00000'	
	SRL	9,27	
	ST	9,WBSAVE	
	A	9,=A(SLWB)	
	MVC	STAT+56(1),0(9)	
	L	9,WBSAVE	
	C	9,ZERO	
	BNE	BB6	
	MVI	STAT+60,C'0'	
	MVI	STAT+64,C'0'	

	B	DBLTT	
BB6	L	9,WCRD73	BIT 6
	N	9,=X'04000000'	
	SRL	9,26	
	A	9,=A(WBS2)	
	MVC	STAT+60(1),0(9)	
	L	9,WCRD73	BIT 7
	N	9,=X'02000000'	
	SRL	9,25	
	A	9,=A(WBS3)	
	MVC	STAT+64(1),0(9)	
CBLTT	L	9,WCRD73	BIT 8
	N	9,=X'01000000'	
	SRL	9,24	
	A	9,=A(FBL1)	
	MVC	STAT+68(1),0(9)	
RETUR	RETL		
CTAC	DC	CL8'DTA*C***'	
SLWB	DC	CL2'DS'	
A12	DC	CL4'1122'	
LWN	DC	CL2'NW'	
GOT	DC	CL2'OT'	
EEC	DC	CL2'CF'	
DTWC	DC	CL8'DTW*C***'	
N12	DC	CL2'21'	
GHL	DC	CL2'HI'	
MIC	DC	CL2'***'	
S12	DC	CL2'DP'	
CCN	DC	CL2'NC'	
DPC	DC	CL4'DPC*''	
CTN	DC	CL4C***T1T2T3T4T5T6N1N2N3N4I1I2I3I4F1F2F3B*P*''	
WBS1	DC	CL2'01'	
WBS2	DC	CL2'NX'	
WBS3	DC	CL2'MA'	
CBL1	DC	CL2'0D'	
BL	DC	CL1'~'	
NBO	DC	CL2'DW'	
	CNOP	0,4	
WORD39	DC	F'0'	
WORD72	DC	F'0'	
WORD73	DC	F'0'	
WORD64	DC	F'0'	
CWRD39	DC	F'0'	
CWRD64	DC	F'0'	
CWRD72	DC	F'0'	
CWRD73	DC	F'0'	
STEMP	DC	F'0'	
CTEMP	DC	F'0'	
ZERO	DC	F'0'	
CNE	DC	F'1'	
TWC	DC	F'2'	
FOUR	DC	F'4'	
WBSAVE	DC	F'0'	
DIVSR	DC	F'0'	
DBUF	DSECT		
INBUF	DS	CL3	
WD1	DS	CL3	

	DS	CL48
WD18	DS	CL3
WD19	DS	CL3
	DS	CL27
WD29	DS	CL3
WD30	DS	CL3
	DS	CL252
WD115	DS	CL3
WD116	DS	CL3
WD117	DS	CL3
	DS	CL345
WD233	DS	CL3
WD234	DS	CL3
	DS	CL3
WD236	DS	CL3
WD237	DS	CL3
	DS	CL3
WD239	DS	CL3
WD240	DS	CL3
WD241	DS	CL3
WD242	DS	CL3
WD243	DS	CL3
WD244	DS	CL3
WD245	DS	CL3
WD246	DS	CL3
	DS	CL18
WD253	DS	CL3
	DS	CL27
WD263	DS	CL3
WD264	DS	CL3
WD265	DS	CL3
WD266	DS	CL3
WD267	DS	CL3
WD268	DS	CL3
WD269	DS	CL3
WD270	DS	CL3
WD271	DS	CL3
WD272	DS	CL3
WD273	DS	CL3
WD274	DS	CL3
WD275	DS	CL3
WD276	DS	CL3
WD277	DS	CL3
WD278	DS	CL3
WD279	DS	CL3
WD280	DS	CL3
	DS	CL6369
IAZ	DS	1F
IEL	DS	1F
INDEX	DS	1F
IPPRCS	DS	1F
IORS	DS	1F
IRANGE	DS	1F
IPKPWR	DS	1F
IRDOT	DS	1F
IALT	DS	1F
INDAZ	DS	1F

JNDAZ	DS	1F
INDEL	DS	1F
IRB54	DS	1F
IRB85	DS	1F
IOPRCS	DS	1F
I240B1	DS	1F
I240B2	DS	1F
I240B3	DS	1F
I241B	DS	1F
I24	DS	1F
I24	DS	1F
XPPAUL	DS	1F
IBETA	DS	1F
IBETASW	DS	1F
BAND	DS	1F
NSW	DS	1F
RBIAS	DS	8F
ISVPR1	DS	1F
IHRS	DS	1F
IMIN	DS	1F
ISEC	DS	1F
IMSEC	DS	1F
STAT	DS	21F
TRBIAS	DS	1F
ISTAT1	DS	1F
ISTAT2	DS	1F
ISTAT3	DS	1F
ISTAT4	DS	1F
IALSW	DS	1F
ISTSW	DS	1F
NBWB	DS	1F
ISIGNO	DS	1F
I115B2	DS	1F
JCCN	DS	F
NBEG	DS	F
NEND	DS	F
ITST	DS	F
NUMPRI	DS	F
XOPAGC	DS	F
ITBAND	DS	F
ITAPNO	DS	F
IPRF	DS	F
IPOLAR	DS	F
ISSERR	DS	F
PIFA	DS	16F
CIFA	DS	16F
PFSA	DS	1F
CFSA	DS	1F
PSSA	DS	1F
CSSA	DS	1F
PSSL	DS	1F
CSSL	DS	1F
ICODE	DS	F
I273B5	DS	F
I273B6	DS	F
I273B7	DS	F
I273B8	DS	F
IMCVP	DS	F
IMCVC	DS	F
IOFFST	DS	F
		END