DISKRETNA FOURIEROVA TRANSFORMACIJA (DFT)

Prof. dr. Nermin Suljanović

- Digitalna obrada signala –

Uvod

- Za sekvence konačne dužine trajanja postoji alternativna Fourirova reprezentacija koju nazivamo *DISKRETNA FOURIEROVA TRANSFORMACIJA (DFT)*.
- DFT <u>NIJE</u> funkcija kontinualne varijable već je i sama sekvenca koja odgovara ekvidistantnim uzorcima Fourierove transformacije signala.
- DFT ima ključnu ulogu u implementaciji različitih algoritama digitalne obrade signala.
- Matematičke izraze za DFT ćemo izvesti na osnovu predstavljanja periodičnih sekvenci pomoću Fourierovih redova, gdje je jedan period jednak sekvenci konačnog trajanja.
- Na ovaj način ćemo istaći periodičnost DFT-a, kojoj treba dati posebnu pažnju tokom primjene DFT-a.

Razmatramo periodičnu sekvencu

$$\tilde{x}[n] = \tilde{x}[n+rN], \qquad r, n \to cijeli\ brojevi$$
 (1)

• Ovakva sekvenca se može predstaviti pomoću sume harmonijskih kompleksnih eksponencijalnih sekvenci, sa frekvencijama koji su cjelobrojni multipl osnovne frekvencije $2\pi/N$, tj:

$$e_k[\mathbf{n}] = e^{j\left(\frac{2\pi}{N}\right)kn} = e_k[\mathbf{n} + rN] \tag{2}$$

$$\tilde{x}[n] = \frac{1}{N} \sum_{k} \tilde{X}[k] e^{j\left(\frac{2\pi}{N}\right)kn} \tag{3}$$

• Fourierov red bilo koje vremenski-diskretne sekvence zahtjeva samo N harmonika.

$$e_{k+lN}[n] = e^{j(\frac{2\pi}{N})(k+lN)n} = e^{j(\frac{2\pi}{N})kn}e^{j2\pi ln} = e^{j(\frac{2\pi}{N})kn} = e_k[n]$$
 (4)

• gdje je *l* cijeli broj.

• Prema tome, Fourierov red periodične sekvence $\widetilde{x}[n]$ sadrži samo N harmonika:

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j\left(\frac{2\pi}{N}\right)kn}$$
(5)

• Da bi odredili koeficijente Fourierovog reda $\tilde{X}[k]$, iskoristićemo ortogonalnost skupa kompleksnih eksponencijalnih sekvenci. Prethodnu jednačinu pomnožimo sa obje strane sa $e^{-j\left(\frac{2\pi}{N}\right)rn}$ i sumiramo od n=0 do n=N-1:

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\left(\frac{2\pi}{N}\right)rn} = \sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j\left(\frac{2\pi}{N}\right)(k-r)n}$$
 (6)

$$\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\left(\frac{2\pi}{N}\right)rn} = \sum_{k=0}^{N-1} \tilde{X}[k] \left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j\left(\frac{2\pi}{N}\right)(k-r)n} \right]$$
 (7)

Iskoristićemo ortogonalnost:

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{-j\left(\frac{2\pi}{N}\right)(k-r)n} = \begin{cases} 1, & k-r = mN, m \ cijeli \ broj \\ 0, & za \ ostale \ vrijednosti \end{cases}$$
(8)

• Jednačina (7) se na osnovu (8) reducira tako da određujemo koeficijente FR-a kao:

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\left(\frac{2\pi}{N}\right)kn}$$
(9)

• Uočimo da je sekvenca $\tilde{X}[k]$ periodična sa periodom N.

$$\tilde{X}[k+N] = \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\left(\frac{2\pi}{N}\right)(k+N)n} = \left(\sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\left(\frac{2\pi}{N}\right)kn}\right) e^{-j2\pi n} = \tilde{X}[k] \quad (10)$$

• KOEFICIJENTI FOURIEROVOG REDA SE MOGU INTERPRETIRATI KAO SEKVENCA KONAČNE DUŽINE ILI KAO PERIODIČNA SEKVENCA!

Iz čisto praktičnih razloga se uvodi kompleksna veličina

$$W_N = e^{-j(2\pi/N)} (11)$$

• tako da se par jednačina (analiza i sinteza) diskretnog Fourierovog reda može zapisati u obliku N-1

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn}$$
(12)

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$
(13)

- U obje jednačine $\tilde{X}[k]$ i $\tilde{x}[n]$ su periodične sekvence.
- Notacija koja se koristi za diskretne Fourierove redove je

$$\tilde{x}[n] \stackrel{DFS}{\longleftrightarrow} \tilde{X}[k]$$
 (14)

Pomak sekvence

• Ako periodična sekvenca $\tilde{x}[n]$ ima Fourierove koeficijente $\tilde{X}[k]$, tada vrijedi

$$\tilde{x}[n-m] \stackrel{DFS}{\longleftrightarrow} W_N^{km} \tilde{X}[k]$$
 (15)

- Svaki pomak u sekvenci koji je veći ili jednak od perioda ($m \ge N$) ne može se razlikovati od kraćeg pomaka m_1 za koji vrijedi $m = m_1 + m_2 N$, gdje su m_1 i m_2 cijeli brojevi i $0 \le m_1 \le N 1$.
- Ovo obično zapisujemo i kao $m_1=m\ mod\ N$, odnosno rezultat cjelobrojnog dijeljenja.
- S obzirom da su koeficijenti Fourierovog reda periodične sekvence takođe periodična sekvenca, vrijedi

$$W_N^{-kl} \tilde{\chi}[n] \stackrel{DFS}{\longleftrightarrow} \tilde{X}[k-l] \tag{16}$$

Periodična konvolucija

• Neka su $\tilde{x}_1[n]$ i $\tilde{x}_2[n]$ dvije periodične sekvence sa periodom N, sa koeficijentima diskretnog Fourierovog reda $\tilde{X}_1[k]$ i $\tilde{X}_2[k]$. Tada proizvod

$$\tilde{X}_3[k] = \tilde{X}_1[k]\tilde{X}_2[k] \tag{17}$$

predstavlja koeficijente Fourierovog reda sekvence

$$\tilde{x}_3[n] = \sum_{m=0}^{N-1} \tilde{x}_1[n] \tilde{x}_2[n-m]$$
 (18)

- Prethodna jednačina opisuje periodičnu konvoluciju.
- Periodična konvolucija je komutativna, odnosno vrijedi

$$\tilde{x}_3[n] = \sum_{m=0}^{N-1} \tilde{x}_2[n]\tilde{x}_1[n-m]$$
 (19)

Fourierova transformacija periodičnih signala

• Ako je $\tilde{x}[n]$ periodična sekvenca sa periodom N i ako njoj odgovaraju koeficijenti diskretnog Fourierovog reda $\tilde{X}[k]$, tada je Fourierova transformacija ove sekvence definira kao povorka impulsa

$$\tilde{X}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \tilde{X}[k] \delta\left(\omega - \frac{2\pi k}{N}\right) \quad (20)$$

- Uočimo da je $\tilde{X}(e^{j\omega})$ je periodično sa 2π dok je $\tilde{X}[k]$ periodično sa N.
- Impulsi su na frekventnoj osi na rastojanju $2\pi/N$.
- Ako je sekvenca $\tilde{x}[n]$ formira od sekvence konačne dužine x[n] čija je Fourierova transformacija $X(e^{j\omega})$, vrijedi $\tilde{X}[k] = X^{\left(e^{j\left(\frac{2\pi}{N}\right)k}\right)} = X(e^{j\omega})|_{\omega = \left(\frac{2\pi}{N}\right)k}$

• Periodična sekvenca $\tilde{X}[k]$ odgovara uzorcima Fourierove transformacije sekvence konačne dužine dobijene izdvajanjem jednog perioda iz sekvence $\tilde{x}[n]$.

• Imamo N jednako udaljenih uzoraka na frekventnoj osi između $\omega=0$ i $\omega=2\pi$, sa razmakom uzoraka $2\pi/N$.

Fourierova transformacija periodičnih signala

• Jednačinu (20) možemo dokazati preko inverzne Fourierove transformacije:

$$\frac{1}{2\pi} \int_{0-\varepsilon}^{2\pi-\varepsilon} \tilde{X}(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{N} \sum_{k=-\infty}^{\infty} \tilde{X}[k] \int_{0-\varepsilon}^{2\pi-\varepsilon} \delta\left(\omega - \frac{2\pi k}{N}\right) e^{j\omega n} d\omega = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j\frac{2\pi}{N}kn}$$

- Rezultantna suma je od 0 do N-1 jer su impulsi koji odgovaraju $k=0,1,2,\dots (N-1)$ locirani na intervalu od $0-\varepsilon$ do $2\pi-\varepsilon$.
- Desna strana prethodne jednačine je jednaka predstavi signala $\tilde{x}[n]$ pomoću Fourierovog reda.

Fourierova transformacija periodičnih signala

$$x[n] = \begin{cases} 1, 0 \le n \le 4 \\ 0, ostalo \ n \end{cases}$$

- Razmatramo sekvencu x[n] konačne dužine N uzoraka, takvu da je x[n]=0 van opsega $0 \le n \le N-1$.
- U velikom broju primjera, želimo smatrati da sekvenca ima dužinu N čak i kada je njena dužina $M \leq N$. Za preostalih N-M uzoraka uzmemo nule.
- Svaku sekvencu konačne dužine možemo povezati sa periodičnom sekvencom

$$\tilde{x}[n] = \sum_{r = -\infty}^{\infty} x[n - rN] \tag{21}$$

• Sekvenca konačne dužine x[n] se može dobiti iz periodične sekvence iz

$$x[n] = \begin{cases} \tilde{x}[n], 0 \le n \le N - 1\\ 0, za \text{ ostalo } n \end{cases}$$
 (22)

- Koeficijenti Fourierovog reda sekvence $\tilde{x}[n]$ su uzorci (razmaknuti na frekventnoj osi za $2\pi/N$) su uzorci Fourierove transformacije sekvence konačne dužine x[n].
- S obzirom da je x[n] konačne dužine, očigledno je da ne dolazi do preklapanja sa članovima x[n-rN] za različite vrijednosti r. Zato se jednačina (20) može zapisati i preko cjelobrojnog dijeljenja kao

$$\tilde{x}[n] = x[n \bmod N] = x[((n))_N] \tag{23}$$

- Vidjeli smo da su i $\tilde{X}[k]$ i $\tilde{x}[n]$ periodične sekvence sa istim periodom N.
- Da bi zadržali dualnost između vremenskog i frekventnog domena, biramo koeficijente diskretnog Fourierovog reda koje povezujemo sa sekvencom konačne dužine da bude konačna sekvenca koja odgovara jednom periodu $\tilde{X}[k]$.
- Sekvenca konačne dužine X[k] se naziva diskretna Fourierova transformacija (DFT).

• DFT X[k] je povezana sa koeficijentima diskretnog Fourierovog reda $\tilde{X}[k]$ izrazom

$$\tilde{X}[k] = X[k \bmod N] \tag{24}$$

• Znamo da su $\tilde{X}[k]$ i $\tilde{x}[n]$ povezani relacijama

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n] W_N^{kn} \tag{25}$$

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$
(26)

• S obzirom da prethodne dvije jednačine uključuju interval od 0 do *N-1*, uzimajući u obzir sve prethodne jednačine slijedi:

$$X[k] = \begin{cases} \sum_{n=0}^{N-1} x[n]W_N^{kn}, 0 \le k \le N-1 \\ 0, za \ ostalo \ k \end{cases}$$
 (27)

$$x[n] = \begin{cases} \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, 0 \le n \le N-1 \\ 0, za \text{ ostalo } n \end{cases}$$
 (28)

• U opštem slučaju, jednačine za DFT su:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$
 (29)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$
(30)

- lako u prethodne dvije jednačine nije eksplicitno naglašeno, podrazimijeva se da je X[k] = 0 za k van intervala $0 \le k \le N-1$ i x[n] = 0 za n van intervala $0 \le n \le N-1$.
- Relacija između x[n] i X[k] se obično zapisuje kao

$$x[n] \stackrel{DFT}{\longleftrightarrow} X[k] \tag{31}$$

- Treba naglasiti da za sekvence konačne dužine nismo eliminirali nasljeđenu periodičnost.
- DFT, kao i DFS, odgovara uzorcima periodične Fourierove transformacije $X(e^{j\omega})$ i ako se jed. (30) koristi da se izračuna x[n] van granica $0 \le n \le N-1$, rezultat neće biti nula već periodično produženje x[n].
- NASLIJEĐENA PERIODIČNOST JE UVIJEK PRISUTNA!

DFT pravougaonog impulsa

- Razmatramo sekvencu x[n] konačne dužine N=5 čija je DFT jednaka X[k].
- $\tilde{x}[n]$ je periodična sekvenca čiji DFS odgovara DFT-u sekvence x[n].

DFT pravougaonog impulsa

• S obzirom da je sekvenca konstantna na intervalu $0 \le n \le 4$, vrijedi:

$$\tilde{X}[k] = \sum_{n=0}^{4} e^{-j\left(\frac{2\pi k}{5}\right)n} = \frac{1 - e^{-j2\pi k}}{1 - e^{-j(2\pi k/5)}} = \begin{cases} 5, & k = 0, \pm 5, \pm 10 \dots \\ 0, & za \text{ ostalo } k \end{cases}$$

- $\tilde{X}[k]$ je sekvenca uzoraka $X(e^{j\omega})$ na frekvencijama $\omega_k=2\pi k/5$.
- DFT sekvence x[n] je izračunato u pet tačaka i odgovara sekvenci konačne dužine koja je jednaka jednom periodu $\tilde{X}[k]$.

DFT pravougaonog impulsa: N=5

DFT pravougaonog impulsa: N=10

DFT pravougaonog impulsa: N=10

Linearnost DFT

• Ako imamo dvije sekvence konačne dužine $x_1[n]$ i $x_2[n]$, i ako ih linearno kombiniramo

$$x_3[n] = ax_1[n] + bx_2[n]$$

tada je DFT ove sekvence jednak

$$X_3[k] = aX_1[k] + bX_2[k]$$

- Ako $x_1[n]$ ima dužinu N_1 i $x_2[n]$ ima dužinu N_2 , tada je maksimalna dužina $x_3[n]$ jednaka $N_3 = max\{N_1,N_2\}$.
- DFT se za obje sekvence mora računati za istu dužinu $N \ge N_3$.

- Ako je $X(e^{j\omega})$ Fourierova transformacija sekvence x[n], tada $e^{-j\omega m}X(e^{j\omega})$ predstavlja Fourierovu transformaciju zakašnjele sekvence x[n-m].
- Ako periodična sekvenca $\tilde{x}[n]$ ima koeficijente Fourierovog reda $\tilde{X}[k]$, tada zakašnjela sekvenca $\tilde{x}[n-m]$ ima koeficijente Fourierovog reda $e^{-j\left(\frac{2\pi k}{N}\right)m}\tilde{X}[k]$.
- Sada ćemo razmotriti operaciju u vremenskom domenu koja odgovara množenju DFT koeficijenata sekvence konačne dužine x[n] sa faktorom $e^{-j\left(\frac{2\pi k}{N}\right)m}$.
- Drugim riječima, tražimo sekvencu $x_1[n]$ za koju vrijedi

$$x_1[n] \stackrel{DFT}{\longleftrightarrow} X_1[k] = e^{-j\left(\frac{2\pi k}{N}\right)m} X[k]$$

• S obzirom da DFT u N tačaka odgovara sekvenci konačne dužine N, obje sekvence x[n] i $x_1[n]$ moraju biti nula van intervala $0 \le n \le N-1$ pa $x_1[n]$ ne može rezultirati jednostavnim kašnjenjem x[n].

• Znamo sljedeće:

$$\tilde{x}[n] = x[((n))_N] \overset{DFS}{\longleftrightarrow} \tilde{X}[k] = X[((k))_N]$$

$$\tilde{x}_1[n] = x_1 \left[\left((n) \right)_N \right] \overset{DFS}{\longleftrightarrow} \tilde{X}_1[k] = X_1[((k))_N]$$

$$X_1[k] = e^{-j\left(\frac{2\pi k}{N}\right)m} X[k]$$

• Prema tome, koeficijenti diskretnog Fourierovog reda za $\tilde{x}_1[n]$ su sljedeći:

$$\tilde{X}_1[k] = e^{-j\left[\frac{2\pi((k))_N}{N}\right]m}X[((k))_N]$$

• Uočimo da vrijedi jednakost:

$$e^{-j\left[\frac{2\pi((k))_N}{N}\right]m} = e^{-j\left(\frac{2\pi k}{N}\right)m}$$

• tako da možemo izbaciti notaciju $((k))_N$ i pisati:

$$\tilde{X}_1[k] = e^{-j\left(\frac{2\pi k}{N}\right)m}\tilde{X}[k]$$

Zaključujemo da je

$$\tilde{x}_1[n] = \tilde{x}[n-m] = x[((n-m))_N]$$

• Sekvenca konačne dužine $x_1[n]$ sa zadanom DFT je jednaka

$$x_1[n] = \begin{cases} \tilde{x}_1[n] = x[((n-m))_N, 0 \le n \le N-1] \\ 0, \quad za \text{ ostalo } n \end{cases}$$

• Prethodna jednačina objašnjava kako konstruirati sekvencu $x_1[n]$.

Kružna konvolucija

- Već smo vidjeli da množenje koeficijenata diskretnog Fourierovog reda dvije periodične sekvence odgovara periodičnoj konvoluciji tih sekvenci.
- Razmotrimo dvije sekvence konačne dužine $x_1[n]$ i $x_2[n]$, obje dužine N, čije su DFT $X_1[k]$ i $X_2[k]$.
- Želimo odrediti sekvencu $x_3[n]$ čija je DFT $X_3[k] = X_1[k]X_2[k]$.
- $x_3[n]$ odgovara jednom periodu sekvence $\tilde{x}_3[n]$, pa vrijedi jednakost

$$x_3[n] = \sum_{m=0}^{N-1} \tilde{x}_1[m]\tilde{x}_2[n-m], 0 \le n \le N-1$$

• ili ekvivalentno

$$x_3[n] = \sum_{m=0}^{N-1} x_1[((m))_N] x_2[((n-m))_N], 0 \le n \le N-1$$

Kružna konvolucija

• S obzirom da je $((m))_N = m$ za $0 \le n \le N-1$, možemo pisati

$$x_3[n] = \sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N], 0 \le n \le N-1$$

• U kružnoj konvoluciji je druga sekvenca kružno vremenski invertovana i kružno pomjerena u odnosu na prvu sekvencu.

Kružna konvolucija-primjer

U ovom primjeru, u sumi imamo samo jedan član jer su ostali elementi nula!

Samo jedan uzorak različit o nule, znači suma se svodi samo na jedan proizvod!

$$n = 0$$

$$n = 1$$

Literatura

• A.V. Oppenheim, R.W. Schaffer, J.R. Buck, "Discrete-time signal processing", *Prentice-Hall*, 1999.