EMPLOYEE ATTRITION ANALYSIS & PREDICTION

Branata Kurniawan (34534388) Ng Zhi Hui (34557319)

TABLE OF CONTENT

- BACKGROUND
- ABOUT THE DATA
- DATA PREPARATION
- ALGORITHMS
- DATA EXPLORATORY
- FINDINGS
- CONCLUSION

BACKGROUND

01

CHANGES IN EMPLOYEES' BEHAVIOURS

COVID-19 pandemic has significantly impacted employee behaviour, prioritising the work-life balance, better compensation, and many others.

02

MAINTAINING ATTRITION RATE

Due to the above changes there is a need for organisations to maintain a low attrition rate.

ABOUT THE DATA

- Link: https://www.kaggle.com/datasets/thedevastator/employee-attrition-and-factors
 - Containing employees' personal information that focus on areas such as employee attrition, personal and job-related factors, and also financials.
- Target variable:
 - Attrition
- Feature variables:
 - Consist of 34 both categorical and continuous variables
 - Such as: Age, Gender, Marital Status, Business Travel Frequency, Daily Rate of Pay,
 Departmental Information such as Distance From Home Office or Education Level Obtained by the employee in question, and others.

DATA PREPARATION

- Data cleaning
 - By omitting the NA values out of the data frame
- Data pre-processing
 - Label encoding:
 - Transforming non-numeric variables into numeric variables before they can be used.
 - Checking correlation:
 - Checking the correlation between the features against target variables, and then remove the features with empty (NA) correlation.
- Incorporating n-fold cross validation
 - Using 5-fold cross validation to obtain more robust and reliable performance results

DATA CLEANING

```
# Read the data
#data <- read_csv("/Users/zhakaeric-macairm1/Downloads/ICT515 Source Code/HR_Analytics.csv")
data <- read_csv("/Users/branata.kurniawan/Documents/personal/ICT515/HR_Analytics.csv")
glimpse(data)
# Cleaning the data
data <- na.omit(data)</pre>
```

- Right here after reading the data, we omit any NA value out of the data table
- This would ensure that incomplete data are removed more effective than manual verification time-consuming and error-prone.

DATA PRE-PROCESSING

LABEL ENCODING

BusinessTravel

levels(data\$BusinessTravel) <- seq(length(levels(data\$BusinessTravel)))
data\$BusinessTravel <- as.numeric(data\$BusinessTravel)</pre>

We will be doing the same process for: Department, Education Field, Gender, Job Role, Marital Status, and Over Time

Calculate the variable correlation value with Attrition
correlation_table <- cor(data %>% select(Attrition, everything())) %>% as.data.frame()
correlation_table <- correlation_table[, 1, drop=FALSE] %>% arrange(-Attrition)

DATA PRE-PROCESSING (CONT)

VARIABLES	ATTRITION		
OVERTIME	0.25		
MARITALSTATUS	0.16		
DISTANCEFROMHOME	0.08		
JOBROLE	0.07		
DEPARTMENT	0.06		
YEARSINCURRENTROLE	-0.16		
JOBLEVEL	-0.17		
TOTALWORKINGYEARS	-0.17		
EMPLOYEECOUNT	NA		
OVER18	NA		
STANDARDHOURS	NA		

```
# Drop the column without correlation
data <- data[, -which(names(data) == "EmployeeCount")]
data <- data[, -which(names(data) == "Over18")]
data <- data[, -which(names(data) == "StandardHours")]</pre>
```

Drop the column that have NA or zero correlation.

INCORPORATING N-FOLD CROSS VALIDATION

- We chose five-fold cross-validation since it has been shown to have low bias and moderate variance in predicting model performance.
 - Logistic Regression


```
# Train the model using N-Fold Cross Validation
control <- trainControl(method="cv", number=5)
lr <- train(Attrition~., data=trainData, method="glm", trControl=control)</pre>
```

Random Forest

```
# Train the model using N-Fold Cross Validation
control <- trainControl(method = "cv", number = 5)
rf <- train(Attrition~., data=trainData, method="rf", trControl=control, tuneLength=3, ntree=750, type='classification')</pre>
```

ALGORITHMS

0

0

LOGISTIC REGRESSION

RANDOM FOREST

LOGISTICS REGRESSION

LR commonly use for the prediction of a binary outcome or multiclass classification. The capabilities of LR are:

- The ability to identify the common traits of employee churning
 E.g. the most important variables that are related with the binary outcome, which help in identifying the key variable for prediction or classification
- Predict whether an individual employee will resign or stay in the company

Process:

1. Data Cleaning → 2. Removal of Non-Correlation → 3. N-Fold Cross Validation → 4. Model Training & Evaluation

RANDOM FOREST

Random Forest uses ensemble learning methods. The benefits of using random forest are:

- Improve model accuracy and robustness
- Handle high-dimensional data well
- Perform feature selection by measuring feature importance.
- Less prone to overfitting

Process:

- 1. Data Cleaning → 2. Removal of Non-Correlation → 3. N-Fold Cross Validation
- → 4. Model Training & Evaluation → 5. Tuning of Hyperparameters → 6. Retrain with Hyperparameters

RANDOM FOREST IMPROVEMENT

PERFORMANCE	RF500	RF750	RF1000
ACCURACY	0.8163	0.8231	0.8197
95% CI	[0.7672 , 0.8589]	[0.7746 , 0.865]	[0.7709 , 0.862]
КАРРА	0.1687	0.1841	0.1763
F1	0.8958	0.9	0.8979
MSE	0.1837	0.1769	0.1803
MAE	0.1837	0.1769	0.1803
PRECISION RATE	0.9789	0.9873	0.9831
RECALL RATE	0.8256	0.8269	0.8262

PERFORMANCE COMPARISON

PERFORMANCE	LOGISTIC REGRESSION	RANDOM FOREST (750)
ACCURACY	0.8197	0.8231
95% CI	[0.7709 , 0.862]	[0.7746 , 0.865]
KAPPA	0.1265	0.1841
F1	0.899	0.9
MSE	0.1803	0.1769
MAE	0.1803	0.1769
PRECISION RATE	0.9958	0.9873
RECALL RATE	0.8194	0.8269

DATA EXPLORATORY

JOB SENTIMENT

JOB SENTIMENT

Group 1 & 3 is deemed to be less prone to attrition

 Above the respective attrition threshold figure

DEPARTMENT BREAKDOWN

Research and Development have the highest attrition figure

- Substantial turnover
- Underlying factors

Sales have the highest attrition rate of 21%

Unobservable from raw figure

WORK LIFE BALANCE

Group 3 have the most significant attrition by count

Lowest by ratio (14%)

Group 1 has the highest attrition

Attrition rate of 31%

WORK LIFE BALANCE

WORK RELATIONS

FINDINGS

0

TOP 5 IMPORTANT VARIABLE OF RANDOM FOREST

- 1. Monthly Income
- Overtime
- 3. Age
- 4. Total Working Years (Experience)
- 5. Daily Rate

MONTHLY INCOME

Salary has and will always be a key factor

Average: \$4.787.09 Median: \$3,202

OVERTIME

Experienced OT / overworked

- People (Stay): 23.44%
- People (Leave): 53.59%

AGE

People are more likely to switch jobs

Younger Talent Pool

Average: 33Median: 32

Lower maximum range

TOTAL WORKING YEARS

Total Working Years of the employee plays an significant impact

Average: 8 Median: 7

Much lower cap

DAILY RATE

Financial Concern is a repeating key factor

Resignees tend to have a lower compensation

Average: \$750Median: \$699

Differentiator: Efficient Rate (Subjective)

CONCLUSION

Essential Traits Identification through Logistic Regression vs Random Forest

CONCLUSION

VS

LOGISTIC REGRESSION

RANDOM FOREST

- Both able to identify traits and predict binary outcomes
- Logistics Regression assumes Linearity; Random Forest uses ensemble learning
- Random Forest would be better suited for larger and more complex data

APPLICATION

- Successfully Identification of top traits
- Assist organisations in retaining key valuable employees and reduce employee churn & hiring cost

^{*} Note: Algorithm is highly dependent on unique requirement

THANKS!

DO YOU HAVE ANY QUESTIONS?

