We claim:

5

1. A ligand which selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors.

2. A ligand which modulates a process selectively mediated by Retinoid X Receptors in preference to Retinoic Acid Receptors.

3. The ligand of claim 1 wherein said ligand is at least five-fold more potent an activator of Retinoid X Receptors than of Retinoic Acid Receptors.

102

A compound having the formula:

R1
R2
R3
R4
Or
R4
Or
R5
R5
R6
R7
R7
CH2)R
R7
R7
CH2)R
R7
CH2
R7
CH2)R
R7
CH2
R7

wherein

5

10

20

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano,

thicketo, HO-N=, NC-N=, (R,R,N-N=, R,0-N=, R,N=, epoxy,
cyclopropyl, or cycloalkyl group and wherein the epoxy,
cyclopropyl, and cycloalkyl groups can be substituted with lower
alkyl having 1-4 carbons or halogan;

R'" and R"" represent hydrogen halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl, amind

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

R₅ represents hydrogen, a lower alkyl having 1-4 carbons,

halogen, nitro, OR₇, SR₇, NR₇R₈, or (CF)_nCF₃, but R₅ cannot be
hydrogen if together R₆, R₁₀, R₁₁, R₁₂ and R₁₃ are all hydrogen, Z, Z',

Z", Z"', and Z"" are all carbon, and R' and R" represent H, OH, C₁C₄ alkoxy or C₁-C₄ acyloxy or R' and R" taken together form an oxo,
methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or

(CF) CF₃, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X_7

 R_7 represents hydrogen or a lower alkyl having 1-6 carbons;

R_s represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 arbons, halogen, thiol, or thicketone;

R₁₇ represents hydrogen lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, acryl, OR, and SR, substituted alkenes);

X is COOH, tetrazole, PO3H, SO3H, CHO, CH2OH, CONH2, COSH, COOR9, COSR9, CONHR9, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring;

Z, Z', Z", Z"' and Z"", each independently represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

5

10

15

20

25

30

the dashed lines in the second and seventh structures shown

depist-optional double bonds.

```
selectively activates Retinoid/X Receptors in preference to
      Retinoic Acid Receptors.
                     A compound selected from the group consisting of 4-
      [(3,5,5,8,8-pentamethyl-5/6,7,8-tetrahydro-2-
 5
      naphthyl) carbonyl] benzoid acid,
           4-[1-(3,5,5,8,8-pen/tamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)ethenyl]benzoic acid,
           4-[1-(3-5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
10
      naphthyl)cyclopropyl] penzoic acid,
           4-[1-(3,5,5,8,8] pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl) ethenyl] berzenetetrazole,
           2-[1-(5,5,8,8/tetramethyl-5,6,7,8-tetrahydro-2-
      naphthyl)ethenyl]p/ridine-5-carboxylic acid,
           2-[1-(3,5,5,$,8-pentamethyl-5,6,7,8-tetrahydro-2-
15
      naphthyl)ethenyl/pyrjdine-5-carboxylic acid,
           ethyl 2-[1-(2,5,5,8,8)-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl) etheryl] pyridine-5-carboxylate,
           5-[1-β,5,¶,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl) thenyl/pyridine-2-carboxylic acid,
20
           2-[1-(3, $, 5, 8, 8-pentamethyl-5, 6, 7, 8-tetrahydro-2-
      naphthyl)cyclopropyl)pyridine-5-carboxylic acid,
           methyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)cydlopropyl]pyridine-5-carboxylate, and
25
           4-[1-(\beta,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)ethenyl]-N-(4-hydroxyphenyl)benzamide.
                7. 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-
     naphthyl) ethenyl] benzoic acid.
```

A compound of claim 4 wherein said compound

```
58. 2-[1-(3,5,5,8,8]-Pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)ethenyl]pyridine-5-carboxylic acid.
                     2-[1-(3,5,5,8/8-Pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)cyclopropyl]pyridine-5-carboxylic acid.
             7-10. A compound selected from the group consisting of
 5
      2-[1-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-
      naphthyl)cyclopropyl]pyridine-5-carboxylic acid,
           ethyl-4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl) carbonyl) benzoate-oxime,
10
           4-[(3-bromo-5,5,8,8 tetramethyl-5,6,7,8-tetrahydro-2-
      napthyl)carbonyl]benzoic acid oxime,
           2-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)carbonyl]pyridine-5-carboxylic acid oxime,
           ethyl-4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)carbonyl]benzpate methyloxime, and
15
           2-[(3,5,5,8,8-per tamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)carbonyl]pyridine-5-carboxylic acid methyloxime.
             % 1. 4-[(3/5/5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
      naphthyl)carbonyl] denzolic acid oxime.
                      -[($,5,5,6,8-pentamethyl-5,6,7,8-tetrahydro-2-
20
      naphthyl)carbonyl] benzoic acid methyloxime.
               13. A compound selected from the group consisting of 4-
      [(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]
     benzoic acid buty oxime,
25
          4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-
     naphthyl)carbonyl] benzoic acid propyloxime,
```

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid/cyanoimine,

4-[(3,5,5,8,8-pentamethyl/5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid ally. Koxime,

4-[(3,5,5,8,8-pentameth)1-5 6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid 4-(3-methyl but-2-enoic acid) oxime, and

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid 1-amino ethyl oxime.

pharmaceutically acceptable vehicle suitable for enteral, parenteral, or topical administration, one or more ligands of claim/2.

15. A pharmaceutical composition comprising in a pharmaceutically acceptable vehicle suitable for enteral, parenteral, or topical administration, one or more compounds of elaim/4.

/3 16. A method for modulating a process selectively mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of a ligand which selectively activates one or more said Retinoid X Receptors in preference to Retinoic Acid Receptors.

least five-fold more potent an activator of Retinoid X Receptors
than of Retinoic Add Receptors.

- 18. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of at least one ligand as set forth in claim 2.
- /6 19. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of at least one compound as set forth in claim/4.

5

17 20. A method according to claim 19 wherein said Retinoid

10 X Receptor is Retinoid X Receptor-alpha, Retinoid X Receptor-beta,
or Retinoid X Receptor-gamma.

21. A method according to claim 19 wherein said process is the in vivo modulation of lipid metabolism, in vivo modulation of skin-related processes, in vivo modulation of malignant cell development, or in vivo modulation of premalignant lesions, or in vivo modulation of programmed cell death.

- 22. The method according to claim 21 wherein said process is the in vivo enhancement of programmed cell death.
- 23. The method according to claim 21 wherein said 20 process is the invivoinhibition of programmed cell death.

24. A method according to claim 19 wherein said process is in vivo or in vivo cellular growth and differentiation, or in vivo limb morphogenesis.

25. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of at least one compound as set forth in claim/6.

26. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising administering to mammalian subject an amount, effective to modulate said process mediated by said one or more Retinoid X Receptors, of one or more ligands of claim 2.

5

- 27. A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising administering to a mammalian subject an amount, effective to modulate said process mediated by said one or more Retinoid X Receptors, of one or more compounds of claim 4.
 - 28. A method for treating a mammalian subject requiring Retinoid X Receptor therapy comprising administering to such subject a pharmaceutically effective amount of one or more ligands as set forth in claim/2.
- 29. A method for treating a mammalian subject requiring
 20 Retinoid X Receptor therapy comprising administering to such
 subject a pharmaceutically effective amount of one or more
 compounds as set forth in claim 4.
- 30. A method for increasing plasma concentrations of high density lipoprotein in a mammalian subject comprising administering to such subject a pharmaceutically effective amount of one or more compounds as set forth in claim/4.

A method for determining the presence of one or more Retinoid X Receptors comprising combining a compound of claim A with a sample containing one or more unknown receptors and determining whether said compound binds to any receptor in said sample.

5

10

15

20

- 32. A method of purifying Retinoid X Receptors comprising combining a compound as set forth in claim A with a sample containing one or more said Retinoid X Receptors, allowing said compound to bind with Retinoid X Receptors, and separating out the bound combination of said compound and Retinoid X Receptor.
 - 33. A composition comprising a first ligand which selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors, in combination with a second ligand which selectively activates Retinoic Acid Receptors in preference to Retinoid X Receptors.
 - 34. A composition comprising a first ligand which selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors, in combination with a second ligand which activates one or more intracellular receptors other than Retinoid X Receptors.
 - 35. The composition of claim 33 or 34 wherein the physiological effect in mammals produced by said composition at a given concentration is greater than the additive effect achieved utilizing each said ligand alone at said concentration.
- 36. A pharmaceutical composition comprising in a pharmaceutically acceptable vehicle for enteral, parenteral, or

topical administration a first ligand which selectively activates
Retinoid X Receptors in preference to Retinoic Acid Receptors, in
combination with a second ligand which selectively activates one or
more intracellular receptors other than Retinoid X Receptors.

- 37. The pharmaceutical composition of claim 36 wherein said second ligand selectively activates Retinoic Acid Receptors in preference to Retinoid X Receptors.
- intracellular receptors, said method comprising causing said process to be conducted in the presence of a composition comprising a first ligand which selectively activates Retinoid X Receptors in preference to Retinoic Acid Receptors, in combination with a second ligand which activates one or more intracellular receptors other than Retinoid X Receptors, and wherein the biological effect or the therapeutic index in mammals produced by said composition at a given concentration is equal to or greater than the additive effect achieved utilizing each said ligand alone at said concentration.
- 39. The method of claim 38 wherein said second ligand selectively activates Retinoic Adid Receptors in preference to Retinoid X Receptors.

40. The method of claim 38 wherein said process is the in vivo modulation of lipid metabolism, in vivo modulation of skin-related processes, in vivo modulation of malignant cell development, in vivo modulation of premalignant lesions, or in vivo modulation of

25 - programmed coll death_

5

10

15

- 41. The method of claim 38 wherein said composition is present at a concentration at which neither said first nor second ligand would alone produce a significant therapeutic response.
- 42. The method of claim 38 wherein said second ligand activates peroxisome proliferator activated receptors.
- 43. The method of claim 38 wherein said second ligand activates Vitamin D veceptors.
- 44. The method of claim 38 wherein said second ligand activates thyroid hormone receptors, HNF4 receptors, or members of the COUP family of receptors.

aur But