Clasificación de singularidades

2015-04-10 7:00

1 Definición

2 Clasificación de singularidades

Singularidades aisladas

Definición (Singularidad)

Si $a \in \mathbb{C}$ es tal que la función compleja f es analítica en $\{z \in \mathbb{C} \mid 0 < |z-a| < \delta\}$ para algún $\delta > 0$, decimos que a es singularidad (aislada) de f.

Singularidades aisladas

Definición (Singularidad)

Si $a \in \mathbb{C}$ es tal que la función compleja f es analítica en $\{z \in \mathbb{C} \mid 0 < |z-a| < \delta\}$ para algún $\delta > 0$, decimos que a es singularidad (aislada) de f.

Si $\lim_{z\to a}(z-a)f(z)=0$, entonces podemos definir el valor de f en a, de modo que f es analítica en toda una vecindad de a. En tal caso, se dice que a es singularidad removible.

Polos

Definición (Polo)

Si a es una singularidad aislada, y $\lim_{z\to a} f(z) = \infty$, decimos que a es polo de f.

Polos

Definición (Polo)

Si a es una singularidad aislada, y $\lim_{z\to a} f(z) = \infty$, decimos que a es polo de f.

Ejemplo

Por ejemplo, $f(z) = \frac{1}{(z+i)^2}$ tiene un polo en z = -i.

Observaciones	
Observaciones	
	I

• Si a es polo, existe $\delta' \leq \delta$ tal que $f(z) \neq 0$ para z tal que $0 < |z - a| < \delta'$.

- Si a es polo, existe $\delta' \leq \delta$ tal que $f(z) \neq 0$ para z tal que $0 < |z a| < \delta'$.
- En tal dominio, la función $g(z) = \frac{1}{f(z)}$ está definida y es analítica, más aún, a es singularidad removible y g se puede definir como g(a) = 0.

- Si a es polo, existe $\delta' \leq \delta$ tal que $f(z) \neq 0$ para z tal que $0 < |z a| < \delta'$.
- En tal dominio, la función $g(z) = \frac{1}{f(z)}$ está definida y es analítica, más aún, a es singularidad removible y g se puede definir como g(a) = 0.
- Como g no es idénticamente cero, podemos suponer que el cero a tiene un orden h, es decir, $g(z) = (z a)^h g_h(z)$, donde $g_h(a) \neq 0$.

- Si a es polo, existe $\delta' \leq \delta$ tal que $f(z) \neq 0$ para z tal que $0 < |z a| < \delta'$.
- En tal dominio, la función $g(z) = \frac{1}{f(z)}$ está definida y es analítica, más aún, a es singularidad removible y g se puede definir como g(a) = 0.
- Como g no es idénticamente cero, podemos suponer que el cero a tiene un orden h, es decir, $g(z) = (z a)^h g_h(z)$, donde $g_h(a) \neq 0$.
- En tal caso,

$$f(z) = \frac{f_h(z)}{(z-a)^h},$$

donde $f_h(z) = \frac{1}{q_h(z)}$.

Funciones meromorfas

Definición (Función meromorfa)

Si f es analítica en una región Ω , salvo por polos, decimos que f es meromorfa en Ω .

Funciones meromorfas

Definición (Función meromorfa)

Si f es analítica en una región Ω , salvo por polos, decimos que f es meromorfa en Ω .

Observación

La suma, producto y cociente de funciones meromorfas es meromorfas, siempre que el divisor de un cociente no sea la función idénticamente cero.

Condiciones

Consideremos las siguientes propiedades acerca de la función f con una singularidad aislada a, y $\alpha \in \mathbb{R}$:

Condición 1:
$$\lim_{z\to a} |z-a|^{\alpha} |f(z)| = 0$$
,

Condiciones

Consideremos las siguientes propiedades acerca de la función f con una singularidad aislada a, y $\alpha \in \mathbb{R}$:

Condición 1:
$$\lim_{z\to a} |z-a|^{\alpha} |f(z)| = 0$$
,

Condición 2:
$$\lim_{z\to a} |z-a|^{\alpha} |f(z)| = \infty$$
.

ullet Supongamos que la condición 1 se cumple para cierta lpha.

- ullet Supongamos que la condición 1 se cumple para cierta lpha.
- Entonces, también se cumple para toda $\alpha' > \alpha$, y por lo tanto, para algún entero m.

- ullet Supongamos que la condición 1 se cumple para cierta lpha.
- Entonces, también se cumple para toda $\alpha' > \alpha$, y por lo tanto, para algún entero m.
- En tal caso, $(z-a)^m f(z)$ tiene una singularidad removible en a, si f(z) no es idénticamente cero, a es un cero, digamos de orden k.

- ullet Supongamos que la condición 1 se cumple para cierta lpha.
- Entonces, también se cumple para toda $\alpha' > \alpha$, y por lo tanto, para algún entero m.
- En tal caso, $(z-a)^m f(z)$ tiene una singularidad removible en a, si f(z) no es idénticamente cero, a es un cero, digamos de orden k.
- Entonces $(z-a)^m f(z) = (z-a)^k f_k(z)$. Escribimos

$$(z-a)^{m-k}f(z)=f_k(z),$$

de donde se obtiene que, si $\alpha > m-k$, se cumple la condición 1, y si $\alpha < m-k$, se cumple la condición 2.

• Supongamos ahora que la condición 2 se cumple para cierta α .

- Supongamos ahora que la condición 2 se cumple para cierta α .
- Entonces, también se cumple para toda $\alpha' < \alpha$, y por lo tanto, para algún entero n.

- Supongamos ahora que la condición 2 se cumple para cierta α .
- Entonces, también se cumple para toda $\alpha' < \alpha$, y por lo tanto, para algún entero n.
- En tal caso, $(z-a)^n f(z)$ tiene un polo en a, digamos de orden l, es decir $(z-a)^n f(z) = \frac{f_l(z)}{(z-a)^l}$.

- Supongamos ahora que la condición 2 se cumple para cierta α .
- tanto, para algún entero n.

 En tal caso $(z-a)^n f(z)$ tiene un polo en a, digamos de

• Entonces, también se cumple para toda $\alpha' < \alpha$, y por lo

- En tal caso, $(z-a)^n f(z)$ tiene un polo en a, digamos de orden l, es decir $(z-a)^n f(z) = \frac{f_l(z)}{(z-a)^l}$.
- Podemos escribir entonces

$$(z-a)^{n+l}f(z)=f_l(z).$$

- Supongamos ahora que la condición 2 se cumple para cierta α .
- Entonces, también se cumple para toda $\alpha' < \alpha$, y por lo tanto, para algún entero n.
- En tal caso, $(z-a)^n f(z)$ tiene un polo en a, digamos de orden l, es decir $(z-a)^n f(z) = \frac{f_l(z)}{(z-a)^l}$.
- Podemos escribir entonces

$$(z-a)^{n+l}f(z)=f_l(z).$$

• De lo anterior, se obiente que si $\alpha > n+l$, se cumple la condición 1, y si $\alpha < n+l$, se cumple la condición 2.

Singularidades esenciales

Definición (Singularidad esencial)

Si a es una singularidad aislada tal que no se cumple la condición 1 ni la condición 2 para ninguna $\alpha \in \mathbb{R}$, decimos que a es singularidad esencial de f.

Singularidades esenciales

Definición (Singularidad esencial)

Si a es una singularidad aislada tal que no se cumple la condición 1 ni la condición 2 para ninguna $\alpha \in \mathbb{R}$, decimos que a es singularidad esencial de f.

Teorema (Casorati-Weierstrass)

Si a es una singularidad esencial de f, entonces para toda $0 < \delta' < \delta$, se tiene que $f(D(a, \delta') - \{a\})$ es denso en \mathbb{C} .

• Si el teorema no fuera cierto, existirían un número complejo A y un r > 0 tal que |f(z) - A| > r para todo z en alguna vecindad perforada de a.

- Si el teorema no fuera cierto, existirían un número complejo A y un r > 0 tal que |f(z) A| > r para todo z en alguna vecindad perforada de a.
- Para $\alpha < 0$, entonces $\lim_{z \to a} |z a|^{\alpha} |f(z) A| = \infty$, lo cual implica que a no es singularidad esencial de f(z) A.

- Si el teorema no fuera cierto, existirían un número complejo A y un r>0 tal que |f(z)-A|>r para todo z en alguna vecindad perforada de a.
- Para $\alpha < 0$, entonces $\lim_{z \to a} |z a|^{\alpha} |f(z) A| = \infty$, lo cual implica que a no es singularidad esencial de f(z) A.
- Existe $\beta > 0$ tal que $\lim_{z\to a}|z-a|^{\beta}|f(z)-A|=0$, además $\lim_{z\to a}|z-a|^{\beta}|A|=0$.

- Si el teorema no fuera cierto, existirían un número complejo A y un r > 0 tal que |f(z) A| > r para todo z en alguna vecindad perforada de a.
- Para $\alpha < 0$, entonces $\lim_{z \to a} |z a|^{\alpha} |f(z) A| = \infty$, lo cual implica que a no es singularidad esencial de f(z) A.
- Existe $\beta > 0$ tal que $\lim_{z\to a} |z-a|^{\beta} |f(z)-A| = 0$, además $\lim_{z\to a} |z-a|^{\beta} |A| = 0$.
- De lo anterior, se obtiene que

$$\lim_{z \to a} |z - a|^{\beta} |f(z)| = 0,$$

lo cual contradice que a es singularidad esencial.