6.4 负反馈放大电路的自激振荡及消除

6.4.1 负反馈放大电路的自激振荡条件

$$\dot{A}\dot{F} + 1 = 0$$

即

$$\dot{A}\dot{F} = -1$$

将上式写成

$$\left\{egin{array}{ll} AF=1 & ext{ 幅度条件} \ \ \Delta arphi_A + \Delta arphi_F = (2n+1)\pi & ext{ 相位条件} \end{array}
ight.$$

式中

 $\Delta \varphi_A$ ——基本放大电路在高频或低频区内产生的 附加相移

 $\Delta arphi_F$ ——反馈网络高频或低频区内产生的附加相移

对于负反馈电路

1. 在中频区,反馈信号与输入信号反相,即

$$\varphi_A + \varphi_F = 180^{\circ}$$

2. 高频或低频区,放大电路与反馈网络,因电路中的电容而产生附加相位移 $\Delta \varphi_A$ 、 $\Delta \varphi_F$

当
$$\Delta \varphi_A + \Delta \varphi_F = 180^{\circ}$$
 时

反馈电压信号和输入电压信号同相

负反馈变为正反馈

(1)这时如果AF≥1,产生自激振荡。

表现形式:

- a. 输出信号越来越大。
- b. 出现等幅振荡。

实际情况是:

即使无输入信号,也有一定的信号输出。

产生自激的输入信号的来源:

- a. 放大电路内部元器件的热噪声电压
- b. 启动电源时的瞬间冲击电压
- (2) 此时如果AF<1

输出信号在不断的减小,不会产生自激振荡。

结论:

相位条件是产生自激振荡的必要条件

幅度条件产生自激振荡的充分的条件

5.4.2 负反馈放大电路的稳定性

a. 电路包含一或二个惯性环节时,附加相移最大不会超过180°;不会产生自激振荡。

b. 电路的级数愈多,附加相移 $\Delta \varphi_A$ 愈大,愈容易产生自激振荡。

c.反馈系数 F 愈大,愈容易产生自激振荡。

1.判断放大电路是否稳定的方法

(1) 找相位临界频率 f_c

即满足
$$\left|\Delta\varphi_A + \Delta\varphi_F\right|_{f=f_c} = 180^\circ$$
 的频率点 f_c

a. 如果
$$AF|_{f=f_c} \geq 1$$

电路不稳定

b. 如果
$$AF|_{f=f_c} < 1$$

电路稳定

(2) 找幅度条件临界频率 f_0

$$f_0$$
满足 $AF|_{f=f_0}=1$

a. 如果
$$\left|\Delta\varphi_{\mathrm{A}} + \Delta\varphi_{\mathrm{F}}\right|_{f=f_0} < 180^{\circ}$$

电路稳定

b. 如果
$$\left|\Delta\varphi_{\rm A} + \Delta\varphi_{\rm F}\right|_{f=f_0} > 180^{\circ}$$

电路不稳定

不稳定

上页

下页

后退

稳定

(3) 根据 f_c 和 f_0 的位置判断

a. 当 $f_c < f_0$ 时

电路不稳定

b.当 f_c > f₀ 时

电路稳定

上页

下页

后退

2.稳定裕度

(1) 幅度裕度 $G_{\rm m}(dB)$

要求

$$G_{\rm m} = 20 \lg AF \Big|_{f=f_{\rm c}} ({
m dB})$$

 $\leq -10(dB)$

(2) 相位裕度 m

要求

$$\Phi_{\rm m} = 180^{\circ} - \left| \Delta \varphi_A + \Delta \varphi_F \right|_{f = f_0} \quad -180^{\circ}$$

$$> 45^{\circ}$$

6.4.3 消除自激振荡的方法——相位补偿

相位补偿的思想:

在放大电路中加入RC相位补偿网络,使其具有足够的幅度裕度 G_m 和相位裕度 φ_m 。

1.滞后补偿

(1)补偿方法

在多级放大电路中的上限截止频率最低的一级放大电路中加入*RC*网络。

(2)补偿前后,该级电路的上限截止频率

$$f_{\rm H1} = \frac{1}{2\pi RC_1}$$

$$f'_{\rm H1} = \frac{1}{2\pi R(C_1 + C)}$$

$$C_1+C$$

由于电容的并入使滞后的附加相移更加滞后,所以称为滞后补偿。

2. 超前补偿

(1)补偿方法

在反馈网络中加入补偿电容C,使 $\Delta \varphi_{\rm F}>0$,以补偿滞后附加相移 $\Delta \varphi_{\rm A}(\Delta \varphi_{\rm A}<0)$ 。使

$$\left|\Delta \varphi_A + \Delta \varphi_F \right|_{f=f_0} < 180^{\circ}$$

- (2)补偿电路
- (3)反馈系数

$$F = \frac{1}{\dot{U}_0}$$

$$= \frac{R_1}{R_1 + \frac{R_2}{1 + j\omega CR_2}}$$

$$= \frac{R_1}{R_1 + R_2} \frac{1 + j\omega CR_2}{1 + j\omega C(R_1 // R_2)} = F_0 \frac{1 + j\frac{f}{f_2}}{1 + j\frac{f}{f_1}}$$

模拟电子技术基础

反馈放大电路具有超前附加相移

本章小结

