P1 Chapter 9: Trigonometric Ratios

Areas of Any Triangle

Area of Non Right-Angled Triangles

Area =
$$\frac{1}{2}a b \sin(C)$$

where C is the angle between two sides a and b.

Fro Tip: You shouldn't have to label sides/angles before using the formula. Just remember that the angle is <u>between the two sides</u>.

Test Your Understanding

The area of this triangle is 10. Determine x.

7

The area of this triangle is also 10. If θ is obtuse, determine θ .

r

Test Your Understanding

The area of this triangle is 10. Determine x.

$$\frac{1}{2}x(x+3)\sin(30^\circ) = 10$$

$$\frac{1}{4}x(x+3) = 10$$

$$x(x+3) = 40$$

$$x^2 + 3x - 40 = 0$$

$$(x+8)(x-5) = 0$$
As $x > 0$, $x = 5$

The area of this triangle is also 10. If θ is obtuse, determine θ .

$$\frac{1}{2} \times 5 \times 6 \times \sin(\theta) = 10$$
$$\sin(\theta) = \frac{10}{15}$$
$$\theta = 180^{\circ} - 41.8^{\circ} = 138.2^{\circ}$$

Exercise 9.3

Pearson Pure Mathematics Year 1/AS Page 71

Give answers to 3 significant figures, where appropriate.

- 1 In $\triangle ABC$, BC = 6 cm, AC = 4.5 cm and $\angle ABC = 45^{\circ}$.
 - a Calculate the two possible values of $\angle BAC$.
 - b Draw a diagram to illustrate your answers.
- 2 In each of the diagrams shown below, calculate the possible values of x and the corresponding values of y.

a A 8 cm

- 3 In each of the following cases $\triangle ABC$ has $\angle ABC = 30^{\circ}$ and AB = 10 cm.
 - a Calculate the least possible length that AC could be.
 - **b** Given that AC = 12 cm, calculate $\angle ACB$.
 - **c** Given instead that AC = 7 cm, calculate the two possible values of $\angle ACB$.
- 4 Triangle ABC is such that AB = 4 cm, BC = 6 cm and $\angle ACB = 36^{\circ}$. Show that one of the possible values of $\angle ABC$ is 25.8° (to 3 s.f.). Using this value, calculate the length of AC.

- 5 Two triangles ABC are such that AB = 4.5 cm, BC = 6.8 cm and $\angle ACB = 30^{\circ}$. Work out the value of the largest angle in each of the triangles.
- 6 a A crane arm AB of length 80 m is anchored at point B at an angle of 40° to the horizontal.
 A wrecking ball is suspended on a cable of length 60 m from A. Find the angle x through which the wrecking ball rotates as it passes the two points level with the base of the crane arm at B.
 (6 marks)
 - b Write down one modelling assumption you have made. (1 mark)

Homework Answers

- 2 **a** $x = 74.6^{\circ}, y = 65.4^{\circ}$ $x = 105^{\circ}, y = 34.6^{\circ}$ **b** $x = 59.8^{\circ}, y = 48.4 \text{ cm}$ $x = 120^{\circ}, y = 27.3 \text{ cm}$ **c** $x = 56.8^{\circ}, y = 4.37 \text{ cm}$ $x = 23.2^{\circ}, y = 2.06 \text{ cm}$ 3 **a** $5 \text{ cm} (ACB = 90^{\circ})$
- c 45.6°, 134(.4)°
- 4 2.96 cm
- 5 In one triangle $ABC = 101^{\circ} (100.9^{\circ})$; in the other $BAC = 131^{\circ} (130.9^{\circ})$

b 24.6°

6 a 62.0° **b** The swing is symmetrical

1 Calculate the area of each triangle.

2 Work out the possible sizes of x in the following triangles.

c

- 3 A fenced triangular plot of ground has area 1200 m². The fences along the two smaller sides are 60 m and 80 m respectively and the angle between them is θ . Show that $\theta = 150^{\circ}$, and work out the total length of fencing.
- 4 In triangle ABC, BC = (x + 2) cm, $AC = x \text{ cm} \text{ and } \angle BCA = 150^{\circ}.$ Given that the area of the triangle is 5 cm^2 , work out the value of x, giving your answer to 3 significant figures.

- 5 In $\triangle PQR$, PQ = (x + 2) cm, PR = (5 x) cm and $\angle QPR = 30^{\circ}$. The area of the triangle is A cm².
 - a Show that $A = \frac{1}{4}(10 + 3x x^2)$. (3 marks)
 - **b** Use the method of completing the square, or otherwise, to find the maximum value of A, and give the corresponding value of x. (4 marks)
- 6 In $\triangle ABC$, AB = x cm, AC = (5 + x) cm and $\angle BAC = 150^{\circ}$. Given that the area of the triangle is $3\frac{3}{4}$ cm²

Problem-solving

x represents a length so it must be positive.

a Show that x satisfies the equation $x^2 + 5x - 15 = 0$.

(3 marks)

b Calculate the value of x, giving your answer to 3 significant figures.

(3 marks)

Homework Answers

```
a 23.7 \, \text{cm}^2 b 4.31 \, \text{cm}^2 c 20.2 \, \text{cm}^2
2 a x = 41.8^{\circ} \text{ or } 138(.2)^{\circ}
      b x = 26.7^{\circ} \text{ or } 153(.3)^{\circ}
      x = 60^{\circ} \text{ or } 120^{\circ}
   275(.3) m (third side = 135.3 m)
4 3.58
    a Area = \frac{1}{2}(x+2)(5-x)\sin 30^\circ
                   =\frac{1}{2}(10+3x-x^2)\times\frac{1}{2}
                   = \frac{1}{4}(10 + 3x - x^2)
      b Maximum A = 3\frac{1}{16}, when x = 1\frac{1}{2}
6 a \frac{1}{2}x(5+x)\sin 150^\circ = \frac{15}{4}
                 \frac{1}{2}(5x + x^2) \times \frac{1}{2} = \frac{15}{4}
                           5x + x^2 = 15
                   x^2 + 5x - 15 = 0
      b 2.11
```