Solutions for Example 2 Practice

Problem A (easier). Encrypt with k = 4: MATH IS FUN

Map to numbers (A=0):

MATH IS FUN \Rightarrow 12, 0, 19, 7, 8, 18, 5, 20, 13.

Add 4 mod 26:

$$12, 0, 19, 7 \mapsto 16, 4, 23, 11$$
 (M \rightarrow Q, A \rightarrow E, ...)
 $8, 18 \mapsto 12, 22$ $5, 20, 13 \mapsto 9, 24, 17.$

Back to letters:

$$16, 4, 23, 11, 12, 22, 9, 24, 17 \Rightarrow \boxed{\text{QEXL MW JYR}}$$

Why it works: Every step is addition in \mathbb{Z}_{26} ; wrap ensures letters stay in 0–25.

Problem B (similar). Decrypt with k = 11: SPWWZ HZCWO

Numbers for ciphertext:

SPWWZ HZCWO $\Rightarrow 18, 15, 22, 22, 25, 7, 25, 2, 22, 14$.

Subtract 11 (or add 15) mod 26:

$$18, 15, 22, 22, 25 \mapsto 7, 4, 11, 11, 14 \quad (H,E,L,L,O)$$

$$7, 25, 2, 22, 14 \mapsto 22, 14, 17, 11, 3 \quad (W,O,R,L,D).$$

Plaintext: | HELLO WORLD |

Problem C (harder). Unknown k: P HT HA AOL WHYR

Strategy (the why): Look for patterns. A one-letter word is probably I or A. Also, AOL famously appears when "THE" is shifted by k = 7 (since $19+7 = 26 \equiv 0 = A$, etc.).

Infer k: If AOL is THE, then the shift is k = 7.

Decrypt by subtracting 7:

$$P \mapsto I$$
, $HT \mapsto AM$, $HA \mapsto AT$, $AOL \mapsto THE$, $WHYR \mapsto PARK$.

\Rightarrow I AM AT THE PARK.

Key takeaways.

- Encryption: $E_k(p) = (p+k) \mod 26$, Decryption: $D_k(c) = (c-k) \mod 26$.
- Unknown k can be cracked with educated guesses ("THE", one-letter words) or brute force (only 26 options).
- \bullet Thinking in \mathbb{Z}_{26} explains the wrap-around and keeps errors low.