19 BUNDESREPUBLIK

DEUTSCHLAND .

Patentschrift ¹⁰ DE 42 42 494 C 1

DEUTSCHES PATENTAMT

Aktenzeichen:

P 42 42 494.1-13

Anmeldetag:

16. 12. 92

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung:

9. 9. 93

(51) Int. Cl.5;

F01 D 17/18

F 01 D 9/04 // F02B 41/10,37/12, F02C 6/12,F02M 25/07.F02D 23/00, 21/08

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber

Mercedes-Benz Aktiengesellschaft, 70327 Stuttgart.

② Erfinder:

Schmidt, Erwin, 7066 Baltmannsweiler, DE; Sumser, Siegfried, 7000 Stuttgart, DE; Fränkle, Gerhard. Dipl.-Ing., 7064 Remshalden, DE; Treutlein, Wolfgang, Dipl.-Ing., 7312 Kirchheim, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 10 11 671 BE 5 01 076 - DD 7 941

(54) Verstellbarer Stromungsleitapparat

Die Erfindung bezieht sich auf einen verstellbaren Strömungsleitapparat für ein Laufrad einer von Abgasen einer Brennkraftmaschine betriebenen Strömungsmaschine, wobei der Stromungsleitapparat einen ringförmigen Einsatz zwischen mehreren spiralformigen Leitkanälen der Strömungsmaschine und dem Laufrad mit mindestens teilweise radialer Durchstromungsrichtung umfaßt und in dem ringförmigen Einsatz uber dessen Umfang verteilte Strömungsleitelemente angeordnet sind, die ein Leitgitter bilden und eine Strömungsverbindung zwischen den spiralförmigen Leitkanälen und dem Laufrad der Stromungsmaschine herstellen, wobei der ringformige Einsatz Bestandteil einer in Richtung der Laufradlangsachse verschiebbaren Verstellhül-

Um für mehrflutige Stromungsmaschinen einen möglichst einfachen und gleichzeitig im Verhältnis zu bisher bekannten Lösungen sehr variablen Strömungsleitapparat unter Vermeidung der Nachteile des bisherigen Standes der Technik darzustellen, wird erfindungsgemäß vorgeschlagen, daß der Einsatz in Ringsektoren mit unterschiedlich ausgebildeten Leitgittersektoren derart eingeteilt ist, daß durch die Strömung in den spiralformigen Leitkanälen gleichzeitig unterschiedliche Leitgitter beaufschlagbar sind.

Beschreibung

Die Erfindung betrifft einen verstellbaren Strömungsleitapparat gemäß dem Oberbegriff des Patentanspruchs 1.

Aus der BE-PS 5 01 076 ist bereits ein verstellbarer, axialverschieblicher Strömungsleitapparat der gattungsgemäßen Art bekannt, der in einer mehrflutigen Radialturbine mit einem um ein Laufrad geführten Spiralkanal zwischen diesem und dem Laufrad angeordnet 10 ist. Der Strömungsleitapparat besitzt einen ringförmigen Leitschaufelkranz, deren Gitterparameter über seinem Umfang konstant sind. Die axiale Verschiebung des Strömungsleitapparates erfolgt über einen kompressorbetriebenen Verstellmechanismus.

Des weiteren ist aus der Deutschen Patentanmeldung P 42 32 400.9-13 bereits ein Abgasturbolader mit einem Radialrad, das von einem spiralförmigen Leitkanal umgeben wird, bekannt. Zwischen Leitkanal und Radialrad ist ein axial verschiebbares, rohrförmiges Hülsenteil 20 mit einem Leitgitter angeordnet. Durch die axiale Verschiebung des Hülsenteils ist u. a. der Strömungsquerschnitt des spiralförmigen Leitkanals beeinflußbar.

Ferner ist aus der DE-AS 10 11 671 ein verstellbarer Strömungsleitapparat bekannt, bei dem in einer Radial- 25 turbomaschine Gase über ein verstellbares Leitgitter einem Laufrad (Radialturbine) zugeführt werden. Das verstellbare Leitgitter besteht aus mehreren hintereinander angeordneten Leitschaufelkränzen unterschiedlicher Abmessung und/oder Gestalt und ist axial ver- 30 schieblich und manuell verstellbar. Die Gitterparameter der Leitschaufelkränze sind über deren Umfang kon-

Zum allgemeinen Hintergrund wird noch auf die Druckschriften DE-OS 26 33 587, DE-OS 28 43 202, DE- 35 PS 39 08 286, DE-PS 39 23 370 und US-PS 44 92 520 verwiesen.

Bei gattungsgemäßen axial verstellbaren Strömungsleitapparaten der bekannten Art ist bei mehrflutigen das Leitgitter münden, nur eine gleichartige Umlenkung der Strömung auf das Laufrad für alle Fluten möglich.

Dies ist vor allem deshalb von Nachteil, weil dadurch die Regelungsmöglichkeit von mehrflutigen Strömungsmaschinen mit den bekannten Strömungsleitapparaten 45 relativ stark eingeschränkt ist.

Ein weiterer Nachteil der bekannten Strömungsleitapparate ergibt sich beim Strömungsübergang zwischen dem Zungenbereich des spiralförmigen Leitkanals und zugehöriger Leitschaufel. Der Winkel der Zun- 50 genspitze wird üblicherweise dem durch die Strömungskanäle von Spirale und Spiralenaustrittsdüse bestimmten Strömungswinkel angepaßt, wobei die Spirale mit Austrittsdüse so gestaltet wird, daß der Massenstrom pro Umfangswinkel möglichst konstant über dem 55 größtmöglichen Umfangsbereich abfließt. Da jedoch die Zunge aus sertigungstechnischen Gründen eine endliche Dicke haben muß, entsteht durch die Nachlaufströmung der Zunge eine mitunter beträchtliche Störstelle für die Strömung, wodurch eine ungleichmäßige An- 60 strömung der nachfolgenden Leitschaufel erfolgt und damit der Wirkungsgrad der Strömungsmaschine negativ beeinflußt wird.

Der Erfindung liegt die Aufgabe zugrunde, einen gattungsgemäßen Strömungsleitapparat so auszubilden, 65 det. daß für mehrflutige Strömungsmaschinen ein möglichst einfacher und gleichzeitig im Verhältnis zu bisher bekannten Lösungen sehr variabler Strömungsleitapparat

unter Vermeidung der genannten Nachteile des Standes der Technik entsteht.

Die Aufgabe ist erfindungsgemäß durch die im Kennzeichen des Hauptanspruches gegebenen Merkmale gelöst.

Ein Vorteil der erfindungsgemäßen Ausgestaltung des Strömungsleitapparates liegt darin, daß durch die Ringsektoren mit unterschiedlich ausgebildeten Leitgittern die Strömung von verschiedenen Fluten gleichzeitig mit unterschiedlichem Drall und Volumenstrom auf das Laufrad leitbar ist, wodurch eine wesentlich bessere Regelbarkeit der Strömungsmaschine erzielt wird.

Eine besonders vorteilhafte Wirkung der erfindungsgemäßen Ausgestaltung des Strömungsleitapparates ergibt sich durch die Ausnutzung des unterschiedlichen Aufstauverhaltens in den einzelnen Fluten hinter den verschiedenartig ausgebildeten Leitgittern.

So kann beispielsweise bei einer dreiflutigen Strömungsmaschine mit winkelversetzter Einmündung der Spiralen an den Strömungsleitapparat in einer ersten Flut mit einem Leitgitter relativ engen Durchflußquerschnitts ein hoher Staudruck erzeugt werden, der für eine Abgasrückführung vorteilhaft nutzbar ist. Gleichzeitig kann, beispielsweise für den Teillastbetrieb, in einer zweiten Flut ein Leitgitter mit großem Durchflußquerschnitt den Abgasstrom verhältnismäßig entdrosselt der Turbine zuleiten. Das Leitgitter für die dritte Flut ist beispielsweise auf einen bestimmten Betriebspunkt der Turbine abgestimmt.

Durch die erfindungsgemäße Strömungsleiteinrichtung ist eine teilweise oder vollständige Kombination von Turbo-Compound-Antrieb, Abgasrückführung und Registeraufladung gemäß unten näher erläuterten Ausführungsbeispielen sehr einfach darstellbar.

In der Ausgestaltung der Erfindung nach Anspruch 2 wird jedem spiralförmigen Leitkanal ein Ringsektor zugeordnet, wobei jeder Ringsektor gemäß Anspruch 3 axial hintereinander angeordnete Leitgitter mit unterschiedlichen Profil-und Gitterparametern bzw. gemäß Strömungsmaschinen, deren Spiralen winkelversetzt an 40 Anspruch 4 verwundene Leitschaufeln oder gemäß Anspruch 8 Hakenschaufeln aufweist. Eine sinnvolle Aufteilung der verschiedenartig ausgebildeten Leitgitter auf einem Ringsektor ergibt sich derart, daß durch die axiale Verschiebung der Ringsektoren jeweils ein anderes Leitgitter mit für sich gleichen Gitterparametern zwischen spiralförmigem Leitkanal und Laufrad geschoben wird. Dadurch ergibt sich in vorteilhafter Weise ein sehr breiter Regelbereich für die Strömungsma-

> Durch die erfindungsgemäße Ausgestaltung nach Anspruch 5 wird der Übergang zwischen Schaufelnase und Zungenbereich des spiralförmigen Leitkanals strömungstechnisch optimal gestaltet. Dabei mündet die Zunge tangential an die nachfolgende Leitschaufel, wobei für die Gängigkeit des axial verschieblichen Einsatzes ein gewisser Minimalspalt zwischen Zungenspitze und Leitschaufel eingehalten werden muß. Durch die strömungsgünstige Ausgestaltung des Zungen-Leitschaufel-Überganges wird eine Nachlaufströmung der Zunge vermieden, da die Leitschaufel die kontinuierliche Fortführung der Zunge bildet. Hierbei ist es auch denkbar, daß sich die auf die Zunge nachfolgende Leitschaufel von den restlichen Leitschaufeln des Leitgitters, insbesondere im Schaufelnasenbereich, unterschei-

> Die Ausgestaltung der Erfindung nach den Ansprüchen 6 bis 9 ermöglicht beispielsweise die variable Darstellung des Bremsspaltquerschnittes für eine Motor

bremse durch den jeweiligen Einströmquerschnitt des Strömungsleitapparates.

In der erfindungsgemäßen Ausgestaltung nach Anspruch 7 bleibt in einer Endstellung gerade noch jener Drosselquerschnitt (Bremsspaltquerschnitt) offen, der für den Motorbremsbetrieb notwendig ist. Es ist daher keine separate Motorbremsvorrichtung notwendig.

Eine besonders vorteilhafte Möglichkeit der Darstellung einer Motorbremse ergibt sich bei einem Turbo-Compound-Motor, bei dessen Compound-Turbine ein 10 Leitgitter mit Hakenschaufeln verwendet wird. Dabei wird der Abgasstrom durch das Hakenschaufelleitgitter derart auf die Laufschaufeln der Compound-Turbine geleitet, daß ein retardierendes Moment bezüglich des Nutzmomentes des Turbo-Compound-Motors am Laufrad der Compound-Turbine angreift.

Durch die Teilung der Ringsektoren und deren Relativbeweglichkeit in Richtung der Laufradlängsachse gemäß Anspruch 10 wird die Flexibilität des Strömungsleitapparates wesentlich erhöht. So kann insbesondere in Kombination mit Anspruch 9 auch nur eine Flut unter Konstanthaltung der Leitgitterstellung der anderen Fluten beliebig geregelt werden.

In den Zeichnungen ist die Erfindung beispielsweise anhand eines drei- und vierflutigen Gehäuses darge- 25 stellt. In einigen Schaltungskombinationen von Turbo-Compound-Antrieb, Registeraufladung und Abgasrückführung ist der Einsatz der Erfindung am Beispiel von zweiflutigen Abgas- und Compound-Turbinen näher erläutert. Es zeigen:

Fig. 1 einen Radialschnitt einer vierflutigen Turbinenstufe mit um 180° versetzten Mündungen von Leitkanälen in Form von zwei symmetrischen Doppelspiralen und einem erfindungsgemäßen Leitgitter,

Fig. 2 einen Meridianschnitt von Fig. 2,

Fig. 3 einen Radialschnitt einer dreiflutigen Turbinenstufe mit um 120° winkelversetzten Einläufen der spiralförmigen Leitkanäle und einem weiteren erfindungsgemäßen Leitgitter,

Fig. 4 eine schematische Darstellung eines Turbo- 40 Compound-Motors mit Abgasrückführung mit zwei erfindungsgemäßen Leitgittern mit je zwei unterschiedlichen Leitgittersektoren,

Fig. 5 eine schematische Darstellung eines Turbo-Compound-Motors mit Registerausladung von zwei 45 parallel vor die Brennkrastmaschine geschalteten Abgasturboladern mit ersindungsgemäßen Leitgittern und

Fig. 6 einen Turbo-Compound-Motor mit Abgasrückführung und Registeraufladung von zwei parallel vor die Brennkraftmaschine geschalteten Abgasturboladern mit erfindungsgemäßen Leitgittern.

Die Fig. 1 und 2 zeigen einen Radialschnitt und einen Meridianschnitt einer vierflutigen Turbinenstufe mit einem Gehäuse 1, das zwei um 180° versetzte Mündungen von Leitkanälen 2, 3, 4 und 5 in der Form von zwei 55 symmetrischen Doppelspiralen aufweist.

In dem Gehäuse 1 befindet sich ein Laufrad 6, das auf einer Welle 7 sitzt und zusammen mit einem Leitgitter 8 eine Turbinenstufe einer nicht näher dargestellten, von Abgasen A einer Brennkraftmaschine betriebenen Strö-60 mungsmaschine bildet.

Die Welle 7 ist in einem nur teilweise dargestellten Lagergehäuse 9 mit ebenfalls nur teilweise gezeigten Wellenlagern 10 gelagert. Das Gehäuse 1 der Turbinenstufe ist an dem Lagergehäuse 9 mit Schrauben 11 und 65 12 angeflanscht.

Zwischen Gehäuse 1 und Laufrad 6 ist der axial zu einer Laufradlängsachse 13 verschiebliche Strömungs-

leitapparat 14 angeordnet, der eine ringförmige Verstellhülse 15 umfaßt, die aus zwei rohrförmigen Hülsenteilen 16 und 17 und einem ringförmigen Einsatz 18 besteht.

Der Einsatz 18 besitzt erfindungsgemäß vier unterschiedlich ausgebildete Leitgittersektoren 19, 20, 21 und 22, wobei die beiden jeweils axial benachbarten und durch einen radialen Steg 23 voneinander getrennten Leitgittersektoren 19, 21 und 20, 22 zwei Ringsektoren 24 und 25 bilden, wobei in der gezeigten Darstellung die Fluten 2 und 3 in den Ringsektor 24 und die Fluten 4 und 5 in den Ringsektor 25 des Einsatzes 18 münden.

In Fig. 1 sind die unterschiedlich gestaffelten Leitgittersektoren 19 und 20 mit Strömungsleitelementen 26 und 27 dargestellt. Die nur im Meridianschnitt in Fig. 2 dargestellten Leitgittersektoren 21 und 22 sind analog zu den Leitgittersektoren 19 und 20 aufgebaut, jedoch beispielsweise mit veränderten Schaufelwinkeln.

Fig. 1 zeigt die beiden Zungenbereiche 28 und 29 der spiralförmigen Leitkanäle 3 und 5, wobei der Zungenbereich 28 kontinuierlich und strömungsgünstig an eine ausgewählte Leitschaufel 30 und in analoger Weise der Zungenbereich 29 an eine ausgewählte Leitschaufel 31 des Einsatzes 18 mündet.

In einem weiteren Ausführungsbeispiel ist in Fig. 3 ein Radialschnitt einer dreiflutigen Turbinenstuse mit einem Gehäuse 32 dargestellt, das drei um 120° winkelversetzte Einläuse von spiralförmigen Leitkanälen 33, 34 und 35 ausweist, die in ein erfindungsgemäßes Leitgitter 36 mit drei Leitgittersektoren 37, 38 und 39 münden, die gleichzeitig drei Ringsektoren 40, 41 und 42 bilden. Analog zu Fig. 1 ist zu erkennen, daß der jedem Ringsektor zugeordnete Leitgittersektor (z. B. Leitgittersektor 37 zu Ringsektor 40) eine unterschiedliche Gitterstafselung ausweist.

Analog zu Fig. 1 münden auch hier die Zungenbereiche 43, 44 und 45 kontinuierlich und strömungsgünstig an ausgewählte Leitschaufeln 46, 47 und 48 des Leitgitters 36, die im Schaufelnasenbereich an den jeweils zugeordneten Zungenbereich angepaßt sind.

Die Fig. 4 zeigt den vorteilhaften Einsatz von zwei erfindungsgemäßen Leitgittern 49 und 50 mit zwei Leitgittersektoren 64 und 65 in einer schematischen Darstellung eines Turbo-Compound-Motors mit Abgasrückführung.

Eine nicht näher dargestellte Mehrzylinder-Brennkraftmaschine 51 ist über Abgasleitungen 52 und 53 sowie eine Ladeluftleitung 54 mit einem Abgasturbolader 55 verbunden. Dabei repräsentieren die Abgasleitungen 52 und 53 zu variabel großen Gruppen zusammengefaßte Auslaßkanäle von Arbeitszylindern der Brennkraftmaschine 51. Die variable Gruppengröße bei der Zusammenfassung der einzelnen Auslaßkanäle der Arbeitszylinder kann beispielsweise über eine nicht dargestellte Steuerklappe erfolgen.

Der Abgasturbolader 55 besteht in seinen wesentlichen Teilen aus einem Verdichter 56, der über eine Welle 57 mit einer zweiflutigen Turbine 58 verbunden ist.

Von dem Auslaßstutzen 59 der Turbine 58 führt eine Leitung 60 zu einer weiteren, ebenfalls zweiflutigen Compound-Turbine 61, deren Welle 62 über ein schematisch dargestelltes Reduktionsgetriebe 63 in an sich bekannter Weise mit der Brennkraftmaschine 51 mechanisch gekoppelt ist.

Das Abgas A wird über den Auslaßstutzen der Compound-Turbine 61 in das nicht dargestellte Auspuffsystem des Turbo-Compound-Motors geleitet.

Brennkrastmaschine 51 und Abgasturbolader 55 bil-

den zusammen mit der Compound-Turbine 61 und der mechanischen Kopplung zwischen Compound-Turbine 61 und Brennkraftmaschine 51 einen Turbo-Compound-Motor.

Zwischen Gehäuse und zweiflutigem Spiralkanal der beiden Turbinen 58 und 61 ist jeweils eines der erfindungsgemäßen Leitgitter 49, 50 mit zwei Leitgittersektoren 64 und 65 schematisch dargestellt. Ein möglicher Radialschnitt durch dieses Leitgitter wird auch durch Fig. 1 dargestelly.

Die Abgasleitung 52 führt von der Auslaßseite 66 der Brennkraftmaschine 51 zum Einlaßstutzen 67 der ersten Flut der Turbine 58.

Ein erster Teil 68 der Abgasleitung 53 führt in einen Ausgleichsbehalter 69, von dem ein zweiter Teil 70 der 15 Abgasleitung 53 zu einem Einlaßstutzen 71 der zweiten Flut der Turbine 58 führt.

Die Ladeiuft I. wird vom Verdichter 56 angesaugt und komprimiert und von einem Auslaßstutzen 72 des Verdichters 56 in einen ersten Teil 73 der Ladeluftleitung 54 zu einem Ladelustkuhler 74 gefordert. Dieser ist mit einem zweiten Teil 75 der Ladeluttleitung 54 mit der Einlaßseite 76 der Brennkraftmaschine 51 verbunden.

Von dem Ausgleichsbehalter 69 führt eine Abgasrückführungsleitung 77 zu dem zweiten Teil 75 der Ladeluftleitung 54 zwischen Ladeluftkuhler 74 und Einlaßseite 76 der Brennkraftmaschine 51.

In der Abgasruckfuhrungsleitung 77 befindet sich ein Absperrventil 78, mit dem über einen Regler 79 die Abgasrückführrate in Abhangigkeit von Beiriebspara- 30 metern der Brennkraftmaschine 51 regelbar ist.

Durch das weit gestaffelte Leitgitter des Leitgittersektors 64 in der ersten Flut der Turbine 58 strömt verhältnismäßig viel Abgas zu der nachgeschalteten zweiflutigen Compound-Turbine 61. deren Zuströmung 35 wie in der Zeichnung dargestellt über das zweiflutige erfindungsgemäße Leitgitter 50 geregelt wird. Dabei kann je nach gewunschtem Betriebsverhalten des Turbo-Compound-Motors die Compound-Turbine 61 je nach Typ des vor deren Laufrad geführten Leitgitters 40 ein entsprechendes Antriebsmoment oder, beispielsweise beim Einsatz eines Hakenleitschaufelgitters, ein Motorbremsmoment abgeben

Gleichzeitig kann durch das relativ dicht gestaffelte Leitgitter des Leitgittersextors 65 in der zweiten Flut 45 der Turbine 58 ein verhaltnismäßig hoher Staudruck in der Abgasleitung 53 mit Ausgleichsbehälter 69 erzeugt werden. Um eine einfache Abgasrückführung zu ermöglichen, muß der Druck des Abgases A im Ausgleichsbehälter 69 größer als der Druck der Ladeluft L im zwei- 50 ten Teil 75 der Ladeluftleitung 54 sein. Die quantitative Regelung des rückgeführten Abgases A erfolgt über den Regler 79 in oben beschriebener Weise.

In Fig. 5 ist das erfindungsgemäße Leitgitter für eine eines Turbo-Compound Motors mit Registeraufladung von zwei parallel vor die Brennkraftmaschine 51 geschalteten Abgasturboiadern 81 und 82 dargestellt. Gleiche Bezugszeichen kennzeichnen entsprechende Bauteile aus Fig. 4.

Die beiden Auslaßstutzen 72 der beiden Verdichter 56 der Abgasturbolader 81 und 82 sind mit einer Leitung 83 verbunden. In dem vom Verdichter 56 des Abgasturboladers 81 kommenden Teil 84 der Leitung 83 befindet sich ein Rückschlagventil 85. Zwischen Rückschlagven- 65 til 85 und Auslaßstutzen 72 des Verdichters 56 der Abgasturbine 82 zweigt die Ladeluftleitung 54 von der Leitung 83 zur Einlaßseite 76 der Brennkraftmaschine 51

Eine Leitung 86 verbindet die beiden Ansaugstutzen 71 der beiden Turbinen 58 der Abgasturbolader 81 und 82, wobei die Abgasleitung 52 die Leitung 86 mit der Auslaßseite 66 der Brennkraftmaschine 51 verbindet.

Eine erste Verbindungsleitung 87 stellt eine Strömungsverbindung zwischen dem Auslaßstutzen 59 der Turbine 58 des Abgasturboladers 81 und dem Einlaßstutzen 88 der ersten Flut der zweiflutigen Compound-Turbine 61 her. Eine zweite Verbindungsleitung 89 führt vom Auslaßstutzen 59 der Turbine 58 des Abgasturboladers 82 zu einem Einlaßstutzen 90 der zweiten Flut der Compound-Turbine 61.

In der gezeigten Darstellung des erfindungsgemäßen Leitgitters 50 befindet sich in einem Ringsektor 91 (analog Nr. 24, siehe Fig. 1) ein Hülsensektor 93, der die erste Flut der Compound-Turbine 61 bis auf Spaltströme vollständig abriegelt. Der Hülsensektor 93 ersetzt also hier z. B. den Leitgittersektor 19 aus Fig. 1. Durch diese Abriegelung wird beispielsweise im Teillastbereich der gesamte Abgasstrom A durch die Turbine 58 des Abgasturboladers 81 abgeriegelt und auf die Turbine 58 des Abgasturboladers 82 gelenkt. Somit übernimmt dieser die gesamte Luftlieferung für die Brennkraftmaschine 51. Das Rückschlagventil 85 verhindert dabei, daß Ladeluft durch den nicht fördernden Verdichter 56 des Abgasturboladers 81 austritt. Ein relativ weit gestaffeltes Leitgitter eines Leitgittersektors 94 befindet sich im zweiten Ringsektor 92 (analog Nr. 25, siehe Fig. 1), wodurch eine Beaufschlagung der Compound-Turbine 61 mit dem aus der Turbine 58 des Abgasturboladers 82 über die zweite Verbindungsleitung 89 kommenden Abgas A ermöglicht wird, so daß das entstehende Abtriebsmoment der Compound-Turbine 61 über das Reduktionsgetriebe 63 einen Beitrag zum Gesamtabtriebsmoment des Turbo-Compound-Motors liefert.

Fig. 6 zeigt das erfindungsgemäße Leitgitter in einer schematischen Darstellung eines Turbo-Compound-Motors mit Abgasrückführung und Registeraufladung von zwei parallel vor die Brennkraftmaschine geschalteten Abgasturboladern 81 und 82. Fig. 6 ist eine Kombinationsschaltung aus den in Fig. 4 und 5 dargestellten Schaltungen, durch deren obige Beschreibung die Funktion der dargestellten Schaltungskombination mit den für gleiche Bauteile verwendeten gleichen Bezugszeichen aus Fig. 4 und 5 anschaulich klar ist. Als weiteres Merkmal kommt in dieser Zeichnung lediglich die von dem zweiten Teil 70 der Abgasleitung 53 an einer Stelle 95 abzweigende Leitung 96 hinzu, die je eine Flut der Abgasturbine 58 der beiden Abgasturbolader 81 und 82 verbindet. Hierdurch wird eine weitere Erhöhung der Flexibilität für die Regelung der Zuströmung zu den Abgasturboladern 81 und 82 erreicht.

Anstelle der in den Darstellungen beispielhaft aufge-Compound-Turbine in einer schematischen Darstellung 55 führten Leitgitter und Schaltungsanordnungen können natürlich auch andere Schaltungen und Leitgitterzusammenstellungen, je nach gewünschtem Steuerungsverhalten des Gesamtsystems, verwendet werden.

Patentansprüche

1. Verstellbarer Strömungsleitapparat für ein Laufrad einer von Abgasen einer Brennkraftmaschine betriebenen Strömungsmaschine,

- wobei der Strömungsleitapparat einen ringförmigen Einsatz zwischen mehreren spiralförmigen Leitkanälen der Strömungsmaschine und dem Laufrad mit mindestens teilweise radialer Durchströmungsrichtung umfaßt

– und in dem ringförmigen Einsatz über dessen Umfang verteilte Strömungsleitelemente
angeordnet sind, die ein Leitgitter bilden und
eine Strömungsverbindung zwischen den spiralförmigen Leitkanälen und dem Laufrad der

Strömungsmaschine herstellen,

— wobei der ringförmige Einsatz Bestandteil
einer in Richtung der Laufradlängsachse ver-

schiebbaren Verstellhülse ist,
dadurch gekennzeichnet, daß der ringförmige
Einsatz (18) in Ringsektoren (24, 25, 40, 41, 42) mit
unterschiedlich ausgebildeten Leitgittersektoren
(19, 20, 21, 22, 37, 38, 39, 64, 65) derart eingeteilt ist,
daß durch die Strömung in den spiralförmigen Leitkanälen (2, 3, 4, 5, 33, 34, 35) gleichzeitig unterschiedliche Leitgitter (8, 36, 49, 50) beaufschlagbar
sind.

- 2. Verstellbarer Strömungsleitapparat nach Anspruch 1, dadurch gekennzeichnet, daß die Anzahl der Ringsektoren (24, 25, 40, 41, 42) gleich der Anzahl der auf den Umfang des Einsatzes (18) einmündenden spiralförmigen Leitkanäle (2, 3, 4, 5, 33, 34, 35) ist.
- 3. Verstellbarer Strömungsleitapparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ringsektoren (24, 25, 40, 41, 42) axial hintereinander angeordnete Leitgitter (8, 36, 49, 50) mit unterschiedlichen Profil- und Gitterparametern aufweisen.
- 4. Verstellbarer Strömungsleitapparat nach einem der Anspruche 1 bis 3, dadurch gekennzeichnet, daß die Ringsektoren (24, 25, 40, 41, 42) verwundene Leitschaufeln aufweisen.
- 5. Verstellbarer Strömungsleitapparat nach einem 35 der Anspruche 1 bis 4, dadurch gekennzeichnet, daß einzelne ausgewählte Leitschaufeln (30, 31, 46, 47, 48) des ringformigen Einsatzes (18) und Zungenbereiche (28, 29, 43, 44, 45) der an den Einsatz (18) mundenden spiralförmigen Leitkanäle (2, 3, 4, 5, 33, 34, 35) derart aneinander angepaßt sind, daß jeweils ein kontinuierlicher, strömungsgünstiger Übergang zwischen den Zungenbereichen (28, 29, 43, 44, 45) und den ausgewählten Leitschaufeln (30, 31, 46, 47, 48) entsteht.
- 6. Verstellbarer Strömungsleitapparat nach einem der Anspruche 1 bis 5, dadurch gekennzeichnet, daß die Ringsektoren (24, 25, 40, 41, 42) Hülsenteile (16, 17) aufweisen, durch die die spiralförmigen Leitkanale bis auf Spaltströme verschließbar sind. 7. Verstellbarer Strömungsleitapparat nach einem der Anspruche 1 bis 6, dadurch gekennzeichnet, daß durch den ringförmigen Einsatz (18) ein Bremsspaltquerschnitt für eine Motorbremse darstellbar ist.
- 8. Verstellbarer Strömungsleitapparat nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ringsektoren (24, 25, 40, 41, 42) Hakenschaufeln aufweisen.
- 9. Verstellbarer Strömungsleitapparat nach einem 60 der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Ringsektoren (24, 25, 40, 41, 42) in Abhängigkeit von Betriebsparametern der Brennkraftmaschine (51) verstellbar sind.
- 10. Verstellbarer Strömungsleitapparat nach einem 65 der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der ringförmige Einsatz (18) mit Ringsektoren (24, 25, 40, 41, 42) durch Schnittslächen axial geteilt

ist und die Ringsektoren (24, 25, 40, 41, 42) in Richtung der Laufradlängsachse (13) relativ beweglich zueinander sind.

Hierzu 5 Seite(n) Zeichnungen

DE 42 42 494, C1

Int. Cl.⁵:

Int. Cl.5:

Fig. 3

DE 42 42 494 C1

Int. Cl.5:

F01 D 17/18

Fig. 4

DE 42 42 494 C1

Int. Cl.5;

Fig. 5

DE 42 42 494 C1 F 01 D 17/18

Int. Cl.5:

Fig. 6

