Calcul différentiel Théorèmes du TD

Question 1/3

Théorème des fonctions implicites

Réponse 1/3

Si X, Y et Z sont trois espaces de Banach sur \mathbb{R} et $F: U \to Z$ est de classe \mathcal{C}^1 avec U un ouvert de $X \times Y$ tels que $(x_0, y_0) \in U$ et $F(x_0, y_0) = 0$ et $D_y f_{(x_0,y_0)}: Y \to Z$ est un isomorphisme de Banach alors il existe un voisinage ouvert V de x_0 et W de y_0 ainsi qu'une application $\phi: V \to W$ de classe \mathcal{C}^1 telle que $\phi(x_0) = y_0$ et pour tout $(x, y) \in V \times W$, F(x, y) = 0 si et seulement si $y = \phi(x)$

Question 2/3

Lemme de sortie de tout compact

Réponse 2/3

Soit $x: T_-, T_+$ la solution maximale au problème de Cauchy x' = f(t, x) pour $(t, x) \in I \times U$, $I \subset \mathbb{R}$ et $U \subset E$ deux ouverts où E est un Banach et f est localement lipschitzienne par rapport à x Si $T_+ \leq \sup(I)$ alors $t \mapsto x(t)$ sort de tout compact de U au voisinage de T_{+} Si de plus U = E et E est de dimension finie alors $\lim_{t \to T_{\perp}} (\|x(t)\|) = +\infty \text{ (idem pour } T_{-})$

Question 3/3

Théorème du rang constant

Réponse 3/3

Si $U \subset \mathbb{R}^n$ est ouvert et $f \in \mathcal{C}^1(U, \mathbb{R}^p)$ est telle que $\mathrm{d} f_x$ est de rang constant r pour tout $x \in U$ alors pour tout $a \in U$, il existe un voisinage V de a et un voisinage W de f(a) ainsi que des difféomorphismes $v:V \to v(V) \subset U$ et $w:W\to w(W)\subset\mathbb{R}^p$ tels que $f=w^{-1}Av$ où $A(x_1, \dots, x_n) = (x_1, \dots, x_p, 0, \dots, 0)$