GEOMETRÍA Y TOPOLOGÍA DE SUPERFICES 2016/17 RELACIÓN 2.

Ejercicio 1. Pruébese que las siguientes superficies son homeomorfas a un cilindro.

Ejercicio 2. Indíquese cuántas componentes tienen el borde de las siguientes superficies.

Ejercicio 3. ¿Son homeomorfas las siguientes superficies?

Ejercicio 4. ¿Qué superficie es el siguiente espacio cociente?

Ejercicio 5. Lo que sigue es una clasificación de las superficies orientables sin borde mediante la asignación de una forma normal. Möbius demostró que si la superficie está sumergida en \mathbb{R}^3 y la cortamos mediante una familia de planos paralelos lo suficientemente cercanos unos de otros y con la inclinación adecuada, entonces los pedazos en los que queda dividida la superficie son del tipo :

denotados por (a), (ab) y (abc) respectivamente. De esta forma, podemos representar a una superficie como una suma formal de términos del tipo anterior, donde la suma indica un 'pegamiento' a través de una componente del borde común a los términos correspondientes.

(1) Siguiendo el procedimiento anterior, interpretar geométricamente la superficie dada por la suma formal (a) + (abc) + (bcd) + (def) + (f) + (eg) + (g).

- (2) En general, mediante el símbolo (abcd...) representamos a una esfera con agujeros, siendo a, b, c, d, ... las componentes del borde. Comprobar que las superficies $(xa_1a_2...) + (xb_1b_2...)$ y $(a_1a_2...b_1b_2...)$ son homeomorfas, donde $x, a_1, a_2, ..., b_1, b_2, ...$ son todos diferentes.
- (3) Comprobar que toda superficie orientable y sin borde se puede expresar (salvo homeomorfismo) como una suma formal $(a_1a_2...a_n) + (a_1a_2...a_n)$, siendo ésta su forma normal. Hallar la forma normal de la superficie dada en (a).

Ejercicio 6. Decidir, justificadamente, si las siguientes superficies son homeomorfas o no.

Ejercicio 7. Describir gráficamente cómo son los entornos de cada punto en el espacio cociente obtenido a partir de un hexágono en el que las aristas del borde quedan identificadas según la sucesión $aabba^{-1}b$. Aun no siendo superficies, a los espacios triangulables en los que todo punto posee un entorno de uno de los tres tipos anteriores se les llama "falsas superficies".

Ejercicio 8. Sea M la suma conexa de n toros y N la suma conexa de n planos proyectivos. ¿Qué superficie es M#N? ¿Y si N es la suma conexa de n botellas de Klein?

Ejercicio 9. Probar que si A y B son dos superficies compactas tales que $A \sharp B \cong S^2$, entonces $A \cong B \cong S^2$.

(Indicación : considerar las sumas conexas infinitas $A \sharp B \sharp A \sharp B ...$ y $B \sharp A \sharp B \sharp A ...$).