Modelos GARCH: Teoría y Aplicaciones

Facundo Solar, Ignacio Rodriguez, Martin Acuña

29 de noviembre de 2024

GARCH

¿Qué significa GARCH?

- Generalized Autoregressive Conditional Heteroscedasticity
- Generalizada: Extiende el modelo ARCH
- Autorregresiva: La volatilidad depende de valores pasados
- Heterocedasticidad Condicional: Varianza no constante

GARCH Bayesiano

¿Por qué nos importa la volatilidad?

- Los mercados financieros no son constantes
- Períodos de calma vs períodos turbulentos
- Crucial para gestión de riesgos y trading

Por qué Bayes?

- Combina experiencia previa con datos nuevos
- Mejor manejo de incertidumbre
- Más robusto en mercados turbulentos

Descripción de los Datos

Activos Analizados:

- Tesla (TSLA)
 - Representante de alta volatilidad
 - Sector: Automotriz/Tecnología
- Johnson & Johnson (JNJ)
 - Representante de baja volatilidad
 - Sector: Salud/Consumo

Características de la Muestra:

- Período: 2010-2024
- Frecuencia: Diaria
- Retornos logarítmicos (para tener % de variación)

GARCH: ¿Cómo Funciona?

El Modelo Base:

$$y_t = \epsilon_t \sqrt{h_t \frac{\nu - 2}{\nu}}$$

$$\epsilon_t \sim t_\nu$$

$$h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta h_{t-1}$$

Interpretación:

- y_t: Retorno en tiempo t
- h_t: Varianza condicional
- α_0 : Nivel base de volatilidad
- α_1 : Impacto de noticias recientes
- β : Persistencia de la volatilidad

Priors del Modelo

Parámetros GARCH:
$$\boldsymbol{\alpha} = (\alpha_0, \alpha_1)$$
 y $\boldsymbol{\beta}$
$$p(\boldsymbol{\alpha}) \sim \mathcal{N}(\boldsymbol{0}, 1000 \cdot I_2) I_{[\alpha_0, \alpha_1 > 0]}$$

$$p(\boldsymbol{\beta}) \sim \mathcal{N}(0, 1000) I_{[\boldsymbol{\beta} > 0]}$$

$$p(\boldsymbol{\nu}) \sim \mathsf{Exp}(0, 01, 2) I_{[\boldsymbol{\nu} > 2]}$$

Características Clave:

- Corto la parte negativa de la normal y reescalo
- ullet u > 2 garantiza varianza finita

Volatilidad de los activos

Distribuciones Posteriores

Análisis Bayesiano de Parámetros:

Fundamentos del VaR

Definición Formal:

$$P(r_t \leq VaR_{\alpha}) = 1 - \alpha$$

Interpretación:

- ullet Pérdida máxima esperada con nivel de confianza (1-lpha)
- Medida estándar de riesgo en finanzas
- Requerido por reguladores

Cálculo de VaR con GARCH

VaR Condicional:

$$VaR_t(\alpha) = \mu_t + \sigma_t \Phi^{-1}(\alpha)$$

donde:

- ullet μ_t es la media condicional
- σ_t es la volatilidad GARCH
- $\Phi^{-1}(\alpha)$ es el cuantil de la distribución

Ventajas del VaR-GARCH:

- Actualización dinámica
- Mejor captura de colas pesadas

Value at Risk (VaR) - TSLA vs JNJ

