Differential Equations. Review for Test 1, Fall '19.

Also study all the homework and quizzes, as well as examples in class notes.

Note: Some questions on the actual test may state "Set up the differential equation only." Since you don't know which kind, for practice do both the set-up and the solution.

Note: Don't forget that the answer will have an unknown constant or constants, unless it is an IVP.

- 1. A 100 gallon tank initially contains 60 gallons of water with 20 kg of sugar in solution. An input pipe adds 10 kg of sugar per gallon, at the rate of 5 gallons per second. An output pipe drains 2 gallons of well-stirred mixture per second.
 - Set up the diff. eq. for finding A(t), the amount of sugar in the tank after t seconds.
 - Solve to get the formula for A(t).
 - When will the tank be full, and how much sugar will it contain then?
- 2. Solve the diff. eq. $y' y = e^x y^2$. Is it linear, Bernoulli or separable?
- 3. Solve the diff. eq. $y' = y(xy^3 1)$. Is it linear, Bernoulli or separable?
- 4. Consider the differential equation $x^2y'' 7xy' + 7y = 0$. By using $y = x^m$ find two solutions of the above equation. Write a (family of) solutions that uses the constants c_1, c_2 .
- 5. Solve the differential equation (IVP): $x^3y' = y xy$; y(1) = 7. Is it Bernoulli or separable?
- 6. Solve the differential equation generally: $y' = 2^x(1+y^2)$. Is it linear, Bernoulli or separable? Your answer should be solved for y, and will have an unknown constant.
- 7. Solve the differential equation generally: $y' + \frac{1}{x}y = \sqrt{x^2 + 1}$. Is it linear, Bernoulli or separable? Your answer should be solved for y, and will have an unknown constant.
- 8. Consider the differential equation: $(e^x \cos y + y^2)dx + (2yx e^x \sin y)dy = 0$; y(2) = 0.
 - Show whether this diff. eq. is exact or inexact.
 - Solve it (IVP).
- 9. Solve the differential equation generally: $y' = \frac{2e^y + x^3 + 1}{-xe^y}$.
 - Show whether this diff. eq. is exact or inexact.

 Your answer should be an implicit equation with an unknown constant.