Lecture 3: Random Variable, Part I

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

April 17, 2021

- Random Variable: Discrete
- PMF (Probability Mass Function)
- Representative Discrete Random Variables
- Expectation and Variance
- Functions of Random Variables
- Conditioning and Independence for Random Variables

1/43

Random Variable: Idea

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

Random Variable: More Formally

KAIST EE

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- \circ Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Assume that values x are discrete¹ such as $1, 2, 3, \ldots$. For notational convenience,

$$p_X(x) \triangleq \mathbb{P}(X=x) \triangleq \mathbb{P}(\{\omega \in \Omega \mid X(w)=x\})$$

• For a discrete random variable X, we call $p_X(x)$ probability mass function (PMF).

¹Finite or countably infinite.

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

- Famous discrete random variables used in the community
- Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
- Normal, Uniform, Exponential, etc.
- o Bayes' rule for random variables

6/4

Bernoulli X with parameter $p \in [0, 1]$

KAISTEE

5 / 43

Uniform X with parameter a, b

Only binary values

$$X = \begin{cases} 0, & \text{w.p.}^2 \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv 1_A as:

$$1_{\mathcal{A}} = \begin{cases} 1, & \text{if } \mathcal{A} \text{ occurs,} \\ 0, & \text{otherwise} \end{cases}$$

- Choose a number of $\Omega = \{a, a+1, \ldots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

• Models complete ignorance (I don't know anything about X)

integers a, b, where a < b

²with probability

Binomial X with parameter n, p

Poisson X with parameter λ

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large n and very small p, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

• Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

• Prove this:

$$\lim_{n\to\infty} p_X(k) = \binom{n}{k} (1/n)^k (1-1/n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

9 / 43

10 / 43

Geometric X with parameter p

Roadmap

- Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.
- Models waiting times until something happens.

$$p_X(k) = (1-p)^{k-1}p$$

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
- Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

11 / 43

• Average.

Definition

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

- $p_X(x)$: relative frequency of value x (trials with x/total trials)
- Example 1: Bernoulli r.v. with p

$$\mathbb{E}[X] = 1 \times p + 0 \times (1-p) = p_X(1)$$

Not very surprising. Easy to prove using the definition.

- $\quad \text{o If } X \geq 0, \, \mathbb{E}[X] \geq 0.$
- If $a \le X \le b$, $a \le \mathbb{E}[X] \le b$.
- For a constant c, $\mathbb{E}[c] = c$.

13 / 43 14 / 43

Expectation of a function of a RV

KAIST EE

Variance

- For a rv X, Y = g(X) is also a r.v.
- $\mathbb{E}[Y] = \mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$
- Compute $\mathbb{E}[Y]$ for the following:

$$4 \times (0.4 + 0.3) + 3 \times (0.1 + 0.2)$$

= $2.8 + 0.9 = 3.7$

Linearity of Expectation

 $\mathbb{E}[aX+b]=a\mathbb{E}[X]+b$

- Measures how much the spread of a PMF is.
- What about $\mathbb{E}[X \mu]$, where $\mu = \mathbb{E}[X]$? Then, what about $\mathbb{E}[(X \mu)^2]$?

Variance, Standard Deviation

$$var[X] = \mathbb{E}[(X - \mu)^2]$$

$$\sigma_X = \sqrt{\operatorname{var}[X]}$$

Variance: Useful Property

Roadmap

• $\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

$$var[X] = \mathbb{E}[X^2 - 2\mu X + \mu^2]$$

= $\mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - \mu^2$

• Y = X + b, var[Y] = var[X]

$$var[Y] = \mathbb{E}[(X+b)^2] - (\mathbb{E}[X+b])^2$$

• Y = aX, $var[Y] = a^2 var[X]$

$$var[Y] = \mathbb{E}[a^2X^2] - (a\mathbb{E}[X])^2$$

Example: Variance of a Bernoulli rv (p)

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p$$

$$\mathbb{E}[X^2] = 1 \times p + 0 \times (1-p) = p$$

$$var[X] = \mathbb{E}[X^2] - \mu^2 = p - p^2$$

= $p(1 - p)$

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- o Bayes' rule for random variables

17/43

Joint PMF

KAIST EE

Functions of Multiple R.V.s

20 / 43

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) \triangleq \mathbb{P}(\{X=x\} \cap \{Y=y\})$$

- $\sum_{x}\sum_{y}p_{X,Y}(x,y)=1$
- Marginal PMF.

$$p_X(x) = \sum_{y} p_{X,Y}(x,y),$$

 $p_Y(y) = \sum_x p_{X,Y}(x,y)$

Example.

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 = 8/20$$

• Consider a rv Z = g(X, Y). (Ex) X + Y, $X^2 + Y^2$. Then, PMF of Z is:

$$p_Z(z) = \mathbb{P}(g(X, Y) = z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$$

Similarly,

$$\mathbb{E}[Z] = \mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

- Remember: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- Similarly,

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(easy to prove, using the definition.)

- $\mathbb{E}[X_1 \ldots + X_n] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$
- $\mathbb{E}[2X+3Y-Z] = 2\mathbb{E}[X]+3\mathbb{E}[Y]-\mathbb{E}[Z]$

- Example. Mean of a binomial rv Y with (n, p)
- Y: number of successes in n Bernoulli trials with p
- $Y = X_1 + \dots X_n$, where X_i is a Bernoulli rv.
- $\mathbb{E}[Y] = n\mathbb{E}[X_i] = n\mathbb{P}(X_i = 1) = np$

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- o Bayes' rule for random variables

Conditional PMF: Conditioning on an event

KAIST EE

21 / 43

Example: Conditional PMF

 $A = \{X \ge 2\}$

22 / 43

Remember two probability laws: $\mathbb{P}(\cdot)$ and $\mathbb{P}(\cdot|A)$, for an event A.

•
$$p_X(x) = \mathbb{P}(X = x)$$

•
$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

•
$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\operatorname{var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

•
$$p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$$

•
$$\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$$

•
$$\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$$

•
$$\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$

• Note.
$$p_{X|A}(x)$$
, $\mathbb{E}[X|A]$, $\mathbb{E}[g(X)|A]$, and $\text{var}[X|A]$ are all just notations!

$$\mathbb{E}[X] = \frac{1}{4} (1 + 2 + 3 + 4) = 2.5$$

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= \frac{1}{4}(1 + 2^2 + 3^2 + 4^2) - 2.5^2$$

$$\mathbb{E}[X|A] = \frac{1}{3}(2+3+4) = 3$$

$$var[X|A] = \mathbb{E}[X^2|A] - (\mathbb{E}[X|A])^2$$
$$= \frac{1}{3}(2^2 + 3^2 + 4^2) - 3^2 = 2/3$$

What do we mean by "conditioning on a rv"? Consider $A = \{Y = y\}$ for a rv Y.

- $p_{X|A}(x) \triangleq \mathbb{P}(X = x|A)$
- $\mathbb{E}[X|A] \triangleq \sum_{x} x p_{X|A}(x)$
- $\mathbb{E}[g(X)|A] \triangleq \sum_{x} g(x) p_{X|A}(x)$
- $\operatorname{var}[X|A] \triangleq \mathbb{E}[X^2|A] (\mathbb{E}[X|A])^2$

- $p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y)$
- $\mathbb{E}[X|Y=y] \triangleq \sum_{x} x p_{X|Y}(x|y)$
- $\mathbb{E}[g(X)|Y=y] \triangleq \sum_{x} g(x)p_{X|Y}(x|y)$
- $\operatorname{var}[X|Y = y] \triangleq \mathbb{E}[X^2|Y = y] (\mathbb{E}[X|Y = y])^2$

Conditional PMF

$$p_{X|Y}(x|y) \triangleq \mathbb{P}(X=x|Y=y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

25 / 43

26 / 43

Remind: Total Probability Theorem (from Lecture 2)

KAIST EE

Total Probability Theorem: $B = \{X = x\}$

- Partition of Ω into A_1, A_2, A_3
- Known: $\mathbb{P}(A_i)$ and $\mathbb{P}(B|A_i)$
- What is $\mathbb{P}(B)$? (probability of result)

Total Probability Theorem

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(A_i) \mathbb{P}(B|A_i)$$

• Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

27 / 43 28 / 43

Total Expectation Theorem for $\{A_i\}$

Total Expectation Theorem for $\{Y = y\}$

o Partition of Ω into A_1, A_2, A_3

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i) = \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

• Partition of Ω into A_1, A_2, A_3

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \mathbb{E}[X|Y = y] = \sum_{y} \rho_{Y}(y) \mathbb{E}[X|Y = y]$$

$$A_1 \cap B$$

$$A_2 \cap B$$

$$A_3 \cap B$$

29 / 43

30 / 43

Example 1: Total Expectation Theorem

KAIST EE

Background: Memoryless Property of Geometric rv (1)

- $A_1 = \{X \in \{0,1,2\}\}, A_2 = \{X \in \{6,7,8\}\}$
- Using TET,

$$\mathbb{E}[X] = \sum_{i=1,2} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$
$$= 1/3 \cdot 1 + 2/3 \cdot 7 = 7$$

• Without using TET,

$$\mathbb{E}[X] = \frac{1}{9}(0+1+2) + \frac{2}{9}(6+7+8)$$

- Some random variable often does not have memory.
- Definition. A random variable X is called memoryless if, for any $n, m \ge 0$,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

- Meaning. Conditioned on X > m, X m's distribution is the same as the original X.
- Remind. Geometric rv X with parameter p

$$\mathbb{P}(X=k)=(1-p)^{k-1}p$$

$$\mathbb{P}(X > k) = 1 - \sum_{k'=1}^{k} (1 - p)^{k'-1} p = (1 - p)^{k}$$

31/43 32/43

• Theorem. Any geometric random variable is memoryless.

$$\mathbb{P}(X > n + m | X > m) = \frac{\mathbb{P}(X > n + m \text{ and } X > m)}{\mathbb{P}(X > m)}$$

$$= \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > m)}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n)$$

• Meaning. Conditioned on X > m, X - m is geometric with the same parameter.

- Write softwares over and over, and each time w.p. p of working correctly (independent from prev. programs).
- X: number of tries until the program works correctly.
- Q) mean and variance of X
- X is geometric
- Direct computation is boring.

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

 Total expectation theorem and memorylessness nhelps a lot. • $A_1 = \{X = 1\}$ (first try is success), $A_2 = \{X > 1\}$ (first try is failure).

$$egin{aligned} \mathbb{E}[X] &= 1 + \mathbb{E}[X-1] \ &= 1 + \mathbb{P}(A_1)\mathbb{E}[X-1|X=1] \ &+ \mathbb{P}(A_2)\mathbb{E}[X-1|X>1] \ &= 1 + (1-p)\mathbb{E}[X] \end{aligned}$$

$$\mathbb{E}[X] = 1 + (1 - p)\frac{1}{p} = 1/p.$$

33 / 43

35 / 43

34 / 43

Roadmap

KAISTEE

Independence, Conditional Independence

- o Famous discrete random variables used in the community
- Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- o Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
- Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Two events

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$
$$\mathbb{P}(A \cap B | C) = \mathbb{P}(A | C) \cdot \mathbb{P}(B | C)$$

A rv and an event

$$\mathbb{P}(\{X = x\} \cap B) = \mathbb{P}(X = x) \cdot \mathbb{P}(B), \text{ for all } x$$

$$\mathbb{P}(\{X = x\} \cap B | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(B | C), \text{ for all } x$$

Two rvs

$$\mathbb{P}(\{X = x\} \cap \{Y = y\}) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y), \text{ for all } x, y$$
$$p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X=x\} \cap \{Y=y\} | Z=z)) = \mathbb{P}(X=x | Z=z) \cdot \mathbb{P}(Y=y | Z=z), \text{ for all } x, y$$
$$p_{X,Y|Z}(x,y) = p_{X|Z}(x) \cdot p_{Y|Z}(y)$$

Example

KAIST EE

Expectation and Variance

• *X* ⊥⊥ *Y*?

$$p_{X,Y}(1,1) = 0$$
, $p_X(1) = 3/20$
 $p_Y 1 = 1/20$.

• $X \perp \!\!\! \perp Y | \{X \le 2 \text{ and } Y \ge 3\}$?

у	1				
4	1/20	2/20	2/20		
3	2/20	4/20	1/20	2/20	
2		1/20	3/20	1/20	
1		1/20			
	1	2	3	4	X

Y = 4 (1/3)	1/9	2/9	
Y = 3 (2/3)	2/9	4/9	
	X = 1 (1/3)	X = 2(2/3)	

- Always true. $\mathbb{E}[aX + b], \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Generally, $\mathbb{E}[g(X,Y)] \neq g(\mathbb{E}[X],\mathbb{E}[Y])$
- However, if $X \perp \!\!\!\perp Y$,

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[g(Y)]$$

• Proof.

$$\mathbb{E}[g(X)h(Y)] = \sum_{x} \sum_{y} g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_{x} xp_{X}(x) \sum_{y} yp_{Y}(y)$$

- Always true. $var[aX] = a^2 var[X], var[X + a] = var[X]$
- Generally, $var[X + Y] \neq var[X] + var[Y]$
- However, if $X \perp \!\!\! \perp Y$, var[X + Y] = var[X] + var[Y]
- Practice.
 - $\circ X = Y \Longrightarrow \text{var}[X + Y] = 4\text{var}[X]$

 - $X = -Y \Longrightarrow \text{var}[X + Y] = 0$ $X \perp \perp Y \Longrightarrow \text{var}[X 3Y] = \text{var}[X] + 9\text{var}[Y]$

37 / 43

38 / 43

$var[X + Y] \neq var[X] + var[Y]$

Example: The hat problem (1)

• Why not generally true?

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2$$

$$= \mathbb{E}[X^2 + Y^2 + 2XY] - ((\mathbb{E}[X])^2 + (\mathbb{E}[Y])^2 + 2\mathbb{E}[X]\mathbb{E}[Y])$$

$$= var[X] + var[Y] + 2(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y])$$

- $\circ \mid X \perp \!\!\!\perp Y \mid$ is a sufficient condition for $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Also, a necessary condition? we will see later, when we study covariance.

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- $\mathbb{E}[X]$? var[X]?
- All permutations are equally likely as 1/n!. Thus, this equals to picking one hat at a time.
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise.

$$X = \sum_{i=1}^{n} X_i.$$

• $\{X_i\}, i = 1, 2, ..., n$: identically distributed (symmetry)

39 / 43

Example: The hat problem (2)

- $\mathbb{E}[X] = n\mathbb{E}[X_1] = n\mathbb{P}(X_1 = 1) = n \times \frac{1}{n} = 1.$
- Key step 2. Are X_i s are independent? If yes, easy to get var(X).
- Assume n=2. Then, $X_1=1 \rightarrow X_2=1$, and $X_1=0 \rightarrow X_2=0$. Thus, dependent.

$$\operatorname{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= \mathbb{E}\left[\sum_{i} X_i^2 + \sum_{i,j:i \neq j} X_i X_j\right] - (\mathbb{E}[X])^2$$

$$\mathbb{E}[X_i^2] = 1 \times \frac{1}{n} + 0 \times \frac{n-1}{n} = \frac{1}{n}$$

$$\mathbb{E}[X_i X_i] = \mathbb{E}[X_1 X_2] = 1 \times \mathbb{P}(X_1 X_2 = 1) = \mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1 | X_1 = 1), \quad (i \neq j)$$

- $\mathbb{E}[X^2] = n\mathbb{E}[X_1^2] + n(n-1)\mathbb{E}[X_1X_2] = n\frac{1}{n} + n(n-1)\frac{1}{n(n-1)} = 2$
- var(X) = 2 1 = 1

Questions?

41 / 43

Review Questions

- 1) What is Random Variable? Why is it useful?
- 2) What is PMF (Probability Mass Function)?
- 3) Explain Bernoulli, Binomial, Poisson, Geometric rvs, when they are used and what their PMFs are.
- 4) What are joint and marginal PMFS?
- 5) Describe and explain the total probability/expectation theorem for random variables?
- 6) When is it useful to use total probability/expectation theorem?
- 7) What is conditional independence?