STATUS OF THE CLAIMS

The status of the claims of the present application stands as follows:

- 1. to 11. (Cancelled)
- 12. (Currently amended) A method of dividing a power source voltage comprising the steps of:

providing a voltage divider circuit having a first transistor including a first transistor gate electrode having a first transistor gate electrode area and a second transistor including a second transistor gate electrode having a second transistor gate electrode area;

applying the power source voltage to said voltage divider circuit; and

dividing the power source voltage according to the ratio of said first transistor gate electrode area to said second transistor gate electrode area, wherein said ratio is calculated using a closed form non-linear function solved by numerical iteration.

13. (Currently amended) A method according to claim 12, wherein said function is

 $\frac{[6.1434 \times Log(V2)] + [2.6286 \times \{Log(V2)\}^{2}] + [1.3483 \times \{Log(V2)\}^{3}] + [0.37073 \times \{Log(V2)\}^{4}] + [0.036284 \times \{Log(V2)\}^{5}] + \{Log(R) - [6.1434 \times Log(V1)] - [2.6286 \times \{Log(V1)\}^{2}] - [1.3483 \times \{Log(V1)\}^{3}] - [0.37073 \times \{Log(V1)\}^{4}] - [0.036284 \times \{Log(V1)\}^{5}] = 0, \text{ where }$

 $VI = desired \ voltage \ across \ said \ first \ transistor = VDD \times VR/(VR + 1)$

V2 =desired voltage across said second transistor = VDD/(VR + 1)

VR = V1/V2

VDD = applied power source voltage

R = said ratio of said second transistor gate electrode area to said first transistor gate electrode area first transistor further comprises a drain and a source, each connected to said second transistor gate electrode.

14. to 19. (Cancelled)

20. (Currently amended) A method of designing a circuit for dividing voltage, comprising the steps of:

providing a first transistor including a gate electrode having an area, a source, and a drain; and

providing a second transistor including a gate electrode having an area, a source, and a drain; selecting said first transistor gate electrode area and said second transistor gate electrode area according to a predetermined ratio between the areas to provide a desired voltage division, wherein said ratio is calculated using a closed form non-linear function solved by numerical iteration; and

joining said second transistor gate electrode with said first transistor source and said first transistor drain.

21. (New) A method according to claim 20, wherein said function is

 $[6.1434 \times \text{Log}(V2)] + [2.6286 \times \{\text{Log}(V2)\}^2] + [1.3483 \times \{\text{Log}(V2)\}^3] + [0.37073 \times \{\text{Log}(V2)\}^4] + [0.036284 \times \{\text{Log}(V2)\}^5] + \{\text{Log}(R) - [6.1434 \times \text{Log}(V1)] - [2.6286 \times \{\text{Log}(V1)\}^2] - [1.3483 \times \{\text{Log}(V1)\}^3] - [0.37073 \times \{\text{Log}(V1)\}^4] - [0.036284 \times \{\text{Log}(V1)\}^5] = 0$, where

V1 = desired voltage across said first transistor = VDD x VR/(VR + 1)

V2 = desired voltage across said second transistor = VDD/(VR + 1)

VR = V1/V2

VDD = applied power source voltage

R = said ratio of said second transistor gate electrode area to said first transistor gate electrode area.

THE REST OF THIS PAGE INTENTIONALLY LEFT BLANK!