DAFTAR ISI

DAFTA	AR ISI	j
DAFTA	AR TABEL	i
DAFTA	AR GAMBAR	i
Bab 1. l	Pendahuluan	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran yang Diharapkan	2
1.5	Kegunaan	3
Bab 2.	Гinjauan Pustaka	3
2.1	Tandan Kosong Kelapa Sawit (TKKS)	3
2.2	Selulosa sebagai Pengganti Microbeads	3
2.3	Sabun Batang Scrub Transparan	3
2.4	Analisis	4
2.5	State of The Art	4
Bab 3. 1	Metode Penelitian	6
3.1	Tahapan Penelitian	6
3.2	Prosedur Penelitian	6
3.3	Indikator Capaian	8
3.4	Variabel Penelitian	9
3.5	Analisis dan Pengolahan Data	9
Bab 4. 1	Biaya dan Jadwal Kegiatan	10
4.1.	Anggaran Biaya	10
4.2.	Jadwal Kegiatan	10
Lamp	oiran 1. Biodata Ketua, Anggota dan Dosen Pendamping	11
Lamp	oiran 2. Justifikasi Anggaran Kegiatan	16
Lamp	piran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	17
Lamr	piran 4. Surat Pernyataan Ketua Peneliti	18

DAFTAR TABEL

Tabel 2.1 Jenis Pengujian dalam Penelitian ini	4
Tabel 2.2 State of the Art	5
Tabel 3.1 Variabel Penelitian	9
Tabel 4.1 Anggaran Biaya Penelitian	10
Tabel 4.2 Jadwal Kegiatan dalam Penelitian	10
DAFTAR GAMBAR	
Gambar 3.1 Diagram Alir Penelitian	6

Bab 1. Pendahuluan

1.1 Latar Belakang

Isu microbeads seringkali muncul dalam perbincangan selama lima tahun belakangan ini, terutama sejak mantan presiden Amerika Serikat, Obama yang menandatangani undang-undang terhadap penggunaan microbeads di Amerika Serikat, vatu The Microbead-Free Waters Act 2015 (Beat The Microbead, 2020). Microbeads merupakan plastik padat yang berukuran sangat kecil yang tidak dapat diuraikan dalam air dan digunakan dalam produk kosmetik untuk menggosok (scrubbing) kulit. Microbeads di desain untuk dibuang ke saluran pembuangan setelah digunakan. Maka dari itu, *microbeads* kerap ditemukan di perairan, seperti di laut, danau, teluk, dll. Keberadaan microbeads pada perairan ini dapat mengkontaminasi air dan kemudian merusak ekosistem yang ada. Di Amerika Serikat, diperkirakan sekitar 8 miliar microbeads ditemukan di habitat akuatik per harinya, yang setara dengan sekitar 2.9 triliun *microbeads* per tahun (5 Gyres, 2014). Karena ukurannya yang sangat kecil, *microbeads* dapat dengan mudah tertelan oleh manusia karena hampir tidak terlihat dengan mata telanjang. Negara-negara seperti Kanada, Inggris, Prancis, Swedia, Taiwan, Korea Selatan, dan New Zealand sudah mengambil tindakan signifikan terhadap microbeads, yaitu dengan melarang penggunaan microbeads dalam produk kosmetik (Bouwman, 2019).

Negara Indonesia merupakan negara yang sangat kaya akan sumber daya alamnya, terutama kelapa sawit. Menurut UNDP Green Commodities Programme, Indonesia merupakan produsen dan konsumen kelapa sawit terbesar dengan jumlah 30 juta ton yang dapat diproduksi per tahunnya, dimana menyumbang lebih dari 85% untuk pasokan global bersama dengan Malaysia (UNDP, 2015). Dengan banyaknya produksi kelapa sawit yang dihasilkan oleh Indonesia, limbah yang dihasilkan pun sangat berlimpah. Limbah yang paling melimpah merupakan tandan kosong kelapa sawit (TKKS), yang berbagi 21% dari total massa buah kelapa sawit. Tandan kosong kelapa sawit (TKKS) ini ditemukan setelah buah kelapa sawit dikeluarkan dari tandannya (Corley and Tinker, 2008). Limbah tandan kosong kelapa sawit ini mengandung 37.26% selulosa, yang merupakan bahan baku butiran scrub yang berpotensi untuk menggantikan microbeads dalam produk kosmetik sebagai solusi yang ramah lingkungan. Dengan mendaur ulang limbah tandan kosong kelapa sawit ini, limbah yang dihasilkan dari produk kosmetik yang mengandung butiran selulosa menjadi biodegradabel dan tidak mencemari lingkungan.

Tandan kosong kelapa sawit dapat diproses menjadi selulosa asetat, yang nantinya akan menghasilkan butiran selulosa asetat. Namun, salah satu bahan utama dalam pembuatan selulosa asetat, yaitu asetat anhidrida cukup mahal, yaitu mencapai Rp 36.400/ ml (Nadiratuzzahra and Tristantini, 2020). Selain itu, butiran selulosa asetat juga memiliki tekstur yang lebih kuat, sehingga dapat dengan mudah menggores kulit, dimana hal tersebut mungkin kurang baik

untuk kulit sensitif. Sementara itu, butiran selulosa memiliki tekstur yang lebih lembut dibandingkan butiran selulosa asetat, dimana akan jauh lebih cocok untuk kulit sensitif dan kulit berkondisi normal. Kondisi butiran selulosa akan lebih stabil di dalam sabun batang, dibandingkan dengan di dalam *scrub* krim emulsi. Dengan lebih stabil, maka tentunya akan meningkatkan umur simpan produk itu sendiri. Hal ini dikarenakan setelah sabun batang dibuat, harus diawetkan selama beberapa minggu sebelum dipakai. Kombinasi dari sabun batang dan butiran selulosa ini dapat disebut dengan sabun batang *scrub*, yang akan memberikan keuntungan dalam hal fungsi, daya jual, dan umur simpan.

Penelitian ini diharapkan dapat menyintesis sabun batang *scrub* yang transparan dalam segi warna, dengan tujuan untuk meningkatkan estetika produk dan kebaruan dari penelitian-penelitian sebelumnya. Dalam pembuatannya, penelitian ini akan memanfaatkan limbah tandan kosong kelapa sawit (TKKS) sebagai butiran selulosa yang digunakan dalam sabun batang *scrub* untuk solusi yang ramah lingkungan dalam mengurangi limbah TKKS dan microbeads yang terkandung dalam produk kosmetik.

1.2 Rumusan Masalah

Berikut adalah rumusan masalah pada penelitian ini:

- 1. Bagaimana pengaruh dari variasi rasio massa alkali dan minyak terhadap saponifikasi dan kekerasan sabun batang?
- 2. Bagaimana pengaruh dari variasi rasio massa alkali dan minyak terhadap transparansi sabun batang?
- 3. Bagaimana pengaruh komposisi sabun batang *scrub* terhadap sifat organoleptis?

1.3 Tujuan

Berdasarkan rumusan masalah yang telah dijabarkan diatas, tujuan dari penelitian ini antara lain:

- 1. Memperoleh pengaruh dari variasi rasio massa alkali dan minyak terhadap saponifikasi dan kekerasan sabun batang
- 2. Memperoleh pengaruh dari variasi rasio massa alkali dan minyak terhadap transparansi sabun batang
- 3. Memperoleh pengaruh komposisi sabun batang *scrub* terhadap sifat organoleptis

1.4 Luaran yang Diharapkan

Berikut adalah luaran yang diharapkan dari penelitian ini:

- 1. Mempublikasikan penelitian ini pada artikel ilmiah dan jurnal
- 2. Menghasilkan produk sabun batang *scrub* transparan yang dapat digunakan oleh masyarakat luas dengan harga terjangkau

1.5 Kegunaan

Kegunaan dari penelitian ini adalah:

- 1. Mengurangi sampah plastik (*microbeads*) yang mencemari lingkungan dengan menggunakan bahan alami dalam pembuatan *scrub*
- 2. Mengurangi limbah tandan kosong kelapa sawit dalam produksi minyak kelapa sawit
- 3. Mengetahui variasi rasio massa alkali dan minyak terbaik untuk sabun batang *scrub* transparan

Bab 2. Tinjauan Pustaka

2.1 Tandan Kosong Kelapa Sawit (TKKS)

Tandan kosong kelapa sawit (TKKS) merupakan biomassa dan produk sampingan dari produksi minyak kelapa sawit. TKKS merupakan limbah yang paling melimpah dari produksi minyak kelapa sawit, yang jumlahnya mencapai 25 juta ton/ tahun. Setiap 1 ton tandan buah segar yang diproses, dihasilkan sekitar 220 kg tandan kosong kelapa sawit (Corley and Tinker, 2008). TKKS mengandung beberapa komponen, antara lain selulosa, lignin, hemiselulosa, zat ekstraktif, dan abu. Dari semua komponen tersebut, selulosa merupakan komponen dengan persentase tertinggi yang mencapai 37.26%. Hal ini menunjukkan bahwa TKKS merupakan bahan baku yang potensial untuk diolah menjadi butiran *scrub*.

2.2 Selulosa sebagai Pengganti Microbeads

Selulosa merupakan polisakarida yang tersusun dari rantai linear ikatan β -1,4-glikosidik dengan derajat polimerasi yang berkisar antara beberapa ratus sampai lebih dari sepuluh ribu. Selulosa merupakan salah satu biomaterial yang paling melimpah di muka bumi dan banyak disintesis oleh tumbuhan, karena merupakan zat yang membentuk dinding sel tumbuhan. Selulosa dapat diproses menjadi kertas, serat, kulit, dan tentunya butiran selulosa untuk *scrub*, yang dapat menjadi solusi alternatif penggunaan *microbeads*. *Microbeads* itu sendiri merupakan partikel plastik padat dan kecil yang ditemukan di produk perawatan pribadi dan kosmetik, yang digunakan sebagai *exfoliator*. Ukuran partikelnya berkisar antara 1 μ m – 5 mm (Chen, 2014).

2.3 Sabun Batang Scrub Transparan

Sabun merupakan salah satu produk penting yang digunakan dalam kehidupan sehari-hari untuk membersihkan kulit manusia. Sabun dapat didefiniskan sebagai garam dari asam lemak yang larut dalam air (McMurry, 2011). Pada umumnya, terdapat dua tipe sabun yang diketahui masyarakat luas, yaitu sabun batang dan sabun cair. Sabun batang merupakan tipe sabun yang diawetkan, sehingga tidak diperlukan pengawet untuk menjaga produk agar tetap stabil. Dengan menambahkan butiran *scrub* ke dalam sabun batang akan

menambahkan daya jualnya, karena dapat membersihkan dan menggosok kulit untuk mengangkat sel kulit mati dari lapisan luar kulit. Kombinasi dari sabun batang dan butiran scrub ini dapat disebut sebagai sabun batang *scrub*. Dalam penelitian ini, sabun batang scrub yang akan disintesis diharapkan memiliki warna yang transparan. Hal ini dikarenakan untuk menghindari masalah perubahan warna dalam proses pembuatannya dan pengguna produk tersebut dapat dengan jelas melihat scrub yang terkandung didalamnya, sehingga akan meningkatkan estetika produk itu sendiri.

2.4 Analisis

Tabel 2.1 Jenis Pengujian dalam Penelitian ini

		Jenis P	engujian	
	Uji	Uji	Uji	Uji Tekstur
	Saponifikasi	Kekerasan	Transparansi	Organoleptis
Tujuan	Menentukan	Mengukur	Menganalisis	Menganalisis
	jumlah	kekerasan	tingkat	sifat-sifat
	miligram	suatu	transparansi	produk dan
	NaOH yang	material	sabun batang	bahan
	dibutuhkan		yang disintesis	melalui
	untuk			indera
	menyabuni			manusia
	asam lemak			
	bebas yang			
	ada dalam 1			
	gram minyak			
Metodologi	Titrasi (yang	Penetrometer	Ultrascan VIS	Panelis akan
	akan	dan Fourier	Spectrophoto-	memakai
	dilakukan	Transform	meter	sabun batang
	dalam dua	Infrared		scrub
	tahap)	Spectroscopy		transparan
		(FTIR).		pada kulit
				mereka
Objek	Sabun batang	Sabun batang	Sabun batang	Sabun batang
pengujian				scrub
				transparan

2.5 State of The Art

Penelitian ini dilakukan berdasarkan hasil dari penelitian-penelitian sebelumnya yang juga terkait dengan tema dari penelitian ini. Penelitian-penelitian tersebut dirangkum dalam tabel *state of the art* dibawah ini.

Tabel 2.2 State of the Art

Peneliti	Tahun	Bahan Baku	Metodologi	Hasil	
Agustini dan Winarni	2017	Carotenoid Chlorella pyrenoidosa	Kultivasi, ekstraksi, saponifikasi, uji stabilitas, uji aktivitas antioksidan, uji kekerasan sabun	Sabun Batang Transparan	
Dian Purwitasari Dewanti	2018	TKKS	Ekstraksi selulosa asetat, sintesis selulosa asetat, sintesis bioplastic, analisis molekular	Selulosa Asetat	
Andersen	2018	TKKS dan Daun Nangka Kering	Ekstraksi selulosa asetat, sintesis selulosa asetat, uji ukuran partikel, analisis molekular, uji absorbsi air dan minyak, uji massa jenis	Selulosa Asetat	
Cindy Sandra	2018	TKKS dan Daun Nangka Kering	Isolasi selulosa, sintesis selulosa asetat	Selulosa Asetat	
Syarifah Nadiratuzzahrah	2020	TKKS	Ekstraksi selulosa asetat, sintesis selulosa asetat, analisis molekular, uji absorbsi air dan minyak, formulasi scrub, uji pH, uji organoleptis, uji mikrobiologi	Emulsi Krim Scrub dengan Selulosa Asetat	
Widyapradnya Paramita	2021	TKKS, Minyak Kelapa Sawit, dan Minyak Kelapa	Sintesis selulosa asetat, uji saponifikasi, uji kekerasan, uji transparansi, uji tekstur organoleptis	osa uji Penelitian iji Ini uji	

Bab 3. Metode Penelitian

3.1 Tahapan Penelitian

Gambar 3.1 Diagram Alir Penelitian

3.2 Prosedur Penelitian

3.2.1. Persiapan Tandan Kosong Kelapa Sawit (TKKS)

- 1. Membersihkan tandan kosong kelapa sawit (TKKS) dari kotoran dan sisa buah yang masih menempel di dalamnya
- 2. Mencuci TKKS dengan air dan mengeringkannya dibawah sinar matahari langsung
- 3. Memotong TKKS sehingga panjangnya 2 cm dengan menggunakan gunting

4. Menyimpan TKKS di dalam suhu ruangan sebelum digunakan dalam penelitian

3.2.2. Sintesis Butiran Selulosa

- 1. Delignifikasi dengan NaOH, yang dilakukan dengan merebus TKKS dengan volume NaOH 20x dari masaa TKKS. Proses ini dilakukan selama 2 jam pada temperatur 90-100°C.
- 2. Bleaching dengan H₂O₂ 10%, yang dilakukan dengan merebus selulosa dengan volume H₂O₂ 15x dari masaa TKKS. Proses ini dilakukan selama 1.5 jam pada temperatur 80-90°C.
- 3. Pengeringan dengan oven, yang dilakukans selama 6 jam pada temperatur 105° C.
- 4. Pengayakan dengan *sieve mesh* berukuran 40, 50, dan 60, untuk memperkecil ukuran partikel menjadi 354 μ m, 297 μ m, and 250 μ m untuk mendapatkan ukuran butiran selulosa yang sesuai dengan ukuran pori-pori kulit manusia.

3.2.3. Sintesis Sabun Batang

- 1. Memanaskan minyak kelapa sawit dan minyak kelapa di dalam *beaker glass* dan meletakkannya di dalam *water bath* sampai temperaturnya mencapai 70°C
- 2. Menambahkan asam stearat dan mencampur larutan selama 5 menit sampai homogen dan juga tetap menjaga temperatur antara 70-80°C
- 3. Menambahkan alkali, yaitu NaOH dan temperatur larutan diturunkan menjadi 50°C
- 4. Menambahkan etanol, kemudian larutan gula dan gliserin dan temperatur larutan diturunkan menjadi 40°
- 5. Menambahkan minyak esensial beraroma jeruk manis ke dalam larutan dan mencampur larutan selama 2 menit
- 6. Menuang larutan ke dalam cetakan dan didiamkan selama 24 jam di suhu ruangan sampai mengeras
- 7. Mengeluarkan sabun batang dari cetakan dan mengawetkan sabun batang selama 1-3 minggu.

3.2.4. Uji Saponifikasi

- 1. Melakukan titrasi pertama, yang disebut dengan *back titration* (V₁).
 - Minyak dan kelebihan NaOH di reflux selama 1-2 jam di dalam labu Erlenmeyer dan menambahkan indikator fenolftalein
 - Mengisi buret dengan 0.5 N HCl dan melakukan titrasi dengan membuka katup pada buret secara perlahan sehingga HCl menetes ke dalam larutan hingga larutan tidak berwarna
- 2. Melakukan titrasi kedua, yang disebut dengan blank titration (V₂).

- Menambahkan kelebihan NaOH dan indikator fenolftalein ke dalam labu Erlenmeyer
- Melakukan itrasi pada larutan dengan 0.5 N HCl hingga larutan tidak berwarna

3.2.5. Uji Kekerasan

- 1. Menguji dengan penetrometer, untuk pengujian secara mekanis. Kerucut dalam penetrometer akan menembus sampel selama 5 detik dan akan membaca kedalaman penetrasi.
- 2. Menguji dengan FTIR, untuk menganalisis ikatan kimia. Sampel sabun batang *scrub* diletakkan di sample holder dan kemudian diletakkan di dalam FTIR. Lalu spektrum pun dijalankan dan dapat dianalisis.

3.2.6. Uji Transparansi

- 1. Memanaskan alat Ultrascan Vis Spectrophotometer selama 30 menit sebelum digunakan dan menyetel alat ke mode opasitas
- 2. Mengkalibrasi alat dengan ubin hitam dan putih
- 3. Meletakkan sampel sabun batang di jalur cahaya dan bagian atas sampel ditutupi dengan ubin hitam dan kemudian menggantinya dengan ubin putih
- 4. Tampilan layer akan menunjukkan opasitas sampel dalam persentase

3.2.7. Sintesis Sabun Batang Scrub

- 1. Mencampur butiran selulosa yang sudah disintesis sebelumnya dengan larutan sabun batang.
- 2. Menuang larutan ke dalam cetakan dan didiamkan selama 24 jam di suhu ruangan sampai mengeras
- 3. Mengeluarkan sabun batang *scrub* dari cetakan dan mengawetkan sabun batang *scrub* selama 1-3 minggu.

3.2.8. Uji Tekstur Organoleptis

- 1. Panelis menggunakan sabun batang *scrub* transparan dan merasakan teksturnya pada kulit mereka
- 2. Panelis menilai tekstur sabun batang *scrub* transparan dalam skala 1-5
- 3. Panelis mendeskripsikan efek pencerahan pada kulit yang dihasilkan dari sabun batang *scrub* transparan dalam skala 1-5

3.3 Indikator Capaian

Indikator pencapaian dari penelitian ini yaitu memperoleh variasi rasio massa alkali dan minyak yang terbaik dan menganalisis variasi rasio massa tersebut terhadap nilai saponifikasi, kekerasan dan transparansi sabun batang, serta memperoleh pengaruh komposisi sabun batang *scrub* yang diuji terhadap sifat organoleptis

3.4 Variabel Penelitian

Tabel 3.1 Variabel Penelitian

No.	Jenis	Variabel	Variabel	Variabel
110.	Pengujian	Bebas	Terikat	Tetap
1	Uji Saponifikasi	Rasio variasi dari:	Nilai saponifikasi	
1	OJI Bupomikusi	massa alkali dan	dari sabun batang	
2	Uji Kekerasan	massa minyak	Kekerasan dari	Tipe
2	(minyak kelapa		sabun batang	alkali
3	Uji	sawit dan minyak	Transparansi dari	
3	Transparansi kelapa)		sabun batang	
		Ukuran partikel		Rasio
	Uji Tekstur	dari butiran		massa
4	Organoleptis	selulosa dan	Tekstur	alkali
	Organolepus	konsentrasi dari		dan
		butiran selulosa		minyak

3.5 Analisis dan Pengolahan Data

3.5.1 Uji Saponifikasi

Jumlah NaOH yang digunakan dalam pengujian dapat dihitung dengan rumus berikut.

$$Jumlah NaOH yang terkonsumsi = V_2 - V_1$$
 (3.1)

Nilai saponifikasi dapat didapatkan dengan rumus berikut.

$$Nilai Saponifikasi = \frac{(V_2 - V_1)_{NaOH} \times N_{NaOH} \times Mr_{NaOH}}{m_{minvak} (dalam \ grams)}$$
(3.2)

3.5.2 Uji Kekerasan

Kekerasan sabun batang yang diukur dengan penetrometer akan diukur dalam satuan mm/s.

3.5.3 Uji Transparansi

Transparansi dari sabun batang yang diukur dengan Ultrascan Vis Spectrophotometer dapat dihitung dengan rumus berikut.

Transparency (%) =
$$100\% - \%$$
 Opacity Reading (3.3)

3.5.4 Uji Tekstur Organoleptis

Panelis akan menilai tekstur sabun batang *scrub* transparan yang diuji dalam skala 1-5, dimana 1 dinilai sangat kasar, 2 dinilai kasar, 3 dinilai cukup kasar, 4 dinilai lembut, dan 5 dinilai sangat lembut. Panelis juga akan menilai efek pencerahan pada kulit yang dihasilkan dari sabun batang *scrub* transparan yang diuji, dimana 1 dinilai tidak ada perubahan, 2 dinilai sedikit cerah, 3 dinilai cukup cerah, 4 dinilai cerah, dan 5 dinilai sangat cerah.

Bab 4. Biaya dan Jadwal Kegiatan

4.1. Anggaran Biaya

Tabel 4.1 Anggaran Biaya Penelitian

No	Jenis Pengeluaran	Biaya (Rp)	
1	Perlengkapan yang diperlukan	Rp. 1.885.000	
2	Bahan Habis Pakai	Rp. 1.206.000	
3	Perjalanan	Rp. 805.000	
4	Lain-lain	Rp. 6.090.000	
	Jumlah	Rp. 9.986.000	

4.2. Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan dalam Penelitian

No Jenis Kegiatan		Bulan			Person Penanggung-	
NO	Jenis Kegiatan		2	3	4	Jawab
1	Persiapan Alat dan Bahan					Widyapradnya
2	Sintesis Butiran Selulosa dan Sabun Batang					Widyapradnya
3	Uji Saponifikasi, Kekerasan, dan Transparansi					Widyapradnya, Yasmine, Priscila
4	Sintesis Sabun Batang Scrub					Yasmine, Priscila
5	Uji Tekstur Organoleptis					Widyapradnya
6	Pengolahan Data dan Analisis					Widyapradnya
7	Pembuatan Laporan Akhir					Widyapradnya, Yasmine, Priscila

Daftar Pustaka

- 5 Gyres. 2014. *Plastic Microbeads* [Online]. Available: https://www.5gyres.org/microbeads [Accessed 2 September 2020].
- Beat The Microbead. (2020). *Global Impact* [Online]. Available: https://www.beatthemicrobead.org/impact/global-impact/ [Accessed 25 September 2020].
- Bouwman, H. 2019. Why microbeads are such a threat and why they're so hard to handle [Online]. Available: https://theconversation.com/why-microbeads-are-such-a-threat-and-why-theyre-so-hard-to-handle-108763 [Accessed 3 July 2020].
- Chen, H. 2014. *Biotechnology of Lignocellulose: Theory and Practice*, Springer Netherlands.
- Corley, R. H. V. & Tinker, P. B. H. 2008. The Oil Palm, Wiley.
- McMurry, J. E. 2011. Organic Chemistry, Cengage Learning.
- Nadiratuzzahra, S. & Tristantini, D. 2020. Cellulose acetate from oil palm empty fruit bunches waste as biodegradable microbeads for making scrubs. *AIP Conference Proceedings*, 2223, 050001.
- UNDP 2015. Country Factsheet Indonesia Palm Oil. Green Commodities Programme

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Widyapradnya Paramita
2.	Jenis Kelamin	P
3.	Program Studi	Teknik Kimia
4.	NIM	1706020755
5.	Tempat dan Tanggal Lahir	Jakarta, 13 Agustus 1999
6.	Alamat e-mail	wpradnya@rocketmail.com
7.	No. Telepon/HP	0811991308

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Program Internasional	Staff Kewirausahaan	Januari – Desember 2018 (FTUI)
2	Dongkrak Seni	Staff Bazaar	November 2018 (FTUI)
3	Teknik Open House	Staff Registrasi	November 2018 (FTUI)
4	Olimpiade Ilmiah Mahasiswa (OIM)	Staff Poster	Februari 2018 (FTUI)

C. Penghargaan yang Pernah Diterima

No	No Jenis Penghargaan Pihak Pemberi Penghargaan			
Runner Up ke-3 Lomba Quiz OIM		Olimpiade Ilmiah Mahasiswa (OIM) - FTUI	2019	
2	Lulus Grade 4 Piano ABRSM	The Associated Board of The Royal Schools of Music (ABRSM)	2016	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 22 Februari 2021 Ketua,

(Widyapradnya Paramita)

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Yasmine Shafa Kamila
2.	Jenis Kelamin	P
3.	Program Studi	Teknik Kimia
4.	NIM	1806187801
5.	Tempat dan Tanggal Lahir	Jakarta, 31 Agustus 2000
6.	Alamat e-mail	Yasmine.shafa@gmail.com
7.	No. Telepon/HP	081212636277

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	BEM FT UI	Staff Kastrat	January 2018 – 2019
2	IMPI	Staff Kemahasiswaan	January 2018 – 2019
3	SRE UI	Staff Relation	November 2020 – Sekarang

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 None Buku DKI	Plt. Gubernur Provinsi DKI	2016
	Jakarta	Jakarta	
2	Semi Finalist Hultprize UI	Hultprize UI	2020
3	Finalis Abang None Jakarta Timur	Suku Dinas Pariwisata dan Kebudayaan Jakarta Timur	2019
4	Best Staff Kemahasiswaan IMPI	Ikatan Mahasiswa Program Internasional	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 22 Februari 2021 Anggota Tim,

(Yasmine Shafa Kamila)

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Priscila Celine Padak Demon
2.	Jenis Kelamin	P
3.	Program Studi	Teknik Lingkungan
4.	NIM	1706042415
5.	Tempat dan Tanggal Lahir	Jakarta, 16 November 1999
6.	Alamat e-mail	priscilacelinepd@gmail.com
7.	No. Telepon/HP	08989210415

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMS FTUI	Staf Kesekretariatan	Februari 2018 – November 2018, FTUI
2	The 16th CENS UI	Staf Bidang Media Partner	April 2018 – November 2018, FTUI
3	Arjuna Teknik	Wakil Sekretaris Umum	Mei 2018 – Desember 2018, FTUI
4	PSB Ganjil Sipil	Sekretaris Umum	Januari 2019 – Februari 2019, FTUI
5	The 17th CENS UI	Kepala Bidang Media Partner	Maret 2019 – November 2019, FTUI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Beasiswa Peningkatan	Kementrian Riset, Teknologi,	2019
	Prestasi Akademik	dan Pendidikan Tinggi Republik	
	(PPA)	Indonesia	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 22 Februari 2021 Anggota Tim,

(Priscila Celine Padak Demon)

D. Biodata Dosen Pendamping

A. Identitas diri

1.	Nama Lengkap (dengan gelar)	Ir. Dewi Tristantini, M.T., Ph.D.		
2.	Jenis Kelamin	P		
3. Program Studi		Teknik Kimia		
4.	NIP/NIDN	0012085904		
5.	Tempat dan Tanggal Lahir	Surakarta, 12 Agustus 1959		
6.	Alamat E-mail	detris@che.ui.ac.id		
7.	No. Telepon/HP	021 7750175 / 0818 979867		

B. Riwayat Pendidikan

G	S1	S2	S3
Nama Institusi	Universitas Gadjah Mada	Institut Teknologi Bandung	Chalmers University of Technology
Jurusan / Prodi	Teknik Kimia	Teknik Kimia	Teknik Kimia
Tahun masuk- lulus	1984	1994	2006

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1.	Pengantar Teknik Kimia	Wajib	3
2.	Teknologi Obat dan Kosmetik	Pilihan	3
3.	Teknologi Herbal	Pilihan	3
4.	Perancangan Produk	Wajib	4

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1.	Anti-cholesterol activity test of Tanjong (Mimusops elengi L.) lef extract in the water with water with in vivo method in mice (Mus musculus L.) DDY-strain	PITTA UI 2015	2015
2.	Antioxidant properties assay of gynura procumbens I. Fresh juice various shelf-life time using hydroxyl radical scavenging method	PITTA UI 2016	2016
3.	Anti-hyperglycemic In-Vivo Test of Averrhoa Carambola Aquous Leaf Extract	PITTA UI 2016	2016
4.	Brine Shrimp Lethality Test of The	PITTA UI 2016	2016

	Water Extract of Averrhoa Carambola L. Leaves		
5.	The Effects of Gluten, Red Bean Flour, and White Oyster Mushroom Composition on The Nutritional Value of Vegetarian Meat	PITTA UI 2015	2015
6.	Pengujian Aktivitas Antioksidan Menggunakan Metode DPPH Pada Daun Tanjung (<i>Mimusops elengi L</i> .)	PITTA UI 2016	2016
7.	Pengaruh Penambahan Kacang Merah, Ampas Kedelai, dan <i>Textured</i> Vegetable Protein pada Kandungan Nutrisi dan Tekstur Daging Sapi Sintetik	PITTA UI 2016	2016
8.	Outcome of Soybean Dregs and Cassava Addition towards Synthetic Chicken Meat Texture and Nutrition	PITTA UI 2016	2016
9.	An Activity Test of Butterfly Pea (Clitoria ternatea L.) Aqueous Extract to Decay Sodium and Calcium Ions in Cortical Cataract Model	PITTA UI 2015	2015

C.1. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1.	Penggalangan Dana untuk Tsunami Aceh 2004	NTNU, Norway	2005
2.	Bhakti Sosial Bela Negara	Pulau Pramuka Kab. Kepulauan Seribu	2008

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Penelitian Eksakta.

Depok, 22 Februari 2021 Dosen Pendamping,

(Ir. Dewi Tristantini, M.T., Ph.D.)

Sever. and

Lampiran 2. Justifikasi Anggaran Kegiatan

1				
1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Sieve Mesh No. 40, 50, 60	3	300.000	900.000	
Beaker Glass 500 ml	9	30.000	270.000	
Beaker Glass 1 L	2	60.000	120.000	
Beaker Glass 3 L	1	250.000	250.000	
Spatula Silikon	1	50.000	50.000	
Cetakan Sabun Batang	5	59.000	295.000	
	•	SUBTOTAL (Rp)	1.885.000	
2. Barang Habis	Volume	Harga Satuan (Rp)	Nilai (Rp)	
H ₂ O ₂ 10%	8	35.000	280.000	
Minyak Kelapa Sawit	3	30.000	90.000	
Minyak Kelapa	3	50.000	150.000	
Gula Pasir	2	13.000	26.000	
Minyak esensial	2	89.000	178.000	
Etanol	3	100.000	300.000	
Asam Stearat	1	31.000	31.000	
Aquades	1	95.000	95.000	
Gliserin	2	28.000	56.000	
		SUBTOTAL (Rp)	1.206.000	
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Perjalanan ke Lab ILRC UI	17	35.000	595.000	
Perjalanan ke Tempat Uji	3	70.000	210.000	
Transparansi	3	70.000	210.000	
		SUBTOTAL (Rp)	1.260.000	
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)	
ATK	1	350.000	350.000	
Fotokopi	4	20.000	80.000	
Pencetakan laporan	4	65.000	260.000	
Publikasi	3	450.000	1.350.000	
Uji Transparansi	9	330.000	2.970.000	
Uji Kekerasan	9	120.000 SUBTOTAL (Rp)	1.080.000	
	6.090.000			
	9.986.000			
Terbilang Sembilan Juta Sembilan Ratus Delapan Puluh Enam Ribu Rup				

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

	nran 3. Susunan	8			
No	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/ minggu)	Uraian Tugas
1.	Widyapradnya Paramita / 1706020755	Teknik Kimia	-	25	 Melakukan koordinasi antar anggota Menyiapkan sampel untuk percobaan Melakukan uji saponifikasi dan tekstur organoleptis Menganalisis hasil pengujian yang telah dilakukan Membuat laporan akhir
2.	Yasmine Shafa Kamila / 1806187801	Teknik Kimia	-	20	 Melakukan uji kekerasan Menganalisis hasil pengujian yang telah dilakukan Membuat laporan akhir
3.	Priscila Celine Padak Demon / 1706042415	Teknik Lingkungan	-	20	 Melakukan uji transparansi Menganalisis hasil pengujian yang telah dilakukan Membuat laporan akhir

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Widyapradnya Paramita

NIM

: 1706020755

Program Studi: Teknik Kimia

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Pemanfaatan Limbah Tandan Kosong Kelapa Sawit dalam Sabun Batang Scrub Sebagai Alternatif Microbeads yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 22 Februari 2021 Yang menyatakan,

(Widyapradnya Paramita) 1706020755