DEX-0581

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/09168 (11) International Publication Number: A1 C12N 15/12, C07K 14/47, C12Q 1/68 (43) International Publication Date: 25 February 1999 (25.02.99) PCT/US98/17243 (21) International Application Number:

(22) International Filing Date:

19 August 1998 (19.08.98)

(30) Priority Data:

60/056,130

19 August 1997 (19.08.97)

US

(71) Applicant: ZYMOGENETICS, INC. [US/US]; 1201 Eastlake Avenue East, Seattle, WA 98102 (US).

(72) Inventors: YEE, David, P.; 822 22nd Avenue, Seattle, WA 98122 (US). DEISHER, Theresa, A.; 6317 N.E. 61st Street, Seattle, WA 98115 (US).

(74) Agent: LINGENFELTER, Susan, E.; ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, WA 98102 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TESTIS-SPECIFIC TRANSCRIPTION FACTOR ZGCL-1

(57) Abstract

Novel ZGCL-1 transcription factor polypeptides, polynucleotides encoding the polypeptides, and related compositions and methods are disclosed. The polypeptides, agonists and antagonists may be used within methods for promoting the proliferation and/or differentiation of testis cells, and may also be used in the development of male-specific contraceptives and infertility treatments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Веліп	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KĢ	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
ĊZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

5 DESCRIPTION

TESTIS-SPECIFIC TRANSCRIPTION FACTOR ZGCL-1

BACKGROUND OF THE INVENTION

Proliferation and differentiation of cells of 10 multicellular organisms are controlled by hormones and polypeptide growth factors. These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair and 15 regenerate damaged tissue. Examples of hormones and growth factors include the steroid hormones (e.g. testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor growth factor (EGF), granulocyte-(PDGF), epidermal factor (GM-CSF), 20 macrophage colony stimulating erythropoietin (EPO) and calcitonin.

Hormones and growth factors influence cellular metabolism by binding to receptors. Receptors may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of receptors are soluble molecules, such as the transcription factors.

Transcription factors regulate the transcription genes interacting with the cell by in 30 transcription factors and RNA polymerase. Transcription factors are characterized by their DNA-binding domain and their transcriptional activation domain. Within the DNA different motifs binding domain, several have been which act to mediate DNA binding identified These include cysteine-histidine 35 transcription factors. zinc finger and multi-cysteine zinc finger motifs, homeobox motifs, winged helix motifs, leucine-zipper motifs, and helix-loop-helix motifs. The activation domain can contain a large number of acetic amino acids which form an

2

amphipathic α -helix with its negative charges displayed on one surface. Others have glutamine or proline-rich regions.

Following DNA binding, the transcription factor interacts with other factors or the RNA polymerase to stimulate transcription. Transcription can be blocked by molecules which are able to bind to the DNA binding domain but do not interact with the transcription domain. These repressor molecules prevent positively acting DNA molecules from binding.

The location of the transcription factors bound by a particular gene control the gene's expression pattern. gene binds a transcription factor which ubiquitously expressed, then the gene expression will be as If the gene binds a transcription factor which is 15 well. synthesized or active only in a limited number of cells, gene expression will be more cell specific. Regulation of gene expression is for the most part controlled by transcription factors. This regulation provides that the 20 correct gene is activated in the appropriate cell at the for development. Identification time precise transcription factors and the genes they regulate greatly enhances our understanding of cellular development. result intervention methods can be developed to alleviate 25 problems associated with transcription. The present invention addresses this need by providing a transcription factor and related compositions and methods.

3

SUMMARY OF THE INVENTION

20

30

The present invention provides a novel testis specific transcription factor and related compositions and methods.

aspect is provided an isolated Within one polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence 10 comprises a POZ domain corresponding to amino acid residues NO:2. Within one embodiment the 61-178 of SEQ ID polypeptide is at least 90% identical in amino acid 1-479 of SEQ ID NO:2, wherein the sequence to residues sequence comprises a POZ domain corresponding to amino acid 15 residues 61-178 of SEQ ID NO:2. Within another embodiment the polypeptide is covalently linked amino terminally or carboxy terminally to a moiety selected from the group consisting of affinity tags, toxins, radionucleotides, enzymes and fluorophores.

Within another aspect is provided an isolated polynucleotide encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding 25 to amino acid residues 61-178 of SEQ ID NO:2. embodiment the polypeptide is at least 90% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.

Within another aspect the polynucleotide comprising the sequence of nucleotide 1 to nucleotide 1437 of SEQ ID NO:4.

Within yet another aspect is provided an oligonucleotide probe or primer comprising at least 14 35 contiguous nucleotides of a polynucleotide of SEQ ID NO:4 or a sequence complementary to SEQ ID NO:4.

4

Also provided by the invention is an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment encoding polypeptide comprising a sequence of amino acid residues 5 that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2; and a transcription terminator. Within one embodiment the DNA segment encodes a polypeptide 10 that is at least 90% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2. Within another embodiment the DNA segment encodes a polypeptide covalently linked amino 15 terminally or carboxy terminally to an affinity tag. Within still another embodiment the DNA segment further encodes a secretory signal sequence operably linked to the polypeptide.

Within another aspect is provided a cultured cell into which has been introduced an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2; and a transcription terminator; wherein the cell expresses the polypeptide encoded by the DNA segment.

Within another aspect is method of producing a polypeptide comprising: culturing a cell into which has been introduced an expression vector comprising the following operably linked elements: a transcription promoter; a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain

. 30

5

corresponding to amino acid residues 61-178 of SEQ ID NO:2; and a transcription terminator; whereby the cell expresses the polypeptide encoded by the DNA segment; and recovering the expressed polypeptide.

5

15

30

35

Another aspect provided herein is a pharmaceutical composition comprising a polypeptide, the polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the 10 comprises a POZ domain corresponding to amino acid residues of 61-178 NO:2; SEO ID in combination with pharmaceutically acceptable vehicle.

Within another aspect is an antibody specifically binds to an epitope of a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.

20 provided Also is а binding protein that specifically binds to an epitope of a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein the sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ 25 ID NO:2.

Also provided is a method for detecting a genetic abnormality in a patient, comprising: obtaining a genetic sample from a patient; incubating the genetic sample with a polynucleotide comprising at least 14 contiquous nucleotides of SEQ ID NO:1 or the complement of SEQ ID NO:1, under conditions wherein the polynucleotide will hybridize to complementary polynucleotide sequence, produce a first reaction product; comparing the first reaction product to a control reaction product, wherein a difference between the first reaction product and the

WO 99/09168

6

PCT/US98/17243

control reaction product is indicative of a genetic abnormality in the patient.

These and other aspects of the invention will become evident upon reference to the following detailed description and the attached drawing.

BRIEF DESCRIPTION OF THE DRAWING

The Figure shows a comparison of the deduced amino acid sequence of ZGCL-1 (SEQ ID NO:2) with the 10 deduced amino acid sequence of the Drosophila gene germ cell-less (dGCL-1) (SEQ ID NO:3).

DETAILED DESCRIPTION OF THE INVENTION

Prior to setting forth the invention, it may be 15 helpful to an understanding thereof to set forth definitions of certain terms to be used hereinafter:

Affinity tag: is used herein to denote polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the 20 second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A 25 (Nilsson et al., EMBO J. 4:1075, 1985; Nilsson et al., Methods Enzymol. 198:3, 1991), glutathione S transferase (Smith and Johnson, Gene 67:31, 1988), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952-4, substance P, Flag[™] peptide (Hopp 30 <u>Biotechnology</u> <u>6</u>:1204-10, 1988), streptavidin binding peptide, or other antigenic epitope or binding domain. See, in general, Ford et al., Protein Expression and Purification 2: 95-107, 1991. DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia 35 Biotech, Piscataway, NJ).

Allelic variant: Any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and

7

may result in phenotypic polymorphism within populations. Gene mutations can be silent (i.e., no change in the encoded polypeptide), or may encode polypeptides having altered amino acid sequence. The term "allelic variant" is 5 also used herein to denote a protein encoded by an allelic variant of a gene. Also included are the same protein from the same species which differs from a reference amino acid sequence due to allelic variation. Allelic variation refers to naturally occurring differences among individuals in genes encoding a given protein.

10

Amino-terminal and carboxyl-terminal: herein to denote positions within polypeptides Where the context allows, these terms are used proteins. with reference to a particular sequence or portion of a 15 polypeptide or protein to denote proximity or relative For example, a certain sequence positioned position. carboxyl-terminal to a reference sequence within a protein located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete protein.

Complement/anti-complement pair: Denotes identical moieties that form a non-covalently associated, stable pair under appropriate conditions. For instance, biotin and avidin (or streptavidin) are prototypical complement/anti-complement pair. 25 members of a Other complement/anti-complement pairs exemplary include receptor/ligand pairs, antibody/antigen (or hapten epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation of the 30 complement/anti-complement pair desirable, is the complement/anti-complement pair preferably has a binding affinity of $<10^{-9}$ M.

Complements of polynucleotide molecules: Denotes polynucleotide molecules having a complementary base sequence and reverse orientation as compared to a reference For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.

Contig: Denotes a polynucleotide, a segment of which is equivalent in nucleotide sequence to a segment of another polynucleotide sequence. A "contig assembly" denotes a collection of EST contigs that define a larger polynucleotide segment containing an open reading frame encoding a full-length or partial polypeptide.

Degenerate: As applied to a nucleotide sequence such as a probe or primer, denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to a reference polynucleotide molecule that encodes a polypeptide). Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).

Expression vector: A DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments may include promoter and terminator sequences, and optionally one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

<u>Isolated</u>: when applied to a polynucleotide, 25 denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for within genetically engineered protein production Such isolated molecules are those that are systems. 30 separated from their natural environment and include cDNA Isolated DNA molecules of the present and genomic clones. invention are free of other genes with which they are ordinarily associated, but may include naturally occurring and 3' untranslated regions such as promoters and 35 terminators. The identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316:774-78, 1985).

9

Isolated polypeptide or protein: is a polypeptide or protein that is found in a condition other than its native environment, such as apart from blood and animal tissue. In a preferred form, the isolated polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin. It is preferred to provide the polypeptides in a highly purified form, i.e. greater than 95% pure, more preferably greater than 99% pure. When used in this context, the term "isolated" does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.

Operably linked: As applied to nucleotide segments, the term "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, e.g., transcription initiates in the promoter and proceeds through the coding segment to the terminator.

Ortholog: denotes a polypeptide or protein 20 obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.

Paralogs: are distinct but structurally related proteins made by an organism. Paralogs are believed to arise through gene duplication. For example, α -globin, β -globin, and myoglobin are paralogs of each other.

Polynucleotide: is a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules. Sizes of polynucleotides are expressed as base pairs (abbreviated "bp"), nucleotides ("nt"), or kilobases ("kb"). Where the context allows, the latter two terms may describe polynucleotides that are single-stranded or double-stranded. When the term is

10

applied to double-stranded molecules it is used to denote overall length and will be understood to be equivalent to the term "base pairs". It will be recognized by those skilled in the art that the two strands of a double-stranded polynucleotide may differ slightly in length and that the ends thereof may be staggered as a result of enzymatic cleavage; thus all nucleotides within a double-stranded polynucleotide molecule may not be paired. Such unpaired ends will in general not exceed 20 nt in length.

Polypeptide: is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as "peptides".

<u>Promoter</u>: Denotes a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

15

Protein: is a macromolecule comprising one or 20 more polypeptide chains. A protein may also comprise nonpeptidic components, such as carbohydrate Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins 25 are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.

Receptor: A cell-associated protein, or a polypeptide subunit of such protein, that binds to a 30 bioactive molecule (the "ligand") and mediates the effect of the ligand on the cell. Binding of ligand to receptor results in a change in the receptor (and, in some cases, receptor multimerization, i.e., association of identical or different receptor subunits) that causes interactions 35 between the effector domain(s) of the receptor and other molecule(s) in the cell. These interactions in turn lead to alterations in the metabolism of the cell. Metabolic

11

events that are linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, cell proliferation, increases in cyclic AMP production, mobilization of cellular calcium,

5 mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids. In general, receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g.,

10 PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, erythropoietin receptor and IL-6 receptor).

Secretory signal sequence: A DNA sequence that encodes a polypeptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

20 Soluble receptor or liquid: A receptor or a ligand polypeptide that is not bound to a cell membrane. Soluble receptors are most commonly ligand-binding receptor polypeptides that lack transmembrane and cytoplasmic Soluble ligands are most commonly receptordomains. 25 binding polypeptides that lack transmembrane cytoplasmic domains. Soluble receptors or ligands can comprise additional amino acid residues, such as affinity tags that provide for purification of the polypeptide or provide sites for attachment of the polypeptide to a substrate. Many cell-surface receptors and ligands have naturally occurring, soluble counterparts that are produced by proteolysis or translated from alternatively spliced Receptor and ligand polypeptides are said to be substantially free of transmembrane and intracellular 35 polypeptide segments when they lack sufficient portions of these segments to provide membrane anchoring or signal transduction, respectively.

WO 99/09168

. 12

PCT/US98/17243

Molecular weights and lengths of polymers determined by imprecise analytical methods (e.g., gel electrophoresis) will be understood to be approximate values. When such a value is expressed as "about" X or "approximately" X, the stated value of X will be understood to be accurate to ±10%.

All references cited herein are incorporated by reference in their entirety.

The present invention is based in part upon the discovery of a novel DNA sequence (SEQ ID NO:1) and corresponding polypeptide sequence (SEQ ID NO:2) which have homology to the Drosophila gene "germ cell-less" (Jongens et al., Cell 70:569-584, 1992). Analysis of the tissue distribution of the mRNA corresponding to this novel DNA showed selective expression in the testes, suggesting that the ligand mediates processes of progenitor cell growth and development, such as spermatogenesis, that are unique to the testes. The ligand has been designated ZGCL-1.

Novel ZGCL-1 polynucleotides and polypeptides of 20 the present invention were initially identified by querying an expressed sequence tag (EST) database. Using this information, a novel 1469 bp human cDNA fragment (SEQ ID NO:1) was obtained. Sequence analysis of a deduced amino acid sequence of ZGCL-1, as represented by SEQ ID NO:2, indicates the presence of a potential N-glycosylation site at amino acid residues 256-259 of SEQ ID NO: 2, as predicted by the PROSITE motif "ASN-GLYCOSYLATION". 1 also contains 4 potential cAMP- and cGMP-dependent protein kinase phosphorylation sites at amino acid residues 30 2-5, 16-19, 17-20, and 396-399 of SEQ ID NO:2, as predicted by the PROSITE motif "CAMP-PHOSPHO-SITE". ZGCL-1 contains 5 potential protein kinase C phosphorylation sites as predicted by the PROSITE motif "PKC-PHOSPHO-SITE" at amino acid residues 9-11, 13-15, 48-50, 57-59, and 103-105 of SEQ 35 ID NO:2. The proteins of the present invention comprise a sequence of amino acid residues that is at identical to SEQ ID NO:2. Within certain embodiments of

the invention, the sequence is at least 90% or 95% identical to SEQ ID NO:2.

13

ZGCL-1 also contains a POZ domain, also referred to as the ZIN, BTB, or BR-C/TTK domain (Chen et al., Mol. 5 Cell. Biol. 15:3424-39, 1995; Dong et al., Proc. Natl. Acad. Sci. USA 93:3624-29, 1996; Albagli et al., Biochem. Biophys. Res. Comm. 220:911-15, 1996; Chang et al., Proc. Natl. Acad. Sci. USA 93:6947-52, 1996 and Kaplan and Calame, Nucleic Acid Research 25:1108-16, 1997). 10 domain is located approximately between amino acid residues 61-178 of SEQ ID NO:2. The POZ domain is found in a number of Zinc finger containing proteins, in Drosophila, POZ domain are found in Tramtrack (Harrison and Travers, EMBO J. 9:207-16, 1990), Broad-complex (DiBello et al., Genetics 15 <u>129</u>:385-97, 1991), and *Kelch* (Xue and Cooley, <u>Cell</u> <u>72</u>:681-The first two genes are developmental 1993). regulators, while the last gene codes for an actin binding POZ is also found in POX virus genes such as Myxoma virus MAP1 (Upton et al., <u>Virology</u> 179:618-31, 1990) 20 and vaccinia virus protein a55 (Genbank accession # P24768). POZ is also found in a few human genes: KUP (Chardin et al., Nucleic Acid Research 19:1431-36, 1991), ZID (Bardwell and Treisman, Genes Dev. 8:1664-77, 1994), and PLZF (Chen et al., EMBO J. 12:1161-67, 1993). mediate thought to protein-protein 25 domains are Most of the characterized POZ domains form interactions. homomeric interactions, though there are a few examples of POZ domains that form heteromeric interactions (Ttk and The POZ domain is associated with transcriptional GAGA). 30 regulators and proteins that contain DNA binding Zinc fingers, however there are some examples of non-zinc-finger POZ domain proteins, such as Kelch. Like Kelch, ZGCL-1 does not contain any zinc-finger motifs and interestingly Kelch is involved in oogenesis. Those skilled in the art 35 will recognize that these domain boundaries are approximate, and are based on alignments with known proteins and predictions of protein folding.

14

A comparison of the ZGCL-1 deduced amino acid sequence (as represented in SEQ ID NO:2) with the deduced amino acid sequence of Drosophila germ cell-less gene (SEQ ID NO:13) is shown in the Figure. ZGCL-1 shares 35% amino acid identity with the Drosophila "germ cell-less" gene (Jongens et al., Cell 70:569-84, 1992). The DNA sequence as represented by SEQ ID NO:1 is considered to be the human homolog of the Drosophila "germ cell-less" gene.

Northern blot analysis of various human tissues

10 was performed using a 200 bp DNA probe (SEQ ID NO:3). A

3.2 kb transcript was detected corresponding to ZGCL-1. A

high level of transcription was detected in testis and a
lower level of transcription was detected in thyroid,

spinal cord, stomach, lymph node and trachea. A second

15 transcript of 4.5 kb, corresponding to a low level of

transcription in placenta and pancreas, was also detected.

Radiation hybrid mapping is a somatic cell developed genetic technique for constructing resolution, contiguous maps of mammalian chromosomes (Cox 20 et al., <u>Science</u> <u>250</u>:245-250, 1990). Partial or full knowledge of a gene's sequence allows the designing of PCR primers suitable for use with chromosomal radiation hybrid mapping panels. Commercially available radiation hybrid mapping panels which cover the entire human genome, such as 25 the Stanford G3 RH Panel and the GeneBridge 4 RH Panel (Research Genetics, Inc., Huntsville, AL), are available. enable panels rapid, PCR based, localizations and ordering of genes, sequence-tagged sites (STSs), and other nonpolymorphic- and polymorphic markers 30 within a region of interest. This includes establishing directly proportional physical distances between newly discovered genes of interest and previously mapped markers. The precise knowledge of a gene's position can be useful in a number of ways including: 1) determining if a sequence is part of an existing contig and obtaining additional surrounding genetic sequences in various forms such as YAC-, BAC- or cDNA clones, 2) providing a possible

15

candidate gene for an inheritable disease which shows linkage to the same chromosomal region, and 3) for cross-referencing model organisms such as mouse which may be beneficial in helping to determine what function a particular gene might have.

Chromosomal localization of ZGCL-1 to 5q35.3 was determined using radiation hybrid chimeras. Human 5q34-q35 genes have been primarily localized to mouse chromosome 11, in the A5-B1 and A1-B1 region. The mouse "germ cell 10 deficient" gene, GCD, locus maps to chromosome 11 in the A2-A3 region (Duncan et al., Mamm. Genome 6:697-9, 1995). Germ cell deficient leads to improper migration and/or proliferation of primordial germ cells during embryonic development resulting in infertility in the adult mouse. 15 Mice having this mutation have been hypothesized to be animal models for the human reproductive disorders, premature ovarian failure and Sertoli cell only syndrome.

Polynucleotide sequences encoding highly conserved amino acids or amino acid domains of ZGCL-1 can be used as a tool to identify new family members. For instance, reverse transcription-polymerase chain reaction (RT-PCR) can be used to amplify sequences encoding domains or conserved regions, described above and shown in the Figure, from RNA obtained from a variety of tissue sources or cell lines. In particular, highly degenerate primers designed from the ZGCL-1 sequences are useful for this purpose.

The invention present also provides polynucleotide molecules, including DNA and RNA molecules, ZGCL-1 polypeptides disclosed herein. 30 that encode the Those skilled in the art will readily recognize that, in view of the degeneracy of the genetic code, considerable sequence variation is possible among these polynucleotide molecules. SEQ ID NO:4 is a degenerate DNA sequence that 35 encompasses all DNAs that encode the ZGCL-1 polypeptide of SEQ ID NO:2. Those skilled in the art will recognize that the degenerate sequence of SEQ ID NO:4 also provides all

16

RNA sequences encoding SEQ ID NO:2 by substituting U (uracil) for T (thymine). Thus, ZGCL-1 polypeptide-encoding polynucleotides comprising nucleotide 1 to nucleotide 1437 of SEQ ID NO:4 and their RNA equivalents are contemplated by the present invention. Table 1 sets forth the one-letter codes used within SEQ ID NO:4 to denote degenerate nucleotide positions. "Resolutions" are the nucleotides denoted by a code letter. "Complement" indicates the code for the complementary nucleotide(s).

10 For example, the code Y denotes either C (cysteine) or T, and its complement R denotes A (adenosine) or G (guanine), A being complementary to T, and G being complementary to C.

17 <u>TABLE 1</u>

Nucleotide	Resolution	Complement	Resolution
Α	Α	Т	Т
С	С	G	G
G	G	С	С
T	Т	Α	Α
R	A G	Υ	C T
Y	C T	R	A G
М	AIC	K	G T
K	GJT	М	AJC
S	C G	S	C G
W	AJT	W	A T
Н	A C T	D	A G T
В	C G T	V	A C G
V	A C G	В	C G T
D	A G T	Н	AJC T
N	A C G T	N	A C G T

The degenerate codons used in SEQ ID NO:4,
5 encompassing all possible codons for a given amino acid,
are set forth in Table 2.

18

TABLE 2

	0ne		
Amino	Letter	Codons	Degenerate
Acid	Code		Codon
Cys	С	TGC TGT	TGY
Ser	S	AGC AGT TCA TCC TCG TCT	WSN
Thr	T	ACA ACC ACG ACT	ACN
Pro	Р	CCA CCC CCG CCT	CCN
Ala	Α	GCA GCC GCG GCT	GCN
Gly	G	GGA GGC GGG GGT	GGN
Asn	N	AAC AAT	AAY
Asp	D	GAC GAT	GAY
Glu	E	GAA GAG	GAR
Gln	Q	CAA CAG	CAR
His	Н	CAC CAT	CAY
Arg	R	AGA AGG CGA CGC CGG CGT	MGN
Lys	K	AAA AAG	AAR
Met	М	ATG	ATG
Ile	I	ATA ATC ATT	ATH
Leu	L	CTA CTC CTG CTT TTA TTG	YTN
Val	٧	GTA GTC GTG GTT	GTN
Phe	F	TTC TTT	TTY
Tyr	Υ	TAC TAT	TAY
Trp	W	TGG	TGG
Ter		TAA TAG TGA	TRR
Asn Asp	В		RAY
Glu Gln	Z		SAR
Any	Χ		NNN

WO 99/09168

One of ordinary skill in the art will appreciate some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding each amino acid. For example, the degenerate 5 codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). A similar relationship exists between codons encoding phenylalanine and leucine. Thus, some polynucleotides encompassed by the may 10 degenerate sequence encode variant amino sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO:2. Variant sequences can be readily tested for functionality as described herein.

19

PCT/US98/17243

One of ordinary skill in the art will also 15 appreciate that different species can exhibit "preferential codon usage." In general, see, Grantham, et al., Nuc. Acids Res. 8:1893-912, 1980; Haas, et al. Curr. Biol. 6:315-24, 1996; Wain-Hobson, et al., Gene 13:355-64, 1981; 20 Grosjean and Fiers, Gene 18:199-209, 1982; Holm, Nuc. Acids Res. 14:3075-87, 1986; Ikemura, J. Mol. Biol. 158:573-97, 1982. As used herein, the term "preferential codon usage" or "preferential codons" is a term of art referring to protein translation codons that are most frequently used in 25 cells of a certain species, thus favoring one or a few representatives of the possible codons encoding each amino acid (See Table 2). For example, the amino acid threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon; in other species, for example, insect cells, yeast, viruses or 30 bacteria, different Thr codons may be preferential. Preferential codons for a particular species into the polynucleotides introduced of the present invention by a variety of methods known in the art. 35 Introduction of preferential codon sequences recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within

WO 99/09168

20

PCT/US98/17243

a particular cell type or species. Therefore, the degenerate codon sequence disclosed in SEQ ID NO:4 serves as a template for optimizing expression of polynucleotides in various cell types and species commonly used in the art and disclosed herein. Sequences containing preferential codons can be tested and optimized for expression in various species, and tested for functionality as disclosed herein.

Within preferred embodiments of the invention, 10 isolated polynucleotides will hybridize to similar sized regions of SEQ ID NO:1, or to a sequence complementary thereto, under stringent conditions. In general, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a 15 defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typical stringent conditions are those in which the salt concentration is up to about 0.03 M at pH 7 and the 20 temperature is at least about 60°C. As previously noted, the isolated polynucleotides of the present invention include DNA and RNA. Methods for isolating DNA and RNA are well known in the art. It is generally preferred to isolate RNA from testis although DNA can also be prepared using RNA 25 from other tissues or isolated as genomic DNA. can be prepared using guanidine HCl extraction followed by isolation by centrifugation in a CsCl gradient (Chirqwin et al., <u>Biochemistry</u> <u>18</u>:52-94, 1979). Poly (A) + prepared from total RNA using the method of Aviv and Leder 30 (Proc. Natl. Acad. Sci. USA <u>69</u>:1408-12, Complementary DNA (cDNA) is prepared from poly(A) + RNA using known methods. Polynucleotides encoding ZGCL-1 polypeptides are then identified and isolated by, example, hybridization or PCR.

Those skilled in the art will recognize that the sequence disclosed in SEQ ID NO:1 represents a single allele of the human ZGCL-1 gene, and that allelic variation

21

and alternative splicing, "splice variants", are expected to exist. Allelic variants of the DNA sequence shown in SEQ ID NO:1, including those containing silent mutations and those in which mutations result in amino acid sequence 5 changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ ID NO:2. Splice variant is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within 10 a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. variants may encode polypeptides having altered amino acid cDNAs generated from alternatively 15 mRNAs. which retain the properties of the ZGCL-1 polypeptide are included within the scope to the present invention, as are polypeptides encoded by such cDNAs and Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic 20 libraries from different individuals or tissues according to standard procedures known in the art.

The present invention further provides counterpart ligands and polynucleotides from other species (orthologs). These orthologous polynucleotides can by 25 used, inter alia, to prepare the respective orthologous These species would include, but are not limited proteins. to, mammalian, avian, amphibian, reptile, fish, insect and other vertebrate and invertebrate species. Of particular interest are ZGCL-1 ligand polypeptides from other 30 mammalian species, including murine, porcine, bovine, canine, feline, equine, and other primate ligands. Orthologs of human ZGCL-1 can be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques. For 35 example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses the ligand. sources of mRNA can be identified by probing Northern blots

22

with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line. A ZGCL-1-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequence. A cDNA can also be cloned using the polymerase chain reaction (PCR) (Mullis, U.S. Patent No. 4,683,202), using primers designed from the sequences disclosed herein. Within an additional method, the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to ZGCL-1. Similar techniques can also be applied to the isolation of genomic clones.

The present invention also provides isolated 15 ligand polypeptides that are substantially homologous to the ligand polypeptide of SEQ ID NO:2 and its species orthologs. By "isolated" is meant a protein or polypeptide that is found in a condition other than its native environment, such as apart from blood and animal tissue. 20 In a preferred form, the isolated protein or polypeptide is substantially free of other proteins or polypeptides, particularly other proteins or polypeptides of animal It is preferred to provide the proteins or origin. polypeptides in a highly purified form, i.e. greater than 95% pure, more preferably greater than 99% pure. The term "substantially homologous" is used herein to proteins or polypeptides having 50%, preferably 60%, more preferably at least 80%, sequence identity to the sequence shown in SEQ ID NO:2 or its species orthologs. proteins or polypeptides will more preferably be at least 90% identical, and most preferably 95% or more identical to SEQ ID NO:2 or its species orthologs. Percent sequence identity is determined by conventional methods. See, for 35 example, Altschul et al., <u>Bull. Math. Bio.</u> 48: 603-16, 1986 and Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-19, 1992. Briefly, two amino acid sequences are

23

aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blosum 62" scoring matrix of Henikoff and Henikoff (<u>ibid</u>.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes). The percent identity is then calculated as:

Total number of identical matches

10

- v 100

[length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences]

```
>
     ⋈
     Н
     Ø
     Д
     בת
     Σ
     ×
     \Xi
     Ö
     回
     \circ
     Ö
     Ω
     z
Table 3
                      O H B H H B B H B B B A A
```

10

ហ

SUBSTITUTE SHEET (RULE 26)

25

Sequence identity of polynucleotide molecules is determined by similar methods using a ratio as disclosed above. .

Substantially homologous proteins polypeptides are characterized as having one or more amino 5 acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative acid substitutions (see Table 4) and substitutions that do not significantly affect the folding or activity of the protein or polypeptide; small deletions, 10 typically of one to about 30 amino acids; and small aminoor carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facilitates purification, an affinity tag. Polypeptides comprising 15 affinity tags can further comprise a proteolytic cleavage site between the ZGCL-1 polypeptide and the affinity tag. Preferred such sites include thrombin cleavage sites and factor Xa cleavage sites.

26

Table 4

Conservative amino acid substitutions

Basic: arginine 5 lysine histidine glutamic acid Acidic: aspartic acid glutamine Polar: 10 asparagine Hydrophobic: leucine isoleucine valine 15 Aromatic: phenylalanine tryptophan tyrosine Small: glycine alanine serine 20 threonine methionine

The proteins of the present invention can also 25 comprise non-naturally occurring amino acid residues. naturally occurring amino acids include, without limitation, trans-3-methylproline, 2,4-methanoproline, cis-4-hydroxyproline, trans-4-hydroxyproline, N-methyl-glycine, allo-threonine, methylthreonine, hydroxyethyl-cysteine, 30 hydroxyethylhomocysteine, nitroglutamine, homo-glutamine, pipecolic acid, thiazolidine carboxylic 3 dehydroproline, and 4-methylproline, 3,3-dimethylproline, tert-leucine, norvaline, 2-azaphenylalanine, 3-4-azaphenylalanine, azaphenylalanine, and 4-fluoro-Several methods are known in the art for 35 phenylalanine. incorporating non-naturally occurring amino acid residues into proteins. For example, an in vitro system can be

WO 99/09168

30

27

PCT/US98/17243

employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids 5 containing nonsense mutations is carried out in a cell-free system comprising an E. coli S30 extract and commercially available enzymes and other reagents. Proteins purified by chromatography. See, for example, Robertson et al., J. Am. Chem. Soc. 113:2722, 1991; Ellman et al., 10 Methods Enzymol. 202:301, 1991; Chung et al., Science 259:806-9, 1993; and Chung et al., Proc. Natl. Acad. Sci. USA 90:10145-9, 1993). In a second method, translation is carried out in Xenopus oocytes by microinjection of mutated and chemically aminoacylated mRNA suppressor 15 (Turcatti et al., <u>J. Biol. Chem.</u> <u>271</u>:19991-8, Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired amino non-naturally occurring acid(s) (e.g., 2-20 azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, Koide et al., Biochem. 33:7470-Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro 25 chemical modification. Chemical modification can combined with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. <u>2</u>:395-403, 1993).

A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for ZGCL-1 amino acid residues.

Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science

WO 99/09168

28

PCT/US98/17243

244: 1081-5, 1989; Bass et al., Proc. Natl. Acad. Sci. USA 88:4498-502, 1991). In the latter technique, alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for 5 biological activity as disclosed below to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., J. Biol. Chem. 271:4699-Sites of ligand-receptor interaction can also be determined by physical analysis of structure, 10 determined by such techniques as nuclear magnetic crystallography, electron resonance, diffraction photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., Science 255:306-12, 1992; Smith et al., <u>J. Mol.</u> 15 <u>Biol</u>. <u>224</u>:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992. The identities of essential amino acids can also be inferred from analysis of homologies with related "germ cell-less" proteins.

Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, 20 such as those disclosed by Reidhaar-Olson and (Science 241:53-7, 1988) or Bowie and Sauer (Proc. Natl. Acad. Sci. USA 86:2152-6, 1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional and then polypeptide, sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display (e.g., Lowman et al., Biochem. 30:10832-7, 1991; Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis (Derbyshire et al., Gene 46:145, 1986; Ner et al., <u>DNA</u> 7:127, 1988).

Variants of the disclosed ZGCL-1 DNA and 35 polypeptide sequences can be generated through DNA shuffling as disclosed by Stemmer, Nature 370:389-91, 1994, Stemmer, Proc. Natl. Acad. Sci. USA 91:10747-51, 1994 and

29

WIPO Publication WO 97/20078. Briefly, variant DNAs are generated by in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations.

5 This technique can be modified by using a family of parent DNAs, such as allelic variants or DNAs from different species, to introduce additional variability into the process. Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.

Mutagenesis methods as disclosed above can be combined with high-throughput screening methods to detect activity of cloned, mutagenized ligands. Mutagenized DNA molecules that encode active ligands or portions thereof (e.g., receptor-binding fragments) can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.

Using the methods discussed above, one of ordinary skill in the art can identify and/or prepare a variety of polypeptides that are substantially homologous to SEQ ID NO:2 or allelic variants thereof and retain the transcription mediating properties of the wild-type protein. Such polypeptides may include affinity tags and the like. Such polypeptides may also include additional polypeptide segments as generally disclosed above.

The ZGCL-1 polypeptides of the present invention, including full-length polypeptides, fragments (e.g., DNA-binding fragments), and fusion polypeptides, can be produced in genetically engineered host cells according to conventional techniques. Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria,

30

fungal cells, and cultured higher eukaryotic cells.
Eukaryotic cells, particularly cultured cells of
multicellular organisms, are preferred. Techniques for
manipulating cloned DNA molecules and introducing exogenous
DNA into a variety of host cells are disclosed by Sambrook
et al., Molecular Cloning: A Laboratory Manual, Second
Edition, Cold Spring Harbor, NY, 1989; and Ausubel et al.,
eds., Current Protocols in Molecular Biology, John Wiley
and Sons, Inc., NY, 1987.

In general, a DNA sequence encoding a ZGCL-1 10 polypeptide is operably linked to other genetic elements required for its expression, generally including a transcription promoter and terminator, within an expression vector. The vector will also commonly contain one or more 15 selectable markers and one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, 20 vectors and other elements is a matter of routine design within the level of ordinary skill in the art. elements are described in the literature and are available through commercial suppliers.

25 To direct a ZGCL-1 polypeptide into the secretory pathway of a host cell, a secretory signal sequence (also known as a signal sequence, leader sequence, sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the ZGCL-1 polypeptide, or may be derived from another secreted 30 protein (e.g., t-PA) or synthesized de novo. The secretory signal sequence is joined to the ZGCL-1 DNA sequence in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the 35 polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the DNA sequence

WO 99/09168

35

31

PCT/US98/17243

of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).

Cultured mammalian cells are suitable hosts within the present invention. Methods for introducing 5 exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection (Wigler et al., 14:725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7:603, 1981; Graham and Van der Eb, Virology 52:456, 1973), electroporation (Neumann et al., EMBO J. 1:841-45, 1982), 10 DEAE-dextran mediated transfection (Ausubel et al., ibid), and liposome-mediated transfection (Hawley-Nelson et al., Focus 15:73, 1993; Ciccarone et al., Focus 15:80, 1993). The production of recombinant polypeptides in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent No. 4,713,339; Hagen et al., U.S. Patent 15 No. 4,784,950; Palmiter et al., U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134. Suitable cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), 293 (ATCC No. CRL 1573; Graham et 20 al., <u>J. Gen. Virol.</u> <u>36</u>:59-72, 1977) and Chinese hamster CHO-K1; ATCC No. CCL 61) ovary (e.g., cell Additional suitable cell lines are known in the art and available from public depositories such as the American 25 Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other suitable promoters include from metallothionein (U.S. genes Patent 4,579,821 and 4,601,978) and the adenovirus major 30 promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants". Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as

32

"stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems may 5 also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for 10 cells that produce high levels of the products of the A preferred amplifiable selectable introduced genes. marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes hygromycin resistance, multi-drug resistance, puromycin 15 acetyltransferase) can also be used. Alternative markers introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CD8, Class I MHC, placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by 20 such means as FACS sorting or magnetic bead separation technology.

Other higher eukaryotic cells can also be used as hosts, including plant cells, insect cells and avian cells. The use of Agrobacterium rhizogenes as a vector for 25 expressing genes in plant cells has been reviewed by Sinkar J. Biosci. (Bangalore) 11:47-58, al., Transformation of insect cells and production of foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222 and WIPO publication WO 94/06463. 30 Insect cells can be infected with recombinant baculovirus, commonly derived from Autographa californica polyhedrosis virus (AcNPV). See, King and Possee, Baculovirus Expression System: A Laboratory Guide, London, Chapman & Hall; O'Reilly et al., Baculovirus Expression 35 Vectors: A Laboratory Manual, New York, Oxford University Press., 1994; and, Richardson, C. D., Ed., Baculovirus

Expression Protocols. Methods in Molecular Biology, Totowa, NJ, Humana Press, 1995. A second method of making recombinant ZGCL-1 baculovirus utilizes a transposon-based system described by Luckow (Luckow et al., J Virol 67:4566-This system, which utilizes transfer vectors, 5 79, 1993). is sold in the $Bac-to-Bac^{TM}$ kit (Life Technologies, Rockville, MD). This system utilizes a transfer vector, pFastBacl™ (Life Technologies) containing a Tn7 transposon to move the DNA encoding the ZGCL-1 polypeptide into a 10 baculovirus genome maintained in E. coli as a large plasmid called a "bacmid." See, Hill-Perkins and Possee, J. Gen. Virol. 71:971-6, 1990; Bonning et al., J. Gen. Virol. 75:1551-6, 1994; and, Chazenbalk and Rapoport., J. Biol. Chem. 270:1543-9, 1995. In addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag 15 at the C- or N-terminus of the expressed ZGCL-1 polypeptide, for example, Glu-Glu а epitope (Grussenmeyer et al., Proc. Natl. Acad. Sci. 82:7952-4, Using a technique known in the art, a transfer 1985). 20 vector containing ZGCL-1 is transformed into E. coli, and screened for bacmids which contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is isolated, using common techniques, and used to transfect Spodoptera 25 frugiperda cells, e.g. Sf9 cells. Recombinant virus that expresses ZGCL-1 is subsequently produced. Recombinant viral stocks are made by methods commonly used the art.

The recombinant virus is used to infect host cells, typically a cell line derived from the fall armyworm, Spodoptera frugiperda. See, in general, Glick and Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington, D.C., 1994. Another suitable cell line is the High FiveOTM cell line (Invitrogen) derived from Trichoplusia ni (U.S.

34

Patent #5,300,435). Commercially available serum-free media are used to grow and maintain the cells. Suitable media are Sf900 II™ (Life Technologies) or ESF 921™ (Expression Systems) for the Sf9 cells; and Ex-cellO405™ 5 (JRH Biosciences, Lenexa, KS) or Express FiveO™ (Life Technologies) for the T. ni cells. The cells are grown up from an inoculation density of approximately $2-5 \times 10^5$ cells to a density of $1-2 \times 10^6$ cells at which time a recombinant viral stock is added at a multiplicity of 10 infection (MOI) of 0.1 to 10, more typically near 3. Procedures used are generally described in available laboratory manuals (King and Possee, ibid.; O'Reilly et al., ibid.; Richardson, ibid.). Subsequent purification of the ZGCL-1 polypeptide from the supernatant can be achieved using methods described herein. 15

Fungal cells, including yeast cells, can also be used within the present invention. Yeast species of particular interest in this regard include Saccharomyces Pichia pastoris, and cerevisiae, Pichia methanolica. 20 Methods for transforming S. cerevisiae cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311; Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S. Patent 25 No. 5,037,743; and Murray et al., U.S. Patent 4,845,075. Transformed cells are selected by phenotype selectable marker, commonly determined by the resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector 30 system for use in Saccharomyces cerevisiae is the POT1 vector system disclosed by Kawasaki et al. (U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. Suitable promoters and terminators for use in yeast include those from 35 glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent

35

No. 4,599,311; Kingsman et al., U.S. Patent No. 4,615,974; U.S. Patent 4,977,092) and Bitter. No. and dehydrogenase genes. See also U.S. Patents Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454. Transformation systems 5 for yeasts, including Hansenula other polymorpha, Schizosaccharomyces pombe, Kluyveromyces Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, methanolica, Pichia quillermondii and Candida maltosa are known in the art. See, for example, Gleeson et 10 al., J. Gen. Microbiol. 132:3459-65, 1986 and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent Methods for transforming Acremonium 4,935,349. chrysogenum are disclosed by Sumino et al., U.S. Patent No. Methods for transforming Neurospora are 15 5,162,228. disclosed by Lambowitz, U.S. Patent No. 4,486,533.

The use of Pichia methanolica as host for the production of recombinant proteins is disclosed in WIPO Publications WO 97/17450, WO 97/17451, WO 98/02536, and WO DNA molecules for use in transforming P. 20 98/02565. methanolica will commonly be prepared as double-stranded, circular plasmids, which are preferably linearized prior to transformation. For polypeptide production methanolica, it is preferred that the promoter 25 terminator in the plasmid be that of a P. methanolica gene, such as a P. methanolica alcohol utilization gene (AUG1 or Other useful promoters include those of AUG2). dihydroxyacetone synthase (DHAS), formate dehydrogenase (FMD), and catalase (CAT) genes. To facilitate integration 30 the DNA into the host chromosome, it is preferred to have the entire expression segment of the plasmid flanked at both ends by host DNA sequences. A preferred selectable marker for use in Pichia methanolica is a P. methanolica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole 35 carboxylase (AIRC; EC 4.1.1.21), which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the

36

use of methanol, it is preferred to use host cells in which both methanol utilization genes (AUG1 and AUG2) deleted. For production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRB1) are Electroporation is used to facilitate the 5 preferred. introduction of a plasmid containing DNA polypeptide of interest into P. methanolica cells. Р. methanolica preferred to transform cells by electroporation using an exponentially decaying, pulsed 10 electric field having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (τ) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.

Prokaryotic host cells, including strains of the 15 bacteria Escherichia coli, Bacillus and other genera are also useful host cells within the present invention. Techniques for transforming these hosts and expressing foreign DNA sequences cloned therein are well known in the art (see, e.g., Sambrook et al., ibid.). When expressing a 20 ZGCL-1 polypeptide in bacteria such as E. coli, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed, and the granules are recovered 25 and denatured using, for example, guanidine isothiocyanate The denatured polypeptide can then be refolded and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of reduced and oxidized glutathione, followed by dialysis 30 against a buffered saline solution. In the latter case, the polypeptide can be recovered from the periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the 35 protein, thereby obviating the need for denaturation and refolding.

37

Transformed or transfected host cells cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells. A variety of 5 suitable media, including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals. Media may also contain such components as growth factors or serum, as required. The growth medium will 10 generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker carried on the expression vector or co-transfected into the host cell. P. methanolica cells are cultured in a 15 medium comprising adequate sources of carbon, nitrogen and trace nutrients at a temperature of about 25°C to 35°C. Liquid cultures are provided with sufficient aeration by conventional means, such as shaking of small flasks or sparging of fermentors. A preferred culture medium for P. 20 methanolica is YEPD (2% D-glucose, 2% Bacto™ Peptone (Difco Laboratories, Detroit, MI), 1% BactoTM yeast extract (Difco Laboratories), 0.004% adenine and 0.006% L-leucine).

Expressed recombinant ZGCL-1 polypeptides chimeric ZGCL-1 polypeptides) can be purified using 25 fractionation and/or conventional purification methods and Ammonium sulfate precipitation and acid media. chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high 30 performance liquid chromatography. Suitable chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred. Exemplary chromatographic media include those 35 derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), Octyl-Sepharose (Pharmacia) and

38

PCT/US98/17243

the like; or polyacrylic resins, such as Amberchrom CG 71 Suitable solid supports include (Toso Haas) and the like. glass beads, silica-based resins, cellulosic agarose beads, cross-linked agarose beads, polystyrene 5 beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, hydroxyl groups sulfhydryl Examples of coupling chemistries 10 carbohydrate moieties. include cyanogen bromide activation, N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other 15 solid media are well known and widely used in the art, and are available from commercial suppliers. Methods for binding receptor polypeptides to support media are well known in the art. Selection of a particular method is a matter of routine design and is determined in part by the 20 properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods, Pharmacia LKB Biotechnology, Uppsala, Sweden, 1988.

The polypeptides of the present invention can be isolated by exploitation of their physical properties. For immobilized metal ion adsorption (IMAC) 25 example, used to purify histidine-rich chromatography can be proteins and those comprising polyhistidine tags. a gel is first charged with divalent metal ions to form a chelate (Sulkowski, Trends in Biochem. 3:1-7, 30 Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating agents. Other methods of purification include purification of glycosylated 35 proteins by lectin affinity chromatography and ion exchange chromatography (Methods in Enzymol., Vol. 182, "Guide to Protein Purification", M. Deutscher, (ed.), Acad. Press,

39

PCT/US98/17243

San Diego, 1990, pp.529-39). Within additional embodiments of the invention, a fusion of the polypeptide of interest and an affinity tag (e.g., Glu-Glu affinity tag, FLAG tag, maltose-binding protein, an immunoglobulin domain) may be constructed to facilitate purification.

Protein refolding (and optionally reoxidation) procedures may be advantageously used. It is preferred to purify the protein to >80% purity, more preferably to >90% even more preferably >95%, and particularly purity, 10 preferred is a pharmaceutically pure state, that is greater with respect 99.9% pure to contaminating macromolecules, particularly other proteins and nucleic and free of infectious and pyrogenic Preferably, a purified protein is substantially free of 15 other proteins, particularly other proteins of animal origin.

ZGCL-1 polypeptides or fragments thereof may also be prepared through chemical synthesis. ZGCL-1 polypeptides may be monomers or multimers; glycosylated or 20 non-glycosylated; pegylated or non-pegylated; and may or may not include an initial methionine amino acid residue.

assay system that uses a ligand-binding receptor (or an antibody, one member of a complement/ anticomplement pair) or a binding fragment thereof, and a 25 commercially available biosensor instrument (BIAcore™, Pharmacia Biosensor, Piscataway, NJ) may be advantageously receptor, Such antibody, member employed. complement/anti-complement pair or fragment is immobilized onto the surface of a receptor chip. Use of this 30 instrument is disclosed by Karlsson, J. Immunol. Methods 145:229-40, 1991 and Cunningham and Wells, <u>J. Mol. Biol.</u> 234:554-63, 1993. A receptor, antibody, member or fragment covalently attached, using sulfhydryl amine orchemistry, to dextran fibers that are attached to gold film 35 within the flow cell. A test sample is passed through the If a ligand, epitope, or opposite member of the complement/anti-complement pair is present in the sample,

10

40

PCT/US98/17243

it will bind to the immobilized receptor, antibody or member, respectively, causing a change in the refractive index of the medium, which is detected as a change in surface plasmon resonance of the gold film. This system 5 allows the determination of on- and off-rates, from which binding affinity can be calculated, and assessment of stoichiometry of binding.

In vitro and in vivo response to ZGCL-1 can also measured using cultured cells or by administering molecules of the claimed invention to the appropriate animal model. For instance, ZGCL-1 transfected expression host cells may be embedded in an alginate environment and injected (implanted) into recipient animals. Alginatepoly-L-lysine microencapsulation, permselective membrane 15 encapsulation and diffusion chambers have been described as a means to entrap transfected mammalian cells or primary cells. These types of non-immunogenic "encapsulations" or microenvironments permit the transfer of nutrients into the microenvironment, and also permit the 20 diffusion of proteins and other macromolecules secreted or released by the captured cells across the environmental barrier to the recipient animal. Most importantly, the capsules or microenvironments mask and shield the foreign, embedded cells from the recipient animal's immune response. 25 Such microenvironments can extend the life of the injected cells from a few hours or days (naked cells) to several weeks (embedded cells).

Alginate threads provide a simple and quick means for generating embedded cells. The materials needed to generate the alginate threads are readily available and Once made, the alginate threads relatively inexpensive. are relatively strong and durable, both in vitro and, based on data obtained using the threads, in vivo. The alginate threads are easily manipulable and the methodology 35 scalable for preparation of numerous threads. exemplary procedure, 3% alginate is prepared in sterile H2O, and sterile filtered. Just prior to preparation of

41

alginate threads, the alginate solution is again filtered. An approximately 50% cell suspension (containing about 5 x 10^5 to about 5 x 10^7 cells/ml) is mixed with the 3% alginate One ml of the alginate/cell suspension is solution. 5 extruded into a 100 mM sterile filtered CaCl, solution over a time period of ~15 min, forming a "thread". The extruded thread is then transferred into a solution of 50 mM CaCl2, and then into a solution of 25 mM CaCl,. The thread is then rinsed with deionized water before coating the thread 10 by incubating in a 0.01% solution of poly-L-lysine. Finally, the thread is rinsed with Lactated Ringer's Solution and drawn from solution into a syringe barrel (without needle attached). A large bore needle is then the syringe, attached to and the thread is 15 intraperitoneally injected into a recipient in a minimal volume of the Lactated Ringer's Solution.

An alternative in vivo approach for assaying proteins of the present invention involves viral delivery systems. Exemplary viruses for this purpose include virus 20 adenovirus, herpesvirus, vaccinia and adenoassociated virus (AAV). Adenovirus, a double-stranded DNA virus, is currently the best studied gene transfer vector for delivery of heterologous nucleic acid (for a review, see T.C. Becker et al., Meth. Cell Biol. 43:161-89, 1994; 25 and J.T. Douglas and D.T. Curiel, Science & Medicine 4:44-1997). The adenovirus system offers advantages: adenovirus can (i) accommodate relatively large DNA inserts; (ii) be grown to high-titer; (iii) infect a broad range of mammalian cell types; and (iv) be 30 used with a large number of available vectors containing different promoters. Also, because adenoviruses are stable in the bloodstream, they can be administered by intravenous (especially for injection. Some disadvantages therapy) associated with adenovirus gene delivery include: (i) very low efficiency integration into the host genome; (ii) existence in primarily episomal form; and (iii) the

42

host immune response to the administered virus, precluding readministration of the adenoviral vector.

By deleting portions of the adenovirus genome, larger inserts (up to 7 kb) of heterologous DNA can be 5 accommodated. These inserts may be incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. In an exemplary system, the essential E1 gene has been deleted from the viral vector, and the virus will not replicate unless the E1 gene is 10 provided by the host cell (i.e., the human 293 cell line). When intravenously administered to intact animals, adenovirus primarily targets the liver. If the adenoviral delivery system has an E1 gene deletion, the virus cannot replicate in the host cells. However, the host's tissue 15 (i.e., liver) will express and process (and, if a signal sequence is present, secrete) the heterologous protein. Secreted proteins will enter the circulation in the highly vascularized liver, and effects on the infected animal can be determined.

20 The adenovirus system can also be used for protein production in vitro. By culturing adenovirusinfected non-293 cells under conditions where the cells are not rapidly dividing, the cells can produce proteins for extended periods of time. For instance, BHK cells are 25 grown to confluence in cell factories, then exposed to the adenoviral vector encoding the secreted protein The cells are then grown under serum-free conditions, which allows infected cells to survive for weeks without significant cell several division. 30 Alternatively, adenovirus vector infected 293S cells can be grown in suspension culture at relatively high cell density to produce significant amounts of protein (see A. Garnier al., Cytotechnol. 15:145-55, 1994). With protocol, an expressed, secreted heterologous protein can 35 be repeatedly isolated from the cell culture supernatant. Within the infected 293S cell production protocol, nonsecreted proteins may also be effectively obtained.

As would be evident to one of ordinary skill in the art, polyclonal antibodies can be generated from inoculating a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, 5 hamsters, guinea pigs and rats as well as transgenic animals such as transgenic sheep, cows, goats or pigs. Antibodies may also be expressed in yeast and fungi in modified forms as well as in mammalian and insect cells. The ZGCL-1 polypeptide or a fragment thereof serves as an 10 antigen (immunogen) to inoculate an animal or elicit an immune response. Suitable antigens would include the ZGCL-1 polypeptide encoded by SEQ ID NO:2 from amino acid residue 1-479 of SEQ ID NO:2, or a contiguous 9-479 amino acid residue fragment thereof. The immunogenicity of a 15 ZGCL-1 polypeptide may be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such fusions of ZGCL-1 or a portion thereof with an 20 immunoglobulin polypeptide or with an affinity tag. polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "haptenlike", such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole 25 hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization. Preferred peptides to use as antigens are hydrophilic peptides such as those predicted by one of skill in the art from a hydrophobicity plot, see for example, Hopp and Woods (Proc. Nat. Acad. Sci. USA 78:3824-8, 1981) and Kyte and Doolittle (J. Mol. Biol. 157: 30 105-142, 1982).

As used herein, the term "antibodies" includes polyclonal antibodies, affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding fragments thereof, such as F(ab')₂ and Fab proteolytic fragments. Genetically engineered intact antibodies or fragments, such as chimeric antibodies, Fv fragments,

single chain antibodies and the like, as well as synthetic antigen-binding peptides and polypeptides, are also included. Non-human antibodies may be humanized by grafting only non-human CDRs onto human framework and 5 constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a humanlike surface by replacement of exposed residues, wherein the result is a "veneered" antibody). In some instances, humanized antibodies may retain non-human residues within 10 the human variable region framework domains to enhance binding characteristics. Through humanizing proper antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration humans is reduced. Alternative techniques 15 generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to ZGCL-1 protein or peptide, and selection of antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled ZGCL-1 protein or peptide).

44

PCT/US98/17243

Antibodies are defined to be specifically binding if they bind to a ZGCL-1 polypeptide with a binding affinity (K_a) of 10^6 M⁻¹ or greater, preferably 10^7 M⁻¹ or greater, more preferably 10^8 M⁻¹ or greater, and most preferably 10^9 M⁻¹ or greater. The binding affinity of an antibody can be readily determined by one of ordinary skill in the art (for example, by Scatchard analysis).

Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to ZGCL-1 protein or peptide, and selection of antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled ZGCL-1 protein or peptide).

Genes encoding polypeptides having potential ZGCL-1 polypeptide binding domains can be obtained by screening random peptide libraries displayed on phage (phage display) or on bacteria, such as *E. coli*. Nucleotide sequences encoding the polypeptides can be

obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. random peptide display libraries can be used to screen for peptides which interact with a known target which can be a 5 protein or polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, or inorganic substances. Techniques for creating and screening such random peptide display libraries are known in the art (Ladner et al., US Patent NO. 5,223,409; Ladner 10 et al., US Patent NO. 4,946,778; Ladner et al., US Patent NO. 5,403,484 and Ladner et al., US Patent NO. 5,571,698) and random peptide display libraries and kits for screening such libraries are available commercially, for instance from Clontech (Palo Alto, CA), Invitrogen Inc. (San Diego, 15 CA), New England Biolabs, Inc. (Beverly, MA) and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ). Random peptide display libraries can be screened using the sequences disclosed herein to identify proteins which bind to ZGCL-1. These "binding proteins" which interact with ZGCL-1 polypeptides can be used for tagging cells; for 20 isolating homolog polypeptides by affinity purification; they can be directly or indirectly conjugated to drugs, toxins, radionuclides and the like. These binding proteins can also be used in analytical methods such as for 25 screening expression libraries and neutralizing activity. The binding proteins can also be used for diagnostic assays for determining circulating levels of polypeptides; for detecting or quantitating soluble polypeptides as marker of underlying pathology or disease. These binding proteins 30 can also act as ZGCL-1 "antagonists" to block ZGCL-1 binding and signal transduction in vitro and in vivo. These anti-ZGCL-1 binding proteins would be useful for inhibiting ZGCL-1 mediated activity.

A variety of assays known to those skilled in the art can be utilized to detect antibodies which specifically bind to ZGCL-1 proteins or peptides. Exemplary assays are described in detail in A Laboratory Manual,

46

PCT/US98/17243

Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include: concurrent immunoelectrophoresis, radioimmunoassay, radioimmuno-precipitation, enzyme-linked immunosorbent assay (ELISA), dot blot or Western blot assay, inhibition or competition assay, and sandwich assay. In addition, antibodies can be screened for binding to wild-type versus mutant ZGCL-1 protein or polypeptide.

Antibodies and binding proteins to ZGCL-1 may be 10 used for tagging cells that express ZGCL-1; for isolating ZGCL-1 by affinity purification; for diagnostic assays for determining circulating levels of ZGCL-1 polypeptides; for detecting or quantitating soluble ZGCL-1 as marker of underlying pathology or disease; in analytical methods employing FACS; for screening expression libraries; for generating anti-idiotypic antibodies; and as neutralizing antibodies or as antagonists to block ZGCL-1 mediated activity both in vitro and in vivo. Suitable direct tags labels include radionuclides, enzymes, substrates, inhibitors. fluorescent markers, 20 cofactors, chemiluminescent markers, magnetic particles and the like; indirect tags or labels may feature use of biotin-avidin or other complement/anti-complement pairs as intermediates. Antibodies and binding proteins herein may also be directly 25 or indirectly conjugated to drugs, toxins, radionuclides and these conjugates used for in vivo and the like, therapeutic applications. Moreover, diagnostic or antibodies to ZGCL-1 or fragments thereof may be used in vitro to detect denatured ZGCL-1 or fragments thereof in 30 assays, for example, Western Blots or other assays known in the art.

These antibodies and binding proteins would also be useful as contraceptives to prevent the fertilization of an egg. Such antibodies would act as antagonists by inhibiting a component(s) of spermatogenesis and/or sperm activation. Such antibody "antagonists" can be used for contraception in humans and animals, in particular,

47

PCT/US98/17243

domestic animals and livestock. For instance, anti-ZGCL-1 immunization could be used in place of surgical forms of contraception (such as spaying and neutering) in animals, and would allow for the possibility of future breeding of those animals if desired.

ligand polypeptides may be ZGCL-1 identify and characterize genes which bind to ZGCL-1. Proteins and peptides of the present invention can be immobilized on a column and membrane preparations run over (Immobilized Affinity Ligand Techniques, 10 Hermanson et al., eds., Academic Press, San Diego, CA, 195-202). Proteins and peptides can also be radiolabeled (Methods in Enzymol., vol. 182, "Guide to Protein Purification", M. Deutscher, ed., Acad. Press, San 15 Diego, 1990, 721-37) or photoaffinity labeled (Brunner et al., Ann. Rev. Biochem. 62:483-514, 1993 and Fedan et al., Biochem. Pharmacol. 33:1167-80, 1984) and specific cellsurface proteins can be identified.

The ZGCL-1 polynucleotides and/or polypeptides herein can be useful 20 disclosed as therapeutics. Polypeptides of the present invention are used to stimulate proliferation or differentiation of testicular cells. Proliferation and differentiation can be measured using cultured testicular cells or in vivo by administering 25 molecules of the present invention to the appropriate Cultured testicular cells include dolphin animal model. DB1.Tes cells (CRL-6258); mouse GC-1 spg cells (CRL-2053); TM3 cells (CRL-1714); TM4 cells (CRL-1715); and pig ST cells (CRL-1746), available from American Type Culture 30 Collection, 12301 Parklawn Drive, Rockville, MD.

The initially identified EST was derived from a human heart tumor library. ZGCL-1 proteins and polypeptides may play a role in the development of cardiovasculature tissue, proliferation and differentiation of endothelial cells and cardiomyocytes. Proliferation can be measured using cultured cardiac cells or *in vivo* by administering molecules of the claimed invention to the appropriate

animal model. Cultured cells include cardiac fibroblasts, cardiac myocytes, skeletal myocytes, human umbilical vein endothelial cells from primary cultures. Established cell lines include: NIH 3T3 fibroblast (ATCC No. CRL-1658), CHH-1 chum heart cells (ATCC No. CRL-1680), H9c2 rat heart myoblasts (ATCC No. CRL-1446), Shionogi mammary carcinoma cells (Tanaka et al., Proc. Natl. Acad. Sci. 89:8928-89, 1992) and LNCap.FGC adenocarcinoma cells (ATCC No. CRL-1740.)

cell proliferation 10 Assays measuring differentiation are well known in the art. For example, assays measuring proliferation include such assays as chemosensitivity to neutral red dye (Cavanaugh et al., Investigational New Drugs 8:347-54, 1990), incorporation of 15 radiolabelled nucleotides (Cook et al., Analytical Biochem. 179:1-7, 1989), incorporation of 5-bromo-2'-deoxyuridine (BrdU) in the DNA of proliferating cells (Porstmann et al., J. Immunol. Methods 82:169-79, 1985), and tetrazolium salts (Mosmann, J. Immunol. Methods 65:55-63, 20 1983; Alley et al., Cancer Res. 48:589-601, 1988; Marshall et al., Growth Req. 5:69-84, 1995; and Scudiero et al., <u>48</u>:4827-33, 1988). Cancer Res. Assays measuring differentiation include, for example, measuring surface markers associated with stage-specific expression 25 of a tissue, enzymatic activity, functional activity or morphological changes (Watt, <u>FASEB</u>, 5:281-84, Francis, Differentiation 57:63-75, 1994; Raes, Adv. Anim. Cell Biol. Technol. Bioprocesses, 161-71, 1989).

In vivo assays for evaluating cardiac neogenesis 30 or hyperplasia include treating neonatal and mature rats with the molecules of the present invention. The animals cardiac function is measured as heart rate, blood pressure, and cardiac output to determine left ventricular function. Post-mortem methods for assessing cardiac improvement 35 include: increased cardiac weight, nuclei/cytoplasmic volume, staining of cardiac histology sections to determine proliferating cell nuclear antigen (PCNA) vs. cytoplasmic

49

actin levels (Quaini et al., <u>Circulation Res.</u> 75:1050-63, 1994 and Reiss et al., <u>Proc. Natl. Acad. Sci.</u> 93:8630-5, 1996).

In vivo assays for evaluating the effect of ZGCL5 1 polypeptides on testes are also well known in the art.
For example, compounds can be injected intraperitoneally
for a specific time duration. After the treatment period,
animals are sacrificed and testes removed and weighed.
Testicles are homogenized and sperm head counts are made
10 (Meistrich et al., Exp. Cell Res. 99:72-8, 1976).

Spermatogenesis is a sequential process and takes in the seminiferous tubules, where germ cells ultimately mature into spermatozoa. Testis-specific factors that influence the maturation process may come 15 directly from the Sertoli cells that are in contact with the sperm cells, or may be paracrine or endocrine factors. Many of the molecules produced outside the seminiferous tubules transported into the sperm are microenvironment by transport and binding proteins that are 20 expressed by the Sertoli cells within the seminiferous tubules.

Paracrine factors that cross the cellular barrier and enter the sperm cell microenvironment include molecules secreted from Leydig cells. Leydig cells are located in the interstitial space found between the seminiferous tubules, and produce several factors believed to play an important role in the maturation process, such as testosterone, Leydig factor, IGF-1, inhibin and activin. The expression of these, and other factors, may be specific to a defined stage in the spermatogenic cycle.

The tissue specificity of ZGCL-1 expression suggests a role in spermatogenesis, and in view of this specificity, agonists and antagonists have enormous potential in both *in vitro* and *in vivo* applications. ZGCL-1 proteins and polypeptides and ZGCL-1 agonists are useful for stimulating proliferation and development of target cells *in vitro* and *in vivo*. For example, agonist compounds

10

50

PCT/US98/17243

are useful as components of defined cell culture media, and may be used alone or in combination with cytokines and hormones to replace serum that is commonly used in cell culture. Agonists are thus useful in specifically 5 promoting the growth and/or development of testis-derived cells in culture. Agonist compounds could be used to differentiation, cellular proliferation influence development through up-regulation of ZGCL-1-modulated gene expression. Agonists and antagonists may also prove useful in the study of spermatogenesis and infertility. useful research Antagonists are as reagents characterizing sites of DNA binding the to transcription factor. Antagonists are also useful for modulating ZGCL-1 mediation transcription. For example, 15 ZGCL-1 antagonists may be useful as male contraceptive agents.

ZGCL-1 polypeptides and ZGCL-1 agonists would be useful therapeutics to treat infertility. Accordingly, proteins of the present invention may have applications in 20 enhancing fertilization during assisted reproduction in humans and in animals. Such assisted reproduction methods are known in the art and include artificial insemination, vitro fertilization, embryo transfer intrafallopian transfer, for example. Such methods are 25 useful for assisting men and women who may physiological or metabolic disorders that prevent natural conception. Such methods may also be used by women who are unable or do not desire to conceive naturally for other Such methods are also used in animal breeding reasons. such as for livestock, zoological programs, endangered species or racehorse breeding and could be used for the creation of transgenic animals. methods Proteins of the present invention can be added to expand the number of donor sperm cells prior fertilization of an egg. It is advantageous to increase the number of sperm during such procedures to enhance the likelihood of successful fertilization. The invention provides methods of

15

20

WO 99/09168 PCT/US98/17243

fertilization during assisted reproduction enhancing wherein a mammalian ZGCL-1 polypeptide is combined with sperm prior to fertilization of the egg, or to an egg-sperm Within one embodiment the assisted reproduction is artificial insemination. Within another embodiment the assisted reproduction is in vitro fertilization.

51

Polypeptides of the present invention can used to enhance viability of cryopreserved sperm, in to enhance the number of viable sperm upon thawing. 10 cryopreserved sperm can be used in association with methods The invention provides methods of assisted reproduction. of enhancing viability of cryopreserved sperm for use in fertilization of an egg, wherein a mammalian ZGCL-1 polypeptide is added to sperm prior to fertilization, or to an egg-sperm mixture.

Fusion of the ZGCL-1 polypeptide and an affinity tag (e.g., Glu-Glu affinity tag, FLAG tag, maltose-binding protein, an immunoglobulin domain) may be used to select sperm at a particular developmental stage for use in in fertilization procedures. Staging the increases the number and type of desired sperm, thereby increasing the likelihood of successful fertilization.

In vivo, ZGCL-1 and ZGCL-1 agonists would find application in the treatment of infertility, in particular, 25 male infertility. It is estimated that 5-6% of men of reproductive age are infertile and a predominant cause is abnormal sperm count. ZGCL-1 polypeptides and proteins can be administered to enhance sperm count. Expression vectors containing polynucleotides encoding ZGCL-1 polypeptides or 30 proteins linked with a polynucleotide encoding a testis specific receptor can be administered for delivery to and expression in testis tissue. ZGCL-1 could also be packaged with a testis-specific receptor such that uptake of the ZGCL-1 polypeptides and proteins occurred only in the Alternatively, ZGCL-1 proteins or polypeptides 35 testis. could be injected directly into the testis. The invention provides methods of treating infertility wherein a

52

PCT/US98/17243

mammalian ZGCL-1 polypeptide is administered to enhance sperm count. In a related embodiment administration is in testicular tissue.

As used herein antagonists are molecules which 5 either bind to ZGCL-1 polypeptides or, alternatively, to a gene to which ZGCL-1 polypeptides bind, thereby inhibiting or eliminating the function of ZGCL-1. Such ZGCL-1 antagonists would include antibodies; binding proteins; oligonucleotides which bind either the to 10 polypeptide or to its associated gene(s); natural or synthetic analogs of ZGCL-1 polypeptides which retain the ability to bind specific genes but do not result in transcription. Such analogs could be peptides or peptidelike compounds. Natural or synthetic small molecules which 15 bind to receptors of ZGCL-1 polypeptides and prevent transcription are also contemplated as antagonists.

These ZGCL-1 antagonists are useful agents in fertility methods related to and contraception by selectively intercepting a process(es) leading to successful reproduction. As such, ZGCL-1 antagonists would 20 useful for inhibiting spermatogenesis activation. Such ZGCL-1 antagonists can be used for contraception in humans and animals, in particular domestic animals and livestock, where they ultimately act to prevent 25 the successful fertilization of an egg. Such antagonists could be used, for instance, in place of surgical forms of contraception (such as spaying and neutering), and would allow for the possibility of future breeding of treated animals, if desired, by discontinuing administration of the 30 antagonist. ZGCL-1 antagonists may prove useful similar to progesterone antagonists. Antiprogestogens, antagonize binding but do not activate, effectively block the action of progesterone and are used as contraceptive agents. The invention provides methods of contraception 35 wherein an antagonist of a mammalian ZGCL-1 polypeptide as described above is administered to a male recipient to prevent fertilization of an egg. Within one embodiment the

antagonist is an anti-ZGCL-1 binding protein. Within a related embodiment the antagonist is an anti-ZGCL-1 antibody.

53

The invention also provides isolated and purified ZGCL-1 polynucleotide probes. Such polynucleotide probes can be RNA or DNA. DNA can be either cDNA or genomic DNA. Polynucleotide probes are single or double-stranded DNA or generally synthetic oligonucleotides, generated from cloned cDNA or genomic sequences and will 10 generally comprise at least 16 nucleotides, more often from 17 nucleotides to 25 or more nucleotides, sometimes 40 to nucleotides, and in some instances a substantial portion, domain or even the entire ZGCL-1 gene or cDNA. The synthetic oligonucleotides of the present invention 15 have at least 80% identity to a representative ZGCL-1 DNA sequence (SEQ ID NO:1) or its complements. Preferred regions from which to construct probes include the 5' and/or 3' coding sequences, DNA binding domains, affinity domains, signal sequences and the like. Techniques for 20 developing polynucleotide probes and hybridization techniques are known in the art, see for example, Ausubel et al., eds., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., NY, 1991. For use as probes, the molecules can be labeled to provide a detectable signal, 25 such as with an enzyme, biotin, a radionuclide, fluorophore, chemiluminescer, paramagnetic particle and the like, which are commercially available from many sources, such as Molecular Probes, Inc., Eugene, OR, and Amersham Corp., Arlington Heights, IL, using techniques that are 30 well known in the art.

Such probes can also be used in hybridizations to detect the presence or quantify the amount of ZGCL-1 gene or mRNA transcript in a sample. ZGCL-1 polynucleotide probes could be used to hybridize to DNA or RNA targets for techniques diagnostic purposes, using such such fluorescent insitu hybridization (FISH) orimmunohistochemistry. Polynucleotide probes could be used

54

PCT/US98/17243

to identify genes encoding ZGCL-1-like proteins. example, ZGCL-1 polynucleotides can be used as primers and/or templates in PCR reactions to identify other novel Such probes can also be used to transcription factors. 5 screen libraries for related sequences encoding novel transcription factors. Such screening would be carried out under conditions of low stringency which would allow of sequences which are substantially identification homologous, but not requiring complete homology to the 10 probe sequence. Such methods and conditions are well known in the art, see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Such low stringency conditions could Harbor, NY, 1989. include hybridization temperatures less than 15 formamide concentrations of less than 50% and moderate to low concentrations of salt. Libraries may be made of genomic DNA or cDNA. Polynucleotide probes are also useful for Southern, Northern, or slot blots, colony and plaque hybridization and in situ hybridization. Mixtures of 20 different ZGCL-1 polynucleotide probes can be prepared which would increase sensitivity or the detection of low copy number targets, in screening systems.

ZGCL-1 polypeptides may be used within diagnostic systems. Antibodies or other agents that specifically bind 25 to ZGCL-1 may be used to detect the presence of circulating polypeptides. Such detection methods are well known in the art and include, for example, enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay. Immunohistochemically labeled antibodies can be used to detect ZGCL-1 30 biological samples. ZGCL-1 levels can also be monitored by such methods as RT-PCR, where ZGCL-1 mRNA can be detected and quantified. Such methods could be used as diagnostic tools to monitor and quantify polypeptide levels. information derived from such detection methods would provide insight into the significance of polypeptides in various conditions or diseases, and as a would serve as diagnostic methods for conditions or

PCT/US98/17243

diseases for which altered levels of ZGCL-1 are significant. Altered levels of ZGCL-1 ligand polypeptides may be indicative of pathological conditions including cancer and cardiac and reproductive disorders.

55

The present invention also provides reagents 5 which will find use in diagnostic applications. example, the ZGCL-1 gene, a probe comprising ZGCL-1 DNA or RNA or a subsequence thereof can be used to determine if the ZGCL-1 gene is present on chromosome 5 or if a mutation Detectable chromosomal aberrations at the 10 has occurred. ZGCL-1 gene locus include but are not limited aneuploidy, gene сору number changes, insertions, deletions, restriction site changes and rearrangements.

In general, these diagnostic methods comprise the 15 steps of (a) obtaining a genetic sample from a patient; (b) incubating the genetic sample with a polynucleotide probe or primer as disclosed above, under conditions wherein the polynucleotide will hybridize to complementary polynucleotide sequence, to produce a first reaction product; and (iii) comparing the first reaction product to a control reaction product. A difference between the first reaction product and the control reaction product indicative of a genetic abnormality in the patient. Genetic samples for use within the present invention include genomic DNA, cDNA, and RNA. The polynucleotide probe or primer can be RNA or DNA, and will comprise a portion of SEQ ID NO:1, the complement of SEQ ID NO:1, or an RNA equivalent thereof. Suitable assay methods in this regard include molecular genetic techniques known to those art, such as restriction fragment 30 the polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, ligation chain reaction PCR Methods and Applications 1:5-16, (Barany, ribonuclease protection assays, and other genetic linkage analysis techniques known in the art (Sambrook et al., ibid.; Ausubel et. al., ibid.; Marian, Chest 108:255-65, Ribonuclease protection assays (see, e.g., Ausubel

56

et al., <u>ibid</u>., ch. 4) comprise the hybridization of an RNA probe to a patient RNA sample, after which the reaction product (RNA-RNA hybrid) is exposed to RNase. Hybridized regions of the RNA are protected from digestion. Within PCR assays, a patient's genetic sample is incubated with a pair of polynucleotide primers, and the region between the primers is amplified and recovered. Changes in size or amount of recovered product are indicative of mutations in the patient. Another PCR-based technique that can be employed is single strand conformational polymorphism (SSCP) analysis (Hayashi, <u>PCR Methods and Applications 1</u>:34-8, 1991).

The invention also provides nucleic acid-based therapeutic treatment. If a mammal has a mutated or lacks 15 a ZGCL-1 gene, the ZGCL-1 gene can be introduced into the cells of the mammal. In one embodiment, a gene encoding a ZGCL-1 polypeptide is introduced in vivo in a viral vector. Such vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV), 20 papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), and the like. Defective viruses, which entirely or almost entirely lack viral genes, are preferred. A defective virus is not infective after introduction into a cell. Use of defective viral 25 vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector (Kaplitt et al., Molec. Cell. Neurosci. 2:320-30, 30 1991), an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al. (<u>J. Clin. Invest</u>. 90:626-30, 1992), and a defective adeno-associated virus vector (Samulski et al., <u>J. Virol</u>. <u>61</u>:3096-101, 1987; Samulski et al., <u>J. Virol</u>. <u>63</u>:3822-28, 1989).

In another embodiment, the gene can be introduced in a retroviral vector, e.g., as described in Anderson et al., U.S. Patent No. 5,399,346; Mann et al., Cell 33:153,

PCT/US98/17243 WO 99/09168

1983; Temin et al., U.S. Patent No. 4,650,764; Temin et al., U.S. Patent No. 4,980,289; Markowitz et al., J. Virol. 62:1120, 1988; Temin et al., U.S. Patent No. 5,124,263; Dougherty et al., WIPO Publication WO 95/07358; and Kuo et 5 al., <u>Blood</u> <u>82</u>:845-52, 1993.

Alternatively, the vector can be introduced by lipofection in vivo using liposomes. Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of a gene encoding a marker (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-17, 1987; and Mackey et 10 al., Proc. Natl. Acad. Sci. USA 85:8027-31, 1988). The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one 15 area of benefit. It is clear that directing transfection to particular cells represents one area of benefit. clear that directing transfection to particular cell types would be particularly advantageous in a tissue cellular heterogeneity, such as the pancreas, liver, 20 kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. peptides, e.g., hormones or neurotransmitters, and proteins such as antibodies, or non-peptide molecules could be coupled to liposomes chemically.

It is possible to remove the cells from the body and introduce the vector as a naked DNA plasmid and then re-implant the transformed cells into the body. vector for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., transfection, 30 electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun or use of a DNA vector transporter (see, for example, Wu et al., <u>J. Biol. Chem</u>. <u>267</u>:963-7, 1992; Wu et al., <u>J. Biol. Chem</u>. <u>263</u>:14621-24, 1988).

25

The ZGCL-1 polypeptides are also contemplated for 35 pharmaceutical use. Pharmaceutically effective amounts of ZGCL-1 polypeptides, agonists or ZGCL-1 antagonists of the

58

present invention can be formulated with pharmaceutically acceptable carriers for parenteral, oral, nasal, rectal, topical, transdermal administration or the like, according to conventional methods. Formulations may further include 5 one or more diluents, fillers, emulsifiers, preservatives, buffers, excipients, and the like, and may be provided in such forms as liquids, powders, emulsions, suppositories, liposomes, transdermal patches and tablets, for example. Slow or extended-release delivery systems, including any of 10 a number of biopolymers (biological-based systems), systems employing liposomes, and polymeric delivery systems, can also be utilized with the compositions described herein to provide a continuous or long-term source of the ZGCL-1 polypeptide or antagonist. Such slow release systems are 15 applicable to formulations, for example, for oral, topical The term "pharmaceutically acceptable and parenteral use. carrier" refers to a carrier medium which does interfere with the effectiveness of the biological activity of the active ingredients and which is not toxic to the host or patient. One skilled in the art may formulate the 20 compounds of the present invention in an appropriate manner, and in accordance with accepted practices, such as those disclosed in Remington's Pharmaceutical Sciences, Gennaro (ed.), Mack Publishing Co., Easton, PA 1990.

25 As used herein a "pharmaceutically effective amount" of a ZGCL-1 polypeptide, agonist or antagonist is an amount sufficient to induce a desired biological result. The result can be alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a 30 biological system. For example, an effective amount of a ZGCL-1 polypeptide is that which provides either subjective an objectively identifiable of symptoms orimprovement as noted by the clinician or other qualified observer. For example, such an effective amount of a ZGCL-1 polypeptide results in an increase in sperm count. 35 Effective amounts of the ZGCL-1 polypeptides can vary widely depending on the disease or symptom to be treated.

59

The amount of the polypeptide to be administered and its concentration in the formulations, depends upon the vehicle selected, route of administration, the potency of particular polypeptide, the clinical condition of 5 patient, the side effects and the stability of the compound in the formulation. Thus, the clinician will employ the appropriate preparation containing the appropriate concentration in the formulation, as well as the amount of administered, depending formulation upon 10 experience with the patient in question or with similar Such amounts will depend, in part, on the patients. particular condition to be treated, age, weight, general health of the patient, and other factors evident to those skilled in the art. Typically a dose will be in the 15 range of 0.1-100 mg/kg of subject. Doses for specific compounds may be determined from in vitro or ex vivo studies in combination with studies on experimental animals. Concentrations of compounds found to be effective in vitro or ex vivo provide guidance for animal studies, wherein doses are calculated to provide similar 20 concentrations at the site of action.

The dosages of the present compounds used to practice the invention include dosages effective to result in the desired effects. Estimation of appropriate dosages effective for the individual patient is well within the skill of the ordinary prescribing physician or other appropriate health care practitioner. As a guide, the clinician can use conventionally available advice from a source such as the Physician's Desk Reference, 48th Edition, Medical Economics Data Production Co., Montvale, New Jersey 07645-1742 (1994).

Preferably the compositions are presented for administration in unit dosage forms. The term "unit dosage form" refers to physically discrete units suitable as unitary dosed for human subjects and animals, each unit containing a predetermined quantity of active material calculated to produce a desired pharmaceutical effect in

60

association with the required pharmaceutical diluent, carrier or vehicle. Examples of unit dosage forms include vials, ampules, tablets, caplets, pills, powders, granules, eyedrops, oral or ocular solutions or suspensions, ocular ointments, and oil-in-water emulsions. Means of preparation, formulation and administration are known to those of skill, see generally Remington: The Science and Practice of Pharmacy, Gennaro, ed., Mack Publishing Co., Easton, PA, 19th ed., 1995.

The invention is further illustrated by the following non-limiting examples.

EXAMPLES

<u>Example 1</u> Identification of ZGCL-1

15

Novel ZGCL-1 ligand-encoding polynucleotides and polypeptides of the present invention were initially 20 identified by querying an EST database. An initial EST from a human heart tumor library was found. A second EST, from fetal mouse, was identified which was 87% identical at the nucleotide level to the human EST. Using this information, oligonucleotide primers ZC12991 (SEQ ID NO:5) 25 and ZC12992 (SEQ ID NO:6) were made to the EST sequence and a pooled human testis library was screened using PCR. Eighty reactions were set up, each consisted of 2.5 μ l 10X PCR reaction buffer (Boehringer Mannheim, Indianapolis, IN), 2 μ l dNTPs mix (2.5 mM each, Perkin-Elmer, Foster 30 City, CA), 0.5 μ l sense primer, ZC 12,992 (20 pmol/ μ l), 0.5 μl antisense primer, ZC 12,991 (20 pmol/ μ l), 2.5 μ l RediLoad (Research Genetics, Inc., Huntsville, AL), 0.5 µl AmpliTaq[™] (Perkin-Elmer Cetus, Norwalk, Ct.) about 2-4 nq of DNA from an individual testis library pool and ddH,O for 35 a total volume of 25 μ l. The reactions were overlaid with an equal amount of mineral oil and sealed. The PCR cycler conditions were as follows: an initial 35 cycles of a 20 second denaturation at 94°C, 30 second annealing at 55°C and

61

30 second extension at 72°C, followed by a final 1 cycle extension of 10 minutes at 72°C. PCR products were analyzed on a 1 % agarose gel and three pools giving the expected 200 bp PCR product were replated on to LB plates.

5 Colonies were screened by PCR using gene-specific primers.

Four individual colonies were picked from each pool and added to microcentrifuge tubes by swirling the toothpick with the colony on it in a tube containing 18.5 μ l H_2O , 2.5 μ l 10x Taq polymerase buffer (Boehringer Mannheim, Indianapolis, IN), 2 µl 10 mM dNTPs (Perkin Elmer), 0.75 μ l ZC12991 (SEQ ID NO:5) (20 pmol/ μ l), 0.75 ml ZC12992 (SEQ ID NO:6) (20 pmol/ μ l), and 0.5 μ l polymerase. Amplification reactions were incubated at 94°C for 1 minute to lyse the bacteria and expose the plasmid 15 DNA, then run for 25 cycles of 94°C, 20 seconds; 55°C, 30 72°C, 30 seconds to amplify cloned followed by a 10 minute extension at 72°C. Products were analyzed by electrophoresis on a 1% agarose gel. giving a single 200 bp product were identified as positive, 20 and the sequence confirmed by sequence analysis.

One clone, 83.1.3 was used to identify the The clone was amplified using a corresponding cDNA. QIAwell 8 plasmid kit (Qiagen, Inc., Chatsworth, CA) according to manufacturer's instructions, a 5 ml overnight 25 culture in LB + 50 mg/ml ampicillin was prepared. template was sequenced on an Applied Biosystems™ model 373 DNA sequencer (Perkin-Elmer Cetus, Norwalk, Ct.) using the ABI PRISM™ Dye Terminator Cycle Sequencing Ready Reaction (Perkin-Elmer Corp.) according the manufacturer's 30 instructions. Oligonucleotides ZC694 (SEQ ID NO:7), ZC2681 (SEQ ID NO:8), ZC12991 (SEQ ID NO:5), ZC12992 (SEQ ID NO:6), ZC14122 (SEQ ID NO:9), ZC14183 (SEQ ID NO:10), ZC14184 (SEQ ID NO:11), ZC14237 (SEQ ID NO:12), ZC14238 (SEQ ID NO:13), ZC14284 (SEQ ID NO:14) and ZC14345 (SEQ ID 35 NO:15) were used to sequence from the clone. reactions were carried out in a Hybaid OmniGene Temperature Cycling System (National Labnet Co., Woodbridge,

62

SequencherTM 3.1 sequence analysis software (Gene Codes Corporation, Ann Arbor, MI) was used for data analysis. The resulting 1,467 bp sequence is disclosed in SEQ ID NO:1 which contained the initially identified EST sequence.

5

Example 2 Tissue Distribution

Human Multiple Tissue Northern Blots (MTN I, MTN III; Clontech) were and probed 10 approximately 200 bp (SEQ ID NO:16) PCR derived probe containing the sequence of the EST. The probe was amplified from a human heart Marathon[™]-ready cDNA library using oligonucleotide primers ZC12991 (SEQ ID NO:5) 15 ZC12992 (SEQ ID NO:6). The Marathon[™]-ready cDNA library was prepared according to manufacturer's instructions (Marathon™ cDNA Amplification Kit; Clontech, Palo Alto, CA) using human heart poly A RNA (Clontech). The probe was amplified in a polymerase chain reaction as follows: 35 20 cycles of 94°C for 20 seconds, 55°C for 30 seconds, and 72°C for 30 seconds, followed by 1 cycle at 72°C for 10 minutes. The resulting DNA fragment was electrophoresed on a 2% GTG agarose gel, the fragment was purified using the QIAquickTM method (Qiagen, Chatsworth, CA), and the sequence analysis. The probe 25 confirmed by sequence was radioactively labeled using the random priming MULTIPRIME DNA labeling system (Amersham, Arlington Heights, according to the manufacturer's specifications. was purified using a NUCTRAP push column (Stratagene, La 30 Jolla, CA). ExpressHyb™ (Clontech) solution was used for prehybridization and as a hybridizing solution for the Northern blots. Hybridization took place overnight at 65°C using 1 x 10° cpm/ml of labeled probe. The blots were then washed at 50°C in 0.1% SSC, 0.1% SDS. A predominant 35 transcript of 3.2 kb was detected in testis. Reduced expression was seen in thyroid, spinal cord, stomach, lymph

5

63

PCT/US98/17243

node and trachea. A weak transcript was seen in placenta and pancreas at 4.5 kb.

Example 3 Chromosomal Assignment and Placement of ZGCL-1

ZGCL-1 was mapped to chromosome 5 using the commercially available version of the Whitehead Institute/MIT Center for Genome Research's GeneBridge 4 Hybrid Panel (Research 10 Radiation Genetics, Huntsville, AL). The GeneBridge 4 Radiation Hybrid Panel contains PCRable DNAs from each of 93 radiation hybrid clones, plus two control DNAs (the HFL donor and the A23 recipient). A publicly available WWW server (http://wwwgenome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) 15 mapping relative to the Whitehead Institute/MIT Center for Genome Research's radiation hybrid map of the human genome (the "WICGR" radiation hybrid map) which was constructed with the GeneBridge 4 Radiation Hybrid Panel.

20 For the mapping of ZGCL-1 with the GeneBridge 4 RH Panel, 25 μ l reactions were set up in a PCRable 96-well microtiter plate (Stratagene, La Jolla, CA) and used in a RoboCycler Gradient 96 thermal cycler (Stratagene). Each of the 95 PCR reactions consisted of 2.5 μ l 10X KlenTag 25 reaction buffer (Clontech), 2 μ l dNTPs mix (2.5 mM each, Perkin-Elmer), 1.25 μ l sense primer, ZC 12992 (SEQ ID NO:6), 1.25 μ l antisense primer, ZC 12991 (SEQ ID NO:5), 2.5 μ l RediLoad (Research Genetics), 0.5 μ l 50% Advantage KlenTag Polymerase Mix (Clontech), 25 ng of DNA from an 30 individual hybrid clone or control and ddH2O for a total volume of 25 μ l. The reactions were overlaid with an equal amount of mineral oil and sealed. The PCR cycler conditions were as follows: an initial 1 cycle 5 minute denaturation at 95°C, 35 cycles of a 1 minute denaturation at 95°C, 1 35 minute annealing at 58°C and 1 minute extension at 72°C, followed by a final 1 cycle extension of 7 minutes at 72°C.

64

The reactions were separated by electrophoresis on a 3% NuSieve GTG agarose gel (FMC Bioproducts, Rockland, ME).

The results showed that ZGCL-1 maps 10.09 cR from the framework marker WI-6737 on the chromosome 5 WICCR 5 radiation hybrid map. Relative to the centromere, its nearest proximal marker was WI-4897 and its nearest distal maker was WI-14295. The use of surrounding markers position ZGCL-1 in the 5q35.3 region on the integrated LDB chromosome 5 map (The Genetic Location Database, University of Southampton, WWW server:http://cedar.genetics.soton.ac.uk/public html/).

Genes mapping to human chromosome 5q34-q35 have been primarily localized to mouse chromosome 11, in the A5-B1 and A1-B1 region. The mouse "germ cell deficient" gene, 15 GCD, locus maps to chromosome 11 in the A2-A3 region (Duncan et al., Mamm. Genome 6:697-9, 1995). Germ cell deficient leads to improper migration and/or proliferation of primordial germ cells during embryonic development resulting in infertility in the adult mouse. Mice having this mutation have been hypothesized to be animal models for the human reproductive disorders, premature ovarian failure and Sertoli cell only syndrome.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

CLAIMS

What is claimed is:

- An isolated polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- An isolated polypeptide according to claim 2, wherein said polypeptide is at least 90% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- An isolated polypeptide according to claim 1, covalently linked amino terminally or carboxy terminally to a moiety selected from the group consisting of affinity tags, toxins, radionucleotides, enzymes and fluorophores.
- 4. A isolated polynucleotide encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- An isolated polynucleotide according to claim 4, wherein said polypeptide is at least 90% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- 6. isolated polynucleotide comprising sequence of nucleotide 1 to nucleotide 1437 of SEQ ID NO:4.

PCT/US98/17243 WO 99/09168

66

- An oligonucleotide probe or primer comprising at least 14 contiquous nucleotides of a polynucleotide of SEQ ID NO:4 or a sequence complementary to SEQ ID NO:4.
- An expression vector comprising the following 8. operably linked elements:
 - a transcription promoter;
- a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2; and
 - a transcription terminator.
- 9. An expression vector according to claim 8, wherein said DNA segment encodes a polypeptide that is at least 90% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- 10. An expression vector according to claim 8, wherein said DNA segment encodes a polypeptide covalently linked amino terminally or carboxy terminally to an affinity tag.
- 11. An expression vector according to claim 8, wherein said DNA segment further encodes a secretory signal sequence operably linked to said polypeptide.
- A cultured cell into which has been introduced an expression vector comprising the following operably linked elements:
 - a transcription promoter;
- a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical

in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2; and

a transcription terminator;

wherein said cell expresses said polypeptide encoded by said DNA segment.

- 13. A method of producing a polypeptide comprising: culturing a cell into which has been introduced an expression vector comprising the following operably linked elements:
 - a transcription promoter;
- a DNA segment encoding a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2; and
 - a transcription terminator;

whereby said cell expresses said polypeptide encoded by said DNA segment; and

recovering said expressed polypeptide.

14. A pharmaceutical composition comprising a polypeptide, said polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2;

in combination with a pharmaceutically acceptable vehicle.

15. An antibody that specifically binds to an epitope of a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence

comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.

- 16. A binding protein that specifically binds to an epitope of a polypeptide comprising a sequence of amino acid residues that is at least 80% identical in amino acid sequence to residues 1-479 of SEQ ID NO:2, wherein said sequence comprises a POZ domain corresponding to amino acid residues 61-178 of SEQ ID NO:2.
- 17. A method for detecting a genetic abnormality in a patient, comprising:

obtaining a genetic sample from a patient;

incubating the genetic sample with a polynucleotide comprising at least 14 contiguous nucleotides of SEQ ID NO:1 or the complement of SEQ ID NO:1, under conditions wherein said polynucleotide will hybridize to complementary polynucleotide sequence, to produce a first reaction product;

comparing said first reaction product to a control reaction product, wherein a difference between said first reaction product and said control reaction product is indicative of a genetic abnormality in the patient.

1/2

40 50 60 GDEQQRLLNTPRRKKLKSTSKY			20 SHKRKRSSGS	10 MRRATDSVTVRG	zgcll
DDPAQLDTTQPKKKKLLTTTQY 40 50	STDSSLGKD	FSNRRKRKR 20	SMHMNVAEVF 10	MGQIVG	GCL1D
MFSGSWKESSMNIIELEIPDQN ::::::::::::::::::::::::::::::::::::	CQSGYFSSM :: :: :: SQSPYFYTM		DIKICALGEE :::. DVAVMALDKY	IYQTLFLNGENS	
170 180 GLIQQCGETMKETVNVKTVCGY GLIDKCAEVMVDNISPETAIQY 160 170	AACLLQLDG .::::::	PSRVVAILA :::: SADVISVLA	YRDDVLIKA ::::::: MYSDEIEIES	IDVEALQVAFGS	•
220 230 SINVMKQLIGSSNLFVMQVEMD ::.:::::::: SIELMSALTASPDLYVMQTEFS 220 230	NVELFKELS :: QPNLLRHIS	NNLMTHQ :: INLLSIYSK	(KKCLEWLLI ::: (KSTFQWFQ:	YTSAGTYGLDSV : .: :: .: YEAACQYGVVGV	
270 DVWFSKQRKDFE : : : GVETHAPSGDVVQWTYFTSRSE 280 290	:: TQELLVNAG	PVQRAEALK	: : _HPDYDPEDI	LYTLLRTWMFLR	
320 330 AVVPSEWLSSVYKQQWFAMLRA	SARIIEQDA :: .:	LQYIISDLA	FVSVFRHLRI	GMAFLETEQGKP	zgc11
NIIPKEWLYRHIHNHWDALLRI 340 350					

Fig. 1a

	340 EQDSE-VGP	350 QEINKEELEG	360 NSMRCGRKL	370 AKDGEYCWRW1	380 rgfnfgfdllv	390 TYTNRYIIFKR
J	: .:	: :	: ::::: :	. : ::::	:::::::::	.:: IMDSRRLNIRR 410
		SVSLQPRRSI		DSSGKLICSR	TTGYQILTLEK	450 DQEQVVMNLDS
GCL1D	HHRHEH-ER 420					NEEVPLMVLDP 470
zgc]1	RLLIFPLYI	470 CCNFLYISPE				
GCL1D		:::::: SINMLVVMPP 490			IPISEIGANSD 520	RPLSPSSADDS 530

GCL1D AVFIGDSEPSTP

540

Fig. 1b

SEQUENCE LISTING

	<]	10>	1201 Seat	Gene LEas tle, ced S	tlak Was	ce Av shing	enue ton	9810)2						
	<]	.20> ZGCL		TIS-S	SPEC1	[FIC	TRAN	I SCRI	PTIC	N FA	ACTOF	₹			
	<]	L30>	97-1	L8PC											
)56,1 7-08-											
	<]	60>	16												
	<]	70>	Fast	SEQ	for	Wind	lows	Vers	sion	3.0					
	<2 <2	212>	1469 DNA) o sap	oiens	5								·	
	<2	220> 221> 222>) ((1469))									
9999		100> jgc (aggco	cg ga	acact	ggag	g acg						tct Ser	54
-					_						-		ggg Gly		102
													gag Glu		150
-		-	_							_			aaa Lys		198

WO 99/09168 PCT/US98/17243

40					45				50					55	•
•										-			gaa Glu 70		246
_	-		-		_	-		-			_		cac His		294
			-						-	_		-	ggt Gly		342
~~		_		_	-								gac Asp		390
													tat Tyr		438
													gca Ala 150		486
													gag Glu		534
						۷a٦							aca Thr		582
													gaa Glu		630
													aaa Lys		678
	-			-	-				Gly				tta Leu 230	Phe	726

	atg Met				-	-				-			-		-	774
	ctt Leu															822
	gaa Glu 265		_	_					_			-		-		870
-	gcc Ala			-		-								-		918
-	cat His									-	_	-		_	-	966
	att Ile															1014
	aaa Lys	_	-			-	-	_		-	_	_		_		1062
	ggg Gly 345			-				_	-					_	_	1110
	tgt Cys		_	-		-		-		_		_		-		1158
	ggt Gly															1206
	atc Ile				-			_				-	_			1254

Val Ser Leu 410	cag cct Gln Pro	•	Arg	-		_		-		_	-	-	1302
tct ttt gat Ser Phe Asp 425	-	Gly					-	-					1350
caa ata ctt Gln Ile Leu 440		-	_	-	_	-				_		-	1398
gac agc agg Asp Ser Arg	_												1446
tat ata tca Tyr Ile Ser	-		-	aa.									1469
<210> <211>													
	Homo sa	piens									•		
<213> <400> Met Arg Arg	Homo sa 2 Ala Thr	•		Val	Thr		Arg	Gly	Ser	His		Arg	
<213> <400>	Homo sa 2 Ala Thr 5 Ser Gly	Asp	Ser		Tyr	10				Ser	15		
<213> <400> Met Arg Arg 1 Lys Arg Ser Asp Glu Asp	Homo sa 2 Ala Thr 5 Ser Gly 20	Asp Ser	Ser Phe	Cys Asp	Tyr 25	10 Cys	His	Pro	Asp Leu	Ser 30	15 Glu	Thr	
<213> <400> Met Arg Arg 1 Lys Arg Ser	Homo sa 2 Ala Thr 5 Ser Gly 20 Glu Glu	Asp Ser Glu Leu	Ser Phe Gly	Cys Asp 40	Tyr 25 Glu	10 Cys Gln	His Gln	Pro Arg	Asp Leu 45	Ser 30 Leu	15 Glu Asn	Thr Thr	
<213> <400> Met Arg Arg 1 Lys Arg Ser Asp Glu Asp 35 Pro Arg Arg	Homo sa 2 Ala Thr 5 Ser Gly 20 Glu Glu Lys Lys	Asp Ser Glu Leu	Ser Phe Gly Lys 55	Cys Asp 40 Ser	Tyr 25 Glu Thr	10 Cys Gln Ser	His Gln Lys	Pro Arg Tyr 60	Asp Leu 45 Ile	Ser 30 Leu Tyr	15 Glu Asn Gln	Thr Thr Thr	
<213> <400> Met Arg Arg 1 Lys Arg Ser Asp Glu Asp 35 Pro Arg Arg 50 Leu Phe Leu	Homo sa 2 Ala Thr 5 Ser Gly 20 Glu Glu Lys Lys Asn Gly	Asp Ser Glu Leu Glu 70	Ser Phe Gly Lys 55 Asn	Cys Asp 40 Ser Ser	Tyr 25 Glu Thr Asp	10 Cys Gln Ser Ile	His Gln Lys Lys 75	Pro Arg Tyr 60 Ile	Asp Leu 45 Ile Cys	Ser 30 Leu Tyr Ala	15 Glu Asn Gln Leu	Thr Thr Thr Gly 80	
<213> <400> Met Arg Arg 1 Lys Arg Ser Asp Glu Asp 35 Pro Arg Arg 50 Leu Phe Leu 65	Homo sa 2 Ala Thr 5 Ser Gly 20 Glu Glu Lys Lys Asn Gly Ser Leu 85	Asp Ser Glu Leu Glu 70 His	Ser Phe Gly Lys 55 Asn Lys	Cys Asp 40 Ser Ser	Tyr 25 Glu Thr Asp	10 Cys Gln Ser Ile Leu 90	His Gln Lys Lys 75 Cys	Pro Arg Tyr 60 Ile Gln	Asp Leu 45 Ile Cys Ser	Ser 30 Leu Tyr Ala Gly	15 Glu Asn Gln Leu Tyr 95	Thr Thr Gly 80 Phe	
<213> <400> Met Arg Arg 1 Lys Arg Ser Asp Glu Asp 35 Pro Arg Arg 50 Leu Phe Leu 65 Glu Glu Trp	Homo sa 2 Ala Thr 5 Ser Gly 20 Glu Glu Lys Lys Asn Gly Ser Leu 85 Phe Ser 100 Ile Pro	Asp Ser Glu Leu Glu 70 His	Ser Phe Gly Lys 55 Asn Lys Ser	Cys Asp 40 Ser Ser Ile Trp	Tyr 25 Glu Thr Asp Tyr Lys 105	10 Cys Gln Ser Ile Leu 90 Glu	His Gln Lys Lys 75 Cys Ser	Pro Arg Tyr 60 Ile Gln Ser	Asp Leu 45 Ile Cys Ser Met	Ser 30 Leu Tyr Ala Gly Asn 110	15 Glu Asn Gln Leu Tyr 95 Ile	Thr Thr Gly 80 Phe	

Val 145	Val	Ala	Пе	Leu	Ala 150	Ala	Ala	Cys	Leu	Leu 155	G1n	Leu	Asp	Gly	Leu 160
	Gln	G1n	Cys	Gly 165		Thr	Met	Lys	Glu 170		Val	Asn	Val	Lys 175	
Val	Cys	Gly	Tyr 180	Tyr	Thr	Ser	Ala	Gly 185	Thr	Tyr	Gly	Leu	Asp 190	Ser	Val
Lys	Lys	Lys 195	Cys	Leu	Glu	Trp	Leu 200	Leu	Asn	Asn	Leu	Met 205	Thr	His	Gln
Asn	Val 210	Glu	Leu	Phe	Lys	G1u 215	Leu	Ser	Ile	Asn	Va1 220	Met	Lys	Gln	Leu
Ile 225	Gly	Ser	Ser	Asn	Leu 230	Phe	Val	Met	Gln	Val 235	G1u	Met	Asp	Ile	Tyr 240
			,	245	•				250					Trp 255	
			260					265		·		·	270	Ser	_
	_	275	•				280					285		Gln	_
	290					295					300		_	IJе	
305					310					315	•			Va1	320
		•		325					330		·			Met 335	
_			340	·				345					350	Lys	
		355					360					365		Lys	•
-	370	-	-	•	_	375					380	•		Asp	
385			•		390		_			395	•	·		Thr	400
				405	_				410				_	Ser 415	
			420					425					430	Leu	
Cys	Ser	Arg 435	Thr	Thr	Gly	Tyr	G1n 440	Ile	Leu	Thr	Leu	G1u 445	Lys	Asp	Gln
	450					455	·				460			Pro	Leu
Tyr 465	Ile	Cys	Cys	Asn	Phe 470	Leu	Tyr	Ile	Ser	Pro 475	Glu	Lys	Lys		

PCT/US98/17243 WO 99/09168 6

<211> 569 <212> PRT <213> Drosophila melanogaster

<400> 3 Met Gly Gln Ile Val Gly Ser Met His Met Asn Val Ala Glu Val Phe Ser Asn Arg Arg Lys Arg Lys Arg Ser Thr Asp Ser Ser Leu Gly Lys 25 Asp Asp Pro Ala Gln Leu Asp Thr Thr Gln Pro Lys Lys Lys Leu Leu Thr Thr Gln Tyr Ile Tyr Lys Ala Leu Phe Lys Glu Glu Lys 55 Asn Ser Asp Val Ala Val Met Ala Leu Asp Lys Val Trp His Leu His 75 70 Lys Val Tyr Leu Ser Gln Ser Pro Tyr Phe Tyr Thr Met Phe Asn Gly Thr Trp Arg Glu Ala Gln Gln Asn Phe Ile Gln Ile Thr Ile Leu Asp 105 Asp Arg Ile Thr Val Ala Ser Leu Asp Ala Val Phe Gly Ser Met Tyr 120 125 Ser Asp Glu Ile Glu Ile Glu Ser Ala Asp Val Ile Ser Val Leu Ala 135 140 Thr Ala Thr Leu Phe His Leu Asp Gly Ile Ile Asp Lys Cys Ala Glu 150 155 Val Met Val Asp Asn Ile Ser Pro Glu Thr Ala Ile Gln Tyr Tyr Glu 170 165 Ala Ala Cys Gln Tyr Gly Val Val Gly Val Lys Lys Ser Thr Phe Gln 185 Trp Phe Gln Ile Asn Leu Leu Ser Ile Tyr Ser Lys Gln Pro Asn Leu 200 205 Leu Arg His Ile Ser Ile Glu Leu Met Ser Ala Leu Thr Ala Ser Pro 215 220 Asp Leu Tyr Val Met Gln Thr Glu Phe Ser Leu Tyr Thr Leu Leu Arg 230 235 Thr Trp Met Phe Leu Arg Leu His Pro Asp Tyr Asp Pro Glu Asp Pro 245 250 Val Gln Arg Ala Glu Ala Leu Lys Thr Gln Glu Leu Leu Val Asn Ala 265 260 270 Gly Val Glu Thr His Ala Pro Ser Gly Asp Val Val Gln Trp Thr Tyr 280 Phe Thr Ser Arg Ser Glu Glu Arg Ser Phe Leu Ala Thr Pro Glu Gly 295 290 300

Gln Pro Tyr Val Lys Val Phe Gln Lys Leu Arg Thr Gln Tyr Leu Thr 310 315 Asn His Tyr Met Asp Leu Lys Ile Ile Tyr Asn Asp Asn Ile Ile Pro 325 330 Lys Glu Trp Leu Tyr Arg His Ile His Asn His Trp Asp Ala Leu Leu 345 Arg Ile Asp His Gly Gln Glu Asp Cys Ser Pro Gln Gln Leu Asp Asp 360 Glu Gln Phe Phe Glu Asn Cys Met Arg Cys Gly Arg Met Leu Leu Glu 375 Pro Gly Tyr Gln Lys Trp Arg Trp Thr Gly Phe Asn Phe Gly Met Asp 390 395 Leu Ile Leu Ile Met Asp Ser Arg Arg Leu Asn Ile Arg Arg His His 410 Arg His Glu His Glu Arg Val Leu Ser Leu Gln Thr Lys Arg Lys Phe 420 425 Met Val Arg Thr Thr Val Thr Ser Ile Asn Ala Gln Arg Gln Ala Val 440 Phe Thr Gln Thr Ser Glu Ile Cys Ser Leu Ser Leu Glu Lys Asn Glu 455 460 Glu Val Pro Leu Met Val Leu Asp Pro Lys Leu Val His Pro Leu Leu 465 470 475 Ile Ser Ile Asn Met Leu Val Val Met Pro Pro Asn Gln Ser Phe Lys 490 Glu Ile Val Pro Leu Ser Glu Glu Ala Thr Thr Ser Leu Ser Ile Pro 505 Ile Ser Glu Ile Gly Ala Asn Ser Asp Arg Pro Leu Ser Pro Ser Ser 520 Ala Asp Asp Ser Ala Val Phe Ile Gly Asp Ser Glu Pro Ser Thr Pro 535 540 Ser Ser Pro Ala Pro Arg Pro Arg Ile Ala Trp Ser Ala Ser Glu Thr 550 560 Gly Ala Ile Cys Gly Gln Leu Ala Cys 565

<210> 4

<211> 1437

<212> DNA

<213> Artificial Sequence

<220>

<223> Degenerate nucleotide sequence encoding ZGCL-1
 polypeptide of SEQ ID NO:2

```
<400> 4
atgmgnmgng cnacngayws ngtnacngtn mgnggnwsnc ayaarmgnaa rmgnwsnwsn
                                                                       ^60
ggnwsnttyt gytaytgyca yccngaywsn garacngayg argaygarga rgarggngay
                                                                       120
garcarcarm gnytnytnaa yacnocnmgn mgnaaraary tnaarwsnac nwsnaartay
                                                                       180
athtaycara cnythttyyt naayggngar aaywsngaya thaarathtg yqcnythqqn
                                                                       240
gargartggw snythcayaa rathtayyth tgycarwsng ghtayttyws nwshatgtty
                                                                       300
wsnggnwsnt ggaargarws nwsnatgaay athathgary tngarathcc ngaycaraay
                                                                       360
athgaygtng argenythca rgtngcntty ggnwsnytht aymgngayga ygtnythath
                                                                       420
aarccnwsnm gngtngtngc nathytngcn gcngcntgyy tnytncaryt ngayggnytn
                                                                       480
athcarcart gyggngarac natgaargar acngtnaayg tnaaracngt ntgyggntay
                                                                       540
tayacnwsng cnggnacnta yggnytngay wsngtnaara araartgyyt ngartggytn
                                                                       600
ytnaayaayy tnatgacnca ycaraaygtn garytnttya argarytnws nathaaygtn
                                                                       660
atgaarcary tnathqqnws nwsnaayytn ttyqtnatqc arqtngarat qqayathtay
                                                                       720
acngenytna araartggat gttyytnear ytngtneenw sntggaaygg nwsnytnaar
                                                                       780
carytnytna engaraenga ygtntggtty wsnaarearm gnaargaytt ygarggnatg
                                                                       840
genttyytng aracngarca rggnaarcen ttygtnwsng tnttymgnea yytnmgnytn
                                                                       900
cartayatha thwsngayyt ngcnwsngcn mgnathathg arcargaygc ngtngtnccn
                                                                       960
wsngartggy tnwsnwsngt ntayaarcar cartggttyg cnatgytnmg ngcngarcar
                                                                     1020
gaywsngarg tnggnccnca rgarathaay aargargary tngarggnaa ywsnatgmgn
                                                                     1080
tgyggnmgna arytngcnaa rgayggngar taytgytggm gntggacngg nttyaaytty
                                                                     1140
ggnttygayy tnytngtnac ntayacnaay mgntayatha thttyaarmg naayacnytn
                                                                     1200
aaycarccnt gywsnggnws ngtnwsnytn carconmgnm gnwsnathgc nttymgnytn
                                                                     1260
mgnytngcnw snttygayws nwsnggnaar ytnathtgyw snmgnacnac nggntaycar
                                                                     1320
athytnacny tngaraarga ycargarcar gtngtnatga ayytngayws nmgnytnytn
                                                                     1380
athttyccny tntayathtg ytgyaaytty ytntayathw snccngaraa raaraar
                                                                     1437
      <210> 5
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide ZC12991
     <400> 5
ctgctgtatt aaaccgtcca actg
                                                                        24
      <210> 6
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide ZC12992
```

<400> 6 ctagtatgtt cagtggttct tgaa	24
<210> 7 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC694	
<400> 7 taatacgact cactataggg	20
<210> 8 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC1681	
<400> 8 gaataagagt atagaaga	18
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC14122	
<400> 9 cagtattcag acatttaacc	20
<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide ZC14183	
<400> 10	

gaaggtacta cagcatcttg	_20
<210> 11 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide ZC14184	
<400> 11 aagtggtgat gaacttggac	20
<210> 12 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Olinucleotide ZC14237	
<400> 12	
gagatcgcac cattgcactc	20
<210> 13	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide ZC14238	
<400> 13	
gctactgttt ccaactgatc	20
<210> 14	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide ZC14284	
<400> 14	
gtgcgatctc ggctcactgc	20

WO 99/09168 PCT/US98/17243

11

<210> 15 <211> 20 <212> DNA <213> Artificial Sequence	•
<220> <223> Oligonucleotide ZC14345	
<400> 15 atgtcgtctt ggagatcggg	20
<210> 16 <211> 200 <212> DNA <213> Artificial Sequence	
<220> <223> Northern probe	
<pre><400> 16 ctagtatgtt cagtggttct tggaaagaat ccagcatgaa tattattgaa ctggagattc ctgaccagaa cattgatgta gaagcactgc aggttgcatt tggttcactg tatcgagatg atgtcttgat aaagcccagt cgagttgttg ccattttggc agcagcttgt ttgctgcagt tggacggttt aatacagcag</pre>	60 120 180 200

INTERNATIONAL SEARCH REPORT

Inte ional Application No PCT/US 98/17243

		1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, 1, 1, 0
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C12N15/12 C07K14/47 C12Q1/68	3	
According to	o International Patent Classification (IPC) or to both national classifica	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification CO7K C12N C12Q A61K	on symbols)	
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields s	earched
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category ^a	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
X	JONGENS, T.A. ET AL.: "The germ gene product:" CELL, vol. 70, 1992, pages 569-584, XPC cited in the application	002089679	7,15,17
	<pre>* page 571: "results"; fig. 6; p. "isolation of gcl DNA"; "Producti polyclonal ant-gcl rabbit serum"</pre>	ion of	
Α	porycronar and ger rabbic seram	•	1-17
		-/	
X Funt	her documents are listed in the continuation of box C.	Patent family members are listed	I in annex.
"A" docume	stegories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international	"T" later document published after the int or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the	n the application but seory underlying the
which citatio	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	cannot be considered novel or cannot involve an inventive step when the d "Y" document of particular relevance; the cannot be considered to involve an in	t be considered to ocument is taken alone claimed invention oventive step when the
other	ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	document is combined with one or ments, such combination being obvious in the art. "&" document member of the same palent	ous to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
1	2 January 1999	2 9. 01. 99	
Name and	malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Hermann, R	

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/US 98/17243

		PC1/US 98	7/ 1/243
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		T- : : : : : : : : : : : : : : : : : : :
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	DATABASE EMBL European Bioinformatics Institute Sequence with Accession Number AA348897, 18 April 1997 XP002089681 see abstract & ADAMS, M.D. ET AL.: "Initial assessment of human gene diversity" NATURE, vol. 377, 1995, pages 3-174,		1-17
A	AFFARA, N.A. ET AL.: "The identification of novel gene sequences of the human adult testis" GENOMICS, vol. 22, 1994, pages 205-210, XP002089680	š	
		·	

International application No. PCT/US 98/17243

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim(s) are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X Claims Nos.: 16; parts of 7 and 17 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 16; parts of 7 and 17

Claim 16 is drafted to a binding protein as such, without giving the slightest indication as to the structural features of said binding protein; the only information given concerns the (target-) protein of claim 1. A ligand is not sufficiently characterised by a reference to its target. A plethora of known proteins may bind to the protein of claim 1. Claim 7 is drafted to oligonucleotide as such: a probe is not sufficiently characterised by "at least 14 contiguous nucleotides", derived from any location of a polynucleotide or its complementary sequence, which may morover vary to a considerable extent. A plethora of compounds may fulfill said vague requirements. The search for claims 7 (and 17) has been restricted to unmodified fragments of SEQ ID NO 4, and the actually used oligos.