ECE 595 HW5

Ruijie Song

Apr.1.2021

Exercise 1

```
1. a) y = m = I \cdot , \cdot 
   ii) Agree on 3 out-sample pts: +8
                              : 47, +6, +4
                              : fa, f3, fs
6)
   i) g= ha= [0,0,0,0,0,0,0]
   ii) Agree on 3 out-samples pts: +1
                                   : 42, 43, 45
                                    : f7, f6, f4
o) i) g = [0,0,0,0,0,0,0]
    ii) Agree 3 out-sample pts. fa
                             ; +3, +5 + +8
                               · f1, f4, f6
                              : +2
```

Exercise 2

1. $\mu 1 = \mu rand = \mu min = 0.5$

2.

Figure 1. V1

Figure 2. Vrand

Figure 3. Vmin 3.

d. The coin1 and coin_rand obey the Hoeffding's bound, and coin_min does not. That is because the coin_min is not independent of the samples. E[V1] = E[Vrand] = 0.5.

However, E[Vmin] = 0.04, which is far away from μ .

Exercise 3.

b.

$$Z \wedge \left(\left(\xi + \frac{1}{2} \right) \log_{2} \left(\frac{N - \xi - \frac{1}{2}}{\xi + \frac{1}{2}} \right) + N \log_{2} \frac{N}{2(N - \xi - \frac{1}{2})} \right)$$

$$= 2 \wedge \left(\left(\xi + \frac{1}{2} \right) \left[\log_{2} \left(N - \xi - \frac{1}{2} \right) - \log_{2} \left(\xi + \frac{1}{2} \right) \right] + N \left[\log_{2} N - 1 - \log_{2} \left(N - \xi - \frac{1}{2} \right) \right]$$

$$= 2 \wedge \left(\left(\xi + \frac{1}{2} \right) \left[\log_{2} \left(\frac{1}{2} - \xi \right) - \log_{2} \left(\xi + \frac{1}{2} \right) \right] + \left[\xi - 1 - \log_{2} \left(\frac{1}{2} - \xi \right) \right] \right)$$

$$= 2 \wedge \left(\left(\xi + \frac{1}{2} \right) \log_{2} \left(\frac{1}{2} - \xi \right) - \left(\xi + \frac{1}{2} \right) \log_{2} \left(\xi + \frac{1}{2} \right) - 1 - \log_{2} \left(\frac{1}{2} - \xi \right) \right)$$

$$= 2 \wedge \left(-1 - \left(\xi + \frac{1}{2} \right) \log_{2} \left(\xi + \frac{1}{2} \right) - \left(\frac{1}{2} - \xi \right) \log_{2} \left(\frac{1}{2} - \xi \right) \right) N$$

$$\therefore \beta = \frac{N}{N}$$

$$\therefore \beta = \frac{N}{N}$$

$$= 2 \wedge \left(-1 - \left(\xi + \frac{1}{2} \right) \log_{2} \left(\xi + \frac{1}{2} \right) - \left(\frac{1}{2} - \xi \right) \log_{2} \left(\frac{1}{2} - \xi \right) \right) N$$