5. Z-Transform for DT systems

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.

Today's Lesson:

- 1. The DT complex exponential
- 2. Z Transform definition, examples
- Region of Convergence
- 4. Properties of ROC
- 5. Properties of z Transform

The complex exponential

Most of the signals that we see in DT systems can be represented by a complex exponential:

$$z^n = re^{j\omega n}$$

- A. $5(2^n) \rightarrow$ exponentially increasing
- B. $3(-0.1^n) \rightarrow$ exponentially decreasing, oscillating
- C. $cos(0.5n) = 0.5(e^{j0.5n}) + 0.5(e^{-j0.5n}) \rightarrow oscillating$
- D. $5(1^n) \rightarrow constant$

The complex exponential

> Consider a DT system, with $x[n] = z^n$ as an input

$$y[n] = h[n] * x[n], x[n] = z^n$$

$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{\infty} h[k]z^{n-k}$$

The complex exponential

> Consider a DT system, with $x[n] = z^n$ as an input

$$y[n] = h[n] * x[n], \quad x[n] = z^n$$

$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{\infty} h[k]z^{n-k} \qquad \text{In the perspective of z, DT convolution becomes multiplication}$$

$$y[n] = z^n \sum_{k=-\infty}^{\infty} h[k]z^{-k} = z^n H(z)$$

The z Transform

> For a discrete-time, LTI system

$$y[n] = z^n \left(\sum_{k=-\infty}^{\infty} h[k] z^{-k} \right) = z^n H(z)$$

- Output to a complex exponential is also a complex exponential of the same frequency
- \triangleright Output is scaled by a complex factor H(z)
- > We define H(z) as the **z-transform** of the impulse response h[n].

> Determine the z-transform of the following sequences.

$$x_1[n]=\{1,2,3,4,5\}$$
 $x_2[n]=a^nu[n]$ $x_3[n]=-a^nu[-n-1]$ (a is a real number)

$$X_1(z) = \sum_{k=-\infty}^{\infty} x_1[k]z^{-k}$$

$$= \sum_{k=0}^{4} x_1[k]z^{-k}$$

$$= 1z^{-0} + 2z^{-1} + 3z^{-2} + 4z^{-3} + 5z^{-4}$$
 $X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 5z^{-4}$
for all z except $z = 0$

$$X_2(z) = \sum_{k=-\infty}^{\infty} x_2[k] z^{-k}$$

$$= \sum_{k=0}^{\infty} a^k z^{-k}$$

$$= 1 + a^1 z^{-1} + \dots + a^k z^{-k} + \dots$$

$$= \frac{1}{1 - az^{-1}}, \text{ if } |az^{-1}| < 1$$

$$X_2(z) = \frac{1}{1 - az^{-1}}, \text{ if } |z| > |a|$$

$$X_3(z) = \sum_{k=-\infty}^{\infty} x_3[k] z^{-k}$$
 $x_3[n] = -a^n u[-n-1]$ $= -\sum_{k=-\infty}^{-1} a^k z^{-k}$ $= -\sum_{m=0}^{\infty} (az^{-1})^{-m-1}$, where $m = -k-1$ $= -(az^{-1})^{-1} \sum_{m=0}^{\infty} (a^{-1}z)^m$

$$X_3(z) = \sum_{k=-\infty}^{\infty} x_3[k] z^{-k}$$

$$= -\left(az^{-1}\right)^{-1} \sum_{m=0}^{\infty} \left(a^{-1}z\right)^m$$

$$x_3[n] = -a^n u[-n-1]$$

$$= -\frac{\left(az^{-1}\right)^{-1}}{1-a^{-1}z}, \text{ if } |a^{-1}z| < 1$$

$$X_3(z) = \frac{1}{1-az^{-1}}, \text{ if } |z| < |a|$$

$$x_1[n] = \{1, 2, 3, 4, 5\},$$

$$x_2[n] = a^n u[n],$$

$$x_3[n] = -a^n u[-n-1], \quad X_3(z) = \frac{1}{1-az^{-1}},$$

$$X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 5z^{-4},$$

$$X_2(z) = \frac{1}{1-az^{-1}},$$

$$X_3(z) = \frac{1}{1 - az^{-1}}$$

for all
$$z$$
 except $z = 0$

if
$$|z| > |a|$$

if
$$|z| < |a|$$

- \succ X(z) is usually a rational expression in z⁻¹.
- The expression for X(z) is accompanied by a restriction on the value of z. We call this restriction the **region of convergence** (ROC).

$$x_1[n] = \{1, 2, 3, 4, 5\},$$
 $X_1(z) = 1 + 2z^{-1} + 3z^{-2}$ for all z except $z = 0$ $x_2[n] = a^n u[n],$ $X_2(z) = \frac{1}{1 - az^{-1}},$ if $|z| > |a|$ $x_3[n] = -a^n u[-n-1],$ $X_3(z) = \frac{1}{1 - az^{-1}},$ if $|z| < |a|$

Note that two or more different signal can have the same expression for X(z). The **complete z-domain representation** of a signal x[n] **includes the expression for X(z) and the ROC!**

	Sequence $x[n]$	z-Transform $X(z)$	ROC
1.	$\delta[n]$	1	All z
2.	u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3.	$a^nu[n]$	$\frac{1}{1 - az^{-1}}$	z > a
4.	$-a^nu[-n-1]$		z < a
5.	$na^nu[n]$	$\frac{1 - az^{-1}}{az^{-1}}$ $\frac{az^{-1}}{(1 - az^{-1})^2}$	z > a

		A 100 A	
6.	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1 - az^{-1})^2}$	z < a
7.	$(\cos \omega_0 n)u[n]$	$\frac{1 - (\cos \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
8.	$(\sin \omega_0 n) u[n]$	$\frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
9.	$(r^n \cos \omega_0 n) u[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
10.	$(r^n \sin \omega_0 n) u[n]$	$\frac{(\sin \omega_0)z^{-1}}{1 - 2(r\cos \omega_0)z^{-1} + r^2z^{-2}}$	z > r

The Region of Convergence

 \rightarrow For convergence of X(z):

$$|X(z)| \le \sum_{n=-\infty}^{\infty} \left| x[n]z^{-n} \right| = \sum_{n=-\infty}^{\infty} \left| x[n]r^{-n} \right| < \infty$$

- Since $z = re^{j\omega n}$, the magnitude of \mathbf{r} at different $\boldsymbol{\omega}$ affects the convergence of X(z)
- Defined by circular regions

The Region of Convergence

ightharpoonup Illustration of $z = re^{j\omega n}$

$$x_1[n] = \{1, 2, 3, 4, 5\},$$
 $X_1(z) = 1 + 2z^{-1} + 3z^{-2}$ for all z except $z = 0$

$$x_1[n] = \{1, 2, 3, 4, 5\},$$
 $X_1(z) = 1 + 2z^{-1} + 3z^{-2}$ for all $z + 4z^{-3} + 5z^{-4}$, except $z = 0$

$$x_2[n] = a^n u[n],$$

$$X_2(z) = \frac{1}{1-az^{-1}},$$

if
$$|z| > |a|$$

$$x_2[n] = a^n u[n],$$

$$X_2(z) = \frac{1}{1 - az^{-1}},$$

if
$$|z| > |a|$$

$$x_3[n]=-a^nu[-n-1], \quad X_3(z)=rac{1}{1-az^{-1}}, \qquad ext{if } |z|<|a|$$

$$x_3[n]=-a^nu[-n-1], \quad X_3(z)=rac{1}{1-az^{-1}}, \qquad ext{if } |z|<|a|$$

$$X_3(z)=rac{z}{z-a} \qquad ext{If a > 0}$$

1. The ROC of X(z) consists of a ring in the z-plane **centered at the origin.**

2. The ROC does not contain any poles.

3. The ROC is a connected (a single contiguous) region.

4. If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly z = 0 and/or $z = \infty$. (depends on causality)

1.
$$X_1 = [1 \ 2 \ 3 \ 4 \ 5 \ \underline{6}] \rightarrow \text{except } z = \infty$$

2.
$$X_2 = [-1 \ 1 \ -1 \ 1 \ -1 \ 1] \rightarrow \text{except } z = 0$$

3.
$$X_3 = [0 \ 1 \ \underline{0} \ 1 \ 1 \ 0] \rightarrow \text{except } z = 0, \infty$$

- 5. If x[n] is a right-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also be in the ROC.
- 6. If x[n] is a left-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| < r_0$ will also be in the ROC.
- 7. If x[n] is two sided, and if the circle $|z| = r_0$ is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle $|z| = r_0$.

Cajote, Lucas EE 274 / COE 197E

29

DT operations in the z-domain

	Property	Sequence	Transform	ROC
		x[n]	X(z)	R_{χ}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
2.	Time shifting	x[n-k]	$z^{-k}X(z)$	R_x except $z = 0$ or ∞
3.	Scaling	$a^n x[n]$	$X(a^{-1}z)$	$ a R_{x}$
4.	Differentation	nx[n]	$-z\frac{dX(z)}{dz}$	R_{x}
5.	Conjugation	$x^*[n]$	$X^*(z^*)$	R_{x}

DT operations in the z-domain

	Property	Sequence	Transform	ROC
		x[n]	X(z)	R_{χ}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
6.	Real-part	$Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	At least R_x
7.	Imaginary part	$\text{Im}\{x[n]\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	At least R_x
8.	Folding	x[-n]	X(1/z)	$1/R_x$
9.	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
10.	Initial-value theorem	x[n] = 0 for n < 0	$x[0] = \lim_{z \to \infty} X(z)$	

Some Notes on Linearity

➤ The ROC of the linear combination is at least the **intersection of the ROCs** of the individual sequences

$$ROC: R_{x_1} \cap R_{x_2}$$

- ➤ If the linear combination yields a finite-duration sequence, the ROC becomes dependent on this resulting sequence.
- ➤ If there is no intersection on the ROCs, then there is no z-transform

Determine the z-transform of the following sequence:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n-1]$$

$$x[n] = \left[\left(\frac{1}{2}\right)^n u[n]\right] + \left[2^n u[-n-1]\right]$$

$$a^n u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-az^{-1}}, \quad |z| > |a|$$

$$-a^n u[-n-1] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-az^{-1}}, \quad |z| < |a|$$

$$-a^n u[-n-1] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-az^{-1}}, \quad |z| < |a|$$

$$\left(\frac{1}{2}\right)^n u[n] \quad \overset{z}{\longleftrightarrow} \quad \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| > \frac{1}{2} \qquad 2^n u[-n-1] \quad \overset{z}{\longleftrightarrow} \quad -\frac{1}{1 - 2z^{-1}}, \quad |z| < 2$$

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n-1]$$

$$X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - 2z^{-1}}$$

$$ROC: \left(|z| > \frac{1}{2}\right) \cap (|z| < 2) = \frac{1}{2} < |z| < 2$$

Determine the z-transform of the following sequence:

$$x[n] = 2^n u[n+3]$$

Determine the z-transform of the following sequence:

$$x[n] = 2^n u[n+3]$$
 $a^n u[n] \stackrel{z}{\longleftrightarrow} \frac{1}{1-az^{-1}}, \quad ROC : |z| > |a|$
 $x[n] = 2^n u[n+3]$
 $= 2^{-3} 2^{n+3} u[n+3]$

$$x[n] = 2^{n}u[n+3]$$

$$= 2^{-3}2^{n+3}u[n+3]$$

$$2^{n}u[n] \leftrightarrow \frac{1}{1-2z^{-1}}, \quad |z| > 2$$

$$2^{n+3}u[n+3] \leftrightarrow \frac{z^{3}}{1-2z^{-1}}, \quad \infty > |z| > 2$$

$$2^{n}u[n+3] \leftrightarrow \frac{2^{-3}z^{3}}{1-2z^{-1}}, \quad \infty > |z| > 2$$

Convolve the two signals using z-transform:

$$x[n] = 3^{n+1}u[n], \quad w[n] = 3^nu[n-1]$$

$$x[n] = 3^{n+1}u[n] = (3)3^{n}u[n]$$

$$w[n] = 3^{n}u[n-1] = (3)3^{n-1}u[n-1]$$

$$(3)3^{n}u[n] \longleftrightarrow \frac{3}{1-3z^{-1}}, ROC : |z| > 3$$

$$(3)3^{n-1}u[n-1] \longleftrightarrow \frac{3z^{-1}}{1-3z^{-1}}, ROC : |z| > 3$$

$$x[n] * w[n] \longleftrightarrow \left(\frac{3}{1 - 3z^{-1}}\right) \left(\frac{3z^{-1}}{1 - 3z^{-1}}\right), ROC : |z| > 3$$

$$\longleftrightarrow \frac{9z^{-1}}{(1 - 3z^{-1})^2}, ROC : |z| > 3$$

5.
$$na^nu[n]$$

$$\frac{az^{-1}}{(1 - az^{-1})^2}$$

$$x[n] * w[n] = (3)n3^n u[n] = n3^{n+1} u[n]$$

Summary

- Z Transform is a mathematical tool to analyze discrete time signals in a new domain
- Z Transform existence is dictated by the Region of Convergence
- Z Transform properties can be useful in analyzing and solving the responses in a DT system

For further reading...

Chapter 3.1-3.2, 3.4
"Applied Digital Signal Processing, by Manolakis, D. & Ingle, V."

Chapters 10.0-10.2, 10.5
"Signals and Systems by Oppenheim, A & Willsky, A."

5. Z-Transform for DT systems

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.