Lecture

_

Decision Trees

Histogram rules - Local averaging

- K-NN limitations: a nearest neighbor may be very far from X!
- Consider a **partition** of the feature space:

$$C_1 \bigcup \cdots \bigcup C_K = \mathcal{X}$$

- Apply the **majority rule**: suppose that X lies in C_k ,
 - Count the number of training examples with positive label lying in C_k
 - ② If $\sum_{i: X_i \in C_k} \mathbb{I}\{Y_i = +1\} > \sum_{i: X_i \in C_k} \mathbb{I}\{Y_i = -1\}$, predict Y = +1. Otherwise predict Y = -1.
- This corresponds to the "plug-in" classifier $2\mathbb{I}\{\widehat{\eta}(x)\}-1$, where

$$\widehat{\eta}(x) = \sum_{k=1}^{K} \mathbb{I}\{x \in C_k\} \frac{\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1, \ X_i \in C_k\}}{\sum_{i=1}^{n} \mathbb{I}\{X_i \in C_k\}}$$

is the Nadaraya-Watson estimator of the posterior probability.

Kernel rules - Local averaging

- Smooth the estimator/boundary decision!
- Replace the indicator function by a **convolution kernel**:

$$K: \mathbb{R}^d o \mathbb{R}_+, \;\; K \geq 0$$
, symmetric and $\int K(x) dx = 1$

• Bandwidth h > 0 and **rescaling**

$$K_h(x) = \frac{1}{h}K(x/h)$$

Examples: Gaussian kernel, Novikov, Haar, etc.

Kernel rules - Local averaging

- If $\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1\} K_h(x X_i) > \sum_{i=1}^{n} \mathbb{I}\{Y_i = -1\} K_h(x X_i)$, predict Y = +1. Otherwise predict Y = -1.
- ullet This corresponds to the "plug-in" classifier $2\mathbb{I}\{\widetilde{\eta}(x)\}-1$, where

$$\widetilde{\eta}(x) = \frac{\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1\} K_h(x - X_i)}{\sum_{i=1}^{n} K_h(x - X_i)}$$

is the Nadaraya-Watson estimator of the posterior probability.

• Statistical argument: if η is a "smooth" function, $\widetilde{\eta}$ may be a better estimate than $\widehat{\eta}$ (smaller variance but... biased)

• If the partition is picked in advance (before observing the data)...

• If the partition is picked in advance (before observing the data)... many cells may be empty!

- If the partition is picked in advance (before observing the data)... many cells may be empty!
- Choose the partition depending on the training data!

- If the partition is picked in advance (before observing the data)... many cells may be empty!
- Choose the partition depending on the training data!
- The CART Book Breiman, Friedman, Olshen & Stone (1986)
- ullet Greedy Recursive Dyadic Partitioning: $X=(X^{(1)},\ldots,X^{(d)})\in\mathbb{R}^d$

- Training data $(X_1, Y_1), \ldots, (X_n, Y_n)$
- For any subset $R \subset \mathcal{X}$, consider the **majority label**: \bar{Y}_R where

$$ar{Y}_R=+1 ext{ if } \sum_{i=1}^n \mathbb{I}\{Y_i=+1,\ X_i\in R\}>rac{1}{2}\sum_{i=1}^n \mathbb{I}\{X_i\in R\}$$
 and $ar{Y}_P=-1 ext{ otherwise}$

• One starts from the root node $R=\mathcal{X}=\mathcal{C}_{0,0}$ and the (constant classifier) $\bar{Y}_{\mathcal{C}_{0,0}}$. The goal pursued is to split the cell $\mathcal{C}_{0,0}$

$$C_{0,0} = C_{1,0} \bigcup C_{1,1}$$

so as to refine the classifier and produce

$$g_1(x) = \bar{Y}_{C_{1,0}} \mathbb{I}\{x \in C_{1,0}\} + \bar{Y}_{C_{1,1}} \mathbb{I}\{x \in C_{1,1}\}.$$

"Growing the Tree"

• The partition of the cell $C_{0,0} = \mathcal{X}$ is selected in order to minimize $\widehat{L}_N(g_1)$, or equivalently the *impurity measure*

$$\sum_{i=1}^{N} \mathbb{I}\{X_i \in C_{1,0}, Y_i \neq \bar{Y}_{C_{1,0}}\} + \mathbb{I}\{X_i \in C_{1,1}, Y_i \neq \bar{Y}_{C_{1,1}}\}$$

Consider subsets of the form

$$C_{1,0} = C_{0,0} \cap \{X^{(j)} \le s\},$$

 $C_{1,1} = C_{0,0} \cap \{X^{(j)} > s\}.$

• It is sufficient to choose the best split values among the $X_i^{(j)}$'s!

"Growing the Tree"

- "Growing the Tree": iterate in order to split $C_{j,k}$ if it is not pure and contains at least n_{\min} training observations
 - For j=1 to d, find s (best split value) so as to minimize the impurity of the regions

$$C_{j,k} \cap \{X_j > s\}$$
 and $C_{j,k} \cap \{X_j \le s\}$

- 2 Find the best split variable X_j
- Measuring **impurity**:
 - misclassification error
 - Gini index

The CART algorithm

- Qualitative variables
- Incomplete data
- Relative Importance
- Randomization
- Diagonal splits
- Asymmetric cost
- Multiclass, regression
- Best subtrees, "pruning" the tree
- Alternative tree learning algorithm: C4.5 (Ross Quinlan)