

Graduation Project Presentation

Team

Saleh Adel Saleh

Shehab Mostafa Fahmy

Abdelaziz Hossam Abdelaziz

Abdulrhman Hosny Muhammed

Muhammed Mahros Muhammed

Supervisors

- Dr. Salsabil Amin
- TA. Ahmed Hatem

Agenda

- FlashBack
- System Architecture
- Diagrams
- Finished Phases
- Demo
- What's Next?
- Time Plan
- References

FlashBack From first seminar

What is TA'AM?

Objectives

- Offer a specialized platform for users to allow them to showcase their surplus clothing, and buy suitable ones at a relatively low cost.
- Enhance the user experience by implementing multiple machine learning models to assess image suitability, extract various attributes, and offer diverse search capabilities.

Phases Description

Image Assessment: This phase ensures that the quality of the image is good enough. for our processing efficiency and the user experience.

Phases Description

Attributes Extraction: In this phase, we extract different attributes from the image such as category, size, color, (season, gender, description, ...) according to the data.

Phases Description

Search Capabilities: The phase we provide the user to search for a specific item using an image or a brief description to find the closest items.

Search by images:

Search by text:

I need a basic navy T-shirt with a round nick

System Architecture

Diagrams

Use Case

ERD

Finished Phases

Quality Assessment

- Using the <u>BRISQUE</u> model, the image quality score was computed, and a specific threshold of 30% was applied for image assessment.
- Brisque is a model that predicts how good an image looks without needing another image for comparison.
- Brisque extracts features like contrast, brightness, and texture from images, then uses Support Vector Regression (SVR), to link these features to quality scores based on a dataset of manually rated images.

Features Extraction

Category Dataset

Agrigorev's Custom Kaggle Dataset

- This dataset is a 7GB "5k product image" of 20 different classes taken by users.
- 80% of the dataset used for training and 20% for testing.

Dataset Description

- To solve the problem of data imbalance:
 - Data Augmentation using FastAl library applied.
 - Pre-trained model was used.

Category Classification

- This model validates whether the image contains clothes or not, based on that, it returns the classified category or "Other".
- In the case of "Other", the image is rejected.
- We utilized the <u>Pre-trained ResNet34</u> architecture on <u>Agrigorev's custom Kaggle dataset</u> for category classification.

First Trial:

In the initial attempt, a custom CNN architecture was employed on FashionMNIST dataset to classify categories. Despite achieving a notable accuracy of approximately 92.4%, the approach was deemed inadequate due to its reliance on 28x28 grayscale images, which did not meet our specified criteria.

Second Trial:

• Next, we utilized <u>Agrigorev's custom Kaggle dataset</u> with a <u>pre-trained ResNet34</u> architecture which achieved an accuracy of **88.5%** after **50 epochs**. This dataset, sourced directly from users, is closely aligned with our application's criteria, making it a <u>suitable choice for our purposes</u>.

Third Trial:

• <u>DeepFashion2</u> dataset was employed with a <u>pre-trained ResNet50</u> architecture. However, it was not accepted, as Agrigorev's dataset proved to be more compatible with the images likely to be submitted, given that a significant portion of the DeepFashion2 dataset comprised images of clothing being worn.

• Here's a summary table outlining the datasets and architectures employed for category classification:

Dataset	Architecture	Accuracy
FashionMNIST	Custom CNN architecture	e=10 -> 92.4%
Agrigorev's Custom Kaggle Dataset	ResNet34	e=50 -> 88.5% e=100 -> 82.3%
DeepFashion2	ResNet50	e=40 -> 90.5%

Higher accuracy doesn't mean it satisfies our criteria.

Size Estimation

- This model is used to calculate the classified cloth size (width x height).
- Model Pipeline is:
 - Key-points detection model.
 - Card detection model.
 - The predicted key-points and the card measurements are inserted into an equation to calculate the estimated size of the cloth.

Key-points Dataset

DeepFashion2

DeepFashion2 is a comprehensive fashion dataset. It contains 286K diverse images of 13 categories from both commercial shopping stores and consumers.

Dataset Description

- To solve the problem of data imbalance:
 - Each category has a separate model

DeepFashion2 Challenges

Variability in the number of items per image:

Solutions:

- Ignore images with more than one item.
- Crop images to ensure each one contains only one category.
- Differences in the number of key-points per category:

Solutions:

- Train a separate model for each category.
- Standardize the number of landmarks across all categories.
 - Choose some specific points.
 - Pad and Trim.

Key-points Detection

- <u>13 pre-trained ResNet50</u> models were employed to extract key-points for each category.
- The height and width of the product were determined by calculating the distances between specific key-points.

First Trial:

- A <u>basic CNN model</u> was employed for key-point detection, but it yielded unsatisfactory results with a <u>loss of 7000</u> after 5 epochs, indicating its poor performance.
- The model utilized here focused on singlecategory images.

Second Trial:

- MobileNetV2 was utilized for keypoint detection, achieving a loss of 2000 over 10 epochs.
- The model utilized here focused on singlecategory images.

Third Trial:

- <u>ResNet50</u> was employed for some specific key-points detection with the following results:
 - With a learning rate of **0.001** and **5 epochs**, the validation loss was **794.31640625**.
 - With a learning rate of **0.001** and **15 epochs**, the validation loss decreased to **598.56103515625**.
 - Utilizing a learning rate of 0.003019 and training for 10 epochs, the validation loss increased to 912.736328125.

Fourth Trial:

13 pre-trained ResNet50
 models were employed to
 extract key-points for each
 category.

Category	mAP	
short sleeve top	0.81113302167	
skirt	0.86460204081	
vest	0.79334654842	
vest dress	0.82715819403	
short sleeve dress	0.79205821998	
short sleeve outwear	0.65667514548	
trousers	0.86246394137	
shorts	0.89364662171	
sling dress	0.72155837022	
long sleeve dress	0.62783778636	
long sleeve outwear	0.69307984813	
sling	0.68970313825	
long sleeve top	0.69068483233	
short sleeve top	0.81113302167	

Category	MSE	
short sleeve top	0.058824	
skirt	0.065241	
vest	0.062255	
vest dress	0.057008	
short sleeve dress	0.063092	
short sleeve outwear	0.098977	
trousers	0.060573	
shorts	0.057842	
sling dress	0.081455	
long sleeve dress	0.106946	
long sleeve outwear	0.094994	
sling	0.084006	
long sleeve top	0.093227	
short sleeve top	0.058824	

Fourth Trial:

13 pre-trained ResNet50 models
 were employed to extract key-points
 for each category.

Fifth Trial:

• Pre-trained ResNet50 model was employed to extract key-points and classify categories simultaneously. The best results were obtained with a loss of 0.085964 and a category accuracy of 88.3%, trained for 40 epochs with a learning rate of 0.0001.

Target	Architecture	Validation MSE Loss
Single Category	Basic CNN	e=5 -> 7000+
Single Category	MobileNetV2	e=10 -> 2000+
Single Category	ResNet50	e=15 -> 598+
Single Category	13 pre-trained ResNet50	-
All Categories	Multi-task using pretrained ResNet50	e=40 -> 0.0859

Card Detection

- This model processes an image containing a card, detects its boundaries, detects the largest contour, calculates the conversion factor, and returns it.
- This conversion factor allows for measurements in the image to be translated to real-world units (centimeters).
- Model Pipeline is :
 - Preprocessing
 - Contour Detection
 - Detect the largest contour
 - Get the width and height in pixels
 - Convert it from pixels to cm

Estimated Size Equation

- An EN 13402 Standard for clothing size designation was used to map the measurements from centimeters to real-world measurements "S, M, L, XL".
- This is an example of the equation applied to get the waist of trousers:

$$waist = rac{(right-left) imes 8.5}{reference\ width\ pixels}$$

Color Detection

- The image was cropped using the detected key-points to ignore background colors.
- <u>Kmeans</u> is used to segment the image into regions of similar colors and identify representative colors for each region, forming the color palette.
- The execution time to extract the most three dominant colors is approximately **0.1 seconds**.

Search By Image

- The MobileNet model extracts features from the query image, generating a 1 x 50176-dimensional vector within a time frame of 20ms to 50ms.
- Utilizing cosine-similarity metrics, the closest 5 products to the query image are calculated.
 Comparing the query image with 5000 images, from the closest to the farthest, typically takes approximately 0.7s to 1s.

Experiments and results

- The **vector dimensionality is reduced to 5000** using an AvgPooling Layer followed by a Dense Layer, resulting in the model being **10 times faster**.
- Comparison is limited to the same category rather than all categories, making the model 13 times faster.
- Overall, the model now takes around 30ms to 50ms to execute.

	VGG16	ResNet50	MobileNet
Feature Extraction time per image	1s to 2s	20ms to 50ms	20ms to 50ms
Vector Dimension	25088	100352	50176
Cosine-similarity with 5000 images	0.4s to 0.7s	1.5s to 1.8s	0.7s to 1s

- VGG16 Results weren't satisfying compared to ResNet50 and MobileNet.
- Given that the results of <u>ResNet50</u> and <u>MobileNet</u> were similar, <u>MobileNet was selected</u> due to its <u>faster processing speed</u>.

Demo

What's Next?

- Apply the text-based search model.
- Complete the documentation by providing comprehensive information on all aspects of the project.

Time Plan

Time Plan

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27 1			A 2 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A		1. 1.
	1-Oct	1-Nov	1-Dec	1-Jan	1-Fab	1-Mar	1-Apr	1-May
Survey and related topics	45							
Requirements Specifications		14						
Project Analysis		14						
Project Design		60)					
Project Implementation					135			
Project Testing					120			
Project Integration							14	
Project Improvements								14
Project Documentation					200			

References

References

- 1. A. Paulauskaite-Taraseviciene, et al., "An intelligent solution for automatic garment measurement using image recognition technologies," Applied Sciences, vol. 12, no. 9, pp. 4470, 2022.
- 2. B. Lao and K. A. Jagadeesh, "Convolutional Neural Networks for Fashion Classification and Object Detection," 2015.
- 3. S. S. Islam, E. K. Dey, M. N. A. Tawhid, and B. M. M. Hossain, "A CNN Based Approach for Garments Texture Design Classification," Adv. technol. innov., vol. 2, no. 4, pp. 119—125, May 2017
- 4. T. Sennikova, "Clothes Classification with the DeepFashion Dataset and Fastai," towardsdatascience, Available: https://towardsdatascience.com/clothes-classification-with-the-deepfashion-dataset-and-fast-ai-1e174cbf0cdc, Accessed: 19/11/2023.
- 5. M.Ibrahim Mohamed, "CalorieMe Image-based Calorie Estimator System", 2023

Thank you

Any Questions?