

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	739943
Project Title	Frappe Activity: mobile Phone Activity classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters

Bagging Classifier

The (params) define a grid for hyperparameter tuning of the Bagging Classifier (BClassifier), including min_child_weight, gamma, colsample_bytree, and max_depth. The Bagging Classifier is configured with a learning rate of 0.5, 100 estimators, using a binary logistic regression objective, and utilizing 3 threads for processing. GridSearchCV (xg_cv) is used with 5-fold cross-validation (cv=5), refitting the best model

(refit=True), evaluating based on accuracy (scoring="accuracy")

Decision Tree

The parameters (params) define a grid for hyperparameter tuning of the Decision Tree Classifier (DecisionTreeClassifier), including max_depth, min_samples_leaf, and criterion ('gini' or 'entropy'). GridSearchCV (dec_cv) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy")

```
# Define the hyperparameters and their possible values for tuning
param grid = {
    'criterion': ['gini', 'entropy'],
     'splitter': ['best', 'random'],
     'max_depth': [None, 2, 4, 6, 8,10],
    'min samples split': [2, 5, 10],
     'min samples_leaf': [1, 2, 4],
    'max_features': [None, 'sqrt', 'log2'],
    'min_impurity_decrease': [0.0, 0.1, 0.2],
    'ccp alpha': [0.0, 0.1 ,0.2]
# Initialize RandomizedSearchCV with DecisionTreeClassifier
random search = RandomizedSearchCV(estimator=dt classifier,
                                        param distributions=param grid,
                                        scoring='accuracy',
                                        cv=3,
                                        n iter=100,
                                        random state=42)
random_search.fit(X_train, y_train)
RandomizedSearchCV(cv=3,estimator=DecisionTreeClassifier(),n_iter=100,
                param_distributions={'ccp_alpha':[0.0, 0.1, 0.2],
                                   'max depth':[None, 2, 4, 6, 8, 10],
                                   'max_features':[None, 'sqrt', 'log2'],
                                   'min_impurity_decrease':[0.0, 0.1, 0.2],
                                   'min_samples_split':[2, 5, 10],
                                   'splitter': ['best', 'random']},
random state=42, scoring='accuracy')
print("Best Parameters:", random_search.best_params_)
print("Best Score:", random_search.best_score_)
```


Final Model Selection Justification (2 Marks):

	Final Model	Daggaring
	rmai wiodei	Reasoning
ı		

Bagging Classifier model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy.

	precision	recall	f1-score	support
				1515
0	0.5500	0.6396	0.5914	60466
1	0.6052	0.4767	0.5333	60427
2	0.6683	0.7010	0.6843	60715
accuracy			0.6060	181608
macro avg	0.6078	0.6058	0.6030	181608
weighted avg	0.6079	0.6060	0.6031	181608

Bagging Classifier

Above all the models Bagging classifier have the highest accuracy among all the models.