# Algorithmik zur Optimierung in neuronalen Netzwerken

Gradient Descent und Backpropagation

Tim Hilt

Date: tbd

Hochschule Esslingen — University of Applied Sciences

# Gliederung

### Training

- Loss-Funktion
- **Gradient Descent**
- Backpropagation
- Umsetzung in Keras

Training

### Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^2$$

### Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^2$$

| C(w, b)      | Cost in Abhängigkeit von $\it w$ und $\it b$ |
|--------------|----------------------------------------------|
| m            | Anzahl der Trainingsinstanzen                |
| y(x)         | Gewünschter Output wenn $x$ Input ist        |
| $\hat{y}(x)$ | Tatsächlicher Output des Netzwerkes          |

- $\cdot$  Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:

- $\cdot$  Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
  - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases  $(\partial C/\partial w; \partial C/\partial b)$

- $\cdot$  Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
  - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases  $(\partial C/\partial w; \partial C/\partial b)$
  - 2. Multipliziere die Änderungsrate mit der Lernrate  $\eta$

- Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
  - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases  $(\partial C/\partial w; \partial C/\partial b)$
  - 2. Multipliziere die Änderungsrate mit der Lernrate  $\eta$
  - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab

- $\cdot$  Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
  - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases  $(\partial C/\partial w; \partial C/\partial b)$
  - 2. Multipliziere die Änderungsrate mit der Lernrate  $\eta$
  - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab
  - 4. Aktualisiere die alten Parameter durch das Ergebnis des letzten Schrittes

$$w_{k+1} = w_k - \eta \frac{\partial C}{\partial w_k}$$

$$b_{k+1} = b_k - \eta \frac{\partial C}{\partial b_k}$$

### Problem

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

#### Problem

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

 $\Rightarrow$  Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

#### **Problem**

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

 $\Rightarrow$  Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

#### Problem

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$
  
 $g(a, b) = a + b$ 

#### **Problem**

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a+b) \cdot (c+d))^{2}$$
$$g(a, b) = a + b$$
$$h(c, d) = c + d$$

#### **Problem**

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$
$$g(a, b) = a + b$$
$$h(c, d) = c + d$$
$$i(g, h) = g \cdot h$$

#### **Problem**

Wie finde ich die Änderungsraten  $\frac{\partial C}{\partial w}$ ;  $\frac{\partial C}{\partial b}$ , die ich für Gradient Descent benötige?

 $\Rightarrow$  Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g(a, b) = a + b$$

$$h(c, d) = c + d$$

$$i(g, h) = g \cdot h$$

$$f(i) = i^{2}$$

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g(a, b) = a + b$$

$$h(c, d) = c + d$$

$$i(g, h) = g \cdot h$$

$$f(i) = i^{2}$$





Frage:  $\frac{\partial f}{\partial a}$ ?



Frage: 
$$\frac{\partial f}{\partial a}$$
?

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial i} \cdot \frac{\partial i}{\partial gh} \cdot \frac{\partial gh}{\partial g} \cdot \frac{\partial gh}{\partial g}$$

# Zuvor beschriebene Architektur

Pass

### Optimierte Architektur

- · Vorteil: Schnellere Konvergenz
- · Verwendung von optimierter Cost-, Activation- und Gradient-Descent-Funktion





- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media. 2019.
- BURKOV, Andriy. The hundred-page machine learning book. Andriy Burkov Quebec City, Can., 2019.
- LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*. 1998, Jg. 86, Nr. 11, S. 2278–2324.
- XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*. 2017.