Combustion parameters of ethene-air mixture

Computional methods in combustion

The Faculty of Power and Aeronautical Engineering
Warsaw University of Technology

Contents

1	Introduction Model			3
2				3
3	Results			
	3.1	Variab	ble equivalence ratio	. 4
		3.1.1	ϕ =0.1	. 4
		3.1.2	$\phi=1$. 6
		3.1.3	ϕ =3	. 8
	3.2	Variab	ble initial pressure	. 10
		3.2.1	<i>p</i> =10000Pa	. 10
		3.2.2	<i>p</i> =50000Pa	. 12
		3.2.3	p=200000Pa	. 14
	3.3	Variab	ble initial temperature	. 16
		3.3.1	$T_0 = 1000 \mathrm{K}$	
		3.3.2	$T_0 = 1100 \text{K} \dots \dots$	
		3.3.3	$T_0 = 1200 \text{K} \dots \dots$. 20
4	Sun	nmary		22

1 Introduction

The aim of this project was to show how composition of fuel-air mixture, as well as its initial temperature and pressure influences the time of auto-ignition, maximum pressure and temperature. The simulation was conducted using "Cantera" package and reaction mechanism called "GRI-Mech 3".

2 Model

In order to simulate auto-ignition, the reactor mechanism of Cantera was used and following assumptions were made:

- The fuel was perfectly mixed with air
- The air consisted only of oxygen and nitrogen in 1:3.76 ratio
- Reactor's walls were non-conductant and non-reactive

The stoichometric reaction of complete combustion of ethene in air:

$$C_2H_4 + 3O_2 + 11.28N_2 \longrightarrow 2CO_2 + 2H_2O + 11.28N_2$$

Calculations were performed for various initial parameters

3 Results

3.1 Variable equivalence ratio

$$T_0 = 1000K, p = 101325Pa$$

3.1.1 $\phi = 0.1$

$O_2 content$

 $C_2H_4content$

3.1.2 $\phi = 1$

 $C_2H_4content$

3.1.3 $\phi = 3$

 $C_2H_4content$

3.2 Variable initial pressure

$$\phi = 0.5, T_0 = 1000K$$

3.2.1 *p*=**10000Pa**

T[K]

$O_2 content$

 $C_2H_4content$

3.2.2 *p*=**50000Pa**

$O_2 content$

 $C_2H_4content$

3.2.3 *p*=**200000Pa**

 $C_2H_4content$

3.3 Variable initial temperature

$$\phi=1, p=101325Pa$$

3.3.1 $T_0 = 1000 \text{K}$

 $C_2H_4content$

3.3.2 $T_0 = 1100 \text{K}$

0.200 0.175 0.150 0.125 0.100 0.075 0.050

0.00

0.02

 $O_2 content$

0.04

0.06

0.08

0.10

 $C_2H_4content$

3.3.3 $T_0 = 1200 \text{K}$

 $C_2H_4content$

all charts are in function of time $[\mathbf{s}]$

4 Summary

The results were as expected; higher initial temperatures resulted in shorter auto-ignition times and the highest temperature was achieved with stoichiometric composition on mixture ($\phi = 1$).

The study was a valuable introduction to both "Cantera" package as well as to "LaTeX" software.