Il gruppo delle permutazioni

di Gabriel Antonio Videtta

Nota. Nel corso del documento con X_n si indicherà l'insieme $\{1, \ldots, n\}$ e con G un qualsiasi gruppo.

Si definisce brevemente il **gruppo delle permutazioni** S_n come il gruppo delle bigezioni su G, ossia $S(X_n)$. Si deduce facilmente che $|S_n| = n!$ dal momento che vi sono esattamente n! scelte possibili per costruire una bigezione da X_n in X_n stesso.

Si definisce l'azione naturale di S_n su X_n come l'azione $\varphi: S_n \to S(X_n)$ tale per cui $\sigma \stackrel{\varphi}{\mapsto} [n \mapsto \sigma(n)]$. In particolare, per $H \leq S_n$, si definisce la sua azione naturale come la restrizione dell'azione naturale di S_n su H. Un sottogruppo H si dice transitivo se la sua azione naturale è transitiva. Si osserva che ogni tale azione naturale è fedele (infatti $\sigma \in S_n$ fissa tutto X_n solo se è l'identità di S_n). Si illustra allora subito un risultato sui sottogruppi abeliani transitivi di S_n :

Proposizione. Sia H un sottogruppo abeliano transitivo di S_n . Allora |H| = n.

Dimostrazione. Dal Teorema orbita-stabilizzatore, $|H| = |\operatorname{Stab}(i)| |\operatorname{Orb}(i)|$. Poiché H è un sottogruppo transitivo, $|\operatorname{Orb}(i)| = n$, e quindi è sufficiente verificare che $\operatorname{Stab}(i)$ sia banale.

Ogni Stab(i) è coniugato ad ogni altro Stab(j), sempre per la transitività dell'azione; poiché allora H è abeliano, in particolare Stab(i) coincide con ogni altro stabilizzatore. Pertanto $\sigma \in \operatorname{Stab}(i)$ se e solo se σ appartiene al nucleo dell'azione naturale di H, ossia a $\bigcap_{x=1}^n \operatorname{Stab}(x)$, e quindi se e solo se $\sigma = e$. Si conclude dunque che Stab(i) è banale e quindi che |H| = n.

Dimostrazione alternativa. Se H è un sottogruppo transitivo di S_n , allora la sua azione naturale agisce fedelmente e transitivamente su X_n . Poiché però H è anche abeliano, l'azione è anche libera, e dunque ogni stabilizzatore è banale. Pertanto, per il Teorema orbita-stabilizzatore, $|H| = |\operatorname{Stab}(1)| |\operatorname{Orb}(1)| = n$.

Esempio (Il gruppo di Klein V_4). In S_4 , e in particolare in A_4 , esiste un sottogruppo normale non banale molto particolare¹, il cosiddetto² gruppo di Klein V_4 , dove:

$$V_4 = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$$

¹Pertanto A_4 non è semplice.

²La lettere V è dovuta al termine vier, che in tedesco significa "quattro".

Tale sottogruppo è abeliano e transitivo (e quindi, per il risultato di prima, $|V_4| = 4$, come si osserva facilmente). Poiché ogni suo elemento ha ordine 2 (e in particolare V_4 non è ciclico), V_4 deve necessariamente essere isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Pertanto V_4 è il più piccolo gruppo non ciclico per ordine (a meno di isomorfismo).

Come è noto, ogni $\sigma \in S_n$ può scriversi come prodotto di cicli disgiunti. Di seguito si introduce un modo formale per descrivere questi cicli.

Si consideri l'azione naturale di $\langle \sigma \rangle$. Allora i cicli di σ sono esattamente le orbite di σ ordinate nel seguente modo:

$$Orb(x) = \{x, \sigma(x), \dots, \sigma^m(x)\}.$$

Si osserva che in effetti tutti gli elementi di X sono considerati nella scrittura delle orbite dal momento che tali orbite inducono una partizione di X (infatti sono classi di equivalenza). Si definisce inoltre una permutazione ciclo se esiste al più un'unica orbita di cardinalità diversa da 1 e si dice lunghezza del ciclo la cardinalità di tale orbita (o se non esiste, si dice che ha lunghezza unitaria). Due cicli si dicono disgiunti se almeno uno dei due è l'identità o se le loro uniche orbite non banali hanno intersezione nulla (e in entrambi i casi, commutano). Per ogni k-ciclo esistono esattamente k scritture distinte (in funzione dell'elemento iniziale del ciclo).

Pertanto si deduce facilmente che ogni permutazione σ è prodotto di cicli disgiunti in modo unico (a meno della scelta del primo elemento dell'orbita). Poiché allora ogni n-ciclo è generato dalla composizione di n-1 trasposizioni (2-cicli) e ogni permutazione è prodotto di cicli, S_n è generato dalle trasposizioni. Infatti:

$$(a_1,\ldots,a_i)=(a_1,a_i)\circ(a_1,a_{i-1})\circ\cdots\circ(a_1,a_2),$$

o altrimenti:

$$(a_1,\ldots,a_i)=(a_1,a_2)\circ(a_2,a_3)\circ\cdots\circ(a_{i-1},a_i),$$

da cui si deduce che la scrittura come prodotto di trasposizioni non è unica. Ciononostante viene sempre mantenuta la parità del numero di trasposizioni impiegate.

Per questo motivo la mappa sgn : $S_n \to \{\pm 1\}$ che vale 1 sulle permutazioni con numero pari di trasposizioni impiegabili e -1 sul resto è ben definita. Inoltre questa mappa è un omomorfismo di gruppi, e si definisce $\mathcal{A}_n := \text{Ker sgn come il sottogruppo di } S_n$ delle permutazioni pari, detto anche gruppo alterno. La classe laterale $(1,2) \mathcal{A}_n$ rappresenta invece le permutazioni dispari.

In particolare, se σ_k è un k-ciclo, $\operatorname{sgn}(\sigma_k) = (-1)^{k-1}$ e $\operatorname{ord}(\sigma_k) = k$. Si osserva inoltre che vi sono esattamente $\binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$ k-cicli in S_n e che in generale l'ordine di una permutazione è il minimo comune multiplo degli ordini dei suoi cicli. In particolare vale

la seguente identità³:

$$\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}.$$

Si definisce tipo di una permutazione σ la sua decomposizione in cicli disgiunti a meno degli elementi presenti nei cicli. Sia σ tale per cui:

$$\sigma = (a_1, a_2, \dots, a_{k_1})(b_1, \dots, b_{k_2}) \cdots (c_1, \dots, c_{k_s}),$$

allora vale la seguente relazione sul coniugio:

$$\tau \sigma \tau^{-1} = (\tau(a_1), \tau(a_2), \dots, \tau(a_{k-1}))(\tau(b_1), \dots, \tau(b_{k_2})) \cdots (\tau(c_1), \dots, \tau(c_{k_i})).$$

A partire da ciò vale il seguente risultato:

Proposizione. Due permutazioni σ_1 , σ_2 sono *coniugabili* (ossia appartengono alla stessa classe di coniugio) se e solo se hanno lo stesso tipo.

Dimostrazione. Dalla seguente identità, se σ_1 è coniugata rispetto a σ_2 , sicuramente le due permutazioni dovranno avere lo stesso tipo. Analogamente, se le due permutazioni hanno lo stesso tipo, si può costruire τ che associ ogni elemento di un ciclo di σ_1 a un elemento nella stessa posizione in un ciclo di σ_2 della stessa lunghezza in modo tale che τ rimanga una permutazione di S_n e che valga $\sigma_2 = \tau \sigma_1 \tau^{-1}$.

Come corollario di questo risultato, se m_1 rappresenta il numero di 1-cicli di σ , m_2 quello dei suoi 2-cicli, fino a m_k , vale il seguente risultato:

$$|\operatorname{Cl}(\sigma)| = \frac{n!}{m_1! \, 1^{m_1} \, m_2! \, 2^{m_2} \cdots m_k! \, k^{m_k}},$$

e in particolare esistono tante classi di coniugio quante partizioni di n. Come conseguenza di questo risultato, per il Teorema orbita-stabilizzatore, vale che:

$$|Z_{S_n}(\sigma)| = m_1! \, 1^{m_1} \, m_2! \, 2^{m_2} \cdots m_k! \, k^{m_k},$$

dove si ricorda⁴ che due permutazioni coniugano σ nella stessa permutazione ρ se queste due permutazioni fanno parte della stessa classe in $G/Z_{S_n}(\sigma)$. Infine, sempre come corollario dello stesso risultato, se $H \leq S_n$, H è normale in S_n se e solo se per ogni tipo di permutazione H contiene tutte le permutazioni di quel tipo o nessuna.

Per calcolare il centralizzatore di una permutazione $\sigma \in S_n$, la strategia generale si compone di due passi fondamentali: computare il numero di elementi del centralizzatore tramite il Teorema orbita-stabilizzatore (come visto precedentemente) e poi "indovinare" dei sottogruppi con cui σ commuta che, combinati tramite il prodotto di sottogruppi, danno esattamente il numero calcolato inizialmente.

³Si verifica facilmente che il prodotto a destra fornisce un omomorfismo. Allora è sufficiente mostrare che è ben definito e che vale -1 sulle trasposizioni. Se si considera $\sigma = (a, b)$, per i e j tali per cui $\{i, j\} \cap \{a, b\} = \emptyset$ il termine della produttoria è unitario; per $\{i, j\} = \{a, b\}$ il termine è -1 e per un'intersezione di un solo termine si osserva che vi sono due termini del prodotto che valgono -1 e che moltiplicati si annullano nell'unità. Poiché sgn vale anch'esso -1 sulle trasposizioni, i due omomorfismi coincidono (infatti le trasposizioni generano S_n).

⁴Infatti $Z_{S_n}(\sigma)$ è lo stabilizzatore di σ nell'azione di coniugio.

Esempio. Sia $\sigma = \overbrace{(1,2,3,4)}^{\sigma_1} \underbrace{(5,6,7)}^{\sigma_2} \underbrace{(8,9)} \in S_9$. Si calcola $Z_{S_9}(\sigma)$. Tramite il Teorema orbita-stabilizzatore, vale che:

$$Z_{S_9}(\sigma) = 1! \cdot 4 \cdot 1! \cdot 3 \cdot 1! \cdot 2 = 4! = 24.$$

Si osserva facilmente che σ commuta con σ_1 , σ_2 e σ_3 , e quindi $\langle \sigma_i \rangle \leq Z_{S_9}(\sigma) \, \forall i \in \{1, 2, 3\}$. In particolare $\langle \sigma_i \rangle$ commuta sempre con $\langle \sigma_j \rangle$ per $i \neq j$, dal momento che questi cicli sono tutti disgiunti. Si considera⁵ il sottogruppo $H = \langle \sigma_1 \rangle \langle \sigma_2 \rangle \langle \sigma_3 \rangle$: ogni suo elemento è esprimibile in modo unico come prodotto di una potenza di σ_1 , di σ_2 e di σ_3 , e quindi $|H| = |\langle \sigma_1 \rangle| \, |\langle \sigma_2 \rangle| \, |\langle \sigma_3 \rangle| = 4 \cdot 3 \cdot 2 = 24$; poiché allora $H \leq Z_{S_9}(\sigma)$ ha lo stesso numero di elementi del centralizzatore, $Z_{S_9}(\sigma) = H$. Infine, dal momento che $\langle \sigma_i \rangle \cap (\langle \sigma_j \rangle \langle \sigma_k \rangle)$ per ogni i, j, k distinti in $\{1, 2, 3\}$, $H \cong \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle \times \langle \sigma_3 \rangle$, e dunque:

$$Z_{S_0}(\sigma) \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Si osserva adesso che \mathcal{A}_n può scriversi come il sottogruppo generato dai 2-2-cicli, infatti ogni permutazione pari è prodotto di un numero pari di trasposizioni, che possono dunque essere ridotte a 2-2-cicli. Allo stesso tempo allora \mathcal{A}_n è generato dai 3-cicli se $n \geq 3$. Si consideri infatti (i,j)(k,l). Se $\{i,j\} \cap \{k,l\} = 2$, (i,j) = (k,l), e quindi (i,j)(k,l) = e; se $\{i,j\} \cap \{k,l\} = 1$, si può assumere senza perdita di generalità che k=i, da cui (i,j)(i,l) = (i,l,j), un 3-ciclo; se invece $\{i,j\} \cap \{k,l\} = 0$, (i,j)(k,l) = (i,j)(j,k)(j,k)(k,l) = (i,j,k)(j,k,l), e quindi (i,j)(k,l) è prodotto di due 3-cicli. Pertanto si è dimostrato che $\mathcal{A}_n = \langle (i,j)(k,l) \mid i,j,k,l \in X_n \rangle \subseteq \langle (i,j,k) \mid i,j,k \in X_n \rangle$; allo stesso tempo ogni 3-ciclo è una permutazione pari, e quindi vale anche l'inclusione inversa.

Si consideri adesso S'_n , il sottogruppo derivato di S_n . Poiché S_n è abeliano per $n \in \{1, 2\}$, in tal caso $S'_n = \{e\}$; in tutti gli altri casi S'_n non può essere uguale a $\{e\}$, altrimenti S_n sarebbe abeliano. Si osserva che [(i, j), (j, k)] con $i, j \in k$ distinti si scrive come:

$$[(i,j),(j,k)] = (i,j)(j,k)(i,j)^{-1}(j,k)^{-1} = (i,k)(j,k) = (i,k,j),$$

e quindi si deduce che $\langle (i,j,k) \mid |\{i,j,k\}| = 3\rangle = \mathcal{A}_n$ è un sottogruppo di S'_n . Inoltre⁶ l'omomorfismo sgn ha come codominio un gruppo abeliano isomorfo a $\mathbb{Z}/2\mathbb{Z}$, e quindi $S'_n \subseteq \text{Ker sgn} = \mathcal{A}_n$. Si conclude dunque che $S'_n = \mathcal{A}_n$ e che $S_{nab} = S_n/\mathcal{A}_n \cong \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$ per $n \geq 3$. Pertanto adesso è immediato il seguente risultato:

Proposizione. Sia H un gruppo abeliano. Allora $\operatorname{Hom}(S_n, H) \leftrightarrow \operatorname{Hom}(\mathbb{Z}/2\mathbb{Z}, H)$.

In particolare, vi sono tanti omomorfismi non banali in $\operatorname{Hom}(S_n, H) \leftrightarrow \operatorname{Hom}(\mathbb{Z}/2\mathbb{Z}, H)$ quanti elementi di ordine 2 vi sono in H.

 $^{^5}$ Poiché σ_i commuta con $\sigma_j,$ questo sottogruppo è ben definito.

⁶Alternativamente $[S_n:S_n']$ deve dividere $[S_n:A_n]=2$, e quindi, poiché $S_n\neq S_n'$, è necessario che S_n' sia esattamente A_n .

Si ricercano adesso le classi di coniugio in \mathcal{A}_n . Si osserva innanzitutto che, se $\sigma \in \mathcal{A}_n$, $\mathrm{Cl}_{\mathcal{A}_n}(\sigma) \subseteq \mathrm{Cl}_{S_n}(\sigma)$. Inoltre, per il Teorema orbita-stabilizzatore, vale che:

$$\left|\operatorname{Cl}_{\mathcal{A}_{\mathbf{n}}}(\sigma)\right|(\sigma) = \frac{\left|\mathcal{A}_{\mathbf{n}}\right|}{\left|Z_{\mathcal{A}_{\mathbf{n}}}(\sigma)\right|} = \frac{\left|S_{n}\right|/2}{\left|Z_{S_{n}}(\sigma)\cap\mathcal{A}_{\mathbf{n}}\right|}.$$

Poiché⁷ $Z_{S_n}(\sigma) \cap \mathcal{A}_n$ in $Z_{S_n}(\sigma)$ ha indice 1 se $Z_{S_n}(\sigma) \subseteq \mathcal{A}_n$ e 2 altrimenti, vale che:

- $|\operatorname{Cl}_{\mathcal{A}_n}(\sigma)|(\sigma) = \frac{1}{2} |\operatorname{Cl}_{S_n}(\sigma)|$, se $Z_{S_n}(\sigma) \subseteq \mathcal{A}_n$,
- $|\operatorname{Cl}_{A_n}(\sigma)|(\sigma) = |\operatorname{Cl}_{S_n}(\sigma)|$, altrimenti.

 $^{^{7}}$ È sufficiente osservare che $Z_{S_n}(\sigma) \cap \mathcal{A}_n = \text{Ker}(\text{sgn}\,|_{\mathcal{A}_n})$, e dunque che $Z_{S_n}(\sigma)/(Z_{S_n}(\sigma) \cap \mathcal{A}_n)$ può essere isomorfo tramite il Primo teorema di isomorfismo soltanto a $\{1\}$ o a $\{\pm 1\}$.