Correction par pair

- A Question 2-(a): avoir introduit deux matrices dans le commutant de A et deux scalaires.
- B Question 2-(a): avoir fait le bon calcul, clairement.
- \fbox{C} 4-(b) : la partie "morphisme" : avoir vérifié correctement que φ est un morphisme d'anneaux.
- $\boxed{\mathrm{D}}$ 4-(b) : la partie "iso" : avoir vérifié correctement que φ est une bijection.
- $\boxed{\mathrm{E}}$ 7 : s'être servi clairement du fait que les d_i sont deux à deux distincts.
- F Pour $C(\Delta)$: avoir dit que Δ est diagonale, de coefficients diagonaux distincts et fait référence à la question 7.

Problème. Commutant d'une matrice.

1. Toutes les matrices commutent avec I_n ou avec 0_n :

$$C(I_n) = C(0_n) = \mathscr{M}_n(\mathbb{K})$$

2. (a) Soient M et N deux matrices de C(A), λ et μ deux scalaires de \mathbb{K} .

$$A(\lambda M + \mu N) = \lambda AM + \mu AN = \lambda MA + \mu NA = (\lambda M + \mu N)A.$$

Ceci montre que $\lambda M + \mu N \in C(A)$: C(A) est stable par combinaisons linéaires.

(b) Soient M et N deux matrices de C(A). On a

$$A(MN) = (AM)N = (MA)N = M(AN) = M(NA) = (MN)A.$$

Ceci prouve que $MN \in C(A)$. Nous avons utilisé l'associativité du produit matriciel et le fait que M et N commutent avec A.

- (c) La matrice I_n commute avec $A: I_n \in C(A)$.
 - · Puisque C(A) est stable par combinaisons linéaires (prouvé en a), il est stable par différence.
 - \cdot Enfin, C(A) est stable par produit (prouvé en b).

Ceci démontre que C(A) est un sous-anneau de $\mathcal{M}_n(\mathbb{K})$

3. On raisonne par équivalence. Puisque M est inversible, M^{-1} l'est également :

$$MA = AM \iff M^{-1}(MA)M^{-1} = M^{-1}(AM)M^{-1} \quad (M^{-1} \text{ est inversible})$$
 $\iff (M^{-1}M)AM^{-1} = M^{-1}A(M^{-1}M) \quad \text{(assoc. du produit)}$
 $\iff AM^{-1} = M^{-1}A$

Ceci démontre que $M \in C(A) \iff M^{-1} \in C(A)$

4. (a) Soit $M \in \mathcal{M}_n(\mathbb{K})$.

$$MA = AM \iff APP^{-1}M = MPP^{-1}A \quad (PP^{-1} = I_n)$$

 $\iff P^{-1}(APP^{-1}M)P = P^{-1}(MPP^{-1}A)P \quad (P, P^{-1}inv.)$
 $\iff (P^{-1}AP)(P^{-1}MP) = (P^{-1}MP)(P^{-1}AP) \quad (assoc.)$

Ceci démontre que $M \in C(A) \iff P^{-1}MP \in C(P^{-1}AP)$

(b) Tout d'abord, remarquons que φ va bien de C(A) vers $C(P^{-1}AP)$ d'après la question (a). On vérifie que φ est un morphisme d'anneaux. Pour M et N dans C(A), on a

$$\varphi(M+N)=P^{-1}(M+N)P=P^{-1}MP+P^{-1}NP=\varphi(M)+\varphi(N),$$

$$\varphi(MN) = P^{-1}(MN)P = P^{-1}MPP^{-1}NP = \varphi(M)\varphi(N),$$

et enfin $\varphi(I_n) = P^{-1}I_nP = I_n$.

La bijectivité de φ se prouve (par exemple) en posant $\psi: M \mapsto PMP^{-1}$. On vérifie que ψ va de $C(P^{-1}AP)$ vers C(A), que $\psi \circ \varphi$ est l'identité sur C(A) et $\varphi \circ \psi$ est l'identité sur $C(P^{-1}AP)$. Ceci donne que φ est bijective, de réciproque ψ .

 φ est un isomorphisme d'anneaux de C(A) dans $C(P^{-1}AP)$.

- 5. Oups, pas de question 5. L'important est que la numérotation soit injective...
- 6. $[DM]_{i,j} = d_i[M]_{i,j}$ et $[MD]_{i,j} = d_j[M]_{i,j}$.
- 7. Supposons que M appartient à C(D) et considérons (i,j) avec $i \neq j$. Puisque DM = MD, on a en particulier $[DM]_{i,j} = [MD]_{i,j}$, soit $d_i[M]_{i,j} = d_j[M]_{i,j}$, et enfin $(d_i d_j)[M]_{i,j} = 0$. Par hypothèse, $d_i \neq d_j$, ce qui amène $[M]_{i,j} = 0$. Ceci prouve que M est diagonale.

Réciproquement, si M est diagonale, il est clair qu'elle commute avec la matrice diagonale D.

Nous venons de démontrer que |C(D)| est l'ensemble des matrices diagonales.

- 8. On calcule $\det(P) = -5$. Puisque $\det(P) \neq 0$, la matrice P est inversible et $P^{-1} = \frac{1}{5} \begin{pmatrix} 4 & 1 \\ 1 & -1 \end{pmatrix}$.
- 9. Un calcul donne $\Delta = P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.
- 10. Puisque Δ est diagonale à coefficients diagonaux distincts, $C(\Delta)$ est l'ensemble des matrices diagonales.

En utilisant 4-(a), pour $M \in \mathcal{M}_n(\mathbb{K})$,

$$M \in \mathcal{C}(A) \iff P^{-1}MP \in \mathcal{C}(P^{-1}AP)$$

$$\iff P^{-1}MP \in \mathcal{C}(\Delta)$$

$$\iff \exists (a,b) \in \mathbb{K}^2 \quad P^{-1}MP = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

$$\iff \exists (a,b) \in \mathbb{K}^2 \quad P^{-1}MP = aE_{1,1} + bE_{2,2}$$

$$\iff \exists (a,b) \in \mathbb{K}^2 \quad M = aPE_{1,1}P^{-1} + bPE_{2,2}P^{-1}$$

Ceci démontre que C(A) est l'ensemble des combinaisons linéaires des deux matrices $PE_{1,1}P^{-1}$ et $PE_{2,2}P^{-1}$ (qu'on saurait calculer).

Avec un peu plus d'algèbre linéaire, on se convaincra que ce $plan\ vectoriel$ est aussi l'ensemble des combinaisons linéaires des matrices I_2 et A.

11. Soit
$$M = (m_{k,\ell})_{1 \le k,\ell \le n}$$
. Alors $M = \sum_{1 \le k,\ell \le n} m_{k,\ell} E_{k,\ell}$ et

$$ME_{i,j} = \sum_{1 \le k, \ell \le n} m_{k,\ell} E_{k,\ell} E_{i,j} = \sum_{k=1}^n m_{k,i} E_{k,i} E_{i,j} = \sum_{k=1}^n m_{k,i} E_{k,j} = m_{i,i} E_{i,j} + \sum_{\substack{k=1 \\ k \ne i}}^n m_{k,i} E_{k,j}$$

puis

$$E_{i,j}M = \sum_{1 \le k,\ell \le n} m_{k,\ell} E_{i,j} E_{k,\ell} = \sum_{\ell=1}^n m_{j,\ell} E_{i,j} E_{j,\ell} = \sum_{\ell=1}^n m_{j,\ell} E_{i,\ell} = m_{j,j} E_{i,j} + \sum_{\substack{\ell=1 \\ \ell \ne j}}^n m_{j,\ell} E_{i,\ell}$$

Ainsi

$$ME_{i,j} = E_{i,j}M \iff (m_{i,i} - m_{j,j})E_{i,j} + \sum_{\substack{k=1\\k \neq i}}^{n} m_{k,i}E_{k,j} - \sum_{\substack{\ell=1\\\ell \neq j}}^{n} m_{j,\ell}E_{i,\ell} = 0$$

Or une matrice est nulle si, et seulement si, tous ses coefficients sont nuls, autrement dit,

$$M = \sum_{1 \le k, \ell \le n} m_{k,\ell} E_{k,\ell} = 0 \iff \forall \, k, \ell \in [[1, n]], \, \, m_{k,\ell} = 0$$

donc

$$ME_{i,j} = E_{i,j}M \iff \begin{cases} m_{i,i} = m_{j,j} \\ \forall k, \neq i, \ m_{k,i} = 0 \\ \forall \ell, \neq j, \ m_{j,\ell} = 0 \end{cases}$$

Conclusion :

les matrices de $C(E_{i,j})$ sont exactement les matrices $M=(m_{k,\ell})_{1\leq k,\ell\leq n}$ vérifiant :

- la j^e ligne est nulle sauf $m_{i,j}$,
- la i^e colonne est nulle sauf $m_{i,i}$,
- $-m_{j,j}=m_{i,i}$
- 12. On raisonne par analyse-synthèse :
 - •analyse: Soit $M = (m_{k,\ell})_{1 \leq k,\ell \leq n}$. On suppose que M commute avec toutes les matrices donc en particulier toutes les $E_{i,j}$.

On en déduit que pour tout i, j:

- la j^e ligne est nulle sauf $m_{j,j}$,
- la i^e colonne est nulle sauf $m_{i,i}$,
- $m_{j,j} = m_{i,i}.$

Autrement dit, tous les coefficients hors diagonale sont nuls et ceux de la diagonale sont tous égaux : $M = \lambda I_n$ où $\lambda \in \mathbb{K}$.

•synthèse: Soit $\lambda \in \mathbb{K}$. La matrice λI_n commute avec toutes les matrices.

Finalement,

$$\bigcap_{M \in \mathscr{M}_n(\mathbb{K})} C(M) = \{ \lambda I_n, \ \lambda \in \mathbb{K} \}$$

13. (a) Puisque I_n et $E_{i,j}$ commutent, on ne se prive pas d'une identité remarquable :

$$(I_n + E_{i,j})(I_n - E_{i,j}) = I_n^2 - E_{i,j}^2 = I_n - \delta_{j,i}E_{i,j}.$$

Le résultat du calcul vaut I_n si $i \neq j$ et $I_n - E_{i,i}$ si i = j.

- (b) Soit $(i, j) \in [1, n]^2$.
 - Supposons $i \neq j$. D'après (a), on a $(I_n + E_{i,j})(I_n E_{i,j}) = I_n$. De même, $(I_n E_{i,j})(I_n + E_{i,j}) = I_n$. Ceci prouve que

 $I_n + E_{i,j}$ est inversible (et d'inverse $I_n - E_{i,j}$).

- Supposons i = j. Alors, $I_n + E_{i,i}$ est diagonale à coefficients diagonaux non nuls (ils valent 1 ou 2). Elle est donc inversible.
- 14. La matrice I_n commute avec toutes les matrices. L'égalité $C(E_{i,j}) = C(I_n + E_{i,j})$ se démontre donc tranquillement par double inclusion.
- 15. On raisonne par analyse-synthèse:
 - •analyse: Soit $M \in \mathcal{M}_n(\mathbb{K})$. On suppose que M commute avec toutes les matrices inversibles. Elle commute donc en particulier avec toutes les matrices $I_n + E_{i,j}$ et donc avec toutes les matrices $E_{i,j}$ d'après la question précédente. En reprenant la question 12, on obtient que M est une matrice scalaire: il existe $\lambda \in \mathbb{K}$ tel que $M = \lambda I_n$.
 - •synthèse: Soit $\lambda \in \mathbb{K}$. La matrice λI_n commute avec toutes les matrices.

Finalement,

$$\bigcap_{M \in GL_n(\mathbb{K})} C(M) = \{ \lambda I_n, \ \lambda \in \mathbb{K} \}$$