Timothy Trippel

University of Michigan Phone: (574) 607-3954
Department of Computer Science & Engineering Email: trippel@umich.edu

2260 Hayward St, Ann Arbor, MI 48109 Website: https://timothytrippel.com

Education

2015- University of Michigan, Ph.D., Computer Science / Computer Security

2021 (Expected) Advisor: Prof. Kang G. Shin

2015–2016 University of Michigan, M.S.E., Computer Science / Computer Security

GPA: 3.85/4.00

2011–2015 **Purdue University**, B.S., Computer Engineering

GPA: 3.72/4.00

Ph.D. Dissertation Research

With the proliferation of ubiquitous computing and advancements in artificial intelligence, completely autonomous cyber-physical systems are becoming pervasive. From thermostats and voice assistants, to drones and vehicles, cyber-physical systems often blindly trust a collection of sensors and microprocessors to autonomously execute decisions. From design to deployment, my dissertation takes a red-team/blue-team approach to explore how autonomous cyber-physical systems can be attacked and defended through the foundational hardware they rely on. In doing so, my research aims to increase the trustworthiness and reliability of the autonomous systems entangled in our lives.

Awards and Honors

- [1] R&D 100 Award Winner in IT/Electrical for Defensive Wire Routing for Untrusted IC Fabrication (2020)
- [2] NSF Graduate Research Fellowship Recipient (2017)
- [3] Donald C. and Marion E. Currier Scholarship (Purdue University, Full Tuition)
- [4] Purdue University Dean's List (8/8 Semesters)
- [5] Purdue University Semester List (7/8 Semesters)
- [6] Indiana's Top Young Scientist (2011)
- [7] Intel International Science and Engineering Fair Second Place (2011) Minor Planet named after me by MIT Lincoln Laboratory LINEAR URL: https://ssd.jpl.nasa.gov/sbdb.cgi#top (search "Timtrippel")
- [8] National Junior Science and Humanities Symposium Second Place (2010)

Publications

Refereed

- [1] **Timothy Trippel**, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "ICAS: an Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans". IEEE Symposium on Security and Privacy (Oakland), May 2020. Acceptance rate: 12.3%.
 - An extensible framework for estimating the vulnerability of IC layouts to fabrication-time Trojaning attacks.
- [2] **Timothy Trippel**, Ofir Weisse, Wenyuan Xu, Peter Honeyman, and Kevin Fu. "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". IEEE European Symposium on Security and Privacy (**EuroS&P**), April 2017. Acceptance rate: 19.6%.

First to demonstrate full control over output signals of MEMS sensors with targeted acoustic interference.

Non-refereed

- [1] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "An Extensible Framework for Quantifying the Coverage of Defenses Against Untrusted Foundries". ARXIV, abs/1906.08836
 First to provide a framework for quantifying the security of integrated circuit layouts.
- [2] **Timothy Trippel**, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. "T-TER: Defeating A2 Trojans with Targeted Tamper-Evident Routing". ARXIV, abs/1906.08842

 A routing-centric preventive defense against stealthy analog hardware Trojans like A2.

Patents Adjudicated

[1] Kevin B. Bush, Matthew D. Hicks, and **Timothy D. Trippel**. "Integrated Circuit (IC) Portholes and Related Techniques". U.S. Patent No. 10,839,109. Issue Date: Nov. 17th, 2020.

Patents Filed

- [1] Kevin B. Bush, Matthew D. Hicks, and **Timothy D. Trippel**. "Defensive Routing and Related Techniques". *US Patent Application No.* 16/598,293. Filing Date: Oct. 9th, 2019.
- [2] Kevin Fu, Peter Honeyman, **Timothy Trippel**, and Ofir Weisse. "Protecting Motion Sensors from Acoustic Injection Attack". US Patent Application No. 16/303,495. Filing Date: Nov. 29th, 2018.

Press

[1]	MIT News	October 2020. Eight Lincoln Laboratory technologies named 2020 R&D 100 Award winners. Retrieved from https://news.mit.edu/2020/lincoln-laboratory-technologies-rd-100-award-winners-1020
[2]	CNBC	April 2017. Hacking with sound waves. Retrieved from https://www.cnbc.com/video/2017/04/27/hacking-with-sound-waves.html
[3]	EE Journal	April 2017. Cracking a WALNUT A Novel Physical Attack on Accelerometers. Retrieved from https://www.eejournal.com/article/20170417-walnut/
[4]	New York Times	March 2017. It's Possible to Hack a Phone With Sound Waves, Researchers Show. Retrieved from https://www.nytimes.com/2017/03/14/technology/phone-hacking-sound-waves.html
[5]	IEEE Spectrum	March 2017. Smartphone Accelerometers Can Be Fooled by Sound Waves. Retrieved from https://spectrum.ieee.org/tech-talk/telecom/security/smartphone-accelerometers-can-be-fooled-by-sound-waves
[6]	Science Friday	March 2017. Hacking Via Sound. Retrieved from https://www.sciencefriday.com/segments/a-proposed-science-budget-hacking-via-sound-and-a-fluorescent-frog/
[7]	IFL Science	March 2017. Sound Waves Can Now Be Used To Hack Into Smartphones. Retrieved from https://www.iflscience.com/technology/sound-waves-used-hack-smartphones/
[8]	University of Michigan	March 2017. Sonic Cyber Attacks Show Security Holes in Ubiquitous Sensors. Retrieved from http://www.eecs.umich.edu/eecs/about/articles/2017/sonic-cyber-attacks.html
[9]	Gizmodo	March 2017. Hackers Can Now Use Sound Waves to Take Control of Your Smartphone. Retrieved from https://gizmodo.com/hackers-can-now-use-sound-waves-to-take-control-of-your-1793259066

[10]	Fortune	March 2017. You Can Hack Fitbits and Smart Phones Using Sound, Researchers Say. Retrieved from https://fortune.com/2017/03/14/hack-fitbit-smart-phones-using-sound/
[11]	CNET	March 2017. These researchers can hack your phone with sound waves. Retrieved from https://www.cnet.com/news/hack-fitbit-samsung-sound-waves-researchers/
[12]	Tom's Hardware	March 2017. 'Walnut' Attack Uses Sound To Trick Sensors In Cars, Phones, And Other Devices. Retrieved fromhttps://www.tomshardware.com/news/walnut-sound-trick-sensors-cars-phones,33901.html
[13]	The Register	March 2017. Boffins Rickroll smartphone by tickling its accelerometer. Retrieved from https://www.theregister.co.uk/2017/03/15/boffins_rickroll_smartphone_by_tickling_its_accelerometer/
[14]	Engineering.com	March 2017. Hacking Sensors with Sound Waves. Retrieved from https://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/14511/Hacking-Sensors-with-Sound-Waves.aspx
[15]	Hacker News	March 2017. WALNUT Attack on MEMS Accelerometers. Retrieved from https://news.ycombinator.com/item?id=13881167

Professional Experience

Fall 2015-	Ph.D. Candidate	University of Michigan, Ann Arbor, MI
Present	Computer Science & Engineering Department	Advisor: Kang G. Shin
	See Ph.D. Disertation Research above.	
Summer	Research Intern	Google, Cambridge, MA
2020	OpenTitan	Supervisor: Alex Chernyakhovsky
	Developed a $hardware\ fuzzing$ pipeline to apply software fuzzing strategies to software models of RTL nardware to complement and accelerate traditional design verification efforts across the OpenTitan nardware ecosystem.	
Summer	Graduate Research Intern	MIT Lincoln Laboratory, Lexington, MA

2019	Cyber-Physical Systems	Supervisor: Kevin B. Bush	
	Developed a design-time dynamic verification technique to verify hardware is free of ticking time-		
	bomb Trojans. Open-sourced project codebase and	l submitted technical paper for publication in an	
	academic conference.		

Summer	Graduate Research Intern	MIT Lincoln Laboratory, Lexington, MA
2018	Cyber Systems & Operations	Supervisor: Kevin B. Bush
	Developed techniques to protect the integrity of integrated circuit layouts to fabrication-time atta	

enabled by manufacturing them at untrusted foundries. Fabricated prototype hardware on in-house 90nm rad-hard process. Additionally, filed two patents (above), and submitted technical paper for publication in an academic conference.

Summer Graduate Research Intern MIT Lincoln Laboratory, Lexington, MA

2017 Cyber Systems & Operations Supervisor: Matthew Hicks

Developed tools to measure the susceptibility of integrated circuit layouts to fabrication-time attacks enabled by manufacturing them at untrusted foundries. The resulting paper paper was published in IEEE S&P 2020 (above).

Summer Software Engineering Intern Microsoft, Bellevue, WA 2015 Windows & Devices Group Supervisor: Ted Roberts

Worked on the Windows IoT Core team to design and develop point-of-sale (PoS) device emulators for Visual Studio and Windows 10.

Summer	Software Engineering Intern	Microsoft, Redmond, WA
2014	Operating Systems Group	Supervisor: Mike Dice

Worked on the Membership Assistance and Connections team to design and develop a web UX

customer support feature for Windows 10, and its supporting back-end.

Summer EID Software Engineering Inern GE Healthcare, Barrington, IL

2013 Supervisor: Anand Desikan

Developed a software life-cycle reporting tool, for use by agile scrum teams, to automate the production of Design History Files required to meet FDA healthcare software regulations. Developed a Python back-end to parse Agile process artifacts, test requirements, and results, that were dumped into a custom internal facing web UX.

Teaching Experience

2014	Teaching Assistant Microprocessor System Design and Interfacing (ECE 362)	Purdue University
2013	Teaching Assistant	Purdue University
	Introduction to Digital Systems Design (ECE 270)	

Invited Presentations

- [1] Talk "ICAS: an Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans".
 41st IEEE Symposium on Security & Privacy (Oakland), San Francisco, CA. May, 2020.
- [2] Talk "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". 2nd IEEE European Symposium on Security & Privacy (EuroS&P), Paris, France. April, 2017.
- [3] Poster "Why Do You Trust Sensors? Analog Cybersecurity Attack Demos". IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA. April, 2017.
- [4] Talk "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". University of Michigan Preliminary Examination, Ann Arbor, MI. January, 2017.
- [5] Talk "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". THaW Annual Review, Vanderbilt University, Nashville, TN. September, 2016.
- [6] Poster "Acoustic Injection Attacks on Implantable Medical Devices". THaW Annual Review, Johns Hopkins University, Baltimore, MD. January, 2016.

Demos

- [1] "Why Do You Trust Sensors? Analog Cybersecurity Attack Demos". IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA. April, 2017.
- [2] "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks". Analog Devices Inc. Annual Executives Meeting, Boston, MA. January, 2016.

Relevant Technical Coursework

Graduate: Computer & Network Security, Micro-architecture, Artificial Intelligence, Machine Learning, Advanced Networking, Advanced Operating Systems

Undergraduate: Computer Architecture, Signals and Systems, Data Structures and Algorithms, Operating Systems, Embedded Systems Senior Design, Computer & Network Security, Microprocessor System Design, Digital Systems Design

Languages

Proficient: Python, C/C++, Bash, LATEX

Familiar: (System) Verilog, MATLAB, Java, C#, JavaScript, HTML/CSS

Platforms

Proficient: Linux, MacOS, Docker, GCP

Familiar: AWS, Windows

Software Tools

Proficient: Vim, Git, Make, AFL, Seaborn/Matplotlib, Pandas, YAPF, Flake8, ClangFormat

Familiar: NumPy, pytest, PyPy, Ctags

Hardware Tools

Proficient: Verilator, Icarus Verilog, GTKWave

Familiar: FuseSoC, cocotb, Innovus, Genus, Spectre, Virtuoso, Calibre nmDRC, COMSOL