BUCK CONVERTER

<u>Definition</u>: Buck converter or stepdown converter is a converter which steps down the output voltage compared to input source voltage.

Circuit Diagram:

Designed Circuit Parameters:

Parameters	Values
Vs	48 V
D	0.375
L	$97.5 \ \mu \text{H}$
С	$100~\mu \mathrm{F}$
R	10 Ω
Vo	18 V
f	40 KHz

Simulated Circuit:

Simulated Output Results:

Figures (a) pulse (b) load voltage (c) capacitor current (d) diode voltage (e) inductor current (f) inductor voltage (g) load current (h) source current (i) source voltage (j) switch voltage

Operating Modes of a Buck Converter:

Under steady state

• Volt-sec balance across inductor

$$(V_s - V_o) * D * T_s = V_o * (1 - D) * T_s$$
(1)

$$V_s * D - V_o * D = V_o - V_o * D \tag{2}$$

$$V_o = V_s * D$$

• For L

$$-V_{in} + V_L + V_o = 0 \tag{3}$$

$$L * \frac{\Delta I}{DT} = V_{in} - V_o \tag{4}$$

Assumed $\triangle I = 2.88A$

$$L * \frac{2.8846 * 40k}{0.375} = 48 - 18 \tag{5}$$

$$L = 97.5 \ \mu H$$

• For C

$$\frac{\triangle I * T_s}{8} = Q = c * (\triangle V) \tag{6}$$

Assumed $\triangle V = 0.09V$

$$C = \frac{2.8846}{40K * 8 * 0.09} \tag{7}$$

$$\boxed{\mathrm{C} = 100 \; \mu\mathrm{F}}$$