

Sub A

What Is Claimed Is:

- 1 Claim 1. A method for reducing power utilized by a processor comprising the steps of:
 - 2 determining that a processor is transitioning from a computing mode to a mode in which system clock to the processor is disabled, and
 - 3 reducing core voltage to the processor to a value sufficient to maintain state during the mode in which system clock is disabled.
- 1 Claim 2. A method as claimed in Claim 1 in which the step of determining that a processor is transitioning from a computing mode to a mode in which system clock to the processor is disabled comprising monitoring a stop clock signal.
- 1 Claim 3. A method as claimed in Claim 1 in which the step of reducing core voltage to the processor to a value sufficient to maintain state during the state in which system clock is disabled comprises furnishing an input to reduce an output voltage provided by a voltage regulator furnishing core voltage to the processor.
- 1 Claim 4. A method as claimed in Claim 3 in which the step of reducing core voltage to the processor to a value sufficient to maintain state during the state in which system clock is disabled further comprises providing a feedback signal to the voltage regulator to reduce its output voltage below a specified output voltage.
- 1 Claim 5. A method as claimed in Claim 1 further comprising the steps of transferring operation of a voltage regulator furnishing core voltage in

3 a mode in which power is dissipated during reductions in core voltage to
4 a mode in which power is saved during a voltage transition when it is
5 determined that a processor is transitioning from a computing mode to a
6 mode in which system clock to the processor is disabled.

Sub A
1 Claim 6. A method as claimed in Claim 5 further comprising the steps
2 of returning the voltage regulator to its original mode of operation when
3 the lower value of the core voltage is reached

1 Claim 7. A circuit for providing a regulated voltage to a processor
2 comprising:

3 a voltage regulator having:

4 an output terminal providing a selectable voltage, and

5 an input terminal for receiving signals indicating the
6 selectable voltage level;

7 means for providing signals at the input terminal of the voltage
8 regulator for selecting a voltage for operating the processor in a
9 computing mode and a voltage of a level less than that for
10 operating the processor in a computing mode.

1 Claim 8. A circuit as claimed in Claim 7 in which the means for
2 providing signals at the input terminal of the voltage regulator comprises
3 means for accepting binary signals indicating different levels of voltage.

1 Claim 9. A circuit as claimed in Claim 7 in which the means for
2 providing signals at the input terminal of the voltage regulator comprises:

3 selection circuitry,
4 means for furnishing a plurality of signals at the input to the
5 selection circuitry, and
Sub A⁶
means for controlling the selection by the selection circuitry.

1 Claim 10. A circuit as claimed in Claim 9 in which:

2 the selection circuitry is a multiplexor, and
3 the means for controlling the selection by the selection circuitry
4 includes a control terminal for receiving signals indicating a
5 system clock to the processor is being terminated.

1 Claim 11. A circuit as claimed in Claim 7 further comprising means for
2 reducing the selectable voltage below a level provided by the voltage
3 regulator.

1 Claim 12. A circuit as claimed in Claim 11 in which the means for
2 reducing the selectable voltage below a level provided by the voltage
3 regulator comprises:

4 a voltage divider network joined between the output terminal and a
5 voltage source furnishing a value higher than the selectable
6 voltage, and
7 a voltage regulator feedback circuit receiving a value from the
8 voltage divider network.

1 Claim 13. A circuit as claimed in Claim 7 further comprising:

2 circuitry for conserving charge stored by the voltage regulator
3 when the selectable voltage decreases, and

4 means for enabling the circuitry for conserving charge stored by the
5 voltage regulator when the selectable voltage decreases.

Sub A1