淇江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 41——数列的通项(构造等差、等比数列)1

学号: ______姓名: _____

一、单选题

- 1. 已知数列 $a_n = \frac{3}{2}a_{n-1}^2 + 3a_{n-1} + \frac{1}{2}$, $a_1 = 2$, 则 $\log_2(a_5 + 1) = ($)
- **A.** $63\log_2 3 31$ **B.** $31\log_2 3 15$ **C.** $63\log_3 2 31$ **D.** $31\log_3 2 15$

- 2. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1 = 5$, 且满足 $\frac{a_{n+1}}{2n-5} 2 = \frac{a_n}{2n-7}$, 若 p, $q \in \mathbb{N}^*$, p > q, 则 $S_p S_q$ 的最小值

为(

- **B.** -2 **C.** -1
- D. 0
- 3. 数列 $\{a_n\}$ 满足 $a_1 = 1, a_{n+1} = 2a_n + 2^n (n \in \mathbb{N}_+)$,那么 a_4 的值为 ().

- **4.** 已知数列 $\{a_n\}$ 满足 $a_1=2$, $a_{n+1}=\frac{2(n+2)}{n+1}a_n$,则 $\frac{a_{2020}}{a_1+a_2+a_3+L_1+a_{2019}}=$ (
- B. $\frac{2020}{2019}$ C. $\frac{2019}{2018}$
- **D.** $\frac{2021}{2018}$
- 5. 若数列 $\{a_n\}$ 的首项 $a_1 = -21$,且满足 $(2n-3)a_{n+1} = (2n-1)a_n + 4n^2 8n + 3$,则 a_{24} 的值为(
- A. 1980
- B. 2000
- C. 2020
- D. 2021
- 6. 设数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $a_1 = 1$, $a_n = \frac{S_n}{n} + 2(n-1)$ ($n \in \mathbb{N}^*$),则 $nS_n 2n^2$ 的最小值为

- 7. 已知数列 $\{a_n\}$ 的首项 $a_1=2, a_{n+1}=a_n+6\sqrt{a_n+2}+9$,则 $a_{27}=$ ()
- A. 7268
- B. 5068
- C. 6398
- D. 4028
- 8. 已知在数列 $\{a_n\}$ 中, $a_1 = \frac{5}{6}$, $a_{n+1} = \frac{1}{3}a_n + \left(\frac{1}{2}\right)^{n+1}$,则 $a_n = ($

- **A.** $\frac{3}{2^n} \frac{2}{3^n}$ **B.** $\frac{2}{3^n} \frac{3}{2^n}$ **C.** $\frac{1}{2^n} \frac{2}{3^n}$ **D.** $\frac{2}{3^n} \frac{1}{2^n}$
- 9. 如果数列 $\{a_n\}$ 满足 $a_1=2$, $a_2=1$,且 $\frac{a_{n-1}-a_n}{a_{n-1}a_n}=\frac{a_n-a_{n+1}}{a_na_{n+1}}$ $(n\geq 2)$,则这个数列的第 10 项等于(
- **A.** $\frac{1}{2^{10}}$
- c. $\frac{1}{10}$
- **D.** $\frac{1}{5}$

二、填空题

- **11**. 已知 S_n 是数列 $\{a_n\}$ 的前 n 项和, $a_{n+1}-3a_n+2a_{n-1}=1$, $a_1=1$, $a_2=4$,求数列 $\{a_n\}$ 的通项公式______.
- **12.** 设数列 $\{a_n\}$ 满足 $a_1=2$, $a_2=6$, $a_3=12$, 数列 $\{a_n\}$ 前n项和为 S_n , 且 $\frac{S_{n+2}-S_{n-1}+1}{S_{n+1}-S_n+1}=3$ ($n\in N^g$ 且 $n\geq 2$). 若
- **13.** 已知数列 $\{a_n\}$ 中 $a_1=1$, $a_{n+1}=\frac{5}{2}-\frac{1}{a_n}$,设 $b_n=\frac{1}{a_n-2}$,求数列 $\{b_n\}$ 的通项公式______.
- **14.** 已知数列 $\{a_n\}$ 满足 $a_1=3$, $a_{n+1}+1=\frac{2\left(3^{n+1}-1\right)\left(a_n+1\right)}{a_n+2\cdot 3^n-1}\left(n\in N^*\right)$,则数列 $\{a_n\}$ 的通项公式为 $a_n=$ _____.
- **15**. 若数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=6a_n+2^{n+1}$,则数列 $\{a_n\}$ 的通项公式 $a_n=$ ______.
- **16.** 已知数列 $\{a_n\}$ 中, $a_1 = \frac{3}{2}$,且满足 $a_n = \frac{1}{2}a_{n-1} + \frac{1}{2^n}\left(n \ge 2, n \in \mathbb{N}^*\right)$,若对于任意 $n \in \mathbb{N}^*$,都有 $\frac{\lambda}{n} \ge a_n$ 成立,则实数 λ 的最小值是______.
- **17**. 在数列 $\{a_n\}$ 中, $a_1=1$,且 $a_{n+1}=3a_n+(-1)^n$,则 $a_n=$ _____. (用含n的式子表示)