A Linear Algebra Approach to the Vector Space Model A Fast Track Tutorial

Dr. E. Garcia admin@miislita.com

Last Update: October 21, 2009. Previous Update: February 10, 2008. Published: September 3, 2006. Copyright © Dr. E. Garcia. All Rights Reserved; http://www.miislita.com

Abstract

This is an improved (revised and updated) version of a fast track tutorial on vector space calculations. The tutorial covers term-document and term-query matrices, matrix transposition, dot products, and cosine similarities. A modern linear algebra approach, based on reaction equations, is used. The virtues of this approach are described in http://www.miislita.com/information-retrieval-tutorial/association-scalar-clusters-tutorial-1.pdf.

Keywords: term vector calculations, cosine similarities, term-document, term-query matrices, matrix transposition, dot products, frobenius norm

Problem

A collection consisting of the following five documents is queried for latent semantic indexing (q):

- **d1** = LSI tutorials and fast tracks.
- **d2** = Books on semantic analysis.
- d3 = Learning latent semantic indexing.
- **d4** = Advances in structures and advances in indexing.
- **d5** = Analysis of latent structures.

Rank documents in decreasing order of cosine similarities. Assume that:

1. Documents are linearized, tokenized, and their stopwords removed. Stemming is not used. Survival terms are used to construct a term-document matrix **A**. This matrix is populated with term weights a_{ij} which are the products of local (L_{ij}) , global (G_i) , and normalization (N_i) weights; i.e

$$a_{ii} = L_{ii} G_i N_i$$

In this equation terms are defined as follows:

- a. $L_{ij} = f_{ij}$, where f_{ij} is the frequency of term in document j. This is the so-called FREQ model.
- b. $G_i = log(D/d_i)$, where **D** is the collection size and d_i is the number of documents containing term i. This is the so-called IDF model. IDF stands for Inverse Document Frequency.
- c. $N_i = 1/I$; i.e. document lengths are normalized to 1/I. For $N_i = 1$,

$$a_{ii} = f_{ii} \log(D/d_i)$$

 N_j no need to be defined as 1/l and when it is done is called cosine normalization (see references 1 and 2). In general, I is the so called L2-norm or Frobenius length.

2. Query terms are scored using FREQ; i.e., $a_{iq} = L_{iq} = f_{iq}$, where f_{iq} is the frequency of term i in the query \mathbf{q} .

Solution

- 1. Compute A and q.
- 2. Make the following "reaction" equation transformations

$$\begin{array}{cccc} A & \rightarrow & A_{(u)} \\ q & \rightarrow & q_{(u)} \\ q_{(u)} & \rightarrow & q_{(u)}^T \end{array}$$

3. Compute $\mathbf{q_{(u)}}^{\mathsf{T}} \mathbf{A_{(u)}}$.

where the u subscript denotes unit vectors. Unit vector means their elements are normalized so that vector lengths are equal to 1. Since unit vectors are used, Cosine θ = Dot Products.

Step 1. Compute A and q.

	d1	d2	d3	d4	d5	7 .	_ d1	d2	d 3	d4	d5			
si	1*log(5/1)	0	0	0	0		0.6990	0	0	0	0		0	
tutorials	1*log(5/1)	0	0	0	0	7	0.6990	0	0	0	0		0	
fast	1*log(5/1)	0	0	0	0	1	0.6990	0	0	0	0		0	
tracks	1*log(5/1)	0	0	0	0	1	0.6990	0	0	0	0		0	
books	0	1*log(5/1)	0	0	0	7	0	0.6990	0	0	0		0	
semantic	0	1*log(5/2)	1*log(5/2)	0	0	=	0	0.3979	0.3979	0	0	= A	1	= a
analysis	0	1*log(5/2)	0	0	1*log(5/2)	1	0	0.3979	0	0	0.3979		0	= q
learning	0	0	1*log(5/1)	0	0	7	0	0	0.6990	0	0		0	
latent	0	0	1*log(5/2)	0	1*log(5/2)	1	0	0	0.3979	0	0.3979		1	
indexing	0	0	1*log(5/2)	1*log(5/2)	0	1	0	0	0.3979	0.3979	0		1	
advances	0	0	0	2*log(5/1)	0		0	0	0	1.3979	0		0	
structures	0	0	0	1*log(5/2)	1*log(5/2)	1	0	0	0	0.3979	0.3979		0	

Step 2. Compute $\mathbf{A}_{(\mathbf{u})}$, $\mathbf{q}_{(\mathbf{u})}$, and $\mathbf{q}_{(\mathbf{u})}^{\mathsf{T}}$.

Unit vectors are obtained by dividing column vectors by their Frobenius norm (L_2 -norms, Euclidean lengths). Essentially for a given vector, we square their elements, add them together, and square root the result.

The following Frobenius norms are obtained:

	d1	d2	d3	d4	d5	q
vector lengths	1.3980	0.8973	0.9816	1.5069	0.6891	1.7321

Each vector element is now divided by the corresponding length. The following matrices are then obtained:

$$\begin{bmatrix} \mathbf{d1} & \mathbf{d2} & \mathbf{d3} & \mathbf{d4} & \mathbf{d5} \\ 0.5000 & 0 & 0 & 0 & 0 \\ 0.5000 & 0 & 0 & 0 & 0 \\ 0.5000 & 0 & 0 & 0 & 0 \\ 0.5000 & 0 & 0 & 0 & 0 \\ 0 & 0.7790 & 0 & 0 & 0 \\ 0 & 0.4434 & 0.4054 & 0 & 0 \\ 0 & 0 & 0.4434 & 0 & 0 & 0.5774 \\ 0 & 0 & 0.7121 & 0 & 0 \\ 0 & 0 & 0.4054 & 0.2640 & 0 \\ 0 & 0 & 0 & 0.2640 & 0.5774 \\ \end{bmatrix} = \mathbf{A_{(u)}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0.5774 & 0 & 0 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5774 & 0 & 0 \\ 0 & 0 & 0 & 0.5774 & 0.5$$

Step 3. Compute $\mathbf{q_{(u)}}^T \mathbf{A_{(u)}}$.

$$\mathbf{q}_{(u)}^{\mathsf{T}} \mathbf{A}_{(u)} = \begin{bmatrix} \mathbf{d} & \mathbf{d} & \mathbf{d} & \mathbf{d} & \mathbf{d} & \mathbf{d} \\ 0 & 0.2560 & 0.7022 & 0.1524 & 0.3334 \end{bmatrix}$$

Thus, documents rank as follows:

Exercises

- Repeat the above calculations, this time including all stopwords. Explain any difference in computed results
- 2. Repeat the above calculations, this time scoring global weights using IDF probabilistic (IDFP):

$$G_i = log((D - d_i)/d_i)$$

Explain any difference in computed results.

References

- 1. http://sra.itc.it/people/polettini/PAPERS/Polettini_Information_Retrieval.pdf
- 2. http://csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/ornl-tm-13756.pdf.
- 3. http://www.miislita.com
- 4. http://www.miislita.com/term-vector/term-vector-1.html
- 5. http://www.miislita.com/term-vector/term-vector-4.html
- 6. http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html
- 7. http://www.miislita.com/information-retrieval-tutorial/association-scalar-clusters-tutorial-1.pdf

Copyright © Dr. E. Garcia All Rights Reserved