1 生物

生物・通論

抽象司法行為禁止——篇目所載的要點須具有具體的存疑或失誤的題目,並與之俱有相當關聯性。

一事不再理——既已審查的題目除非存在要點歸納錯誤,不得再度審查。

表述性的要點,可以為操作之賓語、原因、工具或其他狀語。

定義性的要點,可以為定義本身或足夠精確之描述。

同一要點,視其所欲強調者不同,得給予不同之分類。

要點之順序,視其於所處之章節之位置確定。描述動態過程時,應以要 點對應過程之步驟確定其位置;描述靜態時,應以一定位置順序確定之。

1.1 生物·通論

 \bullet^{94} 方法: 選擇題之項目排除は,选择题对知识性错误项目之排除优先于表述性错误。 -Vol.p.1070505.7

1.2 生物·卷0·常識或未歸類

•97 表述: 導管的構成謂植物的死細胞。

•⁹⁸ 表述: 有絲分裂之著絲點分離發生於謂**有絲分裂後期**。 —せテ.p.-28.4

 \bullet^{99} 從屬: 玉米、小麥屬於**單子葉植物**。 — せテ.p.6.lower.left

●¹⁰⁰ 從屬:核移植技術屬於**細胞工程**。 — せテ.p.42.1

•¹⁰¹ 從屬:溶酶體酶屬於**蛋白質**。故其合成處為核糖體。 — せテ.p.42.2

•¹⁰² 方法: 若涉及動物細胞於培養皿內培養,可判定其涉及動物細胞培養技術。 —せテ.p.46.7.3

•¹⁰³ 方法: 題目中出現的名詞在必要時應徑直使用。 —せテ.p.92.2

待補充: 選填顯微注射技術或轉基因技術 — — せテ.*p.*..p.92.14.4 — せテ.p.94.14.4

待補充: 選填基因工程技術或轉基因技術 — —せテ.p...p.96.12.2

待補充: 選填基因工程技術/細胞工程技術或核移植技術 — —せテ.p..p.51.7.2 — せテ.p.60.6.1

存疑: 激素僅作用於特定細胞 — — せテ.p...p.51.4

- •¹⁰⁸ 表述:細胞核移植之細胞核所移入者謂**去核卵母細胞**。 —せテ.p.-28.4
- •109 表述: 以去核卵母細胞為受體細胞之原因謂**含有使細胞核表達全能** 性的物質與營養條件,體積大且易操作。 —せテ.p.96.11.3
- •110 表述: 轉錄之首先步驟謂RNA聚合酶識別基因的啟動子結構。 世 テ.p.11.7.1
- •111 表述: 啟動子之作用謂為 RNA 聚合酶提供識別與結合的部位,驅動 轉錄。 — せテ.p.72.13.4
- •112 表述: 啟動子與終止子之作用謂**啟動和終止<mark>轉錄</mark>的進程**。而不是翻 譯。 —せテ.p.13.2

待補充:格里菲斯實驗之步驟 —せテ.p.11.6.5

- •114 表述:格里菲斯實驗之啟示謂 DNA 可以從一種生物個體傳遞至另 一種生物個體。 —せテ.p.11.6.5
- 1.3 生物·卷I·細胞與遺傳學
- 1.3.1 遺傳學
- ●¹¹⁸ 實驗_[來自 Bio.tex]
 - ●¹²⁹ 對比: —*Vol.*p.1070505.25
- •¹²⁹ 表述: 孟德爾「一堆相對性狀 •¹²⁹ 表述: 摩爾根證實基因位於染 的雜交實驗」包含步驟謂
 - 1. 顯性純合與隱形純合雜交, ↔ 1. 顯性雌性與隱性雌性雜交, 得到不分離的 F_1 ;
 - 2. F_1 自交得到分離的 F_2 。 2. F_1 雜交得到分離的 F_2 。
 - •136 表述: 孟德爾之假說謂
 - 1. 生物的性狀由遺傳因子決定;
 - 2. 體細胞的遺傳因子成對存在;
 - 3. 生物體形成配子時,成對的遺傳因子分離進入不同配子;
 - 4. 雌雄配子的結合是隨機的。

色體上的實驗包含步驟謂

- 得到顯性 F_1 ;

上述假說不涉及染色體。 — Vol.p.1070505.38

•¹³⁸ 表述: 檢驗植物是否顯性純合,最簡便易行的方式謂**自交視後代是 否性狀分離**。 —*Vol.*p.1070505.21,24

●¹⁴⁰ 基因的表達_[來自 Bio.tex]

- •¹⁴¹ 方法: 尋找提高產物之方法は,應審查促進產物之產生的基因或物質與抑制產物產生之基因或物質,並添加或去處之。 —せテ.p.74.13.4
- •¹⁴² 性質:原核生物不具有**內含子**。故其基因結構與人體的基因結構不同。 —せテ.p.73.5
- $ullet^{143}$ 表述: 欲改變蛋白質中某一氨基酸,應替換之鹼基數量最少謂 llet llet
- •¹⁴⁴ 方法: 基因突變は,題目中給出終止密碼子時,可考慮突變為終止密碼子之情形。 —せテ.p.76.15.2
- •¹⁴⁵ 表述: 從基因表達水平分析,遺傳病之患病原因之一可能謂**突變後** 終止密碼子提前出現,翻譯提前終止,形成一場蛋白。 —せテ.p.76.15.2
- $ullet^{-146}$ 方法: 表現型數目之判定は,應視實際表現出相對性狀之數目決定, 而不是單純由基因之組合數量。。 -Vol.p.1070505.35

●¹⁴⁸ 染色體與有絲分裂_[來自 Bio.tex]

存疑: 神經細胞之染色體數目為 2N? ─vol.p.1070505.29

•157 定義: 同源染色體謂

- 1. 成對存在:
- 2. 形態、大小相同;
- 3. 一條來自父方,一條來自母方;

的一對染色體。上述第二條存在例外,如性染色體。 —Vol.p.1070505.9

待補充: 染色單體之定義 —Vol.p.20170505.9僅在著絲點分離前存在。

- ●¹⁵⁹ 表述: 同源染色體謂**在減數分裂是聯會之性質**。不存在例外。 *Vol.*p.1070505.11
 - ●¹⁶⁰ 對比: —Vol.p.1070505.5

•¹⁶⁰ 表述:植物細胞有絲分裂末期 之特徵謂**細胞壁合成,高爾基體活** ↔ 動旺盛。

•¹⁶⁰ 表述:動物細胞有絲分裂末期 之特徵僅謂**細胞膜變形**。

1.4 生物·卷II·基因工程

1.4.1 基因工程

●1 基因工程通論與限制酶,DNA 連接酶_[來自 bio.tek.1/bio.tek.1.1]

- $ullet^2$ 表述: 基因工程之最終目的謂**定向改造生物的遺傳性狀**。 —せテ.p.-4.lower.1
 - ³ 表述: 基因工程所需的必要酶謂**限制酶, DNA 連接酶**。 せテ.p.71.1
- ⁴ 表述:限制酶之作用特點謂**識別特定的<mark>核苷酸</mark>序列,並在特定位點上 切割 DNA 分子**。 — せテ.p.11.7.7
- •⁵ 方法: 切割酶的選用は, 對目的基因應選用可將包含目的基因的一段 DNA 片段切下的酶, 對質粒應選用切下二標記基因之一的酶。 せテ.p.-69.8
- •⁶ 表述:在目的基因兩側選用不同的酶切割之原因謂**防止目的基因與** 載體**反向連接**。 —せテ.p.76.14.1
- ⁷ 表述: 限制酶的切割對象謂**有特定<mark>脫氧</mark>核苷酸序列的 DNA** 片段。 せテ.p.70.11.1
- •⁸ 表述: 因目的基因事後不存在切割位點致限制酶無法切割謂**無法識別切割位點**。 —せテ.p.70.11.5

存疑: 基因能夠與質粒連接的主要原因是切割後形成相同黏性末端 — せテ.p.74.13.2

- •¹⁰ 表述: 限制酶的相同點之一謂**切割後形成的黏性末端相同或互補**。選 填何種相同點應視上下文決定之。 —せテ.p.70.12.3
- \bullet^{11} 表述: DNA 連接酶有兩類謂 $\mathbf{T_4}$ DNA 連接酶與 $E \cdot coli$ DNA 連接酶。 前者連接黏性末端或平末端,後者僅連接黏性末端。 せテ.p.70.12.5
 - * E·coli 謂 Escherichia coli, 即大腸桿菌。

$ullet^{19}$ 質粒與其他載體 $_{\mathrm{[}$ 來自 bio.tek.1/bio.tek.1.1]

•²⁰ 方法: 基因工程之判定は, 涉及以質粒或其他載體導入目的基因者, 皆可判定為使用了基因工程技術。 —せテ.p.72.13.2

- \bullet^{21} 表述: 基因工程操作之核心步驟謂**基因表達載體之構建**。 せテ.p.-6.lower.right.2
- $ullet^{22}$ 表述: 需表達載體之原因謂**目的基因無複製原點與表達所需的啟動** 子。 一せテ.p.16.6.3
 - •27 表述: 質粒載體應具備之條件謂
 - 1. 具有一個或多個限制酶切割位點,供外源 DNA 片段插入
 - 2. 具有標記基因
 - 3. 能自我複製
 - —せテ.p.5.7.1
 - *煙草花葉病毒為 RNA 病毒, 而大多數噬菌體為 DNA 病毒。
- ●²⁹ 表述: 基因工程之載體謂**質粒, λ 噬菌體衍生物與動植物病毒**。 —せ テ.p.70.12
 - •30 對比: 載體之選用は: せテ.p.11.6.2
- $ullet^{31}$ 表述:標記基因之作用謂**供重組 DNA 的鑑定與選擇**。 せテ.p.3.-lower.right
- •32 結果: 將質粒與目的基因用同一酶切,連接的結果為**質粒自聯,廢 棄基因自聯,目的基因與質粒互聯**。 —せテ.p.70.10
- •³³ 表述: 重組質粒作為表達載體應當具有謂**啟動子、終止子、標記基** 因。 —せテ.p.74.14.3

存疑: 表達載體無需複製原點 一せテ.p.74.14.3

- •³⁵ 表述: 噬菌體改造後作為載體,其 DNA 複製原料來自謂**受體細胞**。 而不是宿主細胞。應當據上下文回答直接對象。 —せテ.p.5.7.3
- \bullet^{36} 方法: 篩選轉化後細胞所用之抗生素應嚴格視條件之抗性基因決定。 —せテ. \mathbf{p} .24.3
- •³⁷ 表述: 微生物受體不能在抗生素培養基上生存之主要原因謂**重組質 粒未導入**。 —せテ.p.74.13.3
- •³⁸ 表述: 某一生物之基因能插入其他生物的染色體之原因謂**其遺傳物 質均為 DNA**,**物質組成與空間結構相同**。 —せテ.p.70.14

●¹ 基因的獲取_[來自 bio.tek.1/bio.tek.1.2]

•² 表述:獲得目的基因之主要途徑謂**從已有物種中分離與人工合成**。 —せテ.p.74.14.1

- •³ 表述: 從植物中獲得 mRNA, 選用嫩葉而非老業之原因謂**嫩葉組織細胞易破碎**。 —せテ.p.16.6.1
- ●⁴ 定義: *cDNA*謂 **mRNA** 逆轉錄之產物。 せテ.p.94.14.1 せテ.p.-72.1
- •⁵ 定義: *cDNA* 文庫謂某生物某一發育時期所轉錄的 mRNA全部經逆轉 錄形成的 cDNA 片段與載體連接而形成的集合。 —せテ.p.73.11.1
- •⁶ 表述:由 mRNA 獲得 cDNA 之原理謂**在逆轉錄酶的作用下,以 mRNA** 為模板按照鹼基互補配對原則合成 **cDNA**。 — せテ.p.16.6.2
- $ullet^7$ 方法: 選用限制酶は,應當選擇切割位點盡可能接近目的基因者。 一セテ.p.71.5

存疑: 人工合成法所合成之序列不唯一 — せテ.p.7.2

- •⁹ 對比: 獲得目的基因之方法は: せテ.p.10.1
- \bullet^{10} 方法: 脫氧核苷酸原料數量的計算は, 2^n-1 倍的單個 DNA 分子的原料數量。 troing troing

$ullet^{11}$ 基因的導入 $_{\mathrm{[來自\ bio.tek.1/bio.tek.1.2]}}$

- •12 方法: 受體生物之選擇は, 對要求作物之細胞產物的情況, 應考慮 產物烹飪後失活之可能。 —せテ.p.74.11.3
- •¹³ 表述: 將目的基因導入微生物之方法謂**感受態細胞法**。 —せテ.p.-71.9
- •¹⁴ 表述: 將目的基因導入微生物前之操作謂**用鈣離子處理,使其轉化** 為感受態細胞。 —せテ.p.76.14.2

待補充: 交叉引用 —.p..

 $ullet^{16}$ 表述:使用細菌作為受體之優點謂**繁殖速度快,結構簡單**。 —せ au.p.11.3

●¹⁷ 定義:基因槍法謂用压缩气体动力把粘有 DNA 的细微金粉打向细胞, 穿过细胞壁、细胞膜、细胞质等构造到达细胞核,完成基因转移。

- \bullet^{18} 表述: 將目的基因導入單子葉植物之常用方法謂**基因槍法**。 —せ τ .p.6.lower.left せ τ .p.9.2
- ●¹⁹ 表述: 農桿菌轉化法之目的基因插入對象謂 **Ti 質粒之T-DNA**。 —せ テ.p.8.lower.left セテ.p.74.14.4
 - * Ti 質粒之 Ti 謂 Tumour inducing。
 - * T-DNA 之 T 謂 Transfer。
 - •²² 表述:目的基因之插入對象謂**染色體DNA**。 せテ.p.72.13.3
- $ullet^{23}$ 表述: 整合到染色體上之對象謂**目的基因**。 而不是質粒。 一せテ.p.-73.8
- •²⁴ 表述:目的基因插入染色體 DNA 後結果謂**目的基因得以穩定維持與** 表達。 —せテ.p.8.mid.right

●²⁵ 基因的檢測_[來自 bio.tek.1/bio.tek.1.2]

- •²⁶ 定義: 杂交探针謂**一小段单链 DNA 片段**, 用于检测与其互补的核酸**序列**。在分子雜交技術與 DNA 分子雜交技術中使用。 —せテ.p.71.9
- •²⁷ 表述:目的基因能否在植物體內穩定遺傳的關鍵謂**是否整合至染色** 體。 —せテ.p.72.5
- \bullet^{28} 表述: 檢查目的基因是否整合至染色體之方法謂 DNA 分子雜交。 せテ.p.72.5
- \bullet^{29} 表述: DNA 分子雜交技術中不發生雜交帶者謂**非目的基因**。 —せテ.p.9.lower.left

● 166 基因工程的應用 [來自 Bio.tex]

- •¹⁶⁷ 定義: 轉基因植物謂植物體細胞中被轉入<mark>外源基因</mark>的植物。而不是 出現了新基因。 —せテ.p.13.upper.right.2
- •¹⁶⁸ 表述: 植物轉基因技術之優點謂**目的性強, 克服遠緣雜交不親和性**。 —せテ.p.16.7.3
 - •169 方法: 抗原-抗體雜交技術可確定蛋白質產物之位置, 即為提取產物

之位置。 —せテ.p.76.13.3

●¹⁷⁰ 表述: 轉基因動物作器官移植供體, 優點謂**避免<mark>免疫</mark>排斥反應**。 — せテ.p.74.14.5

- •¹⁷¹ 表述: 真核生物作為受體細胞之優勢謂**含有內質網與高爾基體**, 可 以對蛋白質進行加工與修飾。 —せテ.p.76.14.2
- •¹⁷² 定義: 基因治療謂將健康的<mark>外源</mark>基因導入有基因缺陷的細胞中,以 治療疾病。 —せテ.p.74.15.1
- ●¹⁷³ 表述: 基因治療效果發生之原因謂**細胞中能合成<u>[目標産物]</u>。 —**せ テ.p.74.15.3

待補充: 交叉引用 —.p..

●¹⁷⁶ 蛋白質工程_[來自 Bio.tex]

•183 表述: 蛋白質工程之流程謂

- 1. 預期蛋白質功能;
- 2. 設計蛋白質的空間結構;
- 3. 推測蛋白質的氨基酸序列;
- 4. 合成相應的脫氧核苷酸序列。

注意上述第二與第三項之順序。 — せテ.p.76.12.1

- •¹⁸⁴ 表述:蛋白質工程之原理謂**中心法則之逆推**。 —せテ.p.76.14.3
- ●¹⁸⁵ 表述:蛋白質工程之實質謂**改造基因**。 —せテ.p.76.14.3
- ●¹⁸⁶ 表述:蛋白質工程之手段謂**基因修飾與基因合成** —せテ.p.76.12.2
- •¹⁸⁷ 表述:蛋白質工程之蛋白質產物性能提升之<mark>根本</mark>原因謂**控制基因合成之位點發生突變**。 —せテ.p.19.3
- •¹⁸⁸ 表述: 對天然基因之改造,選擇操作基因而非操作蛋白質分子之原因謂**對蛋白質之改造無法遺傳**; **對基因之改造操作更為容易,難度降低**。 —せテ.p.76.12.4
- •¹⁸⁹ 表述: 改造蛋白質性質的手段之一謂**對蛋白質進行少數胺基酸的替** 換。 —せテ.p.75.11.3
- •¹⁹⁰ 表述:蛋白質工程之目的謂**對現有的蛋白質進行改造**,或**製造一種** 新的蛋白質,以滿足人類的生產與生活的需求。 —せテ.p.76.12.2

1.4.2 植物細胞工程

•¹ 植物組織培養技術・取材與條件_{「寒自 bio,tek.2/bio,tek.2.11}

•² 方法: 植物組織培養技術之判定は涉及由植物體細胞培養至植株者, 皆可判定為使用了植物組織培養技術。 — せテ.p.72.13.2

待補充: 選填「單倍體育種」「花藥離體培養技術」「植物組織培養技術」 之區分。 —せテ.p.24.7.4

- ⁴ 定義: 外植體謂植物組織培養中作為離體培養材料的器官或組織的 片段。
- ●⁵ 定義: 雜種優勢謂雜交種通過繼承其父母的不同的優勢,獲得更好的生物特性。
- •6 定義: 細胞全能性謂已分化的細胞具有發育成完整生物體的潛能。 —せテ.p.21.lower.1
 - •11 表述: 植物細胞表現全能性之條件謂

1. 脫離母體;

2. 給予適當營養與外界條件。

*—Vol.*p.1070505.2

卵細胞與受精卵皆有全能性,卵細胞全能性最高。 — せテ.p.24.1

- •¹⁵ 表述: 植物組織培養過程之條件謂**無菌**。 —せテ.p.80.12
- $ullet^{16}$ 表述: 植物組織培養中污染之可能原因謂**外植體消毒不徹底**。外植體消毒困難 せテ.p.29.7.4
- ●¹⁷ 表述: 植物組織培養技術之固體培養基內為保障植物生長應當加入 謂**無機鹽與水**。cf.V.p.84 —せテ.p.29.7.2
- •¹⁸ 表述: 植物組織培養技術之固體培養基內為形成癒傷組織應當加入 謂**植物激素**。 —せテ.p.29.7.3
- ●¹⁹ 表述: 脫分化培養基應加入者謂無機營養物質,生長素與細胞分裂素,有機營養物質。 —せテ.p.79.9

待補充: 植物組織培養之激素影響與根/芽順序 — せテ.p.22.right.1 — せテ.p.24.7.3

•²¹ 表述:取新生的莖尖細胞培養的原因謂**莖尖細胞全能性高與新生細胞無箘無毒**。 —せテ.p.24.7

●²³ 植物組織培養技術・脫分化、再分化與結果_[來自 bio,tek,2/bio,tek,2,1]

•²⁴ 表述: 從結果看,分化、脫分化、再分化之實質謂**基因的選擇性表達**。 —せテ.p.79.9

- •²⁵ 表述: 脫分化之實質謂**使細胞恢復分裂能力**。 —せテ.p.82.10
- •²⁶ 表述: 脫分化過程之條件謂謂**避光**。 —せテ.p.22.right.1
- •²⁷ 表述: 癒傷組織結構特點謂**細胞壁更薄, 高度液泡化, 無定形**。 —せ テ.p.79.9

癒傷組織不含葉綠體,故癒傷組織之分化無需充足光照。 —せテ.p.-82.14

所填寫培養基之類型名稱,應端視上下文所欲強調之屬性而確定。涉及 激素者,應選填「分化培養基」而非「固體培養基」。 —せテ.p.24.7.3

 \bullet^{32} 結果: 癒傷組織再分化之結果視目的為**胚狀體或幼根和芽**。 —せ テ.p.22.upper.r.1

産物可直接通過癒傷組織獲得。是<u>否應包含與工廠化生産</u>? —せテ.p.-81.6

•³⁵ 表述: 植物組織培養中再分化過程需要激素謂**生長素、細胞分裂素**。 —せテ.p.22.right.2

待補充:各種植物激素之作用 — せテ.p.22.right.2 存疑: 雜種優勢後代不發生性狀分離 — せテ.p.81.5

•³⁸ 表述: 轉基因植物之培養所依賴之技術謂**轉基因技術與植物組織培養技術**。 —せテ.p.24.4

待補充:轉基因技術與基因工程技術之定義 — せテ.p.24.4

•⁴² 人工種子_[來自 bio.tek.2/bio.tek.2.1]

•⁴³ 定義: 胚狀體謂相當於天然種子的胚。由分生組織構成。 胚狀體與頂芽、腋芽、不定芽並列而不是包含。

人工種子由胚狀體製得,而不是幼苗。 —せテ.p.81.7

•⁴⁸ 表述:人工種子包裹胚狀體的膠質之擬制謂**種皮,胚乳、子葉等提供營養的結構**。 —せテ.p.81.10

人工種子萌發之植株,可育與否取決於種子之產生方式。體細胞生成之種子可育,配子生成則不可育。 —せテ.p.82.10

●53 單倍體育種與花藥離體培養技術_[來自 bio.tek.2/bio.tek.2.1]

- ●⁵⁴ 從屬:花藥離體培養技術屬於**植物組織培養技術**。 —せテ.p.24.4
- •⁵⁵ 表述: 單倍體育種之原理, 謂謂**生殖細胞之全能性**。 —せテ.p.26.-lower.s1.1
- •⁵⁶ 從屬:香蕉屬於**無花粉的植物**。故無法進行花藥離體培養。 —せ テ.p.28.3
 - •⁵⁷ 對比: —世テ.p.22.right.2
- - •60 定義: 單倍體植株謂配子離體培養所得植株。 —せテ.p.80.10
- \bullet^{61} 表述: 秋水仙素質作用時期謂**有絲分裂前期抑制紡錘體形成**。 —せ テ.p.27.right.1
- \bullet^{62} 表述: 秋水仙素於植物引發之變異謂**染色體數目變異**。 せテ.p.-26.lower.s1.1

待補充:染色體變異類型 —.p..

•64 表述: 單倍體育種之優點謂**明顯縮短育種年限**。 —せテ.p.24.7.4

●⁶⁸ 脫毒苗的製作_{||來自 bio.tek.2/bio.tek.2.11|}

•⁶⁹ 表述:製作脫毒苗,應當利用者謂**無病毒或病毒較少的莖尖或根尖**。 —せテ.p.25.lower.s2.2

●⁷¹ 微型繁殖_[來自 bio.tek.2/bio.tek.2.1]

•⁷² 表述: 微型繁殖技術之意義謂**保持品種的遺傳特性**。 —せテ.p.82.13

●⁷⁴ 突變體利用_[來自 bio.tek.2/bio.tek.2.1]

•⁷⁵ 定義: 誘變育種謂對植物的癒傷組織誘變處理, 使之突變, 再通過 誘導分化形成植株。

•⁷⁶ 表述: 誘變育種之原理謂**基因突變與植物體細胞之分化**。 —せテ.p.-26.lower.s2.1

●78 細胞產物的工廠化生產[來自 bio.tek.2/bio.tek.2.1]

- •⁷⁹ 表述: 細胞産物的工廠化生産採用的培養基謂謂**液體培養基**。 —せ テ.p.28.6.2
- •80 表述:在液體培養基中通入空氣的原因謂**保障氧氣供應,使細胞和培養液充分接觸**。 —せテ.p.28.6.2
- •81 表述:液體培養後期產物減少的原因謂**活細胞數量下降,細胞代謝 產物積累,營養物質消耗**。 —せテ.p.29.6.3

●⁸⁶ 植物體細胞雜交技術_[來自 bio,tek,2/bio,tek,2,1]

- •87 定義: 植物體細胞雜交謂將不同種的植物體細胞,在一定條件下融合成雜種細胞,並把雜種細胞培育成新的植物體的技術。 —せテ.p.24.6
- •88 表述: 植物體細胞雜交技術包括之手段謂**植物體細胞融合, 植物組織培養**。 —せテ.p.80.11
- •89 表述: 植物細胞去壁所用酶謂**纖維素酶與果膠酶**。 —せテ.p.21.upper.1

存疑: 酶解法夫壁, 不應在低滲溶液中進行 — せテ.p.79.5

- •⁹¹ 表述: 植物體細胞融合之原生質體融合產物謂謂**融合的原生質體**。 —せテ.**p.80.12**
- \bullet^{92} 表述: 植物體細胞雜交完成標誌謂**雜種原生質體再生出細胞壁**。 せテ.p.22.lower.1
- •⁹³ 方法: 細胞融合除考慮三種兩兩融合產物,還應考慮未融合的情形。 —セテ.p.80.11
- ●⁹⁴ 方法:不同種的植物之間<mark>雜交</mark>,應注意 AA+BB→AB。 而不是 AA+BB→AABB,不同於融合。 —せテ.p.82.12
- \bullet^{95} 表述: 植物體細胞雜交技術之目的謂**獲得新植株**。而不是雜種細胞。 一せテ.p.21.upper.2.6
 - •96 表述: 植物體細胞雜交技術之意義謂**克服遠緣雜交不親和的障礙**。

—せテ.p.80.11

•⁹⁷ 表述: 植物體細胞雜交仍存在之問題謂**不能按照人的意願表達兩個 親本的性狀**。 —せテ.p.80.12

1.4.3 胚胎工程

●¹ 精子_[來自 bio.tek.3/bio.tek.3.1]

•² 表述: 精子的能量來源謂**線粒體與細胞質基質**。 —せテ.p.42.2

- •³ 表述: 精子形成過程中不同於卵子的最主要特徵謂**須變形**。 —せ テ.p.42.6.2
- •⁴ 表述:精子形成過程中留下的主要結構謂**細胞核與線粒體**。 —せ テ.p.42.6.2
- ●⁵ 表述: 精子的線粒體集中在尾部的原因謂**精子尾部游動的能量由線** 粒體提供。 —せテ.p.90.10.3

●⁸ 卵子與受精_[來自 bio.tek.3/bio.tek.3.1]

- •⁹ 表述: 哺乳動物卵子的發生之開始時期謂**胚胎性別分化後**。 —せ テ.p.90.11.1
- •¹⁰ 定義: 卵泡謂**卵原細胞被卵泡細胞包園形成者**。故卵泡不等於卵泡 細胞 —せテ.p.90.11.2

存疑: 卵子的發生地謂卵巢與輸卵管。 —せテ.p.90.11.1

- •12 對比: 因此動物排除卵子的成熟程度不同。 せテ.p.95.2
- •¹² 表述: 馬的排卵時間謂**減數第 -次分裂前**。

 •¹² 表述: 牛、羊或豬的排卵時間謂 **減數第一次分裂後**。
 - \bullet^{13} 表述:透明帶形成時間謂**減數第一次分裂之前**。 せテ.p.44.upper.left
- \bullet^{14} 從屬: 卵原細胞分裂為初級卵母細胞屬於**有絲分裂**。, 故二者染色體 數均為2N。 — せテ. \mathbf{p} . $\mathbf{42.6.3}$
- $ullet^{15}$ 表述: 卵子具備與精子受精的能力之時期謂**減數第二次分裂中期**。 —せテ.p.40.lower.left
 - •61 性質: 精卵識別具有**物種特異性**。 —せテ.p.89.5

•²¹ 表述:精子溶解卵丘細胞之間的物質,穿越放射冠謂**頂體反應**。

- ◆²⁷ 表述: 頂體反應之發生時間謂 精子與卵子相遇時。 —せテ.p.-94.12.1
- *36 表述: 防止多精入卵的第一道 屏障謂**透明帶反應**。 —せテ.p.-40.lower.right.2
- •⁴² 表述:透明帶反應之發生時間 謂**精子觸及卵細胞膜的瞬間**。
- ◆⁵⁰ 表述: 防止多精入卵的第二道 屏障謂**卵細胞膜反應**。 ─せテ.p.-40.lower.right.2
- •⁵⁶ 表述: 卵細胞膜反應之發生時間謂**精子入卵後**。
- \bullet^{62} 表述: 精子入卵謂精子外膜與卵細胞膜相互融合。 —せテ.p.40.-lower.right.2
 - •63 表述: 雄原核的形成時間謂**精子入卵後**。 —せテ.p.89.2
 - •64 結果: 卵子發生為1個卵子與3個極體。 —せテ.p.39.lower.right

存疑: 極體數量矛盾 — せテ.p.40.lower.right 多數哺乳動物第二極體不進行減數第二次分裂。

- ●⁶⁷ 表述: 受精標誌謂**卵細胞膜和透明帶之間觀察到兩個極體**。 —せ テ.p.40.lower.right —せテ.p.90.14.3
 - •⁶⁸ 表述: 雌原核的形成時間謂**排出第二極體後**。 —せテ.p.89.2
- •69 表述: 受精完成標誌謂**雌雄原核的融合**。 —せテ.p.40.lower.right 受 精卵中僅細胞核內的遺傳物質一半來自父方一半來自母方。 —せテ.p.42.2
- ●⁷⁴ 早期胚胎發育_[來自 bio.tek.3/bio.tek.3.1]
 - ●⁷⁵ 定義: 卵裂期謂 2 細胞至桑椹胚期。 せテ.p.49.1
- •⁷⁶ 表述: 細胞分化至開始時期謂**囊胚期**。 —せテ.p.39.upper.right.6 —せテ.p.90.12.3
 - •⁷⁷ 表述: 胚層分化之開始時期謂**原腸胚期**。 —せテ.p.90.12.3
 - •⁷⁸ 結果: 滋養層發育為**胎盤與胎膜**。 —せテ.p.41.2

●¹ 卵母細胞或卵子的採集_[來自 bio.tek.3/bio.tek.3/2]

- •² 從屬: 促性腺激素屬於**肽類化合物**。因此不得口服。 —せテ.p.44.-mid.left.1
 - ³ 表述: 採集卵母細胞之位置謂**卵巢**。而不是輸卵管。 せテ.p.95.4
- •⁴ 表述: 大型動物採集卵母細胞之方法謂**從卵巢中採集**。可自活體動物或屠宰場。 —せテ.p.46.2
- •⁵ 表述: 大型動物採集卵母細胞後處理謂**培養成熟**。故無需篩選處於減數第二次分裂中期的細胞。 —せテ.p.93.8
- •⁶ 表述: 體外受精的意義謂**提高卵子的利用率, 有助於發揮優良母豬的 繁殖潛能**。 —せテ.p.91.6

• 精子的採集與體外受精 [來自 bio.tek.3/bio.tek.3.2]

- •9 性質:精清具有**抑制精子獲能的物質**。因此體外受精前對精子離心處理。 せテ.p.44.mid.left.2
- •¹⁰ 表述: 精子獲能之常用化學方法謂**化學誘導法與培養法**。 —せテ.p.-92.12.2
 - •¹¹ 對比: せテ.p.96.10.1
- •¹¹ 表述:對嚙齒動物、豬、兔常用 獲能方法謂**培養法**。

 •¹¹ 表述:對家畜常用獲能方法謂 **化學誘導法**。
- ●¹² 表述: 精子獲能之化學誘導法所使用之試劑謂**肝素溶液或鈣離子載** 體的 **A23187 溶液**。 —せテ.p.44.1

存疑:精子獲能環境通入二氧化碳之原因謂調節獲能液之 pH。 —せ テ.p.93.3.

•¹⁴ 表述:體外受精技術之原理謂**人工模擬體內的環境,包括營養、溫度、pH 值等,使卵母細胞成熟,同時使精子或能,最終完成受精**。 —せテ.p.92.13.2

待補充: 選填受精或體外受精之區分 — —せテ.p...p.93.11

- \bullet^{16} 表述: 體外受精技術之意義謂**解決動物生育率低的問題**。 —せテ.p.-92.12.4
 - •17 定義: 試管嬰兒技術謂體外受精的受精卵經過初步篩選與發育後進

行胚胎移植。 —せテ.p.92.15.1

●¹⁹ 人工授精_[來自 bio.tek.3/bio.tek.3.2]

•²⁰ 對比: — せテ.p.91.6

•²⁰ 從屬:人工授精屬於**人工將精** → •²⁰ 從屬:配種屬於**自然交配**。 **液置入子宮內**。

 \bullet^{21} 表述: 人工授精的意義謂**提高精子的利用率,有利於發揮優良公畜** 的特性。 —せテ.p.91.6

•²² 表述:人工授精與體外受精的本質同謂**精卵結合**。 —せテ.p.91.6

●²⁴ 早期胚胎培養_[來自 bio.tek.3/bio.tek.3.2]

- •²⁵ 表述:早期胚胎培養之培養液成分謂**兩鹽、兩素、兩酸與<mark>動物激素</mark>。** 其中動物激素具有特殊性故優先填寫 —せテ.p.50.1 —せテ.p.96.10
- •²⁶ 表述: 早起胚胎培養之條件要求謂<mark>無菌無毒、營養、溫度和 pH 與氣</mark> 體環境。 —せテ.p.93.11.3

 待補充:各種培養基或培養液成分 — せテ.p.50.1 — せテ.p.45.lower.right 強調血清/血漿。 — せテ.p.96.11

•²⁸ 表述: 受精卵培養中, 為防止感染可添加者謂**抗生素**。 —せテ.p.-92.14.3

● 1 胚胎移植 [來自 bio.tek.3/bio.tek.3.3]

- •² 表述: 對供體公牛與母牛之要求謂**具有優良的遺傳性狀**。 —せテ.p.-93.11.2
 - •³ 從屬: 促性腺激素屬於**垂體分泌之激素**。 せテ.p.94.12.4
- ⁴ 表述:胚胎移植之生理基礎謂同種動物供、受體排卵後,生殖器官的生理變化相同;受體對外來胚胎基本不發生免疫排斥反應;供體胚胎可與受體子宮建立正常的生理和組織聯繫,但遺傳特性不受影響。第二點優先填寫。 —せテ.p.94.15.5

•⁵ 表述: 同期發情處理之目的謂**在胚胎移植前後提供相同的生理環境**。 —せテ.p.96.5.4

- •⁶ 對比: せテ.p.93.4
- •⁷ 表述:胚胎移植之胚胎來源謂(體內受精)配種、人工授精,體外受精,細胞核移植之胚胎。 —せテ.p.51.6.4

存疑:動物種類不同,進行胚胎移植的早期胚胎所處階段不同,課本 p.72.bottom,牛、羊一般培養至桑椹胚或嚢胚,小鼠、家兔等可更早 — せ テ.p.45.2 — せテ.p.96.11.5

- ⁹ 表述: 配種 (體內受精) 後胚胎移植前的步驟謂**沖卵**。 せテ.p.48.mid.right.2
 - •10 表述:沖卵之對象謂**胚胎**。而不是卵子。 —せテ.p.51.2
- •¹¹ 表述:沖卵之生理基礎謂早期胚胎形成後,在一定時間內不會與母體子宮建立組織上的聯繫,而是處於游離狀態。 —せテ.p.48.mid.right.2
- •¹² 方法: 篩選的具體化は,胚胎移植前的篩選,可視上下文填寫更確 定的篩選形式。如性別鑑定 —せテ.p.94.14.5
- ●¹³ 表述: 胚胎移植的意義謂**提高優良品種家畜的繁殖能力**, 加速品種 改良。 —せテ.p.48.mid.left.5

●¹⁵ 胚胎分割_[來自 bio.tek.3/bio.tek.3.3]

 $ullet^{16}$ 從屬:胚胎分割屬於**無性生殖**。 —せテ.p.49.upper.right

- ●¹⁷ 表述: <mark>僅囊胚</mark>的分割之要求謂**將內細胞團均等分割**。 —せテ.p.48.upper.right.6
- •¹⁸ 表述:早期胚胎不能無限分割之原因謂**胚胎分割產生同卵多胎的可能性有限**,目前以二分胚成功性最高。 —せテ.p.49.upper.left
- •¹⁹ 表述: 胚胎分割後移植之操作謂**直接將裸半胚植入或先移入預先準 備的透明帶**。 —せテ.p.51.3
- •²⁰ 性質: 胚胎分割的結果具有**形態學差異**。因性狀可能受環境影響。 一せテ.**p.93.3**

•²² 胚胎幹細胞_[來自 bio.tek.3/bio.tek.3.3]

 \bullet^{23} 表述: 將早期胚胎培養為幹細胞,在培養基中加入者謂**抑制因子**。 一せテ.p.96.9.3

•²⁴ 表述: 胚胎幹細胞之特點謂**體積小, 細胞核大**, **核仁明顯**。 —せテ.p.93.8

•²⁵ 表述: 使幹細胞定向分化之過程謂**誘導分化**。 —せテ.p.94.13.4

1.5 生物·卷III·實踐

1.5.1 DNA 與蛋白質技術

- \bullet^{202} 表述: PCR 技術之條件要求謂**模板、游離的脫氧核苷酸、引物與 DNA 聚合酶等**。 —せ τ .p.74.13.1
- ●²⁰³ 表述: PCR 技術之引物要求謂與模板 DNA 兩條鏈末端鹼基互補配 對。因此若 PCR 實驗失敗, 可考慮重新設計引物。 —せテ.p.10.2 —せテ.p.-72.5
- •²⁰⁴ 表述: 為方便構建重組質粒,引物中可添加適當的謂<mark>限制酶切割位</mark> 點。 —せテ.p.72.11.2
- •²⁰⁵ 表述: 為防止自聯,引物之間應避免形成謂**鹼基互補配對**。 —せ テ.p.72.4
 - •²⁰⁶ 表述: PCR 技術之聚合酶應當使用者謂**耐高溫的 Taq DNA 聚合酶**。
- * Taq 謂 Thermus aquaticus, aquaticus 謂與水相關的, 由是知 Taq 酶由温泉或深海熱泉細菌取得。