4CS015 Lecture 4: Arithmetic Logic Units

1. Today

- What is an ALU?
 - Function Unit
 - Instruction Decoder
 - Output Multiplexor
- Turning our adder into a subtractor

2. What is ALU?

Fig: Mother Board

Fig: CPU

2. What is ALU?

- Performs set of arithmetic operations and set of logic operations
- Multi operation combinational logic circuit.
- It has a number of selection lines to select particular operation in the unit.

2.1 Arithmetic Logic Unit diagram

2.2 The ALU

• A function unit containing the logic blocks that simultaneously carry out each operation

- A controller that selects the required output according to the instruction
- The instruction is a binary 'word'
- A 'switch' that obeys the controller which connect the output to the required function

Switch

3.1 ALU Arithmetic and Logic Functions

- Output examples
 - AND
 - OR
 - NOT
 - XOR
 - Addition
- The controller "decodes" the instruction to select the required output

3.2 ALU Decoder & Output Selection

- Controller takes an instruction
- Logic is used so that only one of the logic operation outputs reaches the result output.

3.3. ALU Instruction Decoder

- The decoder is a combinatorial logic circuit(CLC)
- The circuit in which, at any time output is only depends upon inputs only is called CLC

•	It converts	oinary :	informat	ion fro	om
	'n' i/p lines	to a m	aximum	of 2 ⁿ	o/p lines

- Multiple output lines, ctrl1 to clrl4
- Only one of the output lines is 'on' for each instruction
- 'n' instruction lines = 2^n control lines. Hence size of decoder is $n^* 2^n$

Inst	truction	Output			
Instl	Inst2	ctr11	ctr12	ctr13	ctrl4
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

3.3 ALU Instruction Decoder (Contd.)

- From the truth table, we can design a logic circuit.
- Boolean expression for o/p is:

ctrl1=Inst1'Inst2', ctrl2=Inst1'Inst2, ctrl3=Inst1Inst2' and ctrl4=Inst1Inst2

- The arithmetic and logic function section performs all operations at the same time
- So we use the controller to select the output we want

4. ALU Output Multiplexor

- If we have a collection of **AND** gates, connected to an **OR** gate, we have a logic circuit for the **multiplexer**
- Many to one
- Selects the outputs with the help of decoder outputs

Lines form Decoder output

5. Half adder (HA)

HA Symbol

- Two bit adder circuit
 - Number of inputs = 2 (x and y 'say')
 - Number of outputs= 2 (sum and carry)

Output

For example:

Inpu	input Ou		tput	
X	y	Sum(s)	Carry(c)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

5. Half Adder (Contd...)

 Boolean expression for half adder output from truth table is as;

$$Sum(s) = x'y+xy'$$

$$= (x \oplus y)$$

$$Carry(c) = xy$$

• Logic diagram

6. Full Adder (FA)

- Three bit adder circuit
 - Number of input= 3(x,y) and c_{in}
 - Number of output =2(sum and carry)
- FA can be constructed using two HA and OR gate

Block diagram

6.1 Logic circuit diagram of FA

7. ALU Components

- The ALU logic which performs the set of logic and set of arithmetic operations
- The decoder which selects the output we want from the ALU logic
- The multiplexer which implements the choice made through the decoder

7. ALU Components: Contd.

8. Multi Bit ALU

- Connect multiple single bit ALUs together
- The 'carry out' of each ALU links to 'carry in' of next ALU
- Final result is CR2R1R0

9. Subtraction

- Subtraction can be done by adding **A** to the 2's complement form of **B**.
 - S = A+(2's Complement of B) =A+(1's complement of B+1) =A+(B'+1)
- The rule to convert **B** to **–B** in 2's complement form is:
 - Invert each bit (using NOT gates).
 - Add 1.

10. Add / Subtract Circuit

- Both addition and subtraction circuits can be combined into a single circuit by using **Controlled Inversion**.
- A Control input determines whether the circuit adds or subtracts.

11. Controlled Inversion

- Consider the following truth table:
 - Input Control will be the CONTROL.
 - Input B is the Data.

Input Control	Input B	Output F	
0	0	0	Output F=B
0	1	1	
1	0	1	Output F=B
1	1	0	

11. Controlled Inversion (Contd.)

- When Control = 0
 - Then $\mathbf{F} = \mathbf{B}$
- When Control = 1
 - Then $\mathbf{F} = \overline{\mathbf{B}}$
- This is the truth table for XOR

Control	Input B	Output F
0	0	0
0	1	1
1	0	1
1	1	0

12. Circuit for Add / Subtract Unit

Input Control	Input B	Output F	
0	0	0	Output
0	1	1	F=B
1	0	1	Output F=B'
1	1	0	∐ F=B'

13. Control of the Add / Subtract Unit

- The Control determines the operation:
- Control = 0 : Addition
 - Carry-in is 0 .
 - Output is **A** plus **B** plus 0.
- Control = 1 : Subtraction
 - Carry-in is 1.
 - Output is **A** plus (inverse of **B** plus 1).
 - which is A plus (-B).

14. Summary

- ALU
 - Functions, controlling and multiplexing.
 - Controlled inversion and subtraction.