Lab 6: Distributed Arithmetic

Name: Peng Guo GTID: 903424176

1. Tables

a) Resources

i. Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs	39	0	20800	0.19
LUT as Logic	39	0	20800	0.19
LUT as Memory	0	0	9600	0.00
Slice Registers	18	0	41600	0.04
Register as Flip Flop	18	0	41600	0.04
Register as Latch	0	0	41600	0.00
F7 Muxes	0	0	16300	0.00
F8 Muxes	0	0	8150	0.00

ii. IO and GT Specific

Site Type	Used	Fixed	Available	Util%
Bonded IOB	31	0	106	29.25
I IOB Master Pads	15	,		
IOB Slave Pads	15			i i
Bonded IPADs	0	0	10	0.00 j
Bonded OPADs	0	0	4	0.00
PHY_CONTROL	0	0	5	0.00
PHASER_REF	0	0	5	0.00
OUT_FIF0	0	0	20	0.00
IN_FIFO	0	0	20	0.00
IDELAYCTRL	0	0	5	0.00
IBUFDS	0	0	104	0.00
GTPE2_CHANNEL	0	0	2	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	20	0.00
PHASER_IN/PHASER_IN_PHY	0	0	20	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	250	0.00
IBUFDS_GTE2	0	0	2	0.00
ILOGIC	0	0	106	0.00
OLOGIC	0	0	106	0.00

iii. Primitives

Ref Name	Used	Functional Category
+	+	
IBUF	19	10
FDRE	18	Flop & Latch
LUT5	16	LUT
OBUF	12	10
LUT4	10	LUT
LUT6	8	LUT
LUT3	8	LUT
CARRY4	4	CarryLogic
LUT2	2	LUT
LUT1	2	LUT
BUFG	1	Clock

b) Power

4	++
Total On-Chip Power (W)	0.080
Dynamic (W)	0.010
Device Static (W)	0.070
Effective TJA (C/W)	5.0
Max Ambient (C)	84.6
Junction Temperature (C)	25.4
Confidence Level	Low
Setting File	
Simulation Activity File	
Design Nets Matched	NA
+	++

Dynamic: 0.010W Static: 0.070W

c) Worst Negative Slack

Design Timin	g Summary						
WNS(ns)	TNS(ns)	TNS Failing	Endpoints	TNS Total	Endpoints	WHS (n	s) THS(ns)
5.844	0.000		0		20	0.1	57 0.000
THS Failing Endpo		al Endpoints	WPWS(ns)	TPWS(ns)	TPWS Failing		TPWS Total Endpoints
	0	20	4.500	0.000		0	19

2. Questions and Answers

Is there an area-efficient way to do the left-shift which is after the output of LUT? Yes.

a) If yes, draw the updated block diagram starting from the LUT on the left to the output data_out on the right.

b) Write down the mathematical recurrence relation induced from Eq. 3 that proves your thought above.

c) Why the original left-shift is not a good idea and why the updated one is area-efficient? (Answer should not exceed 4 sentences)

Because the original left-shift requires different shift bits, which requires different shift registers with more area to do it. As for the updated one, it uses the same bits shift, so it is area-efficient.