VIDEO SUMMARISATION USING KEYFRAME EXTRACTION

INTRODUCTION

As part of this project, we use uniform sampling, image histograms, SIFT, and a convolutional neural network trained on ImageNet to extract low-level features for static keyframe extraction. In order to make the summary fluid and comprehensible for humans, we skim the video around the selected keyframes based on VSUMM.

METHODS

We use the below mentioned methods on our Dataset and comapeare the results to get the best working method.

- Uniform Sampling
- Image Histogram
- Scale Variant Feature Transform
- VSUMM
- ResNet16 on ImageNet
- Aritra Ghosh, Section A, Roll 74, 12021002002137
- Subhojit Ghosh, Section B, Roll 97, 12021002002160

CONCLUSION

In conclusion, VSUMM effectively condenses lengthy videos into concise summaries but suffers from a drawback - heavy reliance on predefined features and heuristics, potentially missing nuanced content. Integrating natural language processing models can enhance summary quality through coherent and contextually relevant text descriptions.

ACKNOWLEDGEMENT

We would like to extend our heartfelt gratitude to our mentor, Dr. Anupam Mondal, for his unwavering guidance and support throughout this journey. We want to express our sincere thanks to our esteemed college, the Institute of Engineering and Management, Kolkata, for providing us with this incredible opportunity.

An Overview of Summarization

INTRODUCTION

Text summarisation is the method of reducing the source text into a compact variant, preserving its knowledge and the actual meaning. Here we present a comparative study of various methods of text summarization against our custom task-specific dataset and figure out their advantages and disadvantages.

Our goal is to develop a new algorithm that can counter all existing drawbacks.

METHODS

RESULTS

Task	Method	Dataset	Feature Extract	Accuracy	Limitation & Future Work
Text summariza- tion by sentence selection [212]	Fuzzy logic	DUC 2002	Tif, SL, TW, SP, TW, etc.	F-measure: 0.498, recall: 0.457 and precision: 0.471 respectively	Fuzzy logic did not produce promising results Authors would like to use other learning with fuzzy logic in thei future work
Sentence similar- ity measure [101]	TF-IDF, Word2vec, Sectence2vec	SKE for English and Arabic	AE, VAE, ELM- AE	ROUGE-1: 0.6043 and ROUGE-2: 0.5771	 Arabic abstractive summa- rization was not possible Authors would like to use auto encoders or attention encoders in their future work
Sequence labeling [235]	Conditional Random Fields (CRF)	DUC 2001	SP, SL, Log- likelihood, TW, Indicator words etc.	ROUGE-2 :0.245, F1 Measure: 0.202 of	Linguistic features were not used Authors would like to use rhetorical structures for robustness in their future work
Short representa- tion from a long document [316]	Latent Semantic Analysis (LSA)	Corpus of Contempo- rary Arabic (CCA)	Euclidean Distance, Cosine Similarity, Jaccard Coefficient etc.	Entropy 0.1275(ap- prox.), Purity 0.385(ap- prox.) and	- NA
Query-based single-document summarization [99]	Restricted Boltzmann Machine (RBM)	SKE, BC3, TAC	Key phrase oriented, Subject oriented summarization	Precision: 0.1694, Recall: 0.2115 and F-score of AE: 0.1816	 Did not cover multi- documents summarization into this system Authors would like to ex- tend generic summariza- tion by clustering

Task	Method	Dataset	Feature Extract	Accuracy	Limitation & Future Work
Two-stage extractive and abstractive framework [37]	Highlighting the relevant information	WikiSum (self- generated)	TF-IDF, TextRank, SumBasic, T-D, T-DMACA etc.	ROUGE-L: 38.8	Required performance measurement improvement Authors would like to conduct further research to improve performance
Decrease summarization redundancy with DISCOBERT [322]	BanditSum, NeuSum, JECS, BertSum, PNBert, HiBert	New York Times (NYT), CNN, and Daily mail (CNNDM)	EDU	ROUGE- 1: 50.00, ROUGE-2: 30.38 and ROUGE-L: 42.70	Did not apply different task on long document encoding Authors would like to explore better encoding methods in their further research
To find Solution to information over- load [323]	Sentence clustering	DUC 2001, 2002	Stop words, Stemming	ROUGE- 1: 0.47856, ROUGE-2: 0.18528 and F1 measure: 0.48324	Author tested one method only Authors would like to explore more datasets to evaluate the model
Enhancing criterion and objective functions [324]	Discrete differential evolution algorithm	DUC 2001, 2002	Sentence similarity, Sentence clustering	ROUGE- 1: 0.45412, ROUGE-2: 0.18982	- NA
Quantitative and qualitative assessment of 15 algorithms [325]	Word scoring, Sentence scoring and graph scoring	CNN Dataset, Blog sum- marization dataset, SUMMAC dataset	Word Frequency, TF/IDF, Lexical Similarity, SL, SP, Text rank etc.	Average Recall: 0.47, Precision: 0.19, and F- measure is: 0.26	- Authors would like to compare with other algorithms in their future work
[Do not touch I am working from 6.30pm again] Word-sentence co-ranking model [326]	CoRank model	DUC 2002	Redundancy re- moval strategies	F-measure: 0.59, ROUGE- 1: 0.69 and ROUGE-2: 0.60	Did not conduct query-oriented and event-driven summarization tasks Authors would like to extend co- rank model multi-document summa- rization
Joint Extractive and Compressive Summarizer (JECS) [327]	Neural Net- work model	CNN/Daily Mail, New York Times	Sentence and Document Encoder, Compression Encoder, Compression	ROUGE-1: 45.5, ROUGE- 2: 25.3	- NA

CONCLUSION

anaphora, cataphora, interpretability, and readability of lengthy texts. Proposed solutions include improving dataset quality by replacing outliers with humangenerated inputs. As this field evolves, we anticipate further advancements in accurately and succinctly summarizing lengthy text documents, significantly impacting information retrieval and dissemination in the digital age.

ACKNOWLEDGEMENT

We would like to extend our heartfelt gratitude to our mentor, Dr. Anupam Mondal, for his unwavering guidance and support throughout this journey. We want to express our sincere thanks to our esteemed college, the Institute of Engineering and Management, Kolkata, for providing us with this incredible opportunity.