CS342 Machine Learning: Lab #4 ANN: Perceptron

Labs on February 11 & 12, 2016 Week~5~of~Term~2

Office Hours:

CS 3.07, Monday & Friday 10:00-11:00

Instructor: **Dr Theo Damoulas** (T.Damoulas@warwick.ac.uk)
Tutors: **Helen McKay** (H.McKay@warwick.ac.uk), **Shan Lin** (Shan.Lin@warwick.ac.uk)

In the fifth Lab we will code up a simple Perceptron (Heaviside step function, linearly-separable problems) and apply it to some toy data. If there is time left (else you can continue on your own time) we will code up a linear unit perceptron with batch-mode gradient descent.

1 Standard Perceptron (step activation function, no gradient info)

Here is the pseudocode of the Perceptron from the lecture:

Algorithm 1 Perceptron

- 1: Initialise w randomly
- 2: $\eta = 0.1$ (can try other values to see the effect)
- 3: while non-zero error component do
- 4: **for** i=1 to N (number of training examples) **do**
- 5: Choose the ith training example \mathbf{x}, t (really I mean \mathbf{x}_i, t_i)
- 6: Compute dot product xw
- 7: Compute error(i) = t sign(xw)
- 8: Update $\mathbf{w} += \eta \cdot \operatorname{error}(i) \cdot \mathbf{x}^{\mathrm{T}}$

Tips: You can use math.copysign(1,a) to implement the sign(a) function. You can check for non-zero entries in tuple named "values" with all(v == 0 for v in values). Don't forget to include the bias term in X by adding a column of 1s to your data.

 \rightarrow Implement the Perceptron in Python and test it with some linearly separable data from Table 2.

x_1 (first attribute)	x_2 (second attribute)	t (Class Variable)
1	-1	-1
2	1	1
1.5	0.5	-1
2	-1	-1
1	2	1

Table 1: A toy dataset with 5 observations (rows), 2 attributes (x_1, x_2) and the target class (Class Variable)

- \rightarrow Create your own linearly-separable data and test your Perceptron
- \rightarrow What is the effect of the learning rate η ?
- \rightarrow Is the algorithm affected by different initialisation? Plot the data and the resulting linear separator

2 Linear-unit Perceptron (batch gradient descent)

Here is the pseudocode of the Linear-unit Perceptron with gradient descent from the lecture:

Algorithm 2 Linear-unit perceptron with batch-mode gradient descent

- 1: Initialise w randomly
- 2: $\eta = 0.1$ (can try other values to see the effect)
- 3: while not converged (e.g. for 10 or 100 iterations) do
- 4: Update $\mathbf{w} += \eta \mathbf{X}^{\mathrm{T}} (\mathbf{t} \mathbf{X} \mathbf{w})$
- → Implement the linear-unit perceptron in Python and run it on the data above
- \rightarrow Create some non-linearly separated data and study the behaviour of the algorithm
- \rightarrow What is a better convergence criterion to use for termination?