

Paquete ZOIP de R para analizar datos proporcionales inflados con ceros y/o unos

Package ZOIP of R to analyze proportional data inflated with zeros and/or ones

Juan Camilo Díaz Zapata^a jucdiazza@unal.edu.co

Freddy Hernández Barajas^b fhernanb@unal.edu.co

Olga Cecilia Usuga Manco^c olga.usuga@udea.edu.co

Resumen

Los datos obtenidos a partir de variables medidas bajo porcentajes, tasas y proporciones, son llamados datos proporcionales y estos se encuentran ubicados por lo general en el intervalo (0,1). Diferentes distribuciones se han desarrollado para caracterizar este tipo de variables, sin embargo existe la posibilidad que este tipo de variables puedan dar resultados de cero o uno. Haciendo que autores como Ospina & Ferrari (2012) y Rigby & Stasinopoulos (2005) implementaran una distribución Beta inflada con ceros y/o unos, diferenciadas solo por su parametrización. Otros autores como Galvis & Lachos (2014) han trabajo con otras distribuciones para datos proporcionales inflados, como la distribución simplex, sin embargo, no se ha encontrado una distribución que reúna las principales distribuciones para datos proporcionales inflados con ceros y/o unos, en este trabajo se presenta el paquete ZOIP del sistema de computación R para la implementación de la distribución ZOIP (Zeros Ones Inflated Proportional) que reúne la distribución simplex y Beta bajo diferentes parametrizaciones y estima los parámetros de dicha distribución. La estimación de los parámetros de la distribución ZOIP se lleva acabo vía máxima verosimilitud. Se realizan estudios de simulación que muestran la convergencia satisfactoria de los parámetros y se presenta el ajuste de una distribución ZOIP a datos reales.

Palabras clave: Datos proporcionales, Distribución ZOIP, Máxima verosimilitud, R.

^aEstudiante de maestría en estadística, Universidad Nacional de Colombia, Sede Medellín.

^bProfesor asistente, Universidad Nacional de Colombia, Sede Medellín.

^cProfesora asociada, Universidad de Antioquia, Medellín.

Abstract

The data obtained from variables measured by percentages, rates and proportions are called proportional data which its values are usually between the (0,1) interval. Although, different distributions have been developed to characterize these variables, it is possible that some variables take the extreme values zero and one. Making authors such as Ospina & Ferrari (2012) and Rigby & Stasinopoulos (2005) implement an inflated Beta distribution with zeros and/or ones, differentiated only by their parameterization. Other authors such as Galvis & Lachos (2014) have worked with inflated proportional data, researchers have worked with other distributions such as simplex distributions. Nevertheless, it has not been found any distribution which combines the principals characteristic of several distributions for solving these issue. Thus, this paper presents the package Zeros Ones Inflated Proportional, ZOIP, developed on the computation system R, which combines both Beta and simplex distribution and estimates its parameters given the parameters for the original distributions. Regarding the parameters estimations process, it is performed by maximum likelihood method. Finally, simulations studies have been performed which show the accuracy of the parameters convergence and the adjustment of a ZOIP distribution on real data.

Keywords: Proportional data, ZOIP Distribution, Maximumn likelihood, R.

1. Introducción

En modelación estadística es posible encontrarnos con variables respuesta como proporciones, porcentajes o tasas que se encuentran en el intevalo (0, 1). La distribución más utilizada en la literatura para caracterizar este tipo de variables es la distribución Beta con soporte en el intervalo (0,1), la cual ha sido reparametrizada por autores como Ferrari & Cribari-Neto (2004) y Rigby & Stasinopoulos (2005); otras distribuciones no tan comunes en la literatura, pero que caracterizan este tipo de variables son la distribución simplex (Jørgensen 1997), Beta-rectangular (Hahn 2008) y la distribución LogitSep (Hossain 2015). Por otra parte, es común que los porcentajes o proporciones puedan dar valores iguales a cero o uno, representando la ausencia o presencia total de la característica de interés, respectivamente, las distribuciones descritas anteriormente no pueden ser admisibles para este tipos de variables, es por esto que se han desarrollado distribuciones infladas con ceros y/o unos, para tratar estos casos, como lo hizo Ospina & Ferrari (2010) quienes presentan una distribución Beta inflada en la que hacen una combinación entre una distribución discreta para la parte de los valores que pueden tomar cero o uno y una parte continua para los valores continuos entre cero y uno. Rigby & Stasinopoulos (2005) incluyen dentro de sus modelos gamlss la distribución Beta inflada con ceros y/o unos según su parametrización.

Esto ha dado pie para que diferentes autores hayan empezado a desarrollar diferentes modelos de regresión para tratar este tipo variables, Ospina & Ferrari (2012)

propusieran una clase general de modelos de regresión Beta inflados con cero o uno, además Kosmidis et al. (2015) han estudiado dichos modelos inflados recientemente, pero con una distribución distinta a la presentada por Ospina & Ferrari (2012). Galvis & Lachos (2014) presentan modelos de regresión para diferentes distribuciones para datos proporcionales inflados con ceros y/o unos mediante metodologías de estimación bayesianas.

Muchos autores han implementado distribuciones para datos proporcionales en el software estadístico R, Zeileis et al. (2010) implementan el paquete betareg donde se encuentran los modelos de regresión Beta propuestos por Ferrari & Cribari-Neto (2004).

Qiu et al. (2008) implementan el paquete **simplexreg** para realizar análisis de distribución y regresión sobre una distribución simplex, para datos proporcionales no inflados.

Cepeda-Cuervo et al. (2016) Presentan la implementación de modelos de regresión Beta bajo un enfoque bayesiano utilizando el paquete Bayesianbetareg.

Otros autores como Rigby & Stasinopoulos (2008) incluyen en el paquete gamlss la distribución Beta inflada con ceros y/o unos y la posibilidad de realizar modelos de regresión sobre ellos.

Aunque muchos autores han implementado las distribuciones para datos proporcionales inflados con ceros y/o unos, ninguno ha presentado una propuesta como la de reunir en una sola distribución las diferentes distribuciones para datos proporcionales y sus diferentes parametrizaciones, además de implementarla en un solo paquete, como se presenta en el paquete ZOIP en R Core Team (2017) disponible en el repositorio web GitHub, https://github.com/jucdiaz/ZOIP.

El artículo se encuentra organizado de la siguiente manera: primero se presentan las distribuciones más representativas para datos proporcionales, en la sección 3 se presenta la distribución para datos proporcionales inflados con ceros y/o unos ZOIP (Zeros Ones Inflated Proportional), seguido por el desarrollo analítico de la estimación de los parámetros de la distribución ZOIP vía máxima verosimilitud, en la sección 5 se aplica el ajuste de una distribución ZOIP en un estudio de simulación y para datos reales, por último se presenta el paquete ZOIP.

2. Distribución para datos proporcionales

Para los casos de modelación donde la variable de interés es una proporción, un porcentaje o una tasa. En la mayoría de los casos, este tipo de variables no

4Juan Camilo Díaz Zapata, Freddy Hernández Barajas & Olga Cecilia Usuga Manco

pueden ser analizadas con la distribución normal, debido a que el soporte de la normal es la recta real R, además en este tipo de variables es común la asimetría e incluso la bimodalidad, por esta razón en la literatura estadística se han propuesto distribuciones para este tipo de comportamientos, como la distribución Beta, que cuenta con diferentes parametrizaciones (Ferrari & Cribari-Neto (2004) y Rigby & Stasinopoulos (2005)) y la distribución simplex propuesta por Jørgensen & Barndorff-Nielsen (1991). De igual manera otras distribuciones más particulares como la Beta-rectangular (Hahn 2008) y LogitSep (Hossain 2015) se acoplan a este comportamiento, a continuación se mostraran las funciones de densidad de probabilidad, la media, la varianza y dependencias de algunas de las distribuciones mencionadas anteriormente.

2.1. Distribución Beta

Si una variable aleatoria y definida entre cero y uno, tiene distribución Beta con parámetros p y q se acostumbra a denotarla por $Y \sim \text{Be}(p,q)$ y la función de densidad de probabilidad de la distribución es dada por:

$$f(y;p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} y^{p-1} (1-y)^{q-1}$$

$$\tag{1}$$

donde los parámetros p>0, q>0 y $\Gamma(\cdot)$ es la función gamma. El valor esperado y la varianza de y están dadas por:

$$E(y) = \frac{p}{p+q} \tag{2}$$

$$E(y) = \frac{p}{p+q}$$

$$Var(y) = \frac{pq}{(p+q)^2(p+q+1)}$$
(2)

2.2. Distribución Beta parametrización Ferrari y Cribari-Neto (2004)

Ferrari & Cribari-Neto (2004) propusieron otra parametrización para la distribución Beta en función de los parámetos μ y ϕ donde μ corresponde a la media de la distribución y ϕ es interpretado como un parámetro de precisión. Si 0 < y < 1 y $Y \sim \text{Be}(\mu, \phi)$ la función de densidad de probabilidad de la distribución está dada por:

$$f(y; \mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1} (1-y)^{(1-\mu)\phi-1}$$
(4)

donde $0 < \mu < 1$ y $\phi > 0$. El valor esperado y la varianza de y están dados por:

Comunicaciones en Estadística, diciembre 2014, Vol. 7, No. 2

$$E(y) = \mu \tag{5}$$

$$Var(y) = \frac{\mu(1-\mu)}{1+\phi} \tag{6}$$

Además note que la parametrizacion de la distribución Beta es equivalente a la de Ferrari & Cribari-Neto (2004) cuando:

$$p = \mu \phi \tag{7}$$

$$q = (1 - \mu)\phi \tag{8}$$

2.3. Distribución Beta parametrización Rigby y Stasinopoulos (2005)

Rigby & Stasinopoulos (2005) propusieron una nueva parametrización para la distribución Beta con parámetros μ y σ donde μ es la media de la distribución y σ es interpretado como un parámetro de dispersión, se dice que $Y \sim \text{Be}(\mu, \sigma)$ con 0 < y < 1, si la función de densidad de probabilidad de la distribución está dada por:

$$f(y;\mu,\sigma) = B(\mu,\sigma)y^{\mu((1-\sigma^2)/\sigma^2)-1}(1-y)^{(1-\mu)((1-\sigma^2)/\sigma^2)-1}$$
(9)

donde
$$B(\mu,\sigma) = \frac{\Gamma((1-\sigma^2)/\sigma^2)}{\Gamma(\mu((1-\sigma^2)/\sigma^2))\Gamma((1-\mu)((1-\sigma^2)/\sigma^2))},$$

donde $0 < \mu < 1$ y $0 < \sigma < 1$. La media y la varianza de y están dadas por:

$$E(y) = \mu \tag{10}$$

$$Var(y) = \sigma^2 \mu (1 - \mu) \tag{11}$$

Además note que la parametrizacion de la distribucion Beta es equivalente a la de Rigby & Stasinopoulos (2005) cuando:

$$p = \frac{\mu(1 - \sigma^2)}{\sigma^2} \tag{12}$$

$$q = \frac{(1-\mu)(1-\sigma^2)}{\sigma^2} \tag{13}$$

Comunicaciones en Estadística, diciembre 2014, Vol. 7, No. 2

2.4. Distribución simplex

La distribución simplex fue introducida por Jørgensen & Barndorff-Nielsen (1991) y es un caso particular de los modelos de dispersión propuestos por Jørgensen (1997), dicha distribución depende de los parámetros μ que corresponde a la media de la distribución y σ^2 que corresponde a un parámetro de dispersión. Si 0 < y < 1 y $Y \sim S^-(\mu, \sigma^2)$ la función de densidad de probabilidad esta dada por:

$$f(y;\mu,\sigma^2) = \left\{2\pi\sigma^2[y(1-y)]^3\right\}^{-1/2} \exp\left\{-\frac{y(1-y)\mu^2(1-\mu)^2}{2\sigma^2(y-\mu)^2}\right\}$$
(14)

donde $0 < \mu < 1$ y $\sigma > 0$. Además el valor esperado y la varianza están dadas por:

$$E(y) = \mu \tag{15}$$

$$\tau^{2} = \mu(1-\mu) - \frac{1}{\sqrt{2\sigma^{2}}} \exp\left\{\frac{1}{2\sigma^{2}\mu^{2}(1-\mu)^{2}}\right\} \Gamma\left\{\frac{1}{2}, \frac{1}{2\sigma^{2}\mu^{2}(1-\mu)^{2}}\right\}$$
(16)
$$Var(y) = 1/\tau^{2}$$

donde $\Gamma(a,b)$ está dado por la función Γ incompleta definido como $\Gamma(a,b) = \int_b^\infty t^{a-1}b^t dt$, ver más en Zhang et al. (2016).

3. Distribución ZOIP (Zeros Ones Inflated Proporcional)

En las distribuciones vistas en la sección 2, se evidenciaron algunas distribuciones que se ajustan al comportamiento de datos proporcionales, porcentajes o tasas que están en el intervalo (0,1), sin embargo es común que estos datos tomen valores en cero y/o uno que representarían la ausencia o presencia total de cierta característica, por lo que no sería posible ajustar los datos a las distribuciones vistas anteriormente y es por eso que en este trabajo se propone la distribución ZOIP, como un conjunto de distribuciones para datos proporcionales inflados con ceros y/o unos.

La distribución para datos proporcionales inflados con ceros y/o unos se compone de la mezcla de tres distribuciones, dos de ellas discretas, que son distribuciones degeneradas en cero y uno, y una tercera distribución continua que además es una función de densidad de probabilidad para datos proporcionales, como las presentadas anteriormente.

Si la variable aleatoria y tiene distribución ZOIP con parámetros μ , σ , p_0 y p_1 , se denotará como

 $Y \sim \text{ZOIP}(\mu, \sigma, p_0, p_1)$, la función de densidad de probabilidad está dado por:

$$g(y; \mu, \sigma, p_0, p_1) = \begin{cases} p_0 & \text{si } y = 0, \\ p_1 & \text{si } y = 1, \\ (1 - p_0 - p_1) f(y; \mu, \sigma) & \text{si } y \in (0, 1) \end{cases}$$
(17)

donde $p_0 \ge 0$ y $p_1 \ge 0$ representan la probabilidad que la variable aleatoria Y sea igual a cero y uno, respectivamente, además $0 \le p_0 + p_1 \le 1$ y $f(y; \mu, \sigma)$ representa alguna de las funciones de densidad de probabilidad para datos proporcionales, descritas en la sección anterior. La media y varianza de y, están dadas por

$$E(y) = p_1 + (1 - p_0 - p_1)E^*(y)$$
(18)

$$Var(y) = p_1(1 - p_1) +$$

$$+ (1 - p_0 - p_1) \left[Var^*(y) + (p_0 + p_1) [E^*(y)]^2 - 2E^*(y)p_1 \right]$$
(19)

donde $E^*(y)$ y $Var^*(y)$ denotan la esperanza y varianza asociados a la distribución $f(y; \mu, \sigma)$.

Tabla 1: Rol que toman los parámetros de la distribución ZOIP de acuerdo a la distribución y parametrización elegida.

cion y parametrización elegida.		
Parámetro	Distribución/Parametrización	Rol en la distribución ZOIP
μ	ZOIP-Beta R-S	$\overline{\mu}$
	ZOIP-Beta F-C	μ
	ZOIP-Beta	p
	ZOIP-simplex	μ
σ	ZOIP-Beta R-S	<u>σ</u>
	ZOIP-Beta F-C	ϕ
	ZOIP-Beta	q
	ZOIP-simplex	<u></u>
p_0	ZOIP-Beta R-S	p_0
	ZOIP-Beta F-C	p_0
	ZOIP-Beta	p_0
	ZOIP-simplex	p_0
p_1	ZOIP-Beta R-S	p_1
	ZOIP-Beta F-C	p_1
	ZOIP-Beta	p_1
	ZOIP-simplex	p_1

En este artículo se plantea la distribución ZOIP-Beta bajo tres diferentes parametrizaciones, esto para que el usuario elija la parametrización más conveniente para su caso de estudio. En la tabla 1 se muestra el rol que toman los parámetros de μ y σ de acuerdo con la elección de la parametrización de la distribución ZOIP-Beta, de este modo si la distribución $ZOIP - Beta(\mu, \sigma, p_0, p_1)$ es con parametrización Ferrari & Cribari-Neto (2004) entonces el parámetro σ tomará el rol del parámetro ϕ de la distribución y si la parametrización es ZOIP-Beta μ y σ tomarán el rol de p y q respectivamente. En las demás distribuciones y parametrizaciones μ y σ

8 Juan Camilo Díaz Zapata, Freddy Hernández Barajas & Olga Cecilia Usuga Manco

Figura 1: Densidades para la distribución ZOIP para algunos valores de los parámetros, donde R-S se refiere a Rigby & Stasinopoulos (2005) y F-C es Ferrari & Cribari-Neto (2004).

tomaran los valores y dominios correspondientes a su distribución.

La distribución ZOIP se encuentra inflada con ceros y unos, es decir bilateralmente, pero existe la posibilidad que hayan casos de estudio en que se encuentren datos inflados con unos únicamente, por lo que $p_0=0$ y por lo tanto se estará llamando no una distribución ZOIP, sino una distribución OIP (Ones Inflated Proporcional) y si los datos se encuentran inflados con ceros únicamente, es decir $p_1=0$ se tendrá una distribución ZIP (Zeros Inflated Proporcional), si los datos no se encuentran inflados, entonces $p_0=p_1=0$ y la distribución ZOIP será una distribución para datos proporcionales clásica.

En la Figura 1 se muestran las densidades para algunas distribuciones ZOIP-Beta en sus diferentes parametrizaciones y ZOIP-simplex, es de aclarar que, en las Figuras ubicadas en la esquina superior izquierda, esquina superior derecha y esquina inferior izquierda, los valores de los parámetros son diferentes, pero dan como resultado la misma distribución gracias a las ecuaciones descritas en (7), (8) para el caso Ferrari & Cribari-Neto (2004) y (12), (13) para el caso Rigby & Stasinopoulos (2005). Además se puede observar en la Figura 1d. como la distribución ZOIP-simplex hereda el comportamiento bimodal de la distribución clásica simplex, con valores mínimo y máximo en cero y uno respectivamente.

4. Inferencia estadística

Para estimar los parámetros de la distribución ZOIP se usa el método de máxima verosimilitud. La función de verosimilitud para $\boldsymbol{\theta} = (\mu, \sigma, p_0, p_1)^{\mathsf{T}}$, basado en una muestra de \boldsymbol{y}_i observaciones independientes, es de la forma:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} g(y_i; \mu, \sigma, p_0, p_1)$$
 (20)

9

Para encontrar los estimadores de máxima verosimilitud (MLE) de la distribución ZOIP, se consideraran 2 casos:

1. ZOIP-Beta

Considera la parametrización de la distribución Beta y la ecuación definida en (20) se tiene que:

$$\boldsymbol{\theta} = (p, q, p_0, p_1)^{\top}$$

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} g(\boldsymbol{\theta}|y_i) = L_1(p_0) \cdot L_2(p_1) \cdot L_3(p,q)$$

Note que la función de verosimilitud es factorizada en tres términos, dos de ellos del componente discreto y uno compuesto por p y q del componente continuo, por tanto los parámetros son separables (Pace & Salvan 1997), así la función verosimilitud puede ser tratada por separado.

$$L_1(p_0) = \prod_{i=1}^n p_0^{S_0(y_i)} (1 - p_0)^{1 - S_0(y_i)} = p_0^{\sum_{i=1}^n S_0(y_i)} (1 - p_0)^{n - \sum_{i=1}^n S_0(y_i)}$$

donde:

$$S_0(y_i) = \begin{cases} 1 & \text{si } y_i = j \\ 0 & \text{si } y_i \neq j \end{cases} \quad ; \quad j = 1, 2$$
 (21)

Ahora sacando logaritmo natural a la función de verosimilitud se obtiene que.

$$\hat{p}_0 = \frac{1}{n} \sum_{i=1}^n S_0(y_i)$$

Análogamente, se tiene que:

$$\hat{p}_1 = \frac{1}{n} \sum_{i=1}^n S_1(y_i)$$

Ahora se halla MLE para los parámetros del componente continuo de la función.

$$\begin{split} \ell_{3}(p,q) &= \sum_{\substack{\{i: y_{i} \in (0,1)\}\\}} log(f(p,q|y_{i})) = nlog(\Gamma(p+q)) - nlog(\Gamma(p)) - nlog(\Gamma(q)) \\ &+ (p-1) \sum_{\substack{\{i: y_{i} \in (0,1)\}\\}} log(y_{i}) + (q-1) \sum_{i=1: y_{i} \in (0,1)} log(1-y_{i}) \end{split}$$

entonces

$$\begin{split} \frac{\partial \ell_3(p,q)}{\partial p} &= \sum_{\{i:y_i \in (0,1)\}} log(y_i) + \frac{n \cdot \partial log(\Gamma(p+q))}{\partial p} - \frac{n \cdot \partial log(\Gamma(p))}{\partial p} - \frac{n \cdot \partial log(\Gamma(q))}{\partial p} = 0 \\ \frac{\partial \ell_3(p,q)}{\partial q} &= \sum_{\{i:y_i \in (0,1)\}} log(1-y_i) + \frac{n \cdot \partial log(\Gamma(p+q))}{\partial q} - \frac{n \cdot \partial log(\Gamma(p))}{\partial q} - \frac{n \cdot \partial log(\Gamma(q))}{\partial q} - \frac{n \cdot \partial log(\Gamma(q))}{\partial q} = 0 \\ \frac{\partial \ell_3(p,q)}{\partial p} &= \sum_{\{i:y_i \in (0,1)\}} log(y_i) - n(-\psi(p+q) + \psi(p)) = 0 \\ \frac{\partial \ell_3(p,q)}{\partial q} &= \sum_{\{i:y_i \in (0,1)\}} log(1-y_i) - n(-\psi(p+q) + \psi(q)) = 0 \end{split}$$

donde $\psi(\cdot) = \Gamma'(\cdot)/\Gamma(\cdot)$

Este sistema de ecuaciones no tiene una solución de forma cerrada, por lo que para encontrar los MLE de p y q es necesario utilizar algoritmos iterativos, por ejemplo el método de Newton Raphson, mínimos cuadrados ponderados. En el paquete ZOIP se utiliza optimizadores a la función de verosimilitud mediante la función nlminb o optim de R. basadas en las funciones de Fortran drmnfb, drmngb, drmnhb y el metodo de Nelder y Mead, respectivamente, sin embargo, se puede garantizar que los puntos críticos encontrados serán máximos de la función de verosimilitud, ya que si hallamos la segunda derivada de la función se tiene que:

$$\frac{\partial^{2} \ell_{3}(p,q)}{\partial p^{2}} = -n(\psi^{'}(p) - \psi^{'}(p+q)) < 0$$

$$\frac{\partial^{2} \ell_{3}(p,q)}{\partial q^{2}} = -n(\psi'(q) - \psi'(p+q)) < 0$$

debido que la varianza de la transformación logarítmica de la variable es:

$$var(log(y)) = E[log^{2}(y)] - (E[log(y)])^{2} = \psi'(p) - \psi'(p+q) > 0$$
$$var(log(1-y)) = E[log^{2}(1-y)] - (E[log(1-y)])^{2} = \psi'(q) - \psi'(p+q) > 0$$

ver más en Owen (2008).

Para encontrar las estimaciones de los parámetros de Beta en parametrizaciones de Ferrari & Cribari-Neto (2004) y Rigby & Stasinopoulos (2005), basta con encontrar los estimadores MLE anteriores de la parametrización clásica y utilizar las ecuaciones definidas en (7), (8) para el caso de Ferrari & Cribari-Neto (2004) y (12), (13) para el caso de Rigby & Stasinopoulos (2005).

2. ZOIP-simplex

Para este caso la única diferencia con respecto al caso anterior es la estimación en el componente continuo, por lo tanto.

$$L_3(\mu, \sigma) = \prod_{\{i: y_i \in (0,1)\}} \left[2\pi \sigma^2 [y_i (1 - y_i)]^3 \right]^{-1/2} exp\left(-\frac{1}{2\sigma^2} d(y_i; \mu) \right)$$

donde
$$d(y_i; \mu) = \frac{y_i(1-y_i)\mu^2(1-\mu)^2}{(y_i-\mu)^2}$$

$$\ell_3(\mu,\sigma) = -\frac{n}{2}log(2\pi) - \frac{n}{2}log(\sigma^2) - \frac{3}{2} \sum_{\{i: y_i \in (0,1)\}} log(y_i(1-y_i)) - \sum_{\{i: y_i \in (0,1)\}} \frac{1}{2\sigma^2} d(y_i;\mu)$$

$$\frac{\partial \ell_3(\mu, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{\{i: y_i \in (0, 1)\}} d(y_i; \mu) = \sigma(-n\sigma^2 + \sum_{\{i: y_i \in (0, 1)\}} d(y_i; \mu)) = 0$$

El valor de $\sigma = 0$, no es posible, por lo tanto:

$$-n\sigma^2 + \sum_{i=1: y_i \in (0,1)}^n d(y_i; \mu) = 0$$

$$\therefore \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1: y_i \in (0,1)}^n \frac{d(y_i; \hat{\mu})}{d(y_i; \hat{\mu})}$$

El estimador MLE de σ^2 depende del valor estimado en $\mu,$ entonces:

$$\frac{\partial \ell_3(\mu, \sigma)}{\partial \sigma} = -\frac{1}{2\sigma^2} \sum_{i=1: y_i \in \{0, 1\}}^n \frac{\partial d(y_i; \mu)}{\partial \mu} = 0$$

donde:

$$\frac{\partial d(y_i; \mu)}{\partial \mu} = \sum_{i=1: y_i \in (0,1)}^{n} \frac{y_i (1 - y_i) \mu^2 (1 - \mu)^2}{2(y_i - \mu)^3} + \frac{2y_i (1 - y_i) \mu (1 - \mu)^2 - 2y_i (1 - y_i) \mu^2 (1 - \mu)}{(y_i - \mu)^2} = 0$$

Comunicaciones en Estadística, diciembre 2014, Vol. 7, No. 2

No tiene una solución cerrada analíticamente, entonces se deben utilizar algoritmos iterativos tal como Newton Raphson o mínimos cuadrados ponderados, en el paquete ZOIP se utiliza optimizadores para la función de verosimilitud mediante la función nlminb o optim de R, para encontrar puntos críticos donde $\partial d(y_i; \mu)/\partial \mu = 0$.

5. Paquete ZOIP

En esta sección se presenta el paquete ZOIP de R alojado en GitHub y creado por los autores para analizar datos proporcionales inflados con ceros y/o unos y ajustar una distribución ZOIP.

5.1. Instalación

Para acceder a la última versión del paquete ZOIP, se debe ingresar al repositorio de códigos GitHub, el cual es un alojamiento de repositorios Git, para obtener dicha versión es necesario ejecutar el siguiente código que instala el paquete devtools, que es necesario para descargar el paquete ZOIP.

```
if (!require("devtools")) install.packages("devtools")
devtools::install_github("jucdiaz/ZOIP", force = TRUE)
library(ZOIP) # Carga el paquete
```

5.2. Funciones sobre distribución ZOIP

En el paquete ZOIP existen cuatro funciones llamadas dZOIP, pZOIP, qZOIP y rZOIP que corresponden a las funciones de densidad de probabilidad, la función de distribución acumulada, la función cuantil y la función generadora de números aleatorios de la distribución ZOIP, respectivamente; estas cuatro funciones tendrán como argumentos los parámetros de la distribución y un argumento llamado family, que corresponderá a el tipo de distribución para datos proporcionales a utilizar, en el siguiente código se observa cómo se halla la densidad de probabilidad en el punto 0.5 de una distribución ZOIP-Beta con parametrización Rigby & Stasinopoulos (2005) descrita como ZOIP($\mu = 0.2$, $\sigma = 0.5$, $p_0 = 0.2$, $p_1 = 0.2$)

```
dZOIP(x=0.5, mu=0.2, sigma=0.5, p0=0.2, p1=0.2, family='R-S') ##[1] 0.3243543
```

Además se halla la probabilidad acumulada hasta el punto 0.5 de una distribución OIP-Beta con parametrización Ferrari & Cribari-Neto (2004) dada por ${\rm ZOIP}(\mu=$

13

```
0.2, \sigma = 3, p_0 = 0, p_1 = 0.2
```

```
pZ0IP(q=0.5, mu=0.2, sigma=3, p0=0, p1=0.2, family='F-C')
##[1] 0.7181223
```

Se calcula el percentil 70% de una distribución ZIP-Beta dada por ZOIP($\mu = 0.6, \sigma = 2.4, p_0 = 0.2, p_1 = 0$)

```
qZOIP(p=0.7, mu=0.6, sigma=2.4, p0=0.2, p1=0, family='Original') ##[1] 0.2061418
```

Por último se generan 8 valores aleatorios de una distribución ZOIP-simplex descrita como ZOIP($\mu = 0.6$, $\sigma = 3$, $p_0 = 0.2$, $p_1 = 0.2$). La función set seed tiene como fin garantizar la repetición de los valores aleatorios generados en el ejemplo.

```
set.seed(12345)
rZOIP(n=8, mu=0.2, sigma=3, p0=0.2, p1=0.2, family='Simplex')
##[1] 0.3185479 1.0000000 0.3765073 1.0000000 0.1626598
##[6] 0.00000000 0.1138673 0.1840670
```

5.3. Estimación de parámetros

La función RM. ZOIP estima los parámetros de una distribución ZOIP vía máxima verosimilitud utilizando el optimizador deseado (nlminb,optim). La estructura de la función RM. ZOIP es la siguiente:

```
RM.ZOIP(formula.mu, data, family = "R-S", optimizer="nlminb")
```

Los argumentos de la función RM.ZOIP son:

- formula.mu: Formula que define los datos para ajustar una distibución ZOIP, para ello debe tomar el valor de y 1, donde y es el nombre de la variable a ajustar.
- data: Es el conjunto de datos en formato data.frame donde debe contener los datos de la variable a ajustar y el nombre debe ser tal cual como está en las fórmula para el parámetro μ .
- family: Elección de la distribución ZOIP deseada para ajustar, si toma el valor de ''R-S'' se utilizará la distribución ZOIP-Beta con parametrización (Rigby & Stasinopoulos 2005), si toma el valor de ''F-C'' se utilizará la dis-

```
tribución ZOIP-Beta parametrización (Ferrari & Cribari-Neto 2004), el valor de "Original" se utilizará la distribución ZOIP-Beta con parametrización clásica, "Simplex" utilizará la distribución ZOIP-simplex.
```

• optimizer: Elección del optimizador, utilizado para encontrar la convergencia de la máxima verosimilitud. se puede elegir el valor de "nlminb", o "optim", por defecto "nlminb",

En el siguiente ejemplo se mostrará el ajuste de una distribución ZOIP, para ello mostraremos la salida de la función RM. ZOIP de 1000 observaciones simuladas para la distribución ZOIP-Beta parametrización (Rigby & Stasinopoulos 2005).

```
yi \leftarrow data.frame(yi = rZOIP(n = 1000, mu = 0.6, sigma = 0.2,
    p0 = 0.03, p1 = 0.05, family = "R-S"))
mod <- RM.ZOIP(formula.mu = yi ~ 1, data = yi, family = "R-S")</pre>
mod
## Call:
## RM.ZOIP(formula.mu = yi ~ 1, data = yi, family = "R-S")
##
## Results:
##
## Estimated coefficients for h(mu):
## (Intercept)
##
      0.605174
##
## Estimated coefficients for h(sigma):
## (Intercept)
##
    0.2038938
##
## Estimated coefficients for h(p0):
## (Intercept)
## 0.03000002
##
## Estimated coefficients for h(p1):
## (Intercept)
##
          0.05
```

Distribución ZOIP en R 15

```
##
## Convergence
## [1] 0
##
## message
## [1] "relative convergence (4)"
##
## iterations
## [1] 22
##
## Log-likelihood
## [1] 488.2683
```

En el anterior resultado se obtienen varios aspectos importantes de la salida del ajuste de la distribución y leyendo de arriba hacia abajo, primero que todo nos muestra la distribución ajustada, luego el valor ajustado para cada parámetro de la distribución ZOIP, luego un indicador de convergencia del ajuste, donde 0 indica la convergencia, después un mensaje sobre la convergencia (resultados heredados de la función nlimnb), después se encuentra el número de iteraciones que fueron necesarias para que convergiera el ajuste de la distribución, por último se encuentra valor de la log-verosimilitud que nos permitirá hacer comparaciones entre ajustes de distribuciones.

Al aplicar a la distribución ajustada (mod) la función summary se obtiene el siguiente resultado:

```
## -----
## Fixed effects for identity(sigma)
## -----
##
         Estimate Std. Error z value Pr(>|z|)
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
## -----
## Fixed effects for identity(p0)
         Estimate Std. Error z value Pr(>|z|)
##
## (intercept) 0.0339992 0.0057308 5.9327 2.98e-09 ***
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
## -----
## Fixed effects for identity(p1)
##
          Estimate Std. Error z value Pr(>|z|)
## (intercept) 0.0450005 0.0065556 6.8644 6.675e-12 ***
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
```

Con la función summary aplicada a la distribución ZOIP ajustada, se obtiene más detalles de los parámetros estimados, primero se obtiene el valor estimado (Estimate), su error estándar (Std.Error), el valor Z del estimador (z value) y el valor p que nos indicara la significancia del parámetro estimado (Pr(>|z|)).

En el resultado anterior se obtienen los valores de $\hat{\mu} = 0.6066914$, $\hat{\sigma} = 0.196643$, $\hat{p}_0 = 0.0339992$ y $\hat{p}_1 = 0.0450005$, que son similares a los parámetros con los que se simuló y_i . Además cabe resaltar que en la función RM. ZOIP para ajustar distribuciones de probabilidad no es necesario colocar funciones de enlace ni espacio de busqueda de los parámetros, ya que estos son introducidas automáticamente de acuerdo a el valor tomado en family.

Así como la función summary puede ser aplicada a un objeto de la clase ZOIP, en este trabajo se implementaron otros tipo de funciones asociadas a métodos S3 de R a objetos de clase ZOIP, tales como la función print y coef, que permiten mostrar los resultados del modelo ajustado en general y los parámetros regresores estimados, respetivamente.

6. Estudio de simulación

En esta sección se realizó un estudio de simulación para observar la convergencia de la estimación de los parámetros de la distribución ZOIP para esto se analizan diferentes aspectos de la capacidad de estimación que tiene el método de máxima verosimilitud sobre los parámetros de la distribución ZOIP. Se generaron muestras de una distribución ZOIP bajo las diferentes distribuciones y parámetrizaciones con tamaños de muestra n de: 5, 10, 15, ..., 500, y se realizaron 1000 réplicas para cada tamaño de muestra, posteriormente se calculó la mediana de cada una de las estimaciones de los parámetros, y así poder analizar la capacidad de convergencia de las metodologías implementadas en la distribución ZOIP y en el paquete ZOIP.

En el primer escenario del estudio de simulación se generaron los datos de una distribución ZOIP-Beta($\mu=0.6, \sigma=0.2, p_0=0.03, p_1=0.05$) para el caso de la parametrización de Rigby & Stasinopoulos (2005), ZOIP-Beta($\mu=0.6, \sigma=24, p_0=0.03, p_1=0.05$) para el caso de la parametrización de Ferrari & Cribari-Neto (2004), ZOIP-Beta($\mu=14.4, \sigma=9.6, p_0=0.03, p_1=0.05$), cabe aclarar que las tres parametrizaciones anteriores generan exactamente la misma distribución, esto gracias a las ecuaciones definidas en (7), (8), (12) y (13), de igual manera se generó la misma cantidad de datos simulados para la distribución ZOIP-simplex($\mu=0.4, \sigma=0.2, p_0=0.03, p_1=0.05$).

En la Figura 2 se presentan las medianas de la estimación de los parámetros para cada tamaño de muestra, de esta figura se observa que independientemente de la distribución y parametrización escogida en la distribución ZOIP, todos las estimaciones convergen al valor verdadero del parámetro a medida que aumenta el tamaño de muestra n. En la Figura 2 se nota que las estimaciones de σ cuando son parámetros con significado de dispersión como es en la distribución Beta con parametrización Rigby & Stasinopoulos (2005) y en la distribución simplex, tienden a dar valores subestimados, por otra parte, en las distribuciones que σ tiene significado de forma y precisión tienden a dar valores sobrestimados. Se observa que las estimaciones de los parámetros de inflación a pesar de que son pequeñas dan resultados muy satisfactorios y casi sin variación en su forma de estimación de distribución a distribución.

Como medida global del proceso de estimación se eligió el MAPE (Error porcentual absoluto medio. $((\sum_{i=1}^{n}|y_i-\hat{y}_i/y_i|)/n))$ debido a los cambios de escala entre los diferentes parámetros de las diferentes distribuciones y parametrizaciones. Esta media se realizó como un promedio de los MAPES generados por cada uno de los parámetros de la distribución ZOIP en cada tamaño de muestra. En la Figura 4a se presenta el MAPE para las diferentes distribuciones y parametrizaciones estimadas, se observa como a medida que el tamaño de muestra aumenta, el MAPE va decreciendo rápidamente, aunque después de un tamaño de muestra de 200, el MAPE decrece de una manera más lenta, además los errores de estimación son muy parecidos entre los 4 casos de simulación, la estimación sobre los parámetros de la distribución ZOIP-simplex tiene un error un poco más grande, pero no es

Figura 2: Mediana de los parámetros estimados en el escenario 1 para distintas parametrizaciones y valores de n, las líneas punteadas representan el verdadero valor del parámetro.

significativo sobre los demás casos.

En el segundo escenario de simulación se generó el mismo ejercicio de simulación anterior sobre las mismas distribuciones y parametrizaciones, solo que los valores de p_0 y p_1 cambian por 0.3 y 0.2, respectivamente. Dando así que el 50 % de los datos se vean contaminados por ceros y unos, esto para ver si de alguna forma afecta el aumento de la presencia de ceros y unos sobre las estimaciones de los parámetros de la parte continua de la distribución ZOIP.

En la Figura 3 se presentan las estimaciones de los parámetros de la simulación con inflaciones al 50 % para diferentes tamaños de muestras, en general se observa que no se ven cambios muy significativos sobre la Figura 2 en los parámetros de μ y σ , sin embargo, en la estimación de p_0 se tienden a dar valores subestimados con relación al estudio de simulación anterior y con el parámetro p_1 aunque las estimaciones son muy acertadas sobre el valor real desde tamaños de muestra pequeños, en algunas ocasiones se producen pequeñas perturbaciones no muy alejados del valor real.

Tabla 2: MAPE de las estimaciones para cada parámetro en diferentes parametriza-

ciones en los dos estudios de simulación Parámetro MAPE escenario 1 % MAPE escenario 2 % ZOIP-Beta R-S 0.61 0.86 ZOIP-Beta F-C 0.50 0.85 ZOIP-Beta 0.530.700.63 0.47 simplex ZOIP-Beta R-S 2.53 3.40 ZOIP-Beta F-C 5.106.90 ZOIP-Beta 5.30 6.98 simplex 5.30 7.37 ZOIP-Beta R-S 20.5 5.36 ZOIP-Beta F-C 19.7 5.42 p_0 ZOIP-Beta 19.8 5.43 simplex 20.8 5.51ZOIP-Beta R-S 15.2 7.28 ZOIP-Beta F-C 7.00 16.0 ZOIP-Beta 15.77.0016.2 simplex 7.12Promedio 10.57 5.26

En la Figura 4b se presenta el MAPE para el estudio de simulación del escenario 2, se puede ver como se obtienen MAPES muy parecidos a los del estudio de simulación del escenario 1, pero cabe resaltar como se comete menos error sobre la estimación de los parámetros de la distribución Beta con parametrización Rigby & Stasinopoulos (2005). En la tabla 2 se presenta el MAPE para cada parámetro de cada parametrización para ambos estudios de simulación, es claro ver como en general el estudio de simulación del escenario 2 produce un MAPE menor que el del escenario 1, esto es causado por que en el escenario 1 de simulación los errores de pronóstico son más grandes en los parámetros de inflación que en el escenario 2. Por todo lo visto anteriormente se puede concluir que el crecimiento de los parámetros de inflación no afecta de manera significativa la estimación de los parámetros de la parte continua de la distribución ZOIP, pero si en una mejor

Figura 3: Simulación de distribución ZOIP para distintas parámetrizaciones con parámetros de inflación grandes, distribuciones y valores de n.

Distribución ZOIP en R 21

Figura 4: Mape (Error porcentual absoluto medio) para los dos escenarios de simulación y para distintas parametrizaciones y valores de n.

estimación de los parámetros de inflación.

7. Aplicación a datos reales

En esta sección se presenta el ajuste de una distribución ZOIP a datos reales sobre la utilización de una tarjeta de crédito en un banco.

Para una entidad financiera grande como un banco es de vital importancia conocer el comportamiento del porcentaje de utilización de sus tarjetas de crédito (tdc), se define a y como el porcentaje de uso de una tdc (saldo utilizado sobre cupo total de la tdc), en la Figura 5 se presenta el histograma del porcentaje de utilización de las tdc y es claro notar que y se encuentra entre cero y uno, pero adicional es muy común ver que las tdc no sean utilizadas (y=0) y también que las tdc sean utilizadas en la totalidad de su cupo asignado (y=1), por lo que se trata a y como una variable aleatoria perteneciente a datos proporcionales inflados con ceros y unos. Se tiene un total de 9206 tdc, que representan el porcentaje de utilización de las tdc para un trimestre del año 2014 del banco. Se quiere estudiar el ajuste de una distribución ZOIP, para ello se utiliza el paquete en R llamado ZOIP mediante su función RM.ZOIP.

Figura 5: Histograma del porcentaje de utilización de las tdc en un banco.

Tabla 3: Ajuste de diferentes distribuciones ZOIP en el porcentaje de utilización

de <u>una tdc.</u> Familia

Valor P Log-Verosimilitud Parámetro Estimación Error estándar $< 2.2e^{-16}$ 0.4040 0.0037 $<2.2e^{-16}$ 0.6601 0.0027 σ R-S 5854.067 $< 2.2e^{-16}$ 0.22190.0043 p_0 0.0027 $< 2.2e^{-16}$ 0.0695 p_1 $< 2.2e^{-16}$ μ 0.40400.0037 $< 2.2e^{-16}$ σ 0.40400.0037 F-C 5854.067 $< 2.2e^{-16}$ p_0 0.2219 0.0043 $< 2.2e^{-16}$ 0.0695 0.0027 p_1 $< 2.2e^{-16}$ 0.5233 0.0080 μ $<2.2\overset{-}{e^{-16}}$ 0.77190.0130 σ 5854.067 original $< 2.2e^{-16}$ 0.0043 0.2219 p_0 $< 2.2e^{-16}$ 0.0695 0.0027 p_1 $< 2.2e^{-16}$ 0.5741 0.0010 μ $< 2.2e^{-16}$ σ 4885.4370 18.2430 54425.63 simplex $< 2.2e^{-16}$ 0.14970.0032 p_0 $< 2.2e^{-16}$ 0.0004 0.0090

En la Tabla 3 se muestran resultados de los cuatro parámetros estimados vía máxima verosimilitud para la distribución ZOIP, en ellas vemos cómo cambian los valores de los parámetros según la parametrización escogida, los valores de logverosimilitud indican que el mejor modelo ajustado es un ZOIP-Beta, ya que es bastante menor el valor de log-verosimilitud de una distribución ZOIP-simplex, además que en las estimaciones de los parámetros de la distribución ZOIP-simplex no se tuvo una convergencia, por lo tanto los valores son muy distintos para el parámetro de dispersión a los vistos en la distribución ZOIP-Beta, inclusive muy elevados. Además, el valor de μ es mayor que las de la parametrización en Rigby & Stasinopoulos (2005) y Ferrari & Cribari-Neto (2004), un 17 % más.

En la Figura 6 se presenta gráficamente el ajuste de la distribución ZOIP-Beta

Figura 6: Ajuste de diferentes distribuciones y parametrizaciones ZOIP al porcentaje de utilización de una tdc.

a la izquierda y de la distribución ZOIP-simplex a la derecha sobre la densidad empírica del porcentaje de utilización de las tdc, la línea punteada representa la distribución ZOIP ajustada, cabe resaltar que el ajuste de la distribución ZOIP-Beta es igual en las tres parametrizaciones planteadas, por lo que se presenta una sola grafica para las tres parametrizaciones, se ve como la distribución ZOIP-Beta sigue el comportamiento original del porcentaje de utilización de las tdc. Es bueno resaltar también que la distribución ZOIP-simplex no tiene un buen ajuste para los valores entre cero y uno. Por todo anterior es recomendable decir que el porcentaje de utilización de las tdc de este banco se comportan como una distribución ZOIP-Beta con los parámetros descritos en la tabla 3, según la parametrización deseada y no como una distribución ZOIP-simplex.

8. Conclusiones

La distribución ZOIP y el paquete ZOIP de R permiten ajustar distribuciones para datos provenientes de porcentajes, tasas o proporciones que se encuentren inflados con ceros y/o unos, dicha distribución está compuesta por cuatro parámetros, que son estimados vía máxima verosimilitud y en el cual de acuerdo a los estudios de simulación realizados estos convergen a los valores reales con un tamaño de muestra relativamente pequeño, además se observa como la estimación de los parámetros de la parte continua no se ven afectados por el aumento de la presencia de ceros y unos en los datos, pero sí la estimación de los parámetros de la parte discreta. Por otra parte, se observa cómo el ajuste de la distribución ZOIP-Beta

explica el comportamiento de la distribución del porcentaje de utilización de una tarjeta de crédito en un banco.

La distribución ZOIP y el paquete ZOIP de R permiten de una manera muy versátil utilizar y ajustar diferentes parametrizaciones y distribuciones para datos proporcionales. Además permite Utilizar y ajustar distribuciones para datos proporcionales que se encuentran inflados solo con ceros o solo con unos, de una manera práctica.

Referencias

- Cepeda-Cuervo, E., Jaimes, D., Marin, M. & Rojas, J. (2016), 'Bayesian beta regression with bayesianbetareg r-package', *Computational Statistics* **31**(1), 165–187.
- Ferrari, S. & Cribari-Neto, F. (2004), 'Beta regression for modelling rates and proportions', *Journal of applied statistics* **31**(7), 799–815.
- Galvis, D. & Lachos, V. (2014), Bayesian analysis of regression models for proportional data in the presence of zeros and ones, PhD thesis, Estatal University of Campinas.
- Hahn, E. (2008), 'Mixture densities for project management activity times: A robust approach to pert', European Journal of operational research 188(2), 450–459.
- Hossain, A. (2015), 'Modelling a proportion response variable using generalized additive models for location scale and shape', *International Workshop on Statistical Modelling* **2**, 137–140.
- Jørgensen, B. (1997), 'The theory of dispersion models', Computational statistics and Data analysis 76.
- Jørgensen, B. & Barndorff-Nielsen (1991), 'Some parametric models on the simplex', *Journal of multivariate analysis* **39**(1), 106–116.
- Kosmidis, I., Zou, A. & Jagan, K. (2015), 'Beyond beta regression: modelling percentages and fractions in the presence of boundary observations', *International Workshop on Statistical Modelling* 1, 267–272.
- Ospina, R. & Ferrari, S. (2010), 'Inflated beta distributions online: doi:10.1007/s00362-008-0125-4', $Statitical\ papers$.
- Ospina, R. & Ferrari, S. (2012), 'A general class of zero-or-one inflated beta regression models', *Computational Statistics and Data Analysis* **56**(6), 1609–1623.
- Owen, C. (2008), Parameter estimation for the beta distribution, Master's thesis, Brigham young university.

Pace, L. & Salvan, A. (1997), 'Principles of statistical inference from a neo-fisherian perspective. in: Advanced series on statistical science and applied probability', World Scientific 4, 128.

- Qiu, Z., Song, P. & Tan, M. (2008), 'Simplex mixed-effects models for longitudinal proportional data', Scandinavian Journal of Statistics 35(4), 577–596.
- R Core Team (2017), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *http://www.R-project.org/
- Rigby, B. & Stasinopoulos, M. (2005), 'Generalized additive models for location, scale and shape', *Applied Statistical* **54**(3), 507–554.
- Rigby, B. & Stasinopoulos, M. (2008), 'Instructions on how to use the gamlss package in r', Computational statistics and Data analysis 2, 194–195.
- Zeileis, A., Cribari-Neto, F. & Grün, B. (2010), 'Beta regression in r', *Journal of statistical software* **34**(2), 1–24.
- Zhang, P., Qiu, Z. & Shi, C. (2016), 'simplexreg: An r package for regression analysis of proportional data using the simplex distribution', *Journal of Statistical Sftware* **71**(11).