In [16]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [17]: df = pd.read_csv('CarPrice.csv')

In [18]: df.head()

Out[18]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	€
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	_
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	

5 rows × 26 columns

In [19]: df.tail()

Out[19]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	en
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	

5 rows × 26 columns

In [20]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype		
0	car_ID	205 non-null	int64		
1	symboling	205 non-null	int64		
2	CarName	205 non-null	object		
3	fueltype	205 non-null	object		
4	aspiration	205 non-null	object		
5	doornumber	205 non-null	object		
6	carbody	205 non-null	object		
7	drivewheel	205 non-null	object		
8	enginelocation	205 non-null	object		
9	wheelbase	205 non-null	float64		
10	carlength	205 non-null	float64		
11	carwidth	205 non-null	float64		
12	carheight	205 non-null	float64		
13	curbweight	205 non-null	int64		
14	enginetype	205 non-null	object		
15	cylindernumber	205 non-null	object		
16	enginesize	205 non-null	int64		
17	fuelsystem	205 non-null	object		
18	boreratio	205 non-null	float64		
19	stroke	205 non-null	float64		
20	compressionratio	205 non-null	float64		
21	horsepower	205 non-null	int64		
22	peakrpm	205 non-null	int64		
23	citympg	205 non-null	int64		
24	highwaympg	205 non-null	int64		
25	price	205 non-null	float64		
dtypes: float64(8), int64(8), object(10)					

memory usage: 41.8+ KB

In [21]: | df.describe()

Out[21]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000
4							

```
df.isnull().sum()
In [22]:
Out[22]: car_ID
                               0
          symboling
                               0
          CarName
                               0
                               0
          fueltype
          aspiration
                               0
                               0
          doornumber
          carbody
                               0
          drivewheel
                               0
          enginelocation
                               0
          wheelbase
                               0
          carlength
                               0
          carwidth
                               0
          carheight
                               0
          curbweight
                               0
                               0
          enginetype
          cylindernumber
                               0
                               0
          enginesize
          fuelsystem
                               0
          boreratio
                               0
          stroke
                               0
          compressionratio
                               0
          horsepower
                               0
          peakrpm
                               0
          citympg
                               0
          highwaympg
                               0
                               0
          price
          dtype: int64
In [23]: df.duplicated().sum()
Out[23]: 0
In [24]:
         df.shape
Out[24]: (205, 26)
          print(df.price.describe(percentiles=[0.225,0.50,0.75,0.85,0.98,1]))
In [25]:
                     205.000000
          count
                   13276.710571
          mean
          std
                    7988.852332
          min
                    5118.000000
          22.5%
                    7609.000000
          50%
                   10295.000000
          75%
                   16503.000000
          85%
                   18500.000000
          98%
                   36809.600000
          100%
                   45400.000000
          max
                   45400.000000
          Name: price, dtype: float64
```

```
plt.figure(figsize=(15,5))
In [26]:
         plt.subplot(1,2,1)
         plt.title("Door number Histogram")
         sns.countplot(data=df, x='doornumber', palette="plasma")
         plt.subplot(1,2,2)
         plt.title('Door number vs Price')
         sns.barplot(data=df, x='doornumber', y='price', palette="plasma")
         plt.show()
         plt.figure(figsize=(15,5))
         plt.subplot(1,2,1)
         plt.title("Aspiration Histogram")
         sns.countplot(data=df, x='aspiration', palette="plasma")
         plt.subplot(1,2,2)
         plt.title("Aspiration vs Price")
         sns.barplot(data=df, x='aspiration', y='price', palette="plasma")
         plt.show()
```



```
In [27]: colors=sns.color_palette('pastel')
    labels=df['fueltype'].dropna().unique()
    plt.figure(figsize=(18,10))
    plt.subplot(1,2,1)

    plt.title('fueltype_percentage')
    plt.pie(df['fueltype'].value_counts(),labels=labels,colors=colors,autopct=')
    plt.subplot(1,2,2)
    plt.title('fueltype bar chart')
    sns.countplot(x='fueltype',data=df,palette=colors)
    df.fueltype.value_counts(dropna=False)
```

Out[27]: fueltype

gas 185 diesel 20

Name: count, dtype: int64


```
In [28]: dff=pd.DataFrame(df.groupby(['fueltype'])['price'].mean().sort_values(ascending the plot.bar())
    plt.title("Fuel type vs Average price")
    plt.show()
    dff=pd.DataFrame(df.groupby(['carbody'])['price'].mean().sort_values(ascending the plot.bar())
    plt.title("Car type vs Average price")
    plt.show()
```



```
In [39]: y=df['price']
x=df[['wheelbase','carwidth', 'carheight', 'curbweight', 'enginesize','bore
```

In [38]: sns.lineplot(data=x)

Out[38]: <Axes: >

In []: