

Fakultät Mathematik Institut für Numerik, Professur für Numerik der optimalen Steuerung

OPTIMIERUNG UND NUMERIK 1

Dr. John Martinovic

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Hausaufgaben

Eric Kunze

Optimierung und Numerik 1 – Übungsblatt 2

Matr.-Nr. 4679202

Thema: Optimalität und Konvexität

Hausaufgabe 1

Gegeben sei das lineare Optimierungsproblem

$$z = -x_1 - x_2 \rightarrow \min$$
 bei $x_1 + 2x_2 \le 8, x_1 + x_2 \le 5, x_1, x_2 \le 0$

Ermitteln Sie für die Punkte

$$x^{1} = (1,1)^{\top}, \quad x^{2} = (3,3)^{\top}, \quad x^{3} = (4,1)^{\top}, \quad x^{4} = (2,3)^{\top}$$

jeweils den Kegel der zulässigen Richtungen $Z(x^k)$ für k=1,2,3,4.

Wir wiederholen zunächst ein Kriterium der Vorlesung. Für ein lineares Optimierungsproblem $f(x) \to \min$ bei $Ax \le b$ gilt

$$d \in Z(x) \Leftrightarrow \forall i \in I_0(x) \colon a_i^{\top} d \le 0$$
 (2.4)

Der zulässige Bereich lässt sich offensichtlich darstellen als $G = \{x \in \mathbb{R}^2 : Ax \leq b\}$ für $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ und $b = \begin{pmatrix} 8 & 5 \end{pmatrix}^{\top}$.

- (i) Betrachten wir $x^1 = (1,1)^{\top}$. Dann gilt $Ax^1 \leq b$. Da beiden Nebenbedingungen erfüllt sind, gilt $x \in \text{int}(G)$ und somit $Z(x^1) = \mathbb{R}^2$.
- (ii) Betrachten wir $x^2=(3,3)^{\top}$. Dann gilt $Ax^2>b$, d.h. $x\notin G$ und somit $Z(x^2)=\emptyset$.
- (iii) Für $x^3 = (4,1)^{\top}$ gilt $Ax^3 \leq b$ und insbesondere $x_1 + x_2 = 4 + 1 = 5$, d.h. die zweite Nebenbedingung ist mit Gleichheit erfüllt. Damit ist $I_0(x^3) = \{2\}$. Dann ist $a_2^{\top}d \leq 0$ äquivalent zu $d_2 \leq -d_1$. Nach Gleichung (2.4) gilt also $Z(x^3) = \{d = (d_1, d_2)^{\top} \in \mathbb{R}^2 : d_2 \leq -d_1\}$.
- (iv) Für $x^4 = (2,3)^{\top}$ ist $Ax^4 = b$ und $I_0(x^4) = \{1,2\}$. Nach (2.4) muss also $d_1 + 2d_2 \le 0$ und $d_1 + d_2 \le 0$ gelten. Somit gilt $Z(x^4) = \{d \in \mathbb{R}^2 : A \cdot d \le 0\} = \{d \in \mathbb{R}^2 : \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} d \le 0\}$.

Hausaufgabe 2

Beweisen Sie folgende Aussagen:

(a) Es seien $G\subseteq\mathbb{R}^n$ eine konvexe Menge und $f\colon G\to\mathbb{R}$ eine konvexe Funktion. Dann ist die Lösungsmenge der Optimierungsaufgabe

$$f(x) \to \min \text{ bei } x \in G$$
 (*)

konvex.

(b) Es sei $K \subseteq \mathbb{R}^n$ ein Kegel. Die Menge K ist genau dann konvex, wenn

$$x, y \in K \Rightarrow x + y \in K$$

(zu a) Sei $G \subseteq \mathbb{R}^n$ eine konvexe Menge und $f \colon G \to \mathbb{R}$ eine konvexe Funktion. Wir wollen nun zeigen, dass die Lösungsmenge \mathcal{L} von (\star) eine konvexe Menge ist. Seien dazu $x, y \in \mathcal{L} = \{x \in \mathbb{R}^n \colon f(x) \leq f(\overline{x}) \ \forall \overline{x} \in G\}$. Daraus folgt nun aber direkt schon, dass f(x) = f(y) gelten muss. Betrachten wir nun eine Konvexkombination $z = \lambda x + (1 - \lambda)y \in G$.

$$f(z) = f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$$
 (Konvexität von f)
$$= \lambda f(x) + (1 - \lambda)f(x)$$
 ($f(x) = f(y)$)
$$= f(x) \in f(\mathcal{L})$$

d.h. also $z \in \mathcal{L}$.

- (zu b) Sei $K \subseteq \mathbb{R}^n$ ein Kegel. Wir wollen zeigen, dass K genau dann ein Kegel ist, wenn $x + y \in K$ für alle $x, y \in K$.
 - (⇒) Sei K konvex und $x, y \in K$ beliebig. Dann ist auch $\lambda x + (1 \lambda)y \in K$ für alle $\lambda \in (0,1)$. Wähle nun $\lambda = 1/2$. Dann ist $0.5z := 0.5x + 0.5y \in K$. Da K nun ein Kegel ist, ist auch $\mu z \in K$ für alle $\mu \geq 0$. Insbesondere gilt dies auch für $\mu = 2$, d.h. $z = x + y \in K$.
 - (\Leftarrow) Es gelte $x + y \in K$ für alle $x, y \in K$. Seien $x, y \in K$ beliebig und $\lambda \in (0, 1)$. Dann ist aufgrund der Kegeleigenschaft von K auch $\lambda x \in K$ und $(1 \lambda)y \in K$. Da K additiv abgeschlossen ist, ist also auch $\lambda x + (1 \lambda)y \in K$ für alle $x, y \in K$. Somit ist K konvex.