Опр: 1. $K \subset \mathbb{R}$ называется компактом, если $\forall \{\mathcal{U}_{\alpha}\}$: $\bigcup_{\alpha} \mathcal{U}_{\alpha} \supset K$, $\exists \mathcal{U}_{\alpha_{1}}, \dots, \mathcal{U}_{\alpha_{N}} \colon K \subset \bigcup_{n=1}^{N} \mathcal{U}_{\alpha_{n}}$.

Утв. 1. K - компакт $\Leftrightarrow K$ - ограничено и замкнуто.

Теорема 1. K - компакт $\Leftrightarrow \forall \{x_n\}_{n=1}^{\infty} \in K, \exists$ подпоследовательность $\{x_{n_k}\}: x_{n_k} \to x \in K.$

 (\Rightarrow) Пусть K - компакт. Так как K - ограничено, то $\exists [a,b]\supset K$. Пусть $\{x_n\}\in K$, тогда $x_n\in [a,b]$. По теореме Больцано $\exists \, x_{n_k}\to x$. Так как K - замкнутое множество, то $x\in K$.

 (\Leftarrow) Пусть $\forall \{x_n\} \in K, \exists x_{n_k} \to x \in K$. Докажем, что K - компакт.

Если K не ограниченно сверху, то $\exists x_n \in K \colon x_n \to +\infty$. Из этой последовательности нельзя выбрать сходящуюся подпоследовательность (так как все ее подпоследовательности будут уходить в $+\infty$).

Если K не ограниченно снизу, то $\exists x_n \in K : x_n \to -\infty$. Из этой последовательности нельзя выбрать сходящуюся подпоследовательность (так как все ее подпоследовательности будут уходить в $-\infty$).

Следовательно K - ограниченно. Проверим, что K - замкнуто.

Пусть $x_n \in K$ и $x_n \to x$, покажем, что $x \in K$. По условию $\exists x_{n_k} \to x_0 \in K$, но $x_0 = x$, так как предел подпоследовательности обязательно совпадает с пределом сходящейся последовательности.

Множество Кантора

Построение Множества Кантора:

 F_1 : Отрезок [0,1], делится на три равные части и выбрасывается середина $\Rightarrow F_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$.

Рис. 1: Множество $F_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$

 F_2 : Каждый из отрезков F_1 делится также на три части и в каждом из них выбрасывается середина.

Рис. 2: Множество F_2 .

Далее по аналогии. Таким образом, любое F_n - конечное объединение отрезков $\Rightarrow F_n$ - замкнутые. Также важно отметить, что: $F_1 \supset F_2 \supset F_3 \supset \ldots \supset F_n \supset \ldots$ - множества вложенные.

Рассмотрим длины отрезков: $|F_1| = \frac{2}{3}$, $|F_2| = \frac{4}{9}$, $|F_n| = \left(\frac{2}{3}\right)^n =$ сумма длин, составляющих их отрезков. Видно, что

$$|F_n| = \left(\frac{2}{3}\right)^n \xrightarrow[n \to \infty]{} 0$$

Тогда сумма длин выбрасываемых интервалов стремится к 1. Но это не весь интервал.

Опр: 2. <u>Множество Кантора</u> $C = \bigcap_{n=1}^{\infty} F_n$.

В множестве Кантора точно будут концы выбрасываемых интервалов, так как дополнение к этому множеству это набор интервалов, куда эти концы никогда не входят.

Рис. 3: Множество Кантора.

На самом деле, там останется континуум точек.

Утв. 2. Справедливы следующие утверждения, относительно множества Кантора:

- (1) C замкнуто и ограниченно (компакт);
- (2) C континуально;
- (3) "По длине" (при $n \to \infty$) остался 0;

- (1) Ограниченно по условию, поскольку все производилось внутри отрезка [0,1]. Множество ограниченно, поскольку любое пересечение замкнутых множеств замкнуто \Rightarrow получим компакт.
- (2) Будем кодировать точки, которые останутся в Канторовском множестве. Взяли отрезок, выбросили середину. Левой части сопоставили 0, правой части 2.

Рис. 4: Кодирование множества Кантора.

Продолжаем нумеровать интервалы. Получится, что всякая точка $x \in C$ Канторовского множества записалась в виде последовательности 0 и 2: 0222...

Рис. 5: Кодирование множества Кантора.

Такая запись однозначна, так как если две точки отличаются, то поскольку длины отрезков стремятся к 0, то рано или поздно одна точка окажется в одной трети, другая - в другой.

Для каждой такой записи существует точка Канторовского множества по теореме о вложенных отрезках.

Таким образом, точки C взаимно однозначно соответствуют последовательностям 0 и 2. Значит этих точек столько же, сколько последовательностей 0 и 2, а их столько же, сколько последовательностей 0 и 1, а значит их континуум.

(3) Длина интервалов множества Кантора: $|F_n| = \left(\frac{2}{3}\right)^n \xrightarrow[n \to \infty]{} 0.$

Упр. 1.

- 1) Показать $\frac{1}{4} \in C$ (разложить в троичной системе);
- 2) Множество предельных точек C = (это совершенные множества привести примеры);
- 3) Доказать C + C = [0, 2]

Предел функции и его свойства

Пусть $D \subset \mathbb{R}$, $f \colon D \to \mathbb{R}$ - функция. Предположим, что a - предельная точка D ($a \notin D$ или $a \in D$).

Опр: 3. (Гейне): Число b называется пределом функции f при $x \to a$ (по множеству D), если $\forall \{x_n\} \in D, x_n \to a \land x_n \neq a$ верно, что $f(x_n) \to b$.

Рис. 6: Предел функции при $x \to a$.

Зачем есть требование $x_n \neq a$? Рассмотрим следующий пример.

Пример:

Рис. 7: Предел функции при $x \to 0$.

При $x \to 0$, функция стремится к 1. Но если не поставить $x \ne a$, то у такой функции вообще может не быть предела. Взяв, к примеру, последовательность $x_n \colon 1, \ 0, \ \frac{1}{2}, \ 0, \dots$

Требуем, чтобы a была предельной точкой, так как иначе таких последовательностей может вообще не оказаться. Если a - не предельная точка, то у неё есть окрестность в которой отличной от неё точек лишь конечный набор.

Rm: 1. Как установить расходящуюся последовательность? Можно либо взять последовательность при которой $x_n \to a$, но $f(x_n) \not\to b$, либо предъявить несколько последовательностей $x_n \to a$, $y_n \to a$ и $f(x_n) \to b \land f(y_n) \to c$, где $b \ne c$.

Обозначение: Пишут

$$b = \lim_{D \ni x \to a} f(x) = \lim_{x \to a} f(x)$$

 \mathbf{Rm} : 2. Ничего не поменяется в определении предела функции, если в качестве a взять $\pm \infty$. Только необходимо, чтобы они оказались предельными точками.

- (1) Если D не ограниченно сверху, то в качестве a можно взять $+\infty$.
- (2) Если D не ограниченно снизу, то в качестве a можно взять $-\infty$.

Все свелось к последовательностям. Поэтому будем переносить свойства с пределов последовательностей на пределы функций.

Теорема 2. Количество пределов функции при $x \to a \le 1$.

 \square Предположим, что $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$. По определению для всякой последовательности $x_n\colon x_n\to a \land x_n\neq a$ верно $f(x_n)\to b \land f(x_n)\to c$. Пределов последовательности $\leq 1\Rightarrow b=c$.

 ${f Rm: 3.}$ В доказательстве данной теоремы важно, что такая последовательность x_n вообще есть. Но это условие выполнено, так как a - предельная точка D, то есть всегда можно выбрать последовательность, которая к ней сходится.

Пример: У данной функции:

Рис. 8: Не существование предела функции f(x) при $x \to 0$.

предела $\lim_{x\to 0} f(x)$ не существует. Возьмем $x_n = \frac{1}{n}$, $f(x_n) \to 1$, а потом возьмем $x_n = -\frac{1}{n}$, $f(x_n) \to -1$. Если бы предел был, то он бы совпадал.

Теорема 3. (Переход к пределу в неравенствах): Пусть $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ и a - предельная точка D. Предположим, что $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$ и $\exists \mathcal{U}'(a) \colon f(x) \leq g(x)$, $\forall x \in \mathcal{U}'(a) \cap D$ (пересечение не пусто, так как a - предельная точка D), тогда $b \leq c$.

Пусть $x_n \to a \land x_n \neq a, x_n \in D$. По определению предела функции: $f(x_n) \to b, g(x_n) \to c$. По определению предела последовательности $\exists N \colon \forall n > N, x_n \in \mathcal{U}'(a)$ и так как $x_n \in D \Rightarrow x_n \in \mathcal{U}'(a) \cap D \Rightarrow \Rightarrow f(x_n) \leq g(x_n), \forall n > N$. По свойству предела последовательности $b \leq c$.

Точно также, как и для последовательностей пределы всегда переводят неравенства в нестрогие.

Теорема 4. (О двух полицейских): Пусть $f: D \to \mathbb{R}, g: D \to \mathbb{R}, h: D \to \mathbb{R}$ и a - предельная точка D. Предположим, что $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b$ и $\exists \mathcal{U}'(a) \colon f(x) \le h(x) \le g(x), \forall x \in \mathcal{U}'(a) \cap D$, тогда $\exists \lim_{x \to a} h(x) = b$.

 \square Для всякой последовательности $x_n \in D \colon x_n \to a \land x_n \neq a$ верно, что $f(x_n) \to b$, $g(x_n) \to b$ и $\exists N \colon \forall n > N, \, x_n \in \mathcal{U}'(a) \cap D$ и значит $f(x_n) \leq h(x_n) \leq g(x_n)$. По теореме о двух полицейских для последовательностей $h(x_n) \to b$.

Теорема 5. (Арифметика пределов): Пусть $f : D \to \mathbb{R}, g : D \to \mathbb{R}$ и a - предельная точка D. Предположим, что $\lim_{x \to a} f(x) = b, \lim_{x \to a} g(x) = c$, тогда:

- (1) $\lim_{x \to a} (f(x) + g(x)) = b + c;$
- (2) $\lim_{x \to a} (f(x) \cdot g(x)) = b \cdot c;$
- (3) Если $g \neq 0$ на множестве D и $c \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$;

- (1) Для всякой последовательности $x_n \in D : x_n \to a \land x_n \neq a$ верно, что $f(x_n) \to b, g(x_n) \to c$. По арифметике пределов последовательности $f(x_n) + g(x_n) \to b + c$.
- (2) Для всякой последовательности $x_n \in D \colon x_n \to a \land x_n \neq a$ верно, что $f(x_n) \to b, g(x_n) \to c$. По арифметике пределов последовательности $f(x_n) \cdot g(x_n) \to b \cdot c$.
- (3) Для всякой последовательности $x_n \in D$: $x_n \to a \land x_n \neq a$ верно, что $f(x_n) \to b$, $g(x_n) \to c$ и $g(x_n) \neq 0$, $c \neq 0$. По арифметике пределов последовательности $\frac{f(x_n)}{g(x_n)} \to \frac{b}{c}$.

Теорема 6. (Предел сложной функции): Пусть $D \subset \mathbb{R}$ и $E \subset \mathbb{R}$, $f \colon D \to E$, $g \colon E \to \mathbb{R}$. Пусть a предельная точка D и b - предельная точка E и $\exists \mathcal{U}'(a) \colon \forall x \in \mathcal{U}'(a) \cap D$, $f(x) \neq b$. Предположим, что $\lim_{x \to a} f(x) = b$ и $\lim_{y \to b} g(y) = c$, тогда $\lim_{x \to a} g(f(x)) = c$.

 \square $\forall x_n \to a \land x_n \neq a, \ f(x_n) \to b$, кроме того $\exists \ N \colon \forall n > N, \ f(x_n) \neq b$. Таким образом последовательность $f(x_{N+1}), \ldots, \ f(x_n), \ldots$ - сходится к b и никакой из её элементов $\neq b \Rightarrow$ последовательность $\Rightarrow g(f(x_{N+1})), \ldots, \ g(f(x_n)), \ldots \to c \Rightarrow g(f(x_n)) \to c$.

Rm: 4. <u>Важно,</u> что есть условие $\exists \mathcal{U}'(a) \colon \forall x \in \mathcal{U}'(a) \cap D, \ f(x) \neq b$. Рассмотрим к примеру функцию $f(x) = x \sin \frac{1}{x}, \ f(0) = 0$. $\lim_{x \to 0} f(x_n) = 0$, так как $|f(x)| \leq |x|, \ x_n \to 0 \Rightarrow |x_n| \to 0 \Rightarrow f(x_n) \to 0$ и $\lim_{x \to 0} g(y) = 1$, но у композиции предела нет: $\nexists \lim_{x \to 0} g(f(x))$.

(b) Функция f(x).

Возьмем последовательность нулей функции f(x): $x_n = \frac{1}{\pi n}$, $f(x_n) = 0$, $g(f(x_n)) = 0$. Возьмем последовательность положительных значенией f(x): $x_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$, $f(x_n) = 0$, $g(f(x_n)) = 1 \Rightarrow$ нет предела. Так получилось, поскольку f(x) принимала предельные значения b.