Logic and Computer Design Fundamentals Chapter 4 – Combinational Functions and Circuits

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use

(Hyperlinks are active in View Show mode)

Overview

- Functions and functional blocks
- Rudimentary logic functions
- Decoding
- Encoding
- Selecting
- Implementing Combinational Functions Using:
 - Decoders and OR gates
 - Multiplexers (and inverter)
 - ROMs
 - PLAs
 - PALs
 - Lookup Tables

Functions and Functional Blocks

- The functions considered are those found to be very useful in design
- Corresponding to each of the functions is a combinational circuit implementation called a functional block.
- In the past, many functional blocks were implemented as SSI, MSI, and LSI circuits.
- Today, they are often simply parts within a VLSI circuits.

Rudimentary Logic Functions

- Functions of a single variable X
- Can be used on the inputs to functional blocks to implement other than the block's intended function
- TABLE 4-1 Functions of One Variable

Chapter 4

Multiple-bit Rudimentary Functions

Multi-bit Examples:

A wide line is used to represent a bus which is a vector signal

- (d)
- In (b) of the example, $F = (F_3, F_2, F_1, F_0)$ is a bus.
- The bus can be split into <u>individual bits</u> as shown in (b)
- Sets of bits can be split from the bus as shown in (c) for bits 2 and 1 of F.
- The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0 of F.

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates), 0, or 1_{-}
- When disabled, 0 output (a)
- When disabled, 1 output
- **See Enabling App in text**

Decoding

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - generate 2^n (or fewer) minterms for the *n* input variables

Decoder Examples

1-to-2-Line Decoder A

Α	D_0	D ₁
0	1	0
1	0	1

2-to-4-Line Decoder

A ₁	A ₀	\mathbf{D}_0	D ₁	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1
(a)					

Note that the 2-4-line made up of 2 1-to-2-line decoders and 4 AND gates.

Decoder Expansion

- General procedure given in book for any decoder with n inputs and 2^n outputs.
- This procedure builds a decoder backward from the outputs.
- The output AND gates are driven by two decoders with their numbers of inputs either equal or differing by 1.
- These decoders are then designed using the same procedure until 2-to-1-line decoders are reached.
- The procedure can be modified to apply to decoders with the number of outputs $\neq 2^n$

Decoder Expansion - Example 1

3-to-8-line decoder

- Number of output ANDs = 8
- Number of inputs to decoders driving output ANDs = 3
- Closest possible split to equal
 - 2-to-4-line decoder
 - 1-to-2-line decoder
- 2-to-4-line decoder
 - Number of output ANDs = 4
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - Two 1-to-2-line decoders
- See next slide for result

Decoder Expansion - Example 1

Result

Decoder Expansion - Example 2

- 7-to-128-line decoder
 - Number of output ANDs = 128
 - Number of inputs to decoders driving output ANDs = 7
 - Closest possible split to equal
 - 4-to-16-line decoder
 - 3-to-8-line decoder
 - 4-to-16-line decoder
 - Number of output ANDs = 16
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - 2 2-to-4-line decoders
 - Complete using known 3-8 and 2-to-4 line decoders

Decoder with Enable

- In general, attach *m*-enabling circuits to the outputs
- See truth table below for function
 - Note use of X's to denote both 0 and 1
 - Combination containing two X's represent four binary combinations
- Alternatively, can be viewed as distributing value of signal EN to 1 of 4 outputs
- In this case, called a demultiplexer

EN	A_1	$\mathbf{A_0}$	D ₀	D_1	D_2	D_3
0	Χ	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le$ $m \leq 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called *encoders*
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Encoder Example

- A decimal-to-BCD encoder
 - Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoder Example (continued)

- Input D_i is a term in equation A_i if bit A_i is 1 in the binary value for i.
- Equations:

$$A_3 = D_8 + D_9$$

 $A_2 = D_4 + D_5 + D_6 + D_7$
 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_0 = D_1 + D_3 + D_5 + D_7 + D_9$

• $\mathbf{F_1} = \mathbf{D_6} + \mathbf{D_7}$ can be extracted from $\mathbf{A_2}$ and $\mathbf{A_1}$ Is there any cost saving?

Priority Encoder

- If more than one input value is 1, then the encoder just designed does not work.
- One encoder that can accept all possible combinations of input values and produce a meaningful result is a priority encoder.
- Among the 1s that appear, it selects the most significant input position (or the least significant input position) containing a 1 and responds with the corresponding binary code for that position.

Priority Encoder Example

■ Priority encoder with 5 inputs (D₄, D₃, D₂, D₁, D₀) - highest priority to most significant 1 present - Code outputs A2, A1, A0 and V where V indicates at least one 1 present.

No. of Min-		Inputs				Out	puts		
terms/Row	D4	D3	D2	D1	D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

Xs in input part of table represent 0 or 1; thus table entries correspond to product terms instead of minterms. The column on the left shows that all 32 minterms are present in the product terms in the table

Priority Encoder Example (continued)

 Could use a K-map to get equations, but can be read directly from table and manually optimized if careful:

$$\begin{aligned} \mathbf{A}_2 &= \mathbf{D}_4 \\ \mathbf{A}_1 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \mathbf{D}_2 = \overline{\mathbf{D}}_4 \mathbf{F}_1, \ \mathbf{F}_1 &= (\mathbf{D}_3 + \mathbf{D}_2) \\ \mathbf{A}_0 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \overline{\mathbf{D}}_2 \mathbf{D}_1 = \overline{\mathbf{D}}_4 (\mathbf{D}_3 + \overline{\mathbf{D}}_2 \mathbf{D}_1) \\ \mathbf{V} &= \mathbf{D}_4 + \mathbf{F}_1 + \mathbf{D}_1 + \mathbf{D}_0 \end{aligned}$$

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ... I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$\mathbf{Y} = \overline{\mathbf{S}}\mathbf{I}_0 + \mathbf{S}\mathbf{I}_1$$

The circuit:

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - 1-to-2-line Decoder
 - 2 Enabling circuits
 - 2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2 × 2 AND-OR circuit:
 - 1-to-2-line decoder
 - 2×2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - n-to- 2^n -line decoder
 - $2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

■ 2-to-2²-line decoder

 $2^2 \times 2$ AND-OR

Multiplexer Width Expansion

Select "vectors of bits" instead of "bits"

• Use multiple copies of $2^n \times 2$ AND-OR in

parallel

Example: 4-to-1-line quad multiplexer

Other Selection Implementations

Three-state logic in place of AND-OR

 Gate input cost = 14 compared to 22 (or 18) for gate implementation

Other Selection Implementations

Transmission Gate Multiplexer

• Gate input

cost = 8

compared

to 14 for

3-state logic

and 18 or 22

for gate logic 12-

Combinational Function Implementation

- Alternative implementation techniques:
 - Decoders and OR gates
 - Multiplexers (and inverter)
 - ROMs
 - PLAs
 - PALs
 - Lookup Tables
- Can be referred to as structured implementation methods since a specific underlying structure is assumed in each case

Decoder and OR Gates

- Implement m functions of n variables with:
 - Sum-of-minterms expressions
 - One n-to- 2^n -line decoder
 - m OR gates, one for each output
- Approach 1:
 - Find the truth table for the functions
 - Make a connection to the corresponding OR from the corresponding decoder output wherever a 1 appears in the truth table
- Approach 2
 - Find the minterms for each output function

Decoder and OR Gates Example

Implement the following set of odd parity functions of

$$(A_7, A_6, A_5, A_3)$$

$$P_1 = A_7 \oplus A_5 \oplus A_3$$

$$P_2 = A_7 \oplus A_4 \oplus A_5$$

$$\mathbf{P}_2 = \mathbf{A}_7 \oplus \mathbf{A}_6 \oplus \mathbf{A}_3$$
$$\mathbf{P}_4 = \mathbf{A}_7 \oplus \mathbf{A}_6 \oplus \mathbf{A}_5$$

Finding sum of A₄
 minterms expressions

$$\begin{aligned} \mathbf{P}_1 &= \Sigma_{\mathrm{m}}(1,2,5,6,8,11,12,15) \\ \mathbf{P}_2 &= \Sigma_{\mathrm{m}}(1,3,4,6,8,10,13,15) \\ \mathbf{P}_4 &= \Sigma_{\mathrm{m}}(2,3,4,5,8,9,14,15) \end{aligned}$$

- Find circuit
- Is this a good idea?

Multiplexer Approach 1

- Implement m functions of n variables with:
 - Sum-of-minterms expressions
 - An m-wide 2^n -to-1-line multiplexer
- Design:
 - Find the truth table for the functions.
 - In the order they appear in the truth table:
 - Apply the function input variables to the multiplexer inputs S_{n-1}, \ldots, S_0
 - Label the outputs of the multiplexer with the output variables
 - Value-fix the information inputs to the multiplexer using the values from the truth table (for don't cares, apply either 0 or 1)

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that X = C and the Y and Z are more complex

Gray A B C	Binary x y z
000	000
100	001
$\begin{array}{c c} & 1 & 1 & 0 \\ \hline & 0 & 1 & 0 \end{array}$	010
011	100
111	101
101	110
0 0 1	111

Gray to Binary (continued)

Rearrange the table so that the input combinations are in counting order

Functions y and z can be implemented using a dual 8-to-1-line multiplexer by:

Gray	Binary
A B C	хуz
0 0 0	0 0 0
0 0 1	1 1 1
010	0 1 1
0 1 1	100
100	0 0 1
1 0 1	1 1 0
110	010
111	1 0 1

- connecting A, B, and C to the multiplexer select inputs
- placing y and z on the two multiplexer outputs
- connecting their respective truth table values to the inputs

Gray to Binary (continued)

Note that the multiplexer with fixed inputs is identical to a ROM with 3-bit addresses and 2-bit data!

Multiplexer Approach 2

- Implement any m functions of n + 1 variables by using:
 - An m-wide 2^n -to-1-line multiplexer
 - A single inverter

Design:

- Find the truth table for the functions.
- Based on the values of the first n variables, separate the truth table rows into pairs
- For each pair and output, define a rudimentary function of the final variable (0, 1, X, X)
- Using the first n variables as the index, value-fix the information inputs to the multiplexer with the corresponding rudimentary functions
- Use the inverter to generate the rudimentary function $\overline{\mathbf{X}}$

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that X = C and the Y and Z are more complex

Gray	Binary
ABC	хуz
000	0 0 0
100	0 0 1
110	010
010	0 1 1
011	100
111	101
101	110
001	111

Gray to Binary (continued)

 Rearrange the table so that the input combinations are in counting order, pair rows, and find rudimentary functions

Gray A B C	Binary x y z	Rudimentary Functions of C for y	Rudimentary Functions of C for z
000	000	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \mathbf{C}$
010	0 1 1 1 0 0	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \overline{\mathbf{C}}$
100	001	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \overline{\mathbf{C}}$
110 111	010	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \mathbf{C}$

Gray to Binary (continued)

Assign the variables and functions to the multiplexer inputs:

- Note that this approach (Approach 2) reduces the cost by almost half compared to Approach 1.
- This result is no longer ROM-like
- **Extending, a function of more than** *n* **variables is decomposed into several** <u>sub-functions</u> defined on a subset of the variables. The multiplexer then selects among these sub-functions.

Read Only Memory

- Functions are implemented by storing the truth table
- Other representations such as equations more convenient
- Generation of programming information from equations usually done by software
- Text Example 4-10 Issue
 - Two outputs are generated <u>outside of</u> the ROM
 - In the implementation of the system, these two functions are "hardwired" and even if the ROM is reprogrammable or removable, cannot be corrected or updated

Programmable Array Logic

- There is no sharing of AND gates as in the **ROM** and PLA
- Design requires fitting functions within the limited number of ANDs per OR gate
- Single function optimization is the first step to fitting
- Otherwise, if the number of terms in a function is greater than the number of ANDs per OR gate, then factoring is necessary

Programmable Array Logic Example

- Equations: $F1 = A \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + ABC$ F2 = AB + BC + AC
- F1 must be factored since four terms

Factor out
last two
terms as W

Product term		AND Inputs				
	A	В	С	D	W	Outputs
1	0	0	1			$W = \overline{A} \overline{B}C$
2	1	1	1			
3						+ ABC
4	1	0	0			F1 = X = A B C
5	0	1	0			+ ABC + W
6					1	+ AB C + W
7	1	1				$\mathbf{F2} = \mathbf{Y}$
8		1	1			
9	1		1			= AB + BC + AC
10	_					
11						
12						

Logic and Computer Design Fundamentals

Programmable Array Logic Example

Programmable Logic Array

- The set of functions to be implemented must fit the available number of product terms
- The number of literals per term is less important in fitting
- The best approach to fitting is multiple-output, twolevel optimization (which has not been discussed)
- Since output inversion is available, terms can implement either a function or its complement
- For small circuits, K-maps can be used to visualize product term sharing and use of complements
- For larger circuits, software is used to do the optimization including use of complemented functions

Programmable Logic Array Example

- K-map specification
- How can this be implemented A with four terms?

Complete the programming table

PLA programming table

		Outputs		
		Inputs () A B C F ₁	. ,	
AB	1	1 1 –	1	
AC	2	1 – 1	1	
BC	3	- 1 1	1	
	4		_	

Programmable Logic Array Example

Lookup Tables

- Lookup tables are used for implementing logic in Field-Programmable Gate Arrays (FPGAs) and Complex Logic Devices (CPLDs)
- Lookup tables are typically small, often with four inputs, one output, and 16 entries
- Since lookup tables store truth tables, it is possible to implement any 4-input function
- Thus, the design problem is how to optimally decompose a set of given functions into a set of 4-input two- level functions.
- We will illustrate this by a manual attempt

Lookup Table Example

Equations to be implemented:

$$F_1(A,B,C,D,E) = ADE + BDE + CDE$$

 $F_2(A,B,D,E,F) = AED + BDE + FDE$

Extract 4-input function:

$$F_3(A,B,D,E) = A D E + B D E$$

 $F_1(C,D,E,F_3) = F_3 + C D E$
 $F_2(D,E,F,F_3) = F_3 + F D E$

The cost of the solution is 3 lookup tables

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education Legal Notice.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page