Homework #9

20221059 정상목

1. 문제

1. Interface의 Vertex를 Region에 따라 고려하여 potential을 계산하라.

2. Mesh

이번 과제에서 사용할 mesh는 Homework #7에서 사용한 mesh와 동일한 mesh를 사용했다. 사용한 mesh는 다음과 같다.

이번 과제에서 사용한 mesh는 Double gate mosfet의 구조를 가지고 있다. 이 구조는 3가지 Region으로 각각 ox, si, ox 순서로 구성되어 있다. 각 Region은 왼쪽부터 Region 1, Region 2, Region 3로 설정했다. 각 Region별 vertex수는 다음 표와 같다.

Region 1	Region 2	Region 3	entire
9	21	9	39

Table 1. Number of vertex

3. Vertex

기존에는 interface의 Vertex도 1개의 값으로 저장했다. 하지만 이번 과제에서 각 Region 별로 구분하기 위해 interface의 vertex는 2번 저장하여 indexing을 하였다. 다음과 같은 흐름으로 구현하였다.

- 1) 기존 vertex(interface의 vetex가 1번만 작성된) 정보를 사용한다.
- 2) 각 Reigon을 구성하는 element파일을 이용해 Region을 구성하는 vertex의 index를 확인한다.
- 3) 2)에서 확인한 index를 이용해 vertex 파일에서 좌표를 확인하고, 다시 vertex파일을 작성한다.

+13	point ×	Element	× verte	
39	9x3 double	,		
	1	2	3	
1	0	2	0	
2	0.5000	2	0	
3	1	2	0	
4	1	2	0	
5	1.5000	2	0	
6	2	2	0	
7	2.5000	2	0	
8	3	2	0	
9	3.5000	2	0	
10	4	2	0	
11	4	2	0	
12	4.5000	2	0	
13	5	2	0	
14	0	2.5000	(
15	0.5000	2.5000	0	
16	1	2.5000	0	
17	1	2.5000	0	

18	1.5000	2.5000	0
19	2	2.5000	0
20	2.5000	2.5000	0
21	3	2.5000	0
22	3.5000	2.5000	0
23	4	2.5000	0
24	4	2.5000	0
25	4.5000	2.5000	0
26	5	2.5000	0
27	0	3	0
28	0.5000	3	0
29	1	3	0
30	1	3	0
31	1.5000	3	0
32	2	3	0
33	2.5000	3	0
34	3	3	0
35	3.5000	3	0
36	4	3	0
37	4	3	0
38	4.5000	3	0
Control Control			

Fig 1. Re-Vertex

Fig 1.처럼 interface의 vertex 값이 두 번 입력되었다. 이로써 interface의 부분의 index를 나누어 표시할 수 있게 되었다.

4. Element

기존에 사용한 Vertex가 아니므로 index가 달라졌음을 확인할 수 있다. 그러므로 element 또한다시 작성되어야 할 것이다. Region와 vertex값을 이용하여 바뀐 index에 맞게 element가 수정될수 있도록 하였다. 예시로 Region 1의 element를 보면 다음과 같다.

	변경 전				변경 후			
	1	2	3		1	2	3	
1	1	13	12	1	1	15	14	
2	1	2	13	2	1	2	15	
3	2	14	13	3	2	16	15	
4	2	3	14	4	2	3	16	
5	12	24	23	5	14	28	27	
6	12	13	24	6	14	15	28	
7	13	25	24	7	15	29	28	
8	13	14	25	8	15	16	29	

Fig 2. Re-Element

위 그림과 같이 element로 잘 변경되었음을 확인했다.

5. Wrong Jacobian

Vertex를 interface에 맞게 수정하여 index를 변경했고, 바뀐 index에 따라 다시 element를 수정하였으므로 기존에 작성한 Jacobian을 만드는 식을 그대로 이용하면 Wrong Jacobian을 구할 수있다.

	1	2	3	4	5	6
1	-1.0000	0.5000	0	0	0	0
2	0.5000	-2.0000	0.5000	0	0	0
3	0	0.5000	-1.0000	0	0	0
4	0	0	0	-1.0000	0.5000	0
5	0	0	0	0.5000	-2.0000	0.5000
6	0	0	0	0	0.5000	-2.0000
7	0	0	0	0	0	0.5000

Fig 3. Wrong Jacobian

위 그림을 살펴보면 interface에 위치한 vertex인 3과 4에서 잘못된 Jacobian이 작성되었음을 확인할 수 있다.

6. Correct Jacobian

Interface 값을 이용해 ox와 si에 걸쳐있는 vertex를 합쳐주었다. Si쪽 Vertex를 중심으로 합쳐주었으며, ox부분은 1,-1을 입력해주어 ox의 potential과 si의 potential이 같다고 보였다.

	1	2	3	4	5	6
1	1	0	0	0	0	0
2	0.5000	-2.0000	0.5000	0	0	0
3	0	0	1	-1	0	0
4	0	0.5000	-1.0000	-1.0000	0.5000	0
5	0	0	0	0.5000	-2.0000	0.5000

Fig 4. Correct Jacobian

위 그림을 예시로 살펴보면 3행에 있던 값이 4행으로 합쳐졌고, 3행에는 1과 -1이 입력되어 index 3, 4의 phi가 같게 나오도록 했다.

7. 결과

Homework #9를 하기 전과 후를 비교하여 값이 같게 나오는지 확인했다.

두 값이 같은 것을 확인했다. 올바르게 작성되었음을 확인할 수 있다.