1Georgia Institute of Technology College of Computing CS 1371 Computing for Engineers Final Exam Version M - Fall Semester 2006

0	0	0	0	0	0	0	0	0	↑ Print y	our V	Veh	СТи	seri	าลm	e in the	spaces	
1	1	1	1	1	1	1	1	1	provided							орассо	
2	2	2	2	2	2	2	2	_	I.								
3	3	3	3	3	3	3	3	3	correspo	mair	g nu	IIIIDE	is a	na/o	riellers	•	
5	5	<u>4</u> 5	5	<u>4</u> 5	<u>4</u> 5	4 5	<u>4</u> 5	-									
6	6	6	6	6	6	6	6	5 6	I hereby	sign	ify th	nat tl	nis e	xam	ination _l	paper	
7	7	7	7	7	7	7	7		contains	mv	own	wor	k ex	clusi	velv. an	d l have	
8	8	8	8	8	8	8	8		neither g								
9	9	9	9	9	9	9	9	9	during th								
Α	Α	Α	Α	Α	Α	Α	Α	Α	_		_						
В	В	В	В	В	В	В	В		compliar								
С	С	С	С	С	С	С	С	C	Academ	ic Ho	onor	Coa	e of	Geo	orgia Te	ch.	
D E	D E	D E	D E	D E	D E	D E	D E	D E									
F	F	F	F	F	F	F	F	F	Name (p	rint)							
Ġ	G	Ġ	G	G	G	G	Ġ	G	, tao (p								
Н	Н	Н	Н	Н	Н	Н	Н	- 11	C: 4								
		Ι	_	_	Ι	I	Ι	_	Signatur	e:							
J	J	J	J	J	J	J	J	J									
K	K	K	K	K	K	K	K		TA / Sec	tion:							
_ <u>L</u> _	L	L	L	L	L	L	L	L_									
M	M N	M N	M N	M N	M N	M N	M	M		ТР	oss.	TE	arne	М	Lost		
N O	O	0	0	0	0	O	N O	N O	Prob.	1	oss. Pts	-	Pts	, u	Pts	Grader	
P	P	P	P	P	P	P	P	P	(00)(0F)		เอ	_	r to		r to		
Q	Q	Q	Q	Q	Q	Q	Q	Q	(cover)	-	-	_					
R	R	R	R	R	R	R	R	R	1	-	10	_					
S	S	S	S	S	S	S	S	S	2		20						
T	T	T	T	T	T	T	T	T	3		20						
V	V	V	V	V	V	V	V	V	4		20						
W	W	W	W	W	W	W	W	W	5		20						
X	X	X	X	X	X	X	X	X	6		20						
Υ	Υ	Y	Υ	Υ	Y	Y	Υ	Υ	7		20	+					
Z	Z	Z	Z	Z	Z	Z	Z	Z	8		20						
									TOTAL		150						
									Please No will cost you Pleas phone	ote: I ou 5% e turi s, be	=ailur 6 of yenn 9 off epers	our g (or s s/ pag t you	rade. ilenc ers, _l	e) an perso e in y	d put aw onal radio our poss	heet correcti ay any cell os or music ession	

December 12th,

Academic misconduct (including - but not limited to - examples on the list below) could result in a zero score on this examination, an "F" final grade in the course, and/or other disciplinary action:

- Failure to cooperate with or follow directions given by a proctor.
- Failure to stop writing when the allotted time is up (as reported by a proctor).
- Communication with anyone other than a proctor for ANY reason in ANY language in ANY manner.
- Sharing of ANYTHING (e.g. pencils, erasers, paper).
- Writing on paper that is not given to you by a proctor.
- Using cell phones, beepers, personal radios or music players, etc. during the exam.
- Using calculators (unless explicitly permitted) or hand-held computers during the exam.
- Using books or other reference material during the exam.
- Disruption of the exam setting.

Reference Section:

```
diag (m) - returns the diagonal elements of the matrix m
factorial(n) - returns n!
find (m) - returns the indices of the true elements of m
image(x) - display the image from the matrix x.
imread (filename) - returns a matrix representation of an image
newy = interp1(x, y, newx) - Interpolates to find newy, the values of the underlying
function Y at the points in newx.
iscell(a) - checks if a is of class cell (a cell array)
ischar (a) - checks if a is of class char (a string)
isempty (here) - checks if here is null (usually represented by [], the empty vector
(x/y/z) label (str) – labels the plot axes with the given string
length(a) - largest dimension of a
length(a) - largest dimension of a
magic (n) - builds a n * n magic square
max (a) - value and index of the max value in a
mesh(x, y, z) - plot the surface defined by the x, y and z arrays with colored lines and
white faces
[xx, yy] = meshgrid(x, y) - compute the plaid from the x and y vectors
min (a) - value and index of the min value in a
mod (a, b) - the remainder when a is divided by b
mod (a, b) - the remainder when a is divided by b
ones (rows, cols) - generate a matrix filled with 1
p = polyfit(x, y, n) - Finds the coefficients of a polynomial P(X) of degree N that fits the
y = polyval(p, x) - Evaluates the polynomial p, at all points in x
prod (v) - compute the product of all the elements in a vector v
sin(th) - sin of the angle in radians
size (a) - all the dimensions of a
sort (v) - arranges the vector v in ascending numerical order
newy = spline(x, y, newx) - Performs cubic spline interpolation to find newy, the values of
the underlying function Y at the points in newx.
sum (v) - total all the elements in the vector v
surf (x, y, z) - plot the surface defined by the x, y and z arrays with colored faces and
title(str) - titles the plot with the given string
[x, fs] = wavread(file) - gives the waveform and sampling frequency for a .wav file
[x, y, z] = xlsread(filename) - Returns the numeric, text and raw data respectively
from an .xls file
xlswrite (filename, array) - Writes the array to the .xls file
```

December 12th,

zeros (rows, cols) — generate a matrix filled with 0

Problem 1 - Computing [10 Points]

Match the terms described below to the statements further below:

A. Ethernet	B. Processor	C. RAM memory	D. Disk storage
connection E. Printer	F. Monitor	G. Keyboard	H. Sound System
1"I'm the real br comparisons."	ain of the computer—th	e part that does comput	ation and
2 "I'm the part o that go to the speake	f the computer that take r."	s in digital data and turi	ns that into voltages
	nto me and you can use and other resources."	me for reaching the Int	ernet, other
4 "I'm where the everything."	e computer stores short-t	term data—when the po	ower stops, I forget
5 "I'm an input o	levice—users can enter	text into the computer t	hrough me."
6 "I'm your main	n output device—it's wh	nere graphical informati	on is displayed."
7 "I'm a seconda paper."	ary output device—I tak	e digital data and conve	ert it to marks on
	e computer stores longer e power is turned off."	-term data—I'm where	data gets stored that's

Problem 2 – Sorting [20 Points]

W	hat	t does tl	he Big-	O of an	y algor	rithm represent'?
	-					
W	⁷ rite	e out the	e Big-C) (algor	ithm ef	ficiency) of the following sorting algorithm
		nsertion	Ū	ν υ		
a. b.		nseruon Aerge S				
c.	Q	Quick So	ort:			
d.	В	Bubble S	Sort:			
Sc	ort 1	the follo	owing w	ector u	sing Qu	uick Sort:
1		18	20	5	8	2]

Problem 3 – Images/Sounds [20 Points]

1. Given an image file called 'american_flag.jpg' in which the colors are only red, white, and blue:

```
af = imread('american flag.jpg');
[r1,c1] = find(af(:,:,1) == 255 ...
            && af(:,:,2) == 0 ...
            && af(:,:,3) == 0);
[r2,c2] = find(af(:,:,1) == 0 ...
            && af(:,:,2) == 0 ...
            && af(:,:,3) == 255);
[r3,c3] = find(af(:,:,1) == 255 ...
            && af(:,:,2) == 255 \dots
            && af(:,:,3) = = 255);
af(r1,c1,1) = 0;
af(r2,c2,1) = 255;
af(r1,c1,3) = 255;
af(r2,c2,3) = 0;
af(r3,c3,:) = 0;
image(af)
```

What happens in the resulting image?

- A. The red sections become white, the blue sections become red, and the white sections become blue.
- B. The white sections become red, the red sections become blue, and the blue sections become white.
- C. The blue sections become red, the red sections become blue, and the white sections become black.
- D. The blue sections become white, the red sections become black, and the white sections become red.
- 2. You are given the following code:

```
[snd, Fst] = wavread('Sound.wav');
```

Which of the following lines of code will play an amplified version of Sound.wav

```
A. sound(snd, Fst*3);
B. sound(snd(round(1:half^2:end)), Fst)
C. sound(snd*3, Fst);
D. z= fft(Snd)
  z(1:floor(length(z)/2)) = 255;
  sound(ifft(z), Fst);
```

3. Consider the following "image" (assume it is a perfect square), saved under the file 'mysquare.jpg':

1	2
3	4

And the following code:

```
b = imread('mysquare.jpg');
[n,m,1] = size(b);
a = b(1:end, 1:n/2, :);
c = b(1:end, (n/2 + 1):end, :);
b = [c a];
image(b);
```

3

Which of these will the picture shown on the last line most resemble?

B. A. C. D.

4. Consider this code that reads in an image saved as 'myimage.jpg':

```
b = imread('myimage.jpg');
[m,n,l] = size(b);
count = 0;
for i = 1:m
   for j = 1:n
       if (\underline{\langle A \rangle} (double(b(i, j, \underline{\langle B \rangle})))) == \underline{\langle C \rangle}
                count = count + 1;
       end
   end
end
```

Which of the following could you put in the places of $\langle A \rangle$, $\langle B \rangle$ and $\langle C \rangle$ to give you the number of completely white pixels in the image?

: j <C>: 255 Α. <A>: any <C>: 255 В. <A>: all : : C. <A>: sum : : <C>: 255 : j <C>: 765 <C>: 765 D. <A>: sum E. <A>: sum : :

Problem 4 – Vector Manipulations [20 Points]

Answer the following questions with regard to vector manipulations:

	1.	Which of the two	commands produces	s an error (if any)?	' If so, explain why.
--	----	------------------	-------------------	----------------------	-----------------------

```
a) cat = [1 2 3 4 5 6];
    dog = [1 \ 2 \ 3 \ 4 \ 5];
    cat(dog > 3)
```

ANSWER:

```
2.
     pie = [1 2 3 4 5]
     z = pie(pie < 4);
     y = pie([1 1 1 0 0])
```

"z and y produce the same result" Is this statement true or false? If false, why?

ANSWER:

```
3.
     salt = [1 9 2 8 3 7 4 6];
     pepper = find(salt < 7);</pre>
     curry = pepper(end:-1:1);
     teehee = salt(curry)
```

What are the contents of **teehee**?

ANSWER:

```
4.
     chocolate = [9 8 7 6 5 4 3 2 1 0];
     vanilla = [1 2 3 4 5 6 7 8];
     ice cream = chocolate(mod(chocolate,2) == 0);
     ice cream = [ice cream, vanilla(2:2:end)];
```

What are the contents of ice cream?

ANSWER:

Problem 5 – Plotting [20 Points]

1. Circle all of the following functions that can be used to plot a 3-dimensional surface in MATLAB.

```
A. plot3(xx, yy, zz)
B. meshgrid(xx,yy,zz)
C. surf(xx,yy,zz)
D. mesh (xx, yy, zz)
```

2. You want to plot a surface of rotation for $y = -5x^4 + 2x^2 - 9x + 13$ around the x and z axes. Given the following commands:

```
v = linspace(1, 10, 50);
th = linspace(0,2*pi,36);
[vv tth] = meshgrid(v,th);
```

About which axis does the following code make a surface of rotation?

```
rr = vv;
xx = rr.*cos(tth);
yy = rr.*sin(tth);
zz = -5rr.^4 + 2*rr.^2 - 9*rr + 13;
surf(xx,yy,zz);
```

3. Write the commands that will make a rotational surface of this function around the other axis.

4. Write the proper commands to make the plot above *smooth* and add appropriate titles and labels.

Problem 6 – Graph Traversal [20 Points]

Starting with node A and ending at node J, perform a Breadth First Search on the given graph. Visit adjacent nodes in alphabetical order. Show your work in the space below.

Final Path:	
-------------	--

December 12th,

December 12th,

Problem 7 – Miscellaneous [20 Points]

1. You are given the following information:

$$A = true$$

 $B = false$

Evaluate:

- i) (A && B) || (A && B)
- ii) (A || B) && (A || B)
- iii) (~(A || B)) || (A && B)
- 2. Ackermann's Function is "a function to end all functions."
 The work done by the function ack grows much faster than polynomials or exponentials.
 Given the following recursive method:

```
function ret = ack(x,y)
   if (x == 0)
        ans = y + 1;
   elseif (y == 0)
        ans = ack(x - 1, 1);
   else
        ans = ack(x - 1, ack(x, y - 1));
   end
```

What is the result of ack (1, 4)?

3. Given a vector of coefficients a, mark the code fragments below that will evaluate the following function for a single value of x (not a vector):

$$y = a(1) + a(2) * x + a(3) * x^{2} + ... a(n) * x^{n-1}$$
.

- A. polyval(x, a)
- B. n = 1:length(a)

$$a(n) * x.^{(n-1)}$$

- C. polyval(a, x)
- D. polyval(a(end:-1:1), x)
- 4. Which of the following correctly solves for X in the equation AX = B, knowing that A is a 4x4 matrix of known values, B is a 4x1 column vector of known values, and X is a 4x1 column vector of unknown values?
- A. X = inv(B)*A
- $B. X = B \setminus A$
- C. X = inv(A)*B
- D. X = A/B

Problem 8 – Structures [20 Points]

The following code is run in Matlab:

```
honda1 = ...
struct('model','S2000','exterior','silver','spoiler',wing');
honda1.interior = 'red';
honda2 = ...
struct('model','Accord','exterior','grey','spoiler','none');
honda2 = setfield(honda2, 'interior', 'tan');
honda1.exterior = 'white';
honda3 = setfield(honda1, 'interior', 'tan');
honda3 = rmfield(honda3, 'spoiler');
honda4 = honda2;
A = isstruct(honda3)
B = honda1.exterior
C = isfield(honda4, 'spoiler')
D = honda2.model
E = getfield(honda1, 'spoiler')
What are the values of A, B, C, D, and E?
A = ____
B = ____
C = ____
```

CS1371 - Computing for Engineers Final Exam Version M
2006
D =

December 12th,

E =