ORCAD 电流电压信号源简介

Wang1jin(原创)

在学习 ORCADR 的过程中对电源的了解有助于大家在学习的时候事半功倍...

我在学习的时候就边学边把这些东西整理下...提供给大家...

另外相关 ORCAD 方面的资料在我博客也不少...欢迎大家转载...

但请标上博客地址...谢谢!!!

地址:www.ednchina/blog/wang1jin

(1)歐沖護型參戰.如下圖.

表 2-7 脉冲源模型参数

参数	意 义	单位	隐含值
V1	初始电压或电流	V或A	光
V2	脉冲电压或电流	V或A	光
T_{D}	延迟时间	s	0
$T_{\mathbf{R}}$	上升时间	5	TSTEP
T_F	下降时间	3	TSTEP
$P_{\mathbf{w}}$	脉片宽度	a	TSTOP
$P_{\rm ER}$	脉冲周期	5	TSTOP

注意在 PER 周期中不再包括起始延时时间 TD.

TSTEP 和 TSTOP 分别为瞬态分析中的时间增量和结束时间.

脉冲信号源的符号为:PULSE.在文本中的定义为

PULSE(V1 V2 TD TR TF PW PER)当然这个只是在早期手工输入的时候用.现在都是直接从元件库中取出来...

例如:

电压脉冲源表达示 PULSE(0 1 5ns 2ns 2ns 50ns 100ns) 电流脉冲源表达示 PULSE(-2A 2A 5ns 2ns 2ns 50ns 100ns)

在模拟数字电路方面等.

(2)运验模型参数如下图.

正弦源的波形和模型参数如图 2-2 和 表 2-8 所示。

表 2-8 正弦源的模型参数

参数	意 义	单位	隐含值
V_0	備置电压或电流	V或A	无
$V_{\mathbf{A}}$	模值电压或电液	V或A	无
FREQ	频率	Hz	1/TSTOP
T_{D}	延迟时间	8	0
ALPHA	粗尼时间	1/s	0
THETA	相位	(*)	0

VOFF = VAMPL = FREQ =

IOFF = IAMPL =

在正弦模型中 TSTOP 表示瞬态分析的结束时间.

正弦模型为 SIN.其中电压源为 VSIN 电流源为 ISIN.

正弦模型表达示为:SIN(VO VA FREQ TD ALPHA THETA)

简单的正弦模型表达示为: SIN(VO VA FREQ)

一般我们是用下面这个简单的表达示.

SIN(0 1A 10K 100MS 1E5)

SIN(5V 10V 10K)

一般交流情况下大家都喜欢把 VO 设置为 0.

VSIN 在瞬时仿真时用的比较多.还可以在大家仿真的时候当模拟市电220V或交流小信号等.

(3)指戰模型參戰如下圈

表 2-9 指数源的模型参数

参 数	意 义	单 位	聯合值
V_1	初始电压或电流	V或A	无
v_2	蜂催电压成电流	V成A	尤
$T_{\rm RD}$	上升延迟时间	s	0
$T_{\rm RC}$	上升时间常数	5	TSTEP
$T_{\rm FD}$	下降延迟时间	\$	T _{RO} + TSTEP
$T_{\rm FC}$	下降时间常数		TSTEP

指数模型名称为:EXP...VEXPIEXP

TSTEP 是指数源在瞬态分析中的时间增量.

在上图中电压在 TRD 时段保持为 V1,然后以指数形式升到 V2.其时间常数为 TRC.在 TFD 时刻电压又按指数形式以时间常数 TFC 从 V2 下降到 V1.

指数源表达示:EXP(V1 V2 TRD TRC TFD TFC).

V1 V2 要自己定义...

例:EXP(0 1 2ns 20ns 60ns 20ns) EXP(-1 +1 2ns 10ns 50ns 10ns)

(4)分段线腔照得型参数如下图

参 数	意义	单位	隐含值
T_{i}	时间点	s	无
v,	T _i 时间点的电压或电流值	V或A	无

	■ SCHEMATIC1: PAGE1
Graphic	IPVVL.Normal
I1	
12	
13	
14	
15	
16	
17	
18	
ID	
Implementation	
Implementation Path	
Implementation Type	PSpice Model
Location X-Coordinate	210
Location Y-Coordinate	120
Name	/NS13157
Part Reference	l1
PCB Footprint	
Power Pins Visible	
Primitive	DEFAULT
PSpiceOnly	TRUE
PSpiceTemplate	l'@REFDES %+ %- ?DC DC
Reference	l1
Source Library	D:\EDA\ORCAD\CAPTU
Source Package	IPWL
Source Part	IPWL.Normal
T1	
T2	
Т3	
T4	
T5	
Т6	
T7	

这里是一个电流源的双击后的图片.______

分段线性源波形中的任一点可由(T1 V1)来描述,并且对每一对 TI VI 表时此刻的 VI 值...PSPICE 利用线性插直法确定时间点与点之间的电流或电压值...分线段电源为 PWL. 分段线性源表达示: PWL(T1 V1 T2 V2TN VN)

例:PWL(0 5V 10MS 5V 15MS 10V 45MS 2V 60MS 2V)

这个电源可用在大家仿真瞬态分析中的振荡器中...因为实际的电源在接通电源的时候有一定时间,如果不用 PWL 这个电源就导到振荡器.在仿真时不能振荡...

(5)单频调频源模型参数如下图.

参数	意义	单 位	隐含值
V_0	偏置电压或电流	V或A	无
V_{A}	幅度电压或电流	V或A	无
F_{C}	载波频率	Hz	1/TSTOP
MOD	调制系数		0
F _s	信号頻率	Hz	1/TSTOP

图 2-5 单频调频源波形

TSTOP 为单频调频源在瞬态分析中的结束时间.

单频调频源符号为:SFFM(VO VA FC M FS)

SFFM(偏置电压或电流 幅度电压或电流 载波频率 调制系数 信号频率)

例:SFFM(02V5KHZ51KHZ) SFFM(1MV2V3000KHZ55KHZ)

在模拟调频发射或接收或其它调频电源的时候用...

(6)殘無信号配援理參數如下圖.

这上面二个电源十分常用...在进行 AC 分析的时候用...用来仿真放大器带宽增益等... 在进行 AC 分析的时候要双击这个电源...为他增加一个新的参数...AC=XXX...相关资料我 博客上有...

(7) 宣無由后自無照得型為數例下屬

这二个电源大家应该相当熟悉了...H EHE...一个是电流源,另一个是电压源... 要用的时候直接双击改参数就可以了...HE HE....

本人才疏学浅在而且是在学习过程中…如果有什么错误…请大家指点下…谢谢… 博客会经常更新相关 ORCAD 方面学习资料敬请关注…!!! 推荐网站:www.ednchina.com