

Newtonverfahren

Projektmitglieder:

Patrik Misurec
Patrick Mittendorfer
Neli Petkova
Ajla Kasic
Nico Fallosch

Newtonverfahren - Einleitung

Iterationsverfahren

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- Algorithmus zur Suche von Nullstellen einer stetig differenzierbaren reellen Funktion f
- günstigen Startwert auswählen (relativ nahe zum Optimum)=> gute Konvergenz

universität wien

Newtonverfahren - Einleitung

universität wien

Newtonverfahren - Einleitung

m=f'(x₀) – Steigung der Tangente

$$m = \frac{\Delta y}{\Delta x} = \frac{y_0 - y_1}{x_0 - x_1} = \frac{f(x_0)}{x_0 - x_1}$$
 $X_1 = ?$

Newtonverfahren - Einleitung

 $\Delta x = x_0 - x_1$ m=f'(x₀) – Steigung der Tangente

$$m = \frac{\Delta y}{\Delta x} = \frac{y_0 - y_1}{x_0 - x_1} = \frac{f(x_0)}{x_0 - x_1}$$
 $X_1 = ?$

$$f'(x_0) = \frac{f(x_0)}{x_0 - x_1} \qquad X_1 = x_0 - \frac{f(x_0)}{f'(x_0)} - X_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

universität wien

Approximation durch Nullsetzen der Ableitung

- Angenommen g(x) = f'(x)
- Gleichung der Tangente $m = g'(x_0)$. im ausgewählten Startpunkt \mathbf{x}_0
- Schnittpunkt mit x- Achse ergibt einen weiteren Punkt x₁
- Analog wird mit der Iterationsformel $x_{k+1} = x_k \frac{\mathbf{g}(x_k)}{\mathbf{g}'(x_k)}$ weitergesetzt.

$$m = \frac{\Delta g(x)}{\Delta x} = \frac{g(x_0)}{(x_0 - x_1)} \qquad g'(x_0) \times (x_0 - x_1) = g(x_0)$$
$$g'(x_0) = \frac{\Delta g(x)}{\Delta x} = \frac{g(x_0)}{(x_0 - x_1)} \qquad x_0 - x_1 = \frac{g(x_0)}{g'(x_0)}$$
$$x_1 = x_0 - \frac{g(x_0)}{g'(x_0)}$$

Approximation durch quadratisches Polynom I

 Allgemeine Taylorformel für das approximierende Polynom (Taylorpolynom 2. Grades)

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \times (x_1 - x_0) + \frac{f''(x_0)}{2!} \times (x_1 - x_0)^2$$

Das lässt sich verallgemeinern

$$f(x) = a \times x^{2} + bx + c$$
$$f'(x) = 2a \times x + b$$
$$f''(x) = 2a$$

universität

universität wien

Approximation durch quadratisches Polynom II

Minimum des Taylorpolynoms

$$f'(x*) = 2a \times x + b = 0 => x* = \frac{-b}{(2a)}$$

$$2a = f''(x)$$

$$b = -2a \times x + f'(x) = -f''(x) \times x + f'(x)$$

$$x* = \frac{-(-f''(x) \times x + f'(x))}{2 \times \frac{f''(x)}{2}} = \frac{f''(x) \times x - f'(x)}{f''(x)} = x - \frac{f'(x)}{f''(x)}$$

Beispiel

$$f(x) = x^5 - 8x^2 - 1$$

$$f'(x) = 5x^4 - 16x$$

$$f''(x) = 20x^3 - 16$$

n	X _n
1	2
2	1,666666667
3	1,511121857
4	1,475400801
5	1,473616925
6	1,473612599
7	1,473612599

Mögliche Problemfälle bei schlecht gewähltem Startwert

 Die Folge divergiert, der Abstand zum Optimum wächst über alle Grenzen.

Mögliche Problemfälle bei schlecht gewähltem Startwert

 Falls die Funktion mehrere Optimen hat kann sie gegen ein anderes als des gewünschte Optimum konvergieren.

• Z.B.:

$f(x) = x^5 + 5*x^4 + 5*x^3 - 5*x^2 - 6*x$		
Funktion Zeichnen		
Newtonverfa		
Für Nullstellensuche enter f(x), für Minimumsuche enter f'(x)		
f(x)/f'(x)=	5*x^4+20*x^3+15*x^2-10*x-6	
Für Nullstellensuche enter f'(x), für Minimumsuche enter f''(x)		
f'(x)/f''(x)=	20*x^3 + 60*x^2 + 30*x + 10	
Durchläufe:	100 Startwert: 1	

Startpunkt = 1

Startpunkt = 1

Startpunkt = 1

Startpunkt = -1

Startpunkt = -1

Startpunkt = -1

Mögliche Problemfälle bei schlecht gewähltem Startwert

endlich viele Funktionswerte wechseln sich ab (oszilliert), z.B.:

$$f(x) = \frac{x^4}{4} - x^2 + 2x$$
$$f'(x) = x^3 - 2x + 2$$
$$f''(x) = 3x^2 - 2$$

$$x_0 = 0$$

$$x_1 = 0 - \frac{0^3 - 2 \times 0 + 2}{3 \times 0^2 - 2} = 1$$

$$x_2 = 1 - \frac{1^3 - 2 \times 1 + 2}{3 \times 1^2 - 2} = 0$$

$$x_3 = 0 - \frac{0^3 - 2 \times 0 + 2}{3 \times 0^2 - 2} = 1$$

$$x_4 = 1 - \frac{1^3 - 2 \times 1 + 2}{3 \times 1^2 - 2} = 0$$

universität wien

Gedämpftes Newtonverfahren

- Das Newton-Verfahren konvergiert zwar quadratisch, aber nur **lokal**.
- Globale Konvergenz kann ggf. durch einen Dämpfungsterm erreicht werden
- Erweiterung der Iterationsformel um einen Dämpfunsparameter λ

$$x_{k+1} = x_k - \lambda \times \frac{f'(x_k)}{f''(x_k)}$$

 Veränderung der Weite des Intervals

$$\lambda = 0.5, x_0 = 0 \rightarrow 64$$
 Schritte

$$\lambda = 0.25, x_0 = 0 \rightarrow 245$$
 Schritte

$$\lambda = 0.25, x_0 = 0 \rightarrow 47$$
 Schritte

$$\lambda = 0.95, x_0 = 0 \rightarrow 39$$
 Schritte

$$\lambda = 0.99, x_0 = 0 \to \infty$$
 Schritte

Erlaubte Zeichen: Draw-Eigenschaften Dividieren: ':' 10 Funkionen-Reichweite: Multiplizieren: '*' Addieren: '+' 0.05 Funktionen-Intervall: Subtrahieren: '-' Potenzieren: '^' Unbekannte Variable: 'x' Beispiel Funktionen: x^4:4-2*x^3+5*x-1 x^2+2 7.39117 $f(x) = |x^4:4-x^2+2*x|$ Funktion Zeichnen Newtonverfahren: Für Nullstellensuche enter f(x), für Minimumsuche enter f'(x) $f(x)/f'(x) = |x^3-2*x+2|$ Für Nullstellensuche enter f'(x), für Minimumsuche enter f''(x) $f'(x)/f''(x) = 3*x^2-2$ Durchläufe: 100 Startwert: 1 Dämpfngsfaktor: 0.5 ✓ Dampfng aktivieren/deaktivieren Suche Minimum Xk+1=0.5

universität

Funktionen-Intervall: 0.05	
Funktion Zeichnen	
x), für Minimumsuche enter f'(x)	
(x), für Minimumsuche enter f''(x)	
Startwert: 1	
▼ Dampfng aktivieren/deaktivieren	

universität wien

universität wien

10

0.05

universität

Mehrdimensionales Newtonverfahren

universität

Formel für mehrdimensionale Funktionen:

$$x_{k+1} = x_k - (H_f(x_k))^{-1} (\nabla F(x_k))'$$

Analog zu eindimensionalem Newtonverfahren

Vielen Dank für die Aumerksamkeit!

