School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 8

1. Revise the difference between **supervised** and **unsupervised** machine learning. Then, consider the following dataset:

id	apple	ibm	lemon	sun	LABEL
А	4	0	1	1	FRUIT
В	5	0	5	2	FRUIT
С	2	5	0	0	COMP
D	1	2	1	7	COMP
Ε	2	0	3	1	?
F	1	0	1	0	?

- 2. Treat the problem as an unsupervised machine learning problem (excluding the id and LABEL attributes), and calculate the clusters according to (hard) k-means with k=2, using the Manhattan distance:
 - (a) Using seeds A and D.
 - (b) Using seeds A and F.
- 3. Repeat the previous question using "soft" k-means, with a "stiffness" $\beta = 1$.
- 4. What is logic behind the EM algorithm, when used for clustering?
 - (a) Explain the significance of the "E" step, and the "M" step.
- 5. What is **semi–supervised learning**, and when is it desirable?
 - (a) What is **self training**?
 - (b) What is the logic behind **active learning**, and what are some methods to choose instances for the **oracle**?

1. Revise the difference between **supervised** and **unsupervised** machine learning.

unsupervised learning: not given, learn the feature of train instance, and classify

	1			_ ,	
id	apple	ibm	lemon	sun	LABEL
A	4	0	1	1	FRUIT
В	5	0	5	2	FRUIT
С	2	5	0	0	COMP
D	1	2	1	7	COMP
E	2	0	3	1	?
F	1	0	1	0	?
	-				

- 2. Treat the problem as an unsupervised machine learning problem (excluding the id and LABEL attributes), and calculate the clusters according to (hard) k-means with k=2, using the Manhattan distance:
 - (a) Using seeds A and D.
 - (b) Using seeds A and F.

2.(a) 2 clusters.

Calculate distance:

$$d(A,C()=0$$

$$\mathcal{A}(A_1C_2) = |4-1|+|0-2|+|(-1)+|1-7| = 11$$

assign each instance to closest cluster.

Update Center:

$$C_1 = \langle \frac{4+5+2+2+1}{5}, --- \rangle = \langle 2.8, 1, 2, 0.8 \rangle$$

$$C_2 = < 1,2,1,7$$

Again! calantate

3. Repeat the previous question using "soft" k-means, with a "stiffness" $\beta = 1$.

Soft k-means:
$$L$$
 (probabilistic)

"Soft max" function

 $Z_{ij} = \underbrace{e^{-\beta d(i,j)}}_{Z_{ij}}$

cluster attribute

For Instance A:

$$Z_{1A} = \frac{e^{-0}}{e^{0} + e^{4}} = 0.982$$

$$Z_{2A} = \frac{e^{-4}}{e^{0} + e^{-4}} = 0.018$$

$$Z_{1E} = Z_{2E} = 0.5$$

$$Z_{1E} = Z_{2E} = 0.5$$

$$Z_{1E} = Z_{2E} = 0.5$$

upolate centroids.

$$C_{1}^{(1)} = \frac{6.982 \, \text{A} + 0.982 \, \text{B} + 0.119 \, \text{C} + \cdots}{6.982 + 0.982 + 0.119 + \cdots}$$

$$= \frac{1}{2.72} \left[6.982 \cdot \langle 4,0,1,1 \rangle + 6.982 \cdot \langle 5,0,512 \rangle + \cdots \right]$$

$$= \langle 3.75, 0.36, 2.77, 1.5 \rangle > .$$

$$C_{2}^{(1)} = \langle 1.46, 1.88, 1.06, 2.95 \rangle$$

after several iterations:

	d(1,j)	d(2,j)	$z_1 j$	$z_2 j$. We are quite confident with most	instance
A	2.68	6.52	0.979	0.021	More Date of a land	
В	4.23	10.52	0.998	0.002		
C	10.77	6.38	0.012	0.988	until convergence.	
D	12.19	5.62	0.001	0.999	U	
E	1.96	6.52	0.990	0.010		
F	5.83	5.38	0.387	0.613		

- 4. What is logic behind the EM algorithm, when used for clustering?
 - (a) Explain the significance of the "E" step, and the "M" step.
- logic: Basically We randomly guess, and progressively improve our guess by embuating the expected likelihood

Which is some as dustering, random charge seed and literate update the centraids by distance.

Las E L Expectation): assign weighted label to training data, and colculated expected Ukelihood.

(M (maximization): re-estimate the parameter based on these labels.

- 5. What is **semi–supervised learning**, and when is it desirable?
 - (a) What is **self training**?
 - (b) What is the logic behind **active learning**, and what are some methods to choose instances for the **oracle**?

Semi-Supervised learning: we have only a small number of labelled instance, and many unlabelled instances. Typically, this means we don't have enough data to build a reliable model, but potentially we can put labelled data to build a better classifier than purely un-supervised.

la) Self learning:

- 1. train model using labelled data
- 2. use leaner to predict unlabelled itata
- 3. put most confident instance to train set
- 4. Repeat, until all instance labelled, or no new instance confidently
- (b) active learning: the learner is able to choose a small number of instances to be labelled by human.

The idea is many instances are easy to classify, only a few instances cure hard to classify, but would be easier if we have more training data.