重庆大学

学生实验报告

实验课程名称_	数学实验
开课实验室 _	DS1401
组员1姓名	<u> 马梓恒</u> 学 号 20233124
组员2姓名	周宏仰 学 号 20232647
组员3姓名	李宇聪 学 号 20232137
开课时间。	<u>2024</u> 至 <u>2025</u> 学年第 <u>一</u> 学期
总 成 绩	

数统学院制

开课学院、实验室: 数统学院, DS1401

实验时间: 2024年11月3日

课程	课程 数学实验 名称		项目	数据拟合	实验项目类型					
			称	30,10,10, 0	验证	演示	综合	设计	其他	
指	肖剑	成	绩				1			
导										
教										
师										

题目1

体重约 70 kg 的某人在短时间内喝下 2 瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克 / 百毫升),得到数据如下,请找出酒精含量和时间之间的关系。

时间 (小时)	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5	5
酒精 含量	30	68	75	82	82	77	68	68	58	51	50	41
时间 (小时)	6	7	8	9	10	11	12	13	14	15	16	
酒精 含量	38	35	28	25	18	15	12	10	7	7	4	

程序

```
x=[0.25 \ 0.5 \ 0.75 \ 1 \ 1.5 \ 2 \ 2.5 \ 3 \ 3.5 \ 4 \ 4.5 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16];
y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];
x0=[1 0 0];
[m]=lsqcurvefit(@func,x0,x,y);
x1=0:0.05:18;
y1=func(m,x1);
figure;
hold on
plot(x,y,"o","MarkerFaceColor","b")
plot(x1,y1,"r",LineWidth=1.5)
xlabel("时间 h")
ylabel("酒精含量 0.1^2mg/ml")
title("酒精含量随时间变化曲线")
legend("数据点","酒精含量关于时间的拟合曲线")
function y=func(x0,x)
a0=x0(1);
a1=x0(2);
a2=x0(3);
y=a0.*(exp(a1.*x)-exp(a2.*x));
```

end

结果

酒精含量 y 关于时间 t 的函数关系: $y=114.433(e^{-0.1855t}-e^{-2.0079t})$

分析

首先,通过查阅资料,得到人喝酒后血液中酒精含量关于时间的函数为: $y = k_0(e^{-k_1t} - e^{-k_2t})$ 。然后将该人的酒精含量和时间数据导入,利用 matlab 中的 lsqcurvefit 函数进行 $y = k_0(e^{-k_1t} - e^{-k_2t})$ 函数模型的拟合。

题目2

收集近几年重庆市的人口数据,采用拟合模型建模,对模型结果进行检验,并预测 2026 年的重庆市人口数。

年份	人口/万人	年份	人口/万人
2012	2974.88	2019	3187.84
2013	3011.03	2020	3208.93
2014	3043.48	2021	3212.43
2015	3070.02	2022	3213.34
2016	3109.96	2023	3191.41
2017	3143.51		
2018	3163.14		

```
程序
clear;clc
data = readmatrix("重庆人口1.xlsx");
t = data(:,1);
population = data(:,2);
a=polyfit(t,population,2);
x1=2012:0.5:2026;
x2=2026;
y1=polyval(a,x1);
y2=polyval(a,x2);
fprintf("重庆 2026 年的人口: %.2f 万人\n",y2)
figure
hold on
plot(t,population,"o","MarkerFaceColor","r")
plot(x1,y1,"b")
xlabel("年份")
ylabel("重庆总人口 万人")
title("重庆总人口随年份变化曲线图")
legend("数据点","拟合曲线")
% 计算拟合值和残差
fitted_values = polyval(a, t);
residuals = population - fitted_values;
% 计算 R^2
SS_total = sum((population - mean(population)).^2); % 总平方和
SS_res = sum(residuals.^2); % 残差平方和
R_squared = 1 - (SS_res / SS_total);
```

fprintf("决定系数为%.4f\n",R_squared)

结果

重庆 2026 年的人口: 3178.60 万人 决定系数为 0.9874

分析

这段 MATLAB 代码实现了对重庆市历史人口数据的二次多项式拟合,并根据该模型预测了未来几年(尤其是 2026 年)的重庆人口,同时评估了拟合的优度。使用 readmatrix 函数从 Excel 文件中读取重庆的年份和人口数据。使用 polyfit 函数对年份和人口数据进行二次多项式拟合,得到多项式系数 a。基于拟合的多项式,计算了 2012 年到 2026 年之间每半年的人口预测值,并单独预测了 2026 年的人口。绘制了原始人口数据点(红色圆点)和拟合曲线(蓝色),使得趋势变化一目了然。计算了拟合值与实际数据之间的残差,并进一步计算了决定系数 R²,用于评估模型的拟合优度。R²值越接近 1,拟合效果越好。

备注:

1、一门课程有多个实验项目的,应每一个实验项目一份,课程结束时将该课程所有实验项目 内页与封面合并成一个电子文档上交。