Machine Learning

Linear Regression

Credits to Francesco Trovò

Outline

Introduction

- Regression Problem
- Practical Example

Outline

- Introduction
- 2 Regression Problem
- 3 Practical Example

Practical Information

Alberto Maria Metelli Postdoctoral Researcher

- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
 - bulding 21
 - first floor
 - office 19
- Email: albertomaria.metelli@polimi.it
- Voice: (+39 02 2399) 9679

Practical Information

- Course materials (slides, pdfs, links to recorded lectures) uploaded to WeBeep Suggested literature to follow the course lectures:
 - Bishop, C.M., "Pattern recognition and machine learning", 2006, Springer
 - James, G., Witten, D., Hastie, T., Tibshirani, R., "An introduction to statistical learning", 2013, Springer

Outline

- Introduction
- Regression Problem
- Practical Example

Where Everything Starts

Consider the Iris Dataset:

- Sepal length
- Sepal width
- Petal length
- Petal width
- Species (Iris setosa, Iris virginica e Iris versicolor)

N = 150 total samples (50 per species)

Example of Dataset

Sepal length	Sepal width	Petal length	Petal width	Class
5.1000	3.5000	1.4000	0.2000	Iris-setosa
4.9000	3.0000	1.4000	0.2000	Iris-setosa
4.7000	3.2000	1.3000	0.2000	Iris-setosa
4.6000	3.1000	1.5000	0.2000	Iris-setosa
5.0000	3.6000	1.4000	0.2000	Iris-setosa
5.4000	3.9000	1.7000	0.4000	Iris-setosa
4.6000	3.4000	1.4000	0.3000	Iris-setosa
5.0000	3.4000	1.5000	0.2000	Iris-setosa
4.4000	2.9000	1.4000	0.2000	Iris-setosa
4.9000	3.1000	1.5000	0.1000	Iris-setosa
5.4000	3.7000	1.5000	0.2000	Iris-setosa

Scientific Questions

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data?
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**

Scientific Questions

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data?
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**

Scientific Questions

- Can we extract some information from the data?
- What can we infer from them?
- Can we provide predictions on some of the quantities on newly seen data?
- Can we predict the **petal width** of a specific kind of *Iris setosa* by using the **petal length**

Solution: Linear Regression

We need to specify:

- Hypothesis space: $\hat{t}_n = f(x_n, w) = w_0 + x_n w_1$
- Loss measure: $J(w, x_n, t_n) = RSS(w) = \sum_{n} (\hat{t}_n t_n)^2$
- Optimization method: Least Square (LS) method

where
$$w \in \mathbb{R}^{M+1}, M = 1$$

We need to practically apply these operations to the dataset:

- By hand
- With a calculator
- With some code

Solution: Linear Regression

We need to specify:

- Hypothesis space: $\hat{t}_n = f(x_n, w) = w_0 + x_n w_1$
- Loss measure: $J(w, x_n, t_n) = RSS(w) = \sum_{n} (\hat{t}_n t_n)^2$
- Optimization method: Least Square (LS) method

where
$$w \in \mathbb{R}^{M+1}, M = 1$$

We need to practically apply these operations to the dataset:

- By hand
- With a calculator
- With some code

Outline

Introduction

- 2 Regression Problem
- Practical Example

Preliminary Operations

- Load Data
- Inspect Data
- Select the interesting Data
- Preprocessing
 - shuffling (shuffle())
 - remove inconsistent data
 - remove outliers
 - normalize or standardize data (zscore())
 - fill missing data

Samples $\{s_1, \ldots, s_N\} \to \text{standardization of sample } s$:

z-score:
$$s \leftarrow \frac{s-\bar{s}}{S}$$
 $\bar{s} = \frac{1}{N} \sum_{n} s_n$ $S^2 = \frac{1}{N-1} \sum_{n} (s_n - \bar{s})^2$

$$\text{Min-max feature scaling}: \quad s \leftarrow \frac{s - \min_n \{s_n\}}{\max_n \{s_n\} - \min_n \{s_n\}}$$

Linear Regression in Python

- We have many different solutions from different libraries
- In this session we use sklearn and statsmodels
- Alternatively, we can implement the linear regression by hand $(w^* = (X^T X)^{-1} X^T t)$

First option:

- Create a linear model (LinearRegression())
- Fit the model to the data (fit ())
- Analyse the results

Evaluating the Results

• Residual Sum of Squares (RSS), Sum Of Squared Errors (SSE):

$$RSS(w) = \sum_{n} (\hat{t}_n - t_n)^2$$

- Root Mean Square Error: $RMSE = \sqrt{\frac{RSS(w)}{N}}$
- Coefficient of determination: $R^2 = 1 \frac{RSS(w)}{\sum_{v} (\bar{t} t_n)^2}$
- Degrees of Freedom: dfe = N M 1
- Adjusted coefficient of determination $R_{adj}^2 = 1 (1 R^2) \frac{N-1}{dfe}$

Mean of the targets:
$$\bar{t} = \frac{\sum_n t_n}{N}$$

Example of OLS(x, t).fit() Output

```
Dep. Variable:
                          v
                              R-squared (uncentered):
                                                              0.927
Model:
                        OLS
                              Adj. R-squared (uncentered):
                                                              0.926
Method:
             Least Squares
                              F-statistic:
                                                               1889.
     Wed. 10 Mar 2021
                            Prob (F-statistic):
                                                           1.56e - 86
Date:
Time:
                   12:28:24
                              Log-Likelihood:
                                                            -16.645
No. Observations:
                                                              35.29
                        150
                              AIC:
                                                               38.30
Df Residuals:
                        149
                              BIC:
Df Model:
Covariance Type: nonrobust
     coef
              std err t
                               P>| t |
                                                [0.025]
                                                            0.9751
x 1
     0.9628
              0.022
                          43.467
                                    0.000
                                                0.919
                                                              1.007
Omnibus:
                      2.326
                              Durbin-Watson:
                                                               1.437
                      0.313
                                                               1.852
Prob (Omnibus):
                              Jarque-Bera (JB):
                                                              0.396
Skew:
                      0.210
                              Prob(JB):
Kurtosis:
                      3 3 4 7
                              Cond. No.
                                                              4 1.00 0 × 4 = × 4 = ×
```

Statistical Tests on Coefficients

Single coefficients:

$$H_0: w_j = 0$$
 vs. $H_1: w_j \neq 0$
$$t_{stat} = \frac{\hat{w}_j - w_j}{\hat{\sigma}\sqrt{v_j}} \sim t_{N-M-1}$$

where t_{N-M-1} is the T-Student distribution with N-M-1 degrees of freedom

Overall significance of the model

$$H_0: w_1 = \ldots = w_M = 0$$
 vs. $H_1: \exists w_j \neq M$
$$F = \frac{dfe}{M} \frac{\sum_n (\bar{t} - t_n)^2 - RSS(w)}{RSS(w)} \sim F_{M,N-M-1}$$

where $F_{M,N-M-1}$ is the Fisher-Snedecor distribution with parameters M and N-M-1

Statistical Tests on Coefficients

Single coefficients:

$$H_0: w_j = 0$$
 vs. $H_1: w_j \neq 0$
$$t_{stat} = \frac{\hat{w}_j - w_j}{\hat{\sigma}\sqrt{v_j}} \sim t_{N-M-1}$$

where t_{N-M-1} is the T-Student distribution with N-M-1 degrees of freedom

Overall significance of the model:

$$H_0: w_1 = \dots = w_M = 0$$
 vs. $H_1: \exists w_j \neq 0$
$$F = \frac{dfe}{M} \frac{\sum_n (\bar{t} - t_n)^2 - RSS(w)}{RSS(w)} \sim F_{M,N-M-1}$$

where $F_{M,N-M-1}$ is the Fisher-Snedecor distribution with parameters M and N-M-1

Different Implementations

fit()

- Slow in the execution
- Many checks for consistency
- Recap

By-hand solution

- Very fast
- No checks for consistency
- No tests on the coefficients