

Support Vector Machines

https://github.com/wilcobonestroo/schoolofai

Support Vector Machines

Theory and Code

Wilco Bonestroo

Researcher at Mechatronics research group at Saxion

Software and AI for robots

Autonomous mobile robots

Research group Mechatronics

- Unmanned Robotics Systems
- Smart Industrial Systems

saxion.nl/mechatronics

Look back: Perceptrons

Linear Separable (two inputs / dimensions)

Super Vector Machines

Machine Learning Algorithm

Basically it is a **linear binary classifier**

But it can also be used for **multiple classes** and for **regression** and **outlier detection**

Is tries to get "the best" separation and uses "support vectors"

Basic idea

Samples

With labels or class, so it is supervised learning

Feature 1	Feature 2	Feature 3	Class
234	456	275	0
26	65	343	1
54	446	2	0
Ϋ́			γ

```
classifier.fit(X,y) #Training
classifier.predict([32,624,6])
```

The bigger picture

The "best" separation

The "widest road" between the groups

Minimizing the weight results in a wider margin

What about this?

We can relax the constraints of the SVM. This is called **Soft Margin**.

Soft margin SVM

$$\underset{\mathbf{w}, b, \zeta}{\text{minimize}} \quad \frac{1}{2}\mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^{m} \zeta^{(i)}$$

Weights

Mistakes

What if data is not separable?

Add features

Add polynomial features

Kernel Trick polynomial

Add similarity features

Radial Basis Function (RBF)

Kernel with similarity

Conclusion

It is pretty powerful for a "linear binary classifier"

From literature:

It is not super efficient. Works for complex, but not too large datasets.

Try it yourself

Go to: https://github.com/wilcobonestroo/schoolofai

Go to Support Vector Machines folder.

Click on .ipynb file

Click "run in Google Colab"

Or download the .ipynb file and run it on your own Jupyter Notebook

References

This material is based on the book Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien Géron (O'Reilly) and on the accompanying Github repository.

Scikit Learn website: https://scikit-learn.or