

Experiment No 2

Group No: 03

T:41	T 24	4	Survey
I ITIA.	Litera	mre	SHIPVAV
11110.	Littia	luit	Dui VCV

Objective: The objective of a literature survey is to review, analyze, and synthesize existing research to identify gaps, trends, and insights that inform and support a study's context and direction.

Expected Outcome of Experiment:

	At the end of successful completion of the course the student will be able	
	to	
CO1	Define the problem statement and scope of problem	
CO5	Prepare a technical report based on the Mini project.	

Books/ Journals/ Websites referred:

- 1.
- 2.
- **3.**

The students are expected to prepare chapter no 2 in the format given below

Chapter 2

Literature Survey

The Objective of a literature survey is to review existing research, identify gaps, and establish a strong foundation for the study. It helps in understanding key concepts, comparing different approaches, and justifying the need for the current research by analyzing past studies.

1. Introduction

AI-based image generation has become a significant breakthrough in the field of artificial intelligence, combining natural language processing (NLP) and computer vision. With advancements in generative models, particularly diffusion models like **Stable Diffusion 2.1** and **3.5 Large**, it has become possible to produce high-resolution, detailed images from text prompts. This literature survey aims to explore existing methodologies in text-to-image synthesis, analyze prior works on diffusion models, and identify the need for improved control, realism, and performance in AI image generation. The goal is to establish a foundation that supports the objectives of the current mini project, "NeuraPix – AI Image Generator.

2. Review of Existing Literature

Several generative AI models have evolved in recent years, with notable contributions in the areas of latent diffusion, hierarchical image generation, and prompt-to-image accuracy. Stability AI's diffusion models and OpenAI's CLIP-based techniques have greatly enhanced the quality and control of generated images.

- Rombach et al. (2022) introduced Latent Diffusion Models (LDM) that reduced computational cost while maintaining high image fidelity.
- Ramesh et al. (2022) proposed a hierarchical text-conditional image generation framework using CLIP latents, which demonstrated effective prompt understanding.
- **Dhariwal and Nichol (2021)** demonstrated how diffusion models outperform GANs on image synthesis tasks, introducing structured denoising processes.
- Saharia et al. (2022) focused on photorealistic image generation using text prompts with deep semantic understanding, contributing to diffusion model optimization.
- **Ho et al. (2020)** laid the foundation of diffusion probabilistic models, setting the stage for subsequent advances in generative AI.

3. Related Work

Paper Title (Including	Methodology	Dataset Used	Observation of	Pros	Cons	Findings
Author Details, Year			proposed			
of publication,			methodology			
Conference/Journal						
"High-resolution Image	Used latent	COCO,	Reduced compute	Low	May	Enabled
Synthesis with Latent	diffusion in	OpenImages	while maintaining high	memo	blur fine	scalable
Diffusion Models" –	compressed		quality	ry,	details	image
Rombach et al., CVPR 2022	space to			high		generatio
	generate images			resolut		n with
	efficiently			ion		fewer
						resources
Hierarchical Text-	Used CLIP and	Internal OpenAl	Highly accurate text-	Excelle	Require	Foundatio
Conditional Image	transformers to	datasets	to-image results	nt	s heavy	n of
Generation with CLIP	improve prompt-			seman	comput	DALL·E 2
Latents" – Ramesh et al.,	image alignment			tic	е	
arXiv 2022				alignm		
				ent		
Diffusion Models Beat	Improved	CIFAR-10,	Outperformed GANs	Stable,	Slower	Proved
GANs on Image Synthesis"	denoising	ImageNet	in image quality	interpr	than	diffusion
– Dhariwal & Nichol,	diffusion model			etable	GANs	as a
NeurIPS 2021	with classifier					superior
	guidance					generativ
						e method
Photorealistic Text-to-	Combined image	LAION-400M	High realism and	Rich	Potentia	Strong
Image Diffusion with	diffusion with		better prompt	langua	l bias in	baseline
Deep Language	deep NLP		adherence	ge	training	for
Understanding" – Saharia	models			unders		photoreal
et al., arXiv 2022				tandin		istic
				g		generatio
						n

Denoising Diffusion	Introduced basic	CIFAR-10	Foundation for all	Simple	High	Core
Probabilistic Models" –	DDPM		diffusion-based	,	training	model
Ho et al., NeurIPS 2020	framework for		models	effecti	cost	behind
	generative tasks			ve		newer
						diffusion
						models
"ControlNet: Adding	Enabled edge,	MS-COCO +	Greatly improved	Fine	Comple	Advanced
Conditional Control to	pose, depth-	custom controls	control over output	contro	xity in	interactiv
Text-to-Image Diffusion	based control in		images	l,	control	e image
Models" – Lvmin Zhang et	generation			multi	input	creation
al., 2023				modal		
"GLIDE: Towards	Introduced	Public image-	Enabled image	Text-	Limited	Allowed
Photorealistic Image	editing +	text pairs	manipulation via	based	resoluti	creative
Generation and Editing	generation using		prompts	editing	on	flexibility
with Text-guided	diffusion +					
Diffusion Models" –	guidance					
Nichol et al., 2022						
"Imagen: Photorealistic	Combined LLMs	Internal	Higher photorealism	Deep	Not	Major
Text-to-Image Diffusion	with diffusion	datasets	than DALL·E	NLP + image	open-	milestone
Models with Large	for detailed			quality	source	in realistic
Language Models" –	generation					image
Saharia et al., 2022						generatio
						n
"Versatile Diffusion: Text,	Unified multi-	MS-COCO,	Handles multiple input	Flexibl	Still	Useful for
Images and Beyond" –	modal inputs	LAION	types	е	under	creative
W	1					
Kim et al., 2023	(text, sketches)			interfa	researc	tools
KIM et al., 2023	(text, sketches) for generation			interfa ce	researc h	tools
"Stable Diffusion: High-		LAION-5B	Open-source, highly			tools Enabled
	for generation	LAION-5B	Open-source, highly customizable	ce	h	Enabled
"Stable Diffusion: High-	for generation Combines U-Net	LAION-5B		ce Fast	h May	Enabled
"Stable Diffusion: High- resolution Image	for generation Combines U-Net + CLIP + latent	LAION-5B		ce Fast infere	h May lack	Enabled communit
"Stable Diffusion: High- resolution Image Synthesis using Latent	for generation Combines U-Net + CLIP + latent	LAION-5B		Fast infere nce,	h May lack high	Enabled communit y-driven

4. Research Gaps and Challenges

- **Gaps in Fine Control**: Although diffusion models generate high-quality images, controlling specific aspects of image generation (pose, depth, edges) remains a challenge.
- **Computational Cost**: Advanced models such as Stable Diffusion 3.5 require substantial computational resources for real-time or large-scale deployment.
- **Prompt Adherence Issues**: Despite advances, exact interpretation of complex or abstract prompts still requires fine-tuning.
- **Ethical Concerns**: Potential misuse of generated content for deepfakes or biased outputs raises critical ethical issues.
- **Future Direction**: More precise control mechanisms like ControlNets (Blur, Canny, Depth) and improved multimodal integration (text, sketch, image input) could address current limitations.