Agenda

- 1. Interpretation with transformed variables
- 2. Visualizing model predictions
- 3. Examining model fit
- 4. Overfitting and underfitting
- 5. Visualizing predictions in R

Interpreting coefficients

$$egin{aligned} \operatorname{Income}_i &\sim \operatorname{Norm}(\mu_i, \sigma) \ &\mu_i = a + \beta \operatorname{Age}_i \ & \operatorname{Post.\ Mean} \ & a & 32813.3 \ & oldsymbol{eta} \end{aligned}$$

$$\mathsf{E}(\mathsf{Inc.}|a_2) - \mathsf{E}(\mathsf{Inc.}|a_1) = (\alpha + \beta a_2) - (\alpha + \beta a_1)$$

$$= \beta(a_2 - a_1)$$

$$= 185.7(a_2 - a_1)$$

Interpreting coefficients

Income _i -	\sim Norm (μ_i, σ)
μ_i =	$=a + \beta Age_i$
	Post. Mean
a	32813.3
β	185.7

Units of age | Years | Units of income | Dollars | Interpreting β | For each year of age, the model predicts about \$186 more income per year.

Standardized variables

St(Incom	$\mathbf{e}_i)\sim Norm(\mu_i,\sigma)$ $\mu_i=a+etaSt(Age_i)$
	Post. Mean
a	Post. Mean 0
β	0.065

Units of age Standard deviations of age Units of income | Standard deviations of income

Interpreting β For each standard deviation of age, the model predicts an increase of about 0.065 standard deviations in income.

Log of outcome variable

$$\log(\mathrm{Income}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta \mathrm{Age}_i$

Post. Mean exp(Mean)

 α 9.648 15489.124
 β 0.009 1.009

$$\begin{aligned} &\text{Inc}_2/\text{Inc}_1 = \exp(\log(\text{Inc}_2) - \log(\text{Inc}_1)) \\ &= \exp((\alpha + \beta a_2) - (\alpha + \beta a_1)) \\ &= \exp(\beta(a_2 - a_1)) \end{aligned}$$

Log of outcome variable

Log of outcome variable

$\log(\operatorname{Income}_i) \sim \operatorname{Norm}(\mu_i, \sigma)$		
$\mu_i = c$	$\alpha + \beta Age_i$	
st. Mean	exp(Mean)	
9.648	15489.124	
0.009	1.009	
	μ _i = α st. Mean 9.648	

Units of age | Years
 Units of income | Log dollars
 Interpreting β | For each year of age, the model predicts a 0.9% increase in income.

Log of predictor variable

Income
$$_i \sim \text{Norm}(\mu_i, \sigma)$$

$$\mu_i = a + \beta \log(\text{Age}_i)$$
Post. Mean
$$\frac{\alpha}{\beta}$$
15675

$$\begin{aligned} & \text{Inc}_2 - \text{Inc}_1 = (\alpha + \beta \log(a_2)) - (\alpha + \beta \log(a_1))) \\ & = \beta(\log(a_2) - \log(a_1))) \\ & = \beta(\log(a_2/a_1))) \end{aligned}$$

Log of predictor variable

Income _i \sim Norm (μ_i, σ)		
$+ \beta \log(Age_i)$		
Post. Mean		
-17586		
15675		

Units of age | Log years | Units of income | Dollars | Interpreting β | For each 10% increase in age, the model predicts an increase of $\beta \times \log(1.1) = 15,675 \times 0.095 = 1,494.07$ dollars in income.

Visualizing predictions

$$\log(\mathrm{Inc}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta \mathrm{St}(\mathrm{Age}_i)$

 $a \sim \text{Norm}(10, 2)$

 $\beta \sim \text{Norm}(0,3)$

 $\sigma \sim \mathsf{Unif}(\mathsf{0},\mathsf{5})$

Visualizing predictions

$$\log(\mathrm{Inc}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + \beta \mathrm{St}(\mathrm{Age}_i)$

$$a \sim \text{Norm}(10, 2)$$

$$\beta \sim \text{Norm}(0,3)$$

$$\sigma \sim \mathsf{Unif}(0,5)$$

	Post. Mean	exp(Mean)
a	10.06	0.07
β	0.17	0.07
σ	1.18	0.05

Posterior distribution of mean:

$$Pr(\mu|Age = a)$$

- 1. Take a sample of size N from posterior $Pr(\alpha, \beta, \sigma|D)$.
- 2. For each value of Age a, calculate N values of $\mu = \alpha + \beta a$.
- 3. Calculate quantiles (say, 10% and 90%) for posterior of μ at each value of a.

Visualizing predictions

$$\log(\mathrm{Inc}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta \mathrm{St}(\mathrm{Age}_i)$$

$$a \sim \text{Norm}(10, 2)$$

$$\beta \sim \text{Norm}(0,3)$$

$$\sigma \sim \mathsf{Unif}(0,5)$$

	Post. Mean	exp(Mean)
a	10.06	0.07
β	0.17	0.07
σ	1.18	0.05

Posterior predictive distribution:

$$Pr(log(Inc)|Age = a)$$

- 1. Take a sample of size N from posterior $Pr(\alpha, \beta, \sigma | D)$.
- 2. For each value of Age a, calculate N values of $\mu = \alpha + \beta a$.
- 3. Draw from Norm(μ , σ) for each of the N posterior samples.
- 4. Calculate quantiles of these predicted outcomes.

Mean versus prediction

For any given age, μ is the "expected" (mean) log income for people of that age.

The posterior distribution of μ describes our modeled uncertainty about the value of μ .

This distribution takes into account coefficients α and β , but not the standard deviation σ .

For any given age, the posterior predictive distribution predicts the log income for any individual person of that age.

The posterior distribution of μ describes our modeled uncertainty about the value of log(lnc).

This distribution takes into account coefficients α , β , and σ .

The 80% posterior interval should contain about 80% of the data.

Assessing fit

Assessing fit

$$\Pr(\theta|D) = \frac{\Pr(D|\theta)\Pr(\theta)}{\Pr(D)}$$

Deviance

$$D = -2\log(\Pr(\theta|D))$$

Deviance

Goodness of fit

Underfit

Errs in prediction in a systematic way

Misses important aspects of relationship between predictor and outcome

Overfit

Takes random variation to be systematic

Predicts data from sample well, but tends to predict new data very poorly

Overfitting

