પ્રશ્ન 1(અ) [3 ગુણ]

એનાલોગ સિગ્નલ અને ડિજિટલ સિગ્નલની સરખામણી કરો.

જવાબ:

પેરામીટર	એનાલોગ સિગ્નલ	ડિજિટલ સિગ્નલ
ਮ _ਣ ਿਰ	સતત તરંગરૂપ	અલગ અલગ વેલ્યુ (0 અને 1)
એમ્પ્લિટ્યુડ	અનંત વિવિધતાઓ	નિશ્ચિત અલગ સ્તરો
નોઇઝ ઇફેક્ટ	વધુ સંવેદનશીલ	ઓછી સંવેદનશીલ
બેન્ડવિડ્થ	ઓછી બેન્ડવિડ્થ જરૂરી	વધુ બેન્ડવિડ્થ જરૂરી
સિક્યુરિટી	ઓછી સુરક્ષિત	વધુ સુરક્ષિત

- **સિગ્નલ પ્રકાર**: એનાલોગ સિગ્નલ સતત હોય છે, ડિજિટલ સિગ્નલ અલગ અલગ હોય છે
- નોઇઝ રેઝિસ્ટન્સ: ડિજિટલ સિગ્નલમાં નોઇઝ સામે વધુ પ્રતિકાર હોય છે

મેમરી ટ્રીક: "ABCD - Analog Bad for noise, Continuous; Digital Discrete, Clean signals"

પ્રશ્ન 1(બ) [4 ગુણ]

PAM, PWM અને PPM ની સરખામણી કરો.

જવાબ:

પેરામીટર	PAM	PWM	РРМ
પૂરું નામ	Pulse Amplitude Modulation	Pulse Width Modulation	Pulse Position Modulation
મોક્યુલેટેડ પેરામીટર	એમ્પ્લિટ્યુડ	પહોળાઈ/અવધિ	સ્થાન/સમય
નોઇઝ ઇમ્યુનિટી	ખરાબ	સારી	ਉ _ਹ ਜ਼ਮ
બેન્કવિડ્થ	લઘુત્તમ	મધ્યમ	ਮੁહਰਮ
પાવર કન્ઝમ્પશન	વધુ	મધ્યમ	ઓછી

ડાયાગ્રામ:

- **મોક્યુલેશન પેરામીટર**: દરેક પ્રકાર પત્સની અલગ લાક્ષણિકતાઓ મોક્યુલેટ કરે છે
- **એપ્લિકેશન**: PWM મોટર કંટ્રોલમાં, PPM રેડિયો કંટ્રોલ સિસ્ટમમાં વપરાય છે

મેમરી ટ્રીક: "PAM-Amplitude, PWM-Width, PPM-Position - AWP"

પ્રશ્ન 1(ક) [7 ગુણ]

મોક્યુલેશનની જરૂરિયાત વિગતવાર સમજાવો. જો કેરિયર સિગ્નલની આવૃત્તિ 1 MHz હોય તો એન્ટેનાની ઊંચાઈની ગણતરી કરો.

જવાબ:

મોડ્યુલેશનની જરૂરિયાત:

કારણ	સમજૂતી
એન્ટેના સાઇઝ રિડક્શન	વ્યવહારિક એન્ટેના માપ શક્ય બનાવે છે
ફ્રીક્વન્સી ટ્રાન્સલેશન	સિગ્નલને યોગ્ય આવૃત્તિ રેન્જમાં ખસેડે છે
મલ્ટિપ્લેક્સિંગ	એક જ માધ્યમ પર અનેક સિગ્નલ મંજૂરી આપે છે
નોઇઝ રિડક્શન	સિગ્નલ-ટુ-નોઇઝ રેશિયો સુધારે છે
પાવર એફિશિયન્સી	વધુ સારી પાવર વિનિયોગ

એન્ટેના ઊંચાઈની ગણતરી:

કાર્યક્ષમ રેડિએશન માટે, એન્ટેના ઊંચાઈ = $\lambda/4$

 $\lambda = c/f = (3 \times 10^8)/(1 \times 10^6) = 300$ ਮੀਟਵ

એન્ટેના ઊંચાઈ = $\lambda/4 = 300/4 = 75$ મીટર

- પ્રેક્ટિકલ એન્ટેના: મોક્યુલેશન વગર, એન્ટેના અવ્યવહારિક રીતે મોટો હોત
- ફ્રીકવન્સી શિફ્ટિંગ: વધુ સારી પ્રોપેગેશન લાક્ષણિકતાઓ માટે મંજૂરી આપે છે

મેમરી ટ્રીક: "AFMNP - Antenna, Frequency, Multiplexing, Noise, Power"

પ્રશ્ન 1(ક) OR [7 ગુણ]

EM વેવ સ્પેક્ટ્રમના ફ્રીક્વન્સી બેન્ડ તેના એપ્લિકેશન ડોમેન સાથે લખો. ELF બેન્ડની તરંગલંબાઈની ગણતરી કરો.

જવાબ:

બેન્ડ	આવૃત્તિ રેન્જ	તરંગલંબાઈ	એપ્લિકેશન
ELF	30-300 Hz	10 ⁶ -10 ⁷ m	સબમરીન કમ્યુનિકેશન
VLF	3-30 kHz	10⁴-10⁵ m	નેવિગેશન, ટાઇમ સિગ્નલ
LF	30-300 kHz	10³-10⁴ m	AM બ્રોડકાસ્ટિંગ
MF	300 kHz-3 MHz	100-1000 m	AM રેડિયો
HF	3-30 MHz	10-100 m	શોર્ટ વેવ રેડિયો

ELF તરંગલંબાઈની ગણતરી:

• નીચી આવૃત્તિ: f₁ = 30 Hz, λ_1 = c/f₁ = (3×10⁸)/30 = **10⁷ મીટર**

• ઉચ્ચી આવૃત્તિ: f₂ = 300 Hz, λ_2 = c/f₂ = (3×10⁸)/300 = **10⁶ મીટર**

ELF તરંગલંબાઈ રેન્જ: 10⁶ થી 10⁷ મીટર

• એપ્લિકેશન ડોમેન: દરેક બેન્ડ ચોક્કસ એપ્લિકેશન માટે યોગ્ય છે

• **પ્રોપેગેશન**: નીચી આવૃત્તિઓમાં વધુ સારી ગ્રાઉન્ડ વેવ પ્રોપેગેશન હોય છે

મેમરી ટ્રીક: "Every Valuable Learning Makes Happiness - ELF થી HF બેન્ડ"

પ્રશ્ન 2(અ) [3 ગુણ]

AM અને FM ની સરખામણી કરો.

જવાબ:

પેરામીટર	АМ	FM
મોક્યુલેટેડ પેરામીટર	એમ્પ્લિટ્યુડ	આવૃત્તિ
બેન્કવિડ્થ	2fm	2(Δf + fm)
નોઇઝ ઇમ્યુનિટી	ખરાબ	સારી
પાવર એફિશિયન્સી	ઓછી (33.33%)	વધુ
સર્કિટ કોમ્પ્લેક્સિટી	સરળ	જટિલ

• **બેન્ડવિડ્થ**: FM ને AM કરતાં ઘણી વધુ બેન્ડવિડ્થ જરૂરી છે

• ક્વોલિટી: FM વધુ સારી ઓડિયો ક્વોલિટી પૂરી પાડે છે

મેમરી ટ્રીક: "AM-Amplitude સરળ, FM-Frequency જટિલ પણ વધુ સારી ક્વોલિટી"

પ્રશ્ન 2(બ) [4 ગુણ]

એમ્પ્લિટ્યુડ મોક્યુલેટેડ વેવનું વેવફોર્મ દોરો.

જવાબ:

ડાયાગ્રામ:

લાક્ષણિકતાઓ:

• **એન્વેલોપ**: એન્વેલોપ મોડ્યુલેટિંગ સિગ્નલને અનુસરે છે

• કેરિયર ફ્રીકવન્સી: સમગ્ર સમય દરમિયાન સ્થિર રહે છે

• એમ્પ્લિટ્યુડ વેરિએશન: એમ્પ્લિટ્યુડ મોક્યુલેટિંગ સિગ્નલ સાથે બદલાય છે

મેમરી ટ્રીક: "Envelope Follows Message - EFM"

પ્રશ્ન 2(ક) [7 ગુણ]

એમ્પ્લિટ્યુડ મોક્યુલેશનની વ્યાખ્યા આપો અને ડબલ સાઇડબેન્ડ ફુલ કેરિયર (DSBFC) એમ્પ્લિટ્યુડ મોક્યુલેશન (AM) સિગ્નલ માટે ગાણિતિક અભિવ્યક્તિ મેળવો.

જવાબ:

વ્યાખ્યા: એમ્પ્લિટ્યુડ મોક્યુલેશન એ પ્રક્રિયા છે જેમાં કેરિયર સિગ્નલનું એમ્પ્લિટ્યુડ મોક્યુલેટિંગ સિગ્નલના તાત્કાલિક એમ્પ્લિટ્યુડ અનુસાર બદલાય છે.

ગાણિતિક વ્યુત્પત્તિ:

કેરિયર સિગ્નલ: ec(t) = Ec cos(ωct) મોડ્યુલેટિંગ સિગ્નલ: em(t) = Em cos(ωmt)

AM સિગ્નલ અભિવ્યક્તિ:

 $eAM(t) = [Ec + Em cos(\omega mt)] cos(\omega ct)$ $eAM(t) = Ec cos(\omega ct) + Em cos(\omega mt) cos(\omega ct)$

ત્રિકોણમિતિય સૂત્રનો ઉપયોગ:

 $\cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$

અંતિમ AM અભિવ્યક્તિ:

 $eAM(t) = Ec cos(\omega ct) + (Em/2) cos(\omega c + \omega m)t + (Em/2) cos(\omega c - \omega m)t$

ઘટકો:

• **કેરિયર કોમ્પોનન્ટ**: Ec cos(ωct)

• અપર સાઇડબેન્ડ: (Em/2) cos(ωc + ωm)t

• **લોઅર સાઇડબેન્ડ**: (Em/2) cos(ωc - ωm)t

મેમરી ટ્રીક: "Carrier Plus Upper Lower Sidebands - CPULS"

પ્રશ્ન 2(અ) OR [3 ગુણ]

પ્રી-એમ્ફેસિસ અને ડી-એમ્ફેસિસની સરખામણી કરો.

જવાબ:

પેરામીટર	પ્રી-એમ્ફેસિસ	ડી-એમ્ફેસિસ
સ્થાન	ટ્રાન્સમિટર પર	રીસીવર પર
รเข้	ઉચ્ચ આવૃત્તિઓ વધારે છે	ઉચ્ચ આવૃત્તિઓ ઘટાડે છે
ફ્રીકવન્સી રિસ્પોન્સ	હાઇ પાસ લાક્ષણિકતા	લો પાસ લાક્ષણિકતા
હેતુ	S/N રેશિયો સુધારે છે	મૂળ સિગ્નલ પુનઃસ્થાપિત કરે છે
ટાઇમ કોન્સ્ટન્ટ	75 µs (FM બ્રોડકાસ્ટિંગ)	75 µs (FM બ્રોડકાસ્ટિંગ)

• નોઇઝ રિડક્શન: સંયુક્ત અસર મળેલ સિગ્નલમાં નોઇઝ ઘટાડે છે

• ફ્રીક્વન્સી રિસ્પોન્સ: પૂરક લાક્ષણિકતાઓ

મેમરી ટ્રીક: "Pre-Boost, De-Cut - Noise Reduction Circuit"

પ્રશ્ન 2(બ) OR [4 ગુણ]

ફ્રીક્વન્સી મોડ્યુલેટેડ વેવનું વેવફોર્મ દોરો.

જવાબ:

ડાયાગ્રામ:

Modulating Signal: ~ ~ ~ ~ ~

Carrier Signal: ~ ~ ~ ~ ~

FM Wave: ~ ~ ~ ~ ~ ~ ~

Higher freq Lower freq

when mod +ve when mod -ve

લાક્ષણિકતાઓ:

• ક્રોન્સ્ટન્ટ એમ્પ્લિટ્યુડ: એમ્પ્લિટ્યુડ સ્થિર રહે છે

• ફ્રીકવન્સી વેરિએશન: આવૃત્તિ મોક્યુલેટિંગ સિગ્નલ સાથે બદલાય છે

• ફેઝ કોન્ટિન્યુઇટી: ફેઝ સતત રહે છે

મેમરી ટ્રીક: "Constant Amplitude, Variable Frequency - CAVF"

પ્રશ્ન 2(ક) OR [7 ગુણ]

ફ્રીક્વન્સી મોક્યુલેશનની વ્યાખ્યા આપો અને FM તરંગ માટે ગાણિતિક અભિવ્યક્તિ મેળવો.

જવાબ:

વ્યાખ્યા: ફ્રીક્વન્સી મોડ્યુલેશન એ પ્રક્રિયા છે જેમાં કેરિયર સિગ્નલની આવૃત્તિ મોડ્યુલેટિંગ સિગ્નલના તાત્કાલિક એમ્પ્લિટ્યુડ અનુસાર બદલાય છે.

ગાણિતિક વ્યુત્પત્તિ:

મોક્યુલેટિંગ સિગ્નલ: em(t) = Em cos(ωmt) તાત્કાલિક આવૃત્તિ: fi = fc + kf × Em cos(ωmt)

જ્યાં kf = આવૃત્તિ સંવેદનશીલતા

તાત્કાલિક કોણીય આવૃત્તિ:

ωi = 2π[fc + kf Em cos(ωmt)]ωi = ωc + 2πkf Em cos(ωmt)

કેઝ ગણતરી:

 $\theta(t) = \int \omega i \, dt = \omega ct + (2\pi kf \, Em/\omega m) \sin(\omega mt)$

મોડ્યુલેશન ઇન્ડેક્સ: mf = 2πkf Em/ωm = Δf/fm

અંતિમ FM અભિવ્યક્તિ:

 $eFM(t) = Ec cos[\omega ct + mf sin(\omega mt)]$

પેરામીટર:

• **મોક્યુલેશન ઇન્ડેક્સ**: mf = Δf/fm

• ફ્રીક્વન્સી ડેવિએશન: ∆f = kf Em

• **બેન્ડવિડ્ય**: BW = 2(Δf + fm) (કાર્સનનો નિયમ)

મેમરી ટ્રીક: "Frequency Varies with Message - FVM"

પ્રશ્ન 3(અ) [3 ગુણ]

FM ડિમોક્યુલેશનની સ્લોપ ડિટેક્શન પદ્ધતિનું વર્ણન કરો.

જવાબ:

સ્લોપ ડિટેક્શન સિદ્ધાંત:

કાર્થપદ્ધતિ:

- ટ્યુન્ડ સર્કિટ: આવૃત્તિ ફેરફારોને એમ્પ્લિટ્યુડ ફેરફારોમાં રૂપાંતરિત કરે છે
- સ્લોપ ઓપરેશન: રેઝોનન્સ કર્વના સ્લોપનો ઉપયોગ કરે છે

• એન્વેલોપ ડિટેક્શન: એમ્પ્લિટ્યુડ ફેરફારો કાઢે છે

લાક્ષણિકતાઓ:

• સિમ્પલ સર્કિટ: અમલમાં મૂકવા સરળ

• લિનિયર રેન્જ: મર્યાદિત લિનિયર રેન્જ

• આઉટપુટ ડિસ્ટોર્શન: અન્ય પદ્ધતિઓ કરતાં વધુ વિકૃતિ

મેમરી ટ્રીક: "Slope Converts Frequency to Amplitude - SCFA"

પ્રશ્ન 3(બ) [4 ગુણ]

રેડિયો રીસીવરની વિવિદ્ય લાક્ષણિકતાઓ સમજાવો.

જવાબ:

લାक्षिशिङता	વ્યાખ્યા	મહત્વ
સેન્સિટિવિટી	સંતોષકારક આઉટપુટ માટે લઘુત્તમ ઇનપુટ સિગ્નલ	વધુ સારી નબળી સિગ્નલ રિસેપ્શન
સિલેક્ટિવિટી	ઇચ્છિત સિગ્નલ પસંદ કરવાની અને અન્યને નકારવાની ક્ષમતા	દખલગીરી ઘટાડે છે
ફિડેલિટી	પુનરુત્પાદનની વફાદારી	વધુ સારી ઓડિયો ક્વોલિટી
ઇમેજ ફ્રીક્વન્સી રિજેક્શન	ઇમેજ આવૃત્તિનો અસ્વીકાર	ખોટા સિગ્નલ અટકાવે છે

ગાણિતિક સંબંધો:

• **સેન્સિટિવિટી**: સ્ટાન્ડર્ડ આઉટપુટ માટે µV માં માપવામાં આવે છે

• **સિલેક્ટિવિટી**: Q = f₀/BW

• ઇમેજ રિજેક્શન રેશિયો: IRR = 1 + (2πfIFRC)²

મેમરી ટ્રીક: "Sensitive Selective Faithful Image-free - SSFI"

પ્રશ્ન 3(ક) [7 ગુણ]

યોગ્ય બ્લોક ડાયાગ્રામ સાથે સુપર હેટરોડાઇન રીસીવર પર ટૂંકી નોંધ લખો.

જવાબ:

બ્લોક ડાયાગ્રામ:

કાર્યસિદ્ધાંત:

- **આરએફ એમ્પ્લિફાયર**: પ્રાપ્ત RF સિગ્નલને એમ્પ્લિફાઇ કરે છે
- મિક્સર: RF ને નિશ્ચિત IF આવૃત્તિમાં રૂપાંતરિત કરે છે
- લોકલ ઓસિલેટર: મિક્સિંગ આવૃત્તિ પૂરી પાડે છે
- આઇએફ એમ્પ્લિફાયર: નિશ્ચિત આવૃત્તિ પર મુખ્ય એમ્પ્લિફિકેશન
- ડિટેક્ટર: મોડ્યુલેટેડ સિગ્નલ પુનઃપ્રાપ્ત કરે છે
- એજીસી: સ્થિર આઉટપુટ સ્તર જાળવે છે

ફાયદા:

- હાઇ સેન્સિટિવિટી: TRF કરતાં વધુ સારી સંવેદનશીલતા
- ગુ**ડ સિલેક્ટિવિટી**: વધુ સારી પસંદગીકારકતા
- સ્ટેબલ ગેઇન: સ્થિર ગેઇન લાક્ષણિકતાઓ

IF આવૃત્તિ પસંદગી:

સ્ટાન્ડર્ડ IF: AM માટે 455 kHz, FM માટે 10.7 MHz

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Mix RF to IF for Better Selectivity - MRIBS"

પ્રશ્ન 3(અ) OR [3 ગુણ]

ફેઝ લોક્ડ લૂપનો ઉપયોગ કરીને FM ડિમોક્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

PLL FM ડિમોક્યુલેટર:

કાર્યસિદ્ધાંત:

- ફેઝ ડિટેક્ટર: ઇનપુટ FM ને VCO આઉટપુટ સાથે સરખાવે છે
- વીસીઓ: વોલ્ટેજ કંટ્રોલ્ડ ઓસિલેટર ઇનપુટ આવૃત્તિને ટ્રેક કરે છે
- લૂપ ફિલ્ટર: ઉચ્ચ આવૃત્તિ ઘટકો દૂર કરે છે
- લોક કન્ડિશન: VCO આવૃત્તિ ઇનપુટ આવૃત્તિ સમાન થાય છે

કાયદા:

• **લીનિયર ડિમોક્યુલેશન**: ઉત્તમ રેખીયતા

• **લો ડિસ્ટોર્શન**: લઘુજા્તમ વિકૃતિ

• ગુડ ટ્રેકિંગ: ઉત્તમ આવૃત્તિ ટ્રેકિંગ

મેમરી ટ્રીક: "Phase Lock Tracks Frequency - PLTF"

પ્રશ્ન 3(બ) OR [4 ગુણ]

મૂળભૂત FM રીસીવરના બ્લોક ડાયાગ્રામની ચર્ચા કરો.

જવાબ:

FM રીસીવર બ્લોક ડાયાગ્રામ:

બ્લોક કાર્યો:

- **આરએફ એમ્પ્લિફાયર**: નબળા FM સિગ્નલને એમ્પ્લિફાઇ કરે છે (88-108 MHz)
- મિક્સર: IF આવૃત્તિમાં રૂપાંતરિત કરે છે (10.7 MHz)
- લિમેટર: એમ્પ્લિટ્યુડ ફેરફારો દૂર કરે છે
- એફએમ ડિટેક્ટર: ઓડિયો સિગ્નલ પુનઃપ્રાપ્ત કરે છે
- **ડી-એમ્ફેસિસ**: મૂળ આવૃત્તિ પ્રતિસાદ પુનઃસ્થાપિત કરે છે

AM રીસીવરથી મુખ્ય તફાવતો:

• **હાયર આઇએક**: 455 kHz બદલે 10.7 MHz

• લિમિટર સ્ટેજ: વધારાનો લિમિટર સ્ટેજ

• ડી-એમ્ફેસિસ: પ્રી/ડી-એમ્ફેસિસ નેટવર્ક

મેમરી ટ્રીક: "FM needs Higher IF and Limiting - FHIL"

પ્રશ્ન 3(ક) OR [7 ગુણ]

યોગ્ય સર્કિટ ડાયાગ્રામ અને વેવફોર્મ સાથે ડાયોડનો ઉપયોગ કરીને એન્વેલોપ ડિટેક્ટર પર ટૂંકી નોંધ લખો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

કાર્યસિદ્ધાંત:

```
AM Input: .... ....

Diode Output: (After filtering)

Audio Output: ~ ~ ~ ~
```

ઓપરેશન:

• ડાયોડ કન્ડક્શન: સકારાત્મક અર્ધ ચક્ર દરમિયાન વહન કરે છે

• કેપેસિટર ચાર્જિંગ: પીક વેલ્યુ સુધી ચાર્જ થાય છે

• **આરસી ડિસચાર્જ**: RC સર્કિટ દ્વારા ડિસચાર્જ થાય છે

• એન્વેલોપ ફોલોઇંગ: આઉટપુટ એન્વેલોપને અનુસરે છે

ડિઝાઇન વિચારણાઓ:

• **ટાઇમ કોન્સ્ટન્ટ**: RC >> 1/fc પણ RC << 1/fm

• ડાયોડ સિલેક્શન: ફાસ્ટ રિકવરી ડાયોડ પસંદીદા

• લોડ રેઝિસ્ટન્સ: ડાયોડ રેઝિસ્ટન્સ કરતાં ઘણું મોટું હોવું જોઈએ

કાયદા:

• સિમ્પ્લિસટી: ખૂબ સરળ સર્કિટ

• લો કોસ્ટ: આર્થિક ઉકેલ

• હાઇ એફિશિયન્સી: સારી ડિટેક્શન કાર્યક્ષમતા

મેમરી ટ્રીક: "Diode Charges, RC Follows Envelope - DCRF"

પ્રશ્ન 4(અ) [3 ગુણ]

અન્ડર સેમ્પલિંગ, ઓવર સેમ્પલિંગ અને ક્રિટિકલ સેમ્પલિંગનું વિવરણ આપો.

જવાબ:

หลา	શરત	પરિણામ
અન્ડર સેમ્પલિંગ	fs < 2fm	એલાયસિંગ થાય છે
ક્રિટિકલ સેમ્પલિંગ	fs = 2fm	માત્ર પૂરતું, કોઈ માર્જિન નથી
ઓવર સેમ્પલિંગ	fs > 2fm	એલાયસિંગ નથી, સલામત માર્જિન

ડાયાગ્રામ:

Original Signal:

Under Sampling:

Output

Aliasing

Critical Sampling:

Output

Sa

• એલાયસિંગ ઇફેક્ટ: અન્ડર સેમ્પલિંગ આવૃત્તિ ઓવરલેપનું કારણ બને છે

• **નાયક્વિસ્ટ રેટ**: લઘુત્તમ સેમ્પલિંગ રેટ = 2fm

• પ્રેક્ટિકલ રેટ: સામાન્ય રીતે મેસેજ આવૃત્તિના 2.5 થી 5 ગણા

મેમરી ટ્રીક: "Under-Alias, Critical-Just, Over-Safe - UCO"

પ્રશ્ન 4(બ) [4 ગુણ]

સેમ્પલિંગ થિયરમ લખો અને નાયક્વિસ્ટ રેટ, નાયક્વિસ્ટ ઇન્ટરવલ અને એલાયસિંગ એરરની વ્યાખ્યા આપો.

જવાબ:

સેમ્પલિંગ થિયરમ:

"જો સેમ્પલિંગ આવૃત્તિ સિગ્નલના સર્વોચ્ચ આવૃત્તિ ઘટકના ઓછામાં ઓછા બમણી હોય તો સતત સિગ્નલ તેના સેમ્પલમાંથી સંપૂર્ણ રીતે પુનઃપ્રાપ્ત કરી શકાય છે."

વ્યાખ્યાઓ:

શહ્દ	લ્યાખ્યા	સૂત્ર
નાયક્વિસ્ટ રેટ	લઘુત્તમ સેમ્પલિંગ આવૃત્તિ	fs = 2fm
નાયક્વિસ્ટ ઇન્ટરવલ	મહત્તમ સેમ્પલિંગ અંતરાલ	Ts = 1/(2fm)
એલાયસિંગ એરર	અન્ડર સેમ્પલિંગને કારણે આવૃત્તિ ઓવરલેપ	fa =

ગાણિતિક અભિવ્યક્તિ:

• **સેમ્પલિંગ ફ્રીક્વન્સી**: fs ≥ 2fm (નાયક્વિસ્ટ કસોટી)

• **સેમ્પલિંગ પીરિયક**: Ts = 1/fs

• એલાયસિંગ કન્ડિશન: fs < 2fm

વ્યવહારિક એપ્લિકેશન:

• **ડિજિટલ ઓડિયો**: fm = 20 kHz માટે fs = 44.1 kHz

• **ટેલિફોન સિસ્ટમ**: fm = 4 kHz માટે fs = 8 kHz

મેમરી ટ્રીક: "Sample at twice message frequency - S2M"

પ્રશ્ન 4(ક) [7 ગુણ]

આઇડિયલ, નેયરલ અને ફ્લેટ ટોપ સેમ્પલિંગની ચર્ચા કરો.

જવાબ:

સેમ્પલિંગના પ્રકારો:

પ્રકાર	લાક્ષણિકતાઓ	ગાણિતિક અભિવ્યક્તિ
આઇડિયલ સેમ્પલિંગ	ઇમ્પલ્સ ટ્રેઇન ગુણાકાર	$xs(t) = x(t) \cdot \delta T(t)$
નેચરલ સેમ્પલિંગ	વેરિએબલ પહોળાઈ પલ્સ	ટોપ સિગ્નલને અનુસરે છે
ફલેટ ટોપ સેમ્પલિંગ	કોન્સ્ટન્ટ એમ્પ્લિટ્યુડ પલ્સ	સેમ્પલ અને હોલ્ડ

વેવફોર્મ:

Original:	~~~~~~~~~~	
Ideal:	1 1 1 1 1	Impulses
Natural:	$ \wedge \wedge \wedge $	Variable width
Flat Top:		Constant width

આવૃત્તિ સ્પેક્ટ્રમ:

• **આઇડિયલ સેમ્પલિંગ**: સથોટ સ્પેક્ટ્રલ પ્રતિકૃતિ

• નેયરલ સેમ્પલિંગ: થોડું સ્પેક્ટ્રલ મોડિફિકેશન

• ફ્લેટ ટોપ સેમ્પલિંગ: એપર્ચર ઇફેક્ટ હાજર

વ્યવહારિક અમલીકરણ:

• **આઇડિયલ**: માત્ર સૈદ્ધાંતિક

• **નેચરલ**: PAM સિસ્ટમમાં વપરાય છે

• **ફલેટ ટોપ**: સેમ્પલ-અને-હોલ્ડ સર્કિટ, ADC સિસ્ટમ

એપર્ચર ઇફેક્ટ:

ફ્લેટ-ટોપ સેમ્પલિંગમાં: |Sa(πfT/2)| = |sin(πfT/2)/(πfT/2)|

મેમરી ટ્રીક: "Ideal-Impulse, Natural-Variable, Flat-Constant - IVF"

પ્રશ્ન 4(અ) OR [3 ગુણ]

યોગ્ય બ્લોક ડાયાગ્રામ સાથે ડેલ્ટા મોક્યુલેટરનું કાર્ય સમજાવો.

જવાબ:

ડેલ્ટા મોક્યુલેટર બ્લોક ડાયાગ્રામ:

કાર્યસિદ્ધાંત:

• કમ્પેરિસન: ઇનપુટની સરખામણી પહેલાના ઇન્ટિગ્રેટેડ આઉટપુટ સાથે

• **1-બિટ ક્વોન્ટાઇઝેશન**: આઉટપુટ +∆ અથવા -∆ છે

• ઇન્ટિગ્રેશન: ઇન્ટિગ્રેટર ઇનપુટ સિગ્નલનો અંદાજ કાઢે છે

• ફીડબેક: પહેલાનો આઉટપુટ સરખામણી માટે પાછો મોકલવામાં આવે છે

આઉટપુટ લાક્ષણિકતાઓ:

• **બાઇનરી આઉટપુટ**: દરેક સેમ્પલ માટે માત્ર 1 બિટ

• **સ્ટેપ સાઇઝ**: નિશ્ચિત સ્ટેપ સાઇઝ Δ

• ટ્રેકિંગ: આઉટપુટ ઇનપુટને સ્ટેપમાં ટ્રેક કરે છે

ਮੇਮरੀ ਟ੍ਰੀs: "Compare, Quantize, Integrate, Feedback - CQIF"

પ્રશ્ન 4(બ) OR [4 ગુણ]

યોગ્ય સમજૂતી સાથે ડેલ્ટા મોક્યુલેશન (DM) ના ગેરફાયદા લખો.

જવાબ:

મુખ્ય ગેરફાયદા:

ગેરફાયદા	સમજૂતી	б з ेल
સ્લોપ ઓવરલોડ	ઝડપી ફેરફારો ટ્રેક કરી શકતું નથી	સ્ટેપ સાઇઝ વધારો
ગ્રેન્યુલર નોઇઝ	સપાટ વિસ્તારોમાં ક્વોન્ટાઇઝેશન નોઇઝ	સ્ટેપ સાઇઝ ઘટાડો
હાઇ બિટ રેટ	ઉચ્ચ સેમ્પલિંગ રેટ જરૂરી	ADPCM નો ઉપયોગ કરો
લિમિટેડ ડાયનેમિક રેન્જ	નિશ્ચિત સ્ટેપ સાઇઝની મર્યાદા	એડેપ્ટિવ તકનીકો

સ્લોપ ઓવરલોડ કન્ડિશન:

જ્યારે |dx/dt| > Δfs, સ્લોપ ઓવરલોડ થાય છે

ગ્રેન્યુલર નોઇઝ:

જ્યારે ઇનપુટ સિગ્નલ ધીમે ધીમે બદલાય અથવા સ્થિર રહે ત્યારે થાય છે

વેવફોર્મ:

પ્રદર્શન પેરામીટર:

• **સ્લોપ ઓવરલોડ**: મહત્તમ સ્લોપ = Δfs

• ગ્રેન્યુલર નોઇઝ: સ્ટેપ સાઇઝ પર આધાર રાખે છે

• એસએનઆર: બંને અસરોથી મર્યાદિત

મેમરી ટ્રીક: "Slope-Overload, Granular-Noise, High-Bitrate - SOG-H"

પ્રશ્ન 4(ક) OR [7 ગુણ]

પલ્સ કોડ મોક્યુલેશન (PCM) ટ્રાન્સમિટર અને રીસીવરના દરેક બ્લોકના કાર્યોનું વર્ણન કરો.

જવાબ:

PCM ટ્રાન્સમિટર બ્લોક ડાયાગ્રામ:

PCM રીસીવર બ્લોક ડાયાગ્રામ:

ટ્રાન્સમિટર બ્લોક કાર્યો:

બ્લોક	รเช้
LPF	એન્ટિ-એલાયસિંગ ફિલ્ટર, fm કરતાં વધુ આવૃત્તિઓ દૂર કરે છે
સેમ્પલ અને હોલ્ક	fs ≥ 2fm પર સેમ્પલ કરે છે અને વેલ્યુ હોલ્ડ કરે છે
ક્વોન્ટાઇઝર	ડિસ્ક્રીટ એમ્પ્લિટ્યુડ લેવલમાં રૂપાંતરિત કરે છે
એન્કોડર	ક્વોન્ટાઇઝ્ડ સેમ્પલને બાઇનરી કોડમાં રૂપાંતરિત કરે છે

રીસીવર બ્લોક કાર્યો:

બ્લોક	รเช็
ડીકોડર	બાઇનરી કોડને ક્વોન્ટાઇઝ્ડ લેવલમાં રૂપાંતરિત કરે છે
DAC	ડિજિટલ ટુ એનાલોગ રૂપાંતરણ
LPF	પુનર્નિર્માણ ફિલ્ટર, સેમ્પલિંગ આવૃત્તિ દૂર કરે છે

તકનીકી સ્પેસિફિકેશન:

• ક્વોન્ટાઇઝેશન લેવલ: L = 2ⁿ (n = બિટની સંખ્યા)

• **ક્વોન્ટાઇઝેશન એરર**: મહત્તમ Δ/2

• **Giz iz:** fb = n × fs

PCM કાયદા:

• નોઇઝ ઇમ્યુનિટી: ઉત્તમ નોઇઝ પ્રદર્શન

• **રિજનરેશન**: એરર એકઠા થયા વગર પુનર્જનન કરી શકાય છે

• મલ્ટિપ્લેક્સિંગ: અનેક ચેનલ મલ્ટિપ્લેક્સ કરવું સરળ

મેમરી ટ્રીક: "Low-pass, Sample, Quantize, Encode - LSQE માટે TX; Decode, Convert, Filter - DCF માટે RX"

પ્રશ્ન 5(અ) [3 ગુણ]

TDM-PCM સિસ્ટમના બ્લોક ડાયાગ્રામની સંક્ષિપ્ત ચર્ચા કરો.

જવાબ:

TDM-PCM સિસ્ટમ બ્લોક ડાયાગ્રામ:

સિસ્ટમ ઓપરેશન:

- કમ્યુટેટર: અનેક ચેનલનું અનુક્રમિક સેમ્પલિંગ
- પીસીએમ એન્કોડર: સેમ્પલને ડિજિટલ ફોર્મેટમાં રૂપાંતરિત કરે છે
- ટાઇમ ડિવિઝન: દરેક ચેનલને નિશ્ચિત ટાઇમ સ્લોટ મળે છે
- ડીકમ્યુટેટર: રીસીવર પર ચેનલ અલગ કરે છે

ફ્રેમ સ્ટ્રક્ચર:

- ટાઇમ સ્લોટ: દરેક ચેનલને ચોક્કસ સમય આપવામાં આવે છે
- **ફ્રેમ પીરિયડ**: બધી ચેનલ માટે સંપૂર્ણ ચક્ર
- સિંકોનાઇઝેશન: ફ્રેમ સિંકોનાઇઝેશન બિટ ઉમેરવામાં આવે છે

ફાયદા:

- **બેન્ડવિડ્થ એફિશિયન્સી**: કાર્યક્ષમ સ્પેક્ટ્રમ ઉપયોગ
- મલ્ટિપલ ચેનલ: એક લિંક પર અનેક ચેનલ

મેમરી ટ્રીક: "Time Division Multiple Access - TDMA"

પ્રશ્ન 5(બ) [4 ગુણ]

એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન (ADM) પર ટૂંકી નોંધ લખો.

જવાબ:

ADM બ્લોક ડાયાગ્રામ:

કાર્યસિદ્ધાંત:

• એડેપ્ટિવ સ્ટેપ સાઇઝ: ઇનપુટ લાક્ષણિકતાઓના આધારે સ્ટેપ સાઇઝ બદલાય છે

- સ્લોપ ઓવરલોડ પ્રિવેન્શન: ઝડપી ફેરફારો માટે સ્ટેપ સાઇઝ વધારે છે
- ગ્રેન્યુલર નોઇઝ રિડક્શન: ધીમા ફેરફારો માટે સ્ટેપ સાઇઝ ઘટાડે છે
- લોજિક કંટ્રોલ: એલ્ગોરિધમ સ્ટેપ સાઇઝ એડેપ્ટેશન કંટ્રોલ કરે છે

સ્ટેપ સાઇઝ કંટ્રોલ:

- ઇન્ક્રીઝ: જ્યારે સતત બિટ સમાન હોય (સ્લોપ ઓવરલોડ શોધાય)
- ડિક્રીઝ: જ્યારે વૈકલ્પિક પેટર્ન થાય (ગ્રેન્યુલર વિસ્તાર)

સ્ટાન્ડર્ડ DM કરતાં ફાયદા:

- બેટર એસએનઆર: સુધારેલ સિગ્નલ-ટુ-નોઇઝ રેશિયો
- ડાયનેમિક રેન્જ: વધુ સારી ડાયનેમિક રેન્જ
- ઓટોમેટિક એડેપ્ટેશન: સ્વ-એડજસ્ટિંગ લાક્ષણિકતાઓ

મેમરી ટ્રીક: "Adaptive Step size Reduces both Slope-overload and Granular noise - ASRSG"

પ્રશ્ન 5(ક) [7 ગુણ]

લાઇન કોડિંગની વ્યાખ્યા આપો. "1 0 1 1 1 0 1 1" માટે NRZ (યુનિપોલર), RZ (યુનિપોલર), મેન્ચેસ્ટર કોડિંગ વેવફોર્મ દોરો.

જવાબ:

વ્યાખ્યા: લાઇન કોડિંગ એ ડિજિટલ ડેટાને કમ્યુનિકેશન ચેનલ પર ટ્રાન્સમિશન માટે યોગ્ય ડિજિટલ સિગ્નલમાં રૂપાંતરિત કરવાની પ્રક્રિયા છે.

વેવકોર્મ ડાયાગ્રામ:

લાક્ષણિકતાઓ:

કોડિંગ પ્રકાર	લોજિક 1	લોજિક 0	બેન્ડવિડ્થ
NRZ યુનિપોલર	+V	OV	fb
RZ યુનિપોલર	T/2 માટે +V, T/2 માટે 0V	OV	2fb
મેન્ચેસ્ટર	હાઇ-ટુ-લો ટ્રાન્ઝિશન	લો-ટુ-હાઇ ટ્રાન્ઝિશન	2fb

ગુણધર્મો:

• **એનઆરઝેડ**: શૂન્ય પર પાછા ફરતું નથી, સરળ પણ સ્વ-સિંક્રોનાઇઝેશન નથી

• **આરઝેડ**: શૂન્ય પર પાછા ફરે છે, સરળ ક્લોક રિકવરી પણ બમણી બેન્ડવિડ્થ

• મેન્ચેસ્ટર: સ્વ-સિંક્રોનાઇઝિંગ, ઇથરનેટમાં વપરાય છે

એપ્લિકેશન:

• એનઆરઝેડ: સરળ ડિજિટલ સિસ્ટમ

• **આરઝેડ**: મેગ્નેટિક રેકોર્ડિંગ

• મેન્ચેસ્ટર: ઇથરનેટ, કેટલાક વાયરલેસ સ્ટાન્ડર્ડ

મેમરી ટ્રીક: "NRZ-Simple, RZ-Return, Manchester-Transition - SRT"

પ્રશ્ન 5(અ) OR [3 ગુણ]

ટાઇમ ડિવિઝન ડિજિટલ મલ્ટિપ્લેક્સિંગના કોન્સેપ્ટનું વર્ણન કરો.

જવાબ:

TDM કોન્સેપ્ટ:

ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ એ તકનીક છે જેમાં દરેક સિગ્નલને અલગ અલગ ટાઇમ સ્લોટ આપીને અનેક ડિજિટલ સિગ્નલ એક જ ચેનલ પર ટ્રાન્સમિટ કરવામાં આવે છે.

TDM ફ્રેમ સ્ટ્રક્ચર:

કાર્યસિદ્ધાંત:

ยรร	รเช่	
ટાઇમ સ્લોટ	દરેક ચેનલને આપવામાં આવતી નિશ્ચિત અવધિ	
इंभ	બધી ચેનલ ધરાવતું સંપૂર્ણ ચક્ર	
સિંકોનાઇઝેશન	યોગ્ય ચેનલ અલગીકરણ જાળવે છે	
મલ્ટિપ્લેક્સર	અનેક ઇનપુટ અનુક્રમે જોડે છે	

મુખ્ય લક્ષણો:

• ફિક્સ્ડ ટાઇમ સ્લોટ: દરેક ચેનલને પૂર્વનિર્ધારિત સમય મળે છે

• **સિક્વેન્શિયલ સેમ્પલિંગ**: ચેનલ એક પછી એક સેમ્પલ થાય છે

• ડિજિટલ ટ્રાન્સમિશન: ડિજિટલ સિગ્નલ માટે યોગ્ય

• બેન્ડવિડ્થ શેરિંગ: કાર્યક્ષમ સ્પેક્ટ્રમ ઉપયોગ

એપ્લિકેશન:

• **ટેલિફોન સિસ્ટમ**: T1, E1 સિસ્ટમ

• **ડિજિટલ હાયરાકીં**: PDH, SDH સિસ્ટમ

મેમરી ટ્રીક: "Time slots Share Single Channel - TSSC"

પ્રશ્ન 5(બ) OR [4 ગુણ]

ડિફરન્શિયલ PCM (DPCM) પર ટૂંકી નોંધ લખો.

જવાબ:

DPCM બ્લોક ડાયાગ્રામ:

કાર્યસિદ્ધાંત:

• પ્રિડિક્શન: પહેલાના સેમ્પલમાંથી વર્તમાન સેમ્પલનો અંદાજ કાઢે છે

• **ડિફરન્સ સિગ્નલ**: વાસ્તવિક અને અંદાજિત વચ્ચેનો તફાવત ટ્રાન્સમિટ કરે છે

• ક્વોન્ટાઇઝેશન: માત્ર ડિફરન્સ સિગ્નલ ક્વોન્ટાઇઝ કરે છે

• લોકલ ડીકોડર: રીસીવર જેવો જ રેફરન્સ જાળવે છે

પ્રિડિક્શન એલ્ગોરિધમ:

уѕіг	સૂત્ર	એપ્લિકેશન	
ઝીરો ઓર્ડર	$\hat{x}(n) = x(n-1)$	સરળ પ્રિડિક્ટર	
ફર્સ્ટ ઓર્ડર	$\hat{x}(n) = ax(n-1)$	વધુ સારું પ્રિડિક્શન	
હાયર ઓર્ડર	$\hat{x}(n) = \Sigma ai \times x(n-i)$	ઓપ્ટિમમ પ્રિડિક્શન	

ફાયદા:

• **રિક્યુસ્ક બિટ રેટ**: PCM કરતાં ઓછો બિટ રેટ

• **બેટર એસએનઆર**: સમાન બિટ રેટ માટે વધુ સારો SNR

• પ્રિડિક્ટિવ કોડિંગ: સિગ્નલ કોરિલેશનનો લાભ લે છે

એપ્લિકેશન:

• **ઇમેજ કમ્પ્રેશન**: JPEG સ્ટાન્ડર્ડ

• વીડિયો કોડિંગ: મોશન કમ્પેન્સેશન

• સ્પીય કોડિંગ: સ્પીય કમ્પ્રેશન સિસ્ટમ

PCM સાથે સરખામણી:

• **બિટ રેટ**: DPCM ઓછા બિટ જરૂરી છે

• **કોમ્પ્લેક્સિટી**: PCM કરતાં વધુ જટિલ

• ક્વોલિટી: સમાન બિટ રેટ પર વધુ સારી ક્વોલિટી

મેમરી ટ્રીક: "Predict Difference, Quantize Less - PDQL"

પ્રશ્ન 5(ક) OR [7 ગુણ]

4 સ્તરના ડિજિટલ મલ્ટિપ્લેક્સિંગ હાયરાર્કી પર ટૂંકી નોંધ લખો.

જવાબ:

ડિજિટલ મલ્ટિપ્લેક્સિંગ હાયરાર્કી:

લેવલ સ્ટ્રક્ચર:

લેવલ	нн	ડર્ક ડાબી	વોઇસ ચેનલ	એપ્લિકેશન
લેવલ 0	DS-0	64 kbps	1	મૂળભૂત વોઇસ ચેનલ
લેવલ 1	DS-1/T1	1.544 Mbps	24	પ્રાઇમરી મલ્ટિપ્લેક્સ
લેવલ 2	DS-2/T2	6.312 Mbps	96	સેકન્ડરી મલ્ટિપ્લેક્સ
લેવલ 3	DS-3/T3	44.736 Mbps	672	ટર્શિયરી મલ્ટિપ્લેક્સ

મલ્ટિપ્લેક્સિંગ સ્ટ્રક્ચર:

T1 માટે ફ્રેમ સ્ટ્રક્ચર:

• **ફેમ લેન્ચ**: 193 બિટ (192 ડેટા + 1 ફેમિંગ)

• ફ્રેમ રેટ: 8000 ફ્રેમ/સેકન્ડ

ટાઇમ સ્લોટ: દરેક ચેનલ માટે 8 બિટ
ક્રેમિંગ બિટ: સિંક્રોનાઇઝેશન પેટર્ન

T1 ફ્રેમ ફોર્મેટ:

```
|F|CH1|CH2|...|CH24|F|CH1|CH2|...|CH24|

† †
framing 193 bits total
```

મલ્ટિપ્લેક્સિંગ પ્રક્રિયા:

- **લેવલ 1**: 24 વોઇસ ચેનલ × 64 kbps + ઓવરહેડ = 1.544 Mbps
- **લેવલ 2**: 4 T1 સ્ટ્રીમ + ઓવરહેડ = 6.312 Mbps
- **લેવલ 3**: 7 T2 સ્ટ્રીમ + ઓવરહેડ = 44.736 Mbps
- સિંકોનાઇઝેશન: દરેક લેવલ સિંકોનાઇઝેશન બિટ ઉમેરે છે

એપ્લિકેશન:

- ટેલિફોન નેટવર્ક: ટેલિફોન સિસ્ટમમાં પ્રાથમિક એપ્લિકેશન
- ડેટા કમ્યુનિકેશન: હાઇ-સ્પીડ ડેટા ટ્રાન્સમિશન
- ઇન્ટરનેટ બેકબોન: ઇન્ટરનેટ સર્વિસ પ્રોવાઇડર કનેક્શન

આંતરરાષ્ટ્રીય સ્ટાન્ડર્ડ:

• **નોર્થ અમેરિકન**: T1/T3 હાયરાર્કી (DS શ્રેણી)

• **યુરોપિયન**: E1/E3 હાયરાર્કી (અલગ બિટ રેટ)

• આઇટીયુ-ટી: આંતરરાષ્ટ્રીય ભલામણો

ફાયદા:

• સ્ટાન્ડર્ડાઇઝેશન: સારી રીતે વ્યાખ્યાયિત આંતરરાષ્ટ્રીય સ્ટાન્ડર્ડ

• સ્કેલેબિલિટી: ક્ષમતા વધારવામાં સરળતા

• ઇન્ટરઓપરેબિલિટી: વિવિધ વેન્ડર વચ્ચે સુસંગતતા

મેમરી ટ્રીક: "Digital Signal hierarchy: 0-1-2-3 levels Build Communication Systems - DS-BCS"