

Unit-I

hpter 1. Vector Spaces.

- 1.1. Introduction and definitions
- 1.2. Vector space
- 1.3. General properties of vector spaces
- 1.4. Vector subspaces
- Criterion for a subsapce 1.5.
- 1.6. Algebra of subspaces
- Linear combination of vectors 1.7.
- 1.8 Linear span of a set
- 1.9. Finite dimensional vector space
- 1.10. Linear sum of two subspaces
- 1-11. Quotient space
- 1.12. Direct sum of vector sub-spaces
- 1.13. Linearly dependent and linearly independent vectors
- 1.14. Deductions
- Some theorems on linear dependence and linear independence 1.15.
- Basis of a vector space 1.16.
- Existence of basis of a finite dimensional vector sapce $1 \cdot 17$.
- $1 \cdot 18.$ Dimension of a finitely generated vector space
- $1 \cdot 19$. Some properties of finite dimensional vector spaces
- Co-ordinate representation of a vector $1 \cdot 20$.

Unit -II

Chapter 2. Linear Mapping

- 2.1. Linear mapping or vector space homomorphism
- 2.2. Properties of linear mappings
- 2.3. Isomorphism of vector spaces
- 2.4. Some theorems
- 2.5. Some important theorems
- 2.6. Application to ordinary differential equations

Chapter 3. Rank and Nullity of a Linear Transformation

- Rank of a linear transformation $3 \cdot 1.$
- Product of linear transformations 3.2.
- Invertible linear transformations 3.3.

	3.4.	Singular and non-singular linear transformations	
	3.5.	Sum of two linear maps	
	3.6.	Scalar multiple of a linear map	
C	hapte	r 4. Matrix Representation of Linear Maps	(11:
	4-1.	Matrix representation of linear maps	
	4.2.	Some theorems	
		Unit-III	
C	hapte	r 5. Eigen Values and Eigen Vectors	(13
	5-1.	Eigen values and eigen vectors of a linear map	
	5-2.	Certain relation between eigen values and eigen vectors	
	5.3.	Nature of the eigen values of special types of matrices	
	5-4.	The process of finding the eigen values and the eigen vectors of a matrix	
	5.5.	Characteristic (Eigen) subspaces of a matrix	
	5-6.	Cayley-Hamilton theorem	
C	hpte	6. Diagonalization of Matices	(16
	6.1.	Similarity	
	6-2.	Diagonalization of matrices	
	6.3.	Diagonalization of a matrix with repeated eigen values	
		Unit-IV	
(Chapt	er 7. Inner Product	(18
	7.1.	Inner product	
	7-2.	Properties of inner product	
	7.3.	Norm or length of a vector in an inner product space	
	7.4.	Orthogonalization of a base	
	7.5.	Bessel's inequality	
	Chap	ter 8. Quadratic Forms and their Reduction to Canonical Forms	(22
	8 · 1.	Some definitions	
	8 · 2.	Types of bilinear forms	
	8.3.	Quadratic form	
	8.4.	Linear transformation of a quadratic form	
	8.5.		
	8.6.	Elementary transformation Canonical or normal form of a real quadratic form	
	8.7	Canonical or normal form of a real quadratic form	

Ameres

Unit-V

Chapter 9. Orthogonal Reduction, Classification of Curves and Surfaces

	(254–282)
9-1. Orthogonal similar matrices	254
9.2. Orthogonal reduction of similar matrices	254
9.3. Orthogonal reduction of a real quadratic form	257
9-4. Simultaneous diagonalization of two quadratic forms	263
9-5. Euclidean space	266
9.6. Classification of quadrics in 2-dimensional Euclidean space	266
9.7. Conic or conic-section	267
9-8. Classification of quadrics in 4-dim. Euclidean space	274
Chapter 10. Bilinear Forms	(283–297)
10·1. Bilinear forms	283
10-2. Bilinear forms as vectors	285
10-3. External direct product	288
10-4. Degenerate and non-degenerate bilinear forms	292
10.5. Symmetric-bilinear form	292
10.6. Skew symmetric bilinear forms	294
Answers	(298–312)