The goal of the experiment is to understand the tradeoffs in speed, optimality, and complexity of progression search as problem size increases.

List of air cargo problems:

```
1. Air Cargo Problem 1
cargos = ['C1', 'C2']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO']
2. Air Cargo Problem 2
cargos = ['C1', 'C2', 'C3']
planes = ['P1', 'P2', 'P3']
airports = ['JFK', 'SFO', 'ATL']
3. Air Cargo Problem 3
cargos = ['C1', 'C2', 'C3', 'C4']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO', 'ATL', 'ORD']
4. Air Cargo Problem 4
cargos = ['C1', 'C2', 'C3', 'C4', 'C5']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO', 'ATL', 'ORD']
```

List of search functions:

- 1. breadth_first_search (BFS)
- 2. depth_first_graph_search (DFGS)
- 3. uniform_cost_search (UCS)
- 4. greedy_best_first_graph_search (GBFGS) h_unmet_goals
- 5. greedy_best_first_graph_search (GBFGS) h_pg_levelsum
- 6. greedy_best_first_graph_search (GBFGS) h_pg_maxlevel
- 7. greedy best first graph search (GBFGS) h pg setlevel
- 8. astar_search h_unmet_goals
- 9. astar_search h_pg_levelsum
- 10. astar_search h_pg_maxlevel
- 11. astar_search h_pg_setlevel

Air Cargo Problem 1 analysis:

	Actions	Expansions	Goal Tests	New Nodes	Plan length	Time elapsed in seconds
breadth_first_search	20	43	56	178	6	0.0068851249525 32351
depth_first_graph_sea rch	20	21	22	84	20	0.0031982630025 595427
uniform_cost_search	20	60	62	240	6	0.0087887529516 59262
greedy_best_first_gra ph_search with h_unmet_goals	20	7	9	29	6	0.0014407690614 461899
greedy_best_first_gra ph_search with h_pg_levelsum	20	6	8	28	6	0.2982362239854 4103
greedy_best_first_gra ph_search with h_pg_maxlevel	20	6	8	24	6	0.2282839900581 1661
greedy_best_first_gra ph_search with h_pg_setlevel	20	6	8	28	6	0.8663986830506 474
astar_search with h_unmet_goals	20	50	52	206	6	0.0086844780016 6905
astar_search with h_pg_levelsum	20	28	30	122	6	0.7623416710412 13
astar_search with h_pg_maxlevel	20	43	45	180	6	0.7924023820087 314
astar_search with h_pg_setlevel	20	33	35	138	6	2.3394761560484 767

Air Cargo Problem 2 analysis:

	Actions	Expansions	Goal Tests	New Nodes	Plan length	Time elapsed in seconds
breadth_first_search	72	3343	4609	30503	9	1.8617419659858 57
depth_first_graph_sea rch	72	624	625	5602	619	2.4555053670192 137
uniform_cost_search	72	5154	5156	46618	9	3.0587183249881 49
greedy_best_first_gra ph_search with h_unmet_goals	72	17	19	170	9	0.0172773459926 2476
greedy_best_first_gra ph_search with h_pg_levelsum	72	9	11	86	9	6.8627280639484 525
greedy_best_first_gra ph_search with h_pg_maxlevel	72	27	29	249	9	13.888314162963 07
greedy_best_first_gra ph_search with h_pg_setlevel	72	9	11	84	9	18.762575499946 25
astar_search with h_unmet_goals	72	2467	2469	22522	9	2.0369204409653 32
astar_search with h_pg_levelsum	72	357	359	3426	9	180.93695470900 275
astar_search with h_pg_maxlevel	72	2887	2889	26594	9	1056.8551358759 87
astar_search with h_pg_setlevel	72	1037	1039	9605	9	1451.7230668379 925

From the above results for Problem 1 and 2:

- *We can clearly **exclude DFGS** from Problems 3 and 4, since it has a much higher plan length: 619 with 72 actions in case of problem 2. Whereas, all the rest of the search algorithms have a much lesser plan length.
- *Next, based on search time we could also rule out, Astar search with Max level and Set level heuristics.
- *Both, BFS and UCS obtained optimal plan length.
- *GBFGS algorithms have the lowest node expansion of all the algorithms, with minimal search times.

Air Cargo Problem 3 analysis:

	Actions	Expansions	Goal Tests	New Nodes	Plan length	Time elapsed in seconds
breadth_first_search	88	14663	18098	129625	12	10.0132953110151
uniform_cost_search	88	18510	18512	161936	12	13.919488257961 348
greedy_best_first_gra ph_search with h_unmet_goals	88	25	27	230	15	0.0339933319482 95236
greedy_best_first_gra ph_search with h_pg_levelsum	88	14	16	126	14	15.607563314959 407
greedy_best_first_gra ph_search with h_pg_maxlevel	88	21	23	195	13	18.433272599009 797
greedy_best_first_gra ph_search with h_pg_setlevel	88	35	37	345	17	89.556911083986 05
astar_search with h_unmet_goals	88	7388	7390	65711	12	7.6251497169723 73
astar_search with h_pg_levelsum	88	369	371	3403	12	276.37868409301 154

Air Cargo Problem 4 analysis:

	Actions	Expansions	Goal Tests	New Nodes	Plan length	Time elapsed in seconds
breadth_first_search	104	99736	114953	944130	14	86.738467919058 17
uniform_cost_search	104	113339	113341	1066413	14	104.86973032006 063
greedy_best_first_gra ph_search with h_unmet_goals	104	29	31	280	18	0.0594267660053 4469
greedy_best_first_gra ph_search with h_pg_levelsum	104	17	19	165	17	27.592078976915 218
greedy_best_first_gra ph_search with h_pg_maxlevel	104	56	58	580	17	66.068805112969 13

	Actions	Expansions	Goal Tests	New Nodes	Plan length	Time elapsed in seconds
greedy_best_first_gra ph_search with h_pg_setlevel	104	107	109	1164	23	409.93923280795 57
astar_search with h_unmet_goals	104	34330	34332	328509	14	49.144006361952 05
astar_search with h_pg_levelsum	104	1208	1210	12210	15	1588.006164241

From the above results for Problem 3 and 4:

- *We can infer that the GBFGS algorithms have the lowest amount of nodes expansion even for large number of actions, when compared with algorithms from the Uninformed search family and from the Astar search family.
- *The uninformed search algorithms BFS and UCS are expanding with most nodes although it does not seem to have an equivalent impact on its speed.

Use your results to answer the following questions:

- Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?
 - Based on the above results, these would be:
 - greedy_best_first_graph_search with h_unmet_goals
 - uniform cost search
- Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)
 - Based on the above results, this would be:
 - greedy best first graph search with h unmet goals
- Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?
 - Based on the above results, these would be:
 - uniform_cost_search
 - breadth_first_search, for both restricted and large domains.