

Curves and Surfaces

CS 432 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

- Introduce types of curves and surfaces
- Explicit
- Implicit
- Parametric
- Strengths and weaknesses
- Discuss Modeling and Approximations
 - Conditions
 - Stability

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Escaping Flatland

- Until now we have worked with flat entities such as lines and flat polygons
 - Fit well with graphics hardware
 - Mathematically simple
- But the world is not composed of flat entities
 - Need curves and curved surfaces
 - May only have need at the application level
 - Implementation can render them approximately with flat primitives

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

What Makes a Good Representation?

- There are many ways to represent curves and surfaces
- · Want a representation that is
 - Stable
 - Smooth
 - Easy to evaluate
 - Must we interpolate or can we just come close to data?
 - Do we need derivatives?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Explicit Representation

· Most familiar form of curve in 2D

y=f(x)

Cannot represent all curves

- Vertical lines

• Extension to 3D

- Circles

- -y=f(x), z=g(x)
- The form z = f(x,y) defines a surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012

Implicit Representation

• Two dimensional curve(s)

g(x,y)=0

- · Much more robust
 - All lines ax+by+c=0
 - Circles x2+y2-r2=0
- Three dimensions g(x,y,z)=0 defines a surface
 - Intersect two surface to get a curve
- In general, we cannot exactly solve for points that satisfy the equation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Algebraic Surface

$$\sum_{i}\sum_{i}\sum_{k}x^{i}y^{j}z^{k}=0$$

- •Quadric surface $2 \ge i+j+k$
- •At most 10 terms
- •Can solve intersection with a ray by reducing problem to solving quadratic equation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Curves

• Separate equation for each spatial variable

x=x(u)

y=y(u)

 $p(u)=[x(u), y(u), z(u)]^T$

z=z(u)

• For $u_{max} \ge u \ge u_{min}$ we trace out a curve in two or three dimensions

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Selecting Functions

- Usually we can select "good" functions
 - not unique for a given spatial curve
 - Approximate or interpolate known data
 - Want functions which are easy to evaluate
 - Want functions which are easy to differentiate
 - Computation of normals
 - Connecting pieces (segments)
 - Want functions which are smooth

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Lines

We can normalize u to be over the interval (0,1)

Line connecting two points \boldsymbol{p}_0 and \boldsymbol{p}_1 $\mathbf{p}(\mathbf{u}) = (1 - \mathbf{u})\mathbf{p}_0 + \mathbf{u}\mathbf{p}_1$

Ray from \mathbf{p}_0 in the direction \mathbf{d}

 $\mathbf{p}(\mathbf{u}) = \mathbf{p}_0 + \mathbf{u}\mathbf{d}$ $\mathbf{p}(0) = \mathbf{p}_0$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Parametric Surfaces

· Surfaces require 2 parameters

x=x(u,v)

y=y(u,v)

z=z(u,v)

- · Want same properties as curves:
 - Smoothness
 - Differentiability
 - Ease of evaluation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Cubic Parametric Polynomials

 N=M=L=3, gives balance between ease of evaluation and flexibility in design

$$p(u) = \sum_{k=0}^{3} c_k u^k$$

- Four coefficients to determine for each of x, y and z
- \bullet Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of $x,\,y$ and z
 - Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Cubic Polynomial Surfaces

$$\mathbf{p}(u,v) = [x(u,v), y(u,v), z(u,v)]^T$$

where

$$p(u,v) = \sum_{i=0}^{3} \sum_{i=0}^{3} c_{ij} u^{i} v$$

p is any of x, y or z

Need 48 coefficients (3 independent sets of 16) to determine a surface patch

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Designing Parametric Cubic Curves

CS 432 Interactive Computer Graphics

Prof. David E. Breen
Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

- Introduce the types of curves
 - Interpolating
 - Hermite
 - Bezier
 - B-spline
- Analyze their performance

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

2

Matrix-Vector Form

$$p(u) = \sum_{k=0}^{3} c_k u^k$$

define
$$\mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}$$
 $\mathbf{u} = \begin{bmatrix} u \\ u \\ u \end{bmatrix}$

then
$$p(u) = \mathbf{u}^T \mathbf{c} = \mathbf{c}^T \mathbf{u}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interpolating Curve

Given four data (control) points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 determine cubic $\mathbf{p}(u)$ which passes through them

Must find \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interpolation Equations

apply the interpolating conditions at u=0, 1/3, 2/3, 1 $\begin{array}{c} p_0 = p(0) = c_0 \\ p_1 = p(1/3) = c_0 + (1/3)c_1 + (1/3)^2c_2 + (1/3)^3c_2 \\ p_2 = p(2/3) = c_0 + (2/3)c_1 + (2/3)^2c_2 + (2/3)^3c_2 \\ p_3 = p(1) = c_0 + c_1 + c_2 + c_2 \end{array}$

or in matrix form with $\mathbf{p} = [p_0 \ p_1 \ p_2 \ p_3]^T$

 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & \left(\frac{1}{3}\right) & \left(\frac{1}{3}\right)^2 \\ 1 & \left(\frac{2}{3}\right) & \left(\frac{2}{3}\right)^2 \end{bmatrix}$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

ريد. Drexel

Interpolation Matrix

Solving for c we find the interpolation matrix

$$\mathbf{M}_{I} = \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & -22.5 & 18 & -4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{bmatrix}$$

$$c=M_Ip$$

Note that \mathbf{M}_I does not depend on input data and can be used for each segment in \mathbf{x} , \mathbf{y} , and \mathbf{z}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interpolating Multiple Segments

Get continuity at join points but not continuity of derivatives

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Functions

Rewriting the equation for p(u)

$$\mathbf{p}(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{c} = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{I} \mathbf{p} = \mathbf{b}(\mathbf{u})^{\mathrm{T}} \mathbf{p}$$

where $b(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$ is an array of *blending polynomials* such that $p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3$

$$b_0(u) = -4.5(u-1/3)(u-2/3)(u-1)$$

$$b_1(u) = 13.5u (u-2/3)(u-1)$$

$$b_2(u) = -13.5u (u-1/3)(u-1)$$

$$b_3(u) = 4.5u (u-1/3)(u-2/3)$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Functions

- These functions are not smooth
 - Hence the interpolation polynomial is not smooth

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012

Interpolating Patch

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} u^{i} v^{j}$$

Need 16 conditions to determine the 16 coefficients c_{ij} Choose at u,v = 0, 1/3, 2/3, 1

$$P_{00}$$
 P_{01}
 P_{02}
 P_{03}
 P_{01}
 P_{02}
 P_{03}
 P_{03}
 P_{04}
 P_{05}
 P_{05}
 P_{05}
 P_{05}
 P_{05}
 P_{05}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012

Matrix Form

Define
$$\mathbf{v} = [1 \text{ v } v^2 \text{ v}^3]^T$$

$$\mathbf{C} = [c_{ij}] \qquad \mathbf{P} = [p_{ij}]$$

$$p(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\mathrm{T}} \mathbf{C} \mathbf{v}$$

If we observe that for constant $u\left(v\right)\!,$ we obtain interpolating curve in $v\left(u\right)\!,$ we can show

$$C=M_IPM_I$$

$$p(u,v) = u^{T} M_{I} P M_{I}^{T} v$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Patches

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_{i}(u) b_{j}(v) p_{ij}$$

Each $b_i(u)b_j(v)$ is a blending patch

Shows that we can build and analyze surfaces from our knowledge of curves

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Other Types of Curves and Surfaces

- How can we get around the limitations of the interpolating form
 - Lack of smoothness
 - Discontinuous derivatives at join points
- We have four conditions (for cubics) that we can apply to each segment
 - Use them other than for interpolation
 - Need only come close to the data

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hermite Form

p'(1)

Use two interpolating conditions and two derivative conditions per segment

Ensures continuity and first derivative continuity between segments

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Equations

Interpolating conditions are the same at ends

$$p(0) = p_0 = c_0$$

 $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Differentiating we find p' (u) = $c_1+2uc_2+3u^2c_3$

Evaluating at end points

$$p'(0) = p'_0 = c_1$$

 $p'(1) = p'_3 = c_1 + 2c_2 + 3c_3$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012

Matrix Form

$$\mathbf{q} = \begin{bmatrix} p_0 \\ p_3 \\ p'_0 \\ p'_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \mathbf{q}$$

Solving, we find $\mathbf{c} = \mathbf{M}_H \mathbf{q}$ where \mathbf{M}_H is the Hermite matrix

$$\mathbf{M}_{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & -1 \\ 2 & -2 & 1 & 1 \end{bmatrix}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Polynomials

$$\mathbf{b}(u) = \mathbf{b}(\mathbf{u})^{\mathrm{T}} \mathbf{q}$$

$$\mathbf{b}(u) = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix}$$

Although these functions are smooth, the Hermite form is not used directly in Computer Graphics and CAD because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric and Geometric Continuity

- We can require the derivatives of x, y, and z to each be continuous at join points (parametric continuity)
- Alternately, we can only require that the tangents of the resulting curve be continuous (geometry continuity)
- The latter gives more flexibility as we have need satisfy only two conditions rather than three at each join point

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Parametric Continuity

- Continuity (recall from the calculus):
 - Two curves are C^i continuous at a point p iff the *i*-th derivatives of the curves are equal at *p*

C⁰ continuous Not continuous

discontinuity C1 continuous

curvature

Example

- Here the p and q have the same tangents at the ends of the segment but different derivatives
- Generate different Hermite curves
- This techniques is used in drawing applications

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Higher Dimensional Approximations

- The techniques for both interpolating and Hermite curves can be used with higher dimensional parametric polynomials
- For interpolating form, the resulting matrix becomes increasingly more ill-conditioned and the resulting curves less smooth and more prone to numerical errors
- In both cases, there is more work in rendering the resulting polynomial curves and surfaces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Bezier and Spline Curves and Surfaces

CS 432 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Objectives

- Introduce the Bezier curves and surfaces
- Derive the required matrices
- Introduce the B-spline and compare it to the standard cubic Bezier

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bezier's Idea

- In graphics and CAD, we do not usually have derivative data
- Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

4

Equations

Interpolating conditions are the same

$$p(0) = p_0 = c_0$$

 $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Approximating derivative conditions

$$p'(0) = 3(p_1-p_0) = c_0$$

 $p'(1) = 3(p_3-p_2) = c_1+2c_2+3c_3$

Solve four linear equations for $\mathbf{c} = \mathbf{M}_B \mathbf{p}$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bezier Matrix

$$\mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

$$p(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{M}_{B} \mathbf{p} = \mathbf{b}(\mathbf{u})^{\mathrm{T}} \mathbf{p}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

blending functions

Blending Functions

$$\mathbf{b}(u) = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix} \xrightarrow[0.5]{0.5}$$

Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{G}}$ Addison-Wesley 2012

Cubic Bezier Curve

· Multiplying it all out gives

$$p(u) = (1-u)^{3}\mathbf{p_{0}} + 3u(1-u)^{2}\mathbf{p_{1}} + 3u^{2}(1-u)\mathbf{p_{2}} + u^{3}\mathbf{p_{3}}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bernstein Polynomials

 The blending functions are a special case of the Bernstein polynomials

$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

- These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Convex Hull Property

- The properties of the Bernstein polynomials ensure that all Bezier curves lie in the convex hull of their control points
- Hence, even though we do not interpolate all the data, we cannot be too far away

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{Q}}$ Addison-Wesley 2012

General Form of Bezier Curve

$$\vec{p}(u) = \sum_{i=0}^{k} \vec{p}_{i+1} \binom{k}{i} (1-u)^{k-i} u^{i}$$

52

Analysis

- Although the Bezier form is much better than the interpolating form, its derivatives are not continuous at join points
- Can we do better?
 - Go to higher order Bezier
 - More work
 - Derivative continuity still only approximate
 - · Supported by OpenGL
 - Apply different conditions
 - Tricky without letting order increase

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

B-Splines

- \underline{B} asis splines: use the data at $\mathbf{p} = [p_{i-2} \ p_{i-1} \ p_i \ p_{i-1}]^T$ to define curve only between p_{i-1} and p_i
- Allows us to apply more continuity conditions to each segment
- For cubics, we can have continuity of function, first and second derivatives at join points
- Cost is 3 times as much work for curves
 Add one new point each time rather than three
- For surfaces, we do 9 times as much work

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Splines and Basis

- If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments
- \bullet We can rewrite p(u) in terms of the data points as

$$p(u) = \sum B_i(u) \ p_i$$
 defining the basis functions $\{B_i(u)\}$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Generalizing Splines

- ·We can extend to splines of any degree
- Data and conditions to not have to given at equally spaced values (the *knots*)
 - Nonuniform and uniform splines
 - Can have repeated knots
 - Can force spline to interpolate points
- Cox-deBoor recursion gives method of evaluation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

NURBS

- Nonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,z
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate
- Requires a perspective division
 - NURBS act correctly for perspective viewing
- Quadrics are a special case of NURBS

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{G}}$ Addison-Wesley 2012

Issues with 3D "mesh" formats

- Easy to acquire
- Easy to render
- · Harder to model with
- Error prone
 - split faces, holes, gaps, etc

63

BRep Data Structure

- Vertex structure
 - X,Y,Z point
 - Pointers to *n* coincident edges
- Edge structure
 - 2 pointers to end-point vertices
 - 2 pointers to adjacent faces
 - Pointer to next edge
 - Pointer to previous edge
- Face structure
 - Pointers to m edges

65

Biparametric Surfaces

- · Biparametric surfaces
 - A generalization of parametric curves
 - 2 parameters: s, t (or u, v)
 - Two parametric functions

Bicubic Surfaces

- Recall the 2D curve: $Q(s) = G \cdot M \cdot S$
 - G: Geometry Matrix
 - M: Basis Matrix
 - S: Polynomial Terms $[s^3 s^2 s 1]$
- For 3D, we allow the points in G to vary in 3D along t as well:

$$Q(s,t) = \left[\begin{array}{ccc} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{array} \right] \cdot M \cdot S$$

07

Observations About Bicubic Surfaces

- For a fixed t_1 , $Q(s,t_1)$ is a curve
- Gradually incrementing t_1 to t_2 , we get a new curve
- The combination of these curves is a surface
- $G_i(t)$ are 3D curves

Bicubic Surfaces

• Each $G_i(t)$ is $G_i(t) = \mathbf{G_i} \cdot \mathbf{M} \cdot \mathbf{T}$, where

$$\mathbf{G_i} = \left[\begin{array}{ccc} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{array} \right]$$

• Transposing $G_i(t)$, we get

$$G_i(t) = T^T \cdot M^T \cdot \mathbf{G_i^T}$$

$$= \mathbf{T^T} \cdot \mathbf{M^T} \cdot \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}^T$$

Bicubic Surfaces

- Substituting $G_i(t)$ into $Q(s) = G \cdot M \cdot S$ we get Q(s, t)
- The g_{11} , etc. are the *control points* for the Bicubic surface patch:

$$Q(s,t) = T^T \cdot M^T \cdot \begin{bmatrix} g_{11} & g_{21} & g_{31} & g_{41} \\ g_{12} & g_{22} & g_{32} & g_{42} \\ g_{13} & g_{23} & g_{33} & g_{43} \\ g_{14} & g_{24} & g_{34} & g_{44} \end{bmatrix} \cdot M \cdot S$$

Bicubic Surfaces

• Writing out $Q(s,t) = T^T \cdot M^T \cdot G \cdot M \cdot S$ $0 \le s,t \le 1$ gives

$$x(s,t) = T^T \cdot M^T \cdot G_x \cdot M \cdot S$$

$$y(s,t) = T^T \cdot M^T \cdot G_y \cdot M \cdot S$$

$$z(s,t) = T^T \cdot M^T \cdot G_z \cdot M \cdot S$$

Bézier Patches

 Bézier Surfaces (similar definition)

$$z(s,t) = T^T \cdot M_B^T \cdot G_{B_z} \cdot M_B \cdot S$$

Bezier Patches

Using same data array $P=[p_{ii}]$ as with interpolating form

$$p(u,v) = \sum_{i=0}^{3} \sum_{i=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_B \mathbf{P} \mathbf{M}_B^T v$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Bézier Surfaces

• Co and Go continuity can be achieved between two patches by setting the 4 boundary control points to be equal

• G¹ continuity achieved when crosswise CPs are colinear

Objectives

- · Introduce methods to draw curves
 - Approximate with lines
 - Finite Differences
- Derive the recursive method for evaluation of Bezier curves and surfaces
- · Learn how to convert all polynomial data to data for Bezier polynomials

E. Angel and D.Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Every Curve is a Bezier Curve

- We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve
- Suppose that p(u) is given as an interpolating curve with control points q

 $p(u) \!\!=\!\! u^T \! M_{/\!\!\!\!/} \! q$ • There exist Bezier control points p such that

 $p(u)=u^{T}M_{B}p$

• Equating and solving, we find $\mathbf{p} = \mathbf{M}_B^{-1} \mathbf{M}_I$

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Matrices

Interpolating to Bezier $\mathbf{M}_{B}^{-1}\mathbf{M}_{I}$

B-Spline to Bezier

$$\mathbf{M}_{B}^{-1}\mathbf{M}_{S} = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}$$

E. Angel and D.Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Evaluating Polynomials

- · Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline
- For surfaces we can form an approximating mesh of triangles or quadrilaterals
- •Use Horner's method to evaluate polynomials

 $p(u)=c_0+u(c_1+u(c_2+uc_3))$

- 3 multiplications/evaluation for cubic

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The de Casteljau Algorithm

 The complete solution from the algorithm for three iterations:

> $\mathbf{p_1} \quad \mathbf{p_{01}}$ $p_2 \quad p_{11} \quad p(u)$

 $\mathbf{p}_{01}(u) = (1-u)\mathbf{p}_0 + u\mathbf{p}_1$ $\mathbf{p}_{11}(u) = (1-u)\mathbf{p}_1 + u\mathbf{p}_2.$ $\mathbf{p}(u) = (1 - u)\mathbf{p}_{01}(u) + u\mathbf{p}_{11}(u)$

 $\mathbf{p_{11}} \quad \mathbf{p_{02}}$ $\mathbf{p_{21}} \quad \mathbf{p_{12}} \quad \mathbf{p(u)}$

The de Casteljau Algorithm

•Input: $p_0,p_1,p_2...p_n \in R^3$, $t \in R$

•Iteratively set: $p_{ir}(t) = (1-t)p_{i(r-1)}(t) + t p_{(i+1)(r-1)}(t) \begin{cases} r = 1,...,n \\ i = 0,...,n-r \end{cases}$ and $p_{i0}(t) = p_i$

Then $p_{0n}(t)$ is the point with parameter value t on the Bézier curve defined by the p_i's

De Casteljau: Cubic Curve Animation

nated by Max Peysakhov @ Drexel Unive

Subdivision

- Common in many areas of graphics, CAD, CAGD, vision
- Basic idea
- primitives def' d by control polygons
- set of control points is not unique
 - more than one way to compute a curve
- subdivision refines representation of an object by introducing more control points
- · Allows for local modification
- · Subdivide to pixel resolution

92 Pics/Math courtesy of G. Farin @ AS

Bézier Curve Subdivision

- Subdivision allows display of curves at different/adaptive levels of resolution
- Rendering systems (OpenGL, ActiveX, etc) only display polygons or lines
- Subdivision generates the lines/facets that approximate the curve/surface
 - output of subdivision sent to renderer

93

deCasteljau Recursion

- We can use the convex hull property of Bezier curves to obtain an efficient recursive method that does not require any function evaluations
 - Uses only the values at the control points
- Based on the idea that "any polynomial and any part of a polynomial is a Bezier polynomial for properly chosen control data"

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Drawing Parametric Curves

Two basic ways:

- Iterative evaluation of x(t), y(t), z(t) for incrementally spaced values of t
 - can't easily control segment lengths and error
- Recursive Subdivision
 via de Casteljau, that stops when control
 points get sufficiently close to the curve
 - i.e. when the curve is nearly a straight line

100

d(P,L)

Drawing Parametric Curves via Recursive Subdivision

- Idea: stop subdivision when segment is flat enough to be drawn w/ straight line
- Curve Flatness Test:
 - based on the convex hull
 - if d_2 and d_3 are both less than some ε , then the curve is declared flat

FYI: Computing the Distance from a Point to a Line

- · Line is defined with two points
- ·Basic idea:
 - Project point P onto the line
 - Find the location of the projection

Drawing Parametric Curves via Recursive Subdivision

The Algorithm:

- DrawCurveRecSub(curve,e)
 - If straight(curve,e) then DrawLine(curve)
 - Else
 - ${\tt *SubdivideCurve} (curve, LeftCurve, RightCurve)\\$
 - DrawCurveRecSub(LeftCurve,e)
 - DrawCurveRecSub(RightCurve,e)

