Calculus Homework

- 1. Question: Which of the following numbers (as is) gives df/dt at time t? Answer: (c) $\lim_{\Delta t \to 0} \frac{f(t-\Delta t)-f(t)}{-\Delta t}$.
- 2. (a) Question: Compute the ratio for $f(x) = x^2$: $\frac{f(x+h)-f(x)}{h}$. Answer: When h = 0, it gives 2x.
- (b) Question: Compute the ratio for $f(x) = x^2$: $\frac{f(x+5h)-f(x)}{5h}$. Answer: When h=0, it gives 2x.
- (c) Question: Compute the ratio for $f(x)=x^2$: $\frac{f(x+h)-f(x-h)}{2h}$. Answer: When h=0, it gives 2x.
- (d) Question: Compute the ratio for $f(x) = x^2$: $\frac{f(x+1)-f(x)}{h}$. Answer: It is undefined when h = 0.
- 3. Question: For f(x) = 3x and g(x) = 1 + 3x, find f(4+h), g(4+h), f'(4), and g'(4). Answer: f(4+h) = 3(4+h) = 12 + 3h, g(4+h) = 1 + 3(4+h) = 13 + 3h, f'(4) = 3, g'(4) = 3.
- 4. Question: Find three functions with the same slope as $f(x) = x^2$. Answer: $f_1(x) = x^2 + 10$, $f_2(x) = x^2 5x$, $f_3(x) = x^2 + 2x + 4$.
- 5. Question: For f(x) = 1/x, which function has the derivative $-1/x^2$: f(x) + 1 or f(x + 1)? Answer: f(x + 1).
- 6. Question: Choose c so that the line y=x is tangent to the parabola $y=x^2+c$. Answer: $c=-\frac{1}{4}$.
- 7. Question: Sketch the curve $y(x) = 1 x^2$ and compute its slope at x = 3. Answer: Slope at x = 3 is -6.
- 8. Question: If f(t) = 1/t, what is the average velocity between t = 1/2 and t = 2? Between t = 1/2 and t = 1? Between t = 1/2 and t = 101/200? Answer: Average velocity between t = 1/2 and t = 2 is $-\frac{3}{4}$, between t = 1/2 and t = 1 is -1, between t = 1/2 and t = 101/200 is approximately -2.0.
- 9. Question: Find $\Delta y/\Delta x$ for $y(x)=x+x^2$. Then find dy/dx. Answer: $\Delta y/\Delta x=1+2x,\ dy/dx=1+2x.$
- 10. Question: Find $\Delta y/\Delta x$ and dy/dx for $y(x) = 1 + 2x + 3x^2$. Answer: $\Delta y/\Delta x = 2 + 6x$, dy/dx = 2 + 6x.
- 11. Question: When f(t) = 4/t, simplify the difference $f(t + \Delta t) f(t)$, divide by Δt , and set $\Delta t = 0$. Answer: $f'(t) = -4/t^2$.
- 12. Question: Find the derivative of $1/t^2$ from $\Delta f(t) = 1/(t+\Delta t)^2 1/t^2$. Answer: $f'(t) = -2/t^3$.
- 13. (a) Question: For f(t)=7t with $t\leq 1$ and f(t)=7+9(t-1) with t>1, find df/dt at $t=\frac{1}{2}$ and $t=\frac{3}{2}$. Answer: $df/dt|_{t=1/2}=7$, $df/dt|_{t=3/2}=9$.

- (b) Question: Why doesn't f(t) have a derivative at t = 1? Answer: Because the slope changes abruptly at t = 1.
- 14. Question: Find the second and third derivatives of $y=3x^2$. Answer: Second derivative: 6, Third derivative: 0.
- 15. Question: Find numbers A and B so that y = x fits smoothly with $Y = A + Bx + x^2$ at x = 1. Answer: A = 0, B = -1.
- 16. Question: Find numbers A and B so that y=4 fits smoothly with the curve $y=A+Bx+x^2$ at the point x=2. Answer: $A=0,\,B=8$.
- 17. (a) Question: True or false: If f(t) < 0 then df/dt < 0. Answer: False. Example: $f(t) = -t^2$.
- (b) Question: True or false: The derivative of $(f(t))^2$ is 2df/dt. Answer: False. Correct statement: The derivative of $(f(t))^2$ is 2f(t)df/dt.
- (c) Question: True or false: The derivative of 2f(t) is 2df/dt. Answer: True.
- (d) Question: True or false: The derivative is the limit of Δf divided by the limit of Δt . Answer: False.
- 18. Question: Why divide by 2h to obtain the correct derivative when finding the derivative for f(x) = 1/x? Answer: Because this is for the centered difference approach; dividing by 2h accounts for the equal change on both sides of x.
- 19. Question: Find the conditions for graphs of y = mx + b for x < 0 and y = Mx + B for $x \ge 0$ to meet at x = 0. Answer: b = B and m = M.
- 20. Question: For y=1/x at x=1/4, which of these ratios is closest to -16: $\frac{y(x+h)-y(x)}{h}$, $\frac{y(x)-y(x-h)}{h}$, $\frac{y(x+h)-y(x-h)}{2h}$? Answer: $\frac{y(x+h)-y(x)}{h}$ when h=1/12.
- 21. Question: Find the average slope of $y=x^2$ between $x=x_1$ and $x=x_2$. Answer: Average slope: $\frac{(x_2^2-x_1^2)}{(x_2-x_1)}$.
- 22. Question: Redraw Figure 2.1 when f(t) = 3 2t for $t \le 2$ and f(t) = -1 for $t \ge 2$. What is df/dt? Answer: df/dt = -2 for $t \le 2$ and df/dt = 0 for t > 2.