THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

MID SESSION TEST - 2016 -wednesday, 27th April

MATH3811/MATH3911

Time allowed: 50 minutes; (*) question is for 3911 students only

1. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ $(n \ge 2)$ be i.i.d. random variables each with Rayleigh distribution density:

$$f(x,\theta) = \frac{x}{\theta}e^{\left(-\frac{x^2}{2\theta}\right)}, x > 0, \theta > 0.$$

Here θ is unknown parameter.

- a) Argue that $T(\mathbf{X}) = \sum_{i=1}^{n} X_i^2$ is a complete and minimal sufficient statistic for θ .
- b) Show that $E(X_1^2) = 2\theta$ holds.
- c) Using a) and b), or otherwise, derive the UMVUE of θ . What is the value of the Cramer-Rao bound for an unbiased estimator of θ ?
- d) Argue that a uniformly most powerful unbiased α -size test of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ exists. Given that $E(X_1^4) = 8\theta^2$, use the Central Limit Theorem to show that the rejection region of the test can be approximated by $S = \{\mathbf{X}: \frac{|T-2n\theta_0|}{2\sqrt{n}\theta_0} > z_{\alpha/2}\}$.
- e) If the prior for θ is $\tau(\theta) = \theta^{-3}e^{-1/\theta}$, $\theta > 0$, find the Bayesian estimator of θ with respect to quadratic loss.

You may use: The Inverse Gamma distribution with parameters $\alpha > 1$ and $\beta > 0$ has a density

$$g(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} e^{-\beta/x}, x > 0$$

where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \exp(-x) dx$. Its expected value is equal to $\frac{\beta}{\alpha-1}$.

f) (*) Suppose that besides the sample $\mathbf{X} = (X_1, X_2, \dots, X_n)$ from the Rayleigh distribution, with a parameter θ_1 , another independent sample $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$ is available but with a parameter θ_2 . Show that for the MLE \hat{h} of the ratio $h(\theta_1, \theta_2) = \frac{\theta_1}{\theta_2}$ it holds

$$\sqrt{n}(\hat{h} - h(\theta_1, \theta_2)) \stackrel{d}{\rightarrow} N(0, 2\frac{\theta_1^2}{\theta_2^2}).$$

2. Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be a sample of n observations each with a uniform in $[0, \theta)$ density

$$f(x, \theta) = \begin{cases} \frac{1}{\theta} & 0 \le x < \theta \\ 0 & \text{else} \end{cases}$$

where $\theta > 0$ is an unknown parameter. Denote the joint density by $L(X, \theta)$.

- a) Find the density of $T = X_{(n)}$.
- b) Show that the family $\{L(X,\theta)\},\ \theta>0$ has a monotone likelihood ratio in $T=X_{(n)}$.
- c) Show that the uniformly most powerful α -size test of $H_0: \theta \leq 3$ versus $H_1: \theta > 3$ is given by

$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } X_{(n)} > 3(1-\alpha)^{\frac{1}{n}} \\ 0 \text{ if } X_{(n)} \le 3(1-\alpha)^{\frac{1}{n}} \end{cases}$$

and sketch the graph of $E_{\theta}\varphi^*$ as accurately as possible.