取消文化之現象分析

高嘉妤、柯堯珹、吳承恩、趙友誠

11/7/24

Table of contents

Table 1: 變數解釋

Variables	Explanation	remark
ղ1	性別	1: 男性, 2: 女性
q2	出生年(民國)	
q 3	出生縣市	
q4	教育程度	
q5	週上網天數	
q6	上網時數 (工作、學習)	
₉ 7	上網時數 (娛樂、休閒)	
9 8	上網原因	
19	使用的即時通訊軟體	
q10	使用的社群媒體	
q11	使用的影音平台	
q12	了解疫情消息的管道	
q13_01	使用網路平台關注疫情消息的頻率	
q13_02	疫情相關留言的言論種類	
q13_03	疫情相關留言對自己的幫助	
q13_04	疫情相關留言的負面性質	
q13_05	疫情相關留言對自己的負面影響	
q14_01	社群媒體上的來源	
q14_02	Line 上的來源	
14_03	YT 上的來源	
₁ 15_01	疫情期間是否減少出門	
₁ 15_02	減少出門時的休閒活動	
₁ 15_03	政府疫情處置的滿意度	
ղ16	是否參與過不會對人造成傷害的網路惡搞	
₁ 17_01	是騙人的不會對人造成傷害的網路惡搞	
₁ 17_02	不是騙人的不會對人造成傷害的網路惡搞	
ղ18	是否參與過會對人造成傷害的網路惡搞	
₁ 19_01	是騙人的會對人造成傷害的網路惡搞	
₁ 19_02	不是騙人的會對人造成傷害的網路惡搞	
₁ 20	主動激化傾向	
q21_a	注意力偵測	專心: 只選第六項並填寫已讀二字
		分心: 其他情況
q22	他人攻擊傾向	
q23	自己攻擊傾向	
q24	回聲室效應	
q25	被攻擊的接受度	

Variables	Explanation	remark
q26	推測他人攻擊意圖	
q27	抵制意圖	
q28	採取過的社群媒體抵制行為種類	
q29	抵制的原因	
q30	抵制行為的有效程度	
q31	抵制前的同理心	
q32	抵制行為的對名人的傷害程度	
q33	抵制行為的對自己的重要程度	
q34	抵制成本	
q35	抵制規模感知	
q36	抵制的社會壓力	
q37_a	注意力偵測	專心: 彩虹有七個顏色
		分心: otherwise
q38_01	生活滿意度	
q38_02	社會滿意度	
q39	生活品質	
q40	國民黨喜好程度	
q41	民進黨喜好程度	
q42	意識形態	0~10: 台獨 ~ 統一

```
library(haven)
                       #read sav file
library(labelled)
                     #remove attribute of sav data
library(Hmisc)
                     #describe
library(showtext)
                     #show zw-tw in ggplot2
library(dplyr); library(ggplot2); library(MASS)
library(rlang)
                      #for building function
#DB.sav <-read_sav("DisruptiveBehavior.sav")</pre>
#write.csv(DB.sav,file= "DisruptiveBehavior.csv", row.names= FALSE)
DB.csv <-read.csv("DisruptiveBehavior.csv")</pre>
showtext_auto()
DB.csv <- DB.csv[,-c(1:4)]</pre>
#DataExplorer::plot_missing(DB.csv[,1:20])
#latex(describe(DB.csv),title="",file="")
# 第四題沒有人選其他
DB.csv$q4_88_text <- NULL
# 教育程度重新劃分為四個等級
DB.csv$q4[DB.csv$q4<=8] <- 1
DB.csv$q4[DB.csv$q4!=1 \& DB.csv$q4<=15] <- 2
DB.csv\$q4[DB.csv\$q4>2 \& DB.csv\$q4<=19] <- 3
DB.csv$q4[DB.csv$q4>3] <- 4
# 時間統一單位 (分)
DB.csv$q6 <- DB.csv$q6_h*60+DB.csv$q6_m
DB.csv$q7 <- DB.csv$q7_h*60+DB.csv$q7_m
```

```
# 第八題沒有人選其他
DB.csv$q8_88 <- NULL
DB.csv$q8_88_text <- NULL
# 第九題簡化 (使用哪些通訊軟體 改成 使用幾個通訊軟體)
DB.csv$q9 <- rowSums(DB.csv[,18:25], na.rm = TRUE) + sapply(DB.csv[,27], function(entry_i){
  temp <- gsub(" ","",entry_i)</pre>
 return(length(unlist(strsplit(temp,", | 及"))))
})
# 移除疫情相關的問題
DB.csv[,match("q12_1", colnames(DB.csv)):match("q15_03_1", colnames(DB.csv))] <- NULL
# 移除注意力偵測題
DB.csv[,match("q21a_1", colnames(DB.csv)):match("q21a_6_text", colnames(DB.csv))] <- NULL
DB.csv$q37a <- NULL
DB.csv$rq21a <- NULL
DB.csv$rq37a <- NULL
DB.csv$r <- NULL
DB.csv$qrq2 <- NULL
DB.csv$q2 <- DB.csv$rrq2 # 第二題改成年齡的區段
DB.csv$rrq2 <- NULL
# 有無抵制行為 (1: 有,0: 沒有)
DB.csv$q28_5[is.na(DB.csv$q28_5)] <- 0</pre>
# 歸類 28 題的選項
DB.csv[DB.csv$q28_4_text==" 會破壞我對他(她)的形象",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 從來都不關注",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 若名人不自我反省就會抵制,但是通常名人都會願意出來面對錯誤",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 未來此人所說的話均會產生疑問",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 用選票來抵制",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 很多時候都是立場不同、換位思考一下後,就可以消弭一些爭議。",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 看看就好",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 拒買相關商品",c('q28_4','q28_4_text')] <- c(NA,"")
DB.csv[DB.csv$q28_4_text==" 沒意見",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
```

```
DB.csv[DB.csv$q28_4_text==" 看看就好, 自己會有自己的判斷",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q28_4_text==" 與親朋好友說明事實真相",
                 c('q28_4', 'q28_4_text')] <- c(NA, "")
DB.csv[DB.csv$q28_4_text=="要看是什麼原因決定一時間這麼做還是永久",
                 c('q28_4', 'q28_4_text')] <- c(NA, "")
DB.csv[DB.csv$q28_4_text==" 指正他的錯誤",
                 c('q28_4', 'q28_4_text')] \leftarrow c(NA, "")
DB.csv[
 DB.csv$q28_4_text== 每個人有合法的言論自由,我只會拒絕觀看有問題違法的影片,不會一竿子打翻一條船。",
  c('q28_2','q28_4','q28_4_text')] <- c(1,NA,"")
DB.csv[
 DB.csv$q28 4 text==" 減少看他們的發文或影片",
  c('q28_2','q28_4','q28_4_text')] <- c(1,NA,"")
DB.csv[
 DB.csv$q28_4_text=="轉發相關的指正或譴責文章",
 c('q28_4', 'q28_4_text')] \leftarrow c(NA, "")
# 歸類 29 題的選項
#29 的第五選項改定義為 錯誤資訊、不當言論
DB.csv$q29_5_text[DB.csv$q29_5_text==" 錯誤資訊"] <- ""
DB.csv[DB.csv$q29_5_text==" 道不同不相為謀不理他們",
      c('q29_2','q29_5','q29_5_text')] <- c(1,NA,"")
DB.csv[DB.csv$q29 5 text==" 沒有此情況",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv$q29_5_text[DB.csv$q29_5_text==" 發表錯誤資訊且不更改"] <- ""
DB.csv[DB.csv$q29 5 text==" 不會抵制",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 我沒有特別抵制過呢",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 從來沒有",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 不明白指的是什麼",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 過於私人或主觀意識的回答會讓我反感進而抵制收看",
      c('q29_2', 'q29_5', 'q29_5_text')] \leftarrow c(1,NA,"")
DB.csv[DB.csv$q29_5_text==" 已讀",
      match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv$q29_5_text[DB.csv$q29_5_text==" 縵罵"] <- ""
DB.csv[DB.csv$q29_5_text==" 不理他們",
```

```
match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv$q29_5_text[DB.csv$q29_5_text==" 指鹿為馬,不實言論,刻意誤導輿論方向。"] <- ""
DB.csv$q29 5 text[DB.csv$q29 5 text==" 不當發言"] <- ""
DB.csv$q29_5_text[
   DB.csv$q29_5_text==" 假名人之姿發表利己損害公眾利益的言論,企圖影響他人判斷的言論者。"] <- ""
DB.csv$q29_5_text[DB.csv$q29_5_text==" 散播不正確消息且不認錯"] <- ""
DB.csv[DB.csv$q29_5_text==" 不予置評",
            match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 無",
            match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29 5 text==" 不會做無聊的事情",
            match("q28_1", colnames(DB.csv)): match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,4),"",0,rep(NA,
DB.csv[DB.csv$q29_5_text==" 目前沒有",
            match("q28 1", colnames(DB.csv)):match("q36 1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,
DB.csv[DB.csv$q29_5_text==" 味全黑心油事件",
             c('q29_5', 'q29_5_text')] \leftarrow c(NA, "")
DB.csv$q29_5_text[
   DB.csv$q29_5_text=="對動物議題留下錯誤言論,對疫情走向發出錯誤言論(去年康健發文說嬰幼兒不會染疫,被我指
DB.csv[DB.csv$q29_5_text==" 不曾",
            match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 沒遇過要抵制的事",
            match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[
   DB.csv$q29_5_text==" 說謊話(至少是我覺得他在說謊),做錯事不負責還甩鍋給別人。",
   c('q29_5','q29_5_text')] \leftarrow c(NA,"")
# 有兩個 沒有
DB.csv[match("沒有",DB.csv$q29_5_text),
             match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[match("沒有",DB.csv$q29_5_text),
            match("q28_1", colnames(DB.csv)):match("q36_1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,4)
DB.csv[DB.csv$q29_5_text==" 有些事情的看法 做法不同",
             c('q29_2','q29_5','q29_5_text')] <- c(1,NA,"")
DB.csv[DB.csv$q29_5_text==" 違反當初自己宣揚的理念",
             c('q29_4', 'q29_5', 'q29_5_text')] \leftarrow c(1,NA,"")
DB.csv[
   DB.csv$q29_5_text==" 泛指公眾人物沒有責任表態但有義務不支持通稱反人類行為,私領域不要太誇張都沒差",
   c('q29_4','q29_5','q29_5_text')] <- c(1,NA,"")
```

```
DB.csv[DB.csv$q29_5_text=="沒有抵制過",
         match("q28 1", colnames(DB.csv)):match("q36 1", colnames(DB.csv))] <- c(rep(NA,4),"",0,rep(NA,
  DB.csv$q29 5 text[DB.csv$q29 5 text==" 誤導"] <- ""
  DB.csv$q29_5_text <- NULL
  DB.csv$q28_4_text <- NULL
  DB.csv$q16_18[DB.csv$q16 == 2 & DB.csv$q18 == 2] <- 0 # 沒有惡搞
  DB.csv$q16_18[DB.csv$q17_02==1] <- 1
                                                       # 有惡搞但不騙人不傷害
  DB.csvq16 18[DB.csvq17 01==1] <- 2
                                                      # 有惡搞有騙人沒傷害
  DB.csv$q16 18[DB.csv$q19 02==1] <- 3
                                                      # 有惡搞沒騙人有傷害
  DB.csvq16 18[DB.csvq19 01==1] <- 4
                                                       # 有惡搞有騙人有傷害
  DB.csv$q22_total <- rowSums(DB.csv[,c("q22_01_1", "q22_02_1", "q22_03_1", "q22_04_1", "q22_05_1")])
  DB.csv$q23_total <- rowSums(DB.csv[,c("q23_01_1", "q23_02_1", "q23_03_1", "q23_04_1", "q23_05_1")])
  DB.csv$q24_total <- rowSums(DB.csv[,c("q24_01_1", "q24_02_1", "q24_03_1", "q24_04_1", "q24_05_1")])
  DB.csv$q25_total <- rowSums(DB.csv[,c("q25_01_1", "q25_02_1", "q25_03_1", "q25_04_1")])
  DB.csv$q26_total <- rowSums(DB.csv[,c("q26_01_1", "q26_02_1", "q26_03_1")])
  DB.csv$q38_total <- rowSums(DB.csv[,c("q38_01_1", "q38_02_1")])</pre>
  DB.csv$q40_cat <- cut(DB.csv$q40_1,</pre>
                          breaks = c(0, 20, 40, 60, 80, 100),
                          labels = c(1, 2, 3, 4, 5),
                          right = TRUE)
  DB.csv$q40_cat[is.na(DB.csv$q40_cat)] <- 1</pre>
  DB.csv$q41_cat <- cut(DB.csv$q41_1,</pre>
                         breaks = c(0, 20, 40, 60, 80, 100),
                         labels = c(1, 2, 3, 4, 5),
                         right = TRUE)
  DB.csv$q41_cat[is.na(DB.csv$q41_cat)] <- 1
  myCount_q28 <- function(din, target_label){</pre>
    din %>%
      group_by(q28_5, !!sym(target_label)) %>%
      summarise(count = sum(weight))
  counts_16_18 <- DB.csv %>%
    group_by(q28_5, q16_18) %>%
    summarise(count = sum(weight))
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  ggplot(counts_16_18, aes(x = as.factor(q28_5), y = q16_18, fill = count)) +
    geom_tile() +
    scale_fill_gradient(low = "lightblue", high = "red") +
    geom_text(label=counts_16_18$count,size = 3, color = "black", fontface = "bold")+
    labs(title = " 抵制 vs 網路惡搞", x = "boycott", y = " 網路惡搞行為", fill = "Proportion") +
    theme minimal() +
```

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_tile()`).

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_text()`).

which(is.na(DB.csv\$q16_18))

[1] 37 89 167 174 191 236 238 287 304 375 390 416 422 434 510 561 562 566 580 [20] 595 602 607 652 709 726 776 789 802 847 849 874 875 936 938 944 948 949 970 [39] 974 991 994

```
# 為了讓討厭的人知道他不屬於您的團體,在網路上罵他,您覺得可不可以接受? 計數 counts_20_01 <- DB.csv%>% group_by(q28_5,q20_01_1)%>% summarise(count = n())
```

```
# 圖
ggplot(counts_20_01, aes(x = as.factor(q28_5), y = q20_01_1, fill = count)) +
geom_tile() +
scale_fill_gradient(low = "lightblue", high = "red") +
geom_text(label=counts_20_01$count, size = 3, color = "black", fontface = "bold")+
labs(title = " 抵制 vs 不屬團體之網路罵人接受度", x = "boycott", y = " 接受度", fill = "Proportion")
theme_minimal() +
```

```
theme(axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element text(hjust = 0.5)) # 旋轉 x 軸刻度標籤,以避免重疊
```

抵制vs不屬團體之網路罵人接受度


```
# 為了獲得想要的,在網路上罵人,您覺得可不可以接受? 計數 counts_20_02 <- DB.csv%>% group_by(q28_5,q20_02_1)%>% summarise(count = n())
```

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

網路世界看到別人的網路攻擊行為

counts_22 <- DB.csv%>%
 group_by(q28_5,q22_total)%>%
 summarise(count = n())

抵制vs獲得想要之網路罵人接受度

 $ggplot(counts_22, aes(x = as.factor(q28_5), y = q22_total, fill = count)) +$

圖

```
geom_tile() +
    scale_fill_gradient(low = "lightblue", high = "red") +
    geom text(label=counts 22$count,size = 3, color = "black", fontface = "bold")+
    labs(title = "抵制 vs 別人的網路攻擊行為", x = "boycott", y = "網路攻擊頻繁程度", fill = "Proportion
    theme minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
         plot.title = element_text(hjust = 0.5)) # 旋轉 x 軸刻度標籤,以避免重疊
  # 網路世界自己做出的網路攻擊行為
  counts_23 <- DB.csv%>%
    group_by(q28_5,q23_total)%>%
    summarise(count = n())
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  ggplot(counts_23, aes(x = as.factor(q28_5), y = q23_total, fill = count)) +
    geom_tile() +
    scale_fill_gradient(low = "lightblue", high = "red") +
    geom_text(label=counts_23$count,size = 3, color = "black", fontface = "bold")+
   labs(title = "抵制 vs 自己的網路攻擊行為", x = "boycott", y = "網路攻擊頻繁程度", fill = "Proportion
    theme minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
         plot.title = element_text(hjust = 0.5)) # 旋轉 x 軸刻度標籤,以避免重疊
```

抵制vs別人的網路攻擊行為


```
# 越容易接收到不是使用者偏好的訊息

counts_24 <- DB.csv%>%
group_by(q28_5,q24_total)%>%
summarise(count = n())
```

group_by(q28_5,q25_total)%>%
summarise(count = n())

`summarise()` has grouped output by 'q28_5'. You can override using the `.groups` argument.

抵制vs自己的網路攻擊行為

 $ggplot(counts_25, aes(x = as.factor(q28_5), y = q25_total, fill = count)) +$

圖

geom_tile() +

```
scale_fill_gradient(low = "lightblue", high = "red") +
    geom text(label=counts 25$count,size = 3, color = "black", fontface = "bold")+
    labs(title = " 抵制 vs 接受網路攻擊行為", x = "boycott", y = " 接受網路攻擊", fill = "Proportion") +
    theme minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(hjust = 0.5))
  # 推測他人的攻擊意圖
  counts 26 <- DB.csv%>%
    group_by(q28_5,q26_total)%>%
    summarise(count = n())
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  ggplot(counts_26, aes(x = as.factor(q28_5), y = q26_total, fill = count)) +
    geom_tile() +
    scale_fill_gradient(low = "lightblue", high = "red") +
    geom_text(label=counts_26$count,size = 3, color = "black", fontface = "bold")+
    labs(title = "抵制 vs 他人攻擊意圖頻繁程度", x = "boycott", y = "頻繁程度", fill = "Proportion") +
    theme minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(hjust = 0.5))
```

抵制vs接收不是使用者偏好的頻繁程度


```
# 當名人說不該說的話、做不該做的事,您多想透過社群媒體抵制他們? counts_27 <- DB.csv%>% group_by(q28_5,q27_1)%>% summarise(count = n())
```

`summarise()` has grouped output by 'q28_5'. You can override using the `.groups` argument.

```
ggplot(counts_38, aes(x = as.factor(q28_5), y = q38_total, fill = count)) +
  geom_tile() +
  scale_fill_gradient(low = "lightblue", high = "red") +
```

抵制vs接受網路攻擊行為

geom_text(label=counts_38\$count,size = 3, color = "black", fontface = "bold")+

labs(title = " 抵制 vs 生活與社會的滿意程度", x = "boycott", y = " 生活與社會的滿意程度", fill = "Prop

```
theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
         plot.title = element_text(hjust = 0.5))
  # 您覺得目前的日子過得快不快樂?
  counts_39 <- DB.csv%>%
    group_by(q28_5,q39_1)%>%
    summarise(count = n())
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  ggplot(counts_39, aes(x = as.factor(q28_5), y = q39_1, fill = count)) +
    geom tile() +
    scale_fill_gradient(low = "lightblue", high = "red") +
    geom text(label=counts 39$count,size = 3, color = "black", fontface = "bold")+
    labs(title = "抵制 vs 快樂程度", x = "boycott", y = " 快樂程度", fill = "Proportion") +
    theme minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
         plot.title = element_text(hjust = 0.5))
  # 國民黨讓你感到溫暖的程度,再區分為 5 個範圍
  counts_40 <- DB.csv%>%
    group_by(q28_5,q40_cat)%>%
    summarise(count = n())
```

抵制vs他人攻擊意圖頻繁程度

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

```
ggplot(counts_41, aes(x = as.factor(q28_5), y = q41_cat, fill = count)) +
geom_tile() +
scale_fill_gradient(low = "lightblue", high = "red") +
geom_text(label=counts_41$count, size = 3, color = "black", fontface = "bold")+
labs(title = " 抵制 vs 民進黨之溫暖", x = "boycott", y = " 溫暖", fill = "Proportion") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
    plot.title = element_text(hjust = 0.5))
```

抵制vs多想抵制他們的程度


```
# 兩岸關係
counts_42 <- DB.csv%>%
group_by(q28_5,q42_1)%>%
summarise(count = n())
```

```
ggplot(counts_42, aes(x = as.factor(q28_5), y = q42_1, fill = count)) +
  geom_tile() +
  scale_fill_gradient(low = "lightblue", high = "red") +
  geom_text(label=counts_42$count,size = 3, color = "black", fontface = "bold")+
  labs(title = " 抵制 vs 两岸關係之偏頗", x = "boycott", y = " 兩岸關係", fill = "Proportion") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        plot.title = element_text(hjust = 0.5))
Barplot.p <- function(din){</pre>
  split label<-colnames(din)[1]</pre>
  cat_label <- colnames(din)[2]</pre>
  c_label <- colnames(din)[3]</pre>
  temp <- din %>%
    group_by(!!sym(split_label)) %>%
   mutate(proportion = !!sym(c_label) / sum(!!sym(c_label))) %>%
  ggplot(temp, aes(x = factor(!!sym(split_label)), y = proportion, fill = factor(!!sym(cat_label))))
    geom_bar(stat = "identity", position = "stack") +
    labs(x = "Proportion", y = "Percentage") +
    scale_fill_grey(start = 0.1, end = 0.9) +
```

抵制vs生活與社會的滿意程度


```
ggtitle(label = cat_label)+
      theme_minimal() +
      coord_flip()
  }
  Barplot.p(din=myCount_q28(DB.csv, "q16_18"))
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  Barplot.p(din=myCount_q28(DB.csv, "q20_01_1"))
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  Barplot.p(din=myCount q28(DB.csv, "q20 02 1"))
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  Barplot.p(din=myCount_q28(DB.csv, "q22_total"))
`summarise()` has grouped output by 'q28_5'. You can override using the
`.groups` argument.
  Barplot.p(din=myCount_q28(DB.csv, "q23_total"))
`summarise()` has grouped output by 'q28_5'. You can override using the
```

`.groups` argument.

抵制vs快樂程度

Barplot.p(din=myCount_q28(DB.csv, "q24_total"))

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

```
Barplot.p(din=myCount_q28(DB.csv, "q25_total"))
```

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

```
Barplot.p(din=myCount_q28(DB.csv, "q26_total"))
```

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

```
Barplot.p(din=myCount_q28(DB.csv, "q27_1"))
```

`summarise()` has grouped output by $'q28_5'$. You can override using the `.groups` argument.

```
Barplot.p(din=myCount_q28(DB.csv, "q38_total"))
```

`summarise()` has grouped output by 'q28_5'. You can override using the `.groups` argument.

```
Barplot.p(din=myCount_q28(DB.csv, "q39_1"))
```

抵制vs國民黨之溫暖

Exact two-sample Kolmogorov-Smirnov test

data: $counts_16_18$count[counts_16_18$q28_5 == 1]$ and $counts_16_18$count[counts_16_18$q28_5 == 0]$ D = 0.46667, p-value = 0.474 alternative hypothesis: two-sided

```
ks.test(counts_20_01$count[counts_20_01$q28_5==1],
counts_20_01$count[counts_20_01$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

data: counts_20_01\$count[counts_20_01\$q28_5 == 1] and counts_20_01\$count[counts_20_01\$q28_5 == 0]

抵制vs民進黨之溫暖


```
D = 0.4, p-value = 0.873
alternative hypothesis: two-sided
```

```
ks.test(counts_20_02$count[counts_20_02$q28_5==1],
counts_20_02$count[counts_20_02$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_20_02$count[counts_20_02$q28_5 == 1] and counts_20_02$count[counts_20_02$q28_5 == 0]
D = 0.35, p-value = 0.873
alternative hypothesis: two-sided
```

```
ks.test(counts_22$count[counts_22$q28_5==1],
counts_22$count[counts_22$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_22$count[counts_22$q28_5 == 1] and counts_22$count[counts_22$q28_5 == 0]
D = 0.5625, p-value = 0.009505
alternative hypothesis: two-sided
```

```
ks.test(counts_23$count[counts_23$q28_5==1],
counts_23$count[counts_23$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_23$count[counts_23$q28_5 == 1] and counts_23$count[counts_23$q28_5 == 0] D = 0.32857, p-value = 0.444 alternative hypothesis: two-sided
```


Exact two-sample Kolmogorov-Smirnov test

```
data: counts_24$count[counts_24$q28_5 == 1] and counts_24$count[counts_24$q28_5 == 0] D = 0.4375, p-value = 0.08745 alternative hypothesis: two-sided
```

```
ks.test(counts_25$count[counts_25$q28_5==1],
counts_25$count[counts_25$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_25$count[counts_25$q28_5 == 1] and counts_25$count[counts_25$q28_5 == 0] D = 0.43922, p-value = 0.06212 alternative hypothesis: two-sided
```

```
ks.test(counts_26$count[counts_26$q28_5==1], counts_26$count[counts_26$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_26$count[counts_26$q28_5 == 1] and counts_26$count[counts_26$q28_5 == 0] D = 0.46667, p-value = 0.2003 alternative hypothesis: two-sided
```

```
ks.test(counts_27$count[counts_27$q28_5==1],
counts_27$count[counts_27$q28_5==0])
```


Exact two-sample Kolmogorov-Smirnov test

```
data: counts_27$count[counts_27$q28_5 == 1] and counts_27$count[counts_27$q28_5 == 0]
D = 0.6, p-value = 0.2857
alternative hypothesis: two-sided
```

```
ks.test(counts_38$count[counts_38$q28_5==1],
counts_38$count[counts_38$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_38$count[counts_38$q28_5 == 1] and counts_38$count[counts_38$q28_5 == 0] D = 0.44444, p-value = 0.3241 alternative hypothesis: two-sided
```

```
ks.test(counts_39$count[counts_39$q28_5==1],
counts_39$count[counts_39$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_39$count[counts_39$q28_5 == 1] and counts_39$count[counts_39$q28_5 == 0] D = 0.4, p-value = 0.873 alternative hypothesis: two-sided
```

```
ks.test(counts_40$count[counts_40$q28_5==1],
counts_40$count[counts_40$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

data: $counts_40$count[counts_40$q28_5 == 1]$ and $counts_40$count[counts_40$q28_5 == 0]$ D = 0.6, p-value = 0.3571

alternative hypothesis: two-sided

```
ks.test(counts_41$count[counts_41$q28_5==1],
counts_41$count[counts_41$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_41$count[counts_41$q28_5 == 1] and counts_41$count[counts_41$q28_5 == 0]
D = 0.6, p-value = 0.3571
alternative hypothesis: two-sided
```

```
ks.test(counts_42$count[counts_42$q28_5==1],
counts_42$count[counts_42$q28_5==0])
```

Exact two-sample Kolmogorov-Smirnov test

```
data: counts_42\count[counts_42\q28_5 == 1] and counts_42\count[counts_42\q28_5 == 0] D = 0.45455, p-value = 0.2012 alternative hypothesis: two-sided
```

```
fit.logistic <- glm(
   factor(q28_5)~q24_01_1+q24_02_1+q24_03_1+q24_04_1+q24_05_1,
   data = DB.csv,
   family = binomial
)
summary(fit.logistic)</pre>
```

Call:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)					
(Intercept)	0.61325	0.37318	1.643	0.10032					
q24_01_1	0.17332	0.10724	1.616	0.10605					
q24_02_1	-0.15884	0.10658	-1.490	0.13615					
q24_03_1	-0.06362	0.09374	-0.679	0.49731					
q24_04_1	-0.31397	0.11721	-2.679	0.00739	**				
q24_05_1	-0.22178	0.10402	-2.132	0.03300	*				
Signif. code	es: 0 '**	*' 0.001 '*	**' 0.01	'*' 0.05	1.1	0.1	1	1	1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1178.9 on 1003 degrees of freedom Residual deviance: 1146.8 on 998 degrees of freedom

AIC: 1158.8

Number of Fisher Scoring iterations: 4

