SCS - Splitting Conic Solver

An R interface to the Splitting Conic Solver (SCS).

Definitions

SCS solves the following problem:

Where the cone K can be any Cartesian product of the following cones:

Name	Definition
zero cone	$\{x x=0\}$ (dual to the free cone $\{x x\in\mathbb{R}\}$)
positive orthant	$\{x x\geq 0\}$
second-order cone	$\{(t,x) \mid x _2 \le t, x \in \mathbb{R}^n, t \in R\}$
positive semidefinite cone	$\{X \mid min(eig(X)) \ge 0, \ X = X^T, \ X \in \mathbb{R}^{n \times n} \}$
exponential cone	$\left\{ (x, y, z) \mid y e^{\frac{x}{y}} \le z, \ y > 0 \right\}$
dual exponential cone	$\left\{ (u, v, w) \mid -ue^{\frac{v}{u}} \le ew, u < 0 \right\}$
power cone	$\{(x, y, z) \mid x^a * y^{(1-a)} \ge z , \ x \ge 0, \ y \ge 0\}$
dual power cone	$ \left\{ \begin{array}{l} \{(t,x) \mid x 2 \leq t, x \in \mathbb{R} \mid t \in \mathbb{N} \} \\ \{X \mid \min(eig(X)) \geq 0, \ X = X^T, \ X \in \mathbb{R}^{n \times n} \} \\ \{(x,y,z) \mid y e^{\frac{x}{y}} \leq z, \ y > 0 \right\} \\ \{(u,v,w) \mid -u e^{\frac{v}{u}} \leq ew, u < 0 \} \\ \{(x,y,z) \mid x^a * y^{(1-a)} \geq z , \ x \geq 0, \ y \geq 0 \} \\ \{(u,v,w) \mid \left(\frac{u}{a}\right)^a * \left(\frac{v}{(1-a)}\right)^{(1-a)} \geq w , \ u \geq 0, \ v \geq 0 \right\} \\ \end{array} $

Usage

Important Note

The order of the rows in matrix A has to correspond to the order given in the table "Cone Arguments", which means means rows corresponding to primal zero cones should be first, rows corresponding to non-negative cones second, rows corresponding to second-order cone third, rows corresponding to positive semidefinite cones fourth, rows corresponding to exponential cones fifth and rows corresponding to power cones at last.

Arguments

 $\begin{array}{lll} A & \text{a matrix of constraint coefficients} \\ b & \text{a numeric vector giving the primal constraints} \\ obj & \text{a numeric vector giving the primal objective} \\ cone & \text{a list giving the cone sizes} \\ control & \text{a list giving the control parameters} \end{array}$

Cone Arguments

Symbol	Type	Length	Description	
f	integer	1	number of primal zero cones (dual free cones), which corresponds to the primal equality constraints	
1	integer	1	number of linear cones (non-negative cone)	
q	integer	≥ 1	vector of second-order cone sizes	
s	integer	≥ 1	vector of positive semidefinite cone sizes	
ер	integer	1	number of primal exponential cones	
ed	integer	1	number of dual exponential cones	
р	numeric	≥ 1	vector of primal/dual power cone parameters	

Control Arguments

Parameter	Type	Description	Default Value
max_iters	integer	giving the maximum number of iterations	2500
normalize	boolean	heuristic data rescaling	TRUE
verbose	boolean	write out progress	FALSE
cg_rate	numeric	for indirect, tolerance goes down like $\frac{1}{iter}^{cg_rate}$	2
scale	numeric	if normalized, rescales by this factor	5
rho_x	numeric	x equality constraint scaling	1e-3
alpha	numeric	relaxation parameter	1.5
eps	numeric	convergence tolerance	1e-3

Note on Semidefinite Cones

To transform an SDP problem into the form shown in Equation (1), a half-vectorization should be performed on the matrices F_i and the strictly lower triangular values have to be scaled by $\sqrt{2}$. Furthermore to get the matrix solution an inverse transformation has to be performed on the results.

$$\min_{x} c^{\top} x
s.t. \sum_{i=1}^{m} x_{i} F_{i} \succeq F_{0}
Ax = b$$
(2)

where $F_i \in \mathbb{R}^{n \times n}$ are symmetric matrices, for more information see e.g. ("Vandenberghe and Boyd (1996) Semidefinite Programming" or "Andersen et al. (2011) Interior-Point Methods for Large-Scale Cone Programming")

$$F_{i} = \begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m1} & \dots & \dots & f_{mm} \end{pmatrix}$$

$$vec(F_i) = (f_{11}, \sqrt{2}f_{21}, \dots, \sqrt{2}f_{m1}, f_{22}, \sqrt{2}f_{32}, \dots, \sqrt{2}f_{m2}, f_{m-1,m-1}, \sqrt{2}f_{m,m-1}, f_{mm})^{\top}$$

$$G = (vec(F_1), \dots, vec(F_m))$$

$$h = vec(F_0)$$

and the new A matrix A^{new} is given by,

$$A^{new} = \begin{pmatrix} A \\ G \end{pmatrix}, \quad b^{new} = \begin{pmatrix} b \\ h \end{pmatrix}.$$

Example

```
library(scs)
A <- matrix(c(1, 1), ncol=1)
b <- c(1, 1)
obj <- 1
cone <- list(f = 2)
control <- list(eps = 1e-3, max_iters = 50)
sol <- scs(A, b, obj, cone, control)
sol</pre>
```

Reference

Brendan O'Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd (2013). "Conic optimization via operator splitting and homogeneous self-dual embedding" URL http://arxiv.org/abs/1312.3039