PATTERN RECOGNITION

Bertrand Thirion and John Ashburner

- Introduction
 - Classification and Regression
 - Curse of Dimensionality
- ② GENERALIZATION OF LEARNED MODELS ACROSS DATASETS
- 3 Overview of the main methods
- 4 Model Averaging

- Introduction
 - Classification and Regression
 - Curse of Dimensionality
- ② GENERALIZATION OF LEARNED MODELS ACROSS DATASETS
- 3 Overview of the main methods
- 4 Model Averaging

GENERAL SETTING

We have a training dataset of n observations, each consisting of an input \mathbf{x}_i and a target y_i .

Each input, x_i , consists of a vector of p features.

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\}$$

The aim is to predict the target for a new input x_* .

- Introduction
 - Classification and Regression
 - Curse of Dimensionality
- ② GENERALIZATION OF LEARNED MODELS ACROSS DATASETS
- 3 Overview of the main methods
- 4 Model Averaging

Curse of dimensionality

Large p, small n.

NEAREST-NEIGHBOUR CLASSIFICATION

- Not nice smooth separations.
- Lots of sharp corners.
- May be improved with K-nearest neighbours.

Rule-based approaches

- Not nice smooth separations.
- Lots of sharp corners.

CLASSIFICATION AND REGRESSIO CURSE OF DIMENSIONALITY

CORNERS MATTER IN HIGH-DIMENSIONS

CORNERS MATTER IN HIGH-DIMENSIONS

- Introduction
- 2 Generalization of learned models across datasets
 - Cross-Validation
 - Accuracy Measures
 - Parameter Tuning
- 3 Overview of the main methods
- 4 Model Averaging

- Introduction
- 2 Generalization of learned models across datasets
 - Cross-Validation
 - Accuracy Measures
 - Parameter Tuning
- 3 Overview of the main methods
- 4 Model Averaging

OCCAM'S RAZOR

"Everything should be kept as simple as possible, but no simpler."

— Einstein (allegedly)

- Complex models (with many estimated parameters) usually explain training data better than simpler models.
- Simpler models often generalise better to new data than nore complex models.

Need to find the model with the optimal bias/variance tradeoff.

BAYESIAN MODEL SELECTION

Real Bayesians don't cross-validate (except when they need to).

$$P(M|\mathcal{D}) = \frac{p(\mathcal{D}|M)P(M)}{P(\mathcal{D})}$$

The Bayes factor allows the plausibility of two models (M_1 and M_2) to be compared:

$$K = \frac{p(\mathcal{D}|M_1)}{p(\mathcal{D}|M_2)} = \frac{\int_{\theta_{M_1}} p(\mathcal{D}|\theta_{M_1}, M_1) p(\theta_{M_1}|M_1) d\theta_{M_1}}{\int_{\theta_{M_2}} p(\mathcal{D}|\theta_{M_2}, M_2) p(\theta_{M_2}|M_2) d\theta_{M_2}}$$

This is usually too costly in practice, so approximations are used.

Model Selection

Some approximations/alternatives to the Bayesian approach:

- Laplace approximations: find the MAP/ML solution and use a Gaussian approximation to the parameter uncertainty.
- Minimum Message Length (MML): an information theoretic approach.
- Minimum Description Length (MDL): an information theoretic approach based on how well the model compresses the data.
- Akaike Information Criterion (AIC): $-2 \log p(\mathcal{D}|\theta) + 2k$, where k is the number of estimated parameters.
- Bayesian Information Criterion (BIC): $-2 \log p(\mathcal{D}|\theta) + k \log q$, where q is the number of observations.

- Introduction
- 2 Generalization of learned models across datasets
 - Cross-Validation
 - Accuracy Measures
 - Parameter Tuning
- 3 Overview of the main methods
- 4 Model Averaging

Log predictive probability

Some data are more easily classified than others. Probabilistic classifiers provide a level of confidence for each prediction.

$$p(y_*|\mathbf{x}_*,\mathbf{y},\mathbf{X},\theta)$$

Quality of predictions can be assessed using the **test log predictive probability**:

$$\frac{1}{m}\sum_{i=1}^{m}\log_2 p(y_{*i}=t_i|\mathbf{x}_{*i},\mathbf{y},\mathbf{X},\theta)$$

After subtracting the baseline measure, this shows the average bits of information given by the model.

Rasmussen & Williams. "Gaussian Processes for Machine Learning", MIT Press (2006). http://www.gaussianprocess.org/gpml/

- Introduction
- 2 Generalization of learned models across datasets
 - Cross-Validation
 - Accuracy Measures
 - Parameter Tuning
- 3 Overview of the main methods
- Model Averaging

- Introduction
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
 - Simple Methods: Naive Bayes, Linear Discriminant Analysis
 - Kernel Methods: Support-Vector Machines, Gaussian Processes
 - Basic Regularization Methods
- Model Averaging

- Introduction
- 2 Generalization of learned models across
- 3 Overview of the main methods
 - Simple Methods: Naive Bayes, Linear Discriminant Analysis
 - Kernel Methods: Support-Vector Machines, Gaussian Processes
 - Basic Regularization Methods
- 4 Model Averaging

GENERATIVE MODELS FOR CLASSIFICATION

$$P(y=k|\mathbf{x}) = \frac{P(y=k)p(\mathbf{x}|y=k)}{\sum_{j} P(y=j)p(\mathbf{x}|y=j)}$$

LINEAR DISCRIMINANT ANALYSIS

$$P(y=k|\mathbf{x}) = \frac{P(y=k)p(\mathbf{x}|y=k)}{\sum_{j} P(y=j)p(\mathbf{x}|y=j)}$$

Assumes:

$$P(\mathbf{x}|y=k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

Model has 2p + p(p-1) parameters to estimate (two means and a single covariance).

Number of observations is pn (size of inputs).

QUADRATIC DISCRIMINANT ANALYSIS

$$P(y=k|\mathbf{x}) = \frac{P(y=k)p(\mathbf{x}|y=k)}{\sum_{j} P(y=j)p(\mathbf{x}|y=j)}$$

Assumes different covariances:

$$P(\mathbf{x}|y=k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Model has 2p + 2p(p-1) parameters to estimate (two means and two covariances).

Number of observations is pn.

NAIVE BAYES

$$P(y=k|\mathbf{x}) = \frac{P(y=k)p(\mathbf{x}|y=k)}{\sum_{j} P(y=j)p(\mathbf{x}|y=j)}$$

Assumes that features are independent:

$$p(\mathbf{x}|y=k) = \prod_{i} p(x_{i}|y=k)$$

Model has variable number of parameters to estimate, but the above example has 3p.

Number of observations is pn.

LINEAR REGRESSION: MAXIMUM LIKELIHOOD

$$f(\mathbf{x}_*) = \mathbf{a}^T \mathbf{x}_*$$

Assuming Gaussian noise on \mathbf{y} , the ML estimate of \mathbf{a} is by:

$$\hat{\mathbf{a}} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{y}$$

where

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{pmatrix}^T$$
, and $\mathbf{y} = \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix}^T$

Model has p parameters to estimate.

Number of observations is n (number of targets).

LINEAR REGRESSION: MAXIMUM POSTERIOR

$$y \sim \mathcal{N}(\mathbf{a}^T \mathbf{x}, \sigma^2)$$
$$\mathbf{a} \sim \mathcal{N}(\mathbf{0}, \Sigma_0)$$

Maximum a posteriori (MAP) estimate of a is by:

$$\hat{\mathbf{a}} = \sigma^{-2} \mathbf{C}^{-1} \mathbf{X} \mathbf{y}$$
, where $\mathbf{C} = \sigma^{-2} \mathbf{X} \mathbf{X}^T + \Sigma_0^{-1}$

Number of estimated parameters and observations is ill defined.

LINEAR REGRESSION: BAYESIAN

$$\begin{split} & p(y_*|\mathbf{x}_*, \mathbf{a}) = & \mathcal{N}(\mathbf{a}^T\mathbf{x}_*, \sigma^2) \\ & p(\mathbf{a}|\mathbf{y}, \mathbf{X}) = & \mathcal{N}(\sigma^{-2}\mathbf{C}^{-1}\mathbf{X}\mathbf{y}, \mathbf{C}^{-1}), \text{ where } \mathbf{C} = \sigma^{-2}\mathbf{X}\mathbf{X}^T + \Sigma_0^{-1} \end{split}$$

$$p(y_*|\mathbf{x}_*, \mathbf{y}, \mathbf{X}) = \int_{\mathbf{a}} p(y_*|\mathbf{x}_*, \mathbf{a}) p(\mathbf{a}|\mathbf{y}, \mathbf{X}) d\mathbf{a}$$
$$= \mathcal{N}(\sigma^{-2}\mathbf{x}_*^T \mathbf{C}^{-1} \mathbf{X} \mathbf{y}, \mathbf{x}_*^T \mathbf{C}^{-1} \mathbf{x}_*)$$

Weights are integrated out - rather than estimated. Estimated parameters may be σ^2 , and parameters encoding Σ_0 .

DISCRIMINATIVE MODELS FOR CLASSIFICATION

$$t = f(\mathbf{a}^T \mathbf{x})$$

where f is some squashing function, eg:

- Heaviside step function.
- Logistic function (inverse of Logit).
- Normal CDF (inverse of Probit).

PROBABILISTIC CLASSIFICATION

$$P(y=k|\mathbf{x}) = \int_{\mathbf{a}} P(y=k|\mathbf{x},\mathbf{a})p(\mathbf{a})d\mathbf{a}$$

Woodbury Matrix Identity

$$\mathbf{C}^{-1} = \left(\sigma^{-2}\mathbf{X}\mathbf{X}^{T} + \Sigma_{0}^{-1}\right)^{-1}$$
$$= \Sigma_{0} - \Sigma_{0}\mathbf{X}(\mathbf{I}\sigma^{2} + \mathbf{X}^{T}\Sigma_{0}\mathbf{X})^{-1}\mathbf{X}\Sigma_{0}$$

Wikipedia contributors, "Woodbury matrix identity," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Woodbury_matrix_identity&oldid=638370219 (accessed April 1, 2015).

- Introduction
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
 - Simple Methods: Naive Bayes, Linear Discriminant Analysis
 - Kernel Methods: Support-Vector Machines, Gaussian Processes
 - Basic Regularization Methods
- 4 Model Averaging

SUPPORT VECTOR CLASSIFICATION

Targets are $\mathbf{t} \in \{-1, 1\}$. Solves a quadratic programming problem

$$\begin{split} \hat{\alpha} &= \arg\min_{\alpha} \tfrac{1}{2} \boldsymbol{\alpha}^T \mathbf{H} \boldsymbol{\alpha} - \sum_{i=1}^n \alpha_i, \\ \text{subject to } \mathbf{t}^T \boldsymbol{\alpha} &= 0 \text{ and } 0 \leq \alpha_i \leq C \\ \text{where } \mathbf{H} &= \text{diag}(\mathbf{t}) \mathbf{X} \mathbf{X}^T \text{ diag}(\mathbf{t}) \end{split}$$

Binary prediction is by:

$$t_* = sgn(\sum_{i=1}^{N} t_i \alpha_i \mathbf{x}_i \mathbf{x}_*^T + b)$$

where b is a bias term.

- Introduction
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
 - Simple Methods: Naive Bayes, Linear Discriminant Analysis
 - Kernel Methods: Support-Vector Machines, Gaussian Processes
 - Basic Regularization Methods
- 4 Model Averaging

- INTRODUCTION
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
- Model Averaging
 - Decision trees and Random Forests
 - Boosting & Bagging
 - Tools: scikit-learn, pronto, nilearn, pymvpa

- INTRODUCTION
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
- Model Averaging
 - Decision trees and Random Forests
 - Boosting & Bagging
 - Tools: scikit-learn, pronto, nilearn, pymvpa

- INTRODUCTION
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
- Model Averaging
 - Decision trees and Random Forests
 - Boosting & Bagging
 - Tools: scikit-learn, pronto, nilearn, pymvpa

Ensemble Learning

Combining predictions from weak learners.

- Bootstrap aggregating (bagging)
 - Train several weak classifiers, with different models or randomly drawn subsets of the data.
 - Average their predictions with equal weight.

Boosting

- A family of approaches, where models are weighted according to their accuracy.
- AdaBoost is popular, but has problems with target noise.

Bayesian model averaging

- Really a model selection method.
- Relatively ineffective for combining models.

Bayesian model combination

Shows promise.

Monteith, et al. "Turning Bayesian model averaging into Bayesian model combination." Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE, 2011.

- INTRODUCTION
- 2 Generalization of learned models across datasets
- 3 Overview of the main methods
- Model Averaging
 - Decision trees and Random Forests
 - Boosting & Bagging
 - Tools: scikit-learn, pronto, nilearn, pymvpa