Hw_1

Kyatham Prathibha

The warpbreaks dataset originates from an experiment in textile manufacturing. It records how many times yarn breaks occurred on a loom, depending on the **type of wool** used and the **tension level** applied during the weaving process.

Dataset Description

- breaks: Count of yarn breaks observed.
- wool: Wool category used in weaving (A or B)
- tension: Applied tension level during weaving (Low, Medium, or High)

	breaks	wool	tension
1	26	Α	L
2	30	Α	L
3	54	Α	L
4	25	Α	L
5	70	Α	L
6	52	Α	L
7	51	Α	L
8	26	Α	L
9	67	Α	L
10	18	Α	M

Distribution of Yarn Breaks by Wool and Tension

Combination of Wool Type and Tension Level

The boxplot shows that:

Wool A with low tension (A.L) has the highest median number of yarn breaks (\sim 50), with a wide range and maximum close to 70.

In contrast, Wool B under low tension (B.L) performs better, with a lower median (~28) and less variability. Under medium tension, both wool types show reduced breaks, with Wool B (B.M) slightly outperforming Wool A (A.M).

At high tension, both wools result in the fewest breaks overall, and Wool B with high tension (B.H) stands out with the lowest median (~16) and the most consistent performance.

Interpretation:

- Increasing the tension level tends to **reduce the number of yarn breaks**, showing a negative relationship between tension and breakage.
- Wool B performs more reliably than Wool A across all tension levels, with the **best** results under high tension.
- The combination of **Wool B and high tension** appears to be the most effective setup for **minimizing yarn breaks** during the weaving process.