Q1. Let α and β be the roots of $5x^2 + 6x - 2 = 0$. if $S_n = \alpha^x + \beta^n$ (n = 1, 2, 3...) then

(a)
$$5s_6 + 6s_5 = 2s_4$$

(b)
$$6s_6 + 5s_5 + 2s_4 = 0$$

(c)
$$6s_6 + 5s_5 = 2s_4$$

(d)
$$5s_6 + 6s_5 + 2s_4 = 0$$

Q2. Let $\alpha \& \beta$ be 2 roots of the equation $x^2 + 2x + 2 = 0$ then $\alpha^{15} + \beta^{15}$ is equal to

$$(b) -512$$

$$(c) -256$$

Q3. Let α, β, y be the roots of $x^3 - 6x^2 + 2x - 1 = 0$ If $S_n = \alpha^n + \beta^n + y^n$ for $n \ge 1$, then value of $\frac{S_8 + 2S_6 - S_5}{3S_7}$ is

Q4. Let α and β are roots of equation $x^2 - 2x - 7 = 0$ and $a_n = \alpha^n - \beta^n$, then value of

$$\frac{a_{2021} - 2(a_{2020} + a_{2019})}{a_{2019}} \text{ is}$$

Q5. If α, β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0, \alpha > \beta$ and $P_n = \alpha^n - \beta^n$ for each

positive integer
$$n$$
, then the value of $\left(\frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19} + 5\sqrt{2}P_{18}^2}\right)$ is equal to

Q6. If α and β are the distinct roots of the equation $x^2 + (3)^{1/4}x + 3^{1/2} = 0$, then the value of $\alpha^{96}(\alpha^{12}-1) + \beta^{96}(\beta^{12}-1)$ is equal to:

(a)
$$56 \times 3^{25}$$

(b)
$$56 \times 3^{24}$$

(c) 52×3^{24}						
(d) 28×3^{25}						
Q7. The sum of the fou	arth powers of the i	oots of the equation				
$x^3 + x + 1 = 0 \Longrightarrow S_4 + \alpha^4$	$^4 + \beta^4 + \gamma^4 = ?$					