

Database Programming with SQL

7-1: Oracle Equijoin and Cartesian Product

Practice Activities

Objectives

- Name the Oracle proprietary joins and their ANSI/ISO SQL: 1999 counterparts
- Describe the purpose of join conditions
- Construct and execute a SELECT statement that results in a Cartesian product
- Construct and execute SELECT statements to access data from more than one table using an equijoin
- Construct and execute SELECT statements that add search conditions using the AND operator
- Apply the rule for using column aliases in a join statement

Vocabulary

Identify the vocabulary word for each definition below.

Cartesian Product	Results from an invalid or omitted join condition; all combinations of rows are displayed
equijoin	Values in a column in one table are equal to a value in another table; also called an inner join or simple join
proprietary join	Connection command exclusive to a specific company
alias	Gives a table another name to simplify queries and improve performance
join conditions	Display data from two or more related tables

Try It / Solve It

Create a Cartesian product that displays the columns in the d_play_list_items and the
 d_track_listings in the DJs on Demand database.
 SELECT_d_play_list_items.event_id, d_play_list_items.song_id , d_play_list_items.comments , d_track_listings.song_id ,

d_track_listings.cd_number, d_track_listings.track

FROM d_play_list_items, d_track_listings;
2. Correct the Cartesian product produced in question 1 by creating an equijoin using a common column.

SELECT d_play_list_items.event_id, d_play_list_items.song_id, d_play_list_items.comments,

d_track_listings.song_id_, d_track_listings.cd_number_, d_track_listings.track

- WHERE d_play_list_items.song_id = d_track_listings.song_id;

 3. Write a query to display the title, type, description, and artist from the DJs on Demand database.
- 4. Rewrite the query in question 3 to select only those titles with an ID of 47 or 48.

- 5. Write a query that extracts information from three tables in the DJs on Demand database, the d_clients table, the d_events table, and the d_job_assignments table.
- 6. Create and execute an equijoin between DJs on Demand tables d_track_listings and d_cds. Return the song id and the title only.
- 7. Mark T for the statements that are true and F for the statements that are false. _ a. A join is a type of query that gets data from more than one table based on columns with the same name. <-description of natural join _____ b. To join tables using an equijoin, there must be a common column in both tables and that column is usually a primary key in one of the tables. T c. A Cartesian product occurs because the query does not specify a WHERE clause. F d. Table aliases are required to create a join condition. T e. If a table alias is used for a table name in the FROM clause, it must be substituted for the table name throughout the SELECT statement. Study material says: Equijoin- Sometimes called f. Table alias must be only one character in length. a "simple" or "inner" join; an equijoin is a table T g. A simple join or inner join is the same as an equijoin join that combines rows that have the same values for specifies columns 8. What advantage does being able to combine data from multiple tables have for a business? 3. SELECT d_songs.title, d_songs.type_code type, d_types.description
- 3. SELECT d_songs.title, d_songs.type_code type, d_types.description
 FROM d_songs, d_types
 WHERE d_songs.type_code = d_types.code;

 4. SELECT d_songs.title, d_songs.type_code type, d_types.description
 FROM d_songs, d_types
 WHERE d_songs.type_code = d_types.code AND d_songs.id in (47, 48);

 5.
 SELECT *
 FROM d_clients, d_events, d_job_assignments
 WHERE d_clients.client_number = d_events.client_number AND d_events.id = d_job_assignments.event_id;

 6.
 SELECT d_track_listings.song_id "song id in tracklist", d_cds.title "title in cds"
 FROM d_track_listings, d_cds
 WHERE d_track_listings.cd_number = d_cds.cd_number;

8.relational, situational and partial combination of data from multiple tables helps in solving specific problems or in organizing the data into specific groups