

Gestión de la Información

Gustavo Adolfo Gómez Gómez MSc. Gestión, aplicación y desarrollo de software 2024

www.ucc.edu.co

Gestión de la Información

Unidad 1: Asociar diseños, plataformas y soportes informáticos a los modelos de gestión de información de la organización.

Tema: Esquemas relacionales

Esquemas relacionales

Pasar de Esquemas Entidad-Relación a Esquemas Relacionales

- Evitar redundancia de los datos
- Disminuir problemas de actualización de los datos
- Proteger la integridad de los datos
- Consumo de espacio minimizado
- Simplifica consultas

Desventaja: Se pierde la semántica

Desarrollado por E.F Codd en IBM en la década de 1960.

Objetivos del esquema relacional

- Independencia física de los datos
- Flexibilidad
- Uniformidad
- Sencillez

Se introduce el concepto "Relación" estructura básica del modelo relacional

No confundir con la relación en el diagrama Entidad - Relación

Se basa en dos ramas de la matemática:

- Teoría de Conjuntos
- Lógica de Predicados

Diferencias entre modelos:

- Relacional
- Tablas
- Archivos

Terminología Relacional		Terminología de Tablas		Terminología de Archivo
Relación	=	Tabla	=	Archivo
Tupla	=	Fila	=	Registro
Atributo	=	Columna	=	Campo
Grado	=	Número de columnas	=	Número de campos
Cardinalidad	=	Número de filas	=	Número de registros

Vistas

Esquema de datos

Esquema de relaciones

- Los datos se presentan como tablas bidimensionales.
- Las tablas cuentan con un número específico de filas
- Cada intersección fila-columna representa un valor almacenado.
- Las columnas representan atributos
- Las filas representan tuplas.

RELACIÓN ALUMNOS

NUM_MAT	NOMBRE	APELLIDOS	CURSO	← ATRIBUTOS
5467	JUAN	CABELLO	1BACH-A	*
3421	DOLORES	GARCÍA	1BACH-C	TUPLAS
7622	JESÚS	SÁNCHEZ	2BACH-C	

A diferencia de una "tabla", una relación:

- No admite filas duplicadas
- Las filas y columnas no están ordenadas
- No se admiten atributos multivalorados

RELACIÓN ALUMNOS

NUM_MAT	NOMBRE	APELLIDOS	CURSO	← ATRIBUTOS
5467	JUAN	CABELLO	1BACH-A	▼
3421	DOLORES	GARCÍA	1BACH-C	TUPLAS
<i>7</i> 622	JESÚS	SÁNCHEZ	2BACH-C	

- Relación = Tabla
- Atributos = Columnas
- Tuplas = Registros

id_cliente	nombre_cliente	calle_cliente	ciudad_cliente
19.283.746	González	Arenal, 12	La Granja
67.789.901	López	Mayor, 3	Peguerinos
18.273.609	Abril	Preciados, 123	Valsaín
32.112.312	Santos	Mayor, 100	Peguerinos
33.666.999	Rupérez	Ramblas, 175	León
01.928.374	Gómez	Carretas, 72	Cerceda

Atributos

Dominio: conjunto finito de valores homogéneos (todos del mismo tipo) y atómicos (son indivisibles) que puede tomar cada atributo.

- Dominios generales: máx y min. Ejp: placa automóvil.
- **Dominios restringidos**: valores definidos específicos. Ejp: género

El atributo entonces representa el uso del dominio para una determinada relación

Dominios

Ejemplos:

En la relación alumno:

NUM_MAT	NOMBRE	APELLIDOS	CURSO
5467	JUAN	CABELLO	1BACH-A
3421	DOLORES	GARCÍA	1BACH-C
7622	JESÚS	SÁNCHEZ	2BACH-C

- Atributo NUM_MAT. Dominio: conjunto de enteros formados por 4 dígitos
- Atributo NOMBRE. Dominio: conjunto de caracteres hasta 20 (relativo)
- Atributo CURSO. Dominio: conjunto de 7 caracteres

Relaciones

NUM_MAT	NOMBRE	APELLIDOS	CURSO
5467	JUAN	CABELLO	1BACH-A
3421	DOLORES	GARCÍA	1BACH-C
7622	JESÚS	SÁNCHEZ	2BACH-C

Se representa mediante una tabla con filas y columnas

Filas = Tupla

Columna = Atributo

Conceptos:

- Cardinalidad: cantidad de tuplas/filas/registros
- Grado: Cantidad de atributos/columnas/campos
- Valor: dato específico

Relaciones

- Cardinalidad
- Grado?
- Valor
 - El salario de la Tupla 2?
 - T1[Numdepart]?
 - o T2[FechaAlta]?

N° Emple	Apellidos	Salario	Numdepart	FechaAlta
13407877B	Milagros Suela Sarro	1.500	10	18/11/90
41667891C	José María Cabello	2.000	20	29/10/92

Relaciones. Características

- Cada relación tiene un nombre y éste es distinto de los demás
- No hay dos atributos que se llamen igual dentro de una relación
- El orden de los atributos es irrelevante
- Cada tupla es distinta a las demás
- El orden de las tuplas es irrelevante

Relaciones. Tipos

- Base
- Vistas
- Instantáneas
- Resultados de consultas

Vistas

Esquema de datos

 Esquema de relaciones

Vistas

Esquema de relaciones

Table	
Attribute 1 (PK)	type
Attribute 2 (FK)	type
Attribute 3	type
Attribute 4	type

Esquema de relaciones:

- Definición de Atributos
- Definición de Relaciones/tablas/Archivos
- Restricciones
 - Definición de atributos especiales
 - Definición de conexiones entre ellas

Definición de atributos

- Se describe una propiedad de la relación/tabla/archivo
- Descripción del tipo de datos del dominio en cada propiedad

Restricciones semánticas y de usuario (Integridad Referencial)

- Restricción de Llave primaria (Primary Key)
- Restricción de Unicidad (Unique)
- Restricción de Obligatoriedad (Not Null)
- Restricción de llave foránea (Foreign Key)

Llave primaria (Primary Key)

- Identificación unívoca
- No redundante

Clave candidata

Clave primaria = Primary Key

Llave foránea (Foreign Key)

La clave Ajena de una **Relación R1** es el conjunto de atributos cuyos valores han de coincidir con los valores de la clave primaria de otra **Relación R2**

Ambas claves tienen el mismo dominio

- Llave ajena
- Establece relaciones

Clave candidata

Clave primaria = Primary Key

Claves primarias y foráneas

Reglas para la Integridad Referencial de llaves Foráneas.

- Al actualizar
- Al borrar

On Delete / On Update

- Prohibir (Restrict)
- Modificar Dependencia (Cascade)
- Poner nulo (Set Null)
- No hacer nada (No Action)

Ahora sí, para convertir Diagramas Entidad - Relación a esquemas Relacionales

Notación

- Entidades en forma de Tabla
- Llaves primarias subrayadas
- Llaves foráneas apuntan a la referencia
- Opciones de integridad referencial en la flecha

Notación

Opciones de integridad referencial:

Para borrado (B) o actualizar (A):

- Prohibir (P)
- Modificar Dependencia (C)
- Poner nulo (SN)
- No hacer nada (NA)

Ejemplo: Restricción de prohibir al borrar y actualizar cuentas de clientes

BP / AP

Notación

Reglas de Transformación de un Esquema E-R a Relacional

- 1. Transformación de Entidades y Atributos
- 2. Transformación de Interrelaciones
 - a. Uno A Muchos
 - b. Muchos A Muchos
 - c. Recursivas
- 3. Transformación de Dependencias
- 4. Transformación de Generalizaciones

1. Transformación de Entidades y Atributos

ENTIDADES

- Entidades Fuertes y Débiles se convierten en tablas
- Clave primaria de entidades fuertes (Sin nulos)
- Clave primaria de entidades débiles (compuesta con Entidad Fuerte)
- Relaciones Uno a uno
- Cada tabla debe tener un nombre único

1. Transformación de Entidades y Atributos

ATRIBUTOS

Tener en cuenta restricciones semánticas:

- Atributos monovalorados
- Atributos Multivalorados
- Atributos Obligatorios
- Atributos Opcionales
- Atributos Derivados
- Atributos Compuestos
- Atributo de Llave Primaria

1. Transformación de Entidades y Atributos

2. Transformación de Interrelaciones

Uno A muchos

- Propagar el identificador principal (llave primaria) desde la Entidad que se encuentra en el lado "1" (1...) a la Entidad que se encuentra en el lado "muchos" (...*)
- Si existen atributos en la relación, éstos también se propagan

2. Transformación de Interrelaciones

2. Transformación de Interrelaciones

2. Transformación de Interrelaciones

Ejercicio

2. Transformación de Interrelaciones

Muchos A Muchos

- Dan como resultado una nueva relación/tabla cuya clave será la concatenación de los identificadores principales de las entidades que enlaza.
- Esta nueva llave primaria serán a su vez llaves foráneas de las entidades respectivamente.
- Los atributos de la relación serán atributos de la nueva relación
- Nombre de relación. Si no es declaratorio entonces la Unión de los nombres de las entidades.

2. Transformación de Interrelaciones

Ejemplo

2. Transformación de Interrelaciones

Ejemplo

2. Transformación de Interrelaciones

Ejercicio

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

- Se crea una nueva tabla:
 - Si existen más de 1 atributo en la relación ó
 - Si la cardinalidad es Muchos a Muchos
- Se agrega como atributo el rol y el dominio es la llave primaria.
 - Si la cardinalidad es Uno a muchos ó
 - Si el rol es simple

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

Se crea una nueva tabla: Ejemplo

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

Se crea una nueva tabla: Ejemplo

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

Se agrega como atributo el rol y el dominio es la llave primaria:

Ejemplo

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

Se agrega como atributo el rol y el dominio es la llave primaria:
 Ejemplo

2. Transformación de Interrelaciones

Relaciones recursivas (roles)

Ejercicio

3. Transformación de Dependencias

- Una entidad depende de la otra: Entidades Fuertes/débiles
- Opción de Borrado en cascada: BC

4. Transformación de Generalizaciones

• Si los sub-tipos no tienen atributos específicos: Ejemplo

4. Transformación de Generalizaciones

- Si los sub-tipos no tienen atributos específicos
 - Se crea la tabla del supertipo y se crea atributo "tipo"
- Si los sub-tipos tienen atributos específicos
 - Se crea una tabla por cada entidad sub-tipo y una para la entidad super-tipo.
 - La llave primaria del super-tipo se propaga a las tablas de los sub-tipos
 - En la tabla del subtipo la llave primaria es a su vez
 La llave foránea con referencia al supertipo

4. Transformación de Generalizaciones

Si los sub-tipos tienen atributos específicos: Ejemplo

4. Transformación de Generalizaciones

Si los sub-tipos tienen atributos específicos: Ejemplo

4. Transformación de Generalizaciones

Casa de Software

Diagrama Entidad Relación

Proyectos y fases

Proyectos y fases

Proyectos y empleados

Proyectos y empleados

Empleados

Fases y Productos

Fases y Productos

Productos

Analista responsable producto

Analista responsable producto

Empleado involucrado en productos por fase

Fases y recursos

Fases y recursos

Esquema Relacional

Ejercicio

Se requiere modelar un sistema de información que gestione la información de una Aerolínea.

Ejercicio

Se quiere diseñar un sistema de gestión de información para almacenar datos sobre los casos llevados a cabo en un juzgado. Se debe tener en cuenta entidades como: Juez, Abogados (Defensor/Fiscal), acusado, veredicto, condena, tipo de condena (Intramural, domiciliaria, etc).

ejercicio

Una empresa de juguetes desea almacenar la información de su actividad. Cree un modelo entidad relación teniendo en cuenta que quiere almacenar datos de empleados como nombre, documento de identidad, dirección, teléfono, fecha de nacimiento, salario y cargo. Los empleados pueden:

- Arquitecto: de quien se requiere almacenar valor de las comisiones y cantidad de proyectos.
- Administrativo: de quienes se requiere saber el nivel jerárquico, la dependencia y número de subordinados.
- Ingeniero: quienes tienen una especialidad y un número de años de experiencia

Tenga en cuenta que un arquitecto puede desempeñar otro puesto: administrativo o ingeniero.

En Producción se requiere almacenar información de los juguetes como tipo (mecánico, digital, didáctico, etc), precio, peso. Al igual que su relación con sus partes, proveedores, publico objetivo.