第十二章

3.3 常系数条次线性微分方程

基本思路:

求解常系数线性齐次微分方程

转化

求特征方程(代数方程)之根

二阶常系数齐次线性微分方程:

$$y'' + p y' + q y = 0$$
 (p, q为常数) ①

因为r为常数时,函数 e^{rx} 和它的导数只差常数因子,

所以令①的解为 $y = e^{rx} (r)$ 为待定常数),代入①得

$$(r^{2} + pr + q)e^{rx} = 0$$

$$r^{2} + pr + q = 0$$
2

称②为微分方程①的特征方程, 其根称为特征根.

1. 当 $p^2 - 4q > 0$ 时,②有两个相异实根 r_1, r_2 ,则微分方程有两个线性无关的特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$,因此方程的通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

2. 当 $p^2 - 4q = 0$ 时,特征方程有两个相等实根 $r_1 = r_2$ = $\frac{-p}{2}$,则微分方程有一个特解 $y_1 = e^{r_1 x}$.

设另一特解 $y_2 = y_1 u(x) = e^{r_1 x} u(x)$ (u(x) 待定)代入方程得:

取 u = x,则得 $y_2 = xe^{r_1x}$,因此原方程的通解为 $y = (C_1 + C_2x)e^{r_1x}$

3. 当 $p^2-4q<0$ 时,特征方程有一对共轭复根 $r_1=\alpha+i\beta$, $r_2=\alpha-i\beta$

这时原方程有两个复数解:

$$y_1 = e^{(\alpha + i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

$$y_2 = e^{(\alpha - i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

利用解的叠加原理,得原方程的线性无关特解:

$$\overline{y_1} = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x$$

$$\overline{y_2} = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

因此原方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

小结:

$$y'' + p y' + q y = 0$$
 (p, q 为常数)

特征方程: $r^2 + pr + q = 0$, 特征根: r_1, r_2

特征根	通	解
$r_1 \neq r_2$ 实根	$y = C_1 e'$	$^{r_1 x} + C_2 e^{r_2 x}$
$r_1 = r_2 = -\frac{p}{2}$	$y = (C_1 - C_1 -$	$+C_2x)e^{r_1x}$
$r_{1,2} = \alpha \pm i \beta$	$y = e^{\alpha x}$	$(C_1 \cos \beta x + C_2 \sin \beta x)$

以上结论可推广到高阶常系数线性微分方程.

推广:

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0 (a_k 均为常数)$$
特征方程: $r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$

若特征方程含k重实根r,则其通解中必含对应项

$$(C_1 + C_2 x + \dots + C_k x^{k-1}) e^{rx}$$

若特征方程含k重复根 $r = \alpha \pm i\beta$,则其通解中必含对应项

$$e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos \beta x +$$
 $+ (D_1 + D_2 x + \dots + D_k x^{k-1})\sin \beta x]$
(以上 C_i , D_i 均为任意常数)

例1. 求方程 y''-2y'-3y=0的通解.

解: 特征方程 $r^2-2r-3=0$, 特征根: $r_1=-1$, $r_2=3$, 因此原方程的通解为 $y=C_1e^{-x}+C_2e^{3x}$

例2. 求解初值问题
$$\begin{cases} \frac{d^2s}{dt^2} + 2\frac{ds}{dt} + s = 0 \\ s|_{t=0} = 4, \frac{ds}{dt}|_{t=0} = -2 \end{cases}$$

解: 特征方程 $r^2 + 2r + 1 = 0$ 有重根 $r_1 = r_2 = -1$,因此原方程的通解为 $s = (C_1 + C_2 t)e^{-t}$ 利用初始条件得 $C_1 = 4$, $C_2 = 2$ 于是所求初值问题的解为 $s = (4 + 2t)e^{-t}$

例3. 求方程
$$y^{(4)} - 2y''' + 5y'' = 0$$
 的通解.

解: 特征方程 $r^4 - 2r^3 + 5r^2 = 0$, 特征根:

$$r_1 = r_2 = 0$$
, $r_{3,4} = 1 \pm 2 i$

因此原方程通解为

$$y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$$

例4. 解方程 $y^{(5)} - y^{(4)} = 0$.

解: 特征方程: $r^5 - r^4 = 0$, 特征根:

$$r_1 = r_2 = r_3 = r_4 = 0, \quad r_5 = 1$$

原方程通解: $y = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 e^x$

(不难看出,原方程有特解 $1, x, x^2, x^3, e^x$)

例5. 解方程
$$\frac{d^4 w}{dx^4} + \beta^4 w = 0 \ (\beta > 0).$$

解:特征方程:
$$r^4 + \beta^4 = (r^2 + \beta^2)^2 - 2\beta^2 r^2 = 0$$

$$(r^2 + \sqrt{2} \beta r + \beta^2)(r^2 - \sqrt{2} \beta r + \beta^2) = 0$$

其根为
$$r_{1,2} = \frac{\beta}{\sqrt{2}}(1\pm i), r_{3,4} = -\frac{\beta}{\sqrt{2}}(1\pm i)$$

方程通解:

$$w = e^{\frac{\beta}{\sqrt{2}}x} (C_1 \cos \frac{\beta}{\sqrt{2}} x + C_2 \sin \frac{\beta}{\sqrt{2}} x)$$

$$+ e^{-\frac{\beta}{\sqrt{2}}x} (C_3 \cos \frac{\beta}{\sqrt{2}} x + C_4 \sin \frac{\beta}{\sqrt{2}} x)$$

例6. 解方程
$$y^{(4)} + 2y'' + y = 0$$
.

解: 特征方程:
$$r^4 + 2r^2 + 1 = 0$$

即
$$(r^2+1)^2=0$$

特征根为
$$r_{1,2} = \pm i$$
, $r_{3,4} = \pm i$

则方程通解:

$$y = (C_1 + C_3 x) \cos x + (C_2 + C_4 x) \sin x$$

内容小结

$$y'' + p y' + q y = 0$$
 (p, q) 为常数) 特征根: r_1, r_2

(1) 当
$$r_1 \neq r_2$$
 时, 通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

(2) 当
$$r_1 = r_2$$
 时, 通解为 $y = (C_1 + C_2 x)e^{r_1 x}$

(3) 当
$$r_{1,2} = \alpha \pm \beta i$$
 时, 通解为
$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

可推广到高阶常系数线性齐次方程求通解.

思考与练习

1. 求方程y'' + ay = 0 的通解.

答案: a = 0: 通解为 $y = C_1 + C_2 x$

a > 0: 通解为 $y = C_1 \cos \sqrt{a} x + C_2 \sin \sqrt{a} x$

a < 0: 通解为 $y = C_1 e^{\sqrt{-a}x} + C_2 e^{-\sqrt{-a}x}$

2. $x - y_1 = e^x$, $y_2 = 2xe^x$, $y_3 = \cos 2x$, $v_{4} = 3\sin 2x$ 为特解的 4 阶常系数线性齐次微分方程, 并求其通解.

解:根据给定的特解知特征方程有根:

$$r_1 = r_2 = 1$$
, $r_{3,4} = \pm 2i$
因此特征方程为 $(r-1)^2 (r^2 + 4) = 0$
即 $r^4 - 2r^3 + 5r^2 - 8r + 4 = 0$
故所求方程为 $y^{(4)} - 2y''' + 5y'' - 8y' + 4y = 0$
其通解为 $y = (C_1 + C_2 x)e^x + C_2 \cos 2x + C_4 \sin 2x$

其通解为 $y = (C_1 + C_2 x)e^x + C_3 \cos 2x + C_4 \sin 2x$