AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A benzimidazole compound represented by the following formula (I) or a salt thereof:

$$R^{1} \xrightarrow{N} X \xrightarrow{L} \left(\begin{array}{c} 0 \\ C \\ \end{array} \right)_{m} N \xrightarrow{A}_{R^{3}}$$

wherein, R¹ represents one or more functional groups on the benzene ring selected from the group consisting of a hydrogen atom, a halogen atom, a lower alkyl group, and a lower alkoxy group; R² represents a hydrogen atom, <u>or</u> an alkyl group, <u>or an acyl group</u>; R³ represents one or more functional groups on the ring containing the nitrogen atom and A; A represents CH₂, or CH which forms a double bond with an adjacent carbon atom; L represents a C₄-C₈ alkylene group or an ethyleneoxy linking group represented by (CH₂CH₂O)_nCH₂CH₂ wherein n represents 1 or 2; X represents O, S or methylene group; and m represents 0 or 1.

- 2. (original) The compound or a salt thereof according to Claim 1, wherein X is O or S.
- 3. (original) The compound or a salt thereof according to claim 1 or 2, wherein m is 0.

AMENDMENT UNDER 37 C.F.R. § 1.116 U.S. Appln. No. 10/019,249

- 4. (previously presented) The compound or a salt thereof according to claim 1, wherein each of \mathbb{R}^1 and \mathbb{R}^2 represents a hydrogen atom.
- 5. (previously presented) The compound or a salt thereof according to claim 1, wherein L is a C_4 - C_8 alkylene group.
- 6. (previously presented) The compound or a salt thereof according to claim 1, wherein L is a C_5 or C_6 alkylene group.
- 7. (currently amended) A benzimidazole compound represented by the following formula (II) or a salt thereof:

$$R^{11}$$
 X^{1} $X^{$

wherein, R¹¹ represents one or more functional groups on the benzene ring selected from the group consisting of a hydrogen atom, a halogen atom, a lower alkyl group, and a lower alkoxy group; R¹² represents a hydrogen atom, <u>or</u> an alkyl group, or an acyl group; R¹³ represents one or more functional groups on the piperidine ring selected from the group consisting of a hydrogen atom, an alkyl group, a hydroxyalkyl group, a phenyl group which may be substituted, a hydroxyl group, an alkoxy group, an amino group, an acyl group, a cyano group, a carbamoyl group and an alkoxycarbonyl group; L¹ represents a C₄-C₈ alkylene group; and X represents O, S, or methylene group.

- 8. (original) The compound or a salt thereof according to Claim 7, wherein L^1 is a C_4 - C_8 alkylene group.
- 9. (original) The compound or a salt thereof according to Claim 7 or 8, wherein R^{11} and R^{12} represent hydrogen atom.
- 10. (previously presented) The compound or a salt thereof according to claim 7, wherein R¹³ is a functional group selected from the group consisting of a hydrogen atom, an alkyl group, a hydroxyalkyl group, a phenyl group which may be substituted, a hydroxy group, and a cyano group.
- 11. (previously presented) The compound or a salt thereof according to claim 7, wherein L^1 is a C_5 or C_6 alkylene group.
- 12. (currently amended) A pharmaceutical composition comprising a compound represented by the following formula (I)

$$R^1 \xrightarrow{N} X \xrightarrow{Q} X \xrightarrow{Q} N \xrightarrow{A} R^3$$

wherein, R¹ represents one or more functional groups on the benzene ring selected from the group consisting of a hydrogen atom, a halogen atom, a lower alkyl group, and a lower alkoxy group; R² represents a hydrogen atom, <u>or</u> an alkyl group, <u>or an acyl group</u>; R³ represents one or more functional groups on the ring containing the nitrogen atom and A; A represents CH₂, or CH which forms a double bond with an adjacent carbon atom; L represents a C₄-C₈ alkylene group or an ethyleneoxy linking group represented by (CH₂CH₂O)_nCH₂CH₂ wherein n represents 1 or 2; X represents O, S or methylene group; and m represents 0 or 1, or a physiologically acceptable salt thereof as an active ingredient, and a pharmaceutical additive.

13. (canceled)

- 14. (withdrawn) A method for the prevention and/or treatment of hyperlipidemia which comprises administering an effective amount of a composition according to claim 12 or 21 to a mammal.
- 15. (withdrawn) A method for preventing and/or treating arteriosclerosis which comprises administering an effective amount of a composition according to claim 12 or 21 to a mammal.

AMENDMENT UNDER 37 C.F.R. § 1.116 U.S. Appln. No. 10/019,249

- 16. (withdrawn) A method for suppressing foaming of a macrophage which comprises administering an effective amount of a composition according to claim 12 or 21 to a mammal.
- 17. (withdrawn) A method for retracting arterial sclerosis lesions which comprises administering an effective amount of a composition according to claim 12 or 21 to a mammal.
- 18. (withdrawn) A method for inhibiting formation of arterial sclerosis lesions which comprises administering an effective amount of a composition according to claim 12 or 21 to a mammal.

19. (canceled)

- 20. (withdrawn) A method for preventing and/or treating of arteriosclerosis, which comprises administering an effective amount of a composition according to claim 12 or 21 to a human.
- 21. (currently amended) A pharmaceutical composition comprising a compound represented by the following formula (II)

$$R^{11}$$
 X^{1} $X^{$

wherein, R¹¹ represents one or more functional groups on the benzene ring selected from the group consisting of a hydrogen atom, a halogen atom, a lower alkyl group, and a lower alkoxy group; R¹² represents a hydrogen atom, <u>or</u> an alkyl group, or an acyl group; R¹³ represents one or more functional groups on the piperidine ring selected from the group consisting of a hydrogen atom, an alkyl group, a hydroxyalkyl group, a phenyl group which may be substituted, a hydroxyl group, an alkoxy group, an amino group, an acyl group, a cyano group, a carbamoyl group and an alkoxycarbonyl group; L¹ represents a C₄-C₈ alkylene group; and X represents O, S, or methylene group, or a physiologically acceptable salt thereof as an active ingredient, and a pharmaceutical additive.