Alex Iacob

Prof. Borrelli

CSCI 331 Section 1

July 14th, 2021

Homework 5

1) Given the Wumpus world example from the notes. Suppose the agent has progressed to the point shown in Figure 7.4(a) on Page 239, having perceived nothing at [1,1], a breeze in [2,1], and a stench in [1,2], and is now concerned with the contents of [1,3], [2,2], [3,1]. Each of these can contain a pit, and at most one can contain a wumpus. Following the example of Figure 7.5, construct the set of possible worlds (Hint: there are 32 of them). Mark the worlds in which KB is true and those in which each of the following sentences is true:

 $\alpha 2$ = "There is not pit in [2,2]"

 $\alpha 3$ = "There is a wumpus in [1,3]"

Hence show that $KB \mid = \alpha 2$ and $KB \mid = \alpha 3$.

2) Use a truth table to show that $\{p \rightarrow q, (m \rightarrow p \lor q), m\} \mid = q$

p	q	m	p -> q	$m \rightarrow p \vee q$
Т	T	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	T
F	T	F	Т	Т
F	F	Т	Т	F
F	F	F	Т	Т

3) Use a direct proof (not proof by contradiction) to show the following.

$$p \rightarrow q$$

$$q \rightarrow r$$

$$|-p \rightarrow r|$$

For each step of the proof, indicate the premise and the logic rule used. Use only the rules from the notes.

p -> q	Given		
$(p \rightarrow q) \land (q \rightarrow r)$	And-Introduction		
p -> r	Hypothetical Syllogism		

- 4) Which of the following are correct? If they are incorrect, show the truth assignments that show it. (Hint: Look at page 249 in R&N.)
 - *a)* False |= True

Correct because F -> T is a tautology.

b) True |= *False*

Incorrect because T -> F is not a tautology.

c)
$$(A \land B) \mid = (A \Leftrightarrow B)$$

A	В	$A \wedge B$	$A \Leftrightarrow B$	$A \wedge B \rightarrow A \Leftrightarrow B$
T	Т	T	T	Т
T	F	F	F	Т
F	Т	F	F	Т
F	F	F	Т	Т

Correct because $A \wedge B \rightarrow A \Leftrightarrow B$ is a tautology.

d)
$$(A \Leftrightarrow B) \mid = A \lor B$$

A	В	$A \Leftrightarrow B$	$A \wedge B$	$A \Leftrightarrow B \rightarrow A \wedge B$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	F	F	Т
F	F	Т	F	F

Incorrect because $A \Leftrightarrow B \rightarrow A \land B$ is not a tautology.

$$e) \ (A \ \land \ B) \rightarrow C \mid = (A \rightarrow C) \ \lor \ (B \rightarrow C)$$

A	В	$A \wedge B$	С	$(A \land B) \rightarrow C$	A -> C	B -> C	$(A \rightarrow C) \lor (B \rightarrow C)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	F	F	F	F
Т	F	F	Т	Т	Т	Т	Т
Т	F	F	F	T	F	Т	Т
F	Т	F	Т	T	Т	T	Т
F	Т	F	F	T	Т	F	Т
F	F	F	Т	T	Т	T	Т
F	F	F	F	T	Т	Т	Т

$((A \land B) \rightarrow C) \rightarrow ((A \rightarrow C) \lor (B \rightarrow C))$
Т
Т
Т
Т
Т
Т
Т
Т

Correct because $((A \land B) \rightarrow C) \rightarrow ((A \rightarrow C) \lor (B \rightarrow C))$ is a tautology.

5) Given the following, prove the deduction by (a) a direct proof and (b) a Reductio Ad

Absurdum (proof by contradiction). For each step of the proof, indicate the premise and
the logic rule used.

$$H \to I \land J \to K$$

$$(I \lor K) \to L$$

$$\neg L$$

$$|-\neg (H \lor J)$$

I am more accustomed to using "~" as the negation operator from MATH-190

a)

$(H \rightarrow I) \land (J \rightarrow K)$	Given
(~I -> ~H)	Contraposition on H-> I
(~K -> ~J)	Contraposition on J -> K
~I -> ~H \ ~K -> ~J	Putting back into original
(I ∨ K) -> L	Given
~L -> ~(I ∨ K)	Contraposition on (I \vee K) -> L
~(I ∨ K)	Modus Ponens on \sim L -> \sim (I \vee K)
~I \ ~K	De Morgan's Law on \sim (I \vee K)
~K	And Elimination on \sim I \wedge \sim K
~I	And Elimination on \sim I \wedge \sim K
~H	Modus Ponens on ~I → ~H, ~I
~J	Modus Ponens on \sim K -> \sim J, \sim K
(~H	Putting back into original
~(H V J)	De Morgan's Law

(I ∨ K) -> L	Given
~L -> ~(I ∨ K)	Contraposition on (I \vee K) -> L
~(I ∨ K)	Modus Ponens on \sim L -> \sim (I \vee K)
~I ^ ~K	De Morgan's Law on \sim (I \vee K)
~K	And Elimination on \sim I \wedge \sim K
K ->⊥	
$(H \rightarrow I) \land (J \rightarrow K)$	Given
(~I -> ~H)	Contraposition on H-> I
~H	Modus Ponens on (~I → ~H)
J -> K	And Elimination on (H -> I) \wedge (J -> K)
J	Disjunctive Syllogism
K	Modus Ponens on J -> K, J
	Modus Ponens on K -> \perp , K
~(H V J)	

6) Convert the following to CNF notation: Hint: implication has a higher precedence than AND or OR.

a)
$$C \wedge F \rightarrow \neg B$$

 $\sim (C \wedge F) \vee \sim B$
 $\sim C \vee \sim F \vee \sim B$
b) $\neg B \rightarrow (C \wedge D \wedge E)$
 $\sim (\sim B) \vee (C \wedge D \wedge E)$
 $\rightarrow B \vee (C \wedge D \wedge E)$
 $\rightarrow B \vee (C \wedge D \wedge E)$
 $\rightarrow B \vee C \wedge B \vee D \wedge B \vee E$
c) $\rightarrow (A \vee B) \Leftrightarrow (C \wedge D)$
 $\rightarrow (A \vee B) \Rightarrow (C \wedge D) \wedge (C \wedge D) \Rightarrow (A \vee B)$
 $\rightarrow (\sim (A \vee B) \wedge (C \wedge D)) \wedge (\sim (C \wedge D) \wedge (A \vee B))$

 $(\sim A \land \sim B) \land (C \land D)) \land (\sim C \lor \sim D) \land (A \lor B))$