

1. Business Problem

1.1 Problem Description

Netflix is all about connecting people to the movies they love. To help customers find those movies, they developed world-class movie recommendation system: CinematchSM. Its job is to predict whether someone will enjoy a movie based on how much they liked or disliked other movies. Netflix use those predictions to make personal movie recommendations based on each customer's unique tastes. And while **Cinematch** is doing pretty well, it can always be made better.

Now there are a lot of interesting alternative approaches to how Cinematch works that netflix haven't tried. Some are described in the literature, some aren't. We're curious whether any of these can beat Cinematch by making better predictions. Because, frankly, if there is a much better approach it could make a big difference to our customers and our business.

Credits: https://www.netflixprize.com/rules.html

1.2 Problem Statement

Netflix provided a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than what Cinematch can do on the same training data set. (Accuracy is a measurement of how closely predicted ratings of movies match subsequent actual ratings.)

1.3 Sources

- https://www.netflixprize.com/rules.html
- https://www.kaggle.com/netflix-inc/netflix-prize-data
- Netflix blog: https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429 (very nice blog)
- surprise library: http://surpriselib.com/ (we use many models from this library)
- surprise library doc: http://surprise.readthedocs.io/en/stable/getting_started.html (we use many models from this library)
- installing surprise: https://github.com/NicolasHug/Surprise#installation
- Research paper: http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf (most of our work was inspired by this paper)
- SVD Decomposition : https://www.youtube.com/watch?v=P5mlg91as1c

1.4 Real world/Business Objectives and constraints

Objectives:

1. Predict the rating that a user would give to a movie that he ahs not yet rated.

2. Minimize the difference between predicted and actual rating (RMSE and MAPE)

Constraints:

1. Some form of interpretability.

2. Machine Learning Problem

2.1 Data

2.1.1 Data Overview

Get the data from: https://www.kaggle.com/netflix-inc/netflix-prize-data/data

Data files:

- · combined data 1.txt
- · combined data 2.txt
- · combined data 3.txt
- · combined data 4.txt
- movie_titles.csv

The first line of each file [combined_data_1.txt, combined_data_2.txt, combined_data_3.txt, combined_data_4.txt] contains the movie id followed by a colon. Each sub sequent line in the file corresponds to a rating from a customer and its date in the following format:

CustomerID, Rating, Date

```
MovieIDs range from 1 to 17770 sequentially. CustomerIDs range from 1 to 2649429, with gaps. There are 480189 users. Ratings are on a five star (integral) scale from 1 to 5. Dates have the format YYYY-MM-DD.
```

2.1.2 Example Data point

```
1:
1488844,3,2005-09-06
822109,5,2005-05-13
885013,4,2005-10-19
30878,4,2005-12-26
823519,3,2004-05-03
893988,3,2005-11-17
124105,4,2004-08-05
1248029,3,2004-04-22
```

- 1842128,4,2004-05-09
- 2238063,3,2005-05-11
- 1503895,4,2005-05-19
- 2207774,5,2005-06-06
- 2590061,3,2004-08-12
- 2442,3,2004-04-14
- 543865,4,2004-05-28
- 1209119,4,2004-03-23
- 804919,4,2004-06-10
- 1086807,3,2004-12-28
- 1711859,4,2005-05-08
- 372233,5,2005-11-23
- 1080361,3,2005-03-28
- 1245640,3,2005-12-19
- 558634,4,2004-12-14
- 2165002,4,2004-04-06
- 1181550,3,2004-02-01
- 1227322,4,2004-02-06
- 427928,4,2004-02-26
- 814701,5,2005-09-29
- 808731,4,2005-10-31
- 662870,5,2005-08-24
- 337541,5,2005-03-23
- 786312,3,2004-11-16
- 1133214,4,2004-03-07
- 1537427,4,2004-03-29
- 1209954,5,2005-05-09
- 2381599,3,2005-09-12
- 525356,2,2004-07-11
- 1910569,4,2004-04-12
- 2263586,4,2004-08-20
- 2421815,2,2004-02-26
- 1009622,1,2005-01-19
- 1481961,2,2005-05-24
- 401047,4,2005-06-03
- 2179073,3,2004-08-29
- 1434636,3,2004-05-01
- 93986,5,2005-10-06
- 1308744,5,2005-10-29
- 2647871,4,2005-12-30
- 1905581,5,2005-08-16
- 2508819,3,2004-05-18
- 1578279,1,2005-05-19
- 1159695,4,2005-02-15
- 2588432,3,2005-03-31
- 2423091,3,2005-09-12
- 470232,4,2004-04-08
- 2148699, 2, 2004-06-05
- 1342007,3,2004-07-16
- 466135,4,2004-07-13 2472440,3,2005-08-13
- 1283744,3,2004-04-17

1927580,4,2004-11-08 716874,5,2005-05-06 4326,4,2005-10-29

2.2 Mapping the real world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

For a given movie and user we need to predict the rating would be given by him/her to the movie.

The given problem is a Recommendation problem It can also seen as a Regression problem

2.2.2 Performance metric

- Mean Absolute Percentage Error: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
- Root Mean Square Error: https://en.wikipedia.org/wiki/Root-mean-square_deviation

2.2.3 Machine Learning Objective and Constraints

- 1. Minimize RMSE.
- 2. Try to provide some interpretability.

In [1]:

```
# this is just to know how much time will it take to run this entire ipython notebook
from datetime import datetime
# globalstart = datetime.now()
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('nbagg')
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
sns.set style('whitegrid')
import os
from scipy import sparse
from scipy.sparse import csr_matrix
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics.pairwise import cosine similarity
import random
```

3. Exploratory Data Analysis

3.1 Preprocessing

3.1.1 Converting / Merging whole data to required format: u_i, m_j, r_ij

In [2]:

```
start = datetime.now()
if not os.path.isfile('data.csv'):
   # Create a file 'data.csv' before reading it
   # Read all the files in netflix and store them in one big file('data.csv')
   # We re reading from each of the four files and appendig each rating to a global file '
   data = open('data1.csv', mode='w')
   row = list()
   files=['combined_data_1.txt','combined_data_2.txt',
           'combined_data_3.txt', 'combined_data_4.txt']
   for file in files:
        print("Reading ratings from {}...".format(file))
        with open(file) as f:
            for line in f:
                del row[:] # you don't have to do this.
                line = line.strip()
                if line.endswith(':'):
                    # All below are ratings for this movie, until another movie appears.
                    movie_id = line.replace(':', '')
                else:
                    row = [x for x in line.split(',')]
                    row.insert(0, movie_id)
                    data.write(','.join(row))
                    data.write('\n')
        print("Done.\n")
    data.close()
print('Time taken :', datetime.now() - start)
```

Time taken: 0:00:00.000291

```
In [3]:
```

creating the dataframe from data.csv file.. Done.

Sorting the dataframe by date.. Done..

In [4]:

```
df.head()
```

Out[4]:

	movie	user	rating	date
56431994	10341	510180	4	1999-11-11
9056171	1798	510180	5	1999-11-11
58698779	10774	510180	3	1999-11-11
48101611	8651	510180	2	1999-11-11
81893208	14660	510180	2	1999-11-11

In [5]:

```
df.describe()['rating']
```

Out[5]:

```
count
         1.004805e+08
         3.604290e+00
mean
         1.085219e+00
std
         1.000000e+00
min
25%
         3.000000e+00
         4.000000e+00
50%
75%
         4.000000e+00
         5.000000e+00
max
Name: rating, dtype: float64
```

3.1.2 Checking for NaN values

In [6]:

```
# just to make sure that all Nan containing rows are deleted..
print("No of Nan values in our dataframe : ", sum(df.isnull().any()))
```

No of Nan values in our dataframe : 0

3.1.3 Removing Duplicates

In [7]:

```
dup_bool = df.duplicated(['movie','user','rating'])
dups = sum(dup_bool) # by considering all columns..( including timestamp)
print("There are {} duplicate rating entries in the data..".format(dups))
```

There are 0 duplicate rating entries in the data..

3.1.4 Basic Statistics (#Ratings, #Users, and #Movies)

In [8]:

```
print("Total data ")
print("-"*50)
print("\nTotal no of ratings :",df.shape[0])
print("Total No of Users :", len(np.unique(df.user)))
print("Total No of movies :", len(np.unique(df.movie)))
```

Total data

Total no of ratings : 100480507 Total No of Users : 480189 Total No of movies : 17770

3.2 Spliting data into Train and Test(80:20)

In [9]:

```
if not os.path.isfile('train.csv'):
    # create the dataframe and store it in the disk for offline purposes..
    df.iloc[:int(df.shape[0]*0.80)].to_csv("train.csv", index=False)

if not os.path.isfile('test.csv'):
    # create the dataframe and store it in the disk for offline purposes..
    df.iloc[int(df.shape[0]*0.80):].to_csv("test.csv", index=False)

train_df = pd.read_csv("train.csv", parse_dates=['date'])
test_df = pd.read_csv("test.csv")
```

3.2.1 Basic Statistics in Train data (#Ratings, #Users, and #Movies)

In [10]:

```
# movies = train_df.movie.value_counts()
# users = train_df.user.value_counts()
print("Training data ")
print("-"*50)
print("\nTotal no of ratings :",train_df.shape[0])
print("Total No of Users :", len(np.unique(train_df.user)))
print("Total No of movies :", len(np.unique(train_df.movie)))
```

Training data

Total no of ratings: 80384405 Total No of Users: 405041 Total No of movies: 17424

3.2.2 Basic Statistics in Test data (#Ratings, #Users, and #Movies)

In [11]:

```
print("Test data ")
print("-"*50)
print("\nTotal no of ratings :",test_df.shape[0])
print("Total No of Users :", len(np.unique(test_df.user)))
print("Total No of movies :", len(np.unique(test_df.movie)))
```

Test data

Total no of ratings : 20096102 Total No of Users : 349312 Total No of movies : 17757

3.3 Exploratory Data Analysis on Train data

In [12]:

```
# method to make y-axis more readable
def human(num, units = 'M'):
    units = units.lower()
    num = float(num)
    if units == 'k':
        return str(num/10**3) + " K"
    elif units == 'm':
        return str(num/10**6) + " M"
    elif units == 'b':
        return str(num/10**9) + " B"
```

3.3.1 Distribution of ratings

In [13]:

```
fig, ax = plt.subplots()
plt.title('Distribution of ratings over Training dataset', fontsize=15)
sns.countplot(train_df.rating)
ax.set_yticklabels([human(item, 'M') for item in ax.get_yticks()])
ax.set_ylabel('No. of Ratings(Millions)')
plt.show()
```

Add new column (week day) to the data set for analysis.

In [14]:

```
# It is used to skip the warning ''SettingWithCopyWarning''..
pd.options.mode.chained_assignment = None # default='warn'

train_df['day_of_week'] = train_df.date.dt.weekday_name

train_df.tail()
```

Out[14]:

	movie	user	rating	date	day_of_week
80384400	12074	2033618	4	2005-08-08	Monday
80384401	862	1797061	3	2005-08-08	Monday
80384402	10986	1498715	5	2005-08-08	Monday
80384403	14861	500016	4	2005-08-08	Monday
80384404	5926	1044015	5	2005-08-08	Monday

3.3.2 Number of Ratings per a month

In [15]:

```
ax = train_df.resample('m', on='date')['rating'].count().plot()
ax.set_title('No of ratings per month (Training data)')
plt.xlabel('Month')
plt.ylabel('No of ratings(per month)')
ax.set_yticklabels([human(item, 'M') for item in ax.get_yticks()])
plt.show()
```

3.3.3 Analysis on the Ratings given by user

```
In [16]:
```

```
no_of_rated_movies_per_user = train_df.groupby(by='user')['rating'].count().sort_values(asc
no_of_rated_movies_per_user.head()
Out[16]:
user
```

 305344
 17112

 2439493
 15896

 387418
 15402

 1639792
 9767

 1461435
 9447

Name: rating, dtype: int64

In [17]:

```
fig = plt.figure(figsize=plt.figaspect(.5))

ax1 = plt.subplot(121)
sns.kdeplot(no_of_rated_movies_per_user, shade=True, ax=ax1)
plt.xlabel('No of ratings by user')
plt.title("PDF")

ax2 = plt.subplot(122)
sns.kdeplot(no_of_rated_movies_per_user, shade=True, cumulative=True,ax=ax2)
plt.xlabel('No of ratings by user')
plt.title('CDF')
plt.show()
```

In [18]:

```
no_of_rated_movies_per_user.describe()
```

Out[18]:

```
405041.000000
count
            198.459921
mean
std
            290.793238
              1.000000
min
25%
             34.000000
             89.000000
50%
75%
            245.000000
          17112.000000
max
Name: rating, dtype: float64
```

There, is something interesting going on with the quantiles..

In [19]:

```
quantiles = no_of_rated_movies_per_user.quantile(np.arange(0,1.01,0.01), interpolation='hig
```

```
In [20]:
```

In [21]:

```
quantiles[::5]
Out[21]:
0.00
             1
0.05
             7
0.10
            15
            21
0.15
            27
0.20
0.25
            34
0.30
            41
0.35
            50
0.40
            60
0.45
            73
0.50
            89
0.55
           109
           133
0.60
0.65
           163
           199
0.70
0.75
           245
0.80
           307
0.85
           392
0.90
           520
0.95
           749
1.00
        17112
Name: rating, dtype: int64
```

how many ratings at the last 5% of all ratings??

```
In [22]:
```

```
print('\n No of ratings at last 5 percentile : {}\n'.format(sum(no_of_rated_movies_per_user))
```

No of ratings at last 5 percentile : 20305

3.3.4 Analysis of ratings of a movie given by a user

In [23]:

```
no_of_ratings_per_movie = train_df.groupby(by='movie')['rating'].count().sort_values(ascend
fig = plt.figure(figsize=plt.figaspect(.5))
ax = plt.gca()
plt.plot(no_of_ratings_per_movie.values)
plt.title('# RATINGS per Movie')
plt.xlabel('Movie')
plt.ylabel('No of Users who rated a movie')
ax.set_xticklabels([])
plt.show()
```

- It is very skewed.. just like nunmber of ratings given per user.
 - There are some movies (which are very popular) which are rated by huge number of users.
 - But most of the movies(like 90%) got some hundereds of ratings.

3.3.5 Number of ratings on each day of the week

In [24]:

```
fig, ax = plt.subplots()
sns.countplot(x='day_of_week', data=train_df, ax=ax)
plt.title('No of ratings on each day...')
plt.ylabel('Total no of ratings')
plt.xlabel('')
ax.set_yticklabels([human(item, 'M') for item in ax.get_yticks()])
plt.show()
```

In [25]:

```
start = datetime.now()
fig = plt.figure(figsize=plt.figaspect(.45))
sns.boxplot(y='rating', x='day_of_week', data=train_df)
plt.show()
print(datetime.now() - start)
```

0:00:15.013276

```
In [26]:
```

```
avg_week_df = train_df.groupby(by=['day_of_week'])['rating'].mean()
print(" AVerage ratings")
print("-"*30)
print(avg_week_df)
print("\n")
```

AVerage ratings

day_of_week
Friday 3.585274
Monday 3.577250
Saturday 3.591791
Sunday 3.594144
Thursday 3.582463
Tuesday 3.574438
Wednesday 3.583751

Name: rating, dtype: float64

3.3.6 Creating sparse matrix from data frame

3.3.6.1 Creating sparse matrix from train data frame

In [27]:

```
start = datetime.now()
if os.path.isfile('train_sparse_matrix.npz'):
   print("It is present in your pwd, getting it from disk....")
   # just get it from the disk instead of computing it
   train_sparse_matrix = sparse.load_npz('train_sparse_matrix.npz')
   print("DONE..")
else:
    print("We are creating sparse_matrix from the dataframe..")
    # create sparse_matrix and store it for after usage.
   # csr matrix(data values, (row index, col index), shape of matrix)
   # It should be in such a way that, MATRIX[row, col] = data
   train_sparse_matrix = sparse.csr_matrix((train_df.rating.values, (train_df.user.values,
                                               train_df.movie.values)),)
   print('Done. It\'s shape is : (user, movie) : ',train_sparse_matrix.shape)
   print('Saving it into disk for furthur usage..')
   # save it into disk
   sparse.save_npz("train_sparse_matrix.npz", train_sparse_matrix)
   print('Done..\n')
print(datetime.now() - start)
```

```
It is present in your pwd, getting it from disk....
DONE..
0:00:03.935304
```

The Sparsity of Train Sparse Matrix

In [28]:

```
us,mv = train_sparse_matrix.shape
elem = train_sparse_matrix.count_nonzero()
print("Sparsity Of Train matrix : {} % ".format( (1-(elem/(us*mv))) * 100) )
```

Sparsity Of Train matrix : 99.8292709259195 %

3.3.6.2 Creating sparse matrix from test data frame

```
In [29]:
```

```
start = datetime.now()
if os.path.isfile('test_sparse_matrix.npz'):
   print("It is present in your pwd, getting it from disk....")
   # just get it from the disk instead of computing it
   test_sparse_matrix = sparse.load_npz('test_sparse_matrix.npz')
   print("DONE..")
else:
    print("We are creating sparse_matrix from the dataframe..")
    # create sparse_matrix and store it for after usage.
   # csr matrix(data values, (row index, col index), shape of matrix)
   # It should be in such a way that, MATRIX[row, col] = data
   test_sparse_matrix = sparse.csr_matrix((test_df.rating.values, (test_df.user.values,
                                               test_df.movie.values)))
   print('Done. It\'s shape is : (user, movie) : ',test_sparse_matrix.shape)
   print('Saving it into disk for furthur usage..')
   # save it into disk
   sparse.save_npz("test_sparse_matrix.npz", test_sparse_matrix)
   print('Done..\n')
print(datetime.now() - start)
```

It is present in your pwd, getting it from disk....
DONE..
0:00:01.045809

The Sparsity of Test data Matrix

In [30]:

```
us,mv = test_sparse_matrix.shape
elem = test_sparse_matrix.count_nonzero()
print("Sparsity Of Test matrix : {} % ".format( (1-(elem/(us*mv))) * 100) )
```

Sparsity Of Test matrix : 99.95731772988694 %

3.3.7 Finding Global average of all movie ratings, Average rating per user, and Average rating per movie

```
In [31]:
```

```
# get the user averages in dictionary (key: user id/movie id, value: avg rating)
def get_average_ratings(sparse_matrix, of_users):
   # average ratings of user/axes
   ax = 1 if of_users else 0 # 1 - User axes, 0 - Movie axes
   # ".A1" is for converting Column_Matrix to 1-D numpy array
   sum_of_ratings = sparse_matrix.sum(axis=ax).A1
   # Boolean matrix of ratings (whether a user rated that movie or not)
   is_rated = sparse_matrix!=0
   # no of ratings that each user OR movie..
   no_of_ratings = is_rated.sum(axis=ax).A1
   # max_user and max_movie ids in sparse matrix
   u,m = sparse matrix.shape
   # creae a dictonary of users and their average ratigns..
   average_ratings = { i : sum_of_ratings[i]/no_of_ratings[i]
                                 for i in range(u if of_users else m)
                                    if no_of_ratings[i] !=0}
   # return that dictionary of average ratings
   return average ratings
```

3.3.7.1 finding global average of all movie ratings

```
In [32]:
```

```
train_averages = dict()
# get the global average of ratings in our train set.
train_global_average = train_sparse_matrix.sum()/train_sparse_matrix.count_nonzero()
train_averages['global'] = train_global_average
train_averages
Out[32]:
```

```
{'global': 3.582890686321557}
```

3.3.7.2 finding average rating per user

```
In [33]:
```

```
train_averages['user'] = get_average_ratings(train_sparse_matrix, of_users=True)
print('\nAverage rating of user 10 :',train_averages['user'][10])
```

Average rating of user 10: 3.3781094527363185

3.3.7.3 finding average rating per movie

In [34]:

```
train_averages['movie'] = get_average_ratings(train_sparse_matrix, of_users=False)
print('\n AVerage rating of movie 15 :',train_averages['movie'][15])
```

AVerage rating of movie 15 : 3.3038461538461537

3.3.7.4 PDF's & CDF's of Avg.Ratings of Users & Movies (In Train Data)

In [35]:

```
start = datetime.now()
# draw pdfs for average rating per user and average
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=plt.figaspect(.5))
fig.suptitle('Avg Ratings per User and per Movie', fontsize=15)
ax1.set title('Users-Avg-Ratings')
# get the list of average user ratings from the averages dictionary..
user_averages = [rat for rat in train_averages['user'].values()]
sns.distplot(user_averages, ax=ax1, hist=False,
             kde_kws=dict(cumulative=True), label='Cdf')
sns.distplot(user_averages, ax=ax1, hist=False,label='Pdf')
ax2.set title('Movies-Avg-Rating')
# get the list of movie_average_ratings from the dictionary..
movie_averages = [rat for rat in train_averages['movie'].values()]
sns.distplot(movie_averages, ax=ax2, hist=False,
             kde_kws=dict(cumulative=True), label='Cdf')
sns.distplot(movie_averages, ax=ax2, hist=False, label='Pdf')
plt.show()
print(datetime.now() - start)
```

0:00:34.065570

3.3.8 Cold Start problem

3.3.8.1 Cold Start problem with Users

```
In [36]:
```

```
total_users = len(np.unique(df.user))
users_train = len(train_averages['user'])
new_users = total_users - users_train

print('\nTotal number of Users :', total_users)
print('\nNumber of Users in Train data :', users_train)
print("\nNo of Users that didn't appear in train data: {}({} %) \n ".format(new_users, np.round((new_users)))
```

```
Total number of Users : 480189

Number of Users in Train data : 405041

No of Users that didn't appear in train data: 75148(15.65 %)
```

We might have to handle new users (75148) who didn't appear in train data.

3.3.8.2 Cold Start problem with Movies

In [37]:

```
total_movies = len(np.unique(df.movie))
movies_train = len(train_averages['movie'])
new_movies = total_movies - movies_train

print('\nTotal number of Movies :', total_movies)
print('\nNumber of Users in Train data :', movies_train)
print("\nNo of Movies that didn't appear in train data: {}({} %) \n ".format(new_movies, np.round((new_movie)))
```

```
Total number of Movies : 17770

Number of Users in Train data : 17424

No of Movies that didn't appear in train data: 346(1.95 %)
```

We might have to handle **346 movies** (small comparatively) in test data

3.4 Computing Similarity matrices

3.4.1 Computing User-User Similarity matrix

- 1. Calculating User User Similarity_Matrix is **not very easy**(_unless you have huge Computing Power and lots of time_) because of number of. usersbeing lare.
 - You can try if you want to. Your system could crash or the program stops with **Memory Error**

3.4.1.1 Trying with all dimensions (17k dimensions per user)

In [38]:

```
from sklearn.metrics.pairwise import cosine similarity
def compute_user_similarity(sparse_matrix, compute_for_few=False, top = 100, verbose=False,
                            draw_time_taken=True):
   no_of_users, _ = sparse_matrix.shape
   # get the indices of non zero rows(users) from our sparse matrix
   row_ind, col_ind = sparse_matrix.nonzero()
   row_ind = sorted(set(row_ind)) # we don't have to
   time taken = list() # time taken for finding similar users for an user..
   # we create rows, cols, and data lists.., which can be used to create sparse matrices
   rows, cols, data = list(), list(), list()
   if verbose: print("Computing top",top,"similarities for each user..")
   start = datetime.now()
   temp = 0
   for row in row_ind[:top] if compute_for_few else row_ind:
        temp = temp+1
        prev = datetime.now()
        # get the similarity row for this user with all other users
        sim = cosine_similarity(sparse_matrix.getrow(row), sparse_matrix).ravel()
        # We will get only the top ''top'' most similar users and ignore rest of them..
        top_sim_ind = sim.argsort()[-top:]
        top_sim_val = sim[top_sim_ind]
        # add them to our rows, cols and data
        rows.extend([row]*top)
        cols.extend(top_sim_ind)
        data.extend(top_sim_val)
        time_taken.append(datetime.now().timestamp() - prev.timestamp())
        if verbose:
            if temp%verb_for_n_rows == 0:
                print("computing done for {} users [ time elapsed : {} ]"
                      .format(temp, datetime.now()-start))
   # lets create sparse matrix out of these and return it
   if verbose: print('Creating Sparse matrix from the computed similarities')
   #return rows, cols, data
   if draw_time_taken:
        plt.plot(time_taken, label = 'time taken for each user')
        plt.plot(np.cumsum(time taken), label='Total time')
        plt.legend(loc='best')
        plt.xlabel('User')
        plt.ylabel('Time (seconds)')
        plt.show()
   return sparse.csr matrix((data, (rows, cols)), shape=(no of users, no of users)), time
```

```
In [39]:
```

3.4.1.2 Trying with reduced dimensions (Using TruncatedSVD for dimensionality reduction of user vector)

- We have **405,041 users** in out training set and computing similarities between them..(**17K dimensional vector.**.) is time consuming..
- From above plot, It took roughly 8.88 sec for computing similar users for one user
- We have 405,041 users with us in training set.
- $405041 \times 8.88 = 3596764.08 \text{ sec} = 59946.068 \text{ min} = 999.101133333 \text{ hours} = 41.629213889 \text{ days}.$
 - Even if we run on 4 cores parallelly (a typical system now a days), It will still take almost 10 and 1/2 days.

IDEA: Instead, we will try to reduce the dimentsions using SVD, so that it might speed up the process...

Let's convert this to actual sparse matrix and store it for future purposes

In [40]:

```
if not os.path.isfile('trunc_sparse_matrix.npz'):
    # create that sparse sparse matrix
    trunc_sparse_matrix = sparse.csr_matrix(trunc_matrix)
    # Save this truncated sparse matrix for Later usage..
    sparse.save_npz('trunc_sparse_matrix', trunc_sparse_matrix)
else:
    trunc_sparse_matrix = sparse.load_npz('trunc_sparse_matrix.npz')
```

```
In [41]:
```

```
trunc_sparse_matrix.shape
Out[41]:
(2649430, 500)
In [42]:
start = datetime.now()
trunc_u_u_sim_matrix, _ = compute_user_similarity(trunc_sparse_matrix, compute_for_few=True
                                                 verb_for_n_rows=10)
print("-"*50)
print("time:",datetime.now()-start)
Computing top 50 similarities for each user...
computing done for 10 users [ time elapsed : 0:01:19.943296
computing done for 20 users [ time elapsed : 0:02:39.083640
computing done for 30 users [ time elapsed : 0:03:55.608418
computing done for 40 users [ time elapsed : 0:05:12.176104
computing done for 50 users [ time elapsed : 0:06:30.465481
Creating Sparse matrix from the computed similarities
```

: This is taking more time for each user than Original one.

- from above plot, It took almost 12.18 for computing similar users for one user
- We have 405041 users with us in training set.
- $405041 \times 12.18 = = = 4933399.38 \text{ sec} = = = 82223.323 \text{ min} = = = 1370.388716667 \text{ hours} = = = = 1370.388716667 \text{ hours} = 1370.38871667 \text{ hours} = 1370.3887167 \text{ hours} = 1370.$
 - Even we run on 4 cores parallelly (a typical system now a days), It will still take almost __(14 15) __ days.

Why did this happen...??

time: 0:07:00.012399

- Just think about it. It's not that difficult.

Is there any other way to compute user user similarity..??

-An alternative is to compute similar users for a particular user, whenenver required (ie., Run time)

- We maintain a binary Vector for users, which tells us whether we already compute $\ensuremath{\mathsf{d}}$ or not..
- ***If not***:
- Compute top (let's just say, 1000) most similar users for this given user, a nd add this to our datastructure, so that we can just access it(similar users) wit hout recomputing it again.
- ***If It is already Computed***:
 - Just get it directly from our datastructure, which has that information.
- In production time, We might have to recompute similarities, if it is comput ed a long time ago. Because user preferences changes over time. If we could mainta in some kind of Timer, which when expires, we have to update it (recompute it).
- ***Which datastructure to use:***
 - It is purely implementation dependant.
 - One simple method is to maintain a **Dictionary Of Dictionaries**.

3.4.2 Computing Movie-Movie Similarity matrix

```
In [43]:
```

```
start = datetime.now()
if not os.path.isfile('m_m_sim_sparse.npz'):
   print("It seems you don't have that file. Computing movie_movie similarity...")
   start = datetime.now()
   m_m_sim_sparse = cosine_similarity(X=train_sparse_matrix.T, dense_output=False)
   print("Done..")
   # store this sparse matrix in disk before using it. For future purposes.
   print("Saving it to disk without the need of re-computing it again.. ")
    sparse.save npz("m m sim sparse.npz", m m sim sparse)
   print("Done..")
else:
   print("It is there, We will get it.")
   m_m_sim_sparse = sparse.load_npz("m_m_sim_sparse.npz")
   print("Done ...")
print("It's a ",m m sim sparse.shape," dimensional matrix")
print(datetime.now() - start)
```

```
It is there, We will get it.
Done ...
It's a (17771, 17771) dimensional matrix
0:00:30.226187
```

```
In [44]:
```

```
m_m_sim_sparse.shape
```

Out[44]:

(17771, 17771)

- Even though we have similarity measure of each movie, with all other movies, We generally don't care much about least similar movies.
- Most of the times, only top_xxx similar items matters. It may be 10 or 100.
- We take only those top similar movie ratings and store them in a saperate dictionary.

In [45]:

```
movie_ids = np.unique(m_m_sim_sparse.nonzero()[1])
```

In [46]:

```
start = datetime.now()
similar_movies = dict()
for movie in movie_ids:
    # get the top similar movies and store them in the dictionary
    sim_movies = m_m_sim_sparse[movie].toarray().ravel().argsort()[::-1][1:]
    similar_movies[movie] = sim_movies[:100]
print(datetime.now() - start)

# just testing similar movies for movie_15
similar_movies[15]
```

```
0:00:31.643112
```

Out[46]:

```
array([ 8279, 8013, 16528, 5927, 13105, 12049, 4424, 10193, 17590,
                    590, 14059, 15144, 15054, 9584,
       4549, 3755,
                                                      9071, 6349,
                            5370, 16309, 9376,
                                                6116,
      16402, 3973,
                     1720,
                                                       4706,
                                                              2818,
                    1416, 12979, 17139, 17710,
        778, 15331,
                                               5452,
                                                      2534,
                     2450, 16331, 9566, 15301, 13213, 14308, 15984,
      15188, 8323,
                            7068, 7328, 5720, 9802,
      10597, 6426,
                     5500,
                                                        376, 13013,
                    3338, 15390,
                                  9688, 16455, 11730,
       8003, 10199,
                                                       4513,
                                                               598,
                                  9166, 17115, 16334,
      12762,
             2187,
                      509,
                            5865,
                                                      1942,
                                                              7282,
              4376, 8988,
                            8873,
                                  5921, 2716, 14679, 11947, 11981,
      17584,
               565, 12954, 10788, 10220, 10963, 9427, 1690,
       4649,
                                         7845, 6410, 13931,
       7859,
              5969,
                     1510,
                            2429,
                                   847,
                                                              9840,
       3706])
```

3.4.3 Finding most similar movies using similarity matrix

```
_ Does Similarity really works as the way we expected...? ___

Let's pick some random movie and check for its similar movies....
```

In [47]:

Tokenization took: 4.40 ms
Type conversion took: 9.91 ms
Parser memory cleanup took: 0.01 ms

Out[47]:

title	year_of_release	
		movie_id
Dinosaur Planet	2003.0	1
Isle of Man TT 2004 Review	2004.0	2
Character	1997.0	3
Paula Abdul's Get Up & Dance	1994.0	4
The Rise and Fall of ECW	2004.0	5

Similar Movies for 'Vampire Journals'

In [48]:

```
mv_id = 67
print("\nMovie ---->",movie_titles.loc[mv_id].values[1])
print("\nIt has {} Ratings from users.".format(train_sparse_matrix[:,mv_id].getnnz()))
print("\nWe have {} movies which are similar to this and we will get only top most..".forma
```

```
Movie ----> Vampire Journals
```

It has 270 Ratings from users.

We have 17284 movies which are similar to this and we will get only top mos t..

In [49]:

```
similarities = m_m_sim_sparse[mv_id].toarray().ravel()
similar_indices = similarities.argsort()[::-1][1:]
similarities[similar_indices]
sim_indices = similarities.argsort()[::-1][1:] # It will sort and reverse the array and ign
                                               # and return its indices(movie_ids)
```

In [50]:

```
plt.plot(similarities[sim_indices], label='All the ratings')
plt.plot(similarities[sim_indices[:100]], label='top 100 similar movies')
plt.title("Similar Movies of {}(movie_id)".format(mv_id), fontsize=20)
plt.xlabel("Movies (Not Movie_Ids)", fontsize=15)
plt.ylabel("Cosine Similarity", fontsize=15)
plt.legend()
plt.show()
```

Top 10 similar movies

In [51]:

```
movie_titles.loc[sim_indices[:10]]
```

Out[51]:

	year_of_release	title
movie_id		
323	1999.0	Modern Vampires
4044	1998.0	Subspecies 4: Bloodstorm
1688	1993.0	To Sleep With a Vampire
13962	2001.0	Dracula: The Dark Prince
12053	1993.0	Dracula Rising
16279	2002.0	Vampires: Los Muertos
4667	1996.0	Vampirella
1900	1997.0	Club Vampire
13873	2001.0	The Breed
15867	2003.0	Dracula II: Ascension

Similarly, we can *find similar users* and compare how similar they are.

4. Machine Learning Models

In [52]:

```
def get_sample_sparse_matrix(sparse_matrix, no_users, no_movies, path, verbose = True):
        It will get it from the ''path'' if it is present or It will create
        and store the sampled sparse matrix in the path specified.
   # get (row, col) and (rating) tuple from sparse_matrix...
   row_ind, col_ind, ratings = sparse.find(sparse_matrix)
   users = np.unique(row_ind)
   movies = np.unique(col_ind)
   print("Original Matrix : (users, movies) -- ({} {})".format(len(users), len(movies)))
   print("Original Matrix : Ratings -- {}\n".format(len(ratings)))
    # It just to make sure to get same sample everytime we run this program..
   # and pick without replacement....
   np.random.seed(15)
   sample_users = np.random.choice(users, no_users, replace=False)
   sample_movies = np.random.choice(movies, no_movies, replace=False)
   # get the boolean mask or these sampled_items in originl row/col_inds..
   mask = np.logical_and( np.isin(row_ind, sample_users),
                      np.isin(col_ind, sample_movies) )
   sample_sparse_matrix = sparse.csr_matrix((ratings[mask], (row_ind[mask], col_ind[mask])
                                             shape=(max(sample_users)+1, max(sample_movies)
    if verbose:
        print("Sampled Matrix : (users, movies) -- ({} {})".format(len(sample_users), len(s
        print("Sampled Matrix : Ratings --", format(ratings[mask].shape[0]))
   print('Saving it into disk for furthur usage..')
   # save it into disk
   sparse.save_npz(path, sample_sparse_matrix)
    if verbose:
           print('Done..\n')
    return sample sparse matrix
```

4.1 Sampling Data

4.1.1 Build sample train data from the train data

```
In [138]:
```

```
start = datetime.now()
path = "sample_train_sparse_matrix_all.npz"
if os.path.isfile(path):
   print("It is present in your pwd, getting it from disk....")
   # just get it from the disk instead of computing it
   sample_train_sparse_matrix = sparse.load_npz(path)
   print("DONE...")
else:
   # get 5k users and 500 movies from available data
   sample_train_sparse_matrix = get_sample_sparse_matrix(train_sparse_matrix, no_users=405
                                                 path = "sample train sparse matrix all.npz
print(datetime.now() - start)
Original Matrix: (users, movies) -- (405041 17424)
Original Matrix: Ratings -- 80384405
Sampled Matrix : (users, movies) -- (405041 17424)
Sampled Matrix : Ratings -- 80384405
Saving it into disk for furthur usage...
Done..
```

4.1.2 Build sample test data from the test data

In [139]:

0:02:11.248946

```
start = datetime.now()
path = "sample_test_sparse_matrix_all.npz"
if os.path.isfile(path):
    print("It is present in your pwd, getting it from disk....")
   # just get it from the disk instead of computing it
   sample_test_sparse_matrix = sparse.load_npz(path)
   print("DONE..")
else:
   # get 5k users and 500 movies from available data
   sample_test_sparse_matrix = get_sample_sparse_matrix(test_sparse_matrix, no_users=34931
                                                  path = "sample test sparse matrix all.npz"
print(datetime.now() - start)
Original Matrix : (users, movies) -- (349312 17757)
Original Matrix : Ratings -- 20096102
Sampled Matrix : (users, movies) -- (349312 17757)
Sampled Matrix: Ratings -- 20096102
Saving it into disk for furthur usage...
Done..
0:00:32.121150
```

4.2 Finding Global Average of all movie ratings, Average rating per User, and Average rating per Movie (from sampled train)

```
In [140]:
sample_train_averages = dict()
```

4.2.1 Finding Global Average of all movie ratings

```
In [141]:
```

```
# get the global average of ratings in our train set.
global_average = sample_train_sparse_matrix.sum()/sample_train_sparse_matrix.count_nonzero(
sample_train_averages['global'] = global_average
sample_train_averages
```

Out[141]:

{'global': 3.582890686321557}

4.2.2 Finding Average rating per User

In [142]:

```
sample_train_averages['user'] = get_average_ratings(sample_train_sparse_matrix, of_users=Tr
print('\nAverage rating of user 1515220 :',sample_train_averages['user'][1515220])
```

Average rating of user 1515220 : 3.929971988795518

4.2.3 Finding Average rating per Movie

```
In [143]:
```

```
sample_train_averages['movie'] = get_average_ratings(sample_train_sparse_matrix, of_users=
print('\n AVerage rating of movie 15153 :',sample_train_averages['movie'][15153])
```

AVerage rating of movie 15153 : 2.9022181982797646

4.3 Featurizing data

In [144]:

```
print('\n No of ratings in Our Sampled train matrix is : {}\n'.format(sample_train_sparse_m
print('\n No of ratings in Our Sampled test matrix is : {}\n'.format(sample_test_sparse_ma)
No of ratings in Our Sampled train matrix is : 80384405
```

4.3.1 Featurizing data for regression problem

No of ratings in Our Sampled test matrix is : 20096102

4.3.1.1 Featurizing train data

In [145]:

```
# get users, movies and ratings from our samples train sparse matrix
sample_train_users, sample_train_movies, sample_train_ratings = sparse.find(sample_train_sp
```

In [146]:

```
# It took me almost 10 hours to prepare this train dataset.#
start = datetime.now()
if os.path.isfile('reg_train.csv'):
   print("File already exists you don't have to prepare again..." )
else:
   print('preparing {} tuples for the dataset..\n'.format(len(sample_train_ratings)))
   with open('sample/small/reg_train.csv', mode='w') as reg_data_file:
       count = 0
       for (user, movie, rating) in zip(sample_train_users, sample_train_movies, sample_t
           st = datetime.now()
            print(user, movie)
           #----- Ratings of "movie" by similar users of "user" ------
           # compute the similar Users of the "user"
           user_sim = cosine_similarity(sample_train_sparse_matrix[user], sample_train_spa
           top_sim_users = user_sim.argsort()[::-1][1:] # we are ignoring 'The User' from
           # get the ratings of most similar users for this movie
           top_ratings = sample_train_sparse_matrix[top_sim_users, movie].toarray().ravel(
           # we will make it's length "5" by adding movie averages to .
           top_sim_users_ratings = list(top_ratings[top_ratings != 0][:5])
           top_sim_users_ratings.extend([sample_train_averages['movie'][movie]]*(5 - len(t
            print(top_sim_users_ratings, end=" ")
           #----- Ratings by "user" to similar movies of "movie" -----
           # compute the similar movies of the "movie"
           movie_sim = cosine_similarity(sample_train_sparse_matrix[:,movie].T, sample_tra
           top_sim_movies = movie_sim.argsort()[::-1][1:] # we are ignoring 'The User' fro
           # get the ratings of most similar movie rated by this user..
           top_ratings = sample_train_sparse_matrix[user, top_sim_movies].toarray().ravel(
           # we will make it's length "5" by adding user averages to.
           top_sim_movies_ratings = list(top_ratings[top_ratings != 0][:5])
           top sim movies ratings.extend([sample train averages['user'][user']]*(5-len(top
            print(top_sim_movies_ratings, end=" : -- ")
       #
           #-----#
           row = list()
           row.append(user)
           row.append(movie)
           # Now add the other features to this data...
           row.append(sample_train_averages['global']) # first feature
           # next 5 features are similar users "movie" ratings
           row.extend(top_sim_users_ratings)
           # next 5 features are "user" ratings for similar_movies
           row.extend(top sim movies ratings)
           # Avg_user rating
           row.append(sample_train_averages['user'][user])
           # Avg movie rating
           row.append(sample_train_averages['movie'][movie])
           # finalley, The actual Rating of this user-movie pair...
           row.append(rating)
           count = count + 1
           # add rows to the file opened..
           reg_data_file.write(','.join(map(str, row)))
           reg data file.write('\n')
           if (count)%10000 == 0:
```

```
# print(','.join(map(str, row)))
    print("Done for {} rows----- {}".format(count, datetime.now() - start))

print(datetime.now() - start)
```

File already exists you don't have to prepare again... 0:00:00.000929

Reading from the file to make a Train_dataframe

In [147]:

```
reg_train = pd.read_csv('reg_train.csv', names = ['user', 'movie', 'GAvg', 'sur1', 'sur2',
reg_train.head()
```

Out[147]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	smr2	smr3	smr4	smr5	
0	53406	33	3.581679	4.0	5.0	5.0	4.0	1.0	5.0	2.0	5.0	3.0	1.0	3.3
1	99540	33	3.581679	5.0	5.0	5.0	4.0	5.0	3.0	4.0	4.0	3.0	5.0	3.5
2	99865	33	3.581679	5.0	5.0	4.0	5.0	3.0	5.0	4.0	4.0	5.0	4.0	3.7
3	101620	33	3.581679	2.0	3.0	5.0	5.0	4.0	4.0	3.0	3.0	4.0	5.0	3.5
4	112974	33	3.581679	5.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0	5.0	3.0	3.7
4														•

- GAvg : Average rating of all the ratings
- · Similar users rating of this movie:
 - sur1, sur2, sur3, sur4, sur5 (top 5 similar users who rated that movie..)
- Similar movies rated by this user:
 - smr1, smr2, smr3, smr4, smr5 (top 5 similar movies rated by this movie..)
- · UAvg : User's Average rating
- MAvg: Average rating of this movie
- rating: Rating of this movie by this user.

4.3.1.2 Featurizing test data

In [148]:

```
# get users, movies and ratings from the Sampled Test
sample_test_users, sample_test_movies, sample_test_ratings = sparse.find(sample_test_sparse
```

In [149]:

sample_train_averages['global']

Out[149]:

3.582890686321557

In [150]:

```
start = datetime.now()
if os.path.isfile('reg_test.csv'):
   print("It is already created...")
else:
   print('preparing {} tuples for the dataset..\n'.format(len(sample_test_ratings)))
   with open('sample/small/reg_test.csv', mode='w') as reg_data_file:
       count = 0
       for (user, movie, rating) in zip(sample test users, sample test movies, sample test
           st = datetime.now()
       #----- Ratings of "movie" by similar users of "user" --------
           #print(user, movie)
           try:
               # compute the similar Users of the "user"
               user_sim = cosine_similarity(sample_train_sparse_matrix[user], sample_train
               top_sim_users = user_sim.argsort()[::-1][1:] # we are ignoring 'The User' f
               # get the ratings of most similar users for this movie
               top_ratings = sample_train_sparse_matrix[top_sim_users, movie].toarray().ra
               # we will make it's length "5" by adding movie averages to .
               top_sim_users_ratings = list(top_ratings[top_ratings != 0][:5])
               top_sim_users_ratings.extend([sample_train_averages['movie'][movie]]*(5 - 1
               # print(top_sim_users_ratings, end="--")
           except (IndexError, KeyError):
               # It is a new User or new Movie or there are no ratings for given user for
               ######## Cold STart Problem ########
               top_sim_users_ratings.extend([sample_train_averages['global']]*(5 - len(top
               #print(top_sim_users_ratings)
           except:
               print(user, movie)
               # we just want KeyErrors to be resolved. Not every Exception...
               raise
           #----- Ratings by "user" to similar movies of "movie" ------
           try:
               # compute the similar movies of the "movie"
               movie sim = cosine similarity(sample train sparse matrix[:,movie].T, sample
               top_sim_movies = movie_sim.argsort()[::-1][1:] # we are ignoring 'The User'
               # get the ratings of most similar movie rated by this user..
               top_ratings = sample_train_sparse_matrix[user, top_sim_movies].toarray().ra
               # we will make it's length "5" by adding user averages to.
               top_sim_movies_ratings = list(top_ratings[top_ratings != 0][:5])
               top_sim_movies_ratings.extend([sample_train_averages['user'][user]]*(5-len()
               #print(top_sim_movies_ratings)
           except (IndexError, KeyError):
               #print(top_sim_movies_ratings, end=" : -- ")
               top_sim_movies_ratings.extend([sample_train_averages['global']]*(5-len(top_
               #print(top sim movies ratings)
           except:
               raise
           #-----#
           row = list()
           # add usser and movie name first
           row.append(user)
```

```
row.append(movie)
        row.append(sample_train_averages['global']) # first feature
        #print(row)
        # next 5 features are similar users "movie" ratings
        row.extend(top_sim_users_ratings)
        #print(row)
        # next 5 features are "user" ratings for similar_movies
        row.extend(top_sim_movies_ratings)
        #print(row)
        # Avg_user rating
        try:
            row.append(sample_train_averages['user'][user])
        except KeyError:
            row.append(sample_train_averages['global'])
        except:
            raise
        #print(row)
        # Avg_movie rating
        try:
            row.append(sample_train_averages['movie'][movie])
        except KeyError:
            row.append(sample_train_averages['global'])
        except:
            raise
        #print(row)
        # finalley, The actual Rating of this user-movie pair...
        row.append(rating)
        #print(row)
        count = count + 1
        # add rows to the file opened..
        reg_data_file.write(','.join(map(str, row)))
        #print(','.join(map(str, row)))
        reg_data_file.write('\n')
        if (count)%1000 == 0:
            #print(','.join(map(str, row)))
            print("Done for {} rows---- {}".format(count, datetime.now() - start))
print("",datetime.now() - start)
```

It is already created...

__Reading from the file to make a test dataframe ___

In [151]:

Out[151]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	•
0	808635	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.58
1	941866	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.58
2	1737912	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.58
3	1849204	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.58
4										•

- · GAvg: Average rating of all the ratings
- · Similar users rating of this movie:
 - sur1, sur2, sur3, sur4, sur5 (top 5 simiular users who rated that movie..)
- · Similar movies rated by this user:
 - smr1, smr2, smr3, smr4, smr5 (top 5 simiular movies rated by this movie..)
- UAvg: User AVerage rating
- . MAvg: Average rating of this movie
- rating: Rating of this movie by this user.

4.3.2 Transforming data for Surprise models

In [152]:

```
from surprise import Reader, Dataset
```

4.3.2.1 Transforming train data

- We can't give raw data (movie, user, rating) to train the model in Surprise library.
- They have a saperate format for TRAIN and TEST data, which will be useful for training the models like SVD, KNNBaseLineOnly....etc..,in Surprise.
- We can form the trainset from a file, or from a Pandas DataFrame.
 http://surprise.readthedocs.io/en/stable/getting_started.html#load-dom-dataframe-py)
 (http://surprise.readthedocs.io/en/stable/getting_started.html#load-dom-dataframe-py)

In [153]:

```
# It is to specify how to read the dataframe.
# for our dataframe, we don't have to specify anything extra..
reader = Reader(rating_scale=(1,5))
# create the traindata from the dataframe...
train_data = Dataset.load_from_df(reg_train[['user', 'movie', 'rating']], reader)
# build the trainset from traindata.., It is of dataset format from surprise library..
trainset = train_data.build_full_trainset()
```

4.3.2.2 Transforming test data

• Testset is just a list of (user, movie, rating) tuples. (Order in the tuple is impotant)

In [154]:

```
testset = list(zip(reg_test_df.user.values, reg_test_df.movie.values, reg_test_df.rating.va
testset[:3]
Out[154]:
[(808635, 71, 5), (941866, 71, 4), (1737912, 71, 3)]
```

4.4 Applying Machine Learning models

- · Global dictionary that stores rmse and mape for all the models....
 - It stores the metrics in a dictionary of dictionaries

```
keys : model names(string)

value: dict(key : metric, value : value )
```

In [155]:

```
models_evaluation_train = dict()
models_evaluation_test = dict()
models_evaluation_train, models_evaluation_test
```

```
Out[155]:
```

({}, {})

Utility functions for running regression models

In [156]:

```
# to get rmse and mape given actual and predicted ratings..
def get_error_metrics(y_true, y_pred):
   rmse = np.sqrt(np.mean([ (y_true[i] - y_pred[i])**2 for i in range(len(y_pred)) ]))
   mape = np.mean(np.abs( (y_true - y_pred)/y_true )) * 100
   return rmse, mape
def run_xgboost(algo, x_train, y_train, x_test, y_test, verbose=True):
   It will return train_results and test_results
   # dictionaries for storing train and test results
   train_results = dict()
   test_results = dict()
   # fit the model
   print('Training the model..')
   start =datetime.now()
   algo.fit(x_train, y_train, eval_metric = 'rmse')
   print('Done. Time taken : {}\n'.format(datetime.now()-start))
   print('Done \n')
   # from the trained model, get the predictions....
   print('Evaluating the model with TRAIN data...')
   start =datetime.now()
   y_train_pred = algo.predict(x_train)
   # get the rmse and mape of train data...
   rmse_train, mape_train = get_error_metrics(y_train.values, y_train_pred)
   # store the results in train_results dictionary..
   train_results = {'rmse': rmse_train,
                  'mape' : mape_train,
                  'predictions' : y_train_pred}
   # get the test data predictions and compute rmse and mape
   print('Evaluating Test data')
   y test pred = algo.predict(x test)
   rmse_test, mape_test = get_error_metrics(y_true=y_test.values, y_pred=y_test_pred)
   # store them in our test results dictionary.
   test_results = {'rmse': rmse_test,
                  'mape' : mape_test,
                  'predictions':y test pred}
   if verbose:
       print('\nTEST DATA')
       print('-'*30)
       print('RMSE : ', rmse_test)
       print('MAPE : ', mape_test)
   # return these train and test results...
   return train results, test results
```

In [157]:

```
# it is just to makesure that all of our algorithms should produce same results
# everytime they run...
my seed = 15
random.seed(my seed)
np.random.seed(my_seed)
# get (actual_list , predicted_list) ratings given list
# of predictions (prediction is a class in Surprise).
def get_ratings(predictions):
   actual = np.array([pred.r_ui for pred in predictions])
   pred = np.array([pred.est for pred in predictions])
   return actual, pred
# get ''rmse'' and ''mape'', given list of prediction objecs
def get_errors(predictions, print_them=False):
   actual, pred = get_ratings(predictions)
   rmse = np.sqrt(np.mean((pred - actual)**2))
   mape = np.mean(np.abs(pred - actual)/actual)
   return rmse, mape*100
# It will return predicted ratings, rmse and mape of both train and test data
def run_surprise(algo, trainset, testset, verbose=True):
      return train dict, test dict
      It returns two dictionaries, one for train and the other is for test
      Each of them have 3 key-value pairs, which specify ''rmse'', ''mape'', and ''predic
   start = datetime.now()
   # dictionaries that stores metrics for train and test..
   train = dict()
   test = dict()
   # train the algorithm with the trainset
   st = datetime.now()
   print('Training the model...')
   algo.fit(trainset)
   print('Done. time taken : {} \n'.format(datetime.now()-st))
   # -----#
   st = datetime.now()
   print('Evaluating the model with train data..')
   # get the train predictions (list of prediction class inside Surprise)
   train preds = algo.test(trainset.build testset())
   # get predicted ratings from the train predictions..
   train_actual_ratings, train_pred_ratings = get_ratings(train_preds)
   # get ''rmse'' and ''mape'' from the train predictions.
   train rmse, train mape = get errors(train preds)
   print('time taken : {}'.format(datetime.now()-st))
```

```
if verbose:
   print('-'*15)
   print('Train Data')
   print('-'*15)
   print("RMSE : {}\n\nMAPE : {}\n".format(train_rmse, train_mape))
#store them in the train dictionary
if verbose:
    print('adding train results in the dictionary..')
train['rmse'] = train_rmse
train['mape'] = train_mape
train['predictions'] = train_pred_ratings
#-----#
st = datetime.now()
print('\nEvaluating for test data...')
# get the predictions( list of prediction classes) of test data
test_preds = algo.test(testset)
# get the predicted ratings from the list of predictions
test_actual_ratings, test_pred_ratings = get_ratings(test_preds)
# get error metrics from the predicted and actual ratings
test_rmse, test_mape = get_errors(test_preds)
print('time taken : {}'.format(datetime.now()-st))
if verbose:
   print('-'*15)
   print('Test Data')
   print('-'*15)
   print("RMSE : {}\n\nMAPE : {}\n".format(test_rmse, test_mape))
# store them in test dictionary
if verbose:
    print('storing the test results in test dictionary...')
test['rmse'] = test_rmse
test['mape'] = test_mape
test['predictions'] = test_pred_ratings
print('\n'+'-'*45)
print('Total time taken to run this algorithm :', datetime.now() - start)
# return two dictionaries train and test
return train, test
```

4.4.1 XGBoost with initial 13 features

```
In [158]:
```

```
import xgboost as xgb
```

```
In [159]:
```

```
# prepare Train data
x_train = reg_train.drop(['user','movie','rating'], axis=1)
y_train = reg_train['rating']
# Prepare Test data
x_test = reg_test_df.drop(['user', 'movie', 'rating'], axis=1)
y_test = reg_test_df['rating']
# initialize Our first XGBoost model...
first xgb = xgb.XGBRegressor(silent=False, n jobs=13, random state=15, n estimators=100)
train_results, test_results = run_xgboost(first_xgb, x_train, y_train, x_test, y_test)
# store the results in models_evaluations dictionaries
models_evaluation_train['first_algo'] = train_results
models_evaluation_test['first_algo'] = test_results
xgb.plot_importance(first_xgb)
plt.show()
Training the model..
[12:46:54] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
/home/anuraag_ch/.local/lib/python3.5/site-packages/xgboost/core.py:587: Fut
ureWarning: Series.base is deprecated and will be removed in a future versio
n
  if getattr(data, 'base', None) is not None and \
/home/anuraag_ch/.local/lib/python3.5/site-packages/xgboost/core.py:588: Fut
ureWarning: Series.base is deprecated and will be removed in a future versio
  data.base is not None and isinstance(data, np.ndarray) \
Done. Time taken: 0:00:02.413358
Done
Evaluating the model with TRAIN data...
Evaluating Test data
TEST DATA
RMSE: 1.076373581778953
MAPE: 34.48223172520999
```

4.4.2 Suprise BaselineModel

```
In [160]:
```

```
from surprise import BaselineOnly

_Predicted_rating:(baseline prediction)__

- http://surprise.readthedocs.io/en/stable/basic_algorithms.html#surprise.predict
```

ion_algorithms.baseline_only.BaselineOnly

$$\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i$$

- μ : Average of all trainings in training data.
- $m{b}_u$: User bias
- **b**_i: Item bias (movie biases)

__Optimization function (Least Squares Problem) ___

- http://surprise.readthedocs.io/en/stable/prediction_algorithms.html#baselines-es timates-configuration

$$\sum_{r_{ui} \in R_{train}} (r_{ui} - (\mu + b_u + b_i))^2 + \lambda (b_u^2 + b_i^2). \text{ [mimimize } b_u, b_i]$$

```
In [161]:
```

```
# options are to specify.., how to compute those user and item biases
bsl_options = {'method': 'sgd',
              'learning_rate': .001
bsl_algo = BaselineOnly(bsl_options=bsl_options)
# run this algorithm.., It will return the train and test results..
bsl_train_results, bsl_test_results = run_surprise(bsl_algo, trainset, testset, verbose=Tru
# Just store these error metrics in our models_evaluation datastructure
models_evaluation_train['bsl_algo'] = bsl_train_results
models_evaluation_test['bsl_algo'] = bsl_test_results
Training the model...
Estimating biases using sgd...
Done. time taken : 0:00:01.083927
Evaluating the model with train data...
time taken : 0:00:01.278896
Train Data
-----
RMSE: 0.9347153928678286
MAPE: 29.389572652358183
adding train results in the dictionary..
Evaluating for test data...
time taken: 0:00:00.074687
Test Data
______
RMSE: 1.0730330260516174
MAPE: 35.04995544572911
storing the test results in test dictionary...
______
Total time taken to run this algorithm : 0:00:02.438411
```

4.4.3 XGBoost with initial 13 features + Surprise Baseline predictor

Updating Train Data

In [162]:

```
# add our baseline_predicted value as our feature..
reg_train['bslpr'] = models_evaluation_train['bsl_algo']['predictions']
reg_train.head(2)
```

Out[162]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	smr2	smr3	smr4	smr5	!
0	53406	33	3.581679	4.0	5.0	5.0	4.0	1.0	5.0	2.0	5.0	3.0	1.0	3.37
1	99540	33	3.581679	5.0	5.0	5.0	4.0	5.0	3.0	4.0	4.0	3.0	5.0	3.55
4														•

Updating Test Data

In [163]:

```
# add that baseline predicted ratings with Surprise to the test data as well
reg_test_df['bslpr'] = models_evaluation_test['bsl_algo']['predictions']
reg_test_df.head(2)
```

Out[163]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	SI
0	808635	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581
1	941866	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581
4										•

```
In [164]:
```

```
# prepare train data
x_train = reg_train.drop(['user', 'movie', 'rating'], axis=1)
y_train = reg_train['rating']
# Prepare Test data
x_test = reg_test_df.drop(['user', 'movie', 'rating'], axis=1)
y_test = reg_test_df['rating']
# initialize Our first XGBoost model...
xgb bsl = xgb.XGBRegressor(silent=False, n jobs=13, random state=15, n estimators=100)
train_results, test_results = run_xgboost(xgb_bsl, x_train, y_train, x_test, y_test)
# store the results in models_evaluations dictionaries
models_evaluation_train['xgb_bsl'] = train_results
models_evaluation_test['xgb_bsl'] = test_results
xgb.plot_importance(xgb_bsl)
plt.show()
Training the model..
[12:47:00] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
Done. Time taken: 0:00:02.967892
Done
Evaluating the model with TRAIN data...
Evaluating Test data
TEST DATA
RMSE: 1.0765603714651855
MAPE: 34.4648051883444
```

4.4.4 Surprise KNNBaseline predictor

```
In [165]:
```

```
from surprise import KNNBaseline
```

- KNN BASELINE
 - http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBase (http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBase

```
• PEARSON BASELINE SIMILARITY
```

http://surprise.readthedocs.io/en/stable/similarities.html#surprise.similarities.pearson_baseline
 (http://surprise.readthedocs.io/en/stable/similarities.html#surprise.similarities.pearson_baseline)

SHRINKAGE

- 2.2 Neighborhood Models in http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf

 (http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf)
- predicted Rating : (_ based on User-User similarity _)

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{v \in N_i^k(u)} \sin(u, v) \cdot (r_{vi} - b_{vi})}{\sum_{v \in N_i^k(u)} \sin(u, v)}$$

- **b**_{ui} Baseline prediction of (user,movie) rating
- $N_i^k(u)$ Set of K similar users (neighbours) of user (u) who rated movie(i)
- sim (u, v) Similarity between users u and v
 - Generally, it will be cosine similarity or Pearson correlation coefficient.
 - But we use shrunk Pearson-baseline correlation coefficient, which is based on the pearsonBaseline similarity (we take base line predictions instead of mean rating of user/item)
- __ Predicted rating __ (based on Item Item similarity):

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in N_u^k(i)} \sin(i, j) \cdot (r_{uj} - b_{uj})}{\sum_{j \in N_u^k(j)} \sin(i, j)}$$

Notations follows same as above (user user based predicted rating) _

4.4.4.1 Surprise KNNBaseline with user user similarities

```
In [166]:
```

```
# we specify , how to compute similarities and what to consider with sim_options to our alg
sim_options = {'user_based' : True,
               'name': 'pearson_baseline',
               'shrinkage': 100,
               'min_support': 2
              }
# we keep other parameters like regularization parameter and learning rate as default value
bsl_options = {'method': 'sgd'}
knn bsl u = KNNBaseline(k=40, sim options = sim options, bsl options = bsl options)
knn_bsl_u_train_results, knn_bsl_u_test_results = run_surprise(knn_bsl_u, trainset, testset
# Just store these error metrics in our models_evaluation datastructure
models_evaluation_train['knn_bsl_u'] = knn_bsl_u_train_results
models_evaluation_test['knn_bsl_u'] = knn_bsl_u_test_results
Training the model...
Estimating biases using sgd...
Computing the pearson_baseline similarity matrix...
Done computing similarity matrix.
Done. time taken : 0:00:37.903893
Evaluating the model with train data...
time taken : 0:02:05.183390
Train Data
RMSE: 0.33642097416508826
MAPE: 9.145093375416348
adding train results in the dictionary..
Evaluating for test data...
time taken : 0:00:00.081023
-----
Test Data
______
RMSE: 1.0726493739667242
MAPE: 35,02094499698424
storing the test results in test dictionary...
Total time taken to run this algorithm : 0:02:43.169322
```

4.4.4.2 Surprise KNNBaseline with movie movie similarities

```
In [167]:
```

```
# we specify , how to compute similarities and what to consider with sim_options to our alg
# 'user_based' : Fals => this considers the similarities of movies instead of users
sim_options = {'user_based' : False,
               'name': 'pearson_baseline',
               'shrinkage': 100,
               'min_support': 2
              }
# we keep other parameters like regularization parameter and learning rate as default value
bsl_options = {'method': 'sgd'}
knn_bsl_m = KNNBaseline(k=40, sim_options = sim_options, bsl_options = bsl_options)
knn_bsl_m_train_results, knn_bsl_m_test_results = run_surprise(knn_bsl_m, trainset, testset
# Just store these error metrics in our models_evaluation datastructure
models_evaluation_train['knn_bsl_m'] = knn_bsl_m_train_results
models_evaluation_test['knn_bsl_m'] = knn_bsl_m_test_results
Training the model...
Estimating biases using sgd...
Computing the pearson baseline similarity matrix...
Done computing similarity matrix.
Done. time taken: 0:00:01.347490
Evaluating the model with train data...
time taken : 0:00:10.732188
-----
Train Data
_____
RMSE: 0.32584796251610554
MAPE: 8.447062581998374
adding train results in the dictionary..
Evaluating for test data...
time taken : 0:00:00.079709
Test Data
RMSE: 1.072758832653683
MAPE: 35.02269653015042
storing the test results in test dictionary...
Total time taken to run this algorithm : 0:00:12.160003
```

4.4.5 XGBoost with initial 13 features + Surprise Baseline predictor + KNNBaseline predictor

- First we will run XGBoost with predictions from both KNN's (that uses User_User and Item_Item similarities along with our previous features.
- Then we will run XGBoost with just predictions form both knn models and preditions from our baseline model.

Preparing Train data

In [168]:

```
# add the predicted values from both knns to this dataframe
reg_train['knn_bsl_u'] = models_evaluation_train['knn_bsl_u']['predictions']
reg_train['knn_bsl_m'] = models_evaluation_train['knn_bsl_m']['predictions']
reg_train.head(2)
```

Out[168]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	smr2	smr3	smr4	smr5	l
0	53406	33	3.581679	4.0	5.0	5.0	4.0	1.0	5.0	2.0	5.0	3.0	1.0	3.37
1	99540	33	3.581679	5.0	5.0	5.0	4.0	5.0	3.0	4.0	4.0	3.0	5.0	3.55
4														•

_Preparing Test data __

In [169]:

```
reg_test_df['knn_bsl_u'] = models_evaluation_test['knn_bsl_u']['predictions']
reg_test_df['knn_bsl_m'] = models_evaluation_test['knn_bsl_m']['predictions']
reg_test_df.head(2)
```

Out[169]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	12
0	808635	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581
1	941866	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581
4)

```
In [170]:
```

```
# prepare the train data....
x_train = reg_train.drop(['user', 'movie', 'rating'], axis=1)
y_train = reg_train['rating']
# prepare the train data....
x_test = reg_test_df.drop(['user', 'movie', 'rating'], axis=1)
y_test = reg_test_df['rating']
# declare the model
xgb knn bsl = xgb.XGBRegressor(n jobs=10, random state=15)
train_results, test_results = run_xgboost(xgb_knn_bsl, x_train, y_train, x_test, y_test)
# store the results in models_evaluations dictionaries
models_evaluation_train['xgb_knn_bsl'] = train_results
models_evaluation_test['xgb_knn_bsl'] = test_results
xgb.plot_importance(xgb_knn_bsl)
plt.show()
Training the model..
[12:49:59] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
Done. Time taken: 0:00:03.210080
Done
Evaluating the model with TRAIN data...
Evaluating Test data
TEST DATA
RMSE: 1.0767793575625662
```

4.4.6 Matrix Factorization Techniques

4.4.6.1 SVD Matrix Factorization User Movie intractions

```
In [171]:
```

```
from surprise import SVD
```

http://surprise.readthedocs.io/en/stable/matrix_factorization.html#surprise.prediction_algorithms.html#surpr

__ Predicted Rating : ___

MAPE: 34.44745951378593

- $\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$
 - $\circ \ \ oldsymbol{q}_i$ Representation of item(movie) in latent factor space
 - \circ p_{u} Representation of user in new latent factor space

- A BASIC MATRIX FACTORIZATION MODEL in https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf)
- Optimization problem with user item interactions and regularization (to avoid overfitting)

$$\sum_{r_{ui} \in R_{train}} (r_{ui} - \hat{r}_{ui})^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2 \right)$$

In [172]:

```
# initiallize the model
svd = SVD(n_factors=100, biased=True, random_state=15, verbose=True)
svd_train_results, svd_test_results = run_surprise(svd, trainset, testset, verbose=True)
# Just store these error metrics in our models_evaluation datastructure
models_evaluation_train['svd'] = svd_train_results
models_evaluation_test['svd'] = svd_test_results
Training the model...
Processing epoch 0
Processing epoch 1
Processing epoch 2
Processing epoch 3
Processing epoch 4
Processing epoch 5
Processing epoch 6
Processing epoch 7
Processing epoch 8
Processing epoch 9
Processing epoch 10
Processing epoch 11
Processing epoch 12
Processing epoch 13
Processing epoch 14
Processing epoch 15
Processing epoch 16
Processing epoch 17
Processing epoch 18
Processing epoch 19
Done. time taken : 0:00:07.943355
Evaluating the model with train data...
time taken : 0:00:01.532075
Train Data
_____
RMSE: 0.6574721240954099
MAPE: 19.704901088660474
adding train results in the dictionary..
Evaluating for test data...
time taken : 0:00:00.075471
-----
Test Data
______
RMSE: 1.0726046873826458
MAPE: 35.01953535988152
storing the test results in test dictionary...
Total time taken to run this algorithm : 0:00:09.551666
```

4.4.6.2 SVD Matrix Factorization with implicit feedback from user (user rated movies)

In [173]:

from surprise import SVDpp

- ----> 2.5 Implicit Feedback in http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf
 (http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf
- __ Predicted Rating : __

•
$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T \left(p_u + |I_u|^{-\frac{1}{2}} \sum_{j \in I_u} y_j \right)$$

- I_u --- the set of all items rated by user u
- y_i --- Our new set of item factors that capture implicit ratings.
- · Optimization problem with user item interactions and regularization (to avoid overfitting)

In [174]:

initiallize the model

```
svdpp = SVDpp(n_factors=50, random_state=15, verbose=True)
svdpp_train_results, svdpp_test_results = run_surprise(svdpp, trainset, testset, verbose=Tr
# Just store these error metrics in our models_evaluation datastructure
models_evaluation_train['svdpp'] = svdpp_train_results
models_evaluation_test['svdpp'] = svdpp_test_results
Training the model...
 processing epoch 0
 processing epoch 1
 processing epoch 2
 processing epoch 3
 processing epoch 4
 processing epoch 5
 processing epoch 6
 processing epoch 7
 processing epoch 8
 processing epoch 9
 processing epoch 10
 processing epoch 11
 processing epoch 12
 processing epoch 13
 processing epoch 14
 processing epoch 15
 processing epoch 16
 processing epoch 17
 processing epoch 18
 processing epoch 19
Done. time taken: 0:02:06.977634
Evaluating the model with train data..
time taken : 0:00:07.405473
-----
Train Data
RMSE: 0.6032438403305899
MAPE: 17.49285063490268
adding train results in the dictionary..
Evaluating for test data...
time taken : 0:00:00.081638
-----
Test Data
RMSE: 1.0728491944183447
MAPE: 35.03817913919887
storing the test results in test dictionary...
Total time taken to run this algorithm : 0:02:14.465811
```

4.4.7 XgBoost with 13 features + Surprise Baseline + Surprise KNNbaseline + MF Techniques

Preparing Train data

```
In [175]:
```

```
# add the predicted values from both knns to this dataframe
reg_train['svd'] = models_evaluation_train['svd']['predictions']
reg_train['svdpp'] = models_evaluation_train['svdpp']['predictions']
reg_train.head(2)
```

Out[175]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	smr2	 smr4	smr5	UA
0	53406	33	3.581679	4.0	5.0	5.0	4.0	1.0	5.0	2.0	 3.0	1.0	3.3703
1	99540	33	3.581679	5.0	5.0	5.0	4.0	5.0	3.0	4.0	 3.0	5.0	3.5555!

2 rows × 21 columns

```
→
```

__Preparing Test data __

In [176]:

```
reg_test_df['svd'] = models_evaluation_test['svd']['predictions']
reg_test_df['svdpp'] = models_evaluation_test['svdpp']['predictions']
reg_test_df.head(2)
```

Out[176]:

	user	movie	GAvg	sur1	sur2	sur3	sur4	sur5	smr1	SI
0	808635	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581
1	941866	71	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581679	3.581

2 rows × 21 columns

```
In [177]:
```

```
# prepare x train and y train
x_train = reg_train.drop(['user', 'movie', 'rating',], axis=1)
y_train = reg_train['rating']
# prepare test data
x_test = reg_test_df.drop(['user', 'movie', 'rating'], axis=1)
y_test = reg_test_df['rating']
xgb_final = xgb.XGBRegressor(n_jobs=10, random_state=15)
train_results, test_results = run_xgboost(xgb_final, x_train, y_train, x_test, y_test)
# store the results in models_evaluations dictionaries
models_evaluation_train['xgb_final'] = train_results
models_evaluation_test['xgb_final'] = test_results
xgb.plot_importance(xgb_final)
plt.show()
Training the model..
[12:52:27] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
Done. Time taken: 0:00:03.632024
Done
Evaluating the model with TRAIN data...
```

Evaluating Test data

TEST DATA

RMSE: 1.0769599573828592 MAPE: 34.431788329400995

4.4.8 XgBoost with Surprise Baseline + Surprise KNNbaseline + MF Techniques

```
In [178]:
```

```
# prepare train data
x_train = reg_train[['knn_bsl_u', 'knn_bsl_m', 'svd', 'svdpp']]
y_train = reg_train['rating']
# test data
x_test = reg_test_df[['knn_bsl_u', 'knn_bsl_m', 'svd', 'svdpp']]
y_test = reg_test_df['rating']
xgb all models = xgb.XGBRegressor(n jobs=10, random state=15)
train_results, test_results = run_xgboost(xgb_all_models, x_train, y_train, x_test, y_test)
# store the results in models_evaluations dictionaries
models_evaluation_train['xgb_all_models'] = train_results
models_evaluation_test['xgb_all_models'] = test_results
xgb.plot_importance(xgb_all_models)
plt.show()
Training the model..
[12:52:32] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
Done. Time taken: 0:00:02.637842
Done
Evaluating the model with TRAIN data...
Evaluating Test data
TEST DATA
RMSE: 1.0753047860953797
```

MAPE: 35.07058962951319

4.5 Comparision between all models

In [179]:

```
# Saving our TEST_RESULTS into a dataframe so that you don't have to run it again
pd.DataFrame(models_evaluation_test).to_csv('small_sample_results.csv')
models = pd.read_csv('small_sample_results.csv', index_col=0)
models.loc['rmse'].sort_values()
```

Out[179]:

svd 1.0726046873826458 knn_bsl_u 1.0726493739667242 knn_bsl_m 1.072758832653683 svdpp 1.0728491944183447 bsl_algo 1.0730330260516174 xgb_all_models 1.0753047860953797 first_algo 1.076373581778953 xgb_bsl 1.0765603714651855 xgb_knn_bsl 1.0767793575625662 xgb_final 1.0769599573828592

Name: rmse, dtype: object