Minimal Models for Partial-Wave Analysis

J. LANDAY, M. DÖRING, C. FERNÁNDEZ RAMÍREZ, B. HU, AND R. MOLINA

Supported by NSF (PIF No. 1415459), DOE No. DE-AC05-06OR23177 and Grant No. DE-SC0016582, CONACYT (Mexico) No. 251817, PAPIIT-DGAPA (UNAM) No. IA101717, Red FAE, Mexico

Problem: How to fit all of the data?

S. Schumann et al. [A2 Collaboration], Phys. Lett. B 750, 252 (2015).

Multipole Parameterization

- No angular dependence
- Energy-dependent parameterization
- All observables can be expressed as bilinear superposition of multipoles
- Parameterization includes
 S, P, and D waves

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{k}(A + B\cos(\theta) + C\cos^{2}(\theta))$$

$$\Sigma = \frac{q}{2k}(P_{3}^{2} - P_{2}^{2})\sin^{2}(\theta) / \frac{d\sigma}{d\Omega}(\theta)$$

$$P_{23}^{2} = \frac{1}{2}(P_{2}^{2} + P_{3}^{2})$$

$$A = E_{0+}^{2} + P_{23}^{2}$$

$$B = 2Re(E_{0+}P1^{*})$$

$$C = P_{1}^{2} - P_{23}^{2}$$

$$P_1 = \frac{1}{1000m_{\pi+}} \cdot \frac{q(W, m_{\pi 0})}{m_{\pi+}} \cdot \sum_{i=1}^{n} \frac{p_{1i}}{10^{-i}} \cdot \left(\frac{(\omega(W) - m_{\pi 0})}{m_{\pi+}}\right)^i$$

Multipole Parameterization

- No angular dependence
- Energy-dependent parameterization
- All observables can be expressed as bilinear superposition of multipoles
- Parameterization includes
 S, P, and D waves

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{k}(A + B\cos(\theta) + C\cos^{2}(\theta))$$

$$\Sigma = \frac{q}{2k}(P_{3}^{2} - P_{2}^{2})\sin^{2}(\theta) / \frac{d\sigma}{d\Omega}(\theta)$$

$$P_{23}^{2} = \frac{1}{2}(P_{2}^{2} + P_{3}^{2})$$

$$A = E_{0+}^{2} + P_{23}^{2}$$

$$B = 2Re(E_{0+}P1^{*})$$

$$C = P_{1}^{2} - P_{23}^{2}$$

$$P_1 = \frac{1}{1000m_{\pi+}} \cdot \frac{q(W, m_{\pi0})}{m_{\pi+}} \cdot \sum_{i=1}^n \frac{p_{1i}}{10^{-i}} \cdot \left(\frac{(\omega(W) - m_{\pi0})}{m_{\pi+}}\right)^i$$
Threshold behavior

Multipole Parameterization

- No angular dependence
- Energy-dependent parameterization
- All observables can be expressed as bilinear superposition of multipoles
- Parameterization includes
 S, P, and D waves

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{k}(A + B\cos(\theta) + C\cos^{2}(\theta))$$

$$\Sigma = \frac{q}{2k}(P_{3}^{2} - P_{2}^{2})\sin^{2}(\theta) / \frac{d\sigma}{d\Omega}(\theta)$$

$$P_{23}^{2} = \frac{1}{2}(P_{2}^{2} + P_{3}^{2})$$

$$A = E_{0+}^{2} + P_{23}^{2}$$

$$B = 2Re(E_{0+}P1^{*})$$

$$C = P_{1}^{2} - P_{23}^{2}$$

$$P_1 = rac{1}{1000m_{\pi+}} \cdot rac{q(W,m_{\pi0})}{m_{\pi+}} \cdot \sum_{i=1}^n rac{p_{1i}}{10^{-i}} \cdot ig(rac{(\omega(W)-m_{\pi0})}{m_{\pi+}}ig)^i$$
Threshold Simple Taylor Series

Different models can give satisfactory fits. How do we determine the optimal one?

All solutions pass Pearson's Chi-Squared test.

Orange Solution- 23 parameters

Red Solution – 13 parameters

Predicted Region

Least Absolute Shrinkage and Selection Operator (LASSO)

• Consider adding the moduli of fit parameters β_j to the chi-square, to some power ℓ :

some power
$$\ell$$
:
$$\chi^2(\beta_j) = \sum_{i=1}^n \frac{(y_i - f(x_i, \beta_j))^2}{\sigma_i^2} \rightarrow \chi^2(\beta_j) = \sum_{i=1}^n \frac{(y_i - f(x_i, \beta_j))^2}{\sigma_i^2} + \lambda \sum_{j=1}^m |\beta_j|^\ell \quad \underline{LASSO}: \ell = 1$$

- What happens with the best parameters $\hat{\beta}_j$ of the minimized chisquare, as a function of the penalty parameter λ ?
- Consider "Ridge regression", that is a " ℓ_2 penalty", i.e., $\ell_2=2$.
- Result: Truly non-zero parameters stay finite, despite the finite penalty (as long as the penalty is not too large). Truly zero parameters become smaller, but do not go strictly to zero.
- Can we force truly-zero parameters to vanish?

λ

Lasso Example: Fit to data from toy model with known best parameters

LASSO is capable of setting coefficients exactly to zero

How to decide best value of λ ?

$$AIC = 2k + \chi^2$$

$$AICc = AIC + \frac{2k(k+1)}{(n-k+1)}$$

 $BIC = k \log n + \chi^2$

k : Number of parametersn : Number of data points

Toy Model Results

- Generate data from a toy model using a 9 parameter model (2 real Swaves, 1 imaginary S-wave, and 2 real P_{1,2,3} –waves shown in blue
- LASSO (red) eliminates 36 parameters from a 46 parameter fit (orange) and reconstructs the true solution (blue) quite accurately
- LASSO sets all imaginary parts of Pwaves and D- waves correctly to 0
- LASSO solution predicts true solution quite accurately beyond the fitted W_{max} =1120 MeV

Analysis of Real Data (Differential Cross Section)

Analysis of Real Data (Target Polarization)

Analysis of Real Data (Beam Assymetry)

Extraction of Multipoles

46 parameter fit

10 parameter fit

SE Extraction: D. Hornidge et al. Phys. Rev. Lett. 111, 062004(2013)

SE Extraction: S. Schumann et al, Phys. Lett. B 750, 252 (2015).

Outlook: The missing resonance problem

Experimental study of hadronic reactions

Much less resonances experimentally seen (even after multipole decomposition) \Rightarrow than theoretically predicted.

Theoretical predictions of excited hadrons e.g. from lattice calculations:

 $m_{\pi}=396$ MeV [Edwards et al., Phys.Rev. D84 (2011)]

Missing resonance problem

- In energy dependent fits of multipoles to data, many times resonances are used as easy fix to describe data → Problematic overpopulation of resonance spectrum
- Solution: Penalize the occurrence of resonances with LASSO and only allow them if really needed by data.
- In practical terms: Provide very flexible background (so the fit can use it to describe data)+
 overpopulated resonance spectrum. Then, LASSO will eliminate all but the significant
 resonances

Conclusions

LASSO provides automatized and blindfolded method to scan larges classes of models and select the simplest one

In the case of pion photo-production LASSO fit results provide optimal accuracy and predictability.

LASSO has great potential to be used with resonance data and address missing resonance problem

Solution— The LASSO

- <u>Least Absolute Selection and Shrinkage Operator</u>
- Invented by Tibshirani 1996 http://statweb.stanford.edu/~tibs/
- Free online books and lectures:
 - Web page with 2013 Data Mining lecture by Ryan Tibshirani, http://www.stat.cmu.edu/~ryantibs/datamining/
 - Free online books:
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction,
 T. Hasti, R. Tibshirani, J. Friedman, Springer 2009 second ed.; E-book available at: http://statweb.stanford.edu/~tibs/lasso.html
 - A bit easier to follow:

An Introduction to Statistical Learning, Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, Springer 2015; 6th printing; E-book available at http://www-bcf.usc.edu/~gareth/ISL/.

The F-Test

We implemented an F-test to compare the two models:

$$y = \frac{(\chi_1^2 - \chi_2^2)/k}{\chi_2^2/(n-m-k)}$$

k: Number of parameters in model 1

m+k: Number of parameters in model 2

n: Number of of data points

y = 1.64 < y = 2.63, indicating that the over fit is indeed not significantly better than the simplest fit.

Other statistical tests lead to similar conclusions

Shapiro Wilk

Kolmogorov Smirnov

Anderson Darling

