

مقدمه

هدف از این تمرین استفاده از linear programming در نرم افزار Gusek برای قرار دادن بهینه VNF ها در یک توپولوژی -fat tree است.

جزئيات

- توضیحات تکمیلی در مورد نحوه پیادهسازی، ابزار مورد استفاده و راهنمایی کامل در مورد جزئیات سر کلاس توسط دکتر شاملی داده شده است.
- ابتدا قرار بود تمرین را براساس تمرین شماره ۱ خود پیاده سازی کنید، اما به دلیل اینکه ممکن است بعضی از دوستان پیاده سازیشان کامل نباشد و یا اصلا تمرین شماره ۱ را انجام نداده باشند، جزئیات ورودی که شامل اطلاعات یک -fat tree k=4
 - اطلاعات مربوط به پهنای باند لینک ها با همان ساختاری که در پروژه اول ارائه کردید در اختیار شما قرار می گیرد.
 - اطلاعات مربوط به VNF ها به شرح زیر می باشد:

Name	CPU usage	Memory usage
VNF1	2	1
VNF2	1	2
VNF3	3	3

اطلاعات مربوط به flow ها نیز به شرح زیر است (هر جدول یک ورودی برای یک صورت مسئله میباشد. یعنی شما باید
حالت بهینه را برای ۲ حالت مختلف به صورت جداگانه در توپولوژی که در اختیار شما قرار گرفته است پیدا کنید)

Source	Destination	Required_Bandwidth	Required_VNFs
0	10	6	VNF1,VNF2
3	14	3	VNF2,VNF3

Source	Destination	Required_Bandwidth	Required_VNFs
0	10	3	VNF1,VNF2
3	14	3	VNF3
4	1	4	VNF3,VNF1
13	9	5	VNF2
15	6	2	VNF1,VNF2,VNF3

- هر مجموعه switch شامل مبدا، مقصد و مقدار پهنای باند مورد نیاز برای آن flow است.
 - هر ورودی شامل نیاز های هر flow است (یعنی از هر VNF تعدادی نیاز است).

پروژه سوم درس رایانش ابری، پاییز ۹۹

- ظرفیت CPU و Memory هر switch در یک فایل csv در اختیار شما قرار میگیرد (نام فایل switches_cpu_ram.csv).
 - نرم افزار Gusek در فایل zip قرار داده شده است.

خروجي

- خروجی شما می تواند به هر شکلی باشد و نیاز نیست از فرمت خاصی پیروی کنید.
 - باید مسیر هر flow مشخص باشد.
- خروجی باید Human-readable بوده و با مشاهده آن بتوان به راحتی تشخیص داد که هر یک از vnf ها در کدام switch قرار گرفته است.

توضيحات

- آخرین فرصت برای ارسال تمرین در سامانه درس افزار تاریخ ۲۰ بهمن ۹۹ میباشد.
- لازم به ذکر است که تمرین فوق بطور کامل در کلاس توسط دکتر شاملی توضیح داده شده و نیاز به جلسه توجیهی ندارد.
 - تقلب نمره صفر خواهد داشت.
 - تمرین ارسالی باید در یک فایل zip باشد که حاوی کد برنامه با پسوند mod است.

موفق باشيد