df

Step 1 :- Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.preprocessing import StandardScaler
```

Step 2 :- import the dataset

```
col_names = ['Pregnant', 'Glucose', 'BP', 'Skin', 'Insulin', 'BMI', 'Pedigree', 'Age', 'Label']

df = pd.read_csv('pima-indians-diabetes.csv', header=None, names=col_names)
```

u .											
₹		Pregnant	Glucose	ВР	Skin	Insulin	BMI	Pedigree	Age	Label	
	0	6	148	72	35	0	33.6	0.627	50	1	
	1	1	85	66	29	0	26.6	0.351	31	0	
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	
	763	10	101	76	48	180	32.9	0.171	63	0	
	764	2	122	70	27	0	36.8	0.340	27	0	
	765	5	121	72	23	112	26.2	0.245	30	0	
	766	1	126	60	0	0	30.1	0.349	47	1	
	767	1	93	70	31	0	30.4	0.315	23	0	

Step 3 :- Identify the Dependent and Independent Variables

```
Feature_Columns = ['Pregnant', 'Glucose', 'BP', 'Skin', 'Insulin', 'BMI', 'Pedigree', 'Age']

X = df[Feature_Columns]

y = df['Label']
```

Step 4:- Train the Data

768 rows × 9 columns

```
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
```

Step 5 :- Feature Scaling

```
Scaler = StandardScaler()

X_train = Scaler.fit_transform(X_train)
```

X_test = Scaler.fit_transform(X_test)

Step 6 :- Model Building

Step 7 :- Classification Report

```
Accuracy = accuracy_score(y_test,y_pred)
print(F"Accuracy Score :{Accuracy*100:2f}%" )
Accuracy Score :78.571429%
Names = ['Without_Diabetes','With_Diabetes']
print(classification_report(y_test,y_pred,target_names=Names))
₹
                      precision
                                   recall f1-score
                                                      support
     Without_Diabetes
                           0.81
                                     0.87
                                               0.84
        With_Diabetes
                                               0.68
                           0.73
                                     0.64
                                                           55
                                               0.79
                                                          154
                           0.77
                                     0.75
                                               0.76
                                                          154
           macro avg
                                                          154
         weighted avg
                           0.78
                                     0.79
                                               0.78
```

Start coding or generate with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or generate with AI.

Start coding or generate with AI.