Knapsack Problem

Instructor: Kwei-Long Huang

Course No: 546 U6110

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Relax Integer Constraints

$$\max \sum_{j=1}^{n} v_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} w_{j} x_{j} \le b$$

$$x_{j} \ge 0 \text{ for all } j$$

• Let $y_i = w_i x_i$

$$\max \sum_{j=1}^{n} (v_j / w_j) y_j$$
s.t.
$$\sum_{j=1}^{n} y_j \le b$$

$$y_j \ge 0 \text{ for all } j$$

Linear Programming

• Assume the variables have been reordered:

$$v_1 / w_1 \le v_2 / w_2 \le \dots \le v_n / w_n$$

The LP optimal solution

$$y_n = b$$
, $x_n = b / w_n$;
 $Z = (v_n / w_n)b$

- Upper bound?
- Lower bound?
- The similar result when the variables have bounds.
 - Pack item n up to its bound, and followed by packing item n-1, and so on.

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Dynamic Programming

- DP is an optimization procedure that converts a problem with multiple decisions into a sequence of interrelated decisions.
- Stage (*n*): the original problem is divided into N stages. There is an initial stage and a terminating stage.
- State (s_n) : each stage has a number of states associated with it. The states are various possible conditions in which the system might be at each particular stage of the problem.
- Decision variable (x_n) : there is one decision variable for each stage of the problem.
- Optimal decision or policy($x_n^*(s_n)$): the optimal decision at a particular stage depends on the state. The DP procedure is designed to find an optimal decision at each stage for all possible state.

Dynamic Programming (con't)

• Optimal value or objective function $(f_n^*(s_n))$: best total value from stage n to the end, given that the starting state at stage n is s_n , and a sequence of optimal decision is made.

$$f_n^*(s_n) = \max_{x_n} \{ f_n(s_n, x_n) \}$$

where $f_n(s_n, x_n)$ is total value from stage n to the end.

• Recursive relationship: identifies the optimal policy at stage n, given that the optimal policy at stage (n+1) is available.

Algorithm 1

- Assumption:
 - The weight (w_i) are positive integers.
- Formulation
 - Let $f(w) = \max \text{ maximum value of the items with capacity } w$, $w_{\min} = \min\{w_i\}$, and $v_i = \text{ value of one item of type } i$.
 - Initialization

$$f(w) = -\infty, w < 0;$$

 $f(w) = 0, w = 0, 1, ..., w_{\min} - 1.$

Algorithm 1 (con't)

• Compute f(w), $w = w_{\min}$, $w_{\min} + 1, \dots, W$

$$f(w) = \max_{i=1,...,n} \{v_i + f(w - w_i)\}.$$

• Answer:

f(W)

Example (1/3)

• N=4, W=13.

Type (i)	Weight (w _i)	Value (v _i)	v_i/w_i
1	7	14	2.00
2	4	6	1.50
3	6	13	2.17
4	8	17	2.13

Example - Solution (2/3)

```
f(w) =
f(w) =
f(6) = 1
f(7) = \max \{v_1 + f(7 - w_1), v_2 + f(7 - w_2), v_3 + f(7 - w_3)\} = \max \{14, 6, 13\} = 14.
f(8) = \max \{v_1 + f(8 - w_1), v_2 + f(8 - w_2), v_3 + f(8 - w_3), v_4 + f(8 - w_4)\}
     = \max \{14+0, 6+6, 13+0, 17+0\} = 17.
f(9) = \max \{v_1 + f(9 - w_1), v_2 + f(9 - w_2), v_3 + f(9 - w_3), v_4 + f(9 - w_4)\}
     = \max \{14+0, 6+6, 13+0, 17+0\} = 17.
f(10) = \max \{v_1 + f(10 - w_1), v_2 + f(10 - w_2), v_3 + f(10 - w_3), v_4 + f(10 - w_4)\}
      = \max \{14+0, 6+13, 13+6, 17+0\} = 19.
f(11) = \max \{v_1 + f(11 - w_1), v_2 + f(11 - w_2), v_3 + f(11 - w_3), v_4 + f(11 - w_4)\}
      = \max \{14+6, 6+14, 13+6, 17+0\} = 20.
f(12) = \max \{v_1 + f(12 - w_1), v_2 + f(12 - w_2), v_3 + f(12 - w_3), v_4 + f(12 - w_4)\}
      = \max \{14+6, 6+17, 13+13, 17+6\} = 26.
f(13) = \max \{v_1 + f(13 - w_1), v_2 + f(13 - w_2), v_3 + f(13 - w_3), v_4 + f(13 - w_4)\}
      = \max \{14+13, 6+17, 13+14, 17+6\} = 27.
```

Example - Solution (3/3)

- The optimal solution can be obtained by backtracking.
- The same optimal solution is back-tracked in two different ways.

$$f(13) = 27, x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0.$$

• What if *W* is a large number?

Improvement

Rearrange items such that

$$\frac{\mathbf{v}_1}{\mathbf{w}_1} \le \frac{\mathbf{v}_2}{\mathbf{w}_2} \le \dots \le \frac{\mathbf{v}_N}{\mathbf{w}_N}.$$

Observations

• The dotted line is W_{W_N} is integer.

to the optimal value. It is an optimal value if

• The solid line is solution, i.e., $\begin{bmatrix} W \\ W_N \end{bmatrix}$.

- the optimal value. It corresponds to a feasible
- The dashed line has slope v_{N-1}/w_{N-1} .
 - Which is the upper bound for the problem without item type N.
- w' is such that, for all w w', item type N is contained in the optimal solution.

Observations (con't)

Dashed-dot line: $v = \left(\frac{v_N}{w_N}\right)(w - w_N)$. In the example, $v = \left(\frac{13}{6}\right)(w - 6)$. (Type 3).

Dashed line:
$$v = \left(\frac{v_{N-1}}{w_{N-1}}\right) w$$
.

In the example, $v = \left(\frac{17}{8}\right) w$. (Type 4).

Example,
$$w^* = \frac{13}{\left(\frac{13}{6}\right) - \left(\frac{17}{8}\right)} = 312$$
.

Value of w': w'

In the example,

- w'=312 is still a larger number.
- The smallest weight w" such that for all $w \ge w$ " item N is in the optimal solution may be considerably less than w'.

The Most Valuable Item

- **Theorem**: item type N is in all optimal solution for all $w \ge w$, item type N is part of every optimal solution for w", $w"+1, ..., w"+w_{max}-1$.
- The optimal solution for any weight capacity W larger than w" is found by first determining the smallest integer *k* such that

$$W - k w_N \Rightarrow k = \left\lceil \frac{W - w'' + 1}{w_N} \right\rceil.$$

- Take k items of type N and solve the problem with weight capacity W $-kw_N$
- The example in page 10, w"=18.

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Lagrangian Relaxation

 Consider the integer problem max cx

s.t.
$$Ax \le b$$

 $x \ge 0$ and integer.

• Let λ be an (m) column of nonnegative numbers (multipliers)

$$\max cx - \lambda Ax$$

s.t. $x \ge 0$ and integer. (L)

Lagrangian Relaxation

- If x^0 solves problem (L), then it also solves the integer program with b replaced by Ax^0 .
- Therefore, if λ is chosen so that the optimal solution x^0 gives $b=Ax^0$, the original problem has been solved.
- $b=Ax^0$ is usually easier to solve. The difficulty is to find that multiplier λ which gives the equality.

Relax One Constraint

Problem L for the knapsack problem

$$\max \sum_{j=1}^{n} c_j x_j - \lambda \sum_{j=1}^{n} a_j x_j + \lambda b$$

s.t. $x_i \ge 0$ and integer for all j

$$\max \sum_{j=1}^{n} (c_j - \lambda a_j) x_j + \lambda b$$

s.t. $x_i \ge 0$ and integer for all j

Special Solution Method

By inspection

$$x_j^0 = u_j$$
 if $c_j - \lambda a_j$ (u_j is an integer upper bound for x_j)
 $x_j^0 = t$ if $c_j - \lambda a_j$ (t is any integer satisfying $0 \le t \le u_j$)
 $x_j^0 = 0$ if $c_j - \lambda a_j$

• As x^0 changes only when , the value for x^0 remains the same in the intervals (item n is the most valuable)

$$0 \le \lambda < c_1/a_1, \ c_1/a_1 \le \lambda < c_2/a_2, ..., \ c_{n-1}/a_{n-1} \le \lambda < c_n/a_n, \ c_n/a_n \le \lambda$$

Example (1/3)

• Consider the following BIP

maximize
$$4x_1 + 8x_2 + 14x_3 + 18x_4$$

subject to $4x_1 + 7x_2 + 12x_3 + 15x_4 \le 33$
 $x_j = 0$ or 1.

Problem L

maximize
$$(4-4\lambda)x_1 + (8-7\lambda)x_2 + (14-12\lambda)x_3 + (18-15\lambda)x_4$$

subject to $x_j = 0$ or 1.

Example – Solution (2/3)

• Determine the interval of λ $\lambda =$

	Sign of $c_j - \lambda a_j$				Value				Volume	Slack	Obj.
λ	j = 1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =4	x_1	x_2	x_3	<i>x</i> ₄	$\sum a_j x_j$	$b-\sum a_j x_j$	$\sum c_j x_j$
0	+	+	+	+	1	1	1	1	38	-5	44
1	X	+	+	+	<u>0</u>	1	1	1	34	-1	40
					1	1	1	1	38	15	44
8/7	-	X	+	+	0	<u>0</u>	1	1	27	6	32
					0	1	1	1	34	-1	40
14/12	-	_	X	+	0	0	<u>0</u>	1	15	18	18
					0	0	1	1	27	6	32
18/15	_	_	_	X	0	0	0	<u>0</u>	0	33	0
					0	0	0	1	15	18	18

Example - Solution (3/3)

• There doesn't exist a λ for which $b - \sum_{j=1}^{4} a_j x_j^0 = 0$.

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Shortest Path

- A knapsack problem with an equality constraint can be transformed to a shortest path problem.
- The network is with *b*+1 nodes
- For item j, there are arcs for every pair of nodes (g, t) where node $g(N_g)$ node $t(N_t) \equiv a_j$ and the associated costs are $-c_j$.
- The source node is N_0 and the destination node is N_b .
- If b is too large and (or) a_j is relatively small, the approach becomes inefficient.

Example

Consider the following problem

maximize
$$3x_1 + 2x_2$$

subject to $4x_1 + 2x_2 + x_3 = 8$
 $x_i \ge 0$ and integer.

• The network is

Example (con't)

• The shortest path is

• That is, $x_2 = 4$, $x_1 = x_3 = 0$.

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Knapsack Problem

• Consider the integer program with a single constraint

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{j} x_{j} \le b$$

$$x_{j} \ge 0 \text{ and integer for all } j$$

Where the costs (values) c_j , coefficients a_j and RHS b are integer.

• Packing a knapsack so that its capacity is not exceeded and the total value is maximized.

Related Applications

- It is representative of several practical situations
 - Capital budgeting
 - Project selection
 - Loading problem
 - Capital investment
- It appears as a subproblem that has to be solved in many integer programming algorithms

Capital Budgeting

• Choosing among *n* competing investment possibilities so as to maximized the total payoff subject to limited funds.

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{j} x_{j} \le b$$

$$x_{j} = 0 \text{ or } 1 \text{ for all } j$$

Multiperiod Capital Budgeting

Investment over several periods

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{tj} x_{j} \le b_{t}$$

$$x_{j} = 0 \text{ or } 1 \text{ for all } j$$

• Multiple choice constraints: n investments are partitioned into disjoint sets n_p

$$\sum_{j \in n_i} x_j = 1, i = 1, ..., p$$

Cutting Stock Problem

- Each standard length or roll is to be sliced into lengths l_i (i=1,...,m)
- Cut up rolls of the material so that the demand for the number of pieces of lengths l_i is satisfied while the usage of rolls is minimized.

Cutting Stock Problem

- Let N_i be the number of pieces of lengths l_i needed, c_j be the cost of the roll from which jth cutting pattern is cut, and a_{ij} be the number of pieces of length l_i produced while using jth cutting pattern.
- Let x_j be the number of times the *jth* cutting pattern is used.

min
$$\sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge N_i$, $i = 1,...,m$
 $x_i \ge 0$ and integer for all j

Loading Problems

- A fleet of *m* trucks carrying various items.
- Given *n* indivisible items.
- Let x_{ij} be a indicator which represents item j is carried by truck i

$$\max \sum_{j=1}^{n} c_{j} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} a_{j} x_{ij} \le b_{i}, i = 1,..., m$$

$$\sum_{j=1}^{n} x_{ij} \le 1, j = 1,..., n$$

$$x_{ij} = 0 \text{ or } 1$$

Change Making Problem

- Suppose there are n types of coins, where each type j has denomination w_j . A cashier wishes to make change to meet a given amount b using the least number of coins.
- Let x_j be the number of coins j selected.

Agenda

- Linear Programming Relaxation
- Dynamic Programming
- Lagrangian Multiplier Methods
- Network Approaches
- Applications and Uses of Knapsack
- Reducing Integer Programs to Knapsack

Aggregating Constraints

- A system of linear equations with integer coefficients can be transformed to a single linear equation.
- These two problems have the same set of nonnegative integer solutions.
- Consider the *m* linear equations:

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, i = 1, ..., m (*)$$

• Find weights w_i so that every nonnegative integer solution to the single constraint is also a solution to (*).

$$\sum_{j=1}^{n} a_j x_j = b \text{ where } a_j = \sum_{i=1}^{m} w_i a_{ij} \text{ and } b = \sum_{i=1}^{m} w_i b_i \text{ (**)}$$

Aggregating Constraints

- For arbitrary weights, the set of nonnegative integers x satisfying (**) is usually **larger** than the set satisfying (*).
- Example

minimize
$$5x_1 + 7x_2 + 10x_3 + 3x_4 + x_5$$

subject to $-x_1 + 3x_2 - 5x_3 - x_4 + 4x_5 + x_6 = -2$, (i) $2x_1 - 6x_2 + 3x_3 + 2x_4 - 2x_5 + x_7 = 0$, (ii) $x_2 - 2x_3 + x_4 + x_5 + x_8 = -1$, (iii) $x_j = 0$ or 1 (j=1, 2, 3, 4, 5) and $x_j \ge 0$ and integer (j=6, 7, 8)

Example

- The solutions to the problem are (0,1,1,0,0) and (1,1,1,0,0).
- Set $w_1 = w_2 = w_3 = 1$, the resulted equation is:

• The two solutions included? And what else?

An Aggregation Process (Mathews)

• Theorem: consider a system of two linear equations

$$s_1 \equiv \sum_{j=1}^n a_{1j} x_j = b_1, \quad (i)$$

$$s_2 \equiv \sum_{i=1}^n a_{2i} x_i = b_2$$
, (ii) where $a_{ij} > 0$ and integer

- (a) If there exists a nonnegative solution to the system, then $b_2a_{1j}/a_{2j} \ge b_1$, for at least one j
- (b) If w is any positive integer such that $w > b_2 \max_j \{a_{1j} / a_{2j}\}$. Then, the solution set of the system is the same as that of the single equation

$$s_1 + ws_2 = b_1 + wb_2$$

An Aggregation Process

 Generate a pair of equations as follows: $s_1 + s_2 = b_1 + b_2$ and $s_1 + 2s_2 = b_1 + 2b_2$

$$s_1 + s_2 = b_1 + b_2$$
 and $s_1 + 2s_2 = b_1 + 2b_2$

- Pairwise aggregate two equations until a single one is left.
- Negative coefficient: if $a_{1i} < 0$ and $x_i \le u_i$ (positive integral upper bound), then the system is convertible.
- Let $\bar{x}_i = u_i x_i$.
- Any integer program which has a bounded linear programming feasible region with at least one integer point can be transformed to an equivalent knapsack problem.

Example (1/3)

$$-x_{1} + 3x_{2} - 5x_{3} - x_{4} + 4x_{5} + x_{6} = -2, (i)$$

$$2x_{1} - 6x_{2} + 3x_{3} + 2x_{4} - 2x_{5} + x_{7} = 0, (ii)$$

$$x_{2} - 2x_{3} + x_{4} + x_{5} + x_{8} = -1, (iii)$$

$$x_{i} = 0 \text{ or } 1 \qquad (j=1, 2, 3, 4, 5)$$

- Transfer all equations with positive coefficients
- Take (i) for example, replace x_1 by $1 \overline{x}_1$, x_3 by $1 \overline{x}_3$, and x_4 by $1 \overline{x}_4$.

Example (2/3)

• The initial system with all positive coefficients

Eq./Variable	x_1	\overline{x}_1	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	$\overline{\mathcal{X}}_4$	X_5	\overline{x}_5	x_6	x_7	x_8	b
(i)'		1	3			5		1	4		1			5
(ii)'	2			6	3		2			2		1		8
(iii)'			1			2	1			1			1	1

• Generate a pair of equations

x_1	\overline{x}_1	\mathcal{X}_2	\overline{x}_2	x_3	\overline{x}_3	\mathcal{X}_4	\overline{x}_4	x_5	\overline{x}_5	X_6	x_7 x	8	b
2	1	3	6	3	5	2	1	4	2	1	1		13
4	1	3	12	6	5	4	1	4	4	1	2		21

• What is the value of w?

Example (3/3)

• Set w=22, the following system is yielded.

- Again, generate a pair of equations: (i)"+(ii)" and (i)"+2(ii)".
- We find that w > 477, then set w = 478.
- The aggregation equation:

$$43110x_1 + 11017\overline{x}_1 + 34008x_2 + 129330\overline{x}_2 + 64665x_3 \\ + 56999\overline{x}_3 + 44067x_4 + 11017\overline{x}_4 + 45025x_5 \\ + 43110\overline{x}_5 + 11017x_6 + 21555x_7 + 957x_8 = 228482$$
 or

$$32093x_1 - 95322x_2 + 7666x_3 + 33050x_4 + 1915x_5 + 11017x_6 + 21555x_7 + 957x_8 = -22991$$

An Improved Aggregation Process (1/3)

 Consider two constraints and combine them into one

$$\sum_{j=1}^n d_j x_j = b_1,$$

$$\sum_{j=1}^{n} f_j x_j = b_2.$$

- Assume that d_j , f_j , b_1 , and b_2 are integers.
- Each x_i has a bound u_i

Let

$$\begin{split} \lambda^{+} &= \max \left\{ \sum_{j=1}^{n} d_{j} x_{j} - b_{1} : 0 \leq x_{j} \leq u_{j}, \text{integer, } j = 1, ..., n \right\}, \\ &= \sum_{j=1}^{n} \max \left\{ 0, d_{j} \right\} \cdot u_{j} - b_{1} \\ \lambda^{-} &= \min \left\{ \sum_{j=1}^{n} d_{j} x_{j} - b_{1} : 0 \leq x_{j} \leq u_{j}, \text{integer, } j = 1, ..., n \right\}, \\ &= \sum_{j=1}^{n} \min \left\{ 0, d_{j} \right\} \cdot u_{j} - b_{1} \\ \lambda &= \max \left\{ \left| \sum_{j=1}^{n} d_{j} x_{j} - b_{1} \right| : 0 \leq x_{j} \leq u_{j}, \text{integer, } j = 1, ..., n \right\}, \\ &= \max \left\{ \left| \lambda^{+}, \left| \lambda^{-} \right| \right\} \right. \end{split}$$

An Improved Aggregation Process (2/3)

• **Theorem:** The integer vector x^0 , $0 \le x^0 \le u$, is a solution to the two equations if and only if

$$\sum_{j=1}^{n} \left(d_{j} + \alpha f_{j} \right) x_{j}^{0} = b_{1} + \alpha b_{2}, \quad (3)$$

where α is any integer satisfying $|\alpha| > \lambda$.

• Proof:

(=>) given x^0 is the solution to the two equations, to show x^0 is also a solution to (3)

An Improved Aggregation Process (3/3)

- (\leq =) Suppose that x^0 solves (3) and $\sum_{j=1}^n f_j x_j^0 = b_2 + k$, (4) where k is an arbitrary integer. It will be shown that $|\alpha| > \lambda = k = 0$.
- Multiply (4) by α and subtract the result from (3).

$$\sum_{j=1}^{n} d_j x_j^0 = b_1 - k\alpha$$

• Then,

$$|\alpha| > \lambda \ge \qquad = |-k\alpha| = |k||\alpha|$$

$$\Rightarrow |\alpha| > |k||\alpha| \Rightarrow |k| < 1 \xrightarrow{k \text{ integer}} k = 0$$

$$\Rightarrow \sum_{j=1}^{n} f_j x_j^0 = b_2 \text{ and } \sum_{j=1}^{n} d_j x_j^0 = b_1.$$

Example (1/4)

```
maximize z = 2x_1 + x_2

subject to x_1 + x_2 \le 5 \implies x_1 + x_2 + x_3 = 5, (1)

-x_1 + x_2 \le 0 \implies -x_1 + x_2 + x_4 = 0, (2)

6x_1 + 2x_2 \le 21 \implies 6x_1 + 2x_2 + x_5 = 21, (3)

x_1, x_2 \ge 0, integer \implies x_1, x_2, x_3, x_4, x_5 \ge 0, integer.
```

• The upper bound for each variable

Example (2/4)

• Consider constraint (3)

For
$$6x_1 + 2x_2 + x_5 = 21$$
,

$$\lambda^+ =$$

$$\lambda^- =$$

$$\lambda = \max \left\{ \left. \lambda^+, \left| \right. \lambda^- \right| \right\} = 24$$

• Combine (2) and (3)

$$6x_1 + 2x_2 + x_5 + \alpha(-x_1 + x_2 + x_4) = 21 + \alpha \cdot 0, \text{ for } |\alpha| > 24,$$

 $\alpha = 25 \Rightarrow -19x_1 + 27x_2 + 25x_4 + x_5 = 21.$ (*)

Example (3/4)

• For constraint (1)

For
$$x_1 + x_2 + x_3 = 5$$
,
 $\lambda^+ = 1 \times 3 + 1 \times 3 + 1 \times 5 - 5 = 6$,
 $\lambda^- = 0 \times 3 + 0 \times 3 + 0 \times 5 - 5 = -5$,
 $\lambda = \max \left\{ \left. \lambda^+, \left| \right. \lambda^- \right| \right\} = 6$.

• Combine (1) and (*)

$$x_1 + x_{2+}x_3 + \alpha \left(-19x_1 + 27x_2 + 25x_4 + x_5\right) = 5 + \alpha \cdot 21, \text{ for } |\alpha| > 6,$$

 $\alpha = 7 \implies -132x_1 + 190x_2 + x_3 + 175x_4 + 7x_5 = 152.$ (**)

Example (4/4)

 $x_1' = 3 - x_1$ $(x_1 = 3 - x_1').$

Therefore, maximize $z = 2x_1 + x_2$, subject to $-132x_1 + 190x_2 + x_3 + 175x_4 + 7x_5 = 152$.

$$\Rightarrow$$
 maximize $z = -2x_1' + x_2 + 6$
subject to $132x_1' + 190x_2 + x_3 + 175x_4 + 7x_5 = 548$.

 $0 \le x_1' \le 3$, integer, $0 \le x_2 \le 3$, integer, $0 \le x_3 \le 5$, integer, $0 \le x_4 \le 3$, integer, $0 \le x_5 \le 21$, integer.

Reminder

- Homework 5 due on 6/1
- Final Project (6/15)(15% of your final grade)
 - Please prepare a 20-min presentation.
 - Every student should present.
 - Also submit a report with at most 10 pages before 6/26, and a draft is required on 6/15.
- Final exam on 6/22 (30%)