```
In [1]: import decimal
    from joblib import Parallel, delayed
    from random import random

import numpy as np
    import matplotlib.pyplot as plt
%matplotlib inline
```

1 The Logistic Map

Consider the map:

$$x_{n+1}=f(x_n)=rx_n(1-x_n)$$

1. Prove that, for $0 \leq x_n \leq 1$ and $0 \leq r \leq 4$, we have $0 \leq f(x_n) \leq 1$.

Both x_n and $1-x_n$ are non-negative within the interval [0,1]. Since r is also non-negative (given $0 \le r \le 4$), the product $rx_n(1-x_n)$ must be non-negative.

Otherwise, we have

$$rx_n(1-x_n)\leq rigg(rac{x_n+1-x_n}{2}igg)^2=rac{r}{4}\leq rac{4}{4}=1.$$

Hence, $0 \leq f(x_n) \leq 1$.

- 2. Given a trajectory x_1, x_2, \ldots, x_r , here's a recipe to make a cobweb plot of a map:
 - (a) Plot (x_1, x_2)
 - (b) Connect that point to (x_2, x_2)
 - (c) Connect this to (x_2, x_3) , and so forth

Starting from some $x_1 \in (0,1)$, plot a cobweb plot for r=0.5,1.5,2.5,3.5 and 3.9 with 30 steps.

```
In [2]: def logistic_map(r, x):
    return r * x * (1 - x)

def cobweb_plot(r, x0, ax, n_steps=30):
    x_values = [x0]
    for _ in range(n_steps):
        x_values.append(logistic_map(r, x_values[-1]))

t = np.linspace(0, 1, 100)
    ax.plot(t, logistic_map(r, t), 'k', lw=2)
    ax.plot(t, t, 'k', linestyle='--')

for i in range(1, len(x_values)):
    ax.plot([x_values[i-1], x_values[i-1]], [x_values[i-1], x_values[ax.plot([x_values[i-1]], x_values[i]], [x_values[i]],
```

```
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_title(f'Cobweb Plot for r = {r}')
ax.set_xlabel('$x_n$')
ax.set_ylabel('$x_{n+1}$')

r_values = [0.5, 1.5, 2.5, 3.5, 3.9]
fig, axes = plt.subplots(1, len(r_values), figsize=(4 * len(r_values), 4)
x0 = np.random.rand()
for i, r in enumerate(r_values):
    cobweb_plot(r, x0=x0, ax=axes[i])
plt.tight_layout()
```


3. Show that the logistic map has a cycle of order 2 for r>3. Use that a 2-cycle requires f(q)=p and f(p)=q. What is the stability of the 2-cycle? Does the stability change for some r>3?

First, by solving the equation f(x)=x, we get two fixed points 0 and $1-\frac{1}{r}$. For r>3, by solving the equation f(f(x))=x, we get another two zero points

$$p,q=rac{1}{2r}(r+1\pm\sqrt{(r-3)(r+1)}).$$

The stability of the 2-cycle is determined by the magnitude of the product of the derivatives at the cycle points:

$$\mu = |f'(p) \cdot f'(q)| = |r(1-2p) \cdot r(1-2q)| = |(r-3)(r+1) - 1| = |(r-1)^2 - 5|$$

- For $3 < r < 1 + \sqrt{6}$ (approximately 3 < r < 3.449), the value of μ satisfies $|\mu| < 1$, so the 2-cycle is stable.
- For $r>1+\sqrt{6}$, the value of μ exceeds 1 ($|\mu|>1$), so the 2-cycle becomes unstable.
- 4. For each $r \in \{0.001, 0.002, \dots, 3.998, 3.999\}$, produce 1000 trajectories starting at random initial conditions with 100 steps. Plot only the endpoints of the trajectories according to their respective r in a 2D-scatter plot.

Hint: Since you only need to plot the last points of the trajectories, don't store the trajectories in order to save memory.

Hint 2: Make your code flexible so you can use it with other maps as well.

```
In [13]: def plot_trajectories(r_values, map_func, n_trajectories, steps):
    endpoints = []
```

```
for r in r_values:
    x = np.random.rand(n_trajectories)
    for _ in range(steps):
        x = map_func(r, x)
    endpoints.extend(x)

plt.figure(figsize=(6, 6))
    plt.scatter(np.repeat(r_values, 1000), endpoints, s=0.01, color='blue plt.xlabel('r')
    plt.ylabel('endpoints of trajectories')

return endpoints

endpoints = plot_trajectories(np.arange(0.001, 4.0, 0.001), logistic_map,
```


5. Redo the plot for $r \in \{3.44500, 3.44501, 3.44502, \dots, 3.56999, 3.57000\}$ and use it to find another r such that the logistic map has a cycle of order $p \geq 3$. Then show the existence of the cycle mathematically.

```
In [4]: endpoints = plot_trajectories(np.arange(3.445, 3.57, 0.00001), 1000, 100)
```


From the bifurcation diagram, it is evident that when $r>1+\sqrt{6}$ (approximately 3.449), the logistic map begins to exhibit a 4-cycle.

To analyze this, we consider the function $g(x)=f^4(x)-x$, which captures the periodic points of the logistic map. By construction, the two fixed points of the logistic map, 0 and $1-\frac{1}{r}$, are roots of g(x), as are the two 2-cycle points, p and q.

To confirm the existence of additional roots in the intervals between these known points, we compute the derivative of g(x) at these four points.

- For x=0, we find that $g^{\prime}(0)=r^4-1$.
- ullet For $x=1-rac{1}{r}$, the derivative evaluates to $g'(1-rac{1}{r})=(r-3)(r-1)((r-2)^2+1).$
- At the two 2-cycle points p and q, the derivatives are identical, given by $g'(p)=g'(q)=(r-3)(r+1)((r-1)^2-6).$

When $r>1+\sqrt{6}$, all these derivatives are positive. Furthermore, evaluating g(x) at x=1 gives g(1)=-1<0. Thus, g(x) transitions from positive to negative values across the intervals defined by the roots $0,1-\frac{1}{r},p,q$, and 1.

Since g(x) is continuous, each of these four intervals must contain at least one root of g(x), ensuring the existence of four distinct periodic points that constitute the 4-cycle.

As r increases further, these periodic points become unstable, and the logistic map transitions to higher-order cycles or chaotic behavior. This progression aligns with the observations from the bifurcation diagram, where the 4-cycle eventually gives way to more complex dynamics.

- 6. The qualitative changes in the dynamics that you can see in the diagram for certain values of r are called bifurcations. This is where the topology of the dynamics change. Develop a procedure to numerically compute the r values for the following m bifurcations, starting from r=3.44. Describe the algorithm.
 - **Hint 1:** You might have to increase floating-point precision.
 - **Hint 2:** Make your algorithm independent of the map, then you can reuse it.
 - **Hint 3:** This algorithm may take a long time to run, depending on your hardware. Let it run for a time that's feasible for you and see how many bifurcations you can find. That implies your code has to save a bifurcation point as soon as it finds it, because you will interrupt the code in the end.

```
In [9]: def detect_period(r, x, map_func, period, transient_steps, detect_steps,
            for _ in range(transient_steps):
                x = map_func(r, x)
            trajectory = []
            for _ in range(detect_steps):
                x = map_func(r, x)
                trajectory.append(x)
            if all(abs(trajectory[i] - trajectory[i + period]) > tol for i in ran
                return period * 2
            else:
                return period
        def find_bifurcations(r, map_func, transient_steps=2000, detect_steps=20,
            acc = 1e-14
            delta = 0.1
            if use decimal:
                acc = 1e-20
                r = decimal.Decimal(str(r))
                acc = decimal.Decimal(str(acc))
                tol = decimal.Decimal(str(tol))
                delta = decimal.Decimal(str(delta))
            period = 2
            bifurcations = {period: r}
            print(f'2 ** {int(np.log2(period))}: {r},')
            r_1, r_2 = r, r + delta
            while True:
                try:
                    x = random()
                    if use_decimal:
                        x = decimal.Decimal(str(x))
                    while r_2 - r_1 > acc:
                         r_{delta} = (r_2 - r_1) / n_{jobs}
```

```
tasks = [(r_1 + r_delta * i, x, map_func, period, transie]
        results = Parallel(n_jobs=n_jobs)(delayed(detect_period)(
        new_period = list(results)
        for i in range(n_jobs):
            if new period[i] * 2 == new period[i+1]:
                r_1, r_2 = r_1 + r_{delta} * i, r_1 + r_{delta} * (i
    period *= 2
    bifurcations[period] = r_2
    print(f'2 ** {int(np.log2(period))}: {r_2},')
    if period > 4:
        delta = r_2 - bifurcations[period/2]
    r_1, r_2 = r_2, r_2 + delta
    transient_steps *= 2
    detect_steps *= 2
    tol /= 10
except KeyboardInterrupt:
    print("Manual stop")
    return bifurcations
```

```
In [6]: bifurcations = find_bifurcations(3.44, logistic_map, n_jobs=10, use_decim
       2 ** 1: 3.44,
       2 ** 2: 3.44928310316407167811,
       2 ** 3: 3.54404774150144486560,
       2 ** 4: 3.564388768135278702372452536,
       2 ** 5: 3,568753296158710113546657028.
       2 ** 6: 3.569690063934429734550408953,
       2 ** 7: 3.569890882468259587065360750,
       2 ** 8: 3.569933950909390542342733425,
       2 ** 9: 3.569943154435965091150093220,
       2 ** 10: 3.569945132251995978732839268,
       2 ** 11: 3.569945556209367663861417499,
       2 ** 12: 3.569945647076207115300500203.
       2 ** 13: 3.569945666556604416080542173,
       2 ** 14: 3.569945670731820304662326790,
       2 ** 15: 3.569945671627215759676590244,
       2 ** 16: 3.569945671818608622362073878,
       Manual stop
```

7. Let $2 \le r_n \le m-1$ be a bifurcation point. Calculate the relative distance between successive bifurcation points

$$\delta = rac{r_n - r_{n-1}}{r_{n+1} - r_n}$$

for all $n \in \{1, \dots, 100\}$. What do you find?

```
In []: r_values = [bifurcations[key] for key in 2 ** np.arange(1, len(bifurcatio
    delta_values = [[(r_values[i] - r_values[i-1]) / (r_values[i+1] - r_value
    const = 4.6692

plt.figure(figsize=(6, 3))
plt.plot(range(2, len(r_values)+1), r_values[1:], 'go-', label=r'$r$')
```

```
plt.plot(range(3, len(r_values)), delta_values, 'bo-', label=r'$\delta$')
plt.plot(range(0, len(r_values)+1), [const] * (len(r_values)+1), 'r--', l
plt.xlabel('n')
plt.ylabel('Delta')
plt.xticks(range(1, len(r_values)+1), [f'$2^{{{i}}}}' for i in range(1, l
plt.ylim(0, 5)
plt.xlim(0, len(r_values))
plt.grid(alpha=0.5)
plt.legend()
```

Out[]: <matplotlib.legend.Legend at 0x11b1b7e90>

We find that δ approaches a constant called "Feigenbaum constant" (approximately 4.6692).

8. Bonus exercise: Consider the map

$$x_{n+1} = r\sin(\pi x_n)$$

Compute the first bifurcations again for r>0.82 and calculate δ from the exercise above. Make a bifurcation diagram (as with the logistic map) and see what it looks like.

```
In [14]: def sin_map(r, x):
    return r * np.sin(np.pi * x)
endpoints = plot_trajectories(np.arange(0.82, 0.866, 0.00001), sin_map, 1
```


We observe a similar bifurcation diagram. Then we use the same funtion to compute several bifurcation points.

```
In [ ]: bifurcations = find_bifurcations(0.82, sin_map, n_jobs=10, )
        2 ** 1: 0.82,
        2 ** 2: 0.8331975869746899,
        2 ** 3: 0.8585866225628999,
        2 ** 4: 0.8640779780622421,
        2 ** 5: 0.8652572971766359,
        2 ** 6: 0.8655102468285754,
        2 ** 7: 0.8655644933564237,
        2 ** 8: 0.8655761009013965,
        Manual stop
In [11]: r_values = [bifurcations[key] for key in 2 ** np.arange(1, len(bifurcations)
         delta_values = [[(r_values[i] - r_values[i-1]) / (r_values[i+1] - r_value
         const = 4.66920
         plt.figure(figsize=(6, 3))
         plt.plot(range(2, len(r_values)+1), r_values[1:], 'go-', label=r'$r$')
         plt.plot(range(3, len(r_values)), delta_values, 'bo-', label=r'$\delta$')
         plt.plot(range(0, len(r_values)+1), [const] * (len(r_values)+1), 'r--', l
         plt.xlabel('n')
         plt.ylabel('Delta')
         plt.xticks(range(1, len(r_values)+1), [f'$2^{{\{i\}}}$' for i in range(1, len(r_values)+1)]
         plt.vlim(0, 5)
         plt.xlim(0, len(r_values))
```

plt.grid(alpha=0.5)
plt.legend()

Out[11]: <matplotlib.legend.Legend at 0x11b29d3a0>

We find that δ approaches the Feigenbaum constant again. Although the maps are different, the conclusions are the same.

2. Poincaré Maps

The Poincaré Map can be used to find closed orbits and classify their stability. When you have an n-dimensional system $\dot{x}=f(x)$, a Surface of Section S is an (n-1)-dimensional subspace, chosen such that for a trajectory of interest, there are t_0,t_1,t_2,\ldots with $x(t_0),x(t_1),x(t_2),\ldots\in S$, but for all other $t,x(t)\not\in S$. Also, S is not tangent to the trajectory. That means, the trajectory crosses the Surface of Section, but does not just touch it or move within it. A Poincaré Map P for the Surface of Section S and the dynamical system $\dot{x}=f(x)$ is then defined via $P(x(t_i))=x(t_{i+1})$, i.e., the map "samples" from a trajectory at the times it crosses S.

1. Let $\dot{x}=f(x)$ be a dynamical system and P a corresponding Poincaré map with surface of section S. If there exists $y\in S$ such that P(y)=y, then there exists a closed cycle in the system. Is that also a necessary condition? Why/why not?

If P(y)=y, it means y is a fixed point of the Poincaré map. This implies the trajectory of the dynamical system returns to the same point y on the surface of section S after one period. Hence, there exists a closed cycle in the system. Therefore, P(y)=y is a sufficient condition for the existence of a closed cycle.

If there exists a closed cycle in the system, the trajectory will repeatedly intersect the surface of section S. In some cases, this intersection can be described as a single fixed point of the Poincaré map (P(y)=y). However, for more complex periodic or quasi-periodic orbits, the trajectory might intersect S at multiple points, forming a

cycle in P rather than a single fixed point. Thus, P(y)=y is not a necessary condition for the existence of a closed cycle.

2. Consider the following system:

$$\dot{r}=r(1-r),\quad \dot{ heta}=2.$$

Explicitly find a Poincaré Map for the surface of section $S=\{(r,\theta): r>0, \theta=0\}$. Use it to prove that there exists a closed cycle at r=1. Is it stable, unstable, or half-stable? (Hint: to find the map, take an initial condition $(r_1,0)\in S$. After one revolution, the trajectory intersects S at $(r_2,0)$. To get r_2 , note that you can read off the time T the revolution takes from the equations.)

First, with an initial condition $(r_1,0)$, by solving $\dot{r}=r(1-r)$ and $\dot{ heta}=2$ we get

$$r(t)=rac{r_1e^t}{r_1e^t+1-r_1},\quad heta(t)=2t.$$

heta increases uniformly with time, completing a full revolution (from heta=0 to $heta=2\pi$) in time $T=rac{2\pi}{2}=\pi$.

Substitute $t=\pi$ into the expression for r(t), get the Poincaré map:

$$P(r_1) = rac{r_1 e^{\pi}}{r_1 e^{\pi} + 1 - r_1}.$$

If $r_1=1$, the radial equation becomes $\dot{r}=0$, meaning r=1 is constant over time. Thus, r=1 is a fixed point of the Poincaré map, corresponding to a closed cycle.

To determine stability, compute the derivative of the Poincaré map $P(r_1)$:

$$P'(r_1) = rac{(e^\pi)(r_1e^\pi+1-r_1)-r_1e^\pi(e^\pi-1)}{(r_1e^\pi+1-r_1)^2}.$$

With respect to r_1 at $r_1=1$, $P'(1)=e^\pi/e^{2\pi}=e^{-\pi}.$

Since P'(1) < 1, the closed cycle at r = 1 is stable.