Graph Theory - Sheet 3 - November 7, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 9

Theorem 1.1. A hypercube Q_n is Hamiltonian. It has a girth of 4, a diameter of n , and a size of ?.	order of 2^n and
Proof.	
Theorem 1.2. A bipartite complete graph $K_{m,n}$ is Hamiltonian iff $m = n$. It's girth is 4 for ∞ otherwise. It's diameter is 2. The graph's order is $m + n$ and it's size is $m \cdot n$.	or $m,n \geq 2$ and
Proof.	
Theorem 1.3. The Petersen graph is Hamiltonian, it has a girth of 5, a diameter of 2, and a size of 15.	an order of 10
Proof.	

Problem 10

Graph Theory - Sheet 3 - November 7, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 11

Theorem	3.1.	For a	each	odd	integer	k >	· 1,	the	complete	graph	$K_{(n+1)}$	is	a k-regular	graph	with	no
1-factor. F	or eac	$ch \ eve$	en int	teger	•						,					

Proof.

Problem 12