Lecture #12

Syntax Analysis - VI

Bottom-Up Parsing

- Given a grammar *G*, a parse tree for a given *string* is constructed by starting at the *leaves* (*terminals* of the string) and working to the *root* (the start symbol *S*).
- They are able to accept a more general class of grammars compared to top-down predictive parsers.
- It builds on the concepts developed in top-down parsing.
- Preferred method for most of the parser generators including bison
- They don't need left-factored grammars
 - So, its valid to use the following grammar

$$E \rightarrow T + E \mid T$$

$$T \rightarrow int * T | int | (E)$$

Bottom-Up Parsing

• A parse for a string generates a sequence of derivations of the form:

$$S \Rightarrow \delta_0 \Rightarrow \delta_1 \Rightarrow \delta_2 \Rightarrow \dots \Rightarrow \delta_{n-1} \Rightarrow sentence$$

- Bottom-up parsing *reduces* a string to the start symbol by inverting productions
- Let $A \rightarrow b$ be a production and δ_{i-1} and δ_i be two consecutive derivations with sentential forms: $\alpha A\beta$ and $\alpha b\beta$
 - δ_{i-1} is derived from δ_i by matching the *RHS* b in δ_i , and then replacing b with its corresponding *LHS*, A. This is called a *reduction*
- Parse tree is the result of the tokens and the reductions.

Bottom-Up Parsing

• Consider the parse for the input string: int * int + int

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

- When we reduce, we only have terminals to the right.
 - If $\alpha b\beta$ to $\alpha A\beta$ is a step of a bottom-up parse
 - And the reduction is by $A \rightarrow b$
 - Then β is a string of terminals

The second secon	
Sentential Form	Production
$int * \underline{int} + int$	
$\underline{int * T} + int$	$T \rightarrow int$
$T + \underline{int}$	$T \rightarrow int * T$
$T + \underline{T}$	$T \rightarrow int$
$\underline{T + E}$	$E \rightarrow T$
E	$E \rightarrow T + E$

• In other words, a bottom-up parser traces a rightmost derivation in reverse

Shift-Reduce Parsing

- Idea: Split string being parsed into two parts
 - Two parts are separated by a special character '|'
 - Left part is a string of terminals and non terminals
 - Right part is a string of terminals
 - Still to be examined
- Bottom up parsing has two actions
 - Shift: Move terminal symbol from right string to left string
 - $ABC \mid xyz \Rightarrow ABCx \mid yz$
- Reduce: Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then
 - \bullet Cbxy | ijk \Rightarrow CbA | ijk

Shift-Reduce Example

Sentential Form	Action
int * int + int	Shift
int * int + int	Shift
int * int + int	Shift
int * int + int	Reduce $T \rightarrow int$
int * T + int	Reduce $T \rightarrow int * T$
T + int	Shift
T + int	Shift
T + int	Reduce $T \rightarrow int$
T + T	Reduce $E \rightarrow T$
T + E	reduce $E \rightarrow T + E$
E	Accept

To Shift or Reduce?

- Symbols on the left of "|" are kept on a *stack*
 - Top of the stack is at "|"
 - Shift pushes a terminal on the stack
 - Reduce pops symbols (RHS of production) and pushes a non terminal (LHS of production) onto the stack
- The most important issues are:
 - When to shift and when to reduce!
 - Which production to use for reduction?
 - Sometimes parser can reduce but it should not!
 - $X \rightarrow \mathbb{C}$ can always be reduced!
 - Sometimes parser can reduce in different ways!

To Shift or Reduce? - Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
 - If it is legal to shift or reduce:
 - Shift-reduce conflict
 - If it is legal to reduce by two different productions:
 - Reduce-reduce conflict
- Reduce action should be taken only if the result can be reduced to the start symbol

Shift-Reduce Parsing - Handles

Handles

- A substring that matches the right-side of a production that occurs as one step in the rightmost derivation. This substring is called a *handle*.
- Because δ is a right-sentential form, the substring to the right of a handle contains only terminal symbols. Therefore, the parser doesn't need to scan past the handle.
- If a grammar is unambiguous, then every rightsentential form has a unique handle in the reversed rightmost derivation
- If we can find those handles, we can build a derivation

Recognizing Handles

- Given the grammar: $E \rightarrow T + E \mid T$ $T \rightarrow \text{int } * T \mid \text{int } | (E)$
- Consider step int | * int + int
- We could reduce by $T \rightarrow \text{int giving } T \mid * \text{int} + \text{int}$
 - But this is incorrect because:
 - No way to reduce to the start symbol E
- So, a handle is a reduction that also allows further reductions back to the start symbol
- In shift-reduce parsing, handles appear only at the top of the stack, never inside

Recognizing Handles

- Handles always appear only at stack top:
 - Immediately after reducing a handle
 - Right-most non-terminal on top of the stack
 - Next handle must be to right of right-most non-terminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle
- It is not obvious how to detect handles
- At each step the parser sees only the stack, not the entire input; start with that . . .
- α is a *viable prefix* if there is a β such that $\alpha | \beta$ is a state of a shift-reduce parser

Viable Prefixes

• Therefore:

- A viable prefix does not extend past the right end of the handle
- It's a viable prefix because it is a prefix of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected
- For any grammar, the set of viable prefixes is a regular language
- So, we can generate an automata to recognize viable prefixes!

Viable Prefixes

- α is a viable prefix of a given grammar if:
 - There is a ω such that αω is a right sentential form
- $\alpha \mid \omega$ is a state of the shift-reduce parser
- As long as the parser has viable prefixes on the stack no parser error has been seen
- The set of viable prefixes is a regular language (not obvious)
- Construct an automaton that accepts viable prefixes

LR(0) Items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Thus production $A \rightarrow XYZ$ gives four LR(0) items

```
A \rightarrow .XYZ
```

$$A \rightarrow X.YZ$$

$$A \rightarrow XY.Z$$

$$A \rightarrow XYZ$$
.

- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stack s
 - Symbols on the right of "." are expected in the input
- The only item for $X \rightarrow \varepsilon$ is $X \rightarrow$.

Viable Prefixes and LR(0) Items

• Consider the input: (int)

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int \mid (E)$

- Then (E |) is a state of a shift-reduce parse
- (E is a prefix of the rhs of $T \rightarrow (E)$
 - Will be reduced after the next shift
- Item $T \rightarrow (E_{\cdot})$ says that so far we have seen (E of this production and hope to see)

Viable Prefixes and LR(0) Items

- The stack may have many prefixes of rhs's
 - Prefix₁ Prefix₂ . . . Prefix_{n-1}Prefix_n
- Let $\operatorname{Prefix}_{\mathbf{i}}$ be a prefix of the rhs of $\mathbf{X}_{\mathbf{i}} \to \mathbf{\alpha}_{\mathbf{i}}$
 - $Prefix_i$ will eventually reduce to X_i
 - The missing part of α_{i-1} starts with X_i
 - i.e. there is a $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$ for some β
- Recursively, \mathbf{Prefix}_{k+1} ... \mathbf{Prefix}_n eventually reduces to the missing part of α_k

Viable Prefixes and LR(0) Items

- Consider the string (int * int):
 - (int *|int) is a state of a shift-reduce parse
 - "(" is a prefix of the rhs of $T \rightarrow (E)$
 - " ϵ " is a prefix of the rhs of E \rightarrow T
 - "int *" is a prefix of the rhs of $T \rightarrow int * T$

- The "stack of items"
 - $T \rightarrow (.E)$ says, we have seen "(" of $T \rightarrow (E)$
 - $E \rightarrow .T$ says, we have seen ε of $E \rightarrow T$
 - $T \rightarrow int * .T$ says, we have seen int * of $T \rightarrow int * T$

- Therefore, we have to build the finite automata that recognizes this sequence of partial rhs's of productions
- Algorithm:
- 1. Add a dummy production $S' \rightarrow S$ to G
- 2. The NFA states are the items of G
 - Including the extra production
- 3. For item $E \rightarrow \alpha . X\beta$ add transition
 - $E \to \alpha . X\beta \to X E \to \alpha X . \beta$
- 4. For item E → α .X β and production X → γ add
 - $E \rightarrow \alpha.X\beta \rightarrow \epsilon X \rightarrow .\gamma$
- 5. Every state is an accepting state
- 6. Start state is $S' \rightarrow .S$

- Therefore, we have to build the finite automata that recognizes this sequence of partial rhs's of productions
- Algorithm:
- 1. Add a dummy production $S' \rightarrow S$ to G
- 2. The NFA states are the items of G
 - Including the extra production
- 3. For item $E \rightarrow \alpha . X\beta$ add transition
 - $E \to \alpha . X\beta \to X E \to \alpha X . \beta$
- 4. For item E → α .X β and production X → γ add
 - $E \rightarrow \alpha.X\beta \rightarrow \epsilon X \rightarrow .\gamma$
- 5. Every state is an accepting state
- 6. Start state is $S' \rightarrow .S$

• Given the grammar:

S'
$$\rightarrow$$
 E
E \rightarrow T + E | T
T \rightarrow int * T | int | (E)

Create an NFA to recognize viable prefixes

• Given the grammar:

$$S' \rightarrow E$$

 $E \rightarrow -E \mid id$

Create an NFA to recognize viable prefixes

NFA to DFA – Subset Construction

• Convert the NFA obtained in the previous slide to a DFA

Valid Items

- The states of the DFA are:
 - canonical collections of LR(0) items
- Item $X \to \beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if
 - S' $\rightarrow * \alpha X \omega \rightarrow \alpha \beta \gamma \omega$ by a right-most derivation
- After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items
- An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state S containing I

Valid Items

- The items in S describe what the top of the item stack might be after reading input α
- An item is often valid for many prefixes
 - Example: The item $T \rightarrow (.E)$ is valid for prefixes
 - (, ((, (((, ((((,

LR(0) Parsing

- Assume
 - stack contains α
 - next input token is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$
 - Equivalent to saying s has a transition labeled t

LR(0) Parsing - Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta$. and $Y \rightarrow \omega .t\delta$
- SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts

SLR Parsing

- Assume
 - stack contains α
 - next input token is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
 - \cdot t ϵ Follow (X)
- Shift if
 - s contains item $X \to \beta .t\omega$
 - Equivalent to saying s has a transition labeled t

The DFA Again

Shift-Reduce Conflicts

SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let $|\mathbf{x_1...x_n}|$ be initial configuration
- 3. Repeat until configuration is S|\$
 - 1. Let $\alpha | \omega$ be current configuration
 - 2. Run M on current stack α
 - 3. If M rejects α , report parsing error
 - 1. Stack α is not a viable prefix
 - 4. If M accepts α with items I, let u be next input
 - 1. Shift if $X \to \beta.u\gamma \in I$
 - 2. Reduce if $X \to \beta$. ϵ I and $u \in Follow(X)$
 - 3. Report parsing error if neither applies

SLR Parsing - Improvements

- Note that Step 3.3 is redundant
- If there is a conflict in the last step, grammar is not SLR(k)
- Lots of grammars are not SLR
 - Including all ambiguous grammars
- We can parse more grammars by using precedence declarations
 - Instructions for resolving conflicts

SLR Parsing

- Consider the ambiguous grammar:
 - $E \rightarrow E + E \mid E * E \mid (E) \mid int$
- The DFA for this grammar contains a state with the following items:
 - $E \rightarrow E * E$. and $E \rightarrow E + E$
 - There is a shift/reduce conflict
- Declaring "* has higher precedence than +" resolves this conflict in favour of reducing

SLR Parsing Example

SLR Parsing Example

Parse the token stream: int * int\$

Configuration	DFA Halt State	Action
int * int\$	1	Shift
int * int\$	3 * not in Follow(T)	Shift
int * int\$	11	Shift
int * int \$	$3 \$ ϵ Follow(T)	Reduce. $T \rightarrow int$
int * T \$	$4 \$ ϵ Follow(T)	Reduce. $T \rightarrow int * T$
T \$	$5 \$ \in Follow(T)	Reduce. $E \rightarrow T$
E \$	Accept	

Next Lecture

Bottom-Up Parsing Continued...