Gaussian Elimination High-Performance Implementation

Mohamed Imad Eddine Ghodbane May, 2024

CONTENT

PROJECT OVERVEW

- Gaussien elimination over a finite field Fp.
- p prime, less than 30 bits in length.
- Libraries include FFLAS-FFPACK, Flint known for high performance.
- Room for improvement for matrices of intermediate dimensions.
- AVX2 vectorization for enhanced performance.
- Aim for superior performance compared to existing libraries.

Input:

• Matrix A of size m×n with entries in the field Fp.

Output:

LU decomposition of A, with permutation matrices P and Q.

Operations:

- Pivoting: Involves row and column rotations.
- Row Reduction: Process of reducing rows to obtain the LU decomposition.

Input

$$m = n = 3$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$egin{bmatrix} a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ a_{11} & a_{12} & a_{13} \ \end{bmatrix}$$

$$egin{bmatrix} a_{21} & a_{11} & a_{13} \ a_{22} & a_{21} & a_{23} \ a_{32} & a_{31} & a_{33} \end{bmatrix}$$

Row Reduction

$$a_{11}^{-1} \cdot \begin{pmatrix} a_{21} \\ a_{31} \end{pmatrix} = \begin{bmatrix} a_{11}^{-1} & a_{12} & a_{13} \\ l_{21} & a_{22} & a_{23} \\ l_{31} & a_{32} & a_{33} \end{bmatrix}$$

Row Reduction

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ l_{21} & a_{22} & a_{23} \ l_{31} & a_{32} & a_{33} \ \end{bmatrix} = egin{bmatrix} a_{22} \ a_{23} \ a_{33} \ \end{bmatrix} = egin{bmatrix} a_{32} \ a_{33} \ \end{bmatrix}$$

$$= \begin{pmatrix} a_{22} \\ a_{23} \end{pmatrix} - l_{21} \cdot \begin{pmatrix} a_{12} \\ a_{13} \end{pmatrix}$$
$$= \begin{pmatrix} a_{32} \\ a_{33} \end{pmatrix} - l_{31} \cdot \begin{pmatrix} a_{12} \\ a_{13} \end{pmatrix}$$

Row Reduction

Output

$$P \cdot egin{bmatrix} u_{11} & u_{12} & u_{13} \ l_{21} & u_{22} & u_{23} \ l_{31} & l_{32} & u_{33} \end{bmatrix} \cdot Q$$

PLUQ IMPLEMENTATION

```
Pivoting
*/
// Row Reduction
for (int k = matrixRank + 1; k < m; k++) {
   A->data[k * n + matrixRank] = mult(
    A->data[k * n + matrixRank], inv, p);
    for (int j = matrixRank + 1; j < n; j++)
        A->data[k * n + j] = sub(
        A->data[k * n + j],
        mult(A->data[k * n + matrixRank],
        A->data[matrixRank * n + j], p), p);
```

Subtraction

```
int sub(int a, int b, int p) {
   int r = a - b;
   return r < 0 ? r + p : r;
}</pre>
```

Subtraction

_mm_sub_epi32

 a_2 a_3 a_1 a_4 *b*₃ b_2 $a_1 - b_1 \mid a_2 - b_2 \mid a_3 - b_3 \mid a_4 - b_4$

Subtraction

mm_cmplt_epi32

Subtraction

_mm_add_epi32

Subtraction __mm_blendv_epi8

Subtraction

```
__m128i sub_avx2(__m128i a, __m128i b, __m128i vp) {
    __m128i result = _mm_sub_epi32(a, b);
    __m128i mask = _mm_cmplt_epi32(result, _mm_setzero_si128());
    __m128i adjusted_result = _mm_add_epi32(result, vp);
    result = _mm_blendv_epi8(result, adjusted_result, mask);
    return result;
}
```

```
int mult(int a, int b, int p) {
   long long r = (long long)a * b;
   return r % p;
}
```

$$h = ab = cp + e$$
 h_1 h_2 h_3 h_4
 $u = \frac{1}{p}, d = hu$
 u_1 u_2 u_3 u_4
 u_4
 u_1 u_2 u_3 u_4
 u_4

$$h = ab = cp + e$$

$$u = \frac{1}{p}, d = hu$$

$$c = \lfloor d \rfloor$$

$$\begin{bmatrix} d_1 \end{bmatrix} \begin{bmatrix} d_2 \end{bmatrix} \begin{bmatrix} d_3 \end{bmatrix} \begin{bmatrix} d_4 \end{bmatrix}$$
 $\begin{bmatrix} C_1 \end{bmatrix} \begin{bmatrix} C_2 \end{bmatrix} \begin{bmatrix} C_3 \end{bmatrix} \begin{bmatrix} C_4 \end{bmatrix}$

$$h = ab = cp + e$$
 $u = \frac{1}{p}, d = hu$
 $c = \lfloor d \rfloor$
 $e = h - cp$
 h_1
 h_2
 h_3
 h_4
 h_5
 h_6
 h_7
 h_8
 h_8
 h_8
 h_9
 h_9

Multiplication

```
__m256d mul_mod_p(__m256d a, __m256d b, __m256d u, __m256d p) {
    __m256d h = _mm256_mul_pd(a, b);
    __m256d d = _mm256_mul_pd(h, u);
    __m256d c = _mm256_floor_pd(d);
    __m256d e = _mm256_fnmadd_pd(c, p, h);
    return e;
}
```

The resulting product often exceeds the 52-bit length allocated for the mantissa in double floating-point representation. This can lead to a loss of precision in the final result!!

```
_m256d mul_mod_p(__m256d a, __m256d b, __m256d u, __m256d p) {
  m256d h = mm256 mul pd(a, b);
  m256d l = mm256 fmsub pd(x, y, h);
  _{m256d} d = _{mm256} mul_pd(h, u);
  m256d c = mm256 floor pd(d);
  _{m256d b} = _{mm256_fnmadd_pd(c, p, h);}
  _{m256d} = _{mm256_add_pd(b, 1);}
  _{m256d} t = _{mm256} sub_pd(e, p);
  e = _mm256 blendv_pd(t, e, t);
  t = _mm256 add pd(e, p);
  return mm256 blendv pd(e, t, e);
```

SIMD IMPLEMENTATION OF PLUQ

```
rows elimination avx2(int *A data, int n, int matrixRank, int c, int p,
__m256d vp, __m256d vu ,__m128i vp_128, int k) {
   _{m256d} vc = _{mm256} set1_pd(c);
   m256d tmp;
   int i;
    for (i = matrixRank + 1; i + 3 < n; i += 4) {
       __m128i v1 = _mm_loadu_si128((__m128i *)&A_data[matrixRank*n+i]);
       __m128i v2 = _mm_loadu_si128((__m128i *)&A_data[k*n+i]);
       m256d vDouble = _mm256_cvtepi32_pd(v1);
       tmp = mul mod p(vc, vDouble, vu, vp);
        _m128i resultInt = _mm256_cvttpd_epi32(tmp);
        m128i result = sub avx2(v2, resultInt, vp 128);
       _mm_storeu_si128((__m128i *)&A_data[k * n + i], result);
    } // loop handles elements that don't fit into chunks of 4
```

RESULTS

AVX2 vs Basic PLUQ

Sizes	100	300	500	1000	1200
Basic (ms)	0.69	18.70	86.57	694.06	1199.92
AVX2 (ms)	0.15	3.90	17.80	139.98	242.56
Speedup	4.60	4.79	4.86	4.95	4.95

PLUQ Speedups using AVX2 and 12 Bits Length Prime

RESULTS

AVX2 vs FLINT

AMD Ryzen™ 7 PRO 7840U w/ Radeon™ 780M Graphics × 16