DATA SCIENCE MODEL EVALUATION

AGENDA 2

I. EVALUATION PROCEDURES II. EVALUATION METRICS

I. EVALUATION PROCEDURES

Q: What's wrong with training error?

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

TRAINING ERROR 5

Q: What's wrong with training error?

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

OVERFITTING 6

UNDERFITTING AND OVERFITTING

UNDERFITTING AND OVERFITTING

Q: What's wrong with training error?

Thought experiment:

Suppose we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called overfitting.

A: Training error is not a good estimate of accuracy beyond training data.

Q: How can we make a model that generalizes well?

dataset

Q: How can we make a model that generalizes well?

1) split dataset

dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) parameter tuning

- 1) split dataset
- 2) train model
- 3) test model
- 4) parameter tuning
- 5) choose final model

- 1) split dataset
- 2) train model
- 3) test model
- 4) parameter tuning
- 5) choose final model
- 6) train on all data

- 1) split dataset
- 2) train model
- 3) test model
- 4) parameter tuning
- 5) choose final model
- 6) train on all data
- 7) make predictions

Q: How can we make a model that generalizes well?

- 1) split dataset
- 2) train model
- 3) test model
- 4) parameter tuning
- 5) choose final model
- 6) train on all data
- 7) make predictions

NOTE

This new data is called

Suppose we do the train/test split.

Q: How well does test set error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the test set error remain the same?

A: Of course not!

A: On its own, not very well.

TEST SET ERROR

Suppose we do the train/test split.

Q: How well does test set error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the test set error remain the same?

A: Of course not!

A: On its own, not very well.

NOTE

The test set error gives a high-variance estimate of OOS accuracy. Something is still missing!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different test set errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

Steps for K-fold cross-validation:

- 1) Randomly split the dataset into K equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Calculate test set error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.
- 5) Take the average test set error as the estimate of 00S accuracy.

5-fold cross-validation: red = training folds, blue = test fold

Features of K-fold cross-validation:

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for parameter tuning and model selection.

Features of K-fold cross-validation:

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for parameter tuning and model selection.

NOTE

Leave one out crossvalidation (LOOCV) is a special case of K-fold cross-validation.

Model selection using cross-validation: lowest predicted 00S error at degree = 2

II. EVALUATION METRICS

EVALUATION METRICS

Classification:

- Confusion Matrix
- ROC Curve (and AUC)

Regression:

Root Mean Squared Error

Confusion Matrix: table to describe the performance of a classifier

	Actual:	Actual:
n=165	YES	NO
Predicted:		
YES	100	10
Predicted:		
NO	5	50

Example: Test for presence of disease YES = positive test = True = 1 NO = negative test = False = 0

- How many classes are there?
- How many patients?
- How many predictions of disease?
- How many patients actually have the disease?

n=165	Actual: YES	Actual: NO	
Predicted:			
YES	TP = 100	FP = 10	110
Predicted:			
NO	FN = 5	TN = 50	55
	105	60	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- 1 accuracy = 1 0.91 = 0.09

n=165	Actual: YES	Actual: NO	
Predicted:			
YES	TP = 100	FP = 10	110
Predicted:			
NO	FN = 5	TN = 50	55
	105	60	

Precision:

• *TP / predicted yes = 100/110 = 0.91*

True Positive Rate:

- TP / actual yes = 100/105 = 0.95
- "sensitivity" or "recall"

False Positive Rate:

• $FP / actual \ no = 10/60 = 0.17$

Specificity:

• 1 - FPR = 1 - 0.17 = 0.83

ROC CURVE / AUC

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

Every email gets a spamminess score.

Choosing a cut-off, this becomes a classification.

How do we choose a cut-off?
How do we evaluate the ranking without choosing a cut-off?

ROC CURVE / AUC

Email Number	Score	True Label
5	0.93	Spam
8	0.91	Spam
2	0.84	Spam
1	0.6	Ham
7	0.54	Spam
3	0.22	Ham
4	0.10	Ham
6	0.02	Ham

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- Used for regression problems
- Square root of the mean of the squared errors
- Easily interpretable (in the "y" units)
- "Punishes" larger errors

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Example: y_true = [100, 50, 30] y_preds = [90, 50, 50]

RMSE = np.sqrt((10**2 + 0**2 + 20**2)/3) = 12.88

DATA SCIENCE