Advanced Databases (DAT410) Assignment 3

Luca Modica Hugo Manuel Alves Henriques e Silva

May 5, 2024

1 Introduction

The goal of this report is to describe how we transformed data from a relational database to RDF triples, such that it conforms to the OWL/RDFS produced in the previous assignment. We will illustrate several results of querying the transformed data to answer specifically asked questions. This will be achieved by using SPARQL as a query language and GraphDB as a semantic graph database management system to store the triples.

2 Data preparation

As for the preparation of the data, we had to convert .csv files into RDF triples. We mostly followed the ontologies generated by WebProtégé, making changes where necessary:

- We changed column names on the .csv files to match our data properties.
- According to our ontology, the tables Assigned_Hours and Reported_Hours were merged into a single
 table called Teacher_Hours. The table contains, for each datapoint, a column to indicate the assigned
 hours and a column for the reported ones.
- Regarding some object properties, we used the inverse relation (that is, switch the domain class with the range class). The reason is to make sure the domain class has the foreign keys that originally belonged to the range classe, so that the RDF triples will represent the tables better.
- According to our ontologies, we added boolean value attribute called worksAsTA to the Student class: if set to true, It will specify a student that is working as a teaching assistant. To add the column to the Student.csv file, we check for each teaching assistant if the related teacherId matches with any of the student: in that case It means that specific student is working as teaching assistant.
- Some of the .csv files had float data types for integer values. These were converted back to integers so GraphDB could interpret properly the data type.
- Finally, we added department and division tables as we considered these to be classes as opposed to the initially presented relational schema where these were not considered as entities.

Most of these changes were directly applied through a Python script. However, some of them required manual altering of the .csv files.

3 SPARQL queries

Once the data were converted into RDF triples and loaded into GraphDB, the next task consisted on querying the the data themselves to answer the asked question in the assignment. Down below, for each question we will report the the related SPARQL query and the result obtained by running it.

Question 1: find the name, director and department of all programmes.
 SPARQL query:

programmeName	teacherId	teacherName	departmentName
P-01	19620522-0023	Teacher23	D1
P-11	19620424-0026	Teacher26	D2
P-12	19610623-0005	Teacher5	D2
P-13	19690408-0009	Teacher9	D2
P-14	19560812-0016	Teacher16	D2
P-21	19570615-0011	Teacher11	D3
P-31	19650303-0019	Teacher19	D4
P-32	19570826-0012	Teacher12	D4
P-33	19570828-0008	Teacher8	D4
P-34	19610918-0027	Teacher27	D4
P-41	19580218-0007	Teacher7	D5
P-42	19620831-0024	Teacher24	D5
P-51	19580515-0017	Teacher17	D6
P-52	19611219-0014	Teacher14	D6
P-53	19600905-0003	Teacher3	D6
P-54	19630126-0001	Teacher1	D6
P-61	19680712-0028	Teacher28	D7
P-71	19610620-0006	Teacher6	D8
P-72	19660630-0020	Teacher20	D8
P-73	19600814-0002	Teacher2	D8
P-74	19601021-0018	Teacher18	D8

• Question 2: find the names of all students who worked as teaching assistants in courses given by the D3-2 division in study period 2 in academic year 2023/2024.

SPARQL query:

```
PREFIX ex: <http://assignment3.org/ontology#>
select ?studentName
where {
    ?student a ex:Student .
    ?student ex:studentName ?studentName .
    ?student ex:workAsTA ?ta .

# Find TeacherHours instances related to teaching assistants
    ?th a ex:TeacherHours .
```

```
?th ex:teacherHoursIn ?ta .
?th ex:courseHoursIn ?courseInstance .
?courseInstance a ex:CourseInstance .
?courseInstance ex:studyPeriod 2 .
?courseInstance ex:courseInstanceAcademicYear "2023-2024" .
?courseInstance ex:courseInstanceOf ?course .

?course a ex:Course .
?course ex:courseBelongsTo ?division .

# find the division name
?division a ex:Division .
?division ex:divisionName "D3-2" .
}
```

studentName
TA36
TA138
TA38
TA74
TA60

• Question 3: find all teachers who are assigned more than 120 hours in course 1015 in study period 1 in academic year 2018/2019.

SPARQL query:

```
PREFIX ex: <http://assignment3.org/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT DISTINCT ?teacherId ?teacherName
WHERE {
    ?teacher rdf:type ?teacherType .
  ?teacherType rdfs:subClassOf* ex:Teacher .
    ?teacher ex:teacherId ?teacherId .
    ?teacher ex:teacherName ?teacherName .
    # Find TeacherHours instances related to teaching assistants
    ?th a ex:TeacherHours .
    ?th ex:teacherHoursIn ?teacher .
    ?th ex:assignedHours ?hours .
    ?th ex:courseHoursIn ?courseInstance .
  ?courseInstance a ex:CourseInstance .
    ?courseInstance ex:studyPeriod 1 .
    ?courseInstance ex:courseInstanceAcademicYear "2018-2019" .
    ?courseInstance ex:courseInstanceOf ?course .
    ?course a ex:Course .
    ?course ex:courseCode 1015 .
  FILTER (?hours > 120)
}
```

Result:

teacherId	teacherName
19580218-0007	Teacher7
19790702-0038	TA38
19660630-0020	Teacher20
19650303-0019	Teacher19
19750102-0059	TA59

• Question 4: find all students registered for course instance I-910 that were not registered for course instance I-911.

SPARQL query:

```
PREFIX ex: <http://assignment3.org/ontology#>
select ?studentId ?studentName
where {
    ?registration a ex:Registration .
    ?registration ex:studentRegistered ?student .
    ?registration \ ex: registration Contains Instance \ ?course Instance \ .
    ?courseInstance a ex:CourseInstance .
    ?courseInstance ex:instanceId "I-910" .
    ?student a ex:Student .
    ?student ex:studentId ?studentId .
    ?student ex:studentName ?studentName .
    minus {
        ?registration a ex:Registration .
        ?registration ex:studentRegistered ?student .
        ?registration \ ex: registration Contains Instance \ ?course Instance \ . \\
        ?courseInstance a ex:CourseInstance .
        ?courseInstance ex:instanceId "I-911" .
        ?student a ex:Student .
        ?student ex:studentId ?studentId .
        ?student ex:studentName ?studentName .
  }
}
```

Result:

studentId	studentName	
19921201-0094	TA94	

• Question 5: find all programmes along with the total number of owned courses. List the results in descending order of number of owned courses.

SPARQL query:

```
PREFIX ex: <a href="http://assignment3.org/ontology#">
SELECT ?programmeCode (COUNT(?course) AS ?numberOfCourses)
WHERE {
    ?programmeCourse a ex:ProgrammeCourse .
        ?programmeCourse ex:programmeCourseContains ?course .
        ?programmeCourse ex:programmeCourseBelongsTo ?programme .
```

```
?programme a ex:Programme .
    ?programme ex:programmeCode ?programmeCode .
}
GROUP BY ?programmeCode
ORDER BY DESC(?numberOfCourses)
```

programmeCode	numberOfCourses
10073	285
10072	281
10001	277
10011	277
10013	275
10012	274
10071	274
10032	273
10051	265
10054	265
10041	183
10021	182
10031	182
10061	182
10042	181
10052	181
10014	180
10033	180
10034	178
10053	177
10074	176

• Question 6a: find the number of: senior teachers

SPARQL query:

```
PREFIX ex: <http://assignment3.org/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select (COUNT(DISTINCT ?teacher) AS ?numberOfTeacher)
where {
    ?teacher a ex:SeniorTeacher
}
```

Result:

numberOfTeacher
30

• Question 6b: find the number of: all people

SPARQL query:

```
PREFIX ex: <http://assignment3.org/ontology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
```

numberOfPeople	
440	