Unsupervised Learning Eltecon Data Science Course by Emarsys

János Divényi

December 2, 2020

Section 1

Supervised vs unsupervised learning

What is the difference between Supervised and Unsupervised learning?

Supervised Learning

Unsupervised Learning

Supervised learning

- For each observation of the predictor measurements (X) there is an associated response measurement (Y).
- The goal is to fit a model that predicts the amount or the label of the response.
- E.g. linear regression, logistic regression, classification etc.

Unsupervised learning

- We observe measurements (X), but no associated response variable (Y), so we cannot fit any regressions.
- The goal is to find relationship or structure among the measurements.

Goals of unsupervised learning

- Find patterns in the features of the data by dimensionality reduction
 - Ex 1. instead of using both humidity and rainfall in a classification problem, they can be collapsed into just one underlying feature, since both of them are strongly correlated
- Find homogenous subgroups (clusters) within a population
 - Ex 1. segmenting consumers based on demographics and purchasing history
 - Ex 2. find similar movies based on features of each movie and reviews of the movies

Section 2

Dimensionality reduction with PCA

Dimensionality reduction with PCA

- Principal components allow us to summarize a large set of correlated variables with a smaller number of representative variables that collectively explain most of the variablility in the original set.
- Principal component analysis (PCA) is simply reducing the number of variables of a data set, while preserving as much information as possible.
- Reducing the number of variables comes at the expense of accuracy, so with PCA we trade a little accuracy for simplicity.

What are principal components?

- Try to visualize n observations with measurements of p features by two-dimensional scatterplots (with p = 10 there are 45 plots!).
- Instead we'd like to find a low-dimensional representation of the data that captures most of the information.
- Imagine that each of the *n* observations lives in a *p*-dimensional space, but not all of these dimensions are equally *interesting*.
- Interesting is measured by the amount that the observations vary along each dimension.
- Each of the dimensions (principal components) found by PCA is a linear combination of the *p* features.

```
USArrests <- as.data.table(USArrests)
head(USArrests)</pre>
```

```
##
      Murder Assault UrbanPop
                                Rape
##
       <niim>
               <int>
                         <int> <num>
        13.2
                 236
                            58
                                21.2
## 1:
     10.0
## 2:
                 263
                            48
                               44.5
                            80 31.0
## 3:
         8.1
                 294
     8.8
## 4:
                 190
                            50 19.5
## 5:
         9.0
                 276
                            91 40.6
## 6:
         7.9
                 204
                            78
                                38.7
```

```
USArrests[, lapply(.SD, mean)]
     Murder Assault UrbanPop
##
                            Rape
##
     <niim> <niim> <niim> <niim>
## 1: 7.788 170.8 65.54 21.23
USArrests[, lapply(.SD, var)]
##
     Murder Assault UrbanPop
                            Rape
##
     <num> <num> <num> <num>
## 1: 18.97 6945 209.5 87.73
```

##

```
pca_output <- prcomp(USArrests, scale = TRUE)

pca_output$center

## Murder Assault UrbanPop Rape
## 7.788 170.760 65.540 21.232

pca_output$scale

## Murder Assault UrbanPop Rape</pre>
```

• center and scale are the *means* and *standard deviations* of the variables that were used for scaling prior to implementing PCA

9.366

14.475

4.356

83.338

pca_output\$rotation

```
## PC1 PC2 PC3 PC4
## Murder -0.5359 0.4182 -0.3412 0.64923
## Assault -0.5832 0.1880 -0.2681 -0.74341
## UrbanPop -0.2782 -0.8728 -0.3780 0.13388
## Rape -0.5434 -0.1673 0.8178 0.08902
```

 rotation is the matrix whose columns contain the weights (loadings) for the linear feature combinations of the principal components (mathematically, they are the eigenvectors)

dim(pca output\$x)

```
## [1] 50 4

head(pca_output$x)

## PC1 PC2 PC3 PC4

## [1,] -0.9757 1.1220 -0.43980 0.15470
```

```
## [1,] -0.9757 1.1220 -0.43980 0.15470

## [2,] -1.9305 1.0624 2.01950 -0.43418

## [3,] -1.7454 -0.7385 0.05423 -0.82626

## [4,] 0.1400 1.1085 0.11342 -0.18097

## [5,] -2.4986 -1.5274 0.59254 -0.33856

## [6,] -1.4993 -0.9776 1.08400 0.00145
```

matrix x has as its columns the principal component score vectors

```
pca_var <- pca_output$sdev^2
pca_var

## [1] 2.4802 0.9898 0.3566 0.1734

pca_var_explained <- pca_var / sum(pca_var)
pca_var_explained

## [1] 0.62006 0.24744 0.08914 0.04336</pre>
```

```
plot(pca_var_explained, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "b")
```



```
plot(cumsum(pca_var_explained), xlab = "Principal Component",
    ylab = "Cumulative Proportion of Variance Explained",
    ylim = c(0, 1), type = "b")
```


Section 3

K-means clustering

K-means theory

- Clustering the observations of a data set means partitioning them into groups so that observations within each group are quite *similar*, while observations in different groups are quite *different* from each other.
- Each observation should belong to exactly one cluster.
- To perform K-means clustering, we must first specify the desired number of clusters K; then the K-means algorithm will assign each observation to exactly one of the K clusters.

19 / 52

K-means clustering with different values of K

20 / 52

K-means optimization problem

- A good clustering is one for which the within-cluster variation is as small as possible.
- If the within-cluster variation for cluster C_k is a measure $W(C_k)$, then we want to solve:

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

The most common choice of measure is the squared Euclidean distance:

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$$

Thus the optimization problem is:

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

K-means algorithm

- **①** Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2 Iterate until the cluster assignments stop changing:
 - For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - Assign each observation to the cluster whose centroid is closest (where closest is defined using Euclidean distance).

K-means algorithm (cont.)

- The results will depend on the initial (random) cluster assignment in Step 1, thus we need to run the algorithm multiple times from different random initial configurations.
- We select the *best* solution, for which the objective is the smallest.

23 / 52

K-means algorithm explained

Notice that:

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2$$

where

$$\bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{ij}$$

is the mean for feature j in cluster C_k

- The above shows that in Step 2(a) the cluster means for each feature are the constants that minimize the sum-of-squared deviations, and by reallocation in Step 2(b) we can only improve.
- When the result no longer changes, a local optimum has been reached.

K-means clustering progression

K-means clustering progression (cont.)

Iteration 1, Step 2b **Final Results** Iteration 2, Step 2a

```
set.seed(2)
x <- data.table(a = rnorm(50), b = rnorm(50))
x[1:25, `:=`(a = a + 2, b = b - 3)]
km_output <- kmeans(x, centers = 2, nstart = 20)
km_output$cluster</pre>
```

1 1 1 1 1 1 1 1 1 1 1

```
ggplot(x, aes(x = a, y = b)) +
    geom_point(colour = (km_output$cluster + 1), size = 4)
```



```
set.seed(4)
km_output <- kmeans(x, centers = 3, nstart = 20)</pre>
```

```
ggplot(x, aes(x = a, y = b)) +
    geom_point(colour = (km_output$cluster+1), size = 4)
```


Different nstart initial cluster assignments result different total within-cluster sum of squares

```
set.seed(3)
km output <- kmeans(x, centers = 3, nstart = 1)
km output$tot.withinss
## [1] 94.76
km_output <- kmeans(x, centers = 3, nstart = 5)</pre>
km_output$tot.withinss
## [1] 83.18
km output <- kmeans(x, centers = 3, nstart = 10)
km output$tot.withinss
```

[1] 83.18

How to determine the number of clusters?

- **1** Run K-means with K=1, K=2, ..., K=n.
- 2 Record total within-cluster sum of squares for each value of K.
- **3** Choose *K* at the *elbow* position.

```
ks <- 1:5
tot_within_ss <- sapply(ks, function(k) {
    km_output <- kmeans(x, k, nstart = 20)
    km_output$tot.withinss
})</pre>
```

How to determine the number of clusters?

```
plot(ks, tot_within_ss, type = "b", xlab = "Values of K",
    ylab = "Total within cluster sum of squares")
```


Section 4

Hierarchical clustering

Hierarchical clustering

- Hierarchical clustering does not require choosing a particular K number of clusters.
- It results in a tree-based representation of the observations, called a dendogram.
- We focus on bottom-op or agglomerative clustering (vs top-down or divisive).

The dendogram

The dendogram

- Each *leaf* is an observation, as we move up the tree, leafs begin to *fuse* into branches based on their *similarity*.
- The height of fusion (on the vertical axis) indicates how different the observations are.
- Clusters are defined by cuting the dendogram horizontally, although where to make the cut is not so obvious.
- Hierarchical refers to that clusters obtained by cutting the tree at a given height are necessarily nested within the clusters obtained by cutting higher.

Hierarchical clustering algorithm

- We need to define a dissimilarity measure between each pair of observations (most often Euclidean distance).
- Starting from the bottom, each observation is treated as a separate cluster, then the two most similar are *fused*, next the two most similar clusters are fused, etc., until all observations belon to a cluster and the dendogram is complete.
- Dissimilarity between clusters depend on the selected linkage (average and complete linkage are the most preferred ones) and the dissimilarity measure.

Linkage types

- The linkage function tells you how to measure the distance between clusters.
- Single linkage: Minimal intercluster dissimilarity.

$$f = min(d(x, y))$$

• Complete linkage: Maximal intercluster dissimilarity.

$$f = max(d(x, y))$$

Average linkage: Mean intercluster dissimilarity.

$$f = average(d(x, y))$$

Clustering with different linkages

Dissimilarity measures

• Euclidean distance is the most common measure used.

$$\sqrt{\sum_i (a_i - b_i)^2}$$

- Correlation-based distance is also very useful, e.g. it is used for gene expression.
 - It considers two observations to be similar if their features are highly correlated, even though the observed values may be far apart in terms of Euclidean distance.
 - The distance between two vectors is 0 when they are perfectly correlated.
 - It focuses on the shapes of observation profiles rather than their magnitudes.

János Divényi

Hierachical clustering using different linkage types

```
set.seed(2)
x <- data.table(a = rnorm(50), b = rnorm(50))
x[1:25, `:=`(a = a + 3, b = b - 4)]
hc_complete <- hclust(dist(x), method = "complete")
hc_average <- hclust(dist(x), method = "average")
hc_single <- hclust(dist(x), method = "single")</pre>
```

- Compute the inter-observation Euclidean distance matrix using dist()
- Set the linkage type in the method argument

Preparing the dendogram

```
par(mfrow = c(1, 3))
plot(hc_complete, main = "Complete linkage", xlab = "",
      ylab = "", sub = "")
plot(hc_average, main = "Average linkage", xlab = "",
      ylab = "", sub = "")
plot(hc_single, main = "Single linkage", xlab = "",
      ylab = "", sub = "")
```

Preparing the dendogram

Determining cluster labels with cutree() by selecting number of clusters (k)

Determining cluster labels with cutree() by selecting maximum distance (h)

Scale variables with scale()

Hierarchical clustering with scaled features

Compute correlation-based distance using as.dist()

```
set.seed(5)
x <- matrix(rnorm(30 * 3), ncol = 3)
dd <- as.dist(1 - cor(t(x)))</pre>
```

Compute correlation-based distance using as.dist()

```
plot(hclust(dd, method = "complete"),
    main = "Complete linkage with correlation-based distance"
    xlab = "", sub = "")
```

Complete linkage with correlation-based distance

Section 5

Summary

Summary

- Supervised vs unsupervised learning
- PCA looks to find a low-dimensional representation of the observations that explain a good fraction of the variance.
- Clustering looks to find homogeneous subgroups among the observations.
 - In K-means clustering, we seeks to partition the observations into a pre-specified number of clusters.
 - In hierarchical clustering, we do not know in advance how many clusters
 we want; in fact, we end up with a tree-like visual representation of the
 observations, called a dendrogram, that allows us to view at once the
 clusterings obtained for each possible number of clusters, from 1 to n.

Resources

- StatQuest videos:
 - PCA #1
 - PCA #2
 - Hierarchical clustering
 - K-Means clustering
- James, G., Witten, D., Hastie, T., and Tibshirani, R. *An Introduction to Statistical Learning with Applications in R.*

János Divényi Unsupervised Learning December 2, 2020 52 / 52