PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-169246

(43) Date of publication of application: 22.06.2001

(51)Int.Cl.

H04N 5/92 G11B 20/12 G11B 27/00 G11B 27/031 H04N 5/91

(21)Application number: 11-352581

(71)Applicant: SHARP CORP

(22)Date of filing:

13.12.1999

(72)Inventor: IWANO HIROTOSHI

(54) DATA RECORDING METHOD AND DATA REPRODUCTION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To solve a problem involved in a conventional data recording method and data reproduction method that complicated processing procedures has been required because it is required to transfer two files for stream data being part of an original scene and its management information if the stream data corresponding to a user scene defined by a user is copied or transferred to a network due to the absence of concept of nondestructive edit caused by e.g. one user scene consisting of one independent file despite of the necessity of reproduction management information for each user scene or due to the reproduction management information intensively recorded on a disk as a file separately from a file of stream data even when the nondestructive edit is preconditioned.

SOLUTION: Information relating to a user scene is recorded in a header position of each data unit in stream data so as to manage reproduction information together

TO V. S. TO DOUGH BAN 19. - 1909

THE PROPERTY OF THE PROPERTY

with the stream data and even a data transfer destination can control a reproduction start and end from an optional frame position.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-169246 (P2001-169246A)

(43)公開日 平成13年6月22日(2001.6.22)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H04N 5/	/92	G 1 1 B 20/12	5 C 0 5 3
G11B 20/	′12		103 5D044
	103	27/00	A 5D110
27/	′00	H 0 4 N 5/92	Н
27/	'031	5/91	Z
	審査請求	未請求 請求項の数9 OL	(全 17 頁) 最終頁に続く
(21)出願番号	特願平11-352581	(71)出額人 000005049	
		シャープ株式	会社
(22)出顧日	平成11年12月13日(1999.12.13)	大阪府大阪市阿倍野区長池町22番22号 (72)発明者 岩野 裕利	
		大阪府大阪市	阿倍野区長池町22番22号 シ
		ャープ株式会	社内
		(74)代理人 100103296	
		弁理士 小池	隆彌
		Fターム(参考) 50053 FA	14 FA23 FA27 GB37 HA29
		JA	03 LA01 LA11 LA14
		5D044 AB	05 AB07 BC06 CC04 DE03
		DE	17 DE48 DE52 HL14
		5D110 AA	17 CA05 CA06 CA07 CD01
		DA	11 DB02 DE01

(54) 【発明の名称】 データ記録方法及びデータ再生方法

(57)【要約】

【課題】 ユーザシーン毎に再生管理情報が必要になるが、従来の方法では、例えば1つのユーザシーンが1つの独立したファイルで構成され非破壊編集の概念がなかったり、非破壊編集を前提とした場合であっても必要となる再生管理情報が集中的にストリームデータとは別のファイルとしてディスクに記録されているため、仮にユーザによって定義されたユーザシーンに対応するストリームデータをコピーやネットワーク転送する場合は、オリジナルシーンの一部であるストリームデータとその管理情報の2つのファイルを転送する必要があり、処理手順が煩雑になってしまうという問題点がある。

【解決手段】 ストリームデータ中の各データユニットのヘッダ位置にユーザシーンに関する情報を記録することにより、ストリームデータとともに、再生情報を管理することができ、データ転送先においても、任意のフレーム位置からの再生開始、終了を制御することを可能とする。

【特許請求の範囲】

【請求項1】 記録媒体上に、1つあるいは複数のGOP データ及び対応する音声データ、及び補助データで構成 されるユニットの集合であるファイルとして映像データ を記録し、該ファイル単位で映像データの読出し及び書 き込みを行う記録再生装置におけるデータ記録方法であ って

当該ファイルの先頭のユニットの補助データに、当該フ ァイルの再生情報を記録することを特徴とするデータ記

【請求項2】 記録媒体上に、1つあるいは複数のCOP データ及び対応する音声データ、及び補助データで構成 されるユニットの集合であるファイルとして映像データ を記録し、該ファイル単位で映像データの読出し及び書 き込みを行う記録再生装置におけるデータ記録方法であ って、

記録されたファイル中の全部あるいは一部のユニットを 仮想ファイルとして管理し、

当該仮想ファイルの先頭のユニットの補助データに、当 該ファイルの再生情報を記録することを特徴とするデー 20 タ記録方法。

【請求項3】 前記再生情報は、再生を開始するフレー ム及び再生を終了するフレームを示す情報を含むことを 特徴とする前記請求項1または2に記載のデータ記録方 法。

【請求項4】 前記再生情報は、当該ファイル或いは仮 想ファイルのファイルサイズを含むことを特徴とする前 記請求項1乃至3のいずれかに記載のデータ記録方法。 【請求項5】 前記ユニットを1COP単位とし、前記再 生情報をMPEGフォーマットにおけるCOP層のユーザデー タ領域に記録することを特徴とする前記請求項1乃至4 のいずれかに記載のデータ記録方法。

【請求項6】 1つあるいは複数のCOPデータ及び対応 する音声データ、及び補助データで構成されるユニット の集合であるファイルとして映像データが記録された記 録媒体において、該ファイル単位で映像データの読出し 及び書き込みを行う記録再生装置におけるデータ再生方 法であって、

読み出されたファイルの先頭のユニットの補助データに 記録されている再生情報を読出し、当該再生情報に基づ 40 いて、読み出されたファイルの再生制御を行うことを特 徴とするデータ再生方法。

【請求項7】 前記再生情報は、再生を開始するフレー ム及び再生を終了するフレームを示す情報を含むことを 特徴とする前記請求項6に記載のデータ再生方法。

【請求項8】 前記再生情報は、管理領域に記録される 当該ファイルのファイルサイズを含み、

再生するファイルのファイルサイズと、一致する再生情 報を選択し、選択された再生情報に基づいて、再生制御 記載のデータ再生方法。

【請求項9】 前記ユニットは1 COP単位であり、前記 再生位置管理情報は、MPEGフォーマットにおけるGOP層 のユーザデータ領域に記録されていることを特徴とする 前記請求項6乃至8のいずれかに記載のデータ記録方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、動画像ファイルを 10 記録再生する方法に関するものであり、特に非破壊編集 を行う場合における再生管理情報の記録手法に関する。 [0002]

【従来の技術】近年のマルチメディアの普及に伴い、映 像、音楽、静止画などの様々なマルチメディアデータ を、記録媒体へ記録する需要が髙まってきている。記録 媒体の中でも、従来はビデオテープやオーディオテープ などのテープメディアが主流であったが、近年はハード ディスク、光磁気ディスクなどのディスクメディアに記 録することが多くなってきている。ディスクメディアを 利用したものとして、音楽用の場合はMD、映像用の場合 はDVD Videoなどが一般的に知られており、ランダムア クセス性を特徴として普及している。

【0003】ととで、MPEGでエンコードした映像データ と音声データを多重したストリームデータをディスクに 記録する場合について説明する。例えば、ディスクに記 録したストリームデータを記録開始から停止あるいは一 時停止と言った管理単位でファイルとして管理する事に する。ディスクのランダムアクセス性を利用すると、1 つのファイルに対応するストリームデータであってもデ ィスク上で連続的に記録されている必要はない。つまり 1つのファイルで管理する一連のデータがディスク上で 分断して記録されていても、ディスクからそれらの分断 を順番に読み出して行くととによって、各分断点におい て次にデータを読み出すディスク上の位置までディスク 装置のヘッドを移動させるシークやトラックジャンプが 発生するが、テープメディアと比較して無視できるデー タ読み出し中断時間なので、あたかも連続的に対応する データをディスクから読み出しているのと同様の効果が 得られる。

【0004】以下、本実施例においてユーザによって記 録された記録開始から終了あるいは一時停止の一連のス トリームデータをオリジナルシーンと呼び、ユーザが編 集操作によってオリジナルシーンの任意の箇所を選択し たストリームデータをユーザシーンと呼ぶ事とする。ま た、全てのオリジナルシーンを組み合わせた管理単位を オリジナルプログラムと呼び、任意の数ののユーザシー ンを任意の順番で組み合わせた管理単位をユーザプログ ラムと呼ぶ事とする。

【0005】ディスクのランダムアクセス性は、編集に を行うことを特徴とする前記請求項6または請求項7に 50 おいても効果を発揮する。ディスクメディアに記録され たストリームデータを編集する場合について説明する。 ビデオカメラなどを考えた場合、撮影したオリジナルシ ーンのストリームデータは必ずしも全て見たいものであ るとは限らない。例えば、オリジナルシーンの最初に不 要な部分が含まれている事も考えられる。編集操作を行 なうことによって、必要な任意の箇所をオリジナルシー ンから選択してユーザシーンとして定義することが可能 である。ランダムアクセス性を利用すると、素材データ であるオリジナルシーンのストリームデータをコピーし たり手を加えることなくディスク上のストリームデータ 10 ームの情報を元に符号化するフレーム間順方向予測符号 を共有する形で非破壊編集を行ない、ユーザシーンに対 応するストリームデータのディスク上の位置情報を元に 再生が可能となる。とのように、オリジナルシーンに対 応するディスク上のストリームデータを参照する形で定 義されるユーザシーンを、仮想ファイルとして管理する ものとする。

【0006】図24亿示すように3つのオリジナルシーン に対応するストリームデータがディスク上に記録されて おり、それぞれのオリジナルシーンにおいて任意の箇所 て説明する。この例では、ディスク上のオリジナルシー ンのストリームデータは論理ファイルシステムによっ て、ファイル名OSO001.MPG、OSO002.MPG、OSO003.MPGと ディスク上の記録位置が関連付けられ管理されている。 【〇〇〇7】一方、ユーザシーンは論理ファイルシステ ムによって仮想ファイルとしてUS0001.MPG、US0002.MP G、US0003.MPGという名前で管理されている。仮想ファ イルの論理ファイルシステムの管理情報は参照している オリジナルシーンのファイルを特定するための情報とス と長さの集合である。仮想ファイルのポインタ情報によ ってオリジナルシーンの任意の箇所を抜き出し、仮想的 なファイルとして扱うことが可能となる。

【0008】ファイルや仮想ファイルの管理情報は論理 ファイルシステム階層のものであるため、デバイスドラ イバを介してアクセスすることによって、ディスク上に オリジナルシーンのデータが記録されているだけにも関 わらず、ユーザシステムから見ると仮想ファイルで管理 されるユーザシーンに対応するデータが仮想的に別途デ ィスクに記録されているものとして扱われる。つまり、 仮想ファイルUS00001.MPCをディスクから読み出す命令 をデバイスドライバに渡すことによって、ユーザシーン を構成するオリジナルシーン中の選択箇所のデータが自 動的に読み出されることになる。

【0009】 このようにオリジナルシーンをファイル で、ユーザシーンを仮想ファイルで管理することによっ て、例えば編集したユーザシーンやユーザプログラムを 他の人にあげる用途などで、IEEE1394などのネットワー クで接続されたコンピュータなどに転送の基本コマンド であるファイルのGetやPutのみで転送することが可能と 50 イルの一部を仮想ファイルとするのに比べ、ディスク領

なる。これは、転送を行ないたいオリジナルシーンを特 定するファイル名やユーザシーンを特定するための仮想 ファイル名を指定して転送を行なうことによって達成さ れるものである。

【0010】しかしながら、ファイルや仮想ファイルの 枠組みでMPEGストリームを管理する場合に問題になると とがある。MPEC技術では、データ量を圧縮するにあたっ て、その映像フレームのデータだけで独立して符号化す るフレーム内符号化画像(Iピクチャ)、前方向のフレ 化画像(Pピクチャ)、前方向と後方向のフレームを元 に符号化する双方向予測符号化画像(Bピクチャ)とい う3種類の画像圧縮手法を使って、効率的にデータ量を 削減している。

【0011】つまり、PピクチャやBピクチャを再生した い場合は、レファレンスとなったIピクチャやPピクチャ のデータがないと、デコードできないことを意味する。 そこで、このような問題を解決するために、MPEGにおい ては、何枚かのフレームを集めたCOP(Group of Pictu を選択し3つのユーザシーンが定義されている例につい 20 res)という構造が用意されている。このCOP構造は、CO Pの中には少なくとも1枚のIピクチャがなければならな いというものである。従って、GOP構造単位でアクセス を行なえば、そのGOPの中に含まれている各Pピクチャ及 びBピクチャのレファレンスとなるIピクチャが含まれて いるので、目的のフレームをデコードすることが保証さ れる。

【0012】このように、MPEGストリームデータを対象 にランダムアクセスを行なう場合は、GOP構造に相当す る単位で行なう必要がある。つまり、ファイルや仮想フ トリームデータのディスク上での選択箇所を示す開始点 30 ァイルで管理するストリームデータの最小管理単位はGO Pに相当する管理単位であり、ファイルや仮想ファイル を構成するストリームデータはGOP構造に相当するスト リームデータの管理単位を整数個集めた構造となること になる。

【0013】仮に1GOPが15フレームの映像データで構成 されているとすると、ファイルや仮想ファイルによって 管理されるストリームデータは15フレーム単位のストリ ームデータということになり、ファイルや仮想ファイル を指定して再生を行うと、このGOP単位の再生になる。 【0014】しかしながら、一般的に、ユーザが再生し たいユーザシーンがGOPの先頭から開始されることはま れであり、不要なフレームも再生されてしまうという問 題がある。一般的に図25に示すようにユーザシーン情報 をストリームデータ自身の先頭にヘッダとして記録する 方法がある。この場合は、ユーザによる編集結果である ユーザシーンは仮想ファイルでは管理せず、ユーザシー ン毎に独立した実ファイルで管理する事になる。つま り、編集結果であるユーザシーン毎にディスク上に独立。 したストリームデータが記録されることになり、実ファ

域を多く消費することになる。これは、本発明が前提と している非破壊編集ではない。

【0015】また、図26亿示すように非破壊編集を前提 として、ディスクに記録されたストリームデータを1つ の実ファイルで管理し、そのストリームデータ内の詳細 は別の実ファイルとしてディスクに記録される管理情報 で管理する方法がある。図の例では、再生情報が格納さ れている実ファイルと、ストリームデータが格納されて いる実ファイルの2つのファイルと、論理ファイルシス テムの管理情報として、ファイル名とディスク上のデー 10 タの記録位置を関連付けるファイル管理情報がディスク 上に記録されている。ととでの再生情報とは、各ユーザ シーンに対応するストリームデータがファイルで管理さ れているデータのどの箇所のものであるかを特定するた めの情報と、前述したようにディスクからの読み出しが COPIC相当する単位になるため、再生を開始および停止 するフレームを特定するための情報である。

[0016]

【発明が解決しようとする課題】オリジナルシーンの任 意の箇所を参照する形で行われる非破壊編集によって定 20 義されるユーザシーンについて、対応するディスク上の ストリームデータを他の機器へコピーしたりネットワー ク転送などを行う事を考えると、従来技術で述べた方法 などによって実現できた。

【0017】しかしMPEG技術によって記録されたディス ク上のストリームデータに関して任意の箇所を選択し抜 き出すユーザシーンを他の機器などにコピーや転送する 場合、対応するストリームデータが前述したようにCOP に相当する管理単位毎に行われる必要がある。よって転 送先において、フレーム単位の再生範囲を示す管理情報 30 がなければ、実際にコピーや転送されたCOP単位での再 生しかできなくなる。また、一般的に転送先において単 純な映像再生を行うだけであれば、単純にストリームデ ータだけあれば十分であるが、それらに付随するタイト ルやデータに関する属性情報なども一緒に転送する事に よって、単純な再生だけではなく様々な処理を行う事が 可能となる。

【0018】このように、ユーザシーン毎に再生管理情 報が必要になるが、従来の方法では、例えば1つのユー ザシーンが1つの独立したファイルで構成され非破壊編 集の概念がなかったり(図25)、非破壊編集を前提と した場合であっても必要となる再生管理情報が集中的に ストリームデータとは別のファイルとしてディスクに記 録されている(図26)。よって、仮にユーザによって 定義されたユーザシーンに対応するストリームデータを コピーやネットワーク転送する場合は、オリジナルシー ンの一部であるストリームデータとその管理情報の2つ のファイルを転送する必要が出てくる。転送先において ストリームデータと管理情報が2つのファイルに別れて いるのは、例えば転送先がPCでありユーザによって誤っ 50 読み出されたファイルの先頭のユニット(VU/PRU)の補助

て管理情報のファイルが消されてしまうと再生情報が消 失してしまう事も考えられ問題がある。

【0019】そこで、コピーやネットワーク転送を行う 場合には極力関連するデータを1つのファイルとして行 うのが望ましいが、これを行うためにはコピーや転送を 行う時に、(全てのユーザシーンに関する再生情報が) 1つのファイルとして集中管理されている管理情報から 目的のユーザシーンに関する再生情報を抜き出し、コピ ーや転送しようとするストリームデータのヘッダ情報と して付加する処理を行う必要がある。よって、ユーザシ ーンなどをコピーやネットワーク転送する際には、前処 理を行う必要が生じ処理手順が煩雑になってしまうとい う問題点がある。

【0020】そこで、本願発明においては、ストリーム データ中の各データユニットのヘッダ位置にユーザシー ンに関する情報を記録することにより、ストリームデー タとともに、再生情報を管理することができ、データ転 送先においても、任意のフレーム位置からの再生開始、 終了を制御することを可能としたり、単純な再生だけで はなく様々な処理を行う事が可能とするものである。

[0021]

【課題を解決するための手段】本願の第1の発明によれ ば、記録媒体上に、1つあるいは複数のGOPデータ及び 対応する音声データ、及び補助データ(Unit Header)で 構成されるユニット(VU/PRU)の集合であるファイル(EU S)として映像データを記録し、該ファイル単位で映像デ ータの読出し及び書き込みを行う記録再生装置における データ記録方法であって、当該ファイルの先頭のユニッ ト(VU/PRU)の補助データ(Unit Header)に、当該ファイ ルの(再生開始位置及び終了位置を示す)再生情報を記 録することにより、上記課題を解決する。

【0022】また、本願の第2の発明によれば、記録媒 体上に、1つあるいは複数のGOPデータ及び対応する音 声データ、及び補助データ(Unit Header)で構成される ユニット(VU/PRU)の集合であるファイル(EUS)として映 像データを記録し、該ファイル単位で映像データの読出 し及び書き込みを行う記録再生装置におけるデータ記録 方法であって、記録されたファイル中の全部あるいは一 部のユニットを仮想ファイルとして(例えばVirtual Fi le Descriptorなどで)管理し、当該仮想ファイルの先 頭のユニットの補助データ(Unit Header)に、当該ファ イルの(再生開始位置及び終了位置を示す)再生情報を 記録することにより上記課題を解決する。

【0023】本願の第3の発明によれば、1つあるいは 複数のCOPデータ及び対応する音声データ、及び補助デ ータで構成されるユニット(VU/PRU)の集合であるファイ ル(EUS)として映像データが記録された記録媒体におい て、該ファイル単位で映像データの読出し及び書き込み を行う記録再生装置におけるデータ再生方法であって、

データ(Unit Header)に記録されている(再生開始位置 及び終了位置を示す)再生情報を読出し、当該再生情報 に基づいて、読み出されたファイルの再生制御を行うと とにより上記課題を解決する。

7

[0024]

【発明の実施の形態】以下、本発明のファイル管理方法 に関する実施形態について、図面を用いて詳細に説明す る。本実施形態において、記録装置として携帯型のディ スクを用いたビデオカメラを、ディスクに記録する映像 データはMPECを想定する。また、ディスク装置に関して 10 は、据え置き型のビデオデッキや、記録媒体はハードデ ィスクや半導体メモリであっても本実施形態をそのまま 適用できるものである。

【0025】以下、本実施形態の説明において、ディス クに記録されたオリジナルシーンに対応するディスク上 のオリジナルデータを管理するファイルを実ファイルと 呼び、オリジナルデータを参照する形で構成されるユー ザシーンを管理するファイルを仮想ファイルと呼び、区 別して説明するものとする。

【0026】ユーザが撮影した記録開始から停止あるい 20 %で対応する。 は一時停止までのオリジナルシーンを論理ファイルシス テムにおいて実ファイルとして扱い、その素材データで あるオリジナルシーンのデータをコピーしたり手を加え ることなくディスク上のストリームデータを共有する形 (いわゆる非破壊編集)で、オリジナルシーンの任意の 箇所を選択することによって定義されるユーザシーンを 論理ファイルシステムの仮想ファイルで管理を行うもの とする。既にディスク上で実ファイルとして管理されて いるデータの任意の箇所を共有するため仮想ファイルと 呼ぶものである。

【0027】図1に、本発明のシステム構成図の一例を 示す。記録時と再生時の処理の流れに併せて説明を行な う。まず記録時の説明を行なう。ユーザから記録要求を 受けとった制御部1は、各処理部に対して制御信号を出 しシステム全体を制御する。カメラ部2からの映像と音 声入力はまずMPECエンコーダ3においてそれぞれエンコ ードされる。それぞれのエンコードされたデータはMPEG システム部4において映像と音声が多重され、例えばMP ECのPESストリームなどのストリーム構成に整形される ことになる。このストリームデータは一時的にバッファ 40 メモリ5に格納される。そして、ECC信号処理部6がバ ッファメモリ5に格納されたストリームデータに対して ECC (Error Correction Code) 符号を付加したりする信 号処理を施す。ECCなどの信号処理が行なわれたストリ ームデータはディスク9に記録するために、変復調/セ クタコーディック部7で、変調及びセクタ構造に併せて フォーマットを行い、サーボ制御部8がディスク9を制 御して記録されることになる。

【0028】続いて、再生時の処理を説明する。ユーザ

して制御信号を出しシステム全体を制御する。ディスク 9から目的のストリームデータがサーボ制御部8の制御 下で読み出されたら、変復調/セクタコーディック部7 で復調され、復調されたストリームデータはバッファメ モリ5に格納される。バッファメモリ5に格納されたス トリームデータはECC信号処理部6によって、記録時に 付加されたECC符号などにより誤り訂正が行なわれ、余 分な符号などが取り除かれる。実際に再生する段階に来 た時に、MPEGシステム部4において多重化されていた映 像と音声データを分離し、このデータをMPEGデコーダ部 3においてデコードし、図示しない実際のモニタ画面等 の出力装置に表示されることになる。

【0029】次に、本実施形態で扱うMPEGストリームの 構成の一例について説明を行なう。図2のストリーム構 成において、EUS (Editable Unit Sequence) は、複数 のEU (Editable Unit) によって構成され、REC Start (記録開始)からRec Stop(記録停止)或いはRec Pau se (記録一時停止) に対応する単位である。図24に示し た、オリジナルシーンに対応するストリームデータがEU

【0030】尚、EUは破壊編集における最小単位であ る。破壊編集とは、ディスク上での移動や削除を伴う編 集のことを意味し、破壊編集の最小単位とは、ディスク 上での移動や削除がEU単位でしか行うことできないこと を意味する。 EUは1つ以上のVU (Video Unit) 及び0あ るいは1つのPRU (Post Recording Unit) によって構成 され、1つのEUはディスク上では必ず連続的に記録され なけらばならない。尚、PRUが無いストリーム構成も定 義することが可能であり、その様子を図3に示す。この 30 例では1つのEUは1つのVUによって構成されている様子で ある。なおPost Recordingとはアフレコのことを意味す る。また、PRUはEU内のビデオデータと同期して再生す るPost Recordina用のデータ領域であるので、最低でも EUのビデオデータの提示時間に相当するだけのデータが 記録できる領域がなければならない。また、VUはUnit H eaderと 1 COP以上の映像データ及び対応する音声データ とをまとめた単位である。

【 0 0 3 1 】前記EUSは2048byteの固定長のブロックに 分割される。1つのブロックは1つの論理ブロックに格納 され、1つのブロックは原則として1個のパケットで構成 される。ことでのパケットは、ISO/IEC13818-1で規定さ れるPES Packetに準拠し、ディスクにはこのパケットを 記録していくことになる。

【0032】図4にPRUが存在するEUSとブロックとの関 係、図5にPRUが存在しないEUSとブロックとの関係を示 す。図中において、PRUはUH_BLK (Unit Header Bloc k), A-BLK (Audio Block), P-BLK (Padding Block) で構成される。UH-BLKは、PRUに関するヘッダ情報を格 納したバケット、A-BLKは、ISO/IEC13818-3で規定され からに再生要求を受けとった制御部 l は、各処理部に対 50 るオーディオパケット、P-BLKは、ISO/IEC13818-1で規

定されるバディングパケットがそれぞれ格納される。 【0033】また、VUはUH-BLK (Unit Header Block)、A-BLK (Audio Block)、V-BLK (Video Block) によって構成される。UH-BLKは、VUに関するヘッダ情報を格納したパケット、A BLKは、ISO/IEC13818-3で規定されるオーディオパケット、V-BLKは、ISO/IEC13818-2で規定されるビデオデータを格納したパケットがそれぞれ格納される。UH-BLKは、PRUあるいはVUに関するヘッダ情報を格納したパケットである。

【0034】Unit Headerはいわゆるユニットに関する補助データ領域である。とのUnit Headerパケットの構成を図6に示す。図6の表中の、BPはByte Positionを意味し、先頭から見た対応する管理項目の開始位置を示す情報で、Lengthはその管理項目の大きさをByteで表し、Field Nameは管理項目名、Contentsは、管理項目がどのような形式で記録されなければならないかということを示す。Contentsで用いられているデータ型のうち、Uint 8は符号無し8bit整数、Uint16は符号無し16bit整数、Uint32は符号無し32bit整数、Strindは文字列を格納するためのデータ型、Timestampは日時情報を格納する型である。

【0035】Unit Headerバケットは、パケットが始ま ることを示すpacket-start-code-prefix、ストリームの IDを示すstream-id、このPES Packetの長さを示すPES-p acket_length、このPacketが含まれるUnitの状態を示す Unit Property、このPacketの含まれるUnitの長さを示 すLength of Unit、このpacketが含まれるunitの先頭か らビデオデータの含まれる最初のblockまでの相対論理 ブロック数を示すStart RLBN of Video Data、このpack etに含まれるユニット中の全てのI PictureおよびP Pic 30 tureの数を示すNumber of IP Pictures、packetに含ま れるunit内のI PictureおよびP Pictureの含まれるディ スク上の最終アドレスを示すEnd RLBN of IPPictures、 このpacketの含まれるEU中に含まれるVUの数を示すNumb er of VU、このpacketの含まれるEUに含まれるそれぞれ のVUに対応するPRU中のデータの、PRUの先頭からの相対 論理ブロック数を示すStart RLBN of Data for VU、管 理するシーン数を表すNumber of Scenes、シーンに関す る管理情報を管理するSceneInformationで構成される。 なお、Scene Informationの詳細については後述する。 【0036】 ここで、管理できるScene Informationに 数の上限を設ける。例えば、20シーンを上限とした場 合、Unit Headerにはあらかじめ20シーン分のScene Inf ormationが記録できるだけの領域を確保するものとす る。これはScene Informationがストリームデータをデ ィスクに記録し、ユーザシーンを作成した際にScene In formation部分のみを書き換えるために、あらかじめそ のデータ領域を用意しておくためのものである。一番初 めにストリームデータをディスクに記録する際は、例え

録するための領域には全て16進数でFFを記録しておく。 【0037】なお、Unit Header blockは論理ブロック の単位でアライメントされ、Unit Header Blockの先頭 は必ず論理ブロックの先頭に一致するように構成されて いるので、容易にアクセスすることが可能である。

【0038】上記のMPEGストリームをディスクに記録す る際の実ファイルで管理されるオリジナルシーンと仮想 ファイルで管理されるユーザシーンは、既に述べたよう にMPECにおけるCOPに相当するストリームデータの集合 10 であるVU単位でなければならない。これは、MPEGストリ ームデータの途中から再生を開始するフレームが、Pビ クチャやBピクチャの場合、実際にそのフレームをデコ ードするためには、レファレンスとなったIピクチャやP ピクチャのデータが無いとデコードできないからであ る。また、前述した本実施例におけるPRUの存在するス トリーム構成においては、更にCOP構造に相当するスリ ームデータの集合である任意の個数のVUと PRU領域で構 成されるEU単位で、ファイルや仮想ファイルを扱わなけ ればならない。これは、EU内の全てのVUに対応してPRU 20 の領域が連続的に割り当てられており、EU内の各VUとPR Uを分けて管理することが困難であるためである。

【0039】PRUの存在しないストリーム構成の場合は、VU単位でファイルや仮想ファイルを作成することになる。よって、オリジナルシーンやユーザシーンを管理するファイルや仮想ファイルは、PRUが存在するストリームデータを対象にするかによって、ディスク上の整数個のEUあるいはVDを集めた管理単位となる。

【0040】図7にオリジナルシーンである実ファイルと、ユーザシーンである仮想ファイルとの関係を示す。この例では、オリジナルシーンは実ファイルOS0001.MPCであり、該ファイルの管理情報で管理されている。OS00 01.MPCは、ディスク上で3つの連続領域に分断されて記録されている。オリジナルシーンをディスクから読み出す際は、ユーザシステムがデバイスドライバにファイルOS0001.MPCの読み出しを指定することによって、論理ファイルシステムの管理情報で管理されるディスク上の分断1A、分断2A、分断3Aの順番にディスクからデータを読み出す。

てデータの読み出し命令を出すわけである。本発明では 実ファイルを管理するためのファイル管理情報をFile D escriptorと呼ぶ事とする。

11

【0042】次に、図7においてオリジナルシーンを編 集してEU#1からEU#7までを選択して定義されたユーザシ ーンについて説明する。ユーザシーンは仮想ファイルUS 0001.MPGとして管理されており、論理ファイルシステム の管理情報内の分断18、分断28、分断38の位置情報(開 始アドレスと長さ) によってディスク上のオリジナルデ ータを参照している。 CCで、ディスク上にはEU#Oから 10 EU#9に対応する映像データが1つしか記録されていない が、仮想ファイルで参照される任意箇所の位置情報によ って、部分的なデータの読み出しがユーザシステムにお いては仮想ファイルを指定することによって可能とな

【0043】ここで仮想ファイルで管理されるディスク 上のデータと論理ファイルシステムの管理情報の関係を 図10亿示す。図の例ではディスク上に記録されたデータ を1つの実ファイルで管理し、その実ファイルが管理す るデータの任意の箇所を参照する形でそのディスク上の 20 位置を仮想ファイルで管理するものである。ディスク上 には、実ファイルおよび仮想ファイルのファイル管理情 報が記録されている。とれらのファイル管理情報によっ て、ファイル名からディスク上に記録されたデータの記 録位置を特定する事が可能となる。実ファイルのファイ ル管理情報では、ディスク上に記録されたデータの位置 情報を管理し、仮想ファイルのファイル管理情報では、 実ファイルが管理するディスク上に記録されたデータの 任意の箇所の位置情報を管理するものである。実ファイ ルのファイル管理情報と仮想ファイルのファイル管理情 30 報はそれぞれを区別するための情報を保有している。本 発明では仮想ファイルを管理するためのファイル管理情 報をVirtual File Descriptorと呼ぶ事とする。

【0044】このように、仮想ファイルはディスク上に 記録されているオリジナルシーンのデータを参照するも のである。また、仮想ファイルは同一のオリジナルシー ンを複数のユーザシーンで参照することも可能である。 図8に2つのユーザシーンを管理する仮想ファイルの様子 を示す。この例では、EU#0からEU#9までがオリジナルシ ーンであり、EU#1からEU#7までがユーザシーン1(US000 40 1.MPG)、EU#6からEU#9までがユーザシーン2(US0002.M PG)という構成である。つまり、EU#6、EU#7が2つのユ ーザシーンで参照されていることになる。

【0045】PRU領域の定義されないストリームデータ の場合についてのオリジナルシーンである実ファイル と、ユーザシーンである仮想ファイルとの関係を図11、 12に示す。上記図7、8との違いは、EUがVUとなるだけで あるので、説明は省略する。

【0046】とのような形態で管理されるユーザシーン を、IEEE1394などを用いてネットワーク経由でPCやその 50 Headerに記録することで、ストリームデータのみで、

他のAV機器に転送することを考える。オリジナルシーン やユーザシーンのコピーやネットワーク転送を行なうに は、それぞれ対応するファイルや仮想ファイルを指定し てファイルコピーを行なったり、ファイル転送を行なう ことになる。例えば図24における、仮想ファイルによっ て管理されるユーザシーンUS0001.MPGをPCに転送を行な いたい場合、PCにおいて転送用のアプリケーションを用 いて、US0001.MPGを取得する命令を発行する。

【0047】図13にシステム構成図の一例を示す。この 図では、ビデオカメラとPCがIEEE1394で接続されてい る。それぞれのシステムにおいて、ディスク媒体を管理 している論理ファイルシステムを元にデバイスドライバ が用意されている。つまり、それぞれのユーザシステム がそれぞれのデバイスドライバを介して、ファイル単位 のディスクへのアクセスができることになる。また、そ れぞれのシステムにはIEEE1394を使用するためのドライ バが用意されている。

【0048】例えば、PC側のユーザシステムB(7)がIEEE 1394ドライバB(8)を介して、ビデオカメラ側のIEEE1394 ドライバA(3)に対してユーザシーンを管理する仮想ファ イル名を指定してストリームデータの取得要求を出す と、IEEE1394ドライバA(3)はデバイスドライバA(2)に対 して指定された仮想ファイルの読み出し命令を出す。と れにより、ディスク(6)上のストリームデータがディス クから読み出され、IEEE1394ドライバA(3)を経由してPC 側に転送される。転送されたデータはPC側のIEEE1394ド ライバB(8)を経由しユーザシステムB(7)の指定するファ イル名でデバイスドライバB(9)を介してPC側のディスク (12)上に記録される事になる。

【0049】転送したストリームデータを再生する場合 は、PCにおいて再生するためのアプリケーションプログ ラムを用いて、転送したストリームデータを読み込む。 従来、ディスクから読み出したストリームデータを端か ら順番に最後まで再生を行なうと、前述したようにEUあ るいはVU単位での再生となる。しかし、実際にはユーザ による編集によって定義されたユーザシーンはEUやVUの 途中のフレームから再生を開始し、最後のEUやVUに関し ても途中のフレームで再生を終了するものである可能性 が髙い。

【0050】図14において、ユーザが指定したユーザシ ーンの再生範囲は、EU#0中のVU#3中の6番目の映像フレ ーム(フレーム番号5)からEU#20内のVU#121の中の12番 目のフレーム(フレーム番号11)までの例を示してい る。つまり、転送先のディスクでのストリームデータは EU#0~EU#20までであり、このストリームデータ全体を 再生すると、ユーザによって指定されたユーザシーンの 再生範囲と異なっている。

【0051】そこで、本実施形態においては、ユーザシ ーンを正確に再生するための情報をストリーム上のUnit

14

フレーム単位での再生範囲の指定を行うことを可能とす る。

【0052】Unit Headerパケットにユーザシーンを正 確に再生するための情報として、Number of ScenesとSc ene Informationがある。Scene InformationはNumber o f Scenesの数だけ記録されることになる。Scene Inform ationの詳細を以下に示す。

【0053】Scene Nameは、シーンの名前を格納し、Sc ene Creation Dateはシーンの作成日時、Scene Data Si イズを格納する。このデータサイズはディスクから読み 出した後の実データサイズを表すものである。

【0054】Scene Start VU Numberは、ファイルとし て管理されているストリームデータの中で再生を開始し たい映像フレームが含まれるVUの番号をストリームデー タの先頭のWを基準とした値で管理する。PRUの存在し ないストリームの場合は、必ずこの値はOとなり、PRUが 存在するストリームの場合は、EUの中の再生を開始した いフレームの含まれるWの番号を管理することになる。 VUの数を示すための情報であり、Scene Start VU Numbe rで管理されるVUから再生を停止するフレームの含まれ るVUまでのVI数を管理する。

【0056】Scene Start Frame Numberは、再生を開始 するフレームの番号を管理する。フレーム番号はScene Start VU Numberで管理される再生開始VU番号内のフレ ーム番号となる。つまり、再生を開始する映像フレーム は、ディスクから読み出したストリームデータ中のScen e Start VU Number目のVU内のScene Start Frame Numbe からとなる。

【0057】Scene End Frame Numberは、再生を停止す るフレームの番号を管理する。フレーム番号はScene St art VU Numberで管理される再生開始VU番号にユーザシ ーン中のVI数であるScene Number of VUを足した値から 1を引いたものに相当する再生終了vu内のフレーム番号 になる。

【0058】以上説明したようなUnit Headerを使うと とによって、ユーザシーンの正確な再生が可能となり、 ユーザシーンに関する管理情報を含める事が可能とな る。実際には、PRUが存在するストリームであっても存 在しないストリームであっても、必ずストリームデータ の先頭はUnit Headerから始まることになる。よって、 これから再生しようとするストリームデータの一番先頭 のUnit Headerを読み出すことによってユーザシーンの 再生情報を把握することが可能となる。つまり仮想ファ イルによって管理されるストリームデータにおいて、一 番先頭にVUがくる場合(PRUが定義されていない場合) はVUに対応するUnit HeaderにScene Informationを記録 し、PRUが先頭に配置される場合はPRUに対応するUnit H eaderにScene Informationを記録することになる。

【0059】図14の例では、PRUが定義されているスト リームデータが仮想ファイルUS0001.MPCによって管理さ れており、一番先頭にPRUが配置されているのでPRUの先 頭に存在するUnit Header中のScene Informationにシー ンの再生情報を格納することになる。この例では、再生 を開始するフレームが含まれるVU番号を管理するScene Start VU Numberには3を、シーン中のVL数を管理するSc ene Number of VUには118を、再生開始フレーム番号を 管理するScene Start Frame Numには5を、再生を停止す zeは、定義されたシーンを管理するファイルのデータサ 10 るフレーム番号には11が格納される事になる。また、図 15にPRUが存在しないストリームデータが仮想ファイルU S0001.MPGによって管理されている様子を示す。この例 ではPRUが定義されていない関係で、1EUが1VUによって 構成されていおり、仮想ファイルで管理されるストリー ムデータの先頭はVU#0の先頭に存在するUnit Headerと なり、このUnit Headerにこのユーザシーンの管理情報 を格納する事になる。

【0060】このように構成した場合、複数のユーザシ ーンが同一のEUから再生を開始する場合がある。このよ 【0055】Scene Number of VUは、ユーザシーン中の 20 うな場合、図16に示すように、例えばユーザシーンUS00 01.MPGとUS0002.MPGが同一のEUから再生を開始する場合 に、Unit Headerに格納されたどのScene Informationを 使用したら良いのかが不明になる。そこで、Scene Info rmation中のScene名をユーザに提示して再生情報を選択 すると言った事が可能である。例えば、Scene名として 仮想ファイルのファイル名を使うことも考えられるが、 この場合、仮想ファイルのファイル名が変更になると対 応関係の整合性が取れなくなってしまう。PRUが定義さ れないストリームの場合は、ユーザシーンはEU単位では 30 なくVU単位で構成され、図16なおけるEUを全てVUな置き 換えて考えれば良いので説明を省く。

> 【0061】自動的にSceneに対応する再生情報を選択 させたい場合は、転送を行なったファイルシステムで管 理されるファイルのデータサイズとScene Information 内のScene Data Sizeの値を比較することによって、目 的の再生情報を選択することが可能となる。図16の例で は、ユーザシーンUS0001.MPCはEU#0~EU#nで構成されて おり、ユーザシーンを管理する仮想ファイルのファイル サイズが256000KBである。また、ユーザシーンUS0002.M 40 PGはEU#0~EU#n-3で構成されており、ユーザシーンを管 理するファイルサイズは20480KBである。Unit Headerに 記録されるSceneInformationのScene Data Sizeにそれ ぞれ、256000KBと20480KBが記録されたフィールドがあ るかどうかを調べることによって、対応するScene Info mationを自動的に抽出することができる。

> 【0062】ここで、具体的な処理として、ビデオカメ ラで撮影を行ないオリジナルシーンをファイルとしてデ ィスクに記録した場合について説明する。オリジナルシ ーンをディスク上に記録し、前述の論理ファイルシステ 50 ムのFile Descriptorが作成されるまでの手順は従来と

同様であるので、省略する。ととでは、ファイルが記録 された後の本発明特有の処理について、図17のフローチ ャートを用いて説明する。

【0063】ステップS10においてオリジナルシーンの 作成要求があり、ストリームデータを管理するファイル の作成が終了したら、ステップS11において、ファイル によって管理されているストリームデータのディスク上 での位置情報を元に、対応するストリームデータの先頭 の論理ブロックを読み出す。論理ブロックとは、ファイ ルシステムで管理する最小読み書きの単位である。こと 10 をセットし、Scene Creation Time and Dateユーザシー で、読み出した論理ブロックは、オリジナルシーンの先 頭に配置されているUnit Headerが記録されているUnit Headerバケットとなる。このUnit Headerにオリジナル シーンの再生情報を記録することになる。

【0064】ステップS12において、Unit Header内のNu mber of Sceneに1をセットする。ステップS13におい て、Scene Information内のScene Nameにシーン名をセ ットし、Scene Creation Time and Dateオリジナルシー ンの作成日時をセットする。ステップ14において、Scen e Information内のScene Data Sizeにファイルシステム 20 で管理しているオリジナルシーンのファイルサイズ、つ まりFile Descriptorに記録されているファイルのデー タサイズをセットする。

【0065】ステップ15において、Scene Information 内のScene Start VU Numberに0を、Scene Number of VU にオリジナルシーン中のVI数の値を、Scene Start Fram e NumberにOを、Scene End Frame Numberにオリジナル シーン中の最後のVUの最後のフレーム番号をセットす る。フレーム番号はVU中の番号でありOから始まる番号 である。ステップS16において、ステップS12からS15に おいて更新した内容をディスク上にて更新し処理を終了 する。ここまでで、オリジナルシーンの先頭のUnitHead erにオリジナルシーンとしての再生情報が作成されたこ とになる。

【0066】次に、ユーザがオリジナルシーンを素材と してユーザシーンを定義した場合を説明する。ユーザシ ーンに対応する映像データは仮想ファイルの先頭のユニ ット中の任意のフレームから、仮想ファイルの最終のユ ニットの任意のフレームまでである。そこで、ユーザが 任意のシーンを指定した場合、その先頭のフレームを含 40 むユニットからその最後のフレームを含むユニットまで を仮想ファイルとして、まず定義する。この仮想ファイ ルの定義については、上記したものと同様であり、Virt ual File Descriptorが作成される。Virtual File Desc riptorが作成された後の処理について、以下に図18のフ ローチャートを元に説明する。

【0067】ステップ520において、ユーザシーンの作 成要求があり、対応するストリームデータを管理する仮 想ファイルの作成(File Descriptorの作成)が終了し

理されているストリームデータのディスク上での位置情 報を元に、対応するストリームデータの先頭の論理ブロ ックを読み出す。読み出した論理ブロックは、ユーザシ ーンの先頭に配置されているUnit Headerが記録されて いるUnit Headerパケットである。このUnit Headerにユ

ーザシーンの再生情報が記録されることになる。

【0068】ステップS22において、Unit Header内のNu mber of Sceneの値に1を足す。ステップS23において、 対応するScene Information内のScene Nameにシーン名 ンの作成日時をセットする。ステップS24において、Sce ne Information内のScene Data Sizeにファイルシステ ムで管理しているユーザシーンのファイルサイズ(Virt ual File Descriptor中のファイルサイズ)をセットす

【0069】ステップS25において、Scene Information 内のScene Start VU Numberにユーザシーンのストリー ムデータ中の再生を開始するフレームが含まれるVU番号 をセットする。VU番号は、ユーザシーンのストリームデ ータの先頭を基準として相対的な値である。ステップS2 めとおいて、Scene Information内のScene Number ofVU にユーザシーン中の再生するVI数の値をセットする。ス テップS27において、Scene Information内のScene Star t Frame Numberに、再生を開始するフレームの番号をセ ットする。フレーム番号は、ステップS25においてセッ トしたScene Start VU Numberで管理されるVU内のフレ ーム番号であり、VUの先頭を基準として相対的な値であ る。ステップS28において、Scene Information内のScen e End Frame Numberにユーザシーン中の表示する最後の 30 W内のフレーム番号をセットする。表示する最後のフレ ームが含まれるVU番号は、ステップS25においてセット した、Scene Start VU NumberにステップS26においてセ ットしたScene Number of VUの値-1を足し合わせた値 となる。ステップS29において、ステップS22からS28に おいて更新したUnit Headerの内容をディスク上にて更 新し処理を終了する。

【0070】図14、15は上記した図18のフローチャート に基づいて、ユーザシーンに関する再生情報が記録され た様子を示している。

【0071】仮想ファイルで管理するユーザシーンに対 応するストリームデータをネットワークなどを介してPC 等に転送した際に、転送先のPCでのユーザシーンの正確 な再生方法について図19に示すフローチャートを元に説 明する。もちろん転送しない場合の再生についても同様 である。

【0072】ステップS30において、ユーザシーンの再 生要求が発生すると、ステップS31において、ユーザシ ーンを管理するファイルのディスク上の位置情報からス トリームデータの先頭の論理ブロックを読み出す。読み たら、ステップS21において、仮想ファイルによって管 50 出した論理ブロックは、Unit Headerに相当するUnit He

rmation内のScene Data Sizeが一致しない場合は、ステ ップS36に戻り次のScene Informationについて同様の処 理を繰り返す。ステップS36において全てのScene Infor mationのチェックが終った場合は、該当するシーンがな いため、イリーガルな状態ではあるが、一例としてS39 においてユーザに対してScene Informationを選択させ る事も可能である。あるいは、S39の段階でエラー処理 をして処理を終了しても良い。

18

aderパケットである。読み出したUnit HeaderからNumbe r of Scenesの値を把握する。ステップS32において、Un it Header内のNumber of Scenesが0の場合は、ステップS 33において、表示開始フレームをストリームデータ中の 最初の表示フレームに、表示終了フレームをストリーム データ中の最後の表示フレームにセットする。つまり、 ストリームデータ中の全ての映像フレームを表示すると とになる。Number of Scenesが値が0の場合というのは ユーザシーンを作成した際に、何らかの理由によって正 しくScene Informationが記録されなかったイリーガル な状況である。ステップS35でストリームデータからデ ータを読出して、デコードを行い再生する。ここでは全 てのフレームが再生されることになる。

【0077】続いて、第2の実施形態として第1の実施形 10 態で説明してきた再生情報を、ユーザ定義したヘッダ用 のパケットを使用せずMPEG規格準拠のヘッダ領域に格納 する場合について説明する。

【0073】ステップS32において、Unit Header内のNu mber of Scenesが1の場合は、ステップS34において表示 開始フレームを、Scene Information内のScene Start V U Numberで示されるVu内のScene Start Frame Numberで 示されるフレームとし、表示終了フレームを、Scene St art Flame NumberとScene Number of VUを足し合わせた 値-1のVU内のScene End Frame Numberで示されるフレ 20 **〜ムに設定する。**

【0078】MPEC1およびMPEC2の符号化されたストリー ムデータは、図20のようにシーケンス層、COP層、ピク チャ層、スライス層、マクロブロック層、ブロック層と 言った階層構造になっている。それぞれの階層において ヘッダ情報が付加されており、ここではシーケンス層お よびGOP層に注目する。

【0074】ステップS35において、ステップS34におい て設定された再生情報を元にディスクから読み出したス トリームデータに対して表示の制御を行ない処理を終了 する。具体的には、ディスクから読み出されるストリー ムデータは、EU単位で読み出され、VU単位にデコードさ れ、再生制御情報に基づいて開始フレームから再生が行 われる。

【0079】ここで、MPEG2規格におけるビデオストリ ームのシーケンスの定義を図21に示す。この図のように シーケンス層において、シーケンスへッダの情報(sequ ence-header() 20)、シーケンスエクステンション(se quence-extension() 21) の後に、ユーザデータ (exten sion-user-data(0) 22) を記録することが可能である。 図22にextension-user-data()の処理内容を示す。ここ で、user-data-start-code 30が記録されているかを判 定する。user-data-start-codeは16進数で000001B2であ る。図23に示すユーザデータの内容は、8bit*n個単位の 情報を格納することができ16進数で000001、つまり次の 情報のstart code 40が現れるまで記録できる。またCOP 層において、COPヘッダの情報(group-of-pictures-hea der() 23) の後にシーケンス層と同様にユーザデータ (extension-user-data(1) 24) を記録することが可能 である。ユーザデータの形態はシーケンス層の場合と同 様である。

【0075】ステップS32において、Unit Header内のNu mber of Scenesが2以上の場合は、ステップS36において 30 Unit Header内のすべてのScene Informationをチェック したかどうかを判断する。ステップS36において全てのS cene Informationのチェックが終っていなければ、ステ ップS37においてファイルシシステムで管理されている ユーザシーンのファイルサイズとステップS31において 読み出したScene Information内のScene Data Sizeを比 較する。ステップS38においてユーザシーンを管理して いるファイルのファイルサイズと、Scene Information 内のScene DataSizeが一致する場合は、ステップS34に おいて表示開始フレームを、Scene Information内のSce 40 ne Start VU Numberで示されるVU内のScene Start Fram e Numberで示されるフレームとし、終了フレームをScen e Information内Scene Start VUNumberにScene Number of VUを足し合わせた値-1のVU内のScene End Frame N umberと設定する。ステップS35において、ステップS34 において設定された再生情報を元にディスクから読み出 したストリームデータに対して表示の制御を行ない処理 を終了する。

【0080】このようにシーケンス層およびCOP層にユ ーザ定義の情報を記録することが可能となっている。こ こで、第1実施形態において説明してきた再生情報をUni t Headerではなく、このユーザデータ領域に格納するこ とを考える。

【0076】ステップS38においてユーザシーンを管理

【0081】ここで、この再生情報がGOP単位で必要に なることを考えた場合に、ストリーム構成に関して若干 の制限を付ける必要がある。まず、MPEC2規格においてG OP層のヘッダ情報を持たないストリームを定義すること が可能であるが、本実施形態においては、かならず1つ のCOPに対して1つのCOP層のヘッダ情報を付加するよう にする制限を付ける。

【0082】本実施形態においては、COP層におけるユ ーザデータに再生情報を格納する場合について説明す している仮想ファイルのファイルサイズと、Scene Info 50 る。前述のCOP層における extension-user-data(1)で再 生情報を格納する。再生情報自体は第1実施形態で述べ

た構成と同様なので説明は省略する。具体的にはUnit H eader中のNumber of ScenesとScene Informationの値を

19

COP層のユーザデータに記録することになる。

【0083】GOP層のユーザデータにおいて記録できるS cene Informationの数の上限値を定める。例えば上限を 20個と定め、最初にストリームを記録する際に、COP層

におけるユーザデータを記録する領域としてScene Info mationを20個記録できる領域をあらかじめ確保してお

えば16進数でFFをこの領域に記録することによって、後

からユーザの編集により再生情報を追加する際に記録す

るデータ領域が無いといった事を防ぐ事が可能となる。

【0084】とのように定義されたビデオのストリーム データとオーディオストリームデータを多重し、COP樽

造に相当する管理単位毎にランダムアクセスを行なうも

のとする。ユーザシーンを管理する仮想ファイルは、ユ

ーザシーンの再生開始および終了フレームを含むGOP構

造に相当する管理単位毎の位置情報を管理すれば良い。 【0085】 ととで、とのストリームデータをディスク 20

に記録する場合、上記第1の実施形態のように、各GOP 層のヘッダ情報がディスクの論理ブロックにアライメン

トされるように制御されている場合であれば、ユーザシ ーンを管理している仮想ファイルの先頭の論理ブロック

を読み出せば、COPヘッダーを読み出し、更新すること が容易にできる。しかし、ストリーム中の各COPのヘッ

ダ情報がディスクの論理ブロックにアライメントされて いない場合は、ユーザシーンを管理している仮想ファイ

ルの先頭の論理ブロックを読み出しても、必ずしも注目

しているCOPヘッダの情報が読み出した論理ブロックの 先頭に入っているとは限らない。つまり、注目している

1つ前のCOPの情報が読み出したデータの先頭に入ってい

ることも考えられる。

【0086】更に、実際にMPEGストリームデータをディ スクに記録する際はMPEGのシステム規格であるPESスト リームやPSストリームなどと言ったパケット形式に整形 してから行なうのが一般的である。PESやPSのパケット の形式で記録されるという事は、基本的にビデオストリ ームとオーディオストリームを多重したストリームデー タを任意の大きさに分割しパケット化し、それぞれのパ 40 ケットに対してヘッダ情報を付けるものである。

【0087】とのような場合は、読み出したストリーム データを先頭から順番に見ていき、余分なヘッダ情報を 読み飛ばして、GOP層のヘッダ情報であるextension-use r-data(1)が見つかるまでサーチすることになる。具体 的には、user-data-start-codeとして16進数で000001B2 が見つかるまでサーチをする。サーチ操作で特定した再 生情報を記録する領域を読み出したり、更新したりする ことになる。

ては、第1実施形態で説明した場合と基本部分では同一 なので説明を省略する。

【0089】第1および第2実施形態において、ユーザシ ーンを仮想ファイルで管理する前提で説明してきたが、 図26に示した従来方法のようにユーザシーンが参照する オリジナルシーンの任意箇所に対応するディスク上の位 置情報を1つの管理情報ファイルとして管理し、再生情 報であるScene Informationをその参照しているストリ ームデータの先頭のUnit Headerに入れるようにしても く。最初にストリームを記録する時に、ダミーデータ例 10 良い。このような方法によって仮想ファイル機能が無い ようなシステムにおいても、本発明を実施する事が可能 となる。この場合、ユーザシーンを他の機器などにコビ ーや転送したい場合、管理情報ファイルで管理されてい るユーザシーンのディスク上の位置情報を元に、ディス クからストリームデータを読み出す位置を特定し転送を 行う。転送先では、再生情報がストリームデータの先頭 のUnit Headerに格納されているストリームデータがフ ァイルとして管理される事になる。

[0090]

【発明の効果】本発明によれば、映像データ及び音声デ ータが記録されているユニットの補助データに再生開始 位置及び再生終了位置を示す情報を格納可能としている ために、オリジナルシーンの一部をユーザシーンとする 場合に、そのユーザシーンの先頭の補助データに再生情 報を格納することで、ユニット中の任意の位置からの再 生開始、再生終了制御を行うことが可能であり、かつ、 再生情報を例えば他のファイルなどで管理する必要がな 61.

【図面の簡単な説明】

【図1】本発明のデータ管理方法の実施形態が対象とす る装置の構成を示すブロック図である。

【図2】本発明のデータ管理方法の実施形態で扱うPRU が定義されたMPEGストリームの構成を示す図である。

【図3】本発明のファイル管理方法の実施形態で扱うPR Uの定義されていないMPEGストリームの構成を示す図で ある。

【図4】本発明のデータ管理方法の実施形態で扱うPRU の定義されたMPEGストリームとブロックの関係を示す図 である。

【図5】本発明のデータ管理方法の実施形態で扱うPRU の定義されていないMPEGストリームとブロックの関係を 示す図である。

【図6】本発明のデータ管理方法の実施形態で扱うUnit Headerの内容を示す図である。

【図7】本発明のデータ管理方法の実施形態において1 つの仮想ファイルがオリジナルシーンのデータを参照し ている様子を示す図である(PRUありの場合)。

【図8】本発明のデータ管理方法の実施形態において2 つの仮想ファイルがオリジナルシーンのデータを参照し 【0088】再生情報の書き込みなどの処理手順に関し 50 ている様子を示す図である(PRUありの場合)。

21

【図9】本発明のデータ管理方法の実施形態におけるデ ィスクに記録された実ファイルの論理ファイルシステム の管理情報と実ファイルで管理されるデータの関係を示 す図である。

【図10】本発明のデータ管理方法の実施形態における ディスクに記録された仮想ファイルの論理ファイルシス テムの管理情報と仮想ファイルで参照されるデータの関 係を示す図である。

【図11】本発明のデータ管理方法の実施形態において している様子を示す図である(PRUなしの場合)。

【図12】本発明のデータ管理方法の実施形態において 2つの仮想ファイルがオリジナルシーンのデータを参照 している様子を示す図である(PRUなしの場合)。

【図13】本発明のファイル管理方法の実施形態におけ るシステム構成を示す図である。

【図14】本発明のデータ管理方法の実施形態において 仮想ファイルが管理するストリームデータとユーザが実 際に指定した再生範囲の関係を示す図である(PRUあり の場合)。

【図15】本発明のデータ管理方法の実施形態において 仮想ファイルが管理するストリームデータとユーザが実 際に指定した再生範囲の関係を示す図である(PRUなし の場合)。

【図16】本発明のデータ管理方法の実施形態において 同一のEUから再生を開始する仮想ファイルの様子を示す 図である。

【図17】本発明のデータ管理方法の実施形態において オリジナルシーンを作成する際に行なう処理の流れを示 すフローチャートである。

【図18】本発明のデータ管理方法の実施形態において ユーザシーンを作成する際に行なう処理の流れを示すフ ローチャートである。

*【図19】本発明のデータ管理方法の実施形態において ユーザシーンを再生する際に行なう処理の流れを示すフ ローチャートである。

【図20】本発明のデータ管理方法の第2の実施形態に おいて扱うMPEGの階層構造を示す図である。

【図21】本発明のデータ管理方法の第2の実施形態に おいて扱うMPEGのビデオシーケンスの処理を示す図であ

【図22】本発明のデータ管理方法の第2の実施形態に 1つの仮想ファイルがオリジナルシーンのデータを参照 10 おいて扱うMPEGの拡張およびユーザデータの処理を示す 図である。

> 【図23】本発明のデータ管理方法の第2の実施形態に おいて扱うMPECのユーザデータの処理を示す図である。 【図24】従来技術における実ファイルと仮想ファイル の関係を示す図である。

> 【図25】従来技術におけるユーザシーン毎に再生情報 を持ちそれぞれ実ファイルとして管理されている様子を 示す図である。

【図26】従来技術におけるストリームデータを実ファ 20 イル出管理しそのストリームデータの任意の箇所を参照 するユーザシーンの再生情報を管理情報として実ファイ ルで記録する様子を示す図である。

【符号の説明】

- 1 制御部
- 2 カメラ部
- 3 MPEGエンコーダ
- 4 MPEGシステム部
- 5 バッファメモリ
- 6 ECC信号処理部
- 30 7 変復調/セクタコーディック部
 - 8 サーボ制御部
 - 9 ディスク

【図1】

【図19】

【図23】

next_start_code()

【図26】

【図24】

フロントページの続き

(51)Int.Cl.' H O 4 N 5/91 識別記号

FΙ

テーマコード(参考)

G 1 1 B 27/02

Α