Cadenas de juegos evolutivos

Jhosse Paul Márquez Ruíz, Martín Mora Sánchez y Víctor Hugo Vázquez Guevara

Benemérita Universidad Autónoma de Puebla

Escuela de Biología, Área de Biología Teórica y Evolución Facultad de Ciencias Físico Matemáticas, Departamento de Estadística y Probabilidad

Introducción

La aplicación de la teoría de juegos en la ecología nos permite entender la dinámica de interacción entre individuos con diferentes estrategias evolutivas. Bajo el supuesto de que el *fitness* está en función de la probabilidad de interacción con otros individuos en un juego de apuestas, las ganancias deben ser interpretadas como éxito reproductivo y supervivencia. De este modo nos disponemos a analizar la estabilidad y robustez de las estrategias evolutivas.

Juegos evolutivos

Las estrategias evolutivas son las formas en la que interactúan los N individuos que componen a una población, cada estrategia es considerada una subpoblación. Tenemos j estrategias y $n_1, n_2...n_j$ individuos en cada subpoblación, por lo tanto, $x_i = \frac{n_i}{N}$ es su frecuencia, $\sum n_i = N$ y $\sum x_i = 1$. Existe una matriz de ganancias $G = [g_{ij}]$ donde cada elemento g_{ij} es la ganancia de un individuo de la subpoblación i por interactuar con un individuo de la subpoblación j. El valor de fitness de cada una de las subpoblaciones interactuando es definido por

$$f_i = g_{i1}x_1 + g_{i2}x_2 \dots g_{ij}x_j = \sum_j g_{ij}x_j = g_i\vec{x}$$

La dinámica está dada por el sistema de ecuaciones diferenciales [1]

$$\dot{x}_i = x_i(f_i - \phi)$$

donde $\phi = \sum f_i x_i$ es un término introducido para asegurar que $\sum \dot{x} = 0$. Los puntos de equilibrio y su estabilidad están determinados por la matriz de ganancias.

Proceso de Moran: Deriva génica

El proceso de Moran describe la deriva génica. En cada instante t, un individuo muere y un individuo se reproduce aleatoriamente. Las probabilidades P(M,R), de elegir un individuo de la subpoblación M para morir y R para reproducirse son explícitas, no hay transiciones mayores a 1 y la población cambia sólo si $M \neq R$. La matriz de transición es tridiagonal con entradas

Reproducción

Población Inicial

Los estados 0 y N son estados absorbentes

$$p_{0,0} = 1$$
 y $p_{0,i} = 0$ $\forall i > 0$ $p_{N,N} = 1$ y $p_{N,i} = 0$

La probabilidad de arribo al estado N desde el estado i, $\rho_{i,N}$, se conoce como probabilidad de fijación de la subpoblación A y tenemos que

$$\rho_{0,N} = 0$$

$$\rho_{i,N} = p_{i,i-1}\rho_{i-1,N} + p_{i,i}\rho_{i,N} + p_{i,i+1}\rho_{i+1,N} \qquad \forall i = 1, 2, ...N - 1$$

$$\rho_{N,N} = 1$$

Cadenas de nacimiento y muerte: Cuencas de atracción

Cuando $P(A,B) \neq P(B,A)$ el muestreo es sesgado. Para tal fin definimos, $p_{i,i-1} = P(A,B) = \alpha_i$ y además, $p_{i,i+1} = P(B,A) = \beta_i$ y definimos $\frac{\alpha_i}{\beta_i} = \gamma_i$ [2]. Las probabilidades de fijación están dadas por

$$\rho_{i,N} = \frac{1 + \sum_{k=1}^{i-1} \prod_{j=1}^{k} \gamma_j}{1 + \sum_{k=1}^{N-1} \prod_{j=1}^{k} \gamma_j} = \frac{\sum_{k=0}^{i-1} \prod_{j=1}^{k} \gamma_j}{\sum_{k=0}^{N-1} \prod_{j=1}^{k} \gamma_j}$$

Además podemos observar la siguiente relación

$$\prod_{j=1}^{N-1} \gamma_j = rac{
ho_{N-1,0}}{
ho_{1,N}} = rac{
ho_{B}}{
ho_{A}}$$

- En un proceso de Moran, $\alpha_i = \beta_i$ y, por lo tanto, $\rho_{i,N} = \frac{i}{N}$
- Si $\rho_{i,N} > \frac{i}{N}$ se dice que la subpoblación A tiene ventaja adaptativa
- Si $\frac{\rho_B}{\rho_A}$ < 1 la subpoblación A es dominante de recompensas

Cadenas evolutivas

Considerando los juegos evolutivos podemos definir las probabilidades de P(M,R) como una función del valor de *fitness* [2, 3]. Los valores de *fitness* se asignan según las reglas de ganancias en un juego definidas por la matriz 2 x 2, $G = [g_{ij}]$. Así obtenemos que

$$F_a = \frac{g_{11}(i-1) + g_{12}(N-i)}{N-1} \qquad F_b = \frac{g_{21}i + g_{22}(N-i-1)}{N-1}$$

Además asignamos un valor $0 \le w \le 1$ de intensidad de muestreo o selección natural

$$f_a = 1 - w + wF_a \qquad \qquad f_b = 1 - w + wF_b$$

Las probabilidades de transición forman la matriz tridiagonal con entradas

$$\alpha_i = \frac{i}{N} \frac{(N-i)f_b}{if_a + (N-i)f_b}$$

$$\beta_i = \frac{N-i}{N} \frac{if_a}{if_a + (N-i)f_b}$$

$$p_{i,i} = 1 - \alpha_i - \beta_i$$

Selección débil

Cuando la intensidad de muestreo es débil, $w \ll 1$, obtenemos

$$\frac{\rho_{\rm B}}{\rho_{\rm A}} \approx 1 - \frac{w}{2} \left[(g_{11} - g_{12} - g_{21} + g_{22})(N-1) - g_{11} - g_{22} - g_{21} + 3g_{22} + 2N(g_{12} - g_{22}) \right]$$

Si $\epsilon>0$ la subpoblación A es dominante de recompensas. Para $N\gg 1$ esto es equivalente a $x^*<\frac{1}{2}$. Lo cual se cumple cuando $g_{21}+g_{22}< g_{11}+g_{12}$, que es la definición de dominancia de recompensas para el caso determinista. La probabilidad de fijación puede ser reescrita como

$$\rho_{A} = \left(\frac{1}{N}\right) \left(\frac{1}{1 - \frac{w}{6}(aN - b)}\right)$$

Donde, $a=g_{11}+2g_{12}-g_{21}-2g_{22}$ y $b=2g_{11}+g_{12}+g_{21}-4g_{22}$. El criterio de ventaja adaptativa se cumple sólo si aN>b, que es equivalente a $g_{11}(N-2)+g_{12}(2N-1)>g_{21}(N+1)+g_{22}(2N-4)$. Si consideramos ambas condiciones, $w\ll 1$ y $N\gg 1$, la desigualdad anterior resulta en $g_{11}+2g_{12}>g_{21}+2g_{22}$, que es equivalente a $x^*<\frac{1}{3}$.

Proceso de Fermi: Cualquier intensidad de selección

La probabilidad de reemplazo, P(M, R), es la función de Fermi [4]

$$P(M,R) = \frac{1}{1 + e^{-w(F_R - F_M)}}$$

Las probabilidades de transición están dadas por

$$\alpha_{i} = \frac{i}{N} \frac{N - i}{N} \frac{1}{1 + e^{-w(F_{A} - F_{B})}}$$

$$\beta_{i} = \frac{i}{N} \frac{N - i}{N} \frac{1}{1 + e^{+w(F_{A} - F_{B})}}$$

$$p_{i,i} = 1 - \alpha_{i} - \beta_{i}$$

La razón entre ambas probabilidades es $\gamma_i = e^{-w(F_A - F_B)}$ y $\prod_{i=1}^{N-1} \gamma_i = \exp\left(-\frac{w}{2}\epsilon\right)$. La probabilidad de fijación está dada por

$$\rho_{i,N} = \frac{\sum_{k=0}^{i-1} \exp\left(-\frac{w}{2}\epsilon\right)}{\sum_{k=0}^{N-1} \exp\left(-\frac{w}{2}\epsilon\right)}$$

Conclusión

Con los elementos desarrollados en este trabajo podemos entender las interacciones de individuos que desarrollan un par de estrategias biológicas, sociales y económicas contrastantes sometidas a fluctuaciones aleatorias y analizar su estabilidad (robustez) a través del tiempo. De este modo podemos calcular las distribuciones de probabilidad de eventos y dar una descripción detallada de los juegos de 2 estrategias. A partir de estos estudios se busca la generalización para N estrategias en una población finita, establecer criterios de estabilidad estocástica y definir las cuencas de atracción.

References

[1] Taylor, P. D. and Jonker, L. B. (1978) Mathematical Biosciences 40, 145–156.

[2] Taylor, C., Fudenberg, D., Sasaki, A., and Martin, N. A. (2004) Bulletin of Mathematical Biology 66, 1621–1644.

[3] Nowak, M. A., Sasaki, A., Taylor, C., and Fudenberg, D. (2004) *Nature* **428**, 646 – 650.

[4] Traulsen, A., Nowak, M. A., and Pachecho, J. M. (2006) *Physical Review* **74**, 011909–1—011909–5.