Object Detection with YOLO

Behnia - Heydari

Amirkabir University of Technology

May 15, 2019

Overview

- Computer Vision
- 2 IMAGENET
- 3 Challenge Result
- 4 Cats
- 6 AlexNet

History

Smartphones

 Exploding number of sensors vs. humans

Dataset Matters

Role of CNN

Cat's Brain Uses Convolution

Types of cells:

- simple cells
- complex cells
- hypercomplex cells

AlexNet

Figure: AlexNet: [Krizhevsky, Sutskever, Hinton] 2012

Convolution

Figure: Convolution Layer

Complexity of Layers output

Figure: complexity of each layer output

Closer Look

Figure: filtering example

Closer Look(CONT.)

Figure: filtering example

Closer Look(CONT.)

Figure: filtering example

Closer Look(CONT.)

IT WON'T FIT ?!!!!!!! Can't apply 3*3 filter

Figure: filtering example

Padding

Summary

- ullet Accept a volume of size N imes N
- requires 4 hyper parameters:
 - Filter's spatial extent F
 - Filter's Stride S
 - Amount of zero padding P
- Produces a volume of size M X M
 - M = $\frac{(N-F+2p)}{S} + 1$
 - Number of parameters : F X F

Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Figure: Max-pooling

Fully Connected Layer

Figure: Fully Connected Layer

AlexNet

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Andrew Ng

Figure: AlexNet architecture

Comparing different Structures

Figure: Comparing Structures

VGG

Deeper Networks, Smaller Filters

Comparing

Figure: Comparing Structures

Google Net

Deeper Networks, with computationally inexpensive

Figure: Googlenet Structures

Comparing

Figure: Comparing Structures

ResNet

Figure: ResNet Structures

Comparing Structures

Figure: Comparing Structures

The End