第 章 植物的激素调节

与高等动物相比,植物的形态结构要简单得多。它们没有神经系统,对外界刺激的反应自然就不如动物灵敏。那么,植物体能不能对自身的生命活动进行调节呢?

第 1 节 植物生长素的发现

问题探讨

图中是一株放在窗台上久不移动的盆栽植物。 讨论:

- 1. 图中植株的生长方向有什么特点?
- 2. 可能是哪种环境刺激引发了这株植物生长方向的改变? 这种改变有什么适应意义?
- 3. 这种生长方向的改变,是发生在植物的幼嫩部 分还是成熟部分?

本节聚焦

- 植物向光性的原因是什么?
- 生长素是什么物质?
- 什么是植物激素?

少为什么要分别遮盖胚芽鞘尖端和它下面一段呢? 胚芽鞘弯曲生长的是哪一部分? 感受单侧光刺激的又是哪一部分? 你怎样解释这一结果?

在单侧光的照射下,植物朝向光源方向生长的现象叫做向光性(phototropism)。许多人可能对这种现象熟视无睹,然而,正是对向光性的研究,引导着人们揭示植物生命活动调节的奥秘。

生长素的发现过程

19世纪末, 达尔文(C. Darwin, 1809—1882) 注意到了植物的向光性, 并设计了实验来探讨其中的原因(图 3-1)。

实验发现,在受到单侧 光照射时,金丝雀虉草(音 yì,一种禾本科植物)的胚芽 鞘会向光弯曲生长;如果去 掉胚芽鞘的尖端,或者用锡 箔罩子把尖端罩上,则不发 生弯曲;如果罩上尖端下面 的一段,那么,胚芽鞘还会 弯向光源生长。

图 3-1 达尔文的实验示意图

达尔文根据实验提出, 胚芽鞘尖端受单侧光刺激后, 就向下面的伸长区传递某种"影响"(influence),造成伸长 区背光面比向光面生长快,因而使胚芽鞘出现向光性弯曲。

科学重视实证。达尔文注意到人们熟视无睹的现象,并 且设计了简单而又富有创造性的实验来研究, 而不是凭主 观臆测来解释。

这种"影响"究竟是什么呢?在达尔文之后,先后有 多位科学家通过进一步的实验继续探索。

1910年,鲍森·詹森 (P. Boysen-Jensen)的实验证明,胚 芽鞘尖端产生的影响可以透过琼脂片传递给下部(图3-2)。

▶ 相关信息

单子叶植物,特别是禾本科植物 胚芽外的锥形套状物叫做胚芽 鞘,它能保护生长中的胚芽。种 子萌发时, 胚芽鞘首先钻出地 面, 出土后还能进行光合作用。

尖端产生的影响能传到下部,那 么它为什么能使得伸长区两侧 生长不均匀呢?

图 3-2 鲍森・詹森的实验示意图

图 3-3 拜尔的实验示意图

1914年, 拜尔 (A. Paal) 的实验证明, 胚芽鞘的弯曲 生长,是由尖端产生的影响在其下部分布不均匀而造成的 (图 3-3)。

这些实验初步证明尖端产生的影响可能是一种化学 物质造成的,这种化学物质的分布不均匀造成了胚芽鞘 的弯曲生长。

1928年,荷兰科学家温特 (F. W. Went) 做了以下实 验:把切下的燕麦尖端放在琼脂块上,几小时后,移去胚 芽鞘尖端,将琼脂切成小块。再将经处理过的琼脂块放在 切去尖端的燕麦胚芽鞘一侧,结果胚芽鞘会朝对侧弯曲生 长(图3-4)。但是,如果放上的是没有接触过胚芽鞘尖端 的琼脂块, 胚芽鞘则既不生长也不弯曲。

温特的实验进一步证明胚芽鞘的弯曲生长确实是一种 化学物质引起的。温特认为这可能是一种和动物激素类似 的物质, 并把这种物质命名为生长素 (auxin)。

生长素究竟是什么呢? 1931年,科学家首先从人尿 中分离出具有生长素效应的化学物质——吲哚乙酸(IAA, 图 3-5)。但是,由于生长素在植物体内含量极少,直到 1946年人们才从高等植物中分离出生长素,并确认它就是

图 3-4 温特的实验示意图

② 温特提出植物体内存在生长素 时,有没有提取出这种物质?他 是怎样作出这一推测的?

$$HC \stackrel{H}{=} C C - C - CH_2 - COOH$$
 $HC \stackrel{C}{=} C N CH$

图 3-5 吲哚乙酸化学结构

▶ 知识链接

植物激素与动物激素都称作"激 素", 二者有相似之处。植物体 内没有分泌激素的腺体,这说明 植物激素至少在合成部位上与 动物激素有明显不同。可联系第 2章第2节,进一步比较二者之 间在运输途径和功能上的异同。

图 3-6 生长素极性运输示意图

IAA。进一步研究发现,植物体内具有生长素效应的物质, 除IAA外,还有苯乙酸 (PAA)、吲哚丁酸 (IBA)等。

生长素的发现使人们认识到, 植物的向光性是由于生 长素分布不均匀造成的:单侧光照射后,胚芽鞘背光一侧的 生长素含量多于向光一侧,因而引起两侧的生长不均匀,从 而造成向光弯曲。

继发现生长素之后,人们又陆续发现了赤霉素、细胞 分裂素、脱落酸和乙烯等植物激素。人们把这类由植物体 内产生,能从产生部位运送到作用部位,对植物的生长发育 有显著影响的微量有机物,称作植物激素 (phytohormone)。

人类的许多科学发现,就是像这样经过一代又一代人 的探索,才一步一步地接近事实的真相。每一位科学家所 取得的进展可能只是一小步, 众多的一小步终将汇合成科 学前进的一大步。

20世纪80年代,有学者根据一些实验结果提出,植物 的向光性生长,是由于单侧光照射引起某些抑制生长的物 质分布不均匀造成的。他们用向日葵、萝卜等作实验材料 进行实验,结果发现,实验材料因单侧光照射而弯曲生长 时,向光一侧和背光一侧的生长素含量基本相同,而向光 面的生长抑制物质却多于背光一侧。

目前,有关植物向光性原因的探究还在继续。科学往 往就在类似这样的争议中不断发展。

生长素的产生、运输和分布

生长素主要的合成部位是幼嫩的芽、叶和发育中的种 子。在这些部位,色氨酸经过一系列反应可转变成生长素。

生长素是如何从合成部位运输到植物体全身的呢? 研 究表明, 在胚芽鞘、芽、幼叶和幼根中, 生长素只能从形态 学上端运输到形态学下端,而不能反过来运输,也就是只能 单方向地运输, 称为极性运输 (polar transport) (图 3-6)。 极性运输是细胞的主动运输。在成熟组织中,生长素可以 通过韧皮部进行非极性运输。

生长素在植物体各器官中都有分布,但相对集中地分 布在生长旺盛的部分,如胚芽鞘、芽和根顶端的分生组织、 形成层、发育中的种子和果实等处。

评价实验设计和结论

科学结论都是依据一定的证据得出的,实验 结果是非常重要的证据。实验的设计、从实验结 果推导出结论,逻辑要非常严密才能有说服力。 请分析以下实验和结论之间的逻辑关系。

♦ 实验

取一段玉米胚芽鞘, 切去顶端2 mm, 使胚

芽鞘不再产生生长素。 在上端放一块有生长素 的琼脂,下端放一块不 含生长素的琼脂(如右 图 1 所示, 胚芽鞘形态 学上端朝上)。过一段 时间检测,发现下端的

琼脂块逐渐有了生长素(图2所示)。

▲ 结论

- 1.下端琼脂块上的生长素来自上端的琼脂 块。
- 2. 生长素在胚芽鞘内只能由形态学的上端 运输到形态学的下端。

♦ 讨论:

- 1. 这个实验的设计是否严密?
- 2. 从实验结果到结论之间的逻辑推理是 否严谨?
- 3. 如果要验证上述结论是否正确,应该 对实验方案如何改进?

练习

一、基础题

在居室内养花, 花盆往往要放在窗户附近有 阳光处。有的书上建议应该每星期将花盆旋转1/4 周。这个建议有什么科学道理?

二、拓展题

根据本节所学过的有关原理,设计一个塑造 造型独特的盆景的方案。如果有条件,可以依照设 计的方案进行操作,并在适当的时候将盆景展示给 老师和同学。

第2节 生长素的生理作用

问题探讨

左图是科学家研究不同浓度生长素对植物不同 器官的作用所得到的结果.

♦ 讨论:

- I. 对于不同的器官来说,生长素促进生长的最 适浓度相同吗?
- 2. 对于同一器官来说,生长素的作用与浓度有什么关系?

本节聚焦

- 生长素的生理作用是什么?
- 生长素在植物体内发 挥生理作用时有什么 特点?

从上节的内容看,生长素起着促进细胞生长的作用; 但是从"问题探讨"的材料看,却又不是那么简单。

生长素的生理作用

生长素在植物体内起作用的方式和动物体内的激素相似,它不直接参与细胞代谢,而是给细胞传达一种调节代谢的信息。

研究发现,生长素的作用表现出两重性:既能促进生长,也能抑制生长;既能促进发芽,也能抑制发芽;既能防止落花落果,也能疏花疏果。生长素所发挥的作用,因浓度、植物细胞的成熟情况和器官的种类不同而有较大的差异。

一般情况下,生长素在浓度较低时促进生长;在浓度过高时则会抑制生长,甚至杀死植物。幼嫩的细胞对生长素敏感,老细胞则比较迟钝;不同器官对生长素的反应敏感程度也不一样。例如,顶芽产生的生长素逐渐向下运输,枝条上部的侧芽附近生长素浓度较高。由于侧芽对生长素浓度比较敏感,因此它的发育受到抑制,植株因而表现出顶端优势。去掉顶芽后,侧芽附近的生长素来源暂时受阻,浓度降低,于是抑制就被解除,侧芽萌动、加快生长(图3-7)。

在认识到植物生长素的生理作用后,有关科学道理在农业、园艺等方面获得了广泛的应用。例如,农民会适时

图 3-7 顶端优势(左)及其解除(右)

摘除棉花的顶芽,解除顶端优势,以促进侧芽的发育,从而使它多开花、多结果。由于植物体内的生长素含量非常少,提取困难,人们在多年的研究和实践中,发现一些人工合成的化学物质,如α-萘乙酸 (NAA)、2,4-D等,具有与IAA 相似的生理效应。这些化学物质,称为生长素类似物,可用于防止果实和叶片的脱落、促进结实、获得无子果实、促使扦插枝条的生根等 (图 3-8)。

尝试运用生长素促进插条生根

适宜浓度的生长素可以促进生根,农业生产上常用的 是生长素类似物。生长素类似物的生理作用,也与浓度具 有很大的关系,因此,在农业生产上应用时,寻找最佳的 浓度范围就非常有意义。

图 3-8 2,4-D 对黄瓜幼苗生 长的影响 (1. 处理: 2. 对照)

探索生长素类似物促进插条生根的最适浓度

▲ 问题

所选定的生长素类似物促进某种植物插条 生根的最适浓度是多少呢?

▲ 材料器具

当地主要绿化树种或花卉(也可以选择本地区的市花、市树)生长旺盛的一年生枝条,或者你们小组想要研究的其他植物的枝条;蒸馏水,烧杯;量筒;玻璃棒;常用的生长素类似物:NAA、2,4-D、IPA、IBA和生根粉等,可选其中的一种;所用药品包装说明上所列举的其他材料。

▲ 设计实验

提示:

1. 生长素类似物处理插条的方法很多,以下2类方法比较简便。浸泡法: 把插条的基部浸泡在配制好的溶液中,深约3 cm,处理几小时至一天。处理完毕就可以扦插了。这种处理方法要求溶液的浓度较低,并且最好是在遮阴和空气湿度较高的地方进行处理。沾蘸法: 把插条基部在浓度较高的药液中蘸一下(约5 s),深约1.5 cm即可。

2. 可以参考本节"问题探讨"中曲线图反映的规律,或查找有关资料,确定应设计什么样的浓度梯度。如果对要研究的植物有关情况所知不多,可以先设计一组梯度比较大的预实验进行摸索,再在预实验的基础上设计细致的实验。

预实验 在进行科学研究时,有时需要在正式实验前先做一个预实验。这样可以为进一步的实验摸索条件,也可以检验实验设计的科学性和可行性,以免由于设计不周,盲目开展实验而造成人力、物力和财力的浪费。预实验也必须像正式实验一样认真进行才有意义。

3. 控制无关变量非常重要。例如,如果要研究的是不同浓度药液的影响,处理的时间长短应该一致,同一组实验中所用到的植物材料,也应该尽可能做到条件相同。

▲ 进行实验

按照小组设计的实验方案进行实验,并设 计表格,记录探究结果。

▲ 分析结果

根据小组实验获得的数据,以生长素类似 物的浓度为横坐标,以根的数目为纵坐标,绘制 曲线图。联系已学过的数学知识,小组内讨论如 何根据实验数据和曲线图确定最适浓度范围。

结论和应用

- 1. 你们小组的结论是:对于植物_ 来说,促进插条生根的这种生长素类似物 的最适浓度是____。
- 2. 你们小组认为在施用生长素类似物促进 插条生根时, 要考虑的因素有哪些?

表达和交流

- 1. 根据本小组的实验结果,写出实验报告。
- 2. 与其他小组交流你们的结果和结论,共 享你们小组的成果,并认真听取其他小组的汇 报。不妨尝试引用其他小组的结果和结论,将本 小组的研究报告补充得更全面。
- 3. 根据你们的研究结果, 尝试对当地农林 业生产中使用生长素类似物的情况提出一些建 议。

▲ 进一步探究

你们小组所研究的生长素类似物促进这种 植物生根的最适浓度,会因为季节的变化和枝 条的老幼而有差异吗?

练习

一、基础题

- 1. 扦插时, 保留有芽和幼叶的插条比较容易 生根成活,这主要是因为芽和幼叶能:

 - A. 迅速生长; B. 进行光合作用;
 - C. 产生生长素:
- D. 储存较多的有机物。

答[

- 2. 在农业生产上, 2,4-D可用于麦田除草, 其原理是:
 - A. 高浓度时促进杂草衰老;
 - B. 高浓度时抑制杂草生长;
 - C. 低浓度时促进杂草衰老;
 - D. 高浓度时促进小麦生长。

答[]

二、拓展题

1. 将幼小植株在适宜条件下横放,一段时间

以后, 茎弯曲向上生长, 根弯曲向下 生长(如图所示)。一般认为,这是 因为重力作用使得生长素分布不均

匀,而且与根、茎对 牛长素的敏感程度不 同有关。你能对这种 现象提出合理的解释 吗? 如果这株植物在

2. 我国宋代著作《种艺必用》中,记载了一 种促进空中压条生根的方法: "凡嫁接矮果及花, 用好黄泥晒干, 筛过, 以小便浸之。又晒干, 筛过, 再浸之。又晒又浸,凡十余次。以泥封树枝……则 根生。"

请你运用已学过的知识,分析其中的科学 道理。

第3节 其他植物激素

问题探讨

"红柿摘下未熟、每篮用木瓜三枚放入。得气即 发,并无涩味"(宋·苏轼《格物粗谈·果品》)。这 种"气"究竟是什么呢? 人们一直不明白。到20世 纪60年代,气相层析技术的应用使人们终于弄清楚, 是成熟果实释放出的乙烯促进了其他果实的成熟。

● 讨论:

- 1. 乙烯在植物体内能发挥什么作用?
- 2. 你听说过用乙烯利催熟香蕉等水果的做法吗? 你同意这种做法吗?

除生长素外,植物体内还存在赤霉素、细胞分裂素,脱 落酸、乙烯等植物激素。

其他植物激素的种类和作用

1926年,科学家观察到,当水稻感染了赤霉菌后,会 出现植株疯长的现象: 病株往往比正常植株高50%以上, 并且结实率大大降低,因而称为恶苗病。科学家将赤霉菌 培养基的滤液喷施到健康水稻幼苗上,发现这些幼苗虽然 没有感染赤霉菌, 却出现了恶苗病的症状。1935年, 科学 家从培养基滤液中分离出致使水稻患恶苗病的物质, 称之 为赤霉素 (简称 GA)。此后, 科学家又陆续发现了细胞分 裂素等其他植物激素。

赤霉素、细胞分裂素、脱落酸、乙烯等植物激素的主 要生理作用如图 3-9 所示。

本节聚焦

- 除生长素以外,植物 体内还有哪些植物 激素?
- 各种植物激素是孤立 地发挥作用的吗? 为 什么?
- 植物生长调节剂在生 产上有哪些应用?

图 3-9 其他植物激素的合成部位、分布和主要作用

近20年来,科学家还发现,除了已经介绍的5类植物 激素外、植物体内还有一些天然物质也在调节着生长发育 过程,如油菜素 (甾体类化合物)。

在植物的生长发育和适应环境变化的过程中, 各种植 物激素并不是孤立地起作用, 而是多种激素相互作用共同 调节。例如,科学家在对黄化豌豆幼苗切段的实验研究中 发现, 低浓度的生长素促进细胞的伸长, 但生长素浓度增 高到一定值时,就会促进切段中乙烯的合成,而乙烯含量 的增高,反过来又抑制了生长素促进切段细胞伸长的作用。

激素调节在植物的生长发育和对环境的适应过程中发 挥着重要作用, 但是, 激素调节只是植物生命活动调节的 一部分。植物的生长发育过程,在根本上是基因组在一定 时间和空间上程序性表达的结果。光照、温度等环境因子 的变化, 会引起植物体内产生包括植物激素合成在内的多 种变化、进而对基因组的表达进行调节。

植物生长调节剂的应用

人工合成的对植物的生长发育有调节作用的化学物质 称为植物生长调节剂。生长素类似物也是植物生长调节剂。 植物生长调节剂具有容易合成、原料广泛、效果稳定等优

植物激素自身的合成也受基因 组控制吗?

点。人们成功地合成了多种植物生长调节剂,它们在生产 上得到广泛的应用,并产生了一些人们原来没有预料到的 影响。

资料分析

评述植物生长调节剂的应用

以下是植物生长调节剂应用的一些事例。 事例1 天然状态下的凤梨(菠萝)开花 结果时期参差不齐,一片凤梨田里需要分五 六次收获,费时费工;晚上市还卖不出好价 钱。到了冬季,由于气温低、日照弱,果实成 熟慢,品质差。用乙烯利催熟,就可以做到有 计划地上市。

凤梨

事例 2 芦苇是我国主要的造纸原料, 但多数芦苇的纤维短、品质较次。如果在芦 苇生长期用一定浓度的赤霉素溶液处理,就 可以使芦苇的纤维长度增加50%左右。

事例3 用传统方法生产啤酒时,大麦 芽是不可缺少的原材料。利用大麦芽,实质 是利用其中的α-淀粉酶。用赤霉素处理大 麦,可以使大麦种子无须发芽就可以产生α-淀 粉酶,这样就可以简化工艺、降低成本。

事例 4 在蔬菜水果上残留的一些植物生 长调节剂会损害人体健康,例如,可以延长马 铃薯、大蒜、洋葱贮藏期的青鲜素(抑制发芽) 就可能有致癌作用。我国的法规禁止销售、使 用未经国家或省级有关部门批准的植物生长调 节剂。

请你自己进一步查找以下三方面的资料:

- 1. 新的植物生长调节剂不断被发现和使 用;植物生长调节剂的应用范围更加广泛,在 生产中发挥着越来越重要的作用。你可以从农 业技术用书或比较可靠的网站进一步获取资料, 也可以搜集一些植物生长调节剂的使用说明书, 以了解有关信息。
- 2. 由于植物生长调节剂的使用效果与浓 度、使用时期、使用方法等都有密切关系,如 果使用不当,不仅达不到预期目的,反而会造 成损失。试举一两个事例。
- 3. 试列出几种我国法规禁止使用的植物生 长调节剂及其危害,或者举一两个因植物生长 调节剂指标不合格而引起的农产品贸易纠纷。

▲ 讨论:

- 1. 你知道哪些农产品在生产过程中使用 了植物生长调节剂?
- 2. 哪些水果在上市前有可能使用了乙烯 利?
- 3. 生产过程中施用植物生长调节剂,会 不会影响农产品的品质?
- 4. 如果你是水果销售员,面对半青不熟 的水果, 你认为应当使用乙烯利催熟吗? 作 为一个消费者, 你又怎么看?

在农业生产上,施用生长调节剂时,要综合考虑施用 目的、药物效果、药物毒性、药物残留、价格和施用是否 方便等因素。在施用时,还要考虑施用时间、处理部位、施 用方式、适宜的浓度和施用次数等问题。

练习

一、基础题

- 1. 下列化学物质中, 不是植物激素的是:
- A. 乙烯:
- B. 吲哚乙酸;
- C. 吲哚丁酸:
- D. 2,4-D.

]

- 2. 以下是两种关于植物激素的叙述:
- A. 植物激素几乎控制着植物所有的生命活动。
- B. 在植物的生长发育过程中, 几乎所有生命 活动都受到植物激素的调节。

这两种说法中,哪一种更准确?为什么?

3. 在下表空格中填入适当的文字。

植物激素种类	主要作用
生长素	

4. 各种植物激素在对植物生命活动进行调节 时,是孤立地发挥作用的吗?试举例说明。

二、拓展题

- 1. 许多研究表明, 脱落酸在高温条件下容易 降解。在自然界中存在这样一种现象: 小麦、玉米 在即将成熟时,如果经历持续一段时间的干热之后 又遇大雨的天气,种子就容易在穗上发芽。请尝试 对此现象进行解释。
- 2. 以下是几幅有关植物生长调节剂使用注意 事项的页面,它们来自比较专业的网站。如果有条 件, 请进一步搜集当地主要农作物种植过程中, 使 用生长调节剂应注意的事项的资料,并对这些资料 进行分析和总结,写成一篇初中文化水平的农民可 以看懂的说明文。

的 國 國 國 國 國

本章小结

植物激素是一类由植物体内产生,能从产生部位运送到作用部位,对植物的生长发育有显著影响的微量有机物。

植物激素主要有生长素、赤霉素、细胞分裂素、乙烯和脱落酸等 5类。它们对植物各种生命活动起着不同的调节作用。同一种激素,在 不同情况下作用也有差别。例如,生长素随浓度不同、植物细胞的老 幼和器官的种类不同,而在发挥的作用上有差异: 既能促进生长,也 能抑制生长; 既能促进发芽,也能抑制发芽; 既能防止落花落果,也 能疏花疏果。

发现生长素的过程,是由达尔文注意到植物向光性并对此进行研究开始的。这说明在习以为常的现象中,可能蕴涵着深刻的科学道理。 达尔文注意到了这一现象,并且设计了简单而又有创造性的实验来进行探索,而不是主观臆测。在达尔文之后,先后有多位科学家设计了几个关键的实验来进一步探索。通过一代又一代科学家的努力,人们逐渐接近事实的真相,并在进一步探索着。

达尔文设计的实验从原理上看很简单——排除法,让一部分"缺席",研究这时系统的反应,但第一次设计出这个实验又是充满创造性的。对实验结果的分析,既需要严密的逻辑推理,也需要丰富的想像力。

尽管人们在发现植物的激素调节时,并没有想到会带来经济利益,但是,植物激素调节的科学道理很快就被应用于生产实践,并给人们带来了很多好处。然而,如果植物生长调节剂应用不当,也会带来一些负面影响。

本书第1章至第3章的内容,都是从个体水平来研究生命活动的 稳态和调控。事实上,任何生物个体的生存和发展,离不开同种或不 同种的其他生物个体,更离不开由生物和无机环境形成的生态系统。 以下章节将涉及群体水平上的稳态和调控。

自我检测

一、概念检测

选择

- 1. 下列关于植物激素的说法不正确的是:
- A. 植物激素是一类化学物质;
- B. 植物激素在植物体内含量很少:
- C. 植物激素不直接参与细胞内的代谢活动;
- D. 植物激素促进植物生长。

答[]

- 2. 生长素的生理作用特点是(多洗):
- A. 只在低浓度时起作用;
- B. 既能促进生长, 也能抑制生长;
- C. 既能疏花疏果, 也能防止落花落果;
- D. 既能促进发芽, 也能抑制发芽。

答[]

- 3. 园林工人为使灌木围成的绿篱长得茂密、 整齐, 需要对绿篱定期修剪, 其目的是:

 - A. 抑制侧芽生长; B. 抑制其开花结果;
 - C. 抑制向光性;
- D. 促进侧芽生长。

答「 1

二、知识迁移

用适宜浓度的生长素处理未受粉的番茄雌蕊 柱头,可以得到无子番茄,这种果实细胞中的染色 体数目为:

- A. 与卵细胞染色体数目一样:
- B. 与体细胞染色体数目一样;
- C. 比受精卵染色体数目多一倍;
- D. 与受精极核染色体数目一样。

答[]

三、技能应用

假如现有一种用于麦田除草的除草剂刚刚研 究出来。作为厂里的工程师, 你的任务是研究这种 除草剂在麦田除草时的浓度要求。请列出你的研究

假如让你来设计这个产品的说明书,你认为除了 浓度参考范围外, 还应该在这个说明书中写些什么。

四、思维拓展

分析下列图解,在空白框内填写适当的内容, 并回答有关问题。

感染赤霉菌而患恶苗病的水稻植株,要 推测 比周围的健康植株高50%以上,患病植株 结实率很低。 将赤霉菌培养基的滤液喷施到水稻幼苗上,没有感 演绎求证 染赤霉菌的幼苗, 也表现出恶苗病的症状。 从赤霉菌培养基中,提取出有以上效应的活性物 能肯定赤霉素是植物激素吗? 为什么? 质——赤霉素。 发现在植物体内也存在天然的赤霉素,并成功提取。 ▶ 自己查找资料,完成以后的内容……