Package 'metaplot'

February 18, 2024

Type Package

Title Data-Driven Plot Design

Version 0.8.4

Author Tim Bergsma

Maintainer Tim Bergsma
 dergsmat@gmail.com>

Description Designs plots in terms of core structure. See 'example(metaplot)'.

Primary arguments are (unquoted) column names; order and type (numeric or not) dictate the resulting plot. Specify any y variables, x variable, any groups variable, and any conditioning variables to metaplot() to generate density plots, boxplots, mosaic plots, scatterplots, scatterplot matrices, or conditioned plots. Use multiplot() to arrange plots in grids. Wherever present, scalar column attributes 'label' and 'guide' are honored, producing fully annotated plots with minimal effort. Attribute 'guide' is typically units, but may be encoded() to provide interpretations of categorical values (see '?encode'). Utility unpack() transforms scalar column attributes to row values and pack() does the reverse, supporting tool-neutral storage of metadata along with primary data. The package supports customizable aesthetics such as such as reference lines, unity lines, smooths, log transformation, and linear fits. The user may choose between trellis and ggplot output. Compact syntax and integrated metadata promote workflow

Imports encode (>= 0.3.6), lattice, magrittr, dplyr (>= 0.7.1), tidyr, rlang, grid, gridExtra, gtable, ggplot2, scales

Suggests csv, nlme

Depends R (>= 2.10)

scalability.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-18 05:30:10 UTC

59

Index

R topics documented:

boxplot.data.frame	3
boxplot_data_frame	4
categorical	6
categorical.data.frame	7
categorical_data_frame	8
categorical_panel	10
cax	12
corsplom	12
corsplom.data.frame	13
corsplom_data_frame	14
densplot	16
densplot.data.frame	17
densplot_data_frame	18
diag_label	20
diag_pin	21
metaplot	22
metaplot.data.frame	25
metaplot_key	27
metaplot_ref	29
metastats	29
metOption	30
multiplot	31
pack	32
pack.data.frame	33
panel_tile	34
scatter	35
scatter.data.frame	36
scatter_data_frame	37
scatter_panel	42
scatter_panel_ref	44
	45
test_metaplot	46
tiles	54
tilestats	55
unpack	56
	56
1	57
· ·	58
, <u>.</u> –	

boxplot.data.frame 3

boxplot.data.frame *B*

Boxplot Method for Data Frame

Description

Boxplot for data.frame. Parses arguments and generates the call: fun(x, yvar, xvar, facets, ...).

Usage

```
## $3 method for class 'data.frame'
boxplot(
    x,
    ...,
    fun = metOption("box", "boxplot_data_frame"),
    verbose = metOption("verbose_boxplot", FALSE)
)
```

Arguments

```
x data.frame
... passed to fun
fun function that does the actual plotting
verbose generate messages describing process
```

See Also

```
Other mixedvariate plots: boxplot_data_frame(), boxplot_panel()
Other boxplot: boxplot_data_frame()
Other methods: axislabel.data.frame(), categorical.data.frame(), corsplom.data.frame(), densplot.data.frame(), metaplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()
```

Examples

```
library(dplyr)
library(magrittr)
Theoph %<>% mutate(site = ifelse(as.numeric(Subject) > 6, 'Site A','Site B'))
boxplot(Theoph,'Subject','conc')
boxplot(Theoph,Subject,conc, gg = T)
boxplot(Theoph,Subject,conc, gg = T)
boxplot(Theoph,conc,Subject)
boxplot(Theoph,conc,Subject, gg = T)
boxplot(Theoph,conc,Subject,site)
boxplot(Theoph,conc,Subject,site, gg = T)
boxplot(Theoph,conc,Subject,site, gg = T)
boxplot(Theoph,conc,Subject,site, gg = T, scales = 'free_x')
attr(Theoph,'title') <- 'Theophylline'
boxplot(Theoph, Subject, conc, main = function(x,...)attr(x,'title'))</pre>
```

4 boxplot_data_frame

```
boxplot(Theoph, Subject, conc, main = function(x,...)attr(x,'title'), gg = T)
boxplot(Theoph, Subject, conc, sub= function(x,...)attr(x,'title'))
boxplot(Theoph, Subject, conc, sub= function(x,...)attr(x,'title'), gg = T)
boxplot(Theoph %>% filter(conc > 0),Subject,conc, log = T)
boxplot(Theoph %>% filter(conc > 0),Subject,conc, log = T, gg = T)
```

boxplot_data_frame

Boxplot Function for Data Frame

Description

Boxplot for data.frame. Creates a boxplot using boxplot_panel by default.

```
boxplot_data_frame(
  х,
 yvar,
  xvar,
  facets = NULL,
  log = metOption("log_boxplot", FALSE),
  crit = metOption("crit_boxplot", 1.3),
  horizontal = metOption("horizontal_boxplot", NULL),
  scales = metOption("scales_boxplot", NULL),
  panel = metOption("panel_boxplot", "boxplot_panel"),
  ref = metOption("ref_boxplot", "metaplot_ref"),
  ref.col = metOption("ref.col_boxplot", "grey"),
  ref.lty = metOption("ref.lty_boxplot", "solid"),
  ref.lwd = metOption("ref.lwd_boxplot", 1),
  ref.alpha = metOption("ref.alpha_boxplot", 1),
  nobs = metOption("nobs_boxplot", FALSE),
  na.rm = metOption("na.rm_boxplot", TRUE),
  xlab = NULL,
 ylab = NULL,
  numlab = metOption("numlab_boxplot", "axislabel"),
  catlab = metOption("catlab_boxplot", "axislabel"),
  aspect = metOption("aspect_boxplot", 1),
  as.table = metOption("as.table_boxplot", TRUE),
 main = metOption("main_boxplot", NULL),
  sub = metOption("sub_boxplot", NULL),
  settings = metOption("settings_boxplot", NULL),
  padding = metOption("padding_boxplot", 1),
  reverse = metOption("reverse_boxplot", TRUE),
  pch = metOption("pch_boxplot", "|"),
  notch = metOption("notch_boxplot", FALSE),
  gg = metOption("gg_boxplot", FALSE),
  verbose = metOption("verbose_boxplot", FALSE),
)
```

boxplot_data_frame 5

Arguments

x data.frameyvary variablexvarx variable

facets optional conditioning variables

log whether to log transform numeric variable (auto-selected if NA)

crit if log is NA, log-transform if mean/median ratio for non-missing values is greater

than this value

horizontal whether box/whisker axis should be horizontal (numeric x, categorical y); de-

faults TRUE if var[[2]] is numeric

scales passed to xyplot (should be function(x = x, horizontal, log,...)) or facet_grid

or facet_wrap

panel panel function

ref optional reference line(s) on numeric axis; can be function(x = x, var = con, ...)

or NULL to suppress

ref.col color for reference line(s); can be length one integer to auto-select that many

colors

ref.lty line type for reference line(s)
ref.lwd line size for reference line(s)
ref.alpha transparency for reference line(s)

nobs whether to include the number of observations under the category label na.rm whether to remove data points with one or more missing coordinates

xlab x axis label ylab y axis label

numlab numeric axis label; can be function(x = x, var = numvar, log = ylog, ...)

catlab categorical axis label; can be function(x = x, var = catvar, ...)

aspect passed to bwplot or ggplot; use 'fill', NA, or NULL to calculate automatically

as.table passed to xyplot

main character, or a function of x, yvar, xvar, facets, and log sub character, or a function of x, yvar, xvar, facets, and log

settings default parameter settings: a list from which matching elements are passed to

lattice (as par.settings) or to ggplot theme() and facet_wrap() or facet_grid(). ncol and nrow are used as layout indices for lattice (for homology with facet_wrap).

padding numeric (will be recycled to length 4) giving plot margins in default units: top,

right, bottom, left (in multiples of 5.5 points for ggplot)

reverse if y is categorical, present levels in reverse order (first at top)

pch special character for box median: passed to panel.bwplot

notch whether to draw notched boxes: passed to panel.bwplot

gg logical: whether to generate ggplot instead of trellis

verbose generate messages describing process

... passed arguments

6 categorical

See Also

```
Other mixedvariate plots: boxplot.data.frame(), boxplot_panel()
Other boxplot.data.frame()
Other metaplot: categorical_data_frame(), corsplom_data_frame(), densplot_data_frame(), metaplot_key(), metaplot(), scatter_data_frame(), test_metaplot()
```

Examples

```
library(magrittr)
library(dplyr)
boxplot_data_frame(Theoph, 'Subject', 'conc')
boxplot_data_frame(Theoph %>% filter(conc > 0),
'conc', 'Subject', log = TRUE, ref = c(2,5),horizontal = FALSE)
```

categorical

Categorical Plot

Description

Categorical Plot. Generic, with method for 'data.frame'.

Usage

```
categorical(x, ...)
```

Arguments

x object of dispatch

... passed arugments

```
Other generic functions: axislabel(), corsplom(), densplot(), metaplot(), pack(), scatter(), test_metaplot(), unpack()

Other categorical: categorical.data.frame(), categorical_data_frame(), categorical_panel(), panel_tile()
```

categorical.data.frame 7

```
categorical.data.frame
```

Categorical Method for Data Frame

Description

Categorical method for 'data.frame'.

Usage

```
## $3 method for class 'data.frame'
categorical(
    x,
    ...,
    fun = metOption("categorical", "categorical_data_frame"),
    verbose = metOption("verbose_categorical_data_frame", FALSE)
)
```

Arguments

```
x data.frame
... other arguments
fun function to draw the plot
verbose generate messages describing process
```

Value

character

```
Other categorical: categorical_data_frame(), categorical_panel(), categorical(), panel_tile()
Other methods: axislabel.data.frame(), boxplot.data.frame(), corsplom.data.frame(),
densplot.data.frame(), metaplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(),
print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()
```

```
categorical_data_frame
```

Categorical Function for Data Frame

Description

Categorical function for class 'data.frame'. Implements a simple mosaic plot.

```
categorical_data_frame(
  yvar = NULL,
  xvar,
  groups = NULL,
  facets = NULL,
  ylab = metOption("xlab_categorical", "axislabel"),
  xlab = metOption("ylab_categorical", "axislabel"),
  na.rm = metOption("na.rm_categorical", TRUE),
  aspect = metOption("aspect_categorical", 1),
  space = metOption("space_categorical", "right"),
  key = metOption("key_categorical", "metaplot_key"),
  as.table = metOption("as.table_categorical", TRUE),
 prepanel = metOption("prepanel_categorical", function(...) list(xlim = 0:1, ylim =
    0:1)),
  scales = metOption("scales_categorical", NULL),
  panel = metOption("panel_categorical", "categorical_panel"),
  colors = metOption("colors_categorical", NULL),
  fill = metOption("fill_categorical", 0.5),
  lines = metOption("lines_categorical", TRUE),
  main = metOption("main_categorical", NULL),
  sub = metOption("sub_categorical", NULL),
  tex = metOption("tex_categorical", 0.9),
  rot = metOption("rot_categorical", c(90, 0)),
  subscripts = metOption("subscripts_categorical", TRUE),
  settings = metOption("settings_categorical", NULL),
  padding = metOption("padding_categorical", 1),
  loc = metOption("loc_categorical", 5),
  msg = metOption("msg_categorical", "tilestats"),
  cex = metOption("cex_categorical", 1),
  gg = metOption("gg_categorical", FALSE),
  verbose = metOption("verbose_categorical", FALSE),
)
```

Arguments

x	data.frame
yvar	character: y variable (optional)
xvar	character: x variable
groups	optional grouping variable (can be missing)
facets	optional conditioning variables
ylab	y axis label; can be function($x = x$, $var = yvar$,)
xlab	x axis label; can be function($x = x$, $var = xvar$,)
na.rm	whether to remove data points with one or more missing coordinates
aspect	passed to bwplot or ggplot; use 'fill', NA, or NULL to calculate automatically
space	location of key (right, left, top, bottom)
key	list: passed to xyplot as auto.key or to theme; can be a function groups name, groups levels, fill, lines, space, gg, type ('categorical'), and See metaplot_key.
as.table	passed to xyplot
prepanel	passed to xyplot (guessed if NULL)
scales	passed to xyplot or facet_grid or facet_wrap (guessed if NULL)
panel	name or definition of panel function for lattice
colors	replacements for default colors in group order; can be length one integer to auto- select that many colors
fill	whether to fill rectangles for each group: logical, or alpha values between 0 and 1
lines	whether to plot borders for each group: logical, or alpha values between 0 and 1
main	character, or a function of x, yvar, xvar, groups, facets
sub	character, or a function of x, yvar, xvar, groups, facets
tex	tile expansion: scale factor for reducing each tile size relative to full size (<= 1)
rot	rotation for axis labels; can be length 2 for y and x axes, respectively
subscripts	passed to xyplot
settings	default parameter settings: a list from which matching elements are passed to lattice (as par.settings) or to ggplot theme() and facet_wrap() or facet_grid(). ncol and nrow are used as layout indices for lattice (for homology with facet_wrap).
padding	numeric (will be recycled to length 4) giving plot margins in default units: top, right, bottom, left (in multiples of 5.5 points for ggplot)
loc	where to print statistics in a tile
msg	a function of x and y to print text in a tile
cex	expansion for msg text
gg	logical: whether to generate ggplot instead of trellis
verbose	generate messages describing process
	passed to region

10 categorical_panel

See Also

```
categorical_panel
Other categorical: categorical.data.frame(), categorical_panel(), categorical(), panel_tile()
Other metaplot: boxplot_data_frame(), corsplom_data_frame(), densplot_data_frame(),
metaplot_key(), metaplot(), scatter_data_frame(), test_metaplot()
```

Examples

```
library(magrittr)
library(dplyr)
library(csv)
x <- as.csv(system.file(package = 'metaplot', 'extdata/theoph.csv'))</pre>
x %<>% pack
x %>% metaplot(site)
x %>% metaplot(site, gg = T)
x %>% metaplot(arm, site)
x %>% metaplot(arm, site, gg = T)
x %>% metaplot(arm, site, cohort)
x %>% metaplot(arm, site, cohort, gg = T)
x %>% metaplot(arm, site, cohort, space = 'top')
x %>% metaplot(arm, site, , cohort)
x %>% metaplot(arm, site, , cohort, gg = T)
x %>% metaplot(arm, site, , cohort, rot = c(0,90))
x %>% metaplot(arm, site, , cohort, rot = c(0,90), gg = T)
x \% metaplot(arm, site, , cohort, rot = c(45, 45))
x %>% metaplot(subject,cohort,arm, site, lines = F, rot = c(45,45))
x %>% metaplot(subject,cohort,arm, site, lines = F, rot = c(45,45), gg=T)
# panel-specific axis not well-supported for gg version
x %>% metaplot(subject,cohort,,arm, site)
x %>% metaplot(subject,cohort,,arm, site, gg=T)
```

categorical_panel

Panel Function for Metaplot Categorical Plot

Description

Default panel function for categorical_data_frame. Implements a simple mosaic plot. Global options are supported but typically are supplied by the calling function and may therefore be unreachable.

```
categorical_panel(
  x,
  y,
```

categorical_panel 11

```
groups,
bivariate = TRUE,
loc = metOption("loc_categorical_panel", 5),
msg = metOption("msg_categorical_panel", "tilestats"),
tex = metOption("tex_categorical_panel", 0.9),
cex = metOption("cex_categorical_panel", 1),
rot = metOption("rot_categorical_panel", c(90, 0)),
subscripts,
verbose = metOption("verbose_categorical_panel", FALSE),
...
)
```

Arguments

X	x values
у	y values
groups	optional grouping item
bivariate	whether to create y axis
loc	where to print statistics in a tile
msg	a function of x and y to print text in a tile
tex	tile expansion: scale factor for reducing each tile size relative to full size (<= 1)
cex	expansion for msg text
rot	rotation for axis labels; can be length 2 for y and x axes, respectively
subscripts	subscripts of the original data for this panel
verbose	generate messages describing process
	passed to panel.superpose

```
tilestats
categorical.data.frame
Other panel functions: boxplot_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(),
corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter
dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_key(), metaplot_ref(),
panel.meta_densityplot(), panel_tile(), scatter_panel_ref(), scatter_panel()
Other categorical: categorical.data.frame(), categorical_data_frame(), categorical(),
panel_tile()
```

12 corsplom

cax

Calculate Categorical Axis Labels and Positions

Description

Calculates axis labels and positions for categorical values.

Usage

```
cax(x, ...)
```

Arguments

```
x x values
```

... other arguments

Value

data.frame

See Also

```
categorical_panel
```

Other categorical family: tilestats(), tiles()

corsplom

Correlated Splom

Description

Scatterplot matrix with correlations.

Usage

```
corsplom(x, ...)
```

Arguments

x object

... passed arguments

corsplom.data.frame

See Also

```
Other generic functions: axislabel(), categorical(), densplot(), metaplot(), pack(), scatter(),
test_metaplot(), unpack()
Other corsplom: corsplom.data.frame(), corsplom_data_frame(), corsplom_gg_correlation(),
corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_scatter(),
plot.metaplot_gtable(), print.metaplot_gtable()
```

corsplom.data.frame

Correlated Scatterplot Matrix Method for Data Frame

Description

Creates a scatterplot matrix. Parses arguments and generates the call: fun(x, xvar, ...).

Usage

```
## S3 method for class 'data.frame'
corsplom(
    x,
    ...,
    fun = metOption("corsplom", "corsplom_data_frame"),
    verbose = metOption("verbose_corsplom_data_frame", FALSE)
)
```

Arguments

```
x data.frame
... passed to fun

fun function to do the actual plotting

verbose generate messages describing process
```

```
Other multivariate plots: corsplom_data_frame(), metaplot.data.frame()

Other corsplom: corsplom_data_frame(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_scatter(), corsplom(), plot.metaplot_gtable(), print.metaplot_gtable()

Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), densplot.data.frame(), metaplot.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()
```

Description

Creates a scatterplot matrix with correlations in lower panel, by default.

Usage

```
corsplom_data_frame(
 Х,
 xvar = names(x),
 upper.panel = metOption("upper.panel_corsplom", if (gg) "corsplom_gg_scatter" else
    "corsplom_panel_scatter"),
 lower.panel = metOption("lower.panel_corsplom", if (gg) "corsplom_gg_correlation" else
    "corsplom_panel_correlation"),
 diag.panel = metOption("diag.panel_corsplom", if (gg) "corsplom_gg_diagonal" else
    "corsplom_panel_diagonal"),
  pscales = metOption("pscales_corsplom", 0),
  xlab = metOption("xlab_corsplom", NULL),
  varname.cex = metOption("varname.cex_corsplom", 1),
 main = metOption("main_corsplom", NULL),
  sub = metOption("sub_corsplom", NULL),
  col = metOption("col_corsplom", "blue"),
  smooth.col = metOption("smooth.col_corsplom", NULL),
  smooth.lty = metOption("smooth.lty_corsplom", "solid"),
  smooth.lwd = metOption("smooth.lwd_corsplom", 1),
  smooth.alpha = metOption("smooth.alpha_corsplom", 1),
  density = metOption("density_corsplom", TRUE),
  diag.label = metOption("diag.label_corsplom", "diag_label"),
  pin = metOption("pin_corsplom", "diag_pin"),
  pin.col = metOption("pin.col_corsplom", "darkgrey"),
  pin.alpha = metOption("pin.alpha_corsplom", 1),
  dens.col = metOption("dens.col_corsplom", "grey"),
  dens.scale = metOption("dens.scale_corsplom", 0.2),
  dens.alpha = metOption("dens.alpha_corsplom", 0.5),
  settings = metOption("settings.corsplom", NULL),
  padding = metOption("padding_corsplom", 1),
  as.table = metOption("as.table_corsplom", FALSE),
  dens.up = metOption("dens.up_corsplom", TRUE),
  gg = metOption("gg_corsplom", FALSE),
  verbose = metOption("verbose_corsplom", FALSE),
)
```

Arguments

x data.frame

corsplom_data_frame 15

xvar variables to plot

upper.panel passed to splom or ggplot lower.panel passed to splom or ggplot diag.panel passed to splom or ggplot

pscales passed to splom

xlab can be function(x = x, var = xvar, ...)

varname.cex text size multiplier

main character, or a function of x, xvar sub character, or a function of x, xvar

col point color

smooth.col smooth color, defaults to col

smooth.lty smooth line type smooth.lwd smooth line size smooth.alpha smooth alpha

density whether to plot density polygons

diag.label label for the diagonal: a function of x, varname, .data

pin location for a pin (reference line) in the density region; can be function(x, var-

name, .data) or NULL to suppress

pin.col color of pin, if any

pin.alpha alpha transparency of pin dens.col color for density region

dens.scale inflation factor for height of density smooth

dens.alpha alpha transparency for density region

settings default parameter settings: a list from which matching elements are passed to

lattice (as par.settings) or to ggplot theme()

padding numeric (will be recycled to length 4) giving plot margins in default units: top,

right, bottom, left (in multiples of 5.5 points for ggplot)

as.table diagonal arranged top-left to bottom-right

dens.up whether density plots in diagonal should face the upper triangle vs. lower

gg logical: whether to generate ggplot instead of trellis

verbose generate messages describing process

... extra arguments passed to splom and ggplot

Value

trellis or grob

16 densplot

See Also

```
Other multivariate plots: corsplom.data.frame(), metaplot.data.frame()
Other corsplom: corsplom.data.frame(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_scatter(), corsplom(), plot.metaplot_gtable(), print.metaplot_gtable()
Other metaplot: boxplot_data_frame(), categorical_data_frame(), densplot_data_frame(), metaplot_key(), metaplot(), scatter_data_frame(), test_metaplot()
```

Examples

```
library(magrittr)
library(dplyr)
library(csv)
x <- as.csv(system.file(package = 'metaplot', 'extdata/theoph.csv'))
x %<>% pack
# setOption(gg = TRUE)
x %>% metaplot(lKe, lKa, lCl)
x %>% metaplot(
    lKe, lKa, lCl,
    col = 'black',smooth.col = 'red', pin.col = 'red',
    dens.col='blue',dens.alpha = 0.1
)
```

densplot

Density Plot

Description

Creates a density plot.

Usage

```
densplot(x, ...)
```

Arguments

```
x object ... passed arguments
```

```
Other generic functions: axislabel(), categorical(), corsplom(), metaplot(), pack(), scatter(), test_metaplot(), unpack()

Other univariate plots: dens_panel(), densplot.data.frame(), densplot_data_frame(), metaplot.data.frame(), panel.meta_densityplot()

Other densplot: densplot.data.frame(), densplot_data_frame()
```

densplot.data.frame 17

Description

Plot density for object of class 'data.frame'. Parses arguments and generates the call: fun(x, xvar, groups, facets,...).

Usage

```
## $3 method for class 'data.frame'
densplot(
    x,
    ...,
    fun = metOption("densplot", "densplot_data_frame"),
    verbose = metOption("verbose_densplot_data_frame", FALSE)
)
```

Arguments

```
x data.frame
... passed to fun
fun plotting function
verbose generate messages describing process
```

See Also

```
Other univariate plots: dens_panel(), densplot_data_frame(), densplot(), metaplot.data.frame(), panel.meta_densityplot()

Other densplot: densplot_data_frame(), densplot()

Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), corsplom.data.frame(), metaplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()
```

Examples

```
densplot(Theoph, conc, grid = TRUE )
densplot(Theoph, conc, grid = TRUE, gg = TRUE )
densplot(Theoph, conc, Subject )
densplot(Theoph, conc, , Subject )
densplot(Theoph, conc, , Subject, gg = TRUE, scales = 'free_y' )
attr(Theoph, 'title') <- 'Theophylline'
densplot(Theoph, conc, main= function(x,...)attr(x,'title'))
densplot(Theoph, conc, sub= function(x,...)attr(x,'title'))</pre>
```

densplot_data_frame

Description

Plot density for object of class 'data.frame' using dens_panel by default.

Usage

```
densplot_data_frame(
 х,
  xvar,
  groups = NULL,
  facets = NULL,
  xlab = metOption("xlab_dens", "axislabel"),
  ref = metOption("ref_x_dens", "metaplot_ref"),
  ref.col = metOption("ref_col_dens", "grey"),
  ref.lty = metOption("ref_lty_dens", "solid"),
  ref.lwd = metOption("ref_lwd_dens", 1),
  ref.alpha = metOption("ref_alpha_dens", 1),
  log = metOption("log_dens", FALSE),
  crit = metOption("crit_dens", 1.3),
  aspect = metOption("aspect_dens", 1),
  scales = metOption("scales_dens", NULL),
  panel = metOption("panel_dens", "dens_panel"),
  points = metOption("points_dens", TRUE),
  colors = metOption("colors_dens", NULL),
  symbols = metOption("symbols_dens", NULL),
  sizes = metOption("sizes_dens", 1),
  lines = metOption("lines_dens", TRUE),
  types = metOption("types_dens", "solid"),
  widths = metOption("widths_dens", 1),
  fill = metOption("fill_dens", FALSE),
  space = metOption("space_dens", "right"),
  key = metOption("key_dens", "metaplot_key"),
  as.table = metOption("as.table_dens", TRUE),
 main = metOption("main_dens", NULL),
  sub = metOption("sub_dens", NULL),
  settings = metOption("settings_dens", NULL),
  padding = metOption("padding_dens", 1),
  gg = metOption("gg_dens", FALSE),
  verbose = metOption("verbose_dens", FALSE),
)
```

Arguments

x data.frame

densplot_data_frame 19

xvar variable to plot

groups optional grouping variable facets optional conditioning variables

xlab x axis label; can be function(x = x, var = xvar, log = log, ...)

ref reference line; can be function(x = x, var = xvar, ...) or NULL to suppress

ref.col color for reference line(s); can be length one integer to auto-select that many

colors

ref.lty type for reference line(s) ref.lwd size for reference line(s)

ref.alpha transparency for reference line(s)

log whether to log-transform x axis (auto-selected if NA)

crit if log is NA, log-transform if mean/median ratio for non-missing x is greater

than this value (and no negative values)

aspect passed to bwplot or ggplot; use 'fill', NA, or NULL to calculate automatically

scales passed to xyplot or facet_grid or facet_wrap (guessed if NULL)

panel passed to densityplot

points whether to plot points: logical or alpha, same length as groups

colors replacements for default colors in group order; can be length one integer to auto-

select that many colors

symbols replacements for default symbols in group order sizes replacements for default symbol sizes in group order

lines whether to plot lines: logical or alpha, same length as groups

types replacements for default line types in group order widths replacements for default line widths in group order

fill whether to fill curves: logical or alpha, same length as groups (symbol fill color

is same as point color)

space location of key (right, left, top, bottom)

key list: passed to xyplot as auto.key or to theme; can be a function groups name,

groups levels, points, lines, space, gg, and See metaplot_key.

as.table passed to xyplot

main character, or a function of x, xvar, groups, facets, and log sub character, or a function of x, xvar, groups, facets, and log

settings default parameter settings: a list from which matching elements are passed to

lattice (as par.settings) or to ggplot theme() and facet_wrap() or facet_grid(). ncol and nrow are used as layout indices for lattice (for homology with facet_wrap).

padding numeric (will be recycled to length 4) giving plot margins in default units: top,

right, bottom, left (in multiples of 5.5 points for ggplot)

gg logical: whether to generate ggplot instead of trellis

verbose generate messages describing process

... passed to densityplot

20 diag_label

See Also

```
Other univariate plots: dens_panel(), densplot.data.frame(), densplot(), metaplot.data.frame(), panel.meta_densityplot()

Other densplot: densplot.data.frame(), densplot()

Other metaplot: boxplot_data_frame(), categorical_data_frame(), corsplom_data_frame(), metaplot_key(), metaplot(), scatter_data_frame(), test_metaplot()
```

Examples

```
densplot_data_frame(Theoph, 'conc', grid = TRUE)
densplot_data_frame(Theoph, 'conc', 'Subject')
densplot_data_frame(Theoph, 'conc', 'Subject',
space = 'top', columns = 4, legend.direction = 'horizontal')
densplot_data_frame(Theoph, 'conc', 'Subject',
space = 'top', columns = 4, legend.direction = 'horizontal', gg = TRUE)
densplot_data_frame(Theoph, 'conc', , 'Subject')
```

diag_label

Format a Diagonal Label

Description

Formats a diagonal label. Can return a simple column name, a column label (if attribute defined), a fractured column label (split on spaces), or a processed symbol (over-rides label).

Usage

```
diag_label(
  varname,
  .data,
  diag_label_simple = metOption("diag_label_simple", FALSE),
  diag_label_split = metOption("diag_label_split", TRUE),
  diag_symbol_format = metOption("diag_symbol_format", "wikisym2plotmath"),
  verbose = metOption("verbose_diag_label", FALSE),
  ...
)
```

Arguments

diag_pin 21

```
diag_symbol_format
```

function to process symbol attribute, if present

verbose generate messages describing process

... ignored

Value

character

See Also

```
Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_pin(), iso_prepanel(), metaplot_key(), metaplot_ref(), panel.meta_densityplot(), panel_tile(), scatter_panel_ref(), scatter_panel()

Other formatters: wikisym2plotmath_(), wikisym2plotmath()
```

diag_pin

Calculate Pin Placement

Description

Calculates pin placement in the density region, inside margin of diagonal panels.

Usage

```
diag_pin(x, varname, .data, ...)
```

Arguments

x vector of data

varname name of vector in .data

. data original dataset, possibly with column attributes such as 'reference'

... passed arguments

Value

numeric

```
Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), iso_prepanel(), metaplot_key(), metaplot_ref(), panel.meta_densityplot(), panel_tile(), scatter_panel_ref(), scatter_panel()

Other reference lines: metaplot_ref(), scatter_panel_ref()
```

22 metaplot

metaplot

Metaplot

Description

Metaplot creates univariate, bivariate, or multivariate plots depending on the number and types of variables represented by the anonymous arguments. Types are either numeric (NUM, e.g. real, integer) or categorical (CAT, e.g. factor, character). A variable stored as numeric that nonetheless has an encoded guide attribute will be treated as categorical. Mnemonic: x %>% metaplot(yvars, xvar, groupvar, facets) where arguments are unquoted column names, and only xvar is required. Column attributes label, guide, reference, and symbol modify the behavior of the default handlers.

Usage

```
metaplot(x, ...)
```

Arguments

x object

... passed arguments

Details

Design your plot by specifying y variables (optional), the x variable, the groups variable (optional) and the conditioning variables (i.e., facets, optional).

The single groups variable, if any, is the first categorical in the third position or later. An earlier categorical gives a "mixed" bivariate plot or mosaic plot, depending on the type of the remaining variable.

The x variable is the last variable before groups, if present.

The y variables are those before x. If none, the result is univariate. If one, the result is typically a boxplot or scatterplot, depending on x. Several numeric y followed by a numeric x are treated as multivariate (scatterplot matrix). But if all y have the same guide attribute and it is different from that for x, the result is bivariate (i.e, an overlay scatterplot).

A single categorical variable results in a simple mosaic plot (see link[graphics]{mosaicplot} and **vcd** for more sophisticated treatment). Mosaic plots support only a single y variable; thus, whenever the first two variables are categorical, a two-way mosaic plot results, with remaining variables understood as groups and facets.

Wherever a groups argument is meaningful, it may be missing. This allows specification of facets in the absence of groups, e.g., (metaplot(y, x, , facet1, facet2)). For multiple y (overlay), the sources of y are the implied groups: any trailing categorical arguments are treated as facets.

Template designs follow; substitute behaviors by setting global options (see argument list).

NUM: univariate (densityplot)

CAT: categorical (one-way mosaic plot)

CAT, CAT: categorical (two-way mosaic plot)

metaplot 23

CAT, CAT, CAT: grouped mosaic

CAT, CAT, CAT: grouped mosaic with one facet

CAT, CAT, CAT; non-grouped mosaic with one facet

NUM, CAT: mixed variate (vertical boxplot)

CAT, NUM: mixedvariate (horizontal boxplot)

CAT, NUM, CAT: mixed variate with one facet

NUM, NUM: bivariate (scatterplot)

NUM, NUM, CAT: grouped bivariate (grouped scatterplot)

NUM, NUM,, CAT: non-grouped bivariate with one facet

NUM, NUM, CAT, CAT: grouped bivariate with one facet

NUM, NUM, CAT, CAT, CAT: grouped bivariate with two facets

NUM, NUM, NUM: multivariate, or grouped bivariate for overlay

NUM, NUM, NUM, CAT multivariate, or faceted bivariate for overlay

NUM, NUM, NUM, CAT, CAT multivariate, or bivariate with two facets for overlay

Variable attributes may be supplied by conventional means; pack and unpack support storing and retrieving scalar column attributes. The following scalar attributes are currently supported.

label: A variable descriptor. If present, panel functions will use label to create informative axis labels. See axislabel.

guide: Units for a numeric variable, or an encoding (scalar string giving codes and possibly decodes) for a categorical item. If present, units will be used to inform the corresponding axis label (axislabel). If present, codes will be used to impose sort order on categorical variables. If present, decodes will be used as substitutes for stored values when presenting categorical labels, legends, and facet names. For more on encodings, see encode.

reference: Some variables have values to which they can be compared. For example, residual error is often expected to be centered at zero. Default panel functions plot corresponding reference lines if this attribute is present. See for example dens_panel.

symbol: Variable names are useful for programming, and variable labels are useful as axis labels. A symbol can be more formal than a variable name and more compact than a label. For example, diag_label will use variable names as labels for the diagonal panels of a scatterplot matrix; but it will prefer labels, if available; and will prefer symbols most of all. Markup rules for symbols are given in wikisym2plotmath_.

```
Other generic functions: axislabel(), categorical(), corsplom(), densplot(), pack(), scatter(), test_metaplot(), unpack()
```

```
Other metaplot: boxplot_data_frame(), categorical_data_frame(), corsplom_data_frame(), densplot_data_frame(), metaplot_key(), scatter_data_frame(), test_metaplot()
```

24 metaplot

Examples

```
library(magrittr)
library(dplyr)
library(csv)
x <- as.csv(system.file(package = 'metaplot', 'extdata/theoph.csv'))</pre>
x %<>% pack
# setOption(gg = TRUE)
# setOption(verbose = TRUE) # all messages; equiv. to metaplot(verbose = T,...)
# setOption(verbose_densplot = TRUE) # densplot messages
# sample plots
x %>% metaplot(sres)
x %>% metaplot(site)
x %>% metaplot(conc, arm)
x %>% densplot(conc, arm)
x %>% metaplot(arm, conc)
x %>% metaplot(conc, arm, site)
x %>% metaplot(conc, site, arm)
x %>% metaplot(conc, time)
x %>% metaplot(arm, site)
x %>% metaplot(arm, site, cohort)
x %>% metaplot(arm, site, cohort, space = 'top')
x %>% metaplot(arm, site, , cohort)
x %>% metaplot(conc, time, subject)
x %>% metaplot(conc, time, , subject)
x %>% metaplot(conc, time, subject, site)
x %>% metaplot(conc, time, subject, site, arm)
x %>% metaplot(lKe, lKa, lCl)
x %>% metaplot(
  1Ke, 1Ka, 1C1,
  col = 'black', smooth.col = 'red', pin.col = 'red',
  dens.col='blue',dens.alpha = 0.1
x %>% metaplot(conc, pred, ipred, time, space = 'top')
x %>% metaplot(conc, pred, ipred, time, subject, space = 'top')
x %>% metaplot(conc, pred, ipred, time, subject,
  colors = c('black','blue','orange'),
  points = c(0.9, 0, 0.4),
  lines = c(F,T,T),
  types = c('blank', 'dashed', 'solid'),
  space = 'top'
)
x %>% metaplot(conc, ipred, time, site, arm, space = 'top')
x %>% metaplot(res, conc, yref = 0, ysmooth = T, conf = T, grid = T, loc = 1)
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T)
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T, global = T, ref.col = 'red')
x %>% metaplot(subject,conc)
# manage metadata
```

metaplot.data.frame 25

```
attr(x$arm, 'guide') # //1/Arm A//2/Arm B//
x %>% metaplot(conc, arm) # default

x %>% mutate(arm = arm %>%
    structure(guide = '//2/Arm B//1/Arm A//')) %>%
    metaplot(conc, arm) # different presentation order

x %>% mutate(arm = arm %>%
    structure(guide = '//1/Both Arms//2/Both Arms//')) %>%
    metaplot(conc, arm) # collapse cases
```

metaplot.data.frame

Create Metaplot for Data Frame.

Description

Creates a metaplot for class 'data.frame'. Implements a rule to decided whether to make a density plot, a boxplot, a scatter plot, or a scatterplot matrix, given the supplied column names.

Usage

Arguments

X	object
	passed arguments
univariate	function for univariate arguments
mixedvariate	function for bivariate combinations of numeric and categoral arguments
bivariate	function for arguments that resolve to two numerics (see rules)
multivariate	function for more than two numeric arguments
categorical	function for categorical arguments
verbose	generate messages describing process; passed to called functions if explicitly supplied

26 metaplot.data.frame

See Also

```
Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), corsplom.data.frame(), densplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()

Other univariate plots: dens_panel(), densplot.data.frame(), densplot_data_frame(), densplot(), panel.meta_densityplot()

Other bivariate plots: iso_prepanel(), scatter.data.frame(), scatter_data_frame(), scatter()

Other multivariate plots: corsplom.data.frame(), corsplom_data_frame()
```

Examples

```
## Not run:
library(magrittr)
library(dplyr)
library(csv)
library(nlme)
x <- Theoph
# mixed effects model
m1 <- nlme(
  conc ~ SSfol(Dose, Time, 1Ke, 1Ka, 1Cl),
  data = x,
  fixed = 1Ke + 1Ka + 1C1 \sim 1,
  random = 1Ke + 1Ka + 1Cl ~ 1
)
# some numeric and categorical properties
names(x) <- tolower(names(x))</pre>
x \ll \infty mutate(arm = ifelse(as.numeric(as.character(subject)) %% 2 == 0, 1, 2))
x %<>% mutate(site = ifelse(as.numeric(as.character(subject)) < 6, 1, 2))
x %<>% mutate(cohort = ifelse(as.numeric(as.character(subject)) %in% c(1:2,6:8), 1,2))
x %<>% mutate(pred = predict(m1,level = 0) %>% signif(4))
x %<>% mutate(ipred = predict(m1) %>% signif(4))
x %<>% mutate(res = residuals(m1) %>% signif(4))
x %<>% mutate(sres = residuals(m1, type = 'pearson') %>% signif(4))
r <- ranef(m1) %>% signif(4)
r$subject <- rownames(r)</pre>
x %<>% left_join(r)
# metadata
attr(x$subject,'label') <- 'subject identifier'</pre>
attr(x$wt,'label') <- 'subject weight'</pre>
attr(x$dose, 'label') <- 'theophylline dose'</pre>
attr(x$time,'label') <- 'time since dose administration'</pre>
attr(x$conc,'label') <- 'theophylline concentration'</pre>
attr(x$arm,'label') <- 'trial arm'</pre>
attr(x$site, 'label') <- 'investigational site'
attr(x$cohort,'label') <- 'recruitment cohort'</pre>
attr(x$pred,'label') <- 'population-predicted concentration'</pre>
attr(x$ipred,'label') <- 'individual-predicted concentration'</pre>
attr(x$res,'label') <- 'residuals'</pre>
attr(x$sres, 'label') <- 'standardized residuals'</pre>
```

metaplot_key 27

```
attr(x$lKe,'label') <- 'natural log of elimination rate constant'</pre>
attr(x$1Ka,'label') <- 'natural log of absorption rate constant'</pre>
attr(x$1Cl,'label') <- 'natural log of clearance'</pre>
attr(x$subject, 'guide') <- '....'</pre>
attr(x$wt,'guide') <- 'kg'</pre>
attr(x$dose,'guide') <- 'mg/kg'</pre>
attr(x$time,'guide') <- 'h'</pre>
attr(x$conc,'guide') <- 'mg/L'</pre>
attr(x$arm,'guide') <- '//1/Arm A//2/Arm B//'</pre>
attr(x$site,'guide') <- '//1/Site 1//2/Site 2//'
attr(x$cohort,'guide') <- '//1/Cohort 1//2/Cohort 2//'</pre>
attr(x$pred,'guide') <- 'mg/L'
attr(x$ipred, 'guide') <- 'mg/L'
attr(x$1Ke,'reference') <- 0</pre>
attr(x$1Ka,'reference') <- 0</pre>
attr(x$1Cl,'reference') <- 0</pre>
attr(x$res,'reference') <- 0</pre>
attr(x$sres,'reference') <- '//-1.96//1.96//'
attr(x$subject,'symbol') <- 'ID_i'</pre>
attr(x$wt,'symbol') <- 'W_i'</pre>
attr(x$dose,'symbol') <- 'A_i'</pre>
attr(x$time,'symbol') <- 't_i,j'</pre>
attr(x$conc,'symbol') <- 'C_i,j'</pre>
attr(x$arm,'symbol') <- 'Arm_i'</pre>
attr(x$site,'symbol') <- 'Site_i'</pre>
attr(x$cohort,'symbol') <- 'Cohort_i'</pre>
attr(x$pred,'symbol') <- 'C_pred_p'</pre>
attr(x$ipred,'symbol') <- 'C_pred_i'</pre>
attr(x$res,'symbol') <- '\\epsilon'</pre>
attr(x$sres,'symbol') <- '\\epsilon_st'</pre>
attr(x$lKe,'symbol') <- 'ln(K_e.)'</pre>
attr(x$lKa,'symbol') <- 'ln(K_a.)'</pre>
attr(x$1Cl,'symbol') <- 'ln(Cl_c./F)'</pre>
x %>% unpack %>% as.csv('theoph.csv')
## End(Not run)
```

metaplot_key

Default Key

Description

Default key function for constructing scatterplot legends.

28 metaplot_key

Usage

```
metaplot_key(
   groups,
   levels,
   points = rep(FALSE, length.out = length(levels)),
   lines = rep(FALSE, length.out = length(levels)),
   fill = rep(FALSE, length.out = length(levels)),
   space = "right",
   gg = FALSE,
   type = "scatter",
   verbose = FALSE,
   ...
)
```

Arguments

groups	name of the grouping variable
levels	the (unique) levels of the grouping variable
points	logical or alpha, same length as groups
lines	logical or alpha, same length as groups
fill	logical or alpha, same length as groups
space	character: left, right, top, or bottom
gg	logical: whether to to return a list of arguments for theme instead of for auto.key as in ${\tt xyplot}$
type	typically one of 'categorical', 'density', or 'scatter'
verbose	generate messages describing process
	ignored

Value

list, or possibly logical if gg is FALSE

```
Other metaplot: boxplot_data_frame(), categorical_data_frame(), corsplom_data_frame(), densplot_data_frame(), metaplot(), scatter_data_frame(), test_metaplot()

Other scatter: scatter.data.frame(), scatter_data_frame(), scatter_panel(), scatter()

Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_ref(), panel.meta_densityplot(), panel_tile(), scatter_panel_ref(), scatter_panel()
```

metaplot_ref 29

metaplot_ref

Calculate Reference Values

Description

Calculates reference values for x and y axes. Coerces column attribute 'reference' to numeric: a single value or an encoding giving multiple numeric values (decodes are ignored).

Usage

```
metaplot_ref(x, var, ...)
```

Arguments

```
x data.frame
var name of vector in x
... ignored
```

Value

numeric

See Also

```
Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_key(), panel.meta_densityplot(), panel_tile(), scatter_panel_ref(), scatter_panel()

Other reference lines: diag_pin(), scatter_panel_ref()
```

metastats

Format GLM Statistics

Description

Formats GLM statistics. Uses a gaussian family by default, or binomial family if all y are 0 or 1, to fit a general linear model. Formats number of observations, p-value, and Pearson correlation coefficient into a string for printing.

```
metastats(
   x,
   y,
   family = if (all(y %in% 0:1, na.rm = TRUE)) "binomial" else "gaussian",
   ...
)
```

30 metOption

Arguments

x x valuesy y values

family regression family
... other arguments

Value

character

See Also

```
scatter_panel
```

Other regression functions: model(), region()

metOption

Get Metaplot Option with Partial Matching

Description

Gets a metaplot option value from the named list getOption('metaplot'). If an exact match is not found, trailing elements of x, separated by underscore, are removed one at a time in search of a partial match. Thus 'ref.col' will match for 'ref.col_dens' and 'ref.col_scatter' if neither of these is set (allowing selective override). However, global' will never match 'global.col'.

Usage

```
metOption(x, default = NULL)
```

Arguments

x a character string holding an option name default the value returned if option is not set

Details

If x is missing a list of all metaplot options is returned.

```
getOption setOption
```

multiplot 31

Examples

```
library(magrittr)
library(dplyr)
library(csv)
x <- as.csv(system.file(package = 'metaplot', 'extdata/theoph.csv'))</pre>
multiplot(
x %>% metaplot(conc, gg = F),
x %>% metaplot(conc, time, gg = F),
x %>% metaplot(conc, arm, gg = F),
x %>% metaplot(conc, arm, gg = T)
)
# Add a reference line at 9 mg/L
x$conc %<>% structure(reference = 9)
# Make the reference line green universally.
setOption(ref_col = 'green')
# Make the reference line orange for density plots
setOption(ref_col_dens = 'orange')
multiplot(
x %>% metaplot(conc, gg = F),
x %>% metaplot(conc, time, gg = F),
x %>% metaplot(conc, arm, gg = F),
x %>% metaplot(conc, arm, gg = T)
# Restore defaults
# setOption() # clears all metaplot options
setOption(ref_col = NULL)
setOption(ref_col_dens = NULL)
```

multiplot

Arrange Multiple Trellis or GG Plots in a Grid

Description

Arranges mutiple trellis plots or ggplots in a grid, automatically choosing number of rows and columns. By default, number of rows is one less than or equal to the number of columns.

```
multiplot(..., nrow = NULL, ncol = NULL)
```

32 pack

Arguments

```
trellis or ggplot objectsnrownumber of rows of plotsncolnumber of columns of plots
```

Value

metaplot_gtable

See Also

arrangeGrob

Examples

```
library(lattice)
a <- xyplot(
conc ~ Time,
xlab=NULL,
ylab = NULL,
Theoph,
aspect = 1,
scales=list(draw=FALSE)
multiplot(a,a,a,a,a,a)
multiplot(a,a,a,a,a,a,a)
multiplot(a,a,a,a,a,a,a,a)
multiplot(a,a,a,a,a,a,a,a,a)
multiplot(a,a,a,a,a,a,a,a,a,a)
multiplot(a,a,a,a,a,a,a, nrow = 2)
multiplot(a,a,a,a,a,a,a, ncol = 4)
multiplot(a,a,a,a,a,a,a, ncol = 2)
multiplot(a,a,a,a,a,a,a, ncol = 4, nrow = 3)
multiplot(multiplot(a,a), a)
```

pack

Pack Something

Description

Pack Something. Generic, with method for data.frame.

```
pack(x, ...)
```

pack.data.frame 33

Arguments

```
x object ... other arguments
```

See Also

```
Other generic functions: axislabel(), categorical(), corsplom(), densplot(), metaplot(), scatter(), test_metaplot(), unpack()

Other pack: pack.data.frame(), unpack.data.frame(), unpack()
```

pack.data.frame

Capture Scalar Column Metadata as Column Attributes

Description

Captures scalar column metadata (row values) as column attributes. Excises rows with non-missing values of meta, converting column values to column attributes. Afterward, column classes are reoptimized using default behavior of read. table. It is an error if meta is not in names(x).

Usage

```
## $3 method for class 'data.frame'
pack(
    x,
    meta = getOption("meta", "meta"),
    as.is = TRUE,
    attributes = TRUE,
    na.rm = TRUE,
    ...
)
```

Arguments

Value

data.frame

panel_tile

See Also

```
Other pack: pack(), unpack.data.frame(), unpack()
Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), corsplom.data.frame(), densplot.data.frame(), metaplot.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame(), unpack.data.frame()
```

Examples

```
foo <- data.frame(head(Theoph))</pre>
attr(foo$Subject, 'label') <- 'subject identifier'</pre>
attr(foo$Wt, 'label') <- 'weight'</pre>
attr(foo$Dose, 'label') <- 'dose'</pre>
attr(foo$Time, 'label') <- 'time'</pre>
attr(foo$conc, 'label') <- 'concentration'</pre>
attr(foo$Subject, 'guide') <- '///'</pre>
attr(foo$Wt, 'guide') <- 'kg'</pre>
attr(foo$Dose, 'guide') <- 'mg/kg'</pre>
attr(foo$Time, 'guide') <- 'h'</pre>
attr(foo$conc, 'guide') <- 'mg/L'</pre>
unpack(foo, pos = 1)
unpack(foo, pos = 2)
unpack(foo, pos = 3)
unpack(foo, pos = 4)
bar <- unpack(foo)</pre>
pack(bar)
attributes(pack(bar)$Subject)
```

panel_tile

Draw a Tile

Description

Draws a tile in a mosaic.

```
panel_tile(
    x,
    y,
    subscripts,
    group.number,
    group.value,
    col,
    alpha,
    border,
    loc,
    msg,
    .src,
```

scatter 35

```
cex,
verbose,
...
```

Arguments

x x values
y y values
subscripts subscripts
group.number group number
group.value group value
col fill color

alpha alpha transparency for fill

border border color

loc location for output of msg

msg ignored

. src data source for which subscripts give x, y, msg, and tile limits

cex expansion for msg text; passed to msg verbose generate messages describing process

... passed arguments

See Also

```
Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_key(), metaplot_ref(), panel.meta_densityplot(), scatter_panel_ref(), scatter_panel()

Other categorical: categorical.data.frame(), categorical_data_frame(), categorical_panel(), categorical()
```

scatter Scatterplot

Description

Scatterplot.

```
scatter(x, ...)
```

36 scatter.data.frame

Arguments

```
x object
... passed arguments
```

See Also

```
Other generic functions: axislabel(), categorical(), corsplom(), densplot(), metaplot(), pack(), test_metaplot(), unpack()

Other scatter: metaplot_key(), scatter.data.frame(), scatter_data_frame(), scatter_panel()

Other bivariate plots: iso_prepanel(), metaplot.data.frame(), scatter.data.frame(), scatter_data_frame()
```

scatter.data.frame

Scatterplot Method for Data Frame

Description

Scatterplot method for class 'data.frame'. Parses arguments and generates the call: fun(x, yvar, xvar, groups, facets, ...).

Usage

```
## $3 method for class 'data.frame'
scatter(
    x,
    ...,
    fun = metOption("scatter", "scatter_data_frame"),
    verbose = metOption("verbose_scatter", FALSE)
)
```

Arguments

x data.frame
... passed to fun

fun function to draw the plot

verbose generate messages describing process

```
scatter_data_frame
```

```
Other bivariate plots: iso_prepanel(), metaplot.data.frame(), scatter_data_frame(), scatter()
Other scatter: metaplot_key(), scatter_data_frame(), scatter_panel(), scatter()
Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), corsplom.data.frame(), densplot.data.frame(), metaplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), unpack.data.frame()
```

Examples

```
library(magrittr)
library(dplyr)
attr(Theoph$conc,'label') <- 'theophylline concentration'</pre>
attr(Theoph$conc,'guide') <- 'mg/L'</pre>
attr(Theoph$Time, 'label') <- 'time'</pre>
attr(Theoph$Time,'guide') <- 'h'</pre>
attr(Theoph$Subject,'guide') <- '///'</pre>
# setOption(gg = T)
scatter(Theoph,conc, Time)
scatter(Theoph, conc, Time, Subject) # Subject as groups
scatter(Theoph, conc, Time, , Subject) # Subject as facet
scatter(Theoph, conc, Time, , Subject, gg = TRUE, scales = 'free_y' )
scatter(Theoph %>% filter(conc > 0), conc, Time, Subject, ylog = TRUE, yref = 5)
scatter(Theoph, conc, Time, Subject, ysmooth = TRUE)
scatter(Theoph, conc, Time, conf = TRUE, loc = 3, yref = 6)
scatter(Theoph, conc, Time, conf = TRUE, loc = 3, yref = 6, global = TRUE)
## Not run:
\dontshow{
attr(Theoph,'title') <- 'Theophylline'</pre>
scatter(Theoph, conc, Time, main = function(x,...)attr(x,'title'))
scatter(Theoph, conc, Time, sub= function(x,...)attr(x,'title'))
setOption(main = function(x,...)attr(x,'title'))
scatter(Theoph, conc, Time)
## End(Not run)
```

scatter_data_frame

Scatterplot Function for Data Frame

Description

Scatterplot function for class 'data.frame'.

Usage

```
scatter_data_frame(
    x,
    yvar,
    xvar,
    groups = NULL,
    facets = NULL,
    log = metOption("log_scatter", FALSE),
    ylog = metOption("ylog_scatter", log),
    xlog = metOption("xlog_scatter", log),
    crit = metOption("crit_scatter", 1.3),
    yref = metOption("yref_scatter", "metaplot_ref"),
    xref = metOption("xref_scatter", "metaplot_ref")),
```

```
ylab = metOption("ylab_scatter", "axislabel"),
xlab = metOption("xlab_scatter", "axislabel"),
ysmooth = metOption("ysmooth_scatter", FALSE),
xsmooth = metOption("xsmooth_scatter", FALSE),
iso = metOption("iso_scatter", FALSE),
na.rm = metOption("na.rm_scatter", TRUE),
aspect = metOption("aspect_scatter", 1),
space = metOption("space_scatter", "right"),
key = metOption("key_scatter", "metaplot_key"),
as.table = metOption("as.table_scatter", TRUE),
prepanel = metOption("prepanel_scatter", NULL),
isoprepanel = metOption("isoprepanel_scatter", "iso_prepanel"),
scales = metOption("scales_scatter", NULL),
panel = metOption("panel_scatter", "scatter_panel"),
points = metOption("points_scatter", TRUE),
colors = metOption("colors_scatter", NULL),
fill = metOption("fill_scatter", NULL),
symbols = metOption("symbols_scatter", NULL),
sizes = metOption("sizes_scatter", 1),
types = metOption("types_scatter", "solid"),
widths = metOption("widths_scatter", 1),
lines = metOption("lines_scatter", FALSE),
main = metOption("main_scatter", NULL),
sub = metOption("sub_scatter", NULL),
subscripts = metOption("subscripts_scatter", TRUE),
settings = metOption("settings_scatter", NULL),
padding = metOption("padding_scatter", 1),
ref.col = metOption("ref.col_scatter",
                                      grey"),
ref.lty = metOption("ref.lty_scatter", "solid"),
ref.lwd = metOption("ref.lwd_scatter", 1),
ref.alpha = metOption("ref.alpha_scatter", 1),
xref.col = metOption("xref.col_scatter", NULL),
xref.lty = metOption("xref.lty_scatter", NULL),
xref.lwd = metOption("xref.lwd_scatter", NULL),
xref.alpha = metOption("xref.alpha_scatter", NULL),
yref.col = metOption("yref.col_scatter", NULL),
yref.lty = metOption("yref.lty_scatter", NULL),
yref.lwd = metOption("yref.lwd_scatter", NULL),
yref.alpha = metOption("yref.alpha_scatter", NULL),
smooth.lty = metOption("smooth.lty_scatter", "dashed"),
smooth.lwd = metOption("smooth.lwd_scatter", 1),
smooth.alpha = metOption("smooth.alpha_scatter", 1),
fit = metOption("fit_scatter", conf),
fit.lty = metOption("fit.lty_scatter", "solid"),
fit.lwd = metOption("fit.lwd_scatter", 1),
fit.alpha = metOption("fit.alpha_scatter", 1),
conf = metOption("conf_scatter", FALSE),
conf.alpha = metOption("conf.alpha_scatter", 0.3),
```

```
loc = metOption("loc_scatter", 0),
global = metOption("global_scatter", FALSE),
global.col = metOption("global.col_scatter", "grey"),
global.fill = metOption("global.fill_scatter", "grey"),
msg = metOption("msg_scatter", "metastats"),
gg = metOption("gg_scatter", FALSE),
verbose = metOption("verbose", FALSE),
...
)
```

Arguments

x	data.frame
yvar	character: y variable(s)
xvar	character: x variable
groups	optional grouping variable; ignored if more than one yvar
facets	optional conditioning variables
log	a default shared by ylog and xlog
ylog	log transform y axis (auto-selected if NA)
xlog	log transform x axis (auto-selected if NA)
crit	if ylog or xlog missing, log transform if mean/median ratio for non-missing values is greater than crit
yref	reference line from y axis; can be $function(x = x, var = yvar,)$ or NULL to suppress
xref	reference line from x axis; can be function($x = x$, $var = xvar$,) or NULL to suppress
ylab	y axis label; can be function($x = x$, $var = yvar$, $log = ylog$,)
xlab	x axis label; can be function($x = x$, $var = xvar$, $log = xlog$,)
ysmooth	supply loess smooth of y on x
xsmooth	supply loess smmoth of x on y
iso	logical: plot line of unity (auto-selected if NA); can be a (partial) list of aesthetics (col, lty, lwd, alpha)
na.rm	whether to remove data points with one or more missing coordinates
aspect	passed to bwplot or ggplot; use 'fill', NA, or NULL to calculate automatically
space	location of key (right, left, top, bottom)
key	list: passed to xyplot as auto.key or to theme; can be a function groups name, groups levels, points, lines, space, gg, and See metaplot_key.
as.table	passed to xyplot
prepanel	passed to xyplot (guessed if NULL)
isoprepanel	passed to xyplot if iso is TRUE
scales	passed to xyplot or facet_grid or facet_wrap (guessed if NULL)

panel	name or definition of panel function
points	whether to plot points and fill for each group: logical, or alpha values between 0 and 1
colors	replacements for default colors in group order; can be length one integer to auto- select that many colors
fill	replacements for default fill colors in group order (means something different for densplot_data_frame and categorical_data_frame). Used for confidence regions and for filling symbols (pch 21:25).
symbols	replacements for default symbols in group order (i.e. values of pch)
sizes	replacements for default symbol sizes in group order
types	replacements for default line types in group order
widths	replacements for default line widths in group order
lines	whether to plot lines for each group: logical, or alpha values between 0 and 1. Points are connected in the order in which they appear in the data.
main	character, or a function of x, yvar, xvar, groups, facets, and log
sub	character, or a function of x, yvar, xvar, groups, facets, and log
subscripts	passed to xyplot
settings	default parameter settings: a list from which matching elements are passed to lattice (as par.settings) or to ggplot theme() and facet_wrap() or facet_grid(). ncol and nrow are used as layout indices for lattice (for homology with facet_wrap). Also merged with
padding	numeric (will be recycled to length 4) giving plot margins in default units: top, right, bottom, left (in multiples of 5.5 points for ggplot)
ref.col	default shared by xref.col and yref.col; can be length one integer to auto- select that many colors
ref.lty	default shared by xref.lty and yref.lty
ref.lwd	default shared by xref.lwd and yref.lwd
ref.alpha	default shared by xref.alpha and yref.alpha
xref.col	x reference line color (recycled)
xref.lty	x reference line type (recycled)
xref.lwd	x reference line size (recycled)
xref.alpha	x reference line alpha (recycled)
yref.col	y reference line color (recycled)
yref.lty	y reference line type (recycled)
yref.lwd	y reference line size (recycled)
yref.alpha	y reference line alpha (recycled)
smooth.lty	smooth line type
smooth.lwd	smooth line size
smooth.alpha	smooth alpha
fit	draw a linear fit of $y \sim x$

```
fit.lty
                   fit line type
fit.lwd
                   fit line size
fit.alpha
                   fit alpha
conf
                   logical, or width for a confidence region around a linear fit; passed to region;
                   TRUE defaults to 95 percent confidence interval; may not make sense if xlog is
                   TRUE
conf.alpha
                   alpha transparency for confidence region
loc
                   where to print statistics on a panel; suppressed for grouped plots an facetted
                   ggplots
                   if TRUE, xsmooth, ysmooth, fit, and conf are applied to all data rather than
global
                   groupwise
global.col
                   color for global aesthetics
global.fill
                   fill color for global aesthetics
                   a function to print text on a panel: called with x values, y values, and ....
msg
                   logical: whether to generate ggplot instead of trellis
gg
verbose
                   generate messages describing process
                   passed to called functions e.g., region
```

See Also

. . .

```
scatter_panel
```

```
Other bivariate plots: iso_prepanel(), metaplot.data.frame(), scatter.data.frame(), scatter()
Other metaplot: boxplot_data_frame(), categorical_data_frame(), corsplom_data_frame(),
densplot_data_frame(), metaplot_key(), metaplot(), test_metaplot()
Other scatter: metaplot_key(), scatter.data.frame(), scatter_panel(), scatter()
```

Examples

```
library(magrittr)
library(dplyr)
attr(Theoph$conc,'label') <- 'theophylline concentration'</pre>
attr(Theoph$conc,'guide') <- 'mg/L'</pre>
attr(Theoph$Time, 'label') <- 'time'</pre>
attr(Theoph$Time, 'guide') <- 'h'</pre>
attr(Theoph$Subject, 'guide') <- '///'</pre>
scatter_data_frame(Theoph, 'conc', 'Time')
scatter_data_frame(Theoph, 'conc', 'Time', 'Subject')
scatter_data_frame(Theoph, 'conc','Time', facets = 'Subject')
scatter_data_frame(Theoph %>% filter(conc > 0), 'conc', 'Time', 'Subject',ylog = TRUE, yref = 5)
scatter_data_frame(Theoph, 'conc','Time', 'Subject',ylog = TRUE, yref = 5)
scatter_data_frame(Theoph, 'conc','Time', 'Subject',ysmooth = TRUE)
scatter_data_frame(Theoph, 'conc','Time', 'Subject',ysmooth = TRUE,global = TRUE)
scatter_data_frame(Theoph, 'conc', 'Time', conf = TRUE, loc = 3, yref = 6)
scatter_data_frame(Theoph, 'conc', 'Time', conf = TRUE, loc = 3, yref = 6)
```

42 scatter_panel

scatter_panel

Panel Function for Metaplot Scatterplot

Description

Default panel function for scatter_data_frame. Calls panel.xyplot and optionally plots linear fit, confidence region, reference lines, and statistics. Note that, although global options are supported, typically these are unreachable since the calling function supplies appropriate values.

Usage

```
scatter_panel(
 х,
 у,
 groups,
 xref = metOption("xref_scatter_panel", scatter_panel_ref),
 yref = metOption("yref_scatter_panel", scatter_panel_ref),
 ref.col = metOption("ref.col_scatter_panel", "grey"),
 ref.lty = metOption("ref.lty_scatter_panel", "solid"),
 ref.lwd = metOption("ref.lwd_scatter_panel", 1),
 ref.alpha = metOption("ref.alpha_scatter_panel", 1),
 xref.col = metOption("xref.col_scatter_panel", NULL),
 xref.lty = metOption("xref.lty_scatter_panel", NULL),
 xref.lwd = metOption("xref_lwd_scatter_panel", NULL),
 xref.alpha = metOption("xref_alpha_scatter_panel", NULL),
 yref.col = metOption("yref_col_scatter_panel", NULL),
 yref.lty = metOption("yref_lty_scatter_panel", NULL),
 yref.lwd = metOption("yref_lwd_scatter_panel", NULL),
 yref.alpha = metOption("yref_alpha_scatter_panel", NULL),
 ysmooth = metOption("ysmooth_scatter_panel", FALSE),
 xsmooth = metOption("xsmooth_scatter_panel", FALSE),
 smooth.lty = metOption("smooth.lty_scatter_panel", "dashed"),
 smooth.lwd = metOption("smooth.lwd_scatter_panel", 1),
 smooth.alpha = metOption("smooth.alpha_scatter_panel", 1),
 fit = metOption("fit_scatter_panel", NULL),
 fit.lty = metOption("fit.lty_scatter_panel", "solid"),
 fit.lwd = metOption("fit.lwd_scatter_panel", 1),
 fit.alpha = metOption("fit.alpha_scatter_panel", 1),
 conf = metOption("conf_scatter_panel", FALSE),
 conf.alpha = metOption("conf.alpha_scatter_panel", 0.3),
 loc = metOption("loc_scatter_panel", 0),
 iso = metOption("iso_scatter_panel", FALSE),
 global = metOption("global_scatter_panel", FALSE),
 global.col = metOption("global.col_scatter_panel", "grey"),
 global.fill = metOption("global.fill_scatter_panel", "grey"),
 msg = metOption("msg_scatter_panel", "metastats"),
 type,
```

scatter_panel 43

```
verbose = metOption("verbose_scatter_panel", FALSE),
    ...
)
```

Arguments

```
x values
Х
                   y values
У
                   optional grouping item
groups
                   reference line from x axis; can be function(x, y, ...)
xref
yref
                   reference line from y axis; can be function(y, x, ...)
                   default shared by xref.col and yref.col
ref.col
ref.lty
                   default shared by xref.lty and yref.lty
ref.lwd
                   default shared by xref.lwd and yref.lwd
ref.alpha
                   default shared by xref.alpha and yref.alpha
xref.col
                   x reference line color (recycled)
xref.lty
                   x reference line type (recycled)
xref.lwd
                   x reference line size (recycled)
xref.alpha
                   x reference line alpha (recycled)
yref.col
                   y reference line color (recycled)
yref.lty
                   y reference line type (recycled)
yref.lwd
                   y reference line size (recycled)
yref.alpha
                   y reference line alpha (recycled)
                   supply loess smooth of y on x
ysmooth
xsmooth
                   supply loess smmoth of x on y
smooth.lty
                   smooth line type
smooth.lwd
                   smooth line size
smooth.alpha
                   smooth alpha
fit
                   draw a linear fit of y \sim x; defaults to as.logical(conf)
fit.lty
                   fit line type
fit.lwd
                   fit line size
fit.alpha
                   fit alpha
                  logical, or width for a confidence region around a linear fit; passed to region;
conf
                   TRUE defaults to 95 percent confidence interval; may not make sense if xlog is
                   TRUE
conf.alpha
                   alpha transparency for confidence region
                   where to print statistics on a panel; suppressed for grouped plots
loc
                   logical: use isometric axes with line of unity (auto-selected if NA); can be a
iso
                   (partial) list of aesthetics (col, lty, lwd, alpha)
```

44 scatter_panel_ref

global if TRUE, xsmooth, ysmooth, fit, and conf are applied to all data rather than

groupwise

global.col color for global aesthetics global.fill fill color for global aesthetics

msg a function to print text on a panel: called with x values, y values, and

type overridden by scatter_panel

verbose generate messages describing process

... passed to panel.superpose, panel.xyplot, panel.polygon, region, panel.text

See Also

metastats

```
scatter.data.frame
```

```
Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_key(), metaplot_ref(), panel.meta_densityplot(), panel_tile(), scatter_panel_ref()
```

Other scatter: metaplot_key(), scatter.data.frame(), scatter_data_frame(), scatter()

 $scatter_panel_ref$ C

Calculate Panel Reference Values

Description

Calculates reference values for x and y axes at the panel level.

Usage

```
scatter_panel_ref(a, b, ...)
```

Arguments

a vector of interestb vector for other axis

... ignored

Value

numeric

setOption 45

See Also

Other panel functions: boxplot_panel(), categorical_panel(), corsplom_gg_correlation(), corsplom_gg_diagonal(), corsplom_gg_scatter(), corsplom_panel_correlation(), corsplom_panel_diagonal(), corsplom_panel_scatter(), dens_panel(), diag_label(), diag_pin(), iso_prepanel(), metaplot_key(), metaplot_ref(), panel.meta_densityplot(), panel_tile(), scatter_panel()

Other reference lines: diag_pin(), metaplot_ref()

setOption

Set or Reset Metaplot Options

Description

Sets an option value in the list getOption('metaplot'). If invoked without named arguments, option 'metaplot' is set to NULL. Setting an existing option moves it to the end of the list (breaks ties in metOption).

Usage

```
setOption(...)
```

Arguments

... any metaplot options can be defined, using name = value.

Value

(invisible) character vector of option names that were set or unset

See Also

metOptionoptions

Examples

```
example(metOption)
```

test_metaplot

Test Metaplot Variants

Description

Tests metaplot variants by example. Returns null. Use example(test_metaplot).

Usage

```
test_metaplot()
```

See Also

```
Other generic functions: axislabel(), categorical(), corsplom(), densplot(), metaplot(), pack(), scatter(), unpack()

Other metaplot: boxplot_data_frame(), categorical_data_frame(), corsplom_data_frame(), densplot_data_frame(), metaplot_key(), metaplot(), scatter_data_frame()
```

Examples

```
library(magrittr)
library(dplyr)
library(csv)
x <- as.csv(system.file(package = 'metaplot', 'extdata/theoph.csv'))</pre>
x %<>% pack
multiplot(
x %>% metaplot(sres, gg = F),
x %>% metaplot(sres, gg = T, padding = 3.5)
multiplot(
x %>% metaplot(site, gg = F),
x %>% metaplot(site, gg = T, padding = 3.5)
multiplot(
x %>% metaplot(conc, arm, gg = F),
x %>% metaplot(conc, arm, gg = T, padding = 4)
)
multiplot(
x %>% densplot(conc, arm, gg = F),
x %>% densplot(conc, arm, gg = T, padding = 8)
multiplot(
x %>% densplot(
  conc, arm, gg = F, space = 'top',
  columns = 2,
  legend.direction = 'horizontal' # ignored
),
```

```
x %>% densplot(conc, arm, gg = T, space = 'top',
  columns = 2, # ignored
  legend.direction = 'horizontal' , padding = 3
))
multiplot(
x %>% metaplot(arm, conc, gg = F),
x %>% metaplot(arm, conc, gg = T, padding = 3.5)
multiplot(
x %>% metaplot(conc, arm, site, gg = F),
x %>% metaplot(conc, arm, site, gg = T, padding = 5)
multiplot(
x %>% metaplot(conc, site, arm, gg = F),
x %>% metaplot(conc, site, arm, gg = T, padding = 5)
multiplot(
x %>% metaplot(conc, time, gg = F),
x %>% metaplot(conc, time, gg = T, padding = 5)
multiplot(
x %>% metaplot(arm, site, gg = F),
x %>% metaplot(arm, site, gg = T, padding = 3)
multiplot(
x %>% metaplot(arm, site, cohort, gg = F),
x %>% metaplot(arm, site, cohort, gg = T, padding = 5)
multiplot(
x %>% metaplot(arm, site, cohort, gg = F, space = 'top',
  columns = 2, padding = c(5,1,1,1)),
x %>% metaplot(arm, site, cohort, gg = T, space = 'top',
  legend.direction = 'horizontal', padding = 2)
)
multiplot(
x %>% metaplot(arm, site, , cohort, gg = F),
x %>% metaplot(arm, site, , cohort, gg = T, padding = 4)
)
multiplot(
x %>% metaplot(conc, time, subject, gg = F),
x %>% metaplot(conc, time, subject, gg = T, padding = 3)
)
multiplot(
x %>% metaplot(conc, time, , subject, gg = F),
x %>% metaplot(conc, time, , subject, gg = T, padding = 5)
)
multiplot( ncol = 2,
x %>% metaplot(conc, time, subject, site, gg = F),
x %>% metaplot(conc, time, subject, site, gg = T, padding = 4)
multiplot(
x %>% metaplot(conc, time, subject, site, arm, gg = F, padding = 2),
x %>% metaplot(conc, time, subject, site, arm, gg = T)
```

```
multiplot(
x %>% metaplot(lKe, lKa, lCl, gg = F),
x %>% metaplot(lKe, lKa, lCl, gg = T, padding = 2)
multiplot(
x %>% metaplot(
  lKe, lKa, lCl,
  col = 'black',smooth.col = 'red', pin.col = 'red',
  dens.col = 'blue', dens.alpha = 0.1, gg = F
),
x %>% metaplot(
  1Ke, 1Ka, 1Cl,
  col = 'black',smooth.col = 'red', pin.col = 'red',
  dens.col='blue',dens.alpha = 0.1, gg = T, padding = 2)
)
multiplot(
x %>% metaplot(conc, pred, ipred, time, space = 'top', gg = F),
x %>% metaplot(conc, pred, ipred, time, space = 'top', gg = T, padding = 3)
multiplot(
x %>% metaplot(conc, pred, ipred, time, subject, space = 'top', gg = F),
x %>% metaplot(conc, pred, ipred, time, subject, space = 'top', gg = T, padding = 5)
multiplot(
x %>% metaplot(
  conc, pred, ipred, time, subject,
  colors = c('black','blue','orange'),
  points = c(0.9,0, 0.4),
  lines = c(F,T,T),
  space = 'top', gg = F
),
x %>% metaplot(
  conc, pred, ipred, time, subject,
  colors = c('black','blue','orange'),
  points = c(0.9,0, 0.4),
  lines = c(F,T,T),
  space = 'top', gg = T, padding = 4
))
multiplot(
x %>% metaplot(conc, ipred, time, site, arm, space = 'top', gg = F),
x %>% metaplot(conc, ipred, time, site, arm, space = 'top', gg = T)
)
multiplot(
x %>% metaplot(res, conc, yref = 0, ysmooth = T, conf = T, grid = T, loc = 1, gg = F),
x %>% metaplot(res, conc, yref = 0, ysmooth = T, conf = T, grid = T, loc = 1, gg = T, padding = 3.5)
)
multiplot(
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T , gg = F),
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T, gg = T, padding = 3.5)
# Fill color can differ from point color but is the same for points and regions.
# 'points' controls alpha of point and point fill independently of conf.fill.
```

```
multiplot(
x %>% metaplot(res, conc, arm, conf = T , gg = F, yref = NULL, points = 0.3,
 symbols = 21:22, colors = c('blue', 'black'), fill = c('green', 'red')
),
x %>% metaplot(res, conc, arm, conf = T , gg = T, yref = NULL, points = 0.3, padding = 3.5,
  symbols = 21:22, colors = c('blue', 'black'), fill = c('green', 'red')
))
multiplot(
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T, global = T,
  ref.col = 'red', gg = F),
x %>% metaplot(res, conc, arm, ysmooth = T, conf = T, global = T,
  ref.col = 'red', gg = T, padding = 3.5)
multiplot(
x %>% metaplot(subject,conc, gg = F),
x \% metaplot(subject,conc, gg = T, padding = 3.5)
)
# manage metadata
attr(x$arm, 'guide') # //1/Arm A//2/Arm B//
multiplot(
x %>% metaplot(conc, arm, gg = F),
x %>% metaplot(conc, arm, gg = T, padding = 4)
) # default
multiplot(
x %>% mutate(arm = arm %>%
  structure(guide = '//2/Arm B//1/Arm A//')) %>%
  metaplot(conc, arm, gg = F),
x \%% mutate(arm = arm %>%
  structure(guide = '//2/Arm B//1/Arm A//')) %>%
  metaplot(conc, arm, gg = T, padding = 4) # different presentation order
)
multiplot(
x %>% mutate(arm = arm %>%
  structure(guide = '//1/Both Arms//2/Both Arms//')) %>%
  metaplot(conc, arm, gg = F),
x %>% mutate(arm = arm %>%
  structure(guide = '//1/Both Arms//2/Both Arms//')) %>%
  metaplot(conc, arm, gg = T, padding = 4) # collapse cases
)
x %>% densplot(
main = 'Density Plot',
 sub = 'using lattice',
 gg = F,
 sres, subject,
 ref.col = 'red', ref.alpha = 0.5,
 ref.lty = 'dashed', ref.lwd = 2,
 log = F,
 aspect = NULL,
 colors = c('red', 'blue', 'darkgreen'),
```

```
symbols = c(21, 22, 23),
 points = 0.3,
 lines = .5,
 fill = 0.1,
 space = 'left',
 padding = c(1,2,3,4),
other = 'none'
x %>% densplot(
main = 'Density Plot',
 sub = 'using ggplot',
 gg = T,
 sres, subject,
 ref.col = 'red', ref.alpha = 0.5,
 ref.lty = 'dashed', ref.lwd = 2,
 log = F,
 aspect = NULL,
 colors = c('red','blue','darkgreen'),
 symbols = c(21, 22, 23),
 points = 0.3,
 lines = 0.5,
 fill = 0.1,
 space = 'left',
 padding = 1:4,
other = 'none'
x %>% filter(conc > 0) %>% metaplot(
main = 'Box Plot',
 sub = 'using lattice',
 gg = F,
 arm, conc,
 log = T,
 ref = 4, ref.col = 'red',
 ref.lty = 'dashed', ref.lwd = 2,
 nobs = T,
 padding = 1:4,
 reverse = FALSE,
 pch = 20,
 notch = TRUE,
 aspect = NA,
other = 'none'
)
x %>% filter(conc > 0) %>% metaplot(
main = 'Box Plot',
 sub = 'using ggplot',
 gg = T,
 arm, conc,
 log = T,
 ref = 4, ref.col = 'red',
 ref.lty = 'dashed', ref.lwd = 2,
 nobs = T,
 padding = 1:4,
```

```
reverse = FALSE,
pch = 20,
notch = TRUE,
aspect = NA,
other = 'none'
x %>% metaplot(
main = 'Categorical Plot',
sub = 'using lattice',
gg = F,
arm, site, cohort,
aspect = 'fill', space = 'top',
as.table = FALSE,
colors = c('red','blue','green'),
fill = c(0.3, 0.5, 0.7),
lines = c(0.7, 0.5, 0.3),
tex = 0.8, rot = 45,
padding = 1:4, loc = 1,
cex = .5,
other = 'none'
x %>% metaplot(
main = 'Categorical Plot',
sub = 'using ggplot2',
gg = T,
arm, site, cohort,
aspect = 'fill', space = 'top',
as.table = FALSE,
colors = c('red','blue','green'),
fill = c(0.3, 0.5, 0.7),
lines = c(0.7, 0.5, 0.3),
tex = 0.8, rot = 45,
padding = 1:4, loc = 1,
cex = .5,
other = 'none'
x %>% metaplot(
 main = 'Correlation Splom',
 sub = 'using lattice',
 gg = F,
 1Ke, 1Ka, 1C1,
 varname.cex = 2,
 col = 'purple',
 smooth.col = 'orange', smooth.alpha = 0.9,
 smooth.lty = 'dashed', smooth.lwd = 2,
 pin.col = 'orange', pin.alpha = 0.9,
 dens.col = 'purple',dens.alpha = 0.2, dens.scale = 0.1,
 padding = 1:4,
 other = 'none',
 xlab = 'parameters'
x %>% metaplot(
```

```
main = 'Correlation Splom',
  sub = 'using ggplot',
  gg = T,
  1Ke, 1Ka, 1C1,
  varname.cex = 2,
  col = 'purple',
  smooth.col = 'orange', smooth.alpha = 0.9,
  smooth.lty = 'dashed', smooth.lwd = 2,
  pin.col = 'orange', pin.alpha = 0.9,
  dens.col = 'purple',dens.alpha = 0.2, dens.scale = 0.1,
  padding = 1:4,
  other = 'none',
  xlab = 'parameters'
x %>% metaplot(
  main = 'Scatterplot',
  sub = 'using lattice',
  gg = F,
  res, conc,
  yref = 0, ysmooth = T,
  smooth.lty = 'dotted', smooth.lwd = 2,
  smooth.alpha = 1,
  aspect = 0.8,
  space = 'bottom',
  colors = c('purple','darkgreen','peach'),
  symbols = 21:23,
  points = c(0.3, 0.5, 0.7),
  lines = F,
  padding = 1:4,
  ref.col = 'blue',
  ref.lty = 'dashed', ref.lwd = 2,
  ref.alpha = 0.5,
  conf = .99999,
  fit.lty = 'dashed', fit.lwd = 2,
  fit.alpha = 0.5,
  conf.alpha = 0.2,
  global = T,
  global.col = 'darkgreen',
  grid = T, loc = 1,
  other = 'none'
x %>% metaplot(
  main = 'Scatterplot',
  sub = 'using ggplot',
  gg = T,
  res, conc,
  yref = 0, ysmooth = T,
  smooth.lty = 'dotted', smooth.lwd = 2,
  smooth.alpha = 1,
  aspect = 0.8,
  space = 'bottom',
  colors = c('purple','darkgreen','peach'),
  symbols = 21:23,
```

```
points = c(0.3, 0.5, 0.7),
  lines = F,
  padding = 1:4,
  ref.col = 'blue',
  ref.lty = 'dashed', ref.lwd = 2,
  ref.alpha = 0.5,
  conf = .99999,
  fit.lty = 'dashed', fit.lwd = 2,
  fit.alpha = 0.5,
  conf.alpha = 0.2,
  global = T,
  global.col = 'darkgreen',
  grid = T, loc = 1,
 other = 'none'
 )
 # vectorized reference aesthetics
multiplot(
 x %>% metaplot(
  sres, gg = F,
   ref.col = c('blue','red'),
  ref.lty = c('dashed','dotted')
  ),
  x %>% metaplot(
  sres, gg = T,
   ref.col = c('blue','red'),
   ref.lty = c('dashed','dotted'),
  padding = 3.5
  )
)
multiplot(
 x %>% densplot(
  sres, arm, gg = F,
   ref.col = c('blue','red'),
  ref.lty = c('dashed','dotted')
  ),
  x %>% densplot(
  sres, arm, gg = T,
  ref.col = c('blue','red'),
   ref.lty = c('dashed','dotted'),
  padding = 3.5
  )
)
multiplot(
  x %>% densplot(
  sres,, arm, gg = F,
   ref.col = c('blue','red'),
  ref.lty = c('dashed','dotted')
  ),
  x %>% densplot(
  sres,, arm, gg = T,
   ref.col = c('blue','red'),
   ref.lty = c('dashed','dotted'),
```

54 tiles

```
padding = 3.5
)
)
multiplot(
  x %>% metaplot(
  sres, time,, arm, gg = F,
  yref = c(-4,0,4),
   xref = c(5, 10, 15),
   yref.col = c('blue','red'),
  yref.lty = c('dashed','dotted'),
  xref.col = c('green','orange')
  ),
  x %>% metaplot(
   sres, time,, arm, gg = T,
  yref = c(-4,0,4),
  xref = c(5, 10, 15),
  yref.col = c('blue','red'),
   yref.lty = c('dashed','dotted'),
   xref.col = c('green','orange'),
   padding = 3.5
)
)
# use of settings
multiplot(
x %>% metaplot(conc, ,subject, settings = list(ncol = 4, nrow = 3), gg = F),
x %>% metaplot(conc, ,subject, settings = list(ncol = 4), padding = 4, gg = T)
multiplot(
x %>% metaplot(conc, time,, subject, settings = list(ncol = 4, nrow = 3), gg = F),
x %>% metaplot(conc, time,, subject, settings = list(ncol = 4), padding = 4, gg = T)
multiplot(
x %>% metaplot(conc, arm, site, settings = list(ncol = 1, nrow = 2), gg = F),
x %>% metaplot(conc, arm, site, settings = list(ncol = 1), padding = 4, gg = T)
#iso aesthetics
multiplot(
x %>% metaplot(conc, ipred, iso = NA, gg = F),
x %>% metaplot(conc, ipred, iso = NA, gg = T, padding = 4)
)
multiplot(
x %>% metaplot(conc, ipred, iso = list(lty = 'dashed'), gg = F),
x %>% metaplot(conc, ipred, iso = list(lty = 'dashed'), gg = T, padding = 4)
)
```

tilestats 55

Description

Calculates limits for mosaic tiles

Usage

```
tiles(x, ..., tex = 0.9, msg = "tilestats", verbose = FALSE)
```

Arguments

x a data.frame with at least columns x, y, and g, possibly f1 and f2 (facets)

... other arguments
tex tile shrinkage <= 1

msg a function of x and y to create a tile message

verbose generate messages describing process

Value

data.frame

See Also

```
categorical_panel
```

Other categorical family: cax(), tilestats()

tilestats

Format Tile Statistics

Description

Formats statistics for a mosaic tile.

Usage

```
tilestats(x, y, ...)
```

Arguments

x x valuesy y values

... other arguments

Value

character

56 unpack.data.frame

See Also

```
categorical_panel
Other categorical family: cax(), tiles()
```

unpack

Unpack Something

Description

Unpack Something. Generic, with method for data.frame.

Usage

```
unpack(x, ...)
```

Arguments

```
x object
```

... other arguments

See Also

```
Other pack: pack.data.frame(), pack(), unpack.data.frame()

Other generic functions: axislabel(), categorical(), corsplom(), densplot(), pack(), scatter(), test_metaplot()
```

unpack.data.frame

Express Scalar Column Attributes as Column Metadata

Description

Expresses scalar column attributes as column metadata (row values). Column with name meta is created to hold names of attributes, if any. A transposed table (sorted by attribute name) of scalar column attribute values (coerced to character) is bound to the existing data.frame (the attributes themselves are removed from columns). Bind position is controlled by position such that the intersection of new rows and column occurs in the corresponding corner, numbered clockwise from top-left. Resulting column classes are character. It is an error if meta is already in names(x).

wikisym2plotmath 57

Usage

```
## S3 method for class 'data.frame'
unpack(
    x,
    meta = getOption("meta", "meta"),
    position = 1L,
    ignore = c("class", "levels"),
    ...
)
```

Arguments

x data.frame
meta column in result giving names of attributes
position 1 (top-left), 2 (top-right), 3 (bottom-right), or 4 (bottom-left)
ignore character: attributes to ignore
... ignored arguments

Value

data.frame

data.frame with all columns of class character

See Also

```
Other pack: pack.data.frame(), pack(), unpack()
Other methods: axislabel.data.frame(), boxplot.data.frame(), categorical.data.frame(), corsplom.data.frame(), densplot.data.frame(), metaplot.data.frame(), pack.data.frame(), plot.metaplot_gtable(), print.metaplot_gtable(), scatter.data.frame()
```

wikisym2plotmath

Convert Wiki Symbol to Plotmath

Description

Converts wiki symbol to plotmath. Vectorized version of wikisym2plotmath_.

Usage

```
wikisym2plotmath(x, \ \ldots)
```

Arguments

```
x character
... ignored
```

58 wikisym2plotmath_

Value

expression

See Also

Other formatters: diag_label(), wikisym2plotmath_()

wikisym2plotmath_

Convert One Wiki Symbol to Plotmath

Description

Converts one wiki symbol to plotmath. A Wiki symbol is simple text with arbitrarily nested subscript (_) and superscript (^) groupings. Use dot (.) to explicitly terminate a grouping, and use backslash-dot (\.) for a literal dot. Examples: V_c./F. Trailing dots need not be supplied. Leading/trailing whitespace is removed. Tab character not allowed.

Usage

```
wikisym2plotmath_(x, ...)
```

Arguments

```
x character
... ignored
```

Value

expression

See Also

```
Other formatters: diag_label(), wikisym2plotmath()
```

Examples

```
wikisym2plotmath_('V_c./F')
wikisym2plotmath_('AUC_ss')
wikisym2plotmath_('C_max_ss')
wikisym2plotmath_('var^eta_j')
```

Index

* bivariate plots	test_metaplot,46
metaplot.data.frame, 25	unpack, 56
scatter, 35	* metaplot
scatter.data.frame, 36	<pre>boxplot_data_frame, 4</pre>
scatter_data_frame, 37	categorical_data_frame, 8
* boxplot	corsplom_data_frame, 14
boxplot.data.frame, 3	densplot_data_frame, 18
<pre>boxplot_data_frame, 4</pre>	metaplot, 22
* categorical family	<pre>metaplot_key, 27</pre>
cax, 12	scatter_data_frame, 37
tiles, 54	test_metaplot,46
tilestats, 55	* methods
* categorical plots	boxplot.data.frame, 3
metaplot.data.frame, 25	categorical.data.frame, 7
* categorical	corsplom.data.frame, 13
categorical, 6	densplot.data.frame, 17
categorical.data.frame,7	metaplot.data.frame, 25
<pre>categorical_data_frame, 8</pre>	pack.data.frame, 33
$categorical_panel, 10$	scatter.data.frame, 36
panel_tile, 34	unpack.data.frame, 56
* corsplom	* mixedvariate plots
corsplom, 12	boxplot.data.frame, 3
corsplom.data.frame, 13	<pre>boxplot_data_frame, 4</pre>
corsplom_data_frame, 14	* multivariate plots
* densplot	corsplom.data.frame, 13
densplot, 16	corsplom_data_frame, 14
densplot.data.frame, 17	metaplot.data.frame, 25
densplot_data_frame, 18	* pack
* formatters	pack, <u>32</u>
diag_label, 20	pack.data.frame, 33
wikisym2plotmath, 57	unpack, 56
wikisym2plotmath_,58	unpack.data.frame, 56
* generic functions	* panel functions
categorical, 6	categorical_panel, 10
corsplom, 12	diag_label, 20
densplot, 16	diag_pin, 21
metaplot, 22	<pre>metaplot_key, 27</pre>
pack, 32	metaplot_ref, 29
scatter, 35	panel_tile, 34

60 INDEX

scatter_panel, 42	corsplom_gg_diagonal, <i>11</i> , <i>13</i> , <i>16</i> , <i>21</i> , <i>28</i> ,
scatter_panel_ref, 44	29, 35, 44, 45
* reference lines	corsplom_gg_scatter, 11, 13, 16, 21, 28, 29,
diag_pin, 21	35, 44, 45
metaplot_ref, 29	corsplom_panel_correlation, 11, 13, 16,
scatter_panel_ref,44	21, 28, 29, 35, 44, 45
* regression functions	corsplom_panel_diagonal, 11, 21, 28, 29,
metastats, 29	35, 44, 45 corsplom_panel_scatter, 11, 13, 16, 21, 28,
* scatter	29, 35, 44, 45
metaplot_key, 27	29, 33, 44, 43
scatter, 35	dens_panel, 11, 16, 17, 20, 21, 23, 26, 28, 29,
scatter.data.frame, 36	35, 44, 45
<pre>scatter_data_frame, 37 scatter_panel, 42</pre>	densityplot, 19
* univariate plots	densplot, 6, 13, 16, 17, 20, 23, 26, 33, 36, 46,
densplot, 16	56
densplot.data.frame, 17	densplot.data.frame, 3, 7, 13, 16, 17, 20,
densplot_data_frame, 18	26, 34, 36, 57
metaplot.data.frame, 25	densplot_data_frame, 6, 10, 16, 17, 18, 23,
inctupiot. du tu. 11 dine, 25	26, 28, 40, 41, 46
arrangeGrob, 32	diag_label, 11, 20, 21, 23, 28, 29, 35, 44, 45,
axislabel, 6, 13, 16, 23, 33, 36, 46, 56	58
axislabel.data.frame, 3, 7, 13, 17, 26, 34,	diag_pin, 11, 21, 21, 28, 29, 35, 44, 45
36, 57	
,	encode, <i>22</i> , <i>23</i>
boxplot.data.frame, 3, 6, 7, 13, 17, 26, 34,	6
36, 57	facet_grid, 5, 9, 19, 39
boxplot_data_frame, 3, 4, 10, 16, 20, 23, 28,	facet_wrap, $5, 9, 19, 39$
41, 46	getOption, 30
boxplot_panel, 3, 6, 11, 21, 28, 29, 35, 44, 45	getoption, 30
bwplot, 5, 9, 19, 39	iso_prepanel, <i>11</i> , <i>21</i> , <i>26</i> , <i>28</i> , <i>29</i> , <i>35</i> , <i>36</i> , <i>41</i> ,
	44, 45
categorical, 6, 7, 10, 11, 13, 16, 23, 33, 35,	.,, .,
36, 46, 56	metaplot, 6, 10, 13, 16, 20, 22, 28, 33, 36, 41,
categorical.data.frame, 3, 6, 7, 10, 11, 13,	46, 56
17, 26, 34–36, 57	metaplot.data.frame, 3, 7, 13, 16, 17, 20,
categorical_data_frame, 6, 7, 8, 11, 16, 20,	25, 34, 36, 41, 57
23, 28, 35, 40, 41, 46	metaplot_key, 6, 9–11, 16, 19–21, 23, 27, 29,
categorical_panel, 6, 7, 10, 10, 12, 21, 28,	35, 36, 39, 41, 44–46
29, 35, 44, 45, 55, 56	metaplot_ref, 11, 21, 28, 29, 35, 44, 45
cax, 12, 55, 56	metastats, 29, 44
corsplom, 6, 12, 13, 16, 23, 33, 36, 46, 56	metOption, 30, 45
corsplom.data.frame, 3, 7, 13, 13, 16, 17,	model, <i>30</i>
26, 34, 36, 57	multiplot, 31
corsplom_data_frame, 6, 10, 13, 14, 20, 23,	
26, 28, 41, 46	options, 45
corsplom_gg_correlation, 11, 13, 16, 21,	mark 6 12 16 22 22 24 26 46 56 57
28, 29, 35, 44, 45	pack, 6, 13, 16, 23, 32, 34, 36, 46, 56, 57

INDEX 61

```
pack.data.frame, 3, 7, 13, 17, 26, 33, 33, 36,
         56, 57
panel.bwplot,5
panel.meta_densityplot, 11, 16, 17, 20, 21,
         26, 28, 29, 35, 44, 45
panel.superpose, 11
panel.xyplot, 42
panel_tile, 6, 7, 10, 11, 21, 28, 29, 34, 44, 45
plot.metaplot_gtable, 3, 7, 13, 16, 17, 26,
         34, 36, 57
print.metaplot_gtable, 3, 7, 13, 16, 17, 26,
         34, 36, 57
region, 9, 30, 41, 43
scatter, 6, 13, 16, 23, 26, 28, 33, 35, 36, 41,
         44, 46, 56
scatter.data.frame, 3, 7, 13, 17, 26, 28, 34,
         36, 36, 41, 44, 57
scatter_data_frame, 6, 10, 16, 20, 23, 26,
         28, 36, 37, 44, 46
scatter_panel, 11, 21, 28-30, 35, 36, 41, 42,
scatter_panel_ref, 11, 21, 28, 29, 35, 44, 44
setOption, 30, 45
splom, 15
test_metaplot, 6, 10, 13, 16, 20, 23, 28, 33,
         36, 41, 46, 56
theme, 9, 19, 28, 39
tiles, 12, 54, 56
tilestats, 11, 12, 55, 55
type.convert, 33
unpack, 6, 13, 16, 23, 33, 34, 36, 46, 56, 57
unpack.data.frame, 3, 7, 13, 17, 26, 33, 34,
         36, 56, 56
wikisym(wikisym2plotmath_), 58
wikisym2plotmath, 21, 57, 58
wikisym2plotmath_, 21, 23, 57, 58, 58
wikisymbol (wikisym2plotmath_), 58
xyplot, 5, 9, 19, 28, 39, 40
```