PROBABILISTIC PROGRAMMING

MODERN TOOLS FOR PROBABILISTIC MODELING AND INFERENCE

Christian Findenig, Thomas Wedenig

Graz University of Technology, Austria Institute of Theoretical Computer Science

TABLE OF CONTENTS

- 1. Motivation
- 2. Markov-Chain Monte Carlo
- 3. MCMC Demo
- 4. Variational Inference
- 5. Variational Inference Demo
- 6. Practical considerations
- 7. Conclusions

MOTIVATION

MOTIVATING EXAMPLE

Example

· Suppose you have a coin

- You are unsure about its fairness
 - $z \in [0, 1]$
- You collect data by tossing it

•
$$\mathbf{x} = [1, 0, 0, \dots, 1]$$

Frequentist Approach

- · Maximum Likelihood!
- · Likelihood $p(x_i | z) = Bernoulli(z)$
- Tosses are i.i.d.:

$$p(\mathbf{x} \mid z) = \prod_{i=1}^{n} p(x_i \mid z)$$

• Find z^* that maximizes $p(\mathbf{x} \mid z)$

$$\cdot z^* = np.mean(x)$$

WHAT IF WE ARE BAYESIAN ABOUT IT?

Prior

$$p(z) = Beta(10, 10)$$

Likelihood

$$p(\mathbf{x} \mid z) = \prod_{i=1}^{n} p(x_i \mid z)$$

Posterior

$$p(z \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid z)p(z)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid z)p(z)}{\int p(\mathbf{x} \mid z')p(z') dz'}$$

How do we compute this?

Let's do the math!

$$\rho(z \mid \mathbf{x}) = \frac{\rho(\mathbf{x} \mid z)\rho(z)}{\int \rho(\mathbf{x} \mid z')\rho(z') dz'} \\
= \frac{\prod_{i=1}^{n} z^{x_i} (1-z)^{1-x_i} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} z^{a-1} (1-z)^{b-1}}{\int \prod_{i=1}^{n} z'^{x_i} (1-z')^{1-x_i} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} z'^{a-1} (1-z')^{b-1} dz'} \\
= \frac{\prod_{i=1}^{n} z^{x_i} (1-z')^{1-x_i} z^{a-1} (1-z)^{b-1}}{\int \prod_{i=1}^{n} z'^{x_i} (1-z')^{1-x_i} z'^{a-1} (1-z')^{b-1} dz'} \\
= \frac{\prod_{i=1}^{n} z^{x_i} (1-z')^{1-x_i} z^{a-1} (1-z')^{b-1} dz'}{\Gamma(a+\sum_{i=1}^{n} x_i)\Gamma(b+\sum_{i=1}^{n} (1-x_i))\Gamma^{-1}(a+b+n)} \\
= \text{Beta}\left(a+\sum_{i=1}^{n} x_i, \ b+n-\sum_{i=1}^{n} x_i\right)$$

STATISTICIAN'S APPROACH

- We were able to **analytically** solve the integral p(x)!
- Does this work for *any* choice for prior and likelihood?
 - · Unfortunately, no! 😩

In general, we're not so lucky

- Modeling should be flexible
 - · ⇒ inference becomes difficult
- · Let's use Probabilistic Programming

Abstraction

Computer Science is all about abstraction.

- · People want to specify a model
 - · e.g., prior and likelihood
- Inference is done by a tool

(Informal) Definition

Probabilistic programming is about doing statistics using the tools of computer science.

Tooling

Tooling is important.

Hypothesis

Deep Learning Revolution would have been impossible without auto-diff.

- Flexible and rich model specification
- · Should encourage prototyping and iterative model development
- $\cdot \Rightarrow$ Let's use a **programming language**!

```
import pymc as pm

model = pm.Model()
x = [1, 1, 1, 0, 1, 1, 1, 1, 0, 1]
with model:
    # Prior p(z)
    z = pm.Beta("z", alpha=10, beta=10)

# Likelihood p(x | z)
    x_likelihood = pm.Bernoulli("x_likelihood", p=z, observed=x)
```


- · Build on top of auto-diff frameworks
 - PyTorch, JAX, Tensorflow, . . .
- Support for
 - · Deep Generative Modeling
 - · Gaussian/Dirichlet Processes
 - · Discrete Latent Variables
 - . . .

APPROXIMATE INFERENCE

- · Markov Chain Monte Carlo
 - · Generate samples from the true posterior
- · Variational Inference
 - Approximate the posterior with a tractable distribution

MARKOV-CHAIN MONTE CARLO

Metropolis Hasting

Prior, Likelihood & Posterior

$$p(z) = Beta(10, 10)$$
$$p(\mathbf{x} \mid z) = \prod_{i=1}^{n} p(x_i \mid z)$$

$$p(z \mid \mathbf{x}) \propto p(\mathbf{x} \mid z) \cdot p(z)$$

METROPOLIS HASTING

The algorithm

1. Propose z

$$z_{i+1} \sim g(z_{i+1} \mid z_i)$$

2. Ratio

$$R = \frac{p(z_{i+1} \mid \mathbf{x})}{p(z_i \mid \mathbf{x})}$$

3. z_{i+1} with Bernoulli(min(R, 1)), else z_i

Ratio within posterior

$$R = \frac{p(z_{i+1} \mid \mathbf{x})}{p(z_i \mid \mathbf{x})} = \frac{p(\mathbf{x} \mid z_{i+1}) \cdot p(z_{i+1})}{p(\mathbf{x} \mid z_i) \cdot p(z_i)}$$

Prior, Likelihood & Posterior

$$p(z) = Beta(10, 10)$$

$$p(\mathbf{x} \mid z) = \prod_{i=1}^{n} p(x_i \mid z)$$

$$p(z \mid \mathbf{x}) \propto p(\mathbf{x} \mid z) \cdot p(z)$$

METROPOLIS HASTING - PROBLEMS

Rejection rate

- · Hamiltonian MC & NUTS sampling
- Gradient needed
- + No rejection

Metropolis Hasting

- 1. Propose z
- 2. Calculate acceptance Ratio R
- 3. Accept?

VARIATIONAL INFERENCE

Problem

· Computing the posterior is intractable

$$p_{\theta}(\mathbf{z} \mid \mathbf{x}) = \frac{p_{\theta}(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{\int p_{\theta}(\mathbf{x} \mid \mathbf{z}')p(\mathbf{z}') \ d\mathbf{z}'}$$

Variational Inference

- Consider a fixed $p_{\theta}(\mathbf{x} \mid \mathbf{z})$
- Pick a variational distribution $q_{\phi}(\mathbf{z})$
- Find ϕ^* such that $q_{\phi^*}(\mathbf{z})$ is close to $p_{\theta}(\mathbf{z} \mid \mathbf{x})$

https://pyro.ai/examples/intro_long.html

- When fitting q_{ϕ} , we would like to minimize $D_{KL}(q_{\phi}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))$
- But we can't compute the posterior . . .
- Recall that

$$\begin{aligned} \mathsf{ELBO} &= \mathbb{E}_{q_{\phi}(\mathsf{z})} \left[\log p_{\theta}(\mathsf{x}, \mathsf{z}) - \log q_{\phi}(\mathsf{z}) \right] \\ &= \dots \\ &= \underbrace{\log p_{\theta}(\mathsf{x})}_{\text{constant w.r.t. } \phi} - D_{\mathsf{KL}} (q_{\phi}(\mathsf{z}) \mid\mid p_{\theta}(\mathsf{z} \mid \mathsf{x})) \end{aligned}$$

Maximizing the **ELBO** \Leftrightarrow Minimizing D_{KL} to the true posterior

ELBO

$$\mathsf{ELBO} = \log p_{\theta}(\mathsf{x}) - D_{\mathsf{KL}}(q_{\phi}(\mathsf{z}) \mid\mid p_{\theta}(\mathsf{z} \mid \mathsf{x}))$$

- Fit $p_{\theta}(\mathbf{x}, \mathbf{z})$ using maximum likelihood learning
- $\cdot \Rightarrow$ We wish to maximize $p_{\theta}(\mathbf{x})$

Maximizing the **ELBO** encourages this

- · We optimize $p_{ heta}$ and q_{ϕ} simultaneously
- \Rightarrow Compute $\nabla_{\theta,\phi}$ ELBO

VARIATIONAL INFERENCE DEMO

Coin Example

- One latent variable explains all coin flips
- We find $q_{\phi}(z \mid x_0, \dots, x_n)$

Image Example

- · z_i are latent explanations of an **image** x_i
- Find posterior estimate $q_{\phi}(\mathbf{z}_i \mid \mathbf{x}_i)$ for each image

AMORTIZED INFERENCE

Classical VI

$$\phi^* = (\mu^*, \sigma^*)$$
 $q_{\phi^*}(\mathbf{z}) = \mathcal{N}(\mu^*, (\sigma^*)^2 I)$

- $q_{\phi^*}(\mathbf{z})$ is the posterior for \mathbf{x}_0
- If we are given x', we need to re-run VI!

Amortized VI

$$egin{aligned} f_{\phi^*}(\mathbf{x}) &= (\mu^*, \sigma^*) \ & \ q_{\phi^*}(\mathbf{z} \mid \mathbf{x}) &= \mathcal{N}(\mu^*, (\sigma^*)^2 I) \end{aligned}$$

- ϕ^* refer to NN parameters
- Function from any **x** to $q_{\phi^*}(\mathbf{z} \mid \mathbf{x})$

PRACTICAL CONSIDERATIONS

MCMC vs. Variational Inference

MCMC

- 😍 Very general
- **\$\text{\$\text{\$\gequiv\$}}\$** Exact in the limit (infinite time)
- Computationally very expensive
- Convergence hard to diagnose

Variational Inference

- Inference replaced by optimization
- More efficient
- \cong How to **choose** $q_{\phi}(\mathbf{z})$?
- 2 No accuracy-computation tradeoff

CONCLUSIONS

Probabilistic Programming is a set of tools for Bayesian Modeling & Inference

- · Declarative, rich modeling system
- Abstracts away inference routines
- Works in tandem with techniques from Deep Learning

APPENDIX

ELBO GRADIENT ESTIMATION

ELBO

$$\mathsf{ELBO} = \mathbb{E}_{q_{\phi}(\mathsf{z})} \left[\log p_{\theta}(\mathsf{x}, \mathsf{z}) - \log q_{\phi}(\mathsf{z}) \right]$$

ELBO Gradient Estimation w.r.t. θ

$$\begin{split} \nabla_{\theta} \text{ ELBO} &= \nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z}) \right] \\ &= \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\nabla_{\theta} \log p_{\theta}(\mathbf{x}, \mathbf{z}) \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\mathbf{x}, \mathbf{z}_{i}) \qquad \qquad \mathbf{z}_{i} \overset{\text{i.i.d}}{\sim} q_{\phi}(\mathbf{z}) \end{split}$$

ELBO GRADIENT ESTIMATION W.R.T. ϕ

ELBO

$$\mathsf{ELBO} = \mathbb{E}_{q_{\phi}(\mathsf{z})} \left[\log p_{\theta}(\mathsf{x}, \mathsf{z}) - \log q_{\phi}(\mathsf{z}) \right]$$

ELBO Gradient Estimation w.r.t. ϕ

$$egin{aligned}
abla_{\phi} \ \mathsf{ELBO} &=
abla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z})
ight] \ &= ??? \end{aligned}$$

- In VAEs, we have the same problem!
- · We use the reparametrization trick 😎

REPARAMETRIZATION TRICK

 \cdot If $q_{\phi}(z)$ was a 1D-Gaussian, we can produce a sample by calculating

$$Z = \mu + \sigma \epsilon$$
 $\epsilon \sim \mathcal{N}(0,1)$

- We separate the sample ϵ from the distribution parameters $\phi = (\mu, \sigma)^T$
- In general:

$$z = g(\epsilon, \phi)$$
 $\epsilon \sim p(\epsilon)$

ELBO Gradient Estimation w.r.t. ϕ

$$\begin{split} \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z}) \right] &= \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[f(\mathbf{z}) \right] \\ &= \nabla_{\phi} \mathbb{E}_{p(\epsilon)} \left[f(g(\epsilon, \phi)) \right] \\ &= \mathbb{E}_{p(\epsilon)} \left[\nabla_{\phi} f(g(\epsilon, \phi)) \right] \\ &= \mathbb{E}_{p(\epsilon)} \left[\nabla_{\mathbf{z}} f(\mathbf{z}) |_{\mathbf{z} = g(\epsilon, \phi)} \nabla_{\phi} g(\epsilon, \phi) \right] \end{split}$$

REPARAMETRIZATION TRICK

- Can we reparametrize all distributions q_{ϕ} ?
- · No! 😩
- · For all discrete distributions: $\nabla_{\phi}g(\epsilon,\phi)$ does not exist
- \cdot We can use a different estimator for $abla_{\phi}$ ELBO (REINFORCE estimator)
 - · ... which suffers from high variance
- · Can be improved if we leverage dependency structure in the model