

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$6 + 10x$$

2.
$$7 + 9x$$

3.
$$(28 + 12) \div x$$

4.
$$(20 + 10) \div x$$

5.
$$(58 - x) \div 7$$

6.
$$24 \div (x + 10)$$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$7x + 8y$$

2.
$$(8+x) \div (9-y)$$

3.
$$6y + 20 \div x$$

4.
$$(10 - y) \times (x + 5)$$

5.
$$(x + 10) \times (2 + y)$$

6.
$$(x + 4) \times (5 + y)$$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$2x + 42y \div 6$$

2.
$$7x + 9y \div 9$$

3.
$$(326 + x) \div (3 \times (2 + y))$$

4.
$$6x + 90y \div 10$$

5.
$$(12 - y) \times (5 + 8x)$$

6.
$$(178 + x) \div (9 \times (2 + y))$$

Corrections

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 3 et y = 6. Le calcul serait le suivant : $6 + 10x = 6 + 10 \times 3 = 6 + 30 = 36$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 6+10x est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 9. Le calcul serait le suivant : $7 + 9x = 7 + 9 \times 4 = 7 + 36 = 43$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 7+9x est une addition.

Cette expression est donc une somme.

3. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 7. Le calcul serait le suivant : $(28 + 12) \div x = (28 + 12) \div 4 = 40 \div 4 = 10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(28+12) \div x$ est une division.

Cette expression est donc un quotient.

4. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 6. Le calcul serait le suivant : $(20+10) \div x = (20+10) \div 5 = 30 \div 5 = 6$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(20+10) \div x$ est une division.

Cette expression est donc un quotient.

5. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(58-x) \div 7 = (58-2) \div 7 = 56 \div 7 = 8$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(58-x) \div 7$ est une division.

Cette expression est donc un quotient.

6. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $24 \div (x+10) = 24 \div (2+10) = 24 \div 12 = 2$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $24 \div (x+10)$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $7x+8y=7\times2+8\times8=14+64=78$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 7x + 8y est une addition. Cette expression est donc une somme.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 8. Le calcul serait le suivant : $(8 + x) \div (9 y) = (8 + 5) \div (9 8) = 13 \div 1 = 13$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(8+x) \div (9-y)$ est une division. Cette expression est donc un quotient.
- **3.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 9. Le calcul serait le suivant : $6y + 20 \div x = 6 \times 9 + 20 \div 4 = 54 + 5 = 59$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $6y + 20 \div x$ est une addition. Cette expression est donc une somme.
- **4.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 6. Le calcul serait le suivant : $(10 y) \times (x + 5) = (10 6) \times (4 + 5) = 4 \times 9 = 36$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(10-y) \times (x+5)$ est une multiplication. Cette expression est donc un produit.
- **5.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 3 et y = 9. Le calcul serait le suivant : $(x + 10) \times (2 + y) = (3 + 10) \times (2 + 9) = 13 \times 11 = 143$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(x+10) \times (2+y)$ est une multiplication. Cette expression est donc un produit.
- **6.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(x+4) \times (5+y) = (2+4) \times (5+8) = 6 \times 13 = 78$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(x + 4) \times (5 + y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 9. Le calcul serait le suivant : $2x + 42y \div 6 = 2 \times 4 + 42 \times 9 \div 6 = 8 + 378 \div 6 = 8 + 63 = 71$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $2x + 42y \div 6$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 8. Le calcul serait le suivant : $7x + 9y \div 9 = 7 \times 5 + 9 \times 8 \div 9 = 35 + 72 \div 9 = 35 + 8 = 43$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $7x + 9y \div 9$ est une addition. Cette expression est donc une somme.

3. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $(326+x) \div (3 \times (2+y)) = (326+4) \div (3 \times (2+9)) = 330 \div (3 \times 11) = 330 \div 33 = 10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(326+x) \div (3 \times (2+y))$ est une division. Cette expression est donc un quotient.

4. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 6. Le calcul serait le suivant : $6x + 90y \div 10 = 6 \times 4 + 90 \times 6 \div 10 = 24 + 540 \div 10 = 24 + 54 = 78$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $6x + 90y \div 10$ est une addition. Cette expression est donc une somme.

5. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 8. Le calcul serait le suivant : $(12-y) \times (5+8x) = (12-8) \times (5+8\times4) = 4(5+32) = 4\times37 = 148$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(12 - y) \times (5 + 8x)$ est une multiplication. Cette expression est donc un produit.

6. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(178+x) \div (9 \times (2+y)) = (178+2) \div (9 \times (2+8)) = 180 \div (9 \times 10) = 180 \div 90 = 2$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(178 + x) \div (9 \times (2 + y))$ est une division. Cette expression est donc un quotient.