



## Pattern recognition

Learning theory - basic concepts

- Chapiter 1 -

The knowledge of the probabilistic model is replaced by a training set of data  $\mathcal{A}_n$  :

$$A_n = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_n, y_n)\}.$$

Building a decision rule consist in searching for a partition of the observation space  $\mathcal{X}$ . The partition must be optimal according to a chosen performance criteria.

Two main approaches may be found in the literature :

- Choice of a decision rule structure and optimisation of the characteristic parameters according to a chosen criteria.
- 2 Direct use of the training set to take the decision.

The training model is composed of 3 elements:



- $\textbf{ 0} \ \ \mathsf{Generator} : \textbf{\textit{X}} \in \mathcal{X} \subset \mathbb{R}^l, \ \mathsf{random} \ \mathsf{variables} \ \mathsf{i.i.d.}$
- ② Supervisor :  $Y \in \mathcal{Y} \subset \mathbb{R}$ , random variables
- **③** Learner : represented by  $d(\boldsymbol{x}; \theta) \in \mathcal{D}$

#### - Polynomial of degre p

$$d(\boldsymbol{x}; \boldsymbol{a}) = \sum_{\substack{i_1, \dots, i_l \in \mathbb{N} \\ i_1 + \dots + i_l \le p}} a_{i_1, \dots, i_l} x[1]^{i_1} \dots x[l]^{i_l}$$

..., and other decomposition on Fourier Basis, Harr Basis...

Splines

$$d(\boldsymbol{x};c) \in \mathcal{L}^2(\mathbb{R}^l)$$
 tel que  $d' \in \mathcal{L}^2(\mathbb{R}^l), \|d'\|^2 \le c$ 

- Nadaraya-Watson

$$d(\boldsymbol{x}; \sigma) = \frac{\sum_{i=1}^{n} y_i K_{\sigma}(\boldsymbol{x}, \boldsymbol{x}_i)}{\sum_{i=1}^{n} K_{\sigma}(\boldsymbol{x}, \boldsymbol{x}_i)}$$

- MLP, RBF, ...

$$d(\boldsymbol{x};\boldsymbol{a},\boldsymbol{\theta}) = \sum_k a_k \ g_k(\boldsymbol{x};\boldsymbol{\theta}_k)$$

#### Find a linear classifier:

$$d(\boldsymbol{x}; V, \nu_0) = V^T \boldsymbol{x} + \nu_0 \overset{D_0}{\underset{D_1}{<}} 0$$

#### **Problem**

Estimation of V and  $\nu_0$ . ???

#### Perceptron

First approach

Let us rewrite  $d(\boldsymbol{x}; V, \nu_0)$  as :

$$d(\boldsymbol{x}; V, \nu_0) = y\left(V^T \boldsymbol{x} + \nu_0\right) > 0 \quad \forall \boldsymbol{x} \in \mathcal{X}$$

Assuming  $\omega_0$  and  $\omega_1$  are separable.

#### Perceptron - Algorithm

Until V and  $\nu_0$  are stable if  $y_i\left(V^T\boldsymbol{x_i}+\nu_0\right)>0$  do nothing, if  $y_i\left(V^T\boldsymbol{x_i}+\nu_0\right)<0$  then  $V'=V+c\boldsymbol{x_i}y_i \quad \nu_0'=\nu_0+cy_i$ 





## **Property**

Convergence is proved only if classes are separable.

#### **Target**

Find within  $\mathcal{D}=\{d(\boldsymbol{x},\theta):\theta\in\Theta\}$  the fonction which gives the best approximation of y according to a risk functional which can be expressed as

$$J(d) = \int Q(d(\boldsymbol{x}, \theta), y) p(\boldsymbol{x}, y) d\boldsymbol{x} dy,$$

where Q expresses the cost associated to each couple (x, y).

#### Example of a cost function: error probability

To develop a decision rule minimizing error probability, the risk is expressed as:

$$P_e(d) = \int \mathbb{1}_{d(\boldsymbol{x},\theta) \neq y} p(\boldsymbol{x}, y) d\boldsymbol{x} dy,$$

where 1 is the indicatrice function.

#### - Quadratic cost

$$Q(\boldsymbol{x}, y) = (y - d(\boldsymbol{x}; \theta))^2 \rightarrow d^*(\boldsymbol{x}; \theta) = E(y \mid \boldsymbol{x})$$

#### - Absolute cost

$$Q(\boldsymbol{x},y) = |y - d(\boldsymbol{x};\theta)|$$

#### - Cross Entropy

$$Q(\boldsymbol{x}, y) = -y \log(d(\boldsymbol{x}; \theta)) - (1 - y) \log(1 - d(\boldsymbol{x}; \theta)) \quad \rightarrow \quad d^*(\boldsymbol{x}; \theta) = P(y = 1 \mid \boldsymbol{x})$$

The aim is to minimize the following functional:

$$J(d) = \int Q(d(\boldsymbol{x}; \theta), y) p(\boldsymbol{x}, y) d\boldsymbol{x} dy,$$

the density p(x, y) is unknown.

#### Minimization of empirical risk (MRE)

The minimization of J(d) is done by plugging an estimator : the empirical risk

$$J_{emp}(d) = \frac{1}{n} \sum_{k=1}^{n} Q(d(\boldsymbol{x}_k; \boldsymbol{\theta}), y_k),$$

 $J_{emp}(d)$  can be estimated using the data of the training set  $A_n$ .

#### Empirical Probability of error :

The empirical risk that corresponds to the probability of error depends on the number of classification errors made by  $d(x;\theta)$  on the training data set  $\mathcal{A}_n$ 

$$P_{emp}(d) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{d(\boldsymbol{x}_k; \boldsymbol{\theta}) \neq y_k}.$$

**Problem :** Two gaussien classes  $\omega_0$  et  $\omega_1$  in  $\mathbb{R}^2$ , with different mean and covariance - the training data set is composed of 10 samples for each class.



Which border should we choose? Which conclusions can we drawn from the fact that  $\hat{P}_e({\rm lin\'eaire})=5\%$  while  $\hat{P}_e({\rm quadratique})=9\%$ ?

Let define  $d^* = \arg \min J(d)$  the minimum risk decision rule.

Let denote  $d_n^* = \arg\min_{d \in \mathcal{D}} J_{emp}(d)$  the decision rule obtained by minimizing the empirical risk on the functional class  $\mathcal{D}$  based on the data set  $\mathcal{A}_n$ .

#### **Definition (Estimation error)**

It is the difference in performance between the best rule in  ${\cal D}$  and the one obtained at the end of learning process :

$$J_{estim} = J(d_n^*) - \inf_{d \in \mathcal{D}} J(d)$$

▶ relevance of empirical criteria and performance of the algorithm

### Definition (Approximation error )

It is the difference in performance between the optimal decision rule  $d^{\ast}$  and the best in  $\mathcal{D}$  :

$$J_{approx} = \inf_{d \in \mathcal{D}} J(d) - J(d^*)$$

▶ Choice of class D

#### Learning

The objective of learning method is to minimize the modeling error, defined by :

$$J_{mod}(d_n^*) = J(d_n^*) - J(d^*).$$

There are two different types of contributions in this error :

$$J_{mod}(d_n^*) = \underbrace{\left(J(d_n^*) - \inf_{d \in \mathcal{D}} J(d)\right)}_{J_{estim}} + \underbrace{\left(\inf_{d \in \mathcal{D}} J(d) - J(d^*)\right)}_{J_{approx}}.$$

The minimization of  $J_{mod}$  is based on the search for a compromise between these two opposing terms :

- ullet increasing the number of tests in  ${\cal D}$  leads to increase  $J_{estim}$
- ullet increasing the number of tests in  ${\cal D}$  leads to decrease  $J_{approx}$  and vice versa



- 1. Is the goal achievable?
  - → Consistency of the decision rule
  - → Consistency of the induction principle
  - ightarrow Convergence speed
- 2. : If Yes How to do this?

Within the considered class of functional  $\mathcal{D}$ , one can expect that there exist a sequence of optimal detectors  $\{d_n^*(X;\theta)\}_{n>0}$  according to the chosen criteria such that  $J(d_n^*)$  can be made arbitrarily close to  $\inf_{d\in\mathcal{D}}J(d)$  when n tends to infinity.

#### Définition (Consistency and strong consistency)

Given a data base  $A_n$ , a sequence of optimal detectors  $\{d_n^*(X;\theta)\}_{n>0}$  according to the chosen criteria is said to be consistent for a probability law p(x,y) if :

$$\lim_{n\to\infty} \mathrm{E}\{J(d_n^*; \mathcal{A}_n)\} = \inf_{d\in\mathcal{D}} J(d).$$

It is said that the sequence is strongly consistent if, with probability equal to 1:

$$\lim_{n\to\infty} J(d_n^*; \mathcal{A}_n) = \inf_{d\in\mathcal{D}} J(d).$$

Two cases: (Strong) Consistency can be satisfied:

- a single density law p(x, y),
- for any probability law.

#### Définition (Universel consistency)

A sequence  $\{d_n^*(X;\theta)\}_{n>0}$  is said to be (strongly) universally consistent if it is (strongly) consistent for any probability law p(x,y).

This property was first observed in 1977 by Stone in the method of k-nearest neighbors, provided that the parameter k grows slower than n the size of the learning set. Since then, it has been shown that other decision rules met this property :

- regular kernel functions,
- some generalized linear detectors,
- Adaboost
- **-** (...)

The minimization of empirical risk principle is consistent for the chosen risk and a given problem if the learner does its best when the sample size tends to infinity

#### Consistency of the minimization of empirical risk principle

The MRE principle is consistent for a cost Q, a class of function  $\mathcal{D}=\{d(\boldsymbol{x};\theta):\theta\in\Theta\}$  and a probability density function  $p(\boldsymbol{x},y)$  if applied at each sample set  $\mathcal{A}_n$ , it generate a sequence  $\{d_n^*(\boldsymbol{x};\theta):\theta\in\Theta\}_{n>0}$  that satisfies :

$$J(d_n^*) \xrightarrow[n \to \infty]{p} \inf_{d \in \mathcal{D}} J(d)$$

$$J_{emp}(d_n^*) \xrightarrow[n \to \infty]{p} \inf_{d \in \mathcal{D}} J(d).$$

# Consistency of the induction principle Illustration of the definition



$$J(d_n^*) \quad \xrightarrow[n \to \infty]{p} \quad \inf_{d \in \mathcal{D}} J(d)$$

$$J_{emp}(d_n^*) \quad \xrightarrow[n \to \infty]{p} \quad \inf_{d \in \mathcal{D}} J(d)$$

For the sake of clarity, up to the end of this section we will consider that the cost function  ${\cal Q}$  is an indicator function. Thus :

$$Q(d(\boldsymbol{x}; \boldsymbol{\theta}); y) = \mathbf{1}_{d(\boldsymbol{x}; \boldsymbol{\theta}) \neq y} \triangleq \left\{ \begin{array}{ll} 0 & \text{si} & y = d(\boldsymbol{x}; \boldsymbol{\theta}) \\ 1 & \text{si} & y \neq d(\boldsymbol{x}; \boldsymbol{\theta}), \end{array} \right.$$

The VC dimension (for Vapnik-Chervonenkis dimension) is a measure of the capacity of a statistical classification algorithm. Informally, the capacity of a classification model is related to how complicated it can be

#### **Definition (VC-dimension)**

The Vapnik-Chervonenkis dimension of a given class  $\mathcal D$  of detectors is defined as the largest number of samples  $\boldsymbol x_k$  from the representation space  $\mathcal X$  which can be split into any two subset partition using detectors from  $\mathcal D$ .

**Example 1.** Let consider the class  $\mathcal D$  of linear detectors in  $\mathbb R^l$  defined by  $d(x;\theta) = \operatorname{sign}(\sum_{k=1}^l \theta_k \, x(k) + \theta_0)$ , the parameters  $\theta_k$  are reals and  $\operatorname{sign}(\cdot)$  is the "sign" function.

We can show that :

$$h_{\mathcal{D}} = l + 1$$

**Example 2.** Let consider the class  $\mathcal D$  of detectors such that  $\{d(x;\theta)=\operatorname{sign}(\sin(\theta x)):\theta\in\mathbb R\}$  defined for  $x\in\mathbb R$ . It is easy to show that :

$$h_{\mathcal{D}} = +\infty$$





## in ${\rm I\!R}^2$

| {2} | $\{1, 3\}$ | $\{1, 2\}$ | {3} |                         |
|-----|------------|------------|-----|-------------------------|
|     | 1 •        |            |     | {1}                     |
|     |            |            |     | $\{2, 3\}$              |
|     |            |            | 3 • |                         |
|     |            |            |     | $\frac{\{1,3\}}{\{2\}}$ |
| 2 • |            |            |     | {∠}                     |
|     |            |            |     |                         |

#### in ${\rm I\!R}$



in  ${\rm I\!R}^2$ 



Consistency of the induction principle
Fondamental theorem fondamental

#### Theorem

In order, for the minimization of empirical risk principle, to be consistent for any probability distribution it is sufficient for the VC-dimension h of the detector class  $\mathcal D$  to be finite.

The pioneering work of Vapnik and Chervonenkis (1971) have also made quantitative findings about the convergence rate of  $P_{emp}$  to  $P_e$ .

#### Inégalité de Vapnik-Chervonenkis.

With a probability larger or equal to  $1-\varepsilon$ , we have :

$$P_e(d_n) \le P_{emp}(d_n) + \sqrt{\frac{h\left(\ln\left(\frac{2n}{h}\right) + 1\right) - \ln\frac{\varepsilon}{4}}{n}}.$$

Warning ! Often rough upper bound. . . but independent of any probability distribution  $p(\boldsymbol{x},y)$ .



The minimization of empirical risk principle

Structural risk minimization principle advocated by Vapnik involves the construction, within the class  $\mathcal{D}$ , of a sequence of nested subsets  $\mathcal{D}_k$ 

$$\mathcal{D}_1 \subset \ldots \subset \mathcal{D}_k \subset \ldots \subset \mathcal{D}$$
.

Once this structure established, the learning phase is conducted in two-steps:

lacksquare Research the detector that minimizes the empirical error within each subset  $\mathcal{D}_k$  :

$$d_{n,k}^* = \arg\min_{d \in \mathcal{D}_k} P_{emp}(d).$$

② Select the detector with the best guaranteed error  $P_{emp}(d_{n,k}^*) + \Phi(n,h_k,arepsilon)$  :

$$d_n^* = \arg\min_{k \ge 1} \{ P_{emp}(d_{n,k}^*) + \Phi(n, h_k, \varepsilon) \}.$$