Simulation du Jet D'Eau de A à Y: Algorithme numérique pour résoudre les équations de Navier-Stokes incompressibles

Pablo Strasser

University of Geneva

22 février 2013

Notation et propriété basique

Navier-Stokes
Projection
Discrétisation spatial
Topologie
Résultat numérique

Notation et propriété basique Navier-Stokes

Projection Discrétisation spatial Topologie Résultat numérique Conclusion

Notation et propriété basique Navier-Stokes Projection

Discrétisation spatia Topologie Résultat numérique

Notation et propriété basique

Navier-Stokes

Projection

Discrétisation spatial

Topologie

Résultat numérique

Notation et propriété basique

Navier-Stokes

Projection

Discrétisation spatial

Topologie

Résultat numérique

Notation et propriété basique

Navier-Stokes

Projection

Discrétisation spatial

Topologie

Résultat numérique

Notation et propriété basique

Navier-Stokes

Projection

Discrétisation spatial

Topologie

Résultat numérique

Opérateur différentiel

Gradient:

$$\nabla p = \sum_{i} \partial_{i} p$$

Divergence:

$$abla \cdot \mathbf{v} = \sum_{i} \partial_{i} \mathbf{v}_{i}$$

Rotationnel

$$\nabla \times \mathbf{v} = \begin{pmatrix} \partial_2 \mathbf{v}_3 - \partial_3 \mathbf{v}_2 \\ \partial_3 \mathbf{v}_1 - \partial_1 \mathbf{v}_3 \\ \partial_1 \mathbf{v}_2 - \partial_2 \mathbf{v}_1 \end{pmatrix}$$

Convection

$$(\mathbf{v}\cdot\mathbf{\nabla})\,\mathbf{v}=\sum_{i}\mathbf{v}_{i}\partial_{i}\mathbf{v}$$

Propriété des opérateurs différentiels

Propriété (Divergence d'un rotationnel)

$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$

Propriété (Rotationnel d'un gradient)

$$\nabla \times (\nabla p) = 0$$

Propriété des opérateurs différentiels

Propriété (Divergence d'un rotationnel)

$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$

Propriété (Rotationnel d'un gradient)

$$\nabla \times (\nabla \mathbf{p}) = 0$$

Propriété

Pour chaque vecteur **v** on peut projeter dans un espace à divergence nulle sans changer le rotationnel en résolvant :

$$oldsymbol{v}_{new} = oldsymbol{v} - oldsymbol{
abla} p$$
 $\Delta p = oldsymbol{
abla} \cdot oldsymbol{v}$

Preuve

Définition (Projecteur)

$$P\mathbf{v} = \nabla \Delta^{-1} \nabla \cdot \mathbf{v}$$

Propriété

Pour chaque vecteur **v** on peut projeter dans un espace à divergence nulle sans changer le rotationnel en résolvant :

$$oldsymbol{v}_{new} = oldsymbol{v} - oldsymbol{
abla} p$$
 $\Delta p = oldsymbol{
abla} \cdot oldsymbol{v}$

Preuve

Définition (Projecteur)

$$P\mathbf{v} = \nabla \Delta^{-1} \nabla \cdot \mathbf{v}$$

Propriété

Pour chaque vecteur **v** on peut projeter dans un espace à divergence nulle sans changer le rotationnel en résolvant :

$$oldsymbol{v}_{new} = oldsymbol{v} - oldsymbol{
abla} p$$
 $\Delta p = oldsymbol{
abla} \cdot oldsymbol{v}$

Preuve

Définition (Projecteur)

$$P\mathbf{v} = \mathbf{\nabla} \Delta^{-1} \mathbf{\nabla} \cdot \mathbf{v}$$

Reformulation avec projection

Navier-Stokes

Où

$$f(\mathbf{v}(\mathbf{x},t)) = -(\mathbf{v} \cdot \nabla)\mathbf{v} + \frac{\mathbf{F}}{\rho} + \nu \Delta \mathbf{v}$$

Reformulation

$$\partial_t (\nabla \cdot \mathbf{v}) = 0 = \nabla \cdot f(\mathbf{v}) - \Delta p$$
$$\Delta p = \nabla \cdot f(\mathbf{v})$$
$$\partial_t \mathbf{v} = (1 - P)f(\mathbf{v})$$

Reformulation avec projection

Navier-Stokes

$$egin{aligned} oldsymbol{
abla} \cdot oldsymbol{v}(oldsymbol{x},t) &= 0 \ \partial_t oldsymbol{v}(oldsymbol{x},t) &= \underbrace{f(oldsymbol{v}(oldsymbol{x},t)) - oldsymbol{
abla} p}_{ ext{Accélération}} \end{aligned}$$

Où

$$f(\mathbf{v}(\mathbf{x},t)) = -(\mathbf{v}\cdot\mathbf{\nabla})\mathbf{v} + \frac{\mathbf{F}}{
ho} + \nu\Delta\mathbf{v}$$

Reformulation

$$\partial_t (\nabla \cdot \mathbf{v}) = 0 = \nabla \cdot f(\mathbf{v}) - \Delta p$$
$$\Delta p = \nabla \cdot f(\mathbf{v})$$
$$\partial_t \mathbf{v} = (1 - P)f(\mathbf{v})$$

Définition lagrangienne

Caracteristique

$$egin{aligned} \partial_t oldsymbol{\xi}_\lambda(t) &= oldsymbol{v}(oldsymbol{\xi}_\lambda(t),t) \ oldsymbol{\xi}_\lambda(t_0) &= oldsymbol{\xi}_\lambda^0 \end{aligned}$$

Vitesse lagrangienne

$$\mathbf{u}_{\lambda}(t) = \mathbf{v}(\boldsymbol{\xi}_{\lambda}(t), t)$$

Dérivée matérielle

$$\begin{split} \frac{d\mathbf{u}_{\lambda}(t)}{dt} &= \frac{d\mathbf{v}(\xi_{\lambda},t)}{dt} = \partial_{t}\mathbf{v} + \left(\frac{\partial \xi_{\lambda}(t)}{\partial t} \cdot \nabla\right)\mathbf{v} \\ \frac{d\mathbf{u}_{\lambda}(t)}{dt} &= \partial_{t}\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} \end{split}$$

Définition lagrangienne

Caracteristique

$$egin{aligned} \partial_t \pmb{\xi}_\lambda(t) &= \pmb{v}(\pmb{\xi}_\lambda(t),t) \ \pmb{\xi}_\lambda(t_0) &= \pmb{\xi}_\lambda^0 \end{aligned}$$

Vitesse lagrangienne

$${m u}_{\lambda}(t)={m v}({m \xi}_{\lambda}(t),t)$$

Dérivée matérielle

$$\begin{split} \frac{d\mathbf{u}_{\lambda}(t)}{dt} &= \frac{d\mathbf{v}(\xi_{\lambda},t)}{dt} = \partial_{t}\mathbf{v} + \left(\frac{\partial \boldsymbol{\xi}_{\lambda}(t)}{\partial t} \cdot \boldsymbol{\nabla}\right)\mathbf{v} \\ \frac{d\mathbf{u}_{\lambda}(t)}{dt} &= \partial_{t}\mathbf{v} + (\mathbf{v} \cdot \boldsymbol{\nabla})\mathbf{v} \end{split}$$

Définition lagrangienne

Caracteristique

$$egin{aligned} \partial_t oldsymbol{\xi}_\lambda(t) &= oldsymbol{v}(oldsymbol{\xi}_\lambda(t),t) \ oldsymbol{\xi}_\lambda(t_0) &= oldsymbol{\xi}_\lambda^0 \end{aligned}$$

Vitesse lagrangienne

$$\boldsymbol{u}_{\lambda}(t) = \boldsymbol{v}(\boldsymbol{\xi}_{\lambda}(t), t)$$

Dérivée matérielle

$$\begin{split} &\frac{d \boldsymbol{u}_{\lambda}(t)}{dt} = \frac{d \boldsymbol{v}(\xi_{\lambda},t)}{dt} = \partial_{t} \boldsymbol{v} + \left(\frac{\partial \boldsymbol{\xi}_{\lambda}(t)}{\partial t} \cdot \boldsymbol{\nabla}\right) \boldsymbol{v} \\ &\frac{d \boldsymbol{u}_{\lambda}(t)}{dt} = \partial_{t} \boldsymbol{v} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \, \boldsymbol{v} \end{split}$$

Navier-Stokes lagrangien

Navier-Stokes lagrangien

$$\begin{split} & \boldsymbol{\nabla} \cdot \boldsymbol{u}_{\lambda}(t) = 0 \\ & \frac{d\boldsymbol{u}_{\lambda}(t)}{dt} = -\boldsymbol{\nabla} \rho(\boldsymbol{\xi}_{\lambda}(t), t) + \frac{\boldsymbol{F}(\boldsymbol{\xi}_{\lambda}(t), t)}{\rho(\boldsymbol{x}, t)} + \nu \Delta \boldsymbol{u}_{\lambda}(t) \end{split}$$

Différentes versions des équations de Navier-Stokes

Eulerien

$$\nabla \cdot \mathbf{v}(\mathbf{x}, t) = 0$$

$$\partial_t \mathbf{v}(\mathbf{x}, t) = f(\mathbf{v}(\mathbf{x}, t)) - \nabla p$$

$$\partial_t \mathbf{v} = (1 - P) f(\mathbf{v})$$

Différentes versions des équations de Navier-Stokes

Eulerien

$$egin{aligned} oldsymbol{
abla} \cdot oldsymbol{v}(oldsymbol{x},t) &= 0 \ \partial_t oldsymbol{v}(oldsymbol{x},t) &= f(oldsymbol{v}(oldsymbol{x},t)) - oldsymbol{
abla} oldsymbol{p} \end{aligned}$$

Projection

$$\partial_t \mathbf{v} = (1 - P) f(\mathbf{v})$$

$$\nabla \cdot \mathbf{u}_{\lambda}(t) = 0$$

$$\frac{d\mathbf{u}_{\lambda}(t)}{dt} = -\nabla p(\boldsymbol{\xi}_{\lambda}(t), t) + \frac{\boldsymbol{F}(\boldsymbol{\xi}_{\lambda}(t), t)}{\rho(\mathbf{x}, t)} + \nu \Delta \mathbf{u}_{\lambda}(t)$$

Différentes versions des équations de Navier-Stokes

Eulerien

$$egin{aligned} oldsymbol{
abla} \cdot oldsymbol{v}(oldsymbol{x},t) &= 0 \ \partial_t oldsymbol{v}(oldsymbol{x},t) &= f(oldsymbol{v}(oldsymbol{x},t)) - oldsymbol{
abla} oldsymbol{p} \end{aligned}$$

Projection

$$\partial_t \mathbf{v} = (1 - P) f(\mathbf{v})$$

Lagrangien

$$\nabla \cdot \boldsymbol{u}_{\lambda}(t) = 0$$

$$\frac{d\boldsymbol{u}_{\lambda}(t)}{dt} = -\nabla \rho(\boldsymbol{\xi}_{\lambda}(t), t) + \frac{\boldsymbol{F}(\boldsymbol{\xi}_{\lambda}(t), t)}{\rho(\boldsymbol{x}, t)} + \nu \Delta \boldsymbol{u}_{\lambda}(t)$$

- Vitesse et pression sont discrétisées sur une grille.
- Les équations de Navier-Stokes sont résolues sur la grille.
- Mais la topologie est determinée par la position des particules.
- Les particules se déplacent par la vitesse donnée par interpolation de la grille.
- Les conditions aux bords sont imposées en créant des points fantômes en vitesse et pression

- Vitesse et pression sont discrétisées sur une grille.
- Les équations de Navier-Stokes sont résolues sur la grille.
- Mais la topologie est determinée par la position des particules.
- Les particules se déplacent par la vitesse donnée par interpolation de la grille.
- ► Les conditions aux bords sont imposées en créant des points fantômes en vitesse et pression

- Vitesse et pression sont discrétisées sur une grille.
- Les équations de Navier-Stokes sont résolues sur la grille.
- ▶ Mais la topologie est determinée par la position des particules.
- Les particules se déplacent par la vitesse donnée par interpolation de la grille.
- Les conditions aux bords sont imposées en créant des points fantômes en vitesse et pression

- Vitesse et pression sont discrétisées sur une grille.
- Les équations de Navier-Stokes sont résolues sur la grille.
- ▶ Mais la topologie est determinée par la position des particules.
- Les particules se déplacent par la vitesse donnée par interpolation de la grille.
- Les conditions aux bords sont imposées en créant des points fantômes en vitesse et pression

- Vitesse et pression sont discrétisées sur une grille.
- Les équations de Navier-Stokes sont résolues sur la grille.
- ▶ Mais la topologie est determinée par la position des particules.
- Les particules se déplacent par la vitesse donnée par interpolation de la grille.
- Les conditions aux bords sont imposées en créant des points fantômes en vitesse et pression

Schéma de l'algorithme

Projection en accélération

$$\partial_t \mathbf{v} = (1 - P) f(\mathbf{v})$$

Projection en vitesse

$$\begin{aligned} \partial_t \tilde{\mathbf{v}} &= f(\mathbf{v}) \\ \mathbf{v} &= (1 - P)\tilde{\mathbf{v}} \end{aligned}$$

Projection en accélération

$$\partial_t \mathbf{v} = (1 - P) f(\mathbf{v})$$

Projection en vitesse

$$\begin{split} \partial_t \tilde{\textbf{\textit{v}}} &= f(\textbf{\textit{v}}) \\ \textbf{\textit{v}} &= (1-P) \tilde{\textbf{\textit{v}}} \end{split}$$

Intégration

Runge-Kutta sur l'accélération

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \sum_{i=1}^s b_i \mathbf{k}_i$$
 $\mathbf{k}_i = \Delta t (1 - P) f\left(\mathbf{v}_n + \sum_{j=1}^s a_{ij} \mathbf{k}_j\right)$

Runge-Kutta sur la vitesse

$$\tilde{\mathbf{v}}_{n+1} = (1 - P) \left(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i \right)$$
$$\tilde{\mathbf{k}}_i = \Delta t f \left((1 - P) \left(\tilde{\mathbf{v}}_n + \sum_{j=1}^s a_{ij} \tilde{\mathbf{k}}_j \right) \right)$$

Intégration

Runge-Kutta sur l'accélération

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \sum_{i=1}^s b_i \mathbf{k}_i$$

$$\mathbf{k}_i = \Delta t (1 - P) f\left(\mathbf{v}_n + \sum_{j=1}^s a_{ij} \mathbf{k}_j\right)$$

Runge-Kutta sur la vitesse

$$\tilde{\mathbf{v}}_{n+1} = (1 - P) \left(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i \right)$$

$$\tilde{\mathbf{k}}_i = \Delta t f \left((1 - P) \left(\tilde{\mathbf{v}}_n + \sum_{j=1}^s a_{ij} \tilde{\mathbf{k}}_j \right) \right)$$

Équivalence

Théorème

Si $\mathbf{v}_n = \tilde{\mathbf{v}}_n$ et \mathbf{v}_n sont à divergence nulle alors $\mathbf{v}_{n+1} = \tilde{\mathbf{v}}_{n+1}$.

Corollaire

En résolvant l'équation de Navier-Stokes par une méthode de Runge-Kutta, on est éxactement à divergence nulle.

Discrétisation "standard"

Position des variables

Dérivée

$$\begin{split} \partial_{\mathbf{x}} a_i &= \frac{a_{i+1} - a_{i-1}}{\Delta \mathbf{x}} \\ \boldsymbol{\nabla} \cdot \boldsymbol{v}_{i,j} &= \frac{v_{i+1,j}^{\mathbf{x}} - v_{i-1,j}^{\mathbf{x}}}{\Delta \mathbf{x}} + \frac{v_{i+1,j}^{\mathbf{y}} - v_{i-1,j}^{\mathbf{y}}}{\Delta \mathbf{y}} \end{split}$$

Problème damier

Divergence nulle!!!!

Solution:

Changer la grille.

Discrétisation sur grille décalée

Position des variables

Dérivée sur grill décalée

Gradient

$$\mathbf{
abla}
ho_{ij} = egin{pmatrix} rac{
ho_{i,j} -
ho_{i-1,j}}{\Delta x} \ rac{
ho_{i,j} -
ho_{i,j-1}}{\Delta y} \end{pmatrix}$$

Divergence

$$\nabla \cdot \mathbf{v}_{i,j} = \frac{\mathbf{v}_{\times i+1,j} - \mathbf{v}_{\times i,j}}{\Delta \mathbf{x}} + \frac{\mathbf{v}_{y_{i,j+1}} - \mathbf{v}_{y_{i,j}}}{\Delta \mathbf{y}}$$

Laplacien

$$\Delta p_{i,j} = \frac{p_{i+1,j} - 2p_{i,j} + p_{i-1,j}}{(\Delta x)^2} + \frac{p_{i,j+1} - 2p_{i,j} + p_{i,j-1}}{(\Delta y)^2}$$

Terme convectif sur grille décalée

Terme convectif sur grille décalée (suite)

Dérivée centrée

$$(v^{j}\partial_{j}v^{i})_{k}^{i} = v^{ji}_{k} \frac{v^{i}_{k+e_{j}} - v^{i}_{k-e_{j}}}{2\Delta x_{j}}$$

Dérivée upwind

si
$$v^{ji}_{\mathbf{k}} < 0$$

$$\left(v^{j}\partial_{j}v^{i}\right)_{k}^{i} = v^{jj}_{k} \frac{v^{i}_{k+e_{j}} - v^{i}_{k}}{\Delta x_{i}}$$

$$\mathsf{si} \ \mathbf{v^{ji}_k} > 0$$

$$(v^j \partial_j v^i)^i_{\mathbf{k}} = v^{ji}_{\mathbf{k}} \frac{v^i_{\mathbf{k}} - v^i_{\mathbf{k} - \mathbf{e}_j}}{\Delta x_i}$$

$$\operatorname{si} \, \mathbf{v}^{ji}_{\, \pmb{k}} = 0$$

$$\left(\mathbf{v}^{j}\partial_{j}\mathbf{v}^{i}\right)_{\mathbf{k}}^{\prime}=0$$

Principe

- Utiliser une méthode de Runge-Kutta de notre choix.
- Evaluer l'accéleration sur une grille décalée.
- Projeter chaque accélération ou chaque vitesse.

Runge-Kutta sur l'accélération

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \sum_{i=1}^{s} b_i \mathbf{k}_i$$

$$\mathbf{k}_i = \Delta t (1 - P) f(\mathbf{v}_n + \sum_{i=1}^{s} a_{ij} \mathbf{k}_j)$$

$$\begin{split} \tilde{\mathbf{v}}_{n+1} &= (1-P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i) \\ \tilde{\mathbf{k}}_i &= \Delta t f((1-P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s a_{ij} \tilde{\mathbf{k}}_j)) \end{split}$$

Principe

- Utiliser une méthode de Runge-Kutta de notre choix.
- Evaluer l'accéleration sur une grille décalée.
- Projeter chaque accélération ou chaque vitesse.

Runge-Kutta sur l'accélération

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \sum_{i=1}^s b_i \mathbf{k}_i$$

$$\mathbf{k}_i = \Delta t (1 - P) f(\mathbf{v}_n + \sum_{j=1}^s a_{ij} \mathbf{k}_j)$$

$$\tilde{\mathbf{v}}_{n+1} = (1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i)
\tilde{\mathbf{k}}_i = \Delta t f((1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s a_{ii} \tilde{\mathbf{k}}_i))$$

Principe

- Utiliser une méthode de Runge-Kutta de notre choix.
- ► Evaluer l'accéleration sur une grille décalée.
- Projeter chaque accélération ou chaque vitesse.

Runge-Kutta sur l'accélération

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \sum_{i=1}^s b_i \mathbf{k}_i$$

$$\mathbf{k}_i = \Delta t (1 - P) f(\mathbf{v}_n + \sum_{i=1}^s a_{ij} \mathbf{k}_i)$$

$$\tilde{\mathbf{v}}_{n+1} = (1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i)
\tilde{\mathbf{k}}_i = \Delta t f((1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s a_{ii} \tilde{\mathbf{k}}_i))$$

Principe

- Utiliser une méthode de Runge-Kutta de notre choix.
- ► Evaluer l'accéleration sur une grille décalée.
- Projeter chaque accélération ou chaque vitesse.

Runge-Kutta sur l'accélération

$$\begin{aligned} \boldsymbol{v}_{n+1} &= \boldsymbol{v}_n + \sum_{i=1}^s b_i \boldsymbol{k}_i \\ \boldsymbol{k}_i &= \Delta t (1-P) f(\boldsymbol{v}_n + \sum_{j=1}^s a_{ij} \boldsymbol{k}_j) \end{aligned}$$

$$\begin{aligned} \tilde{\mathbf{v}}_{n+1} &= (1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s b_i \tilde{\mathbf{k}}_i) \\ \tilde{\mathbf{k}}_i &= \Delta t f((1 - P)(\tilde{\mathbf{v}}_n + \sum_{i=1}^s a_{ij} \tilde{\mathbf{k}}_i)) \end{aligned}$$

Principe

- Utiliser une méthode de Runge-Kutta de notre choix.
- ► Evaluer l'accéleration sur une grille décalée.
- Projeter chaque accélération ou chaque vitesse.

Runge-Kutta sur l'accélération

$$\begin{aligned} \mathbf{v}_{n+1} &= \mathbf{v}_n + \sum_{i=1}^s b_i \mathbf{k}_i \\ \mathbf{k}_i &= \Delta t (1 - P) f(\mathbf{v}_n + \sum_{j=1}^s a_{ij} \mathbf{k}_j) \end{aligned}$$

$$\begin{aligned} \tilde{\boldsymbol{v}}_{n+1} &= (1-P)(\tilde{\boldsymbol{v}}_n + \sum_{i=1}^s b_i \tilde{\boldsymbol{k}}_i) \\ \tilde{\boldsymbol{k}}_i &= \Delta t f((1-P)(\tilde{\boldsymbol{v}}_n + \sum_{j=1}^s a_{ij} \tilde{\boldsymbol{k}}_j)) \end{aligned}$$

Schéma de l'algorithme

Détermination analytique de la topologie

Déplacement de la position

$$\partial_t \mathbf{x} = \mathbf{v}$$

Surface libre

$$\sigma_{ij} = -\rho \delta_{ij} + \nu \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

$$\sum_{i,j} \sigma_{ij} n_i n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^1 n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^2 n_j = 0$$

$$\rho_{surf} = A \mathbf{v}_{int}$$

 $\mathbf{v}_{\text{surf}} = B\mathbf{v}_{\text{int}}$

Détermination analytique de la topologie

Déplacement de la position

$$\partial_t \mathbf{x} = \mathbf{v}$$

Surface libre

$$\sigma_{ij} = -\rho \delta_{ij} + \nu \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

$$\sum_{i,j} \sigma_{ij} n_i n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^1 n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^2 n_j = 0$$

 $p_{surf} = A \mathbf{v}_{int}$ $\mathbf{v}_{surf} = B \mathbf{v}_{int}$

Détermination analytique de la topologie

Déplacement de la position

$$\partial_t \mathbf{x} = \mathbf{v}$$

Surface libre

$$\sigma_{ij} = -p\delta_{ij} + \nu \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

$$\sum_{i,j} \sigma_{ij} n_i n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^1 n_j = 0$$

$$\sum_{i,j} \sigma_{ij} t_i^2 n_j = 0$$

$$p_{surf} = A \mathbf{v}_{int}$$

 $\mathbf{v}_{surf} = B \mathbf{v}_{int}$

Chose nécessaire

► Résoudre :

$$\partial_t \mathbf{x} = \mathbf{v}$$

▶ Imposer les conditions aux bords variables :

$$p_{surf} = A \mathbf{v}_{int}$$

$$\mathbf{v}_{surf} = B\mathbf{v}_{int}$$

Chose nécessaire

► Résoudre :

$$\partial_t \mathbf{x} = \mathbf{v}$$

▶ Imposer les conditions aux bords variables :

$$p_{surf} = A \mathbf{v}_{int}$$

$$\mathbf{v}_{surf} = B\mathbf{v}_{int}$$

Particule

On discrétise l'équation avec des particules. Et on interpole la vitesse de la grille sur les particules pour résoudre :

$$\partial_t \mathbf{x} = \mathbf{v}_I(\mathbf{x})$$

Imposition des conditions aux bords

On calcul des points fantômes hors du domaine pour imposer les conditions aux bords. Ces points fantômes sont obtenus par des méthodes d'extrapolations.

$$p_{\text{ext}} = A \mathbf{v}_{int}$$

$$\mathbf{v}_{ext} = B\mathbf{v}_{int}$$

Particule

On discrétise l'équation avec des particules. Et on interpole la vitesse de la grille sur les particules pour résoudre :

$$\partial_t \mathbf{x} = \mathbf{v}_I(\mathbf{x})$$

Imposition des conditions aux bords

On calcul des points fantômes hors du domaine pour imposer les conditions aux bords. Ces points fantômes sont obtenus par des méthodes d'extrapolations.

$$p_{ext} = A \mathbf{v}_{int}$$

$$\mathbf{v}_{ext} = B\mathbf{v}_{int}$$

Intégration

Équations

$$\begin{aligned} \partial_t \mathbf{v}_{int} &= (1+P)f(\mathbf{v}) \\ \partial_t \mathbf{x} &= \mathbf{v}_I(\mathbf{x}) \\ p_{\text{ext}} &= A\mathbf{v}_{int} \\ \mathbf{v}_{\text{ext}} &= B\mathbf{v}_{int} \end{aligned}$$

Une équation différentielle

$$egin{aligned} \mathbf{v}_{\mathrm{ext}} &= B \mathbf{v}_{\mathrm{int}} \ \partial_t \mathbf{v}_{\mathrm{ext}} &pprox B \partial_t \mathbf{v}_{\mathrm{int}} &= B (1+P) f(\mathbf{v}) \end{aligned}$$

Schéma de l'algorithme

Méthode

- ▶ On extrapole par les conditions aux bords.
- ▶ On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- ▶ Plan vertical ou horizontal.
- ► Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ▶ Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- ▶ Plan vertical ou horizontal.
- ► Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ► Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- Plan vertical ou horizontal.
- ► Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ► Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- Plan vertical ou horizontal.
- Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ▶ Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- Plan vertical ou horizontal.
- Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ▶ Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- Plan vertical ou horizontal.
- Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ▶ Plan diagonal sur 3 axes.

Méthode

- On extrapole par les conditions aux bords.
- On extrapole par une méthode générique pour le reste.

Conditions aux bords en 2d

- Plan vertical ou horizontal.
- Plan diagonal.

- ▶ Plan vertical ou horizontal.
- ▶ Plan diagonal sur 2 axes.
- ▶ Plan diagonal sur 3 axes.

En 2d plan vertical ou horizontal

$$\frac{\partial V_1}{\partial x_2} + \frac{\partial V_2}{\partial x_1} = 0$$

$$0 = \frac{v_{i+\frac{1}{2},j+1}^{1} - v_{i+\frac{1}{2},j}^{1}}{\Delta x_2} + \frac{v_{i+1,j+\frac{1}{2}}^{2} - v_{i,j+\frac{1}{2}}^{2}}{\Delta x_1}$$

$$0 = \frac{v_{i+\frac{1}{2},j}^{1} - v_{i-\frac{1}{2},j}^{1}}{\Delta x_1} + \frac{v_{i,j+\frac{1}{2}}^{2} - v_{i,j-\frac{1}{2}}^{2}}{\Delta x_2}$$

$$0 = \frac{v_{i+\frac{3}{2},j}^{1} - v_{i+\frac{1}{2},j}^{1}}{\Delta x_1} + \frac{v_{i+1,j+\frac{1}{2}}^{2} - v_{i,j-\frac{1}{2}}^{2}}{\Delta x_2}$$

En 2d plan diagonal

$$\frac{\partial \mathbf{v}_1}{\partial \mathbf{x}_1} - \frac{\partial \mathbf{v}_2}{\partial \mathbf{x}_2} = 0$$

Extrapolation générique pour la surface

- 1. On extrapole les vitesses inconnues de la surface par moyenne des vitesses intérieures voisines.
- On calcul la divergence et on la partage avec toutes les vitesses inconnues.

- 1. On calcul une variable nommée layer qui indique la distance à la surface.
- 2. On extrapole par vitesse moyenne plus proche de la surface (layer plus petit).

Extrapolation générique pour la surface

- 1. On extrapole les vitesses inconnues de la surface par moyenne des vitesses intérieures voisines.
- 2. On calcul la divergence et on la partage avec toutes les vitesses inconnues.

- 1. On calcul une variable nommée layer qui indique la distance à la surface.
- 2. On extrapole par vitesse moyenne plus proche de la surface (layer plus petit).

Extrapolation générique pour la surface

- 1. On extrapole les vitesses inconnues de la surface par moyenne des vitesses intérieures voisines.
- 2. On calcul la divergence et on la partage avec toutes les vitesses inconnues.

- 1. On calcul une variable nommée layer qui indique la distance à la surface.
- 2. On extrapole par vitesse moyenne plus proche de la surface (layer plus petit).

Extrapolation générique pour la surface

- 1. On extrapole les vitesses inconnues de la surface par moyenne des vitesses intérieures voisines.
- 2. On calcul la divergence et on la partage avec toutes les vitesses inconnues.

- 1. On calcul une variable nommée layer qui indique la distance à la surface.
- 2. On extrapole par vitesse moyenne plus proche de la surface (layer plus petit).

Conditions aux bords pour la pression

Méthode

On impose les conditions aux bords de façon centrée.

$$\mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$p = 2\nu \frac{\partial v_1}{\partial x_1}$$

S'il y a plusieurs plans comme cela on somme.

Schéma de l'algorithme

Interpolation

Raison

Nécessaire pour connaître la vitesse à la position des particules.

n-linéaire

$$f(x,y) = c_2 \frac{x - x_1}{x_2 - x_1} + c_1 \frac{x - x_2}{x_1 - x_2}$$

$$f(x,y) = c_{11} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2} + c_{12} \frac{x - x_2}{x_1 - x_2} \frac{y - y_1}{y_2 - y_1} + c_{21} \frac{x - x_1}{x_2 - x_1} \frac{y - y_2}{y_1 - y_2} + c_{22} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2}$$

Interpolation

Raison

Nécessaire pour connaître la vitesse à la position des particules.

n-linéaire

1d:

$$f(x,y) = c_2 \frac{x - x_1}{x_2 - x_1} + c_1 \frac{x - x_2}{x_1 - x_2}$$

$$f(x,y) = c_{11} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2} + c_{12} \frac{x - x_2}{x_1 - x_2} \frac{y - y_1}{y_2 - y_1} + c_{21} \frac{x - x_1}{x_2 - x_1} \frac{y - y_2}{y_1 - y_2} + c_{22} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2}$$

Interpolation

Raison

Nécessaire pour connaître la vitesse à la position des particules.

n-linéaire

1d:

$$f(x,y) = c_2 \frac{x - x_1}{x_2 - x_1} + c_1 \frac{x - x_2}{x_1 - x_2}$$

$$f(x,y) = c_{11} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2} + c_{12} \frac{x - x_2}{x_1 - x_2} \frac{y - y_1}{y_2 - y_1}$$

$$+ c_{21} \frac{x - x_1}{x_2 - x_1} \frac{y - y_2}{y_1 - y_2} + c_{22} \frac{x - x_2}{x_1 - x_2} \frac{y - y_2}{y_1 - y_2}$$

Initialisation

Utilité

Obtenir la nouvelle topologie de la position des particules. On utilise une variable nommée layer pour indiquer la distance de la surface.

Pas de temps idéal (condition CFL)

On calcul le pas de temps idéal tel qu'une particule ne peut se déplacer que d'une fraction de la distance d'une cellule.

Initialisation

Utilité

Obtenir la nouvelle topologie de la position des particules. On utilise une variable nommée layer pour indiquer la distance de la surface.

Pas de temps idéal (condition CFL)

On calcul le pas de temps idéal tel qu'une particule ne peut se déplacer que d'une fraction de la distance d'une cellule.

Schéma de l'algorithme

Jet latéral

Particulaire

$$v_{x} = v_{0}$$

$$v_{y} = -\frac{g}{2}(t - t_{0})^{2}$$

$$x = v_{0}(t - t_{0})$$

$$y = y_{0} - \frac{g}{2}(t - t_{0})^{2}$$

Cartésienne

$$v_x = v_0$$

$$v_y = -\frac{g}{2} \frac{x^2}{v_0}$$

Jet latéral

Jet latéral

Jet latéral et Jet d'eau

- Méthode de discrétisation bien connu.
- Système linéaire facil à résoudre.
- → Terme convectif plus dur.
- Moins de voisin à traiter.
- → Dépendant du choix des axes.

- Méthode de discrétisation bien connu.
- Système linéaire facil à résoudre.
- \ominus Terme convectif plus dur.
- Moins de voisin à traiter.
- → Dépendant du choix des axes.

- Méthode de discrétisation bien connu.
- Système linéaire facil à résoudre.
- Terme convectif plus dur.
- Moins de voisin à traiter.
- Dépendant du choix des axes.

- Méthode de discrétisation bien connu.
- Système linéaire facil à résoudre.
- Terme convectif plus dur.
- Moins de voisin à traiter.
- Dépendant du choix des axes.

- Méthode de discrétisation bien connu.
- Système linéaire facil à résoudre.
- → Terme convectif plus dur.
- Moins de voisin à traiter.
- ⊖ Dépendant du choix des axes.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- Éviter le problème de saut dans les conditions aux bords.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- ▶ Éviter le problème de saut dans les conditions aux bords.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- ▶ Éviter le problème de saut dans les conditions aux bords.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- ▶ Éviter le problème de saut dans les conditions aux bords.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- ▶ Éviter le problème de saut dans les conditions aux bords.

- Écrire une version parallèle du code.
- Solveur specialisé pour changement de topologie sans tout recalculer.
- Éviter l'effet escalier aux bords.
- ▶ Utiliser une autre forme de topologie que les particules.
- Ordre supérieur de discrétisation.
- Éviter le problème de saut dans les conditions aux bords.

Remerciements

Personne

Prof. Martin Gander: Pour m'avoir suivi dans ce travail ainsi que pour son cours d'analyse numérique.

Dr. Felix Kwok: Pour m'avoir suivi dans ce travail et pour les tps et exercices.

Prof. Peter Wittwer : Pour les cours de mathématiques et physique.

Reto, Norma, Roland, Tamara, Bruno, François : Pour me soutenir et les bons moments passés ensemble.

Remerciements

Logiciel

LualATEX : Pour l'écriture du rapport.

Gcc : Pour compiler mon code c++11.

Valgrind : Pour la détection des fuites memoires et autre érreurs

de memoire.

Vtk : Pour l'exportation des données.

Paraview : Pour la visualisation des données.

Umfpacks : Comme solveur linéaire directe.

Pyamg : Comme solveur linéaire itératif.

Boost : Pour contenir des librairies utiles comme

Boost-Python utilisé comme binding avec Pyamg.