201

Taylor expansions, first order

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Function value along a curve

Our smooth cost function is $f: \mathcal{M} \to \mathbf{R}$.

Algorithms move from x_k to x_{k+1} along a (retraction) curve.

The value of f changes along curves. How?

let
$$c: R \rightarrow M$$
, a smooth curve. I $f: M \rightarrow R$
let $x = C(b)$, and let $V = C'(0)$. $C: R \rightarrow M$
 $g = foc: R \rightarrow R$

$$g(t) = g(0) + t g'(0) + O(t^2) \qquad g'(0) = Goc)'(0)$$

$$= Df(x)[v]$$

$$f(clt) = f(x) + t \langle g(a)f(x), v \rangle_{x} + O(t^{2})$$

In particular, if R is a retraction on \mathcal{M} , consider $c(t) = R_x(tv)$.

$$f(R_{x}(tv)) = f(x) + t \angle gradf(x), v \geq_{x} + O(t^{2})$$

$$\begin{cases} \text{let } A = tv \in T_{x}M \\ f(R_{x}(A)) = f(x) + \angle gradf(x), A \geq_{x} + O(NAU_{x}^{2}) \end{cases}$$

Take away

Fact: Consider $f: \mathcal{M} \to \mathbf{R}$ smooth.

If
$$c: \mathbf{R} \to \mathcal{M}$$
 is a smooth curve and $c(0) = x$, $c'(0) = v$, then

$$f(c(t)) = f(x) + t \langle \operatorname{grad} f(x), v \rangle_{x} + O(t^{2}).$$

Also, with R a retraction on \mathcal{M} , we have:

$$f(R_x(s)) = f(x) + \langle \operatorname{grad} f(x), s \rangle_x + O(\|s\|_x^2).$$