The Revised Simplex Method

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

March 24, 2022

Tableau Simplex Method

- The simplex method we have seen so far is called tableau simplex method
- Some observations:
 - At each iteration we update the full tableau

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

for the new basis

- ◆ But ...
 - For pricing only one negative reduced cost is needed
 - For ratio test, only
 - the column of the chosen non-basic variable in the tableau, and
 - the current basic solution

are needed

Revised Simplex Method

- lacktriangle Idea: do not keep a representation of the full tableau, only B^{-1}
- Advantages over the tableau version:
 - Time and space are saved
 - ◆ Errors due to floating-point arithmetic are easier to control

Revised Simplex Method

- Idea: do not keep a representation of the full tableau, only B^{-1}
- Advantages over the tableau version:
 - Time and space are saved
 - ◆ Errors due to floating-point arithmetic are easier to control
- lacktriangle We will revise the algorithm and express it in terms of B^{-1}
- For simplicity, let us revise the version of the algorithm for LPs of the form

$$\min z = c^T x$$

$$Ax = b$$

$$x \ge 0$$

Basic Solution

- Let us see how the basic solution is expressed in terms of B^{-1}
- For any basis B, values of basic variables can be expressed in terms of non-basic variables:

$$Bx_{\mathcal{B}} + Rx_{\mathcal{R}} = b$$

$$Bx_{\mathcal{B}} = b - Rx_{\mathcal{R}}$$

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

Basic Solution

- lacktriangle Let us see how the basic solution is expressed in terms of B^{-1}
- For any basis B, values of basic variables can be expressed in terms of non-basic variables:

$$Bx_{\mathcal{B}} + Rx_{\mathcal{R}} = b$$

$$Bx_{\mathcal{B}} = b - Rx_{\mathcal{R}}$$

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

- By definition, the basic solution corresponds to assigning null values to all non-basic variables: $x_{\mathcal{R}} = 0$ Then $x_{\mathcal{B}} = B^{-1}b$
- We will denote the basic solution (projected on basic variables) with $\beta := B^{-1}b$

Optimality Condition

- Let us see now how to express the reduced costs in terms of B^{-1}
- Recall the equation of basic variables in terms of non-basic variables:

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

- Cost function can be split: $c^T x = c_{\mathcal{B}}^T x_{\mathcal{B}} + c_{\mathcal{R}}^T x_{\mathcal{R}}$, where $c_{\mathcal{B}}^T$ are the costs of basic variables,
 - $c_{\mathcal{R}}^{T}$ are the costs of non-basic variables

Optimality Condition

- Let us see now how to express the reduced costs in terms of B^{-1}
- Recall the equation of basic variables in terms of non-basic variables:

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

- Cost function can be split: $c^T x = c^T_{\mathcal{B}} x_{\mathcal{B}} + c^T_{\mathcal{R}} x_{\mathcal{R}}$, where $c^T_{\mathcal{B}}$ are the costs of basic variables, $c^T_{\mathcal{R}}$ are the costs of non-basic variables
- We can express the cost function in terms of non-basic variables:

$$c^{T}x = c^{T}_{\mathcal{B}}x_{\mathcal{B}} + c^{T}_{\mathcal{R}}x_{\mathcal{R}} = c^{T}_{\mathcal{B}}(B^{-1}b - B^{-1}Rx_{\mathcal{R}}) + c^{T}_{\mathcal{R}}x_{\mathcal{R}} = c^{T}_{\mathcal{B}}B^{-1}b - c^{T}_{\mathcal{B}}B^{-1}Rx_{\mathcal{R}} + c^{T}_{\mathcal{R}}x_{\mathcal{R}} = c^{T}_{\mathcal{B}}B^{-1}b + (c^{T}_{\mathcal{R}} - c^{T}_{\mathcal{B}}B^{-1}R)x_{\mathcal{R}}$$

Optimality Condition

 $\blacksquare \quad \text{We found that } c^Tx = c_{\mathcal{B}}^TB^{-1}b + (c_{\mathcal{R}}^T - c_{\mathcal{B}}^TB^{-1}R)x_{\mathcal{R}}$

lacktriangle The part that depends on non-basic variables is $(c_{\mathcal{R}}^T-c_{\mathcal{B}}^TB^{-1}R)x_{\mathcal{R}}$

■ Let a_j be the column in A corresponding to variable $x_j \in x_{\mathcal{R}}$.

The coefficient of x_j in $(c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R) x_{\mathcal{R}}$ is $c_j - c_{\mathcal{B}}^T B^{-1} a_j$

We will denote the reduced cost of x_j with $d_j := c_j - c_{\mathcal{B}}^T B^{-1} a_j$

lacksquare Optimality condition: $d_j \geq 0$ for all $j \in \mathcal{R}$

Cost at Basic Solution

- Let's see how to express the value of the cost function at the basic solution
- lacksquare We found that $c^Tx=c^T_{\mathcal{B}}B^{-1}b+d^T_{\mathcal{R}}x_{\mathcal{R}}$, where $d_j=c_j-c^T_{\mathcal{B}}B^{-1}a_j$
- \blacksquare We will denote the value of the cost function at the basic solution with z
- Taking $x_{\mathcal{R}} = 0$ in the above equation: $z := c_{\mathcal{B}}^T B^{-1} b$

Cost at Basic Solution

- Let's see how to express the value of the cost function at the basic solution
- lacksquare We found that $c^Tx=c^T_{\mathcal{B}}B^{-1}b+d^T_{\mathcal{R}}x_{\mathcal{R}}$, where $d_j=c_j-c^T_{\mathcal{B}}B^{-1}a_j$
- \blacksquare We will denote the value of the cost function at the basic solution with z
- Taking $x_{\mathcal{R}} = 0$ in the above equation: $z := c_{\mathcal{B}}^T B^{-1} b$
- To avoid repeating computations:

Let us define the simplex multiplier as $\pi:=(B^T)^{-1}c_{\mathcal{B}}$ Then $\pi^T=c_{\mathcal{B}}^TB^{-1}$

So
$$d_j = c_j - \pi^T a_j$$
 (and $z = \pi^T b$)

- Let us assume the optimality condition is violated
- lacksquare Let x_q be a non-basic variable such that its reduced cost is $d_q < 0$
- Current value of x_q is 0. We can improve by increasing only this value while non-negativity constraints of basic variables are satisfied.

- Let us assume the optimality condition is violated
- lacktriangle Let x_q be a non-basic variable such that its reduced cost is $d_q < 0$
- Current value of x_q is 0. We can improve by increasing only this value while non-negativity constraints of basic variables are satisfied.
- Let $t \geq 0$ be the new value for x_q . Let $x_{\mathcal{B}}(t)$ be the values of basic variables in terms of tLet $x_{\mathcal{R}}(t)$ be the values of non-basic variables in terms of tNote that $x_q(t) = t$, and $x_p(t) = 0$ if $p \in \mathcal{R}$ and $p \neq q$

- Let us assume the optimality condition is violated
- lacksquare Let x_q be a non-basic variable such that its reduced cost is $d_q < 0$
- Current value of x_q is 0. We can improve by increasing only this value while non-negativity constraints of basic variables are satisfied.
- Let $t \geq 0$ be the new value for x_q . Let $x_{\mathcal{B}}(t)$ be the values of basic variables in terms of tLet $x_{\mathcal{R}}(t)$ be the values of non-basic variables in terms of t

Note that $x_q(t) = t$, and $x_p(t) = 0$ if $p \in \mathcal{R}$ and $p \neq q$

So
$$x_{\mathcal{B}}(t) = B^{-1}b - B^{-1}Rx_{\mathcal{R}}(t) = B^{-1}b - B^{-1}a_qt = \beta - t\alpha_q$$

where $\beta=B^{-1}b$ is the basic solution and we denote the column in the tableau of x_q as $\alpha_q:=B^{-1}a_q$

How much do we improve?

How does the objective value change as a function of t?

$$z(t) = c^{T}x(t) = c^{T}x_{\mathcal{B}}(t) + c^{T}_{\mathcal{R}}x_{\mathcal{R}}(t) = c^{T}_{\mathcal{B}}x_{\mathcal{B}}(t) + c_{q}t = c^{T}_{\mathcal{B}}\beta - tc^{T}_{\mathcal{B}}\alpha_{q} + c_{q}t = c^{T}_{\mathcal{B}}\beta - tc^{T}_{\mathcal{B}}B^{-1}a_{q} + c_{q}t = c^{T}_{\mathcal{B}}\beta - tc^{T}_{\mathcal{B}}\beta - tc^{$$

lacktriangle As expected, the improvement in cost is $\Delta z = z(t) - z = t d_q$

- lacksquare Recall that $x_{\mathcal{B}}(t) = eta t \alpha_q$
- How can we satisfy the non-negativity constraints of basic variables?

- lacksquare Recall that $x_{\mathcal{B}}(t) = \beta t\alpha_q$
- How can we satisfy the non-negativity constraints of basic variables?
- Basic variables have indices $\mathcal{B} = (k_1, ..., k_m)$
- Let $i \in \{1, ..., m\}$. The *i*-th basic variable is x_{k_i}
- Value of x_{k_i} as a function of t is the i-th component of $x_{\mathcal{B}}(t)$: $\beta_i t\alpha_q^i$, where β_i is the i-th component of β and α_q^i is the i-th component of α_q

- lacksquare Recall that $x_{\mathcal{B}}(t) = eta t \alpha_q$
- How can we satisfy the non-negativity constraints of basic variables?
- Basic variables have indices $\mathcal{B} = (k_1, ..., k_m)$
- Let $i \in \{1, ..., m\}$. The *i*-th basic variable is x_{k_i}
- Value of x_{k_i} as a function of t is the i-th component of $x_{\mathcal{B}}(t)$: $\beta_i t\alpha_q^i$, where β_i is the i-th component of β and α_q^i is the i-th component of α_q
- lacksquare We need $eta_i tlpha_q^i \geq 0 \iff eta_i \geq tlpha_q^i$
 - If $\alpha_q^i \leq 0$ the constraint is satisfied for all $t \geq 0$
 - lacktriangle If $lpha_q^i>0$ we need $rac{eta_i}{lpha_q^i}\geq t$

- lacksquare Recall that $x_{\mathcal{B}}(t) = \beta t\alpha_q$
- How can we satisfy the non-negativity constraints of basic variables?
- Basic variables have indices $\mathcal{B} = (k_1, ..., k_m)$
- Let $i \in \{1, ..., m\}$. The *i*-th basic variable is x_{k_i}
- Value of x_{k_i} as a function of t is the i-th component of $x_{\mathcal{B}}(t)$: $\beta_i t\alpha_q^i$, where β_i is the i-th component of β and α_q^i is the i-th component of α_q
- We need $\beta_i t\alpha_q^i \ge 0$ \iff $\beta_i \ge t\alpha_q^i$
 - If $\alpha_q^i \leq 0$ the constraint is satisfied for all $t \geq 0$
 - lacktriangle If $lpha_q^i>0$ we need $rac{eta_i}{lpha_q^i}\geq t$
- The best improvement is achieved with the strongest of the upper bounds:

$$\theta := \min\{\frac{\beta_i}{\alpha_q^i} \mid \alpha_q^i > 0\}$$

lacksquare We say the p-th basic variable x_{k_p} is blocking or tight when $heta=rac{eta_p}{lpha_q^p}.$

Then α_q^p is the pivot

1. If $\theta = +\infty$ (there is no upper bound, i.e., no i such that $1 \le i \le m$ and $\alpha_q^i > 0$):

Value of objective function can be decreased infinitely. LP is unbounded.

- 1. If $\theta=+\infty$ (there is no upper bound, i.e., no i such that $1\leq i\leq m$ and $\alpha_q^i>0$):
 - Value of objective function can be decreased infinitely. LP is unbounded.

2. If $\theta < +\infty$ and the p-th basic variable x_{k_p} is blocking:

When setting $x_q = \theta$, the non-negativity of basic variables is respected

In particular the value of x_{k_p} , i.e. the p-th component of $x_{\mathcal{B}}(t)$, is $\beta_p-\theta\alpha_q^p=0$

We can make a basis change: x_q enters the basis and x_{k_p} leaves, where $\mathcal{B}=(k_1,...,k_m)$

Update

New basic indices: $\bar{\mathcal{B}} = (k_1, \dots, k_{p-1}, q, k_{p+1}, \dots, k_m)$

Before the p-th basic variable was x_{k_p} , now it is x_q

lacksquare New basis: $ar{B} = B + (a_q - a_{k_p})e_p^T$

where
$$e_p^T = \underbrace{(0,...,0,\overbrace{1}^p,0,...,0)}_m$$
 is the p -th unit vector

The p-th column of the basis (which was a_{k_p}) is replaced by a_q .

New basic solution: $\bar{\beta}_p = \theta$, $\bar{\beta}_i = \beta_i - \theta \alpha_q^i$ if $i \neq p$

Note that before the p-th component of β corresponded to x_{k_p} , now to x_q

■ New objective value: $\bar{z} = z + \theta d_q$

Algorithmic Description

- 1. Initialization: Find an initial feasible basis B Compute $B^{-1}, \beta = B^{-1}b, z = c_B^T\beta$
- 2. Pricing: Compute $\pi^T = c_{\mathcal{B}}^T B^{-1}$ and $d_j = c_j \pi^T a_j$. If for all $j \in \mathcal{R}, d_j \geq 0$ then return OPTIMAL Else let q be such that $d_q < 0$. Compute $\alpha_q = B^{-1} a_q$
- 3. Ratio test: Compute $\mathcal{I} = \{i \mid 1 \leq i \leq m, \alpha_q^i > 0\}$. If $\mathcal{I} = \emptyset$ then return UNBOUNDED Else compute $\theta = \min_{i \in \mathcal{I}}(\frac{\beta_i}{\alpha_q^i})$ and p such that $\theta = \frac{\beta_p}{\alpha_q^p}$
- 4. Update:

$$\begin{split} \bar{\mathcal{B}} &= \mathcal{B} - \{k_p\} \cup \{q\} \\ \bar{\beta}_p &= \theta, \quad \bar{\beta}_i = \beta_i - \theta \alpha_q^i \quad \text{if} \quad i \neq p \end{split} \qquad \begin{split} \bar{B} &= B + (a_q - a_{k_p}) e_p^T \\ \bar{z} &= z + \theta d_q \end{split}$$
 Go to 2.

- Actually what we really care about is B^{-1} , not BWe need it for computing $\pi=c_{\mathcal{B}}^TB^{-1}$ and $\alpha_q=B^{-1}a_q$ at each step (and also $\beta=B^{-1}b$ in the initialization)
- Recomputing B^{-1} at each iteration is too expensive (e.g. $O(m^3)$ arithmetic operations with Gaussian elimination!)
- Next slides: a more efficient way of computing \bar{B}^{-1} using B^{-1}

- Let us make a diversion into linear algebra
- Let $b_1,...,b_m$ be the columns of an invertible matrix BLet a,α be such that $a=B\alpha=\sum_{i=1}^m\alpha_ib_i$ Let p be such that $1\leq p\leq m$
- \blacksquare $B_a = (b_1, \dots, b_{p-1}, a, b_{p+1}, \dots, b_m)$. Want to compute B_a^{-1}

- Let us make a diversion into linear algebra
- Let $b_1,...,b_m$ be the columns of an invertible matrix BLet a,α be such that $a=B\alpha=\sum_{i=1}^m\alpha_ib_i$ Let p be such that $1\leq p\leq m$
- \blacksquare $B_a = (b_1, \dots, b_{p-1}, a, b_{p+1}, \dots, b_m)$. Want to compute B_a^{-1}
- Note $\alpha_p \neq 0$ as otherwise $\operatorname{rank}(B_a) < m$.

Then
$$a = \alpha_p b_p + \sum_{i \neq p} \alpha_i b_i$$
 \Rightarrow $b_p = \left(\frac{1}{\alpha_p}\right) a + \sum_{i \neq p} \left(\frac{-\alpha_i}{\alpha_p}\right) b_i$

- Let $\eta^T = \left(\left(\frac{-\alpha_1}{\alpha_p} \right), \dots, \left(\frac{-\alpha_{p-1}}{\alpha_p} \right), \frac{1}{\alpha_p}, \left(\frac{-\alpha_{p+1}}{\alpha_p} \right), \dots, \left(\frac{-\alpha_m}{\alpha_p} \right) \right)^T$.

 Then $b_p = B_a \eta$
- Let $E=(e_1,\ldots,e_{p-1},\eta,e_{p+1},\ldots,e_m)$ where e_q is the q-th unit vector for $1\leq q\leq m$. Then $B_aE=B\implies E^{-1}B_a^{-1}=B^{-1}\implies B_a^{-1}=EB^{-1}$

- Application to the simplex algorithm: $a=a_q,\ \alpha=\alpha_q$, where x_q is entering variable

 Thus to update the inverse we can reuse already computed data!
- Using this update: B^{-1} is not actually represented as a square table, but as follows
- Assume initial basis is B_0 (e.g., unit matrix I). Then at the k-th iteration of the simplex algorithm the inverse matrix is $B^{-1} = E_k E_{k-1} \cdots E_2 E_1 B_0^{-1}$, where E_i is the E matrix of the i-th iteration
- Each E matrix can be stored compactly (vector η + column index p)
- We can represent B^{-1} as the list $E_k, E_{k-1}, \dots, E_2, E_1, B_0^{-1}$: Product Form of the Inverse (PFI)
- When the list is long we reset: the inverse is computed (reinversion)
- Other ways of representing B^{-1} : LU factoritzation

Tableau vs. Revised Simplex

- Time is saved:
 - **X** Tableau: all d_k , all α_k are computed
 - **Revised:** no. of non-basic variables x_k for which d_k , α_k are computed can be adjusted
- Space is saved:
 - **Tableau:** even if A sparse, tableau tends to get filled
 - **Revised:** sparsity of A can be exploited for storage, and pivots can be chosen to represent B^{-1} compactly
- Better numerical behaviour:
 - **Tableau:** errors due to floating-point arithmetic accumulate at each pivoting step
 - ✓ **Revised:** reinversion (PFI representation of B^{-1}) or refactorization (LU representation of B^{-1}) can be used for resetting