Implementação Algorítmica

Trabalho Final

Quinta-feira, 29 de junho de 2023

Alice Strassburger Araújo Filippi Carlos Eduardo Dias Giacomini

Descrição

O presente trabalho contém as soluções em Python para o Problema do Caixeiro Viajante - Traveling Salesman Problem (TSP) usando as heurísticas Hill-Climbing Iterativo e Simulated Annealing.

A entrega contém os seguintes documentos:

- Relatório (este documento);
- Códigos fontes (hill-climbing.py e simulated-annealing.py);
- Arquivo README.md com as instruções de compilação e execução.

Relatório

O problema do Caixeiro Viajante é um desafio computacional clássico que busca encontrar o caminho mais curto para percorrer um conjunto de cidades, visitando cada uma delas exatamente uma vez e retornando à cidade de origem. Embora seja um problema de otimização complexo, pode ser aplicado em várias situações relacionadas a vídeo-games. Aqui estão algumas delas:

- Geração de rotas: O problema do Caixeiro Viajante pode ser usado para gerar rotas eficientes para personagens em um jogo. Por exemplo, em um jogo de mundo aberto, onde os jogadores podem percorrer diferentes cidades ou pontos de interesse, o algoritmo do Caixeiro Viajante pode calcular a rota mais curta para um personagem seguir, minimizando o tempo de deslocamento.
- Inteligência artificial de NPCs: Em jogos que envolvem personagens não jogáveis (NPCs), como comerciantes ou inimigos, o problema do Caixeiro Viajante pode ser usado para determinar a melhor rota para esses personagens percorrerem, seja para entregar mercadorias ou patrulhar uma área específica.
- Quebra-cabeças e enigmas: O problema do Caixeiro Viajante pode ser adaptado para criar quebra-cabeças e enigmas desafiadores em jogos. Os

jogadores podem ser desafiados a encontrar a sequência correta de lugares a visitar para resolver um mistério ou desbloquear uma recompensa.

- Design de níveis: Os desenvolvedores de jogos podem utilizar o problema do Caixeiro Viajante para criar níveis desafiadores e bem projetados. Ao otimizar as rotas de inimigos, obstáculos ou itens espalhados pelo nível, é possível criar uma experiência de jogo mais envolvente e estrategicamente interessante.
- Simulações e estratégias de jogo em tempo real: Em jogos de estratégia em tempo real, o problema do Caixeiro Viajante pode ser usado para melhorar a tomada de decisões dos jogadores ou de unidades controladas pela inteligência artificial. Ao calcular rotas eficientes, é possível maximizar a eficácia dos movimentos e a coordenação entre as unidades do jogo.

Essas são apenas algumas aplicações possíveis do problema do Caixeiro Viajante em video-games. A criatividade dos desenvolvedores pode levar a diversas outras formas de utilização desse desafio para melhorar a jogabilidade e a experiência geral dos jogadores.

Resultados

Arquivo	Record	нс	SA A	SA B	SA C
att48	10628	44735	44749	41770	36484
berlin52	7542	10103	10424	9820	9614
bier127	118282	224521	178733	165115	149743
eil76	538	895	737	684	629
kroA100	21282	48454	38266	38057	31733
kroE100	22068	48792	39798	38011	29339
pr76	108159	150779	150779	150779	146067
rat99	1211	2130	1752	1682	1512
st70	675	1157	981	933	838

Legenda:

- HC: Hill Climbing Iterativo;
- SA: Simulated Annealing. Cada letra representa os parâmetros selecionados.

Parâmetros

Hill-Climbing Iterativo:

Número de Iterações	Vizinhos
1000	100

Simulated Annealing:

Casos	Tmax	K	Kt	Tmin	Vizinhos
A	10	0.95	20	5	100
В	100	0.9	25	10	100
С	1000	0.95	50	25	100