Induction Strong Induction

To prove P(n) for all nEIN,

1) P(1) is true

② For all $K \in \mathbb{N}$, if P(k) is true, then P(k+1) is true. Example: For any $n \in \mathbb{N}$, if A is a set of size n, then A has 2^n subsets. $(|P(A)|=2^n)$

proof: By induction on n.

Base case: When n=1, A has size 1, say $A=\{x\}$. Then the subsets of A are \emptyset and $\{x\}$. There are 2' of thme.

Ind. hyp: Assume any set of size k has 2 subsets, for some kEM.

Ind. Step: Let A be a set of size $k \not= 1$. Let $x \in A$. Partition the subsets of A into x and y where x consists of subsets of A that include x and $y \in Y$ in $y \in Y$ in

Y is the set of all subsets of $A \setminus \{2a\}$, Since $|A \setminus \{x\}| = k$, by ind. hyp., $|Y| = 2^k$. Each element in X consists of $\{2a\}$ union on element of Y. So $|X| = |Y|^2 2^k$.

50 A has |x|+/Y|=2++2 =2 k+1 subsets

Strong Induction

Example:

Let zangnzo be the sequence a=4, a=10, and $a_n=3a_{n-1}-2a_{n-2}$ for $n \ge 3$. Prove that Oln=-2+3-2" for all noll.

[a,=4, d,=10, d,=3a,-2a,=22, dy=3a,-2d2=46,...]

Proof: By induction on n.

Base case: When n=1, 01,=4, -2+3-2'=4. h=2, 02=10,-2+32=10 Ind. hyp: Assume for some KEW, k=2, ai=-2+3.2' for all int 1 si k.

Ind. Step: ak+1=3ak-2ak-1 < only valid when k+1=3, k=2. (by ind. hyp.)
Only possible with the strong ind. = 3(-2+3.2*)-2(-2+3.2^{k-1}) By strong ind, the result holds. = -6+9.2k+4-3.2k = -2 +3·2*(3-1)

To prove P(n) for all $n \in \mathbb{N}$ by strong incluction. (I) (Base cases) P(1), P(2), ---, P(b) ove true for some $b \in \mathbb{N}$ [Anything that the ind. step is not applied to goes into base cases]

(2) (Ind. Step) For all int $k \ge b$, if P(l), ..., P(k) are true, then P(k+1) is true.

Example prove that any collection of at least 8 candies can be divided into piles at 3's and/or 5's.

