Trabajo Práctico Final

Grupo 1

Integrantes

Nombre y apellido	Legajo
Gaston Gomez	
Jimena Medina	
Tatiana Flores	0148935
Mauro Escudero	0085840

Consigna

Diseñar un contador que vaya de tres en tres, que inicie la secuencia en 0 y por cada pulso de reloj aumente la cuenta de a tres hasta llegar a 21, y vuelva a empezar (0,3,6,9,12,15,18,21,0...). El resultado del contador debe luego mostrarse en dos display 7 segmentos. Se deben utilizar flip flops JK.

Desarrollo

Ya que solamente nos interesa representar 8 estados, se tomó la decisión de implementar un contador de 3 bits (con flip flops JK) que permitan representar: 0, 1, 2, 3, 4, 5, 6, y 7, para luego mediante compuertas lógicas poder interpretarlos como 0, 3, 6, 9, 12, 15, 18 y 21.

Estados

Se definen los 8 estados posibles, los cuales requieren de 3 bits para ser representados:

Tabla de verdad de flip flops JK

Por lo tanto se necesitan 3 flip flops JK para poder representar los 8 estados,

Se define la tabla de verdad junto a los estados actuales y futuros de estos:

	Esta	ado Ad	tual	Esta	ıdo Fu	ıturo	FF ₂		FF ₁		FF ₀	
	Q_2	Q ₁	Q_0	Q ₂ ⁺	Q ₁ +	Q ₀ +	J2	K 2	J1	K1	J 0	Ko
0	0	0	0	0	0	1	0	Х	0	Х	1	х
1	0	0	1	0	1	0	0	Х	1	Х	Х	1
2	0	1	0	0	1	1	0	Х	Х	0	1	х
3	0	1	1	1	0	0	1	Х	Χ	1	Х	1
4	1	0	0	1	0	1	Х	0	0	Х	1	х
5	1	0	1	1	1	0	Х	0	1	Х	Х	1
6	1	1	0	1	1	1	Х	0	Х	0	1	х
7	1	1	1	0	0	0	Х	1	Х	1	Х	1

Flip Flop JK											
Q _n	Q _n +	J	K								
0	0	0	X								
0	1	1	Х								
1	0	Х	1								
1	1	Х	0								

Mapas de Karnaugh de flip flops JK

Se decide utilizar mapas de Karnaugh para obtener las expresiones mínimas para las entradas J y K de los tres flip flops:

Tabla de verdad de displays

Se continua con la definición de la tabla de verdad para las entradas de los displays,

En estas tablas se define la lógica de interpretar los estados 0, 1, 2, 3, 4, 5, 6 y 7 como los múltiplos de tres 0, 3, 6, 9, 12, 15, 18 y 21.

Ya que necesitamos visualizar números de dos dígitos se deben utilizar dos displays, uno que muestre el primer dígito y otro para el segundo:

		С	ontad	or		Disp	lay 1		Display 2				
		Q_2	Q ₁	Q_0	l ₃	l ₂	I ₁	I ₀	l ₃	l ₂	I ₁	I _O	
0	00	0	0	0	0	0	0	0	0	0	0	0	
1	03	0	0	1	0	0	0	0	0	0	1	1	
2	06	0	1	0	0	0	0	0	0	1	1	0	
3	09	0	1	1	0	0	0	0	1	0	0	1	
4	12	1	0	0	0	0	0	1	0	0	1	0	
5	15	1	0	1	0	0	0	1	0	1	0	1	
6	18	1	1	0	0	0	0	1	1	0	0	0	
7	21	1	1	1	0	0	1	0	0	0	0	1	

Mapas de Karnaugh de displays

Se decide utilizar mapas de Karnaugh para obtener las expresiones mínimas para las entradas de los displays:

Q ₂ Q ₁ Q	00	Displa 01	y 1 - I ₀	10 Q ₂ Q ₁ Q ₀ 00		Displa 01	y 1 - I ₁	10	Q ₂ Q ₁ Q	00	Displa 01	y 1 - I ₂	10	Q ₂ Q ₁	Q ₀	Displa	y 1 - I ₃	10	
~2	00	T	- ''	T 10	~2	00	T		10	~2	00	I	"		~2	00	I		10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	1	0	0	1	0	1	0	0	0	0	1,	0	0	0	0
Q ₂ Q ₁ Q	Q ₁ Q ₀ Display 2 - I ₀ O0 O1 11 10		Q ₁ Q ₀ Display 2 - I ₁ 00 01 11 10		Q ₂ Q ₁	Q ₂ Q ₁ Q ₀ 00		Display 2 - I ₂		Q ₂ Q ₁ Q ₀ 00		Display 2 - I ₃		10					
0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0
1	0	1	1	0	1	1	0	0	0	1,	0	1	0	0	1,	0	0	0	1
	Display 1									=		Display	2		ī				
	I ₀ = Q ₂ . Q ₁ ' + Q ₂ . Q ₀ '								I ₀ =	Q 0									
$I_1 = Q_2 \cdot Q_1 \cdot Q_0$								I ₁ =	(Q ₂ ' . Q ₁	' . Q ₀) + (Q ₂ ' . Q ₁ .	Q ₀ ') + (Q	0 ₂ . Q ₁ ' . Q ₀	(')					
				l ₂ = 0						l ₂ =	(Q ₂ ' . Q ₁	. Q ₀ ') + (Q ₂ . Q ₁ ' .	Q ₀)					
				I ₃ = 0						I ₃ =	(Q ₂ ' . Q ₁	. Q ₀) + (Q ₂ . Q ₁ .	Q ₀ ')					