Tema 1. Lógica Proposicional: 1.6 Minimización

Lógica - Grado en Inteligencia Artificial (UDC)

Curso 2024-2025

1/22

Minimización

- Dado un conjunto de modelos S, ¿podemos hallar una fórmula α tal que $M(\alpha) = S$?
- Comenzando con los modelos de $M(\alpha)$, se obtiene una FND de α
- ullet Con los contramodelos de lpha, se obtiene una FNC de lpha
- Objetivo: encontrar una fórmula de tamaño minimal
- Métodos: de Karnaugh y de Quine-McCluskey

Implicantes

Definición

Un conjunto de literales C es un implicante de α si su conjunción implica α . C es un implicante primo de α si no existe D, implicante de α , con $D \subset C$.

- Para minimizar: Obtendremos un conjunto de implicantes primos de una fórmula a partir de su conjunto de modelos.
- Suponemos un orden arbitrario (por ejemplo, alfabético) entre los átomos de la signatura. Por ejemplo: [p, q, r, s]
- Representamos cada modelo como una cadena de bits siguiendo esa ordenación. Por ejemplo 1010 indica que p y r son verdaderos y el resto falsos
- Podemos representar 1010 como una conjunción de literales $p \land \neg q \land r \land \neg s$ (llamado mintérmino) o utilizando su representación decimal m10

FND de una fórmula a partir de sus modelos

Ejemplo 1.

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
m0	0	0	0	0		
m1	0	0	1	1	\longrightarrow	$\neg p \land \neg q \land r$
m2	0	1	0	1	\longrightarrow	$\neg p \land q \land \neg r$
m3	0	1	1	1	\longrightarrow	$\neg p \land q \land r$
m4	1	0	0	0		
m5	1	0	1	0		
m6	1	1	0	1	\longrightarrow	$p \wedge q \wedge \neg r$
m7	1	1	1	0		•

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

FNC de una fórmula a partir de sus contramodelos

Ejemplo 1.

$$M(\alpha) = \{ \{q\}, \{r\}, \{p, q\}, \{q, r\} \} \}$$

minterm	p	q	r	α		
m0	0	0	0	0	\longrightarrow	$p \lor q \lor r$
m1	0	0	1	1		
m2	0	1	0	1		
m3	0	1	1	1		
m4	1	0	0	0	\longrightarrow	$\neg p \lor q \lor r$
m5	1	0	1	0	\longrightarrow	$\neg p \lor q \lor \neg r$
m6	1	1	0	1		
m7	1	1	1	0		$\neg p \lor \neg q \lor \neg r$
					_	

$$\alpha = (p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$$

Minimización: Mapa de Karnaugh

- Un Mapa de Karnaugh de una función booleana es una representación gráfica de la tabla de valores de la función.
- Un mapa de Karnaugh es similar a una tabla de verdad, ya que muestra todos los posibles valores de la salida para cada combinación posible de las entradas.
- En lugar de organizarse en filas y columnas, un mapa de Karnaugh es un conjunto de celdas en el que cada celda representa un valor binario de las entradas.
- El número de celdas de un mapa de Karnaugh es igual al número total de posibles combinaciones de los valores de las variables de entrada, es decir, 2^n siendo n el número de variables de la función.

Ejemplo 2. Con dos átomos.

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

- Las celdas se distribuyen de manera que simplificar una determinada expresión consiste en agrupar adecuadamente algunas de las celdas.
- Las celdas de un mapa de Karnaugh se disponen de manera que entre dos celdas adyacentes sólo cambie el valor de una única variable.
- Físicamente, cada celda es adyacente a las que están situadas inmediatamente junto a cualquiera de sus cuatro lados. Pero no es adyacente a aquellas que tocan diagonalmente alguna de sus esquinas.
- Además existe adyacencia cíclica:
 Las celdas de la fila inferior son adyacentes a la superior
 Las celdas de la columna izquierda son adyacentes a la derecha

- Dos celdas son adyacentes si difieren exactamente en un literal
- En el mapa de Karnaugh, las celdas adyacentes son celdas consecutivas horizontal o verticalmente

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

- La minimización comienza agrupando los 1 que estén situados en celdas adyacentes del mapa.
 - Un grupo debe contener el mayor número posible de celdas
 - ♦ toda celda del grupo debe ser adyacente a otra de la celda del grupo
 - ♦ el número de celdas de cada grupo debe ser potencia de 2
 - ese bloque se llama implicante primo
 - Cada 1 del diagrama debe estar incluído en al menos un grupo, aunque un 1 puede estar incluído en varios grupos solapados
- Puede haber varias agrupaciones válidas posibles, pero siempre eligiendo los bloques de mayor tamaño posible para minimizar el número de grupos, y siempre se debe elegir un bloque si es el único bloque de unos que cubre a un 1 en el diagrama. Este bloque se llama implicante primo esencial.

Ejemplo 2. Con dos átomos. $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$

Ejemplo 2. Con dos átomos. $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$

$$\alpha = (\neg p \wedge \neg q) \vee (\neg p \wedge q) \vee (p \wedge q)$$

Ejemplo 2. Con dos átomos. $\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$

$$\alpha = (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

$$\equiv (\neg p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land q) \lor (p \land q) \equiv \neg p \lor q$$

Ejemplo 1. Con tres átomos.

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0

Ejemplo 1. Con tres átomos.

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	p	q	r	$\mid \alpha \mid$
m0	0	0	0	0
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m4	1	0	0	0
m5	1	0	1	0
m6	1	1	0	1
m7	1	1	1	0

$$\alpha \equiv (\neg p \wedge r) \vee (\neg p \wedge q) \vee (q \wedge \neg r) \equiv (\neg p \wedge r) \vee (q \wedge \neg r)$$

 $(\neg p \land q)$ es un implicante primo no esencial

Ejemplo 1. Con tres átomos.

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

minterm	р	q	r	α
m1	0	0	1	1
m2	0	1	0	1
m3	0	1	1	1
m6	1	1	0	1

$$\alpha \equiv (\neg p \wedge r) \vee (\neg p \wedge q) \vee (q \wedge \neg r) \equiv (\neg p \wedge r) \vee (q \wedge \neg r)$$

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- ullet Comenzamos con la tabla de los modelos de lpha
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion
- ullet Marcamos con imes las cadenas usadas para emparejar

string	
001	
010	
011	
110	
	001 010 011

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- ullet Comenzamos con la tabla de los modelos de lpha
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion
- ullet Marcamos con imes las cadenas usadas para emparejar

minterm	string	minterm	string
m1	001 ×	m(1,3)	0 - 1
m2	010		
m3	011 ×		
m6	110		

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- ullet Comenzamos con la tabla de los modelos de lpha
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion
- ullet Marcamos con imes las cadenas usadas para emparejar

minterm	string	minterm	string
m1	001 ×	m(1,3)	0 – 1
m2	010 ×	m(2,3)	01 -
m3	011 ×		
m6	110		

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- ullet Comenzamos con la tabla de los modelos de lpha
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion
- ullet Marcamos con imes las cadenas usadas para emparejar

minterm	string	minterm	string
m1	001 ×	m(1,3)	0 – 1
m2	010 ×	m(2,3)	01 -
m3	011 \times	m(2,6)	-10
m6	110 ×		

$$\alpha = (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r)$$

- ullet Comenzamos con la tabla de los modelos de lpha
- En cada paso, emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion
- ullet Marcamos con imes las cadenas usadas para emparejar
- ullet En el siguiente paso, emparejamos cadenas en la nueva columna. Si una de ellas no se utiliza nunca, se marca con st

minterm	string	minterm	string	minterm	string
m1		m(1,3)			
m2		m(2,3)			
m3	011 \times	m(2,6)	-10 *		
m6	110 ×				

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6)
- Aunque no todos son esenciales

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6)
- Aunque no todos son esenciales
- Construimos una tabla

	1	2	3	6
m(1,3)	×		×	
m(2,3)		×	×	
m(2,6)		×		×

• Las columnas con una sola × indican implicantes esenciales

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo: m(1,3), m(2,3), m(2,6)
- Aunque no todos son esenciales
- Construimos una tabla

	1	2	3	6
m(1,3)	×		×	
m(2,3)		×	×	
m(2,6)		×		×

- Las columnas con una sola × indican implicantes esenciales
- Con los dos implicantes esenciales, m(1,3) y m(2,6) se cubren todos los modelos de α

$$\alpha \equiv \underbrace{(\neg p \land r)}_{m(1,3)} \lor \underbrace{(q \land \neg r)}_{m(2,6)}$$

Nota: Las secuencias que corresponden a esos implicantes son:

$$m(1,3) \longmapsto 0-1 \text{ y } m(2,6) : \longmapsto -1 0$$

Ejemplo

Tabla de modelos de α

minterm	string
m4	0100
m8	1000
m9	1001
m10	1010
m11	1011
m12	1100
m14	1110
m15	1111

Ejemplo

Tabla de modelos de α

minterm	string
m4	0100
m8	1000
m9	1001
m10	1010
m11	1011
m12	1100
m14	1110
m15	1111

r s p q	00	01	11	10
00				
01	1			
11	1		1	1
10	1	1	1	1

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string
m4	0100 ×	m(4,12)	-100
m8	1000		
m9	1001		
m10	1010		
m11	1011		
m12	1100 ×		
m14	1110		
m15	1111		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string
m4	0100 ×	m(4,12)	-100
m8	1000 ×	m(8,9)	100-
m9	1001 ×		
m10	1010		
m11	1011		
m12	1100 \times		
m14	1110		
m15	1111		

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string
m4	0100 ×	m(4,12)	- 100
m8	$1000 \times$	m(8,9)	100 —
m9	1001 \times	m(8,10)	10 - 0
m10	1010 \times	m(8,12)	1 - 00
m11	1011 \times	m(9,11)	10 - 1
m12	1100 \times	m(10,11)	101 —
m14	1110 ×	m(10,14)	1 - 10
m15	1111 \times	m(12,14)	11 - 0
		m(14,15)	111 –

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	100 – ×		
m9	1001	m(8,10)	10 - 0		
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	10 - 1		
m12	1100	m(10,11)	101 – ×		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

1.6 Minimización

Si una cadena no se empareja, se marca con *

19 / 22

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	$100 - \times$	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 – 0 ×		
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	10 – 1 ×		
m12	1100	m(10,11)	$101 - \times$		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

Si una cadena no se empareja, se marca con *

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	$100 - \times$	m(8,10,9,11)	$10 \times$
m9	1001	m(8,10)	10 – 0 ×	m(8,10,12,14)	10
m10	1010	m(8,12)	1 - 00		
m11	1011	m(9,11)	$10-1 \times$		
m12	1100	m(10,11)	$101 - \times$		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 – 0 ×		
		m(14,15)	111 –		

1.6 Minimización

Si una cadena no se empareja, se marca con *

19 / 22

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	- 100	m(8,9,10,11)	10
m8	1000	m(8,9)	$100 - \times$	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	$10-0$ \times	m(8,10,12,14)	10
m10	1010	m(8,12)	$1-00 \times$	m(8,12,10,14)	10
m11	1011	m(9,11)	$10-1 \times$	m(10,11,14,15)	1 - 1 -
m12	1100	m(10,11)	$101 - \times$		
m14	1110	m(10,14)	$1-10 \times$		
m15	1111	m(12,14)	$11-0$ \times		
		m(14,15)	$111 - \times$		

Si una cadena no se empareja, se marca con *

19 / 22

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	− 100 *	m(8,9,10,11)	10
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10 — —
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	10
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	10
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 -
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

Si una cadena no se empareja, se marca con *

A partir de la tabla de los modelos de α , emparejamos pares de cadenas que difieren en una única posición, y esta se reemplaza por un guion

minterm	string	minterm	string	minterm	string
m4	0100	m(4,12)	− 100 *	m(8,9,10,11)	10 *
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	1 0 *
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)	
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 - *
m12	1100	m(10,11)	101 —		
m14	1110	m(10,14)	1 - 10		
m15	1111	m(12,14)	11 - 0		
		m(14,15)	111 –		

Si una cadena no se empareja, se marca con *

minterm	string	minterm	string	minterm	string	
m4	0100	m(4,12)	− 100 *	m(8,9,10,11)	10 *	
m8	1000	m(8,9)	100 —	m(8,10,9,11)	10	
m9	1001	m(8,10)	10 - 0	m(8,10,12,14)	1 0 *	
m10	1010	m(8,12)	1 - 00	m(8,12,10,14)		
m11	1011	m(9,11)	10 - 1	m(10,11,14,15)	1 - 1 - *	
:	÷	:	÷			

- Los implicantes marcados con * son implicantes primos.
- En el ejemplo:
 m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15)
- Aunque no todos son esenciales

- Los implicantes marcados con * son implicantes primos.
- m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15)
- Aunque no todos son esenciales
- Tabla:

	4	8	9	10	11	12	14	15
m(4,12)	×					×		
m(8,9,10,11)		×	×	×	×			
m(8,10,12,14)		×		×		×	×	
m(10,11,14,15)				×	×		×	×

• Las columnas con una sola × indican implicantes esenciales

- Los implicantes marcados con * son implicantes primos.
- m(4,12), m(8,9,10,11), m(8,10,12,14), m(10,11,14,15)
- Aunque no todos son esenciales
- Tabla:

	4	8	9	10	11	12	14	15
m(4,12)	×					×		
m(8,9,10,11)		×	×	×	×			
m(8,10,12,14)		×		×		×	×	
m(10,11,14,15)				×	×		×	×

- Las columnas con una sola × indican implicantes esenciales
- Con los tres implicantes esenciales, m(4,12), m(8,9,10,11) y m(10,11,14,15) se cubren todos los modelos de la fórmula

• Los tres implicantes esenciales

cubren todos los modelos de la fórmula

Recordamos las secuencias que corresponden a esos implicantes:

$$m(4,12) \longmapsto -100$$

 $m(8,9,10,11) \longmapsto 10 - -$
 $m(10,11,14,15) \longmapsto 1 - 1 -$

• Los tres implicantes esenciales

cubren todos los modelos de la fórmula

$$\underbrace{\left(q \wedge \neg r \wedge \neg s\right)}_{m(4,12)} \quad \vee \quad \underbrace{\left(p \wedge \neg q\right)}_{m(8,9,10,11)} \quad \vee \quad \underbrace{\left(p \wedge r\right)}_{m(10,11,14,15)}$$

Recordamos las secuencias que corresponden a esos implicantes:

$$m(4,12) \longmapsto -100$$

 $m(8,9,10,11) \longmapsto 10 - -$
 $m(10,11,14,15) \longmapsto 1 - 1 -$

•