Пусть $v_0 = 500 m/c$, $g = 10,0 m/c^2$. Рассмотрите частные случаи:

- a) $u = \pm 10,0 \text{ m/c}$, w = 0.
- б) $w = \pm 10.0 \text{ m/c}$, u = 0.
- **5.** Рассчитайте величины отклонений (Δx и Δz) для углов 30,0°, 45,0° и 60,0° градусов.

При стрельбе скорости u и w меняются случайным образом, однако максимальная суммарная перпендикулярная скорость ($\sqrt{u^2+w^2}$) не превосходит значения u_0 . Пусть $u_0=10 m/c$.

6. Изобразите схематически область, в которую будут попадать снаряды при многочисленных выстрелах с одной и той же скоростью $v_0 = 500 \text{м/c}$ при одинаковом угле α . Рассмотрите три случая для углов: 30.0° , 45.0° и 60.0° градусов.

Тригонометрические подсказки:

$$\frac{\sin\alpha}{\cos\alpha} = tg\alpha$$
$$2\sin\alpha\cos\alpha = \sin2\alpha$$
$$\cos^2\alpha - \sin^2\alpha = \cos2\alpha$$

Задача 9.3 Большая теплая задача про тепловые большие механизмы.

По сообщению Министерства энергетики Республики Беларусь ежегодно в стране производится **36 млн.** Гкал тепловой энергии. Эту энергию мало произвести — ее еще надо доставить потребителю — например, Вам, для обогрева квартиры! В данной задаче необходимо провести некоторые расчеты, связанные с производством и

передачей тепловой энергии, а также рассмотреть альтернативные возможности ее передачи.

Во всех пунктах задач обязательно приведите расчетные формулы, а затем результаты численных расчетов.

Обратите внимание – в конце задачи приведены необходимые справочные данные!

Часть 1. Что мы имеем?

Традиционно производство тепловой энергии осуществляется посредством нагревания воды при сжигании топлива и ее последующей транспортировки по теплотрассам к потребителю.

- 1.1 Рассчитайте сколь тонн воды, которую необходимо нагреть от температуры $t_0 = 20^{\circ}C$ до температуры $t_1 = 90^{\circ}C$, чтобы произвести всю тепловую энергию за год в нашей стране.
- 1.2. Сколько тонн нефти необходимо сжечь, что бы произвести это количество тепловой энергии? Считайте, что КПД нагревательной установки составляет $\eta = 80\%$.
- 1.3. Допустим, что вся нагретая вода поставляется по трубам, причем средняя скорость течения воды в трубе составляет $v = 10 \frac{M}{c}$. Какую работу должны совершить насосы, что разогнать всю нагретую в республике горячую воду до этой скорости? Вязким трением воды в трубах пренебрегайте.
- 1.4. Сколько нефти необходимо дополнительно сжечь, что обеспечить работу всех насосных станций? КПД насоса примите равным $\eta = 40\%$.
- 1.5. Чему равна стоимость (в долларах США) всей этой нефти (и на нагрев воды, и на работу насосных станций)? Среднюю стоимость нефти примите равной 150 долларов/баррель.
- 1.6. Оцените площадь поперечного сечения всех труб теплотрасс, по которым горячая вода поставляется потребителю?

Часть 2 Можно ли сэкономить?

В данной части задачи мы мысленно переместимся в исследовательскую лабораторию, чтобы от громадных чисел республиканских масштабов перейти к более скромным и осязаемым величинам.

Вы знаете, что теплоперенос может осуществляться различными способами, в том числе без переноса массы. Вам необходимо провести сравнительный анализ этих способов.

- 2.1 Рассмотрим традиционный способ передачи теплоты посредством перекачки горячей воды. Пусть горячая вода ($t_1=90^{\circ}C$) перекачивается из котла нагревателя по трубе диаметром d=5,0 см и длиной l=10 м со скоростью $v=10\frac{M}{C}$ к холодильнику, где остывает до температуры $t_0=20^{\circ}C$. Считайте, что потерями теплоты при движении жидкости по трубе можно пренебречь. Найдите поток теплоты, переносимой в этих условиях.
- 2.2 Теплоперенос может осуществляться посредством теплопередачи по неподвижному стержню. Для исследования этого способа передачи создана следующая установка. Медный стержень диаметром $d=5,0\,c_M$ и длиной $l=10\,M$ одним концом соединен с нагревателем, поддерживающим постоянную температуру $t_1=90^{\circ}C$, а вторым с холодильником, поддерживающим постоянную температуре $t_0=20^{\circ}C$. Боковая поверхность стержня теплоизолирована.
- 2.2.1. При каком распределении температуры вдоль стержня поток теплоты по нему будет постоянным? Запишите формулу, описывающую зависимость температуры стержня от расстояния до его горячего конца.

- 2.2.2 Какое количество теплоты потребуется, что нагреть стержень, до такого распределения температур, при котором поток теплоты по нему будет постоянным?
- 2.2.3 Найдите поток теплоты по стержню в установившемся режиме теплопередачи (т.е. когда этот поток постоянен).
- 2.3 В природе теплоперенос в больших масштабах осуществляется посредством испарения и конденсации воды. Попытайтесь оценить возможности такого способа теплопередачи.

Пусть в теплоизолированную трубу диаметром $d=5,0\,c$ м и длиной $l=10\,$ м поступает водяной пар при температуре $t_1=90^{\circ}C$, движется по ней со средней скоростью $v=50\frac{M}{c}$ и конденсируется на другом конце трубы. Найдите поток теплоты, переносимой паром в этой установке. Считайте, что сконденсировавшаяся вода остывает до температуры $t_0=20^{\circ}C$.