Natural Actor-Critic for Robust Reinforcement Learning with Function Approximation

Ruida Zhou*, Tao Liu*, Min Cheng, Dileep Kalathil, P. R. Kumar, Chao Tian

Paper

This work:

- Policy-based approach: Capable of continuous control large action space
- Function approximation: Handling large state space essence of deep RL
- Robust RL: Dealing with sim-to-real gap naturally arise in application

From RL to Robust RL

 $\mathsf{MDP}\left(\mathcal{S},\mathcal{A},\kappa,r\right) - \mathsf{Robust}\,\,\mathsf{MDP}\left\{\left(\mathcal{S},\mathcal{A},\kappa,r\right) : \kappa \in \mathscr{P}^{\infty}\right\}$

Transition $\kappa=(\kappa_0,\kappa_1,\ldots)$ typically stationary with $\kappa_t=p^\circ$ (nominal model / simulator)

Policy
$$a_t \sim \pi(\cdot \mid s_t)$$

Value function
$$V_{\kappa}^{\pi}(s) = \mathbb{E}_{\kappa,\pi} \Big[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s \Big]$$

Robust value $V^{\pi}_{\mathscr{P}}(s) = \inf_{\kappa \in \mathscr{P}^{\infty}} V^{\pi}_{\kappa}(s)$

Goal: Find policy to maximize $V_{\kappa}^{\pi}(\rho) = \mathbb{E}_{s \sim \rho}[V_{\varnothing}^{\pi}(s)]$

Challenges

Key of RMDP modeling: (s, a)-rectangular uncertainty set $\mathscr{P} = \bigotimes_{(s, a)} \mathscr{P}_{s, a}$ facilitates dynamic programming (DP). DP is about robust Bellman operator $(\mathscr{T}^\pi_{\mathscr{P}}V)(s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \big[r(s, a) + \gamma \inf_{p \in \mathscr{P}_{s, a}} p^\top V \big].$

Tractable robust Bellman operator estimation → efficient learning

Uncertainty sets examples – facilitate robust Bellman operator estimation

- $\begin{array}{l} \bullet \quad R\text{-contamination: } \mathscr{P}_{s,a} = \{Rq + (1-R)p_{s,a}^{\circ}: q \in \Delta_{\mathscr{S}}\}, \\ \inf_{p \in \mathscr{P}_{s,a}} p^{\top}V = (1-R)(p_{s,a}^{\circ})^{\top}V + R\min_{s'} V(s') \\ \end{array}$
- $p \in \mathcal{P}_{s,a}$ $\mathcal{E}_p\text{-norm: } \mathcal{P}_{s,a} = \{q \in \Delta_{\mathcal{S}} : \|q p_{s,a}^{\circ}\|_{\mathbf{p}} \leq \delta\},$

$$\inf_{p \in \mathcal{P}_{s,a}} p^{\top} V = (p_{s,a}^{\circ})^{\top} V - \min_{w \in \mathbb{R}} \|V - w\mathbf{1}\|_{q}$$

$$f\text{-div: } \mathscr{P}_{s,a} = \{p \in \Delta_{\mathscr{S}} : d_f(p,p_{s,a}^{\circ}) = \sum_{s'} p_{s,a}^{\circ}(s') f(\frac{p(s')}{p_{s,a}^{\circ}(s')}) \leq \delta\},$$

$$\inf_{p \in \mathscr{P}_{s,a}} p^{\top} V = \sup_{\lambda > 0, \eta \in \mathbb{R}} \mathbb{E}_{s'} \bigg[-\lambda f^* \bigg(\frac{-V(s') - \eta}{\lambda} \bigg) - \lambda \delta - \eta \bigg]$$

These uncertainty sets do not scale up.

Uncertainty set design

Integral probability metric (IPM) uncertainty set

Computational tractable empirical robust Bellman operator

$$\begin{split} \operatorname{DS} &- (\hat{\mathcal{T}}_{\mathscr{P}}^{\pi}V)(s,a,s_{1:m}') := r(s,a) + \gamma \inf_{\alpha \in \Delta_{[m]}: \operatorname{d}(\alpha,\operatorname{Unif}([m])) \leq \delta} \sum_{i=1}^{m} \alpha_{i}V(s_{i}') \\ \operatorname{IPM} &- (\hat{\mathcal{T}}_{\mathscr{P}}^{\pi}V)(s,a,s_{1:m}') := r(s,a) + \gamma V_{w}(s') - \gamma \delta \|w_{2:d}\| \end{split}$$

Experiments

The proposed RNAC-PPO is more robust in many simulated and real environments, including MuJoCo tasks and real TurtleBot position x

Robust Natural Actor-Critic Algorithm

Algorithm 1: Robust Natural Actor-Critic

Input: $T, \eta^{0:T-1}, K, N$

Initialize: θ^0 for policy parameterization and w_{init} for value function approximation for $t=0,1,\ldots,T-1$ do

Robust critic updates w^t ; //E.g., $w^t = \text{RLTD}(\pi_{\theta^t}, K)$ Algorithm 2 Robust natural actor updates θ^{t+1} ;//E.g., $\theta^{t+1} = \text{RQNPG}(\theta^t, \eta^t, w^t, N)$ Algorithm 3

RNAC-PPO(IPM)

1.5

TurtleBot position x

Theoretical Guarantee

Under linear function approximation and some assumptions, RNAC with appropriate geometrically increasing step sizes η^t , achieves $\mathbb{E}[V^{\pi^*}(\rho) - V^{\pi^T}(\rho)] = O(e^{-T}) + O(\epsilon_{stat}) + O(\epsilon_{bias})$ and an $\tilde{O}(1/\epsilon^2)$ sample complexity; Same condition and constant step size,

$$\mathbb{E}[V^{\pi^*}(\rho) - \frac{1}{T} \sum_{t=1}^{T} V^{\pi^t}(\rho)] = O(1/T) + O(\epsilon_{stat}) + O(\epsilon_{bias}) \text{ and } \tilde{\mathcal{O}}(1/\epsilon^3) \text{ sample complexity;}$$

(i) $\epsilon_{stat} = \tilde{O}(1/\sqrt{N} + 1/\sqrt{K})$ is a statistical error; (ii) ϵ_{bias} is the approximation error due to limited representation power Under general function approximation, RNAC has an $O(1/\sqrt{T})$ optimization rate and an $\tilde{O}(1/\epsilon^4)$ sample complexity;