Report No.: DRTFCC1408-1006(1)

Total 53 Pages

RF TEST REPORT

:	LTE/CDMA(EVDO) Wireless M	Modem Module				
:	LTD-VL1000	LTD-VL1000				
:	DEMC1406-02530	DEMC1406-02530				
:	2014-06-24					
:	2014-07-09 ~ 2014-07-31					
:	2014-08-18					
:	FCC Original Grant					
	·					
ek C	Co.,Ltd.					
		ngiu-City, South Korea				
	0 , 31, 31,	3,				
) L	.td.					
		in-si Gveonggi-do Korea 449-935				
	, re iseen gu, eneem gu, reng	ci, cyconggi do, norda y lo doc				
n	; §22(H), §24(E)					
nt	: See appended test re	eport				
	: ⊠ Pass □] Fail				
	S S S S S S S S S S S S S S S S S S S	- 10 Control				
tod i	n this tast report are limited only to the s	comple supplied by applicant and				
		The state of the s				
٧	vithout the written approval of DT&C Co	o., Ltd.				
		Reviewed by:				
	-	Canaval Managan				
		General Manager Geunki Son				
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	: : : : : : : : : : : : : : : the k (: LTD-VL1000 : DEMC1406-02530 : 2014-06-24 : 2014-07-09 ~ 2014-07-31 : 2014-08-18 : FCC Original Grant ek Co.,Ltd. ingduk-dong, Gwangsan-gu, Gwar o., Ltd. i-ro, 154beon-gil, Cheoin-gu, Yong in : §22(H), §24(E) int : See appended test re				

DEMC1406-02530 FCCID: YZP-VL1000 Report No.: DRTFCC1408-1006(1)

Test Report Version

Test Report No.	Date	Description
DRTFCC1408-1006	Aug. 05. 2014	Initial issue
DRTFCC1408-1006(1)	Aug. 18. 2014	Revised the Effective Radiated Power

Report No.: **DRTFCC1408-1006(1)**

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	
2.1. EUT DESCRIPTION	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS	
3.1 ERP & EIRP	6
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH	
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	10
3.5 RADIATED SPURIOUS EMISSIONS	11
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	12
4. LIST OF TEST EQUIPMENT	13
5. SUMMARY OF TEST RESULTS	
6. SAMPLE CALCULATION	15
7. TEST DATA	16
7.1 CONDUCTED OUTPUT POWER	
7.2 PEAKTOAVERAGERATIO	17
7.3 OCCUPIED BANDWIDTH	17
7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	17
7.5 BAND EDGE	17
7.6 EFFECTIVE RADIATED POWER	18
7.7 EQUIVALENT ISOTROPIC RADIATED POWER	18
7.8 RADIATED SPURIOUS EMISSIONS	19
7.8.1 RADIATED SPURIOUS EMISSIONS (Cellular CDMA 1x)	19
7.8.2 RADIATED SPURIOUS EMISSIONS (Cellular CDMA 1x EVDO (Rev. A	.)) . 20
7.8.3 RADIATED SPURIOUS EMISSIONS (PCS CDMA 1x)	21
7.8.4 RADIATED SPURIOUS EMISSIONS (PCS CDMA 1x EVDO (Rev. A))	22
7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	23
7.9.1 FREQUENCY STABILITY (Cellular CDMA 1x)	23
7.9.2 FREQUENCY STABILITY (Cellular CDMA 1x EVDO (Rev. A))	24
7.9.3 FREQUENCY STABILITY (PCS CDMA 1x)	25
7.9.4 FREQUENCY STABILITY (PCS CDMA 1xEVDO (Rev. A))	26
8. TEST PLOTS	27
8.1 Peak to Average Ratio	27
8.2 Occupied Bandwidth (99 % Bandwidth)	28
8.3 Spurious Emissions at Antenna Terminal	36
8.4 Band Edge	46

FCCID: YZP-VL1000 DEMC1406-02530

DRTFCC1408-1006(1) Report No.:

1. GENERAL INFORMATION

Applicant Name: LG Innotek Co.,Ltd.

Address: 978-1, Jangduk-dong, Gwangsan-gu, Gwangju-City, South Korea

FCC ID YZP-VL1000

FCC Classification PCS Licensed Transmitter (PCB)

EUT LTE/CDMA(EVDO) Wireless Modem Module

Model Name LTD-VL1000

Add Model Name N/A

DC 3.8V Supplying power

Antenna Type Cellular & PCS band for CDMA 1x EVDO(Rev. A): External type

LTE for Band 13 and Band 4: External type

Cellular band CDMA 1x 824.70 MHz ~ 848.31 MHz **Tx Frequency**

Cellular band CDMA 1x EVDO(Rev. A): 824.70 MHz ~ 848.31 MHz PCS band CDMA 1x 1851.25 MHz ~ 1908.75 MHz PCS band CDMA 1x EVDO(Rev. A): 1851.25 MHz ~ 1908.75 MHz

Rx Frequency Cellular band CDMA 1x 869.70 MHz ~ 893.31 MHz

Cellular band CDMA 1x EVDO(Rev. A): 869.70 MHz ~ 893.31 MHz PCS band CDMA 1x 1931.25 MHz ~ 1988.75 MHz

PCS band CDMA 1x EVDO(Rev. A): 1931.25 MHz ~ 1988.75 MHz

0.274 W (24.38 dBm)

Max. Conducted Cellular band CDMA 1x

Output Power Cellular band CDMA 1x EVDO(Rev. A): 0.273 W (24.36 dBm)

PCS band CDMA 1x 0.278 W (24.44 dBm) PCS band CDMA 1x EVDO(Rev. A): 0.274 W (24.38 dBm)

Emission Designator(s): Cellular band CDMA 1x 1M28F9W

> Cellular band CDMA 1x EVDO(Rev. A): 1M28F9W

> PCS band CDMA 1x 1M28F9W PCS band CDMA 1x EVDO(Rev. A): 1M28F9W

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment Under Test(EUT) supports CDMA and EVDO(Rev. A) of Cellular/PCS bands and LTE(Band 4, 13). The EUT has below 2 transceivers.

- 1. CDMA 1x/ EVDO(Rev. A)
- 2. LTE

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The 3&10m test site and conducted measurement facility used to collect the radiated data are located at the 38, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements.

- 3&10m test site registration Number: 678747

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3&10m test site. The equipment under test is placed on a non-conductive turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured. The ERP/EIRP is calculated using the following formula,

ERP/EIRP = The conducted power at the substitute antenna's terminal + substitute antenna gain For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

Test Procedure

ANSI/TIA-603-C-2004 - Section 2.2.17

- KDB971168 v02r01- Section 5.2.1

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep ≥ 2 × span / RBW.
- 5. Sweep time = auto-couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

A peak to average ratio measurement is performed using the following procedure.

■CCDF Procedure

- KDB971168 v02r01-Section 5.7.1
- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

3.3 OCCUPIED BANDWIDTH.

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.70	18.72	1851.25	18.97
836.52	18.76	1880.00	19.04
848.31	18.80	1908.75	19.06
-	-	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter +ATT

Test Procedure

KDB971168 v02r01-Section 4.2

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = $1 \sim 5\%$ of the expected OBW
- 3. VBW ≥ 3 X RBW
- 4. Detector = Peak
- 5. Trance mode = Max hold
- 6. Sweep = Auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, step $2 \sim 7$ were repeated after changing the RBW such that it would be within $1 \sim 5\%$ of the 99% occupied bandwidth observed in step 7.

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
823.0	18.72	1849.0	18.96	5000.0	20.24
824.0	18.72	1850.0	18.96	10000.0	20.89
849.0	18.81	1910.0	19.07	15000.0	21.30
850.0	18.81	1911.0	19.07	20000.0	22.28

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Offset value = Cable A + Splitter +ATT

Test Procedure

KDB971168 v02r01 - Section 6.0

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

- 1. RBW = 1MHz & VBW ≥ 3MHz
- 2. Detector = RMS
- 3. Trace mode = Max hold
- 4. Sweep time = Auto
- 5. The trace was allowed to stabilize

The highest, lowest and a middle channel were tested for out of band measurements. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

- Note 1: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter was employed to measure the out of band Emissions.
- Note 2: Compliance with the applicable limits is based on the use of measurement instrumentation employing a RBW of 100 KHz or greater for Part 22 and 1 MHz or greater for Part24.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

3.5 RADIATED SPURIOUS EMISSIONS

Test Set-up

Test Procedure

- ANSI/TIA-603-C-2004 Section 2.2.12
- KDB971168 v02r01 Section 5.8

This measurement was performed at 3-meter test range. The equipment under test is placed on a non-conductive turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

ANSI/TIA-603-C-2004

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – For part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For part 22, the frequency stability of the transmitter shall be maintained within ± 0.000 25 %(± 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period
 of at least one half-hour is provided to allow stabilization of the equipment at each temperature
 level.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
PXA Signal Analyzer	Agilent	N9030A	13/10/29	14/10/29	MY53310140
MXA Signal Analyzer	Agilent	N9020A	13/09/24	14/09/24	MY50200867
Digital Multimeter	H.P	34401A	14/02/27	15/02/27	3146A13475
Dynamic Measurement DC Source	Agilent	66332A	13/09/24	14/09/24	US37473627
Temp & Humi Test Chamber	SJ Science	TEMI2500	13/10/22	14/10/22	SJ-TH-S50-130930
Power Splitter	Anritsu	K241B	13/10/22	14/10/22	1701061
Attenuator(3dB)	SMAJK	SMAJK-2-3	13/10/22	14/10/22	3
Attenuator(10dB)	SMAJK	SMAJK-50-10	13/10/23	14/10/23	2-50-10
Thermohygrometer	BODYCOM	BJ5478	14/03/03	15/03/03	1209
Dipole Antenna	Schwarzbeck	VHA9103	13/10/24	15/10/24	2116
Dipole Antenna	Schwarzbeck	VHA9103	14/04/01	16/04/01	2117
Dipole Antenna	Schwarzbeck	UHA9105	13/10/24	15/10/24	2261
Dipole Antenna	Schwarzbeck	UHA9105	14/04/01	16/04/01	2262
Bilog Antenna	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
HORN ANT	ETS	3115	14/02/26	16/02/26	6419
HORN ANT	ETS	3115	13/02/28	15/02/28	00021097
HORN ANT	A.H.Systems	SAS-574	13/03/20	15/03/20	154
HORN ANT	A.H.Systems	SAS-574	13/05/27	15/05/27	155
Amplifier (22dB)	H.P	8447E	14/01/07	15/01/07	2945A02865
Amplifier (30dB)	Agilent	8449B	14/02/27	15/02/27	3008A00370
High-pass filter	Wainwright	WHKX1.0	13/09/12	14/09/12	9
High-Pass Filter	Wainwright	WHNX2.1	13/09/12	14/09/12	1
8960 Series 10 Wireless Comms Test Set	Agilent	E5515C	14/02/28	15/02/28	GB43461134
Universal Radio Communication Tester	Rohde Schwarz	CMU200	14/02/28	15/02/28	106760
Vector Signal Generator	Rohde Schwarz	SMBV100A	14/01/08	15/01/08	255571
Signal Generator	Rohde Schwarz	SMF100A	14/07/01	15/07/01	102341
Amplifier	EMPOWER	BBS3Q7ELU	13/09/12	14/09/12	1020

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 (5.4) RSS-133 (4.1)	Conducted Output Power	С
22.913(a) 24.232(c)	RSS-132 (5.4) [SRSP-503(5.1.3)] RSS-133 (6.4) [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
2.1049	RSS-Gen (4.6.1)	Occupied Bandwidth	С
22.917(a) 24.238(a) 2.1051	RSS-132 (5.5) RSS-133 (6.5)	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	С
24.232(d)	RSS-133 (6.4)	Peak to Average Ratio	С
22.917(a) 24.238(a) 2.1053	RSS-132 (5.5) RSS-133 (6.5)	Radiated Spurious and Harmonic Emissions	С
22.355 24.235 2.1055	RSS-132 (5.3) RSS-133 (6.3)	Frequency Stability	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: This test report is for CDMA 1x and CDMA 1x EVDO(Rev. A) functions.

The sample was tested according to the following specification: ANSI/TIA/EIA-603-C-2004 and KDB 971168 D01 v02r01

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

6. SAMPLE CALCULATION

A. Emission Designator

Cellular CDMA1x

Emission Designator = 1M28F9W

CDMAOBW = 1.2779 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

PCS CDMA1x

Emission Designator = 1M28F9W

CDMAOBW = 1.2780 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

Cellular CDMA 1x EVDO(Rev. A)

Emission Designator = 1M28F9W

CDMAOBW = 1.2759 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

PCS CDMA 1x EVDO(Rev. A)

Emission Designator = 1M28F9W

CDMAOBW = 1.2771 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

FCCID: YZP-VL1000

EMC1406 03530

Report No : DRTECC1408 14

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

The output power was measured using the Agilent E5515C

-CDMA

		CDMA 1x						EVDO	
Band CH.		R	C1	RC3				Rev. 0	Rev. A
		SO 2	SO55	SO 2	SO55	SO32 (SCH)	SO32 (F-SCH)	RTAP	RETAP
	1013	24.28	24.22	24.25	24.27	24.26	24.26	24.13	24.18
Cellular	384	24.38	24.34	24.28	24.37	24.28	24.34	24.35	24.36
	777	24.32	24.30	24.18	24.12	24.14	24.19	24.33	24.20
	25	24.34	24.34	24.24	24.22	24.22	24.28	24.23	24.27
PCS	600	24.44	24.40	24.36	24.32	24.28	24.33	24.37	24.38
	1175	24.28	24.20	24.16	24.14	24.14	24.17	24.22	24.29

FCCID: **YZP-VL1000** DEMC1406-02530

Report No.: DRTFCC1408-1006(1)

7.2 PEAKTOAVERAGERATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH

Band	Mode	Channel	Test Result(KHz)
		1013	1273.90
	CDMA 1x	384	1274.10
Cellular		777	1277.90
Celiulai	00144	1013	1272.50
	CDMA 1x EVDO	384	1271.80
	LVDO	777	1275.90
		25	1277.00
	CDMA 1x	600	1278.00
DCC		1175	1276.30
PCS	00144	25	1273.80
	CDMA 1x EVDO	600	1277.10
		1175	1270.60

⁻ Plots of the EUT's Occupied Bandwidth are shown in Clause 8.2

7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE

- Plots of the EUT's Band Edge are shown in Clause 8.4

FCCID: **YZP-VL1000** DEMC1406-02530

DRTFCC1408-1006(1) Report No.:

7.6 EFFECTIVE RADIATED POWER

Band	Mode	Maximum Output Power(dBm)	Antenna Gain (dBd)	ERP (dBm)	LIMIT (dBm)
Cellular	CDMA 1X	26.00	3.35	29.35	38.45
Cellular	CDMA 1X EVDO	26.00	3.35	29.35	38.45

Note.

The maximum output power used max tune-up power.

Available max Antenna gain is 5.50dBi in cellular band of CDMA, and compliant with MPE requirement.

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

Band	Mode	Maximum Output Power(dBm)	Antenna Gain (dBi)	EIRP (dBm)	LIMIT (dBm)
PCS	CDMA 1X	26.00	7.00	33.00	33.01
PCS	CDMA 1X EVDO	26.00	7.00	33.00	33.01

Note.

The maximum output power used max tune-up power.

Available max Antenna gain is 7.00dBi in pcs band of CDMA, and compliant with MPE requirement.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

7.8 RADIATED SPURIOUS EMISSIONS

7.8.1 RADIATED SPURIOUS EMISSIONS (Cellular CDMA 1x)

Channel	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Margin (dB)	Limit (dBm)
	1649.35	X	Н	-65.65	6.50	-59.15	46.15	
1013	2474.14	Z	Н	-52.30	7.54	-44.76	31.76	
	-	-	-	-	-	-	-	
	1673.06	Х	Н	-63.68	6.53	-57.15	44.15	
384	2509.64	Z	Н	-53.39	7.57	-45.82	32.82	-13.00
	-	-	ı	-	-	-	-	
777	1696.77	Х	Н	-63.18	6.56	-56.62	43.62	
	2544.97	Z	Н	-54.90	7.59	-47.31	34.31	
	-	-	-	-	-	-	-	

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported and CDMA 1x mode used a Power control bits of "All up". Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

7.8.2 RADIATED SPURIOUS EMISSIONS (Cellular CDMA 1x EVDO (Rev. A))

Channel	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Margin (dB)	Limit (dBm)
	1649.51	X	Н	-64.16	6.50	-57.66	44.66	-13.00
1013	2474.23	Z	Η	-52.53	7.54	-44.99	31.99	
	-	-	1	-	-	-	-	
	1673.05	Х	Н	-63.09	6.53	-56.56	43.56	
384	2509.50	Z	Н	-53.36	7.57	-45.79	32.79	
	-	-	ı	-	-	ı	-	
777	1696.60	Х	Н	-64.66	6.56	-58.10	45.10	
	2545.12	Z	Н	-53.85	7.59	-46.26	33.26	
	-	-	-	-	-	-	-	

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported and CDMA 1x EVDO mode used a Power control bits of "All up". Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

7.8.3 RADIATED SPURIOUS EMISSIONS (PCS CDMA 1x)

Channel	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Margin (dB)	Limit (dBm)
	3702.33	Υ	V	-44.78	9.78	-35.00	22.00	-13.00
25	5553.80	Z	Ι	-46.89	11.05	-35.84	22.84	
	ı	-	ı	-	1	ı	-	
	3760.54	Υ	٧	-45.78	9.72	-36.06	23.06	
600	5640.17	Z	Н	-48.97	11.14	-37.83	24.83	
	-	-	-	-	-	-	-	
1175	3817.69	Y	V	-45.67	9.66	-36.01	23.01	
	5726.37	Z	Н	-43.67	11.23	-32.44	19.44	
	-	-	-	-	-	-	-	

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported and CDMA 1x mode used a Power control bits of "All up". Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

7.8.4 RADIATED SPURIOUS EMISSIONS (PCS CDMA 1x EVDO (Rev. A))

Channel	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Margin (dB)	Limit (dBm)
	3702.48	Y	V	-46.32	9.78	-36.54	23.54	-13.00
25	5552.95	Z	Η	-47.76	11.05	-36.71	23.71	
	1	-	ı	-	-	-	-	
	3760.52	Y	V	-46.93	9.72	-37.21	24.21	
600	5640.22	Z	Н	-48.35	11.14	-37.21	24.21	
	-	-	ı	-	-	-	-	
1175	3817.86	Υ	V	-46.89	9.66	-37.23	24.23	
	5726.95	Z	Н	-45.74	11.23	-34.51	21.51	
	-	-	-	-	-	-	-	

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

This EUT was tested under all configurations and the highest power is reported and CDMA 1x EVDO mode used a Power control bits of "All up". Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

7.9.1 FREQUENCY STABILITY (Cellular CDMA 1x)

OPERATING FREQUENCY : 836,519,994 Hz

CHANNEL : <u>384 (Mid)</u>

REFERENCE VOLTAGE : 3.800 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP (°C)	FREQ (Hz)	Deviation		
(%)	(V DC)			(ppm)	(%)	
100%		+25(Ref)	836,519,994	0.000	0.00000000	
100%		-30	836,519,992	-0.002	-0.00000024	
100%		-20	836,519,992	-0.002	-0.00000024	
100%	3.800	-10	836,519,993	-0.001	-0.00000012	
100%		0	836,519,995	0.001	0.00000012	
100%		+10	836,519,994	0.000	0.00000000	
100%		+20	836,519,996	0.002	0.00000024	
100%		+30	836,519,992	-0.002	-0.00000024	
100%		+40	836,519,996	0.002	0.00000024	
100%		+50	836,519,993	-0.001	-0.00000012	
85 %	3.230	+25	836,519,993	-0.001	-0.00000012	
115%	4.370	+25	836,519,992	-0.002	-0.00000024	
BATT.ENDPOINT	N/A	-	-	-	-	

7.9.2 FREQUENCY STABILITY (Cellular CDMA 1x EVDO (Rev. A))

OPERATING FREQUENCY : 836,519,993 Hz

CHANNEL : $\frac{384 \text{ (Mid)}}{3.800 \text{ V DC}}$

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100%		+25(Ref)	836,519,993	0.000	0.00000000	
100%		-30	836,519,991	-0.002	-0.00000024	
100%		-20	836,519,994	0.001	0.00000012	
100%		-10	836,519,995	0.002	0.00000024	
100%	0.000	0	836,519,996	0.004	0.00000036	
100%	3.800	+10	836,519,992	-0.001	-0.00000012	
100%		+20	836,519,991	-0.002	-0.00000024	
100%		+30	836,519,994	0.001	0.00000012	
100%		+40	836,519,997	0.005	0.00000048	
100%		+50	836,519,995	0.002	0.00000024	
85%	3.230	+25	836,519,993	0.000	0.00000000	
115%	4.370	+25	836,519,992	-0.001	-0.00000012	
BATT.ENDPOINT	N/A	-	-	-	-	

DRTFCC1408-1006(1) DEMC1406-02530 Report No.:

7.9.3 FREQUENCY STABILITY (PCS CDMA 1x)

OPERATING FREQUENCY 1,880,000,004 Hz

CHANNEL 600 (Mid)

REFERENCE VOLTAGE 3.800 V DC LIMIT

The frequency stability shall be sufficient to ensure that the

fundamental emission stays wthin the authorized frequency

block.

VOLTAGE	POWER	TEMP (℃)	FREQ (Hz)	Deviation		
(%)	(V DC)			(ppm)	(%)	
100%	3.800	+25(Ref)	1,880,000,004	0.000	0.00000000	
100%		-30	1,880,000,007	0.002	0.00000016	
100%		-20	1,880,000,005	0.001	0.00000005	
100%		-10	1,880,000,003	-0.001	-0.00000005	
100%		0	1,880,000,008	0.002	0.00000021	
100%		+10	1,880,000,006	0.001	0.00000011	
100%		+20	1,880,000,004	0.000	0.00000000	
100%		+30	1,880,000,002	-0.001	-0.00000011	
100%		+40	1,880,000,006	0.001	0.00000011	
100%		+50	1,880,000,007	0.002	0.00000016	
85%	3.230	+25	1,880,000,003	-0.001	-0.00000005	
115%	4.370	+25	1,880,000,005	0.001	0.0000005	
BATT.ENDPOINT	N/A	-	-	-	-	

Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. as such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.9.4 FREQUENCY STABILITY (PCS CDMA 1xEVDO (Rev. A))

OPERATING FREQUENCY : 1,880,000,005 Hz

CHANNEL : 600 (Mid)

REFERENCE VOLTAGE : 3.800 V DC
LIMIT : The frequence

The frequency stability shall be sufficient to ensure that the fundamental emission stays wthin the authorized frequency

block.

VOLTAGE	POWER	TEMP	FREQ (Hz)	Deviation		
(%)	(V DC)	(℃)		(ppm)	(%)	
100%	3.800	+25(Ref)	1,880,000,005	0.000	0.00000000	
100%		-30	1,880,000,004	-0.001	-0.00000005	
100%		-20	1,880,000,006	0.001	0.00000005	
100%		-10	1,880,000,004	-0.001	-0.00000005	
100%		0	1,880,000,008	0.002	0.00000016	
100%		+10	1,880,000,007	0.001	0.00000011	
100%		+20	1,880,000,003	-0.001	-0.00000011	
100%		+30	1,880,000,008	0.002	0.00000016	
100%		+40	1,880,000,006	0.001	0.00000005	
100%		+50	1,880,000,006	0.001	0.00000005	
85 %	3.230	+25	1,880,000,005	0.000	0.00000000	
115%	4.370	+25	1,880,000,009	0.002	0.00000021	
BATT.ENDPOINT	N/A	-	-	-	-	

Note. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. as such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

8. TEST PLOTS

8.1 Peak to Average Ratio

CDMA 1x & PCS band Channel: 600

CDMA EVDO 1x EVDO(Rev. A) & PCS band Channel: 600

8.2 Occupied Bandwidth (99 % Bandwidth)

CDMA 1x & Cellular band Channel: 1013

CDMA 1x & Cellular band Channel: 384

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

CDMA 1x & Cellular band Channel: 777

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 1013

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 384

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 777

CDMA 1x & PCS band Channel: 25

CDMA 1x & PCS band Channel: 600

CDMA 1x & PCS band Channel: 1175

CDMA 1x EVDO(Rev. A) & PCS band Channel: 25

CDMA 1x EVDO(Rev. A) & PCS band Channel: 600

YZP-VL1000 DRTFCC1408-1006(1)

CDMA 1x EVDO(Rev. A) & PCS band Channel: 1175

8.3 Spurious Emissions at Antenna Terminal

CDMA 1x & Cellular band Channel: 1013

CDMA 1x & Cellular band Channel: 384

CDMA 1x & Cellular band Channel: 777

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 1013

DEMC1406-02530 Report No.: **DRTFCC1408-1006(1)**

CDMA 1x & PCS band Channel: 25

CDMA 1x & PCS band Channel: 600

CDMA 1x & PCS band Channel: 1175

CDMA 1x EVDO(Rev. A) & PCS band Channel: 25

CDMA 1x EVDO(Rev. A) & PCS band Channel: 25

CDMA 1x EVDO(Rev. A) & PCS band Channel: 600

CDMA 1x EVDO(Rev. A) & PCS band Channel: 600

CDMA 1x EVDO(Rev. A) & PCS band Channel: 1175

CDMA 1x EVDO(Rev. A) & PCS band Channel: 1175

DEMC1406-02530 FCCID: YZP-VL1000

Report No.: DRTFCC1408-1006(1)

8.4 Band Edge

CDMA 1x & Cellular band Channel: 1013

CDMA 1x & Cellular band Channel: 1013

CDMA 1x & Cellular band Channel: 777

CDMA 1x & Cellular band Channel: 777

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 1013

CDMA 1x EVDO(Rev. A) & Cellular band Channel: 777

CDMA 1x & PCS band Channel: 25

CDMA 1x & PCS band Channel: 1175

CDMA 1x EDVO(Rev. A) & PCS band Channel: 25

CDMA 1x EDVO(Rev. A) & PCS band Channel: 25

CDMA 1x EDVO(Rev. A) & PCS band Channel: 1175

CDMA 1x EDVO(Rev. A) & PCS band Channel: 1175

