

Theoretical Computer Science I: Logic

— Winter 2018 —

DHBW Mannheim

Prof. Dr. Karl Stroetmann

September 28, 2018

These lecture notes, the corresponding LATEX sources and the programs discussed in these lecture notes are available at

https://github.com/karlstroetmann/Logik.

The lecture notes can be found in the dictionary Lecture-Notes-Python in the file logic.pdf. As I am currently switching from using the programming language Setlx to using *Python* instead, these lecture notes are being constantly revised. At the moment, the lecture notes still contain SetlX programs. My goal is to replace these programs with equivalent *Python* programs. In order to automatically update the lecture notes, you can install the program git. Then, using the command line, you can clone my repository using the command

git clone https://github.com/karlstroetmann/Logik.git.

Once the repository has been cloned, it can be updated using the command git pull.

Contents

1	Intr	oduction	3
	1.1	Motivation	3
	1.2	Overview	4
2	Naiv	ve Set Theory	5
	2.1	Defining Sets by Listing their Elements	6
	2.2	Predefined Infinite Sets of Numbers	7
	2.3	The Axiom of Specification	7
	2.4	Power Sets	8
	2.5	The Union of Sets	8
	2.6	The Intersection of Sets	9
	2.7	The Difference of Sets	9
	2.8	Image Sets	9
	2.9	Cartesian Products	10
	2.10	Equality of Sets	10
	2.11	Chapter Review	11
3	The	Programming Language Python	12
	3.1	Starting the Interpreter	12
	3.2	An Introduction to <i>Python</i>	13
		3.2.1 Evaluating expressions	13
		3.2.2 Sets in <i>Python</i>	16
		3.2.3 Defining Sets via Selection and Images	18
		3.2.4 Computing the Power Set	19
		3.2.5 Pairs and Cartesian Products	21
		3.2.6 Tuples	21
		3.2.7 Lists	22
		3.2.8 Boolean Operators	23
		3.2.9 Control Structures	25
		3.2.10 Numerical Functions	27
		3.2.11 Selection Sort	28
	3.3		<u> 2</u> 9
	3.4		29
	3.5		30

CONTENTS

1	App	plications and Case Studies	32
	4.1	Solving Equations via Fixed-Point Algorithms	32
	4.2	Case Study: Computation of Poker Probabilities	33
	4.3	Finding a Path in a Graph	35
		4.3.1 Computing the Transitive Closure of a Relation	36
		4.3.2 Computing the Paths	39
		4.3.3 The Wolf, the Goat, and the Cabbage	42
	4.4	Terms and Matching	44
		4.4.1 Constructing and Manipulating Terms	45
		4.4.2 Matching	47
	4.5	Outlook	51
	46	Reflection	52

Chapter 1

Introduction

In this short chapter, I would like to motivate why it is that you have to learn logic when you study computer science. After that, I will give a short overview of the lecture.

1.1 Motivation

Modern software systems are among the most complex systems developed by mankind. You can get a sense of the complexity of these systems if you look at the amount of work that is necessary to build and maintain complex software systems. For example, in the telecommunication industry it is quite common that software projects require more than a thousand collaborating developers to develop a new system. Obviously, the failure of a project of this size is very costly. The page

Staggering Impact of IT Systems Gone Wrong

presents a number of examples showing big software projects that have failed and have subsequently caused huge financial losses. These examples show that the development of complex software systems requires a high level of precision and diligence. Hence, the development of software needs a solid scientific foundation. Both mathematical logic and set theory are important parts of this foundation. Furthermore, both set theory and logic have immediate applications in computer science.

- 1. Logic can be used to specify the interfaces of complex systems.
- 2. The correctness of digital circuits can be verified using automatic theorem provers that are based on propositional logic.
- 3. Set theory and the theory of relations is one of the foundations of relational databases.

It is easy to extend this enumeration. However, besides their immediate applications, there is another reason you have to study both logic and set theory: Without the proper use of abstractions, complex software systems cannot be managed. After all, nobody is able to keep millions of lines of program code in her head. The only way to construct and manage a software system of this size is to introduce the right abstractions and to develop the system in layers. Hence, the ability to work with abstract concepts is one of the main virtues of a modern computer scientist. Exposing students to logic and set theory trains their abilities to work with abstract concepts.

From my past teaching experience I know that many students think that a good programmer already is a good computer scientist. However, a good programmer need not be a scientist, while a computer scientist, by its very name, is a scientist. There is no denying that mathematics in general and logic in particular is an important part of science, so you should master it. Furthermore, this part of your education is much more permanent than the knowledge of a particular programming language. Nobody knows which programming language will be *en vogue* in 10 years from now. In three years, when you start your professional career, quite

a lot of you will have to learn a new programming language. What will count then will be much more your ability to quickly grasp new concepts rather than your skills in a particular programming language.

1.2 Overview

The first lecture in theoretical computer science creates the foundation that is needed for future lectures. This lecture deals mostly with mathematical logic and is structured as follows.

- 1. We begin our lecture with a short introduction of set theory. A basic understanding of set theory is necessary for us to formally define the semantics of both propositional logic and first order logic.
- 2. We proceed to introduce the programming language *Python*.

As the concepts introduced in this lecture are quite abstract, it is beneficial to clarify the main ideas presented in this lectures via programs. The programming language *Python* supports both sets and their operations and is therefore suitable to implement most of the abstract ideas presented in this lecture. According to the IEEE (Institute of Electrical and Electronics Egineers), *Python* is now the most popular programming language. Furthermore, *Python* is now the most popular introductory teaching language at top U.S. universities. For these reasons I have decided to base these lectures on *Python*.

3. Next, we investigate the limits of computability.

For certain problems there is no algorithm that can solve the problem algorithmically. For example, the question whether a given program will terminate for a given input is not decidable. This is known as the halting problem. We will prove the undecidability of the halting problem in the third chapter.

4. The fourth chapter discusses propositional logic.

In logic, we distinguish between propositional logic, first order logic, and higher order logic. Propositional logic is only concerned with the logical connectives

"¬", "
$$\wedge$$
", " \vee ", " \rightarrow " und " \leftrightarrow ",

while first-order logic also investigates the quantifiers

"
$$\forall$$
" and " \exists ",

where these quantifiers range over the objects of the domain of discourse. Finally, in higher order logic the quantifiers also range over functions and predicates.

As propositional logic is easier to grasp than first-order logic, we start our investigation of logic with propositional logic. Furthermore, propositional logic has the advantage of being decidable: We will present an algorithm that can check whether a propositional formula is universally valid. In contrast to propositional logic, first-order logic is not decidable.

Next, we discuss applications of propositional logic: We will show how the 8 queens problem can be reduced to the question, whether a formula from propositional logic is satisfiable. We present the algorithm of Davis and Putnam that can decide the satisfiability of a propositional formula. This algorithm is therefore able to solve the 8 queens problem.

5. Finally, we discuss first-order logic.

The most important concept of the last chapter will be the notion of a formal proof in first order logic. To this end, we introduce a formal proof system that is complete for first order logic. Completeness means that we will develop an algorithm that can prove the correctness of every first-order formula that is universally valid. This algorithm is the foundation of automated theorem proving.

As an application of theorem proving we discuss the systems Prover9 and Mace4. Prover9 is an automated theorem prover, while Mace4 can be used to refute a mathematical conjecture.

Chapter 2

Naive Set Theory

The concept of set theory has arisen towards the end of the 19th century from an effort to put mathematics on a solid foundation. The creation of a solid foundation was considered necessary as the concept of infinity increasingly worried mathematicians.

The essential parts of set theory have been defined by Georg Cantor (1845 – 1918). The first definition of the concept of a set was approximately as follows [Can95]:

A "set" is a well-defined collection M of certain objects x of our perception or our thinking.

Here, the attribute "well-defined" expresses the fact that for a given quantity M and an object x we have to be able to decide whether the object x belongs to the set M. If x belongs to M, then x is called an element of the set M and we write this as

$$x \in M$$
.

The symbol " \in " is therefore used in set theory as a binary predicate symbol. We use infix notation when using this symbol, that is we write $x \in M$ instead of $\in (x, M)$. Slightly abbreviated we can define the notion of a set as follows:

A set is a well-defined collection of elements.

To mathematically understand the concept of a well-defined collection of elements, Cantor introduced the socalled axiom of comprehension. We can formalize this axiom as follows: If p(x) a property that an object x can have, we can define the set M of all objects that have this property. Therefore, the set M can be defined as

$$M := \{x \mid p(x)\}$$

and we read this definition as "M is the set of all x such that p(x) holds". Here, a property p(x) is just a formula in which the variable x happens to appear. We illustrate the axiom of comprehension by an example: If \mathbb{N} is the set of natural numbers, then we can define the set of all even numbers via the property

$$p(x) := (\exists y \in \mathbb{N} : x = 2 \cdot y).$$

Using this property, the set of even numbers can be defined as

$$\{x \mid \exists y \in \mathbb{N} : x = 2 \cdot y\}.$$

Unfortunately, the unrestricted use of the axiom of comprehension leads to serious problems. To give an example, let us consider the property of a set to <u>not</u> contain itself. Therefore, we define

$$p(x) := \neg(x \in x)$$

and further define the set *R* as follows:

$$R := \{x \mid \neg(x \in x)\}.$$

Intuitively, we might expect that no set can contain itself. However, things turn out to be more complicated. Let us try to check whether the set *R* contains itself. We have

$$R \in R$$

$$\Leftrightarrow R \in \{x \mid \neg(x \in x)\}$$

$$\Leftrightarrow \neg(R \in R).$$

So we have shown that

$$R \in R \Leftrightarrow \neg (R \in R)$$

holds. Obviously, this is a contradiction. As a way out, we can only conclude that the expression

$$\{x \mid \neg(x \in x)\}$$

does not define a set. This shows that the axiom of comprehension is too general: Not every expression of the form

$$M := \{x \mid p(x)\}$$

defines a set. The expression

$$\{x \mid \neg(x \in x)\}$$

has been found by the British logician and philosopher Bertrand Russell (1872 – 1970). It is known as Russell's Antinomy.

In order to avoid paradoxes such as Russell's antinomy, it is necessary to be more careful when sets are constructed. In the following, we will present methods to construct sets that are weaker than the axiom of comprehension, but, nevertheless, these methods will be sufficient for our purposes. We will use the notation underlying the comprehension axiom and write set definitions in the form

$$M = \{x \mid p(x)\}.$$

However, we won't be allowed to use arbitrary formulas p(x) here. Instead, the formulas we are going to use for p(x) have to satisfy some restrictions. These restrictions will prevent the construction of self-contradictory sets.

2.1 Defining Sets by Listing their Elements

The simplest way to define a set is to list of all of its elements. These elements are enclosed in the curly braces "{" and "}" and are separated by commas. For example, when we define

$$M := \{1, 2, 3\},\$$

then the set *M* contains the elements 1, 2 and 3. Using the notation of the axiom of comprehension we could write this set as

$$M = \{x \mid x = 1 \lor x = 2 \lor x = 3\}.$$

Another example of a set that can be created by explicitly enumerating its elements is the set of all lower case Latin letters. This set is given as define:

$$\{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\}.$$

Occasionally, we will use dot notation to define a set. Using dot notation, the set of all lower case elements is written as

$$\{a,b,c,\cdots,x,y,z\}.$$

Of course, if we use dot notation the interpretation of the dots " \cdots " must always be obvious from the context of the definition.

As a last example, we consider the empty set \emptyset , which is defined as

$$\emptyset := \{\}.$$

Therefore, the empty set does not contain any element at all. This set plays an important role in set theory. This role is similar to the role played by the number 0 in algebra.

If a set is defined by listing all of its elements, the order in which the elements are listed is not important. For example, we have

$${1,2,3} = {3,1,2},$$

since both sets contain the same elements.

2.2 Predefined Infinite Sets of Numbers

All sets that are defined by explicitly listing their elements can only have finitely many elements. In mathematics there are a number of sets that have an infinite number of elements. One example is the set of natural numbers, which is usually denoted by the symbol \mathbb{N} . Unlike some other authors, I regard the number zero as a natural number. This is consistent with the Iso-standard 31-11. Given the concepts discussed so far, the quantity \mathbb{N} cannot be defined. We must therefore demand the existence of this set as an axiom. More precisely, we postulate that there is a set \mathbb{N} which has the following three properties:

- 1. $0 \in \mathbb{N}$.
- 2. If we have a number n such that $n \in \mathbb{N}$, then we also have $n + 1 \in \mathbb{N}$.
- 3. The set N is the smallest set satisfying the first two conditions.

We write

$$\mathbb{N} := \{0, 1, 2, 3, \cdots\}.$$

Along with the set \mathbb{N} of natural numbers we will use the following sets of numbers:

1. \mathbb{N}^* is the set of positive natural numbers, so we have

$$\mathbb{N}^* := \{ n \mid n \in \mathbb{N} \land n > 0 \}.$$

2. \mathbb{Z} is the set of integers, we have

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \cdots\}$$

3. Q is the set of rational numbers, we have

$$\left\{\frac{p}{q} \mid p \in \mathbb{Z} \land q \in \mathbb{N}^*\right\}.$$

4. \mathbb{R} is the set of real numbers.

A clean mathematically definition of the notion of a real number requires a lot of effort and is out of the scope of this lecture. If you are interested, a detailed description of the construction of real numbers is given in my lecture notes on Analysis.

2.3 The Axiom of Specification

The axiom of specification, also known as the axiom of restricted comprehension, is a weakening of the comprehension axiom. The idea behind the axiom of specification is to use a property p to select from an existing set M a subset N of those elements that have the property p(x):

 $^{^1}$ The IsO standard 31-11 has been replaced by the IsO-standard 80000-2, but the definition of the set $\mathbb N$ has not changed. In the text, I did not cite IsO 80000-2 because the content of this standard is not freely available, at least not legally.

 \Diamond

$$N := \{ x \in M \mid p(x) \}$$

In the notation of the axiom of comprehension this set is written as

$$N := \{ x \mid x \in M \land p(x) \}.$$

This is a <u>restricted</u> form of the axiom of comprehension, because the condition "p(x)" that was used in the axiom of comprehension is now strengthened to the condition " $x \in M \land p(x)$ ".

Example: Using the axiom of restricted comprehension, the set of even numbers can be defined as

$${x \in \mathbb{N} \mid \exists y \in \mathbb{N} : x = 2 \cdot y}.$$

2.4 Power Sets

In order to introduce the notion of a power set we first have to define the notion of a subset. If M and N are sets, then M is a subset of N if and only if each element of the set M is also an element of the set N. In that case, we write $M \subseteq N$. Formally, we define

$$M \subseteq N \stackrel{\text{def}}{\Longrightarrow} \forall x : (x \in M \to x \in N).$$

Example: We have

$$\{1,3,5\} \subseteq \{1,2,3,4,5\}.$$

Furthermore, for any set *M* we have that

$$\emptyset \subseteq M$$
.

The power set of a set M is now defined as the set of all subsets of M. We write 2^M for the power set of M. Therefore we have

$$2^M := \{x \mid x \subseteq M\}.$$

Example: Let us compute the power set of the set $\{1, 2, 3\}$. We have

$$2^{\{1,2,3\}} = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2,3\}, \{1,2,3\}\}.$$

This set has $8 = 2^3$ elements.

In general, if the set M has m different elements, then it can be shown that the power set 2^M has 2^m different elements. More formally, let us designate the number of elements of a finite set M as card(M). Then we have

$$card(2^M) = 2^{card(M)}$$

This explains the notation 2^M to denote the power set of M.

2.5 The Union of Sets

If two sets M and N are given, the union of M and N is the set of all elements that are either in the set M or in the set N or in both M and in N. This set is written as $M \cup N$. Formally, this set is defined as

$$M \cup N := \{x \mid x \in M \lor x \in N\}.$$

Example: If $M = \{1, 2, 3\}$ and $N = \{2, 5\}$, we have

$$\{1,2,3\} \cup \{2,5\} = \{1,2,3,5\}.$$

The concept of the union of two sets can be generalized. Consider a set X such that the elements of X are sets themselves. For example, the power set of a set M is a set whose elements are sets themselves. We can form the union of all the sets that are elements of the set X. We write this set as $\bigcup X$. Formally, we have

 \Diamond

 \Diamond

$$\bigcup X := \{ y \mid \exists x \in X : y \in x \}.$$

Example: If we have

$$X = \{ \{ \}, \{1,2\}, \{1,3,5\}, \{7,4\} \},$$

then

$$\bigcup X = \{1, 2, 3, 4, 5, 7\}.$$

Exercise 1: Assume that *M* is a subset of \mathbb{N} . Compute the set $\bigcup 2^M$.

2.6 The Intersection of Sets

If two sets M and N are given, we define the intersection of M and N as a set of all objects that are elements of both M and N. We write that set as the average $M \cap N$. Formally, we define

$$M \cap N := \{x \mid x \in M \land x \in N\}.$$

Example: We calculate the intersection of the sets $M = \{1,3,5\}$ and $N = \{2,3,5,6\}$. We have

$$M \cap N = \{3,5\}.$$

The concept of the intersection of two sets can be generalized. Consider a set X such that the elements of X are sets themselves. We can form the intersection of all the sets that are elements of the set X. We write this set as $\bigcap X$. Formally, we have

$$\bigcap X := \{ y \mid \forall x \in X : y \in x \}.$$

Exercise 2: Assume that *M* is a subset of \mathbb{N} . Compute the set $\bigcap 2^M$.

2.7 The Difference of Sets

If M and N are sets, we define the difference of M and N as the set of all objects from M that are not elements of N. The difference of the sets M and N is written as $M \setminus N$ and is formally defined as

$$M \setminus N := \{ x \mid x \in M \land x \notin N \}.$$

Example: We compute the difference of the sets $M = \{1, 3, 5, 7\}$ and $N = \{2, 3, 5, 6\}$. We have

$$M \setminus N = \{1,7\}.$$

2.8 Image Sets

If *M* is a set and *f* is a function defined for all *x* of *M*, then the image of *M* under *f* is defined as follows:

$$f(M) := \{ y \mid \exists x \in M : y = f(x) \}.$$

This set is also written as

$$f(M) := \{ f(x) \mid x \in M \}.$$

Example: The set Q of all square numbers can be defined as

$$Q := \{ y \mid \exists x \in \mathbb{N} : y = x^2 \}.$$

Alternatively, we can define this set as

$$Q := \{ x^2 \mid x \in \mathbb{N} \}.$$

2.9 Cartesian Products

In order to be able to present the notion of a Cartesian product, we first have to introduce the notion of an ordered pair of two objects *x* and *y*. The ordered pair of *x* and *y* is written as

$$\langle x, y \rangle$$
.

In the literature, the ordered pair of x and y is sometimes written as (x, y), but I prefer the notation with angle brackets. The first component of the pair $\langle x, y \rangle$ is x, while y is the second component. Two ordered pairs $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$ are equal if and only if they have the same first and second component, i.e. we have

$$\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle \Leftrightarrow x_1 = x_2 \wedge y_1 = y_2.$$

The Cartesian product of two sets M and N is now defined as the set of all ordered pairs such that the first component is an element of M and the second component is an element of N. Formally, we define the cartesian product $M \times N$ of the sets M and N as follows:

$$M \times N := \{ z \mid \exists x \colon \exists y \colon (z = \langle x, y \rangle \land x \in M \land y \in N) \}.$$

To be more concise we usually write this as

$$M \times N := \{ \langle x, y \rangle \mid x \in M \land y \in N \}.$$

Example: If $M = \{1, 2, 3\}$ and $N = \{5, 7\}$ we have

$$M \times N = \{ \langle 1, 5 \rangle, \langle 2, 5 \rangle, \langle 3, 5 \rangle, \langle 1, 7 \rangle, \langle 2, 7 \rangle, \langle 3, 7 \rangle \}.$$

The notion of an ordered pair can be generalized to the notion of an n-tuple where n is a natural number: An n-tuple has the form

$$\langle x_1, x_2, \cdots, x_n \rangle$$
.

In a similar way, we can generalize the notion of a Cartesian product of two sets to the Cartesian product of n sets. The general Cartesian product of n sets M_1, \dots, M_n is defined as follows:

$$M_1 \times \cdots \times M_n = \{ \langle x_1, x_2, \cdots, x_n \rangle \mid x_1 \in M_1 \wedge \cdots \wedge x_n \in M_n \}.$$

Sometimes, n-tuples are called lists. In this case they are written with the square brackets "[" and "]" instead of the angle brackets " \langle " and " \rangle " that we are using.

Exercise 3: Assume that M and N are finite sets. How can the expression $card(M \times N)$ be reduced to an expression containing the expressions card(M) and card(N)?

2.10 Equality of Sets

We have now presented all the methods that we will use in this lecture in order to construct sets. Next, we discuss the notion of equality of two sets. As a set is solely defined by its members, the question of the equality of two sets is governed by the axiom of extensionality:

Two sets are equal if and only if they have the same elements.

Mathematically, we can capture the axiom of extensionality through the formula

$$M = N \leftrightarrow \forall x : (x \in M \leftrightarrow x \in N)$$

An important consequence of this axiom is the fact that the order in which the elements are listed in a set does not matter. For example, we have

$$\{1,2,3\} = \{3,2,1\},\$$

because both sets contain the same elements. Similarly, we have

$$\{1,2,2,3\} = \{1,1,2,3,3\},\$$

because both these sets contain the elements 1, 2, and 3. It does not matter how often we list these elements when defining a set: An object x either is or is not an element of a given set M. It does not make sense to say something like "M contains the object x n times".²

If two sets are defined by explicitly enumerating their elements, the question whether these sets are equal is trivial to decide. However, if a set is defined using the axiom of specification, then it can be very difficult to decide whether this set is equal to another set. For example, it has been shown that

$${n \in \mathbb{N}^* \mid \exists x, y, z \in \mathbb{N}^* : x^n + y^n = z^n} = {1, 2}.$$

However, the proof of this equation is very difficult because this equation is equivalent to Fermat's conjecture. This conjecture was formulated in 1637 by Pierre de Fermat. It took mathematicians more than three centuries to come up with a rigorous proof that validates this conjecture: In 1994 Andrew Wiles and Richard Taylor were able to do this. There are some similar conjectures concerning the equality of sets that are still open mathematical problems.

2.11 Chapter Review

- 1. What is a set?
- 2. How is the axiom of comprehension defined? Why can't we use this axiom to define sets?
- 3. What is the axiom of restricted comprehension?
- 4. Lists all the methods that have been introduced to define sets.
- 5. What is the axiom of extensionality?

²In the literature, you will find the concept of a multiset. A multiset does not abstract from the number of occurrences of its elements. In this lecture, we will not use multisets.

Chapter 3

The Programming Language Python

We have started our lecture with an introduction to set theory. In my experience, the notions of set theory are difficult to master for many students because the concepts introduced in set theory are quite abstract. Fortunately, there is a programming language that supports sets as a basic data type and thus enables us to experiment to experiment with set theory. This is the programming language Python, which has its own website at python.org. By programming in *Python*, students can get acquainted with set theory in a playful manner. Furthermore, as many interesting problems have a straightforward solution as *Python* programs, students can appreciate the usefulness of abstract notions from set theory by programming in *Python*. Furthermore, according to Philip Guo, 8 of the top 10 US universities teach *Python* in their introductory computer science courses.

The easiest way to install python and its libraries is via Anaconda. On many computers, *Python* is already preinstalled. Nevertheless, even on those systems it is easiest to use the Anaconda distribution. The reason is that Anaconda make it very easy to use different versions of python with different libraries. In this lecture, we will be using the version 3.6 of *Python*.

3.1 Starting the Interpreter

My goal is to introduce *Python* via a number of rather simple examples. I will present more advanced features of *Python* in later sections, but this section is intended to provide a first impression of the language.

```
Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>>
```

The Python welcome message.

The language *Python* is an interpreted language. Hence, there is no need to compile a program. Instead, *Python* programs can be executed via the interpreter. The interpreter is started by the command:¹

```
python
```

After the interpreter is started, the user sees the output that is shown in Figure 3.1 on page 12. The string ">>>" is the prompt. It signals that the interpreter is waiting for input. If we input the string

```
1 + 2
```

¹ While I am usually in the habit of terminating every sentence with either a full stop, a question mark or an exclamation mark, I refrain from doing so when the sentence ends in a *Python* command that is shown on a separate line. The reason is that I want to avoid confusion as it can otherwise be hard to understand which part of the line is the command that has to be typed verbatim.

and press enter, we get the following output:

```
3
>>>
```

The interpreter has computed the sum 1 + 2, returned the result, and prints another prompt waiting for more input. Formally, the command "1 + 2" is a script. Of course, this is a very small script as it consists only of a single expression. The command

```
exit()
```

terminates the interpreter. The nice thing about *Python* is the we can run *Python* even in a browser in so called Jupyter notebooks. If you have installed *Python* by means of the Anaconda distribution, then you already have installed Jupyter. The following subsection contains the jupyter notebook Introduction.ipynb. You should download this notebook from my github page and try the examples on your own computer. Of course, for this to work you first have to install jupyter.

3.2 An Introduction to *Python*

This *Python* notebook gives a short introduction to *Python*. We will start with the basics but as the main goal of this introduction is to show how *Python* supports *sets* we will quickly move to more advanced topics. In order to show of the features of *Python* we will give some examples that are not fully explained at the point where we introduce them. However, rest assured that they will be explained eventually.

3.2.1 Evaluating expressions

As Python is an interactive language, expressions can be evaluated directly. In a *Jupyter* notebook we just have to type Ctrl-Enter in the cell containing the expression. Instead of Ctrl-Enter we can also use Shift-Enter.

```
In [1]: 1 + 2
Out[1]: 3
```

In *Python*, the precision of integers is not bounded. Hence, the following expression does not cause an overflow.

```
In[2]:1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20*21*22*23*24*25
Out[2]: 15511210043330985984000000
```

The next *cell* in this notebook shows how to compute the *factorial* of 1000, i.e. it shows how to compute the product

```
1000! = 1 * 2 * 3 * \cdots * 998 * 999 * 1000
```

It uses some advanced features from *functional programming* that will be discussed at a later stage of this introduction.

```
In [3]: import functools
    functools.reduce(lambda x, y: (x*y), range(1, 1001))
```

Out[3]:

The following command will stop the interpreter if executed. It is not useful inside a *Jupyter* notebook. Hence, the next line should not be evaluated. Therefore, I have put a comment character "#" in the first column of this line.

However, if you do remove the comment character and then evaluate the line, nothing bad will happen as the interpreter is just restarted by *Jupyter*.

```
In [4]: # exit()
```

In order to write something to the screen, we can use the function print. This function can print objects of any type. In the following example, this function prints a string. In *Python* any character sequence enclosed in single quotes is string.

```
In [5]: print('Hello, World!')
Hello, World!
```

Instead of using single quotes we can also use double quotes as seen in the next example.

```
In [6]: print("Hello, World!")
Hello, World!
```

The function print accepts any number of arguments. For example, to print the string "36 * 37 / 2 = " followed by the value of the expression $36 \cdot 37/2$ we can use the following print statement:

```
In [7]: print("36 * 37 / 2 =", 36 * 37 // 2)
36 * 37 / 2 = 666
```

In the expression "36 * 37 // 2" we have used the operator "//" in order to enforce *integer division*. If we had used the operator "/" instead, *Python* would have used *floating point division* and therefore would have printed the floating point number 666.0 instead of the integer 666.

```
In [8]: print("36 * 37 / 2 =", 36 * 37 / 2)
36 * 37 / 2 = 666.0
```

The following script reads a natural number n and computes the sum $\sum_{i=1}^{n} i$.

- 1. The function input prompts the user to enter a string.
- 2. This string is then converted into an integer using the function int.
- 3. Next, the set s is created such that

$$s = \{1, \cdots, n\}.$$

The set s is constructed using the function range. A function call of the form range(a, b + 1) returns a *generator* that produces the natural numbers from a to b. By using this generator as an argument to the function set, a set is created that contains all the natural number starting from a upto and including b. The precise mechanics of *generators* will be explained later.

4. The print statement uses the function Sum to add up all the elements of the set S.

```
In [9]: n = input('Type a natural number and press return: ')
    n = int(n)
    s = set(range(1, n+1))
    print('The sum 1 + 2 + ... + ', n, ' is equal to ', sum(s), '.', sep= ")
```

Type a natural number and press return: 36 The sum $1 + 2 + \ldots + 36$ is equal to 666.

The following example shows how functions can be defined in *Python*. The function sum(n) is supposed to compute the sum of all the numbers in the set $\{1, \dots, n\}$. Therefore, we have

$$\operatorname{sum}(n) = \sum_{i=1}^{n} i.$$

The function sum is defined *recursively*. The recursive implementation of the function sum can best by understood if we observe that it satisfies the following two equations:

- 1. sum(0) = 0,
- 2. sum(n) = sum(n-1) + n provided that n > 0.

Let us discuss the implementation of the function sum line by line:

- 1. The keyword def starts the definition of the function. It is followed by the *name* of the function that is defined. The name is followed by the list of the *parameters* of the function. This list is enclosed in parentheses. If there is more than one parameter, the parameters have to be separated by commas. Finally, there needs to be a colon at the end of the first line.
- 2. The *body* of the function is indented. **Contrary** to most other programming languages, *Python* is *space sensitive*.
 - The first statement of the body is a *conditional* statement, which starts with the keyword if. The keyword is followed by a test. In this case we test whether the variable n is equal to the number 0. Note that this test is followed by a colon.
- 3. The next line contains a return statement. Note that this statement is again indented. All statements indented by the same amount that follow an if-statement are considered to be the body of this if-statement, i.e. they get executed if the test of the if-statement is true. In this case the body contains only a single statement.
- 4. The last line of the function definition contains the recursive invocation of the function Sum.

Using the function sum, we can compute the sum $\sum_{i=1}^{n} i$ as follows:

3.2.2 Sets in *Python*

One of the big deals about *Python* is that *Python* supports sets as a **native** datatype. This is one of the reasons that have lead me to choose *Python* as the programming language for this course. To get a first impression how sets are handled in *Python*, let us define two simple sets *A* and *B* and print them:

The last argument sep=' ' prevents the print statement from separating its arguments with space characters. When defining the empty set, there is a caveat, as we cannot define the empty set using the expression {}. The reason is that this expression creates the empty *dictionary* instead. (We will discuss the data type of *dictionaries* later.) To define the empty set, we therefore have to use the following expression:

```
In [13]: set()
```

```
Out[13]: set()
```

Note that the empty set is also printed as set() in *Python* and not as {}.

Next, let us compute the union $A \cup B$. This is done using the function union.

```
In [14]: A.union(B)
Out[14]: {1, 2, 3, 4}
```

As the function union really acts like a *method*, you might suspect that it does change its first argument. Fortunately, this is not the case, *A* is unchanged as you can see in the next line:

```
In [15]: A
Out[15]: {1, 2, 3}
```

To compute the intersection $A \cap B$, we use the function intersection:

```
In [16]: A.intersection(B)
Out[16]: {2, 3}
```

Again *A* is not changed.

```
In [17]: A
Out[17]: {1, 2, 3}
```

The difference $A \setminus B$ is computed using the operator "-":

```
In [18]: A - B
Out[18]: {1}
```

It is easy to test whether $A \subseteq B$ holds:

```
In [19]: A <= B
Out[19]: False</pre>
```

Testing whether an object x is an element of a set M, i.e. to test, whether $x \in M$ holds is straightforward:

```
In [20]: 1 in A
Out[20]: True
```

On the other hand, the number 1 is not an element of the set B, i.e. we have $1 \notin B$:

```
In [21]: 1 not in B
Out[21]: True
```

3.2.3 Defining Sets via Selection and Images

Remember that we can define subsets of a given set M via the axiom of selection. If p is a property such that for any object x from the set M the expression p(x) is either True or False, the subset of all those elements of M such that p(x) is True can be defined as

$$\{x \in M \mid p(x)\}.$$

For example, if M is the set $\{1, \dots, 100\}$ and we want to compute the subset of this set that contains all numbers from M that are divisible by 7, then this set can be defined as

$${x \in M \mid x \% 7 == 0}.$$

In *Python*, the definition of this set can be given as follows:

In general, in *Python* the set

$${x \in M \mid p(x)}$$

is computed by the expression

$$\{ x \text{ for } x \text{ in } M \text{ if } p(x) \}.$$

Image sets can be computed in a similar way. If *f* is a function defined for all elements of a set *M*, the image set

$$\{f(x) \mid x \in M\}$$

can be computed in *Python* as follows:

$$\{ f(x) \text{ for } x \text{ in } M \}.$$

For example, the following expression computes the set of all squares of numbers from the set $\{1, \dots, 10\}$:

The computation of image sets and selections can be combined. If M is a set, p is a property such that p(x) is either True or False for elements of M, and f is a function such that f(x) is defined for all $x \in M$ then we can compute set

```
\{f(x) \mid x \in M \land p(x)\}
```

of all images f(x) from those $x \in M$ that satisfy the property p(x) via the expression

```
\{ f(x) \text{ for } x \text{ in } M \text{ if } p(x) \}.
```

For example, to compute the set of those squares of numbers from the set $\{1, \dots, 10\}$ that are even we can write

We can iterate over more than one set. For example, let us define the set of all products $p \cdot q$ of numbers p and q from the set $\{2, \dots, 10\}$, i.e. we intend to define the set

$$\{p \cdot q \mid p \in \{2, \cdots, 10\} \land q \in \{2, \cdots, 10\}\}.$$

In *Python*, this set is defined as follows:

```
In [25]: print({ p * q for p in range(2,11) for q in range(2,11) })
{4,6,8,9,10,12,14,15,16,18,20,21,24,25,27,28,30,32,35,36,40,42,45,48,49,50,54,56,60,63,64,70,72
```

We can use this set to compute the set of *prime numbers*. After all, the set of prime numbers is the set of all those natural numbers bigger than 1 that can not be written as a proper product, that is a number x is *prime* if

- 1. *x* is bigger than 1 and
- 2. there are no natural numbers x and y both bigger than 1 such that x = p * q holds.

More formally, the set \mathbb{P} of prime numbers is defined as follows:

$$\mathbb{P} = \{ x \in \mathbb{N} \mid x > 1 \land \neg \exists p, q \in \mathbb{N} : (x = p * q \land p > 1 \land q > 1) \}.$$

Hence the following code computes the set of all primes less than 100:

An alternative way to compute primes works by noting that a number p is prime iff there is no number t other than 1 and p that divides the number p. The function dividers given below computes the set of all numbers dividing a given number p evenly:

3.2.4 Computing the Power Set

Unfortunately, there is no operator to compute the power set 2^M of a given set M. Since the power set is needed frequently, we have to implement a function power to compute this set ourselves. The easiest way to compute the power set 2^M of a set M is to implement the following recursive equations:

1. The power set of the empty set contains only the empty set:

$$2^{\{\}} = \big\{ \{\} \big\}$$

- 2. If a set M can be written as $M = C \cup \{x\}$, where the element x does not occur in the set C, then the power set 2^M consists of two sets:
 - Firstly, all subsets of *C* are also subsets of *M*.
 - Secondly, if A is a subset of C, then the set $A \cup \{x\}$ is also a subset of M.

If we combine these parts we get the following equation:

$$2^{C \cup \{x\}} = 2^C \cup \{A \cup \{x\} \mid A \in 2^C\}$$

But there is another problem: In *Python* we can't create a set that has elements that are sets themselves! The reason is that in *Python* sets are implemented via *hash tables* and therefore the elements of a set need to be *hashable*. (The notion of an element being *hashable* will be discussed in more detail in the lecture on *Algorithms*.) However, sets are *mutable* and *mutable* objects are not *hashable*. Fortunately, there is a workaround: *Python* provides the data type of *frozen sets*. These sets behave like sets but are are lacking certain function and hence are unmutable. So if we use *frozen sets* as elements of the power set, we can compute the power set of a given set. The function power given below shows how this works.

```
In [28]: def power(M):
              "This function computes the power set of the set M."
              if M == set():
                  return { frozenset() }
              else:
                  C = set(M) # C is a copy of M as we don't want to change the set M
                  x = C.pop() # pop removes the element x from the set C
                  P1 = power(C)
                  P2 = \{ A.union(\{x\}) \text{ for } A \text{ in } P1 \}
                  return P1.union(P2)
In [29]: power(A)
Out[29]: {frozenset(),
           frozenset({3}),
           frozenset({1}),
           frozenset({2}),
           frozenset({1, 2}),
           frozenset({2, 3}),
           frozenset({1, 3}),
           frozenset(\{1, 2, 3\})\}
```

Let us print this in a more readable way. To this end we implement a function prettyfy that turns a set of frozensets into a string that looks like a set of sets.

```
In [30]: def prettyfy(M):
    """Turn the set of frozen sets M into a string that looks like a set of sets.
        M is assumed to be the power set of some set.
    """

    result = "{{}}, " # The emepty set is always an element of a power set.
    for A in M:
        if A == set(): # The empty set has already been taken care of.
            continue
        result += str(set(A)) + ", " # A is converted from a frozen set to a set
    result = result[:-2] # remove the trailing substring ", "
    result += "}"
    return result

In [31]: prettyfy(power(A))

Out[31]: '{{}}, {3}, {1, 2}, {2, 3}, {1}, {1, 3}, {1, 2, 3}, {2}}'
```

3.2.5 Pairs and Cartesian Products

In *Python*, pairs can be created by enclosing the components of the pair in parentheses. For example, to compute the pair $\langle 1,2 \rangle$ we can write:

```
In [32]: (1,2)
Out[32]: (1, 2)
```

It is not even necessary to enclose the components of a pair in parentheses. For example, to compute the pair $\langle 1,2 \rangle$ we can use the following expression:

```
In [33]: 1, 2
Out[33]: (1, 2)
```

The Cartesian product $A \times B$ of two sets A and B can now be computed via the following expression:

```
\{(x,y) \text{ for } x \text{ in } A \text{ for } y \text{ in } B \}
```

For example, as we have defined A as $\{1,2,3\}$ and B as $\{2,3,4\}$, the Cartesian product of A and B is computed as follows:

```
In [34]: { (x,y) for x in A for y in B }
Out[34]: {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
```

3.2.6 Tuples

The notion of a tuple is a generalization of the notion of a pair. For example, to compute the tuple $\langle 1, 2, 3 \rangle$ we can use the following expression:

```
In [35]: (1, 2, 3)
Out[35]: (1, 2, 3)
```

Longer tuples can be build using the function range in combination with the function tuple:

```
In [36]: tuple(range(1, 11))
Out[36]: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
```

Tuple can be concatenated using the operator +:

```
In [37]: T1 = (1, 2, 3)

T2 = (4, 5, 6)

T3 = T1 + T2

T3
```

```
Out[37]: (1, 2, 3, 4, 5, 6)
```

The *length* of a tuple is computed using the function len:

```
In [38]: len(T3)
Out[38]: 6
```

The components of a tuple can be extracted using square brackets. Not that the first component actually has the index 0! This is similar to the behaviour of *arrays* in the programming language C.

If we use negative indices, then we index from the back of the tuple, as shown in the following example:

The *slicing* operator extracts a subtuple form a given tuple. If *L* is a tuple and *a* and *b* are natural numbers such that $a \le b$ and $a, b \in \{0, len(L)\}$, then the syntax of the slicing operator is as follows:

```
L[a:b]
```

The expression L[a:b] extracts the subtuple that starts with the element L[a] up to and excluding the element L[b]. The following shows an example:

Slicing works with negative indices, too:

```
In [43]: L[2:-2]
Out[43]: (3, 4, 5, 6, 7, 8)
```

3.2.7 Lists

Next, we discuss the data type of lists. Lists are a lot like tuples, but in contrast to tuples, lists are *mutatable*, i.e. we can change lists. To construct a list, we use square backets:

```
In [44]: L = [1,2,3]
        L
Out[44]: [1, 2, 3]
```

To change the first element of a list, we can use the index operator:

```
In [45]: L[0] = 7
L
Out[45]: [7, 2, 3]
```

This last operation would not be possible if L had been a tuple instead of a list. Lists support concatenation in the same way as tuples:

```
In [46]: [1,2,3] + [4,5,6]
Out[46]: [1, 2, 3, 4, 5, 6]
```

The function len computes the length of a list:

```
In [47]: len([4,5,6])
Out[47]: 3
```

Lists and tuples both support the functions \max and \min . The expression $\max(L)$ computes the maximum of all the elements of the list (or tuple) L, while $\min(L)$ computes the smallest element of L.

```
In [48]: max([1,2,3])
Out[48]: 3
In [49]: min([1,2,3])
Out[49]: 1
```

3.2.8 Boolean Operators

In *Python*, the Boolean values are written as True and False.

```
In [50]: True
Out[50]: True
In [51]: False
Out[51]: False
```

These values can be combined using the Boolean operator \land , \lor , and \neg . In *Python*, these operators are denoted as and, or, and not. The following table shows how the operator and is defined:

The disjunction of two Boolean values is only False if both values are False:

```
In [53]: for x in B:
               for y in B:
                    print(x, 'or', y, '=', x or y)
True or True = True
True or False = True
False or True = True
False or False = False
  Finally, the negation operator not works as expected:
In [54]: for x in B:
               print('not', x, '=', not x)
not True = False
not False = True
   Boolean values are created by comparing numbers using the follwing comparison operators:
  1. a == b is true iff a is equal to b.
  2. a != b is true iff a is different from b.
  3. a < b is true iff a is less than b.
  4. a \le b is true iff a is less than or equal to b.
  5. a \ge b is true iff a is bigger than or equal to b.
  6. a > b is true iff a is bigger than b.
In [55]: 1 == 2
Out[55]: False
In [56]: 1 < 2
Out[56]: True
In [57]: 1 <= 2
Out[57]: True
In [58]: 1 > 2
Out[58]: False
In [59]: 1 >= 2
Out[59]: False
   Comparison operators can be chained as shown in the following example:
In [60]: 1 < 2 < 3
Out[60]: True
```

Python supports the universal quantifier \forall . If L is a list of Boolean values, then we can check whether all elements of L are true by writing

```
all(L)
```

For example, to check whether all elements of a list *L* are even we can write the following:

3.2.9 Control Structures

First of all, *Python* supports branching statements. The following example is taken from the *Python* tutorial at https://python.org:

It's more than one.

Loops can be used to iterate over sets, lists, tuples, or generators. The following example prints the numbers from 1 to 10.

The same can be achieved with a while loop:

The following program computes the prime numbers according to an algorithm given by Eratosthenes.

- 1. We set *n* equal to 100 as we want to compute the set all prime numbers less or equal that 100.
- 2. primes is the list of numbers from 0 upto n, i.e. we have initially

$$primes = [0, 1, 2, \cdots, n]$$

Therefore, we have

$$primes[i] = i$$
 for all $i \in \{0, 1, \dots, n\}$.

The idea is to set primes[i] to zero iff i is a proper product of two numbers.

- 3. To this end we iterate over all i and j from the set $\{2, \dots, n\}$ and set the product primes[i*j] to zero. This is achieved by the two for loops in line 3 and 4 below.
- 4. Note that we have to check that the product i * j is not bigger than n for otherwise we would get an *out* of range error when trying to assign primes[i*j].
- 5. After the iteration, all non-prime elements greater than one of the list primes have been set to zero.
- 6. Finally, we compute the set of primes by collecting those elements that have not been set to 0.

```
In [65]: n = 100
    primes = list(range(0, n+1))
    for i in range(2, n+1):
        for j in range(2, n+1):
            if i * j <= n:
                  primes[i * j] = 0
    print(primes)
    print({ i for i in range(2, n+1) if primes[i] != 0 })</pre>
[0, 1, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 0, 0, 0, 29
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
```

The algorithm given above can be improved by using the following observations:

- 1. If a number x can be written as a product a*b, then at least one of the numbers a or b has to be less than \sqrt{x} . Therefore, the for loop in line 5 below iterates as long as $i \leq \sqrt{x}$. The function ceil is needed to cast the square root of x to a natural number. In order to use the functions sqrt and ceil we have to import them from the module math. This is done in line 1 of the program shown below.
- 2. When we iterate over j in the inner loop, it is sufficient if we start with j = i since all products of the form i * j where j < i have already been eliminated at the time, when the multiples of i had been eliminated.

3. If primes[i] = 0, then i is not a prime and hence it has to be a product of two numbers a and b both of which are smaller than i. However, since all the multiples of a and b have already been eliminated, there is no point in eliminating the multiples of i since these are also mulples of both a and b and hence have already been eliminated. Therefore, if primes[i] = 0 we can immediately jump to the next value of i. This is achieved by the continue statement in line 7 below.

The program shown below is easily capable of computing all prime numbers less than a million.

3.2.10 Numerical Functions

Python provides all of the mathematical functions that you have come to learn at school. A detailed listing of these functions can be found at https://docs.python.org/3.6/library/math.html. We just show the most important functions and constants. In order to make the module math available, we use the following import statement:

```
In [67]: import math
```

The mathematical constant Pi which is most often written as π is available as math.pi.

The arc sine, arc cosine, and arc tangent are called by prefixing the character 'a' to the name of the function as seen below:

```
In [72]: math.asin(1.0)
Out[72]: 1.5707963267948966
In [73]: math.acos(1.0)
Out[73]: 0.0
In [74]: math.atan(1.0)
Out[74]: 0.7853981633974483
  Euler's number e can be computed as follows:
In [75]: math.e
Out[75]: 2.718281828459045
  The exponential function \exp(x) := e^x is computed as follows:
In [76]: math.exp(1)
Out[76]: 2.718281828459045
  The natural logarithm ln(x), which is defined as the iverse of the function exp(x), is called log (instead of
ln):
In [77]: math.log(math.e * math.e)
Out[77]: 2.0
  The square root \sqrt{x} of a number x is computed using the function sqrt:
```

3.2.11 Selection Sort

In [78]: math.sqrt(2)

Out[78]: 1.4142135623730951

In order to see a practical application of the concepts discussed so far, we present a sorting algorithm that is known as *selection sort*. This algorithm sorts a given list L and works as follows:

```
    If L is empty, sort(L) is also empty:
    sort([]) = [].
```

2. Otherwise, we first compute the minimum of L. Clearly, the minimum needs to be the first element of the sorted list. We remove this minimum from L, sort the remaining elements recursively, and finally attach the minimum at the front of this list:

```
sort(L) = [min(L)] + sort([x \in L | x \neq min(L)]).
```

Figure 3.2 on page 29 shows the program min-sort.py that implements selection sort in *Python*.

```
def minSort(L):
    if L == []:
        return []
    m = min(L)
    return [m] + minSort([x for x in L if x != m])

L = [ 2, 13, 5, 13, 7, 2, 4 ]
    print('minSort(', L, ') = ', minSort(L), sep='')
```

Implementing selection sort in *Python*.

3.3 Loading a Program

The SETLX interpreter can load programs interactively into a running session. If *file* is the base name of a file, then the command

```
import file
```

loads the program from file. py and executes the statements given in this program. For example, the command

```
import min_sort
```

executes the program shown in Figure 3.2 on page 29. If we want to call a function defined in the file min_sort.py, then we have to prefix this function as shown below:

```
min_sort.minSort([2, 13, 5, 13, 7, 2, 4]),
```

i.e. we have to prefix the name of the function that we want to call with the base name of the file defining this function followed by a dot character.

3.4 Strings

Python support strings. Strings are nothing more but sequences of characters. In *Python*, these have to be enclosed either in double quotes or in single quotes. The operator "+" can be used to concatenate strings. For example, the expression

```
"abc" + 'uvw';
```

returns the result

"abcuvw".

Furthermore, a natural number n can be multiplied with a string S. The expression

```
n * s;
```

returns a string consisting of n concatenations of s. For example, the result of

```
3 * "abc":
```

is the string "abcabcabc". When multiplying a string with a number, the order of the arguments does not matter. Hence, the expression

```
"abc" * 3
```

also yields the result "abcabca". In order to extract substrings from a given string, we can use the same slicing operator that also works for lists and tuples. Therefore, if s is a string and k and l are numbers, then the expression

```
s[k..l]
```

extracts the substring form s that starts with the k + 1th character of s and that ends with the lth character. For example, if s is defined by the assignment

```
s = "abcdefgh"
```

then the expression s[2:5] returns the substring "cde".

3.5 Computing with Unlimited Precision

Python provides the module fractions that implements *rational numbers* through the function Fraction that is implemented in this module. We can load this function as follows:

```
In [1]: from fractions import Fraction
```

The function Fraction expects two arguments, the nominator and the denominator. Mathematically, we have

$$\mathsf{Fraction}(p,q) = \frac{p}{q}.$$

For example, we can compute the sum $\frac{1}{2} + \frac{1}{3}$ as follows:

5/6

Let us compute Euler's number *e*. The easiest way to compute *e* is as inifinite series. We have that

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Here *n*! denotes the *factorial* of *n*, which is defined as follows:

Let's check that our definition of the factorial works as expected.

Lets approximate *e* by the following sum:

$$e = \sum_{i=0}^{n} \frac{1}{i!}$$

Setting n = 100 should be sufficient to compute e to a hundred decimal places.

Multiply e by 10^{100} and round so that we get the first 100 decimal places of e:

Insert a "." after the first digit:

```
In [8]: print(s[0], '.', s[1:], sep=")
```

And there we go. Ladies and gentlemen, lo and behold: Here are the first 100 digits of *e*:

2.718281828459045235360287471352662497757247093699959574966967627724076630353547 5945713821785251664274

Chapter 4

Applications and Case Studies

This chapter contains a number of case studies designed to deepen your understanding of *Python*.

4.1 Solving Equations via Fixed-Point Algorithms

Fixed-Point iterations are very important, both in computer science and in mathematics. As a first example, we show how to solve an equation via a fixed point iteration. Suppose we want to solve the equation

$$x = \cos(x)$$
.

Here, x is a real number that we seek to compute. A simple approach that works in this case is to use a fixed-point iteration. To this end, we define the sequence $(x_n)_{n \in \mathbb{N}}$ inductively as follows:

$$x_0 = 0$$
 and $x_{n+1} = \cos(x_n)$ for all $n \in \mathbb{N}$.

With the help of the Banach fixed-point theorem¹ it can be shown that this sequence converges to a solution of the equation $x = \cos(x)$, i.e. if we define

$$\bar{x} = \lim_{n \to \infty} x_n$$

then we have

$$\cos(\bar{x}) = \bar{x}.$$

Figure 4.1 on page 32 shows the program solve.py that uses this approach to solve the equation $x = \cos(x)$.

```
import math

x = 1.0
dold_x = 0.0
i = 1
while abs(x - old_x) >= 4.0E-16:
    old_x = x
x = math.cos(x)
print('{:2d}'.format(i), ': ', x, sep=")
i += 1
```

Solving the equation x = cos(x) via fixed-point iteration.

 $^{^{1}}$ The Banach fixed-point theorem is discussed in the lecture on differential calculus. This lecture is part of the second semester.

In this program, the iteration stops as soon as the difference between the variables x and old_x is less that $4 \cdot 10^{-16}$. Here, x corresponds to x_{n+1} , while old_x corresponds to x_n . Once the values of x_{n+1} and x_n are sufficiently close, the execution of the while loop terminates. Fixed-Point-Iteration.ipynb shows a *Jupyter* notebook that implements fixed point iteration.

A generic implementation of the fixed-point algorithm.

Figure 4.2 on page 33 shows the program fixpoint.py. In this program we have implemented a function solve that takes two arguments.

1. f is a unary function. The purpose of the solve is to compute the solution of the equation

$$f(x) = x$$
.

This equation is solved with the help of a fixed-point algorithm.

2. x0 is used as the initial value for the fixed-point iteration.

Line 11 calls solve to compute the solution of the equation $x = \cos(x)$. Line 12 solves the equation

$$x = \frac{1}{1+x}.$$

This equation is equivalent to the quadratic equation $x^2 + x = 1$. Note that we have defined the function $x \mapsto \frac{1}{1+x}$ via the expression

```
lambda x: 1/(1+x).
```

This expression is called an anonymous function since we haven't given a name to the function.

Remark: The function solve is only able to solve the equation f(x) = x if the function f is a contraction mapping. A function $f: \mathbb{R} \to \mathbb{R}$ is called a contraction mapping iff

$$|f(x) - f(y)| < |x - y|$$
 for all $x, y \in \mathbb{R}$.

This notion will be discussed in more detail in the lecture on differential calculus in the second semester.

4.2 Case Study: Computation of Poker Probabilities

In this short section we are going to show how to compute probabilities for the *Texas Hold'em* variation of poker. Texas Hold'em poker is played with a deck of 52 cards. Every card has a value. This value is an element

of the set

```
Values = \{2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace\}.
```

Furthermore, every card has a suit. This suit is an element of the set

```
Suits = \{ \clubsuit, \heartsuit, \diamondsuit, \spadesuit \}.
```

These suits are pronounced club, heart, diamond, and spade. As a card is determined by its value and its suit, a card can be represented as a pair $\langle v, s \rangle$, where v denotes the value while s is the suit of the card. Hence, the set of all cards can be represented as the set

```
Deck = \{ \langle v, s \rangle \mid v \in Values \land s \in Suits \}.
```

At the start of a game of Texas Hold'em, every player receives two cards. These two cards are known as the preflop or the hole. Next, there is a bidding phase where players can bet on their cards. After this bidding phase, the dealer puts three cards open on the table. These three cards are known as flop. Let us assume that a player has been dealt the set of cards

```
\{\langle 3, \clubsuit \rangle, \langle 3, \spadesuit \rangle\}.
```

This set of cards is known as a pocket pair. Then the player would like to know the probability that the flop will contain another card with value 3, as this would greatly increase her chance of winning the game. In order to compute this probability we have to compute the number of possible flops that contain a card with the value 3 and we have to divide this number by the number of all possible flops:

```
number of flops containing a card with value 3 number of all possible flops
```

The program poker-triple.py shown in Figure 4.3 performs this computation. We proceed to discuss this program line by line.

```
Values = { "2", "3", "4", "5", "6", "7", "8", "9", "T", "J", "Q", "K", "A" }
Suits = { "c", "h", "d", "s" }
Deck = { (v, s) for v in Values for s in Suits }
Hole = { ("3", "c"), ("3", "s") }
Rest = Deck - Hole
Flops = { (k1, k2, k3) for k1 in Rest for k2 in Rest for k3 in Rest if len({ k1, k2, k3 }) == 3
}
Trips = { f for f in Flops if ("3", "d") in f or ("3", "h") in f }
print(len(Trips) / len(Flops))
```

Computing a probability in poker.

- 1. In line 1 the set Values is defined to be the set of all possible values that a card can take. In defining this set we have made use of the following abbreviations:
 - (a) "T" is short for "Ten",
 - (b) "J" is short for "Jack",
 - (c) "Q" is short for "Queen",
 - (d) "K" is short for "King", and
 - (e) "A" is short for "Ace".
- 2. In line 2 the set Suits represents the possible suits of a card. Here, we have used the following abbreviations:
 - (a) "c" is short for ♣, which is pronounced as club,

- (b) "h" is short for \heartsuit , which is pronounced as heart,
- (c) "d" is short for ♦, which is pronounced as diamond, and
- (d) "s" is short for \spadesuit , which is pronounced as spade.
- 3. Line 3 defines the set of all cards. This set is stored as the variable Deck. Every card is represented as a pair of the form [v, s]. Here, v is the value of the card, while s is its suit.
- 4. Line 4 defines the set Hole. This set represents the two cards that have been given to our player.
- 5. The remaining cards are defined as the variable Rest in line 5.
- 6. Line 6 computes the set of all possible flops. Since the order of the cards in the flop does not matter, we use sets to represent these flops. However, we have to take care that the flop does contain three different cards. Hence, we have to ensure that the three cards k1, k2, and k3 that make up the flop satisfy the inequalities

$$k1 \neq k2$$
, $k1 \neq k3$, and $k2 \neq k3$.

These inequalities are satisfied if and only if the set $\{k1, k2, k3\}$ contains exactly three elements. Hence, when choosing k1, k2, and k3 we have to make sure that the condition

$$len({k1,k2,k3} == 3)$$

holds.

- 7. Line 9 computes the subset Trips of those flops that contain at least one card with a value of 3. As the 3 of clubs and the 3 of spades have already been dealt to our player, the only cards with value 3 that are left in the deck are the 3 of diamonds and the 3 of hearts. Therefore, we are looking for those flops that contain one of these two cards.
- 8. Finally, the probability for obtaining another card with a value of 3 in the flop is computed as the ratio of the number of flops containing a card with a value of 3 to the number of all possible flops.

When we run the program we see that the probability of improving a pocket pair on the flop to trips or better is about 11.8%. A *Jupyter* notebook showcasing this computation outlined above can be fount at Poker.ipynb.

Remark: The method to compute probabilities that has been sketched above only works if the sets that have to be computed are small enough to be retained in memory. If this condition is not satisfied we can use the *Monte Carlo method* to compute the probabilities instead. This method will be discussed in the lecture on algorithms.

4.3 Finding a Path in a Graph

In the following section, I will present an application that is more interesting since it is practically relevant. In order to prepare for this, we will now discuss the problem of finding a path in a directed graph. Abstractly, a graph consists of vertices and edges that connect these vertices. In an application, the vertices could be towns and villages, while the edges would be interpreted as streets connecting these villages. To simplify matters, let us assume for now that the vertices are given as natural numbers, while the edges are represented as pairs of natural numbers. Then, the graph can be represented as the set of its edges, as the set of vertices is implicitly given once the edges are known. To make things concrete, let us consider an example. In this case, the set of edges is called R and is defined as follows:

$$R = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 4, 5 \rangle\}.$$

In this graph, the set of vertices is given as

$$\{1,2,3,4,5\}.$$

This graph is shown in Figure 4.4 on page 36. You should note that the connections between vertices that

A simple graph.

are given in this graph are unidirectional: While there is a connection from vertex 1 to vertex 2, there is no connection from vertex 2 to vertex 1.

The graph given by the relation R contains only the direct connections of vertices. For example, in the graph shown in Figure 4.4, there is a direct connection from vertex 1 to vertex 2 and another direct connection from vertex 2 to vertex 4. Intuitively, vertex 4 is reachable from vertex 1, since from vertex 1 we can first reach vertex 2 and from vertex 2 we can then reach vertex 4. However, there is is no direct connection between the vertices 1 and 4. To make this more formal, define a path of a graph *R* as a list of vertices

$$[x_1, x_2, \cdots, x_n]$$
 such that $\langle x_i, x_{i+1} \rangle \in R$ for all $i = 1, \cdots, n-1$.

In this case, the path $[x_1, x_2, \cdots, x_n]$ is written as

$$x_1 \mapsto x_2 \mapsto \cdots \mapsto x_n$$

and has the length n-1. It is important to note that the length of a path $[x_1, x_2, \dots, x_n]$ is defined as the number of edges connecting the vertices and not as the number of vertices appearing in the path.

Furthermore, two vertices *a* and *b* are said to be connected iff there exists a path

$$[x_1, \cdots, x_n]$$
 such that $a = x_1$ and $b = x_n$.

The goal of this section is to develop an algorithm that checks whether two vertices a and b are connected. Furthermore, we want to be able to compute the corresponding path connecting the vertices a and b.

4.3.1 Computing the Transitive Closure of a Relation

We have already noted that a graph can be represented as the set of its edges and hence as a binary relation. A binary relation is defined as a set of pairs. We also need the notion of a relational product: If Q and R are binary relations, then the relational product $Q \circ R$ of Q and R is defined as

$$Q \circ R := \{ \langle x, z \rangle \mid \exists y : (\langle x, y \rangle \in Q \land \langle y, z \rangle \in R) \}.$$

Furthermore, for any $n \in \mathbb{N}^*$ we can define the n-th power of the relation R by induction.

B.C.:
$$n = 1$$
. $R^1 := R$

I.S.:
$$n \mapsto n+1$$

 $R^{n+1} := R^n \circ R$.

In order to decide whether there is a path connecting two vertices we have to compute the transitive closure R^+ of a relation R. To understand this notion, we first need to define the concept of transitivity: A relation R

is transitive if and only if the following holds:

$$\langle x, y \rangle \in T \land \langle y, z \rangle \in T \rightarrow \langle x, z \rangle \in T$$
 for all x, y, z .

Now the transitive closure R^+ of a binary relation R is the smallest relation T such that the following condition holds:

- *R* is a subset of *T*, i.e. we have $R \subseteq T$.
- *T* is transitive.

The lecture on Lineare Algebra gives a prove that the transitive closure R^+ of a binary relation can be computed as follows:

$$R^+ = \bigcup_{n=1}^{\infty} R^n = R^1 \cup R^2 \cup R^3 \cup \cdots$$

Initially, this formula might look intimidating as it suggests an infinite computation. Fortunately, it turns out that we do not have to compute all powers of the form \mathbb{R}^n . Let me explain the reason that allows us to cut the computation short.

- 1. *R* is the set of direct connections between two vertices.
- 2. R^2 is the same as $R \circ R$ and this relational product is defined as

$$R \circ R = \{ \langle x, z \rangle \mid \exists y \colon (\langle x, y \rangle \in R \land \langle y, z \rangle) \in R \}.$$

Hence, $R \circ R$ contains those pairs $\langle x, z \rangle$ that are connected via one intermediate vertex y, i.e. there is a path of the form $x \mapsto y \mapsto z$ that connects x and z. This path has length 2. In general, we can show by induction that R^n connect those pairs that are connected by a path of length n. The induction step of this proof runs as follows:

3. R^{n+1} is defined as $R^n \circ R$ and therefore we have

$$R^n \circ R = \{\langle x, z \rangle \mid \exists y \colon \langle x, y \rangle \in R^n \land \langle y, z \rangle \in R\}.$$

As $\langle x, y \rangle \in \mathbb{R}^n$, the induction hypothesis guarantees that the vertices x and y are connected by a path of length n. Hence, this path has the form

$$x \mapsto \cdots \mapsto y$$
 path of length n .

Adding *x* at the end of this path will produce the path

$$x \mapsto \cdots \mapsto y \mapsto z$$
.

This path has a length of n+1 and, furthermore, connects x and z. Hence R^{n+1} contains those pairs $\langle x, z \rangle$ that are connected by a path of length n+1.

Now the important observation is the following. The set of all vertices is finite. For the arguments sake, let us assume there are k different vertices. But then every path that has a length of k or greater must contain at least one vertex that is visited more than once and hence this path is longer than necessary, i.e. there is a shorter path that connects the same vertices. Therefore, for a finite graph with k vertices, the formula to compute the transitive closure can be simplified as follows:

$$R^+ = \bigcup_{i=1}^{k-1} R^i.$$

While we could use this formula as its stands, it is more efficient to use a fixed-point iteration instead. To this end, we prove that the transitive closure R^+ satisfies the following equation:

$$R^+ = R \cup R^+ \circ R. \tag{4.1}$$

Let me remind you that the precedence of the operator \circ is higher than the precedence of the operator \cup . Therefore, the expression $R \cup R^+ \circ R$ is parenthesized as $R \cup (R^+ \circ R)$. Equation 4.1 can be proven algebraically. We have:

$$R \cup R^{+} \circ R$$

$$= R \cup \left(\bigcup_{i=1}^{\infty} R^{i}\right) \circ R$$

$$= R \cup \left(R^{1} \cup R^{2} \cup R^{3} \cup \cdots\right) \circ R$$

$$= R \cup \left(R^{1} \circ R \cup R^{2} \circ R \cup R^{3} \circ R \cup \cdots\right)$$

$$= R \cup \left(R^{2} \cup R^{3} \cup R^{4} \cup \cdots\right)$$

$$= R^{1} \cup \left(R^{2} \cup R^{3} \cup R^{4} \cup \cdots\right)$$

$$= \bigcup_{i=1}^{\infty} R^{i}$$

$$= R^{+}.$$

Equation 4.1 can now be used to compute R^+ via a fixed-point iteration. To this end, let us define a sequence of relations $(T_n)_{n\in\mathbb{N}}$ by induction on n:

I.A.
$$n = 0$$
:
 $T_0 = R$
I.S. $n \mapsto n + 1$:
 $T_{n+1} = R \cup T_n \circ R$.

The relation T_n can be expressed via the relation R, we have

1.
$$T_0 = R$$
.
2. $T_1 = R \cup T_0 \circ R = R \cup R \circ R = R^1 \cup R^2$.
3. $T_2 = R \cup T_1 \circ R$
 $= R \cup (R^1 \cup R^2) \circ R$
 $= R^1 \cup R^2 \cup R^3$.

In general, we can show by induction that

$$T_n = \bigcup_{i=1}^{n+1} R^i$$

holds for all $n \in \mathbb{N}$. The base case of this proof is immediate from the definition of T_0 . In the induction step we observe the following:

$$T_{n+1} = R \cup T_n \circ R$$
 (by definition)
 $= R \cup \left(\bigcup_{i=1}^{n+1} R^i\right) \circ R$ (by induction hypothesis)
 $= R \cup \left(R \cup \dots \cup R^{n+1}\right) \circ R$
 $= R^1 \cup R^2 \cup \dots \cup R^{n+2}$ (by the distributivity of \circ over \cup)
 $= \bigcup_{i=1}^{n+2} R^i$

The sequence $(T_n)_{n\in\mathbb{N}}$ has another useful property: It is monotonically increasing. In general, a sequence of sets $(X_n)_{n\in\mathbb{N}}$ is called monotonically increasing iff we have

$$\forall n \in \mathbb{N} : X_n \subseteq X_{n+1}$$

i.e. the sets X_n get bigger with growing index n. The monotonicity of the sequence $(T_n)_{n \in \mathbb{N}}$ is an immediate consequence of the equation

$$T_n = \bigcup_{i=1}^{n+1} R^i$$

because we have:

$$T_n \subseteq T_{n+1}$$

$$\Leftrightarrow \bigcup_{i=1}^{n+1} R^i \subseteq \bigcup_{i=1}^{n+2} R^i$$

$$\Leftrightarrow \bigcup_{i=1}^{n+1} R^i \subseteq \bigcup_{i=1}^{n+1} R^i \cup R^{n+2}$$

If the relation R is finite, then the transitive closure R^+ is finite, too. The sets T_n are all subsets of R^+ because we have

$$T_n = \bigcup_{i=1}^{n+1} R^i \subseteq \bigcup_{i=1}^{\infty} R^i = R^+ \quad \text{ for all } n \in \mathbb{N}.$$

Hence the sets T_n can not grow indefinitely. Because of the monotonicity of the sequence $(T_n)_{n\in\mathbb{N}}$ it follows that there exists an index $k\in\mathbb{N}$ such that the sets T_n do not grow any further once n has reached k, i.e. we have

$$\forall n \in \mathbb{N} : (n \ge k \to T_n = T_k).$$

But this implies that

$$T_n = \bigcup_{i=1}^{n+1} R^i = \bigcup_{i=1}^{\infty} R^i = R^+$$
 holds for all $n \ge k$.

Therefore, the algorithm for computing R^+ iterates the equation

$$T_{n+1} = R \cup T_n \circ R$$

until the equation $T_{n+1} = T_n$ is satisfied, since this implies that $T_n = R^+$.

The program transitive-closure.py that is shown in Figure 4.5 on page 40 shows an implementation of this idea. The program produces the following output:

R =
$$\{(1, 2), (1, 3), (4, 5), (2, 3), (2, 4)\}$$

Computing the transitive closure of R:
R+ = $\{(1, 2), (1, 3), (4, 5), (1, 4), (1, 5), (2, 3), (2, 5), (2, 4)\}$

The transitive closure R^+ of a relation R has a very intuitive interpretation: It contains all pairs $\langle x,y\rangle$ such that there is a path leading from x to y. The function $\operatorname{product}(R_1,R_2)$ computes the relational product $R_1 \circ R_2$ according to the formula

$$R_1 \circ R_2 = \{ \langle x, z \rangle \mid \exists y : (\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2) \}.$$

4.3.2 Computing the Paths

So far, given a graph represented by a relation R and two vertices x and y, we can only check whether there is a path leading from x to y, but we cannot compute this path. In this subsection we will extend the procedure transClosure so that it will also compute the corresponding path. The main idea is to extend the notion of a relational product to the notion of a path product, where a path product is defined on sets of paths. In order to do so, we introduce three functions for tuples.

```
def product(R1, R2):
1
         "Compute the relational product of R1 and R2."
2
         return \{(x, z) \text{ for } (x, y1) \text{ in R1 for } (y2, z) \text{ in R2 if } y1 == y2 \}
3
    def transClosure(R):
5
         "Compute the transitive closure of the binary relation R."
6
         while True:
              oldT = T
                   = product(R,T).union(R)
              Τ
10
              if T == oldT:
11
                  return T
12
13
    R = \{ (1,2), (2,3), (1,3), (2,4), (4,5) \}
print("R = ", R);
14
15
    print( "Computing the transitive closure of R:" );
16
    T = transClosure(R);
17
    print( "R+ = ", T );
```

Computing the transitive closure.

1. Given a tuple T, the function first(T) returns the first element of T:

$$first(\langle x_1, \cdots, x_m \rangle) = x_1.$$

2. Given a tuple T, the function last(T) returns the last element of T:

$$last(\langle x_1, \cdots, x_m \rangle) = x_m.$$

3. If $S = \langle x_1, \dots, x_m \rangle$ and $T = \langle y_1, \dots, y_n \rangle$ are two tuples such that first(S) = last(S), we define the join $S \oplus T$ of S and T as

```
S \oplus T = \langle x_1, \cdots, x_m, y_2, \cdots, y_n \rangle.
```

If \mathcal{P}_1 and \mathcal{P}_2 are sets of tuples representing paths, we define the path product of \mathcal{P}_1 and \mathcal{P}_2 as follows:

```
\mathcal{P}_1 \bullet \mathcal{P}_2 = \{ T_1 \oplus T_2 \mid T_1 \in \mathcal{P}_1 \land T_2 \in \mathcal{P}_2 \land last(T_1) = first(T_2) \}.
```

Using the notion of a path product we are able to extend the program shown in Figure 4.5 such that it computes all paths between two vertices. The resulting program path.py is shown in Figure 4.6 on page 41. Unfortunately, the program does not work any more if the graph is cyclic. A graph is defined to be cyclic if there is a path of length greater than 1 that starts and ends at the same vertex. This path is then called a cycle. Figure 4.7 on page 41 shows a cyclic graph. This graph is cyclic because it contains the path

```
\langle 1, 2, 4, 1 \rangle
```

and this path is a cycle. The problem with this graph is that it contains an infinite number of paths that connect the vertex 1 with the vertex 2:

```
\langle 1,2 \rangle, \langle 1,2,4,1,2 \rangle, \langle 1,2,4,1,2,4,1,2 \rangle, \langle 1,2,4,1,2,4,1,2,4,1,2 \rangle, ...
```

Of course, there is no point in computing a path that visits a vertex more than once as these paths contain cycles. Our goal is to eliminate all those paths that contain cycles.

Figure 4.8 on page shows how the implementation of the function pathProduct has to be changed so that the resulting program path-cyclic.py works also for cyclic graphs.

1. In line 2 and 3, we compute only those paths that are not cyclic.

```
def findPaths(R):
1
        P = R;
2
        while True:
3
             oldP = P
                  = R.union(pathProduct(P, R))
             print(P)
             if P == oldP:
                 return P
    def pathProduct(P, Q):
10
        return { join(S, T) for S in P for T in Q if S[-1] == T[0] }
11
12
    def join(S, T):
13
        return S + T[1:]
14
15
    R = \{ (1,2), (2,3), (1,3), (2,4), (4,5) \}
16
    print("R = ", R)
    print("Computing all paths:" )
18
    P = findPaths(R)
    print("P = ", P)
20
```

Computing all connections.

A graph with a cycle.

Computing the connections in a cyclic graph.

2. Line 6 defines a function noCycle that tests, whether the join T1 \oplus T2 is cyclic. The join of T1 and T2 is cyclic iff the tuples T1 and T2 have more than one common element. The tuples T1 and T2 will always have at least one common element, as we join these tuples only if the last element of T1 is equal to the first element of T2. If there would be an another vertex common to both T1 and T2, then the path T1 \oplus T2

 \Diamond

would be cyclic.

In general, we are not really interested to compute all possible paths between two given vertices X and y. Instead, we just want to compute the shortest path leading from X to y. Figure 4.9 on page 43 shows the procedure reachable. This procedure takes three arguments:

- 1. start and goal are vertices of a graph.
- 2. R is a binary relation representing a directed graph.

The call reachable(start, goal, R) checks whether start and goal are connected and, furthermore, computes the shortest path from start to goal, provided such a path exists. The complete program can be found in the file find_path.py. Next, we discuss the implementation of the procedure reachable.

- 1. Line 2 initializes the set P. After *n* iterations, this set will contain all paths that start with the vertex start and that have a length of at most *n*.
 - Initially, there is just the trivial path $\langle start \rangle$ that starts with vertex start and has length 0.
- 2. Line 5 tries to extend all previously computed paths by one step. If we are lucky, the set P is increased in this step.
- 3. Line 6 selects all those paths from the set P that lead to the vertex goal. These paths are stored in the set Found.
- 4. Line 7 checks whether we have indeed found a path ending at goal. This is the case if the set Found is not empty. In this case, we return any of these paths.
- 5. If we have not yet found the vertex goal and, furthermore, we have not been able to find any new paths during this iteration, the procedure returns in line 10. As the return statement in line 11 does not return a value, the procedure will instead return the value None.

The procedure call reachable(start,goal R) will compute the **shortest** path connecting start and goal because it computes path with increasing length. The first iteration computes all paths starting in start that have a length of at most 1, the second iteration computes all paths starting in start that have a length of at most 2, and in general the *n*-th iteration computes all paths starting in start that have a length of at most *n*. Hence, if there is a path of length *n*, then this path will be found in the *n*-iteration unless a shorter path has already been found in a previous iteration.

Remark: The algorithm described above is known as breadth first search.

4.3.3 The Wolf, the Goat, and the Cabbage

Next, we present an application of the theory developed so far. We solve a problem that has puzzled the greatest agricultural economists for centuries. The puzzle we want to solve is known as the wolf-goat-cabbage puzzle:

An agricultural economist has to sell a wolf, a goat, and a cabbage on a market place. In order to reach the market place, she has to cross a river. The boat that she can use is so small that it can only accommodate either the goat, the wolf, or the cabbage in addition to the agricultural economist. Now if the agricultural economist leaves the wolf alone with the goat, the wolf will eat the goat. If, instead, the agricultural economist leaves the goat with the cabbage, the goat will eat the cabbage. Is it possible for the agricultural economist to develop a schedule that allows her to cross the river without either the goat or the cabbage being eaten?

In order to compute a schedule, we first have to model the problem. The various states of the problem will be regarded as vertices of a graph and this graph will be represented as a binary relation. To this end we define

```
def reachable(start, goal, R):
1
        P = { (start,) }
2
        while True:
3
            oldP = P
                   = P.union(path_product(P, R))
            Found = { T for T in P if T[-1] == goal }
             if Found != set({}):
                 return Found.pop()
            if P == oldP:
                 return
10
11
    def path_product(P, R):
12
        return set( add(T1, T2) for T1 in P for T2 in R
13
                               if T1[-1] == T2[0] and noCycle(T1, T2)
14
                   )
15
16
    def noCycle(T1, T2):
17
        return len(set(T1).intersection(set(T2))) == 1
18
    def add(T, P):
20
        return T + (P[-1],)
21
```

Finding the shortest path between two vertices.

the set

```
All = {"farmer", "wolf", "goat", "cabbage"}.
```

Every node will be represented as a subset S of the set All. The idea is that the set S specifies those objects that are on the left side of the river. We assume that initially the farmer is on the left side of the river. Therefore, the set of all possible states can be defined as the set

```
P = { S : S in 2 ** All | !problem(S) && !problem(All - S) };
```

Here, we have used the procedure problem to check whether a given set S has a problem. Note that since S is the set of objects on the left side, the expression All - S computes the set of objects on the right side of the river.

Next, a set S of objects has a problem if both of the following conditions are satisfied:

- 1. The farmer is not an element of S and
- 2. either S contains both the goat and the cabbage or S contains both the wolf and the goat.

Therefore, we can implement the function problem as follows:

We proceed to compute the relation R that contains all possible transitions between different states. We will compute R using the formula:

```
R = R1 + R2;
```

Here R1 describes the transitions that result from the farmer crossing the river from left to right, while R2

describes the transitions that result from the farmer crossing the river from right to left. We can define the relation R1 as follows:

Let us explain this definition in detail:

- 1. Initially, S is the set of objects on the left side of the river. Hence, S is an element of the set of all states that we have defined as P.
- 2. B is the set of objects that are put into the boat and that do cross the river. Of course, for an object to go into the boat is has to be on the left side of the river to begin with. Therefore, B is a subset of S and hence an element of the power set of S.
- 3. Then S-B is the set of objects that are left on the left side of the river after the boat has crossed. Of course, the new state S-B has to be a state that does not have a problem. Therefore, we check that S-B is an element of P.
- 4. Furthermore, the farmer has to be in the boat. This explains the condition

```
'farmer' in B.
```

5. Finally, the boat can only have two passengers. Therefore, we have added the condition

```
#B <= 2
```

Next, we have to define the relation R2. However, as crossing the river from right to left is just the reverse of crossing the river from left to right, R2 is just the inverse of R1. Hence we define:

```
R2 = \{ [y, x] : [x, y] \text{ in } R1 \};
```

Finally, the start state has all objects on the left side. Therefore, we have

```
start = All;
```

In the end, all objects have to be on the right side of the river. That means that nothing is left on the left side. Therefore, we define

```
goal = {};
```

Figure 4.10 on page 45 shows the program wolf-goat-cabbage.py that combines the statements shown so far. The solution computed by this program is shown in Figure 4.11.

4.4 Terms and Matching

So far we have seen the basic data structures of SETLX like numbers, string, sets, and lists. There is one more data structure that is supported by SETLX. This is the data structure of terms. This data structure is especially useful when we develop programs that deal with mathematical formulas. For example, in this section we will develop a program that reads a string like

```
"x * exp(x)",
```

interprets this string as describing the real valued function

$$x \mapsto x \cdot \exp(x)$$
,

and then takes the derivative of this function with respect to the variable x. This program is easy to implement if real valued functions are represented as terms. The reason is that SETLX provides matching for terms. We will define this notion later. Matching is one of the main ingredients of the programming language Prolog. This programming language was quite popular in artificial intelligence during the eighties and has inspired the matching that is available in *Python*.

```
problem = procedure(S) {
1
          return !("farmer" in S)
                                                                                       &&
2
                   ({"goat", "cabbage"} <= S || {"wolf", "goat"} <= S);
     };
     All = { "farmer", "wolf", "goat", "cabbage" };
P = { S : S in 2 ** All | !problem(S) && !problem(All - S) };
     R1 = \{ [S, S - B]: S \text{ in } P, B \text{ in } 2 ** S \}
                             \mid S - B in P && "farmer" in B && #B <= 2
10
     R2
         = \{ [y, x] : [x, y] \text{ in R1 } \};
11
          = R1 + R2;
12
     start = All;
14
     goal = \{\};
15
16
     path = reachable(start, goal, R);
```

Solving the wolf-goat-cabbage problem.

```
{"cabbage", "farmer", "goat", "wolf"}
                                                                             {}
                              >>>> {"farmer", "goat"} >>>>
    {"cabbage", "wolf"}
                                                            {"farmer", "goat"}
                              <<< {"farmer"} <<<
    {"cabbage", "farmer", "wolf"}
                                                                      {"goat"}
                              >>>> {"farmer", "wolf"} >>>>
    {"cabbage"}
                                                    {"farmer", "goat", "wolf"}
                             <<< {"farmer", "goat"} <<<
    {"cabbage", "farmer", "goat"}
                                                                      {"wolf"}
                              >>>> {"cabbage", "farmer"} >>>>
10
    {"goat"}
                                                 {"cabbage", "farmer", "wolf"}
11
                              <<< {"farmer"} <<<
12
    {"farmer", "goat"}
                                                           {"cabbage", "wolf"}
13
                              >>>> {"farmer", "goat"} >>>>
14
                                        {"cabbage", "farmer", "goat", "wolf"}
    {}
15
```

A schedule for the agricultural economist.

4.4.1 Constructing and Manipulating Terms

In order to build terms, we first need functors . It is important not to confuse functors with function symbols. Therefore, functors have to be preceded by the character "@". For example, the following strings can be used as functors:

```
@f, @FabcXYZ, @sum, @Hugo_.
```

However, in the expression "@f", the string "f" is the functor. The character "@" is only used as an escape character that tells us that "f" is not a function symbol but rather a functor. Next, we define terms. If F is a functor and t_1, t_2, \cdots , are any values, i.e. they could be number, strings, lists, sets, or terms themselves, then

```
QF(t_1,t_2,\cdots,t_n)
```

is a term. Syntactically, terms look very similar to function calls. The only difference between a function call

 \Diamond

and a term is the following:

- 1. A function call starts with a function symbol.
- 2. A term starts with a functor.

Examples:

- 1. @Address('Coblitzallee 1-9', 68163, 'Mannheim') is a term that represents an address.
- 2. @product(@variable('x'), @exp(@variable('x'))) is a term that represents the function $x \mapsto x \cdot \exp(x)$.

At this point you might ask how terms are evaluated. The answer is that terms are not evaluated! Terms are used to represent data in a way that is both concise and readable. Hence, terms are values like numbers, sets or strings. As terms are values, they don't need to be evaluated.

Let us demonstrate a very simple application of terms. Imagine that SETLX wouldn't provide lists as a native data type. Then, we could implement lists via terms. First, we would use a functor to represent the empty list. Let us choose the functor nil for this purpose. Hence, we have

where we read the symbol " $\hat{=}$ " as "corresponds to". Note that the parentheses after the functor nil are necessary! Next, in order to represent a list with first element x and a list r of remaining elements we use the functor cons. Then we have the correspondence

$$Qcons(x,r) = [x] + r.$$

Concretely, the list [1,2,3] is represented as the term

The programming language *Prolog* represents lists internally in a similar form.

SETLX provides two functions that allow us to extract the components of a term. Furthermore, there is a function for constructing terms. These functions are described next.

1. The function fct returns the functor of a given term. If t is a term of the form $@F(s_1, \dots, s_n)$, then the result returned by the expression

$$fct(@F(s_1,\cdots,s_n))$$

is the functor *F* of this term. For example the expression

returns the string 'cons' as its result.

2. The function args returns the arguments of a term. If t is a term of the form $@F(s_1, \dots, s_n)$, then

$$args(@F(s_1,\cdots,s_n))$$

returns the list $[s_1, \dots, s_n]$. For example, the expression

is evaluated as

3. If f is the name of a functor and l is a list, then the function makeTerm can be invoked as

```
t = \mathsf{makeTerm}(f, l).
```

This expression generates a term t such that f is the functor and l is the list of its arguments. Therefore we have

```
\label{eq:fct} \begin{split} & \text{fct}(t) = f \quad \text{und} \quad \arg s(t) = l. \\ & \text{For example, the expression} \\ & \quad \text{makeTerm('cons', [ 1, @nil() ])} \\ & \text{returns the result} \\ & \quad \text{@cons(1, @nil())}. \end{split}
```

```
append = procedure(1, x) {
    if (fct(1) == "nil") {
        return @cons(x, @nil());
    }
    [head, tail] = args(1);
    return @cons(head, append(tail, x));
};

l = @cons(1, @cons(2, @cons(3, @nil()))); // corresponds to [1,2,3]
print(append(1, 4));
```

Appending an element at the end of a list.

Figure 4.12 on page 47 shows the program append.py. This program implements the function append. As its first arguments, this function takes a list 1 that is represented as a term. As its second argument, it takes an object x. The purpose of the expression

```
append(1,x)
```

is to append the object x at the end of the list 1. The implementation of the function append assumes that the list 1 is represented as a term using the functors "cons" and "ni1".

- 1. Line 2 checks whether the list l is empty. The list l is empty iff we have l = @nil(). In the program we merely check the functor of the term l. If the name of this functor is 'nil', then l is the empty list.
- 2. If 1 is not empty, then it must be a term of the form

```
l = @cons(head, tail).
```

Then, conceptually head is the first element of the list 1 and tail is the list of the remaining elements. In this case, we need to recursively append t at the end of the list tail. Finally, the first element of the list 1, which is called head in line 5, needs to be prepended to the list that is returned from the recursive invocation of append. This is done in line 6 by constructing the term

```
@cons(head, append(tail, x)).
```

4.4.2 Matching

It would be quite tedious if the functions fct and args were the only means to extract the components of a term. Figure 4.13 on page 48 shows the program append-match.py, that uses matching to implement the function append. Line 3 checks, whether the list 1 is empty, i.e. whether 1 is identical to the term @nil(). Line 4 is more interesting, as it combines two actions.

- 1. It checks, whether the list 1 is a term that starts with the functor cons.
- 2. If 1 does indeed starts with the functor cons, the arguments of this functor are extracted and assigned to the variables head and tail.

Hence, if the match statement in line 4 is successful, the equation

```
l = @cons(head, tail)
```

holds afterwards.

```
append = procedure(1, x) {
    match (1) {
        case @nil(): return @cons(x, @nil());
        case @cons(head, tail): return @cons(head, append(tail, x));
    }
};
```

Implementing append using a match statement.

In general, a match statement has the structure that is shown in Figure 4.14. Here, e is any expression that yields a term when evaluated. The expressions t_1, \dots, t_n are so called patterns that contain variables. When the match statement is executed, Python tries to bind the variables occurring in the pattern t_1 such that the resulting expression is equal to e. If this succeeds, the statements in $body_1$ are executed and the execution of the match statement ends. Otherwise, the patterns t_2, \dots, t_n are tried one by one. If the pattern t_i is successfully matched to e, the statements in $body_i$ are executed and the execution of the match statement end. If none of the patterns t_1, \dots, t_n can be matched with e, the statements in $body_{n+1}$ are executed.

Struktur eines Match-Blocks

We close this section by showing an example that demonstrates the power of matching. The function diff that is shown in Figure 4.15 on page 49 is part of the program diff.py. This function is called with two arguments.

- 1. The first argument t is a term that represents an arithmetical expression.
- 2. The second argument x is a term that represents a variable.

The function diff interprets its argument t as a function of the variable x. We take the derivative of this function with respect to the variable x. For example, in order to compute the derivative of the function

```
x\mapsto x^x
```

we can call the function diff as follows:

```
diff(parseTerm('x ** x'), parseTerm('x'));
```

Here, the function parseTerm is a function that is defined in the library termUtilities. This function takes

```
loadLibrary("termUtilities");
1
    diff = procedure(t, x) {
3
        match (t) {
             case a + b :
                 return diff(a, x) + diff(b, x);
             case a - b :
                 return diff(a, x) - diff(b, x);
             case a * b :
                 return diff(a, x) * b + a * diff(b, x);
10
             case a / b :
11
                 return ( diff(a, x) * b - a * diff(b, x) ) / b * b;
12
             case a ** b :
                 return diff(@exp(b * @ln(a)), x);
14
             case @ln(a) :
15
                 return diff(a, x) / a;
16
             case @exp(a) :
                 return diff(a, x) * @exp(a);
18
             case v \mid v == x:
                 return 1;
20
             case y | isVariable(y) : // must be different from x
21
                 return 0;
22
             case n | isNumber(n):
                 return 0;
24
          }
25
26
    };
    test = procedure(s) {
27
        t = parseTerm(s);
28
        v = parseTerm("x");
29
        d = diff(t, v);
30
        print("d/dx($s$) = $d$\n");
31
32
    test("x ** x");
33
```

A function to perform symbolic differentiation.

a string as input and converts this string into a term. In order to use the function parseTerm, we have to load the library that defines it. This happens in line 1 of Figure 4.15.

Let us now discuss the implementation of the function diff in more detail.

1. Line 5 makes use of the fact that the operator "+" can be applied to terms. The result is a term that has the functor "@@@sum". However, this functor is hidden from the user and becomes only visible when we use the function fct to expose it. For example, we can define a term t as follows:

```
t = @f(1) + @g(2);
```

Then t is a term that is displayed as "@f(1) + @g(2)", but the expression fct(t) returns the string "@@@sum".

There is no need to remember that the internal representation of the operator "+" as a functor is given as the string "@@@sum". The only thing that you have to keep in mind is the fact, that the operator "+" can be applied to terms. The same is true for the other arithmetical operators "+", "-", "*", "\", "\", and "**". Similarly, the logical operators "&\", "|\", "\!", "\!", "=>", and "<==>" can be used as functors.

Note, however, that the relational operators "<", ">", "<=", ">=" can not be used to combine terms. Finally, the operators "==" and "!=" can be used to check whether two terms are identical or different, respectively. Hence, while these operators can be applied to terms, they return a Boolean value, not a term!

As the operator "+" can be used as a functor, it can also be used in a pattern. The pattern

$$a + b$$

matches any term that can be written as a sum. The derivative of a sum is computed by summing the derivatives of the components of the sum, i.e. we have

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x) + g(x)) = \frac{\mathrm{d}}{\mathrm{d}x}f(x) + \frac{\mathrm{d}}{\mathrm{d}x}g(x).$$

Therefore, the case where the term t has the form a + b can be dealt with by recursively computing the derivatives of a and b and adding them. This happens in line 6.

2. Line 7 deals with the case where t is a difference. Mathematically, the rule to take the derivative of a difference is

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x) - g(x)) = \frac{\mathrm{d}}{\mathrm{d}x}f(x) - \frac{\mathrm{d}}{\mathrm{d}x}g(x).$$

This rule is implemented in line 8.

3. Line 9 deals with the case where t is a product. The product rule is

$$\frac{\mathrm{d}}{\mathrm{d}x}\big(f(x)\cdot g(x)\big) = \left(\frac{\mathrm{d}}{\mathrm{d}x}f(x)\right)\cdot g(x) + f(x)\cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}g(x)\right).$$

This rule is implemented in line 10.

4. Line 11 deals with the case where t is a quotient. The quotient rule is

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\left(\frac{\mathrm{d}}{\mathrm{d}x}f(x)\right)\cdot g(x) - f(x)\cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}g(x)\right)}{g(x)\cdot g(x)}.$$

This rule is implemented in line 12.

5. Line 13 deals with the case where t is a power. Now in order to take the derivative of an expression of the form

$$f(x)^{g(x)}$$

we first need to rewrite it using the following trick:

$$f(x)^{g(x)} = \exp(\ln(f(x)^{g(x)})) = \exp(g(x) \cdot \ln(f(x))),$$

Then, we can recursively call diff for this expression. This works, because the function diff can deal with both the exponential function $x \mapsto \exp(x)$ and with the natural logarithm $x \mapsto \ln(x)$. This rewriting is done in line 14.

6. Line 15 deals with the case where t has the form $\ln(f(x))$. In order to take the derivative of this expression, we first need to know the derivative of the natural logarithm. This derivative is given as

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(x) = \frac{1}{x}.$$

Then, using the chain rule we have that

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(f(x)) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)}{f(x)}.$$

This rule is used in line 16.

7. Line 17 deals with the case where t has the form $\exp(f(x))$. In order to take the derivative of this expression, we first need to know the derivative of the exponential function. This derivative is given as

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp(x) = \exp(x).$$

Then, using the chain rule we have that

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp\big(f(x)\big) = \left(\frac{\mathrm{d}}{\mathrm{d}x}f(x)\right)\cdot\exp\big(f(x)\big).$$

This rule is used in line 18.

8. Line 19 deals with the case where t is a variable and happens to be the same variable as x. This is checked using the condition

that is attached using the condition operator "|". Since we have

$$\frac{\mathrm{d}x}{\mathrm{d}x} = 1$$

the function diff returns 1 in this case.

- 9. Line 21 deals with the case where t is a variable. As line 19 has already covered the case that t and x are the same variable, in this case the variable x must be different from t. Therefore, with respect to x the term t can be seen as a constant and the derivative is 0.
- 10. Line 23 covers the case where t is a number. Note how we call isNumber after the condition operator "|". As a number is a constant, the derivative is 0.
- 11. Line 27 defines the procedure test. This procedure takes a string s and transforms it into the term t via the function parseTerm defined in the library termUtilities. Similarly, the string "x" is transformed into the term v that represents this variable. Line 30 call the function diff using the term t and the variable v as arguments. The resulting term is printed in line 31.
- 12. Line 33 shows how the function test can be called to compute the derivative $\frac{d}{dx}x^x$.

4.5 Outlook

This introductory chapter covers only a small part of the programming language *Python*. There are some additional features of SETLX that will be discussed in the following chapters as we need them. Furthermore, *Python* is discussed in depth in the tutorial that can be found at the following address:

Remark: Most of the algorithm that were presented in this chapter are not very efficient. The main purpose of these algorithms is to serve as examples that were presented for two reasons:

- My first intention was to make the abstract notions introduced in set theory more accessible. For example, the program to compute the transitive closure serves to illustrate both the notion of the relational product and the transitive closure. Furthermore, it shows how these notions are useful in solving real world problems.
- 2. Second, these programs serve to introduce the programming language SETLX.

Later, the lecture on algorithms will show how to develop efficient algorithms that are more efficient.

²Internally, this variable is represented as the term "@@variable("x")".

4.6 Reflection

After having completed this chapter, you should be able to answer the following questions.

- 1. Which data types are supported in *Python*?
- 2. What are the different methods to define a set in *Python*?
- 3. Do you understand how to construct lists via iterator?
- 4. How can lists be defined in *Python*?
- 5. How does *Python* support binary relations?
- 6. How does list slicing and list indexing work?
- 7. How does Python support terms?
- 8. How does a fixed-point algorithm work?
- 9. What type of control structures are supported in Python?
- 10. How can terms be defined and how does matching for terms work?

Bibliography

- [Can95] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. *Mathematische Annalen*, 46:481–512, 1895.
- [DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. *Communications of the ACM*, 5(7):394–397, 1962.
- [DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. *Journal of the ACM*, 7(3):201–215, July 1960.
- [McC97] William McCune. Solution of the robbins problem. *Journal of Automated Reasoning*, 19:263–276, December 1997.
- [McC10] William McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.
- [MMZ⁺01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In *Proceedings of the 38th Design Automation Conference* (DAC'01), 2001.
- [Ric53] Henry G. Rice. Classes of recursively enumerable sets and their decision problems. *Transactions of the American Mathematical Society*, 83, 1953.
- [Tur36] Alan M. Turing. On computable numbers, with an application to the "Entscheidungsproblem". *Proceedings of the London Mathematical Society*, 42(2):230–265, 1936.