

Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

1. (Currently Amended) A compound of formula (I),

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

each Q is $\text{---C}\equiv\text{}$;

each X is nitrogen ;

each Y is nitrogen ;

each Z is nitrogen ;

R¹ is $-\text{C}(\text{O})\text{NR}^7\text{R}^8$, $-\text{NHC}(\text{O})\text{R}^9$, $-\text{C}(\text{O})\text{-C}_{1-6}\text{alkanediylSR}^9$, $-\text{NR}^{10}\text{C}(\text{O})\text{N}(\text{OH})\text{R}^9$,
 $-\text{NR}^{10}\text{C}(\text{O})\text{C}_{1-6}\text{alkanediylSR}^9$, $-\text{NR}^{10}\text{C}(\text{O})\text{C}=\text{N}(\text{OH})\text{R}^9$

wherein R⁷ and R⁸ are each independently selected from hydrogen, hydroxy, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl or aminoaryl;

R⁹ is independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, arylC₁₋₆alkyl, C₁₋₆alkylpyrazinyl, pyridinone, pyrrolidinone or methylimidazolyl;

R¹⁰ is independently selected from hydrogen or C₁₋₆alkyl;

R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;

-L- is a direct bond or a bivalent radical selected from C₁₋₆alkanediyl, C₁₋₆alkanediyoxy, amino, carbonyl or aminocarbonyl;

each R³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;

R⁴ is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

—○—A is a radical selected from

(a-13)

(a-14)

(a-15)

(a-16)

(a-17)

(a-18)

(a-19)

(a-20)

(a-21)

(a-22)

(a-23)

(a-24)

(a-25)

(a-26)

(a-27)

(a-28)

(a-29)

(a-30)

(a-31)

(a-32)

(a-33)

(a-34)

(a-35)

(a-36)

wherein each s is independently 0, 1, 2, 3, 4 or 5;

each R⁵ and R⁶ are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihaloC₁-6alkyl; trihaloC₁-6alkyloxy; C₁-6alkyl; C₁-6alkyl substituted with aryl and C₃-10cycloalkyl; C₁-6alkyloxy; C₁-6alkyloxyC₁-6alkyloxy; C₁-6alkylcarbonyl; C₁-6alkyloxycarbonyl; C₁-6alkylsulfonyl; cyanoC₁-6alkyl; hydroxyC₁-6alkyl; hydroxyC₁-6alkyloxy; hydroxyC₁-6alkylamino; aminoC₁-6alkyloxy; di(C₁-6alkyl)aminocarbonyl; di(hydroxyC₁-6alkyl)amino; (aryl)(C₁-6alkyl)amino; di(C₁-6alkyl)aminoC₁-6alkyloxy; di(C₁-6alkyl)aminoC₁-6alkylamino; di(C₁-6alkyl)aminoC₁-6alkylaminoC₁-6alkyl; arylsulfonyl; arylsulfonylamino; aryloxy; aryloxyC₁-6alkyl; arylC₂-6alkenediyl; di(C₁-6alkyl)amino; di(C₁-6alkyl)aminoC₁-6alkyl; di(C₁-6alkyl)amino(C₁-6alkyl)amino; di(C₁-6alkyl)amino(C₁-6alkyl)aminoC₁-6alkyl;

di(C₁-6alkyl)aminoC₁-6alkyl(C₁-6alkyl)amino;
di(C₁-6alkyl)aminoC₁-6alkyl(C₁-6alkyl)aminoC₁-6alkyl;
aminosulfonylamino(C₁-6alkyl)amino;
aminosulfonylamino(C₁-6alkyl)aminoC₁-6alkyl;
di(C₁-6alkyl)aminosulfonylamino(C₁-6alkyl)amino;
di(C₁-6alkyl)aminosulfonylamino(C₁-6alkyl)aminoC₁-6alkyl; cyano; thiophenyl; thiophenyl substituted with di(C₁-6alkyl)aminoC₁-6alkyl(C₁-6alkyl)aminoC₁-6alkyl, di(C₁-6alkyl)aminoC₁-6alkyl, C₁-6alkylpiperazinylC₁-6alkyl,
hydroxyC₁-6alkylpiperazinylC₁-6alkyl,
hydroxyC₁-6alkyloxyC₁-6alkylpiperazinylC₁-6alkyl,
di(C₁-6alkyl)aminosulfonylpiperazinylC₁-6alkyl,
C₁-6alkyloxpiperidinyl, C₁-6alkyloxypiperidinylC₁-6alkyl, morpholinylC₁-6alkyl,
hydroxyC₁-6alkyl(C₁-6alkyl)aminoC₁-6alkyl, or di(hydroxyC₁-6alkyl)aminoC₁-6alkyl;
furanyl; furanyl substituted with hydroxyC₁-6alkyl; benzofuranyl; imidazolyl; oxazolyl;
oxazolyl substituted with aryl and C₁-6alkyl; C₁-6alkyltriazolyl; tetrazolyl; pyrrolidinyl;
pyrrolyl; piperidinylC₁-6alkyloxy; morpholinyl; C₁-6alkylmorpholinyl; morpholinylC₁-6alkyloxy;
morpholinylC₁-6alkyl; morpholinylC₁-6alkylamino;
morpholinylC₁-6alkylaminoC₁-6alkyl; piperazinyl; C₁-6alkylpiperazinyl;
C₁-6alkylpiperazinylC₁-6alkyloxy; piperazinylC₁-6alkyl; naphtalenylsulfonylpiperazinyl;
naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl;
C₁-6alkylpiperazinylC₁-6alkyl; C₁-6alkylpiperazinylC₁-6alkylamino;
C₁-6alkylpiperazinylC₁-6alkylaminoC₁-6alkyl; C₁-6alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC₁-6alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinylC₁-6alkyl; di(C₁-6alkyl)aminosulfonylpiperazinyl;
di(C₁-6alkyl)aminosulfonylpiperazinylC₁-6alkyl; hydroxyC₁-6alkylpiperazinyl; hydroxyC₁-6alkylpiperazinylC₁-6alkyl; C₁-6alkyloxpiperidinyl;
C₁-6alkyloxypiperidinylC₁-6alkyl; piperidinylaminoC₁-6alkylamino; piperidinylaminoC₁-6alkylaminoC₁-6alkyl;
(C₁-6alkylpiperidinyl)(hydroxyC₁-6alkyl)aminoC₁-6alkylamino;
(C₁-6alkylpiperidinyl)(hydroxyC₁-6alkyl)aminoC₁-6alkylaminoC₁-6alkyl;
hydroxyC₁-6alkyloxyC₁-6alkylpiperazinyl;
hydroxyC₁-6alkyloxyC₁-6alkylpiperazinylC₁-6alkyl;
(hydroxyC₁-6alkyl)(C₁-6alkyl)amino; (hydroxyC₁-6alkyl)(C₁-6alkyl)aminoC₁-6alkyl;
hydroxyC₁-6alkylaminoC₁-6alkyl; di(hydroxyC₁-6alkyl)aminoC₁-6alkyl;

pyrrolidinylC₁-6alkyl; pyrrolidinylC₁-6alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl substituted with two substituents selected from C₁-6alkyl or trihaloC₁-6alkyl; pyridinyl; pyridinyl substituted with C₁-6alkyloxy, aryloxy or aryl; pyrimidinyl; tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC₁-6alkyl; quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, nitro, C₁-6alkyl, C₁-6alkyloxy, hydroxyC₁-4alkyl, trifluoromethyl, trifluoromethoxy, hydroxyC₁-4alkyloxy, C₁-4alkylsulfonyl, C₁-4alkyloxyC₁-4alkyloxy, C₁-4alkyloxycarbonyl, aminoC₁-4alkyloxy, di(C₁-4alkyl)aminoC₁-4alkyloxy, di(C₁-4alkyl)amino, di(C₁-4alkyl)aminocarbonyl, di(C₁-4alkyl)aminoC₁-4alkyl, di(C₁-4alkyl)aminoC₁-4alkylaminoC₁-4alkyl, di(C₁-4alkyl)amino(C₁-4alkyl)amino, di(C₁-4alkyl)amino(C₁-4alkyl)aminoC₁-4alkyl, di(C₁-4alkyl)aminoC₁-4alkyl(C₁-4alkyl)amino, di(C₁-4alkyl)aminoC₁-4alkyl(C₁-4alkyl)aminoC₁-4alkyl, aminosulfonylamino(C₁-4alkyl)amino, aminosulfonylamino(C₁-4alkyl)aminoC₁-4alkyl, di(C₁-4alkyl)aminosulfonylamino(C₁-4alkyl)amino, di(C₁-4alkyl)aminosulfonylamino(C₁-4alkyl)aminoC₁-6alkyl, cyano, piperidinylC₁-4alkyloxy, pyrrolidinylC₁-4alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinylC₁-4alkyl, di(C₁-4alkyl)aminosulfonylpiperazinyl, di(C₁-4alkyl)aminosulfonylpiperazinylC₁-4alkyl, hydroxyC₁-4alkylpiperazinyl, hydroxyC₁-4alkylpiperazinylC₁-4alkyl, C₁-4alkyloxypiperidinyl, C₁-4alkyloxypiperidinylC₁-4alkyl, hydroxyC₁-4alkyloxyC₁-4alkylpiperazinyl, hydroxyC₁-4alkyloxyC₁-4alkylpiperazinylC₁-4alkyl, (hydroxyC₁-4alkyl)(C₁-4alkyl)amino, (hydroxyC₁-4alkyl)(C₁-4alkyl)aminoC₁-4alkyl, di(hydroxyC₁-4alkyl)amino, di(hydroxyC₁-4alkyl)aminoC₁-4alkyl, furanyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC₁-4alkyl, pyrrolidinylC₁-4alkyloxy, morpholinyl, morpholinylC₁-4alkyloxy, morpholinylC₁-4alkyl, morpholinylC₁-4alkylamino, morpholinylC₁-4alkylaminoC₁-4alkyl, piperazinyl, C₁-4alkylpiperazinyl, C₁-4alkylpiperazinylC₁-4alkyloxy, piperazinylC₁-4alkyl, C₁-4alkylpiperazinylC₁-4alkyl, C₁-4alkylpiperazinylC₁-4alkylamino, C₁-4alkylpiperazinylC₁-4alkylaminoC₁-6alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinylC₁-4alkyl, piperidinylaminoC₁-4alkylamino, piperidinylaminoC₁-4alkylaminoC₁-4alkyl, (C₁-4alkylpiperidinyl)(hydroxyC₁-4alkyl)aminoC₁-4alkylamino,

(C₁-4alkylpiperidinyl)(hydroxyC₁-alkyl)aminoC₁-4alkylaminoC₁-4alkyl,
pyridinylC₁-4alkyloxy,
hydroxyC₁-4alkylamino, hydroxyC₁-4alkylaminoC₁-4alkyl,
di(C₁-4alkyl)aminoC₁-4alkylamino, aminothiadiazolyl,
aminosulfonylpiperazinylC₁-4alkyloxy, or thiophenylC₁-4alkylamino;
each R⁵ and R⁶ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁-6alkyl, C₁-6alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

2. (Original) A compound as claimed in claim 1 wherein n is 1 or 2; t is 0, 1, 2 or 4; each Q is ; R¹ is -C(O)NH(OH); R² is hydrogen or nitro; -L- is a direct bond or a bivalent radical selected from C₁-6alkanediyl; R⁴ is hydrogen; is a radical selected from (a-1), (a-2), (a-3), (a-5), (a-6), (a-11), (a-18), (a-20), (a-21), (a-32), (a-33), (a-47) or (a-51); each s is independently 0, 1, 2, or 4; each R⁵ and R⁶ are independently selected from hydrogen; halo; trihaloC₁-6alkyl; C₁-6alkyl; C₁-6alkyl substituted with aryl and C₃-10cycloalkyl; C₁-6alkyloxy; C₁-6alkylcarbonyl; benzofuranyl; naphtalenylsulfonyl; pyridinyl substituted with aryloxy; phenyl; or phenyl substituted with one substituent independently selected from hydroxyC₁-4alkyl or morpholinylC₁-4alkyl.
3. (Currently Amended) A compound as claimed in claim 1 wherein t is 1, 2, 3, or 4; R¹ is -C(O)NR⁷R⁸, -C(O)-C₁-6alkanediylSR⁹, -NR¹⁰C(O)N(OH)R⁹, -NR¹⁰C(O)C₁-6alkanediylSR⁹, -NR¹⁰C(O)C=N(OH)R⁹ wherein R⁷ and R⁸ are each independently selected from hydrogen, hydroxy, hydroxyC₁-6alkyl or aminoC₁-6alkyl; R² is hydrogen, halo, hydroxy, amino, nitro, C₁-6alkyl, C₁-6alkyloxy, trifluoromethyl or di(C₁-6alkyl)amino; -L- is a direct bond or a bivalent radical selected from C₁-6alkanediyl, C₁-6alkanediyoxy, amino or carbonyl; R⁴ is hydrogen, hydroxy, amino, hydroxyC₁-6alkyl, C₁-6alkyl, C₁-6alkyloxy, arylC₁-6alkyl, aminocarbonyl, aminoC₁-6alkyl, C₁-6alkylaminoC₁-6alkyl or di(C₁-6alkyl)aminoC₁-6alkyl;

—(A)

is a radical selected from (a-1), (a-3), (a-4), (a-5), (a-6), (a-7), (a-8), (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19), (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-28), (a-29), (a-30), (a-31), (a-32), (a-33), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41), (a-42), (a-44), (a-45), (a-46), (a-47), (a-48) and (a-51);

each s is independently 0, 1, 2, 3 or 4;

R⁵ is hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; C₁₋₆alkylsulfonyl; hydroxyC₁₋₆alkyl; aryloxy; di(C₁₋₆alkyl)amino; cyano; thiophenyl; furanyl; furanyl substituted with hydroxyC₁₋₆alkyl; benzofuranyl; imidazolyl; oxazolyl; oxazolyl substituted with aryl and C₁₋₆alkyl; C₁₋₆alkyltriazolyl; tetrazolyl; pyrrolidinyl; pyrrolyl; morpholinyl; C₁₋₆alkylmorpholinyl; piperazinyl; C₁₋₆alkylpiperazinyl; hydroxyC₁₋₆alkylpiperazinyl; C₁₋₆alkyloxypiperidinyl; pyrazoly; pyrazolyl substituted with one or two substituents selected from C₁₋₆alkyl or trihaloC₁₋₆alkyl; pyridinyl; pyridinyl substituted with C₁₋₆alkyloxy, aryloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; or phenyl substituted with one or two substituents independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl;

R⁶ is hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; C₁₋₆alkylsulfonyl; hydroxyC₁₋₆alkyl; aryloxy; di(C₁₋₆alkyl)amino; cyano; pyridinyl; phenyl; or phenyl substituted with one or two substituents independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl.

4. (Previously Presented) A compound as claimed in claim 1 wherein n is 1; t is 0 or 1; each Q is —C≡ ; each X is nitrogen; each Y is nitrogen; R¹ is —C(O)NH(OH); R² is hydrogen; -L- is a direct bond; each R³ independently represents a hydrogen atom; R⁴ is hydrogen; —(A)— is a radical selected from (a-6), (a-11), (a-20), (a-47) or (a-51); each s is independently 0, 1, or 4; and each R⁵ and R⁶ are independently selected from hydrogen; C₁₋₆alkyl; C₁₋₆alkyloxy; naphtalenylsulfonyl; or phenyl substituted with hydroxyC₁₋₄alkyl or morpholinylC₁₋₄alkyl.

5. (Previously Presented) A compound selected from the group consisting of:

6. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound according to claim 1.

7. (Previously Presented) A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and the compound according to claim 1 are intimately mixed.

8. (Cancelled)

9. (Cancelled)

10. (Previously Presented) A process for preparing a compound as claimed in claim 1, said method comprising: reacting an intermediate of formula (II) with an acid yielding a hydroxamic acid of formula (I-a), wherein R¹ is -C(O)NH(OH)

11. (Currently Amended) A method of detecting or identifying a HDAC in a biological sample comprising detecting or measuring the formation of a complex between a labelled compound as defined in claim 1 and a HDAC.

12. (Cancelled)