Álgebra lineal – Semana 11 Valores y vectores propios

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Definición 1

Sea A una matriz $n \times n$. Un escalar λ (real o complejo) se dice que es un $valor\ propio$ de A, si existe un vector no nulo ${\bf v}$ tal que

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{1}$$

Al vector ${\bf v}$ que satisface (1) se le denomina $vector\ propio$ de A correspondiente a λ .

Definición 1

Sea A una matriz $n \times n$. Un escalar λ (real o complejo) se dice que es un $valor\ propio$ de A, si existe un vector no nulo ${\bf v}$ tal que

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{1}$$

Al vector \mathbf{v} que satisface (1) se le denomina $vector\ propio$ de A correspondiente a λ .

Observación 1

- \mathbf{O} El vector $\mathbf{v} = \mathbf{O}$ no puede ser vector propio de una matriz.
- \bullet El escalar $\lambda = 0$ sí puede ser valor propio de una matriz.
- Output of the second of the
- 4 A los valores propios de una matriz también se les llama autovalores o valores característicos.
- A los vectores propios de una matriz también se les llama autovectores o vectores característicos.

Definición 1

Sea A una matriz $n \times n$. Un escalar λ (real o complejo) se dice que es un $valor\ propio$ de A, si existe un vector no nulo ${\bf v}$ tal que

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{1}$$

Al vector ${\bf v}$ que satisface (1) se le denomina $vector\ propio$ de A correspondiente a λ .

Ejemplo 1

Considere la matriz

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array}\right).$$

Compruebe que:

- $\mathbf{v}_1 = (1,0)$ es un autovector de A correspondiente al autovalor $\lambda_1 = 2$.
- $\mathbf{v}_2 = (0,1)$ es un autovector de A correspondiente al autovalor $\lambda_2 = -1$.

Ejemplo 2

Considere la matriz

$$A = \left(\begin{array}{ccc} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Verifique que

$$\mathbf{v}_1 = (-3, -1, 1)$$
 y $\mathbf{v}_2 = (1, 0, 0)$

son vectores propios de ${\cal A}$ y encuentre sus valores propios correspondientes.

Ejemplo 3

Encuentre los valores propios de la matriz

$$A = \left(\begin{array}{cc} 4 & -2 \\ 1 & 1 \end{array}\right)$$

y sus correspondientes vectores propios.

Polinomio característico

Definición 1

Sea A una matriz $n \times n$. Un escalar λ (real o complejo) se dice que es un $valor\ propio$ de A, si existe un vector no nulo ${\bf v}$ tal que

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{1}$$

Al vector ${\bf v}$ que satisface (1) se le denomina $vector\ propio$ de A correspondiente a λ .

Propiedad 1

Sea A una matriz $n \times n$. λ es un valor propio de A si y sólo si $\det(A - \lambda I) = 0$.

Definición 2

Sea A una matriz $n \times n$. El determinante de la matriz $A - \lambda I$ se denota por $p(\lambda)$ y se denomina el **polinomio** característico de A:

$$p(\lambda) = \det(A - \lambda I).$$

La ecuación $p(\lambda) = 0$ se denomina ecuación característica de A.

Procedimiento 1

Sea A una matriz $n \times n$.

- Halle el polinomio característico $p(\lambda) = \det(A \lambda I)$.
- **3** Resuelva el sistema homogéneo $(A \lambda_i I)\mathbf{x} = 0$, correspondiente a cada valor propio λ_i .

Ejemplo 4

Encuentre los valores y vectores propios de la matriz

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

Propiedad 2

Los valores propios de una matriz triangular son las entradas en su diagonal principal.

Propiedad 3

Sea Auna matriz cuadrada. Entonces Aes invertible si y sólo si 0 \boldsymbol{no} es un valor propio de A.

Valores y vectores propios

Propiedad 4

Sea Auna matriz $n\times n$ con valor propio $\lambda.$ Entonces el conjunto

$$E_{\lambda} = \{ \mathbf{x} \mid A\mathbf{x} = \lambda \mathbf{x} \}$$

es un subespacio.

Valores y vectores propios

Definición 3

Sea A una matriz $n \times n$ con valor propio λ . Al subespacio

$$E_{\lambda} = \{ \mathbf{x} \mid A\mathbf{x} = \lambda \mathbf{x} \}$$

se le denomina espacio propio o espacio característico de λ . A la dimensión de E_{λ} se le denomina multiplicidad geométrica de λ .

Observación 2

$$E_{\lambda} = \{ \mathbf{x} \mid A\mathbf{x} = \lambda \mathbf{x} \} = \{ \mathbf{x} \mid (A - \lambda I)\mathbf{x} = \mathbf{0} \} = N_{A - \lambda I}$$

Procedimiento 1

Sea A una matriz $n \times n$.

- Halle el polinomio característico $p(\lambda) = \det(A \lambda I)$.
- ② Halle las raíces de la ecuación característica $p(\lambda) = \det(A \lambda I) = 0$.
- $\mbox{\@ifnextrm}$ Para cada valor propio $\lambda_i,$ halle el espacio propio correspondiente $E_{\lambda_i}.$

${\bf Ejemplo~5}$

Encuentre los valores y vectores propios de la matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{array}\right)$$

Ejemplo 6

Encuentre los valores y vectores propios de la matriz

$$A = \left(\begin{array}{cc} 2 & -1 \\ 5 & -2 \end{array}\right)$$

Propiedad 5

Sea A una matriz $n \times n$. Si $\lambda_1, \ldots, \lambda_k$ son k valores propios distintos de A, entonces los correspondientes vectores propios $\mathbf{v}_1, \ldots, \mathbf{v}_k$ son linealmente independientes.

Multiplicidad algebraica y geométrica

Observación 3

En el ejemplo 4, la matriz

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

tiene polinomio característico $p(\lambda) = -(\lambda - 2)^3$ y dim $E_{\lambda} = 2$.

Definición 4

Sea A una matriz cuadrada y sea λ_i un valor propio de A.

- Se dice que λ_i es un valor propio de **multiplicidad algebraica** k, si $(\lambda \lambda_i)^k$ es la mayor potencia que es factor del polinomio característico de A.
- La multiplicidad geométrica de λ_i se define como la dimensión del espacio propio correspondiente a λ_i , es decir,

multiplicidad geométrica de $\lambda_i = \dim E_{\lambda_i} = \nu(A - \lambda_i I)$.

Propiedad 6

Sea Auna matriz cuadrada con valor propio $\lambda.$ Entonces

multiplicidad geométrica de $\lambda \leq$ multiplicidad algebraica de λ .

Propiedad 7

Sea A una matriz $n \times n$. Entonces

- \bullet A tiene n vectores propios linealmente independientes si y solo si la multiplicidad geométrica de todo valor propio de A es igual a la multiplicidad algebraica.
- \bullet En particular, A tiene n vectores propios linealmente independientes si todos sus valores propios son diferentes.

Propiedad 8

Sean Auna matriz cuadrada y λ un valor propio de A, con vector propio correspondiente ${\bf x}.$ Entonces:

- \bullet Para cualquier entero $n>0,\;\lambda^n$ es un valor propio de A^n con vector propio correspondiente ${\bf x}.$
- \bullet Si A es invertible, entonces $\frac{1}{\lambda}$ es un valor propio de A^{-1} con vector propio correspondiente \mathbf{x} .
- ullet Si A es invertible, entonces para cualquier entero n, λ^n es un valor propio de A^n con vector propio correspondiente \mathbf{x} .

Ejemplo 7

La matriz A dada a continuación, tiene valores propios $\lambda_1=-1$ y $\lambda_2=2$, con vectores propios correspondientes \mathbf{x}_1 y \mathbf{x}_2 .

$$A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \quad \mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Calcule

$$\left(\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array}\right)^{10} \left(\begin{array}{c} 5 \\ 1 \end{array}\right).$$

Propiedad 9

Suponga que A es una matriz cuadrada que tiene vectores propios $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$, con correspondientes valores propios $\lambda_1, \lambda_2, \dots, \lambda_m$. Si \mathbf{x} es un vector en \mathbb{R}^n tal que

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m,$$

entonces para cualquier entero k,

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \dots + c_m \lambda_m^k \mathbf{v}_m.$$

Bibliografía

- Clara Mejía Álgebra lineal elemental y aplicaciones Ude@, 2006.
- Stanley Grossman Álgebra lineal McGraw-Hill Interamericana, Edición 8, 2019.
- David Poole
 Álgebra lineal: una introducción moderna
 Cengage Learning Editores, 2011.
- Bernard Kolman
 Álgebra lineal
 Pearson Educación, 2006.
- Ron Larson
 Fundamentos de Álgebra lineal
 Cengage Learning Editores, 2010.

