組別:第八組

題目: Genetic Programming-based symbolic regression for electric motor temperature

組員: R07921061 郭子文 R08921110 黃芷晴 D07921004 張麒仙

一、摘要:我們將汽車 rotor 的運轉溫度作為目標參數,以 Genetic Programming 進行演算分析,並得到其溫度對各項汽車工作變因的關係函數,包含電流、電壓與其他機體的溫度等變因,讓使用者得以在汽車行進中對 rotor 溫度進行即時調控。

二、簡介:在汽車製程工業中,馬達的運轉效能是十分重要的環節,而其運轉機構主要由 stator 與 rotor 組成,藉由 stator 與 rotor 的磁交互作用驅動 rotor 並使其進行高速的轉動。然而持續性的高速運轉會造成機體溫度提高,即可能造成 rotor 內建的永久磁鐵超過居禮溫度,進而失去鐵磁性,並導致驅動的磁交互作用消失;又因為對 rotor 這樣的高速運動體難以用接觸式的溫度計回饋調控,故若能使用 Genetic Programming 獲得其工作溫度的函數關係以實現對 rotor 運轉過程中溫度的即時監控,將可以避免汽車馬達因高溫而無法正常運作。

三、Data set 介紹與分析

(一) Feature 說明

	Feature	說明	
(1)	rotor Permanent Magnet surface temperature		
	temperature		
(2)	Stator yoke	Stator yoke temperature measured with a thermal sensor	
(3)	Stator tooth	Stator tooth temperature measured with a thermal sensor.	
(4)	Stator winding Stator winding temperature measured with a thermal sensor.		
(5) Ambient Ambient temperature as measured by a thermal sen		Ambient temperature as measured by a thermal sensor located closely	
		to the stator.	
(6)	Motor speed	Revolutions Per Minute Voltage d-component	
(7)	u_d		
(8)	u_q	Voltage q-component	
(9)	i_d	Current d-component	
(10)	i_q	Current q-component	

(二) Feature 對應位置之示意圖

(三) 相關係數分析

四、實驗結果

Selection: tournament

• Crossover: subtree 的 crossover

· mutation: 使用三種(1) subtree mutation(2) point mutation(3) hoist mutation

• Terminal set: leaves 都是 features 或是 constant

Fitness evaluation: RMSE

實驗(a):

設置 Function set = {+, -, *, /}

Population	Generation	R2_score
15000	30	0.61

實驗(b):加入 neg、min、max、sqrt、abs、cos θ 、tan θ 、sin θ Function set = {+, -, *,/,neg,min,max,sqrt,abs,cos θ ,tan θ ,sin θ }

_	-	
Population	Generation	R2_score
15000	30	0.68

實驗(c): Penalized fitness

Function set = $\{+, -, *, /, \text{ neg, min, max, sqrt, abs, } \cos\theta, \tan\theta, \sin\theta\}$

$$Fitness_{new} = Fitness_{old} + len(leaf - root node) * Penalty$$
 $\equiv 1$

Population	Generation	R2_score
15000	20	0.65

得到之公式:

$$\begin{aligned} min(max(statorWinding, ambient), \\ (-0.208*statorWinding) + \\ ((statorTooth) - i_q*(-0.208)*statorWinding))) \end{aligned}$$

五、實驗結果討論

- (一)從實驗(a)~(b)發現在相同參數設置下當我們擴增 function set 可以讓 R2_score 提升意味著準確率更好。
- (二)從實驗(b)~(c)發現在相同參數設置下當我們調整 Penalty function (如式 1),使得在 fitness 一致時,當 tree 深度越深,懲罰程度越高,進行 tree reduction,我們得到與之前的R2_score 差異不大的結果。另外可以發現當 Penalty 設置太大時, tree 最後皆傾向於縮成一個node。
- (三)從實驗結果發現,部分與 rotor temperature 相關係數較低的 feature 出現在 GP 產生的公式中,且從公式中可以觀察到 rotor temperature 只與四項 feature 有關,分別是:
- i_q 、stator winding、stator tooth、ambient,其中 i_q 為可控因子,stator winding、stator tooth、ambient 為環境因子。

六、結論

一般我們會認為相關係數高低會決定這個 feature 是否出現在 GP 的公式中,但由這次實驗發現與我們的預期結果不相符,所以我們認為 GP 可以找到 feature 之間背後隱藏的關係。現實中,科學家常常利用 GP 分析實驗數據,找出實驗背後的公式,舉例來說:物理學家使用 GP 得到核反應速率的公式。

七、參考文獻:

- 1. Jabeen, Hajira & Baig, Abdul. (2010). Review of Classification Using Genetic Programming. International Journal of Engineering Science and Technology.
- 2. Zhang, Mengjie & Smart, William. (2004). Multiclass Object Classification Using Genetic Programming. 3005. 369-378.
- 3. Shikalgar, Arifa. (2019). A generic structure of object classification using genetic programming.
- 4. Ma, Jianbin & Teng, Guifa. (2019). A hybrid multiple feature construction approach for classification using Genetic Programming. Applied Soft Computing.
- 5. Nag, Kaustuv & Pal, Nikhil. (2019). Genetic Programming for Classification and Feature Selection.