Proposition 29.39. Let φ be a nondegenerate symmetric bilinear form on a vector space E. For any two nonzero vectors $u, v \in E$, if $\varphi(u, u) = \varphi(v, v)$ and v - u is nonisotropic, then the hyperplane reflection $\tau_H = \tau_{v-u}$ maps u to v, with $H = (K(v-u))^{\perp}$.

Proof. Since v-u is not isotropic, $\varphi(v-u,v-u)\neq 0$, and we have

$$\tau_{v-u}(u) = u - 2\frac{\varphi(u, v - u)}{\varphi(v - u, v - u)}(v - u)$$

$$= u - 2\frac{\varphi(u, v) - \varphi(u, u)}{\varphi(v, v) - 2\varphi(u, v) + \varphi(u, u)}(v - u)$$

$$= u - \frac{2(\varphi(u, v) - \varphi(u, u))}{2(\varphi(u, u) - 2\varphi(u, v))}(v - u)$$

$$= v,$$

which proves the proposition.

We can now obtain a cheap version of the Cartan–Dieudonné theorem.

Theorem 29.40. (Cartan-Dieudonné, weak form) Let φ be a nondegenerate symmetric bilinear form on a K-vector space E of dimension n (char(K) \neq 2). Then, every isometry $f \in \mathbf{O}(\varphi)$ with $f \neq \mathrm{id}$ is the composition of at most 2n-1 hyperplane reflections.

Proof. We proceed by induction on n. For n = 0, this is trivial (since $\mathbf{O}(\varphi) = \{id\}$).

Next, assume that $n \geq 1$. Since φ is nondegenerate, we know that there is some non-isotropic vector $u \in E$. There are three cases.

Case 1.
$$f(u) = u$$
.

Since φ is nondegenrate and u is nonisotropic, the hyperplane $H = (Ku)^{\perp}$ is nondegenerate, $E = H \oplus Ku$, and since f(u) = u, we must have f(H) = H. The restriction f' of of f to H is an isometry of H. By the induction hypothesis, we can write

$$f' = \tau_k' \circ \cdots \circ \tau_1',$$

where τ_i is some hyperplane reflection about a hyperplane L_i in H, with $k \leq 2n - 3$. We can extend each τ_i' to a reflection τ_i about the hyperplane $L_i \stackrel{\perp}{\oplus} Ku$ so that $\tau_i(u) = u$, and clearly,

$$f = \tau_k \circ \cdots \circ \tau_1.$$

Case 2.
$$f(u) = -u$$
.

If τ is the hyperplane reflection about the hyperplane $H=(Ku)^{\perp}$, then $g=\tau\circ f$ is an isometry of E such that g(u)=u, and we are back to Case (1). Since $\tau^2=1$ We obtain

$$f = \tau \circ \tau_k \circ \cdots \circ \tau_1$$