```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
```

```
In [2]:
    vt2011 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2011 = pd.read_excel(vt2011, 'VT')
    vt2012 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2012 = pd.read_excel(vt2012, 'VT')
    vt2013 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2013 = pd.read_excel(vt2013, 'VT')
    vt2014 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2014 = pd.read_excel(vt2014, 'VT')
    vt2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_2011
    vt2016 = pd.read_excel(vt2015, 'VT')
```

```
In [3]: vt2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    vt2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    vt2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    vt2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    vt2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    vt2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
```

In [4]: vt2022

Out[4]:

	Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
0	2022- 01-01	1	572.4	531.140	32.20	32.35	- 0.55	0.40	25.56	25.
1	2022 - 01-01	2	555.1	508.084	31.93	32.31	-0.68	0.30	25.54	25.
2	2022 - 01-01	3	496.6	490.019	31.01	30.85	0.00	0.16	27.41	27.
3	2022 - 01-01	4	480.6	483.029	29.82	29.69	0.00	0.13	25.07	25.
4	2022 - 01-01	5	481.5	485.721	31.04	30.86	0.00	0.18	29.20	29
739	2022- 01-31	20	778.7	822.082	227.58	226.40	0.00	1.18	296.06	295
740	2022 - 01-31	21	705.3	793.781	204.16	202.82	0.00	1.34	265.22	264.
741	2022 - 01-31	22	629.3	764.808	182.45	183.42	0.00	-0.97	252.46	251.
742	2022- 01-31	23	628.3	720.894	179.47	179.93	0.00	-0.46	191.26	190.
743	2022- 01-31	24	540.5	681.452	188.36	190.54	0.00	-2.18	189.68	189.

744 rows × 14 columns

```
In [5]: val2011 = vt2011['DEMAND']
val2012 = vt2012['DEMAND']
val2013 = vt2013['DEMAND']
val2014 = vt2014['DEMAND']
val2015 = vt2015['DEMAND']
val2016 = vt2016['RT_Demand']
val2017 = vt2017['RT_Demand']
val2018 = vt2018['RT_Demand']
val2019 = vt2019['RT_Demand']
val2020 = vt2020['RT_Demand']
val2021 = vt2021['RT_Demand']
val2022 = vt2022['RT_Demand']
```

```
In [6]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018,
    values_df = pd.concat(values, axis=0, ignore_index=False)
    values_df = values_df.reset_index()
    period = len(values_df)
```

```
In [7]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
               date df = pd.DataFrame({ 'ds': rng})
               date_df = date_df.reset_index()
 In [8]: frames = [date_df, values_df]
               vt_load = pd.concat(frames, axis=1, ignore_index=False)
               vt_load = vt_load.rename(columns={vt_load.columns[1]: 'ds', vt_load.columns[3]:
               frames2 = [vt load['ds'], vt load['y']]
               vt_load = pd.concat(frames2, axis=1, ignore_index=False)
               vt_load
 Out[8]:
                                              ds
                      0 2011-01-01 00:00:00 575.000
                      1 2011-01-01 01:00:00 540.000
                      2 2011-01-01 02:00:00 516.000
                      3 2011-01-01 03:00:00 505.000
                      4 2011-01-01 04:00:00 503.000
                97171 2022-01-31 19:00:00 822.082
                97172 2022-01-31 20:00:00 793.781
                97173 2022-01-31 21:00:00 764.808
                97174 2022-01-31 22:00:00 720.894
                97175 2022-01-31 23:00:00 681.452
               97176 rows × 2 columns
 In [9]: model = Prophet(
                            changepoint prior scale=0.5,
                            seasonality_mode='multiplicative',
                            interval width=0.95,
               model.add_country_holidays(country_name='US')
 Out[9]:  content Out[9]:                                                                                                                                                                                                                                                                                                                                             <pr
In [10]: model.fit(vt_load)
Out[10]:  content out[10]:                                                                                                                                                                                                                                                                                                                                             <
In [11]: | future_pd = model.make_future_dataframe(
                            periods=365,
                            freq='1H',
                            include history=True
                     )
               # make predictions
               forecast_pd = model.predict(future_pd)
```

In [12]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[12]:

	ds	yhat	yhat_lower	yhat_upper
97536	2022-02-16 00:00:00	586.604746	468.085362	699.835360
97537	2022-02-16 01:00:00	565.027689	451.839024	681.788991
97538	2022-02-16 02:00:00	551.093867	437.913377	673.666607
97539	2022-02-16 03:00:00	549.815510	431.901808	667.849935
97540	2022-02-16 04:00:00	567.513779	453.867082	687.185613

In [13]: fig1 = model.plot(forecast_pd)

In [14]: fig2 = model.plot_components(forecast_pd)

In [15]: forecast_pd

Out[15]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	
0	2011- 01-01 00:00:00	617.098584	470.958485	702.035181	617.098584	617.098584	0.0	
1	2011- 01-01 01:00:00	617.129849	450.164900	686.024280	617.129849	617.129849	0.0	
2	2011- 01-01 02:00:00	617.161113	435.607291	664.157556	617.161113	617.161113	0.0	
3	2011- 01-01 03:00:00	617.192377	433.516658	674.439339	617.192377	617.192377	0.0	
4	2011- 01-01 04:00:00	617.223641	446.755465	676.421690	617.223641	617.223641	0.0	
97536	2022- 02-16 00:00:00	581.407820	468.085362	699.835360	579.415292	582.307830	0.0	
97537	2022- 02-16 01:00:00	581.408541	451.839024	681.788991	579.407800	582.325518	0.0	
97538	2022- 02-16 02:00:00	581.409262	437.913377	673.666607	579.400308	582.343207	0.0	
97539	2022- 02-16 03:00:00	581.409982	431.901808	667.849935	579.392816	582.360895	0.0	
97540	2022- 02-16 04:00:00	581.410703	453.867082	687.185613	579.385325	582.378583	0.0	

97541 rows × 73 columns

In []: