

L'intérêt de la recherche pour l'industrie

L'exemple de Berger-Levrault

Julien MORGAN DE RIVERY Gabriel DARBORD

Nous en deux mots

Julien MORGAN DE RIVERY

- Ingénieur DevSecOps (ex stagiaire ;))
- Architecture de transition
- Equipe Technologie

Gabriel Darbord

- Doctorant (ex stagiaire ;))
- Test Automatisé
- Equipe Recherche

Chiffres-clés 2020

1900

collaborateurs

172 M€

chiffre d'affaires

51 000

clients qui touchent plusieurs millions d'usagers et utilisateurs 25%

du chiffre d'affaires investi dans la R&D

Une culture de l'innovation

Nos secteurs d'activité

Direction Recherche et Innovation

Accompagner par la recherche les acteurs publics et les entreprises dans l'ère des interfaces intelligentes, plateformes de données au service de leurs communautés

Chiffres-clés

2012

Année de création

92

Publications scientifiques

212

Projets sur GitLab 6

Thèses soutenues 14

Thèses en cours

3

Membres en 2012

48

Membres en 2021

44

Stages

14

Alternants

19

Thèses

Directeur de la Recherche et de l'Innovation Technologique

Mustapha DERRAS

Notre équipe 48 Chercheurs

Managers

Docteurs

Doctorants

Ingénieurs R&D

Data Scientists

Alternants

Stagiaires

Partenariats

TISIT

Notre processus

RECHERCHE RECHERCHE APPLIQUEE PRODUCTION

TECHNOLOGIES

Doctorants, Docteurs

Docteurs

Ingénieurs

1

Notre processus

Ideas rarely comes out of the blue. The identification of interesting ideas is the and curiosity.

result of an everyday watch, read, exchanges

When an idea comes up, we ask ourselves about its relevancy, it innovative potential, and whether or not we need to do research to prototype it.

- 1. Un problème est identifié par les équipes de production
- 2. Recherche avec un partenaire académique
- 3. Prototype et produit minimal dans les conditions industrielles
- 4. Production & Industrialisation

Research takes long time and require the development of new techniques, algorithms and experimentation.

For that reason, we usually look for academic laboratories to assists us in that journey.

Whenever it is possible, we concretize our research in form of prototypes which aim at proving the viability of the techniques developed in the research step.

If the market is ready, the proof of concept can take form of a minimum viable product or MVP. It usually involves a customer, implementation within existing products real data and test on the field.

When the MVP has been validated, it is ready to become a new product or a new feature!

Nos domaines de recherche

13

Quelques examples

Outils de migrations

Problématique de Berger-Levrault

1997	Magnus
1998	GISP
1999	Sirius
2001	FAST
2002	MEDIANE Conseil
2003	DIS
2004	Sedit-Marianne
2005	IDC Net, Deval
2006	Ecolesoft
2007	Prog'Or
2009	Convergence Application
2010	Segilog
2011	Aductis
2013	Intuitive, AS-WEB, COBA
2014	SIGEMS, EXAGON, CLP-LOG
2015	InfoParc, DMP, Aytos
2016	Infosilem
2017	LibreAir, Absis, Tecnogeo, Wifylgood
2018	CARL Software
2019	Neolink
2020	Expertiz Santé
2021	Escort Informatique, Médialis

Réponse de Berger-Levrault

Architecture logicielle: migration

500 pages web par application

36 ans/homme de migration par application

Nos productions

19

Architecture de transition Du monolithe au web Full Rest

Programme – time line

21

Front-end migration

Migration Incrementale

Que faut-il migrer?

- Widget
 - Les différents types
 - Comment traiter ceux que l'on ne connait pas ?
- Layout
 - Et si dans la source il n'y a pas de layout ?
 - Comment passer vers du responsive design
- Actions
 - Click, Hover... peut on tous les migrer ?
 - Code exécuté ?
- Internationalisation
 - 118N dans un nouveau format (changement dans le code et dans le fichier)

- Service
 - Appel vers le back-end
- DTO
 - Primitive → Interger vs Number
 - Backward reference
- CSS

• • •

- Migration des attributs
- Recréation du CSS dans le langage cible
- Gestion des dépendances

 Et préparer le futur (même outil pour les futures migrations)

L'intérêt de la recherche pour l'industrie

Back-end migration

Back-end migration

L'intérêt de la recherche pour l'industrie

L'approche VS Objectifs

Humains

- Sécurisation des effectifs
- Code Compréhensible

Stratégiques

- Méthode de migration Commune
- Mutualisation des outils

Commerciaux

- Ecrans WEB
- Gains de performances
- Développement de nouvelles fonctionnalités

Financiers

- Coût de migration réduit
- Diminution des risques
- Exploitation des solutions ininterrompue

Programme – time line

Oui MAIS ... !!!!

L'intérêt de la recherche pour l'industrie

Retour sur le cycle de développement – time line

Il reste encore du boulot ...!!!!

Exemple : BL.Ant: Un service d'optimisation de planning

Planifier à la demande

La planification : un problème d'optimisation

La coordination d'une structure à domicile est complexe. L'activité de planification est longue et difficile. Les plannings prévisionnels sont rarement mis à jour.

Gérer les imprévus, les absences, les annulations

Les coordinateurs font face à de multiples contrainte et imprévus. La réorganisation du planning est rarement réalisable car trop fastidieuse.

Optimiser le temps, les coûts

Face à l'augmentation de la demande, il est indispensable d'optimiser le temps de travail des intervenants ainsi que la pénibilité dans la journée tout en respectant les contraintes réglementaires et contractuelles.

Maximiser la satisfaction des bénéficiaires

Les bénéficiaires ont aussi des exigences en termes d'horaires et ds préférences qu'il est difficile de satisfaire.

BL.Ant
Les algorithmes Bioinspirés au service de l'optimisation de planning

BL.Ant: un service d'optimisation de planning

Générer des plannings de tournée

Nos algorithmes génèrent automatiquement des plannings de tournées pour les services à domicile. Nos expérimentations indiquent que nous arrivons a faire diminuer le nombre d'intervenant nécessaires en conservant la qualité de service.

S'adapter aux contraintes du clients

Comme chaque service à ses spécificités, notre solution permet de décrire finement les contraintes de planification de la structure (temps de travail, pauses, type de service, préférences des bénéficiaires, acceptabilités des retards, etc.)

Technologie

Méta-heuristiques, Problème de satisfaction de contraintes, Java, Colonies de Fourmis

Résultats!

Expérimentation avec 5 clients

En France, de tailles différentes et offrant différent type de services. Clients des solutions BL.Social et As.Web

Des résultats excellents!

Nos algorithmes produisent des plannings aussi bons que ceux réalisés manuellement par les coordinateurs.

Des gains importants

Après 1h de calcul, diminution de 28% du nombre d'intervenants nécessaire ou de 28% du nombre d'heures d'attente inter-interventions dans la journée

Exemple: BL.Predict

Un outil de Maintenance Prévisionnelle Cloud Native

Pour répondre à ce besoin :

✓ Optimization:

- Maintenance Costs vs Breakdowns: preventive, planification, production stops
- **Risks**: human, safety, quality
- **Performance** : energy, raw materials

✓ Increase Technical Knowledge :

- Continuous Improvement
- Degradation scenarios

Analyse Transformation

Graphiques Données-> Informations
Règles métier

Monitoring aes équipements depuis CARL Source

> Liaisons entre les objets connectés et les points de mesure CARL Source

Maintenance <u>prévisionnelle</u> en liaisons avec des modèles d'IA

Maintenance
conditionnelle: liaisons
entre plans de
maintenance et objets
connectés

Déclenchement de demandes d'intervention depuis Carl Source

COMEX

Le Havre Seine Métropole

Projet SmartBuilding Stade Océane

Made by Berger-Levrault (Powered by InfluxData)

Valider la faisabilité d'un système IOT en remplacement de la GTB

- ✓ Patrimoine : Stade Oceane
- √ 36 Equipements techniques concernés impliqués dans :
 - Le bien être des joueurs et des spectateurs
 - La sécurité
 - La performance énergétique
- ✓ Fonctionnalités clés de BL.Predict :
 - > Surveillance continue
 - > Alertes automatisées et génération d'événements / interventions dans CARL Source
 - Visualisation avancée des données
 - Maintenance Conditionnelle
 - Application du « décret tertiaire »

DRIT / 3I - BL Predict - 11 février 2022

BL Apprentissage fédéré

Détection agnostique d'anomalies et pré diag

Start

Mesures relevées par le capteur

Une défaillance du capteur peut causer une erreur de mesure.

Conversion en données numériques

Des problèmes matériels ou logiciels peuvent être à l'origine d'erreurs de conversion.

Données transmises dans le réseau

Des interférences dans le reseau ou des noeuds défaillants peuvent être à l'origine d'erreurs de transmissions empêchant la reconstruction de la valeur.

End

DRIT / 3I - BL Predict - 11 février 2022 40

Examples: Parcours Collaborateur

- L'exemple de Gabriel
- L'exemple de Sabri
- L'exemple de Quentin
- L'exemple de Julien

Examples: Stages

Berger-Levrault cherche à concevoir des composants logiciels réutilisables pour des applications mobiles en Flutter (multiplateforme). Actuellement, nos composants flutter sont hautement dépendants les uns des autres, ce qui empêche d'avoir une certaine autonomie dans leur développement. L'objectif du stage est de construire automatiquement des environnements pour concevoir, modifier et tester ces composants indépendamment du reste de l'application.

Contactez-le responsable!

nicolas.hlad@carl.eu

Contactez-nous!

J.Morganderivery@berger-levrault.com

Gabriel.darbord@berger-levrault.com

https://www.berger-levrault.com

https://www.research-bl.com