PIPELINE HAZARDS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Notes
 - Homework 8 is due tonight
 - Verify your submitted file before midnight

- □ This lecture
 - Pipeline Hazards
 - Structural
 - Data
 - Control

Pipelined Architecture

- □ Five stage pipeline
 - Critical path determines the cycle time

Pipelined Architecture

- □ Example program
 - CT=1.5ns; CPU Time = ?

AND \$1,\$2,\$3

XOR \$4,\$2,\$3

SUB \$5,\$1,\$4

ADD \$6,\$1,\$4

MUL \$7,\$5,\$6

Pipelined Architecture

- □ Example program
 - \Box CT=1.5ns; CPU Time = 9 x 1.5ns = 13.5ns

AND \$1,\$2,\$3

XOR \$4,\$2,\$3

SUB \$5,\$1,\$4

ADD \$6,\$1,\$4

MUL \$7,\$5,\$6

Pipeline Hazards

- Structural hazards: multiple instructions compete for the same resource
- Data hazards: a dependent instruction cannot proceed because it needs a value that hasn't been produced
- Control hazards: the next instruction cannot be fetched because the outcome of an earlier branch is unknown

□ 1. Unified memory for instruction and data

□ 1. Unified memory for instruction and data

- □ 1. Unified memory for instruction and data
- □ 2. Register file with shared read/write access ports

- 1. Unified memory for instruction and data
- □ 2. Register file with shared read/write access ports

Data Hazards

□ Solution: register read and write in half cycles

