HORIZONTAL TAIL PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT H-Tail Data

Hidden Area --> Preliminary Mapping of imported Data

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

INPUT H-TAIL PARAMETERS LIST

Input parameters

 $b_H = 21.96 \ m$

 $\Lambda_{H\ LE} = 39\ deg$

 $\xi_{tmax_H}\!=\!0.35$

 $c_{H_r} = 7.2 \ \boldsymbol{m}$

 $t_over_c_{H_r}\!=\!0.1$

 $\alpha_{0l_H_r}\!=\!-0.05$

 $C_{l\alpha_H_r}\!=\!6.303$

 $C_{m_ac_H_r}\!=\!0$

 $\xi_{ac_H_r} = 0.25$

 $M_{cr_H_2D_r}\!=\!0.7$

 $\eta_H = 0.9$

 $\Gamma_H = 8.5 \ deg$

 $c_{H_t} = 2.4 \ \boldsymbol{m}$

 $t_over_c_{H_t}\!=\!0.08$

 $\alpha_{0l_H_t}\!=\!-0.05$

 $C_{l\alpha_H_t}\!=\!6.303$

 $C_{m_ac_H_t}\!=\!0$

 $\xi_{ac_H_t}\!=\!0.25$

 $M_{cr_H_2D_t}\!=\!0.7$

 $\varepsilon_{H_{-t}} = 0$

Imported parameters

 $M_1 = 0.65$

 $X_{ac_W} = 9.3 \ \boldsymbol{m}$

 $MAC_W = 9.505 \ m$

 $c_{W r} = 15.57 \ m$

 $S_W = 468.83 \ m^2$

 $i_H = -3 \ deg$

 $\eta_{e_in}\!=\!0.2$

 $\eta_{e_out}\!=\!0.9$

 $c_e = 1.55 \ m$

 $K_{MAC4_WH} = 0.914$

 $\Delta X_{\perp}HT_{LE}W_{LE} = 38.35 \ m$

 $\Delta X_{LE}Nose = 63.4 \ m$

HTAIL PARAMETERS CALCULATIONS

H-Tail basic parameters

$$\lambda_H \coloneqq \frac{c_{H_t}}{c_{H_r}} = 0.333$$

$$S_H := \frac{b_H}{2} \cdot c_{H_r} \cdot (1 + \lambda_H) = 105.408 \ m^2$$

$$AR_{H} := \frac{{b_{H}}^{2}}{S_{H}} = 4.575$$

$$MAC_{H} := \frac{2}{3} \cdot c_{H_{-r}} \cdot \left(\frac{1 + \lambda_{H}^{2} + \lambda_{H}}{1 + \lambda_{H}} \right) = 5.2 \ m$$

$$X_{MAC_LE_H} \coloneqq \frac{b_H}{6} \cdot \frac{\left(1 + 2 \cdot \lambda_H\right)}{\left(1 + \lambda_H\right)} \cdot \tan\left(\Lambda_{H_LE}\right) = 3.705 \ m$$

$$Y_{MAC_H} \coloneqq \frac{b_H}{6} \cdot \frac{1 + 2 \cdot \lambda_H}{1 + \lambda_H} = 4.575 \ m$$

$$Z_{MAC\ H} := Y_{MAC\ H} \cdot \tan(\Gamma_H) = 0.684\ m$$

$$\lambda_H = 0.333$$

$$S_H = 105.408 \ m^2$$

$$AR_H = 4.575$$

$$MAC_H = 5.2 \ m$$

$$X_{MAC\ LE\ H} = 3.705\ m$$

$$Y_{MAC\ H} = 4.575\ m$$

$$Z_{MAC\ H} = 0.684\ m$$

H-Tail, sweep angles

$$_{\mathrm{f}}\Lambda\left(x\,,\boldsymbol{\varLambda}_{le}\,,AR\,,\boldsymbol{\lambda}\right)\coloneqq\mathrm{if}\left(AR=0\,,\boldsymbol{\varLambda}_{le}\,,\mathrm{atan}\left(\tan\left(\boldsymbol{\varLambda}_{le}\right)-\frac{4\cdot\boldsymbol{x}\cdot\left(1-\boldsymbol{\lambda}\right)}{AR\cdot\left(1+\boldsymbol{\lambda}\right)}\right)\right)$$

$$\Lambda_{H\ LE} := {}_{\mathrm{f}}\Lambda\left(0\,,\Lambda_{H\ LE}\,,AR_{H}\,,\lambda_{H}\right) = 0.681$$

$$\Lambda_{H,TE} := {}_{f}\Lambda \left(1, \Lambda_{H,LE}, AR_{H}, \lambda_{H}\right) = 0.357$$

$$\Lambda_{H c4} \coloneqq {}_{f}\Lambda \left(0.25, \Lambda_{H LE}, AR_{H}, \lambda_{H}\right) = 0.611$$

$$\Lambda_{H\ c2} := {}_{\mathrm{f}}\Lambda\left(0.5, \Lambda_{H\ LE}, AR_{H}, \lambda_{H}\right) = 0.534$$

$$\Lambda_{H_tmax} \coloneqq {}_{\mathrm{f}} \Lambda \left(\xi_{tmax_H}, \Lambda_{H_LE}, AR_H, \lambda_H \right) = 0.581$$

Sweep angle function

$$\Lambda_{H_LE} = 39 \; deg$$

$$\Lambda_{H,TE} = 20.437 \ deg$$

$$\Lambda_{H_{-}c4} = 35.011 \ deg$$

$$\Lambda_{H_c2} = 30.592 \ deg$$

$$\Lambda_{H_tmax} = 33.296 \ deg$$

Hidden Area --> H-Tail, linear laws coefficients

H-Tail, linear laws defined over the whole semi-span

$$_{\mathrm{f}}\mathbf{c}_{\mathrm{H}}(y) \coloneqq A_{c_H} \cdot y + B_{c_H}$$

$$_{\text{ft_over_c_H}}(y) := A_{tc\ H} \cdot y + B_{tc\ H}$$

$$_{\mathrm{f}}\varepsilon_{\mathrm{g}_{-}\mathrm{H}}(y) \coloneqq A_{\varepsilon_{-}H} \cdot y + B_{\varepsilon_{-}H}$$

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{l}\alpha} _{\mathrm{H}}(y) \coloneqq A_{Cl\alpha} _{H} \cdot y + B_{Cl\alpha} _{H}$$

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{m_ac_2D_H}}(y) \coloneqq A_{Cm0_H} \cdot y + B_{Cm0_H}$$

$$_{\mathrm{f}}\xi_{\mathrm{ac_2D_H}}(y) \coloneqq A_{\xi ac_H} \cdot y + B_{\xi ac_H}$$

$$_{\mathrm{f}}\mathbf{M}_{\mathrm{cr_H_2D}}\left(y\right) \coloneqq A_{Mcr_H} \cdot y + B_{Mcr_H}$$

H-Tail, 2D mean quantities

$$t_over_c_{H_mean} \coloneqq \frac{2}{S_H} \cdot \int\limits_0^{\frac{b_H}{2}} {}_{\mathrm{f}} \mathrm{c_H}(y) \cdot {}_{\mathrm{f}} \mathrm{t_over_c_H}(y) \, \mathrm{d}y = 0.092$$

$$t_over_c_{H_mean} = 0.092$$

$$C_{m_ac_H_mean} \coloneqq \frac{2}{S_H \cdot MAC_H} \cdot \int_{0}^{\frac{b_H}{2}} {}_{\mathbf{f}} \mathbf{c}_{\mathbf{H}}(y)^2 \cdot {}_{\mathbf{f}} \mathbf{C}_{\mathbf{m_ac_2D_H}}(y) \, \mathrm{d}y = 0$$

$$C_{m_ac_H_mean} \!=\! 0$$

$$C_{l\alpha_H_mean} \coloneqq \frac{2}{S_H} \cdot \int_{0}^{\frac{b_H}{2}} {}_{\mathrm{f}} \mathrm{c_H}(y) \cdot {}_{\mathrm{f}} \mathrm{C}_{l\alpha_H}(y) \, \mathrm{d}y = 6.303$$

$$C_{l\alpha_H_mean} = 0.11 \,\, deg^{-1}$$

$$lpha_{0l_H_mean} \coloneqq rac{2}{S_H} \cdot \int\limits_0^{rac{b_H}{2}} {}_{1}^{
m c} {
m c}_{
m H}(y) \cdot {}_{1}\! {
m c}_{0l_H_{
m 2D}}(y) \, {
m d} y = -0.05 \; m{rad}$$

$$\alpha_{0l_H_mean}\!=\!-2.865~\textit{deg}$$

H-Tail, 3D alpha-zero-lift

$$\alpha_{0L_H} \coloneqq \frac{2}{S_H} \cdot \int\limits_0^{\frac{o_H}{2}} {}_{\mathrm{f}} \mathrm{c}_{\mathrm{H}} \big(y \big) \cdot \big({}_{\mathrm{f}} \alpha_{0 \sqsubseteq \mathrm{H_2D}} \big(y \big) - {}_{\mathrm{f}} \varepsilon_{\mathrm{g_H}} \big(y \big) \big) \, \mathrm{d} \, y = -0.05 \, \, \boldsymbol{rad}$$

$$\alpha_{0L_H} = -2.865 \; deg$$

MISCELLANEOUS DATA CALCULATIONS

Induced drag factors, only due to geometric effects

$$e_{H_alt} \coloneqq \frac{2}{2 - AR_H + \sqrt{4 + A{R_H}^2 \, \left(1 + \tan \left(\Lambda_{H_tmax}\right)^2\right)}} = 0.615$$

$$e_{H\ alt\ A0} := 1.78 \cdot \left(1 - 0.045 \cdot AR_{H}^{0.68}\right) - 0.64 = 0.915$$

$$e_{H_alt_A} \coloneqq 4.61 \cdot \left(1 - 0.045 \cdot A R_H^{-0.68}\right) \cdot \cos \left(\varLambda_{H_LE}\right)^{-0.15} - 3.1 = 0.777$$

$$e_{H\ alt} = 0.615$$

- Alternative formula: valid for unswept wings
- Alternative formula: valid for swept wings

3d critical Mach number at mean aerodynamic chord

$$M_{cr\ H\ 3D\ @MAC\ H}$$
 = 0.901

Elevator inner and outer stations and area

$$y_{e_in} := \eta_{e_in} \cdot \frac{b_H}{2} = 2.196 \ m$$

$$y_{e_out} := \eta_{e_out} \cdot \frac{b_H}{2} = 9.882 \ m$$

$$c_{H_mean_@e} \coloneqq {}_{\mathrm{f}} \mathbf{c}_{\mathrm{H}} \bigg(\frac{y_{e_in} + y_{e_out}}{2} \bigg) = 4.56 \ \textit{m}$$

$$S_e \coloneqq 2 \cdot c_e \cdot \left(y_{e_out} - y_{e_in} \right) = 23.827 \ m^2$$

$$y_{e_in}\!=\!2.196~\pmb{m}$$

$$y_{e_out} = 9.882 \ m$$

$$c_{H_mean_@e} = 4.56 \ m$$

$$S_{o} = 23.827 \, \mathbf{m}^{2}$$

@Aerodynamic Database ---> (control_surface)_tau_e_vs_c_control_surface_over_c_horizontal_tail

$$\tau_e\!=\!0.552$$

@Aerodynamic Database ---> (control_surface)_C_h_alpha_vs_flap_chord_over_airfoil_chord

$$C_{h \alpha e} = -0.007$$

$$C_{h,\alpha,e} = -1.269 \cdot 10^{-4} \ deg^{-1}$$

@Aerodynamic Database ---> (control surface) C h delta vs flap chord over airfoil chord

$$C_{h_\delta_e} = -0.013$$

$$C_{h \delta e} = -2.277 \cdot 10^{-4} \ deg^{-1}$$

LIFT CURVE SLOPE

H-Tail Lift Curve Slope, function definitions

• Polhamus Formula Coefficient

 ${}_{\mathrm{f}}\mathbf{C}_{\mathrm{L}\alpha_{-}\mathrm{H}}\left(\!M\,,k_{P}^{},AR^{},\boldsymbol{\Lambda_{c2}}^{},\boldsymbol{C_{l\alpha@MAC}}^{},\boldsymbol{\Lambda_{LE}}\!\right)\coloneqq\mathrm{if}\;\;k_{P}\!\neq\!100$

 General Formula for Lift Curve Slope

$$\begin{vmatrix} 1 & 2 \cdot \pi \cdot AR \\ \text{return} & (---> \text{ use Polhamus Formula}) \\ 2 + \sqrt{\left|\left|\frac{AR^2 \cdot (1 - M^2)}{k_P^2} \left(1 + \frac{\tan\left(\Lambda_{c2}\right)}{(1 - M^2)}\right)\right| + 4}\right|} \\ \text{else} \\ \begin{vmatrix} a_0 \leftarrow & C_{l\alpha@MAC} \\ \hline \sqrt{1 - \frac{(---> \text{ use alternative formula})}{\cos\left(\Lambda_{LE}\right)}} \\ \text{return} & a_0 \cdot \cos\left(\Lambda_{LE}\right) \end{vmatrix} + \frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\pi \cdot AR} \end{vmatrix}$$

H-Tail Lift Curve Slope, classic formula

$$C_{L\alpha_H_classic} \coloneqq \frac{C_{l\alpha_H_mean}}{\sqrt{1 - {M_1}^2} + \frac{C_{l\alpha_H_mean}}{\pi \cdot AR_H \cdot e_{H_alt}}} = 4.279$$

$$C_{L\alpha_H_classic} = 0.075 \; deg^{-1}$$

H-Tail Lift Curve Slope, general formula for inner/outer panel and whole wing

$$k_{Polhamus_H} \coloneqq {}_{\mathrm{f}} \mathsf{k}_{\mathrm{Polhamus}} \left(M_1 \,, M_{cr_H_3D_@MAC_H} \,, \Lambda_{H_LE} \,, \lambda_H \,, AR_H \right) = 100$$

$$k_{Polhamus_H}\!=\!100$$

$$C_{l\alpha_H_@MAC_H} := {}_{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_\mathrm{H}} \left(Y_{MAC_H}\right) = 6.303$$

$$C_{l\alpha\ H\ @MAC\ H} = 0.11\ deg^{-1}$$

$$C_{L\alpha_H_@M0} \coloneqq {}_{\mathbf{f}}C_{\mathbf{L}\alpha_H} \left(0, k_{Polhamus_H}, AR_H, \Lambda_{H_c2}, C_{l\alpha_H_@MAC_H}, \Lambda_{H_LE} \right)$$

$$C_{L\alpha H @M0} = 0.061 \ deg^{-1}$$

$$C_{L\alpha_H} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_H} \left(M_1, k_{Polhamus_H}, AR_H, \Lambda_{H_c2}, C_{l\alpha_H_@MAC_H}, \Lambda_{H_LE} \right)$$

$$C_{I\alpha H} = 0.074 \ deg^{-1}$$

$$C_{Llpha\;H}\!=\!4.223\;rad^{-1}$$

 $C_{L\alpha H @ M0} = 3.505 \ rad^{-1}$

H-Tail lift coefficient at initial conditions

$$C_{L0_H} := C_{L\alpha_H} \cdot (i_H - \alpha_{0L_H} - \varepsilon_{0_W}) = -0.072$$

$$C_{L0\ H} = -0.072$$

Induced drag factor, due to both geometric and aerodynamic effects

$$\begin{split} & \underset{\mathbf{fe}}{\text{fe}} \left(C_{L\alpha}, AR, \lambda, \varLambda_{LE} \right) \coloneqq \left\| \lambda_e \leftarrow \frac{AR \cdot \lambda}{\cos \left(\varLambda_{LE} \right)} \right. \\ & \left. R \leftarrow 0.0004 \cdot \lambda_e^{-3} - 0.008 \cdot \lambda_e^{-2} + 0.0501 \cdot \lambda_e + 0.8642 \right. \\ & \left. \text{return if} \left(AR = 0 , 0 , \frac{1.1 \cdot C_{L\alpha}}{R \cdot C_{L\alpha} + \left(1 - R \right) \, \pi \cdot AR} \right) \right. \end{split}$$

 Function for calculating wing induced drag factor, icluding aerodynamic and geometric effects

$$e_H := {}_{\mathrm{f}} \mathrm{e} \left(C_{L\alpha \ H}, AR_H, \lambda_H, \Lambda_{H \ LE} \right) = 0.951$$

 $e_H = 0.951$

H-TAIL AERODYNAMIC CENTER - GRAPHICAL METHOD (DATCOM/NAPOLITANO)

@Aerodynamic Database ---> (x_bar_ac_w)_k1_vs_lambda

 $K1_{ac\ H\ Datcom} = 1.38$

@Aerodynamic Database ---> (x_bar_ac_w)_k2_vs_L_LE_(AR)_(lambda)

 $K2_{ac\ H\ Datcom} = 0.527$

@Aerodynamic Database ---> (x_bar_ac_w)_x'_ac_over_root_chord_vs_tan_(L_LE)_over_beta_(AR_times_tan_(L_LE))_
(lambda)

 $X_{ac_over_c_{r_H_Datcom}}\!=\!0.728$

Aerodynamic center positions

$$\xi_{ac_H} \coloneqq K1_{ac_H_Datcom} \cdot \left(X_{ac_Over_c_{r_H_Datcom}} - K2_{ac_H_Datcom}\right) = 0.277$$

$$X_{ac\ H} := \xi_{ac\ H} \cdot MAC_H + X_{MAC\ LE\ H} = 5.147\ m$$

$$X_{ac\ H} = 5.147\ m$$

$$x_{ac_H}\!\coloneqq\!X_{ac_H}\!-\!X_{MAC_LE_H}\!=\!1.442~\pmb{m}$$

$$x_{ac_H} = 1.442 \ m$$

H-Tail Volume Ratio based on aerodynamic centers distance

$$\Delta X_HT_{ac}_W_{ac} \coloneqq \Delta X_HT_{LE}_W_{LE} - X_{ac}_W + X_{ac}_H = 34.197~\textit{m}$$

$$VolumeRatio_{H_ac} \coloneqq \frac{S_{H}}{S_{W}} \cdot \frac{\Delta X_HT_{ac}_W_{ac}}{MAC_{W}} = 0.809$$

SHRENK'S METHOD FOR BASIC AND ADDITIONAL H-TAIL LOADING

Loading function definitions and remarkable values

$${}_{\mathrm{f}}\mathbf{c}_{\mathrm{eff}}\big(y\big) \coloneqq \frac{{}_{\mathrm{f}}\mathbf{c}_{\mathrm{H}}\big(y\big) \cdot {}_{\mathrm{f}}\mathbf{C}_{\mathrm{l}\alpha_{\mathrm{H}}}\big(y\big)}{C_{l\alpha_{H_mean}}}$$

$$c_{ell_0} \coloneqq \frac{4 \cdot S_H}{\pi \cdot b_H} \qquad \qquad {}_{\mathrm{f}} c_{\mathrm{ell}} \big(y\big) \coloneqq c_{ell_0} \cdot \sqrt{1 - \left(\frac{y}{\frac{b_H}{2}}\right)^2}$$

$$_{\mathrm{f}}\alpha_{\mathrm{b}}(y)\coloneqq lpha_{0L_H}-\left(_{\mathrm{f}}lpha_{0l_H_2\mathrm{D}}(y)-_{\mathrm{f}}arepsilon_{\mathrm{g_H}}(y)
ight)$$

$${}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{b}}}(y) \coloneqq \frac{1}{2} \boldsymbol{\cdot}_{\mathbf{f}}\mathbf{c}_{\mathbf{H}}(y) \boldsymbol{\cdot}_{\mathbf{f}}\mathbf{C}_{\mathbf{l}\alpha_{-\mathbf{H}}}(y) \boldsymbol{\cdot}_{\mathbf{f}}\alpha_{\mathbf{b}}(y)$$

$${}_{\mathrm{f}}\mathrm{cC}_{\mathrm{l}_{-}\mathrm{a}}\!\left(y\right) \coloneqq \frac{1}{2} \cdot \left({}_{\mathrm{f}}\mathrm{c}_{\mathrm{eff}}\!\left(y\right) + {}_{\mathrm{f}}\mathrm{c}_{\mathrm{ell}}\!\left(y\right)\right)$$

$${}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}}\left(y\right)\coloneqq{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{b}}}\left(y\right)+{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{a}}}\left(y\right)$$

$$C_{L_a} \coloneqq rac{2}{S_W} \cdot \int\limits_0^{rac{b_H}{2}} \mathrm{fcC_{l_a}}(y) \, \mathrm{d}y = 0.225$$

- Effective chord distribution function
- Elliptic chord distribution function
- "Basic" angle of attack function
- Basic wing loading
- Additional wing loading function
- Wing loading function
- REMARK: the effects of wing sweep angle are neglected

Spanwise loading curve plots

3D PITCHING MOMENT COEFFICIENT ABOUT H-TAIL AERODYNAMIC CENTER

Exact formulation

 $_{\mathbf{f}}\mathbf{x}_{\mathbf{b}_{-}\mathbf{H}}\left(y\right)\coloneqq X_{ac_{-}H}-\left(y\boldsymbol{\cdot}\tan\left(\boldsymbol{\varLambda}_{H_LE}\right)+_{\mathbf{f}}\mathbf{c}_{\mathbf{H}}\left(y\right)\boldsymbol{\cdot}_{\mathbf{f}}\boldsymbol{\xi}_{\mathbf{ac}_2\mathbf{D}_{-}\mathbf{H}}\left(y\right)\right)$

 Moment arm from section's aerodynamic center to wing 3D aerodynamic center

$$C_{M_ac_H_b} = 0$$

$$C_{M_ac_H_a} \coloneqq rac{2}{S_H \cdot MAC_H} \cdot \int\limits_0^{rac{b_H}{2}} {}_{
m f} {
m C}_{
m m_ac_2D_H} ig(yig) \cdot {}_{
m f} {
m c}_{
m H} ig(yig)^2 {
m d} \, y = 0$$

$$C_{M_ac_H_a} \!=\! 0$$

$$C_{M\ ac\ H} \coloneqq C_{M\ ac\ H\ b} + C_{M\ ac\ H\ a} = 0$$

$$C_{M_ac_H} = 0$$

Approximated formulation (Roskam)

$$C_{M_ac_H_b_Roskam} \coloneqq \frac{2 \cdot \pi}{S_H \cdot MAC_H} \cdot \int\limits_0^{\frac{b_H}{2}} {}_{\rm f} \alpha_{\rm b} (y) \cdot {}_{\rm f} {\rm c_H} (y) \cdot {}_{\rm f} {\rm x_{b_H}} (y) \, {\rm d}y = 0$$

$$C_{M_ac_H_b_Roskam} = 0$$

$$C_{M_ac_H_Roskam} \coloneqq C_{M_ac_H_b_Roskam} + C_{M_ac_H_a} = 0$$

$$C_{M\ ac\ H\ Roskam} = 0$$

DOWNWASH

Lifting Line Theory

$$_{\text{f}}\varepsilon_{\alpha_\text{LLT_H}}\left(C_{L\alpha},AR\,,e\,,M\right)\coloneqq\text{if}\left(AR=0\,,0\,,2\,\cdot\frac{C_{L\alpha}}{\pi\,\cdot AR\,\cdot e}\,\cdot\frac{1}{\sqrt{1-M^{2}}}\right)$$

• Downwash gradient according to linear theory

$$\varepsilon_{\alpha_LLT_@M0_H} \coloneqq {}_{\mathrm{f}} \varepsilon_{\alpha_LLT_H} \left(C_{L\alpha_H}, AR_H, e_H, 0 \right) = 0.618$$

$$\varepsilon_{\alpha_LLT_H}\!\coloneqq_{\mathrm{f}}\!\varepsilon_{\alpha_LL\Tau_H}\left(C_{L\alpha_H},AR_H,e_H,M_1\right)\!=\!0.813$$

$$\varepsilon_{0_LLT_H} \coloneqq \varepsilon_{\alpha_LLT_H} \cdot \left(i_H - \alpha_{0L_H}\right) = -0.002$$

$$\varepsilon_{\alpha_LLT_@M0_H}\!=\!0.618$$

$$\varepsilon_{\alpha_LLT_H}\!=\!0.813$$

$$\varepsilon_{0_LLT_H} = -0.11 \ deg$$

DATCOM Method

$$_{\mathrm{f}}\mathbf{K}_{\mathrm{AR}}(AR) \coloneqq \frac{1}{AR} - \frac{1}{1 + (AR)^{1.7}}$$

$$\begin{split} K_M \left(\!\!\! \left(\!\!\! M \,, C_{L\alpha _@M0} \,, C_{L\alpha} \!\!\! \right) \coloneqq & \text{if } M \! \leq \! 0.7 \\ & \parallel \text{return } \sqrt{1 - M^2} \\ & \text{else} \\ & \parallel \text{return } \frac{C_{L\alpha}}{C_{L\alpha _@M0}} \end{split}$$

$$_{\mathrm{f}}\mathrm{K}_{\lambda}\left(\lambda\right)\coloneqq\frac{10-3\cdot\lambda}{7}$$

$${}_{\mathrm{f}}\mathrm{K}_{\mathrm{MAC4}}\left(\Delta Z',\Delta X',b\right) \coloneqq \frac{1-\frac{\Delta Z'}{b}}{\sqrt[3]{2\cdot\frac{\Delta X'}{b}}}$$

$$\begin{split} K_{AR_H} \coloneqq_{\mathbf{f}} & \mathbf{K}_{\mathbf{AR}} \left(AR_H \right) = 0.148 \\ & K_{\lambda_H} \coloneqq_{\mathbf{f}} \mathbf{K}_{\lambda} \left(\lambda_H \right) = 1.286 \\ & K_{\lambda_H} = 1.286 \\ & K_{MAC4_WH} = 0.914 \\ & K_{MAC4_WH} = 0.914 \\ & K_{M_H} \coloneqq_{\mathbf{K}_M} \left(M_1, C_{L\alpha_H_@M0}, C_{L\alpha_H} \right) = 0.76 \\ & \mathcal{K}_{M_H} \coloneqq_{\mathbf{K}_M} \left(M_1, C_{L\alpha_H_@M0}, C_{L\alpha_H} \right) = 0.76 \\ & \mathcal{K}_{M_H} = 0.76 \\ & \mathcal$$

MISCELLANEOUS PARAMETERS PLOT

WING-BODY-HTAIL PLANFORM

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_HTail.mcdx

Excel Writing

 $First_Row_{H\ 1} := 4$

 $Block_{H_1} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map_{imported})$

 $Excel_Output_{H_1} \coloneqq {}_{\mathsf{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_1} \,, n_{sheet} \,, First_Row_{H_1} \right)$

 $First_Row_{H_2} := First_Row_{H_1} + rows (Block_{H_1}) + 2 = 20$

 $Block_{H_2} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map_{input})$

 $Excel_Output_{H_2} \coloneqq_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_2} \,, n_{sheet} \,, First_Row_{H_2} \right)$

 $First_Row_{H_3} := First_Row_{H_2} + rows (Block_{H_2}) + 2 = 58$

 $Block_{H_3} := {}_{f}map_matrix_transform ({}_{m}HTail_Data_Map)$

 $Excel_Output_{H_3} \coloneqq {}_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_3} \,, n_{sheet} \,, First_Row_{H_3} \right)$

 $First_Row_{H_3} := First_Row_{H_3} + rows (Block_{H_3}) + 2 = 143$

 $Block_{H_4} \coloneqq {}_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m}HTail_Data_Map_{LLCoeffs} \right)$

 $Excel_Output_{H_4} \coloneqq {}_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_4} \,, n_{sheet}, First_Row_{H_4} \right)$

 $First_Row_{H_5} \coloneqq First_Row_{H_4} + rows \left(Block_{H_4}\right) + 2 = 178$

 $Block_{H_5} \coloneqq {}_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m}HTail_Data_Map_{Misc} \right)$

 $Excel_Output_{H_5} \coloneqq {}_{\text{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{H_5} \,, \, n_{sheet} \,, First_Row_{H_5} \right)$

CSV Tabs Writing

$$_{m}CSV_{H_1} \coloneqq \operatorname{augment}\left(_{v}y\,,_{v}c_{ell}\,,_{v}c_{eff}\,,_{v}cC_{l_a}\,,_{v}cC_{l_b}\right)\cdot \frac{1}{m}$$

 $CSV_Output_{H_1} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk_loading}(y, c_ell, c_eff, cCl_a, cCl_b). csv", {}_{m}CSV_{H_1}\right)$

$$_{m}CSV_{H_2} \coloneqq \operatorname{augment}\left(_{v}y \cdot \frac{1}{m},_{v}x_{b_H} \cdot \frac{1}{m},_{v}IC_{M_ac_H_b} \cdot \frac{1}{m^2},_{v}IC_{M_ac_H_b_Roskam} \cdot \frac{1}{m^2}\right)$$

 $CSV_Output_{H_2} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \text{csv''}, {}_{m}CSV_{H_2}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \text{csv''}, {}_{m}CSV_{H_2}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{Roskam}). \text{csv''}, {}_{m}CSV_{H_2}\right) = \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{H-TAIL_shrenk-roskam_loading}(y, x_b, \text{IC_M_b}, \text{IC_M_b}, \text{IC_M_b}, \text{IC$

$${}_{m}CSV_{H_3} \coloneqq \operatorname{augment}\left({}_{v}y \cdot \frac{1}{m}, {}_{v}c_{H} \cdot \frac{1}{m}, {}_{v}\alpha_{0l_2D}, {}_{v}\varepsilon_{g}, {}_{v}C_{l\alpha_H}, {}_{v}C_{m_ac_2D_H}, {}_{v}\xi_{ac_2D_H}\right)$$

 $CSV_Output_{H_3} := WRITECSV (".\Output\H-TAIL_linear_laws(y,c,alphazl,epsilon,Clalpha,Cmac,Csiac).csv", {}_{m}CSV_{H_3})$

$$_{m}CSV_{H_4} \coloneqq \operatorname{augment}\left(_{v}X_{H},_{v}Y_{H}\right) \cdot \frac{1}{m}$$

 $CSV_Output_{H_4} \coloneqq \text{WRITECSV} \left(\text{``.} \backslash \text{Output} \backslash \text{H-TAIL_planform}(\mathbf{X}_\mathbf{H}, \mathbf{Y}_\mathbf{H}).\mathbf{csv''}, {}_{m}CSV_{H_4}\right)$

TeX Macro writing on .tex

 $\label{eq:complete_macros} \begin{array}{l} _{v}complete_macros_{H} \coloneqq \operatorname{stack}\left(Block_{H_1}^{(2)}, Block_{H_2}^{(2)}, Block_{H_3}^{(2)}, Block_{H_4}^{(2)}, Block_{H_5}^{(2)}\right) \\ vtex_{H} \coloneqq _{f}write_matrix\left(\text{``.}\operatorname{Output}\operatorname{HTAIL_Tex_Macros.tex''}, _{v}complete_macros_{H}, \text{``'}\right) \end{array}$