PowerEnjoy

Riccardo Redaelli Nicola Sosio Maria Chiara Zaccardi

Politecnico di Milano

6 Marzo 2017

Introduzione Analisi dei requisiti Design Test plan Project plan

Introduzione

PowerEnjoy è una società di car sharing che offre il solo utilizzo di macchine elettriche.

Il sistema che andremo a sviluppare deve permettere agli utenti di noleggiare una macchina per brevi viaggi e di inviare notifiche agli operatori con le richieste di riparazione o di assistenza.

PowerEnjoy vuole incentivare il comportamente virtuoso degli utenti attraverso sconti.

Analisi dei requisiti

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: utenti che, dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società che, dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento dei noleggi.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: utenti che, dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società che, dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento dei noleggi.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: utenti che, dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società che, dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento dei noleggi.

- **Visitor**: persone che devono registrarsi per usufruire del servizio. Possono visualizzare i form per accedere o registrarsi e una breve descrizione del servizio offerto.
- User: utenti che, dopo aver eseguito il login, sono abilitate ai servizi offerti.
- Operator: dipendenti della società che, dopo il login, possono visualizzare la macchina sulla quale devono effettuare l'operazione.
- PayPal: è un attore passivo, utilizzato dal sistema per il pagamento dei noleggi.

- Gli operatori ricevono le credenziali di accesso al momento del loro conferimento d'incarico.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento del loro conferimento d'incarico.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento del loro conferimento d'incarico.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- Gli operatori ricevono le credenziali di accesso al momento del loro conferimento d'incarico.
- Nelle ore di servizio gli operatori sono sempre disponibili e connessi all'applicazione.
- Le operazioni vengono sempre assegnate all'operatore più vicino alla macchina.
- Per sbloccare la macchina, una volta prenotata, è necessario inserire il codice della macchina nell'applicazione.

- L'account viene bloccato se l'utente effettua un noleggio per cui non si verifica disponibilità di pagamento.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non si interrompe.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica ricompare fra le macchine disponibili solo a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non si verifica disponibilità di pagamento.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non si interrompe.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica ricompare fra le macchine disponibili solo a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non si verifica disponibilità di pagamento.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non si interrompe.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica ricompare fra le macchine disponibili solo a carica completa.

- L'account viene bloccato se l'utente effettua un noleggio per cui non si verifica disponibilità di pagamento.
- Il parcheggio è consentito solo all'interno di una Safe Area, fuori da essa il noleggio non si interrompe.
- Se un noleggio termina a più di 3km da una power grid station, un operatore viene incaricato di spostare la macchina entro i 3km.
- Una macchina in carica ricompare fra le macchine disponibili solo a carica completa.

Use case 1/2

Analisi dei requisiti Design Test plan Project plan

Diagramma a stati

Introduzione

parked=True

Design

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

- Architettura client-server
- Three-tiers application
 - Thin-client
 - Application Logic
 - Database

High level components

Introduzione Analisi dei requisiti **Design** Test plan Project plan

Component view

Struttura database

Sequence diagram - Prenotazione 1/2

Sequence diagram - Prenotazione 2/2

Introduzione Analisi dei requisiti **Design** Test plan Project plan

Alloy - Cancellazione prenotazione

```
$deleteReservation_r: 1
area: 3
availability: 2
car: 2
car: 1
code: 1
driver: 1
numberPassenger: 1
position: 1
position: 2
reservation: 1
user: 2
```


Scenario

"Francesco è uscito alla sera con gli amici e ha fatto tardi, quindi accede all'applicazione di PowerEnJoy e attiva il gps per vedere se ci sono macchine nelle vicinanze. Francesco ne trova una poco distante dalla sua posizione e la prenota. Una volta avvicinato la sblocca inserendo il codice presente sul cruscotto dell'automobile e inizia il suo noleggio."

UX Login

Introduzione Analisi dei requisiti **Design** Test plan Project plan

BCE Login

Introduzione Analisi dei requisiti Design Test plan Project plan

UX Pagina personale

UX Ricerca macchine disponibili

BCE Ricerca macchine disponibili

Introduzione

UX Macchina selezionata

Introduzione

Analisi dei requisiti Design Test plan Project plan

UX Prenotazione

Introduzione

Redaelli Sosio Zaccardi PowerEnjoy 6 Marzo 2017

BCE Prenotazione

Redaelli Sosio Zaccardi PowerEnjoy 6 Marzo 2017

Test Plan

Prerequisiti

Affinchè sia possibile delineare una strategia di integrazione è necessario che:

- RASD e DD siano stati precedentemente redatti.
- tutte le classi di ogni component siano correttamente documentate.
- ogni classe sia stata testata attraverso i test d'unità.

Prerequisiti

Affinchè sia possibile delineare una strategia di integrazione è necessario che:

- RASD e DD siano stati precedentemente redatti.
- tutte le classi di ogni component siano correttamente documentate.
- ogni classe sia stata testata attraverso i test d'unità.

Prerequisiti

Affinchè sia possibile delineare una strategia di integrazione è necessario che:

- RASD e DD siano stati precedentemente redatti.
- tutte le classi di ogni component siano correttamente documentate.
- ogni classe sia stata testata attraverso i test d'unità.

- i componenti indipendenti devono essere già stati sviluppati
- l'unico stub necessario è quello che simula il comportamento del Payment Gateway
- i driver sono temporaneamente indispendabili

- i componenti indipendenti devono essere già stati sviluppati
- l'unico stub necessario è quello che simula il comportamento del Payment Gateway
- i driver sono temporaneamente indispendabili

- i componenti indipendenti devono essere già stati sviluppati
- l'unico stub necessario è quello che simula il comportamento del Payment Gateway
- i driver sono temporaneamente indispendabili

- i componenti indipendenti devono essere già stati sviluppati
- l'unico stub necessario è quello che simula il comportamento del Payment Gateway
- i driver sono temporaneamente indispendabili

Integrazione dei componenti

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock obiects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito
- Mockito
 - permette di creare e configurare mock objects
 - semplifica il test di classi con dipendenze esterne
 - utile per la creazione di stubs
- JMeter
 - open source software utilizzato per il test delle performance
 - simula un gruppo di utenti che inviano richieste al server

Tools

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito
- Mockito
 - permette di creare e configurare mock objects
 semplifica il test di classi con dipendenze esterno utile per la creazione di stubs
- JMeter

open source software utilizzato per il test delle performance
 simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

• open source software utilizzato per il test delle performance

simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

open source software utilizzato per il test delle performance
 simula un gruppo di utenti che inviano richieste al server

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

JMeter

open source software utilizzato per il test delle performance
simula un gruppo di utenti che inviano richieste al server

Tools

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

Tools

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

Tools

JUnit

- framework open source con lo scopo di scrivere ed eseguire test di unità
- permette agli sviluppatori di creare incrementalmente test suits
- può essere utilizzato insieme a Mockito

Mockito

- permette di creare e configurare mock objects
- semplifica il test di classi con dipendenze esterne
- utile per la creazione di stubs

- open source software utilizzato per il test delle performance
- simula un gruppo di utenti che inviano richieste al server

Project plan

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

- Un function point è un'unità di misura per esprimere le dimensioni del software
- La dimensione del software è funzione delle caratteristiche del programma
 - External Input
 - External Output
 - External Inquiry
 - Internal Logic File
 - External Logic Files
- $UFP = \sum (N_i * w_i)$, dove N_i è il numero di elementi di un determinato tipo e w_i il peso associato.

Internal Logic File

Introduzione

Internal Logic File	Complexity	FPs
Information registerd user	Simple	7
Information registered operator	Simple	7
Safe area	Medium	10
Power grid stations	Simple	7
Мар	Complex	15
Car informations	Simple	7
Reservation	Simple	7
Ride	Simple	7
Operations	Medium	10
Total		77

SLOC

Introduzione

Function Type	Function Complexity	
External Input (EI)	41	
External Output (EO)	26	
External Inquiry (EQ)	27	
Internal Logical File (ILF)	77	
External Interface Files (EIF)	30	
Total	201	

$$SLOC = 46 * 201 = 9246$$

COCOMO II

- COCOMO II è stato utilizzato per stimare l'effort e il tempo necessari allo sviluppo di PowerEnjoy
- Post-architecture model
- Per il calcolo dell'effort, ad ogni Scale Driver e Cost Driver è stato assegnato uno rating level tenendo in considerazione le caratteristiche del software che verrà sviluppato

Introduzione Analisi dei requisiti Design Test plan **Project plan**

COCOMO II

- COCOMO II è stato utilizzato per stimare l'effort e il tempo necessari allo sviluppo di PowerEnjoy
- Post-architecture model
- Per il calcolo dell'effort, ad ogni Scale Driver e Cost Driver è stato assegnato uno rating level tenendo in considerazione le caratteristiche del software che verrà sviluppato

Introduzione Analisi dei requisiti Design Test plan **Project plan**

COCOMO II

- COCOMO II è stato utilizzato per stimare l'effort e il tempo necessari allo sviluppo di PowerEnjoy
- Post-architecture model
- Per il calcolo dell'effort, ad ogni Scale Driver e Cost Driver è stato assegnato uno rating level tenendo in considerazione le caratteristiche del software che verrà sviluppato

Introduzione

$$E = B + 0.01* \sum_{j=1}^{5} SF_j = 0.91 + 0.01*17.85 = 1.0885$$

$$PM = A * Size^{E} * \prod_{i=1}^{n} EM_{i} = 2.94 * 9246^{1.0885} * 0.81 \simeq 27PM$$

dove:

- $A = 2.94 \, PM/KSLOC$
- Size è la dimensione stimata con i FP
- EM; sono i Cost Driver
- B = 0.91
- SF_i sono i Scale Factor

$$TDEV = [C * PM^F] * \frac{SCED\%}{100} = 3.67 * 27^{0.3157} * \frac{130}{100} \simeq 14 months$$

 $F = D + 0.2 * (E - B) = 0.28 + 0.2 * (1.86 - 0.91) = 0.3157$
dove:

- C = 3.67
 - PM è il numero di persone al mese stimate precedentemente
 - D = 0.28.
 - \bullet B = 0.91.
 - SCED% è il fattore percentuale di compressione/espansione

Introduzione Analisi dei requisiti Design Test plan **Project plan**

Allocazione risorse 1/3

Allocazione risorse 2/3

Allocazione risorse 3/3

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei client
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei client
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei client
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

- cambiamento nei requirements
- perdita di dati
- dipendenza da servizi esterni
- affidabilità e compatibilità dei sensori
- comportamenti inaspettati dei clienti
- concorrenza
- sponsorizzare PowerEnJoy

