ITP20002-02 Discrete Mathematics

Programming Assignment 1

29 Sep 2017

PA1. SAT-based Sudoku Puzzle Solver

- Task: construct a program that automatically finds a solution of a given 9 x 9 Sudoku puzzle
 - 1. represent the problem as a propositional formula
 - use an off-the-shelf SAT solver to solve the formula
 - 3. convert the SAT solver result to a Sudoku solution

Setting

- Due date: **11:59PM, 12 Oct (Thu)**
- Teamwork: 3 persons per team
- Evaluation
 - report: 40%
 - test: 30%
 - online exam: 30% (schedule: TBA)

Using Off-The-Shelf SAT Solvers

- SAT solvers (constraint solvers)
 - Z3 (MS Windows) https://z3.codeplex.com/releases
 - MiniSAT http://minisat.se/MiniSat.html
- Input: DIMACS format: a structural representation of a CNF formula
 - E.g., solve $(x \lor y) \land (\neg z) \land (\neg x \lor \neg y)$ using Z3
 - Input file

Operation

```
$ z3 -dimacs formula.txt
sat
1 -2 -3
```

Sudoku Puzzle

- A Sudoku puzzle has a 9 x 9 grid with nine 3 x 3 subgrids (i.e., blocks)
 - each cell has a number in 1 to 9
 - certain cells are assigned to certain values
- The puzzle is solved by assigning a number to each cell so that every row, every column, and every of a block contains each of the nine numbers.
- Modeling
 - Proposition p(i, j, n) is true if and only if the cell at row i and column j has a value n

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
6 5								
7			3					5
	1			9				
							6	

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$$

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n) \qquad \bigwedge_{i=1}^{9} \bigvee_{j=1}^{9} \sum_{i=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{i=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{i=1}^{9} \sum_{j=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{i=1}^{9} \sum_{j=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} \sum_{i=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} p(3r+i, 3s+j, n) = \sum_{i=1}^{9} \sum_{j=1}^{9} p(3r+i, 3s+j, n) = \sum_{j=1}^{9} \sum_{i=1}^{9} p(3r+i, 3s+j, n) = \sum_{j=1}^{9} p(3r+i, 3s+j, n) = \sum$$

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i, j, n)$$

$$\bigwedge_{i=1}^{J} \bigwedge_{j=1}^{J} \bigwedge_{n=1}^{0} \bigwedge_{m=n+1}^{J} \left(p(i,j,n) \to \neg p(i,j,m) \right) \wedge \left(p(i,j,m) \to \neg p(i,j,m) \right)$$

Extended Sudoku Puzzle

- In an extended Sudoku puzzle, some cells may be marked with Asterias (i.e., *) to assert that these must be assigned with the same number in the solution
 - at most 4 Asterias can appear in a problem

	2		5		*		9	
8			2		3			6
	3			6			7	
		*				6		
5	4						1	9
		2	*			7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Unsolved Sudoku

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	٩	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

Solved Sudoku

Hint - 3x3 Sudoku Puzzle

1		2
		1
	1	

1	3	2
3	2	1
2	1	3

- Setting
 - Let a natural number X represent a proposition p_X
 - p_X is true iff the cell at the ((X-1)/9+1)-th row and the (((X-1)/3)%3+1)-th column has value ((X-1) % 3+1)
- Constraint encoding
 - Every row must contain each number at least once
 - DIMACS

```
# i=1,n=1,j={1,2,3}
# i=1,n=2,j={1,2,3}
# i=1,n=3,j={1,2,3}
# i=2,n=1,j={1,2,3}
# i=2,n=2,j={1,2,3}
# i=2,n=3,j={1,2,3}
```

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$$

Input

- Given as text file input.txt
- The input file has 9 lines each of which contains 9 words
- Each word is either zero (unassigned), or one of 1 to 9 (assigned), or Asterias (marked as star).
- Example. input.txt

0	2	0	5	0	*	0	9	0
8	0	0	2	0	3	0	0	6
0	3	0	0	6	0	0	7	0
0	0	*	0	0	0	6	0	0
5	4	0	0	0	0	0	1	9
0	0	2	*	0	0	7	0	0
0	9	0	0	3	0	0	8	0
2	0	0	8	0	4	0	0	7
0	1	0	9	0	7	0	6	0

	2		5		*		9	
8			2		3			6
	3			6			7	
		*				6		
5	4						1	9
		2	*			7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Output

- Print out the solution to output.txt if there is any solution
- Print out "no solution" if there is no solution.
- Example. output.txt

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

Program Structure

- The Sudoku solver should have three components:
 - A. a module that reads an input from input.txt and then generates a DIMACS formula file formula.txt as output
 - B. a module that executes a SAT solver to solve formula.txt and then receives the SAT solver output
 - C. a module that interprets the SAT solver results and print out the solution to output.txt

- Implement the whole procedure as one executable file
 - For an inevitable case, you can implement the modules A and C as separate programs. This implementation should have a penalty in evaluation.

Submission

- Each team should submit both program source code and a report on the program design and result
 - Source code: either Github (recommended) or Hisnet
 - Report: Hisnet
- Report
 - the report must contain the followings:
 - description on the program design
 - instruction on how to build and execute your programs (i.e., manual)
 - demonstration that shows your program works properly
 - there will be extra points if the report contains interesting discussions
 - the report must not exceed 5 pages (single-sided, A4)

Team

• Claim: send me an email by tonight

Team1	김정환	박천명	최호윤	
Team2	고은성	김빛나	한현수	
Team3	김명철	최시령	김세인	
Team4	서지수	정겨운	김영표	
Team5	이기혁	허규진	김종성	
Team6	윤성결	이주혜	김윤정	
Team7	정재훈	이용호	박유경	
Team8	정명윤	김도현	김준영	
Team9	장준용	장태양	윤지영	
Team10	김시민	이정은	정현섭	
Team11	이광현	안동민	김소은	
Team12	최선웅	김진향	한현민	
Team13	오승준	전영민	이준섭	
Team14	최유진	김성민	이주영	
Team15	김형준	김아현	하재경	
Team16	신현웅	한보경	김효림	
Team17	박희성	강준민	김하은	
Team18	김지웅	김현지	이충현	
Team19	서성혁	하민지	오재영	한정섭