

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Withdrawn) A method for removing partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that
 - a mass transfer coefficient k_oA of the filter is at least 2000 ml/min;
 - a ratio between the mass transfer coefficient k_oA of the filter and a blood flow rate is at least 5;
 - a cleaning fluid flow rate is at least 2000 ml/min; and
 - a ratio between the cleaning fluid flow rate and the blood flow rate is at least 5.
2. (Withdrawn) A method according to claim 1 where
 - the ratio between the mass transfer coefficient k_oA of the filter and the blood flow rate is at least 10; and
 - the ratio between the cleaning fluid flow rate and the blood flow rate is at least 10.
3. (Withdrawn) A method according to claim 1 or 2 where
 - the mass transfer coefficient k_oA of the filter is at least 5000 ml/min; and
 - the cleaning fluid flow rate is at least 5000 ml/min.
4. (Withdrawn) A method according to claim 1, 2 or 3 where the parameters are chosen in relation to the product of a blood flow rate Q_b and a factor α denoting the

total amount of substance to be removed in relation to the fraction dissolved in plasma
and

- the mass transfer coefficient k_oA of the filter is at least 10% of this product; and
- the cleaning fluid flow rate is at least 10% of this product.

5. (Withdrawn) A method according to claim 4 where

- the mass transfer coefficient k_oA of the filter is at least 100% of this products;

and/or

- the cleaning fluid flow rate is at least 100% of this product; and/or
- the cleaning fluid flow rate is at least 100% of this product.

6. (Withdrawn) A method for removing partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that

- a mass transfer coefficient k_oA of the filter is at least 2000 ml/min;
- a ratio between the mass transfer coefficient k_oA of the filter and a blood flow rate is at least 5; and
- the cleaning fluid contains a carrier that is able to bind the partially carrier bound substances in the blood.

7. (Withdrawn) A method for removing partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that

- the membrane has been pretreated with a fluid containing a carrier that is able to bind the partially carrier bound substances in the blood;

- a cleaning fluid flow rate is at least 2000 ml/min; and
- a ratio between the cleaning fluid flow rate and the blood flow rate is at least 10.

8. (Withdrawn) A method according to claim 6 where the membrane has been pretreated with a fluid containing a carrier that is able to bind the partially carrier bound substances in the blood.

9. (Withdrawn) A method according to claim 7 where the cleaning fluid contains a carrier that is able to bind the partially carrier bound substance in the blood.

10. (Withdrawn) A method according to any of claims 6, 7, 8 or 9 where the carrier is serum albumin.

11. (Withdrawn) A method according to claim 10 where the concentration of the serum albumin is above 10 g/l.

12. (Currently Amended) A method for removing partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where a mixture of blood and a cleaning fluid is directed through the blood compartment and a pressure gradient is applied across the membrane to create an ultrafiltration into the fluid compartment equal in size to the sum of aflow a flow rate of the cleaning fluid and a desired weight loss rate of a patient characterized in that

[[-]] a water permeability coefficient L_pA of the filter is at least 10 ml/min/mm Hg;

[[-]] the cleaning fluid flow rate is at least 1000 ml/min; and

[[-]] a ratio between the cleaning fluid flow rate and a blood flow rate is at least 5.

13. (Currently Amended) A method according to ~~any of claims 1- claim 12~~, where the filter is replaced by several filters arranged in series or parallel, or a combination thereof.

14. (Currently Amended) A method according to ~~any of claims 1- claim 12 or 13~~ where the blood is heated before being returned to the patient.

15. (Previously Presented) A method according to claim 14 where the heating is performed in a final dialyzer along a blood path before the blood is returned to the patient.

16. (Withdrawn) A device adapted to remove partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that

- a mass transfer coefficient k_oA of the filter is at least 2000 ml/min;
- a ratio between the mass transfer coefficient k_oA of the filter and a blood flow rate is at least 5;

- a cleaning fluid flow rate is at least 2000 ml/min; and
- a ratio between the cleaning fluid flow rate and the blood flow rate is at least 5.

17. (Withdrawn) A device according to claim 16 where

- the ratio between the mass transfer coefficient k_oA of the filter and the blood flow rate is at least 10; and

- the ratio between the cleaning fluid flow rate and the blood flow rate is at least 10.

18. (Withdrawn) A device according to claim 16 or 17 where

- the mass transfer coefficient k_oA of the filter is at least 5000 ml/min; and
- the cleaning fluid flow rate is at least 5000 ml/min.

19. (Withdrawn) A device according to claim 16, 17 or 18 where the parameters are chosen in relation to the product of a blood flow rate Q_b and a factor a denoting the total amount of substance to be removed in relation to the fraction dissolved in plasma and

- the mass transfer coefficient k_oA of the filter is at least 10% of this product; and
- the cleaning fluid flow rate is at least 10% of this product.

20. (Withdrawn) A device according to claim 19 where

- the mass transfer coefficient k_oA of the filter is at least 100% of this product;
and/or

- the cleaning fluid flow rate is at least 100% of this product.

21. (Withdrawn) A device adapted to remove partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that

- a mass transfer coefficient k_oA of the filter is at least 2000 ml/min;
- a ratio between the mass transfer coefficient k_oA of the filter and a blood flow rate is at least 5; and
- the cleaning fluid contains a carrier that is able to bind the partially carrier bound substances in the blood.

22. (Withdrawn) A device adapted to remove partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a

semipermeable membrane separating a fluid compartment from a blood compartment, where blood is directed through the blood compartment and a cleaning fluid is directed through the fluid compartment characterized in that

- the membrane has been pretreated with a fluid containing a carrier that is able to bind the partially carrier bound substances in the blood;
- a cleaning fluid flow rate is at least 2000 ml/min; and
- a ratio between the cleaning fluid flow rate and the blood flow rate is at least 10.

23. (Withdrawn) A device according to claim 21 where the membrane has been pretreated with a fluid containing a carrier that is able to bind the partially carrier bound substances in the blood.

24. (Withdrawn) A device according to claim 22 where the cleaning fluid contains a carrier that is able to bind the partially carrier bound substances in the blood.

25. (Withdrawn) A device according to any of claims 21, 22, 23 or 24 where the carrier is serum albumin.

26. (Withdrawn) A device according to claim 25 where the concentration of the serum albumin is above 10 g/l.

27. (Currently Amended) A device adapted to remove partially carrier bound substances from blood comprising a blood circuit, a fluid circuit and a filter having a semipermeable membrane separating a fluid compartment from a blood compartment, provided with means for mixing blood and a cleaning fluid and directing said mixture through the blood compartment, and means to apply a pressure gradient across the membrane to create an ultrafiltration into the fluid compartment equal in size to the sum of a flow rate of the cleaning fluid and a desired weight loss rate of the patient characterized in that

[-] a water permeability coefficient L_pA of the filter is at least 10 ml/min/mm Hg;
[-] the cleaning fluid flow rate is at least 1000 ml/min; and
[-] a ratio between the cleaning fluid flow rate and a blood flow rate is at least 5.

28. (Currently Amended) A device according to ~~any of claims 16-~~ claim 27,
where the filter is replaced by several filters arranged in series or parallel, or a
combination thereof.

29. (Currently Amended) A device according to ~~any of claims 16-~~ claim 27 or
28 where a heater is arranged for heating the blood before it is returned to the patient.

30. (Previously Presented) A device according to claim 29 where the heater
is a final dialyzer along the blood path before the blood is returned to the patient.