PROTEIN BUILDER

Leonardo Santos¹

¹Biotecnologia - Bioinformática Universidade Federal do Rio Grande do Sul

Bioinformática Estrutural, 2017

Roteiro

PDB FILE Leitura

BUILDER
Dictionary
Peptide Bond
Dihedral Angles

Fragmentação

LEITURA DE ÁTOMOS:

Para que apenas os átomos de interesse sejam utilizados:

- ► Apenas linhas que comecem com 'ATOM'
- ► Em caso de backbone e carbonos alfa:
 - ► Átomos: N, CA, C, O para backbone
 - ► CA para carbono alfa
 - ► N para carbono amina
 - ► C para carbono carboxila
- Retorna uma lista de vetores, onde cada vetor representa um átomo

Monta dicionário de aminoácidos

- ► Input: 20 arquivos PDB, um para cada aminoácido
- ► Output: Dic[AA]:"aa
 - ► AA: código de letra correspondente. (Ex: A,C,P,M.
 - ► aa: átomos correspondentes correspondente.

PEPTIDE BOND

- ► Input: sequência de aminoácidos
- Output: arquivo .pbd com a cadeia de aminoácidos correspondentes
 - ► Retorna os aminoácidos apenas alinhados, sem rotação

ENCADEAMENTO

- Primeiro aminoácido: é definido como o ponto de referência
- Próximos aminoácidos:
 - ▶ O átomo N do aminoácido *n* é posicionado no mesmo lugar que o átomo C da carboxila do aminoácido *n-1*
 - Os átomos C e H da carboxila são removidos do aminoácido n-1
 - O deslocamento do átomo N do aminoácido n é calculado e aplicado aos outros átomos

VSCEDCPEHCSTQKAQAKCDNDKCVCEPI

FIGURA: Criada no PyMol

Inicialização

- ► Input: arquivo .pdb
- ► Output1: arquivo .txt com o aminoácido, ângulo Phi e Psi
- ► Output2: mapa de Ramachandran

CÁLCULO DE ÂNGULO

- ► Input PSI: $[N_n,CA_n,C_n,N_{n+1}]$
- ► Input PHI: $[C_{n-1}, N_n, CA_n, C_n]$
 - ► Cada átomo é repesentado por um vetor [P_x,P_y,P_z]
- ► Calculo de distancia entre átomos
 - ▶ Para cada dupla de átomos é calculado um vetor b₁₋₂,b₂₋₃,b₃₋₄

$$n1 = \frac{b1 \times b2}{\parallel b1 \times b2 \parallel}, n2 = \frac{b2 \times b3}{\parallel b2 \times b3 \parallel} \to m1 = n1 \times \frac{b2}{\parallel b2 \parallel} \quad (1)$$

CÁLCULO DE ÂNGULO

$$x = n1 \times n2, y = m1 \times n2 \rightarrow \phi/\psi = \arctan(y, x)$$
 (2)

CÁLCULO DE ÂNGULO

- ► Primeiro átomo:
 - ► PHI: 360
 - ► PSI: cálculo de ângulo
- ► Último átomo:
 - ► PHI: cálculo de ângulo
 - ► PSI: 360

1ENY

1ENY

FIGURA: 1ENY Ramachandran's map