

Computation and Pattern Formation by Swarm Networks with Brownian Motion

22.07.2019 Niklas Bühler

4 D > 4 A > 4 B > 4 B >

Um was geht's?

Das Modell

- Drei Arbeiten von Teijiro Isokawa, Ferdinand Peper und anderen in zehn Jahren
 - Computing by Swarm Networks, 2008
 - Swarm Networks in Brownian Environments, 2015
 - Computation and Pattern Formation by Swarm Networks, 2018
- Wiederverwendung und Weiterentwicklung der Modelle

Eine Zelle

Def. Zelle A = (Q, T, P, f, X)

- Zustandsmenge Q
- Anschlusszustände $T = S^n$

- Verbundene Anschlüsse $P = (S \cup \{\emptyset\})^n$
- Zustandsübergangsfunktion $f: Q \times T \times P \rightarrow Q \times T$
- Position $X \in R$

Zellen

Anschlüsse und Verbindungen

- Ein Zustand pro Anschluss
- Verbindungen zwischen Anschlüssen

Zustandsübergangsfunktion $f: Q \times T \times P \rightarrow Q \times T$

- Rotationssymmetrisch
- Asynchron

Wandzellen

- Nicht aktiv: Zustand *q*₁, Anschlusszustand 20
- Nicht durch Brownsche Bewegung beeinflusst
- Begrenzen Raum und geben Struktur für aktive Zellen

Schwarmnetzwerk

Def. Schwarmnetzwerk $S = (S_A, S_C, S_D)$

- Zellen S_A : aktive und Wandzellen
- lacktriangle Verbindungsaufbaubedingungen $\mathcal{S}_{\mathcal{C}}$
- lacktriangle Verbindungsabbaubedingungen $\mathcal{S}_{\mathcal{D}}$
- Alle aktiven Zellen gleichartig

Niklas Bühler – Proseminar Zellularautomaten und diskrete komplexe Systeme

Brownsche Bewegung

Verbindungsbedingungen

- Regulieren Verbindungen
- Stochastischer Prozess

Def. Verbindungsaufbaubedingung $C = (S_1, S_2, R)$

- Erlaubte Zustände des ersten Anschlusses S₁
- Erlaubte Zustände des zweiten Anschlusses S₂
- lacktriangle Maximale Entfernung der Anschlüsse $R\in\mathbb{R}_0^+$

Def. Verbindungsabbaubedingung $D = (S_1, S_2)$

- S_1 und S_2 wie oben
- Distanz bereits durch elastische Verbindungen limitiert

Stochastik im Modell

Brownsche Bewegung

- Fluktuation in Position
 - → Distanz → Nachbarschaft → Funktionalität
- Zelle hat Einfluss durch Setzen der Anschlusszustände
 - → Verbindungen aufrechterhalten/abbauen
 - \rightarrow Verbindungen aufbauen

Asynchronität

- Zustandsübergänge
- Verbindungsauf- und -abbau

Modellparameter

- lacktriangle Zellen befinden sich im \mathbb{R}^2
- Jede Zelle hat n = 6 Anschlüsse
- Zustandsmenge $Q = \{q_1, q_2\}$
- Anschlusszustände $T = S^6$ bzw. $P = (S \cup \{\emptyset\})^6$ mit $S = \{1, ..., 20\}$

Brownsche Schaltkreise

- Leitungen und Gatter
- Token-basiert: Signale sind Token
- Token: diskret, unteilbar, innerhalb Leitungen konserviert

Leitung

- Verbindung zwischen zwei Gattern
- Maximal ein Token zu jedem Zeitpunkt
- Flussrichtung frei
- Keine Deadlocks

Hub

CJoin

Ratchet

Leitungen

Leitung aus Zellen

- Nur maximal ein Token, bzw. Signal
- Token ist nicht Zelle, sondern Zustand q₂
- Viele Zellen in Leitung, aber nur eine im Zustand q₂
- Mehrere Wandzellen formen durch zwei parallele Linien räumliche Begrenzung
- Vergleichbar mit Rohr, in dem sich bewegliche Zellen befinden

Signalübertragung

- Zustand q₂ wechselt Zellen
- Darf sich nur kontrolliert verbreiten, um sich nicht zu vermehren oder verloren zu gehen
- Kommunikation und Synchronisation essenziell, da Zellen unabhängig voneinander
- Handshake-Protokoll
- Im Folgenden: Irrelevant, auf welcher Seite sich andere Zelle befindet
 - → Bidirektionalität und Fluktuation des Signals

Implementierung

0000000000

990

Zelltypen

- Realisierung besteht ausschließlich aus aktiven Zellen und Wandzellen
- Alle Zellen teilen sich Zustandsmenge, Anschlusszustandsmenge und Zustandsübergangsfunktion
- Unterscheidung von Zelltypen durch Verbindungsmuster möglich

Hub: Struktur

Kreuzung: Struktur

CJoin: Struktur

Ratchet: Struktur

Niklas Bühler - Proseminar Zellularautomaten und diskrete komplexe Systeme

Fazit

Fazit

- Universelle Berechnung durch Mealy-Automaten und flexible Nachbarschaft
- Wandzellen essenziell für Struktur
- Berechnung in der Praxis recht langsam
- Obere Schranke für Zustandsmengen
- Implementierung in Biologie/Chemie?
 - → Proteine

