Cram Review → AP Chemistry

Quick Study Reference

- Coulomb's Law
 - \circ $F \propto \frac{q_1q_2}{r^2}$ where q is the electrical charge of each particle
 - o Larger particle, larger charge
 - More core electrons
 - ↑ Atomic radius
 - ↓ ionization energy
 - ↓ electronegativity
- Electrons
 - o Electron Configuration
 - *s*-block: Groups 1 & 2
 - d-block: Groups 3 \rightarrow 13
 - p-block: Groups 13 \rightarrow 18
 - Energy
 - Add electron to an atom, energy is released
 - Take away an electron, energy is added
- Periodic Trends
 - o Greater effective charge, more ionization energy
 - Left to right
 - Effective charge ↑
 - Ionization energy ↑
 - Electronegativity ↑
 - Atomic radius ↓
 - Top to bottom
 - Atomic radius ↓
 - Ionization energy ↓

- Types of Metals and Nonmetals
 - Metals
 - Conduct electricity, solid at room temperature
 - Lattice
 - 3D repeating pattern of ions
 - Lattice energy → energy needed to pull apart ions
 - Alloys
 - Mixture of metals
 - Communal pool of electrons
 - Interstitial alloys
 - Large size difference
 - Ex) Steel (Iron & Carbon)
 - Substitutional alloys
 - Same size
 - Ex) Zinc and Copper
 - Special case
 - Stainless steel is BOTH an interstitial and substitutional alloy
 - Nonmetals
 - Don't conduct electricity, gas at room temperature
- VSPER and Hybridization
 - Formal charge
 - Formal Charge = $(\# of \ e_{valence \ in \ neutral \ atom})$ $(\# of \ e_{valence \ allocared \ to \ bonded \ atom})$
 - #of $e_{valence\ allocared\ to\ bonded\ atom} = (\#of\ e_{lone\ pair}) + \frac{1}{2}(\#of\ e_{shared})$
 - Bonds
 - Sigma (σ) bonds
 - One per bond including counting each in a double or triple bond
 - \blacksquare Pi (π) bonds
 - One per double bond and two per triple bond
 - Steric number
 - Number of orbitals needed
 - \blacksquare (# of σ bonds) + (# of lone pairs)

- Intermolecular Forces
 - The greater the IMF...
 - Greater surface tension
 - Greater viscosity
 - London Dispersion Forces (LDF)
 - Dipole-Dipole Moment
 - Breif movement with δ^+ and δ^- if more electrojs are at one side in a given moment
 - Greater polarizability with a larger electron cloud
 - Dipole-Dipole can lead to an induced dipole moment
 - Ion-dipole force
 - Occur between polar-covalent molecules and an ion
 - The stronger the ion charge, the stronger the ion-dipole force
 - Greater dipole moment, stronger force
 - Hydrogen bond
 - Must have a lone pair and hyrdogen
 - Use NOF to remember determine if it is a hydrogen bond
 - Nitrogen, Oxygen, and Florine
- Le Chatelier's Principle
 - Soluble salts: $K_{sp} > 1$
 - Check if a precipitate can form...
 - lacksquare Q_{sp} from initial concentration
 - $Q_{sp} < K_{sp} \rightarrow \underline{\text{no}}$ precipitate
 - $Q_{sp} > K_{sp} \rightarrow$ precipitate
 - o Common Ion Effect
 - In presence of common ion, solubility decreases

- Equilibrium
 - Reaction quotient
 - Which direction equilibrium points to
 - Ratio of products to reactants
 - Given: $aA + bB \rightarrow cC + dD$

$$Q_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

■ In the gas phase...

$$Q_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

- REMEMBER $Q_c \neq Q_p$
- o Equalibrium constant
 - Tells us if more products or reactents are at equilibrium

$$K_p = K_c(RT)^{\Delta n}$$

- \circ Q > K
 - Products decreases
 - Reverse reaction favored
- \circ Q < K
 - Products increase
 - Forward reaction favored

- Acids & Bases
 - Strong acids
 - $HCl, HBr, HI, HNO_3, H_2SO_4, HClO_4$
 - Reaction lies to the right, produces useless conjugate base
 - High polarity and low bond strength
 - Strong bases
 - Group 1 and 2 hydroxides
 - Reaction lies to the right, produces useless conjugate acid
 - Percent ionization
 - Indicates what % of an ion reacted with H_2O
 - As % ionization increases, molarity decrease
 - Buffers
 - Buffer solution
 - Weak acid + conjugate base
 - Weak base + conjugate acid
 - Ways to make a buffer
 - Partial neutralization of a weak acid with a strong base
 - Partial neutralization of a weak base with a strong acid
 - Weak acid + salt of conjugate base
 - Weak base + salt of conjugate acid
 - Larger inital concentration, bigger buffer
 - If buffer capacity is exceeded, there will be a rapid change in pH
 - Titration curve
 - Half equivalence
 - All of acid is equal to conjugate base
 - Equivlence point
 - $n_{base} = n_{acid}$
 - Moles of base equal moles of acid
 - All acid is converted to conjugate base

- Batteries
 - o Galvanic (voltaic) cell
 - Thermodynamically favorable reaction
 - Positive voltage
 - Anode
 - Oxidation
 - Anions to anode
 - Cathode
 - Reduction
 - Cations to cathode
 - Salt bridge → allows flow of ions
 - Electrolytic cell
 - Thermodynamically unfavorable reaction
 - Negative voltage
 - Needs a power source
 - Electrolysis → plating metals
 - o Calculating electric potential difference in any electrochemical cell
 - More voltage, more favorable
 - $\blacksquare \quad E_{cell}^{\circ} = E_{cathode}^{\circ} E_{anode}^{\circ}$
 - DO NOT NEGATE THE E_{anode}°