Formelsammlung Statistik

Andrey Behrens

August 2009

Das ist eine Formelsammlung für Statistik. Die Formelsammlung enthält alle Formeln aus dem Skript des Wintersemesters 2009/2010. Außerdem ein paar Sachen die mir sinnvoll erschienen und für die Klausur notwendig sein könnten, sowie Formblätter zum schnellen Ausfüllen während der Klausur.

Teil I.

Vorspann

1. Begriffe

Statistische Masse Umfang der Einheiten einer statistischen Untersuchung

Statistische Einheit Untersuchungsobjekt einer statistischen Untersuchung

Merkmal Zu betrachtendes Attribut einer Einheit. Etwa Einkommen,

Altern, ...

Merkmalstypen

diskrete Merksmaltypen bestehen aus einer überschaubare,

endliche Menge (etwa Geschlecht),

stetige Merksmaltypen können in einem bestimmten Bereich

jeden reelen Wert annehmen,

 ${\it quasi-stetige~Merksmaletypen~sind~eigentlich~diskret,~enthalten}$

aber sehr grosse Menge von möglichen Merkmalen

Gruppierung Sortierung, gleiche Merkmalsausprägung

Klassifizierung benachbarte Ausprägungen werden zu einer Klasse

zusammengefasst. Übliche Schreibweise [200; 400) mit der

Bedeutung $200 \le x < 400$.

Skalenniveau

nominal qualitativ (also keine Zahlen), etwa Geschlecht oder

Studiengang. Darstellung als gruppierter Wert.

ordinal Merkmalsausprägung mit objektiver Rangordnung,

etwa Noten.Darstellung als gruppierter Wert.

metrisch interval quantitativ, reele Zahlen, natürliche Rangfolge,

eindeutige Abstände, etwa Sparsumme, Verhältnis quantitativ, reele Zahlen, natürliche Rangfolge, eindeutige Abstände, absoluter Bezugspunkt (etwa Nullpunkt). Beispiel: Alter. Darstellung als klassierter

Wert.

2. Eindimensionale Häufigkeitsverteilung

2.1. Beispiele

Gruppiert: Für nominale und ordinale Werte

x_i	h_i	H_i	f_i	F_{i}	$\triangle x_i$	f_i^*	h_i^*
280	1	1	0,1	0,1	_	-	-
340	2	3	0,2	0,3	-	-	-
560	1	4	0,1	0,4	-	-	-
600	1	5	0,1	0,5	-	-	-
650	3	8	0,3	0,8	-	-	-
740	1	9	0,1	0,9	-	-	-
1180	1	10	0,1	1,0	-	-	_

Klassiert: Für metrische Werte

x_i	h_i	H_i	f_i	F_i	$\triangle x_i$	f_i^*	h_i^*
[200;400)	21	21	0,21	0,21	200	0,00105	0,1050
[400;700)	56	77	$0,\!56$	0,77	300	0,00187	0,1867
[700;1000)	19	96	$0,\!19$	$0,\!96$	300	0,00063	0,0633
[1000;1500)	2	98	0,02	0,98	500	0,00004	0,0040
[1500;2000)	2	100	0,02	1,00	500	0,00004	0,0040

2.2. Formeln:

Name	Math		Formel	TR
abs. Häufigkeit	h_i	hi	-	-
abs. Summenhäufigkeit	H_i	shi	$h_1 + \dots + h_i = \sum_{j=1}^{i} h_j$	${\rm cusum(hi)}$
relative Häufigkeit	f_i	fi	$\frac{h_i}{N}$ mit $\sum_{i=1}^k f_i$	relhfg(hi)
abs. Summenhäufigkeit	F_{i}	sfi	$f_1 + \dots + f_i = \sum_{j=1}^{i} f_j$	cumsum(relhfg(hi))
Stat Masse	N	n	$\sum_{i=1}^{k} h_i$	sum(hi)
abs Häufigkeitsdichte	h_i^*	his	$rac{h_i}{\Delta x_i}$	his
rel Häufigkeitsdichte	f_i^*	fis	$rac{f_i}{\Delta x_i}$	fis

2.3. Funktion der relatitiven Summenhäufigkeit/Verteilungsfunktion

2.3.1. Bei gruppierte Daten

$$F(x) = \begin{cases} 0 & x < x_1 \\ F_i & x_i \le x < x_{i+1} \\ 1 & x \ge x_k \end{cases}$$

Als Rechenbeispiel:

F(500)=0,30 -> Es wird nicht gerechnet, sondern aus dem Diagramm abgelesen, da es sich um gruppierte Werte handelt!

Als grafische Lösung (Treppendiagramm, keine Zwischenwerte!) siehe Abbildung 2.1 auf Seite 10

2.3.2. Bei klassierten Daten

$$F(x) = \begin{cases} 0 & x < x_1^u \\ F(x_i^u) + \frac{f_i}{\Delta x_i} * (x - x_i^u) & x_i^u \le x < x_i^o \\ 1 & x \ge x_k^o \end{cases}$$

als Rechenbeispiel:

1.	Klasse aus I	Diagramm ables	$en(H_i)$. untere	und	obere	Grenzen	der	Klasse	herauslesen.
Τ.	Triabbe ada L	, 100 Lanini a pien	JII (III)	, among	ana	ODOLO	OTOLIZOII	CLCI	TTIGODO	iidi a abidbeti.

2. In Formel einsetzen:
$$F(500) = 0.21 + \frac{0.56}{300}(500 - 400) = 0.397 = 39,7\%$$

als grafische Lösung siehe Funktionsdiagramm 2.2 auf der nächsten Seite

2.4. Darstellung der relativen Häufigkeiten

gruppiert Stabdiagramm siehe Abbildung 2.3 auf der nächsten Seite

klassiert Histogramm, siehe Abbildung 2.4 auf Seite 15

Abbildung 2.1.: Funktion relativer Sumenhäufigkeit F(x) bei gruppierten Daten

Abbildung 2.2.: Funktion relativer Summenhäufigkeit bei klass. Daten

Abbildung 2.3.: Relative Häufigkeit von Gruppen: Stabdiagramm

Name	Math	$\overline{\mathrm{TR}}$	nominal	ordinal	metrisch	Math TR nominal ordinal metrisch Vor- und Nachteile
Modal	x_D	px	į	į	į	Ermittelt Ausprägung mit höchster Häufigkeit
Median	x^z	XX	<i>د</i> ٠	ja	ja	Mitte aller Merkmalsträger, bzw. welcher Merkmalswert wird von der Hälfte aller
						Merkmalsträger nicht überschritten. Vorteil: Robust gegen Ausreißer.
Quantil	x_p	dx	<i>د</i> ٠	<i>د</i> ٠	<i>د</i> ٠	= ein Teil aller Merkmalsträger (etwa 0,25x oder 0,75x) bzw. welcher Merkmalswert wird
						von einem Teil aller Merkmalsträger nicht überschritten. Dabe ist das $x_p = x_{0.5} = x_z$
Arith. Mittelw.	\bar{x}	XS	nein	nein	ja	Der Durchschnitt oder Mittelwert aller Merkmale
Geom Mittelw.	Sx	xg	<i>د</i> ٠	<i>د</i> ·	ja	Mittelwert für Produkte, etwa bei Verhältnissen oder Wachstumswerten. Nur für Zahlen>0 sinnvoll.

Tabelle 2.1.: Überblick Lageparameter

2.5. Lageparameter

2.5.1. Modalwert (Modus)

da x_i wo f_i am größsten ist: $x_D = x_i$ mit $f_i \to max$ Gruppen

Mitte der modalen Klasse: $x_D = \frac{x_i^u + x_i^o}{2} = x_i^{'}$ mit $h_i^* \to max$ Klassen

2.5.2. Median (Zentralwert)

 $x_z=0.5N$ aber: wenn N gerade, dann Mittelwerte von aktueller Gruppe und nächster Gruppe

Gruppe (im Beispiel: 625).

 $x_z = x_i^u + \frac{0.5 - F(x_i^u)}{f_i} * \Delta x_i$ Beispiel: Zuerst Klasse bestimmen und dann Klasse

 $400 + \frac{0.5 - 0.21}{0.56} * 300 = 555.36 EUR$

2.5.3. Quantile

 $x_p = p * N$ Wobei p das Quantil ist, etwa 0,5, 0,75 oder 0,25. aber: wenn N gerade, Gruppe

dann Mittelwerte von aktueller Gruppe und nächster Gruppe (im Beispiel: 625).

 $x_p = \begin{cases} x_{(k)} & p * N \notin Z \text{ mit } k = p * N < k < p * N + 1 \text{ und } k \in Z \\ \frac{x_{(k)} + x_{(k+1)}}{2} & p * N \in Z \text{ mit } k = p * N \end{cases}$

 $x_p = x_i^u + \frac{p - F(x_i^u)}{f_i} * \Delta x_i$ Beispiel: Zuerst Klasse bestimmen und dann Klasse

 $400 + \frac{0.5 - 0.21}{0.56} * 300 = 555.36 \, EUR$

2.5.4. Arithmetischer Mittelwert

 $\bar{x} = \frac{\sum_{i=1}^{k} h_i * x_i}{N} = \sum_{i=1}^{k} x_i f_i$

Klasse $\bar{x} = \frac{\sum\limits_{i=1}^k h_i * x_i'}{N} = \sum\limits_{i=1}^k x_i' f_i$

Addition $\bar{x} = \frac{\sum\limits_{m=1}^k N_m * \bar{x_m}}{\sum\limits_{k}^k N_m}$ wobei i i-te Variante der zu addierenden Durchschnitte ist

2.5.5. Geometrischer Mittelwert

Gruppe
$$x_G = \sqrt[N]{\prod_{i=1}^k x}$$

2.6. Streuungsparameter

2.6.1 Spannweite

Abstand zw. größter und kleinster Merkmalsausprägung

Gruppiert
$$R = x_{max} - x_{min}$$

Klassiert
$$R = x_k^o - x_1^u$$

2.6.2. Quartilsabstand

Abstand zwischen oberem und unterem Quartil $Q = x_{0.75} - x_{0.25}$

2.6.3 Varianz

mittlere quadratische Abweichung aller Merkmalsausprägungen vom arith. Mittelwert

Gruppiert
$$s_x^2 = \frac{1}{N} \sum_{i=1}^k \left[(x_i - \overline{x})^2 \cdot h_i \right] = \sum_{i=1}^k \left[x_i^2 \cdot f_i \right] - \overline{x}$$

Klassiert
$$s_x^2 = \frac{1}{N} \sum_{i=1}^k \left[(x_i^{'} - \overline{x})^2 \cdot h_i \right] = \sum_{i=1}^k \left[(x_i^{'})^2 \cdot f_i \right] - \overline{x}^2$$

2.6.4. Standardabweichung

=mittlere Abweichung vom Mittelwert

$$s_x = \sqrt{s_x^2}$$

2.6.5. Variationskoeffizient

$$v = \frac{s_x}{\bar{x}}$$

2.7. Relative Konzentration

2.7.1. Berechnung

=konzentrieren sich Merkmalssumme auf wenige Merkmalsträger?

Konzentrationskoeffizient $p_i = \frac{x_i \cdot hi}{N \cdot \bar{x}}$

Konzentrationsmaß $P_i = \sum_{j=1}^i p_j$

2.7.2. Lorenzkurve

Abbildung 2.4.: Relative Häufigkeit von Klassen: Histogramm

3. Quellen

- (1) Statistikscript Prof. Dr. Müller, HS Wismar
- (2) Taschenbuch der Wirtschaftsmathematik, Wolfgang Eichholz und Eberhard Vilkner

Teil II.

Formblätter

x_d	xd	Modalwert, der Wert mit der häufigsten Merkmalsausprägung
x_z	XZ	Median, Mitte aller Merkmalsausprägungen, d.h. nach oben und unten gleich viele Merkmalsausprägungen
x_p	хp	Quantile überschreiten einen gewissen Anteil von Merkmalsausprägungen $nicht$
$x_{i}^{'}$		Klassenmitte der <i>i</i> -ten Klasse
$x_i^u x_i^o$		untere bzw. obere Grenze der i -ten Klasse
h	h	Anzahl von Einheiten innerhalb einer Gruppe oder Klasse. Tiefgestellte Zeichen gleiche Bedeutung wie bei x Die Summe aller h ist die statistische Masse
H_i	shi	absolute Summenhäufigkeit, wie h_i aber aufsteigend addiert. Der größte $\operatorname{Wert}=N$
f_i	fi	relative Häufigkeit. Summe aller $f_i=1$ Entspricht dem prozentualen Anteil an der statistischen Masse.
F_i	sfi	relative Summenhäufigkeit. Wie f_i aber aufsummiert. Der größte Wert $=1$
Δx_i	dxi	Klassenbreite der i -ten Klasse
s_i	si	relative Summenhäufigkeit einer Klasse
N	n	Statistische Masse, also die Menge aller Merkmalsausprägungen.

Klasse oder Gruppe einer statistischen Zählung. Variable kann Zeichen

haben wie 1, i, k die für das 1-te, i-te oder letzte Gruppe/Klasse stehen.

 \boldsymbol{x}

Table .1.: Überblick Variablen

Fläche unter Lorenzkurve	A(L)							
Fläche Lorenz	A("	
Konz- maß	P_i						ı	
Konz- koeff.	p_i						ı	
	$x_i^2 \cdot h_i$						II	
	$x_i \cdot h_i$						II	
	$x_i f_i$						$\vec{x} =$	
rel. Summen- häufig	F_i						ı	
rel. Häufig	f_i						= 1	
abs. Summen- häufig	H_i						ı	
abs. Häufig	h_i						N =	
Gruppe	x_i						\square	

Fläche unter Lo-	A(L)
Konz- maß	P_{i}
Konz- koeff.	p_i
	*.°
	$h_{i\cdot s}^*$
	$x_i^2 \cdot h_i$
	$x_i \cdot h_i$ x
	$x_i f_i$ a
rel. Sum- menhäufig	F_i
	f_i
abs. Sum- rel. Häufig menhäufig	H_i
abs. abs. Häufig men	h_i
a Hä	$igwedge_{x_i}$
	$\stackrel{x'}{>}$
eddi	
Gruppe	x_i

															\neg
															\dashv
															\dashv
														\rightarrow	\dashv
								\vdash						\dashv	\dashv
								\vdash						\dashv	\dashv
														_	\dashv
														\square	\blacksquare
														\Box	\dashv
															\dashv
														\dashv	\dashv
															-
															\dashv
														\Box	\Box
														\neg	\dashv
					\vdash			\vdash						\dashv	\dashv
					\vdash			\vdash						\dashv	\dashv
														\dashv	\dashv
															-
															\square
								\Box						\neg	\dashv
															\dashv