GATs and CwFs

${\rm Apiros3}$

First Version : September 25, 2025 Last Update : --, 2025

Contents

1	Pre	eliminaries
	1.1	Algebras
		1.1.1 Ambient Structure
		1.1.2 <i>F</i> -algebra
		1.1.3 Displayed (dependent) F -algebra
		1.1.4 Displayed Morphism over an Algebra
	1.2	Substitution
2	Cor	rrespondence
	2.1	Generalized Algebraic Theory
	2.2	Category with Families
	2.3	Quotient Inductive Inductive Types
		Correspondence

1 Preliminaries

1.1 Algebras

1.1.1 Ambient Structure

Fix a base category \mathcal{C} , and a split fibration $p: \mathcal{E} \to \mathcal{C}$. Over the type theory setting, the base category corresponds to Set, and the fibration corresponds to families $P: A \to \mathsf{Type}$, or just predicates.

Definition 1.1.1. Given an endofunctor $F: \mathcal{C} \to \mathcal{C}$, a **truth-preserving fibred lift** is a lift $\hat{F}: \mathcal{E} \to \mathcal{E}$ such that the following commutes:

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{F} & \mathcal{C} \\
\downarrow^{p} & & \uparrow^{p} \\
\mathcal{E} & \xrightarrow{\hat{F}} & \mathcal{E}
\end{array}$$

This lifting corresponds to one inductive hypotheses per recursive position over the type theory setting.

1.1.2 F-algebra

Definition 1.1.2. An F-algebra is a pair (A, α) with

$$\alpha: F(A) \to A$$

Over the type theoretic setting, this corresponds to a handler for one constructor step. Over haskell, we can see something like:

```
class Functor f \Rightarrow Algebra f a where alg :: f a \rightarrow a cata :: Algebra f a \Rightarrow Fix f \rightarrow a cata (In t) = alg (fmap cata t)
```

Definition 1.1.3. A morphism of algebras

$$f:(A,\alpha)\to(B,\beta)$$

is a map $f: A \to B$ in C such that the following square commutes:

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{\beta}$$

$$A \xrightarrow{f} B$$

As notation, we write Alg(F) for the category of such algebras/morphisms.

Definition 1.1.4. $(\mu F, \text{in})$ is **initial** in Alg(F) if for every (B, β) there is a unique algebra morphism

$$fold_{\beta}: \mu F \to B$$

At the type theory level, $(\mu F, in)$ corresponds to the inductive type and its constructors. Then, fold_{β} is the non-dependent eliminator / recursor. The square is exactly the β -rule, and the uniqueness of fold is the η -rule. The square is exactly the statement that map and fold commute.

1.1.3 Displayed (dependent) F-algebra

Fix a base algebra (A, α) .

Definition 1.1.5. A displayed F-algebra over (A, α) is

- an object $P \in \mathcal{E}_A$
- a dependent structure map lying over α with

$$\hat{\alpha}: \hat{F}_A(P) \to P$$

with $p(\hat{\alpha}) = \alpha$, where p is the projection from $\hat{F}_A(P)$ to P.

That is, $\hat{\alpha}$ is a morphism in the fibre \mathcal{E}_A lying over α .

Intuitively, P first states the goal to prove for each element of A. $\hat{F}_A(P)$ packages exactly the induction hypotheses needed at one constructor step, and $\hat{\alpha}$ is the method that consumes these hypotheses to produce a P-witness at the result of that constructor step.

From a type theory perspective $P:A\to \mathsf{Type}$ is the *motive*, $\hat{\alpha}$ packages one *method* per constructor, consuming inductive hypotheses $(\hat{F}_A(P))$.

We consider some examples:

Example 1.1.6. The naturals with functor F(X) = 1 + X comes with the base algebra $(\mathbb{N}, \text{in} = [0, s])$.

The lift is given by

$$\hat{F}_{\mathbb{N}}(P)(\mathrm{inl}(*)) \cong 1$$
 $\hat{F}_{\mathbb{N}}(P)(\mathrm{inr}(n)) \cong P(n)$

Then the displayed algebra for some $P: \mathbb{N} \to \mathsf{Set}$ is given by

$$\hat{\alpha}(\operatorname{inl}(*),): 1 \to P(0) := \operatorname{pick} p_0 \quad \hat{\alpha}(\operatorname{inr}(n), -): P(n) \to P(\mathfrak{s} n) := p_{\mathfrak{s}}(n, -)$$

1.1.4 Displayed Morphism over an Algebra

Fix an algebra $(A, \alpha), (B, \beta)$ and an algebra morphism $f: (A, \alpha) \to (B, \beta)$. Let $(P, \hat{\alpha})$ and $(Q, \hat{\beta})$ be the displayed algebras over (A, α) and (B, β) respectively.

Definition 1.1.7. A displayed morphism over f is a fibre map

$$\overline{f}: P \to f^*(Q)$$

in \mathcal{E}_A , such that the following **displayed square** commutes:

$$\hat{F}_{A}(P) \xrightarrow{\hat{F}_{A}(\overline{f})} \hat{F}_{A}(f^{*}(Q))$$

$$\hat{\alpha} \downarrow \qquad \qquad \downarrow f^{*}(\hat{\beta})$$

$$P \xrightarrow{\overline{f}} f^{*}(Q)$$

We make sure this type checks by:

$$\hat{F}_{A}(P) \xrightarrow{\hat{F}_{A}(\overline{f})} \hat{F}_{A}(f^{*}(Q)) \xleftarrow{\cong} (Ff)^{*}\hat{F}_{B}(Q) \xleftarrow{(Ff)^{*}} \hat{F}_{B}(Q)$$

$$\downarrow f^{*}(\hat{\beta}) \qquad \qquad \downarrow \hat{\beta}$$

$$P \xrightarrow{\overline{f}} f^{*}(Q) \xleftarrow{f^{*}} Q$$

Intuitively, \overline{f} transports P-evidence on A to Q-evidence on B along f and does so constructor-by-constructor compatibly with the methods. This is the naturality / fusion condition for logical predicates.

Definition 1.1.8. Let $\mathrm{DAlg}_A(F,\alpha)$ denote the category whose

- objects are displayed algebras $(P, \hat{\alpha})$
- morphisms $\theta:(P,\hat{\alpha})\to(P',\hat{\alpha'})$ are maps $\theta:P\to P'$ with

$$\hat{F}_A(P) \xrightarrow{\hat{F}_A(\theta)} \hat{F}_A(P')$$

$$\hat{\alpha} \downarrow \qquad \qquad \downarrow \hat{\alpha}'$$

$$P \xrightarrow{\theta} P'$$

Displayed morphisms compose over composition of base morphisms and identities are given by the fibre identities. This gives the projection

$$p^F : \mathrm{DAlg}(F) \to \mathrm{Alg}(F)$$

with the structure of a fibration, where objects over (A, α) are displayed algebras and arrows over f are displayed morphisms.

1.2 Substitution

Viewing **Con** as the metacategory whose objects are contexts and whose morphisms are context morphisms, substitutions correspond exactly to context morphisms. Intuitively, a substitution σ : $\Delta \to \Gamma$ gives information about how to interpret each variable/assumption in Γ as a term built in Δ .

2 Correspondence

- 2.1 Generalized Algebraic Theory
- 2.2 Category with Families
- 2.3 Quotient Inductive Inductive Types

2.4 Correspondence

Intuitively, a GAT's syntax is the internal language of some CwF, and every CwF is up to equivalence the classifying/category of contexts of some GAT.

Given a GAT T,