Туннелирование в полупроводниках

Шмаков Владимир — ФФКЭ Б04-105

Цель работы

- Исследовать принцип действия туннельного диода
- Измерить вольт-амперную характеристику
- Оценить положения уровней Ферми

Теоретические сведения

Полупроводник — материал, занимающий промежуточное место между изоляторами и проводниками. При нулевой температуре, зона проводимости полупроводника оказывается пустой (это «роднит» полупроводники и изоляторы). Однако расстояние между валентной зоной и зоной проводимости у полупроводника значительно меньше чем у изолятора (смотрите рисунок 1).

Рисунок 1. Диаграмма энергетических зон для различных материалов.

Введение в полупроводник примесей приводит к появлению разрешенных уровней в запрещенной зоне. Примеси, которые приводят к образованию в

полупроводнике уровней вблизи нижнего края зоны проводимости называются донорными. Примеси, приводящие к появлению уровней вблизи границы валентной зоны называются акцепторными.

Если концентрация акцепторов в полупроводнике превышает концентрацию доноров, то говорят что полупроводник является проводником *p - типа*. В противном случае, говорят что полупроводник является проводником *n - типа*.

Создадим узкий p-n переход. В сильно легированных полупроводниках в области узкого p-n перехода становятся возможными туннельные переходы электронов. Обозначим $\xi=\mu_n-E_c$ - расстояние между уровнем Ферми полупроводника n-muna и зоной проводимости. $\eta=\mu_p-E_v$ - расстояние между уровнем Ферми полупроводника p-muna и валентной зоной.

Рисунок 2. Схема энергетических уровней при различных напряжениях на туннельном диоде.

Рассмотрим, как изменяется схема энергетических уровней туннельного диода при приложении внешнего напряжения:

• При отсутствии внешнего поля уровни Ферми μ_n и μ_p лежат на одной горизонтали. Перекрытие свободных и занятых уровней отсутствует — через диод не протекает ток.

- По мере увеличения внешнего напряжения смещение зон уменьшается. Часть занятых состояний в n области перекрывается с незанятыми состояниями в p области(смотрите рисунок 2(б)). Ток возрастает.
- При дальнейшем увеличении напряжения перекрытие уровней достигает максимума. Затем состояния в n области перекрываются с запрещенными состояниями в p области. Ток через диод падает(смотрите рисунок 2(в)).
- Дно зоны проводимости n области перекрывается с запрещенной зоной p области(рисунок 2(г)). При напряжении $U=(\xi+\eta)/e$ ток полностью прекращается.
- При дальнейшем увеличении напряжения занятые уровни в n области перекрываются с незанятыми уровнями в p области. Появляется диффузный ток.

Методика

Оборудование

- Туннельный и диффузный диод
- Амперметр
- Вольтметр
- Осциллограф
- Звуковой генератор
- Потенциометры
- Набор постоянных сопротивлений

Эксперимент 1 - наблюдение ВАХ на экране осциллографа

Рисунок 3. Схема наблюдения вольт-амперной характеристики на экране осциллографа.

Схема эксперимента изображена на рисунке 3. На вход «Y» осциллографа подаётся напряжение пропорциональное току, протекающему через диод. На вход «X» - падение напряжения на диоде.

Подавая переменное напряжение на вход цепи получаем изображение BAX на экране осциллографа.

Эксперимент 2

Эксперимент 3

Обработка экспериментальных данных

Эксперимент 1 - наблюдение ВАХ на экране осциллографа

Осциллограммы полученные в ходе эксперимента.

При помощи программы «plotDigitalizer» оцифруем изображения осциллограмм.

Экспериментальные данные можно приблизить суммой трёх функций:

- $A \exp(B \cdot x)$ экспоненциально возрастающий диффузный ток
- $Dx^2 \cdot \exp(-Ex^2)$ туннельный ток
- $F + G \cdot x$ линейная функция(склейка токов посередине)

Результат приближения экспериментальных данных суммой трёх описанных выше функций изображен на рисунке(рисунке). Из интерполяции могут быть найдены ключевые напряжения U_p , U_v , U_f :

- ullet U_p argmax зеленой кривой
- ullet U_v argmin общей интерполяции
- U_f положение где фиолетовая кривая достигает значения максимума зеленой кривой

Ключевые значения напряжений, найденные по данным первого эксперимента.

Эксперимент 2

Интерполируем данные полученные в ходе второго эксперимента:

Интерполяция экспериментальных данных второго эксперимента.

Можем найти ключевые значения напряжений:

Эксперимент 3

Соберем схему, изображенную на рисунке(рисунке).

Нахождение периода колебаний по оцифрованным осциллограммам.

Предложенная схема позволяет получать колебания в диапазоне $0.10-0.13 M \Gamma y$.

Вывод