

FUNDAMENTALS OF ELECTRONICS ENGINEERING

(B.Tech. 1stYear, MID Term Examination)

Max Marks: 50 Time: 2 Hours

Attempt All Questions

Q1. Use Nodal analysis to determine v_1 , v_2 and v_0 in the circuit below.

Q2. Using mesh analysis, calculate the voltage \mathbf{v}_0 for the simplified transistor circuit given below

- **Q3.(i)** Find Norton equivalent circuit as seen from the terminal a-b for the circuit shown below.
 - (ii) If a load resistance **R** is connected across terminal a-b, what should be its value so that it draws maximum power from the source?

Q4. Determine \mathbf{v}_0 for the diode circuits given below for a sinusoidal input $\mathbf{v}_i(t) = 20 \operatorname{Sin}(\omega t)$. Also sketch the input/output waveforms showing the conduction state of diode.

Q5. Design a Zener-diode based voltage regulator that will maintain an output voltage of 20 V across a $1-k\Omega$ load with a dc input that will vary between 30 and 50 V. That is, find the value of resistor, and Zener-diode's voltage and maximum current ratings. Draw the circuit and mark it with obtained design values.