Department of Mathematics

National University of Singapore

(2022/23) Semester I MA1521 Calculus for Computing Tutorial 1

(1) For each of the following functions, find all values of x for which it is defined, i.e. the maximal domain of each function.

(a)
$$f(x) = \frac{4-x^2}{(4+x^2)(8-x^3)(1-x^4)}$$

(b)
$$g(x) = \sqrt{2 - \ln(x - 3)}$$

(c)
$$h(x) = \frac{\ln(\sqrt{16-2x}+1)}{\sqrt{\ln x}-1}$$

Ans. (a) $x \in \mathbb{R} \setminus \{-1, 1, 2\}$, (b) $3 < x \le 3 + e^2$, (c) $1 \le x \le 8$ and $x \ne e$.

(2) Let f(x) be defined on $(-\infty, \infty)$ such that $f(x) = \begin{cases} 2 & \text{if } x \le -5 \\ x^2 - 1 & \text{if } -5 < x \le -1 \\ 0 & \text{if } -1 < x \le 1 \\ \frac{1}{x - 1} & \text{if } x > 1 \end{cases}$.

Find all x such that f is not continuous at x.

Ans. x = -5, 1.

(3) The function f is defined on [0, 8] by

$$f(x) = \begin{cases} p\sqrt{x} & 0 \le x < 4 \\ 7 & x = 4 \\ q(x-2)^2 + 5 & 4 < x \le 6 \\ \frac{r}{x-5} & 6 < x \le 8 \end{cases}.$$

1

It is given that f is continuous at x = 4 and $\lim_{x \to 6} f(x)$ exists. Find the values of p, q and r.

Ans. $p = \frac{7}{2}, q = \frac{1}{2}, r = 13.$

(4) Evaluate each of the following limits if it exists

(a)
$$\lim_{x \to 1} \frac{4+x}{2-x}$$

(b
$$\lim_{x\to 2} \frac{4-x^2}{x^2-3x+2}$$

(c)
$$\lim_{x \to -2} \frac{4 - x^2}{\sqrt{x^2 - x - 2} - \sqrt{2 - x}}$$

(d)
$$\lim_{x\to 1} \frac{3-\sqrt{x+8}}{\sqrt{x+3}-\sqrt{5-x}}$$

(e)
$$\lim_{x \to 1} \frac{(x^2 - 1)}{(x - 1)^2}$$

Ans. (a) 5, (b) -4, (c) -4, (d) $-\frac{1}{3}$ (e) undefined

(5) Evaluate the following limits

(a)
$$\lim_{x \to \infty} \sqrt{\frac{9x^{10} + 3x - 1}{(x^2 + 3x + 5)^3(2x - 5)^4}}$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^{10} + 3x - 1}}{(1 + 2x)^5}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^{10} + 3x - 1}}{(1 + 2x)^2(x^2 + x - 1)}$$

Ans. (a)
$$\frac{3}{4}$$
, (b) $-\frac{3}{32}$, (c) ∞ .

(6) Let f and g be continuous functions on \mathbb{R} . Given that f(3) = 2 and $\lim_{x \to 3} [2f(x) - g(x)] = 4$. Determine g(3).

 $\mathbf{Ans}\ 0.$

Further Exercises (not to be discussed)

- (1) Suppose $|x+3| < \frac{1}{2}$. Show that |4x+13| < 3.
- (2) Let $f(x) = \frac{x+1}{x-2}$.
 - (a) Find the domain D of the function f.
 - (b) Is there an $x \in D$ such that f(x) = 1?

- (c) If $c \in \mathbb{R} \setminus \{1\}$, find an $x \in D$ such that f(x) = c.
- (d) Find the range of f.