$1^{\underline{a}}$ Prova - MTM1018 - T 15 15 de Outubro de 2015

1. 2. 3. 4. 5. Σ

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. A^t denota a matriz transposta.

Questão 1. (1.5pts) Encontre todas as soluções do sistema, se existirem

$$\begin{cases} x + 4y + 5z = 1\\ x + 5y + 9z = 2\\ 2y + 8z = 3 \end{cases}$$

Questão 2. (1.5pts) Considere a matriz
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

- (a) Calcule, usando escalonamento, o determinante de $A + A^t$. Com base nisto, $A + A^t$ é invertível? Caso seja, encontre a inversa de $A + A^t$;
- (b) Determine os valores reais λ , tais que existe $X = \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \neq \bar{0}$ que satisfaz $AX = \lambda X$;
- (c) Para cada um dos valores de λ encontrados no item anterior, determinar todos X tais que

$$AX = \lambda X$$
.

Questão 3. (3pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se det A = 1, então $A^{-1} = A$.
- ii-() Pode-se mostrar que "se AB é invertível e A e B são matrizes quadradas, então A e B são invertíveis" sem usar determinantes;
- iii-() Se V e W são subespaços de \mathbb{R}^3 , então $\dim(V+W)=\dim V+\dim W$;
- iv-() Se $v \in V$ um vetor não nulo de um e.v.p.i., então $W = \{w \in V; \langle w, v \rangle = 0\}$ é subespaço de V;
- v-() Se $v,w\in V$ são vetores ortogonais de um e.v.p.i, então $\|v+w\|^2=\|v\|^2+\|w\|^2$.

Questão 4. (2pts) Sejam $v_1 = (2, 1, 3), v_2 = (3, -1, 4)$ e $v_3 = (2, 6, 4)$ vetores de \mathbb{R}^3 .

- (a) Mostre que v_1 , v_2 e v_3 são LD.
- (b) Mostre que v_1 e v_2 são LI.
- (c) Qual a dimensão de $[v_1, v_2, v_3]$, o subespaço gerado por v_1, v_2 e v_3 ?

Questão 5. (2pts) Seja \mathcal{P}_2 o espaço dos polinômios com grau menor ou igual a 2 equipado com o produto interno dado por $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.

- (a) Para $B = \{1, t, t^2\}$ use o processo de Gram-Schmidt e obtenha uma base ortogonal B_{OG} para \mathcal{P}_2 ;
- (b) Escreva o polinômio $p(t) = t^2 + 5t + 6$ como combinação linear de B_{OG} .