

BREVET DE TECHNICIEN SUPERIEUR SERVICE INFORMATIQUE AUX ORGANISATIONS

SESSION 2014

EPREUVE E2 – MATHEMATIQUES POUR L'INFORMATIQUE

Exercice 1.

1.a. Déterminons la matrice d'adjacence de M de ce graphe.

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

1.b. Donnons une représentation géométrique de ce graphe orienté.

2. Donnons un chemin hamiltonien dans ce graphe.

Oui, il existe un chemin hamiltonien (chemin passant une et une seule fois par tous les sommets du graphe) dans ce graphe : S_1 - S_5 - S_4 - S_3 - S_2 .

3. Calculons M².

$$M^2 = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 3 & 0 & 1 \end{pmatrix}.$$

4.a. Donnons le nombre de chemins de longueur 2.

Il y a 13 (somme de tous les coefficients de la matrice M²) chemins de longueur 2 dans le graphe.

4.b. Donnons le nombre de chemins de longueur 2 issus du sommet S₁.

Il y a 5 (somme de tous les coefficients de la $1^{\text{ère}}$ ligne de la matrice M^2) chemins de longueur 2 issus du sommet S_1 .

5.a. Donnons les pages du site qui sont accessibles depuis toutes les autres pages en quelques clics.

Les pages du site qui sont accessibles depuis toutes les autres pages sont P_2 et P_3 . Seules les $2^{\text{ème}}$ et $3^{\text{ème}}$ colonnes de la matrice M' ne contiennent que des 1.

5.b. Interprétons les 0 de la première colonne de la matrice M'.

La page P₁ n'est pas accessible depuis les pages P₂, P₃ et P₄.

Exercice 2.

Partie A

1. Traduisons par une expression booléenne E les critères de choix du responsable informatique.

$$E = a\bar{c} + \bar{a}b + abc.$$

2. Trouvons l'expression simplifiée de E.

$$E = b + a\overline{c}$$
 ou $(E = b + a\overline{b}\overline{c})$.

3. Traduisons par une phrase l'expression simplifiée.

Les ordinateurs doivent être équipés d'une carte graphique de 4 Go ou bien doivent être équipés d'un processeur quad-core et d'un disque dur SSD.

Partie B

1. Vérifions que $u_2 = 6 300$ et calculons u_3 .

$$u_2 = u_1 \times (1 + 5\%) = 6000 \times 1,05 = 6300.$$

 $u_3 = u_2 \times (1 + 5\%) = 6300 \times 1,05 = 6615.$

2. Montrons que la suite (u_n) est une suite géométrique dont on donnera la raison.

$$\frac{u_{n+1}}{u_n} = \frac{u_n \times 1,05}{u_n} = 1,05.$$

 (u_n) est une suite géométrique de raison q = 1,05 et de terme initial u_1 = 6 000.

3. a. Exprimons u_n en fonction de n.

$$u_n = u_1 \times q^{n-1} = 6000 \times 1,05^{n-1}$$
.

b. Calculons u₁₂.

$$u_{12} = 6000 \times 1,05^{12-1} \approx 10262.$$

Le montant versé au dernier trimestre s'élève à 10 262 €.

4. Montrons que le financement prévu permet de renouveler le parc informatique.

$$u_1 + u_2 + \dots + u_{12} = u_1 \times \frac{1 - q^{12}}{1 - q} = 6\,000 \times \frac{1 - 1,05^{12}}{1 - 1,05} \approx 95\,502,76.$$

95 502,76 > 95 500. Le montant du financement est donc suffisant.

Exercice 3.

Partie A.

1. Expliquons pourquoi 23 est un nombre premier.

Les seuls diviseurs positifs de 23 sont 1 et lui-même. 23 est donc premier.

2. a. Donnons la décomposition en produit de facteurs premiers de 88.

$$88 = 2 \times 2 \times 2 \times 11 = 2^3 \times 11$$
.

b. Expliquons pourquoi 9 et 88 sont deux nombres premiers entre eux.

$$9 = 3^2$$
.

1 est le seul diviseur commun positif. 9 et 88 sont donc premiers entre eux.

3. Expliquons pourquoi $49 \times 9 \equiv 1 \mod 88$.

$$49 \times 9 = 441 = 5 \times 88 + 1$$
.

Le reste de la division euclidienne de 441 par 88 est 1.

Par conséquent $49 \times 9 \equiv 1 \mod 88$.

Partie B

Déterminons le nombre crypté b que Bob envoie à Alice.

 $a^c \equiv b \mod n$ (avec $0 \le b < n$). On connait a = 12, c = 9 et n = 115.

Or $12^9 \equiv 27 \mod 115$.

Bob envoie à Alice le nombre crypté 27.

Partie C.

Calculons le nombre a transmis par Bob à Alice.

On sait que $2^{49} \equiv a \mod 115$.

Or $2^{33} \equiv 47$ modulo 115 et $2^{16} \equiv 101$ modulo 115 donc $2^{49} \equiv 47 \times 101$ modulo 115.

Or $47 \times 101 = 4747$ et $4747 \equiv 32$ modulo 115 donc $2^{49} \equiv 32$ modulo 115.

Par conséquent, le nombre transmis par Bob à Alice est le nombre 32.