Redes de Computadores

Camada Física – Parte 2
Equipamentos de conectividade
Prof. Renê Pomilio de Oliveira

Slides baseados nas aulas da Profa. Dra. Kalinka Castelo Branco (ICMC/USP) Prof. Dr. Anderson Chaves Carniel (UTFPR)

Entidades da Camada

Transmissão - Dispositivos

← Modem - Modulador/Demodulador

Transmissão - Dispositivos - (Placas)

Modos de Transmissão

- Por condução:
 - par trançado;
 Sinal elétrico
 - cabo coaxial;
 - fibra óptica. ———— Sinal óptico
- Por irradiação:
 - Radiodifusão;
 - infravermelho;
 - enlaces de satélite.

Cabo Coaxial

• Um dos primeiros tipos de cabos usados em rede.

Cabo Coaxial

Um dos primeiros tipos de cabos usados em rede.

Conector BNC

DIELÉTRICO

Cabo Coaxial

Conector para emendas de cabos coaxiais

Cabo Coaxial - Vantagens

- Sua blindagem permite que o cabo seja longo o suficiente.
- Permite o uso de redes multicanal(broadband).
- Mais barato que o par trançado blindado.
- Melhor imunidade contra ruídos e atenuações do sinal que o par trançado sem blindagem.

Cabo Coaxial - Desvantagens

- Por não ser flexível o suficiente, quebra e apresenta mau contato com facilidade. (Pode chegar a enferrujar os conectores – oxidáva)
- Difícil de passá-lo em conduites.
- Mais caro que o par trançado <u>sem blindagem</u>.
- Pouca confiabilidade para topologia em barramento.

Tipos de Transmissão

- O cabo coaxial pode ser utilizado em dois tipos de transmissão:
 - Baseband (Banda Base uni-canal)
 - Broadband(Banda Larga multi-canal)

Coaxial - Uni-Canal

- Usado para transmitir apenas um canal de dados.
- Transmissão feita de forma digital.
- Mais usado em redes locais.
- Half-duplex.

Coaxial - Multi-canal

- Usado para transmitir simultaneamente vários canais de dados.
- Transmissão feita de forma analógica.
- Usado em transmissões de TV.
- Unidirectional.

Tipos de cabo coaxial

- Dentre os diversos tipos destaca-se:
 - Cabo coaxial fino (10Base2);
 - Cabo coaxial grosso (10Base5);

 Diferença dos dois é a espessura, que permite ao cabo grosso ser mais resistente a interferências e sofrer menos com o problema da atenuação.

Cabo Coaxial Fino

- 10Base2:
 - Comprimento máximo: 185 metros.
 - Limite de 30 máquinas conectadas.
 - > Tipicamente utilizado em redes ethernet.

Cabo Coaxial Grosso

10Base5:

- > Comprimento máximo: 500 metros.
- Conexão feita através de um conector chamado vampiro.
- Conector é ligado a um transceptor, que por sua vez é ligado à placa através de um cabo. Um transceptor é um dispositivo que combina um transmissor e um receptor utilizando componentes de circuito comuns para ambas funções num só aparelho.
- Distância de, no mínimo 2,5 m entre cada transceptor.

Placa 10Base2, 10Base5 e RJ-45

Par Trançado

Tipo mais utilizado atualmente.

Par Trançado - Tipos

- UTP (Unshielded Twisted Pair) Sem blindagem.
- STP (Shielded Twisted Pair) Com blindagem.

Por que Trançado??

- Para se ter proteção contra ruídos, usa-se a técnica do cancelamento:
 - as informações circulam repetidas em dois fios, com polaridades invertidas.

 Esse fios são enrolados, que aumenta a força da proteção eletromagnética por que o campo eletromagnético gerado por um dos fios é anulado pelo campo eletromagnético gerado pelo outro fio.

Par Trançado - Desvantagens

- Limite no comprimento: 100 metros.
- Suscetível à interferência e ruído.
- Possui limite de dois dispositivos por cabo.

Par Trançado

- Normalmente são instalados utilizando a topologia física em estrela com a presença de um hub.
- Logicamente funciona como barramento.
- Utiliza conector chamado RJ-45.

Par Trançado - Categorias

- CAT 1 e 2: serviços telefônicos e dados a baixa velocidade
- CAT 3: dados até 16 Mbps (10BaseT)
- CAT 4: dados até 20 Mbps
- CAT 5: dados até 100 Mbps (100BaseT)

Par Trançado - Pinagem

Pinagem

- O par trançado padrão utiliza apenas dois pares de fios:
 - Um para transmissão dos dados;
 - Outro para recepção dos dados.

Pinagem - Padronização

- Dois "padrões":
 - > T568A (preferido)
 - > T568B

- Dois modelos
 - > Straight-through (pino a pino)
 - Crossed-over

Pinagem Straight-through T568A

	Pino	Cor	Função	
	1	Branco com Verde	+Tx	
	2	Verde	-Tx	
	3	Branco com Laranja	+Rx	
	4	Azul	Não	
	5	Branco com Azul	Não	
	6	Laranja	-Rx	
	7	Branco com Marron	Não	
1	8	Marron	Não	AC.

Pinagem Straight-through T568B

	Pino	Cor	Função	
	1	Branco com Laranja	+Tx	
	2	Laranja	-Tx	
	3	Branco com Verde	+Rx	
	4	Azul	Não	
	5	Branco com Azul	Não	
	6	Verde	-Rx	
	7	Branco com Marron	Não	
1	8	Marron	Não	AC.

Esquema Crossover (cruzado)

Padrão EIA/TIA 568-A

Placa 10BaseT

Cabeamento Estruturado

- Facilitar manutenções, expansões e mudanças de layout
- Não leva em conta a topologia lógica nem métodos de acesso
- Topologia física = estrela

Cabeamento Estruturado

Fibra Ótica

 Utiliza sinais luminosos ao invés de sinais elétricos através de fios muito finos de sílica (vidro).

Fibra Ótica – Capa

- É o meio físico pelo qual os sinais de dados luminosos trafegam de uma fonte luminosa até um receptor.
- O núcleo é um duto contínuo de vidro ou plástico.
- Quanto mais largo o núcleo, mais luz ele pode conduzir.

Fibra Ótica – Capa Proteção

- É uma camada de plástico que envolve o núcleo e a casca para reforçar a fibra mecanicamente, absorvendo choques e proporcionando proteção adicional contra curvatura excessiva do cabo.
- Ajudam a proteger o núcleo contra forças de esmagamento e tensões excessivas durante a instalação.

Fibra Ótica – Conector ST

- Usa um sistema de trava em baioneta
- É o conector mais comum.
- O ferrule de cerâmica garante alto desempenho

Fibra Ótica – Conector SC

- Apresenta um corpo injetado e um sistema de trava push-pull.
- É ideal para escritórios, TV a cabo e telefonia.

- Largura de banda maior A fibra óptica pode carregar mais informações com maior fidelidade que o cabo de par trançado.
- Já se conseguiu transmitir dois milhões de conversações telefônicas simultaneamente em uma única fibra, usando-se multiplexação por divisão de largura de banda.

 Baixa atenuação, distância maior - Como os sinais de fibra óptica são luminosos, ocorrem poucas perdas durante a transmissão de modo que os dados podem trafegar a velocidades e distâncias maiores.

- Segurança Seus dados ficam seguros com o cabo de fibra. Ela não irradia os sinais, os quais são muito difíceis de "grampear".
- É muito fácil saber quando um cabo de fibra está sendo grampeado. Se for grampeado, a luz é desviada acusando perda de potência de sinal

• Imunidade - A fibra óptica é completamente imune à interferências. A fibra é feita de sílica (vidro), que é um isolante. Assim, não flui nenhuma corrente elétrica.

Hubs

• É um dispositivo que repete sinais recebidos.

O dispositivo não "sabe" quais são os computadores que estão conectados a ele, e não executa nenhum processamento de rede baseado no computador fonte ou destino.

Switch

Um switch é similar a um hub, exceto em que o switch detecta endereços dos computadores conectados a ele.

 Quando o switch recebe uma mensagem, este a envia somente para o receptor desejado..

Bridges (Pontes)

- Conectam LANS na camada MAC;
- Permite que hosts localizados em redes diferentes se comuniquem como se estivessem na mesma rede.

