1 Convexity of Sets

A set $C \subseteq \mathbb{R}^n$ is called *convex* if the line segment between any two points in C lies in C, i.e., for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$, we have,

$$\theta x_1 + (1 - \theta)x_2 \in C.$$

- (a) Show that the following sets are convex:
 - i A vector subspace \mathcal{V} of \mathbb{R}^n .
 - ii A hyperplane \mathcal{L} in \mathbb{R}^n , given by $\mathcal{L} := \{x : a^\top x = b\}$, where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
 - iii A halfspace \mathcal{H} in \mathbb{R}^n , given by $\mathcal{H} := \{x : a^\top x \leq b\}$, where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
 - iv A norm-ball \mathcal{B} in \mathbb{R}^n , given by $\mathcal{B} := \{x : ||x x_c|| \le r\}$, where $x_c \in \mathbb{R}^n$, $r \ge 0$ and $||\cdot||$ is a norm on \mathbb{R}^n .
- (b) Operations that preserve convexity of sets:

i Intersection

- 1. Show that convexity is preserved under intersection, i.e. if S_1 and S_2 are convex subsets of \mathbb{R}^n , then $S := S_1 \cap S_2$ is convex.
- 2. Show that a polyhedron is convex. A *polyhedron* is the solution set of a finite number of linear inequalities. For example $P := \{x \in \mathbb{R}^2 \mid x_2 \leq x_1, x_1 \geq 0, x_1 \leq 1\}$ is a polyhedron.

ii Mapping under an affine function

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called *affine* if it is a sum of a linear function and a constant, i.e.

$$f(x) = Ax + b,$$

for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

1. Prove that if $S \subseteq \mathbb{R}^n$ is convex, then the image of S under f,

$$f(S) := \{ f(x) : x \in S \},\$$

which is a subset of \mathbb{R}^m , is convex.

Example: Let $e_i, 1 \le i \le n$ denote the standard basis vectors in \mathbb{R}^n . As an example of what we have just shown, the projection of a convex set in \mathbb{R}^n onto the span of any subset of the standard basis vectors is convex. E.g. if $S \subseteq \mathbb{R}^3$ is convex, then $T := \{(x_1, x_2) \in \mathbb{R}^2 : (x_1, x_2, x_3) \in S \text{ for some } x_3 \in \mathbb{R}\}$ is convex.

2. Show that the inverse image of a convex set $C \subseteq \mathbb{R}^m$ under the affine function f(x) = Ax + b is convex. Here, the inverse image of C is defined to be the subset of \mathbb{R}^n given by

$$f^{-1}(C) := \{x : f(x) \in C\}.$$

2 Convexity of Functions

Recall the following definitions and facts involving convex functions:

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *convex* if dom(f) is a convex set and if, for all $x, y \in dom(f)$ and $0 < \theta < 1$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y). \tag{1}$$

The function f is called *strictly convex* if the inequality in (1) is strict whenever $\theta \in (0,1)$ and $x \neq y$.

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is called *concave* if dom(f) is a convex set and if, for all $x, y \in dom(f)$ and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y).$$

The function f is called *strictly concave* if the inequality is strict when $\theta \in (0,1)$ and $x \neq y$.

• A function f is concave if and only if -f is convex and strictly concave iff -f is strictly convex. An affine function is both convex and concave.

It is useful to keep in mind several alternative characterizations of convexity:

• First order condition

Suppose f is differentiable at every point in its domain (in particular, for this to make sense, dom(f) would need to be an open set). Then f is convex if and only if we have

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x),$$

for all $x, y \in dom(f)$.

• Second order condition

Suppose f is twice differentiable at every point in its domain (so, in particular, dom(f) will need to be an open set when one applies this criterion). Then f is convex if and only if its Hessian $\nabla^2 f(x)$ is positive semidefinite at every $x \in dom(f)$.

• Restriction to a line

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff for all $x \in \text{dom}(f)$ and all $v \in \mathbb{R}^n$, the function $g: \mathbb{R} \to \mathbb{R}$ given by g(t) = f(x + tv), with its domain defined to be $\text{dom}(g) := \{t: x + tv \in \text{dom}(f)\}$, is convex.

• Epigraph is convex

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its epigraph, defined as $\operatorname{epi}(f) := \{(x,t) : x \in \operatorname{dom}(f), f(x) \leq t\}$ is a convex subset of \mathbb{R}^{n+1} .

Figure 1: A graph of the function f in Problem 2(e). The function can be thought of as taking the value ∞ outside its domain, $\mathrm{dom}(f) = [-1,1]$. Note that the function jumps at -1 and at 1 in the sense that $\lim_{x\uparrow 1} f(x) = 1 \neq f(1) = 1.5$ and $\lim_{x\downarrow -1} f(x) = 1 \neq f(-1) = 1.25$. The existence of such jumps is emphasized by the open circles and the closed circles in the diagram. With the interpretation that the function equals ∞ outside the closed interval [-1,1] we would also have $\lim_{x\downarrow 1} f(x) = \infty \neq f(1) = 1.5$ and $\lim_{x\uparrow -1} f(x) = \infty \neq f(-1) = 1.25$.

(a) Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, $x_1, x_2, \dots, x_k \in \text{dom}(f)$, and $\theta_1, \theta_2, \dots, \theta_k \ge 0$ with $\sum_{i=1}^k \theta_i = 1$, then we have

$$f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \theta_2 f(x_2) + \dots + \theta_k f(x_k).$$

This result is known as Jensen's inequality for discrete probability distributions.

- (b) Find a condition on the symmetric matrix $A \in \mathbb{R}^{n \times n}$ in order to ensure that $f(x) = x^{\top} Ax$ is a convex function from \mathbb{R}^n to \mathbb{R} .
- (c) Show that the following operations preserve convexity:
 - i. Nonnegative weighted sum: If f and g are convex functions on \mathbb{R}^n with domains dom(f) and dom(g) respectively, then af + bg for $a, b \geq 0$ is a convex function on \mathbb{R}^n with domain $dom(f) \cap dom(g)$, assuming $dom(f) \cap dom(g) \neq \emptyset$.
 - ii. Pointwise maximum: If f and g are convex functions on \mathbb{R}^n with domains dom(f) and dom(g) respectively, then so is their pointwise maximum h, defined as

$$h(x) := \max\{f(x), g(x)\},\$$

with domain $dom(f) \cap dom(g)$, assuming $dom(f) \cap dom(g) \neq \emptyset$.

(d) Show that $f: \mathbb{S}^n_{++} \to \mathbb{R}$ defined by $f(X) = \log \det(X)$ is concave. Note that we can think of f as a function on \mathbb{S}^n (which is a vector space that contains \mathbb{S}^n_{++}), with $\operatorname{dom}(f) = \mathbb{S}^n_{++}$.

Hint: Use the "restriction to a line" condition to check for convexity.

(e) Consider the function $f: \mathbb{R} \to \mathbb{R}$ with dom(f) = [-1, 1], given by

$$f(x) = \begin{cases} 1.5 & \text{if } x = 1, \\ |x| & \text{if } -1 < x < 1, \\ 1.25 & \text{if } x = -1. \end{cases}$$

This is illustrated in Figure 1.

Show that f is a convex function.

3 Square-to-linear function

Consider the square-to-linear function

$$f(x,y) := \begin{cases} \frac{x^T x}{y} & \text{if } y > 0, \\ \infty & \text{otherwise,} \end{cases}$$

 $\text{defined for } (x,y) \in \mathbb{R}^n \times \mathbb{R} \text{, with } \text{dom}(f) = \{(x,y) \in \mathbb{R}^n \times \mathbb{R} \ : \ y > 0\}.$

- (a) Show that dom(f) is a convex subset of \mathbb{R}^{n+1} .
- (b) Show that the Hessian of f at $(x, y) \in dom(f)$ is given by

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 I_n & -yx \\ -yx^T & x^T x \end{bmatrix}.$$

(c) Show that $\nabla^2 f(x,y)$ is PSD at every $(x,y) \in \text{dom}(f)$ and thereby conclude that f is a convex function.