Exercice 4

Démonstration Nous voulons montrer que $(\forall x \in \mathbb{N} \mid (x-4)^2 \ge 8)$ est faux. C'est la même chose que de montrer que $\neg(\forall x \in \mathbb{N} \mid (x-4)^2 \ge 8)$ est vrai. Par la première loi de De Morgan généralisée :

$$\neg(\forall x \in \mathbb{N} \mid (x-4)^2 \ge 8) \iff (\exists x \in \mathbb{N} \mid (x-4)^2 < 8)$$

Montrons donc plutôt que $(\exists x \in \mathbb{N} \mid (x-4)^2 < 8)$ est vrai. Prenons x = 4, un tel x existe et appartient à \mathbb{N} par construction. Maintenant,

$$(4-4)^2 = 0 < 8$$

comme requis. \Box