Disaster Tweet Prediction

Ввод []:

Predict whether a given tweet is about a real disaster or not. If so, predict a 1. If not

Ввод []:

```
# The structure of this project is following.
# 1. Primary processing of the text data (text cleaning from stop-words and punctuation, le
# 2. Text transformation by three ways
  : Bag-of-Words (BOW)
  : TF-IDF
  : Word Embedding
# 3. Building of classification models
# 3.1 Definition of functions for classification (hyperparameters selection by grid, visual
# 3.2 Logistic Regression model realized for all three text representations
      3.2.1 BOW
#
     3.2.2 TF-IDF
     3.2.3 Word Embedding
# 3.3 SVC model for word embedding text representation
# 3.4 DecisionTreeClassifier model for word embedding text representation
# 3.5 SGDClassifier model for word embedding text representation
# 3.6 RandomForestClassifier model for word embedding text representation
# 3.7 XGBClassifier model for word embedding text representation
# Word Embedding representation works the best way. The following two models show the best
# Logistic Regression and gradient boosting XGB Classifier.
# So, the prediction of the KAGGLE data is presented in 3.2.3 with a resulting accuracy ~79
# This value is not a big but the result looks adequate considering heterogenious and often
# This prediction was also uploaded on KAGGLE, which is shown on the snapshot in 3.2.3.
```

1. Primary processing of the text data

Ввод [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import time
import warnings
from wordcloud import WordCloud,STOPWORDS
from nltk.stem import WordNetLemmatizer
import string
from nltk.corpus import wordnet
#nltk.download('wordnet')
from nltk import pos_tag
#nltk.download('averaged_perceptron_tagger')
import spacy
#!python -m spacy download en core web la
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,f1_score
from sklearn.linear_model import LogisticRegression,SGDClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear model import ElasticNet
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from IPython.display import Image
```

Ввод [2]:

```
data = pd.read_csv('Data/DisasterTweets/train.csv', sep=',', skipinitialspace=True)
```

Ввод [247]:

data.head()

Out[247]:

	id	keyword	location	text	target
0	1	NaN	NaN	Our Deeds are the Reason of this #earthquake M	1
1	4	NaN	NaN	Forest fire near La Ronge Sask. Canada	1
2	5	NaN	NaN	All residents asked to 'shelter in place' are	1
3	6	NaN	NaN	13,000 people receive #wildfires evacuation or	1
4	7	NaN	NaN	Just got sent this photo from Ruby #Alaska as	1

```
Ввод [21]:
data.shape
Out[21]:
(7613, 5)
Ввод [18]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7613 entries, 0 to 7612
Data columns (total 5 columns):
 #
     Column
               Non-Null Count Dtype
 0
     id
               7613 non-null
                               int64
               7552 non-null
 1
     keyword
                               object
     location 5079 non-null
                               object
               7613 non-null
                               object
 3
     text
              7613 non-null
                                int64
     target
dtypes: int64(2), object(3)
memory usage: 297.5+ KB
Ввод [20]:
# just look on some data raw
list(data.iloc[567])
Out[20]:
[819,
 'battle',
 'West Richland, WA',
 '@DetroitPls interested to see who will win this battle',
 0]
Ввод [3]:
# It is reasonable to keep the fields 'text' and 'target' for further analysis
X = data.text
y = data.target
```

Ввод [24]:

```
# Look at distribution of the target feature 'target'
warnings.filterwarnings("ignore")
sns.countplot(y)
```

<IPython.core.display.Javascript object>

Out[24]:

<AxesSubplot:xlabel='target', ylabel='count'>

Ввод []:

The data is balanced, no need to apply balancing techniques

Ввод [4]:

```
# create the list of stop-words and punctuation
stop = set(STOPWORDS)
punctuation = list(string.punctuation)
stop.update(punctuation)
```

Ввод [5]:

```
def get_simple_pos(tag):
    if tag.startswith('J'):
        return wordnet.ADJ
    elif tag.startswith('V'):
        return wordnet.VERB
    elif tag.startswith('N'):
        return wordnet.NOUN
    elif tag.startswith('R'):
        return wordnet.ADV
    else:
        return wordnet.NOUN
```

Ввод [6]:

```
# function of smart lemmatizing of the text
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
    final_text = []
    for i in text.split():
        if i.strip().lower() not in stop:
            # define syntactic and semantic information, bank of linguistic trees
            # decryption of all possible values here: www.ling.upenn.edu/courses/Fall_2003/
            pos = pos_tag([i.strip()])
            # the 2-nd parameter of lemmatizer - POS tag, it helps to improve lemmatizing q
            word = lemmatizer.lemmatize(i.strip(),get_simple_pos(pos[0][1]))
            final_text.append(word.lower())
    return " ".join(final_text)
```

Ввод [50]:

```
# example how 'pos_tag()' function works
pos_tag([X.iloc[0].split()[1].strip()])

Out[50]:
[('Deeds', 'NNS')]

BBOA [7]:

# apply lemmatizing to the whole data set
X = X.apply(lemmatize_words)
```

2. Text transformation

2.1 BOW and TF-IDF transformation

```
Ввод [8]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2 , random_state =
```

```
Ввод [9]:
# Case №1. Bag-of-words
# Initialize the module CountVectorizer
CV = CountVectorizer()
# Create a dictionary from X_train
CV.fit(X_train)
# The size of the created dictionary
print("The dictionary has",len(CV.vocabulary_),"words")
# переводим текстовые данные в числовые
X train cv = CV.transform(X train)
X_test_cv = CV.transform(X_test)
print('The size of the training dataset:',X_train_cv.shape)
print('The size of the testing dataset:',X_test_cv.shape)
The dictionary has 17747 words
The size of the training dataset: (6090, 17747)
The size of the testing dataset: (1523, 17747)
Ввод [74]:
np.unique(X_train_cv.toarray())
Out[74]:
array([ 0, 1, 2, 3, 4, 6, 7, 9, 13], dtype=int64)
Ввод [10]:
# Case №2. TF-IDF
# Initialize the module TfidfVectorizer
TF = TfidfVectorizer()
# Create the dictionary from X_train
TF.fit(X_train)
# The size of the created dictionary
print("The dictionary has",len(TF.vocabulary_),"words")
# переводим текстовые данные в числовые
X_train_tf = TF.transform(X_train)
X_test_tf = TF.transform(X_test)
print('The size of the training dataset:',X_train_tf.shape)
print('The size of the testing dataset:',X_test_tf.shape)
```

```
The dictionary has 17747 words
The size of the training dataset: (6090, 17747)
The size of the testing dataset: (1523, 17747)
```

2.2 Word Embedding

```
Ввод [185]:
```

```
# Load the large model (lg) to get the vectors
nlp = spacy.load('en_core_web_lg')
```

Ввод [186]:

```
%%time
# combine all the word vectors into a single document vector
# by AVERAGING the vectors for each word in the document.
# So, the average document vector:
with nlp.disable_pipes():
    vectors = np.array([nlp(text).vector for text in X])
```

Ввод [189]:

embedding size (here 300) - this is the weights in hidden layer of neural network
which are created in calculation of probabilities the word belongs to dictionary words
if there is more than one word in the documents - the average weight values are taken
vectors.shape

Out[189]:

(7613, 300)

Ввод [201]:

```
X_train_emb, X_test_emb, y_train_emb, y_test_emb = train_test_split(vectors, y, test_size =
```

3. Models building

3.1 Functions definition

Ввод [205]:

```
# FUNCTION OF HYPERPARAMETERS SELECTION
# model - the model which will be tuned
# tuned parameters - grid of hyperparameters to select
def best_model(model,tuned_parameters,X_train,y_train,X_test,y_test,score = "f1",cv = 0):
    print("# Tuning hyper-parameters for %s" % score)
   print()
   if cv > 0:
        clf = GridSearchCV(model, tuned_parameters,n_jobs=-1, scoring='%s' % score, cv=cv)
        clf = GridSearchCV(model, tuned_parameters,n_jobs=-1, scoring='%s' % score)
   clf.fit(X_train, y_train)
   print("Best parameters set found on development set:")
   print()
   print(clf.best params )
   print()
   print("Grid scores on development set:")
   print()
   means = clf.cv_results_['mean_test_score']
   stds = clf.cv_results_['std_test_score']
   for mean, std, params in zip(means, stds, clf.cv_results_['params']):
        print("%0.3f (+/-%0.03f) for %r"
                  % (mean, std * 2, params))
   print()
   print("Detailed classification report:")
   print()
   print("The model is trained on the full development set.")
   print("The scores are computed on the full evaluation set.")
   print()
   y_true, y_pred = y_test, clf.predict(X_test)
   print(classification_report(y_true, y_pred))
   print()
   return clf.best_params_
```

Ввод [174]:

```
# FUNC OF CLASSIFICATOR VISUALIZATION
# Visualize the result of classification - the words inducing the maximal contribution
def visualize_coefficients(classifier, feature_names,coef = None, n_top_features=30):
   # get coefficients with large absolute values
   # here the trained classificator is the input to the function
   if coef is None:
        # ravel() removes excessive dimensions of np-array
        coef = classifier.coef_.ravel()
   # list of indexes of the sorted coefficients
   positive_coefficients = np.argsort(coef)[-n_top_features:]
   negative_coefficients = np.argsort(coef)[:n_top_features]
   # Combine 2 indexes lists above in one
   interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients])
   # plot them
   plt.figure(figsize=(15, 5))
   colors = ["red" if c < 0 else "blue" for c in coef[interesting_coefficients]]</pre>
   plt.bar(np.arange(2 * n_top_features), coef[interesting_coefficients], color=colors)
   feature_names = np.array(feature_names)
    plt.xticks(np.arange(1, 1 + 2 * n_top_features), feature_names[interesting_coefficients
```

Ввод [181]:

```
# FUNCTION of PREDICTION
def fitModel(model,x train=X train,y train=y train,x test=X test,y test=y test):
   start_time = time.time()
   lr = model
   lr.fit(x_train, y_train)
   fit_time = round(time.time() - start_time,0)
   print("---time_fit model %s seconds ---" % (fit_time))
   preds = lr.predict(x_test)
   accuracy = accuracy score(y test, preds)
   f1 = f1_score(y_test, preds)
   report = classification_report(y_test,preds,target_names = ['0','1'])
   cm_1 = confusion_matrix(y_test,preds)
   cm 1 = pd.DataFrame(cm 1, index=[0,1], columns=[0,1])
   cm_1.index.name = 'Actual'
   cm 1.columns.name = 'Predicted'
   plt.figure(figsize = (10,10))
    sns.heatmap(cm_1,cmap= "Blues",annot = True, fmt='')
   return {'model':lr,'f1 score':f1,'accuracy score':accuracy,'report':report,'time fit':f
```

3.2 LogisticRegression model

3.2.1 The results for Bag-of-words transformation

```
Ввод [176]:
```

```
%%time
parameters = [{'penalty':['12'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                  'C': [0.1, 1, 10, 100, 1000]},
                {'penalty':['none'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                  'C': [0.1, 1, 10, 100, 1000]}]
best_params_LR = best_model(LogisticRegression(),parameters,X_train=X_train_cv,
                                y_train=y_train,y_test=y_test,X_test=X_test_cv,score = "accurac
# Tuning hyper-parameters for accuracy
Best parameters set found on development set:
{'C': 1, 'penalty': '12', 'solver': 'newton-cg'}
Grid scores on development set:
0.791 (+/-0.013) for {'C': 0.1, 'penalty': 'l2', 'solver': 'newton-cg'}
0.791 (+/-0.013) for {'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs'}
0.791 (+/-0.013) for {'C': 0.1, 'penalty': '12', 'solver': 'liblinear'}
0.798 (+/-0.005) for {'C': 1, 'penalty': 'l2', 'solver': 'newton-cg'}
0.798 (+/-0.005) for {'C': 1, 'penalty': 'l2', 'solver': 'lbfgs'}
0.797 (+/-0.007) for {'C': 1, 'penalty': 'l2', 'solver': 'liblinear'} 0.789 (+/-0.016) for {'C': 10, 'penalty': 'l2', 'solver': 'newton-cg'}
0.789 (+/-0.017) for {'C': 10, 'penalty': '12', 'solver': 'lbfgs'}
0.788 (+/-0.016) for {'C': 10, 'penalty': '12', 'solver': 'liblinear'}
0.782 (+/-0.016) for {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'}
0.781 (+/-0.017) for {'C': 100, 'penalty': '12', 'solver': 'lbfgs'}
0.782 (+/-0.016) for {'C': 100, 'penalty': '12', 'solver': 'liblinear'}
0.779 (+/-0.016) for {'C': 1000, 'penalty': 'l2', 'solver': 'newton-cg'}
0.776 (+/-0.007) for {'C': 1000, 'penalty': 'l2', 'solver': 'lbfgs'}
0.779 (+/-0.015) for {'C': 1000, 'penalty': 'l2', 'solver': 'liblinear'}
0.772 (+/-0.010) for {'C': 0.1, 'penalty': 'none', 'solver': 'newton-cg'}
0.768 (+/-0.026) for {'C': 0.1, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 0.1, 'penalty': 'none', 'solver': 'liblinear'}
0.772 (+/-0.010) for {'C': 1, 'penalty': 'none', 'solver': 'newton-cg'}
0.768 (+/-0.026) for {'C': 1, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 1, 'penalty': 'none', 'solver': 'liblinear'}
0.772 (+/-0.010) for {'C': 10, 'penalty': 'none', 'solver': 'newton-cg'}
0.768 (+/-0.026) for {'C': 10, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 10, 'penalty': 'none', 'solver': 'liblinear'}
0.772 (+/-0.010) for {'C': 100, 'penalty': 'none', 'solver': 'newton-cg'} 0.768 (+/-0.026) for {'C': 100, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 100, 'penalty': 'none', 'solver': 'liblinear'}
0.772 (+/-0.010) for {'C': 1000, 'penalty': 'none', 'solver': 'newton-cg'}
0.768 (+/-0.026) for {'C': 1000, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 1000, 'penalty': 'none', 'solver': 'liblinear'}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
                precision
                               recall f1-score
                                                     support
                     0.79
                                 0.88
                                             0.83
                                                         882
            a
             1
                      0.81
                                 0.68
                                             0.74
                                                         641
    accuracy
                                             0.80
                                                        1523
                                 0.78
                                             0.79
                                                        1523
                      0.80
   macro avg
```

weighted avg 0.80 0.80 0.79 1523

Wall time: 53.9 s

Ввод [182]:

---time_fit model 0.0 seconds ---

<IPython.core.display.Javascript object>

<IPython.core.display.Javascript object>


```
Ввод [183]:
```

```
best_params_of_all_models[0]['accuracy_score']
```

Out[183]:

0.7971109652002626

3.2.2 The results for TF-IDF transformation

```
17.05.2022, 22:21
                                                       5. NLP ENG - Jupyter Notebook
  Ввод [116]:
  %%time
  parameters = [{'penalty':['12'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                      'C': [0.1, 1, 10, 100, 1000]},
                   {'penalty':['none'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                      'C': [0.1, 1, 10, 100, 1000]}]
  best_params_LR = best_model(LogisticRegression(),parameters,X_train=X_train_tf,
                                    y_train=y_train,y_test=y_test,X_test=X_test_tf,score = "accurac
  # Tuning hyper-parameters for accuracy
  Best parameters set found on development set:
  {'C': 10, 'penalty': 'l2', 'solver': 'newton-cg'}
  Grid scores on development set:
  0.700 (+/-0.009) for {'C': 0.1, 'penalty': 'l2', 'solver': 'newton-cg'} 0.700 (+/-0.009) for {'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs'}
  0.701 (+/-0.010) for {'C': 0.1, 'penalty': '12', 'solver': 'liblinear'}
  0.790 (+/-0.010) for {'C': 1, 'penalty': 'l2', 'solver': 'newton-cg'}
  0.790 (+/-0.010) for {'C': 1, 'penalty': '12', 'solver': 'lbfgs'}
  0.790 (+/-0.010) for {'C': 1, 'penalty': 'l2', 'solver': 'liblinear'}
  0.795 (+/-0.016) for {'C': 10, 'penalty': '12', 'solver': 'newton-cg'}

0.795 (+/-0.015) for {'C': 10, 'penalty': '12', 'solver': 'lbfgs'}

0.795 (+/-0.015) for {'C': 10, 'penalty': '12', 'solver': 'liblinear'}
```

0.784 (+/-0.013) for {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'} 0.784 (+/-0.012) for {'C': 100, 'penalty': '12', 'solver': 'lbfgs'} 0.784 (+/-0.013) for {'C': 100, 'penalty': '12', 'solver': 'liblinear'} 0.780 (+/-0.013) for {'C': 1000, 'penalty': 'l2', 'solver': 'newton-cg'} 0.779 (+/-0.017) for {'C': 1000, 'penalty': 'l2', 'solver': 'lbfgs'} 0.780 (+/-0.013) for {'C': 1000, 'penalty': 'l2', 'solver': 'liblinear'} 0.773 (+/-0.009) for {'C': 0.1, 'penalty': 'none', 'solver': 'newton-cg'} 0.774 (+/-0.022) for {'C': 0.1, 'penalty': 'none', 'solver': 'lbfgs'} nan (+/-nan) for {'C': 0.1, 'penalty': 'none', 'solver': 'liblinear'} 0.773 (+/-0.009) for {'C': 1, 'penalty': 'none', 'solver': 'newton-cg'} 0.774 (+/-0.022) for {'C': 1, 'penalty': 'none', 'solver': 'lbfgs'} nan (+/-nan) for {'C': 1, 'penalty': 'none', 'solver': 'liblinear'} 0.773 (+/-0.009) for {'C': 10, 'penalty': 'none', 'solver': 'newton-cg'}

0.774 (+/-0.022) for {'C': 10, 'penalty': 'none', 'solver': 'lbfgs'} nan (+/-nan) for {'C': 10, 'penalty': 'none', 'solver': 'liblinear'}

nan (+/-nan) for {'C': 100, 'penalty': 'none', 'solver': 'liblinear'} 0.773 (+/-0.009) for {'C': 1000, 'penalty': 'none', 'solver': 'newton-cg'} 0.774 (+/-0.022) for {'C': 1000, 'penalty': 'none', 'solver': 'lbfgs'} nan (+/-nan) for {'C': 1000, 'penalty': 'none', 'solver': 'liblinear'}

0.773 (+/-0.009) for {'C': 100, 'penalty': 'none', 'solver': 'newton-cg'} 0.774 (+/-0.022) for {'C': 100, 'penalty': 'none', 'solver': 'lbfgs'}

Detailed classification report:

The model is trained on the full development set. The scores are computed on the full evaluation set.

	precision	recall	f1-score	support
0	0.81	0.83	0.82	882
1	0.76	0.73	0.74	641
accuracy			0.79	1523
macro avg	0.78	0.78	0.78	1523

weighted avg 0.79 0.79 0.79 1523

Wall time: 23.3 s

Ввод [117]:

- ---time_fit model 0.23715591430664062 seconds ---
- <IPython.core.display.Javascript object>

Ввод [118]:

best_params_of_all_models_TF[0]['accuracy_score']

Out[118]:

0.7872619829284307

3.2.3 The results of Word Embedding transformation

```
Ввод [254]:
```

```
%%time
parameters = [{'penalty':['12'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                    'C': [0.1, 1, 10, 100, 1000]},
                 {'penalty':['none'], "solver":['newton-cg', 'lbfgs', 'liblinear'],
                    'C': [0.1, 1, 10, 100, 1000]}]
best_params_LR = best_model(LogisticRegression(),parameters,X_train=X_train_emb,
                                  y_train=y_train_emb,y_test=y_test_emb,X_test=X_test_emb,score =
# Tuning hyper-parameters for accuracy
Best parameters set found on development set:
{'C': 1, 'penalty': 'l2', 'solver': 'liblinear'}
Grid scores on development set:
0.788 (+/-0.010) for {'C': 0.1, 'penalty': 'l2', 'solver': 'newton-cg'} 0.788 (+/-0.010) for {'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs'}
0.787 (+/-0.011) for {'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'}
0.788 (+/-0.011) for {'C': 1, 'penalty': '12', 'solver': 'newton-cg'}
0.788 (+/-0.011) for {'C': 1, 'penalty': '12', 'solver': 'lbfgs'}
0.788 (+/-0.011) for {'C': 1, 'penalty': 'l2', 'solver': 'liblinear'}
0.783 (+/-0.014) for {'C': 10, 'penalty': '12', 'solver': 'newton-cg'} 0.783 (+/-0.012) for {'C': 10, 'penalty': '12', 'solver': 'lbfgs'} 0.783 (+/-0.013) for {'C': 10, 'penalty': '12', 'solver': 'liblinear'}
0.781 (+/-0.011) for {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'}
0.782 (+/-0.012) for {'C': 100, 'penalty': 'l2', 'solver': 'lbfgs'}
0.781 (+/-0.011) for {'C': 100, 'penalty': 'l2', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 1000, 'penalty': 'l2', 'solver': 'newton-cg'}
0.781 (+/-0.013) for {'C': 1000, 'penalty': '12', 'solver': 'lbfgs'}
0.781 (+/-0.012) for {'C': 1000, 'penalty': 'l2', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 0.1, 'penalty': 'none', 'solver': 'newton-cg'} 0.781 (+/-0.012) for {'C': 0.1, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 0.1, 'penalty': 'none', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 1, 'penalty': 'none', 'solver': 'newton-cg'} 0.781 (+/-0.012) for {'C': 1, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 1, 'penalty': 'none', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 10, 'penalty': 'none', 'solver': 'newton-cg'}
0.781 (+/-0.012) for {'C': 10, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 10, 'penalty': 'none', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 100, 'penalty': 'none', 'solver': 'newton-cg'} 0.781 (+/-0.012) for {'C': 100, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 100, 'penalty': 'none', 'solver': 'liblinear'}
0.781 (+/-0.012) for {'C': 1000, 'penalty': 'none', 'solver': 'newton-cg'}
0.781 (+/-0.012) for {'C': 1000, 'penalty': 'none', 'solver': 'lbfgs'}
nan (+/-nan) for {'C': 1000, 'penalty': 'none', 'solver': 'liblinear'}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
                 precision
                                 recall f1-score
                                                        support
                       0.80
                                   0.86
                                               0.83
                                                             882
             0
             1
                       0.79
                                   0.71
                                               0.75
                                                             641
                                               0.80
     accuracy
                                                           1523
```

macro avg

0.80

0.79

0.79

1523

weighted avg 0.80 0.80 0.80 1523

Wall time: 1min 13s

Ввод [255]:

---time_fit model 1.0 seconds ---

<IPython.core.display.Javascript object>

Ввод [211]:

```
best_params_of_all_models = []
best_params_of_all_models.append(bestmod)
```

Make a prediction on KAGGLE dataset

```
Ввод [257]:
```

```
df = pd.read_csv('Data/DisasterTweets/test.csv', sep=',', skipinitialspace=True)
```

Ввод [259]:

```
df.head(2)
```

Out[259]:

text	location	keyword	id	
Just happened a terrible car crash	NaN	NaN	0	0
Heard about #earthquake is different cities, s	NaN	NaN	2	1

Ввод [258]:

```
df_sample = pd.read_csv('Data/DisasterTweets/sample_submission.csv', sep=',', skipinitialsp
df_sample.head(2)
```

Out[258]:

	id	target
0	0	0
1	2	0

Ввод [261]:

```
%%time
X_for_pred = df.text
# apply lematizing
X_for_pred = X_for_pred.apply(lemmatize_words)
```

Wall time: 37.2 s

Ввод [262]:

```
X_for_pred.head()
```

Out[262]:

```
happen terrible car crash
heard #earthquake different cities, stay safe ...
forest fire spot pond, geese flee across stree...
apocalypse lighting. #spokane #wildfires
typhoon soudelor kill 28 china taiwan
Name: text, dtype: object
```

```
Ввод [271]:
```

```
%%time
# combine all the word vectors into a single document vector
# by AVERAGING the vectors for each word in the document.
# So, the average document vector:
with nlp.disable_pipes():
    X_vec = np.array([nlp(text).vector for text in X_for_pred])
```

Wall time: 59.1 s

Ввод [272]:

```
preds = bestmod['model'].predict(X_vec)
```

Ввод [287]:

```
pred_final = pd.DataFrame(np.array([df['id'].values, preds]).transpose(),columns=[['id','ta
```

Ввод [288]:

```
pred_final.head()
```

Out[288]:

	id	target
0	0	1
1	2	1
2	3	1
3	9	1
4	11	1

Ввод [289]:

```
pred_final.to_csv('Data/DisasterTweets/Pred1.csv',sep=',',header=True,index=False)
```

Ввод [293]:

Image("Data/DisasterTweets/Kaggle_compet.PNG")

Out[293]:

Overview	Data Code Discussion	Leaderboard	Rules	Team	My Submissions	Submit Pro	edictions	
559	Prashant Chaturvedi				•	0.78639	2	1mo
560	Daniel Rojas Alfaro					0.78639	1	1mo
561	SATHEESHAN S	/> NLP	Tweet Mir	ning		0.78608	1	2mo
562	Cedric Yu					0.78608	1	1mo
563	Dhruv #3					0.78608	5	13d
564	Lukaszz G					0.78608	5	12d
565	Roman Shchelushkin				4	0.78608	1	1s
Your First Entry ↑ Welcome to the leaderboard!								
		V Deci	isionTreea	ndBe	•	0.78577	4	25d
Welcome t	to the leaderboard!	⟨⟩ Deci	isionTreea	ndBe		0.78577 0.78577	4	25d 24d
Welcome t	o the leaderboard! Onur Çaydere	⟨⟩ Deci	isionTreea	ndBe				
Welcome to 566 567	o the leaderboard! Onur Çaydere Sai Jashwanth Reddy	⟨⟩ Deci	isionTreea	ndBe		0.78577	3	24d
Welcome to 566 567 568	Onur Çaydere Sai Jashwanth Reddy mfis	⟨Þ Deci	isionTreea	ndBe		0.78577	3	24d 2d

3.3 SVC model

```
Ввод [ ]:
```

Ввод []:

Ввод []:

```
bestmod['accuracy_score']
```

3.4 DecisionTreeClassifier model

Ввод [220]:

```
%%time
parameters = [{'criterion':['gini', 'entropy'],'splitter':['best', 'random'],'max_depth':[2
                 'max_features':[None, 'auto'], 'class_weight':['balanced', None]}]
best_params_DTC = best_model(DecisionTreeClassifier(),parameters,X_train=X_train_emb,
                               y_train=y_train_emb,y_test=y_test_emb,X_test=X_test_emb,score =
# Tuning hyper-parameters for accuracy
Best parameters set found on development set:
{'class_weight': None, 'criterion': 'entropy', 'max_depth': 50, 'max_featu
res': None, 'splitter': 'random'}
Grid scores on development set:
0.685 (+/-0.017) for {'class weight': 'balanced', 'criterion': 'gini', 'ma
x_depth': 20, 'max_features': None, 'splitter': 'best'}
0.676 (+/-0.020) for {'class_weight': 'balanced', 'criterion': 'gini', 'ma
x_depth': 20, 'max_features': None, 'splitter': 'random'}
0.670 (+/-0.011) for {'class_weight': 'balanced', 'criterion': 'gini', 'ma x_depth': 20, 'max_features': 'auto', 'splitter': 'best'}
0.650 (+/-0.038) for {'class_weight': 'balanced', 'criterion': 'gini', 'ma
x_depth': 20, 'max_features': 'auto', 'splitter': 'random'}
0.685 (+/-0.017) for {'class_weight': 'balanced', 'criterion': 'gini', 'ma
x_depth': 30, 'max_features': None, 'splitter': 'best'}
```

Ввод [222]:

---time_fit model 1.0 seconds ---

<IPython.core.display.Javascript object>

<IPython.core.display.Javascript object>

Ввод [223]:

bestmod['accuracy_score']

Out[223]:

0.6749835850295469

3.5 SGDClassifier model

Ввод [224]:

```
%%time
parameters = [{'loss' : ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'],
                'max_iter' : [100,1000,2000], 'tol':[10**(-3),10**(-2),10**(-4)]}]
best_params_SGD = best_model(SGDClassifier(),parameters,X_train=X_train_emb,
                             y_train=y_train_emb,y_test=y_test_emb,X_test=X_test_emb,score =
# Tuning hyper-parameters for accuracy
Best parameters set found on development set:
{'loss': 'log', 'max iter': 1000, 'tol': 0.0001}
Grid scores on development set:
0.782 (+/-0.026) for {'loss': 'hinge', 'max_iter': 100, 'tol': 0.001}
0.771 (+/-0.029) for {'loss': 'hinge', 'max_iter': 100, 'tol': 0.01} 0.774 (+/-0.035) for {'loss': 'hinge', 'max_iter': 100, 'tol': 0.0001}
0.773 (+/-0.021) for {'loss': 'hinge', 'max_iter': 1000, 'tol': 0.001}
0.768 (+/-0.027) for {'loss': 'hinge', 'max_iter': 1000, 'tol': 0.01}
0.777 (+/-0.023) for {'loss': 'hinge', 'max_iter': 1000, 'tol': 0.0001}
0.781 (+/-0.010) for {'loss': 'hinge', 'max_iter': 2000, 'tol': 0.001}
0.772 (+/-0.027) for {'loss': 'hinge', 'max_iter': 2000, 'tol': 0.01}
0.784 (+/-0.014) for {'loss': 'hinge', 'max_iter': 2000, 'tol': 0.0001} 0.776 (+/-0.023) for {'loss': 'log', 'max_iter': 100, 'tol': 0.001}
0.765 (+/-0.033) for {'loss': 'log', 'max_iter': 100, 'tol': 0.01}
0.783 (+/-0.008) for {'loss': 'log', 'max_iter': 100, 'tol': 0.0001}
0.783 (+/-0.019) for {'loss': 'log', 'max_iter': 1000, 'tol': 0.001}
0.765 (+/-0.026) for {'loss': 'log', 'max_iter': 1000, 'tol': 0.01}
0.787 (+/-0.013) for {'loss': 'log', 'max_iter': 1000, 'tol': 0.0001}
0.776 (+/-0.017) for {'loss': 'log', 'max_iter': 2000, 'tol': 0.001}
0.746 (+/-0.097) for {'loss': 'log', 'max_iter': 2000, 'tol': 0.01}
0.782 (+/-0.009) for {'loss': 'log', 'max_iter': 2000, 'tol': 0.0001}
0.762 (+/-0.038) for {'loss': 'modified_huber', 'max_iter': 100, 'tol': 0.00
1}
0.753 (+/-0.042) for {'loss': 'modified_huber', 'max_iter': 100, 'tol': 0.0
1}
0.733 (+/-0.140) for {'loss': 'modified_huber', 'max_iter': 100, 'tol': 0.00
01}
0.743 (+/-0.041) for {'loss': 'modified_huber', 'max_iter': 1000, 'tol': 0.0
01}
0.756 (+/-0.024) for {'loss': 'modified huber', 'max iter': 1000, 'tol': 0.0
1}
0.768 (+/-0.009) for {'loss': 'modified_huber', 'max_iter': 1000, 'tol': 0.0
001}
0.765 (+/-0.029) for {'loss': 'modified_huber', 'max_iter': 2000, 'tol': 0.0
01}
0.733 (+/-0.149) for {'loss': 'modified huber', 'max iter': 2000, 'tol': 0.0
1}
0.750 (+/-0.021) for {'loss': 'modified_huber', 'max_iter': 2000, 'tol': 0.0
001}
0.672 (+/-0.036) for {'loss': 'squared_hinge', 'max_iter': 100, 'tol': 0.00
1}
0.668 (+/-0.043) for {'loss': 'squared_hinge', 'max_iter': 100, 'tol': 0.01}
0.682 (+/-0.031) for {'loss': 'squared_hinge', 'max_iter': 100, 'tol': 0.000
1}
0.674 (+/-0.008) for {'loss': 'squared_hinge', 'max_iter': 1000, 'tol': 0.00
1}
0.678 (+/-0.008) for {'loss': 'squared hinge', 'max iter': 1000, 'tol': 0.0
```

1}

```
0.679 (+/-0.028) for {'loss': 'squared_hinge', 'max_iter': 1000, 'tol': 0.00
01}
0.678 (+/-0.015) for {'loss': 'squared_hinge', 'max_iter': 2000, 'tol': 0.00
1}
0.678 (+/-0.013) for {'loss': 'squared_hinge', 'max_iter': 2000, 'tol': 0.0
1}
0.675 (+/-0.015) for {'loss': 'squared_hinge', 'max_iter': 2000, 'tol': 0.00
01}
0.709 (+/-0.107) for {'loss': 'perceptron', 'max_iter': 100, 'tol': 0.001}
0.750 (+/-0.025) for {'loss': 'perceptron', 'max_iter': 100, 'tol': 0.01}
0.657 (+/-0.179) for {'loss': 'perceptron', 'max_iter': 100, 'tol': 0.001}
0.711 (+/-0.082) for {'loss': 'perceptron', 'max_iter': 1000, 'tol': 0.001}
0.695 (+/-0.109) for {'loss': 'perceptron', 'max_iter': 1000, 'tol': 0.001}
0.720 (+/-0.045) for {'loss': 'perceptron', 'max_iter': 1000, 'tol': 0.0001}
0.711 (+/-0.078) for {'loss': 'perceptron', 'max_iter': 2000, 'tol': 0.001}
0.718 (+/-0.076) for {'loss': 'perceptron', 'max_iter': 2000, 'tol': 0.001}
0.722 (+/-0.072) for {'loss': 'perceptron', 'max_iter': 2000, 'tol': 0.001}
```

Detailed classification report:

The model is trained on the full development set. The scores are computed on the full evaluation set.

	precision	recall	f1-score	support
0	0.79 0.80	0.88 0.68	0.83 0.74	882 641
_	0.00	0.00		
accuracy macro avg	0.80	0.78	0.79 0.78	1523 1523
weighted avg	0.79	0.79	0.79	1523

Wall time: 2min 12s

Ввод [225]:

---time_fit model 1.0 seconds ---

<IPython.core.display.Javascript object>

<IPython.core.display.Javascript object>

Ввод [226]:

bestmod['accuracy_score']

Out[226]:

0.7951411687458962

3.6 RandomForestClassifier model

Ввод [229]:

- ---time_fit model 12.0 seconds ---
- <IPython.core.display.Javascript object>
- <IPython.core.display.Javascript object>

3.7 XGB Classifier model

Ввод [252]:

```
%%time
XGB = xgb.XGBClassifier()
XGB.fit(X_train_emb, y_train_emb)
pred_emb = XGB.predict(X_test_emb)
XGB_accuracy = accuracy_score(y_test_emb, pred_emb)
print("Accuracy: ",XGB_accuracy)
```

[20:46:16] WARNING: ..\src\learner.cc:1061: Starting in XGBoost 1.3.0, the d efault evaluation metric used with the objective 'binary:logistic' was chang ed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to re store the old behavior.

Accuracy: 0.7997373604727511

Wall time: 50.7 s