Real Analysis

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Lim	it Theory for the Real Numbers	1
2	Diff	ferentiation	3
	2.1	Theory in One Dimension	3
	2.2	Theory in Higher Dimensions	3
	2.3	Properties	4
	2.4	Examples	4
	2.5	Higher Order Differentiation	4
	2.6	Differentiation w.r.t. Vectors	5
	2.7	Inverse Function Theorem	5
3	Sca	lar Series	7
	3.1	Convergence	7
	3.2	Properties	7
	3.3	Convergence Tests	8
4	Ser	ies of Functions	9
	4.1	Power Series	9
5	\mathbf{Rie}	mann Integration	11
	5.1	Definitions	11
	5.2	Cauchy Criterion	12
	5.3	Properties	12

ii *CONTENTS*

Limit Theory for the Real Numbers

PROPOSITION 1.1.

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Suppose that $\lim_{n\in\mathbb{N}} x_n = x_{\bullet}$ for some $x_{\bullet} \in \mathbb{R}$. Then

$$\lim_{n\in\mathbb{N}} \overline{x}_n := \lim_{n\in\mathbb{N}} \frac{1}{n} \sum_{i=1}^n x_i = x_{\bullet}.$$

Differentiation

2.1 Theory in One Dimension

DEFINITION 2.1 (Differentiability, Derivative).

Let f be a function from Ω to \mathbb{R} where Ω is some open subset of \mathbb{R} . Let x be a point in Ω . We say that f is **differentiable** if the limit L given by

$$L := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. In this case, we define the **derivative** of f at point x to be the number L.

PROPOSITION 2.2.

Differentiability implies continuity.

2.2 Theory in Higher Dimensions

DEFINITION 2.3 (Directional Derivative).

Let f be a proper function from \mathbb{R}^n to \mathbb{R}^* . Let x_0 be a point in dom(f). Let d be a point in \mathbb{R}^n . We define the **directional derivative** of f at point x_0 in the direction of d, denoted by $f'(x_0; d)$, to be a number given by

$$f'(x_0; d) := \lim_{t \downarrow 0} \frac{f(x_0 + td) - f(x_0)}{t}.$$

Note that this is a single-sided limit.

EXAMPLE 2.4.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) := ||x||_{\infty}$. Let $x, d \in \mathbb{R}^n$. Define

$$K_1 := \left\{ i \in \{1, ..., n\} : |x_i| = \max_{j \in \{1, ..., n\}} \{|x_j|\} \right\}.$$

Define

$$K_2 := \left\{ i \in K : \operatorname{sign}(x_i) d_i = \max_{j \in K} \{ \operatorname{sign}(x_j) d_j \} \right\}$$

where sign: $\mathbb{R} \to \{\pm 1\}$ is given by sign(a) := 1 if $a \ge 0$ and sign(a) := -1 if a < 0. Let $k \in K_2$ be arbitrary. Then the directional derivative of f at point x in direction d is

$$f'(x;d) = \operatorname{sign}(x_k)d_k.$$

DEFINITION 2.5 (Differentiable).

Let f be a proper function from \mathbb{R}^n to \mathbb{R}^* . Let x_0 be a point in dom(f). We say that f is **differentiable** at point x_0 if there exists a linear operator ∇ from \mathbb{R}^n to \mathbb{R}^n such that

$$\lim_{\|y\| \to 0} \frac{\left| f(x_0 + y) - f(x_0) - \langle \nabla f(x_0), y \rangle \right|}{\|y\|} = 0.$$

2.3 Properties

PROPOSITION 2.6.

Let f be a proper function from \mathbb{R}^n to \mathbb{R}^* . Let x_0 be a point in dom(f). Let d be a point in \mathbb{R}^n . Assume that f is differentiable at point x_0 . Then we have

$$f'(x_0; d) = \langle \nabla f(x), d \rangle.$$

2.4 Examples

EXAMPLE 2.7.

$$f(x,y) = (x^2 + y^2)\sin(\frac{1}{\sqrt{x^2 + y^2}})$$

for $(x, y) \neq 0$ and f(0, 0) = 0.

2.5 Higher Order Differentiation

THEOREM 2.8 (Hermann Schwarz and Alexis Clairaut).

Let f be a function from some subset Ω of \mathbb{R}^n to \mathbb{R}^n . Let p be an interior point of Ω . Then if f has continuous second order partial derivatives at point p, we get

$$\forall i, j \in \{1, ..., n\}, \frac{\partial^2 f}{\partial x_i \partial x_j}(p) = \frac{\partial^2 f}{\partial x_j \partial x_i}(p).$$

2.6 Differentiation w.r.t. Vectors

DEFINITION 2.9.

Let $\vec{x} = (x_1, ..., x_n)$ be a vector. Let $y = f(\vec{x})$. We define

$$\frac{\partial y}{\partial \vec{x}} := \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}.$$

PROPOSITION 2.10.

Quick results:

1.
$$\frac{\partial \left[\vec{a} \cdot \vec{x}\right]}{\partial \vec{x}} = \vec{a}.$$

$$2. \ \frac{\partial \left[\vec{x}^T A \vec{x} \right]}{\partial \vec{x}} = Ax + A^T x.$$

2.7 Inverse Function Theorem

THEOREM 2.11.

Let F be a C^1 function from Ω to \mathbb{R}^n where Ω is some open subset of \mathbb{R}^n . Let x be some point in Ω . Then if $|J_F(p)| \neq 0$, F is invertible near x. Further, F^{-1} is C^1 at F(x) and

$$J_{F^{-1}}(F(x)) = (J_F(x))^{-1}.$$

Scalar Series

3.1 Convergence

DEFINITION 3.1 (Convergence).

Let $S = \sum_{i=1}^{\infty} a_i$ be an infinite series. We say that S converges if the limit $\lim_{n \to \infty} \sum_{i=1}^{n} a_i$ exists.

DEFINITION 3.2 (Absolute Convergence).

Let $S = \sum_{i=1}^{\infty} a_i$ be an infinite series. We say that S converges absolutely if the series

$$\sum_{i=1}^{\infty} |a_i| \text{ converges.}$$

DEFINITION 3.3 (Conditional Convergence).

Let $S = \sum_{i=1}^{\infty} a_i$ be an infinite series. We say that S converges conditionally if it converges but does not converge absolutely.

3.2 Properties

THEOREM 3.4 (Bernhard Riemann).

If an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number,

or diverges. i.e., if $S = \sum_{i=1}^{\infty} a_i$ where $a_i \in \mathbb{R}$ converges conditionally, then for any real number l, there exists some permutation σ such that $S_{\sigma} := \sum_{i=1}^{\infty} a_{\sigma(i)} = l$; and there exists some permutation τ such that $S_{\tau} := \sum_{i=1}^{\infty} a_{\tau(i)}$ diverges.

PROPOSITION 3.5.

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Suppose that the partial sum sequence $\{S_n\}_{n\in\mathbb{N}}$ is bounded. Then $\{x_n\}_{n\in\mathbb{N}}$ must be bounded.

Proof. Assume for the sake of contradiction that the sequence $\{x_n\}_{n\in\mathbb{N}}$ is unbounded. Since the partial sum sequence $\{S_n\}_{n\in\mathbb{N}}$ is bounded, $\exists M\in\mathbb{R}$ such that $\forall n\in\mathbb{N}, |S_n|\leq M$.

3.3 Convergence Tests

THEOREM 3.6 (Ernst Kummer).

Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of scalars. Consider the series $\sum_{n=1}^{\infty} a_n$. Let ζ_n be an auxiliary sequence of positive constants. Define

$$\rho_n := \zeta_n \frac{a_n}{a_{n+1}} - \zeta_{n+1}.$$

Then the series

- 1. converges if $\liminf_{n\to\infty} \rho_n > 0$, and
- 2. diverges if $\limsup_{n\to\infty} \rho_n < 0$ and $\sum 1/\zeta_n$ diverges.

Series of Functions

4.1 Power Series

DEFINITION 4.1.

A power series (in one variable) is an infinite series S of the form

$$S = \sum_{i=0}^{\infty} a_i (x - c)^i.$$

PROPOSITION 4.2.

Every power series is the Taylor series of some smooth function.

Riemann Integration

5.1 Definitions

DEFINITION 5.1 (Riemann Sum).

Let $(X, \|\cdot\|)$ be a Banach space. Let a and b be real numbers with a < b. Let f be a function from [a, b] to X. Let $P = \{a = p_0 < p_1 < ... < p_{N-1} < p_N = b\}$ be a partition of the interval [a, b]. Let $P^* = \{\xi_i : i = 1..N\}$ be a set of choices of sample points where $\forall i = 1..N, \ \xi_i \in [p_{i-1}, p_i]$. We define the **Riemann sum** of f w.r.t. partition P and sample points P^* , denoted by $S(f, P, P^*)$, to be the vector given by

$$S(f, P, P^*) := \sum_{i=1}^{N} f(\xi_i)(p_i - p_{i-1}).$$

DEFINITION 5.2 (Riemann Integrable).

Let $(X, \|\cdot\|)$ be a Banach space. Let a and b be real numbers with a < b. Let f be a function from [a, b] to X. We say that f is **Riemann Integrable** if

$$\exists x_0 \in X, \forall \varepsilon > 0, \exists P \in \mathcal{P}[a, b], \forall Q \supseteq P, \forall Q^*, \quad ||x_0 - S(f, Q, Q^*)|| < \varepsilon.$$

PROPOSITION 5.3.

The vector x_0 in the definition is unique, if it exists.

DEFINITION 5.4 (Riemann Integral).

Let $(X, \|\cdot\|)$ be a Banach space. Let a and b be real numbers with a < b. Let f be a Riemann integrable function from [a, b] to X. We define the **Riemann Integral** of f,

denoted by $\int_a^b f$, to be the unique vector x_0 . i.e.

$$x_0 = \int_a^b f.$$

5.2 Cauchy Criterion

PROPOSITION 5.5 (Cauchy Criterion).

Let $(X, \|\cdot\|)$ be a Banach space. Let a and b be real numbers with a < b. Let f be a function from [a, b] to X. Then f is integrable if and only if

 $\forall \varepsilon > 0, \ \exists P \in \mathcal{P}[a, b], \ \forall R_1, R_2 \supseteq P, \ \forall R_1^*, R_2^*, \quad \|S(f, R_1, R_1^*) - S(f, R_2, R_2^*)\| < \varepsilon.$

5.3 Properties

PROPOSITION 5.6.

Continuous functions are Riemann integrable.