(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 March 2003 (27.03.2003)

PCT

(10) International Publication Number WO 03/024608 A2

(51) International Patent Classification7:

B05B

(21) International Application Number: PCT/GB02/04192

(22) International Filing Date:

16 September 2002 (16.09.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0122208.2

14 September 2001 (14.09.2001) GB

(71) Applicant (for all designated States except US): G VIN-CENT LIMITED [GB/GB]; 66 Claudette Avenue, Spalding PE11 2HU (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): ROBINSON, George,

Walter [GB/GB]; 15 Shire Avenue, Spalding PE11 IFN (GB).

MURGITROYD & COMPANY; Scotland (74) Agent: House, 165-169 Scotland Street, Glasgow G5 8PL (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

[Continued on next page]

(54) Title: SPRAY GUN

(57) Abstract: A spraying apparatus (10) for spraying liquid surface treatment material comprises a gas inlet (20), a liquid inlet (50) and an outlet nozzle (30). The apparatus (10) also comprises a needle valve (40) for regulating the supply of surface treatment material to the nozzle (30). The needle valve (40) is at least partially located within a gas outlet chamber (26) and is adapted so as to cause minimal disruption to the gas flow from the gas inlet (20) to the nozzle (30). To further aid gas flow efficiency, the gas supply passage (21) is substantially straight, the outlet chamber (26) has a laterally outwardly tapering inlet and an inwardly tapering outlet (270, 31) and a smooth radius of curvature (29) from the gas supply passage (21) into the outlet chamber (26). There is also provided a control means for controlling the axial movement of the needle valve (40), the control means being provided with indicator means so as to provide an accurate, repeatable control means.

WO 03/024608 A2

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1.

SPRAY GUN

1	The present invention relates to an apparatus to
2	improve efficiency in the spraying of materials.
3	Particularly, but not exclusively, the invention is
4	a spray gun for the application of paint and similar
5	material surface treatments, particularly water-
6	based paints.
7	
8	Various known spray guns have been developed for the
9	purpose of reducing pressure losses between the air
.0	inlet and air outlet of guns. Conventional spray
.1	guns, high volume-low pressure (HVLP) guns and low
.2	volume-low pressure (LVLP) guns all suffer from a
.3	reduction in air pressure through the gun. In some
4	instances, this reduction can be over 80%.
. 5	
. 6	HVLP guns require very large volumes of air to
L7	maintain an acceptable atomization of the spray
18	material. For example, to pass large volumes of air
19	through an HVLP gun requires very high pressures to
20	maintain a 10psi (0.69bar) pressure in the head of

CONFIRMATION COPY

2

1	the gun, resulting in an average air consumption
2	rate of approximately 20scfm (566 l/min). With an
3	input pressure of 75psi (5.1bar), the air expands on
4	leaving the gun to regain its pre-compression
· 5	volume. This will result in the atomized spray
6	material being taken in all directions by the
7	expanding air, in spite of the exit pressure being
8	only 10psi (0.69bar). Thus, the spray output of
9	HVLP guns can prove difficult to control.
10	
11	Despite having a smaller clearance between the fluid
12	tip and air cap than in HVLP guns, LVLP guns also
13	suffer from pressure loss within the gun body. As a
14	result, LVLP guns still require a high inlet
15	pressure of 50-60psi (3.45-4.14bar) to operate at an
16	atomizing (outlet) pressure of 15-18psi (1.03-
17	1.24bar). Air consumption rates of LVLP guns range
18	from 14-18scfm (396-510 l/min), thus illustrating
19	that LVLP guns are almost as inefficient as HVLP
20	guns.
21	
22	The main cause of the aforementioned inefficiency of
23	HVLP and LVLP guns is the arrangement of the air
24	passages within the gun body. The design and layout
25	of air passages in the known guns leads to poor
26	internal air flow efficiency.
27	
28	It is therefore the aim of the present invention to
29	provide a spraying apparatus which has a
30	significantly improved air flow efficiency over
31	known spray guns.
32	

BNSDOCID: <WO____03024608A2_I_>

3

1	According to a first aspect of the present
2	invention, there is provided an apparatus for
3	spraying liquid surface treatment material, the
4	apparatus comprising:
5	a liquid inlet for supply of the liquid surface
6	treatment material;
7	a gas inlet for supply of pressurized gas to be
8	mixed with the liquid surface treatment material;
9	an outlet nozzle through which the gas and
10	liquid surface treatment is sprayed;
11	a control needle valve arranged for axial
12	movement on a first axis and adapted to regulate the
13	supply of the liquid surface treatment material to
14	the outlet nozzle;
15	a gas valve operable between an open position
16	and a closed position;
17	a gas chamber communicating with said outlet
18	nozzle and arranged to co-axially surround the
19	control needle valve; and
20	a gas supply passageway having first and second
21	portions with first and second diameters,
22	respectively, the first portion connecting said gas
23	inlet and said gas valve and the second portion
24	connecting said gas valve and said gas chamber;
25	wherein the first and second portions of the
26	gas supply passageway are coaxial and the first and
27	second diameters are substantially equal such that
28	the gas supply passageway has substantially the same
29	diameter over its entire length.
30	
31	Preferably, the gas chamber has a first end portion
32	adjacent the gas supply passageway, the first end

BNSDOCID: <WO____03024608A2_I_>

1	portion having a radius of curvature so as to
2	provide gas to the nozzle in a direction
3	substantially parallel to said first axis, and
4	wherein said apparatus is adapted to provide a
5	smooth flow path for the gas therethrough. The
6	radius of curvature is such that the minimum radius
7	of the internal surface of the first end portion of
8	the gas chamber is 1.3 times the diameter of the gas
9	supply passageway.
10	
11	Preferably, the gas chamber has an inner surface
12	which tapers laterally outwardly from the first end
13	portion of the gas chamber, the taper running in the
14	direction of said outlet nozzle.
15	
16	Preferably, the gas chamber includes a second end
17	portion adjacent said outlet nozzle, the inner
18	surface of said second end portion inwardly tapering
19	towards said nozzle to provide a smooth flow path
20	for gas flowing from the outlet chamber to the
21	nozzle.
22	
23	Preferably, said gas valve is located within said
24	gas supply passageway. Preferably, said gas valve
25	is an axially-sliding piston valve having an
26	aperture therein whose diameter is substantially
27	equal to the diameter of the gas supply passageway.
28	
29	Preferably, said apparatus further comprises a
30	trigger means adapted to operate both said control
31	valve and said gas valve.
32	

1.	Preferably, said control needle valve is partially
2	located within said gas chamber and includes a fluid
3	tube having a fluid tube diameter and a fluid tip
4	having a fluid tip diameter substantially equal to
5	or less than the fluid tube diameter. Preferably,
6	said fluid tube has a tapered throat portion located
7	in said gas chamber, the throat portion having a
8	throat portion diameter which is less than the fluid
9	tube diameter.
10	
11	According to a second aspect of the present
12	invention, there is provided an apparatus for
13	spraying liquid surface treatment material, the
14	apparatus comprising:
15	a housing;
16	a liquid inlet for supply of the liquid surface
17	treatment material;
18	a gas inlet for supply of pressurized gas to be
19	mixed with the liquid surface treatment material;
20	an outlet nozzle through which the gas and
21	liquid surface treatment is sprayed;
22	a control needle valve adapted to regulate the
23	supply of the liquid surface treatment material to
24	the outlet nozzle;
25	a gas supply passageway connecting said gas
26	inlet to said outlet nozzle; and
27	a control means for controlling the control
28	needle valve, the control means comprising a cap
29	member received on said housing and engaged with
30	said control needle valve, the cap member being
31	adapted so as to be adjustable in the axial

6

direction relative to the housing to limit axial 1 movement of the control needle valve. 2 3 Preferably, said cap member and housing are provided 4 with calibrations which indicate the amount of axial 5 adjustment of the needle valve. 7 Preferably, the apparatus further comprises a gas 8 valve operable between an open position and a closed 9 position. 10 11 In a preferred embodiment, the gas valve is located 12 in the gas supply passageway and the apparatus 13 further comprises a trigger means adapted to operate 14 both said control needle valve and gas valve. 15 16 In an alternative preferred embodiment, said control 17 needle valve and gas valve are remotely operated. 18 Most preferably, the control needle valve is 19 remotely operated by way of pressurised gas and the 20 apparatus further comprises a piston chamber and a 21 piston located in the piston chamber, the piston 22 adapted to engage said needle control valve when 23 24 actuated by said pressurised gas. The apparatus also comprises a bore connecting the gas supply 25 passageway and the piston chamber, such that 26 pressurised gas may pass through the bore to the 27 piston chamber when the gas valve is in the open 28 29 position. 30

BNSDOCID: <WO____ 03024608A2 1 >

1 .	Embodiments of the present invention will now be
2	described, by way of example only, with reference to
3	the accompanying drawings, in which:
4	
5	Figure 1 shows a side elevation view of a first
6	embodiment of a spray apparatus;
7	Figure 2 shows a longitudinal cross-section of
8	the first embodiment of the spray apparatus shown in
9	Figure 1;
.0	Figure 3 shows a longitudinal cross-section of
.1	a second embodiment of the spray apparatus;
2	Figure 4 shows a longitudinal cross-section of
L3 .	a third embodiment of the spray apparatus;
.4	Figures 5(a) and 5(b) show plan and side
	elevation views, respectively, of a fourth
L6	embodiment of the spray apparatus;
L7	Figure 6 shows a cross-section through the
L8	fourth embodiment of the spray apparatus, taken
L9	along line VI-VI of Figure 5(a);
20	Figure 7 shows a cross-section through the
21	fourth embodiment of the spray apparatus, taken
22	along line VII-VII of Figure 5(b);
23	Figure 8(a) shows a side elevation of a fifth
24	embodiment of the spray apparatus; and
25	Figure 8(b) shows a longitudinal cross-section
26	through the fifth embodiment shown in Figure 8(a).
27	
28	Referring initially to Figure 1, there is shown a
29	first embodiment of a spraying apparatus, or spray
30	gun, generally designated 10. The spray gun 10
31	includes a housing 11 having a fluid control sleeve
32	12 slidingly attached thereto, an air cap 13 which

8

1	is held on the housing 11 by an air cap ring 13a
2	threadedly received on the housing 11, and a
3	regulating valve 14 for controlling the spray
4	pattern of the gun. Also included on the housing 11
5	is a needle valve cap, or fluid control nut, 15
6	which is attached to an internal needle valve
7	arrangement and is threadedly received on the
8	control sleeve 12 to limit longitudinal adjustment
9	of the needle valve. The needle valve cap 15 is
10	provided with horizontal markings 16 spaced
11	equidistantly about the circumference thereof which,
12	in combination with vertical markings on the housing
13	11, allow the operator to limit the movement of the
14	needle valve and thus the amount of spray material
15	passing through the nozzle. The housing has a
16	horizontal indicator line 17a from which extend a
17	plurality of vertical indicator lines 17b at 1mm
18	intervals. By adjustment of the cap 15, the leading
19	edge of the cap 15 can be adjusted to line up with
20	any of the vertical indicator lines 17b on the
21	housing. In this embodiment, there are ten
22	horizontal markings 16 on the cap 15 at equidistant
23	intervals. Adjustment of the cap 15 can be made
24	such that one of the horizontal markings 16 of the
25	cap 15 can line up with the horizontal indicator
26	line 17a of the housing. Thus, if one horizontal
27	marking 16 of the cap is aligned with the horizontal
28	line 17a of the housing, a 36 degree rotation of the
29	cap will line up the subsequent horizontal marking
30	of the cap 15. This procedure will be explained in
31	more detail below.
	·

1	The embodiment shown in Figure 1 is a manual spray
2	gun having a handle or grip portion 19. The gun 10
3	has a trigger 18 that operates a gas control valve
4	(not shown in Figure 1) and also acts upon the fluid
5	control sleeve 12, such that fluid and gas are
6	introduced to the gun simultaneously.
7	
8	The operation of the first embodiment of the spray
9	gun 10 will now be described with reference to
10	Figure 2. Gas is provided to the gun 10 by way of a
11	gas inlet 20 and is then passed through a straight
12	communicating passageway 21 to the gas control valve
13	23 and on to a gas chamber 26. The communicating
14	passageway 21 has a first portion which connects the
15	gas inlet 20 and the gas control valve 23, and a
16	second portion which connects the gas control valve
17	23 to the gas chamber 26. Both portions of the
18	passageway 21 are arranged co-axially such that the
19	entire passageway is substantially straight. In
20	addition, the diameters of the first and second
21	portions are substantially the same such that there
22	is no narrowing or widening of the passageway until
23	it meets the gas chamber 26.
24	
25	The gas control valve 23 is positioned perpendicular
26	to the gas flow and comprises an axially-sliding
27	piston 24 which is acted upon by the trigger 18.
28	The piston 24 is provided with a bore 25 drilled
29	through the piston 24 perpendicular to the
30	longitudinal axis of the piston 24. The bore 25 is
31	the same size as the bore of the communicating
32	passageway 21, so that when the trigger 18 is

10

depressed, the bore 25 aligns with the passageway 21 1 to provide a smooth passage for the gas through the 2 gas control valve 23 without creating turbulence. 3 Once through the gas control valve 23 and the second 5 portion of the passageway 21, the gas reaches the 6 gas chamber 26. The gas chamber 26 has a first end 7 portion 29 adjacent the gas passageway 21 which has 8 a radius of curvature sufficient to direct the gas 9 flow into a substantially horizontal direction when 10 viewed in the accompanying figures. Preferably, the 11 inside curve 36 of the first end portion 29 has a 12 radius of curvature which is at least 1.3 times the 13 14 diameter of the passageway 21. 15 16 As will be described below, the chamber 26 is also laterally tapered to aid gas flow therethrough. 17 a second end portion of the chamber 26 which is 18 remote from the first end portion 29 is an outlet 19 nozzle 30 through which the combined gas and spray 20 material will exit the gun. The second end portion 21 of the chamber 26 has an inner surface 31 which has 22 a radius of curvature which allows the inner surface 23 24 31 to taper inwardly to the point where it reaches 25 the output nozzle 30. 26 Partially located within the output chamber 26 is a 27 28 control needle valve, generally designated 40. The control needle valve 40 comprises a fluid needle 43, 29 fluid tube 44 and fluid tip 45. The cap 15 is 30 provided with a needle housing 41 in which the fluid 31 needle 43 is housed. The fluid needle 43 is biased 32

BNSDOCID: <WO_____ 03024608A2, | >

11

by a needle spring 46 in a closed position. The 1 needle housing 41 enters into a return spring piston 2 42 fitted to the control sleeve 12 by a retaining 3 means such as a circlip, for example. A return 4 spring 47 is also provided to bias the fluid sleeve 5 12 and trigger 18 in the closed position. 6 7 The fluid needle 43 extends forward through the 8 fluid tube 44 to rest in a seat of the fluid tip 45. 9 The needle spring 46 biases the fluid needle 43 such 10 that it sits in the seat at the fluid tip 45, 11 thereby blocking the exit of fluid from the fluid 12 tube 44 to the output nozzle 30. The diameter of 13 the fluid tip 45 is sized so as to be no greater 14 than the diameter of the fluid tube 44, to prevent 15 disruption to the gas flow through the output 16 chamber 26 to the nozzle 30. Furthermore, the 17 embodiment of Figure 2 shows the use of a fluid tube 18 44 which has a narrower throat portion 44a within 19 the output chamber 26. The throat portion 44a has a 20 diameter less than that of the remainder of the 21 fluid tube 44 and can be provided so as to provide a 22 smoother passage for the gas as passes through the 23 gas chamber 26. 24 25 In operation, the trigger 18 may always move the 26 control sleeve 12 its full stroke. However, the cap 27 15 can be rotationally adjusted on the sleeve 12 to 28 restrict or increase the intrusion of the needle 29 housing 41 into the return spring piston 42. 30 this way, the movement of the fluid needle 43 can be 31 adjusted relative to the full stroke of the sleeve 32

1	12. Where the cap 15 has been adjusted to restrict
2	movement of the fluid needle 43 entirely, a gap
3	exists between the end of the needle housing 41 and
4	the end of the fluid needle 43 which is equal to the
5	full stroke of the control sleeve 12. Thus, the
6	trigger 18 can be operated and move the sleeve 12 to
7	its full stroke without moving the fluid needle 43
8	away from its seat in the fluid tip 45.
9	
10	As previously described with reference to Figure 1,
11	the gun housing has a plurality of vertical
12	indicator lines 17b along a portion of its length at
13	1mm intervals. The cap 15 can be adjusted such that
14	the leading edge of the cap member 15 is aligned
15	with one of the vertical indicator lines 17b. Once
16	aligned, the horizontal markings 16 of the cap 15
17	can be aligned with the horizontal indicator line
18	17a of the housing. Each horizontal marking 16 on
19	the cap 15 represents a reduction or increase in
20	potential fluid needle movement of 0.1mm. In this
21	way, the spray gun is provided with an accurate,
22	repeatable adjustment of the fluid needle 43 in a
23	similar manner to that of a micrometer.
24	
25	If cleaning of the fluid needle 43 is required, the
26	cap 15 can simply be unscrewed from the gun housing
27	and detached along with the fluid needle 43.
28	
29	The embodiment shown in Figures 1 and 2 is of a
30	manual spray gun in which the spray material is fed
31	in under pressure via a fluid inlet 50. A fluid
32	passage 51 then conveys the spray material through

13

the handle portion 19 of the gun to the fluid tube 1 2 44. 3. The embodiment shown in Figure 3 is also a manual 4 spray gun 100 and it operates in the same manner as 5 the embodiment of Figures 1 and 2. Thus, the same 6 reference signs are used for the shared components 7 and will not be described further here. However, 8 where this second embodiment 100 differs from the 9 first embodiment is that the fluid is fed into the 10 gun from a reservoir under gravity. Thus, fluid 11 inlet 60 is located on the top of the gun 100 in 12 this embodiment, and the fluid reservoir (not shown) 13 may be simply screwed into the inlet 60. The fluid 14 is then passed directly into the fluid tube 44 of 15 the gun for delivery to the fluid tip 45 and nozzle 16 30. 17 18 Figure 5 shows a longitudinal cross-section through 19 a third embodiment 150 of the spray apparatus, which 20 is a further modification of the first embodiment of 21 the apparatus shown in Figures 1 and 2. As with the 22 second embodiment 100, the third embodiment of the 23 gun 150 has many of the features of the first 24 embodiment 10. Those shared features have the same 25 reference numerals in Figure 5 and will not be 26 described further. However, where the third 27 embodiment 150 differs from both the first and 28 second embodiments 10,100 is that the gun uses 29 pneumatic rather than mechanical operation of the 30 needle valve. As a result, the third embodiment 150 31 does not have a sliding fluid control sleeve on the 32

14

Instead, the inlet to the chamber 26 is 1 provided with a bore 32 which directs a portion of 2 the pressurised gas in the passageway 21 to act 3 directly upon the piston 42. The needle 43 is 4 adapted with a flange 33 which is located between 5 the needle spring 46 and the piston 42. Thus, as 6 the pressurised gas in the bore 32 acts upon the 7 piston 42, the piston 42 in turn acts upon the 8 needle flange 33, moving the needle 43 away from the 9 seat of the fluid tip 45. As gas is now acting upon 10 11 the piston 42 directly, O-ring seals are added to the piston 42 itself and at the base of the end cap 12 15 so that there is no loss of pressurised gas 13 14 during operation.

15

The purpose of the third embodiment 150 of the gun 16 is to provide a manual spray gun where the fluid 17 needle is operated without the need for a mechanical 18 action. Once the trigger 18 is pulled and the 19 piston bore 25 aligns with the passageway 21 to 20 allow gas into the chamber 26, gas will enter the 21 bore 32 and act upon the piston 42. However, the 22 end cap 15 operates as previously described to limit 23 the movement of the needle 43 and hence control the 24 amount of fluid released at the nozzle 30. Once the 25 trigger 18 is released, a trigger return spring 34 26 returns the trigger 18 and thus closes the 27 passageway 21. With the gas to the piston 42 cut 28 off, the piston 42 and needle 43 return to the 29 closed position under the action of the return 30 31 spring 46.

1	Figures 5(a) and 5(b) show plan and side elevation
2	views, respectively, of a fourth embodiment of the
3	present invention. The fourth embodiment differs
4	from the previously described embodiments in that it
5	is an automatic spray gun rather than a manual gun.
6	The automatic gun, generally designated 200, shares
7	a number of components with the previous
8	embodiments. The gun comprises a housing 211 upon
9	which an air cap 213 is held by an air cap ring 213a
-0	which is threadedly received on the housing 211. In
.1	addition, a regulating valve 214 is provided for
.2	controlling the spray pattern of the gun 200, and a
L3	needle valve cap 215 is also provided in order to
L4	limit the longitudinal adjustment of the fluid
L5	needle of a needle valve, as described in respect of
L6	the first and second embodiments.
L7	
18	Turning now to Figures 6 and 7, the operation of the
19	automatic gun 200 will be described in more detail.
20	Generally, the atomising gas passes through the gun
21.	in the same manner as with the previous embodiments,
22	except that the gas in this instance is supplied by
23	a remote operated valve (not shown), rather than a
24	trigger-operated valve. The gas enters the gun 200
25	at atomising gas inlet 220 and enters output chamber
26	226.
27	
28	The chamber 226 has a radius of curvature 229 at its
29	inlet end so that the incoming atomising gas is
30	directed in a horizontal direction through the
31	output chamber 226 towards the output nozzle 230.
32	Furthermore, the portion of the chamber 226 adjacent

16

the nozzle 230 has an inner surface 231 which has a 1 radius of curvature which allows the inner surface 2 231 to taper inwardly to the point where it reaches 3 the output nozzle 230. 4 5 Partially located within the output chamber 226 is a 6 control needle valve, generally designated 240. 7 control needle valve 240 comprises a fluid tube 244 and a fluid tip 245, where a fluid needle 243 9 . extends forward through the fluid tube 244 to rest 10 in a seat of the fluid tip 245. A needle spring 246 11 biases the fluid needle 243 such that it sits in the 12 seat at the fluid tip 245, thereby blocking the exit 13 of fluid from the fluid tube 244 to the output 14 nozzle 230. The diameter of the fluid tip 245 is 15 16 sized so as to be no greater than the diameter of the fluid tube 244, to prevent disruption to the gas 17 flow through the output chamber 226 to the nozzle 18 230. This embodiment again shows the use of a fluid 19 tube 244 which has a narrower throat portion 244a 20 within the output chamber 226. The throat portion 21 244a can be provided so as to provide a smoother 22 passage for the gas as it leaves the gas inlet 220 23 24 and enters the chamber 226. 25 As this embodiment of the invention is an automatic 26 gun, the trigger, control sleeve, needle housing and 27 return spring piston necessary in the manual gun are 28 replaced by an operating piston 250 which is housed 29 within a piston housing 252 threadedly attached to 30 the main housing 211 of the gun. The cap 215 31 operates in the same manner as described above for 32

BNSDOCID: <WO _____ 03024608A2 | >

17

the previous embodiments so as to restrict the 1 movement of the fluid needle 243 to regulate fluid 2 The markings and indicator lines described in 3 respect of the first and second embodiments may also 4 be used in respect of the automatic gun so that the 5 micrometer-style adjustment of the spray may be 6 achieved. The only difference is that the indicator 7 lines are provided on a lock nut 251 which prevents 8 accidental adjustment of the cap 215. As with the 9 previous embodiments, the fluid needle 243 may be 10 withdrawn from the gun completely for cleaning, as 11 the cap 215 has an internal flange (not shown) which 12 picks up the end of the needle 243 adjacent the cap 1,3 215. 14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

The piston 250 is operated by pressurised gas entering the piston housing 252 from a piston gas inlet 253. As with the atomising gas, the piston gas in controlled by a valve means remote from the gun itself. As the piston gas enters the piston housing 252, the gas pushes the piston 250 back and into contact with a flange 254 on the needle 243. Therefore, as the piston 250 moves back, the needle 243 also moves back, thus opening the fluid tip 245 to spray material located in the fluid tube 244 which has entered the fluid tube 244 via a fluid inlet 260. An abutment (not shown) on the inside of the cap 215 then comes into contact with the needle 243, thus restricting movement of the needle 243. Therefore, if the cap 215 is screwed clockwise onto the housing it will lessen the amount of movement possible by the needle, and if it is screwed anti-

18

clockwise it will increase the amount of needle 1 movement. Hence, fluid flow in the gun is 2 controlled by the adjustment of the cap 215. 3 Figure 7 shows a cross-section of the embodiment of 5 Figures 5 and 6, but along section line VII-VII. 6 The main purpose of this cross-section is to 7 illustrate the lateral taper of the output chamber 8 226, which can be included in any of the previously 9 described embodiments. As can be seen in Figure 7, 10 the inner surface 270 of the chamber 226 tapers 11 laterally outwardly from inlet to outlet. 12 taper again aids the smooth flow of gas through the 13 14 gun. 15 Figures 8(a) and (b) show a fifth embodiment of the 16 spray apparatus, which is an adaptation of the 17 fourth embodiment of the apparatus. The fifth 18 embodiment shares the majority of the features of 19 the fourth embodiment and these will not be 20 described further here, but are shown with the same 21 reference numerals in Figures 8(a) and (b). Where 22 the fifth and fourth embodiments differ is that the 23 end cap 215 in the fifth embodiment has been adapted 24 so as to provide fine adjustment of the movement of 25 the needle valve 243. The only differences visible 26 from outside the apparatus, as shown in Figure 8(a), 27 are that the end cap 215 now fits over the end of 28 the piston housing 252 and is provided with 29 calibrations 216. The calibrations 216 are viewed 30 against a reference line 217 on the piston housing 31 32 252.

BNSDOCID: <WO_____03024608A2_I_>

19

2	Figure 8(b) shows the adaptations to the end cap 215
3	in more detail. It can be seen that the end cap 215
4	has internal threads 270 which co-operate with
5	external threads 272 on the outside of the piston
6	housing 252. With the calibrations 216 on the end
7	cap 215, the operator can easily adjust the
8	permitted movement of the needle 243 to obtain a
9	previous setting. Thus, there is no longer a need
10	for the lock nut of the previous embodiment.
11	Otherwise, the fifth embodiment operates in the same
12	way as the fourth embodiment.
13	
14	An advantage of the present invention over existing
15	spray apparatus is that pressure loss across the gun
16	from gas inlet to the nozzle is reduced thanks to
17	the efficient flow of gas through the gun. In the
18	manual embodiment, the gas passageway is
19	substantially straight and the control valve bore is
20	the same size as that of the passageway so that the
21	flow of gas is uninhibited when the control valve is
22	open. In both the manual and automatic embodiments
23	the inlet to the output chamber has an increased
24	diameter to allow a gradual curve of the gas flow
25	into a substantially horizontal direction through
26	the chamber. Furthermore, with the lateral taper of
27	the chamber wall and the inward taper adjacent the
28	output nozzle, gas flow through the chamber is
29	smooth. The gas flow is further aided as the
30	diameter of the fluid tip of the needle valve does
31	not protrude outwith the diameter of the fluid tube

BNSDOCID: <WO_____ 03024608A2_I_>

WO 03/024608

PCT/GB02/04192

1	and the fluid tube has a tapered throat section in
2	the output chamber.
3	
4.	A further advantage of the present invention is that
5	by providing the cap markings and indicator lines on
6	the gun housing, the operator of the gun may adjust
7	the spray of the gun to an exact setting previously
8.	used. This repeatability means that there no longer
9	a need for the operator to waste valuable time
10	experimenting to retrieve a previously used spray
11	ratio.
12	
13	A possible modification to the present invention
14	would be to incorporate a radioactive ionising
15	source such as a radioactive ionising cartridge, for
16	example, into the atomising gas inlet. Introducing
17	such a source would ionise the atomising gas and
18	would overcome problems associated with static
19	charge build up on atomised spray droplets.
20	
21	This and other modifications and improvements can be
22	incorporated without departing from the scope of the
23	invention.

21

CLAIMS:

1	 An apparatus for spraying liquid surface
2	treatment material, the apparatus comprising:
3	a liquid inlet for supply of the liquid surface
4	treatment material;
5	a gas inlet for supply of pressurized gas to be
6	mixed with the liquid surface treatment material;
7	an outlet nozzle through which the gas and
8	liquid surface treatment is sprayed;
9	a control needle valve arranged for axial
10	movement on a first axis and adapted to regulate the
1.1	supply of the liquid surface treatment material to
12	the outlet nozzle;
13	a gas valve operable between an open position
14	and a closed position;
15	a gas chamber communicating with said outlet
16	nozzle and arranged to co-axially surround the
17	control needle valve; and
18	a gas supply passageway having first and second
19	portions with first and second diameters,
20	respectively, the first portion connecting said gas
21	inlet and said gas valve and the second portion
22	connecting said gas valve and said gas chamber;
23	wherein the first and second portions of the
24	gas supply passageway are coaxial and the first and
25	second diameters are substantially equal such that
26	the gas supply passageway has substantially the same
27	diameter over its entire length.
28	
29	2. The apparatus of Claim 1, wherein said gas

chamber has a first end portion adjacent the gas

BNSDOCID: <WO_____ 03024608A2_I_>

- 1 supply passageway, the first end portion having a
- 2 radius of curvature so as to provide gas to the
- 3 nozzle in a direction substantially parallel to said
- 4 first axis, and wherein said apparatus is adapted to
- 5 provide a smooth flow path for the gas therethrough.

6

- 7 3. The apparatus of Claim 2, wherein said radius
- 8 of curvature is such that the minimum radius of the
- 9 internal surface of the first end portion of the gas
- 10 chamber is 1.3 times the diameter of the gas supply
- 11 passageway.

12

- 13 4. The apparatus of either Claim 2 or Claim 3,
- 14 wherein the gas chamber has an inner surface which
- 15 tapers laterally outwardly from the first end
- 16 portion of the gas chamber, the taper running in the
- 17 direction of said outlet nozzle.

18

- 19 5. The apparatus of any of Claims 2 to 4, wherein
- 20 said gas chamber includes a second end portion
- 21 adjacent said outlet nozzle, the inner surface of
- 22 said second end portion inwardly tapering towards
- 23 said nozzle to provide a smooth flow path for gas
- flowing from the outlet chamber to the nozzle.

25

- 26 6. The apparatus of any preceding claim, wherein
- 27 said gas valve is located within said gas supply
- 28 passageway.

- 30 7. The apparatus of any preceding claim, wherein
- 31 said gas valve is an axially-sliding piston valve
- 32 having an aperture therein whose diameter is

23

1	substantially equal to the diameter of the gas
2 .	supply passageway.
3	
4	8. The apparatus of any preceding claim, wherein
5	said apparatus further comprises a trigger means
6	adapted to operate both said control valve and said
7	gas valve.
8	•
9	 The apparatus of any preceding claim, wherein
10	said control needle valve is partially located
11	within said gas chamber and includes a fluid tube
12	having a fluid tube diameter and a fluid tip having
13	a fluid tip diameter substantially equal to or less
14	than the fluid tube diameter.
15	
16	10. The apparatus of Claim 9, wherein said fluid
17	tube has a tapered throat portion located in said
18	gas chamber, the throat portion having a throat
19	portion diameter which is less than the fluid tube
20	diameter.
21	
22	11. An apparatus for spraying liquid surface
23	treatment material, the apparatus comprising:
24	a housing;
25	a liquid inlet for supply of the liquid surface
26	treatment material;
27	a gas inlet for supply of pressurized gas to be
28	mixed with the liquid surface treatment material;
29	an outlet nozzle through which the gas and
30	liquid surface treatment is sprayed;

24 ·

	•
1	a control needle valve adapted to regulate the
2	supply of the liquid surface treatment material to
3	the outlet nozzle;
4	a gas supply passageway connecting said gas
5	inlet to said outlet nozzle; and
6	a control means for controlling the control
7.	needle valve, the control means comprising a cap
8	member received on said housing and engaged with
9	said control needle valve, the cap member being
LO	adapted so as to be adjustable in the axial
L1	direction relative to the housing to limit axial
L2	movement of the control needle valve.
L3	
L4	12. The apparatus of Claim 11, wherein said cap
L5	member and housing are provided with calibrations
16	which indicate the amount of axial adjustment of the
17	needle valve.
18	
19	13. The apparatus of either Claim 11 or Claim 12,
20	further comprising a gas valve operable between an
21	open position and a closed position.
22	
23	14. The apparatus of Claim 13, wherein the gas
24	valve is located in the gas supply passageway.
25	
26	15. The apparatus of either Claim 13 or Claim 14,
27	further comprising a trigger means adapted to
28	operate both said control needle valve and gas
29	valve.
30	

BNSDOCID: <WO_____ 03024608A2 1_>

25

16. The apparatus of either Claim 13 or Claim 14, 1 . wherein said control needle valve and gas valve are 2 remotely operated. 3 4 5 The apparatus of Claim 16, wherein the control needle valve is remotely operated by way of 6 7 pressurised gas. 8 The apparatus of Claim 17, further comprising a 9 piston chamber and a piston located in the piston 10 11 chamber, the piston adapted to engage said needle control valve when actuated by said pressurised gas. 12 13 The apparatus of Claim 18, further comprising a 14 19. bore connecting the gas supply passageway and the 15 piston chamber, such that pressurised gas may pass 16

through the bore to the piston chamber when the gas

valve is in the open position.

17

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

4/8

SUBSTITUTE SHEET (RULE 26)

5/8

SUBSTITUTE SHEET (RULE 26)

7/8

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 March 2003 (27.03.2003)

PCT

(10) International Publication Number WO 03/024608 A3

(51) International Patent Classification7:

B05B 7/12

(21) International Application Number: PCT/GB02/04192

(22) International Filing Date:

16 September 2002 (16.09.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0122208.2

14 September 2001 (14.09.2001) GB

- (71) Applicant (for all designated States except US): G VIN-CENT LIMITED [GB/GB]; 66 Claudette Avenue, Spalding PE11 2HU (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): ROBINSON, George, Walter [GB/GB]; 15 Shire Avenue, Spalding PE11 1FN (GB).

- (74) Agent: MURGITROYD & COMPANY; Scotland House, 165-169 Scotland Street, Glasgow G5 8PL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SPRAY GUN

(57) Abstract: A spraying apparatus (10) for spraying liquid surface treatment material comprises a gas inlet (20), a liquid inlet (50) and an outlet nozzle (30). The apparatus (10) also comprises a needle valve (40) for regulating the supply of surface treatment material to the nozzle (30). The needle valve (40) is at least partially located within a gas outlet chamber (26) and is adapted so as to cause minimal disruption to the gas flow from the gas inlet (20) to the nozzle (30). To further aid gas flow efficiency, the gas supply passage (21) is substantially straight, the outlet chamber (26) has a laterally outwardly tapering inlet and an inwardly tapering outlet (270, 31) and a smooth radius of curvature (29) from the gas supply passage (21) into the outlet chamber (26). There is also provided a control means for controlling the axial movement of the needle valve (40), the control means being provided with indicator means so as to provide an accurate, repeatable control means.

WO 03/024608 A3

Published:

- -- with international search report
- (88) Date of publication of the international search report: 27 November 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 02/04192

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B05B7/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ \text{IPC 7} & \text{B05B} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	US 3 857 511 A (GOVINDAN T) 31 December 1974 (1974-12-31) column 3, line 34 - line 64; figure 1	1,2,5-10
X	DE 201 950 C (EMIL KÄUBLER) 18 May 1907 (1907-05-18) page 1, line 19 = line 42; figure	1,2,5-10
X	DE 209 899 C (W. GRAAF & CO. GMBH) page 1, line 16 - line 39; figure	1,6,8-10
X -	DE 212 459 C (MINIMAX CONSOLIDATED LIMITED) 30 October 1907 (1907-10-30) page 1, line 26 - line 55; figures	1,6-10
X	FR 1 072 691 A (LEPETIT XAVIER) 15 September 1954 (1954-09-15) column 2, line 22 - line 53; figures	1,6,8-10

Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filling date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
14 May 2003	2 7. 08. 2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	BREVIER F.J.

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 02/04192

	•	PCT/GB 02	2/04192
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	FR 2 485 954 A (WACKERMANN GUY) 8 January 1982 (1982-01-08) page 3, line 5 - line 12; figure 1		2,3
A	US 2 255 189 A (SNOW ROBINSON VICTOR ET AL) 9 September 1941 (1941-09-09) page 2, line 57 - line 66 page 2, line 58 - line 75; figures 4,5		2-5
١	US 1 490 238 A (SULLIVAN DANIEL J) 15 April 1924 (1924-04-15) page 1, line 41 - line 45; figures		7
`			
	·		
	·		
	·		
	<u></u>		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No. PCT/GB 02/04192

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	emational Searching Authority found multiple inventions in this International application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1–10
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-10

An apparatus for spraying liquid surface treatment material, the apparatus comprising:

a liquid inlet for supply of the liquid surface treatment material;

a gas inlet for supply of pressurized gas to be mixed with the liquid surface treatment material;

an outlet nozzle through which the gas and liquid surface treatment is sprayed;

a control needle valve arranged for axial movement on a first axis and adapted so regulate the supply of the liquid surface treatment material to the outlet nozzle;

a gas valve operable between an open position and a closed position:

a gas chamber communicating with said outlet nozzle and arranged to co-axially surround the control needle valve; and a gas supply passageway having first and second portions with first and second diameters, respectively, the first portion connecting said gas inlet and said gas valve and the second portion connecting said gas valve and said gas chamber:

wherein the first and second portions of the gas supply passageway are coaxial and the first and second diameters are substantially equal such that the gas supply passageway has substantially the same diameter over its entire length.

2. Claims: 11-19

An apparatus for spraying liquid surface treatment material, the apparatus comprising:

a housing;

a liquid inlet for supply of the liquid surface treatment material;

a gas inlet for supply of pressurized gas to be mixed with the liquid surface treatment material;

an outlet nozzle through which the gas and liquid surface treatment is sprayed;

a control needle valve adapted to regulate the supply of the liquid surface treatment material to the outlet nozzle; a gas supply passageway connecting said gas inlet to said outlet nozzle; and

a control means for controlling the control needle valve, the control means comprising a cap member received on said housing and engaged with said control neede valve, the cap member being adapted so as to be adjustable in the axial direction relative to the housing to limit axial movement of the control needle valve.

BNSDOCID: <WO_____ 03024608A3, I_>

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/GB 02/04192

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3857511	A	31-12-1974	NONE		
DE 201950	C		NONE		
DE 209899	C		NONE		
DE 212459	С		NONE		
FR 1072691	Α	15-09-1954	NONE		
FR 2485954	Α	08-01-1982	FR	2485954 A1	08-01-1982
US 2255189	Α	09-09-1941	NONE		
US 1490238	A	15-04-1924	NONE		

Form PCT/ISA/210 (patent family annex) (July 1992)