

NOMENCLATURA QUÍMICA INORGÁNICA

Prof. Leopoldo Simoza L

Caracas Venezuela

INTRODUCCIÓN

Quizás la primera lección que un estudiante deba aprender, es que toda educación no es más que autoeducación y que solo aprenderá lo que de una manera directa reclame su interés o exija atención de su parte.

La mayoría de nuestros adolescentes no sabe leer correctamente y por este motivo, no logran estudiar de manera productiva; estudian por obligación y de memoria, sin preocuparse por aprender. No saben expresarse adecuadamente y el sistema los convierte en máquinas repetidoras sin capacidad de razonamiento. Cualquiera sabe que es más fácil recordar una lección cuando nos gusta el tema que cuando nos disgusta. El estudiante debe entender que al incorporar nuevos conocimientos incrementa su cultura y por tanto, su valor como individuo y sus padres deben tener muy en cuenta este concepto y estimular a sus hijos con respecto al estudio. Hay que olvidarse del examen, del profesor o las notas. Hay que estudiar para aprender. La mayor parte de nuestros estudiantes memoriza sin razonar, sin comprender lo que están estudiando cuando lo recomendable es, justamente, olvidarse de memorizar. El alumno que aprende una lección como si fuese poesía suele advertir en pleno examen que si le falta una sola palabra, no sabe cómo continuar. Memoriza las palabras y no los conceptos.

La principal dificultad con que tropiezan los estudiantes de Química radica en la resolución de los problemas numéricos de esta ciencia. La dificultad no reside en los propios cálculos matemáticos, los cuales, por lo general, no requieren más que unas pocas multiplicaciones o divisiones, sino en la falta de comprensión, por parte del estudiante, de los principios en los cuales se basan y en su incapacidad de imaginarlos y visualizarlos, para adoptar un método adecuado de solución.

El estudiante olvida o desconoce, con frecuencia, el significado preciso de la terminología química sin darse cuenta que las leyes, definiciones y enunciados científicos deben ser establecidos en forma exacta y precisa, desprovista de cualquier ambigüedad, sobre todo cuando encierran carácter cuantitativo. Una vaga

comprensión de una palabra, es suficiente para no entender con claridad un enunciado y en consecuencia, puede imposibilitar la resolución de un problema numérico químico determinado.

Iniciamos nuestro programa con el estudio de la Nomenclatura Química.

Se denomina Nomenclatura al conjunto de normas necesarias para nombrar las sustancias u otras especies químicas como los iones y formulación, al procedimiento utilizado para establecer las fórmulas de las sustancias y especies químicas.

El presente trabajo no es más que la recopilación de los apuntes que el autor ha realizado en la preparación de sus clases impartidas en el Colegio La Salle Tienda Honda, Caracas, Venezuela. En estas páginas, hemos recogido lo que consideramos que es necesario que aprendan los alumnos de bachillerato, respetando siempre los contenidos exigidos en los programas vigentes aprobados por las autoridades educativas del país pero, por sobre todas las cosas, tratando de honrar el alto nivel académico que siempre ha caracterizado a nuestra institución.

No hemos pretendido escribir un libro de texto o algún tratado que reemplace su uso. Por el contrario, solo intentamos presentar un cuaderno de trabajo que oriente y facilite el aprendizaje de un tema esencial para todo aquel que se inicia en el fascinante mundo de la química inorgánica.

Si bien el estudio de la nomenclatura y la formulación es necesario, no debe considerarse como un conjunto de reglas que tienen que ser memorizadas sin más. Nuestro objetivo es que aprendan a nombrar correctamente las distintas especies químicas, aunque no de todas las maneras posibles; que reconozcan los compuestos químicos más frecuentes cuando le presenten su fórmula y que las formules, cuando conozcas algunos de sus nombres.

Finalmente, queremos señalar que saber formular o nombrar las sustancias no significa, necesariamente, saber química. La formulación y la nomenclatura forman parte de la química, pero conocer el lenguaje, no significa que se comprenda el significado de las cosas que se dicen.

En este cuaderno de trabajo presentamos los conceptos y reglas que nos permitirán nombras y formular correctamente y como complemento, se proponen ejercicios que permitirán consolidar los conocimientos adquiridos. Al mismo tiempo, se incluirán tablas y listados que faciliten el proceso de aprendizaje evitando así, lamentables pérdidas de tiempo que se ocasionan al tener que consultar otros textos para obtener datos necesarios para la resolución de los ejercicios.

No pretendemos "dulcificar" los problemas de química ni aportar fórmulas mágicas que faciliten su solución. Solo pretendemos suministrar una metodología sistemática que permita al estudiante asimilar los conocimientos básicos y a través del razonamiento deductivo, dar solución a los problemas que se plantean.

Para finalizar, deseamos recordarle al estudiante que solo a través del conocimiento de los conceptos básicos, su comprensión razonada y la profusa ejercitación se podrá aprender de manera eficiente y productiva.

1.- NOMENCLATURA QUIMICA

En un sentido amplio, **nomenclatura química** son las reglas y regulaciones que rigen la designación (la identificación o el nombre) de las sustancias químicas.

Como punto inicial para su estudio es necesario distinguir primero entre compuestos orgánicos e inorgánicos.

Los compuestos orgánicos son los que contienen **carbono**, comúnmente enlazado con hidrógeno, oxígeno, boro, nitrógeno, azufre y algunos halógenos. El resto de los compuestos se clasifican como compuestos inorgánicos.

Los **compuestos inorgánicos** se clasifican según la **función química** que contengan y por el número de elementos químicos que los forman, con reglas de nomenclatura específicas para cada grupo.

Una función química es un conjunto de átomos que imprimen cierta tendencia de una sustancia a reaccionar de manera típica, en presencia de otra. Por ejemplo, los compuestos ácidos tienen propiedades características de la función ácido, debido a que todos ellos tienen el **ión H**⁺¹; y las bases tienen propiedades características de este grupo debido al **ión OH**⁻¹ presente en estas moléculas

Debemos recordar aquí que las principales **funciones químicas** son: **óxidos,** bases, ácidos y sales.

Antes de iniciar de lleno el estudio de la Nomenclatura Química Inorgánica, debemos revisar algunos conceptos básicos relacionados con el tema.

1.1.- Materia

Materia es todo aquello que ocupa lugar en el espacio y posee masa y se forma por la reunión de átomos y moléculas. Las moléculas son átomos unidos entre sí mediante uniones especiales llamadas enlaces químicos. A su vez, los átomos están constituidos por partículas consideradas indivisibles: protones, neutrones y electrones, entre muchas otras.

En los compuestos químicos se unen átomos de más de un elemento, para formar moléculas o bien para formar estructuras muy grandes llamadas polímeros.

1.2.- Átomos

Los átomos son partículas extremadamente pequeñas que por su dimensión, no pueden ser vistos al microscopio ni fotografiados. Por esta razón, para comprender su forma y su comportamiento, se han elaborado muchos modelos que representan su forma. Uno de los más antiguos fue ideado por el gran científico Inglés, John Dalton. Aunque no está actualmente vigente, todavía se emplea para explicar una estructura primitiva de los átomos y la materia. En este modelo, los átomos están constituidos por un núcleo central y electrones, de carga negativa, que giran alrededor de él. A su vez el núcleo está formado por protones, de carga positiva, y neutrones, que no poseen carga. El átomo es neutro, por lo tanto el número de protones es igual al número de electrones. En general la masa de un átomo es aproximadamente la masa del núcleo, pues la masa del electrón es 1840 veces menor que la masa del protón. La masa del neutrón es aproximadamente igual a la masa del protón.

Cada elemento químico está caracterizado por el número de protones que tienen sus átomos.

Este número se denomina número atómico y se representa por la letra mayúscula Z.

Ejemplos:

Elemento	Número atómico Z
Hidrógeno	1
Oxígeno	8
Uranio	92
Helio	2

Se denomina número másico a la suma de protones más neutrones, y se representa con la letra A.

Cuando un átomo pierde o gana electrones se convierte en un ión. Los iones positivos, denominados cationes, tienen defecto de electrones y los iones negativos, denominados aniones, tienen exceso de electrones.

1.3.- Moléculas

Cuando dos o más átomos, de un mismo elemento o de elementos diferentes, se unen mediante uniones químicas (enlaces), se origina una molécula de un compuesto químico.

Ejemplos de moléculas son:

- Ozono: formada por 3 átomos de oxígeno, O₃.
- Cloruro de sodio (sal de mesa): formada por un átomo de cloro y uno de sodio NaCl.
- Amoníaco: formada por 3 átomos de hidrogeno y 1 de nitrógeno.

Existen tres tipos fundamentales de uniones químicas: iónica, covalente y metálica, que posteriormente se tratarán en detalle.

1.4.- Sustancias simples y compuestas

Se denomina sistema material a todo cuerpo o conjunto de cuerpos seleccionado para la observación de acuerdo con ciertas finalidades

Los mismos se clasifican en:

1. Sistema homogéneo: aquel que tiene iguales valores para todas sus propiedades intensivas en las distintas partes del sistema. En otras palabras, son mezclas perfectamente homogéneas en las que los componentes no se distinguen unos de otros. Ejemplos: azúcar disuelta en agua, alcohol y agua, acero. Es importante indicar, que las propiedades intensivas de la materia, también conocidas con el nombre de propiedades características, son aquellas que dependen de la naturaleza del material y que permiten identificarlo, por ejemplo, el punto de fusión, el punto de ebullición, la densidad, la solubilidad, etc.

- 2. Sistema heterogéneo: aquel que tiene distintos valores para alguna de las propiedades intensivas en distintas partes del sistema, y estas partes se encuentran separadas, unas de otras, por superficies de discontinuidad (fases) bien definidas. Ejemplos: agua y aceite, las nubes, espuma de jabón.
- 3. Sistema no homogéneo: aquel en el cual los valores de las propiedades intensivas son distintos en distintas partes del sistema, pero estas partes no se encuentran separadas, unas de otras, por superficies de discontinuidad bien definidas. Ejemplos: aire, agua con agregado de una solución coloreada y sin agitar.

Los sistemas homogéneos pueden ser:

- a. **Sustancias puras**: aquellas que no pueden fraccionarse, sin perder sus propiedades intensivas. Ejemplos: aqua, azúcar.
- Soluciones: aquellas que están formadas por más de una sustancia pura. Ejemplo: acero inoxidable.

A su vez las sustancias puras se clasifican en:

- a. Sustancias simples: que son los denominados elementos químicos.
 Ejemplos: hierro, carbono, que forman parte del acero.
- b. **Sustancias compuestas**: que son los compuestos químicos. Ejemplo: agua, cloruro de sodio.

Cuando una solución está constituida solo por 2 sustancias, aquella que está en menor cantidad se denomina soluto y la otra solvente.

En un sistema, se llama fase al conjunto de las partes del mismo que tiene iguales valores para sus propiedades intensivas y que se encuentran separadas, unas de otras, por superficies de discontinuidad bien definidas. Por lo tanto los sistemas homogéneos están siempre constituidos por una sola fase, y los sistemas heterogéneos por más de una fase.

1.5.- Propiedades extensivas e intensivas

Las propiedades de la materia pueden clasificarse en:

- Extensivas: aquellas que dependen de la cantidad de materia considerada.
 El peso y el volumen son ejemplos de propiedades extensivas.
- Intensivas: aquellas que no dependen de la cantidad de materia considerada. Ejemplos: la densidad, el punto de fusión, el punto de ebullición, el peso específico.

1.6.- Símbolos y Formulas:

Los símbolos son la representación abreviada de los elementos. Un elemento se representa mediante la primera o las dos primeras letras de su nombre. Así, "C" es el símbolo del Carbono. "Ca" el del Calcio; "Cd", el del Cadmio (ya que Ca se utilizó para el Calcio, el Cadmio deberá ser representado mediante la primera y la tercera letra de su nombre); "Cl", representa el Cloro y así, sucesivamente.

En oportunidades, la o las letras del símbolo del elemento hacen referencia a su nombre en Latín, así, el "Cu" representa al Cobre, del latín "*cuprum*"; el "Hg" para el mercurio, del latín "*hidrargirium*"; "Fe" para el hierro, del latín "*ferrum*", etc. También se hace referencia a voces sajonas: "Na" para el Sodio, de "*natrium*" y "K" para el potasio, de "*kalium*".

La agrupación de símbolos nos conduce a representar las sustancias compuestas. Tal agrupación no se hace de manera arbitraria, sino que responde a resultados obtenidos en múltiples y cuidadosos análisis.

1.7.- Tabla de Elementos Químicos

Elemento	Símbolo	Peso atómico	Elemento	Símbolo	Peso atómico
Aluminio	Al	27,0	Molibdeno	Мо	95,95
Antimonio	Sb	121,76	Neodimio	Nd	20,183
Argón	Α	39,944	Neón	Ne	144,27
Arsénico	As	74,91	Níquel	Ni	58,69
Azufre	S	32,06	Nitrógeno	N	14,008

Bario	Ва	137,36	Oro	Au	197,2
Berilio	Ве	9,02	Osmio	Os	190,2
Bismuto	Bi	209,00	Oxígeno	0	16,00
Boro	В	10,32	Paladio	Pd	106,40
Bromo	Br	79,916	Plata	Ag	107,880
Cadmio	Cd	112,41	Platino	Pl	195,23
Calcio	Ca	40,08	Plomo	Pb	207,21
Carbono	С	12,010	Potasio	K	39,096
Cerio	Ce	140,13	Praseodimio	Pr	140,92
Cesio	Cs	132,91	Radio	Ra	226,0
Cloro	Cl	35,457	Rodio	Rh	102,91
Cromo	Cr	52,01	Rubidio	Rb	85,48
Cobalto	Со	58,96	Rutenio	Ru	101,7
Cobre	Cu	63,54	Samario	Sm	150,43
Erbio	Er	107,2	Escandio	Sc	45,10
Estaño	Sn	118,70	Selenio	Se	78,96
Estroncio	Sr	87,63	Silicio	Si	28,06
Hierro	Fe	55,85	Sodio	Na	22,997
Flúor	F	19,00	Tantalio	Ta	180,88
Fósforo	Р	30,98	Telurio	Te	127,61
Gadolinio	Gd	156,9	Terbio	Tb	159,2
Galio	Ga	69,72	Talio	TI	204,39
Germanio	Ge	72,60	Torio	Th	232,12
Helio	He	4,003	Tulio	Tm	169,4
Hidrógeno	Н	1,008	Titanio	Ti	47,90
Indio	In	114,76	Tungsteno	W	183,92
Iridio	Ir	193,1	Uranio	U	238,07
Kriptón	Kr	83,7	Vanadio	V	50,95
Lantano	La	138,91	Xenón	Xe	131,3
Litio	Li	6,94	Yodo	I	126,92
Magnesio	Mg	24,3	Ytrio	Υ	88,92
Manganeso	Mn	54,93	Zinc	Zn	85,38
Mercurio	Hg	200,61	Zirconio	Zr	91,22

1.8.- Número de Oxidación

De forma general y a efectos de formulación, a cada elemento dentro de un compuesto se le asigna un número positivo o negativo denominado valencia, índice, número o grado de oxidación. Dicho índice, que puede considerarse como el número de electrones perdidos o ganados en el ión correspondiente (en el supuesto de que todos los compuestos fueran iónicos) tiene, no obstante, un carácter fundamentalmente operativo, pues sirve para deducir con facilidad las fórmulas de las diferentes combinaciones posibles.

La tabla siguiente muestra los números de oxidación que se asignan a los elementos de más importancia. Cuando se analiza con detenimiento se advierte la existencia de ciertas relaciones entre el índice de oxidación de un elemento y su posición en el sistema periódico de modo que es posible deducir las siguientes reglas básicas:

- a) Los elementos metálicos tienen números de oxidación positivos.
- b) Los elementos no metálicos pueden tener números de oxidación tanto positivos como negativos.
- c) El número de oxidación negativo de un elemento viene dado por la diferencia entre ocho y el número del grupo al que pertenece dentro del sistema periódico, y aparecen a partir del Grupo IV A, este incluido.

Es preciso aclarar que estos números se asignan a los diferentes elementos cuando se hallan formando un compuesto. El número de oxidación de un elemento sin combinar es cero.

Al igual que sucedía con los símbolos, los números de oxidación deben memorizarse, puesto que junto con aquéllos constituyen los pilares básicos de toda formulación química. Es conveniente hacerlo por grupos de elementos con igual número de oxidación, ya que cuando elementos diferentes actúan con idénticos índices de oxidación, dan lugar a fórmulas totalmente análogas.

Metales No Metales

Mon	ovalent	es		o divale	entes		Halógeno	
Litio	Li	+1	Cobre	Cu	+1,+2	Flúor	F	-1
Sodio	Na	+1	Mercurio	Hg	+1,+2	Cloro	Cl	-1,+1,+3, +5,+7
Potasio	K	+1				Bromo	Br	-1,+1,+3, +5,+7
Rubidio	Rb	+1	Mon	o trivale	entes	Iodo	I	-1,+1,+3, +5,+7
Cesio	Cs	+1	Oro	Au	+3	Astato	As	-1,+1,+3, +5,+7
Francio	Fr	+1	-					
Plata	Ag	+1	Di	trivalen	tes		Anfígenos	;
* Amonio	NH_4^+	+1	Hierro	Fe	+2,+3	Oxigeno	О	-2
			Níquel	Ni	+2,+3	Azufre	S	-2,+2,+4,+6
Di	valentes		Cobalto	Co	+2,+3	Selenio	Se	-2,+2,+4,+6
Berilio	Be	+2	Iterbio	Yb	+2,+3	Telurio	Te	-2,+2,+4,+6
Magnesio	Mg	+2	Samario	Sm	+2,+3	Polonio	Po	-2,+2,+4,+6
Calcio	Ca	+2	Europio	Eu	+2,+3			
Estroncio	Sr	+2					Nitrogenoio	les
Bario	Ba	+2	Di t	etravale	ntes	Nitrógeno	N	-3,+1,+3,+5
Radio	Ra	+2	Estaño	Sn	+2,+4	Fosforo	P	-3,+1,+3,+5
Cadmio	Cd	+2	Plomo	Pb	+2,+4	Arsénico	As	-3,+1,+3,+5
Cinc	Zn	+2	Platino	Pt	+2,+4	Antimonio	Sb	-3,+1,+3,+5
			Polonio	Po	+2,+4	Bismuto	Bi	-3,+1,+3,+5
Tri	valentes							
Boro	В	+3					Carbonóide	
Aluminio	Al	+3				Carbono	С	-4,+2,+4
Galio	Ga	+3				Silicio	Si	-4,+2,+4
Indio	In	+3				Germanio	Ge	-4,+2,+4
Talio	TI	+3						
Actinio	Ac	+3				_	Anfótero	-
Itrio	Yt	+3				Cromo	Cr	+2,+3,+6
Escandio	Sc	+3				Manganeso	Mn	+2,+4,+6,+7
Lantanio	La	+3						
EL Amonio que se cor metal			Tabla 1	Númer frecuei		ción de elementos	metálicos y	no metálicos más

2.- Introducción al lenguaje químico

La primera gran clasificación de los compuestos, como ya se ha indicado, es en orgánicos e inorgánicos.

Los compuestos inorgánicos se pueden clasificar según distintos criterios: por ejemplo, por la cantidad de átomos (monoatómicos, diatómicos, triatómicos, etc.), por la variedad de elementos que lo componen (binarios, ternarios, cuaternarios) o los comportamientos químicos que muestren ("función" química), por según ejemplo, en fórmulas genéricas :

Binarios: Óxidos básicos: (M)O

Óxidos ácidos: (NM)O

• Hidruros metálicos: (M)H

Hidruros no metálicos (hidrácidos): H(NM)

Hidrosales: (M)Y

Ternarios: Oxoácidos: H(NM)O

Oxosales: (M-NM)O

Cuaternarios: Sales ácidas: (M)H(NM)O

Sales básicas: (M)(OH)(NM)O

Donde:

M: metal; NM: no metal; H: hidrógeno; O: oxígeno, sin importar cuantos átomos de cada uno.

2.1.- Algunas reglas para la nomenclatura inorgánica

En este trabajo, utilizaremos dos sistemas de nomenclatura: la llamada tradicional o clásica (que por la fuerza del uso no ha sido desplazada y sigue en vigencia) y la basada en los números de oxidación, también conocida como Stock.

Ambos sistemas se apoyan en el mismo criterio: brindar en los nombres información acerca de cuáles son los elementos combinados y con qué estado de oxidación están actuando.

El número de oxidación es un valor convencional que sirve para expresar el la proporción en que se combinan distintos elementos. Reemplaza al concepto más elemental de "valencia", pero a diferencia de éste, puede adoptar valores positivos o negativos. Por convención, en este trabajo se utilizara ambos términos como sinónimos.

La fórmula química de un compuesto se representa con los símbolos químicos de los elementos que lo constituyen, muchas veces acompañados por números que, escritos como subíndice a continuación del símbolo del elemento, indican la atomicidad, esto es, la cantidad de átomos de ese elemento presentes en la

unidad mínima (molécula o unidad). La ausencia de este subíndice implica la presencia de un solo átomo.

Así, cuando escribimos H₂O indicamos que esa sustancia se compone de dos átomos de hidrógeno y un átomo de oxígeno. También podemos interpretar que dos átomos de hidrogeno se han unido a solo un átomo de oxígeno para dar lugar a una molécula de H₂O; así se establece en principio, la valencia; una escala de valores de combinación, ej. : H=1, O=2. Pasando de los números naturales a los enteros, si le asignamos el valor 1 (uno positivo) al hidrógeno, entonces el número de oxidación del oxígeno deberá ser -2 (dos negativo).

Las reglas para la asignación de los números de oxidación de los elementos en sus compuestos son:

- 1- Todos los compuestos son neutros. La suma algebraica de los números de oxidación de los elementos que forman el compuesto, multiplicados por sus respectivas atomicidades debe ser nula (cero). En los iones, dicha suma debe ser igual a la carga del ión.
- 2- El número de oxidación de cualquier sustancia simple debe ser cero.
- 3- El hidrógeno presenta en todos sus compuestos, número de oxidación +1; excepto en los Hidruros, que son compuestos binarios con metales, donde presenta número de oxidación -1.
- 4- El oxígeno siempre presenta número de oxidación -2 excepto en los peróxidos, superóxidos o en combinaciones con el flúor.
- 5- Los metales alcalinos (grupo IA de la Tabla Periódica) y el catión amonio NH₄⁺, presentan en todos sus compuestos, número de oxidación +1
- 6- Los metales alcalino-térreos (grupo IIA de la Tabla Periódica) presentan en todos sus compuestos número de oxidación +2
- 7- El flúor presenta en todos sus compuestos número de oxidación -1.
- 8- El cloro, el bromo y el yodo presentan número de oxidación -1 en sus compuestos binarios pero pueden adoptar valores de +1, +3, +5 o +7 en sus compuestos oxigenados binarios y en los ternarios con oxígeno más hidrógeno o metales.

Estas reglas le permitirá escribir correctamente las fórmulas y deberá tenerlas siempre presente. Además, observe la Tabla periódica, tenga en cuenta que el ordenamiento de los elementos no es caprichoso sino función de propiedades periódicas. Los grupos (columnas) reúnen elementos con propiedades químicas similares, de modo que si conoce la fórmula y nombre de los compuestos de algún elemento, los de su grupo serán análogos.

Reconozca a los elementos como metales o no metales y aquellos que pueden presentar ambos comportamientos (anfóteros o metaloides).

Ejemplos:

- HCI: En este compuesto, el número de oxidación del CI debe ser -1, porque de acuerdo con la regla Nº 3, el hidrógeno tiene siempre número de oxidación +1.
 Como la suma algebraica de los números de oxidación de los componentes de la molécula tiene que ser cero, la única posibilidad para el cloro será -1 pues: +1 -1 = 0
- .- H_2S : el número de oxidación del azufre debe ser -2, puesto que la suma del doble del número de oxidación del hidrógeno (1, regla N^0 3) y el número de oxidación del azufre, debe ser cero: $(2 \times 1) \underline{2} = 0$
- .- CaSO₄: el números de oxidación del oxígeno es -2 (regla Nº 4) y del calcio +2 (regla 6). Si llamamos x al valor desconocido, el número de oxidación del azufre en ese compuesto, tenemos:

$$2 + x + (4 \times (-2)) = 0$$

$$2 + x - 8 = 0$$

$$x = 8 - 2 = 6$$

.- FeSO₃: conocemos solamente el valor del número de oxidación del oxígeno, pero podemos encontrar en la Tabla Nº 1 que los estados de oxidación para el hierro son 2 y 3, y para los compuestos oxigenados del azufre, 2, 4 y 6. Entonces tenemos:

$$X + 2 - (3 \times 2) = 0$$

$$X = 2 - 6$$

$$X = -4$$

los números de oxidación serán 4 para el S, 2 para el Fe.

.-
$$CaCl_2 \rightarrow Ca (+2)$$
; CI (-1)

.-
$$Pb_2O_4 \rightarrow PbO_2 \rightarrow Pb$$
 (+4); O (-2)

$$- I_2O_7 \rightarrow I (+7); O (-2)$$

2.2.- Nomenclatura de Óxidos

- **2.2.1.- Óxidos básicos**: Son sustancias están formadas por oxígeno y un elemento metal. Al momento de nombrarlos se presentan dos situaciones:
 - El metal posee una sola valencia (grupos IA, IIA y IIIA de la Tabla Periódica); entonces, al pronunciar el nombre del Óxido se emplea inicialmente la frase "Óxido de..." seguida del nombre del metal. Para la nomenclatura stock, se hará referencia inicialmente al número de átomos de oxigeno presentes, mediante el uso de prefijos latinos finalizando con la partícula "de" seguida del nombre del metal precedido del prefijo latino de cantidad, correspondiente.

Ejemplos:

Formula	Nomenclatura Tradicional	Nomenclatura Stock	
Na₂O	Óxido de Sodio	Monóxido de di sodio	
Li ₂ O	Óxido de Litio	Monóxido de di Litio	
CaO	Óxido de Calcio	Monóxido de Calcio	
Al_2O_3	Óxido de Aluminio	Tri oxido de di Aluminio	

• El metal posee dos valencias diferentes y por esta razón, dará origen a dos óxidos que deberán ser distinguidos uno del otro.

En el caso de la nomenclatura tradicional, primero se utiliza la palabra "Oxido" seguida del nombre del metal terminado con la partícula "oso" para distinguir al oxido con el metal con menor valencia e "ico", para aquel en que el metal actúa con su mayor número de oxidación.

Para la nomenclatura Stock, el nombre se pronuncia igual que la primera situación (**Óxido de...**, seguido del nombre del metal), agregándole al final la valencia con que actúa el metal, escrita en números romanos y entre paréntesis. Ejemplos de metales con dos valencias:

Formula	Nomenclatura Tradicional	Nomenclatura Stock	
FeO	Óxido Ferroso	Oxido o Monóxido de Hierro (II)	
Fe ₂ O ₃	Óxido Férrico	Oxido o Trióxido de di Hierro (III)	
Cu ₂ O	Óxido Cuproso	Monóxido de di Cobre (I)	
CuO	Óxido Cúprico	Monóxido de Cobre (II)	

• Si el metal posee tres valencias, se empieza nombrando el compuesto con la palabra "Oxido". Para el metal con menor valencia se emplea el prefijo "Hipo..." seguido del nombre del metal con la terminación "oso". El metal con la valencia intermedia será nombrado "Oxido" seguido del nombre del metal terminado en "oso" y el de mayor valencia, "Oxido" y el nombre del metal terminado en "ico".

Formula Nomenclatura Tradicional		Nomenclatura Stock
CrO	Óxido Hipocromoso	Monóxido de Cromo (II)
Cr ₂ O ₃	Óxido Cromoso	Trióxido de di Cromo (III)
CrO ₃	Óxido Crómico	Trióxido de Cromo (VI)
V_2O_3	Óxido Hipovanadioso	Trióxido de di Vanadio (III)
VO ₂	Oxido Vanadioso	Dióxido de Vanadio (IV)
V ₂ O ₅	Oxido Vanádico	Pentóxido de di Vanadio (V)

Obsérvese el empleo de los prefijos latinos para indicar el número de átomos de oxigeno presente en la molécula.

 Si el metal posee cuatro valencias, se siguen las mismas reglas del caso anterior para las tres primeras valencias y para la valencia mayor se utiliza el prefijo "per" y la terminación "ico" para el nombre del metal

Formula	Nomenclatura Tradicional	Nomenclatura Stock
MnO	Óxido Hipo manganoso	Monóxido de Manganeso (II)
MnO ₂	Óxido Manganoso	Di óxido de Manganeso (IV)
MnO ₃	Óxido Mangánico	Tri óxido de Manganeso (VI)
Mn ₂ O ₇	Óxido Per mangánico	Tetra óxido de Manganeso (VII)

Prefijos Latinos	Cantidad de átomos
Mono	1
Di	2
Tri	3
Tetra	4
Penta	5
Hexa	6
Hepta	7
Octa	8
Nona	9
Deca o eneá	10

2.2.2.- Óxidos ácidos: Estas sustancias están formadas por oxígeno y un elemento no-metálico y se ha convenido, para nombrarlos, utilizar la denominación "**Anhídrido**".

Al igual que con los óxidos metálicos, la nomenclatura tradicional se apoya en el empleo de las partículas "Hipo... oso", "oso", "ico" y "per...ico" según el no-metal trabaje con una, dos, tres o cuatro valencias. La nomenclatura stock, toma en cuenta el sub-índice (cantidad de átomos) de cada elemento del compuesto químico; este sistema se auxilia de un conjunto de prefijos latinos, ya mencionados con anterioridad, que denotan o indican la cantidad o proporción de átomos que presentan el oxígeno y el no metal del Óxido ácido. Estos prefijos se colocan antes de las palabras *Óxido de*...y antes del nombre del no-metal.

Ejemplo: N_2O_3 esta fórmula está compuesta por tres átomos de oxígeno y dos de nitrógeno; si empleamos prefijos en sustitución de los números o cantidades de átomos, entonces el nombre de este óxido ácido es trióxido *de* di nitrógeno. Como se observa, antes de la palabra *óxido* se colocó el prefijo *tri*, formándose la palabra Trióxido (tres átomos de Oxígeno), y antes de la palabra *nitrógeno* se colocó el prefijo *di*, formándose la palabra di nitrógeno, (dos átomos de nitrógeno). Más ejemplos a continuación:

Formula	Nomenclatura Tradicional	Nomenclatura Stock	
CO	Anhídrido Carbonoso	Monóxido de Carbono (II)	
CO ₂	Anhídrido Carbónico	Di óxido de Carbono (III)	
B_2O_3	Anhídrido de Boro	Trióxido de di Boro (VI)	
N_2O	Anhídrido Hipo nitroso	Monóxido de di Nitrógeno (I)	
N_2O_3	Anhídrido Nitroso	Tri óxido de di Nitrógeno (III)	
N_2O_5	Anhídrido Nítrico	Pentóxido de di Nitrógeno (V)	
SO	Anhídrido Hiposulfuroso	Monóxido de Azufre (II)	
SO ₂	Anhídrido Sulfuroso	Dióxido de Azufre (IV)	
SO ₃	Anhídrido Sulfúrico	Trióxido de Azufre (VI)	
CIO	Anhídrido Hipocloroso	Monóxido de Cloro (I)	
Cl ₂ O ₃	Anhídrido Cloroso	Trióxido de di Cloro (III)	
Cl ₂ O ₅	Anhídrido Clórico	Pentóxido de di Cloro (V)	
Cl ₂ O ₇	Anhídrido Per Clórico	Heptóxido de di Cloro (VII)	

2.2.3.- Formulación de Óxidos:

Hasta este momento nos hemos aprendido las normas que nos permiten asignar nombres a las sustancias químicas a partir de su fórmula. Ahora realizaremos la operación inversa. A partir del nombre químico de un compuesto, deducir su fórmula.

A primera vista, esta actividad aparenta ser sumamente complicada, sin embargo, es lo contrario.

En primer lugar debemos tomar consciencia que esta operación no es más que una destreza que para desarrollarla solo hace falta práctica. Pero existe una clave. Para poder aprender la técnica correcta de formulación es imprescindible memorizar y manejar con precisión, los números de oxidación de un buen número de elementos.

Debemos aprender de memoria, la Tabla de números de oxidación, de los principales elementos metálicos y no metálicos presentada al inicio de este cuaderno (pág. 11) y manejarla como si se tratara de la tabla de multiplicar.

No intente hacerlo de un solo golpe. Hágalo poco a poco. Si nos aprendemos un grupo por día, al cabo de poco tiempo habremos memorizado toda la tabla sin mucho esfuerzo. Pero no evada este paso.

Dicho esto, iniciemos el trabajo de formulación.

En el caso de los óxidos, debemos proceder de esta manera.

En primer lugar, debemos saber que un oxido o un anhídrido está compuesto por dos elementos. El oxígeno y un metal o un no metal, según sea el caso. Así, la primera acción será escribir el símbolo de ambos elementos, teniendo cuidado de escribir, en primer lugar, el elemento con número de oxidación positivo y luego, el elemento con carga negativa.

Como ejemplo, escribamos la fórmula del Oxido de aluminio:

Seguidamente, en la formula escrita inicialmente, intercambiamos los números de oxidación de ambos elementos en forma de "X", convirtiendo cada uno de ellos, en el subíndice del otro elemento prescindiendo del símbolo que identifica cada carga eléctrica:

De esta manera hemos formulado correctamente el óxido.

Supongamos ahora que se trata de un metal con dos valencias. Se nos pide escribir la fórmula del Óxido Mercúrico.

En primer lugar debemos saber que el mercurio, Hg, tiene dos números de oxidación, + 1 y + 2.

De acuerdo con las reglas, para que el compuesto asuma la terminación "ico" deberá actuar con su mayor valencia, esto es, + 2. Luego escribimos los símbolos de ambos elementos, iniciando por aquel con carga positiva:

Finalmente asignamos los subíndices intercambiando los números de oxidación en "x" y sin símbolos de carga: Hg_2O_2

Como ambos subíndices son simplificables entre sí, procedemos a hacerlo con lo que terminamos con la fórmula del óxido mercúrico: HgO. (Nota: el subíndice 1 se sobreentiende y no se escribe).

En el caso de los no metales se procede exactamente igual.

Veamos el caso de un elemento con tres valencias como el azufre (+2, +4, +6).

Queremos escribir la fórmula del anhídrido hiposulfuroso.

Escribimos los símbolos de ambos elementos: S y O.

De acuerdo con las reglas, la designación "hipo…oso" identifica al compuesto con el no metal de menor valencia (+2), luego tendremos: S⁺² y O⁻²

La fórmula será entonces: S₂O₂ y simplificando los subíndices nos queda: SO

Para un elemento tetravalente, como por ejemplo el cloro (+1, +3, +5 y +7), escribamos la fórmula del anhídrido perclórico.

Escribimos los símbolos correspondientes: Cl y O

Para que sea *perclórico* el cloro deberá estar trabajando con su mayor valencia (+7), luego al igual que en los casos anteriores escribiremos: Cl₂O₇

Ejercicios:

1.- Escriba en la casilla correspondiente, el nombre de los siguientes óxidos según la Nomenclatura tradicional y Nomenclatura Stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
K ₂ O		
NiO		
MgO		
Co ₂ O ₃		
RbO		
Cu ₂ O		
Cr ₂ O ₃		
CaO		
SnO ₂		
BaO		
B_2O_3		
SrO		
SO		
CIO ₃		
SeO ₂		
P_2O_5		
As_2O_3		
CO ₂		
Bi ₂ O		
N_2O_5		
Cs ₂ O		
SiO		
Br ₂ O		

_	_ :		 	 <u> </u>
		las fórmi		

- a. Pentóxido de di bromo:
- b. Anhídrido hiposulfuroso:
- c. Monóxido de di cloro:
- d. Anhídrido perclórico:
- e. Oxido de Litio:
- f. Monóxido de Nitrógeno:
- g. Oxido cuproso:
- h. Oxido mercúrico:
- i. Oxido platinoso:

- j. Oxido áurico:
- k. Anhídrido yodoso
- 3.- Entre las siguientes formulas, tacha aquellas que son incorrectas
 - a. Cl₂O:
 - b. P₂O₅:
 - c. CO₃:
 - d. Br₂O:
 - e. F₂O₃:
 - f. FO₄:
 - g. P₂O:
 - h. SO₄:
- **2.3.- Nomenclatura de Hidróxidos:** Los Hidróxidos se obtienen por la reacción de un Oxido Metálico con agua, en otras palabras, resultan de la hidratación de los óxidos metálicos. Se caracterizan por la presencia del ion Hidroxilo "**OH**" en la molécula.

Para nombrar estas sustancias se prefiere emplear el *Sistema de Stock* sin embargo en muchos libros de texto se continua utilizando la nomenclatura tradicional.

Cuando el metal presenta una única valencia, entonces la sustancia se nombra como *Hidróxido de...,* seguido del nombre del metal. Recuerde que el ion hidroxilo (OH) usa valencia -1.

Para el sistema de nomenclatura Tradicional, se emplean las mismas reglas indicadas para los óxidos.

Formula	Nomenclatura tradicional	Nomenclatura Stock
NaOH	Hidróxido de Sodio	Hidróxido de Sodio
LiOH	Hidróxido de Litio	Hidróxido de Litio
Ca (OH) ₂	Hidróxido de Calcio	Hidróxido de Calcio
Ba (OH) ₂	Hidróxido de Bario	Hidróxido de Bario
$Al_2(OH)_3$	Hidróxido de Aluminio	Hidróxido de Aluminio
KOH	Hidróxido de Potasio	Hidróxido de Potasio
$Mg(OH)_2$	Hidróxido de Magnesio	Hidróxido de Magnesio

Cuando el metal tiene dos valencias, se emplean las mismas reglas utilizadas para los Óxidos (Nomenclatura tradicional) y en el caso de la Nomenclatura Stock, se antepone la frase "*Hidróxido de*..." seguido del nombre del metal y el número de oxidación del mismo entre paréntesis y en números romanos.

Formula	Número de Oxidación	Nomenclatura tradicional	Nomenclatura Stock
Fe (OH) ₂	+2	Hidróxido Ferroso	Hidróxido de Hierro (II)
Cu (OH) ₂	+2	Hidróxido Cúprico	Hidróxido de Cobre (II)
Pb (OH) ₂	+2	Hidróxido Plumboso	Hidróxido de Plomo (II)
Hg (OH) ₂	+2	Hidróxido Mercúrico	Hidróxido de Mercurio (II)
Au (OH) ₃	+3	Hidróxido Áurico	Hidróxido de Oro (III)
Sn (OH) ₄	+4	Hidróxido Estannico	Hidróxido de Estaño (IV)

Si el metal tiene tres valencias

Formula	Número de Oxidación	Nomenclatura tradicional	Nomenclatura Stock
Cr (OH) ₂	+2	Hidróxido Hipocromoso	Hidróxido de Cromo (II)
Cr (OH) ₃	+3	Hidróxido Cromoso	Hidróxido de Cromo (III)
Cr (OH) ₆	+6	Hidróxido Crómico	Hidróxido de Cromo (VI)

Cuatro Valencias:

Formula	Número de Oxidación	Nomenclatura tradicional	Nomenclatura Stock
Mn (OH) ₂	+2	Hidróxido Hipomanganoso	Hidróxido de Manganeso(II)
Mn (OH) ₄	+4	Hidróxido Manganoso	Hidróxido de Manganeso(IV)
Mn (OH) ₆	+6	Hidróxido Mangánico	Hidróxido de Manganeso(VI)
Mn (OH) ₇	+7	Hidróxido Permangánico	Hidróxido de Manganeso(VII)

2.3.1.- Formulación de Hidróxidos:

Para la formulación de los hidróxidos debe tenerse en cuenta lo siguiente:

- a. Al igual que en todas las especies químicas, primero se escribe el símbolo del catión (elemento con valencia positiva) y luego el grupo funcional Hidroxilo (OH⁻).
- b. A excepción de los metales que tienen número de oxidación +1, el grupo funcional se escribe entre paréntesis seguido de un subíndice que se corresponda con la valencia del metal.
- c. En la formulación de los hidróxidos debe tomarse en cuenta que el Mercurio (Hg) no reacciona con agua, debido a lo positivo de su potencial

Ejercicios:

Escriba los nombres de los siguientes hidróxidos según la nomenclatura
 Tradicional y según la Nomenclatura Stock, respectivamente

Formula	Nomenclatura Tradicional	Nomenclatura Stock
Fe(OH) ₂		
Au(OH) ₃		
AI(OH) ₃		
AgOH		
NaOH		
Ba(OH) ₂		
Ca(OH) ₂		
Pb(OH) ₄		
Cr(OH) ₂		
NH₄OH		
Zn(OH) ₂		
Pt(OH) ₄		
KOH		
Cd(OH) ₂		
Mg(OH) ₂		
AuOH		
Ni(OH) ₃		
Sn(OH) ₂		
Ra(OH) ₂		
Cr(OH) ₆		
Mn(OH) ₂		
Pt(OH) ₄		

2.- Escriba la fórmula de los siguientes hidróxidos:

Hidróxido de Cobalto (III)	Hidróxido de Potasio	
Hidróxido de Aluminio	Hidróxido de Litio	
Hidróxido de Magnesio	Hidróxido de Níquel (II)	
Hidróxido de Estaño (II)	Hidróxido de Cinc	
Hidróxido de Bario	Hidróxido Ferroso	
Hidróxido de Amonio	Hidróxido de Radio	
Hidróxido Cobaltico	Hidróxido Crómico	
Hidróxido de Plomo (IV)	Hidróxido Auroso	

2.4.- Nomenclatura de Hidruros:

Son combinaciones del hidrógeno con otro elemento.

2.4.1.- Hidruros metálicos:

Los Hidruros son compuestos binarios que contienen hidrogeno y un metal.

Dependiendo de la estructura y propiedades, los hidruros pueden ser:

Hidruros metálicos o iónicos: se obtienen por la combinación del hidrogeno molecular con cualquier metal alcalino o algunos de los metales alcalinotérreos (Calcio, Ca; estroncio, Sr; Radio, Ra). El hidrogeno actúa con número de oxidación -1 y el metal, con su valencia positiva respectiva, por lo tanto, al asignarles la formula, primero se escribirá el símbolo del metal y luego el del hidrogeno. Se nombraran siempre con la frase "Hidruro de..." y luego el nombre del metal. Si el metal trabaja con varias valencias, se seguirán las mismas reglas que para los óxidos, en lo que se refiere a la nomenclatura tradicional. Para la nomenclatura Stock, se emplean las mismas reglas que se han aplicado a los óxidos e hidróxidos.

Ejemplo: CuH₂ Hidruro cúprico (Nomenclatura tradicional) Hidruro de Cobre II (Nomenclatura Stock)

Formula	Número de Oxidación	Nomenclatura tradicional	Nomenclatura Stock
KH	+1	Hidruro de Potasio	Hidruro de Potasio
LiH	+1	Hidruro de Litio	Hidruro de Litio
CaH ₂	+2	Hidruro de Calcio	Hidruro de Calcio
AlH ₃	+3	Hidruro de Aluminio	Hidruro de Aluminio

• **Hidruros covalentes:** En estos compuestos, el átomo de hidrogeno está unido covalentemente al otro elemento.

Ejemplos: CH₄ (Metano); NH₃ (Amoníaco); PH₃ (Fosfina); AsH₃ (Arsenamina)

 Hidruros No Metálicos o Ácidos Hidrácidos: Son compuestos formados por un no metal e hidrogeno. En este caso, el hidrogeno actúa con su número de oxidación típico (+ 1) y el no metal con su valencia negativa, por lo que al formular, primero se escribirá el símbolo del hidrogeno y luego el del no metal.

En la nomenclatura tradicional a los hidrácidos se les asignara el nombre de "acido...", seguido del nombre del no metal terminado en "hídrico".

En la nomenclatura Stock, se nombran haciendo terminar el nombre del no metal con el sufijo "...**uro**", luego la preposición "**de**" y la palabra "**hidrogeno**".

Ejemplo: **H₂S:** Ácido Sulfhídrico (nomenclatura tradicional)

Sulfuro de hidrogeno (nomenclatura stock)

Formula	Nomenclatura tradicional	Nomenclatura Stock
HBr	Ácido Bromhídrico	Bromuro de Hidrogeno
HCI	Ácido Clorhídrico	Cloruro de Hidrogeno
HI	Ácido Yodhídrico	Yoduro de Hidrogeno
HSe	Ácido Selenhídrico	Selenuro de Hidrogeno

Ejercicios:

1.- Escribir la fórmula de los siguientes hidruros:

Hidruro de Potasio	Hidruro de Magnesio	
Hidruro de Calcio	Hidruro Férrico	
Hidruro de Berilio	Hidruro Platinoso	
Hidruro de Cinc	Hidruro Niqueloso	
Hidruro de Cadmio	Hidruro Plúmbico	

2.- Escribir el nombre de cada hidruro en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
FeH ₂		
PbH ₄		
CrH ₂		
LiH		
KH		
CaH ₂		
AlH ₃		
GaH₃		
NiH ₃		
SnH₄		
NaH		
BH ₃		
CsH		
SrH ₂		
RaH ₂		
TIH ₃		
BeH ₂		
MgH ₂		
ZnH ₂		

2.4.2.- Hidruros No Metálicos:

Son compuestos binarios del hidrógeno (hidrógeno más un no metal)

Tanto la nomenclatura como la formulación de tales compuestos se rige por las normas generales; sin embargo, es preciso hacer constar que las combinaciones binarias del hidrógeno con los elementos F, Cl, Br, I, S, Se, Te, reciben el nombre

especial de hidrácidos, pues tales compuestos, en solución acuosa, se comportan

como ácidos. Por esta razón, cuando se hallan disueltos en agua se nombran

anteponiendo la palabra ácido al nombre abreviado del elemento (que junto con el

hidrógeno forma la combinación), al que se le añade la terminación "hídrico". Los

referidos elementos actúan en tal caso con su número de oxidación más bajo: -1

para los cuatro primeros y -2 para los tres últimos.

Ejemplos de formulación

Si se trata de averiguar la fórmula del ácido clorhídrico, inmediatamente habremos

de reconocer que es una combinación binaria de cloro e hidrógeno en disolución

acuosa (aq). Por preceder el H al Cl en la ordenación de la I.U.P.A.C., se escribirán,

pues, en este orden:

H (+1) CI (-1): HCI (aq.)

He aquí algunos otros ejemplos:

Cloruro de hidrógeno:

Se trata del mismo compuesto, pero sin estar en disolución acuosa, por lo tanto

será: HCI.

Se ha dicho cloruro de hidrógeno y no hidruro de cloro, pues para la nomenclatura el

orden de prioridad que rige es inverso al de la formulación (se nombra en primer

lugar el elemento situado más a la derecha en la fórmula).

Tri hidruro de nitrógeno:

Esta forma de nomenclatura indica directamente que la proporción de hidrógeno a

nitrógeno es de 3:1, luego la fórmula será: NH₃.

Sulfuro de hidrógeno: H (+1) S (-2): H₂S

Ácido fluorhídrico: H (+1) F (-1): HF (aq)

Ejemplos de nomenclatura:

HI: loduro de hidrógeno

29

HBr (aq): Ácido bromhídrico

H₂Se: Selenuro de hidrógeno

PH₃: Trihidruro de fósforo

CaH₂: Hidruro de calcio

NaH: Hidruro de sodio

Ejercicios:

1.- Escribir la fórmula de los siguientes hidruros no metálicos:

Bromuro de Hidrógeno	Ácido Sulfhídrico	
Yoduro de Hidrógeno	Ácido Selenhídrico	
Ácido Clorhídrico	Ácido Yodhídrico	
Sulfuro de Hidrógeno	Cloruro de Hidrógeno	
Ácido Fluorhídrico	Ácido Telurhídrico	

2.- Escribir el nombre de cada hidruro en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
HF		
HBr		
HI		
H ₂ S		
H ₂ S H ₂ Se		
H ₂ Te		
HCN		

2.5.- Otras combinaciones binarias

En este grupo se incluyen las combinaciones metal-no metal y no metal-no metal.

Las combinaciones de Metal-No Metal se denominan *Sales Binarias* o *Sales Neutras*. Entre estas se distinguen aquellas en que el no metal es un halógeno (F, Cl, Br, I, As). Estas reciben el nombre de *Sales Haloideas*.

El elemento más electronegativo se escribe a la derecha y al nombrar la sustancia se emplea el sufijo "uro", que se añade al nombre de dicho elemento, seguido del nombre del otro elemento.

En las combinaciones no metal - no metal, el elemento que en la fórmula figura a la izquierda emplea siempre uno de los número de oxidación positivos. Aquel elemento que figura a la derecha utiliza el número de oxidación negativo, como ya se ha indicado con anterioridad. Así, por ejemplo, en el tri yoduro de fósforo (PI₃), el número de oxidación del yodo es -1; en cambio, en el hepta fluoruro de yodo (IF₇), el número de oxidación del yodo es +7.

Formula	Nomenclatura Tradicional	Nomenclatura Stock
FeS	Sulfuro Ferroso	Mono Sulfuro de Hierro(II)
PF ₃	Fluoruro Fosforoso	Tri Fluoruro de Fósforo (III)
AuCl ₃	Cloruro Áurico	Tricloruro de Oro (III)
SCl₄	Cloruro Sulfuroso	Tetra Cloruro de Azufre (IV)
MnS ₂	Sulfuro Manganoso	Di Sulfuro de Manganeso (IV)

Existen excepciones importantes donde se usa la terminación *uro* tratándose de compuestos de más de dos elementos. Este es el caso de los compuestos de amonio o amoniacales y los Cianuros:

Ejemplos: NH₄I (Yoduro de Amonio)

KCN (Cianuro de Potasio)

En estos casos el ión Amonio, NH₄ † y el ión Cianuro, CN⁻, deben ser considerados como un solo elemento y el compuesto que forman, un compuesto Binario.

Como se puede observar en la tabla del ejemplo, tanto para la Nomenclatura Tradicional como para la Stock, se han empleado las mismas reglas que hemos utilizado hasta ahora.

Ejercicios:

1.- En la casilla correspondiente, escriba el nombre de las siguientes sales binarias

Nombre	Formula	Nombre	Formula
Sulfuro de Aluminio		Cianuro de Potasio	
Nitruro de Magnesio		Nitruro Mercurioso	
Fluoruro de Estaño (II)		Yoduro de Cobre (I)	
Di Cloruro de Plomo		Selenuro Plúmbico	
Di Bromuro de Platino		Tri Yoduro de Oro	
Cloruro de Cobalto (III)		Sulfuro de Plata	
Bromuro Cúprico		Carburo de Aluminio	

2.- Escribir el nombre de cada sal binaria en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
NaCl		
LiCI		
CaBr ₂		
AuBr		
CuBr		
Al_2Se_3		
$MgCl_2$		
CdBr ₂		
SnCl ₂		
K ₂ S		
BaCl ₂		
Csl		
ZnCl ₂		
NiBr ₂		

Las combinaciones binarias no metal-no metal se conocen también con el nombre de Sales *Falsas* o *Pseudosales*. Para escribir sus fórmulas, primero se escribe el símbolo del elemento más electronegativo, es decir, el que está trabajando con valencia positiva. En cuanto a la Nomenclatura, se emplean las mismas reglas utilizadas para las sales binarias.

A fin de evitar confusiones, la IUPAC adoptó la siguiente secuencia de preferencia para establecer cuál es el no metal que debe nombrarse primero, es decir, el que se escribe a la derecha de la fórmula:

Ejemplos:

Nomenclatura Tradicional:

SF₂ Fluoruro Hiposulfuroso

SF₄ Fluoruro Sulfuroso

SF₆ Fluoruro Sulfúrico

Nomenclatura Stock:

SF₂ Di Fluoruro de Azufre (II)

SF₄ Tetra Fluoruro de Azufre (IV)

SF₆ Hexa Fluoruro de Azufre (VI)

Ejercicios:

1.- En la casilla correspondiente, escriba el nombre de las siguientes Pseudosales.

Nombre	Formula	Nombre	Formula
Tetra Cloruro de Carbono		Trisulfuro de Di Nitrógeno	
Tricloruro de Arsénico		Pentacloruro de Nitrógeno	
Pentacloruro de Fósforo		Tribromuro de Boro	
Hexabromuro de Di Silicio		Disulfuro de Carbono	
Hexafluoruro de Carbono		Tricloruro de Arsénico	
Dibromuro de Carbono		Tricloruro de Nitrógeno	
Tricloruro de Fósforo		Tetrabromuro de Carbono	

2.- Escribir el nombre de cada pseudosal en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
AsF ₃		
CCI ₄		
Sbl ₃		
Bi_2S_3		
BF ₃		
IF ₅		
PCI ₅		
NI_5		
CF ₄		
CS ₂		
SiCl ₄		
Sb_2S_3		
N_2Se_5		
CIF ₇		

2.6.- Peróxidos:

Son compuestos binarios que resultan de la sustitución de los dos átomos de hidrógeno del agua oxigenada o peróxido de hidrógeno (H₂O₂) por elementos metálicos.

En estos compuestos el oxígeno tiene de número de oxidación -1.

Hay que tener en cuenta que los átomos de Oxígeno con número de oxidación -1 no existen como átomos aislados, sino que se presentan en grupos de dos átomos (O_2^{-2})

La nomenclatura stock de los peróxidos sigue las mismas reglas que la de los óxidos (K₂O₂, dióxido de di potasio; CaO₂, dióxido de di calcio). También se utiliza el nombre tradicional (peróxido de potasio y peróxido de calcio).

En el caso de los peróxidos en muy importante tener en cuenta que al formular, los sub índices nunca se simplifican y que siempre se escribirá primero el metal y luego el grupo peróxido (O_2^{-2}) .

Ejercicios:

1.- En la casilla correspondiente, escriba la fórmula de las siguientes Peróxidos.

Nombre	Formula	Nombre	Formula
Peróxido de Sodio		Peróxido de Radio	
Peróxido de Potasio		Peróxido de Berilio	
Peróxido de Bario		Peróxido de Estroncio	
Peróxido de Magnesio		Peróxido de Calcio	
Peróxido de Plata		Peróxido de Magnesio	

2.- Escribir el nombre de los siguientes peróxidos:

Formula	Nombre	Formula	Nombre
MgO_2		CaO ₂	
Zn ₂ O ₂		Na ₂ O ₂	
Ag ₂ O ₂		BaO ₂	
KO ₂		Li ₂ O ₂	

Como ya se dijo, los peróxidos se obtienen por reacción de un óxido con oxígeno monoatómico y se caracterizan por la presencia del grupo peróxido o unión peroxídica (-o-o-). Son compuestos diatómicos en donde participan el grupo peróxido y un metal. La fórmula general de los peróxidos es Metal + (O-1) 2-2. En el sistema tradicional se utiliza el nombre peróxido en lugar de óxido y se agrega el nombre del metal con las reglas generales para los óxidos en esta nomenclatura. En las nomenclaturas Stock se nombran los compuestos con las mismas reglas generales para los óxidos.

No todos los metales forman peróxidos y habitualmente lo hacen los del grupo 1A y 2A de la tabla periódica (alcalinos y alcalinotérreos).

$$2Li+1 + (O)2-2 \rightarrow Li2(O)2$$

Compuesto	Nomenclatura Stock	Nomenclatura tradicional
H_2O_2	peróxido de hidrógeno	peróxido de hidrógeno
CaO ₂	peróxido de calcio	peróxido cálcico
ZnO_2	peróxido de zinc (II)	peróxido de Cinc

2.7.- Superóxidos

Los superóxidos, también llamados hiperóxidos, son compuestos binarios que contienen el grupo o anión superóxido, la fórmula general es Metal + (O 2)-1 Aparentemente, el oxígeno tiene valencia -1/2. Generalmente el grupo superóxido reacciona con los elementos alcalinos y alcalinotérreos.

Se nombran como los peróxidos tan sólo cambiando peróxido por superóxido o hiperóxido.

Metal + Grupo superóxido \rightarrow Superóxido $Li^{+1} + (O_2)^{-1} \rightarrow LiO_2$

Compuesto	Nomenclatura
CaO ₄ ó Ca (O ₂) ₂	superóxido de calcio
CdO ₄	superóxido de cadmio

2.8.- Ozónidos

Son compuestos binarios formados por el grupo ozónido, que son 3 oxígenos enlazados con una valencia total de -1. La fórmula general para los ozónidos es Metal + (O3)-1. Los ozónidos se nombran de forma análoga a los peróxidos con la diferencia que en estos compuestos se utiliza el nombre ozónido en lugar de peróxido.

Metal + Grupo ozónido \rightarrow Ozónido $K + (O_3)^{-1} \rightarrow KO_3$

Compuesto	Nomenclatura
KO_3	ozónido de potasio
RbO ₃	ozónido de rubidio
CsO ₃	ozónido de cesio

3.- COMPUESTOS TERNARIOS

3.1.- Ácidos Oxoácidos:

Son compuestos constituidos por Hidrógeno, un no metal y oxígeno, en este orden. Su fórmula general es HaXbOc, en la que X suele ser un elemento no metálico, aunque puede ser un metal de transición con alto número de oxidación (Mn, Cr, W, etc.). Para escribir la fórmula, ya hemos dicho, se debe colocar primero el símbolo del Hidrógeno, seguido del símbolo del no metal y por último, el del oxígeno.

Es importante hacer notar que los oxoácidos se obtienen por disolución de un anhídrido en agua. De esta manera, la forma más sencilla para formular un oxoácido consiste en plantear esta reacción. Por ejemplo, deseamos escribir la fórmula del ácido Permangánico. Procedemos así:

- Conocidos los números de oxidación del manganeso (+2, +4, +6, +7), formulamos el anhídrido correspondiente. Así: Permangánico indica que el anhídrido emplea la mayor valencia (+7) y el anhídrido será: Mn₂O₇. Hidratamos el anhídrido así: Mn₂O₇ + H₂O → H₂Mn₂O₈
- 2. Obsérvese que tan solo hemos sumado los átomos reaccionantes para construir la fórmula del ácido. A continuación, simplificamos los índices y obtenemos la formula final del ácido permangánico: HMnO₄. Como proviene del anhídrido permangánico, asumirá el nombre de ácido permangánico (mantiene el nombre).

Otro ejemplo puede ser el ácido Cromoso. El anhídrido Cromoso será Cr_2O_3 (recuerde que las valencias del Cromo son +2, +3, +6. Empleamos la valencia intermedia). Como no puede simplificarse los índices, esta será la fórmula definitiva del anhídrido Cromoso. Hidratamos: $Cr_2O_3 + H_2O \rightarrow H_2Cr_2O_4$. Simplificamos y obtenemos la fórmula definitiva del ácido Cromoso: $HCrO_2$.

Un último ejemplo puede ser el ácido Hipocloroso. Las valencias positivas del Cloro son +1, +3+, +5, +7. El anhídrido Hipocloroso debe emplear la valencia más pequeña con lo que tenemos: Cl_2O (anhídrido hipocloroso). A continuación hidratamos para obtener el ácido correspondiente: Cl_2O + H_2O \rightarrow $H_2Cl_2O_2$. Simplificamos: HCIO (Ácido Hipocloroso).

Esta es la manera de formular los oxoácidos y nombrarlos según la nomenclatura tradicional. Obsérvese que continuamos empleando los sufijos y prefijos ya estudiados con anterioridad (Hipo...oso; oso; ico; per...ico).

Para nombrar estos ácidos, según la nomenclatura stock, se indica mediante un prefijo (di, tri, tetra...) el número de átomos de oxígeno seguido de la terminación - oxo. A continuación se escribe mediante un prefijo (di, tri, tetra...) el número de átomos del elemento central (no metal) seguido de la raíz del nombre de dicho elemento terminado en -ato, indicando entre paréntesis y con números romanos su número de oxidación. Finalmente se añade "de hidrógeno". Así, por ejemplo, el H₂SO₄ se nombrará como Tetraoxosulfato (VI) de hidrógeno. Observe que para poder nombrar un oxoácido es necesario averiguar antes, el número de oxidación del átomo central.

En la llamada nomenclatura sistemática funcional se empieza nombrando el compuesto con la palabra "ácido" seguida, de forma análoga a la nomenclatura del párrafo anterior, por el número de átomos de oxígeno junto con la raíz del nombre del átomo central, pero terminado en el sufijo "ico", y añadiendo el número de oxidación entre paréntesis en notación romana. En este caso, no es necesario poner al final "de hidrógeno".

Fórmula	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura Tradicional
HNO ₂	Dioxonitrato (III) de hidrógeno	Ácido dioxonítrico (III)	Ácido Nitroso
H ₂ SO ₃	Trioxosulfato (IV) de dihidrógeno	Ácido trioxosulfúrico (IV)	Ácido Sulfuroso
H ₂ SO ₄	Tetraoxosulfato (VI) de dihidrógeno	Ácido tetraoxosulfúrico (VI)	Ácido Sulfúrico
HCIO ₃	Trioxoclorato (V) de hidrógeno	Ácido trioxoclórico (V)	Ácido Clórico
H ₂ CO ₃	Trioxocarbonato (IV) de dihidrógeno	Ácido trioxocarbónico (IV)	Ácido Carbónico
HIO ₄	Tetraoxoyodato (VII) de hidrógeno	Ácido tetraoxoyódico (VII)	Ácido Peryódico
HBO ₂	Dioxoborato de hidrógeno	Ácido dioxobórico	Ácido Bórico

Cuando se trata de formular o nombrar un oxoácido, es muy importante determinar el número de oxidación del elemento central (no metal), para ello se procede de la siguiente manera:

- Debemos tener en cuenta, que los números de oxidación del hidrógeno y el oxígeno siempre serán + 1 y – 2, respectivamente.
- Se multiplica cada uno de los números de oxidación por sus respectivos subíndices en la formula.
- El resultado de la suma algebraica de los productos obtenidos cambiado de signo, será el número de oxidación del átomo central.
- 4. La suma algebraica de los números de oxidación de todos los átomos que integran la formula, debe ser cero.

Ejemplo:

El ácido Nítrico, HNO₃:

 $H^{+1} N^{X} O^{-2}_{3}$: [(+1).(1)+X+(-2).(3)]= +1+X-6= -5 el número de oxidación del nitrógeno será +5

Si elemento central presenta más de un átomo, debe dividirse el resultado de la ecuación por él:

 $H_2S_2O_3$:

$$H_2^{+1} S_2^{\times} O_3^{-2}:[(+1).(2)+X+(-2).(3)]=+2+X-6=-4=>-6+2=X=>-4=X$$
; $X=-4\div 2=-2$

El número de oxidación del azufre será +2

Una vez conocido el número de oxidación del átomo central, nombrarlo según el Sistema de Nomenclatura Tradicional, se reduce a l aplicación de las reglas antes estudiadas.

En lo que respecta al Sistema de Nomenclatura tradicional, existe algunas denominaciones que no se rigen por estas reglas antes mencionadas. Ellas son:

 a. Tioácidos: El prefijo "Tio" delante del nombre de un ácido significa, en pocas palabras, sustitución de un átomo de oxígeno por un átomo de Azufre.

Ejemplo:

En otras palabras, los Tioácidos son Oxoácidos en los que se ha sustituido uno o más grupos oxígenos (O^{-2}) por azufre (S^{-2}) .

Se nombran como el oxoácido introduciendo el prefijo tio. El número de átomos de S introducidos se indica mediante prefijos.

Ejemplos:

$$-0^{-2}$$
 H_3AsO_4
 \rightarrow
 $+4S^{-2}$
 H_3AsS_4 (Ácido Tetratioarsénico)
 $+4S^{-2}$

Nota: El ácido Arsénico se obtiene por la combinación del anhídrido con tres moléculas de agua

$$H_3PO_4$$
 $\xrightarrow{-\mathbf{0}^{-2}}$
 $+ 2\mathbf{S}^{-2}$
 $H_3S_2PO_2$ (Ácido Ditiofosfórico)
 $-\mathbf{0}^{-2}$
 $\xrightarrow{+\mathbf{3}\mathbf{S}^{-2}}$
 H_3PO_4
 H_3PO_4
 $+ \mathbf{3}\mathbf{S}^{-2}$
 H_3S_3PO (Ácido Tritiofosfórico)

b. **Peroxoácidos:** El prefijo "Peroxo" delante del nombre de un ácido significa sustitución de O⁻² por un grupo peróxido, O₂⁻¹.

Nota: La fórmula del ácido peroxodisulfúrico no se simplifica pues el subíndice 2 del grupo peroxo no puede alterarse.

 Ácidos Condensados: Se obtienen de la condensación de dos o más moléculas de ácido con pérdida de agua.

Solo ocurre con ácidos polipróticos (ácidos con más de un átomo de hidrógeno en su fórmula) y se aplica las siguientes reglas:

 Se escribe un coeficiente (antes de la formula) igual, al número de protones que posea la molécula del ácido:

Ejemplo, para el H_2SO_4 se empleará el coeficiente 2, así: $2H_2SO_4$.

 Se restan tantas moléculas de agua como el coeficiente menos la unidad:

Ejemplo:
$$2H_2SO_4 - H_2O \rightarrow H_2S_2O_7$$
 (Ácido Di sulfúrico)

d. Halogenoácidos:

Se sigue las mismas normas, indicando el número de átomos de halógeno.

Ejemplos:

H₂PtCl₄ Tetracloroplatinato (II) de hidrógeno H₂SnCl₆ Hexacloroestannato (IV) de hidrógeno HAuCl₄ Tetracloroaurato (III) de hidrógeno

Nomenclatura Stock:

- Se suprime la terminación de hidrógeno y se incluye el nombre ácido.

- Se sustituye la terminación ato, por ico, en el nombre del átomo central.

Ejemplos:

HCIO₄ Ácido tetraoxoclórico (VII)

HBrO₃ Ácido trioxobrómico (V)

H₃VO₄ Ácido tetraoxovanádico (V)

H₂CO₃ Ácido trioxocarbónico (IV)

H₂Cr₂O₇ Ácido heptaoxodicrómico (VI)

HNO₄ Ácido dioxoperoxonítrico (V)

Resumen y Ejemplos

Fórmula	Nomenclatura Stock	Nomenclatura Tradicional
HBrO	Ácido oxobrómico	Ácido hipobromoso
HCIO ₂	Ácido dioxoclórico (III)	Ácido cloroso
HCIO ₃	Ácido trioxoclórico (V)	Ácido clórico
HCIO ₄	Ácido tetraoxoclórico (VII)	Ácido perclórico
H ₂ SO ₃	Ácido trioxosulfúrico (IV)	Ácido sulfuroso
H ₂ SeO ₄	Ácido tetraoxoselénico (VI)	Ácido selénico
HNO ₂	Ácido dioxonítrico (III)	Ácido nitroso
H ₅ P ₃ O ₁₀	Ácido decaoxotrifosfórico (VI)	Ácido trifosfórico
H ₄ SiO ₄	Ácido tetraoxosilícico	Ácido ortosilícico
HMnO ₄	Ácido tetraoxomangánico (VII)	Ácido permangánico
H ₂ ReO ₄	Ácido tetraoxorrénico (VI)	Ácido rénico
H ₃ S ₃ As	Ácido tritioarsénico (III)	Ácido tritioarsenioso
H ₃ PO ₅	Ácido trioxoperoxofosfórico (V)	Ácido peroxofosfórico
$H_2S_2O_2$	Ácido dioxotiosulfúrico (IV)	Ácido tiosulfuroso
H ₆ TeO ₆	Ácido hexaoxotelúrico (VI)	Ácido ortotelúrico
H ₂ WO ₄	Ácido tetraoxowolfrámico	Ácido wolfrámico

Ejercicios Resueltos:

1.- Supongamos que deseamos escribir la 'formula del ácido Tiofosforoso.

El fosforo trabaja con tres números de oxidación: +1, +3, +5

Escribamos la fórmula del anhídrido correspondiente: Anhídrido fosforoso (valencia +3): tendremos que el anhídrido será P₂O₃.

Hidratamos para obtener el oxoácido: P₂O₃ + H₂O → H₂P₂O₄ Simplificamos: HPO₂

Obtenemos el tioácido: HPO
$$_2$$
 $\xrightarrow{-\mathbf{0}^{-2}}$ HSPO (Ácido Tiofosforoso) $\mathbf{+S}^{-2}$

El ácido peroxofosforoso será:

$$-\mathbf{0}^{-2}$$
 \rightarrow
 $+\mathbf{0}^{-1}_{2}$
HPO₃ (ácido peroxofosforoso)

El ácido condensado no es factible pues el ácido base es monoprótico.

Algunos óxidos de los metales de transición, en los que el metal trabaja con un número de oxidación elevado, se comportan como óxidos ácidos. Por ejemplo, los óxidos de Manganeso (VII) y Cromo (VI):

$$Mn_2O_7 + H_2O \rightarrow H_2Mn_2O_8 = HMnO_4$$
 (Ácido Permangánico)
 $CrO_3 + H_2O \rightarrow H_2CrO_4$ (Ácido Crómico)

El anhídrido fosfórico o pentóxido de fosforo (P₂O₅), puede reaccionar con una, dos o tres moléculas de agua. En estos casos se emplean los prefijos Meta, Piro y Orto para diferenciarlos. Así:

$$\begin{split} P_2O_5 + H_2O &\rightarrow H_2P_2O_6 = HPO_3 & \text{(\'acido Metafosf\'orico)} \\ P_2O_5 + 2H_2O &\rightarrow H_4P_2O_7 & \text{(\'acido Pirofosf\'orico)} \\ P_2O_5 + 3H_2O &\rightarrow H_6P_2O_8 = H_3PO_4 & \text{(\'acido Ortofosf\'orico)} \end{split}$$

Ejercicios:

1.- Escribir el nombre de los siguientes Oxoácidos:

Formula	Nombre	Formula	Nombre
HNO ₃		HMnO ₄	
H ₃ PO ₄		H ₄ P ₂ O ₇	
HNO		H ₃ PO ₅	
HSCN		H ₂ MnO ₄	

2.- Escribir la fórmula de los siguientes ácidos:

Nombre	Fórmula
Ácido Ortobórico	
Ácido Carbónico	
Ácido Peroxosulfúrico	
Ácido Hipocloroso	
Ácido Peryódico	
Ácido Trioxonítrico (V)	
Ácido Sulfúrico	
Ácido Fosforoso	
Ácido Yódico	
Ácido Crómico	

3.- Escribir los nombres de los siguientes oxoácidos según la Nomenclatura indicada:

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
H ₂ SO ₄		
H ₃ PO ₄		
HCIO ₄		
HNO ₃		
H ₃ PO ₃		
$H_2S_2O_7$		
HCIO ₃		
H ₂ CrO ₄		
HMnO ₄		
H ₃ BO ₃		
H ₂ CO ₃		
HIO ₂		

Denominaciones Clásicas Admitidas por I.U.P.A.C.

H ₃ BO ₃ (HBO ₂)n (HBO ₂)3 HOCN H ₂ CO ₃ H ₄ SiO ₄ HNO ₃ HNO ₄ HNO ₂ HOONO H ₃ PO ₄ H ₄ P ₂ O ₈ H ₃ PO ₅ H ₄ P ₂ O ₅ H ₄ P ₂ O ₅ H ₃ PO ₂ H ₃ ASO ₄ H ₃ ASO ₃ H ₃ SO ₄	Ácido (Orto) Fosfórico Ácido Peroxodifosfórico Ácido Fosforoso Ácido Peroxomonofosfórico Ácido Peroxodifosfórico Ácido Ácido Difosforoso Ácido Hipofosforoso Ácido Arsénico Ácido Arsenioso	H ₂ S ₂ O ₈ H ₂ S ₂ O ₃ H ₂ SO ₃ H ₂ SO ₅ H ₂ SeO ₄ H ₂ SeO ₃ H ₂ CrO ₄ H ₂ Cr ₂ O ₇ H ₆ TeO ₆ HCIO ₄ HCIO ₂ HCIO HBrO ₃ HBrO ₂ HBrO H ₅ IO ₆ HIO ₃ HIO HMnO ₄	Ácido Peroxodisulfúrico Ácido Tiosulfúrico Ácido Sulfuroso Ácido Disulfuroso Ácido Selénico Ácido Selenioso Ácido Crómico Ácido Dicrómico Ácido Dicrómico Ácido Ortotelúrico Ácido Perclórico Ácido Clórico Ácido Cloroso Ácido Hipocloroso Ácido Brómico Ácido Bromoso Ácido Peryódico Ácido Yódico Ácido Permangánico
H_2SO_4	Ácido Sulfúrico	$HMnO_4$	Ácido Permangánico
H_2SO_5 $H_2S_2O_7$	Acido Peroxosulfúrico Ácido Disulfúrico	H₂MnO₄ HSCN	Ácido Mangánico Ácido Tiociánico

4.- SALES

Las sales oxisales se obtienen al reaccionar un ácido con un hidróxido, un óxido o un metal activo y están integradas por un anión proveniente de un ácido y un catión proveniente de un hidróxido, del óxido o del metal activo.

Los aniones son átomos o conjunto de átomos con una carga eléctrica neta negativa. De esta manera se tienen:

 a. Aniones monoatómicos: formados por un solo átomo y se nombran con la raíz del nombre del elemento y la terminación "uro".

Ejemplos:

F ⁻	Fluoruro	P^{-3}	Fosfuro	S ⁻²	Sulfuro	Br⁻	Bromuro
N^{-3}	Nitruro	Se ⁻²	Seleniuro	B ⁻	Boruro	As ⁻³	Arseniuro
T ₂ -2	Teliururo	Cl	Cloruro	C^{-4}	Carburo	1-	Yoduro

 b. Oxoaniones: Están constituidos por dos átomos diferentes siendo uno de ellos el oxígeno.

Para asignarles sus nombres se debe tener en cuenta el oxoácido de donde se originan. Si provienen de un oxoácido cuyo nombre termina con la partícula "oso", el anión conservará la raíz del nombre terminado en "**ito**". Si el nombre del oxoácido termina en "ico", el anión conservará la raíz del nombre y el sufijo "**ato**".

Acido de partida	Nombre del	Anión	Acido de partida	Nombre de	l Anión
Ácido Hipocloroso Ácido Hipobromoso	Hipoclorito Hipobromito	CIO ⁻ BrO ⁻	Ácido Cloroso Ácido Bromoso	Clorito Bromito	CIO ₂ BrO ₂
Ácido Hipoyodoso Ácido Nitroso Ácido Sulfuroso	Hipoyodito Nitrito Sulfito	IO ₂ ⁻ NO ₂ ⁻ SO ₃ ⁻	Ácido Yodoso Ácido Nítrico Ácido Sulfúrico	Yodito Nitrato Sulfato	IO ₂ NO ₃ SO ₄ -2
Ácido Clórico Ácido Brómico Ácido Yódico Ácido Carbonoso Ácido Fosforoso	Clorato Bromato Yodato Carbonito Fosfito	CIO ₃ BrO ₃ IO ₃ CO ₂ PO ₃ 3	Ácido Perclórico Ácido Perbrómico Ácido Peryódico Ácido Carbónico Ácido Fosfórico	Perclorato Perbromato Peryodato Carbonato Fosfato	CIO ₄ D BrO ₄ IO ₄ CO ₃ PO ₄ 3

 c. Aniones especiales: Presentan una configuración particular no contemplada en los casos antes descritos.

Oxhidrilo OH^- Peróxido O_2^{-2} Amonio NH_4^+ Cianuro CN^- Dicromato $Cr_2O_7^{-2}$ Cromato CrO_4^{-2} Arseniato AsO_4^{-3} Oxalato $C_2O_4^{-2}$ Permanganato MnO_4^-

<u>Nota</u>: El ión Amonio (NH₄⁺), se comporta como un metal,por lo tanto se escribe siempre a la izquierda en la formula y se menciona al final, en el nombre de los compuestos que lo contienen.

Son compuestos que están formados por la unión de un catión y un anión. Los cationes proceden de un ácido que ha perdido, total o parcialmente, sus hidrógenos.

Sales neutras: En estas sales el anión procede de un ácido que ha perdido todos sus hidrógenos.

• A partir de sales haloideas (compuestos binarios metal-no metal).

Ejemplos: Fluoruro Férrico, FeF₃; Yoduro Cúprico, CuI₂; Sulfuro Niquélico Ni₂S₃; Bromuro de Plata, AgBr

• Si el anión procede de un oxoácido, que ha perdido todos sus hidrógenos, las sales correspondientes se llaman oxosales neutras.

Ejemplos:

Cromato de cobre (II), CuCrO₄ ó Cromáto Cúprico

Clorato de hierro (III) Fe (ClO₃)₃ ó Clorato Férrico

Sulfato de potasio K₂SO₄

Dioxonitrato (III) de mercurio (I) HgNO₂ ó Nitrito Mercurioso

Heptaoxodifosfato (V) de aluminio Al₄ (P₂O₇)₃ ó Difosfato de Aluminio

Trioxocarbonato (IV) de plomo (IV) Pb (CO₃)₂ ó Carbonato Plumboso

Trioxoarseniato (III) de amonio (NH₄)₃AsO₂ ó Arsenito de Amonio

• En la nomenclatura tradicional se sustituyen las terminaciones oso e ico de los ácidos por "**ito**" y "**ato**", respectivamente.

Ejemplos:

Ca (NO₃)₂ nitrato de calcio; nitrato cálcico; Trioxonitrato (V) de calcio

Cu₃BO₃ Borato de cobre (I); Borato cuproso; Trioxoborato (III) de cobre (I)

ZnS₂O₃ Tiosulfato de cinc; Trioxosulfato (VI) de cinc

K₂Cr₂O₇ Dicromato de potasio; dicromato potásico; heptaoxodicromato (VI) de potasio

Sn (CIO)₂ Hipoclorito de estaño (II); Hipoclorito estannoso; Monoxoclorato (I) de estaño (II)

Na₂SiO₃ Metasilicato de sodio; Metasilicato sódico; Trioxosilicato de sodio (NH₄)₂SO₃ Sulfito de amonio; Sulfito amónico; Trioxosulfato (IV) de amonio

• Cuando un grupo de átomos es afectado por un subíndice, se pueden utilizar los prefijos griegos bis, tris, tetraquis,...

Ejemplos:

Ca (NO₃)₂, bis [trioxonitrato (V)] de calcio

Sn (CIO)2, bis [monoxoclorato (I)] de estaño

Ga₄ (P₂O₇)₃, tris [heptaoxodifosfato (VI)] de galio

Ba₃ (ASO₄), bis [tetraoxoarseniato (V)] de bario

Ejercicios:

1.- Escriba la fórmula de cada una de las siguientes sales:

a Carbonato de Amonio	
b Fosfato de Magnesio	
c Carbonato de Mercurio (II)	
d Clorato de Sodio	
e Arseniato de Cinc	
f Perclorato Férrico	
g Hipoclorito de Sodio	
h Sulfito de Hierro (III)	
i Tiocianato de Potasio	
j Hipobromito de Calcio	

2.- Escriba el nombre de cada sal oxisal según el sistema de nomenclatura indicado:

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
NaClO ₃		
Fe(ClO ₄) ₂		
$Mg(IO_3)_2$		
Ca(BrO ₂) ₂		

ZnSO ₄	
Ba(NO ₃) ₂	
Ba(NO ₃) ₂ Ca ₃ (PO ₄) ₂	
K ₂ CO ₃ NaClO	
NaClO	
$Co_2(SO_3)_3$	
$ \begin{array}{c} Co_2(SO_3)_3\\ ZnCO_2\\ Fe_2(SO_3)_3 \end{array} $	
Fe ₂ (SO ₃) ₃	

5.- COMPUESTOS CUATERNARIOS

a. Sales Ácidas

Cuando un ácido poliprótico (que posee más de un átomo de hidrógeno) reacciona con una base, reteniendo en sus productos uno o más átomos de hidrógeno ionizables, da origen a las llamadas "Sales Ácidas" o en otras palabras, una sal ácida se obtiene cuando ocurre la sustitución parcial de los átomos de hidrógeno de un ácido por metales.

El anión conserva algún hidrógeno del ácido de procedencia; por tanto, sólo forman sales ácidos los ácidos que contienen 2 o más hidrógenos.

Nomenclatura Stock:

 Se nombran igual que las sales neutras anteponiendo los prefijos hidrógeno, dihidrógeno, etc., según el número de hidrógenos que queden sin substituir.
 Ejemplos:

KHSO₄ hidrogenosulfato de potasio, hidrogeno tetraoxosulfato (VI) de potasio NaHCO₃ hidrogenocarbonato de sodio, hidrogenotrioxocarbonato (IV) de sodio CaHPO₄ monohidrogenofosfato de calcio, monohidrogenotetraoxofosfato (V) de calcio

NaH₂PO₄ dihidrogenofosfato de sodio, dihidrogenotetraoxofosfato (V) de sodio AgHS hidrogenosulfuro de plata

Cu (HSO₄)₂ hidrogenosulfato de cobre (II), hidrogenotetraoxosulfato (VI) de cobre (II), bis [hidrogenotetraoxosulfato (VI)] de cobre

Ba $(H_2PO_4)_2$ dihidrogenofosfato de bario, dihidrogenotetraoxofosfato (V) de bario, bis [dihidrogenotetraoxofosfato (V)] de bario

Nomenclatura tradicional:

 Se nombran intercalando la palabra ácido después del nombre clásico del anión.

Ejemplos:

NaHSO₄ sulfato ácido de sodio

RbHCO₃ carbonato ácido de rubidio

KH₂PO₄ fosfato diácido de potasio

CaHPO₄ fosfato ácido de calcio

Tradicionalmente, empleando el prefijo bi (para un solo hidrógeno).

Ejemplos:

NaHCO₃ bicarbonato de sodio

KHSO₄ bisulfato de potasio

Ca (HSO₃)₂ bisulfito de calcio

Ejercicios:

1.- Escriba la fórmula de las siguientes sales ácidas:

Fosfato diácido de sodio	Hidrogenfosfato de Magnesio	
Fosfato ácido de sodio	Bicarbonito de Calcio	
Sulfito ácido de sodio	Bicarbonato de Níquel (II)	
Sulfato ácido de sodio	Dihidrógeno fosfato de calcio	

2.- Escriba el nombre de cada sal doble según el sistema de nomenclatura indicado:

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
KHCO ₃		
K ₂ HPO ₄		
NaH ₂ PO ₄		
Na ₂ HPO ₄		
NaHSO ₄		
Fe(HCO ₃) ₂		
NH ₄ HSO ₃		
Fe(HCO ₂) ₂		
LiH ₂ PO ₃		
$Al_2(HPO_4)_3$		
Ni(HSO ₄) ₂	_	
LiHSO ₄		

b. Sales dobles, Triples, etc.

Son sales en las que hay más de un catión y/o más de un anión.

- Al nombrar estas sales se citan primero todos los aniones, en orden alfabético, y después todos los cationes, también en orden alfabético, sin tener en cuenta los prefijos. Después del nombre del anión se puede añadir el adjetivo doble, triple, etc, (número de especies catiónicas).
- Las fórmulas se escriben situando los cationes delante de los aniones y teniendo en cuenta las siguientes reglas:
- a) Los cationes de igual carga se sitúan en orden decreciente de números atómicos, colocando al final los cationes poliatómicos.

Si los cationes tienen distintas cargas se colocan en orden creciente de cargas.

- b) Los aniones se sitúan en el orden siguiente:
 - 1. H⁻
 - 2. O^{-2}
 - OH⁻
 - Otros aniones inorgánicos monoatómicos, en el orden ya visto en los compuestos no metal-no metal: B, Si, C, Sb, As, P, N, Te, Se, S, At, I, Br, Cl, F.
 - 5. Aniones inorgánicos formados por dos o más elementos, diferentes del OH⁻, situando primero los de menor número de átomos.
 - 6. Aniones orgánicos.

Ejemplos:

KMgCl₃ cloruro (doble) de magnesio-potasio

KNaCO₃ carbonato (doble) de potasio-sodio, trioxocarbonato (doble) de potasio-sodio

CsBa $(NO_3)_3$ nitrato (doble) de bario-cesio, trioxonitrato (V) de bario-cesio, tris [trioxonitrato (V)] de bario-cesio

- 7. KNaFeS₂ sulfuro (triple) de hierro (II)-potasio-sodio
- 8. BilBrCl bromuro-cloruro-yoduro de bismuto
- 9. AIFSO₄ fluoruro-sulfato de aluminio

10. K₆BrF(SO₄)₂ bromuro-fluoruro-bis(sulfato) de potasio

11. HgCl (PO₄)₃ cloruro-tris(fosfato) de mercurio (II)

c. Sales Básicas

Son compuestos que resultan de la sustitución parcial de grupos hidroxilos (OH⁻) de una base por un radical.

Ejemplo: $Ca(OH)_2 + HCI \rightarrow CaCIOH + H_2O$

Nomenclatura tradicional:

Se emplean las mismas reglas aplicadas para las sales binarias agregando la palabra "básico" entre el nombre del radical y el nombre del metal.

Ejemplo: CaOHCI Cloruro básico de calcio

Nomenclatura Stock:

Para nombrar las sales básicas por el sistema stock se emplean los prefijos "**oxi**" ó "**hidroxi**". Estos compuestos contienen en su fórmula un grupo "oxi" (O⁻²) ó "hidroxi" (OH⁻) cuyos números de oxidación se suman algebraicamente para obtener la neutralidad de la molécula.

Ejemplo: BiOCI Oxicloruro de Bismuto (III)

Ejercicios:

1.- Escribir la fórmula de las siguientes sales básicas

Nombre	Formula	Nombre	Formula
Nitrito básico de cinc		Hidroxiclorato de Magnesio	
Nitrito básico de calcio		Hidroxibromato de cinc	
Yoduro básico de magnesio		Hidroxiyodato de Bario	
Perclorato básico de Bario		Hidroxiclorito de aluminio	
Hipoclorito básico de calcio		Oxicloruro de Boro	
Hidroxifluoruro de aluminio		Oxinitrato de bismuto	

2.- Escribir el nombre de cada sal básica de acuerdo con el sistema de nomenclatura indicado

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
CaOHNO ₂		

BaOHNO ₃	
MgOHCI	
MgBrO ₂ OH	
AllO ₃ (OH) ₂	
MgBrO₄OH	
BalO ₃ OH	
PbNO ₃ OH	
Ni ₂ CO ₃ (OH) ₂	

6.- HIDRATOS

Son compuestos que tienen unidas un número específico de moléculas de agua, usualmente llamada agua de cristalización. Para nombrarlas se emplea el nombre de la sal indicando a continuación, el número de moléculas de agua presentes mediante el empleo de prefijos griegos.

Ejemplos: CuSO₄.5H₂O Sulfato cúprico pentahidratado

AICI₃.6H₂O Cloruro de aluminio hexahidratado

LiCl.H₂O Cloruro de litio monohidratado

Sr(NO₃)₂.4H₂O Nitrato de Estroncio tetrahidratado

Ejercicios

- 1.- Escribir la fórmula de los siguientes compuestos:
 - a. Carbonato de sodio decahidratado:
 - b. Sulfato de magnesio heptahidratado:
 - c. Sulfato de cinc dihidratado:
 - d. Sulfato de cúprico pentahidratado:
- 2.- Nombrar los siguientes hidratos:

CuSO₄.2H₂O

CoCl₂.6H₂O

FeCl₃.6H₂O

 Na_2SO_4 . $10H_2O$

CaCl₂.2H₂O

Respuestas a los Ejercicios

Ejercicios de la página 21 Óxidos y Anhídridos

1.- Nomenclatura de Óxidos (pág. 21)

Formula	Nomenclatura Tradicional	Nomenclatura Stock
K ₂ O	Óxido de Potasio	Óxido de di Potasio
NiO	Óxido de Níquel	Óxido de Níquel
MgO	Óxido de Magnesio	Óxido de Magnesio
Co ₂ O ₃	Oxido Cobáltico	Tri oxido de di Cobalto (III)
RbO	Óxido de Rubidio	Óxido de Rubidio
Cu ₂ O	Óxido Cuproso	Monóxido de di Cobre (I)
Cr ₂ O ₃	Óxido Cromoso	Trióxido de di Cromo (III)
CaO	Óxido de Calcio	Óxido de Calcio
SnO ₂	Oxido Estannico	Dióxido de Estaño (IV)
BaO	Óxido de Bario	Óxido de Bario
B_2O_3	Óxido de Boro	Óxido de di Boro
SrO	Óxido de Estroncio	Óxido de Estroncio
SO	Anhídrido Hipo sulfuroso	Monóxido de Azufre (II)
Cl ₂ O ₃	Anhídrido Cloroso	Trióxido de di Cloro (III)
SeO ₂	Óxido Selennoso	Dióxido de Selenio (IV)
P ₂ O ₅	Anhídrido Fosfórico	Pentóxido de Fosforo (V)
As ₂ O ₃	Anhídrido Arsenioso	Trióxido de Arsénico (III)
CO ₂	Anhídrido Carbónico	Dióxido de Carbono (IV)
Bi ₂ O	Anhídrido Hipo bismutoso	Monóxido de di Bismuto (I)
N_2O_5	Anhídrido Nítrico	Pentóxido de di Nitrógeno (V)
Cs ₂ O	Óxido de Cesio	Óxido de di Cesio
SiO	Anhídrido Silicoso	Monóxido de Silicio (II)
Br ₂ O	Anhídrido Hipo bromoso	Monóxido de di Bromo (I)

2.- Escriba las fórmulas de los siguientes Óxidos: (pág. 22)

a. Pentóxido de di bromo: Br_2O_5 b. Anhídrido hiposulfuroso: SOc. Monóxido de di cloro: Cl_2O d. Anhídrido perclórico: Cl_2O_7 e. Oxido de Litio: LiO
f. Monóxido de Nitrógeno: NOg. Oxido cuproso: Cu_2O

h. Oxido mercúrico: HgO i. Oxido platinoso: PtO j. Oxido áurico: Au_2O_3 k. Anhídrido yodoso I_2O_3

- 3.- Entre las siguientes formulas, tacha aquellas que son incorrectas (Pág. 22)
 - a. Cl₂O:
 - b. P₂O₅:
 - c. CO₃: Incorrecta
 - d. Br₂O:
 - e. F₂O₃: Incorrecta
 - f. FO₄: Incorrecta
 - g. P₂O: Incorrecta
 - h. SO₄: Incorrecta

Ejercicios de la página 24 Hidróxidos

Escriba los nombres de los siguientes hidróxidos según la nomenclatura
 Tradicional y según la Nomenclatura Stock, respectivamente

Formula	Nomenclatura Tradicional	Nomenclatura Stock
Fe(OH) ₂	Hidróxido Ferroso	Hidróxido de Hierro (II)
Au(OH) ₃	Hidróxido Áurico	Hidróxido de Oro (I)
AI(OH) ₃	Hidróxido de Aluminio	Hidróxido de Aluminio
AgOH	Hidróxido de Plata	Hidróxido de Plata
NaOH	Hidróxido de Sodio	Hidróxido de Sodio
Ba(OH) ₂	Hidróxido de Bario	Hidróxido de Bario
Ca(OH) ₂	Hidróxido de Calcio	Hidróxido de Calcio
Pb(OH) ₄	Hidróxido Plúmbico	Hidróxido de Plomo (IV)
Cr(OH) ₂	Hidróxido Hipo Cromoso	Hidróxido de Cromo (II)
NH₄OH	Hidróxido de Amonio	Hidróxido de Amonio
Zn(OH) ₂	Hidróxido de Cinc	Hidróxido de Cinc
Pt(OH) ₄	Hidróxido Platínico	Hidróxido de Platino (IV)
KOH	Hidróxido de Potasio	Hidróxido de Potasio
Cd(OH) ₂	Hidróxido de Cadmio	Hidróxido de Cadmio
Mg(OH) ₂	Hidróxido de Magnesio	Hidróxido de Magnesio
AuOH	Hidróxido Auroso	Hidróxido de Oro (I)
Ni(OH) ₃	Hidróxido Niquélico	Hidróxido de Níquel (II)

Sn(OH) ₂	Hidróxido Estañoso	Hidróxido de Estaño (II)
Ra(OH) ₂	Hidróxido de Radio	Hidróxido de Radio
Cr(OH) ₆	Hidróxido Crómico	Hidróxido de Cromo (VI)
Mn(OH) ₂	Hidróxido Hipo Manganoso	Hidróxido de Manganeso
Pt(OH) ₂	Hidróxido Platinoso	Hidróxido de Platino (II)

2.- Escriba la fórmula de los siguientes hidróxidos: (Pág. 25)

Hidróxido de Cobalto (III)	Co(OH) ₃	Hidróxido de Potasio	KOH
Hidróxido de Aluminio	Al(OH) ₃	Hidróxido de Litio	LiOH
Hidróxido de Magnesio	Mg(OH) ₂	Hidróxido de Níquel (II)	Ni(OH) ₂
Hidróxido de Estaño (II)	Sn(OH) ₂	Hidróxido de Cinc	Zn(OH) ₂
Hidróxido de Bario	Ba(OH) ₂	Hidróxido Ferroso	Fe(OH) ₂
Hidróxido de Amonio	NH₄OH	Hidróxido de Radio	Ra(OH) ₂
Hidróxido Cobáltico	Co(OH) ₃	Hidróxido Crómico	Cr(OH) ₆
Hidróxido de Plomo (IV)	Pb(OH) ₄	Hidróxido Auroso	AuOH

Ejercicios de la página 27

1.- Escribir la fórmula de los siguientes hidruros:

Hidruro de Potasio	KH	Hidruro de Magnesio	MgH ₂
Hidruro de Calcio	CaH ₂	Hidruro Férrico	FeH ₃
Hidruro de Berilio	BeH ₂	Hidruro Platinoso	PtH ₂
Hidruro de Cinc	ZnH_2	Hidruro Niqueloso	NiH ₂
Hidruro de Cadmio	CdH ₂	Hidruro Plúmbico	PbH ₄

2.- En la casilla correspondiente, escriba el nombre del hidruro según la nomenclatura tradicional y nomenclatura Stock

Formula	Nomenclatura Tradicional	Nomenclatura Stock
FeH ₂	Hidruro ferroso	Di Hidruro de Hierro(II)
PbH₄	Hidruro Plúmbico	Tetra Hidruro de Plomo (IV)
CrH ₂	Hidruro Hipocromoso	Di Hidruro de Cromo (II)
LiH	Hidruro de Litio	Hidruro de Litio
KH	Hidruro de potasio	Hidruro de Potasio
CaH ₂	Hidruro de Calcio	Di Hidruro de Calcio
AlH ₃	Hidruro de Aluminio	Tri Hidruro de Aluminio
GaH₃	Hidruro de Galio	Tri Hidruro de Galio
NiH ₃	Hidruro Niquélico	Tri Hidruro de Níquel (III)
SnH ₄	Hidruro Estannico	Tetra Hidruro de Estaño (IV)

NaH	Hidruro de Sodio	Hidruro de Sodio
BH ₃ (*)	Hidruro de Boro	Hidruro de Boro
CsH	Hidruro de Cesio	Hidruro de Cesio
SrH ₂	Hidruro de Estroncio	Hidruro de Estroncio
RaH ₂	Hidruro de Radio	Hidruro de Radio
TIH ₃	Hidruro de Talio	Hidruro de Talio
BeH ₂	Hidruro de Berilio	Hidruro de Berilio
MgH ₂	Hidruro de Magnesio	Hidruro de Magnesio
ZnH ₂	Hidruro de Cinc	Hidruro de Cinc

^(*) En realidad el BH₃ no existe. El hidruro de boro estable es el B₂H₆ cuyo nombre es diborano (hexahidruro de diboro)

Ejercicios de la página 29

1.- Escribir la fórmula de los siguientes hidruros no metálicos:

Bromuro de Hidrógeno	HBr	Ácido Sulfhídrico	H ₂ S
Yoduro de Hidrógeno	HI	Ácido Selenhídrico	H₂Se
Ácido Clorhídrico	HCI	Ácido Yodhídrico	HI
Sulfuro de Hidrógeno	H ₂ S	Cloruro de Hidrógeno	HCI
Ácido Fluorhídrico	HF	Ácido Telurhídrico	H ₂ Te

2.- Escribir el nombre de cada hidruro en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
HF	Ácido Fluorhídrico	Fluoruro de Hidrógeno
HBr	Ácido Bromhídrico	Bromuro de Hidrógeno
HI	Ácido Yodhídrico	Yoduro de Hidrógeno
H ₂ S	Ácido Sulfhídrico	Sulfuro de Hidrógeno
H ₂ Se	Ácido Selenhídrico	Selenuro de Hidrógeno
H ₂ Te	Ácido Telurhídrico	Telunuro de Hidrógeno
HCN	Ácido Cianhídrico	Cianuro de Hidrógeno

Ejercicios de la página 31

1.- En la casilla correspondiente, escriba el nombre de las siguientes sales binarias

Nombre	Formula	Nombre	Formula
Sulfuro de Aluminio	Al ₂ S ₃	Cianuro de Potasio	KCN
Nitruro de Magnesio	MgN_2	Nitruro Mercurioso	HgN

Fluoruro de Estaño (II)	SnF ₂	Yoduro de Cobre (I)	Cul
Di Cloruro de Plomo	PbCl ₂	Selenuro Plúmbico	PbSe ₂
Di Bromuro de Platino	PtBr ₂	Tri Yoduro de Oro	Aul ₃
Cloruro de Cobalto (III)	CoCl ₃	Sulfuro de Plata	AgS
Bromuro Cúprico	CuBr ₂	Carburo de Aluminio	AI_4C_3

2.- Escribir el nombre de cada sal binaria en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
NaCl	Cloruro de Sodio	Cloruro de Sodio
LiCI	Cloruro de Litio	Cloruro de Litio
CaBr ₂	Bromuro de Calcio	Di Bromuro de Calcio
AuBr	Bromuro Auroso	Bromuro de Oro (I)
CuBr	Bromuro Cuproso	Bromuro de Cobre (I)
Al ₂ Se ₃	Selenuro de Aluminio	Tri Selenuro de Di Aluminio
MgCl ₂	Cloruro de Magnesio	Di Cloruro de Magnesio
CdBr ₂	Bromuro de Cadmio	Di Bromuro de Cadmio
SnCl ₂	Cloruro Estañoso	Di Cloruro de Estaño (II)
K ₂ S	Sulfuro de Potasio	Sulfuro de Di Potasio
BaCl ₂	Cloruro de Bario	Di Cloruro de Bario
Csl	Yoduro de Cesio	Yoduro de Cesio
ZnCl ₂	Cloruro de Cinc	Di Cloruro de Cinc
NiBr ₂	Bromuro Niqueloso	Di Bromuro de Níquel

Ejercicios de la Página 32

1.- En la casilla correspondiente, escriba el nombre de las siguientes Pseudosales.

Nombre	Formula	Nombre	Formula
Tetra Cloruro de Carbono	CCI ₄	Trisulfuro de Di Nitrógeno	N_2S_3
Tricloruro de Arsénico	AsCl ₃	Pentacloruro de Nitrógeno	NCI ₅
Pentacloruro de Fósforo	PCI ₅	Tribromuro de Boro	BBr ₃
Hexabromuro de Di Silicio	Si ₂ Br ₆	Disulfuro de Carbono	CS ₂
Hexafluoruro de Carbono	CF ₆	Tricloruro de Arsénico	AsCl ₃
Dibromuro de Carbono	CBr ₂	Tricloruro de Nitrógeno	NCI ₃
Tricloruro de Fósforo	PCI ₃	Tetrabromuro de Carbono	CBr ₄

2.- Escribir el nombre de cada pseudosal en la casilla correspondiente, según la nomenclatura tradicional y nomenclatura stock:

Formula	Nomenclatura Tradicional	Nomenclatura Stock
AsF_3	Fluoruro Arsenioso	Trifluoruro de Arsénico (III)
CCI ₄	Cloruro Carbónico	Tetracloruro de Carbono (IV)
Sbl ₃	Yoduro Antimonioso	Triyoduro de Antimonio (III)
Bi ₂ S ₃	Sulfuro Bismutoso	Trisulfuro de Di Bismuto (II)
BF_3	Fluoruro de Boro	Trifluoruro de Boro
IF ₅	Fluoruro Yódico	Pentafluoruro de Yodo (V)
PCI ₅	Cloruro Fosfórico	Pentacloruro de Fosforo (V)
NI ₅	Yoduro Nítrico	Pentayoduro de Nitrógeno (V)
CF ₄	Fluoruro Carbónico	Tetra fluoruro de Carbono (IV)
CS_2	Sulfuro Carbonoso	Disulfuro de Carbono (IV)
SiCl ₄	Cloruro Silícico	Tetracloruro de Silicio (IV)
Sb ₂ S ₃	Sulfuro Antimonioso	Trisulfuro de Di Antimonio (III)
N_2Se_5	Selenuro Nítrico	Pentaselenuro de Di Nitrógeno
		(V)
CIF ₇	Fluoruro Perclórico	Heptafluoruro de Cloro (VII)

Ejercicios de la página 34:

1.- En la casilla correspondiente, escriba el nombre de las siguientes Peróxidos.

Nombre	Formula	Nombre	Formula
Peróxido de Sodio	Na ₂ O ₂	Peróxido de Radio	RaO ₂
Peróxido de Potasio	KO ₂	Peróxido de Berilio	Be ₂ O ₂
Peróxido de Bario	BaO ₂	Peróxido de Estroncio	Sr ₂ O ₂
Peróxido de Magnesio	MgO ₂	Peróxido de Calcio	CaO ₂
Peróxido de Plata	Ag_2O_2	Peróxido de Litio	Li ₂ O ₂

2.- Escribir la fórmula de los siguientes peróxidos:

Formula	Nombre	Formula	Nombre
MgO_2	Peróxido de Magnesio	CaO ₂	Peróxido de Calcio
Zn_2O_2	Peróxido de Cinc	Na ₂ O ₂	Peróxido de Sodio
Ag_2O_2	Peróxido de Plata	BaO ₂	Peróxido de Bario
KO ₂	Peróxido de Potasio	Li ₂ O ₂	Peróxido de Litio

Ejercicios de la página 41:

1.- Escribir el nombre de los siguientes Oxoácidos:

Formula	Nombre	Formula	Nombre
HNO ₃	Ácido Nítrico	$HMnO_4$	Ácido Permangánico

H ₃ PO ₄	Ácido Ortofosfórico	H ₄ P ₂ O ₇	Ácido Difosfórico
HNO	Ácido Hiponitroso	H ₃ PO ₅	Ácido Peroxofosfórico
HSCN	Ácido Tiociánico	H ₂ MnO ₄	Ácido Mangánico

2.- Escribir la fórmula de los siguientes ácidos:

Nombre	Fórmula
Ácido Ortobórico	H ₃ BO ₃
Ácido Carbónico	H ₂ CO ₃
Ácido Peroxosulfúrico	H ₂ SO ₅
Ácido Hipocloroso	HCIO
Ácido Peryódico	HIO ₄
Ácido Trioxonítrico (V)	HNO ₃
Ácido Sulfúrico	H ₂ SO ₄
Ácido Fosforoso	H ₃ PO ₃
Ácido Yódico	HIO ₃
Ácido Crómico	H ₂ CrO ₄

3.- Escribir los nombres de los siguientes oxoácidos según la Nomenclatura indicada: (Pag. 42)

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
H ₂ SO ₄	Ácido Sulfúrico	Ácido Tetraoxosulfúrico (VI)
H ₃ PO ₄	Ácido Ortofosfórico	Ácido Tetraoxofosfórico (V)
HCIO ₄	Ácido Perclórico	Ácido Tetraoxoclórico (VII)
HNO ₃	Ácido Nítrico	Ácido Trioxonítrico (V)
H ₃ PO ₃	Ácido Fosforoso	Ácido Trioxofosfórico (III)
$H_2S_2O_7$	Ácido Di sulfúrico	Ácido Heptadisulfúrico (VI)
HCIO ₃	Ácido Clórico	Ácido Trioxoclórico (V)
H ₂ CrO ₄	Ácido Crómico	Ácido Tetraoxocrómico (VI)
HMnO ₄	Ácido Permangánico	Ácido Tetraoxomangánico (VII)
H ₃ BO ₃	Ácido Ortobórico	Ácido Trioxobórico
H ₂ CO ₃	Ácido Carbónico	Ácido Trioxocarbónico (IV)
HIO ₂	Ácido Yodoso	Ácido Dioxoyódico (III)

Ejercicios de la página 47:

1.- Escriba la fórmula de cada una de las siguientes sales:

a Carbonato de Amonio	NH ₄ CO ₃
b Fosfato de Magnesio	$Mg_3(PO_4)_2$

c Carbonato de Mercurio (II)	HgCO₃
d Clorato de Sodio	NaClO ₃
e Arseniato de Cinc	$Zn_3(AsO_4)_2$
f Perclorato Férrico	Fe(ClO ₄) ₃
g Hipoclorito de Sodio	NaClO
h Sulfito de Hierro (III)	$Fe_2(SO_3)_3$
i Tiocianato de Potasio	KSCN
j Hipobromito de Calcio	Ca(BrO) ₂

2.- Escriba el nombre de cada sal oxisal según el sistema de nomenclatura indicado:

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
NaClO ₃	Clorato de sodio	Trioxoclorato de sodio
Fe(ClO ₄) ₂	Perclorato ferroso	bis [tetraoxoxlorato (VII)] de hierro (II)
$Mg(IO_3)_2$	Yodato de Magnesio	bis [trioxoyodato (V)] de magnesio
Ca(BrO ₂) ₂	Bromito de Calcio	bis[dioxobromato (III)] de Dicalcio
ZnSO ₄	Sulfato de Cinc	Tetraoxosulfato de Cinc
Ba(NO ₃) ₂	Nitrato de Bario	bis[trioxonitrato (V)] de Bario
$Ca_3(PO_4)_2$	Fosfato tricálcico	bis[tetraoxofosfato (V)] de Calcio
K ₂ CO ₃	Carbonato de Potasio	Trioxocarbonato (III) de potasio
NaClO	Hipoclorito de sodio	Oxoclorato (I) de sodio
$Co_2(SO_3)_3$	Sulfito cobaltoso	tris[trioxosulfato (IV)] de Cobalto (III)
ZnCO ₂	Carbonito de Cinc	Dioxocarbonato (IV) de Cinc
Fe ₂ (SO ₃) ₃	Sulfito Férrico	Tris[trioxosulfato (IV)] de hierro (III)

Ejercicios de la página 49:

1.- Escriba la fórmula de las siguientes sales ácidas:

Fosfato	diácido	de	NaH ₂ PO ₄	Hidrogenfosfato de Magnesio	MgHPO ₄
sodio					
Fosfato á	cido de so	dio	Na ₂ HPO ₄	Bicarbonito de Calcio	Ca(HCO ₂) ₂
Sulfito ác	ido de sodi	0	NaHSO ₃	Bicarbonato de Níquel (II)	Ni(HCO ₃) ₂
Sulfato áo	cido de soc	lio	NaHSO₄	Dihidrógeno fosfato de calcio	Ca(H ₂ PO ₄) ₂

2.- Escriba el nombre de cada sal doble según el sistema de nomenclatura indicado:

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
KHCO ₃	Bicarbonato de potasio	Hidrógeno carbonato de potasio
K ₂ HPO ₄	Bifosfato de Potasio	Hidrógeno fosfato de di potasio
NaH ₂ PO ₄	Fosfato diácido de Sodio	Dihidrógeno fosfato de sodio
Na ₂ HPO ₄	Bifosfato de sodio	Hidrógeno fosfato de disodio

NaHSO ₄	Bisulfato de sodio	Hidrógeno sulfato de sodio
Fe(HCO ₃) ₂	Bicarbonato ferroso	Hidrógeno carbonato de hierro (II)
NH ₄ HSO ₃	Bisulfito de amonio	Hidrógeno sulfito de amonio
Fe(HCO ₂) ₂	Bicarbonito ferroso	Hidrógeno carbonito de Hierro (II)
LiH ₂ PO ₃	Fosfito diácido de litio	dihidrógeno fosfito de litio
$Al_2(HPO_4)_3$	Bifosfato de aluminio	Hidrógeno fosfato de aluminio
Ni(HSO ₄) ₂	Bisulfato Niqueloso	Hidrógeno sulfato de níquel (II)
LiHSO ₄	Bisulfato de litio	Hidrógeno sulfato de litio

Ejercicios de la Página 51

1.- Escribir la fórmula de las siguientes sales básicas

Nombre	Formula	Nombre	Formula
Nitrito básico de cinc	ZnOHNO ₂	Hidroxiclorato de Magnesio	MgClO₃OH
Nitrito básico de calcio	CaOHNO ₂	Hidroxibromato de cinc	ZnBrO ₃ OH
Yoduro básico de magnesio	MgOHI	Hidroxiyodato de Bario	BalO ₃ OH
Perclorato básico de Bario	BaOHCIO ₄	Hidroxiclorito de aluminio	Al ₂ (ClO ₂ OH) ₃
Hipoclorito básico de calcio	CaOHCIO	Oxicloruro de Boro	BOCI
Hidroxifluoruro de aluminio	Al ₂ (FOH) ₃	Oxinitrato de bismuto	BiONO ₃

2.- Escribir el nombre de cada sal básica de acuerdo con el sistema de nomenclatura indicado

Fórmula	Nomenclatura Tradicional	Nomenclatura Stock
CaOHNO ₂	Nitrito básico de calcio	Hidroxinitrito de Calcio
BaOHNO ₃	Nitrato básico de Bario	Hidroxinitrato de Bario
MgOHCI	Cloruro básico de Magnesio	Hidroxicloruro de Magnesio
MgBrO ₂ OH	Bromito básico de magnesio	Hidroxibromito de magnesio
AllO ₃ (OH) ₂	Yodato dibásico de Aluminio	dihidroxiyodato de aluminio
MgBrO ₄ OH	Perbromato básico de magnesio	Hidroxibromato de magnesio
BalO ₃ OH	Yodato básico de Bario	Hidroxiyodato de bario
PbNO ₃ OH	Nitrato básico de plomo	Hidroxinitrato de plomo
Ni ₂ CO ₃ (OH) ₂	Carbonato dihidroxido de niquel	dihidroxicarbonato Niquélico

Ejercicios de la página 52

- 1.- Escribir la fórmula de los siguientes compuestos:
 - a. Carbonato de sodio decahidratado: Na₂ (CO₃).10H₂O

b. Sulfato de magnesio heptahidratado: MgSO₄, 7H₂O
 c. Sulfato de cinc dihidratado: ZnSO₄, 2H₂O
 d. Sulfato de cúprico pentahidratado: CuSO₄, 5H₂O

2.- Nombrar los siguientes hidratos:

CuSO₄.2H₂O <u>Sulfato cúprico dihidratado</u>

CoCl₂.6H₂O <u>Cloruro Cobaltoso hexahidratado</u>

FeCl₃.6H₂O <u>Cloruro férrico hexahidratado</u>

Na₂SO₄. 10H₂O <u>Sulfato de sodio decahidratado</u>

CaCl₂.2H₂O <u>Cloruro cálcico dihidratado</u>