## Лабораторная работа № 5.1.2 Исследование эффекта Комптона

Тенгиз Пазов

Сентябрь 2025

## 1 Теоретическая справка

Рассмотрим взаимодействие фотона и электрона, как упругое соударение двух частиц. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1$$

$$\frac{\hbar\omega_0}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_1}{c} \cos\theta$$

$$\gamma mv \sin\varphi = \frac{\hbar\omega_1}{c} \sin\theta$$
(1)

Перейдя к длинам волн  $\lambda_0$  и  $\lambda_1$ , получим изменение длины волны рассеянного излучения:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta) \tag{2}$$

Где  $\Lambda_k = \frac{h}{mc} = 2,42 \cdot 10^{-10} \ \text{cm}$  - комптоновская длина волны электрона.

В дальнейшем же будет удобнее пользоваться другим видом полученной формулы:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{3}$$

где  $\varepsilon_0=\frac{E_0}{mc^2}$  - начальная энергия  $\gamma$ -квантов в единицах  $mc^2,\ \varepsilon(\theta)$  - энергия рассеянных  $\gamma$ -квантов в тех же единицах.

Схема экспериментальной установки:



Рис. 1: (a) Блок-схема установки по изучению рассения  $\gamma$ -квантов. (b) Блок-схема измерительного комплекса.

Воспользуемся также тем, что  $\varepsilon(\theta) = AN(\theta)$ , где  $N(\theta)$  - номер канала, соответствующего вершине фотопика при данном  $\theta$ , A - коэффициент пропорциональности. Тогда формулу (3)

можно переписать в другом виде:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{4}$$

Тогда энергию покоя электрона можно определить как:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} \tag{5}$$

Где  $E_{\gamma}=E(0)$  - энергия  $\gamma$ -лучей, испускаемых источником. В нашем случае  $^{137}Cs$ , то есть 662 кэВ.э Для определения погрешности данной величины, можно восользоваться следующей формулой:

$$\sigma_{mc^2} = E_{\gamma} \cdot \sqrt{\left(\frac{\partial f}{\partial A} \cdot \sigma_A\right)^2 + \left(\frac{\partial f}{\partial B} \cdot \sigma_B\right)^2} = \frac{E_{\gamma}}{(B - A)^2} \cdot \sqrt{A^2 \cdot \sigma_B^2 + B^2 \cdot \sigma_A^2} \tag{6}$$

где A = N(90); B = N(0)

## 2 Ход работы

По измеренным данным составим таблицу и построим график зависимости  $\frac{1}{N(\theta)} = f(1-\cos\theta)$ .

| $\theta,^{\circ}$               | 0   | 10    | 20    | 30    | 40    | 50    | 60    | 70    | 80    | 90    | 100   | 110   | 120   |
|---------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $1-\cos\theta$                  | 0   | 0,015 | 0,060 | 0,134 | 0,234 | 0,357 | 0,500 | 0,658 | 0,826 | 1,000 | 1,174 | 1,342 | 1,500 |
| N                               | 908 | 870   | 760   | 650   | 620   | 571   | 542   | 495   | 450   | 411   | 378   | 290   | 275   |
| $\sigma_N$                      | 1   | 1     | 1     | 1     | 1     | 1     | 1     | 1,5   | 1     | 1     | 1     | 1     | 1,5   |
| $\frac{1}{N}$ , $10^{-3}$       | 1,1 | 1,1   | 1,3   | 1,5   | 1,6   | 1,8   | 1,8   | 2     | 2,2   | 2,4   | 2,6   | 3,4   | 3,6   |
| $\sigma_{\frac{1}{N}}, 10^{-6}$ | 1,2 | 1,3   | 1,73  | 2,37  | 2,60  | 3,06  | 3,40  | 4,08  | 4,94  | 5,92  | 7,00  | 11,89 | 13,22 |

Таблица 1 – Зависимость количества частиц от угла рассеяния и соответствующие статистические погрешности



Из графика получается<br/>(погрешность 1/A можно посчитать как  $\frac{1}{A^2}\cdot\sigma_A)$ 

$$A = (1, 43 \pm 0, 1) \cdot 10^{-3}$$

Чтобы найти  $N_{\text{наил}}$  экстраполируем прямую до пересечения с х = 0.

$$\frac{1}{N_{\rm haur}(0)} = (1,1\pm 0,03)\cdot 10^{-3}$$

Откуда получаем, что  $N_{\text{наил}}(0)=859, 8\pm22, 1$ . Чтобы найти  $\frac{1}{N_{\text{наил}}(90)}$  проведем вертикальную прямую 1 -  $\cos(\theta)=1$  Теперь найдём  $N_{\text{наил}}(0)$  и  $N_{\text{наил}}(90)$ , используя данные значения.

$$N_{\text{наил}}(90) = 385, 5 \pm 14, 3$$

Получается энергия покоя электрона(учитывая, что  $E_{\gamma}=662$  кэВ, по формуле (5)).

$$mc^2 = 538 \pm 24$$
кэВ

## 3 Вывод

В ходе данной работы была найдена энергия покоя электрона. Значение получилось  $mc_{
m skcn}^2=538\pm24$  кэВ, теоретическое же значение  $mc_{
m reop}^2=511$  кэВ.