Homework Assignment 4

Zhaoyang Xu

September 29, 2020

Contents

1	Q-lea	rning and SARSA (50 points)					
	1.1						
	1.2		2				
	1.3		2				
	1.4		2				
2	Intro	Introduction of New Products (25 points)					
3	Empi	rical comparison of FTL and Hedge (25 points)	4				
	3.1		4				
	3.2		4				
	3.3						

1 Q-learning and SARSA (50 points)

Sarsa is on-policy algorithm, we update Q by

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1} - Q(s_t, a_t))]$$

Q-learning is off-policy algorithem, we update Q by

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))]$$

1.1

Figure 1: Apply Q-learning with $\epsilon=0.1$ and $\alpha=0.1$

-12	-12	-11	-10	-9	-8	-7	-7	-6	-5	-4	-3
-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
-13	0	0	0	0	0	0	0	0	0	0	0

Figure 2: Final state value by Q-learning

1.2

Figure 3: Apply Sarsa with $\epsilon=0.1$ and $\alpha=0.1$

-15	-14	-13	-12	-11	-10	-8	-7	-6	-5	-4	-3
-15	-14	-13	-11	-10	-10	-8	-7	-6	-4	-3	-2
-16	-15	-14	-12	-12	-10	-9	-8	-7	-6	-2	-1
-17	0	0	0	0	0	0	0	0	0	0	0

Figure 4: Final state value by Sarsa

1.3

For the last 100 episodes, Sarsa gave a higher average accumulated reward. Sarsa is an on-policy algorithm, it follows the policy which is learning. Compared with Q-learning, it is more "safe". For the last 100 episodes, Sarsa has less probability to get rewards -100. So, Sarsa will give a higher average accumulated reward. Also, it is clear that Sarsa is higher in figure 5.

Figure 5: Average accumulated reward (over 100 episodes) versus episode number

1.4

Both of two algorithms will give a good results. But they are still not same. SARSA is on-policy, it learns action values relative to the policy it follows. While, Q-Learning is off-policy, it relatives to the greedy policy. When $\epsilon=0$, actions will be choosed by policy derived from Q. For Sarsa, it will choose the next action then update Q. But for Q-learning, it updates the Q first, then select the next action.

2 Introduction of New Products (25 points)

Define two products as a_1 , a_2 . And from question, $\mu(a_1) = 0.5$, $\mu(a_2)$ is unknown. Now, we want to maximize the number of sales. It is obviously that the more rounds we offer the a with greater μ , the more numbers we sell. So, my strategy is exploring a_2 first, which to get the probability $\hat{\mu}(a_2)$. Then exploiting a which with a bigger μ . We write the algorithm down explicitly

Algorithm
Input : k
for $t \le k do$
Sell a_2
end for
for $t \ge k+1$ do
Sell $a = arg \max \mu(a_i)$

We start with ϵT exploration rounds followed by $(1 - \epsilon)T$ exploitation rounds. And let $\delta(\epsilon)$ denote the probability that we sell the wrong product in exploitation rounds.

$$\overline{R}_T = \max_a \mathbb{E}\left[\sum_{t=1}^T r_t^a\right] - \mathbb{E}\left[\sum_{t=1}^T r_t^{A_t}\right]$$
$$= \sum_a \Delta(a) \mathbb{E}[N_T(a)]$$
$$\leq \Delta \epsilon T + \delta(\epsilon) \Delta(1 - \epsilon) T$$

where the first term is a bound by exploration phase and the second is by exploitation phase.

If $\mu(a_2) \leq 0.5$, we know that the a_1 is the best product.

$$\delta(\epsilon) = \mathbb{P}(\hat{\mu}_{\epsilon T}(a_2) \ge 0.5)$$
$$= \mathbb{P}(\hat{\mu}_{\epsilon T}(a_2) \ge \Delta + \mu(a_2))$$
$$= e^{-2\epsilon T \Delta^2}$$

where the last line is by Hoeffding's inequality.

$$\overline{R}_T \le \Delta \epsilon T + \delta(\epsilon) \Delta (1 - \epsilon) T \le \Delta \epsilon T + \delta(\epsilon) \Delta T = (\epsilon + \delta(\epsilon)) \Delta T = (\epsilon + e^{-2\epsilon T \Delta^2}) \Delta T$$

We take a derivative and equate to zero to get the minimize \overline{R}_T , which leads to $\epsilon = \frac{\ln 2T\Delta^2}{2T\Delta^2}$. We can also prove that the second derivative is positive. Thus, we obtain:

$$\overline{R}_T \le \max\{\Delta T, (\frac{\ln 2T\Delta^2}{2T\Delta^2} + \frac{1}{2T\Delta^2})\Delta T\} = \max\{\Delta T, \frac{\ln(2T\Delta^2) + 1}{2\Delta}\}$$

If $\mu(a_2) \ge 0.5$, we know that the a_2 is the best product.

$$\delta(\epsilon) = \mathbb{P}(\hat{\mu}_{\epsilon T}(a_2) \le 0.5)$$
$$= \mathbb{P}(\hat{\mu}_{\epsilon T}(a_2) \le \mu(a_2) - (-\Delta))$$
$$= e^{-2\epsilon T|\Delta|^2}$$

Because a_2 is the best product, so the pseudo regret during exploration phase is 0.

$$\overline{R}_T \le \delta(\epsilon) |\Delta| (1 - \epsilon) T = e^{-2\epsilon T |\Delta|^2} |\Delta| (1 - \epsilon) T$$

 $e^{-2\epsilon T|\Delta|^2}$ and $1-\epsilon$ are decreasing functions, so the whole term is decreasing with ϵ . Thus,

$$\overline{R}_T \le e^{-2\epsilon T|\Delta|^2} |\Delta| (1-\epsilon)T \le |\Delta|T$$

3 Empirical comparison of FTL and Hedge (25 points)

3.1

Figure 6: Pseudo regret of the five algorithms

By definition on page 58 in notes,

$$\overline{R}_T = \mathbb{E}\left[\sum_{t=1}^T l_t^{A_t}\right] - \min \mathbb{E}\left[\sum_{t=1}^T l_t^{a}\right]$$
$$= \sum_{t=1}^T \sum_{a=1}^K p_t(a)l_t^a - \min \mathbb{E}\left[\sum_{t=1}^T l_t^{a}\right]$$

where
$$p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$$
.

It is obvious that greater η make algorithms tighter. Also, with smaller μ , Anythime Hedge algorithms shows better than Hedge algorithms.

3.2

When $\mu = \frac{1}{2} - \frac{1}{4}$, it leads to higher regret. The μ becomes bigger, the regret becomes lower. From fig.6 we can see that, with a smaller μ , all the algorithms show tigter. It means that the algorithms depend on μ .

With t become greater, the regret become smaller. It is easy to understand that with more round, the algorithm will 'learn' more, and it will choose a better action.

3.3

For follow the leader algorithm,

$$R_T = \sum_t l_t(a_t) - \min \sum_t l_t$$

and each round we play $a_t = arg \min \sum_i^{t-1} l_i$, which is the best choice based on all past rounds. Lets consider a sequence with 0 and 1. If the $X_i = 0$, then $X_{i+1} = 1$. X_i always shows different with the previous one.