Fine-Tuning Clustering Model to Determine Earthquake Locations Along the East Anatolian Fault

Dziand Dafi Ginandjar 12321072

Project Overview

The devastating earthquake that struck Turkey on February 6, 2023, had a magnitude of 7.8 and was centered in Nurdağı, near Gaziantep. The tremors caused massive destruction in Turkey and Syria, claiming the lives of more than 50,000 people and injuring tens of thousands of others.

Many buildings were destroyed, leaving residents in emergency conditions amidst the winter season. Relief efforts included rescue operations, distribution of food, water, and psychosocial support, carried out by various local and international organizations to help survivors cope with the trauma and challenges of life after the disaster.

Flowchart Diagram

Dataset Being Used

Parameter	Value
Range of Time	2020-01-01 -> 2024-01-01
Minimum scale (magnitudo)	5.0
Location	Turkiye and its surroundings

Clustering Algorithm

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

<class 'pandas.core.frame.DataFrame'> RangeIndex: 97 entries, 0 to 96 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	time	97 non-null	object
1	latitude	97 non-null	float64
2	longitude	97 non-null	float64
3	depth	97 non-null	float64
4	mag	97 non-null	float64
5	magType	97 non-null	object
6	nst	59 non-null	float64
7	gap	97 non-null	int64
8	dmin	97 non-null	float64
9	rms	97 non-null	float64
10	net	97 non-null	object
11	id	97 non-null	object
12	updated	97 non-null	object
13	place	97 non-null	object
14	type	97 non-null	object
15	horizontalError	97 non-null	float64
16	depthError	97 non-null	float64
17	magError	97 non-null	float64
18	magNst	97 non-null	int64
19	status	97 non-null	object
20	locationSource	97 non-null	object
21	magSource	97 non-null	object
dtype	es: float64(10),	int64(2), object	(10)
memory usage: 16.8+ KB			

Feature Selection

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 97 entries, 0 to 96
Data columns (total 5 columns):
               Non-Null Count Dtype
    Column
               97 non-null
    time
                               object
                               float64
   latitude
               97 non-null
    longitude 97 non-null
                               float64
               97 non-null
                              float64
    mag
                               float64
    depth
               97 non-null
dtypes: float64(4), object(1)
memory usage: 3.9+ KB
```

Exploratory Data Analysis

DBSCAN

Hyperparameter		
Epsilon (contoh)	1.3	
Minimum Samples	30	

ANALYSIS

The DBSCAN clustering method can estimate target locations with highdensity levels.

Therefore, the most suitable clustering method is DBSCAN.

•

Anatolian Fault

Hyperparameters	
Epsilon	1.3
Minimum Samples	30

Hyperparameters	
Epsilon	1.9
Minimum Samples	30

Anatolian Fault

Hyperparameter	
Epsilon	1.7
Minimum Samples	30

The DBSCAN model can cluster earthquakes in the Marka 1 area but does not include Marka 2 because Marka 1 is located along the fault line, whereas Marka 2 is far from the fault line and therefore should not be included in the cluster.

Would you like me to keep anything from this conversation for future reference?

Model	Marker 1	Marker 2
DBSCAN (epsilon=1.3)	X	X
DBSCAN (epsilon=1.7)	V	X
DBSCAN (epsilon=1.9)	V	V

The best DBSCAN model is the one with an epsilon value of 1.7 because it successfully includes earthquakes in Marker 1 within the cluster while excluding earthquakes in Marker 2 from the cluster.

Demonstration

Thank You