1 Fibrations

Theorem 1.1 (Leray-Serre spectral sequence)

If $E \xrightarrow{p} B$ is a Serre fibration and B is a simply connected CW complex (only need $\pi_1(B)$ acts trivially on $H_*(F)$). Then there exists a spectral sequence that converges to $G(H_*(E))$ with $E_{s,t}^2 = H_s(B; H_t(F))$.

Remark 1.2 There is a similar cohomology spectral sequence with $E_2^{s,t} = H^s(B; H^t(F))$.

Proof. Exercise: show d^1 is the boundary map for chain complex $C_*^{CW}(B; H_t(F))$.

Lemma 1.3

 $H_{s+t}(E^s, E^{s-1}) \cong C_s(B; H_t(F)).$

Proof. Exercise: for p > 0, $H_p(Y) \cong H_{p+1}(\Sigma Y)$.

Recall $\Sigma Y \cong S^1 \wedge Y = S^1 \times Y/S^1 \vee Y$. Also $S^p = S^1 \wedge \cdots \wedge S^1$ p times. There exists an S^s in $D^s \times F/S^{s-1} \times F$ by taking a point in F.

Exercise: for any spaces X, Y, Z with $Y \subseteq x$

$$\frac{X\times Z}{(Y\times Z)\cup (X\times \{*\})}\cong \frac{X/Y\times Z}{(\{*\}\times Z)\vee (X\times \{*\}/Y\times \{*\})}.$$

Exercise: think about t = 0, 1.

Theorem 1.4

For $k \geq 2$,

$$H_q(\Omega S^k) = \begin{cases} \mathbb{Z} & q = a(k-1), a \ge 0\\ 0 & \text{else} \end{cases}$$

Proof. Apply Theorem 4 and Lemma 1.

Theorem 1.5 (Gysin sequence)

Let $E \xrightarrow{p} B$ be a fibration with fiber S^n and B a CW complex. Assume $\pi_1(B)$ acts trivially on $H_*(S^n)$, there exists an exact sequence

$$\dots H_r(E) \xrightarrow{p_*} H_r(B) \to H_{r-n-1}(B) \to H_{r-1}(E) \xrightarrow{p_*} H_{r-1}(B) \dots$$

for $k \ge n + 1$.

Proof. Apply Theorem 4 and Lemma 1.

Exercise: If $E \xrightarrow{p} S^n$ is a fibration with fiber F, show there exists an exact sequence

$$\dots H_r(F) \to H_r(E) \to H_{r-n}(F) \to H_{r-1}(F) \to \dots$$

called the Wang sequence.

Let's consider a cohomology version:

Theorem 1.6 (Leray-Serre for cohomology)

Let $E \xrightarrow{p} B$ be a Serre fibration with B a CW complex where $\pi_1(B)$ acts trivially on $H^*(F)$. There exists a spectral sequence converging to $G(H^*(F))^{s,t}$ with $E_2^{s,t} = H^s(B; H^t(F))$ and

- (1) $\{E_r^{s,t}\}$ is a bigraded algebra, *i.e.* there exists a product $E_r^{s,t} \times E_r^{p,q} \to E_r^{s+p,t+q}$
- (2) $d_r: E_r \to E_r$ is a derivation (r, -r + 1), *i.e.*

$$d_r(a \cdot b) = (d_r a) \cdot b + (-1)^{p+q} a \cdot d_r b$$

(3) $E_2^{*,0} \cong H^*(B)$ as rings and $E_2^{0,*} \cong H^*(F)$ as rings.

Remark 1.7 The product structure on $E_2^{s,t}$ is

$$H^p(B; H^q(F)) \times H^s(B; H^t(F)) \to H^{p+s}(B; H^q(F) \otimes H^t(F))$$

and compose with the cup product on $H^q(F) \otimes H^t(F)$.

Example 1.8

 $\mathbb{C}P^n$.

Theorem 1.9

 $H^*(U(n)) \cong \Lambda(x_1, x_3, \dots, x_{2n+1})$ with deg $x_i = i$.

Remark 1.10 From this we can compate $H^*(BU(n)) \cong \mathbb{Z}[c_1, \ldots, c_n]$ where c_i has degree 2i (this is Theorem II.17).