

ATLAS

Automated documenT anaLysis for sociAl awareneSs

Create qualitative and quantitative **NLP tools** for efficient and **automated analysis of documents** to **increase social responsibility**and awareness

Stream I

Uncovering Influences and Dynamics in AI Regulations

Recap: How does Big Tech influence Al research?

In this work, we wanted to understand which ideas are spread by big tech companies in Al research papers.

We leverage NLP to extract ideas from papers in the network, and then measure their "infectiousness" depending on who is talking about them.

Challenges and findings

- 1. Big tech and academia papers not-binary distinction
- 2. Big tech vs other companies is the distinction needed
- 3. Manual validation of memes

Big tech vs academia network analysis

Company vs academia network analysis

Chunks frequency – how it changes with big tech/academia threshold

Big Tech Percentage vs. Frequency of Noun Chunks

Validation strategy

Our method of finding memes adds 2 layers on top of original meme score method.

- 1. Noun chunks extraction
- 2. Embedding+clustering

We want to validate both layers separately, to check how each layer improve memes quality.

As a validation metric, we choose:

- 1. Number of feasible memes in top 100 memes
- 2. Number of duplicates in top 100 memes

Manual validation

meme_score	meme_name_common	Hubert			
		Common sense	Al technology	Al use case	Score
13076403092	weighted selection	1	1	0	2
11623218841	yarn color	0	0	0	0
11623218841	project sample	0	0	0	0
11623218841	vary illuminant	0	0	0	0
11623218841	component wise and error cascade perspective	1	1	0	2
11623218841	here phase single stage topology	0	0	0	0
11623218841	various visual theory	0	0	1	1
11623218841	strong external signal	0	1	0	1
11623218841	give new task	0	1	0	1
11623218841	input information cognitive and emotional parallel streaming method	1	1	1	3
11623218841	information asset	1	1	0	2
11623218841	sparse and inconsistent code mix datum	1	1	0	2
11623218841	computationally few expensive regard execution time	0	1	0	1
11623218841	fixation assist module	1	1	0	2
11623218841	public health expert	1	0	1	2
11623218841	neural network architecture exploration	1	1	0	2
11623218841	rcl algorithm	1	1	0	2
11623218841	the storage profile	1	1	0	2
11623218841	datum analysis study	1	1	0	2
11623218841	relative complexity	1	0	0	1

Stream II

Tools for Efficient and Automated Analysis of Documents

Policy Comparison - quick recap

Project genesis: Case Study course, track: NLP in social sciences

Motivation:

- 1. Increasing number of policy documents
- 2. Tediousness of manual analysis of documents
- 3. Limited citizen governance and restricted accessibility for the society

Objective:

Creating a set of tools (the entire pipeline) that will allow to create a comparative analysis of documents with a strictly defined structure, utilising clearly defined format.

What changed?

OpenAl Climate Change Hackathon

What we've done:

- Frontend changes in the application
- 2. Adding **summarization** module
- 3. Prototype of **contextualized** topic modeling model

We've also published a **dataset** of NECPs documents on Kaggle.

New Notebook

± Download (5 MB)

:

National Energy and Climate Plans (EU)

Textual dataset extracted from NECPs and divided to sections

DATASET STATS

VIEWS

DOWNLOADS

3889

445

DOWNLOAD PER VIEW RATIO TOTAL UNIQUE CONTRIBUTORS

0.11

0

NeurIPS Workshop on Tackling Climate Change with Machine Learning

Data Science Summit 2023

Policy Comparison: further plans

- Paper for ACL Demo track (deadline in February)
- Potential cooperation with a client (in progress)

Detecting tensions in UNESCO Proceedings

Project genesis: Bachelor thesis, Computer Science major at MIMUW

Motivation:

- 1. No existing studies on textual analysis of UNESCO proceedings.
- 2. New methods in argument mining field.
- 3. Huge, unexplored dataset for studying argument mining.

Detecting tensions in UNESCO Proceedings

Update:

- Webscrapping fetching all the data from whc.unesco.com/en/sessions and whc.unesco.com/decisions. Create metadata.
- 2. OCR of the documents.
- 3. Data clearing, split into paragraphs.
- 4. Data exploration:
 - Most popular n-grams.
 - o Topic modelling.
- 5. First model for controversy detection.

unesco inscribed world following **=**buffer zone considered nomination session committee mr chairperson ed development issue requests state ↑area important ecol secretariat heritage fund TN SESSION ³recommendation stated including monitoring mission natural heritage summar ision co particular convention case new region view national park matter advisory united state bodies term work general assembly proposed StateS change heritage site working group iucn united kingdom management plan heritage properties point session world site cultural landscape Si thank madam questionobserver delegation danger heritage convention heritage list meeting operational guideline delegation united future periodic reporting project madam chair state conservation reactive monitoring thank mr thank chairperson include list world conservation property

Detecting tensions in UNESCO Proceedings

Future work:

- Manually checking the results of the model.
- 2. How to improve it?
- 3. Which other models can we try out?
- 4. Repeat.

Inspired Theses

Extending Our Knowledge Within and Outside MI²DataLab

Explainable abstractive summarization of legal acts

Author: Emilia Wiśnios

Collaboration with Inez Okulska, PhD from NASK

Motivation:

Amount, structure and language of legal acts are **difficult to understand for people**. We want to make tools for responsible summaries of those documents.

Explainable abstractive summarization of legal acts

What is done?

- Code for extractive summarization using coreference (testing benchmarks in progress, paper writing soon)
- Attacks on GPT3 (experiments in progress)

Questions?

