脚本对应脑电分析流程说明 (Alpha)

张金波

2018年7月3日

- 1. 软件环境
 - a) 不低于 Matlab 2015b
 - b) EEGLAB
 - i. ERPLAB
 - ii. SAICA
 - c) 可选环境
 - i. OSX 下可使用 binica 加速运算, 其速度是 runica 的约 20 倍 (https://sccn.ucsd.edu/wiki/Binica)
- 2. 单被试预处理流程
 - a) Step#01: **数据转换**。将.cnt 文件转换成 EEGLAB 的.set 格式。存在多段记录文件 时, 对文件进行合并;
 - b) Step#02:**错误修正**。清除记录时的无用电极,并校正电极位置。删除电极包括 EKG, EMG, M1 (在线参考)。电极位置调整包括: 把记录中的 CB1, CB8 标记修订为 AF7, AF8;将枕叶的 PO5, PO6 移动至 PO9, PO10 的位置,并修订标记;
 - c) Step#03:**重参考**。在线使用 M1 参考, 离线转换为耳垂连线参考, 需以 1/2 M2 作为新参考 (EOG 除外)。重参考后删除 M2 及临时计算的参考电极 (semiM2)。数据中最终存在 64 个 Channel 的信号;
 - d) Step#04 **0.05 Hz 高通滤波**。滤波器为 IIR (Butterworth infinite impulse response filter), Order 为 2;
 - e) Step#05: **ICA 求解**。默认使用 runica 算法, OSX 系统下推荐使用 binica (runica 二进制编译版, 速度更快, 但需自行编译及调整 EEGLAB 内部函数)。测试时可以使用 sobi, 速度最快, 但结果不稳定, 不适合作为结果;
 - f) Step#06: **眼动校正**: 使用 SAICA 进行眼动校正;
 - g) Step#07: 生成事件列表:从数据中分离事件列表(ERPLAB需要);
 - h) Step#08: **Bin 指定**。根据定义好的 BDF 文件进行事件簇定义(ERPLAB 需要,定义规则请查看:<u>https://github.com/lucklab/erplab/wiki/BDF-Library</u>);
 - i) Step#09:分段(可设定进行基线校正, 脚本中默认不执行);
 - j) Step#10: **0.05-30 Hz 带通滤波+基线校正**。滤波器为 IIR (Butterworth), Order 为 2;
 - k) Step#11:排除伪迹,并保存详细删除信息;
 - i. 头皮电极:75 uV
 - ii. HEO: 100 uV
 - iii. VEO: 200 uV
 - 1) Step#12:有效 Trial **叠加平均。**
- 3. 流程参考
 - a) 主要参考《神经事件相关电位教程》魏景汉及《ERP 实验教程》赵伦

《认知事件相关脑电位教程》	《ERP实验教程》
1. 合并任务数据	1. 合并行为数据和脑电预览
2. 去除眼电伪迹	2. 去除眼电、心电、肌电伪迹
3. 对脑电分段	3. 数字滤波
4. 滤波	4. 脑电分段
5. 基线校正	5. 基线校正
6. 排除伪迹	6. 线性校正
7. 删除坏电极通道	7. 基线校正
8. 平均	8. 去除伪迹
9. 总平均	9. 叠加平均/总平均

b) 部分调整原因

- i. Step#04 高通滤波。1: ICA 需要先进行部分降噪所以先做一次滤波;2:保留高频部分 Step#06 后如果需要进行时-频分析可以不用再跑前面的步骤,节省时间;
- ii. Step#11 校正眼动后为什么依然根据 EOG 删除坏 Epoch。HEO, VEO 此处设定阈值较高,眼动伪迹太大的区段,校正可能不彻底,索性删掉,降低总体的伪迹比例。(ERPLAB 教程中也有类似操作。

(<u>https://github.com/lucklab/erplab/wiki/Exporting-and-Importing-EventLists-to-Combine-Artifact-Rejection-and-Artifact-Correction:-Tutorial</u>)

4. 滤波器补充

- a) 滤波器使用参考 ERPLAB Wiki (https://github.com/lucklab/erplab/wiki/Filtering)
- b) 滤波器参数选择参考并使用了 ERPLAB Tutorial 中提供的滤波参数 (https://github.com/lucklab/erplab/wiki/Filtering-EEG-and-ERPs:-Tutorial)
- c) 各类滤波器优缺点可参考该文档:

https://www.brainclinics.com/dynamic/media/1/documents/Onderzoeksinstituut/Filtering%20in%20BioExplorer.pdf

- 5. 目录、文件及输出命名规则
 - a) 运行前需要准备的目录及文件
 - i. 原始数据目录:rawData
 - ii. 临时文件目录:temp
 - iii. 输出目录:erp
 - iv. 事件簇定义文件 BDF: txt 文件, 按照 ERPLAB 规则结合具体实验进行编写
 - b) 输出文件命名规则(包括临时文件)
 - →数据目录及文件准备举例:

Root Dir:.

├─bdf

├─erp

├─temp

└─rawData

├─sub01

┴─sub02

```
fileNaming = {['subj' subjID ' r'];... % 与 12 个步骤——对应
        ['subj' subjID '_rc'];...
        ['subj' subjID '_rcr'];....
        ['subj' subjID '_rcrf'];...
        ['subj' subjID ' rcrfi'];...
        ['subj' subjID ' rerfie'];...
        ['subj' subjID '_rcrfice'];...
        ['subj' subjID '_rcrficea'];...
        ['subj' subjID '_rcrficeab'];...
        ['subj' subjID ' rcrficeabf'];...
        ['subj' subjID ' rcrficeabft'];...
        ['subj' subjID '_rcrficeabftv'];...
        };
→BDF 文件内容(以 bin1 为例)
        bin 1 ←事件簇编号(固定格式, 仅序号可变)
        T ThreatenValidCue FearExpression ←事件簇描述(自行描述)
        .{21;24} {111} ←刺激序列模式定义。. 后紧跟的{Event Code} 为锁时事件。
        第二个{111}描述锁时后需要出现正确反应。
```

综上:该规则将 Bin1 定义为以 21, 24 锁时,反应正确的反应 trial, 并将该事件描述为 T ThreatenValidCue FearExpression