8 Cryptography

8.1 Character Ciphers

- 1. **Introduction:** The goal of this entire chapter (and the rest of the course) is to talk about encryption and cryptography.
- 2. **Terminology:** We have the following:
 - (a) Cryptology: The study of encryption/decryption.
 - (b) Cryptography: The study of methods of encryption/decryption.
 - (c) Cipher: A particular method of encryption.
 - (d) Cryptanalysis: Breaking of systems of encryption.
 - (e) Plaintext: The human-readable text we wish to encryp.
 - (f) Encryption: The process of applying a cipher to plaintext.
 - (g) Ciphertext: The human-non-readable result.
 - (h) Decryption: The process of getting the plaintext back.
 - (i) Some Names:
 - i. Alice: encrypts and sends
 - ii. Bob: receives and decrypts
 - iii. Eve: eavesdropper

3. Basic Methods:

(a) **Character Assignment:** To begin, we will assign a number to each letter of the alphabet:

																							W			Z
[0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Note: For now we will exclude lower-case, punctuation and spaces, but we could include those and use a different modulus.

Note: This can be confusing since A is the first leter of the alphabet and so we would naturally want to assign it to 1. We use this for purposes of making our modular arithmetic easier.

(b) **Shift Cipher:** For each plaintext letter P we assign ciphertext

$$C \equiv P + b \mod 26$$

Ex. Encrypt LEIBNIZ with b = 3.

$$\begin{array}{lll} L: & P = 11, 11 + 3 \equiv 14 = C: O \\ E: & P = 4, 4 + 3 \equiv 7 = C: H \\ I: & P = 8, 8 + 3 \equiv 11 = C: L \\ B: & P = 1, 1 + 3 \equiv 4 = C: E \\ N: & P = 13, 13 + 3 \equiv 16 = C: Q \\ I: & P = 8, 8 + 3 \equiv 11 = C: L \\ Z: & P = 25, 25 + 3 \equiv 2 = C: C \end{array}$$

Which then results in OHLEQLC. To decrypt we simply reverse: $C \equiv P + b \mod 26$, $P \equiv C - b \mod 26$.

(c) Affine Cipher: Choose a and b and encrypt via $C = aP + b \mod 26$. How will decryption work? $C \equiv aP + b \mod 26$, $aP \equiv C - b \mod 26$ there needs to be a unique P. To have this we need $\gcd(a, 26) = 1$ so that a has a multiplicative inverse. Then $P \equiv a^{-1}(C - b) \mod 26$. How many choices? $\phi(26) = 12$ for a and 26 choices for b.

Ex. If we choose a=5 and b=7 then encryption is $C \equiv 5P+7 \mod 26$ and decryption is $5P \equiv C-7 \mod 26 \implies P \equiv 21(C-7) \mod 26$ (calculated from 21 being the multiplicative inverse of 5).

4. **Breaking Shift Ciphers:** To break a shift cipher, we only need b. For example, if we manage to find a specific C_0 for a specifice P_0 , then we know that $C_0 \equiv P_0 + b \mod 26$ so $b \equiv C_0 - P_0 \mod 26$. How might we do this? With frequency analysis.

Frequency Analysis: In english, the most frequent letter is E, note this is $P_0 = 4$. Find the most frequent ciphertext letter. If that is C_0 we guess at that.

5. Breaking Aphine Ciphers: One C_0 and P_0 pair is not sufficient! Since knowing $C_0 \equiv aP_0 + b \mod 26$ is not enough to find a and b. However, having another pair is good enough because:

$$C_0 \equiv aP_0 + b \mod 26$$

$$C_1 \equiv aP_1 + b \mod 26$$

$$C_0 - C_1 \equiv a(P_0 - P_1) \mod 26$$

This will have solutions if and only if $gcd(P_0 - P_1, 26) \mid C_0 - C_1$, and if so there will be $gcd(P_0 - P_1, 26)$ solutions.

Note: Keep in mind this is valid cipher text. There is an a (which Alice chose). So there will be solutions. There may be more than 1. If multiple

possible a, for each, find b, simply try all of those a, b combinations until we get proper plaintext.

8.2 Exponentiation Ciphers

1. **Introduction:** Can we find a process which is harder to invert? First we will modify the table of letters slightly:

ſ	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
Ì	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Now, we can put letters together unambigiously. For example JU can be assigned to 0920 or just 920. Without the leading 0 it is unclear what something like 111 means. It could be $111 \implies 0111$ or $111 \implies 1101$.

Fermat's Little Theorem: Recall, if p is prime and $a \in \mathbb{Z}$ with $p \nmid a$ then $a^{p-1} \equiv 1 \mod p$.

2. Exponentiation Cipher

- (a) **Encryption:** Let p be an odd prime (typically very large) and let e be a positive integer with $\gcd(e,p-1)=1$ (use Euclidean Algorithm for this). We then take the plaintext and group the letters into blocks so no block is larger than p. For example,
 - If p = 29 then blocksize is 1 since $z \leftrightarrow 25 < p$.
 - If p = 3001 then blocksize is 2 since $zz \leftrightarrow 2525 < p$.
 - If p = 377173 then blocksize is 3 since $zzz \leftrightarrow 252525 < p$.

We then pad the plaintext with junk letters at the end if needed so that the plaintext length is a multiple of the blocksize. Traditionally ${\tt X}$ is used but any letter can be used. To encrypt, Alice needs to divide full plaintext into blocks. For each block P we do

$$C \equiv P^e \mod p$$

Ex. Alice wants to encryp LOVENOTE with (e, p) = (479, 3001) and gcd(479, 3000) = 1.

	LO	VE	NO	TE
	1114	2104	1314	1904
	1114^{479}	2104^{479}	1314^{479}	1904^{479}
=	0169	0317	0017	1697

So we get $0169\ 0317\ 0017\ 1697$ as the ciphertext that Alice would send to Bob.

(b) **Decryption:** This process is invertible since the fact that gcd(e, p-1) guarantees that there exists some d with $de \equiv 1 \mod p$. Then for a ciphertext block raised to d:

$$C^d \equiv (P^e)^d \equiv P^{ed} \equiv P^{1+k(p-1)} \equiv P(P^{p-1})^k \equiv P(1)^k \equiv P \mod p$$

Here the fact that $P^{p-1} \equiv 1 \mod p$ is guaranteed by FLiT. Note that $p \nmid P$ since P < p.

Thus, to decrypt ciphertext, Bob simply takes C and raises it to $d,\,C^d \bmod p.$