2.2 The limit of function; vertical asymptotes

- 1. concept of limit 極限的概念 $\lim_{x\to a} f(x) = L$ §2.4 會有正式的定義
- 2. one-side limit 單邊極限 $\lim_{x \to a^{\pm}} f(x) = L$
- 3. infinite limit 無限極限 $\lim_{x\to a} f(x) = \pm \infty$ (vertical asymptote 垂直漸近線)

什麼是"極限"?極限是種趨勢傾向;一個函數在某個點的極限,就是當你靠近這個點,這個函數的趨勢傾向.

0.1 Concept of limit

Let $f(x) = x^2 - x + 2$. When x near 2, what's happened to f(x)?

Question: Where does f(x) go when x go toward 2?

Answer: 4. (怎麼簡單表示? 用極限.)

Define: f is defined when x is <u>near</u> a. $[x \in (c,b)(\setminus \{a\}), c < a < b]$

$$\lim_{x \to a} f(x) = \underline{L}$$

The *limit* 極限 of f(x) is equals to L as x *approaches* 靠近 a. (只要 x 靠近 a, f(x) 的極限等於 L.)

或

$$f(x)
ightarrow {\color{red} L}$$
 as $x
ightarrow {\color{red} a}$

f(x) approaches L as x approaches a. (只要 x 靠近 a, f(x) 就會靠近 L.)

 $\lim_{x \to a} f(x)$ is known by the company $\lim_{h \to a} f(x)$ keeps. 觀其友, 知其人.

 $\lim_{x \to \pm} \mathbf{e}(x) = \mathbf{r}, \lim_{x \to \mathbb{E}} \mathbf{e}(x) = \mathbb{E}.$ 近朱者赤, 近墨者黑. 朱有多赤? 墨有多黑?

Observation: 求極限 $\lim_{x\to a} f(x)$, 是研究 f 在 a 附近的行爲, 與 f(a) 無關. 當 $\lim_{x\to a} f(x) = L$ (代表極限存在, 且爲一個確定值 L), f(a) 會有三種情形:

- 1. f(a) is not defined. (ex: when a = -2)
- 2. f(a) is defined but $f(a) \neq L$. (ex: when a = 0)
- 3. f(a) = L. (ex: when a = 2) (這時候我們稱: f 在 a 點連續, see §2.5.)

 $\forall a, \lim_{x \to a} f(x) = 1, f(-2) \, \text{\sharp} \ \text{\sharp}, f(0) = 2 \neq 1, f(2) = 1.$

Example 0.1 Guess
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = ?$$

$$Let \ f(x) = \frac{x-1}{x^2-1}$$
. (沒明說, 定義域: $x \neq \pm 1$.)

x(<1)	f(x)	x > 1	$\int f(x)$
0.5	0.666667	1.5	0.4
0.9	0.526316	1.1	0.47619
0.99	0.502513	1.01	0.497512
0.999	0.500250	1.001	0.499750
0.9999	0.500025	1.0001	0.499975

用計算機算應該是 0.5; 從繪圖軟體看應該也是 0.5. $\lim_{x\to 1}\frac{x-1}{x^2-1}=\frac{1}{2}$ (\checkmark).

(不管是:
$$\begin{cases} 1. \ f(1) \ 未定義, \\ 2. \ let \ g(x) = f(x), \ x \neq 1 \ and \ g(1) = 2, \\ 3. \ let \ h(x) = f(x), \ x \neq 1 \ and \ h(1) = 0.5, \end{cases}$$

都不會影響極限: $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = \lim_{x \to 1} h(x) = \frac{1}{2}$.)

Example 0.2 *Estimate* $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = ?$

		-
t	$\frac{\sqrt{t^2+9}-3}{t^2}$	1111
±1	0.16228	
± 0.5	0.16553	
± 0.1	0.16662	
± 0.05	0.16666	
± 0.01	0.16667	
± 0.0005	0.168	
± 0.0001	0.2	
± 0.00005	0	
± 0.00001	0	

用計算機算應該是 0; 從繪圖軟體也看到 0. $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = 0$ (Wrong!) 因爲 $\sqrt{t^2+9}\to 3$ as $t\to 0$, 計算機位數不足分子會變成 0, 再除以 t^2 還是 0, 所以會得到 0. 事實上 $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = \frac{1}{6}$ (所以要學微積分).

Example 0.3 Guess $\lim_{t\to 0} \frac{\sin x}{x} = ?$ (陷阱卡發動!)

$ \begin{array}{c} x \\ \pm 1 \\ \pm 0.5 \\ \pm 0.4 \\ \pm 0.3 \end{array} $		$y \qquad y = \frac{\sin x}{x}$	$\lim_{x \to \infty} \frac{\sin x}{x}$
$\pm 0.2 \\ \pm 0.1 \\ \pm 0.05$	0.99334665 0.99833417 0.99958339	$egin{array}{c c} 0 & 1 & & & & & & & & & & & & & & & & &$	$x \rightarrow 0$ x
± 0.01 ± 0.005 ± 0.001	0.99998333 0.99999583 0.99999983	$\begin{array}{c c} & & \\ \hline & 0 & 0.01 \end{array} \rightarrow x$	©1996 XAZUN TAKAHSHI

用計算機跟繪圖軟體應該是 1(?). $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (\checkmark , 之後 §3.2 會證明).

$\pm 10^{-4} \sim 10^{-5}$	0.99999999		
$\pm 10^{-6} \sim 10^{-14}$	1	(by Google,	其實計算機會算錯!)
$\pm 10^{-15}$	0		,

Example 0.4 Investigate $\lim_{x\to 0} \sin \frac{\pi}{x}$.

Let
$$f(x) = \sin \frac{\pi}{x}$$
. $f(x) = 0$ when $x = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{10}, \dots, \frac{1}{100}$.

 $\lim_{x\to 0} f(x) = 0$? No, 因爲還有很多 x near 0 使得 f(x) = 1. (who?)

從圖中看出 $f(x) \not\to some fixed number as <math>x \to 0$, so we say: $\lim_{x \to 0} \sin \frac{\pi}{x} \quad \boxed{\textbf{does not exist} \ \text{不存在}}.$

 $\lim_{t\to 9\mathfrak{R}}$ 能 \neq 我——能不能靠近我就在今晚.

計算機位數不足 (< 5) 會算出 0, 其實答案是 0.0001.

Note: 圖不一定畫得出來, 用看的不一定看得出來, 用猜的不一定會猜對, 用計算機算不一定會算出來, 可能算出錯的答案. 要用定義(ε - δ) 或其他工具來證明.

 \boldsymbol{x}

Example 0.6 The Heaviside 黑維賽 (step 階躍) function

 $\lim_{x\to 0} H(x)$ does not exist, but there are something to say.

♦: 有些書上定義 $H(x) = \frac{1}{2}[1 + \operatorname{sgn}(x)], H(0)$ 有些不定義, 有些定為 $\frac{1}{2}$.

One-side limit 0.2

有時候雖然沒有(雙邊)極限,但是這個函數還是有一些很好的性質 — 單邊極限.

左極限:

$$f(x)$$
 L
 x
 a

$$f(x) o L$$
 as $x o a^{-1}$

The **left-hand limit** of f(x) is equals to L as x approaches a. f(x) approaches L as x approaches a from the left.

$$\lim_{x o a^+} f(x) = L$$
 or $f(x) o L$ as $x o a^+$

$$f(x) o L$$
 as $x o a^+$

The **right-hand limit** of f(x) is equals to L as x approaches a. f(x) approaches L as x approaches a from the right.

Recall Heaviside function H(x),

$$\lim_{x \to 0^{-}} H(x) = 0 \text{ and } \lim_{x \to 0^{+}} H(x) = 1.$$

Fact: 由極限, 左極限, 右極限的 (概念) 定義可以得到一個事實:

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L.$$

- (\Rightarrow) Trivial.
- (←) 要有左極限, 要有右極限, 這兩個極限要一樣, 就會有極限 (等於共同的極限).

韓愈《祭十二郎文》:彼蒼者天,曷其有極! — 若且唯若,左右有極,極極相及。

0.3 Infinite limit (& vertical asymptote)

無限極限:

$$\lim_{x \to a} f(x) = \infty, \quad \lim_{x \to a} f(x) = -\infty,$$

$$\lim_{x \to a^{-}} f(x) = \infty, \quad \lim_{x \to a^{-}} f(x) = -\infty,$$

$$\lim_{x \to a^{+}} f(x) = \infty, \quad \lim_{x \to a^{+}} f(x) = -\infty \quad \text{or}$$

$$f(x) \to \infty/-\infty \text{ as } x \to a/a^{-}/a^{+}$$

f(x) can be arbitrarily 任意 large (negative) as x approaches $a/a^-/a^+$.

Attention: ∞ : infinity 無限大; $-\infty$: negative infinity 負無限大 (無限小). 都是符號, 並不是一個數字, 所以這種時候極限是不存在.

Example 0.7 Does $\lim_{x\to 0} \frac{1}{x^2}$ exist?

No, but
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$
.

 $y = \frac{1}{x^2}$

Example 0.8 Does $\lim_{x\to 0} \frac{1}{x}$ exist?

No, but
$$\lim_{x\to 0^+} \frac{1}{x} = \infty$$
 & $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

Question: 選項有 does not exist 與 $\infty/-\infty$ 要選誰?

Answer: 有無限極限最好是選 $\infty/-\infty$.

Define: x = a is a *vertical asymptote* 垂直漸近線 of y = f(x) if infinite limit $(\infty/-\infty)$ occurs at $a/a^-/a^+$. 當無限極限的6種情形之一發生時。

Note: 曲線 y = f(x) 離開原點越<mark>遠</mark>就會越<mark>靠近</mark>的直線稱爲它的漸近線。

Example 0.9 Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

$$\lim_{x \to 3^{+}} \frac{2x}{x - 3} = \infty \text{ and } \lim_{x \to 3^{-}} \frac{2x}{x - 3} = -\infty.$$

左極限是 $-\infty$, 右極限是 ∞ , 不只不存在, 還不相同。 這時候 $\lim_{x\to 3}\frac{2x}{x-3}$ 不存在 (does not exist), 但是有垂直漸近線 x=3. (What is y=2 called?)

Example 0.10 $\lim_{x\to 0^+} \ln x = ?$

 $\lim_{x\to 0^+} \ln x = -\infty.$

Attention: 垂直漸近線是 x = 0, 不是 $x = 0^+$! (左極限 $\lim_{x\to 0^-} \ln x = ?$ 極限 $\lim_{x\to 0} \ln x = ?$)

Note: x=0 (y-axis) y-軸, 是 $y=\ln x$ 的垂直漸近線。 也是所有對數函數圖形 $y=\log_a x$ ($a>0, a\neq 1, x>0$) 的垂直漸近線。 When $a>1, \log_a x\to -\infty$; when $0< a<1, \log_a x\to \infty$. **Remark:** When ask $\lim_{x\to a} f(x) = ?$

- 1. \exists , $\lim_{x \to a} f(x) = L$.
- 2. $\not\equiv$, does not exist. but
 - (a) \exists one-side limit
 - i. right-hand limit $\lim_{x \to a^+} f(x) = L$.
 - ii. left-hand limit $\lim_{x\to a^-} f(x) = L$.
 - (b) \exists infinite limit (with V.A. x = a)
 - i. $\lim_{x \to a} f(x) = \infty$.
 - ii. $\lim_{x \to a^+} f(x) = \infty$.
 - iii. $\lim_{x \to a^-} f(x) = \infty$.
 - iv. $\lim_{x \to a} f(x) = -\infty$.
 - v. $\lim_{x \to a^+} f(x) = -\infty.$
 - vi. $\lim_{x \to a^-} f(x) = -\infty$.
 - (c) just does not exist.

(What can you say for y = f(x) about x = 0?)

$$\lim_{x \to 0} f(x) = ?$$

$$\lim_{x \to 0^+} f(x) = ?$$

$$\lim_{x \to 0^-} f(x) = ?$$