Universidade Federal de Alfenas — UNIFAL-MG Departamento de Matemática - Instituto de Ciências Exatas Professora Angela Leite Moreno — 24/04/2025 Primeira Avaliação de Cálculo Numérico

Aluno(a):	Matrícula:

ATENÇÃO: Respostas sem justificativa serão desconsideradas. Pode-se utilizar calculadora científica para realizar os cálculos, entretanto os valores deverão ser registrados na folha de avaliação.

- 1. (3,0) Classifique as sentenças a seguir como verdadeiras ou falsas, justificando suas respostas:
 - (a) O número 101 na base ${\bf a}$ é igual a 267 na base 10. Então a base do número 101 é 16.
 - (b) Kraken e Kronos estavam conversando sobre suas idades. Kraken disse que tem 53 anos na base 10 e Kronos disse que tem 1000010 anos na base 2. Então, Kraken é mais velho que Kronos.
 - (c) Na aritmética de ponto flutuante F(2,2,-1,2), os números 0,75 e 0,84 são considerados como 0,8.

2.

- (a) (2,0) Sabendo que a estimativa do número de iterações para o método da bissecção é dada por: $k \geq \frac{\log(b-a) \log(\delta)}{\log(2)}$, em que a e b são os limites inferior e superior do intervalo da raiz isolada e δ a precisão. Desta forma, inicialmente calcule quantas iterações seriam necessárias para se obter uma aproximação de $\sqrt[4]{8}$ com precisão de $\delta = 10^{-4}$, no intervalo [1,681;1,682]. Em seguida, obtenha a aproximação. Considere **quatro casas decimais com arredondamento.** Use o critério de parada: $|b_k a_k| \leq \delta$.
- (b) (2,0) Obtenha a raiz aproximada da equação $f(x) = x^3 5x + 3$, utilizando o método da posição falsa, tendo como condições iniciais o intervalo [0.5, 1] e $\delta = 0,02$ e $\varepsilon = 0,05$. Lembre dos critérios de parada: $|b_k a_k| \le \delta$ ou $|f(x_k)| \le \varepsilon$. Neste item poderá ser utilizado arredondamento ou truncamento, com número de casas decimais a seu critério (lembre-se de anotar o critério).

3.

(a) (1,5) Considere a função $f(x) = 3x^4 - 2e^{-x^2}; \bar{x} \in (-1;0,3); \ \delta = 10^{-5}; \ \varepsilon = 10^{-4}$. Tomando $x_0 = -0,75$ como aproximação inicial, aplique o método de Newton-Raphson para obter a aproximação da raiz da função, considerando **cinco casas decimais com truncamento**.

Use como critério de parada: $|x_{n+1} - x_n| < \delta$ e $|f(x)| < \varepsilon$.

(b) (2,0) Mostre que a função $f(x) = xe^x - 10 = 0$ é equivalente às equações

$$x = \ln\left(\frac{10}{x}\right)$$
 e $x = 10e^{-x}$.

Considerando as funções de iteração $\varphi_1 = \ln\left(\frac{10}{x}\right)$ e $\varphi_2 = 10e^{-x}$, verifique quais delas converge no intervalo (1,3). Tomando $x_0 = 1$ como aproximação inicial, qual o erro relativo da raiz aproximada encontrada depois de **três** iterações, se a raiz exata da função ocorre em 1,74553?

Use cinco casas decimais com arredondamento.

4. (1.0) Discuta sobre as vantagens e desvantagens de cada um dos métodos de determinação de zeros das funções. Lembrem-se de pontuar sobre custo computacional, existência de zeros, métodos locais e globais. Vocês conseguem exemplificar casos em que um método é melhor que outro?