DPLL protseduur lahendite loendamiseks

Bakalaureusetöö, 4AP

Autor: Raivo Laanemets Juhedaja: Tõnu Tamme Tartu Ülikool Arvutiteaduse instituut

17. jaanuar 2008

Kehtestatavusprobleem

- ▶ Antud *n* muutuja Boole'i funktsioon $f(x_1, ..., x_n)$.
- Leidub selline muutujate $x_1, ..., x_n$ väärtustus, et $f(x_1, ..., x_n) = 1$? $(x_1, ..., x_n)$ on lahend).
- ▶ Mõnikord soovime teada ka konkreetset $x_1, ..., x_n$ väärtustust, millel f tõene on.

Loendamisprobleem

- Antud *n* muutuja Boole'i funktsioon $f(x_1, ..., x_n)$.
- Mitu muutujate x_1, \ldots, x_n väärtustust leidub, nii et $f(x_1, \ldots, x_n) = 1$? (f lahendite arv)

- ► Kehtestatavusprobleem on NP-täielik (S.Cook, 1971).
- ► Klassi *NP-täielik* kuuluvad ka: sõltumatu tippude hulk, klikkide leidmine, tippude hulga kate (graafiteooria probleemid), samuti *Sudoku*, . . .

- ► Lahendite loendamine on kehtestatavusele vastav loendamisprobleem ja on #P-täielik (D.Roth, 1996).
- ► Klassi #P-täielik kuuluvad ka: tuletus Bayes'i võrgus, Dedekindi arvude leidmine, . . .

- M.Davis, H.Putnam, A Computing Procedure for Quantification Theory, 1960
- Predikaatloogikas kirja pandud teoreemide tõestamiseks.
- Sisendiks predikaatloogika valem F.
- ▶ Algoritm asendas F tõesuse kontrolli ¬F mittekehtestatavuse kontrolliga.

Algoritm koosnes neljast sammust:

- 1. Valemi F eituse $\neg F$ leidmine.
- 2. Valemi $\neg F$ kirjutamine prefikskujule G_p (kvantorid "eespool", maatriks KNK-I).
- 3. G_p eksistentsikvantorite eemaldamine skolemiseerimise teel, saadi valem G_s .
- 4. Eespool saadud valemist kvantori- ja muutujavabade lausearvutusvalemite $G_{s,1}, G_{s,2}, \ldots$ genereerimine kuni nendest n esimese valemi konjuktsioon $G_{s,1} \wedge \cdots \wedge G_{s,n}$ on mittekehtestatav.

Sammus (4) tehti järgmist:

- Leidub klausel C = I eemalda kõik klauslid, kus esineb I ja kõikidest klauslitest \bar{I} (ühikliteraal).
- ► / esineb mingis klauslis, aga Ī mitte üheski eemalda kõik klauslid, kus / esineb (puhas literaal).
- ▶ Kui $W = (A \lor I) \land (B \lor \overline{I}) \land R$, A, B ja R literaali I ega \overline{I} ei sisalda, kirjuta W kujule $W' = (A \lor B \lor) \land R$ (muutujate elimineerimine).

- Reegleid sammus 4 rakendati kuni saadi tühi klausel (klausel on tõene parajasti siis, kui vähemalt üks tema literaalidest on tõene)
- Sarnaneb väga resolutiooniga (Robinson, 1965).
- ▶ DP algoritm oli korrektne ja täielik (F tõene algoritm tuvastas selle).

- ► M.Davis, G.Logemann, D.Loveland, A Machine Program for Theorem-Proving, 1962
- Asendas elimineerimise jaotamisega:
- ▶ Kui W on kujul $W = (A \lor I) \land (B \lor \overline{I}) \land R$, A, B ja R literaali I ega \overline{I} ei sisalda, jaota W valemiteks $W_1 = A \land R$ ja $W_2 = B \land R$.
- \blacktriangleright W on mittekehtestatav parajasti siis kui W_1 ja W_2 seda on.

- ▶ Valem tõene, kui "kadusid ära" kõik klauslid.
- Otseselt muutujate väärtustust ei anna.
- ▶ Ei paku mugavat viisi lahendite loendamiseks.
- ► PL teoreemitõestamiseks ebaefektiivne võrreldes resolutsiooni ja unifitseerimisega.

DPLL SAT

- Kasutatav lausearvutusloogika valemite kehtestatavuse jaoks.
- Annab kehtestatava väärtuse kui see leidub.
- Jaotamine asendatud väärtustamisega.
- Kasutatab Boole-Shannoni dekompositsiooni.
- ► Töötab muutujate osalise väärtustusega.

- ▶ Universaalne vahend n muutujaga (n > 0) valemite jagamiseks kaheks n 1 valemiks.
- ▶ Valida valemist F muutuja x, saadakse kaks valemit F_x ja $F_{\bar{x}}$, esimeses võta x = 1, teises x = 0.
- Võimaldab ära kasutada DPLL lihtsustusreegleid.
 - ▶ F_x eemalda kõik x sisaldavad klauslid, klauslitest eemalda $\neg x$.
 - ▶ $F_{\bar{x}}$ eemalda kõik $\neg x$ sisaldavad klauslid, klauslitest eemalda x.
- ▶ Vali F_x või $F_{\bar{x}}$ ja jätka dekompositsiooni rakendamist.

- ▶ Kui valem sisaldab ühikklauslit C = x ($C = \neg x$), siis teha dekompositsioon x järgi ja ignoreerida $F_{\bar{x}}$ (F_x).
- Esimesel juhul on samaselt väär $F_{\bar{x}}$, teisel F_x .

- Dekompositsiooni saab rakendada ainult lõplik arv kordi, sest muutujad saavad otsa.
- ▶ Võimalik kaks olukorda vahetult pärast lihtsustamist:
 - *a F ei sisalda ühtegi klauslit leitud kehtestatav väärtustus.
 - *b F mingi klausel muutus tühjaks F on väär.
- ▶ Juhul (*a) on annavad muutujad, mille järgi dekompositsiooni rakendati, kehtestatava väärtustuse.

DPLLSAT(F):

- 1. **if** F tühi, tagasta **true**.
- 2. **else if** *F* sisaldab tühiklauslit, tagasta **false**.
- 3. **else if** F sisaldab ühikklauslit C = x, tagasta DPLLSAT (F_x) .
- 4. **else** Vali muutuja x, tagasta $F_x \vee F_{\bar{x}}$.

Lahendite loendamine

- ► E.Birnbaum, E.L.Lozinskii, *The Good Old Davis-Putnam Procedure Helps Counting Models*, 1999
- ▶ DPLL protseduuri kasutamine loendamiseks.
- Kasutab ära, et valem muutub tõeseks enne kõikide muutujate väärtustamist.