

cs4341 Digital Logic & Computer Design

Lecture Notes 5

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Postulates of Boolean Algebra

Expression

$$1 X + 0 = X$$

$$3 X + 1 = 1$$

$$5 X + X = X$$

$$7 X + X' = 1$$

$$9 \quad X'' = X$$

10
$$X + Y = Y + X$$

12
$$(X + Y) + Z = X + (Y + Z)$$

14
$$X.(Y + Z) = (X.Y) + (X.Z)$$

16
$$(X + Y)' = X' \cdot Y'$$

Duality

$$2 X.1 = X$$

$$4 \quad X.0 = 0$$

$$6 \quad X \cdot X = X$$

$$8 \quad X \cdot X' = 0$$

11
$$X.Y = Y.X$$

13
$$(X.Y).Z = X.(Y.Z)$$

15
$$X + (Y . Z) = (X + Y) . (X + Z)$$

17
$$(X . Y)' = X' + Y'$$

Postulate

Identity Element

Domination

Idempotence

Complement

Involution

Commutative

Associative

Distributive

DeMorgan's

Review: Function Complement

- \triangleright Complement of F is F'
- \succ Complement of a function is obtained by interchange of 0's for 1's and 1's for 0's in the values of *F* in the truth table.
- \triangleright We can also use DeMorgan's theorem to get F'.
- > The following identities are very useful:

$$\triangleright$$
 (A + B)' = A' B' A'+B' = (AB)'
 \triangleright (A+B+C)' = A'B'C' A'+B'+C' = (ABC)'

Function Complement Example

- \triangleright Find the complement of F = AB + C
- > Answer:

$$\triangleright F' = (AB + C)'$$

> Applying DeMorgan's theorem:

$$\triangleright = (A' + B') \cdot C'$$

$$\triangleright = A'C' + B'C'$$

Function Complement From Dual

- > We can find the complement of a function by finding its dual then complementing each literal
- \triangleright Example: F = x'yz' + x'y'z
 - $F(dual) = (x' + y + z') \cdot (x' + y' + z)$
 - \triangleright F(complement) = F' = (x + y' + z)(x + y + z')

Canonical Forms

- ➤ Minterms and Maxterms
- >Sum-of-Minterm (SOM) Canonical Form
- ➤ Product-of-Maxterm (POM) Canonical Form
- > Representation of Complements of Functions
- > Conversions between Representations

Definition: Minterms

- ➤ A minterm (or standard product) is the product (AND) of ALL input variables where each variable (literal) is in the normal (x) or the complement (x') state.
- \triangleright For n variables, there are 2^n minterms (all possible combinations)
- Example: Two variables (x and y) produce 4 combinations (4 minterms): x'y', x'y, xy', xy
- From the truth table, a minterm can be derived with each variable primed if the corresponding bit is 0, or unprimed otherwise.

Definition: Maxterms

- ➤ A maxterm (or standard sums) is the sum (OR) of ALL input variables where each variable is in the normal (x) or the complement (x') state.
- \triangleright For n variables, there are 2^n maxterms (all possible combinations)
- Example: Two variables (x and y) produce 4 combinations (4 maxterms): x+y, x+y', x'+y, x'+y'
- \triangleright From the truth table, a maxterm can be derived with each variable primed if the corresponding bit is 1, or unprimed otherwise.

Minterms & Maxterms for 3 Binary Variables

			Minterms		Maxterms		
x	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Sum of Minterm (Product) Representation

- ➤ A Boolean function can be expressed algebraically from a given truth table by:
 - ➤ Generate all the minterms of the input combinations that produce an output value of 1
 - OR (sum) these minterms
 - ➤ This representation of the function is called Sum of Minterms (derived from Sum of product representation) canonical form.

Sum of Minterm Example

Express the functions represented by the following truth table using Sum of Product canonical form

х	у	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum of Product Example

$$F_{1} = x'y'z + xy'z' + xyz$$

$$= m_{1} + m_{4} + m_{7}$$

$$= \sum(1, 4, 7)$$

$$F_{2} = x'yz + xy'z + xyz' + xyz$$

$$= m_{3} + m_{5} + m_{6} + m_{7}$$

$$= \sum(3, 5, 6, 7)$$

$$x y z \text{ Function } f_{1} \text{ Function } f_{2}$$

$$0 0 0 0 0 0$$

$$0 1 1 0 0$$

$$0 1 1 0 0$$

$$1 0 0 1$$

$$1 0 0 1$$

$$1 0 0 1$$

$$1 1 0 0$$

$$1 1 1 0$$

$$1 1 1 1 1$$

Product of Sum Representation

➤ Using the sum of products approach, we can also represent the complement of a function as the sum (OR) of all minterms that produce an output value of O.

$$F'_1 = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

> Using the involution rule:

$$\triangleright$$
 (f'₁)' = f₁ = (x'y'z' + x'yz' + x'yz + xy'z + xyz')'

$$\triangleright f_1 = (x+y+z) (x+y'+z) (x+y'+z') (x'+y+z') (x'+y+z')$$

$$\triangleright$$
 = M_0 . M_2 . M_3 . M_5 . M_6 = $\prod (0,2,3,5,6)$

➤ This representation of the function is called Product of Sum (or Product of maxterms) canonical form.

Representing a Boolean Function

- ➤ We can express any function by "ORing" the minterms corresponding to the '1' outputs in the truth table.
- ➤ We can express any function by "ANDing" the maxterms corresponding to 'O' outputs in the truth table
- ➤ The same Boolean function can be expressed in two canonical ways: Sum-of-Minterms (SOM) and Product-of-Maxterms (POM).
- ➤ If a Boolean function has fewer '1' outputs, then the SOM canonical form will contain fewer terms than POM. However, if it has fewer '0' outputs then the POM form will have fewer terms than SOM.

Examples

- $F(a, b, c, d) = \sum (2,3,6,10,11)$, express F as SOM
 - $\triangleright F = m_2 + m_3 + m_6 + m_{10} + m_{11}$
 - > = a'b'cd' + a'b'cd + a'bcd' + ab'cd' + ab'cd

- $> G(a, b, c, d) = \prod (0,4,12,15),$ express G as POM
 - \triangleright G = M₀ . M₄ . M₁₂ . M₁₅
 - $> = (a+b+c+d) \cdot (a+b'+c+d) \cdot (a'+b'+c+d) \cdot (a'+b'+c'+d')$

Standard Order

- ➤ All variables should be present in a minterm or maxterm and should be listed in the <u>same order</u>.
- > Example: For variables a, b, c:
 - \triangleright Maxterms (a + b + c), (a + b' + c) are in standard order
 - ➤ However, (b + a + c) is NOT in standard order
 - > (a + c) does NOT contain all variables
 - ➤ Minterms (abc) and (abc') are in standard order
 - > However, (bac) is not in standard order
 - > (ac) does not contain all variables

To Do List

- > Review lecture notes, and try the examples yourself
- ➤ Study chapter 2 until 2.7