Fahrzeugregelung Bremsverhalten und Bremsregelung

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2 Einleitung

Richtlinie des Rates der EU "Bremsen" 71/320/EWG

"Die Bremsanlage bezeichnet die Gesamtheit der Teile, deren Aufgabe es ist, die Geschwindigkeit eines fahrenden Fahrzeuges zu verringern, es zum Stillstand zu bringen oder es im Stillstand zu halten, wenn es bereits hält. Die Bremsanlage besteht aus der Betätigungseinrichtung, der Übertragungseinrichtung und der eigentlichen Bremse."

Seite 3

Einleitung Bremsentypen und Bremsarten

Betriebsbremse

Muss bei allen Geschwindigkeiten und Beladungszuständen bei beliebiger Steigung und beliebigem Gefälle die Kontrolle der Fahrzeugbewegung sowie ein sicheres, schnelles und wirksames Anhalten des Fahrzeuges ermöglichen.

Verzögerungsbremsung (Geschwindigkeit verringern / anhalten)

Beharrungsbremsung (konst. Geschwindigkeit halten)

Hilfsbremse

Muss das **Anhalten** des Fahrzeugs innerhalb einer angemessenen Entfernung ermöglichen, **wenn die Betriebsbremse versagt**.

Feststellbremse

Muss das Fahrzeug auch bei Abwesenheit des Fahrers in der Steigung und im Gefälle im Stillstand halten (rein mechanisch)

Seite 4

Bremsen bei Geradeausfahrt Ablauf einer plötzlichen Verzögerunsbremsung

Bremsen bei Geradeausfahrt Aufforderung → Fuß weg vom Gaspedal

- > Wahrnehmung einer objektiven Reaktionsaufforderung
- > Erkennung der Gefahr
- > Entscheidung über die Handlung (Bremsen, Lenken,...)
- > Reizleitungs- bzw. Muskelaktivierungszeit

Summen- häufigkeit	Reaktionsaufforderung				
(50 Fahrer) %	Fußgänger betritt die Fahrbahn von rechts: «starke» Reaktionsaufforderung	Fußgänger betritt die Fahrbahn von links, Blickzuwendung erforderlich: «schwache» Reaktionsaufforderung			
50	0,40 s	1,04 s			
99	0,80 s	1,49 s			

Mercedes-Benz-/Dekra-Untersuchung

Bremsen bei Geradeausfahrt Fuß weg vom Gaspedal → Fahrzeugverzögerung

- ➤ Umsetzzeit (0.15 s 0.3 s)
 Fuß wechselt von Gas auf Bremspedal
- ➤ Anlegezeit (0.015 s 0.05 s)
 Überwindung der Spiele und Elastizitäten in der Bremsanlage
- ➤ Ansprechzeit (0.05 s 0.1 s) fahrzeugabhängige Zeitspanne vom Bremsdruckanstieg bis zur beginnenden Fahrzeugverzögerung

Eine Verzögerung aufgrund des Motorschubmoments und von Fahrwiderständen steigt linear auf 0.5 – 1.5 m/s² an.

Bremsen bei Geradeausfahrt Zeitlicher Ablauf eines Bremsvorgangs

Bremsen bei Geradeausfahrt Fahrzeugverzögerung → Stillstand

Beispielrechnung

Wie hoch ist die Anhaltezeit und wie lang der Anhalteweg bei Reaktion auf ein Ereignis ("99% Fahrer") mit 50 bzw. 144 km/h bei max. möglicher Verzögerung von 8 m/s²?

Fahrgeschwindigkeit= 50 km/h

Anhaltezeit= 3.8 s

Anhalteweg= 40.4 m

davon

Weganteil bis zur Vollbremsung= 29.7 m

Weganteil Vollbremsung bis Stillstand= 10.7 m

Fahrgeschwindigkeit= 144 km/h

Anhaltezeit= 7.0 s

Anhalteweg= 181.6 m

davon

Weganteil bis zur Vollbremsung= 85.6 m

Weganteil Vollbremsung bis Stillstand= 96.0 m

Vestessesung dusch "Iresafe"- Maphachuren

Vestesserung dusch

Dugar, Abbreasur

4 Sicherstell ung deurbarreit

Seite 10

Abbremsung und Haftwertausnutzung Maximal erreichbare Abbremsung

Aus des Bewegungsgleichung eines 2-achsigen tales tenges folgt

de blein bein Breusen

low.

Die maximale Abbremsung wind lareicht, wenn Gret = huex Nev + huex Neu = Muax (Nev + Neu) = Muax Gre Huax Gre

Abbremsung und Haftwertausnutzung

Minimaler Bremsweg

Fin den Anhalbeweg giet

Des minimale Anhalbeweg

Also

Des minimale Anhalteweg banns nu essercent wenden, wenny

lau

1. Diese Forderung ist ohne Brensknocktregerung wicht du enfinéele

2. blodieren des Achsen macent das Falwreng un rontrollierbar (Fy=0)

Bremskraftverteilung Bremsstabilität

Blockieren der Hinterachse

Blockieren der Vorderachse

Bremsregelung Wichtige Regelungsziele

- Die Räder sollen nicht blockieren
- Der Kraftschluss soll maximal ausgenutzt werden
- Die Regelung muss sich Änderungen am Fahrzeug und in der Umwelt anpassen
- In Kurven muss das Fahrzeug stabil und lenkbar bleiben
- Bei μ-Split sollen die Giermomente beherrschbar ansteigen
- Kleine Bremsmomentregelamplituden zur Vermeidung von Fahrwerkschwingungen, Pedalrückwirkungen und Lärm

Antiblockiersystem – ABS Historie

- 1928 Erstes Patent mechanisch-hydraulisches ABS für Kfz
- 1965 GT von Jensen Motors, Dunlop Stotterbremse
- 1978 1. serienmäßiges ABS für PKW (Mercedes/Bosch)
- 1988 Bosch fertigt das ein-millionste ABS
- 1997 Elchtest der A-Klasse -> ESP Serie für Nicht-Luxusklasse
- 2004 Selbstverpflichtung ACEA: ABS serienmäßig für alle Fahrzeuge mit weniger als 2,5t

Antiblockiersystem – ABS Getötete im Straßenverkehr

Antiblockiersystem – ABS Bedeutung für den Autofahrer (Stand: 2004)

Seite 17

Antiblockiersystem – ABS Bedeutung für den Autofahrer (Stand: 2012)

Ausstattungsgrad der Fahrzeuge

Ausstattung	Bestand	Neuwagen	Gebraucht- wagen	Ausstattung	Bestand	Neuwagen	Gebraucht- wagen
1. Radio	96 %	98 %	97 %	6. Klimaanlage	81 %	93 %	80 %
2. Servolenkung	92 %	97 %	92 %	7. Metallic-Lackierung	67 %	65 %	56 %
3. Zentralverriegelung	91 %	97 %	89 %	8. ESP	60 %	86 %	57 %
4. Elektrische Fensterheber	89 %	94 %	86 %	9. Seiten-Airbag	58 %	89 %	72 %
5. Antiblockiersystem	88 %	100 %	90 %	10. Leichtmetallfelgen	56 %	62 %	49 %

Quelle: DAT-Report 2012

Seite 18

ANHANG

Seite 19

Bremsen bei Geradeausfahrt Vereinfachte Berechnung des Anhalteweges

Folgeabstand bei Kolonnenfahrt Definition

Für die Verkehrssicherheit ist es wichtig, dass bei einer Kolonnenfahrt zwischen den Fahrzeugen ein zur Vermeidung von Auffahrunfällen ausreichender Abstand eingehalten wird.

Unter **Fahrzeugkolonne** wird eine Folge von Fahrzeugen verstanden, die sich als Gruppe bewegen, wobei die **Fahrzeugfolgezeiten kleiner als 6 s** sind.

Für die **Berechnung des Folgeabstandes** gibt es zwei **Modellannahmen**:

- der absolut sichere Abstand und
- >der relativ sichere Abstand

Seite 21

Folgeabstand bei Kolonnenfahrt Absolut sicherer Abstand

Folgeabstand ist so groß, dass das nachfolgende Fahrzeug auch dann noch ohne Aufprall bis zum Halten abbremsen kann, wenn das vorausfahrende Fahrzeug plötzlich stehen bleibt.

Seite 22

Folgeabstand bei Kolonnenfahrt Relativ sicherer Abstand

Folgeabstand ist so groß, dass ein Auffahren vermieden werden kann, wenn das vorausfahrende Fahrzeug unter Ausnutzung der Haftreibungszahl abgebremst wird.

Folgeabstand bei Kolonnenfahrt Übersicht

Angenommene Reaktionszeit 0.8 s **Verzögerung** 8 m/s²

Pro	of. DrIn	10
S.	Müller	

Vielen Dank für Ihre Aufmerksamkeit!