# 인지과학으로 시작하는 인공지능(AI)

- 응용 사례 -

2021. 10. 12.

정 준 수 Ph.D.

Artificial intelligence started as a field whose goal was to replicate human level intelligence in a machine.

인공 지능은 인간 수준의 지능을 기계에 복제하는 것을 목표로 시작되었습니다.

## 마음은 연산자!

연산자란? 산술적 의미의 계산이 아니라, 그 과정의 세부 단계 절차들을 명확히 규정 할 수 있으며 형식화할 수 있다는 의미

- ●컴퓨터와 인간의 지능이 같은 원리가 적용되는 정보처리 시스템이라는 관점을 제시하여 컴퓨터와 인간의 마음 및 지능을 연결시키고,
- ●인공지능이라는 분야가 출발하게 하고,
- ●오늘날 정보과학과 IT의 이론적 틀, 개념적 기초 제시
- ●최초의 현대적 의미의 인공지능 프로그램을 만듦

#### **Herbert A. Simon**

# 인공지능의 응용분야 예시 1

(Robotics와 Algorithm)

# Dynamic Pricing

Sept. 5, 2012 10:32 am ET





## 아마존을 겨냥한 가격 변동 전략 테스트 中





가격 탄력성, 배송비 여부, 매장 집객 효과 등 분석 결과 기업 이득

민정하 의사결정이 원구되는 만큼 건물도식 필요



Source: 동아비즈니스리뷰(DBR), 삼정KPMG 경제연구원

## AI알고리즘 관련 주요 이슈와 쟁점

1

### 알고리즘 담합(Algorithm Collusion)

전통적인 경제에서는 생소했던 알고리즘이 담합을 촉진시키는 역할을 할 수 있다는 이슈

2

#### EU의 GDPR(개인정보보호 규정) 도입

알고리즘을 제한하거나 알고리즘에 대한 완전한 점검을 요구할 수 있음

3

### 알고리즘의 윤리성, 공정성, 편향성 이슈

알고리즘을 설계하는 과정에 인간의 개입에 따른 오류와 편향성의 발생 가능성이 존재

Source: 삼정KPMG 경제연구원

### 국내 담합 성립 요건 (공정거래법 제19조 제1항)



담합이 성립하기 위해서는 다른 사업자 (복수의 사업자)와 공동으로 참여해 행해진 행위



사업자 간 계약, 협정, 결의 등 합의가 있어야 하며 명시적인 합의뿐만 아니라 암묵적 양해와 같은 묵시적 합의도 포함



사업자간 공동으로 제품이나 서비스의 가격을 인상하거나 인하 및 유지하는 행위 등이 부당하게 경쟁을 제한하여야 함

Source: 공정거래위원회, 삼정KPMG 경제연구원 재구성

#### 가격 담합을 조장하는 4가지 알고리즘 유형

#### 모니터링 알고리즘 (Monitoring Algorithms)



- 경쟁 기업들의 실시간 가격, 수량 정보를 자동적으로 수집하여 담합가격을 설정
- 경쟁 기업이 담합에 이탈하는 경우 즉각 가격 경쟁에 돌입
- 결과적으로 기업의 담합 이탈을 억제하며 담합의 지속성을 높이는 결과를 초래

#### 병행 알고리즘 (Parallel Algorithms)



 한 기업이 최적의 가격을 설정하고 다른 기업들이 직접적 의사교환 없이 병행적으로 가격을 동일하게 따르는 메커니즘

#### 신호 알고리즘 (Signaling Algorithms)



- 기업들이 직접 담합 가격을 설정하지는 않지만 기업 간 가격 인상에 대한 신호를 실시간으로 전달하면서 담합을 형성하는 메커니즘
- 기업들이 내보낸 신호가 가격 결정에 직접적인 영향을 미쳤는지 확인이 어려움

#### 자가학습 알고리즘 (Self-learning Algorithms)

- AI알고리즘이 시장의 입력(Input) 데이터를 지속적으로 수집 및 학습
- AI알고리즘은 이를 바탕으로 이윤극대화를 위한 최적의 가격을 도출
- 기업들이 동일한 목적으로 AI알고리즘을 사용했을 때, 결과적으로 담합이라는 결과가 발생



## AI알고리즘이 담합에 미치는 영향

| 담합을 형성하는 주요 변수 |         | Al알고리즘이 변수에 미치는 영향 |
|----------------|---------|--------------------|
| 구조적 특징         | 기업의 수   | 모호함 (±)            |
|                | 시장 진입장벽 | 모호함 (±)            |
|                | 시장 투명성  | 긍정적 (+)            |
|                | 거래빈도    | 긍정적 (+)            |
| 수요 변수          | 수요 증가   | 중립적 (0)            |
|                | 수요 변동성  | 중립적 (0)            |
| 공급 변수          | 혁신      | 부정적 (-)            |
|                | 원가 비대칭성 | 부정적 (-)            |

## Implication

시장의 투명성이 높아지면 타기업들의 행동경로를 예측할 수 있게 되어 과점시장과 유사한 모습을 보일 수 있음

거래빈도가 높아지면

전략인 담합이 형성

시장에 참여한 기업들이 담합에 참여할지 여부를 선택하는 게임 상황이 지속되어 결국 협조적

Source: OECD, 삼정KPMG 경제연구원 재구성













# 인공지능의 응용분야 예시 ॥

(Object Counting)

## **Object Counting**



## **Object Counting**



## Counts number of caps in a Box





















# 인공지능의 응용분야 예시 III

(품질검사 자동화 – Object flaw detection)

Object Number: 2 Length (mm): 71.17 Width (mm): 18.26 Defect: Color



# SMT Assembly Inspection Using Dual-Stream Convolutional Networks and Two Solder Regions





Two solder regions S1 and S2 are extract via the vertical and horizontal projection of full chip component images

# Solder region extraction



**Figure 8.** Solder region extraction of SMT chip image where 'px' refers to pixels: (a) chip component image, (b) gray scale image showing horizontal split of chip component, (c) vertical and horizontal projections, and (d) result of solder region extraction.

Otsu method 로 horizontal projection threshold value를 찾아 split point를 찾았습니다.

# PCB defect 검사













# 인공지능의 응용분야 예시 IV

(Tiny ML)

# 인공지능의 응용분야 예시 V

(인공지능을 속이는 방법)



## 정 준 수 / Ph.D (heinem@naver.com)

- 前) 삼성전자 연구원
- 前) 삼성의료원 (삼성생명과학연구소)
- 前) 삼성SDS (정보기술연구소)
- 現) (사)한국인공지능협회, AI, 머신러닝 강의
- 現) 한국소프트웨어산업협회, AI, 머신러닝 강의
- 現) 서울디지털재단, AI 자문위원
- 現) 한성대학교 교수(겸)
- 전문분야: Computer Vision, 머신러닝(ML), RPA
- https://github.com/JSJeong-me/