10. 某同学利用如图(a) 所示的实验装置探究物体做直线运动时平均速度与时间的关系。 让小车左端和纸带相连。右端用细绳跨过定滑轮和钩码相连。钩码下落,带动小车运动,打 点计时器打出纸带。某次实验得到的纸带和相关数据如图(b)所示。

打点计时器 纸带小车

(1)已知打出图(b)中相邻两个计数点的时间间隔均为 0.1s. 以打出 A 点时小车位置为初始位置,将打出 B、C、D、E、F 各点时小车的位移 Δx 填到表中,小车发生应位移所用时间和平均速度分别为 Δt 和 v_0 ,表中 $\Delta x_{AD} =$ ______cm, $v_{AD} =$ _____cm/s 。

图(b)

位移区间	AB	AC	AD	AE	AF
Δx (cm)	6.60	14.60	$\Delta x_{\scriptscriptstyle AD}$	34.90	47.30
\overline{v} (cm/s)	66 0	73.0	\overline{v}_{AD}	87.3	94.6

(2)根据表中数据得到小车平均速度v随时间 Δt 的变化关系,如图(c)所示。题卡上的图中补全实验点。

- (3)从实验结果可知,小车运动的 $v_-\Delta t$ 图线可视为一条直线,此直线用方程 $v_-k\Delta t + b$ 表示,其中k =______cm/s 2 ,b =_____cm/s 3 (结果均保留 3 位有效数字)
- (4) 根据(3)中的直线方程可以判定小车做匀加速直线运动,得到打出 A 点时小车速度 大小 $v_A =$ ______,小车的加速度大小a = ______。(结果用字母 k、b 表示)