

第二章 矩阵

- §1 矩阵的定义
- § 2 矩阵的运算
- § 3 逆矩阵
- § 4 分块矩阵
- § 5 矩阵的初等变换
- §6 矩阵的秩

§1 矩阵的定义

一、矩阵的定义

由 $m \times n$ 个数 a_{ij} $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$ 排成的 m 行 n 列的数表

称为m行n列矩阵,简称 $m \times n$ 矩阵. 记作

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

简记为
$$A = A_{m \times n} = (a_{ij})_{m \times n} = (a_{ij})$$

这 $m \times n$ 个数称为矩阵A的元素,简称为元.

元素是实数的矩阵称为实矩阵,

元素是复数的矩阵称为复矩阵.

行列式	矩阵
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$
■行数等于列数	■行数不等于列数
■共有n ² 个元素	■共有m×n个元素
■本质是一个数	■本质上就是一个数表
$\det(a_{ij}), a_{ij} _{n\times n}$	$(a_{ij})_{m\times n}$

二、特殊的矩阵

- 1. 行数与列数都等于n的矩阵,称为n阶方阵. 可记作 A_n .
- 2. 只有一行的矩阵 $A = (a_1, a_2, \dots, a_n)$ 称为行矩阵(或行向量).

只有一列的矩阵
$$B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 称为列矩阵(或列向量).

3. 元素全是零的矩阵称为零距阵. 可记作 O. 例如:

$$O_{2\times2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad O_{1\times4} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$

的方阵称为对角阵. 记作

$$A = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

 \cdots 称为单位阵. 记作 E_n .

注: n阶方阵与n阶行列式形式上有点相似,但是概念完全不同. 当n=1时,一阶方阵 $(a_{11})=a_{11}$.

同型矩阵与矩阵相等的概念

1. 两个矩阵的行数相等、列数也相等时, 称为同型矩阵.

例如
$$\begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 3 & 7 \end{pmatrix}$$
 与 $\begin{pmatrix} 14 & 3 \\ 8 & 4 \\ 3 & 9 \end{pmatrix}$ 为同型矩阵.

2. 两个矩阵 $A = (a_{ij})$ 与 $B = (b_{ij})$ 为同型矩阵,并且对应元素相等,即 $a_{ij} = b_{ij}$ $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$ 则称矩阵 A 与 B 相等,记作 A = B.

注意:不同型的零矩阵是不相等的.

三、矩阵与线性变换

n 个变量 x_1, x_2, \dots, x_n 与m 个变量 y_1, y_2, \dots, y_m 之间的关系式

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots & \dots & \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n. \end{cases}$$

表示一个从变量 x_1, x_2, \dots, x_n 到变量 y_1, y_2, \dots, y_m 的线性变换, 其中 a_{ii} 为常数.

线性变换与矩阵之间存在着一一对应关系.

例 线性变换
$$\begin{cases} y_1 = x_1, \\ y_2 = x_2, \\ \dots \\ y_n = x_n \end{cases}$$

$$\begin{cases} y_1 = x_1, \\ y_2 = x_2, \\ \dots \\ y_n = x_n \end{cases} = \begin{cases} y_1 = \mathbf{1} \cdot x_1 + 0 \cdot x_2 + \dots + 0 \cdot x_n, \\ y_2 = 0 \cdot x_1 + 1 \cdot x_2 + \dots + 0 \cdot x_n, \\ \dots \\ y_n = 0 \cdot x_1 + 0 \cdot x_2 + \dots + 1 \cdot x_n \end{cases}$$

対应
$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
単位阵 E_n