Network Calculus Tests – Single Server Network Configurations

Version 1.1 (2014-Dec-30)

© Steffen Bondorf 2013 - 2014, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons Attribution-ShareAlike 4.0. See http://creativecommons.org/licenses/by-sa/4.0/

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems* (DISCO) Lab at the University of Kaiserslautern.
- Naming of the individual network configurations depicts the name of the according functional test for the DiscoDNC.
- The naming scheme used in this document is detailed in NetworkCalculus NamingScheme.pdf.
- Arrival bound computations are equivalent to the PbooArrivalBound_Output_PerHop.java class of the DiscoDNC.
- The end-to-end left-over service curve for PBOO arrival bounds can be computed by simply convolving the server-local ones.
- Arrival bounds for PmooArrivalBound. java and analyses using them are listed only if results are different to PBOO.

Changelog:

Version 1.1 (2014-Dec-30):

• Adapted to naming scheme version 1.1.

Acknowledgements:

Version 1.1: Thanks to Yokanand Thirupathi and Paresh Chotala for pointing out some errors.

 $^{^{1}} http://disco.cs.uni-kl.de/index.php/projects/disco-dnc$

${\bf Single_1Flow}$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\bullet \ \mathcal{F} = \{f_0\}$
- $\bullet \ \alpha^{f_0} = \gamma_{r^{f_0},b^{f_0}} = \gamma_{5,25}$

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0}$		$=\gamma_{5,25}$
s_0	D^{f_0}	$\beta_{s_0} = b_{s_o}$ $10 \cdot [t - 10]^+ = 25$ $t = 12\frac{1}{2}$	FIFO per micro flow $\beta_{s_0} = b_{s_o}$ $10 \cdot [t - 10]^+ = 25$ $t = 12\frac{1}{2}$
	B^{f_0}	$\alpha_{s_0}(T_{s_0})$	$0 = 5 \cdot 10 + 25$ = 75

	SFA	FIFO_MUX ARB_MUX
	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$
$ s_0 $	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = [\beta_{s_0} - \alpha_{s_0}^{x(f_0)}]^+ = \beta_{R_{e2e}^{\text{l.o.}f_0}, T_{e2e}^{\text{l.o.}f_0}} = \beta_{s_0}$	$=\beta_{10,10}$
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$10 \cdot [t - 10]^+ = 25$
		$t = 12\frac{1}{2}$
	B^{f_0}	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25$
	<i>D</i> .	= 75

	PMOO	ARB_MUX		
s_0	$lpha_{s_0}^{ar{x}(f_0)}$	$=\gamma_{0,0}$		
-0	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$		
	$R_{\rm e2e}^{\rm l.o.f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	= 10 - 0		
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$R_{\rm e2e} = R_{s_0} - r_{s_0}$	= 10		
\mathcal{F}_{e2e} $\mathcal{F}_{e2e}^{\text{n.o.j}_0}$, $T_{e2e}^{\text{n.o.j}_0}$	$T_{\text{e2e}}^{\text{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{\text{e2e}}^{\text{l.o.}f_0}}$	$= 10 + \frac{0 + 0 \cdot 10}{10}$		
	$R_{ m e2e}^{ m res}$	= 10		
	=	$= \beta_{10,10}$		
		$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$		
	D^{f_0}	$10 \cdot [t - 10]^+ = 25$		
	$t = 12\frac{1}{2}$			
	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25$			
	B^{f_0}			

$Single_2Flows_1AC$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{rf_n, bf_n} = \gamma_{5,25}, n \in \{0, 1\}$

Flows $f_n, n \in \{0, 1\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$		$=\gamma_{10,50}$
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$ $10 \cdot [t - 10]^+ = 10 \cdot t + 50$ $0 \cdot t = 150$
	D^{f_n}	$10 \cdot [t-10]^+ = 50$	$10 \cdot [t - 10]' = 10 \cdot t + 50$
		t = 15	$0 \cdot t = 150$
		t = 15	$\Rightarrow D^{f_n} = \infty$
	R^{f_n}	$\alpha_{s_0}(T_{s_0})$	$= 10 \cdot 10 + 50$
	D^{rn}		= 150

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_n)} = \alpha^{f_n}$		$= \gamma_{\bar{s}}$ $[R_{s_0} - r_{s_0}^{x(f)}]$ $\beta_{s_0} = b_{s_0}^{x(f_n)}$ $10 \cdot [t - 10]^+ = 25$	5,25
	r(f)	$R_{s_0}^{\mathrm{l.o.}f_n}$	$[R_{s_0} - r_{s_0}^{x(f)}]$	$[n]^{n} = 5$
0.	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_n)} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		$\beta_{s_0} = b_{s_0}^{x(f_n)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_n)}$
s_0		$T_{s_0}^{\mathrm{l.o.}f_n}$	$\beta_{s_0} = b_{s_0}^{x(f_n)}$ $10 \cdot [t - 10]^+ = 25$	$\beta_{s_0} = \alpha_{s_0}^{x(f_n)} 10 \cdot [t - 10]^+ = 5 \cdot t + 25$
			$t = 12\frac{1}{2}$	t = 25
		=	$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
	$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n}=eta_{s_0}^{\mathrm{l.o.}f_n}$		$=\beta_{5,12\frac{1}{2}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$	$=\beta_{5,25}$
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	$eta_{ ext{e2e}}^{ ext{l.o.}f_n} = b^{f_n}$
	D^{f_n}		$5 \cdot [t - 12\frac{1}{2}]^+ = 25$	$5 \cdot [t - 25]^+ = 25$
			$t = 17\frac{1}{2}$	t = 30
	B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 12\frac{1}{2} + 25$	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 25 + 25$
	D		$=$ $87\frac{1}{2}$	= 150

	PMOO	ARB_MUX
s_0	$\alpha_{s_0}^{\bar{x}(f_n)} = \alpha^{f_n}$	$=\gamma_{5,25}$
30	$\alpha_{s_0}^{x(f_n)} = \alpha^{f_n}$	$=\gamma_{5,25}$
	$R_{o2o}^{\text{l.o.}f_n} = R_{s_0} - r_{s_0}^{x(f_n)}$	= 10-5
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$	$R_{\mathrm{e2e}} = R_{s_0} - R_{s_0}$	= 5
R_{e2e} , R_{e2e}	$T_{\text{e2e}}^{\text{l.o.}f_n} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_n)} + r_{s_0}^{x(f_n)} \cdot T_{s_0}}{R_{s_0}^{\text{l.o.}f_0}}$	$= 10 + \frac{25 + 5 \cdot 10}{5}$
	$R_{\rm e2e}^{\rm l.o.f_0}$	= 25
	=	$=\beta_{5,25}$
		$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{f_n}$
	D^{f_n}	$5 \cdot [t - 25]^+ = 25$
		t = 30
	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 25 + 25$	
	B^{f_n}	= 150

$Single_2Flow_2ACs$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \gamma_{r^{f_0}, b^{f_0}} = \gamma_{4,10}$
- $\bullet \ \alpha^{f_1} = \gamma_{r^{f_1}, b^{f_1}} = \gamma_{5,25}$

Flows $f_n, n \in \{0, 1\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$	=	$= \gamma_{9,35}$
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$
	D^{f_n}	$10 \cdot [t - 10]^+ = 35$	$10 \cdot [t-10]^+ = 9 \cdot t + 35$
		$t = 13\frac{1}{2}$	t = 135
	R^{f_n}	$\alpha_{s_0}(T_{s_0})$	$= 9 \cdot 10 + 35$
	D		= 125

Flow f_0

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_0)} = \alpha^{f_1}$		$=\gamma_5$	
	$x(f_0)$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$[R_{s_0} - r_{s_0}^{x(f)}]$	
	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
s_0		$T_{s_0}^{\mathrm{l.o.}f_0}$	$10 \cdot [t - 10]^+ = 25$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$ $10 \cdot [t - 10]^+ = 5 \cdot t + 25$
			$t = 12\frac{1}{2}$	t = 25
		=	$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
	$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = eta_{R_{ ext{e2e}}^{ ext{l.o.}f_0}, T_{ ext{e2e}}^{ ext{l.o.}f_0}} = eta_{s_0}^{ ext{l.o.}f_0}$		$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$	$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$5 \cdot [t - 12\frac{1}{2}]^+ = 10$	$5 \cdot [t - 25]^+ = 10$
			$t = 14\frac{1}{2}$	t = 27
	B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 12\frac{1}{2} + 10$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 25 + 10$
			= 60	= 110

	PMOO	ARB_MUX
80	$\alpha_{s_0}^{\bar{x}(f_0)} = \alpha^{f_1}$	$=\gamma_{5,25}$
s_0	$\alpha_{s_0}^{x(f_0)} = \alpha^{f_1}$	$=\gamma_{5,25}$
	$R_{e2e}^{\text{l.o.}f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	= 10-5
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$n_{\mathrm{e2e}} = n_{s_0} - r_{s_0}$	= 5
n_{s_0} , n_{s_0}	$T_{\text{e2e}}^{\text{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{s_0}^{\text{l.o.}f_0}}$	$= 10 + \frac{25 + 5 \cdot 10}{5}$
	$I_{e2e} = I_{s_0} + \frac{1}{R_{e2e}^{1.o.f_0}}$	= 25
	=	$=\beta_{5,25}$
		$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$5 \cdot [t - 25]^+ = 10$
		t = 27
	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 25 + 10$	
	B^{f_0}	= 110

Flow f_1

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_1)} = \alpha^{f_0}$		=	$= \gamma_{4,10}$
	$x = x(f_1)$	$R_{s_0}^{\mathrm{l.o.}f_1}$	$[R_{s_0}-\epsilon$	$\binom{x(f_1)}{s_0}^+ = 6$
0.	$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$		$\beta_{s_0} = b_{s_0}^{x(f_1)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_1)}$ $10 \cdot [t - 10]^+ = 4 \cdot t + 10$
s_0		$T_{s_0}^{\mathrm{l.o.}f_1}$	$\beta_{s_0} = b_{s_0}^{x(f_1)}$ $10 \cdot [t - 10]^+ = 10$	$10 \cdot [t-10]^+ = 4 \cdot t + 10$
			t = 11	$t = 18\frac{1}{3}$
		=	$=\beta_{6,11}$	$=\beta_{6,18\frac{1}{3}}$
	$eta_{ ext{e2e}}^{ ext{l.o.}f_1} = eta_{R_{ ext{e2e}}^{ ext{l.o.}f_1}, T_{ ext{e2e}}^{ ext{l.o.}f_1}} = eta_{s_0}^{ ext{l.o.}f_1}$		$=\beta_{6,11}$	$=\beta_{6,18\frac{1}{3}}$
			$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}		$6 \cdot [t-11]^+ = 25$	$6 \cdot [t - 18\frac{1}{3}]^+ = 25$
			$t = 15\frac{1}{6}$	$t = 22\frac{1}{2}$
	B^{f_1}		$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 11 + 25$	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 18\frac{1}{3} + 25$
	5		= 80	$= 116\frac{2}{3}$

	PMOO	ARB_MUX
s_0	$\alpha_{s_0}^{\bar{x}(f_1)} = \alpha^{f_0}$	$=\gamma_{4,10}$
30	$\alpha_{s_0}^{x(f_1)} = \alpha^{f_0}$	$=\gamma_{4,10}$
	$R_{\rm e2e}^{\rm l.o.}f_1 = R_{s_0} - r_{s_0}^{x(f_1)}$	= 10-4
$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$	$n_{\mathrm{e2e}} = n_{s_0} - r_{s_0}$	= 6
R_{s_0} R_{s_0}	$T_{\text{e2e}}^{\text{l.o.}f_1} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_1)} + r_{s_0}^{x(f_1)} \cdot T_{s_0}}{R_{s_{o_e}}^{\text{l.o.}f_0}}$	$= 10 + \frac{10 + 4 \cdot 10}{6}$
	$I_{e2e} = I_{s_0} + \frac{R_{e2e}^{\text{l.o.}f_0}}{R_{e2e}^{\text{l.o.}f_0}}$	$=$ $18\frac{1}{3}$
	=	$=\beta_{6,18\frac{1}{3}}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}	$6 \cdot [t - 18\frac{1}{3}]^+ = 25$
	$t = 22\frac{1}{2}$	
	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 18\frac{1}{3} + 25$	
	B^{f_1}	$=$ $116\frac{2}{3}$

$Single_10Flow_10ACs$

$$\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$$

•
$$\mathcal{F} = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$$

• for
$$n=0$$
 to 9: $\alpha^{f_n}=\gamma_{r^{f_n},b^{f_n}}=\gamma_{\frac{1}{10}\cdot(i+1),1\cdot(i+1)}$

We restrict the presentation of the SFA and the PMOO analysis to flows f_0 and f_6 . The omitted computations follow the same scheme.

Flows $f_n, n \in \{0, ..., 9\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX		
	$\alpha_{s_0} = \sum_{n=0}^{9} \alpha_i$	$=\gamma_{5\frac{1}{2},55}$			
s_0					
	D^{f_n}	$10 \cdot [t - 10]^+ = 55$	$\beta_{s_0} = \alpha_{s_0}$ $10 \cdot [t - 10]^+ = 5\frac{1}{2} \cdot t + 55$		
		$t = 15\frac{1}{2}$	$t = 34\frac{4}{9}$		
	B^{f_n}	$\alpha_{s_0}(T_{s_0})$	$= 5\frac{1}{2} \cdot 10 + 55$		
			= 110		

Flow f_0

SFA		FIFO_MUX	ARB_MUX		
	$\alpha_{s_0}^{x(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_0)}, b_{s_0}^{x(f_0)}}$	$r_{s_0}^{x(f_0)}$	$\sum_{n=1}^{9} r^{f_n} = 5\frac{2}{5}$ $\sum_{n=1}^{9} b^{f_n} = 54$		
		$b_{s_0}^{x(f_0)}$	$\sum_{n=1}^{9} b^{f_n} = 54$		
		=	$=\gamma_{5\frac{2}{5},54}$		
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = R_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$=\gamma_{5\frac{2}{5},54} \ [R_{s_0} - r_{s_0}^{x(f_0)}]^+ = 4\frac{3}{5}$		
30			$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$ $10 \cdot [t - 10]^+ = 5\frac{2}{5} \cdot t + 54$	
		$T_{s_0}^{\mathrm{l.o.}f_0}$	$10 \cdot [t - 10]^+ = 54$	$10 \cdot [t-10]^+ = 5\frac{2}{5} \cdot t + 54$	
			$t = 15\frac{2}{5}$	$t = 33\frac{11}{23}$	
		=	$=\beta_{4\frac{3}{5},15\frac{2}{5}}$	$=\beta_{4\frac{3}{5},33\frac{11}{23}}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{a2e}^{\text{l.o.}f_0}, T_{a2e}^{\text{l.o.}f_0}} = \beta_{s_0}^{\text{l.o.}f_0}$		$=\beta_{4\frac{3}{5},15\frac{2}{5}}$	$=\beta_{4\frac{3}{5},33\frac{11}{23}}$	
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$	$= \beta_{4\frac{3}{5},33\frac{11}{23}} \beta_{\text{e}2\text{e}}^{\text{I.o.}f_0} = b^{f_0}$	
	D^{f_0}		$4\frac{3}{5} \cdot [t - 15\frac{2}{5}]^{+} = 1$	$4\frac{3}{5} \cdot [t - 33\frac{11}{23}]^{+} = 1$	
			$t = 15\frac{71}{115}$	$t = 33\frac{16}{23}$	
	B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 15\frac{2}{5} + 1$	$t = 33\frac{16}{23}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$	
			$= 2\frac{27}{50}$	$=$ $4\frac{8}{23}$	

	ARB_MUX		
s_0	$\alpha_{s_0}^{\bar{x}(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_0)}, b_{s_0}^{x(f_0)}}$	$=\gamma_{5\frac{2}{5},54}$	
, and the second	$\alpha_{s_0}^{x(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}}^{x(f_0)}, b_{s_0}^{x(f_0)}$	$=\gamma_{5\frac{2}{5},54}$	
	$r(f_0)$	$= 10 - 5\frac{2}{5}$	
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$R_{\text{e2e}}^{\text{l.o.}f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	$= 4\frac{3}{5}$	
		$= 10 - 5\frac{2}{5}$ $= 4\frac{3}{5}$ $= 10 + \frac{54 + 5\frac{2}{5} \cdot 10}{4\frac{3}{5}}$	
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{\mathrm{e2e}}^{\mathrm{l.o.}f_0}}$	$=$ $10 + \frac{108}{4\frac{3}{2}}$	
		$=$ $33\frac{11}{23}$	
	=	$=\beta_{4\frac{3}{5},33\frac{11}{23}}$	
		$\beta_{\text{e2e}}^{\text{1.o.} f_0} = b^{f_0}$	
D^{f_0}		$4\frac{3}{5} \cdot [t - 33\frac{11}{23}]^{+} = 1$	
		$t = 33\frac{16}{23}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$	
	$\alpha^{f_0}(T_{\text{e2e}}^{\text{1.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$		
	B^{f_0}	$=$ $4\frac{8}{23}$	

Flow f_6

	SFA		FIFO_MUX	ARB_MUX
	$\alpha^{x(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}$	$r_{s_0}^{x(f_6)}$	$(\sum_{n=0}^{9} r^{f_n}) - r^{f_6} = 4\frac{4}{5}$ $(\sum_{n=0}^{9} b^{f_n}) - b^{f_6} = 48$	
		$b_{s_0}^{x(f_6)}$	$\left(\sum_{n=0}^{9} b^{f_n}\right) - b^{f_6} = 48$	
		=	$=\gamma_4$	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.0	-(f)	$R_{s_0}^{\mathrm{l.o.}f_6}$		
s_0	$\beta_{s_0}^{\text{l.o.}f_6} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_6)} = \beta_{R_{s_0}^{\text{l.o.}f_6}, T_{s_0}^{\text{l.o.}f_6}}$		$\beta_{s_0} = b_{s_0}^{x(f_6)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_6)}$ $10 \cdot [t - 10]^+ = 4\frac{4}{5} \cdot t + 48$
		$T_{s_0}^{\mathrm{l.o.}f_6}$	$10 \cdot [t - 10]^+ = 48$	$10 \cdot [t - 10]^{+} = 4\frac{4}{5} \cdot t + 48$
			$t = 14\frac{4}{5}$	$t = 28\frac{6}{13}$
		=	$=\beta_{5\frac{1}{5},14\frac{4}{5}}$	$=\beta_{5\frac{1}{5},28\frac{6}{13}}$
	$eta_{ ext{e2e}}^{ ext{l.o.}f_6} = eta_{R_{ ext{e2e}}^{ ext{l.o.}f_6}, T_{ ext{e2e}}^{ ext{l.o.}f_6}}$		$=\beta_{5\frac{1}{5},14\frac{4}{5}}$	$=\beta_{5\frac{1}{5},28\frac{6}{13}}=\beta_{s_0}^{\text{l.o.}f_6}$
			$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_6} = b^{f_6}$	$= \beta_{5\frac{1}{5},28\frac{6}{13}} = \beta_{s_0}^{\text{l.o.}f_6}$ $\beta_{e2e}^{\text{l.o.}f_6} = b^{f_6}$
	D^{f_6}		$5\frac{1}{5} \cdot [t - 14\frac{4}{5}]^+ = 7$	$5\frac{1}{5} \cdot [t - 28\frac{6}{13}]^+ = 7$
			$t = 16\frac{19}{130}$	$t = 29\frac{21}{26}$
	B^{f_6}	R^{f_6}		$t = 29\frac{21}{26}$ $\alpha^{f_6}(T_{\text{e2e}}^{\text{l.o.}f_6}) = \frac{7}{10} \cdot 28\frac{6}{13} + 7$
			$= 17\frac{9}{25}$	$=$ $26\frac{12}{13}$

	ARB_MUX	
s_0	$\alpha^{\bar{x}(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}$	$=\gamma_{4\frac{4}{5},48}$
	$\alpha^{x(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}^{s_0}$	$=\gamma_{4\frac{4}{5},48}$
		$= 10 - 4\frac{4}{5}$
$\beta_{s_0}^{\text{l.o.}f_6} = \beta_{R_{s_0}^{\text{l.o.}f_6}, T_{s_0}^{\text{l.o.}f_6}}$	$R_{\text{e2e}}^{\text{l.o.}f_6} = R_{s_0} - r_{s_0}^{x(f_6)}$	$=$ $5\frac{1}{5}$
		$= 5\frac{5}{5}$ $= 10 + \frac{48 + 4\frac{4}{5} \cdot 10}{5\frac{1}{5}}$ $= 10 + \frac{96}{5}$
	$T_{\text{e2e}}^{\text{l.o.}f_6} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_6)} + r_{s_0}^{x(f_6)} \cdot T_{s_0}}{R_{\text{e2e}}^{\text{l.o.}f_0}}$	$= 10 + \frac{96}{5\frac{1}{5}}$ $= 28\frac{6}{13}$
		$=$ $28\frac{6}{13}$
	=	$=\beta_{5\frac{1}{5},28\frac{6}{13}}$
		$=\beta_{5\frac{1}{5},28\frac{6}{13}}$ $\beta_{e2e}^{\text{l.o.}f_6} = b^{f_6}$
	$\int_{0}^{1} \frac{1}{5} \cdot [t - 28\frac{6}{13}]^{+} = 7$	
		$t = 29\frac{21}{26}$
	B^{f_6}	$t = 29\frac{21}{26}$ $\alpha^{f_6}(T_{\text{e2e}}^{\text{l.o.}f_6}) = \frac{7}{10} \cdot 28\frac{6}{13} + 7$
		$=$ $26\frac{12}{13}$