Last discussion! (except for final review discussion)

CS 188 Discussion 12:

Logistic Regression, Neural Networks

Kenny Wang (kwkw@berkeley.edu) Wed Nov 15, 2023

Slides based on Sashrika + Joy

Administrivia

- Project 4 deadline extended Mon, Nov 6 => Fri, Nov 10
- Homework is due on Tuesdays
- We have office hours pretty much all day every weekday (12-7),
 come to Soda 341B! (my hours are 1-3 PM on Mondays)
- Discussion slides are on Ed

Today's Topics

- Sigmoid Function
- Logistic Regression
- Gradient Descent
- Neural Networks!!

Sigmoid (aka Logistic) function:

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

- All outputs bounded by 0 and 1, is 0.5 when z is 0
- Can convert linear outputs to probabilities (logistic regression)
- Used to introduce nonlinearity in neural networks

Logistic Regression

- **Idea:** Instead of simply using w^Tx, apply sigmoid function on w^Tx
- Logistic Regression

$$h_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

 Can predict probabilities, unlike binary perceptron

- How to compute w? Use gradient descent!
- See also: multiclass logistic regression, using the softmax function

Optimization: Gradient Ascent/Descent

- Goal: Want to find the parameters that maximize objective function or minimize loss function
- If closed-form formula for global optimum does not exist, can use gradient ascent/descent
- Observation: gradient is direction of steepest increase ... by repeatedly following the gradient, we can chase maxima/minima
- Gradient Ascent

Randomly initialize **w while w** *not converged* **do** $\mid \mathbf{w} \leftarrow \mathbf{w} + \alpha \nabla_{\mathbf{w}} f(\mathbf{w})$ **end**

Gradient Descent

Randomly initialize **w while w** not converged **do** $\mid \mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} f(\mathbf{w})$ **end**

Learning rate α is a hyperparameter

Musheen Lurning!!1

- Core Idea: We give machines access to data and they learn for themselves!
- Data is often split into training, validation, and test sets
 - Training set: Used to fit the model
 - Validation set: Used to tune hyperparameters (learning rate, model structure, etc)
 - Test set: Used to test the entire model
- Some types of machine learning problems
 - Classification problems: try to classify data into discrete classes
 - o Regression problems: try to estimate some numerical value from data
 - Clustering problems: try to group similar data into clusters
- Types of learning
 - Supervised learning: training data has labels, e.g. classification
 - Unsupervised learning: training data has no labels, e.g. clustering

Naive Bayes

- Goal: create a model that can predict a label Y given features, where we assume all features are independently affected by the label
- Ex: Spam filter
 - Y is in {Spam, Ham}
 - \circ F_i in {0, 1} is whether word i appears in the email.
- Label email based on the higher of these two probabilities:

$$P(Y = ham | F_1 = f_1, ..., F_n = f_n)$$
 $P(Y = spam | F_1 = f_1, ..., F_n = f_n)$

Generalized: $prediction(f_1, \dots f_n) = \underset{y}{\operatorname{argmax}} P(Y = y | F_1 = f_1, \dots F_N = f_n)$ $= \underset{y}{\operatorname{argmax}} P(Y = y, F_1 = f_1, \dots F_N = f_n)$ $= \underset{y}{\operatorname{argmax}} P(Y = y) \prod_{i=1}^{n} P(F_i = f_i | Y = y)$

Maximum Likelihood Estimation

- How to estimate CPTs, since we don't actually know them?
 - Parameter estimation with MLE
- Find the probabilities (CPT values) $\theta = P(\cdot)$ such that we maximize the likelihood of observing our observations, P(observations | θ)
- Answer is actually fairly intuitive. f/e, given data (F, Y),

$$P(Y=y) = MLE(\theta \mid (F,Y))$$

= (# examples with Y=y)
(total # examples)

$$P(F_i=f \mid Y=y) = MLE(\theta \mid (F,Y))$$

= (# examples with (F_i=f, Y=y))
(# examples with Y=y)

Laplace Smoothing

Worksheet Q1

- Chance of overfitting (model doesn't generalize well post-training) with our parameter estimation
- Laplace Smoothing: pretend you saw each of the |X| possible outcomes k
 extra times

$$P_{LAP,k}(x) = \frac{count(x) + k}{N + k|X|}$$

$$P_{LAP,k}(x|y) = \frac{count(x,y) + k}{count(y) + k|X|}$$

- k is a hyperparameter, meaning you can choose what to set it to
 - Smaller k means your probability estimates follow the training data more closely
 - o Larger k means your probability estimates are more uniform

Perceptrons

- Naive Bayes
- Perceptrons

Binary Perceptrons

- Idea: Linearly separate data into two classes using a decision boundary (defined by a set of weights)
- If the data is linearly separable, the algorithm will perfectly classify the data!
- To find boundaries that don't have to cross the origin, incorporate a "bias" feature that always has value 1

Decision Boundary

Perceptron Algorithm

Worksheet Q2

- 1. Initialize all weights to 0: $\mathbf{w} = \mathbf{0}$
- 2. For each training sample, with features f(x) and true class label $y^* \in \{-1, +1\}$, do:
 - (a) Classify the sample using the current weights, let y be the class predicted by your current w:

$$y = \text{classify}(x) = \begin{cases} +1 & \text{if } \operatorname{activation}_w(x) = \mathbf{w}^T \mathbf{f}(x) > 0 \\ -1 & \text{if } \operatorname{activation}_w(x) = \mathbf{w}^T \mathbf{f}(x) < 0 \end{cases}$$

- (b) Compare the predicted label y to the true label y*:
 - If $y = y^*$, do nothing
 - Otherwise, if $y \neq y^*$, then update your weights: $\mathbf{w} \leftarrow \mathbf{w} + y^* \mathbf{f}(x)$
- If you went through every training sample without having to update your weights (all samples predicted correctly), then terminate. Else, repeat step 2.

Rest of the Worksheet

Thank you for attending!

Attendance link:

https://tinyurl.com/cs188fa23

Discussion No: 11

Remember my name is Kenny

My email: kwkw@berkeley.edu

