

NATIONAL OCEANOGRAPHIC DATA CENTER

MANUAL SERIES

PROCESSING PHYSICAL AND CHEMICAL DATA FROM OCEANOGRAPHIC STATIONS

PART I
CODING AND KEYPUNCHING

GC 10.4 .E4 P7 1964 pt.1

PUBLICATION M-2 (REV. AUG. 1964)

The National Oceanographic Data Center is sponsored by government agencies having an interest in the marine environment; it is governed by an Advisory Board composed of representatives of these activities and the National Academy of Sciences. The U. S. Naval Oceanographic Office is assigned responsibility for management of the National Oceanographic Data Center.

The sponsoring agencies are:

Atomic Energy Commission
Bureau of Commercial Fisheries
Coast and Geodetic Survey
Coast Guard
Coastal Engineering Research Center
Department of the Navy
Geological Survey
Health, Education & Welfare
National Science Foundation
Weather Bureau

Printed by

U. S. Naval Oceanographic Office Washington, D. C. 20390 1964 PRICE \$1.00

NATIONAL OCEANOGRAPHIC DATA CENTER

MANUAL SERIES

PROCESSING PHYSICAL AND CHEMICAL DATA FROM OCEANOGRAPHIC STATIONS

PART I
CODING AND KEYPUNCHING

PUBLICATION M-2 (Revised)

FOREWORD

This publication describes the methods used at the National Oceanographic Data Center (NODC) for coding and punching physical, chemical, and meteorological data collected at oceanographic stations. It is intended also to encourage originators of oceanographic station data to submit their data to the NODC on the standarized coding form devised for this purpose. A description of the NODC cards and listing is included to acquaint the oceanographic community with the format of the archived data.

W. C. JACOBS

Director

National Oceanographic Data Center

TABLE OF CONTENTS

	Page
FOREWORD	iii
LIST OF CONVERSION TABLES	vii
INTRODUCTION	1
GENERAL	2
DATA INPUT	3
CRUISE ARCHIVE DECK	3
LIST OF STANDARD DEPTHS	4
GENERAL INSTRUCTIONS FOR CODING THE PHYSICAL AND CHEMICAL DATA FORM	5
INSTRUCTIONS FOR CODING THE SURFACE ENVIRONMENTAL INFORMATION (MASTER CARD)	6
INSTRUCTIONS FOR CODING THE SUBSURFACE OBSERVATIONS (DETAIL CARDS)	11
INSTRUCTIONS FOR PUNCHING NODC OCEANOGRAPHIC STATION CARDS	15
STANDARD LETTER PUNCH CODE	1 5
MASTER CARD	16
DETAIL CARDS	16
SUMMARY OF OVERPUNCHES WHICH MAY APPEAR IN THE NODC ARCHIVE DECK	18
MASTER CARD	18
OBSERVED DEPTH CARDS	19
STANDARD DEPTH CARDS	19
EXPLANATION OF NODC LISTING FORMAT	20
APPENDIX I (CONVERSION TABLES)	27
APPENDIX II (PHYSICAL AND CHEMICAL DATA FORM FOR OCEANOGRAPHIC STATIONS AND OCEANOGRAPHIC STATION CARD)	115
APPENDIX III (NODC PUBLICATION LISTING FORMAT)	117

LIST OF CONVERSION TABLES

Table Number		Page
1	NODC COUNTRY CODE	29
2	TENTHS CONVERSION - Conversion from seconds (of position) or minutes (of time) to tenths of minutes or hour	. 31
3(a)	MARSDEN SQUARE CHART	33
3 (b)	ONE DEGREE DIVISIONS OF MARSDEN SQUARES	35
14	TIME - Conversion from zone to Greenwich Mean Time (GMT)	. 36
5	DEPTH - Conversion from fathoms to meters	37
6	DEPTH - Conversion from feet to meters (tenths)	39
7	WATER COLOR - Forel-Ule scale and conversion from percent yellow and percent brown scale	. 41
8	DIRECTION - In degrees from which waves and/or winds are coming	. 42
9	DIRECTION - Conversion from points, quarter points, or a scale of 32 to a scale of 36 points	43
10	HEIGHT - WMO Code 1555 for recording height of the dominant waves	. 44
11	PERIOD - WMO Code 3155 for recording period of dominant waves	. 45
12	SEA STATE - WMO Code 3700 for recording sea state	. 46
13	WIND SPEED - Conversion from meters per second to knots	. 47
14	WIND SPEED - Conversion from miles per hour to knots	, 48
15	WIND SPEED - Conversion from kilometers per hour to knots	. 49

LIST OF CONVERSION TABLES (CONT'D)

Table Number		Page
16	WIND SPEED - Conversion from feet per second to knots	50
17	WIND FORCE - Conversion from knots, meters per second, kilometers per hour, and miles per hour, to the Beaufort wind scale	51
18	ATMOSPHERIC PRESSURE - Conversion from inches of mercury to millibars	52
19	ATMOSPHERIC PRESSURE - Conversion from millimeters of mercury to millibars	53
20	TEMPERATURE - Conversion from Fahrenheit to Centigrade.	. 56
21	PRESENT WEATHER - WMO Code 4501 for recording present weather	. 64
22	PRESENT WEATHER - Conversion from Beaufort weather notation to WMO Code 4501	. 65
23	PRESENT WEATHER - Conversion from 1936 International Meteorological Organization to the WMO Code 4501.	. 66
24	PRESENT WEATHER - WMO Code 4677 for recording present weather	. 70
25	CLOUD TYPE (GENUS) - WMO Code 0500 for recording cloud type (genus)	. 74
26	CLOUD AMOUNT - WMO Code 2700 for recording cloud amount	• 75
27	VISIBILITY - WMO Code 4300 for recording visibility at surface	. 76
28	PRECISION OF MEASUREMENT CODE	• 77
29	SALINITY - Conversion from chlorinity to salinity %	. 78
30	OXYGEN - Conversion from milligrams per liter to milliliters per liter (NTP)	• 93

LIST OF CONVERSION TABLES (CONT'D)

Table Number		Page
31	OXYGEN - Conversion from milligram-atoms per liter to milliliters per liter	94
32	PHOSPHORUS - Conversion from micrograms per liter of inorganic P	99
33	PHOSPHATE - Conversion from micrograms per liter of PO ₁₄ to microgram-atoms per liter of PO ₁₄ -P	100
34	PHOSPHORUS PENTOXIDE - Conversion from micrograms per liter of P ₂ 0 ₅ to microgram-atoms per liter of P	102
35	NITRITE - Conversion from micrograms per liter of NO ₂ to microgram-atoms per liter of NO ₂ -N	103
36	NITRATE - Conversion from micrograms per liter of NO3 to microgram-atoms per liter of NO3-N	104
37	NITROGEN - Conversion from micrograms per liter of N to microgram-atoms per liter of N	106
38	SILICON - Conversion from micrograms per liter of Si to microgram-atoms per liter of Si	109
39	SILICON DIOXIDE - Conversion from micrograms per liter of SiO ₂ to microgram-atoms per liter of SiO ₂ -Si	111
40	SILICATE - Conversion from milligrams per liter of SiO ₃ to microgram-atoms per liter of SiO ₃ -Si	112
41	SUBSTITUTED CHEMISTRY	113

INTRODUCTION

The primary purpose of this manual is to provide the necessary instructions and conversion tables to code and keypunch reduced physical, chemical, and meteorological data collected at oceanographic stations in accordance with the storage-retrieval system developed by the National Oceanographic Data Center (NODC) in conjunction with the oceanographic community.

The punch card format and codes described in this manual are based on the report of the Eastern Pacific Oceanic Conference (EPOC) Committee on Machine Processing for Oceanographic Data; the International Council for the Exploration of the Sea (ICES) oceanographic station card format; the Canadian Oceanographic Data Centre (CODC); and the card format originally used at the U. S. Naval Oceanographic Office (formerly the U. S. Navy Hydrographic Office).

The secondary purpose of this manual is to acquaint the oceanographic community with the format of the processed oceanographic station data in the NODC archives.

Part II of this manual, now in preparation, will contain detailed descriptions of the formulas and techniques used for the interpolations and computations performed by the NODC.

Part III of this manual will contain descriptions of the quality control methods and criteria used in the processing of oceanographic station data.

GENERAL

The punch card used by the NODC is the 80-column, Hollerith punch card. Each column contains ten numerals, 0 through 9, and two additional places above the 0, designated as the 12 punch (also called the y or high overpunch) and the 11 punch (also called the X or low overpunch). Only one number or letter is punched in each column; the 12 punch, 11 punch, and 0 are used in combination with the numerals 1 through 9 to produce letters or various special symbols.

Three basic oceanographic station cards currently are in use at the NODC for recording the physical, chemical, and meteorological data from an oceanographic station. These are the Master Card and two basic types of Detail Cards—the Observed Depth Card and the Standard Depth Card.

Actually, a single, multi-purpose card is used on which the three headings are printed; the identification of the card and the headings to be used are indicated by a numeric entry in Column 80. (See Appendix II, page 115 for sample Oceanographic Station Card, Physical and Chemical Data.)

Two distinct sets of punch cards are produced during the processing of oceanographic data at the NODC. One set contains the observed data (or observed data and interpolated data provided by the originator) and serves as the Data Input Deck for the IBM 7074/1401 Computer System used by the NODC. The other deck contains all the information that appears in the Data Input Deck as well as the interpolated and computed values generated by the computer. This second deck eventually becomes the NODC Cruise Archive Deck for oceanographic station data. All station data released in punch card or listing form is based on the Cruise Archive Deck.

The function of the various card types in these decks is as follows:

A. DATA INPUT DECK

- 1. <u>Master Card (Card Type 1)</u> This card is used to identify each oceanographic station and to record general surface environmental information obtained at the station.
- 2. Observed Depth Card (Card Type 3) This card is punched for each depth at which physical and/or chemical data are reported.
- 3. Literature Observed Depth Card (Card Type 4) For some published historical data, the original observed data are no longer available; only the originator's interpolated values are available. This card serves as an Observed Depth Card in the computer system; interpolations and computations are based on data in this card.

B. CRUISE ARCHIVE DECK

- 1. Master Card (Card Type 1) This card serves the same function and contains the same information as the Master Card in the Data Input Deck; however, the Master Card in the Cruise Archive Deck contains the Marsden square number computed from the positional information.
- 2. Observed Depth Cards (Card Types 3 and 4) In addition to the observed and/or literature interpolated data, these cards contain the computed values of sigma-t (σ_t) and sound velocity.
- 3. Standard Depth Cards (Card Types 6 and 7)
 - a. NODC-Produced Standard Depth Card Card Type 6 is the NODC-produced Standard Depth Card which generally contains the interpolated values of temperature, salinity, and oxygen and the NODC computed values of sigma-t ($\sigma_{\rm t}$), sound velocity, specific volume anomaly, and dynamic depth anomaly.
 - b. Originator's Standard Depth Card Card Type 7 is the Originator's Standard Depth Card which contains the originator's interpolated values of temperature, salinity, and oxygen.

A Standard Depth Card is produced for each standard depth that occurs above the last valid observed depth and for each observed depth that coincides with a standard depth. Standard depths for which NODC interpolates are:

LIST OF STANDARD DEPTHS (METERS)

0000	0125	0600	1300	4000
0010	0150	0700	1400	5000
0020	0200	0800	1500	6000
0030	0250	0900	1750	7000
0050	0300	1000	2000	8000
0075	0400	1100	2500	9000
0100	0500	1200	3000	

A Cruise Master Card bearing information common to the entire cruise, as well as codes indicating observational techniques and precision, eventually will be provided for each cruise. The format of this card is being developed by the NODC.

To facilitate coding and keypunching of oceanographic station data,

NODC issues a standard form, "Physical and Chemical Data Form for Oceanographic Stations" - NODC-EXP-3167/25 (4-64), which contains space for coding the surface environmental information (Master Card) and the subsurface observations (Detail Cards). It is available with a trilingual wrapper carrying instructions on coding the form. The entries on the data form are arranged in essentially the same sequence as they appear on the punch card. Shaded portions of the form are for information normally filled in by the NODC.

Data submitted on the NODC Form is generally processed within four to six weeks of receipt. A listing of the fully computed data is sent to the originator; a listing suitable for publication and/or punch cards (Cruise Archive Deck) are available on request.

GENERAL INSTRUCTIONS FOR CODING THE PHYSICAL AND CHEMICAL DATA FORM

The following general instructions are to be applied when coding the data form.

- 1. Zeros are prefixed to numeric entries where necessary to fill a field; however, zeros should not be suffixed merely to fill a field.
- 2. Whenever rounding is necessary, the following procedure is to be used:
 - > 5, add one (1) to the preceding numeral
 - < 5, drop
 - 5, round to nearest even numeral
- 3. Generally, all shaded fields on the coding form are to be left blank; these fields will be completed at the NODC.
- 4. Arrange depths in order of descending depth; interfile depths from overlapping casts if necessary.
- 5. Question marks for doubtful data can be entered only in Columns 32, 37, 42, and 53 of the Detail Card portion of the coding form. The originator may, for record purposes, enter additional chemistry with a question mark; however, doubtful additional chemistry cannot be punched.

INSTRUCTIONS FOR CODING THE SURFACE ENVIRONMENTAL INFORMATION (MASTER CARD)

(See Appendix II for sample Physical and Chemical Data Form)

Columns 1-2 COUNTRY CODE

Enter the appropriate country code according to Table 1. This field combined with Cruise Number, Columns 73-75, makes up the five-digit NODC Reference Identity Number. Regardless of the ship's registry, the country code should reflect the nationality of the agency sponsoring or operating the vessel for the particular cruise being coded.

Columns 3-4 SHIP CODE

Do not code this field; the proper code will be entered at the NODC. The complete ship name should be entered in the space provided on the coding form; include ICES numeric ship-platform code if available.

Columns 5-9 LATITUDE

Enter latitude in degrees and minutes. Enter tenths of minutes, when available, in Column 9. Table 2 converts seconds to tenths of a minute. Enter N or S in the space provided on the data form.

Columns 10-15 LONGITUDE

Enter longitude in degrees and minutes. Enter tenths of minutes, when available, in Column 15. Table 2 converts seconds to tenths of a minute. Enter \underline{E} or \underline{W} in the space provided on the data form.

Note on Columns 5-15: For station position use location as first determined on arrival at oceanographic station or at time of release of first messenger. If, in the opinion of the originator, appreciable drift occurred during the period while the station was occupied, it should be indicated by an entry in the Remarks space and a red dash in Column 16 of the coding form. If a red dash is entered in Column 16 of the form, \underline{X} overpunch Column 15 of the card.

Columns 16-18 MARSDEN SQUARE

No entry is required on the coding form; Marsden square is computed at the NODC from the position coordinates entered in Columns 5-15. A Marsden Square Chart, Table 3, is provided for those originators who wish to enter this information on the coding form for their own records.

Columns 19-20 YEAR

Enter last two digits of year as determined by Greenwich Mean Time (GMT).

Columns 21-22 MONTH

Enter month as determined by GMT, using numerals 01 through 12.

Columns 23-24 DAY

Enter day of month as determined by GMT, using numerals 01-31. If one or more oceanographic casts were made on the day prior to the day reported in this field, subtract one day from the station date and enter this date in Columns 23-24. Additionally, 24 hours must be added to the actual station time.

Columns 25-27

Enter hour and tenths of hour of time of station in GMT. Time normally should represent the time when the surface environmental information was taken, except as mentioned above. Table 4 converts zone time to GMT and Table 2 converts minutes to tenths of an hour. Caution should be exercised when using Table 4, however, as non-standard time zone boundaries are not apparent from this table.

Columns 28-30

ORIGINATOR'S CRUISE NUMBER

Enter the number, alphabetic or alpha-numeric designator or its closest equivalent, assigned to the cruise by the originator. If year is part of cruise number, do not enter year in this field; year precedes cruise number when listed. (See Appendix III.)

EXAMPLE: MRL 5906 = 006

Columns 31-33

ORIGINATOR'S STATION NUMBER

Enter ship's station number as assigned by the originator. When complex station numbering systems are employed (such as station numbers containing positional codes) which require more than three columns to record, continue the remaining numerals or letters in Columns 68-72 of the Special Observations field. However, in these cases, Column 72 may contain a numeral only.

Columns 34-37 DEPTH TO BOTTOM

Enter depth to bottom (sounding) in whole meters (corrected or uncorrected). Table 5 converts fathoms to meters; Table 6 converts feet to meters. Although Table 6 is given to tenths of a meter, values obtained from this table should be rounded to the nearest whole meter. (When soundings are greater than 9999 meters, enter the extra digit in Column 34.)

Columns 38-39

MAXIMUM SAMPLE DEPTH

Enter the depth of the deepest sample (temperature, salinity, or chemical) to the nearest hundred-meter interval. Round as follows: 0-50=00, 51-150=01, 151-250=02, etc.

Columns 40-41

NUMBER OF OBSERVED DEPTHS

Enter the total number of observed sampled depths entered on the detailed portion of the coding form.

Columns 42-45

WATER COLOR AND TRANSPARENCY

Enter water color in Columns 42 and 43 according to the code (based on the Forel-Ule scale) given in Table 7. Additionally, Table 7 converts percent yellow (based on Forel Scale) and percent brown to the proper code. Enter transparency values obtained by using a standard white Secchi disc in whole meters in Columns 44 and 45.

Columns 46-49

WAVE DIRECTION, HEIGHT, AND PERIOD

Enter the direction from which the dominant waves come in Columns 46 and 47 according to the code shown in Table 8. (If wave height is 16 feet or greater, 50 must be added to the code value of direction.) Enter the height of the dominant waves in Column 48 according to WMO Code 1555 shown in Table 10 and cross out the letter A at the top of Column 48. Enter the period of the dominant waves in Column 49 according to WMO Code 3155 shown in Table 11. If Sea State is reported rather than wave height and period, enter the state of sea (or amount) in Column 48 according to WMO Code 3700 as shown in Table 12 and cross out H at the top of Column 48, leaving Column 49 blank.

Columns 50-53

WIND DIRECTION AND SPEED (FORCE)

Enter direction from which the wind blows in Columns 50 and 51 according to the code shown in Table 8. Table 9 is for conversion from points, quarter points, or a scale of 32. There is a choice of entering either wind speed or force in Columns 52-53:

1. Wind speed in knots. Conversions are given in:

Table 13 (meters/second to knots)
Table 14 (miles/hour to knots)
Table 15 (kilometers/hour to knots)
Table 16 (feet/second to knots)

2. Wind force according to the Beaufort scale as defined by Table 17. (Do not use WMO Code 1144.)

IMPORTANT: The unit not used, i.e., speed or force should be crossed out at the top of the column of the data form.

Columns 54-56

BAROMETRIC PRESSURE

Enter barometric pressure in millibars. Enter tens, units, and tenths only. (Example: 1012.62 = 12.6) The recordable range is 945.0 to 1044.9 mbs. Enter pressure falling outside this range in the Remarks space of the data form. Table 18 converts inches to millibars. Table 19 converts millimeters to millibars.

Columns 57-62 AIR TEMPERATURE

Enter the dry bulb temperature in Columns 57-59 and the wet bulb temperature in Columns 60-62 in degrees centigrade to tenths. Indicate negative temperatures by a prominent red dash over the numeral(s) in Column(s) 57 and/or 60. Table 20 converts °F. to °C. If temperatures are reported to whole degrees Fahrenheit, round the centigrade conversions to whole degrees, and leave Columns 59 and/or 62 blank.

Columns 63-64 WEATHER

There is a choice of two types of entries for weather.

- 1. Enter an X in Column 63 and enter the weather in Column 64 according to the single digit WMO Code 4501 as shown in Table 21. This is the preferred weather code. Conversions from other weather codes are given in Tables 22 and 23.
- 2. Enter present weather in Columns 63 and 64 according to the two-digit WMO Code 4677 as shown in Table 24. Because code figures 00 through 03 are not descriptive of present weather, Code 4501 is preferred instead of these code figures.

Columns 65-66

CLOUD TYPE AND AMOUNT

Enter type (genus) of cloud in Column 65 according to WMO Code 0500 shown in Table 25.

Enter cloud amount (fraction of the sky covered by clouds) in eights in Column 66 according to WMO Code 2700 shown in Table 26.

Column 67

VISIBILITY

Enter visibility according to WMO Code 4300 shown in Table 27.

Columns 68-72

SPECIAL OBSERVATIONS

Special observations may be entered in this field; however, the originator must indicate in the Remarks space of the data form the nature of the special observations, decimal places, units, and/or codes used. When reporting special observations, enter a red dash in Column 72. As mentioned previously, these columns also may be used for the continuation of the originator's station number when exceeding three digits (see page 7, Columns 31-33, ORIGINATOR'S STATION NUMBER), but in this case no other information may be placed in this field.

Columns 73-80

PROCESSING NUMBERS

No entries are required on the coding form. The Cruise Number (Columns 73-75) is assigned by the NODC. These numbers are unique within each country. The entry in Columns 73-75 is combined with the entry in Columns 1-2 and, together, they comprise the NODC Reference Identity Number.

The NODC assigns numbers to each station consecutively in the order in which they are submitted on the coding form or in the order in which they appear in published source material.

The NODC enters the numeral one (1) in both the coding form and the punch card to identify the station Master Card.

INSTRUCTIONS FOR CODING THE SUBSURFACE OBSERVATIONS (DETAIL CARDS)

(See Appendix II for sample Physical and Chemical Data Form)

Columns 1-24 are omitted from the coding form. The entries for these columns on the Detail Card are identical to the Master Card.

Columns 25-27 MESSENGER TIME

Enter hour and tenths of hour in GMT at time of release of messenger applicable to the observational level. Table 2 converts minutes to tenths of an hour. The time entry also serves to distinguish multiple casts at one station. When a station began on one day continues into the next day, all casts made on the second day should have 24 hours added to the messenger time. If messenger times are not given for multi-cast stations, but individual casts are identified, enter the numeral 1 in Column 27 for all depths of the first cast, a 2 in Column 27 for all depths of the next cast, and 3, 4, etc. for all depths of subsequent casts.

Columns 28-32 DEPTH OF SAMPLE

Enter depth of sample in meters in Columns 28-31. (When sample depths are greater than 9999 meters, enter the extra digit in Column 28.) Column 32 may be used to enter tenths of a meter or a question mark for doubtful depths. To indicate thermometrically determined depths, place a dagger (†) in Column 32 at each depth that both an unprotected thermometer and protected thermometer were used. (The entries in the depth field should be corrected depths only; however, if depth entries are uncorrected "wire-out" depths, enter the letter Z in Column 32 of the coding form.) Standard depths which have not been sampled need not be entered on the data form; interpolated values for these depths are normally computed by NODC. The originator of the data may, however, code his own interpolations at standard depths. The messenger time for these depths must be left blank and the numeral 7 must be entered in Column 80 of the coding form.

Columns 33-37 TEMPERATURE

Enter temperature in °C. to hundredths in Columns 33-36. Column 37 may be used for entering an additional (thousandths) decimal, a precision indicator coded according to Table 28, or a doubtful data indicator (?). To indicate a negative temperature, place a prominent minus sign in red before the numeral entry in Column 33. (Column 33 has extra width for this purpose.)

Columns 38-42 SALINITY

Enter salinity in parts per thousand to hundredths in Columns 38-41; Column 42 may be used for entering an additional (thousandths) decimal, a precision indicator coded according to Table 28, or a doubtful data indicator (?). Table 29 converts chlorinity to salinity.

Columns 43-50 do not appear on the data form. On the punch card these columns are reserved for computed sigma-t (σ_t) and sound velocity. Sound velocities measured by a velocimeter (or temperatures or salinities based on these measurements) should be forwarded or coded separately.

Columns 51-53 OXYGEN

Enter oxygen in milliliters per liter (ml/1) to hundredths in Columns 51-53. (If determined to tenths only leave Column 53 blank.) Table 30 converts milligrams per liter (mg/1) and Table 31 converts milligram-atoms per liter (mg-at/1) to ml/1. To record oxygen values greater than 9.99 ml/1 enter two numerals (tens and units) in Column 51.

Columns 54-71 CHEMISTRY

Columns 54-71 are intended for entering the additional chemistry fields described below. These are the only chemistry entries which will be punched routinely. A chemistry card to record chemistry other than that shown below is being developed at the NODC. However, provisionally any chemistry may be substituted in any one of the fields provided that:

- 1. It can be reported in a three digit field.
- 2. The proper code in Table 41 is entered in Column 72 to indicate the field in which the substituted chemistry is entered.
- 3. The nature and units of the substituted chemistry are fully described in the Remarks space of the data form.

Columns 54-56 PHOSPHATE

Enter inorganic phosphate in microgram-atoms per liter (μg -at/1) to hundredths. Conversions from other units are shown in Tables 32-34.

Columns 57-59 TOTAL PHOSPHORUS

Enter total P in microgram-atoms per liter (μg -at/1) to hundredths.

Columns 60-62 NITRITE-NITROGEN

Enter nitrite-nitrogen (NO_2-N) in microgram-atoms per liter ($\mu g-at/l$) to hundredths. Conversions from micrograms per liter of NO_2 and N to microgram-atoms per liter of NO_2-N are shown in Tables 35 and 37, respectively.

Columns 63-65 NITRATE-NITROGEN

Enter nitrate-nitrogen (NO_3-N) in microgram-atoms per liter ($\mu g-at/1$) to tenths. Conversions from micrograms per liter of NO_3 and N to microgram-atoms per liter of NO_3-N are shown in Tables 36 and 37, respectively.

Columns 66-68 SILICATE-SILICON

Enter silicate-silicon in microgram-atoms per liter (μ g-at/1) to whole units. Conversions from other units are shown in Tables 38-40.

Columns 69-71 pH

Enter pH in Columns 69-71.

Column 72 SUBSTITUTED CHEMISTRY

Enter the appropriate code as given in Table 41 to indicate which chemistry field contains substituted chemistry. If no substitution was made, leave Column 72 blank.

Columns 73-79 are omitted from the data form. The entries in these columns of the Detail Card are identical to the entries in the Master Card; the information must be reproduced in each Detail Card from the Master Card.

Column 80 CARD TYPE

For observed sample depths (including those falling at standard depths), enter the numeral 3 in Column 80 to indicate an Observed Depth Card. If an originator wishes to code his own interpolated standard depths, the numeral 7 is entered in Column 80 on the data form for each individual interpolated standard depth. (Computed items such as sigma-t, sound velocity, dynamic depth anomaly, etc. will be computed for this type of card, but computations will be based on the values as reported by the originator.) In a few instances only interpolated data may be available for certain cruises and/or stations. In these instances, the numeral 4 is entered in Column 80. Such a card will be treated by the computer as though it were an observed level.

INSTRUCTIONS FOR PUNCHING NODC OCEANOGRAPHIC STATION CARDS

(See Appendix II, Page 115, for sample Oceanographic Station Card.)

In general, the Physical and Chemical Data Form for Oceanographic Stations is arranged in such a manner that most of the numeric and alphabetic entries can be punched directly into the corresponding columns of the punch card. The alphabetic punch code used at the NODC is the standard letter punch code shown below.

STANDARD LETTER PUNCH CODE

Letter	Punch	Letter	Punch	Letter	Punch
A	12 + 1	J	11 + 1	S	0 + 2
В	12 + 2	K	11 + 2	Т	0 + 3
С	12 + 3	L	11 + 3	U	0 + 4
D	12 + 4	M	11 + 4	V	0 + 5
E	12 + 5	N	11 + 5	W	0 + 6
F	12 + 6	0	11 + 6	X	0 + 7
G	12 + 7	P	11 + 7	Y	0 + 8
Н	12 + 8	Q	11 + 8	Z	0 + 9
I	12 + 9	R	11 + 9		

Question marks in Columns 32, 37, and 42 of the Detail Cards are punched as the letter Q in the same column.

The correct entry and location for certain 12 and 11 punches cannot readily be determined from the data form. For this reason, the correct entry and location for these punches are given in the special punching instructions below.

MASTER CARD

ENTRY ON DATA FORM	ENTRY IN PUNCH CARD
Letter S between Columns 9 and 10	11 punch in Column 8
Letter \underline{E} between Columns 15 and 16	ll punch in Column 14
Red dash in Column 16	11 punch in Column 15
Numerals 10 in Column 34	Letter \underline{A} in Column 3^{14}
Letter H crossed out in columnar heading of Column 48 (letter A not crossed out).	ll punch in Column 48
Word SPEED crossed out in columnar heading of Columns 52-53 (word FORCE not crossed out).	11 punch in Column 52
Red dash in Column 57	ll punch in Column 59
Red dash in Column 60	11 punch in Column 62
Red dash in Column 72	ll punch in Column 72
	11 punch in Column 80 for data processing machine control.

DETAIL CARDS

CODING FORM	PUNCH CARD
Columns 1-24	Same as Master Card
Dagger (†) in Column 32	11 punch in Column 31
Question mark (?) in Column 32	Letter Q in Column 32
Red dash in Column 33	11 punch in Column 36
Question mark (?) in Column 37	Letter \underline{Q} in Column 37
Question mark (?) in Column 42	Letter Q in Column 42

DETAIL CARDS (CONT'D)

CODING FORM	PUNCH CARD
Two (2) numerals in Column 51	11 punch in Column 51
Question mark (?) in Column 53	11 punch in Column 53

SUMMARY OF OVERPUNCHES WHICH MAY APPEAR IN THE NODC ARCHIVE DECK

All 11 and 12 punches appearing in the Data Input Deck are reproduced in the Cruise Archive Deck. However, a number of additional 11 punches are generated by the computer during the computation process. A complete list of 11 and 12 punches (other than alphabetic) which may appear in the Oceanographic Station Cards of the Cruise Archive Deck follows:

MASTER CARD (NUMERAL 1 IN COLUMN 80)

Location of Entry in Punch Card	11 Punch and Purpose
	the state of the s
Column 8	ll punch to indicate South latitude
Column 14	ll punch to indicate East longitude
Column 15	ll punch to indicate that according to originator, extensive drift occurred while on station.
Column 48	Il punch to indicate that state of the sea (or sea amount) is given rather than wave height and period.
Column 52	ll punch to indicate wind FORCE is given rather than SPEED.
Column 59	ll punch to indicate a negative dry bulb air temperature.
Column 62	ll punch to indicate a negative wet bulb air temperature.
Column 72	ll punch to indicate that a SPECIAL OBSERVATION is reported in Columns 68-72.
Column 80	ll punch in Column 80 for data processing machine control.

OBSERVED DEPTH CARDS (NUMERAL 3 OR 4 IN COLUMN 80)

Location of Entry in Punch Card	11 Punch and Purpose
Column 8	11 punch to indicate Couth letitude
Column	11 punch to indicate South latitude.
Column 14	11 punch to indicate East longitude.
Column 15	ll punch to indicate that according
	to originator, extensive drift occurred while on station.
Column 31	ll punch to indicate a thermometric
	depth.
Column 36	11 punch to indicate a negative
	temperature.
Column 46	11 punch generated by the computer
	to indicate a negative sigma-t (σ_t) .
Column 51	11 punch acts as a control punch so
	that 10 is added to the oxygen value.
Column 53	11 punch to indicate doubtful oxygen.

STANDARD DEPTH CARDS (NUMERAL 6 OR 7 IN COLUMN 80)

Location of Entry in Punch Card	11 Punch and Purpose
Columns 8, 14, 15, 36, 46, 51, and 53	Same as Observed Depth Card.
Column 59	ll punch generated by the computer to indicate a negative specific volume anomaly.
Column 63	ll punch generated by the computer to indicate a negative dynamic depth anomaly.

EXPLANATION OF THE NODC LISTING FORMAT

Effective August 1963, oceanographic station data processed by NODC are released in a new listing format. It is specifically designed for the printout of the NODC Cruise Archive Deck described in this manual.

Two types of listings are available. The Archive Listing is printed on plain tabulating paper, is used for routine release of data, and is the standard archive shelf product at NODC. Stations are listed in continuous order, with page breaks occurring at random within stations. Columnar headings are not printed; identification of fields is accomplished by use of a template provided with each listing.

The Publication Listing is identical in format but is printed on heavy white paper suitable for photo-offset lithographic reproduction. A clear, plastic-overlay template is provided to identify the fields. Tick marks on both the listing and the template facilitate registry.

An example of the NODC Publication Listing is shown in Appendix III.

The following is a complete description of the entries, units, and codes appearing on all new NODC listings. (See template shown in example of station.)

TOP PART OF TEMPLATE

DESCRIPTION OF FIELD ENTRY NODC Reference Identity Number. Publication Reference C-1, Reference Sources of Oceanographic Station Data, gives complete bibliographic and other pertinent information for each cruise. Country code NODC country code. This code (both numeric and alphabetic) indicates nationality of the institution or agency conducting the survey or expedition. A reference archive number assigned by NODC for Identity number storage-retrieval purposes. NODC's alphabetic designation of ship's name Ship code

(or ICES numeric ship code, if available).

ENTRY

DESCRIPTION OF FIELD

Latitude

In degrees, minutes, and tenths of minutes,

N or S.

Longitude

In degrees, minutes, and tenths of minutes,

E or W.

Drift indicator

The letter D appears in this column if, according to the originator, extensive drift

occurred while on station.

Marsden square

10° 1 ° Marsden square number according to the Marsden

square system. (Appendix I, Table 3.)

Station time

(GMT)

Date and time given by the originator in GMT.

Month

Day

Month (GMT) Day of month (GMT)

HR. 1/10

GMT to nearest tenth of an hour.

Year

Year.

Originator's

Cruise number

Cruise number, alphabetic or alpha-numeric designator, as assigned by the originator. If the year of the cruise forms part of the cruise numbering system, the year digits are found in the preceding field.

Station number

Originator's station number or designator.

Depth to Bottom

Corrected or uncorrected sounding depth in meters.

(Read A in first column as 10)

Max. depth of samples

Depth of deepest sample in hundreds of meters to

nearest hundred-meter interval.

ENTRY

DESCRIPTION OF FIELD

Wave observations

Dir. Direction from which the dominant waves are

coming, in tens of degrees, according to

WMO Code 0885.

Hgt. Height of dominant waves according to

WMO Code 1555.

Per. Period of dominant waves according to

WMO Code 3155.

Sea amt. Sea amount (sea state) according to WMO Code 3700

(preceded by letter A).

Weather code If preceded by the letter X, weather according

to WMO Code 4501. A numeric two-digit entry

indicates weather according to WMO Code 4677.

Cloud codes

Type Cloud type according to WMO Code 0500.

Amt. Cloud amount in eighths according to

WMO Code 2700.

and retrieval purposes. The reference and NODC station number combined, uniquely define each

station in the NODC archives.

CENTER PART OF TEMPLATE

Water

Color code Water color according to Forel-Ule Code.

Trans. Transparency in meters as determined by Secchi

(m) disc.

ENTRY

DESCRIPTION OF FIELD

Wind

Dir.

Direction from which the wind is blowing, in tens of degrees, according to WMO Code 0877.

Speed or Force

If preceded by letter S, wind speed in knots, if preceded by letter F, wind force in Beaufort Code.

Barometer (mbs)

Pressure in millibars, tens, units, and tenths shown only.

Air Temp. °C.

Dry bulb

Dry-bulb air temperature in degrees centigrade to tenths.

Wet bulb

Wet bulb air temperature in degrees centigrade to tenths.

Vis. code

Visibility according to WMO Code 4300.

No. of Obs. Levels

Total number of observed levels (depths) comprising the station.

Special observations

Special surface observations. This is a free optional field. Nature of entry in this space will vary with individual cruises. Information concerning entries in this field can be requested from NODC.

BOTTOM PART OF TEMPLATE (Applies to third and all succeeding lines of listing)

ENTRY

DESCRIPTION OF FIELD

Messenger time

HR. 1/10

Time (GMT) of release of messenger, in hour and tenths of hour, at observed levels. If a multiple cast series extends past midnight, 24 hours are added to the cast time(s) of the casts that are taken during the next day.

OR

Cast No.

Number of cast (not printed when messenger time is given).

Card Type

OBS - Observed (sampled) level.

STD - Standard interpolated depth. Interpolation of temperature, salinity, and oxygen computed by a modified 3-point LaGrange formula.

*STD - Standard depth values interpolated by the originator or hand-interpolated by NODC.

LIT - Interpolated standard depth values; original observed values not available.

NOTE: When a valid observed level coincides with a standard depth level, both the OBS and STD lines will appear.

Depth (m)

Depth of sample (or standard level depth) in meters. A numeric entry of tenths of meters appears as the fifth digit of the depth field. Postscript T indicates a depth at which both a protected and an unprotected thermometer were used. Subscript Q indicates that the value is marked doubtful by the originator. A value designated as potentially implausible by NODC is marked with a P. Z indicates uncorrected "wire out" depth.

		_	
FIL	71	ıD.	v
Till	1	Τſ	т.

DESCRIPTION OF FIELD

T °C

Temperature in degrees centigrade to hundredths; a thousandths place appears as a fifth numeral. (For Q or P notation, see Depth field.) For alphabetic precision entry, see Table 28.

S ‰

Salinity in parts per thousand (ppt) to hundredths of ppt. A thousandth of a ppt appears as a fifth numeral. (For Q and P notation, see Depth field.) For alphabetic precision code, see Table 28.

SIGMA-T

Sea water density expressed as sigma-t (σ_t) to hundredths (g/1-1000). When temperature and/or salinity is marked doubtful, P, Q, or * is suffixed to σ_t .

Specific volume anomaly - X 107

Specific volume anomaly in $(cm^3/gm) \times 10^7$. Appears at standard depths only.

ΣΔD Dyn. M. X 10³ Dynamic depth anomaly in dynamic meters X 103. Appears at standard depths only.

Sound Velocity

In meters per second to tenths of a meter, according to Wilson's formula.

NOTE: In the following designations, the character "1" stands for a small letter "L" denoting liter.

 $O_{\mathbf{z}}$ ml/1

Oxygen in ml/l to hundredths. Q indicates doubtful value as determined by either the originator or the NODC.

 $\frac{PO_4 - P}{\mu g - at/1}$

Inorganic phosphate in microgram-atoms per liter of P to hundredths.

FWILVI

DESCRIPTION OF FIELD

Total-P µg-at/l	Total phosphorus in microgram-atoms per liter of P to hundredths.
$\frac{NO_2-N}{\mu g-at/1}$	Nitrites in microgram-atoms per liter of N to hundredths.
$\frac{NO_3-N}{\mu g-at/1}$	Nitrates in microgram-atoms per liter of N to tenths.
$\frac{\text{SiO}_4 - \text{Si}}{\mu \text{g-at/l}}$	Silicates in microgram-atoms per liter of Si.
ρН	pH to hundredths.

- NOTE: (1) Notation TRC in chemistry fields indicates report of trace or a value less than 1 in the last column.
 - (2) A numeral appearing two spaces beyond the ρH column is an Optional Chemistry Substitution code. The optional chemistry fields are numbered from left to right beginning with PO₄-P = 1 through ρH = 6. The code numeral indicates that the entry in the respective field is NOT as given on the template. (A special template with the correct field designator will be furnished for publication purposes by special request only.)

APPENDIX I

Conversion Tables

NODC COUNTRY CODE

CODE	NAME
08 09 10	Argentina Australia Austria
11 14	Belgium Brazil
18 19 20 21 22 RC	Canada Ceylon Chile China Colombia Congo (BRAZZAVILLE)
26	Denmark
3 ¹ 4 35	Finland France
06 GH 36	Germany Ghana Greece
46 4 1 4 2 45 47 48 IC	Iceland India Indonesia Ireland Israel Italy Ivory Coast
49	Japan
214	Korea
64 59 61 NI 58	Netherlands New Caledonia New Zealand Nigeria Norway

TABLE 1 (Cont'd)

CODE	NAME
6 2	Pakistan
65	Peru
66	Philippines
67	Poland
68	Portugal
91	South Africa
90	Soviet Union
29	Spain
77	Sweden
86	Thailand
89	Turkey
27	United Arab Republic
31	United Kingdom
31	United States
93	Venezuela
95	Yugoslavia

NOTE: Other country codes will be added to this list as needed.

TABLE 2
Tenths Conversion

Conversion from seconds (of position) or minutes (of time) to tenths of minutes or hour

Range of Secs. or Mins.	Tenths of Mins. or Hrs.
00 - 05	0
06 - 11	1
12 - 17	2
18 - 23	3
24 - 29	4
30 - 35	5
36 - lil	6
42 - 47	7
48 - 53	8
5 ⁴ - 59	9

278 222 221 6 220 - 219 218 - 217 + 252 - 251 6250 235 234 233 232 230 228 249 248 189 190 213 421 + 420 + 419 + 418 + 417 + 416 415 457 - 456 + 455 + 454 + 453 + 452 - 451 -500 + 499 - 498 + 497 - 496 + 495 + 494 | 493 | 492 - 548 - - 547 525 -- 524 - 523 549-531 - 530 - 529 - 528 - 527 - 526 -535

ONE DEGREE DIVISIONS OF MARSDEN SQUARES

	WEST LONGITUDE											EA	ST	LO	NG	ITU	DE										
			10	0°									($)^{\circ}$									10)°			
	22	21	20	29	28	27	26	25	24	23	22	21	20	20	21	22	23	24	25	26	27	28	29	20	21	22	
	12	11	10	19	18	17	16	15	14	13	12	11	10	10	11	12	13	14	15	16	17	18	19	10	11	12	
10°	02	01	00	09	08	07	06	0.5	04	03	02	01	00	00	01	02	03	04	0.5	06	07	08	09	00	01	02	10°
10	92	91	90	99	98	97	96	95	94	93	92	91	90	90	91	92	93	94	95	96	97	98	99	90	91	92	10
	82	81	80	89	88	87	86	85	84	83	82	81	80	80	81	82	83	84	8.5	86	87	88	89	80	81	82	
DE	72	71	70	79	78	77	76	75	74	73	72	71	70	70	71	72	73	74	75	76	77/	78	79	70	71	72	DE
LATITUDE	62	61	60	69	68	67	66	65	64	63	62	61	60	60	61	62	63	64	65	66	67	68	69	60	61	62	UTI
LAT	52	51	50	59	58	5/	P	1	156	3	52	51	50	50	51	52	4	B	72		7	58	59	50	51	52	LATITUDE
I	42	41	40	49	48	Th		W	4.4	3	42	41	40	40	41	42	14		3	160	7	48	49	40	41	42	
NORTH	32	31	30	39	38	37	36	35	34	33	32	31	30	30	31	32	33	34	35	36	37	38	39	30	31	32	NORTH
ž	22	21	20	29	28	27	26	25	24	23	22	21	20	20	21	22	23	24	25	26	27	28	29	20	21	22	ž
	12	11	10	19	18	17	10	15	14	13	12	11	10	10	11	12	13	14	1.5	16	17	18	19	10	11	12	
0	002	01	00	09	08	07	06	0.5	04	03	02	01	00	00	01	02	03	04	05	06	07	08	09	00	01	02	O°
U	02	01	00	09	08	07	06	05	04	03	02	01	00	00	01	02	03	04	0.5	06	07	08	09	00	01	02	U
	12	11	10	19	18	17	16	15	14	13	12	11	10	10	11	12	13	14	15	16	17	18	19	10	11	12	
DE	22	21	20	29	28	27	26	25	24	23	22	21	20	20	21	22	23	24	25	26	27	28	29	20	21	22	DE
JTU	32	31	30	39	38	37	36	35	34	33	32	31	30	30	31	32	33	34	35	36	37	38	39	30	31	32	J.
LATITUDE	42	41	40	49	48	7	249	M	18	1	42	41	40	40	41	42	43	1	Z	4	47	48	49	40	41	42	AT
	52	51	50	59	58	2	89	Y.	19	ß	52	51	50	50	51	52	53	ال	a	16	57	58	59	50	51	52	SOUTH LATITUDE
SOUTH	62	61	60	69	68	67	66	65	64	63	62	61	60	60	61	62	63	64	65	66	67	68	69	60	61	62	77
SC	72	71	70	79	78/	77	76	75	74	73	72	71	70	70	71	72	73	74	75	76	77/	78	79	70	71	72	SC
	82	81	80	89	88	87	86	85	84	83	82	81	80	80	81	82	83	84	85	86	87	88	89	80	81	82	
10	92	91	90	99	98	97	96	95	94	93	92	91	90	90	91	92	93	94	95	96	97	98	99	90	91	92	·10°
10	02	01	00	09	08	07	06	05	04	03	02	01	00	00	01	02	03	04	05	06	07	08	09	00	01	02	
	12	11	10	19	18	17	16	15	14	13	12	11	10	10	11	12	13	14	15	16	17	18	19	10	11	12	
	22	21	20	29	28	27	26	25	24	23	22	21	20	20	21	22	23	24	25	26	27	28	29	20	21	22	
			1	0°									()°									11	0°			

ONE DEGREE SQUARE

QUADRANT

MARSDEN SQUARE

WEST LONGITUDE

EAST LONGITUDE

TABLE 4

Conversion from zone to Greenwich mean time (GMT)

## FEXT LONGTUDE TIME ZONE CONVERSION TABLE FAST LONGTUDE TABLE TABLE		FOLLOWING DAY																									
#EST LONGITUDE TIME. CONVERSION TABLE FAST 1. ONGITUDE TIME. CONVERSI		-		24 00	10	05	03	0.4	90	90	20	0.0	60	10	=	12	13	14	15	16	17	18	19	20	21	22	23
#ESTLONGTUDE High				23	-/	10	02	03	0.4	90	90	07	0.8	60	10	11	1.2	13	14	15	16	17	18	19	20	21	22
HESTLONGTIUDE TIME-ZONE CONVERSION TABLE FASTLONGTIUDE TIME-ZONE CONVERSION TABLE TIME-ZONE CO		10		22		1	10	02	03	0.4	90	90	07	80	60	10	=	1.2	13	14	1.5	16	1.7	18	19	20	2.1
#EEST LONGTUDE TIME-ZONE CONVERSION TABLE FAST LONGTUDE TIME-ZONE CONVERSION TABLE TIME-ZONE CONVER		6	-145.30,-	21	22	-	I \	0.1	02	03	0.4	90	90	07	80	60	10	11	12	13	14	15	16	17	18	61	20
#ESTLONGITUDE TIME-ZONE CONVERSION TABLE EASTLONGITUDE TIME-SONE CONVERSION TABLE TIME-SONE CONVERSION TABLE TIME-SONE CONVERSION TABLE EASTLONGITUDE TIME-SONE CONVERSION TABLE TIME-SONE CONVERSION TABLE TIME-SONE CONVERSION TABLE EASTLONGITUDE TIME-SONE CONVERSION TABLE TIME-SONE CONVERSION TABL				0	1.			\8	01	22		<u> </u>		90		80		_		2	_	4	15	9	7		H
#ESTLONGTUDE TIME. FOR EACH PARENGIN HABLE HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG	UDE	\vdash	-115.30.	-	-						-											_		_		-	
#ESTLONGTUDE TIME. FOR EACH PARENGIN HABLE HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG	NGIT	-	_	1	-		2	_				0					õ			_	17			_		1	18
#ESTLONGTUDE TIME. FOR EACH PARENGIN HABLE HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG	TLO			18	19	20	21	22	23	\		0.2	03	04	0.5	90	0.7	08	60	10	11	12	13	14	15	16	17
#EST LONGITUDE TIME_ZONE TABLE Fig. 111 110 +9	EAS			17	18	19	20	21	22	23			02	03	04	90	90	07	08	60	10	=	12	13	14	15	16
#ESTLONGITUDE TIME-ZONE CONVERSION TABLE TIME-ZONE CONVERSION TABLE TIME-SONE CONVERSION TABLE TIME STATES AND STATES AN		1 : 1	0	16	17	18	19	20	21	22	23		0.1	02	60	04	90	90	07	80	60	10	11	12	13	14	15
#EST LONGITUDE TIME ZONE CONVERSION TABLE 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1			O	15	16	17	18	19	20	21	22	23		0.1	02	03	0.4	0.5	90	07	08	60	10	11	12	13	14
#EST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 +43 \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	ABLE			14	15	16	17	18	19	20	21	22		\ \	0.1	02	03	04	90	90	07	80	60	10	11	12	13
#EST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 +4 +3 -12 +111 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +11 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +4 +11 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	ON T	1		13	14	15	16	17	18	19	20	21	22			0.1	0.2	03	04	90	90	07	80	60	10	1.1	12
#EST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 +4 +3 -12 +111 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +11 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +4 +11 +10 +9 +8 +7 +6 +5 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	VERSI			27	6	1	. 5	9,	17	8/	6/	50	2/	22		13	3	20	73	24	25	90	27	90	60	0,	11
#EST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 +43 \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	00	1	-,08.20-		-					7								-									
#EST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 +43 \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	- ZONI		-22°30'-	-					1												_						H
WEST LONGITUDE +12 +111 +10 +9 +8 +7 +6 +5 +4 ++ +12 +111 +10 +9 +8 +7 +6 +5 +4 ++ -12 +111 +10 +9 +8 +7 +6 +5 +4 ++ -13 +14	TIME	+	_	101	11	12	13	14	15	16	17	18	19	20	21	22	23	24		02	03	0.4	90	90		80	60
WEST LONGITUDE WEST LONGITUDE		+		60	10	11	12	13	14	15	16	17	18	19	20	21	22	23			02	03	04	90	90	07	08
WEST LONGITUDE 1				08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23			02	03	04	0.5	90	07
WESTLON 1	TUDE		22	07	08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23		01	02	03	04	90	90
11		1 7	S	90	07	80	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	\ \	0.1	02	03	04	90
11	STL	+7	⊢	0.5	90	07	80	60	10	11	12	13	14	15	16	17	18	19	20	21	22		\ I	01	02	03	0.4
12		\vdash	-115°30'- C	0.4	90	90	07	80	60	10		12	13	14	15	16	17	18	19	20	21	22	3		0.1	02	03
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\overline{}$	-152.30. <	03	04	90	90	0.7	80	60	10	11	12	13	14	15	16	17	18	19	20	21			00	0.1	02
			00 7+T							_			_	_		_			-		_	_	\dashv	-		\8	\vdash
		11 +	157°30′-	-	-			_		-						\dashv	_			_			-	_		3 24	
		12 +	172°30'	18					-			_		Н		\dashv	-	\dashv		-	-			_	-		
Y A (1 . IV.11 19 19 19 14		+	enoX emiT>	2/	0	0	0	Õ	O								1.	1,4	-	-	-	-		Ň	2	2	2

EXPLANATION:

If day change (diagonal) line is crossed from right to left, subtract one day; from left to right, add one day.

To convert from local time to any other time, locate local time in zone column and proceed harizontally to zone wanted. Example 05 in L (-11) time is 18 GMT of preceding day.

TABLE 5

Depth

Conversion from fathoms to meters
(1 fathom = 1.8288 meters)

Fathoms	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Meters	0	0	0	1	1	1	1	1	1	2
Fathoms	0	1	2	3	4	5	6	7	8	9
00	0000	0002	0004	0005	0007	0009	0011	0013	0015	0016
10	0018	0020	0022	0024	0026	0027	0029	0031	0033	0035
20	0037	0038	0040	0042	0044	0046	0048	0049	0051	0053
30	0055	0057	0059	0060	0062	0064	0066	0068	0069	0071
40	0073	0075	0077	0079	0800	0082	0084	0086	8800	0090
50	0091	0093	0095	0097	0099	0101	0102	0104	0106	0108
60	0110	0112	0113	0115	0117	0119	0121	0123	0124	0126
70	0128	0130	0132	0134	0135	0137	0139	0141	0143	0144
80	0146	0148	0150	0152	0154	0155	0157	0159	0161	0163
90	0165	0166	0168	0170	0172	0174	0176	0177	0179	0181
100	0183	0185	0187	0188	0190	0192	0194	0196	0198	0199
110	02 01	02 03	0205	02 07	0208	0210	0212	0214	0216	0128
120	0219	0221	0223	0225	0227	0229	0230	0232	0234	0236
130	0238	9240	0241	0243	0245	0247	0249	0251	0252	0254
140	0256	0258	0260	0262	0263	0265	0267	0269	0271	0272
150	0274	0276	0278	0280	0282	0283	0285	0287	0289	0291
160	0293	0294	0296	0298	0300	0302	0304	0305	0307	0309
170	0311	0313	0315	0316	0318	0320	0322	0324	0326	0327
180	0329	0331	0333	0335	0336	0338	0340	0342	0344	0346
190	0347	0349	0351	0353	0355	0357	0358	0360	0362	0364
200	0366	0368	0369	0371	0373	0375	0377	0379	0380	0382
210	0384	0386	0388	0390	0391	0393	0395	0397	0399	0401
220	0402	0404	0406	0408	0410	0411	0413	0415	0417	0419
230	0421	0422	0424	0426	0428	0430	0432	0433	0435	0437
240	0439	0441	0443	0444	0446	0448	0450	0452	0454	0455
250	0457	0459	0461	0463	0465	0466	0468	0470	0472	0474
260	0475	0477	0479	04 81	0483	0485	0486	0488	0490	0492
270	0494	0496	0497	0499	0501	0503	0505	0507	0508	0510
280	0512	0514	0516	0518	0519	0521	0523	0525	0527	0529
290	0530	0532	0534	0536	0538	0539	0541	0543	0545	0547

TABLE 5 (Cont'd)

Depth

ersion from fathoms to meters

Conversion from fathoms to meters (1 fathom = 1.8288 meters)

Fathoms	00	10	20	30	40	50	60	70	80	90
300	0549	0567	0585	0604	0622	0640	0658	0677	0695	0713
400	0732	0750	0768	0786	0805	0823	0841	0860	0878	0896
500	0914	0933	0951	0969	0988	1006	1024	1042	1061	1079
600	1097	1116	1134	1152	1170	1189	1207	1225	1244	1262
700	1280	1298	1317	1335	1353	1372	1390	1408	1426	1445
800	1463	1481	1500	1518	1536	1554	1573	1591	1609	1628
900	1646	1664	1682	1701	1719	1737	1756	1774	1792	1811
Fathoms	000	100	200	300	400	500	600	700	800	900
1000	1829	2012	2195	2377	2560	2743	2926	3109	3292	3475
2000	3658	3840	4023	4206	4389	4572	4755	4938	5121	5304
3000	5486	5669	5852	6035	6218	6401	6584	6767	6949	7132
4000	7315	7498	7681	7864	8047	8230	8412	8595	8778	8961
5000	9144	9327	9510	9693	9876	10058	10241	10424	10607	10790

TABLE 6

Depth

Conversion from feet to meters (tenths)

(1 foot = 0.3048 meter)

Feet	0	1	2	3	4	5	6	7	8	9
00	0.0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7
10	3.0	3.4	3.7	4.0	4.3	4.6	4.9	5.2	5.5	5.8
20	6.1	6.4	6.7	7.0	7.3	7.6	7.9	8.2	8.5	8.8
30	9.1	9.4	9.8	10.1	10.4	10.7	11.0	11.3	11.6	11.9
40	12.2	12.5	12.8	13.1	13.4	13.7	14.0	14.3	14.6	14.9
50	15.2	15.5	15.8	16.2	16.5	16.8	17.1	17.4	17.7	18.0
60	18.3	18.6	18.9	19.2	19.5	19.8	20.1	20.4	20.7	21.0
70	21.3	21.6	21.9	22.3	22.6	22.9	23.2	23.5	23.8	24.1
80	24.4	24.7	25.0	25.3	25.6	25.9	26.2	26.5	26.8	27.1
90	27.4	27.7	28.0	28.3	28.7	29.0	29.3	29.6	29.9	30.2
100	30.5	30.8	31.1	31.4	31.7	32.0	32.3	32.6	32.9	33.2
110	33.5	33.8	34.1	34.4	34.7	35.1	35.4	35.7	36.0	36.3
120	36.6	36.9	37.2	37.5	37.8	38.1	38.4	38.7	39.0	39.3
130	39. 6	39.9	40.2	40.5	40.8	41.1	41.5	41.8	42.1	42.4
140	42.7	43.0	43.3	43.6	43.9	44.2	44.5	44.8	45.1	45.4
150	45.7	46.0	46.3	46.6	46.9	47.2	47.5	47.9	48.2	48.5
160	48.8	49.1	49.4	49.7	50.0	50.3	50.6	50.9	51.2	51.5
170	51.8	52.1	52.4	52.7	53.0	53.3	53.6	53.9	54.3	54.6
180	54.9	55.2	55.5	55.8	56.1	56.4	56.7	57.0	57.3	57.6
190	57.9	58.2	58.5	58.8	59.1	59.4	59.7	60.0	60.4	60.7
200	61.0	61.3	61.6	61.9	62.2	62.5	62.8	63.1	63.4	63.7
210	64.0	64.3	64.6	64.9	65.2	65.5	65.8	66.1	66.4	66.8
220	67.1	67.4	67.7	68.0	68.3	68.6	68.9	69.2	69.5	69.8
230	70.1	70.4	70.7	71.0	71.3	71.6	71.9	72.2	72.5	72.8
240	73.2	73.5	73.8	74.1	74.4	74.7	75.0	75.3	75.6	75.9
250	76.2	76.5	76.8	77.1	77.4	77•7	78.0	78.3	78.6	78.9
260	79.2	79.6	79.9	80.2	80.5	80•8	81.1	81.4	81.7	82.0
270	82.3	82.6	82.9	83.2	83.5	83•8	84.1	84.4	84.7	85.0
280	85.3	85.6	86.0	86.3	86.6	86•9	87.2	87.5	87.8	88.1
290	88.4	88.7	89.0	89.3	89.6	89•9	90.2	90.5	90.8	91.1

TABLE 6 (Cont'd)

Conversion from feet to meters (tenths)
(1 foot = 0.3048 meter)

Feet	00	10	20	30	40	50	60	70	80	90
300 400	91.4 121.9	94.5 125.0	97.5 128.0	100.6	103.6	106.7 137.2	109.7	112.8	115.8 146.3	118.9
500	152.4	155.4	158.5	161.5	164.6	167.6	170.7	173.7	176.8	179.8
600	182.9	185.9	189.0	192.0	195.1	198.1	201.2	204.2	207.3	210.3
700	213.4	216.4	219.5	222.5	225.6	228.6	231.6	234.7	237.7	240.8
800	243.8	246.9	249.9	253.0	256.0	259.1	262.1	265.2	268.2	271.3
900	274.3	277.4	280.4	283.5	286.5	289.6	292.6	295.7	298.7	301.8
1000	304.8	307.8	310.9	313.9	317.0	320.0	323.1	326.1	329.2	332.2
1100	335.3	338.3	341.4	344.4	347.5	350.5	353.6	356.6	359.7	362.7
1200	365.8	368.8	371.9	374.9	378.0	381.0	384.0	387.1	390.1	393.2
1300	396.2	399.3	402.3	405.3	408.4	411.5	414.5	417.6	420.6	423.7
1400	426.7	429.8	432.8	435.9	438.9	442.0	445.0	448.1	451.1	454.2
1500	457.2	460.2	563.3	466.3	469.4	472.4	475.5	478.5	481.6	484.6
1600	487.7	490.7	493.8	496.8	499.9	502.9	506.0	509.0	512.1	515.1
1700	518.2	521.2	524.3	527.3	530.4	533.4	536.4	539.5	542.5	545.6
1800	548.6	551.7	554.7	557.8	560.8	563.9	566.9	570.0	573.0	576.1
1900	579.1	582.2	585.2	588.3	591.3	594.4	597.4	600.5	603.5	606.6
2000	609.6	612.6	615.7	618.7	621.8	624.8	627.9	630.9	634.0	637.0
2100	640.1	643.1	646.2	649.2	652.3	655.3	658.4	661.4	664.5	667.5
2200	670.6	673.6	676.7	679.7	682.8	685.8	688.8	691.9	694.9	698.0
2300	701.0	704.1	707.1	710.2	713.2	716.3	719.3	722.4	725.4	728.5
2400	731.5	734.6	737.6	740.7	743.7	746.8	749.8	752.9	755.9	759.0
2500	762.0	765.0	768.1	771.1	774.2	777.2	780.3	783.3	786.4	789.4
2600	792.5	795.5	798.6	801.6	804.7	807.7	810.8	813.8	816.9	819.9
2700	823.0	826.0	829.1	832.1	835.2	838.2	841.2	844.3	847.3	850.4
2800	853.4	856.5	859.5	862.6	865.6	868.7	871.7	874.8	877.8	880.9
2900	883.9	887.0	890.0	893.1	896.1	899.2	902.2	905.3	908.3	911.4
3000	914.4	917.4	920.5	923.5	926.6	929.6	932.7	935.7	938.8	941.8
3100	944.9	947.9	951.0	954.0	957.1	960.1	963.2	966.2	969.3	972.3
3200	975.4	978.4	981.5	984.5	987.6	990.6	993.6	996.7	999.7	1002.8

Water Color

Forel-Ule scale and conversions from percent yellow and percent brown scales

Percent	Percent	Forel-Ule	Code
Yellow	Brown	Scale	
0 2 5 9 14 20 27 35 44 54 65	0 2 5 9 4 20 27 34 4 5 6 5	I II III IV V VIII XIV XV XVI XVIII XIII XIV XV XVI XVI	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

TABLE 8

Direction

In tens of degrees from which waves and/or winds are coming

Code		Code	
00	Calm (no waves - no motion)	22	215° – 224°
01	5° - 14°	23	225° – 234°
02	15° - 24°	24	235° – 244°
03	25° - 34°	25	245° - 254°
04	35° - 44°	26	255° – 264°
05	45° - 54°	27	265° – 274°
06	55° - 64°	28	275° – 284°
07	65° - 74°	29	285° – 294°
08	75° – 84°	30	295° - 304°
09	85° - 94°	31	305° - 314°
10	95° – 104°	32	315° – 324°
11	105° – 114°	33	325° – 334°
12	115° – 124°	34	335° – 344°
13	125° – 134°	35	345° – 354°
14	135° – 144°	36	355° - 4°
15	145° – 154°		
16	155° – 164°	49	Waves confused, direction
17	165° – 174°		indeterminate (waves equal
18	175° – 184°		to or less than $4\frac{3}{4}$ metres)
19	185° – 194°		(Waves confused, direction
20	195° – 204°		indeterminate (waves grea-
21	205° – 214°	99	ter than $4\frac{3}{4}$ metres)
2,	200 2	33	indeterminate (waves greater than $4\frac{3}{4}$ metres) Winds variable, or all directions or unknown

Table 8 is a combination of WMO Codes 0885 and 0877.

Direction

Conversion from points, quarter points, or a scale of 32, to a scale of 36 points

POINTS	QUARTER POINTS	0-32	CODE	POINTS	QUARTER POINTS	0-32	CODE
NxE	N6E to N14E	1	Ol	SxW	S6W to S14W	17	19
NNE	N15E to N25E	2	02	SSW	S15W to S25W	18	20
NE x N	N26E to N34E	3	03	SW x S	S26W to S34W	19	21
NE	N35E to N45E	4	04	SW	S 35W to S45W	20	22
	N46E to N54E		05		\$46W to \$54W		23
NE x E	N55E to N65E	5	06	SW x W	S55W to S65W	21	24
ENE	N66E to N74E	6	07	WSW	S66W to S74W	22	25
ExN	N75E to N85E	7	08	WxS	S75W to S85W	23	26
	N86E to N89E		09		s86W to s89W		27
E	E	8	09	W	W	24	27
	S89E to S86E		09		N 89W to N86W		27
ExS	S85E to S75E	9	10	W×N	N85W to N75W	25	28
ESE	S74E to S66E	10	11	WNW	N74W to N66W	26	29
SE x E	S65E to S55E	11	12	NW x W	N65W to N55W	27	30
	S54E to S46E		13		N54W to N46W		31
SE	S45E to S35E	12	14	NW	N45W to N35W	28	32
SE x S	S34E to S26E	13	15	NW x N	N34W to N26W	29	33
SSE	S25E to S15E	14	16	NNW	N25W to N15W	30	34
SxE	S14E to S6E	15	17	NxW	N14W to N6W	31	35
	S5E to S1E		18		N5W to N1W		36
S	S	16	18	N	N	32	36
	SlW to S5W		18		NIE to N5E		36
				Variable			99

TABLE 10

Height

WMO Code 1555 for recording height of the dominant waves

Code		Code	If 50 is added to direction
0	Less than 1/4 m (1 ft)	0	5 m (16 ft)
1	$\frac{1}{2}$ m (1 $\frac{1}{2}$ ft)	1	$5\frac{1}{2}$ m (17 $\frac{1}{2}$ ft)
2	1 m (3 ft)	2	6 m (19 ft)
3	$1\frac{1}{2}$ m (5 ft)	3	$6\frac{1}{2}$ m (21 ft)
4	2 m ($6\frac{1}{2}$ ft)	4	7 m (22 $\frac{1}{2}$ ft)
5	$2\frac{1}{2}$ m (8 ft)	5	$7 \frac{1}{2}$ m (24 ft)
6	3 m ($9\frac{1}{2}$ ft)	6	8 m (25 $\frac{1}{2}$ ft)
7	$3\frac{1}{2}$ m (11 ft)	7	$8 \frac{1}{2}$ m (27 ft)
8	4 m (13 ft)	8	9 m (29 ft)
9	$4\frac{1}{2}$ m (14 ft)	9	$9\frac{1}{2}$ m (30 $\frac{1}{2}$ ft)
x	Height not determined		

Notes:

- (1) Each code figure provides for reporting a range of heights. For example: $1=\frac{1}{4}$ m (1 ft) to $\frac{3}{4}$ m (2 $\frac{1}{2}$ ft); $5=2\frac{1}{4}$ m (7 ft) to $2\frac{3}{4}$ m (9 ft); $9=4\frac{1}{4}$ m (13 $\frac{1}{2}$ ft) to $4\frac{3}{4}$ m (15 ft), etc.
- (2) If a wave height comes exactly midway between the heights corresponding to two code figures, the lower code figure is reported; e.g. a height of $2\frac{3}{4}$ m is reported by code figure 5.
- (3) In aeronautical forecast codes, only the left-hand table is to be used and code figure 9 has the meaning: $4\frac{1}{2}$ m (14 ft) or more.
- (4) The average value of the wave height (vertical distance between trough and crest) is reported, as obtained from the larger well formed waves of the wave system being observed.

Period

WMO Code 3155 for recording period of dominant waves

Code		Code
2	5 seconds or less	8 16 or 17 seconds
3	6 or 7 seconds	9 18 or 19 seconds
4	8 or 9 seconds	0 20 or 21 seconds
5	10 or 11 seconds	1 Over 21 seconds
6	12 or 13 seconds	x Calm, or period not determined
7	14 or 15 seconds	·

Notes:

- (1) The period of the waves is the time between the passage of two successive wave crests past a fixed point (it is equal to the wave length divided by the wave speed).
- (2) The average value of the wave period is reported, as obtained from the larger well-formed waves of the wave system being observed.

TABLE 12

Sea State

WMO Code 3700 for Recording Sea State

Description	Heig Feet*	ht (†) Meters	Code
Calm-glassy	0	0	0
Calm-rippled	0 - 1/3	0 - 0.1	1
Smooth-wavelet	1/3 - 1 2/3	0.1 - 0.5	2
Slight	12/3-4	0.5 - 1.25	3
Moderate	4 - 8	1.25 - 2.5	4
Rough	8 - 13	2.5 - 4	5
Very rough	13 - 20	4 - 6	6
High	20 - 30	6 - 9	7
Very high	30 - 45	9 - 14	8
Phenomenal	> 45	> 14	9

- (†) The average wave height as obtained from the larger well-formed waves of the wave system being observed.
 - * The exact bounding height is to be assigned for the lower code figure, e.g. a height of 4 meters is coded as 5.

Wind Speed

Conversion from meters per second to knots
(lm/sec = 1.94254 knots)

m/sec	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
knots	0	0	0	1	1	1	1	1	2	2
m/sec	00	01	02	03	04	05	06	07	08	09
00 10 20 30 40 50	00 19 39 58 78 97	02 21 41 60 80 99	04 23 43 62 82 101	06 25 45 64 84 103	08 27 47 66 85 105	10 29 49 68 87 107	12 31 51 70 89 109	14 33 52 72 91	16 35 54 74 93 113	17 37 56 76 95 115

TABLE 14

Wind Speed

Conversion from miles per hour to knots
(1 mph = 0.86839 knot)

mph	00	01	02	03	04	05	06	07	08	09
00	00	01	02	03	03	04	05	06	07	08
10	09	10	10	11	12	13	14	15	16	16
20	17	18	19	20	21	22	23	23	24	25
30	26	27	28	29	30	30	31	32	33	34
40	35	36	36	37	38	39	40	41	42	43
50	43	44	45	46	47	48	49	49	50	51
60	52	53	54	55	56	56	57	58	59	60
70	61	62	63	63	64	65	66	67	68	69
80	69	70	71	72	73	74	75	76	76	77
90	78	79	80	81	82	82	83	84	85	86
100	87	88	89	89	90	91	92	93	94	95
110	96	96	97	98	99	100	101	102	102	103

TABLE 15

Wind Speed

Conversion from kilometers per hour to knots
(1 km/hr = 0.539593 knot)

km/hr	00	01	02	03	04	05	06	07	08	09
00	00	01	01	02	02	03	03	04	04	05
10	05	06	06	07	08	08	09	09	10	10
20	11	11	12	12	13	13	14	15	15	16
30	16	17	17	18	18	19	19	20	21	21
40	22	22	23	23	24	24	25	25	26	26
50	27	28	28	29	29	30	30	31	31	32
60	32	33	33	34	35	35	36	36	37	37
70	38	38	39	39	40	40	41	42	42	43
80	43	44	44	45	45	46	46	47	47	48
90	49	49	50	50	51	51	52	52	53	53
100	54	54	55	56	56	57	57	58	58	59
110	59	60	60	61	62	62	63	63	64	64
120	65	65	66	66	67	67	68	69	69	70
130	70	71	71	72	72	73	73	74	74	75
140	76	76	77	77	78	78	79	79	80	80
150	81	81	82	83	83	84	84	85	85	86
160	86	87	87	88	88	89	90	90	91	91
170	92	92	93	93	94	94	95	96	96	97
180	97	98	98	99	99	100	100	101	101	102

TABLE 16

Wind Speed

Conversion from feet per second to knots
(1 ft/sec = 0.5921 knot)

ft/sec	00	01	02	03	04	05	06	07	08	09
00 10 20 30 40 50	00 06 12 18 24 30	01 07 12 18 24 30	01 07 13 19 25 31	02 08 14 20 25 31	02 08 14 20 26 32	03 09 15 21 27 33	04 09 15 21 27	04 10 16 22 28 34	05 11 17 22 28 34	05 11 17 23 29 35
60 70 80 90 100	36 41 47 53 59	36 42 48 54 60	37 43 49 54 60	37 43 49 55 61	38 44 50 56 62	38 44 50 56 62	39 45 51 57 63	40 46 52 57 63	40 46 52 58 64	41 47 53 59 65
110 120 130 140 150	65 71 77 83 89	66 72 78 83 89	66 72 78 84 90	67 73 79 85 91	67 73 79 85 91	68 74 80 86 92	69 75 81 86 92	69 75 81 87 93	70 76 82 88 94	70 76 82 88 94
160	95	95	96	97	97	98	98	99	99	100

Wind Force

Conversion from knots, meters per second, kilometers per hour, and miles per hour to the Beaufort wind scale

CODE	DESCRIPTIVE TERM		VELOCITY EQUIVALENT AT A STANDARD HEIGHT OF 10 METERS ABOVE OPEN FLAT GROUND							
CODE	DESCRIPTIVE TEXM	mean velocity In knots	meters/sec	km/h	m.p.h.					
0	Calm	< 1	0 - 0.2	< 1	< 1					
1	Light air	1 – 3	0.3 – 1.5	1 – 5	1 – 3					
2	Light breeze	4 – 6	1.6 – 3.3	6 – 11	4 – 7					
3	Gentle breeze	7 – 10	3.4 - 5.4	12 – 19	8 – 12					
4	Moderate breeze	11 – 16	5.5 – 7.9	20 – 28	13 – 18					
5	Fresh breeze	17 – 21	8.0 - 10.7	29 – 38	19 – 24					
6	Strong breeze	22 – 27	10.8 – 13.8	39 – 49	25 – 31					
7	Near gale	28 – 33	13.9 – 17.1	50 – 61	32 – 38					
8	Gale	34 – 40	17.2 – 20.7	62 - 74	39 – 46					
9	Strong gale	41 – 47	20.8 - 24.4	75 – 88	47 – 54					
10	Storm	48 – 55	24.5 – 28.4	89 – 102	55 - 63					
11	Violent storm	56 - 63	28.5 – 32:6	103 – 117	64 – 72					
12	Hurricane	64 – 71	32:7 - 36.9	118 – 133	73 – 82					
13	_	72 – 80	37:0 - 41.4	134 – 149	83 – 92					
14	_	81 – 89	41.5 – 46.1	150 – 166	93 – 103					
15	-	90 – 99	46:2 - 50.9	167 – 183	104 114					
16	_	100 – 108	51.0 - 56:0	184 - 201	115 – 125					
17	-	109 – 118	56.1 - 61.2	202 – 220	126 – 136					

TABLE 18

Atmospheric Pressure

Conversion from inches of mercury to millibars*

(1 inch of Hg = 33.8639 mbs)

Inches	.00	.01	.02	•03	.04	.05	.06	.07	.08	•09
27.9	44.8	45.1	45.5	45.8	46.2	46.5	46.8	47.2	47.5	47.9
28.0	48.2	48.5	48.9	49.2	49.5	49.9	50.2	50.6	50.9	51.2
28.1	51.6	51.9	52.3	52.6	52.9	53.3	53.6	53.9	54.3	54.6
28.2	55.0	55.3	55.6	56.0	56.3	56.7	57.0	57.3	57.7	58.0
28.3	58.3	58.7	59.0	59.4	59.7	60.0	60.4	60.7	61.1	61.4
28.4	61.7	62.1	62.4	62.8	63.1	63.4	63.8	64.1	64.4	64.8
28.5	65.1	65.5	65.8	66.1	66.5	66.8	67.2	67.5	67.8	68.2
28.6	68.5	68.8	69.2	69.5	69.9	70.2	70.5	70.9	71.2	71.6
28.7	71.9	72.2	72.6	72.9	73.2	73.6	73.9	74.3	74.6	74.9
28.8	75.3	75.6	76.0	76.3	76.6	77.0	77.3	77.7	78.0	78.3
28.9	78.7	79.0	79.3	79.7	80.0	80.4	80.7	81.0	81.4	81.7
29.0	82.1	82.4	82.7	83.1	83.4	83.7	84.1	84.4	84.8	85.1
29.1 29.2 29.3 29.4 29.5	85.4 88.8 92.2 95.6 99.0	85.8 89.2 92.6 95.9 99.3	86.1 89.5 9 2 .9 96.3 99.7	86.5 89.8 93.2 96.6 00.0	86.8 90.2 93.6 97.0	87.1 90.5 93.9 97.3 00.7	87.5 90.9 94.2 97.6 01.0	87.8 91.2 94.6 98.0 01.4	88.1 91.5 94.9 98.3 01.7	88.5 91.9 95.3 98.6 02.0
29.6	02.4	02.7	03.0	03.4	03.7	04.1	04.4	04.7	05.1	05.4
29.7	05.8	06.1	06.4	06.8	07.1	07.5	07.8	08.1	08.5	08.8
29.8	09.1	09.5	09.8	10.2	10.5	10.8	11.2	11.5	11.9	12.2
29.9	12.5	12.9	13.2	13.5	13.9	14.2	14.6	14.9	15.2	15.6
30.0	15.9	16.3	16.6	16.9	17.3	17.6	17.9	18.3	18.6	19.0
30.1	19.3	19.6	20.0	20.3	20.7	21.0	21.3	21.7	22.0	22.4
30.2	22.7	23.0	23.4	23.7	24.0	24.4	24.7	25.1	25.4	25.7
30.3	26.1	26.4	26.8	27.1	27.4	27.8	28.1	28.4	28.8	29.1
30.4	29.5	29.8	30.1	30.5	30.8	31.2	31.5	31.8	32.2	32.5
30.5	32.8	33.2	33.5	33.9	34.2	34.5	34.9	35.2	35.6	35.9
30.6	36.2	36.6	36.9	37·3	37.6	37.9	38.3	38.6	38.9	39·3
30.7	39.6	40.0	40.3	40.6	%1.0	41.3	41.7	42.0	42.3	42·7
30.8	43.0	43.3	43.7	41.0	44.4	44.7	45.0	45.4	45.7	46·1
30.9	46.4	46.7	47.1	47.4	47.7	48.1	48.4	48.8	49.1	49·4
31.0	49.8	50.1	50.5	50.8	51.1	51.5	51.8	52.2	52.5	52·8

*The hundreds and thousands digits are not recorded; the true range of this table is 944.8 - 1052.8 mbs.

TABLE 19

Atmospheric Pressure

Conversion from millimeters of mercury to millibars*

(1 nm of Hg = 1.33322 mbs)

mm of Hg	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
708	43.9	44.1	44.2	44.3	44.5	44.6	44.7	44.9	45.0	45.1
709	45.3	45.4	45.5	45.7	45.8	45.9	46.1	46.2	46.3	46.5
710	46.6	46.7	46.9	47.0	47.1	47.3	47.4	47.5	47.7	47.8
711	47.9	48.1	48.2	48.3	48.5	48.6	48.7	48.9	49.0	49.1
712	49.3	49.4	49.5	49.7	49.8	49.9	50.1	50.2	50.3	50.5
713	50.6	50.7	50.9	51.0	51.1	51.3	51.4	51.5	51.7	51.8
714	51.9	52.1	52.2	52.3	52.5	52.6	52.7	52.9	53.0	53.1
715	53.3	53.4	53.5	53.7	53.8	53.9	54.1	54.2	54.3	54.5
716	54.6	54.7	54.9	55.0	55.1	55.3	55.4	55.5	55.7	55.8
717	55.9	56.1	56.2	56.3	56.5	56.6	56.7	56.9	57.0	57.1
718	57.3	57.4	57.5	57.7	57.8	57.9	58.1	58.2	58.3	58.5
719	58.6	58.7	58.9	59.0	59.1	59.3	59.4	59.5	59.7	59.8
720	59.9	60.1	60.2	60.3	60.5	60.6	60.7	60.9	61.0	61.1
721	61.3	61.4	61.5	61.7	61.8	61.9	62.1	62.2	62.3	62.5
722	62.6	62.7	62.9	63.0	63.1	63.3	63.4	63.5	63.7	63.8
723	63.9	64.1	64.2	64.3	64.5	64.6	64.7	64.9	65.0	65.1
724	65.3	65.4	65.5	65.7	65.8	65.9	66.1	66.2	66.3	66.5
725	66.6	66.7	66.9	67.0	67.1	67.3	67.4	67.5	67.7	67.8
726	67.9	68.1	68.2	68.3	68.5	68.6	68.7	68.9	69.0	69.1
727	69.3	69.4	69.5	69.7	69.8	69.9	70.1	70.2	70.3	70.5
728	70.6	70.7	70.9	71.0	71.1	71.3	71.4	71.5	71.7	71.8
729	71.9	72.1	72.2	72.3	72.5	72.6	72.7	72.9	73.0	73.1
730	73.3	73.4	73.5	73.7	73.8	73.9	74.1	74.2	74.3	74.5
731	74.6	74.7	74.9	75.0	75.1	75.3	75.4	75.5	75.7	75.8
732	75.9	76.1	76.2	76.3	76.5	76.6	76.7	76.9	77.0	77.1
733	77.3	77.4	77.5	77.7	77.8	77.9	78.1	78.2	78.3	78.5
73 ⁴	78.6	78.7	78.9	79.0	79.1	79.3	79.4	79.5	79.7	79.8
735	79.9	80.1	80.2	80.3	80.5	80.6	8 0.7	80.9	81.0	81.1

^{*}The hundreds digit is not recorded. The true range of this part of Table 20 is 943.9 mbs - 981.1 mbs.

TABLE 19 (Cont'd)

Atmospheric Pressure

Conversion from millimeters of mercury to millibars* (Cont'd)
(1 mm of Hg = 1.33322 mbs)

mm of Hg	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
736	81.3	81.4	81.5	81.7	81.8	81.9	82.1	82.2	82.3	82.5
737	82.6	82.7	82.9	83.0	83.1	83.3	83.4	83.5	83.7	83.8
738	83.9	84.1	84.2	84.3	84.5	84.6	84.7	84.9	85.0	85.1
739	85.3	85.4	85.5	85.7	85.8	85.9	86.1	86.2	86.3	86.5
740	86.6	86.7	86.9	87.0	87.1	87.3	87.4	87.5	87.7	87.8
741	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.9	89.0	89.1
742	89.3	89.4	89.5	89.7	89.8	89.9	90.1	90.2	90.3	90.5
743	90.6	90.7	90.9	91.0	91.1	91.3	91.4	91.5	91.7	91.8
744	91.9	92.1	92.2	92.3	92.5	92.6	92.7	92.9	93.0	93.1
745	93.3	93.4	93.5	93.7	93.8	93.9	94.1	94.2	94.3	94.5
746 747 748 749 750	94.6 95.9 97.3 98.6 99.9	94.7 96.1 97.4 98.7 00.1	94.9 96.2 97.5 98.9 00.2	95.0 96.3 97.7 99.0	95.1 96.5 97.8 99.1 00.5	95.3 96.6 97.9 99.3 00.6	95.4 96.7 98.1 99.4 00.7	95.5 96.9 98.2 99.5 00.9	95.7 97.0 98.3 99.7 01.0	95.8 97.1 98.5 99.8 01.1
751 752 753 754 755	01.3 02.6 03.9 05.3 06.6	01.4 02.7 04.1 05.4 06.7	01.5 02.9 04.2 05.5 06.9	01.7 03.0 04.3 05.7	01.8 03.1 04.5 05.8 07.1	01.9 03.3 04.6 05.9 07.3	02.1 03.4 04.7 06.1 07.4	02.2 03.5 04.9 06.2 07.5	02.3 03.7 05.0 06.3 07.7	02.5 03.8 05.1 06.5 07.8
756	07.9	08.1	08.2	08.3	08.5	08.6	08.7	08.9	09.0	09.1
757	09.3	09.4	09.5	09.7	09.8	09.9	10.1	10.2	10.3	10.5
758	10.6	10.7	10.9	11.0	11.1	11.3	11.4	11.5	11.7	11.8
759	11.9	12.1	12.2	12.3	12.5	12.6	12.7	12.9	13.0	13.1
760	13.3	13.4	13.5	13.7	13.8	13.9	14.1	14.2	14.3	14.5
761	14.6	14.7	14.9	15.0	15.1	15.3	15.4	15.5	15.7	15.8
762	15.9	16.1	16.2	16.3	16.4	16.6	16.7	16.8	17.0	17.1
763	17.2	17.4	17.5	17.6	17.8	17.9	18.0	18.2	18.3	18.4
764	18.6	18.7	18.8	19.0	19.1	19.2	19.4	19.5	19.6	19.8
765	19.9	20.0	20.2	20.3	20.4	20.6	20.7	20.8	21.0	21.1

^{*}The hundreds and thousands digits are not recorded. The true range of this part of Table 20 is 981.3 mbs - 1021.1 mbs.

TABLE 19 (Cont'd)

Atmospheric Pressure

Conversion from millimeters of mercury to millibars* (Cont'd)
(1 mm of Hg = 1.33322 mbs)

mm of Hg	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
766	21.2	21.4	21.5	21.6	21.8	21.9	22.0	22.2	22.3	22.4
767	22.6	22.7	22.8	23.0	23.1	23.2	23.4	23.5	23.6	23.8
768	23.9	24.0	24.2	24.3	24.4	24.6	24.7	24.8	25.0	25.1
769	25.2	25.4	25.5	25.6	25.8	25.9	26.0	26.2	26.3	26.4
770	26.6	26.7	26.8	27.0	27.1	27.2	27.4	27.5	27.6	27.8
771	27.9	28.0	28.2	28.3	28.4	28.6	28.7	28.8	29.0	29.1
772	29.2	29.4	29.5	29.6	29.8	29.9	30.0	30.2	30.3	30.4
773	30.6	30.7	30.8	31.0	31.1	31.2	31.4	31.5	31.6	31.8
774	31.9	32.0	32.2	32.3	32.4	32.6	32.7	32.8	33.0	33.1
775	33.2	33.4	33.5	33.6	33.8	33.9	34.0	34.2	34.3	34.4
776	34.6	34.7	34.8	35.0	35.1	35.2	35.4	35.5	35.6	35.8
777	35.9	36.0	36.2	36.3	36.4	36.6	36.7	36.8	37.0	37.1
778	37.2	37.4	37.5	37.6	37.8	37.9	38.0	38.2	38.3	38.4
779	38.6	38.7	38.8	39.0	39.1	39.2	39.4	39.5	39.6	39.8
780	39.9	40.0	40.2	40.3	40.4	40.6	40.7	40.8	41.0	41.1
781	41.2	41.4	41.5	41.6	41.8	41.9	42.0	42.2	42.3	42.4
782	42.6	42.7	42.8	43.0	43.1	43.2	43.4	43.5	43.6	43.8
783	43.9	44.0	44.2	44.3	44.4	44.6	44.7	44.8	45.0	45.1
784	45.2	45.4	45.5	45.6	45.8	45.9	46.0	46.2	46.3	46.4
785	46.6	46.7	46.8	47.0	47.1	47.2	47.4	47.5	47.6	47.8
786 787	47.9 49.2	48.0 49.4	48.2	48.3 49.6	48.4 49.8	48.6 49.9	48.7 50.0	48.8 50.2	49.0 50.3	49.1 50.4

^{*}The hundreds and thousands digits are not recorded. The true range of this part of Table 20 is 1021.2 mbs. - 1050.4 mbs.

TABLE 20

Temperature

Conversion from Fahrenheit to Centigrade

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
130	54.4	54.5	54.6	54.6	54.7	54.7	54.8	54.8	54.9	54.9
129	53.9	53.9	54.0	54.1	54.1	54.2	54.2	54.3	54.3	54.4
128	53.3	53.4	53.5	53.6	53.6	53.6	53.7	53.7	53.8	53.8
127	52.8	52.8	52.9	52.9	53.0	53.1	53.1	53.2	53.2	53.3
126	52.2	52.3	52.3	52.4	52.4	52.5	52.6	52.6	52.7	52.7
125	51.7	51.7	51.8	51.8	51.9	51.9	52.0	52.1	52.1	52.2
124	51.1	51.2	51.2	51.3	51.3	51.4	51.4	51.5	51.6	51.6
123	50.6	50.6	50.7	50.7	50.8	50.8	50.9	50.9	51.0	51.1
122	50.0	50.1	50.1	50.2	50.2	50.3	50.3	50.4	50.4	50.5
121	49.4	49.5	49.6	49.6	49.7	49.7	49.8	49.8	49.9	49.9
120	48.9	48.9	49.0	49.1	49.1	49.2	49.2	49.3	49.3	49.4
119	48.3	48.4	48.4	48.5	48.6	48.6	48.7	48.7	48.8	48.8
118	47.8	47.8	47.9	47.9	48.0	48.1	48.1	48.2	48.2	48.3
117	47.2	47.3	47.3	47.4	47.4	47.5	47.6	47.6	47.7	47.7
116	46.7	46.7	46.8	46.8	46.9	46.9	47.0	47.1	47.1	47.2
115	46.1	46.2	46.2	46.3	46.3	4.6.4	46.4	46.5	46.6	46.6
114	45.6	45.6	45.7	45.7	45.8	45.8	45.9	45.9	46.0	46.1
113	45.0	45.1	45.1	45.2	45.2	45.3	45.3	45.4	45.4	45.5
112	44.4	44.5	44.6	44.7	44.7	44.7	44.8	44.8	44.9	44.9
111	43.9	43.9	44.0	44.1	44.1	42	44.2	44.3	44.3	44.4
110	43.3	43.4	43.4	43.5	43.6	45.6	43.7	43.7	43.8	43.8
109	42.8	42.8	42.9	43.9	43.0	43.1	43.1	43.2	43.2	43.3
108	42.2	42.3	42.3	42.4	42.4	42.5	42.6	42.6	42.7	42.7
107	41.7	41.7	41.8	41.8	41.9	41.9	42.0	42.1	42.1	42.2
106	41.1	41.2	41.2	41.3	41.3	41.4	41.4	41.5	41.6	41.6
105	40.6	40.6	40.7	40.7	40.8	40.8	40.9	40.9	41.0	41.1
104	40.0	40.1	40.1	40.2	40.2	40.3	40.3	40.4	40.4	40.5

TABLE 20 (Cont'd)

Temperature

Conversion from Fahrenheit to Centigrade

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
103	39•4	39.5	39.6	39.6	39.7	39.7	39.8	39.8	39.9	39.9
102	38.9	38.9	39.0	39.1	39.1	39.2	39.2	59.3	39.3	39.4
101	38.3	38.4	38.4	38.5	38.6	38.6	38.7	38.7	38.8	38.8
100	37.8	37.8	37.9	37.9	38.0	38.1	38.1	38.2	38.2	38.3
99	37.2	37.3	37.3	37.4	37.4	37.5	37.6	37.6	37.7	37.7
98	36.7	36.7	36.8	36.8	36.9	36.9	37.0	37.1	37.1	37.2
97	36.1	36.2	36.2	36.2	36.3	36.4	36.4	36.5	36.6	36.6
96	35.6	35.6	35.7	35.7	35.8	35.8	35.9	35.9	36.0	36.1
95	35.0	35.1	35.1	35.2	35.2	35.3	35.3	35.4	35.4	35.5
94	34.4	34.5	34.6	34.6	34.7	34.7	34.8	34.8	34.9	34.9
93	33.9	33.9	34.0	34.1	34.1	34.2	34.2	34.3	34.3	34.4
92	33.3	33.4	33.4	33.5	33.6	33.6	33.7	33.7	33.8	33.8
91	32.8	32.8	32.9	32.9	33.0	33.1	33.1	33.2	33.2	33.3
90	32.2	32.3	32.3	32.4	32.4	32.5	52.6	32.6	32.7	32.7
89	31.7	31.7	31.8	31.8	31.9	31.9	32.0	32.1	32.1	32.2
88	31.1	31.2	31.2	31.3	31.3	31.4	31.4	31.5	31.6	31.6
87	30.6	30.6	30.7	30.7	30.8	30.8	30.9	30.9	31.0	31.1
86	30.0	30.1	30.1	30.2	30.2	30.3	30.3	30.4	30.4	30.5
85	29.4	29.5	29.6	29.6	29.7	29.7	29.8	29.8	29.9	29.9
84	28.9	28.9	29.0	29.1	29.1	29.2	29.2	29.3	29.3	29.3
83	28.3	28.4	28.4	28.5	28.6	28.6	28.7	28.7	28.8	28.8
82	27.8	27.8	27.9	28.9	28.0	28.1	28.1	28.2	28.2	28.3
81	27.2	27.3	27.3	27.4	27.4	27.5	27.6	27.6	27.7	27.7
80	26.7	26.7	26.8	26.8	26.9	26.9	27.0	27.1	27.1	27.2
7 9	26.1	26.2	26.2	26.3	26.3	26.4	26.4	26.5	26.6	26.6
78	25.6	25.6	25.7	25.7	25.8	25.8	25.9	25.9	26.0	26.1
77	25.0	25.1	25.1	25.2	25.2	25.3	25.3	25.4	25.4	25.5

TABLE 20 (Cont*d)

Temperature

Conversion from Fahrenheit to Centigrade

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
76	24.4	24.5	24.6	24.6	24.7	24.7	24.8	21+.8	24.9	24.9
7 5	23.9	23.9	24.0	24.1	24.1	24.2	24.2	24.3	24.3	24.4
74	23.3	23.4	23.4	23.5	23.6	23.6	23.7	23.7	23.8	23.8
73	22.8	22.8	22.9	22.9	23.0	23.1	23.1	23.2	23.2	23.3
72	22.2	22.3	22.3	22.4	22.4	22.5	22.6	22.6	22.7	22.7
71	21.7	21.7	21.8	21.8	21.9	21.9	22.0	22.1	22.1	22.2
70	21.1	21.2	21.2	21.3	21.3	21.4	21.4	21.5	21.6	21.6
69	20.6	20.6	20.7	20.7	20.8	20.8	20.9	20.9	21.0	21.1
68	20.0	20.1	20.1	20.2	20.2	20.3	20.3	20.4	20.4	20.5
67	19.4	19.5	19.6	19.6	19.7	19.7	19.8	19.8	19.9	19.9
66	18.9	18.9	19.0	19.1	19.1	19.2	19.2	19.3	19.3	19.4
65	18.3	18.4	18.4	18.5	18.6	18.6	18.7	18.7	18.8	18.8
64	17.8	17.8	17.9	17.9	18.0	18.1	18.1	18.2	18.2	18.3
63	17.2	17.3	17.3	17.4	17.4	17.5	17.6	17.6	17.7	17.7
62	16.7	16.7	16.8	16.8	16.9	16.9	17.0	17.1	17.1	17.2
61	16.1	16.2	16.2	16.3	16.3	16.4	16.4	16.5	16.6	16.6
60	15.6	15.6	15.7	15.7	15.8	15.8	15.9	15.9	16.0	16.1
59	15.0	15.1	15.1	15.2	15.2	15.3	15.3	15.4	15.4	15.5
58	14.4	14.5	14.6	14.6	14.7	14.7	14.8	14.8	14.9	14.9
57	13.9	13.9	14.0	14.1	14.1	14.2	14.2	14.3	14.3	14.4
56	13.3	13.4	13.4	13.5	13.6	13.6	13.7	13.7	13.8	13.8
55	12.8	12.8	12.9	12.9	13.0	13.1	13.1	13.2	13.2	13.3
54	12.2	12.3	12.3	12.4	12.4	12.5	12.6	12.6	12.7	12.7
53	11.7	11.7	11.8	11.8	11.9	11.9	12.0	12.1	12.1	12.2
52	11.1	11.2	11.2	11.3	11.3	11.4	11.4	11.5	11.6	11.6
51	10.6	10.6	10.7	10.7	10.8	10.8	10.9	10.9	11.0	11.1
50	10.0	10.1	10.1	10.2	10.2	10.3	10.3	10.4	10.4	10.5

TABLE 20 (Cont'd)

Temperature

Conversion from Fahrenheit to Centigrade

۰F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
49	09.4	09.5	09.6	09.6	09.7	09.7	09.8	09.8	09.9	09.9
48	08.9	08.9	09.0	09.1	09.1	09.2	09.2	09.3	09.3	09.4
47	08.3	08.4	08.4	08.5	08.6	08.6	08.7	08.7	08.80	08.8
46	07.8	07.8	07.9	07.9	0.80	08.1	08.1	08.2	08.2	08.3
45	07.2	07.3	07.3	07.4	07.4	07.5	07.6	07.6	07.7	07.7
44	06.7	06.7	06.8	06.8	06.9	06.9	07.0	07.1	07.1	07.2
43	06.1	06.2	06.2	06.3	06.3	06.4	06.4	06.5	06.6	06.6
42	05.6	05.6	05.7	05.7	05.8	05.8	05.9	05.9	06.0	06.1
41	05.0	05.1	05.1	05.2	05.2	05.3	05.3	05.4	05.4	05.5
40	04.4	04.5	04.6	04.6	04.7	04.7	04.8	04.8	04.9	04.9
39	03.9	03.9	04.0	04.1	04.1	04.2	04.2	04.3	04.3	04.4
38	03.3	03.4	03.4	03.5	03.6	03.6	03.7	03.7	03.8	03.8
37	02.8	02.8	02.9	02.9	03.0	03.1	03.1	03.2	03.2	03.3
36	02.2	02.3	02.3	02.4	02.4	02.5	02.6	02.6	02.7	02.7
35	01.7	01.7	01.8	01.8	01.9	01.9	02.0	02.1	02.1	02.2
34	01.1	01.2	01.2	01.3	01.3	01.4	01.4	01.5	01.6	01.6
33	00.6	00.6	00.7	00.7	8.00	8.00	00.9	00.9	01.0	01.1
32	00.0	00.1	00.1	00.2	00.2	00.3	00.3	00.4	00.4	00.5
31	-00.6	-00.5	-00.4	-00.4	-00.3	-00.3	-00.2	-00.2	-00.1	-00.1
30	-01.1	-01.1	-01.0	-00.9	-00.9	-00.8	-00.8	-00.7	-00.7	-00.6
29	-01.7	-01.6	-01.6	-01.5	-01.4	-01.4	-01.3	-01.3	-01.2	-01.2
28	-02.2	-02.2	-02.1	-02.1	-02.0	-01.9	-01.9	-01.8	-01.8	-01.7
27	-02.8	-02.7	-02.7	-02.6	-02.6	-02.5	-02.4	-02.4	-02.3	-02.3
26	-03.3	-03.3	-03.2	-03.2	-03.1	-03.1	-03.0	-02.9	-02.9	-02.8
25	-03.9	-03.8	-03.8	-03.7	-03.7	-03.6	-03.6	-03.5	-03.4	-03.4
24	-04.4	-04.4	-04.3	-04.3	-04.2	-04.2	-04.1	-04.1	-04.0	-03.9
23	-05.0	-04.9	-04.9	-04.8	-04.8	-04.7	-04.7	-04.6	-04.6	-04.5
	1									

TABLE 20 (Cont'd)

Temperature

Conversion from Fahrenheit to Centigrade

۰F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
22	-05.6	-05.5	-05.4	-05.4	-05.3	-05.3	-05.2	-05.2	-05.1	-05.1
21	-06.1	-06.1	-06.0	-05.9	-05.9	-05.9	-05.8	-05.7	-05.7	-05.6
20	-06.7	-06.6	-06.6	-06.5	-06.4	-06.4	-06.3	-06.3	-06.2	-06.2
19	-07.2	-08.2	-07.1	-07.1	-07.0	-06.9	-06.9	-06.8	-06.8	-06.7
18	-07.8	-07.7	-07.7	-07.6	-07.6	-07.5	-07.4	-07.4	-07.3	-07.3
17	-08.3	-08.3	-08.2	-08.2	-08.1	-08.1	-08.0	-07.9	-07.9	-07.8
16	-08.9	-08.8	-08.8	-08.7	-08.7	-08.6	-08.6	-08.5	-08.4	-08.4
15	-09.4	-09.4	-09.3	-09.3	-09.2	-09.2	-09.1	-09.1	-09.0	-08.9
14	-10.0	-09.9	-09.9	-09.8	-09.8	-09.7	-09.7	-09.6	-09.6	-09.5
13	-10.6	-10.5	-10.4	-10.4	-10.3	-10.3	-10.2	-10.2	-10.1	-10.1
12	-11.1	-11.1	-11.0	-10.9	-10.9	-10.8	-10.8	-10.7	-10.7	-10.6
11	-11.7	-11.6	-11.6	-11.5	-11.4	-11.4	-11.3	-11.3	-11.2	-11.2
10	-12.2	-12.2	-12.1	-12.1	-12.0	-11.9	-11.9	-11.8	-11.8	-11.7
9	-12.8	-12.7	-12.7	-12.6	-12.6	-12.5	-12.4	-12.4	-12.3	-12.3
8	-13.3	-13.3	-13.2	-13.2	-13.1	-13.1	-13.0	-12.9	-12.9	-12.8
7	-13.9	-13.8	-13.8	-13.7	-13.7	-13.6	-13.6	-13.5	-13.4	-13.4
6	-14.4	-14.4	-14.3	-14.3	-14.2	-14.2	-14.1	-14.1	-14.0	-13.9
5	-15.0	-14.9	-14.9	-14.8	-14.8	-14.7	-14.7	-14.6	-14.6	-14.5
4	-15.6	-15.5	-15.4	-15.4	-15.3	-15.3	-15.2	-15.2	-15.1	-15.1
3	-16.1	-16.1	-16.0	-15.9	-15.9	-15.8	-15.8	-15.7	-15.7	-15.6
2	-16.7	-16.6	-16.6	-16.5	-16.4	-16.4	-16.3	-16.3	-16.2	-16.2
1	-17.2	-17.2	-17.1	-17.1	-17.0	-16.9	-16.9	-16.8	-16.8	-16.7
0	-17.8	-17.7	-17.7	-17.6	-17.6	-17.5	-17.4	-17.4	-17.3	-17.3
-0	-17.8	-17.8	-17.9	-17.9	-18.0	-18.1	-18.1	-18.2	-18.2	-18.3
-1	-18.3	-18.4	-18.4	-18.5	-18.6	-18.6	-18.7	-18.7	-18.8	-18.8
- 2	-18.9	-18.9	-19.0	-19.1	-19.1	-19.2	-19.2	-19.3	-19.3	-19.4
-3	-19.4	-1 9.5	-19.6	-19.6	-19.7	-19.7	-19.8	-19.8	-19.9	-19.9

Temperature

Conversion from Fahrenheit to Centigrade

TABLE 20 (Cont'd)

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-31	-35.0	-35.1	-35.1	-35.2	-35.2	-35•3	-35.3	-35.4	-35.4	-35.5
- 32	-35.6	-35.6	-35.7	-35.7	-35.8	-35.8	-35.9	-35.9	-36.0	-36.1
- 33	-36.1	-36.2	-36.2	-36.3	-36.3	-36.4	-36.4	-36.5	-36.6	-36.6
-34	-36.7	-36.7	-36.8	-36.8	-36.9	-36.9	-37.0	-37.1	-37.1	-37.2
- 35	-37.2	-37.3	-37.3	-37.4	-37.4	-37.5	-37.6	-37.6	-37.7	-37.7
- 36	-37.8	-37.8	-37.9	-37.9	-38.0	-38.1	-38.1	-38.2	-38.2	-38.3
-37	-38.3	-38.4	-38.4	-38.4	-38.5	-38.6	-38.6	-38.7	-38.7	-38.8
- 38	-38.9	-38.9	-39.0	-39.1	-39.1	-39.2	-39.2	-39.3	-39.3	-39.4
- 39	-39•4	-39.5	- 39 . 6	-39.6	-39.7	-39.7	-39.8	-39.8	-39.9	-39.9
-40	-40.0	-40.1	-40.1	-40.2	-40.2	-40.3	-40.3	-40.4	-40.4	-40.5
-41	-40.6	-40.6	-40.7	-40.7	-40.8	-40.8	-40.9	-40.9	-41.0	-41.1
- 42	-41.1	-41.2	-41.2	-41.3	-41.3	-41.4	-41.4	-41.5	-41.6	-41.6
- 43	-41.7	-41.7	-41.8	-41.8	-41.9	-41.9	-42.0	-42.1	-42.1	-42.2
-44	-42.2	-42.3	-42.3	-42.4	-42.4	-42.6	-42.6	-42.6	-42.7	-42.7
- 45	-42.8	-42.8	-42.9	-42.9	-43.0	-43.1	-43.1	-43.2	-43.2	-43.3
- 46	-43.3	-43.4	-43.4	- 43.5	-43.6	-43.6	-43.7	-43.7	-43.8	-43.8
-47	-43.9	-43.9	-44.0	-44.1	-44.1	-44.2	-44.2	-44.3	-44.3	-44.4
- 48	-44.4	-44.5	-44.6	-44.6	-44.7	-44.7	-44.8	-44.8	-44.9	-44.9
-49	-45.0	-45.1	-45.1	-45.2	-45.2	-45.3	-45.3	-45.4	-45.4	-45.5
- 50	-45.6	-45.6	-45.7	-45.7	-45.8	-45.8	-45.9	-45.9	-46.0	-46.1
- 51	-46.1	-46.2	-46.2	-46.3	-46.3	-46.4	-46.4	-46.5	-46.5	-46.6
- 52	-46.7	-46.7	-46.8	-46.8	-46.9	-46.9	-47.0	-47.1	-47.1	-47.2
- 55	-47.2	-47.3	-47.3	-47.4	-47.4	-47.5	-47.6	-47.6	-47.7	-47.7
- 54	-47.8	-47.8	-47.9	-47.9	-48.0	-48.1	-48.1	-48.2	-48.2	-48.3
- 55	-48.3	-48.4	-48.4	-48.5	-48.6	-48.6	-48.7	-48.7	-48.8	-48.8
- 56	-48.9	-48.9	-49.0	-49.1	-49.1	-49.2	-49.2	-49.3	-49.3	-49.4
- 57	-49.4	- 49 . 5	-49.6	-49.6	-49.7	-49.7	-49.8	-49.8	-49.9	-49.9

TABLE 20 (Cont'd)

Temperature

Conversion from Fahrenheit to Centigrade

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-4	-20.0	-20.1	-20.1	-20.2	-20.2	-20.3	-20.3	-20.4	-20.4	-20.5
- 5	-20.6	-20.6	-20.7	-20.7	-20.3	-20.8	-20.9	-20.9	-21.0	-21.1
- 6	-21.1	-21.2	-21.2	-21.3	-21.3	-21.4	-21.4	-21.5	-21.6	-21.6
-7	-21.7	-21.7	-21.8	-21.8	-21.9	-21.9	-22.0	-22.1	-22.1	-22.2
-8	-22.2	-22.3	-22.3	-22.4	-22.4	-22.5	-22.6	-22.6	-22.7	-22.7
- 9	-22.8	-22.8	-22.9	-22.9	-23.0	-23.1	-23.1	-25.2	-23.2	-23.3
-10	-23.3	-23.4	-23.4	-23.5	-23.6	-23.6	-23.7	-23.7	-23.8	-23.8
-11	-23.9	-23.9	-24.0	-24.1	-24.1	-24.2	-24.2	-24.3	-24.3	-24.4
-12	-24.4	-24.5	-24.6	-24.6	-24.7	-24.7	-24.8	-24.8	-24.9	-24.9
-13	-25.0	-25.1	-25.1	-25.2	-25.2	-25.3	-25.3	-25.4	-25.4	-25.5
-14	-25.6	-25.6	-25.7	-25.7	-25.8	-25.8	-25.9	-26.9	-26.0	-26.1
-15	-26.1	-26.2	-26.2	-26.3	-26.3	-26.4	-26.4	-26.5	-26.6	-26.6
- 16	-26.7	-26.7	-26.8	-26.8	-26.9	-26.9	-27.0	-27.1	-27.1	-27.2
-17	-27.2	-27.3	-27.3	-27.4	-27.4	-27.5	-27.6	-27.6	-27.7	-27.7
-18	-27.8	-27.8	-27.9	- 28 .9	-28.0	-28.1	-28.1	-28.2	-28.2	-28.3
-19	-28.3	-28.4	-28.4	-28.5	-28.6	-28.6	-28.7	-28.7	-28.8	-28.8
- 20	-28.9	-28.9	-29.0	-29.1	-29.1	-29.2	-29.2	-29.3	-29.3	-29.4
-21	-29.4	-29.5	-29.6	-29.6	-29.7	-29.7	-29.8	-29.8	-29.9	-29.9
-22	-30.0	-30.1	-30.1	-30.2	-30.2	-30.3	-30.3	-30.4	-30.4	-30.5
-23	-30.6	-30.6	-30.7	-30.7	-30.8	-30.8	-30.9	-30.9	-31.0	-31.1
-24	-31.1	-31.2	-31.2	-31.3	-31.3	-31.4	-31.4	-31.6	-31.6	-31.6
- 25	-31.7	-31.7	-31.8	-31.8	-31.9	-31.9	-32.0	-32.1	-32.1	- 32.2
-26	-32.2	-32.3	-32.3	-32.4	-32.4	-32.5	- 32.6	-32.6	-32.7	-32.7
-27	-32.8	-32.8	-32.9	-32.9	-33.0	-33.1	-33.1	-33.2	-33.2	-33.3
-28	-33.3	-33.4	-33.4	-33.5	- 33.6	-33.6	-33.7	-33.7	-33.8	-33.8
-29	-33.9	- 33.9	-34.0	-34.1	-34.1	-34.2	-34.2	-34.3	-54.3	-34.4
-30	-34.4	-34.5	-34.6	-34.6	-34.7	-34.7	-34.8	-34.8	-34.9	-34.9

TABLE 20 (Cont'd)

Temperature

Conversion from Fahrenheit to Centigrade

°F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
- 58	-50.0	-50.1	-50.1	-50.2	-50.2	-50.3	-50.3	-50.4	-50.4	-50.5
- 59	-50.6	-50.6	-50.7	-50.7	-50.8	-50.8	- 50 . 9	-50.9	-51.0	-51.1
- 60	-51.1	-51.2	- 51.2	-51.3	-51.3	-51.4	-51.4	-51.5	-51.6	-01.6
-61	-51.7	-51.7	- 51.8	-51.8	-51.9	-51.9	- 52 . 0	- 52.I	-52.1	-52.2
- 62	-52.2	- 52.3	-52.3	-52.4	-52.4	-52.5	-52.6	-52.6	-52.7	-:2.7
- 63	-52.8	- 52.8	- 52 . 9	-52.9	-53.0	-55.1	-53.1	-53.2	-53.2	-53.3
- 64	-53.3	-55.4	-53.4	-5>•5	-53.6	-53.6	-55.7	-53.7	-53.8	-63.8
-65	-53.9	- 53 . 9	-54.0	-54.1	-54.1	-5.+.2	-54.2	-54.3	-54.3	-54.4
- 66	-54.4	-54.6		-54.0	-54.7	-54.7	-54.8	-54.8	-54.9	-54.9
- 67	- 55.0	-55.1	-55.1	- 55•2	-55.2	-55.3	-55.3	-55.4	-55.4	-55.5
- 68	-55.6	-55.6	-55.7	-57.7	- 55 . 8	-55.8	-55.9	- 55。9	-56.0	-56.1
- 69	-56.1	-56.2	-56.2	-56.3	-56.3	-56.4	-56.4	-56.5	-56.6	-56.6
-70	-56.7	-56.7	- 56.8	-56.8	-56.9	- 56 . 9	-57.0	-57.1	-57.1	-57.2

Present Weather

WMO Code 4501 for recording present weather

Code figure	
0	Clear (no cloud at any level)
1	Partly cloudy (scattered or broken)
2	Continuous layer(s) of cloud(s)
3	Sandstorm, duststorm, or blowing snow
4	Fog, thick dust or haze
5	Drizzle
6	Rain
7	Snow, or rain and snow mixed
8	Shower(s)
9	Thunderstorm(s)

TABLE 22

Present Weather

Conversion from Beaufort weather notation to WMO Code 4501

Abbreviation	Description	Code
b.	Blue sky whether with clear or hazy atmosphere, or sky not more than one-quarter clouded.	0
bc.	Sky between one-quarter and three-quarters clouded.	1
С.	Mainly cloudy (not less than three-quarters covered.)	1
d.	Drizzle or fine rain.	5 4
е.	Wet air without rain falling.	1
<u>.</u> .	Fog.	4
fe.	Wet fog.	1+
g.	Gloomy.	2
h.	Hail.	9
kq.	Line squall.	9
1.	Lightning	9
m.	Mist.	
0.	Overcast sky (i.e., the whole sky covered with unbroken cloud).	2
p.	Passing showers.	8
d.	Squalls.	9
r.	Rain.	6
rs.	Sleet (i.e., rain and snow together).	7
S.	Snow.	7
t.	Thunder.	9
tl.	Thunderstorm.	9
u.	Ugly, threatening sky.	2
V.	Unusual visibility.	0
Z •	Dust haze; the turbid atmosphere of dry weather.	1

Present Weather

Conversion from 1936 International Meteorological Organization Code to the
WMO Code 4501

	Code Underlined	WMO
	ABBREVIATED DESCRIPTION OF SKY AND SPECIAL PHENOMENA	Code 4501 (equivalent)
00	Cloudless	0
Ol	Partly cloudy.	1
02	Cloudy.	1
03	Overcast.	2
04	Low fog, on ground or over sea.	<u>}</u> +
05	Haze (but visibility greater than 2,000 m., 2,200 yds).	1
06 07	Dust devils seen. Distant lightning.	9
08	Light fog or mist (visibility between 1,000 and 2,000 m., 1,100 and 2,200 yds).	4
09	Fog at a distance, but not at the ship.	1+
10	Precipitation within sight.	6
11	Thunder, without precipitation at the ship.	9
12	Dust storm within sight, but not at the ship.	9 3 9 9
13	Ugly, threatening sky.	9
14	Squally weather.	9
15 16	Heavy squalls. in last 3 hours Waterspouts seen.	9
	PRECIPITATION IN LAST HOUR BUT NOT AT TIME OF OBSERVAT	ION
20 21	Precipitation (rain, drizzle, hail, snow, or sleet) Drizzle	- 5
22	Rain other than showers	6
23	Snow Rain and snow or sleet Snow in last but not	
24 25	Rain and snow or sleet / but not Rain shower (s).	8
26	Snow shower (s). Observa:	
27	Hail or rain and hail shower (s).	9
28	Slight thunderstorm.	9
29	Heavy thunderstorm.	9

TABLE 23 (Cont'd)

Conversion from 1936 International Meteorological Organization Code to the WMO Code 4501

	DUST	STORMS AND STO	ORMS OF DRIFTING SNOW	WMO		
	(Visibi	lity less than	1,000 m., 1,100 yards)	Code 4501 (e q uivalent)		
30 31 32 33 34 35 36 37 38 39	Dust or sand stor Dust or sand stor Dust or sand stor Dust or sand stor Line of dust stor Storm of drifting Slight storm of dr Heavy storm of dr Heavy storm of dr	m, has decrease m, no appreciab m, has increase ms. snow. rifting snow } ifting snow } rifting snow }	le change.	3 3 3 3 3 3 3 3 3 3 3 3 3		
			FOG			
	(Visib	ility less than	1,000 m., 1,100 yards)			
40 41 42 43 44 45 46 47 48 49	40 Fog. 41 Moderate fog in last hour 42 Thick fog in last hour 43 Fog, sky discernible 44 Fog, sky not discernible 45 Fog, sky discernible 46 Fog, sky not discernible 47 Fog, sky discernible 48 Fog, sky not discernible 48 Last hour 49 Last hour 40 Last hour 41 Last hour 42 Last hour					
		DRIZ	ZLE			
	(Pre	cipitation cons	isting of numerous minute	drops)		
50 51 52 53 54 55 56 57 58 59	Drizzle Intermittent } Continuous Intermittent } Continuous Intermittent } Continuous Intermittent } Continuous Drizzle and fog. Slight or moderat Thick	slight drizzle moderate drizz thick drizzle. e drizzle an	le.	555555 - 55		

TABLE 23 (Cont'd)

Conversion from 1936 International Meteorological Organization Code to the

WMO Code 4501

	RAIN	WMO Code 4501 (equivalent)
60 61 62 63 64 65 66 67 68	Rain. Intermittent	66666666
	SNOW	
70 71 72 73 74 75 76 77 78	Snow or sleet Intermittent Continuous Intermittent Continuous Intermittent Continuous Intermittent Continuous Snow and fog. Granular snow Ice crystals; Slight snow in flakes heavy snow in flakes frozen drizzle.	7 7 7 7 7 7 7
	SHOWERS (S)	
80 81 82 83 84 85 86 87 88	Shower (s) Shower (s) of slight or moderate } rain Shower (s) of heavy Shower (s) of slight or moderate } snow Shower (s) of heavy Shower (s) of slight or moderate } rain and snow. Shower (s) of heavy Shower (s) of granular snow Shower (s) of slight or moderate } hail, or rain and hail.	8 8 7 7 7 7 7

TABLE 23 (Cont'd)

Conversion from 1936 International Meteorological Organization Code to the

WMO Code 4501

	THUNDERSTORM	1	WMO Code +501 uivalent)
90	Thunderstorm		9
91	Rain at time thunderstorm during last	hour, but not at	9
92	Snow, or sleet at time / time of observation.		9
93	Thunderstorm, slight without hail or soft hail, but with rain (or snow)		9
94	Thunderstorm slight with soft hail		9
95	Thunderstorm moderate without hail, but with rain (or snow)		9
96	Thunderstorm moderate with soft hail at	time of	9
97	Thunderstorm heavy without hail, but with obs	servation.	9
98	Thunderstorm combined with dust storm		9
99	Thunderstorm heavy with hail		9

Code figure

No meteors except photometeors

smoke

Or

Haze, dust, sand

Cloud development not observed or not observable
 Clouds generally dissolving or becoming less developed

characteristic change of the state of sky during the past hour

- 02 State of sky on the whole unchanged
- 03 Clouds generally forming or developing
- 04 Visibility reduced by smoke, e.g. veldt or forest fires, industrial smoke or volcanic ashes
- 05 Haze
- 06 Widespread dust in suspension in the air, not raised by wind at or near the station at the time of observation
- 07 Dust or sand raised by wind at or near the station at the time of observation, but no well developed dust whirl(s) or sand whirl(s), and no duststorm or sandstorm seen
- 08 Well developed dust whirl(s) or sand whirl(s) seen at or near the station during the preceding hour or at the time of observation, but no duststorm or sandstorm
- 09 Duststorm or sandstorm within sight at the time of observation, or at the station during the preceding hour
- 10 Mist
- 11 Patches of shallow fog or ice fog at the station, whether on land or
- More or less sea, not deeper than about 2 metres on land or 10 metres at sea
- 13 Lightning visible, no thunder heard
- 14 Precipitation within sight, not reaching the ground or the surface of the sea
- 15 Precipitation within sight, reaching the ground or the surface of the sea, but distant (i. e. estimated to be more than 5 km) from the station
- 16 Precipitation within sight, reaching the ground or the surface of the sea, near to, but not at the station
- 17 Thunderstorm, but no precipitation at the time of observation
- 18 Squalls at or within sight of the station during the preceding
- 19 Funnel cloud(s) ** | hour or at the time of observation

^{*} The expression "at the station" refers to a land station or a ship.

^{**} Tornado cloud or waterspout.

ww = 20 - 29 Precipitation, fog, ice fog or thunderstorm at the station during the preceding hour but not at the time of observation

Code flaure ww 20 Drizzle (not freezing) or snow grains 21 Rain (not freezing) not falling as shower(s) 22 Snow 23 Rain and snow or ice pellets, type (a) Freezing drizzle or freezing rain 25 Shower(s) of rain 26 Shower(s) of snow, or of rain and snow 27 Shower(s) of hail*, or of rain and hail* 28 Fog or ice fog 29 Thunderstorm (with or without precipitation) ww = 30 - 39 Duststorm, sandstorm, drifting or blowing snow ww 30 - has decreased during the preceding Slight or moderate dust-31 - no appreciable change during the storm or sandstorm preceding hour has begun or has increased during 32 the preceding hour 33 - has decreased during the preceding hour Severe duststorm or 34 - no appreciable change during the sandstorm preceding hour 35 - has begun or has increased during the preceding hour 36 Slight or moderate blowing snow generally low (below eye level) 37 Heavy drifting snow 38 Slight or moderate blowing snow generally high (above eye level) 39 Heavy blowing snow ww = 40 - 49 Fog or ice fog at the time of observation ww

- 40 Fog or ice fog at a distance at the time of observation, but not at the station during the preceding hour, the fog or ice fog extending to a level above that of the observer
- 41 Fog or ice fog in patches
- 42 Fog or ice fog, sky visible \ has become thinner during the preceding
- 43 Fog or ice fog, sky invisible / hour

^{*} Hail, ice pellets, type (b), snow pellets. French: grêle, grésil ou neige roulée.

```
Code figure
             Fog or ice fog, sky visible
                                              no appreciable change during the preced-
                                              ing hour
              Fog or ice fog, sky invisible
              Fog or ice fog, sky visible
                                              has begun or has become thicker during
                                              the preceding hour
              Fog or ice fog, sky invisible 1
         47
         48 Fog, depositing rime, sky visible
              Fog, depositing rime, sky invisible
ww = 50 - 99 Precipitation at the station at the time of observation
              Drizzle
ww = 50 - 59
         ww
             Drizzle, not freezing, intermittent
         50
                                                    slight at time of observation
             Drizzle, not freezing, continuous
         52 Drizzle, not freezing, intermittent
                                                    moderate at time of observation
             Drizzle, not freezing, continuous
         53
             Drizzle, not freezing, intermittent
         54
                                                    heavy (dense) at time of observation
         55 Drizzle, not freezing, continuous
         56 Drizzle, freezing, slight
         57 Drizzle, freezing, moderate or heavy (dense)
             Drizzle and rain, slight
         59 Drizzle and rain, moderate or heavy
ww = 60 - 69 Rain
         ww
         60
             Rain, not freezing, intermittent
                                                  slight at time of observation
             Rain, not freezing, continuous
         62
             Rain, not freezing, intermittent
                                                  moderate at time of observation
         63 Rain, not freezing, continuous
             Rain, not freezing, intermittent
                                                  heavy at time of observation
         65 Rain, not freezing, continuous
             Rain, freezing, slight
         66
             Rain, freezing, moderate or heavy
         67
         68
             Rain or drizzle and snow, slight
             Rain or drizzle and snow, moderate or heavy
ww = 70 - 79
              Solid precipitation not in showers
         ww
         70 Intermittent fall of snow flakes
                                                  slight at time of observation
         71 Continuous fall of snow flakes
         72 Intermittent fall of snow flakes
                                                  moderate at time of observation
         73 Continuous fall of snow flakes
```

Code figure

- 74 Intermittent fall of snow flakes
- 75 Continuous fall of snow flakes

heavy at time of observation

- 76 Ice prisms (with or without fog)
- 77 Snow grains (with or without fog)
- 78 Isolated starlike snow crystals (with or without fog)
- 79 Ice pellets, type (a)

ww = 80 - 99 Showery precipitation, or precipitation with current or recent thunderstorm

ww

- 80 Rain shower(s), slight
- 81 Rain shower(s), moderate or heavy
- 82 Rain shower(s), violent
- 83 Shower(s) of rain and snow mixed, slight
- 84 Shower(s) of rain and snow mixed, moderate or heavy
- 85 Snow shower(s), slight
- 86 Snow shower(s), moderate or heavy
- Shower(s) of snow pellets or ice pellets, type (b), with or without
- 88 rain or rain and snow mixed
- 89 Shower(s) of hail*, with or without rain or rain and snow
- 90 mixed, not associated with thunder
- 91 Slight rain at time of observation
- 92 Moderate or heavy rain at time of observation
- 93 Slight snow, or rain and snow mixed or hail** at time of observation
- 94 Moderate or heavy snow, or rain and snow mixed or hail** at time of observation
- 95 Thunderstorm, slight or moderate, without hail**, but with rain and/or snow at time of observation
- 96 Thunderstorm, slight or moderate, with hail** at time of observation
- 97 Thunderstorm, heavy, without hail**, but with rain and/or snow at time of observation
- 98 Thunderstorm combined with duststorm or sandstorm at time of observation
- 99 Thunderstorm, heavy, with hail**
 at time of observation

- slight
- moderate or heavy
- slight
- moderate or heavy

thunderstorm during the preceding hour but not at time of observation

thunderstorm at time of observation

^{*} French: grêle.

^{**} Hail, ice pellets, type (b), snow pellets. French: grêle, grésil ou neige roulée.

Cloud Type (Genus)

WMO Code 0500 for recording cloud type (genus)

Code

0	Cirrus	۰					Ci
1	Cirrocumulus						Сс
2	Cirrostratus .						Cs
3	Altocumulus					•	Ac
4	Altostratus .			•		٠	As
5	Nimbostratus		4		•		Ns
6	Stratocumulus					•	Sc
7	Stratus						St
8	Cumulus						Cu
9	Cumulonimbus						Ch

x Cloud not visible owing to darkness, fog, duststorm, sandstorm, or other analogous phenomena

Cloud Amount

WMO Code 2700 for recording cloud amount

Code

0	0	0
1	1 okta or less, but not zero	$^{1}/_{10}$ or less, but not zero
2	2 oktas	$^{2}/_{10} - ^{3}/_{10}$
3	3 oktas	4/10
4	4 oktas	⁵ / ₁₀
5	5 oktas	6/10
6	6 oktas	$^{7}/_{10} - ^{8}/_{10}$
7	7 oktas or more, but not 8 oktas	$^{9}/_{10}$ or more, but not $^{10}/_{10}$
8	8 oktas	¹⁰ / ₁₀
9	Sky obscured, or cloud amount cannot be estimated	

Visibility

WMO Code 4300 for recording visibility at surface

Code

0	Less than 50 metres	(less than 55 yards)
1	50-200 metres	(approx. 55-220 yards)
2	200-500 metres	(approx. 220-550 yards)
3	500-1,000 metres	(approx. 550 yards-5/8 n.m.)
4	1- 2 km	(approx. 5/8-1 n.m.)
5	2- 4 km	(approx. 1-2 n.m.)
6	4–10 km	(approx. 2-6 n.m.)
7	10–20 km	(approx. 6-12 n.m.)
8	20-50 km	(approx. 12-30 n.m.)
9	50 km or more	(30 n.m. or more)

PRECISION OF MEASUREMENT CODE

Columns 37 and 42 may be used for entry of a precision of measurement code. See table below. Provisions under which the originator may enter the precision of measurement code are as follows:

- 1. Temperature and/or salinity are reported to the hundredths place only.
- 2. A "cruise measurement error" has been computed and is entered in the general remarks space of the coding form. The "cruise measurement error" is defined as the standard deviation of the differences between all duplicate determinations or paired thermometer readings obtained for the cruise (or specific groups of stations of the cruise.) This parameter may also be given (for future inclusion on the cruise master card now being developed) even though no individual precision of measurement codes are given at individual observed levels.
- 3. The doubtful data entry (?) is given precedence over the precision code entry.
- 4. No precision of measurement entry should be coded at individual levels where the difference is equal to or less than the "cruise measurement error." For example, if the "cruise measurement error" for salinity is + 0.018 %, no precision code entry should be made for determination differences of 0.018 % or less; in this example, the first permissible precision of measurement "entry" would be D.

Difference of Paired Thermometers (°C.)	Difference of Dual Salinity Measurements (%)	Code
.01	.005	A
.02	.010	В
.03	.015	C
.04	.020	D
.05	.025	E
.06	.030	F
.07	.035	G
.08	.040	H
.09	.045	I
.10	.050	J
.11	.055	K
.12	.060	L
•13	.065	M
.14 or > .14	.070 or > .070	N

NOTE: Thousandth place should be truncated, not rounded (i.e., 0.010 through 0.019 = 0.01) before determining code.

TABLE 29
Salinity
Conversion from chlorinity to salinity \(^{\o}\)/oo

Cl	S	Cl S	Cl S	C1 S
0.01 .02 .03 .04 .05 .06 .07 .08	0.05 .07 .08 .10 .12 .14 .16	0.40 0.75 .41 .77 .42 .79 .43 .81 .44 .82 .45 .84 .46 .86 .47 .88 .48 .90 .49 .91	0.80 1.47 .81 .49 .82 .51 .83 .53 .84 .55 .85 .56 .86 .58 .87 .60 .88 .62 .89 .64	1.20 2.20 .21 .21 .22 .23 .23 .25 .24 .27 .25 .29 .26 .30 .27 .32 .28 .34 .29 .36
0.10 .11 .12 .13 .14 .15 .16 .17 .18	0.21 .23 .25 .26 .28 .30 .32 .34 .35	0.50 0.93 .51 .95 .52 .97 .53 .99 .54 1.00 .55 1.02 .56 1.04 .57 1.06 .58 1.08 .59 1.09	0.90 1.65 .91 .67 .92 .69 .93 .71 .94 .73 .95 .74 .96 .76 .97 .78 .98 .80 .99 .82	1.30 2.38 .31 .39 .32 .41 .33 .43 .34 .45 .35 .47 .36 .48 .37 .50 .38 .52 .39 .54
0.20 .21 .22 .23 .24 .25 .26 .27 .28	0.39 .41 .43 .45 .46 .48 .50 .52 .54	0.60 1.11 .61 1.13 .62 1.15 .63 1.17 .64 1.19 .65 1.20 .66 1.22 .67 1.24 .68 1.26 .69 1.28	1.00 1.84 .01 .85 .02 .87 .03 .89 .04 .91 .05 .93 .06 .94 .07 .96 .08 .98 .09 2.00	
0.30 .31 .32 .33 .34 .35 .36 .37 .38	0.57 .59 .61 .63 .64 .66 .68 .70 .72 .73	0.70	1.10 2.02 .11 .03 .12 .05 .13 .07 .14 .09 .15 .11 .16 .12 .17 .14 .18 .16 .19 .18	

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (°/oo)

Cl	S	Cl	S	Cl	S	Cl	S
1.40 .41 .42 .43 .44 .45 .46 .47 .48 .49	2.56 .58 .59 .61 .63 .65 .67 .68 .70	1.80 .81 .82 .83 .84 .85 .86 .87 .88	3.28 .30 .32 .33 .35 .37 .39 .41 .42	2.20 .21 .22 .23 .24 .25 .26 .27 .28	4.00 .02 .04 .06 .07 .09 .11 .13	2.60 .61 .62 .63 .64 .65 .66 .67	4.72 .74 .76 .78 .80 .81 .83 .85
1.50 .51 .52 .53 .54 .55 .56 .57 .58	2.74 .76 .77 .79 .81 .83 .85 .86 .88	1.90 .91 .92 .93 .94 .95 .96 .97 .98	3.46 .48 .50 .51 .53 .55 .57 .59 .60	2.30 .31 .32 .33 .34 .35 .36 .37 .38	4.18 .20 .22 .24 .25 .27 .29 .31 .33	2.70 .71 .72 .73 .74 .75 .76 .77	4.90 .92 .94 .96 .98 .99 5.01 .03 .05
1.60 .61 .62 .63 .64 .65 .66 .67 .68	2.92 .94 .95 .97 .99 3.01 .03 .04 .06	2.00 .01 .02 .03 .04 .05 .06 .07 .08	3.64 .66 .68 .69 .71 .73 .75 .77	2.40 .41 .42 .43 .44 .45 .46 .47 .48	4.36 .38 .40 .42 .43 .45 .47 .49 .51	2.80 .81 .82 .83 .84 .85 .86 .87 .88	5.08 .10 .12 .14 .16 .17 .19 .21 .23
1.70 .71 .72 .73 .74 .75 .76 .77	3.10 .12 .13 .15 .17 .19 .21 .22 .24 .26	2.10 .11 .12 .13 .14 .15 .16 .17 .18 .19	3.82 .84 .86 .87 .89 .91 .93 .95 .96	2.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	4.54 .56 .58 .60 .61 .63 .65 .67 .69	2.90 .91 .92 .93 .94 .95 .96 .97 .98	5.26 .28 .30 .32 .34 .35 .37 .39 .41

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (°/oo)

							
Cl	S	Cl	S	Cl	S	Cl	S
3.00 .01 .02 .03 .04 .05 .06 .07 .08	5.45 .46 .48 .50 .52 .54 .55 .57	3.40 .41 .42 .43 .44 .45 .46 .47 .48	6.17 .19 .20 .22 .24 .26 .28 .29 .31	3.80 .81 .82 .83 .84 .85 .86 .87 .88	6.89 .91 .93 .94 .96 .98 7.00 .02 .03 .05	4.20 .21 .22 .23 .24 .25 .26 .27 .28 .29	7.61 .63 .65 .67 .68 .70 .72 .74 .76
3.10 .11 .12 .13 .14 .15 .16 .17	5.63 .64 .66 .68 .70 .72 .73 .75 .77	3.50 .51 .52 .53 .54 .55 .56 .57 .58	6.35 .37 .38 .40 .42 .44 .46 .47 .49	3.90 .91 .92 .93 .94 .95 .96 .97 .98	7.07 .09 .11 .12 .14 .16 .18 .20 .21	4.30 .31 .32 .33 .34 .35 .36 .37 .38	7 • 79 • 81 • 83 • 85 • 86 • 88 • 90 • 92 • 94 • 95
3.20 .21 .22 .23 .24 .25 .26 .27 .28	5.81 .82 .84 .86 .88 .90 .91 .93 .95	3.60 .61 .62 .63 .64 .65 .66 .67	6.53 .55 .56 .58 .60 .62 .64 .65 .67	4.00 .01 .02 .03 .04 .05 .06 .07 .08	7.25 .27 .29 .30 .32 .34 .36 .38 .39	4.40 .41 .42 .43 .44 .45 .46 .47 .48	7.97 .99 8.01 .03 .04 .06 .08 .10
3.30 .31 .32 .33 .34 .35 .36 .37 .38	5.99 6.00 .02 .04 .06 .08 .09 .11 .13	3.70 .71 .72 .73 .74 .75 .76 .77 .78	6.71 •73 •74 •76 •78 •80 •82 •83 •85 •87	4.10 .11 .12 .13 .14 .15 .16 .17	7.43 .45 .47 .48 .50 .52 .54 .56 .57	4.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	8.15 .17 .19 .21 .22 .24 .26 .28 .30

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
4.60 .61 .62 .63 .64 .65 .66 .67	8.33 .35 .37 .39 .41 .42 .44 .46 .48	5.00 .01 .02 .03 .04 .05 .06 .07 .06	9.06 .07 .09 .11 .13 .15 .16 .18	5.40 .41 .42 .43 .44 .45 .46 .47	9.78 .80 .81 .83 .85 .87 .89 .90	5.80 .81 .82 .33 .84 .85 .86 .87 .88	10.50 .52 .54 .55 .57 .59 .61 .63 .64
4.70 .71 .72 .73 .74 .75 .76 .77	8.51 •53 •57 •59 •60 •62 •64 •66	5.10 .11 .12 .13 .14 .15 .16 .17 .18	9.24 .25 .27 .29 .31 .33 .34 .36 .38	5.50 .51 .52 .53 .54 .55 .56 .57 .58	9.96 .98 .99 10.01 .03 .05 .07 .08 .10	5.90 .91 .92 .93 .94 .95 .96 .97 .98	10.68 .70 .72 .73 .75 .77 .79 .81 .82 .84
4.80 .81 .82 .83 .84 .85 .86 .87	8.69 .71 .73 .75 .77 .78 .80 .02 .84 .86	5.20 .21 .22 .23 .24 .25 .26 .27 .28	9.42 .43 .45 .47 .49 .51 .52 .54 .56	5.60 .61 .62 .63 .64 .65 .66 .67 .68	10.14 .16 .17 .19 .21 .23 .25 .26 .28	6.00 .01 .02 .03 .04 .05 .06 .07 .08	10.86 .38 .90 .91 .93 .95 .97 .99 11.00
4.90 .91 .92 .93 .94 .95 .96 .97 .98	8.87 .89 .91 .93 .95 .96 .98 9.00 .02 .04	5.50 .31 .32 .32 .34 .35 .36 .37 .38 .39	9.60 .61 .63 .05 .67 .69 .70 .72 .74	5.70 .71 .72 .73 .74 .75 .76 .77 .78	10.32 .34 .35 .37 .39 .41 .43 .44 .46	6.10 .11 .12 .13 .14 .15 .16 .17 .18	11.04 .06 .08 .09 .11 .13 .15 .17

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (°/oo)

Cl	S	Cl	S	Cl	S	Cl	S
6.20 .21 .22 .23 .24 .25 .26 .27 .28	11.22 .24 .26 .28 .29 .31 .33 .35 .37	6.60 .61 .62 .63 .64 .65 .66 .67	11.94 .96 .98 12.00 .02 .03 .05 .07 .09 .11	7.00 .01 .02 .03 .04 .05 .06 .07	12.67 .68 .70 .72 .74 .76 .77 .79	7.40 .41 .42 .43 .44 .45 .46 .47 .48	13.39 .41 .42 .44 .46 .48 .50 .51
6.30 .31 .32 .33 .34 .35 .36 .37 .38 .39	11.40 .42 .44 .46 .47 .49 .51 .53 .55	6.70 .71 .72 .73 .74 .75 .76 .77	12.12 .14 .16 .18 .20 .21 .23 .25 .27 .29	7.10 .11 .12 .13 .14 .15 .16 .17	12.85 .86 .88 .90 .92 .94 .95 .97 .99	7.50 .51 .52 .53 .54 .55 .56 .57 .58	13.57 •59 •60 •62 •64 •66 •68 •69 •71 •73
6.40 .41 .42 .43 .44 .45 .46 .47 .48 .49	11.58 .60 .62 .64 .65 .67 .69 .71 .73	6.80 .81 .82 .83 .84 .85 .86 .87	12.30 .32 .34 .36 .38 .39 .41 .43 .45	7.20 .21 .22 .23 .24 .25 .26 .27 .28	13.03 .04 .06 .08 .10 .12 .13 .15 .17	7.60 .61 .62 .63 .64 .65 .66 .67	13.75 •77 •78 •80 •82 •84 •86 •87 •89
6.50 .51 .52 .53 .54 .55 .56 .57 .58	11.76 .78 .80 .82 .83 .85 .87 .89	6.90 •91 •92 •93 •94 •95 •96 •97 •98 •99	12.48 .50 .52 .54 .56 .57 .59 .61 .65	7.30 .31 .52 .33 .34 .35 .36 .37 .38	13.21 .22 .24 .26 .28 .30 .31 .33 .35	7.70 .71 .72 .73 .74 .75 .76 .77 .78	13.93 .95 .96 .98 14.00 .02 .04 .05 .07

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
7.80	14.11	8.20	14.83	8.60	15.55	9.00	16.28
.81	.13	:21	.85	.61	•57	.01	.29
.82	.15	.22	.87	.62	•59	.02	.31
.83	.16	.23	.89	.63	.61	.03	•35
.84	.18	. 24	.90	.64	.63	.04	• 35
.85	.20	.25	•92	•65	.64	.05	•37
.86	.22	.25	• 94	.66	.66	.06	. 38
.87	. 24	.27	•96	.67	.68	.07	.40
.88	•25	•28	•98	.68	.70	.08	.42
.89	. 27	•29	•99	.69	•72	•09	•44
7.90	14.29	8.30	15.01	8.70	15.73	9.10	16.46
.91	•31	•31	.03	.71	•75	.11	.47
•92	• 33	•32	•05	•72	•77	.12	.49
•93	• 34	• 33	.07	•73	•79	•13	.51
•94	• 36	• 34	.08	•74	.81	.14	•53
.95	• 38	• 35	.10	.75	.82	.15	• 55
•96	•40	• 36	.12	•76	.84	.16	•56
•97	•42	•37	•14	•77	.86	.17	.58
•98	.43	•38	.16	.78	.88	.18	.60
•99	•45	•39	.17	•79	.90	.19	.62
8.00	14.47	8.40	15.19	8.80	15.91	9.20	16.64
.01	.49	.41	.21	.81	•93	.21	.65
.02	•51	.42	,23	.82	•95	.22	.67
•03	•52	•43	•25	.83	•97	•23	.69
•04	•54	•44	• 26	.84	•99	.24	•71
.05	• 56	•45	•28	.85	16.00	•25	•73
•06	.58	•46	•30	.86	•02	.26	.74
.07	.60 .61	•47 •48	• 32	.87	.04	•27	.76
.08		.49	.34	.88	.06 .08	•28	.78
.09	.63	•49	• 35	•89	•00	.29	•00
8.10	14.65	8.50	15.37	8.90	16.09	9.30	16.82
.11	.67	•51	•39	.91	.11	.31	.83
.12	.69	•52	.41	•92	•13	•32	•85
•13	•70	•53	•43	•93	•15	•33	.87
.14	•72	.54	•44	•94	.17	• 34	.89
.15	.74	•55	.46	•95	.18	•35	.91
.16	.76	.56	.48	.96	.20	• 36	.92
.17	.78	.57	•50	•97	.22	•37	.94
.18	•79	.58	•52	•98	•24	. 38	.96
•19	.81	• 59	•53	•99	.26	• 39	.98

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
9.40 .41 .42 .43 .44 .45 .46 .47 .48	17.00 .02 .03 .05 .07 .09 .11 .12 .14	9.80 .81 .82 .83 .84 .85 .86 .87	17.72 .74 .76 .77 .79 .81 .83 .85 .86	10.20 .21 .22 .23 .24 .25 .26 .27 .28	18.44 .46 .48 .50 .51 .53 .55 .57	10.60 .61 .62 .63 .64 .65 .66 .67	19.16 .18 .20 .22 .24 .25 .27 .29 .31
9.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	17.18 .20 .21 .23 .25 .27 .29 .30 .32	9.90 .91 .92 .93 .94 .95 .96 .97 .98	17.90 .92 .94 .95 .97 .99 18.01 .03 .04	10.30 .31 .32 .33 .34 .35 .36 .37 .38	18.62 .64 .66 .68 .69 .71 .73 .75	10.70 .71 .72 .73 .74 .75 .76 .77	19.34 .36 .38 .40 .42 .43 .45 .47
9.60 .61 .62 .63 .64 .65 .66 .67	17.36 .38 .39 .41 .43 .45 .47 .48 .50	10.00 .01 .02 .03 .04 .05 .06 .07 .08	18.08 .10 .12 .13 .15 .17 .19 .21 .22	10.40 .41 .42 .43 .44 .45 .46 .47 .48	18.80 .82 .84 .86 .87 .89 .91 .93 .95	10.80 .81 .82 .83 .84 .85 .86 .87 .88	19.52 •54 •56 •58 •60 •61 •63 •67 •69
9.70 .71 .72 .73 .74 .75 .76 .77	17.54 .56 .57 .59 .61 .63 .65 .66	10.10 .11 .12 .13 .14 .15 .16 .17	18.26 .28 .30 .31 .33 .35 .37 .39 .40	10.50 •51 •52 •53 •54 •55 •56 •57 •58 •59	18.98 19.00 .02 .04 .05 .07 .09 .11	10.90 .91 .92 .93 .94 .95 .96 .97 .98 .99	19.70 •72 •74 •76 •78 •79 •81 •83 •85 •87

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
11.00	19.89	11.40	20.61	11.80	21.33	12,20	22.05
.01	•90	.41	.63	.81	• 35	.21	.07
•02	•92	.42	.64	.82	•37	.22	.09
•03	•94	•43	.66	•83	• 38	•23	.11
.04	•96	• 44	.68	.84	•40	.34	.12
•05	•98	•45	•70	•85	.42	•25	.14
•06	•99	•46	•72	.86	•44	.26	.16
.07	20.01	•47	•73	.87	.46	•27	.18
.08	•03	•48	.75	.88	•47	. 28	.20
•09	•05	•49	•77	•89	•49	•29	.21
11.10	20.07	11.50	20.79	11.90	21.51	12.30	22.23
.11	•08	•51	.81	•91	•53	.31	•25
.12	.10	•52	.82	•92	•55	•32	•27
.13	.12	•53	.84	•93	•56	• 35	•29
.14	.14	• 54	.86	•94	•58	• 34	• 30
•15	.16	• 55	.88	•95	.60	•35	• 32
.16	.17	•56	•90	•96	.62	. 36	• 34
.17	.19	•57	.91	•97	.64	•37	• 36
.18	.21	•58	•93	•98	.65	• 38	• 38
•19	•23	•59	•95	•99	.67	•39	• 39
11.20	20.25	11.60	20.97	12.00	21.69	12.40	22.41
.21	. 26	.61	•99	.01	.71	.41	.43
•22	.28	•62	21.00	.02	•73	.42	•45
•23	• 30	•63	.02	•03	•74	•43	•47
.24	.32	.64	• 04	• 04	.76	•44	.48
• 25	• 34	.65	•06	•05	.78	•45	•50
.26	• 35	•66	•08	.06	.80	.46	•52
•27	•37	.67	.09	.07	.82	•47	• 54
.28	• 39	.68	.11	.08	.83	•48	.56
•29	.41	•69	•13	•09	.85	•49	•57
11.30	20.43	11.70	21.15	12.10	21.87	12.50	22.59
•31	•44	.71	.17	.11	.89	•51	.61
• 32	.46	•72	.18	.12	•91	•52	.63
• 33	•48	•73	.20	.13	.92	•53	.65
• 54	• 50	•74	.22	.14	•94	• 54	.66
• 35	•52	•75	.24	•15	.96	•55	.68
• 36	•53	.76	•26	.16	•98	•56	.70
• 37	•55	•77	•27	.17	22.00	•57	.72
,38	•57	.78	•29	.18	.01	.58	.74
•39	•59	•79	•31	.19	•03	•59	.75

TABLE 29 (Cont'd)
Salinity
Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
12.60 .61 .62 .63 .64 .65 .66 .67	22.77 .79 .81 .83 .85 .86 .88 .90 .92	13.00 .01 .02 .03 .04 .05 .06 .07 .08	23.50 •51 •53 •55 •57 •59 •60 •62 •64 •66	13.40 .41 .42 .43 .44 .45 .46 .47 .48 .49	24.22 .24 .25 .27 .29 .31 .33 .34 .36	13.80 .81 .82 .83 .84 .85 .86 .87 .88	24.94 .96 .98 .99 25.01 .03 .05 .07
12.70 .71 .72 .73 .74 .75 .76 .77	22.95 .97 .99 23.01 .03 .04 .06 .08 .10	13.10 .11 .12 .13 .14 .15 .16 .17 .18	23.68 .69 .71 .73 .75 .77 .78 .80 .82 .84	13.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	24.40 .42 .43 .45 .47 .49 .51 .52 .54	13.90 .91 .92 .93 .94 .95 .96 .97	25.12 .14 .16 .17 .19 .21 .23 .25 .26 .28
12.80 .81 .82 .83 .84 .85 .86 .87 .88	23.13 .15 .17 .19 .21 .22 .24 .26 .28	13.20 .21 .22 .23 .24 .25 .26 .27 .28 .29	23.86 .87 .89 .91 .93 .95 .96 .98 24.00	13.60 .61 .62 .63 .64 .65 .66 .67	24.58 .60 .61 .63 .65 .67 .69 .70 .72	14.00 .01 .02 .03 .04 .05 .06 .07 .08	25.30 .32 .34 .35 .37 .39 .41 .43
12.90 .91 .92 .93 .94 .95 .96 .97	23 ₈ 31 •35 •35 •37 •39 •40 •42 •44 •46 •48	13,30 •31 •32 •33 •34 •35 •36 •37 •38 •39	24.04 .05 .07 .09 .11 .13 .14 .16	13.70 .71 .72 .73 .74 .75 .76 .77	24.76 .78 .79 .81 .83 .85 .87 .88	14.10 .11 .12 .13 .1/4 .15 .16 .17 .18	25.48 .50 .52 .53 .55 .57 .59 .61

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (°/oo)

CT	S	Cl	S	Cl	S	CT	S
14.20 .21 .22 .23 .24 .25 .26 .27 .28	25.66 .68 .70 .72 .73 .75 .77 .79 .81	14.60 .61 .62 .63 .64 .65 .66 .67	26.38 .40 .42 .44 .46 .47 .49 .51 .53	15.00 .01 .02 .03 .04 .05 .06 .07 .08	27.11 .12 .14 .16 .18 .20 .21 .23 .25	15.40 .41 .42 .43 .44 .45 .46 .47 .48	27.83 .85 .86 .88 .90 .92 .94 .95
14.30 .31 .32 .33 .34 .35 .36 .37 .38	25.84 .86 .88 .90 .91 .93 .95 .97 .99 26.00	14.70 •71 •72 •73 •74 •75 •76 •77 •78 •79	26.56 .58 .60 .62 .64 .65 .67 .69 .71	15.10 .11 .12 .13 .14 .15 .16 .17 .18 .19	27.29 .30 .32 .34 .36 .38 .39 .41 .43	15.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	28.01 .03 .04 .06 .08 .10 .12 .13 .15
14.40 .41 .42 .43 .44 .45 .46 .47 .48	26.02 .04 .06 .08 .09 .11 .13 .15	14.80 .81 .82 .83 .84 .85 .86 .87 .88	26.74 .76 .78 .80 .82 .83 .85 .87	15.20 •21 •22 •23 •24 •25 •26 •27 •28 •29	27.47 .48 .50 .52 .54 .56 .57 .59 .61	15.60 .61 .62 .63 .64 .65 .66 .67	28.19 .21 .22 .24 .26 .28 .30 .31
14.50 .51 .52 .53 .54 .55 .56 .57 .58	26.20 .22 .24 .26 .27 .29 .31 .33 .35	14.90 .91 .92 .93 .94 .95 .96 .97 .98	26.92 .94 .96 .98 27.00 .01 .03 .05 .07	15.30 .31 .32 .33 .34 .35 .36 .37 .38 .39	27.65 .66 .68 .70 .72 .74 .75 .77	15.70 .71 .72 .73 .74 .75 .76 .77	28.37 .39 .40 .42 .44 .46 .48 .49 .51

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
15.80 .81 .82 .83 .84 .85 .86 .87 .88	28.55 .57 .59 .60 .62 .64 .66 .68	16.20 .21 .22 .23 .24 .25 .26 .27 .28	29.27 .29 .31 .33 .34 .36 .38 .40 .42 .43	16.60 .61 .62 .63 .64 .65 .66 .67	29.99 30.01 .03 .05 .07 .08 .10 .12 .14	17.00 .01 .02 .03 .04 .05 .06 .07 .08	30.72 .73 .75 .77 .79 .81 .82 .84 .86
15.90 .91 .92 .93 .94 .95 .96 .97 .98	28.73 .75 .77 .78 .80 .82 .84 .86	16.30 .31 .32 .33 .34 .35 .36 .37 .38	29.45 .47 .49 .51 .52 .54 .56 .60	16.70 .71 .72 .73 .74 .75 .76 .77	30.17 .19 .21 .23 .25 .26 .28 .30 .32	17.10 .11 .12 .13 .14 .15 .16 .17 .18	30.90 .91 .93 .95 .97 .99 31.00 .02 .04
16.00 .01 .02 .03 .04 .05 .06 .07	28.91 .93 .95 .96 .98 29.00 .02 .04 .05 .07	16.40 .41 .42 .43 .44 .45 .46 .47 .48	29.63 .65 .67 .69 .70 .72 .74 .76	16.80 .81 .82 .83 .84 .85 .86 .87 .88	30.35 .37 .39 .41 .43 .44 .46 .48 .50	17.20 .21 .22 .23 .24 .25 .26 .27 .28	31.08 .09 .11 .13 .15 .17 .18 .20 .22
16.10 .11 .12 .13 .14 .15 .16 .17 .18	29.09 .11 .13 .14 .16 .18 .20 .22 .23	16.50 •51 •52 •53 •54 •55 •56 •57 •58 •59	29.81 .83 .85 .87 .88 .90 .92 .94 .96	16.90 .91 .92 .93 .94 .95 .96 .97	30.53 .55 .57 .59 .61 .62 .64 .66	17.30 .31 .32 .33 .34 .35 .36 .37 .38	31.26 .27 .29 .31 .33 .35 .36 .38 .40

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (°/oo)

Cl	S	Cl	S	Cl	S	Cl	S
17.40 .41 .42 .43 .44 .45 .46 .47 .48	31.44 .46 .47 .49 .51 .53 .55 .56	17.80 .81 .82 .83 .84 .85 .86 .87 .88	32.16 .18 .20 .21 .23 .25 .27 .29 .30	18.20 .21 .22 .23 .24 .25 .26 .27 .28	32.88 .90 .92 .94 .95 .97 .99 33.01 .03 .04	18.60 .61 .62 .63 .64 .05 .66 .67	33.60 .62 .64 .66 .68 .69 .71 .73 .75
17.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	31.62 .64 .65 .67 .69 .71 .73 .74	17.90 .91 .92 .93 .94 .95 .96 .97	32.34 .36 .38 .39 .41 .43 .45 .47 .48	18.30 .31 .32 .33 .34 .35 .36 .37 .38 .39	33.06 .08 .10 .12 .13 .15 .17 .19 .21	18.70 .71 .72 .73 .74 .75 .76 .77 .78	33.78 .80 .82 .84 .86 .87 .89 .91
17.60 .61 .62 .63 .64 .65 .66 .67 .68	31.80 .82 .83 .85 .87 .89 .91 .92	18.00 .01 .02 .03 .04 .05 .06 .07 .08	32.52 .54 .56 .57 .59 .61 .63 .65	18.40 .41 .42 .43 .44 .45 .46 .47 .48	33.24 .26 .28 .30 .31 .33 .35 .37 .39	18.80 .81 .82 .83 .84 .85 .86 .87 .38	55.96 .98 34.00 .02 .04 .05 .07 .09 .11
17.70 .71 .72 .73 .74 .75 .76 .77 .78 .79	31.98 32.00 .01 .03 .05 .07 .09 .10	18.10 .11 .12 .13 .14 .15 .16 .17 .18	32.70 .72 .74 .75 .77 .79 .81 .83 .84	18.50 •51 •52 •53 •54 •55 •56 •57 •58 •59	33.42 .44 .46 .48 .49 .51 .53 .55 .57	18.90 •91 •92 •93 •94 •95 •96 •97 •98 •99	34.14 .16 .18 .20 .22 .23 .25 .27 .29

TABLE 29 (Cont*d)

Salinty

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
19.00	34.33	19.40	35.05	19.80	35•77	20.20	36.49
.01	. 34	.41	.07	.81	•79	•21	.51
.02	.36	•42	•08	.82	.81	•22	•53
.03	• 38	•43	.10	.83	.82	•23	•55
.04	•40	• 4+4+	.12	•84	.84	.24	•56
.05	•42	•45	•14	.85	•86	•25	•58
•06	•43	•46	.16	.86	.88	•26	.60
.07	•45	•47	.17	.87	•90	.27	.62
.08	•47	•48	.19	.88	.91	•28	•64
•09	•49	•49	.21	.89	•93	•29	.65
19.10	34.51	19.50	35.23	19.90	35.95	20.30	36.67
.11	•52	.51	•25	.91	•97	.31	•69
•12	•54	•52	•26	•92	•99	•32	.71
.13	•56	•53	.28	•93	36.00	•33	•73
.14	•58	•54	•30	•94	.02	• 34	•74
•15	.60	•55	•32	•95	•04	•35	•76
.16	.61	•56	• 34	•96	.06	• 36	•78
.17	•63	•57	•35	•97	.08	•37	.80
.18	•65	•58	•37	•98	•09	.38	.82
•19	•67	•59	•39	•99	.11	•39	.83
19.20	34.69	19.60	35.41	20.00	36.13	20.40	36.85
.21	•70	.61	•43	.01	•15	.41	.87
.22	•72	.62	-44	.02	.17	•42	.89
•23	•74	.63	•46	•03	.18	•43	.91
•24	.76	.64	.48	.04	•20	• 44	•92
.25	•78	.65	•50	.05	•22	•45	•94
. 26	•79	.66	•52	.06	.24	.46	.96
.27	.81	.67	•53	.07	• 26	•47	.98
.28	•83	.68	•55	.08	•27	.48	37.00
•29	.85	.69	•57	.09	.29	.49	.01
19.30	34.87	19.70	35.59	20.10	36.31	20.50	37.03
.31	.88	.71	.61	.11	• 33	•51	•05
• 32	.90	•72	.62	.12	• 35	•52	.07
• 33	•92	•73	.64	.13	•36	•53	•09
• 34	.94	•74	•66	.14	.38	•54	.10
• 35	•96	•75	.68	.15	.40	•55	.12
• 36	•97	.76	•70	.16	•42	•56	.14
• 37	.99	•77	.71	.17	•44	•57	.16
• 38	35.01	.78	•73	.18	•45	•58	.18
• 39	•03	•79	•75	.19	•47	•59	•19

TABLE 29 (Cont'd)

Salinity

Conversion from chlorinity to salinity (0/00)

Cl	S	Cl	S	Cl	S	Cl	S
20.60 .61 .62 .63 .64 .65 .66 .67	37.21 .23 .25 .27 .29 .30 .32 .34 .36	21.00 .01 .02 .03 .04 .05 .06 .07 .08	37.94 •95 •97 •99 38.01 •03 •04 •06 •08 •10	21.40 .41 .42 .43 .44 .45 .46 .47 .48	38.66 .68 .69 .71 .73 .75 .77 .78 .80	21.80 .81 .82 .83 .84 .85 .86 .87	39.38 .40 .42 .43 .45 .47 .49 .51 .52 .54
20.70 .71 .72 .73 .74 .75 .76 .77	37 • 39 • 41 • 43 • 45 • 47 • 48 • 50 • 52 • 54 • 56	21.10 .11 .12 .13 .14 .15 .16 .17 .18	38.12 .13 .15 .17 .19 .21 .22 .24 .26 .28	21.50 .51 .52 .53 .54 .55 .56 .57 .58 .59	38.84 .86 .87 .89 .91 .93 .95 .96 .98	21.90 •91 •92 •93 •94 •95 •96 •97 •98 •99	39.56 .58 .60 .61 .63 .65 .67 .69
20.80 .81 .82 .83 .84 .85 .86 .87	37.57 .59 .61 .63 .65 .66 .68 .70 .72 .74	21.20 .21 .22 .23 .24 .25 .26 .27 .28	38.30 .31 .33 .35 .37 .39 .40 .42 .44	21.60 .61 .62 .63 .64 .65 .66 .67	39.02 .04 .05 .07 .09 .11 .13 .14	22.00 .01 .02 .03 .04 .05 .06 .07 .08	39.74 .76 .78 .79 .81 .83 .85 .87
20.90 .91 .92 .93 .94 .95 .96 .97 .98	37.75 .77 .79 .81 .83 .84 .86 .68	21.30 .01 .32 .33 .34 .35 .36 .37 .38 .39	38.48 .49 .51 .53 .55 .57 .58 .60 .62 .64	21.70 .71 .72 .73 .74 .75 .76 .77	39.20 .22 .23 .25 .27 .29 .31 .32 .34	22.10 .11 .12 .13 .14 .15 .16 .17 .18	39.92 .94 .96 .97 .99 40.01 .03 .05 .06

TABLE 29 (Contid)

Salinity

Conversion from chlorinity to salinity (°/oo)

Cl	S	Cl	S
22.20 .21 .22 .23 .24 .25 .26 .27 .28	40.10 .12 .14 .16 .17 .19 .21 .23 .25	22.60 .61 .62 .63 .64 .65 .66 .67	40.82 .84 .86 .88 .90 .91 .93 .95 .97
22.30 .31 .32 .33 .34 .35 .36 .37 .38	40.28 .30 .32 .34 .35 .37 .39 .41	22.70 .71 .72 .73 .74 .75 .76 .77	41.00 .02 .04 .06 .08 .09 .11 .13 .15
22.40 .41 .42 .43 .44 .45 .46 .47 .48	40.46 .48 .50 .52 .53 .55 .57 .59 .61	22.80 .81 .82 .83 .84 .85 .86 .87 .88	41.18 .20 .22 .24 .26 .27 .29 .31 .33
22.50 .51 .52 .53 .54 .55 .56 .57 .58	40.64 .66 .68 .70 .71 .73 .75 .77 .79	22.90 .91 .92 .93 .94 .95 .96 .97 .98 .99 23.00	41.36 .38 .40 .42 .44 .45 .47 .49 .51

Oxygen

Conversion from milligrams per liter to milliliters per liter (NTP)

(1 mg/l = 0.6998 ml/l)

Milligrams per Liter of 0 ₂	•00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.00	0.01	0.01	0.02	0.03	0.03	0.04	0.05	0.06	0.06
0.1	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.12	0.13	0.13
0.2	0.14	0.15	0.15	0.16	0.17	0.17	0.18	0.19	0.20	0.20
0.3	0.21	0.22	0.22	0.23	0.24	0.24	0.25	0.26	0.27	0.27
0.4	0.28	0.29	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.34
0.5	0.35	0.36	0.36	0.37	0.38	0.38	0.39	0.40	0.41	0.41
0.6	0.42	0.43	0.43	0.44	0.45	0.45	0.46	0.47	0.48	0.48
0.7	0.49	0.50	0.50	0.51	0.52	0.52	0.53	0.54	0.55	0.55
0.8	0.56	0.57	0.57	0.58	0.59	0.59	0.60	0.61	0.62	0.62
0.9	0.63	0.64	0.64	0.65	0.66	0.66	0.67	0.68	0.69	0.69

milligrams/liter	milliliters/liter	milligrams/liter	milliliters/liter
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	0.70 1.40 2.10 2.80 3.50 4.20 4.90 5.60 6.30 7.00 7.70	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	8.40 9.10 9.80 10.50 11.20 11.90 12.60 13.30 14.00 14.70 15.40

Example: Convert 5.65 milligrams/liter of 02 to milliliters/liter.

5.00 milligrams/liter = 3.50 0.65 milligrams/liter = 0.45 3.95 milliliters/liter (ans.)

Oxygen Conversion from milligram-atoms per liter to milliliters per liter (1 milligram-atom per liter of 0_2 = 11.196 milliliters per liter of 0_2)

Milligram- atoms/lite of O ₂	r .000	.001	.002	.003	•004	.005	.006	.007	•008	.009
0.00 0.01 0.02 0.03 0.04 0.05	0.00 0.11 0.22 0.34 0.45	0.01 0.12 0.24 0.35 0.46 0.57	0.02 0.13 0.25 0.36 0.47 0.58	0.03 0.15 0.26 0.37 0.48 0.59	0.04 0.16 0.27 0.38 0.49 0.60	0.06 0.17 0.28 0.39 0.50 0.62	0.07 0.18 0.29 0.40 0.52 0.63	0.08 0.19 0.30 0.41 0.53 0.64	0.09 0.20 0.31 0.43 0.54 0.65	0.10 0.21 0.32 0.44 0.55 0.66
0.06 0.07 0.08 0.09 0.10	0.67 0.78 0.90 1.01 1.12	0.68 0.79 0.91 1.02 1.13	0.69 0.81 0.92 1.03 1.14	0.71 0.82 0.93 1.04 1.15	0.72 0.83 0.94 1.05 1.16	0.73 0.84 0.95 1.06 1.18	0.74 0.85 0.96 1.07	0.75 0.86 0.97 1.09 1.20	0.76 0.87 0.99 1.10 1.21	0.77 0.88 1.00 1.11 1.22
0.11 0.12 0.13 0.14 0.15	1.23 1.34 1.46 1.57 1.68	1.24 1.35 1.47 1.58 1.69	1.25 1.37 1.48 1.59 1.70	1.27 1.38 1.49 1.60 1.71	1.28 1.39 1.50 1.61 1.72	1.29 1.40 1.51 1.62 1.74	1.30 1.41 1.52 1.63 1.75	1.31 1.42 1.53 1.65 1.76	1.32 1.43 1.55 1.66	1.33 1.44 1.56 1.67 1.78
0.16 0.17 0.18 0.19 0.20	1.79 1.90 2.02 2.13 2.24	1.80 1.91 2.03 2.14 2.25	1.81 1.93 2.04 2.15 2.26	1.82 1.94 2.05 2.16 2.27	1.84 1.95 2.06 2.17 2.28	1.85 1.96 2.07 2.18 2.30	1.86 1.97 2.08 2.19 2.31	1.87 1.98 2.09 2.21 2.32	1.88 1.99 2.10 2.22 2.33	1.89 2.00 2.12 2.23 2.34
0.21 0.22 0.23 0.24 0.25	2.35 2.46 2.58 2.69 2.80	2.36 2.47 2.59 2.70 2.81	2.37 2.49 2.60 2.71 2.82	2.38 2.50 2.61 2.72 2.83	2.40 2.51 2.62 2.73 2.84	2.41 2.52 2.63 2.74 2.85	2.42 2.53 2.64 2.75 2.87	2.43 2.54 2.65 2.77 2.88	2.44 2.55 2.66 2.78 2.89	2.45 2.56 2.68 2.79 2.90
0.26 0.27 0.28 0.29 0.30	2.91 3.02 3.13 3.25 3.36	2.92 3.03 3.15 3.26 3.37	2.93 3.05 3.16 3.27 3.38	2.94 3.06 3.17 3.28 3.39	2.96 3.07 3.18 3.29 3.40	2.97 3.08 3.19 3.30 3.41	2.98 3.09 3.20 3.31 3.43	2.99 3.10 3.21 3.33 3.44	3.00 3.11 3.22 3.34 3.45	3.01 3.12 3.24 3.35 3.46

TABLE 31 (Cont'd)

0xygen

Conversion from milligram-atoms per liter to milliliters per liter (1 milligram-atom per liter of 0_2 = 11.196 milliliters per liter of 0_2)

Milligramatoms/lite		.001	.002	.003	.004	.005	.006	.007	.008	.009
0.31	3.47	3.48	3.49	3.50	3.52	3.53	3.54	3.55	3.56	3.57
0.32	3.58	3.59	3.61	3.62	3.63	3.64	3.65	3.66	3.67	3.68
0.33	3.69	3.71	3.72	3.73	3.74	3.75	3.76	3.77	3.78	3.80
0.34	3.81	3.82	3.83	3.84	3.85	3.86	3.87	3.89	3.90	3.91
0.35	3.92	3.93	3.94	3.95	3.96	3.97	3.99	4.00	4.01	4.02
0.36	4.03	4.04	4.05	4.06	4.08	4.09	4.10	4.11	4.12	4.13
0.37	4.14	4.15	4.16	4.18	4.19	4.20	4.21	4.22	4.23	4.24
0.38	4.25	4.27	4.28	4.29	4.30	4.31	4.32	4.33	4.34	4.36
0.39	4.37	4.38	4.39	4.40	4.41	4.42	4.43	4.44	4.46	4.47
0.40	4.48	4.49	4.50	4.51	4.52	4.53	4.55	4.56	4.57	4.58
0.41	4.59	4.60	4.61	4.62	4.64	4.65	4.66	4.67	4.68	4.69
0.42	4.70	4.71	4.72	4.74	4.75	4.76	4.77	4.78	4.79	4.80
0.43	4.81	4.83	4.84	4.85	4.86	4.87	4.88	4.89	4.90	4.92
0.44	4.93	4.94	4.95	4.96	4.97	4.98	4.99	5.00	5.02	5.03
0.45	5.04	5.05	5.06	5.07	5.08	5.09	5.11	5.12	5.13	5.14
0.46	5.15	5.16	5.17	5.18	5.19	5.21	5.22	5.23	5.24	5.25
0.47	5.26	5.27	5.28	5.30	5.31	5.32	5.33	5.34	5.35	5.36
0.48	5.37	5.39	5.40	5.41	5.42	5.43	5.44	5.45	5.46	5.47
0.49	5.49	5.50	5.51	5.52	5.53	5.54	5.55	5.56	5.58	5.59
0.50	5.60	5.61	5.62	5.63	5.64	5.65	5.67	5.68	5.69	5.70
0.51	5.71	5.72	5.73	5.74	5.75	5.77	5.78	5.79	5.80	5.81
0.52	5.82	5.83	5.84	5.86	5.87	5.88	5.89	5.90	5.91	5.92
0.53	5.93	5.95	5.96	5.97	5.98	5.99	6.00	6.01	6.02	6.03
0.54	6.05	6.06	6.07	6.08	6.09	6.10	6.11	6.12	6.14	6.15
0.55	6.16	6.17	6.18	6.19	6.20	6.21	6.22	6.24	6.25	6.26
0.56	6.27	6.28	6.29	6.30	6.31	6.33	6.34	6.35	6.36	6.37
0.57	6.38	6.39	6.40	6.42	6.43	6.44	6.45	6.46	6.47	6.48
0.58	6.49	6.50	6.52	6.53	6.54	6.55	6.56	6.57	6.58	6.59
0.59	6.61	6.62	6.63	6.64	6.65	6.66	6.67	6.68	6.70	6.71
0.60	6.72	6.73	6.74	6.75	6.76	6.77	6.78	6.80	6.81	6.82

TABLE 31 (Cont'd)

0xygen

Conversion from milligram-atoms per liter to milliliters per liter (1 milligram-atom per liter of 0_2 = 11.196 milliliters per liter of 0_2)

					~					۷.
Milligram atoms/lit of O ₂		.001	.002	.003	.004	.005	.006	.007	.008	.009
0.61	6.83	6.84	6.85	6.86	6.87	6.89	6.90	6.91	6.92	6.93
0.62	6.94	6.95	6.96	6.98	6.99	7.00	7.01	7.02	7.03	7.04
0.63	7.05	7.06	7.08	7.09	7.10	7.11	7.12	7.13	7.14	7.15
0.64	7.17	7.18	7.19	7.20	7.21	7.22	7.23	7.24	7.26	7.27
0.65	7.28	7.29	7.30	7.31	7.32	7.33	7.34	7.36	7.37	7.38
0.66	7.39	7.40	7.41	7.42	7.43	7.45	7.46	7.47	7.48	7.49
0.67	7.50	7.51	7.52	7.53	7.55	7.56	7.57	7.58	7.59	7.60
0.68	7.61	7.62	7.64	7.65	7.66	7.67	7.68	7.69	7.70	7.71
0.69	7.73	7.74	7.75	7.76	7.77	7.78	7.79	7.80	7.81	7.83
0.70	7.84	7.85	7.86	7.87	7.88	7.89	7.90	7.92	7.93	7.94
0.71	7.95	7.96	7.97	7.98	7.99	8.01	8.02	8.03	8.04	8.05
0.72	8.06	8.07	8.08	8.09	8.11	8.12	8.13	8.14	8.15	8.16
0.73	8.17	8.18	8.20	8.21	8.22	8.23	8.24	8.25	8.26	8.27
0.74	8.29	8.30	8.31	8.32	8.33	8.34	8.35	8.36	8.37	8.39
0.75	8.40	8.41	8.42	8.43	8.44	8.45	8.46	8.48	8.49	8.50
0.76	8.51	8.52	8.53	8.54	8.55	8.56	8.58	8.59	8.60	8.61
0.77	8.62	8.63	8.64	8.65	8.67	8.68	8.69	8.70	8.71	8.72
0.78	8.73	8.74	8.76	8.77	8.78	8.79	8.80	8.81	8.82	8.83
0.79	8.84	8.86	8.87	8.88	8.89	8.90	8.91	8.92	8.93	8.95
0.80	8.96	8.97	8.98	8.99	9.00	9.01	9.02	9.04	9.05	9.06
0.81	9.07	9.08	9.09	9.10	9.11	9.12	9.14	9.15	9.16	9.17
0.82	9.18	9.19	9.20	9.21	9.23	9.24	9.25	9.26	9.27	9.28
0.83	9.29	9.30	9.32	9.33	9.34	9.35	9.36	9.37	9.38	9.39
0.84	9.40	9.42	9.43	9.44	9.45	9.46	9.47	9.48	9.49	9.51
0.85	9.52	9.53	9.54	9.55	9.56	9.57	9.58	9.59	9.61	9.62
0.86 0.87 0.88 0.89	9.63 9.74 9.85 9.96 10.08	9.64 9.75 9.86 9.98 10.09	9.65 9.76 9.87 9.99 10.10	9.66 9.77 9.89 10.00 10.11	9.67 9.79 9.90 10.01 10.12	9.68 9.80 9.91 10.02 10.13	9.70 9.81 9.92 10.03 10.14	9.71 9.82 9.93 10.04 10.15	9.72 9.83 9.94 10.05 10.17	9.73 9.84 9.95 10.07 10.18

TABLE 31 (Cont'd)

Oxygen

Conversion from milligram-atoms per liter to milliliters per liter (1 milligram-atom per liter of $\rm O_2$ = 11.196 milliliters per liter of $\rm O_2$)

Milligram atoms/lite		.001	.002	.003	. 004	.005	.006	.007	.008	.009
0.91 0.92 0.93 0.94 0.95	10.19 10.30 10.41 10.52 10.64	10.20 10.31 10.42 10.54 10.65	10.21 10.32 10.43 10.55 10.66	10.22 10.33 10.45 10.56 10.67	10.23 10.35 10.46 10.57 10.68	10.24 10.36 10.47 10.58 10.69	10.26 10.37 10.48 10.59	10.27 10.38 10.49 10.60 10.71	10.28 10.39 10.50 10.61 10.73	10.29 10.40 10.51 10.63 10.74
0.96 0.97 0.98 0.99	10.75 10.86 10.97 11.08 11.20	10.76 10.87 10.98 11.10 11.21	10.77 10.88 10.99 11.11 11.22	10.78 10.89 11.01 11.12 11.23	10.79 10.90 11.02 11.13 11.24	10.80 10.92 11.03 11.14 11.25	10.82 10.93 11.04 11.15 11.26	10.83 10.94 11.05 11.16 11.27	10.84 10.95 11.06 11.17 11.29	10.85 10.96 11.07 11.18 11.30
1.01 1.02 1.03 1.04 1.05	11.42 11.53 11.64 11.76	11.32 11.43 11.54 11.66 11.77	11.33 11.44 11.55 11.67 11.78	11.34 11.45 11.57 11.68 11.79	11.35 11.46 11.58 11.69 11.80	11.36 11.48 11.59 11.70 11.81	11.38 11.49 11.60 11.71 11.82	11.39 11.50 11.61 11.72 11.83	11.40 11.51 11.62 11.73 11.85	11.41 11.52 11.63 11.74 11.86
1.06 1.07 1.08 1.09	11.87 11.98 12.09 12.20 12.32	11.88 11.99 12.10 12.21 12.33	11.89 12.00 12.11 12.23 12.34	11.90 12.01 12.13 12.24 12.35	11.91 12.02 12.14 12.25 12.36	11.92 12.04 12.15 12.26 12.37	11.93 12.05 12.16 12.27 12.38	11.95 12.06 12.17 12.28 12.39	11.96 12.07 12.18 12.29 12.41	11.97 12.08 12.19 12.30 12.42
1.11 1.12 1.13 1.14 1.15	12.43 12.54 12.65 12.76 12.88	12.44 12.55 12.66 12.77 12.89	12.45 12.56 12.67 12.79 12.90	12.46 12.57 12.69 12.80 12.91	12.47 12.58 12.70 12.81 12.92	12.48 12.60 12.71 12.82 12.93	12.49 12.61 12.72 12.83 12.94	12.51 12.62 12.73 12.84 12.95	12.52 12.63 12.74 12.85 12.96	12.53 12.64 12.75 12.86 12.98
1.16 1.17 1.18 1.19 1.20	12.99 13.10 13.21 13.32 13.44	13.00 13.11 13.22 13.33 13.45	13.01 13.12 13.23 13.35 13.46	13.02 13.13 13.24 13.36 13.47	13.03 13.14 13.26 13.37 13.48	13.04 13.16 13.27 13.38 13.49	13.05 13.17 13.28 13.39 13.50	13.07 13.18 13.29 13.40 13.51	13.08 13.19 13.30 13.41 13.52	13.09 13.20 13.31 13.42 13.54

TABLE 31 (Cont'd)

0xygen

Conversion from milligram-atoms per liter to milliliters per liter (1 milligram-atom per liter of 0_2 = 11.196 milliliters per liter of 0_2)

Milligram atoms/lit of 02		.001	.002	.003	.004	.005	.006	.007	.008	•009
~										
1.21 1.22 1.23 1.24 1.25	13.55 13.66 13.77 13.88 14.00	13.56 13.67 13.78 13.89 14.01	13.57 13.68 13.79 13.91 14.02	13.58 13.69 13.80 13.92 14.03	13.59 13.70 13.82 13.93 14.04	13.60 13.72 13.83 13.94 14.05	13.61 13.73 13.84 13.95 14.06	13.63 13.74 13.85 13.96 14.07	13.64 13.75 13.86 13.97 14.08	13.65 13.76 13.87 13.98 14.10
1.26 1.27 1.28 1.29 1.30	14.11 14.22 14.33 14.44 14.55	14.12 14.23 14.34 14.45 14.57	14.13 14.24 14.35 14.47 14.58	14.14 14.25 14.36 14.48 14.59	14.15 14.26 14.38 14.49 14.60	14.16 14.27 14.39 14.50 14.61	14.17 14.29 14.40 14.51 14.62	14.19 14.30 14.41 14.52 14.63	14.20 14.31 14.42 14.53 14.64	14.21 14.32 14.43 14.54 14.66
1.31 1.32 1.33 1.34	14.67 14.78 14.89 15.00	14.68 14.79 14.90	14.69 14.80 14.91	14.70 14.81 14.92	14.71 14.82 14.94	14.72 14.83 14.95	14.73 14.85 14.96	14.75 14.86 14.97	14.76 14.87 14.98	14.77 14.88 14.99

Phosphorus Conversion from micrograms per liter of inorganic P to microgram-atoms per liter of P

 $(1 \mu g \text{ of } P = 0.032285 \mu g-at \text{ of } P)$

Microgram per	ıs									
Liter of inorganic	P 0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.03
Microgram	Lo Dor									
Liter of	_									
organic F		1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0.00	0.03	0.06	0.10	0.13	0.16	0.19	0.23	0.26	0.29
10	0.32	0.36	0.39	0.42	0.45	0.48	0.52	0.55	0.58	0.61
20	0.65	0.68	0.71	0.74	0.77	0.81	0.84	0.87	0.90	0.94
30	0.97		1.03	1.07	1.10	1.13	1.16	1.19	1.23	1.26
40	1.29	1.32	1.36	1.39	1.42	1.45	1.49	1.52	1.55	1.58
50	1.61	1.65	1.68	1.71	1.74	1.78	1.81	1.84	1.87	1.90
60	1.94	1.97	2.00	2.03	2.07	2.10	2.13	2.16	2.20	2.23
70	2.26		2.32	2.36	2.39	2.42	2.45	2.49	2.52	2.55
80	2.58		2.65	2.68	2.71	2.74	2.78	2.81	2.84	2.87
90	2.91		2.97	3.00	3.03	3.07	3.10	3.13	3.16	3.20
100	3.23		3.29	3.33	3.36	3.39	3.42	3.45	3.49	3.52
110	3.55	3.58	3.62	3.65	3.68	3.71	3.75	3.78	3.81	3.84
120	3.87	3.91	3.94	3.97	4.00	4.04	4.07	4.10	4.13	4.16

TABLE 33

Phosphate

Conversion from micrograms per liter of PO₄ to microgram—atoms per liter of PO₄-P

(1 μ g of PO₄ = 0.010529 μ g-at of PO₄-P)

							·			
Micrograms per Liter										
of PO ₄	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Microgram	s									
per Liter			0 0			- 0		7.0	0 0	0 0
of PO ₄	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.31
30	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.41
40	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.51	0.52
50	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
60	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.71	0.72	0.73
70	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83
80	0.84	0.85	0.86	0.87	0.88	0.89	0.91	0.92	0.93	0.94
90	0.95	0.96	0.97	0.98	0.99	1.00	1.01	1.02	1.03	1.04
100	1.05	1.06	1.07	1.08	1.10	1.11	1.12	1.13	1.14	1.15
110	1.16	1.17	1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25
120	1.26	1.27	1.28	1.30	1.31	1.32	1.33	1.34	1.35	1.36
130	1.37	1.38	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46
140	1.47	1.48	1.50	1.51	1.52	1.53	1.54	1.55	1.56	1.57
150	1.58	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67
160	1.68	1.70	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.78
170	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88
180	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.98	1.99
190	2.00	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.10
200	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.20
210	2.21	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.30	2.31
220	2.32	2.33	2.34	2.35	2.36	2.37	2.38	2.39	2.40	2.41
230	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.50	2.51	2.52
240	2.53	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62
250	2.63	2.64	2.65	2.66	2.67	2.68	2.70	2.71	2.72	2.73

TABLE 33 (Cont'd)

Phosphate

Conversion from micrograms per liter of PO_4 to microgram-atoms per liter of PO_4 -P

Micrograms per Liter of PO ₄	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
260	2.74	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83
270	2.84	2.85	2.86	2.87	2.88	2.90	2.91	2.92	2.93	2.94
280	2.95	2.96	2.97	2.98	2.99	3.00	3.01	3.02	3.03	3.04
290	3.05	3.06	3.07	3.08	3.10	3.11	3.12	3.13	3.14	3.15
300	3.16	3.17	3.18	3.19	3.20	3.21	3.22	3.23	3.24	3.25
310	3.26	3.27	3.29	3.30	3.31	3.32	3.33	3.34	3.35	3.36
320	3.37	3.38	3.39	3.40	3.41	3.42	3.43	3.44	3.45	3.46
330	3.47	3.49	3.50	3.51	3.52	3.53	3.54	3.55	3.56	3.57
340	3.58	3.59	3.60	3.61	3.62	3.63	3.64	3.65	3.66	3.67
350	3.69	3.70	3.71	3.72	3.73	3.74	3.75	3.76	3.77	3.78

TABLE 34
Phosphorus Pentoxide

Conversion from micrograms per liter of P_2O_5 to microgram-atoms per liter of P (1 µg of P_2O_5 = 0.014090 µg-atom of P)

			2 2	'						
Micrograms per Liter of P ₂ O ₅	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Micrograms per Liter										
of P ₂ O ₅	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0.00	0.01	0.03	0.04	0.06	0.07	0.08	0.10	0.11	0.13
10 20	0.14	0.15 0.30	0.17	0.18	0.20	0.21	0.23 0.37	0.24	0.25	0.27 0.41
30	0.28 0.42	0.30	0.45	0.32	0.48	0.49	0.51	0.52	0.54	0.55
40	0.56	0.58	0.59	0.61	0.62	0.63	0.65	0.66	0.68	0.69
50	0.70	0.72	0.73	0.75	0.76	0.77	0.79	0.80	0.82	0.83
60	0.85	0.86	0.87	0.89	0.90	0.92	0.93	0.94	0.96	0.97
70	0.99	1.00	1.01	1.03	1.04	1.06	1.07	1.08	1.10	1.11
80	1.13	1.14	1.16	1.17	1.18	1.20	1.21	1.23	1.24	1.25
90	1.27	1.28	1.30	1.31 1.45	1.32 1.47	1.34	1.35 1.49	1.37 1.51	1.38 1.52	1.39
100	1.41	1.42	1.44	1.45	1.4/	1,40	1.49	1.51	1.52	1.04
110	1.55	1.56	1.58	1.59	1.61	1.62	1.63	1.65	1.66	1.68
120	1.69	1.70	1.72	1.73	1.75	1.76	1.78	1.79	1.80	1.82
130	1.83	1.85	1.86	1.87 2.01	1.89 2.03	1.90 2.04	1.92 2.06	1.93 2.07	1.94 2.09	1.96 2.10
140 150	1.97 2.11	1.99 2.13	2.00 2.14	2.16	2.03	2.18	2.20	2.21	2.23	2.24
130	-,	0								
160	2.25	2.27	2.28	2.30	2.31	2.32	2.34	2.35	2.37	2.38
170	2.40	2.41	2.42 2.56	2.44 2.58	2.45 2.59	2.47 2.61	2.48 2.62	2.49 2.63	2.51 2.65	2.52 2.66
180 190	2.54 2.68	2.55 2.69	2.71	2.72	2.73	2.75	2.76	2.78	2.79	2.80
200	2.82	2.83	2.85	2.86	2.87	2.89	2.90	2.92	2.93	2.94
210	2.96	2.97	2.99	3.00	3.02	3.03	3.04	3.06	3.07	3.09
220	3.10	3.11	3.13	3.14	3.16	3.17	3.18	3.20	3.21	3.23
230	3.24	3.25	3.27	3.28	3.30	3.31	3.33	3.34	3.35	3.37
240	3.38	3.40	3.41	3.42	3.44	3.45	3.47	3.48	3.49	3.51
250	3.52	3.54	3.55	3.56	3.58	3.59	3.61	3.62	3.64	3.65

Note: For values greater than 259, the conversion is to be obtained by addition.

TABLE 35

Nitrite

Conversion from micrograms per liter of NO_2 to microgram-atoms per liter of NO_2 -N

(1 µg of NO_2 = 0.0217365 µg - at of NO_2 -N)

Micrograms per Liter	3									
of NO ₂	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
00	0.00	0.02	0.04	0.07	0.09	0.11	0.13	0.15	0.17	0.20
10	0.00	0.02	0.04	0.07	0.30	0.33	0.15	0.13	0.39	0.41
20	0.22	0.46	0.48	0.50	0.52	0.54	0.57	0.59	0.61	0.63
30	0.43	0.40	0.70	0.72	0.74	0.76	0.78	0.80	0.83	0.85
40	0.87	0.89	0.70	0.93	0.96	0.78	1.00	1.02	1.04	1.07
50	1.09	1.11	1.13	1.15	1.17	1.20	1.22	1.02	1.26	1.28
50	1.09	1.11	1.13	1.10	1.1/	1.40	1.22	1.24	1,20	1.20
60	1.30	1.33	1.35	1.37	1.39	1.41	1.43	1.46	1.48	1.50
70	1.52	1.54	1.57	1.59	1.61	1.63	1.65	1.67	1.70	1.72
80	1.74	1.76	1.78	1.80	1.83	1.85	1.87	1.89	1.91	1.93
90	1.96	1.98	2.00	2.02	2.04	2.06	2.09	2.11	2.13	2.15
100	2.17	2.20	2.22	2.24	2.26	2.28	2.30	2.33	2.35	2.37
100	- • ~ /			- • - •			_,,,			
110	2.39	2.41	2.43	2.46	2.48	2.50	2.52	2.54	2.56	2.59
120	2.61	2.63	2.65	2.67	2.70	2.72	2.74	2.76	2.78	2.80
130	2.83	2.85	2.87	2.89	2.91	2.93	2.96	2.98	3.00	3.02
140	3.04	3.06	3.09	3.11	3.13	3.15	3.17	3.20	3.22	3.24
150	3.26	3.28	3.30	3.33	3.35	3.37	3.39	3.41	3.43	3.46
160	3.48	3.50	3.52	3.54	3.56	3.59	3.61	3.63	3.65	3.67
170	3.70	3.72	3.74	3.76	3.78	3.80	3.83	3.85	3.87	3.89
180	3.91	3.93	3.96	3.98	4.00	4.02	4.04	4.06	4.09	4.11
190	4.13	4.15	4.17	4.20	4.22	4.24	4.26	4.28	4.30	4.33
200	4.35	4.37	4.39	4.41	4.43	4.46	4.48	4.50	4.52	4.54

Micrograms p	per									
liter of NO	3 00	01	02	03	04	05	06	07	08	09
00	00.0	00.0	00.0	00.0	00.1	00.1	00.1	00.1	00.1	00.1
10	00.0	00.0	00.0	00.0	00.1	00.1	00.1	00.1	00.1	00.1
20	00.2	00.2	00.4	00.4	00.4	00.4	00.4	00.3	00.5	00.5
30	00.5	00.5	00.5	00.5	00.5	00.4	00.4	00.4	00.5	00.6
40	00.5	00.7	00.7	00.7	00.7	00.7	00.7	00.8	00.8	00.8
40	00.0	00.7	00.7	00.7	00.7	00.7	00.7	00.0	00.0	00.0
50	00.8	00.8	00.8	00.9	00.9	00.9	00.9	00.9	00.9	01.0
60	01.0	01.0	01.0	01.0	01.0	01.0	01.1	01.1	01.1	01.1
70	01.1	01.1	01.2	01.2	01.2	01.2	01.2	01.2	01.3	01.3
80	01.3	01.3	01.3	01.3	01.4	01.4	01.4	01.4	01.4	01.4
90	01.5	01.5	01.5	01.5	01.5	01.5	01.5	01.6	01.6	01.6
Micrograms I	per	. •								
liter of NO.	3 00	10	20	30	40	50	60	70	80	90
	0.1		0.0	0.0	20.0		20 =			
100	01.6	01.8	01.9	02.1	02.3	02.4	02.6	02.7	02.9	03.1
200	03.2	03.4	03.5	03.7	03.9	04.0	04.2	04.4	04.5	04.7
300	04.8	05.0	05.2	05.3	05.5	05.6	05.8	06.0	06.1	06.3
400 500	06.5 08.1	06.6 08.2	06.8	06.9	07.1 08.7	07.3	07.4	07.6 09.2	07.7 09.4	07.9 09.5
500	00.1	00.2	00.4	00.5	00.7	00.9	09.0	09.2	09.4	09.5
600	09.7	09.8	10.0	10.2	10.3	10.5	10.6	10.8	11.0	11.1
700	11.3	11.5	11.6	11.8	11.9	12.1	12.3	12.4	12.6	12.7
800	12.9	13.1	13.2	13.4	13.5	13.7	13.9	14.0	14.2	14.4
900	14.5	14.7	14.8	15.0	15.2	15.3	15.5	15.6	15.8	16.0
1000	16.1	16.3	16.5	16.6	16.8	16.9	17.1	17.3	17.4	17.6
1100	17.7	17.9	18.1	18.2	18.4	18.5	18.7	18.9	19.0	19.2
1200	19.4	19.5	19.7	19.8	20.0	20.2	20.3	20.5	20.6	20.8
1300	21.0	21.1	21.3	21.4	21.6	21.8	21.9	22.1	22.3	22.4
1400	22.6	22.7	22.9	23.1	23.2	23.4	23.5	23.7	23.9	24.0
1500	24.2	24.4	24.5	24.7	24.8	25.0	25.2	25.3	25.5	25.6
1.000	0.5	26.0	06.3	26.2	26 1	200	26.0	26.0	27 1	27 2
1600	25.8	26.0	26.1	26.3	26.4	26.6	26.8	26.9	27.1 28.7	27.3 28.9
1700	27.4	27.6	27.7	27.9	28.1	28.2	28.4	28.5	30.3	30.5
1800	29.0	29.2	29.4	29.5	29.7	29.8	30.0	30.2 31.8	31.9	32.1
1900 2000	30.6	30.8 32.4	31.0	31.1 32.7	31.3	31.4	31.6 33.2	33.4	31.9	33.7
2000	34.3	34.4	34.0	34.7	34.7	22.1	33.4	55.4	55.5	55.7

TABLE 36 (Cont'd)

Nitrate

Conversion from micrograms per liter of NO_3 to microgram-atoms per liter of NO_3 -N

Micrograms	per									
liter of NO	00	10	20	30	40	50	60	70	80	90
1	3									
2100	33.9	34.0	34.2	34.4	34.5	34.7	34.8	35.0	35.2	35.3
2200	35.5	35.6	35.8	36.0	36.1	36.3	36.4	36.6	36.8	36.9
2300	37.1	37.3	37.4	37.6	37.7	37.9	38.1	38.2	38.4	38.5
2400	38.7	38.9	39.0	39.2	39.4	39.5	39.7	39.8	40.0	40.2
2500	40.3	40.5	40.6	40.8	41.0	41.1	41.3	41.4	41.6	41.8
2600	41.9	42.1	42.3	42.4	42.6	42.7	42.9	43.1	43.2	43.4
2700	43.5	43.7	43.9	44.0	44.2	44.4	44.5	44.7	44.8	45.0
2800	45.2	45.3	45.5	45.6	45.8	46.0	46.1	46.3	46.4	46.6
2900	46.8	46.9	47.1	47.3	47.4	47.6	47.7	47.9	48.1	48.2
3000	48.4	48.5	48.7	48.9	49.0	49.2	49.4	49.5	49.7	49.8

NOTE: Conversion of values not given directly in the tables are derived by addition.

Nitrogen Conversion from micrograms per liter of N to microgram-atoms per liter of N.

 $(1 \mu g \text{ of } N = 0.0713944 \mu g - at \text{ of } N)$

Micrograms per liter	S									
of N	.000	7 .08-	.21 .2	235	. 36 49	.50	63 .64	77 .	7891	•9299
0.0	0.00	0.	01	0.02	0.03	0.0)4 O	.05	0.06	0.07
Micrograms per liter of N	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
00	0.00	0.07	0.14	0.21	0.29	0.36	0.43	0.50	0.57	0.64
10	0.71	0.79	0.86	0.93	1.00	1.07	1.14	1.21	1.29	1.36
20	1.43	1.50	1.57	1.64	1.71	1.78	1.86	1.93	2.00	2.07
30	2.14	2.21	2.28	2.36	2.43	2.50	2.57	2.64	2.71	2.78
40	2.86	2.93	3.00	3.07	3.14	3.21	3.28	3.36	3.43	3.50
50	3.57	3.64	3.71	3.78	3.86	3.93	4.00	4.07	4.14	4.21
60	4.28	4.36	4.43	4.50	4.57	4.64	4.71	4.78	4.85	4.93
70	5.00	5.07	5.14	5.21	5.28	5.35	5.43	5.50	5.57	5.64
80	5.71	5.78	5.85	5.93	6.00	6.07	6.14	6.21	6.28	6.35
90	6.43	6.50	6.57	6.64	6.71	6.78	6.85	6.93	7.00	7.07
100	7.14	7.21	7.28	7.35	7.43	7.50	7.57	7.64	7.71	7.78
110	7.85	7.92	8.00	8.07	8.14	8.21	8.28	8.35	8.42	8.50
120	8.57	8.64	8.71	8.78	8.85	8.92	9.00	9.07	9.14	9.21
130	9.28	9.35	9.42	9.50	9.57	9.64	9.71	9.78	9.85	9.92
140	10.00	10.07	10.14	10.21	10.28	10.35	10.42	10.49	10.57	10.64
150	10.71	10.78	10.85	10.92	10.99	11.07	11.14	11.21	11.28	11.35
160	11.42	11.49	11.57	11.64	11.71	11.77	11.85	11.92	11.99	12.06
170	12.14	12.21	12.28	12.35	12.42	12.49	12.56	12.64	12.71	12.78
180	12.85	12.92	12.99	13.06	13.14	13.21	13.28	13.35	13.42	13.49
190	13.56	13.64	13.71	13.78	13.85	13.92	13.99	14.06	14.14	14.21
200	14.28	14.35	14.42	14.49	14.56	14.64	14.71	14.78	14.85	14.92
210	14.99	15.06	15.14	15.21	15.28	15.35	15.42	15.49	15.56	15.64
220	15.71	15.78	15.85	15.92	15.99	16.06	16.14	16.21	16.28	16.35
230	16.42	16.49	16.56	16.63	16.71	16.78	16.85	16.92	16.99	17.06
240	17.13	17.21	17.28	17.35	17.42	17.49	17.56	17.63	17.71	17.78
250	17.85	17.92	17.99	18.06	18.13	18.21	18.28	18.35	18.42	18.49

TABLE 37 (Conttd)

Nitrogen

Conversion from micrograms per liter of N to microgram-atoms per liter of N.

(1 μg of N = 0.0713944 μg -at of N)

Microgram										
per liter of N	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
260	18.56	18.63	18.71	18.78	18.85	18.92	18.99	19.06	19.13	19.21
270	19.28	19.35	19.42	19.49	19.56	19.63	19.70	19.78	19.85	19.92
280	19.99	20.06	20.13	20.20	20.28	20.35	20.42	20.49	20.56	20.63
290	20.70	20.78	20.85	20.92	20.99	21.06	21.13	21.20	21.28	21.35
300	21.42	21.49	21.56	21.63	21.70	21.78	21.85	21.92	21.99	22.06
310	22.13	22.20	22.28	22.35	22.42	22.49	22.56	22.63	22.70	22.77
320	22.85	22.92	22.99	23.06	23.13	23.20	23.27	23.35	23.42	23.49
330	23.56	23.63	23.70	23.77	23.85	23.92	23.99	24.06	24.13	24.20
340	24.27	24.35	24.42	24.49	24.56	24.63	24.70	24.77	24.85	24.92
350	24.99	25.06	25.13	25.20	25.27	25.34	25.42	25.49	25.56	25.63
360	25.70	25.77	25.84	25.92	25.99	26.06	26.13	26.20	26.27	26.34
370	26.42	26.49	26.56	26.63	26.70	26.77	26.84	26.92	26.99	27.06
380	27.13	27.20	27.27	27.34	27.42	27.49	27.56	27.63	27.70	27.77
390	27.84	27.92	27.99	28.06	28.13	28.20	28.27	28.34	28.41	28.49
400	28.56	28.63	28.70	28.77	28.84	28.91	28.99	29.06	29.13	29.20
410	29.27	29.34	29.41	29.49	29.56	29.63	29.70	29.77	29.84	29.91
420	29.99	30.06	30.13	30.20	30.27	30.34	30.41	30.49	30.56	30.63
430	30.70	30.77	30.84	30.91	30.99	31.06	31.13	31.20	31.27	31.34
440	31.41	31.48	31.56	31.63	31.70	31.77	31.84	31.91	31.98	32.06
450	32.13	32.20	32.27	32.34	32.41	32.48	32.56	32.63	32.70	32.77
460	32.84	32.91	32.98	33.06	33.13	33.20	33.27	33·34	33.41	33.48
470	33.56	33.63	33.70	33.77	33.84	33.91	33.98	34·06	34.13	34.20
480	34.27	34.34	34.41	34.48	34.55	34.63	34.70	34·77	34.84	34.91
490	34.98	35.05	35.13	35.20	35.27	35.34	35.41	35·48	35.55	35.63
500	35.70	35.77	35.84	35.91	35.98	36.05	36.13	36·20	36.27	36.34

TABLE 37 (Cont'd)

Nitrogen

Conversion from micrograms per liter of N to microgram-atoms per liter of N.

 $(1 \mu g \text{ of } N = 0.0713944 \mu g-at \text{ of } N)$

Microgram per liter										
of N	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
510	36.41	36.48	36.55	36.63	36.70	36.77	36.84	36.91	36.98	37.05
520	37.13	37.20	37.27	37.34	37.41	37.48	37.55	37.62	37.70	37.77
530	37.84	37.91	37.98	38.05	38.12	38.20	38.27	38.34	38.41	38.48
540	38.55	38.62	38.70	38.77	38.84	38.91	38.98	39.05	39.12	39.20
550	39.27	39.34	39.41	39.48	39.55	39.62	39.70	39.77	39.84	39.91
560	39.98	40.05	40.12	40.20	40.27	40.34	40.41	40.48	40.55	40.62
570	40.69	40.77	40.84	40.91	40.98	41.05	41.12	41.19	41.27	41.34
580	41.41	41.48	41.55	41.62	41.69	41.77	41.84	41.91	41.98	42.05
590	42.12	42.19	42.27	42.34	42.41	42.48	42.55	42.62	42.69	42.77
600	42.84	42.91	42.98	43.05	43.12	43.19	43.27	43.34	43.41	43.48
610	43.55	43.62	43.69	43.76	43.84	43.91	43.98	44.05	44.12	44.19

NOTE: Values obtained for the amount of nitrogen in <u>nitrate</u> by the use of these tables are to be rounded to the nearest tenths decimal place before entering on the coding forms.

Silicon

Conversion from micrograms per liter of Si to microgram-atoms per liter of Si

(1 µg of Si = 0.0356049 µg-atom Si)

Micrograms										
per Liter of Si	00	10	20	30	40	50	60	70	80	90
000	000	000	001	001	001	002	002	002	003	003
100	004	004	004	005	005	005	006	006	006	007
200	007	007	008	008	009	009	009	010	010	010
300	011	011	011	012	012	012	013	013	014	014
400	014	015	015	015	016	016	016	017	017	017
500	018	018	019	019	019	020	020	020	021	021
600	021	022	022	022	023	023	023	024	024	025
700	025	025	026	026	026	027	027	027	028	028
800	028	029	029	030	030	030	031	031	031	032
900	032	032	033	033	033	034	034	035	035	035
Micrograms per Liter of Si	000	100	200	300	400	500	600	700	800	900
1000	036	039	043	046	050	053	057	061	064	068
2000	071	075	078	082	085	089	093	096	100	103
3000	107	110	114	117	121	125	128	132	135	139
4000	142	146	150	153	157	160	164	1.67	171	174
5000	178	182	185	189	192	196	199	203	207	210
6000	214	217	221	224	228	231	235	239	242	246
7000	249	253	256	260	263	267	271	274	278	281
8000	285	288	292	296	299	303	306	310	313	317

EXAMPLE I:

Assume an initial value of 4200. Since this value lies within the range 1000 - 8900, use lower portion of above table. Enter left hand column at 4000, proceed horizontally to the right to column headed 200, and read 150.

EXAMPLE II:

Assume an initial value of 4180. Since this value is not recorded explicitly in the table, the conversion can be made by one of two methods:

TABLE 38 (Cont'd)

Silicon

- (1) Interpolation between 4100 and 4200 to nearest whole number, 149:
- or (2) Since 4180 = 4100 + 80, find 146 corresponding to 4100 and 003 corresponding to 80.

 Add 146 and 003 to get 149.

Silicon Dioxide

Conversion from micrograms per liter of SiO₂ to microgram-atoms per liter of SiO₂-Si
(1 µg of SiO₂ = 0.016643 µg-atom of Si)

Micrograms per Liter of SiO2 Micrograms per Liter of SiO2

	igrams										
	Liter										
of	SiO ₃	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
00		000	001	003	004	005	007	008	009	011	012
01		013	014	016	017	018	020	021	022	024	025
02		026	028	029	030	032	033	034	035	037	038
03		039	041	042	043	045	046	047	049	050	051
04		053	054	055	057	058	059	060	062	063	064
					070	071	072	074	075	076	078
05		066	067	068	070	0/1	0/2	0/4	0/3	0/0	078
06		079	080	081	083	084	085	087	088	089	091
07	1	092	093	095	096	097	099	100	101	103	104
08		105	106	108	109	110	112	113	114	116	117
09		118	120	121	122	124	125	126	127	129	130
10		131	133	134	135	137	138	139	141	142	143
11		145	146	147	149	150	151	152	154	155	156
12		158	159	160	162	163	164	166	167	168	170
13	,	171	172	173	175	176	177	179	180	181	183
14		184	185	187	188	189	191	192	193	195	196
15		197	198	200	201	202	204	205	206	208	209
16		210	212	213	214	216	217	218	219	221	222
17		223	225	226	227	229	230	231	233	234	235
18		237	238	239	241	242	243	244	246	247	248
19		250	251	252	254	255	256	258	259	260	262
20		263	264	265	267	268	269	271	272	273	27 5

TABLE 41
SUBSTITUTED CHEMISTRY

Field Containing Substitution	Code
PO ₄ -P	1
Total-P	2
NO3-N	3
NO3-N	1
SiO ₄ -Si	5
рН	6

NATIONAL OCEANOGRAPHIC DATA CENTER WASHINGTON, D. C. 20390

г	_	_	_		_		_	_	_		_		_	-	-	6111	RFACE	ENIVIE	ONIME	NITAL	INISOR	MATIO	ы	IMAS	TER C	APDI															
L											_				_	501	CFACE	ELAAIN	ONME	MIME	INTOR	MONTHO		•	164 6	ANDI			- 1	_				_	_		_	_	-		=
П					1		LATI	TUDE					LO	NGITU	DE				ARSDE				DA	TE			The	ME GA			SINAT			SINAT			DEPTH			MA	
1	COUN	ITRY	SF	HIP			5=	- X 8					- 1	E = X 14	6				SQUAR	E	YE	AR	MOI	NTH	D/	AY	Н	R.	1/10	CR	UISE N	4O.	STAT	NOI	NO.		вотто	IM (M		SAM	PLE
ŀ	1	2	3	4	5	6	7	8	9	N S	10	11	12	13	14	1.5	E W	16	17	18	19	20	21	22	23	24	2.5	26	27	28	29	30	31	32	33	34	35	36	37	38	39
1									110				۰			10																									
1		- !			_			L	<u> </u>				L	ļ					<u> </u>	<u> </u>	_	L																			
F	NC			W	ATÉR .			W/	AVE.			W	IND						AIR	TEMPE	RATURI	°C		WEA	THER	CLC	QUO	VIS.		£ D.I	CIAL	000				PROCE	SSINC	NO:	5		C
1	LEVE		CO	LOR	TRA	NS.	DI	IR	HA	P	D	IR.	SPEED	FORCE	BA	iR, (M	BS)		DRY I	3	,	WET B		0	V V	T	A	V(3.		SPE	CIAL	085		CR	UISE	NO		CONS	EC NO). -	Ţ
		41	42	43	44	45	46	47	48	49	50	51	52	53	54	5.5	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
ŀ	1											1																													1
1																		1																	1						1

COUNTRY	,				
INSTITUT	E				
VESSEL					
CRUISE	OR PRO	DJECT	NO		_

																																																1					
_			_	_			=	_	_	_	_		_	_		_	=	SUBS	URF	ACE C	BSEF	RVAT	IONS	— (D	ETAIL	CAR	DS)	_							_	_	_	-		_			_		_	-	_	=		_			
M	ESSENI	GER				_	Т	_			. %			T		S A I	9/.		٦		_		_	_	Р	_	_	ALI	Р	NO	2 —	и	N	0 3—	N	Si	o ,-	Sı		рΗ			С	L							REMARKS		
-	HR.	1/10					_						1	1				1	<u> </u>			62	-		5.6	15	7 5	R .	50 T	60		A2	-		65	66	67	AB	40	70	71	72	<u> </u>					SPE	CIFY OF	PTION	AL ITEMS OR SPE	CIAL CODES	
		1/10	CCEANORAPHIC STATION CARD PHYSICAL AND CHEMICAL DATA	AH NOON 0 0 0 0 0 1 2 3 4 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 8	31 0 0 0 0 1 1 1 2 2 3 3 3 4 4 7 7 8 8 8 9 9 9 9 9 9 9 8 9 8 9 8 9 8 9	3: 00,7 a 11,2 3 3 3 4 4 4 5 6 6 6 7 7 7 8 8 8 9 9 9	0 0 0 0 0 0 0 0 10 1 1 1 2 2 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8	O O O O O O O O O O O O O O O O O O O	344 0 0 0 1 1 1 1 1 1 2 2 2 1 3 3 3 4 4 4 4 7 7 7 8 8 8	MARRIE 10 SO 1 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 8 8 9	0 0 0 17 18 1 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8	36 VR 1 0 0 0 19 22 2 13 3 14 4 4 15 5 5 16 6 6 7 7 7 8 8 8	DAT MO 0 0 0 21 22 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8	DA D	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 3 6 6 6 6 6 6 6 6 6 9 9 9 2 7 2 3	0 0 0 29 30 1 1 1 2 2 3 3 3 4 4 4 4 5 5 6 6 6 7 7 7 8 8 8 8 9 9 32 30 1 E A	ShiP'S STAT 301 B0 0 0 0 0 0 0 0 11 32 3 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3	DE 600 0 (1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51 : MA PATH	A S S S S S S S S S S S S S S S S S S S	ADO 085. CODE CODE CODE CODE CODE CODE CODE CODE	E F WATE 22 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4	555 R 100	556 WAVE O 0 0 1 1 1 2 2 2 5 5 6 6 6 A N 1 5 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 6 A N 1 5 5 5 6 6 A N 1 5 5 5 6 6 A N 1 5 5 5 6 6 A N 1 5 5 5 5 6 A N 1 5 5 5 6 A N 1 5 5 5 6 A N 1 5 6 A N 1 5 6	Si OIR. Si	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 55 57 5 1 1 1 2 2 2 3 3 3 3 5 1 1 1 1 2 2 2 3 5 5 5 5 5 5 6 6 6 1 7 7 7 P VOC.	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 6162 61 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	WW 200 200 200 200 200 200 200 200 200 2	55 5 6 6 6 7 7 7 8 8 8 9 9 5 6 6 6	SPECOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65 0 0 0 11 72 1 1 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	REF ID N 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 PROCESS CONTROL 10 11 11 12 22 23 33 34 44 55 55 56 66 66 77 77 88 88 99 99 99 79 79 79	68 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	STANDARD NATIONAL OCEANOGRAPHIC DATA CENTER		71	72	80					SPE	CIFY OF			CIAL CODES	
														1																																							
										_				1									1			1																											
-								-						+									-			+				-			-		_	+			+			1	-										
																																												L									

APPENDIX III
NODC PUBLICATION LISTING FORMAT

																																															996	CODE NOWBER	REFERENCE
064	064	064		064	032		032				032		1	020		032			032	1	032	250	3	032			032	032			032			032	032	200	3	032		032	032		MESSENGER CO				PL 1317		SHIP
STD STD OBS	085	280	STD	088	085 085	STD	OBS	STD	STD	STD	088	510	STD	280	STD	085	STD	STD	SBO	STD	085	STD	STU	SBO	STD	STD	280	085	STD	STD	085	STD	STD	085	OBS	STD	OBS	088	STD	088	OBS		CAST CARD				S	0 /1/10	
3000 4000 4001	T2960	2462Q 2500	2000	1961	1750 T1957	1500	1462	1400	1300	1200	1166	1100	1000	T0969	0000	0774	0700	0600	0578	0500	0480	0400	10200	0288	0250	0200	T0192	0153	0150	0125	0100	0075	0050	0047	0038	0030	0000	0019	0010	0009	0000	3	DEPTH (m)	!			01846 W D	01/10	NGITUDE
0266 -0012 -0012	0273	0305	0340	0343	0383	0427	0434	0448	0473	0499		0528	UT (0.00	0 0	0 0	0732	0845	0873F	0961	0986	1079	1098	1179	1221	1284	1295	13600	1367	1435	1531	1642	1796	1816	2001	2262	2341	2693	2757	2764	2790	3700	ı ç	01	3000	(010)	337 3	100	MARSDEN
3490 3483 3483	34901	34921 3492	3494		3492	3487	34862	3487	3488	3490	34899	3488	3482	24792	34/8	34780	484	3498		3509	3529P	3518	25180	35183	3521											3586	با در ان الر	35688	ယ ပာ	3536	-	N N	5 %	32 21	(m) DIR	TRANS	31	DAY	STATION TIME
2786 2800 2800	2785	2784	2782	1	2782	2768	2766	2765	2763	2761		2757	2748	2745	27/1	2/31	2727	2721	2719	2711	2722P	2697	200F	2679	2673	2665	2664	2657	2656	2647	2634 1602	2613	2583	2579	2538	2471	2449	2328	2286	2281	2270	2270	SIGMA-T	S03 05		SPEED BAROMETER	003 1963	10	YEAR
0004364		0004496	0004495		8209000	0005763	1	0005945	0006092	0006241		0006631			0000053)	0009281			0010705		0011863	ACZCIOO	Ų Ų	0013872	0014503			0015264	0016059	0017272	001717	0021964) h		0032503	20011000		0050150			0051584	SPECIFIC VOLUME	6 279 2	DRY SOLE	AIR IEM	FD7 003	NUMBER	CRUISE STATIO
2554		2063	1838		1/19	· a	ה כ	1526	1465	40		1339	26	2644	2100		1019	92		0821		0708	7000	л Ю	0514	0444			0369	0330	0288	0243	0191			0137	0	0000	.0051			0000	MAD X 103	261	anta root	005 VIS	_	200	Z
15115 15168 15168	15111	15046	14976		14951	14921	14923	14919	14912	14907		14902	14896	14895	7004 006#T	14902	14916	14944	14952	14973	1	15000	15004	15017	15025	15039	15042	15058	15060	15079	15103	BUTCT	15180	15186	15237	15305	15324	15403	15413	3.71	15418	n	VELOCITY	22	<u> </u>		4009 40		DEPTH DEPTH
	567	560 560	552	551	546	481	475	458	426	390	376	357	331	2 2 2	205	182	206	182	178	178	1930	179	179	236	248	254	254	222	222	217	213	272	262	267	411	495	605	471	464	463	459	459	O ₂ ml/1			SPECIAL		DIR	080
	149	146		149	149		172				196			228		230)		226			104	197	174	J		164	163			151	187		116	048		014	013	1	007	007		PO4 -P 101/	-			-	ᅾ	
																																									-		107AL-P NO2-N				XI	3411	CODES COOLS
																																									-		NO3-N					NAT	27.0
																																									-		SIO4-Si h8-at/1				1 0001		NODC

tand resphic conc the string traphic conc the string t

+

+

0.5		4		0
4) 1	Stations.	١.		Revised August 19
Ci.	B E		8	
F) -	313	2	Z	40
0	a L	141	M	2
ರ್	eanographic Stations	ypunchin	in Nobc	60
+2 -	4 5	O	豆	3
00 0	0 00	19	**	4
-	d 0	15	ы	mi
C	C T	153		0)
4-1	d C	U	42	EQ.
2,	.18	I Ke	12	T
ot r	E 2	100	Q.	03
5.4	60 B	1 č	_	as:
to -	10	0	-2, Part	
0	9 5	1	CA	
ed .	2 8	1 2	4	10
0) 0	10	ling and	Part I	63
O,	TO	TO	S	974
0	p0	0	0	H
	rocessing Fnysical and ata from Oceanographic	10	ublication M	anual Series.
7	101	1 .	m	03
C	8 4	H	Ü	$\overline{}$
0	UI.		4	CQ.
44	0 0	12	넝	2
es	2 5	12	7	and .
National Oceanographic Data Cente	SIO	a	5	5
		1.		-

1. Oceanography - data processing

+

- 1. Title: Processing Physical and Chemical Data from Oceanographic Stations, Part I, Coding and Keynunching
- 11. Publication M-2, Part I, NODC Manual Series

National Oceanographic Data Center Processing Physical and Chemical Data from Oceanographic Stations, Part I, Coding and Keypunching. Phylication M-2, Part I in NODC Manual Series. Revised August 1964

- 1. Oceanography data processing
- 1. Title: Processing Physical and Chemical Data from Oceanographic Stations, Part I, Coding and Kerpunching
- Publication M-2, Part I, NODC Manual Series

National Oceanographic Data Center Processing Physical and Chemical Data from Oceanographic Stations, Part I, Coding and Keypunching. Publication M-2, Part I in NODG Mannal Series. Revised August 1964

Oceanography - data processing

÷ ÷

Title: Processing Physical Chemical Data from Oceanogram Stations, Part I, Coding and

National Oceanographic Data Center
Processing Physical and Chemical
Data From Oceanographic Stations,
Part I, Coding and Keypunching.
Publication M-2, Part I in NODG
Manual Series, Revised August 1964

Publication M-2, Part I, NODC Manual Series

11.

+

Oceanography - data processing

1.

- 1. Title: Processing Physical and Chemical Data from Oceanographi Stations, Part I, Coding and
- Publication M-2, Part I, NODC Manual Series

