

Explorer

- Fining deepest valley in the world
 - Without map
 - With blindfold

How to make 'P' learn

PLA (Perceptron Learning Algorithm)

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y(t)\mathbf{x}(t).$$

The weight update rule in (1.3) has the nice interpretation that it moves in the direction of classifying $\mathbf{x}(t)$ correctly.

- (a) Show that $y(t)\mathbf{w}^{\mathrm{T}}(t)\mathbf{x}(t) < 0$. [Hint: $\mathbf{x}(t)$ is misclassified by $\mathbf{w}(t)$.]
- (b) Show that $y(t)\mathbf{w}^{\mathrm{T}}(t+1)\mathbf{x}(t) > y(t)\mathbf{w}^{\mathrm{T}}(t)\mathbf{x}(t)$. [Hint: Use (1.3).]
- (c) As far as classifying $\mathbf{x}(t)$ is concerned, argue that the move from $\mathbf{w}(t)$ to $\mathbf{w}(t+1)$ is a move 'in the right direction'.

What is Learning?

- Finding f such that
 - $\hat{y} = y (f(x) = y)$
 - Minimize prediction error (Loss Function *L*)
- Finding *f* means
 - In regression

- Elements of learning
 - Algorithm
 - Define the process that is used for learning
 - Transform input data into a particular form of useful output
 - Target function
 - The product of learning
 - Training

$$\begin{aligned} \mathbf{W} &\leftarrow \mathbf{W} + c(d-f)\mathbf{X} \\ \text{Weigh update} &= \begin{pmatrix} \text{Direction} & \text{Size of one} \\ \text{reducing err.} & \text{x} & \text{step} \\ -\eta \nabla_{\theta} J(\theta) & - & \eta & \nabla_{\theta} J(\theta) \end{pmatrix} \\ \end{aligned}$$

The Widrow-Hoff Procedure

- Weight update procedure:
 - Using $f = s = \mathbf{W} \cdot \mathbf{X}$
 - Data labeled $1 \rightarrow 1$, Data labeled $0 \rightarrow -1$
- Gradient: if f =s,

$$\frac{\partial \varepsilon}{\partial \mathbf{W}} = -2(d-f)\frac{\partial f}{\partial s}\mathbf{X} = -2(d-f)\mathbf{X}$$

New weight vector

$$\mathbf{W} \leftarrow \mathbf{W} + c(d - f)\mathbf{X}$$

- Widrow-Hoff (delta) rule
 - $(d-f) > 0 \rightarrow \text{increasing } s \rightarrow \text{decreasing } (d-f)$
 - $(d-f) < 0 \rightarrow \text{decreasing } s \rightarrow \text{increasing } (d-f)$

] Id-fl decreases!

Optimizer

- ML Optimizer
 - Minimize a loss function

Gradient descent

Revisit Update weights

$$\theta_{t+1} = \theta_t - \lambda f'(\theta_t)$$

너무 오래 걸림

너무 대충하다가 발산함

Gradient descent

Batch gradient descent

$$\theta_t = \theta_{t-1} - \eta \cdot \nabla_{\theta} J(\theta)$$

Stochastic gradient descent

$$\theta_t = \theta_{t-1} - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$$

Mini-batch gradient descent

$$\theta_t = \theta_{t-1} - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)})$$

2 ways of Optimizer

- Momentum
- Adaptive

SGD (Stochastic Gradient Descent)

Gradient Descent by random sampling

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial L}{\partial \mathbf{W}} cost(W)$$

Momentum

■ 모멘텀: 과거의 경험치를 반영하자

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \eta \frac{\partial L}{\partial \mathbf{W}}$$

$$\mathbf{W} \leftarrow \mathbf{W} + \mathbf{v}$$

Adagrad

■ 업데이트 횟수에 따른 Learning rate의 조절

$$\mathbf{h} \leftarrow \mathbf{h} + \frac{\partial L}{\partial \mathbf{W}} \odot \frac{\partial L}{\partial \mathbf{W}}$$

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \, \frac{1}{\sqrt{\mathbf{h}}} \, \frac{\partial L}{\partial \mathbf{W}}$$

Adam

Momentum+Adagad

rioi. riyetiii bae (iii bae@pusa

Optimizing by Optimizers

• Which one do you prefer?

References

- https://twinw.tistory.com/247
- https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=lego7407&logNo= 221681014509
- https://www.youtube.com/watch?v=KN120w3PZIA&t=201