Diagonalization of Endomorphisms

Session 2

(Th1) The eigenvectors Diagonalization $V_j = \{\vec{v}_j : A\vec{v}_j = \lambda_j, \vec{v}_j\}$ Eign subspace associated to λ_j (eigen value) associated to different eigen valves are independent $\Rightarrow A \vec{v}_j - \lambda_j \vec{L} \vec{v}_j = \vec{0} \iff (A - \lambda_j \vec{L}) \vec{v}_j = \vec{0}$ $\forall j = \ker(A-\lambda_j I)$ dim $\forall j = \dim \ker(A-\lambda_j I)$

 $A \in M_{n \times n}(R). \longrightarrow Spectrum(A) = \{\lambda_1, \lambda_2, \dots, \lambda_j\} \longrightarrow roots \text{ of } |A - \lambda I| = 0.$ Eigen $V_1 = \{\vec{v}: A \vec{v} = \lambda_1 \vec{v}\} = \ker(A - \lambda_1 I). \Rightarrow (B_1) \Rightarrow Basis set \text{ of } V_1$ There bosis sets are and epocheut because they correspond to different $\lambda = (a_{n+1} - a_{n+1}) \Rightarrow (B_1) \Rightarrow Basis set \text{ of } V_2 \Rightarrow (A - \lambda_2 I) \Rightarrow (B_1) \Rightarrow Basis set \text{ of } V_2 \Rightarrow (A - \lambda_2 I) \Rightarrow (B_2 - a_{n+1}) \Rightarrow (B_2 -$ The characteristic A admits a diagonal form $D \Leftrightarrow Valves$)

Polynomial $V_1 \oplus V_2 \oplus \cdots \oplus V_j = \mathbb{R}^n \iff J_{B_1, \ldots, B_j} \text{ is a basis}$

