Computer Organization and Architecture

Chapter 07

INPUT/OUTPUT

KEY POINTS

7

- The computer system's I/O architecture is its interface to the outside world.
- The are three principal I/O techniques:
 - **Programmed I/O**, in which I/O occurs under the direct and continuous control of the program requesting the I/O operation.
 - Interrupt-driven I/O, in which a program issues an I/O command and then continues to execute, until it is interrupted by the I/O hardware to signal the end of the I/O operation.
 - Direct memory access (DMA), in which a specialized I/O processor takes over control of an I/O operation to move a large block of data.

Basic Computer Networks

TI

Why I/O Modules and Function?

■ In addition to the processor and a set of memory modules, the third key element of a computer system is a set of I/O modules.

- There are a wide variety of peripherals with various methods of operation. It would be impractical to incorporate the necessary logic within the processor to control a range of devices.
- The data transfer rate of peripherals is often much slower than that of the memory or processor. Thus, it is impractical to use the high-speed system bus to communicate directly with a peripheral.
- On the other hand, the data transfer rate of some peripherals is faster than that of the memory or processor. Again, the mismatch would lead to inefficiencies if not managed properly.
- Peripherals often use different data formats and word lengths than the computer to which they are attached.

Why I/O Modules and Function?

 Thus, an I/O module is required. This module has two major functions

- Interface to the processor and memory via the system bus or central switch
- Interface to one or more peripheral devices by tailored data links

NLU-FIT

sic Computer Networks

LU-FIT

outer Networks

- I/O operations are accomplished through a wide assortment of external devices that provide a means of exchanging data between the external environment and the computer.
- An external device attaches to the computer by a link to an I/O module Figure 7.1.
- The link is used to exchange control, status, and data between the I/O module and the external device.
- An external device connected to an I/O module is often referred to as a peripheral device or, simply, a peripheral.

- We can broadly classify external devices into three categories:
 - Human readable: Suitable for communicating with the computer user
 - ✓Screen, printer, keyboard
 - Machine readable: Suitable for communicating with equipment
 - ✓ Monitoring and control
 - ✓ Magnetic disk, tape systems and sensors
 - Communication: Suitable for communicating with remote devices
 - ✓ Modem
 - ✓ Network Interface Card (NIC)

7.1. External Devices

■ In very general terms, the nature of an external device is indicated in Figure 7.2. The interface to the I/O module is in the form of control, data, and status signals.

Figure 7.2 Block Diagram of an External Device

TIE-LI

puter Networks

TI-LI

Basic Computer Networks

- Control signals determine the function that the device will perform, such as
 - Send data to the I/O module (INPUT or READ)
 - accept data from the I/O module (OUTPUT or WRITE), report status
 - or perform some control function particular to the device (e.g., position a disk head).
- Data are in the form of a set of bits to be sent to or received from the I/O module.
- Status signals indicate the state of the device.
 - Examples are READY/NOT-READY to show whether the device is ready for data transfer.

Z

7.1. External Devices

10

Control logic associated with the device controls the device's operation in response to direction from the I/O module.

Basic Computer Networks

The transducer converts data from electrical to other forms of energy during output and from other forms to electrical during input.

NLU-FIT

■ Typically, a buffer is associated with the transducer to temporarily hold data being transferred between the I/O module and the external environment a buffer size of 8 to 16 bits is common.

Ξ

omputer Networks

U0-FIT

Keyboard/Monitor

- The most common means of computer/user interaction is a keyboard/monitor arrangement.
- The user provides input through the keyboard.
 This input is then transmitted to the computer and may also be displayed on the monitor.
- In addition, the monitor displays data provided by the computer.
- The basic unit of exchange is the character.

7.1. External Devices

12

Disk Drive

- A disk drive contains electronics for exchanging data, control, and status signals with an I/O module plus the electronics for controlling the disk read/write mechanism.
- In a fixed-head disk, the transducer is capable of converting between the magnetic patterns on the moving disk surface and bits in the device's buffer
- A moving-head disk must also be able to cause the disk arm to move radially in and out across the disk's surface.

ALU-FIT

7.2. I/O Module

■ The major functions or requirements for an the I/O module fall into following categories:

- Control and timing
- Processor communication
- Device communication
- Data buffering
- Error detection

7.2.1. Control and timing

14

During any period of time, the processor may communicate with one or more external devices in unpredictable patterns, depending on the program's need for I/O. The internal resources, such as main memory and

Basic Computer Networks

of activities, including data I/O. Thus, the I/O function includes a control and timing requirement, to coordinate the flow of traffic

between internal resources and external devices.

the system bus, must be shared among a number

• For example, the control of the transfer of data from an external device to the processor might involve the following sequence of steps:

7.2.1. Control and timing

• 1. The processor interrogates the I/O module to check the status of the attached device.

- 2. The I/O module returns the device status.
- 3. If the device is operational and ready to transmit, the processor requests the transfer of data, by means of a command to the I/O module.
- 4. The I/O module obtains a unit of data from the external device.
- 5. The data are transferred from the I/O module to the processor.

7.2.2. Processor communication

- Processor communication involves the following:
 - Command decodina: The I/O module accepts commands from the processor. typically sent as signals on the control bus.
 - ✓ For example, an I/O module for a disk drive might accept the following commands: READ SECTOR, WRITE SECTOR, SEEK...
 - Data: Data are exchanged between the processor and the I/O module over the data bus

7.2.2. Processor communication

• Status reporting: Because peripherals are so slow, it is important to know the status of the I/O module.

- ✓ For example, if an I/O module is asked to send data to the processor (read), it may not be ready to do so because it is still working on the previous I/O command. This fact can be reported with a status signal.
- √ Common status signals are BUSY and READY. There may also be signals to report various error conditions.
- · Address recognition: Just as each word of memory has an address, so does each I/O device. Thus, an I/O module must recognize one unique address for each peripheral it controls.

7.2.3. Device communication

8

 This communication involves commands, status information, and data as Figure 7.2.

7.2.4. Data buffering

13

 An essential task of an I/O module is data buffering.
 Whereas the transfer rate into and out of main

asic Computer Networl

- Whereas the transfer rate into and out of main memory or the processor is quite high, the rate is orders of magnitude lower for many peripheral devices and covers a wide range.
- Data coming from main memory are sent to an I/O module in a rapid burst. The data are buffered in the I/O module and then sent to the peripheral device at its data rate.

NLU-FI

7.2.4. Data buffering

20

 In the opposite direction, data are buffered so as not to tie up the memory in a slow transfer operation. Thus, the I/O module must be able to operate at both device and memory speeds.

sic Computer Networks

 Similarly, if the I/O device operates at a rate higher than the memory access rate, then the I/O module performs the needed buffering operation

LU-FIT

7.2.5. Error detection

S

21

Computer Networks

Finally, an I/O module is often responsible for error detection and for subsequently reporting errors to the processor.

- One class of errors includes mechanical and electrical malfunctions reported by the device (e.g., paper jam, bad disk track).
- Another class consists of unintentional changes to the bit pattern as it is transmitted from device to I/O module.
- Some form of error-detecting code is often used to detect transmission errors.

7.2.6. I/O Module Structure

ter Networks

22

I/O modules vary considerably in complexity and the number of external devices that they control.

Figure 7.3. Block Diagram of an I/O Module

7.2.6. I/O Module Structure

23

■ The module connects to the rest of the computer through a set of signal lines (e.g., system bus lines).

Basic Computer Networks

- Data transferred to and from the module are buffered in one or more data registers.
- There may also be one or more status registers that provide current status information.
- A status register may also function as a control register, to accept detailed control information from the processor.
- The logic within the module interacts with the processor via a set of control lines.

7.2.6. I/O Module Structure

24

■ The processor uses the control lines to issue commands to the I/O module.

outer Networks

- Some of the control lines may be used by the I/O module (e.g., for arbitration and status signals).
- The module must also be able to recognize and generate addresses associated with the devices it controls.
- Each I/O module has a unique address or, if it controls more than one external device, a unique set of addresses.

ILU-FIT

 Finally, the I/O module contains logic specific to the interface with each device that it controls

7.2.6. I/O Module Structure

Basic Computer Networks

• An I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor, is usually referred to as an I/O channel or I/O processor.

• An I/O module that is quite primitive and requires detailed control is usually referred to as an I/O controller or device controller. I/O controllers are commonly seen on microcomputers, whereas I/O channels are used on mainframes.

7.3. Programmed I/O

56

Three techniques are possible for I/O operations.

With programmed I/O

• Data *are* exchanged between the processor and the I/O module.

- The processor executes a program that gives it direct control of the I/O operation, including sensing device status, sending a read or write command, and transferring the data.
- When the processor issues a command to the I/O module, it must wait until the I/O operation is complete.
- If the processor is faster than the I/O module, this is wasteful of processor time.

LU-FIT

7.3. Programmed I/O

27

■ With interrupt-driven I/O

Basic Computer Networks

- The processor issues an I/O command, continues to execute other instructions, and is interrupted by the I/O module when the latter has completed its work.
- With both programmed and interrupt I/O, the processor is responsible for extracting data from main memory for output and storing data in main memory for input.

With direct memory access (DMA)

 The I/O module and main memory exchange data directly, without processor involvement.

ILU-FJ

7.3. Programmed I/O

00

I/O Commands

- Basic Computer Networks
- To execute an I/O-related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command.
- There are four types of I/O commands that an I/O module may receive when it is addressed by a processor:
 - Control: Used to activate a peripheral and tell it what to do.
 - ✓ For example, a magnetic-tape unit may be instructed to rewind or to move forward one record.

7.3. Programmed I/O

29

• Test: Used to test various status conditions associated with an I/O module and its peripherals.

√The processor will want to know that the peripheral of interest is powered on and available for use.

√It will also want to know if the most recent I/O operation is completed and if any errors occurred.

• Read: Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer.

√The processor can then obtain the data item by requesting that the I/O module place it on the data bus.

 Write: Causes the I/O module to take an item of data (byte or word) from the data bus and subsequently transmit that data item to peripheral.

15

7.3. Programmed I/O

Basic Computer Networks

■ Figure 7.4a gives an example of the use of programmed I/O to read in a block of data from a peripheral device (e.g., a record from tape) into memory.

- Data are read in one word at a time.
- For each word that is read in, the processor must remain in a status-checking cycle until it determines that the word is available in the I/O module's data register.
- This flow chart highlights the main disadvantage of this technique: it is a time-consuming process that keeps the processor busy needlessly.

7.4. Interrupt-Driven I/O

32

Basic Computer Networks

The problem with programmed I/O is that the processor has to wait a long time for the I/O module of concern to be ready for either reception or transmission of data.

 The processor, while waiting, must repeatedly interrogate the status of the I/O module. As a result, the level of the performance of the entire system is severely degraded.

- An alternative is for the processor to issue an I/O command to a module and then go on to do some other useful work.
 - The I/O module will then interrupt the processor to request service when it is ready to exchange data with the processor.
 - The processor then executes the data transfer, as before, and then resumes its former processing.

7.4. Interrupt-Driven I/O

33

Basic Computer Networks

Example

- · Processor issues a READ command. It then goes off and does something else (e.g., the processor may be working on several different programs at the same time).
- At the end of each instruction cycle, the processor checks for interrupts.
 - ✓ When the interrupt from the I/O module occurs, the processor saves the context (e.g., program counter and processor registers) of the current program and processes the interrupt.
 - ✓In this case, the processor reads the word of data from the I/O module and stores it in memory.
- It then restores the context of the program it was working on (or some other program) and resumes execution.

7.4. Interrupt-Driven I/O

34

■ Figure 7.4b shows the use of interrupt I/O for reading in a block of data.

Basic Computer Networks

- Interrupt efficient I/O is more than programmed I/O because it eliminates needless waiting.
- However, interrupt I/O still consumes a lot of processor time
 - because every word of data that goes from memory to I/O module or from I/O module to memory must pass through the processor.

er Networks

36

- Interrupt-driven I/O, though more efficient than simple programmed I/O, still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor.
- Thus, both these forms of I/O suffer from two inherent drawbacks:
 - 1. The I/O transfer rate is limited by the speed with which the processor can test and service a device.
 - 2. The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer

U-FIT

Basic Computer Networks

■ DMA involves an additional module on the system bus.

- The DMA module Figure 7.11 is capable of mimicking the processor and, indeed, of taking over control of the system from the processor.
- It needs to do this to transfer data to and from memory over the system bus. For this purpose,
 - The DMA module must use the bus only when the processor does not need it,
 - · or it must force the processor to suspend operation temporarily.

works

When the processor wishes to read or write a block of data, it issues a command to the DMA module, by sending to the DMA module the following information:

- Whether a read or write is requested, using the read or write control line
- The address of the I/O device involved
- The starting location in memory to read from or write to, stored by the DMA module in its address register
- The number of words to be read or written, again communicated via the data lines and stored in the data count register

7.5. Direct Memory Access

4

The processor then continues with other work. It has delegated this I/O operation to the DMA module.

Basic Computer Networks

- The DMA module transfers the entire block of data, one word at a time, directly to or from memory, without going through the processor.
- When the transfer is complete, the DMA module sends an interrupt signal to the processor.
- Thus, the processor is involved only at the beginning and end of the transfer (Figure 7.4c).

■ The DMA mechanism can be configured in a variety of ways.

- Some possibilities are shown in Figure 7.13.
 - In the first example
 - ✓all modules share the same system bus.
 - √The DMA module, acting as a surrogate processor, uses programmed I/O to exchange data between memory and an I/O module through the DMA
 - √This configuration, while it may be inexpensive, is clearly inefficient. As with processor-controlled programmed I/O, each transfer of a word consumes two bus cycles.

43

In both of these cases (Figures 7.13b and c),

ıc Computer Netwo

- The system bus that the DMA module shares with the processor and memory is used by the DMA module only to exchange data with memory.
- The exchange of data between the DMA and I/O modules takes place off the system bus.

Computer Organization and Architecture

44

7.6. I/O Channels and Processor (*Reference*)

7.7. The External Interface (Reference)

Basic Computer Networks

■ <u>Reference</u>: Computer Organization and Architecture Designing for Performance (8th Edition), William Stallings, Prentice Hall, Upper Saddle River, NJ 07458.

II U-FTT