Huybrechts 2.1

Holly Mandel 06/25/2018

2.1.3

• The algebraic dimension of \mathbb{P}^n is n. For consider the function $[x_0 : : x_n] \mapsto x_i/x_0$ for i = 1, ..., n. I claim that this is a rational function on \mathbb{P}^n . Consider any point $p = [p_0 : ... : p_n]$. If $p_0 \neq 0$ then $p \in U_0$ and on U_0 , this function is represented by the obviously holomorphic coordinate function x_i . If $p_0 = 0$, then $p_j \neq 0$ for some j > 0, so $p \in U_j$, and z_i/z_j and z_0/z_j are well-defined on U_j and z_0/z_j is invertible. (If i = j, then $z_i/z_j = 1$, but the argument still goes through.)

These n functions are algebraically independent. For say

$$F(x_1/x_0, ..., x_n/x_0) = 0.$$

Then $x_0^m F(x_1/x_0,...,x_n/x_0) = x_0^m G(x_0,x_1,...,x_n) = 0$ for some polynomial G and some m. This implies that G = 0, so F = 0.

The result then follows from the upper bound of Proposition 2.1.9.

- The Weierstrass p function is a nontrivial rational function on the torus. Therefore by Proposition 2.1.9, the algebraic dimension of \mathbb{T} is 1.
- Proposition 2.1.9 does not apply to (non-compact) \mathbb{C} . In fact, $K(\mathbb{C})$ has infinite transcendence degree. For $K(\mathbb{C})$ contains the holomorphic functions on \mathbb{C} , and e^{z^k} for $k \in \mathbb{N}$ is an algebraically independent set of holomorphic functions on \mathbb{C} . This can be seen by considering the asymptotics along the positive real axis.