Report

1.

i. Dataset Analysis and plotting:

data_1:

Balance: Yes

Number of samples: 100 Dimension: 2 dimensions Separability: Non-Linear

Noise: No Classes: {0,1}

data_2:

Balance:Yes

Number of samples:100 Dimension: 2 dimensions Separability: Non Linear

Noise: No Classes: {0,1}

data_3:

Balance:No

Number of samples:100 Dimension: 2 dimensions Separability: Linear

Noise: No

Classes: {0,1,2}

data_4:

Balance:Yes

Number of samples:2000 Dimension: 2 dimensions Separability: Non Linear

Noise: Yes Classes: {0,1}

ii. **SVM Decision boundaries for Datasets**:

By observing the dataset, I chose following kernel and implemented by taking appropriate parameters(constant, degree)

Used Custom Polynomial kernel: np.power((c+np.dot(x,y.T)),d)

iii. SVM with Linear Kernel:

data_1:

F1-Score: 0.56 Accuracy: 0.45

bias(b): 0.38793275

Confusion matrix: TP: 2 FP: 9 TN:2 TN: 7

data_2:

F1-Score: 0.8750000000000001

Accuracy:0.9

bias(b): 0.08580343

Confusion matrix: TP: 11 FP: 0 TN:2 TN: 7

data_3 OVR:

Accuracy for all individual plotting are 1.0

class 0 vs rest: bias: -2.23721209 Confusion3: [[15 0] [0 5]]

bias : -0.40477513 confusion3: [[14 0] [0 6]]

data_3 OVO:

Accuracy for all individual plotting are 1.0

class 0 vs 1 Train and Test

bias: 2.23721216

class 0 vs 2 Train and Test:

bias: -0.00693931

class 1 vs 2 Train and Test:

bias: -0.40477513

data_4:

Accuracy for test: 0.4625 confusion4:

[[0 11] [0 9]]

bias4: [0.99993001]

iv. **SVM** with RBF Kernel:

data_1:

data_2:

f1 Score: 0.9411764705882353

Accuracy for test: 1.0

confusion2:

[[11 0] [0 9]]

bias2: [0.11650227]

data_3 OVR:

class 0 vs Rest:

F1:1.0

bias3: [-0.22586886]

class 1 vs Rest:

F1: 1.0

intercept 3: [-0.38168894]

class 2 vs Rest:

F1: 1.0

bias3: [-0.40387025]

data_3 OVO:

class 0 vs 1:

class 0 vs 2:

class 1 vs 2:

class 0 vs 1:

F1:1.0

intercept 3: [-0.11057571]

class 0 vs 2:

F1 1.0

intercept 3: [-0.12318428]

class 1 vs 2:

F1: 1.0

intercept 3: [-0.012874]

data_4:

F1 score: 0.8475452196382429 Accuracy for test: 0.8525 confusion matrix: [[9 2] [0 9]] bias: [-4.18883444]

v. Hindi Handwritten Characters using RBF:

In this, there are 5 hindi characters. So, I labelled them as classes from 0 to 4.

Initially loaded the data images and vectorized them and then trained on SVM using RBF Kernel.

T-SNE:

here I used cross validation=2

Validation error in fold:1: 0.85 Validation error in fold2:0.86