МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСКИЙ ПОЛІТЕХНІЧНИЙ ІНСТІТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» КАФЕДРА КОНСТРУЮВАННЯ ЕЛЕКТРОННО-ОБЧИСЛЮВАЛЬНОЇ АПАРАТУРИ

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

з курсу:

«Обчислювальні та мікропроцесорні засоби в РЕА»

тема: «Пристрій керування сервоприводом»

<u>Керівник</u> :	Виконав:
доц. Корнєв В.П.	Котов Болеслав Вадимович
Допущено до захисту	студент III курсу ФЕЛ
"	групи ДК-81
Захищено з оцінкою	

Національний Технічний Університет України "Київський Політехнічний Інститут імені Ігоря Сікорського"

Кафедра <u>Конструювання электронно-обчислювальної апаратури</u> Дисципліна <u>Обчислювальні та мікропроцесорні засоби в РЕА</u> Спеціальність <u>172 Телекомунікації та радіотехніка</u> Курс <u>3</u> Группа <u>ДК- 81</u> Семестр <u>VI</u>

ЗАВДАННЯ

до розрахунково-графічної роботи Котов Болеслав Вадимович

(призвище, ім'я та по батькові)

- 1. Тема проекту Керування сервоприводом за допомогою далекоміра
- 2. Строк здачі студентом закінченого проекту (роботи) <u>30.05.2021</u>
- 3. Вихідні данні до проекту (роботи)

 <u>Зпроектувати пристрій керування поворотом вала сервопривода в</u>

 залежності від відстані ультразвукового далекоміра до перешкоди.
- 4. Зміст розрахунково-пояснювальної записки (перелік питань, що розроблюються)
 - 1. Опис структури пристрою і його складових
 - 2. Обґрунтування вибору елементної бази
 - 3. Опис і розрахунок схеми электричної принципової
 - 4. Алгоритм роботи програми
- 5. Перелік графічного матеріала (з точним зазначенням обов'язкових креслень)
- 1. Схема електрична принципова
- 2. Перелік елементів
- 6. Дата видачі завдання <u>31.03.2021</u>

КАЛЕНДАРНИЙ ПЛАН

№	Назва этапу роботи	Строк виконання этапів роботи	Примітка
1	Пошук літератури та аналіз існуючих рішень. Розробка технічного завдання	01.04 – 7.04	
2	Розділ1. Розробка та опис структури пристрою і його окремих складових	8.04 – 14.04	
3	Розділ 2. Обґрунтування вибору елементної бази.	15.04 – 20.04	
4	Створення схеми електричної принципової та узгодження її з керівником	15.04 – 30.04	
6	Опис і розрахунок схеми електричної принципової	03.05 – 10.05	
7	Розділ 3. Створення структури програмного забезпечення пристрою та алгоритмів роботи програм.	20.04 – 30.04	
8	Розробка програмного забезпечення пристрою.	03.05 – 16.05	
9	Оформлення документації: Е3, ПЕ3, ПЗ	20.05 – 22.05	
10	Подання до захисту	30.05	
11	3axucm PГР	26.05 - 3.06	

Студент	
	(підпис)
Керівник	
	(підпис)
« »	2021 p.

ТЕХНІЧНЕ ЗАВДАННЯ НА ПРОЕКТУВАННЯ2
ВСТУП
1. СТРУКТУРНА СХЕМА ПРИСТРОЮ ТА ПРИНЦИП РОБОТИ4
1.1 Структурна схема пристрою
1.2 Принципи роботи блоку отримання даних з далекоміра4
1.3 Принципи і засоби обробки даних
1.4. Принципи і засоби відображення вихідних даних і результату 6
2.СХЕМА ЕЛЕКТРИЧНА ПРИНЦИПОВА ПРИСТРОЮ7
2.1 Вибір мікроконтролера
2.2 Проектування блоку отримання даних
2.3 Проектування блоку обробки даних
2.4 Проектування блоку виведення даних
3.ПРОГРАМА КЕРУВАННЯ ПРИСТРІЄМ11
3.1 Структура програми
3.2 Структура даних
3.3 Опис алгоритмів окремих підпрограм
3.3.1 Опис роботи функції GPIO_Config:
3.3.2 Опис роботи функції TIM3_Config:
3.3.3 Опис роботи функції TIM4_Config:
3.3.4 Опис роботи функції TIM3_IRQHandler:
3.3.5 Опис роботи функції angle()
3.3.6 Опис роботи безкінечного циклу:
ВИСНОВОК
ЛІТЕРАТУРА

				ДК-81.4608.	3 <i>9.00</i>	71 [7	13	
Зм.		№ докум.						
Pos	ροδυβ	Котов Б.В.			Λli	П.	Арк	Аркцшів
Пер	евірив	Корнев В.П.		Блок керування серво-двигуном			1	23
Pel	ценз.			за допомогою дальноміра				
H. K	онтр.				«КП/	IM. 1.	Сікорськог.	ο», ΦΕΛ, ДK–81
3	атв.	Корнев В.П.						

ТЕХНІЧНЕ ЗАВДАННЯ НА ПРОЕКТУВАННЯ

1. Найменування та область використання.

Пристрій керування сервоприводом за допомогою далекоміра призначений для використання в навчальних цілях. Також можливою сферою застосування ϵ автоматика процесів.

2. Підстава для розробки.

Підставою для виконання роботи ϵ завдання, видане викладачем згідно навчального плану.

3. Мета і призначення роботи.

Метою даної роботи ϵ вивчення принципів керування сервоприводом та ультразвуковим дальноміром та закріплення навичок проектування цифрової апаратури на основі мікроконтролера сімейства STM32. Макет прототипу пристрою може застосовуватися у якості лабораторного стенду при вивчення відповідної теми курсу.

4. Джерела розробки.

Технічна документація на мікроконтролер STM32F401RE, сервопривід MG995 та ультразвуковий далекомір HC-SR04.

5. Технічні вимоги.

5.1. Функціональні можливості.

Ультразвуковий далекомір повинен визначати відстань від нього до перешкоди на відстані до 4 метрів, і в залежності від відстані керувати поворотом валу серводвигуна. Спосіб передачі сигналу - провідний. Вал може знаходитися в положеннях від 0° до 120°. 0° - якщо відстань до перешкоди мінімальна, 120° - якщо відстань до перешкоди максимальна.

5.2 Технічні характеристики.

Напруга живлення серводвигуна: +5 В.

Напруга живлення далекоміра: +5 В.

Напруга живлення мікроконтролера: +3.3 В.

Довжина імпульсу вихідного ШІМ сигналу: 500-2500 мкс.

Зм.	Арк	№ доким.	Підпис	Дата

ВСТУП

Серводвигун - це двигун з управлінням через негативний зворотний зв'язок, що дозволяє точно керувати параметрами руху. Сервомотором є будьякий тип механічного приводу, що має в складі датчик положення і плату управління. Простими словами, серводвигун - це механізм з електродвигуном, який може повертатися в заданий кут і утримувати поточний стан.

Ультразвуковий далекомір – пристрій, що здатен вимірювати відстань до перешкоди.

Для користування цими модулями використовують мікроконтролери.

Мікроконтролер — виконана у вигляді мікросхеми спеціалізована мікропроцесорна система, що включає мікропроцесор, блоки пам'яті для збереження коду програм і даних, порти вводу-виводу і блоки зі спеціальними функціями (лічильники, компаратори, АЦП та інші). Використовується для керування електронними пристроями. Використання однієї мікросхеми значно знижує розміри, енергоспоживання і вартість пристроїв, побудованих на базі мікроконтролерів.

Мікроконтролери можна зустріти в багатьох сучасних приладах, таких як телефони, пральні машини, вони відповідають за роботу двигунів і систем гальмування сучасних автомобілів, з їх допомогою створюються системи контролю і системи збору інформації. STM32 — популярна лінійка мікроконтролерів на основі сімейства мікропроцесорних ядер ARM-Cortex-M.

Зм.	Арк	№ доким.	Підпис	Дата

1. СТРУКТУРНА СХЕМА ПРИСТРОЮ ТА ПРИНЦИП РОБОТИ

1.1 Структурна схема пристрою

На рис 1.1 зображено структурну схему пристрою, яка складається з блоку отримання даних з далекоміра, блоку обробки даних та блок керування серводвигуном.

Рис.1.1 - Структурна схема пристрою

1.2 Принципи роботи блоку отримання даних з далекоміра

Робота модуля заснована на принципі ехолокації. Модуль посилає ультразвуковий сигнал і приймає його відображення від об'єкта.

Для того щоб ініціювати відправку сигналу далекоміром, необхідно подати високий сигнал тривалістю 10 µs(мкс.) на пін Trig. Для цього ми використовуємо ШІМ (Широтно-Імпульсна Модуляція).

Після отримання високого сигналу тривалістю 10 µs на пін Тrig, модуль генерує пучок з восьми сигналів частотою 40 кГц і встановлює високий рівень на піні Есho. Після отримання відбитого сигналу модуль встановлює на піні Есho низький рівень. На рис. 1.2.1 наведено принцип роботи далекоміра, тобто надані сигнали керування.

Зм.	Адк	№ докцм.	Підпис	Дата

Рис. 1.2.1 Сигнали керування далекоміром

Знаючи тривалість високого сигналу на піні Есһо можемо обчислити відстань, помноживши час, який витратив звуковий імпульс, перш ніж повернувся до модуля(duration), на швидкість поширення звуку в повітрі (340 м / с). Тепер обчислимо відстань перевівши швидкість з м/с в см/мкс:

$$distance = duration \cdot 340 \frac{M}{C} = duration \cdot 0.034 \frac{M}{MKC}$$

Беручи до уваги те, що звук подолав відстань до об'єкта і назад, поділимо отриманий результат на 2, тобто результуюча формула має наступний вигляд:

$$distance = duration \cdot \frac{0.034}{2} \frac{M}{MKC}$$

1.3 Принципи і засоби обробки даних

Зчитане значення піну есhо ультразвукового далекоміру аналізує мікроконтролер, робить обчислення яке було описано у п. 1.2, і в залежності від відстані до перешкоди, змінюється значення довжини імпульсу ШІМ сигналу, занесенням необхідного значення в регістр порівняння таймеру ТІМЗ каналу 3. Період імпульсів 20 мс завдається значенням, яке заноситься у регістр перезавантаження ARR таймеру ТІМЗ.

Зм.	ADK	№ доким.	Підпис	Дата

1.4. Принципи і засоби відображення вихідних даних і результату

Отриманий ШІМ сигнал з порта РС8 поступає на вхід керування серводвигуна, і в залежності від довжини імпульсу даного сигналу змінюється положення валу сервоприводу, а саме: 0° - довжина імпульсу 500 мкс, 90° - довжина імпульсу 1500 мкс, 120° - довжина імпульсу 2500 мкс (рис.1.4.1).

Рис.1.4.1 – Діаграма ШІМ сигналу для серводвигуна.

Зм.	Арк	№ доким.	Підпис	Дата

2.СХЕМА ЕЛЕКТРИЧНА ПРИНЦИПОВА ПРИСТРОЮ

Схема електрична принципова зображена на рисунку 2.1. В проекті використовується зовнішнє джерело постійної напруги яке формує стійку напругу 5В.

Рис. 2.1 Принципова схема приладу

2.1 Вибір мікроконтролера

Центральною ланкою в пристрою керування сервоприводом та далекоміра є блок, що оброблятиме дані, отримані з блоку введення даних та формуватиме дані для передачі на блок виведення даних. Згідно технічного завдання, це буде мікроконтролер STM32F401RE. Він ідеально підходить для поставленої задачі.

							Арк
ı						ДК81.460839.001 ПЗ	7
	Зм.	Арк	№ доким.	Підпис	Дата		/

Мікросхему виконано у корпусі LQFP (рис. 2.1)

Рис 2.1.1 – мікроконтролер STM32F401RE у корпусі LQFP

Характеристики мікроконтролера:

- Core: ARM® 32-bit Cortex® -M4
- 512 KB Flash пам'ять
- 96 KB SRAM
- Частота вбудованого генератору синхроімпульсів HSI 8 MHz
- Напруга живлення 1.7 В 3.6 В

2.2 Проектування блоку отримання даних

Основою блоку отримання даних є далекомір. Для цього був використаний ультразвуковий далекомір HC-SR04, який живиться від STM32F401-Nucleo. Пін Тrig підключений до PC7, пін Echo підключений до PC6.(Рис. 2.2)

Зм.	ADK	№ доким.	Підпис	Дата

Рис. 2.2.1 Схема блоку отримання даних

2.3 Проектування блоку обробки даних

В якості схеми блоку обробки даних використовується плата STM32F401-Nucleo.

Тактування здійснюється підключенням внутрішнього тактового RC - генератора (HSI) з частотою 16 МГц, після проходження через переддільників (Prescaler), які в нашому випадку дорівнюють 1, надходить до шин без зміни, тобто шини тактуються з частотою 16 МГц.

2.4 Проектування блоку виведення даних

Блок виведення даних складається з сервоприводу, вхід керування якого підключається до порту РС8 мікроконтролеру. Сервопривод живиться від зовнішнього джерела з напругою 5 В. Схема блоку відображення даних зображено на рис. 2.4.

Арк 9

					ДК81.460839.001 ПЗ
Зм.	ADK	№ доким.	Підпис	Дата	

Рис. 2.4.1 Схема блоку виведення даних

Зм.	ADK	№ доким.	Підпис	Дата

3.ПРОГРАМА КЕРУВАННЯ ПРИСТРІЄМ

3.1 Структура програми

Програма керування пристроєм написана на мові програмування С з використанням бібліотеки CMSIS. Виконання програми здійснюється у функції main(). Спочатку визивається функція GPIO_Config(), яка конфігурує порти воду-виводу, як альтернативні. Після ПРОLО викликається функція TIM3_Config(), де налаштовується два канали. Перший канал відповідає за отримання сигналу з піну Есһо(РС6) на далекомірі, тобто перший канал налаштовуємо як input capture. Другий канал використовується для піну Trig(PC7) далекоміра, і форму ШІМ на цьому піні. Далі дозволяємо таймеру почати відлік, а також дозволяємо переривання, у якому буде відбуватись зчитування значень з далекоміру і наступна обробка цих значень. Переривання буде відбуватись за обома фронтами сигналу з піну Echo(PC6), а також по переповненню таймера. Наступною функцією визивається TIM4_Config(), яка відповідає за конфігурацію таймера 4 каналу 3. Цей таймер створює ШІМ сигнал для серводвигуна на піні РВ8.

У вічному циклі викликається функція angle() у яку передається у якості аргументу змінну Distance, що містить в собі відстань до перешкоди. Функція angle() перетворює значення змінної з одного діапазону в інший. Тобто у загальному вигляді значення змінної з ім'ям «value», яке дорівнює «fromLow», буде перетворено в число «toLow», а значення «fromHigh» — у значення «toHigh». Всі проміжні значення «value» масштабуються відносно нового діапазону від «toLow» до «toHigh». У нашому випадку значення імпульсу для двигуна знаходиться у діапазоні від 500 мс. до 2500 мс. А значення з далекоміра може приймати діапазон від ~2 см. до 400 см. За допомогою функції angle ми перетворюємо значення далекоміра у діапазон значень для серводвигуна. Потім функція angle() повертає значення довжини імпульсу серводвигуна і ми змінюємо значення імпульсу для ШІМ.

Зм.	Адк	№ доким.	Підпис	Дата

3.2 Структура даних

Таблиця 3.2.1 Використані змінні

Назва	Тип змінної	Призначення
Distance	32 розрядна змінна типу	Збереження значення
Distance	unsigned long	відстані до перешкоди
pulse_width	32 розрядна змінна типу	Довжина вхідного
puisc_widui	unsigned long	імпульсу далекоміра
		Зберігається поточне
current_captured	32 розрядна змінна типу	значення фронту
current_captured	unsigned long	вхідного імпульсу
		далекоміра
		Зберігається минуле
last conturad	32 розрядна змінна типу	значення фронту
last_captured	unsigned long	вхідного імпульсу
		далекоміра
		Зберігається полярність
	32 розрядна змінна типу	сигналу для того щоб ми
signal_polarity	unsigned long	рахували тільки
	unsigned long	довжину сигналу у стані
		лог. «1»
		Використовується для
tomn	32 розрядна змінна типу	перетворення значення з
temp	unsigned long	діапазону відстані до
		діапазону серводвигуна

Таблиця 3.2.2 Використані виводів плати NUCLEO

Назва	Призначення
PB8	Комутація сервоприводу з
	мікроконтролером

Зм.	ADK	№ доким.	Підпис	Дата

PC6	Комутація мікроконтролеру з піном
	Echo далекоміра
PB7	Комутація мікроконтролеру з з піном
	Trig далекоміра

Таблиця 3.2.3 Регістри мікроконтролера, застосовані в програмі

Назва	Призначення
AHB1ENR	Ввімкнення тактування портів GPIOB
	та GPIOC
APB1ENR	Дозвіл тактування системної шини,
	ТІМ3 та ТІМ4
GPIOx (MODER)	Налаштування роботи РВ8, РС6, РС7
	на альтернативну функцію
GPIOx (AFRL)	Вибір альтернативної функції РВ8,
	PC6, PC7
TIMx(PSC)	Задає значення переддільника частоти
	таймеру
TIMx(CR1)	Налаштування таймера
	(напрям рахунку, вирівнювання)
TIMx(ARR)	Задає значення до якого буде
	рахувати таймер
	(завдання періоду імпульсів)
TIM3 (CCMR1)	Вибір режиму input capture першого
	каналу та PWM1 другого каналу для
	таймера 3
TIM3(CCER)	Встановлюємо активний фронт.
	Встановлення полярності вихідного
	ШІМ сигналу та дозвіл ШІМ на вихід

Зм.	ADK	№ доким.	Підпис	Дата

Задає довжину імпульсу ШІМ
сигналу (разом із ARR визначає
скважність)
Ввімкнення головного виходу
каналу(МОЕ)
Ввімкнення таймеру
Дозвіл переривання по переповненню
таймера
Встановлення полярності вихідного
ШІМ сигналу та дозвіл ШІМ на вихід
Встановлення пріоритету обробника
переривань
Вмикаємо переривання
Вибір режиму роботи
каналу як PWM1, CCR1
встановлюється після встановлення
UEV flag, тобто після переповнення
таймеру
Встановлення полярності вихідного
ШІМ сигналу та дозвіл ШІМ на вихід
Встановлення довжини імпульсу
ШІМ для таймеру 4 каналу 3
Ввімкнення таймеру

Зм.	Adk	№ доким.	Підпис	Дата

3.3 Опис алгоритмів окремих підпрограм

3.3.1 Опис роботи функції GPIO_Config:

В даній функції відбувається включення тактування системної шини АНВ1, порту GPIOB та GPIOC. Для цього необхідно налаштувати регістр AHB1ENR з блоку регістрів RCC (Reset and Clock Control). Біт 1 (GPIOBEN) та біт 2 (GPIOBEN) необхідно встановити в 1(Рис. 3.3.1).

6.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Рис. 3.3.1 Біти шини АНВ1

Далі йде конфігурування PB8, PC6, PC7 як альтернативної функції. Для цього у регістрі GPIOB(MODER) та GPIOC(MODER) з блоку регістрів GPIO необхідно біти 13 та 12 (MODER6) для PC6, біти 14 та 15(MODER7) для PC7, і біти 16 та 17 (MODER8) для PB8 встановити відповідно у 1 та 0. (Рис. 3.3.2)

Зм.	Адк	№ доким.	Підпис	Дата

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

- 0x0C00 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

Рис. 3.3.2 Встановлення режиму роботи портів воду-виводу

Далі вибирається тип альтернативної функції. Для PC6 – TIM3_CH1(Puc. 3.3.3), PC7 – TIM3_CH2, PB8 – TIM4_CH1(Puc. 3.3.4).

Table 9. Alternate function mapping (continued)

	Port	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Foit	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PB0	-	TIM1_CH2N	тімз_снз	-	-	-	-	-	-		-	-	-	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-		-	-	-		-	-	-	-	-	EVENT OUT
	PB2	-	-	-	=	-	-	=	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK/ I2S3_CK	-	-	I2C2_SDA	-	-	-	-	-	EVENT OUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_ MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1 _MOSI	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB6	-	-	TIM4_CH1	=	I2C1_SCL	-	=	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT
Port B	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	-	-	-	EVENT OUT
	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	-	-	-	SDIO_ D4	-	-	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	=	-	-	-	-	-	SDIO_ D5	-	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PR14	-	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB15	RTC_ REFN	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT

Рис. 3.3.3 Таблиця альтернативних функцій для GPIOB

Зм.	ADK	№ доким.	Підпис	Дата

											/						
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	I2C2/ I2C3	OTG1_FS		SDIO			
	PC0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT
	PC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT
	PC5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT
	PC6	-		TIM3_CH1	-	-	I2S2_MCK	-	-	USART6_ TX	-	-	-	SDIO_ D6	-	-	EVENT
ပ္	PC7	-		TIM3_CH2	-	-	-	I2S3_MCK	-	USART6_ RX	-	-	-	SDIO_ D7	-	-	EVENT
Port C	PC8	-	-	TIM3_CH3	-	-	-	-	-	USART6_ CK	-	-	-	SDIO_ D0	-	-	EVENT
	PC9	MCO_2	-	TIM3_CH4	-	I2C3_SDA	I2S_CKIN	-	-	-	-	-	-	SDIO_ D1	-	-	EVENT
	PC10	_	_	_	_	_	_	SPI3_SCK/	_	_	_	_	_	SDIO_	_	_	EVENT

Table 9. Alternate function mapping (continued)

Рис. 3.3.4 Таблиця альтернативних функцій для GPIOC

SPI3_MOSI/ I2S3_SD

Функція обирається шляхом встановлення бітів 27, 26, 25, 24 (AFRL6) для РС6, регістра GPIOC(AFRL) у комбінацію 0010 (AF2). Далі робимо теж саме для портів РС7 та PB8, тобто для РС7 встановлюємо біти, 31, 30, 28, 29 (AFRL) регістра GPIOC(AFRL) у комбінацію 0010 (AF2). Для PB8 встановлюємо біти 3, 2, 1, 0 (AFRH) регістра GPIOC(AFRH) у комбінацію 0010.

3.3.2 Опис роботи функції TIM3_Config:

В даній функції виконується налаштування таймеру 4, каналу 1, який буде у режимі Іприt сарture та буде вимірювати тривалість імпульсу далекоміра, та каналу 2, який буде налаштований як ШІМ для далекоміра. Спочатку вмикаємо тактування таймеру встановивши біт у регістрі APB1ENR. Далі встановлюємо переддільник у значення 15 шляхом занесення у регістр PSC значення 16-1 (тобто 15). Після встановлення переддільника, частота буде розраховуватись так:

$$F_{ClockCNT} = rac{F_{ClockPSC}}{Prescaler + 1} = rac{16 \cdot 10^6}{15 + 1} = 1 \cdot 10^6 \, \Gamma$$
ц = 1 М Γ ц

Зм.	ADK	№ докцм.	Підпис	Дата

EVEN1

EVENT

EVENT

SDIO

Тобто тактова частота буде дорівнювати 1 МГц, звідси період одного такту буде дорівнювати 1 мкс. Далі встановлюємо максимальне значення до якого буде рахувати лічильник шляхом занесення у регістр ARR значення 0хffff. Тобто лічильник буде рахувати до значення 65535. Розрахувати період лічильника можна наступним чином:

$$T_{CNT} = (1 + ARR) \cdot \frac{1}{F_{ClockCNT}} = (1 + 65535) \cdot \frac{1}{1 \cdot 10^6} \approx 0.065 = 65 \text{ Mc.}$$

Отже період лічильника буде дорівнювати 65 мс. Далі налаштовується перший канал у режим input capture. Для того щоб вибрати режим input capture, встановлюємо лог. 1 у біт 0 і лог. 0 у біт 1 регістру CCMR1. Так як фільтрація нам не потрібна, ми її вимикаємо шляхом занесення лог.0 у відповідний біт регістру CCMR1. Далі обираємо активний фронт по якому буде виконуватись переривання. У нашому випадку це обидва фронти, тобто «both edges». Для цього заносимо лог. 1 у два відповідних біта регістру ССЕР, які відповідають за передній і задній фронти. Потім вимикаємо режим input capture і дозволяємо переривання. Далі налаштовується канал 2 того ж самого таймеру 3. Його налаштовуємо як ШІМ, режим 1. Тобто коли в нас лічильник менший за значення регістру CCR2, то на виході буде сигнал високого рівню, а коли лічильник буде мати більше значення ніж CCR2, то на виході буде сигнал низького рівню. Для цього встановлюємо відповідні біти в лог. 1 у регістр CCMR1 (OC2M = 110). Далі встановлюємо Preload біт для того щоб значення у регістрі CCR2 не змінювалось відразу, а змінювалось тільки після переповнення лічильнику. Після цього у регістрі ССЕЯ налаштовуємо полярність сигналу і вмикаємо вихід каналу 2. Вмикаємо головний вихід(MOE) у регістрі BDTR. Встановлюємо регістр CCR2 у значення 10. Тобто тривалість високого сигналу ІШМ буде становити 10 мкс. Далі включаємо таймер, встановлюємо пріоритетність переривання і вмикаємо переривання.

3.3.3 Опис роботи функції TIM4_Config:

Цей таймер використовується як ШІМ для серводвигуна. Період ШІМу повинен бути 20 мс, а тривалість імпульсу повинна бути від 500 до 2500 мкс.

Зм.	ADK	№ докцм.	Підпис	Дата

Спочатку вмикається тактування таймеру ТІМ4 встановленням у 1 біта 2 (ТІМ4ЕN) регістра APB1ENR з блоку регістрів RCC. Задається значення переддільника частоти — 16-1, занесенням даної константи у регістр PSC. Значення ARR встановлюємо у 0х4Е20, тобто 20 000. Порахувавши за формулою наведеною у п. 3.3.2 період сигналу буде дорівнювати 20 мс. Встановлюємо канал як ШІМ з режимом 1 (ОСЗМ = 110). Для цього встановлюємо відповідні біти в лог. 1 у регістр CCMR2. Далі встановлюємо Preload біт у регістрі CCMR2. Після цього у регістрі ССЕR налаштовуємо полярність сигналу і вмикаємо вихід каналу 3. Вмикаємо головний вихід(МОЕ) у регістрі ВDTR. Встановлюємо регістр CCR2 у значення 1520. Тобто тривалість високого сигналу ІШМ буде становити 1520 мкс. Далі включаємо таймер. Отримано ШІМ з періодом 20 мс.

3.3.4 Опис роботи функції TIM3_IRQHandler:

Ця функція ϵ обробником переривань. Тобто коли трапляється переривання з таймеру 3 каналу 2, то ми потравляємо у цю функцію.

У нашому випадку ми потрапляємо у цю функцію, коли приходить передній або задній фронт з далекоміра. Щоб визначити тривалість імпульсу ми зберігаємо значення таймеру щойно надійшовшого фронту змінну current_captured. У змінну last_captured зберігаємо минулий фронт current_captured у кінці всіх дій. Тобто у current_captured записуємо значення perictpy CCR1. Далі ми змінюємо полярність сигналу у змінній signal_polarity, для того щоб рахувати довжину сигналу тільки коли він знаходиться у стані лог. 1 і ігнорувати довжину коли сигнал знаходиться у стані лог. 0. Наступним кроком ми робимо перевірку стану полярності (signal_polarity), якщо полярність дорівнює 0, то буде розраховуватись довжина імпульсу. Також тут потрібно зробити механізм захисту коли передній фронт прийшов на одному періоді таймера, а задній фронт прийшов коли вже наступний період таймеру. Для цього після перевірки на полярність ми також перевіряємо чи більше current_captured за last_captured. Якщо так то все добре і фронти знаходяться на одному періоді і тоді ми просто робимо різницю між ними і отримаємо довжину імпульсу.

Зм.	Арк	№ доким.	Підпис	Дата

$$Pulse_{width} = \textit{CurrentCaptured} - \textit{LastCaptured}$$

А якщо current_captured менший за last_captured, тобто у current_captured було записано значення зафіксованого заднього фронту на наступному періоді таймеру, тоді ми беремо максимальне значення таймеру, яке було записано у регістр ARR, і від нього віднімаємо last_captured а потім додаємо current_captured, і ми отримаємо коректне значення довжини імпульсу.

$$Pulse_{width} = 0xffff - lastCaptured + CurrentCaptured$$

Наприклад передній фронт прийшов коли значення лічильнику дорівнювало 0xfffe, а задній фронт прийшов коли значення лічильнику вже переповнилось і стало дорівнювати 5. Тоді згідно нашої формули будемо мати наступне:

$$Pulse_{width} = 0xffff - fffe + 5 = 6$$
 мкс

Після обрахунку довжини, зберігаємо current_captured у змінній last_captured. Далі робимо перетворення до сантиметрів:

$$Distance(cm) = Pulse_{width} \cdot \frac{0.034}{2}$$

Тобто для того щоб перевести у відстань, нам потрібно виміряну довжину сигналу(у мкс) помножити на швидкість звуку, яка дорівнює 340 м/с. З урахування того, що довжина імпульсу вимірюється в мкс і результат ми хочемо отримати в см, нам потрібно швидкість звуку перевести з м/с у см/мкс, тобто 340 м/с = 0.034 см/мкс. Також треба урахувати, що імпульс повинен досягти перешкоди і потім повернутися назад, тому потрібно результат поділити на 2.

Тепер у змінній Distance знаходиться коректне значення відстані до перешкоди.

3.3.5 Опис роботи функції angle()

Функція angle, як вже було сказано раніше перетворює значення змінної з одного діапазону в інший. В нашому випадку вона перетворює вхідну змінну Distance з далекоміра у діапазон з 500 до 2500. Формула для перетворення наступна:

Зм.	ADK	№ доким.	Підпис	Дата

$$VALUE_{RETURN} = \frac{(value - in_{MIN}) \cdot (Out_{MAX} - Out_{MIN})}{(In_{MAX} - In_{MIN})} + Out_{MIN}$$

$$= (value - 1) \cdot \frac{(2500 - 500)}{(400 - 1)} + 500$$

3.3.6 Опис роботи безкінечного циклу:

У безкінечному циклі передається значення Distance у функцію angle, яка повертає значення в діапазоні від 500 до 2500. Далі це значення записуємо у регістр ССR3 таймеру 4, в результаті чого змінюється коефіцієнт заповнення ШІМ, і серводвигун зміщується на відповідний кут.

Зм.	Adk	№ доким.	Підпис	Дата

ВИСНОВОК

В ході виконання лабораторної роботи було створено пристрій повертання серводвигуна на заданий кут в залежності від відстані ультразвукового далекоміра до перешкоди.

Було досліджено серводвигун MG995, який обертається на заданий кут за допомогою ШІМ сигналу. Також було досліджено ультразвуковий далекомір HC-SR04.

Розроблено схему електричну принципову для створення пристрою.

Під час виконання роботи було створено прототип пристрою з наведеними вище модулями, якими керував мікроконтролер STM32F401RE.

У ході роботи було досліджено роботу з мікроконтролером STM32F401RE NUCLEO та набуто навички з використання регістрів, таймерів, їх режимів та переривань.

Розроблено програмне забезпечення у середовищі ARM Keil та описано принцип роботи програми.

Зм.	Адк	№ доким.	Підпис	Дата

ЛІТЕРАТУРА

- 1. 1.STM32F401RE Nucleo User Manual (UM1724). Режим доступу: https://www.st.com/content/ccc/resource/technical/document/user_manual/98/2 e/fa/4b/e0/82/43/b7/DM00105823.pdf/files/DM00105823.pdf/jcr:content/transl ations/en.DM00105823.pdf
- 2. 2.STM32F401RE Nucleo Programming Manual (PM0214). Режим доступу: www.st.com/resource/en/programming_manual/dm00046982.pdf
- 3. Reference_manual_STMF401(RM0368). Режим доступу: https://www.st.com/content/ccc/resource/technical/document/reference_manual/5d/b1/ef/b2/a1/66/40/80/DM00096844.pdf/files/DM00096844.pdf/translations/en.DM00096844.pdf
- 4. MG995: https://components101.com/motors/mg995-servo-motor
- 5. HC-SR04: https://create.arduino.cc/projecthub/abdularbi17/ultrasonic-sensor-hc-sr04-with-arduino-tutorial-327ff6

Зм.	Адк	№ доким.	Підпис	Дата