How to create a Biograph object?

Frans Willekens

November 2012

1. Introduction

The purpose of this note is to show how to create a *Biograph* object. The R code is included in the on-line documentation of the *Biograph* package (Version 2). Several data sets are used to illustrate the preparation of a *Biograph* object: two sets of hypothetical data, four surveys and one follow-up study. The first hypothetical data set carries information on three subjects, the second on 22 subjects. The third data set is a subsample of the German Life History Survey (GLHS). It is the data set used by Blossfeld and Rowher (2002) to illustrate techniques of event history modeling. Data from the Netherlands Family and Fertility Survey 1989 (NLOG98) are considered next. The fifth example of how to prepare a *Biograph* object uses data from the Survey of Health, Ageing and Retirement in Europe (SHARE). The SHARE survey is modeled after the U.S. Health and Retirement Survey (HRS). The sixth example uses data from the National Family Health Survey of India, which is one of many Demographic and Health Surveys (DHS) organized in third-world countries and countries in transition. The final example uses medical data included in the *mstate* package for multistate modeling in R, developed by Putter and colleagues at Leiden University Medical Centre. The data cover 2279 leukemia patients who had a bone marrow transplant.

The Biograph object carries information on subjects, on transitions and on the observation period. The subject data consist of the date of birth and covariates, which may include time-varying covariates. In the GLHS data, being ever married is a time-varying attribute. The age at marriage is included in the data. Information on transitions includes state sequences and ages at transition. The state sequence is the sequence of states occupied by the subject from start to end of observation. The ages are ordered chronologically, with the age at the first transition displayed first, followed by the age at the second transition, etc.

A *Biograph* object is created in five steps. The first is the specification of the state space and the transitions. Transitions that are not relevant for the study are excluded. The transitions that are included are feasible and relevant. The second step is the selection of the covariates. The observation window for each subject in the observation is specified in the third step. It requires the dates at start and end of observation. In the fourth step, the state sequence is determined and the ages at transition are recorded. In the fifth and final step, all data are stored in a data frame and two data attributes are attached. The first is the format of the transition dates and the second is the transition matrix, i.e. the matrix of possible and relevant transitions. That matrix gives also information on the state space.

2. Hypothetical data A

Consider three individuals, one male and two females. Two have medium levels of education and one completed higher education. The three individuals are born in 1986. The first person is born on 5th April 1986, the second on 8th August 1986 and the third on 28th November 1986. Assume that during an interview on 9st May 2012

life history data were collected on living arrangements. Consider their living arrangements: living at the parental home (H), living alone (A), cohabiting (C) and married (M). The set of possible living arrangements constitutes the state space, which is denoted as {H, A, C, M}. The first person starts living independently on August 20, 2004 at the age of 18. It is her first transition, i.e. she leaves the parental home to live independently. She starts cohabitation December 1, 2011 and is still cohabiting at the time of interview. The second person starts living independently in September 2011. The exact date is not known. He is still living independently at survey date. The third person starts living independently on August 10, 2006 and marries on March 16, 2012. If the month of transition is known, but not the date, it is assumed that the transition takes place on the 15th of that month. The information on the transitions is shown in Table 1. A row carries information on an individual. A column has the date of entry in a given state.

Table 1. Transition	on dates for th	ree hypothetical individ	luals
A	С	M	
1 2004-08-20	2011-12-1	<na></na>	
2 2011-09-15	<na></na>	<na></na>	
3 2006-08-10	<na></na>	2012-03-16	

The covariates are sex and level of education. The observation window differs for each individual. It starts at birth and ends at interview. The data are shown in Table 2.

Ta	Table 2. Data on three hypothetical individuals						
	ID	start	end	sex	educ		
1	1	1986-04-05	2019-05-09	F	High		
2	2	1986-08-08	2019-05-09	M	Medium		
3	3	1986-11-28	2019-05-09	F	Medium		

The first column is the line number. The second column is the subject's identification number (ID). The third and fourth columns delineate the observation window. The dates are objects of class 'Date', which enables arithmetic and logical operations on the dates. The fifth and sixth columns show the covariates. The covariates are factors.

The fourth step in the preparation of a *Biograph* object results in state sequences and the transition dates. To determine the state sequence, the transition dates need to be ordered chronologically, i.e. the event that occurred first is listed first. The subsequent event is listed second, etc. The second event is not the same for everyone. In the data above, it is cohabitation for the first person and marriage for the third person. The function Sequences.ind.0 orders the dates chronologically and derives state sequences. The raw transition dates (shown above) are stored in a data frame with the dates as character variables. The function as.Date of base R is used to convert the character dates in Julian dates. The function is evoked using the code:

f <- Sequences.ind.0(d=dd,namstates=namstates,absorb=NULL)</pre>

where dd is the data frame with the transition dates and namstates is the state space. The function produces an object with several components, but two are of particular importance. They are the state sequence (f\$path) and the sorted transition dates

(f\$d). Table 3 shows the object produced by the function Sequences.ind.0. The components f\$d and f\$path are included in the *Biograph object*.

```
Table 3. Object produced by the function Sequences.ind.0

$namstates
[1] "H" "A" "C" "M"

$d

[,1] [,2] [,3]
[1,] 12650 15309 NA
[2,] 15232 NA NA
[3,] 13370 15415 NA

$path
[1] "HAC" "HA" "HAM"
```

The Julian dates are converted back to calendar dates (class 'Date') using the as. Date function. The results is a data frame, which in the code is called dates.

The final step is to assemble the data in a data frame and to add the date format and the matrix of transitions as attributes. The following code produces the *Biograph* object (Table 3):

```
Table 3. Biograph object. Hypothetical data A.
                                                                        Tr2
 TD
          born
                    start
                                  end sex
                                            educ path
                                                             Tr1
  1 1986-04-05 1986-04-05 2019-05-09 F
                                           High HAC 2004-08-20 2011-12-01
  2 1986-08-08 1986-08-08 2019-05-09
                                       M Medium
                                                 HA 2011-09-15
                                                                       <NA>
  3 1986-11-28 1986-11-28 2019-05-09
                                      F Medium HAM 2006-08-10 2012-03-16
```

The data frame has different data types. The function str(bio) displays the data types (Table 4):

```
Table 4. Data types in Biograph object

'data.frame': 3 obs. of 9 variables:

$ ID : num 1 2 3

$ born : Date, format: "1986-04-05" "1986-08-08" "1986-11-28"

$ start: Date, format: "1986-04-05" "1986-08-08" "1986-11-28"

$ end : Date, format: "2019-05-09" "2019-05-09" "2019-05-09"
```

Note that the path variable must be a character variable. It should not be a factor variable. The covariates are factor variables.

The Biograph function Parameters can be invoked to check whether the Biograph object is correctly specified: Parameters (bio). The object produced by the function lists the states in the state space and identifies absorbing states. The latter are states that are entered but left during the observation period. It shows the lowest age and the highest age in the observation period. It also shows the transition matrix, which consists of logical values: a 'TRUE' indicates the transitions that occur during the observation period and a 'FALSE' identifies the transitions that do not occur during the observation period. It shows the line numbers of the transitions and the frequency of transitions (\$nntrans). Finally, it lists the covariates and displays the date format. In this case the dates are of class 'Date' and a character string "%Y-%m-%d" gives the date format.

The R code for preparing the *Biograph* object for the three hypothetical individuals is given at the end of this note.

Dates are often expressed in CMC. The preparation of a *Biograph* object requires the same procedure. Let's convert the calendar dates to CMC, using the function Date.as.cmc of the *Biograph* package:

```
bio.cmc <- date.b (
    Bdata=bio,
    format.in="%Y-%m-%d",
    selectday=15,
    format.out="cmc",
    covs=NULL)</pre>
```

The Biograph object is shown in Table 5.

```
Table 5. Biograph object with dates in CMC
 ID born start end sex
                         educ idim ns path
                                          Tr1
1 1 1036 1036 1433 F
                        High 1 3 HAC 1256 1344
                                1 2
2 2 1040 1040 1433
                    M Medium
                                     HA 1341
                                                NA
  3 1043
         1043 1433
                    F Medium
                                1
                                   3
                                     HAM 1280 1347
```

3. Hypothetical data B

Suppose we have information on a sample of 22 individuals. The state space consists of four fictitious states {H, A, B, C}. C is an absorbing state. Suppose that three

transitions are possible: HA, AB and BC. Return transitions are not allowed. Assume that the information is collected retrospectively as part of a cross-sectional survey. The date of interview is the end of the observation period. Since the data are collected retrospectively, no one drops out during observation. The respondents are born in 1991 and start in state H. The exact date of birth is unknown but it is assumed that births are uniformly distributed throughout the year. The date of birth is obtained by adding a random number between 0 and 365 to 1st January 1991. For each individual, six dates are given: the date of birth, the date at entry into observation, the date of interview and the dates of transitions between the states. Of the 22 individuals, 10 do not experience a transition during the observation period, 4 experience one transition, 2 experience 2 transitions and 6 three. Respondent 1 is born on 31st July 1991 and enters observation on 2nd January 2007. He experiences the first event on 11th February, when he leaves H and enters A. On 23rd March, he experiences the second event, to state B. On 5th May he makes a transition to state C. He stays in that state until the end of observation on 25th May. The data are shown in Table 6.

The function Sequences.ind.0 orders the dates chronologically and derives the state sequence. The components f\$d and f\$path are included in the *Biograph* object. The following code produces the *Biograph* object:

The Biograph object is shown in Table 7.

Ta	ble 6	6. Hypothetica	al survey data:	multiple tran	sitions			
	ID	Born	Start	Stop	A	В	С	
1	1	31/07/1991	02/01/2007	25/05/2007	11/02/2007	23/03/2007	05/05/2007	
2	2	31/12/1991	17/01/2007	17/05/2007	04/05/2007	NA	NA	
3	3	21/04/1991	18/01/2007	10/05/2007	NA	NA	NA	
4	4	11/08/1991	22/01/2007	13/05/2007	28/02/2007	10/04/2007	10/05/2007	
5	5	17/07/1991	10/02/2007	23/05/2007	17/05/2007	NA	NA	
6	6	28/06/1991	30/01/2007	15/05/2007	12/02/2007	05/03/2007	17/04/2007	
7	7	01/09/1991	04/04/2007	06/05/2007	NA	NA	NA	
8	8	06/11/1991	29/04/2007	27/05/2007	NA	NA	NA	
9	9	24/01/1991	18/05/2007	29/05/2007	NA	NA	NA	
10	10	25/03/1991	20/05/2007	31/05/2007	NA	NA	NA	
11	11	29/04/1991	15/05/2007	18/05/2007	NA	NA	NA	
12	12	14/11/1991	05/02/2007	19/05/2007	25/02/2007	01/04/2007	02/05/2007	
13	13	07/01/1991	05/02/2007	10/05/2007	18/04/2007	30/04/2007	NA	
14	14	14/02/1991	06/02/2007	28/05/2007	18/05/2007	20/05/2007	NA	
15	15	27/04/1991	26/02/2007	22/05/2007	NA	NA	NA	
16	16	08/08/1991	10/03/2007	25/05/2007	NA	NA	NA	
17	17	04/02/1991	11/03/2007	12/05/2007	08/05/2007	NA	NA	
18	18	05/11/1991	28/03/2007	29/05/2007	NA	NA	NA	
19	19	09/04/1991	15/03/2007	10/05/2007	23/03/2007	08/04/2007	20/04/2007	

```
      20
      20
      24/12/1991
      13/04/2007
      20/05/2007
      NA
      NA
      NA

      21
      21
      16/04/1991
      04/04/2007
      11/05/2007
      09/05/2007
      NA
      NA

      22
      22
      31/03/1991
      25/04/2007
      31/05/2007
      16/05/2007
      20/05/2007
      26/05/2007
```

```
Table 7 Biograph object. Hypothetical data B
                      start
                                                         Tr1
                                                                    Tr2
                                                                               Tr3
            born
                                    end cov path
   1 1991-05-14 2007-01-02 2007-05-25
                                         X HABC 2007-02-11 2007-03-23 2007-05-05
    2 1991-05-22 2007-01-17 2007-05-17
                                          X HA 2007-05-04
                                                                   <NA>
                                                                              <NA>
    3 1991-12-27 2007-01-18 2007-05-10
                                          Х
                                               Н
                                                       <NA>
                                                                   <NA>
                                                                              <NA>
    4 1991-01-01 2007-01-22 2007-05-13
                                          X HABC 2007-02-28 2007-04-10 2007-05-10
                                              HA 2007-05-17
    5 1991-02-02 2007-02-10 2007-05-23
                                          Х
                                                                   <NA>
                                                                              <NA>
    6 1991-06-08 2007-01-30 2007-05-15
                                          X HABC 2007-02-12 2007-03-05 2007-04-17
                                                                              <NA>
    7 1991-06-23 2007-04-04 2007-05-06
                                               Н
                                                       <NA>
                                                                   <NA>
8
    8 1991-09-14 2007-04-29
                                                        <NA>
                            2007-05-27
                                               Η
                                                                   <NA>
                                                                              <NA>
    9 1991-10-06 2007-05-18 2007-05-29
                                               Н
                                                        <NA>
                                                                   <NA>
                                                                              <NA>
10 10 1991-03-10 2007-05-20 2007-05-31
                                               Н
                                                        <NA>
                                                                   <NA>
                                                                              <NA>
                                          Х
11 11 1991-06-24 2007-05-15 2007-05-18
                                               Η
                                                       <NA>
                                                                   <NA>
                                                                              <NA>
                                          Х
12 12 1991-02-07 2007-02-05 2007-05-19
                                          X HABC 2007-02-25 2007-04-01 2007-05-02
13 13 1991-06-01 2007-02-05 2007-05-10
                                             HAB 2007-04-18 2007-04-30
                                                                              <NA>
14 14 1991-06-14 2007-02-06 2007-05-28
                                             HAB 2007-05-18 2007-05-20
                                                                              <NA>
  15 1991-10-07 2007-02-26 2007-05-22
                                               Η
                                                       <NA>
                                                                   <NA>
                                                                              <NA>
16 16 1991-04-07 2007-03-10 2007-05-25
                                               Η
                                                        <NA>
                                                                              <NA>
17 17 1991-10-21 2007-03-11 2007-05-12
                                              HA 2007-05-08
                                                                   <NA>
                                          Х
                                                                              <NA>
18 18 1991-05-07 2007-03-28 2007-05-29
                                                       <NA>
                                                                   <NA>
                                              H
                                                                              <NA>
                                          X HABC 2007-03-23 2007-04-08 2007-04-20
19 19 1991-07-20 2007-03-15 2007-05-10
20 20 1991-09-05 2007-04-13 2007-05-20
                                          X
                                              H
                                                       <NA>
                                                                   <NA>
                                                                              <NA>
21 21 1991-09-15 2007-04-04 2007-05-11
                                             HA 2007-05-09
                                                                   <NA>
                                                                              <NA>
                                          Х
  22 1991-07-07 2007-04-25 2007-05-31
                                          X HABC 2007-05-16 2007-05-20 2007-05-26
```

The data types in the data frame are shown in Table 8.

```
Table 8. Data types in Biograph object
                  22 obs. of
'data.frame':
                              11 variables:
              1 2 3 4 5 6 7 8 9 10 .
 $ TD
       : int
 $ born : Date, format: "1991-12-18" "1991-12-28" "1991-09-06"
 $ start: Date, format: "2007-01-02" "2007-01-17" "2007-01-18"
       : Date, format: "2007-05-25" "2007-05-17" "2007-05-10" ...
               "X" "X" "X" "X"
 $ cov
        : chr
               "HABC" "HA" "H" "HABC"
 $ path : chr
       : Date, format: "2007-02-11" "2007-05-04" NA ...
 $ Tr1
       : Date, format: "2007-03-23" NA NA ...
       : Date, format: "2007-05-05" NA NA ...
 - attr(*, "format.date") = chr "%Y-%m-%d"
 - attr(*, "trans") = num [1:4, 1:4] NA NA NA NA 1 NA NA NA NA 2 ...
     attr(*, "dimnames")=List of 2
    ..$ From: chr [1:4(1d)] "H" "A" "B" "C"
     ..$ To : chr [1:4(1d)] "H" "A" "B" "C"
```

4. GLHS data

In this section, I describe how to prepare a Biograph object from the German Life History Survey (GLHS) data published by Blossfeld and Rohwer (2002).

The German Life History Survey (GLHS) provides detailed retrospective information on life histories of more than 5,000 men and women from three birth cohorts: 1929-31, 1939-41, and 1949-51. The data are collected in the years 1981-83. A subsample of the GLHS is used for training purposes by Blossfeld and Rohwer (2002) and Blossfeld et al. (2007). It consists of 201 respondents with 600 job episodes. Blossfeld

and co-authors illustrate two software packages: TDA (Transition Data Analysis) in the 2002 publication and Stata in the 2007 publication. The data file can be downloaded from www.soziologie-blossfeld.de/eha/tda/index.html and is also included in the *Biograph* package. The authors study the 600 job episodes. *Biograph* considers the full employment career that includes 600 job spells and 382 spells without a job. It addresses the complete sequence of both states and events that characterize the employment domain of the life course. Figure 1 shows the state space and the possible transitions.

A selection of the GLHS survey data is presented in Table 9. The raw data file is an episode file with one record for each job episode (long format). The data contain the date of birth and 5 covariates: sex, date of marriage, prestige score of the current job, prestige score of the next job and level of education. Education is the years of education derived from the highest educational attainment before entry into the labour market (Blossfeld and Rohwer, 2002, p. 44). Lower secondary school qualification without vocational training is equivalent to 9 years, middle school qualification 10 years, lower secondary school with vocational training 11 years, middle school with vocational training 12 years, Arbitur 13 years, professional college qualification 17 years and university degree 19 years. Observation starts at birth (TB) and ends at the date of interview (TI). A job episode is identified by a serial number (NOJ) and is characterized by the starting date of the episode (TS) and the ending date (TF). The starting date of the first job episode is the date of entry into the labour market. Dates are given in Century Month Code (CMC).

Consider subject 1. He is a male born in March 1929 (CMC 351). He enters the first job in March 1946 (CMC 555). That first job episode ends at survey date in October 1981 (CMC 982). The birth cohort is 1 (1929-31). The respondent is interviewed at the end of October 1981 (CMC 982). Blossfeld and Rohwer assume that the transition occurs at the beginning of a month and that the survey takes place at the end of the month. If the month of censoring is given and not the calendar date, *Biograph* assumes that censoring occurs at the beginning of the month. Therefore, one month is added to the censoring month given by Blossfeld and Rohwer: CMC 982 becomes CMC 983.

Table	9 TD	A inpu	t data	file rro	dat: ep	isode	file					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
1	1	555	982	1	982	351	555	679	34	-1	17	
2	1	593	638	2	982	357	593	762	22	46	10	

2	2	639	672	2	982	357	593	762	46	46	10	
2	3	673	892	2		357	593	762	46	-1	10	
Variable	Nan	ne	Description									
1	ID		Identifi	dentification number of subject								
2	NO.	J	Serial n	erial number of the job episode								
3	TS		Starting	arting time of the job episode								
4	TF		Ending	time o	of the jol	b episod	e					
5	SEX	ζ	Sex (1:	male; 2	2 female	e)						
6	TI		Date of	interv	iew (CN	AC)						
7	TB		Date of	birth (CMC)							
8	T1		Date of	Date of entry into the labour market (CMC) (denoted by TE)								
9	TM		Date of	Date of marriage (CMC) [0 if not married]								
10	PRE	ES	Prestige score of current job, i.e. of job episode in current record of data file							ı file		
11	PRE	ESN	Prestige score of the next job (if missing: -1)									
12	EDU	EDU Highest educational attainment before entry into labour market										

To convert the Blossfeld-Rohwer (2002) data into a *Biograph* object, two steps are required. The first is to read the data provided by Blossfeld and Rohwer in the original format and to create a data frame. One option is to read the data from the designated website http://oldsite.soziologie-blossfeld.de/eha/tda/. The code is

```
url.tda <- "http://oldsite.soziologie-
Blossfeld.de/eha/tda/cf_files/Data/RRDAT.1"
rrdat.1 <- as.matrix (read.table(file=url.tda),header=FALSE)
colnames(rrdat.1) <-
c("ID","NOJ","TS","TF","SEX","TI","TB","TE",
    "TM","PRES","PRES1","EDU")
rownames(rrdat.1) <-c(1:nrow(rrdat.1))
rrdat <- data.frame(rrdat.1)</pre>
```

The name of the data frame is rrdat. The raw data are also included in the *Biograph* package. The second option is therefore to load the data, once the package is installed. The raw data are loaded by the command: data(rrdat) and to create a data frame: rrdat <- data.frame (rrdat).

In the second step, the *Biograph* object is prepared, following the five steps described in the previous sections. The state space consists of two states: no job (N) and job (J). Everyone starts in state N. The reshape function is used to convert the long format to a wide format. When creating the wide format, the attributes of episodes (NOJ, PRES and PRESN) are omitted and a new covariate (birth cohort) is defined.

The Blossfeld-Rohwer data are limited to job episodes, with information on the starting month and ending month of a job episode. The authors assume that job episodes start at the beginning of the month and end at the end of the month. In *Biograph*, the end of an episode is not considered explicitly because the end of an episode is the beginning of a new episode. Episodes are assumed to start at the beginning of the month. From that data on job episodes, the start and end of episodes without a job are extracted.

```
Table 10. Biograph object. Selection of GLHS data.

ID born start end sex edu marriage LMentry cohort path Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7
```

1	1	351	351	983	Male	17	679	555	1929-31	NJ	555	NA	NA	NA	NA	NA	NA
2	2	357	357	983	Female	10	762	593	1929-31	NJJJN	593	639	673	893	NA	NA	NA
3	3	473	473	983	Female	11	870	588	1939-41	NJJJJJN	688	700	730	742	817	829	NA
4	4	604	604	983	Female	13	872	372	1949-51	NJN	872	927	NA	NA	NA	NA	NA
5	5	377	377	983	Male	11	701	583	1929-31	NJJJ	583	651	788	NA	NA	NA	NA
6	6	492	492	983	Male	11	781	591	1939-41	NJNJNJNJ	691	717	728	754	771	847	859

Two attributes are added to the data set. The first is the format of the transition dates:

```
attr(GLHS, "format.date") <- "CMC"</pre>
```

The second is the matrix of feasible transitions:

```
z <- Parameters (GLHS)
attr(GLHS, "trans") <- z$tmat</pre>
```

5. Netherlands Family and Fertility Survey 1998 (NLOG98)

Between February and May 1998 Statistics Netherlands (CBS) conducted the Netherlands Family and Fertility Survey (NLOG98). Data were collected on 5,450 women and 4,717 men, born in the period 1945-79 and residing in The Netherlands. They were 18 to 52 years at time of survey. A total of 5450 women and 4717 men were interviewed using structured questionnaires.

The NLOG98 provides extensive information on marital status, living arrangements, partnership and fertility. For each respondent, the NLOG98 reports up to three marriages and up to six cohabitations. Each marriage may be followed by a divorce or widowhood.

The data may be obtained from DANS (Data Archiving and Networked Services) (http://www.dans.knaw.nl/). The data are distributed in two SPSS files. The file BOAV98.SAV contains the data for females and the file BOAM98.SAV contains the data for males. For this illustration, data on women are used.

The raw data need considerable processing to be useful for the study of life histories. First, the public use file does not include the survey month. Although we know that the survey took place from February to May 1998, the month of interview is not given and is not available to researchers. The age of the respondent at the time of survey is given, however. The CMC at survey is estimated from the age at survey, the month of birth of the respondent and the months with transitions. No transition may occur after the survey date. The estimation procedure includes a random number generation to allocate the survey date to one of several plausible months. Second, the public use data file is not well suited for life history data analysis. The focus of the questionnaire was on partnership and not on timing of events. Life history data analysis requires that transitions are defined by terms of origin state, destination state and date of occurrence, and are ordered chronologically. The conversion of raw data into an event history data structure is a tedious process that was completed by Matsuo and Willekens (2003). The transition dates are recoded in century month codes (CMC). If necessary, imputation is accomplished. The emphasis on the sequence and timing of transitions did reveal several inconsistencies in the data that remain hidden otherwise. Particular sequences of transitions may not be possible (e.g. second child is born before first child) or plausible (e.g. marriage before leaving the parental home). Transitions may be missing (e.g. second marriage is reported while information on dissolution of first marriage is missing). The inconsistencies were investigated in

detail and corrected if it was clear that the inconsistent sequence or timing of transitions was due to errors in recording or coding. The report by Matsuo and Willekens (2003) and a set of about 10 SPSS syntax files that convert the original Public Use Data File into an event history data structure are available from the website of the Population Research Centre (PRC), University of Groningen (accessed 25 March 2012):

http://www.rug.nl/prc/publications/researchReports/index

The last SPSS syntax file saves the relevant data in the event history file. The name of the event history file is NLOG98_F_CMC.sav.

The illustration considers the life path until the first child is born. The life path starts at the parental home. We assume that the parental home may be left only once, although in reality persons may leave the parental home and return later at least for some time. The respondent may leave home for one of three reasons. The first is independence, which is manifested by leaving home to live alone. The second and third reasons involve union formation through marriage (second reason) or cohabitation (third reason). Childbearing may occur in each of the states. The states are:

- Living at parental home (H)
- Living alone (independently) (A)
- Married (M)
- Cohabiting (C)
- First child (K)

The state space is determined by a composite variable that combines three domains of life. The first domain of life is the living arrangement with three possibilities: living at the parental home, living alone, and living with someone. The second domain of life is the marital status with two possibilities: not married and married. The third domain is motherhood (fertility). The three state spaces are combined into a single state space and some combinations of states are excluded (e.g. cohabitating at the parental home, married while living at the parental home). Figure 1 shows the transitions considered in the analysis.

The following variables are extracted from the data file NLOG98_F_CMC.sav:

Dates:

	·····	
Va	riable name	Meaning
-	CMCINT	CMC at interview
-	CMCB_OP	CMC at birth
-	CMCLEAVE	CMC at leaving parental home
-	CMCCO1	CMC at first cohabitation
-	CMCE1CO	CMC at end first cohabitation
-	CMCCO2	CMC at second cohabitation
-	CMCE2CO	CMC at end second cohabitation
-	CMCCO3	CMC at third cohabitation
-	CMCE3CO	CMC at end third cohabitation
-	CMCCO4	CMC at fourth cohabitation
-	CMCCO5	CMC at fifth cohabitation
-	CMCMA1	CMC at first marriage
-	CMCE1MA	CMC at end of first marriage
-	CMCMA2	CMC at second marriage
-	CMCE2MA	CMC at end of second marriage
-	CMCMA3	CMC at third marriage
-	CMCE3MA	CMC at end of third marriage
-	CMC_K1	CMC at birth of first child

Covariates:

Variable name Meaning - kerkgez Religion

- educ Highest completed education

Two covariates are included in the data. The first is religion (labeled kerkgez in the original data distributed by Statistics Netherlands). The following categories are distinguished:

- 1. No religion (code 1 in original data file): 2395
- 2. Roman Catholic (code 2 in original data file): 1677
- 3. Protestant (codes 3, 4, 5 and 6 in original data file): 1014
- 4. Other religion (codes 7, 8, 9 and 10 in original data file): 357
- NA Missing data (coded 98, 99 and missing in original data file): 7

The second is the highest completed education. The following categories are distinguished:

- 1. Primary (code 2 in original data file): 363
- 2. Secondary lower (code 3 in original data file): 1250
- 3. Secondary higher (code 4 in original data file): 2489
- 4. First step high (code 5 in original data file): 869
- 5. Second step high (code 6 in original data file): 238
- 6. Third step high (code 20 in original data file): 20
- NA Missing data (code 9 and missing in original data file): 221

In addition, two birth cohorts are derived from the dates of birth. A total of 2306 respondents are born before 1960 and 3144 are born in 1960 or later.

Some respondents start a cohabitation or marriage in the month the previous cohabitation or marriage ended. We assumed that the transition is direct and not via a period of living alone. If a respondent starts cohabitation and marriage in the same month, we assumed that the transition is to marriage.

The interview date is given in CMC and the assumption is made that interview is at the end of the month (estimated). Since *Biograph* assumes that events, including censoring, is at the beginning of a month, a one is added to the interview month.

A data frame of transition dates is constructed and the NLOG98 variable labels (transitions) are replaced by the labels of **destination** states used in *Biograph*. The function Sequences.ind.0 orders the dates chronologically and derives the state sequence. The components f\$d andf\$path are included in the *Biograph* object. Table 11 shows a selection of the data in *Biograph* format.

Two attributes are added to the object. The first is the format of the transitions dates (cmc). The second is the transition matrix, i.e. the matrix of possible transitions. The matrix is:

		7	О		
From	Η	С	Α	M	K
Н	NA	1	NA	2	3
С	NA	4	5	6	7
Α	NA	8	9	10	11
M	NA	12	13	NA	14
K	NA	NA	NA	NA	NA

Ta	able	11.]	Biogra	iph o	bject.	NLOG98	}								
	ID	born	start	end		kerk	educ	cohort	YearInt	path	Tr1	Tr2	Tr3	Tr4	
4	4	787	787	1180	no	religion	3	1960+	1998	HC	1159	NA	NA	NA	
5	5	577	577	1179	no	religion	NA	<1960	1998	H	NA	NA	NA	NA	
6	6	734	734	1182	no	religion	4	1960+	1998	HCAC	979	981	1078	NA	
7	7	591	591	1181	no	religion	6	<1960	1998	HCACM	882	986	1003	1010	
8	8	707	707	1180	Roman	Catholic	NA	<1960	1998	HCMK	894	906	910	NA	
9	9	661	661	1179	no	religion	4	<1960	1998	HCACK	889	973	1059	1059	
10	10	571	571	1179	no	religion	4	<1960	1998	HMK	816	828	NA	NA	

6. Survey of Health, Ageing and Retirement in Europe (SHARE)

The Survey of Health, Ageing and Retirement in Europe (SHARE) (http://www.share-project.org/) is a multidisciplinary and cross-national panel database of micro data on health, socio-economic status and social and family networks of more than 55,000 individuals aged 50 or over from 20 European countries. SHARE is harmonized with the U.S. Health and Retirement Study (HRS) and the English Longitudinal Study of Ageing (ELSA). The SHARE baseline study (wave 1) was carried out in 2004. The third wave of data collection for SHARE (2008-09) focused on people's life histories. It is referred to as SHARELIFE. Almost 30,000 men and women across 13 European countries took part in this round of the survey. The respondents are representative for the European population aged 50 and over in Scandinavia (Denmark and Sweden), Central Europe (Austria, France, Germany, Switzerland, Belgium, and the Netherlands), and the Mediterranean (Spain, Italy and Greece), as well as two transition countries (the Czech Republic and Poland). The SHARELIFE questionnaire covers different domains of life, ranging from partners and children over housing and work history to detailed questions on health and health care. The SHARELIFE questionnaire has several modules and the data from each module are stored in a different data file. The following modules and data files are distinguished:

•	ac	Accommodation section
•	cs	Childhood section
•	dq	Disability
•	fs	financial history
•	gl	General life questions
•	gs	Grip strength
•	hc	Childhood health care
•	hs	Childhood health section
•	iv	Interviewer
•	rc	Retrospective children
•	re	Work history
•	rp	Partner section
•	st	Demographics
•	wq	Work quality
•	xt	End of life interview

The data are available for download after registration. Applicants must have a scientific affiliation and have to sign a statement confirming that under no circumstances the data will be used for other than purely scientific purposes. Data are available as SPSS and STATA files.

For the illustration of *Biograph*, I selected data on partnerships and living arrangement and downloaded the STATA files. The code to read the downloaded data is:

The SHARELIFE data are used to investigate how living arrangements change with age. The observation period is from birth to survey date. The state space is:

- Living at parental home (H)
- Living alone (independently) (A)
- Cohabiting (C)
- Married (M)

Four covariates are considered:

- Sex
- Education: year in which full-time education is ended
- Year in which respondent start first job
- Birth cohort: four birth cohorts: <1930, 1930-39, 1940-49, 1950+

The following variables are extracted from the raw data:

Dates:

	Variable name	Meaning
•	d.st\$mergeid	Identification number
•	d.st\$sl.st007	Year of birth
•	d.st\$s1.st006	Month of birth
•	d.ac\$sl.ac003.	Year of leaving parental home
•	d.rp\$sl.rp008.1	Year of first marriage
•	d.rp\$sl.rp008.k	Year of k-th marriage $(k = 1 \text{ to } 6)$
•	d.rp\$sl.rp013.k	Divorce $(k - 1 \text{ to } 4) \text{ (yes/no)}$
•	d.rp\$sl.rp014.k	Year of k-th divorce $(k = 1 \text{ to } 4)$
•	d.rp\$sl.rp004b.k	Year in which k-th cohabitation before a marriage
		started $(k = 1 \text{ to } 6)$
•	d.rp\$sl.rp012.k	Year in which k-th cohabitation ended $(k = 1 \text{ to } 4)$
•	d.rp\$sl.rp003.n	Year in cohabitation NOT related to marriage started
		(n = 11 to 18)
•	d.rp\$sl.rp012.n	Year in which cohabitation ended

Covariates:

	Variable name	Meaning
•	d.st\$sl.st011.	Sex
•	d.re\$sl.re002.	Year in which full-time education is finished

- d.rc\$sl.rc023. Number of children
- d.re\$sl.re011.1 Year of entry in labour market

A data frame of transition dates is constructed and the SHARELIFE variable labels (transitions) are replaced by the labels of destination states used in *Biograph*. The next step is to sort the dates at transition, using the Sequence.ind.0 function. The function produces state sequences and the sequence of dates at transition. The following code stores the data in a data frame:

Two attributes are added to the data file: the format of the transition dates (year) and the transition matrix. For one respondent the date of birth is missing; he is removed from the data.

Table 12 shows a selection of rows of the SHARELIFE data in the *Biograph* format.

7. National Family Health Survey of India 2005-06 (NFHS): Andhra Pradesh

The National Family Health Survey (NFHS) (http://www.nfhsindia.org/) is a large-scale, multi-round survey conducted in a representative sample of households throughout India. In total 109,041 households were interviewed. The survey provides state and national information for India on fertility, infant and child mortality, the practice of family planning, maternal and child health, reproductive health, nutrition, anaemia, utilization and quality of health and family planning services. NFHS surveys are conducted under the stewardship of the Ministry of Health and Family Welfare (MOHFW), Government of India. The nodal agency, responsible for coordination and technical guidance is the International Institute for Population Sciences (IIPS) in Mumbai.

Three rounds of the survey have been conducted since the first survey in 1992-93. The second survey was organized in 1998-99 and the third in 2005-06. The third survey (NFHS-3) covered all 29 states in India, which comprise more than 99 percent of India's population. The survey included 124,385 women and 74,369 men with completed interview (married and unmarried). Women interviewed were between ages 15 and 49, while men were between 15 and 54. All dates are in Century Month Code (CMC).

The data are available for download (after registration) through the Demographic and

Health Survey (DHS) data distribution system (http://www.measuredhs.com). Data files are available in user-friendly formats for SPSS, SAS, and STATA users. For the illustration of *Biograph*, I used the SPSS data file named APIR42RT.SAV and more particularly the data for women from the state of Andhra Pradesh (AP). The survey covered 5,153 women. The number of variables is 4,386. For the main survey report, see IIPS and Macro International (2007).

Suppose we are interested in the fertility career of women: when they marry, whether and when they have children, and whether and when they opt for sterilization. The state space is:

- Never married (N)
- Married without children (M)
- One child (a)
- Two children (b)
- Three children (c) up to 20 children (m)
- Sterilized (S)

The following variables are extracted from the raw data:

Dates:

	Variable name	Meaning
•	v011	Date of birth
•	v008	Date of interview
•	v509	Date of first marriage
•	b3.*	Date of birth of child (from youngest to oldest)
•	bord.*	Birth order of child
•	v312	Contraceptive method (sterilization = 6 (female) or 7 (male))
•	v317	Date of sterilization

Covariates:

Vario	able name	Meaning
•	v106	Level of education
•	v190	Wealth index
•	v102	Place of residence (urban/rural)
•	v201	Number of children ever born (nCEB)

In addition, three birth cohorts (COH) are distinguished: born before 1970, between 1970 and 1979, and in 1980 or later.

The observation window starts at birth and ends at time of interview. The date of interview is given in CMC. I assume that interview takes place at the beginning of the month.

The raw data present the months of birth of the children starting with the youngest child. In *Biograph* the dates should be ordered chronologically, i.e. from the birth of the oldest child to the birth of the youngest and last child. The first step is to arrange the CMCs at birth of children from the oldest child to the youngest child. The result is the object cmc_k06. The CMC at first marriage and the CMC at sterilization of the woman or her spouse are added next. A missing value (NA) indicates the absence of

sterilization. The dates are stored in the data frame cmc. The next step is to sort the dates at transitions, using the standard Sequence.ind.0 function. The function produces state sequences and the sequence of dates at transition.

The data are stored in a data frame (AP). Table 13 shows a selection of rows.

Ta	ıble	13 E	Biogra	ph ob	ject. NF	FHS	-AP									
	ID	born	start	end	COH	EDU	WEAL	U_R	path	Ev1	Ev2	Ev3	Ev4	Ev5	Ev6	
1	1	709	709	1273	<1970	0	2	_2	HMabcdS	936	937	964	1006	1045	1045	
2	2	997	997	1273	>=1980	1	2	2	HMabS	1200	1210	1238	1238	NA	NA	
3	3	1033	1033	1275	>=1980	0	2	2	HMa	1172	1197	NA	NA	NA	NA	
4	4	1009	1009	1273	>=1980	0	3	2	HMabS	1193	1202	1221	1221	NA	NA	
5	5	973	973	1273	>=1980	2	3	2	HMabS	1169	1200	1211	1211	NA	NA	
6	6	733	733	1273	<1970	0	4	2	HMabcS	919	949	997	1040	1046	NA	
7	7	985	985	1273	>=1980	2	4	2	HMabS	1241	1250	1262	1263	NA	NA	
8	8	1011	1011	1273	>=1980	0	3	2	HMa	1205	1238	NA	NA	NA	NA	

8. European Registry for Blood and Marrow Transplantation (EBMT)

a. Introduction

The hematopoietic stem cells in bone marrow in large bones produce new blood cells. Bone marrow transplantation is a treatment for people with certain forms of cancer such as leukemia and lymphoma. High doses of chemotherapy or radiation therapy can effectively kill cancer cells but they also destroy bone marrow, where blood cells are made. The purpose of a bone marrow transplant is to replenish the body with healthy bone marrow after a high-dose chemotherapy or radiation therapy. Transplanted cells are able to rebuild the patient's bone marrow. After a successful transplant, the bone marrow will start to produce new blood cells. Engraftment is the process of transplanted stem cells reproducing new cells. Bone marrow transplantation is also a treatment of acute leukemia patients whose bone marrow contains malignant cells.

The goal of cancer therapy is to bring the disease into remission. Remission is when the patient's blood counts return to normal and (in case of leukemia) bone marrow samples show no sign of disease. Patients may fail to attain a complete remission (CR) because of drug resistance or death. A percentage of patients who initially attain a CR will relapse. Relapse is the reoccurrence of the cancer. If the doses of therapy are not sufficiently high, they are not generally curative. They induce remission but the patient usually relapses. The purpose of bone marrow transplants is to provide the patient with healthy marrow so as to allow massive, and hopefully, curative doses of therapy.

There are two types of bone marrow transplants:

- Autologous bone marrow transplant The donor of the bone marrow (hematopoietic stem cells) is the person him/herself.
- Allogenic bone marrow transplant The donor is another person whose tissue has the same genetic type as the person needing the transplant (recipient). Because tissue types are inherited, it is more likely that the patient's brother or sister are suitable donors. If a family member does not match the recipient, the Marrow Donor Program Registry database is searched for an unrelated individual whose tissue type is a close match. If donor and recipient are compatible, the

infused cells will then travel to the bone marrow and initiate blood cell production.

The European Group for Blood and Marrow Transplantation (EBMT) (http://www.ebmt.org/) maintains a patient database known as the EBMT Registry. The Registry goes back to the beginning of the 1970's and contains patient clinical data. The population covered are patients who have undergone an haematopoietic stem cell transplantation (HSCT) procedure; patients with bone marrow failures receiving immunosuppressive therapies; and patients receiving non-haematopoietic cell therapies. Patients are followed up indefinitely. The data base has data on close to 400 thousand patients. The data cover aspects of the diagnosis, first line treatments, HSCT (hematopoietic stem cell transplantation) or cell therapy associated procedures, complications and outcome. The transplant data are submitted to the central registry by EBMT member centres performing any of the above treatments. The purpose of the Registry is to provide a pool of data to perform retrospective studies, assess epidemiological trends, or prepare prospective trials.

b. The data

The *mstate* package, developed by Putter and colleagues (see de Wreede et al, 2011), includes part of the EBMT data. The data, in a file names ebmt4, are from 2279 acute lymphoid leukemia (ALL) patients who had an allogeneic bone marrow transplant from an HLA-identical sibling donor between 1985 and 1998. An HLA-identical donor is a donor who shares the same HumanLeukocyte Antigens (HLA). The data were extracted from the EBMT database in 2004. All patients were transplanted in first complete remission. Events recorded during the follow-up of these patients were:

- i. Acute graft versus host disease (AGvHD). AGvHD is a GvHD of grade 2 or higher, appearing before 100 days post-transplant.
- ii. Platelet recovery. A platelet is a particle in the blood that is an important part of blood clotting. The bone marrow produces a large number of platelets per mm³ of blood daily. During chemotherapy, the platelet count drops significantly. Platelet recovery is the recovery of platelet count.
- iii. Relapse and death.

Four prognostic factors are known at baseline for all patients. They are: donor-recipient gender match (where gender mismatch is defined as female donor, male recipient), prophylaxis, year of transplant and age at transplant in years. All these covariates are treated as time-fixed categorical covariates. Younger patients have a better prognosis and transplantation before 1990 had a worse prognosis. Donor recipient gender mismatch seems to be of minor importance, while TCD shows a clear negative effect on failure-free survival.

The data were used in Fiocco, Putter & van Houwelingen (2008) and van Houwelingen & Putter (2008). The included variables are

ıd	Patient identification number
Rec	Time in days from transplantation to recovery or last follow-up
rec.s	Recovery status; $1 = \text{recovery}$, $0 = \text{censored}$
ae	Time in days from transplantation to adverse event (AE) or last follow-

up Adverse event status; 1 = adverse event, 0 = censored ae.s Time in days from transplantation to both recovery and AE or last recae follow-up Recovery and AE status; 1 = both recovery and AE, 0 = no recovery orplag.s no AE or censored rel Time in days from transplantation to relapse or last follow-up Relapse status; 1 = relapse, 0 = censoredrel.s Time in days from transplantation to death or last follow-up srv Relapse status; 1 = dead, 0 = censoredsrv.s Year of transplantation; factor with levels "1985-1989", "1990-1994", year "1995-1998" Patient age at transplant; factor with levels "<=20", "20-40", ">40" agecl Prophylaxis; factor with levels "no", "yes" proph Donor-recipient gender match; factor with levels "no gender match mismatch", "gender mismatch"

c. The model

In their research, the authors opt for a multistate approach because it enables the distinction between disease-related and the treatment-related morbidity and mortality. Information on the occurrence of two intermediate events (recovery and an adverse event) is used to update the prognoses of the patients. An example of an adverse event is an Acute Graft-versus-Host Disease (AGVHD). It is a complication that can occur after a bone marrow transplant in which the newly transplanted material attacks the transplant recipient's body. Instead of Recovery, Engraftment or platelet recovery can be included. The multistate model considers six states (with the state labels used in *mstate* and *Biograph* in parentheses):

- Alive and in remission, no recovery or adverse event (Tx, T);
- Alive in remission, recovered from the treatment (Rec, P);
- Alive in remission, occurrence of the adverse event (AE, A);
- Alive, both recovered and adverse event occurred (Rec+AE, Z);
- Alive, in relapse (treatment failure) (Rel, R);
- Dead (treatment failure) (Death, D).

All patients start in state Tx. States Rel and Death are called absorbing: once the patient has entered one of them, she/he stays there. This leaves us with a model with 12 transitions. Time is measured in days since transplant. Status variables (.s) indicate the (non)occurrence of a transition. For instance patient 2 experienced the adverse event after 12 days (transition from state Tx to state AE), then recovery after 29 days (transition from state AE to state "Rec+AE") and a relapse after 422 days (transition from state "Rec+AE" to state Rel). Finally, he/she died after 579 days. The last event is not relevant to the model because the patient had already reached an absorbing state.

A few adjustments of the data were required for a multi-state analysis. Since the model does not allow patients to enter two states at the same time, a patient who experienced relapse and death on the same day is assumed to have entered the absorbing state of relapse rather than death, because the patients must have experienced the relapse before their death. Patients who experienced the adverse event and recovery on the same day are assumed to have experienced the AE half a day before Rec. Two new variables have been created to express the time of entry in state "Rec+AE" and the accompanying status indicator: recae and recae.s respectively.

For modeling, the events relapse and death are combined into a single event 'failure'. Three intermediate events are included in the model: Recovery (Rec), an Adverse Event (AE) and a combination of the two (AE and Rec). To avoid misinterpretation, the authors have abstracted from the actual disease, covariate values and intermediate events. The data include four covariates: year at transplantation, age at transplantation, donor-recipient gender match and prophylaxis.

d. Preparation of Biograph object

The preparation of a *Biograph* object involves the five steps listed in previous sections of the paper. The state space includes the six states shown above. It is {T, P, A, Z, R, D}. All patients start in state T. In *Biograph*, transitions are specified a little different from the specification of transitions in the data (ebmt4). In case an event occurs, both a *mstate* object and a *Biograph* object show the date of the event. In case an event does not occur, the *mstate* object lists the date at censoring, which is the end of exposure to the risk of experiencing that event. A *Biograph* object shows NA for not applicable. The preparation of a *Biograph* object involves the removal of censoring dates in cases of non-occurrence of transitions. Note that in *Biograph*, a transition is defined by the state of destination. The transition dates are stored in the data frame days. Table 14 shows the first rows of the data frame. The maximum number of transitions patients experience is 3.

The first patient recoveres 22 days after transplantation. The second patient experiences an adverse event 12 days after transplantation, recoveres at 29 days and experiences a relapse 422 days after transplantation. Patient 4 enters relapse 84 days after transplantation. The observation ends at that time.

Ta	ble 1	4. Data	frai	me wi	th eve	nt dates in days since transplantation
	P	А	Z	R	D	
1	22	NA	NA	NA	NA	
2	NA	12.0	29	422	NA	
3	NA	27.0	NA	NA	NA	
4	NA	42.0	50	84	NA	
5	22	NA	NA	114	NA	

The covariates are

	Variable name	Meaning
•	match	Donor-recipient gender match
•	proph	Prophylaxis
•	year	Year of transplantation
•	agecl	Patient age at transplant

The observation window is from date of transplantation to date of entry into the

absorbing state. Time is measured in days since transplantation. The event dates are arranged chronologically and the state sequence determined by the function Sequences.ind.0:

```
f<- Sequences.ind.0 (days,namstates,absorb=c("R","D"))</pre>
```

Note the two absorbing states. The output component f\$path gives for each patient the state sequences. The event dates in days since transplantation are given in f\$d.

The data frame with all the data is produced by the code:

Two attributes are added: the format of the event dates (days) and the transition matrix. Table 15 shows the first rows of the data frame.

Ta	able	15.]	Biogra	iph o	bject. Sele	ction	of EB	MΊ	data						
	ID	born	start	end	year	agecl	proph			match	path	Ev1	Ev2	Ev3	
1	1	0	0	995	1995-1998	20 - 40	no	no	gender	mismatch	TP	22.0	NA	NA	
2	2	0	0	422	1995-1998	20 - 40	no	no	gender	mismatch	TAZR	12.0	29	422	
3	3	0	0	1264	1995-1998	20 - 40	no	no	gender	mismatch	TA	27.0	NA	NA	
4	4	0	0	84	1995-1998	20 - 40	no		gender	mismatch	TAZR	42.0	50	84	
5	5	0	0	114	1995-1998	>40	no		gender	mismatch	TPR	22.0	114	NA	
6	6	0	0	1427	1995-1998	20 - 40	no	no	gender	mismatch	TAZ	27.0	33	NA	
7	7	0	0	775	1995-1998	>40	no	no	gender	mismatch	TAZD	28.5	29	775	
8	8	0	0	1618	1995-1998	20-40	no	no	gender	mismatch	TP	31.0	NA	NA	
9	9	0	0	1111	1995-1998	20 - 40	no		gender	mismatch	TAZ	29.0	87	NA	
10	10	0	0	255	1995-1998	20-40	no	no	gender	mismatch	TR	255.0	NA	NA	

References

Blossfeld, H.P. and G. Rohwer (2002) Techniques of event history modeling. New approaches to causal analysis. Lawrence Erlbaum, Mahwah, New Jersey (2nd Edition).

Blossfeld, H.P., K. Golsh and G. Rohwer (2007) Event history analysis with Stata. Erlbaum, Mahwah, New Jersey.

De Graaf, A. and L. Steenhof (1999) Relatie en gezinsvorming van generaties 1945-1979: uitkomsten van het Onderzoek Gezinsvorming 1998 (Partnership and family formation of cohorts 1945-1979: results of the Netherlands Fertility and Family Survey 1998). *Maandstatiek Bevolking* 1999, December, pp. 21-36.

De Wreede, L.C., M. Fiocco and H. Putter (2011) mstate: An R package for the analysis of competing risks and multi-state models. *Journal of Statistical Software*, 38(7):1-30.

Fiocco M, Putter H, van Houwelingen HC (2008). Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. *Statistics in Medicine* **27**, 4340–4358.

International Institute for Population Sciences (IIPS) and Macro International. 2007. National Family Health Survey (NFHS-3), 2005–06: India: Volume I. Mumbai: IIPS.

Matsuo, H. and F. Willekens (2003) Event histories in the Netherlands Fertility and Family Survey 1998. A technical report. Research Report 03-1, Population Research Centre, University of Groningen. Available at http://www.rug.nl/prc/publications/researchreports/index

van Houwelingen HC, Putter H (2008). Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. *Lifetime Data Anal* **14**, 447–463.

Table 1	1 Biogra	aph object. S	HARELIFE	data													
	ID	born	start	end	country	IDc	cohort	sex	eduf	job1	children	path	Tr1	Tr2	Tr3	3 Tr4	
12405	12405	1952.250	1952.250	2008.5	Spain	ES-744755-01	1950+	female	1965	1972	2	HM	1975	NA	NA	NA	
5639	5639	1937.917	1937.917	2008.5	Switzerland	Cf-273420-01	1930-39	female	1956	1956	NA	HAM	1955	1979	NA	NA	
14523	14523	1940.917	1940.917	2008.5	France	FR-653700-01	1940-49	female	1960	1965	2	HM	1964	NA	NA	NA	
9514	9514	1955.167	1955.167	2008.5	Denmark	DK-380793-02	1950+	female	1975	1975	2	HACM	1973	1973	1976	NA	
6247	6247	1922.917	1922.917	2008.5	Switzerland	Cg-396802-01	<1930	female	1944	1944	NA	HMACM	1963	1967	1969	1988	
19039	19039	1947.500	1947.500	2008.5	Italy	IT-284033-01	1940-49	female	1967	NA	3	HM	1967	NA	NA	NA	
22187	22187	1948.917	1948.917	2008.5	Netherlands	NL-639208-02	1940-49	male	1963	1963	2	HM	1970	NA	NA	NA	
23030	23030	1930.167	1930.167	2008.5	Poland	PL-002013-01	1930-39	female	1940	1955	4	HM	1958	NA	NA	NA	
12920	12920	1948.667	1948.667	2008.5	France	FR-011657-02	1940-49	female	1965	1968	2	HA	1968	NA	NA	NA	
811	811	1922.833	1922.833	2008.5	Austria	AT-953411-01	<1930	female	1936	NA	1	HACM	1955	1955	1976	NA	