Лабораторная работа №7.

КОМБИНИРОВАННЫЙ МЕТОД ХОРД И КАСАТЕЛЬНЫХ

Цель работы: приобретение и закрепление практических навыков при решении нелинейных уравнений комбинированным методом хорд и касательных.

Задание. Найти один из корней уравнения (2) из таблицы (3.1) комбинированным методом хорд и касательных с погрешностью $\varepsilon = 0.001$.

Указать число итераций необходимое для достижения заданной точности.

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- проверку выполнения достаточного условия существования и единственности корня уравнения (2) внутри найденного отрезка;
- выбор начального приближения x_0^* в методе Ньютона, обеспечивающего выполнение достаточного условия сходимости;
- необходимые расчеты в соответствие с алгоритмом комбинированного метода хорд и касательных;
- таблицу результатов вычислений на основе комбинированного метода хорд и касательных;
 - выводы по работе.

Пример. Найти комбинированным методом хорд и касательных с погрешностью $\varepsilon = 0,001$ один из корней уравнения

$$x^3 + 3x^2 - 1 = 0. (7.1)$$

В примере 3.2 из лабораторной работы №3 был установлен отрезок [a,b] = [0;1], внутри которого находится ровно один из корней уравнения (7.1): $F(0)F(1) = -1 \cdot 3 < 0$ и $F'(x) = 3x^2 + 6x \ge 0$ при $x \in [0;1]$. Любая точка этого отрезка может быть принята за корень

уравнения (7.1) с погрешностью, не превышающей длины отрезка [a,b], равной единицы.

Итерационный процесс уточнения корня уравнения (7.1) комбинированным методом хорд и касательных описывается двумя формулами:

$$x_{n} = \frac{x_{n-1}F(x_{n-1}^{*}) - x_{n-1}^{*}F(x_{n-1})}{F(x_{n-1}^{*}) - F(x_{n-1})}, \quad n = 1, 2, 3, \dots$$
 (7.2)

$$x_n^* = x_{n-1}^* - \frac{F(x_{n-1}^*)}{F'(x_{n-1}^*)}, \qquad n = 1, 2, 3, \dots$$
 (7.3)

где $\{x_n\}$, n=0,1,2,3,..., — приближения, вычисленные по методу хорд; $\{x_n^*\}$, n=0,1,2,3,..., — приближения, вычисленные по методу касательных. Очевидно, что точное значение корня уравнения \overline{x} удовлетворяет неравенству: $x_n < \overline{x} < x_n^*$. Так как для функции $F(x) = x^3 + 3x^2 - 1$ на отрезке [0;1] выполняются неравенства F(0) < 0, F(1) > 0, $F'(x) = 3x^2 + 6x \ge 0$ и F''(x) = 6x + 6 > 0, то, вопервых, неподвижным будет правый конец отрезка [a,b] = [0;1], то есть точка b=1: $F(1)F''(1)=1\cdot 2>0$, и, во-вторых, в качестве начального приближения x_0^* в формуле (7.3) выберем также правый конец отрезка [a,b] = [0;1], для которого выполняется достаточное условие сходимости метода Ньютона: $F(x_0)F''(x_0)>0$.

Процесс вычислений приближенного значения корня уравнения с заданной погрешностью $\varepsilon = 0{,}001$ следует продолжать до тех пор, пока не будет выполнено условие останова: $\left|x_n - x_n^*\right| < \varepsilon$.

На первой итерации вычислений имеем:

$$x_{1} = \frac{x_{0}F(x_{0}^{*}) - x_{0}^{*}F(x_{0})}{F(x_{0}^{*}) - F(x_{0})} = \frac{0 \cdot (1^{3} + 3 \cdot 1^{2} - 1) - 1 \cdot (0^{3} + 3 \cdot 0^{2} - 1)}{(1^{3} + 3 \cdot 1^{2} - 1) - (0^{3} + 3 \cdot 0^{2} - 1)} = 0,2500,$$

$$x_1^* = x_0^* - \frac{F(x_0^*)}{F'(x_0^*)} = 1 - \frac{1^3 + 3 \cdot 1^2 - 1}{3 \cdot 1^2 + 6 \cdot 1} = 0,6667.$$

Проверяем условие останова: $|x_1 - x_1^*| = |0,2500 - 0,6667| = 0,4167 > \varepsilon$.

Вторая итерация вычислений дает:
$$x_2 = \frac{x_1 F\left(x_1^*\right) - x_1^* F\left(x_1\right)}{F\left(x_1^*\right) - F\left(x_1\right)} =$$

$$=\frac{0,25\cdot \left(0,6667^3+3\cdot 0,6667^2-1\right)-0,6667\cdot \left(0,25^3+3\cdot 0,25^2-1\right)}{\left(0,6667^3+3\cdot 0,6667^2-1\right)-\left(0,25^3+3\cdot 0,25^2-1\right)}=0,4828\,,$$

$$x_2^* = x_1^* - \frac{F(x_1^*)}{F'(x_1^*)} = 0,6667 - \frac{0,6667^3 + 3 \cdot 0,6667^2 - 1}{3 \cdot 0,6667^2 + 6 \cdot 0,6667} = 0,5486,$$

$$|x_2 - x_2^*| = |0,4828 - 0,5486| = 0,0658 > \varepsilon$$
 и т.д.

Результаты вычислений комбинированным методом хорд и касательных представлены в таблице 1.

Таблица 1 Результаты вычислений на основе комбинированного метода хорд и касательных

n	X_{n-1}	x_{n-1}^*	$F(x_{n-1})$	$F\left(x_{n-1}^*\right)$	$F'(x_{n-1})$	\mathcal{X}_n	χ_n^*	$\left x_n - x_n^* \right $
1	0,0000	1,0000	-1,0000	3,0000	9,0000	0,2500	0,6667	0,4167
2	0,2500	0,6667	-0,7969	0,6296	5,3333	0,4828	0,5486	0,0659
3	0,4828	0,5486	-0,1883	0,0680	4,1946	0,5311	0,5324	0,0013
4	0,5311	0,5324	-0,0039	0,0012	4,0447	0,5321	0,5321	0,0000

Очевидно, что уже на *четвертой* итерации условие останова: $\left|x_n-x_n^*\right|<\varepsilon$, выполняется. Поэтому за приближенное значение корня \overline{x} уравнения (7.1) с заданной погрешностью $\varepsilon=0,001$ можно принять величину $x_3=0,532$, то есть $\overline{x}=0,532\pm0,001$.

Геометрическая интерпретация результатов вычислений комбинированным методом хорд и касательных представлена на рисунке 1.

Рис. 1. Геометрическая интерпретация уточнения корня уравнения (7.1) комбинированным методом хорд и касательных

Контрольные вопросы

- 1. Сформулировать достаточное условие существования и единственности корня уравнения внутри отрезка [a,b].
- 2. Записать формулу, реализующую алгоритм вычислений по методу хорд.
- 3. Записать формулу, реализующую алгоритм вычислений по методу Ньютона.
- 4. Дать геометрическую интерпретацию комбинированного метода хорд и касательных.
- 5. Записать формулу оценки погрешности на *n*-ом шаге комбинированного метода хорд и касательных.