Side Channel Analysis Contest 2022						
2. AES-128 alignment						
학교	국민대학교	이름	이현호			

1. 주어진 AES-128 파형의 특징

AES-128 암호화 과정의 소비 전력 신호는 기존 암호화 과정의 신호에 비해 기준 점으로부터 랜덤으로 50pt 내외로 흔들려있다. [그림 1]은 500개의 파형 중 2개의 파형을 겹쳐서 나타낸 것이다.

[그림 1] 2개의 파형을 겹쳐 나타낸 그림

2. 파형 정렬

상관전력분석은 각 파형에서 특정 연산의 전력값 집합과 중간값 집합과의 상관계수를 비교하여 키를 추정하는 방법이다. 만약 파형들이 흔들린다면 특정 연산과 전혀 상관없는 원소들이 포함된 집합이 될 수 있다. 따라서 다음 과 같은 전략을 통해 파형들을 정렬해준다.

- 1) 한 개의 파형을 기준으로 특정 구간을 기준으로 다른 파형과의 구간 상관계수를 구한다.
- 2) 가장 높은 상관계수를 갖는 구간을 기준으로 기준 파형을 제외한 나머지 파형들의 포인트 위치를 이동시킨다.

본 라이트업에서는 CTF-2-AES-ALIGN-trace.bin 파일에서 16번째 바이트부터 나오는 4바이트 파형 정보를 포함하는 것을 첫 번째 파형으로 두었다. 정렬할때 첫 번째 파형의 200~650포인트 구간을 기준점으로 잡았다. 이를 기준으로 다음 10개 파형에 대해 분석한 결과는 [표 1] 같다.

파형 순서	포인트 구간	상관계수
1	273 ~ 723	0.993703
2	211 ~ 661	0.994198
3	200 ~ 650	0.995537
4	203 ~ 653	0.994792
5	204 ~ 654	0.995188
6	211 ~ 661	0.995868
7	255 ~ 705	0.995273
8	203 ~ 653	0.993699
9	215 ~ 665	0.995987
10	215 ~ 665	0.993435

[표 1] 가장 높은 상관계수를 갖는 구간

이 외의 나머지 489개의 파형에서 상관계수가 0.9 이상인 구간을 발견할 수 있었다.

3. AES-128 마스터 키 복구

본 라이트업에서 사용할 기호와 그에 대한 정의는 다음 [표 2] 과 같다.

기호	정의
X[i]	평문 X 의 i 번째 바이트, $(0 \le i < 16)$
S	AES S-Box함수

[표 2] 기호 및 정의

[표 1]의 결과를 이용하여 499개의 파형을 한 파형을 기준으로 정렬시켰다.

[표 3]는 정렬 시킨 파형들을 이용하여 1라운드 S-Box연산을 중간값으로 두었을 때 실험 결과이다.

분석 바이트	추측 키	상관계수	비율
1	0x75	0.681603	2.503141
2	0x43	0.600587	2.456808
3	0x61	0.681908	2.527143
4	0x6E	0.722225	2.764683
5	0x44	0.464136	1.860471
6	0x6F	0.698161	2.486215
7	0x49	0.725047	2.458917
8	0x74	0.758537	3.206963
9	0x40	0.529714	2.202735
10	0x73	0.625471	2.371928
11	0x43	0.790201	2.984207
12	0x61	0.777010	2.897843
13	0x5F	0.645249	2.356901
14	0x63	0.725928	2.597044
15	0x74	0.738077	2.793030
16	0x66	0.765929	2.560539

[표 3] 파형 정렬 후 상관전력분석 실험

4. [표 3]의 추측 키를 바탕으로 복구한 Flag의 ASCII 코드는 다음과 같다.

uCanDoItsCa_ctf