## Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental property of computer programs known as locality

## **Today**

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

# Locality

 Principle of Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently









 Items with nearby addresses tend to be referenced close together in time



## **Locality Example**

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;</pre>
```

#### Data references

- Reference array elements in succession (stride-1 reference pattern).
- Reference variable sum each iteration.

#### Instruction references

- Reference instructions in sequence.
- Cycle through loop repeatedly.

**Spatial locality** 

**Temporal locality** 

**Spatial locality** 

**Temporal locality** 

## **Qualitative Estimates of Locality**

- Claim: Being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer.
- Question: Does this function have good locality with respect to array a?

```
int sum_array_rows(int a[M][N])
{
   int i, j, sum = 0;

   for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

## **Locality Example**

Question: Does this function have good locality with respect to array a?

```
int sum_array_cols(int a[M][N])
{
   int i, j, sum = 0;

   for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
   return sum;
}</pre>
```

## **Locality Example**

Question: Can you permute the loops so that the function scans the 3-d array a with a stride-1 reference pattern (and thus has good spatial locality)?

## **Memory Hierarchies**

- Some fundamental and enduring properties of hardware and software:
  - Fast storage technologies cost more per byte, have less capacity, and require more power (heat!).
  - The gap between CPU and main memory speed is widening.
  - Well-written programs tend to exhibit good locality.
- These fundamental properties complement each other beautifully.
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy.

## **Today**

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy



## **Caches**

- Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in a larger, slower device.
- Fundamental idea of a memory hierarchy:
  - For each k, the faster, smaller device at level k serves as a cache for the larger, slower device at level k+1.
- Why do memory hierarchies work?
  - Because of locality, programs tend to access the data at level k more often than they access the data at level k+1.
  - Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.
- Big Idea: The memory hierarchy creates a large pool of storage that costs as much as the cheap storage near the bottom, but that serves data to programs at the rate of the fast storage near the top.

## **General Cache Concepts**



## **General Cache Concepts: Hit**



## **General Cache Concepts: Miss**



# General Caching Concepts: Types of Cache Misses

## ■ Cold (compulsory) miss

Cold misses occur because the cache is empty.

#### Conflict miss

- Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at level k.
  - E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.
- Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
  - E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

### Capacity miss

 Occurs when the set of active cache blocks (working set) is larger than the cache.

## **Examples of Caching in the Mem. Hierarchy**

| Cache Type           | What is Cached?      | Where is it Cached? | Latency (cycles) | Managed By          |
|----------------------|----------------------|---------------------|------------------|---------------------|
| Registers            | 4-8 bytes words      | CPU core            | 0                | Compiler            |
| TLB                  | Address translations | On-Chip TLB         | 0                | Hardware<br>MMU     |
| L1 cache             | 64-byte blocks       | On-Chip L1          | 4                | Hardware            |
| L2 cache             | 64-byte blocks       | On-Chip L2          | 10               | Hardware            |
| Virtual Memory       | 4-KB pages           | Main memory         | 100              | Hardware + OS       |
| Buffer cache         | Parts of files       | Main memory         | 100              | os                  |
| Disk cache           | Disk sectors         | Disk controller     | 100,000          | Disk firmware       |
| Network buffer cache | Parts of files       | Local disk          | 10,000,000       | NFS client          |
| Browser cache        | Web pages            | Local disk          | 10,000,000       | Web browser         |
| Web cache            | Web pages            | Remote server disks | 1,000,000,000    | Web proxy<br>server |

## Summary

- The speed gap between CPU, memory and mass storage continues to widen.
- Well-written programs exhibit a property called *locality*.
- Memory hierarchies based on caching close the gap by exploiting locality.

# **Supplemental slides**

## **Conventional DRAM Organization**

#### d x w DRAM:

dw total bits organized as d supercells of size w bits



## Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.



## Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the CPU.



## **Memory Modules**



# **Storage Trends**

#### **SRAM**

| Metric      | 1985  | 1990      | 1995 | 2000 | 2005      | 2010 | 2015       | 2015:1985 |
|-------------|-------|-----------|------|------|-----------|------|------------|-----------|
| \$/MB       | 2,900 | 320       | 256  | 100  | <b>75</b> | 60   | 320        | 116       |
| access (ns) | 150   | <b>35</b> | 15   | 3    | 2         | 1.5  | <b>200</b> | 115       |

#### **DRAM**

| Metric            | 1985  | 1990 | 1995      | 2000      | 2005      | 2010  | 2015   | 2015:1985 |
|-------------------|-------|------|-----------|-----------|-----------|-------|--------|-----------|
| \$/MB             | 880   | 100  | 30        | 1         | 0.1       | 0.06  | 0.02   | 44,000    |
| access (ns)       | 200   | 100  | <b>70</b> | <b>60</b> | <b>50</b> | 40    | 20     | 10        |
| typical size (MB) | 0.256 | 4    | 16        | 64        | 2,000     | 8,000 | 16.000 | 62,500    |

#### **Disk**

| Metric            | 1985          | 1990        | 1995      | 2000    | 2005   | 2010  | 2015      | 2015:1985       |
|-------------------|---------------|-------------|-----------|---------|--------|-------|-----------|-----------------|
| \$/GB access (ms) | 100,000<br>75 | 8,000<br>28 | 300<br>10 | 10<br>8 | 5<br>5 | 0.3   | 0.03<br>3 | 3,333,333<br>25 |
| typical size (GB) | 0.01          | 0.16        | 1         | 20      | 160    | 1,500 | 3,000     | 300,000         |

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

## **CPU Clock Rates**

Inflection point in computer history when designers hit the "Power Wall"

|                           |       |       | ı       |       |        |           |             |           |
|---------------------------|-------|-------|---------|-------|--------|-----------|-------------|-----------|
|                           | 1985  | 1990  | 1995    | 2003  | 2005   | 2010      | 2015        | 2015:1985 |
| СРИ                       | 80286 | 80386 | Pentium | P-4   | Core 2 | Core i7(n | ) Core i7(h | )         |
| Clock<br>rate (MHz        | ) 6   | 20    | 150     | 3,300 | 2,000  | 2,500     | 3,000       | 500       |
| Cycle<br>time (ns)        | 166   | 50    | 6       | 0.30  | 0.50   | 0.4       | 0.33        | 500       |
| Cores                     | 1     | 1     | 1       | 1     | 2      | 4         | 4           | 4         |
| Effective cycle time (ns) | 166   | 50    | 6       | 0.30  | 0.25   | 0.10      | 0.08        | 2,075     |

(n) Nehalem processor(h) Haswell processor

67