

Diagnostic and Assessment Procedures

Diagnostics, Infection Control and Sterilization

Lesson Objectives:

- 1. Patient vital signs
- 2. Review collecting patient vital signs
- 3. List and define commonly used imaging studies
- 4. Discuss basic blood and urine chemistry tests
- 5. Describe different methods of tissue biopsy
- 6. Discuss cancer screening

Introduction

- Assessment First step in medical and surgical decision-making.
- Assessment data may include:
 - Vital Signs
 - Head to Toe Assessment of Body Systems
 - Laboratory Testing
 - Imaging Studies
- Tests and procedures done to rule out or confirm diagnosis
- Testing may provide guidance on what type of procedure (from below) is ideal for the patient
 - Invasive procedures
 - Noninvasive procedures
 - Minimally-Invasive and Endoscopic procedures

Sources of Patient Data

History and Physical Examination includes:

- History and Physical
- Diagnostic Imaging
- Laboratory findings
- Electrical studies
- Endoscopic studies
- Pulmonary diagnosis

Concepts Related to Pathology (Slide 1 of 2)

Pathology Overview:

- Study of disease and specific illnesses.
- Etiology: cause of disease; "etiology unknown" if cause is unclear.
- Morbidity: illness rate; mortality: death rate in a population.

Disease Assessment Terms:

- Course: progression of disease; pathogenesis: origin and development.
- Signs: measurable evidence (e.g., rash, fever); symptoms: patient-reported experiences.

Disease Events:

- Complication: separate from primary problem but occurs simultaneously or as a consequence.
- Exacerbation: worsening of condition; syndrome: unique group of signs.

Concepts Related to Pathology (Slide 2 of 2)

Course of Disease:

- Prognosis: prediction of outcome; expressed as excellent, good, poor, etc.
- Relapse: recurrence after remission; terminal: illness leading to death.
- Acute: sudden onset; chronic: long-term condition.

Treatment Vocabulary:

- Curative: resolves medical problem.
- Palliative: makes condition more tolerable without curing it.

Assessment Data: Vital Signs

- · Crucial for overall assessment.
- Surgical technologists may be responsible for measurement, documentation, and reporting.

Vital Signs Include:

- Temperature
- Pulse
- Respirations
- Blood pressure
- Oxygen saturation

Vital Signs - Temperature

Methods of Measuring Temperature

- Oral (Measures under the tongue)
- Temporal (Forehead)
- Tympanic (Ear)
- Rectal (will be +1 Degree)
- Axillary (Armpit, will be -1Degree)

Documenting temperature

- Record in Celsius.
- Tympanic artery thermometer (TAT) preferred in clinics.

Normal Range

• 96.8° F (36°C) - 100.4°F (38°C)

Oral

Range: 96.4° to 99.1°F

Temporal Artery

Range: Approximately 0.8°F

Rectal

• Range: 0.7° to 1°F

Axillary

• Range: 0.5° to 1°F

Vital Signs - Pulse / Heart Rate

- Reflection of stroke volume.
- Felt in artery as it expands with each heartbeat.

Normal Heart Rate:

- Varies by age, condition, and metabolic level.
- Adult: 60 to 100 beats per minute.

Strength of Pulse:

- Elastic and moderate strength is normal.
- Bounding: exceptionally strong.
- Weak or thready: barely palpable.

Vital Signs - Pulse / Heart Rate

Measurement Technique:

- Palpate artery, typically radial.
- Use pads of first three fingers.
- Count beats for 30 seconds and multiply by 2.
- For irregular pulse, count for a full minute.

How to Check Your Heart Rate:

- Place your index and middle finger on your wrist, right below the base of your thumb.
- When you feel your pulse, use a clock or timer and count the number of times your heart beats in 30 seconds.
- Once 30 seconds is up, multiply the number of beats you counted by two. (A typical resting heart rate is between 60–100 beats.)

Vital Signs - Respirations

Objective assessment of the number of breaths per minute

Measured when patient is unaware

- Do not tell patient you are measuring their respirations!
- Tip: Count respirations right after checking Pulse

Documenting respiration

- Breaths per minute
- Count number of breaths in 30 seconds, and multiply by 2

Normal Range

12-20 breaths per minute

Vital Signs - Blood Pressure

- Systolic pressure (when heart is ejecting blood)
 - Greater pressure
- Diastolic pressure (when heart is refilling)
 - Lower pressure
- Documenting blood pressure
 - Write the systolic pressure over the diastolic pressure
- Normal Range
 - Systolic ≤ 120mmHg
 - Diastolic ≤ 80mmHg

Mean arterial pressure (MAP)

- Average overall pressure.
- •(Systolic BP + 2xDiastolic BP)/3

Vital Signs - Oxygen Saturation

- Measured with pulse oximeter that attaches to the finger
- Determines level of oxygen in the blood using spectrometry
- Normal Range
 - ≥ 95%

Watch the "Pulse Oximeter" Video to get an understanding of how this device works

Pulse Oximeter Video

Pulse Oximeter Video

Summary of the Video:

- Pulse Oximetry works by detecting light that goes through the patient's finger
- 95% or Higher is the Normal Range
- These factors can give incorrect readings:
 - Darker Skin
 - Cold Fingers
 - Nail Polish

Watch the "Vital Signs" Video for an overview of:

- Vital Signs
- Normal Values
- Demo of how to collect Vital Signs from a Patient

Vital Signs with Skills Demo Video

Vital Signs with Skills Demo Video

Summary of Video:

• Temperature: 36-38°C

• Heart Rate: 60-100bpm

• Respiration: 12-20 breaths per minute

• BP<u><</u> 120/80mmHg

• 02 Sat: ≥ 95%

Electrocardiogram (ECG) (Slide 1 of 2)

Introduction to Electrocardiography (ECG):

- Measures heart's electrical activity.
- Displayed on electrocardiogram (ECG) graph.

Procedure:

- Electrodes placed on chest wall and extremities.
- 12-lead ECG for comprehensive assessment, 3-lead for basic evaluation.

Monitoring:

- Routine during general anesthesia, sedation, and postoperative period.
- Essential for high-risk patients.

Electrocardiogram (ECG) (Slide 2 of 2)

Operation of ECG Machine:

- Console with paper roll for graphing.
- Automatic feed when activated.
- Graphs electrical activity by time and impulse strength.

Diagnostic Importance:

- Provides detailed information on heart conduction.
- Graphs phases of cardiac conduction system.
- Identifies abnormalities indicative of disease, disorders, or drugs.

Watch the "ECG Waves" Video for a more detailed explanation of the ECG

ECG Waves Video

ECG Waves Video

Summary of Video:

- P Wave = Atrial Depolarization (Contraction)
 - Atrium (Upper chambers of the heart) fill the Ventricles (lower chambers)
 - This is Diastole, when the heart is filling
- QRS Complex = Ventricular Depolarization (Contraction)
 - Ventricles Eject blood to the body
 - This is Systole, when the heart is ejecting

Imaging Studies

Introduction to Imaging Procedures

- Provide anatomical "picture" of patient.
- Reveal function and shape of regional anatomy.

Types of Imaging Studies

- Radiology
- Radiography
- Fluoroscopy
- Computed tomography (CT)
- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
- Ultrasound
- Doppler

Imaging Procedures - Radiology

• Radiology:

- X-rays penetrate body tissue at different rates.
- Historically recorded on film, now digitally via digital radiography (DR).
- Displays contrasts in density, aiding diagnosis.

Imaging Procedures - Radiography

Standard Radiography:

- Obtained with fixed or portable machines.
- Commonly used during orthopedic, biliary, and vascular surgery.
- Intraoperative use with Bucky platform or portable film stand.

Contrast Radiography:

- Uses contrast medium to highlight organs or vessels.
- Commonly used in cholangiography, angiography, retrograde pyelography, and gastrointestinal studies.

Digital and Computed Radiography:

- DR captures X-rays with flat panel detectors.
- Computed radiography uses photo-stimulated luminescent screen.
- Both methods produce digital images with lower radiation doses.

Watch the "Diagnostic Imaging Explained" Video for differences between the most common imaging studies and why they are used

Diagnostic Imaging Explained Video

Diagnostic Imaging Explained Video

Summary of Video:

- X-Ray
 - Bones, Fractures, Dislocations
 - Quick and Cost Effective
 - 2D Only
- CT Scan
 - Many X-Rays to give overall 3D image
 - Can give better imaging for complex body parts
- Ultrasound (Doppler)
 - Sound waves give imaging
 - Easy, Real-time and non-invasive
- MRI
 - Discs and Joints
 - No Radiation
 - Expensive, longer to perform

Imaging Procedures

Fluoroscopy:

- Real-time X-ray imaging with digital technology.
- Used diagnostically and intraoperatively during procedures with contrast media.

Mobile C-Arm:

- Real-time imaging in surgery.
- Offers multiple imaging angles with movement along the axis of the operating table.

• **O-Arm**:

- Image-guided system for spinal surgery.
- Produces real-time 3-D images with superior accuracy and reduced radiation exposure

Imaging Procedures – Uses of Fluoroscopy

- Angiography
- Cholangiography
- Urography
- Bone
- Catheter
- Aim instrumentation

Imaging Procedures

Computed Tomography (CT):

- Produces high-contrast cross-sectional images.
- Precise tissue differentiation and dimension determination.
- used for abdominal viscera, pregnancy assessment, vascular flow, and echocardiography.

Ultrasound:

- Uses high-frequency sound waves for real-time imaging.
- Commonly used for abdominal viscera, pregnancy assessment, vascular flow, and echocardiography.

Positron Emission Tomography (PET):

- Combines CT and radioactive scanning.
- Images metabolic processes rather than structures.

Imaging Procedures

- Magnetic Resonance Imaging (MRI):
 - Produces high-definition images using radiofrequency signals and magnetic fields.
 - Detects structural abnormalities but poses risks with metal presence.

Electrodiagnostic Studies Electrical activity measured and analyzed

Electrocardiography ECG (EKG)

Heart disorders

Electroencephalography (EEG)

Electrical Activity of Brain

Electromyography

• Electrical Activity of Skeletal Muscle

Blood Tests

Complete blood count (CBC)

- Looks at Red and White Blood Cells
- Can Help Identify Anemia and Infection

Metabolic panel

- Looks at how the body uses energy (Metabolism)
- Blood sugar, Liver/Kidney Health, Acid/Base Balance, Fluid/Electrolyte Balance

Coagulation tests

- Looks at how a patient will clot. Can identify risk for bleeding
- Important for surgery, as risk for bleeding is high

Arterial blood gases

Looks at Oxygen and CO2 and Acid/Base (pH).

ABO groups

· Blood typing. Important for Surgical procedures where a blood transfusion may be needed

Electrolytes

• Electrolyte imbalance can result in severe physiological disturbances

Urinalysis

- Can help identify Liver Disease, Kidney Disease, Diabetes, and Urinary Tract Infections
- Urinalysis will look at:
 - Albumin
 - Bilirubin
 - Glucose
 - Ketones
 - Leukocytes
 - Blood nitrite
 - Urobilinogen
- Assessment Parameters:
 - pH
 - Specific gravity
 - · Color, clarity, and odor of urine.

Microbiological Studies

- Microbiology or "Culture" is done to detect infective microbes. This is a surgical specimen that may be sent to the lab during a procedure
- Helps the Surgeon identify what infective microbe is present, so correct treatment can be done such as Antibiotic Therapy treating the specific organism
- Culture and sensitivity
 - Culture: Sample of the organism is allowed to incubate on a medium
 - Sensitivity: Exposes culture to a variety of antibiotics
- Common Microbiology Tests: Gram Stain, Aerobic, Anerobic, Fungal, AFB
- It is important to not have Microbiology Specimens come into contact with Antibiotics, as this could
 potentially destroy the organism being cultured

Correct Handling of Specimen

CalculiNO formalin

Amputated limbs

- Morgue
- Return?

Bullets

- Do not scratch
 - Police

Removed prostheses

• NO formalin

Pathological Examination of Tissue

Introduction to Pathology:

- Study of diseases.
- Tissue pathology: examination of tissue for disease presence.

• Tissue Biopsy:

- Removal of tissue for analysis and diagnosis.
- Protocols vary based on tissue type and analysis method.

Types of Biopsy:

- Excision: surgical removal for disease check.
- Needle or trocar biopsy: removal with hollow needle.
- Brush biopsy: sweeping cavity for cells.
- Aspiration biopsy: spraying specimen on microscope slide.
- Frozen section: immediate microscopic examination after freezing (looks for cancerous tissue)

Watch the Frozen Section Video for a brief overview of the process

Frozen Section Procedure Video

Frozen Section Video

Summary of Video:

- Frozen Section gives nearly immediate results
 - Infective Tissue
 - Malignant or Benign Mass
- Used when unexpected mass is found during surgery

Cancer Terms and Concepts (Slide 1 of 2)

Definitions:

- Neoplasm or tumor: abnormal growth.
- · Malignant vs. benign tumors.
- Terminology with "-oma" refers to tumor.

Comparison of Tumors:

- Benign: resembles origin tissue, encapsulated.
- Malignant: disorganized, invasive, metastatic.

Effects of Malignancy:

- Thrombosis, pain, cachexia, anemia.
- Changes in target tissue function.

Cancer Terms and Concepts

(Slide 2 of 2)

Diagnostic Methods:

- Tumor markers.
- Biopsy: tissue, cells, or fluid.
- Tumor staging: TNM classification system.

Cancer Prevention and Screening:

- Early treatment possibility.
- Public health promotion and screening.

Nuclear Medicine:

Use of radioactive particles for diagnosis and treatment.

Radiation Therapy:

- Tissue destruction by ionizing radiation.
- Delivery systems: needles, seeds, implants.

READ CHAPTER 6 FROM THE E-BOOK

Read Chapter 6 from your E-Book to pass the upcoming quiz from Surgical Technology - Elsevier eBook on VitalSource, 8th Edition.

Click Here to read chapter 6!

Thank you!

Get ready for your quiz and rest of the activities now. Best of luck!

Congratulations!

Lesson 6 is complete.