Teoremas y demostraciones

Matemática estructural y lógica ISIS-1104

Teorema:

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Teorema:

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

Teorema:

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

$$p \Rightarrow q \equiv \neg p \lor q$$
 (definición \Rightarrow)
 $\equiv q \lor \neg p$ (conmutativad)
 $\equiv \neg \neg q \lor \neg p$ (doble negación)
 $\equiv \neg q \Rightarrow \neg p$ (definición \Rightarrow)

Demuestre que

$$(p \Rightarrow q) \land (\neg p \Rightarrow r) \land (r \Rightarrow s) \Rightarrow (\neg q \Rightarrow s)$$

Demuestre que

$$(p \Rightarrow q) \land (\neg p \Rightarrow r) \land (r \Rightarrow s) \Rightarrow (\neg q \Rightarrow s)$$

Demuestre que

$$(p \Rightarrow q) \land (\neg p \Rightarrow r) \land (r \Rightarrow s) \Rightarrow (\neg q \Rightarrow s)$$

Demostración:

• Usando contrapositiva con $p \Rightarrow q$

$$\frac{(p \Rightarrow q)}{\neg q \Rightarrow \neg p} \tag{1}$$

Demuestre que

$$(p \Rightarrow q) \land (\neg p \Rightarrow r) \land (r \Rightarrow s) \Rightarrow (\neg q \Rightarrow s)$$

Demostración:

• Usando contrapositiva con $p \Rightarrow q$

$$\frac{(p \Rightarrow q)}{\neg q \Rightarrow \neg p} \tag{1}$$

■ Usando silogismo hipotético entre (1) y $\neg p \Rightarrow r$

$$\frac{(\neg q \Rightarrow \neg p) \land (\neg p \Rightarrow r)}{\neg q \Rightarrow r} \tag{2}$$

Demuestre que

$$(p \Rightarrow q) \land (\neg p \Rightarrow r) \land (r \Rightarrow s) \Rightarrow (\neg q \Rightarrow s)$$

Demostración:

• Usando contrapositiva con $p \Rightarrow q$

$$\frac{(p \Rightarrow q)}{\neg q \Rightarrow \neg p} \tag{1}$$

• Usando silogismo hipotético entre (1) y $\neg p \Rightarrow r$

$$\frac{(\neg q \Rightarrow \neg p) \land (\neg p \Rightarrow r)}{\neg q \Rightarrow r} \tag{2}$$

■ Usando silogismo hipotético entre (2) y $r \Rightarrow s$

$$\frac{\left(\neg q \Rightarrow r\right) \wedge \left(r \Rightarrow s\right)}{\neg q \Rightarrow s}$$

Contrapositiva: ejercicio

Contrapositiva: ejercicio

Demuestre que

$$(p \Rightarrow \neg q) \land (r \Rightarrow q) \land r \Rightarrow \neg p$$

Teorema:

$$p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow r$$

Teorema:

$$p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow r$$

Teorema:

$$p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow r$$

$$p \wedge q \Rightarrow r \equiv \neg(p \wedge q) \vee r$$
 (definición \Rightarrow)
 $\equiv \neg p \vee \neg q \vee r$ (De Morgan)
 $\equiv \neg p \vee (q \Rightarrow r)$ (definición \Rightarrow)
 $\equiv p \Rightarrow (q \Rightarrow r)$ (definición \Rightarrow)

Demuestre que

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

Demuestre que

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

Demuestre que

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

Demostración:

Moviendo hipótesis

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r) \equiv (p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r$$

Demuestre que

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

Demostración:

Moviendo hipótesis

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r) \equiv (p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r$$

Usando Modus ponens

$$\frac{(p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r}{q \land (q \Rightarrow r)}$$

Demuestre que

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

Demostración:

Moviendo hipótesis

$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r) \equiv (p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r$$

Usando Modus ponens

$$\frac{(p \Rightarrow q) \land (q \Rightarrow r) \land p \Rightarrow r}{q \land (q \Rightarrow r)}$$

Usando Modus ponens

$$\frac{q \wedge (q \Rightarrow r)}{r}$$

Moviendo hipótesis: ejercicio

Moviendo hipótesis: ejercicio

Demuestre que

$$((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$

Teorema:

$$(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Teorema:

$$(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Teorema:

$$(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p\Rightarrow q)\wedge(q\Rightarrow p)$	$p\equiv q$
True	True	True	True	True	True
True	False	False	True	False	False
False	True	True	False	False	False
False	False	True	True	True	True

Demuestre que $p \land (p \equiv q) \Rightarrow q$

Demuestre que $p \land (p \equiv q) \Rightarrow q$

Demuestre que $p \land (p \equiv q) \Rightarrow q$

Demostración:

Usando doble implicación

$$\frac{p \wedge (p \equiv q)}{p \wedge (p \Rightarrow q) \wedge (q \Rightarrow p)} \tag{1}$$

Demuestre que $p \land (p \equiv q) \Rightarrow q$

Demostración:

Usando doble implicación

$$\frac{p \wedge (p \equiv q)}{p \wedge (p \Rightarrow q) \wedge (q \Rightarrow p)} \tag{1}$$

Usando simplificación en (1)

$$\frac{p \wedge (p \Rightarrow q) \wedge (q \Rightarrow p)}{p \wedge (p \Rightarrow q)} \tag{2}$$

Demuestre que $p \land (p \equiv q) \Rightarrow q$

Demostración:

Usando doble implicación

$$\frac{p \wedge (p \equiv q)}{p \wedge (p \Rightarrow q) \wedge (q \Rightarrow p)} \tag{1}$$

Usando simplificación en (1)

$$\frac{p \wedge (p \Rightarrow q) \wedge (q \Rightarrow p)}{p \wedge (p \Rightarrow q)} \tag{2}$$

Usando Modus Ponens en (2)

$$\frac{p \wedge (p \Rightarrow q)}{q}$$

Doble implicación: ejercicio

Doble implicación: ejercicio

Demuestre que

$$(\neg p \equiv q) \equiv (p \equiv \neg p)$$