SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Civil Engineering
B.Tech. (Second Year, IIIrd Sem.) Major Examination (Odd) 2019-20)

Entry No:	(Odd) 2019-20)
Date: 09-12-2019	Total Number of Pages: [02]
Course Title: Geotechnical	Total Number of Questions: [07] Engineering-1
Course Code: CEL	. 2061

Max Marks: [50]

Time Allowed: 3.0 Hours

Instructions/Note

Attempt All Questions.

Support your answer with neat freehand sketches/diagrams/ graph, wherever appropriate. ii.

Assume an appropriate data / information, wherever

	Qst.	Assume an appropriate data / information, wherever necessary / missing	ppropria	ic.
	Qst. Q1.	Section A	Marks	CO
		(a) At Shrinkage limit, the soil is: i. Dry ii. Partially saturated	[01]	COI
		(b) The soils which plot above the A-line in the plasticity chart are: i. Clayey soils ii. Silty soils iv. Organic soils	[01]	CO2
		(c) The behaviour of clay is governed by: i. Mass energy iii. Both (i) & (ii) ii. Surface energy iv. Neither (i) & (ii) (d) The hydraulic gradient is equal to the ratio of: i. Total head to total length iii. Slave of G.	[01]	CO2
		ii. Slope of equipotential line iv Head loss to length of flow field (e) When consolidation of a soil occurs, the degree of saturation:	[01]	CO2
		i. Increases iii. Decreases iii. Decreases iii. May increase or decrease (f) Coulomb's equation for shear strength can be represented as: i. $c = s + \sigma \tan O$ iii. $c = s + \sigma \tan O$ iv. $c = s - \sigma \tan O$ iii. $c = s + c \tan O$ iv. $c = s - \sigma \tan O$	[01]	CO3
Q2	2.	(a) What is the effect of compaction on the engineering properties of soil?	[01]	CO4
		(b) Describe clearly one method of computing coefficient of consolidation, given by Oedometer test data.	[04] [04]	CO3
Q3	.	(a) The soil profile at a built is		
		(a) The soil profile at a building site consists of dense sand up to 4 m depth, normally loaded soft clay from 4 m to 6.5 m depth, and stiff impervious rock below 6.5 m depth. The sand has a unit weight of 20 kN/m³. For the clay, unit weight is 18 kN/m³, compression index is 22% and initial void ratio is 1.30. Calculate the final settlement of the clay layer due to an increase of pressure of 30 kN/m². Also calculate the settlement when the water table rises to the ground.	[04]	COI
	9	The following data refers to a silty clay that was assumed to be saturated in the undisturbed condition. On the basis of the data given below, determine the liquidity index. sensitivity, and void ratio of the saturated soil. Classify the soil according to the Unified soil classification systems.	[04]	CO3

	Properties of soil sample	Undisturbed	F	Remolded	i		
	Strength (kN/m ²)	244		144		16	
	Water content (%)	22		22		6	1
	Liquid limit (%)			45			5
	Plastic limit (%)			20			33
	Shrinkage limit (%)			12			1
	% passing no. 200 sieve			90			
3 4.	Explain the principle of the direct she advantages of this test? What are its li	ar test, with nea mitations?	t diagra	m. What	are the	[06]	CO4
Q5./	effective average permeability of the deposit in the horizontal and vertical directions.				Find the vertical	[06]	CO2
Q6/.	extending for a length of 60 m from the toe. The coefficient of permeability of the soil is 9×10^{-2} mm/s. With the help of flow net, find the quantity of seepage per day for 100 metre length of the dam.				CO2 (
	When an undrained triaxial compres clayey silt, the following results were	sion test was co	nducted	on spec	imens of	PU	
	Soil sample		1	2	3	Fa	1: 4
	Chamber pressure (kN/m²)	5	80	150	210		9.4
07-				210	200	110	CO4
27	Max deviator stress (kN/m²)	to	175	240	300		

Course Outcomes

Students will able to:

- CO1. Find the index and engineering properties of the soil.
- CO2. Determine properties & demonstrate interaction between water and soil.
- CO3. Analyze and compute principles of compaction and consolidation of soil.
- CO4. Evaluate the stresses in the soil mass.

CO	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
COI	1(a), 3(a)	5	59
CO2	1(b), 1(c), 1(d), 5 & 6	15	59
CO3	1(e), 2(a), 2(b)& 3(b)	13	59
CO4	1(f), 4 & 7	17	59

Page 2 of 2

FL, Sm, e SJ SHS