Depth Estimation Error Calculation from Baselines of a Single Event Camera

Huidong Hwang and Haoman Zhong

Or "How accurately can we estimate depth with a single event camera when moving it side to side?"

Huidong Hwang and Haoman Zhong

Initial Idea

- We were inspired by the microsaccades of human eyes which happen when we focus
 - We thought the microsaccades might help with depth estimation when seeing from a single eye

 We combined the concept of exaggerating microsaccades with the baseline of stereo vision to estimate depth

Look back to Initial Idea

Experiments

Input Image

Ground truth distance Z, set by us.

Camera does not know it

Simulated Camera

For our camera, a poster

Motion, non linear, sinusoidal speed

Baseline

Creating the Dataset

Raw input image: rocks.jpg

ESIM simulation

Custom configuration with two different depths

Screenshot mid-simulation

Calculating the error

$$\Delta z = \frac{z^2}{b \cdot f} \cdot \Delta D$$
 Where

```
\Delta z depth error
```

z depth of point of interest

b baseline

f focal length

 ΔD disparity error

According to some papers the typical error for **D** is either 0.5 or 1.0.

Units for each variable:

▲ Z in meter

Z in meter

b in meter

f in pixel

▲ D in pixel

Other variables in the equation

Focal length in Pixel

Central point of the image

Blockchart

Blockchart

Blockchart

On 5 meter distance Z=5m, Delta D=1px

On 10 meter distance

Z=10m, Delta D=1px

On 5 meter distance. Z=5m, Delta D=1px, effective baseline = baseline/sqrt(2)

On 10 meter distance Z=10m, Delta D=1px, effective baseline= baseline/sqrt(2)

On 5 meter distance Z=5m, Delta D=0.5px

On 10 meter distance

Z=10m, Delta D=0.5px

On 5 meter distance. Z=5m, Delta D=0.5px, effective baseline = baseline/sqrt(2)

On 10 meter distance Z=10m, Delta D=0.5px, effective baseline= baseline/sqrt(2)

Conclusions

Difficulties During Experimentation

- Learning two separate codebases and their configuration files
- Realizing that the renderer only does 2D camera work
- Modifying code to fit our purposes
- Creating a smooth pipeline to speed up experimentation
- Figuring out adequate testing parameters

Outlooks

The gap between 5 and 10 meters needs to be examined. E.g. more experiments on 6/7/8/9 meters.

Different experiments on different images (posters) to eliminate other factors.

More complex scenes with 3D rendering for more interesting data

Questions and Comments?

Thank you for your attention