

Concept Development Artifacts

Table of Contents

UAS Subsystem Interface Definition

UAS Subsystem Testing

Airframe Subsystem Requirements Matrix

Airframe Subsystem Concept Selection Matrices

Airframe Subsystem Testing

Airframe Subsystem Description

UGV Delivery Subsystem Initial Concepts

UGV Delivery Subsystem Requirements Matrix

UGV Delivery Subsystem Concept Selection Matrices

UGV Delivery Subsystem Testing

UGV Delivery Subsystem Description

Vision Subsystem Concept Selection Matrices

Vision Subsystem Testing

Vision Subsystem Description

UAS Subsystem Interface Definition

ID	Rev.	Date	Description	Author	Checked By		
SS-001	0.1	10-25-	initial draft	Andrew Torgesen	Jake Johnson &		
		2018			John Akagi		
SS-001	0.2	10-30-	adjusted word-	Andrew Torgesen	Kameron Eves		
		2018	ing				
SS-001	0.2	10-30-	adjusted dia-	Andrew Torgesen	Brady Moon		
		2018	gram				

Figure 1 gives a top-level description of the major hardware and software subsystems, as well as how they interact in the fully-functioning UAS. Table 1 lists descriptions of the functions of each software component listed in the figure.

Figure 1: System-wide interface diagram for the UAS. Hardware is denoted by a box, and software is denoted by an oval.

Table 1: Descriptions of the functions of the software components listed in Figure 1.

Software Component	Description				
ROS camera driver	Reads the serial input from the camera and streams it as ROS messages so that other ROS programs have access to the camera images in real time.				
ROSPlane	Top-level autopilot. Takes a set of waypoints and converts them into low-level commands to be interpreted by the flight control software. Also constructs a state vector containing all of the dynamic states of the UAS.				
Image stamper	Takes streamed camera images and stamps them with time and UAS state data. This facilitates subsequent geolocation of objects found in each image.				
Flight control software	 Converts low-level autopilot commands into actuation commands and reads in sensor data. Consists of: ROSFlight: handles autopilot commands, reads in airspeed and barometer data IntertialSense: reads in GPS and inertial sensor data 				
Path planning	Given the details of the competition (including obstacle and flight area data), plans a series of waypoints for the UAS.				
ground station	Allows for the visualization of the UAS and provides an interface for sending waypoint, loiter, and return- to-home commands.				
$interop_pkg$	Communicates with the judges' interop server, and serves up competition details over the ROS network. Also reports UAS data back to the judges' server.				
Image subscriber	Captures streamed camera images from the ROS network.				
File System	Stores images from Image subscriber on the computer's file system for direct HTTP access by ground station computers.				
Vision GUI	Provides an interface for the manual classification of targets in images, as well as reporting the classification data to the judges' server.				
Vision recognition software (autonomous)	Runs computer vision software that autonomously classifies targets in images, and reports the results to the judges' server.				

As can be seen from Figure 1, both radio and WiFi will be used to facilitate connection between the subsystems on the ground and in the air. The Ubiquiti data link allows for communication between the ground and the aircraft over a WiFi network. A 2.4 Ghz radio link (independent)between the radio transmitter and receiver allows for manual control and arming/disarming of the aircraft.

The Robot Operating System (ROS) is what facilitates the majority of inter-component communication over the WiFi network. ROS is a Linux middle-ware and development protocol for creating modular programs for robotics. ROS allows for real-time communication between machines running individual nodes, or executables, over a WiFi network. In our system, all subsystems communicating via ROS either are or will be developed as ROS nodes to be run on a machine with Linux installed. For more information about ROS nodes and how they communicate over a network, see http://www.ros.org/.

BRIGHAM YOUNG UNIVERSITY AUVSI CAPSTONE TEAM (TEAM 45)

UAS Subsystem Testing

ID	Rev.	Date	Description	Author	Checked By	
SS-002	0.1	10-29-	initial draft	Andrew Torgesen	Derek Knowles	
		2018				
SS-002	1.0	10-31-	pre-design re-	Andrew Torgesen	Tyler Miller	
		2018	view revisions			

1 Motivation

As described in the UAS Subsystem Interface Definition document (SS-001), there are two main data links between the aircraft and the subsystems on the ground during a competition flight:

- The **900 Mhz Radio Link** between the RC transmitter and receiver constitutes the minimal level of communication necessary for flight. The RC link allows a safety pilot to arm/disarm the aircraft's throttle and toggle the autopilot. If RC is lost, then the autopilot should immediately activate a *failsafe* mode.
- The **Ubiquiti WiFi Link** between the Ubiquiti Rocket (on the ground) and Bullet (on the aircraft) allows for the exchanging of data over a ROS network. Effectively, the Rocket and the Bullet allow for network connectivity between all subsystems on the ground and in the air.

Almost all subsystem interfaces depend on these two data links. Outlined in this document are testing procedures and results to evaluate the quality and reliability of each of these vital data links for the UAS system as a whole.

2 Testing Descriptions and Procedures

Table 1 outlines key characteristics of the WiFi and RC data links that should be tested, as well as how they should be tested.

Table 1: Description of testing procedures for UAS WiFi and RC data links.

Test name	Characteristic being tested	Procedure	
RC failsafe If RC connection is lost, then		While the aircraft's autopilot is	
	the flight control software	active, kill the RC transmitter.	
	should execute a failsafe mode	Observe what the autopilot	
	to avoid an uncontrolled crash.	does. It should guide the air-	
		craft into a loiter flight.	

Network loss If the network connection between the aircraft and the ground is lost, then the aircraft should still be able to complete the tasks allocated to it until connectivity is regained. Network reliability If the network connection between the aircraft is final mission, point the Ub Rocket away from the killing the ground-to-connection. There should be able from its current mission RC the connection of the from its current mission RC the connection of the from its current mission RC the ground-to-connection. There should be active. Network reliability The network should be able to connect upon boot-up of all subsystem nents and ensure that	piquity e aircraft, -air WiFi ould be no he aircraft ion, and hould still nment,
bility to connect upon boot-up of all turn on all subsystem subsystem components. Connents and ensure that	<i>'</i>
subsystem components. Con- nents and ensure that	
nection should be robust to external conditions and allow for a satisfactory data transfer rate. connect to the network matically. Max out the rate of the camera to board computer. Acts subsystems that commover the network, and data transfer rates—pathe following: • Images should be stream over the at a rate of ≥ 1 • UAS state data viewable on the station machine rate of ≥ 4 hz. • JSON data paches should be able to the interop so rate of ≥ 4 hz.	t they all rk auto- he stream the on- civate all municate d measure articularly be able to e network hz. a should be e ground es at a kets to be sent

ROS failure	If the ROS network fails, then the autopilot can no longer fly	While the autopilot is run- ning, kill the ROS network on
	the aircraft. The safety pilot	the aircraft's on-board com-
	should be able to take back	puter with ssh. RC connectiv-
	control of the aircraft over RC	ity should still be active, and
	to guide it to safety.	the safety pilot should theo-
		retically be able to control the
		aircraft well enough to either
		recover the vehicle or prevent
		causing harm to surroundings
		as it crashes.

3 Testing Results and Conclusions

Table 2 gives the results of testing according to the procedures outlined in Table 1, as well as conclusions drawn from those results.

Table 2: Test results for the evaluation of the UAS WiFi and RC data links.

Test name	Test results	Conclusions
RC failsafe	After RC is lost for $\approx 30s$, the	The RC failsafe mechanism
	autopilot triggers a "return to	built into the autopilot has
	land" protocol, landing near	been found to be in line with
	where it took off from.	the AUVSI competition rules.
Network loss	Loss of connection between the	
	Ubiquiti Rocket and Bullet has	• It will be beneficial to
	no discernible impact on the	have an on-board state
	autopilot—the only consequence	recorder to record all
	is that the groundstation com-	ROS messages for later
	puters are unable to view the	viewing, even if connec-
	states of the aircraft over the	tion to the aircraft is lost
	ROS network. Communication	temporarily.
	resumes once the aircraft is	• We need to run tests to
	back in range of the Rocket.	measure the range of the
		Rocket/Bullet connec-
		tion when the Rocket is
		pointed directly toward
		the aircraft during flight.

Network reliability	Over the course of numerous flight tests, the network connection starts up reliably in all cases but one. There is a particular spot in a field in Springville where the network will never connect. Moving one block over, the network always connects. • Image stream rate: 3-4 hz • State stream rate: 40-45 hz • JSON stream rate: 3-4 hz	 The network streaming rate has been found to be adequate. It is possible that we will want to purchase a more powerful router to allow for faster streaming rates at longer distances. We have only run the network speed test with the aircraft on the ground; it would be nice to run another speed test in conjunction with a test of the maximum range of the Ubiquiti network connection. The instance of never being able to connect in a particular geographical location is troubling. This quirk merits further investigation.
ROS failure	The RC connection to the aircraft has been found to be reliable and capable of manual takeover in any situation, as long as the batteries of the transmitter are not depleted. It has been found that certain settings should be toggled on the transmitter to conserve power, otherwise it experiences a battery life of about half an hour, which is inadequate.	 The range of the RC connection has been found to be adequate within a radius of ≈ 300 ft. We should run an additional test to determine the approximate maximum range of the RC connection.

Based on the results documented in Table 2, we have determined that our chosen princi-

pal inter-component data links are adequate for the competition environment. Further tests are required to determine the boundary conditions (such as maximum possible distance) of their functional use.

Airframe Subsystem Requirements Matrix

ID	Rev.	Date	Description	Author	Checked By
RM-002	0.1	10-23-18	Initial Draft	Tyler Critchfield & Ryan Anderson	[CHECKED BY]
				a reyam rinaerson	

т.		_						_						1
£^m	Storage Volume								•			6.0	3.0	ı
#	Number of AMA Safety Code Violations	8						•				0	0	0
1-10 Scale	Focus Group Ease of repair	19								•		9	10	01
sətunim	Time to assemble from scratch	19										0	0	09
#	Number of Damaged Components on landing					•						0	0	0
#	Number of Damaged Components on crash landing	18				•	•			•		0	0	ı
#	Number of components lost					•						0	0	0
1-10 Scale	Focus Group Coolness Rating	16									•	9	10	01
Unitless	9merihid mori griburtord bsolysd to %	15				•	•		•			0	0	100
Meters	Maximum Flight-Path Deviation				•							A/N	ı	9
Unitless	Cl,beta (Roll)	13			•							31.0-	1.0-	0
Unitless	Cn,beta (Yaw)	12			•							90.0	1.0	31.0
Unitless	Static Margin	11			•							1.0	1.0	2.0
Unitless	Spiral Stability Eigenvalue	10			•							1.0-	90.0-	10.0-
kilograms	Airtrame Weight	6	•	•					•			0	Þ	09
Meters	suibeA gnimuT	80			•							0	9	91
Unitless	Total Motor/Prop Efficiency	7	•	•					•			2.0	ı	ı
meters/second	Average Flight Speed	9		•					•			10	٩l	30
meters/second	Stall Speed	2			•				•			A/N	10	50
Unitless	Lift Coefficient	4							•			4.0	6.0	ı
Unitless	Lift-to-Drag Ratio	က	•	•					•			9	50	Α/N
Ninutes	Battery Life	2	•	•								среск	97	04
Ninutes	Flight Time	-	•	•								10	30	09
stinU	Performance Measures	Importance	6	6	6	6	6	6	Э	3	1	Lower Acceptable	ldeal	Upper Acceptable
	Product: UAS Subsystem: Arframe	Market Requirements	Capable of flight for extended period of time	Capable of traveling an extended distance	Minimize flight path deviation	Components are protected	Capable of surviving a crash	Complies with AMA safety code	Capable of carrying UGV and water bottle	Fast and cheap assembly/rebuild	Looks decent			

Figure 1: Airframe subsystem requirements matrix.

ID	Rev.	Date	Description	Author	Checked By
[ARTI-	[RE-	[DATE]	[DESCRIP-	[AUTHOR]	[CHECKED BY]
FACT	VI-		TION]		
ID]	SION		-		
	NUM-				
	BER]				

ID	Rev.	Date	Description	Author	Checked By
[ARTI-	[RE-	[DATE]	[DESCRIP-	[AUTHOR]	[CHECKED BY]
FACT	VI-		TION]		
ID]	SION		-		
	NUM-				
	BER]				

ID	Rev.	Date	Description	Author	Checked By
[ARTI-	[RE-	[DATE]	[DESCRIP-	[AUTHOR]	[CHECKED BY]
FACT	VI-		TION]		
ID]	SION		-		
	NUM-				
	BER]				

Unmanned Ground Vehicle Initial Concept Development

ID	Rev.	Date	Description	Author	Checked By
GV-002	0.1	2018-10-	Initial Draft	John Akagi	Jacob Willis
		23			
GV-002	1.0	2018-10-	Added intro-	Jacob Willis	Andrew Torgesen
		31	duction		

1 Introduction

This document describes the initial concept generation of the Unmanned Ground Vehicle system.

2 System Objective

In the 2019 AUVSI SUAS competion, points are awarded for successfully delivering an "unmanned ground vehicle" (UGV) to a target location; additional points are awarded if the vehicle drives to another target location. The UGV must be capable of carrying an 8oz water bottle, and the impact must subjectively be "soft." During the delivery the airframe cannot drop below 100ft ASL, so a system or mechanism for landing the UGV without damage is required. Because points can be recieved for just delivering the UGV without it driving, and because the payload drop problem is the most challenging part of the UGV design, determining how to accomplish the payload drop is the subject of this concept development. The UGV is assumed to be a "black box" capable of driving to its target once it is on the ground.

3 Initial Concepts

Table 1: Description of initial ideas and decisions made. "Discarded" indicates the idea was considered unfeasible, "Investigate" indicates the idea was studied further, "Modify" indicates the idea was considered usable in conjunction with another idea or ideas.

Idea	Description	Decision	Rationale
Skycrane	UGV is lowered on a rope from	Investigate	Would eliminate the need for
	the UAV		most cushioning and control
			surfaces on the UGV
Fins	Fins are used to give minimal	Investigate	Would be smaller than full
	control to a fast falling UGV		glider wings but still allow de-
			cent control
Glider	Unpowered aircraft is used to	Investigate	Would likely provide the
	control the falling UGV		greatest amount to control
Parasail	A controllable parachute is	Discarded	Difficult and unknown controls
	used to steer the UGV		

Control Grids	Similar to SpaceX, grids are used to steer the descent of the UGV	Discarded	Too complex for this application
Magnus Effect	Spin the wheels of the UGV in the air to generate lift and con- trol UGV attitude	Modify	Could be used in conjunction with other methods but un- likely to have much effect by itself
Autogyro	Unpowered helicopter rotors are used to slow descent and blades can be tilted to control the drop	Discarded	Mechanism was considered too complex
Bounce	UGV uses some elastic material under it to decrease the time of impact	Discarded	Bouncing would likely not reduce the impact forces to survivable levels
Airbag	An airbag is inflated just before lading to cushion the drop	Discarded	Needs precise measurements to determine when to inflate airbag, Airbag inflation mech- anism is likely to require dan- gerous materials
Springs	Springs are placed under the UGV to absorb the energy from the drop	Modify	Could be used to reduce impact energy but unlikely to be able to dissipate all by itself
Counterweight		Discarded	Requires ejecting a large mass at high acceleration which is likely to be dangerous and im- practical
Crumple Zone	Use a deformable material to break and absorb energy when UGV impacts ground	Modify	Could be used to reduce impact energy but unlikely to be able to dissipate all by itself
Balloons	Use balloons to increase drag and provide some lift	Discarded	Would be large and impractical to carry on board the UAV
Parachute	Use a parachute to slow the descent of the UGV	Investigate	Simplest idea and almost guaranteed to work
Seedpod	Attach a single propeller blade to the UGV which would cause the UGV to spin and slow its descent similar to how maple seeds work	Discarded	The UGV is likely too heavy to implement this properly

Figure 1: Concept development tree of the initial ideas generated for the payload delivery system.

Nothing	Make the UGV as rugged as	Discarded	Any UGV that is rugged			
	possible and drop it from the		enough to survive a 100 ft drop			
	UAV with no slowing mecha-		would be too heavy and bulky			
	nism		to carry on the UAV			
Low Drop	Drop below the minimum al-	Discarded	Would violate rules that state			
	lowable flight level and drop		we must remain above a cer-			
	the UGV from a lower altitude		tain altitude			
	for increased survivability					

BRIGHAM YOUNG UNIVERSITY AUVSI CAPSTONE TEAM (TEAM 45)

UGV Requirements Matrix

ID	Rev.	Date	Description	Author	Checked By
RM-001	0.1	10-23-	Initial require-	Jacob Willis	Brady Moon
		2018	ments		
RM-001	1.1	10-26-	Better perfor-	Jacob Willis	Kameron Eves
		2018	mance mea-		
			sures		

		Units		kg	z	%	%	z	s/ш	ш	cut
	Product: UAV Subsystem: PAYLOAD/Unmanned Ground Vehicle (UGV) Notes: *normalized by the fusalage diameter cubed **normalized by chord	Subsystem Performance Measures Units		Drop mechanism mass	Weight mechanism can support	Aircraft internal volume consumed*	Mounting distance from aircraft CG**	Stowed drop mechanism drag	Maximum landing velocity	UGV landing distance from target	Rule violations
	Target Design Requirements	Importan	се	1	2	3	4	5	6	7	8
1	Complies with competition rules		5								
2	Capable of lowering the payload to the ground		5								
3	Lands UGV within landing zone		3								
5	Delivers UGV without damage		3								
6	Deployable from airframe		4								
7	Does not interfere with takeoff/landing		3								
8	Causes minimal aerodynamic interference		3								
9	Drop mechanism does not interfere with UGV movement		2								
		Lower Acceptable		0	9.0	-	-100	0	0	-	ı
		deal		0.1	1.3	0	0	0.3	1	0	
		Upper Acceptable Ideal Lower Acceptable		9.0	ı	100	100	1.5		22	1

Figure 1: Requirements matrix for the subsystem which will deliver the UGV to the ground.

ID	Rev.	Date	Description	Author	Checked By
GV-003	[RE-	[DATE]	[DESCRIP-	[AUTHOR]	[CHECKED BY]
	VI-		TION]		
	SION		_		
	NUM-				
	BER]				

1 Descriptions

Each of the primary concepts is described in further detail below.

1.1 Parachute

A parachute is attached to the UGV, and is opened upon release of the UGV from the aircraft. To improve the accuracy of this concept, the effect of wind on the parachute and payload is characterized and used to calculate the optimal drop location given the estimated wind speed at the time of drop. No control mechanisms are used during the drop.

1.2 Parachute w Controls

Similar to the Parachute concept, but control surfaces (fins) are attached to the payload and actuated as the payload drops. This provides some controlability to stabilize the drop and to improve accuracy.

1.3 Skycrane

The UGV is lowered on a string or rope while the airframe circles overhead. The circling motion causes the UGV to orbit in a smaller circle as it is lowered. When the UGV hits the ground, it releases itself from the string to prevent interrupting the flight of the airframe. Preferably the UGV controls the rate of descent so it can easily feed back its distance from the ground.

1.4 Glider

A glider is carried onboard the airframe and is released when the UGV drop is attempted. The glider either incorporates or carries a ground vehicle. The glider is unpowered, but is controlled like a normal aircraft.

2 Evaluation Methods and Results

As can be seen from the decision matrix in Table 1,

Table 1: A decision matrix the UGV Drop Method. A scale of 1-5 was used for weights with 5 having high importance and 1 having low importance. A 1-5 scale was also used to rate each option's performance under each requirement. In this case, a 1 was used to indicate poor performance while a 5 indicates favorable performance.

UGV	Weight	Glider	Sky	Parachut	eUn-
Drop			Crane		aided
Method					Drop
					(Refer-
					ence)
UGV	1	0	0	0	0
Weight					
Stowed	1	0	0	0	0
Drag					
Max	1	0	0	0	0
Drop					
Height					
Max	1	0	0	0	0
Land-					
ing					
Veloc-					
ity					
Accuracy	7 1	0	0	0	0
in Hit-					
ting					
Target					
Totals		0	0	0	0

UGV Drop Mechanism Concept Test Procedures and Results

ID	Rev.	Date	Description	Author	Checked By
GV-004	0.1	10-26-	Initial creation	Jacob Willis	CHECKED BY
		2018	proceedures		
			listed		

1 Introduction

This document describes the proceedures used to test each of the UGV concepts. Some of the tests were unecessary for selecting between concepts, so they will not be performed until subsystem engineering.

2 Test Proceedures and Results

2.1 Drop mechanisim mass

Proceedure

Weigh all mechanisms related to landing the UGV using a scale, and sum with weights given on datasheets.

Results

Concept	Result
Parachute	$.026~\mathrm{kg}$
Parachute w/ control	$.124~\mathrm{kg}$
Skycrane	.160 kg
Glider	.08 kg

2.2 Weight mechanism can support

Proceedure

Calculated based on maximum load ratings of mechanism components.

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.3 Aircraft internal volume consumed

Proceedure

The volume of all of the UGV drop mechanisms, and the volume needed for the UGV if the mechanism requires it be inside the aircraft is measured. This measurement is normalized by the internal diameter of the aircraft fuselage.

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.4 Mounting distance from aircraft CG

Proceedure

The distance between the center of gravity of the UGV and drop mechanism is measured and normalized by the chord length of the aircraft.

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.5 Stowed drop mechanism drag

Proceedure

A preliminary estimate of this is made using the area of the mechanism that is exposed outside of the airframe. An accurate measurement of the mechanism drag is done by using a wind tunnel to measure the difference in drag between the airframe without the mechanism and the airframe with the mechanism.

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.6 Maximum landing velocity

Proceedure

A preliminary estimate of this is made using calculations to determine the speed

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.7 UGV Landing distance from target

Proceedure

A preliminary estimate of this is made by dropping a representative load with the mechanism from a height of 40 feet. The distance between where the load lands and the target is scaled to a 100 foot drop height.

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

2.8 Rule violations

Proceedure

A checklist of the relevant rules is checked for the concept. The number of violations for the concept is summed.

2.8.1 UGV Rules Requirements

The following outline the rules which must be followed in order to achieve any points.

• Must carry 8 oz water bottle

- Must not fly below minimum altitude
- Must land gently and without damage (subjective measure)
- Max weight of 48 oz
- Max speed of 10 mph
- \bullet UGV must terminate driving after 30 seconds of communication loss or after driving out of the boundary specified
- Drive termination must be activated by member of team
- No exotic fuels or batteries
- Batteries must be brightly colored (bright tape)
- The UGV may only drive autonomously

Result

Concept	Result
Parachute	
Parachute w/ control	
Skycrane	
Glider	

UGV Delivery System Selected Concept Description

ID	Rev.	Date	Description	Author	Checked By
GV-04	1.0	10-30- 2018	Wrote concept description	Jacob Willis	Andrew Torgesen

Introduction

This document gives a more detailed description of the selected concept for the UGV delivery system. As can be seen from our selection matrix (GV-003) and test results (GV-004), the selected concept is a parachute with fins.

Description

The UGV will be loaded within the aircraft. Upon a command from the flight controller system small hatch will open and the UGV will fall out. Strings will attach the UGV to a lightweight fabric parachute. The fabric parachute will be loaded onto the aircraft in a tube that will allow the UGV to pull it out of the aircraft as it falls. This will help stop tangling that can come from a folded parachute. After exiting the aircraft the parachute will be opened by drag. The drag caused by the fabric will slow down the aircraft to a speed sufficient to allow the UGV to survive impact with the ground without damage. A visual depiction of our chosen system can be seen in Fig. 1.

Figure 1: A simple prototype of our parachute seen from the side.

An accurate landing is another important part of the competition. A hole in the top of the parachute will improve the accuracy of the system. As can be seen in Fig. 2 we tested this hole in our prototype. This hole is known in the industry as a spill hole because it allows the air to spill out of the center of the parachute. This does increase the speed with which the system falls, but it also provides a market increase in the accuracy. This is because without the hole, the air become trapped within the system and excess air must move around the outside of the parachute as it falls through the air. Imperfections in manufacturing and weather conditions mean that this this overflow around the outside of

the parachute is always uneven. Thus the parachute is pushed to the side by the uneven overflow. A spill hole allows the overflow to "spill" out the top in a way that won't affect the lateral velocity of the system.

Figure 2: A simple prototype of our parachute seen from the top. Note the hole in the middle of the parachute. As mentioned above, we found that this greatly improved the accuracy of the parachute.

Fins are another way the accuracy of the system can be effected. These fins can be seen in one prototype in Fig. 3. As can be seen in our testing results artifact (GV-004) the fins did push the system one direction. This should allow us to slightly control our system as it falls. While this will not be enough to correct for large errors, it should be enough to ensure we don't drift randomly. The protocol for dropping objects from a UGV, as detailed in *Small Unmanned Aircraft: Theory and Practice* by Randy Beard and Tim McLain should also help improve our accuracy. This protocol uses the wind and velocity of the aircraft to predict the best location to release the payload.

Using the system described above, we are confident in our ability to achieve a landing accuracy of within 25 feet. This is considered excellent performance in our key success measures and will give us 75% of the points possible in this portion of the competition.

Figure 3: The payload we used to simulate the UGV. Note the fins. As mentioned above, preliminary results seem to indicate that these fins provided a small amount of control authority over the parachute's trajectory. This will help us improve accuracy

Concept Selection

ID	Rev.	Date	Description	Author	Checked By
CS-002	0.1	10-24- 2018	Initial release	Tyler Miller	Derek Knowles

1 Camera Concept Selection

Requirement	Weight	Basler Ace	Basler Ace Increased Focal	PtGrey Chameleon	Sony a6000
Resolution	3	2	2	1	5
Weight	1	3	3	5	2
Ease of System Integration	3	5	5	5	3
Clarity @ 150ft	5	1	4	4	5
Stability @ 150ft	5	1	1	2	5
Cost	2	5	1	4	3
Capture Rate	2	3	3	5	2
TOTAL		50	57	71	86

2 Measured Camera Values

	Basler Ace	Basler Ace Increased Focal	PtGrey Chameleon 3	Sony a6000
Description	Baseline. The camera from last year with a 12.5mm focal length lens	Last years Basler with a 35mm focal length lens. This decreases field of view, but increases pixels/inch.	Camera from two years ago. Powerful lens, but low Resolu- tion	Camera most commonly used by other AU- VSI teams. Low cost, and high resolution
Resolution	5MP	5MP	1.3MP	24MP
Weight	217g	250g	55g	410g
Ease of System Integration	Integrated	Integrated	Previously Integrated	Feasible
Clarity	Blurry, readable	Likely blurry, readable	Readable	Readable
Stability	Target unread- able	Target likely unreadable	Target unread- able	Target readable
Cost	\$0	\$600	\$310	\$550
Capture Rate	5Hz	$5 \mathrm{Hz}$	30Hz	1Hz

Camera Test Procedures

ID	Rev.	Date	Description	Author	Checked By
TP-002	0.1	10-26- 2018	Initial release	Connor Olsen	Tyler Miller

1 Purpose

Due to the flaws discovered with the camera used for the 2018 BYU AUVSI aircraft, It has been determined that a set of tests be outlined to test the effectiveness and reliability of cameras to meet the needs of the imaging team. These tests are designed to prove a camera's ability to show clear images at a long range to facilitate the machine learning algorithm which will identify and categorize targets.

2 Test Objectives

The camera will be tested for the following features:

Focal Length: The camera must be able to focus on targets at a range of at least 150

Depth of Field: Targets must remain in focus with a tolerance of 50 ft.

Image Clarity: The image must be clear, and its details visible.

Image Stability: The image must remain reasonably clear when camera is unsteady.

3 Required Hardware and Software

- Camera to be tested
- Computer to control camera
- Measuring wheel to measure distance
- Test target with letter

4 Test Procedure

Mount the camera in a location that is sturdy (tripod or on a secure flat surface. Measure 150 feet with the measuring wheel and have someone hold the target with letter at that distance. Have someone capture an image and inspect the quality and detail of the captured target.

Disturb the camera to simulate the instability of flight and capture another image. Inspect the pixels of the image for sharpness and clarity

5 Special Instructions

To eliminate excessive variables, all camera tests (outside of the plane) are performed in the long alleyway between the EB and the CB, using the cement half-wall as a mount for the camera.

6 Test Results

Concept testing results are shown in artifact CS-002.

Vision Subsystem Concept Definition

ID	Rev.	Date	Description	Author	Checked By
CD-002	0.1	10-25-	Initial release	Tyler Miller	Derek Knowles
		2018			

1 Purpose

Last year's vision subsystem achieved less than 25% of possible points related to the subsystem. As such, it was determined that major improvements will be made at both the manual and autonomous levels.

The competition gives points for correct classification of ground targets' shape, shape color, alphanumeric, alphanumeric color, alphanumeric orientation, and geolocation. Additional points are given if the process between taking the image and submitting the classified image to the judges' server is fully autonomous without the intervention of a human. There is a penalty, however, if false positive targets are submitted to the judges' server.

2 Concept Selected

Vision's competition requirements are complex and as such required multiple concepts to fit into a larger system. After internal discussion, we decided to pursue a base concept of manual and autonomous classification systems running in parallel.

3 Definition

This year's vision team is changing our system architecture for classifying targets which will allow for better communication and organization. Instead of downloading each image and image state onto someone's personal computer, the computer oboard the plane will send image and vehicle state data to a server on the ground. This server will have a compiled database of all images captured and will attach classification data onto each image as it is manually processed. Our autonomous detection script will also be querying the server image database and classifying images. One team member will be monitoring the autonomous output ready to kill the program if it is sending too many false positives (which cause the team to incur a penalty). Our system architecture is outlined in Figure 1.

Figure 1: Target classification system architecture

Our autonomous classification system design is outlined in Figure 2. These concepts for autonomous target recognition are based on methods that other competition teams were able to successfully use at the comptition to identify targets. We will continue to iterate on the autonomous process, but we are confident that we can create a reliable and robust system for autonomous target classification.

Image/States **HSV** Color Filtering ML Text Classification Grayscale No Valid Pass Character **Blob Detection** Histogram Analysis Yes Yes Stamp Classification Nο Valid ceptabl Pass Size? Shape? Yes Geolocate/Crop Polygon Detection Manual Checking No Kill Process Judges Server

Autonomous Detection System

Figure 2: Autonomous classification system design

4 Justification

Since all of our high-level concepts depend on our imaging hardware, we decided it would be beneficial for us to choose a camera as soon as possible. Our list of potential cameras came from previous years systems as well as cameras used by last years top-placing teams. Critical performance measures are shown in our measured camera values table (CS-002). This table was directly translated into a selection matrix(CS-002). Based off the camera concept selection matrix, it was decided that the Sony a6000 would give us the greatest cost to performance. Its large 24MP sensor will improve image quality when flying at higher altitudes and make autonomous classification easier. Its auto-stabilization and fast exposure time also remove a lot of burden from the user to adjust settings mid-flight. Additionally 7 of the top 15 teams used the a6000 or the earlier generation (but basically equivalent) a5100.

The autonomous classification system is the largest undertaking of this year's vision sub-

team. Each of the 6 characteristics we are required to identify could potentially be done using a different method. Given the high-enumeration of concepts this generates, we determined it would be most beneficial for us to select one high level concept which would help define the rest of the system.

Concepts for autonomous classification were formed in three ways. The first was discussing our system requirements with market experts. They offered excellent advice on how to best go about the classification problem. The second was researching how top-placing teams from previous years tackled the problem. Teams are required to submit a design report which is made publicly available, allowing us understand from a high level how their image classification systems worked. Third, we did extensive online research on available software libraries and tools that could be used. As we pursued these three methods, our best concept for autonomous classification evolved into its current form. We feel that this final concept is the best combination of these three sources.