```
In [1]:
              !kaggle datasets download jacopoferretti/bbc-articles-dataset
              !unzip bbc-articles-dataset.zip
         Dataset URL: https://www.kaggle.com/datasets/jacopoferretti/bbc-ar
         ticles-dataset (https://www.kaggle.com/datasets/jacopoferretti/bbc
         -articles-dataset)
         License(s): CC0-1.0
         Downloading bbc-articles-dataset.zip to /content
            0% 0.00/1.81M [00:00<?, ?B/s]
         100% 1.81M/1.81M [00:00<00:00, 130MB/s]
                     bbc-articles-dataset.zip
         Archive:
            inflating: bbc_text_cls.csv
In [2]:
              import pandas as pd
              df = pd.read_csv("/content/bbc_text_cls.csv")
In [3]:
              df.head()
In [4]:
Out[4]:
                                                     labels
             Ad sales boost Time Warner profit\n\nQuarterly... business
          1 Dollar gains on Greenspan speech\n\nThe dollar... business
          2 Yukos unit buyer faces loan claim\n\nThe owner...
          3
                High fuel prices hit BA's profits\n\nBritish A...
                                                   business
             Pernod takeover talk lifts Domecq\n\nShares in... business
```

Pre-Processing Text

```
In [5]:
            import re
            import nltk
            from nltk.corpus import stopwords
           from nltk.tokenize import word tokenize
           from nltk.stem import WordNetLemmatizer
           from bs4 import BeautifulSoup
            nltk.download('punkt')
            nltk.download('stopwords')
            nltk.download('wordnet')
        [nltk_data] Downloading package punkt to /root/nltk_data...
        [nltk_data]
                      Unzipping tokenizers/punkt.zip.
        [nltk_data] Downloading package stopwords to /root/nltk_data...
                      Unzipping corpora/stopwords.zip.
        [nltk_data]
        [nltk_data] Downloading package wordnet to /root/nltk_data...
Out[5]: True
```

```
In [6]:
            def preprocess_text(text):
                # 1. Lowercasing
                text = text.lower()
                # 2. Remove HTML Tags
                text = BeautifulSoup(text, 'html.parser').get_text()
                # 3. Remove URLs
                text = re.sub(r'https?://\S+|www\.\S+', '', text)
                # 4. Remove emojis
                emoji_pattern = re.compile("["
                                            "\U0001F600-\U0001F64F"
                                                                     # Emoti
                                            "\U0001F300-\U0001F5FF"
                                                                     # Misce
                                            "\U0001F680-\U0001F6FF"
                                                                     # Trans
                                            "\U0001F700-\U0001F77F"
                                                                     # Alche
                                            "\U0001F780-\U0001F7FF"
                                                                      # Geome
                                            "\U0001F800-\U0001F8FF"
                                                                     # Suppl
                                            "\U0001F900-\U0001F9FF"
                                                                     # Suppl
                                            "\U0001FA00-\U0001FA6F"
                                                                     # Chess
                                            "\U0001FA70-\U0001FAFF"
                                                                     # Symbo
                                            "\U00002702-\U000027B0"
                                                                      # Dingb
                                            "\U000024C2-\U0001F251"
                                            "]+", flags=re.UNICODE)
                text = emoji_pattern.sub('', text)
                # 5. Remove punctuation and numbers
                text = re.sub(r'[^a-z s]', '', text)
                # 6. Tokenization
                tokens = word_tokenize(text)
                # 7. Remove stopwords and single character tokens
                stop_words = set(stopwords.words('english'))
                tokens = [token for token in tokens if token not in stop_wo
                # 8. Lemmatization
                lemmatizer = WordNetLemmatizer()
                tokens = [lemmatizer.lemmatize(token) for token in tokens]
                # Joining tokens back into a sentence
                preprocessed_text = ' '.join(tokens)
                return preprocessed_text
```

```
In [7]: 1 df['text'] = df['text'].apply(preprocess_text)
```

In [8]: 1 df

Out[8]:

	text	labels
0	ad sale boost time warner profit quarterly pro	business
1	dollar gain greenspan speech dollar hit highes	business
2	yukos unit buyer face loan claim owner embattl	business
3	high fuel price hit ba profit british airway b	business
4	pernod takeover talk lift domecq share uk drin	business
2220	bt program beat dialler scam bt introducing tw	tech
2221	spam email tempt net shopper computer user acr	tech
2222	careful code new european directive could put	tech
2223	u cyber security chief resigns man making sure	tech
2224	losing online gaming online role playing game	tech

2225 rows × 2 columns

Distribution of News Categories


```
In [10]: # @title labels

from matplotlib import pyplot as plt
import seaborn as sns
fd.groupby('labels').size().plot(kind='barh', color=sns.palette
plt.gca().spines[['top', 'right',]].set_visible(False)
```


Classification Using Machine learning model

Convert Text to Numerical Format (Tokenization)

1. Bag-of-Words (BoW)

- Counts the occurrence of each word in a document.
- Generates sparse, high-dimensional vectors where each word is a feature.
- Pros: Simple and effective for many applications.
- · Cons: Ignores word order and meaning.
- Implementation: CountVectorizer in Scikit-Learn.

2. Term Frequency-Inverse Document Frequency (TF-IDF)

- Weighs word importance based on how frequently it appears in a document vs. across all documents.
- Useful for emphasizing significant words that appear frequently in a document but

- not commonly across documents.
- Pros: Reduces the impact of common but less informative words.
- · Cons: Still ignores word order and context.
- Implementation: TfidfVectorizer in Scikit-Learn.

3. n-grams

- Extracts contiguous sequences of n words to capture basic word order and simple context
- Common choices: bigrams (n=2), trigrams (n=3).
- Pros: Adds some contextual information beyond individual words.
- Cons: Increases feature space and can add noise if n is too large.
- Implementation: CountVectorizer or TfidfVectorizer with ngram_range parameter in Scikit-Learn.

4. Word Embeddings

- Maps words to dense, low-dimensional vectors that capture semantic meaning.
- Popular pre-trained embeddings:
 - Word2Vec: Trained on word co-occurrences; represents semantic relationships.
 - **GloVe**: Trained on global word-word co-occurrence statistics.
- Pros: Captures meaning and relationships between words.
- Cons: Requires pre-trained embeddings and doesn't inherently capture sentence structure.
- Implementation: Using libraries like gensim or loading pre-trained embeddings in PyTorch/Keras.

5. Pre-trained Transformer Embeddings

- Use pre-trained models like BERT, DistilBERT, or RoBERTa to extract embeddings for text
- Contextualized embeddings capture word meaning based on context.
- Pros: State-of-the-art embeddings for most NLP tasks; captures contextual meaning.
- Cons: Requires more computation and memory.
- Implementation: Hugging Face Transformers library.

```
In [41]: # @title Spliting Data

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df['text'],
```

Bag-of-Words Model Evaluation Accuracy: 0.9685393258426966 Classification Report:

	precision	recall	f1-score	support
business	0.97	0.96	0.96	115
entertainment	0.99	0.93	0.96	72
politics	0.93	0.97	0.95	76
sport	1.00	0.99	1.00	102
tech	0.95	0.99	0.97	80
accuracy			0.97	445
macro avg	0.97	0.97	0.97	445
weighted avg	0.97	0.97	0.97	445

```
In [49]:
             # @title 2. Term Frequency—Inverse Document Frequency (TF-IDF)
             from sklearn.feature extraction.text import TfidfVectorizer
             from sklearn.metrics import accuracy_score, classification_repo
             tfidf_vectorizer = TfidfVectorizer()
             # Transform the text data into TF-IDF features
             X train tfidf = tfidf vectorizer.fit transform(X train)
             X_test_tfidf = tfidf_vectorizer.transform(X_test)
             # Train a Naive Bayes classifier on TF-IDF features
             nb tfidf = MultinomialNB()
             nb_tfidf.fit(X_train_tfidf, y_train)
             # Predict on the test data
             y_pred_tfidf = nb_tfidf.predict(X_test_tfidf)
            # Evaluate the TF-IDF model
             print("TF-IDF Model Evaluation")
             print("Accuracy:", accuracy_score(y_test, y_pred_tfidf))
             print("Classification Report:\n", classification_report(y_test,
```

TF-IDF Model Evaluation Accuracy: 0.9617977528089887

Classification Report:

	precision	recall	†1-score	support
business	0.97	0.95	0.96	115
entertainment	0.98	0.90	0.94	72
politics	0.90	0.97	0.94	76
sport	0.99	0.99	0.99	102
tech	0.95	0.99	0.97	80
accuracy			0.96	445
macro avg	0.96	0.96	0.96	445
weighted avg	0.96	0.96	0.96	445

```
In [50]:

1 text = '''

2 wru proposes season overhaul welsh rugby union want restructure

3 start celtic league october followed heineken cup february march

4 twomonth period away home international match wru chairman david

5 club country added feel sure spectator interest would respond im

6 timetable currently operation equally suspect sponsor would pref

7 would also enjoy increased exposure moving six nation traditiona

8 greater interest game generally provide increased skill competit

9 international rugby board next month four plan drawn independent

10 early day number caveat associated least revenue broadcaster ext
```

Out[67]: 'sport'

Out[68]: 'sport'