Lecture 12. Neural Networks and Backpropagation

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Content is based on slides provided by Jeffrey Chan and Ben Rubinstein

Multilayer Feed-Forward Neural Networks

The ANN approach to non-linearity.

Simplified Graphical Representation

Statistical Machine Learning (S2 2015)

Deck 12

Perceptron Model

Compare to linear regression and linear logistic regression

- x₁, x₂ inputs
- w₁, w₂ synaptic weights
- w₀ bias weight
- f transfer function

Network of Perceptrons

- Layers are often (but not always) fully connected; the numbers of hidden units typically chosen by hand
 - Note multidimensional output

Feed Forward Neural Network

• How is the output z_k related to the inputs x's?

$$\begin{split} z_k &= f_k(s_k) \\ &= f_k\left(\sum_j v_{kj}y_j\right) \\ &= f_k\left(\sum_j v_{kj}g_i(u_j)\right) \\ &= f_k\left(\sum_j v_{kj}g_i\left(\sum_i w_{ji}x_i\right)\right) \end{split} \text{ output } \underbrace{\begin{array}{c} z_1 & \cdots & z_k & \cdots & f_k \\ v_{k,j} & \cdots & v_{k,j} & \cdots & v_{k,j} \\ v_{k,j} & \cdots & \cdots &$$

How to Train Your Dragonthe Network?

- Training example is a set of inputs and the desired outputs $a = [x_1, ..., x_n, t_1, ..., t_c]^T$
 - * note that outputs denoted as t_i not y_i
- Aim is to learn (optimise) the weights v_{kj} and w_{ji} to minimise the difference between z_k (predicted) and t_k (training) for each of our training examples
- Define error function (discrepancy) for one example as

$$D = \frac{1}{2} \sum_{k=1}^{c} (t_k - z_k)^2$$

Stochastic Gradient Descent

- 1. Initialisation: choose starting guess $\theta^{(0)}$, i=0
 - * Here $oldsymbol{ heta}$ is a set of all weights v_{kj} and w_{ji}
- 2. Randomly choose one training example (x, t)
- 3. Compute discrepancy $D = 0.5 \cdot \sum_{k=1}^{c} (t_k z_k)^2$
 - * Computing $z_k(\boldsymbol{\theta}^{(i)})$ is called a forward propagation
- 4. Termination: decide whether to stop
- 5. Update: $\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} \eta \nabla D(\boldsymbol{\theta}^{(i)})$
- 6. Go to Step 2

Need to compute partial derivatives $\frac{\partial z_k}{\partial v_{kj}}$ and $\frac{\partial z_k}{\partial w_{kj}}$

Backpropagation: Key Idea

- The structure of neural network allows efficient computation of partial derivatives $\frac{\partial z_k}{\partial v_{ki}}$ and $\frac{\partial z_k}{\partial w_{ji}}$
- Recall that $z_k = f_k(s_k)$
 - * Where $s_k = \sum_j v_{kj} y_j$
- We can apply <u>chain rule</u> for derivatives
- We have $\frac{\partial z_k}{\partial v_{ki}} = \frac{\partial f_k}{\partial s_k} \frac{\partial s_k}{\partial v_{ki}}$

output $\mathbf{z1}$ \mathbf{zk} $\mathbf{f_k}$ $\mathbf{g_j}$ $\mathbf{hnet_j}$ input $\mathbf{x1}$ $\mathbf{x1}$ $\mathbf{x1}$ \mathbf{xk}

8

Backpropagation: Start from Outputs

• We have $\frac{\partial z_k}{\partial v_{ki}} = \frac{\partial f_k}{\partial s_k} \frac{\partial s_k}{\partial v_{ki}}$

Step function

 $f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$

Transfer functions *f*

• Consider $\frac{\partial f_k}{\partial s_k}$ first

Sign function

 $f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ -1, & \text{if } s < 0 \end{cases}$

Logistic function

 $f(s) = \frac{1}{1 + e^{-s}}$

• It is convenient to choose $f(s) = \frac{1}{1+e^{-s}}$

• Then $\frac{\partial f_k}{\partial s_k} = f_k(s_k)(1 - f_k(s_k))$

• Recall $f_k(s_k) = z_k$ is already computed during the forward propagation

9

Backpropagation: Start from Outputs

- We have $\frac{\partial z_k}{\partial v_{ki}} = \frac{\partial f_k}{\partial s_k} \frac{\partial s_k}{\partial v_{ki}}$

Proceed to the Next Layer

- We have $\frac{\partial z_k}{\partial v_{ki}} = \frac{\partial f_k}{\partial s_k} \frac{\partial s_k}{\partial v_{ki}}$
- Next consider $\frac{\partial s_k}{\partial v_{ki}}$
- Here $s_k = \sum_j v_{kj} y_j$
- Therefore $\frac{\partial s_k}{\partial v_{ki}} = y_j$

•
$$\frac{\partial z_k}{\partial v_{kj}} = [z_k(1-z_k)][y_j]$$

Reaching the Final Layer

- Similarly $\frac{\partial z_k}{\partial w_{kj}} = \frac{\partial f_k}{\partial s_k} \frac{\partial s_k}{\partial y_j} \frac{\partial y_j}{\partial u_j} \frac{\partial u_j}{\partial x_i}$
- Here $z_k = f(s_k)$

output

• and $s_k = \sum_j v_{kj} y_j$

hidden

• and $y_i = g(u_i)$

input

• and $u_i = \sum_i w_{ii} x_i$

•
$$\frac{\partial z_k}{\partial w_{kj}} = [z_k(1-z_k)][v_{kj}][g'(u_j)][x_i]$$

Stochastic Gradient Descent

- 1. Initialisation: choose starting guess $\theta^{(0)}$, i=0
 - * Here $oldsymbol{ heta}$ is a set of all weights v_{kj} and w_{ji}
- 2. Randomly choose one training example (x, t)
- 3. Compute discrepancy $D = 0.5 \cdot \sum_{k=1}^{c} (t_k z_k)^2$
 - * Computing $z_k(oldsymbol{ heta}^{(i)})$ is called a forward propagation
- 4. <u>Termination</u>: decide whether to stop
- 5. Update: $\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} \eta \nabla D(\boldsymbol{\theta}^{(i)})$
- 6. Go to Step 2

Deriving the Update Rule

- Discrepancy $D = 0.5 \cdot \sum_{k=1}^{c} (t_k z_k)^2$
- Partial derivatives $\frac{\partial D}{\partial v_{kj}} = \frac{\partial D}{\partial z_k} \underbrace{\frac{\partial z_k}{\partial v_{kj}}}$ and $\frac{\partial D}{\partial w_{kj}} = \frac{\partial D}{\partial z_k} \underbrace{\frac{\partial z_k}{\partial w_{kj}}}$
- Recall that we have already derived these
- Define $\delta_k \stackrel{\text{def}}{=} -(t_k z_k)z_k(1 z_k)$
- $\frac{\partial D}{\partial v_{kj}} = \delta_k y_j$

• $\frac{\partial D}{\partial w_{kj}} = g'(u_j) x_i \sum_{k=1}^{c} \delta_k v_{kj}$

Exercise: prove this

Deriving the Update Rule

- The Update Rule
- $v_{kj} \leftarrow v_{kj} \eta \delta_k y_j$
- $w_{kj} \leftarrow w_{kj} \eta g'(u_j) x_i \sum_{k=1}^c \delta_k v_{kj}$

- Define $\delta_k \stackrel{\text{def}}{=} -(t_k z_k)z_k(1 z_k)$
- $\frac{\partial D}{\partial v_{kj}} = \delta_k y_j$
- $\frac{\partial D}{\partial w_{kj}} = g'(u_j) x_i \sum_{k=1}^{c} \delta_k v_{kj}$

Summary

- Neural network is a non-linear model
 - Cumbersome equation
 - Fancy graphical representation
- Structure of the model allows efficient computation of partial derivatives
 - * Training is based on stochastic gradient descent