2. Draw the derivation tree corresponding to the derivation in Example 5.1.

$$S \rightarrow aSa$$
,
 $S \rightarrow bSb$,
 $S \rightarrow \lambda$

S => aSa => aaSaa => aabSbaa => aabbaa

3.

Grammar S-) abB,

A -> aaBb,

B -> bb Aa,

 $A \rightarrow \lambda$

w= abbbaabbaba

Leftmost Derivation Tree:

$$\frac{S}{a}$$
 $\frac{b}{b}$
 $\frac{a}{a}$
 $\frac{b}{b}$
 $\frac{a}{a}$
 $\frac{b}{a}$
 $\frac{a}{a}$
 $\frac{b}{a}$
 $\frac{a}{a}$

7a. L = \{ a^n b^m : n \le m + 3 \}

First, solve the case n=m+3. Then add more b's. This can be done by

S -> aaaA,

A -> aAb B,

B -> Bb/2

But this is incomplete since it creates at least three a's.

To take care of the cases n=0,1,2, we add

S -> 2 | aA | aaA

Therefore: S -> 2/aA/aaA,

A -> aAb|B,

B-> Bb/2

S - asbb asbbb 2

7d. L = \{ a^n b^m : 2n \le m \le 3n \}

These productions nondeterministically produce either bb or bbb for each generated a.

Textbook Solution Wrong .. Correct Answer is S-) asb A B

A-) a aa aaa 2 B -> 6B 6

7f. L= $\{w \in \{a, b\}^*: n_a(v) \ge n_b(v), where v \text{ is any prefix of } w\}$ $S \rightarrow aSb|SS|X$ $S \longrightarrow aSb|SS|X$ $S_1 = aS_1|A$

8a. L = {anbmch: n=m or m = h3

For the first case n=m and k is arbitrary. This can be achieved by $S_1 \to AC$, $A \to aAb \mid \lambda$, $C \to Cc \mid \lambda$

In the second case, n is arbitrary and m $\leq k$. Here we use $S_2 \to BD$, $B \to aB|\lambda$, $D \to bDc|E$, $E \to Ec|\lambda$

Finally, we start productions with S-> S, IS2.

 $S \rightarrow S_1 | S_2$ $S_1 \rightarrow AC$, $S_2 \rightarrow BD$, $S_2 \rightarrow BD$, $B \rightarrow aB | \lambda$ $C \rightarrow Cc | \lambda$ $A \rightarrow aAb | \lambda$, $D \rightarrow bD c | E$ $B \rightarrow aB | \lambda$, $E \rightarrow Ec | \lambda$ $C \rightarrow Cc | \lambda$ 8b. $L = \{a^n b^m c^k : n = m \text{ or } m \neq k\}$ $S \rightarrow S_1 \mid S_2$

> $S_1 \rightarrow AB$ $S_2 \rightarrow CD$ $A \rightarrow aAb|\lambda$ $C \rightarrow aC|\lambda$ $B \rightarrow cB|\lambda$ $D \rightarrow bDc|E|F$ $E \rightarrow bE|b$ $F \rightarrow cF|C$

8d. $L = \{a^n b^m c^k : n + 2m = k\}$ aaa...aabb...bbcc...c

n m Every a add one c
Every b add 2 c's

 $S \rightarrow aSc \mid B$ $B \rightarrow bBcc \mid \lambda$

8h. L= {anbmck: k≥3}

 $S \rightarrow AB$ $A \rightarrow aAb \mid \lambda$ $B \rightarrow cB \mid ccc$

L=2a~b~ck: K>33	
STACCCC	aAbCccc
181 dA 0 d-A	abacc_
C-> cC/2	

n + 2m

6.
$$S \rightarrow AB \mid aaB$$
,
 $A \rightarrow a \mid Aa$,
 $B \rightarrow b$
 $W = aab$
 $A \rightarrow a \mid A$
 $A \rightarrow a \mid A$

10. Give an unambiguous grammar that generates the set of all regular expressions on $\Sigma = \{a,b\}$.

String w = aab shows that the above grammar is ambiguous.

