WS #13 - Kaplan-Meier Curves

Math 150, Jo Hardin

Monday, March 24, 2025

Your Name:						
Names of peo	ple you v	worked	d with:			
Would you ra	ther alv	vays h	ave to	walk	bac	kward or always have to talk in rhyme?
Task: Stickin	ng with	the ch	ocolat	e me	lting	context, consider a different dataset.
Student 1 Time 4			$\frac{4}{64^{+}}$		6 42	755^{+}
1. Fill out	the foll	owing	table	indic	ating	g at risk observations (n_i) and events (d_i) .
$\begin{array}{ccccc} t_i & n_i & d_i \\ 35 & & \\ 42 & & \\ 45 & & \\ 48 & & \\ 55 & & \\ 64 & & \\ 72 & & \\ \end{array}$	$n_i - a$	$\frac{n_i}{r}$	$\frac{-d_i}{n_i}$			
2. Fill out the following table estimating $S(t)$ using the Kaplan-Meier estimates.						
time interval [0, 35) [35, 42) [42, 45) [45, 48) [48, 55) [55, 64) [64, 72) $[72, \infty)$	$\hat{S}(t)$	KM				

3. Sketch the Kaplan-Meier curve using the values in #2 above. Note that t= time is on the x-axis, and $\hat{S}(t)_{KM}$ is on the y-axis.

Solution:

1. Counting the number of at risk observations and events:

```
n_i - d_i
               n_i - d_i
t_i
                         6/7 = 0.857
35
                         5/6 = 0.833
42
     6
          1
               5
                         5/5 = 1
45
    5
          0
               5
48
    4
          1
               3
                         3/4 = 0.75
    3
               3
                         3/3 = 1
55
          0
     2
               2
64
          0
                         2/2 = 1
72
    1
               0
                         0/1 = 0
```

2. Estimating the survival curve:

```
time interval \hat{S}(t)_{KM}
[0, 35)
                   1
[35, 42)
                   0.857
[42, 45)
                   0.857 \cdot 0.833 = 0.714
                   0.714 \cdot 1 = 0.714
[45, 48)
[48, 55)
                   0.714 \cdot 0.75 = 0.536
                   0.536 \cdot 1 = 0.536
[55, 64)
[64, 72)
                   0.536 \cdot 1 = 0.536
[72,\infty)
                   0.536 \cdot 0 = 0
```

3. Sketching the survival curve. Notice the hash marks (where the censored observations occurred).

```
surv_data <- data.frame(
   time = c(45, 35, 48, 64, 72, 42,55),
   censor = c(0, 1, 1, 0, 1, 1, 0))
survival::survfit(Surv(time, censor) ~ 1, data = surv_data) |>
survminer::ggsurvplot(conf.int = FALSE, legend = "none")
```

