

Certified Adversarial Robustness

Mengdie Huang April 1, 2022

Background Differential Privacy Scheme Overview Randomized Smoothing Scheme Conclusion

AI Applications

Computer Vision

Speech Recognition

Natural Language Processing

Expert system

Smart Robot

Chess Game

AI Error

Traffic Light & Stop Sign Must Reads by Autopilot

Stop Sign can be Ignored by Autopilot

Autopilot action: Stop

Autopilot action: Keep going

- Empirical Defense
- Typical method: Adversarial training

- Drawback: most of heuristics defenses have been shown to fail against suitably powerful adversaries (cat-and-mouse game).
- New requirement:rigorous, theory-backed defensive approaches to stop this arms race.

- Empirical Defense
- > Typical method: Adversarial training

- Empirical Defense
- > Typical method: Adversarial training

- Empirical Defense
- > Typical method: Adversarial training

- Certified Defense
- Provide a certificate for adversarial robustness
- \triangleright Certificate (x, f, r)

For any input x, the prediction output by the classifier on some set around x are guaranteed to be constant.

- Certified Defense
- > Provide a certificate for adversarial robustness
- For any input x, the prediction output by the classifier on some set around x are guaranteed to be constant.
- \triangleright Some set: L_p ball with radius r

2D L_p Balls

 $3D L_p$ Balls

Certified Robustness to Adversarial Examples

with Differential Privacy

Mathias Lecuyer, ..., Suman Jana Columbia University
IEEE S&P 2019

Overview

- Design a DNN classifier with differential privacy properties
- Essence: Introduce randomness into the prediction of the classifier.
- ➤ Way: Add a noise layer to the network.
- ➤ Purpose: Guarantee that the output of the model is insensitive to small changes in the input.

- Differential Privacy
- Randomize responses

- ϵ -DP (Differential Privacy)
- Intuitive understanding

- The only difference between D and D' is Alice.
- If the attacker cannot tell whether the information O comes from D or D', it can be considered that the privacy of Alice is protected.
- DP requires information O to be randomized before output.

- ϵ -DP (Differential Privacy)
- Formalizing

Randomized algorithm A is ϵ -differentially private if for any $0 \subseteq Range(A)$ and for any neighboring dataset $D, D'(||D - D'||_1 \le 1)$:

$$\Pr[A(D) \in O] \le e^{\epsilon} \Pr[A(D') \in O]$$

- (ϵ, δ) -DP (Differential Privacy)
- > Formalizing

Randomized algorithm A is (ϵ, δ) -differentially private if for any $O \subseteq Range(A)$ and for any neighboring dataset $D, D'(||D - D'||_1 \le 1)$:

$$\Pr[A(D) \in O] \le e^{\epsilon} \Pr[(D') \in O] + \delta$$

$$\frac{\Pr[A(D) \in O] - \delta}{\Pr[A(D') \in O]} \le e^{\epsilon}$$

- when an event is more likely under D than under D', δ is positive(+).
- when an event is more likely under D' than under D, δ is negative(-).
- $||D D'||_1 \le 1$ can be generalized to $||D D'||_p \le L$ by applying group privacy.

- Properties of DP
- Post-processing
 If A(x) satisfies (ϵ, δ) -DP, h is a x-independent mapping algorithm,
 Then, the composition $h \circ A = h(A(x))$ satisfies (ϵ, δ) -DP.
- Expected output stability

 The expected value $\mathbb{E}(A(x))$ of an (ϵ, δ) -DP algorithm A with bounded output $A(x) \in [0, b]$ is not sensitive to small changes in the input. $\forall \alpha \leq Ball_p(r=1), \quad \mathbb{E}(A(x)) \leq e^{\epsilon} \mathbb{E}(A(x+\alpha)) + b\delta$
- ✓ Proof
- $\Pr[A(x) \in O] \le e^{\epsilon} \Pr[(x + \alpha) \in O] + \delta$

 (ϵ, δ) -DP定义

• $\int_0^b \Pr[A(x) \in O] dt \le \int_0^b e^{\epsilon} \Pr[(x + \alpha) \in O] + \delta dt$

积分

- $\int_0^b \Pr[A(x) < t] dt \le e^{\epsilon} \int_0^b \Pr[(x + \alpha) > t] dt + \int_0^b \delta dt$ PDF定义
- $\mathbb{E}(A(x)) \le e^{\epsilon} \mathbb{E}(A(x+\alpha)) + b\delta$

期望定义

Differential Privacy

Differential Privacy

Notation

Symbol	Definition
$\mathcal{K} = \{1, \dots, K\}$	The set of all labels
$x=(x_1,\dots,x_n)\in\mathbb{R}^n$	n -dimensional input (n pixels of a image) x_i is the ith pixel in the image
$y = (y_1, \dots, y_K)$	A vector of scores $y_k(x) \in [0,1], \sum_{k=1}^K y_k(x) = 1$
$Q(x) = y = (y_1(x),, y_k(x))$	Scoring function
$f(x) = \arg\max_{k \in \mathcal{K}} y_k(x)$	Prediction procedure
$\alpha=(\alpha_1,\dots,\alpha_n)$	Perturbation (or called the change in the input) α_i is the change to the <i>ith</i> pixel in the image
$x + \alpha$	Adversarial example
$\big \alpha \big _p = \big (\alpha_1, \dots, \alpha_n) \big _p$	p-norm of the perturbation (change) for $1 \le p < \infty$, $ \alpha _p = (\sum_{i=1}^n \alpha_i ^p)^{1/p}$ for $p = \infty$, $ \alpha _p = \max \alpha_i $ for $p = 0$, $ \alpha _p = \{i : \alpha_i \ne 0\} $
$B_p(r) \coloneqq \{\alpha \in \mathbb{R}^n : \big \alpha \big _p \le r\}$	p-norm ball of radius r
L	Radius of the $\alpha \in B_p(L)$ where α is such that $f(x + \alpha) \neq f(x)$

- PixelDP DNN
- Deterministic scoring function Q: $x = (x_1, ..., x_n) \in \mathbb{R}^n \to y = (y_1, ..., y_K)$ $Q(x) = (y_1(x), ..., y_K(x))$
- The vulnerability of DNN to adversarial example $(x + \alpha)$ stems from the unbounded sensitivity of Q with respect to l_p changes in x.

- PixelDP DNN
- Randomized scoring function of the network that satisfy (ϵ, δ) -PixelDP: $A_Q(x) = (y_1(x), ..., y_K(x))$
- The expected output $\mathbb{E}(A_Q(x))$ of $A_Q(x)$ will have bounded sensitivity to l_p changes in x.

- Training Procedure
- > Step 1 Transform g into another function \tilde{g} that has a fixed sensitivity $\Delta \leq 1$ to l_p changes in x.

- Training Procedure
- Step 1 Transform g into another function \tilde{g} that has a fixed sensitivity $\Delta \leq 1$ to l_p changes in x.

✓ Sensitivity: the maximum change in output that can be produced by a change in the input.

$$\Delta_{p,q} = \max_{Sx,x':x \neq x'} \frac{||g(x) - g(x')||_q}{||x - x'||_p}$$

- ✓ Transform Reason:
 - Training procedure will enlarge the sensitivity $\Delta_{p,q}$ of the g, voiding the DP guarantees.
- ✓ Transform Purpose: Keep g's sensitivity $\Delta_{p,q}$ constant (eg. $\Delta \leq 1$) during training.
- ✓ Transform Ways:
- For $\Delta_{1,1}$, $\Delta_{1,2}$, $\Delta_{\infty,\infty}$: SGD.
- For $\Delta_{2,2}$: projection after SGD.

- Training Procedure
- > Step 1 Transform g into another function \tilde{g} that has a fixed sensitivity $\Delta \leq 1$ to l_p changes in x.
- > Step 2 Add the noise layer to the output of \tilde{g} with a standard deviation scaled by Δ and L to ensure (ϵ, δ) -PixelDP for l_p changes of size L.

Architecture

- Sample a noise sample Z from noise distribution $noise(\Delta, L, \epsilon, \delta)$
- \blacktriangleright Mean: μ =0
- \triangleright Standard deviation: σ (b) is proportional to L and $\Delta_{p,q}$.
- > If Gaussian:
- PDF of $N(\mu, \sigma^2)$: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

•
$$Z \sim N(\mu, \sigma^2) = N(0, \sqrt{2 \ln\left(\frac{1.25}{\delta}\right)} \cdot \Delta_{p,2} \cdot \frac{L}{\epsilon}$$

- > If Laplace:
- PDF of $L(\mu, b)$: $f(x) = \frac{1}{2b} \cdot e^{-\frac{|x-\mu|}{b}}$
- $Z \sim L(\mu, b) = L(0, \sqrt{2} \cdot \Delta_{p,1} \cdot \frac{L}{\epsilon})$

- Training Procedure
- > Step 1 Transform g into another function \tilde{g} that has a fixed sensitivity $\Delta \leq 1$ to l_p changes in x.
- > Step 2 Add the noise layer to the output of \tilde{g} with a standard deviation scaled by Δ and L to ensure (ϵ, δ) -PixelDP for l_p changes of size L.

- \checkmark Set L, ϵ, δ
- ✓ Compute fixed sensity Δ
- ✓ Input sample $(x, y_{true} = c_k)$
- ✓ Sample a noise sample Z from noise distribution $noise(\Delta, L, \epsilon, \delta)$
- $Gaussian(\Delta, L, \epsilon, \delta) \rightarrow \epsilon$ -DP
- $Laplace(\Delta, L, \epsilon, \delta) \rightarrow (\epsilon, \delta)$ -DP
- ✓ Optimization

 $\min_{\theta 1, \theta 2} \textbf{Loss}(h_{\theta 2}(\tilde{g}_{\theta 1}(x) + noise(\Delta, L, \epsilon, \delta), y_{true})$

- Prediction Procedure
- ✓ Prediction on the $A_Q(x)$ affords the robustness certification in **Proposition 1** if the prediction procedure uses $\mathbb{E}(A_Q(x))$.

• Proposition 1

If randomized algorithm A satisfies (ϵ, δ) -PixelDP to l_p 1 in x,

If for some
$$k \in K$$
, $\mathbb{E}(A_k(x)) > e^{2\epsilon} \max_{i:i \neq k} \mathbb{E}(A_i(x)) + (1 + e^{\epsilon})\delta$

Then, the classifier is robust to any attack $\alpha \in B_p(1)$ on input x.

> Proof

1.
$$\mathbb{E}(A_{k}(x)) \leq e^{\epsilon}\mathbb{E}(A_{k}(x')) + \delta$$
 (ϵ, δ)-DP定义

2. $\mathbb{E}(A_{k}(x')) \geq \frac{\mathbb{E}(A_{k}(x)) - \delta}{e^{\epsilon}}$ 移项

3. $\mathbb{E}(A_{k}(x)) > e^{2\epsilon} \max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x)) + (1 + e^{\epsilon})\delta$ 假设条件

4. $\mathbb{E}(A_{k}(x')) \geq \frac{e^{2\epsilon} \max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x)) + (1 + e^{\epsilon})\delta - \delta}{e^{\epsilon}} = e^{\epsilon} \max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x)) + \delta$ (ϵ, δ)-DP定义

5. $\mathbb{E}(A_{i}(x')) \leq e^{\epsilon}\mathbb{E}(A_{i}(x)) + \delta, i \neq k$ (ϵ, δ)-DP定义

6. $\max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x')) \leq e^{\epsilon} \max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x)) + \delta, i \neq k$ 两边求最大值

7. $\mathbb{E}(A_{k}(x')) \geq \max_{\substack{i:i \neq k \\ i:i \neq k}} \mathbb{E}(A_{i}(x'))$ 代入第四行

- Prediction Procedure
- ✓ Prediction on the $A_Q(x)$ affords the robustness certification in **Proposition 1** if the prediction procedure uses $\mathbb{E}(A_Q(x))$.
- ✓ Unfortunately, $\mathbb{E}(A_Q(x))$ cannot be computed exactly.

- Prediction Procedure
- > **Step 1** Use Monte Carlo methods to estimate approximate value $\widehat{\mathbb{E}}(A_Q(x))$ of $\mathbb{E}(A_Q(x))$.

- Prediction Procedure
- > **Step 1** Use Monte Carlo methods to estimate approximate value $\widehat{\mathbb{E}}(A_Q(x))$ of $\mathbb{E}(A_Q(x))$.

- ✓ Invoke $A_Q(x)$ n times with independent draws in the noise layer.
- \checkmark For i = 1 to n
- Input sample *x* without label
- Sample *i*th noise sample from noise distribution $noise^{i}(\Delta, L, \epsilon, \delta)$
- Score: $A_Q^i(x) = h(\tilde{g}(x) + noise^i(\Delta, L, \epsilon, \delta))$
- The *i*th draw from the distribution of the randomized function A_Q on the *k*th label: $A_{Q,k}^i(x)$
- $\widehat{\mathbb{E}}\left(A_{Q,k}(x)\right) = \frac{1}{n}\sum_{i=1}^{n}A_{Q,k}^{i}(x)$

• Proposition 1

If randomized algorithm A satisfies (ϵ, δ) -PixelDP to l_p of size 1 in x, If for some $k \in K$, $\mathbb{E}(A_k(x)) > e^{2\epsilon} \max_{i:i \neq k} \mathbb{E}(A_i(x)) + (1 + e^{\epsilon})\delta$

Then, the classifier is robust to any attack $\alpha \in B_p(1)$ on input x.

Proposition 2

If randomized algorithm A satisfies (ϵ, δ) -PixelDP to l_p of size L in x,

Let $\widehat{\mathbb{E}}^{ub}A_i(x)$ and $\widehat{\mathbb{E}}^{lb}A_i(x)$ be the η -confidence upper and lower bound for $\widehat{\mathbb{E}}(A_i(x))$.

If for some
$$k \in K$$
, $\widehat{\mathbb{E}}^{lb}(A_k(x)) > e^{2\epsilon} \max_{i:i \neq k} \widehat{\mathbb{E}}^{ub}(A_i(x)) + (1 + e^{\epsilon})\delta$)

Then, the classifier is robust to any attack $\alpha \in B_p(L)$ on input x with probability $\geq \eta$.

• Proposition 2

If for some $k \in K$, $\widehat{\mathbb{E}}^{lb}(A_k(x)) > e^{2\epsilon} \max_{i:i \neq k} \widehat{\mathbb{E}}^{ub}(A_i(x)) + (1 + e^{\epsilon})\delta$

Then, the classifier is robust to $\alpha \in B_p(L)$ on x with probability $\geq \eta$.

> Proof

1.
$$\widehat{\mathbb{E}}(A_{k}(x)) \leq e^{\epsilon}\widehat{\mathbb{E}}(A_{k}(x')) + \delta$$
 (ϵ , δ)-DP定义

2. $\widehat{\mathbb{E}}(A_{k}(x')) \geq \frac{\widehat{\mathbb{E}}(A_{k}(x)) - \delta}{e^{\epsilon}} \geq \frac{\widehat{\mathbb{E}}^{lb}(A_{k}(x)) - \delta}{e^{\epsilon}}$ 移项,取下届

3. $\widehat{\mathbb{E}}^{lb}(A_{k}(x)) > e^{2\epsilon} \max_{i:i \neq k} \widehat{\mathbb{E}}^{ub}(A_{i}(x)) + (1 + e^{\epsilon})\delta$) 假设条件

4. $\widehat{\mathbb{E}}(A_{k}(x')) \geq \frac{\widehat{\mathbb{E}}^{lb}(A_{k}(x)) - \delta}{e^{2\epsilon}} \geq \frac{e^{2\epsilon} \max_{i:i \neq k} \widehat{\mathbb{E}}^{ub}(A_{i}(x)) + (1 + e^{\epsilon})\delta) - \delta}{e^{2\epsilon}}$

4.
$$\widehat{\mathbb{E}}(A_k(x')) \ge \frac{\widehat{\mathbb{E}}^{lb}(A_k(x)) - \delta}{e^{\epsilon}} > \frac{e^{2\epsilon} \max_{i:i \ne k} \widehat{\mathbb{E}}^{ub}(A_i(x)) + (1 + e^{\epsilon})\delta) - \delta}{e^{\epsilon}} =$$
 代入第二行

5.
$$\widehat{\mathbb{E}}(A_{i:i\neq k}(x')) \le e^{\epsilon} \max_{i:i\neq k} \widehat{\mathbb{E}}(A_i(x)) + \delta$$
 (ϵ, δ)-DP定义

6.
$$\max \widehat{\mathbb{E}}(A_{i:i\neq k}(x')) \leq e^{\epsilon} \max_{i:i\neq k} \widehat{\mathbb{E}}(A_i(x)) + \delta \leq e^{\epsilon} \max_{i:i\neq k} \widehat{\mathbb{E}}^{ub}(A_i(x)) + \delta$$
 最大值

7.
$$\widehat{\mathbb{E}}(A_k(x')) > \max \widehat{\mathbb{E}}(A_{i:i\neq k}(x'))$$

代入第四行

- Prediction Procedure
- > **Step 1** Use Monte Carlo methods to estimate approximate value $\widehat{\mathbb{E}}(A_Q(x))$ of $\mathbb{E}(A_Q(x))$.

- Compute a interval $[\widehat{\mathbb{E}}^{lb}(A_Q(x)), \widehat{\mathbb{E}}^{ub}(A_Q(x))]$ for $\widehat{\mathbb{E}}(A_Q(x))$ holds with probability η .
- Use Hoeffding's inequality (霍夫丁 不等式) to bound error in $\widehat{\mathbb{E}}(A_Q(x))$.

$$\widehat{\mathbb{E}}\left(A_Q(x)\right) - \sqrt{\frac{1}{2n}\ln\left(\frac{2k}{1-n}\right)} \le \mathbb{E}\left(A_Q(x)\right) \le$$

$$\widehat{\mathbb{E}}\left(A_Q(x)\right) + \sqrt{\frac{1}{2n}\ln\left(\frac{2k}{1-n}\right)}$$

$$\widehat{\mathbb{E}}^{lb}\left(A_Q(x)\right) \triangleq \widehat{\mathbb{E}}\left(A_Q(x)\right) - \sqrt{\frac{1}{2n}\ln\left(\frac{2k}{1-n}\right)}$$

$$\widehat{\mathbb{E}}^{ub}\left(A_Q(x)\right) \triangleq \widehat{\mathbb{E}}\left(A_Q(x)\right) + \sqrt{\frac{1}{2n}\ln\left(\frac{2k}{1-n}\right)}$$

✓ Integrate this interval into the stability bound for $\mathbb{E}(A_Q(x))$.

$$\mathbb{E}\left(A_Q(x)\right) \le e^{\epsilon} \mathbb{E}\left(A_Q(x+\alpha)\right) + b\delta$$

- Prediction Procedure
- > **Step 1** Use Monte Carlo methods to estimate approximate value $\widehat{\mathbb{E}}(A_Q(x))$ of $\mathbb{E}(A_Q(x))$.

> Step 2 PixelDP returns a prediction for x (arg max $\widehat{\mathbb{E}}(A_Q(x))$) and a robustness size certificate for that prediction.

- Obtain upper and lower bounds on the change to $\widehat{\mathbb{E}}(A_{Q,i}(x))$ with input change of size L with probability η .
- ✓ Compute *robustness size certificate*:
- If, $\widehat{\mathbb{E}}^{lb}\left(A_{Q,k}(x)\right) > e^{2\epsilon} \max_{i:i \neq k} \widehat{\mathbb{E}}^{ub}\left(A_{Q,i}(x)\right) + (1 + e^{\epsilon})\delta$
- Then, the classifier is robust to any $\alpha \in B_p(L)$ around x with probability $\geq \eta$.
- Else, x not meet robustness check for L.

- $\widehat{\mathbb{E}}^{up}\left(A_{Q,i}(x)\right)$ and $\widehat{\mathbb{E}}^{lp}\left(A_{Q,i}(x)\right)$
- If the lower bound for the label with the top average score $\widehat{\mathbb{E}}^{lb}\left(A_{Q,k}(x)\right)$ is strictly greater than the upper bound for every other label $\max_{i:i\neq k}\widehat{\mathbb{E}}^{ub}\left(A_{Q,i}(x)\right)$,

Then, with probability η , the prediction for input x is robust to arbitrary attacks of l_p size L.

- Noise layer place
- Noise in the image

•
$$\Delta_{p,q} = \Delta_{1,1}^{g} = \max_{x,x':x \neq x'} \frac{\left| |g(x) - g(x')| \right|_{q}}{\left| |x - x'| \right|_{p}} = \max_{x,x':x \neq x'} \frac{\left| |g(x) - g(x')| \right|_{1}}{\left| |x - x'| \right|_{1}}$$
• $\Delta_{p,q} = \Delta_{2,2}^{g} = \max_{x,x':x \neq x'} \frac{\left| |g(x) - g(x')| \right|_{q}}{\left| |x - x'| \right|_{p}} = \max_{x,x':x \neq x'} \frac{\left| |g(x) - g(x')| \right|_{1}}{\left| |x - x'| \right|_{2}}$

- Noise layer place
- ➤ Noise in the image
- ➤ Noise after first hidden layer
- $g(x) = f_1(x)$
- $\Delta_{p,q} = \Delta_{p,q}^g = \Delta_{p,q}^{f_1}$

- Noise layer place
- Noise in the image
- ➤ Noise after first hidden layer
- ➤ Noise after deeper hidden layer
- $g(x) = f_1(f_2(x))$
- $\Delta_{p,q} = \Delta_{p,q}^g = \Delta_{p,q}^{(f_1 \circ f_2)}$

- Noise layer place
- ➤ Noise in the image
- ➤ Noise after first hidden layer
- Noise after deeper hidden layer
- Noise in Auto-encoder
- Auto-encoders are smaller than DNN, much faster to train. (ImageNet)

Contribution

- Establish a connection between adversarial robustness and differential privacy.
- Develop the first certified defense that scales to large networks (Google's Inception network) and datasets (ImageNet).
- Develop the certified defense that applies broadly to arbitrary model types.
- Datasets:
- ImageNet,
- CIFAR10, CIFAR100, SVHN
- MNIST
- Networks:
- Inception
- ResNet

Authors

Mathias Lecuyer
PhD
Columbia University

Vaggelis Atlidakis PhD Columbia University

Roxana Geambasu Associate Professor Columbia University

Daniel Hsu associate professor Columbia University

Suman Jana associate professor Columbia University

Certified Adversarial Robustness via

Randomized Smoothing

Jeremy Cohen, Elan Rosenfeld, J. Zico Kolter Carnegie Mellon University ICML 2019

- Applying Gaussian noise and taking majority class label.
- \triangleright Essence: Smoothing the decision boundary of the base classifier f.
- \triangleright Way: Sampling Gaussian noise to perturb x multiple times, then vote
 - on the labels most frequently given by the base classifier f.
- \triangleright Purpose: Output the majority class label as the prediction of x.

- Applying Gaussian noise and taking majority class label.
- \triangleright Essence: Smoothing the decision boundary of the base classifier f.
- \triangleright Way: Sampling Gaussian noise to perturb x multiple times, then vote
 - on the labels most frequently given by the base classifier f.
- \triangleright Purpose: Output the majority class label as the prediction of x.

- Applying Gaussian noise and taking majority class label.
- \triangleright Essence: Smoothing the decision boundary of the base classifier f.
- \triangleright Way: Sampling Gaussian noise to perturb x multiple times, then vote
 - on the labels most frequently given by the base classifier f.
- \triangleright Purpose: Output the majority class label as the prediction of x.

- Applying Gaussian noise and taking majority class label.
- \triangleright Essence: Smoothing the decision boundary of the base classifier f.
- \triangleright Way: Sampling Gaussian noise to perturb x multiple times, then vote
 - on the labels most frequently given by the base classifier f.
- \triangleright Purpose: Output the majority class label as the prediction of x.

Overview

- \bullet Evaluating the smoothed classifier at an input x.
- \triangleright Smoothed classifier g: a virtual classifier with smoother boundary than f
- \triangleright Here, $g(x) = C_A$.

Left:

- Colors: decision regions of f.
- Dotted lines: level sets of $N(x, \sigma^2 I)$.

Figure 1

Problem

- Randomized smoothing-based heuristic defense
- Method
- Insert noise layer before each convolution layer. (Liu. ECCV 2018)
- Ensemble information in a region centered at x to predict.(Cao. ACSAC2017)
- > Problem: did not prove any guarantees.
- Randomized smoothing-based certified defense
- Methods
- Smooth the classifier with noise and use DP inequalities to prove robustness guarantee. (Lecuyer. IEEE S&P 2019)
- Use Renyi divergence to prove a stronger guarantee. (Li. arXiv2018)
- ➤ Problem: existing robustness guarantees are loose.

- Advantage of randomized smoothing
- Makes no assumptions about classifier architecture.
- Permits to use arbitrarily large neural networks. (others do not support)
- The only certified defense been shown feasible on ImageNet task. (before this work)
- Challenge of randomized smoothing
- Not possible to exactly compute the probabilities with which f classifies $\mathcal{N}(x, \sigma^2 I)$ as each class.
- Not possible to exactly evaluate the smoothed classifier g
- Not possible to exactly compute the radius in which g is robust.
- Solution
- \triangleright Use Monte Carlo method to evaluate prediction of the classifier around x.

Notation

Symbol	Definition
y	Classes set
g	Random smoothed classifier
$f \colon \mathbb{R}^d o \mathcal{Y}$	Base classifier
$x \in \mathbb{R}^d$	Input space
$\varepsilon \sim N(0, \sigma^2 I)$	Isotropic Gaussian noise
$C_A \in \mathcal{Y}$	most probable class returned by $f(x + \varepsilon)$
$p_A \in [0,1]$	$\mathbb{P}(f(x+\epsilon)=C_A).$
C_B	"runner-up" class returned by $f(x + \varepsilon)$
$p_B \in [0,1]$	$\mathbb{P}(f(x+\epsilon)=C_B).$
$\underline{p_A} \in [0,1]$	lower bound of p_A
$\overline{p_B} \in [0,1]$	upper bound of p_B
$\delta = (\delta_1, \delta_2, \dots, \delta_n)$	<i>n</i> -dimensional perturbation
$ \delta _2$	2 norm of the vector δ , $\sqrt{({\delta_1}^2 + {\delta_2}^2 + \dots + {\delta_n}^2)}$

Algorithm

- Smoothed Classifier g
- Definition:

Smoothed classifier g returns whichever class the base classifier f is most likely to return when x is perturbed by isotropic Gaussian noise:

$$g(x) = \arg\max_{c \in \mathcal{Y}} \mathbb{P}(f(x + \varepsilon) = c)$$
 (1)

Where $\varepsilon \sim N(0, \sigma^2)$

> Interpretation:

Randomized smoothing in high dimension is that these large random perturbations ε drown out small adversarial perturbations δ .

random Gaussian corruptions of x ($\sigma = 0.5$)

Algorithm

- Smoothed Classifier g
- > Definition:

Smoothed classifier g returns whichever class the base classifier f is most likely to return when x is perturbed by isotropic Gaussian noise:

$$g(x) = \underset{c \in \mathcal{Y}}{\arg \max} \mathbb{P}(f(x + \varepsilon) = c)$$
 (1)
Where $\varepsilon \sim N(0, \sigma^2)$

- Base classifier *f*
- In order for g to classify the labeled example (x, c) correctly and robustly, f needs to consistently classify $N(x, \sigma^2 I)$ as c at training.
- Frain f with Gaussian data augmentation at variance σ^2 , with training noise level $\sigma_{train} \ge \sigma_{pred}$ prediction noise level.

Algorithm

- How much noise to use when training the base classifier ?
- \triangleright Holding prediction noise level fixed at $\sigma_{pred} = 0.5$.
- If f was trained with a different noise level ($\sigma_{train} \neq 0.5$), g has lower certified accuracy. (blue and green)
- It is better to train with $\sigma_{train} > \sigma_{pred}$ than to train with $\sigma_{train} < \sigma_{pred}$.

Algorithm

• PREDICT $(f, \sigma, x, n, \alpha)$

evaluate g at x function PREDICT $(f, \sigma, x, n, \alpha)$

- 1 counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$
- 2 if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \le \alpha$ return \hat{c}_A else return ABSTAIN
- CERTIFY(f, σ , x, n_0 , n, α)

certify the robustness of g around x

function Certify(f, σ , x, n_0 , n, α)

counts0 \leftarrow SampleUnderNoise(f, x, n_0 , σ) $\hat{c}_A \leftarrow$ top index in counts0

counts \leftarrow SampleUnderNoise(f, x, n, σ^2)

3 $\underline{p_A} \leftarrow \text{LowerConfBound}(\text{counts}[\hat{c}_A], n, 1 - \alpha)$ if $\underline{p_A} > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p_A})$ else return ABSTAIN

Independent algorithms for the two tasks:

- (A) Evaluating g(x)
- (B) Evaluating and certifying g(x)

Algorithm

• PREDICT $(f, \sigma, x, n, \alpha)$

evaluate g at x function PREDICT $(f, \sigma, x, n, \alpha)$

- ① counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$
- 2 if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \le \alpha$ return \hat{c}_A else return ABSTAIN
- > Requirement:

Only need to identify the class c_A with maximal weight in $f(x + \varepsilon)$

Algorithm

• PREDICT $(f, \sigma, x, n, \alpha)$

evaluate g at x function PREDICT $(f, \sigma, x, n, \alpha)$

- ① counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$
- 2 if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \le \alpha$ retuelse return ABSTAIN

SampleUnderNoise (f, x, n, σ)

 \triangleright Draw n samples of noise:

$$\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \sim N(0; \sigma^2 I).$$

➤ Run noisy images through the base classifier f to obtain the predictions:

$$f(x + \varepsilon_1), f(x + \varepsilon_2), ..., f(x + \varepsilon_n)$$

Return the *counts* for each class, where the *count* for class *c* is defined as:

$$\sum_{i=1}^{n} 1[if \ f(x + \varepsilon_i) = c]$$

$$n_A = \sum_{i=1}^{n} 1[if \ f(x + \varepsilon_i) = c_A]$$

$$n_B = \sum_{i=1}^{n} 1[if \ f(x + \varepsilon_i) = c_B]$$

Algorithm

• PREDICT $(f, \sigma, x, n, \alpha)$

evaluate g at x function PREDICT $(f, \sigma, x, n, \alpha)$

- ① counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$
- 2 if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \le \alpha$ relse return ABSTAIN

BinomPValue $(n_A, n_A + n_B, p = 0.5)$

- Return the p-value of the two-sided hypothesis test that $n_A \sim$ Binomial $(n_A + n_B, p = 0.5)$.
- P-value: probability of obtaining very unlikely observations when assuming null hypothesis is correct.
- Two-sided hypothesis test:
 P-value = 2 * P-value_{right}
- When α is small, abstains frequently, but rarely returns wrong class.
- When α is large, seldom abstains, but often return the wrong class.

Algorithm

- CERTIFY $(f, \sigma, x, n_0, n, \alpha)$
- > Requirement:
- ✓ Identify the class c_A with maximal weight in $f(x + \varepsilon)$
- \checkmark Estimate a lower bound p_A on $p_A := P(f(x + \varepsilon) = c_A)$
- ✓ Estimate an upper bound $\overline{p_B}$ on $p_B := \max_{c \neq c_A} P(f(x + \varepsilon) = c)$
- Problem
 Statistically speaking, estimating $\underline{p_A}$ and $\overline{p_B}$ while simultaneously identifying the top class c_A is a little bit tricky.
- SolutionTwo-step procedure

Algorithm

- CERTIFY $(f, \sigma, x, n_0, n, \alpha)$
- Requirement:
- ✓ Identify the class c_A with maximal weight in $f(x + \varepsilon)$
- \checkmark Estimate a lower bound p_A on $p_A := P(f(x + \varepsilon) = c_A)$
- ✓ Estimate an upper bound $\overline{p_B}$ on $p_B := \max_{c \neq c_A} P(f(x + \varepsilon) = c)$
- Procedure:

```
# certify the robustness of g around x function Certify(f, \sigma, x, n_0, n, \alpha) counts 0 \leftarrow SampleUnderNoise(f, x, n_0, \sigma) \hat{c}_A \leftarrow top index in counts 0 counts \leftarrow SampleUnderNoise(f, x, n, \sigma^2)
```

3 $\underline{p_A} \leftarrow \text{LOWERCONFBOUND}(\text{counts}[\hat{c}_A], n, 1 - \alpha)$ if $\underline{p_A} > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p_A})$ else return ABSTAIN

Algorithm

- CERTIFY $(f, \sigma, x, n_0, n, \alpha)$
- > Requirement:
- ✓ Identify the class c_A with maximal weight in $f(x + \varepsilon)$
- \checkmark Estimate a lower bound p_A on $p_A := P(f(x + \varepsilon) = c_A)$
- ✓ Estimate an upper bound $\overline{p_B}$ on $p_B := \max_{c \neq c_A}$
- > Procedure:

certify the robustness of g around x function CERTIFY $(f, \sigma, x, n_0, n, \alpha)$

counts0 \leftarrow SAMPLEUNDERNOISE (f, x, n_0, σ)

 $\hat{c}_A \leftarrow \mathsf{top} \; \mathsf{index} \; \mathsf{in} \; \mathsf{counts0}$

counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ^2)

3 $\underline{p_A} \leftarrow \text{LowerConfBound}(\text{counts}[\hat{c}_A], n, 1 - \alpha)$ **if** $\underline{p_A} > \frac{1}{2}$ **return** prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p_A})$ **else return** ABSTAIN

Use a small number n_0 of samples from $f(x + \varepsilon)$ to take a guess at c_A , because $f(x + \varepsilon)$ tends to put most of its weight on the top class,

Algorithm

- CERTIFY $(f, \sigma, x, n_0, n, \alpha)$
- > Requirement:
- ✓ Identify the class c_A with maximal weight i
- ✓ Estimate a lower bound p_A on $p_A := P(f(x))$
- ✓ Estimate an upper bound $\overline{p_B}$ on $p_B := \max_{c \neq c_A}$
- > Procedure:

certify the robustness of g around x

function Certify $(f, \sigma, x, n_0, n, \alpha)$ counts0 \leftarrow SampleUnderNoise $(f, x, n_0, \sigma, \alpha)$ $\hat{c}_A \leftarrow$ top index in counts0

counts \leftarrow SampleUnderNoise (f, x, n, σ^2)

3 $\underline{p_A} \leftarrow \text{LowerConfBound}(\text{counts}[\hat{c}_A], n, 1 - \alpha)$ if $\underline{p_A} > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p_A})$ else return ABSTAIN

- Use a larger number n of samples to estimate p_A and $\overline{p_B}$
- ✓ Use LowerConfBound $(k, n, 1 \alpha)$ to return $\underline{p_A}$ of $[\underline{p_A}, \overline{p_A}]$ that holds with probability at least 1-α over the sampling of $k \sim Binomial(n, p_A)$.
- **Clopper-Person confidence interval** (二项式比例置信区间): 根据一系列伯努利成功(c_A)-失败(c_B)实验的结果计算出的成功(c_A)概率(p_A)的置信区间[p_A , $\overline{p_A}$]
- ightharpoonup Take $\underline{p_B} = 1 \underline{p_A}$.

Algorithm

- CERTIFY $(f, \sigma, x, n_0, n, \alpha)$
- > Requirement:
- ✓ Identify the class c_A with maximal weight i
- ✓ Estimate a lower bound p_A on $p_A := P(f(x))$
- ✓ Estimate an upper bound $\overline{p_B}$ on $p_B := \max_{c \neq c_A}$
- > Procedure:

certify the robustness of g around x

function Certify $(f, \sigma, x, n_0, n, \alpha)$

counts0 \leftarrow SAMPLEUNDERNOISE (f, x, n_0, σ)

 $\hat{c}_A \leftarrow \mathsf{top} \; \mathsf{index} \; \mathsf{in} \; \mathsf{counts0}$

counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ^2)

3 $\underline{p_A} \leftarrow \text{LowerConfBound}(\text{counts}[\hat{c}_A], n, 1 - \alpha)$ if $\underline{p_A} > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p_A})$ else return ABSTAIN

- ightharpoonup If $p_A > 0.5$ (即 $\overline{p_B} < 0.5$)
- Compute robustness guarantee

$$R = \frac{\sigma}{2} \left(\phi^{-1} \left(\underline{p_A} \right) - \phi^{-1} (\overline{p_B}) \right)$$
$$= \frac{\sigma}{2} \left(\phi^{-1} \left(\underline{p_A} \right) - \phi^{-1} (1 - \underline{p_A}) \right)$$
$$= \frac{\sigma}{2} \cdot 2\phi^{-1} \left(\underline{p_A} \right) = \sigma \phi^{-1} (\underline{p_A})$$

• Return \widehat{c}_A and R

Radius

• **Theorem 1.** Let $f : \mathbb{R}^d \to \mathcal{Y}$ be any deterministic or random function, and let $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. Let g be defined as in (1). Suppose $c_A \in \mathcal{Y}$ and $\underline{p_A}$, $\overline{p_B} \in [0, 1]$ satisfy:

$$\mathbb{P}(f(x+\varepsilon)=c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \ne c_A} \mathbb{P}(f(x+\varepsilon)=c) \quad (2)$$

Then $g(x + \delta) = c_A$ for all $\|\delta\|_2 < R$, where

$$R = \frac{\sigma}{2} (\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B})) \tag{3}$$

- 证明
- ▶ 要证

$$g(x + \delta) = \underset{c \in \mathcal{Y}}{\operatorname{arg max}} \mathbb{P}(f(x + \varepsilon + \delta) = c) = c_A$$

▶ 就要证

$$\mathbb{P}(f(x+\varepsilon+\delta)=c_A) > \max_{c\neq c_A} \mathbb{P}(f(x+\varepsilon+\delta)=c)$$

▶ 对任意 $c_B \neq c_A$, 证 $\mathbb{P}(f(x+\varepsilon+\delta)=c_A) > \mathbb{P}(f(x+\varepsilon+\delta)=c_B)$

Radius

- Illustration of the proof of Theorem 1.
- 当且仅当 $\mathbb{P}(f(Y \in A)) > \mathbb{P}(f(Y \in B))$ 成立,有 $\mathbb{P}(f(x + \varepsilon + \delta) = c_A) > \mathbb{P}(f(x + \varepsilon + \delta) = c_B)$
- $\mathbb{E} \mathcal{X}$: $A \coloneqq \{z : \delta^T(z x) \le \sigma | |\delta| | \phi^{-1}(\underline{p_A}) \}$

•
$$\mathbb{P}(f(Y \in A)) = \phi(\phi^{-1}(p_A) - \frac{||\delta||}{\sigma})$$

$$B := \{z : \delta^T(z - x) \le \sigma | |\delta| | \phi^{-1}(\overline{p_B}) \}$$

$$\mathbb{P}(f(Y \in B)) = \phi(\phi^{-1}(\overline{p_B}) + \frac{||\delta||}{\sigma})$$

- The figure on the left depicts a situation where $\mathbb{P}(Y \in A) > \mathbb{P}(Y \in B)$, and hence $g(x + \delta) = g(Y)$ may equal c_A .
- The figure on the right depicts a situation where where $\mathbb{P}(Y \in A) < \mathbb{P}(Y \in B)$ and hence $g(x + \delta) = g(Y) \neq c_4$.

Figure 9

Evaluation

- Metric of normal classification
- > Standard test set accuracy:

$$STD.ACC = \frac{N_{g-Correctly}}{N_{g-Total}}$$

- Metric of certified classification
- > Certified test set accuracy at radius r:

$$CERT.ACC = \frac{N_{g-Correctly-Robust}}{N_{g-Total}}$$

- g classifies correctly (without abstaining) and certifies robust with a radius $R \ge r$.
- r is similar to Threshold size T defined in Lecuyer. IEEE S&P 2019.

Evaluation

- Experiments with randomized smoothing on ImageNet with $\sigma = 0.25$.
- Left: certified accuracies obtained using CERTIFY VS. those obtained using the guarantees derived in prior works (SP2019).
- ➤ Middle: certified accuracy if the number of samples *n* used by CERTIFY had been larger or smaller.
- \triangleright Right: certified accuracy as the failure probability α of CERTIFY is varied.

Contribution

- Prove the first tight robustness guarantee for randomized smoothing.
- Analysis reveals that smoothing with Gaussian noise naturally induces certifiable robustness under the l_2 norm.
- Suspect that other noise distributions might induce robustness to other perturbation sets such as general l_p norm balls.
- Enables the use of large networks on large scale datasets and does not constrain the architecture of the classifier.
- > Datasets:
- ImageNet
- CIFAR10
- Networks:
- ResNet

CIFAR10

ImageNet

Authors

Jeremy Cohen PhD at CMU

Elan Rosenfeld PhD at CMU

J. Zico Kolter Associate Professor at CMU

Background Differential Privacy Scheme Overview Randomized Smoothing Scheme Conclusion

Defense Category

- Certified Defense
- Provide a certificate (r) for adversarial robustness For any input x, the prediction output by the classifier f on samples in l_p ball centered at x are guaranteed to be constant.

Certified Defense Category

Prediction

- Certification
- > Exact Certified Defense

> Conservative Certified Defense

Future

CNN Certified Defense

Zico Kolter.

Provable defenses against adversarial examples via the convex outer adversarial polytope. ICML2018.

RNN Certified Defense

Du Tianyu.

Cert-RNN: Towards Certifying the Robustness of Recurrent Neural Networks. CCS2021.

GNN Certified Defense

Schuchardt.
Collective robustness
certificates: Exploiting
interdependence in graph
neural networks.
ICLR2021.

Thank You

Mengdie Huang
AI Security
Lab Ruiyun
2022-04-01

