Fisica. Esame scritto, 25 Gennaio 2016

• punteggio di partenza: 2 (4/6 cfu: 0)

esercizi(o)

○ corretto: +8 (4/6 cfu: 12) (o suddiviso se ci sono più domande)

○ sbagliato: -4 (4/6 cfu: 0) (errore concettuale), 0 (4/6 cfu: 4) (due o più errori di calcolo, errore di conversione), 4 (4/6 cfu: 8) (un errore di calcolo); non svolto: 0

	4/6 cfu	8 cfu
sufficienza	2	2
30	3	4
sufficienza con 1 errore di calcolo	2	3
sufficienza con 1 errore di fisica	3	4

1. Una molla viene compressa di 17 cm prima di lanciare una palla verso un piano inclinato senza attrito. La palla ha massa 1kg e il piano inclinato ha un'altezza H=1.28 m. Quanto vale la costante elastica della molla affinché la palla arrivi con una velocità di 4 m/s in cima al piano ?

2. Un'automobile a trazione anteriore accelera costantemente da 0 km/h a 99 km/h in 12 s lungo una strada piana. Calcolare il minimo coefficiente d'attrito necessario tra la strada e i pneumatici affinché le ruote non slittino.

3. Una bottiglia (volume $V_B=1L$ e massa 100 g) contiene 50atm di He (gas perfetto) a temperatura ambiente. Calcolare la forza che bisogna esercitare verticalmente sulla bottiglia per tenerla completamente immersa in acqua. Massa atomica He= 6,64 x 10^{-24} g. densità acqua 1000 kg/m³.

4. Calcolare l'accelerazione centripeta di un satellite in orbita geostazionaria. M_{Terra} =5,972x10²⁴ kg.

6. Prima di chiudere l'interruttore S1, la tensione ai capi del condensatore C1 è pari a 12V. Determinare quanto tempo deve passare dalla chiusura dell'interruttore S1 perché la corrente che scorre in R2 diventi inferiore a $10 \mu A$. $R1=R2=2k\Omega$. $C1=1\mu F$.

- 7. Su due fili di lunghezza infinita, distanti 10 cm, è distribuita una carica uniforme per unità di lunghezza λ = 125 nC/m per ciascun filo. Calcolare il campo elettrico in un punto che si trova 3 cm a destra dal filo di sinistra. (ϵ 0= 8.85*10⁻¹² F/m).
- 8. 2.5 moli di gas perfetto contenute in un volume V_A = 80 dm³ sono compresse isotermicamente da uno stato A ad uno stato B aumentato la pressione da P_A =1.5 atm a P_B =1.8 atm. Raggiunto il punto B al gas viene aumentata la pressione mantenendo il volume costante fino a raggiungere la temperatura T_C = 620 K; calcolare P_C .
- 9. Si determini l'intensità del campo elettrico del condensatore mostrato in figura in modo che un fascio di elettroni che entri con velocità 200 m/s colpisca un punto X a 65 mm di distanza dal bordo del piatto da cui è entrato. La distanza del fascio non deflesso dal piatto del condensatore è h=1 m. (carica elettrone= $1.6*10^{-19}$ C, massa elettrone= $9.1*10^{-31}$ kg)

