Kapitel 2: Elementare Datenstrukturen

- 1. Elementare und strukturierte Datentypen
- 2. Stapel und Warteschlangen
- 3. Listen
- 4. Bäume

2.1 Elementare und Strukturierte Datentypen

Abstrakter Datentyp (ADT) / Datenstruktur:

- Ein oder Mehrere Objekt(e) (Beschreibung der Daten) und
- Operationen (Manipulation der Daten)
- Beispiel: Datum
 - Objekt D: Tag.Monat.Jahr 1.11.2002
 - Objekt T: Tage 17 Tage
 - Operationen:
 - ◆ Addition: D x T → D 1.11.2002 + 5 Tage → 6.11.2002
 - ♦ Subtraktion 1: D x T → D 1.11.2002 5 Tage → 27.10.2002
 - ♦ Subtraktion 2: D x D → T 1.11.2002 27.10.2002 → 5 Tage
 - ◆IstFeiertag: D → {wahr,falsch} IstFeiertag(1.11.2002) → falsch (in HH)
- Entwurf von Datentypen (konstruktive Methode):
 - Definition der Objekte (Bestehend aus elementaren Datentypen)
 - Definition aller Operationen (Operanden, Ergebnis, Spezifikation)

Elementare und strukturierte Datentypen

■ Elementare Datentypen: ADTs, die typischerweise (in einer Programmiersprache) zur Verfügung stehen:

■ INTEGER: ganze Zahlen

■ REAL: reelle Zahlen

■ BOOLEAN: Wahrheitswerte {TRUE, FALSE}

■ CHAR: Zeichen

[Achtung: in Cormen et al wird dieser Begriff anders verwendet!]

Strukturierter Datentyp: aus elementaren (oder strukturierten!) Datentypen zusammengesetzte Datentypen, wichtige Strukturierungsmethoden:

ARRAY: über natürliche Zahlen indizierte Menge

RECORD/STRUCT: Gruppierung ggf. verschiedener Datentypen

ENUM: konstante Wertemenge

UNION: Vereinigung verschiedener Datentypen

Referenzen: Verweise auf andere Daten (Zeiger, Adressen)

2.2 Stapel

- **LIFO-Prinzip** (last-in first-out): Speicherung mit Zugriffsmöglichkeit nur auf dem zuletzt gespeicherten Objekt
- Stapel (Stack): linearer Speicher mit folgenden Operationen
 - head(S): Wert des ,obersten' Elements
 - push(S,x): Lege x oben auf den Stapel
 - pop(S): Entferne oberstes Element vom Stapel

Implementierung: Sequenzielle oder verkettete Speicherung

Stapel: Sequentielle Speicherung

Datenstruktur:

stack S : Array mit Elementen 1,..,MAXE S.top : Index des ,obersten Elements'

PUSH(S, x)
if(S.top == MAXE) error "Überlauf!"
else S.top = S.top+1
 S[S.top] = x

POP(S)
if(EMPTY-STACK(S)) error "Unterlauf!"
else S.top = S.top-1
return S[S.top+1]

HEAD(S)
if(EMPTY-STACK(S)) error "Unterlauf!"
else return S[S.top]

- Problem: Erkennung wohlgeformter Klammerausdrücke
 - finde zu jeder schließenden Klammer die zugehörige öffnende
 - Eingabe Array brackstr[1,...,nofbrack]
 - Ausgabe Array pairno[1,...,nofbrack](Index der öffnenden/schließenden Klammer)

Beispiel:

```
index: 1 2 3 4 5 6 7 8 9 10 11 12
brackstr: ( ( ) ( ) ( ( ) ( ) )
pairno: 12 3 2 5 4 11 8 7 10 9 6 1
```

■ Lösung: speichere Index öffnender Klammern in einem Stack

BRACKETS (brackstr, pairno) // brackstr: array[1,...,nofbrackstr] of char (Eingabe) // pairno: array[1,...,nofbrackstr] of integer(Ausgabe) S = INIT(); // initialisiere Stack S for p = 1 to nofbrackstr do if(brackstr[p] == '(') PUSH(S,p) else if(EMPTY-STACK(S)) error "Opening bracket missing!" else pairno[p] = HEAD(S) pairno[HEAD(S)] = pPOP(S) if(not EMPTY-STACK(S)) error "Closing bracket missing!" else return "Format correct."

Beispiel:

Beispiel:

$$\begin{array}{ccc}
2 & 4 \\
1 & 1
\end{array}$$
Stack
$$\begin{array}{c}
5 & 5 \\
5 & 5
\end{array}$$

Beispiel:

```
index: 1 2 3 4 5 6 7 8 9 10 11 12
brackstr: ( ( ) ( ) ( ( ) ( ) ) )
pairno: 0 3 2 5 4 0 8 7 0 0 0
p
```


Beispiel:

index: 5 6 9 10 11 12 4 8 brackstr: 2 5 12 3 4 11 pairno: 10 9 6

p

Schlange

- **FIFO-Prinzip** (first-in first-out): Speicherung mit Zugriffsmöglichkeit nur auf dem zuerst gespeicherten Objekt
- Schlange (Queue): linearer Speicher mit folgenden Operationen
 - head(Q): Wert des ,vordersten' Elements
 - enqueue(Q,x): Füge x am Ende der Schlange an
 - dequeue(Q): Entferne vorderstes Element der Schlange

Implementierung: Sequenzielle oder verkettete Speicherung

Schlange: Sequentielle Speicherung

Datenstruktur:

queue Q : Array 0,..,MAXE

Q.head : Position des ersten Elements

Q.rear : Pos. des ersten freien Elements (hinter der Schlange)

// ACHTUNG: Implementierung im Cormen mit Array 1..n

■ INIT(Q)

$$Q.head = Q.rear = 1$$

■ EMPTY-QUEUE(Q: queue)

if(Q.head == Q.rear) return TRUE

else return FALSE

Schlange: Sequentielle Speicherung

ENQUEUE (Q, x) if((Q.rear +1) mod MAXE == Q.head) error "Overflow!" **else** Q[Q.rear] = x $Q.rear = (Q.rear + 1) \mod MAXE$ 5 6 7 8 9 maxe=10 1 2 3 4 X Q.head Q.rear

Schlange: Sequentielle Speicherung

DEQUEUE(Q)
if(Q.head == Q.rear) error "Underflow!"
else x = Q[Q.head]
 Q.head = (Q.head + 1) mod MAXE
return x

2.3 Lineare Listen

Lineare Liste:

- Endliche Folge von Elementen eines Grundtyps
- Elemente haben eine Ordnung: a₁, a₂, a₃, ..., a_n
- Grundtyp ist von untergeordneter Bedeutung (hier Integer)
- Nomenklatur: $L = \langle a_1, a_2, a_3, ..., a_n \rangle$; leere Liste: $\langle \rangle$

Grundoperationen:

Einfügen(x,p,L): einfügen von x an Stelle p in L

$$\langle a_1, ..., a_p, a_{p+1}, ..., a_n \rangle \rightarrow \langle a_1, ..., a_p, x, a_{p+1}, ..., a_n \rangle$$

Entfernen(p,L): entfernen des p-ten Elements

$$\langle a_1, ..., a_{p-1}, a_p, a_{p+1}, ..., a_n \rangle \rightarrow \langle a_1, ..., a_{p-1}, a_{p+1}, ..., a_n \rangle$$

Suchen(x,L): Position von Element mit Wert x

$$\langle a_1, ..., a_{p-1}, x, a_{p+1}, ..., a_n \rangle \rightarrow p$$

Zugriff(p,L): Wert des p-ten Elements

$$\langle a_1, ..., a_{p-1}, x, a_{p+1}, ..., a_n \rangle \rightarrow x$$

Lineare Listen

- weiterführende Operationen:
 - Verketten(L_a,L_b): verbindet zwei Listen zu einer

$$\langle a_1, ..., a_n \rangle || \langle b_1, ..., b_m \rangle \rightarrow \langle a_1, ..., a_n, b_1, ..., b_m \rangle$$

- Leer(L): wahr, falls L = ⟨⟩
- Länge(L): Anzahl der Elemente in L ⟨a₁, ..., aո⟩ → n
- Anhängen(L,x): hängt ein neues Element x an L an $\langle a_1, ..., a_n \rangle \rightarrow \langle a_1, ..., a_n, x \rangle$
- Kopf(L), rest(L): zerlegt eine Liste in erstes Element und Rest kopf: $\langle a_1, ..., a_n \rangle \rightarrow \langle a_1, ..., a_n \rangle \rightarrow \langle a_2, ..., a_n \rangle$
- Entfernen2(x,L): Entfernen(Suchen(x,L),L)

:

:

Lineare Listen

- Wie können lineare Listen am effizientesten realisiert werden?
- Variante 1: Sequenzielle Speicherung

Speicher

- Vorteil: schneller Zugriff Nachteil: langsames Einfügen
- Variante 2: verkettete Speicherung

Vorteil: schnelles Einfügen Nachteil: langsamer Zugriff, höherer Speicherbedarf

Lineare Listen: Sequenzielle Speicherung

Datenstruktur:

list L: Array 0,..,MAXE; Speicherung ab Position 1

L.size : Anzahl Elemente in der Liste

Zugriff	direkt über Index p: L.element[p]	O(1)
Suchen	durchlaufe die Liste bis x gefunden wurde	O(N)
Einfügen	verschiebe Elemente p+1,,n um eine Position nach hinten	O(N)
Entfernen	verschiebe Elemente p+1,,n um eine Position nach vorne	O(N)
Verketten	füge die Elemente von Liste 2 hinter Liste 1 ein	O(N)

Lineare Listen: Sequentielle Speicherung

LIST-SEARCH(x, L)
L[0] = x
pos = L.size
while L[pos] ≠ x
pos = pos -1
return pos

Lineare Listen: Sequentielle Speicherung

```
LIST-INSERT(x, p, L)
if( L.size == MAXE ) error "Overflow!"
else
if( p > L.size + 1 or p < 1 ) error "Invalid position!"
else
for pos = size[L] downto p
        L[pos+1] = L[pos]
        L[p] = x
        L.size = L.size +1</pre>
```


Lineare Listen: Sequentielle Speicherung

```
LIST-DELETE(p, L)
if( L.size == 0 ) error "Empty list!"
else
if( p > L.size or p < 1 ) error "Invalid position!"
else
    L.size = L.size -1
    for pos = p to L.size
    L[pos] = L[pos+1]</pre>
```


Lineare Listen: Verkettete Speicherung

Datenstruktur:

List node x : Listenelement

x.key : Schlüssel des Elements x

x.next : Zeiger auf das Nachfolger-Element von x

L.head : Zeiger auf das erste Listenelement

einfach verkettete Liste

Lineare Listen: Verkettete Speicherung

Durchlaufen der Liste (für Suchen, Einfügen, Entfernen)

Einfügen von x hinter Element p:

Entfernen hinter Position p:

```
:
d = p.next
p.next = p.next.next
delete(d)
```

Achtung: besondere Regeln zum Einfügen/Entfernen am Listenanfang

Lineare Listen: Doppelt verkettete Speicherung

Datenstruktur:

List node x : Listenelement

x.key : Schlüssel des Elements x

x.next : Zeiger auf das Nachfolger-Element von x

x.prev : Zeiger auf das Vorgänger-Element von x

L.head : Zeiger auf das erste Listenelement

L.rear : Zeiger auf das letzte Listenelement

doppelt verkettete Liste

Doppelt-verkettete Listen

Durchlaufen der Liste vorwärts und rückwärts möglich

rückwärts:

head→rear, next→prev

Einfügen hinter Position p:

■ Entfernen an Position q:

```
:
q.prev.next = q.next
q.next.prev = q.prev
delete(q)
```

Lineare Listen: (Doppelt-)verkettete Speicherung

Zugriff	durchlaufe die Liste bis Position p	O(N)
		[O(1)]
Suchen	durchlaufe die Liste bis x gefunden wurde	O(N)
Einfügen	erzeuge neues Element, ,verbiege' Zeiger	O(N)
		[O(1)]
Entfernen	,verbiege' Zeiger, lösche das Element	O(N)
		[O(1)]
Verketten	next-Zeiger des letzten Elements der Liste 1 zeigt auf erstes Element der Liste 2	O(1)

[]: falls pos-Zeiger bereits an Position p

Doppelt-verkettete Listen mit Wächter

- Spezieller Code für das Einfügen und Löschen am Listenanfang / -ende notwendig:
- LIST-INSERT(L, x, p) // fügt Element x hinter p ein x.prev = p

 if p == NIL // Listenanfang
 x.next = L.head
 if(L.head == NIL) L.rear = x // Listenanfang/-ende
 else L.head.prev = x
 L.head = x

 else // Listenmitte oder -ende
 x.next = p.next
 p.next = x
 if(x.next == NIL) L.rear = x // Listenende
 else x.next.prev = x
 L.size = L.size + 1

Doppelt-verkettete Liste mit Wächter

Wächter L.nil: spezielles Listenelement, repräsentiert Listenanfang und -ende

L.nil.next: Listenanfang (= L.head)

L.nil.prev: Listenende (= L.rear)

■ L.nil.key: NIL (speichert keinen Wert)

Doppelt-verkettete Liste mit Wächter

■ LIST-INSERT(L, x, p)

x.next = p.next

x.prev = p

x.prev.next = x

x.next.prev = x

■ LIST-DELETE(L, x)

x.prev.next = x.next

x.next.prev = x.prev

2.4 Bäume

- Datenstruktur (Binär-)Baum:
 - wie Listen, jedoch mit einer endlichen Anzahl (2) Nachfolger
- Nomenklatur:
 - Knoten: Element eines Baums
 - (direkter) Vorgänger: vorheriges Element im Baum (eindeutig!)(Vater, Elter, parent)
 - (direkter) Nachfolger: nachfolgendes Element im Baum (Sohn, Kind, child)
 - Vorfahre: Knoten auf dem Weg zur Wurzel
 - Nachfahre: Knoten auf dem Weg zu einem Blatt
 - geordneter Baum: Nachfolger haben eine feste Reihenfolge (left, right bei Binärbäumen)
 - Wurzel: Knoten ohne Vorgänger
 - innerer Knoten: mit Nachfolger
 - Blatt / externer Knoten: Knoten ohne Nachfolger
 - Ordnung: Anzahl direkter Nachfolger eines Knotens
 - Pfad $(v_1,...v_k)$: Folge von Knoten mit v_i =parent (v_{i-1})

Bäume

■ Nomenklatur:

Bäume: Höhen und Tiefen

- Höhe eines Baums: (rekursive Definition)
 - $h(\Box) = 0$; $h(\bigcirc) = max\{h(t_1),...,h(t_d)\} + 1$ $\underbrace{t_1} \underbrace{t_d}$
 - oder: max. Tiefe eines Blattes
- Tiefe eines Knotens k:
 - Anzahl der Kanten von k bis zur Wurzel
- Niveau / Ebene i:
 - alle Knoten der Tiefe i

Höhe: 4

Bäume: Zahlen

- Vollständiger Binärbaum der Höhe h:
 - auf jedem Niveau die maximal mögliche Anzahl Knoten
 - alle Blätter auf Niveau h

Anzahl der Blätter: 2^h

Anzahl der Knoten:
$$|K| = \sum_{i=0}^{h} 2^i = 2^{h+1} - 1$$

zur Speicherung von |K| Knoten benötigt man einen Binärbaum der Höhe:

$$h = \log_2\left(\frac{|K|+1}{2}\right) = \log_2(|K|+1) - 1 = \Theta(\log|K|)$$

Darstellung von binären Bäumen

T.root : Wurzel des Baums T

Sei x ein Knoten des Baumes, dann ist

x.p : Vorgänger / Vater von x

x.left : linker Nachfolger / Sohn von x

x.right : rechter Nachfolger / Sohn von x

Darstellung von Bäumen mit unbeschränktem Grad

Vermeidung von Nachfolger Listen/Arrays durch left-child/rightsibling Repräsentation:

x.p : Vorgänger / Vater von x

x.left-child : links-stehender Nachfolger von x

x.right-sibling : rechter Bruder von x

