RM Anova (Anova à mesures répétées)

HPS5-3B Statistique Licence 3 Psychologie

GALHARRET Jean-Michel Laboratoire Jean Leray Faculté de psychologie

Introduction

- En L2 vous avez vu comment tester l'évolution d'une variable quantitative entre deux temps de mesure (test de Student sur groupes appariés).
- On généralise à t > 2 temps de mesures

Exemple

 On suit 60 individus qui souffrent de maux de tête durant 4 semaines. On note Yi le nombre d'heures de maux de tête qu'ils ont rapportés pour la semaine i.

• A partir de la fin de la première semaine les individus vont réaliser des exercices de relaxation dont le but est de réduire la durée des maux de

16

13

14

12

têtes.

Participant	♦ Y1	♦ Y2	♦ Y3	♦ Y4
1	21	21	13	14
2	21	19	14	13
3	19	21	18	15
4	19	19	16	13
5	18	22	14	16
6	19	19	15	13
7	21	20	15	14
8	21	19	16	11
9	22	19	13	15
10	18	20	13	13
11	19	19	12	14
12	19	20	18	13
13	19	20	16	16
14	18	19	16	12
15	19	21	14	12
16	17	20	16	14
17	21	20	12	13

17

Données brutes de l'exemple

Dans la suite on note :

- N_s le nombre de sujets
- *N* le nombre total
- t le nombre de mesures répétées

On a:

$$N = t \times N_s$$

18

19

21

Variabilité totale

Variabilité Totale
$$ddl = N - 1$$

Variabilité Inter-sujets $ddl = N_s - 1$

Between-Subjects

Variabilité Intra-sujets $ddl = N - N_s$

Within-Subjects

Variabilité entre les Mesures ddl = t - 1

Résidu $ddl = (N - N_s) - (t - 1)$

Variabilité Inter-Sujets

La table d'ANOVA ci-dessous correspond à la variabilité entre les 60 moyennes des participants de l'étude.

Effets inter-sujets

	Somme des carrés	ddl	Carrés moyens	F	р
Résidu	253	59	4.28		

Note. Somme des carrés de type 3

Remarque: Pour l'instant il n'y a pas de facteurs inter-sujets, aucune hypothèse n'est associée à cette table. Ce sera le cas dans le chapitre suivant.

Variabilité Intra-sujets

Effets intra-sujets

	Somme des carrés	ddl	Carrés moyens	F	р
Semaine	1302	3	434.09	176,5	<.001
Résidu	435	177	2.46		

Note. Somme des carrés de type 3

$$H_0: \mu_{Sem1} = \mu_{Sem2} = \mu_{Sem3} = \mu_{Sem4}$$

On teste l'effet semaine dans la ligne de la table d'ANOVA (il s'agit de l'effet intra-sujets). Il mesure la variabilités entre les 4 moyennes des semaines considérées.

lci:

Il existe une différence significative entre les moyennes des quatre semaines de traitement. $F(3,177)=176.5,\,p<.001$

% de variance expliqué (η^2)

Effets inter-sujets

	Somme des carrés	ddl	Carrés moyens	F	р
Résidu	253	59	4.28		

Note. Somme des carrés de type 3

Effets intra-sujets

	Somme des carrés	ddl	Carrés moyens	F	р
Semaine	1302	3	434.09	176,5	<.001
Résidu	435	177	2.46		

Note. Somme des carrés de type 3

$$\eta_{Sem}^2 = \frac{SCE_{Sem}}{SCE_T}$$

Analyses post-Hoc (semaines)

Statistiques descriptives								
	Y1	Y2	Y3	Y 4				
Moyenne	18.4	18.4	14.6	13.1				
Ecart-type	2.02	1.99	1.54	1.13				
Minimum	14	13	12	11				
Maximum	22	22	18	16				

Analyse post-Hoc

Post Hoc Comparisons - MDT

		Mean Difference	SE	t	pholm
S1	S2	-0.083	0.286	-0.291	0.771
	S3	3.733	0.286	13.040	< .001
	S 4	5.250	0.286	18.338	< .001
S2	S3	3.817	0.286	13.331	< .001
	S 4	5.333	0.286	18.629	< .001
S3	S4	1.517	0.286	5.298	< .001

Note. P-value adjusted for comparing a family of 6

Conditions d'application (sphéricité)

On va calculer toutes les différences possibles entre les temps de mesures :

$$D_{j-i} = Y_j - Y_i$$
, pour tout $1 \le i < j < t$

On pourra alors appliquer l'ANOVA sans correction lorsque les variances de ces différences (notées σ_{i-i}^2) seront homogènes (sphéricité des données).

On teste l'hypothèse $H_0: \sigma_{j-i}^2 = \sigma^2$ pour tout (i,j) (Test de Mauchly).

- On utilise l'ANOVA lorsque H_0 n'est pas rejetée (Test de Mauchly)
- Lorsque l'on rejette l'hypothèse de sphéricité on utilisera une correction des ddl. On calcule une valeur ϵ :

Pour $\varepsilon < 0.75$ on utilise la correction de Greenhouse-Geisser

Pour $\varepsilon \ge 0.75$ on utilise la correction de Huynh-Feldt

Retour à l'exemple

Tests de sphéricité

	W de Mauchly	р	ε de Greenhouse-Geisser	ε de Huynh-Feldt
Semaine	0.866	0.142	0.916	0.965

Within Subjects Effects

Cases	Sphericity Correction	Sum of Squares	df	Mean Square	F	р
MDT	None	1302.3	3.000	434	176.5	< .001
	Greenhouse-Geisser	1302.3	2.747	474	176.5	< .001
	Huynh-Feldt	1302.3	2.895	450	176.5	< .001
Residua	None	435.2	177.00	2.5		
	Greenhouse-Geisser	435.2	162.09	2.7		
	Huynh-Feldt	435.2	170.79	2.5		

