Теорія чисел і криптографія: криптосистеми з відкритим ключем; криптографічні протоколи

Довідковий матеріал

	_			4
9	ΩП	иш	a	
1 a	UJ	ш	<i>_</i>	1.

A	В	C	D	E	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Латинська абетка

Таблиця 2.

			$y_{\mathbf{k}}$	раїн	ська	абе	тка			
A	Б	В	Г	۲	Д	E	E	X	3	И
0	1	2	3	4	5	6	7	8	9	10
I	Ϊ	й	K	Л	M	H	0	п	P	C
11	12	13	14	15	16	17	18	19	20	21
T	У	Φ	X	ц	Ч	Ш	Щ	Ь	Ю	я
22	23	24	25	26	27	28	29	30	31	32

Задачі

- **1.** Зашифрувати повідомлення UPLOAD з використанням системи RSA з $n = 53 \cdot 61$ та e = 17. Замінити кожну букву парою цифр і згрупувати пари цілих чисел, як це було зроблено в прикладі лекції 9.
- **2.** Зашифрувати повідомлення ЗУСТРІЧ НЕ ВІДБУЛАСЯ з використанням системи RSA з $n=53\cdot 67$ та e=17. Замінити кожну букву парою цифр і згрупувати пари цілих чисел, як це було зроблено в прикладі лекції 9.
- **3.** Дешифрувати повідомлення, яке було зашифроване з використанням системи RSA з $n=53\cdot 61$ та e=17, якщо зашифроване повідомлення таке: 3185 2038 2460 2550. (Для розшифрування спочатку знайдіть дешифрувальну експоненту d, яка є оберненою до e=17 за модулем $52\cdot 60$.)
- **4.** Дешифрувати повідомлення, яке було зашифроване з використанням системи RSA з $n=43\cdot 59$ та e=13, якщо зашифроване повідомлення таке: 0667 1947 0671. (Для розшифрування спочатку знайдіть дешифрувальну експоненту d, яка ϵ оберненою до e=13 за модулем $42\cdot 58$.)

- **5.** Дешифрувати повідомлення, яке було зашифроване з використанням системи RSA з $n=53\cdot 67$ та e=17, якщо зашифроване повідомлення таке: 3153 2335. (Для розшифрування спочатку знайдіть дешифрувальну експоненту d, яка ϵ оберненою до e=13 за модулем $52\cdot 66$.)
- **6.** Описати кроки, які мають виконати Аліса і Боб для реалізації протоколу обміну для генерування секретного ключа. Припустімо, що вони використовують просте число p=23 і взяли a=5, що є примітивним коренем 23. Нехай Аліса вибрала $k_1=8$, а Боб вибрав $k_2=5$.
- **7.** Описати кроки, які мають виконати Аліса і Боб для реалізації протоколу обміну для генерування секретного ключа. Припустімо, що вони використовують просте число p = 101 і взяли a = 2, що ϵ примітивним коренем 101. Нехай Аліса вибрала $k_1 = 7$, а Боб вибрав $k_2 = 9$.
- **8.** Аліса хоче розіслати всім своїм друзям, включно з Бобом, повідомлення «SELL EVERYTHING» так, щоб усі вони були впевнені, що лист надійшов саме від неї. Що саме має надіслати їм Аліса, якщо має бути використана система RSA? Параметри: $n = 61 \cdot 47 = 2867$ і e = 7. Секретний ключ d обчислюють як обернене до e = 7 за модулем $60 \cdot 46 = 2760$, за допомогою Modular Arithmetic Calculator знаходимо d = 1183.