Floating Point Numbers

Floats are not Reals

Int's:

Floats:

Eg 2: Is
$$(x + y) + z = x + (y + z)$$
?

eg
$$(1e20 + -1e20) + 3.14 --> 3.14$$
 $1e20 + (-1e20 + 3.14) --> ??$

Need to understand details of underlying implementations

Objective

- To understand the fundamentals of floatingpoint representation
- To know the IEEE-754 Floating Point Standard

Patriot Missile

- Gulf War I
- Failed to intercept incoming Iraqi scud missile (Feb 25, 1991)
- 28 American soldiers killed

GAO Report: GAO/IMTEC-92-26 Patriot Missile Software Problem

http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot Design

- Intended to operate only for a few hours
 - Defend Europe from Soviet aircraft and missile
- Four 24-bit registers (1970s design!)
- Kept time with integer counter: incremented every 1/10 second
- Calculate speed of incoming missile to predict future positions:

```
velocity = loc_1 - loc_0/(count_1 - count_0) * 0.1
```

• But, cannot represent 0.1 exactly!

Floating Imprecision

• 24-bits:

$$0.1 = 1/2^4 + 1/2^5 + 1/2^8 + 1/2^9$$

$$+ 1/2^{12} + 1/2^{13} + 1/2^{16} + 1/2^{17}$$

$$+ 1/2^{20} + 1/2^{21}$$

$$= 209715 / 2097152$$
Error is $0.2/2097152 = 1/10485760$

One hour = 3600 seconds 3600 * 1/10485760 * 10 = 0.0034s 20 hours = 0.0687s

Miss target! (137 meters)

Two weeks before the incident, Army officials received Israeli data indicating some loss in accuracy after the system had been running for 8 consecutive hours. Consequently, Army officials modified the software to improve the system's accuracy. However, the modified software did not reach Dhahran until February 26, 1991--the day after the Scud incident.

GAO Report

Review of Numbers

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:

to $2^{N} - 1$

Signed Integers (Two's Complement)

 $-2^{(N-1)}$

to $2^{(N-1)} - 1$

Other Numbers

- What about other numbers?
 - Very large numbers? (seconds/century) $3,155,760,000_{10}$ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) $0.00000001_{10} (1.0_{10} \times 10^{-8})$
 - Rationals (repeating pattern)
 - 2/3 (0.666666666...)
 - Irrationals

```
2^{1/2} (1.414213562373...)
```

- Transcendentals
- e (2.718...), π (3.141...)
- All represented in scientific notation

Exponential Notation

• The following are equivalent representations of 1,234

The representations differ in that the decimal place — the "point" — "floats" to the left or right (with the appropriate adjustment in the exponent).

Parts of a Floating Point Number

IEEE 754 Standard

- Most common standard for representing floating point numbers
- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (52 bits)

Prof. Willian Kahan

Single Precision Format

Normalization

- The mantissa is *normalized*
- Has an implied decimal place on left
- Has an implied "1" on left of the decimal place
- E.g.,

 - Represents... $1.101_2 = 1.625_{10}$
- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Excess Notation

- To include +ve and –ve exponents, "excess" notation is used
- Single precision: excess 127
- Double precision: excess 1023
- The value of the exponent stored is larger than the actual exponent
- E.g., excess 127,
 - Exponent \rightarrow 10000111
 - Represents... 135 127 = 8

Example

• Single precision

$$+1.11_2 \times 2^3 = 1110.0_2 = 14.0_{10}$$

Hexadecimal

- It is convenient and common to represent the original floating point number in hexadecimal
- The preceding example...

0 100	0001	0 110	0000	0000	0000	0000	0000
4	1	6	0	0	0	0	0

Converting from Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

• Step 1

• Express in binary and find S, E, and M

• Step 2

• Find "real" exponent, *n*

```
• n = E - 127
= 10000010_2 - 127
= 130 - 127
= 3
```

- Step 3
 - Put S, M, and *n* together to form binary result
 - (Don't forget the implied "1." on the left of the mantissa.)

```
-1.11111011_2 \times 2^n =
-1.11111011_2 \times 2^3 =
```

- Step 4
 - Express result in decimal

Answer: -15.6875

Converting from Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

42808000 ₁₆

Converting to Floating Point

• E.g., Express 36.5625₁₀ as a 32-bit floating point number (in hexadecimal)

- Step 1
 - Express original value in binary

$$36.5625_{10} =$$

100100.10012

• Step 2

• Normalize

```
100100.1001_2 =
```

$$1.001001001_2 \times 2^5$$

- Step 3
 - Determine S, E, and M

- Step 4
 - Put S, E, and M together to form 32-bit binary result

$$+1.001001001_2 \times 2^5$$

- Step 5
 - Express in hexadecimal

Answer: 42124000₁₆

Converting to Floating Point

• E.g., Express 6.5₁₀ as a 32-bit floating point number (in hexadecimal)

Converting to Floating Point

• E.g., Express 0.1 as a 32-bit floating point number (in hexadecimal)

Item	Single precision	Double precision	
Bits in sign	1	1	
Bits in exponent	8	11	
Bits in fraction	23	52	
Bits, total	32	64	
Exponent system	Excess 127	Excess 1023	
Exponent range	-126 to +127	-1022 to +1023	
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²	
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴	
Decimal range	approx. 10^{-38} to 10^{38}	approx. 10^{-308} to 10^{308}	
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴	

Figure B-5. Characteristics of IEEE floating-point numbers.

Summary: IEEE Floating Point Single Precision (32 bits)

1 8 bits 23 bits

Sion		Exponent			Fraction	
31	30		23	22		0

Exponent values: 0 zeroes 1-254 exp + 127 255 infinities, NaN

Value = $(1 - 2*Sign)(1 + Fraction)^{Exponent - 127}$

Denormalized Values

- Condition
 - exp = 000...0
- Value
 - Exponent value E = -Bias + 1
 - Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller

Special Values

- Condition
 - exp = 111...1
- Cases
 - exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\operatorname{sqrt}(-1)$, $\infty \infty$

Interesting Numbers

• Description exp frac Numeric Value

• Zero 00...00 00...00 0.0

• Smallest Pos. Denorm. $00...00 \quad 00...01$ $2^{-\{23,52\}} \times 2^{-\{126,1022\}}$

• Single $\approx 1.4 \text{ X } 10^{-45}$

• Double $\approx 4.9 \text{ X } 10^{-324}$

• Largest Denormalized $00...00 \ 11...11 \ (1.0 - \epsilon) \ X \ 2^{-\{126,1022\}}$

• Single $\approx 1.18 \times 10^{-38}$

• Double $\approx 2.2 \text{ X } 10^{-308}$

• Smallest Pos. Normalized 00...01 00...00 $1.0 \times 2^{-\{126,1022\}}$

Just larger than largest denormalized

• One 01...11 00...00 1.0

• Largest Normalized 11...10 11...11 $(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

• Single $\approx 3.4 \times 10^{38}$

• Double $\approx 1.8 \times 10^{308}$