Topic 8+9: Population genomics and plotting

Biol 525D - Bioinformatics for Evolutionary Biology 2019

Learning Goals

- Understand the principals behind basic population genetic visualization methods
 - F_{ST}, STRUCTURE and PCA analyses.
- Be able to plot results of these programs

Considerations for SNPs

- Ascertainment bias
 - Typically only keep variable sites, can bias diversity estimates
- Linkage
 - With thousands of sites, some will be in close linkage.
- Quality filtering
 - You must filter your SNPs to remove false SNPs, sometimes difficult

Population structure

- F_{ST}
- PCA
- STRUCTURE

FST

Nature Reviews | Genetics

- $F_{ST} = (\pi_{between} \pi_{within}) / \pi_{between}$
- $F_{ST} = 1 (H_s/H_T)$
 - H_T = Expected heterozygosity (based on Hardy-Weinberg) of the total population
 - H_T = Expected heterozygosity (based on Hardy-Weinberg) of the subpopulation

F_{ST} Programs

- hierfstat (R)
- · SNPrelate (R)
- FSTAT
- Arlequin
- vcftools
- scikit-allel (python)

Principal Component Analysis

- Converts a set of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.
- Model-free approach to assaying populations structure

Principal Component Analysis

Principal Component Analysis

- Converts a set of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.
- Great first step to visualize data
- You should prune dataset to unlinked SNPs

PCA Programs

- · SNPrelate (R)
- adegenet (R)
- SPSS
- PLINK

STRUCTURE

- Models K populations with a set of allele frequencies at each locus.
- Individuals are assigned to one or more populations based on their genotype
- Can pick the best K based on your data

STRUCTURE

STRUCTURE

- You should prune dataset to unlinked SNPs
- Run multiple times to confirm consistency

STRUCTURE programs

- STRUCTURE
- Admixture
- FASTstructure
- NGSadmix

SNP-phenotype associations (GWAS): one allele at a time

- Regression of phenotype on SNP
- Use PCA or STRUCTURE as a covariate in a linear model or a kinship matrix of relatedness in a mixed effect model
- Yields an estimate of the association between SNP and phenotype beyond what would be expected due to population structure

Huang et al., 2015; Nat. Com.

GWAS programs

- Tassel
- ANGSD
- GWAStools (R)
- GenABEL (R)
- GCTA

Plotting

- dplyr for data manipulation
- ggplot2 for plotting

