Compiler Design

Dr. Sahar kamal

Lexical Analysis

Lecture 4

Compilers *Principles, Techniques, & Tools*Second Edition

How to convert NFA with epsilon to DFA

In this method, we first convert Non-deterministic finite automata (NFA) with ϵ to NFA without ϵ .

Then, NFA without ε - can be converted to its equivalent Deterministic Finite Automata (DFA).

☐ Method for conversion

The method for converting the NFA with ε to DFA is explained below –

Step 1 – Consider M={Q, Σ , δ ,q0,F) is NFA with ε . We have to convert this NFA with ε to equivalent DFA denoted by

- M0=(Q0, Σ , δ 0,q0,F0)
- Then obtain, ε-closure(q0) ={p1,p2,p3,.....pn}
- then [p1,p2,p2,....pn] becomes a start state of DFA
- now[p1,p2,p3,....pn] ∈ Q0

Step 2 – We will obtain δ transition on [p1,p2,p3,...pn] for each input.

- = = U (i=1 to n) ε-closure d(pi,a)
- Where a is input $\in \Sigma$

Step 3 – The state obtained $[p1,p2,p3,...pn] \in Q0$.

■ The states containing final state in pi is a final state in DFA

The steps involved in the conversion of NFA to DFA are,

- 1. Transform the NFA with Epsilon transitions to NFA without epsilon transitions.
- convert the resulting NFA to DFA.

These steps are exaplained in detail as follows:

1. Transform the NFA with ε transitions to NFA without ε transitions.

Example 1:

Consider the following NFA with epsilon transitions:

The above NFA has states, q₀, q₁, q₂. The start state is q₀. The final state is q₂.

Step a: Find the Epsion closure of all states.

$$ECLOSE(q0) = \{q_0, q_1, q_2\}$$

$$ECLOSE(q_1) = \{q_1, q_2\}$$

$$ECLOSE(q_2) = \{q_2\}$$

The states of the new NFA will be $\{q_0, q_1, q_2\}, \{q_1, q_2\}, \{q_2\}.$

The transition table for the new NFA is,

	Input Symbol			
Current state	а	b	С	
$\longrightarrow *\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_2\}$	
$*\{q_1,q_2\}$	φ	$\{q_1,q_2\}$	$\{q_{2}\}$	
$*\{q_2\}$	φ	φ	$\{q_{2}\}$	

Let us say,

 q_0, q_1, q_2 as q_X

 $\{q_1, q_2\}$ as q_y

 $\{q_2\}$ as q_z

Then the transition table will become,

	Input	Symbol	
Current state	а	b	С
$\longrightarrow *q_x$	q_x	q_y	q_z
$*q_y$	φ	q_y	q_z
$*q_z$	φ	φ	q_z

The transition diagram for the new NFA is,

Subset Construction Algorithm

Converting NFA to DFA

Problem-01:

Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)-

Transition table for the given Non-Deterministic Finite Automata (NFA) is-

State / Alphabet	а	b
→q0	q0	q0, q1
q1	_	*q2
*q2	_	_

Step-02 Add transitions of start state q0 to the transition table T'.

State / Alphabet	а	b
⇒ q0	q0	{q0, q1}

Step-03:

New state present in state Q' is {q0, q1}.

Add transitions for set of states {q0, q1} to the transition table T'

State / Alphabet	а	b
→q0	q0	{q0, q1}
{q0, q1}	q0	{q0, q1, q2}

State / Alphabet	а	b
→q0	q0	{q0, q1}
{q0, q1}	q0	{q0, q1, q2}
{q0, q1, q2}	q0	{q0, q1, q2

State / Alphabet	а	b
→ q0	q0	{q0, q1}
{q0, q1}	q0	*{q0, q1, q2}
*{q0, q1, q2}	q0	*{q0, q1, q2

Now, Deterministic Finite Automata (DFA) may be drawn as-

Deterministic Finite Automata (DFA)

Problem-02:

Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)-

 Transition table for the given Non-Deterministic Finite Automata (NFA) is

State / Alphabet	0	1
⇒ q0	q0	q1, *q2
q1	q1, *q2	*q2
*q2	q0, q1	q1

Step-02:

Add transitions of start state q0 to the transition table T'.

State / Alphabet	0	1
⇒q0	q0	{q1, q2}

- Step-03:
- New state present in state Q' is {q1, q2}.
- Add transitions for set of states {q1, q2} to the transition table T'.

State / Alphabet	0	1
→q0	q0	{q1, q2}
{q1, q2}	{q0, q1, q2}	{q1, q2}

Step-04:

New state present in state Q' is {q0, q1, q2}.

Add transitions for set of states {q0, q1, q2} to the transition table

State / Alphabet	0	1
→q0	q0	{q1, q2}
{q1, q2}	{q0, q1, q2}	{q1, q2}
{q0, q1, q2}	{q0, q1, q2}	{q1, q2}

• Step-05:

- Since no new states are left to be added in the transition table T', so we stop.
- States containing q2 as its component are treated as final states of the DFA.
- Finally, Transition table for Deterministic Finite Automata (DFA) is-

State / Alphabet	0	1
→q0	q0	*{q1, q2}
*{q1, q2}	*{q0, q1, q2}	*{q1, q2}
*{q0, q1, q2}	*{q0, q1, q2}	*{q1, q2}

Deterministic Finite Automata (DFA)

Minimization of DFA

Minimize the given DFA-

Solution-

Step-01:

The given DFA contains no dead states and inaccessible states.

Step-02: Draw a state transition table

	а	b
→ q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	*q4
*q4	q1	q2

Step-03:

Now using Equivalence Theorem, we have-

$$P_0 = \{ q_0, q_1, q_2, q_3 \} \{ q_4 \}$$

$$P_1 = \{ q_0, q_1, q_2 \} \{ q_3 \} \{ q_4 \}$$

$$P_2 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$$

$$P_3 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$$

Since $P_3 = P_2$, so we stop.

From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.

So, Our minimal DFA is-

EX: 2 Minimize the given DFA-

Solution-

Step-01:

- State q₃ is inaccessible from the initial state.
- So, we eliminate it and its associated edges from the DFA.

The resulting DFA is-

Step-02:

Draw a state transition table-

	a	b
→q0	*q1	q0
*q1	*q2	*q1
*q2	*q1	*q2

Now using Equivalence Theorem, we have-

$$P_0 = \{ q_0 \} \{ q_1, q_2 \}$$

$$P_1 = \{ q_0 \} \{ q_1, q_2 \}$$

Since $P_1 = P_0$, so we stop.

From P_1 , we infer that states q_1 and q_2 are equivalent and can be merged together.So, Our minimal DFA is-

