QUANTUM NUMBER

UNCERTAINTY PRINCIPLE

$$\Delta x.\Delta p \ge \frac{h}{4\pi}$$

$$\Delta x.m\Delta v \ge \frac{h}{4\pi}$$

- $\Delta x \cdot \Delta p \ge \frac{n}{4\pi}$ which of the following is correct ?

- c) If $\Delta p = 0$ then $\Delta x = \infty$
- Q. Find uncertainty in velocity, if uncertainty

a)
$$\frac{h}{2\sqrt{\pi m}}$$
 b) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ c) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$ d) $\frac{1}{2}\sqrt{\frac{h}{m\pi}}$

Q. The uncertainty involved in the measurement of velocity within a distance of 0.14° is: a) 5.79×10^6 m/s b) 5.79×10^7 m/s c) 5.79×10^8 m/s d) 5.79×10^5 m/s

Angular momentum in nth orbital = mvr= nt

Orbital angular momentum

Spin angular momentum

$$= \sqrt{s(s+1)}$$

PRINCIPLE QUANTUM NUMBER

In nth Shell

Number of subshells = n Number of orbitals = n^2

Max. number of electrons = 2n2

Q. Find angular momentum of

(i) 2s orbital (ii) 3d orbital

(iii) 4p orbital (iv) e in 4th orbit

It describes shell or orbit n = 1, 2, 3, 4,.....

ron2 Ex-

It defines the angular momentum

K, L, M, N,....

It describes size & energy of shell.

Q. Find maximum no. of e-having

(iii) n=2,l=0 (iv) n=3,l=1

(i) n=4,s=-1/2 (ii) n=3,l=1,m=0

AZIMUTHAL QUANTUM NUMBER

Q. Which of the following set of quantum

It describes subshell value from 0 to n-1 I=0→s I=2→d $l=1 \rightarrow p$ $l=3 \rightarrow f$

Orbital angular momentum

Maximum no. of orbital in a subshell =21 + 1 Maximum no. of electrons in a subshell =41 + 2

If |=2

1) Orbital = d

2) No. of orbitals = 2(2+1)=5

 $(d_{xy}, d_{xz}, d_{yz}, d_{x^2-y^2}, d_{z^2})$

- 3) Total e-s = 2(21+1)= 10 e-s
- 4) Orbital angular momentum =

$$=\sqrt{2(2+1)} = \sqrt{6}$$

Electrons are filled in the

increasing order of energy

1s < 2s < 2p < 3s < 3p

STRUCTURE OF ATOM

ENERGY OF ORBITALS

1) Mono electronic species Energy defined upon n

2) Multi electronic species 3s < 3p < 4s < 3d

(n+l) rule

 \rightarrow As (n + I) \uparrow E \uparrow \rightarrow If (n + 1) is same, then n \uparrow E \uparrow

Orbital	2s	3d
(n+1) value	n = 2 l = 0 n+l = 2	n = 3 l = 2 n+l = 5

SHAPE OF ORBITALS

(1) s orbital – Spherical shape

2) p orbital - dumb bell shape

3) d orbital – double dumb bell shape

NODES

 $\Psi \rightarrow e^-$ wave function

 $\Psi^{2} \rightarrow$ probability of finding the electrons

* Node → Probability of finding the electron is zero.

* Node plane \rightarrow Plane; where Ψ^{i} = 0

*Radial nodes \rightarrow n-l-1

* Angular nodes = 1

Total nodes = n-1

FILLING OF ATOMIC ORBITAL

principle < 4s < 3d

Pauli's exclusion principle No two electrons can have same four quantum numbers

1s³- against Pauli's exclusion principle

Hund's rule

Aufbau

Pairing is only takes place after each orbital is singly occupied.

