计算机网络 3-4对比实验

停等协议与滑动窗口对比

运行环境均为使用router传送1M数据使用的时间,时间越短越好,计时单位为秒,mss为510,窗口大小为25, timeout为500ms

配置	停等协议	滑动窗口
丟包率 0%	1.235s	0.234s
丟包率 5%	97.246s	87.35s
丟包率 10%	158.312s	150.11s

分析: 当传输的丢包率增加时,各个协议因为需要停等超时触发的超时重传十分耽误时间,因此传输用时普遍增加。

因为滑动窗口可以更高效利用发送的带宽,提高带宽利用率,因为相较于停等协议有部分提升,但是由于丢包问题,GBN协议要求的回退N完全的重传也导致时间延长很大,因此较停等协议更优但是差别不大。

滑动窗口不同的窗口大小的传输时间

运行环境均为使用router传送1M数据使用的时间,时间越短越好,计时单位为秒,丢包率5%,mss为250,timeout为1500ms

窗口大小 传输时间

窗口大小	传输时间
5	469.96s
25	470.33s
50	619.30s

运行环境均为使用router传送1M数据使用的时间,时间越短越好,计时单位为秒,丢包率0%,mss为250, timeout为1500ms

窗口大小	传输时间
5	2.53s
25	2.52s
100	2.29s

分析:滑动窗口协议因为其每次发送都会发送窗口大小的数据段,因此在丢包率较小的时候,越大的窗口总的来说是越优的,因为丢包率较小,传输时间差异不大,但是总体来说还是可以看出其更优。

当丟包率较大是,因为窗口的大小增加会导致GBN的时候重传的数据包过多,因此窗口太大会导致时间过长。

因此我们需要根据丢包率队窗口大小做一个折中。

滑动窗口不同的窗口大小的传输时间

运行环境均为使用router传送1M数据使用的时间,时间越短越好,计时单位为秒,mss为250, timeout 为1500ms,无拥塞控制协议窗口大小为25

丢包率	有拥塞控制	无拥塞控制
0%	2.29s	2.53s
5%	391.76s	469.96s
10%	662.25s	1257.86s

分析: 拥塞控制就是一个在丢包率和窗口大小上的一个动态调整,因为其可以在没有丢包时尽量的扩大自己窗口提高带宽利用率;在丢包率提高是,减小窗口,防止GBN重传过多,因此,其在大部分情况下优于无拥塞控制的方案。