

planetmath.org

Math for the people, by the people.

proof of Wagner's theorem

Canonical name ProofOfWagnersTheorem

 Date of creation
 2014-01-16 17:37:41

 Last modified on
 2014-01-16 17:37:41

 Owner
 Ziosilvio (18733)

 Last modified by
 Ziosilvio (18733)

Numerical id 14

Author Ziosilvio (18733)

Entry type Proof

Classification msc 05C99

It is sufficient to prove that the planarity condition given by Wagner's theorem is equivalent to the one given by Kuratowski's theorem, *i.e.*, that a graph G = (V, E) has K_5 or $K_{3,3}$ as a minor, if and only if it has a subgraph homeomorphic to either K_5 or $K_{3,3}$. It is not restrictive to suppose that G is simple and 2-connected.

First, suppose that G has a subgraph homeomorphic to either K_5 or $K_{3,3}$. Then there exists $U \subseteq V$ such that the subgraph induced by U can be transformed into either K_5 or $K_{3,3}$ via a sequence of simple subdivisions and simple contractions through vertices of degree 2. Since none of these operations can alter the number of vertices of degree $d \neq 2$, and neither K_5 nor $K_{3,3}$ have vertices of degree 2, none of the simple subdivisions is necessary, and the homeomorphic subgraph is actually a minor.

For the other direction, we prove the following.

- 1. If G has $K_{3,3}$ as a minor, then G has a subgraph homeomorphic to $K_{3,3}$.
- 2. If G has K_5 as a minor, then G has a subgraph homeomorphic to either K_5 or $K_{3,3}$.

Proof of point ??

If G has $K_{3,3}$ as a minor, then there exist $U_1, U_2, U_3, W_1, W_2, W_3 \subseteq V$ that are pairwise disjoint, induce connected subgraphs of G, and such that, for each i and j, there exist $u_{i,j} \in U_i$ and $w_{i,j} \in W_j$ such that $(u_{i,j}, w_{i,j}) \in E$. Consequently, for each i, there exists a subtree of G with three leaves, one leaf in each of the W_j 's, and all of its other nodes inside U_i ; the situation with the j's is symmetrical.

As a consequence of the handshake lemma, a tree with three leaves is homeomorphic to $K_{1,3}$. Thus, G has a subgraph homeomorphic to six copies of $K_{1,3}$ connected three by three, *i.e.*, to $K_{3,3}$.

Proof of point ??

If G has K_5 as a minor, then there exist pairwise disjoint $U_1, \ldots, U_5 \subseteq V$ that induce connected subgraphs of G and such that, for every $i \neq j$, there exist $u_{i;\{i,j\}} \in U_i$ and $u_{j;\{i,j\}} \in U_j$ such that $(u_{i;\{i,j\}}, u_{j;\{i,j\}}) \in E$. Consequently, for each i, there exists a subtree T_i of G with four leaves, one leaf in each of the U_i 's for $i \neq j$, and with all of its other nodes inside U_i .

As a consequence of the handshake lemma, a tree with four leaves is homeomorphic to either $K_{1,4}$ or two joint copies of $K_{1,3}$. If all of the trees above are homeomorphic to $K_{1,4}$, then G has a subgraph homeomorphic to

five copies of $K_{1,4}$, each joint to the others: *i.e.*, to K_5 . Otherwise, a subgraph homeomorphic to $K_{3,3}$ can be obtained via the following procedure.

- 1. Choose one of the T_i 's which is homeomorphic to two joint copies of $K_{1,3}$, call them $T_{i,r}$ and $T_{i,b}$.
- 2. Color red the nodes of $T_{i,r}$, except its two leaves, which are colored blue.
- 3. Color blue the nodes of $T_{i,b}$, except its two leaves, which are colored red.
- 4. Color blue the nodes of the T_j 's containing the leaves of $T_{i,r}$.
- 5. Color red the nodes of the T_j 's containing the leaves of $T_{i,b}$.
- 6. Remove the edges joining nodes with same color in different T_j 's. This "prunes" the T_j 's so that they have three leaves, each in a subgraph of a color different than the rest of their vertices.

The graph formed by the red and blue nodes, together with the remaining edges, is then isomorphic to $K_{3,3}$.

References

[1] Geir Agnarsson, Raymond Greenlaw. Graph Theory: Modeling, Applications and Algorithms. Prentice Hall, 2006.