Šíření zvuku ve volném prostoru, zvukové signály

Přenosový řetězec

"přirozený":

zdroj – přenosové prostředí – přijímač (ucho)

se začleněním multimediální techniky:

zdroj – přenosové prostředí – mikrofon – záznam/zpracování/přenos - reproduktor – přenosové prostředí – přijímač (ucho)

Aspekty zvukové techniky

zdroj – vysílač (přirozený/umělý) tvorba řeči, tvorba hudby – hudební nástroje akustické a elektronické, mechanické kmity obecných ploch

teorie signálů (typy dle průběhu časového, kmitočtového, transformace..)

přenosové médium – šíření zvuku v prostoru, prostorová akustika, návaznost na architekturu

Aspekty zvukové techniky... pokračování

záznamová a přenosová technika (záznamové a kompresní formáty, přenosové protokoly)

elektroakustické měniče – mikrofony a reproduktory

přijímač – ucho – fyziologická, psychologická a hudební akustika = vliv na člověka

Disciplíny pokrývající daná témata

obecné šíření zvuku – fyzikální akustika měniče (reproduktory, mikrofony..) – elektroakustika vlastnosti sluchového systému – fyziologická akustika vnímání zvuku a jeho působení na člověka – psychologická akustika hudební nástroje, hudební signály – hudební akustika šíření zvuku v uzavřených prostorech, úprava akustiky prostoru – prostorová akustika typy akustických signálů, transformace a kódování – zpracování akustických signálů záznam signálu

...další příbuzné obory: stavební akustika (zvuková izolace prostorů) akustika řeči (tvorba řečového signálu) akustická emise (nedestruktivní testování materiálu) psychometrie (psychologické testování (i akustických) signálů)

. . .

Terminologie

Zvuková technika = audio technika

popisuje podstatu zvuku, jeho šíření a prostředky, kterými se generuje nebo přijímá, tedy popis vlastností celého zvukového přenosového řetězce

Akustika = (z řeckého akuo – slyším)

se zabývá všemi oblastmi, kde se vyskytuje jakékoli obecné mechanické kmitání

Zvuk = mechanické kmity kontinua

jeden z prostředků komunikace člověka (proto mnohdy se přidává do definice slyšitelné spektrum 20 Hz-20kHz)

- s dalšími lidmi: řeč (informace, melodika řeči), hudba, jiné zvuky
- s prostředím: hlukové signály (orientace v prostoru, upozornění na nebezpečí)

Zvuk a jeho podstata

zvuk = mechanické kmity kontinua, tedy v plynné, kapalné i pevné fázi.

MY SE NYNÍ OMEZÍME NA ZVUK VE VZDUCHU

akustický tlak = změny celkového tlaku

Obr. 1.1.2 Akustický tlak pA.

akustický tlak p_a se udává v Pascalech (Pa), ale obvyklejší je

HLADINA AKUSTICKÉHO TLAKU L_{SPL}

$$L_{\text{SPL}} = 20 \, log \, \frac{p_{\text{a}}}{p_{\text{ref}}} \quad \text{[dB]}$$

p_a…efektivní hodnota akustického tlaku

pref=2.10⁻⁵Pa

proč logaritmus (hladina): psychofyziologie vnímání, člověk vnímá logaritmicky (Weberův a Fechnerův zákon)

proč taková volba reference : p_{ref} je přibližná hodnota prahu slyšitelnosti v okolí 2 kHz

proč DECIbely: 1 dB je přibližně hodnota JND (právě postřehnutelný rozdíl)

- 132 decibelů punková kapela Gallows
- 130 decibelů startující letadlo Boeing 747 vzdálené sto metrů
- 126 decibelů
 The Who, koncert 1976
- 122 decibelů dudácká kapela
- 120 decibelů pneumatické kladivo

- 110 decibelů noční klub
- 110 decibelů orchestr hrající Prsten Nibelungův od Wagnera
- 94 decibelů metro
- 70 decibelů vysavač
- 60 decibelů normální rozhovor

Veličiny pro popis zvuku

Akustický tlak (už známe) nejdůležitější

Akustická částice statisticky významné množství molekul, které kmitají stejným způsobem – se stejnou fází

Akustická výchylka výchylka akustické částice z rovnovážné polohy

Akustická rychlost derivace akustické výchylky dle času, tedy rychlost kmitání akustické částice, NENÍ TO RYCHLOST ŠÍŘENÍ!!!!!

Intenzita, výkon, energie

Rychlost šíření

adiabatická rychlost zvuku

$$c_0 = \sqrt{\frac{\kappa p_0}{\rho_0}} = c_{ad}$$

ve vzduchu přibližně 340 m/s

Vlnová délka pro slyšitelné kmitočty $c_0 = \lambda f$

20	100	500	1k	2k	5k	10k	20k	50k
17m	3,4m	68cm	34cm	17cm	6,8cm	3,4cm	1,7cm	6,8mm

oblast hluku

oblast řeči

oblast perkusních signálů

Vlnová rovnice (lineární)

Předpoklady (zavádějí omezující podmínky!!!):

- prostředí je spojité, stlačitelné, homogenní, izotropní, neviskózní (bez ztrát), v klidu
- výchylky všech veličin jsou malé (linearizace úlohy)
- akustické pole se předpokládá za nevírové (pole je gradientní)
- akustické děje jako adiabatický termodynamický děj

tedy vše – LINEÁRNÍ AKUSTIKA

Tři výchozí rovnice

Eulerova (2. Newtonův zákon)

kontinuity (zákon zachování)

stavová (adiabatický zákon)

zvuk v plynech je vlnění podélné (nejsou smyková napětí mezi molekulami)

střední hodnota akustického tlaku je nulová

průběhy jsou v drtivé většině harmonické

pro analýzu možno použít Fourierových řad

jeho šíření se řídí (v drtivé většině případů) lineární vlnovou rovnicí (v tomto případě pro akustický tlak)

$$\Delta p = \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2}$$

Praktická řešení vlnové rovnice (vlny ve volném prostoru)

v kartézských souřadnicích rovinná vlna

$$p = \left(Ae^{-jkx} + Be^{+jkx}\right)e^{j\omega t}$$

ve sférických souřadnicích kulová vlna

$$p = \frac{A}{r}e^{-jkr}e^{j\omega t}$$

v cylindrických souřadnicích válcová vlna

$$p = \frac{A}{\sqrt{kr}} e^{-jkr} e^{j\frac{\pi}{4}} e^{j\omega t}$$

Interpretace vztahů

A... amplituda veličiny ve vzdálenosti 1m od zdroje $e^{j\omega t} = \cos(\omega t) + j.\sin(\omega t)$.. časová exponenciála $e^{-jkr} = \cos(kr) - j.\sin(kr)$ prostorová exponenciála

vlnové číslo
$$k = \frac{\omega}{c_0}$$

Zvuk je tedy informačním signálem

Analýzou jeho vlastností tuto informaci získáme

Zvukové signály

literatura: Syrový, V.: Hudební akustika, AMU

Špelda, A.: Hudební akustika, SPN

terminologie

zvuk x hluk x šum

nejednotnost ve výkladu

možná definice přes psychoakustiku:

zvuk – signál, který je člověku přínosem, líbí se mu, vztah k němu je kladný hluk – signál, který člověku škodí, je mu nepříjemný, vztah k němu je záporný (tedy relativní!!)

šum – z matematického hlediska náhodná veličina na rozdíl od zvuku a hluku

Klasifikace akustických signálů

základní rozdělení:

- deterministické…lze popsat matematickým vztahem
- stochastické.....nelze popsat matematickým vztahem

Deterministické signály ("zvuk")

- přechodné (soustava se po určitém čase vrací do ustáleného stavu

periodické signály – lze popsat vztahem x(t) = x(t + nT), n celé číslo

periodické signály mohou být buď jednoduché – obsahují jen jednu složku, nebo složité, které kromě základní harmonické obsahují její celistvé násobky

 kvaziperiodické signály – poměr alespoň dvou kmitočtových složek není racionální číslo

Stochastické signály ("šum")

stacionární – v čase se nemění statistické vlastnosti (hustoty pravděpodobnosti)

dále se dělí na ergodické neergodické

- nestacionární – statistické charakteristiky se mění

Analýza hudebních signálů

Tři roviny analýzy: dynamická, melodická, harmonická

dynamická – závislost amplitudy na času melodická – závislost kmitočtu na času harmonická – závislost amplitudy na kmitočtu

Obr. 4.2 Dynamické pojetí hudebního signálu

Kmitočtové vlastnosti hudebního signálu

Obr. 4.23 Spektrum tónu zvonu

rovina harmonická, signál analyzujeme např. Fourierovými řadami, předpokládáme nekonečné trvání to však neodpovídá realitě (**statické pojetí**), v něm – zvuk – periodický signál, hluk – neperiodický základní harmonická vyšší harmonické částkové tóny

Obr. 3.6 Akustické spektrum a) čárové:

c) kombinované:

Obr. 5.6a Spektrum tónu harfy

Obr. 5.6b Spektrum tónu citery

Rovina melodická

zkoumání složek, fluktuace period, okamžitá f, neharmonicity

Obr. 4.17 Okamžitá frekvence signálu (lit. 10)

Časové vlastnosti hudebního signálu

rovina dynamická, nejjednodušší, nejednoznačný výklad, obálka

technika hry tremolo (AM)

Obr. 4.6 Neperkusní a perkusní signály a jejich zjednodušené časové obálky

Obr. 4.10 *Špeldovy fluktuace ustálené hladiny tónu (lit. 91)*

Řečový signál

Fig. 13.2. Mid-sagittal section of the human head. Speech organs: 1 vocal cords, 2 pharynx, 3 mouth cavity, 4 nasal cavity with septum, *hatched*, 5 tongue, 6 lower jaw, 7 lips, 8 teeth, 9 palate, 10 velum, 11 uvula, 12 nostrils

Obr. 6.2 Hlasové ústrojí jako akustický systém

Fig. 13.1. Feedback structure of the speech production process

Obr. 6.5 Nastavení artikulačního ústrojí a spektra vokálů

Obr. 6.10 Průměrovaná spektra zpívaného vokálu "A"

Formanty = maxima na frekvenční charakteristice **hlasu**

Obr. 6.13 Frekvenční rozsah zpěvních hlasů (lit. 11)

Hudební akustika

zkoumá zdroje hudby, hudební signály, percepci hudby

tón – zvuk, který má výšku

hudba – skládá se z tónů (většinou), zdroj: hudební nástroje, lidský hlas, elektronické nástroje

Vlastnosti tónů

vlastnosti tónů: délka, síla (hlasitost), barva (timbre), výška

jsou to SUBJEKTIVNÍ veličiny

tónová soustava – uspořádání všech tónů dle výšek

základní tónová řada: c d e f g a h

(u nás, Německo, Polsko, státy bývalé Jugoslávie, Bulharsko, Rakousko, Švýcarsko, Rumunsko, Britské ostrovy, Nizozemí, Skandinávie, Severní Amerika).

do re mi fa sol la si do (Francie, Itálie, Belgie, Španělsko, Rusko, Orient)

10. stol. Guido z Arezza

oktáva – vzdálenost mezi dvěma nejbližšímy tóny stejného jména, poměr frekvencí 2:1

