Universidade de Aveiro

Licenciatura em Engenharia Informática

Inteligência Artificial: Apresentação

Ano lectivo 2020/2021

Regente: Luís Seabra Lopes

Objectivos

- A disciplina de Inteligência Artificial fornece alguns dos conceitos nucleares na área de Inteligência Artificial
 - Agentes inteligentes
 - Resolução automática de problemas
 - Representação do conhecimento

Enquadramento na LEI

- A frequência da disciplina de Introdução à Inteligência Artificial requer uma sólida formação em programação e conhecimentos básicos de matemática discreta, que os alunos deverão ter previamente adquirido em
 - Fundamentos de Programação, Programação Orientada a Objectos, Algoritmos e Estruturas de Dados e Padrões e Desenho de Software
 - Matemática Discreta, Métodos Probabilísticos em EI
- Os conhecimentos adquiridos em *Inteligência Artificial* poderão ser úteis em
 - Disciplinas de opção (Complementos sobre Agentes Inteligentes e Tópicos de Aprendizagem Automática)
 - Disciplina de Projecto em Informática

Programa

- Motivação: como representar o conhecimento? como resolver problemas? como gerar sequências de acções? como aprender com a experiência?
- Paradigmas de programação declarativa no desenvolvimento de aplicações de Inteligência Artificial
 - Perspectiva comparativa e histórica neste âmbito
 - Apresentação da linguagem de programação multiparadigma Python, dando ênfase à programação funcional
- História e definições da "Inteligência Artificial".

Programa (cont.)

- A noção de agente; arquitecturas de agentes; agentes reactivos, deliberativos e híbridos.
- Formalismos para a representação do conhecimento: lógica de primeira ordem, redes semânticas e suas variantes, a linguagem KIF.
- Resolução de problemas e métodos de pesquisa: pesquisa não informada (em largura, de custo uniforme, em profundidade, em profundidade com limite, em profundidade com limite crescente); pesquisa informada gulosa, A* e suas variantes; pesquisa por propagação de restrições; pesquisa por melhorias sucessivas.
- Planeamento de sequências de acções: os formatos de representação das acções
- STRIPS e PDDL; planeamento no espaço de estados e planeamento no espaço de soluções; planeamento progressivo e regressivo; planeamento hierárquico.

Programa prático

- Programação ao estilo funcional em Python
- Representação do conhecimento com redes semânticas e redes de Bayes
- Pesquisa em árvore para resolução de problemas
- Pesquisa por melhorias sucessivas e pesquisa por propagação de restrições

Bibliografia

- Russell, S., & P. Norvig Artificial Intelligence: A Modern Approach, third edition, Prentice Hall, 2010.
- Nilsson, N. *Artificial Intelligence: a New Synthesis*, Morgan Kaufman, 1998.
- Costa, E., & A. Simões *Inteligência Artificial: Fundamentos e Aplicações*, 2ª ed., FCA, 2008.
- Summerfield, M., *Programming in Python 3: A Complete Introduction to the Python Language*, 2nd ed., Addison-Wesley Professional, 2009.
- Downey, Allen B., *Think Python: How to Think Like a Computer Scientist*, 1st edition, O'Reilly Media, 2012.
- Bratko, I. *Prolog Programming for Artificial Intelligence*, 4a. ed., 2011.

Avaliação

- Avaliação prática
 - Trabalho prático de grupo (TPG)
 - Enunciado: 2020/10/07
 - Entrega preliminar: 2020/11/20 10%
 - Entrega final: 2020/12/11 25%
 - − Trabalho prático individual nº 1 (TPI-1) − 10%
 - 2020/11/12-14
 - Trabalho prático individual nº 2 (TPI-2) 10%
 - 2021/01/07-09
- Avaliação teórica
 - Exame final teórico-prático (EFTP) 45%
- Observações
 - EFTP é presencial (salvo restrições COVID-19)
 - Restantes avaliações são TPC!
 - TPI-1 e TPI-2 tem uma duração provável de 24h a 36h
 - A nota mínima, aplicável às componentes TP e P é de 7.5

Docentes

- Luís Seabra Lopes
 - Aulas TP & Práticas
 - Gab. 4.3.13 (DETI)
 - Ext: 23018
 - lsl@ua.pt
- Diogo Gomes
 - Aulas práticas
 - -IT
 - Ext: 48234
 - dgomes@ua.pt