

PROJET MACHINE LEARNING

PYTHON & STREAMLIT

EQUIPE 1
Amandine ANDRE
Andréa LE MAREC
Anthony ALVES

Contexte du projet

■ Créer une application de Machine Learning :

- Proposant 2 jeux de données, ou import d'une BDD au format CSV
- Traitement de la BDD sélectionnée (data management)
- Choix et entrainement d'un ou plusieurs types de modèles
- Comparaison des performances des différents modèles
- Enregistrement d'un modèle final

Plan

- I. Objectifs du projet
- II. Environnement technique
- III. Data Management
- IV. Modèles de régression
- V. Modèles de classification
- VI. Mise en application sur Streamlit
- VII. Conclusion et recommandations

I - Objectifs du projet

- Développer nos compétences techniques
 - Machine Learning
 - o Python
 - Streamlit
- Développer nos compétences de travail en équipe
 - Communication
 - Répartition des tâches
 - Gestion du temps / Gestion de projet (et bonnes pratiques)
- Se préparer à la soutenance finale et aux questions techniques

II - Environnement technique

■ Logiciel de code :

- Visual Studio Code
- Langage:
 - Python (version 3.11)
- Librairies additionnelles :
 - Application web: Streamlit (framework)
 - Analyse de données : Numpy & Pandas
 - Machine Learning : Scikit-learn
 - Rééquilibrage : Imbalanced-learn
 - Visualisation de données : Matplotlib & Seaborn

II - Environnement technique

Architecture de notre projet :

- 3 fichiers source :
 - README.md
 - o main.py:
 - Requirements.txt
- Un dossier 'architecture':
 - Comporte un fichier python pour chaque onglet de notre application
- Un dossier 'data':
 - O Comporte les deux bases de données proposées dans l'application
- Un dossier 'data_management':
 - Comporte les fichiers python utiles au traitement/nettoyage des données
- Un dossier 'modeles':
 - Comporte les fichiers python utiles aux différents modèles de machine Learning

DATA MANAGEMENT

- Rappel des étapes pour un "bon" Machine Learning :
 - 1. Chargement des données
 - 2. Data Management (traitement des données, des NaN, feature engineering, ...)
 - 3. Split du jeu de données
 - 4. Entrainement du modèle
 - 5. Validation du modèle

Donc pour avoir un « bon » modèle, il ne faut pas négliger l'étape de Data Management !

■ Etapes de data management :

- 1. Visualisation des données
- 2. Traitement des champs sans nom
- 3. Traitement des NaN (valeurs manquantes)
- 4. Préparation pour le modèle Choix de la 'target'
- 5. Préparation pour le modèle Encodage
- 6. Préparation pour le modèle Standardisation
- 7. Préparation pour le modèle Features
- 8. Préparation pour le modèle Rééquilibrage

Allons voir sur Streamlit!

- Première étape : Visualisation des données
 - Affichage de quelques statistiques descriptives (tableaux et graphiques)

Intérêt: Voir le bon import des données, et s'il y aura beaucoup de retraitement à faire

Exemple:

- <u>Deuxième étape</u> : Traitement des champs sans nom
 - On a vu dans nos BDD d'exercice (diabète et vin) l'apparition de colonnes sans nom, qui débutaient par "Unnamed..."

Intérêt : Avoir des noms de colonnes qui sont tous compréhensibles

<u>Traitement</u>: Choix laissé à l'utilisateur:

- Soit colonne(s) sans importance : on supprime
- Soit colonne(s) ayant de l'importance : on renomme la colonne (nom de colonne écrit par l'utilisateur)

- <u>Troisième étape</u>: Traitement des NaN (valeurs manquantes)
 - Nos BDD d'exercice ne contiennent pas de valeurs nulles / manquantes mais nous avons développé cette partie dans le cas d'un import d'une nouvelle BDD <u>Intérêt</u>: un modèle de Machine Learning ne doit pas comporter de valeurs manquantes <u>Traitement</u>: Choix laissé à l'utilisateur :
 - Suppression de toutes les lignes (mais affichage d'un message d'alerte et demande de confirmation)
 - Suppression de la colonne comportant des NaN (avec 2 options : directement sur toutes les colonnes concernées, ou choix de la (des) colonne(s))
 - Remplacement des NaN : (avec les 2 options)
 # par la moyenne (ou médiane) si colonne de type numérique,
 # par la valeur la plus fréquente si colonne de type catégorielle

- Quatrième étape : Préparation pour le modèle Choix de la 'target'
 - Nos BDD d'exercice (diabète et vin) contiennent déjà un champ 'target'

Mais: Nous pouvons utiliser d'autres BDD qui n'ont pas forcément ce champ identifié

Intérêt: Choisir la target, c'est-à-dire la variable à estimer par le modèle

Solution: On propose à l'utilisateur de choisir une colonne comme "target"

- Cinquième étape : Préparation pour le modèle Encodage
 - Si une variable catégorielle est intéressante pour le modèle, ou s'il s'agit de la target :

<u>Intérêt</u>: avoir des valeurs numériques pour les modèles (ne prennent que ces variables) <u>Choix laissé à l'utilisateur</u>:

- Pour la target : on la recode obligatoirement.
- Pour une autre variable : l'utilisateur choisit une variable (ou plusieurs) qu'il veut recoder et on applique l'encodage, en créant une nouvelle variable (nom rentré par l'utilisateur)

- <u>Sixième étape</u>: Préparation pour le modèle Standardisation
 - Un jeu de données seulement était standardisé, pas forcément les autres

<u>Intérêt :</u> avoir de meilleures prédictions

Choix laissé à l'utilisateur: Est-ce qu'il veut standardiser son jeu de données?

Si oui, on applique une standardisation (StandardScaler() de Scikit-Learn)

- <u>Septième étape</u> : Préparation pour le modèle Features
 - On sélectionne les variables de prédiction

<u>Intérêt</u>: choisir des variables intéressantes et significatives <u>Choix laissé à l'utilisateur</u>:

- a) On prend par défaut toutes les colonnes (numériques) de la BDD
- b) On sélectionne des colonnes (numériques) manuellement
- c) On sélectionne des colonnes (numériques) automatiquement, en fonction de leur corrélation avec la target

- <u>Huitième étape</u>: Préparation pour le modèle Rééquilibrage
 - Ce n'est pas réellement le cas dans nos 2 jeux d'exercice, mais on peut avoir des données déséquilibrées

<u>Intérêt</u>: avoir de meilleures prédictions

<u>Choix laissé à l'utilisateur</u>: Il décide s'il veut rééquilibrer le jeu de données. Si oui, on lui propose :

- a) Soit un suréchantillonnage SMOTE
- b) Soit un suréchantillonnage ROS
- c) Soit une attribution de poids de classes CLASS_WEIGHT (fonctionnalité en cours de développement)

■ Le jeu de données est prêt pour le Machine Learning!

■ Le modèle peut maintenant être choisi...

MODÈLES DE RÉGRESSION

Prédiction de valeurs quantitatives

- Préparation des données --> détection du type de target si la target est quantitative --> modèles de régression
 - Trois modèles de régression linéaire proposés :
 - a) LinearRegression (simple régression linéaire, sans pénalité)
 - b) Ridge (régularisation L2 --> réduit effet des valeurs aberrantes, améliore la généralisation)
 - si valeurs aberrantes
 - si stabilité du modèle est cruciale
 - c) Lasso (régularisation L1 --> sélectionne des variables, sensible aux valeurs aberrantes)
 - si multicolinéarités entre variables
 - si interprétabilité du modèle est cruciale
 - Futurs développements prévus, ajout des modèles suivants :
 - a) ElasticNet (intermédiaire entre Ridge et Lasso)
 - b) SVR (permet de faire des régressions non-linéaires)

■ Deux possibilités proposées à l'utilisateur :

- Choix d'un modèle parmi ceux proposés (avec paramétrage manuel)
 - a) LinearRegression (aucun paramètre)
 - b) Ridge (alpha, max_iter, tol)
 - c) Lasso (alpha, max_iter, tol)
- Comparaison des modèles sur le JDD sélectionné
 - a) Méthode "manuelle"
 - b) Méthode utilisant la fonction GridSearchCV (en cours de développement)

■ Choix d'un modèle de régression

- Paramétrage de la validation croisée :
 - Nombre de "lots" (split):
 valeur minimum 5 : correspond à 80% données d'entraînement / 20% données de test
- Paramétrage des modèles (Ridge, Lasso) :
 - Alpha: coefficient de la régularisation (resp. L2, L1)
 valeur par défaut : 0.5
 - Max_iter : nombre maximum d'itérations autorisées lors de l'optimisation du modèle.
 valeur par défaut : 1000
 - Tol : contrôle la convergence du modèle valeur par défaut : 10⁻⁴

- Choix d'un modèle de régression
 - Paramétrage de la validation croisée
 - Paramétrage des modèles (Ridge, Lasso)

Résultats

- Métriques :
 - Coefficient de détermination R²
 - Racine carrée de l'erreur quadratique moyenne RMSE
 - Erreur absolue moyenne
- Infos complémentaires :
 - Tailles des échantillons d'entraînement et de test

	R2	RMSE	MAE	train_sample_size	test_sample_size
0	0.4235	55.27	46.44	353	89
1	0.4323	59.51	49.62	353	89
2	0.3158	61.02	50.43	354	88
3	0.4951	58.29	50.6	354	88
4	0.3169	61.78	52.54	354	88

--> Affichage des métriques pour chaque "lot" de la validation croisée (permet l'optimisation du paramétrage du modèle)

■ Résultats

o Graphiques :

Nuages de points de y_pred (prédiction de la target) en fonction de y_test

(Pour chaque "lot" de la validation croisée)

■ Possibilité de sauvegarder le modèle entraîné :

Sauvegarde du modèle
> Souhaitez-vous sauvegarder le modèle ?
○ Non
Oui
Entrez l'indice du modèle que vous souhaitez enregistrer :
○ o
O 1
O 2
○ 3
○ 4
> Modèle Ridge (alpha : 0.5 ; max_iter : 1000 ; tol : 0.0001), entraînement n° 2 sauvegardé pour réaliser des prédictions.

- Comparaison des modèles de régression
 - Méthode manuelle
 - Méthode utilisant la fonction GridSearchCV

Dans les deux cas:

Combine les paramètres suivants :

- Régularisation (alpha): 0,01 0,1 1 10
- Nombre max d'itérations (max_iter): 100 1000 10 000
- Tolérance pour la convergence (tol): 10^{-4} 10^{-3} 10^{-2}

Validations croisées : nombre de lots fixé à 5 (80% / 20%)

- Comparaison des modèles de régression Méthode manuelle
 - Résultats :

Numéro du

modèle testé

	param	model	R2	RMSE	MAE
1	0	LinearRegression()	0.3967	59.174	49.926
2	{'alpha': 0.01, 'max_iter': 100, 'tol': 0.0001}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
3	{'alpha': 0.01, 'max_iter': 100, 'tol': 0.001}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
4	{'alpha': 0.01, 'max_iter': 100, 'tol': 0.01}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
5	{'alpha': 0.01, 'max_iter': 1000, 'tol': 0.0001}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
6	{'alpha': 0.01, 'max_iter': 1000, 'tol': 0.001}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
7	{'alpha': 0.01, 'max_iter': 1000, 'tol': 0.01}	Lasso(alpha=10.0, ma	0.3967	59.174	49.926
8	{'alpha': 0.01, 'max_iter': 10000, 'tol': 0.0001}	Lasso(alpha=10.0, m	0.3967	59.174	49.926
9	{'alpha': 0.01, 'max_iter': 10000, 'tol': 0.001}	Lasso(alpha=10.0, m	0.3967	59.174	49.926
10	{'alpha': 0.01, 'max_iter': 10000, 'tol': 0.01}	Lasso(alpha=10.0, m	0.3967	59.174	49.926

- Comparaison des modèles de régression Méthode manuelle
 - Sélection du meilleur modèle et sauvegarde :

MODÈLES DE CLASSIFICATION

Prédiction de valeurs catégorielles

- Utilisé sur « vin.csv »
 - "Petit" jeu de données
 - Pas de nettoyage à faire

- Tips de data exploration :
- skimpy \rightarrow skimp(df)
- extension Data Wrangler(VS code)

Data Management :

 Features: données quantitatives issues d'analyses des vins (alcohol, flavanoids, tot_phenols, proline, hue, ash, etc.)

'Target': 3 catégories (=classes) de vins

 Léger déséquilibre mais choix de laisser en l'état

- Data Management (suite):
 - Encodage de 'target':
 - → Code

```
#Encodage de la target (cas d'une target non numérique)
def encodage(data, colonne: str, new_col: str): # prend le nom de la colonn
i = 0
  labels = {}
  for _, val in enumerate(data[colonne].unique()):
       labels.update({val : i})
       i +=1
       data[new_col] = data[colonne].map(labels)
    st.write("La colonne", colonne, "a bien été encodée. Voici le résultat new_col_res = data[new_col].value_counts()
    col_encod = data[new_col]
    return col_encod, new_col_res
```

- Recherche des corrélations et des colinéarités
 - → Heatmap + sélection des features : 'proline' et 'flavanoids' à écarter
- Possibilité de standardiser les valeurs et rééquilibrer la BDD

■ Modélisation :

- Train_test_split sur 25 % du jeu de données
- Différents modèles testés (dans un multiselect) :
 - → LogisticRegression
 - → DecisionTreeClassifier
 - → RandomForestClassifier
 - → KNeighborsClassifier
 - → SVC
- Métriques de performance avec 'classification_report' :
 - accuracy, f1-score

- Modélisation (suite) :
 - Nombreux paramètres dans ces modèles :
 - → Certains à fixer par défaut pour éviter des erreurs (taille du dataset ?)
 - → D'autres laissés au choix de l'utilisateur
 - Validation croisée avec 'StratifiedKFold'
 - → 1 seule métrique possible : on garde accuracy
 - → Comparaison des résultats :

Modèle	Scores moyens			
Logistic Regression	0,967	0,971		
Decision Tree Clf	0,899	0,925		
Random Forest Clf	0,977	0,983		
SVC	0,955	0,962		
KNeighbors Clf	/	/		

IMPLEMENTATION SUR STREAMLIT

Démonstration!

VII - Conclusion et recommandations diginal

Bilan global :

- Très formateur sur les aspects programmation Python et Machine Learning
- Utilisation du framework Streamlit intéressant mais chronophage
- Bonne mise en pratique des notions vues (Data Management, préparation du modèle et métriques de performances)
- Répartition des tâches et travail collaboratif tout au long du projet

■ Recommandations:

- Utilisation de jeux de données plus volumineux et/ou possibilité de validation du modèle avec un jeu de données dédié
- Développement de fonctionnalités supplémentaires si plus de temps