

Application Note

SIM800F_SIM900_SIM5300EA_Migration to SIM7000_Application Note_V1.00

Document Title	SIM800F_SIM900_SIM5300EA_Migration to SIM7000_Application Note
Version	1.00
Date	2017-07-31
Status	Released
Document Control ID	SIM800F_SIM900_SIM5300EA_Migration to SIM7000_Application Note V1.00

General Notes

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2017

Contents

Conten	ts	3
Table Iı	ndex	4
Figure Index		
	on History	
1 Inti	roduction	
	Configuration	
2.1	Pin Assignment Overview	
2.2	Differences of Pin Assignment Overview	
2.3	Differences of electronic characteristic	
2 D		
3 Rec	commended Footprint	
3.1	Differences of recommended compatible footprint	
4 Hai	rdware Reference Design	17
4.1	Power Supply	
4.2	USB Interface	
4.3	Network Status Indication	
4.4	Power on/off circuit	
4.5	Reset circuit.	
4.6	USIM Interface	
4.7 4.8	UART Interface Audio Interface	
4.6 4.9	2G/3G/4G RF Interface	
4.9	GNSS Application Guide	
4.10	Dedicated Pins.	
	pendix	
5.1	Related documents	
5.2	Terms and Abbreviation	25

Smart Machine Smart Decision

Table Index

Table 1: The Differences Pin Assignment	11
Table 2: The Differences of electronic characteristic	
Table 3: The differences for VBAT power rang	17
Table 4: The differences for VBUS power rang	
Table 5: The differences for UART power level	21
Table 6: Dedicated Pins Description for module	24
Table 7: Related documents	
Table 8: Terms and Abbreviations	25

Figure Index

Figure 1: Pin assignment overview	8
Figure 2: SIM800F pin out diagram (Top view)	9
Figure 3: SIM900 pin out diagram (Top view)	9
Figure 4: SIM5300EA pin out diagram (Top view)	10
Figure 5: Top and bottom view of SIM7000	13
Figure 6: SIM800F Top and bottom view	13
Figure 7: SIM900 Top, bottom and side view	14
Figure 8: SIM5300EA Top and bottom view	14
Figure 9: SIM7000 Footprint recommendation (Unit: mm)	15
Figure 10: SIM800F Recommended PCB footprint outline (Unit: mm)	15
Figure 11: SIM900 Recommended PCB footprint outline (Unit: mm)	16
Figure 12: SIM5300EA Recommended PCB footprint outline (Unit: mm)	16
Figure 13: Power supply reference circuit	
Figure 14: Reference circuit of the LDO power supply	18
Figure 15: USB reference circuit	
Figure 16: NETLIGHT/STATUS reference circuit	
Figure 17: Power on/off reference circuit	
Figure 18: Reset reference circuit	20
Figure 19: SIM interface reference circuit	20
Figure 20: Reference circuit of level shift	21
Figure 21 : Speaker reference circuit	22
Figure 22 : Microphone reference circuit	22
Figure 23: Audio codec reference circuit	23
Figure 24: Antenna matching circuit (MAIN_ANT)	23
Figure 25: Active antenna circuit	24
Figure 26: Passive antenna circuit (Default)	24

Revision History

Data	Version	Description of change	Author
2017-07-31	1.00	Original	Tu Hongjun

1 Introduction

This document is targeted for customers to understand the differences between SIM7000 and SIM800F/SIM900/SIM5300EA. Users can use SIM7000, SIM800F, SIM900, and SIM5300EA module to design and develop applications quickly.

2 Pin Configuration

2.1 Pin Assignment Overview

The following table shows the pin assignment of SIM7000 and SIM800F/SIM900/SIM5300EA.

Figure 1: Pin assignment overview

Figure 2: SIM800F pin out diagram (Top view)

Figure 3: SIM900 pin out diagram (Top view)

Figure 4: SIM5300EA pin out diagram (Top view)

2.2 Differences of Pin Assignment Overview

Table 1: The Differences Pin Assignment

Pin #	SIM900	SIM800F	SIM5300EA	SIM7000
2	NC	GND	GND	GND
6	NC	NC	NC	BOOT_CFG
11	DISP_CLK	DISP_CLK	SPI_CLK	PCM_CLK
12	DISP_DATA	DISP_DATA	SPI_MOSI	PCM_SYNC
13	DISP_D/C	DISP_D/C	SPI_MISO	PCM_DIN
14	DISP_CS	DISP_CS	SPI_CS	PCM_DOUT
19	MIC_P	MICP	MIC_P	NC
20	MIC_N	MICN	MIC_N	NC
21	SPK_P	SPKP	SPK_P	NC
22	SPK_N	SPKN	SPK_N	NC
23	NC	KPLED	NC	MDM_LOG_TX
24	NC	VBUS	VBUS	VBUS
26	VRTC	VRTC	VRTC	NC
27	DBG_TXD	USB_DP	USB_DP	USB_DP
28	DBG_RXD	USB_DM	USB_DM	USB_DM
35	PWM1	PWM1	PWM1	NC
36	PWM2	PWM2	PWM2	NC
40	GPIO1/KBR4	KBR4	GPIO1	NC
41	GPIO2/KBR3	KBR3	GPIO2	NC
42	GPIO3/KBR2	KBR2	GPIO3	NC
43	GPIO4/KBR1	KBR1	GPIO4	NC
44	GPIO5/KBR0	KBR0	NC	NC
47	GPIO6/KBC4	KBC4	GPIO6	NC
48	GPIO7/KBC3	KBC3	GPIO7	GPIO4
49	GPIO8/KBC2	KBC2	GPIO8/DBG_RXD	GPIO1/UART3_RXD
50	GPIO9/KBC1	KBC1	GPIO9/DBG_TXD	GPIO0/UART3_TXD
51	GPIO10	GPIO10	NC	NC
53	GND	BT_ANT	NC	GNSS_ANT
67	GPIO11	GPIO11	GPIO11	GPIO2
68	GPIO12	GPIO12	GPIO12	GPIO3

2.3 Differences of electronic characteristic

Table 2: The Differences of electronic characteristic

Difference	SIM900	SIM800F	SIM5300EA	SIM7000
Technology	GSM/GPRS	GSM/GPRS	GSM/GPRS/EDGE/ WCDMA/HSPA+	GSM/GPRS/EDGE/eMT C (Cat-M1)/Cat-NB1
VBAT	3.2~4.8V	3.4~4.4V	3.4~4.4V	3.0~4.3V
VBUS	Not support	4.3~7V	4.5~5.25V	3.5~5.25V
VDD_EXT	2.8V/10mA	2.8V/10mA	1.8V/50mA	1.8V/50mA
I/O Level	2.8V	2.8V	1.8V	1.8V
ADC	0~2.8V	0~2.8V	0~1.1V	0.1~1.7V
VRTC	2.0~3.15V	2.0~3.15V	1.2~1.8V	Not support
PCM	Not support	Option	Not support	Support
SPI	Support	Support	Support	Option
GNSS	Not support	Not support	Not support	Support
BT	Not support	Option	Not support	Not support
AT communication interface	UART	UART	UART or USB	UART or USB
FW update interface	UART	UART or USB	USB	USB

^{*}Note: For details information, please refer to each HD guide

3 Recommended Footprint

3.1 Differences of top and bottom view

The following figure shows top and bottom view of SIM7000 and SIM800F/SIM900/SIM5300EA.

Figure 5: Top and bottom view of SIM7000

Figure 6: SIM800F Top and bottom view

Figure 7: SIM900 Top, bottom and side view

Figure 8: SIM5300EA Top and bottom view

3.2 Differences of recommended compatible footprint

The following figure shows each recommended footprint of SIM7000 and SIM800F/SIM900/SIM5300EA. The differences of the recommended footprint are the keep out area and the length of the PINs. In SIM800F/SIM900, the recommendation PIN length is 1.60mm, but it is 2.00mm in SIM7000/SIM5300EA.

Figure 9: SIM7000 Footprint recommendation (Unit: mm)

Figure 10: SIM800F Recommended PCB footprint outline (Unit: mm)

Figure 11: SIM900 Recommended PCB footprint outline (Unit: mm)

Figure 12: SIM5300EA Recommended PCB footprint outline (Unit: mm)

4 Hardware Reference Design

The following chapters describe compatible design of SIM7000 and SIM800F/SIM900/SIM5300EA on main functionalities.

4.1 Power Supply

The power supply pins of SIM7000 and SIM800F/SIM900/SIM5300EA include three VBAT pins (pin 55, 56&57). VBAT directly supplies the power to RF circuit and baseband circuit. All three VBAT pins of the module must be used together. The following figure is the reference design of the module VBAT power supply.

Figure 13: Power supply reference circuit

In addition, in order to get a stable power source, it is suggested to use a zener diode of which reverse zener voltage is 5.1V and dissipation power is more than 500mW.

The VBAT has different input power range for SIM7000 and SIM800F/SIM900/SIM5300EA. Please refer to the following table.

Table 3: The differences for VBAT power rang

Project	VBAT		
	Min	Тур	Max
SIM900	3.2V	3.8V	4.8V
SIM800F	3.4V	3.8V	4.4V
SIM5300EA	3.4V	3.8V	4.4V
SIM7000	3.0V	3.8V	4.3V,

*Note: For details information, please refer to each HD guide

The following figure is the reference design of +5V input power supply. The designed output for the power supply is 3.8V. A linear regulator can be used.

Figure 14: Reference circuit of the LDO power supply

4.2 USB Interface

The modules SIM7000 and SIM800F/ SIM5300EA provide a USB2.0 interface, but SIM900 has no USB interface.

USB device. The following circuit is the reference design of USB interface.

Figure 15: USB reference circuit

Because of the high speed on USB bus, more attention should be paid to the influence of the junction capacitance of the ESD component on USB data lines. Typically, the capacitance of the D1 and D2 should be less than 1pF.

The VBUS has different input power range for SIM7000 and SIM800F/SIM900/SIM5300EA. Please refer to the following table.

Table 4: The differences for VBUS power rang

Project		VBUS		
	Min	Тур	Max	
SIM900	Not support	Not support	Not support	
SIM800F	4.3V	5.0V	7.0V	
SIM5300EA	4.5V	5.0V	5.25V	
SIM7000	3.5V	5.0V	5.25V	

^{*}Note: For details information, please refer to each HD guide

4.3 Network Status Indication

The NETLIGHT/STATUS pin can be used to drive a network status indicator LED. The following circuit is the reference design.

Figure 16: NETLIGHT/STATUS reference circuit

4.4 Power on/off circuit

Each module PWRKEY pin has its different power level when it is floating.

The following circuit is a reference design for SIM7000 and SIM800F/SIM900/SIM5300EA power-on/off circuit.

Figure 17: Power on/off reference circuit

Note: The VDD of each module in the diagram is different. For details information, please refer to each HD guide.

4.5 Reset circuit

Each module RESET pin has its different power level when it is floating.

The RESET pin has been pulled up to VDD with a resistor internally. So it does not need to be pulled up externally. It is strongly recommended to put a100nF capacitor and an ESD protection diode close to the RESET pin. Please refer to the following figure for the recommended reference circuit.

Figure 18: Reset reference circuit

Note: The VDD of each module in the diagram is different. For details information, please refer to each HD guide.

4.6 USIM Interface

The USIM provides the required subscription verification information to allow the mobile equipment to attach to a GSM or UMTS network. Both 1.8V and 3.0V SIM Cards are supported.

It is recommended to use an ESD protection component such as ST (www.st.com) ESDA6V1W5. The following circuit is a reference design for SIM7000 and SIM800F/SIM900/SIM5300EA USIM circuit.

Figure 19: SIM interface reference circuit

*Note: For details information, please refer to each HD guide

4.7 UART Interface

The power domain of each UART between SIM800F/SIM900/SIM5300EA and SIM7000 are different.

Table 5: The differences for UART power level

PROJECT	UART power domain	
SIM900	2.8V	
SIM800F	2.8V	
SIM5300EA	1.8V	
SIM7000	1.8V	

^{*}Note: For details information, please refer to each HD guide

A level shifter should be used if user's application is equipped with a 3.3V UART interface. The level shifter TXB0108RGYR provided by Texas Instruments is recommended. The reference design of the TXB0108RGYR is in the following figures

Figure 20: Reference circuit of level shift

Note: The VDD_EXT of each project in the diagram is different. For details information, please refer to each HD guide.

4.8 Audio Interface

SIM800F/SIM900/SIM5300EA provides an analog interface for audio circuit. The following circuit is the reference design.

Figure 21 : Speaker reference circuit

Figure 22: Microphone reference circuit

SIM7000 provides a digital interface for audio circuit. And the digital audio interface is PCM interface, which is provided for external codec.

Figure 23: Audio codec reference circuit

Note: For details information, please refer to each HD guide.

4.9 2G/3G/4G RF Interface

SIM900 and SIM5300EA provide a main antenna interfaces. SIM7000 and SIM800F provide dual antenna interfaces.

Customer's antennas should be located in the host board and connected to module's antenna pad through micro-strip line or other types of RF trace and the trace impedance must be controlled by 50Ω .

The following circuit is a reference design for SIM800F/SIM900/SIM5300EA and SIM7000 RF antenna circuit.

Figure 24: Antenna matching circuit (MAIN ANT)

4.10 GNSS Application Guide

Users can adopt an active antenna or a passive antenna to SIM7000. If using a passive antenna, an

external LNA is a must to get better performance. The following figures are the reference circuits.

Figure 25: Active antenna circuit

Figure 26: Passive antenna circuit (Default)

4.11 Dedicated Pins

There are some dedicated pins for SIM800F and SIM7000.

Table 6: Dedicated Pins Description for module

SIM800F		
Pin name	Pin No.	Function
KPLED	23	Sink current for keypad LED
VDC1	50	Keypad column 1.
KBC1	50	It can't be pulled down during power on procedure
SIM7000		
Pin name	Pin No.	Function
BOOT_CFG	6	Boot configuration input.
	6	Module will be forced into USB download mode by

		connect this pin to VDD_EXT during power up.
MDM LOG TX	23	Module log output for SW debug. (only used for
WIDW_LOO_IX	23	platform)

5 Appendix

5.1 Related documents

Table 7: Related documents

SN	Document name	Remark
[1]	SIM7000_Hardware_Design	SIM7000 Hardware Design Document
[2]	SIM800F Hardware Design	SIM800F Hardware Design Document
[3]	SIM900 Hardware Design	SIM900 Hardware Design Document
[4]	SIM5300EA Hardware	SIM5300EA Hardware Design Document
	Design	

5.2 Terms and Abbreviation

Table 8: Terms and Abbreviations

Abbreviation	Description
KPLED	Sink current for keypad LED
ESD	Electrostatic Discharge
GSM	Global Standard for Mobile Communications
I2C	Inter-Integrated Circuit
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
RF	Radio Frequency
RTC	Real Time Clock
Rx	Receive Direction
SIM	Subscriber Identification Module
SPI	serial peripheral interface
UART	Universal Asynchronous Receiver & Transmitter

VSWR	Voltage Standing Wave Ratio	
NC	Not connect	
EDGE	Enhanced data rates for GSM evolution	
HSDPA	High Speed Downlink Packet Access HSUPA	
HSDPA	High Speed Downlink Packet Access HSUPA	
HSDPA	High Speed Downlink Packet Access HSUPA	
USIM	Universal subscriber identity module	
UMTS	Universal mobile telecommunications system	
SMPS	Switch Mode Power Supply	
KBC	Keypad Button Column KBR	
KBR	Keypad Button Row	

Contact us:

Shanghai SIMCom Wireless Solutions Ltd.

Add: SIM Technology Building, No.633, Jinzhong Road, Changning District, Shanghai P.R.

China 200335

Tel: +86 21 3235 3300 Fax: +86 21 3235 3301 URL: www.sim.com/wm