

Deploying ML models to IoT Edge devices -- using ONNX and AzureML

Henry Zeng Principal Program Manager, Al Platform

Session: Deploying ML models to IoT Edge devices

The rate of innovation in hardware for the intelligent edge has led to challenges in building AI enabled applications and services. This session will show you how to efficiently build and deploy machine learning solutions for the vastly complex ecosystem of hybrid and disconnected architectures. You will *see real world applications* and learn how to *apply* these patterns to your own solutions.

What does the E2E ML lifecycle look like?

Develop and train model with reusable ML pipelines

Package model using containers to capture runtime dependencies for inference

Validate model behavior—functionally, in terms of responsiveness, in terms of regulatory compliance

Deploy model—to cloud and edge, for use in real-time/streaming/batch processing

Monitor model behavior and business value, know when to replace/deprecate a stale model

Retrain Model

Edge intelligence enabled with Azure IoT Edge

Al for harvesting produce

- Current approach:
 - Low frequency sampling
 - Manual, labor intensive inspection
 - Using average as gut instinct
- Al for improved yield:
 - Al on video streams to estimate growth
 - Harvesting to maximize production

Reality of building ML application for the Edge

Challenge 1: Model training data needs to be specific for the edge environments

Challenge 2: SW architecture options for edge devices: throughput vs. accuracy considerations, preprocessing

Challenge 3: HW spec and configuration is fragmented for edge devices: ML execution stack

Challenge 4: Processing pipeline on edge devices to optimize all the available resources compute, storage, power & connectivity

Training for the IoT Edge

Model to detect produce maturity

Estimate maturity based on lateral measurements

Collect images for training the model

Approach

Based on this accepted approach in the field, our solution will estimate size in three steps

- 1. Detect key points on the orange
- Estimate distance from camera
- 3. Estimate weight based on normalized distances among key points

Continuous retraining

ML model to suggest new frames to be used for (re)training

Data scientist to confirm data to be used for training

BUT conditions are different across farms

Factors that influence images captured

- sunlight
- geo-location
- seasonal variances
- air quality, etc.

What we did

- collect images locally
- re-train for local conditions
- tuned ML model to detect produce
- data scientist confirms images to be used for retraining

SW Architecture for the edge Al Application

Al Application Pattern for IoT Edge

Architecture options for AI applications on edge

Separate containers

Non real-time applications

- Flexibility
 - Modularity
 - Reusability (Edge/Cloud)
- Performances

One modular container Real-time applications

Model packaging for the Edge

Components of efficient ML execution

Model graph

HW Specific Libs (and IR)*

OpenVINO nGraph **MKLDNN ROCm** TVM IR ARM Compute Lib. **TensorRT**

Compute blocks*
(implementation in silicon)

CPU

GPU

DSP

ONNX is the new open ecosystem for AI models

ONNX – a common format for NN graph representation

Model Conversion to ONNX (examples)

```
from keras.models import load_model
import keras2onnx
import onnx

keras_model = load_model("model.h5")

onnx_model = keras2onnx.convert_keras(keras_model, keras_model.name)

onnx.save_model(onnx_model, 'model.onnx')
```

```
import torch
import torch.onnx

O PyTorch

model = torch.load("model.pt")

sample_input = torch.randn(1, 3, 224, 224)

torch.onnx.export(model, sample_input, "model.onnx")
```

```
import numpy as np
import chainer
from chainer import serializers
import onnx_chainer

serializers.load_npz("my.model", model)

sample_input = np.zeros((1, 3, 224, 224), dtype=np.float32)
chainer.config.train = False

onnx_chainer.export(model, sample_input, filename="my.onnx")
```

ONNX Exporters & Converters

https://github.com/onnx/tutorials

Framework / Tool	Installation	Tutorial
Caffe	apple/coremitools and onnx/onnxmitools	Example
Caffe2	part of caffe2 package	Example
Chainer	chainer/onnx-chainer	Example
Cognitive Toolkit (CNTK)	built-in	Example
CoreML (Apple)	onnx/onnx-coreml and onnx/onnxmltools	Example
Keras	onnx/keras-onnx	Example
LibSVM	onnx/onnxmltools	Example
LightGBM	onnx/onnxmltools	Example
MATLAB	Deep Learning Toolbox	Example
ML.NET	built-in	Example
MXNet (Apache)	part of mxnet package docs github	Example
PyTorch	part of pytorch package	Example, exporting different ONNX opsets, Extending support
SciKit-Learn	onnx/sklearn-onnx	Example
SINGA (Apache) - Github (experimental)	built-in	Example
TensorFlow	onnx/tensorflow-onnx	Examples

github.com/microsoft/onnxruntime

ONNX Runtime is a **high-performance inference engine** for machine learning models in the ONNX format

Flexible

Supports full ONNX-ML spec (v1.2-1.5)

Supports both CPU and GPU

C#, C, and Python APIs

Cross Platform

Works on

- Mac, Windows, Linux

- x86, x64, ARM

Also built-in to
Windows 10 natively

Extensible

Extensible architecture to plug-in optimizers and hardware accelerators

ONNX Runtime Architecture

Using ONNX Runtime – HW agnostic API

```
import onnxruntime
session =
onnxruntime.InferenceSession("mymodel.onnx")
results = session.run([], {"input": input_data})
```

```
using Microsoft.ML.OnnxRuntime;

var session = new InferenceSession("model.onnx");

var results = session.Run(input);
```

..... also available for C

Deployment & Execution on the Edge

Deploy Azure ML models at scale

score.py for IoT Edge

def run(msg):

this is a dummy function required to satisfy AML-SDK requirements.

return msg

Sample notebook <u>here</u>

```
def init(): \_
    # Choose HTTP, And or MOTT as transport protocol. Currently only MOTT is supported.
    PROTOCOL = IoTHubTranspor
    DEVICE = 0 # when device is
    LABEL FILE = "labels.txt"
                                                ENTRYPOINT for container on IoT
    MODEL FILE = "Model.onnx"
                                               Edge device
    global MESSAGE_TIMEOUT # setting for IoT
    MESSAGE TIMEOUT = 1000
    LOCAL DISPLAY = "OFF" # flag for local display on/off, default OFF
    # Create the IoT Hub Manager to send message to IoT Hub
    print("trying to make IOT Hub manager")
    hub_manager = HubManager(PROTOCOL)
    if not hub manager:
        print("Took too long to make hub_manager, exiting program.")
        print("Try restarting IotEdge or this module.")
        sys.exit(1)
    # Get Labels from labels file
    labels file = open(LABEL FILE)
    labels string = labels file.re
    labels = labels_string.split()
                                    Loop to read video frame from /device/video0
   labels file.close()
                                    Run inference on frame
    label lookup = {}
    for i, val in enumerate(labels
                                    Send result/telemetry to IoT Hub/cloud services
       label_lookup[val] = i
    # get model path from within the contain
    model_path=Model.get_model_path(MODEL_F)
    # Loading ONNX model
    print("loading model to ONNX Runtime/
    start time = time.time()
    ort_session = rt.InferenceSession(mg)
                                           time, "s")
    print("loaded after", time.time()-
    # start reading frames from vided
                                       dpoint
    cap = cv2.VideoCapture(DEVICE)
    while cap.isOpened():
       _, _ = cap.read()
       ret, img frame = cap.read()
        if not ret:
            print('no video RESETTING FRAMES TO 0 TO RUN IN LOOP'
```

Deploy from Azure ML to IoT Edge

End-to-End Pipeline for Al on the Edge

Re-cap the scenario

Scenario

 Produce harvesting – use image classification to estimate harvesting oranges

Goals

- Run AI model on farm (edge) to produce orange weights that are transferred to the cloud for analysis
- Include process for collecting training data to allow the model to improve over time
- Build the processes to improve collaboration between the Data Science and IoT dev ops teams

THANK YOU

Sample notebook for single container implementation: here

