Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + (a_1 + r) + (a_1 + 2r) + (a_1 + 3r) = 14 \Leftrightarrow 4a_1 + 6r = 14$	3 p
	r=1	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 5x + 4 = 0$	2p
	x=1 sau $x=4$, deci distanța dintre punctele de intersecție a graficului funcției f cu axa Ox	3р
	este egală cu 3	- F
3.	$2^{x}(2^{2}+2^{1}+1)=7 \Leftrightarrow 2^{x}=1$	3 p
	x = 0	2p
4.	$\left(p + \frac{10}{100} \cdot p\right) + \frac{10}{100} \cdot \left(p + \frac{10}{100} \cdot p\right) = 242, \text{ unde } p \text{ este prețul produsului înainte de cele două}$	3p
	scumpiri	
	p = 200 de lei	2 p
5.	$\frac{m}{2} = \frac{6}{3}$	3р
	2 3	Эр
	m=4	2p
6.	$BC = \sqrt{5^2 - 3^2} = 4$ $A_{ABCD} = 3 \cdot 4 = 12$	3p
	$\mathcal{A}_{ABCD} = 3 \cdot 4 = 12$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1)*1 = -1+1-(-1)\cdot 1 =$	3p
	=1	2p
2.	x * y = x + y - xy = y + x - yx =	3p
	= y * x, pentru orice numere reale x și y , deci legea "*" este comutativă	2p
3.	x * y = -xy + x + y - 1 + 1 =	2p
	=-x(y-1)+(y-1)+1=-(x-1)(y-1)+1, pentru orice numere reale x şi y	3p
4.	$-(x-1)(x-1)+1=0 \Leftrightarrow (x-1)^2=1$	3p
	x = 0 sau $x = 2$	2p
5.	$-(a-1)(a-1)+1 \ge 1 \Leftrightarrow (a-1)^2 \le 0$	3p
	a = 1	2p
6.	x*1=1*y=1, pentru x și y numere reale	2p
	$\left(\left(\frac{1}{2016} * \frac{2}{2016} * \frac{3}{2016} * \dots * \frac{2015}{2016} \right) * \frac{2016}{2016} \right) * \frac{2017}{2016} = 1 * \frac{2017}{2016} = 1$	3p

SUBIECTUL al III-lea (30 de puncte)

1.	$A(2017) = \begin{pmatrix} 1 & 2017 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(2017)) = \begin{vmatrix} 1 & 2017 \\ 0 & 1 \end{vmatrix} =$	2p
	=1	3 p
2.	$A(-2017) + A(2017) = \begin{pmatrix} 1 & -2017 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2017 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}1&0\\0&1\end{pmatrix}=2I_2$	2p
3.	$A(m) \cdot A(n) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+m \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & m+n \\ 0 & 1 \end{pmatrix} = A(m+n), \text{ pentru orice numere întregi } m \text{ si } n$	2p
4.	$B = A(0) + A(1) + A(2) + A(3) + A(4) + A(5) + A(6) = \begin{pmatrix} 7 & 0 + 1 + 2 + \dots + 6 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 21 \\ 0 & 7 \end{pmatrix}$	3p
	Suma elementelor matricei B este egală cu 35, care este un număr divizibil cu 7	2 p
5.	$\det(A(n)) = \begin{vmatrix} 1 & n \\ 0 & 1 \end{vmatrix} = 1$	2p
	$\det(A(n)) \neq 0$, deci $A(n)$ este inversabilă pentru orice număr întreg n	3 p
6.	Cum $A(2017) \cdot A(-2017) = A(0) = I_2$, obţinem $(A(2017))^{-1} = A(-2017)$	2p
	$X = (A(2017))^{-1} \cdot A(2018) \Leftrightarrow X = A(-2017) \cdot A(2018) \Leftrightarrow X = A(1) \Leftrightarrow X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	3p