Notes TC4

Adrien Pavao

September 2017

Contents

1 Inférence Bayesienne

Différents niveaux d'inférence...

1.1 Niveau 1 : Classification Bayesienne

- Y : La classe à prédire (catégorielle)
- \vec{X} : Vecteur aléatoire, $\vec{X} \begin{pmatrix} x_1 \\ \dots \\ x_2 \end{pmatrix}$

On cherche à choisir y de façon à maximiser :

$$P(Y = y | \vec{X} = \vec{x}) = \frac{P(\vec{X} = \vec{x} | Y = y)P(Y = y)}{P(\vec{X} = \vec{x})}$$

Dans cette formule, on remarque des termes particuliers :

- La vraisemblance : $P(\vec{X} = \vec{x}|Y = y)$.
- L'a priori : P(Y = y).
- L'évidence : $P(\vec{X} = \vec{x})$.

La vraisemblance et l'a priori sont à estimer. On estime une ditribution sur X pour chaque classe y. On peut donc faire l'hypothèse naı̈ve suivante :

$$P(\vec{X} = \vec{x}|Y = y) = \prod_{i=1}^{d} P(\vec{X}_i = \vec{x}_i|Y = y)$$

Estimer les paramètres

Cas Bernouilli : $\Theta_{iy} = \frac{n(1,i,y)}{N(i,y)}$

 $n(1,i,y) = \text{nombre de fois où } \vec{X}_i = 1 \text{ dans la classe y.}$

Si n(1, i, y) = 0 alors $\Theta_{iy} = 0$ Donc $P(\vec{X} = \vec{x}|Y = y) = 0$, ce qui est mauvais. On estime Θ sur les données et on vient à la conclusion qu'un evenement est impossible sous pretexte qu'on ne l'a jamais observé. Il faut éviter ce problème.

Ce type d'estimation est appelée une estimation MLE : Maximum Likelihood Estimate. Il s'agit de l'interprétation **fréquentiste** des données.

Autrement dit, on cherche les paramètres Θ_{iy} qui maximisent $P(D|\Theta_{iy})$. (D la réalisation des données ...)

1.2 Niveau 2 : Inférence Bayesienne des paramètres

On cherche $P(X_i|Y)$ -; $P(X_i|Y_i\Theta_{iy})$. L'apprentissage revient à l'estimation d'une distribution sur les paramètres.

Estimer $P(\Theta_{iy}|D)$.

$$P(\Theta_{iy}|D) = \frac{P(D|\Theta_{iy})P(\Theta_{iy})}{P(D)}$$

1.2.1 A priori sur les paramètres

Cas Bernouilli : $\Theta_{iy} \in [0,1]$, continu. Donc $P(\Theta_{iy})$ _ une loi continue de support [0,1]. Le choix : Loi Beta.

$$P(\Theta_{iy}; \alpha_0, \alpha_1) = \frac{\Gamma(\alpha_0 + \alpha_1)}{\Gamma(\alpha_0)\Gamma(\alpha_1)} \Theta_{iy}^{\alpha_1 - 1} (1 - \Theta_{iy})^{\alpha_0 - 1}$$

(Dénominateur et game -¿ Normalisation)

 α_0 et α_1 sont les paramètres de la loi Beta. On a $\alpha_0, \alpha_1 > 0, \in R$ (R reel, D majuscule ...)

- Fonction de densité symétrique : $\alpha_0 = \alpha_1$ et $\alpha_0, \alpha_1 > 1$. Graphe 1
- A priori non-informatif:

 $\alpha_0 = \alpha_1 = 1.$

Graphe 2

• A priori parcimonieux (sparse) :

 $\alpha_0, \alpha_1 < 1$

Graphe 3

A posteriori sur les paramètres

 $P(\Theta_{iy}|D)$ propor $P(D|\Theta_{iy})P(\Theta_{iy};\alpha_1,\alpha_0)$ (vraimsemblance et a priori). gamealpha signifie "proportionnel à". $P(\Theta_{iy}|D)$ propor $\Theta_{iy}^{N_1+\alpha_1-1}(1-\Theta_{iy})^{N_0+\alpha_0-1}$

- N_0 : Nombre de x_i à 0 dans D.
- N_1 : Nombre de x_i à 1 dans D.

(defition importante) La loi a posteriori est comme la loi a priori, une loi Beta. La loi Beta est l'a priori conjugué de Bernouilli (conjugated prior).

1.2.3Retour à la classification

1. Maximum a Posteriori des Paramètres (MAP)

 $\Theta_{iy}=argmaxP(\Theta_{iy}|D)$ (chapeau sur le theta !) $\Theta_{iy}=\frac{N_1+\alpha_1-1}{N_1+N_0+\alpha_1+\alpha_0-2}$ α_1 et α_0 agissent comme des "pseudo-comptes". Lissage (smoothing) de distibution. $\Theta_{iy}! = 0$ Si $N_1, N_0 >> \alpha_1, \alpha_0$ alors l'a priori est négligeable. -¿ Régularisation, éviter le sur-apprentissage.

2. Loi prédictive (inférence Bayesienne 3)

 $P(X_i = x_i | Y = y; \Theta_{iy})$ avec Θ_{iy} estimés à partir des données (MAP).

Le paramètre n'existe pas et ne doit donc pas apparaitre dans la prédiction. La vraie prédiction:

 $P(X_i = x_i | D) = integrale 01 P(X_i = x_i; \Theta_{iy} | D) d\Theta_{iy}$, en marginalisant les paramètres.

 $P(X_i; \Theta_{iy}|D) = P(X_i|\Theta_{iy}; D)P(\Theta_{iy}|D)$ (vraisemblance et a priori).

 $P(X_i = x_i | D) = \frac{N_1 + \alpha_1}{N_1 + N_0 + \alpha_1 + \alpha_0}, \ \forall \alpha_1 \text{ et } \alpha_0 > 0.$

2 Modèles de mélange (G.M.M.)

2.1Introduction

Un large champ d'applications:

• Clustering: Apprentissage non supervisé. Par exemple, l'algorithme des K-means.

$$D = (x_n)_{n=1}^N$$

On fixe K, un nombre de clusters.

• Estimation de distribution.

Exemple: La classification (d'image). Graphe 1.

- Augmenter la capacité du modèle.
- Augmenter le nombre de paramètres.
- Mélange de Gaussienne (G.M.M.)

K : Le nombre de Gausiennes / clusters.

$$P(\vec{x_n}|\Theta) = \sum_{k=1}^k \pi_k N(\vec{u_k}, \Sigma_k)$$

- Les paramètres $\Theta: (\pi_k, \vec{u_k}, \sum_k)_{k=1}^K$
- $-\pi_k$ est le poids du mélange.
- $-N(\vec{u_k}, \Sigma_k)$ est la loi gaussienne.

L'objectif de l'apprentissage est d'estimer les paramètres du mélange permettant de :

- Maximiser $\Pi_{n=1}^N P(\vec{X} = \vec{x}|\Theta)$
- Maximiser $log(\Pi_{n=1}^N P(\vec{X} = \vec{x_n}|\Theta))$ (on retrouve la probabilité vue plus haut).

2.2 Algorithme E.M.

• Algorithme itératif qui cherche à maximiser :

$$log(P(\vec{X} = \vec{x_n}|\Theta))$$

- Introduire des variables latentes (cachées) :
 - Pour chaque $\vec{x} > \vec{Z}$ (one-hot vecteur)
 - $\ \vec{Z} = (0,0,...,1,0,0) > Z_k = 1 <=> \vec{x} \in clusterk$
 - $-\vec{Z}$:
 - * Pseudo-affectation
 - * Un vecteur latent
 - * Inconnu = \vec{l} \vec{l} un vecteur aléatoire
 - * Affectation "soft": Un point peut appartenir à tous les clusters.

Résumé du programme :

Introduction \vec{Z} associé à \vec{X} . Si on souhaite maximiser :

$$P(X|\Theta) = \sum_{Z} P(\vec{X}, \vec{Z}|\Theta)$$

$$P(X|\Theta) = \sum_{Z} P(\vec{X}|\vec{Z}, \Theta) P(\vec{Z}|\Theta)$$

On note que $P(X|Z,\Theta)$ est la loi normale $N(\vec{u_k},\Sigma_k)$ et que $P(\vec{Z}|\Theta)$ est π_k . Si $\vec{Z_k} = (0,...,1,0) rangk$

- (\vec{X}, \vec{Z}) : Données complètes.
- (\vec{X}) : Données incomplètes.

Etape E(xpection):

- Connaître \vec{Z} à Θ fixé.
- Calcul la probabilité d'affectation : $P(\vec{Z}|, \vec{X}, \Theta)$

Etape M(aximization) : Les données sont incomplètes. On calcule Θ et on "fixe" \vec{Z} .

2.3 Optimisation variationnelle

Après l'introduction de \vec{Z} , on introduit une distribution auxiliaire sur \vec{Z} , notée $q(\vec{Z})$. On souhaite maximiser selon Θ :

$$log(P(X|\Theta) = \sum_{\vec{Z}} q(\vec{Z}log(\frac{P(\vec{X}, \vec{Z}|\Theta)}{q(\vec{Z})}) - \sum_{\vec{Z}} q(\vec{Z}log(\frac{P(\vec{Z}|\vec{X}, \Theta)}{q(\vec{Z})})$$

$$log(P(X|\Theta)) = log(P(X,Z|\Theta)) - log(P(Z|X,\Theta))$$

Rappel : $P(X|\Theta) = \frac{P(X,Z|\Theta)}{P(Z|X,\Theta)}$ C'est-à-dire : Le second terme :

$$-\sum_{\vec{Z}}q(\vec{Z}log(\frac{P(\vec{Z}|\vec{X},\Theta)}{q(\vec{Z})})=E_{\vec{Z}vq(\vec{Z})}[log(\frac{P(\vec{Z},\vec{X}|\Theta)}{q(\vec{Z})})]$$

Divergence de Kullback-Leibler (DKL).

$$DKL(q(\vec{Z})||P(\vec{Z}|\vec{X},\Theta))$$

De chaque côté du "||" on a deux distributions sur \vec{Z} . Divergence \neq distance (asymétrique). (faire une phrase...)

- DKL(q, P) = 0 ssi q = P
- $DKL(q, P) \ge 0$

Le premier terme : $E_{\vec{Z}vq(\vec{Z})}[log(\frac{P(\vec{Z},\vec{X}|\Theta)}{q(\vec{Z})}))]$ est nommé ELBO (Evidence Lower Bound).

$$log(P(\vec{X}|\Theta)) = L(\Theta, q) + DKL(q(\vec{Z})||P(\vec{Z}|\vec{X}, \Theta))$$

On a $L(\Theta,q)$ une borne inférieure (ELBO). On fait une optimisation par borne inférieure : on maximise la fonction en maximisant sa borne inférieure. Il s'agit d'une maximisation "indirecte".

Etape E:

- Les paramètres sont fixés : $\Theta = \Theta^{old}$
- Maximiser $L(\Theta^{old}, q)$

$$\begin{split} L(\Theta^{old},q) &= -DKL(q(\vec{Z}),P(\vec{Z}|\vec{X},\Theta^{old})) + log(P(\vec{X}|\Theta^{old})) \\ &q(\vec{Z}) = P(\vec{Z}|\vec{X},\Theta^{old}) \end{split}$$

Etape M : Maximiser L selon Θ avec q fixé. ILLUSTRATION..