Chapitre 10 — Vecteurs II — Exercices corrigés

Exercice 1: (*)

Par lecture graphique, déterminer les coordonnées dans la base (\vec{i}, \vec{j}) des vecteurs \vec{u} , \vec{v} et \vec{w} ci-dessous.

1)
$$\vec{u} \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
 2) $\vec{v} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 3) $\vec{w} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$

$$\mathbf{2)} \ \overrightarrow{v} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

3)
$$\vec{w} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

Exercice 2: (*) Soient les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Dans chaque cas, déterminer les coordonnées du vecteur AB.

1)
$$A(2;3)$$
 et $B(5;7)$: $\overrightarrow{AB}\begin{pmatrix} 3\\4 \end{pmatrix}$

2)
$$A(-1;4)$$
 et $B(3;1)$: $\overrightarrow{AB}\begin{pmatrix} 4 \\ -3 \end{pmatrix}$

1)
$$A(2;3)$$
 et $B(5;7)$: $\overrightarrow{AB}\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ **2)** $A(-1;4)$ et $B(3;1)$: $\overrightarrow{AB}\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ **3)** $A(-4;-9)$ et $B(3;-8)$: $\overrightarrow{AB}\begin{pmatrix} 7 \\ 1 \end{pmatrix}$

Exercice 3: (*)

On considère les vecteurs $\vec{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$.

Représenter ces vecteurs en choisissant comme origine respectivement les points A(1; 2), B(-1; 5) et C(0; 1).

Exercice 4: (*) Soient les points E(3;6), H(-5;8) et K(-1;7).

1. Montrer que les vecteurs \overrightarrow{EK} et \overrightarrow{KH} sont égaux.

On calcule les coordonnées de ces vecteurs: $\overrightarrow{EK} \begin{pmatrix} -1-3 \\ 7-6 \end{pmatrix}$ soit $\overrightarrow{EK} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$ et $\overrightarrow{KH} \begin{pmatrix} -5-(-1) \\ 8-7 \end{pmatrix}$ soit $\overrightarrow{KH} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$.

On a bien $\overrightarrow{EK} = \overrightarrow{KH}$.

2. Que peut-on en déduire?

On en déduit d'une part que les points E, K et H sont alignés et d'autre part que EK = KH.

K est le milieu du segment [EH].

Exercice 5: (**) Soient les points A(2;5), B(-1;3), C(4;-1) et D(7;1).

1. Montrer que le quadrilatère ABCD est un parallélogramme.

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{DC} : $\overrightarrow{AB} \begin{pmatrix} -1-2 \\ 3-5 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ et $\overrightarrow{DC} \begin{pmatrix} 4-7 \\ -1-1 \end{pmatrix}$ soit $\overrightarrow{DC} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$.

On a bien $\overrightarrow{AB} = \overrightarrow{DC}$, donc ABCD est un parallélogramme.

2. Calculer les coordonnées du point G tel que ABGC soit un parallélogramme.

On cherche les coordonnées du point $G(x_G; y_G)$ tel que $\overrightarrow{AB} = \overrightarrow{CG}$

On a $\overrightarrow{CG} \begin{pmatrix} x_G - 4 \\ y_G + 1 \end{pmatrix}$. On a donc le système suivant: $\begin{cases} x_G - 4 = -3 \\ y_G + 1 = -2 \end{cases} \iff \begin{cases} x_G = 1 \\ y_G = -3 \end{cases}. \text{ Donc } G(1; -3).$

Exercice 6: (**) Soient les points A(-4;2), B(1;2), C(-1;6), D(0;-1) et E(5;-1) dans le repère orthonormé O(0;1,1).

1. (a) Montrer que le quadrilatère ABED est un parallélogramme.

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{DE} : $\overrightarrow{AB} \begin{pmatrix} 1-(-4) \\ 2-2 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ et $\overrightarrow{DE} \begin{pmatrix} 5-0 \\ -1-(-1) \end{pmatrix}$ soit $\overrightarrow{DE} \begin{pmatrix} 5 \\ 0 \end{pmatrix}$.

On a bien $\overrightarrow{AB} = \overrightarrow{DE}$, donc ABED est un parallélogramme.

(b) Calculer les longueurs AB et EB. Que peut-on en déduire?

On calcule $AB = \sqrt{(1-(-4))^2+(2-2)^2} = \sqrt{5^2} = 5$ et $EB = \sqrt{(5-1)^2+(-1-2)^2} = \sqrt{4^2+3^2} = \sqrt{16+9} = \sqrt{25-5}$

On a alors AB = EB, donc ABED est un losange.

2. Calculer les coordonnées du point G tel que ABCG soit un parallélogramme.

On cherche les coordonnées du point $G(x_G; y_G)$ tel que $\overrightarrow{AB} = \overrightarrow{GC}$.

On a $\overrightarrow{GC} \begin{pmatrix} x_G - (-1) \\ y_G - 6 \end{pmatrix}$. On a donc le système suivant: $\begin{cases} x_G + 1 = 5 \\ y_G - 6 = 0 \end{cases} \iff \begin{cases} x_G = 4 \\ y_G = 6 \end{cases}$. Donc G(4;6).

3. Le parallélogramme ABCG est-il un losange? Justifier.

On calcule $AB = \sqrt{(1-(-4))^2+(2-2)^2} = \sqrt{5^2} = 5$ et $BC = \sqrt{(-1-1)^2+(6-2)^2} = \sqrt{(-2)^2+4^2} = \sqrt{4+16} = \sqrt{20}$.

On a alors $AB \neq BC$, donc ABCG n'est pas un losange.

- **Exercice 7:** (**) Soient les points A(1;2), B(3;-2) et les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
 - 1. Calculer les coordonnées du vecteur $\vec{u} + \vec{v}$.

On a $\vec{u}+\vec{v}igg(2+1 \atop 5+(-2)igg)$ soit $\vec{u}+\vec{v}igg(3 \atop 3igg)$

2. Calculer les coordonnées des points E et F tels que $\overrightarrow{AE} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{BF} = \overrightarrow{u} + \overrightarrow{v}$.

On a $\overrightarrow{AE}\begin{pmatrix} x_E-1\\ y_E-2 \end{pmatrix}$ et $\overrightarrow{BF}\begin{pmatrix} x_F-3\\ y_F-(-2) \end{pmatrix}$.

On a donc le système suivant: $\begin{cases} x_E - 1 = 3 \\ y_E - 2 = 3 \end{cases} \iff \begin{cases} x_E = 4 \\ y_E = 5 \end{cases} \text{ et } \begin{cases} x_F - 3 = 3 \\ y_F + 2 = 3 \end{cases} \iff \begin{cases} x_F = 6 \\ y_F = 1 \end{cases}.$

Donc E(4; 5) et F(6; 1).

Exercice 8: (**) Soient les points A(-3;2), B(-1;3), C(1;1) et D(9;-1).

Les points M et N sont définis par $\begin{cases} \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{CD} \\ \overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{BC} \end{cases}$

1. Calculer les coordonnées des points M et N.

On a $\overrightarrow{AB} \begin{pmatrix} -1 - (-3) \\ 3 - 2 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $\overrightarrow{CD} \begin{pmatrix} 9 - 1 \\ -1 - 1 \end{pmatrix}$ soit $\overrightarrow{CD} \begin{pmatrix} 8 \\ -2 \end{pmatrix}$.

On a donc $\overrightarrow{AB} + \overrightarrow{CD} \begin{pmatrix} 2+8 \\ 1+(-2) \end{pmatrix}$ soit $\overrightarrow{AB} + \overrightarrow{CD} \begin{pmatrix} 10 \\ -1 \end{pmatrix}$.

De même, on a $\overrightarrow{BA} \begin{pmatrix} -3-(-1) \\ 2-3 \end{pmatrix}$ soit $\overrightarrow{BA} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ et $\overrightarrow{BC} \begin{pmatrix} 1-(-1) \\ 1-3 \end{pmatrix}$ soit $\overrightarrow{BC} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$.

On a donc $\overrightarrow{BA} + \overrightarrow{BC} \begin{pmatrix} -2+2 \\ -1+(-2) \end{pmatrix}$ soit $\overrightarrow{BA} + \overrightarrow{BC} \begin{pmatrix} 0 \\ -3 \end{pmatrix}$.

On cherche les coordonnées du point $M(x_M;y_M)$ tel que $\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{CD}$.

On a $\overrightarrow{AM}\begin{pmatrix} x_M - (-3) \\ y_M - 2 \end{pmatrix}$ soit $\overrightarrow{AM}\begin{pmatrix} x_M + 3 \\ y_M - 2 \end{pmatrix}$. On a donc le système suivant: $\begin{cases} x_M + 3 = 10 \\ y_M - 2 = -1 \end{cases} \iff \begin{cases} x_M = 7 \\ y_M = 1 \end{cases}$. Donc M(7:1).

De même, on cherche les coordonnées du point $N(x_N;y_N)$ tel que $\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}.$

On a $\overrightarrow{BN}\begin{pmatrix} x_N-(-1)\\ y_N-3 \end{pmatrix}$ soit $\overrightarrow{BN}\begin{pmatrix} x_N+1\\ y_N-3 \end{pmatrix}$. On a donc le système suivant: $\begin{cases} x_N+1=0\\ y_N-3=-3 \end{cases} \iff \begin{cases} x_N=-1\\ y_N=0 \end{cases}.$ Donc N(-1;0).

2. Montrer que le quadrilatère ANDM est un parallélogramme.

On calcule les coordonnées des vecteurs \overrightarrow{AN} et \overrightarrow{MD} :

$$\overrightarrow{AN} \begin{pmatrix} -1 - (-3) \\ 0 - 2 \end{pmatrix} \text{ soit } \overrightarrow{AN} \begin{pmatrix} 2 \\ -2 \end{pmatrix} \text{ et } \overrightarrow{MD} \begin{pmatrix} 9 - 7 \\ -1 - 1 \end{pmatrix} \text{ soit } \overrightarrow{MD} \begin{pmatrix} 2 \\ -2 \end{pmatrix}.$$

On a bien $\overrightarrow{AN} = \overrightarrow{MD}$, donc ANDM est un parallélogramme.

- **Exercice 9:** (**) Soient les points A(2;-1), B(3;7), C(-5;1) et K(11;13).
 - 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} , puis celles du vecteur $-\overrightarrow{AB} + 2\overrightarrow{BC}$.

On a
$$\overrightarrow{AB}\begin{pmatrix} 3-2\\7-(-1) \end{pmatrix}$$
 soit $\overrightarrow{AB}\begin{pmatrix} 1\\8 \end{pmatrix}$, $\overrightarrow{BC}\begin{pmatrix} -5-3\\1-7 \end{pmatrix}$ soit $\overrightarrow{BC}\begin{pmatrix} -8\\-6 \end{pmatrix}$.

On a donc
$$-\overrightarrow{AB} + 2\overrightarrow{BC} \begin{pmatrix} -1 + 2 \times (-8) \\ -8 + 2 \times (-6) \end{pmatrix}$$
 soit $-\overrightarrow{AB} + 2\overrightarrow{BC} \begin{pmatrix} -17 \\ -20 \end{pmatrix}$.

2. Calculer les coordonnées du point L défini par $\overrightarrow{BL} = -\overrightarrow{AB} + 2\overrightarrow{BC}$.

On cherche les coordonnées du point $L(x_L; y_L)$ tel que $\overrightarrow{BL} = -\overrightarrow{AB} + 2\overrightarrow{BC}$.

On a
$$\overrightarrow{BL}\begin{pmatrix} x_L-3\\y_L-7 \end{pmatrix}$$
 et $-\overrightarrow{AB}+2\overrightarrow{BC}\begin{pmatrix} -17\\-20 \end{pmatrix}$.

On a donc le système suivant: $\begin{cases} x_L - 3 = -17 \\ y_L - 7 = -20 \end{cases} \iff \begin{cases} x_L = -14 \\ y_L = -13 \end{cases}. \text{ Donc } L(-14; -13).$

3. Montrer que le quadrilatère CKAL est un parallélogramme.

On a
$$\overrightarrow{CK}$$
 $\begin{pmatrix} 11-(-5)\\13-1 \end{pmatrix}$ soit \overrightarrow{CK} $\begin{pmatrix} 16\\12 \end{pmatrix}$ et \overrightarrow{LA} $\begin{pmatrix} 2-(-14)\\(-1)-(-13) \end{pmatrix}$ soit \overrightarrow{LA} $\begin{pmatrix} 16\\12 \end{pmatrix}$.

On a donc $\overrightarrow{CK} = \overrightarrow{LA}$, donc CKAL est un parallélogramme.

Exercice 10: (*) Dans chaque cas, déterminer si les vecteurs \vec{u} et \vec{v} sont colinéaires.

1)
$$\vec{u} \begin{pmatrix} 24 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 2 \end{pmatrix}$

2)
$$\vec{u} \begin{pmatrix} 20 \\ -10 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -15 \\ 5 \end{pmatrix}$

1. On calcule le déterminant des vecteurs \vec{u} et \vec{v} : $det(\vec{u}, \vec{v}) = \begin{vmatrix} 24 & 8 \\ 6 & 2 \end{vmatrix} = 24 \times 2 - 6 \times 8 = 48 - 48 = 0.$

Les vecteurs \vec{u} et \vec{v} sont donc colinéaires car le déterminant est nul.

2. On calcule le déterminant des vecteurs \vec{u} et \vec{v} : $\det(\vec{u}, \vec{v}) = \begin{vmatrix} 20 & -15 \\ -10 & 5 \end{vmatrix} = 20 \times 5 - (-10) \times (-15) = 100 - 150 = -50$.

Les vecteurs \vec{u} et \vec{v} ne sont donc pas colinéaires car le déterminant est non nul.

Exercice 11: (**) Dans chaque cas, déterminer la valeur du réel k tel que les vecteurs \vec{u} et \vec{v} soient colinéaires.

1)
$$\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} k \\ 2 \end{pmatrix}$

2)
$$\vec{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ 3k \end{pmatrix}$

1. On cherche k tel que les vecteurs \overrightarrow{u} et \overrightarrow{v} soient colinéaires.

On a
$$det(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} -3 & k \\ 4 & 2 \end{vmatrix} = -3 \times 2 - 4 \times k = -6 - 4k.$$

On cherche donc le réel k tel que $-6-4k=0 \iff -4k=6 \iff k=-\frac{6}{4}=-\frac{3}{2}$. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont donc colinéaires pour $k=-\frac{3}{2}$.

2. On cherche k tel que les vecteurs \overrightarrow{u} et \overrightarrow{v} soient colinéaires.

On a
$$det(\overrightarrow{u}, \overrightarrow{v}) = \begin{vmatrix} 5 & 6 \\ 1 & 3k \end{vmatrix} = 5 \times 3k - 1 \times 6 = 15k - 6.$$

On cherche donc le réel k tel que $15k-6=0 \iff 15k=6 \iff k=\frac{6}{15}=\frac{2}{5}$. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont donc colinéaires pour $k=\frac{2}{5}$.

Exercice 12: (**) Dans chaque cas, déterminer si les droites (AB) et (CD) sont parallèles.

1. A(1;1), B(3;11), C(0;-1) et D(-1;-7)

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD} : $\overrightarrow{AB} \begin{pmatrix} 3-1 \\ 11-1 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} 2 \\ 10 \end{pmatrix}$ et $\overrightarrow{CD} \begin{pmatrix} -1-0 \\ (-7)-(-1) \end{pmatrix}$ soit $\overrightarrow{CD} \begin{pmatrix} -1 \\ -6 \end{pmatrix}$.

Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

On a $det(\overrightarrow{AB},\overrightarrow{CD}) = \begin{vmatrix} 2 & -1 \\ 10 & -6 \end{vmatrix} = 2 \times (-6) - 10 \times (-1) = -12 + 10 = -2$. Comme le déterminant est non nul, les droites (AB) et (CD) ne sont pas parallèles.

2. A(3;10), B(0;-5), C(1;-20) et D(10;25)

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD} : $\overrightarrow{AB} \begin{pmatrix} 0-3 \\ -5-10 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} -3 \\ -15 \end{pmatrix}$ et $\overrightarrow{CD} \begin{pmatrix} 10-1 \\ 25-(-20) \end{pmatrix}$ soit $\overrightarrow{CD} \begin{pmatrix} 9 \\ 45 \end{pmatrix}$.

Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

On a $det(\overrightarrow{AB},\overrightarrow{CD}) = \begin{vmatrix} -3 & 9 \\ -15 & 45 \end{vmatrix} = -3 \times 45 - (-15) \times 9 = -135 + 135 = 0$. Comme le déterminant est nul, les droites (AB) et (CD) sont parallèles.

Exercice 13: (**) Dans chaque cas, dire si les points A, B et C sont alignés ou non.

1. A(1;3), B(-1;2) et C(2;3)

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} : $\overrightarrow{AB} \begin{pmatrix} -1 - 1 \\ 2 - 3 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} 2 - 1 \\ 3 - 3 \end{pmatrix}$ soit $\overrightarrow{AC} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

On a $det(\overrightarrow{AB}, \overrightarrow{AC}) = \begin{vmatrix} -2 & 1 \\ -1 & 0 \end{vmatrix} = -2 \times 0 - (-1) \times 1 = 0 + 1 = 1$. Comme le déterminant est non nul, les points A, B et C ne sont pas alignés.

2. $A(\sqrt{2};3)$, B(0;1) et $C(2\sqrt{2};5)$

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} : $\overrightarrow{AB} \begin{pmatrix} 0 - \sqrt{2} \\ 1 - 3 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} -\sqrt{2} \\ -2 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} 2\sqrt{2} - \sqrt{2} \\ 5 - 3 \end{pmatrix}$ soit $\overrightarrow{AC} \begin{pmatrix} \sqrt{2} \\ 2 \end{pmatrix}$.

Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

On a $det(\overrightarrow{AB},\overrightarrow{AC}) = \begin{vmatrix} -\sqrt{2} & \sqrt{2} \\ -2 & 2 \end{vmatrix} = -\sqrt{2} \times 2 - (-2) \times \sqrt{2} = -2\sqrt{2} + 2\sqrt{2} = 0$. Comme le déterminant est nul, les points A, B et C sont alignés.

Exercice 14: (**)

On considère les points A(1;3), B(9;-1), C(4;-3) dans un repère O(i,i,j).

- 1. Calculer les coordonnées du milieu D du segment $\lceil AB \rceil$ et celles du milieu E du segment $\lceil DB \rceil$.
- 2. Calculer les coordonnées du point S défini par $\overrightarrow{AS} = \frac{2}{3}\overrightarrow{AC}.$
- 3. Les droites (EC) et (DS) sont-elles parallèles?
- 1. On calcule les coordonnées du milieu D du segment [AB] et celles du milieu E du segment [DB].

On a $D(\frac{1+9}{2}; \frac{3+(-1)}{2})$ soit D(5;1) et $E(\frac{9+5}{2}; \frac{-1+1}{2})$ soit E(7;0).

2. On calcule les coordonnées du point S défini par $\overrightarrow{AS} = \frac{2}{3}\overrightarrow{AC}$.

On a $\overrightarrow{AC} \begin{pmatrix} 4-1 \\ -3-3 \end{pmatrix}$ soit $\overrightarrow{AC} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$.

On a
$$\overrightarrow{AS}\begin{pmatrix} x_S-1\\y_S-3 \end{pmatrix}$$
. On a donc le système suivant:
$$\begin{cases} x_S-1=\frac{2}{3}\times 3\\y_S-3=\frac{2}{3}\times (-6) \end{cases} \iff \begin{cases} x_S-1=2\\y_S-3=-4 \end{cases} \iff \begin{cases} x_S=3\\y_S=-1 \end{cases}. \text{ Donc } S(3;-1).$$

3. Les droites (EC) et (DS) sont parallèles si et seulement si les vecteurs \overrightarrow{EC} et \overrightarrow{DS} sont colinéaires.

On a
$$\overrightarrow{EC} \begin{pmatrix} 4-7 \\ -3-0 \end{pmatrix}$$
 soit $\overrightarrow{EC} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ et $\overrightarrow{DS} \begin{pmatrix} 3-5 \\ -1-1 \end{pmatrix}$ soit $\overrightarrow{DS} \begin{pmatrix} -2 \\ -2 \end{pmatrix}$.

On a $det(\overrightarrow{EC},\overrightarrow{DS}) = \begin{vmatrix} -3 & -2 \\ -3 & -2 \end{vmatrix} = -3 \times (-2) - (-3) \times (-2) = 6 - 6 = 0$. Comme le déterminant est nul, les droites (EC) et (DS) sont parallèles.

Exercice 15: Compléter ce script en Python permettant de déterminer si deux vecteurs sont colinéaires.

```
def vecteurs_colineaires(u, v):
if u[0] * v[1] == u[1] * v[0]:
  return True
else:
  return False
```

Ce code en Python définit une fonction vecteurs_colineaires qui vérifie si deux vecteurs sont colinéaires.

- 1. **Définition de la fonction** : La fonction vecteurs_colineaires prend deux vecteurs u et v comme arguments. Un vecteur est représenté par une liste de deux éléments, par exemple, [x, y].
- 2. Condition de colinéarité : La fonction vérifie si les vecteurs u et v sont colinéaires en utilisant la condition suivante : u[0] * v[1] == u[1] * v[0]. Cette condition est dérivée de la propriété des vecteurs colinéaires, qui stipule que les vecteurs sont colinéaires si et seulement si le produit croisé de leurs composantes est nul.
- 3. Retourne le résultat : Si la condition est vraie, la fonction retourne True, sinon elle retourne False.