

知識地圖機器學習概論資料介紹與評估資料

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

探索式 特徵 模型 數據分析 前處理 集成 參數調整 選擇 工程 Exploratory Ensemble Processing Fine-tuning Model Feature Data selection Engineering Analysis

非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

機器學習概論 Introduction of Machine learning

機器學習的限制

數據分析流程

學習路徑

方案 (prototype solution)

試圖改進你的原始解決方案並 挑一個有趣的問題,並從 從中學習(如代碼優化、速度 不斷在一系列不同 解決一個簡單的問題開始 優化、演算法優化) 的問題上反覆練習 找到問題 分享 初探 練習 實戰 改進 紀錄是一個好習慣,試著紀錄 在這個題目上做一個原型解決 認真地參與

並分享你的解決方案歷程

一場比賽

首次面對資料,我們應該思考哪些問題?

Questions	Explanation	Examples
為什麼這個問題重要? (Why it is important)	A. 好玩B. 企業的核心問題C. 公眾利益/影響政策方向D. 對世界很有貢獻	A. 預測生存 (吃雞) 遊戲誰可以活得久, <u>PUBG</u> B. 用戶廣告投放, <u>ADPC</u> C. <u>停車方針</u> , <u>計程車載客優化</u> D. <u>肺炎偵測</u>
資料從何而來? (Where do data come from)	來源與品質息息相關根據不同資料源,我們可以合理的推測/ 懷疑異常資料異常的理由與頻率	資料來源如: 網站流量、購物車紀錄、網路爬蟲、格式化表單、Crowdsourcing、紙本轉電子檔
資料的型態是什麼? (What are they)	A. 結構化資料需要檢視欄位意義以及名稱 B. 非結構化資料需要思考資料轉換與標準 化方式	A. 結構化:數值,表格,etc B. 非結構化:圖像、影片、文字、音訊, etc
我們可以回答什麼問題 ? 問題:指標 (What is our goal)	每個問題都應該要可以被驗證 → 有一個可供衡量的數學評估指標 (Evaluation Metrics)	常見的衡量指標如: 分類問題:正確率, AUC, MAP,etc 迴歸問題:MAE, RMSE,etc 補充資料:衡量指標

範例一:我們應該要/可以回答什麼問題?

生存(吃雞)遊戲

- 玩家排名:平均絕對誤差 (Mean Absolute Error, MAE)
- 怎麼樣的人通常活得久/不久 (如加入遊戲的時間、開始地點、單位時間內取得的資源量,...) → 玩家在一場遊戲中的存活時間: 迴歸 (Mean Squared Error, MSE)

範例二:我們應該要/可以回答什麼問題?

廣告投放

- 不同時間點的客群樣貌如何 → 廣告點擊預測 → 預測哪些受眾會點擊或行動:
 Accuracy / Receiver Operating Curve,
 ROC
- 哪些素材很好/不好 → 廣告點擊預測 → 預 測在版面上的哪個廣告會被點擊: ROC / MAP@N (eg. MAP@5, MAP@12)

請跳出PDF至官網Sample Code&作業 開始解題

