学 院

班 级

学 号

姓 名

东北大学考试试卷 (B 闭卷)

学年第 2 学期

课程名称: 信号与系统

总分	_	Ш	四	五	六	七	八	九	+	

得分:

一. ^{得分.} 一. 选择题(每题 3 分, 共 30 分)

- 1. () $\int_{-\infty}^{+\infty} \delta(9t) f(t) d(t) = ?$ A: f(0); B: 3f(0); C: $\frac{1}{3} f(0)$; D: $\frac{1}{9} f(0)$
- 2. () 下列系统中哪个是线性时不变系统?

A:
$$y(t) = x(2t)$$
; **B:** $y(t) = \sin 6t \cdot x(t)$; **C:** $y(t) = x(\frac{t}{3})$; **D:** $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$

3. () $f(t) = e^{-(t-2)}u(t)$ 拉普拉斯变换为:

$$\mathbf{A} : \frac{e^{2}}{s+1} ; \quad \mathbf{B} : \frac{1}{s+1}e^{-2s} ; \quad \mathbf{C} : \frac{e^{-2}}{s+1} ; \quad \mathbf{D} : \frac{1}{s+1}e^{-2(s+1)}$$

$$\mathbf{4.} \quad () \quad \mathbf{L}^{-1} \left\{ \frac{5}{s(2s+3)} \right\} = ? \mathbf{A} : \frac{5}{3} (1 - e^{-\frac{1}{3}t}) \mathbf{u}(t) ; \quad \mathbf{B} : \frac{5}{2} (1 - e^{-\frac{3}{2}t}) \mathbf{u}(t) ; \quad \mathbf{C} : \frac{1}{4} e^{-t} \mathbf{u}(t) ; \quad \mathbf{D} : \frac{5}{3} (1 - e^{\frac{2}{3}t}) \mathbf{u}(t)$$

5. () 已知信号 f(t) 的付立叶变换 $F(j\omega) = \delta(\omega+10) - \delta(\omega-10)$,则 f(t)为:

A:
$$j\frac{1}{\pi}\sin(10t)$$
; B: $j\frac{1}{\pi}\cos(10t)$; C: $-j\frac{1}{\pi}\sin(10t)$; D: $-j\frac{1}{\pi}\cos(10t)$

6. () 呂知
$$f(t) \leftrightarrow F(\omega) = E\tau \operatorname{Sa}\left(\frac{\omega\tau}{2}\right)$$
, 那么 $f(2t-9) \leftrightarrow F(\omega) = ?$

A:
$$\frac{E\tau}{2}$$
Sa $\left(\frac{\omega\tau}{4}\right)e^{j\frac{9}{2}\omega}$; B: $\frac{E\tau}{4}$ Sa $\left(\frac{\omega\tau}{2}\right)e^{-j\frac{9}{4}\omega}$; C: $\frac{E\tau}{2}$ Sa $\left(\frac{\omega\tau}{4}\right)e^{-j\frac{9}{4}\omega}$; D: $\frac{E\tau}{4}$ Sa $\left(\frac{\omega\tau}{4}\right)e^{-j\frac{9}{2}\omega}$

7. () 已知某系统的H(s),唯一决定该系统单位冲激响应h(t)函数形式的是:

A: H(s) 的极点; **B:** 系统的输出信号; **C:** H(s) 的零点; **D:** 系统的输入信号

8. () 已知系统输入为e(t),输出为r(t),则系统无失真传输的条件是:

A:
$$H(j\omega) = Ke^{j\omega t_0}$$
; **B:** $H(j\omega) = K$; **C:** $H(j\omega) = KE(j\omega)e^{-j\omega t_0}$; **D:** $r(t) = Ke(t - t_0)$

9. () 离散系统函数 $H(z) = \frac{3z+1}{2z^2 - (K-3)z+1}$, 为使系统稳定,则 K 的取值范围应为

A: 0 < K < 6; **B:** -1 < K < 6; **C:** -6 < K < 0; **D:** -3 < K < 3

10. () 已知: 序列 $x_1[n] = \{3(n=0), 0, 1, 2\}, x_2[n] = \{2(n=0), 4, 1\},$ 设

卷积和 $y[n] = x_1[n] * x_2[n]$, 则 y(2) = ?A: 9; B: 5; C: 8; D; 12

得分:

二. 简答题 (每题 2 分, 共 10 分)

- 1、什么是阶跃响应?
- 2、什么是因果系统?
- 3、线性时不变系统传输信号不失真的频域条件是什么?
- 4、连续时间系统稳定的条件是什么?
- 5、连续时间信号 f(t) 的最高频率 $\omega_m = 10^5 \pi rad / s$,若对其进行采样,则奈奎斯特间隔应为多少?若从采样后的信号中恢复原信号 f(t),则所需低通滤波器的截止频率应为多少?

学	院
J	リンロ

班 级

学 号

姓 名

三. **计算题(5 分)** 已知: $X(z) = \frac{z^{-2}}{1+z^{-2}}, |z| > 1, 求 x(n) = ?$

- **四. 计算题(10 分)** 已知离散系统差分方程表示式为: $y(n) \frac{1}{5}y(n-1) = x(n)$,
 - (1) 求系统函数和单位样值响应;
 - (2) 若系统的零状态响应为 $y(n) = 5\left[\left(\frac{1}{2}\right)^n \left(\frac{1}{5}\right)^n\right]u(n)$,求激励信号 x(n)。

学 院

班 级

学 号

姓 名

五. 计算题 (15分) 已知电路如下图所示,试用拉普拉斯变换求解下列问题:

- (1) 求系统转移函数 $H(s) = \frac{Y(s)}{E(s)}$;
- (2) 求当 R 为何值时,系统不稳定;
- (3) 若e(t) = u(t), R = 5, 求系统的零状态响应 $y_{zs}(t)$ 。

