Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

Tercer prueba - 24 de octubre de 2016.

Ejercicio 1. (7 puntos)

Dado (G, *, e) un grupo de orden finito, y sea $g \in G$.

- **a.** Probar que: o(g)||G| (el orden de g divide al orden de G).
- **b.** Demostrar que $g^{|G|} = e$.
- c. Demostrar el teorema de Euler.

Sugerencia: utilizar las partes a. y b. considerando G = U(n).

Solución:

- a. (3 puntos) Lo primero a observar es que el orden del subgrupo < g > coincide con el orden del elemento o(g) (ver Proposición 3.7.9; en la prueba se podría citar la Proposición enunciándola con precisión o bien demostrarla). Como < g > es subgrupo de G entonces podemos usar el Teorema de Lagrange y obtenemos que o(g) = |< g >| divide a |G|.
- **b.** (1 punto) Sabemos que $g^{o(g)} = e$. Por el ítem anterior o(g) divide a |G|. O sea existe $k \in \mathbb{N}$ tal que k.o(g) = |G|. Entonces $g^{|G|} = g^{k.o(g)} = (g^{o(g)})^k = e^k = e$.
- c. (3 puntos) Consideramos G = U(n). Recordamos que $|U(n)| = \varphi(n)$ (función de Euler). Un entero positivo a es un elemento de U(n) si y solo si a es coprimo con n. O sea $a \in U(n)$, si y solo si $\operatorname{mcd}(a,n)=1$. Utilizando el ítem **b.** se obtiene que $a^{\varphi(n)}=1$, para todo $a \in \mathbb{N}$ tal que $\operatorname{mcd}(a,n)=1$.

Ejercicio 2. (8 puntos)

(Ejercicio 13 del Práctico 7; Examen Julio 2012)

- **a.** Probar que si $\phi: G_1 \to G_2$ es un homomorfismo de grupos finitos y $g \in G_1$, entonces $o(\phi(g)) \mid mcd(|G_1|, |G_2|)$.
- **b.** Hallar todos los homomorfismos $\phi: \mathbb{Z}_2 \to U(8)$.
- c. Hallar p sabiendo que p es primo, y existe un homomorfismo no trivial $\phi: \mathbb{Z}_{51} \to \mathbb{Z}_p$ tal que $\phi(\overline{17}) = \overline{0}$.

Solución:

a. (3 puntos) Observar primero que $o(\phi(g))$ divide a $|G_2|$, a causa del ítem a. del Ejercicio anterior.

Por otro lado si restringimos el homomorfismo ϕ al subgrupo generado por g, se obtiene el homomorfismo $\phi_{|< g>} :< g> \longrightarrow G_2$. Luego, usando el Teorema de órdenes (Teorema 3.9.8), tenemos que $o(g) = |< g>| = |\ker(\phi_{|< g>})| \times |\operatorname{Im}(\phi_{|< g>})|$.

Obsérvese que $\operatorname{Im}(\phi_{|<g>}) = <\phi(g)>$. Concluimos que $o(\phi(g)) = |<\phi(g)>| = |\operatorname{Im}(\phi_{|<g>})|$ divide a o(g). Pero, nuevamente por el ítem **a.** del Ejercicio anterior, se tiene que $o(g)||G_1|$. Como hemos probado que $o(g)||G_1|$ y que $o(g)||G_2|$, entonces $o(\phi(g)) \mid mcd(|G_1|, |G_2|)$ (Corolario 1.2.9).

- b. (2 puntos) En \mathbb{Z}_2 tenemos solamente dos elementos [0], [1]. En U(8) tenemos $\{1,3,5,7\}$, donde 3, 5 y 7 tienen orden 2. Luego, todo homomorfismo $\phi: \mathbb{Z}_2 \to U(8)$, queda definido por la imagen de [1]. Si enviamos [1] a $1 \in U(8)$, entonces obtenemos el homomorfismo trivial. Pero también podemos enviar [1] al 3, 5 o 7 en U(8) porque todos tienen orden 2. O sea, tenemos cuatro homomorfismos posibles (que son cuatro formas de ver a \mathbb{Z}_2 como subgrupo de U(8)).
- c. (3 puntos) Supongamos que $\phi(\overline{3}) = \overline{0}$. Entonces $\phi(\overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3} + \overline{3}) = \phi(\overline{3}) + \phi(\overline{3}) + \phi(\overline{3}) + \phi(\overline{3}) + \phi(\overline{3}) + \phi(\overline{3}) + \phi(\overline{3}) = \overline{0}$. O sea $\phi(\overline{18}) = \overline{0}$. Como $\phi(\overline{17}) = \overline{0}$ (por hipótesis), entonces $\phi(\overline{34}) = \overline{0}$. Luego $\phi(\overline{34} + 18) = \phi(\overline{34}) + \phi(\overline{18}) = \overline{0}$, pero por otro lado $\overline{34} + 18 = \overline{1}$. Entonces $\phi(\overline{1}) = \phi(\overline{34} + 18) = \overline{0}$. Se concluye que si $\phi(\overline{3}) = \overline{0}$ entonces ϕ es el homomorfismo trivial. Entonces, $\phi(\overline{3})$ no puede ser $\overline{0}$. Pero $\phi(\overline{3}) = 17$, luego usando el ítem **a.** de este Ejercicio, se tiene que $1 \neq o(\phi(\overline{3}))$ divide a p (primo) y a 17. Luego $o(\phi(\overline{3})) = 17$ y por lo tanto p = 17.