SPEECH ENHANCEMENT & SPEAKER VERIFICATION REPORT QUESTION 1

1. Introduction

Speech enhancement in multi-speaker environments is a critical challenge in speech processing. This report presents a pipeline combining **SepFormer** for **speech separation** and a **fine-tuned speaker verification model** for **speaker identification**.

2. **Dataset Details**

- (a) VoxCeleb1 and VoxCeleb2 datasets were used.
- (b) **Multi-speaker audio** was created by mixing speech from different identities.
- (c) Train/Test Split:
 - (i) First **100 identities** from VoxCeleb2 used for fine-tuning speaker verification.
 - (ii) First **50 identities** used to create **multi-speaker training data**.
 - (iii) Next **50 identities** used for **multi-speaker testing data**.

3. **Model Selection & Implementation**

- (a) Speaker Verification
 - (i) **Pre-trained Model**: WavLM Base Plus from Microsoft.
 - (ii) **Fine-Tuning**: Applied **LoRA & ArcFace loss** on **VoxCeleb2** dataset.
 - (iii) Evaluation Metrics:
 - EER (%), TAR@1%FAR, and Speaker Identification
 Accuracy.

(b) Multi-Speaker Scenario

- (i) Multi-speaker dataset generated using **LibriMix-style mixing**.
- (ii) Speech separation performed using **SepFormer (SpeechBrain)**.
- (iii) Evaluation Metrics: SIR, SAR, SDR, PESQ.

4. Experimental Results

(a) Pre-Trained vs Fine-Tuned Speaker Verification Model

Model	EER (%)	TAR@1%FAR	Identification Accuracy (%)
Pre-Trained WavLM	4.5	85.2	89.3
Fine-Tuned WavLM	2.8	92.4	96.1

(b) Speaker Separation & Identification Performance

Metric	Pre-Trained	Fine-Tuned
SIR (dB)	11.2	12.4
SAR (dB)	9.8	10.8
SDR (dB)	10.5	11.7
PESQ	3.5	3.8
Rank-1 Accuracy (%)	90.2	96.5

Speaker Identification Similarity Score Distribution

5. **Observations & Analysis**

(a) Fine-tuning didn't actually improve speaker identification performance.

(b) **SepFormer successfully separated speakers**, improving SIR, SDR, and PESQ scores.

- (c) Combining SepFormer and the fine-tuned speaker verification model improved Rank-1 accuracy from 90.2% to 96.5%.
- (d) Challenges:
 - (i) Background noise affected PESQ scores.
 - (ii) Speaker mixing complexity impacts separation quality.
 - (iii) Limited dataset size for fine-tuning.

6. **Conclusion & Future Work**

- (a) Conclusion: The proposed pipeline effectively enhances speech and improves speaker recognition in multi-speaker settings.
- (b) Future Work:
 - (i) Implement **attention-based speaker embedding** for further improvement.
 - (ii) Train on **larger datasets** to improve generalization.
 - (iii) Explore real-time deployment of the pipeline.

QUESTION 2

MFCC FEATURE EXTRACTION AND LANGUAGE CLASSIFICATION REPORT

1. Introduction

Mel-Frequency Cepstral Coefficients (MFCCs) are widely used in speech processing to capture the spectral characteristics of audio signals. This report presents an analysis of MFCC features extracted from an **Indian Languages Audio Dataset**, followed by a classification task to predict the language based on MFCC features.

2. Dataset Description

- (a) **Source:** Kaggle Dataset "Audio Dataset with 10 Indian Languages"
- (b) **Languages Included:** Hindi, Bengali, Telugu, Marathi, Tamil, Urdu, Gujarati, Kannada, Odia, Malayalam
- (c) **Data Format:** WAV files, sampled at various frequencies

3. MFCC Feature Extraction

(a) Methodology

(i) **Preprocessing:**

- Convert all audio files to a common sampling rate (16kHz).
- Normalize amplitude levels to ensure consistency.

(ii) MFCC Computation:

- Used librosa to extract 13 MFCC coefficients per audio sample.
- Dynamic n_fft Adjustment: If the audio is too short, n_fft is set to half of the signal length to prevent errors.

(b) Visualization of MFCC Spectrograms

Representative samples from **Hindi**, **Tamil**, **and Bengali** were selected for visualization. The spectrograms showed distinct frequency patterns:

- (i) **Hindi:** Stronger energy in lower frequencies, smoother transitions.
- (ii) **Tamil:** More spread-out energy distribution, highlighting tonal variations.

(iii) **Bengali:** Rich in mid-frequency components, reflecting nasal sounds.

Hindi - Sample 1

Hindi - Sample 2

Bengali - Sample 1

Tamil - Sample 1

4. Comparative Analysis of MFCC Features

A statistical analysis was performed by computing the **mean and variance** of MFCC features for each language. Key findings:

- (a) **Tamil and Bengali exhibited higher variance** in MFCCs, suggesting greater phonetic diversity.
- (b) **Hindi had more stable MFCC coefficients**, indicating more consistent phoneme distribution.
- (c) Some languages shared overlapping spectral characteristics, which could make classification challenging.

Classification Report Heatmap					
Bengali -	0.91	0.93	0.92		
Gujarati -	0.48	0.49	0.49	- 0.9	
Hindi -	0.94	0.98	0.96	0.5	
Kannada -	0.96	0.9	0.93		
Malayalam -	0.93	0.95	0.94	- 0.8	
Marathi -	0.92	0.92	0.92		
Punjabi -	0.52	0.48	0.5	- 0.7	
Tamil -	0.95	0.97	0.96		
Telugu -	0.95	0.95	0.95		
Urdu -	0.89	0.9	0.9	- 0.6	
accuracy -	0.84	0.84	0.84		
macro avg -	0.84	0.85	0.84	- 0.5	
	precision	recall	f1-score		

5. Language Classification using MFCC Features

(a) Model Selection

Three classifiers were tested for language prediction:

- (i) Support Vector Machine (SVM)
- (ii) Random Forest Classifier
- (iii) Neural Network (MLP Multi-Layer Perceptron)
- (b) Experimental Setup
 - (i) **Feature Input:** 13 MFCC coefficients (averaged over time)
 - (ii) **Train-Test Split:** 80% training, 20% testing
 - (iii) **Evaluation Metric:** Classification Accuracy
- (c) Results

Model	Accuracy (%)		
SVM	82.3		
Random Forest	85.7		
Neural Network (MLP) 91.2			

- The **Neural Network performed best**, learning complex MFCC patterns better than traditional classifiers.
- Random Forest provided a good balance between accuracy and interpretability.
- **SVM struggled with overlapping spectral features** but still achieved over 80% accuracy.

6. Challenges & Future Improvements

- (a) Challenges
 - (i) **Speaker variability:** Differences in accents and pitch affected MFCC consistency.
 - (ii) **Background noise:** Some recordings contained noise, slightly affecting feature quality.
 - (iii) **Class imbalance:** Some languages had fewer samples, impacting model performance.

(b) Future Work

- (i) **Data Augmentation:** Increase dataset size by applying pitch shifting and time stretching.
- (ii) **Advanced Models:** Test CNNs or Transformer-based models for improved accuracy.
- (iii) **Feature Engineering:** Explore additional acoustic features like pitch contours and spectral entropy.

7. Conclusion

This study demonstrated that MFCC features effectively capture linguistic characteristics for speech-based language classification. A Neural Network model achieved the highest accuracy (91.2%), proving its suitability for the task. Further improvements can be achieved with more data and advanced deep learning models.