Введение в искусственный интеллект. Машинное обучение Лекция 3. Вероятностный подход

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

03 марта 2020г.

План лекции

- Вероятностная постановка задач машинного обучения
- Оптимальный байесовский классификатор
- Наивный байесовский классификатор
- 🐠 Принцип максимума правдоподобия
- Перекрестная энтропия (cross entropy)

Дорожная карта Scikit-Learn¹

Дорожная карта Scikit-Learn¹

Дорожная карта Scikit-Learn¹

Определения в одномерном случае

- ullet Пусть дана некоторая вероятностная мера P
- Х случайная величина
- ullet $F(x) = F_X(x) := P(X < x)$ функция распределения
- $p(x) = p_X(x) := \frac{d}{dx} F_X(x)$ плотность распределения

Дискретный случай

$$P(x_i) = p_i$$

плотности не существует

Непрерывный случай

 $P(x_i) = 0$, но если рассмотреть окрестность, то вероятность уже не нулевая

$$p(x_i) \geq 0$$

Определения в многомерном случае

- ullet Пусть дана некоторая вероятностная мера P
- \bullet $X = (X_1, ..., X_n)$ многомерная случайная величина
- \bullet $F(x_1,...,x_n) = F_X(x) := P(X_i < x_i$ для всех i) функция распределения
- $p(x) = p_X(x) := \frac{\partial^n}{\partial x_1 \partial x_2} F_X(x)$ плотность распределения

Вероятностная постановка задач машинного обучения

Предположения

Пусть известно совместное распределение p(x,y) на $X \times Y$ Пусть задана функция потерь L(a(x),y)

Определение

Средняя величина потерь для алгоритма a(x)

$$R(a) = \iint L(a(x), y) dP(x, y) = \iint L(a(x), y) p(x, y) dxdy$$

Задача

Найти такой $a^*(x)$, что $a^*(x) = \arg\min R(a)$.

Будем называть модель a^* оптимальной и R^* — значение среднего риска.

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^2|x) = E((y - E(y|x))^2|x) + E((a(x) - E(y|x))^2|x)$$

$$E((y - a(x))^2|x) = E((y - E(y|x) + E(y|x) - a(x))^2|x) =$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

$$E((y - a(x))^{2}|x) = E((y - E(y|x) + E(y|x) - a(x))^{2}|x) =$$

$$= E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x) - 2E(y - E(y|x)|x) E(a(x) - E(y|x)|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

Доказательство

$$E((y - a(x))^{2}|x) = E((y - E(y|x) + E(y|x) - a(x))^{2}|x) =$$

$$= E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x) - 2E(y - E(y|x)|x) E(a(x) - E(y|x)|x)$$

Последнее слагаемое равно нулю, так как

$$E(y - E(y|x)|x) = E(y|x) - E(E(y|x)|x) = E(y|x) - E(y|x) = 0.$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x), y)p(x, y)dydx = \iint (a(x) - y)^2 p(x, y)dydx = \iint (a(x) - y)^2 p(x, y)dydx$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x), y)p(x, y)dydx = \iint (a(x) - y)^2 p(x, y)dydx = (a(x) - y)^2 p(y|x)dyp(x)dx = \iint E((y - a(x))^2|x)p(x)dx$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x),y)p(x,y)dydx = \iint (a(x)-y)^2p(x,y)dydx = = (a(x)-y)^2p(y|x)dyp(x)dx = \iint E((y-a(x))^2|x)p(x)dx$$
 Применяя лемму, получаем: $R(a) = \iint E((y-a(x))^2|x)p(x)dx = \iint E((y-E(y|x))^2|x)p(x)dx + \iint E((a(x)-E(y|x))^2|x)p(x)dx \ge \iint E((y-E(y|x))^2|x)p(x)dx$, что и требовалось доказать.

Принцип максимума апостериорной вероятности

Вопрос

Как разделить объекты из этих двух плотностей при известном совместном распределении p(x,y)?

Оптимальный байесовский классификатор

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x), y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y) p(x|y)$$

Оптимальный байесовский классификатор

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x), y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y) p(x|y)$$

Следствие

Оптимальное правило классификации при одинаковых штрафах за ошибку максимизирует апостериорную вероятность класса

• Распределения в реальной жизни никогда не известны

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

• Восстановить плотность распределения по входным данным

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры
- Уменьшать эмпирический риск в надежде, что средний риск тоже будет уменьшен

Метод ближайшего соседа

Теорема (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x),y)=[a(x)!=y] и непрерывной функцией $\eta(x)=P(y=1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n)=E$ $R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty)=\lim_{n\to\infty}R^{1-NN}(n)$.

Метод ближайшего соседа

Теорема (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x),y)=[a(x)!=y] и непрерывной функцией $\eta(x)=P(y=1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n)=E$ $R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty)=\lim_{n\to\infty}R^{1-NN}(n)$.

2. В аналогичных условия для многоклассовой (М классов) классификации выполнено

$$R^* \le R^{1-NN}(\infty) \le R^*(2 - \frac{M}{M-1}R^*).$$

Метод ближайшего соседа

Teopeмa (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x),y)=[a(x)!=y] и непрерывной функцией $\eta(x)=P(y=1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n)=E$ $R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty)=\lim_{n\to\infty}R^{1-NN}(n)$.

2. В аналогичных условия для многоклассовой (М классов) классификации выполнено

$$R^* \le R^{1-NN}(\infty) \le R^*(2 - \frac{M}{M-1}R^*).$$

Следствие

Если $R^* = 0$ или $R^* = \frac{1}{2}$, то $R^{1-NN}(\infty) = R^*$.

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\}$, $X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = \textit{In} \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)} = \ln \frac{p_1}{p_0} + \ln \frac{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_1)}} exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right)}{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)} = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)$$

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\},\ X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = \ln \frac{p_1}{p_0} + \frac{1}{2} \ln \frac{\det K_0}{\det K_1} + \frac{1}{2} (x - \mu_0)^T \Sigma_0^{-1} (x - \mu_0) - \frac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)$$

Квадратичный дискриминант и линейный дискриминант

Разделяющая поверхность в общем случае

$$a(x) = \frac{1}{2}x^{T}Ax + (w, x) - b = 0,$$

где
$$A = \Sigma_0^{-1} - \Sigma_1^{-1},$$
 $w = \mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1},$ $b = \ln \frac{\rho_1}{\rho_0} + \frac{1}{2} \ln \frac{\det \Sigma_0}{\det \Sigma_1} - \mu_1^T \Sigma_1^{-1} \mu_1 + \mu_0^T \Sigma_0^{-1} \mu_0.$

Разделяющая поверхность при $\Sigma_0 = \Sigma_1$

$$a(x) = (w, x) - b = 0$$

где
$$w = (\mu_1 - \mu_0)^T \Sigma^{-1},$$

 $b = \ln \frac{\rho_1}{\rho_0} - \frac{1}{2} (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_0 + \mu_1).$

Квадратичный дискриминант и линейный дискриминант²

Наивный байесовский классификатор

Предположение

Все признаки являются независимыми случайными величинами $p(x|y) = \prod\limits_i p_i(x_i|y)$

Восстановление одномерной плотности гораздо более простая задача, чем восстановление многомерной.

Экспонентные распределения

Рассмотрим задачу бинарной классификации $X \in \mathbb{R}^n, Y = \{-1, +1\}$, выборка $X^m = (x_i, y_i)_{i=1}^m$ - н.о.р. из распределения p(x, y) = p(y|x)p(x). Функции правдоподобия - экспонентные, т.е.

$$p(y|x) = \exp\left(c_y(\delta)\langle heta_y, x \rangle + b_y(\delta, heta_y) + d(x, \delta)\right)$$
, где:

- ullet $heta_{y} \in \mathbb{R}^{n}$ параметр сдвига,
- \bullet δ параметр разброса,
- ullet b_{y}, c_{y}, d произвольные скалярные функции,
- параметры d() и δ не зависят от y.

Примеры экспонентных распределений: равномерное, нормальное, гипергеометрическое, пуассоновское, биноминальное, Г-распределение и др.

Экспонентные распределения: пример

Многомерное нормальное распределение с $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ является экспонентным с:

- ullet параметр сдвига: $heta = oldsymbol{\Sigma}^{-1} \mu$,
- ullet параметр разброса: $\delta = \Sigma$.

$$N(x; \mu, \Sigma) = (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) = \exp\left(\mu^T \Sigma^{-1} x - \frac{1}{2}\mu^T \Sigma^{-1} \Sigma \Sigma^{-1} \mu - \frac{1}{2}x^T \Sigma^{-1} x - \frac{n}{2}\ln(2\pi) - \frac{1}{2}\ln|\Sigma|\right).$$
 Если взять:

- $\mu^T \Sigma^{-1} x = \langle \theta, x \rangle$
- $\bullet \ -\frac{1}{2}\mu^{T}\Sigma^{-1}\Sigma\Sigma^{-1}\mu = b(\delta,\theta),$
- $-\frac{1}{2}x^T\Sigma^{-1}x \frac{n}{2}\ln(2\pi) \frac{1}{2}\ln|\Sigma| = d(x,\delta),$

то получаем формулу из класса экспонентных распределений.

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(y|x) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), w_0 = \operatorname{In} \frac{\lambda_-}{\lambda_+};$$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Линейность байесовского классификатора

Из предыдущего материала известно, что оптимальный байесовский бинарный классификатор определяется как:

$$a(x) = \operatorname{sign}(\lambda_+ p(y = +1|x) - \lambda_- p(y = -1|x)) = \operatorname{sign}\left(\frac{p(y = +1|x)}{p(y = -1|x)} - \frac{\lambda_-}{\lambda_+}\right)$$

Теорема о линейности байесовского классификатора

Если распределения p(y|x) экспонентны, параметры $d(), \delta$ не зависят от y, и среди признаков x_1, \ldots, x_n есть константа, то байесовский классификатор линеен: $a(x) = \text{sign}(\langle w, x \rangle - w_0), w_0 = \ln \frac{\lambda_-}{\lambda_-};$

при этом апостериорные вероятности классов $p(y|x) = \sigma(\langle w, x \rangle y)$, где $\sigma(z) = \frac{1}{1+e^{-z}}$ – логистическая функция (сигмоид).

Определение логистической регрессии

Классификационная бинарная модель, в которой вероятность принадлежности к положительному классу задаётся сигмоидом от линейной функции по входу.

Доказательство теоремы о линейности байесовского классификатора

Подставим плотности классов $p(\pm|x) = \exp\left(c_{\pm}(\delta)\langle\theta_{\pm},x\rangle + b_{\pm}(\delta,\theta_{\pm}) + d(x,\delta)\right)$ в формулу байесовского классификатора (с логарифмированием): $a(x) = \mathrm{sign}\left(\ln\frac{p(+|x)}{p(-|x)} - \ln\frac{\lambda_{-}}{\lambda_{+}}\right)$.

Имеем In
$$\frac{p(+|x)}{p(-|x)} = \langle c_+(\delta)\theta_+ - c_-(\delta)\theta_-, x \rangle + b_+(\delta, \theta_+) - b_-(\delta, \theta_-).$$

Поскольку $c_+(\delta)\theta_+ - c_-(\delta)\theta_-$ и $b_+(\delta,\theta_+) - b_-(\delta,\theta_-)$ не зависят от x, а также в x есть константный признак (куда можно занести второй член), то

$$\frac{p(y=+1|x)}{p(y=-1|x)}=e^{\langle w,x\rangle}$$
 для некоторого вектора весов w .

По формуле полной вероятности p(y=+1|x)+p(y=-1|x)=1, имеем систему из двух уравнений на два неизвестных $p(\pm|x)$, решая которую, получим:

$$p(y=+1|x)=rac{1}{1+e^{-\langle w,x
angle}}, p(y=-1|x)=rac{1}{1+e^{\langle w,x
angle}}$$
. Более компактно: $p(y|x)=\sigma(\langle w,x
angle y)$.

Т.о., разделяющая поверхность линейна:

$$\lambda_+ p(y=+1|x) = \lambda_- p(y=-1|x) \Rightarrow \langle w,x
angle - \ln rac{\lambda_-}{\lambda_+} = 0$$
. Ч.т.д.

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Необходимое условие максимума

$$\frac{\partial}{\partial \theta} L(\theta, X_{train}) = 0$$

Логарифмическая функция потерь

• $L(w, X^m) = \log \prod_{i=1}^m p(x_i, y_i) \rightarrow \max_w$

Подставим в формулу выражение для логистической регрессии $p(x,y)=p(y|x)\cdot p(x)=\sigma(\langle w,x\rangle)\cdot const(w)$:

• $L(w, X^m) = \sum_{i=1}^m \log \sigma(\langle w, x_i \rangle y_i) + const(w) \rightarrow \max_w$

Максимизация L эквивалентна минимизации аппроксимированного \mathfrak{I} . R:

$$R(w, X^m) = \sum_{i=1}^m \log(1 + \exp(-\langle w, x_i \rangle y_i)) \to \min_w$$

Бинарная перекрестная энтропия

Бинарная кросс энтропия

Пусть $Y = \{0, 1\}$, $p_1 = \sigma(\langle w, x \rangle)$ и $p_0 = 1 - p_1$. Тогда функция потерь логистической регрессии будет:

$$ce = -\sum_i (y_i log(p_i) + (1-y_i) log(1-p_i))$$

Бинарная перекрестная энтропия

Бинарная кросс энтропия

Пусть $Y = \{0, 1\}$, $p_1 = \sigma(\langle w, x \rangle)$ и $p_0 = 1 - p_1$. Тогда функция потерь логистической регрессии будет:

$$ce = -\sum_i (y_i log(p_i) + (1-y_i) log(1-p_i))$$

Замечание

Однослойная нейронная сеть с функцией активации сигмоида и лосс-функцией кросс энтропия — логистическая регрессия.

Takeaways

- В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически
- Для разделения двух гауссиан достаточно квадратичной модели, а иногда и линейной
- Наивный байесовский классификатор довольно простая модель, которая работает
- Принцип максимума правдоподобия рабочий инструмент для подбора параметров, если плотность задана некоторым параметрическим семейством
- Логистическая регрессия это однослойная нейронная сеть с активацией сигмоидой (или софтмакс) и лосс-функцией кросс энтропия

Дорожная карта Scikit-Learn³

Источники

Ha основе материалов сайта http://www.machinelearning.ru.

