Chapter 6: Comparing more than two means

- 6.1 b) H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$
- blue <- subset(ttestData\$Score, ttestData\$Group == 'Blue')
 brown <- subset(ttestData\$Score, ttestData\$Group == 'Brown')
 t.test(blue, brown, var.equal = TRUE) # p-value: 0.1401</pre>
- 6.1 d) The p-value is 0.1401, which is higher than the 0.05 required to reject H_0 . H_0 is not rejected with 95% confidence. You can be 95% confident that the mean of the blue group is the same as the mean of the brown group. There is a risk of a type-II error.
- $6.1\ e)$ The content of $\frac{dummyBrown}{dummyBrown}$ is a 0 for blue eyes, and a 1 for brown eyes. This kind of variable is called a dummy variable.

```
dummyBrown <- as.numeric(ttestData$Group == 'Brown')
ttestData <- cbind(ttestData, dummyBrown)</pre>
```

- 6.1 f) ttestreg <- lm(formula = Score \sim dummyBrown, data = ttestData)
- 6.1 g) summary(ttestreg) # p-value dummyBrown: 0.14
- 6.2 a) H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_1 : $\mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$
- 6.2 b) $df_M = k 1 = 4 1 = 3$ $df_R = n k = 222 4 = 218$

6.2 c) Critical F-value: 2.646

```
df1 <- 4 - 1 # 3
df2 <- nrow(dataset8) - 4 # 218
qf(p = 0.95, df1 = df1, df2 = df2) # 2.646
```

- 6.2 d) anovaResult <- aov(formula = Score ~ Group, data = dataset8)
- 6.2 e) F-value: 2.894 p-value: 0.0362

```
summary(anovaResult)
# F-value: 2.894
# p-value: 0.0362
```

- 6.2 f) The p-value is 0.0362, which is lower than the 0.05 required to reject H_0 . The sample F-value is 2.894, which is higher than the critical F-value of 2.646. H_0 is rejected with 95% confidence. The means of the four groups are not equal to each other. There is a risk of 5% for a type-I error.
- dummyBrown <- as.numeric(dataset8\$Group == 'Brown') # Brown eyes
 dataset8 <- cbind(dataset8, dummyBrown)

 dummyBlue <- as.numeric(dataset8\$Group == 'Blue') # Blue eyes
 dataset8 <- cbind(dataset8, dummyBlue)

 dummyGreen <- as.numeric(dataset8\$Group == 'Green') # Green eyes
 dataset8 <- cbind(dataset8, dummyGreen)</pre>
- 6.3 c) F-value: 2.894 p-value: 0.0362

```
summary(anovaReg)
# F-value: 2.894
# p-value: 0.0362
# R-squared: 0.0383
```

6.3 d) Yes, the results are the same.

```
ancovaReg <- lm(formula = Score ~ dummyBrown + dummyBlue + dummyGreen + initialScore, data = dataset8)
```

6.4 b) F-value: 2.252 p-value: 0.064

```
summary(ancovaReg)
# F-value: 2.252
# p-value: 0.064
# R-squared: 0.0398
```

- 6.4 c) The p-value is 0.0645, which is higher than the 0.05 required to reject H_0 . H_0 is not rejected with 95% confidence. The means are equal to each other if you consider the initial score as a covariate. There is a 5% change of a type-I error.
- 6.4 d) The p-value is of the coefficient of initial score is 0.5539, which means that it is not significantly different from zero. This means that the initial score is not a good predictor of the actual score.
- 6.4 e) R^2 anovaReg : 0.0383 R^2 ancovaReg : 0.0398 The ancovaReg regression model explains more variation in the

outcome variable score.

- $6.4\ f)$ The groups, together with the initial score, explain 3.98% of the variance in the dependent variable score.
- 6.4 g) AIC anovaReg: 865.54 AIC ancovaReg: 867.18

```
AIC(anovaReg) # AIC: 865.54
AIC(ancovaReg) # AIC: 867.18
```

6.4 h) The AIC value of the anovaReg regression model is the lowest, which means that the anovaReg model fits the data better than the ancovaReg regression model. This means that the model without the covariate is a better model. You may have already seen this, since the covariate in the ancovaReg model was not a good predictor of the score.

- # Be sure to set your working directory when providing a relative path load('iowa.RData')
- 6.5 b) The iowa data consists of payments made by the state of Iowa. Payments are assigned to fiscal years that run from July 1 through June 30, and are numbered for the calendar year in which they end. The fiscal year is divided into fiscal periods with 1 being July and 12 being June. The fiscal year also includes a hold-over period for payments made after year end for good and services received on or before June 30.
- 6.5 c) Rows: 12279009 Columns: 22

```
nrow(iowa) # 12279009 rows
ncol(iowa) # 22 columns
```

6.5 d) Unique services: 8

```
unique(iowa$Service) # 8 unique services
table(iowa$Service)
```

- 6.5 e) Service: Human Services Rows: 6682159
- 6.5 f) Number of rows that show a difference: 2624607

```
iowa$Payment.Issue.Date <- as.Date(iowa$Payment.Issue.Date,format= '%m/%d/%Y')
iowa$Invoice.Date <- as.Date(iowa$Invoice.Date,format = '%m/%d/%Y')
length(which(iowa$Payment.Issue.Date != iowa$Invoice.Date)) # 2624607</pre>
```

- 6.5 g)
 dataDif <- data[which(iowa\$Payment.Issue.Date != data\$Invoice.Date),]</pre>
- dataDif\$dif.days <- dataDif\$Payment.Issue.Date dataDif\$Invoice.Date
 dataDif\$dif.days <- as.numeric(dataDif\$dif.days)</pre>

6.5 i) Minimum: -3651 Upper quartile: 33
Mean: 21.815 Lower quartile: 4

Maximum: 36529 Standard deviation: 89.24

```
min(dataDif$dif.days)
max(dataDif$dif.days)
mean(dataDif$dif.days)
quantile(dataDif$dif.days)
sd(dataDif$dif.days)
```

6.5 j) The default histogram does not provide much information due to the fact that R specifies a very wide x-axis.

```
hist(dataDif$dif.days)
```

- 6.5 |) dataDif2 <- dataDif[(dataDif\$dif.days > (-1)) & (dataDif\$dif.days <= 365),]</pre>
- 6.5 m) plot(dataDif2\$Amount,dataDif2\$dif.days)
- 6.5 n) Correlation: -0.0025

```
cor.test(dataDif2$Amount,dataDif2$dif.days)
```

6.5 o) The p-value of the correlation test against the value zero is 3.148e-05, which is sufficient enough to reject H_0 with 95% confidence. This implies that there is, with 95% certainty, a correlation between the the time between invoice and payment, and the amount that is paid.

6.5 p) Administration and regulation: 26.452

Agriculture and natural resources: 28.275

Capital: 35.490

Economic development: 25.815

Education: 23.868
Human services: 18.508
Justice system: 25.478

```
aggregate(dataDif2$dif.days, by = list(dataDif2$Service), FUN = mean)
```

 $6.5 \, q) \, p$ -value: < 2e-16

<u>Conclusion</u>: The p-value is lower than 0.05, so you can reject H_0 with 95% confidence. This means that the means of all expense categories are not equal. There is a 5% type change of a type-I error.

```
aovRes <- aov(dif.days ~ Service, data = dataDif2)
summary(aovRes)</pre>
```

 $6.5\ r)$ All means, except for the means of the justice system expenses and the economic development expenses, show a p-value below 5% and can thus be regarded to differ from each other.

```
tukeyRes <- TukeyHSD(aovRes)
```

 $6.5\ s)$ An ANOVA assumes the dependent variable to be continuous. Some examples of appropriate analyses could be:

```
# Poisson regression and then interpret the predictors
poissonReg <- glm(dif.days ~ Expense.Category, family = poisson, data = dataDif2)
summary(poissonReg)

# Kruskal Wallis test and Dunn test to compare individual groups
kruskRes <- kruskal.test(dif.days ~ Service, data = dataDif2)
# install.packages('FSA'); library(FSA)
dunn.res <-dunnTest(dataDif2$dif.days, dataDif2$Service)</pre>
```

6.5 t) It is a bad idea, the p-value is affected by the number of samples. The higher the sample, the lower the p-value gets. In other words, p-values lose their meaning quite quickly (unless they are non-significant).