P	NOM	PUNTS	J	G	E	P	F	C
1	JOVENTUT TEIA CLUB FUTBOL B	49	17	16	1	0	146	26
2	ROCAFONDA CLUB FUTBOL A	45	17	1 5	0	2	118	22
3	PREMIA DALT, C.D. C	42	16	14	0	2	109	30

... una liga cualquiera ...

- 7 jugadores. 60 x 40 m.
- 3 puntos (victoria) / 1 punto (empate)
- 60' (4 x 15')

Info

- Descripción
- Limpieza
- 3. Transformación

Preparación datos

```
404 non-null int64
404 non-null int64

total 14 columns

equipos.duplicated().sum()
```

0

```
equipos['puntos'].describe().round(3)
```

```
25%50%1.46775%2.200
```

	mean	std
gan_loc	0.494	0.307
emp_loc	0.056	0.090
per_loc	0.449	0.307

Descripción

Descripción

	nombre	dif_gol
284	ALMEDA, C.D. A	9.50
117	SABADELLENCA, UE. B	9.21
238	SINERA UNITED FUTBOL CLUB ASS. C	8.73

```
for l in columnas_loc:
    equipos[l] = equipos[l] / equipos['jug_loc']

for v in columnas_vis:
    equipos[v] = equipos[v] / equipos['jug_vis']

for g in columnas_gol:
    equipos[g] = equipos[g] / (equipos['jug_loc'] + equipos['jug_vis'])
```

Transformación

 $gan_loc: No gaussiana - p = 0.000$

Outliers & Shapiro

Tipo de Dato	Condición	Transformación Recomendada
Datos con Distribución Gaussiana	-	StandardScaler
Datos con Distribución No Gaussiana	Sin Outliers	MinMaxScaler
Datos con Distribución No Gaussiana	Con Outliers	RobustScaler

Transformación

- 1. Predecir posición.
 - 2. Agrupar.

	Adjusted R-Squared	R-Squared
Model		
HuberRegressor	0.86	0.90
OrthogonalMatchingPursuitCV	0.86	0.90
RANSACRegressor	0.86	0.90
LinearRegression	0.86	0.90

Modelo

¿Colinealidad?

```
VIF
0 const 8.134313
1 gan_loc 7.055540
2 gan_vis 6.314240
3 dif_gol 15.836779
```

¿Colinealidad?

```
X_train_esc.drop(['dif_gol','per_loc', 'per_vis'], axis=1, inplace=True)
```

X train esc['gan'] = (X train esc['gan loc'] + X train esc['gan vis'])/2

```
X_min_train_esc = X_train_esc.drop(['emp_loc','emp_vis'], axis=1)
```

Transformación 2

X_min_train_esc = X_train_esc[['gan']]

Regresión lineal, 1 variable independiente, R2: 0.897

Rendimiento

from sklearn.model_selection import cross_val_score

[0.90810109 0.90824179 0.93279942 0.9093283 0.89677121]

+ Rendimiento

- 1. Predecir posición.
- Agrupar.

Dispersión

Clústers

	Posicion	Cluster	Conteo
4	5	0	29
5	6	1	29
6	7	1	29
7	8	1	29
8	9	1	29
9	10	1	29
10	11	2	29

Clústers

score = silhouette_score(data, kmeans.labels_).round(3)

0.629

Como conclusión, volvemos al principio. Hemos visto cómo prescindiendo de prácticamente todas las variables, incluyendo los puntos por partido, y solamente utilizando la media de victorias de los equipos, como local y como visitante, no sólo obtener la clasificación de cada equipo de podemos bastante precisa utilizando un sencillo modelo de regresión lineal, sino que además podemos agruparlos en nodos que los asimilan, de manera que podemos reconocer las diferencias de puntos por partido o incluso goles en función del nodo al que pertenece cada equipo, y esto utilizando un algoritmo con un rendimiento Silhouette de sólo un 60%. Con todo ello podemos ver la potencia de la estadística y el machine learning en la predicción de tendencias y patrones, y hasta qué punto podemos llegar a reducir el uso de datos, con lo que ello implica en mejoras de eficiencia. Ahora sí, fin. Gracias por la atención.

Data Science

IT Academy 29/02/2024

Agradecimientos:

- Lucía Álvarez, profesora.
- Compis, por los buenos ratos y las complicidades ;)

Happy hour for ever!

