CHAPITRE 3 : MODELE ET ALGEBRE RELATIONNELS

Agrégation :

• Abstraction consistant à regrouper des objets composés d'une concaténation d'objets composants.

Association :

Lien logique entre entités dont le type est défini par un verbe et une liste éventuelle de propriétés.

• Entité:

• Modèle d'objet identifié du monde réel dont le type est défini par un nom et une liste de propriétés.

• Attribut :

• Propriété d'une entité ou d'une association caractérisée par un nom et un type élémentaire.

Exemple :

- Chaque <u>étudiant</u> peut <u>avoir</u> plusieurs notes dans chaque <u>matière</u>.
 - Entités : Étudiant et Matière
 - Association : Avoir
 - Attributs :
 - CEN, nom, prénom, classe, adresse d'un étudiant
 - Code, nom, professeur, Coefficient d'une matière
 - Contrôle continu et la note

- Modèle conceptuel de données
 - Les tables
 - Les propriétés
 - Les relations entre les tables
 - Les cardinalités
 - Règles de passage de MCD au MLD

- Objectifs du modèle relationnel
- Présentation des principaux concepts relatifs au modèle relationnel
- > Fonctionnalités des SGBDR
- Étude de langage de définition de données
- Etude de langage de contrôle de données
- Étude de langage de manipulation de données
- > Outils de développement

Objectifs:

- > Haut degré d'indépendance des programmes et de la représentation interne de données
- Fournir une base solide pour traiter les problèmes de cohérence et de redondance des données
- Permettre le développement des LMD non procéduraux
- > Etre un modèle extensible
- Devenir un standard pour les bases de données

Principe

 Modèle relationnel consiste à représenter les données sous forme de relations

· Basé sur la théorie des ensembles

Structures de données de base

==> Quatre notions de base

- » Domaine
- » Relation
- » Attribut
- » Tuple

Domaine

Définition

Un ensemble dans lequel les données prennent des valeurs.

Types de domaines

- Domaine en extension
 - » Donnant la liste des valeurs composantes
- Domaine en intention
 - » Définissant une propriété caractéristique des valeurs

Relation

* Définition

C'est le produit cartésien d'une liste de domaines caractérisée par un nom.

* Types de représentations

- Sous forme de vecteurs
- Sous forme d'un tableau a deux dimensions
 - » Ligne ==> Vecteur
 - » Colonne ==> Domaine de produit cartésien

Attribut, Tuple

Définitions

• Un attribut est une colonne d'une relation caractérisée par un nom

• Un tuple est une ligne d'une relation correspondant à un enregistrement.

Règles d'intégrité structurelles

- Quatre règles principales
 - > Unicité de la clé
 - > Contraintes de références
 - > Valeurs nulles et clés
 - > Contraintes de domaine.

Unicité de la clé

Elle permet de préciser les attributs clés d'une relation.

C'est-à-dire un groupe d'attributs non nul dont la valeur permet de déterminer un tuple unique dans une relation (Table).

- Contrainte référentielle

Elle spécifie que toute valeur d'un groupe de colonne d'une table doit figurer comme valeur de clé dans une autre table. Une telle contrainte représente une association obligatoire entre deux tables, la table référencée correspondant à l'entité, la table référençante à l'association.

- Contrainte de domaine

Ce type de contrainte permet de restreindre la plage de valeurs d'un domaine.

- Contrainte de non nullité

Une telle contrainte spécifie que la valeur d'un attribut doit être enregistrée.

Règles d'intégrité non structurelles

- Cinq règles principales
 - > Dépendances fonctionnelles.
 - Dépendance multivaluées
 - > Dépendance d'inclusion
 - > Contraintes temporelles
 - > Contraintes équationnelles

Dépendances fonctionnelles.

Exprime l'existence d'une fonction permettant de déterminer la valeur d'un groupe d'attributs à partir de celle d'un autre groupe.

Dépendances multivaluées.

C'est une généralisation de DF : pour toute valeur de la source il existe un ensemble des valeur de but, et ceci indépendamment des autres attributs de la même relation.

Dépendances d'inclusion.

Elles permettent de spécifier que les valeurs d'un groupe de colonnes d'une table doivent rester incluses dans celles d'un groupe de colonnes d'une autre table.

Dépendances temporelles.

Elle font intervenir le temps. Elles permettent de comparer l'ancienne valeur d'un attribut à la nouvelle après la mise à jour.

Dépendances équationnelles.

Il s'agit de comparer deux expressions arithmétiques calculées à partir de données de la base et de forcer l'égalité ou l'inégalité. La dimension temporelle peut être prise en compte en faisant intervenir des données avant et après la mise à jour.

Algèbre relationnelle

- Opérations ensemblistes
 - » Union
 - » Différence
 - » Produit cartésien
- Opérations spécifiques
 - » Projection
 - » Restriction
 - » Jointure

Algèbre relationnelle

- Opérations Dérivées
 - » Intersection
 - » Complément
 - » Éclatement
 - » Jointure
 - » Jointure externe

Ensembliste: Union

Notion:

Consiste à construire une relation R3 de même schéma que les relations R1 et R2, dont les tuples sont ceux appartenant à R1 ou R2.

Notation:

soit R3 l'union de R1 et R2, alors:

R3 = Union(R1,R2).

Ensembliste: Union

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A110	RAM	600

Liste Article: L2

Cod_Art	Nom_Art	PU DH
A212	IMP	12000
A23	CD	10
A220	RAM	600

Union(L1,L2) =

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A110	RAM	600
A212	IMP	12000
A220	RAM	600

Ensembliste: Différence

Notion:

Consiste à construire une relation R3 de même schéma que les relations R1 et R2, dont les tuples sont ceux appartenant à R1 et n'appartenant pas à R2.

Notation:

soit R3 la différence de R1 et R2, alors:

R3 = R1 - R2.

Ensembliste: Union

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A110	RAM	600

Cod_Art	Nom_Art	PU DH
A212	IMP	12000
A23	CD	10
A220	RAM	600

$$(L1 - L2) =$$

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A110	RAM	600

Ensembliste : Produit cartésien

Notion:

Consiste à construire une relation R3, ayant pour schéma la concaténation de ceux des relations R1 et R2 et pour tuples toutes les combinaisons des tuples des relations R1 et R2.

Notation:

soit R3 le produit cartésien de R1 et R2, alors R3 = R1 * R2.

Ensembliste: Produit cartésien

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A110	RAM	600

Liste Article: L2

Cod_Art	Nom_Art	PU DH
A212	IMP	12000
A23	CD	10

	Coa_Art	Nom_Art	PUDH	Coa_Art	Nom_Art	PUDH
	A102	PC	12000	A212	IMP	12000
	A102	PC	12000	A23	CD	10
(L1 * L2) =	A23	CD	10	A212	IMP	12000
	A23	CD	10	A23	CD	10
	A110	RAM	600	A212	IMP	12000
	A110	RAM	600	A23	CD	10

Spécifique: Projection

Notion:

permet de supprimer les attributs d'une relation non mentionnés en éliminant les tuples en double.

Notation:

R = Project(Relation, Attribut1,..., Attributn).

Ensembliste: Projection

Exemple.

Liste Article: L

Cod_Art	Nom_Art	Catégorie	Fournisseur	PU DH
A102	PC	Info	F1	12000
A111	Encre	Cons	F2	120
A233	Scanner	Info	F2	1000
A253	CD	Cons	F1	10
A130	IMP	Info	F2	600
A310	RAM	Cons	F1	600

projection(L, Catégorie, Fournisseur)

Catégorie	Fournisseur
Info	F1
Cons	F2
Info	F2
Cons	F1

. I uc

ムノ

Spécifique: Restriction

Notion:

Produit une relation de même schéma en enlevant des tuples qui vérifient une contrainte.

Notation:

R = Restrict (Relation, Condition).

Ensembliste: Restriction

Exemple.

Liste Article: L

Cod_Art	Nom_Art	Catégorie	Fournisseur	PU DH
A102	PC	Info	F1	12000
A111	Encre	Cons	F2	120
A233	Scanner	Info	F2	1000
A253	CD	Cons	F1	10
A130	IMP	Info	F2	600
A310	RAM	Cons	F1	400

Restrict(L, PU>500)

Cod_Art	Nom_Art	Catégorie	Fournisseur	PU DH
A102	PC	Info	F1	12000
A233	Scanner	Info	F2	1000
A130	IMP	Info	F2	600

Spécifique : Jointure

Notion:

Permet de composer deux relations à l'aide d'un critère de jointure de rapprochement, sur les tuples des deux relations.

Notation:

R = Join(Relation 1, Relation 2, Condition).

Ensembliste: Jointure

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A230	CD	10
A110	RAM	600

Liste Article: L2

Code_Art	Qte_Stock	Cod_For
A230	100	F1
A110	20	F3
A230	150	F6

Join(L1,L2,L1.Cod_Art = L2.Cod_Art)

Cod_Art	Nom_Art	PU DH	Code_Art	Qte_Stoc	Cod_For
				k	
A230	CD	10	A230	100	F1
A230	CD	10	A230	150	F6
A110	RAM	600	A110	20	F3

Ensembliste: Intersection

Notion:

Consiste à construire une relation R3 de même schéma de deux relation R1 et R2, dont les tuples de R3 sont ceux appartenant à R1 et R2.

Notation:

soit R3 l'intersection de R1 et R2, alors:

R3 = Intersect(R1,R2).

Ensembliste: Intersection

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A110	RAM	600

Liste Article: L2

Cod_Art	Nom_Art	PU DH
A212	IMP	12000
A23	CD	10
A102	PC	12000

Intersect(L1,L2) =

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10

Ensembliste: Division

Notion:

Opération consistant à construire le quotient D(A1,A2,...,Ap,Ap+1,...An) par la relation d(Ap+1,...,An) comme la relation Q(A1,...,Ap) dont les tuples sont ceux qui concaténés à tout tuple de d donnent un tuple de D.

Notation:

soit R3 la division de R1 par R2, alors: R3 = Division(R1,R2).

Ensembliste: Division

Exemple.

Liste Article: L1

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A23	CD	10
A23	PC	12000
A212	RAM	600
A102	CD	10
A110	RAM	600

Liste Article: L2

Cod_Art
A102
A23

Division(L1,L2) =

Nom_Art	PU DH
PC	12000
CD	10

Spécifique : Éclatement

Notion:

Opération consistant à créer deux relations R1, R2 à partir d'une relation R et d'une condition, la première contenant les tuples de R vérifiant la condition et la deuxième ceux ne la vérifiant pas.

Notation:

(R1,R2) = Éclater(R,Condition).

Ensembliste : Éclatement

Exemple.

Liste Article: L

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A111	Encre	120
A233	Scanner	1000
A253	CD	10
A130	IMP	600
A310	RAM	400

L1 [(L1,L2) =
$$\acute{E}$$
clater(L, PU>=600)] L2

Cod_Art	Nom_Art	PU DH
A102	PC	12000
A233	Scanner	1000
A130	IMP	600

Cod_Art	Nom_Art	PU DH	
A111	Encre	120	
A253	CD	10	
A310	RAM	400	

Spécifique : Jointure Externe

Notion:

Opération générant une relation R3 à partire de deux relations R1 et R2 par la jointure et ajout des tuples de R1 et R2 ne participant à la jointure avec des valeurs nulles pour des attributs de l'autres relation

Notation:

R = JoinE(Relation1, Relation2, Condition).

Ensembliste: Jointure

Exemple.

Liste Article · L1

<u> </u>					
Cod_Art	Nom_Art	PU DH			
A102	PC	12000			
A230	CD	10			
A110	RAM	600			

Liste Article: L2

Code_Art	Qte_Stock	Cod_For	
A230	100	F1	
A110	20	F3	
A230	150	F6	
A300	300	F8	

 $Join(L1,L2,L1.Cod_Art = L2.Cod_Art)$

Cod_Art	Nom_Art	PU DH	Code_Art	Qte_Stoc	Cod_For
				K	
A230	CD	10	A230	100	F1
A230	CD	10	A230	150	F6
A110	RAM	600	A110	20	F3
A102	PC	12000	-	-	-
-	-	-	A300	300	F8