AGNesF: Adaptive Gaussian Nested Filter for Parameter Estimation and State Tracking in Dynamical Systems

Background: nested methodology

Goal: Computation of the joint posterior pdf

$$p(\boldsymbol{\theta}, \boldsymbol{x}_t | \boldsymbol{y}_{1:t}) = p(\boldsymbol{x}_t | \boldsymbol{\theta}, \boldsymbol{y}_{1:t}) \times p(\boldsymbol{\theta} | \boldsymbol{y}_{1:t})$$
bottom layer top layer

- ullet heta are static parameters
- $ullet oldsymbol{x}_t$ is a dynamic state variable

Structure:

Top layer: θ estimation.

- Use of sampling filtering techniques,
- e.g., SMC, SQMC, UKF, QKF.
- $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$ is represented with $\{\boldsymbol{\theta}_t^i, w_t^i\}_{i=1}^{N_{\theta}}$.

Bottom layer: x tracking.

- Use of any filtering technique,
 e.g., SMC, EKF, UKF.
- Implementation of N_{θ} filters (one for each $\boldsymbol{\theta}_{t}^{i}$).

Key point: likelihood computation.

• $p(\mathbf{y}_t|\mathbf{y}_{t-1}, \boldsymbol{\theta})$ needs to be computed in the bottom layer.

Objective and approach

Objective:

• Reduce computational complexity of nested Gaussian filters without compromising performance.

Approach:

- Reduce the number of points, N_{θ} , when parameters are close to convergence.
- Decision based on an adaptive rule.

The statistic ρ_t

The statistic, ρ_t :

$$\rho_t = \frac{1}{\sum_{n=1}^{N_{\theta,t}} (\bar{s}_t^n)^2} \qquad \text{with} \qquad \bar{s}_t^n = \frac{p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \boldsymbol{\theta}_t^n)}{\sum_{n=1}^{N_{\theta,t}} p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \boldsymbol{\theta}_t^n)}$$

- It takes its minimum value in $\rho_t=1$, when only one $p(\boldsymbol{y}_t|\boldsymbol{y}_{1:t-1},\boldsymbol{\theta}_t^n)$, is different from zero.
- It takes its maximum value in $\rho_t = N_{\theta,t}$, when for all the evaluations $p(\boldsymbol{y}_t|\boldsymbol{y}_{1:t-1},\boldsymbol{\theta}_t^n)$ are equal.

Adaptive rule

Fixed N_{θ} . Using a QKF in the top layer, N_{θ} is computed as

$$N_{\theta} = \alpha^{d_{\theta}}$$
.

Adaptive $N_{\theta,t}$. We change α over time:

• If
$$\frac{\rho_t}{N_{\theta,t}} < 1 - \epsilon$$
,

$$N_{\theta,t+1} = \alpha_{t+1}^{d_{\theta}}$$
 with $\alpha_{t+1} = \max(\alpha_t - 1, \alpha_{\min})$.

• Otherwise, $N_{\theta,t+1} = N_{\theta,t}$.

Numerical Experiments

- Synthetic data of Lorenz 63 model.
- Estimation of \boldsymbol{x}_t and $\boldsymbol{\theta} = [S, R, B]^{\top}$.
- Comparison of:
 - -AGNesF with $\alpha_0 = 4$ and $\alpha_{\min} = 2$.
 - Nested Gaussian filter (NGF) with fixed α and N_{θ} .

More details

Pérez-Vieites, S., & Elvira, V. (2023). Adaptive Gaussian nested filter for parameter estimation and state tracking in dynamical systems. In ICASSP 2023.

