Devoir Maison n°6.

Le problème 1 est obligatoire et le problème 2 est pour ceux et celles qui veulent chercher un peu plus !

Probléme 1:

Partie A: Un résultat bien utile!

Définition : Deux suites (u_n) et (v_n) sont dites adjacentes si :

- la suite (u_n) est croissante,
- la suite (v_n) est décroissante,
- $\lim_{n \to +\infty} v_n u_n = \mathbf{0}.$
- 1. On considère deux suites adjacentes (u_n) et (v_n) définies sur \mathbb{N} Soit la suite (t_n) définie sur \mathbb{N} par $t_n = v_n u_n$. Montrer que la suite (t_n) est décroissante.
- 2. En déduire que, pour tout entier naturel n, $v_n \ge u_n$.
- 3. Démontrer que les suites (u_n) et (v_n) sont convergentes et justifier qu'elles ont la même limite.

Théorème : Soient (u_n) et (v_n) deux suites adjacentes. Les suites (u_n) et (v_n) sont convergentes et admettent la même limite.

Partie B: Mise en application.

1. Les suites (u_n) et (v_n) sont définies pour tout entier naturel n par :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
$$v_n = u_n + \frac{1}{n}.$$

Montrer que les suites (u_n) et (v_n) sont convergentes et admettent la même limite.

2. Soient (u_n) et (v_n) deux suites définies par $u_0 = -1$ et $v_0 = 2$, et pour tout entier naturel n:

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 et $v_{n+1} = \frac{u_n + 4v_n}{5}$.

- a. Démontrer par récurrence que, pour tout entier naturel n, $u_n < v_n$.
- b. Démontrer que les suites (u_n) et (v_n) sont adjacentes.
- c. Conclure que les suites (u_n) et (v_n) admettent la même limite.

Problème 2 (Approfondissement):

Le but de cet exercice est de déterminer les fonctions f continues sur \mathbb{R} vérifiant la propriété suivante, appelée équation fonctionnelle :

Pour tous réels x, y, f(x+y)=f(x)+f(y).

Partie A: Analyse.

Soit g une fonction vérifiant les hypothèses précédentes.

- 1. Démontrer que g(0)=0 et que g est impaire.
- 2. a. Démontrer que, pour tout entier nature $n: g(n) = n\alpha$, où $\alpha = g(1)$.
 - b. En déduire que, pour tout entier relatif k, $g(k)=k\alpha$.

- 3. Déduire de la question 2 et de l'équation fonctionnelle que, pour tout nombre rationnel q, $g(q)=q\alpha$.
- 4. Dans cette question, on admet que, pour tout réel x, il existe une suite de nombre rationnels convergeant vers x.

On dit alors que Qest dense dans IR

Soit $x_0 \in \mathbb{R}$ et (u_n) une suite de nombres rationnels convergeant vers x_0 .

- a. Justifier que $\lim_{n\to+\infty} g(u_n) = g(x_0)$ b. En déduire que $g(x_0) = \alpha x_0$.
- c. En déduire la nature de la fonction g.

Partie B: Synthèse.

Démontrer que les fonctions linéaires vérifient l'équation fonctionnelle f(x+y)=f(x)+f(y), puis conclure.