

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 4

Архитектура систем хранения данных

Содержание лекции

- Основные компоненты
- Управление кешированием
- Защита от сбоев
- Классы СХД

Интеллектуальные системы хранения данных

- Простые СХД (диски, RAID массивы) не обеспечивают возрастающие требования
 - доступности
 - быстродействия
 - надежности
 - масштабируемости
- Интеллектуальные СХД оптимизируют операции ввода-вывода, обеспечивая вышеперечисленные требования

Интеллектуальные СХД - свойства

- Оптимизация IO за счет большой кешпамяти, множественных каналов передачи данных
- Наличие операционной среды
 - управление кеш-памятью
 - множественный доступ хостов
 - управление ресурсами (дисками, каналами,..)
- Поддержка виртуализации, иерархического хранения, ILM, ...

Интеллектуальные СХД - компоненты

Intelligent Storage System

Front-end

- Интерфейс к хосту (FC, iSCSI, FCoE, TCP/IP)
- Контроль доступа
- Контроль скорости
- Оптимизация очереди комманд

порты контроллеры

Оптимизация очереди IO

Способы оптимизации

- Время поиска оптимизация радиального движения головок чтения
- Время доступа оптимизация времени поиска и ожидания нужного сектора

Кэш-память

Запись данных

Чтение данных

Коэффициент «попаданий» чтения

Read Hit Ratio =
$$\frac{\text{Число попаданий при чтении}}{\text{Общее число запросов на чтение}}$$

Чтение «про запас» - с дисков читаются последующие блоки в надежде, что они потребуются в ближайших запросах

- фиксированный размер
- динамический размер, в зависимости от скорости запросов и размера запросов

Управление кэш-памятью

- LRU least recently used замещение давно неиспользованных страниц
- MRU most recently used замещение последних использованных страниц

Освобождение кэш-памяти

- Кэш не «резиновый», нужен сброс страниц
- Watermarks low (LWM), high(HWM)

Защита кэш-памяти

- Зеркалирование (Cache Mirroring)
 - две независимых карты памяти
 - необходима синхронизация
 - дублируются только данные на запись
- Резервирование (Cache Vaulting)
 - защита от перебоев в питании
 - кэш-память копируется на специальный диск
 - При восстановлении питания vault копируется в кэш-память

Кэширование на стороне хоста

Back-end

- Интерфейс к дискам
- Различные уровни RAID
- Балансировка нагрузки
- Несколько контроллеров и множество портов для повышения доступности

Дисковый массив

Логические диски

LUN Masking

- Наложение маски на LUN
 - управление доступом
 - LUN назначается одному хосту (за исключением серверной виртуализации и резервного копирования)

MetaLUN

конкатенация

сегментирование

Thin LUN (Virtual Provisioning)

Thin vs Thick

Классы СХД

CLARiiON (mid-range)

Simmetrix (High-end)

Direct Matrix

Спасибо!

##