1. Use Dijkstra's algorithm in table form to find the shortest path from A to C in the weighted graph below.

- AEDC 7
- 2. Use Dijkstra's algorithm in table form to find the shortest path from S to T in the weighted graph below.

3. Draw the weighted graph corresponding to the table of weights below. Now grow a shortest path spanning tree rooted at A to find the shortest path from A to each of the other vertices.

	A	В	\mathbf{C}	D	\mathbf{E}
A	-	50	40	25	10
В	50	-	20	90	25
\mathbf{C}	40	20	-	10	25
D	25	90	10	_	55
Ε	10	25	25	55	-

A

B

C

E

A O

20

40

V5

10

E

35

35

10

D

25

C

35

B

35

To E

ЭA

10

Ī_o D

AD

N

To C

AEC

35

To B:

AEB

35