Binocular Stereo, Part 2 Multiview Stereo Epipolar Geometry Active Stereo with Structured Light Photometric Stereo

Lecture by Margrit Betke, CS 585, April 28, 2020

Camera Transformation Problems

- 1. Interior Orientation = Camera Calibration = Intrinsic Calibration:
 - Simple version: Find focal length f and principal point p (= point where optical axis intersects image plane)
 - Better: Correct for lens distortion, check if angle between x & y axes is 90°
- 2. Exterior Orientation = Hand-Eye Calibration in Robotics: Find Center of Projection (CoP) of camera in world coordinate system
- 3. Absolute Orientation = Alignment of 2 Cameras
 Find relationship between cameras. 3D coordinates of points are known
- 4. Relative Orientation = Alignment of 2 Cameras
 Find relationship between cameras. 3D coordinates not known, only rays known

Goal: Recovery of position and orientation of one imaging system relative to another from correspondences between rays

Given: 2D coordinates of image points of same world point

Use perspective projection equations:

$$x_{left}/f_{left} = X_{left}/Z_{left}$$
 $y_{left}/f_{left} = Y_{left}/Z_{left}$
 $x_{right}/f_{right} = X_{right}/Z_{right}$ $y_{right}/f_{right} = Y_{right}/Z_{right}$

Transformation equation: $R \mathbf{r}_{left} + \mathbf{r}_0 = \mathbf{r}_{right}$ $R = rotation matrix, \mathbf{r}_0 = translation$

Transformation equation: $R r_{left} + r_0 = r_{right}$

Unknown: Rotation matrix R, translation \mathbf{r}_0 , Z coordinates of \mathbf{r}_{left} , \mathbf{r}_{right}

$$R r_{left} + r_0 = r_{right}$$

is equivalent to:

$$r_{11} X_{left} + r_{12} Y_{left} + r_{13} Z_{left} + r_{14} = X_{right}$$

 $r_{21} X_{left} + r_{22} Y_{left} + r_{23} Z_{left} + r_{24} = Y_{right}$
 $r_{31} X_{left} + r_{32} Y_{left} + r_{33} Z_{left} + r_{34} = Z_{right}$

$$x_{left}/f = X_{left}/Z_{left}$$
 $y_{left}/f = Y_{left}/Z_{left}$
 $x_{right}/f = X_{right}/Z_{right}$ $y_{right}/f = Y_{right}/Z_{right}$

$$\begin{split} r_{11} \, x_{\text{left}} \, Z_{\text{left}} / f + r_{12} \, y_{\text{left}} Z_{\text{left}} / f + r_{13} \, Z_{\text{left}} + r_{14} &= x_{\text{right}} \, Z_{\text{right}} / f \\ r_{21} \, x_{\text{left}} \, Z_{\text{left}} / f + r_{22} \, y_{\text{left}} \, Z_{\text{left}} / f + r_{23} \, Z_{\text{left}} + r_{24} &= y_{\text{right}} \, Z_{\text{right}} / f \\ r_{31} \, x_{\text{left}} \, Z_{\text{left}} / f + r_{32} \, y_{\text{left}} \, Z_{\text{left}} / f + r_{33} \, Z_{\text{left}} + r_{34} &= Z_{\text{right}} \end{split}$$

Multiply by f/ Z_{left}

$$R r_{left} + r_0 = r_{right}$$

is equivalent to:

$$\begin{split} r_{11} \, x_{\text{left}} + r_{12} \, y_{\text{left}} + r_{13} \, f + r_{14} \, f / \, Z_{\text{left}} &= \, x_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{21} \, x_{\text{left}} + r_{22} \, y_{\text{left}} + r_{23} \, f + r_{24} \, f / Z_{\text{left}} &= \, y_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{31} \, x_{\text{left}} + r_{32} \, y_{\text{left}} + r_{33} \, f + r_{34} \, f / Z_{\text{left}} &= \, Z_{\text{right}} / Z_{\text{left}} \end{split}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) => 3 equations with 14 unknowns r_{11} , r_{12} , ..., r_{34} , and Z_{right} , Z_{left}

$$R \mathbf{r}_{left} + \mathbf{r}_0 = \mathbf{r}_{right}$$

$$\begin{array}{l} r_{11}\,x_{\rm left} + r_{12}\,\,y_{\rm left} + r_{13}\,\,f + r_{14}\,\,f/\,\,Z_{\rm left} = \,\,x_{\rm right}\,Z_{\rm right}/Z_{\rm left} \\ r_{21}\,x_{\rm left} + r_{22}\,\,y_{\rm left} + r_{23}\,\,f + r_{24}\,\,f/Z_{\rm left} = \,\,y_{\rm right}\,Z_{\rm right}/Z_{\rm left} \\ r_{31}\,x_{\rm left} + r_{32}\,\,y_{\rm left} + r_{33}\,\,f + r_{34}\,\,f/Z_{\rm left} = \,\,Z_{\rm right}/Z_{\rm left} \end{array}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) => 3 equations with 12 unknown r_{11} , r_{12} , ..., r_{34} and 2 unknown Z_{right} , Z_{left}

Trick: To solve for 14 unknowns:

Use n measurements => 3n equations

Find additional equations

$$R \mathbf{r}_{left} + \mathbf{r}_0 = \mathbf{r}_{right}$$

$$\begin{array}{l} r_{11}\,x_{\rm left} + r_{12}\,\,y_{\rm left} + r_{13}\,\,f + r_{14}\,\,f/\,\,Z_{\rm left} = \,\,x_{\rm right}\,Z_{\rm right}/Z_{\rm left} \\ r_{21}\,x_{\rm left} + r_{22}\,\,y_{\rm left} + r_{23}\,\,f + r_{24}\,\,f/Z_{\rm left} = \,\,y_{\rm right}\,Z_{\rm right}/Z_{\rm left} \\ r_{31}\,x_{\rm left} + r_{32}\,\,y_{\rm left} + r_{33}\,\,f + r_{34}\,\,f/Z_{\rm left} = \,\,Z_{\rm right}/Z_{\rm left} \end{array}$$

One measurement pair (x_{left}, y_{left}) and $(x_{right}, y_{right}) => 3$ equations with 12 unknown r_{11} , r_{12} , ..., r_{34} , and 2 unknown Z_{right} , Z_{left}

One extra equation:

Scale factor ambiguity \mathbf{r}_0 , \mathbf{Z}_{right} , \mathbf{Z}_{left}

$$\Leftrightarrow$$
 k**r**₀, kZ_{right}, kZ_{left}

Force \mathbf{r}_0 to be unit vector

$$=> |r_0|=1$$

$$R \mathbf{r}_{left} + \mathbf{r}_0 = \mathbf{r}_{right}$$

$$\begin{array}{l} r_{11} \, x_{\rm left} + r_{12} \, \, y_{\rm left} + r_{13} \, \, f + r_{14} \, \, f / \, Z_{\rm left} = \, x_{\rm right} \, Z_{\rm right} / Z_{\rm left} \\ r_{21} \, x_{\rm left} + r_{22} \, \, y_{\rm left} + r_{23} \, \, f + r_{24} \, \, \, f / Z_{\rm left} = \, y_{\rm right} \, Z_{\rm right} / Z_{\rm left} \\ r_{31} \, x_{\rm left} + r_{32} \, \, y_{\rm left} + r_{33} \, \, f + r_{34} \, \, \, f / Z_{\rm left} = \, Z_{\rm right} / Z_{\rm left} \\ \end{array}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) with 14 unknowns r_{11} , r_{12} , ..., r_{34} , and Z_{right} , Z_{left}

=> 3 equations

unknowns: 12 for R, \mathbf{r}_0

2n for Z_{right} , Z_{left} for each of n pairs of measurements

12 + 2n unknowns

$$R r_{left} + r_0 = r_{right}$$

$$\begin{array}{l} r_{11} \, x_{\text{left}} + r_{12} \, \, y_{\text{left}} + r_{13} \, f + r_{14} \, f / \, Z_{\text{left}} = \, x_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{21} \, x_{\text{left}} + r_{22} \, \, y_{\text{left}} + r_{23} \, f + r_{24} \, \, f / Z_{\text{left}} = \, y_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{31} \, x_{\text{left}} + r_{32} \, \, y_{\text{left}} + r_{33} \, f + r_{34} \, \, f / Z_{\text{left}} = \, Z_{\text{right}} / Z_{\text{left}} \\ \end{array}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) with 14 unknowns r_{11} , r_{12} , ..., r_{34} , and Z_{right} , Z_{left}

=> 3 equations

Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)

for unit length translation: $|\mathbf{r}_0|=1$

3n for 3 equations per measurement pair

7+3n equations

$$R r_{left} + r_0 = r_{right}$$

$$\begin{array}{l} r_{11} \, x_{\rm left} + r_{12} \, \, y_{\rm left} + r_{13} \, \, f + r_{14} \, \, f / \, Z_{\rm left} = \, x_{\rm right} \, Z_{\rm right} / Z_{\rm left} \\ r_{21} \, x_{\rm left} + r_{22} \, \, y_{\rm left} + r_{23} \, \, f + r_{24} \, \, \, f / Z_{\rm left} = \, y_{\rm right} \, Z_{\rm right} / Z_{\rm left} \\ r_{31} \, x_{\rm left} + r_{32} \, \, y_{\rm left} + r_{33} \, \, f + r_{34} \, \, \, f / Z_{\rm left} = \, Z_{\rm right} / Z_{\rm left} \\ \end{array}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) with 14 unknowns r_{11} , r_{12} , ..., r_{34} , and Z_{right} , Z_{left}

=> 3 equations

unknowns: 12 for R, \mathbf{r}_0

2n for Z_{right} , Z_{left} for each of n pairs of measurements

Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)

for unit length translation r₀ F

3n for 3 equations per measurement pair

Need at least n? measurement pairs: 12 + 2 * n = 7 + 3*n

$$R r_{left} + r_0 = r_{right}$$

$$\begin{array}{l} r_{11} \, x_{\text{left}} + r_{12} \, \, y_{\text{left}} + r_{13} \, \, f + r_{14} \, \, f / \, Z_{\text{left}} = \, x_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{21} \, x_{\text{left}} + r_{22} \, \, y_{\text{left}} + r_{23} \, \, f + r_{24} \, \, f / Z_{\text{left}} = \, y_{\text{right}} \, Z_{\text{right}} / Z_{\text{left}} \\ r_{31} \, x_{\text{left}} + r_{32} \, \, y_{\text{left}} + r_{33} \, \, f + r_{34} \, \, f / Z_{\text{left}} = \, Z_{\text{right}} / Z_{\text{left}} \\ \end{array}$$

One measurement pair (x_{left}, y_{left}) and (x_{right}, y_{right}) with 14 unknowns r_{11} , r_{12} , ..., r_{34} , and Z_{right} , Z_{left}

=> 3 equations

unknowns: 12 for R, \mathbf{r}_0

2n for Z_{right} , Z_{left} for each of n pairs of measurements

Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)

for unit length translation r₀ F

3n for 3 equations per measurement pair

Need at least 5 measurement pairs: 12 + 2 * 5 = 22 = 7 + 3*5

Algorithms to Solve the Problem of Binocular Stereo = Relative Orientation

• Longuet-Higgins' 8-point Algorithm (1981):

$$(x_{left}, y_{left}, 1_{left})^T F (x_{right}, y_{right}, 1_{right}) = 0$$

F is called the 3x3 "fundamental matrix"

Algorithm is sensitive to how accurate point pairs were located (= numerically unstable)

- Variations of the 8-point Algorithm
 - e.g. Hartley's Normalized 8-point algorithm (1997)
- Horn's Iterative Method (1991)
- Deep Fundamental Matrix Estimation without Correspondences (e.g., Poursaeed et al. 2018)

Multi-Camera Stereo

View from above: Z axis = direction of gravity

Multi-Camera Stereo

i₁ could be projection of scene point G₁
 i₂ could projection of scene point G₂

 3^{rd} Camera resolves the ambiguity: G_1 and G_2 are "ghosts" (non-exisiting points) P_1 and P_2 are the true scene points

Green line is ray from P_1 into camera C_3 . It appears as an "epipolar line" in the image of camera C_1

must intersect at the same image point i₁.

The green and red epipolar lines in the camera C_2 intersect at image point i_3 .

The orange and red epipolar lines in the camera C_3 intersect at image point i_3

Epipolar Geometry

left image

right image

Image Credit: OpenCV.org

© Betke

Epipolar Geometry: Special Case Parallel Optical Axes

left image right image

Image Credit: Scharstein, 2014

left image

right image

Image Credit: OpenCV.org

Epipolar Geometry

left image right image

Epipolar lines are parallel = along image rows (epipoles are at infinity)

Algorithm: Find corresponding points in same image rows, e.g., via template matching

Result of Binocular Stereo Matching: Depth Map

$$Z = bf/\delta$$

http://vision.middlebury.edu/stereo/data/scenes2014/

Rectification of Binocular Stereo Images: Undo Foreshortening

Why?

Epipolar lines are now parallel, enabling a simple search for corresponding points along image rows

Image Source: Alyosha Efros

Rectification of Binocular Stereo Images: Undo Foreshortening

Image Source: Alyosha Efros

How?
Iterative Scheme

We want

$$I_{left}(x + \delta/2, y) = I_{right}(x - \delta/2, y)$$

Least Squares Method:

$$\min_{\delta} \sum_{\mathbf{p}} \left[I_{\text{left}} \left(\mathbf{x} + \delta/2, \mathbf{y} \right) - I_{\text{right}} \left(\mathbf{x} - \delta/2, \mathbf{y} \right) \right]^2$$

p = patch
size of patch p: tradeoff
 too small instability
 too large smearing

Use current estimate of disparity $\boldsymbol{\delta}$ to warp

Then solve LSM & update disparity

Binocular Stereo Solution Paths: 2 Alternatives

1. "Weak Calibration"

- If needed: Use rectification to ensure epipolar lines are along image rows
- Find corresponding points in both views and calculate disparity δ
- Compute depth: $Z = bf/\delta$

2. "Strong Calibration"

- Calibrate each camera (= interior orientation): f, pp
- Find geometric transformation of cameras (= relative orientation): R_{i} , r_{0}
- Find 3D coordinates

Binocular Stereo Solution Paths: 2 Alternatives

1. "Weak Calibration"

- If needed: Use rectification to ensure epipolar lines are along image rows
- Find corresponding points in both views and calculate disparity δ
- Compute depth: $Z = bf/\delta$

2. "Strong Calibration"

- Calibrate each camera (= interior orientation): f, pp
- Find geometric transformation of cameras (= relative orientation): R_{i} , r_{0}
- Find 3D coordinates

In our animal tracking research, "strong calibration" was the better solution

Binocular Stereo Solution Path: "Strong Calibration"

Images & Method: Theriault et al. 2014 Identify wand position in all views

Take advantage of knowing the dimensions of the wand

Estimate R and r₀

Binocular Stereo Solution Path: "Strong Calibration"

Binocular Stereo for 3D Bird Flight Analysis

Binocular Stereo for 3D Bat Flight Analysis

Binocular Stereo Solution Path: "Strong Calibration"

Indoor scenario is much easier:

Instead of wand, use "checker board" as calibration device

Take many images at different positions & orientations

Image Source: Jean-Yves Bouguet

Binocular Stereo Solution Path: "Strong Calibration"

Indoor scenario is much easier:

Instead of wand, use "checker board" as calibration device

Take many images at different positions & orientations

Use http://www.vision.caltech.edu/ bouguetj/calib_doc/index.html Or OpenCV

Image Source: Jean-Yves Bouguet

View without structured light

Project "structured" light patterns onto the object simplifies the correspondence problem

Image credit: Li Zhang et al.

What if we do not have 2 cameras?

Can we still do 3D reconstruction of a scene?

YES !!!

2 Algorithms

Problem Definitions

- Shape from Shading (SfS)
 Find 3D shape in scene from a single 2D image
- Photometric Stereo ≠ binocular stereo
 Find 3D shape in scene from a set of 2D images that are taken under different lighting conditions

"stereo" = "solid" in Greek, used to refer to solidity, three-dimensionality

Photometric Stereo

Example:

Find 3D shape in scene from these images of faces

Photometric Stereo

3D shape visualized with texture from 1st image

Photometric Stereo & SfS

Light reflected at surface patch depends on

- surface orientation
- reflectance properties of surface
- distribution of light sources illuminating surface

Light source s, Viewer Direction v, Image E

Photometric stereo & SfS

Light reflected at surface patch depends on

- surface orientation
- reflectance properties of surface
- distribution of light sources illuminating surface

Reconstruction Method:

Determine surface reflectance properties and direction of light source(s)

Compute surface orientation

Light source **s**, Viewer Direction **v**, Surface Normal **n**, Image E

Ideal Lambertian Surface looks equally bright from all directions

light source direction **s**

surface normal \mathbf{n}

 θ_{e}

viewer

direction

Matte surface

or fct(n,s,v)

Brightness

 $E = fct(\theta_i, \theta_e)$

Example of Lambertian Surface: Matte Sphere

Synthetic image with deliberately few gray values
Brightness (gray levels) does not change linearly from bright to dark
Equation? cos (n, s)

Lambertian reflectance model popular in graphics

-- but something is wrong!

Surface Orientation

Surface Orientation

Optical axis z

Surface Gradient $(z_x,z_y)^T$

$$\mathbf{a} = (\delta x, 0, z_x \delta x)^T = \delta x (1, 0, z_x)^T$$

b =
$$(0, \delta y, z_v \delta y)^T = \delta y (0, 1, z_v)^T$$

$$\mathbf{n} \mid (\mathbf{a} \times \mathbf{b})$$

 $\mathbf{n} = (-z_x, -z_y, 1)^T = (-p, -q, 1)^T$

Reflectance Map of Matte Surface

Ideal Lambertian surface looks equally bright from all directions

R(p,q) of Lambertian Surface

R(p,q) of Lambertian Surface

Reflectance Map

Two different projections can create maps of the surface gradients on "Gaussian" (or unit) sphere:

Stereographic plane:

Whole sphere is projected Includes occluding boundary of sphere

Reflectance map:

Upper hemisphere of sphere is projected Isobrightness lines extend to infinity

Photometric Stereo

Goal: Given images E_1 and E_2 under 2 lighting conditions (p_1,q_1) and (p_2,q_2) , find surface orientation $\mathbf{n} = (-p,-q,1)^T$, i.e., find p & q.

2 nonlinear equations:

$$E_1 = R_1(p,q)$$

$$E_2 = R_2(p,q)$$

If $(p_1,q_1) = (p_2,q_2)$ infinite number of solutions else 0, 1, or 2 solution(s)

Better, use *N* images & least-squares method

Mars

Viking Lander I 1977

Image Credit: Horn

Image Credit: Horn

