Bildverarbeitung: Übung

4. Übung: Lineare Nachbarschaftsfilter

Michael Grunwald, Pascal Laube, Theresa Kocher

Aufgabe 1

- Aufgabe 1.1 Implementieren Sie eine Funktion, welche es erlaubt ein Bild (im sinnvollen Rahmen) mit frei wählbaren Filtermasken zu falten.
 - Prototyp: [out_image] = filter(in_image, filter, off);
 out_image Ergebnisbild nach Faltung von in_image mit filter
 in_image Eingangsbild (int)
 filter Filtermatrix (float)
 off Offset (int)
 - 8-Bit Graustufenbilder als Eingangs- und Ausgangsdaten.
 - Filtermatrix der Größe (NxN) mit N = (2K + 1), K = 1, 2, ...
 - Ankerpunkt (Hot Spot) ist die Mitte der Filtermatrix.
 - Beispielaufruf: filter(image, [1 1 1; 1 3 1; 1 1 1], **0**);
- Lesen Sie Kapitel 6 (Filter) in "Digitale Bildverarbeitung".

Aufgabe 2

- Erweitern Sie die Funktion filter um folgende Randbedingungen:
 - min
 Setzt Bildpunkte auf den minimalen Wert (0)
 - max
 Setzt Bildpunkte auf den maximalen Wert (255)
 - mirror
 Spiegelt den Bildinhalt an den Bildkanten
 - continue
 Setzt das Bild außerhalb mit dem gleichen Pixelwert, wie das entsprechende am nächsten liegende Randpixel, fort.
- Prototyp: [out_image] = filter(in_image, filter, off, edge);
 edge: Parameter zur Auswahl der Randbehandlung ('min') String
- Untersuchen Sie die Randbehandlungen auf ihr Verhalten bei Benutzung verschiedener Filter.

BILDVERARBEITUNG: ÜBUNG

4. Übung: Lineare Nachbarschaftsfilter

Michael Grunwald, Pascal Laube, Theresa Kocher

Aufgabe 3

Beantworten Sie folgende Fragen (siehe Buch ab S. 99).

- Aufgabe 3.1 Nennen Sie die Arten und Eigenschaften von linearen Filtern.
- Aufgabe 3.2 Was ist der Unterschied zwischen linearen und nichtlinearen Filtern?

Bemerkung

• Die Aufgaben werden elektronisch (tkocher@htwg-konstanz.de) vor der nächsten Übungsstunde abgegeben.