COMP 431

Internet Services & Protocols

Application-Layer Protocols

Peer-to-Peer Systems, Media Streaming & Content Delivery Networks

Jasleen Kaur

February 13, 2020

Application-Layer Protocols Outline

- Example client/server systems and their application-level protocols:
 - » The World-Wide Web (HTTP)
 - » Reliable file transfer (FTP)
 - » E-mail (SMTP & POP)
 - » Internet Domain Name System (DNS)
- Example p2p applications systems:
 - » BitTorrent
- Other protocols and systems:
 - » Streaming media DASH
 - » Content delivery networks (CDNs)

Peer-to-Peer File Distribution

BitTorrent

- When a peer joins a torrent:
 - » It has no chunks, but will accumulate them over time from other peers
 - » It registers with the tracker to get a list of peers
 - » Connects to subset of peers ("neighbors")
- While downloading, peer uploads chunks to other peers
- ◆ A peer may change peers with whom it exchanges chunks
 » ("Churn" peers may come and go)
- Once the peer has the entire file, it may (selfishly) leave or (altruistically) remain in torrent

BitTorrent

Requesting & sending file chunks

- Requesting chunks:
 - » At any given time, different peers have different subsets of file chunks
 - » Periodically, Alice asks each peer for the list of chunks that they have
 - » Alice requests missing chunks from peers, starting with the "rarest" chunk first

- Sending chunks: "tit-for-tat"
 - » Alice sends chunks to the four peers currently sending her chunks at the highest rate
 - Other peers are "choked" by Alice (do not receive chunks from her)
 - ❖ Re-evaluate top 4 every 10 secs
 - » Every 30 secs the peer randomly select another peer & starts sending chunks
 - * "Optimistically unchoke" this peer
 - ❖ Newly chosen peer may join top 4

12

BitTorrent

Tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Application-Layer Protocols

Video streaming and content delivery networks

- ◆ Video streaming is the major consumer of Internet bandwidth
 - » Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
- » ~2B YouTube users, ~160M Netflix users
- ◆ How do you design a service to reach ~2B users?
 - » A single mega-video server won't work
- ◆ How do you deal with end-system heterogeneity?
 - » Different users have different capabilities (e.g. wired versus mobile: bandwidth rich versus bandwidth poor)
- Solution: A distributed, application-level delivery infrastructure

Video Streaming

Multimedia basics

- Video is a sequence of images displayed at constant rate
 - » e.g., 24 images/sec
- Each image is a (2D) array of pixels
 - » Each pixel represented by some number of bits
- Coding: use redundancy within and between images to decrease the number of bits used to encode image
 - » Spatial (within image)
 - » Temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame frame i+1 at i+1, send only differences from frame i

Video Streaming

Multimedia basics

- ◆ CBR (constant bit rate): Video is encoded at a rate fixed
- ◆ VBR (variable bit rate): Video encoding rate changes as amount of spatial, temporal redundancy changes
- Examples:
 - » MPEG 1 (CD-ROM) 1.5 Mbps
 - » MPEG 2 (DVD) 3-6 Mbps
 - » MPEG 4 (often used for Internet streaming) < 1 Mbps

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values

frame i

temporal coding example: instead of sending complete frame frame i+1 at i+1, send only differences from frame i

All the client needs to stream a video is a browser

Video Streaming

Content distribution networks

- ◆ The challenge is how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- ◆ Option 1: single, large "mega-server"
 - » Single point of failure
 - » Single point of network congestion
 - » Long delivery path to distant clients (high latency), reliability issues, ...
 - » Multiple copies of the video sent over outgoing link
 - » THIS "SOLUTION" DOESN'T SCALE!!

Video Streaming

Content distribution networks

- ◆ The challenge is how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- ◆ Option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - » "Enter deep" design: push CDN servers deep into access networks
 - * Cache close to users (in the "last mile")
 - ❖ Used by Akamai with servers at over 1,700 locations
 - » "Bring home" design: smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - Used by Limelight

20

Content Distribution Networks Distribution example CDN: stores copies of content at CDN nodes * e.g., Netflix stores copies of Mad Men Subscriber requests content from CDN (via the Web) * Client is directed to nearby server with the content * Client can choose a different copy if the network path is congested

