

Project Heimdallr

사고 예방을 위한 사각지대 이동 물체 추적 및 경로 예측 기술 개발

> 백장현 허준영 김건주

목차

- 프로젝트 개요
- 프로젝트 목표 및 내용
- 기술 및 시장 현황
- 하드웨어 / 소프트웨어 구성도
- 프로젝트 추진 전략
- 프로젝트 구현의 문제점과 해결방안
- 프로젝트 성과물의 활용방안 및 기대효과
- Q&A

프로젝트 개요

보행중 사망자 절반 가까이가 '골목길'에서 사망

ᄬ보행자 우선도로 도입과 제한속도 하향 필요해"

프로젝트 목표 및 내용

기존 사고 예방기술(AEB)과 차이점

• 1단계

- _ 개발환경 설정
- _ 카메라 연결 및 설정
- Object detection
- CCTV가 검출한 Object의 상대 좌표 계산
- Object tracking/Prediction

• 2단계

- ROS 환경설정 및 통신구현 (CCTV와 User차량간)
- 측위 좌표 변환 (CCTV로부터 받아온 객체 상대좌표를 User차량 관점으로)
- 변환된 좌표 기반 Object Prediciton
- Xycar 환경설정
- User 차량이 받아온 data값에 따른 Xycar 동작 설정

• 3단계

- 여러 CCTV에서 받아온 중복되는 Object에 대한 data제거
- User차량의 좌표 검출 및 자세 측정
- 단안카메라를 통한 거리측정 알고리즘 수정 CCTV 가 검출한 object data 정확도 향상

골목길 보행자 및 사고유발 요소 검출 / 사고 방지기술

인공지능 기술로 보행자, 차량 움직임을 분석해 골목길 사고 예방한다!

유사기술(시스루 시스템)

Object Detecting

Object Tracking + Prediction

단안 카메라를 이용하여 검출한 객체의 거리 및 좌표 측정

단안 카메라를 이용하여 검출한 객체의 거리 및 좌표 측정

참고 영상: https://youtu.be/2zvS87d1png

단안 카메라를 이용하여 검출한 객체의 거리 및 좌표 측정

- -Pedestrian Collision Warning
- -Forward Collision Warning
- -Lane Departure Warning
- -Headway Monitoring and Warning

종로구 CCTV 현황

하드웨어/소프트웨어 구성도

하드웨어 구성도

하드웨어 구성도

필요 부품 리스트

필요 부품 리스트											
NO	Part Name	Part Number	Parts Description	Manufacturer	UNIT	Q'ty					
1	USB Hub	NEXT-707U3	USB3.0 허브,7포트,유전원,개별스위치	NEXT	EΑ	3					
2	USB Connecter	NEXT-1512TC	USB B to C 젠더	NEXT	EA	3					
3	Camera	Logitec C922 PRO HD Webcam	-	Logitec	EA	4					
4	RC Car	Xycar A2	-	Xytron	SET	1					
5	Board	Jetson AGX Xavier	-	NVIDIA	EA	2					
6	SSD	Samsung EVO SSD 256G	-	Samsung	EA	3					
7	PC	타이탄X 데스크탑	-	-	EA	1					

프로젝트 추진 전략

단계별 개발 내용

	개발 내용	비용
1단계	개발환경 설정	2
	카메라(CCTV) 연결 및 설정	2
	Object Detection	3
	CCTV가 검출한 Object 좌표 계산	5
	Object Tracking / Prediction	5
2단계	ROS 환경 설정	2
	Xycar 환경 설정	2
	ROS 통신구현	2
	측위 좌표 변환	5
3단계	Data 값에 따른 Xycar 동작 설정	5
	시각화	4
	문서작업 및 최종 마무리	3
		총 계 40

프로젝트 일정별 주요 산출물

항목	세부내용	1	2	3	4	5	6	7	8		9 비고
	개발환경 설정	~9/4	Ļ								
	카메라(CCTV)연결 및 설정	~9/4	L			추석					
1단계	Object Detection		~9/	<mark>1</mark> 1							
	CCTV가 검출한 Object 좌표 계산			~9/	<mark>1</mark> 8						
	Object Tracking / Prediction				~9/2	<mark>2</mark> 7					
	ROS 환경설정				~9/2	<mark>2</mark> 7					
	Xycar 환경설정				~9/2	<mark>2</mark> 7					
2단계	ROS 통신구현 (CCTV - 차량)						~10	<mark>)/</mark> 2			
	측위 좌표 변환						~10	<mark>)/</mark> 2			
	Data 값에 따른 Xycar 동작 설정								~10	<mark>)/</mark> 23	23
	시각화								~10	<mark>)/</mark> 23	23
3단계	문서작업 및 최종 마무리								~10	<mark>)/</mark> 23	23

프로젝트 구현의 문제점과 해결방안

단안카메라의 거리 검출 능력

문제점

• 단안 카메라 (CCTV)만을 이용한 물체 거리 측정 (2D 정보를 3D좌표로)

-> 오차범위가 크다!

해결방안

• Homography / 3D 변환

• DisNet 모노카메라 촬영 영상의 거리 추정 네트워크

자차 위치측정

문제점

- Lidar / SLAM을 활용한 차량 위치측정
- Visual-SLAM의 경우 광원 변화에 따라 촬영되는 이미지가 크게 변하기때문에 실외 상황에서 적용에 한계가 있다.
- -> 자차위치 파악의 한계!

해결방안

- 센서 없이 차량의 절대위치를 알아내는 부 분은 구현에 제한이 있다.
- 최초 차량의 절대 좌표를 알고 있다 전제
- IMU센서를 사용하여 차량이 틀어진정도 , 가속도 등을 측정하여 간접적으로 차량의 절대위치를 예측하고 이 값을 사용한다.

• 동일한 물체를 2대이상의 CCTV 가 검출하는 경우

 객체 검출 및 경로예측을 통해 얻은 data를 User 차량에 실시 간으로 보내주어야 한다.

 모든 위험요소를 예측하기 위해 서는 V2X가 구현되어야 한다.

프로젝트 성과물의 활용 방안 및 기대효과

예상 구현 시나리오

Server

예상 구현 시나리오

운전자 모니터에 위험요소의 위치 및 예상경로 보여준다

차량용 디스플레이 ver

HUD ver

긴급 차량 추돌사고 방지

확장된 AEB (Extended Autonomous Emergency Braking)

기존의 AEB

Extended AEB

프로젝트 성과물의 사업화 및 활용 방안

어린이 보호구역 어린아이들 검출 성능 향상 및 사고 예방

Q & A

