Consumptive Water Use

Refining State Water Supply Estimates with Discharge and Withdrawal Data

Morgan McCarthy¹, Julie Shortridge¹, Robert Burgholzer², Durelle Scott¹, Joseph Kleiner²

Water-Use Data and Research Program

Water Availability & Use Science Program

Provide Assessment of the Water Resources of the U.S.

Water Use Data & Research Program

Support State Water Resource Agencies in Collecting and Reporting Water Use Data

Office of Water Supply

Collects and Analyzes State Water Use Data. Directs Water Supply Management and Planning

1999-2002

Record Low Mean Daily Flow Levels₂

32%

Predicted Net Increase in Mean Daily Water Demand₁

Data Gaps

In Ground and Surface Water Use across Certain Sectors₂

Urgency for Improved Water Resource Modeling & Management

Effectiveness of Virginia's Water Resource Planning and Management

Removal of Water Without Returning to a Water Resource System

Not Required in Reporting from Current State Regulations

Can be Used to Refine Water Supply and Aid DEQ to improve permitting and planning

Objective

Withdrawals | Discharges

Consumptive Water Use

$$\frac{\sum_{i=1}^{n}(Withdrawals) - \sum_{i=1}^{n}(Discharges)}{\sum_{i=1}^{n}(Withdrawals)}$$

Spatial Scale

Water Sector

Data Sources

Withdrawals

Users under the Virginia Water Withdrawal Permitting Program

Withdrawals > 10,000 gal/day₃ Agricultural Withdrawals > 1 MGM₃

> Virginia Water Use Data System (VWUDS)

Discharges/Return Flows

Users under the Virginia Pollution Discharge Elimination System (VPDES) Program

All Point source discharges to waters of $U.S_4$

ICIS-National Pollutant Discharge Elimination System (NPDES) Database

Data Sources: Challenges

Withdrawals

82% of Surface Water Withdrawals are Unpermitted₂

Average Monthly Withdrawals (MGM)

01/01/1982-12/31/2017

Missing or incorrect Coordinates

Self Categorization of Water Sector

Discharges/Return Flows

More Complete for Active "major" Dischargers

Average Monthly Discharge Monitoring Reports (MGD)

01/01/2010-Present

Permits and Outfalls that are not representative of return flow

Erroneous Values (Suspected Unit Conversion)

Generalized Water Sectors of Industrial vs. Municipal

QA/QC

Classification

Facility Matching

Discharging Facility	Best Withdrawal Match	String Distance	Distance (km)
DOMINION - NORTH ANNA POWER STATION	NORTH ANNA NUCLEAR POWER PLANT	10	1.58
APCO - GLEN LYN	GLEN LYN POWER PLANT	5	0.96

Consumption: Energy vs. Non-Energy

Surface and Groundwater Combined Long Term Averages over 2010-2017

Statewide Water Use: Energy

Monthly Mean Daily Withdrawals (MGD)
 Monthly Mean Daily Discharges (MGD)
 Consumptive Coefficient

Statewide Water Use: Energy

-- Monthly Mean Daily Withdrawals (MGD)

Monthly Mean Daily Discharges (MGD)
 Consumptive Coefficient

Statewide Water Use: Non-Energy

Monthly Mean Daily Discharges (MGD)
 Consumptive Coefficient

HUC 6 Watershed Energy vs. Non-Energy

County Energy vs. Non-Energy

Future Work

Facility Level \
Analysis

Compare `

Predict

Publish Open
Source Coding
Tools

Compute Site Specific Consumption by Matching Discharging & Withdrawing Facilities How Do These Estimates of Consumption Compare to Coefficients from Climatically Similar Areas?

Based on Current Policy and Past Data, What are the Predictions for Future Consumption Rates? Make Data Retrieval, QA/QC, Analysis Tools Open for Other Entities to Use.

References

- [1] Kitzhaber, J.A. and Wah, M. 2017. *Status of Virginia's Water Resources: A Report on Virginia's Water Resources Management Activities (2017)*. Available at: https://rga.lis.virginia.gov/Published/2017/RD343/PDF
- [2] Audit, J.L. and Commission, R. 2017. Effectiveness of Virginia 's Water Resource Planning and Management. 8, October 2016 (2017). Available at: http://jlarc.virginia.gov/pdfs/reports/Rpt486.pdf
- [3] Hammond, A. 2007. Virginia Water Protection Permit Program (2007). Available at: https://www.deq.virginia.gov/Portals/0/DEQ/Water/OWS-WWP www.deq.virginia.gov/Portals/0/DEQ/Water/OWS-WWP www.deq.virgi
- [4] Davenport, M. D. (2014). VPDES Permit Manual. Virginia Department of Environmental Quality. Richmond. Retrieved from https://www.deq.virginia.gov/Portals/0/DEQ/Water/Guidance/142003.pdf

Questions?

