Tutorial on Image Clustering

by Joris Guérin

Which is the best CNN feature extractor?

Natural object classification

VOC 2007 Coil 100

Scene recognition

Architectural style (JTU, Shanghai)

Fine grained

Caltech UCSD Birds 200

Flower dataset (Oxford)

Face recognition

UMist (Sheffield)

FEI (São Bernardo do Campo)

Experiment description - Experiments setup

Architectures used: VGG16, VGG19, ResNet50, Inception, Xception

Layers used:

		VGG16	VGG19	Inception	Xception	Resnet50
L1	name shape	block5_pool 25,088	block5_pool 25,088	$\begin{array}{c} \text{mixed7} \\ 221,952 \end{array}$	add_12 102,400	activation_40 200,704
L2	name	fc1	fc1	mixed10	block14_sepconv2_act	activation_47
	shape	4,096	4,096	131,072	204,800	25,088
L3	name	fc2	fc2	avg_pool	avg_pool	avg_pool
	shape	4,096	4,096	2,048	2,048	2,048

Experiment description - Experiments setup

Clustering methods used:

KMeans and Agglomerative clustering

Metrics used:

NMI and **Purity**

Results summary

Layer choice:

(a) Layer-architecture interaction (mean and std across tasks and clustering algorithms).

(b) Layer-task interaction (mean and std across architectures, datasets and clustering algorithms).

Conclusion: Use last layer

Results summary

(a) mean and std across tasks and clustering algorithms

Architecture choice:

(b) Architecture-task interaction (mean and std across datasets and clustering algorithms)

Conclusion: We don't know?!

(a) Birds - Agglomerative clustering

(b) Flowers - Agglomerative clustering

Possible strategies for new unsupervised dataset?

Selecting hyperparameters:

Supervised case:

Cross validation

<u>Unsupervised case:</u>

Follow the leader (online learning)

Dimensionality reduction

Objectives and overview

- Methods to visualize high dimensional data.
- Transform data into a 2D or 3D space

t-distributed Stochastic Neighbor Embedding (t-SNE)

Student's *t*-distribution

Ensemble of feature extractors

Why does it makes sense?

	NMI	PUR	$_{\mathrm{FM}}$	FM_{C_4}
InceptionResnet	0.775	0.642	0.537	0.442
VGG16	0.689	0.550	0.372	0.653
Densenet121	0.684	0.553	0.384	0.700

(b) VGG16

(c) Densenet121

Methodology

Clustering algorithms Deep feature extractors **Co-Association Matrix** Input images Final Set of Labels

Results

Deep end to end clustering

Deep Embedded Clustering (DEC)

Unsupervised Deep Embedding for Clustering Analysis

Junyuan Xie JXIE@ CS.WASHINGTON.EDU

University of Washington

RBG@FB.COM

Facebook AI Research (FAIR)

Ali Farhadi ALI@CS.WASHINGTON.EDU

University of Washington

Objective: Learn jointly cluster assignment and new data representation

Autoencoder initialization

1- Denoising AE

2- End-to-end reconstruction AE

Joint optimization

Soft assignment: Student t-distribtuion (similarity between embedded point z_i and centroid μ_i)

$$q_{ij} = \frac{(1 + \left\| z_i - \mu_j \right\|^2 / \alpha)^{-(\frac{\alpha+1}{2})}}{\sum_{j'} (1 + \left\| z_i - \mu_{j'} \right\|^2 / \alpha)^{-(\frac{\alpha+1}{2})}}$$

 Target distribution: Strengthen high confidence prediction, normalize loss contribution of each cluster

$$p_{ij} = \frac{q_{ij}^2/f_j}{\sum_{i'} q_{ii'}^2/f_{i'}}; \ f_j = \sum_j q_{ij}$$

• optimization: Gradient descent to update θ and μ_j to minimize $\mathcal{L} = \mathit{KL}(P||Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{a_{ii}}$

Results MNIST

JULE for networks gathering

Joint Unsupervised Learning of Deep Representations and Image Clusters

Jianwei Yang, Devi Parikh, Dhruv Batra Virginia Tech

{jw2yang, parikh, dbatra}@vt.edu

Objective: Learn jointly cluster assignment and new data representation

Triplet loss

$$Loss = \sum_{i=1}^{N} \left[\|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_{+}$$

Schroff et al.

Negative Anchor Positive Negative

Schroff et al.

Deep Multi-view clustering

Results on UMist

Final scores:

Purity: 0.967

NMI: 0.984

(g) UMist

Conclusions

Multiple deep CNN feature extractors + Deep Clustering (JULE)

Initial scores:

Purity: 0.503

NMI: 0.663

Final scores:

Purity: 0.967

NMI: 0.984