Dimensional Analysis with Linear Algebra

Jasper Day

Source

Buckingham's Pi theorem states that any relations between natural quantities can be expressed in an equivalent form using *Pi groups*, dimensionless quantities formed between those quantities.

Assumptions:

The following assumptions must hold:

1. u, our quantity of interest, must equal some function $f(x_1, x_2, x_3, \ldots, x_n)$, that is, n measurable quantities expressed as independent variables & parameters x_i . It is further assumed that the equation

$$u = f(x_1, x_2, x_3, \dots, x_n)$$

is dimensionally homogeneous.

- 2. The quantities $\{u, x_1, x_2, x_3, \dots, x_n\}$ are measured in terms of m fundamental dimensions $\{L_1, L_2, L_3, \dots, L_n\}$
- 3. If W is any quantity of $\{u, x_1, \dots, x_n\}$, then

$$[W] = L_1^{p_1} \cdot L_2^{p_2} \cdot \ldots \cdot L_m^{p_m}$$

Then we can create $\mathbf{P} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{bmatrix}$, the dimension vector of W.

This gives us the $m \times n$ dimension matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{P}_1 | \mathbf{P}_2 | \cdots | \mathbf{P}_n \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mn} \end{bmatrix}$$

Conclusions of the Buckingham Pi Theorem

- 1. The relation $u = f(x_1, x_2, ..., x_n)$ can be expressed in terms of dimensionless quantities.
- 2. The number of dimensionless quantities is

$$k+1=n+1-\mathrm{rank}\,(A)$$

(The reason for k + 1 is that we pull out the original quantity u from the matrix **A**. Otherwise this term would not appear.)

3. Since **A** has rank (A) = n - k, there are k linearly independent solutions of Az = 0 denoted as z^1, z^2, \ldots, z^k .

Let \mathbf{a} , an m-column vector, be the dimension vector of u, and let \mathbf{y} , an n-column vector, be a solution of

$$\mathbf{A}\mathbf{y} = -\mathbf{a}$$

Then the relation $u = f(x_1, x_2, ..., x_n)$ simplifies to $g(\Pi_1, \Pi_2, ..., \Pi_k)$.

There is one Π group for each linearly indepenent set of $\mathbf{Az} = \mathbf{0}$, plus one Π group for u. The parameters in each pi group are raised to the respective row of \mathbf{z}' .

Why it Works:

Recall that the nullspace of a matrix $\bf A$ is the space of all vectors $\bf z$ for which $\bf Az = 0$. The multiplication $\bf Az$ is a linear combinations of the columns of $\bf A$:

$$\mathbf{Az} = [z_1 \mathbf{P}_1 | z_2 \mathbf{P}_2 | \dots | z_n \mathbf{P}_n]$$

This linear combination of the columns of **A** is the same thing that you get when you raise each of the parameters x_n to the respective element of **z**:

$$[x_i^{z_i}] = [W]^{z_i} = (L_1^{p_1} \cdot L_2^{p_2} \cdot \ldots \cdot L_m^{p_m})^{z_i} = L_1^{p_1 z_i} \cdot L_2^{p_2 z_i} \cdot \ldots \cdot L_m^{p_m z_i}$$

Which corresponds to column i of Az. Finally, since z is in the nullspace of A, the sum of the powers on each of the base units L will be 0, resulting in an overall dimensionless quantity.