Programming in C# LAB BCA-DS-651

Manav Rachna International Institute of Research and Studies

School of Computer Applications

	Submitted By	
Student Name	Dhiraj Kumar	
Roll No	22/FCA/BCA/010	
Programme	Bachelor of Computer Applications	
Semester	$6^{ m th}$ Semester	
Section	A	
Department	School Of Computer Applications	
Batch	2022-25	
	Submitted To	
Faculty Name	Dr. Neerja Negi	

FACULTY OF COMPUTER APPLICATIONS

ManavRachna Campus Rd, GadakhorBasti Village, Sector 43, Faridabad, Haryana 121004

INDEX

S.				
No.	Date	Aim of the Experiment	Signature	Grade
1	30/01/2025	Program 1: Write program to demonstrate the working of C# SDK.		
2	30/01/2025	Program 2: Write program to show the use of various data types available in C#.		
3	31/01/2025	Program 3: Write programs to understand the use of Control statements.		
4	31/01/2025	Program 4: Write programs to understand the use of library Functions.		
5	05/02/2025	Program 5: Write a program to demonstrate the use of various arithmetic, unary, logical, bit-wise, assignment and conditional operators.		
6	06/02/2025	Program 6: Write a program to store 10 elements in an array and display the array elements in increasing order.		
7	06/02/2025	Program 7: Demonstrate the use of pass by value and pass by reference by writing a program.		
8	13/02/2025	Program 8: Write a program to implement recursion.		
9	13/02/2025	Program 9: Write programs to implement one dimensional and two-dimensional arrays.		
10	14/02/2025	Program 10: Write programs to understand the working of predefined string functions like Compare (), CompareTo(), Concat(), a.Copy() and Join().		

11	27/02/2025	Program 11: Write a program to implement class and its objects.	
12	27/02/2025	Program 12: Write a program to implement constructors.	

Programming in C# Lab

Program File

1. Write program to demonstrate the working of C# SDK.

```
Code:
using System;
using System.Net.Http;
using System.Threading.Tasks;
class Program
{
  static async Task Main()
    // Create an HTTP Client
    HttpClient client = new HttpClient();
    // Define the URL
    string url = "https://www.example.com";
    // Send a request and get response
    HttpResponseMessage response = await client.GetAsync(url);
    // Read response content
    string content = await response.Content.ReadAsStringAsync();
    // Display part of the content
    Console.WriteLine("===== Website Content (First 100 Characters) =====");
    Console.WriteLine(content.Substring(0, Math.Min(100, content.Length)));
    Console.WriteLine("\nData fetched successfully using System.Net.Http SDK!");
  }
}
```


2. Write program to show the use of various data types available in C#.

```
Code:
using System;
class Program
  static void Main()
  {
    // Integer data types
    int intNumber = 100;
    long longNumber = 123456789L;
    short shortNumber = 32000;
    byte byteNumber = 255;
    // Floating-point data types
    float floatNumber = 10.5f;
    double doubleNumber = 20.99;
    decimal decimalNumber = 100.123456789m;
    // Character and Boolean data types
    char letter = 'A';
    // String data type
    string message = "Hello, C# Programming!";
    // Object data type (can store any type of value)
    object obj1 = 50;
    object obj2 = "C# is powerful!";
    // Displaying all data types
    Console.WriteLine("===== C# Data Types Demonstration =====");
    Console.WriteLine($"Integer (int): {intNumber}");
    Console.WriteLine($"Long (long): {longNumber}");
    Console.WriteLine($"Short (short): {shortNumber}");
```

```
Console.WriteLine($"Byte (byte): {byteNumber}");

Console.WriteLine($"Float (float): {floatNumber}");

Console.WriteLine($"Double (double): {doubleNumber}");

Console.WriteLine($"Decimal (decimal): {decimalNumber}");

Console.WriteLine($"Character (char): {letter}");

Console.WriteLine($"String (string): {message}");

Console.WriteLine($"Object (int stored in object): {obj1}");

Console.WriteLine($"Object (string stored in object): {obj2}");

}
```

```
===== C# Data Types Demonstration =====
Integer (int): 100
Long (long): 123456789
Short (short): 32000
Byte (byte): 255
Float (float): 10.5
Double (double): 20.99
Decimal (decimal): 100.123456789
Character (char): A
String (string): Hello, C# Programming!
Object (int stored in object): 50
Object (string stored in object): C# is powerful!
```

3. Write programs to understand the use of Control statements.

```
Code (Conditional Statement (if-else)):
using System;
class Program
  static void Main()
  {
    Console.Write("Enter a number: ");
    int number = Convert.ToInt32(Console.ReadLine());
    // Using if-else statement
    if (number > 0)
      Console.WriteLine("The number is Positive.");
    }
    else if (number < 0)
    {
      Console.WriteLine("The number is Negative.");
    }
    else
      Console.WriteLine("The number is Zero.");
    }
}
}
```

```
Output (Conditional Statement (if-else)):

Enter a number: 5
The number is Positive.
```

```
Code (Looping Statements (for, while, do-while)):
using System;
class Program
  static void Main()
    // Using for loop
    Console.WriteLine("Using for loop:");
    for (int i = 1; i <= 5; i++)
            Console.Write(i + " ");
    Console.WriteLine("\nUsing while loop:");
    int j = 1;
    while (j <= 5)
      Console.Write(j + " ");
              }
      j++;
    Console.WriteLine("\nUsing do-while loop:");
    int k = 1;
    do
    { Console.Write(k + " ");
      k++;
    } while (k <= 5);
  }}
```

```
Output (Conditional Statement (if-else)):

Using for loop:
1 2 3 4 5
Using while loop:
1 2 3 4 5
Using do-while loop:
1 2 3 4 5
```

4. Write programs to understand the use of library functions.

```
Code:
using System;
class Program
{
  static void Main()
  {
    double number = -25.75;
    // Absolute value
    Console.WriteLine("Absolute value: " + Math.Abs(number));
    // Square root
    Console.WriteLine("Square root of 25: " + Math.Sqrt(25));
    // Power function
    Console.WriteLine("2 raised to the power 3: " + Math.Pow(2, 3));
    // Rounding functions
    Console.WriteLine("Round(25.75): " + Math.Round(number));
    Console.WriteLine("Ceiling(25.75): " + Math.Ceiling(number));
    Console.WriteLine("Floor(25.75): " + Math.Floor(number));
  }
}
```

```
Output:
```

```
Absolute value: 25.75
Square root of 25: 5
2 raised to the power 3: 8
Round(25.75): -26
Ceiling(25.75): -25
Floor(25.75): -26
```

5. Write a program to demonstrate the use of various arithmetic, unary, logical, bit-wise, assignment and conditional operators.

```
Code:
using System;
class Program
  static void Main()
  {
    int a = 10, b = 5, result;
    // Arithmetic Operators (+ and -)
    result = a + b;
    Console.WriteLine("Addition (a + b) = " + result);
    result = a - b;
    Console.WriteLine("Subtraction (a - b) = " + result);
    // Unary Operators (+ and -)
    Console.WriteLine("Unary Plus (+a) = " + (+a));
    Console.WriteLine("Unary Minus (-a) = " + (-a));
    // Logical Operator (&& and || using simple condition)
    bool x = true, y = false;
    Console.WriteLine("Logical AND (x \&\& y) = " + (x \&\& y));
    Console.WriteLine("Logical OR (x \mid | y) = " + (x \mid | y));
    // Bitwise Operators (& and |)
    Console.WriteLine("Bitwise AND (a & b) = " + (a & b));
    Console.WriteLine("Bitwise OR (a | b) = " + (a | b));
    // Assignment Operators (+= and -=)
    a += b; // Equivalent to a = a + b
    Console.WriteLine("After a += b, a = " + a);
    a = b; // Equivalent to a = a - b
    Console.WriteLine("After a -= b, a = " + a);
```

```
Code:

// Conditional (Ternary) Operator

string resultText = (a > b) ? "a is greater than b" : "b is greater or equal to a";

Console.WriteLine("Conditional Operator Result: " + resultText);

}

}
```

```
Addition (a + b) = 15
Subtraction (a - b) = 5
Unary Plus (+a) = 10
Unary Minus (-a) = -10
Logical AND (x && y) = False
Logical OR (x || y) = True
Bitwise AND (a & b) = 0
Bitwise OR (a | b) = 15
After a += b, a = 15
After a -= b, a = 10
Conditional Operator Result: a is greater than b
```

6. Write a program to store 10 elements in an array and display the array elements in increasing order.

```
Code:
using System;
class Program
  static void Main()
  {
    int[] numbers = new int[10];
    // Taking input from the user
    Console.WriteLine("Enter 10 elements for the array:");
    for (int i = 0; i < 10; i++)
      Console.Write("Element {0}: ", i + 1);
      numbers[i] = Convert.ToInt32(Console.ReadLine());
    }
    // Sorting the array in increasing order
    Array.Sort(numbers);
    // Displaying sorted elements
    Console.WriteLine("\nArray elements in increasing order:");
    foreach (int num in numbers)
      Console.Write(num + " ");
    }
  }
}
```

```
Output:

Enter 10 elements for the array:
Element 1: 2
Element 2: 3
Element 3: 4
Element 4: 1
Element 5: 56
Element 6: 22
Element 7: 43
Element 8: 78
Element 9: 43
Element 10: 12

Array elements in increasing order:
1 2 3 4 12 22 43 43 56 78
```

7. Demonstrate the use of pass by value and pass by reference by writing a program.

```
Code:
using System;
class Program
  // Pass by Value: The original value remains unchanged
  static void PassByValue(int num)
  {
    num = num + 10; // Modifying the value
    Console.WriteLine("Inside PassByValue method: num = " + num);
  }
  // Pass by Reference: The original value is modified
  static void PassByReference(ref int num)
  {
    num = num + 10; // Modifying the value
    Console.WriteLine("Inside PassByReference method: num = " + num);
  }
  static void Main()
  {
    int a = 5, b = 5;
    Console.WriteLine("Before calling PassByValue: a = " + a);
    PassByValue(a);
    Console.WriteLine("After calling PassByValue: a = " + a);
    Console.WriteLine("\nBefore calling PassByReference: b = " + b);
    PassByReference(ref b);
    Console.WriteLine("After calling PassByReference: b = " + b);
  }
}
```

```
Before calling PassByValue: a = 5
Inside PassByValue method: num = 15
After calling PassByValue: a = 5
```

Before calling PassByReference: b = 5 Inside PassByReference method: num = 15 After calling PassByReference: b = 15

8. Write a program to implement recursion.

```
Code:
using System;
class Program
{
  // Recursive function to calculate factorial
  static int Factorial(int n)
  {
    if (n == 0 | | n == 1)
       return 1; // Base case
    else
       return n * Factorial(n - 1); // Recursive case
  }
  static void Main()
  {
    Console.Write("Enter a number: ");
    int num = Convert.ToInt32(Console.ReadLine());
    int result = Factorial(num); // Function call
    Console.WriteLine("Factorial of {0} is {1}", num, result);
  }
}
```

Output:

```
Enter a number: 6
Factorial of 6 is 720
```

9. Write programs to implement one dimensional and two-dimensional arrays.

```
Code:
using System;
class ArrayExample
{
  static void Main()
  {
    // *** ONE-DIMENSIONAL ARRAY (1D) ***
    int[] numbers = new int[5]; // Declaring a 1D array
    Console.WriteLine("Enter 5 elements for the 1D array:");
    for (int i = 0; i < 5; i++)
    {
      Console.Write("Element {0}: ", i + 1);
      numbers[i] = Convert.ToInt32(Console.ReadLine());
    }
    // Displaying 1D array elements
    Console.WriteLine("\n1D Array elements:");
    foreach (int num in numbers)
    {
      Console.Write(num + " ");
    }
    Console.WriteLine("\n\n----\n");
    // *** TWO-DIMENSIONAL ARRAY (2D) ***
    int[,] matrix = new int[2, 3]; // Declaring a 2D array
    Console.WriteLine("Enter 6 elements for the 2×3 matrix:");
    for (int i = 0; i < 2; i++)
    {
      for (int j = 0; j < 3; j++)
```

```
Code:

{
    Console.Write("Element at ({0},{1}): ", i, j);
    matrix[i, j] = Convert.ToInt32(Console.ReadLine());
}

// Displaying 2D matrix elements

Console.WriteLine("\n2D Matrix elements:");

for (int i = 0; i < 2; i++)

{
    for (int j = 0; j < 3; j++)

{
        Console.Write(matrix[i, j] + "\t");
    }

    Console.WriteLine(); // New line after each row
}}
```

Output: Enter 5 elements for the 1D array: Element 1: 4 Element 2: 3 Element 3: 5 Element 4: 6 Element 5: 1 1D Array elements: 4 3 5 6 1 Enter 6 elements for the 2×3 matrix: Element at (0,0): 4 Element at (0,1): 2 Element at (0,2): 7 Element at (1,0): 3 Element at (1,1): 1 Element at (1,2): 6 2D Matrix elements: 2 7

10. Write programs to understand the working of predefined string functions like Compare (), Compare To(), Concat(), a.Copy() and Join().

```
Code:
using System;
class StringFunctionsDemo
  static void Main()
  {
    string str1 = "Hello";
    string str2 = "World";
    string str3 = "Hello";
    // Using Compare() - Compares two strings (case-sensitive)
    Console.WriteLine("Compare(str1, str2): " + string.Compare(str1, str2)); // Returns -1, 0, or 1
    Console.WriteLine("Compare(str1, str3): " + string.Compare(str1, str3)); // Returns 0 as both are
equal
    // Using CompareTo() - Works like Compare() but used with an instance
    Console.WriteLine("str1.CompareTo(str2): " + str1.CompareTo(str2));
    Console.WriteLine("str1.CompareTo(str3): " + str1.CompareTo(str3));
    // Using Concat() - Joins two or more strings
    string concatenated = string.Concat(str1, " ", str2);
    Console.WriteLine("Concat(str1, str2): " + concatenated);
    // Using Copy() - Creates a copy of the string
    string copyOfStr1 = string.Copy(str1);
    Console.WriteLine("Copy of str1: " + copyOfStr1);
    // Using Join() - Joins multiple strings with a separator
    string[] words = { "C#", "is", "fun" };
    string joinedString = string.Join(" ", words);
    Console.WriteLine("Join(words): " + joinedString);
  }
}
```

Output: Compare(str1, str2): -1 Compare(str1, str3): 0 str1.CompareTo(str2): -1 str1.CompareTo(str3): 0 Concat(str1, str2): Hello World Copy of str1: Hello Join(words): C# is fun

11. Write a program to implement class and its objects.

```
Code:
using System;
class Student
{
  // Data Members (Variables)
  public string name;
  public int age;
  // Method to display student details
  public void Display()
    Console.WriteLine("Student Name: " + name);
    Console.WriteLine("Student Age: " + age);
  }
}
class Program
{
  static void Main()
  {
    // Creating an object of the Student class
    Student student1 = new Student();
    // Assigning values to object properties
    student1.name = "John";
    student1.age = 20;
    // Calling the method
    Console.WriteLine("Student Details:");
    student1.Display();
  }}
```

Student Details: Student Name: John Student Age: 20

12. Write a program to implement constructors.

```
Code:
using System;
class Student
  // Data Members
  public string name;
  public int age;
  // Constructor (Same name as class, no return type)
  public Student(string studentName, int studentAge)
  {
    name = studentName;
    age = studentAge;
  }
  // Method to display student details
  public void Display()
    Console.WriteLine("Student Name: " + name);
    Console.WriteLine("Student Age: " + age);
  }
}
class Program
  static void Main()
  {
    // Creating an object and passing values to the constructor
    Student student1 = new Student("John", 20);
    // Display student details
    Console.WriteLine("Student Details:");
```

```
Code:
student1.Display();
}
}
```

Student Details: Student Name: John Student Age: 20