Introduction to Linear Algebra

Vector Spaces, Linear Transformations, Eigenvalues/Eigenvectors, SVD, & PCA Sharad Garg – 3rd August, 2025

Motivation & Application

- High-dimensional data (images, sounds, etc.) is hard to analyze.
- Principal Component Analysis (PCA) uses eigenvectors of the data covariance matrix to identify key directions ("principal components").
- Why? Reduce dimensionality while preserving maximal variance-enables compression, denoising, and visualization.

Vector Spaces

Definition: A vector space V over a field F is a set with two operations (addition and scalar multiplication), such that:

- For all $u, v \in V$, $u+v \in V$
- For all $a \in F$, $av \in V$
- The zero vector exists; addition is commutative and associative; distribution, identity, and inverse laws hold

Examples:

- R^n: vectors of n real numbers
- Polynomials of degree ≤ 3 : $a_0 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3$

Linear Transformation

Definition: A function T : $V \rightarrow W$ is a linear transformation if:

 $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and $T(a\mathbf{v})=a.T(\mathbf{v})$ for all $a\in F$.

Examples:

- Rotation of vectors in R²
- Scaling: T(v) = 2.v
- Matrix multiplication: $T_A(x) = A \cdot x$

Matrix Representation:

Every linear transformation can be represented by a matrix

Eigenvalues & Eigenvectors

Definition: For a square matrix A, $v \ne 0$ is an eigenvector if A.v = $\lambda . v$ Here, λ is the eigenvalue.

Key Theorem:

An n x m matrix has \leq n eigenvalues (some may be complex/repeated).

Geometric Meaning:

Eigenvectors are invariant directions under transformation A; eigenvalues scale them.

Example: For A = [[2, 0], [0, 3]]

The standard basis vectors are eigenvectors with eigenvalues 2 and 3.

Singular Value Decomposition (SVD)

Theorem(SVD):

Every real m x n matrix A can be decomposed:

 $A = U\Sigma V^T$

where U and V are orthogonal, and Σ is diagonal (with non-negative numbers "singular values").

Interpretation:

- Columns of U: output directions
- Columns of V: input directions
- Σ: scaling factors

Application: Used in PCA, image compression, latent semantic analysis (LSA).

Worked Problem

Problem: Find the eigenvalues and vectors of

$$A = [[2, 1], [1, 2]]$$

Solution:

1. Characteristic equation:

$$det(A - \lambda I) = 0$$

$$\Rightarrow |2 - \lambda \quad 1|$$

$$|1 \quad 2 - \lambda| = 0$$

$$(2 - \lambda)^2 - 1 = 0 \Rightarrow (2 - \lambda)^2 = 1 \Rightarrow 2 - \lambda = \pm 1$$
Thus, $\lambda_1 = 1$, $\lambda_2 = 3$

2. Eigenvectors:

For $\lambda 1 = 1$: $(A - I)v = 0 \Rightarrow v1 = [[1], [-1]]$

For $\lambda 2 = 3$: $(A - 3I)v = 0 \Rightarrow v2 = [[1], [1]]$

Summary

- Core concepts: vector spaces, linear transformations, eigenvalue & eigenvector, SVD
- Eigenvectors key to engineering use cases (PCA, stability analysis)
- SVD as a powerful generalization to all matrices