Übungsblatt 6

O. Junge, D. Karrasch

5. Juni 2023

Übung 16 (Bisektionsverfahren)

Schreiben Sie eine Funktion

function bisection(f, a, b, tol)

welche eine aufrufbare Funktion f, den linken a und rechten b Enpunkt eines Intervalls [a,b] und die gewünschte Toleranz tol als Input bekommt. Mithilfe des Bisektionsverfahrens soll eine Approximation der Nullstelle $x \in [a,b]$ mit einer Genauigkeit (bzgl. x) unterhalb der Toleranz berechnet werden. Als Ergebnis geben Sie die Approximation der Nullstelle x und die benötigte Schrittzahl n aus. Testen Sie Ihren Code mit verschiedenen Beispielen und beobachten sie die Konvergenzgeschwindigkeit.

Übung 17 (Newton-Verfahren)

Betrachten Sie die Funktion $f(x) = \frac{1}{x} - a$ für ein a > 0.

- (a) Formulieren Sie explizit die Newton-Iterationsabbildung, mit der Sie die Nullstelle $x^* = \frac{1}{a}$ berechnen können.
- (b) Für welche Anfangswerte konvergiert das Newton-Verfahren? Tipp: Veranschaulichen Sie sich den Funktionsgraphen der Iterationsabbildungen und versuchen Sie zu verfolgen, wohin Punkte aus verschiedenen Regionen abgebildet werden, und wohin ihre Bilder wiederum abgebildet werden.

Übung 18 (Quadratische Funktionen)

Betrachten Sie die quadratische Funktion

$$q: \mathbb{R}^d \to \mathbb{R}, \qquad x \mapsto \frac{1}{2} x^\top A x + b^\top x + c,$$

wobei $A \in \mathbb{R}^{d \times d}$ symmetrisch positiv-definit ist, $b \in \mathbb{R}^d$, und $c \in \mathbb{R}$.

- (a) Berechnen Sie den Gradienten und die Hesse-Matrix von q.
- (b) Bestätigen Sie, dass $x^* = -A^{-1}b$ ein striktes globales Minimum von q auf \mathbb{R}^d ist.