

Lançamento de Projétil Puntiforme com arrasto

João Ricardo M. Scofield Lauar João Vitor Pinto Vizeu

Motivação e Objetivo

LANÇAMENTO DE PROJÉTEIS

O movimento de projéteis é um tema clássico na física e na engenharia.

TRADUZINDO REALISTICAMENTE

Incluir o arrasto torna o modelo mais realista e adiciona complexidade, exigindo métodos numéricos para sua resolução.

SIMULAÇÃO

Simulações de EDOs são essenciais em áreas como física, engenharia, biologia e economia, modelando diversos fenômenos e sistemas assim como esse.

PROPOSTA

Utilizar o método de Runge-Kutta para resolver o sistema de EDOs e prever a trajetória com ajustes polinomiais.

FERRAMENTAS

Pretende-se fazer o simulador em Python, com funções de própria autoria para tais métodos. — a partir do conhecimento das aulas.

Funcionamento

Cronograma

25/04 - Sex

- · Inicio do projeto
- · Definição do escopo
- · Divisão de tarefas

30/04 - Qua

- Pesquisa e modelagem
- · Estudo do método RK4

09/05 - Sex

- · Arranjo do trabalho
- · Biblioteca de métodos

16/05 - Sex

20/06 - Sex

· Ajuste polinomial

· Plot visual do ajuste

- Código funcional
- Runge-Kutta funcional
- · Protótipo simulador CLI

21/05 - Qua

- · Desenvolvimento gráfico
- · Aperfeiçoar simulador

30/05 - Sex

1ª apresentação

- · Simulador completo
- Relatório

25/06 - Qua

- · Apresentação final
- Conclusão

