

文件更改履历表						
编号	日期	版本	说明	备注		
1.	2015-05-05	V1.0	初始讨论稿			
2.						
3.				X		
4.				X		
5.						
6.						
7.			7/7.			
8.						
9.						
10.						
11.						
12.						
13.	7, /					
14.		/				
15.						
16.						
17.						
18.						

目 录

- ,	加密芯片概述	- 5	, ·
二、	加密芯片上层应用接口说明	- 5	, ,
三、	加密芯片应用说明	- 7	7.

版权声明:

本文件(包含附件)的知识产权归文件提供方(深圳市 恒天智信科技有限公司) 所有。未经授权,请勿传播或复制。

警告:

1、加密芯片与用户相关的出厂熔丝都为芯片原厂出厂初始状态,开放给用户的密码保护权限为最高权限,我公司不保留控制权,机器出厂后因不当操作引起的用户熔丝或密码认证锁死问题,我公司也将无法解除,所以一旦出厂后出现锁死问题概不在保修范围内。加密芯片锁死后,只能通过更换加密芯片来解决锁死问题(锁死问题更换加密芯片为有偿服务)。

2、所有的加密手段都有被破解风险,用户在进行应用程序加密绑定时,需要综合考虑被破解的可能性。加密的安全性取决于芯片自身与用户应用程序的加密机制。本公司只提供给用户一个加密手段,不承担任何因用户应用程序被反向工程破解引起的损失;

用户使用了加密芯片功能,视同已经仔细阅读上述条款并接受可能存在的风险!

一、 加密芯片概述

注意:由于加密芯片的特殊性,如果连续多次错误操作,将造成加密芯片的永久损坏。锁定用户密钥后将不可再更改密钥,如出现密钥的误设定,只能通过返厂更换加密芯片的方式进行维修,我司将收取一定的维修费用。用户如需使用加密芯片,调试程序时务必小心谨慎。

板载加密芯片在出厂时,我们已经为每个加密芯片设定好一个唯一的 ID 号,此 ID 号不可更改。提供用户 16 字节的自定义产品信息存储空间,8 个字节自定义密钥以及 64 个字节加密的数据存储空间。

为了用户能简单快速的使用加密芯片,我司已经将加密芯片的操作进行了封装,以库文件的方式提供给用户使用,库文件的存放路径为光盘目录下\编程示例\加密芯片相关\库文件。库文件为libht98sc.so 和libhtsc.a,其中libht98sc.so 为加密芯片底层操作的动态库文件,已经集成在默认的文件系统中,是libhtsc.a 所依赖的动态库文件。libhtsc.a 为提供给用户调用的加密芯片上层接口的静态库文件,为提高安全性,此接口只提供静态库,不再提供动态库文件。

此手册只适用于我司出品的Linux系统下带有加密芯片的嵌入式计算机。

二、 加密芯片上层应用接口说明

加密芯片上层应用接口定义在 libhtsc.h 头文件中,以下将对各个函数加以说明。

int HTSC_Open(void);

功能: 打开加密芯片。

输入参数:无

返回参数: 0-成功, 其他-失败

说明: 在对加密芯片进行操作之前,必须先打开加密芯片

2) int HTSC_Close(void);

功能:关闭加密芯片。

输入参数: 无

返回参数: 0-成功, 其他-失败

说明:在完成对加密芯片进行操作后,调用此函数关闭加密芯片

3) HTSC_ReadID(unsigned char *pID, unsigned char *pCMC);

功能:读取预设的 ID 号及我司自定义信息 输入参数:7 字节的 pID 指针,4 字节的 pCMC 指针

返回参数: 0-成功, 其他-失败

说明:函数执行成功后,将7字节的ID数据拷贝到pID指针所指地址,将4字节的我司自定义信息数据拷贝到pCMC指针所指地址。其中,ID号为唯一不重复数据,我司自定义信息数据不保证唯一性。

4) int HTSC_SetPER(unsigned char *pIssuserID,unsigned char *pAuthKey);

功能:设置用户自定义密钥及自定义产品信息

输入参数: 16 字节的 pIssuserID 指针, 8 字节的 pAuthKey 指针

返回参数: 0-成功, 其他-失败

说明: pIssuserID 为用户自定义产品信息数据存放指针,pAuthKey 为用户密钥存放指针。 注意,在锁定用户密钥之前,即调用 HTSC_BurnPerFuse(void)函数执前,可重复调用此 函数进行设定。锁定之后将不能进行修改,调用此函数将返回失败。

5) int HTSC_UserAuth(unsigned char *pAuthKey);

功能: 用户密钥验证

输入参数: 8 字节的 pAuthKey 指针

返回参数: 0-成功, 其他-失败

说明: pAuthKey 为用户密钥存放指针。此函数验证密钥的合法性,验证成功后才能读写用户区数据。注意,为防止暴力破解,在连续4次认证失败后,加密芯片将自行报废。

6) int HTSC_ReadIssuserID(unsigned char *pIssuserID);

功能: 读取用户自定义产品信息

输入参数: 16 字节的 pIssuserID 指针

返回参数: 0-成功, 其他-失败

说明:函数执行成功后,将 16 字节的用户自定义产品信息数据拷贝到 pIssuserID 指针所 指 地 址 , 此 用 户 自 定 义 产 品 信 息 可 通 过 HTSC_SetPER(unsigned char *pIssuserID,unsigned char *pAuthKey)函数写入。

7) int HTSC_WriteUserData(unsigned int addr, unsigned char *pWR, unsigned int len);

功能: 往用户数据存储区写入数据

输入参数: addr 为存储区开始写入地址,范围 0-63。

pWR 为准备写入数据所在的内存地址指针

len 为数据写入长度,范围 1-64

返回参数: 0-成功, 其他-失败

说明:必须在调用 HTSC_UserAuth(unsigned char *pAuthKey)函数成功后才能执行此函数。函数执行成功后,将 pWR 指针所指的数据,按 addr 开始的地址,往加密芯片的用户存储空间写入 len 个字节。由于用户总存储空间地址为 0-63,所以 addr+len 不能超过64。

8) int HTSC_ReadUserData(unsigned int addr, unsigned char *pRD, unsigned int len);

功能: 从用户数据存储区读出数据

输入参数: addr 为存储区开始读数据地址,范围 0-63。

pRD 为读出数据后存放的内存地址指针

len 为数据读出长度,范围 1-64

返回参数: 0-成功, 其他-失败

说明:必须在调用 HTSC_UserAuth(unsigned char *pAuthKey)函数成功后才能执行此函数。函数执行成功后,按 addr 开始的地址,从加密芯片的用户存储空间读出 len 个字节,拷贝至 pRD 指针所指地址。由于用户总存储空间地址为 0-63,所以 addr+len 不能超过64。

9) int HTSC_BurnPerFuse(void);

功能: 锁定用户密钥及用户自定义产品信息数据

输入参数: 无

返回参数: 0-成功, 其他-失败

说明:设定用户密钥后,在硬件出厂前必须调用此函数锁定密钥,否则无法起到加密保护程序的作用。密钥锁定后将无法更改,建议调试程序时暂不要调用此函数。

三、 加密芯片应用说明

根据编程方法从简单到复杂程度,加密芯片的使用方法可分为以下三种,同时安全性也从低到高依次增加。

1. 将应用程序与加密芯片内预先设定的 ID 号进行绑定

此方法最为简单,程序中只需要读出加密芯片的 ID 号来判断当前硬件是否合法,但此法安全级别较低。

读取加密芯片 ID 号的示例代码所在位置为光盘目录下\编程示例\加密芯片相关\读 ID 号\htscid。

2. 设置密钥并在应用程序中进行密钥验证

此方法要分两步执行,首先要设定用户密钥,然后才能在程序里进行密钥的验证, 只有通过验证才能判断为合法硬件。此方法安全级别较高,但硬件出厂前必须锁定用户 密钥,否则起不到任何加密保护作用。

设定用户密钥的示例代码所在位置为光盘目录下\编程示例\加密芯片相关\密钥设定与验证\ htscset。

用户密钥验证的示例代码所在位置为光盘目录下\编程示例\加密芯片相关\密钥设定与验证\ htscauth。

3. 将应用程序的关键数据存储到加密芯片中

此方法最为复杂,但同时也是安全级别最高的一种。用户在出厂前先将应用程序的 关键数据存储于加密芯片中,程序运行时再从加密芯片中读出使用。由于在对用户数据 存储区进行操作前要先通过密钥验证,所以在这之前要根据上一种方法进行密钥的设 置。此方法同样需要在硬件出厂前必须锁定用户密钥,否则起不到任何加密保护作用。

用户数据存储区读写的示例代码所在位置为光盘目录下\编程示例\加密芯片相关\用户数据读写\ htscdata。

深圳市恒天智信科技有限公司

地址:深圳市龙华新区油松路106号天汇大厦D栋616

电话: (086) 755-82792766 传真: (086) 755-82550036

http://www.htnice.com