Investigación Operativa – Doble Grado (17/12/2020)

1. (0.15 puntos) Se considera el siguiente problema de programación lineal:

$$\max z = 2x_1 - x_2 + x_3$$

$$s. a.: 3x_1 - 2x_2 + 2x_3 \le 15$$

$$-x_1 + x_2 + x_3 \le 3$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

cuya solución óptima se presenta en la siguiente tabla (siendo x_4 y x_5 las variables de holgura correspondientes a las restricciones primera y segunda respectivamente):

	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
x_2	0	1	5	1	3	24
x_1	1	0	4	1	2	21
	0	0	-2	-1	-1	Z – 18

A partir de la tabla óptima anterior, resolver el problema de post-optimización resultante al añadir, al problema original, una nueva variable x_6 ($x_6 \ge 0$) siendo

$$c_6 = -1$$
 y $a_6^t = (1, -2)$.

2. (0.25 puntos) Se considera el siguiente problema de programación lineal:

min
$$z = -6x_1 + 2x_2 - 10x_3$$

s. a.: $x_2 + 2x_3 \le 5$
 $3x_1 - x_2 + x_3 \le 10$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

La siguiente tabla muestra la solución óptima del problema, siendo x_4 y x_5 las variables de holgura correspondientes a las restricciones primera y segunda respectivamente.

	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
<i>x</i> ₃	0	1/2	1	1/2	0	5/2
x_1	1	-1/2	0	-1/6	1/3	5/2
	0	4	0	4	2	Z-(-40)

A partir de la tabla óptima anterior, resolver el problema de post-optimización resultante de modificar el vector de términos independientes considerando: $\acute{b}^t = (6, 1)$.

3. (0.35 puntos). Se considera el siguiente problema de programación lineal:

$$\max z = -5x_1 + 5x_2 + 13x_3$$

$$s. a.: -x_1 + x_2 + 3x_3 \le 20$$

$$6x_1 + 2x_2 + 5x_3 \le 45$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

La siguiente tabla muestra una solución óptima del problema, siendo x4 y x5 las variables de holgura correspondientes a las restricciones primera y segunda respectivamente.

	x_1	<i>X</i> ₂	X 3	X 4	X 5	
x_2	-1	1	3	1	0	20
X 5	8	0	-1	-2	1	5
	0	0	-2	-5	0	Z-100

A partir de la tabla óptima anterior, resolver el problema de post-optimización resultante al añadir, al problema original, la restricción: $2x_1 - x_2 - 3x_3 \ge -10$.

4. (0.25 puntos) Considerando el siguiente problema, demostrar la optimalidad de la solución propuesta, formulando el problema dual y obteniendo la solución óptima del problema dual.

min
$$z = -6x_1 + 2x_2 - 10x_3$$

 $s. a.: -3x_1 + x_2 + 4x_3 \le 5$
 $6x_1 - x_2 + 2x_3 \le 10$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Solución propuesta: $\bar{x}_1 = 1$, $\bar{x}_2 = 0$, $\bar{x}_3 = 2$.