高等数学期中试题(B卷)解答(2010.5)

一. 1. 2,
$$\frac{2}{3}$$
 (2分, 2分)

$$2. \qquad \frac{7}{\sqrt{14}}$$

3.
$$e^{\frac{1}{2}}$$
, 不存在 (2分, 2分)

4.
$$\left\{-\frac{3}{5}, \frac{1}{2}, -\frac{1}{5}\right\}, -\frac{1}{2\sqrt{6}} \quad (2 \%, 2 \%)$$

5.
$$\{3,-4,-1\}$$
, $\arccos \frac{5}{\sqrt{39}}$ $(2 \%, 2 \%)$

6.
$$yf_1' + \frac{1}{y}f_2' + 2x\varphi', \quad f_1' - \frac{1}{y^2}f_2' + xyf_{11}'' - \frac{x}{y^3}f_{22}'' + 2x\varphi'' \quad (2 \%, 2 \%)$$

7.
$$\frac{1}{2}(1-e^{-4})$$

二. 设 L:
$$\frac{x+1}{1} = \frac{y}{m} = \frac{z-4}{n}$$
(3分)

有
$$\begin{vmatrix} l & m & n \\ 1 & 2 & 3 \\ -1 & 0 & 4 \end{vmatrix} = 8l - 7m + 2n = 0$$
(5 分)

$$\{l, m, n\} \cdot \{2, 1, 4\} = 2l + m + 4n = 0$$
(7 分)

解得
$$l = \frac{15}{14}m$$
 $n = -\frac{11}{14}m$

故 L:
$$\frac{x+1}{15} = \frac{y}{14} = \frac{z-4}{-11}$$
 (9分)

三.
$$\begin{cases} \frac{dz}{dx} = 2x + 2y\frac{dy}{dx} \\ 2x + 4y\frac{dy}{dx} + 6z\frac{dz}{dx} = 0 \end{cases}$$
 (4分)

将点 P 代入得
$$\begin{cases} \frac{dz}{dx} = 2 - 2\frac{dy}{dx} \\ 1 - 2\frac{dy}{dx} + 6\frac{dz}{dx} = 0 \end{cases}$$

解得
$$\frac{dy}{dx} = \frac{13}{14} \qquad \frac{dz}{dx} = \frac{1}{7} \qquad (6 分)$$

故切向量
$$\vec{s} = \{1, \frac{13}{14}, \frac{1}{7}\}$$
(7 分)

法平面
$$\pi$$
: $14(x-1)+13(y+1)+2(z-2)=0$

即
$$14x+13y+2z-5=0$$
(9 分)

 $= \arcsin x + f(x^2 - y^2)$

.....(9 分)

七. (1)
$$S: x^2 + y^2 + z^2 = 2z$$
(1分)

(2)
$$C:\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$$
(3 $\%$)

八. 设切点为M(x,y,z)

$$V = \frac{1}{6} \frac{a^2 b^2 c^2}{xyz}$$
(6 分)

$$F(x, y, z) = xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right)$$
 (8 $\%$)

$$\begin{cases} F'_{x} = yz + \frac{2\lambda}{a^{2}}x = 0 \\ F'_{y} = xz + \frac{2\lambda}{b^{2}}y = 0 \\ F'_{z} = xy + \frac{2\lambda}{c^{2}}z = 0 \\ \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1 \end{cases}$$
 (10 %)

解得
$$x = \frac{a}{\sqrt{3}}$$
 $y = \frac{b}{\sqrt{3}}$ $z = \frac{c}{\sqrt{3}}$ (12 分)

由问题的实际意义, ..., 故($\frac{a}{\sqrt{3}}$, $\frac{b}{\sqrt{3}}$, $\frac{c}{\sqrt{3}}$)为所求点

$$V_{\min} = \frac{\sqrt{3}}{2}abc \qquad (14 \, \%)$$