

15. (Amended) The method of claim 30, wherein the first gas is a non-reactive gas.

- 17. (Amended) The method of claim 30, wherein the second plasma includes HBr plasma gas.
- 18. (Amended)The method of claim 30, wherein the second plasma includes a composition of HBr plasma gas and Cl₂ plasma gas.
- 19. (Amended) The method of claim 30, wherein the second plasma includes a composition of HBr plasma gas and CH₄ plasma gas.
- 20. (Amended) The method of claim 30, wherein the metal layer includes one of indium tin oxide (ITO) and indium zinc oxide (IZO).
 - 21. (Amended) The method of claim 30, further comprising: removing the photoresist pattern from the pixel electrode.

Please add new claim 30 as follows:

By

--30. (New) A method of manufacturing a pixel electrode in a liquid crystal display device, comprising:

depositing a metal layer on a passivation layer which partially covers a transistor;

forming a photoresist pattern on the metal layer, leaving a portion of the metal layer uncovered;

exposing the uncovered portion of the metal layer to at least one first gas, prior to etching, to lower a binding force in the uncovered portion; and etching the uncovered portion of the metal layer with at least one

second gas to form a pixel electrode.--