Relations

Discrete Mathematics

Dr. Mohammad Salah Uddin
Associate Professor
Computer Science & Engineering Department
East West University

March 13, 2024

Cartesian Product (Review)

Let $A = \{a_1, a_2, \dots, a_k\}$ and $B = \{b_1, b_2, \dots, b_m\}$. The Cartesian product $A \times B$ is defined by a set of pairs:

$$\{(a_1,b_1),(a_1,b_2),\ldots,(a_1,b_m),\ldots,(a_k,b_m)\}.$$

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

Binary Relations

Definition: Let A and B be two sets. A binary relation from A to B is a subset of the Cartesian product $A \times B$.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.
- ▶ We use the notation aRb to denote $(a, b) \in R$ and $a \not Rb$ to denote $(a, b) \notin R$. If aRb, we say a is related to b by R.

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$.

- ▶ Is $R = \{(a,1), (b,2), (c,2)\}$ a relation from A to B? **Yes**.
- ▶ Is $Q = \{(1, a), (2, b)\}$ a relation from A to B? **No**.
- ▶ Is $P = \{(a, a), (b, c), (b, a)\}$ a relation from A to A? **Yes**.

Representing Relations

We can graphically represent a binary relation R as follows:

▶ If aRb, then draw an arrow from a to b: $a \rightarrow b$.

Example:

- Let $A = \{0, 1, 2\}$, $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$.
- ▶ Note: $R \subseteq A \times B$.

Graph:

Representing Relations

We can represent a binary relation R by a table showing (marking) the ordered pairs of R.

Example:

Let
$$A = \{0, 1, 2\}$$
, $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$.

Table:

R	и	V	R	и	V
0	X		 0	1	1
1		×	1	0	1
2	×		2	1	0

Relations and Functions

Relations represent one-to-many relationships between elements in A and B.

Example:

Example:

What is the difference between a relation and a function from A to B? A function defined on sets A, B A → B assigns to each element in the domain set A exactly one element from B. So it is a special relation.

Relation on the Set

Definition: A relation on the set A is a relation from A to itself. **Example 1:**

- ▶ Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) | a \text{ divides } b\}$.
- \blacktriangleright What does R_{div} consist of?
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Table:

R_{div}	1	2	3	4
1	×	×	×	X
2		×		X
3			X	
4				X

Relation on the Set

Example:

- \blacktriangleright Let $A = \{1, 2, 3, 4\}.$
- ▶ Define a relation $aR_{\neq}b$ if and only if $a\neq b$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$$

Table:

Binary Relations

Theorem: The number of binary relations on a set A, where |A| = n, is 2^{n^2} .

Proof:

- If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.
- ▶ R is a binary relation on A if $R \subseteq A \times A$ (i.e., R is a subset of $A \times A$).
- ▶ The number of subsets of a set with k elements is 2^k .
- ▶ Therefore, the number of subsets of $A \times A$ is 2^{n^2} .

Definition (Reflexive Relation): A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $R_{\text{div}} = \{(a, b) \text{ if } a|b\} \text{ on } A = \{1, 2, 3, 4\}.$
- ► Is *R*_{div} reflexive?
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- ▶ Answer: Yes. (1,1), (2,2), (3,3), and $(4,4) \in A$.

Reflexive Relation

Reflexive Relation:

- Arr $R_{\text{div}} = \{(a, b) \text{ if } a|b\} \text{ on } A = \{1, 2, 3, 4\}.$
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

$$M_{R_{
m div}} = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

A relation R is reflexive if and only if M_R has 1 in every position on its main diagonal.

Reflexive Relation

Definition (Reflexive Relation): A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example 2:

- ▶ Relation R_{fun} on $A = \{1, 2, 3, 4\}$ defined as:
- $R_{\mathsf{fun}} = \{(1,2), (2,2), (3,3)\}.$
- ▶ Is R_{fun} reflexive?
- ▶ No. It is not reflexive since $(1,1) \notin R_{\text{fun}}$.

Irreflexive Relation

Definition (Irreflexive Relation): A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every $a \in A$.

Example 1:

- Assume relation R_{\neq} on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$.
- Is R_≠ irreflexive?
- $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$
- ▶ Answer: Yes. Because (1,1), (2,2), (3,3), and $(4,4) \notin R_{\neq}$.

Irreflexive Relation

- ▶ R_{\neq} on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$.
- $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

A relation R is irreflexive if and only if M_R has 0 in every position on its main diagonal.

Definition (Irreflexive Relation): A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on $A = \{1, 2, 3, 4\}$ defined as:
- $R_{\mathsf{fun}} = \{(1,2), (2,2), (3,3)\}.$
- ► Is R_{fun} irreflexive?
- ▶ Answer: No. Because (2,2) and $(3,3) \in R_{\text{fun}}$.

Definition (Symmetric Relation): A relation R on a set A is called symmetric if for all $a, b \in A$, $(a, b) \in R \rightarrow (b, a) \in R$.

Example 1:

- $ightharpoonup R_{\text{div}} = \{(a, b) \text{ if } a|b\} \text{ on } A = \{1, 2, 3, 4\}.$
- ► Is *R*_{div} symmetric?
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: No. It is not symmetric since $(1,2) \in R$ but $(2,1) \notin R$.

Definition (Symmetric Relation): A relation R on a set A is called symmetric if for all $a, b \in A$, $(a, b) \in R \rightarrow (b, a) \in R$. **Example 2:**

- ▶ R_{\neq} on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$.
- ▶ Is R_{\neq} symmetric?
- $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$
- ▶ Answer: Yes. If $(a, b) \in R_{\neq} \rightarrow (b, a) \in R_{\neq}$.

Symmetric Relation:

- ▶ R_{\neq} on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$.
- $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

A relation R is symmetric if and only if $m_{ij} = m_{ji}$ for all i, j.

Definition (Symmetric Relation): A relation R on a set A is called symmetric if for all $a, b \in A$, $(a, b) \in R \rightarrow (b, a) \in R$. **Example 3:**

- ▶ Relation R_{fun} on $A = \{1, 2, 3, 4\}$ defined as:
- $R_{\mathsf{fun}} = \{(1,2), (2,2), (3,3)\}.$
- ightharpoonup Is R_{fun} symmetric?
- ▶ Answer: No. For $(1,2) \in R_{\text{fun}}$ there is no $(2,1) \in R_{\text{fun}}$.

Definition (Anti-symmetric Relation): A relation on a set A is called anti-symmetric if $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b$ where $a,b \in A$.

Example 3:

- ▶ Relation R_{fun} on $A = \{1, 2, 3, 4\}$ defined as:
- $R_{\mathsf{fun}} = \{(1,2), (2,2), (3,3)\}.$
- ightharpoonup Is R_{fun} anti-symmetric?
- Answer: Yes. It is anti-symmetric.

Anti-symmetric Relation

▶ Relation $R_{\text{fun}} = \{(1,2), (2,2), (3,3)\}$

$$M_{R_{\mathsf{fun}}} = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

A relation is anti-symmetric if and only if $m_{ij}=1 \rightarrow m_{ji}=0$ for $i \neq j$.

Definition (Transitive Relation): A relation R on a set A is called transitive if $[(a,b) \in R \text{ and } (b,c) \in R] \to (a,c) \in R$ for all $a,b,c \in A$.

Example 1:

- $R_{\text{div}} = \{(a, b) \text{ if } a|b\} \text{ on } A = \{1, 2, 3, 4\}.$
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$
- ► Is R_{div} transitive?
- Answer: Yes.

Definition (Transitive Relation): A relation R on a set A is called transitive if $[(a,b) \in R \text{ and } (b,c) \in R] \to (a,c) \in R$ for all $a,b,c \in A$.

Example 2:

- ▶ R_{\neq} on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$.
- $R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$
- ▶ Is R_{\neq} transitive?
- Answer: No. It is not transitive since $(1,2) \in R_{\neq}$ and $(2,1) \in R_{\neq}$, but (1,1) is not an element of R_{\neq} .

Definition (Transitive Relation): A relation R on a set A is called transitive if $[(a,b) \in R \text{ and } (b,c) \in R] \to (a,c) \in R$ for all $a,b,c \in A$.

Example 3:

- ▶ Relation R_{fun} on $A = \{1, 2, 3, 4\}$ defined as:
- $R_{\mathsf{fun}} = \{(1,2), (2,2), (3,3)\}.$
- ► Is R_{fun} transitive?
- Answer: Yes. It is transitive.

Transitive Relation

Let $A = \{1, 2, 3\}$ and R be the relation on set A defined as $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 3)\}$. The matrix representation of R is:

$$M_{R} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Show that R is transitive.

Transitive Relation (Solution)

We can compute $M_R^2 \odot$ as $M_R \cdot M_R$:

$$M_R^2 \bigodot = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Since, $M_R^2 \odot = M_R$, the relation R is transitive.

Formula: if $M_R^2 \odot = M_R$ then the relation is transitive

Equivalence Relations

Definition: An equivalence relation R on a set A is a relation that is reflexive, symmetric, and transitive.

Properties:

- ▶ **Reflexive:** $(a, a) \in R$ for all $a \in A$.
- **Symmetric:** $(a,b) \in R \Rightarrow (b,a) \in R$ for all $a,b \in A$.
- **Transitive:** $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.

Example: The relation of "equality" is an equivalence relation. For any set A, the relation $R = \{(a, a) \mid a \in A\}$ is an equivalence relation on A.