COMP5349 – Cloud Computing

Week 13: Course Review and Exam Info

Dr. Ying Zhou School of Computer Science

COMP5349 Schedule in 2019

	Week	Topic
	Week 1	Cloud Computing Overview and Service Models
	Week 2	Virtualization Technology
	Week 3	Container Technology
	Week 4	Map/Reduce Framework
	Week 5	Spark Framework
	Week 6	Distributed Execution: HDFS and YARN
	Week 7	Distributed Execution: Spark
	Week 8	Spark Data Frame
	Week 9	Spark Machine Learning Library
	Week 10	Cloud Storage and Databases Services
	Week 11	Consistency in Cloud Storage and Database Service
	Week 12	
	Week 13	Course Review

13-2

The Big Picture

- Cloud Computing
 - Shared IT services for clients to rent from
 - On different levels (laaS, PaaS, SaaS, FaaS,)
 - Made possible through web and data center technology
- Enabling Technologies
 - Virtualization
 - Used by all laaS providers
 - Container
 - Can be used in various scenarios
 - laaS customers can use container technology to deploy applications on VM
 - PaaS or SaaS
 - Active development to support Serverless computing
 - Key issues
 - Illusion of a whole system to every client
 - Performance isolation
 - Security and others

Analytics and BigData Services

- Basic Computational Model
 - Storage: distributed file systems (GFS, HDFS)
 - Programming Paradigm: MapReduce
 - Hadoop MapReduce as specific (open source) example
 - Map and Reduce phases
 - Each phase allows multiple tasks to run in parallel
 - Synchronization and shuffling happen between map and reduce phase
 - Map output key is used to reorganize intermediate result in reduce phase
 - ► An analytic workload may needs several map reduce phases
 - Simple localized fault tolerance mechanism depends on storage and I/O
- Other computation model
 - Spark
 - RDD based API
 - Data Frame based API
 - Main-memory based as compared with disk/batch based approach by MapReduce
- All based on functional programming paradigm

Cloud Storage and Database Services

- Cloud Storage Services
 - ▶ The cloud version of file system: GFS/HDFS, S3, EBS, etc
- Cloud Database Services
 - The cloud version of database: Bigtable, WAS, Dynamo, AWS Aurora
- Common features
 - Replication
 - Partition
 - ► Fault Tolerance
 - Various consistency levels
 - Various ways of handling read/write of the data

Cloud Storage/DB Services Consistency

- Many systems use customized algorithms for handling read/write
- Classic distributed system algorithm
 - Paxos
 - First phase only requests participants to make a promise, the actual value is proposed in the second phase
 - Participant is not requested to check the value proposed, instead, participant checks the proposal's sequence number
 - A leader is necessary to maintain the progress of the algorithm
- Paxos can be used in replicated environment to reach consensus
 - Run multiple Paxos, each is numbered and the value to be chosen represents an update command
 - Efficient mechanism to run infinite Paxos

Final Exam

- Online Open book two-hour exam
 - Conducted in Canvas
- Exam questions
 - ► Multiple choice questions and short answer questions
- Multiple choice question has single correct answer
- Short answer questions are structured into multiple parts.
- Type your answers in the text field provided in the exam paper
 - Label answer with question part
- The exam has a 100 points in total
- The exam has a 40% barrier
 - You need to get at least 40 of 100 points in the final exam to pass this subject

Final Exam Content

- Assessable:
 - Lecture content
 - All weeks
 - ► Tutorial material
 - All except week 1
 - Assignment
- Big Data programming may be assessed in various ways
 - Questions based on a short program
 - Design a workload by writing code/pseudo code

Thank You!

