"Emergence of Grounded Compositional Language in Multi-Agent Populations"

Mordatch (OpenAI) & Abbeel (Berkeley), 2018

Presented by Andre

Abstract

"...we propose a multi-agent learning environment and learning methods that **bring about emergence of a basic compositional language**. This language is represented as streams of abstract discrete symbols uttered by agents over time, but nonetheless has a coherent structure that possesses a defined vocabulary and syntax."

General Game Setup

- Cooperative partially observable Markov game
- Players share the same policy, action spaces, and observation spaces
- Objective: find the policy that maximizes the expected total reward across players

$$\max_{\boldsymbol{\pi}} R(\boldsymbol{\pi}), \quad \text{where} \quad R(\boldsymbol{\pi}) = \mathbb{E}\left[\sum_{t=0}^{T} \sum_{i=0}^{N} r(\mathbf{s}_i^t, \mathbf{a}_i^t)\right]$$

Environment Conditions

- Agents and landmarks possess intrinsic observable features, like color and shape
- Agents can gaze and move in a direction
- Each agent has internal tasks, either to gaze or move in a direction; not observed by others
 - Agent 1 may need Agent 2 to move in order to accomplish their task

Communication Protocols

- Agents and communicate with other agents to coordinate action to accomplish tasks
- Communication is symbolic, sequential, not optimized (abstract), broadcasted to everyone, & executed at every time step
- Communicating is costly ('metabolic effort')
- Maximum vocabulary size 20
 - Larger vocabulary sizes are harder to train
 - Penalties to avoid repres. redundancy

Evolution of the Environment

N: # agents

x: physical characteristics (color, shape, etc.)

t: time

c: communication/language

m: memory bank (stores individual tasks)

o: observation set

a: action set

pi: policy

dashed lines: one-to-one

bolded lines: all-to-all

System Optimization

- Q Learning: scales quadratically w/ language size :'(
- Model-free policy gradient methods have too high variance
- Approach: use an end-to-end differentiable NN to model agents and states in the <u>entire system</u>
- Each step, train 1024 'worlds' (batch size) and backprop results to optimize communication

Experiment Results

- Authors could easily interpret symbols because of the small vocabulary size
- Language contained: nouns (references to certain agents + landmarks), verbs ('GO-TO'), no redundancy
 - Self-awareness demonstrated via linguistic reference?

```
Red Agent: GOTO, RED, BLUE-AGENT, ...
Green Agent: ..., ..., ...
Blue Agent: RED-AGENT, GREEN, LOOKAT, ...
(... = silence)
```

Condition	Train Reward	Test Reward
No Communication	-0.919	-0.920
Communication	-0.332	-0.392

Experiment Results

Agents developed a host of non-language behavioral communication approaches: pointing, guiding, pushing ('waggle dance' from swarm intelligence?)

Where to go next? // What can we do?

- Liberate restrictions on language (free speech is the way)
 - Allow larger vocabulary size
 - Remove penalizations for language redundancy, allow 'synonyms'
 - Remove/diminish/adjust metabolic cost
- Explore civilization-based rather than individual-based tasks/goals
- Explore independence of model definition + policy usage & optimization
 - Principles from swarm intelligence: model autonomy
- Let deep learning systems do more of the work, less human design

thank you