CP312: Algorithm Design & Analysis

Assignment #1

CP312, WLU, 2022

Instructor: Masoomeh Rudafshan

Due: Friday January 14th, 2022

Declan Hollingworth 190765210 holl5210@mylaurier.ca Nishant Tewari 190684430 tewa4430@mylaurier.ca

Q1. Prove by induction that for all n>1 the following inequality holds:

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{13}{24}$$

Base Case: n = 2

$$S(2) = \frac{1}{2+1} + \frac{1}{2+2} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12} = \frac{14}{24} > \frac{13}{24}$$

∴ Base case holds true

Asume the inequality holds for n = k

$$S(k) = \frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k} > \frac{13}{24}$$

Now we prove the case: n = k + 1

$$S(k+1) = \frac{1}{k+1+1} + \frac{1}{k+1+2} + \dots + \frac{1}{2(k+1)}$$

$$S(k+1) = \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2} \text{ we can assume } \frac{1}{2k} \& \frac{1}{2k+1} \text{ will be in the summation*}$$

$$S(k+1) = \frac{1}{k+1} - \frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2} \text{ add and sub } \frac{1}{k+1} \text{ add sub } \frac{1}{k+1} \text{ substitutes } \text{ substitutes$$

$$S(k) + \frac{1}{2(k+1)(2k+1)} > S(k) > \frac{13}{24}$$

$$\therefore S(k+1) > \frac{13}{24}$$
 and the inequality holds

Q2. Suppose we have $n \ge 3$ lines so that no two lines are parallel and no three lines intersect at a common point. Prove that at least one of the regions they form is a triangle. (hint: use induction)

Base Case:
$$n = 3$$

Let L be the # of lines

The # of regions in the plane formed by n lines in general position states that no 2 lines are parallel and no 3 lines intersect at a common point then;

$$L = n(n+1)/2 + 1$$

$$L(3) = [3*(3+1)/2] + 1$$

$$L(3) = 6 + 1$$

$$L(3) = 7$$

Note:

Red Dots -> Regions

Orange Triangle -> Triangle

We can see that a triangle will form at n=3, this triangle will still exist for any n >= 3, therefore for any n >= 3 a triangle will form in at least one of the regions.

Q3.For each of the following pairs of functions f(n) and g(n), either f(n) = O(g(n)) or g(n) = O(f(n)), but not both. Determine which is the case.

a)
$$f(n) = (n^2 - n) / 2$$
, $g(n) = 6n$

$$\lim_{n \to \infty} \to \left[\frac{\frac{1}{2} \cdot (n^2 - n)}{6n} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{\frac{1}{12}}{12} \cdot (n - 1) \right]$$

$$\frac{\frac{1}{12}}{12} \left[\lim_{n \to \infty} \to (n) - \lim_{n \to \infty} \to (1) \right]$$

$$\lim_{n \to \infty} \to (n) = \infty$$

$$\lim_{n \to \infty} \to (1) = 1$$

$$\lim_{n \to \infty} \to (1) = 1$$

$$= \frac{1}{12} (\infty - 1) = \infty$$

 \therefore Since the limits is ∞ , then the following pair of functions is g(n) = O(f(n))

b)
$$f(n) = n + 2\sqrt{n}$$
, $g(n) = n^2$

$$\lim_{n \to \infty} \to \left[\frac{n + 2\sqrt{n}}{n^2} \right]$$
$$\lim_{n \to \infty} \to \left[\frac{1}{n} + \frac{2}{3} \right]$$
$$n^{\frac{1}{2}}$$

$$\lim_{n \to \infty} \to \left[\frac{l}{n}\right] + \lim_{n \to \infty} \to \left[\frac{2}{\frac{3}{3}}\right]$$

$$\lim_{n \to \infty} \to \left[\frac{l}{n}\right] = 0$$

$$\lim_{n \to \infty} \to \left[\frac{2}{\frac{3}{3}}\right] = 0$$

$$\lim_{n \to \infty} \to \left[\frac{2}{\frac{3}{3}}\right] = 0$$

 $\dot{\,\cdot\,}$ Since both limits are 0, then the following pair of functions is f(n)=O(g(n))

c)
$$f(n) = n + \log n$$
, $g(n) = n \sqrt{n}$

$$\lim_{n \to \infty} \to \left[\frac{n + \log n}{n \sqrt{n}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{l}{n^{l/2}} + \frac{ln(n)}{\frac{3}{n^2}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{l}{n^{l/2}} \right] + \lim_{n \to \infty} \to \left[\frac{ln(n)}{\frac{3}{n^2}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{l}{n^{l/2}} \right] = 0$$

$$\lim_{n \to \infty} \to \left[\frac{ln(n)}{\frac{3}{n^2}} \right] = 0$$

 \therefore Since both limits are 0, then the following pair of functions is f(n) = O(g(n))

d)
$$f(n) = n^{2} + 3n + 4, g(n) = n^{3}$$

$$\lim_{n \to \infty} \to \left[\frac{n^{2} + 3n + 4}{n^{3}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{1}{n} + \frac{3}{n^{2}} + \frac{4}{n^{3}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{1}{n} \right] + \lim_{n \to \infty} \to \left[\frac{3}{n^{2}} \right] + \lim_{n \to \infty} \to \left[\frac{4}{n^{3}} \right]$$

$$\lim_{n \to \infty} \to \left[\frac{1}{n} \right] = 0$$

$$\lim_{n \to \infty} \to \left[\frac{3}{n^{2}} \right] = 0$$

$$\lim_{n \to \infty} \to \left[\frac{4}{n^{3}} \right] = 0$$

 \therefore Since all three limits are 0, then the following pair of functions is f(n) = O(g(n))

Q4. Prove the following:

$$2n + 1 = O(2^n)$$

Is this the best upper-bound for the function on the left? In other words, is it a tight upper-bound? If not, specify the tight upper-bound?

Size of n	2n + 1	2 ⁿ
1	3	2
2	5	4
3	7	8
4	9	16
5	11	32

Looking at the outcomes for the increasing values of n, we can see that 2n + 1 grows linearly, whereas 2^n grows exponentially, meaning it is not a valid tight upper-bound. In order to find a tight upper bound, we must find a function f(n) that grows linearly and satisfies the following..

$$2n+1>f(n), n\in R$$

f(n) = 3n would be the obvious choice as it runs linearly and will be greater than or equal to 2n + 1 for all instances of n.

Size of n	2n + 1	3n
1	3	3
2	5	6
3	7	9
4	9	12
5	11	15

 \therefore O(3n) would be a valid tight upper bound for the function 2n +1

Q5. For each of the following six code segments:

- a) Give Big-O analysis of the running time
- b) Run the code and give the running time for several values of n
- c) Compare your analysis with the actual runtimes obtained

Segment 1

```
sum = 0
for i in range(n):
  sum += 1
```

<u>Big-O:</u> O(n)

Values:

Trial #	Size of N	Runtime (in seconds)
1	100,000	0.009996414184570312
2	1,000,000	0.14299726486206055
3	10,000,000	1.8609983921051025

Segment 1 - O(n)


```
sum = 0
for i in range(n):
  for j in range(n):
    sum += 1
```

<u>Big-O:</u> $O(n^2)$

Values:

Trial #	Size of N	Runtime (in seconds)
1	100	0.0019991397857666016
2	1,000	0.1819934844970703
3	10,000	15.102467060089111

Segment 2 - O(n^2)


```
sum = 0
for i in range(n):
  for j in range(n*n):
    sum += 1
```

<u>Big-O:</u> $O(n^3)$

Values:

Trial #	Size of N	Runtime (in seconds)
1	100	0.36200380325317383
2	250	2.0759949684143066
3	500	16.08599352836609

Segment 3 - O(n^3)


```
sum = 0
for i in range(n): #O(n)
  for j in range(i): #(n^2)
    sum += 1
```

<u>Big-O:</u> $O(n^2)$

Values:

Trial #	Size of N	Runtime (in seconds)
1	100	0.0009996891021728516
2	1,000	0.09599757194519043
3	10,000	7.347998142242432

Segment 4 - O(n^2)


```
sum = 0
for i in range(n):
  for j in range(i*i):
    for k in range(j):
        sum += 1
```

<u>Big-O:</u> $O(n^5)$

Values:

Trial #	Size of N	Runtime (in seconds)
1	10	0.002000093460083008
2	25	0.1549985408782959
3	50	4.404094696044922

Segment 5 - O(n^5)


```
sum = 0
for i in range(n):
  for j in range(i*i):
    if (j%i == 0):
      for k in range(j):
      sum += 1
```

Big-O: $O(n^5)$

Values:

Trial #	Size of N	Runtime (in seconds)
1	50	0.1810002326965332
2	100	1.6929974555969238
3	150	8.793999910354614

Segment 6 - O(n^5)

