第六章 FIR 数字滤波器设计 课 程 作 业

表 1 窗基本参数

	窗谱性能		加窗后滤波器性能指标		
窗函数	主瓣	旁瓣	过渡带宽	阻带最小	通带边沿
	宽度	电平(dB)	$\Delta \omega$	衰减(dB)	衰减(dB)
矩形	$4\pi/N$	-13	$1.8\pi/N$	-21	0.815
三角	8π/N	-25	$6.1\pi/N$	-25	0.503
Hanning	8π/N	-31	$6.2\pi/N$	-44	0.055
Hamming	$8\pi/N$	-41	$6.6\pi/N$	-53	0.021
Blackman	$12\pi/N$	-57	$11\pi/N$	-74	0.00173

表 2 过渡带抽样点数 ←→As

m	$\Delta \omega$	$A_s(dB)$		
0	$2\pi/N$	16~20 dB		
1	4π/N	43~54 dB		
2	6π/N	60∼75 dB		
3	8π/N	80~95 dB		

- 【6.1】试从结构、相位特性、稳定性等方面简述 IIR 和 FIR 两类数字滤波器的主要特点。
- 【6.2】设计一个线性相位高通滤波器 h(n),满足止带边界频率 $f_i=10kHz$,通带边界频率 $f_i=12kHz$,止带衰减大于 50dB,系统时钟频率 $f_i=40kHz$,试选择合适的窗函数,且使滤波器阶数最小,求出该滤波器的单位响应 h(n)的解析式。
- 【6.3】用窗函数法设计一个线性相位 FIR 低通滤波器,滤波器设计指标为:通 带截止频率 f_1 =1.5kHz,止带起始频率 f_2 =4kHz,采样频率 f_3 =20kHz,阻带衰减 δ =-15dB。试选择合适的窗函数,且使滤波器阶数最小,求出该滤波器的单位响应 h(n)的解析式。
- 【6.4】用频率采样法设计一个线性相位高通滤波器,通带边界频率为 $3\pi/4$,过渡带设置一个采样点|H(k)|=0.39,分别求N=33和N=34时的频率采样值H(k)。
- 【6.5】试用频率取样法设计线性相位 FIR 带通数字滤波器,给出 h(n)。设 N=33,理想幅度特性 $H_d(e^{j\omega})$ 如下图所示。

