Useful Probability Cheatsheet Part 1

Hao Yan

1 Properties of the Integral and Expected Values

Definition 1.1 A real valued function X defined on Ω is said to be a **random variable** if for every Borel set $B \subset \mathbb{R}$ we have $X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{F}$. When we need to emphasize the σ -field, we will say that X is \mathcal{F} -measurable or write $X \in \mathcal{F}$

Theorem 1.1 (Jensen's inequality.) Suppose ϕ is convex, that is,

$$\lambda \phi(x) + (1 - \lambda)\phi(y) \ge \phi(\lambda x + (1 - \lambda)y)$$

for all $\lambda \in (0,1)$ and $x,y \in \mathbb{R}$. If μ is a probability measure, and f and $\phi(f)$ are integrable then

$$\phi\Big(\int f d\mu\Big) \le \int \phi(f) d\mu$$

Theorem 1.2 (Jensen's inequality.) Suppose ϕ is convex, then

$$E(\phi(X)) \ge \phi(EX)$$

provided both expectations exist, i.e., E|X| and $E|\phi(X)| < \infty$

Theorem 1.3 (Bounded convergence theorem.) Let E be a set with $\mu(E) < \infty$. Suppose f_n vanishes on E^c , $|f_n(x)| \leq M$, and $f_n \to f$ in measure. Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Theorem 1.4 (Fatou's lemma.) If $f_n \ge 0$ then

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \left(\liminf_{n \to \infty} f_n \right) d\mu$$

Theorem 1.5 (Fatou's lemma.) If $X_n \ge 0$ then

$$\liminf_{n \to \infty} EX_n \ge E(\liminf_{n \to \infty} X_n)$$

Theorem 1.6 (Monotone convergence theorem.) If $f_n \geq 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu$$

Theorem 1.7 (Monotone convergence theorem.) If $0 \le X_n \uparrow X$ then $EX_n \uparrow EX$

Theorem 1.8 (Dominated convergence theorem.) If $f_n \to f$ a.e., $|f_n| \le g$ for all n, and g is integrable, then

$$\int f_n d\mu \to \int f d\mu$$

Theorem 1.9 (Dominated convergence theorem.) If $X_n \to X$ a.s., $|X_n| \le Y$ for all n, and $EY < \infty$, then $EX_n \to EX$

Theorem 1.10 (Chebyshev's inequality.) Suppose $\phi : \mathbb{R} \to \mathbb{R}$ has $\phi \geq 0$, let $A \in \mathcal{R}$ and let $i_A = \inf\{\phi(y) : y \in A\}$.

$$i_A P(X \in A) \le E(\phi(X); X \in A) \le E\phi(X)$$

Theorem 1.11 (Fubini's theorem.) If $f \ge 0$ or $\int |f| d\mu < \infty$ then

$$\int_{X} \int_{Y} f(x, y) \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d\mu = \int_{Y} \int_{X} f(x, y) \mu_{1}(dx) \mu_{2}(dy)$$