Sh(Cart) as a classifying topos

 $\mathbf{Cart} = \{\mathbb{R}^n \mid n \in \mathbb{N}\} \subseteq \mathbf{Top}$ site with open cover topology.

Model for real cohesion : $\Pi \dashv \Delta \dashv \Gamma \dashv \nabla : \mathbf{Sh}(\mathbf{Cart}) \to \mathbf{Set}$ has nice properties:

- dedekind reals are representables
- · covering spaces
- vector bundles, Grassmanians
- modal type theory / cohesion

What does the topos classify?

Observation: **Cart** is a Lawvere theory. It's a *super theory* of known Lawvere theories:

$$L(\mathsf{Ring}) \subseteq L(\mathbb{R}\text{-}\mathsf{Alg}) \subseteq L(C^{\infty}\text{-}\mathsf{Ring}) \subseteq \mathbf{Cart} =: L(\mathsf{RC}\text{-}\mathsf{Alg})$$

Call its models *real-continuous algebras*. So a real-continuous algebra is in particular an \mathbb{R} -algebra, but besides the polynomials it has n-ary operations for all continuous $f:\mathbb{R}^n\to\mathbb{R}$.

We write $\mathbf{RCL} = \mathbf{RC-Alg^{op}}$ for the formal dual of $\mathbf{RC-Alg}$ and call its objects *real-continuous loci*.

The inclusion $\mathbf{Cart} \subseteq \mathbf{Top}$ gives rise to a Galois connection

$$\mathbf{RC}\text{-}\mathbf{Alg} \leftrightarrows \mathbf{Top^{op}}$$

which we formally decompose as follows:

$$egin{aligned} \mathbf{RC ext{-}Alg}^{\mathbf{op}} \ C(-) &\uparrow \simeq \downarrow \mathsf{spec} \ \mathbf{RCL} \ L &\uparrow \dashv \downarrow P \ \mathbf{Top} \end{aligned}$$

The functor L is fully faithful on *realcompact* spaces.

- A realcompact space is a completely regular space which contains all the "real" points of its SC compactification (it is possible to associate some kind of residue fields to elements of the SC compactification).
- A space is realcompact iff it's a closed subspace of some $\mathbb{R}^I.$
- All "small" metric spaces are realcompact: specifically, (X,d) is realcompact whenever it has no closed discrete subspace of measurable cardinal.

The classifying topos for RC-algs is the presheaf-topos on \mathbf{RC} -Alg_{fv}. So let's try to understand those.

- The fg-free rc-algs are precisely the algs $C(\mathbb{R}^n)$.
- The finpres rc-algs are of the form $C(R^n)/I$ for finitely generated RC ideals L.

Def:

- ullet For $f\in C(\mathbb{R}^n)$ write \$Z(f)={\vec x ;|; f(\vec x)0 }
- For $A\subseteq\mathbb{R}^n$ write $I(A)=\{f\in C(\mathbb{R}^n)\mid f|_A=0\}.$ This is a rcidl.

Not every rcidl is of this form. A counterexample is given by $L(0)=igcup_{n\in\mathbb{N}}I([-1/n,1/n])$

However, every *finitely generated* rcidl is of this form! This is a consecquence of the following.

Proposition: We have $\langle f \rangle = I(Z(f))$.

Cor: We have I(Z(a)) = a for all fgidls a.

Cor: The functor $\mathbf{Cart} o \mathbf{Top} o \mathbf{RCL}$ preserves equalizers.

Def: Write \overline{Cart} for the category of closed subspaces of cartesian spaces.

Cor: Cart is the fl-completion of Cart and thus the fl-theory of realgs.

Classifying toposes

We have geom inclusions

$$\mathbf{Sh}(\mathbf{Cart}) \hookrightarrow \widehat{\mathbf{Cart}} \hookrightarrow \widehat{\overline{\mathbf{Cart}}}$$

where the last one classifies rcalgs

The presheaves on the l-theory classify *flat* realgs. These are re-algs validating the geometric sequent

$$f(ec{x}) = 0 dash_{ec{x}} igvee_{m} igvee_{ec{h} \in C(\mathbb{R}^m, \mathbb{R})^k} \exists ec{y} \, . \, ec{h}(ec{y}) = ec{x} \, .$$

for all f. Thinking about elts of A as functions on spec(A) we can draw the following picture ...

Examples:

- $C(\mathbb{R}^n)$ flat
- C(1+1) not flat
- C(s1) not flat

That looks like a contractibility condition!

Def:

- Call realg A local, if it is local as a ring.
- Call realg A archimedean, if it validates

$$f: A \vdash \exists nf \text{ factors through } B_n$$

(expressible since all cont functions are ops)

Prop:

- finite open cover topology on $\overline{\mathbf{Cart}}$ corresponds to local realgs
- open cover topology on Cart corresponds to local archimedean realgs.
- However, in presence of flatness, local algs are automatically archimedean (since open covers generate all covers)

Examples:

- nonstandard reals are local but not archimedean or flat
- bounded nonstandard reals are local and archimedean but not flat
- $C(\mathbb{R})/L(0)$ is flat, local, and thus archimedean
- local neighbourhood of closed interval is flat and archimedean but not local

Lemma: spec(A) has a unique point for all flat local A.

Thus, spec(A) topologically a very small, pointed, and contractible space.