My formalization project

苗代

2025年6月18日

1 section1

Definition 1. E_8 格子とは、integral Lattice であって、even unimodular かつランクが 8 であるもののこと である.

Theorem 2. 2つの E_8 格子 Λ_1 , Λ_2 は同型である.

Proof. sorry.
$$\Box$$

Definition 3. E_8 の Cartan 行列を M_0 , それを 1 行ずつ行基本変形していき (その過程の行列を M_1,M_2,\ldots,M_6 とする) 上三角にしたものを M_7 とする:

Lemma 4. M_7 は上三角である.

Lemma 5. det $M_7 = 1$ $\sigma \delta$.

Proof. 補題 4より, M_7 の行列式は対角成分たちの積であるから

$$\det M_7 = 2 \cdot 2 \cdot (3/2) \cdot (5/6) \cdot (4/5) \cdot (3/4) \cdot (2/3) \cdot (1/2)$$
= 1

Theorem 6. E_8 の Cartan 行列の行列式は 1 である.

Proof. 補題 5より

(求める行列式) =
$$\det M_0 = \det M_1 = \dots = \det M_7 = 1$$
.

Definition 7. B を E_8 の Cartan 行列 $C \in \mathrm{M}_8(\mathbb{Z})$ から定まる双線型形式とする:

$$B(x, y) := {}^{t}xCy = \langle x, Cy \rangle \qquad (\forall x, y \in \mathbb{Z}^{8}).$$

Lemma 8. 任意の $x \in \mathbb{Z}^8$ に対し、次が成り立つ:

$$\begin{split} B(x,x) &= 2(x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 \\ &- (x_0x_2 + x_1x_3 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_6 + x_6x_7)) \end{split}$$

Proof. 内積の形にして、あとは具体的に計算:

$$B(x,x) = \langle x, Cx \rangle = (右辺).$$

Lemma 9. 任意の $x \in \mathbb{Z}^8$ に対し、平方完成すると次のようになる:

$$\begin{split} B(x,x) &= \left(\sqrt{2}\,x_0 - \sqrt{\frac{1}{2}}\,x_2\right)^2 + \left(\sqrt{2}\,x_1 - \sqrt{\frac{1}{2}}\,x_3\right)^2 + \left(\sqrt{\frac{3}{2}}\,x_2 - \sqrt{\frac{2}{3}}\,x_3\right)^2 \\ &+ \left(\sqrt{\frac{5}{6}}\,x_3 - \sqrt{\frac{6}{5}}\,x_4\right)^2 + \left(\sqrt{\frac{4}{5}}\,x_4 - \sqrt{\frac{5}{4}}\,x_5\right)^2 + \left(\sqrt{\frac{3}{4}}\,x_5 - \sqrt{\frac{4}{3}}\,x_6\right)^2 \\ &+ \left(\sqrt{\frac{2}{3}}\,x_6 - \sqrt{\frac{3}{2}}\,x_7\right)^2 + \frac{1}{2}\,x_7^2 \end{split}$$

Proof. 左辺に補題 8を代入して計算すれば得られる.

Theorem 10. $\forall x, y, z \in \mathbb{Z}^8, \ \langle x + y, z \rangle_{\mathbb{Z}} = \langle x, z \rangle_{\mathbb{Z}} + \langle y, z \rangle_{\mathbb{Z}}.$

Proof. 計算するだけ. □

Theorem 11. $\forall x, y \in \mathbb{Z}^8$, $\langle x, y \rangle_{\mathbb{Z}} = \langle y, z \rangle_{\mathbb{Z}}$.

Proof. 計算するだけ. □

Theorem 12. $\forall x \in \mathbb{Z}^8, \ \langle x, x \rangle_{\mathbb{Z}} \geq 0.$

Proof. 補題 9より, $\langle x,x \rangle_{\mathbb{Z}}$ は平方の和で表せるから成り立つ.

Theorem 13. $\forall x \in \mathbb{Z}^8, \ \langle x, x \rangle_{\mathbb{Z}} = 0 \implies x = 0.$

Proof. 補題 9より, $\langle x,x \rangle_{\mathbb{Z}}$ は平方の和で表せ,=0 とすると各項が 0 である.よって,最後の項に注目すると, $x_7=0$ である.したがって,最後から 2 番目の項に注目すると, $x_6=0$ である.これを繰り返すと, $x_0=\cdots=x_7=0$ を得る.

Theorem 14. $\forall x \in \mathbb{Z}^8, \ \langle x, x \rangle_{\mathbb{Z}} = 0 \implies x = 0.$

Proof. 補題 8より従う.