1st problem

We assume that for given a diredcted graph G, each edge is labeled by an element of some closed semiring and there is special vertices 'u' and 'v'.

The labels come from S where $(S, +, \bullet, 0, 1)$.

This is the algorithm that compute c(u,v) for all possible pair of vertices u and v that $u, v \in V[G]$

```
COMPUTE-PATH(G, u, v)
1 c(u, v)=0 //this "0" is an element of some closed semiring
2 do if u = v
3 c(u, v) \leftarrow 1 //this "1" is an element of some closed semiring
4 for each vertex k \in V[G] - \{u\}
5 do color[k] \leftarrow WHITE
         path[k] \leftarrow 0 //this "0" is an element of some closed semiring
6
7 color[u] ← GRAY
8 Q \leftarrow \emptyset
9 ENQUEUE(Q, u)
10 while Q \neq \emptyset
11 do k \leftarrow DEQUEUE(Q)
    for each a \in Adj[k]
     do if color[a] = WHITE
13
                 then color[a] \leftarrow GRAY
14
                 if k = u
15
                     then path[a] \leftarrow Label[(k, a)]
16
17
                 else
18
                     then if path[a] = 0 //this "0" is an element of some closed semiring
                               then path[a] \leftarrow \bullet(path[k], Label[(k, a)])
20
                               then path[a] \leftarrow +(path[a], •(path[k], Label[(k, a)]))
21
22
              if a ≠ v
23
                   then ENQUEUE(Q, a)
24 color[k] ← BLACK
25 if c(u, v) = 1
26 then c(u, v) \leftarrow +(c(u, v), path[v])
28 then c(u, v) \leftarrow path[v]
29 RERUTN c(u, v)
```

We can compute **c(u, v)** by using this algorithm

2nd problem

```
COMPUTE-2-COLORING(G, s)

1 for each vertex u \in V[G]

2 do color[u] \leftarrow WHITE

3 color[s] \leftarrow RED

4 Q \leftarrow \emptyset
```

```
5 ENQUEUE(Q, u)
6 while Q \neq \emptyset
7 do u \leftarrow DEQUEUE(Q)
    for each v \in Adj[u]
        do if color[v] = WHITE
                  then if color[u] = RED
10
                           then color[v] \leftarrow BLUE
11
12
                        else
                            then color[v] \leftarrow RED
13
                        ENQUEUE(Q, v)
14
            else if color[v] = color[u]
15
                        then RETURN NO
17 RETURN YES
```

The algorithm COMPUTE-2-COLORING is made by applying BFS.

We can solve 2-coloring problem by using this algorithm.

I'm going to explain how this algorithm is done with example.

The picture above is a undirected graph G that is $|V| \ge 2$, $|E| \ge 1$

After running line 1-2, all vertices of G(S, v_1, v_2, v_3, v_4, v_5, v_6) are colored by WHITE

Graph G is as follows.

After running line 3-5, vertex S is colored by RED, QUEUE Q is initialized, and the vertex S is enqueued. So Q=(S)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue S of Q.

Adjacent vertices of S are v_1, v_2

v_1 is colored with WHITE and S is colored with RED

- → Color v_1 with BLUE
- → Enqueue v_1

v_2 is colored with WHITE and S is colored with RED

- → Color v_2 with BLUE
- → Enqueue v_2

Q is (v_1, v_2)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_1 of Q.

Adjacent vertices of S are S, v_3, v_4

S is not colored with WHITE and colors of S and v_1 are not same

v_3 is colored with WHITE and v_1 is colored with BLUE

- → Color v_3 with RED
- → Enqueue v_3

v_4 is colored with WHITE and v_1 is colored with BLUE

- → Color v_4 with RED
- → Enqueue v_4

Q is (v_2, v_3, v_4)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_2 of Q.

Adjacent vertices of S are S, v_4, v_5

S is not colored with WHITE and colors of S and v_2 are not same v_4 is not colored with WHITE and colors of v_4 and v_2 are not same

v_5 is colored with WHITE and v_2 is colored with BLUE

- → Color v_5 with RED
- → Enqueue v_5

Q is (v_3, v_4, v_5)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_3 of Q.

Adjacent vertices of S are v_1, v_6

v_1 is not colored with WHITE and colors of v_1 and v_3 are not same

v_6 is colored with WHITE and v_3 is colored with RED

- → Color v_6 with BLUE
- → Enqueue v_6

Q is (v_4, v_5, v_6)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_4 of Q.

Adjacent vertices of S are v_1, v_2, v_6

v_1 is not colored with WHITE and colors of v_1 and v_4 are not same v_2 is not colored with WHITE and colors of v_2 and v_4 are not same v_6 is not colored with WHITE and colors of v_6 and v_4 are not same

Q is (v_5, v_6)

Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_5 of Q.

Adjacent vertices of S are v_2, v_6

v_2 is not colored with WHITE and colors of v_2 and v_4 are not same v_6 is not colored with WHITE and colors of v_6 and v_4 are not same

Q is (v_6)
Graph G is as follows.

We are in the while loop at 6-16 because Q is not empty.

Dequeue v_6 of Q.

Adjacent vertices of S are v_3, v_4, v_5

v_3 is not colored with WHITE and colors of v_3 and v_6 are not same v_4 is not colored with WHITE and colors of v_4 and v_6 are not same v_5 is not colored with WHITE and colors of v_5 and v_6 are not same

Q is ()

Graph G is as follows.

We are out of while loop at 6-16 because Q is empty.

After running line 17, the algorithm gives us the anwser "YES"

3rd prblem