Задача 2.

Неорганическое вещество **X** было впервые получено в 1910 году путём взаимодействия бинарного соединения **A** и концентрированного водного раствора бинарного соединения **B** (реакция 1). Если ту же реакцию проводить в среде ацетонитрила, то удаётся достичь гораздо более высокого выхода **X**. Водные растворы **X** неустойчивы и со временем распадаются на соединение **B** и вещество **C** (реакция 2), которое производится в промышленных масштабах. Вещество **C** можно использовать для получения **X**. Для этого вещество **C** окисляют фтором на холоду, с образованием веществ **D** и **E** (реакция 3), а затем получение вещество **D** подвергают частичному гидролизу, с образованием веществ **C** и **X** (реакция 4). Соединение **D** также можно получить при взаимодействии хлорной кислоты с солью **F** (реакция 5), образующейся при электролизе холодного концентрированного раствора соли **G** (реакция 6), содержащей 44,9% калия (по массе). Известно, что при взаимодействии раствора соли **G** с раствором хлорида бария выпадает белый осадок (реакция 7), растворимый в соляной кислоте (реакция 8). Определите неизвестные вещества **A**–**G** и **X** и напишите уравнения реакций 1–8. Изобразите структурные формулы веществ **D** и **X**. Как в промышленности получают вещество **C**?

Решение

Поскольку большинство процессов протекает в водных растворах речь, скорее всего, идет о кислородосодержащих соединениях. Определим соль G. Молярная масса G может быть рассчитана, как:

$$M(G) = \frac{xM(K)}{\omega(K)} = \frac{39.1 \, x}{0.449} = 87.1x,$$

где x — количество атомов калия в формульной единице соли G.

При х=1 нет подходящих вариантов, а при х=2 находим, что M(G)=174.2 г/моль, т.е. на кислотный остаток приходится 174,2-39,1·2 = 96 г/моль, что соответствует сульфату и гидрофосфату. Поскольку сульфат бария нерастворим в соляной кислоте, то единственный подходящий вариант на роль соли G – гидрофосфат калия K_2 HPO₄. Значит, речь в задаче идет о соединениях фосфора. Соединение D получается либо при окислении C фтором, либо при подкислении соли F, являющейся продуктом электролиза G. Данный набор реакций указывает на образование пероксидных соединений. При электролизе гидрофосфата калия образуется пероксодифосфат калия K_4 P2O₈ F (аналогия с получением пероксодисульфата из гидросульфата). Значит вещество D — пероксодифосфорная кислота H_4 P2O₈. Гидролиз пероксодифосфорной кислоты даст пероксомонофосфорную кислоту H_3 PO₅ X и ортофосфорную кислоту H_3 PO₄ C. Бинарные соединения A и B — оксид фосфора (V) P2O₅ и пероксид водорода H_2 O₂.

Формулы веществ:

 $A - P_2O_5 (P_4O_{10})$

 $\mathbf{B} - \mathbf{H}_2\mathbf{O}_2$

 $C - H_3PO_4$

 $D - H_4P_2O_8$

 $\mathbf{E} - \mathbf{HF}$

 $F - K_4P_2O_8$

 $G - K_2HPO_4$

 $X - H_3PO_5$

Уравнения реакций:

1. $P_2O_5 + 2H_2O_2 + H_2O = 2H_3PO_5$

2. $H_3PO_5 + H_2O - H_3PO_4 + H_2O_2$

3. $2H_3PO_4 + F_2 = H_4P_2O_8 + 2HF$

4. $H_4P_2O_8 + H_2O = H_3PO_5 + H_3PO_4$

5. $K_4P_2O_8 + 4HClO_4 = H_4P_2O_8 + 4KClO_4$

6. $2K_2HPO_4 = K_4P_2O_8 + H_2\uparrow$

7. $K_2HPO_4 + BaCl_2 = BaHPO_4 \downarrow + 2KCl$

8. $2BaHPO_4 + 2HCl = BaCl_2 + Ba(H_2PO_4)_2$ (допускается вариант с образованием $BaCl_2$ и H_3PO_4)

Структурные формулы:

Ортофосфорную кислоту получают в промышленности либо гидратацией оксида фосфора (V), либо путем взаимодействия фосфорита или апатитов с серной кислотой.

 $P_2O_5 + 3H_2O = 2H_3PO_4$

 $Ca_3(PO_4)_2 + 3H_2SO_4 = 3CaSO_4 + 2H_3PO_4$

 $Ca_5(PO_4)_3F + 5H_2SO_4 = 5CaSO_4 + 3H_3PO_4 + HF$

(засчитывается один любой вариант)

Критерии оценивания:

Формулы веществ A-G, X- $no\ 1$ баллу (всего 8 баллов)

Уравнения реакций 1-8 — **по 1 баллу (всего 8 баллов)** (неуравненные реакции оцениваются в 0,5 балла)

Структурные формулы X и D – **no 1 баллу (всего 2 балла)**

Любой верный способ промышленного получения фосфорной кислоты – 2 балла.

Итого 20 баллов.