LISTA DE EXERCÍCIOS - PCS 2046

- 1. Defina-se (x; y) como: $(x; y) = \{\{x\}, \{x, y\}\}$. Usando esta definição mostre que (a; b) = (c; d), se e somente se, a = c e b = d.
- 2. Estabeleça bijeções com os números naturais para os seguintes conjuntos: (a) os inteiros; (b) os naturais múltiplos de 3; (c) os membros do produto cartesiano dos conjuntos (a) e (b).
- 3. Prove que uma relação é simétrica se e somente se $R = R^{-1}$.
- 4. Prove que uma relação em um conjunto A é anti-simétrica se e somente se:

$$R \cap R^{-1} \subseteq \{(a, a): a \in A\}.$$

- 5. Seja R uma relação de equivalência em um conjunto A e suponha que a, b ∈ A. Prove que a ∈ [b] ⇔ b ∈ [a].
- 6. Sejam R e S relações de equivalência em um conjunto A. Prove que R = S se e somente se as classes de equivalência de R são as mesmas que as de S.
- 7. Suponha que $f: A \to B$ seja uma bijeção. Prove que $f^{-1}: B \to A$ também é uma bijeção.
- 8. Prove que o conjunto **Q** é contável.
- 9. Seja $f: A \to B$ uma função. Uma função $g: A \to B$ é dita inversa à esquerda de f se $g^{\circ}f = \mathrm{id}_A$; e inversa à direita de f se $f^{\circ}g = \mathrm{id}_B$. Prove que se f é injetora, então tem inversa à esquerda, e que se f é sobrejetora então tem inversa à direita.
- 10. Usando o princípio da indução matemática, prove que todo quadrado perfeito positivo pode ser obtido como a soma de uma sequência dos primeiros números naturais ímpares.
- 11. Usando o princípio da indução matemática, prove que a soma dos $\bf n$ primeiros termos de uma progressão geométrica, com primeiro termo $\bf a$ e razão $\bf q$ vale $\bf a(q^n-1)/(q-1)$.
- 12. Novamente usando indução prove que (n⁴-4n²) é divisível por 3, para todo n natural.
- 13. O problema das torres de Hanói com \mathbf{n} discos possui uma solução recursiva para o número de movimentos que é: $\mathbf{M}(\mathbf{n}) = \mathbf{2}^{\mathbf{n}} \mathbf{1}$. Prove que a solução é correta.
- 14. Usando o princípio da casa de pombos, mostre que se uma relação binária sobre um conjunto finito apresentar cadeias de comprimento arbitrário, então nela existe pelo menos um ciclo.
- 15. Suponha que você trabalha para o INPE, e seu chefe solicitou a você uma rotina (função) para mapear as imagens de satélite da cidade de São Paulo em uma tela de vídeo de 640×480 pontos, sem perder qualquer detalhe. É possível cumprir a tarefa? Por quê?
- 16. Prove que, se $A \subseteq B$, e A é não enumerável, então B é não enumerável.
- 17. Mostre que o conjunto dos números reais no intervalo [0, 1] é não enumerável.
- 18. Defina-se que qualquer expressão aritmética E:
 - a) É qualquer número ou letra (variável) é uma expressão;
- b) Se F e G são expressões, então E=F+G, E=F*G, e E=(F) também são expressões;

Prove que toda expressão assim definida tem um número igual de parênteses à esquerda e à direita.

LISTA DE EXERCÍCIOS - PCS 2046

19. Usando como base o autômato da figura abaixo, prove as afirmações S_1 e S_2 : $S_1(\mathbf{n})$ =O autômato está no estado *desligado* após \mathbf{n} acionamentos se e somente se \mathbf{n} é par; $S_2(\mathbf{n})$ =O autômato está no estado *ligado* após \mathbf{n} acionamentos se e somente se \mathbf{n} é ímpar;

Sugestão: Use o princípio da indução.

20. Considere a parte de um programa de computador descrita abaixo:

```
function findMax(array, first, last) {
   if (first == last) return array[first];
   mid = first + (last - first)/2;
   a = findMax(array, first, mid);
   b = findMax(array, mid + 1, last);
   if (a < b) return b;
   return a;
}</pre>
```

Onde <u>array</u> representa uma seqüência de inteiros. Todas as demais variáveis são inteiras. Suponha que <u>first</u> e <u>last</u> estejam entre 1 e o número de elementos da seqüência ordenada, e que <u>first</u> ≤ <u>last</u>. O objetivo do programa é encontrar o maior valor na seqüência entre dois índices (<u>first</u> e <u>last</u>). Prove que o programa desempenha o seu objetivo. [Nota: (last - first) /2, tem como resultado o maior inteiro que seja menor do que o valor racional obtido, ou seja, o seu "piso"].

21. Prove usando o princípio das casas de pombo que dado $n \in \mathbb{N}$, então há inteiros positivos \mathbf{a} e \mathbf{b} , $\mathbf{a} \neq \mathbf{b}$, tais que $\mathbf{n}^{\mathbf{a}}$ - $\mathbf{n}^{\mathbf{b}}$ seja divisível por 10.