11.1: Sequences

Supplementary Notes

A sequence $\{a_n\}$ is a function whose domain is the set of positive integers, i.e an ordered list of numbers. $\{a_n\}$ may be defined recursively as a function of previous terms in the sequence

$$a_1 = a$$
 for real number a ,
 $a_n = f(a_{n-1})$ for $n \ge 2$

or explicitly as a function of n

$$a_n = f(n)$$
 for $n \ge 1$.

The sum of the first n terms of the sequence $\{a_n\}$ is denoted

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n.$$

Exercises

1. The first four terms of the sequence $\{(-1)^{n+1}(1+\frac{1}{n})^n\}$ are

A.
$$2, -\frac{9}{4}, \frac{64}{27}, -\frac{625}{256}$$

B.
$$\frac{625}{256}, \frac{64}{27}, \frac{9}{4}, 2$$

C.
$$-2, \frac{9}{4}, -\frac{64}{27}, \frac{625}{256}$$

D.
$$2, -\frac{5}{4}, \frac{28}{27}, -\frac{257}{256}$$

2. The n^{th} term of the sequence $-1, \frac{1}{9}, -\frac{1}{125}, \frac{1}{2401}, \dots$ is

A.
$$(-1)^{n+1} (\frac{1}{n})^{n-1}$$

B.
$$(-1)^{n+1} (\frac{1}{n})^{n+1}$$

C.
$$(-1)^{n-1} (\frac{1}{2n-1})^n$$

D.
$$(-1)^n (\frac{1}{2n-1})^n$$

3. Choose the sum equivalent to

$$\sum_{i=1}^{100} f(x_i) \Delta x$$

where $f(x_i) = 2i$ and $\Delta x = 0.1$

A.
$$.2 + .4 + .6 + \cdots + 2$$

B.
$$2+4+6+\cdots+20$$

C.
$$.2 + .4 + .6 + \cdots + 200$$

D.
$$2+4+6+\cdots+200$$

E.
$$.2 + .4 + .6 + \cdots + 20$$

4. Select the statement that is true

A.
$$\sum_{k=1}^{9} \frac{k}{(k+1)(k+2)} = \sum_{k=1}^{3} \frac{k}{(k+1)(k+2)} + \frac{2}{15} + \sum_{k=6}^{9} \frac{k}{(k+1)(k+2)}$$

B.
$$\sum_{k=1}^{10} \frac{k}{(k+1)(k+2)} = \sum_{k=1}^{4} \frac{k}{(k+1)(k+2)} + \frac{5}{42} + \sum_{k=6}^{10} \frac{k}{(k+1)(k+2)}$$

C.
$$\sum_{k=1}^{10} \frac{k}{(k+1)(k+2)} = \sum_{k=1}^{4} \frac{k}{(k+1)(k+2)} + \frac{5}{42} + \sum_{k=7}^{10} \frac{k}{(k+1)(k+2)}$$

D.
$$\sum_{k=1}^{9} \frac{k}{(k+1)(k+2)} = \sum_{k=1}^{3} \frac{k}{(k+1)(k+2)} + \frac{2}{15} + \sum_{k=5}^{10} \frac{k}{(k+1)(k+2)}$$

5. Select the statement that is true

A.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=-2}^{n-2} \frac{m(m-1)}{3^m}$$

A.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=-2}^{n-2} \frac{m(m-1)}{3^m}$$
B.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=-2}^{n-2} \frac{(m+4)(m+3)}{3^{m+2}}$$
C.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=2}^{n+2} \frac{(m+4)(m+3)}{3^{m+2}}$$
D.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=2}^{n+2} \frac{m(m-1)}{3^m}$$

C.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=2}^{n+2} \frac{(m+4)(m+3)}{3^{m+2}}$$

D.
$$\sum_{m=0}^{n} \frac{(m+2)(m+1)}{3^{m+2}} = \sum_{m=2}^{n+2} \frac{m(m-1)}{3^m}$$