MA503: Homework 4

Exercise 4.1. [20pts] Consider a Cartesian product $G = \mathbb{Z} \times \mathbb{Z} = \{ (\alpha, x) \mid \alpha, x \in \mathbb{Z} \}$ and a binary operation \cdot on G defined as follows:

$$(\alpha_1, x_1) \cdot (\alpha_2, x_2) = (\alpha_1 + \alpha_2, (-1)^{\alpha_2} x_1 + x_2)$$

- (1) [8pts] Prove that (G, \cdot) is a group.
- (2) [2pts] Is (G, \cdot) abelian?
- (3) [2pts] Is (G, \cdot) finite?
- (4) [2pts] Prove that every cyclic group is abelian. Then use (2) to prove that (G,\cdot) is not cyclic.
- (5) [2pts] Does (G, \cdot) have torsion?
- (6) [2pts] Is $\pi_1: G \to \mathbb{Z}$ defined by $(\alpha, x) \stackrel{\pi_1}{\mapsto} \alpha$ a homomorphism? [I want to emphasize that G is not the direct product of \mathbb{Z} and \mathbb{Z} .]
- (7) [2pts] Is $\pi_2: G \to \mathbb{Z}$ defined by $(\alpha, x) \stackrel{\pi_2}{\mapsto} x$ a homomorphism?

Exercise 4.2. [5pts] Find |2| in U_{67} .

Exercise 4.3. [5pts] Is 2 a primitive root modulo 31?

Exercise 4.4. [10pts] Consider a set $G = \{x_1, x_2, \dots, x_8\}$ of eight elements equipped with a binary operation \cdot defined by the multiplication table shown below. (G, \cdot) is a group.

	x_4	x_3	x_7	x_1	x_2	x_6	x_5	x_8
x_4	x_2	x_6	x_5	x_8	x_4	x_3	x_7	x_1
x_3	x_6	x_4	x_8	x_7	x_3	x_2	x_1	x_5
x_7	x_5	x_1	x_4	x_6	x_7	x_8	x_2	x_3
x_1	x_8	x_5	x_3	x_4	x_1	x_7	x_6	x_2
x_2	x_4	x_3	x_7	x_1	x_2	x_6	x_5	x_8
$\overline{x_6}$	x_3	x_2	x_1	x_5	x_6	x_4	x_8	x_7
$\overline{x_5}$	x_7	x_8	x_2	x_3	x_5	x_1	x_4	x_6
$\overline{x_8}$	x_1	x_7	x_6	x_2	x_8	x_5	x_3	x_4

- (1) Which element is the identity of G?
- (2) Is G abelian? Why?
- (3) Find $|x_3|$.
- (4) Find $\langle x_4 \rangle$.
- (5) Find the coset $x_6 \cdot \langle x_4 \rangle$.
- (6) Find x_5^{-1} .
- (7) Is x_7 a primitive element?
- (8) [3pts] Is G cyclic?