

Cibele Montez Halasz

Machine Learning Engineer @ Twitter Cortex

- 1 Background
- 2 Workflow/Platform
- 3 Modeling and Optimizations
- **4** Additional Performance Gains
- 5 GPU

Background

- Challenges: Characteristics of Platform
- Data Shift

Challenges

VERY

SPARSE

Challenges

Data Shift

Data Shift

Machine Learning at the Company

- Environment
- Modeling: some use cases

Environment: ML Platforms

ML Feature Management

ML Core Environment (TF based platform)

ML Platform Tools

Environment: ML Training

Environment: Priorities

- Feature Addition → Scalable data
- Data Addition → Scalable data
- Training → Fast, robust training engine
- Deployment → Seamless and tested ML services
- A/B test → Good AB test environment

Modeling Use Cases: Timelines

Modeling Use Cases: Timelines

Modeling: Modeling and Optimizations with TensorFlow

Modeling

Modeling: Discretizer

Sparse Linear Layer: Online Normalization

Example:

```
Input: input_feature (value == 1M)

⇒ weight_gradient == 1M

⇒ update = 1M * learning_rate

⇒ ?
```


Sparse Linear Layer: Online Normalization

Example:

```
Input: input_feature (value == 1M)

⇒ weight_gradient == 1M

⇒ update = 1M * learning_rate

⇒
```


Sparse Linear Layer: Online Normalization

Normalization of input values

Modeling: Sparse Linear Layer

$$N_{j} = F(\sum W_{i,j} * norm(V_{i}) + B_{j})$$

Sparse Linear Layer: Batching Data Records

__init__

```
Indices[:,0] = sample indices

indices,
values,
dense_shape

Indices[:,1] = feature keys
```

Creates a SparseTensor.

Args:

- indices: A 2-D int64 tensor of shape [N, ndims].
- values: A 1-D tensor of any type and shape [N].
- dense_shape: A 1-D int64 tensor of shape [ndims].

Sparse Linear Layer: First Approach

tf.sparse_tensor_dense_matmul

```
\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond
```

```
tf.sparse_tensor_dense_matmul(
    sp_a,
    b,
    adjoint_a=False,
    adjoint_b=False,
    name=None
)
```

Defined in tensorflow/python/ops/sparse_ops.py.

See the guide: Sparse Tensors > Math Operations

Multiply SparseTensor (of rank 2) "A" by dense matrix "B".

No validity checking is performed on the indices of A. However, the following input format is recommended for optimal behavior:

Sparse Linear Layer: Final Approach

tf.nn.embedding_lookup_sparse

```
***
```

```
tf.nn.embedding_lookup_sparse(
    params,
    sp_ids,
    sp_weights,
    partition_strategy='mod',
    name=None,
    combiner=None,
    max_norm=None
)
```

Defined in tensorflow/python/ops/embedding_ops.py.

See the guide: Neural Network > Embeddings

Computes embeddings for the given ids and weights.

This op assumes that there is at least one id for each row in the dense tensor represented by sp_ids (i.e. there are no rows with empty features), and that all the indices of sp_ids are in canonical row-major order.

Sparse Linear Layer: Variable Partitioning

- 1. Shard 1 computes: $p_{11} = x_1 \times w_{11}, p_{12} = x_1 \times w_{12}$
- 2. Shard 2 computes: $p_{21} = x_2 \times w_{21}, p_{22} = x_2 \times w_{22}$
- 3. Shard 3 computes $:p_{31} = x_3 \times w_{31}, p_{32} = x_3 \times w_{32}$

output:
$$[p_{11} + p_{21} + p_{31}, p_{12} + p_{22} + p_{32}]$$

Sparse Linear Layer: Variable Partitioning

Sparse Linear Layer: Variable Partitioning

Shard 1 computes: $o_1 = x_1 \times w_{11} + x_2 \times w_{21} + x_3 \times w_{31}$

Shard 2 computes: $o_2 = x_1 \times w_{12} + x_2 \times w_{22} + x_3 \times w_{32}$

output: $[o_1, o_2]$

Sparse Linear Layer: Variable Partitioning: Profiling

~37% reduction

Sparse Linear Layer

- Optimizers
 - o SGD
 - Lazy Adam

Adam:

"Velocity"

"Momentum"

Additional Performance Gains

Hogwild

"Remove all thread locks from parallel SGD code."

Each thread draws a random example i from the training data.

- Thread reads current state of θ.
- Thread updates $\theta \leftarrow (\theta \alpha \nabla L(f_{\theta}(x_i), y_i))$.

Hogwild

tf.estimator.train_and_evaluate

```
tf.estimator.train_and_evaluate(
    estimator,
    train_spec,
    eval_spec
)
```

Defined in tensorflow/python/estimator/training.py.

Train and evaluate the estimator.

This utility function trains, evaluates, and (optionally) exports the model by using the given <code>estimator</code>. All training related specification is held in <code>train_spec</code>, including training <code>input_fn</code> and training max steps, etc. All evaluation and export related specification is held in <code>eval_spec</code>, including evaluation <code>input_fn</code>, steps, etc.

Custom Ops

```
tf.py_func

tf.py_func(
func,
inp,
Tout,
stateful=True,
name=None
)
```

```
#include "tensorflow/core/framework/op_kernel.h"
using namespace tensorflow;
class ZeroOutOp : public OpKernel {
 explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}
  void Compute(OpKernelContext* context) override {
   // Grab the input tensor
   const Tensor& input_tensor = context->input(0);
   auto input = input_tensor.flat<int32>();
    // Create an output tensor
    Tensor* output_tensor = NULL:
   OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
                                                    &output_tensor));
    auto output_flat = output_tensor->flat<int32>();
   // Set all but the first element of the output tensor to 0.
   const int N = input.size();
    for (int i = 1; i < N; i++) {
     output_flat(i) = 0;
   // Preserve the first input value if possible.
   if (N > 0) output_flat(0) = input(0);
```


GPU x CPU metrics

CPU/GPU Benchmarks: Remarks

- TensorFlow 1.10 compiled with MKL enabled
- Disabled MKL's multithreading by exporting OMP NUM THREADS=1
- Tweak parallelism: inter_op_parallelism_threads/intra_op_parallelism_threads

GPU Benchmarks

Batch Size/Model Optimization	CPU: Baseline (tf.sparse_tensor_dense_matmul)	CPU: After optimizations	GPU: Baseline (tf.sparse_tensor_dense_matmul)	GPU: After Optimizations
256	1024 samples/s	7372 samples/s	5504 samples/s	22528 samples/s
512	1638 samples/s	11264 samples/s	8448 samples/s	21504 samples/s
1024	2355 samples/s	13312 samples/s	10752 samples/s	22528 samples/s

GPU benchmarks were run with NVIDIA Tesla K80 Processors
CPU benchmarks were run with Intel Xenon Platinum 8180 Processors

Acknowledgements

- Andrew Bean
- Ricardo Cervera-Navarro
- Priyank Jain
- Ruhua Jiang
- Nicholas Léonard
- Briac Marcatté
- Mahak Patidar
- Tim Sweeney
- Pavan Yalamanchili
- Yi Zhuang

Thank you! Questions?

Follow me on Twitter: @cibelemh
Email me at: cmontezhalasz@twitter.com