

TEST REPORT

Report No: KST-FCR-160006(1)

Applicant	Name	8CUPS INC.	
	Address	37,Jeungga-ro 29-gil, Seodaemun-Gu, Seoul, Korea	
Manufacturer	r Name Jellycoaster Inc.		
	Address	A-107,29,Gonghang-daero 61-gil, Gangseo-Gu, Seoul, Korea	
Equipment	Name	eightcups	
	Model No	EB001	
	Brand	8Cups	
	FCC ID	2AIBB-EB001	
Test Standard	1	17, Part 15. Subpart C-15.247 1 DTS Meas. Guidance v03r05	
Test Date(s)	2016. 07. 04 - 2016. 07. 05		
Issue Date	2016. 07. 14		
Test Result	Compliance	Compliance	
Note	None		

Supplementary Information

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in <u>ANSI C 63.10-2013</u>.

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by

Lee, Mi-Young

Approved by

Park, Gyeong-Hyeon

Signature

Mos

Signature

3

Table of Contents

1. GENERAL INFORMATION	4
1.1 Test Facility	4
1.2 Location	
2. EQUIPMENT DESCRIPTION	5
3. SYSTEM CONFIGURATION FOR TEST	6
3.1 Characteristics of equipment	6
3.2 Used peripherals list	6
3.3 Product Modification	6
3.4 Operating Mode	6
3.5 Test Setup of EUT	6
3.6 Parameters of Test Software Setting	7
3.7 Table for Carrier Frequencies	8
3.8 Duty Cycle Of Test signal	8
3.9 Used Test Equipment List	9
4. SUMMARY TEST RESULTS	11
5. MEASUREMENT RESULTS	12
5.1 Max. Conducted output power	12
5.2 Power spectral density	16
5.3 6 dB spectrum Bandwidth	18
5.4 Band-edge Compliance of RF Conducted emissions	21
5.5 Spurious RF Radiated emissions	23
5.6 Antenna requirement	30

Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date	
- Initial issue		tial issue All Gyeong Hyeon, Park		2016.07.07	
1	Revised the due date for equipment	10	Gyeong Hyeon, Park	2016.07.14	

Page: 3 / 30 KST-FCR-RFS-Rev.0.2 Report No: KST-FCR-160006(1)

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd.

128(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Registration information

KOLAS No.: 232

FCC Designation No. : KR0041 FCC Registration No. : 525762 IC Registration Site No. : 8305A

1.2 Location

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	eightcups
Model No	EB001
Usage	Smart bottle
Serial Number	Proto type
Modulation type	GFSK
Emission Type	F1D
Maximum output power	-8.04 dBm
Operated Frequency	2 402 MHz - 2 480 MHz
Channel Number	40
Operation temperature	0 °C - + 40 °C
Power Source	Li-Po battery, DC 3.7 V
Antenna Description	Internal PCB Antenna, Max gain: 1.4 dBi
	The device was operating at its maximum output power for all measurements.
Remark	2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
Remain	3. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case (X) is shown in the report.
	4. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description.
FCC ID	2AIBB-EB001

Report No: KST-FCR-160006(1) Page: 5 / 30

3. SYSTEM CONFIGURATION FOR TEST

3.1 Characteristics of equipment

This equipment is a smart bottle using 2.4 GHz BT LE.

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
Notebook	BCM-1063	2Z7S1Z1	Dell Inc	
Adapter	DA65NM111-00	None	Dell Inc	For notebook

3.3 Product Modification

N/A

3.4 Operating Mode

Constantly transmitting with a modulated carrier at maximum power on the bottom, middle and top channels.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the test mode which controlled by uEnergyTools. The test program and the test Jig and cables were provided by the applicant.

Report No: KST-FCR-160006(1) Page: 6 / 30

3.6 Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

■ TX Power setting value during test

Band	Rate	TX Power setting value			
Бапи	Rate	Low CH	Middle CH	High CH	
2.4 GHz band	37 Byte	4	4	4	

Test Program

■ Test Program Version

Report No: KST-FCR-160006(1) Page: 7 / 30

3.7 Table for Carrier Frequencies

Channel	Frequency (Mt/z)	Channel	Frequency (Mt/z)	Channel	Frequency (Mt/z)	Channel	Frequency (MHz)
0	2 402	10	2 422	20	2 442	30	2 462
1	2 404	11	2 424	21	2 444	31	2 464
2	2 406	12	2 426	22	2 446	32	2 466
3	2 408	13	2 428	23	2 448	33	2 468
4	2 410	14	2 430	24	2 450	34	2 470
5	2 412	15	2 432	25	2 452	35	2 472
6	2 414	16	2 434	26	2 454	36	2 474
7	2 416	17	2 436	27	2 456	37	2 476
8	2 418	18	2 438	28	2 458	38	2 478
9	2 420	19	2 440	29	2 460	39	2 480

3.8 Duty Cycle Of Test signal

Duty cycle is < 98%, duty factor shall be considered. Duty cycle = Tx on/(Tx on+ Tx off), Duty factor = 10*log(1/duty cycle)

Band	Rate	Duty cycle	Duty Cycle Factor
2.4 GHz band	1 Byte	0.616	2.10

Report No: KST-FCR-160006(1) Page: 8 / 30

3.9 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
1	T & H Chamber	EY-101	90E14260	TABAI ESPEC	2016.09.17	1 year	
2	T & H Chamber	SH-641	92006831	ESPEC CORP	2017.02.04	1 year	
3	Spectrum Analyzer	8563E	3846A10662	Agilent Technology	2017.02.02	1 year	
4	Spectrum Analyzer	8593E	3710A02859	Agilent Technology	2017.02.02	1 year	
5	Spectrum Analyzer	FSV30	20-353063	Rohde& Schwarz	2017.02.02	1 year	\boxtimes
6	Signal Analyzer	N9020A	MY50410369	Agilent Technologies	2017.05.04	1 year	\boxtimes
7	EMI Test Receiver	ESCI7	100823	Rohde& Schwarz	2017.02.02	1 year	\boxtimes
8	EMI Test Receiver	ESI	837514/004	Rohde& Schwarz	2016.10.08	1 year	\boxtimes
9	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2017.02.04	1 year	
10	Network Analyzer	8753ES	US39172348	AGILENT	2016.09.16	1 year	
11	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2017.02.03	1 year	
12	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2017.02.03	1 year	
13	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2017.02.01	1 year	
14	Modulation Analyzer	8901A	3538A07071	Agilent Technology	2017.02.03	1 year	
15	Audio Analyzer	8903B	3514A16919	Agilent Technology	2017.02.01	1 year	
16	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2017.02.04	1 year	
17	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2016.09.16	1 year	
18	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2017.02.03	1 year	\boxtimes
19	ESG Vector Signal Generator	E4438C	MY42083133	Agilent Technology	2016.09.16	1 year	
20	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2017.02.03	1 year	
21	Signal Generator	SMB100A	178128	Rohde & Schwarz	2017.02.17	1 year	\boxtimes
22	Tracking Source	85645A	070521-A1	Agilent Technology	2017.02.02	1 year	
23	SLIDAC	None	0207-4	Myoung sung Ele.	2017.02.01	1 year	
24	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2017.02.01	1 year	
25	DC Power supply	6038A	3440A12674	Agilent Technology	2017.02.01	1 year	
26	DC Power supply	E3610A	KR24104505	Agilent Technology	2017.02.01	1 year	\boxtimes
27	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2017.02.01	1 year	
28	DC Power Supply	SM 3004-D	114701000117	DELTA ELEKTRONIKA	2017.02.01	1 year	
29	Dummy Load	8173	3780	Bird Electronic Co., Corp	2017.02.03	1 year	
30	Attenuator	50FH-030-500	140410 9433	JEW Idustries Inc.	2017.02.03	1 year	
31	Attenuator	765-20	9703	Narda	2016.09.16	1 year	
32	Attenuator	8498A	3318A09485	HP	2017.02.03	1 year	
33	Step Attenuator	8494B	3308A32809	HP	2017.02.03	1 year	
34	Step Attenuator	8495D	3308A01464	HP	2017.02.02	1 year	
35	Power divider	11636B	51212	HP	2017.02.02	1 year	
36	3Way Power divider	KPDSU3W	00070365	KMW	2016.09.16		
37	4Way Power divider	70052651	173834	KRYTAR	2017.02.02	1 year	
38	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2017.02.03	1 year	
39	White noise audio filter	ST31EQ	101902	SoundTech	2016.09.16	1 year	
40	Dual directional coupler	778D	17693	HEWLETT PACKARD	2017.02.03	1 year	
41	Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2017.02.03	1 year	
42	Band rejection filter	3TNF-0006	26	DOVER Tech	2017.02.04	1 year	
43	Band rejection filter	3TNF-0008	317	DOVER Tech	2017.02.04	1 year	
44	Band rejection filter	3TNF-0007	311	DOVER Tech	2017.02.04	1 year	
45	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2017.02.03	1 year	
46	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2017.02.03	1 year	
47	Highpass Filter	WHKX6.5/18G-8SS / 2	2	WAINWRIGHT	2017.02.25	1 year	
48	WideBand Radio Communication Tester	CMW500	102276	Rohde & Schwarz	2017.02.04	1 year	П
49	Radio Communication Tester	CMU 200	112026	Rohde & Schwarz	2017.02.03	1 year	
	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2017.02.03	1 year	

Report No: KST-FCR-160006(1) Page: 9 / 30 KST-FCR-RFS-Rev.0.2

No.	Instrument	Model	S/N	Manufacturer	Due to cal date	Cal interval	used
51	RF Up/Down Converter	DCP-1780	980901003	CREDIX	2017.02.03	1 year	
52	DECT Test set	8923B	3829U00364	HP	2017.02.04	1 year	
53	DECT Test set	CMD60	840677/005	Rohde& Schwarz	2016.09.16	1 year	
54	Loop Antenna	6502	9203-0493	EMCO	2017.06.04	2 year	\boxtimes
55	Dipole Antenna	HZ-12	100005	Rohde & Schwarz	2016.07.01	2 year	
56	Dipole Antenna	HZ-13	100007	Rohde & Schwarz	2016.07.01	2 year	
57	BiconiLog Antenna	3142B	9910-1432	EMCO	2018.04.25	2 year	\boxtimes
58	Horn Antenna	3115	2996	EMCO	2018.02.11	2 year	\boxtimes
59	Horn Antenna	BBHA9170	BBHA9170152	SCHWARZBECK	2017.04.30	2 year	
60	Antenna Master(3)	AT13	None	AUDIX	N/A	N/A	\boxtimes
61	Turn Table(3)	None	None	AUDIX	N/A	N/A	\boxtimes
62	PREAMPLIFIER(3)	8449B	3008A02577	Agilent	2017.02.01	1 year	\boxtimes
63	Antenna Master(10)	MA4000-EP	None	inno systems GmbH	N/A	N/A	\boxtimes
64	Turn Table(10)	None	None	inno systems GmbH	N/A	N/A	\boxtimes
65	AMPLIFIER(10)	TK-PA6S	120009	TESTEK	2017.02.02	1 year	\boxtimes

Report No: KST-FCR-160006(1) Page: 10 / 30 KST-FCR-RFS-Rev.0.2

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Reference Clause	Used	Test Result
Max. Conducted output power	15.247(b)(3)	Clause 5.1	\boxtimes	Compliance
Power spectral density	15.247(e)	Clause 5.2	\boxtimes	Compliance
6 dB spectrum Bandwidth	15.247(a)(2)	Clause 5.3	\boxtimes	Compliance
Band edge of RF conducted emissions	15.247(d)	Clause 5.4	\boxtimes	Compliance
Spurious RF radiated emissions	15.247(d), 15.209	Clause 5.5	\boxtimes	Compliance
Antenna requirement	15.203, 15.247	Clause 5.6	\boxtimes	Compliance

Compliance/pass : The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

Procedure Reference:

FCC CFR 47, Part 15. Subpart C-15.247 558074 D01 DTS Meas. Guidance v03r05 ANSI C 63.10-2013

Report No: KST-FCR-160006(1) Page: 11 / 30 KST-FCR-RFS-Rev.0.2

5. MEASUREMENT RESULTS

5.1 Max. Conducted output power

5.1.1 Standard Applicable [FCC §15.247(b)(3)]

For systems using digital modulation in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

5.1.2 Test Environment conditions

Ambient temperature : (23 - 24) [°]C
Relative Humidity : (55 - 57) [°]N R.H.

5.1.3 Measurement Procedure

The transmitter output was connected to the spectrum analyzer with an attenuator. The maximum peak output power was measured and recorded with the spectrum analyzer. EUT was programmed to be in continuously transmitting mode.

All conducted power tests were performed using a test receiver in accordance with FCC KDB 558074 v03r05 Section 9.1.1 Measurement Procedure RBW ≥ DTS bandwidth and 9.2.2.4.

The spectrum analyzer is set to the as follows:

Peak Power

- Set RBW≥DTS bandwidth
- Set the VBW \geq 3 x RBW.
- Set the span 3 x RBW.
- Sweep time = auto couple.
- Detector = peak.
- Trace mode = max hold.
- · Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

Average Power

- Set span to at least 1.5 times the OBW
- RBW = 1-5 % of the OBW, not to exceed 1 MHz.
- Set the VBW \geq 3 x RBW.
- Set the span 3 x RBW.
- Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- Sweep time = auto
- Detector = RMS(i.e., power averaging)
- Trace mode = free run
- Trace average at least 100 traces in power averaging(RMS) mode. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Report No: KST-FCR-160006(1) Page: 12 / 30

5.1.4 Test setup

5.1.5 Measurement Result

Peak Power

Channel	Frequency	Conducto	ed Power	Limit	Test Results	
Channel	[Mtz]	[dB m]	[mW]	[dB m]		
1	2 402	-8.04	0.16	30	Compliance	
19	2 440	-8.57	0.14	30	Compliance	
39	2 480	-8.67	0.14	30	Compliance	

Average Power

Channel	Frequency [Mtz]	Conducted Power [dBm]	Duty Cycle Factor	Final Conducted power [dBm]	Limit [dBm]	Test Results
1	2 402	-8.59	2.10	-6.49	30	Compliance
19	2 440	-8.54	2.10	-6.44	30	Compliance
39	2 480	-8.79	2.10	-6.69	30	Compliance

Report No: KST-FCR-160006(1) Page: 13 / 30 KST-FCR-RFS-Rev.0.2

5.1.6 Test Plot

Peak Power

CH Low

CH Middle

CH High

Average Power

CH Low

CH Middle

CH High

5.2 Power spectral density

5.2.1 Standard Applicable [FCC §15.247(e)]

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 $\,^{dB}$ m in any 3 $\,^{kHz}$ band during any time interval of continuous transmit

5.2.2 Test Environment conditions

• Ambient temperature : (23 - 24) $^{\circ}$ C • Relative Humidity : (55 - 57) $^{\circ}$ R.H.

5.2.3 Measurement Procedure

The power spectral density conducted from the intentional radiator was measured with a spectrum analyzer connected to the antenna terminal, while EUT had the highest, middle and the lowest available channels. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak power spectral density.

All conducted power tests were performed using a test receiver in accordance with FCC KDB 558074 v03r05 Section 10.1

The spectrum analyzer is set to the as follows:

- Set analyzer center frequency to DTS channel center frequency.
- Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- Set the VBW \geq 3 x RBW.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- · Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
- If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.2.4 Test setup

5.2.5 Measurement Result

Channel	Frequency [Mt]	Result Value [dBm]	Limit [dB m]	Test Results
1	2 402	-23.98	8	Compliance
19	2 440	-24.57	8	Compliance
39	2 480	-24.81	8	Compliance

Report No: KST-FCR-160006(1) Page: 16 / 30

5.2.6 Test Plot

CH Low

CH Middle

CH High

5.3 6 dB spectrum Bandwidth

5.3.1 Standard Applicable [FCC §15.247(a)(2)]

Systems using digital modulation techniques may operate in the 902–928 Mtz, 2400–2483.5 Mtz, and 5725–5850 Mtz bands. The minimum 6 dB bandwidth shall be at least 500 ktz.

5.3.2 Test Environment conditions

• Ambient temperature : (23 - 24) $^{\circ}$ C • Relative Humidity : (55 - 57) $^{\circ}$ R.H.

5.3.3 Measurement Procedure

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6 dB below carrier.

The spectrum analyzer is set to the as follows:

- Set RBW = 100 kHz.
- Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- · Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test setup

5.3.5 Measurement Result

Channel	Frequency [Mt]	6 dB Bandwidth [Mtz]	99% Bandwidth [Mtz]	Limit [Mtz]	Test Results
1	2 402	0.690	1.038	>0.5	Compliance
19	2 440	0.690	1.042	>0.5	Compliance
39	2 480	0.690	1.038	>0.5	Compliance

Report No: KST-FCR-160006(1) Page: 18 / 30

5.3.6 Test Plot (6 dB bandwidth)

CH Low

CH Middle

CH High

Test Plot (99 % band width)

CH Low

CH Middle

CH High

5.4 Band-edge Compliance of RF Conducted emissions

5.4.1 Standard Applicable [FCC §15.247(d)]

In any 100 $^{\text{kHz}}$ bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 $^{\text{dB}}$ below that in the 100 $^{\text{kHz}}$ bandwidth within the band that contains the highest level of the desired power, based on RF conducted.

5.4.2 Test Environment conditions

Ambient temperature: (23 - 24) °C
Relative Humidity: (55 - 57) % R.H.

5.4.3 Measurement Procedure

- ① Pre-calibration for the spectrum analyzer has to be done first through a reference CW signal from signal generator.
- ② Reference frequency generated from the signal generator is supply to spectrum analyzer input port via RF cable and attenuator, and then, it's apply to offset value on spectrum analyzer.
- ③ Remove the antenna from the EUT and then, connected to spectrum analyzer via a dc Block, suitable low loss RF cable and attenuator.
- 4 Place the EUT on the table and set on the emission at the band-edge,
- (5) After the trace being stable, Use the marker-to-peak function to move the marker to the peak of the in-band emission.
- The marker-delta value now displayed must comply with the limit specified in above standard.
- 7 please refer to the detailed procedure method KDB 558074 v03r05.

The spectrum analyzer is set to the as follows:

- Span : Wide enough to capture the peak level of the emission operating on the channel closet to the Band-edge, as well as any modulation products which fall outside of the authorized band of operation
- RBW : 100 kHz (≥ 1 % of the span)
- VBW : ≥ RBWSweep : auto
- · Detector function : peak
- Trace : Max hold

5.4.4 Test setup

Please refer 5.3.4

5.4.5 Measurement Result

Cottin	a Channal	Test Results								
Settin	ng Channel	Measured value [dB]	Limit [dB]	Result						
CH 0	~ 2 400 MHz	-46.97	< 20 than DSD lovel	Compliance						
CH 39	2 483.5 MHz ~	-45.50	≤ 20 than PSD level	Compliance						

Report No: KST-FCR-160006(1) Page: 21 / 30

5.4.6 Test Plot (Band-edge)

5.5 Spurious RF Radiated emissions

5.5.1 Standard Applicable [FCC §15.247(d)]

All other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10 <code>GHz</code>, the frequency Range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40 <code>GHz</code>, Whichever is lower. In addition, radiated emissions which fall in the restricted bands, as defined in Sec.15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a)

§15.209 limits for radiated emissions measurements (distance at 3 m)

Frequency Band [Mt]	DISTANCE[Meters]	Limit [///m]	Limit [dB ≠W/m]	Detector			
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)	Peak			
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)	Peak			
1.705 ~ 30.0	30	30	29.54	Peak			
30 - 88	3	100 **	40.00	Quasi peak			
88 - 216	3	150 **	43.52	Quasi peak			
216 - 960	3	200 **	46.02	Quasi peak			
Above 960	3	500	54.00	Average			
Above 1000	3 74.0 dB μ//m (Peak), 54.0 dB μ//m (Average)						

^{**} fundamental emissions from intentional radiators operation under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz, or 470-806 MHz. However, operation within these Frequency bands is permitted under other sections of this Part Section 15.231 and 15.241

§15.205. Restrict Band of Operation

[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505**	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.
4.177 25 - 4.177 75	37.5 -38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 -1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.38 6 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			
** Until Enhance 1 1000 this ro	stricted hand shall be 0.490-0.510	-	

^{**} Until February 1, 1999, this restricted band shall be 0.490-0.510

Report No: KST-FCR-160006(1) Page: 23 / 30 KST-FCR-RFS-Rev.0.2

5.5.2 Test Environment conditions

Ambient temperature: (23 - 24) °C
Relative Humidity: (55 - 57) % R.H.

5.5.3 Measurement Procedure

The measurements procedure of the Spurious RF Radiated emissions is as following describe method.

- 1. The EUT was placed on the top of a rotating table (0.8 meters for below 1 GHz and 1.5 meters for above
- 1 GHz) above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna master.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both Horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotating table was turned from 0 360 degrees to find the maximum reading.
- 5. The measuring receiver was set to peak detector and specified bandwidth with max hold function.
- 6. Low, Middle and high channels were measured, and radiation measurements are performed in X, Y, Z axis positioning. And found the worst axis position and only the test worst case mode is recorded in the report.
- The measurement results are obtained as described below:
 Result(dBμV/m) = Reading(dBμV) + Antenna factor(dB/m)+ CL(dB) + other applicable factor (dB)
- The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 3 Mb for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle \geq 98 %) for Average detection (AV) at frequency above 1 GHz.
- According to §15.33 (a)(1), Frequency range of radiated measurement is performed the tenth harmonic.

5.5.4 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The factors contributing to uncertainties are test receiver, Cable loss, Antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, Antenna frequency interpolation, measurement distance variation, Site imperfection, mismatch, and system repeatability based on NIS 80,81.

Radiated Emission measurement: 30 - 1000 MHz: 4.4 dB (CL: Approx 95 %, k=2) Above 1 GHz: 4.88 dB (CL: Approx 95 %, k=2)

Report No: KST-FCR-160006(1) Page: 24 / 30

5.5.5 Test Configuration

Radiated emission setup, Below 30 MHz

Radiated emission setup, Below 1 000 MHz

Radiated emission setup, Above 1 GHz

Report No: KST-FCR-160006(1)

Page: 25 / 30 KST-FCR-RFS-Rev.0.2

5.5.6 Measurement Result

Above 1 GHz

CH0 (2 402 Mb)

Freq.		iding ∛/m)	Table	,	Antenn	a	CL	AMP		leas Result (dB /₩/m)		mit <i></i> V/m)	Mgn. (^{dB})		Result
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
-	-	-	-	-	-	-	ı	-	-	-	74	54	-	-	Compliance
There are no spurious emissions.															

CH19 (2 440 Mb)

Freq.		0		Reading (dB \(\mu \)/m) Table Antenna		CL	AMP		Result ⊭V/m)		mit <i></i> V/m)	Mç (d	•	Result	
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.488	49.41	44.06	170	1.0	V	29.28	2.58	-34.31	46.96	41.61	74	54	27.04	12.39	Compliance
2.488	46.93	40.96	180	1.0	Н	29.28	2.58	-34.31	44.48	38.51	74	54	29.52	15.49	Compliance

CH39 (2 480 Mb)

Freq.		ding ∀/m)	Table	Antenna		CL	AMP	Meas (dB)	Result		mit <i></i> V/m)	Mç (d		Result	
(GHz)	PK	AV	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	PK	AV	PK	AV	PK	AV	Result
2.512	48.22	43.17	170	1.0	V	29.35	2.50	-34.31	45.77	40.72	74	54	28.23	13.28	Compliance
2.512	47.49	40.47	180	1.0	Н	29.35	2.50	-34.31	45.04	38.02	74	54	28.96	15.98	Compliance

₩ Note

- Above 1 ^{GHz} is measured average and peak detector mode on Spectrum analyzer in accordance with FCC Rule15.35
- Limit: 54 dB \(\text{dB} \(\text{M} \) m(Average), 74 dB \(\text{dB} \(\text{M} \) m(Peak), Attenuated more than 20 dB below the permissible value.
- It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.
- The Reading values are already added value of the duty cycle factor and correction Factor was applied for Average Field Strength.
- For the below 30 Mtz and above 2.512 GHz, measured any other signal is not detected on test receiver
- \bullet The transmitter radiated spectrum was investigated from 9 $\,\mbox{kHz}\,$ to 26.5 $\,\mbox{GHz}.$

Report No: KST-FCR-160006(1) Page: 26 / 30

Test Plot

^{*} Worst case only.

Below 1 GHz

Freg.	Reading	Table		Antenna		CL	AMP	Meas	Limit	Mgn	
(Miz)	(dB _μ V/m)	(Deg)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	(dB)	Result (dB≠V/m)	(dB _μ V/ m)	(dB)	Result
276.49	45.08	130	1.0	V	13.73	2.31	-41.33	19.79	46	26.21	Compliance
276.49	46.63	120	2.5	Н	13.73	2.31	-41.33	21.34	46	24.66	Compliance
311.28	47.29	130	1.2	V	14.64	2.39	-41.23	23.09	46	22.91	Compliance
311.28	46.38	130	2.2	Н	14.64	2.39	-41.23	22.18	46	23.82	Compliance
346.29	50.97	170	1.2	V	15.83	2.50	-41.11	28.19	46	17.81	Compliance
346.29	48.28	170	2.0	Н	15.83	2.50	-41.11	25.50	46	20.50	Compliance
408.01	50.88	160	1.2	V	17.58	2.69	-40.91	30.24	46	15.76	Compliance
408.01	49.82	150	2.0	Н	17.58	2.69	-40.91	29.18	46	16.82	Compliance

- Freq.(Mtz): Measurement frequency,
- Reading(dB \(\mu \right) / m \): Indicated value for test receiver,
- Table (Deg) : Directional degree of Turn table
- Antenna (Height, Pol, Fctr): Antenna Height, Polarization and Factor,
- Cbl(dB): Cable loss, Pre AMP(dB): Preamplifier gain(dB)
- Meas Result ($^{dB}M/m$) :Reading($^{dB}M/m$)+ Antenna factor.(^{dB}m)+ CL(dB) Pre AMP(dB)
- Limit($^{\text{dB}}\mathcal{W}/\text{m}$): Limit value specified with FCC Rule, Mgn($^{\text{dB}}$): FCC Limit ($^{\text{dB}}\mathcal{W}/\text{m}$) Meas Result($^{\text{dB}}\mathcal{W}/\text{m}$)
- Peak detection was used.

Test Plot

^{*} Worst case only.

Report No: KST-FCR-160006(1)

Page: 28 / 30

Test Plot (Conducted spurious emissions)

CH Low

CH Middle

CH High

Note: It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits

5.6 Antenna requirement

5.6.1 Standard applicable [FCC §15.203, §15.247(4)(1)]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit So that broken antenna can be replaced by the user, but the Use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(4)(1), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

5.6.2 Antenna gain

Frequency Band	Antenna Type	Gain [dBi]	Limit [dBi]	Results
2.4 GHz	Internal PCB Antenna	1.4	≤ 6	Compliance

Report No: KST-FCR-160006(1) Page: 30 / 30