Ejercicio 8

David García Curbelo

Toma tu número n=191871308917122834687961459636870046909 de la lista publicada para este ejercicio.

Apartado I. Pasa algunos test de primalidad para ver si n es compuesto

Veamos los resultados de pasar el test de Fermat para las las bases 2, 3, 5 y 7. Usando el algoritmo de exponenciación rápida, tenemos los siguientes resultados de evaluar $a^{n-1} \pmod{n}$ para las bases mencionadas:

Base 2

Iteración	Exponente	Acumulado
1	1	2
2	2	4
3	4	16
4	9	512
5	18	262144
6	36	68719476736
7	72	4722366482869645213696
8	144	118577020187434258021703433866563888073
9	288	29340227568084248416501045335641728100
	•••	
122	2997989201830044291999397806826094482	101675255918338275426907079426403493615
123	5995978403660088583998795613652188965	74303581080468529483843167643474362336
124	11991956807320177167997591227304377931	100644730683039452944647609244075852789
125	23983913614640354335995182454608755863	59117478806542687318662872566695394313
126	47967827229280708671990364909217511727	118234957613085374637325745133390788625
127	95935654458561417343980729818435023454	-1
128	191871308917122834687961459636870046908	1

Base 3

Iteración	Exponente Exponente	Acumulado
1	1	3
2	2	9
3	4	81
4	9	19683
5	18	387420489
6	36	150094635296999121
7	72	22528399544939174411840147874772641
8	144	79863541316174948313858493560647916069
9	288	21923773134371130434670971852591589643
	•••	
122	2997989201830044291999397806826094482	164724765414792627514895963012658408736
123	5995978403660088583998795613652188965	50895079125131643876702492628639013989
124	11991956807320177167997591227304377931	8495266008180564491497240622868865667
125	23983913614640354335995182454608755863	175843235986790788741521745667721490030
126	47967827229280708671990364909217511727	118234957613085374637325745133390788625
127	95935654458561417343980729818435023454	-1
128	191871308917122834687961459636870046908	1

Base 5

Iteración	Exponente	Acumulado
1	1	5
2	2	25
3	4	625
4	9	1953125
5	18	3814697265625
6	36	14551915228366851806640625
7	72	109995655051602194850629945210045793959
8	144	72055542060367415663075562708228631321
9	288	16059290738605625158384538873481518775
	•••	
122	2997989201830044291999397806826094482	83073020954742175186051287482142023167
123	5995978403660088583998795613652188965	59165329114860589351210691706810981474
124	11991956807320177167997591227304377931	87509861727301316206372170982747614537
125	23983913614640354335995182454608755863	119817173846143518687612360340700291480
126	47967827229280708671990364909217511727	1
127	95935654458561417343980729818435023454	1
128	191871308917122834687961459636870046908	1

Base 7

Iteración	Exponente	Acumulado
1	1	7
2	2	49
3	4	2401
4	9	40353607
5	18	1628413597910449
6	36	2651730845859653471779023381601
7	72	93896753671824022897665880086441711349
8	144	139184725522475144930465216926335590537
9	288	88353904871015366688933124559184247632
• • •	•••	
122	2997989201830044291999397806826094482	143919716633746330712290624655863621828
123	5995978403660088583998795613652188965	48370016607229836518498432319658144500
124	11991956807320177167997591227304377931	28480560223009031088627591725543683721
125	23983913614640354335995182454608755863	178621585979619985521227455109380454469
126	47967827229280708671990364909217511727	-1
127	95935654458561417343980729818435023454	1
128	191871308917122834687961459636870046908	1

Como hemos visto, para cada una de las bases se cumple que $a^{n-1} \equiv 1 \pmod n$, luego para a=2,3,5,7 tenemos que n es un posible primo de Fermat para dichas bases. Comprobemos ahora si nuestro número n pasa el test de Euler. Para ello, calculamos el símbolo de Jacobi $\left(\frac{a}{m}\right)$ para cada una de las bases y comprobamos que coincida con el valor de $a^{(m-1)/2} \pmod m$, que es precisamente la penúltima iteración del algoritmo realizado en el apartado anterior.

•
$$\left(\frac{2}{m}\right) = (-1)^{(n^2-1)/2} = -1 \text{ por ser } n \equiv -3 \pmod{8}.$$

•
$$\left(\frac{3}{m}\right) = \left(\frac{m}{3}\right) = \left(\frac{2}{3}\right) = -\left(\frac{1}{3}\right) = -1.$$

•
$$\left(\frac{5}{m}\right) = \left(\frac{m}{5}\right) = \left(\frac{4}{5}\right) = -\left(\frac{2}{5}\right) = \left(\frac{1}{5}\right) = 1.$$

•
$$\left(\frac{7}{m}\right) = \left(\frac{m}{7}\right) = \left(\frac{2}{7}\right) = -\left(\frac{1}{7}\right) = 1.$$

Vemos que dichos símbolos coinciden con la penúltima iteración del algoritmo de exponenciación rápida, luego n ha pasado el test de Solovay-Strassen para las bases 2,3,5y 7, luego tenemos una probabilidad de primalidad del $1-\frac{1}{2^4}=0.984375$.

Apartado II. En caso que tu n sea probable primo, factoriza n+1 encontrando certificados de primalidad para factores mayores de 10000

Por el apartado anterior, tenemos altas probabilidades de que nuestro numero n sea primo. Por ello procedemos a factorizar n + 1.

 $m=n+1=191871308917122834687961459636870046910=2\cdot 3^2\cdot 5\cdot 2131903432412475940977349551520778299.$ Desconocemos si $m_1=2131903432412475940977349551520778299$ es primo, pero es fácil ver que $2^{m_1-1}\not\equiv 1\pmod{m_1}$ por lo que m_1 no es primo. Así, aplicando ahora el método ρ de Polard, obtenemos

Paso	x	y	mcd
1	2	5	1
2	5	677	1
3	26	210066388901	1
4	677	1895334587094284184613091101280776558	1
5	458330	78215585125484868093905659043889560	1
6	210066388901	1544705283024627326323128430540469400	1
7	44127887745906175987802	1886113287013530250529305226348579810	1
	•••	•••	1
199	1870715726329717217294060583935591760	1060801355651140048392732542642863088	1
200	424068958678740670085019879061666598	198391725553609196458053623579235637	1
201	1144313711092545399133664641920726969	1087000882140671190941176670812395039	1
202	487249409427576944821049604574813716	1380997187252811280112785131151297400	1
203	1428917232945032853447041072009195027	557963052235651406262131922066187695	1
204	662668825124170441837361214480548672	454271395768955732082738715776001264	1
205	896153999982941990933718819692803994	1849723980397089800013259742497928909	154493

Con lo que hemos obtenido un factor de $m_1 = 154493 \cdot 13799352931281520463563718430743$. Para ver si son posibles primos, aplicamos el test de Fermat con el que obtenemos que $m_2 = 154493$ pasa el test cumpliendo $a^{(m_2-1)} \equiv 1 \pmod{m_2}$ para las bases a = 2, 3, 5, 7, con lo que tenemos que es posible primo. Procedemos a buscar un certificado de primalidad mediante el algoritmo de Lucas-Lehmer, factorizando $m_2 - 1 = 154492 = 2^2 \cdot 38623$. Veamos si $m_{2,1} = 38623$ es primo. Para ello, aplicamos el test de Fermat y obtenemos que $2^{(m_2-1)} \not\equiv 1 \pmod{m_2}$, luego tenemos certificado de composición. Procedemos a obtener sus factores mediante el algoritmo ρ de Polard:

Paso	\boldsymbol{x}	y	mcd
1	2	5	1
2	5	677	1
3	26	24562	1
4	677	33242	13

Tenemos así que $m_{2,1}=38623=13\cdot 2971$ (ambos factores son primos menores de 10000) luego tenemos completamente factorizado $m_2-1=154492=2^2\cdot 13\cdot 2971$ y por tanto estamos en condiciones de encontrar un elemento primitivo:

- $2^{(m_2-1)} \equiv 1 \pmod{m_2}$
- $2^{(m_2-1)/2} \not\equiv 1 \pmod{m_2}$
- $2^{(m_2-1)/13} \not\equiv 1 \pmod{m_2}$
- $2^{(m_2-1)/2971} \not\equiv 1 \pmod{m_2}$

Hemos obtenido un elemento primitivo, y por tanto un certificado de primalidad de 154493. Procedemos a estudiar la primalidad de $m_3=13799352931281520463563718430743$. Para ello, aplicamos el test de Fermat y obtenemos que $2^{(m_3-1)} \not\equiv 1 \pmod{m_3}$, luego tenemos un certificado de composición. Aplicamos por tanto el algoritmo ρ de Polard para encontrar sus factores, obteniendo una factorización de $m_3=5766560731\cdot 2392995335520991752053$.

Veamos si cada uno de los factores es primo o no. Para ello, aplicamos el test de Fermat y obtenemos que para ambos candidatos $m_{3,1}=5766560731$ y $m_{3,2}=2392995335520991752053$, ambos pasan el test de Fermat $a^{(m_{3,i}-1)}\equiv 1\pmod{m_{3,i}}$ para las bases a=2,3,5,7 y con i=1,2, con lo que tenemos que son posibles primos. Procedemos a buscar un certificado de primalidad mediante el algoritmo de Lucas-Lehmer. Factoricemos primero para este fin $m_{3,1}-1=2\cdot 3^2\cdot 5\cdot 7\cdot 9153271$. Veamos si $m_{3,1,1}=9153271$ es primo. Para ello, aplicamos el test de Fermat y obtenemos que $2^{(m_{3,1,1}-1)}\not\equiv 1\pmod{m_{3,1,1}}$, luego tenemos un certificado de composición. Procedemos a obtener sus factores mediante el algoritmo ρ de Polard:

Paso	x	y	mcd
1	2	5	1
2	5	677	1
3	26	7972722	1
4	677	1349861	1
5	458330	4030875	1
6	7972722	9121035	1
7	592400	2030879	1
8	1349861	118386	1
9	1367894	3373269	1
10	4030875	2331996	127

Obtenemos una factorización de $m_{3,1,1}=9153271=127\cdot72073$. Veamos si $m_{3,1,2}=72073$ es primo o no. Vemos que dicho número pasa el test de Fermat para las bases a=2,3,5,7 y con $a^{(72073-1)}\equiv 1\pmod{72073}$, con lo que tenemos que es posible primo. Procedemos a buscar un certificado de primalidad mediante el algoritmo de Lucas-Lehmer. Factoricemos por tanto $m_{3,1,2}-1=2^3\cdot 3^2\cdot 1001=2^3\cdot 3^2\cdot 7\cdot 11\cdot 13$. Ya tenemos factorizado completamente $m_{3,1,2}-1$, luego estamos en condiciones de buscar un elemento primitivo:

- $5^{(m_{3,1,2}-1)} \equiv 1 \pmod{m_{3,1,2}}$
- $5^{(m_{3,1,2}-1)/2} \not\equiv 1 \pmod{m_{3,1,2}}$
- $5^{(m_{3,1,2}-1)/3} \not\equiv 1 \pmod{m_{3,1,2}}$
- $5^{(m_{3,1,2}-1)/7} \not\equiv 1 \pmod{m_{3,1,2}}$
- $5^{(m_{3,1,2}-1)/11} \not\equiv 1 \pmod{m_{3,1,2}}$
- $5^{(m_{3,1,2}-1)/13} \not\equiv 1 \pmod{m_{3,1,2}}$

Hemos obtenido un elemento primitivo, y por tanto un certificado de primalidad de $m_{3,1,2} = 72073$, y así un factorización completa de $m_{3,1} - 1 = 2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 127 \cdot 72073$, y por tanto estamos en condiciones de encontrar un elemento primitivo para $m_{3,1} = 5766560731$:

- $2^{(m_{3,1}-1)} \equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/2} \not\equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/3} \not\equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/5} \not\equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/7} \not\equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/127} \not\equiv 1 \pmod{m_{3,1}}$
- $2^{(m_{3,1}-1)/72073} \not\equiv 1 \pmod{m_{3,1}}$

Hemos obtenido un elemento primitivo, y por tanto un certificado de primalidad de $m_{3,1} = 5766560731$.

Nos falta por estudiar la primalidad de $m_{3,2}=2392995335520991752053$. Para ello, encontremos una factorización completa de $m_{3,2}-1=2^2\cdot 598248833880247938013$ y falta ver si $m_{3,2,1}=598248833880247938013$ es primo. Pero vemos que pasa el Test de Fermat para las bases a=2,3,5,7, con lo que tenemos que es posible primo. Procedemos a buscar un certificado de primalidad mediante el algoritmo de Lucas-Lehmer, factorizando $m_{3,2,1}-1=2^2\cdot 3\cdot 49854069490020661501$. Vemos que, aplicando el test de Fermat, $2^{(m_{3,2,2}-1)}\not\equiv 1\pmod{m_{3,2,2}}$, luego tenemos certificado de composición. Aplicando el algoritmo ρ de Polard:

Paso	x	y	mcd
1	2	5	1
2	5	677	1
3	26	210066388901	1
4	677	48154026845582945885	1
5	458330	16477550820312657009	1
6	210066388901	8767016751718741827	17

Obtenemos así un factor $m_{3,2,2} = 49854069490020661501 = 17 \cdot 2932592322942391853$. Repetimos el proceso, y vemos que aplicando el test de Fermat, $2^{(m_{3,2,3}-1)} \not\equiv 1 \pmod{m_{3,2,3}}$, con $m_{3,2,3}$, luego tenemos certificado de composición. Aplicando el algoritmo ρ de Polard:

Paso	x	y	mcd
1	2	5	1
2	5	677	1
3	26	210066388901	1
4	677	1232549678504676237	1
5	458330	1814589205600697744	1
6	210066388901	2901832105833958121	1
7	1171062592005775711	433343035452068346	1
8	1232549678504676237	530026126697573956	1
		•••	1
105	1072907927239829481	633060779998309531	1
106	1473715790323534215	1476795736927761280	1
107	700874798274490282	1921604684212310878	1
108	1631026691484340616	2602941659810613916	1
109	2098486954844577194	106004085321239324	1
110	910283951658615124	2174617737679806385	1
111	2326822244406153002	1356215947241368806	1
112	2780900295665156451	2177037073141657912	8389

Obtenemos así otro factor $m_{3,2,1}-1=2^2\cdot 3\cdot 17\cdot 8389\cdot 349575911663177$. Repetimos el proceso, y vemos que para $m_{3,2,3}=349575911663177$ aplicando el test de Fermat, $2^{(m_{3,2,3}-1)}\not\equiv 1\pmod{m_{3,2,3}}$, con $m_{3,2,3}$, luego tenemos certificado de composición. Aplicando el algoritmo ρ de Polard obtenemos:

Paso	x	y	mcd
1	2	5	1
2	5	677	1
3	26	210066388901	1
4	677	294589891977312	1
5	458330	290224068809114	1
6	210066388901	2463117925844	1
7	332863845795938	218480901392043	1
			1
2074	90963594969107	304227142127437	1
2075	48834153381626	159526109489353	1
2076	134463322576653	28163583826849	1
2077	245280188018629	284685468917185	1
2078	42109524707488	227174816698981	1
2079	338951848011268	261789712391706	1
2080	257496113186742	185895937987750	2291797

Obtenemos asi otro factor $m_{3,2,1}-1=2^2\cdot 3\cdot 17\cdot 8389\cdot 2291797\cdot 152533541$. Veamos si estos dos últimos factores son primos. Vemos que ambos pasan el test de Fermat para las bases a=2,3,5,7, con lo que tenemos altas probabilidades de primalidad. Aplicamos por tanto a ambos el test de Lucas-Lehmer, y buscamos una factorización de $m_{3,2,1,1}-1=2291796=2^2\cdot 3^2\cdot 13\cdot 59\cdot 83$ y de $m_{3,2,1,2}-1=152533540=2^2\cdot 5\cdot 67\cdot 89\cdot 1279$ (los tres últimos factores en ambos números han sido calculados mediante el algoritmo rho de Polard). Así, estamos en condiciones de buscar un elemento primitivo para cada uno de los candidatos a primo $m_{3,2,1,1}=2291797$ y $m_{3,2,1,2}=152533541$:

- $2^{(m_{3,2,1,1}-1)} \equiv 1 \pmod{m_{3,2,1,1}}$
- $2^{(m_{3,2,1,1}-1)/2} \not\equiv 1 \pmod{m_{3,2,1,1}}$
- $2^{(m_{3,2,1,1}-1)/3} \not\equiv 1 \pmod{m_{3,2,1,1}}$
- $2^{(m_{3,2,1,1}-1)/13} \not\equiv 1 \pmod{m_{3,2,1,1}}$
- $2^{(m_{3,2,1,1}-1)/59} \not\equiv 1 \pmod{m_{3,2,1,1}}$
- $2^{(m_{3,2,1,1}-1)/83} \not\equiv 1 \pmod{m_{3,2,1,1}}$
- $3^{(m_{3,2,1,2}-1)} \equiv 1 \pmod{m_{3,2,1,2}}$
- $3^{(m_{3,2,1,2}-1)/2} \not\equiv 1 \pmod{m_{3,2,1,2}}$
- $3^{(m_{3,2,1,2}-1)/5} \not\equiv 1 \pmod{m_{3,2,1,2}}$
- $3^{(m_{3,2,1,2}-1)/67} \not\equiv 1 \pmod{m_{3,2,1,2}}$
- $3^{(m_{3,2,1,2}-1)/89} \not\equiv 1 \pmod{m_{3,2,1,2}}$
- $3^{(m_{3,2,1,2}-1)/1279} \not\equiv 1 \pmod{m_{3,2,1,2}}$

Hemos encontrado un elemento primitivo para cada candidato a primo, luego tenemos certificado de primalidad de ambos. Ahora, tenemos factorizado en primos $m_{3,2,1}-1=2^2\cdot 3\cdot 17\cdot 8389\cdot 2291797\cdot 152533541$, y estamos en condiciones de encontrar un elemento primitivo para $m_{3,2,1}=598248833880247938013$:

- $2^{(m_{3,2,1}-1)} \equiv 1 \pmod{m_{3,2,1}}$
- $2^{(m_{3,2,1}-1)/2} \not\equiv 1 \pmod{m_{3,2,1}}$
- $2^{(m_{3,2,1}-1)/3} \not\equiv 1 \pmod{m_{3,2,1}}$

_

```
• 2^{(m_{3,2,1}-1)/17} \not\equiv 1 \pmod{m_{3,2,1}}
```

- $2^{(m_{3,2,1}-1)/8389} \not\equiv 1 \pmod{m_{3,2,1}}$
- $2^{(m_{3,2,1}-1)/2291797} \not\equiv 1 \pmod{m_{3,2,1}}$
- $2^{(m_{3,2,1}-1)/152533541} \not\equiv 1 \pmod{m_{3,2,1}}$

Hemos encontrado un elemento primitivo para $m_{3,2,1}=598248833880247938013$, luego tenemos certificado de primalidad. Ahora tenemos factorizado en primos $m_{3,2}-1=2^2\cdot 598248833880247938013$, y estamos en condiciones de encontrar un elemento primitivo para $m_{3,2}=2392995335520991752053$:

```
• 2^{(m_{3,2,1}-1)} \equiv 1 \pmod{m_{3,2,1}}
```

- $2^{(m_{3,2,1}-1)/2} \not\equiv 1 \pmod{m_{3,2,1}}$
- $2^{(m_{3,2,1}-1)/598248833880247938013} \not\equiv 1 \pmod{m_{3,2,1}}$

Hemos encontrado un elemento primitivo para $m_{3,2}=2392995335520991752053$, luego tenemos certificado de primalidad.

Con esto ya hemos terminado, pues hemos encontrado una factorización en primos del número pedido $n+1=2\cdot 3^2\cdot 5\cdot 154493\cdot 5766560731\cdot 2392995335520991752053$

Apartado III. Con P = 1, encuentra Q natural mayor o igual que 2, tal que definan una sucesión de Lucas que certifique la primalidad n.

Buscando entre las sucesiones de Lucas para P=1 y $Q=2,3,4\ldots$, encontramos que para la sucesión de Lucas definida por Q=10 nuestro número n tiene rango de Lucas n+1, ya que calculando los términos siguientes:

- $-U_r = 0$
- $-\ U_{r/2} = U_{95935654458561417343980729818435023455} = 47709003998208220060485602635197377210$
- $-U_{r/3} = U_{63957102972374278229320486545623348970} = 164273324877028002772735679224768487534$
- $-U_{r/5} = U_{38374261783424566937592291927374009382} = 106047746876049106968314821301996697007$
- $-\ U_{r/154493} = U_{1241941763815336841720734658766870} = 175845131206947774252831550572310399643$
- $-\ U_{r/5766560731} = U_{33273092553358012087493171610} = 58655345985896460309905073082122530692$
- $-\ U_{r/2392995335520991752053} = U_{80180394031294470} = 152242346079475099180599144460723176298$

Lo que nos certifica que para los P y Q mencionados, obtenemos $\omega(n)=n+1$, lo que nos da un certificado de primalidad para nuestro número n.