

2

Raffles Institution Raffles Programme Year Three Chemistry

lame:	()	Class:	Date:

2021 MID YEAR REVISION – Bonding and Structure and Properties

1 Complete the following table.

Structure	Simple molecular	Giant covalent	Giant Ionic	Giant Metallic
Particles in the solid			positive ions (cations) and negative ions (anions)	
Bonds between the particles				strong metallic bonds
Physical state at room conditions				solid (except mercury)
Melting and boiling points		high	high	
Electrical conductivity	does not conduct			
Solubility in water		insoluble in both water and non- polar solvents		
Examples	oxygen, water, carbon dioxide, iodine	diamond and graphite (the 2 allotropes of carbon), silicon dioxide	sodium chloride, magnesium oxide	iron, copper, sodium, calcium

How to explai	n why a substance has high or low melting point.
Key points:	state what structure is present; state what type of bond is broken during melting; state whether the bond is strong or weak; state whether large or small amount of energy is needed to break bonds
Explain why t	etrachloromethane, CCI ₄ , has a low melting point.

3	How to expla	in why a sub	stance	condu	cts e	ectri	city.					
	Key points:	state whe delocalized are neutral	d electro	ons ar	e pre	sent	/ stat	te whe				
		ain why sodium chloride cannot conduct electricity in the solid state, but can uct electricity in the liquid or aqueous state.							ut can			
4	How to expla	in why a sub	stance	would	disso	olve i	n wa	ter.				
	Key points:	state whet or partially molecules with the ch	charge	d part ar mol	icles ecule	such s; sta	as p ate th	oolar m ne inter	nolecul raction	es; sta	ite that	t water
	Explain why	sodium chlor	ide can	dissol	lve in	wate	er.					
5	Compare the	arrangemer	nt of ato	ns be	tweer	n diai	mono	d and g	graphit	e, and	explai	n why
(a)	graphite can	conduct elec	ctricity w	hile di	amor	nd ca	nnot	,				
(b)	graphite is so	oft and slippe	ry while	diam	ond is	s har	d.					
()												
6	The following	diagram ab				odio.	Tabl	ا طائند م	 the ele	otrono	aativit	
6	The following of each elem-			. OI tile	FEII	ouic	I abi	e willi	uie eie	ctrone	galivity	y value
			H 2.1							1		
Li 1.0	Be 1.5							B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na	Mg 1.2							Al 1.5	Si	P	S	Cl
0.9 K	Ca Ca							1.5	1.8	2.1	2.5	3.0 Br
8.0	1.0											2.8
(a)	Calculate the	following Δ E	EN value	es and	l state	e whi	ch b	ond, H	-F or F	I-Cl, is	more	polar.
	Δ EN(H-F) = .					ΔΕΝ	(H-C	SI) =				

	Based on polarity of the molecules alone, which of the three substances, hydrogen fluoride, hydrogen chloride or hydrogen bromide, is the most soluble in water?					
(b)	Write " δ +" and " δ -" on the stru	uctures below to show	the polarity of the bonds.			
	Al - Cl	Cl —	- O			
7(a)	In general, the type of bond that formed between 2 non-m Draw the dot-and-cross diagram	etals is covalent.	etal and a non-metal is ionic, while ence electrons) of			
	(i) carbon dioxide [proton number: C, 6; O, 8]	(ii)	sodium oxide [proton number: O, 8; Na, 11]			
7(b)	However, there are some cor covalent, not ionic. An examp	•	ween metal and non-metal that are , PbCl ₄ .			
(i)			nic because of theirin their molten state.			
(ii)	Draw the dot-and-cross dia electrons. Assume Pb has 4 v		of PbCl ₄ , showing only valence			
7(c)	Not all bonding processes of formed where an atom is not		i.e. many stable compounds are nce electrons.			
(i)	Sulfur hexafluoride, SF ₆ , has the following dot-and-cross diagram:					
	F.					
	FAS	How many valence does the sulfur aton				
	FFF					

(ii) Boron trifluoride, BF₃, has the following dot-and-cross diagram:

How many valence electrons does the boron atom have?

.....

8 Convert the following structural formula of chloramine into a dot-and-cross diagram. [proton number: H, 1; N, 7; Cl, 17]

- (a) What is the total number of electrons in the molecule?
- (b) What is the total number of electrons involved in bonding?
- (c) What is the total number of lone pair of electrons?
- 9 The following are representations of various substances.

Use the substances above to answer the following questions.

(a) Which substances contain only one type of bond?

.....

(b)	Which substances contain more than one type of bond? State the types of bond present in each of them.
10	The following diagram represents a solid metal.
	e- + + e-
	+ -+ +
(a)	This solid can conduct electricity. Explain why.
(b)	This solid is malleable. Explain why.
(c)	A student drew a diagram to represent another solid metal:
	2+ e 2+ 2+ e 2+ e 2+ e 2+ e 2+ e 2+ e 2
	2+ e 2+ e 2+ e 2+
	He was marked wrong. Explain why