```
title: "HS650 HW2"
author: "Xinchun Li"
date: "2018/1/26"
output:
  pdf document: default
```{r setup, include=FALSE}
chooseCRANmirror(graphics=FALSE, ind=1)
install.packages("rvest", repos = "http://cran.r-project.org")
install.packages("gmodels")
install.packages("ggplot2")
install.packages("reshape2")
install.packages("plotly")
install.packages("GGally")
install.packages("mi")
install.packages("betareg")
install.packages("corrplot")
install.packages("xtable")
library(rvest)
library(gmodels)
library(ggplot2)
library(reshape2)
library(plotly)
library(MASS)
library(unbalanced)
library(GGally)
library(mi)
library(betareg)
library(corrplot)
library(unbalanced)
library(xtable)
O1
Load the following two datasets, generate summary statistics for
all variables, plot some of the features (e.g., histograms,
box plots, density plots, etc.) of some variables, and save the data
locally as CSV files
Load the ALS Testing Data and TRaining Data
>setwd("C:/Users/xincli/Desktop/HS650/15 ALS CaseStudy")
```

>TestingData <- read.csv("ALS\_TestingData\_78.csv")
>TrainingData <- read.csv("ALS\_TrainingData\_2223.csv")

# # Q1 # Use Summary and plot certain variables with histogram, boxplot, # density plot for testing data and save the summary statistics to the # text file

>summary(TestingData) #leave out the output >hist(TestingData\$Age\_mean, main = 'Histogram of mean age', xlab = 'Mean age')



>boxplot(TestingData[,3:5], main = 'Boxplot for Albumin')



>plot(density(TestingData\$Albumin\_median), main = 'Density plot for median albumin', xlab = 'Median albumin')

#### Density plot for median albumin



>write.table(summary(TestingData), file 'C:/Users/xincli/Desktop/HS650/HW2/ALS\_TestingData.txt')

#Use Summary and plot certain variables with histogram, boxplot, #density plot for training data and save the summary statistics to the #text file

>summary(TrainingData) #leave out the output >hist(TrainingData\$Age\_mean, main = 'Histogram of mean age', xlab = 'Mean age')



>boxplot(TrainingData[,3:5], main = 'Boxplot for Albumin')

#### **Boxplot for Albumin**



>plot(density(TrainingData\$Albumin\_median), main = 'Density plot for median albumin', xlab = 'Median albumin')

Density plot for median albumin



>write.table(summary(TrainingData),file=
'C:/Users/xincli/Desktop/HS650/HW2/ALS\_TrainingData.txt')

### # Load the SOCR Knee Pain Data

```
>wiki_url
read_html("http://wiki.socr.umich.edu/index.php/SOCR_Data_Knee
>PainData_041409")
>html_nodes(wiki_url, "#content")
>KneePain = html_table(html_nodes(wiki_url, "table")[[2]])
>KneePainData = as.data.frame(KneePain)
```

#Summarize, plot the dataset and save the summary statistics to the text file

```
>summary(KneePainData) # leave out the output
>hist(KneePainData$x, main = 'Histogram of x', xlab = 'x')
```



>boxplot(KneePainData[,1:2], main = 'Boxplot for x and Y')



>plot(density(KneePainData\$x), main = 'Density plot for x', xlab = 'x')



>write.table(summary(KneePainData), file = (C:/Users/xincli/Desktop/HS650/HW2/SOCR\_KneePainData.txt')

# Q2
# Use ALS case-study data and long-format SOCR Parkinsons Disease
#data(extract rows with Time=0)
# to explore some bivariate relations (e.g. bivariate plot, correlation,

# table, crosstable etc.)





>cor(TestingData\$Age\_mean, TestingData\$Albumin\_median) [1] -0.4506721

>t <- table(TestingData\$Age\_mean, TestingData\$Albumin\_median) >head(t)

- 1		$\sim$ (	٠,															
35	35	5.5	36 3	7 38	38	.5	39	39	9.5	40	40.5	41	41.5	42	42.25	42.	5 43	
	24.	58	3561	64	0		0	0	0	0	0	0	0	0	0	0	0	0
0		0	0															
	24.	60	5479	45	0		0	0	0	0	0	0	0	0	0	0	0	0
1		0	0															
	33.	51	2328	77	0		0	0	0	0	0	0	0	0	0	0	0	0
1		0	0															
	35.	26	3013	7	0	(	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0															
	37			(	)	0	C	)	0	0	0	0	0	0	0	0	0	0
0		0	0															
	38			(	)	0	C	)	0	0	0	0	0	0	0	1	0	0
0		0	0															

44 45 45.5 46 47 48 49 24.58356164 0 0 0 0 0 0 1 24.60547945 0 0 0 0 0 0 0 33.51232877 0 0 0 0 0 0 0 35.2630137 0 0 0 0 37 0 0 0 1 0 0 0 38 0 0 0 0 0

```
>CrossTable(TestingData$Age_mean, TestingData$Albumin_median)
leave out the output, too long
```

```
#Use07_UMich_AnnArbor_MI_TempPrecipitation_HistData_1900_20 #15 data to show the relations between #temperature and time. [Hint: use geom_line and geom_bar]
```

>aa\_temp\_data<as.data.frame(read.csv("https://umich.instructure.com/files/706163
/download?download\_frd=1", header=T, na.strings=c("", ".", "NA",
"NR")))
>b = seq(1, 111, 5)
>aa\_temp\_data1 = aa\_temp\_data[b,]
>aa\_temp\_data\_new = melt(aa\_temp\_data1, id.vars = 'Year')
>colnames(aa\_temp\_data\_new) = c('Year', 'Month', 'Temperature')
>aa\_temp\_data\_new\$Month = as.factor(aa\_temp\_data\_new\$Month)

>plot = ggplot(aa\_temp\_data\_new, aes(Year, Temperature, group = Month, color = Month)) + geom\_line() >plot



>aa\_temp\_data\_new\$Temperature

as.numeric(aa temp data new\$Temperature)

```
>bar = ggplot(aa_temp_data_new, aes(x = Year, y = Temperature,
fill = Month)) + geom_col() + facet_grid(. ~ Month) +
 scale_y_continuous(breaks = seq(10, 80, 10))
>bar
```



Mean

: 9.998

3rd Qu.:10.670

```
Q3
Introduce (artificially) some missing data, impute the missing
#values and examine the differences between the original,
incomplete and imputed data in statistics.
```

```
> n = 1000
> m = 5
> data = matrix(data = rnorm(5000, 10, 1), 1000, 5)
> miss = sample(1:5000, 500)
> data[miss] = NA
> data = as.data.frame(data)
> summary(data)
 V1
 V2
 V3
 V4
 : 6.811
 : 6.738
Min.
 : 7.246
 Min.
 Min.
 : 6.586
 Min.
 1st Qu.: 9.314
 1st Qu.: 9.345
 1st Qu.: 9.372
 1st Qu.: 9.378
 Median :10.001
Median : 9.994
 Median :10.021
 Median:
9.995
Mean
 : 9.964
 Mean
 :10.007
 Mean
 :10.024
Mean
 :10.002
 3rd Qu.:10.618
 3rd Qu.:10.636
 3rd Qu.:10.766
 3rd
Ou.:10.700
Max.
 :12.972
 Max.
 :13.446
 Max.
 :13.716
Max.
 :13.276
NA's
 :101
 NA's
 :88
 NA's
 :92
 NA's
 :105
 V5
 : 6.942
Min.
 1st Qu.: 9.287
Median: 9.988
```

Max. :13.848 NA's :114

> mdf = missing\_data.frame(data)

> show(mdf)

Object of class missing\_data.frame with 1000 observations on 5 variables

## There are 19 missing data patterns

Append '@patterns' to this missing\_data.frame to access the corresponding pattern for every observation or perhaps use table()

## type missing method model

V1 continuous	101	ppd linear
V2 continuous	88	ppd linear
V3 continuous	92	ppd linear
V4 continuous	105	ppd linear
V5 continuous	114	ppd linear

## family link transformation

V1 gaussian identity standardize V2 gaussian identity standardize V3 gaussian identity standardize V4 gaussian identity standardize V5 gaussian identity standardize

# > image(mdf)

#### Dark represents missing data



> imputations = mi(data, n.iter=5, n.chains=3, verbose=TRUE)

# >hist(imputations)





# # Q4

# Generate a surface plot for the SOCR Knee Pain Data illustrating #the 2D distribution of locations of the patient # reported knee pain (use plotly and kernel density estimation).

>KneePainData\$View = as.factor(KneePainData\$View)
>kernal\_density = with(KneePainData, MASS::kde2d(x, Y, n = 50))
>with(kernal\_density, plot\_ly(x=x, y=y, z=z, type="surface"))



#### #Q5

# Rebalance the groups of ALS (training data) patients according to #Age>50and Age≤50 using synthetic minority oversampling (SMOTE) #to ensure approximately equal cohort sizes.