CLAIMS:

- 1. A method of determining a physical or chemical parameter of wood pulp comprising:
- a) applying excitation light at at least one predetermined wavelength to wood pulp, to produce fluorescence emission light from individual fibre particles of said pulp,
- b) detecting fluorescence intensity of said fluorescence emission light, for each said predetermined wavelength, and
- c) determining a physical or chemical parameter of individual fibre particles of the wood pulp from said fluorescence intensities.
- 2. A method according to claim 1 wherein at least a single wavelength of excitation light in the range 5 η m to 700 η m is applied in step a) and a physical parameter is determined in step c).
- 3. A method according to claim 2 wherein said excitation light has a wavelength of 250 ηm to 600 ηm .
- 4. A method according to claim 3 wherein said wavelength is 360 ηm to 500 ηm .
- 5. A method according to claim 1 wherein step c) comprises determining fibre thickness in said wood pulp from the detected fluorescence intensity in b).
- 6. A method according to claim 1 wherein step c) comprises determining fibre cross-sectional area in said wood pulp from area under a

fluorescence intensity profile derived from the detected fluorescence intensity in b).

- 7. A method according to claim 1 wherein said step c) comprises determining fibre coarseness in said wood pulp from the detected fluorescence intensity per unit length in step b).
- 8. A method according to claim 1 wherein step a) comprises applying excitation light at at least one predetermined wavelength band, and step c) comprises determining a chemical parameter of individual fibre particles of the wood pulp from a ratio of fluorescence intensities detected in step b).
- 9. A method according to claim 8 wherein said chemical parameter is lignin content.
- 10. A method according to claim 8 wherein said chemical parameter is Kappa number.
- 11. A method according to claim 8 wherein said ratio is of fluorescence intensity generated from long versus short wavelength barrier / longpass / bandpass filter, or said ratio is derived from long versus short wavelength intensities in the fluorescence spectra.
- 12. An apparatus for determining a physical or chemical parameter of wood pulp comprising:
- i) means to apply excitation light at at least one predetermined wavelength to wood pulp, to produce fluorescence emission light from individual fibre particles of the wood pulp,

- ii) detection means for detecting fluorescence intensity of the fluorescence emission light for each predetermined wavelength, and
- iii) means for determining a physical or chemical parameter of individual fibre particles of the wood pulp from the fluorescence intensities.
- 13. An apparatus according to claim 12 wherein said means i) applies excitation light at at least a single wavelength in the range 5η to $700 \eta m$, and means ii) determines a physical parameter of individual fibre particles of the wood pulp.
- 14. An apparatus according to claim 13 wherein said wavelength is $250 \, \eta m$ to $600 \, \eta m$.
- 15. An apparatus according to claim 13 wherein said wavelength is $360 \, \eta m$ to $500 \, \eta m$.
- An apparatus according to claim 12 wherein said detection means iii) comprises long and short wavelength filters and means for developing a ratio of the fluorescence intensities generated by the long and short wavelength filters, or by the intensities at long and short wavelength regions in the fluorescence spectra, as a measure of lignin content or Kappa number.