Introduction to EEG data collection & analysis

Yi Chun Ko 柯逸均

Graduate Institute of Linguistics, National Taiwan University Brain and Language Processing lab

Objectives

This session aims to provide introduction to:

- data structure of EEG/ERP
- steps of pre-processing
- scripts to analyze EEG/ERP data

Objectives

This introduction may help you to:

- understand how other multi-modal EEG studies perform data analysis
- analyze open datasets
- design EEG experiments using MultiMoCo

Open Datasets in Electrophysiology

https://github.com/openlists/ElectrophysiologyData

Packages for EEG analysis

- EEGLAB (& ERPLAB)
 Fieldtrip
- MNE-Python

Packages for EEG analysis

• EEGLAB (& ERPLAB)

Fieldtrip

MNE-Python

https://eeglab.org/others/EEGLAB_and_python.html

• EEG = Electroencephalogram

- A method to record electrical activity in the brain
- EEG signal is recorded by placing electrodes on the scalp
- Non-invasive

• ERP = event-related potential (事件相關電位)

- How do we get ERP?
 - Cut the continuous EEG signals into segments

Adapted from Luck (2014)

• ERP = event-related potential (事件相關電位)

How do we get ERP?

- Cut the continuous EEG signals into segments
- Average these EEG segments based on the "events" (stimulus type)

• ERP = event-related potential (事件相關電位)

How do we get ERP?

- Cut the continuous EEG signals into segments
- Average these EEG segments based on the "events" (stimulus type)
- Then, we will get the signals that are related to that specific event

• ERP = event-related potential (事件相關電位)

How do we get ERP?

- Cut the continuous EEG signals into segments
- Average these EEG segments based on the "events" (stimulus type)
- Then, we will get the signals that are related to that specific event
- → That's why it's called "event-related potentials"

• ERP = event-related potential (事件相關電位)

How do we get ERP?

- Cut the continuous EEG signals into segments
- Average these EEG segments based on the "events" (stimulus type)
- Then, we will get the signals that are related to that specific event
- → That's why it's called "event-related potentials"

But why?

- Noise is random, so it will **cancel out each other** after averaging
- Signals that are elicited by that event will remain even after averaging

Tutorials

- Introduction to ERPs (by Steven Luck)
- ERP online courses (by Steven Luck)
- An introduction to the event-related potential technique (again, by Steven Luck)

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Open folder "1_EEG data structure"
 - Preprocessing_teamplate.m
 - S1.set
 - \$1.fdt
 - BDF.txt
 - Rereference_list.txt
 - standard_1005.elc

- Open folder "1_EEG data structure"
 - Preprocessing_teamplate.m
 - S1.set
 - S1.fdt
 - BDF.txt
 - Rereference_list.txt
 - standard_1005.elc

- Open folder "1_EEG data structure"
 - Preprocessing_teamplate.m

 - BDF.txt
 - Rereference_list.txt
 - standard_1005.elc

- Open folder "1_EEG data structure"
 - Preprocessing_teamplate.m
 - S1.set
 - S1.fdt
 - BDF.txt
 - Rereference_list.txt
 - standard_1005.elc

EEG - the current EEG dataset

ALLEEG - array of all loaded EEG datasets

CURRENTSET - the index of the current dataset

(EEG = ALLEEG(CURRENTSET))

LASTCOM - the last command issued from the EEGLAB menu

ALLCOM - all the commands issued from the EEGLAB menu

- EEG contains all the information of currently loaded dataset in EEGLAB
 - Load S1.set and type EEG
 - Load S1_preprocessed.set and type EEG
 - Examine the structure of each dataset

- What's the difference?
 - trials
 - pnts
 - data
 - epoch

- EEG contains all the information of currently loaded dataset in EEGLAB
 - Type **EEG.trials**
 - Type EEG.pnts
 - Type EEG.epoch
 - Type EEG.epoch(1)
 - Type EEG.epoch(1).eventtype
 - Type EEG.epoch(1).eventlatency

- What about typing EEG.data?
 - → Don't try!

- ALLEEG holds all the loaded datasets in the EEGLAB
 - Type ALLEEG(1) and ALLEEG(2)

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

- Load dataset
- Channel location
- Create eventlist
- Assign bin
- Re-reference
- Epoch & baseline correction
- Artifact detection (AD)
- Filter
- → Compute averaged ERP → Grand Average

ERP CORE – N170 dataset

N170

- Face-related component
- Typically peaks around 170 ms after stimulus onset
- Larger when the stimulus is a face compared to when the stimulus is a non-face object
- → The human brain is able to distinguish between **faces** and **other objects within 150 ms!**

ERP CORE – N170 dataset

Previous studies have used N170 as an index of face processing to ask interesting questions

- Face processing is at least partially automatic
- Face processing can still be modulated by attention
- → Will the appearances of gestures reduce the N170 amplitudes?

ERP CORE – N170 dataset

- Face perception task
- An image of a face/car/scrambled face/scrambled car was presented
- Participants responded whether the stimulus was an "object" (face or car) or a "texture" (scrambled face or scrambled car)

- Open folder "2_ERP-core_N170"
 - Script10_Plot_Grand_Average_ERPs.m
 - Script11_Plot_Grand_Average_Topomaps.m
 - GA_N170_erp_ar_diff_waves.erp
 - GA_N170_erp_ar_diff_waves_lpfilt.erp

- Open folder "2_ERP-core_N170"
 - Script10_Plot_Grand_Average_ERPs.m
 - Script11_Plot_Grand_Average_Topomaps.m
 - GA_N170_erp_ar_diff_waves.erp
 - GA_N170_erp_ar_diff_waves_lpfilt.erp

- Open folder "2_ERP-core_N170"
 - Script10_Plot_Grand_Average_ERPs.m
 - Script11_Plot_Grand_Average_Topomaps.m
 - GA_N170_erp_ar_diff_waves.erp
 - GA_N170_erp_ar_diff_waves_lpfilt.erp