Exhibit B

In Praise of Memory Systems: Cache, DRAM, Disk

Memory Systems: Cache, DRAM, Disk is the first book that takes on the whole hierarchy in a way that is consistent, covers the complete memory hierarchy, and treats each aspect in significant detail. This book will serve as a definitive reference manual for the expert designer, yet it is so complete that it can be read by a relative novice to the computer design space. While memory technologies improve in terms of density and performance, and new memory device technologies provide additional properties as design options, the principles and methodology presented in this amazingly complete treatise will remain useful for decades. I only wish that a book like this had been available when I started out more than three decades ago. It truly is a landmark publication. Kudos to the authors.

-Al Davis, University of Utah

Memory Systems: Cache, DRAM, Disk fills a huge void in the literature about modern computer architecture. The book starts by providing a high level overview and building a solid knowledge basis and then provides the details for a deep understanding of essentially all aspects of modern computer memory systems including architectural considerations that are put in perspective with cost, performance and power considerations. In addition, the historical background and politics leading to one or the other implementation are revealed. Overall, Jacob, Ng, and Wang have created one of the truly great technology books that turns reading about bits and bytes into an exciting journey towards understanding technology.

-Michael Schuette, Ph.D., VP of Technology Development at OCZ Technology

This book is a critical resource for anyone wanting to know how DRAM, cache, and hard drives really work. It describes the implementation issues, timing constraints, and trade-offs involved in past, present, and future designs. The text is exceedingly well-written, beginning with high-level analysis and proceeding to incredible detail only for those who need it. It includes many graphs that give the reader both explanation and intuition. This will be an invaluable resource for graduate students wanting to study these areas, implementers, designers, and professors.

—Diana Franklin, California Polytechnic University, San Luis Obispo

Memory Systems: Cache, DRAM, Disk fills an important gap in exploring modern disk technology with accuracy, lucidity, and authority. The details provided would only be known to a researcher who has also contributed in the development phase. I recommend this comprehensive book to engineers, graduate students, and researchers in the storage area, since details provided in computer architecture textbooks are woefully inadequate.

—Alexander Thomasian, IEEE Fellow, New Jersey Institute of Technology and Thomasian and Associates

Memory Systems: Cache, DRAM, Disk offers a valuable state of the art information in memory systems that can only be gained through years of working in advanced industry and research. It is about time that we have such a good reference in an important field for researchers, educators and engineers.

-Nagi Mekhiel, Department of Electrical and Computer Engineering, Ryerson University, Toronto

This is the only book covering the important DRAM and disk technologies in detail. Clear, comprehensive, and authoritative, I have been waiting for such a book for long time.

-Yiming Hu, University of Cincinnati

Memory is often perceived as the performance bottleneck in computing architectures. Memory Systems: Cache, DRAM, Disk, sheds light on the mystical area of memory system design with a no-nonsense approach to what matters and how it affects performance. From historical discussions to modern case study examples this book is certain to become as ubiquitous and used as the other Morgan Kaufmann classic textbooks in computer engineering including Hennessy and Patterson's Computer Architecture: A Quantitative Approach.

—R. Jacob Baker, Micron Technology, Inc. and Boise State University.

Memory Systems: Cache, DRAM, Disk is a remarkable book that fills a very large void. The book is remarkable in both its scope and depth. It ranges from high performance cache memories to disk systems. It spans circuit design to system architecture in a clear, cohesive manner. It is the memory architecture that defines modern computer systems, after all. Yet, memory systems are often considered as an appendage and are covered in a piecemeal fashion. This book recognizes that memory systems are the heart and soul of modern computer systems and takes a 'holistic' approach to describing and analyzing memory systems.

The classic book on memory systems was written by Dick Matick of IBM over thirty years ago. So not only does this book fill a void, it is a long-standing void. It carries on the tradition of Dick Matick's book extremely well, and it will doubtless be the definitive reference for students and designers of memory systems for many years to come. Furthermore, it would be easy to build a top-notch memory systems course around this book. The authors clearly and succinctly describe the important issues in an easy-to-read manner. And the figures and graphs are really great—one of the best parts of the book.

When I work at home, I make coffee in a little stove-top espresso maker I got in Spain. It makes good coffee very efficiently, but if you put it on the stove and forget it's there, bad things happen—smoke, melted gasket—'burned coffee meltdown.' This only happens when I'm totally engrossed in a paper or article. Today, for the first time, it happened twice in a row—while I was reading the final version of this book.

—Jim Smith, University of Wisconsin—Madison

Memory Systems

Cache, DRAM, Disk

Memory Systems

Cache, DRAM, Disk

Bruce Jacob

University of Maryland at College Park

Spencer W. Ng Hitachi Global Storage Technologies

> David T. Wang MetaRAM

With Contributions By

Samuel Rodriguez Advanced Micro Devices

Publisher Denise E.M. Penrose
Acquisitions Editor Chuck Glaser
Publishing Services Manager George Morrison
Senior Production Editor Paul Gottehrer
Developmental Editor Nate McFadden
Accistant Editor Kimberles Honio

Assistant Editor Kimberlee Honjo
Cover Design Joanne Blank
Text Design Dennis Schaefer
Composition diacriTech

Interior printer Maple-Vail Book Manufacturing Group

Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Application submitted

ISBN: 978-0-12-379751-3

For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America

08 09 10 11 12

5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

Dedication

Jacob To my parents, Bruce and Ann Jacob, my wife, Dorinda, and my children, Garrett, Carolyn, and Nate

Ng Dedicated to the memory of my parents Ching-Sum and Yuk-Ching Ng

Wang Dedicated to my parents Tu-Sheng Wang and Hsin-Hsin Wang You can tell whether a person plays or not by the way he carries the instrument, whether it means something to him or not.

Then the way they talk and act. If they act too hip, you know they can't play [jack].

-Miles Davis

[...] in connection with musical continuity, Cowell remarked at the New School before a concert of works by Christian Wolff, Earle Brown, Morton Feldman, and myself, that here were four composers who were getting rid of glue. That is: Where people had felt the necessity to stick sounds together to make a continuity, we four felt the opposite necessity to get rid of the glue so that sounds would be themselves.

Christian Wolff was the first to do this. He wrote some pieces vertically on the page but recommended their being played horizontally left to right, as is conventional. Later he discovered other geometrical means for freeing his music of intentional continuity. Morton Feldman divided pitches into three areas, high, middle, and low, and established a time unit. Writing on graph paper, he simply inscribed numbers of tones to be played at any time within specified periods of time.

There are people who say, "If music's that easy to write, I could do it." Of course they could, but they don't. I find Feldman's own statement more affirmative. We were driving back from some place in New England where a concert had been given. He is a large man and falls asleep easily. Out of a sound sleep, he awoke to say, "Now that things are so simple, there's so much to do." And then he went back to sleep.

-John Cage, Silence

PART II

DRAM

The first question I ask myself when something doesn't seem to be beautiful is why do I think it's not beautiful. And very shortly you discover that there is no reason.

- John Cage

Overview of DRAMs

DRAM is the "computer memory" that you order through the mail or purchase at the store. It is what you put more of into your computer as an upgrade to improve the computer's performance. It appears in most computers in the form shown in Figure 7.1—the ubiquitous *memory module*, a small computer board (a *printed circuit board*, or *PCB*) that has a handful of chips attached to it. The eight black rectangles on the pictured module are the DRAM chips: plastic packages, each of which encloses a *DRAM die* (a very thin, fragile piece of silicon).

Figure 7.2 illustrates DRAM's place in a typical PC. An individual DRAM device typically connects indirectly to a CPU (i.e., a microprocessor) through a memory controller. In PC systems, the memory controller is part of the *north-bridge* chipset that handles potentially multiple microprocessors, the graphics co-processor, communication to the *south-bridge* chipset (which, in turn, handles all of the system's I/O functions), as well as the interface to the DRAM system. Though still often referred to as "chipsets"

these days, the north- and south-bridge chipsets are no longer sets of chips; they are usually implemented as single chips, and in some systems the functions of both are merged into a single die.

Because DRAM is usually an external device by definition, its use, design, and analysis must consider effects of implementation that are often ignored in the use, design, and analysis of on-chip memories such as SRAM caches and scratch-pads. Issues that a designer must consider include the following:

- Pins (e.g., their capacitance and inductance)
- Signaling
- Signal integrity
- Packaging
- · Clocking and synchronization
- · Timing conventions

Failure to consider these issues when designing a DRAM system is guaranteed to result in a sub-optimal, and quite probably non-functional, design.

FIGURE 7.1: A memory module, A memory module, or DIMM (dual in-line memory module), is a circuit board with a handful of DRAM chips and associated circuitry attached to it.

FIGURE 7.2: A typical PC organization. The DRAM subsystem is one part of a relatively complex whole. This figure illustrates a two-way multi-processor, with each processor having its own dedicated secondary cache. The parts most relevant to this report are shaded in darker grey: the CPU, the memory controller, and the individual DRAMs.

Thus, much of this section of the book deals with lowlevel implementation issues that were not covered in the previous section on caches.

7.1 DRAM Basics: Internals, Operation

A random-access memory (RAM) that uses a single transistor-capacitor pair for each bit is called a dynamic random-access memory or DRAM. Figure 7.3 shows, in the bottom right corner, the circuit for the storage cell in a DRAM. This circuit is *dynamic* because the capacitors storing electrons are not perfect devices, and their eventual leakage requires that, to retain information stored there, each

capacitor in the DRAM must be periodically *refreshed* (i.e., read and rewritten).

Each DRAM die contains one or more *memory arrays*, rectangular grids of storage cells with each cell holding one bit of data. Because the arrays are rectangular grids, it is useful to think of them in terms associated with typical grid-like structures. A good example is a Manhattan-like street layout with avenues running north—south and streets running east—west. When one wants to specify a rendezvous location in such a city, one simply designates the intersection of a street and an avenue, and the location is specified without ambiguity. Memory arrays are organized just like this, except where Manhattan is organized into *streets* and *avenues*, memory arrays are organized

FIGURE 7.3: Basic organization of DRAM internals. The DRAM memory array is a grid of storage cells, where one bit of data is stored at each intersection of a *row* and a *column*.

into rows and columns. A DRAM chip's memory array with the rows and columns indicated is pictured in Figure 7.3. By identifying the intersection of a row and a column (by specifying a row address and a column address to the DRAM), a memory controller can access an individual storage cell inside a DRAM chip so as to read or write the data held there.

One way to characterize DRAMs is by the number of memory arrays inside them. Memory arrays within a memory chip can work in several different ways. They can act in unison, they can act completely independently, or they can act in a manner that is somewhere in between the other two. If the memory arrays are designed to act in unison, they operate as a unit, and the memory chip typically transmits or receives a number of bits equal to the number of arrays each time the memory controller accesses the DRAM. For example, in a simple organization, a x4 DRAM (pronounced "by four") indicates that the DRAM has at least four memory arrays and that a column width is 4 bits (each column read or write transmits 4 bits of data). In a x4 DRAM part, four arrays each read 1 data

bit in unison, and the part sends out 4 bits of data each time the memory controller makes a column read request. Likewise, a x8 DRAM indicates that the DRAM has at least eight memory arrays and that a column width is 8 bits. Figure 7.4 illustrates the internal organization of x2, x4, and x8 DRAMs. In the past two decades, wider output DRAMs have appeared, and x16 and x32 parts are now common, used primarily in high-performance applications.

Note that each of the DRAM illustrations in Figure 7.4 represents multiple arrays but a single *bank*. Each set of memory arrays that operates independently of other sets is referred to as a bank, not an array. Each bank is independent in that, with only a few restrictions, it can be activated, precharged, read out, etc. at the same time that other banks (on the same DRAM device or on other DRAM devices) are being activated, precharged, etc. The use of multiple independent banks of memory has been a common practice in computer design since DRAMs were invented. In particular, *interleaving* multiple memory banks has been a popular method used to achieve high-bandwidth memory busses using

FIGURE 7.4: Logical organization of wide data-out DRAMs. If the DRAM outputs more than one bit at a time, the internal organization is that of multiple arrays, each of which provides one bit toward the aggregate data output.

low-bandwidth devices. In an interleaved memory system, the data bus uses a frequency that is faster than any one DRAM bank can support; the control circuitry toggles back and forth between multiple banks to achieve this data rate. For example, if a DRAM bank can produce a new chunk of data every 10 ns, one can toggle back and forth between two banks to produce a new chunk every 5 ns, or round-robin between four banks to produce a new chunk every 2.5 ns, thereby effectively doubling or quadrupling the data rate achievable by any one bank. This technique goes back at least to the mid-1960s, where it was used in two of the highest performance (and, as it turns out, best documented) computers of the day: the IBM System/360 Model 91 [Anderson et al. 1967] and Seymour Cray's Control Data 6600 [Thornton 1970].

Because a system can have multiple DIMMs, each of which can be thought of as an independent bank, and the DRAM devices on each DIMM can implement internally multiple independent banks, the word "rank" was introduced to distinguish DIMM-level independent operation versus internal-bank-level independent operation. Figure 7.5 illustrates the various levels of organization in a modern DRAM system. A system is composed of potentially many independent DIMMs. Each DIMM may contain one

or more independent ranks. Each rank is a set of DRAM devices that operate in unison, and internally each of these DRAM devices implements one or more independent banks. Finally, each bank is composed of slaved memory arrays, where the number of arrays is equal to the data width of the DRAM part (i.e., a x4 part has four slaved arrays per bank). Having concurrency at the rank and bank levels provides bandwidth through the ability to pipeline requests. Having multiple DRAMs acting in unison at the rank level and multiple arrays acting in unison at the bank level provides bandwidth in the form of parallel access.

The busses in a JEDEC-style organization are classified by their function and organization into *data*, *address*, *control*, and *chip-select* busses. An example arrangement is shown in Figure 7.6, which depicts a memory controller connected to two memory modules. The data bus that transmits data to and from the DRAMs is relatively wide. It is often 64 bits wide, and it can be much wider in high-performance systems. A dedicated address bus carries row and column addresses to the DRAMs, and its width grows with the physical storage on a DRAM device (typical widths today are about 15 bits). A control bus is composed of the row and column strobes, ¹ output enable, clock, clock enable, and other related signals. These

¹A "strobe" is a signal that indicates to the recipient that another signal, e.g., data or command, is present and valid.

MEMORY SYSTEMS Cache, DRAM, Disk

Bruce Jacob, University of Maryland at College Park **Spencer W. Ng**, Hitachi Global Storage Technologies **David T. Wang**, MetaRAM

"Memory Systems: Cache, DRAM, Disk fills a huge void in the literature about modern computer architecture... Jacob, Ng, and Wang have created one of the truly great technology books that turns reading about bits and bytes into an exciting journey towards understanding technology."

- Michael Schuette, VP of Technology Development at OCZ Technology

"Memory Systems: Cache, DRAM, Disk is remarkable in both its scope and depth.... This book will doubtless be the definitive reference for students and designers of memory systems for many years to come."

— Jim Smith, University of Wisconsin - Madison

The performance gap between processor and memory speeds has increased dramatically. System designers have talked for over a decade about "hitting the memory wall," a condition in which overall system speed is significantly compromised by the memory system's inability to keep pace with the processor. That condition is today's reality—the memory system has become the most critical performance bottleneck, and memory subsystems design is now the greatest challenge facing design engineers.

Memory Systems: Cache, DRAM, Disk is the first book to cover comprehensively the logical design and operation, physical design and operation, performance characteristics and resulting design trade-offs, and the energy consumption of modern memory hierarchies. This book describes the physical design and detailed software emulation of the entire memory hierarchy, from cache to disk and prepares designers to tackle the challenging optimization problems that result from the side effects that can appear at any point in the entire memory hierarchy.

CONTENT HIGHLIGHTS

- Provides a comprehensive, in-depth understanding of all levels of the system hierarchy—cache, DRAM, and disk.
- Describes a holistic approach for evaluating the system-level effects of all design choices.
- Includes a link to the open-source software DRAMsim, a detailed and accurate parameter-driven simulator of modern DRAM-based memory systems that models performance and energy consumption for each component.

ABOUT THE AUTHORS

Bruce Jacob is an Associate Professor of Electrical and Computer Engineering at the University of Maryland at College Park.

Spencer W. Ng is a senior technical staff member with Hitachi Global Storage Technologies. He has been a researcher in the field of storage for over twenty years, and is the holder of about twenty issued U.S. patents.

David T. Wang is a senior technical staff member at MetaRAM, a memory systems startup in Silicon Valley.

Online support materials for this book are available at textbooks, elsevier.com/9780123797513

Cover photograph: istockphotos.com® Mypokcik

