EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 19.07.2000 Bulletin 2000/29

(21) Application number: 98933922.1

(22) Date of filing: 24.07.1998

(51) Int. Cl.⁷: **C07D 403/04**, C07D 403/14, C07D 413/14, A61K 31/535

(86) International application number: PCT/JP98/03308

(11)

(87) International publication number:
 WO 99/05138 (04.02.1999 Gazette 1999/05)

(84) Designated Contracting States:
BE CH DE DK ES FR GB IT LI NL SE

(30) Priority: 24.07.1997 JP 19880497

(71) Applicant:

ZENYAKU KOGYO KABUSHIKI KAISHA
Tokyo 103 (JP)

(72) Inventors:

 KAWASHIMA, Selichiro, Kenkyusho of Nerima-ku, Tokyo 178-0062 (JP)

 MATSUNO, Toshiyuki, Kenkyusho of Nerima-ku, Tokyo 178-0062 (JP) YAGUCHI, Shinichi, Kenkyusho of Nerima-ku, Tokyo 178-0062 (JP)

 WATANABE, Tetsuo, Kenkyusho of Nerima-ku, Tokyo 178-0062 (JP)

 INABA, Masahiro, Kenkyusho of Nerima-ku, Tokyo 178-0062 (JP)

(74) Representative:
LOUIS, PÖHLAU, LOHRENTZ & SEGETH
Postfach 3055
90014 Nürnberg (DE)

(54) HETEROCYCLIC COMPOUNDS AND ANTITUMOR AGENT CONTAINING THE SAME AS ACTIVE INGREDIENT

(57) Heterocyclic compounds in which s-triazine or pyrimidine is substituted with benzimidazole and morpholine and which are represented by the Formula I or phermaceutically acceptable acid addition salts thereof:

wherein X and Y respectively represent nitrogen atom or one of them represents nitrogen atom and the other represents C-R₇ wherein R₇ represents hydrogen or halogen atom; R₁, R₂, R₄, R₅ and R₆ represent hydrogen atom or C₁-C₆ alkyl; R₃ represents morpholino, piperidino, piperazinyl, thiomorpholino, benzimidazolyl, cyano or the like.

Description

10

15

20

25

55

TECHNICAL FIELD

[0001] The present invention relates to heterocyclic compounds in which s-triazine or pyrimidine is substituted with benzimidazole and morpholine and which are represented by the Appearanceula (I) or phermaceutically acceptable acid addition salts thereof and antitumor agents containing the heterocyclic compounds as effective components:

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{1}

wherein X and Y respectively represent nitrogen atom or one of them represents nitrogen atom and the other represents $C-R_7$ wherein R_7 represents hydrogen or halogen atom; R_1 , R_2 , R_4 , R_5 and R_6 represent hydrogen atom or C_1-C_6 alkyl; R_3 represents morpholino (which may be substituted with one or two C_1-C_6 alkyl, trifluoromethyl, hydroxymethyl, monohalogenomethyl or $-CH_2NR_8R_9$ wherein R_8 represents hydrogen atom or C_1-C_6 alkyl and R_9 represents hydrogen atom, C_1-C_6 alkoxycarbonyl or benzyl), piperidino (which may be substituted with hydroxy, acetoxy, oxo, ethylenedioxy or amino C_1-C_6 alkyl), piperazinyl (which may be substituted with C_1-C_6 alkyl), thiomorpholino, benzimidazolyl, cyano or $-NR_{10}R_{11}$ wherein R_{10} and R_{11} represent hydrogen atom, C_1-C_6 alkyl, hydroxy C_1-C_6 alkyl or morpholino C_1-C_6 alkyl.

BACKGROUND ART

[0002] s-Triazine (1,3,5-triazine) and pyrimidine derivatives have been researched in the fields of synthetic resins, synthetic fibers, dyes and agricultural chemicals and a number of such compounds have been synthesized. In the field of pharmaceuticals, researches have been made with respect to antitumor, anti-inflammatory, analgesic and antispasmodic activities. Especially, hexamethylmelamine (HMM) is well-known, which has been developed as analogue of antitumor agent triethylenemelamine (TEM) [B. L. Johnson et al. Cancer, 42: 2157-2161(1978)].

[0003] TEM is known as alkylating agent and is an s-triazine derivative having cytotoxic antitumor activity. HMM has been marketed in Europe under the indications for the treatment of ovarian and small cell lung cancers, and its action on solid cancers have attractive.

[0004] Among the s-triazine derivatives, imidazolyl-s-triazine derivatives are well-known which exhibit cytotoxic and selective aromatase inhibiting activities and have been proposed as medicine for estrogen-dependent diseases such as endometriosis, multicystic ovarium, mastosis, endometrium carcinoma and breast cancer (PCT publication WO93/17009).

[0005] However, there is still room for improvement on HMM with respect to its antitumor spectrum and intensity of antitumor activities against solid cancers. As to imidazolyl-s-triazine derivatives, they are limitative in application since they exhibit considerably higher aromatase inhibitory activities than their cytotoxic activities and application of them to cancerous patients other than those who suffer from estrogen-dependent diseases may lead to development of secondary effects such as menstrual disorders due to lack of estrogen. There are still, therefore, strong demands on medicines with no aromatase inhibitory activities and effective for solid cancers.

DISCLOSURE OF THE INVENTION

[0006] In order to expand antitumor spectrum of and increase antitumor activities of HMM, we, the inventors, car-

ried out intensive studies repriazine and pyrimidine derivatives to surprisingly fit that heterocyclic compounds with substitution of benzimidazole and morpholine and represented by the Formula exhibit by far strong antitumor activities with no aromatase inhibitory activities in comparison with the conventional s-triazine and pyrimidine derivatives, thus accomplishing the present invention.

[0007] The terms used for definition of letters in the Formula I, by which the heterocyclic compounds of the invention are represented, will be defined and exemplified in the following.

[0008] The term "C₁-C₆" refers to a group having 1 to 6 carbon atoms unless otherwise indicated.

[0009] The "C₁-C₆ alkyl group" refers to a straight- or branched-chain alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl or n-hexyl.

10 [0010] The "amino C₁-C₆ alkyl group" refers to the above-mentioned "C₁-C₆ alkyl group" with amino group coupled to any of the carbon atoms.

[0011] The "hydroxy C_1 - C_6 alkyl" refers to the above-mentioned " C_1 - C_6 alkyl" with any of the carbon atoms coupled to hydroxy group.

[0012] The "morpholino C_1 - C_6 alkyl" refers to the above-mentioned " C_1 - C_6 alkyl" with any of the carbon atoms coupled to morpholino group.

[0013] The " C_1 - C_6 alkoxy" refers to a straight- or branched-chain alkoxy group such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, n-pentyloxy, n-hexyloxy or the like.

[0014] The "halogen atom" may be fluorine, chlorine, bromine or iodine atom.

[0015] The compounds according to the present invention may be as follows, though the present invention is not limited to these compounds.

2-(benzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine

35

- 2-(2-methylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine
- 2-(5,6-dimethylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine
- 25 4,6-dimorpholino-2-(2,5,6-trimethylbenzimidazol-1-yl)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(cis-2,6-dimethylmorpholino)-6-morpholino-1,3,5-triazine
 - 4-(cis-2,6-dimethylmorpholino)-2-(2-methylbenzimidazol-1-yl)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(trans-2,6-dimethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-morpholino-1,3,5-triazine
- 30 2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2-methylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2,2-dimethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2-ethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2-chtoromethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2-fluoromethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(2-hydroxymethylmorpholino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-(2-trifluoromethylmorpholino)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4,6-bis(cis-2,6-dimethylmorpholino)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-(cis-2,6-dimethylmorpholino)-1,3,5-triazine
- 4,6-bis(cis-2,6-dimethylmorpholino)-2-(2,5,6-trimethylbenzimidazol-1-yl)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-(cis-2,6-dimethylmorpholino)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-[2-(tert-butoxycarbonylaminomethyl)morpholino]-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-[2-(N-benzyl-N-methylaminomethyl)morpholino]-6-morpholino-1,3,5-triazine
 - 2-(2-aminomethylmorpholino)-4-(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine
- 4-(cis-2,6-dimethylmorpholino)-2-(2-methylbenzimidazol-1-yl)-6-thiomorpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-piperidino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(4-hydroxypiperidino)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-(4-oxopiperidino)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(3-hydroxypiperidino)-6-morpholino-1,3,5-triazine
- 50 2-(4-acetoxypiperidino)-4-(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-[3-(4-tert-butoxycarbonylaminobutyl)piperidino]-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-(piperazin-1-yl)-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(4-methylpiperazin-1-yl)-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-cyano-6-morpholino-1,3,5-triazine
- 55 2-(benzimidazol-1-yl)-4-dimethylamino-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-[N-(2-hydroxyethyl)-N-methylamino]-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-[N,N-di(2-hydroxyethyl)amino]-6-morpholino-1,3,5-triazine
 - 2-(benzimidazol-1-yl)-4-(N-ethyl-N-2-morpholinoethyl)amino-6-morpholino-1,3,5-triazine

- 2-(benzimidazol-1-yl)-4-(N-butyl-N-2-morpholinoethyl)amino-6-morpholino-1,3,5-triazine
- 2-(benzimidazol-1-yl)-4-morpholino-6-thiomorpholino-1,3,5-triazine
- 2,4-di(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine
- 2-(benzimidazol-1-yl)-4-(1,4-dioxa-8-azaspyro[4,5]dekan-8-yl)-6-morpholino-1,3,5-triazine
- 2-(benzimidazol-1-yl)-4,6-dimorpholinopyrimidine

10

15

25

35

45

- 4-(benzimidazol-1-yl)-2,6-dimorpholinopyrimidine
- 2-(2-methylbenzimidazol-1-yl)-4,6-dimorpholinopyrimidine
- 2-(5,6-dimethylbenzimidazol-1-yl)-4,6-dimorpholinopyrimidine
- 4,6-dimorpholino-2-(2,5,6-trimethylbenzimidazol-1-yl)-pyrimidine
- 2-(benzimidazol-1-yl)-4-(cis-2,6-dimethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-(trans-2,6-dimethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-2-(cis-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-6-(cis-2,3-dimethylmorpholino)-2-morpholinopyrimidine
- 2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-2-(trans-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-6-(trans-2,3-dimethylmorpholino)-2-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-(2,2-dimethylmorpholino)-6-morpholinopyrimidine
- 2-(benzimidazol-1-yl)-4-(2-ethylmorpholino)-6-morpholino-pyrimidine
- 20 2-(benzimidazol-1-yl)-4-(2-fluoromethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-(2-hydroxymethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-(2-trifluoro-methyl-morpholino)pyrimidine
 - 2-(benzimidazol-1-yl)-4-(4-oxopiperidino)-6-morpholino-pyrimidine
 - 2-(benzimidazol-1-yl)-4-(3-hydroxypiperidino)-6-morpholino-pyrimidine
 - 2-(benzimidazol-1-yl)-4,6-bis(cis-2,6-dimethylmorpholino)-pyrimidine
 - 2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-(cis-2,6-dimethylmorpholino)pyrimidine
 - 2-(benzimidazol-1-yl)-4-[2-(tert-butoxycarbonylaminomethyl)morpholino]-6-morpholinopyrimidine
 - 2-(2-aminomethylmorpholino)-4-(benzimidazol-1-yl)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-2,6-bis(cis-2,6-dimethylmorpholino)pyrimidine
- 2-(benzimidazol-1-yl)-5-bromo-4-(cis-2,6-dimethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-5-bromo-4-(trans-2,6-dimethylmorpholino)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-5-bromo-4,6-dimorpholinopyrimidine
 - 4-(benzimidazol-1-yl)-5-bromo-2,6-dimorpholinopyrimidine
 - 2-(benzimidazol-1-yl)-5-bromo-4-(trans-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-5-bromo-2-(trans-2,3-dimethylmorpholino)-6-morpholinopyrimidine
 - 4-(benzimidazol-1-yl)-5-bromo-6-(trans-2,3-dimethylmorpholino)-2-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-piperidinopyrimidine
 - 2-(4-acetoxypiperidino)-4-(benzimidazol-1-yl)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-morpholino-6-(piperazin-1-yl)pyrimidine
- 2-(benzimidazol-1-yl)-4-(4-methylpiperazin-1-yl)-6-morpholinopyrimidine
 - 2-(benzimidazol-1-yl)-4-cyano-6-morpholinopyrimidine
 - · 2-(benzimidazol-1-yl)-4-morpholino-6-thiomorpholinopyrimidine
 - 2,4-di(benzimidazol-1-yl)-6-morpholinopyrimidine
 - 4,6-di(benzimidazol-1-yl)-2-morpholinopyrimidine

[0016] The compounds of the present invention may have asymmetric carbon atoms in its structure. It is to be understood that isomers due to such asymmetric carbon atom or combination (racemate) of any of the isomers are included in the category of the compounds according to the present invention.

[0017] Furthermore, the compounds of the present invention may be in the form of pharmaceutically acceptable acid addition salts. The appropriate salts which can be used include, for example, inorganic salts such as hydrochloride, sulfate, hydrobromide, nitrate and phosphate as well as organic acid salts such as acetate, oxalate, propionate, glycolate, lactate, pyruvate, malonate, succinate, maleate, fumarate, malate, tartarate, citrate, benzoate, cinnamate, methanesulfonate, benzenesulfonate, p-toluenesulfonate and salicylate.

Production Processes

[0018] The compounds of the present invention represented by the formula I may be prepared by, as shown in the following reaction formula, reacting cyanuric chloride or 2,4,6-trichloropyrimidine (compound II) as starting material with

the order named.

10

15

20

.25

30

35

40

45

50

55

benzimidazole (compound compound VI) and HR (compound VII

odium cyanate successively in

Reaction Formula

wherein R₁, R₂, R₃, R₄, R₅, R₆, X and Y are as defined above and R has the same definition of R₃ with the exception of cyano.

[0019] Next, the respective production processes will be described.

1) Production Process (i) of Intermediate III:

_ Reaction Formula (i)

wherein R_4 , R_5 , R_6 , X and Y are as defined above.

10

15

20

25

30

35

40

45

50

55

In a solvent and under the presence of hydrogen chloride trapping agents, cyanuric chloride or 2,4,6-trichloropyrimidine (compound II) is reacted with benzimidazole (compound V) to obtain the intermediate III.

The hydrogen chloride trapping agents used in this reaction may be, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine or pyridine. The solvent used may be acetone, toluene, xylene, dioxane, tetrahydrofuran or dichloroethane or N,N-dimethylformamide (DMF).

In this reaction, 0.5-1.2 mole of the compound V is used per mole of the compound II under the presence of 0.5-2 moles of the hydrogen chloride trapping agents. The reaction is made at the temperature of -15°C--5°C for 0.5-2 hours, and further at the room temperature for 5-50 hours.

It is to be noted that benzimidazole (the compound V) may also be used as the hydrogen chloride trapping agent.

2) Production Process (ii) of Intermediate IV

_ Reaction Formula (ii)

wherein R₁, R₂, R₄, R₅, R₆, X and Y are as defined above.

In the solvent, the intermediate III obtained in the above-mentioned production process (i) is reacted with mor-

pholine (compound VI) the presence of hydrogen chloride trapping agent the intermediate IV.

The hydrogen chloride trapping agents used in this reaction may be the same as those in the above-mentioned production process (i). The solvent used may be DMF, acetone, toluene, xylene, dichloroethane or dichloromethane.

In this reaction, 0.5-1.2 mole of the compound VI is used per mole of the intermediate III and under the presence of 0.5-3 moles of the hydrogen chloride trapping agents. The reaction is made at the temperature of -5°C-0°C for 0.5-3 hours, and further at the room temperature for 5-50 hours.

It is to be noted that morpholine (the compound VI) may also be used as the hydrogen chloride trapping agents.

3) Production Process (iii) of the compound I

10

15

20

25

30

wherein R, R₁, R₂, R₃, R₄, R₅, R₆, X and Y are as defined above.

[0020] In the solvent, the intermediate IV obtained in the above-mentioned production process (ii) is reacted with sodium cyanate or reacted with HR (compound VII) under the presence of hydrogen chloride trapping agents to obtain the compound I according to the present invention.

Reaction Formula (iii)

[0021] The hydrogen chloride trapping agents used in this reaction may be the same as those in the above-mentioned production process (i). The solvent used may be DMF, dimethyl sulfoxide (DMSO), xylene or dichloroethane. In particular, DMSO is preferable in the case where sodium cyanate is to be reacted.

[0022] In this reaction, 1-5 moles of HR (the compound VII) or sodium cyanate is used per mole of the intermediate IV at the temperature between room temperature and 140°C for 0.1-16 hours. In the case of the reaction under the presence of the hydrogen chloride trapping agents, 1-5 moles of the latter is used per mole of the intermediate IV.

[0023] In such production of the compound I and when the compounds VI and VII are the same, the production processes (ii) and (iii) may be carried out in a single step to obtain the compound I. In this case, the reaction conditions are as mentioned in the above with respect to the production process (ii) except that 2-2.2 moles of the compound VI or VII is used per mole of the compound III and that the reaction is made at the temperature of -10°C-5°C for 0.1-5 hours, and further at room temperature f or 3-50 hours.

[0024] In like manner, when the compounds V and VII are the same, the production processes (i) and (iii) may be carried out in a single step to obtain the corresponding intermediates. In this case, the reaction conditions are as mentioned in the above with respect to the production process (i) except that 2-4 moles of the compound V or VII is used per mole of the intermediate II and that the reaction is made at the temperature between room temperature and 120°C for 0.1-50 hours.

[0025] The production processes (i), (ii) and (iii) may be carried out in any exchanged order. In such a case, the reaction conditions may be varied to an extent obvious to ordinary experts in the art.

[0026] The resultant products in the respective production processes may be separated and purified, as needs demand, by ordinary method such as extraction, condensation, neutralization, filtration, re-crystallization or column chromatography.

[0027] Acid-addition salts of the compounds I of the present invention may be prepared according to various meth-

ods well-known in the art. The appropriate acids used include, for example, inorganic acids such as hydrochloric, sulfuric, hydrobromic, nitric or phosphoric acid, and organic acids such as acetic, oxalic, propionic, glycolic, lactic, pyruvic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, cinnamic, methanesulfonic, benzenesulfonic, p-toluenesulfonic or salicylic acid.

[0028] Next, antitumor activities of the compounds I of the present invention will be described. Nos. of the tested compounds in the tests 1 and 2 correspond to those in Examples referred to hereinafter.

[0029] Controls used were the following s-triazine-series antitumor agents or medicines for estrogen-dependent diseases.

compound A: 2-(imidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine (typical compound disclosed in the international pub-

lication WO93/17009)

compound B: hexamethylmelamine (HMM)

compound C: hydroxymethylpentamethylmelamine (HMPMM: metabolically active type of HMM)

15 Test 1

30

35

40

45

50

55

[0030] Used in the test were MCF-7 cells which were established from human breast cancer and were cultured routinely under the conditions of 37°C and 5% CO_2 , in RPMI 1640 medium supplemented with 10% fetal calf serum, HEPES buffer solution (25 mM) and kanamycin (0.1 mg/ml). Single cell suspension was prepared by adding trypsin/EDTA to the medium so as to be adjusted to 4.0×10^4 cells/ml. Test compounds were dissolved or suspended in DMSO or RPMI 1640 medium at a concentration of 1.0×10^{-4} - 1.0×10^{-9} M.

[0031] The cell suspension and the sample solution or suspension were filled in a 96-wells microplate at a rate of 0.1 ml of the former and 0.1 ml of the latter per well and cultured at 37°C for 72 hours in 5% CO₂.

[0032] 50% Growth inhibition concentrations (Gl $_{50}$ μ M) were calculated from growth inhibitions at various sample concentrations. The results are as shown in Table 1.

Table 1

test compound	Gl ₅₀ (μM)	test compound	Gl ₅₀ (μM)
compound 1	2.9	compound 30	3.7
compound 2	3.3	compound 31	6.8
compound 3	3.7	compound 32	3.9
compound 4	3.8	compound 33	3.2
compound 6	7.2	compound 34	5.8
compound 7	1.0	compound 36	3.9
compound 8	3.9	compound 38	6.5
compound 9	1.2	compound 42	4.6
compound 11	1.7	compound 43	4.3
compound 12	3.9	compound 44	3.1
compound 14	2.3	compound 45	4.6
compound 16	4.8	compound 46	4.3
compound 18	6.3	compound 47	3.6
compound 19	3.2	compound 48	5.0
compound 20	2.8	compound 49	5.0
compound 21	1.1	compound 53	5.2
compound 22	2.2	compound A	20
compound 23	3.9	compound B	>100
compound 25	4.0	compound C	>50

[0033] The above test the clearly revealed that the compounds of the presence vention exhibit by far superior antitumor activities on human preast cancer cells than known controls A, B and C. Especially excellent antitumor activities were exhibited by the compounds I of the present invention wherein both R_1 and R_2 are methyl, R_3 being morpholino, all of R_4 , R_5 and R_6 being hydrogen atom.

[0034] The compounds of the present invention were also effective in vitro tests using human non small cell lung cancer cells and human colonic cancer cells and therefore positively expected is application of the compounds according to the present invention on treatment of various human solid cancers.

Test 2

10

20

30

35

40

50

[0035] The treated group to which the test sample was administered consisted of seven mice while the control group consisted of ten mice. Six weeks old male mice (BDF₁, 25±2.5 g) were employed as host animals.

[0036] M5076 mouse reticulum cell sarcoma cells routinely cultured in abdominal of C57BL/6 male mice were diluted with cold Hanks solution and 1.0×10⁶ cells of them were transplanted subcutaneously into left breast of each mouse. The samples prepared by suspending test compounds in 1% hydroxypropyl cellulose (HPC) were abdominally administered for 9 days after the day after the transplantation. After 21 days passed from the transplantation of the tumor, the mice were killed and the tumors were extracted out to measure the tumor weights of the respective groups.

[0037] Effect of sample was calculated as tumor growth inhibition by the following formula:

Tumor Growth Inhibition (%)=(1-T/C)×100

T: tumor weight of group with sample administered

C: tumor weight of control group

[0038] The results are as shown in Table 2.

Table 2

test compound	administered amount (mg/kg)	Growth Inhibition (%)
compound 1	200	94.7
compound 9	200	98.6
compound 11	200	88.3
compound 19	200	98.1
compound 22	100	83.8
compound A	· 70	5.0
compound B	100	38.8

[0039] The above test results revealed that the compounds of the present invention also exhibit remarkable cancer cell growth inhibition effect in vivo tests and that they apparently exhibit excellent effects even in comparison with growth inhibition of the controls A and B administered in appropriate amounts.

[0040] Moreover, it was found out that the compounds of the present invention exhibit remarkable cancer cell growth inhibition effect even in the case where the samples were orally administered in the above test.

Test 3

[0041] The acute toxicity was determined by orally or abdominally administrating the compound 9 or 22 of the present invention, which was adjusted by distilled water added with 1% of hydroxypropyl cellulose, to BDF_1 male mice (6-weeks-old, having a body weight of 25 ± 2.5 g) and LD_{50} was obtained over observation for 14 days. As a result, it was found out that LD_{50} of any of the compounds was 400-800 mg/kg.

[0042] The compounds of the present invention may be administered orally or parenterally to mammals and especially to humans. In oral administration, the compounds may be in the appearance of tablets, coated tablets, powders, granules, capsules, microcapsules, syrups and the like; and in parenteral administration, in the appearance of injections which may include soluble freeze-drying appearance, suppositories and the like. In the preparation of these appearance

ances, pharmaceutically acceptable excipient, binders, lubricants, disintegrators, suspensions, emulsifiers, antiseptics, stabilizers and dispersing agents, for example, lactose, sucrose, starch, dextrin, crystalline cellulose, kaolin, calcium carbonate, talc, magnesium stearate, distilled water and physiological saline solution may be used.

The dosage for humans may depend on the condition of the disease to be treated, the age and weight of the patient and the like. A daily dosage for an adult may be in the range of from 200 to 2,000 mg and may be given in divided doses 2 or 3 times a day.

BEST MODE FOR CARRYING OUT THE INVENTION

Next, the present invention is more specifically illustrated with reference to the following Examples. It is to [0044] 10 be, however, noted that the present invention is not limited to these Examples.

Example 1: 2-(benzimidazol-1-yl)-4-(cis-2,6-dimethylmorpholino)-6-morpholino-1,3,5-triazine (compound 1)

[0045]

20

25

30

35

40

50

55

- (1) Cyanuric chloride (10.0 g, 54 mmol) dissolved in acetone (100 ml) was cooled to -5°C, slowly added with triethylamine (4.7 ml, 49 mmol) dropwise and further, slowly added with morpholine (7.5 g, 54 mmol) dropwise. The reaction mixture was stirred at the same temperature for one hour and then stirred at room temperature for one hour. The reaction solution was poured into water (500 ml). The precipitated crystals were collected by filtration, washed with trace amount of acetone and dried to obtain 9.7 g (yield: 69%) of 2,4-dichloro-6-morpholino-1,3,5-triazine as colorless crystals with melting point of 155°C-157°C.
- (2) The obtained 2,4-dichloro-6-morpholino-1,3,5-triazine (6.0 g, 25mmol) dissolved in DMF (100 ml) was cooled to -5°C, added with anhydrous pottasium carbonate (5 g, 36 mmol) and benzimidazole (3.0 g, 35 mmol), stirred for 30 minutes and further stirred at room temperature for 15 hours. The reaction mixture was added with water (500 ml). The precipitated crystals were collected by filtration, washed with trace amount of acetone and dried to obtain 5.2 g (yield: 64 %) of 2-(benzimidazol-1-yl)-4-chloro-6-morpholino-1,3,5-triazine with melting point of 201°C-203°C as colorless crystals.
- (3) The obtained 2-(benzimidazol-1-yl)-4-chloro-6-morpholino-1,3,5-triazine (320 mg, 1.0 mmol) dissolved in DMF (20 ml) was added with potassium carbonate (430 mg, 3.2 mmol) and cis-2,6-dimethylmorpholine (140 mg, 1.2 mmol) and stirred at room temperature for 45 minutes. The reaction mixture was condensed under reduced pressure and the obtained residue was added with dichloromethane and water and shaken for mixing. The separated organic layer was washed with water and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography to obtain 360 mg (yield: 90%) of the titled compound as colorless crystals.

Melting Point: 195-197°C

 $NMR(CDCl_3) \ \delta: \ 1.30(6H, \ m), \ 2.5-2.8(2H, \ m), \ 3.6-3.8(2H, \ m), \ 3.8-4.0(8H, \ m), \ 4.5-4.7(2H, \ m), \ 7.3-7.5(2H, \ m), \ 3.6-3.8(2H, \ m), \ 3.8-4.0(8H, \ m), \ 4.5-4.7(2H, \ m), \ 4.5-4.7($

7.83(1H, d, J=9Hz), 8.36(1H, d, J=9Hz), 8.97(1H, s)

MS m/z: 395(M+)

in accordance with the procedure of Example 1, the following compounds were obtained from corresponding [0046] starting materials.

2-(benzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine (compound 2) 45

Appearance: colorless crystals

Melting Point: 222-224°C

NMR(CDCl₃) δ : 3.8-4.0(16H, m), 7.3-7.5(2H, m), 7.8-7.9(1H, m), 8.3-8.4(1H, m), 8.97(1H, s)

MS m/z: 367(M⁺)

2-(2-methylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine (compound 3)

Appearance: colorless crystals

Melting Point: 218-220°C

 $NMR(CDCl_3) \ \delta: 2.95(3H, s), \ 3.7-3.8(8H, m), \ 3.7-3.9(8H, m), \ 7.2-7.3(2H, m), \ 7.6-7.7(1H, m), \ 8.1-8.2(1H, m), \ 1.2-7.3(2H, m), \ 2.95(3H, m), \$

MS m/z: 381(M+)

·.::

2-(benzimidazol-1-yl) no-6-morpholino-1,3,5-triazine (compound 4)

Appearance: colorless crystals

Melting Point: 271-273°C

NMR(CDCl₃) δ: 3.7-4.1(8H, m), 7.3-7.5(2H, m), 7.83(1H, d, J=8Hz), 8.37(1H, d, J=8Hz), 8.95(1H, s)

 $MS \text{ m/z}: 307(M^+)$

2-(benzimidazol-1-yl)-4-(4-hydroxypiperidino)-6-morpholino-1,3,5-triazine (compound 5)

10 Appearance: colorless crystals

Melting Point: 201-203°C

NMR(CDCl₃) δ: 1.5-1.7(2H, m), 1.9-2.1(2H, m), 3.4-3.6(2H, m), 3.8-4.1(9H, m), 4.3-4.5(2H, m), 7.3-7.5(2H, m),

7.81(1H, d, J=9Hz), 8.39(1H, d, J=9Hz), 8.99(1H, s)

MS m/z: 381(M+)

15

20

25

35

45

55

• 2-(benzimidazol-1-yl)-4-morpholino-6-(2-trifluoromethylmorpholino)-1,3,5-triazine (compound 6)

Appearance: colorless crystals

Melting Point: 140-142°C

NMR(CDCl₃) δ: 3.1-3.3(2H, m), 3.6-4.0(10H, m), 4.1-4.3(1H, m), 4.5-4.7(1H, m), 4.7-4.9(1H, m), 7.3-7.5(2H,

m), 7.89(1H, d, J=6Hz), 8.38(1H, d, J=8Hz), 9.14(1H, brs)

MS m/z: 435(M+)

2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-morpholino-1,3,5-triazine (compound 7)

Appearance: colorless crystals

Melting Point: 172-174°C

NMR(CDCI₃) δ: 1.35(3H, d, J=7Hz), 1.40(3H, d, J=7Hz), 3.36(1H, dt, J=5Hz, 13Hz), 3.7-4.0(11H, m), 4.4-

4.7(2H, m), 7.3-7.5(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.37(1H, dd, J=2Hz, 6Hz), 8.98(1H, s)

30 MS m/z: 395(M⁺)

2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-(cis-2,6-dimethylmorpholino)-1,3,5-triazine (compound 8)

Appearance: coloriess crystals

Melting Point: 204-206°C

NMR(CDCl₃) δ: 1.2-1.5(12H, m), 2.5-2.8(2H, m), 3.36(1H, dt, J=4Hz, 13Hz), 3.6-4.0(5H, m), 4.4-4.8(4H, m),

7.3-7.5(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.37(1H, dd, J=2Hz, 6Hz), 8.98(1H, s)

MS m/z: 423(M⁺)

2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-morpholino-1,3,5-triazine (compound 9)

Appearance: colorless crystals

Melting Point: 166-168°C

NMR(CDCl₃) δ: 1.2-1.4(6H, m), 2.6-2.8(2H, m), 3.6-4.0(10H, m), 4.5-4.7(2H, m), 7.3-7.5(2H, m), 7.82(1H, dd,

J=2Hz, 6Hz), 8.37(1H, dd, J=2Hz, 6Hz), 8.97(1H, d, J=2Hz)

MS m/z: 395(M+)

2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-(cis-2,6-dimethylmorpholino)-1,3,5-triazine (compound 10)

50

Appearance: colorless crystals

Melting Point: 189-191°C

NMR(CDCl₃) δ : 1.2-1.4(12H, m), 2.5-2.8(2H, m), 3.1-3.4(1H, m), 3.5-3.8(4H, m), 3.9-4.1(1H, m), 4.3-5.8(4H,

m), 7.3-7.5(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.37(1H, dd, J=2Hz, 6Hz), 8.98(1H, d, J=2Hz)

MS m/z: 423(M⁺)

2-(benzimidazol-1-yl)-4-(2,2-dimethylmorpholino)-6-morpholino-1,3,5-triazine (compound 11)

Appearance: colorless crystals Melting Point: 172-173°C

NMR(CDCl₃) δ: 1.28(6H, s), 3.4-4.0(14H, m), 7.3-7.5(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.3-8.5(1H, m),

8.97(1H, s) MS m/z: 395(M⁺)

5

10

20

25

30

35

40

50

2-(benzimidazol-1-yl)-4-(2-ethylmorpholino)-6-morpholino-1,3,5-triazine (compound 12)

Appearance: colorless crystals

Melting Point: 140-142°C

NMR(CDCl₃) δ : 1.05(3H, t, J=7Hz), 1.5-1.7(2H, m), 2.7-2.9(1H, m), 3.0-3.3(1H, m), 3.3-3.5(1H, m), 3.5-4.1(10H, m), 4.5-4.8(2H, m), 7.3-7.5(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.38(1H, dd, J=2Hz, 6Hz), 8.97(1H, s) MS m/z: 395(M⁺)

15 • 2-(benzimidazol-1-yl)-4-(2-chloromethylmorpholino)-6-morpholino-1,3,5-triazine (compound 13)

Appearance: colorless crystals

Melting Point: 181-183°C

 $NMR(CDCl_3) \ \delta: \ 2.9-3.1(1H, \ m), \ 3.1-3.3(1H, \ m), \ 3.6-4.2(13H, \ m), \ 4.5-4.9(2H, \ m), \ 7.3-7.5(2H, \ m), \ 7.83(1H, \ d, \ m), \ 4.5-4.9(2H, \ m), \ 4.$

J=6Hz), 8.38(1H, d, J=7Hz), 8.97(1H, s)

MS m/z: 415(M⁺)

2-(benzimidazol-1-ył)-4-(trans-2,6-dimethylmorpholino)-6-morpholino-1,3,5-triazine (compound 14)

Appearance: colorless crystals

Melting Point: 210-212°C

NMR(CDCl₃) 8: 1.2-1.3(6H, m), 3.4-3.5(1H, m), 3.7-4.1(12H, m), 4.1-4.2(1H, m), 7.3-7.4(2H, m), 7.8-7.9(1H,

m), 8.3-8.4(1H, m), 8.97(1H, s)

MS m/z: 395(M+)

• 2-(benzimidazol-1-yl)-4-morpholino-6-piperidino-1,3,5-triazine (compound 15)

Appearance: colorless crystals

Melting Point: 160-162°C

 $NMR(CDCl_3) \ \delta: \ 1.5-1.8(6H, \ m), \ 3.7-4.0(12H, \ m), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ d, \ J=9Hz), \ 8.39(1H, \ d, \ J=9Hz), \ Respectively.$

8.99(1H, s) MS m/z: 365(M+)

2-(benzimidazol-1-ył)-4-(2-methylmorpholino)-6-morpholino-1,3,5-triazine (compound 16)

Appearance: colorless crystals

Melting Point: 159-161°C

NMR(CDCl₃) δ : 1.30(3H, d, J=6Hz), 2.7-2.9(1H, m), 3.0-3.3(1H, m), 3.5-4.1(11H, m), 4.5-4.7(2H, m), 7.3-

7.5(2H, m), 7.82(1H, d, J=6Hz), 8.38(1H, d, J=8Hz), 9.14(1H, s)

45 MS m/z: 381(M⁺)

2-(benzimidazol-1-yl)-4-morpholino-6-(piperazin-1-yl)-1,3,5-triazine (compound 17)

Appearance: colorless crystals

Melting Point: 202-205°C

 $NMR(CDCl_3) \ \delta: \ 2.96(4H, \ m), \ 3.7-4.0(12H, \ m), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ d, \ J=9Hz), \ 8.38(1H, \ d, \ J=9Hz), \ Respectively.$

8.98(1H, s) MS m/z: 366(M⁺)

• 2-(benzimidazol-1-yl)-4-[2-(tert-butoxycarbonylaminomethyl)morpholino]-6-morpholino-1,3,5-triazine (compound 18)

Appearance: colorless crystals

Melting Point: 155

NMR(CDCl₃) δ: 1.45(eH, s), 2.8-3.0(1H, m), 3.1-3.3(2H, m), 3.4-3.7(2H, m), 5.7-4.0(10H, m), 4.5-4.7(2H, m),

4.8-5.0(1H, brs), 7.3-7.5(2H, m), 7.89(1H, d, J=7Hz), 8.39(1H, d, J=7Hz), 9.14(1H, s)

MS m/z: 496(M+)

2-(5,6-dimethylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine (compound 30)

Appearance: colorless crystals

Melting Point: 200-202°C

NMR(CDCl₃) 8: 2.38(3H, s), 2.40(3H, s), 3.8-4.1(16H, m), 7.56(1H, s), 8.14(1H, s), 8.85(1H, s)

MS m/z: 395(M+)

 2-(benzimidazol-1-yl)-4-[2-(N-benzyl-N-methylaminomethyl)morpholino]-6-morpholino-1,3,5-triazine (compound 31)

15

10

Appearance: coloriess crystals

Melting Point: 112-118°C

NMR(CDCl₃) δ : 2.2-2.4(3H, brs), 2.5-4.8(19H, m), 7.2-7.4(7H, m), 7.8-7.9(1H, m), 8.3-8.5(1H, brs), 8.98(1H, s)

MS m/z: 500(M+)

20

25

2-(benzimidazol-1-yl)-4-(2-fluoromethylmorpholino)-6-morpholino-1,3,5-triazine (compound 32)

Appearance: colorless crystals

Melting Point: 194-196°C

NMR(CDCl₃) δ: 2.9-3.3(2H, m), 3.6-4.0(9H, m), 4.0-4.2(1H, m), 4.4-4.8(5H, m), 7.3-7.5(2H, m), 7.83(1H, d,

J=7Hz), 8.36(1H, d, J=7Hz), 8.97(1H, s)

MS m/z: 399(M+)

4-(cis-2,6-dimethylmorpholino)-2-(2-methylbenzimidazol-1-yl)-6-morpholino-1,3,5-triazine (compound 33)

30

35

40

50

Appearance: colorless crystals

Melting Point: 173-175°C

NMR(CDCl₃) δ : 1.28(6H, d, J=16Hz), 2.6-2.8(2H, m), 2.98(3H, s), 3.5-4.0(10H, m), 4.5-4.7(2H, m), 7.2-7.4(2H, m), 2.98(3H, s), 3.5-4.0(10H, m), 4.5-4.7(2H, m), 7.2-7.4(2H, m), 7.2-7.4(2H

m), 7.6-7.8(1H, m), 8.1-8.3(1H, m)

MS m/z: 409(M+)

2-(benzimidazol-1-yl)-4-(2-hydroxymethylmorpholino)-6-morpholino-1,3,5-triazine (compound 34)

Appearance: colorless crystals

Melting Point: 207-209°C

NMR(CDCl₃) δ: 2.1-2.2(1H, m), 2.9-3.3(2H, m), 3.7-4.2(13H, m), 4.5-4.8(2H, m), 7.3-7.5(2H, m), 7.81(1H, d,

J=9Hz), 8.37(1H, d, J=9Hz), 9.00(1H, s)

MS m/z: 397(M⁺)

45 • 4,6-bis(cis-2,6-dimethylmorpholino)-2-(2,5,6-trimethylbenzimidazol-1-yl)-1,3,5-triazine (compound 35)

Appearance: colorless crystals

Melting Point: 203-205°C

NMR(CDCl₃) δ : 1.29(12H, d, J=6Hz), 2.37(6H, s), 2.5-2.8(4H, m), 2.92(3H, s), 3.6-3.8(4H, m), 4.5-4.7(4H, m),

7.43(1H, s), 8.03(1H, s)

MS m/z: 465(M⁺)

2-(benzimidazol-1-yl)-4-(3-hydroxypiperidino)-6-morpholino-1,3,5-triazine (compound 36)

55 Appearance: colorless crystals

Melting Point: 225-226°C

NMR(CDCl₃) 8: 1.5-1.8(2H, m), 1.8-2.1(2H, m), 2.20(1H, d, J=4Hz), 3.5-4.2(12H, m), 4.2-4.4(1H, m), 7.3-

7.5(2H, m), 7.80(1H, d, J=9Hz), 8.37(1H, d, J=9Hz), 8.96(1H, s)

MS m/z: 381(M+)

2-(benzimidazol-1-yl)-4-morpholino-6-(4-oxopiperidino)-1,3,5-triazine (compound 37)

Appearance: colorless crystals

Melting Point: 220-222°C

 $NMR(\vec{C}DCl_3) \ \delta; \ 2.58(4H, \ t, \ J=6Hz), \ 3.8-3.9(4H, \ m), \ 3.9-4.0(4H, \ m), \ 4.1-4.3(4H, \ m), \ 7.3-7.5(2H, \ m), \ 7.83(1H, \ m), \ 4.1-4.3(4H, \ m), \ 7.3-7.5(2H, \ m), \ 7.83(1H, \ m), \ 7.83(1$

d, J=9Hz), 8.38(1H, d, J=9Hz), 8.99(1H, s)

MS m/z: 379(M⁺)

10

15

25

30

45

50

55

2-(4-acetoxypiperidino)-4-(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine (compound 38)

Appearance: colorless crystals

Melting Point: 153-155°C

 $NMR(CDCl_{3}) \ \delta; \ 1.7-1.9(2H, \ m), \ 1.9-2.1(2H, \ m), \ 2.10(3H, \ s), \ 3.6-4.0(10H, \ m), \ 4.1-4.4(2H, \ m), \ 5.0-5.2(1H, \ m), \ 3.6-4.0(10H, \ m), \ 4.1-4.4(2H, \ m), \ 5.0-5.2(1H, \ m), \ 3.6-4.0(10H, \ m), \ 4.1-4.4(2H, \ m), \ 5.0-5.2(1H, \ m), \ 5.0$

7.3-7.5(2H, m), 7.82(1H, d, J=9Hz), 8.38(1H, d, J=9Hz), 8.98(1H, s)

MS m/z: 423(M+)

2-(benzimidazol-1-yl)-4-(4-methylpiperazin-1-yl)-6-morpholino-1,3,5-triazine (compound 39)

20 Appearance: colorless crystals

Melting Point: 210-212°C

 $NMR(CDCl_3) \ \delta; \ 2.37(3H, \, s), \ 2.4-2.6(4H, \, m), \ 3.7-4.1(12H, \, m), \ 7.3-7.5(2H, \, m), \ 7.83(1H, \, d, \, J=9Hz), \ 8.38(1H, \, d, \, J=10)$

J=9Hz), 8.98(1H, s) MS m/z: 380(M+)

2-(benzimidazol-1-yl)-4-dimethylamino-6-morpholino-1,3,5-triazine (compound 40)

Appearance: colorless crystals

Melting Point: 135-137°C

J=9Hz), 9.00(1H, s) MS m/z: 325(M⁺)

2-(benzimidazol-1-yl)-4-[N-(2-hydroxyethyl)-N-methylamino]-6-morpholino-1,3,5-triazine (compound 41) 35

Appearance: colorless crystals

Melting Point: 162-165°C

 $NMR(\bar{C}DCl_3) \ \delta; \ 3.2-3.4(3H, \ m), \ 3.7-4.0(12H, \ m), \ 7.3-7.5(2H, \ m), \ 7.7-7.9(1H, \ m), \ 8.3-8.5(1H, \ m), \ 8.96(1H, \ s)$

MS m/z: 355(M+) 40

2-(benzimidazol-1-yl)-4-[N,N-di(2-hydroxyethyl)amino]-6-morpholino-1,3,5-triazine (compound 42)

Appearance: colorless crystals

Melting Point: 220-222°C

NMR(CDCl₃) δ : 3.7-4.0(16H, m), 7.3-7.5(2H, m), 7.7-7.9(1H, m), 8.3-8.4(1H, m), 8.93(1H, s)

MS m/z: 385(M⁺)

2-(benzimidazol-1-yl)-4-[1,4-dioxa-8-azaspiro[4,5]decan-8-yl)-6-morpholino-1,3,5-triazine (compound 48)

Appearance: colorless crystals

Melting Point: 214-216°C

 $NMR(\bar{C}DCl_3) \ \delta: \ 1.7-1.9(4H, \ m), \ 3.7-4.1(16H, \ m), \ 7.2-7.4(2H, \ m), \ 7.7-7.9(1H, \ m), \ 8.3-8.5(1H, m), \ 8.98(1H, \ s)$

MS m/z: 423(M⁺)

2-(benzimidazol-1-yl)-4-(N-ethyl-N-2-morpholinoethyl)amino-6-morpholino-1,3,5-triazine (compound 49)

Appearance: coloriess crystals

Melting Point: 158-

NMR(CDCl₃) δ: 1.2-1.-4(3H, m), 2.5-2.7(7H, m), 3.6-3.9(15H, m), 7.3-7.4(2N, m), 7.8-7.9(1H, m), 8.4-8:5(1H,

. . .

m), 8.9-9.0(1H, m) MS m/z: 438(M⁺)

2-(benzimidazol-1-yl)-4-[3-(4-tert-butoxycarbonylaminobutyl)piperidino]-6-morpholino-1,3,5-triazine (compound 50)

Appearance: colorless crystals

Melting Point: 143-145°C

NMR(CDCl₃) δ: 1.2-2.0(22H, m), 2.6-2.9(1H, m), 2.9-3.2(2H, m), 3.7-4.0(8H, m), 4.4-4.8(2H, m), 7.3-7.5(2H,

m), 7.8-7.9(1H, m), 8.3-8.5(1H, m), 8.98(1H, s)

MS m/z: 536(M⁺)

15 • 4-(cis-2,6-dimethylmorpholino)-2-(2-methylbenzimidazol-1-yl)-6-thiomorpholino-1,3,5-triazine (compound 51)

Appearance: colorless crystals

Melting Point: 213-215°C

NMR(CDCl₃) δ: 1.25(6H, d, J=6Hz), 2.7-2.8(6H, m), 2.94(3H, s), 3.5-3.8(2H, m), 4.1-4.3(4H, m), 4.5-4.7(2H,

m), 7.2-7.4(2H, m), 7.6-7.8(1H, m), 8.1-8.2(1H, m)

MS m/z: 425(M+)

Example 2: 2-(benzimidazol-1-yl)-4-(cis-2,6-dimethylmorpholino)-6-morpholinopyrimidine (compound 19)

25 [0047]

10

20

30

35

45

50

55

(1) 30.5 g (167 mmol) of 2,4,6-trichloropyrimidine dissolved in DMF (300 ml) was cooled to -5°C, added with potassium carbonate (40 g) and benzimidazole (17.7 g, 150 mmol) and stirred for 30 minutes. The reaction mixture was further stirred at room temperature overnight. The reaction mixture was added with water (500 ml) and the precipitated crystals were collection by filtration. The obtained crude crystals were purified by silica gel chromatography to obtain 12.8 g (yield: 32%) of 2-(benzimidazol-1-yl)-4,6-dichloropyrimidine with melting point of 173°C-175°C as colorless crystals.

(2) The obtained 2-(benzimidazol-1-yl)-4,6-dichloropyrimidine (2.08 g, 7.85 mmol) dissolved in DMF(30 ml) was cooled to -5°C, added with anhydrous potassium carbonate (3.0 g, 22 mmol) and morpholine (0.68 g, 7.85 mmol) and stirred for 30 minutes. The reaction mixture was further stirred at room temperature overnight and condensed under reduced pressure. The residue was added with methylene chloride and water and shaken for mixing. The organic layer was separated out and washed with water, dried over anhydrous magnesium sulfate and condensed. The obtained residue was purified by silica gel column chromatography to obtain 1.90 g (yield 77%) of 2-(benzimidazol-1-yl)-4-chloro-6-morpholinopyrimidine with melting point of 178°C-181°C.

(3) To the obtained 2-(benzimidazol-1-yl)-4-chloro-6-morpholinopyrimidine (318 mg, 1.00 mmol) dissolved in dioxane -water solution (4:1), sodium hydroxide (100 mg, 4.3 mmol) and cis-2,6-dimethylmorpholine (126 mg, 1.20 mmol) were added and stirred at 80°C for 12 hours. The reaction mixture was condensed under reduced pressure and the obtained residue was mixed with methylene chloride and water and shaken. Organic layer was separated from the mixture and washed with water and dried over anhydrous magnesium sulfate. The solvent was removed out under reduced pressure and the residue was purified by silica gel column chromatography to obtain 340 mg of the titled compound (yield: 86%).

Appearance: colorless crystals Melting Point: 196-197°C

NMR(CDCl₃) δ: 1.30(6H, d, J=6Hz), 2.65(2H, t, J=12Hz), 3.6-3.8(6H, m), 3.85(4H, t, J=10Hz), 4.15(2H, d, J=12Hz), 3.6-3.8(6H, m), 3.85(4H, d, J=12Hz), 3.6-3.8(6H, m), 3.85(4H, d, J=12Hz), 3.6-3.8(6H, m), 3.85(4H, d, J=12Hz), 3.85(4H, d, J=12Hz),

J=12Hz), 5.45(1H, s), 7.2-7.4(2H, m), 7.82(1H, dd, J=2Hz, 6Hz), 8.37(1H, dd, J=2Hz, 6Hz), 8.95(1H, s)

MS m/z: 394(M⁺)

[0048] In accordance with the procedure of the Example 2, the following compounds were obtained from the corresponding starting materials.

2-(benzimidazol-1-yl)-4-(trans-2,6-dimethylmorpholino)-6-morpholinopyrimidine (compound 20)

Appearance: colorless crystals Melting Point: 185-187°C

 $NMR(CDCl_{3}) \ \delta: \ 1.29(6H, \ d, \ J=7Hz), \ 3.3-3.5(2H, \ m), \ 3.6-3.9(10H, \ m), \ 4.1-4.2(2H, \ m), \ 5.43(1H, \ m), \ 7.3-7.5(2H, \ m), \ 3.6-3.9(10H, \ m), \ 4.1-4.2(2H, \ m), \ 5.43(1H, \ m), \ 5.43($

m), 7.82(1H, d, J=6Hz), 8.38(1H, d, J=6Hz), 8.96(1H, m)

MS m/z: 394(M+)

5

10

20

25

30

35

40

45

50

55

2-(benzimidazol-1-yl)-4-(cis-2,3-dimethylmorpholino)-6-morpholinopyrimidine (compound 21)

Appearance: coloriess crystals

Melting Point: 163-165°C

NMR(CDCl₃) δ : 1.37(3H, d, J=7Hz), 1.39(3H, d, J=7Hz), 3.3-3.5(1H, m), 3.6-4.2(13H, m), 5.44(1H, s), 7.2-1.00(1.00)

7.4(2H, m), 7.82(1H, d, J=9Hz), 8.38(1H, d, J=9Hz), 8.96(1H, s)

MS m/z: 394(M+)

2-(benzimidazol-1-yl)-4-(trans-2,3-dimethylmorpholino)-6-morpholinopyrimidine (compound 22)

Appearance: colorless crystals

Melting Point: 179-181°C

NMR(CDCl₃) δ : 1.20(3H, d, J=7Hz), 1.24(3H, d, J=7Hz), 3.1-3.3(1H, m), 3.6-4.3(13H, m), 5.44(1H, s), 7.2-1.24(3H, d, J=7Hz), 7.2-1.24(3H, d, J=7Hz

7.4(2H, m), 7.82(1H, d, J=9Hz), 8.38(1H, d, J=9Hz), 8.96(1H, s)

MS m/z: 394(M+)

2-(benzimidazol-1-yl)-4-morpholino-6-thiomorpholinopyrimidine (compound 23)

Appearance: colorless crystals

Melting Point: 242-244°C

 $NMR(CDCl_3) \ \delta: \ 2.71(4H, \ brs), \ 3.80(4H, \ brs), \ 3.8-4.0(4H, \ m), \ 4.1-4.3(4H, \ m), \ 5.45(1H, \ s), \ 7.3-7.5(2H, \ m), \ 3.8-4.0(4H, \ m), \ 4.1-4.3(4H, \ m), \ 5.45(1H, \ s), \ 7.3-7.5(2H, \ m), \ 3.8-4.0(4H, \ m), \ 4.1-4.3(4H, \ m), \ 5.45(1H, \ s), \ 7.3-7.5(2H, \ m), \ 3.8-4.0(4H, \ m), \ 4.1-4.3(4H, \ m), \ 5.45(1H, \ s), \ 7.3-7.5(2H, \ m), \$

7.82(1H, dd, J=2Hz, 7Hz), 8.38(1H, dd, J=2Hz, 7Hz), 8.97(1H, m)

MS m/z: 382(M+)

2-(benzimidazol-1-yl)-4-morpholino-6-(piperazin-1-yl)pyrimidine (compound 24)

Appearance: colorless crystals

Melting Point: 190-193°C

 $NMR(CDCl_3) \ \delta: \ 3.01(4H, \ t, \ J=5Hz), \ 3.6-3.8(8H, \ m), \ 3.85(4H, \ t, \ J=5Hz), \ 5.48(1H, \ s), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ t, \ J=5Hz), \ 5.48(1H, \ s), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ t, \ J=5Hz), \ 5.48(1H, \ s), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ t, \ J=5Hz), \ 5.48(1H, \ s), \ 7.3-7.5(2H, \ m), \ 7.81(1H, \ s), \ 7.81(1H, \$

d, J=9Hz), 8.40(1H, d, J=9Hz), 8.97(1H, s)

MS m/z: 365(M+)

2-(benzimidazol-1-yi)-4-[2-(tert-butoxycarbonylaminomethyl)morpholino]-6-morpholinopyrimidine (compound 25)

Appearance: colorless crystals

Melting Point: 183-185°C

NMR(CDCl₃) δ : 1.47(9H, s), 2.8-3.0(1H, m), 3.0-3.2(1H, m), 3.2-3.3(1H, m), 3.4-3.6(1H, m), 3.6-3.8(5H, m), 3.8-3.9(4H, m), 4.0-4.2(2H, m), 4.2-4.4(2H, m), 4.9-5.0(1H, br), 5.48(1H, s), 7.3-7.5(2H, m), 7.83(1H, d,

J=8Hz), 8.36(1H, d, J=8Hz), 8.95(1H, s)

MS m/z: 495(M+)

2-(benzimidazol-1-yl)-4,6-dimorpholinopyrimidine (compound 43)

Appearance: colorless crystals

Melting Point: 247-249°C

 $NMR(DMSO-d_6) \ \delta: 3.6-3.8(16H, \ m), \ 5.90(1H, \ s), \ 7.29(1H, \ t, \ J=8Hz), \ 7.37(1H, \ t, \ J=8Hz), \ 7.72(1H, \ d, \ J=8Hz), \ T=8Hz$

8.37(1H, d, J=8Hz), 9.08(1H, s)

MS m/z: 366(M⁺)

2,4-di(benzimidazol-1-yl)-6-morpholinopyrimidine (compound 44)

Appearance: colorless crystals

Melting Point: 276

 $NMR(DMSO-d_{6}) \ \delta; \ 3.7-4.0(8H, \ m), \ 7.14(1H, \ s), \ 7.3-7.5(4H, \ m), \ 7.7-7.9(2H, \ m), \ 8.35(1H, \ d, \ J=8Hz), \ 8.45(1H, \ d, \ J=8H$

d, J=8Hz), 9.16(1H, s), 9.21(1H, s)

MS m/z: 397(M+)

4-(benzimidazol-1-yl)-2,6-dimorpholinopyrimidine (compound 45)

Appearance: colorless crystals

Melting Point: 231-233°C

NMR(DMSO- d_6) δ : 3.6-3.8(16H, m), 6.55(1H, s), 7.2-7.5(2H, m), 7.74(1H, d, J=7Hz), 8.29(1H, d, J=7Hz),

9.01(1H, s)

MS m/z: 366(M+)

4,6-di(benzimidazol-1-yl)-2-morpholinopyrimidine (compound 46)

15

20

25

30

40

45

50

10

Appearance: colorless crystals

Melting Point: 301-303°C

NMR(DMSO-d₆) δ: 3.8-4.0(8H, m), 7.41(2H, t, J=7Hz), 7.46(2H, t, J=7Hz), 7.65(1H, s), 7.80(2H, d, J=7Hz),

8.43(2H, d, J=7Hz), 9.21(2H, s)

MS m/z: 397(M+)

2-(benzimidazol-1-yl)-5-bromo-4,6-dimorpholinopyrimidine (compound 47)

Appearance: colorless crystals

Melting Point: 181-185°C

NMR(CDCl₃) δ: 3.6-3.7(8H, m), 3.8-3.9(8H, m), 7.2-7.4(2H, m), 7.8-7.9(1H, m), 8.3-8.4(1H, m), 8.92(1H, s)

MS m/z: 446(M+)

Example 3: Hydrochloride of 2-(2-aminomethylmorpholino)-4-(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine (compound 26)

[0049] 125 mg (0.315 mmol) of 2-(benzimidazol-1-yl)-4-[2-(tert-butoxycarbonylaminomethyl)morpholino]-6-morpholino-1,3,5-triazine (compound 18) was stirred in 2 ml of 4N dioxane chloride solution at room temperature for 1 hour. The solvent was removed and 5ml of ether was added. The precipitated crystals were filtered out and washed with 10 ml of ether to obtain 95 mg of the titled compound (yield: 90%).

Appearance: colorless crystals

Melting Point: >250°C

NMR(D_2O) δ : 2.9-3.2(3H, m), 3.4-3.8(11H, m), 3.8-4.0(1H, m), 4.1-4.4(2H, m), 7.2-7.4(2H, m), 7.36(1H, d, J=7Hz),

7.98(1H, d, J=8Hz), 9.09(1H, s)

MS m/z: 397[M+1]+

[0050] In accordance with the procedure of the Example 3, the following compounds were obtained from the corresponding starting materials.

hydrochloride of 2-(benzimidazol-1-yl)-4-morpholino-6-(1-piperazinyl)-1,3,5-triazine (compound 27)

Appearance: colorless crystals

Melting Point: 260-265°C

NMR(D₂O) δ : 3.3-3.5(4H, m), 3.7-4.0(8H, m), 4.0-4.2(4H, m), 7.4-7.7(2H, m), 7.7-7.9(1H, m), 8.0-8.2(1H, m),

9.4-9.6(1H, br) MS m/z: 367[M+1]⁺

hydrochloride of 2-(2-aminomethylmorpholino)-4-(benzimidazol-1-yl)-6-morpholinopyrimidine (compound 28)

55

Appearance: colorless crystals

Melting Point: 94-96°C

NMR(D_2O) δ : 2.6-2.8(1H, m), 2.9-3.2(3H, m), 3.3-3.8(9H, m), 3.8-4.2(4H, m), 5.40(1H, s), 7.3-7.5(2H, m),

7.61(1H, d, J=8Hz), 8.0-8.1(1H, br), 9.44(1H, s)

MS m/z: 396[M+1]+

hydrochloride of 2-(benzimidazol-1-yl)-4-morpholino-6-(1-piperadinyl)-pyrimidine (compound 29)

Appearance: colorless crystals

Melting Point: 266-270°C

 $NMR(\bar{D}_{2}O) \ \delta; \ 3.4-3.5(4H, \ m), \ 3.5-3.7(4H, \ m), \ 3.8-4.0(8H, \ m), \ 5.56(1H, \ s), \ 7.5-7.7(2H, \ m), \ 7.78(1H, \ d, \ J=8Hz), \ for all 100 and 100$

8.17(1H, d, J=8Hz), 9.65(1H, s)

MS m/z: 366[M+1]+

10

15

20

25

30

40

45

50

55

hydrochloride of 2-(benzimidazol-1-yl)-4-(N-ethyl-N-2-morpholinoethyl)amino-6-morpholino-1,3,5-triazine (compound 52)

Appearance: colorless crystals

Melting Point: >250°C

 $NMR(\bar{D}_{2}O) \ \delta: 1.1-1.3(3H, m), \ 3.2-4.1(20H, m), \ 4.7-4.8(2H, m), \ 7.4-7.6(2H, m), \ 7.6-7.8(1H, m), \ 8.2-8.4(1H, m), \ 8.2-8.4$

9.3-9.5(1H, m) MS m/z: 439[M+1]⁺

hydrochloride of 2-[3-(4-aminobutyl)piperidino]-4-(benzimidazol-1-yl)-6-morpholino-1,3,5-triazine (compound 53)

Appearance: colorless crystals

Melting Point: >250°C

NMR(D₂O) δ: 1.2-2.0(12H, m), 2.6-3.2(3H, m), 3.7-4.0(8H, m), 4.5-4.8(2H, m), 7.3-7.5(2H, m), 7.8-7.9(1H, m),

8.3-8.5(1H, m), 8.98(1H, s)

MS m/z: 437[M+1]+

CAPABILITY OF EXPLOITATION IN INDUSTRY

[0051] The compounds of the present invention exhibit apparently by far strong antitumor activity with no aromatase inhibitory activity in comparison with conventional s-triazine and pyrimidine derivatives and can be applied to treatment on solid cancers.

35 Claims

 A heterocyclic compound in which s-triazine or pyrimidine is substituted with benzimidazole and morpholine and which is represented by the Formula I or a phermaceutically acceptable acid addition salt thereof:

$$R_{6}$$
 R_{6}
 R_{4}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{4}
 R_{1}

wherein X and Y respectively represent nitrogen atom or one of them represents nitrogen atom and the other represents C-R₇ wherein R₇ represents hydrogen or halogen atom; R₁, R₂, R₄, R₅ and R₆ represent hydrogen atom

or C_1 - C_6 alkyl; R_3 represents morpholino (which may be substituted with one control C_1 - C_6 alkyl, trifluoromethyl, hydroxymethyl, monohalogenomethyl or - $CH_2NR_8R_9$ wherein R_8 represents hydrogen atom or C_1 - C_6 alkyl and R_9 represents hydrogen atom, C_1 - C_6 alkoxycarbonyl or benzyl), piperidino (which may be substituted with hydroxy, acetoxy, oxo, ethylenedioxy or amino C_1 - C_6 alkyl), piperazinyl (which may be substituted with C_1 - C_6 alkyl), thiomorpholino, benzimidazolyl, cyano or - $NR_{10}R_{11}$ wherein R_{10} and R_{11} represent hydrogen atom, C_1 - C_6 alkyl, hydroxy C_1 - C_6 alkyl or morpholino C_1 - C_6 alkyl.

- 2. The compound according to claim 1 wherein one of X and Y is nitrogen atom.
- 10 3. The compound according to claim 1 wherein one of X and Y is nitrogen atom and both R₁ and R₂ are methyl.
 - The compound according to claim 1 wherein one of X and Y is nitrogen atom; both R₁ and R₂ are methyl and R₃ is morpholino.
- 5. The compound according to claim 1 wherein one of X and Y is nitrogen atom; both R₁ and R₂ are methyl; R₃ is morpholino and all of R₄, R₅ and R₆ are hydrogen atom.
 - 6. The compound according to claim 1 wherein both of X and Y are nitrogen atom.

30

35

40

45

50

55

- The compound according to claim 1 wherein both X and Y are nitrogen atom and both R₁ and R₂ are methyl.
 - 8. The compound according to claim 1 wherein both of X and Y are nitrogen atom; both R₁ and R₂ are methyl and R₃ is morpholino.
- 25 9. The compound according to claim 1 wherein both X and Y are nitrogen atom; both R₁ and R₂ are methyl; R₃ is morpholino and all of R₄, R₅ and R₆ are hydrogen atom.
 - 10. An antitumor agent comprising at least one of compounds as claimed in any of claim 1 to 9.

The state of the state of

19

THIS PAGE BLANK (USPT 3)

International application No. PCT/JP98/03308

A CLASSIFICATION OF SUBJECT MATTER Int.Cl C07D403/04, 14, 413/14, A61K31/535						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	SEARCHED					
Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D403/04, 14, 413/14, A61K31/535					
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA, REGISTRY (STN)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
A	JP, 9-48776, A (Daiichi Pharmaceutical Co., Ltd.), 1-10 18 February, 1997 (18. 02. 97), Claims & WO, 96/10024, Al & EP, 784055, Al & NO, 97048776, A & FI, 9701227, A & TW, 312694, A					
A	JP, 6-507643, A (Rhone-Poulenc Lower International (Horldings) Inc.), 1 September, 1994 (01. 09. 94), Claims & WO, 92/20642, A1 & AU, 9219934, A & EP, 584222, A1 & US, 5409930, A & US, 5656643, A					
- Furthe	er documents are listed in the continuation of Box C.	See patent family annex.				
*Special categories of cited documents: 'A" document defining the general state of the art which is not considered to be of particular relevance the considered to be of particular relevance and occument but published on or after the international filing date and not in conflict with the application but cited to the principle or theory underlying the invention occurrence and the published on or after the international filing date but is seried to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed			tion but cited to understand revestion laimed invention cannot be an inventive step tailed invention cannot be when the document is documents, such combination art			
Date of the actual completion of the international search 6 October, 1998 (06. 10. 98) Date of mailing of the international search report 20 October, 1998 (20. 10. 98)						
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile N	io.	Telephone No.				

Form, PCT/ISA/210 (second sheet) (July 1992)

THIS PAGE BLANK (USPT 3)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: (Crasult and a second

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPT 3)