Les adresses IP et le DNS

I) Le datagramme IP

La première tâche du protocole IP consiste à scinder les données provenant des applications en paquets de taille constante, puis de les mettre dans un format défini, appelé datagramme IP, pour pouvoir les émettre sur un réseau.

Limitation du protocole IP :

- a) Il véhicule les informations entre un émetteur et un destinataire à travers le maillage du réseau. Il n'y a pas de garantie sur remise des données au destinataire.
- b) La gestion des erreurs est simplifiée, en cas d'erreur dans les données reçues, une demande de réémission du datagramme erroné est transmise.
- c) Les datagrammes n'utilisent pas le même chemin pour arriver vers le même utilisateur.
- d) Le protocole IP ne connaît pas l'état des lignes de communications. La réception des paquets de données n'est pas le même ordre que celui de l'émission.

II) Les adresse IP :

a) Généralités

Chaque éléments d'une infrastructure (hôtes, serveurs, périphériques, objets connectés, commutateurs administrables, routeurs, ...) travaillant avec le protocole IP doit posséder une adresse unique sur le réseau : son adresse IP.

L'adresse IP est utilisée pour :

- 1) reconnaître chaque éléments dans l'infrastructure
- 2) réaliser le routage des datagrammes IP dans celle-ci.

Il existe plusieurs formats d'adresse IP. Actuellement nous utilisons 2 formats IPV 4 et IPV 6. Il existe aussi d'autre format d'adresse mais l'utilisation ne s'est pas révélée significative.

On peut présenter le format IPV5 qui a été développé pour la transmission de l'audio et la vidéo. Mais ce dernier avait les mêmes limitation que le format IPV4. Son développement a servi de base à IPV 6.

b) Adresse IPV 4

L'adresse IPV 4 (4ième version du format IP) a été élaborée dans les année 1970.

C'est une suite de 32 bites (soit 4 octets) habituellement représenter par une notation décimale pointée.

Il est encore très utilisé de nos jours mais ne suffit plus pour fournir une adresse IP à chaque machine. En effet $2^{32}=4$, 3 milliards.

Une adresse IPv4 (numération décimale pointée)

c) Adresse IPV 6:

L'adresse IPV 6 (6ième version du format IP) a été développée dans les années 1990. Sa diffusion au grand public a commencé à partir de 1998. Le format d'une adresse IPV 6 obéit aux règle suivantes

- 1) c'est une suite de 128 bits composée d'une chaîne de 8 groupes de 16 bits en hexadécimal séparés pas le symbole « : ».
- 2) Si un groupe commence par 0, il est possible de ne pas indiquer ces 0.
- 3) Si plusieurs groupes sont composés uniquement de 0, on peut remplacer ces groupes par « :: »

III) Le DNS

Un point faible des adresses IP est le fait qu'elles sont difficile à manipuler au quotidien. Pour le grand public il n'est pas possible de désigner un site web par son adresse IP. Il a été nécessaire de trouver une technologie qui permet d'utiliser des noms de référence au lieu d'adresse machine.

Le protocole DNS (Domain name system) a été créé pour faire le lien entre un nom et une adresse IP. Pour trouver l'adresse IP associé à un DNS, une requête est faite à un serveur DNS « primaire » qui consulte sa base de données. On a 2 cas possibles.

- a) Si le nom de domaine est présent dans la base de données alors le serveur fournit l'adresse IP.
- b) Si le nom de domaine n'est pas dans sa base de données, il va transmettre la requête à un autre serveur DNS jusqu'à l'obtention d'une adresse IP.

IV) Un exemple de Routage

Définition :

Le routage consiste à faire passer des données à travers un réseau des routeurs, pour aller d'un poste A à un poste B. En pratique, on calcule le chemin que doivent emprunter les données pour aller vers l'adresse P de destination.

En pratique, on fait une demande d'accès sur les grands réseaux puis suivant les réponses obtenues, on choisit le chemin avec un minimum de coût (temps de transfert des données).

Quand cette route à été établie, on l'emprunte pour transférer les données.

Exemple: J'aimerais transférer un document de la machine PC-PT PC2 vers la machine PC-PT PC7.

- 1) Sur le réseau 192.5.2.0 je fais une demande si une machine porte cette adresse IP.
- 2) Il ne la trouve pas. On demande alors sur le grand réseau 10.0.0.0/8
- 3) Le routeur1 reconnaît cette adresse comme appartenant à un réseau qui lui est connecté.
- 4) Il envoie donc les données au switch 2950-34 qui est connecté au PC-PT PC7

Activité: La commande tracert

Dans un terminal taper la commande tracert -4 google.fr (trace route sous linux) Le -4 force à utiliser les adresses IPV4.

```
PS C:\Users\Jean Gabriel> tracert -4 google.fr
Détermination de l'itinéraire vers google.fr [216.58.201.227]
avec un maximum de 30 sauts :
        1 ms
                 1 ms
                          1 ms FREEBOX [192.168.1.254]
 2
       26 ms
                25 ms
                          30 ms
                                 bny93-1-81-57-144-254.fbx.proxad.net [81.57.144.254]
                                 78.254.4.62
       26 ms
                28 ms
                          26 ms
                                vil93-1-v902.intf.nra.proxad.net [78.254.255.150]
       27 ms
                          25 ms
 4
                25 ms
 5
                         28 ms 194.149.166.41
      128 ms
                28 ms
                         28 ms 194.149.166.58
       27 ms
                28 ms
                         30 ms 72.14.221.62
       29 ms
                27 ms
                29 ms
                          29 ms 108.170.244.225
 8
       29 ms
                         27 ms 216.239.48.143
26 ms fra02s18-in-f3.1e100.net [216.58.201.227]
       27 ms
                28 ms
 9
 10
                32 ms
       28 ms
Itinéraire déterminé.
PS C:\Users\Jean Gabriel>
```

La première colonne indique le nombre de sauts effectués entre les différents routeurs. On a aussi le temps de réponse des routeurs ainsi que leurs adresses IP.

Partie A : Lecture de l'itinéraire

- 1) Donner l'adresse IP associée à Google.fr. Taper cette adresse dans la barre d'un navigateur internet que remarque-t-on ?
- 2) Par combien de routeur doit-on passer pour aller sur le site de Google ?
- 3) Quel est le temps moyen pour y accéder?
- 4) Utiliser la commande ping google.fr . Quelle est la réponse obtenue ?
- 5) Quelle est l'adresse de ma FREEBOX ? Essayer de la ping, expliquer le message obtenu.

Partie B : Géolocalisation des routeurs

- 1) Aller sur le site de Géolocalisation d'adresse IP : https://www.geolocalise-ip.com/api-geolocalise-ip-en-ligne.html
- 2) Essayer de localiser la google.fr avec l'adresse IP [216.58.201.227].
- 3) Essayer l'adresse de la FREEBOX, pourquoi obtient-on se message?
- 4) Essayer de trouver les adresses IP qui sont en FRANCE. Cela donne un emplacement des grands routeurs.

Partie C: Comparaison des routes

- 1) Essayer de ping différents sites web : free.fr, orange.fr, sncf.com
- 2) Afficher les itinéraires pour Free et Orange et les comparer à celui de Google.
- 3) Expliquer ce qu'il se passe dans le cas de sncf. Avec tracert -4 sncf.com