Super Maximum Cost Queries

Victoria has a tree, \$T\$, consisting of \$N\$ nodes numbered from \$1\$ to \$N\$. Each edge from node \$U_i\$ to \$V_i\$ in tree \$T\$ has an integer weight, \$W_i\$.

Let's define the cost, \$C\$, of a path from some node \$X\$ to some other node \$Y\$ as the maximum weight (\$W\$) for any edge in the unique path from node \$X\$ to node \$Y\$.

Victoria wants your help processing \$Q\$ queries on tree \$T\$, where each query contains \$2\$ integers, \$L\$ and \$R\$, such that \$L \le R\$. For each query, she wants to print the number of different paths in \$T\$ that have a cost, \$C\$, in the inclusive range \$[L, R]\$.

It should be noted that path from some node X to some other node Y is considered same as path from node Y to X i.e X, i.e X, is same as X.

Input Format

The first line contains \$2\$ space-separated integers, \$N\$ (the number of nodes) and \$Q\$ (the number of queries), respectively.

Each of the \$N-1\$ subsequent lines contain \$3\$ space-separated integers, \$U\$, \$V\$, and \$W\$, respectively, describing a bidirectional road between nodes \$U\$ and \$V\$ which has weight \$W\$.

The \$Q\$ subsequent lines each contain \$2\$ space-separated integers denoting \$L\$ and \$R\$.

Constraints

- \$1 \le N,Q \le 10^5\$
- \$1 \le U, V \le N\$
- \$1 \le W \le 10^9\$
- \$1 \le L \le R \le 10^9\$

Scoring

- \$1 \le N,Q \le 10^3\$ for \$30\%\$ of the test data.
- \$1 \le N,Q \le 10^5\$ for \$100\%\$ of the test data.

Output Format

For each of the \$Q\$ queries, print the number of paths in \$T\$ having cost \$C\$ in the inclusive range \$[L, R]\$ on a new line.

Sample Input

5 5 1 2 3 1 4 2 2 5 6 3 4 1 1 1 1 2 2 3			
2 5			
1 6			

Sample Output

```
1
3
5
5
10
```

Explanation

```
$Q_1$: $\{3, 4\}$
$Q_2$: $\{1, 3\}, \{3, 4\}, \{1, 4\}$
$Q_3$: $\{1, 4\}, \{1, 2\}, \{2, 4\}, \{1, 3\}, \{2, 3\}$
$Q_4$: $\{1, 4\}, \{1, 2\}, \{2, 4\}, \{1, 3\}, \{2, 3\}$
...etc.
```