Book 1 Proposition 2

To place a straight-line equal to a given straight-line at a given point (as an extremity).

Let A be the given point, and BC the given straight-line. So it is required to place a straight-line at point A equal to the given straight-line BC.

For let the straight-line AB have been joined from point A to point B [Post. 1], and let the equilateral triangle DAB have been been constructed upon it [Prop. 1.1]. And let the straight-lines AE and BF have been produced in a straight-line with DA and DB (respectively) [Post. 2]. And let the circle CGH with center B and radius BC have been drawn [Post. 3], and again let the circle GKL with center D and radius DG have been drawn [Post. 3].

Therefore, since the point B is the center of (the circle)

CGH, BC is equal to BG [Def. 1.15]. Again, since the point D is the center of the circle GKL, DL is equal to DG [Def. 1.15]. And within these, DA is equal to DB. Thus, the remainder AL is equal to the remainder BG [C.N. 3]. But BC was also shown (to be) equal to BG. Thus, AL and BC are each equal to BG. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, AL is also equal to BC.

Thus, the straight-line AL, equal to the given straight-line BC, has been placed at the given point A. (Which is) the very thing it was required to do.