

Session Objectives

- 1. Recap:
 - a) Scale of things
 - b) Words associated to Nano
- 2. List of Fabrication Methods
- 3. General properties
- 4. Surface phenomena

Applications of Nanotechnology

Scale of things

C-C bond – 1.5 angstroms

C-H bond – 1.1 angstroms

Ethanol: CH₃-CH₂OH

Nanocomposites: Optical Clarity

- Size and refractive index of particles are important
- •Nanoparticles are smaller than the wavelength of visible light; reduces chance of light scattering

Calculate

- 1. Calculate the total surface when you divide a cube with an 1 cm edge:
 - 8 smaller cubes.
 - 16 smaller cubes.
 - 32 smaller cubes.
 - 64 smaller cubes.
 - 128 smaller cubes.
 - 256 smaller cubes.
 - 512 smaller cubes.
- 2. How important is this?

Calculate

1. How many iron atoms can be inside a cube with a 30 nm, 10 and 3nm edge?

2. How many iron atoms are on the surface of each cube?

Nano-Scale & Conventional Polymeric Size

Type	Size
Polymer latex size	50-500 nm
Hiding grade TiO ₂	200-250 nm
Polyurethane dispersion particle size	50-100 nm
Polymer molecular size in solution	2-100 nm

02/17/2020

Surface Area

Volume= $4/3 \pi r^3$

Surface area = $4 \pi r^2$

If the density of TiO2 is 4 grs/cm ³ , and	What is the	What is the	What is the
If the particle diameter is:	# particles per gram?	Surface area per gram?	Surface area per volume?
200			
20			
2			

02/17/2020

Percentage of Surface Atoms

Full-shell Clusters	Total Number of Atoms	Surface Atoms (%)
1 Shell	13	92
2 Shells	55	76
3 Shells	147	63
4 Shells	309	52
5 Shells	561	45
7 Shells	1415	35

Surface to Bulk Atoms Ratio

- Spherical iron nanocrystals
- J. Phys. Chem. 1996,
 Vol. 100, p. 12142

Surface Area Dependence on Size

Surface Material Content

A particle of 10 nm diameter has 20% of its atoms on the surface

A particle of 2 nm diameter has 80% of its atoms on the surface

A particle of 1 nm diameter has 80% of its atoms on the surface

15

02/17/2020

Fabrication Methods

Nanostructured Material

Top Down vs. Bottom Up

19

Fabrication

Microfabrication techniques:

- Photolithography
- Soft lithography
- Film deposition
- Etching
- Bonding

Nanofabrication techniques

- Molecular self assembly
- Colloid monolayer lithography
- Electron beam lithography
- Focused ion beam lithography
- Electrically induced nanopatterning
- X-ray lithography
- Ion projection lithography
- Rapid prototyping
 - direct deposition,
 - three-dimensional printing,
 - selective laser sintering,
 - laser stereolithography,
 - evaporation-induced self assembly,
 - pen lithography,
 - ink-jet printing and
 - dip-coating techniques

Nano Particles Dimensions

• Zero Dimension: Nano partricles, nano dots

• One Dimension: Nano wire

Two Dimension: Nano films

02/17/2020

Some Fabrication Process for Nanomaterials

• Nanoparticles (0D):

- colloidal processing,
- flame combustion,
- phase segregation.

• Nanorods or nanowires (1D):

- template-based electroplating,
- vapor-liquid-solid growth (VLS),
- spontaneous anisotropic growth.

• Thin films (2D):

- molecular beam epitaxy (MBE)
- atomic layer deposition (ALD)

• Nanostructured bulk materials :

• self-assembly of nano sized particles for photonic band gap crystals.

Nanofabrication techniques

Fig. 1.6. A molecular person consisting of 14 carbon monoxide molecules arranged on a metal surface fabricated and imaged by scanning tunneling microscopy. [P. Zeppenfeld & D.M. Eigler, *New Scientist* **129**, 20 (23 February 1991), and http://www.almaden.ibm.com/vis/stm/atomo.html]

Properties

Mechanical

Electrical

Physical

Optical

Thermal

Chemical

Quantum

Some physical properties affected by size

Nanomaterials exhibits remarkable different characteristics from their bulk form:

- Melting point decreases as size of Au nanoparticles reduce.
- Energy gap of Si nanoparticles is larger than that of bulk Si (1.12 eV).

Melting point of Au nanoparticles

	Ea of Si	
	Eg of Si	Δ
	materials	
~		

diameter	Tm
bulk	1,064°C
20 nm	~ 990°C
5 nm	~ 850°C
4 nm	~ 750°C
2 nm	~ 330°C

diameter	Eg
bulk	1.12 eV
10 nm	~ 1.20 eV
7 nm	~ 1.29 eV
5 nm	~ 1.62 eV
3 nm	~ 2.60 eV

Thermal: melting point

• Why?

• Penomenon?

The melting point decreases dramatically as the particle size gets below 5 nm

Source: Nanoscale Materials in Chemistry, Wiley, 2001

Melting Point Dependence on Particle Size

- Lowering of the melting point is proportional to 1/r
- ΔT can be as large as couple of hundred degrees when the particle size gets below 10 nm
- Most of the time, the surface tension coefficient (σ) is unknown; by measuring the melting point as a function of radius, σ can be estimated.

Note:

For nanoparticles embedded in a matrix, melting point may be lower or higher, depending on the strength of the interaction between the particle and matrix.

Bulk vs. Surface Properties

Challenges in Nanotechnology

• Overcome the huge surface energy, a result of enormous surface area or large surface to volume ratio.

• Ensure all nanomaterials with desired size, uniform size distribution, morphology, crystallinity, chemical composition, and microstructure, that all together result in desired physical properties.

• Prevent nanomaterials and nanostructures from coarsening through either Ostwald ripening or agglomeration as time evolutes.

Recess

02/17/2020

Surface Tension

Young-Laplace equation

Δρ	for water dr	ops of differ	ent radii at <u>S</u>	<u>TP</u>
Droplet radius	1 <u>mm</u>	0.1 mm	1 <u>µm</u>	10 <u>nm</u>
Δ <i>p</i> (<u>atm</u>)	0.0014	0.0144	1.436	143.6

Solid Wall-Liquid Interactions

Forces at contact point shown for contact angle greater than 90° (left) and less than 90° (right)

Typically:

$$\gamma_{la} > \gamma_{ls} - \gamma_{sa} > 0$$

Liquid	Solid	Contact angle	
<u>water</u>		0°	
<u>ethanol</u>			
<u>diethyl ether</u>	soda-lime glass		
<u>carbon tetrachloride</u>	lead glass		
glycerol	fused quartz		
acetic acid			
<u>water</u>	paraffin wax	107°	
	silver	90°	
methyl iodide	soda-lime glass	29°	
	lead glass	30°	
	fused quartz	33°	
mercury	soda-lime glass	140°	
Some liquid-solid contact angles ^[5]			

Measuring surface tension

$$h = (2 \gamma_{la} \cos \theta) / (\rho gr)$$

Illustration of capillary rise and fall. Red: contact angle less than 90°; Blue=contact angle greater than 90°

What is the height of a "puddle"?

Illustration of how lower contact angle leads to reduction of puddle depth

$$h = 2\sqrt{\frac{\gamma}{g\rho}}$$
 $h = \sqrt{\frac{2\gamma_{\rm la}(1-\cos\theta)}{g\rho}}$.

For water on paraffin at 25°C $_{\theta=107^{\circ}}$ $_{\gamma_{\rm H_2O}}$ = 72 $_{\rm cm}^{\rm dyn}$ $_{\rho_{\rm H_2O}}$ = 1.0 $_{\rm cm}^{\rm g}$ $h_{\rm H_2O}$ = 0.44 cm For mercury on glass: $_{\theta=140^{\circ}}$ $_{\gamma_{\rm Hg}}$ = 487 $_{\rm cm}^{\rm dyn}$ $_{\rho_{\rm Hg}}$ = 13.5 $_{\rm cm}^{\rm g}$ $h_{\rm Hg}$ = 0.36 cm

What is the pressure inside a bubble?

The pressure inside a soap bubble can be derived from thermodynamic free energy considerations. At constant temperature and particle number, dT = dN = 0, the differential Helmholtz free energy is given by

$$dF = -PdV + \gamma dA$$

where P is the difference in pressure inside and outside of the bubble, and γ is the surface tension. In equilbrium, dF = 0, and so,

$$PdV = \gamma dA$$

For a spherical bubble, the volume and surface area are given simply by

$$V = \frac{4}{3}\pi R^3 \to dV = 4\pi R^2 dR$$

and

$$A = 4\pi R^2 \rightarrow dA = 8\pi R dR$$

Substituting these relations into the previous expression, we find $\,P=rac{2}{R}\gamma$

which is equivalent to the <u>Young-Laplace equation</u> when Rx = Ry.

Surface tension of various liquids in dyn/cm against air. Mixture %'s are by weight; dyne/cm is also called mN/m in S.I. units

Liquid	Temperature ° C	Surface tension, γ
Acetic acid	20	27.6
Acetic acid (40.1%) + Water	30	40.68
Acetic acid (10.0%) + Water	30	54.56
Acetone	20	23.7
Diethyl ether	20	17
Ethanol	20	22.27
Ethanol (40%) + Water	25	29.63
Ethanol (11.1%) + Water	25	46.03
Glycerol	20	63
n-Hexane	20	18.4
Hydrochloric acid 17.7M aqueous solution	20	65.95
Isopropanol	20	21.7
Mercury	15	487
Methanol	20	22.6
n-Octane	20	21.8
Sodium chloride 6.0M aqueous solution	20	82.55
Sucrose (55%) + water	20	76.45
Water	0	75.64
Water	25	71.97
Water	50	67.91
Water	100	58.85

Video

(a) CNT-based FET transistor.

(b) Physical nanosensor.

(c) Chemical nanosensor.

(d) Biological nanosensor,

