Power Calculations

Joe

Introduction

Morning Objectives

- 1. Define Power and relate it to type 2 error
- 2. Compute Power for a dataset and a given problem
- Demonstrate the relationship between sample size, effect size, and significance on power

Review of Key Concepts

Recall: Online Spending from CLT Lecture

Revenue Per Visitor	P(X)	
X = \$0.00	90%	
X = \$0.10 (ad-click)	7%	
X = \$0.99 (app purchase)	3%	

What does the CLT say about the mean of a sample? What does the CLT say about the variance of the sample mean?

Random Sampling

CLT in Action

CLT States that the mean of a distribution is normally distributed, with:

where n is the sample size

Recall: Hypothesis Testing One Tail vs Two Tail Tests

Two Sided Test:

 $H_0: \mu = 0$

 $H_A: \mu \neq 0$

Two Sided Test:

 $H_0: \mu = 0$

 $H_A: \mu \geq 0$

 $z_{\alpha/2} = [-1.96, 1.96]$ For $\alpha = 0.05$

 $z_{\alpha/2} = 1.65$ For $\alpha = 0.05$

Recall: Error Types

Type 1: $\alpha =$

<u>Type 2:</u> β =

Recall: Error Types

Type 1: $\alpha = P(\text{reject H}_0 \mid H_0 \text{ true})$

Type 2:

 β = P(Fail to reject H0 | H_A is true)

Recall: Error Types

Type 2:

 β = P(Fail to reject H0 | H_A is true) We call (1- β) our test power

Power Region

Type 2 Error Region

	H₀ Is True	H _a Is True
Fail To Reject H₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

Test power is always defined w.r.t. a <u>specific</u> alternate hypothesis.

In pink, we have what is called the error region.

Let's hop into notebook 0 and do a quick calculation.

Z Test Error Region

Majority of hypothesis testing occurs via CLT (i.e. normal approximation of the population mean).

What region should we hope to minimize/ eliminate?

What 'controls' do we have to do such a thing?

Z Test Error Region

Majority of hypothesis testing occurs via CLT (i.e. normal approximation of the population mean).

What region should we hope to minimize/ eliminate?

What 'controls' do we have to do such a thing?

sample size, effect size, and significance - back to the notebook!

A/B Testing

Z Test Error Region

Majority of hypothesis testing occurs via CLT (i.e. normal approximation of the population mean).

What region should we hope to minimize/ eliminate?

What 'controls' do we have to do such a thing?

sample size, effect size, and significance - which of the 3 is a reasonable control?

Experimental SetupRevisited

Elements of a statistical test:

- 1. Ho
- 2. Ha
- 3. A test statistic
- 4. A significance level, α

Steps to run a test

- 1. Determine H₀
- 2. Choose α
- 3. Take sample, μ and σ
- 4. Accept or reject H₀

Experimental Setup Revisited

Elements of a statistical test:

- 1. Ho
- 2. Ha
- 3. A test statistic
- 4. A significance level, α

Steps to run a test

- 1. Determine H₀, H_a
- 2. Choose α , $(1-\beta)$
- 3. Calculate required sample size
- 4. Take sample, μ and σ
- 5. Accept or reject H₀

A/B Testing

Our current homepage has a signup conversion rate of 6% (what is the s.d.?)

We want to test if a new layout results in an increase of 1%.

How much data do we need to collect?

Morning Objectives

- 1. Define Power and relate it to type 2 error
- 2. Compute Power for a dataset and a given problem
- Demonstrate the relationship between sample size, effect size, and significance on power