infinite maths

sub: mathematic Total Mark:50 std: 12science 8,9,10,11,12

તારીખ : 27/02/22 Time:60 minutes

વિભાગ A

• નીચે આપેલા ચાર જવાબો પૈકી સાચો વિકલ્પ પસંદ કરો. (પ્રત્યેકના 1 ગુણ)

[50]

1. વક $y = \cos x$ અને $y = \sin x$, Y- અક્ષ તથા $0 \le x \le \frac{\pi}{2}$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ ચોરસ એકમ છે.

(A) $\sqrt{2}$ ચોરસ એકમ

(B) $(\sqrt{2} + 1)$ ચોરસ એકમ

(C) $(\sqrt{2} - 1)$ ચોરસ એકમ

(D) $(2\sqrt{2} - 1)$ ચોરસ એકમ

2. વક $y = \sin x$, X- અક્ષ અને રેખાઓ x = 0 તથા $x = \frac{\pi}{2}$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A) 2 ચોરસ એકમ

(B) 4 ચોરસ એકમ

(C) 3 ચોરસ એકમ

(D) 1 ચોરસ એકમ

3. ઉપવલય $\frac{x^2}{25} + \frac{y^2}{16} = 1$ થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A) 20π ચોરસ એકમ

(B) $20π^2$ ચોરસ એકમ

(C) $16\pi^2$ ચોરસ એકમ

(D) 25π ચોરસ એકમ

4. વક $y=x^2$, X-અક્ષ અને રેખા x=4 વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળના રેખા x=a દ્વારા બે સમક્ષેત્ર ભાગ થતાં હોય તો aછે.

(A) 2

(B) $2^{\frac{4}{3}}$

(C) $2^{\frac{5}{3}}$

(D) 4

5. વર્ક $y=2\sqrt{x}$ તથા રેખાઓ x=0 અને x=1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A) $\frac{1}{3}$

(B) $\frac{2}{3}$

(C) 1

(D) $\frac{4}{3}$

6. વક y = |x - 5|, X-અલ અને રેખાઓ x = 0, x = 1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A) $\frac{9}{3}$

(B) $\frac{7}{2}$

(C) 9

(D) 5

7. વક $y^2 = 4x$ અને રેખા x = 3 વચ્ચે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A) $4\sqrt{3}$

(B) $8\sqrt{3}$

(C) $16\sqrt{3}$

(D) $5\sqrt{3}$

8. વક y = |x - 1| અને y = 1 વડે સીમિત પ્રદેશનું ક્ષેત્રફળ છે.

(A) 2

(B) 1

(C) $\frac{1}{2}$

(D) એકપણ નહીં.

9. વિકલ સમીકરણ $\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}=\frac{d^2y}{dx^2}$ નું પરિમાણ છે.

(A) 4

(B) $\frac{3}{2}$

(C) અવ્યાખ્યાયિત

(D) 2

10. વિકલ સમીકરણ $\cos x \frac{dy}{dx} + y \sin x = 1$ નો સંકલ્યકારક અવયવ છે.

(A) $\cos x$

(B) $\tan x$

(C) $\sec x$

(D) $\sin x$

11. $y' + y = \frac{5}{y'}$ નું પરિમાણ છે.

(A) 1

(B) 2

(C) વ્યાખ્યાયિત નથી

(D) -1

12. વિકલ સમીકરણ $\left[1+\left(\frac{dy}{dx}\right)^3\right]^{\frac{2}{3}}=x\left(\frac{d^2y}{dx^2}\right)$ નું પરિમાણ છે.

(A) 3

(B) 2

(C) 6

(D) 1

13.	વિકલ સમીકરણ $\frac{dy}{dx} = \frac{1}{x+y+2}$ નો સંકલ્યકારક અવયવ (I. F.) છે.					
	(A) e^{-y}	(B) <i>e</i> ^{<i>y</i>}	(C) e^{x+y+2}	(D) $\log x + y + 2 $		
14.	વિકલ સમીકરણ $2x \; rac{dy}{dx} - 1$	y = 0, y(1) = 2 નો ઉકેલ	દર્શાવે છે.			
	(A) વર્તુળ	(B) પરવલય	(C) રેખા	(D) ઉપવલય		
15.	જેનું માન 9 હોય, તેવો સહિ	શ $\hat{i}-2\hat{j}+2\hat{k}$ ની દિશાવાળ	ો સદિશ છે.			
	(A) $\hat{i} - 2\hat{j} + 2\hat{k}$	$\text{(B)} \ \frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$	(C) $3(\hat{i}-2\hat{j}+2\hat{k})$	(D) $9(\hat{i} - 2\hat{j} + 2\hat{k})$		
16.	બિંદુઓ $2\overset{ ightarrow}{a}-3\overset{ ightarrow}{b}$ અને $\overset{ ightarrow}{a}$ -	$_{+}\stackrel{ ightarrow}{b}$ ને જોડતા રેખાખંડનું 3 : 1 ન	ા ગુણોત્તરમાં વિભાજન કરતા બિંદુ	ુનો સ્થાનસદિશ છે.		
	$(A) \ \frac{3\overrightarrow{a}-2\overrightarrow{b}}{4}$	(B) $\frac{7\overrightarrow{a} - 8\overrightarrow{b}}{4}$	(C) $\frac{3\vec{a}}{4}$	(D) $\frac{\overrightarrow{5a}}{4}$		
17.	જો સદિશો $\stackrel{ ightarrow}{a}=2\stackrel{\wedge}{i}+\lambda\stackrel{\wedge}{j}$	$+\stackrel{\wedge}{k}$ અને $\stackrel{ ightarrow}{b}=\stackrel{\wedge}{i}+2\stackrel{\wedge}{j}+3\stackrel{\wedge}{k}$	પરસ્પર લંબ હોય તો λનું મૂ	લ્ય = છે.		
	(A) 0	(B) 1	(C) $\frac{3}{2}$	(D) $-\frac{5}{2}$		
18.	સદિશો $3\hat{i}-6\hat{j}+\hat{k}$ અને	$2\hat{i}-4\hat{j}+\lambda\hat{k}$ એકબીજાને સ	માંતર હોય, તો λ =	·		
	(A) $\frac{2}{3}$	(B) $\frac{3}{2}$	(C) $\frac{5}{2}$	(D) $\frac{2}{5}$		
19.	જો ઊગમબિંદુમાંથી બિંદુઓ <i>A</i> ત્રિકોણ OAB નું ક્ષેત્રફળ =		$\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j} + 2\overrightarrow{k}$ અને \overrightarrow{i}	$\stackrel{\rightarrow}{b} = 2\stackrel{\wedge}{i} + 3\stackrel{\wedge}{j} + \stackrel{\wedge}{k} \text{elu}, \text{ di}$		
	(A) 340		(C) √229	(D) $\frac{1}{2}(\sqrt{229})$		
20.	જો $ \overrightarrow{a} = 10$, $ \overrightarrow{b} = 2$ અ	તે $\overrightarrow{a} \cdot \overrightarrow{b} = 12$ હોય, તો $ \overrightarrow{a} \times$	$\overrightarrow{b} \mid = \dots$			
	(A) 5	(B) 10 → →	(C) 14 → → → ·	(D) 16 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
21.	જો $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ અને $ \overrightarrow{a} = 2$, $ \overrightarrow{b} = 3$, $ \overrightarrow{c} = 5$ થાય તેવા સિંદશો \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} હોય, તો $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ નું મૂલ્ય =					
	(A) 0	(B) 1	(C) -19	(D) 38		
22.	$A(-1,-2,3)$ અને $B(1,2,-1)$ હોય, તો $\stackrel{ ightarrow}{AB}$ ની દિક્કોસાઈન થાય.					
	3 3 3	(B) 2, 4, -4	70 70 70	(D) $\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$		
23.	સદિશ $2\hat{i}+2\hat{j}-\hat{k}$ અક્ષો સાથે અનુક્રમે માપના ખૂણા બનાવે છે.					
	(A) $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, π	$-\cos^{-1}\frac{1}{3}$	(B) $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$	$s^{-1}\frac{1}{3}$		
	(C) $\pi - \cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$	$-,\pi-\cos^{-1}\frac{1}{3}$	(D) $\cos^{-1}\frac{2}{3}$, $\pi - \cos^{-1}\frac{2}{3}$	$\cos^{-1}\frac{1}{3}$		
24.	સદિશ (4, 1, 3) નો (1, −2, 3) સદિશ પરના પ્રક્ષેપનું માન થાય.					
	(A) $\frac{15}{\sqrt{14}}$	(B) $\frac{15}{14}$	(C) $\frac{11}{14}$	(D) $\frac{11}{\sqrt{14}}$		
25.	$\hat{j}+\hat{k}$ અને $\hat{i}+\hat{k}$ વિક	ર્શ સદિશવાળા સમાંતરબાજુ ચતુષ્કો	ણનું ક્ષેત્રફળ થાય.			
	(A) $\frac{\sqrt{3}}{2}$	(B) $\frac{3}{2}$	(C) 3	(D) √3		
	Wish You - All The Best					

26.	સદિશો (2, -1 , 1) અને (1, -1 , 2) વચ્ચેના ખૂણાનું માપ છે.					
	(A) $\cos^{-1}\left(\frac{1}{6}\right)$	(B) $\sin^{-1}\left(\frac{5}{6}\right)$	(C) $\frac{\pi}{2}$	(D) $\sin^{-1}\left(\frac{\sqrt{11}}{6}\right)$		
27.	જો $ \overrightarrow{a} = 8$, $ \overrightarrow{b} = 3$ અને	$ \overrightarrow{a} \times \overrightarrow{b} = 12$ dì $\overrightarrow{a} \cdot \overrightarrow{b}$	=			
	(A) $6\sqrt{3}$	(B) $8\sqrt{3}$	(C) $12\sqrt{3}$	(D) કોઈ પણ નહીં		
28.	$\frac{x}{2} = \frac{y}{1} = \frac{z}{3} \text{with} \frac{x-2}{2}$	$= \frac{y+1}{1} = \frac{3-z}{-3} \text{wi}$	રેખાઓ છે.			
	(A) સમાંતર	(B) લંબ	(C) સંપાતી	(D) લઘુકોણમાં છેદતી		
29.	(4, 9, 8) અને (3, -2, 1)	માંથી પસાર થતી રેખાનું કાર્તેઝિ	ય સમીકરણ થાય.			
	(A) $\frac{x-4}{3} = \frac{9-y}{2} = \frac{z-8}{1}$		(B) $\frac{x-3}{4} = \frac{y+2}{9} = \frac{z-1}{8}$			
	(C) $\frac{x-3}{1} = \frac{y+2}{11} = \frac{z-1}{7}$		(D) $\frac{x-4}{1} = \frac{y+2}{11} = \frac{z-1}{7}$	ă.		
30.	1 -11 /	અને ઊગમબિંદુમાંથી પસાર થતી				
	(A) $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$		(B) $x - 1 = y - 2 = z - $	1		
	(C) $\frac{x}{\frac{-1}{4}} = \frac{y}{\frac{2}{4}} = \frac{z}{\frac{-1}{4}}$		(D) $\frac{x-1}{4} = \frac{y-2}{4} = \frac{z-1}{4}$			
31.	બિંદુ (3, -4, -5) નું રેખા	$\frac{x-2}{4} = \frac{y+6}{5} = \frac{z-5}{-3} $	લંબ અંતર છે.			
	(A) $\frac{1}{5}\sqrt{1657}$	(B) $\frac{1}{\sqrt{5}}\sqrt{1675}$	(C) $\frac{1}{5}\sqrt{1757}$	(D) $\frac{1}{\sqrt{5}}\sqrt{1667}$		
32.	રેખાઓ $\overline{r} = (-3, 5, -1) + \dots$ છે.	k (1, 2, 1), $k \in \mathbb{R}$ અને \overline{r}	= (1, 3, -2) + k (6, -3, 0)	, $k\in \mathrm{R}$ વચ્ચેના ખૂણાનું માપ		
	(A) $\frac{\pi}{2}$	(B) 0	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{3}$		
	2		6	3		
33.	રેખાઓ $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ અને	$\frac{1}{-2} = \frac{y}{-4} = \frac{5}{-6}$				
	(A) સંપાતી છે.	(B) વિષમતલીય છે.		(D) સમાંતર છે.		
34.	બિંદુ $(1, 6, 3)$ નું રેખા $\frac{x}{1}$:	$=\frac{y-1}{2}=\frac{z-2}{3}$ ને સાપેક્ષ	પ્રતિબિંબ મળે છે.			
	(A) (1, 0, 7)	(B) (7, 0, 1)	(C) (-1, -6, -3)	(D) (1, 1, 7)		
35.	બિંદુ (2, –3, 6) નું સમતલ 3	x - 6y + 2z + 10 = 0 el el	ાંબઅંતર =			
	(A) $\frac{13}{7}$	(B) $\frac{46}{7}$	(C) 7	(D) $\frac{10}{7}$		
36.	રેખા $\frac{x+4}{2} = \frac{y+3}{5} = \frac{z-3}{3}$	અને સમતલ $x + y + z + 2 = 0$	નું છેદબિંદુ છે.			
	(A) $\left(\frac{18}{5}, -3, \frac{18}{5}\right)$	(B) $\left(\frac{-18}{5}, -2, \frac{-8}{5}\right)$	(C) $\left(\frac{13}{5}, -2, \frac{18}{5}\right)$	(D) $\left(-\frac{18}{5}, -2, \frac{18}{5}\right)$		
37.		2y + x + z = 3 ની છેદરેખાની				
20			(C) (-1, 2, 3)	(D) (1, -2, -3)		
38.		x – y + 2z = 2 વચ્ચેના ખૂણાન્ ્રિક		5		
	(A) $\cos^{-1} \frac{5\sqrt{3}}{9}$	(B) $\sin^{-1} \frac{\sqrt{6}}{9}$	(C) $\pi - \cos^{-1} \frac{\sqrt{6}}{9}$	(D) $\tan^{-1} \frac{5}{\sqrt{2}}$		
			V			
		Wish You - A	II The Best			

39.	સમતલો $2x + 2y - z + 2 = 0$ અને $4x + 4y - 2z + 5 = 0$ વચ્ચેનું અંતર છે.						
	(A) $\frac{1}{2}$ (B) $\frac{1}{4}$	U.	(D) એક પણ નહીં				
40.	જો બિંદુઓ $(1,\ 1,\ p)$ અને $(-3,\ 0,\ 1)$ સમતલ $\stackrel{ ightarrow}{r}$ $\left(\ 3 \right)$	$(\hat{i} + 4\hat{j} - 12\hat{k}) + 13 =$	= 0 થી સમાન અંતરે આવેલાં હોય, તો p				
	=						
	(A) 2, $\frac{4}{3}$ (B) 1, $\frac{4}{3}$	(C) 1, $\frac{7}{3}$	(D) $\frac{7}{3}$, 2				
41.	હેતુલક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય બિંદુઓએ મળે	છે.					
	(A) આપેલ અસમતાઓનાં અક્ષો સાથેનાં છેદબિંદુ આગળ	L					
	(B) આપેલ અસમતાઓનાં ફક્ત X- અક્ષ સાથેનાં છેદબિં	ાદુ આગળ					
	(C) શક્ય ઉકેલ પ્રદેશનાં શિરોબિંદુ આગળ						
	(D) આ પૈકી એકપણ નહીં.						
42.	અસમતાઓ $x, y \ge 0, y \le 6, x + y \le 3$ વડે બનતે	ો પ્રદેશ.					
	(A) પ્રથમ ચરણમાં અસીમિત છે.	(B) પ્રથમ અને દ્વિ	તીય ચરણમાં અસીમિત છે.				
	(C) પ્રથમ ચરણમાં સીમિત છે.	(D) એકપણ નહીં.					
43.	સુરેખ આયોજનના પ્રશ્નનો શક્ય ઉકેલ	-					
	(A) બધી જ મર્યાદાઓનું સમાધાન કરે. (C) હંમેશાં શક્ય ઉકેલનાં પ્રદેશનું શિરોબિંદુ હોય જ.		દાઓનું સમાધાન કરે. ો વિષેયનું ઈષ્ટતમપણાનું મૂલ્ય હોય જ.				
44.	x અને y એ સુરેખ આયોજનનાં પ્રશ્નનો ઈપ્ટતમ ઉકેલ હ		ા ારાયુ છેલા વાલાયું પૂર્વ હાર્ય છે.				
	(A) $Z = \lambda x + (1 - \lambda)y$, $\lambda \in R$ પણ ઈષ્ટતમ ઉકેલ						
	(B) $Z = \lambda x + (1 - \lambda)y$, $0 \le \lambda \le 1$ પણ ઈપ્ટતમ ઉકેલ હોય.						
	(C) $Z = \lambda x + (1 + \lambda)y$, $0 \le \lambda \le 1$ પણ ઈપ્ટતમ ઉકેલ હોય.						
	(D) $Z = \lambda x + (1 + \lambda)y$, $\lambda \in \mathbb{R}$ ਪણ ઈપ્ટતમ ઉકેલ	હોય.					
45.	નીચે આપેલ વિધાનોમાંથી કધું વિધાન સત્ય છે ?						
	(A) કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને ઓછામાં ઓછો એક ઈષ્ટતમ ઉકેલ હોય જ. (B) દરેક સુરેખ આયોજનનાં પ્રશ્નને અનન્ય ઈષ્ટતમ ઉકેલ હોય.						
	(C) જો કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને બે બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે તો તેને અનંત બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે.						
	(D) જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય તો સુરેખ આયોજનનાં પ્રશ્નને ઈપ્ટતમ ઉકેલ ન જ મળે.						
46.	સુરેખ આયોજનનાં પ્રશ્નમાં હેતુલક્ષી વિધેય						
	(A) આલેખ અચળ હોય.	(B) નું ઈષ્ટતમ મૂલ	ય શોધવાનું હોય.				
	(C) અસમતા હોય.	(D) દ્વિઘાત સમીકર					
47.	કોઈ મર્યાદાઓની અસમતા સંહતિથી રચાતા શક્ય ઉકેલના પ્રદેશનાં શિરોબિંદુઓ (0, 10), (5, 5), (15, 15), (0, 20) છે. ધારો કે $Z=px+qy$, જયાં $p,\ q>0$. જો Z ની મહત્તમ કિંમત (15, 15) અને (0, 20) બંને આગળ હોય તો p અને q વચ્ચેનો						
	3 Z = px + qy, જવા $p, q > 0$. જા Z ના મહત્તમ ાક સંબંધ છે.	મત (15, 15) અન (0, 20) બન આગળ હાય તા <i>p</i> અન <i>q</i> વચ્ચના				
	(A) $p = q$ (B) $p = 2q$	(C) $q = 2p$	(D) $q = 3p$				
48.	સુરેખ આયોજનનાં પ્રશ્નનું હેતુલક્ષી વિધેય એ						
		(C) ચલો વચ્ચેનો					
49.	સિમીત શક્ય ઉકેલ પ્રદેશનાં શિરોબિંદુઓ $A(3, 3)$, $B(20, Z = 2x + 3y$ ની મહત્તમ કિંમત છે.	, 3), C(20, 10), D(18,	12) અને E(12, 12) છે. હેતુલક્ષી વિધય				
	(A) 72 (B) 80	(C) 82	(D) 70				
50.	z = 30x - 30y + 1800 હેતુલક્ષી વિષેય છે. સીમિત શક્ય						
	20) અને (0, 15) છે. z ની ન્યૂનતમ કિંમત કયા બિંદુએ	ો પ્રાપ્ત થાય ?					
	TATEAL VA	u - All The Best					
	WISH 10	u - All The Dest					

(A) (0, 20)	(B) (0, 15)	(C) (15, 0)	(D) (10, 20)
	Wish You - A	All The Best	

sub: mathematic Total Mark:50 infinite maths std: 12science 8,9,10,11,12

તારીખ : 27/02/22 Time:60 minutes

Section [A] : 1 Mark MCQ					
No	Ans	Chap	Sec	Que	Universal_Queld
1.	С	Chap 8 (Part2)	E-C	24	QP21P11B1203_P2C8S7Q1
2.	D	Chap 8 (Part2)	E-C	30	QP21P11B1203_P2C8S7Q7
3.	A	Chap 8 (Part2)	E-C	31	QP21P11B1203_P2C8S7Q8
4.	С	Chap 8 (Part2)	F	8	QP21P11B1203_P2C8S8Q8
5.	D	Chap 8 (Part2)	F	14	QP21P11B1203_P2C8S8Q14
6.	A	Chap 8 (Part2)	F	15	QP21P11B1203_P2C8S8Q15
7.	В	Chap 8 (Part2)	F	16	QP21P11B1203_P2C8S8Q16
8.	В	Chap 8 (Part2)	F	64	QP21P11B1203_P2C8S8Q64
9.	D	Chap 9 (Part2)	I-C	35	QP21P11B1203_P2C9S11Q2
10.	С	Chap 9 (Part2)	I-C	40	QP21P11B1203_P2C9S11Q7
11.	В	Chap 9 (Part2)	J	2	QP21P11B1203_P2C9S14Q2
12.	A	Chap 9 (Part2)	J	4	QP21P11B1203_P2C9S14Q4
13.	Α	Chap 9 (Part2)	J	154	QP21P11B1203_P2C9S14Q155
14.	В	Chap 9 (Part2)	К	1	QP21P11B1203_P2C9S15Q1
15.	С	Chap 10 (Part2)	H-C	19	QP21P11B1203_P2C10S10Q1
16.	D	Chap 10 (Part2)	H-C	20	QP21P11B1203_P2C10S10Q2
17.	D	Chap 10 (Part2)	H-C	23	QP21P11B1203_P2C10S10Q5
18.	A	Chap 10 (Part2)	H-C	24	QP21P11B1203_P2C10S10Q6
19.	D	Chap 10 (Part2)	H-C	25	QP21P11B1203_P2C10S10Q7
20.	D	Chap 10 (Part2)	H-C	27	QP21P11B1203_P2C10S10Q9
21.	С	Chap 10 (Part2)	H-C	31	QP21P11B1203_P2C10S10Q13
22.	A	Chap 10 (Part2)	1	7	QP21P11B1203_P2C10S13Q7
23.	A	Chap 10 (Part2)	I	15	QP21P11B1203_P2C10S13Q15
24.	D	Chap 10 (Part2)	ı	48	QP21P11B1203_P2C10S13Q48
25.	A	Chap 10 (Part2)	1	82	QP21P11B1203_P2C10S13Q82
26.	D	Chap 10 (Part2)	ı	89	QP21P11B1203_P2C10S13Q89
27.	С	Chap 10 (Part2)	J	20	QP21P11B1203_P2C10S14Q20
28.	A	Chap 11 (Part2)	G	3	QP21P11B1203_P2C11S11Q3
29.	D	Chap 11 (Part2)	G	8	QP21P11B1203_P2C11S11Q8
30.	A	Chap 11 (Part2)	G	12	QP21P11B1203_P2C11S11Q12
31.	A	Chap 11 (Part2)	G	19	QP21P11B1203_P2C11S11Q19
32.	Α	Chap 11 (Part2)	G	22	QP21P11B1203_P2C11S11Q22

33.	A ,	Chap 11 (Part2)	G	57	QP21P11B1203_P2C11S11Q57
34.	Α	Chap 11 (Part2)	G	65	QP21P11B1203_P2C11S11Q65
35.	В	Chap 11 (Part2)	G	73	QP21P11B1203_P2C11S11Q73
36.	D	Chap 11 (Part2)	G	88	QP21P11B1203_P2C11S11Q88
37.	В	Chap 11 (Part2)	G	95	QP21P11B1203_P2C11S11Q95
38.	D	Chap 11 (Part2)	G	101	QP21P11B1203_P2C11S11Q101
39.	С	Chap 11 (Part2)	G	156	QP21P11B1203_P2C11S11Q156
40.	С	Chap 11 (Part2)	Н	.9	QP21P11B1203_P2C11S12Q9
41.	С	Chap 12 (Part2)	F	2	QP21P11B1203_P2C12S10Q2
42.	С	Chap 12 (Part2)	F	3	QP21P11B1203_P2C12S10Q3
43.	A	Chap 12 (Part2)	F	8	QP21P11B1203_P2C12S10Q8
44.	В	Chap 12 (Part2)	F	7	QP21P11B1203_P2C12S10Q7
45.	С	Chap 12 (Part2)	F	9	QP21P11B1203_P2C12S10Q9
46.	В	Chap 12 (Part2)	F	11	QP21P11B1203_P2C12S10Q11
47.	D	Chap 12 (Part2)	F	13	QP21P11B1203_P2C12S10Q13
48.	В	Chap 12 (Part2)	F	14	QP21P11B1203_P2C12S10Q14
49.	Α	Chap 12 (Part2)	F	15	QP21P11B1203_P2C12S10Q15
50.	Α	Chap 12 (Part2)	F	29	QP21P11B1203_P2C12S10Q29

infinite maths

std: 12science 8,9,10,11,12

sub: mathematic Total Mark:50

તારીખ: 27/02/22 Time: 60 minutes

વિભાગ A

નીચે આપેલા ચાર જવાબો પૈકી સાચો વિકલ્પ પસંદ કરો. (પ્રત્યેકના 1 ગુણ)

[50]

- વક $y=\cos x$ અને $y=\sin x$, Y- અક્ષ તથા $0\leq x\leq \frac{\pi}{2}$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ ચોરસ એકમ છે.
 - (A) $\sqrt{2}$ ચોરસ એકમ

(B) $(\sqrt{2} + 1)$ ચોરસ એકમ

(C) $(\sqrt{2} - 1)$ ચોરસ એકમ

(D) $(2\sqrt{2} - 1)$ ચોરસ એકમ

જવાબ (C) $(\sqrt{2}-1)$ ચોરસ એકમ

$$\begin{split} & I_1 = \int_0^{\frac{\pi}{4}} \cos x \, dx - \int_0^{\frac{\pi}{4}} \sin x \, dx \\ & = \left[\sin x \right]_0^{\frac{\pi}{4}} + \left[\cos x \right]_0^{\frac{\pi}{4}} \\ & = \sin \frac{\pi}{4} - \sin 0 + \cos \frac{\pi}{4} - \cos 0 \\ & = \frac{1}{\sqrt{2}} - 0 + \frac{1}{\sqrt{2}} - 1 \\ & = \left(\sqrt{2} - 1 \right) \quad \text{ચોરસ એકમ} \end{split}$$

તેથી, આવૃત્ત પ્રદેશનું ક્ષેત્રફળ A $\left(\sqrt{2}-1\right)$ ચોરસ એકમ

- વર્ક $y=\sin x$, X- અક્ષ અને રેખાઓ x=0 તથા $x=\frac{\pi}{2}$ વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.
 - (A) 2 ચોરસ એકમ
- (B) 4 ચોરસ એકમ
- (C) 3 ચોરસ એકમ (D) 1 ચોરસ એકમ

જવાબ (D) 1 ચોરસ એકમ

આવૃત્ત પ્રદેશનું ક્ષેત્રફળ
$$=$$
 $\left|\int\limits_0^{\frac{\pi}{2}} \sin x \ dx\right|$ $=$ $\left|-(\cos x)\int\limits_0^{\frac{\pi}{2}} \left|$ $=$ $\left|-\left(\cos\frac{\pi}{2}-\cos 0\right)\right|$ $=$ $|-(0-1)|$

= 1 ચોરસ એકમ

- ઉપવલય $\frac{x^2}{25} + \frac{y^2}{16} = 1$ થી આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.
 - (A) 20π ચોરસ એકમ
- (B) $20\pi^2$ ચોરસ એકમ (C) $16\pi^2$ ચોરસ એકમ
- (D) 25π ચોરસ એકમ

જવાબ (A) 20π ચોરસ એકમ

યાદ રાખો : ઉપવલય $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b ના આવૃત્ત પ્રદેશનું ક્ષેત્રફળ $\pi \, ab$ છે. અહીં, $a^2 = 25$ અને $b^2 = 16$ છે.

 $\therefore a = 5$ અને b = 4 થાય.

આમ, a > b છે.

∴ ઉપવલય X- અક્ષ પરત્વે સંમિત વક્ર છે.

∴ આવૃત્ત પ્રદેશનું ક્ષેત્રફળ = π ab $= \pi (5)(4)$ = 20π ચોરસ એકમ

- વક $y=x^2$, X-અક્ષ અને રેખા x=4 વડે આવૃત્ત પ્રદેશના ક્ષેત્રફળના રેખા x=a દ્વારા બે સમક્ષેત્ર ભાગ થતાં હોય તો aછે.
 - (A) 2

- (B) $2^{\frac{4}{3}}$
- (C) $2^{\frac{5}{3}}$
- (D) 4

જવાબ (C) 2³

પરવલય $y=x^2$, X-અક્ષ અને રેખા x=4 વડે આવૃત્ત પ્રદેશનાં ક્ષેત્રફળના રેખા x=a દ્વારા બે સમક્ષેત્ર ભાગ થાય છે. આકૃતિ પરથી સ્પષ્ટ છે કે,

$$I_1 = I_2$$

$$\therefore \int_{0}^{a} x^{2} dx = \int_{a}^{4} x^{2} dx$$

$$\therefore \left[\frac{x^3}{3}\right]_0^a = \left[\frac{x^3}{3}\right]_a^4$$

$$\frac{a^3}{3} = \frac{64}{3} - \frac{a^3}{3}$$

$$\therefore \ \frac{a^3}{3} + \frac{a^3}{3} = \frac{64}{3}$$

$$\therefore 2a^3 = 64$$

$$\therefore a^3 = 32$$

$$\therefore \ a = (32)^{\frac{1}{3}} = (2^5)^{\frac{1}{3}} = 2^{\frac{5}{3}}$$

- 5. વર્ક $y=2\sqrt{x}$ તથા રેખાઓ x=0 અને x=1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.
 - (A) $\frac{1}{3}$

(B) $\frac{2}{3}$

(C) 1

(D) $\frac{4}{3}$

જવાબ (D) $\frac{4}{3}$

$$I = \int_{0}^{1} 2\sqrt{x} \, dx$$

$$= 2 \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{1} = \frac{4}{3}$$

$$=\frac{4}{3}$$

- **6.** વક y=|x-5|, X-અલ અને રેખાઓ x=0, x=1 વડે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.
 - (A) $\frac{9}{2}$

(B) $\frac{7}{2}$

(C) 9

(D) 5

જવાબ (A) $\frac{9}{2}$

$$y = |x - 5|$$

$$\therefore y = x - 5, x \ge 5$$

$$= 5 - x, x < 5$$

 $\therefore x \in [0, 1]$ હોય ત્યારે y = 5 - x થાય.

$$I = \int_{0}^{1} (5-x) \, dx$$

$$= \left[5x - \frac{x^2}{2}\right]_0^1 = 5 - \frac{1}{2} = \frac{9}{2}$$

$$\therefore$$
 માંગેલ ક્ષેત્રફળ $A = |I| = \frac{9}{2}$

7. વક $y^2 = 4x$ અને રેખા x = 3 વચ્ચે આવૃત્ત પ્રદેશનું ક્ષેત્રફળ છે.

(A)
$$4\sqrt{3}$$

જવાબ (B) $8\sqrt{3}$

પરવલય $y^2 = 4x$ એ X-અક્ષ પ્રત્યે સંમિત છે.

I =
$$\int_0^3 \sqrt{4x} \, dx$$
 માંગેલ ક્ષેત્રફળ A = $2|I|$

$$= 2 \cdot \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^3$$

$$= \frac{4}{3} \left[(3)^{\frac{3}{2}} \right] = \frac{4}{3} \left[3\sqrt{3} \right]$$

$$= 8\sqrt{3}$$

- 8. વર્ક y = |x 1| અને y = 1 વડે સીમિત પ્રદેશનું ક્ષેત્રફળ છે.
 - (A) 2

(B) 1

(C) $\frac{1}{2}$

(D) એકપણ નહીં.

જવાબ (B) 1

$$y = |x - 1|$$

= $x - 1$, $x \ge 1$
= $1 - x$, $x < 1$

∴ ક્ષેત્રફળ

$$= \int_{0}^{1} (1-x)dx + \int_{1}^{2} (x-1)dx$$

$$= \left[x - \frac{x^{2}}{2}\right]_{0}^{1} + \left[\frac{x^{2}}{2} - x\right]_{1}^{2}$$

$$= \left[1 - \frac{1}{2}\right] + \left[0 - \left(\frac{1}{2} - 1\right)\right] = 1$$

9. વિકલ સમીકરણ $\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}=\frac{d^2y}{dx^2}$ નું પરિમાણ છે.

(A) 4

(B) $\frac{3}{2}$

- (C) અવ્યાખ્યાયિત
- (D) 2

જવાબ (D) 2

આમ, આપેલ વિકલ સમીકરણમાં દ્વિતીય કક્ષાનું વિકલિત છે.

તેથી, તેની કક્ષા 2 થાય.

- 10. વિકલ સમીકરણ $\cos x \frac{dy}{dx} + y \sin x = 1$ નો સંકલ્યકારક અવયવ છે.
 - (A) $\cos x$
- (B) $\tan x$
- (C) $\sec x$
- (D) $\sin x$

જવાબ (C) sec x

$$\Rightarrow \quad \cos x \frac{dy}{dx} + y \sin x = 1$$

હવે બંને બાજુ cos x વડે ભાગતાં,

$$\therefore \frac{dy}{dx} + \tan x \cdot y = \sec x$$

હવે
$$\frac{dy}{dx}$$
 + P(x)y = Q(x) સાથે સરખાવો.

$$\therefore P(x) = \tan x$$

$$\therefore$$
 સંકલ્યકારક અવયવ = $e^{\int P(x) dx}$
= $e^{\int \tan x dx}$
= $e^{\log |\sec x|}$

11.
$$y' + y = \frac{5}{y'}$$
 નું પરિમાણ છે.

(A) 1

(B) 2

- (C) વ્યાખ્યાયિત નથી
- (D) -1

જવાબ (B) 2

$$(y')^2 + yy' = 5$$

∴ આપેલ વિકલ સમીકરણનું પરિમાણ 2 છે.

12. વિકલ સમીકરણ
$$\left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{2}{3}} = x \left(\frac{d^2y}{dx^2}\right)$$
 નું પરિમાણ છે.

(A) 3

(B) 4

(C) 6

(D) 1

જવાબ (A) 3

$$1 + \left(\frac{dy}{dx}\right)^3 = x \left(\frac{d^2y}{dx^2}\right)$$

બંને બાજુ ઘન કરતાં,

$$\left[1 + \left(\frac{dy}{dx}\right)^3\right]^2 = x^3 \left(\frac{d^2y}{dx^2}\right)^3$$

∴ આપેલ વિકલ સમીકરણનું પરિમાણ 3 છે.

13. વિકલ સમીકરણ $\frac{dy}{dx} = \frac{1}{x+y+2}$ નો સંકલ્યકારક અવયવ (I. F.) છે.

(A)
$$e^{-y}$$

(C)
$$e^{x+y+2}$$

(D)
$$\log |x + y + 2|$$

જવાબ (A) e^{-y}

$$\frac{dy}{dx} = \frac{1}{x+y+2}$$

$$\therefore \quad \frac{dx}{dy} = x + y + 2$$

$$\therefore \quad \frac{dx}{dy} + (-1)x = y + 2$$

જે
$$\frac{dx}{dy}$$
 + P(y)x = (Q)(y) પ્રકારનું સુરેખ વિકલ સમીકરણ છે.

$$\therefore$$
 સંકલ્યકારક અવયવ = $e^{\int P(y)dy} = e^{\int (-1)dy}$

$$= \rho^{-y}$$

વિકલ સમીકરણ $2x \frac{dy}{dx} - y = 0$, y(1) = 2 નો ઉકેલ દર્શાવે છે.

- (A) વર્તુળ
- (B) પરવલય

(D) ઉપવલય

જવાબ (B) પરવલય

$$\Rightarrow 2x \frac{dy}{dx} - y = 0$$

$$\therefore 2x dy = y dx$$

$$\therefore$$
 2 $\frac{dy}{y} = \frac{dx}{x}$

$$\therefore 2\int \frac{1}{y} dy = \int \frac{1}{x} dx + \log c$$

$$\therefore 2 \log y = \log x + \log c$$

$$\log y^2 = \log x \cdot c$$

$$v^2 = x \cdot c$$

....(i)

$$x = 1$$
 અને $y = 2$ મૂકતાં

$$\therefore 4 = c$$

$$v^2 = 4c$$
 મળે.

જે પરવલય દર્શાવે છે.

જેનું માન 9 હોય, તેવો સદિશ $\hat{i}-2\hat{j}+2\hat{k}$ ની દિશાવાળો સદિશ છે.

(A)
$$\hat{i} - 2\hat{j} + 2\hat{k}$$

(A)
$$\hat{i} - 2\hat{j} + 2\hat{k}$$
 (B) $\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$ (C) $3(\hat{i} - 2\hat{j} + 2\hat{k})$ (D) $9(\hat{i} - 2\hat{j} + 2\hat{k})$

(C)
$$3(\hat{i} - 2\hat{j} + 2\hat{k})$$

(D)
$$9(\hat{i} - 2\hat{j} + 2\hat{k})$$

જવાબ (C) 3 $(\hat{i} - 2\hat{j} + 2\hat{k})$

સદિશ \vec{x} ની દિશામાં k માનવાળો એકમ સદિશ = $k\cdot\overset{x}{\longrightarrow}$ છે.

$$\vec{a}$$
 \vec{a} \vec{i} \vec{j} \vec{j} \vec{k} = (1, -2, 2)

$$|\vec{x}| = \sqrt{1+4+4} = \sqrt{9} = 3$$

∴ x ની દિશામાં 9 માનવાળો એકમ સદિશ

$$= \frac{9 \cdot \overrightarrow{x}}{|\overrightarrow{x}|}$$

$$= \frac{9(1, -2, 2)}{3}$$

$$=3(\hat{i}-2\hat{j}+2\hat{k})$$

બિંદુઓ $2\overset{
ightharpoonup}{a}-3\overset{
ightharpoonup}{b}$ અને $\overset{
ightharpoonup}{a}+\overset{
ightharpoonup}{b}$ ને જોડતા રેખાખંડનું 3:1 ના ગુણોત્તરમાં વિભાજન કરતા બિંદુનો સ્થાનસદિશ છે.

(A)
$$\frac{3\vec{a}-2\vec{b}}{4}$$

- (A) $\frac{3\vec{a} 2\vec{b}}{4}$ (B) $\frac{7\vec{a} 8\vec{b}}{4}$
 - (C) $\frac{\vec{3}\vec{a}}{4}$
- (D) $\frac{\vec{5a}}{\vec{a}}$

જવાબ (D) <u>5 a</u>

બિંદુ $\stackrel{
ightarrow}{P(p)}$ અને $\stackrel{
ightarrow}{Q(q)}$ ને જોડતા રેખાખંડ PQ નું P તરફથી m:n ના ગુણોત્તરમાં અંતઃવિભાજન

કરતા બિંદુનો સ્થાન સદિશ $\frac{\overrightarrow{mq} + \overrightarrow{np}}{m+n}$ થાય.

ધારો કે બિંદુ \mathbf{R} એ $\mathbf{P}(\stackrel{\rightarrow}{a}+\stackrel{\rightarrow}{b})$ અને $\mathbf{Q}(2\stackrel{\rightarrow}{a}-3\stackrel{\rightarrow}{b})$ ને જોડતા રેખાખંડ \overrightarrow{PQ} નું \mathbf{P} તરફથી $\mathbf{3}:\mathbf{1}$ ના ગુણોત્તરમાં વિભાજન કરે છે.

∴ R નો સ્થાન સંદિશ =
$$\frac{3(\overrightarrow{a} + \overrightarrow{b}) + 1(2\overrightarrow{a} - 3\overrightarrow{b})}{3 + 1}$$

$$=\frac{3\overrightarrow{a}+2\overrightarrow{a}}{4}$$

$$=\frac{5\stackrel{\rightarrow}{a}}{4}$$

- જો સિંદિશો $\overrightarrow{a}=2\overrightarrow{i}+\lambda \overrightarrow{j}+\overrightarrow{k}$ અને $\overrightarrow{b}=\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k}$ પરસ્પર લંબ હોય તો λ નું મૂલ્ય = છે.
 - (A) 0

જવાબ (D) $-\frac{5}{2}$

- ગણતરી માટેનું સૂચન : જો શૂન્યેતર સદિશો $\stackrel{
 ightarrow}{x}$ તથા $\stackrel{
 ightarrow}{y}$ પરસ્પર લંબ હોય તો તેમનું અંતઃગુણન શૂન્ય થાય. (અર્થાત્ $\overrightarrow{x} \cdot \overrightarrow{y} = 0$ થાય.)
- $\stackrel{\rightarrow}{a} = 2\hat{i} + \lambda\hat{j} + \hat{k} = (2, \lambda, 1)$

$$\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} = (1, 2, 3)$$

અહીં, $\stackrel{\rightarrow}{a} \perp \stackrel{\rightarrow}{b}$ આપેલ છે.

$$\therefore a \cdot b = 0$$

$$\therefore$$
 (2, λ , 1) · (1, 2, 3) = 0

$$\therefore 2 + 2\lambda + 3 = 0$$

$$\therefore 2\lambda = -5$$

$$\therefore \lambda = -\frac{5}{2}$$

18. સંદિશો $3\hat{i}-6\hat{j}+\hat{k}$ અને $2\hat{i}-4\hat{j}+\lambda\hat{k}$ એકબીજાને સમાંતર હોય, તો $\lambda=$

(A)
$$\frac{2}{3}$$

(B)
$$\frac{3}{2}$$

(C)
$$\frac{5}{2}$$

(D)
$$\frac{2}{5}$$

જવાબ (A) $\frac{2}{3}$

$$\overrightarrow{x} = 3\hat{i} - 6\hat{j} + \hat{k}$$
 eati,

$$\vec{x} = (3, -6, 1)$$
 અને $\hat{y} = 2\hat{i} - 4\hat{j} + \lambda \hat{k}$ લેતાં,

$$\therefore \vec{y} = (2, -4, \lambda)$$

હવે
$$\vec{x} \parallel \vec{y}$$
 છે.

$$\therefore \overline{x} \times \overline{y} = \overline{0}$$

$$\begin{vmatrix} i & j & k \\ 3 & -6 & 1 \\ 2 & -4 & \lambda \end{vmatrix} = \overrightarrow{0}$$

$$\hat{i}(-6\lambda + 4) - \hat{j}(3\lambda - 2) + \hat{k}(-12 + 12) = 0$$

$$\therefore$$
 (4 - 6 λ , 2 - 3 λ , 0) = (0, 0, 0)

$$\therefore 4 - 6\lambda = 0$$

$$\therefore 6\lambda = 4$$

$$\therefore 3\lambda = 2$$

$$\therefore \lambda = \frac{2}{3}$$
 મળે.

અન્ય રીત ઃ

$$\overrightarrow{x} \parallel \overrightarrow{y}$$

$$(3, -6, 1) \parallel (2, -4, \lambda)$$

$$\therefore \frac{3}{2} = \frac{-6}{-4} = \frac{1}{\lambda}$$

$$\therefore \frac{3}{2} = \frac{1}{\lambda}$$

$$\therefore \frac{\lambda}{1} = \frac{2}{3}$$

$$\lambda = \frac{2}{3}$$

19. જો ઊગમબિંદુમાંથી બિંદુઓ A અને B સુધીના સદિશો અનુક્રમે
$$\stackrel{
ightharpoonup}{a}=2\stackrel{\hat{i}}{i}-3\stackrel{\hat{j}}{j}+2\stackrel{\hat{k}}{k}$$
 અને $\stackrel{
ightharpoonup}{b}=2\stackrel{\hat{i}}{i}+3\stackrel{\hat{j}}{j}+\stackrel{\hat{k}}{k}$ હોય, તો ત્રિકોણ OAB નું ક્ષેત્રફળ $=$

(D)
$$\frac{1}{2}(\sqrt{229})$$

જવાબ (D)
$$\frac{1}{2} (\sqrt{229})$$

$$\rightarrow$$
 અહીં, $\vec{a} = \vec{OA} = 2\hat{i} - 3\hat{j} + 2\hat{k}$

$$\stackrel{\rightarrow}{\cdot}\stackrel{\rightarrow}{a}=(2,-3,2)$$

તથા
$$\vec{b} = \overset{\rightarrow}{OB} = 2\hat{i} + 3\hat{j} + \hat{k}$$

$$\therefore \overrightarrow{b} = (2, 3, 1)$$

$$\Delta$$
OAB नुं क्षेत्रइण $=\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$ (i)

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$$

$$= \hat{i}(-3 - 6) - \hat{j}(2 - 4) + \hat{k}(6 + 6)$$

$$= -9\hat{i} + 2\hat{j} + 12\hat{k}$$

$$= (-9, 2, 12)$$

∴ ΔΟΑΒ નું ક્ષેત્રફળ =
$$\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$$

= $\frac{1}{2} (\sqrt{229})$

20. જો
$$|\overrightarrow{a}| = 10$$
, $|\overrightarrow{b}| = 2$ અને $\overrightarrow{a} \cdot \overrightarrow{b} = 12$ હોય, તો $|\overrightarrow{a} \times \overrightarrow{b}| = \dots$

(D) 16

જવાબ (D) 16

$$\Rightarrow$$
 ધારો કે $\stackrel{\rightarrow}{a} \wedge \stackrel{\rightarrow}{b} = \theta$ છે.

$$\therefore \cos\theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{12}{(10)(2)} = \frac{3}{5}$$

હવે
$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$
$$= \sqrt{1 - \frac{9}{25}}$$

$$=\pm\frac{4}{5}$$

$$\therefore |\sin \theta| = \frac{4}{5}$$

હવે
$$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \cdot \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \sin \theta$$
 (લાગ્રાંજનું નિત્યસમ)

$$\therefore |\overrightarrow{a} \times \overrightarrow{b}| = 10 \times 2 \times \frac{4}{5} = 16$$

- જો $\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$ અને $|\stackrel{\rightarrow}{a}| = 2$, $|\stackrel{\rightarrow}{b}| = 3$, $|\stackrel{\rightarrow}{c}| = 5$ થાય તેવા સદિશો $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{c}$ હોય, તો $\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{b} \cdot \stackrel{\rightarrow}{c} + \stackrel{\rightarrow}{c} \cdot \stackrel{\rightarrow}{a}$
 - (A) 0

(B) 1

(C) -19

(D) 38

જવાબ (C) -19

અહીં, $\overrightarrow{a} + \overrightarrow{h} + \overrightarrow{c} = \overrightarrow{0}$

$$\therefore |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = 0$$

$$\therefore (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$$

$$\overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{c} + 2 \quad (\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\therefore |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\therefore 4 + 9 + 25 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\therefore 38 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = 0$$

$$\therefore \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = -\frac{38}{2} = -19$$

- A(-1,-2,3) અને B(1,2,-1) હોય, તો \overrightarrow{AB} ની દિક્કોસાઈન થાય.
 - (A) $\frac{1}{2}$, $\frac{2}{2}$, $\frac{-2}{2}$
- (B) 2, 4, -4
- (C) $\frac{2}{\sqrt{6}}, \frac{4}{\sqrt{6}}, \frac{-4}{\sqrt{6}}$ (D) $\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$

જવાબ (A) $\frac{1}{3}, \frac{2}{3}, \frac{-2}{3}$

 $\overrightarrow{AB} = (2, 4, -4)$

હવે
$$|\overrightarrow{AB}| = 6$$

$$\therefore$$
 \overrightarrow{AB} ની દિક્કોસાઈન = $\left(\frac{2}{6}, \frac{4}{6}, \frac{-4}{6}\right)$

$$=\left(\frac{1}{3},\frac{2}{3},\frac{-2}{3}\right)$$

- સદિશ $2\hat{i}+2\hat{j}-\hat{k}$ અક્ષો સાથે અનુક્રમે માપના ખૂણા બનાવે છે.
 - (A) $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\pi \cos^{-1}\frac{1}{3}$

- (B) $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{1}{3}$
- (C) $\pi \cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\pi \cos^{-1}\frac{1}{3}$
- (D) $\cos^{-1}\frac{2}{3}$, $\pi \cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{1}{3}$

જવાબ (A) $\cos^{-1}\frac{2}{3}$, $\cos^{-1}\frac{2}{3}$, $\pi - \cos^{-1}\frac{1}{3}$

અહીં, $|\overline{x}| = 2\hat{i} + 2\hat{j} - \hat{k}$

$$|\overline{x}| = 3$$

હવે,

X-અક્ષ સાથે બનાવેલ ખૂણો $\alpha = \cos^{-1}\left(\frac{2}{3}\right)$

Y-અક્ષ સાથે બનાવેલ ખૂણો $\beta = \cos^{-1}\left(\frac{2}{3}\right)$

Z-અક્ષ સાથે બનાવેલ ખૂશો $\gamma = \pi - \cos^{-1}\left(\frac{1}{3}\right)$

- સદિશ (4, 1, 3) નો (1, -2, 3) સદિશ પરના પ્રક્ષેપનું માન થાય.
 - (A) $\frac{15}{\sqrt{14}}$
- (B) $\frac{15}{14}$
- (C) $\frac{11}{14}$

(D) $\frac{11}{\sqrt{14}}$

જવાબ (D) $\frac{11}{\sqrt{14}}$

 $\bar{x} = (4, 1, 3), \ \bar{y} = (1, -2, 3) \ \hat{d} \cdot \hat{d} \cdot \hat{d}$

સદિશ \bar{x} નું સદિશ \bar{y} પરના પ્રક્ષેપનું માન

=
$$\text{Pro}_{\overline{y}} \overline{x}$$

$$=\frac{\left|\,\overline{x}\cdot\overline{y}\,\right|}{\left|\,\overline{y}\,\right|}$$

$$= \frac{\left| 4(1)+1(-2)+3(3) \right|}{\sqrt{1+4+9}}$$

$$= \frac{\left|4-2+9\right|}{\sqrt{14}}$$

$$= \frac{11}{\sqrt{14}}$$

- $\hat{j} + \hat{k}$ અને $\hat{i} + \hat{k}$ વિકર્ણ સદિશવાળા સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ થાય.
 - (A) $\frac{\sqrt{3}}{2}$
- (B) $\frac{3}{2}$

(C) 3

(D) $\sqrt{3}$

જવાબ (A) $\frac{\sqrt{3}}{2}$

 $\overline{x} = \hat{j} + \hat{k} = (0, 1, 1)$

 $\overline{y} = \hat{i} + \hat{k} = (1, 0, 1)$ સમાંતરબાજુ ચતુષ્કોણના વિકર્ણો છે.

$$\overline{x} \times \overline{y} = (0, 1, 1) \times (1, 0, 1)$$

$$= (1, 1, -1)$$

$$\therefore |\overline{x} \times \overline{y}| = \sqrt{1 + 1 + 1} = \sqrt{3}$$

∴ સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ

$$= \frac{1}{2} |\overline{x} \times \overline{y}|$$

$$=\frac{\sqrt{3}}{2}$$

સદિશો (2, -1, 1) અને (1, -1, 2) વચ્ચેના ખૂણાનું માપ છે.

(A)
$$\cos^{-1}\left(\frac{1}{6}\right)$$
 (B) $\sin^{-1}\left(\frac{5}{6}\right)$

(B)
$$\sin^{-1}\left(\frac{5}{6}\right)$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\sin^{-1}\left(\frac{\sqrt{11}}{6}\right)$$

જવાબ (D) $\sin^{-1}\left(\frac{\sqrt{11}}{6}\right)$

 \overline{x} = (2, -1, 1) અને \overline{y} = (1, -1, 2) લેતાં

$$\therefore \ \overline{x} \cdot \overline{y} = 2(1) + (-1)(-1) + 1(2)$$

$$= 2 + 1 + 2$$

તથા
$$|\overline{x}| = \sqrt{4+1+1} = \sqrt{6}$$

$$|\overline{y}| = \sqrt{1+1+4} = \sqrt{6}$$

$$\therefore \cos\theta = \frac{\overline{x} \ \overline{y}}{|\overline{x}||\overline{y}|} = \frac{5}{\sqrt{6} \cdot \sqrt{6}} = \frac{5}{6}$$

$$\therefore \cos\theta = \frac{5}{6}$$

હવે
$$\sin^2\theta = 1 - \cos^2\theta$$

$$= 1 - \frac{25}{36}$$
$$= \frac{36 - 25}{36}$$

$$=\frac{11}{36}$$

$$\sin\theta = \frac{\sqrt{11}}{6}$$

$$\therefore \theta = \sin^{-1}\left(\frac{\sqrt{11}}{6}\right)$$

જો $|\overrightarrow{a}| = 8$, $|\overrightarrow{b}| = 3$ અને $|\overrightarrow{a} \times \overrightarrow{b}| = 12$ તો $\overrightarrow{a} \cdot \overrightarrow{b} = \dots$

- (A) $6\sqrt{3}$
- (B) $8\sqrt{3}$
- (C) 12√3
- (D) કોઈ પણ નહીં

જવાબ (C) 12√3

ધારોકે $\bar{a} \wedge \bar{b} = \theta$.

$$|\bar{a} \times \bar{b}| = |\bar{a}| |\bar{b}| \sin \theta$$

$$\therefore 12 = 8 \times 3 \cdot \sin\theta$$

$$\therefore \sin\theta = \frac{12}{24}$$

$$\therefore \sin\theta = \frac{1}{2}$$

$$\therefore \quad \theta = \frac{\pi}{6}$$

હવે
$$\cos \theta = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| |\overline{b}|}$$

$$\therefore \cos \frac{\pi}{6} = \frac{\overline{a} \cdot \overline{b}}{8 \times 3}$$

$$\therefore \quad \frac{\sqrt{3}}{2} = \frac{\overline{a} \cdot \overline{b}}{24}$$

$$\therefore \quad \frac{24\sqrt{3}}{2} = \overline{a} \cdot \overline{b}$$

$$\therefore \ \overline{a} \cdot \overline{b} = 12\sqrt{3}$$

28.
$$\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$$
 અને $\frac{x-2}{2} = \frac{y+1}{1} = \frac{3-z}{-3}$ એ રેખાઓ છે.

- (A) સમાંતર
- (B) લંબ

- (C) સંપાતી
- (D) લઘુકોણમાં છેદતી

જવાબ (A) સમાંતર

L:
$$\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$$
 -fl દિશા $\overline{l} = (2, 1, 3)$ છે.

M:
$$\frac{x-2}{2} = \frac{y+1}{1} = \frac{3-z}{-3}$$

$$\therefore \ \frac{x-2}{2} = \frac{y+1}{1} = \frac{z-3}{3} \text{ -ll } \text{ leave } \overline{m} = (2,1,3) \quad \text{we} \ .$$

બંને રેખાઓની દિશા
$$\overline{l} imes \overline{m} = \overline{0}$$

રેખા L એ $A(\overline{a}) = (0, 0, 0)$ માંથી પસાર થાય છે.

$$A(\overline{a}) = (0, 0, 0) \$$
रेખા $M \$ ઉપર નથી.

29. (4, 9, 8) અને (3, -2, 1) માંથી પસાર થતી રેખાનું કાર્તેઝિય સમીકરણ થાય.

(A)
$$\frac{x-4}{3} = \frac{9-y}{2} = \frac{z-8}{1}$$

(B)
$$\frac{x-3}{4} = \frac{y+2}{9} = \frac{z-1}{8}$$

(C)
$$\frac{x-3}{1} = \frac{y+2}{-11} = \frac{z-1}{7}$$

(D)
$$\frac{x-4}{1} = \frac{y+2}{11} = \frac{z-1}{7}$$

જવાબ (D)
$$\frac{x-4}{1} = \frac{y+2}{11} = \frac{z-1}{7}$$

🖦 બે બિંદુઓમાંથી પસાર થતી રેખાનું કાર્તેઝિય સમીકરણ,

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

$$\therefore \frac{x-4}{-1} = \frac{y-9}{-11} = \frac{z-8}{-7}$$

$$\therefore \frac{x-4}{1} = \frac{y-9}{11} = \frac{z-8}{7}$$

$$\therefore \frac{x-4}{1} = \frac{y-9+11}{11} = \frac{z-8+7}{7}$$
 (યોગ પ્રમાણ લેતાં)

$$\therefore \frac{x-4}{1} = \frac{y+2}{11} = \frac{z-1}{7}$$

30. $\overline{r} \cdot (1, 2, 1) = 4$ ને લંબ અને ઊગમબિંદુમાંથી પસાર થતી રેખાનું સમીકરણ થાય.

(A)
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$

(B)
$$x - 1 = y - 2 = z - 1$$

(C)
$$\frac{x}{\frac{-1}{4}} = \frac{y}{\frac{2}{4}} = \frac{z}{\frac{-1}{4}}$$

(D)
$$\frac{x-1}{4} = \frac{y-2}{4} = \frac{z-1}{4}$$

જવાબ (A)
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$

➡ માંગેલી રેખા ઊગમબિંદુમાંથી પસાર થાય છે.

$$\vec{x} = (0, 0, 0)$$

ધારો કે
$$\bar{l} = (l_1, l_2, l_3)$$

રેખા અને સમતલ એકબીજાને લંબ છે.

 \therefore \overline{l} અને \overline{n} એકબીજાને સમાંતર થાય.

$$\therefore \ \overline{l} = \overline{n} = (1, 2, 1)$$

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{l_2} = \frac{z - z_1}{l_3}$$
 મુજબ,

રેખાનું સમીકરણ $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$

31. બિંદુ (3, -4, -5) નું રેખા $\frac{x-2}{4} = \frac{y+6}{5} = \frac{z-5}{-3}$ થી લંબ અંતર છે.

(A)
$$\frac{1}{5}\sqrt{1657}$$

(B)
$$\frac{1}{\sqrt{5}}\sqrt{1675}$$

(C)
$$\frac{1}{5}\sqrt{1757}$$

(D)
$$\frac{1}{\sqrt{5}}\sqrt{1667}$$

જવાબ (A) $\frac{1}{5}\sqrt{1657}$

➡ અહીં P(3, -4, -5)

$$A(\overline{a}) = (2, -6, 5)$$

$$\bar{l} = (4, 5, -3)$$

$$\overrightarrow{AP} = P - A$$
$$= (1, 2, -10)$$

$$\vec{AP} \times \vec{l} = \begin{vmatrix} i & j & k \\ 1 & 2 & -10 \\ 4 & 5 & -3 \end{vmatrix} \\
= i(-6 + 50) - j(-3 + 40) + k(5 - 8) \\
= 44i - 37j - 3k \\
= (44, -37, -3)$$

$$\begin{vmatrix} \overrightarrow{AP} \times \overline{l} \end{vmatrix} = \sqrt{1936 + 1369 + 9}$$

$$= \sqrt{3314} \quad \text{तथा } |\overline{l}| = \sqrt{16 + 25 + 9}$$

$$= \sqrt{50} = 5\sqrt{2}$$

P થી રેખાનું લંબ અંતર =
$$\frac{\left|\overrightarrow{AP} \times \overline{l}\right|}{\left|\overline{l}\right|}$$
$$= \frac{\sqrt{3314}}{5\sqrt{2}}$$
$$= \frac{1}{5} \cdot \sqrt{\frac{3314}{2}}$$
$$= \frac{1}{5} \cdot (\sqrt{1657})$$

રેખાઓ $\overline{r}=(-3,\,5,\,-1)+k$ $(1,\,2,\,1),\,k\in\mathbb{R}$ અને $\overline{r}=(1,\,3,\,-2)+k$ $(6,\,-3,\,0),\,k\in\mathbb{R}$ વચ્ચેના ખૂણાનું માપ છે.

(A)
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{6}$$

(D)
$$\frac{\pi}{3}$$

જવાબ (A) $\frac{\pi}{2}$

પ્રથમ રેખાના સમીકરણ પરથી, $\overline{l}=(1,2,3)$

બીજી રેખાના સમીકરણ પરથી, $\overline{m} = (6, -3, 0)$

$$\therefore \quad \overline{l} \cdot \overline{m} = (1, 2, 3) \cdot (6, -3, 0) \\
= 6 - 6 + 0 \\
= 0$$

$$\therefore \quad \overline{l} \perp \overline{m}$$

$$\therefore$$
 આપેલ બે રેખાઓ વચ્ચેનો ખૂર્ણો $\alpha = \frac{\pi}{2}$

33. રેખાઓ
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 અને $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$

(A) સંપાતી છે.

(B) વિષમતલીય છે. (C) છેદતી છે

(D) સમાંતર છે.

જવાબ (A) સંપાતી છે

$$L_1: \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$

$$L_2: \frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$$

$$\overrightarrow{b} = (1, 2, 3)$$

$$\overrightarrow{l} = (1, 2, 3)$$

$$\overrightarrow{m} = (-2, -4, -6)$$

$$\overrightarrow{l} \times \overrightarrow{m} = (1, 2, 3) \times (-2, -4, -6) = (0, 0, 0)$$

$$\overrightarrow{b} - \overrightarrow{a} = (1, 2, 3) - (0, 0, 0) = (1, 2, 3)$$

$$(\vec{b} - \vec{a}) \times \vec{l} = (1, 2, 3) \times (1, 2, 3)$$

= $(0, 0, 0) = \vec{O}$

આપેલ રેખાઓ સંપાતી છે.

34. બિંદુ (1, 6, 3) નું રેખા
$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$
 ને સાપેક્ષ પ્રતિબિંબ મળે છે.

(D) (1, 1, 7)

જવાબ (A) (1, 0, 7)

$$L: \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$

બિંદુ P(1, 6, 3) માંથી રેખા L

ઉપર દોરેલ લંબનો લંબપાદ M છે.

 $M \in L \Rightarrow$ કોઈક $\lambda \in R$ માટે

M નાં યામ = (λ , $2\lambda + 1$, $3\lambda + 2$) થાય.

$$PM = (\lambda - 1, 2\lambda - 5, 3\lambda - 1)$$

હવે, PM ⊥ L

$$\Rightarrow$$
 $(\lambda - 1, 2\lambda - 5, 3\lambda - 1) \cdot (1, 2, 3) = 0$

$$\Rightarrow$$
 $\lambda - 1 + 4\lambda - 10 + 9\lambda - 3 = 0$

$$\Rightarrow 14\lambda = 14$$

$$\Rightarrow \lambda = 1$$

બિંદુ P નું M ને સાપેક્ષ પ્રતિબિંબ ધારો કે Q(x, y, z) છે.

∴ M એ PQ નું મધ્યબિંદુ છે.

$$\therefore \left(\frac{x+1}{2}, \frac{y+6}{2}, \frac{z+3}{2}\right) = (1, 3, 5)$$

$$x = +1, y = 0, z = 7$$

બિંદુ (2, -3, 6) નું સમતલ 3x - 6y + 2z + 10 = 0 થી લંબઅંતર $= \dots$

(A)
$$\frac{13}{7}$$

(B)
$$\frac{46}{7}$$

(D)
$$\frac{10}{7}$$

જવાબ (B) $\frac{46}{7}$

બિંદુ
$$P(\overline{p})=(2,-3,6)$$
નું સમતલ $3x-6y+2z+10=0$ થી અંતર મેળવવું છે. અહીં $3x-6y+2z=-10$

$$\overline{n} = (3, -6, 2)$$
 તથા $d = -10$

માંગેલ લંબઅંતર =
$$\dfrac{|\overline{p}\cdot\overline{n}\,-\,d\,|}{|\overline{n}|}$$

$$= \frac{|(2, -3, 6) \cdot (3, -6, 2) + 10|}{\sqrt{9 + 36 + 4}}$$
$$= \frac{|6 + 18 + 12 + 10|}{7}$$

$$=\frac{46}{7}$$

36. રેખા
$$\frac{x+4}{2} = \frac{y+3}{5} = \frac{z-3}{3}$$
 અને સમતલ $x+y+z+2=0$ નું છેદબિંદુ છે.

(A)
$$\left(\frac{18}{5}, -3, \frac{18}{5}\right)$$

(B)
$$\left(\frac{-18}{5}, -2, \frac{-8}{5}\right)$$

(C)
$$\left(\frac{13}{5}, -2, \frac{18}{5}\right)$$

(A)
$$\left(\frac{18}{5}, -3, \frac{18}{5}\right)$$
 (B) $\left(\frac{-18}{5}, -2, \frac{-8}{5}\right)$ (C) $\left(\frac{13}{5}, -2, \frac{18}{5}\right)$ (D) $\left(-\frac{18}{5}, -2, \frac{18}{5}\right)$

જવાબ (D) $\left(-\frac{18}{5}, -2, \frac{18}{5}\right)$

$$L: \frac{x+4}{2} = \frac{y+3}{5} = \frac{z-3}{3} = k$$
 લેતાં,

$$x = 2k - 4$$
, $y = 5k - 3$ અને $z = 3k + 3$

$$P(x, y, z) = (2k - 4, 5k - 3, 3k + 3) \in સમતલ x + y + z + 2 = 0$$

$$\therefore$$
 2k - 4 + 5k - 3 + 3k + 3 + 2 = 0

$$\therefore 10k - 2 = 0$$

$$\therefore \quad k = \frac{1}{5}$$

$$x = 2k - 4 = 2\left(\frac{1}{5}\right) - 4 = \frac{2 - 20}{5} = \frac{-18}{5}$$

$$y = 5k - 3 = 5\left(\frac{1}{5}\right) - 3 = -2$$

$$z = 3k + 3 = 3\left(\frac{1}{5}\right) + 3 = \frac{3+15}{5} = \frac{18}{5}$$

છેદલિંદુ
$$P = \left(\frac{-18}{5}, -2, \frac{18}{5}\right)$$

- સમતલો 3x z = 5 અને 2y + x + z = 3 ની છેદરેખાની દિશા છે.
 - (A) (2, 4, 6)
- (B) (1, -2, 3)
- (C) (-1, 2, 3)
- (D) (1, -2, -3)

જવાબ (B) (1, -2, 3)

પ્રથમ સમતલ પરથી $n_1 = (3, 0, -1)$ અને

બીજા સમતલ પરથી $n_2 = (1, 2, 1)$

સમતલની છેદરેખાની દિશા = $n_1 \times n_2$

$$\therefore \begin{array}{c|cc} i & j & k \\ 3 & 0 & -1 \\ 1 & 2 & 1 \end{array}$$

- i(0+2)-j(3+1)+k(6-0)
- ∴ (2, -4, 6)
- ∴ 2 (1, -2, 3)
- ∴ છેદરેખાની દિશા = (1, -2, 3) થાય.
- $\overline{r} \cdot (1, 2, -1) = 3$ અને 2x y + 2z = 2 વચ્ચેના ખૂણાનું માપ 38.
- (A) $\cos^{-1}\frac{5\sqrt{3}}{\alpha}$ (B) $\sin^{-1}\frac{\sqrt{6}}{9}$ (C) $\pi \cos^{-1}\frac{\sqrt{6}}{9}$ (D) $\tan^{-1}\frac{5}{\sqrt{2}}$

જવાબ (D) $\tan^{-1} \frac{5}{\sqrt{2}}$

અહીં આપેલ સમતલના સમીકરણ પરથી

$$n_1 = (1, 2, -1)$$
 અને $n_2 = (2, -1, 2)$ થાય.

$$\therefore n_1 \cdot n_2 = (1, 2, -1) \cdot (2, -1, 2)$$
$$= 2 - 2 - 2$$

$$n_1 \cdot n_2 = -2$$

$$|n_1| = \sqrt{1+4+1} = \sqrt{6}$$

તથા
$$|n_1| = \sqrt{4+1+4} = 3$$

$$\cos \alpha = \frac{|n_1 \cdot n_2|}{|n_1| \cdot |n_2|}$$
 (જ્યાં α = આપેલ સમતલ વચ્ચેનો ખૂણો)
$$= \frac{|-2|}{3\sqrt{6}} = \frac{2}{3\sqrt{6}}$$

$$\therefore \cos \alpha = \frac{\sqrt{2}}{3\sqrt{3}}$$

$$\sin^2\alpha = 1 - \cos^2\alpha = 1 - \frac{2}{27} = \frac{25}{7}$$

$$\sin\alpha = \frac{5}{3\sqrt{3}}$$

$$\therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\therefore \tan \alpha = \frac{\frac{5}{3\sqrt{3}}}{\frac{\sqrt{2}}{3\sqrt{3}}} = \frac{5}{\sqrt{2}}$$

$$\alpha = \tan^{-1} \left(\frac{5}{\sqrt{2}} \right)$$

- 39. સમતલો 2x + 2y z + 2 = 0 અને 4x + 4y 2z + 5 = 0 વચ્ચેનું અંતર છે.
 - (A) $\frac{1}{2}$

- (B) $\frac{1}{4}$
- (C) $\frac{1}{6}$

(D) એક પણ નહીં

જવાબ (C) $\frac{1}{6}$

 \Rightarrow સમતલ $\pi_1 : 2x + 2y - z + 2 = 0$

$$\therefore 4x + 4y - 2z + 4 = 0$$

સમતલ
$$\pi_2$$
: $4x + 4y - 2z + 5 = 0$

માંગેલ અંતર
$$d=rac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$$

$$=rac{|5-4|}{\sqrt{16+16+4}}$$

$$=rac{1}{6}$$

- 40. જો બિંદુઓ $(1,\ 1,\ p)$ અને $(-3,\ 0,\ 1)$ સમતલ $\stackrel{
 ightarrow}{r}\cdot\left(\stackrel{\circ}{3i}+4\stackrel{\circ}{j}-12\stackrel{\circ}{k}\right)+13=0$ થી સમાન અંતરે આવેલાં હોય, તો p
 - (A) 2, $\frac{4}{2}$
- (B) 1, $\frac{4}{3}$
- (C) 1, $\frac{7}{3}$
- (D) $\frac{7}{3}$, 2

જવાબ (C) 1, $\frac{7}{3}$

 $\mathbf{A}(1,\ 1,\ p)$ અને B(-3, 0, 1) આપેલ બિંદુઓ છે અને $\pi:3x+4y-122+13=0$ આપેલ સમતલ છે.

$$\therefore$$
 p_1 = બિંદુ A થી સમતલનું લંબ અંતર

$$= \frac{(ax_1 + by_1 + cz_1 + d)}{\sqrt{a^2 + b^2 c^2}}$$

$$= \frac{\left|3(1) + 4(1) - 12(p) + 13\right|}{\sqrt{9 + 16 + 144}}$$

$$= \frac{|20-12p|}{13}$$

આજ રીતે p_2 = બિંદુ B(-3, 0, 1) થી આપેલ સમતલનું લંબઅંતર

$$p_2 = \frac{|-8|}{13}$$
$$= \frac{8}{13}$$

અહીં, $p_1 = p_2$ આપેલ છે.

$$|20 - 12p| = 8$$

$$\therefore 20 - 12p = \pm 8$$

∴
$$20 - 12p = 8$$
, અને $20 - 12p = -8$

$$\therefore -12p = 8 - 20$$
 $| \therefore -12p = -8 - 20$

$$\therefore -12p = -12, \qquad | \therefore -12p = -28$$

$$\therefore -12p = 8 - 20$$

$$\therefore -12p = -8 - 20$$

$$\therefore -12p = -8 - 20$$

$$\therefore -12p = -28$$

$$\therefore p = \frac{7}{3}$$

આમ, p = 1, $p = \frac{7}{3}$ થાય.

હેતુલક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય બિંદુઓએ મળે છે. 41.

- (A) આપેલ અસમતાઓનાં અક્ષો સાથેનાં છેદબિંદુ આગળ
- (B) આપેલ અસમતાઓનાં ફક્ત X- અક્ષ સાથેનાં છેદબિંદુ આગળ
- (C) શક્ય ઉકેલ પ્રદેશનાં શિરોબિંદ આગળ
- (D) આ પૈકી એકપણ નહીં.

જવાબ (C) શક્ય ઉકેલ પ્રદેશનાં શિરોબિંદુ આગળ

- હેતુલક્ષી વિષેયનું ઈષ્ટતમ મૂલ્ય શક્ય ઉકેલ પ્રદેશનાં શિરોબિંદ્દ આગળ મળે છે.
- 42. અસમતાઓ $x, y \ge 0, y \le 6, x + y \le 3$ વડે બનતો પ્રદેશ.
 - (A) પ્રથમ ચરણમાં અસીમિત છે.

(B) પ્રથમ અને દ્વિતીય ચરણમાં અસીમિત છે.

(C) પ્રથમ ચરણમાં સીમિત છે.

(D) એકપણ નહીં.

જવાબ (C) પ્રથમ ચરણમાં સીમિત છે.

Y

માંગેલ પ્રદેશ એ પ્રથમ ચરણમાં સીમિત પ્રદેશ છે.

43. સુરેખ આયોજનના પ્રશ્નનો શક્ય ઉકેલ...

- (A) બધી જ મર્યાદાઓનું સમાધાન કરે.
- (C) હંમેશાં શક્ય ઉકેલનાં પ્રદેશનું શિરોબિંદુ હોય જ.
- (B) અમુક જ મર્યાદાઓનું સમાધાન કરે.
- (D) હંમેશાં હેતુલક્ષી વિધેયનું ઈષ્ટતમપણાનું મૂલ્ય હોય જ.

જવાબ (A) બધી જ મર્યાદાઓનું સમાધાન કરે.

- ➡ સુરેખ આયોજનનો પ્રશ્નનો શક્ય ઉકેલ બધી જ મર્યાદાઓનું સમાધાન કરે. (મૂળભૂત ખ્યાલ)
- 44. x અને y એ સુરેખ આયોજનનાં પ્રશ્નનો ઈપ્ટતમ ઉકેલ હોય તો...
 - (A) $Z = \lambda x + (1 \lambda)\gamma$, $\lambda \in \mathbb{R}$ પણ ઈપ્ટતમ ઉકેલ હોય.
 - (B) $Z = \lambda x + (1 \lambda)y$, $0 \le \lambda \le 1$ પણ ઈપ્ટતમ ઉકેલ હોય.
 - (C) $Z = \lambda x + (1 + \lambda)y$, $0 \le \lambda \le 1$ પણ ઈપ્ટતમ ઉકેલ હોય.
 - (D) $Z = \lambda x + (1 + \lambda)y$, $\lambda \in R$ પણ ઈષ્ટતમ ઉકેલ હોય.

જવાબ (B) $Z = \lambda x + (1 - \lambda)y$, $0 \le \lambda \le 1$ પણ ઈપ્ટતમ ઉકેલ હોય.

- x અને y સુરેખ આયોજનનાં પ્રશ્નનો ઈષ્ટતમ ઉકેલ હોય તો $Z=\lambda x+(1-\lambda)y$, $0\leq\lambda\leq 1$ પણ ઈષ્ટતમ ઉકેલ હોય. (રેખાનું પ્રચલ સમીકરણ યાદ કરો.)
- 45. નીચે આપેલ વિધાનોમાંથી કયું વિધાન સત્ય છે ?
 - (A) કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને ઓછામાં ઓછો એક ઈપ્ટતમ ઉકેલ હોય જ.
 - (B) દરેક સુરેખ આયોજનનાં પ્રશ્નને અનન્ય ઈપ્ટતમ ઉકેલ હોય.
 - (C) જો કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને બે બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે તો તેને અનંત બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે.
 - (D) જો શક્ય ઉકેલનો પ્રદેશ અસીમિત હોય તો સુરેખ આયોજનનાં પ્રશ્નને ઈષ્ટતમ ઉકેલ ન જ મળે.

જવાબ (C) જો કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને બે બિંદુઓએ ઈપ્ટતમ ઉકેલ મળે તો તેને અનંત બિંદુઓએ ઈપ્ટતમ ઉકેલ મળે.

- ➡ જો કોઈપણ સુરેખ આયોજનનાં પ્રશ્નને બે બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે તો તેને અનંત બિંદુઓએ ઈષ્ટતમ ઉકેલ મળે.
- 46. સુરેખ આયોજનનાં પ્રશ્નમાં હેતુલક્ષી વિષેય
 - (A) આલેખ અચળ હોય.

(B) નું ઈષ્ટતમ મૂલ્ય શોધવાનું હોય.

(C) અસમતા હોય.

(D) દ્વિઘાત સમીકરણ હોય.

જવાબ (B) નું ઈષ્ટતમ મૂલ્ય શોધવાનું હોય.

સુરેખ આયોજનનાં પ્રશ્નમાં હેતુલક્ષી વિધેયનું ઈષ્ટતમ મૂલ્ય શોધવાનું હોય.

"શું Quantum Paper ની Application માં બોર્ડની નવી Blue Print પ્રમાણે

(8 માંથી કોઈપણ 4 પ્રશ્નોના જવાબ આપો)

પ્રશ્નો Select કરી શકાય છે ?" -

આ Option પ્રમાણે પ્રશ્નો Select કરવા Quantum Paper ની Application માં

Scan QR Code for more information about M' Option M' Icon નો ઉપયોગ કર્યા પછી જે પણ પ્રશ્નો Select કરશો તેના Marks Total માં ઉમેરાશે નહીં

For any Query, Contact us Monday to Saturday (9 am to 6 pm) +91 95126 94993