General SAR test reduction & exclusion guidance

KDB 447498

Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR Exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

The SAR Test Exclusion Threshold for operation in the 2400 – 2483.5 MHz band will be determined as follows

SAR Exclusion Threshold (SARET)

SAR Exclusion Threshold = Step 1 + Step 2

Step 1

 $NT = [(MP/TSDA) * \sqrt{fGHz}]$

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR)

MP = Max Power of channel (mW) (inc tune up)

TSDA = Min Test separation Distance or 50mm (whichever is lower) = 5mm (in this

case)

We can transpose this formula to allow us to find the maximum power of a channel allowed and compare this to the measured maximum power.

= [(NT x TSDA) / √ fGHz]

For Distances Greater than 50 mm Step 2 applies

Step 2

(TSDB - 50mm) * 10

Where:

TSDB = Min Test separation Distance (mm) = 50

Note: Step 2 is not required here as the TSDA is 5mm.

Operating Frequency 2.402 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.402}]$

SARET = 9.68 mW

Operating Frequency 2.440 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.440}]$

SARET = 9.60 mW

Operating Frequency 2.480 GHz

SARET = $[(3.0 \times 5) / \sqrt{2.480}]$

SARET = 9.53 mW

Channel Frequency (MHz)	EIRP (mW)	SAR Exclusion Threshold (mW)	SAR Evaluation
2402	0.96	9.68	Not Required
2440	0.83	9.60	Not Required
2480	0.69	9.53	Not Required

Note: EIRP calculated by adding maximum conducted power and maximum antenna gain of 4.33 dBi.

Therefore standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

MPE Calculation

Prediction of MPE limit at a given distance

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than the power density limit, as required under FCC rules.

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2}$$
 re - arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Prediction	Maximum EIRP	Power density limit	Distance (R) cm required to be less than the power density limit
Frequency (MHz)	(mW)	(S) (mW/cm²)	
2402	0.96	1.00	0.28

Note: EIRP calculated by adding maximum conducted power and maximum antenna gain of 4.33 dBi.