Bitwise Addition; Gates and Circuits

Computer Science 111
Boston University
Vahid Azadeh-Ranjbar, Ph.D.

It's All Bits!

Another example: text

'terriers' □

8 ASCII characters, 8 bits each → 64 bits

- All types of data are represented in binary.
 - images, sounds, movies, floating-point numbers, etc...
- All computation involves manipulating bits!

It's All Bits! (cont.)

• Example: to add 42 + 9, the computer does bitwise addition:

```
101010
+ 001001
110011
```

 In PS 4, you'll write a Python function for this. add_bitwise('101010', '001001')

PS 4: add_bitwise

- add_bitwise(b1, b2) $\begin{array}{c} \text{101010} \\ \text{b1 and b2 are } \textit{strings} \text{ representing binary \#s} \\ \end{array} \begin{array}{c} \text{101011} \\ + \text{001001} \\ \end{array}$
- · It should look something like this:

 Let's trace through a concrete case: add_bitwise('100', '010')

· Recall: we get a separate stack frame for each call.

```
<u>add_bitwise('100', '010')</u>
b1: '100' b2: '010'
```

How recursion works: add_bitwise(b1, b2)

Recall: we get a separate stack frame for each call.

```
add_bitwise('100', '010')
b1: '100'     b2: '010'
sum_rest = add_bitwise('10', '01')
```

· Recall: we get a separate stack frame for each call.

```
add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')

add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''
```

How recursion works: add_bitwise(b1, b2)

Each return value is sent back to the previous call.

```
add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = add_bitwise('1', '0')
b1: '1' b2: '0'
sum_rest = add_bitwise('', '')

add_bitwise('', '')
b1: '' b2: ''
base case: return ''
```

• Each return value is sent back to the previous call.

```
add_bitwise('100', '010')
b1: '100'    b2: '010'
sum_rest = add_bitwise('10', '01')
```

It replaces the recursive call.

```
add_bitwise('10', '01')
b1: '10'    b2: '01'
sum_rest = add_bitwise('1', '0')
```

```
add_bitwise('1', '0')
b1: '1'    b2: '0'
sum_rest = ''
```

How recursion works: add_bitwise(b1, b2)

Each return value is sent back to the previous call.

sum_rest = add_bitwise('1', '0')

```
add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')
```

add_bitwise('10', '01')

b1: '10' b2: '01'

• It replaces the recursive call.

We use it to build the next return value, and thus gradually build solutions to larger problems.

· Each return value is sent back to the previous call.

```
add_bitwise('100', '010')
b1: '100'    b2: '010'
sum_rest = add_bitwise('10', '01')
```

```
add_bitwise('10', '01')
b1: '10'     b2: '01'
sum_rest = '1'
```

- It replaces the recursive call.
 - We use it to build the next return value, and thus gradually build solutions to larger problems.

How recursion works: add_bitwise(b1, b2)

'11

Each return value is sent back to the previous call.

```
add_bitwise('100', '010')
b1: '100' b2: '010'
sum_rest = add_bitwise('10', '01')

add_bitwise('10', '01')
b1: '10' b2: '01'
sum_rest = '1'
```

return sum_rest +

if ...

- It replaces the recursive call.
- We use it to build the next return value, and thus gradually build solutions to larger problems.

· Each return value is sent back to the previous call.

```
add_bitwise('100', '010')
b1: '100'     b2: '010'
sum_rest = '11'
```

- It replaces the recursive call.
- We use it to build the next return value, and thus gradually build solutions to larger problems.

How recursion works: add_bitwise(b1, b2)

Each return value is sent back to the previous call.

- It replaces the recursive call.
- We use it to build the next return value, and thus gradually build solutions to larger problems.

• Final solution!

<u>add_bitwise('100', '010')</u> → '110'

The Tricky Part of add_bitwise(b1, b2)

• What if we had this instead?

add_bitwise('101', '011')

The Tricky Part of add_bitwise(b1, b2)

· We again end up with a series of recursive calls:

```
add_bitwise('101', '011')
b1: '101'
            b2: '011'
sum_rest = add_bitwise('10', '01')
      add_bitwise('10',
                        '01')
      b1: '10'
                 b2: '01'
      sum_rest = add_bitwise('1', '0')
            add_bitwise('1', '0')
                      b2: '0'
            sum_rest = add_bitwise('', '')
                  add_bitwise(''
                  b1: ''
                           b2: ''
                  base case: return ''
```

The Tricky Part of add_bitwise(b1, b2)

We again build our solution on our way back from the base case:

```
add_bitwise('101',
                     '01<mark>1</mark>')
             b2: '011'
b1: '101'
sum_rest = add_bitwise('10', '01')
       add_bitwise('10',
                           '01')
       b1: '10'
                   b2: '01'
       sum_rest = add_
                           wise('1', '0')
                                  <u>'0')</u>
              <u>add_bitwise(</u>
             b1: '1'
                         b2:
                                    ise('', '')
              sum_rest = add_b
                     add_bitwise(
                               b2:
                     base case: return ''
```

The Tricky Part of add_bitwise(b1, b2)

· What do we need to do differently here?

```
add_bitwise('101', '011')
b1: '101'    b2: '011'
sum_rest = '11'  # same as before
if ...
    ???
```

The Tricky Part of add_bitwise(b1, b2)

· What do we need to do differently here?

• We need to carry! 101 + 011 110

The Tricky Part of add_bitwise(b1, b2)

· What do we need to do differently here?

• We need to carry! 101 + 011 110 •
1000

- We need to add 11 + 1 to get 100.
 - how can we do this addition? call add_bitwise recursively a second time!

It's All Bits! (cont.)

• Example: to add 42 + 9, the computer does *bitwise addition*:

- In PS 4, you'll write a Python function for this. add_bitwise('101010', '001001')
- In PS 5, you'll design a circuit for it!

How Computation Works

- In a computer, each bit is represented as a voltage.
 - 1 is +5 volts, 0 is 0 volts
- · Computation is the deliberate combination of those voltages!

Bits as Boolean Values

- When designing a circuit, we think of bits as boolean values:
 - 1 = True
 - 0 = False
- In Python, we've used logic operators (and, or, not) to build up boolean expressions.
- In circuits, there are corresponding logic gates.

AND Gate (with two inputs)

AND outputs 1 only if **all** inputs are 1

inputs output Χ У AND(x,y)AND's 0 0 0 truth table function: 0 1 0 1 0 0 1

Circuit Building Blocks: Logic Gates

AND outputs 1 only if **ALL** inputs are 1

AND

AND

OR outputs 1 if **ANY** input is 1

OR

NOT reverses its input

NOT

- They each define a boolean function a function of bits!
 - · take one or more bits as inputs
 - produce the appropriate bit as output
 - the function can be defined by means of a truth table

From Gates to Circuits

We combine logic gates to form larger circuits.

• We combine logic gates to form larger circuits.

• Example: what is the output when x = 0 and y = 1? 0

From Gates to Circuits (Second Example)

· We combine logic gates to form larger circuits.

• Example: what is the output when x = 0 and y = 0? 1

<u>inp</u>	<u>uts</u>	A.	B.	C.	D.	Ε
<u>X</u>	Y					
0	0	1	1	0	0	0
0	1	0	0	0	0	0
1	0	0	1	1	0	1
1	1	1	1	0	1	1

Claim

We need only these three building blocks to compute anything at all!

Boolean Notation

· Recall:

x y	x AND y	x y	x OR y	input X	output NOT X
0 * 0 0 * 1 1 * 0 1 * 1	= 0 = 0 = 0 = 1	$egin{array}{c} 0 + 0 \\ 0 + 1 \\ 1 + 0 \\ 1 + 1 \end{array}$	$ \begin{vmatrix} $	0 1	1 0

non-0 is considered True, and thus 1 + 1 is equivalent to 1

- In boolean notation:
 - x AND y is written as multiplication: xy
 - x OR y is written as addition: x + y
 - NOT x is written using a bar: \bar{x}
- Example:

 $(x \text{ AND } y) \text{ OR } (x \text{ AND } (\text{NOT } y)) \longleftrightarrow ??$

Boolean Notation

· Recall:

x y	x AND y	x y	x OR y	input X	output NOT X
0 * 0 0 * 1 1 * 0 1 * 1	= 0 = 0 = 0 = 1	$egin{array}{c} 0 + 0 \\ 0 + 1 \\ 1 + 0 \\ 1 + 1 \end{array}$	$ \begin{vmatrix} $	0 1 = 2, but anythir	1 0

non-0 is considered True, and thus 1 + 1 is equivalent to 1

- In boolean notation:
 - x AND y is written as multiplication: xy
 - x OR y is written as addition: x + y
 - NOT x is written using a bar: \bar{x}
- Example:

 $(x AND y) OR (x AND (NOT y)) \leftrightarrow xy + x\overline{y}$

Boolean Expressions for Truth Tables

ing	<u>outs</u>	output
<u>x</u>	<u>Y</u>	
0	0	1
0	1	0
1	0	0
1	1	1

• This truth table/circuit can be summarized by the expression:

$$\overline{x}\overline{y} + xy$$

<u>inputs</u>		<u>output</u>	
<u>x</u>	<u>Y</u>		$\overline{x}\overline{y} + xy$
0	0	1	1*1 + 0*0 = 1
0	1	0	1*0 + 0*1 = 0
1	0	0	0*1 + 1*0 = 0
1	1	1	0*0 + 1*1 = 1

Boolean Expressions for Truth Tables

inp	<u>outs</u>	<u>output</u>
<u>X</u>	<u>Y</u>	
0	0	1
0	1	0
1	0	0
1	1	1

• This truth table/circuit can be summarized by the expression:

$$\overline{x}\overline{y} + xy$$

- This expression is the *minterm expansion* of this truth table.
 - one minterm for each row that has an output of 1
 - · combined using OR

Two Helpful Suggestions

Do
$$\rightarrow$$
 f \rightarrow get to get started on PS 4!

Two Helpful Suggestions

Do \rightarrow f \rightarrow get to get started on PS 4!