

Leistungstransistoren 1977/78

Power Transistors 1977/78

$R_{thJC} \leq 15 \text{ }^{\circ}\text{C/W}$

Dieses Datenbuch gibt keine Auskunft über Liefermöglichkeiten.

Es darf ohne jede weitere Genehmigung auszugsweise wiedergegeben werden, vorausgesetzt, daß bei der Veröffentlichung Verfasser und Quelle angegeben und dem Herausgeber nach Erscheinen Belegexemplare zur Verfügung gestellt werden.

Für vollständigen Nachdruck und für Übersetzungen bitten wir vorher unsere Genehmigung einzuholen.

Anderungen die dem technischen Fortschritt dienen sowie alle übrigen Rechte bleiben vorbehalten, auch für den Fall der Patenterteilung.

This data book gives no information regarding delivery conditions.

Part of the publication may be reproduced without written permission but the pre-requisite is the publication of author's name, source of article and to place at our disposal two authors copies after publication.

Written permission is necessary from the publisher for reprint or translation.

We reserve the right to amend any of the information without prior notice including issue of letters patent.

AEG-TELEFUNKEN
Serienprodukte
Geschäftsbereich Halbleiter
Postfach 1109
7100 Heilbronn
Telefon 0 71 31 / 88 21
Telex 07-28 746

Allgemeines	<i>General</i>	Seite Page
Technische Daten	<i>Technical data</i>	Seite Page
Stichwortverzeichnis	<i>Subject index</i>	Seite Page
Anschriften	<i>Addresses</i>	Seite Page

Leistungstransistoren 1977/78

Power Transistors 1977/78

R_{thJC} ≤ 15 °C/W

Inhalt

A. Typenverzeichnis

- a. alpha-numerisch
- b. nach Anwendungsgebieten

1. Erläuterungen zu den technischen Daten

- 1.1. Allgemeine Angaben
- 1.1.1. Typenbezeichnungssystem
- 1.1.2. Zählrichtungen, Zählpfeile
- 1.1.3. Transistor-Ersatzschaltbild
- 1.2. Aufbau der Kurzzeichen
- 1.2.1. Beispiele für die Verwendung der Kurzzeichen
- 1.2.2. Die Symbole und deren Erklärung
- 1.2.3. Schaltzeiten
- 1.2.4. Unijunction-Transistoren

2. Montagevorschriften

- 2.1. Allgemeines
- 2.2. Lötvorschriften
- 2.3. Wärmeableitung
- 2.3.1. Beispiel
- 2.4. Erlaubte Arbeitsbereiche von Leistungstransistoren

3. Angaben zur Qualität

- 3.1. Anlieferungsqualität
- 3.2. Fehlergruppierung
- 3.3. AQL-Werte
- 3.4. Stichprobenpläne

4. Gütebestätigte Bauelemente

5. Paarungsschema für Silizium-NF-Transistoren

6. Aufbau der Datenblätter

- 6.1. Kurzbeschreibung
- 6.2. Abmessungen
- 6.3. Absolute Grenzdaten
- 6.4. Thermische Kenngrößen – Wärmewiderstände
- 6.5. Kenngrößen, Schaltzeiten
- 6.6. Zusätzliche Vermerke

7. Zubehör

8. Technische Daten

9. Stichwortverzeichnis

10. Anschriften

Contents

Summary of the types

alpha-numeric	VII
classified applications	VIII

Explanation of technical data

General informations	A 1
Type designation code	A 1
Polarity conventions	A 3
Transistor equivalent circuit	A 4
Arrangements of symbols	A 5
Examples of the application of the symbols	A 8
Symbols and terminology	A 10
Switching characteristics	A 33
Unijunction transistors	A 35

Mounting instructions

General	A 38
Soldering instructions	A 38
Heat removal	A 39
Example	A 41
Maximum operating range for power transistors	A 42

Quality data

Delivery quality	A 44
Classification of defects	A 44
AQL-values	A 45
Sampling inspection plans	A 46

Qualified semiconductors devices

Pair conditions of AF transistors	A 47
-----------------------------------	------

Data sheet construction

Device description	A 48
Dimensions	A 48
Absolute maximum ratings	A 48
Thermal data – thermal resistances	A 49
Characteristics, switching characteristics	A 49
Additional informations	A 50

Accessories

Technical data	1
----------------	---

Subject index

Addresses	159
-----------	-----

Seite · Page

A. Typenverzeichnis

a. alpha-numerisch

	Seite · Page		Seite · Page
BD 127	1	BD 439	69
BD 128	1	BD 440	73
BD 129	1	BD 441	69
BD 135	5	BD 442	73
BD 136	11	BD 643 ▼	77
BD 137	5	BD 644 ▼	81
BD 138	11	BD 645 ▼	77
BD 139	5	BD 646 ▼	81
BD 140	11	BD 647 ▼	77
BD 165	17	BD 648 ▼	81
BD 166	21	BD 649 ▼	77
BD 167	17	BD 650 ▼	81
BD 168	21	BD 675	85
BD 169	17	BD 676	89
BD 170	21	BD 677	85
BD 175	25	BD 678	89
BD 176	29	BD 679	85
BD 177	25	BD 680	89
BD 178	29	BD 681	85
BD 179	25	BD 682	89
BD 180	29	BDY 42	93
BD 185	33	BDY 43	93
BD 186	37	BDY 44	93
BD 187	33		
BD 188	37	BDY 45	99
BD 189	33	BDY 46	99
BD 190	37	BDY 47	99
BD 201 ▼	41	BF 469 ▼	107
BD 202 ▼	47	BF 470 ▼	111
BD 203 ▼	41	BF 471 ▼	115
BD 204 ▼	47	BF 472 ▼	119
BD 233	53	BU 126 ▼	123
BD 234	57		
BD 235	53	BU 204	129
BD 236	57	BU 205	129
BD 237	53	BU 206	129
BD 238	57	BU 207	135
BD 433	61	BU 208	135
BD 434	65	BU 209	135
BD 435	61		
BD 436	65	BU 226 ▼	139
BD 437	69	BU 526 ▼	143
BD 438	73	2N 3055	151

▼ Neuer Typ
New type

A. Summary of the Types

a. alpha-numeric

b. nach Anwendungsgebieten**b. classified according to applications**

Seite · Page

Allgemein bei hohen Betriebsspannungen
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 127, BD 128, BD 129

General at high supply voltages

1

Allgemein im NF-Bereich
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 135, BD 137, BD 139^{1) 2)} 5
 BD 165, BD 167, BD 169^{1) 2)} 17
 BD 175, BD 177, BD 179^{1) 2)} 25
PNP
 BD 136, BD 138, BD 140^{1) 2)} 11
 BD 166, BD 168, BD 170^{1) 2)} 21
 BD 176, BD 178, BD 180^{1) 2)} 29

General in AF-range

Audio-Verstärker-Treiber- und Endstufen
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 175, BD 177, BD 179^{1) 2)} 25
 BD 185, BD 187, BD 189^{1) 2)} 33
PNP
 BD 176, BD 178, BD 180^{1) 2)} 29
 BD 186, BD 188, BD 190^{1) 2)} 37

Audio amplifiers, driver and output stages

Audio-Treiber und Endstufen
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 233, BD 235, BD 237^{1) 2)} 53
PNP
 BD 234, BD 236, BD 238^{1) 2)} 57

Audio driver and output stages

NF-Endstufen für Autoradios
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 433, BD 435^{1) 2)} 61
PNP
 BD 434, BD 436^{1) 2)} 65

AF-output for automobil radios

NF-Endstufen
 12A3 DIN 41869 – JEDEC TO 126 (SOT 32)
NPN
 BD 437, BD 439, BD 441^{1) 2)} 69
 BD 675, BD 677, BD 679, BD 681²⁾ 85
PNP
 BD 438, BD 440, BD 442^{1) 2)} 73
 BD 676, BD 678, BD 680, BD 682²⁾ 89

AF-output stages

¹⁾ Gepaart lieferbar
²⁾ Komplementärtypen

¹⁾ Matched pairs available
²⁾ Complementary types

NPN	
BD 201, BD 203 ²⁾	41
BD 643, BD 645, BD 647, BD 649 ²⁾	77
PNP	
BD 202, BD 204 ²⁾	47
BD 644, BD 646, BD 648, BD 650 ²⁾	81

NPN	
2N 3055	151

Spannungsregler, Inverter, getaktete**Voltage regulator, inverter switching
regulated power supply****Netzgeräte**

NPN	
BDY 42, BDY 43, BDY 44	93
BDY 45, BDY 46, BDY 47	99
BU 126	123
BU 526	143
2N 3055	151

**Video-B-Endstufen in Schwarz-Weiß- und
Farbfernsehgeräten****Video-B-class output stages in black and
white and colour TV receivers**

NPN	
BF 469, BF 471	107/115
PNP	
BF 470, BF 472	111/119

**Horizontal-Ablenk-Endstufen in Schwarz-
Weiß-Fernsehgeräten****Horizontal deflection circuits
in black and white receivers**

NPN	
BU 204, BU 205, BU 206,	129
BU 226	139

**Horizontal-Ablenk-Endstufen in
Farbfernsehgeräten****Horizontal deflection circuits
in colour TV receivers**

NPN	
BU 207, BU 208, BU 209	135

Schalter hoher Leistung**High power switches**

2N 3055	151
---------	-----

²⁾ Komplementärtypen²⁾ Complementary types

Allgemeines

General

1. Erläuterungen zu den technischen Daten

1.1. Allgemeine Angaben

1.1.1. Typenbezeichnungssystem für Halbleiter nach Pro Electron

Die Typenbezeichnung für Halbleiter als Einzelement besteht aus:

Zwei Buchstaben und einem laufenden Kennzeichen
Two letters followed by a serial number

Beispiel:

Example:

Der **erste Buchstabe** gibt Auskunft über das Ausgangsmaterial:

- A GERMANIUM (Bandabstand 0,6-1,0 eV¹⁾)
- B SILIZIUM (Bandabstand 1,0-1,3 eV¹⁾)
- C GALLIUM-ARSENID (Bandabstand >1,3 eV¹⁾)
- R VERBINDUNGSHALBLEITER z. B. Kadmium-Sulfid

Der **zweite Buchstabe** beschreibt die Hauptfunktion:

- A DIODE: Gleichrichtung, Schaltzwecke, Mischung.
- B DIODE: mit veränderlicher Kapazität.
- C TRANSISTOR: Kleine Leistungen, Tonfrequenzbereich.
- D TRANSISTOR: Leistung, Tonfrequenzbereich.
- E DIODE: Tunneldiode.
- F TRANSISTOR: Kleine Leistungen, Hochfrequenzbereich.
- G DIODE: Oszillator und andere Aufgaben.
- H DIODE: auf Magnetfelder ansprechend.
- K HALLGENERATOR: in magnetisch offenen Kreis.
- L TRANSISTOR: Leistung, Hochfrequenzbereich.
- M HALLGENERATOR: in magnetisch geschlossenem Kreis.
- N FOTOKOPPLUNGSELEMENTE
- P STRAHLUNGSEMPFINDLICHE ELEMENTE

1. Explanation of technical data

1.1. General informations

1.1.1. Type designation code for semiconductor devices according to Pro Electron

The type number of semiconductor devices consists of:

The **first letter** gives information about the material used for the active part of the devices.

- A GERMANIUM (Materials with a band gap 0.6-1.0 eV¹⁾)
- B SILICON (Materials with a band gap 1.0-1.3 eV¹⁾)
- C GALLIUM-ARSENIDE (Materials with a band gap >1.3 eV¹⁾)
- R COMPOUND MATERIALS (For instance Cadmium-Sulphide)

The **second letter** indicates the circuit function

- A DIODE: Detection, switching, mixer.
- B DIODE: Variable capacitance.
- C TRANSISTOR: Low power, audiofrequency.
- D TRANSISTOR: Power, audio frequency.
- E DIODE: Tunnel.
- F TRANSISTOR: Low power, high frequency.
- G DIODE: Oscillator, Miscellaneous.
- H DIODE: Magnetic sensitive.
- K HALL EFFECT DEVICE: in an open magnetic circuit.
- L TRANSISTOR: Power, high frequency.
- M HALL EFFECT DEVICE: in a closed magnetic circuit
- N PHOTO COUPLER
- P DIODE: Radiation sensitive.

¹⁾ Die genannten Materialien sind Beispiele.

¹⁾ The materials mentioned are examples.

- Q STRAHLUNGSERZEUGENDE ELEMENTE
- R THYRISTOR: für kleine Leistungen.
- S TRANSISTOR: für kleine Leistungen, Schaltzwecke.
- T THYRISTOR: für große Leistungen.
- U TRANSISTOR: Leistungsschalttransistor.
- X DIODE: Vervielfacher.
- Y DIODE: Leistungsdiode, Gleichrichter, Booster.
- Z DIODE: Referenzdiode, Spannungsreglerdiode, Spannungsbegrenzerdiode.

Das **laufende Kennzeichen** der Bezeichnung besteht aus:

- einer 3-stelligen Zahl (100 bis 999) für Bauelemente zur Verwendung in Rundfunk- und Fernsehempfänger usw.
- einem Buchstaben und einer 2-stelligen Zahl (Y10 bis A99) für Bauelemente für professionelle Geräte und Anwendungen.

Ein Zusatzbuchstabe kann verwendet werden, wenn das Element nur in einer Hinsicht (elektrisch oder mechanisch) vom Grundtyp abweicht.

Die Buchstaben haben keine feste Bedeutung, mit Ausnahme des Buchstabens R, der die entgegengesetzte Polarität zum Grundtyp gibt.

Das beschriebene Bezeichnungsschema wird nur bei Typen angewendet, die bei **PRO ELECTRON** angemeldet sind.

Einige Typen werden anders bezeichnet (JEDEC):

1N mit zwei bis vier Ziffern
kennzeichnet eine Diode

2N mit zwei bis vier Ziffern
kennzeichnet einen Transistor

- Q DIODE: *Radiation generating.*
- R THYRISTOR: *Low power.*
- S TRANSISTOR: *Low power, switching.*
- T THYRISTOR: *Power.*
- U TRANSISTOR: *Power, switching.*
- X DIODE: *Multiplier, e.g. varactor, step recovery.*
- Y DIODE: *Rectifying, booster.*
- Z DIODE: *Voltage reference or voltage regulator. Transient suppressor diode.*

The **serial number** consists of:

- *Three figures, running from 100 to 999, for devices primarily intended for domestic equipment.*
- *One letter (Z, Y, X, etc.) and two figures running from 10 to 99, for devices primarily intended for professional equipment.*

A **version letter** can be used to indicate a deviation of a single characteristic, either electrically or mechanically.

The letter never has a fixed meaning, the only exception being the letter R, indicating reversed voltage, i. e. collector to case.

Code for semiconductors, given above is used only for types, which are registered at **PRO ELECTRON**.

Some types have designation code (JEDEC):

1N with two-digit to four-digit number
means diode

2N with two-digit to four-digit number
means transistor

1.1.2. Zählrichtungen, Zählpfeile

Die Zählrichtung von Spannungen wird angegeben entweder durch einen Zählpfeil, der vom Meßpunkt zum Spannungsbezugspunkt weist, oder durch einen Doppelindex, wobei der erste Index den Meßpunkt und der zweite Index den Bezugspunkt bezeichnet.

Fig. 1.1.

Der Zahlenwert der Spannung ist positiv, wenn das Potential am Zählpfeilschaft höher ist als an der Zählpfeilspitze, d. h. wenn die Potentialdifferenz des Meßpunktes (A) gegenüber dem Bezugspunkt (B) positiv ist.

Entsprechend ist der Zahlenwert der Spannung negativ, wenn das Potential am Zählpfeilschaft niedriger ist als an der Zählpfeilspitze, d. h. wenn die Potentialdifferenz des Meßpunktes gegenüber dem Bezugspunkt negativ ist.

Für Wechselspannungen wird die einmal gewählte Zählrichtung beibehalten. Der Wechselcharakter der Spannung kommt durch den zeitlichen Wechsel des Vorzeichens ihrer Zahlenwerte zur Geltung.

Die Zählrichtung von Strömen wird durch einen Zählpfeil im Leitungsstrich angegeben.

Fig. 1.2.

Der Zahlenwert des Stromes ist positiv, wenn die in der Zählpfeilrichtung bewegten Ladungsträger positiv sind (konventionelle Stromrichtung) oder wenn die entgegen der Zählpfeilrichtung bewegten Ladungsträger negativ sind.

Entsprechend ist der Zahlenwert des Stromes negativ, wenn die in der Zählpfeilrichtung fließenden Ladungsträger negativ sind oder wenn die entgegen der Zählpfeilrichtung fließenden Ladungsträger positiv sind.

1.1.2. Polarity conventions

The voltage direction is given either:

through an arrow, which points out from measuring to reference point,

or

through double subscript, whereby the first subscript is termed as the measuring point, the second subscript as the reference point.

The numerical value of the voltage is positive, if the potential at the arrow tail is higher than at the arrow head i. e. the potential difference from measuring (A) to reference (B) point is positive.

The numerical value of the voltage is negative, if the potential at the arrow tail is lower than at the arrow head i. e. the potential difference from measuring to reference point is negative.

In case of alternating voltages, once the voltage direction is selected, it is maintained throughout. The alternating character of the quantity is given with the time dependent change in sign of its numerical values.

The current direction is given through an arrow head drawn on the line.

The numerical value of the current is positive, if the charge of the carriers moving in the direction of arrow is positive (conventional current direction) or if the charge of the carriers moving against this direction is negative.

The numerical value of the current is negative, if the charge of the carriers moving in the direction of arrow is negative or if the charge of the carriers moving against this direction is positive.

Für Wechselströme wird die einmal gewählte Zählrichtung beibehalten. Der Wechselcharakter des Stromes kommt durch den zeitlichen Wechsel des Vorzeichens seiner Zahlenwerte zur Geltung.

Zählrichtungen bei Bauelementen mit drei oder mehr Anschlüssen

Generell gelten folgende Festlegungen:

Die Stromzählpfeile weisen in Richtung auf das Bauelement.

Die Spannungszählpfeile werden so gewählt, daß als Spannungsbezugspunkt die dem Eingang und Ausgang gemeinsame Elektrode dient.

Beispiel: NPN-Transistor in Emitter-, Basis- und Kollektorschaltung

The above general rules are also valid for alternating quantities. Once the direction is selected, it is maintained throughout. The alternating character of the quantity is given with the time dependent change in sign of its numerical values.

Polarity conventions for devices with three or more terminals

The following rules are valid:

Current arrows are always directed towards the device.

Voltage arrows are selected according to the basic configuration i.e. the common electrode, for the input and the output, is chosen as the reference point.

Example: NPN-transistor in common emitter, common base and common collector configuration

Fig. 1.3.

Fig. 1.4.

Fig. 1.5.

Zählrichtungen bei Vierpolen

Für alle Vierpoldarstellungen gelten die im nachstehenden Bild festgelegten Zählrichtungen:

Fig. 1.6.

1.1.3. Transistor-Ersatzschaltung

Die Eigenschaften von Transistoren lassen sich durch Ersatzschaltungen beschreiben, deren Schaltungselemente (im Gegensatz zu den Vierpolkoeffizienten) über einen größeren Frequenzbereich als konstant angesehen werden können. Ihre Werte hängen ab vom Arbeitspunkt und von der Temperatur.

Am weitesten verbreitet ist die Funktions-Ersatzschaltung nach Giacolotto, mit der die Funktion eines Transistors bei Kleinsignalbetrieb für Frequenzen $f < 0,1 \cdot f_T$ recht gut beschrieben wird.

Polarity conventions for two-port network

Here the directions are as shown in the figure.

1.1.3. Transistor equivalent circuit

Transistor characteristics could be explained with an equivalent circuit whose circuit elements (in contrast to four-pole coefficients) are considered constant over a wide frequency range. These parameters are highly bias and temperature dependent, therefore; the static conditions must be known completely.

The hybrid- π equivalent circuit developed by Giacolotto is a useful representation of certain transistor types, for its parameters may be considered to be frequency dependent such as $f < 0.1 f_T$

Fig. 1.7.

Mit

$$Y_{b'e} = g_{b'e} + j \cdot \omega \cdot C_{b'e}$$

$$Y_{b'c} = g_{b'c} + j \cdot \omega \cdot C_{b'c}$$

$$Y_{ce} = g_{ce} + j \cdot \omega \cdot C_{ce}$$

und

$$A = 1 + (Y_{b'e} + Y_{b'c}) r_{bb'}$$

erhält man die Koeffizienten für die Admittanzform der Vierpolgleichungen (γ -Parameter) in Emitterschaltung:

$$Y_{ie} = Y_{11e} = \frac{1}{A} (Y_{b'e} + Y_{b'c})$$

$$Y_{re} = Y_{12e} = -\frac{1}{A} \cdot Y_{b'c}$$

$$Y_{fe} = Y_{21e} = \frac{1}{A} (g_m - Y_{b'c})$$

$$Y_{oe} = Y_{22e} = \frac{1}{A} \cdot r_{bb'} \cdot Y_{b'c} (g_m - Y_{b'c}) + Y_{b'c} + Y_{ce}$$

one gets the y -parameters (admittance coefficients) in common emitter configuration:

1.2. Aufbau der Kurzzeichen

Kurzzeichen für Ströme, Spannungen und Leistungen

(Nach DIN 41 785 Blatt 1)

Bei Strömen, Spannungen und Leistungen wird für das Kurzzeichen selbst entweder ein Großbuchstabe oder ein Kleinbuchstabe verwendet, je nachdem, ob es sich um einen zeitlich konstanten Wert (Gleichwert, Mittelwert usw.) oder um einen Augenblickswert handelt.

1.2. Arrangement of symbols

Letter symbols for currents, voltages and powers

(According to DIN 41 875, Sheet 1)

For currents, voltages and powers basic letter symbols are used. These basic symbols are having either upper-case (capital) or lower-case (small) letters. Capital basic letters are used for the representation of peak, mean, d. c. or root-mean-square values. Small basic letters are used for the representation of instantaneous values which vary with time.

Im Index bedeuten Großbuchstaben Gesamt-werte, Kleinbuchstaben Werte von Wechselgrößen. Die im Index benutzten Buchstaben sind so festgelegt, daß aus ihnen die betreffenden Anschlüsse des Halbleiterbauelementes und die Meßbedingungen zu entnehmen sind.

Das Aufbau-Schema für die Kurzzeichen und Indizes geht aus der nachstehenden Tabelle hervor:

Kennbuchstabe	
Kleinbuchstabe	Großbuchstabe
Augenblickswerte zeitlich veränder- licher Größen	Werte zeitlich konstanter Größen (Gleichwerte, Mittel-, Effektiv- und Scheitelwerte)
Buchstaben im Index	
Kleinbuchstaben	Großbuchstaben
Wechselwerte (vom arithmetischen Mittelwert an gezählt)	Gesamtwerte (vom Wert Null an gezählt)

Kurzzeichen für Widerstände, Leitwerte,
Vierpolkoeffizienten usw.

Bei Widerständen, Leitwerten, Vierpolkoeffizienten usw. werden für das Kurzzeichen selbst Großbuchstaben verwendet, wenn mit der Kenngröße Eigenschaften von Schaltungen beschrieben werden, von denen das betreffende Halbleiterbauelement lediglich ein Bestandteil ist. Kleinbuchstaben werden benötigt, wenn die entsprechende Kenngröße die Eigenschaften des Bauelements selbst kennzeichnet.

Diese Regeln gelten nicht für Induktivitäten und Kapazitäten. Bei diesen Größen wird für das Kurzzeichen selbst immer ein Großbuchstabe verwendet.

Im Index bedeuten Großbuchstaben Großsignalwerte bzw. für Gleichspannungsbetrieb gültige Werte. Kleinbuchstaben kennzeichnen Kleinsignalwerte bzw. für Betrieb mit Wechselspannung gültige Werte.

Wenn mehr als ein Buchstabe im Index gebraucht wird (h_{FE} , h_{fe}), dann sind die Buch-

In subscript (index), capital letters are used to represent continuous or total values whereas small letters are used to represent the varying component alone.

The following table illustrates the application of the rules given above.

Basic letter	
Lower-case	Upper-case
instantaneous values which vary with time	maximum (peak), average (mean) continuous (d. c.) or root-mean-square (RMS) values
Subscript(s)	
Lower-case	Upper case
varying component alone, i. e.: instantaneous, root- mean-square, maximum or average values	continuous (without signal) or total (instantaneous, average or maxi- mum) values

Letter symbols for impedance, admittances, four-pole parameters etc.

In case of impedances, admittances, four-pole parameters etc., upper-case basic letters are used for the representation of external circuits and of circuits in which the device forms only a part. Lower-case basic letters are used for the representation of electrical parameters inherent in the device.

These rules are not valid for inductances and capacitances. Both these quantities are denoted with capital basic letters.

In index, upper-case letters are used for the designation of static (d. c.) values whereas the lower-case letters are meant for the designation of small-signal values.

If more than one subscript is used (h_{FE} , h_{fe}) then the letter symbols are either all upper-

stablen im Index entweder alle groß oder alle klein.

Ist der Index aus Zahlen und Buchstaben zusammengesetzt, dann dienen die Buchstaben zur Unterscheidung von Großsignal- und Kleinsignalwerten.

Größen, bei denen Abweichungen von den genannten Regeln vorkommen, sind in der Zusammenstellung der Kurzzeichen getrennt aufgeführt.

Das normale Aufbau-Schema für die Kurzzeichen und Indizes zeigt die folgende Tabelle:

Kennbuchstabe	
Kleinbuchstaben	Großbuchstaben
Halbleiterbau-element ohne äußere Schaltelemente, ausgenommen Induktivitäten und Kapazitäten	Halbleiterbau-element mit äußeren Schaltelementen, äußere Schaltung; alle Induktivitäten und Kapazitäten

Buchstaben im Index	
Kleinbuchstabe	Großbuchstaben
Wechselwerte	Gleichwerte
Kleinsignalwerte	Großsignalwerte

Beispiele:

R_G

Generatorwiderstand

G_p

Leistungsverstärkung

h_{FE}

Kollektor-Basis-Gleichstromverhältnis

r_p

Parallelwiderstand, Dämpfungswiderstand

case or all lower-case.

If the index has numeric (single, double, etc.) as well as letter symbol(s) such as h_{21E} or h_{21e} , the differentiation between static or small-signal value is made only by subscript letter symbol.

Other quantities (values) which deviate from the above mentioned rules are given under the list of letter symbols.

The following table illustrates the application of the rules given above.

Basic letter	
Lower-case	Upper-case
electrical parameters inherent in the semiconductor devices except induc- tances and capaci- tances	electrical parameters of external circuits and of circuits in which the semicon- ductor device forms only a part; all induc- tances+capacitances

Subscript(s)	
Lower-case	Upper-case
small-signal values	static (d. c.) values

Examples:

Generator resistance

Power gain

DC forward current transfer ratio in common emitter configuration

Parallel resistance, damping resistance

1.2.1. Beispiele für die Verwendung der Kurzzeichen

nach DIN 41785 und IEC 148

1.2.1. Examples of the application of the symbols

according to DIN 41785 and IEC 148

a) Transistor

Fig. 1.8.

I_C
Gleichstromwert (ohne Signal)

D. C. value, no signal

I_{CAV}
Mittelwert des Gesamtstromes

Average total value

$I_{CM}; \hat{I}_C$
Größtwert des Gesamtstromes

Maximum total value

I_{CEFF}
Effektivwert des Gesamtstromes

RMS total value

$I_c; I_{ceff}$
Effektivwert des Wechselstromes

RMS varying component

$I_{cm}; \hat{i}_c$
Scheitelwert des Wechselstromes

Maximum varying component value

i_C
Augenblicksgesamtwert

Instantaneous total value

i_c
Augenblickswert des Wechselstromes

Instantaneous varying component value

Es gilt:

$$I_{CM} = I_{CAV} + I_{cm}$$

$$I_{CEFF} = \sqrt{I_{CAV}^2 + I_{ceff}^2}$$

$$i_C = I_{CAV} + i_c$$

It is valid:

b) Diode

Fig. 1.9.

U_F	Forward voltage
Durchlaßspannung	
U_R	Reverse voltage
Sperrspannung	
U_{FSM}	Surge forward voltage (non-repetitive)
Stoßdurchlaßspannung (nicht periodisch)	
U_{RSM}	Surge reverse voltage (non-repetitive)
Stoßsperrspannung (nicht periodisch)	
U_{FRM}	Repetitive peak forward voltage
Periodische Spitzendurchlaßspannung	
U_{RRM}	Repetitive peak reverse voltage
Periodische Spitzensperrspannung	
U_{FWM}	Crest working forward voltage
Scheiteldurchlaßspannung	
U_{RWM}	Crest working reverse voltage
Scheitelsperrspannung	

1.2.2. Die Symbole und deren Erklärung

AQL

Annehmbare Qualitätslage, siehe Kap. 3.

B, b

Basis, Basisanschluß

C, c

Kollektor, Kollektoranschluß

C

Kapazitäten

Aus der Transistor-Ersatzschaltung (Abschnitt 1.1.3.) ist zu erkennen, daß im Innern eines Transistors mehrere Kapazitäten wirksam sind. Zusätzlich treten noch durch die Zuleitungen zum Transistorelement gegebene Kapazitäten auf. Für die Anwendung der Transistoren spielen die Kapazitäten im allgemeinen erst bei höheren Frequenzen eine Rolle. Dabei sind allerdings nicht die Kapazitäten der Ersatzschaltung interessant, sondern die im Betrieb wirksamen Kapazitäten. Diese lassen sich am besten mit den y -Koeffizienten erfassen:

C_i

Die Kurzschluß-Eingangskapazität $C_{11} = C_i$ (manchmal kurz „Eingangskapazität“ genannt) ist der durch den Faktor $(j \cdot \omega)$ dividierte Imaginärteil der Kurzschluß-Eingangsadmittanz $y_{11} = y_i$.

Je nach verwendeter Grundschaltung wird dem Kurzzeichen der betreffenden Kapazität im Index ein e, b oder c angehängt.

C_{ib}

Kurzschluß-Eingangskapazität in Basisschaltung

$$C_{11b} = C_{ib} = \frac{1}{j\omega} \cdot \text{Im}(y_{ib})$$

C_{ie}

Kurzschluß-Eingangskapazität in Emitterschaltung

$$C_{11e} = C_{ie} = \frac{1}{j\omega} \cdot \text{Im}(y_{ie})$$

C_o

Die Kurzschluß-Ausgangskapazität (manchmal kurz „Ausgangskapazität“ genannt) ist der durch den Faktor $(j \cdot \omega)$ dividierte Imaginärteil der Kurzschluß-Ausgangsadmittanz

$$y_{22} = y_o, C_{22} = C_o$$

1.2.2. Symbols and terminology

Acceptable Quality Level, see section 3.

Base, base terminal

Collector, collector terminal

Capacitances

From the transistor equivalent circuit (1.1.3.) one can notice different capacitances in a transistor. In addition, there are capacitances between terminals, inside as well as outside the case. All these capacitances play an active role first at high frequencies. Here the actual operating capacitances are important, but not the equivalent circuit capacitances. They can be best explained with y -coefficients:

Short-circuit input capacitance $C_{11} = C_i$. It is an imaginary part of short-circuit input admittance $y_{11} (= y_i)$ divided by a factor $j\omega$.

The values of capacitances are circuit configuration dependent; therefore, a further subscript e, b or c is added with the concerned capacitance to designate the orientation.

Short circuit input capacitance in common base configuration.

Short circuit input capacitance in common emitter configuration.

Short-circuit output-capacitance

It is an imaginary part of short-circuit output admittance $y_{22} = y_o$, divided by a factor $(j \cdot \omega)$, $C_{22} = C_o$.

C_{ob}

Kurzschluß-Ausgangskapazität in Basisschaltung

Short circuit output capacitance in common base configuration.

$$C_{22b} = C_{ob} = \frac{1}{j\omega} \cdot \text{Im}(y_{ob})$$

C_{oe}

Kurzschluß-Ausgangskapazität in Emitter-schaltung

Short circuit output capacitance in common emitter configuration.

$$C_{22e} = C_{oe} = \frac{1}{j\omega} \cdot \text{Im}(y_{oe})$$

$C_{ür}$

Die Rückwirkungskapazität ist der durch den Faktor $(-j \cdot \omega)$ dividierte Imaginärteil der Rückwärtssteilheit $y_{12} = y_r$, $C_{ür} = -C_{12} = -C_r$.

Short-circuit reverse transfer capacitance is an imaginary part of short-circuit reverse transfer admittance $y_{12} = y_r$, divided by a factor $(-j \cdot \omega)$, $C_{ür} = -C_{12} = -C_r$.

$C_{ürb}$

Rückwirkungskapazität in Basisschaltung
(= $-C_{rb}$)

Feedback capacitance in common base configuration (= $-C_{rb}$)

$$-C_{12b} = C_{ürb} = \frac{1}{j\omega} \cdot \text{Im}(y_{rb})$$

$C_{üre}$

Rückwirkungskapazität in Emitterschaltung
(= $-C_{re}$)

Feedback capacitance in common emitter configuration (= $-C_{re}$)

$$-C_{12e} = C_{üre} = \frac{1}{j\omega} \cdot \text{Im}(y_{re})$$

Neben diesen mit den y -Koeffizienten festgelegten Kapazitäten gibt es in den Datenblättern noch **Kapazitätsangaben**, die auf einer direkten Kapazitätssmessung beruhen:

There are additional capacitances given in data sheets. These are the result of direct measurements, given below:

C_{CBO}

Die Kapazität, die zwischen Kollektor und Basis bei nicht angeschlossenem Emitter und anliegender Kollektor-Basis-Sperrspannung meßbar ist, wird als Kollektor-Basis-Kapazität bezeichnet.

Capacitance between collector and base having open emitter. It can be measured by applying reverse bias to its terminals.

Es gilt der Zusammenhang

The following relationship is also valid:

$$C_{CBO} \approx C_{oe} \approx C_{ob}$$

(Different configurations, but approximately the same values)

C_{EBO}

Die Kapazität, die zwischen Emitter und Basis bei nicht angeschlossenem Kollektor und anliegender Emitter-Basis-Sperrspannung meßbar ist, wird als Emitter-Basis-Kapazität bezeichnet.

Capacitance between emitter and base having open collector. Measurement is made by applying reverse bias to its terminals.

Es gilt der Zusammenhang:

$$C_{\text{EBO}} \approx C_{\text{ie}} \approx C_{\text{ib}}$$

wobei C_{ie} bzw. C_{oe} ebenfalls für die anliegende Emitter-Basis-Sperrspannung gelten.

C_L

Lastkapazität

C_p

Parallelkapazität,
Gehäusekapazität

d_{IM}

Intermodulationsabstand

E, e

Emitter

F

Rauschmaß, Rauschzahl

Die Rauschzahl ist der für eine gegebene Frequenz und eine gegebene Bandbreite geltende Quotient aus der vom Transistor an den Lastwiderstand abgegebenen Rauschleistung p_2 und der mit der Leistungsverstärkung G_p multiplizierten Eingangsruschleistung p_1 . Die Eingangsruschleistung stammt von dem auf Rauschbezugstemperatur ($T_0 = 290$ K) befindlichen Ausgangswiderstand des Signalgenerators

$$F = \frac{p_2}{G_p \cdot p_1}$$

Wird dieses Verhältnis in dB angegeben, dann erhält man das Rauschmaß:

$$\frac{F}{\text{dB}} = 10 \cdot \lg \frac{p_2}{G_p \cdot p_1}$$

Rauschzahl oder Rauschmaß werden für einen bestimmten Arbeitspunkt, für einen bestimmten Generatorwiderstand, bei einer bestimmten Frequenz oder für einen Frequenzbereich angegeben.

f

Frequenz

F_c

Mischrauschmaß

f_g

Grenzfrequenz

f_{hfe}

h_{fe} -Grenzfrequenz

(β -Grenzfrequenz, f_β)

The following relationship is also valid:

(Different configurations, but approximately the same values)

Load capacitance

Parallel capacitance,
Case capacitance

Signal-to-intermodulation ratio

Emitter

Noise figure

For a given frequency and bandwidth, the noise figure is the ratio of the total noise power, p_2 , delivered to the output termination, to the portion ($G_p \cdot p_1$) thereof contributed by the input power, p_1 , given from the signal source whose noise temperature is standard ($T_0 = 290$ K) at all frequencies.

If this ratio is given in decibel, then we have:

Noise figure is given for a specified operating point, specified generator (source) resistance and specified frequency or frequency range.

Frequency

Noise figure for mixer

Cut-off frequency

h_{fe} -cut-off frequency
(β -cut-off frequency, f_β)

Frequenz, bei der die Kurzschlußstromverstärkung h_{fe} des Transistors in Emitterschaltung auf das 0,707-fache des für $f = 1$ kHz geltenden Wertes gesunken ist.

f_{IM}
Intermodulationsfrequenz

f_{max}
Maximale Schwingfrequenz

Frequenz, bei der die Leistungsverstärkung des Transistors für beidseitige Leistungsanpassung den Wert 1 annimmt.

f_T
Transitfrequenz

Produkt aus dem Betrag der Kurzschluß-Stromverstärkung h_{fe} und der Meßfrequenz f_M , bei der h_{fe} gemessen wird. Die Meßfrequenz ist so gewählt, daß sie in einem Bereich liegt, in dem der Betrag der Stromverstärkung mit ca. 6 dB/Oktave abnimmt. Die zugehörige Kreisfrequenz $\omega_T = 2 \cdot \pi \cdot f_T$ ist definiert als der Reziprokwert der mittleren Laufzeit (transit time) der Minoritätsträger durch die Basiszone.

g
Leitwert

G_G
Generatorleitwert

g_i
Kurzschluß-Eingangsleitwert

g_{ib}
Kurzschluß-Eingangs-Leitwert in Basisschaltung
 $g_{ib} = \text{Re } (\gamma_{ib})$

g_{ie}
Kurzschluß-Eingangs-Leitwert in Emitterschaltung
 $g_{ie} = \text{Re } (\gamma_{ie})$

g_o
Kurzschluß-Ausgangsleitwert

g_{ob}
Kurzschluß-Ausgangs-Leitwert in Basisschaltung
 $g_{ob} = \text{Re } (\gamma_{ob})$

g_{oe}
Kurzschluß-Ausgangs-Leitwert in Emitterschaltung
 $g_{oe} = \text{Re } (\gamma_{oe})$

The frequency at which the modulus of current amplification factor (h_{fe}) has decreased to 0.707 times its low frequency (1 kHz) value.

Intermodulation frequency

Maximum frequency of oscillation

Frequency, by which the power gain of a transistor due to double matching assumes the value of one.

*Gain bandwidth product,
transistion frequency*

The product of the modulus of the common-emitter small-signal short-circuit forward current transfer ratio, and the frequency of measurement f_M , this frequency being so chosen that h_{fe} is decreasing at a slope of approximately 6 dB per octave.

The associated angular frequency $\omega_T = 2 \cdot \pi \cdot f_T$ is defined as the reciprocal value of transit time of minority carriers through the base region.

Conductance

Generator conductance

Short circuit input conductance

*Input conductance in common base configuration, short circuit at output
 $g_{ib} = \text{Re } (\gamma_{ib})$*

*Input conductance in common emitter configuration, short circuit at output
 $g_{ie} = \text{Re } (\gamma_{ie})$*

Short circuit output conductance

*Output conductance in common base configuration, short circuit at input
 $g_{ob} = \text{Re } (\gamma_{ob})$*

*Output conductance in common emitter configuration short circuit at input
 $g_{oe} = \text{Re } (\gamma_{oe})$*

G_{pb}
Leistungsverstärkung in Basisschaltung

Power gain in common base configuration

G_{pe}
Leistungsverstärkung in Emitterschaltung

Power gain in common emitter configuration

g_r
Kurzschluß-Rückwirkungsleitwert

Short circuit reverse conductance

h_{FE}
Kollektor-Basis-Gleichstromverhältnis (B)

DC forward current transfer ratio in common emitter configuration

Verhältnis des Kollektorstromes I_C zum Basisstrom I_B bei bestimmten Werten der Kollektor-Emitter-Spannung U_{CE} und des Kollektorstromes I_C .

It is the ratio of the collector current, I_C to the base current, I_B , for specified values of U_{CE} and I_C .

Für diese Kenngröße wird auch das Kurzzeichen B verwendet.

It is also denoted by symbol B .

h

Die Hybridmatrix ist ein Anordnungsschema der h -Koeffizienten

$$h = \begin{pmatrix} h_1 & h_f \\ h_f & h_0 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$

Die Koeffizienten der Hybrid (h)-Matrix werden üblicherweise nur für Niederfrequenz benutzt. Sie gelten jeweils für einen bestimmten Arbeitspunkt und eine bestimmte Frequenz. Diese Frequenz ist üblicherweise 1 kHz, so daß die entsprechenden h -Koeffizienten reelle Werte haben.

Hybrid matrix is an arrangement of h -parameters given as follows:

Aus den (reellen) h -Koeffizienten lassen sich folgende Betriebsgrößen ableiten:

h -parameters are used mostly in AF range. They are valid only for a specified operating point and frequency. Usually this frequency is 1 kHz and the corresponding h -parameters are having real values.

The following electrical characteristics can be calculated from the above mentioned parameters.

Fig. 1.10.

Stromverstärkung

$$A_i = \frac{I_2}{I_1} = \frac{h_{21} \cdot G_L}{h_{22} + G_L} = \frac{h_{21}}{1 + h_{22}/G_L}$$

Current amplification

Spannungsverstärkung

$$A_u = \frac{U_2}{U_1} = \frac{-h_{21}}{h_{11}(h_{22} + G_L) - h_{12} \cdot h_{21}}$$

Voltage amplification

Eingangswiderstand

$$r_{in} = \frac{U_1}{I_1} = h_{11} - \frac{h_{12} \cdot h_{21}}{h_{22} + G_L}$$

Input resistance

Ausgangsleitwert

$$g_{\text{out}} = \frac{I_2}{U_2} = h_{22} - \frac{h_{12} \cdot h_{21}}{h_{11} + R_G}$$

Leistungsverstärkung

$$G_p = \frac{P_{\text{out}}}{P_{\text{in}}} = G_L \cdot r_{\text{in}} \cdot |A_u|^2$$

$$= G_L \cdot \frac{h_{21}^2}{[h_{11}(h_{22} + G_L) - h_{12}h_{21}] \cdot (h_{22} + G_L)}$$

Die h -Koeffizienten (h -Parameter) sind die Koeffizienten der Vierpolgleichungen in Hybridform:

$$\underline{U}_1 = h_i \cdot \underline{I}_1 + h_r \cdot \underline{U}_2 = h_{11} \cdot \underline{I}_1 + h_{12} \cdot \underline{U}_2$$

$$\underline{I}_2 = h_f \cdot \underline{I}_1 + h_o \cdot \underline{U}_2 = h_{21} \cdot \underline{I}_1 + h_{22} \cdot \underline{U}_2$$

h_i

Kurzschluß-Eingangsimpedanz

$$h_i = h_{11} = \left(\frac{\underline{U}_1}{\underline{I}_1} \right)_{\underline{U}_2=0}$$

Je nach verwendeter Grundschaltung wird den Kurzzeichen der h -Koeffizienten im Index ein e, b oder c angehängt.

h_{ib}

Kurzschluß-Eingangswiderstand in Basisschaltung (Kleinsignalwert)

h_{ie}

Kurzschluß-Eingangswiderstand in Emitterschaltung (Kleinsignalwert)

h_r

Leerlauf-Spannungsrückwirkung

$$h_r = h_{12} = \left(\frac{\underline{U}_1}{\underline{U}_2} \right)_{\underline{I}_1=0}$$

h_{rb}

Leerlauf-Spannungsrückwirkung in Basisschaltung (Kleinsignalwert)

h_{re}

Leerlauf-Spannungsrückwirkung in Emitterschaltung (Kleinsignalwert)

h_f

Kurzschluß-Stromverstärkung

$$h_f = h_{21} = \left(\frac{\underline{I}_2}{\underline{I}_1} \right)_{\underline{U}_2=0}$$

Output conductance

Power gain

h -parameters are the coefficients of equations of two-port network given in hybrid form:

Short circuit input impedance

Parameter values are circuit configuration dependent; therefore, a further subscript e, b or c is used to identify the circuit configuration.

Short circuit input resistance in common base configuration (small signal value)

Short circuit input resistance in common emitter configuration (small signal value)

Open circuit reverse voltage transfer ratio

Open circuit reverse voltage transfer ratio in common base configuration (small signal value)

Open circuit reverse voltage transfer ratio in common emitter configuration (small signal value)

Short circuit forward current transfer ratio

h_{fb}	Kurzschluß-Stromverstärkung in Basisschaltung (Kleinsignalwert)	Short circuit forward current transfer ratio in common base configuration (small signal value)
h_{fe}	Kurzschluß-Stromverstärkung in Emitterschaltung (Kleinsignalwert)	Short circuit forward current transfer ratio in common emitter configuration (small signal value)
h_{fC}	Verhältnis des Kollektorwechselstromes i_C zum Basiswechselstrom i_B bei wechselstrommäßiger Kurzschluß zwischen Kollektor und Emitter und kleiner Ansteuerung. Für diese Kenngröße wird auch das Kurzzeichen β verwendet. Die Kurzschlußstromverstärkung wird meistens bei 1 kHz und einem im Datenblatt angegebenen Arbeitspunkt gemessen.	<i>It is the ratio of the alternating collector current, i_C, to the alternating base current, i_B, for small-signal with output being short-circuited to a.c. It is also known as β.</i> <i>In technical data sheet this parameter is given with 1 kHz sine wave for a specified operating point. This quantity is also known as current amplification factor.</i>
h_0	Leerlauf-Ausgangsadmittanz	Open circuit output admittance
$h_0 = h_{22} = \left(\frac{I_2}{U_{22}} \right) I_1 = 0$		
h_{ob}	Leerlauf-Ausgangsleitwert in Basisschaltung (Kleinsignalwert)	Open circuit output conductance in common base configuration (small signal value)
h_{oe}	Leerlauf-Ausgangsleitwert in Emitterschaltung (Kleinsignalwert)	Open circuit output conductance in common emitter configuration (small signal value)
I_B	Basis-Gleichstrom	DC base current
I_{BM}	Basis-Spitzenstrom	Peak base current
I_{B1}	Steuerstrom, Basis 1-Strom – UJT	Control current, base-one current – UJT
I_{B2}	Ausräumstrom, Basis 2-Strom – UJT Der über den Basis 2-Anschluß fließende Strom.	On-Off base current, base-two current – UJT Current which flows through the base-two terminal.
I_C	Kollektorgleichstrom	DC collector current

I_{CBO}

Kollektorstrom bei offenem Emitter

Ein Reststrom ist der in einer Transistorzuleitung fließende Strom bei Anlegen einer Sperrspannung an dem betreffenden Anschluß und einem weiteren Anschluß. Die Beschaltung des dritten Anschluß wird angegeben.

Kollektor-(Basis-)Reststrom I_{CBO} und Kollektor-Basis-Sperrspannung U_{CBO} bei offenem Emitter ($I_E = 0$)

Collector cut-off current, with open emitter

Cut-off current is the reverse current flowing through the junction(s) (base-emitter or base-collector) of a transistor by applying reverse bias across its terminals, the third terminal being open circuited or otherwise specified. It is also known as leakage current.

Collector-base cut-off current, I_{CBO} , and collector-base voltage, U_{CBO} , with open emitter i. e. $I_E = 0$

Fig. 1.11.

I_{CEO}

Kollektorstrom bei offener Basis

Kollektor-(Emitter-)Reststrom I_{CEO} und Kollektor-Emitter-Sperrspannung U_{CEO} bei offener Basis ($I_B = 0$)

Collector cut-off current, with open base

Collector-emitter cut-off current, I_{CEO} , and collector-emitter voltage, U_{CEO} , with open base i. e. $I_B = 0$

Fig. 1.12.

I_{CER}

Kollektorstrom mit einem Widerstand R_{BE} zwischen Emitter und Basis

Kollektor-(Emitter-)Reststrom I_{CER} und Kollektor-Emitter-Sperrspannung U_{CER} mit einem Widerstand zwischen Basis und Emitter. Bei der Angabe von U_{CER} bzw. I_{CER} ist in den Datenblättern der dazu gehörende Wert von R_{BE} angeführt. Bei größeren Werten von R_{BE} gilt die Sperrspannung U_{CEO} bzw. der Reststrom I_{CEO} .

Collector cut-off current, with a resistor R_{BE} connected between base and emitter

Collector-emitter cut-off current, I_{CER} , and collector-emitter voltage, U_{CER} , having resistance connected between base and emitter. The appropriate value of R_{BE} referring to U_{CER} and I_{CER} is also given in technical data sheet. For higher values of R_{BE} , the values of U_{CEO} and I_{CEO} are valid.

Fig. 1.13.

I_{CES}

Kollektorreststrom bei Kurzschluß

Basis-Emitter

Kollektor-Reststrom $I_{CES} = I_{CBS}$ und Kollektor-Emitter-Sperrspannung U_{CES} bzw. Kollektor-Basis-Sperrspannung U_{CBS} bei Kurzschluß zwischen Basis und Emitter.

Collector cut-off current, short circuit between base and emitter

Collector cut-off current, $I_{CES} = I_{CBS}$, and collector-emitter voltage, $U_{CES} = U_{CBS}$, with base emitter short-circuited.

Fig. 1.14.

I_{CEV}

Kollektorreststrom bei gesperrter

Emitterdiode

Kollektor-(Emitter-)Reststrom I_{CEV} und Kollektor-Emitter-Sperrspannung U_{CEV} bei gesperrter Emitterdiode, d. h. Vorspannung in Sperrrichtung zwischen Basis und Emitter.

Collector cut-off current with reverse base emitter voltage

Collector-emitter cut-off current, I_{CEV} , and collector-emitter voltage, U_{CEV} , when the applied voltage between base and emitter is reverse biased.

Fig. 1.15.

I_{CEX}

Kollektorreststrom bei in Flußrichtung vorgespannter Emitterdiode

Kollektor-(Emitter-)Reststrom I_{CEX} bei in Flußrichtung vorgespannter Emitterdiode.

Der Wert der Basis-Emitter-Spannung U_{BE} ist so gewählt, daß kein nennenswerter Basisstrom fließt.

Collector cut-off current with forward base-emitter voltage

Collector-emitter cut-off current, I_{CEX} , when the applied voltage between base and emitter is forward biased.

The value of base-emitter voltage, U_{BE} , is so selected that no appreciable base current flows.

Fig. 1.16.

I_{CM}
Kollektor-Spitzenstrom

Scheitelwert des Kollektorstromes bei sinusförmigem Betrieb für eine Betriebsfrequenz $f \geq 25$ Hz bzw. bei nicht sinusförmigem Betrieb für eine Impulsfolgefrequenz $f \geq 25$ Hz und für ein Tastverhältnis $t_p/T \leq 0,5$.

I_E
Emitterstrom

I_{EBO}
Emitterreststrom bei offenem Kollektor

Emitter-(basis-)Reststrom I_{EBO} und Kollektor-Basis-Sperrspannung U_{EBO} bei offenem Kollektor ($I_C = 0$)

DC collector peak current

It is the maximum collector current with sine wave operation, $f \geq 25$ Hz or pulse operation, $f \geq 25$ Hz having duty cycle $t_p/T \leq 0,5$.

Emitter current

Emitter cut-off current, with open collector

Emitter-base cut-off current, I_{EBO} , and emitter-base voltage, U_{EBO} , with open collector i. e. $I_C = 0$

Fig. 1.17.

I_{EB10}

Emitter-Sperrstrom – UJT

Emitterstrom bei anliegender Emittersperrspannung $-U_{EB1}$ und nicht angeschlossener Basis 1

I_F

Durchlaßstrom – UJT

Emitterstrom bei Betrieb im Sättigungsbereich (Emitterstrom größer als der Talstrom).

I_I

Eingangsstrom

I_K

Kurzschlußstrom

I_P

Höckerstrom – UJT

Emitterstrom bei der Höckerspannung.

I_Q

Ausgangsstrom

I_S

Speisestrom, Versorgungsstrom

I_V

Talstrom – UJT

Emitterstrom bei der Talspannung.

Emitter reverse current – UJT

Emitter current flow due to reverse voltage, $-U_{EB1}$, having base-two open.

Forward current – UJT

Emitter current which flows when the device is in saturation region ($I_E > I_V$).

Input current

Short circuit current

Peak point current – UJT

Emitter current corresponding to peak point voltage.

Output current

Supply current

Valley point current – UJT

Emitter current corresponding to valley point voltage.

<i>K</i>	<i>Kelvin</i>	<i>Kelvin</i>
<i>l</i>		
Länge, Anschlußdrahtlänge		<i>Length, connecting lead length</i>
<i>L_s</i>		<i>Series inductance</i>
<i>M_A</i>		<i>Tightening torque</i>
Anzugsdrehmoment		
<i>m</i>		<i>Degree of modulation</i>
Modulationsgrad		
<i>P</i>		<i>Power</i>
Leistung		
<i>P_I</i>		<i>Input power</i>
Eingangsleistung		
<i>P_Q, P_Q</i>		<i>Output power</i>
Ausgangsleistung		
<i>P_{tot}</i>		<i>Total power dissipation</i>
Gesamtverlustleistung		
Innerhalb des Arbeitsbereiches, der durch die maximal zulässigen Ströme und Spannungen und dem absoluten Grenzwert der Verlustleistung festgelegt ist, wird die zulässige Verlustleistung <i>P_{tot max}</i> durch die maximal zulässige Sperrschichttemperatur <i>t_{jmax}</i> , die im Betrieb maximal auftretende Umgebungstemperatur <i>t_{amb}</i> bzw. Gehäusetemperatur <i>t_{case}</i> und den Wärmewiderstand <i>R_{thJA}</i> bzw. <i>R_{thJC}</i> mit folgenden Gleichungen festgelegt:		
$P_{\text{tot max (amb)}} = \frac{t_{j\max} - t_{\text{amb}}}{R_{\text{thJA}}}$		
bzw. $P_{\text{tot max (case)}} = \frac{t_{j\max} - t_{\text{case}}}{R_{\text{thJC}}}$		
In allen anderen Fällen gilt als Begrenzung für die Verlustleistung der in den Datenblättern angegebene erlaubte Arbeitsbereich (siehe Abschnitt 3.4.).		<i>In addition, power dissipation is limited in certain cases through safe operating area given in data sheet (see 3.4.).</i>
<i>P_V</i>		<i>Power dissipation, general</i>
Verlustleistung, allgemein		
<i>r_{BB}</i>		<i>Interbase resistance</i>
Interbasiswiderstand		<i>Resistance of a semiconductor bar measured between base-one and base-two.</i>
Widerstand des Halbleitermaterials zwischen Basis 1 und Basis 2.		
<i>r_{bb}</i>		<i>Base intrinsic resistance</i>
Basisbahnwiderstand		
<i>R_{BE}</i>		<i>Resistance connected between base and emitter</i>
Widerstand zwischen Basis und Emitter		

r_F	Gleichstrom-Durchlaßwiderstand	<i>DC forward resistance</i>
r_f	Differentieller Durchlaßwiderstand	<i>Differential forward resistance</i>
R_G	Generatorwiderstand	<i>Generator resistance</i>
r_i	Eingangswiderstand	<i>Input resistance</i>
R_L	Lastwiderstand	<i>Load resistance</i>
r_p	Parallelwiderstand, Dämpfungswiderstand	<i>Parallel resistance, Damping resistance</i>
r_q	Ausgangswiderstand	<i>Output resistance</i>
R_{thJA}	Wärmewiderstand zwischen Sperrschicht und Umgebung	<i>Thermal resistance, junction-ambient</i>
R_{thJC}	Wärmewiderstand zwischen Sperrschicht und Gehäuse	<i>Thermal resistance, junction-case</i>
s	Stehwellenverhältnis	<i>Standing wave ratio (SWR)</i>
T	Periodendauer	<i>Period</i>
T	Absolute Temperatur, KelvinTemperatur	<i>Absolute Temperature, Kelvin temperature</i>
0 K = -273,15 °C		
Einheit: K (Kelvin)		<i>Unit: K (Kelvin)</i>
t	Zeit	<i>Time</i>
t	Temperatur, CelsiusTemperatur Einheit: °C	<i>Temperature, measured in centigrade Unit: °C</i>
t_{amb}	Umgebungstemperatur	<i>Ambient temperature</i>
Bei merklicher Eigenerwärmung des Bauelementes:		<i>If self-heating is significant:</i>
Temperatur der Umgebungsluft unterhalb des Bauelements im thermischen Gleichgewicht.		<i>Temperature of the surrounding air below the device, under conditions of thermal equilibrium.</i>
Bei unmerklicher Eigenerwärmung des Bauelementes:		<i>If self-heating is insignificant:</i>
Temperatur der Umgebungsluft in unmittelbarer Umgebung des Halbleiterbauelements.		<i>Air temperature in the immediate surroundings of the device.</i>

t_{amb}

Umgebungstemperaturbereich

Bei den absoluten Grenzdaten der zulässige Bereich der Umgebungstemperatur.

Ambient temperature range

As an absolute maximum rating:

The maximum permissible ambient temperature range.

t_{case}

Gehäuseterminatur

Temperatur an einer definierten Stelle der Gehäuseoberfläche des Bauelementes im thermischen Gleichgewicht.

Falls nicht anders angegeben gilt als Gehäuseterminatur bei Bauelementen im Metallgehäuse die Temperatur der Grundfläche des Gehäuses.

Case temperature

The temperature measured at a specified point on the case of a semiconductor device.

t_d

Verzögerungszeit, siehe Schaltzeiten

Kap. 1.2.3.

Delay time, see section 1.2.3.

t_f

Abfallzeit, siehe Schaltzeiten Kap. 1.2.3.

Fall time, see section 1.2.3.

t_{fr}

Vorwärtserholzeit

(Durchlaßverzögerungszeit)

Forward recovery time

t_j

Sperrsichttemperatur

Räumlicher Mittelwert der Temperatur, den die Sperrsicht im Betrieb aufweist. Bei Transistoren handelt es sich im wesentlichen um die Temperatur der Kollektorsperrsicht, da deren Eigenerwärmung am größten ist.

Junction temperature

It is the spatial mean value of temperature which the junction has acquired during operation. In case of transistors, it is mainly the temperature of collector junction because its inherent temperature is maximum.

TK

Temperaturkoeffizient

Quotient aus der relativen Änderung einer elektrischen Größe und der verursachenden Temperaturänderung Δt bei sonst konstanten Betriebsbedingungen.

Temperature coefficient

The ratio of the relative change of an electrical quantity to the change in temperature (Δt) which causes it, under otherwise constant operating conditions.

t_L

Temperatur der Anschlußdrähte in der Halterung im Abstand l vom Gehäuse

Connecting lead temperature in holder at a distance l from case

t_{off}

Ausschaltzeit, siehe Schaltzeiten,

Kap. 1.2.3.

Turn-off time, see section 1.2.3.

t_{on}

Einschaltzeit, siehe Schaltzeiten,

Kap. 1.2.3.

Turn-on time, see section 1.2.3.

t_p

Impulsdauer

Pulse duration

T

Tastverhältnis

Duty cycle

t_r
Anstiegszeit, siehe Schaltzeiten,
Kap. 1.2.3.

Rise time, see section 1.2.3.

t_{rr}
Rückherholzeit
(Sperrverzögerungszeit)

Reverse recovery time

t_s
Speicherzeit, siehe Schaltzeiten,
Kap. 1.2.3.

Storage time, see section 1.2.3.

t_{sd}
Löttemperatur
Maximal zulässige Temperatur beim Löten
mit definiertem Abstand vom Gehäuse und
festgelegter Dauer. Siehe auch Kap. 2.2.

Soldering temperature

Maximum allowable temperature for soldering
with specified distance from case and its
duration. Refer to section 2.2.

t_{stg}
Lagerungstemperaturbereich
Temperaturbereich, bei dem ein Bauelement,
das keiner elektrischen Beanspruchung unter-
worfen ist, gelagert und/oder transportiert
werden kann, ohne Schaden zu nehmen.

Storage temperature range

The temperature range at which the device
may be stored or transported without any
applied voltage.

U_{BB}
Basispeisespannung
(Basisvorsorgespannung)

Base supply voltage

U_{B2B1}
Interbasisspannung – UJT
Spannung an der Basis 2 gemessen gegen
die Basis 1.

Interbase voltage – UJT

Voltage measured between base-two and
base one.

U_{B1E}
Emitter-Basis 1-Sperrspannung, Emittersperr-
spannung $U_{B1E} = -U_{EB1} - UJT$
Spannung zwischen Emitter und Basis 1, die
so gepolt ist, daß die Basis 1 positiv gegen
den Emitter ist. Falls nicht anders angegeben,
ist die Basis 2 offen gelassen.

Emitter base-one reverse voltage, emitter
reverse voltage $U_{B1E} = -U_{EB1} - UJT$
Voltage between base-one and emitter, having
base-two open unless otherwise stated.

U_{BE}
Basis-Emitterspannung

Base-emitter voltage

U_{BEsat}
Basis-Sättigungsspannung

Base saturation voltage

Die Basis(-Emitter-) Sättigungsspannung
 U_{BEsat} ist die Basis-Emitter-Spannung, die
zur Kollektor-Emitter-Sättigungsspannung
 U_{CEsat} gehört.

The base-emitter saturation voltage U_{BEsat}
is the base-emitter voltage which belongs to
the collector-emitter saturation voltage
 U_{CEsat} .

$U_{(BR)}$ **Durchbruchspannung**

Spannung in Sperrrichtung, von der ab eine geringe Spannungserhöhung einen steilen Anstieg des Sperrstromes hervorruft. Sie wird angegeben als Spannung bei einem bestimmten, in den Datenblättern vermerkten Wert des Sperrstromes.

Beim UJT: Aus der Emitter-Basis 1-Sperrspannung $-U_{EB1} = U_{B1E}$ folgende Emitter-Basis 1-Durchbruchspannung $U_{(BR)B1E}$:

 $U_{(BR)CBO}$

Kollektor-Basis-Durchbruchspannung,
Emitter nicht angeschlossen

 $U_{(BR)CEO}$

Kollektor-Emitter-Durchbruchspannung,
Basis nicht angeschlossen

 $U_{(BR)EBO}$

Emitter-Basis-Durchbruchspannung,
Kollektor nicht angeschlossen

 $U_{(BR)ECO}$

Emitter-Kollektor-Durchbruchspannung,
Basis nicht angeschlossen

 U_{CB}

Kollektor-Basisspannung

 U_{CBO}

Kollektor-Basis-Sperrspannung,
Emitter nicht angeschlossen

Allgemein bezeichnet man bei Transistoren eine an zwei Anschlüsse gelegte Spannung als Sperrspannung, wenn diese so gepolt ist, daß die betreffende Sperrsicht in Sperrrichtung betrieben wird. Dabei wird die Be- schaltung des dritten Anschlusses getrennt angegeben.

 U_{CC}

Kollektorschaltungsspannung

 U_{CE}

Kollektor-Emitter-Spannung

 U_{CEO}

Kollektor-Emitter-Sperrspannung,
Basis nicht angeschlossen

 U_{CER}

Kollektor-Emitter-Sperrspannung
bei einem Widerstand R_{BE} zwischen
Basis und Emitter

 U_{CES}

Kollektor-Emitter-Sperrspannung
bei Kurzschluß Basis-Emitter

Breakdown voltage

Reverse voltage at which a small increase in voltage results in a sharp rise of reverse current. It is given in technical data sheet for a specified current.

UJT: Emitter base-one breakdown voltage, $U_{(BR)B1E}$, derived from emitter base-one reverse voltage, $-U_{EB1} = U_{B1E}$.

**Breakdown voltage, collector-base,
open emitter.**

**Breakdown voltage, collector-emitter,
open base.**

**Breakdown voltage, emitter-base,
open collector.**

**Breakdown voltage, emitter-collector,
open base.**

Collector-base voltage

Collector-base voltage, open emitter.

Generally reverse biasing is the voltage applied to any of two terminals of a transistor in such a way that one of the junction operates in reverse direction, whereas the third terminal (second junction) is specified separately.

Collector supply voltage**Collector-emitter voltage**

Collector-emitter voltage, open base.

**Collector-emitter voltage with
a resistor R_{BE} connected between
base and emitter**

**Collector-emitter voltage, short circuit
between base and emitter**

U_{CEsat}

Kollektor-Emitter-Sättigungsspannung

Die Kollektor-Emitter-Sättigungsspannung U_{CEsat} ist als die Kollektor-Emitter-Spannung an der Übersteuerungsgrenze für einen bestimmten Kollektorstrom I_C definiert.

U_{CEsat} wird angegeben

a) als Kollektor-Emitterspannung, bei der die Kollektor-Basisspannung für einen bestimmten Wert des Kollektorstromes den Wert Null annimmt.

Saturation voltage, collector-emitter

Collector saturation voltage is the d. c. voltage between collector and emitter for specified saturation conditions.

Saturation voltage U_{CEsat} is given:

a) for a specified value of I_C , where the base emitter voltage equals the collector-emitter voltage, i. e. $U_{CB} = 0$.

Fig. 1.18.

b) für einen bestimmten Kollektorstrom I_C und einen bestimmten Basisstrom I_B , wobei der dazu gehörende Kennlinienpunkt unter Berücksichtigung der Exemplarstreuungen mit Sicherheit im Übersteuerungsbereich liegt.

b) for a specified value of I_C and I_B , where the operating point lies in saturation region i. e. $U_{CE} < U_{CB}$.

Fig. 1.19.

c) bei einem Kollektorstrom I_C für eine Kennlinie mit $I_B = \text{konst.}$, die durch den Kennlinienpunkt $I_C' = K \cdot I_C$ (z. B. $K = 1,1$) bei einer bestimmten Kollektor-Emitter-Spannung (z. B. $U_{CE} = 1 \text{ V}$) geht.

c) for a specified value of I_C on the characteristic curve with $I_B = \text{const.}$ which intersects the curve point $I_C' = K \cdot I_C$ ($K = 1,1$) and a specified value of collector-emitter voltage ($U_{CE} = 1 \text{ V}$).

Fig. 1.20.

U_{CEV}
Kollektor-Emitter-Sperrspannung
bei gesperrter Emitterdiode

Collector-emitter voltage, with reverse base emitter voltage

U_{EB1}
Emitter-Basis 1-Spannung – UJT
Spannung am Emitter,
gemessen gegen Basis 1.

Emitter base-one voltage – UJT
Voltage measured between emitter and base-one. It is also known as emitter voltage.

U_{EBO}
Emitter-Basis-Sperrspannung
bei offenem Kollektor

Emitter-base voltage, with open collector

U_{EB1sat}
Emitter-Basis-Sättigungsspannung – UJT
Emitterspannung im Sättigungsbereich.
Andere Bezeichnung für Durchlaßspannung.

Emitter base-one saturation voltage – UJT
Voltage between emitter and base-one when the device is in the saturation region. It is also known as emitter saturation or forward voltage.

U_F
Durchlaßspannung – UJT
Emitter-Basis 1-Spannung, die von einem Durchlaßstrom verursacht wird.

Forward voltage – UJT
Emitter base-one voltage due to the flow of forward current.

U_{HF}
Hochfrequenzspannung, Effektivwert

RF voltage, RMS value

\hat{U}_{HF}
Hochfrequenzspannung, Scheitelwert

RF voltage, peak value

U_n
Rauschspannung, Effektivwert

Noise voltage (RMS value)

U_p
Höckerspannung – UJT
Maximalwert der Emitter-Basis 1-Spannung im Arbeitsbereich der betreffenden Baulemente

Peak point voltage – UJT
Maximum value of emitter base-one voltage with the corresponding circuit elements (resistances).

U_R

Sperrspannung

An einem PN- bzw. NP-Übergang gelegte Spannung, die so gepolt ist, daß der Übergang in Sperrrichtung betrieben wird.

Reverse voltage

Voltage drop which results from the flow of reverse current.

An external voltage applied to a semiconductor PN or NP junction to reduce the flow of current across the junction and thereby widen the depletion region.

U_S

Speisespannung, Versorgungsspannung

U_T

Temperaturspannung

U_V

Talspannung – UJT

Minimalwert der Emitter-Basis 1-Spannung im Arbeitsbereich des betreffenden Bauelements.

Supply voltage

Voltage due to temperature

Valley point voltage – UJT

Minimum voltage value between emitter and base-one in operating range with the corresponding circuit resistances.

y

Die Admittanzmatrix ist ein Anordnungsschema der y -Koeffizienten:

$$(y) = \begin{pmatrix} y_i & y_r \\ y_f & y_o \end{pmatrix} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$$

Die y -Koeffizienten (y -Parameter) sind die Koeffizienten der Vierpolgleichungen in Admittanzform:

$$I_1 = y_i \cdot U_1 + y_r \cdot U_2 = y_{11} \cdot U_1 + y_{12} \cdot U_2$$

$$I_2 = y_f \cdot U_1 + y_o \cdot U_2 = y_{21} \cdot U_1 + y_{22} \cdot U_2$$

y_i

Kurzschluß-Eingangsadmittanz

$$y_i = y_{11} = \left(\frac{I_1}{U_1} \right)_{U_2=0}$$

Je nach verwandelter Grundschaltung wird den Kurzzeichen der y -Koeffizienten im Index ein e, b oder c angehängt.

y -parameters are the coefficients of equations of two-port network given in admittance form:

Short-circuit input admittance

Parameter values are circuit configuration dependent; therefore, a further subscript e, b or c is used to identify the circuit configuration.

y_{ib}

Kurzschluß-Eingangsadmittanz

in Basisschaltung

(Kleinsignalwert)

$$y_{ib} = g_{ib} + j\omega C_{ib}$$

y_{ie}

Kurzschluß-Eingangsadmittanz

in Emitterschaltung

(Kleinsignalwert)

$$y_{ie} = g_{ie} + j\omega C_{ie}$$

Short circuit input admittance

in common base configuration

(small signal value)

Short circuit input admittance

in common emitter configuration

(small signal value)

y_r
Kurzschluß-Rückwärts-Steilheit (Remittanz)

$$y_r = y_{12} = \left(\frac{I_1}{U_2} \right)_{U_1=0}$$

$|y_{rb}|$
Kurzschluß-Rückwärtssteilheit
(Remittanz) in Basisschaltung
(Kleinsignalwert)

$$y_{rb} = |y_{rb}| \exp \varphi_{rb}$$
$$= g_{rb} + j\omega C_{rb}$$

$|y_{re}|$
Kurzschluß-Rückwärtssteilheit
(Remittanz) in Emitterschaltung
(Kleinsignalwert)

$$y_{re} = |y_{re}| \exp \varphi_{re}$$
$$= g_{re} + j\omega C_{re}$$

y_f
Kurzschluß-Vorwärts-Steilheit (Transmittanz)

$$y_f = y_{21} = \left(\frac{I_2}{U_1} \right)_{U_2=0}$$

$|y_{fb}|$
Kurzschluß-Vorwärtssteilheit
(Transmittanz), in Basisschaltung
(Kleinsignalwert)

$$y_{fb} = |y_{fb}| \exp \varphi_{fb}$$

$|y_{fe}|$
Kurzschluß-Vorwärtssteilheit
(Transmittanz), in Emitterschaltung
(Kleinsignalwert)

$$y_{fe} = |y_{fe}| \exp \varphi_{fe}$$

y_o
Kurzschluß-Ausgangsadmittanz

$$y_o = y_{22} = \left(\frac{I_2}{U_2} \right)_{U_1=0}$$

y_{ob}
Kurzschluß-Ausgangsadmittanz
in Basisschaltung
(Kleinsignalwert)

$$y_{ob} = g_{ob} + j\omega C_{ob}$$

y_{oe}
Kurzschluß-Ausgangsadmittanz
in Emitterschaltung
(Kleinsignalwert)

$$y_{oe} = g_{oe} + j\omega C_{oe}$$

Short-circuit reverse transfer admittance

*Short-circuit reverse transfer admittance
in common base configuration
(small signal value)*

*Short-circuit reverse transfer admittance
in common emitter configuration
(small signal value)*

Short-circuit forward transfer admittance

*Short-circuit forward transfer admittance
in common base configuration
(small signal value)*

*Short-circuit forward transfer admittance
in common emitter configuration
(small signal value)*

Short-circuit output admittance

*Short-circuit output admittance
in common base configuration
(small signal value)*

*Short-circuit output admittance
in common emitter configuration
(small signal value)*

Aus den γ -Koeffizienten lassen sich folgende Betriebsgrößen ableiten:

The following electrical characteristics can be calculated from the above mentioned admittance parameters

Fig. 1.21.

Stromverstärkung

$$A_i = \frac{I_2}{I_1} = \frac{y_{21} \cdot Y_L}{y_{11}(y_{22} + Y_L) - y_{12}y_{21}}$$

Spannungsverstärkung

$$A_u = \frac{U_2}{U_1} = \frac{-y_{21}}{y_{22} + Y_L}$$

Eingangsadmittanz

$$y_{in} = \frac{I_1}{U_1} = y_{11} - \frac{y_{12} \cdot y_{21}}{y_{22} + Y_L}$$

Ausgangsadmittanz

$$y_{out} = \frac{I_2}{U_2} = y_{22} - \frac{y_{12} \cdot y_{21}}{y_{11} + Y_G}$$

Leistungsverstärkung

$$G_p = \frac{P_{out} \cdot G_L}{P_{in} \cdot g_{in}} \cdot |A_u|^2$$

$$= \frac{G_L}{g_{in}} \cdot \left| \frac{y_{21}}{y_{22} + Y_L} \right|^2$$

Für Niederfrequenz werden in einigen Fällen, für Hochfrequenz durchweg die Koeffizienten der Admittanz (γ)-Matrix oder Elemente der Ersatzschaltung nach Giacoletto (siehe 1.1.3.) benutzt. Die γ -Koeffizienten gelten jeweils für einen bestimmten Arbeitspunkt und einen schmalen Frequenzbereich in der Umgebung einer bestimmten Frequenz.

Die γ -Koeffizienten werden teilweise getrennt nach Realteil und Imaginärteil oder nach Betrag und Phase angegeben

$$\gamma_i = g_i + j \omega C_i$$

$$g_i$$

Kurzschluß-Eingangsleitwert

Current amplification

Voltage amplification

Input admittance

Output admittance

Power gain

By AF in certain cases and for RF throughout, the coefficients of γ -parameters are used or the equivalent circuit according to Giacoletto (see 1.1.3.). The γ -coefficients are valid only for a specified operating point and a specified frequency with narrow (frequency) range.

The γ -parameters are given sometimes separately as real and imaginary or according to its modulus and phase.

Short circuit input conductance

C_j	
Kurzschluß-Eingangskapazität	<i>Short circuit input capacitance</i>
$y_r = g_r + j \omega C_r = y_r \cdot \exp(j\varphi_r)$	
φ_r	
Kurzschluß-Rückwirkungsleitwert	<i>Short circuit reverse conductance</i>
C_r	
Kurzschluß-Rückwirkungskapazität	<i>Short circuit reverse capacitance</i>
$ y_r $	
Betrag der Rückwärtssteilheit	<i>Modulus of the short circuit reverse transfer admittance</i>
φ_f	
Phasenwinkel der Rückwärtssteilheit	<i>Phase of the short circuit reverse transfer admittance</i>
$y_f = y_f \cdot \exp(j \cdot \varphi_f)$	
y_f	
Betrag der Vorwärtssteilheit	<i>Modulus of the short circuit forward transfer admittance</i>
φ_f	
Phasenwinkel der Vorwärtssteilheit	<i>Phase of the short circuit forward transfer admittance</i>
$y_0 = g_0 + j \omega C_0$	
g_0	
Kurzschluß-Ausgangsleitwert	<i>Short circuit output conductance</i>
C_0	
Kurzschluß-Ausgangskapazität	<i>Short circuit output capacitance</i>
Y_G	
Generatorscheinwiderstand	<i>Generator admittance</i>
φ	
Phasenwinkel	<i>Phase angle</i>
φ_{fb}	
Phasenwinkel der Kurzschluß-Vorwärtssteilheit y_{fb}	<i>Phase of the short-circuit forward transfer admittance y_{fb}</i>
φ_{fe}	
Phasenwinkel der Kurzschluß-Vorwärtssteilheit y_{fe}	<i>Phase of the short-circuit forward transfer admittance y_{fe}</i>
φ_{rb}	
Phasenwinkel der Kurzschluß-Rückwärtssteilheit y_{rb}	<i>Phase of the short-circuit reverse transfer admittance y_{rb}</i>
φ_{re}	
Phasenwinkel der Kurzschluß-Rückwärtssteilheit y_{re}	<i>Phase of the short-circuit reverse transfer admittance y_{re}</i>

Z_{thP}

Thermischer Widerstand bei Impulsbelastung.
Bei der Ermittlung der maximalen Verlustleistung eines Transistors bei periodischem, rechteckförmigen Pulsbetrieb (P_{totM}) muß mit dem Impulswärmewiderstand Z_{thP} gerechnet werden. Es gilt:

$$P_{totM} = \frac{t_{jM} - t_{case}}{Z_{thP}}$$

t_{jM} = Scheitelwert der maximal zulässigen Kristalltemperatur bei periodisch eingeschwungenem Impulsbetrieb.

t_{jM} ist gleich t_{jmax} zu setzen.

Damit ist die maximale Verlustleistung bei Pulsbetrieb

$$P_{totM} = \frac{t_{jmax} - t_{case}}{Z_{thP}}$$

Z_{thP} ist im Datenblatt in Abhängigkeit der Pulsdauer t_p angegeben. Das Tastverhältnis

$\frac{t_p}{T}$ ist Parameter in diesen Kurven.

Thermal impedance, pulse load.

To determine the maximum power dissipation, P_{totmax} , of a transistor by repetitive rectangular pulse operation, calculation is as follows:

whereas:

$t_{jmax} \hat{=} t_{jM}$ = maximum (crest) allowable crystal temperature by repetitive pulse operation,

Z_{thP} = thermal impedance, pulse operation,

$\frac{t_p}{T}$ as a parameter

Es ist darauf zu achten, daß der so ermittelte P_{totM} Wert mit dem erlaubten Arbeitsbereich in Übereinstimmung zu bringen ist d.h., daß bei hohen U_{CE} -Werten evtl. eine Reduktion bedingt durch Stromkonzentration berücksichtigt werden muß.

Calculated P_{totmax} should correspond with the maximum allowable operating range as shown in Fig.

η
Wirkungsgrad

Efficiency

η_i
Inneres Spannungsverhältnis – UJT
Verhältnis der Emitter-Basis 1-Spannung zur Interbasisspannung für den Emitterstrom Null.
Dieses Verhältnis ist mit dem Widerstand r_{B1} des N-Materials zwischen der N-Seite der Emittersperrschicht und dem Basis 1-Anschluß einerseits und dem Interbasiswiderstand r_{BB} andererseits gegeben.

Intrinsic stand-off ratio – UJT

It is the ratio between emitter base-one voltage and interbase voltage, when the emitter current is zero. This ratio can also be expressed between base-one resistance, r_{B1} , and interbase resistance, r_{BB} , as follows:

τ_s
Speicherzeitkonstante

Storage time constant

▼
Neuer Typ

New type

○
Kann als gütebestätigtes Bauelement geliefert werden

Available as quality tested device

1.2.3. Schaltzeiten

Die Übergänge zwischen Sperrzustand und Durchlaßzustand eines Transistors erfolgen auch bei sprunghaften Änderungen der Steuergröße nicht abrupt, sondern beanspruchen Zeit. Zusätzlich sind diese Übergänge gegenüber Sprüngen der Steuergröße verzögert. Dafür gelten Zeitbegriffe, die mit den folgenden, für NPN-Transistoren geltenden Bildern erklärt werden.

Fig. 1.22. zeigt die zugrunde liegende Schaltung,

Fig. 1.22.

Fig. 1.23. den zeitlichen Verlauf der Steuergröße (des Basisstromes i_B) und Fig. 1.24. den zeitlichen Verlauf des Kollektorstromes i_C beim Verändern der Schalterstellung.

1.2.3. Switching characteristics

By using transistor as a switch one has to bear in mind that the transition from off-state to on-state even by abrupt changes in control values, the signal does not respond instantaneously. The output signal is; therefore, not only delayed but also suffers distortion. These switching characteristics are explained with NPN-transistor.

Fig. 1.22. shows the basic circuit.

Fig. 1.23. and Fig. 1.24. represent the input (i. e. base current, i_B) and output (i. e. collector current, i_C) signals.

Schalterstellung
Switch position

Fig. 1.23.

Fig. 1.24.

Aus dem zeitlichen Verlauf des Kollektorstromes nach Fig. 1.24. im Vergleich zu dem zeitlichen Verlauf des Basisstromes lassen sich die Schaltzeiten ablesen:

t_d	: Verzögerungszeit
t_r	: Anstiegszeit
t_{on} ($t_d + t_r$)	: Einschaltzeit
t_s	: Speicherzeit
t_f	: Abfallzeit
t_{off} ($t_s + t_f$)	: Ausschaltzeit

Diese Schaltzeiten hängen ab vom Transistor-
typ und von der verwendeten Schaltung. Sie
gelten im übrigen nur, wenn die Flankensteil-
heiten des Ansteuerimpulses wesentlich grö-
ßer als die Flankensteilheiten des Kollektor-
stromimpulses sind.

Die Einschaltzeit wird um so kürzer, je größer
der Übersteuerungsfaktor ist. Die Ausschalt-
zeit wird um so länger, je größer der Über-
steuerungsfaktor ist, und um so kürzer, je
größer der Ausräumfaktor ist.

Ausräumfaktor a

Er ist das Verhältnis zwischen dem beim Ab-
leiten der im Basisraum gespeicherten La-
dung fließenden Ausräumstrom I_{B2} zum Ba-
sisstrom I_{B0} :

$$a = -\frac{I_{B2}}{I_{B0}} = -\frac{h_{FE0} \cdot I_{B2}}{I_C}$$

Übersteuerungsfaktor \ddot{u}

Er ist das Verhältnis zwischen dem zum Steuern
benötigten Basisstrom I_{B1} (Steuerstrom) und

dem Basisstrom $I_{B0} = \frac{I_C}{h_{FE0}}$ der erforderlich

ist, um den Transistor bis an die Übersteue-
rungsgrenze $U_{CB} = 0$ durchzusteuern:

$$\ddot{u} = \frac{h_{FE0} \cdot I_{B1}}{I_C}$$

Mit dem Übersteuerungsfaktor „ \ddot{u} “ und dem
Ausräumfaktor „ a “ sowie den vom Transistor-

The transient responses as shown in Fig. 1.24.
with respect to Fig. 1.23. are given as follows:

t_d	: delay time
t_r	: rise time
t_{on} ($t_d + t_r$)	: turn-on time
t_s	: storage time
t_f	: fall time
t_{off} ($t_s + t_f$)	: turn-off time

These switching characteristics depend on
the transistor type, circuit used and are valid
only if the slope of control pulse is much
greater than that of collector current pulse.
If the saturation factor is higher, turn-on time
is shorter, turn-off time is longer. Turn-off time
is shorter, if the on-off base current ratio is
higher.

On-off base current ratio a

It is the ratio between the turn-off base current

I_{B2} to the base current, $I_{B0} = \frac{I_C}{h_{FE0}}$ needed

to drive the transistor to the saturation region
 $U_{CB} = 0$.

Saturation (Overdriving) factor \ddot{u}

It is the ratio between the minimum value of
base current, I_{B1} , to the base current

$I_{B0} = \frac{I_C}{h_{FE0}}$, needed to drive the transistor

to the saturation region $U_{CB} = 0$.

With given saturation factor „ \ddot{u} “, on-off base
current ratio "a", transistor type, on-state (i)

typ gegebenen Werten der Einschaltzeitkonstante τ und der Speicherzeitkonstante τ_s gelten folgende Zusammenhänge für die Schaltzeiten:

$$t_r \approx \tau \cdot \ln \left(\frac{\bar{u} - 0,1}{\bar{u} - 0,9} \right)$$

$$t_f \approx \tau \cdot \ln \left(\frac{a + 0,9}{a + 0,1} \right)$$

and storage (τ_s) time constants, the following conditions for switching characteristics are valid:

Fig. 1.25.

$$t_s \approx \tau_s \cdot \ln \left(\frac{a + \bar{u}}{a + 1} \right)$$

Fig. 1.26.

1.2.4. Unijunction-Transistoren

Unijunction-Transistoren (UJT) sind Silizium-Halbleiterbauelemente mit drei Anschlüssen, die eine $U(I)$ -Kennlinie mit einem Bereich negativen differentiellen Widerstandes besitzen. Fig. 1.27. zeigt eine schematische Darstellung, Fig. 1.28. das Schaltungssymbol und Fig. 1.29. eine Ersatzschaltung des Unijunction-Transistor.

Fig. 1.27.

Fig. 1.28.

Fig. 1.29.

1.2.4. Unijunction transistors

Unijunction Transistors (UJTs) are silicon semiconductor devices having three terminals, exhibiting stable open circuit and negative resistance characteristics. Fig. 1.27. shows physical sketch, fig. 1.28. circuit diagram symbol and fig. 1.29. an equivalent circuit diagram.

Der UJT besteht aus einem homogen N-dotierten Einkristall mit zwei sperrschichtfreien Kontakten, die einander gegenüberliegen und als Basis 1 (B_1) und Basis 2 (B_2) bezeichnet werden. Unsymmetrisch dazwischen befindet sich eine als Emitter (E) bezeichnete P-Zone. Die durch diese P-Zone im N-Material gebildete Sperrschiicht kann als Diode aufgefaßt werden. Damit wird der durch das N-Material zwischen B_1 und B_2 gebildete und von außen meßbare Gesamtwiderstand r_{BB} (Interbasiswiderstand) bei nicht geschlossenem bzw. in Sperrrichtung vorgespanntem Emitter in die zwei Teilwiderstände r_{B1} und r_{B2} aufgeteilt. Bei Anliegen einer Spannung U_{B2B1} entsteht an der N-Seite der Sperrschiicht eine Spannung $\eta_i \cdot U_{B2B1}$, wobei:

$$\eta_i = \frac{r_{B1}}{r_{B1} + r_{B2}}$$

als inneres Spannungsverhältnis bezeichnet wird.

Fig. 1.30. zeigt den Zusammenhang zwischen U_{EB1} und I_E für einen gegebenen Wert von U_{B2B1} sowie für $I_{B2} = 0$.

The UJT consists of a uniformly doped N-type single crystal with ohmic contacts at each end. These two contacts are denoted as base-one (B_1) and base-two (B_2). An unsymmetrical rectifying contact (PN-junction) is made between B_1 and B_2 which is termed as an emitter (E).

Between B_1 and B_2 , this N-type silicon bar has the characteristics of an ordinary resistance which (the emitter is open or the junction is reverse biased) is known as interbase resistance, $r_{BB} = r_{B1} + r_{B2}$. With applied voltage U_{B2B1} (fig. 1.29.), the voltage on the N-side of the emitter junction is $\eta_i \cdot U_{B2B1}$ whereas η_i is termed as the intrinsic stand-off ratio which is given as:

The important I_E / U_{EB1} characteristics for $I_{B2} = 0$ and for a constant interbase voltage, U_{B2B1} , are shown in figure 1.30.

Fig. 1.30.

Für $I_{B2} = 0$ ergibt sich die Kennlinie einer normalen Siliziumdiode. Für $I_{B2} > 0$, d. h. für anliegende Interbasisspannung U_{B2B1} erhält man eine Kennlinie, die in drei Bereiche eingeteilt werden kann: den Sperrbereich, den Bereich negativen differentiellen Widerstandes und den Sättigungsbereich.

Wenn die Spannung U_{EB1} kleiner als $\eta_i \cdot U_{B2B1}$ ist, befindet sich die Diode in Sperrrichtung, und es fließt lediglich ein Sperrstrom (Sperrbereich, I_E -Maßstab in Fig. 2.30. stark

With $I_{B2} = 0$, the curve represents a conventional forward-biased silicon diode.

With $I_{B2} > 0$ i. e. by applying U_{B2B1} , the curve should be divided for further discussion into three regions i. e., cut-off, negative resistance and saturation.

If the applied voltage, U_{EB1} , is less than $\eta_i \cdot U_{B2B1}$, the diode is reverse biased. Then only leakage current flows (cut-off region enlarged). I_E scale in fig. 1.30. But when the

vergrößert). Wird die Spannung U_{EB1} auf den Wert der Höckerspannung $U_P \approx U_D + \eta_i \cdot U_{B2B1}$ vergrößert, dann werden Löcher in das N-Material injiziert (U_D ist die Spannung an der Diode bei Beginn der Ladungsträgerinjektion, ca. 0,7 V). Die Löcher bewegen sich in Richtung B_1 und vergrößern damit die Leitfähigkeit des Halbleitermaterials zwischen E und B_1 (abnehmender Wert von r_{B1}). Diese zunehmende Leitfähigkeit bewirkt, daß die zum Aufrechterhalten eines bestimmten Stromes I_E erforderliche Spannung U_{EB1} abnimmt, was gleichbedeutend mit dem Entstehen eines negativen differentiellen Widerstandes ist. Der Bereich negativen differentiellen Widerstandes erstreckt sich bis zum Talpunkt, von dem ab der Sättigungsbereich beginnt. Eine weitere Verringerung von r_{B1} durch Ladungsträgerinjektion ist dort nicht mehr möglich, und die Kennlinie geht über in die einer normalen Siliziumdiode.

Wegen dieses Kennlinienverlaufs eignet sich der Unijunction-Transistor besonders für die Anwendung in Impulsgeneratoren und Schwellwertverstärkern. Ein bevorzugtes Anwendungsbereich ist die Ansteuerung von Thyristoren und Triacs.

emitter voltage, U_{EB1} , is greater than $\eta_i \cdot U_{B2B1}$, the diode is forward biased. At the peak point voltage, $U_P \approx U_D + \eta_i \cdot U_{B2B1}$, holes are injected into the N-bar (U_D is junction voltage, approximately 0.7 V, at the beginning of hole injection). These injected holes move towards B_1 . Their presence in the semiconductor bar increases the conductivity (decreasing value of r_{B1}) between E and B_1 . This increased conductivity results in a reduced voltage drop U_{EB1} required to support a given current level I_E . Then any increase in that current will increase the conductivity which results in decrease of required voltage, U_{EB1} . Thus a negative resistance region occurs as shown in figure 1.30. This negative resistance range continues until the valley point (U_V and I_V) is arrived. After the valley point, the device behaves as a conventional diode being forward biased and the region of saturation starts.

Due to its negative resistance characteristics, unijunction transistor is particularly useful in the application of pulse generators, timing circuits, voltage sensing circuits and pre-stages for thyristors and triacs.

2. Montagevorschriften

2.1. Allgemeines

Die Einbaulage der Halbleiterbauelemente ist beliebig. Bei allen Halbleiterbauelementen ist das Abbiegen der Anschlußdrähte in einem Abstand von mehr als 1,5 mm vom Gehäuseboden gestattet, falls der Durchmesser der Anschlußdrähte 0,5 mm nicht überschreitet. Anschlußdrähte mit größerem Durchmesser sollten nicht gebogen werden.

Der Einbau von Halbleiterbauelementen in der Nähe von wärmeerzeugenden Bauelementen erfordert die Beachtung der erhöhten Umgebungstemperatur.

2.2. Lötvorschriften

Die Halbleiterbauelemente müssen beim Einlöten in die Schaltung gegen thermische Überlastung geschützt werden. Es empfiehlt sich, die Anschlußdrähte möglichst lang zu lassen und die Lötstellen an das Ende der Drähte zu legen. Gegebenenfalls müssen Maßnahmen für eine ausreichende Wärmeableitung getroffen werden. Die Sperrsichttemperatur der Halbleiterbauelemente darf beim Löten die maximal zulässige Sperrsichttemperatur nur kurzzeitig (max. 1 Minute) überschreiten, und zwar bei Germanium-Bauelementen bis 110 °C, bei Silizium-Bauelementen bis 200 °C.

Die in Fig. 2.1. angegebenen Lötkolben- bzw. Lötbadtemperaturen sind maximal zulässig:

2. Mounting Instructions

2.1. General

Semiconductor devices can be mounted in any position. If the diameter of terminal lead is less than 0.5 mm, bending of leads is allowed at least 1.5 mm away from the semiconductor body (header). Bending should be avoided, if the thickness is greater than 0.5 mm.

When semiconductor devices are mounted near those components with high generation of heat, one should give consideration to high ambient temperature.

2.2. Soldering instructions

Semiconductor devices should be protected against overheating due to soldering. It is recommended to keep the lead as long as possible and to reserve the soldering at the end of the terminal. Otherwise precautions should be taken for heat transfer.

The junction temperature of a semiconductor device may exceed the maximum absolute junction temperature for short time (max. one minute) such as 110 °C for germanium and 200 °C for silicon devices.

The following maximum soldering iron (or solder bath) temperatures are permissible:

	Kolbenlötzung Iron soldering				Tauch- bzw. Schwallbadlötzung Dip or flow soldering		
	Temperatur des Lötkolbens Iron temperature	Abstand der Lötstelle vom Gehäuse Soldering distance from the case	Max. zul. Lötzzeit Max. allowable soldering time	Temperatur des Lötbades Soldering temperature	Abstand der Lötstelle vom Gehäuse Soldering distance from the case	Max. zul. Lötzzeit Max. allowable soldering time	
Metall-gehäuse Metal case	≤ 245 °C ≤ 245 °C 245...350 °C	1,5...5 mm > 5 mm > 5 mm	5 s 10 s 5 s	≤ 245 °C 245...300 °C	> 1,5 mm > 5 mm	5 s 3 s	
Kunststoff-gehäuse Plastic case	≤ 245 °C ≤ 245 °C	2...5 mm > 5 mm	3 s 5 s	≤ 245 °C 245...300 °C	> 2 mm > 5 mm	3 s 2 s	

Fig. 2.1.

2.3. Wärmeableitung

Die an den Sperrsichten von Halbleitern in Wärme umgesetzte Verlustleistung muß zur Erhaltung des thermischen Gleichgewichtes an die Umgebung abgeführt werden.

Bei Bauelementen, die mit kleiner Verlustleistung betrieben werden, reicht dazu im allgemeinen die natürliche Wärmeableitung über das Gehäuse an die umgebende Luft aus.

Bei mit größerer Verlustleistung betriebenen Bauelementen müssen zum Verbessern der Wärmeableitung Kühlfahnen oder Kühlsterne vorgesehen werden, womit die wärmeabgebende Oberfläche vergrößert wird.

Bei Leistungsbauelementen schließlich müssen Kühlbleche oder spezielle Kühlkörper verwendet werden, deren Kühlwirkung noch durch besondere Kühlmittel oder Umlaufkühlung unterstützt werden kann.

Die in der Sperrsicht erzeugte Wärme wird hauptsächlich durch Wärmeleitung zur Gehäuseoberfläche oder zum Gehäuseboden abgeführt. Ein Maß dafür ist immer der thermische Widerstand Sperrsicht-Gehäuse R_{thJC} , dessen Wert durch die Konstruktion des Bauelementes festgelegt ist.

Die Wärmeabgabe vom Gehäuse zur Umgebungsluft erfolgt durch Wärmeabstrahlung, Konvektion und Wärmeableitung. Sie wird durch den äußeren bzw. den thermischen Widerstand Gehäuse-Umgebung R_{thCA} ausgedrückt. Der gesamte thermische Widerstand zwischen Sperrsicht und Umgebungsluft ist:

$$R_{thJA} = R_{thJC} + R_{thCA}$$

Die maximal zulässige Gesamtverlustleistung $P_{tot\ max}$ eines Halbleiterbauelements läßt sich mit der Gleichung

$$P_{tot\ max} = \frac{t_{jmax} - t_{amb}}{R_{thJA}} = \frac{t_{jmax} - t_{amb}}{R_{thJC} + R_{thCA}}$$

berechnen.

t_{jmax}

Maximal zulässiger Wert der Sperrsichttemperatur.

t_{amb}

Im Betrieb unter ungünstigsten Bedingungen auftretender Größtwert der Umgebungstemperatur.

2.3. Heat removal

To keep the thermal equilibrium, the heat generated in the semiconductor junction(s) must be removed to the ambient.

In the case of low-power devices the natural heat-conductive path between case and surrounding air is usually adequate for this purpose.

However, in the case of medium-power devices heat radiation may have to be improved by the use of star- or flag-shaped heat dissipators, which increase the heat radiating surface.

Finally, in the case of high-power devices special heat sinks must be provided, the cooling effect of which can be increased further by the use of special coolants or air blowers.

The heat generated in the junction is conveyed to the case or header by conduction rather than convection; a measure of the effectiveness of heat conduction is the inner thermal resistance or thermal resistance junction-case, R_{thJC} , the value of which is governed by the construction of the device.

Any heat transfer from the case to the surrounding air involves radiation convection and conduction, the effectiveness of transfer being expressed in terms of an R_{thCA} -value, i. e. the external or case-ambient thermal resistance. The total thermal resistance junction ambient is consequently:

The total maximum power dissipation, $P_{tot\ max}$ of a semiconductor device can be expressed as follows:

whereas

is the maximum junction temperature,

the highest ambient temperature likely to be reached under the most unfavourable conditions,

R_{thJC}

Thermischer Widerstand zwischen Sperrschicht und Gehäuse.

R_{thJA}

Thermischer Widerstand zwischen Sperrschicht und Umgebung.

R_{thCA}

Thermischer Widerstand zwischen Gehäuse und Umgebung, dessen Wert von den Kühlbedingungen abhängt.

Bei Verwendung eines Kühlbleches oder eines Kühlkörpers wird R_{thCA} bestimmt von dem Wärmekontakt zwischen Gehäuse und Kühlkörper, von der Wärmeausbreitung im Kühlkörper und von der Wärmeabgabe des Kühlblechs an die Umgebung.

Die maximal zulässige Gesamtverlustleistung lässt sich demnach für ein gegebenes Halbleiterbauelement nur durch Ändern von t_{amb} und R_{thCA} beeinflussen. Der thermische Widerstand R_{thCA} muss den Angaben der Kühlkörperhersteller entnommen oder durch Messungen bestimmt werden.

Werden Kühlbleche vorgesehen und ist keine optimale Auslegung erforderlich, dann genügen folgende Näherungsangaben für die Dimensionierung:

Die nachstehenden Kurven geben den thermischen Außenwiderstand R_{thCA} an, der bei Verwendung quadratischer Kühlbleche aus Aluminium mit der Kantenlänge a gilt, wenn das Gehäuse des Bauelements mit einer ebenen Fläche direkt auf dem Kühlblech aufliegt.

the thermal resistance, junction-case,

the thermal resistance, junction-ambient,

the thermal resistance, case-ambient, the value of which depends on cooling conditions.

If a heat dissipator or sink is used, then R_{thCA} depends on the thermal contact between case and heat sink, heat propagation conditions in the sink and the rate at which heat is transferred to the surrounding air.

Therefore, the maximum allowable total power dissipation for a given semiconductor device can be influenced only by changing t_{amb} and R_{thCA} . The value of R_{thCA} could be obtained either from the data of heat sink suppliers or through direct measurements.

In case of cooling plates as heat sink without optimum performance, the following approach holds good.

The curves shown in both figures are given for thermal resistance R_{thCA} by using square plates of aluminium with edge length, a , but with different thicknesses. Thereby, the device case should be mounted direct on the cooling plate.

Fig. 2.2.

Fig. 2.3.

Die aus Fig. 2.2. und 2.3. gewonnenen Kantenlängen a bei vorgegebenen R_{thCA} werden je nach Einbaulage und Oberfläche des Kühlbleches mit den Faktoren α und β multipliziert:

$$a' = \alpha \cdot \beta \cdot a$$

$\alpha = 1,00$ bei senkrechter Montage

$\alpha = 1,15$ bei waagerechter Montage

$\beta = 1,00$ bei blanker Oberfläche

$\beta = 0,85$ bei mattschwarzer Oberfläche

The edge length, a , derived from Fig. 2.2. and 2.3. for a given R_{thCA} value must be multiplied with α and β :

where

$\alpha = 1.00$ for vertical arrangement

$\alpha = 1.15$ for horizontal arrangement

$\beta = 1.00$ for bright surface

$\beta = 0.85$ for dull black surface

2.3.1. Beispiel:

Für einen Silizium-Leistungstransistor mit $t_{jmax} = 150^\circ\text{C}$ und $R_{thJC} = 5^\circ\text{C}/\text{W}$ ist ein quadratisches Kühlblech aus blankem Aluminium, waagerecht angeordnet, Blechstärke 2 mm zu berechnen. Die höchstvorkommende Umgebungstemperatur beträgt $t_{amb} = 50^\circ\text{C}$ und die Verlustleistung $P_{tot max} = 8 \text{ W}$.

$$P_{tot max} = \frac{t_{jmax} - t_{amb}}{R_{thJC} + R_{thCA}}$$

$$R_{thCA} = \frac{t_{jmax} - t_{amb}}{P_{tot}} - R_{thJC} = \frac{150^\circ\text{C} - 50^\circ\text{C}}{8 \text{ W}} - 5^\circ\text{C}/\text{W} = 7,5^\circ\text{C}/\text{W}$$

$\Delta t = t_{case} - t_{amb}$ lässt sich aus der Beziehung

$$P_{tot max} = \frac{t_{jmax} - t_{amb}}{R_{thJC} + R_{thCA}} = \frac{t_{case} - t_{amb}}{R_{thCA}}$$

ermitteln:

$$t_{case} - t_{amb} = \frac{R_{thCA}(t_{jmax} - t_{amb})}{R_{thJC} + R_{thCA}} = \frac{7,5^\circ\text{C}/\text{W} (150^\circ\text{C} - 50^\circ\text{C})}{5^\circ\text{C}/\text{W} + 7,5^\circ\text{C}/\text{W}} = 60^\circ\text{C}$$

Mit $R_{thCA} = 7,5^\circ\text{C}/\text{W}$ und $\Delta t = 60^\circ\text{C}$ ergibt sich aus den Kurven für eine Blechstärke von 2 mm eine Kantenlänge „ a “ = 90 mm. Dieser Wert muß wegen der waagerechten Anordnung noch mit dem Faktor $\alpha = 1,15$ multipliziert werden, so daß für das Kühlblech eine Kantenlänge von 105 mm vorzusehen ist.

Soll aus einem gegebenen Kühlblech die zulässige Verlustleistung berechnet werden, so ist mit einem angenommenen Δt zu rechnen. Das Ergebnis ist eventuell mit dem tatsächlichen Δt neu zu bestimmen.

2.3.1. Example

For a silicon power transistor having $t_{jmax} = 150^\circ\text{C}$ and $R_{thJC} = 5^\circ\text{C}/\text{W}$, an aluminium square sheet is used, having 2 mm thickness in horizontal arrangement. Maximum ambient temperature is 50°C and maximum power dissipation, $P_{tot max} = 8 \text{ W}$. Calculate edge length of the square plate.

$\Delta t = t_{case} - t_{amb}$ can be calculated from

With $R_{thCA} = 7,5^\circ\text{C}/\text{W}$ and $\Delta t = 60^\circ\text{C}$, plate thickness = 2 mm; therefore the edge length „ a “ = 90 mm. This value should be multiplied with $\alpha = 1.15$ due to horizontal arrangement.

Hence the actual edge length = 105 mm.

For a given plate sheet length, the allowable power dissipation should be first calculated with supposed Δt . The result should be corrected then with actual Δt .

2.4. Erlaubte Arbeitsbereiche von Leistungstransistoren

Zum Vermeiden von Überlastungen, die zur Zerstörung führen können, sind beim Betrieb von Leistungstransistoren eine Reihe von Grenzen zu beachten. Mit diesen Grenzen wird ein erlaubter Arbeitsbereich festgelegt, wie er z. B. im nachstehenden Bild dargestellt ist. Dieser Arbeitsbereich gilt nur für Leistungstransistoren, die thermisch stabil betrieben werden, und für eine bestimmte Gehäuseterminatur. Für Impulsbetrieb können die angegebenen Grenzen kurzzeitig überschritten werden, wie es z. B. die gestrichelten Linien im Bild andeuten.

Der im Bild in Form eines $I_C(U_{CE})$ -Diagrammes mit logarithmischer Teilung beider Achsen dargestellte „Erlaubte Arbeitsbereich“ eines Transistors enthält alle für einen zuverlässigen Betrieb erforderlichen Begrenzungen.

I. Maximaler Kollektordauerstrom. Wird dieser Wert überschritten, dann kann das Transistorelement zerstört werden bzw. die Anschlußdrähte können durchbrennen.

II. Belastungsbegrenzung durch R_{thJC} und t_{jmax} :

In diesem Bereich ist die zulässige Verlustleistung nicht von der Betriebsspannung abhängig, d. h. das Produkt $U_{CE} \cdot I_C$ ist konstant. Die Verlustleistungshyperbel erscheint in der doppellogarithmischen Darstellung des Arbeitsbereiches als Gerade mit der Neigung von 135° .

III. Belastungsbegrenzung zum Vermeiden eines zweiten Durchbruchs: Bei höheren Betriebsspannungen können örtliche Stromkonzentrationen auftreten, die lokale Überhitzungen der Sperrsicht bewirken. Dadurch können Schmelzkanäle entstehen, falls die zugeführte Energie einen kritischen Wert überschreitet. Das führt zur Zerstörung des Transistors. Die Stromkonzentrationen entstehen entweder am Emitterrand oder in der Mitte der wirksamen Basiszone, abhängig davon ob die Emitterdiode in Durchlaß- oder in Sperrrichtung betrieben wird.

Die zu einem zweiten Durchbruch führende Energie ist im Falle einer gesperrten Emittordiode beträchtlich niedriger als für eine in Durchlaßrichtung betriebene Diode, weil die Stromkonzentrationen im erstgenannten Fall auf einen sehr kleinen Querschnitt beschränkt sind.

2.4. Maximum operating range for power transistors

To avoid the destruction of power transistors there are certain maximum ratings which must be observed. These ratings define a safe operating area as shown in diagram both for steady and pulse state conditions. They are valid only for power transistors operating with thermal stability and a specified case temperature.

As shown in this log-log diagram, the safe operating area is limited for d. c. conditions by four maximum ratings explained below:

I. Maximum steady collector current. By exceeding this value there is a possibility of chip destruction or the connecting wires inside the device may melt.

II. Maximum power dissipation due to thermal resistance, R_{thJC} , and junction temperature, t_{jmax} :

For steady operation the product $U_{CE} \cdot I_C$ is constant; therefore, the curve has a slope of 135° in double logarithmic scale as shown in diagram.

III. Maximum rating against second breakdown. This is due to current concentration which results in hot spots and therefore localized melting of the crystal near or at the narrow base width, if the applied energy i. e. voltage, current and time exceeds a critical value. These hot spots occur either at the edges or in the middle of the base according to as the emitter junction is forward or reverse biased.

Energy required for second breakdown is considerably lower in case of reverse biased emitter junction, as compared to forward biased emitter junction, because the current concentration takes place in a very small area.

Die zulässige Verlustleistung nimmt in diesem Bereich mit zunehmender Kollektormittenspannung ab, d. h. die Neigung der Begrenzungslinie wird größer als im Bereich II (der Winkel wird kleiner als 135°).

IV. Begrenzung durch die Durchbruchspannung. Beim Überschreiten dieser Grenze kann ein Lawinendurchbruch erfolgen.

Fig. 2.4.

Beim Impulsbetrieb darf der beschriebene Arbeitsbereich unter bestimmten Voraussetzungen kurzzeitig überschritten werden (siehe gestrichelte Linien). Jedoch darf die maximal zulässige Energie bestimmte, in den „Technischen Daten“ angegebene Werte, nicht überschreiten.

The allowable power dissipation decreases with increasing voltage, therefore, the slope of the corresponding curve in less than 135° .

IV. Maximum (steady) collector voltage. By exceeding this value, there is a possibility of avalanche breakdown.

Begrenzung durch:

- I Kollektorstrom
- II Thermische Belastung
- III Stromkonzentration
- IV Durchbruchspannung

gestrichelte Linie: Impulsbetrieb

Limitation due to:

- I collector current
- II thermal dissipation (power)
- III current concentration
- IV breakdown voltage

dotted line: pulse operation

With pulse operation, it is possible to extend the safe operating area (dotted curves) as shown in diagram, but even then the maximum allowable energy must lie within the specified value.

3. Angaben zur Qualität

3.1. Anlieferungsqualität

Zum Kennzeichnen der Anlieferungsqualität wird folgendes angegeben:

- Maximal- bzw. Minimalwerte der Kenngrößen
- AQL-Werte (Gutlage, Acceptable Quality Level)

Lieferlose, deren prozentualer Fehleranteil gleich oder kleiner als der in Prozent angegebene AQL-Wert ist, werden mit großer Wahrscheinlichkeit ($L \geq 90\%$) aufgrund einer Stichprobenprüfung angenommen (siehe Einfach-Stichprobenplan, Kapitel 3.4.).

3.2. Fehlergruppierung

Die möglichen Fehler, mit denen ein Halbleiterbauelement behaftet sein kann, werden entsprechend dem wahrscheinlichen Einfluß auf eine bestehende Schaltung in Gruppen zusammengefaßt:

● Totalfehler (kritischer Fehler)

Beim Vorliegen eines solchen Fehlers ist jede funktionsgemäße Verwendung des Bauelements ausgeschlossen.

Beispiele: Kontaktunterbrechung, Kurzschluß zwischen zwei Elektroden, zusammengebrochene Sperrkennlinie, falsche Typenkennzeichnung, Drahtbruch, kritische Gehäusefehler.

● Hauptfehler

Beim Vorliegen eines Hauptfehlers ist die Brauchbarkeit des Bauelements stark herabgesetzt.

In den Datenblättern sind die Kenngrößen mit einer Fußnote *) gekennzeichnet, bei denen das Nichteinhalten der angegebenen Grenzen als Hauptfehler bewertet wird. Im Normalfall handelt es sich dabei um folgende Kenngrößen bei $t_{amb} = 25^\circ\text{C}$: I_{CBO} , I_{EBO} , U_{CEsat} und h_{FE} .

● Nebenfehler

Solche Fehler setzen die Brauchbarkeit des Bauelementes zwar herab, beeinträchtigen dessen Funktionsfähigkeit jedoch unwesentlich.

Das Nichteinhalten der angegebenen Grenzen von den Kenngrößen, die in den „Technischen Daten“ kein besonderes Kennzeichen

3. Quality Data

3.1. Delivery quality

To designate the delivery quality, the following specifications are given:

- Maximum and minimum values of the characteristics
- AQL-values (Acceptable Quality Level)

Shipment lots whose defect percentage is equal to or less than the percentage given in AQL-value shall be accepted with greater probability ($L \geq 90\%$) due to sampling tests (see the single sampling plan in section 3.4.).

3.2. Classification of defects

The possible defects with which a semiconductor device could be subjected are classified according to the probable influence of existing circuits:

● Total (critical) defect

When this defect exists; the functional use of the device is impossible.

Examples are: open contacts, inter-electrode short-circuits, breakdown in reverse characteristics, wrong type designation, broken leads, critical case defects.

● Major defect

A defect which is usually responsible for the failure of a device to function in its intended purpose.

In technical data sheets certain characteristics are given with foot note *). If the specified limits are exceeded, it is then considered as a major defect. This normally applies to the following characteristics with $t_{amb} = 25^\circ\text{C}$ for a specified operating point, i. e., I_{CBO} , I_{EBO} , U_{CEsat} and h_{FE} .

● Minor defect

A defect which is responsible for the functioning of a device with no or only a slight reduction in effectiveness.

In technical data sheets there are certain characteristics without special note. If the given limits of these characteristics are excee-

haben, wird als Nebenfehler bewertet. Dabei handelt es sich im Normalfall um dynamische Kenngrößen bei $t_{amb} = 25^\circ\text{C}$, sofern diese nicht für die Hauptanwendung besondere Bedeutung haben, sowie um weitere statische Kenngrößen bei $t_{amb} = 25^\circ\text{C}$, deren Bedeutung für die Hauptanwendung eingeschränkt ist.

3.3. AQL-Werte

Entsprechend der in 3.2. angegebenen Fehlergruppierung gelten in den Datenblättern der Halbleitertypen für professionelle Geräte und Anwendungen – sofern nicht anders vereinbart – die im folgenden genannten AQL-Werte. Diesen liegt der Einfachstichprobenplan für Attributprüfung AEG 1415 (siehe 3.4.) zugrunde, der DIN 40080 entspricht.

Fehlergruppe	Einzel-AQL	Gruppen-AQL
Totalfehler	–	0,25 %
Hauptfehler	0,65 %	–
Nebenfehler	–	2,50 %

Die Summe aller fehlerbehafteten Bauelemente wird mit einem Summen-AQL = 2,5 % bewertet.

In den Datenblättern sind zusätzlich Kenngrößen aufgeführt, deren Überprüfung nur durch aufwendige Messungen möglich ist. Diese Kenngrößen sind, falls sie nicht besondere Bedeutung für die Hauptanwendung haben, durch die Fußnote **) gekennzeichnet. Das Einhalten der angegebenen Grenzen dieser Kenngrößen wird mit einer Stichprobenprüfung nach dem Einfach-Stichprobenplan AEG 1416 (siehe 3.4.) überwacht (entspricht weitgehend ABC-STD 105 D, Prüfstufe S 4). Dafür gilt ein AQL-Wert von 2,5 %.

ded, then it is considered as a minor defect. Normally these are dynamic characteristics with ambient temperature, $t_{amb} = 25^\circ\text{C}$, provided there is no special meaning for main application. Further, there are static characteristics ($t_{amb} = 25^\circ\text{C}$) whose significance for the main application is restricted.

3.3. AQL-values

According to the classification of defects mentioned in 3.2., the following AQL-values, unless otherwise specified, are valid for data sheets of semiconductor devices for professional equipments and applications. Under it, the inspection follows the single sampling plan for attribute testing AEG 1415 (see 3.4.) which corresponds with DIN 40080 (IEC publication 410).

Classification of defects	Single-AQL	Cumulative-AQL
Total defect	–	0.25 %
Major defect	0.65 %	–
Minor defect	–	2.50 %

A cumulative-AQL equal to 2.5 % is valid for all defects mentioned above.

There are additional characteristics given in the data sheets whose measurements are only possible through elaborate and costly tests. These characteristics are given with foot note **) provided they are not of special use for the main application. To check the given limits of these characteristics, a sampling inspection is performed according to single sampling plan AEG 1416 (see 3.4.) which corresponds largely to ABC-STD 105 D, inspection level S 4. In this case an AQL-value of 2.5 % is valid.

3.4. Stichprobenpläne

Zeichenerklärung:

AQL Gutlage
N Losgröße
n Stichprobenumfang
c Annahmezahl
Dmax maximaler Durchschlupf

3.4. Sampling inspection plans

List of symbols:

Acceptable Quality Level
Lot size
Sample size
Acceptance number
Average outgoing quality level

Einfach-Stichprobenplan für Attributprüfung
(AEG 1415)

Single sampling plan for attribute testing (AEG 1415)

normale Prüfung normal inspection		AQL										reduzierte Prüfung reduced inspection	
N		n = c (D _{max} in %)										N	
2 - 15												2 - 15	
16 - 50												16 - 150	
51 - 150												51 - 280	
151 - 280												281 - 500	
281 - 500	200 - 0 (0,18)	125 - 0 (0,29)	80 - 0 (0,45)	50 - 0 (0,71)	32 - 0 (1,1)	20 - 0 (1,7)	13 - 0 (2,6)	8 - 0 (3,9)	5 - 0 (5,7)	3 - 0 (9,6)	2 - 0 (15,6)	501 - 1200	
501 - 1200												1201 - 3200	
1201 - 3200												3201 - 10000	
3201 - 10000												10001 - 35000 ¹⁾	
10001 - 35000 ¹⁾													

Einfach-Stichprobenplan für zerstörende oder sehr teure Prüfungen (AEG 1416, Z-Pläne).

Single sampling plan for destructive or very costly test procedures (AEG 1416, Z-plans).

Z 1 normale Prüfung normal inspection		AQL										Z 2 reduzierte Prüfung reduced inspection	
N		n = c (D _{max} in %)										N	
2 - 25												2 - 50	
26 - 90												51 - 150	
91 - 150												151 - 500	
151 - 500	200 - 0 (0,18)	125 - 0 (0,29)	80 - 0 (0,46)	50 - 0 (0,74)	32 - 0 (1,2)	20 - 0 (1,8)	13 - 0 (2,8)	8 - 0 (4,5)	5 - 0 (7,2)	3 - 0 (11,6)	2 - 0 (16,6)	501 - 3200	
501 - 1200												3201 - 35000 ¹⁾	
1201 - 10000												-	
10001 - 35000 ¹⁾												-	

¹⁾ Losgrößen über 35000 sind zu teilen.

¹⁾ Lot size above 35000 must be divided.

4. Gütebestätigte Bauelemente

Bei den gütebestätigten Halbleiter-Bauelementen wird eine Qualifikations-Prüfung an jedem Typ und bei jedem Fertigungslos eine Requalifikationsprüfung durchgeführt sowie eine laufende Überwachung der Fertigung sichergestellt. Die Überwachung der Muster-Prüfungen, Musterzulassungen und Gütesicherung, gemäß VG 95211, erfolgt durch eine amtliche Prüfstelle, den VDE. Aufgrund des Beschlusses der Electronic Components Quality Assessment and Committee (ECQAC) können die elektronischen Bauelemente, die im Herstellerland durch eine Prüfstelle überprüft und überwacht werden, auch in anderen Mitgliedsländern der ECQAC ohne weitere Prüfungen eingesetzt werden. Die Länder Frankreich, Großbritannien und BRD erkennen bereits ihre Prüf- und Zulassungsstellen gegenseitig an. Diese Bauelemente sind sowohl im Inhaltsverzeichnis als auch in den Datenblättern durch „O“ gekennzeichnet.

5. Paarungsschema für Silizium-NF-Transistoren

Die Silizium-NF-Transistorpaare werden nach folgendem Paarungsschema ausgemessen:

Gruppe Group	Code Code	h_{FE} -Bereich h_{FE} range	
2.5	A	13.2	19.0
	B	17.0	23.6
	C	21.2	30.0
4	D	26.5	37.5
	E	33.5	47.5
	F	42.5	60.0
6	G	53.0	75.0
	H	67.0	95.0
10	I	85.0	118
	K	106	150
16	L	132	190
	M	170	236
25	N	212	300
	O	265	375
40	P	335	475
	R	425	600
60	S	530	750
	T	670	950

Die Transistoren können nur in den aufgeführten Gruppen gepaart geliefert werden.

Die Zahlenwerte der h_{FE} -Bereichsgrenzen sind der DIN-Reihe R 40 entnommen.

4. Qualified Semiconductor Devices

With these qualified semiconductor devices, requalification tests are carried out on every type and production lots. The control of sample testing, sample approval and quality assurance is followed according to VG 95211 through the VDE official testing department. According to the resolution of the Electronic Components Quality Assessment and Committee (ECQAC), the devices tested at the manufactured country through its qualification approval authority, can be used without further testing in the member ECQAC countries. France, United Kingdom and W-Germany mutually accept the agreement.

These devices are indicated with „O“ in table of contents and technical data sheets.

5. Pair conditions for Silicon AF transistors

The silicon AF transistors are measured according to the following pair conditions:

The transistors can be supplied only in the above shown groups.

The values of the h_{FE} range limits are taken from the DIN progression R 40.

6. Aufbau der Datenblätter

Der Aufbau der Datenblattangaben entspricht folgendem Schema:

- Kurzbeschreibung
- Abmessungen (Mechanische Daten)
- Absolute Grenzdaten
- Thermische Kenngrößen – Wärmewiderstände
- Elektrische Kenngrößen

Falls erforderlich sind die Datenblätter mit Vermerken versehen, die eine zusätzliche Information über den beschriebenen Typ vermitteln.

6.1. Kurzbeschreibung

Neben der Typenbezeichnung werden die verwendeten Halbleitermaterialien, die Zonenfolge, die Technologie, die Art des Bauelementes und ggf. der Aufbau genannt.

Stichwortartig werden die typischen Anwendungen und die Besonderen Merkmale aufgeführt.

6.2. Abmessungen (Mechanische Daten)

Für jeden Typ werden in einer Zeichnung die wichtigsten Abmessungen und die Reihenfolge der Anschlüsse dargestellt. Ein Schaltbild ergänzt diese Information. Bei den Gehäusebildern wird die DIN-, JEDEC-, bzw. die handelsübliche Bezeichnung aufgeführt. Das Gewicht des Bauelementes ergänzt diese Angaben.

Besonders zu beachten:

Wenn keine Maßtoleranzen eingetragen sind, gilt folgendes:

Die Werte für die Länge der Anschlüsse und für die Durchmesser der Befestigungslöcher sind Minimalwerte. Alle anderen Maße sind Maximalwerte.

6.3. Absolute Grenzdaten

Die genannten Grenzdaten bestimmen die maximal zulässigen Betriebs- und Umgebungsbedingungen. Wird eine dieser Bedingungen überschritten, so kann das zur Zerstörung des betreffenden Bauelementes führen.

6. Data Sheet Construction

Data sheet information is generally presented in the following sequence:

- Device description
- Dimensions (Mechanical data)
- Absolute maximum ratings
- Thermal data – thermal resistances
- Electrical characteristics

Additional information on device performance is provided if necessary.

6.1. Device description

The following information is provided: type number, semiconductor materials used, sequence of zones, technology used, device type and, if necessary construction.

Also, short-form information on the typical applications and special features is given.

6.2. Dimensions (Mechanical data)

It contains important dimensions, sequence of connection supplemented by a circuit diagram. Case outline drawings carry DIN-, JEDEC or commercial designations. Information on weight completes the list of mechanical data.

Note especially:

If the dimensional information does not include any tolerances, then the following applies: Lead length and mounting hole dimensions are minimum values. All other dimensions are maximum.

6.3. Absolute maximum ratings

These define maximum permissible operational and environmental conditions. If any one of these conditions is exceeded, then this could result in the destruction of the device. Unless otherwise specified, an ambient temperature

ren. Soweit nicht anders angegeben gelten die Grenzdaten bei einer Umgebungstemperatur von $25 \pm 3^\circ\text{C}$. Die meisten Grenzdaten sind statische Angaben, bei Impulsbetrieb werden die zugehörigen Bedingungen genannt.

Grenzdaten gelten unabhängig voneinander. Ein Gerät, das Halbleiterbauelemente enthält, muß so dimensioniert werden, daß die für die verwendeten Bauelemente festgelegten absoluten Grenzdaten auch unter ungünstigsten Betriebsbedingungen nicht überschritten werden. Diese können z. B. hervorgerufen werden durch Änderungen der Versorgungsspannung.

der Eigenschaften der übrigen elektrischen Bauelemente im Gerät
der Einstellung des Gerätes,
der Belastung,
der Ansteuerung,
der Umgebungsbedingungen, sowie
der Eigenschaften der Bauelemente selbst
(z. B. Alterung).

6.4. Thermische Kenngrößen – Wärmewiderstände

Einige thermische Größen, z. B. die Sperrschichttemperatur, der Lagerungstemperaturbereich und die Gesamtverlustleistung, begrenzen den Anwendungsbereich. Daher sind sie im Abschnitt „Absolute Grenzdaten“ aufgeführt. Für die Wärmewiderstände ist ein besonderer Abschnitt vorgesehen. Der Wärmewiderstand R_{thJA} ist ohne zusätzliche Kühlmittel als ungünstigster Fall zu verstehen.

Die Temperaturkoeffizienten sind bei den zugehörigen Parametern unter „Kenngrößen“ eingordnet.

6.5. Kenngrößen, Schaltzeiten

Die für den Betrieb und die Funktion des Bauelementes wichtigen elektrischen Parameter (Minimal-, typische und Maximal-Werte) werden mit den zugehörigen Meßbedingungen und ergänzenden Kurven aufgeführt.

● Elektrische Kenngrößen

Die elektrischen Eigenschaften eines Halbleiterbauelements werden mit elektrischen Kenngrößen charakterisiert. Diese setzen sich

of $25 \pm 3^\circ\text{C}$ is assumed for all absolute maximum ratings. Most absolute ratings are static characteristics; if they are measured by a pulse method, then the associated measurement conditions are stated.

Maximum ratings are absolute (i. e. not interdependent).

Any equipment incorporating semiconductor devices must be designed so that even under the most unfavourable operating conditions the specified maximum ratings of the devices used are never exceeded. These ratings could be exceeded because of changes e. g. in supply voltage, the properties of other components used in the equipment, control settings, load conditions, drive level, environmental conditions and the properties of the devices themselves (i. e. aging).

6.4. Thermal data – thermal resistances

Some thermal data (e. g. junction temperature, storage temperature range, total power dissipation), because they impose a limit on the application range of the device, are given under the heading "Absolute maximum ratings". A special section is provided for thermal resistances. The thermal resistance, junction-ambient (R_{thJA}) quoted is that which would be measured without artificial cooling, i. e. under the worst conditions.

Temperature coefficients, on the other hand, are listed together with the associated parameters under "Characteristics".

6.5. Characteristics, switching characteristics

Under this heading are grouped the most important operational, electrical characteristics (minimum, typical and maximum values) together with associated test conditions supplemented with curves.

● Electrical characteristics

The distinctive features of a semiconductor device are characterised with electrical characteristics which contain static (d. c.), dyna-

zusammen aus statischen Kenngrößen, dynamischen Kenngrößen, Vierpolkenngrößen und Kennlinien.

● Statische Kenngrößen

Die statischen Kenngrößen beschreiben das Gleichstromverhalten der Halbleiterbauelemente. Sie gelten für eine bestimmte Umgebungs- oder Gehäusetemperatur, oder sie sind in Abhängigkeit von der Temperatur angegeben.

● Dynamische Kenngrößen

Die dynamischen Kenngrößen beschreiben das Verhalten der Halbleiterbauelemente bei Wechselstrom- oder Impulsbetrieb. Je nach Typ werden dabei NF-, HF- oder für das Schaltverhalten wichtige Kenngrößen angegeben. Diese Kenngrößen gelten nur unter bestimmten Betriebsbedingungen. Gegebenenfalls sind diese ergänzt mit entsprechenden Meßschaltungen.

● Vierpol-Kenngrößen

Die Vierpol-Kenngrößen gehören zu den dynamischen Kenngrößen. Zur Verbesserung der Übersichtlichkeit werden sie gesondert angegeben, wenn das für die Hauptanwendung des betreffenden Typs von besonderem Interesse ist.

● Kennlinien

Neben den statischen und dynamischen Kenngrößen, die bestimmte Kennlinienpunkte bzw. Betriebszustände charakterisieren, werden die Kennlinien angegeben. Damit wird die typische (mittlere) Abhängigkeit einzelner Kenngrößen voneinander dargestellt. Zum Teil werden auch die Streugrenzen mit angegeben. Diese besagen, daß ein Anteil von wenigstens 95 % der Lieferung innerhalb der angegebenen Grenzen liegt.

6.6. Zusätzliche Vermerke

Vorläufige technische Daten

Mit dieser Angabe wird darauf hingewiesen, daß sich einige für den betreffenden Typ angegebene Daten noch geringfügig ändern können.

Nicht für Neuentwicklungen

Typen sind für laufende Serien erhältlich. Neuentwicklungen sollten damit nicht vorgenommen werden.

mic (a. c.), two-port characteristics and family of curves.

● Static (d. c.) characteristics

D. C. characteristics explain the d. c. properties of a semiconductor device. They are temperature dependent and are valid only for a given ambient or case temperature.

● Dynamic (a. c.) characteristics

A. C. characteristics explain the a. c. or pulse properties of a semiconductor device. According to the types are given the important AF, HF or switching characteristics. The dynamic (a. c.) characteristics are valid only under special operating conditions. If necessary, they are supplied with corresponding measuring circuits.

● Two-port characteristics

Two-port characteristics belong to the a. c. characteristics. To increase the lucidity these parameters are sometimes given separately; provided, they are of special use for the main application of the device.

● Family of curves

Besides the static (d. c.) and dynamic (a. c.) characteristics, family of curves are given for specified operating conditions. They show the typical interdependence of individual characteristics. Partly are given the scattering limits. They signify that at least 95 % of the delivery lies inside these tolerances.

6.6. Additional Informations

Preliminary specifications

This heading indicates that some information on the device concerned may be subject to slight changes.

Not for new developments

This heading indicates that the device concerned should not be used in equipment under development, it is, however, available for present production.

7. Zubehör

7. Accessories

Best.-Nr. Number	Fig. Fig.	Bezeichnung Designation	Für Gehäuse For case
009 004	7.1	Isolierscheibe 50 µm dick <i>Isolating washer, thickness 50 µm</i>	3 B 2 DIN 41 872 JEDEC TO 3
119 880	7.2	Isolierscheibe 60 µm dick <i>Isolating washer, thickness 60 µm</i>	12 A 3 DIN 41 869 JEDEC TO 126 (SOT 32)
513 242	7.3	Isolierbuchse <i>Isolating bush</i>	14 A 3 DIN 41 869 JEDEC TO 220 (SOT 78)
515 390	7.4	Isolierscheibe 75 µm dick <i>Isolating washer, thickness 75 µm</i>	3 B 2 DIN 41 872 JEDEC TO 3 Typen mit hoher Sperrspannung <i>Types with high reverse voltage</i>
562 897	7.4	Isolierscheibe 175 µm dick <i>Isolating washer, thickness 175 µm</i>	3 B 2 DIN 41 872 JEDEC TO 3 Typen mit hoher Sperrspannung <i>Types with high reverse voltage</i>
564 542	7.5	Isolierscheibe 50 µm dick <i>Isolating washer, thickness 50 µm</i>	14 A 3 DIN 41 869 JEDEC TO 220 (SOT 78)

Fig. 7.1.

Fig. 7.2.

Fig. 7.3. M 2:1

Fig. 7.4.

Fig. 7.5.

Technische Daten

Technical data

BD 127 · BD 128 · BD 129

Silizium-NPN-Planar-Leistungstransistoren Silicon NPN Planar Power Transistors

Anwendungen: Allgemein bei hohen Betriebsspannungen

Applications: General at high supply voltages

Besondere Merkmale:

- Hohe Sperrspannung
- Verlustleistung 17,5 W

Features:

- High reverse voltage
- Power dissipation 17,5 W

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
*Collector connected with
metallic surface*

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case

12 A 3 DIN 41869

JEDEC TO 126 (SOT 32)

Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten

Absolute maximum ratings

BD 127 BD 128 BD 129

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 300 350 400 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 250 300 350 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 127 · BD 128 · BD 129

Kollektorstrom Collector current	I_C	500	mA
Gesamtverlustleistung Total power dissipation			
$t_{\text{case}} \leq 45^\circ\text{C}$	P_{tot}	17,5	W
Sperrsichttemperatur Junction temperature	t_j	150	°C
Lagerungstemperaturbereich Storage temperature range	t_{stg}	-55...+150	°C
Anzugsdrehmoment Tightening torque	$M_A^1)$	70	N cm

Wärmewiderstände Thermal resistances

Min. Typ. Max.

Sperrsicht-Gehäuse Junction case	R_{thJC}	6 °C/W
-------------------------------------	-------------------	-------------

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 127 · BD 128 · BD 129

Kenngrößen Characteristics

Min. Typ. Max.

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$$U_{\text{CB}} = 150 \text{ V}$$

$$U_{\text{CB}} = 150 \text{ V}, t_{\text{amb}} = 150^\circ\text{C}$$

$$I_{\text{CBO}}$$

$$50 \text{ nA}$$

$$I_{\text{CBO}}$$

$$100 \mu\text{A}$$

Kollektor-Basis-Durchbruchspannung

Collector-base breakdown voltage

$$I_{\text{C}} = 1 \mu\text{A}$$

$$\text{BD 127}$$

$$U_{(\text{BR})\text{CBO}} = 300$$

$$\text{V}$$

$$\text{BD 128} \quad U_{(\text{BR})\text{CBO}} = 350$$

$$\text{V}$$

$$\text{BD 129} \quad U_{(\text{BR})\text{CBO}} = 400$$

$$\text{V}$$

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$$I_{\text{C}} = 1 \text{ mA}$$

$$\text{BD 127}$$

$$U_{(\text{BR})\text{CEO}} = 250$$

$$\text{V}$$

$$\text{BD 128} \quad U_{(\text{BR})\text{CEO}} = 300$$

$$\text{V}$$

$$\text{BD 129} \quad U_{(\text{BR})\text{CEO}} = 350$$

$$\text{V}$$

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$$I_{\text{E}} = 1 \mu\text{A}$$

$$U_{(\text{BR})\text{EBO}} = 5$$

$$\text{V}$$

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$$U_{\text{CE}} = 15 \text{ V}, I_{\text{C}} = 1 \text{ mA}$$

$$h_{\text{FE}}$$

$$50$$

$$U_{\text{CE}} = 15 \text{ V}, I_{\text{C}} = 50 \text{ mA}$$

$$h_{\text{FE}}^{(1)}$$

$$30$$

¹⁾ $\frac{t_p}{T} = 0.01, t_p = 0.3 \text{ ms}$

BD 135 · BD 137 · BD 139

Silizium-NPN-Epitaxial-Planar-Leistungstransistoren Silicon NPN Epitaxial Planar Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Verlustleistung 8 W
- Gepaart lieferbar
- BD 135, BD 137, BD 139 sind komplementär zu BD 136, BD 138, BD 140

Features:

- Power dissipation 8 W
- Matched pairs available
- BD 135, BD 137, BD 139 are complementary to BD 136, BD 138, BD 140

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case
12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 135 BD 137 BD 139

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 135 · BD 137 · BD 139

Kollektorstrom <i>Collector current</i>	I_C	1	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	1,5	A
Basisstrom <i>Base current</i>	I_B	100	mA
Gesamtverlustleistung <i>Total power dissipation</i>			
$t_{amb} = 45^\circ\text{C}$	P_{tot}	1	W
$t_{case} \leq 70^\circ\text{C}$	P_{tot}	8	W
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 135 · BD 137 · BD 139

Wärmewiderstände

Thermal resistances

		Min.	Typ.	Max.
Sperrsicht-Umgebung Junction ambient	R_{thJA}			100 °C/W
Sperrsicht-Gehäuse Junction case	R_{thJC}			10 °C/W

Kenngrößen

Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom Collector cut-off current	$I_C = 1 \text{ mA}$	BD 135	$U_{(\text{BR})\text{CBO}}$	45	V
		BD 137	$U_{(\text{BR})\text{CBO}}$	60	V
		BD 139	$U_{(\text{BR})\text{CBO}}$	80	V
Kollektor-Basis-Durchbruchspannung Collector-base breakdown voltage	$I_C = 20 \text{ mA}$	BD 135	$U_{(\text{BR})\text{CEO}^1)}$	45	V
		BD 137	$U_{(\text{BR})\text{CEO}^1)}$	60	V
		BD 139	$U_{(\text{BR})\text{CEO}^1)}$	80	V

Kollektor-Emitter-Durchbruchspannung Collector-emitter breakdown voltage	$I_E = 1 \mu\text{A}$	$U_{(\text{BR})\text{EBO}}$	5	V
Kollektor-Sättigungsspannung Collector saturation voltage	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	$U_{\text{CEsat}^1)}$	500	mV
Basis-Emitter-Spannung Base-emitter voltage	$U_{\text{CE}} = 2 \text{ V}, I_C = 500 \text{ mA}$	$U_{\text{BE}^1)}$	1	V
Kollektor-Basis-Gleichstromverhältnis DC forward current transfer ratio	$U_{\text{CE}} = 2 \text{ V}, I_C = 150 \text{ mA}$	$h_{\text{FE}^1)}$	40	250

BD 137, BD 139 $h_{\text{FE}^1})$ 40 160

$U_{\text{CE}} = 2 \text{ V}, I_C = 500 \text{ mA}$ $h_{\text{FE}^1})$ 25

Für Paare gilt das h_{FE} -Verhältnis
 h_{FE} matched pair ratio
 $U_{\text{CE}} = 2 \text{ V}, I_C = 150 \text{ mA}^1)$ 1,4

Transitfrequenz
Gain bandwidth product
 $U_{\text{CE}} = 5 \text{ V}, I_C = 50 \text{ mA}, f = 30 \text{ MHz}$ f_T 50 MHz

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 135 · BD 137 · BD 139

BD 135 · BD 137 · BD 139

BD 136 · BD 138 · BD 140

Silizium-PNP-Epitaxial-Planar-Leistungstransistoren Silicon PNP Epitaxial Planar Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Verlustleistung 8 W
- Gepaart lieferbar
- BD 136, BD 138, BD 140 sind komplementär zu BD 135, BD 137, BD 139

Features:

- Power dissipation 8 W
- Matched pairs available
- BD 136, BD 138, BD 140 are complementary to BD 135, BD 137, BD 139

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse
Case
12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 136 BD 138 BD 140

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	$-U_{CBO}$	45	60	80	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	$-U_{CEO}$	45	60	80	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	$-U_{EBO}$	5			V

BD 136 · BD 138 · BD 140

Kollektorstrom <i>Collector current</i>	$-I_C$	1	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	1,5	A
Basisstrom <i>Base current</i>	$-I_B$	100	mA
Gesamtverlustleistung <i>Total power dissipation</i>			
$t_{amb} = 45^\circ\text{C}$	P_{tot}	1	W
$t_{case} \leq 70^\circ\text{C}$	P_{tot}	8	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	$M_A^1)$	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 136 · BD 138 · BD 140

Wärmewiderstände Thermal resistances

		Min.	Typ.	Max.
Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}		100	°C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}		10	°C/W

Kenngrößen Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom *Collector cut-off current*

$-U_{\text{CB}} = 30 \text{ V}$	$-I_{\text{CBO}}$	100	nA
$-U_{\text{CB}} = 30 \text{ V}, t_{\text{amb}} = 150^\circ\text{C}$	$-I_{\text{CBO}}$	100	µA

Kollektor-Basis-Durchbruchspannung *Collector-base breakdown voltage*

$-I_{\text{C}} = 1 \text{ mA}$	BD 136	$-U_{(\text{BR})\text{CBO}}$	45	V
	BD 138	$-U_{(\text{BR})\text{CBO}}$	60	V
	BD 140	$-U_{(\text{BR})\text{CBO}}$	80	V

Kollektor-Emitter-Durchbruchspannung *Collector-emitter breakdown voltage*

$-I_{\text{C}} = 20 \text{ mA}$	BD 136	$-U_{(\text{BR})\text{CEO}}^1)$	45	V
	BD 138	$-U_{(\text{BR})\text{CEO}}^1)$	60	V
	BD 140	$-U_{(\text{BR})\text{CEO}}^1)$	80	V

Emitter-Basis-Durchbruchspannung *Emitter-base breakdown voltage*

$-I_{\text{E}} = 1 \mu\text{A}$		$-U_{(\text{BR})\text{EBO}}$	5	V
---------------------------------	--	------------------------------	---	---

Kollektor-Sättigungsspannung *Collector saturation voltage*

$-I_{\text{C}} = 500 \text{ mA}, -I_{\text{B}} = 50 \text{ mA}$		$-U_{\text{CEsat}}^1)$	500	mV
---	--	------------------------	-----	----

Basis-Emitter-Spannung *Base-emitter voltage*

$-U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 500 \text{ mA}$		$-U_{\text{BE}}^1)$	1	V
--	--	---------------------	---	---

Kollektor-Basis-Gleichstromverhältnis *DC forward current transfer ratio*

$-U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 150 \text{ mA}$	BD 136	$h_{\text{FE}}^1)$	40	250
	BD 138, BD 140	$h_{\text{FE}}^1)$	40	160
$-U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 500 \text{ mA}$		$h_{\text{FE}}^1)$	25	

Für Paare gilt das h_{FE} -Verhältnis
 h_{FE} matched pair ratio

$-U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 150 \text{ mA}^1)$		1,4
---	--	-----

Transitfrequenz *Gain bandwidth product*

$-U_{\text{CE}} = 5 \text{ V}, -I_{\text{C}} = 50 \text{ mA}, f = 30 \text{ MHz}$	f_T	50	MHz
---	-------	----	-----

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 136 · BD 138 · BD 140

BD 136 · BD 138 · BD 140

Silizium-NPN-Epitaxial-Planar-Leistungstransistoren Silicon NPN Epitaxial Planar Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Verlustleistung 20 W
- Gepaart lieferbar
- BD 165, BD 167, BD 169 sind komplementär zu BD 166, BD 168, BD 170
- Power dissipation 20 W
- Matched pairs available
- BD 165, BD 167, BD 169 are complementary to BD 166, BD 168, BD 170

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case
12 A 3 DIN 41 869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 165 BD 167 BD 169

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 165 · BD 167 · BD 169

Kollektorstrom <i>Collector current</i>	I_C	1,5	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	3	A
Basisstrom <i>Base current</i>	I_B	500	mA
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 25^\circ\text{C}$	P_{tot}	20	W
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 165 · BD 167 · BD 169

Wärmewiderstände *Thermal resistances*

Min. **Typ.** **Max.**

Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}	6,25	°C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom *Collector cut-off current*

$U_{\text{CB}} = 45 \text{ V}$	BD 165	I_{CBO}	100	μA
$U_{\text{CB}} = 60 \text{ V}$	BD 167	I_{CBO}	100	μA
$U_{\text{CB}} = 80 \text{ V}$	BD 169	I_{CBO}	100	μA

Emitterreststrom

Emitter cut-off current

$U_{\text{EB}} = 5 \text{ V}$		I_{EBO}	1	mA
-------------------------------	--	------------------	---	----

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_{\text{C}} = 100 \text{ mA}$	BD 165	$U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 167	$U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 169	$U_{(\text{BR})\text{CEO}^1)}$	80	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_{\text{C}} = 500 \text{ mA}, I_{\text{B}} = 50 \text{ mA}$		$U_{\text{CEsat}^1)}$	500	mV
---	--	-----------------------	-----	----

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 500 \text{ mA}$		$U_{\text{BE}^1)}$	950	mV
--	--	--------------------	-----	----

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 150 \text{ mA}$		$h_{\text{FE}^1)}$	40	
$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 500 \text{ mA}$		$h_{\text{FE}^1)}$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 150 \text{ mA}^1)$		1,4	
---	--	-----	--

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 500 \text{ mA}, f = 1 \text{ MHz}$		f_T	3	MHz
---	--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 165 · BD 167 · BD 169

BD 166 · BD 168 · BD 170

Silizium-PNP-Epitaxial-Planar-Leistungstransistoren Silicon PNP Epitaxial Planar Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Verlustleistung 20 W
- Gepaart lieferbar
- BD 166, BD 168, BD 170 sind komplementär zu BD 165, BD 167, BD 169

Features:

- Power dissipation 20 W
- Matched pairs available
- BD 166, BD 168, BD 170 are complementary to BD 165, BD 167, BD 169

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected
metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case
12 A 3 DIN 41 869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 166 BD 168 BD 170

Kollektor-Basis-Sperrspannung Collector-base voltage	$-U_{CBO}$	45	60	80	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage	$-U_{CEO}$	45	60	80	V
Emitter-Basis-Sperrspannung Emitter-base voltage	$-U_{EBO}$		5		V

BD 166 · BD 168 · BD 170

Kollektorstrom <i>Collector current</i>	$-I_C$	1,5	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	3	A
Basisstrom <i>Base current</i>	$-I_B$	500	mA
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	20	W
$t_{case} \leq 25^\circ\text{C}$	t_j	150	$^\circ\text{C}$
Sperrschichttemperatur <i>Junction temperature</i>	t_{stg}	-65...+150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	M_A ¹⁾	70	N cm
Anzugsdrehmoment <i>Tightening torque</i>			

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

BD 166 · BD 168 · BD 170

Wärmewiderstände Thermal resistances

Min. Typ. Max.

Sperrsicht-Umgebung Junction ambient	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse Junction case	R_{thJC}	6,25	°C/W

Kenngrößen Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$

Kollektorreststrom Collector cut-off current

$-U_{\text{CB}} = 45\text{ V}$	BD 166	$-I_{\text{CBO}}$	100	μA
$-U_{\text{CB}} = 60\text{ V}$	BD 168	$-I_{\text{CBO}}$	100	μA
$-U_{\text{CB}} = 80\text{ V}$	BD 170	$-I_{\text{CBO}}$	100	μA

Emitterreststrom

Emitter cut-off current

$-U_{\text{EB}} = 5\text{ V}$	$-I_{\text{EBO}}$	1	mA
-------------------------------	-------------------	---	----

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$-I_C = 100\text{ mA}$	BD 166	$-U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 168	$-U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 170	$-U_{(\text{BR})\text{CEO}^1)}$	80	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$-I_C = 500\text{ mA}, -I_B = 50\text{ mA}$	$-U_{\text{CEsat}^1)}$	500	mV
---	------------------------	-----	----

Basis-Emitter-Spannung

Base-emitter voltage

$-U_{\text{CE}} = 2\text{ V}, -I_C = 500\text{ mA}$	$-U_{\text{BE}^1)}$	950	mV
---	---------------------	-----	----

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$-U_{\text{CE}} = 2\text{ V}, -I_C = 150\text{ mA}$	$h_{\text{FE}^1)}$	40	
$-U_{\text{CE}} = 2\text{ V}, -I_C = 500\text{ mA}$	$h_{\text{FE}^1)}$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$-U_{\text{CE}} = 2\text{ V}, -I_C = 150\text{ mA}^1)$	1,4
--	-----

Transitfrequenz

Gain bandwidth product

$-U_{\text{CE}} = 2\text{ V}, -I_C = 500\text{ mA}, f = 1\text{ MHz}$	f_T	3	MHz
---	-------	---	-----

1) $\frac{I_p}{t} = 0,01 \quad t_p = 0,3\text{ ms}$

BD 166 · BD 168 · BD 170

BD 175 · BD 177 · BD 179

Silizium-NPN-Epibasis-Leistungstransistoren Silicon NPN Epibase Power Transistors

Anwendungen: Audio-Verstärker, -Treiber und -Endstufen

Allgemein im NF-Bereich

Applications: Audio amplifier, driver and output stages
General in AF-range

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 30 W
- Gepaart lieferbar
- BD 175, BD 177, BD 179 sind komplementär zu BD 176, BD 178, BD 180

Features:

- High peak power
- Power dissipation 30 W
- Matched pairs available
- BD 175, BD 177, BD 179 are complementary to BD 176, BD 178, BD 180

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case

12 A 3 DIN 41869

JEDEC TO 126 (SOT 32)

Gewicht · Weight

max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 175 BD 177 BD 179

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 175 · BD 177 · BD 179

Kollektorstrom <i>Collector current</i>	I_C	3	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	6	A
Basisstrom <i>Base current</i>	I_B	1	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	30	W
$t_{case} \leq 25^\circ\text{C}$	t_J	150	$^\circ\text{C}$
Sperrsichttemperatur <i>Junction temperature</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>			
Anzugsdrehmoment <i>Tightening torque</i>	M_A)	70	N cm

) mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 175 · BD 177 · BD 179

Wärmewiderstände *Thermal resistances*

		Min.	Typ.	Max.
Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}			100 °C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}			4,16 °C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom

Collector cut-off current

$U_{CB} = 45 \text{ V}$	BD 175	I_{CBO}	100	μA
$U_{CB} = 60 \text{ V}$	BD 177	I_{CBO}	100	μA
$U_{CB} = 80 \text{ V}$	BD 179	I_{CBO}	100	μA

Emitterreststrom

Emitter cut-off current

$U_{EB} = 5 \text{ V}$		I_{EBO}	1	mA
------------------------	--	-----------	---	----

Kollektor-Emitter-Sperrspannung

Collector-emitter sustaining voltage

$I_C = 100 \text{ mA}$	BD 175	$U_{CEO\text{sus}}^1)$	45	V
	BD 177	$U_{CEO\text{sus}}^1)$	60	V
	BD 179	$U_{CEO\text{sus}}^1)$	80	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_C = 1 \text{ A}, I_B = 100 \text{ mA}$		$U_{CE\text{sat}}^1)$	800	mV
---	--	-----------------------	-----	----

Basis-Emitter-Spannung

Base-emitter voltage

$U_{CE} = 2 \text{ V}, I_C = 1 \text{ A}$		$U_{BE}^1)$	1,3	V
---	--	-------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{CE} = 2 \text{ V}, I_C = 150 \text{ mA}$		$h_{FE}^1)$	40	236
$U_{CE} = 2 \text{ V}, I_C = 1 \text{ A}$		$h_{FE}^1)$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{CE} = 2 \text{ V}, I_C = 150 \text{ mA}^1)$		1,4
---	--	-----

Transitfrequenz

Gain bandwidth product

$U_{CE} = 10 \text{ V}, I_C = 250 \text{ mA}, f = 1 \text{ MHz}$		f_T	3	MHz
--	--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,02, t_p = 0,3 \text{ ms}$

BD 175 · BD 177 · BD 179

BD 176 • BD 178 • BD 180

Silizium-PNP-Epibasis-Leistungstransistoren

Silicon PNP Epibase Power Transistors

Anwendungen: Audio-Verstärker, -Treiber und -Endstufen

Allgemein im NF-Bereich

Applications: *Audio amplifier, driver and output stages
General in AF-range*

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 30 W
- Gepaart lieferbar
- BD 176, BD 178, BD 180 sind komplementär zu BD 175, BD 177, BD 179

Features:

- *High peak power*
- *Power dissipation 30 W*
- *Matched pairs available*
- *BD 176, BD 178, BD 180 are complementary to BD 175, BD 177, BD 179*

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör
Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse Case

12 A 3 DIN 41869

EDEC TO 1.26 (SOT 32)

Gewicht · Weight

max. 0,8 g

Absolute Grenzdaten

BD 176 BD 178 BD 180

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	$-U_{CBO}$	45	60	80	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	$-U_{CEO}$	45	60	80	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	$-U_{EBO}$		5	,	V

BD 176 · BD 178 · BD 180

Kollektorstrom <i>Collector current</i>	$-I_C$	3	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	6	A
Basisstrom <i>Base current</i>	$-I_B$	1	A
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 25^\circ\text{C}$	P_{tot}	30	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	$M_A^1)$	70	N cm

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

BD 176 · BD 178 · BD 180

Wärmewiderstände *Thermal resistances*

Min. **Typ.** **Max.**

Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}	4,16	°C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom

Collector cut-off current

- $U_{\text{CB}} = 45 \text{ V}$	BD 176 - I_{CBO}	100	μA
- $U_{\text{CB}} = 60 \text{ V}$	BD 178 - I_{CBO}	100	μA
- $U_{\text{CB}} = 80 \text{ V}$	BD 180 - I_{CBO}	100	μA

Emitterreststrom

Emitter cut-off current

- $U_{\text{EB}} = 5 \text{ V}$	- I_{EBO}	1	mA
---------------------------------	--------------------	---	----

Kollektor-Emitter-Sperrspannung

Collector-emitter sustaining voltage

- $I_{\text{C}} = 100 \text{ mA}$	BD 176 - $U_{\text{CEOsus}^1)}$	45	V
	BD 178 - $U_{\text{CEOsus}^1)}$	60	V
	BD 180 - $U_{\text{CEOsus}^1)}$	80	V

Kollektor-Sättigungsspannung

Collector saturation voltage

- $I_{\text{C}} = 1 \text{ A}$, - $I_{\text{B}} = 100 \text{ mA}$	- $U_{\text{CEsat}^1})$	800	mV
--	-------------------------	-----	----

Basis-Emitter-Spannung

Base-emitter voltage

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 1 \text{ A}$	- $U_{\text{BE}^1})$	1,3	V
--	----------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 150 \text{ mA}$	$h_{\text{FE}}{}^1)$	40	
- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 1 \text{ A}$	$h_{\text{FE}}{}^1)$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 150 \text{ mA}^1)$	1,4	
--	-----	--

Transitfrequenz

Gain bandwidth product

- $U_{\text{CE}} = 10 \text{ V}$, - $I_{\text{C}} = 250 \text{ mA}$, $f = 1 \text{ MHz}$	f_T	3	MHz
--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,02$, $t_p = 0,3 \text{ ms}$

BD 176 · BD 178 · BD 180

BD 185 · BD 187 · BD 189

Silizium-NPN-Epibasis-Transistoren Silicon NPN Epibase Transistors

Anwendungen: Audio-Verstärker, -Treiber und -Endstufen
Applications: Audio amplifier, driver and output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 40 W
- Gepaart lieferbar
- BD 185, BD 187, BD 189 sind komplementär zu BD 186, BD 188, BD 190

Features:

- High peak power
- Power dissipation 40 W
- Matched pairs available
- BD 185, BD 187, BD 189 are complementary to BD 186, BD 188, BD 190

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isollerscheibe Best. Nr. 119880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse Case

12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 185 BD 187 BD 189

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 40 55 70 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 30 45 60 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 185 · BD 187 · BD 189

Kollektorstrom <i>Collector current</i>	I_C	4	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	8	A
Basisstrom <i>Base current</i>	I_B	2	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	40	W
$t_{case} \leq 25^\circ\text{C}$	t_j	150	$^\circ\text{C}$
Sperrschichttemperatur <i>Junction temperature</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	M_A ¹⁾	70	N cm
Anzugsdrehmoment <i>Tightening torque</i>			

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

BD 185 · BD 187 · BD 189

Wärmewiderstände *Thermal resistances*

Min. **Typ.** **Max.**

Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}	90	°C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}	3,12	°C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom *Collector cut-off current*

$U_{\text{CB}} = 40 \text{ V}$	BD 185	I_{CBO}	0,1	mA
$U_{\text{CB}} = 55 \text{ V}$	BD 187	I_{CBO}	0,1	mA
$U_{\text{CB}} = 70 \text{ V}$	BD 189	I_{CBO}	0,1	mA

Emitterreststrom

Emitter cut-off current

$U_{\text{EB}} = 5 \text{ V}$	I_{EBO}	1	mA
-------------------------------	------------------	---	----

Kollektor-Emitter-Sperrspannung

Collector-emitter sustaining voltage

$I_{\text{C}} = 100 \text{ mA}$	BD 185	$U_{\text{CEOsus}}^{\text{1)}})$	30	V
	BD 187	$U_{\text{CEOsus}}^{\text{1)}})$	45	V
	BD 189	$U_{\text{CEOsus}}^{\text{1)}})$	60	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_{\text{C}} = 2 \text{ A}, I_{\text{B}} = 200 \text{ mA}$	$U_{\text{CEsat}}^{\text{1)}})$	1	V
---	---------------------------------	---	---

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 2 \text{ A}$	$U_{\text{BE}}^{\text{1)}})$	1,5	V
---	------------------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 500 \text{ mA}$	$h_{\text{FE}}^{\text{1)}})$	40	
$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 2 \text{ A}$	$h_{\text{FE}}^{\text{1)}})$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 500 \text{ mA}$	1,4
--	-----

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 10 \text{ V}, I_{\text{C}} = 1 \text{ A}, f = 1 \text{ MHz}$	f_T	2	MHz
---	-------	---	-----

¹⁾) $\frac{t_p}{T} = 0,02, t_p = 0,3 \text{ ms}$

BD 185 · BD 187 · BD 189

Silizium-PNP-Epibasis-Transistoren Silicon PNP Epibase Transistors

Anwendungen: Audio-Verstärker, -Treiber und -Endstufen
Applications: Audio amplifier, driver and output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 40 W
- Gepaart lieferbar
- BD 186, BD 188, BD 190 sind komplementär zu BD 185, BD 187, BD 189

Features:

- High peak power
- Power dissipation 40 W
- Matched pairs available
- BD 186, BD 188, BD 190 are complementary to BD 185, BD 187, BD 189

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse
Case

12 A 3 DIN 41869
 JEDEC TO 126 (SOT 32)
 Gewicht · Weight
 max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 186 BD 188 BD 190

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	$-U_{CBO}$	40	55	70	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	$-U_{CEO}$	30	45	60	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	$-U_{EBO}$		5		V

BD 186 · BD 188 · BD 190

Kollektorstrom <i>Collector current</i>	$-I_C$	4	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	8	A
Basisstrom <i>Base current</i>	$-I_B$	2	A
Gesamtverlustleistung <i>Total power dissipation</i>			
$t_{case} \leq 25^\circ\text{C}$	P_{tot}	40	W
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 186 · BD 188 · BD 190

Wärmewiderstände *Thermal resistances*

		Min.	Typ.	Max.
Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}			90 °C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}		3,12	°C/W

Kenngrößen *Characteristics*

$t_{\text{amb}} = 25^\circ\text{C}$

Kollektorreststrom

Collector cut-off current

- $U_{\text{CB}} = 40 \text{ V}$	BD 186	$-I_{\text{CBO}}$	0,1	mA
- $U_{\text{CB}} = 55 \text{ V}$	BD 188	$-I_{\text{CBO}}$	0,1	mA
- $U_{\text{CB}} = 70 \text{ V}$	BD 190	$-I_{\text{CBO}}$	0,1	mA

Emitterreststrom

Emitter cut-off current

- $U_{\text{EB}} = 5 \text{ V}$		$-I_{\text{EBO}}$	1	mA
---------------------------------	--	-------------------	---	----

Kollektor-Emitter-Sperrspannung

Collector-emitter sustaining voltage

- $I_{\text{C}} = 100 \text{ mA}$	BD 186	$U_{\text{CEOsus}}^1)$	30	V
	BD 188	$U_{\text{CEOsus}}^1)$	45	V
	BD 190	$U_{\text{CEOsus}}^1)$	60	V

Kollektor-Sättigungsspannung

Collector saturation voltage

- $I_{\text{C}} = 2 \text{ A}$, - $I_{\text{B}} = 200 \text{ mA}$		$-U_{\text{CEsat}}^1)$	1	V
--	--	------------------------	---	---

Basis-Emitter-Spannung

Base-emitter voltage

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 2 \text{ A}$		$-U_{\text{BE}}^1)$	1,5	V
--	--	---------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 500 \text{ mA}$		$h_{\text{FE}}^1)$	40	
- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 2 \text{ A}$		$h_{\text{FE}}^1)$	15	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

- $U_{\text{CE}} = 2 \text{ V}$, - $I_{\text{C}} = 500 \text{ mA}$			1,4	
---	--	--	-----	--

Transitfrequenz

Gain bandwidth product

- $U_{\text{CE}} = 10 \text{ V}$, - $I_{\text{C}} = 1 \text{ A}$, $f = 1 \text{ MHz}$		f_T	2	MHz
---	--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,02$, $t_p = 0,3 \text{ ms}$

BD 186 · BD 188 · BD 190

Silizium-NPN-Epibasis-Leistungstransistoren Silicon NPN Epibase Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Hohe Stromverstärkung
- Verlustleistung 60 W
- BD 201, BD 203 sind komplementär zu BD 202, BD 204

Features:

- High peak power
- High current transfer ratio
- Power dissipation 60 W
- BD 201, BD 203 are complementary to BD 202, BD 204

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit
Montagefläche verbunden
Collector connected
with metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 564 542

Isolierbuchse
Isolating bush Best. Nr. 513 242

Normgehäuse
Case
14 A 3 DIN 41869
JEDEC TO 220
Gewicht · Weight
max. 1,5 g

BD 201 · BD 203

Absolute Grenzdaten Absolute maximum ratings

		BD 201	BD 203	
Kollektor-Basis-Sperrspannung Collector-base voltage	U_{CBO}	60	V	
Kollektor-Emitter-Sperrspannung Collector-emitter voltage	U_{CEO}	45	60	V
Emitter-Basis-Sperrspannung Emitter-base voltage	U_{EBO}	5	V	
Kollektorstrom Collector current	I_C	8	A	
Kollektorspitzenstrom Collector peak current	I_{CM}	12	A	
Gesamtverlustleistung Total power dissipation $t_{case} \leq 25^\circ\text{C}$	P_{tot}	60	W	
Sperrsichttemperatur Junction temperature	t_j	150	$^\circ\text{C}$	
Lagerungstemperaturbereich Storage temperature range	t_{stg}	-55 ... +150	$^\circ\text{C}$	

Wärmewiderstand Thermal resistance

Min. Typ. Max.

Sperrsicht-Gehäuse
Junction case

R_{thJC}

2,08 °C/W

Kenngrößen Characteristics

$t_{case} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$U_{CB} = 40 \text{ V}$, $t_{case} = 150^\circ\text{C}$
 $U_{CE} = 30 \text{ V}$

I_{CBO}
 I_{CEO}

1 mA
1 mA

Emitterreststrom

Emitter cut-off current

$U_{EB} = 5 \text{ V}$

I_{EBO}

1 mA

BD 201 · BD 203

Min. Typ. Max.

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_C = 3 \text{ A}, I_B = 300 \text{ mA}$

$U_{CEsat}^1)$

1 V

Basis-Emitter-Spannung

Base-emitter voltage

$U_{BE} = 2 \text{ V}, I_C = 3 \text{ A}$

$U_{BE}^1)$

1,5 V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{CE} = 2 \text{ V}, I_C = 2 \text{ A}$

BD 203

$h_{FE}^1)$

30

$U_{CE} = 2 \text{ V}, I_C = 3 \text{ A}$

BD 201

$h_{FE}^1)$

30

Transitfrequenz

Gain bandwidth product

$U_{CB} = 3 \text{ V}, I_C = 300 \text{ mA}, f = 1 \text{ MHz}$

f_T

3

MHz

1) $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

Silizium-PNP-Epibasis-Leistungstransistoren Silicon PNP Epibase Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Hohe Stromverstärkung
- Verlustleistung 60 W
- BD 202, BD 204 sind komplementär zu BD 201, BD 203

Features:

- High peak power
- High current transfer ratio
- Power dissipation 60 W
- BD 202, BD 204 are complementary to BD 201, BD 203

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit
Montagefläche verbunden
Collector connected
with metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 564 542
Isolating washer

Isolierbuchse Best. Nr. 513 242
Isolating bush

Normgehäuse
Case
14 A 3 DIN 41869
JEDEC TO 220
Gewicht · Weight
max. 1,5 g

BD 202 • BD 204

Absolute Grenzdaten

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	$-U_{CBO}$	60	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	$-U_{CEO}$	45	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	$-U_{EBO}$	5	V
Kollektorstrom <i>Collector current</i>	$-I_C$	8	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	12	A
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 25^\circ\text{C}$	P_{tot}	60	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55 ... +150	$^\circ\text{C}$

Wärmewiderstand Thermal resistance

Min.	Typ.	Max.

Sperrsicht-Gehäuse
Junction case

R_{thJC}

2,08 $^{\circ}\text{C}/\text{W}$

Kenngrößen Characteristics

$t_{case} = 25^{\circ}\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom
Collector cut-off current

$-U_{CB} = 40 \text{ V}$, $t_{amb} = 150^{\circ}\text{C}$
 $-U_{CE} = 30 \text{ V}$

$-I_{CBO}$	1	mA
$-I_{CEO}$	1	mA

Emitterreststrom
Emitter cut-off current

$-U_{EB} = 5 \text{ V}$

$-I_{EBO}$	1	mA
------------	---	----

BD 202 · BD 204

		Min.	Typ.	Max.
Kollektor-Sättigungsspannung Collector saturation voltage				
$-I_C = 3 \text{ A}, -I_B = 300 \text{ mA}$	$-U_{CEsat}^1)$		1	V
Basis-Emitter-Spannung Base-emitter voltage				
$-U_{BE} = 2 \text{ V}, -I_C = 3 \text{ A}$	$-U_{BE}^1)$		1,5	V
Kollektor-Basis-Gleichstromverhältnis DC forward current transfer ratio				
$-U_{CE} = 2 \text{ V}, -I_C = 2 \text{ A}$	BD 204	$h_{FE}^1)$	30	
$-U_{CE} = 2 \text{ V}, -I_C = 3 \text{ A}$	BD 202	$h_{FE}^1)$	30	
Transitfrequenz Gain bandwidth product				
$-U_{CB} = 3 \text{ V}, -I_C = 300 \text{ mA}, f = 1 \text{ MHz}$	f_T	3		MHz

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 202 · BD 204

BD 233 · BD 235 · BD 237

Silizium-NPN-Epibasis-Leistungstransistoren Silicon NPN Epibase Power Transistors

Anwendungen: Audio-Treiber- und Endstufen
Applications: Audio driver and output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 25 W
- Gepaart lieferbar
- BD 233, BD 235, BD 237 sind komplementär zu BD 234, BD 236, BD 238

Features:

- High peak power
- Power dissipation 25 W
- Matched pairs available
- BD 233, BD 235, BD 237 are complementary to BD 234, BD 236, BD 238

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse

Case

12 A 3 DIN 41 869

JEDEC TO 126 (SOT 32)

Gewicht · Weight

max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 233 BD 235 BD 237

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 233 · BD 235 · BD 237

Kollektorstrom <i>Collector current</i>	I_C	2	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	6	A
Basisstrom <i>Base current</i>	I_B	1	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	25	W
$t_{case} \leq 25^\circ\text{C}$	t_j	150	$^\circ\text{C}$
Sperrsichttemperatur <i>Junction temperature</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>		70	N cm
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾		

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 233 · BD 235 · BD 237

Wärmewiderstände *Thermal resistances*

Min. Typ. Max.

Sperrsicht-Umgebung Junction ambient	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse Junction case	R_{thJC}	5	°C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom

Collector cut-off current

$U_{\text{CB}} = 45 \text{ V}$	BD 233	I_{CBO}	100	µA
$U_{\text{CB}} = 60 \text{ V}$	BD 235	I_{CBO}	100	µA
$U_{\text{CB}} = 80 \text{ V}$	BD 237	I_{CBO}	100	µA

Emitterreststrom

Emitter cut-off current

$U_{\text{EB}} = 5 \text{ V}$		I_{EBO}	1	mA
-------------------------------	--	------------------	---	----

Kollektor-Basis-Durchbruchspannung

Collector-base breakdown voltage

$I_{\text{C}} = 100 \mu\text{A}$	BD 233	$U_{(\text{BR})\text{CBO}}$	45	V
	BD 235	$U_{(\text{BR})\text{CBO}}$	60	V
	BD 237	$U_{(\text{BR})\text{CBO}}$	80	V

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_{\text{C}} = 100 \text{ mA}$	BD 233	$U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 235	$U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 237	$U_{(\text{BR})\text{CEO}^1)}$	80	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_{\text{C}} = 1 \text{ A}, I_{\text{B}} = 100 \text{ mA}$		$U_{\text{CEsat}^1)}$	600	mV
---	--	-----------------------	-----	----

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 1 \text{ A}$		$U_{\text{BE}^1)}$	1,3	V
---	--	--------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 150 \text{ mA}$		$h_{\text{FE}^1)}$	40	
$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 1 \text{ A}$		$h_{\text{FE}^1)}$	25	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{\text{CE}} = 2 \text{ V}, I_{\text{C}} = 150 \text{ mA}^1)$		1,4
---	--	-----

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 10 \text{ V}, I_{\text{C}} = 250 \text{ mA}, f = 1 \text{ MHz}$		f_T	3	MHz
--	--	-------	---	-----

¹⁾ $\frac{I_{\text{p}}}{T} = 0,01, I_{\text{p}} = 0,3 \text{ ms}$

BD 233 · BD 235 · BD 237

BD 234 · BD 236 · BD 238

Silizium-PNP-Epibasis-Leistungstransistoren Silicon PNP Epibase Power Transistors

Anwendungen: Audio-Treiber- und Endstufen
Applications: Audio driver and output stages

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 25 W
- Gepaart lieferbar
- BD 234, BD 236, BD 238 sind komplementär zu BD 233, BD 235, BD 237

Features:

- High peak power
- Power dissipation 25 W
- Matched pairs available
- BD 234, BD 236, BD 238 are complementary to BD 233, BD 235, BD 237

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse Case

12 A 3 DIN 41 869
JEDEC TO 126 (SOT 32)

Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 234 BD 236 BD 238

Kollektor-Basis-Sperrspannung Collector-base voltage	$-U_{CBO}$	45	60	80	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage	$-U_{CEO}$	45	60	80	V
Emitter-Basis-Sperrspannung Emitter-base voltage	$-U_{EBO}$	5			V

BD 234 · BD 236 · BD 238

Kollektorstrom <i>Collector current</i>	$-I_C$	2	A
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	6	A
Basisstrom <i>Base current</i>	$-I_B$	1	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	25	W
$t_{case} \leq 25^\circ\text{C}$	t_j	150	$^\circ\text{C}$
Sperrsichttemperatur <i>Junction temperature</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>		70	N cm
Anzugsdrehmoment <i>Tightening torque</i>	$M_A^1)$		

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 234 · BD 236 · BD 238

Wärmewiderstände *Thermal resistances*

Min. **Typ.** **Max.**

Sperrsicht-Umgebung Junction ambient	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse Junction case	R_{thJC}	5	°C/W

Kenngrößen *Characteristics*

$$t_{\text{amb}} = 25^\circ\text{C}$$

Kollektorreststrom <i>Collector cut-off current</i>	$-I_{\text{CBO}}$	100	µA
- $U_{\text{CB}} = 45 \text{ V}$		100	µA
- $U_{\text{CB}} = 60 \text{ V}$		100	µA
- $U_{\text{CB}} = 80 \text{ V}$		100	µA

Emitterreststrom <i>Emitter cut-off current</i>	$-I_{\text{EBO}}$	1	mA
- $U_{\text{EB}} = 5 \text{ V}$			

Kollektor-Basis-Durchbruchspannung <i>Collector-base breakdown voltage</i>	$-U_{(\text{BR})\text{CBO}}$	45	V
- $I_{\text{C}} = 100 \mu\text{A}$	BD 234	45	V
- BD 236	$-U_{(\text{BR})\text{CBO}}$	60	V
- BD 238	$-U_{(\text{BR})\text{CBO}}$	80	V

Kollektor-Emitter-Durchbruchspannung <i>Collector-emitter breakdown voltage</i>	$-U_{(\text{BR})\text{CEO}}^1)$	45	V
- $I_{\text{C}} = 100 \text{ mA}$	BD 234	45	V
- BD 236	$-U_{(\text{BR})\text{CEO}}^1)$	60	V
- BD 238	$-U_{(\text{BR})\text{CEO}}^1)$	80	V

Kollektor-Sättigungsspannung <i>Collector saturation voltage</i>	$-U_{\text{CEsat}}^1)$	600	mV
- $I_{\text{C}} = 1 \text{ A}, -I_{\text{B}} = 100 \text{ mA}$			

Basis-Emitter-Spannung <i>Base-emitter voltage</i>	$-U_{\text{BE}}^1)$	1,3	V
- $U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 1 \text{ A}$			

Kollektor-Basis-Gleichstromverhältnis <i>DC forward current transfer ratio</i>	$h_{\text{FE}}^1)$	40	
- $U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 150 \text{ mA}$	$h_{\text{FE}}^1)$	25	

Für Paare gilt das h_{FE} -Verhältnis <i>h_{FE} matched pair ratio</i>			
- $U_{\text{CE}} = 2 \text{ V}, -I_{\text{C}} = 150 \text{ mA}^1)$		1,4	

Transitfrequenz <i>Gain bandwidth product</i>	f_T	3	MHz
- $U_{\text{CB}} = 10 \text{ V}, -I_{\text{C}} = 250 \text{ mA}, f = 1 \text{ MHz}$			

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 234 · BD 236 · BD 238

Silizium-NPN-Epibasis-Leistungstransistoren
Silicon NPN Epibase Power Transistors

Anwendungen: NF-Endstufen
Applications: AF-output stages

Besondere Merkmale:

- Niedrige Betriebsspannungen – speziell für Autoradiobetrieb
- Hohe Stromverstärkung
- Verlustleistung 36 W
- Gepaart lieferbar
- BD 433, BD 435 sind komplementär zu BD 434, BD 436

Features:

- Low supply voltage – especially for automobil radio
- High current transfer ratio
- Power dissipation 36 W
- Matched pairs available
- BD 433, BD 435 are complementary to BD 434, BD 436

Abmessungen in mm
Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör
Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse

Case

12 A 3 DIN 41 869

JEDEC TO 126 (SOT 32)

Gewicht · Weight

max. 0,8 g

Absolute Grenzdaten
Absolute maximum ratings

BD 433 BD 435

Kollektor-Basis-Sperrspannung
Collector base voltage

U_{CBO} 22 32 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 22 32 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 433 · BD 435

Kollektorstrom <i>Collector current</i>	I_C	4	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	7	A
$t_p \leq 10 \text{ ms}$			
Basisstrom <i>Base current</i>	I_B	1	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	36	W
$t_{case} \leq 25^\circ\text{C}$			
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A)	70	N cm

Wärmewiderstände
Thermal resistances

Sperrsicht-Umgebung
Junction ambient

R_{thJA} 100 $^\circ\text{C/W}$

) mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

BD 433 · BD 435

		Min.	Typ.	Max.
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}			3,5 °C/W
mit Isolierscheibe <i>with isolating washer</i> Best. Nr. 119 880	R_{thJC}			8 °C/W
mit Isolierscheibe und Paste <i>with isolating washer and paste</i>	R_{thJC}			4 °C/W

Kenngrößen
Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$U_{\text{CB}} = 22 \text{ V}$	BD 433	I_{CBO}	100	μA
$U_{\text{CB}} = 32 \text{ V}$	BD 435	I_{CBO}	100	μA
$t_{\text{amb}} = 150^\circ\text{C}$, $U_{\text{CB}} = 22 \text{ V}$	BD 433	I_{CBO}	3	mA
$U_{\text{CB}} = 32 \text{ V}$	BD 435	I_{CBO}	3	mA

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_C = 100 \text{ mA}$	BD 433	$U_{(\text{BR})\text{CEO}^1)}$	22	V
	BD 435	$U_{(\text{BR})\text{CEO}^1)}$	32	V
$I_C = 100 \mu\text{A}$	BD 433	$U_{(\text{BR})\text{CES}}$	22	V
	BD 435	$U_{(\text{BR})\text{CES}}$	32	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$I_E = 1 \text{ mA}$		$U_{(\text{BR})\text{EBO}}$	5	V
----------------------	--	-----------------------------	---	---

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_C = 2 \text{ A}$, $I_B = 200 \text{ mA}$		$U_{\text{CEsat}^1)}$	0,5	V
--	--	-----------------------	-----	---

Basis-Emitterspannung

Base emitter voltage

$U_{\text{CE}} = 1 \text{ V}$, $I_C = 2 \text{ A}$		$U_{\text{BE}^1)}$	1,1	V
---	--	--------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 5 \text{ V}$, $I_C = 10 \text{ mA}$		h_{FE}	40	
$U_{\text{CE}} = 1 \text{ V}$, $I_C = 500 \text{ mA}$		$h_{\text{FE}^1)}$	85	475
$U_{\text{CE}} = 1 \text{ V}$, $I_C = 2 \text{ A}$		$h_{\text{FE}^1)}$	50	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{\text{CE}} = 2 \text{ V}$, $I_C = 500 \text{ mA}^1)$			1,4	
---	--	--	-----	--

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 10 \text{ V}$, $I_C = 250 \text{ mA}$, $f = 1 \text{ MHz}$		f_T	3	MHz
---	--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,01$, $t_p = 0,3 \text{ ms}$

BD 433 · BD 435

Silizium-PNP-Epibasis-Leistungstransistoren Silicon PNP Epibase Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-output stages

Besondere Merkmale:

- Niedrige Betriebsspannung – speziell für Autoradiobetrieb
- Hohe Stromverstärkung
- Verlustleistung 36 W
- Gepaart lieferbar
- BD 434, BD 436 sind komplementär zu BD 433, BD 435

Features:

- Low supply voltage – especially for automobile radio
- High current transfer ratio
- Power dissipation 36 W
- Matched pairs available
- BD 434, BD 436 are complementary to BD 433, BD 435

Abmessungen in mm

Dimensions in mm

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Kollektor mit metallischer
Montagefläche verbunden
*Collector connected with
metallic surface*

Normgehäuse
Case

12 A 3 DIN 41869

JEDEC TO 126 (SOT 32)

Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 434

BD 436

Kollektor-Basis-Sperrspannung
Collector-base voltage

- U_{CBO} 22 32 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

- U_{CEO} 22 32 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

- U_{EBO} 5 V

BD 434 · BD 436

Kollektorstrom <i>Collector current</i>	$-I_C$	4	A
Kollektorspitzenstrom <i>Collector peak current</i> $t_p \leq 10 \text{ ms}$	$-I_{CM}$	7	A
Basisstrom <i>Base current</i>	$-I_B$	1	A
Gesamtverlustleistung <i>Total power dissipation</i> $t_{\text{case}} \leq 25^\circ\text{C}$	P_{tot}	36	W
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

Wärmewiderstände *Thermal resistances*

Sperrschicht-Umgebung <i>Junction ambient</i>	R_{thJA}	100	$^\circ\text{C/W}$
--	-------------------	-----	--------------------

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 434 · BD 436

Min. Typ. Max.

Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}	3,5	°C/W
mit Isolierscheibe <i>with isolating washer</i> Best. Nr. 119880	R_{thJC}	8	°C/W
mit Isolierscheibe und Paste <i>with isolating washer and paste</i>	R_{thJC}	4	°C/W

Kenngrößen
Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$-U_{\text{CB}} = 22 \text{ V}$	BD 434	$-I_{\text{CBO}}$	100	μA
$-U_{\text{CB}} = 32 \text{ V}$	BD 436	$-I_{\text{CBO}}$	100	μA
$t_{\text{amb}} = 150^\circ\text{C}$, $-U_{\text{CB}} = 22 \text{ V}$	BD 434	$-I_{\text{CBO}}$	3	mA
$-U_{\text{CB}} = 32 \text{ V}$	BD 436	$-I_{\text{CBO}}$	3	mA

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$-I_C = 100 \text{ mA}$	BD 434	$-U_{(\text{BR})\text{CEO}^1)}$	22	V
	BD 436	$-U_{(\text{BR})\text{CEO}^1)}$	32	V
$-I_C = 100 \mu\text{A}$	BD 434	$-U_{(\text{BR})\text{CES}}$	22	V
	BD 436	$-U_{(\text{BR})\text{CES}}$	32	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$-I_E = 1 \text{ mA}$		$-U_{(\text{BR})\text{EBO}}$	5	V
-----------------------	--	------------------------------	---	---

Kollektor-Sättigungsspannung

Collector saturation voltage

$-I_C = 2 \text{ A}$, $-I_B = 200 \text{ mA}$		$-U_{\text{CEsat}^1)}$	0,5	V
--	--	------------------------	-----	---

Basis-Emitter-Spannung

Base-emitter voltage

$-U_{\text{CE}} = 1 \text{ V}$, $-I_C = 2 \text{ A}$		$-U_{\text{BE}^1)}$	1,1	V
---	--	---------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$-U_{\text{CE}} = 5 \text{ V}$, $-I_C = 10 \text{ mA}$		h_{FE}	40	
$-U_{\text{CE}} = 1 \text{ V}$, $-I_C = 500 \text{ mA}$		$h_{\text{FE}^1)}$	85	475
$-U_{\text{CE}} = 1 \text{ V}$, $-I_C = 2 \text{ A}$		$h_{\text{FE}^1)}$	50	

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$-U_{\text{CE}} = 2 \text{ V}$, $-I_C = 500 \text{ mA}^1)$		1,4	
---	--	-----	--

Transitfrequenz

Gain bandwidth product

$-U_{\text{CE}} = 10 \text{ V}$, $-I_C = 250 \text{ mA}$, $f = 1 \text{ MHz}$		f_T	3	MHz
---	--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,01$, $t_p = 0,3 \text{ ms}$

BD 434 · BD 436

Silizium-NPN-Epibasis-Leistungstransistoren Silicon NPN Epibase Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 36 W
- Gepaart lieferbar
- BD 437, BD 439, BD 441 sind komplementär zu BD 438, BD 440, BD 442

Features:

- High peak power
- Power dissipation 36 W
- Matched pairs available
- BD 437, BD 439, BD 441 are complementary to BD 438, BD 440, BD 442

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer Montagefläche verbunden
Collector connected with metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse Case

12 A 3 DIN 41 869
 JEDEC TO 126 (SOT 32)
 Gewicht · Weight
 max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 437 BD 439 BD 441

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO} 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{EBO} 5 V

BD 437 · BD 439 · BD 441

Kollektorstrom <i>Collector current</i>	I_C	4	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	7	A
$t_p < 10 \text{ ms}$			
Basisstrom <i>Base current</i>	I_B	1	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	36	W
$t_{\text{case}} \leq 25^\circ\text{C}$			
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 437 · BD 439 · BD 441

Wärmewiderstände Thermal resistances

			Min.	Typ.	Max.
Sperrsicht-Umgebung <i>Junction ambient</i>		R_{thJA}		100	°C/W
Sperrsicht-Gehäuse <i>Junction case</i>		R_{thJC}		3,5	°C/W
mit Isolierscheibe <i>with isolating washer</i>	Best. Nr. 119 880	R_{thJC}		8	°C/W
mit Isolierscheibe und Paste <i>with isolating washer and paste</i>		R_{thJC}		4	°C/W

Kenngrößen Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$U_{\text{CB}} = 45 \text{ V}$	BD 437	I_{CBO}	100	μA
$U_{\text{CB}} = 60 \text{ V}$	BD 439	I_{CBO}	100	μA
$U_{\text{CB}} = 80 \text{ V}$	BD 441	I_{CBO}	100	μA
$t_{\text{amb}} = 150^\circ\text{C}$, $U_{\text{CB}} = 45 \text{ V}$	BD 437	I_{CBO}	3	mA
$U_{\text{CB}} = 60 \text{ V}$	BD 439	I_{CBO}	3	mA
$U_{\text{CB}} = 80 \text{ V}$	BD 441	I_{CBO}	3	mA

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_C = 100 \text{ mA}$	BD 437	$U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 439	$U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 441	$U_{(\text{BR})\text{CEO}^1)}$	80	V
$I_C = 100 \mu\text{A}$	BD 437	$U_{(\text{BR})\text{CES}}$	45	V
	BD 439	$U_{(\text{BR})\text{CES}}$	60	V
	BD 441	$U_{(\text{BR})\text{CES}}$	80	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$I_E = 1 \text{ mA}$		$U_{(\text{BR})\text{EBO}}$	5	V
----------------------	--	-----------------------------	---	---

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_C = 2 \text{ A}$, $I_B = 200 \text{ mA}$	BD 437	$U_{\text{CEsat}^1)}$	0,6	V
	BD 439, BD 441	$U_{\text{CEsat}^1)}$	0,8	V

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 1 \text{ V}$, $I_C = 2 \text{ A}$	BD 437	$U_{\text{BE}^1)}$	1,2	V
	BD 439, BD 441	$U_{\text{BE}^1)}$	1,5	V

¹⁾ $\frac{t_p}{T} = 0,01$, $t_p = 0,3 \text{ ms}$

BD 437 · BD 439 · BD 441

			Min.	Typ.	Max.
Kollektor-Basis-Gleichstromverhältnis <i>DC forward current transfer ratio</i>					
$U_{CE} = 5 \text{ V}, I_C = 10 \text{ mA}$	BD 437	h_{FE}	30		
	BD 439	h_{FE}	20		
	BD 441	h_{FE}	15		

$U_{CE} = 1 \text{ V}, I_C = 500 \text{ mA}$ $h_{FE}^1)$ 40 236

$U_{CE} = 1 \text{ V}, I_C = 2 \text{ A}$	BD 437	$h_{FE}^1)$	40
	BD 439	$h_{FE}^1)$	25
	BD 441	$h_{FE}^1)$	15

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$U_{CE} = 1 \text{ V}, I_C = 500 \text{ mA}^1)$ 1,4

Transitfrequenz

Gain bandwidth product

$U_{CE} = 10 \text{ V}, I_C = 250 \text{ mA}, f = 1 \text{ MHz}$	f_T	3	MHz
--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 438 · BD 440 · BD 442

Silizium-PNP-Epibasis-Leistungstransistoren Silicon PNP Epibase Power Transistors

Anwendungen: Allgemein im NF-Bereich
Applications: General in AF-range

Besondere Merkmale:

- Hohe Spitzenleistung
- Verlustleistung 36 W
- Gepaart lieferbar
- BD 438, BD 440, BD 442 sind komplementär zu BD 437, BD 439, BD 441

Features:

- High peak power
- Power dissipation 36 W
- Matched pairs available
- BD 438, BD 440, BD 442 are complementary to BD 437, BD 439, BD 441

Abmessungen in mm Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse
Case
 12 A 3 DIN 41 896
 JEDEC TO 126 (SOT 32)
 Gewicht · Weight
 max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung
Collector-base voltage

BD 438 BD 440 BD 442

$-U_{CBO}$ 45 60 80 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

$-U_{CEO}$ 45 60 80 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

$-U_{EBO}$ 5 V

BD 438 · BD 440 · BD 442

Kollektorstrom <i>Collector current</i>	$-I_C$	4	A
Kollektorspitzenstrom <i>Collector peak current</i> $t_p < 10 \text{ ms}$	$-I_{CM}$	7	A
Basisstrom <i>Base current</i>	$-I_B$	1	A
Gesamtverlustleistung <i>Total power dissipation</i> $t_{\text{case}} \leq 25^\circ\text{C}$	P_{tot}	36	W
Sperrschichttemperatur <i>Junction temperature</i>	t_J	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	$M_A^1)$	70	N cm

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

BD 438 · BD 440 · BD 442

Wärmewiderstände *Thermal resistances*

		Min.	Typ.	Max.
Sperrsicht-Umgebung <i>Junction ambient</i>	R_{thJA}			100 °C/W
Sperrsicht-Gehäuse <i>Junction case</i>	R_{thJC}			3,5 °C/W
mit Isolierscheibe <i>with isolating washer</i> Best. Nr. 119 880	R_{thJC}			8 °C/W
mit Isolierscheibe und Paste <i>with isolating washer and paste</i>	R_{thJC}			4 °C/W

Kenngrößen *Characteristics*

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$-U_{\text{CB}} = 45 \text{ V}$	BD 438	$-I_{\text{CBO}}$	100	μA
$-U_{\text{CB}} = 60 \text{ V}$	BD 440	$-I_{\text{CBO}}$	100	μA
$-U_{\text{CB}} = 80 \text{ V}$	BD 442	$-I_{\text{CBO}}$	100	μA

$t_{\text{amb}} = 150^\circ\text{C}$, $-U_{\text{CB}} = 45 \text{ V}$	BD 438	$-I_{\text{CBO}}$	3	mA
$-U_{\text{CB}} = 60 \text{ V}$	BD 440	$-I_{\text{CBO}}$	3	mA
$-U_{\text{CB}} = 80 \text{ V}$	BD 442	$-I_{\text{CBO}}$	3	mA

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$-I_{\text{C}} = 100 \text{ mA}$	BD 438	$-U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 440	$-U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 442	$-U_{(\text{BR})\text{CEO}^1)}$	80	V

$-I_{\text{C}} = 100 \mu\text{A}$	BD 438	$-U_{(\text{BR})\text{CES}}$	45	V
	BD 440	$-U_{(\text{BR})\text{CES}}$	60	V
	BD 442	$-U_{(\text{BR})\text{CES}}$	80	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$-I_{\text{E}} = 1 \text{ mA}$		$-U_{(\text{BR})\text{EBO}}$	5	V
--------------------------------	--	------------------------------	---	------------

Kollektor-Sättigungsspannung

Collector saturation voltage

$-I_{\text{C}} = 2 \text{ A}$, $-I_{\text{B}} = 200 \text{ mA}$	BD 438	$-U_{\text{CEsat}^1)}$	0,6	V
	BD 440, BD 442	$-U_{\text{CEsat}^1)}$	0,8	V

Basis-Emitterspannung

Base-emitter voltage

$-U_{\text{CE}} = 1 \text{ V}$, $-I_{\text{C}} = 2 \text{ A}$	BD 438	$-U_{\text{BE}^1})$	1,2	V
	BD 440, BD 442	$-U_{\text{BE}^1})$	1,5	V

¹⁾ $\frac{t_p}{T} = 0,01$, $t_p = 0,3 \text{ ms}$

BD 438 · BD 440 · BD 442

	Min.	Typ.	Max.
--	------	------	------

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$-U_{CE} = 5 \text{ V}, -I_C = 10 \text{ mA}$	BD 438	h_{FE}	30
	BD 440	h_{FE}	20
	BD 442	h_{FE}	15

$-U_{CE} = 1 \text{ V}, -I_C = 500 \text{ mA}$	$h_{FE}^{1)}$	40	236
--	---------------	----	-----

$-U_{CE} = 1 \text{ V}, -I_C = 2 \text{ A}$	BD 438	$h_{FE}^{1)}$	40
	BD 440	$h_{FE}^{1)}$	25
	BD 442	$h_{FE}^{1)}$	15

Für Paare gilt das h_{FE} -Verhältnis

h_{FE} matched pair ratio

$-U_{CE} = 1 \text{ V}, -I_C = 500 \text{ mA}^{1)}$	1,4
---	-----

Transitfrequenz

Gain bandwidth

$-U_{CE} = 10 \text{ V}, -I_C = 250 \text{ mA}, f = 1 \text{ MHz}$	f_T	3	MHz
--	-------	---	-----

¹⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BD 643 · BD 645 · BD 647 · BD 649

Silizium-NPN-Darlington-Leistungstransistoren Silicon NPN Darlington Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-Output stages

Besondere Merkmale:

- Hohe Sperrspannung
- Sehr hohe Stromverstärkung
- Verlustleistung 62,5 W
- Glaspassivierung
- BD 643, BD 645, BD 647, BD 649 sind komplementär zu BD 644, BD 646, BD 648, BD 650

Features:

- High reverse voltage
- Very high current transfer ratio
- Power dissipation 62,5 W
- Glass passivation
- BD 643, BD 645, BD 647, BD 649 are complementary to BD 644, BD 646, BD 648, BD 650

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit
Montagefläche verbunden
Collector connected
with metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 564 542

Isolierbuchse
Isolating bush Best. Nr. 513 242

Normgehäuse
Case
14 A 3 DIN 41869
JEDEC TO 220
Gewicht · Weight
max. 1,5 g

BD 643 · BD 645 · BD 647 · BD 649

Absolute Grenzdaten

Absolute maximum ratings

		BD 643	BD 645	BD 647	BD 649	
Kollektor-Basis-Sperrspannung Collector-base voltage	U_{CBO}	60	80	100	120	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage	U_{CEO}	45	60	80	100	V
Emitter-Basis-Sperrspannung Emitter-base voltage	U_{EBO}			5		V
Kollektorstrom Collector current	I_C			8		A
Kollektorspitzenstrom Collector peak current	I_{CM}			12		A
Basisstrom Base current	I_B			150		mA
Gesamtverlustleistung Total power dissipation $t_{case} \leq 25^\circ\text{C}$	P_{tot}			62,5		W
Sperrsichttemperatur Junction temperature	t_j			150		$^\circ\text{C}$
Lagerungstemperaturbereich Storage temperature range	t_{stg}			-55 ... +150		$^\circ\text{C}$

BD 643 · BD 645 · BD 647 · BD 649

Wärmewiderstand Thermal resistance

Sperrsicht-Gehäuse
Junction case

R_{thJC} Min. Typ. Max. 2 °C/W

Kenngrößen Characteristics

$t_{case} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom Collector cut-off current

$U_{CB} = 45\text{ V}$	BD 643	I_{CBO}	200	μA
$U_{CB} = 60\text{ V}$	BD 645	I_{CBO}	200	μA
$U_{CB} = 80\text{ V}$	BD 647	I_{CBO}	200	μA
$U_{CB} = 100\text{ V}$	BD 649	I_{CBO}	200	μA

$t_{case} = 100^\circ\text{C}$, $U_{CB} = 30\text{ V}$	BD 643	I_{CBO}	2	mA
$U_{CB} = 40\text{ V}$	BD 645	I_{CBO}	2	mA
$U_{CB} = 50\text{ V}$	BD 647	I_{CBO}	2	mA
$U_{CB} = 60\text{ V}$	BD 649	I_{CBO}	2	mA

$U_{CE} = 25\text{ V}$	BD 643	I_{CEO}	500	μA
$U_{CE} = 30\text{ V}$	BD 645	I_{CEO}	500	μA
$U_{CE} = 40\text{ V}$	BD 647	I_{CEO}	500	μA
$U_{CE} = 50\text{ V}$	BD 649	I_{CEO}	500	μA

Emitterreststrom Emitter cut-off current

$U_{EB} = 5\text{ V}$		I_{EBO}	5	mA
-----------------------	--	-----------	---	-------------

Kollektor-Emitter-Durchbruchspannung Collector-emitter breakdown voltage

$I_C = 100\text{ mA}$	BD 643	$U_{(BR)CEO^1}$	45	V
	BD 645	$U_{(BR)CEO^1}$	60	V
	BD 647	$U_{(BR)CEO^1}$	80	V
	BD 649	$U_{(BR)CEO^1}$	100	V

Kollektor-Sättigungsspannung Collector saturation voltage

$I_C = 4\text{ A}$, $I_B = 16\text{ mA}$	BD 643	U_{CEsat}	2	V
$I_C = 3\text{ A}$, $I_B = 12\text{ mA}$	BD 645, BD 647, BD 649	U_{CEsat}	2	V

Basis-Emitter-Spannung Base-emitter voltage

$U_{CE} = 3\text{ V}$, $I_C = 4\text{ A}$	BD 643	U_{BE}	2,5	V
$I_C = 3\text{ A}$	BD 645, BD 647, BD 649	U_{BE}	2,5	V

¹⁾ $\frac{t_p}{T} = 0,01$; $t_p = 0,1\text{ ms}$

BD 643 · BD 645 · BD 647 · BD 649

			Min.	Typ.	Max.
Durchlaßspannung der Schutzdiode <i>Forward voltage of the protection diode</i>					
$I_F = 3 \text{ A}$		U_F		1,2	V
Kollektor-Basis-Gleichstromverhältnis <i>DC forward current transfer ratio</i>					
$U_{CE} = 3 \text{ V}, I_C = 4 \text{ A}$ $I_C = 3 \text{ A}$	BD 643 BD 645, BD 647, BD 649	h_{FE}	750		
h_{fe} -Grenzfrequenz h_{fe} -cut-off frequency					
$U_{CE} = 3 \text{ V}, I_C = 4 \text{ A},$ $I_C = 3 \text{ A}$	BD 643 BD 645, BD 647, BD 649	f_{hfe}	100		kHz
Transitfrequenz <i>Gain bandwidth product</i>					
$U_{CB} = 3 \text{ V}, I_C = 3 \text{ A}, f = 1 \text{ MHz}$		f_T	7		MHz

BD 644 · BD 646 · BD 648 · BD 650

Silizium-PNP-Darlington-Leistungstransistoren Silicon PNP Darlington Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-Output stages

Besondere Merkmale:

- Hohe Sperrspannung
- Sehr hohe Stromverstärkung
- Verlustleistung 62,5 W
- Glaspassivierung
- BD 644, BD 646, BD 648, BD 650 sind komplementär zu BD 643, BD 645, BD 647, BD 649

Features:

- High reverse voltage
- Very high current transfer ratio
- Power dissipation 62.5 W
- Glass passivation
- BD 644, BD 646, BD 648, BD 650 are complementary to BD 643, BD 645, BD 647, BD 649

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm Dimensions in mm

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 564 542

Isolierbuchse
Isolating bush Best. Nr. 513 242

Kollektor mit
Montagefläche verbunden
*Collector connected
with metallic surface*

Normgehäuse
Case
14 A 3 DIN 41869
JEDEC TO 220
Gewicht · Weight
max. 1,5 g

BD 644 · BD 646 · BD 648 · BD 650

Absolute Grenzdaten

Absolute maximum ratings

		BD 644	BD 646	BD 648	BD 650	
Kollektor-Basis-Sperrspannung Collector-base voltage	$-U_{CBO}$	45	60	80	100	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage	$-U_{CEO}$	45	60	80	100	V
Emitter-Basis-Sperrspannung Emitter-base voltage	$-U_{EBO}$			5		V
Kollektorstrom Collector current	$-I_C$			8		mA
Kollektorspitzenstrom Collector peak current	$-I_{CM}$			12		mA
Basisstrom Base current	$-I_B$			150		mA
Gesamtverlustleistung Total power dissipation $t_{case} \leq 25^\circ\text{C}$	P_{tot}			62,5		mW
Sperrsichttemperatur Junction temperature	t_j			150		°C
Lagerungstemperaturbereich Storage temperature range	t_{stg}			-55 ... +150		°C

BD 644 · BD 646 · BD 648 · BD 650

Wärmewiderstand *Thermal resistance*

Sperrsicht-Gehäuse
Junction case

R_{thJC}

Min. Typ. Max.

2 °C/W

Kenngrößen *Characteristics*

$t_{\text{case}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$-U_{\text{CB}} = 45 \text{ V}$	BD 644	$-I_{\text{CBO}}$	200	μA
$-U_{\text{CB}} = 60 \text{ V}$	BD 646	$-I_{\text{CBO}}$	200	μA
$-U_{\text{CE}} = 80 \text{ V}$	BD 648	$-I_{\text{CBO}}$	200	μA
$-U_{\text{CE}} = 100 \text{ V}$	BD 650	$-I_{\text{CBO}}$	200	μA

$t_{\text{case}} = 100^\circ\text{C}$, $-U_{\text{CB}} = 30 \text{ V}$	BD 644	$-I_{\text{CBO}}$	2	mA
$-U_{\text{CB}} = 40 \text{ V}$	BD 646	$-I_{\text{CBO}}$	2	mA
$-U_{\text{CB}} = 50 \text{ V}$	BD 648	$-I_{\text{CBO}}$	2	mA
$-U_{\text{CB}} = 60 \text{ V}$	BD 650	$-I_{\text{CBO}}$	2	mA

$-U_{\text{CE}} = 25 \text{ V}$	BD 644	$-I_{\text{CEO}}$	500	μA
$-U_{\text{CE}} = 30 \text{ V}$	BD 646	$-I_{\text{CEO}}$	500	μA
$-U_{\text{CE}} = 40 \text{ V}$	BD 648	$-I_{\text{CEO}}$	500	μA
$-U_{\text{CE}} = 50 \text{ V}$	BD 650	$-I_{\text{CEO}}$	500	μA

Emitterreststrom

Emitter cut-off current

$-U_{\text{EB}} = 5 \text{ V}$		$-I_{\text{EBO}}$	5	mA
--------------------------------	--	-------------------	---	-------------

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$-I_{\text{C}} = 100 \text{ mA}$	BD 644	$-U_{(\text{BR})\text{CEO}^1}$	45	V
	BD 646	$-U_{(\text{BR})\text{CEO}^1}$	60	V
	BD 648	$-U_{(\text{BR})\text{CEO}^1}$	80	V
	BD 650	$-U_{(\text{BR})\text{CEO}^1}$	100	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$-I_{\text{C}} = 4 \text{ A}$, $-I_{\text{B}} = 16 \text{ mA}$	BD 644	$-U_{\text{CEsat}}$	2	V
$-I_{\text{C}} = 3 \text{ A}$, $-I_{\text{B}} = 12 \text{ mA}$	BD 646, BD 648, BD 650	$-U_{\text{CEsat}}$	2	V

Basis-Emitter-Spannung

Base-emitter voltage

$-U_{\text{CE}} = 3 \text{ V}$, $-I_{\text{C}} = 4 \text{ A}$	BD 644	$-U_{\text{BE}}$	2,5	V
$-I_{\text{C}} = 3 \text{ A}$	BD 646, BD 648, BD 650	$-U_{\text{BE}}$	2,5	V

¹⁾) $\frac{t_p}{T} = 0,01$; $t_p = 0,1 \text{ ms}$

BD 644 · BD 646 · BD 648 · BD 650

		Min.	Typ.	Max.
Durchlaßspannung der Schutzdiode <i>Forward voltage of the protection diode</i>				
$-I_F = 3 \text{ A}$	$-U_F$	1,2		V
Kollektor-Basis-Gleichstromverhältnis <i>DC forward current transfer ratio</i>				
$-U_{CE} = 3 \text{ V}, -I_C = 4 \text{ A}$ $-I_C = 3 \text{ A}$ BD 644, BD 646, BD 648, BD 650	BD 644 BD 646, BD 648, BD 650	h_{FE}	750	
h_{fe} -Grenzfrequenz h_{fe} -cut-off frequency				
$-U_{CE} = 3 \text{ V}, -I_C = 4 \text{ A}$ $-I_C = 3 \text{ A}$ BD 644 BD 646, BD 648, BD 650	BD 644 BD 646, BD 648, BD 650	f_{hfe}	100	kHz
h_{fe} -Grenzfrequenz h_{fe} -cut-off frequency				
$-U_{CB} = 3 \text{ V}, -I_C = 3 \text{ A}, f = 1 \text{ MHz}$		f_T	7	MHz

BD 675 · BD 677 · BD 679 · BD 681

Silizium-NPN-Darlington-Leistungstransistoren Silicon NPN Darlington Power Transistors

Anwendungen: NF-Endstufen
Applications: AF-output stages

Besondere Merkmale:

- Sehr hohe Stromverstärkung
- Verlustleistung 40 W
- BD 675, BD 677, BD 679, BD 681 sind komplementär zu BD 676, BD 678, BD 680, BD 682

Features:

- Very high current transfer ratio
- Power dissipation 40 W
- BD 675, BD 677, BD 679, BD 681 are complementary to BD 676, BD 678, BD 680, BD 682

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm
Dimensions in mm

Kollektor mit metallischer
 Montagefläche verbunden
 Collector connected with
 metallic surface

Zubehör Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse
 Case

12 A 3 DIN 41869

JEDEC TO 126 (SOT 32)

Gewicht · Weight
 max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

BD 675 BD 677 BD 679 BD 681

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	U_{CBO}	45	60	80	100	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	U_{CEO}	45	60	80	100	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	U_{EBO}			5		V

BD 675 · BD 677 · BD 679 · BD 681

Kollektorstrom
Collector current

I_C 4 A

Kollektorspitzenstrom

Collector peak current

$t_p \leq 10 \text{ ms}$

I_{CM} 7 A

Basisstrom

Base current

I_B 100 mA

Gesamtverlustleistung

Total power dissipation

$t_{case} \leq 25^\circ\text{C}$

P_{tot} 40 W

Sperrsichttemperatur

Junction temperature

t_j 150 °C

Lagerungstemperaturbereich

Storage temperature range

t_{stg} -55...+150 °C

Anzugsdrehmoment

Tightening torque

M_A ¹⁾ 70 N cm

Wärmewiderstände
Thermal resistances

Sperrsicht-Umgebung
Junction ambient

R_{thJA} 100 °C/W

Sperrsicht-Gehäuse
Junction case

R_{thJC} 3,12 °C/W

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

BD 675 · BD 677 · BD 679 · BD 681

Kenngrößen *Characteristics*

Min. Typ. Max.

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$U_{\text{CB}} = 45 \text{ V}$	BD 675	I_{CBO}	0,2	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CB}} = 60 \text{ V}$	BD 677	I_{CBO}	0,2	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CB}} = 80 \text{ V}$	BD 679	I_{CBO}	0,2	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CB}} = 100 \text{ V}$	BD 681	I_{CBO}	0,2	mA
---------------------------------	---------------	------------------	-----	----

$t_{\text{amb}} = 100^\circ\text{C}$, $U_{\text{CB}} = 45 \text{ V}$ **BD 675** I_{CBO} 2 mA

$U_{\text{CB}} = 60 \text{ V}$	BD 677	I_{CBO}	2	mA
--------------------------------	---------------	------------------	---	----

$U_{\text{CB}} = 80 \text{ V}$	BD 679	I_{CBO}	2	mA
--------------------------------	---------------	------------------	---	----

$U_{\text{CB}} = 100 \text{ V}$	BD 681	I_{CBO}	2	mA
---------------------------------	---------------	------------------	---	----

$U_{\text{CE}} = 20 \text{ V}$	BD 675	I_{CEO}	0,5	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CE}} = 30 \text{ V}$	BD 677	I_{CEO}	0,5	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CE}} = 40 \text{ V}$	BD 679	I_{CEO}	0,5	mA
--------------------------------	---------------	------------------	-----	----

$U_{\text{CE}} = 50 \text{ V}$	BD 681	I_{CEO}	0,5	mA
--------------------------------	---------------	------------------	-----	----

Emitterreststrom

Emitter cut-off current

$U_{\text{EB}} = 5 \text{ V}$		I_{EBO}	2	mA
-------------------------------	--	------------------	---	----

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_{\text{C}} = 50 \text{ mA}$	BD 675	$U_{(\text{BR})\text{CEO}}^1)$	45	V
--------------------------------	---------------	--------------------------------	----	---

	BD 677	$U_{(\text{BR})\text{CEO}}^1)$	60	V
--	---------------	--------------------------------	----	---

	BD 679	$U_{(\text{BR})\text{CEO}}^1)$	80	V
--	---------------	--------------------------------	----	---

	BD 681	$U_{(\text{BR})\text{CEO}}^1)$	100	V
--	---------------	--------------------------------	-----	---

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_{\text{C}} = 1,5 \text{ A}$, $I_{\text{B}} = 30 \text{ mA}$		$U_{\text{CEsat}}^1)$	2,5	V
---	--	-----------------------	-----	---

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 3 \text{ V}$, $I_{\text{C}} = 1,5 \text{ A}$		$U_{\text{BE}}^1)$	2,5	V
--	--	--------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 3 \text{ V}$, $I_{\text{C}} = 1,5 \text{ A}$		$h_{\text{FE}}^1)$	750	
--	--	--------------------	-----	--

Kleinsignal-Stromverstärkung

Small-signal current gain

$U_{\text{CE}} = 3 \text{ V}$, $I_{\text{C}} = 1,5 \text{ A}$, $f = 1 \text{ MHz}$		h_{fe}	1	
--	--	-----------------	---	--

¹⁾ $\frac{t_p}{T} = 0,02$, $t_p = 0,3 \text{ ms}$

BD 676 · BD 678 · BD 680 · BD 682

Silizium-PNP-Darlington-Leistungstransistoren Silicon PNP Darlington Power Transistors

Anwendungen: NF-Endstufen

Applications: AF-output stages

Besondere Merkmale:

- Sehr hohe Stromverstärkung
- Verlustleistung 40 W
- BD 676, BD 678, BD 680, BD 682 sind komplementär zu BD 675, BD 677, BD 679, BD 681

Features:

- Very high current transfer ratio
- Power dissipation 40 W
- BD 676, BD 678, BD 680, BD 682 are complementary to BD 675, BD 677, BD 679, BD 681

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe
Isolation washer Best. Nr. 119880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case
12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung
Collector-base voltage

BD 676 BD 678 BD 680 BD 682

$-U_{CBO}$ 45 60 80 100 V

Kollektor-Emitter-Sperrspannung
Collector-Emitter voltage

$-U_{CEO}$ 45 60 80 100 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

$-U_{EBO}$ 5 V

BD 676 · BD 678 · BD 680 · BD 682

Kollektorstrom <i>Collector current</i>	$-I_C$	4	A
Kollektorspitzenstrom <i>Collector peak current</i> $t_p \leq 10 \text{ ms}$	$-I_{CM}$	7	A
Basisstrom <i>Base current</i>	$-I_B$	100	mA
Gesamtverlustleistung <i>Total power dissipation</i> $t_{\text{case}} \leq 25^\circ\text{C}$	P_{tot}	40	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	°C
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-55...+150	°C
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

Wärmewiderstände *Thermal resistances*

Sperrsicht-Umgebung
Junction ambient

R_{thJA} 100 °C/W

Sperrsicht-Gehäuse
Junction case

R_{thJC} 3,12 °C/W

¹⁾ mit M3-Schraube und Unterlagscheibe
with screw M3 and washer 3,2 DIN 125A

BD 676 · BD 678 · BD 680 · BD 682

Kenngrößen

Characteristics

Min. Typ. Max.

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$-U_{\text{CB}} = 45 \text{ V}$	BD 676	$-I_{\text{CBO}}$	0,2	mA
$-U_{\text{CB}} = 60 \text{ V}$	BD 678	$-I_{\text{CBO}}$	0,2	mA
$-U_{\text{CB}} = 80 \text{ V}$	BD 680	$-I_{\text{CBO}}$	0,2	mA
$-U_{\text{CB}} = 100 \text{ V}$	BD 682	$-I_{\text{CBO}}$	0,2	mA
$t_{\text{amb}} = 100^\circ\text{C}$, $-U_{\text{CB}} = 45 \text{ V}$	BD 676	$-I_{\text{CBO}}$	2	mA
	BD 678	$-I_{\text{CBO}}$	2	mA
	BD 680	$-I_{\text{CBO}}$	2	mA
	BD 682	$-I_{\text{CBO}}$	2	mA
$-U_{\text{CE}} = 20 \text{ V}$	BD 676	$-I_{\text{CEO}}$	0,5	mA
$-U_{\text{CE}} = 30 \text{ V}$	BD 678	$-I_{\text{CEO}}$	0,5	mA
$-U_{\text{CE}} = 40 \text{ V}$	BD 680	$-I_{\text{CEO}}$	0,5	mA
$-U_{\text{CE}} = 50 \text{ V}$	BD 682	$-I_{\text{CEO}}$	0,5	mA

Emitterreststrom

Emitter cut-off current

$-U_{\text{EB}} = 5 \text{ V}$	$-I_{\text{EBO}}$	2	mA
--------------------------------	-------------------	---	----

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$-I_{\text{C}} = 50 \text{ mA}$	BD 676	$-U_{(\text{BR})\text{CEO}^1)}$	45	V
	BD 678	$-U_{(\text{BR})\text{CEO}^1)}$	60	V
	BD 680	$-U_{(\text{BR})\text{CEO}^1)}$	80	V
	BD 682	$-U_{(\text{BR})\text{CEO}^1)}$	100	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$-I_{\text{C}} = 1,5 \text{ A}$, $-I_{\text{B}} = 30 \text{ mA}$	$-U_{\text{CEsat}^1)}$	2,5	V
---	------------------------	-----	---

Basis-Emitterspannung

Base-emitter voltage

$-U_{\text{CE}} = 3 \text{ V}$, $-I_{\text{C}} = 1,5 \text{ A}$	$-U_{\text{BE}^1)}$	2,5	V
--	---------------------	-----	---

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$-U_{\text{CE}} = 3 \text{ V}$, $-I_{\text{C}} = 1,5 \text{ A}$	$h_{\text{FE}^1})$	750	
--	--------------------	-----	--

Kleinsignal-Stromverstärkung

Small-signal current gain

$-U_{\text{CE}} = 3 \text{ V}$, $-I_{\text{C}} = 1,5 \text{ A}$, $f = 1 \text{ MHz}$	h_{fe}	1	
--	-----------------	---	--

¹⁾ $\frac{t_p}{T} = 0,02$, $t_p = 0,3 \text{ ms}$

BDY 42 · BDY 43 · BDY 44

Silizium-NPN-Leistungstransistoren Silicon NPN Power Transistors

Anwendungen: Spannungsregler, Inverter, getaktete Netzgeräte
Applications: Voltage regulator, inverter, switching mode power supply

Besondere Merkmale:

- Hohe Sperrspannungen
- Hohe Stromverstärkung
- Kurze Schaltzeiten
- Verlustleistung 60 W

Features:

- High reverse voltages
- High current gain
- Short switching times
- Power dissipation 60 W

Abmessungen in mm
Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Zubehör Accessories

Isolierscheiben Best. Nr. 515 390
Isolating washers Best. Nr. 562 897

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Absolute Grenzdaten Absolute maximum ratings

BDY 42 BDY 43 BDY 44

Kollektor-Basis-Sperrspannung
Collector-base voltage

U_{CBO} 400 600 750 V

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage
 $I_B = 0$

U_{CEO} 250 300 350 V

Emitter-Basis-Sperrspannung
Emitter-base voltage

U_{CES} 400 600 750 V

U_{EBO} 7 V

BDY 42 · BDY 43 · BDY 44

Kollektorstrom <i>Collector current</i>	I_C	5	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	10	A
$t_p \leq 10 \text{ ms}$			
Basisstrom <i>Base current</i>	I_B	3	A
Negativer Basisspitzenstrom <i>Negative base peak current</i>	$-I_{BM}$	4	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	60	W
$U_{CE} \leq 30 \text{ V}, t_{\text{case}} \leq 25^\circ\text{C}$			
Sperrschichttemperatur <i>Junction temperature</i>	t_j	175	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65...+175	$^\circ\text{C}$

Wärmewiderstand *Thermal resistance*

Sperrschicht-Gehäuse
Junction case

Min. Typ. Max.

R_{thJC} 2,5 $^\circ\text{C}/\text{W}$

BDY 42 · BDY 43 · BDY 44

Statische Kenngrößen DC characteristics

Min. Typ. Max.

$t_{\text{case}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cutoff current

U_{CES}	I_{CES}	200	μA
$t_{\text{case}} = 150^\circ\text{C}$, U_{CES}	I_{CES}	2	mA

Kollektor-Basis-Durchbruchspannung

Collector base breakdown voltage

$I_C = 1 \text{ mA}$	BDY 42	$U_{(\text{BR})\text{CBO}}$	400	V
	BDY 43	$U_{(\text{BR})\text{CBO}}$	600	V
	BDY 44	$U_{(\text{BR})\text{CBO}}$	750	V

Kollektor-Emitter-Durchbruchspannung

Collector emitter breakdown voltage

$I_C = 200 \text{ mA}$	BDY 42	$U_{(\text{BR})\text{CEO}}$	250	V
	BDY 43	$U_{(\text{BR})\text{CEO}}$	300	V
	BDY 44	$U_{(\text{BR})\text{CEO}}$	350	V

BDY 42 · BDY 43 · BDY 44

Emitter-Basis-Durchbruchspannung <i>Emitter base breakdown voltage</i>	$I_E = 2 \text{ mA}$	$U_{(\text{BR})\text{EBO}}$	Min.	Typ.	Max.
Kollektor-Sättigungsspannung <i>Collector saturation voltage</i>	$I_C = 5 \text{ A}, I_B = 1,5 \text{ A}$	U_{CEsat}		1,5	V
Basis-Sättigungsspannung <i>Base saturation voltage</i>	$I_C = 5 \text{ A}, I_B = 1,5 \text{ A}$	U_{BEsat}		2	V
Kollektor-Basis-Gleichstromverhältnis <i>DC forward current transfer ratio</i>	$U_{\text{CE}} = 2 \text{ V}, I_C = 1 \text{ A}$ $U_{\text{CE}} = 2 \text{ V}, I_C = 5 \text{ A}$	h_{FE}	20		
		h_{FE}	5		

Dynamische Kenngrößen

AC characteristics

$$t_{\text{case}} = 25^\circ\text{C}$$

Transitfrequenz <i>Gain bandwidth product</i>	$U_{\text{CE}} = 10 \text{ V}, I_C = 500 \text{ mA}, f = 10 \text{ MHz}$	f_T	10	12	MHz
Kollektor-Basis-Kapazität <i>Collector base capacitance</i>	$U_{\text{CB}} = 10 \text{ V}, f = 1 \text{ MHz}$	C_{CBO}	90		pF

Schaltzeiten

Switching characteristics

$$I_C = 2,5 \text{ A}, I_{B1} \approx -I_{B2} 0,5 \text{ A}, t_{\text{case}} = 25^\circ\text{C}, \text{siehe Meßschaltung}$$

see test circuit

Einschaltzeit <i>Turn-on time</i>	t_{on}	0,5	μs
Abfallzeit <i>Fall time</i>	t_f	1	μs
Ausschaltzeit <i>Turn-off time</i>	t_{off}	4	μs

BDY 42 · BDY 43 · BDY 44

Fig. 4 Meßschaltung für:
Test circuit for:

BDY 42 · BDY 43 · BDY 44

Silizium-NPN-Leistungstransistoren Silicon NPN Power Transistors

Anwendungen: Spannungsregler, Inverter, getaktete Netzgeräte
Applications: Voltage regulator, inverter, switching mode power supply

Besondere Merkmale:

- Hohe Sperrspannungen
- Hohe Stromverstärkung
- Kurze Schaltzeiten
- Verlustleistung 95 W

Features:

- High reverse voltages
- High current gain
- Short switching times
- Power dissipation 95 W

Abmessungen in mm

Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Zubehör Accessories

Isolierscheiben Best. Nr. 515 390
 Isolating washers Best. Nr. 562 897

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Absolute Grenzdaten Absolute maximum ratings

BDY 45 BDY 46 BDY 47

Kollektor-Basis-Sperrspannung Collector-base voltage	U_{CBO}	400	600	750	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage $I_B = 0$	U_{CEO}	250	300	350	V
Emitter-Basis-Sperrspannung Emitter-base voltage	U_{CES}	400	600	750	V
	U_{EBO}		7		V

BDY 45 · BDY 46 · BDY 47

Kollektorstrom <i>Collector current</i>	I_C	15	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	17	A
Basisstrom <i>Base current</i>	I_B	5	A
Basisspitzenstrom <i>Base peak current</i>	I_{BM}	7	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	95	W
$U_{CE} \leq 20 \text{ V}, t_{case} \leq 45^\circ\text{C}$	t_j	175	$^\circ\text{C}$
Sperrsichttemperatur <i>Junction temperature</i>	t_{stg}	-65...+175	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>			

BDY 45 · BDY 46 · BDY 47

Fig. 5 77 2181

BDY 45 · BDY 46 · BDY 47

Wärmewiderstand Thermal resistance

	R_{thJC}	Min.	Typ.	Max.
Sperrschicht-Gehäuse <i>Junction case</i>		1,37	°C/W	

Statische Kenngrößen DC characteristics

$t_{\text{case}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cutoff current

I_C	U_{CES}	I_{CES}	200	μA
$t_{\text{case}} = 150^\circ\text{C}$, U_{CES}		I_{CES}	2,5	mA

Kollektor-Basis-Durchbruchspannung

Collector base breakdown voltage

$I_C = 1 \text{ mA}$	BDY 45	$U_{(\text{BR})\text{CBO}}$	400	V
	BDY 46	$U_{(\text{BR})\text{CBO}}$	600	V
	BDY 47	$U_{(\text{BR})\text{CBO}}$	750	V

Kollektor-Emitter-Durchbruchspannung

Collector emitter breakdown voltage

$I_C = 200 \text{ mA}$	BDY 45	$U_{(\text{BR})\text{CEO}}$	250	V
	BDY 46	$U_{(\text{BR})\text{CEO}}$	300	V
	BDY 47	$U_{(\text{BR})\text{CEO}}$	350	V

Emitter-Basis-Durchbruchspannung

Emitter base breakdown voltage

$I_E = 2 \text{ mA}$		$U_{(\text{BR})\text{EBO}}$	7	V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_C = 15 \text{ A}$, $I_B = 5 \text{ A}$		U_{CEsat}	1,5	V

Basis-Sättigungsspannung

Base saturation voltage

$I_C = 15 \text{ A}$, $I_B = 5 \text{ A}$		U_{BEsat}	2	V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 2 \text{ V}$, $I_C = 2 \text{ A}$	h_{FE}	20	
$U_{\text{CE}} = 2 \text{ V}$, $I_C = 10 \text{ A}$	h_{FE}	5	

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 10 \text{ V}$, $I_C = 500 \text{ mA}$, $f = 10 \text{ MHz}$	f_T	10	13	MHz

Kollektor-Basis-Kapazität

Collector base capacitance

$U_{\text{CB}} = 10 \text{ V}$, $f = 1 \text{ MHz}$	C_{CBO}	200	pF

BDY 45 · BDY 46 · BDY 47

Schaltzeiten

Switching characteristics

$I_C = 5 \text{ A}$, $I_{B1} \approx -I_{B2} = 1 \text{ A}$, $t_{\text{case}} = 25^\circ\text{C}$, siehe Meßschaltung
see test circuit

		Min.	Typ.	Max.
Einschaltzeit <i>Turn-on time</i>	t_{on}			0,5 μs
Abfallzeit <i>Fall time</i>	t_f		1	μs
Ausschaltzeit	t_{off}		3,5	μs

$R_G = 50 \Omega$

$\frac{t_p}{T} = 0,01$

$t_p = 20 \mu\text{s}$

Oszilloskop:
Oscilloscope:

$R_L > 100 \text{ k}\Omega$

$t_r < 15 \text{ ns}$

77 2232

Fig. 6 Meßschaltung für:
Test circuit for: t_{on} , t_f , t_{off}

BDY 45 · BDY 46 · BDY 47

BDY 45 · BDY 46 · BDY 47

Silizium-NPN-Epitaxial-Planar-HF-Transistor Silicon NPN Epitaxial Planar RF Transistor

Anwendungen: Video-B-Endstufen in Fernsehempfängern

Applications: Video-B-class power stages in TV receivers

Besondere Merkmale:

- Komplementär zu BF 470

Features:

- Complementary to BF 470

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm
Dimensions in mm

Zubehör
Accessories

Isolierscheibe Best. Nr. 119880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Kollektor mit metallischer
 Montagefläche verbunden
Collector connected with
metallic surface

Normgehäuse
Case
 12 A 3 DIN 41869
 JEDEC TO 126 (SOT 32)
 Gewicht · Weight
 max. 0,8 g

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	U_{CBO}	250	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	U_{CEO}	250	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	U_{EBO}	5	V
Kollektorstrom <i>Collector current</i>	I_C	20	mA
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	100	mA
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 110^\circ\text{C}$	P_{tot}	2	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	°C
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65 ... +150	°C
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

Wärmewiderstände
Thermal resistances
Min. **Typ.** **Max.**

 Sperrsicht-Umgebung
 Junction ambient
 $l = 4 \text{ mm}$,

 Kupferkühlfläche $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ dick
 Copper cooling area $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ thickness
 R_{thJA}

100 °C/W

 Sperrsicht-Gehäuse
 Junction case
 R_{thJC}

20 °C/W

Kenngrößen
Characteristics
 $t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

 $U_{\text{CB}} = 200 \text{ V}$ $U_{\text{CE}} = 200 \text{ V}, R_{\text{BE}} = 10 \text{ k}\Omega, t_j = 150^\circ\text{C}$ I_{CBO}

10 nA

 I_{CER} 10 μA

Emitterreststrom

Emitter cut-off current

 $U_{\text{EB}} = 5 \text{ V}$ I_{EBO} 10 μA

Kollektor-Basis-Durchbruchspannung

Collector-base breakdown voltage

 $I_C = 1 \mu\text{A}$ $U_{(\text{BR})\text{CBO}}$

250 V

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

 $I_C = 1 \text{ mA}$ $U_{(\text{BR})\text{CEO}}$

250 V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

 $U_{\text{CE}} = 20 \text{ V}, I_C = 25 \text{ mA}$ h_{FE}

50

Transitfrequenz

Gain bandwidth product

 $U_{\text{CB}} = 10 \text{ V}, I_C = 10 \text{ mA}$ f_T

60

MHz

Kollektor-Basis-Kapazität

Collector-base capacitance

 $U_{\text{CB}} = 30 \text{ V}, f = 0,5 \text{ MHz}$ C_{CBO}

1,8 pF

Rückwirkungszeitkonstante

Feedback time constant

 $U_{\text{CB}} = 20 \text{ V}, -I_E = 10 \text{ mA}, f = 10,7 \text{ MHz}$ $r_{\text{bb}'} C_{\text{bc}'}$

90 ps

Kollektor-HF-Sättigungsspannung

Collector saturation RF voltage

 $I_C = 25 \text{ mA}, t_j = 150^\circ\text{C}$ $U_{\text{CEsat HF}}$

20

V

Silizium-PNP-Epitaxial-Planar-HF-Transistor Silicon PNP Epitaxial Planar RF Transistor

Anwendungen: Video-B-Endstufen in Fernsehempfängern

Applications: Video-B-class power stages in TV-receivers

Besondere Merkmale:

- Komplementär zu BF 469

Features:

- Complementary to BF 469

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

**Zubehör
Accessories**

Isolierscheibe Best. Nr. 119880
Isolating washer

Unterlegscheibe 3,2 DIN 125 A
Washer

Normgehäuse
Case
12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)
Gewicht · Weight
max. 0,8 g

BF 470

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung <i>Collector base voltage</i>	$-U_{CBO}$	250	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	$-U_{CEO}$	250	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	$-U_{EBO}$	5	V
Kollektorstrom <i>Collector current</i>	$-I_C$	20	mA
Kollektorspitzenstrom <i>Collector peak current</i>	$-I_{CM}$	100	mA
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 110^\circ\text{C}$	P_{tot}	2	W
Sperrschichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65 ... +150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

Wärmewiderstände
Thermal resistance

Min. Typ. Max.

Sperrsicht-Umgebung

Junction ambient $l = 4 \text{ mm}$,Kupferkühlfläche $\geq 10 \times 10 \text{ mm}$, 35 μm dick
Copper cooling area $\geq 10 \times 10 \text{ mm}$, 35 μm thickness R_{thJA}

100 °C/W

Sperrsicht-Gehäuse

Junction case R_{thJC}

20 °C/W

Kenngrößen**Characteristics** $t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current $-U_{\text{CB}} = 200 \text{ V}$ $-U_{\text{CE}} = 200 \text{ V}, R_{\text{BE}} = 10 \text{ k}\Omega, t_j = 150^\circ\text{C}$ $-I_{\text{CBO}}$

10 nA

 $-I_{\text{CER}}$ 10 μA

Emitterreststrom

Emitter cut-off current $-U_{\text{EB}} = 5 \text{ V}$ $-I_{\text{EBO}}$ 10 μA

Kollektor-Basis-Durchbruchspannung

Collector-base breakdown voltage $-U_{\text{C}} = 1 \mu\text{A}$ $-U_{(\text{BR})\text{CBO}}$

250 V

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage $-I_{\text{C}} = 1 \text{ mA}$ $-U_{(\text{BR})\text{CEO}}$

250 V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio $-U_{\text{CE}} = 20 \text{ V}, -I_{\text{C}} = 25 \text{ mA}$ h_{FE}

50

Transitfrequenz

Gain bandwidth product $-U_{\text{CB}} = 10 \text{ V}, -I_{\text{C}} = 10 \text{ mA}$ f_T

60

MHz

Kollektor-Basis-Kapazität

Collector-base capacitance $-U_{\text{CB}} = 30 \text{ V}, f = 0,5 \text{ MHz}$ C_{CBO}

1,8

pF

Rückwirkungszeitkonstante

Feedback time constant $-U_{\text{CB}} = 20 \text{ V}, -I_E = 10 \text{ mA}, f = 10,7 \text{ MHz}$ $r_{\text{bb'}} C_{\text{bc}}$

90

ps

Kollektor-HF-Sättigungsspannung

Collector saturation RF voltage $-I_{\text{C}} = 25 \text{ mA}, t_j = 150^\circ\text{C}$ $U_{\text{CEsat HF}}$

20

V

Silizium-NPN-Epitaxial-Planar-HF-Transistor Silicon NPN Epitaxial Planar RF Transistor

Anwendungen: Video-B-Endstufen in Fernsehempfängern

Applications: Video-B-class power stages in TV receivers

Besondere Merkmale:

- Hohe Sperrspannung
- Komplementär zu BF 472

Features:

- High reverse voltage
- Complementary to BF 472

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 119 880

Unterlegscheibe
Washer 3,2 DIN 125A

Normgehäuse
Case

12 A 3 DIN 41869
JEDEC TO 126 (SOT 32)

Gewicht · Weight
max. 0,8 g

BF 471

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung <i>Collector-base voltage</i>	U_{CBO}	300	V
Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i> $R_{BE} \leq 2,7 \text{ k}\Omega$	U_{CER}	300	V
Emitter-Basis-Sperrspannung <i>Emitter-base voltage</i>	U_{EBO}	5	V
Kollektorstrom <i>Collector current</i>	I_C	30	mA
Kollektorschwingerstrom <i>Collector peak current</i>	I_{CM}	100	mA
Gesamtverlustleistung <i>Total power dissipation</i> $t_{case} \leq 110^\circ\text{C}$	P_{tot}	2	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65 ... +150	$^\circ\text{C}$
Anzugsdrehmoment <i>Tightening torque</i>	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlagscheibe 3,2 DIN 125A
with screw M3 and washer

Wärmewiderstände
Thermal resistances

Min. Typ. Max.

Sperrsicht-Umgebung Junction ambient $l = 4 \text{ mm}$,			
Kupferkühlfläche $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ dick Copper cooling area $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ thickness	R_{thJA}	100	°C/W
Sperrsicht-Gehäuse Junction case	R_{thJC}	20	°C/W

Kenngrößen
Characteristics
 $t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom Collector cut-off current $U_{\text{CB}} = 200 \text{ V}$	I_{CBO}	10	nA
$U_{\text{CE}} = 250 \text{ V}$, $R_{\text{BE}} = 2,7 \text{ k}\Omega$,	I_{CER}	50	nA
$U_{\text{CE}} = 250 \text{ V}$, $R_{\text{BE}} = 2,7 \text{ k}\Omega$, $t_j = 150^\circ\text{C}$	I_{CER}	10	μA
Emitterreststrom Emitter cut-off current $U_{\text{EB}} = 5 \text{ V}$	I_{EBO}	10	μA
Kollektor-Basis-Durchbruchspannung Collector-base breakdown voltage $I_C = 10 \mu\text{A}$	$U_{(\text{BR})\text{CBO}}$	300	V
Kollektor-Emitter-Durchbruchspannung Collector-emitter breakdown voltage $I_C = 1 \mu\text{A}$, $R_{\text{BE}} = 2,7 \text{ k}\Omega$	$U_{(\text{BR})\text{CER}}$	300	V
Emitter-Basis-Durchbruchspannung Emitter-base breakdown voltage $I_E = 10 \mu\text{A}$	$U_{(\text{BR})\text{EBO}}$	5	V
Kollektor-Basis-Gleichstromverhältnis DC forward current transfer ratio $U_{\text{CE}} = 20 \text{ V}$, $I_C = 25 \text{ mA}$	h_{FE}	50	
Transitfrequenz Gain bandwidth product $U_{\text{CE}} = 10 \text{ V}$, $I_C = 10 \text{ mA}$	f_T	60	MHz
Kollektor-Basis-Kapazität Collector-base capacitance $U_{\text{CB}} = 30 \text{ V}$, $f = 1 \text{ MHz}$	C_{CBO}	1,8	pF
Rückwirkungszeitkonstante Feedback time constant $U_{\text{CB}} = 20 \text{ V}$, $-I_E = 10 \text{ mA}$, $f = 10,7 \text{ MHz}$	$r_{\text{bb}} C_{\text{bc}}$	90	ps
Kollektor-HF-Sättigungsspannung Collector saturation RF voltage $I_C = 25 \text{ mA}$, $t_j = 150^\circ\text{C}$	$U_{\text{CEsat HF}}$	20	V

Silizium-PNP-Epitaxial-Planar-HF-Transistor Silicon PNP Epitaxial Planar RF Transistor

Anwendungen: Video-B-Endstufen in Fernsehempfängern

Applications: Video B-class power stages in TV-receivers

Besondere Merkmale:

- Hohe Sperrspannung
- Komplementär zu BF 471

Features:

- High reverse voltage
- Complementary to BF 471

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit metallischer
Montagefläche verbunden
Collector connected with
metallic surface

Zubehör
Accessories

Isolierscheibe Best. Nr. 119 880
Isolating washer

Unterlegscheibe 3,2 DIN 125A
Washer

Normgehäuse
Case

12 A 3 DIN 41869

JEDEC TO 126 (SOT 32)

Gewicht · Weight

max. 0,8 g

BF 472

Absolute Grenzdaten

Absolute maximum ratings

Kollektor-Basis-Sperrspannung Collector-base voltage	$-U_{CBO}$	300	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage $R_{BE} \leq 2,7 \text{ k}\Omega$	$-U_{CER}$	300	V
Emitter-Basis-Sperrspannung Emitter-base voltage	$-U_{EBO}$	5	V
Kollektorstrom Collector current	$-I_C$	30	mA
Kollektorspitzenstrom Collector peak current	$-I_{CM}$	100	mA
Gesamtverlustleistung Total power dissipation $t_{case} \leq 110^\circ\text{C}$	P_{tot}	2	W
Sperrsichttemperatur Junction temperature	t_j	150	$^\circ\text{C}$
Lagerungstemperaturbereich Storage temperature range	t_{stg}	-65 ... +150	$^\circ\text{C}$
Anzugsdrehmoment Tightening torque	M_A ¹⁾	70	N cm

¹⁾ mit M3-Schraube und Unterlegscheibe 3,2 DIN 125A
with screw M3 and washer

Wärmewiderstände
Thermal resistances

Min. Typ. Max.

 Sperrsicht-Umgebung
Junction ambient
 $l = 4 \text{ mm}$,
 Kupferkühlfläche $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ dick R_{thJA}
Copper cooling area $\geq 10 \times 10 \text{ mm}$, $35 \mu\text{m}$ thickness

100 °C/W

 Sperrsicht-Gehäuse
Junction case
 R_{thJC}

20 °C/W

Kenngrößen
Characteristics
 $t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

 $-U_{CB} = 200 \text{ V}$
 $-U_{CE} = 250 \text{ V}$, $R_{BE} = 2,7 \text{ k}\Omega$,
 $-U_{CE} = 250 \text{ V}$, $R_{BE} = 2,7 \text{ k}\Omega$, $t_j = 150^\circ\text{C}$
 $-I_{CBO}$

10 nA

 $-I_{CER}$

50 nA

 $-I_{CER}$ 10 μA

Emitterreststrom

Emitter cut-off current

 $-U_{EB} = 5 \text{ V}$ $-I_{EBO}$ 10 μA

Kollektor-Basis-Durchbruchspannung

Collector-base breakdown voltage

 $-I_C = 10 \mu\text{A}$ $-U_{(BR)CBO}$

V

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

 $-I_C = 1 \mu\text{A}$, $R_{BE} = 2,7 \text{ k}\Omega$ $-U_{(BR)CER}$

V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

 $-I_E = 10 \mu\text{A}$ $-U_{(BR)EBO}$

V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

 $-U_{CE} = 20 \text{ V}$, $-I_C = 25 \text{ mA}$ h_{FE}

50

Transitfrequenz

Gain bandwidth product

 $-U_{CE} = 10 \text{ V}$, $-I_C = 10 \text{ mA}$ f_T

60

MHz

Kollektor-Basis-Kapazität

Collector-base capacitance

 $-U_{CB} = 30 \text{ V}$, $f = 1 \text{ MHz}$ C_{CBO}

1,8 pF

Rückwirkungszeitkonstante

Feedback time constant

 $-U_{CB} = 20 \text{ V}$, $I_E = 10 \text{ mA}$, $f = 10,7 \text{ MHz}$ $r_{bb} C_{bc}$

90 ps

Kollektor-HF-Sättigungsspannung

Collector saturation RF voltage

 $-I_C = 25 \text{ mA}$, $t_j = 150^\circ\text{C}$ $-U_{CEsat HF}$

20

V

Silizium-NPN-Leistungstransistoren Silicon NPN Power Transistors

Anwendungen: Spannungsregler, Inverter, getaktete Netzgeräte

Applications: Voltage regulator, inverter, switching mode power supply

Besondere Merkmale:

- In Dreifachdiffusions-Mesa-Technik
- Hohe Sperrspannung
- Kurze Schaltzeit

Features:

- In Tripple Diffusion Mesa Technique
- High reverse voltage
- Short switching time

Abmessungen in mm

Dimension in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
20 g

Zubehör Accessories

Isolierscheiben Best. Nr. 515 390
Isolating washers Best. Nr. 562 897

BU 126

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	U_{CEO}	300	V
$I_B = 0$	U_{CES}	750	V
Kollektorstrom <i>Collector current</i>	I_C	3	A
Kollektorspitzenstrom <i>Collector peak current</i>	I_{CM}	6	A
$t_p \leq 10 \text{ ms}$			
Basisstrom <i>Base current</i>	I_B	2	A
Negativer Basisspitzenstrom <i>Negative base peak current</i>	$-I_{BM}$	1,5	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	40	W
$t_{case} = 25^\circ\text{C}$			
Sperrsichttemperatur <i>Junction temperature</i>	t_j	125	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}	-65 ... +125	$^\circ\text{C}$

Getakteter Netzteilbetrieb während des Einschaltens

Switched-mode operation during turn-on
 $t_p \leq 0,06 \mu\text{s}$, $R_{BE} \leq 100 \Omega$

Periodischer Impulsbetrieb während des Abschaltens

Repetitive pulse operation during turn-off
 $U_{BE} \leq 0$, $t_p \leq 2 \text{ ms}$

**Wärmewiderstand
Thermal resistance**

Min. Typ. Max.

 Sperrsicht-Gehäuse
Junction case

 R_{thJC}

2,5 °C/W

**Statische Kenngrößen
DC characteristics**
 $t_{case} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom
Collector cut-off current
 $U_{CE} = 750 \text{ V}$
 $U_{CE} = 750 \text{ V}, t_{amb} = 125^\circ\text{C}$
 I_{CES}
 I_{CES}

 500
 2 μA
 mA

Kollektor-Emitter-Durchbruchspannung
Collector-emitter breakdown voltage
 $I_C = 100 \text{ mA}$
 $U_{(BR)CEO}$
Emitter-Basis-Durchbruchspannung
Emitter-base breakdown voltage
 $I_E = 1 \text{ mA}$
 $U_{(BR)EBO}$
Kollektor-Sättigungsspannung
Collector saturation voltage
 $I_C = 2,5 \text{ A}, I_B = 250 \text{ mA}$
 $I_C = 4,0 \text{ A}, I_B = 1 \text{ A}$
 U_{CEsat}
 U_{CEsat}

 10
 5 V
 V

		Min.	Typ.	Max.
Basis-Sättigungsspannung Base saturation voltage				
$I_C = 4 \text{ A}, I_B = 1 \text{ A}$	U_{BEsat}		1,5	V
Kollektor-Basis-Gleichstromverhältnis DC forward current transfer ratio				
$U_{CE} = 5 \text{ V}, I_C = 1 \text{ A}$	h_{FE}	15		
Dynamische Kenngrößen AC characteristics				
$t_{case} = 25^\circ\text{C}$				
Transitfrequenz Gain bandwidth product				
$U_{CE} = 10 \text{ V}, I_C = 200 \text{ mA}, f = 1 \text{ MHz}$	f_T	10		MHz
Kollektor-Basis-Kapazität Collector base capacitance				
$U_{CB} = 10 \text{ V}, f = 0,5 \text{ MHz}$	C_{CBO}	75		pF
Emitter-Basis-Kapazität Emitter-base capacitance				
$U_{EB} = 2 \text{ V}, f = 0,5 \text{ MHz}$	C_{EBO}	1		nF
Abfallzeit Fall time				
$I_C = 2,5 \text{ A}, I_B = 0,25 \text{ A}$	t_f	0,2		μs

Silizium-NPN-Leistungstransistoren Silicon NPN Power Transistors

Anwendung: Horizontal-Ablenk-Endstufen in Schwarz-Weiß-Fernsehempfängern
Application: *Horizontal deflection circuits in black and white TV-receivers*

Besondere Merkmale:

- Hohe Sperrspannung
- Hohe Spitzenleistung
- Verlustleistung 10 W

Features:

- High reverse voltage
- High peak power
- Power dissipation 10 W

Abmessungen in mm
Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Zubehör
Accessories

Isolierscheiben Best. Nr. 515 390
Isolating washers Best. Nr. 562 897

Absolute Grenzdaten
Absolute maximum ratings

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

	BU 204	BU 205	BU 206	
U_{CEO}	600	700	800	V
$U_{CES M}^1)$	1300	1500	1700	V

¹⁾ Stoßspitzenv. bei Bildröhren-Überschlägen **BU 204** max. 1430 V
Flash-over voltage, non-repetitive **BU 205** max. 1650 V
BU 206 max. 1800 V

BU 204 · BU 205 · BU 206

		BU 204	BU 205	BU 206
Kollektorstrom, Mittelwert Collector current, average	I_{CAV}		2,5	A
Kollektorspitzenstrom Collector peak current	$I_{CM^2)}$		3,0	A
Basisspitzenstrom Base peak current	I_{BM}		2,5	A
Negativer Basisspitzenstrom Negative base peak current	$-I_{BM}$		1,5	A
Negativer Basisstrom, Mittelwert Negative base current, average $t_{av} \leq 20\text{ ms}$	$-I_{BAV}$		0,1	A
Gesamtverlustleistung Total power dissipation $t_{case} \leq 90^\circ\text{C}$	P_{tot}	10		W
Sperrschichttemperatur Junction temperature	t_j	115		$^\circ\text{C}$
Lagerungstemperaturbereich Storage temperature range	t_{stg}		-65...+115	$^\circ\text{C}$

2) Stoßspitzenstr. bei Bildröhren-Überschlägen
Flash-over current, non-repetitive

max. 5 A

BU 204 · BU 205 · BU 206

Wärmewiderstand Thermal resistance

Min. Typ. Max.

2,5 $^{\circ}\text{C}/\text{W}$

Sperrsicht-Gehäuse
Junction case R_{thJC}

Kenngrößen Characteristics

$t_{\text{case}} = 25^{\circ}\text{C}$

Kollektor-Emitter-Durchbruchspannung Collector-emitter breakdown voltage

$I_C = 1 \text{ mA}$

BU 204	$U_{(\text{BR})\text{CES}}$	1300	V
BU 205	$U_{(\text{BR})\text{CES}}$	1500	V
BU 206	$U_{(\text{BR})\text{CES}}$	1700	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$I_E = 100 \text{ mA}$

$U_{(\text{BR})\text{EBO}}$ 5 V

Dynamische Restspannung

Collector-emitter saturation voltage

$I_C = 2 \text{ A}; I_B = 0,8 \text{ A}$

Fig. 1

$U_{\text{Rest dyn}}$ 7,5 V

Basis-Emitter-Sättigungsspannung

Base-emitter saturation voltage

$I_C = 2 \text{ A}, I_B = 1 \text{ A},$
 $I_C = 2 \text{ A}, I_B = 1,1 \text{ A},$

BU 204, BU 205	$U_{\text{BEsat}}^3)$	1,5	V
BU 206	$U_{\text{BEsat}}^3)$	1,5	V

³⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BU 204 · BU 205 · BU 206

		Min.	Typ.	Max.
Kollektorreststrom <i>Collector cutoff current</i>				
$U_{CESM}, U_{BE} = 0 \text{ V}$	I_{CES}		1	mA
Transitfrequenz <i>Gain bandwidth product</i>				
$U_{CE} = 5 \text{ V}, I_C = 100 \text{ mA}$ $f = 5 \text{ MHz}$	f_T		7,5	MHz
Kollektor-Basis-Kapazität <i>Collector-base capacitance</i>				
$U_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$	C_{CBO}		80	pF
Abfallzeit <i>Fall time</i>				
$I_C = 2 \text{ A}, I_B = 1 \text{ A}^1)$	t_f		0,75	μs

Fig. 1 Definition von $U_{\text{Rest dyn}}$
Definition from $U_{\text{Rest dyn}}$

¹⁾ Die Induktivität im Basiskreis und die rechteckförmige Ansteuerspannung sind so zu wählen, daß sich eine Speicherzeit $t_S \approx 10 \mu\text{s}$ ergibt.

The inductance in base circuit and rectangular drive voltage pulse should be so selected that a storage time t_S is approximately $10 \mu\text{s}$.

BU 204 · BU 205 · BU 206

Silizium-NPN-Leistungstransistoren Silicon NPN Power Transistors

Anwendung: Horizontal-Ablenk-Endstufen in Farbfernsehempfängern
Application: Horizontal deflection circuits in colour TV-receivers

Besondere Merkmale:

- Hohe Sperrspannung
- Hohe Spitzenleistung
- Verlustleistung 12,5 W

Features:

- High reverse voltage
- High peak power
- Power dissipation 12,5 W

Abmessungen in mm
Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Zubehör
Accessories

Isolierscheiben Best. Nr. 515 390
 Isolating washers Best. Nr. 562 897

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Absolute Grenzdaten
Absolute maximum ratings

BU 207 BU 208 BU 209

Kollektor-Emitter-Sperrspannung
Collector-emitter voltage

U_{CEO}	600	700	800	V
$U_{CES\text{ M}^1)}$	1300	500	1700	V

¹⁾ Stoßspitzenspannung bei Bildröhren-Überschlägen **BU 207** max. 1430 V
Flash-over voltage, non-repetitive
BU 208 max. 1650 V
BU 209 max. 1800 V

BU 207 · BU 208 · BU 209

		BU 207	BU 208	BU 209
Kollektorstrom, Mittelwert <i>Collector current, average</i>	I_{CAV}	5	5	4
Kollektorspitzenstrom <i>Collector peak current</i>	$I_{CM}^2)$		7,5	A
Basisspitzenstrom <i>Base peak current</i>	I_{BM}		4,0	A
Negativer Basisspitzenstrom <i>Negative base peak current</i>	$-I_{BM}$		2,5	A
Negativer Basisstrom, Mittelwert <i>Negative base current, average</i>				
$t_{av} \leq 20 \text{ ms}$	$-I_{BAV}$		0,1	A
Gesamtverlustleistung <i>Total power dissipation</i>				
$t_{case} \leq 95^\circ\text{C}$	P_{tot}		12,5	W
Sperrsichttemperatur <i>Junction temperature</i>	t_j		115	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>	t_{stg}		-65...+115	$^\circ\text{C}$

2) Stoßspitzenstr. bei Bildröhren-Überschlägen
Flash-over current, non repetitive

BU 207 max. 10 A
BU 208 max. 10 A
BU 209 max. 9 A

BU 207 · BU 208 · BU 209

Wärmewiderstand Thermal resistance

	Min.	Typ.	Max.
--	------	------	------

Sperrsicht-Gehäuse
Junction case

R_{thJC}

1,6 $^{\circ}\text{C}/\text{W}$

Kenngrößen Characteristics

$$t_{\text{case}} = 25^{\circ}\text{C}$$

Kollektor-Emitter-Durchbruchspannung
Collector-emitter breakdown voltage

$$I_C = 1 \text{ mA}$$

BU 207	$U_{(\text{BR})\text{CES}}$	1300	V
BU 208	$U_{(\text{BR})\text{CES}}$	1500	V
BU 209	$U_{(\text{BR})\text{CES}}$	1700	V

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$$I_E = 100 \text{ mA}$$

$U_{(\text{BR})\text{EBO}}$ 5 V

Kollektor-Emitter-Sättigungsspannung
Collector-emitter saturation voltage

$$I_C = 4,5 \text{ A}, I_B = 2 \text{ A}$$

BU 207, BU 208

U_{CEsat} 5 V

$$I_C = 3 \text{ A}, I_B = 1,3 \text{ A}$$

BU 209

U_{CEsat} 5 V

Basis-Emitter-Sättigungsspannung

Base-emitter saturation voltage

$$I_C = 4,5 \text{ A}, I_B = 2 \text{ A}$$

BU 207, BU 208

$U_{\text{BEsat}}^3)$ 1,5 V

$$I_C = 3 \text{ A}, I_B = 1,3 \text{ A}$$

BU 209

$U_{\text{BEsat}}^3)$ 1,5 V

³⁾ $\frac{t_p}{T} = 0,01, t_p = 0,3 \text{ ms}$

BU 207 · BU 208 · BU 209

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{CE} = 5 \text{ V}, I_C = 4,5 \text{ A}$ **BU 207, BU 208**

$U_{CE} = 5 \text{ V}, I_C = 3 \text{ A}$ **BU 209**

Min. Typ. Max.

h_{FE} 2,25

h_{FE} 2,25

Transitfrequenz

Gain bandwidth product

$U_{CE} = 5 \text{ V}, I_C = 100 \text{ mA}, f = 5 \text{ MHz}$

f_T

7

MHz

Kollektor-Basis-Kapazität

Collector base capacitance

$U_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$

C_{CBO}

125

pF

Schaltzeiten

Switching characteristics

Speicherzeit

Storage time

$I_C = 4,5 \text{ A}, I_B = 1,8 \text{ A}, L_B = 10 \mu\text{H}$

BU 207, BU 208

t_S

10

μs

$I_C = 3 \text{ A}, I_B = 1,5 \text{ A}, L_B = 10 \mu\text{H}$

BU 209

t_S

10

μs

Abfallzeit

Fall time

$I_C = 4,5 \text{ A}, I_B = 1,8 \text{ A}, L_B = 10 \mu\text{H}$

BU 207, BU 208

t_f

0,7

μs

$I_C = 3 \text{ A}, I_B = 1,5 \text{ A}, L_B = 10 \mu\text{H}$

BU 209

t_f

0,7

μs

Diffundierter Silizium-NPN-Mesa-Leistungstransistor

Diffused Silicon NPN Mesa Power Transistor

Anwendung: Horizontal-Ablenk-Endstufen in Schwarz-Weiß-Fernsehgeräten

Application: Horizontal deflection circuits in black and white TV-receivers

Besondere Merkmale:

- In Dreifachdiffusions-Mesa-Technik
- Hohe Sperrspannung
- Kurze Schaltzeit
- Verlustleistung 32 W

Features:

- In triple diffusion mesa technique
- High reverse voltage
- Short switching time
- Power dissipation 32 W

Abmessungen in mm
Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Zubehör
Accessories

Isolierscheiben Best. Nr. 515390
 Isolating washers Best. Nr. 562897

Normgehäuse
 Case
 3 B 2 DIN 41872
 JEDEC TO 3
 Gewicht · Weight
 max. 20 g

BU 226

Absolute Grenzdaten

Absolute maximum ratings

Kollektor-Basis-Sperrspannung Collector-base voltage	$U_{CBOM}^1)$	2000	V
Kollektor-Emitter-Spannung Collector-emitter voltage	U_{CEO}	800	V
Kollektor-Emitter-Spannung Collector-emitter voltage	U_{CERM}	2000	V
$R_{BE} \leq 100 \Omega$	$I_{CM}^2)$	2	A
Kollektorspitzenstrom Collector peak current	I_{CAV}	1,5	A
Kollektorstrom, Mittelwert Collector current, average	I_{BM}	1,5	A
Basisstrom Base current	$-I_{BM}$	1,2	A
Gesamtverlustleistung Total power dissipation	P_{tot}	32	W
$t_{case} \leq 25^\circ\text{C}$	t_j	105	$^\circ\text{C}$
Sperrsichttemperatur Junction temperature	t_{stg}	-65 ... +105	$^\circ\text{C}$
Lagerungstemperaturbereich Storage temperature range			

Wärmewiderstand Thermal resistance

		Min.	Typ.	Max.
Sperrsicht-Gehäuse Junction case	R_{thJC}		2,5	$^\circ\text{C}/\text{W}$

Kenngrößen Characteristics

$t_{amb} = 25^\circ\text{C}$				
Kollektorreststrom Collector cut-off current	I_{CES}		1	mA
$U_{CE} = 2000 \text{ V}$				
Emitter-Basis-Durchbruchspannung Emitter-base breakdown voltage	$U_{(BR)EBO}$	5		V
$I_E = 100 \text{ mA}$				
Dynamische Restspannung Collector-emitter saturation voltage	$U_{Rest \text{ dyn}}$		10	V
$I_C = 1 \text{ A}; I_B = 0,4 \text{ A}$				
Abfallzeit Fall time	t_f		0,7	μs
$I_C = 1 \text{ A}, I_B = 0,4 \text{ A}$				

Fig. 1

¹⁾ Stoßspitzenspannung bei Bildröhrenüberschlägen 2200 V
Flash over voltage, non repetitive 2200 V

²⁾ Stoßspitzenstrom bei Bildröhrenüberschlägen $\leq 3 \text{ A}$
Flash over current, non repetitive $\leq 3 \text{ A}$

Fig. 1 Definition von $U_{\text{Rest dyn}}$
Definition from $U_{\text{Rest dyn}}$

77 2085

Ansteuerungsdiagramm bezieht sich auf:
 $I_B = \text{konstant f\"ur die Zeit } t_H - t_S$

Optimaler Betriebsbereich bei:
 $I_C = 1 \dots 1,2 \text{ A}$

Control diagram is specified for:
 $I_B = \text{constant for the time } t_H - t_S$

Optimum operating range
 $I_C = 1 \dots 1,2 \text{ A}$

Fig. 2

Fig. 3 Funktionsschaltung zur Messung des Schaltverhaltens und deren Impulsverlauf
Test circuit for switching characteristics and its pulse diagram

Diffundierter Silizium-NPN-Mesa-Leistungstransistor Diffused Silicon NPN Mesa Power Transistor

Anwendung: Getaktete Netzgeräte

Application: Switching mode power supply

Besondere Merkmale:

- In Dreifachdiffusions-Mesa-Technik
- Hohe Sperrspannung
- Kurze Schaltzeit
- Verlustleistung 86 W

Features:

- In triple diffusion mesa technique
- High reverse voltage
- Short switching time
- Power dissipation 86 W

Vorläufige technische Daten · Preliminary specifications

Abmessungen in mm

Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

**Zubehör
Accessories**

Isolierscheiben Best. Nr. 515 390
Isolating washers Best. Nr. 562 897

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Emitter-Sperrspannung <i>Collector-emitter voltage</i>	U_{CEO}	400	V
$R_{BE} \leq 100 \Omega$	I_{CM}	10	V
Kollektorspitzenstrom <i>Collector peak current</i>	I_C	8	A
Kollektorstrom <i>Collector current</i>	I_{BM}	4	A
Basisstrom <i>Base current</i>	$-I_{BM}$	4	A
Gesamtverlustleistung <i>Total power dissipation</i>	P_{tot}	86	W
$t_{case} \leq 25^\circ\text{C}$	Fig. 1, 2, 3	175	$^\circ\text{C}$
Sperrsichttemperatur <i>Junction temperature</i>	t_{stg}	-65 ... +175	$^\circ\text{C}$
Lagerungstemperaturbereich <i>Storage temperature range</i>			

Fig. 5

BU 526

Wärmewiderstand Thermal resistance

Min. Typ. Max.

Sperrschicht-Gehäuse Junction case	R_{thJC}	1,75	°C/W
---------------------------------------	-------------------	------	------

Kenngrößen Characteristics

$t_{\text{case}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$$U_{\text{CE}} = 900 \text{ V} \quad \text{Fig. 6}$$

$$t_j = 150^\circ\text{C}, U_{\text{CE}} = 900 \text{ V} \quad \text{Fig. 6}$$

$$\frac{I_{\text{CES}}}{I_{\text{CES}}} \quad 1 \quad 2 \quad \text{mA}$$

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$$I_C = 100 \text{ mA}, L_C = 25 \text{ mH}, \frac{t_p}{T} \geq 0,01$$

$$I_C = 0,5 \text{ mA}, R_{\text{BE}} \leq 100 \Omega$$

$$\frac{U_{(\text{BR})\text{CEO}}}{U_{(\text{BR})\text{CER}}} \quad 400 \quad 900 \quad \text{V}$$

Emitter-Basis-Durchbruchspannung

Emitter-base breakdown voltage

$$I_E = 1 \text{ mA}$$

$$U_{(\text{BR})\text{EBO}} \quad 6 \quad \text{V}$$

Kollektor-Sättigungsspannung

Collector saturation voltage

$$I_C = 8 \text{ A}, I_B = 3 \text{ A}$$

Fig. 7

$$U_{\text{CESat}} \quad 5 \quad \text{V}$$

Basis-Sättigungsspannung

Base saturation voltage

$$I_C = 6 \text{ A}, I_B = 1,25 \text{ A}$$

$$U_{\text{BESat}} \quad 2 \quad \text{V}$$

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$$U_{\text{CE}} = 5 \text{ V}, I_C = 1 \text{ A} \quad \text{Fig. 10}$$

$$I_C = 4 \text{ A}$$

$$\frac{h_{\text{FE}}}{h_{\text{FE}}} \quad 15 \quad 6 \quad 45$$

Transitfrequenz

Gain bandwidth product

$$U_{\text{CE}} = 10 \text{ V}, I_C = 500 \text{ mA}, f = 1 \text{ MHz}$$

$$f_T \quad 10 \quad \text{MHz}$$

Schaltzeiten

Switching characteristics

$$I_C = 4 \text{ A}, I_{B1} = -I_{B2} = 1,25 \text{ A}, t_p = 20 \mu\text{s}$$

Abfallzeit
Fall time

$$t_f^1) \quad 1 \quad \mu\text{s}$$

Ausschaltzeit
Turn-off time

$$t_{\text{off}} \quad 4 \quad \mu\text{s}$$

¹⁾ Beim Abschalten induktiver Last unter Verwendung eines Rückschlagkondensators.
By using retrace capacitor at switching-off inductive load

BU 526

Diffundierter Silizium-NPN-Mesa-Leistungstransistor Diffused Silicon NPN Mesa Power Transistor

Anwendungen: Schalter hoher Leistung und NF-Endstufen
Applications: High power switching and AF-output stages

Besondere Merkmale:

- Hohe Sperrspannung
- Hohe Spitzenleistung
- Verlustleistung 115 W

Features:

- High reverse voltage
- High peak power
- Power dissipation 115 W

Abmessungen in mm
Dimensions in mm

Kollektor mit
Gehäuse verbunden
Collector connected
with case

Zubehör Accessories

Isolierscheibe
Isolating washer Best. Nr. 009 004

Normgehäuse
Case
3 B 2 DIN 41872
JEDEC TO 3
Gewicht · Weight
max. 20 g

Absolute Grenzdaten Absolute maximum ratings

Kollektor-Basis-Sperrspannung Collector-base voltage	U_{CBO}	100	V
Kollektor-Emitter-Sperrspannung Collector-emitter voltage $R_{BE} = 100\Omega$	U_{CEO}	60	V
Emitter-Basis-Sperrspannung Emitter-base voltage	U_{CER}	70	V
Kollektorstrom Collector current	I_C	15	A
Basisstrom Base current	I_B	7	A

2 N 3055

Gesamtverlustleistung

Total power dissipation

$t_{\text{case}} \leq 25^\circ\text{C}$

P_{tot}

115

W

Sperrschiichttemperatur

Junction temperature

t_j

200

°C

Lagerungstemperaturbereich

Storage temperature range

t_{stg}

-65...+200

°C

Wärmewiderstand

Thermal resistance

Min. Typ. Max.

Sperrschiicht-Gehäuse
Junction case

R_{thJC}

1,5

°C/W

Kenngrößen

Characteristics

$t_{\text{amb}} = 25^\circ\text{C}$, falls nicht anders angegeben
unless otherwise specified

Kollektorreststrom

Collector cut-off current

$U_{\text{CE}} = 100\text{ V}, U_{\text{EB}} = 1,5\text{ V}$

$I_{\text{CEV}^*)}$

5

mA

$U_{\text{CE}} = 60\text{ V}, U_{\text{EB}} = 1,5\text{ V}, t_{\text{case}} = 150^\circ\text{C}$

$I_{\text{CEV}^{**})}$

10

mA

Emitterreststrom

Emitter cut-off current

$U_{\text{EB}} = 7\text{ V}$

I_{EBO}

5

mA

Kollektor-Emitter-Durchbruchspannung

Collector-emitter breakdown voltage

$I_{\text{C}} = 200\text{ mA}$

$U_{(\text{BR})\text{CEO}^*)^1)$

V

$I_{\text{C}} = 200\text{ mA}, R_{\text{BE}} = 100\Omega$

$U_{(\text{BR})\text{CER}^*)^1)$

V

Kollektor-Sättigungsspannung

Collector saturation voltage

$I_{\text{C}} = 4\text{ A}, I_{\text{B}} = 400\text{ mA}$

$U_{\text{CEsat}^*)^1)}$

1,1

V

Basis-Emitter-Spannung

Base-emitter voltage

$U_{\text{CE}} = 4\text{ V}, I_{\text{C}} = 4\text{ A}$

$U_{\text{BE}^*)^1)}$

1,8

V

Kollektor-Basis-Gleichstromverhältnis

DC forward current transfer ratio

$U_{\text{CE}} = 4\text{ V}, I_{\text{C}} = 4\text{ A}$

$h_{\text{FE}^*)^1)}$

20

70

$U_{\text{CE}} = 4\text{ V}, I_{\text{C}} = 10\text{ A}$

$h_{\text{FE}^1})$

5

Transitfrequenz

Gain bandwidth product

$U_{\text{CE}} = 10\text{ V}, I_{\text{C}} = 1\text{ mA}, f = 0,1\text{ MHz}$

f_T

800

kHz

*) AQL = 0,65%

**) AQL = 2,5%

1) $\frac{t_p}{T} = 0,01, t_p = 0,5\text{ ms}$

Schaltzeiten***Switching characteristics***

$I_C = 4 \text{ A}$, $I_{B1} = -I_{B2} = 400 \text{ mA}$, $t_{\text{amb}} = 25^\circ\text{C}$

		Min.	Typ.	Max.
Verzögerungszeit <i>Delay time</i>	t_d		0,2	μs
Anstiegszeit <i>Rise time</i>	t_r		2,6	μs
Speicherzeit <i>Storage time</i>	t_s		2,7	μs
Abfallzeit <i>Fall time</i>	t_f		6	μs

Stichwortverzeichnis

Subject index

9. Stichwortverzeichnis

A

AQL A 43 ff
Ausräumfaktor A 33 f

B

Basisspannungen A 23 ff

D

Durchbruchspannung A 24

E

Emitterreststrom A 19

G

Gehäusetemperatur A 22
Gesamtverlustleistung A 20

H

h-Parameter A 14 ff

K

Kapazitäten A 10
Kenngrößen A 49
Kollektorspannungen A 24 ff
Kollektorströme A 17 f
Kühlung A 38 ff
Kurzzeichen, Aufbau A 5 ff

L

Löten, Löttemperaturen A 37

9. Subject Index

A

Ambient temperature A 21 f
AQL A 43 ff

B

Base voltages A 23 ff
Breakdown voltage A 24

C

Capacitances A 10
Case temperature A 22
Characteristics A 49
Collector cut-off currents A 17 f
Collector voltages A 24 ff
Cooling plates A 38 ff

D

Durchbruchspannung A 24

E

Emitter cut-off current A 19

G

Gain bandwidth product A 13

H

h-parameters A 14 ff
Heat removal A 38 ff

J

Junction temperature A 22

N

Noise figure A 12

O

On-off base current ratio A 33 f

P

Polarity conventions A 3

R

Rauschmaß A 12

S

Schaltzeiten A 32

Sperrsichttemperatur A 22

T

Transistor-Ersatzschaltbild A 4 ff

Transitfrequenz A 13

U

Übersteuerungsfaktor A 33 ff

Umgebungstemperatur A 21 ff

Unijunction-Transistoren A 34 ff

W

Wärmeableitung A 38 ff

Y

y-Parameter A 27 ff

Z

Zählrichtung A 3

S

Saturation factor A 33 ff

Soldering temperatures A 37

Switching characteristics A 23 ff

Symbols, arrangement A 5 ff

T

Transistor equivalent circuit A 4 ff

Total power dissipation A 20

U

Unijunction transistors A 34 ff

Y

y-parameters A 27 ff

Anschriften

Addresses

AEG-TELEFUNKEN
Serienprodukte
Geschäftsbereich Halbleiter
Vertrieb
Postfach 1109
7100 Heilbronn
Tel.: (0 71 31) 88 21 · Telex 07-28 746

Auskünfte über unser Produktionsprogramm erteilen:

AEG-TELEFUNKEN

Serienprodukte
Vertriebsniederlassung
Vertrieb Bauelemente

1000 Berlin 33, Hohenzollerndamm 152
Tel. (0 30) 82 92-3 62 bis 3 65,
Telex 183 697

2000 Hamburg 36, Stadthausbrücke 9
Tel. (0 40) 34 98-3 17, Telex 211 609

3000 Hannover 1, Alemannstraße 17
Tel. (05 11) 16 78-8 41, Telex 921 318

5000 Köln 30, Oskar-Jäger-Straße 125-143
Tel. (02 21) 54 91-6 74, Telex 8 82 928

6000 Frankfurt 1, Mainzer Landstraße 23
Tel. (06 11) 2 67-3 37, Telex 411 164

7030 Böblingen-Hulb, Dornierstraße 7
Tel. (0 70 31) 66 68-6 51, Telex 7 265 565

7730 VS-Villingen, Luisenstraße 9
Tel. (0 77 21) 2 30 65, Telex 7921 512

8000 München 19, Arnulfstraße 205
Tel. (0 89) 1305-4 66, Telex 523 168

8500 Nürnberg 1, Zollhausstraße 95
Tel. (09 11) 80 04-5 25, Telex 622 571

Distributoren:

Distrion
1000 Berlin 33, Mecklenburgische Straße 24 b
Tel. (0 30) 8 24 30 61/65, Telex 185 478

**ALFRED NEYE-
ENATECHNIK GmbH**
2085 Quickborn, Schillerstraße 14
Tel. (0 41 06) 6 12-1, Telex 213 590

RTG E. SPRINGORUM KG
4600 Dortmund, Bronnerstraße 7
Tel. (02 31) 54 95-1, Telex 822 534

BERGER-ELEKTRONIK GmbH
6000 Frankfurt, Am Tiergarten 14
Tel. (06 11) 49 03 11, Telex 412 649

elecdis – Ruggaber KG
7250 Leonberg, Hertichstraße 41
Tel. (0 71 52) 4 70 81, Telex 724 192

POSITRON
Bauelemente-Vertriebs-GmbH
7730 VS-Villingen, Niedere Straße 64
Tel. (0 77 21) 5 90 84, Telex 7921 515

ELECTRONIC 2000 Vertriebs GmbH
8000 München 80, Neumarkter Straße 75
Tel. (0 89) 4 34 06 1, Telex 522 561

AEG-TELEFUNKEN
Serienprodukte
Geschäftsbereich Halbleiter
Export
P.O.B. 1109
D-7100 Heilbronn
Tel.: 8821 · Telex: 07-28 746

Europa

Belgien

Société Anonyme belge
AEG-TELEFUNKEN
40, Rue Souveraine
B-1050 Bruxelles
Tel.: 5 12 79 40
5 13 39 70
Telex: 21359

Bulgarien

E. van Hazebruck KG
Savigny-Str. 37
6000 Frankfurt/Main 1
Tel.: 06 11/74 90 41
Telex: 04-11 071

Dänemark

AEG DANSK
Electriciteits Aktieselskab
Roskildevej 8-10
DK-2620 Albertslund
Tel.: 64 85 22
Telex: 33122

Finnland

Sähköliikkeiden OY
P.O.B. 88
SF-01301 Vantaa 30
Tel.: 83 81
Telex: 12431

Frankreich

AEG-TELEFUNKEN
FRANCE SA
Department Composants
Electroniques
6, Blvd. du Général Leclerc
Bureau 612
92115 Clichy
Tel.: 7 39 33 10
Telex: 620827

Griechenland

Telex AG
101 Thessalonikis Street
Moschaton (58)-Athens
Tel.: 4 81 93 46
4 81 79 46/7/8
Telex: 2 13 487

Großbritannien

AEG-TELEFUNKEN (UK) Ltd.
Bath Road
Slough SL 1 4AW
Berkshire
Tel.: 87 21 01 **0753**
Telex: 847541

Italien

AEG-TELEFUNKEN Societa
Italiana per Azioni
UTECO 310
Viale Brianza, 20
Casella Postale 47
20092 Cinisello Balsamo/Milano
Tel.: 9 27 98
Telex: 31473

Jugoslawien

Interexport
Trg Republike 5/VIII
P.P. 789
YU-11001 Beograd
Tel.: 62 00 55
Telex: 11240

Luxemburg

AEG-TELEFUNKEN
Luxembourg S.A.R.L.
8, Rue 1900, Postfach 2004
Luxembourg
Tel.: 48 80 41
Telex: 2513

Holland

N.V. Electriciteits Maatschappij
AEG Amsterdam
Aletta Jacobslaan 7
Amsterdam-Slotervaart
Tel.: 5 11 63 33 Telex: 11234

Norwegen

AEG-TELEFUNKEN Norge A.S.
Dag Hammerskjölds vei 47
Postboks 187, Økern
N-Oslo 5
Tel.: 15 65 90
Telex: 19961

Österreich

Österreichische
AEG-TELEFUNKEN G.m.b.H.
Brünner Str. 52
A-1211 Wien
Tel.: 3 80 13 64
Telex: 74889

Polen

THM EXIMPOL S.A.
ul. Stawki 2/Etage 28
P.O.B. 810
PL-00-950 Warszawa
Tel.: 25 99 62
Telex: 814 640

Portugal

AEG-TELEFUNKEN
Portuguesa S.A.R.L.
Rua Joao Saraiva, 4/6
Apartado 5149
Lissabon 5
Tel.: 89 11 71
Telex: 12173

Rumänien

E. van Hazebruck KG
Savigny-Str. 37
6000 Frankfurt/Main 1
Tel.: 06 11/74 90 41
Telex: 04-11 071

Schweden

SATTCO AB
Dalvägen 10
S-17136 Solna
Tel.: 83 02 80
Telex: 11588

Schweiz

Elektron AG
Riedhofstrasse 11
CH-8804 Au ZH
Tel.: 75 17 22
Telex: 75755

Spanien

AEG Ibérica de
Electricidad, S.A.
General Mola 112-114
Apartado 235
Madrid 2
Tel.: 2 62 76 00
Telex: 27635

Türkei

Server Ataman
Istiklal Caddesi 378/4
P.K. Beyoglu 366
Istanbul-Beyoglu
Tel.: 44 21 68

Ungarn

MERCATOR, S.A.R.L.
Thököl ut 156
P.O.B. 77
1441 Budapest XIV
Tel.: 83 31 77, 83 31 63
Telex: 225046

Afrika:

Angola und S. Tome

Sociedade Luso-Alema Lda.
Caixa Postal 1222
Luanda
Tel.: 7 39 60/61/62
Telex: 3137

Marokko

ElectRa S.A.
4, Rue Canizares
Casablanca
Tel.: 6 28 61/62
Telex: 22933

Südafrika

Impectron (Pty) Ltd.
P.O.B. 10262
Johannesburg, 2001
Tel.: 7 25 33 50
Telex: 80174

Mittel- u. Südamerika

Brasilien

AEG-TELEFUNKEN
do Brasil S.A.
Rua Tabaré 551
Campo Grande
Santo Amaro
Caixa Postal 2020 u. 8557
Sao Paulo
Tel.: 2 47-01 22
Telex: 1123558

Mexiko

TELEFUNKEN Mexicana
S.A. de C.V.
Poniente 146 No. 730
Aptdo. Postal 75-158
Mexico 16, D.F.
Tel.: 5 67 92 33
Telex: 1775681

Venezuela

AEG-TELEFUNKEN
VENEZOLANA S.A.
Boleita Norte
Calle Vargas
Apartado de Altamira 68912
Caracas 106
Tel.: 36 14 11
Telex: 25342

Nordamerika

Kanada

Bayly Engineering Ltd.
167, Hunt Street
Ajax Ontario, L1 S1 P6
Tel.: 8 39-11 01-11 04
Telex: 06981293

USA

AEG-TELEFUNKEN
Corporation
570, Sylvan Avenue
Englewood Cliffs/
New Jersey 07632
Tel.: 568-8570
Telex: 135497

Asien

Hongkong

Jackson Mercantile
Trading Co. Ltd.
57, Ta Chuen Ping Street

2nd Floor
Kwai Chung
N.T., Hong Kong
P.O.B. 2904
Tel.: 12-24 41 21-8
Telex: hx 74774

Indien

NGEF Ltd.
Bank of Baroda
Building
16, Parliament Street
P.O.Box 633
New Delhi 110001

Iran

AEG-TELEFUNKEN IRAN
Kh. Karim-Khan Zand
AEG-Building
Teheran
Tel.: 82 71 43-7/83 03 41-5
Telex: 2679

Israel

ELOTAS
Electro-Vista Industries Ltd.
P.O.Box 2659
Tel Aviv
Tel.: 269-930
Telex: 3-2387 IL

Singapore

Seow Kuan Co. (Pte.) Ltd.
4-6, Dhoby Ghaut
Singapore 9
Tel.: 3 03 51/52

Australien und Ozeanien

Australischer Bund

Amalgamated Wireless
(Australasia) Ltd.
47, York Street
G.P.O.Box 2516
Sydney N.S.W.2001
Tel.: 2 02 33
Telex: 21515

Neuseeland

AWA
New Zealand Ltd.
Wineera Drive
P.O.B. 830
Porirua, Wellington
Tel.: 75-069 Telex: 31001

Bauelemente für Elektronik und Nachrichtentechnik

Components for Electronics and Telecommunication Systems

Geschäftsbereich Röhren und Baugruppen

1. Röhren: Postfach 4309 · 7900 Ulm · ☎ (07 31) 19 11 ☏ 712801

Bildröhren für Schwarz/Weiß- und Farbfernsehgeräte	Picture Tubes for Monochrome and Colour TV Sets
Ablenkmittel für Fernsehbildröhren	Deflecting Units for TV Picture Tubes
Bauteile für Farbfernsehen	Components for Colour TV Sets
Mikrowellenröhren, Mikrowellen-Si-Dioden	Microwave Tubes; Microwave Silicon Diodes
Elektronenstrahlröhren für Oszilloskopen	Cathode-ray Tubes for Oscilloscopes
Monitorröhren, Radarröhren	Monitor Tubes, Radar Tubes
Bildabtaströhren	Flying Spot Tubes
Bildwandlerröhren	Image Converter Tubes
Bildverstärkerröhren	Image Intensifier Tubes
Bildaufnahmeröhren, Fotozellen	Camera Tubes, Photocells
Stabilisatoren, Thyratrons, Kaltkathodenröhren	Stabilizers, Thyratrons, Cold-cathode Tubes
Gasentladungs-Anzeigeelemente	Gas Discharge Display Elements
Bildschirm-Module	Display Modules
Empfänger- und Verstärkerröhren	Receiving and Amplifying Tubes
Spezialverstärkeröhren	Special-purpose Amplifying Tubes
Senderöhren, Röntgenröhren	Diodes, Transmitting Tubes, X-ray Tubes

2. Baugruppen: Postfach 144 · 8070 Ingolstadt 2 · ☎ (08 41) 8 20 11 19 ☏ 055 875

Schaltdioden-Tuner	Switch Diode Tuner
Digitale und elektronische Programmspeicher	Digital and Electronic Programme Memory
Potentiometertasten	Potentiometer Switching Units
Leiterplatten	Printed Circuits
Schicht-Regelwiderstände und Schalter	Potentiometers Carbon Composition and Switches

Geschäftsbereich Halbleiter

Postfach 1109 · 7100 Heilbronn · ☎ (0 71 31) 88 21 ☏ 7 28 746

Digitale integrierte Schaltungen	Digital Integrated Circuits
Lineare integrierte Schaltungen	Linear Integrated Circuits
Kundenspezifizierte Schaltungen in MOS-Technik	Custom designed MOS-Circuits
Transistoren und Dioden für Industrie- und Konsumanwendungen	Transistors and Diodes for Industrial and Consumer Applications
Optoelektronische Bauelemente	Optoelectronic Devices

Geschäftsbereich Passive Bauelemente

1. Vertrieb Kondensatoren und Schichtschaltungen

Postfach · 8500 Nürnberg 107 · ☎ (09 11) 27 71 ☏ 06 22 551

Al-Elektrolytkondensatoren	AL Electrolytic Capacitors
Tantal-Kondensatoren	Tantalum Capacitors
Kunststoff-Folienkondensatoren	Plastic foil Capacitors
Dickschichtschaltungen	Thick film Circuits

2. Vertrieb Starkstromkondensatoren

Drontheimerstr. 28-34 · 1000 Berlin 65 · ☎ (0 30) 49 10 61 ☏ 01 81 787

Funk-Entstörmittel	Noise suppressors
MP-Kondensatoren für Gleichspannung	Metallised paper (MP) capacitors d.c. applications
Motor-Kondensatoren	Motor capacitors
Kondensatoren für Entladungslampen	Capacitors for fluorescent lamps
Glättungskondensatoren ab 1 kV	Smoothing capacitors, ratings from 1 kV
Leistungs-Kondensatoren	Power capacitors
Anlagenschutz-Kondensatoren	Protection Capacitors
Elektroprintpapier	Electroprint Paper

AEG-TELEFUNKEN