Computational Communication Science 2 Week 4 - Lecture »Setting Up Supervised Machine Learning«

Marthe Möller

a.m.moller@uva.nl

April 22, 2024

Digital Society Minor, University of Amsterdam

Today

Recap
Rule-based Text Classification
The principles behind SML
SML: A practical application
SML models

What we did so far

Week 1 - 3: Text as data and recommender systems

Use Python to set up an experiment (research project)!

What we did so far

Group assignment: Tomorrow's tutorial is last chance for questions

Next week is education-free week: This means that there are no lectures, tutorials, or responses to Github issues.

Week 4 - 8: Automated analysis of text with Supervised Machine Learning

Use Python to analyze texts - and reflect on this!

Supervised Machine Learning

You will use some techniques discussed in week 1-3 (e.g., vectorizing)

Instead of building something to use in an experiment, we directly analyze textual data.

Classical content analysis: Manual analysis of texts

This can be done automatically with Python!

Especially helpful when working with big data sets.

Rule-based Text Classification

Text classification: To assign a label to a text.

For example, to distinguish between:

- newspaper articles about sports vs. economics
- reliable vs. unreliable information about vaccination.
- webpages about holding companies vs. financing companies
- positive vs. negative movie reviews

Text classification: To assign a label to a text.

For example, to distinguish between:

- newspaper articles about sports vs. economics.
- reliable vs. unreliable information about vaccination.
- webpages about holding companies vs. financing companies.
- positive vs. negative movie reviews.

RQ: How prevalent is flaming on Twitter?

Rule-based approach

- Create a list with all the swearwords that exist.
- For each tweet in the dataset, use the list to count the number of swearwords
- If a tweet contains X number of swearwords label it as flaming

RQ: How prevalent is flaming on Twitter?

Rule-based approach:

- Create a list with all the swearwords that exist.
- For each tweet in the dataset, use the list to count the number of swearwords
- If a tweet contains X number of swearwords label it as flaming

Sentiment Analysis

We can add nuance by creating more rules.

For example, in sentiment analyses, we can include a rule telling the machine what to do in case of negation or modifiers.

"This movie is really not good."

"This movie is really good."

When you simply want to count the occurence of specific words, a rule-based approach will be quick, cheap, easy, and transparent - perfect!

Sentiment Analysis

We can add nuance by creating more rules.

For example, in sentiment analyses, we can include a rule telling the machine what to do in case of negation or modifiers.

"This movie is really not good."

"This movie is really good."

When you simply want to count the occurence of specific words, a rule-based approach will be quick, cheap, easy, and transparent - perfect!

Sentiment Analysis

We can add nuance by creating more rules.

For example, in sentiment analyses, we can include a rule telling the machine what to do in case of negation or modifiers.

"This movie is really not good."

"This movie is really good."

When you simply want to count the occurence of specific words, a rule-based approach will be quick, cheap, easy, and transparent - perfect!

Advantages of rule-based text classification:

- Simple and therefore transparant
- Computationally cheap (more about this in week 7!)

Challenges of rule-based text classification:

- Not a suitable way to anayze latent or abstract variables
- You must know all the categories beforehand
- You must know and be able to express all the rules

Challenges of rule-based text classification:

- Not a suitable way to analyze latent or abstract variables
- You must know all the categories beforehand
- You must know and be able to express all the rules

Challenges of rule-based text classification:

- Not a suitable way to analyze latent or abstract variables
- · You must know all the categories beforehand
- You must know and be able to express all the rules

From Rule-based to Automated

When it is easy for us humans to decide to what class a text belongs, but we cannot transform our decision process into clear rules, it is probably better to use an automated form of text analysis: Supervised Machine Learning (Van Atteveldt et al., 2022)

Select all images with cats

Yu, J., Ma, X., & Han, T. (2016). Four-Dimensional Usability Investigation of Image CAPTCHA. arXiv preprint arXiv:1612.01067.

Recap

Read more about this project in: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y.(2014). OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229[cs]. Retrieved December 23, 2021, from http://arxiv.org/abs/1312.6229

Machine Learning: "A type of artificial intelligence in which computers use huge amounts of data to learn how to do tasks rather than being programmed to do them."

Oxford Dictionary

Supervised Machine Learning (SML): "A form of machine learning, where we aim to predict a variable that, for a least part of our data is known." (Van Atteveldt et al., 2022)

"The goal of Supervised Machine Learning: Estimate a model based on some data, and then use the model to predict the expected outcome for some new cases, for which we do not know the outcome yet." (Van Atteveldt et al., 2022)

Machine Learning has a lot of similarities to regression analysis!

Zooming out

We talked about:

- Rule-based Text Classification
- Automated Text Classification: SML

Next. we will talk about:

- The principles behind SML
- A practical application of SML
- Some commonly used SML models

The principles behind SML

$$y = constant + b_1 * x_1 + b_2 * x_2$$

The principles behind SML

```
y = constant + b_1 * x_1 + b_2 * x_2
y = 1 Is this a dog? (0 = definitely no, 1 = definitely yes)
```

$$y = constant + b_1 * x_1 + b_2 * x_2$$

 $y =$ ls this a dog? (0 = definitely no, 1 = definitely yes)
 $x_1 =$ Does it bark? (0 = no, 1 = yes)
 $x_2 =$ Does it have a tail? (0 = no, 1 = yes)

$$y = constant + b_1 * x_1 + b_2 * x_2$$

 $y =$ ls this a dog? (0 = definitely no, 1 = definitely yes)
 $x_1 =$ Does it bark? (0 = no, 1 = yes)
 $x_2 =$ Does it have a tail? (0 = no, 1 = yes)

The principles behind SML

$$y = constant + b_1 * x_1 + b_2 * x_2$$

$$y = constant + b_1 * x_1 + b_2 * x_2$$

 $y = 0 + 0.8 * x_1 + 0.2 * x_2$

The principles behind SML

$$y = 0 + 0.8 * 1 + 0.2 * 0$$

$$0.8 = 0 + 0.8 * 1 + 0.2 * 0$$

$$y = 0 + 0.8 * 1 + 0.2 * 0$$

$$0.8 = 0 + 0.8 * 1 + 0.2 * 0$$

The principles behind SML

$$0.8 = 0 + 0.8 * 1 + 0.2 * 0$$

The principles behind SML

$$0.8 = 0 + 0.8 * 1 + 0.2 * 0$$

Classification: a predictive modeling problem where a class label is predicted for a given example of input data.

Traditional usage of models in CS: to explain

Usage of models in ML: to predict

Traditional usage of models in CS: to explain

Usage of models in ML: to predict

Compare:

Recap

RQ: To what extent does the amount of hours spend playing violent video games predict aggressive behavior by individuals?

RQ: Given the amount of hours that an individual spents playing violen video games, how likely is this person to show aggressive behavior?

Can you think of an example case where SML can be useful?

You know know about the principles of SML.

What does the process of SML look like?

SML step by step

Machine Learning Process

SML step by step

Recap

SML step by step

Today, more about the first step!

(Next week, more about the second and last step)

Zooming out

We talked about:

- Rule-based Text Classification
- Automated Text Classification: SML
- The principles behind SML

Next, we will talk about:

- A practical application of SML
- Some commonly used SML models

SML: A practical application

Regression

Logistic Regression

00000000000

Logistic Regression

Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., Kim, S. J., Sun, Z., Pevehouse, J., & Garlough, C.(2019). Whose lives matter? mass shootings and social media discourses of sympathy and policy, 2012-2014. Journal of Computer-Mediated Communication, 24(4), 182-202.

Logistic Regression

Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., Kim, S. J., Sun, Z., Pevehouse, J., & Garlough, C.(2019). Whose lives matter? mass shootings and social media discourses of sympathy and policy, 2012-2014. Journal of Computer-Mediated Communication, 24(4), 182-202.

0000000000000

Logistic Regression

Rule-based Text Classification

Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., Kim, S. J., Sun, Z., Pevehouse, J., & Garlough, C.(2019). Whose lives matter? mass shootings and social media discourses of sympathy and policy, 2012-2014. Journal of Computer-Mediated Communication, 24(4), 182-202.

First, we need to read in the ingredients we need for SML:

```
import csv
1
    from sklearn.model_selection import train_test_split
3
    tweets = []
    labels = []
6
7
    with open(file) as fi:
      data = csv.reader(fi, delimiter='\t')
8
      for row in data:
9
       tweets.append(row[0])
10
11
       labels.append(row[1])
12
13
    tweets_train, tweets_test, y_train, y_test = train_test_split(tweets,
         labels, test_size=0.2, random_state=42)
```

Four lists:

Second, vectorize the texts that need to be labeled:

```
from sklearn.feature_extraction.text import (TfidfVectorizer)

tfidfvectorizer = TfidfVectorizer(stop_words="english")

X_train = tfidfvectorizer.fit_transform(tweets_train)

X_test = tfidfvectorizer.transform(tweets_test)
```

Where tweets_train and tweets_test are two lists with tweets (strings)

Next, I train my machine and test it:

```
from sklearn.linear_model import (LogisticRegression)

logres = LogisticRegression()
logres.fit(X_train, labels_train)
y_pred = logres.predict(X_test)
```

To train a model based on a tf-idf vectorizer and Log Regression:

```
from sklearn.feature_extraction.text import (TfidfVectorizer)
from sklearn.linear_model import (LogisticRegression)

tfidfvectorizer = TfidfVectorizer(stop_words="english")

X_train = tfidfvectorizer.fit_transform(tweets_train)

X_test = tfidfvectorizer.transform(tweets_test)

logres = LogisticRegression()
logres.fit(X_train, labels_train)

y_pred = logres.predict(X_test)
```

SML models

Logistic Regression is one commonly used model to train classifiers. Let's talk about other models as well!

SML models

Naïve Bayes

Recap

 $P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$

Mathematicians' language for: the probability of A if B is the case/present/true.

$$P(\text{label} \mid \text{features}) = \frac{P(\text{features} \mid \text{label}) \cdot P(\text{label})}{P(\text{features})}$$

Let's also train a model based on a count vectorizer and Naïve Bayes:

```
from sklearn.feature_extraction.text import (CountVectorizer)
from sklearn.naive_bayes import MultinomialNBB

countvectorizer = CountVectorizer(stop_words="english")

X_train = countvectorizer.fit_transform(texts_train)

X_test = countvectorizer.transform(texts_test)

nb = MultinomialNB()
nb.fit(X_train, labels_train)

y_pred = nb.predict(X_test)
```

Support Vector Machines

SVMs aim to find a hyperplane in an *N*-dimensional space that distinctly classifies the datapoints.

The best hyperplane is the one that has the maximum margin (distance) between the datapoints of both classes.

Support Vector Machines

Decision Trees and Random Forests

Decision Trees and Random Forests

Advantages of decision trees:

- Transparency
- Suitable for non-linear relationships

Disadvatanges of decision trees:

- Loss of nuance due to yes/no-design
- Cannot correct early mistakes
- Prone to overfitting

Decision Trees and Random Forests

Many different models available for machine learning.

How do you know what is the best for your case? Try it out and validate!

Zooming out

Today, we talked about:

- Rule-based Text Classification
- Automated Text Classification: SML
- The principles behind SML
- A practical application of SML
- Some commonly used ML models

Zooming out

Tomorrow, you will:

- Have time to ask questions regarding the group assignment
- In addition, work on the tutorial exercises for this week and ask questions if you have them
- You will get some hands-on experience with supervised machine learning!