Differential Equations (Exam #1)

Arden Rasmussen 1 October 2017

Contents

1	Summary	1
2	Reading & Writing Differential Equations 2.1 Exponential Model	
3	Qualitative Analysis	2
	Analytic Methods 4.1 Stream Plots/Slope Fields	2
5	Numeric Methods	2

1 Summary

- Mixing Problems
 - Setup
 - Analyze
- Find equilibrium solutions and preform qualitative analysis.
- Find solution using analytic methods
- ullet Fundamental Theorem
 - Solution curves don't cross unless RHS turns ugly on you.
- Euler method
 - Within reason
- Slope field
 - Not much of number crunching
- Some discussion about a parameter

2 Reading & Writing Differential Equations

The form of a differential equation must be the rate equals some equaiton that incorperates the equation.

$$\frac{dy}{dt} = f(t, y(t)) \tag{1}$$

Where f(t, y(t)) is some function that involves y(t) and optional involves t.

2.1 Exponential Model

Idea: Relative growth rate is some constant: k.

$$\frac{dy}{dt} = k \cdot y(t) \tag{2}$$

2.2 Logistic Model

Idea: The relative growth rate may not be constat, and may depend on cercumstances. It may depend on y(t) itself. Where M is the maximum limit for y(t).

$$\frac{dy}{dt} = ky(t)\left(1 - \frac{y(t)}{M}\right) \tag{3}$$

3 Qualitative Analysis

Basic Idea: Do careful acounting of slopes and connect the points.

4 Analytic Methods

4.1 Stream Plots/Slope Fields

5 Numeric Methods