### Differentiator

d > 86 pe

#### Current flowing through capacitor

$$i_C = C\frac{d}{dt}(v_i - v_N) = C\frac{dv_i}{dt}$$

#### Nodal equation at N

$$C\frac{dv_i}{dt} + \frac{v_o}{R_E} = 0$$

Solving

$$v_o = -R_F C \frac{dv_i}{dt}$$



A.

1 Jeon Pout

### Differentiator

Current flowing through capacitor

$$i_C = C \frac{d}{dt} (v_i - v_N) = C \frac{dv_i}{dt}$$

Nodal equation at N

$$C\frac{dv_i}{dt} + \frac{v_o}{R_F} = 0$$

Solving

$$v_o = -R_F C \frac{dv_{in}}{dt}$$



The differentiator circuit of Fig. uses  $C = 1 \mu F$  and  $R = 1 M\Omega$ . In addition to the required input voltage, a noise signal due to mains 'hum' also appears at the input. If the input noise signal  $v_n = 5 \sin 314t \, \text{mV}$ , determine the resulting noise signal at the output.

1.52 min

A

$$CR = 10^{-6} \times 10^{6} = 1$$
s

output noise,  $V_{on} = -CR \frac{d}{dt} (5 \sin 314\omega t) \text{ mV}$ = 5 × 314 cos 314t mV

$$V_{on} = 1.57 \cos 314t \text{ V Ans}$$

9n of the

Vo=-RC dVan

# Integrator

#### Nodal equation at N

$$\frac{v_i}{R_1} + C_F \frac{dv_o}{dt} = 0$$

$$\frac{dv_o}{dt} = -\frac{1}{R_1 C_F} v_i$$

Integrating on both sides

$$v_o = -\frac{1}{R_1 C_F} \int_0^t v_i(t) dt$$



40

Q An integrator circuit is shown in Fig. 11. For this circuit determine the output voltage when  $V_1 = 25$  sin (314t) volt.



Fig. 11

A

$$V_0 = \frac{-6}{CR} \int V_i \, dt \, \text{volt}$$

$$= \frac{-1}{10^{-5} \times 10^5} \int 25 \sin (314t) dt$$

$$= \frac{-1}{314} (-25 \cos 314t)$$

$$V_0 = 79.6 \cos (314t) \, \text{mV Ans}$$

# Assignment B.2

•  $R_1 = 10 \text{ k}\Omega$ ,  $R_f = 100 \text{ k}\Omega$ ,  $v_i = 1 \text{ V}$ . A load of 25 k $\Omega$  is connected to the output terminal. Calculate (1)  $i_1$  (2)  $v_0$  (3)  $i_L$  and (4) total current  $i_0$  into the output pin.



# Assignment B.1



# Assignment B.1



Di

The circuit of Fig. has the following combination of inputs and resistors applied. In each case calculate the resulting output voltage.

- (a)  $R_f = 1 \text{ M}\Omega$ ;  $R_1 = 100 \text{ k}\Omega$ ;  $V_1 = 0.6 \text{ V}$
- (b)  $R_f = 100 \text{ k}\Omega$ ;  $R_1 = 1 \text{ M}\Omega$ ;  $V_1 = -1.5 \text{ V}$
- (c)  $R_f = 100 \text{ k}\Omega$ ;  $R_1 = 1 \text{ M}\Omega$ ;  $V_1 = 5 \sin \omega t \text{ volt}$



52

The circuit of Fig. has the following combination of inputs and resistors applied. In each case

calculate the resulting output voltage.

(a) 
$$R_f = 1 \text{ M}\Omega$$
;  $R_1 = 100 \text{ k}\Omega$ ;  $V_1 = 0.6 \text{ V}$ 

(b) 
$$R_f = 100 \text{ k}\Omega$$
;  $R_1 = 1 \text{ M}\Omega$ ;  $V_1 = -1.5 \text{ V}$ 

(c) 
$$R_f = 100 \text{ k}\Omega$$
;  $R_1 = 1 \text{ M}\Omega$ ;  $V_1 = 5 \sin \omega t \text{ volt}$ 



Dr. E Paul Braineard

5.5sin(omega\*t)

For the circuit of Fig. 7 the following combination of input voltages and resistors is applied. For each case calculate the resulting output voltage.

- (a)  $R_1 = R_2 = 100 \text{ k}\Omega$ ;  $V_1 = 6.4 \text{ V}$ ;  $V_2 = 10.5 \text{ V}$
- (b)  $R_1 = R_2 = 1 \text{ M}\Omega$ ;  $V_1 = 2.6 \text{ V}$ ;  $V_2 = -4 \text{ V}$
- (c)  $R_1 = 100 \text{ k}\Omega$ ;  $R_2 = 1 \text{ M}\Omega$ ;  $V_1 = 4.9 \text{ V}$ ;  $V_2 = 3.8 \text{ V}$

