

Blood Physiology

① Introduction of the blood

► Components:

- I. Red blood cells (RBCs) OR erythrocytes.
- II. White blood cells (WBCs) OR Leukocytes
- III. Platelets OR thrombocytes
- IV. Plasma.

► Functions:

- I. Respiratory
- II. Transport of nutrients.
- III. Transport of waste products (urea).
- IV. Transport of hormones.
- V. Regulation of body fluid.
- VI. Regulation of body temperature.
- VII. Defense.
- VIII. Haemostasis.

► Properties:

- I. Specific gravity : "1.052 - 1.061"
 - ✓ Plasma 55%.
 - ✓ Cells 45%.
- II. Osmolarity
- III. Viscosity : "2-3" time water.
 - Due to presence of plasma protein and RBCs.
- IV. pH : "7.35 - 7.45".

② Red blood cells "RBCs";

► Characteristics:

- o Shape: small & bioconcave.
- o Diameter: 8 Micrometer.

1

- Thickness : 1 - 2 mm
- Volume : 85 - 90 cu mm.
- Surface area : 138 sq mm.

Benefits of Biconcave Shape :

- ✓ Diffusion of oxygen.
- ✓ Help passage of RBCs through narrow capillaries.
- ✓ With Stand Osmotic Pressure.

Count :

Male = $5.2 \times 10^6 / \text{mm}^3$.

Female = $4.7 \times 10^6 / \text{mm}^3$

Hb Concentration :

✓ Male : 14 - 16 gm / 100 ml

✓ Female : 12 - 14 gm / 100 ml.

PCV (Packed Cell Volume) :

✓ Male : 47% (40 - 50%).

✓ Female : 42%. (37 - 47%).

Indices :

$$(1) M.C.V \text{ (Mean Cell Volume)} = \frac{P.C.V \times 10}{RBCs} = 90 \text{ cu mm.}$$

$$(2) M.C.H \text{ (Mean cell Hb)} = \frac{Hb \times 10}{RBCs} = 30 \text{ picogram.}$$

$$(3) M.C.H.b \text{ (Mean cell concentration)} = \frac{Hb \times 100}{P.C.V}.$$

✓ Hb 15 gm/ml of blood.

Formation (Erythropoiesis) :

Site of formation :

(A) 3 month \rightarrow Yolk sac.

(B) 3 - 7 month \rightarrow Liver & spleen.

(C) 4 - 9 month \rightarrow Bone marrow.

✓ After birth only the bone marrow formed the RBCs.

✓ 20 years only flat bones:

Skull, Ribs, Sternum & Vertebra.

Yellow marrow inactive.

⑧ Stages of formation :

① Cell become smaller

② Nucleus become smaller & finally disappear.

③ More formation of Hb.

⑧ Control of RBCs formation :

- Need of tissue for oxygen.

- Hypoxia: is decrease in oxygen in tissue

- Hypoxia of kidney → Erythropoietin → Blood →

Bone marrow to form the RBCs.

⑨ Erythropoietin :

✓ early stages

✓ Start Hb formation

✓ Doesn't affect WBCs & platelets formation.

✓ Increase DNA & RNA.

✓ Only kidney 90% & Liver 10%.

⑩ Substances needed to formation of RBCs :

① Protein.

② Vitamins :

A) Vitamins B₁₂, folic acid B) Vitamin B₆

C) Vitamin C D) Vitamin B complex E) Vit. E

③ Trace elements (metals).

④ Iron.

⑪ Remember the stages of formation of RBCs :

1. Stem Cells 2. Committed stem cell

3. Pronormoblast 4. early normoblast

5. Intermediate normoblast 6. late normoblast.

7. Reticulocyte.

⑫ Vitamins :

③ B₁₂ & Folic acid :

Formation of DNA & RNA (cell division).

✓ Deficiency of B₁₂ causes:

- ① Number is decreased
- ② Large cells (megaloblast)
- ③ Deformed
- ④ Fragile (easily break)

2) Vit B₆:

Haem, DNA.

3) Vit C:

Absorption of iron, folic acid metabolism.

4) Vit B complex:

Protein, Thiamin N.A.B.

5) Vit E:

Needed for formation of the cell membrane especially in infants.

6) Trace elements:

Copper, Cobalt, Zn, Mn and Nickel.

Iron:

without Fe hemoglobin can not carry oxygen

► Distribution: Total amount 4-5 gm.

Ⓐ Hb & 70% 3000 mg.

✓ 1 ml. of RBCs = 1 mg of iron.

Ⓑ Store:

✓ Liver (20%) = 1000 mg.

✓ apoferritin + Fe = Ferritin (soluble).

✓ Haemosidrin (insoluble) is ferritin loss its amino-acid & it consist of one third.

Ⓒ Cellular iron: 150 mg.

✓ Myoglobin (skeletal & cardiac muscle).

✓ Intracellular enzyme (cytochrome).

Ⓓ Transport Fe: 3-4 mg.

✓ apotransferrin + Fe → Transferrin

④

* Requirements :

13 Meat

23 Vegetables

- ✓ Milk contain no iron
- ✓ Males = 10 mg Fe / day
- ✓ Females = 20 mg Fe / day
- ✓ Important for growth in children.

* Absorption :

- ✓ 10% in food.
- ✓ 1 mg in male & 2 mg in female.

Factors affecting absorption :

1 site : Duodenum & upper jejunum

2 Fe^{+++} $\xrightarrow[\text{HCl}]{\text{VitC}}$ Fe^{++}

3 phosphate, oxalates and tannates insoluble compounds with iron.

4 Whole haeme part absorbed.

5 Decrease stores \rightarrow Increase absorption 6%
in Male and 14% in female and 20% in anaemic

* Iron Loss :

- ✓ In Males = 1 mg / day
- ✓ In Females = 2 mg / day

① Faeces

② Skin skin cells, hair, nails and sweat.

③ Urine "negligible".

* Iron balance :

► RBCs Break down:

E13 Jaundice: Yellowish colour in the skin.

* Types:

(i) PrehepatiC.

✓ haemolysis.

✓ Spherocytosis.

(ii) Hepatic.

✓ Liver disease

(iii) Post hepatic.

* Haemoglobin:

✓ Hb A: 96% ($\alpha - \beta$)

✓ Hb A₂: 2% Delta chain

✓ Hb F: 2% γ chain $1\alpha - 2\gamma$

Why Hb found inside RBCs and NOT in plasma freely ???

[1] Osmotic pressure.

[2] Viscosity of plasma (blood pressure)

[3] Taken by macrophages and destroyed.

[4] Excreted in urine.

E23 Anaemia: Decrease of Hb concentration.

* Classification according to cause:

(1) Blood loss:

① Acute: Plasma \rightarrow (1-3) days.

RBCs \rightarrow (3-4) weeks.

(B) chronic blood :

Can not absorb enough iron and the iron it is the most common anaemia in the world ; the cells will be microcytic-hypochromic.

(2) Decreased formation of RBCs:

* Increase need of RBCs :

- (A) Pregnancy
- (B) Destruction
- (C) Children fed with milk only.

(3) Maturation failure :

- (A) Large (Macrocytic)
- (B) Number decrease
- (C) Deformed.
- (D) Fragile.

(4) haemolytic anaemia :

✓ Intracellular

✓ Sphenoctosis in shape.

✓ Structure of Hb abnormal :

- a) Sickle cell
- b) Thalassamia .

✓ Extracellular -

(E) Polycythaemia :

Increase in Hb concentration and RBCs Count

↑ $5 \times 10^6 / \text{cm mm}^3$.

✓ Block capillaries .

✓ Resistance to flow → ↑ blood pressure

✓ True : at the high altitude .

✓ Relative :

Dehydration .

③ White blood cell (WBCs) :

► Classification :

❖ According to the function :

✓ Phagocytes :

- Neutrophils.
- Eosinophils.
- Basophils.
- Monocytes.

✓ Immunocytes :

- Lymphocytes.

❖ Morphological :

- ✓ Granulocytes.
- ✓ Agranulocytes.

► Total Leukocytes Count :

- 3000 - 10 000 cul/mm

► Differential Leukocyte Count (DLC) :

- Neutrophils - 60 - 70 %
- Lymphocytes - 20 - 30 %
- Eosinophils - 2 - 4 %
- Basophils - 0 - 2 %
- Monocytes - 2 - 8 %

❖ Granulopoiesis

* Life span :

o Granulocyte :

✓ Blood : 7-10 hours

✓ Tissue : few days.

o Monocyte :

✓ Tissue : 7-10 hours

✓ Macrophages : 1 Year.

o Lymphocyte :

✓ T-lymphocyte 100 - 300 days

✓ B-lymphocyte : 7 days.

Neutrophils

◆ properties :

(1) Chemotaxis: ability of neutrophil to be attracted to area of microorganism.

✓ Chemotactic agent :

a. Taxis of microorganism

b. Damaged Leukocyte

c. Dead tissue

d. Clotting mechanism

(2) Margination: ability of neutrophil to stick margin of blood vessel.

(3) Diapedesis: ability of neutrophil to squeeze and go out between endothelial cells.

(4) Amoeboïd movement.

(5) Phagocytosis

A) Recognition:

✓ Antibodies marking microorganism.

✓ Rough Surface.

✓ Electropositive charge

B) Phagocytosis

 Killing

Digestion .

 Dead neutrophils are phagocytosed by macrophages.

Monocyte

◆ Component of macrophages system :

(1) Blood monocytes .

(2) Tissue macrophages .

(3) Reticular cells of spleen , bone marrow & lymph nodes .

(4) Endothelial cells covering blood sinuses and lymph sinuses .

◆ Function :

① Phagocytosis .

② Break down of Hb .

③ Stored off iron .

④ Help the immune system .

Eosinophil

✓ Substances that inactive Histamine

✓ Major basic protein → kills parasite .

✓ Weak phagocytosis .

✓ In microscope shows as Red colour .

✓ Limit allergy .

✓ Increase in allergy & parasite infection .

Basophil

✓ Heparin (anticoagulant) .

✓ Histamin (allergy) , but to warning other cells .

10

► **Leukocytosis**: Increase in number of RBCs.

o Types of Leukocytosis

E13 **Physiological** :

- Diurnal variation (\uparrow) in afternoon.
- Exercise.
- After protein meal.
- Adrinary stress.

E23 **Pathological** :

- Neutrophile \uparrow : bacterial infection
- Eosinophil \uparrow : Allergy & parasitic infection.
- Basophil \uparrow : Allergy.
- Monocyte \uparrow : chronic infection e.g (T.B)
- Lymphocyte \uparrow : viral infection & chronic infection.

► **Leukopenia**: Decrease in number of WBCs.

- ✓ Typhoid fever.
- ✓ Vit B12 & Folic acid.
- ✓ Severe mal-nutrition.

► **Leukæmia**: Increase of the number of WBCs. and the cells are not mature.

- ✓ Anaemia + bleeding problems.
- ✓ The body become weak.
- ✓ Can not defense the body.

❖ IMMUNITY:

E13 Natural (innate).

- Always present.
- General

* Examples :

[i] phagocytes (Neutrophil/Monocyte) [ii] HCl in stomach

[iii] Blood Lysozymes [iv] Skin barrier.

E23 Acquired immunity

specific triggered by foreign particle and destroy only that foreign

(A) Cellular immunity T-lymphocytes

(B) Humoral immunity B-lymphocyte

• Antigen:

Substance that stimulates immune system

T or B- lymphocyte to produce responses. and it can be:

(A) Protein

(B) glycoprotein

(C) Part of microorganism (D) Transplanted organ.

It can be move to the blood and return to the lymph node.

✓ For antigen:

o T-lymphocytes: divided

o B-lymphocyte: Stages

• (Antibody) = plasma cell (protein)

• Antibodies:

(Immunoglobulin)

① Ig G (Ig G₁, Ig G₂) 80 %

② Ig A - Ig A₂

③ Ig M

④ Ig E → allergy.

⑤ Ig D

12

Mechanism of action of antibody :

① Direct :

- Agglutination
- Precipitation (Soluble antibody \rightarrow insoluble)
- Neutralization : Cover the toxic part.
- Lysis

② Indirect :

enzym inactive

✓ The indirect way is more important than the direct way.

Cellular immunity :

✓ Produced by T-lymphocyte =

✓ Types :

- ① Helper T-lymphocyte 75% of the total.
- ② Killer T-lymphocyte (cytotoxic)
- ③ Suppressor (inhibitor).

① Helper T-lymphocyte :

- Stimulate B-lymphocyte \rightarrow antigen
- Stimulate killer cells \rightarrow kill

C. Stimulate microphages → phagocytosis.

- ② Lymphokines (cytokines) that stimulate the helper T-lymphocyte.

② Killer T-lymphocyte:

③ Suppressor:

Limit the function of helper & killer T-lymphocyte

- In the normal person:

- Helper : suppressor (1 : 1).

But in HIV:

- Helper : suppressor (1 : 2).

✓ Primary immune response.

✓ Secondary immune response.

④ Plasma :

- ✓ Yellow in colour.
- ✓ Contain water, electrolyte
- ✓ Plasma can clot

- The difference between the plasma and the serum
Serum = plasma - clotting factor

► Plasma protein : (7-8 g/100 mL L).

① Albumin = 4.5 g/100 mL L

- M.W = 69,000

② Globulin = 2.5 g/100 mL L

- M.W = 90,000 - 140,000

- Liver (2α, 2β & γ) Lymph node

③ Fibrinogen = 0.3 g/100 mL

M.W = 340,000

* Function of Plasma Protein :

- ① Exchange in the fluid between capillaries and interstitial fluid, due to osmotic & oncotic.
- ② Transport of hormones from the endocrine gland to the target organ.
- ③ Transport of waste products.
- ④ Transport of Carbon dioxide.
- ⑤ Replacement of the lost tissue protein.
- ⑥ Blood coagulation.
- ⑦ Defense.
- ⑧ Buffer.

→ Blood group :

- Donor → gives.
- Recipient → received

✓ Few things will occur if we give blood to recipient.

① Nothing match

② Severe reaction.

① ABO system :

group A	group B	phenotype	Genotype
A B	B B	A	AA / AO
		B	BB / BO
A B	O	AB	AB
group AB	group O	O	OO

if the father group A & Mother B. The possible children Bt's will be: (AB) or (AO) or (BO) or (OO)

✓ How the antibodies forms ??

- Antibody (agglutinin)
- Antigen (agglutinogen)

The body forming anti B

Has no antibodies from A and B.

The body forming anti A and B.

③

The body forming anti A

- ◆ Donors RBCs usually agglutinated by antibodies of the recipient :

- ✓ Group O is Universal donor.
- ✓ Group AB is Universal recipient -
- ✓ 50% Group O
- ✓ 31% Group AB

- How to know the blood group ?

② Rhesus system :

- ✓ Only by blood transmission we can form anti D.
- ✓ Antigen D (+ve) is 90% -
- ✓ Antigen D (-ve) is only 10% -

► Haemolytic Disease of newborn:

Father	Mother	Fetus
Rh +ve	Rh -ve	Rh +ve
For the first time Embryo	Antid For the second time Embryo	

◆ The first fetus will be fine but the second will borne with :

- a. Anaemia
- b. Jaundice.

◆ To the fetus :

exchange transmission : take out the blood of new born and give him Rh-ve from the other side.

► Blood transfusion:

o Precaution:

1. give the person his own blood.

2. Emergency we can give blood group O.

3. Cross matching.

((Take serum from recipient & mixing RBCs of donor))

4. Blood of donor Screened for HIV and hepatitis.

➤ Hemostasis :

- Prevention of blood Loss.

1. Vasoconstriction (Vasospasm)
2. Formation of platelet plug
3. Blood coagulation
4. Fibrinolysis

➤ Mechanism of Vasospasm:

① Platelets secrete vasoconstriction.

ⓐ 5 hydroxy tryptamine ^(5HT) ⓑ Thromboxane A₂ (T_A₂)

② Stretch of smooth muscle cause contraction (myogenic)

③ Pain stimulate S.N.S → Noradrenaline

➤ Formation of platelet plug:

- Stem cell → megakaryoblast → promegakaryoblast

→ Megakaryocyte.

• Diameter : 1 - 2 μm Volume: 5 - 8 cm³/μm

• Number: 150,000 - 400,000 cm³/μm Average: 250,000 cm³/μm

➤ During wounds Level:

➤ Things will occurs:

① swell ② irregular shape ③ sticky ④ secrete →

ⓐ 5HT → vasoconstriction ⓑ T_A₂ → vasoconstriction + aggregation

⑤ ADP → aggregation ⓒ Heparin → Neutralizing factor.

⑥ platelet phosphatidyl → blood clotting Ⓡ von-willibrand factor → attached platelet to the collagen Ⓢ platelets derived growth factor → healing.

➤ Contraction of platelet:

⑨ Release of platelet ~~gramme~~ Ⓥ Clot reaction -

➤ Blood Coagulation:

Formation of prothrombin activator (Thrombokinase complex) to convert prothrombin to thrombin by P.A.

Fibringen → fibrin thread (These fibrin thread are cross linked, and protein become insoluble) / Coagulation occur by ② ways:

① Intrinsic ② Extrinsic / Fibrinolysis by: ① Intrinsic ② Extrinsic