MACHINE LEARNING

SUPERVISED LEARNING

Predict outputs based on inputs

SUPERVISED LEARNING

independent variables predictors attributes features

Predict outputs based on inputs

targets

responses

outcomes

dependent variables

SUPERVISED LEARNING

Predict outputs based on inputs

UNSUPERVISED LEARNING

There is no output measure

Describe associations/patterns among inputs

UNSUPERVISED LEARNING

There is no output measure Describe associations/patterns among inputs

Clustering

Dimensionality Reduction

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- . Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors, random Examples forest

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

 Examples mean-shift

Dimensionality reduction

Reducing the number of random variables to consider

Applications: Visualization, Increased

efficiency

Algorithms: PCA, Isomap, non-negative matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

- Examples metrics

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing feature extraction.

— Examples

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- . Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors, random Examples forest

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

 Examples mean-shift

Dimensionality reduction

Reducing the number of random variables to consider

Applications: Visualization, Increased

efficiency

Algorithms: PCA, Isomap, non-negative matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

- Examples metrics

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing feature extraction.

— Examples

CORRELATION

Measure the direction and strength of a linear relationship.

$$r = \frac{\sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2}}$$

CORRELATION

Measure the direction and strength of a linear relationship.

CORRELATION

- Measure the direction and strength of a linear relationship.
- Cannot be used for prediction purposes.

REGRESSION ANALYSIS

- 1. State the problem
- 2. Select potentially relevant variables
 - 3. Specify the model
 - 4. Fit the model
 - 5. Critically evaluate the model
 - 6. Address the original problem

 Express functional relationships among variables as an equation or "model"

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

 Express functional relationships among variables as an equation or "model"

Simple linear regression:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Multiple linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

Linear refers to the way that the parameters enter the model...

$$Y=\beta_0+\beta_1X_1+\varepsilon$$
 Linear
$$Y=\beta_0+\beta_1X+\beta_2X^2+\varepsilon$$

Non-linear
$$Y=\beta_0+e^{\beta_1 X_1}+\varepsilon$$

DATA NOTATION

Observation Number	Response	Predictors				
	Y	$\overline{X_1}$	X_2		X_p	
1	y_1	x_{11}	x_{12}		x_{1p}	
2	y_2	x_{21}	x_{22}	• • •	x_{2p}	
3	y_3	x_{31}	x_{32}	• • •	x_{3p}	
:	:	•	:	<i>:</i>	•	
n	y_n	x_{n1}	x_{n2}	• • •	x_{np}	

DATA NOTATION

Observation Number	Response	Predictors				
	Y	$\overline{X_1}$	X_2	• • •	X_p	
1	y_1	x_{11}	x_{12}		$\overline{x_{1p}}$	
2	y_2	x_{21}	x_{22}	• • •	x_{2p}	
3	y_3	x_{31}	x_{32}	• • •	x_{3p}	
:	:	•	:	<i>.</i>	:	
n	y_n	x_{n1}	x_{n2}	• • •	x_{np}	

...what does this data structure resemble?

MODEL FITTING

Minimize the sum of squared residuals...

MODEL FITTING

Same concept applies in two or more dimensions...

APPLICATIONS OF LINEAR REGRESSION

$$y = \beta_0 + \beta \times \#$$
minor alleles

GENOME-WIDE ASSOCIATION STUDIES

Hundreds of thousands of linear regressions...

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- . Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

learn

recognition.

Algorithms: SVM, nearest neighbors, random Examples forest

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

 Examples mean-shift

Dimensionality reduction

Reducing the number of random variables to consider

Applications: Visualization, Increased

efficiency

Algorithms: PCA, Isomap, non-negative matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

- Examples metrics

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing feature extraction.

— Examples

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- . Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors, random - Examples forest

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

— Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

 Examples mean-shift

Dimensionality reduction

Reducing the number of random variables to consider

Applications: Visualization, Increased

efficiency

Algorithms: PCA, Isomap, non-negative matrix factorization. Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

- Examples metrics

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing feature extraction.

— Examples

Transform a large number of possibly correlated variables into a smaller number of uncorrelated variables ("principal components") that capture as much information as possible from the original dataset.

The first principal component is a linear combination of original predictor variables which captures the maximum variance in the data set.

The first principal component is a linear combination of original predictor variables which captures the maximum variance in the data set.

The second principal component is a linear combination of original predictor variables which captures the second most variance under the constraint that it is orthogonal to PC1.

Reduce dimensionality and visualize data structure...

	rs10001	rs10002	rs10003	rs10004	rs10005	rs10006
Sample1	AA	GG	CC	AC	GG	CC
Sample2	AA	GG	CT	AC	CG	CC
Sample3	AT	GG	П	AA	CG	Ä
Sample4	П	GG	П	AA	GG	ÇÇ
Sample5	AA	GG	П	AA	GG	П
Sample6	AA	GA	CC	AC	GG	CC
Sample7	AT	GG	CC	CC	GG	CC
Sample8	AA	GG	CT	AA	GG	CT

genotypes can
also be represented
counts of non-reference
alleles (i.e., 0, 1, 2)

. . .

