VISIONHACK

Классификация типов событий на записях с видеорегистраторов

Команда **DeepMIPT** (2-е место)

Place	Team	Date/time of the last attempt	Score on the last attempt					
			«Bridge»	«City»	«Road bump»	«Screen wipers»	«Zebra»	Total
 1	DoubleA Team (Lomonosov Moscow State University) Andrey Belyaev Alexander Gromov Konstantin Sofiyuk	13.09.2017 15:25	94.7096	54.3503	74.8842	96.875	83.8442	404.663
T 2	Deep MIPT (Moscow Institute of Physics and Technology) Artur Fattahov Arteyom Kupriyanov Ahmedhan Shabanov Kirill Tushin	13.09.2017 16:06	93.0556	0	43.6709	95.3125	92.848	324.887
T 3	GMLvision (Lomonosov Moscow State University) Ilia Petrov Sergey Dukanov Vladimir Guzov	13.09.2017 14:10	84.2929	3.84903	62.1951	93.75	76.0217	320.109

VISIONHACK

• Отборочный этап

Основновной этап:

- 2 дня в МИСиС
- Призовой фонд 35к \$
- Участвовать могут студенты и аспиранты
- Команды от 2 до 5 человек
- Разрешается использовать только свои компьютеры

Данные

- Видеоролики 10c, Full HD, 30 fps
- Trainset 200 роликов
- Validationset 200 роликов (Public Leaderboard)
- Testset 400 роликов (был выдан за 4 часа до конца)

Train

Validation

Test

Задача

Детектировать наличие на видео следующие типы событий:

- Проезд пешеходного перехода
- Въезд под мост или в тоннель
- Включение дворников
- Въезд / выезд из города
- Наезд на лежачий полицейский

Оценка качества

- 100 / (реальное количество объектов) * ТР -1000 / (реальное количество объектов) * FP
- Ложное срабатывание сильно штрафуется!
- За каждую задачу можно было получить от -1000 до 100 баллов
- Итоговый результат сумма баллов за все задачи

Зебра

- Fine tune Resnet50
- Разметили моменты начала и конца видимости зебры
- Random crop из нижней половины картинки
- Resize до 224 x 224
- Аугментация горизонтальным отражением

Обучение

Р(есть зебра)

Предсказание

TTA — усреднение предсказаний с четырех картинок, полученных рандомными кропами и флипами

Предсказание

По оси **х** откладывается каждый третий кадр, по оси **у** — вероятность того, что на этом кадре есть зебра

Что делать с вероятностями?

- Отсекать по порогу: максимум или среднее
- Посчитать статистики: max, min, mean, std, квантили
 и подать их на вход другой модели машинного обучение

Детекция заезда в туннель

Начало:

- Смотрели только на верхнюю часть экрана
- На каждом кадре считали яркость
- По временному ряду брали производные 1-го, 2-го порядка, mean min, max mean, max-min ...
- Обучили catboost, смотрели auc (0.96)

Детекция заезда в туннель

Графики производных от яркости

Въезд под мост

Нет въезда под мост

Детекция дворников

- На каждом кадре видео считали долю черных пикселей в верхней части экрана
- Брали производные 1-го, 2-го порядка, std, mean min, max mean, max-min ...
- Обучили catboost, смотрели auc (0.91)

Детекция дворников

Графики производных от доли черного цвета

Включение дворников

Нет дворников

Объединение фичей

- Перепутали целевую переменную
- Объединение 2-х наборов фичей
- Улучшение скора (туннель: auc 0.99, дворники: auc 0.96)

Въезд под мост

Производная доли черного цвета

Срабатывание дворников

Детекция выезда/въезда в город

Детекция искуственной неровности

- Lucas-Kanade Optical Flow in OpenCV
- Video 1
- Video 2

Производная отклонения по оу

Отборочный этап

- Задача: определить кадр переключения светофора с красного на зеленый
 - Обучение: 100 роликов
 - Валидация: 100 роликов
 - Тест: 300 роликов
- Метрика качества:
 - TP 2
 - TN 1
 - FN 1
 - FP 0

Далее начисленные баллы нормируются на 100

Отборочный этап

- Использовалась tensorflow object detection api
- На каждом кадре в зоне светофора считали долю зеленого цвета

• Брали производную и смотрели на первый максимум, который больше какогото порога

https://github.com/KirillTushin/VisionHack