polar \rightarrow component: $a_x = a \cos \theta$ and $a_y = a \sin \theta$ component \rightarrow polar: $a = \sqrt{a_x^2 + a_y^2}$ and $\tan \theta = \frac{a_y}{a_x}$

Angular kinematics

It works the same as linear motion but with different variables. Position is defined by θ in radians;

$$\theta = \frac{S}{r}$$

angular velocity is

$$\omega = \frac{d\theta}{dt}$$

angular acceleration is

$$\alpha = \frac{d^2\theta^2}{dt^2}$$

kinematic equations

mmematre equations		
	Variable	Equation
	Velocity	$v = at + v_0$
	Position	$\Delta x = v_0 t + \frac{1}{2} a t^2$
	Missing t	$v^2 = 2a\Delta x + v_0^2$
	Missing a	$\Delta x = \frac{v + v_0}{2}t$
	Missing v_0	$\Delta x = vt - \frac{1}{2}at^2$

other useful stuff;

$$v_t = \omega r$$
$$a_t = \alpha r$$

for tangential acceleration and velocity. Centripetal acceleration;

$$a_c = \omega^2 r$$

Period of revolution;

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Variable	Equation
Horizontal displacement	$\Delta x = v_0 \cos \theta t$
Vertical displacement	$\Delta y = v_0 \sin \theta t - \frac{1}{2}gt^2$
Vertical velocity	$v_y = v_0 \sin \theta - gt$
Trajectory	$\Delta y = \tan \theta \Delta x - \frac{g \Delta x^2}{2(v_0 \cos \theta)^2}$
Range	$R = \frac{v_0^2 \sin 2\theta}{g}$

Useful units

Work: $J \rightarrow kg \text{ m}^2/s^2$ Impulse: $N \cdot s \rightarrow kg \text{ m/s}$ Force: $N \rightarrow kg \text{ m/s}^2$

Check your algebra you fucking idiot

Electrostatic Force

Coulomb's Law

$$\vec{F} = k \frac{q_1 q_2}{r^2}$$

Fields

Electric field for a point is just force but divide out q_1 . Electric field due to a line of charge (point perpendicular to the end);

$$\begin{split} \vec{E} &= \int_{-L}^{0} k \frac{dq}{r^{2}} \, \hat{\mathbf{r}} \\ &= \int_{-L}^{0} k \frac{dq}{x^{2} + z^{2}} \, \hat{\mathbf{r}} \\ &= \int_{-L}^{0} k \frac{\lambda dx}{x^{2} + z^{2}} \, \hat{\mathbf{r}} \\ &= \int_{-L}^{0} k \frac{\lambda dx}{x^{2} + z^{2}} \, \frac{-x \, \hat{\mathbf{i}} + z \, \hat{\mathbf{j}}}{\sqrt{x^{2} + z^{2}}} \\ &= k\lambda \left[\frac{1}{\sqrt{z^{2}}} - \frac{1}{\sqrt{L^{2} + z^{2}}} \right] \, \hat{\mathbf{i}} + \frac{k\lambda L}{z \left(L^{2} + z^{2}\right)^{1/2}} \, \hat{\mathbf{j}} \end{split}$$

Electric field due to a disc;

$$\vec{E} = \int d\vec{E}$$

$$= \int \frac{1}{4\pi\epsilon_0} \frac{dq}{r^2 + z^2} \,\hat{\mathbf{r}}$$

$$= \frac{1}{4\pi\epsilon_0} \int \frac{\sigma \cdot dA}{r^2 + z^2} \,\hat{\mathbf{r}}$$

$$= \frac{1}{4\pi\epsilon_0} \int \frac{\sigma \cdot (2\pi r dr)}{r^2 + z^2} \,\hat{\mathbf{r}}$$

$$= \frac{1}{4\pi\epsilon_0} \int \frac{\sigma \cdot (2r dr)}{(r^2 + z^2)^{3/2}} \,z\hat{\mathbf{j}}$$

$$= \frac{\sigma z}{4\pi\epsilon_0} \int_0^R \frac{2r dr}{(r^2 + z^2)^{3/2}} \hat{\mathbf{j}}$$

$$= \frac{\sigma}{2\epsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$$

Charge Density: $dq = \lambda ds$ for a line, $dq = \sigma dA$ for a sufrace, etc... and these are simply $\frac{\text{charge}}{\text{quantity}}$ Electric Field due to a dipole;

$$\vec{E} = \frac{2kQd}{z^3 \left(1 - d^2/4z^2\right)^2} \,\hat{\mathbf{k}}$$

Dipole stuff

$$\vec{p} = Qd\hat{\mathbf{k}}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$U = -\vec{p} \cdot \vec{E}$$

$$W = -\Delta U$$