INF 302 : Langages et Automates Année académique 2017/2018

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(08h00 \rightarrow 10h00)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- 3 feuilles A4 R/V autorisées.
- Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte.

Consignes et informations en rapport avec le QCM

- Le soin de la copie sera prise en compte (-1 point en cas de manque de soin).
- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Ne rendre que la feuille de réponses.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ texte prévu à cet effet (si celui-ci est présent).
- Pour marquer une case, il faut **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Voir Figure I. Colorier avec un stylo **noir**. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner la case).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole 🌲 peuvent présenter une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse (une seule case à cocher).
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (zone grisée avec indication *Réservé enseignant*). Toute inscription dans cette case entraine la nullité de la réponse.
- Les 7 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Lemme de l'itération (3 points)

Question 1 (3 points) Démontrer que $\{u \cdot b^{|u|} \mid u \in \{a, b, c\}^*\}$ est non régulier.

Partie 2 : Questions diverses et de cours (5 points)

Pour rappel:

- Un AEFD est un automate à états fini et déterministe.
- Un AEFND est un automate à états fini et non déterministe.
- Un ϵ -AEFND est un automate à états fini et non déterministe avec ϵ -transitions.

(.1) Pas OK.

(.2) Pas OK

(.3) Pas OK.

(.4) OK.

Figure I – Comment marquer une case.

(.1) Un automate pour l'exercice de déterminisation.

(.2) Un automate pour l'exercice de suppression des ϵ -transitions.

Figure II – Des automates à utiliser pour les exercices.

Question 2 \clubsuit (0,5 points) Soient L_1 et L_2 deux langages réguliers sur un alphabet Σ .

- a $L_1 \cup L_2$ est toujours un langage régulier.
- $\ \ \$ Déterminer si $L_1 \cup L_2$ est de cardinal fini est décidable.
- © Déterminer si $L_1 \cap L_2$ est de cardinal fini est décidable.
- d Déterminer si $L_1 \cap L_2$ est de cardinal fini est *indécidable*.
- f Déterminer si $L_1 \cup L_2$ est de cardinal fini est *indécidable*.
- B Il manque des données pour déterminer si les précédentes affirmations sont correctes ou non.

Question 3 (0,25 points) Soient L_1 et L_2 deux langages non réguliers sur un alphabet Σ .

Question 4 (0,25 points) Soient L_1 un langage régulier et L_2 un langage non régulier sur l'alphabet $\{a, b, c\}$ tels que $L_1 \cap L_2 = \emptyset$.

Question 5 (0,25 points) Soient L_1 un langage et L_2 un langage non régulier sur l'alphabet $\{a, b, c\}$ tels que $L_1 \cap L((a \cdot b)^*) = L_2$.

- $\boxed{\mathbf{a}}$ L_1 est un langage régulier. $\boxed{\mathbf{b}}$ L_1 est un langage non régulier.
 - \square Il manque des données pour déterminer si L_1 est régulier ou non.

Question 6 \clubsuit (0,5 points) Soit G une grammaire et L le langage engendré par cette grammaire.

- $\[a \]$ S'il existe un automate qui reconnaît L alors celui-ci est nécessairement un AENFD et on ne peut trouver d'AEFD qui reconnaît L.
- \Box S'il existe un automate qui reconnait L alors celui-ci est nécessairement non minimal.
- © S'il existe un automate qui reconnait L alors celui-ci est nécessairement un ϵ -AENFD et on ne peut trouver d'AEFND qui reconnaît L.
- Aucune des affirmations n'est correcte.

Question 7 (0,25 points)

On applique l'algorithme de minimisation vu en cours sur un automate. Le résultat (intermédiaire ou non) est représenté par le tableau ci-contre. \equiv_0 \equiv_2 1 1 1 2 2 2 3 3 3 4 4 5 5 5

- a Cet automate est non minimal.
 - **b** Cet automate est minimal.
- [C] Il manque des données pour déterminer si l'automate est minimal.

Question 8 (0,25 points) Soient L_1 et L_2 deux langages non réguliers sur un alphabet Σ .

> a $L_1 \cup L_2$ est un langage non régulier. \Box $L_1 \cup L_2$ est un langage régulier. \square Il manque des données pour déterminer si $L_1 \cup L_2$ est régulier ou non.

Question 9 (0.25 points)

On applique l'algorithme de minimisation vu en cours sur un automate. Le résultat (intermédiaire ou non) est représenté par le tableau ci-contre.

- a Cet automate est minimal.
- **b** Cet automate est non minimal.
- Il manque des données pour déterminer si l'automate est minimal.

\equiv_0	\equiv_1	\equiv_2
1	1	1
2	3	3
3	2	2
4	4	4

(0,5 points) Considérons un automate dont les états sont numérotés de 1 à n (l'état 1 est l'état initial), avec $n \in \mathbb{N} \setminus \{0\}$, les états accepteurs sont dans l'ensemble F et $R_{i,j}^k$ est une expression régulière dénotant l'ensemble des mots permettant d'aller de l'état i à l'état j en ne passant que par des états dont le numéro est inférieur ou égal à k.

- $\ \, \underline{\mathbf{a}} \ \, R^k_{i,j} = R^{k-1}_{i,k} \cdot (R^{k-1}_{k,k})^* \cdot R^{k-1}_{k,j}.$
- **b** Une expression régulière dénotant le langage reconnu par l'automate est $\sum_{f \in F} R_{1,f}^k$.
- $\begin{array}{c} \boxed{\textbf{C}} \ \ R_{i,j}^k = R_{i,j}^{k-1} + R_{i,k}^{k-1} \cdot R_{k,k}^{k-1} \cdot R_{k,j}^{k-1}. \\ \\ \boxed{\textbf{d}} \ \ R_{i,j}^k = R_{i,k}^{k-1} \cdot R_{k,k}^{k-1} \cdot R_{k,j}^{k-1}. \end{array}$

- $\ \, \boxdot \ \, R^k_{i,j} = R^{k-1}_{i,j} + R^{k-1}_{i,k} \cdot (R^{k-1}_{k,k})^* \cdot R^{k-1}_{k,j}.$
- [f] Une expression régulière dénotant le langage reconnu par l'automate est $\sum_{k \in [1,n]} R_{1,n}^k$.
- B Une expression régulière dénotant le langage reconnu par l'automate est $\Sigma_{f \in F} R_{1,f}^n$.
- h Aucune des affirmations n'est correcte.

Question 11 & (0,25 points) Soit L un langage régulier sur un alphabet Σ .

- Il est toujours possible de trouver un AEFD qui reconnaît ce langage avec un seul état accepteur.
- Il est toujours possible de trouver un ϵ -AEFND qui reconnaît ce langage avec **un seul** état accepteur.
- Il est toujours possible de trouver un AEFND qui reconnaît ce langage avec un seul état accepteur. d Aucune des affirmations concernant L n'est correcte.

(0.75 points) Le langage d'une expression régulière r est dénoté par L(r). Soient eQuestion 12 ♣ et f deux expressions régulières.

a
$$L(e \cdot \emptyset) = L(\emptyset \cdot e) = L(e)$$
.

$$L((e+f)^*) = L((f+e)^*).$$

$$C L((e \cdot f)^*) = L((e + f)^*).$$

$$\exists i \in L(e), \text{ alors } L(e^+) = L(e^*).$$

$$E$$
 $L(e+\emptyset) = L(\emptyset+e) = L(e)$.

$$f L(e \cdot f) = L(f \cdot e).$$

$$\mathbb{E} L((e+\epsilon)\cdot e^+) = L(e^*).$$

$$L(e+f) = L(f+e)$$
.

$$\Box L((e+f)^*) = L(e^*) + L(f^*).$$

$$\mathbb{k} \ L((e+f)^* \cdot e) = L((e^* \cdot f)^*).$$

□ Aucune des affirmations n'est correcte.

Question 13 \clubsuit (0,5 points) Soit G une grammaire et L le langage engendré par cette grammaire.

- \Box Si G est linéaire, alors on peut toujours trouver un AEFD qui reconnaît L.

- [f] Si G est linéaire à droite, alors on peut toujours trouver un AEFD qui reconnaît L.
- B Aucune des affirmations n'est correcte.

Question 14 (0,25 points) Soient L_1 et L_2 deux langages non réguliers sur un alphabet Σ tels que $L_1 \subseteq L_2$.

- a $L_1 \cup L_2$ est un langage non régulier. b $L_1 \cup L_2$ est un langage régulier.
 - \square Il manque des données pour déterminer si $L_1 \cup L_2$ est régulier ou non.

Question 15 \clubsuit (0,25 points) Soit L un langage quelconque sur un alphabet Σ .

- a Il est toujours possible de trouver un AEFD qui reconnaît ce langage.
- [b] Il est toujours possible de trouver un AEFND qui reconnaît ce langage.
- $\boxed{\text{c}}$ Il est toujours possible de trouver un ϵ -AEFND qui reconnaît ce langage.
 - \square Aucune des affirmations concernant L n'est correcte.

Partie 3: Déterminisation d'automates (2 points)

Question 16 4 (2 points)

Considérons l'AEFND dans la Figure II.1 sur l'alphabet $\Sigma = \{a, b, c\}$. Nous appliquons l'algorithme de déterminisation sur cet automate. Nous ne représentons pas l'état puits. Le/les AEFD(s)s équivalent(s) sont :

- a Celui de la Figure III.3.
- © Celui de la Figure III.1.
- e Aucun des automates.

- **b** Celui de la Figure III.2.
- d Celui de la Figure III.4.

Partie 4 : Élimination des ϵ -transitions (2 points)

Question 17 4 (2 points)

Considérons l' ϵ -AEFND dans la Figure II.2 sur l'alphabet $\Sigma = \{a,b\}$. Le/les AEFND(s)s résultant de l'algorithme de suppression des ϵ -transitions est/sont :

- a Celui de la Figure IV.3.
- © Celui de la Figure IV.1.
- e Aucun des automates.

- ☐ Celui de la Figure IV.4.
- d Celui de la Figure IV.2.

Partie 5 : Grammaires régulières (3 points)

Question 18 (2 points)

Considérons la grammaire définie par $(\{a,b,c\},\{S,A,B,T\},S,P)$ avec $P=\{S\to aB\mid cT\mid bA,A\to aB\mid cS,B\to bA\mid cS\mid b,T\to cc\}$. Nous considérons les automates dans la Figure V. L'AEFD qui reconnaît le langage généré par cette grammaire est :

- a Celui de la Figure V.2.
- d Celui de la Figure V.5.
- [3] Aucun des automates.

- Elui de la Figure V.4.
- e Celui de la Figure V.3.
- © Celui de la Figure V.6.
- f Celui de la Figure V.1.

Question 19 4 (1 points)

Considérons le langage non-régulier défini par $\{a^{2\times n}b^n\in\{a,b\}^*\mid n\in\mathbb{N}\}.$

- a Ce langage est généré par une grammaire linéaire.
- \Box Ce langage est généré par la grammaire $(\{a,b\},\{S,A,B\},S,\{S\to AASB\mid\epsilon,A\to a,B\to b\}).$
- \square Ce langage est généré par la grammaire $(\{a,b\},\{S,A,B\},S,\{S\to AASB,A\to a,B\to b\})$.
- d Ce langage est généré par une grammaire linéaire à gauche.
- e Ce langage est généré par une grammaire linéaire à droite.
- f Ce langage est généré par la grammaire $(\{a,b\},\{S\},S,\{S\to aaSb\mid\epsilon\})$.
- h Aucune des affirmations concernant ce langage n'est correcte.

Partie 6 : Automate vers expression régulière (2,5 points)

Question 20 4 (2,5 points)

Nous considérons l'AEFD ci-contre. Nous nous intéressons à la méthode permettant de calculer une expression régulière en utilisant la méthode associant des équations aux états. Lors de l'application de cette méthode, nous pouvons trouver les équations suivantes (où X_i est l'équation associée à l'état i):

a
$$X_2 = 10X_1 + 0 + 1X_0 + \epsilon$$

$$X_2 = 01X_1 + 0 + 1X_0 + \epsilon.$$

$$X_2 = 0X_3 + 1X_0 + \epsilon.$$

e X_4 = ∅.

$$\boxed{f} \ X_4 = \epsilon.$$

$$X_1 = (0+101)^*(10+11X_0+1+\epsilon)$$

i Aucune des équations n'est correcte.

Partie 7 : Constante d'itération minimale (2,5 points)

Question 21 (2,5 points) Donner la constante minimale d'itération du langage décrit par l'expression régulière 1*0101*. Démontrer votre résultat, c'est-à-dire que vous devez montrer que la constante que vous aurez identifié est bien une constante d'itération et qu'il n'y en a pas de plus petite.

Champ Libre

Question 22 Vous pouvez utiliser l'espace de texte de cette question comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

FIGURE III – Propositions de réponses pour l'exercice de déterminisation.

FIGURE IV – Propositions de réponses pour l'exercice d'élimination des ϵ -transitions.

Figure V – Des automates pour l'exercice « Grammaire vers automate »

 ${\it Examen final } \ 10/01/2018 \\ {\it Licence Sciences et Technologies, 2ième année}$

 ${\rm INF~302: Langages~et~Automates} \\ {\rm Ann\'{e}e~acad\'{e}mique~2017/2018}$

Feuille(s) de réponses

0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	Codez votre numéro d'anonymat ci-contre et recopiez le manuellement dans la boite
0 1 2 3 4 5 6 7 8 9	et recopiez le manuellement dans la botte
0 1 2 3 4 5 6 7 8 9	Numéro d'anonymat
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	
0 1 2 3 4 5 6 7 8 9	

Question 1:	f	pf	<u>pj</u>	j	Réservé enseignant

Question 2: a b c d e f g

Question 3: a b c Question 4: a b c Question 5: a b c

Question 6: a b c d e	
Question 7: a b c	
Question 8: a b c	
Question 9: a b c	
Question 10: a b c d e f s h	
Question 11: a b c d	
Question 12: a b c d e f s h i j k l	
Question 13: a b c d e f B	
Question 14: a b c	
Question 15: a b c d	
Question 16: a b c d e	
Question 17: a b c d e	
Question 18: a b c d e f g	
Question 19: a b c d e f 5 h Question 20: a b c d e f 5 h i	
	TEL EST EST Décembre en co
Question 21:	f pi pi j Réservé ense

Question 22:	a	R	éserv	vé er	nseig	nant