Rudin: Numerical Sequences and Series

James Pagan

December 2023

Contents

1	Convergent Sequences	2
	1.1 Defintion	2
	1.2 Normed Vector Spaces	3
	1.3 Inner Product Spaces	4
	1.4 Complex Vectors and Complex Numbers	5
2	Some Special Sequences	7
3	Subsequences	9
	3.1 Cauchy Sequences	10

1 Convergent Sequences

1.1 Defintion

We say that the sequence a_n in a metric space X converges to a point $A \in X$ if for all $\epsilon > 0$, there exists an integer N such that

$$N \le n \implies d(a_n, A) < \epsilon.$$

If a_n converges to A, we write that $\lim_{n\to\infty} a_n = A$. If a_n fails to converge, we say it **diverges**.

Theorem 1. The limit is unque.

Proof. Suppose for contradiction that $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} a_n = B$ such that $A\neq B$. Then d(A,B)>0, so there exist N_1,N_2 such that

$$N_1 \le n \implies d(a_n, A) < \frac{d(A, B)}{2}$$

 $N_2 \le n \implies d(a_n, B) < \frac{d(A, B)}{2}$.

Let $N = \max\{N_1, N_2\}$. Then $N \leq n$ implies that

$$d(a_n, A) + d(a_n, B) < \frac{d(A, B)}{2} + \frac{d(A, B)}{2} = d(A, B).$$

This violates the Triangle Inequality, implying that A = B.

Theorem 2. $\lim_{n\to\infty} a_n = A$ if and only if every neighborhood of A contains a_n for all but finitely many n.

Proof. Suppose $\lim_{n\to\infty} a_n = A$. An arbitrary neighborhood \mathcal{N} of A must contain an open ball centered at A; let its radius be r. Then there exists N such that

$$N \le n \implies d(a_n, A) < r.$$

Thus, a_n for $N \leq n$ lies inside \mathcal{N} ; only finitely many a_n from $n \in \{1, \ldots, n-1\}$ may lie outside \mathcal{N} .

Conversely, suppose every neighborhood of A contains a_n for all but finitely many n. Then define \mathcal{N}_r as the open ball with radius ϵ , and $N_r = \max\{n \mid a_n \notin \mathcal{N}_r\} + 1$. Then

$$N_r \ge n \implies d(a_n, A) < \epsilon,$$

so
$$\lim_{n\to\infty} a_n = A$$
.

Theorem 3. If $\{a_n\}$ converges, then $\{a_n\}$ is bounded.

Proof. Suppose $\lim_{n\to\infty} a_{n=A}$. Then there exists N such that

$$N \le n \implies d(a_n, A) < 1.$$

Thus, the maximum distance from a_n to A is less than or equal to

$$M = \max\{d(a_1, A), d(a_2, A), \dots, d(a_{N-1}, A), 1\}.$$

The open ball at A with radius M+1 thus bounds a_n .

Theorem 4. If $E \subseteq X$ and if A is a limit point of E, then there exists a sequence a_n such that $\lim_{n\to\infty} a_n = A$.

Proof. For a positive integer n, let \mathcal{N}_n be the open ball at A with radius $\frac{1}{m}$. Because A is a limit point, there exist $a_n \in X$ inside \mathcal{N}_n for all integers n. Then for all $\epsilon > 0$,

$$\lfloor \frac{1}{\epsilon} \rfloor + 1 \le n \implies d(a_n, A) < \frac{1}{\lfloor \frac{1}{\epsilon} \rfloor + 1} < \frac{1}{\binom{1}{\epsilon}}$$

$$= \epsilon.$$

Thus, $\lim_{n\to\infty} a_n = A$. I've condensed this quite a lot.

1.2 Normed Vector Spaces

A normed vector space is a vector A normed vector space is a vector space X over \mathbb{C} equipped with a mapping $\|\cdot\|: X \to \mathbb{R}$ that satisfies the following properties:

- 1. Positivity: $\|\mathbf{x}\| \ge 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$.
- 2. Homogenity: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ for all $\lambda \in \mathbb{C}$.
- 3. Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

It is clear that such a norm induces a metric on X. Unless otherwise stated, these theorems assume \mathbf{x}_n and \mathbf{y}_n are sequences in a normed vector space X.

Theorem 5. $\lim_{n\to\infty} (\mathbf{x}_n + \mathbf{y}_n) = \mathbf{X} + \mathbf{Y}$.

Proof. For all $\epsilon > 0$, there exist integers N_1 and N_2 such that

$$N_1 \le n \implies \|\mathbf{x}_n - \mathbf{X}\| < \frac{\epsilon}{2}$$

 $N_2 \le n \implies \|\mathbf{y}_n - \mathbf{Y}\| < \frac{\epsilon}{2}$

Define $N = \max\{N_1, N_2\}$. Then for all $\epsilon > 0$, $N \le n$ implies that

$$\|(\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{X} + \mathbf{Y})\| \le \|\mathbf{x}_n - \mathbf{X}\| + \|\mathbf{y}_n - \mathbf{Y}\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

as desired. \Box

Theorem 6. If $\lambda \in \mathbb{C}$, then $\lim_{n \to \infty} \lambda(\mathbf{x}_n) = \lambda(\mathbf{X})$.

Proof. If c = 0, then $\lim_{n \to \infty} 0(\mathbf{x}_n) = \mathbf{0} = 0(\mathbf{X})$. Otherwise, for all $\epsilon > 0$, there exists an integer N such that

$$N \leq n \implies \|\mathbf{x}_n - \mathbf{X}\| < \frac{\epsilon}{|c|}.$$

Then $N \leq n$ implies that

$$||c(\mathbf{x}_n) - c(\mathbf{X})|| = |c|||\mathbf{x}_n - \mathbf{X}|| < |c|\frac{\epsilon}{|c|} = \epsilon,$$

as required.

1.3 Inner Product Spaces

In the following theorems, suppose that X is an **inner product space** (see LinearAlgebra/axler6.tex). For the following theorems, \mathbf{x}_n and \mathbf{y}_n be sequences of vectors in X.

Theorem 7. If $\mathbf{c} \in X$, then $\lim_{n \to \infty} \mathbf{c} \cdot \mathbf{x}_n = \mathbf{c} \cdot \mathbf{X}$ and $\lim_{n \to \infty} \mathbf{x}_n \cdot \mathbf{c} = \mathbf{X} \cdot \mathbf{c}$.

Proof. If $\mathbf{c} = \mathbf{0}$, then $\lim_{n \to \infty} \mathbf{0} \cdot (\mathbf{x}_n) = 0 = \mathbf{0} \cdot (\mathbf{X})$. Otherwise, for all $\epsilon > 0$, there exists an integer N such that

$$N \le n \implies \|\mathbf{x}_n - \mathbf{X}\| < \frac{\epsilon}{\|\mathbf{c}\|}.$$

Then $N \leq n$ implies that

$$|(\mathbf{c} \cdot \mathbf{x}_n) - (\mathbf{c} \cdot \mathbf{X})| = |\mathbf{c} \cdot (\mathbf{x}_n - \mathbf{X})| \le ||\mathbf{c}|| ||\mathbf{x}_n - \mathbf{X}|| < ||\mathbf{c}|| \frac{\epsilon}{||\mathbf{c}||} = \epsilon.$$

Similarly, $|(\mathbf{x}_n \cdot \mathbf{c}) - (\mathbf{X} \cdot \mathbf{c})| \le ||\mathbf{x}_n - \mathbf{X}|| ||\mathbf{c}||$, and the proof follows like above.

Theorem 8. $\lim_{n\to\infty} (\mathbf{x}_n \cdot \mathbf{y}_n) = \mathbf{X} \cdot \mathbf{Y}$.

Proof. For all $\epsilon > 0$, there exist integers N_1, N_2 such that

$$N_1 \le n \implies |\mathbf{x}_n - \mathbf{X}| < \sqrt{\epsilon}$$

 $N_2 \le n \implies |\mathbf{y}_n - \mathbf{Y}| < \sqrt{\epsilon}$.

Define $N = \max\{N_1, N_2\}$. Then $N \leq n$ implies through Cauchy-Schwarz that

$$|(\mathbf{x}_n - \mathbf{X}) \cdot (\mathbf{y}_n - \mathbf{Y})| \le ||\mathbf{x}_n - \mathbf{X}|| ||\mathbf{y}_n - \mathbf{Y}|| < \sqrt{\epsilon^2} < \epsilon,$$

so
$$\lim_{n\to\infty} (\mathbf{x}_n - \mathbf{X}) \cdot (\mathbf{y}_n - \mathbf{Y}) = 0$$
. Therefore,

$$0 = \lim_{n \to \infty} (\mathbf{x}_n - \mathbf{X}) \cdot (\mathbf{y}_n - \mathbf{Y})$$

$$= \lim_{n \to \infty} (\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{X}_n \cdot \mathbf{Y} - \mathbf{X} \cdot \mathbf{y}_n + \mathbf{X} \cdot \mathbf{Y})$$

$$= \lim_{n \to \infty} (\mathbf{x}_n \cdot \mathbf{y}_n) - \lim_{n \to \infty} (\mathbf{x}_n \cdot \mathbf{Y}) - \lim_{n \to \infty} (\mathbf{X} \cdot \mathbf{y}_n) + \lim_{n \to \infty} (\mathbf{X} \cdot \mathbf{Y})$$

$$= \lim_{n \to \infty} (\mathbf{x}_n \mathbf{y}_n) - (\mathbf{X} \cdot \mathbf{Y}) - (\mathbf{X} \cdot \mathbf{Y}) + (\mathbf{X} \cdot \mathbf{Y})$$

$$= \lim_{n \to \infty} (\mathbf{x}_n \cdot \mathbf{y}_n) - (\mathbf{X} \cdot \mathbf{Y}).$$

Rearranging this equation yields $\lim_{n\to\infty} (\mathbf{x}_n \cdot \mathbf{y}_n) = \mathbf{X} \cdot \mathbf{Y}$.

1.4 Complex Vectors and Complex Numbers

We now turn our attention to the inner product spaces \mathbb{C}^k . Suppose that \mathbf{z}_n is a sequence in \mathbb{C}^k with coordinates $\mathbf{z}_n = (z_{n1}, \dots, z_{nk})$ and suppose $\mathbf{Z} = (Z_1, \dots, Z_k)$

Theorem 9.
$$\lim_{n\to\infty} \mathbf{z}_n = \mathbf{Z}$$
 if and only if $\lim_{n\to\infty} z_{nj} = Z_j$ for all $j \in \{1,\ldots,k\}$.

Proof. Suppose that $\lim_{n\to\infty} z_{nj} = Z_j$ for all $j \in \{1,\ldots,k\}$. Then for all $\epsilon > 0$, there exist integers N_1,\ldots,N_k such that

$$N_1 \le n \implies |z_{n1} - Z_1| < \frac{\epsilon}{\sqrt{k}}$$

:

$$N_k \le n \implies |z_{nk} - Z_k| < \frac{\epsilon}{\sqrt{k}}$$

Define $N = \max\{N_1, \dots, N_k\}$. Then $N \le n$ implies

$$\|\mathbf{z}_n - \mathbf{Z}\| = \sqrt{|z_{n1} - Z_1|^2 + \dots + |z_{nk} - Z_k|^2}$$

$$< \sqrt{\frac{\epsilon^2}{k} + \dots + \frac{\epsilon^2}{k}}$$

$$= \sqrt{\epsilon^2}$$

$$= \epsilon,$$

so $\lim_{n\to\infty} \mathbf{z}_n = \mathbf{Z}$. Now, suppose that $\lim_{n\to\infty} \mathbf{z}_n = \mathbf{Z}$. Then for all $\epsilon > 0$, there exists an integer N such that

$$N \le n \implies \|\mathbf{z}_n - \mathbf{Z}\| < \epsilon.$$

Then $N \leq n$ implies for each $j \in \{1, ..., k\}$ that

$$|z_{nj} - Z_j| = \sqrt{|z_{nj} - Z_j|^2}$$

$$\leq \sqrt{|z_{n1} - Z_1|^2 + \dots + |z_{nk} - Z_k|^2}$$

$$= ||\mathbf{z}_n - \mathbf{Z}||$$

$$< \epsilon,$$

so $\lim_{n\to\infty} z_{nj} = Z_j$ for all $j\in\{a,k\}$. This completes the proof.

Now, we examine \mathbb{C} . Suppose that $\{z_n\}$ and $\{w_n\}$ are sequences in \mathbb{C} , that $\lim_{n\to\infty} z_n = Z$, and that $\lim_{n\to\infty} w_n = W$. The above results imply that:

- $\bullet \lim_{n \to \infty} (z_n + w_n) = Z + W.$
- $\lim_{n\to\infty} c(z_n) = c(Z)$ for all $c\in\mathbb{C}$.
- $\bullet \lim_{n\to\infty} z_n w_n = ZW.$

Theorem 10. If $Z \neq 0$, then $\lim_{n \to \infty} \frac{1}{z_n} = \frac{1}{Z}$.

Proof. For all $\epsilon > 0$, there exist integers N_1 , N_2 , and N_3 such that

$$N_1 \le n \implies |z_n - Z| < \epsilon \left(\frac{|Z|^2}{2}\right)$$

 $N_2 \le n \implies |z_n - Z| < \frac{|Z|}{2}.$

Realize that for $N_2 < N$,

$$0 = |z_n - Z| - |z_n - Z| < \frac{|Z|}{2} - |z_n - Z| < |Z| - |z_n - Z| \le |z_n|$$

so $\frac{1}{z_n}$ is defined. We also find that $N_2 \leq n$ implies that $\frac{|Z|}{2} < |z_n|$. Then defining $N = \max\{N_1, N_2\}$, we have that $N \leq n$ implies that

$$\left|\frac{1}{z_n} - \frac{1}{Z}\right| = \frac{|z_n - Z|}{|z_n||Z|} < \frac{\epsilon\left(\frac{|Z|^2}{2}\right)}{\left(\frac{|Z|}{2}\right)|Z|} = \epsilon,$$

as required. \Box

Theorem 11. If $W \neq 0$, then $\lim_{n \to \infty} \frac{z_n}{w_n} = \frac{Z}{W}$.

Proof. Realize that

$$\lim_{n\to\infty}\frac{z_n}{w_n}=\lim_{n\to\infty}=\left(\lim_{n\to\infty}z_n\right)\left(\lim_{n\to\infty}\frac{1}{w_n}\right)=Z\left(\frac{1}{W}\right)=\frac{Z}{W},$$

as desired.

2 Some Special Sequences

Theorem 12. If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.

Proof. For all $\epsilon > 0$, realize that

$$\left(\frac{1}{\epsilon}\right)^{\frac{1}{p}} < n \implies \left|\frac{1}{n^p}\right| < \left|\frac{1}{\left(\left(\frac{1}{\epsilon}\right)^{\frac{1}{p}}\right)^p}\right|$$

$$= \epsilon.$$

as desired.

Theorem 13. If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

Proof. If p > 1: For all $\epsilon > 0$, we have that $\log_{\epsilon+1}(p) < n$ implies $\frac{1}{\log_{\epsilon+1}(p)} > \frac{1}{n}$, so

$$\log_{\epsilon+1}(p) < n \implies |\sqrt[n]{p} - 1| = p^{\frac{1}{n}} - 1$$

$$< p^{\frac{1}{\log_{\epsilon+1}(p)}} - 1$$

$$= p^{\log_p(\epsilon+1)} - 1$$

$$= (\epsilon + 1) - 1$$

$$= \epsilon.$$

If p < 1: then $\frac{1}{p} > 1$, so

$$\lim_{n \to \infty} \sqrt[n]{p} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\frac{1}{p}}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{p}}} = \frac{1}{1} = 1.$$

The case p = 1 is trivial.

Theorem 14. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Proof. See that $\sqrt[n]{n} - 1 > 0$ for n > 1. Then by the Binomial Theorem,

$$n = (1 + (\sqrt[n]{n} - 1))^n \ge \frac{n(n-1)}{2} (\sqrt[n]{n} - 1)^2.$$

Therefore,

$$\sqrt{\frac{2}{n-1}} \ge \sqrt[n]{n} - 1 \ge 0.$$

We now apply the Squeeze Theorem, which shall be proven at another time:

$$\lim_{n \to \infty} \sqrt{\frac{2}{n-1}} \ge \lim_{n \to \infty} \sqrt[n]{n} - 1 \ge 0.$$

The left-hand side of this equation equals 0 by Theorem 12; then $\lim_{n\to\infty} (\sqrt[n]{n} - 1) = 0$, and we attain the desired $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Theorem 15. If p > 0 and $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^a}{(p+1)^n} = 0$.

Proof. Let $k = \max\{|\alpha| + 1, 1\}$ so that $k > \alpha$. Then n > 2k implies

$$(1+p)^n > \binom{n}{k}p^k = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k > \frac{n^kp^k}{2^kk!}.$$

Hence,

$$\frac{2^k k!}{p^k} n^{\alpha - k} > \frac{n^\alpha}{(1+p)^n} > 0.$$

Then by the Squeeze Theorem,

$$\frac{2^k k!}{p^k} \lim_{n \to \infty} n^{\alpha - k} \ge \lim_{n \to \infty} \frac{n^{\alpha}}{(p+1)^n} \ge 0.$$

As $\alpha-k<0$, the left-hand side of this equation equals 0 by Theorem 12. We thus attain the desired $\lim_{n\to\infty}\frac{n^\alpha}{(p+1)^n}=0$.

Theorem 16. If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Proof. If we let $p = \frac{1}{|x|} - 1$ and $\alpha = 0$ in Theorem 15, we find that

$$0 = \lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = \lim_{n \to \infty} \frac{1}{(1+(\frac{1}{|x|}-1))^n} = \lim_{n \to \infty} |x|^n.$$

We can remove the absolute value with no issues, as the limit evaluates to 0.

3 Subsequences

Let n_i be a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$. Then if a_n is a sequence, a_{n_i} is a **subsequence** of a_n . If a_{n_i} converges, its limit is called a **subsequential** limit of $\{a_n\}$.

Theorem 17. a_n converges to A if and only if all subsequences of a_n converge to A.

Proof. Suppose that a_n converges to A. Then for all $\epsilon > 0$, there exists an integer N such that

$$N \le n \implies |a_n - A| < \epsilon$$
.

Let a_{n_i} be a subsequence of a_n . For each $\epsilon > 0$ and N, define $I = \min\{i \mid N \leq n_i\}$ Then $I \leq i$ implies $N \leq n_i$, so

$$I \le i \implies |a_{n_i} - A| < \epsilon.$$

We conclude that $\lim_{i\to\infty} a_{n_i} = A$. If all subsequences of a_n converge to A, then $\lim_{n\to\infty} a_n = A$ since a_n is a subsequence of itself.

Theorem 18 (Bolzano-Weierstrauss). The following two results hold:

- 1. If $\{a_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point X.
- 2. Every bounded sequence in \mathbb{C}^n contains a convergent subsequence.

Proof. For (1), there are two cases. If $\{a_n\}$ is finite, then there is an infinite subsequence of $\{a_n\}$ that are all equal: a sequence $n_1 < n_2 < \cdots$ and and a point $A \in E$ such that

$$a_{n_1}=a_{n_2}=\cdots=A.$$

The subsequence $\{a_{n_i}\}$ converges to A. If $\{a_n\}$ is infinite, then the compactness of X implies that there exists a limit point $A \in X$ of $\{a_n\}$.

If we select n_1 such that $d(a_{n_1}, A) < 1$, we can construct a sequence $n_1 < n_2 < \cdots$ such that $d(a_{n_i}, A) < \frac{1}{i}$ for $i \in \mathbb{Z}_{>0}$. The convergence of this sequence to A is a straightforwards calculation. We deduce that (1) holds.

For (2), realize that each bounded sequence in \mathbb{C}^n lies in a compact subset of \mathbb{C}^n (an n-pseudocell!), from which (1) implies the existence of a convergent subsequence.

Isn't that lovely? The idea of the Bolzano-Weierstrauss Theorem in RealAnalysis/proofs.tex is a special case of the general result about the compactness of k-pseudocells.

3.1 Cauchy Sequences

A Cauchy sequence is a sequence $\{a_n\}$ in a metric space X such that for all $\epsilon > 0$, there is an integer N such that

$$N \le n, m \implies d(a_n - a_m) < \epsilon.$$

Let E be a nonempty subset of a metric space X, and define $S = \{d(x,y) \mid x,y \in E\}$. Then sup S is called the **diameter** of E. If we define E_N for each $N \in \mathbb{Z}_{>0}$ as $\{a_N, a_{N+1}, a_{N+2}, \cdots\}$; then $\{a_n\}$ is a Cauchy sequence if and only if

$$\lim_{N\to\infty} \operatorname{diam} E_N = 0.$$

Theorem 19. The following two results hold:

1. If \overline{E} is the closure of a subset E in a metric space X, then

$$\dim \overline{E} = \dim E.$$

2. If K_n is a sequence of compact sets in X such that $K_n \subseteq K_{n+1}$ for each $n \in \mathbb{Z}_{>0}$, and if

$$\lim_{n\to\infty} \dim K_n = 0,$$

then $\bigcap_{n=1}^{\infty} K_n$ consists of exactly one point.

Proof. For (1): since $E \subseteq \overline{E}$, it is natural that diam $E \leq \operatorname{diam} \overline{E}$. For the converse, select $x, y \in \overline{E}$ such that diam; then each x, y is either a point of E or a limit point of E. In either case, there exist points $x', y' \in E$ such that $d(x, x') < \epsilon$ and $d(y, y') < \epsilon$. Hence

$$d(x,y) \le d(x,x') + d(x',y) \le d(x,x') + d(x',y') + d(y',y) < 2\epsilon + \text{diam } E.$$

Then diam E is an upper bound of d(x,y), so diam $\overline{E} \leq \text{diam } E$. This implies the desired diam $\overline{E} = \text{diam } E$

For (2): As discussed in RealAnalysis/babyrudin2.tex, $\bigcap_{n=1}^{\infty} K_n$ is nonempty. Suppose that it contains two distinct elements $j \neq k$; then d(j,k) > 0 and

$$d(j,k) < \operatorname{diam} K_n$$

for each $n \in \mathbb{Z}_{>0}$; we deduce that

$$0 < d(j, k) \le \operatorname{diam} K_n$$
.

Taking the contrapositive yields the desired result.