Let D be the intersection between the altitude from B to AC. Let E be the foot of the altitude from M to BC. Let E be the foot of the altitude from E to E the foot of the altitude from E to E and E and E and E and E and E to E the foot of the altitude from E to E and E and E to E and E and E to E the foot of the altitude from E to E and E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E to E the foot of the altitude from E the foot of E the foot of the altitude from E the foot of E the foot o

Since B, H, M are collinear,

$$\angle BDA = \angle BDC = 90^{\circ} = \angle ADM = \angle MDC.$$

Since M is the midpoint of arc BAC, it is well known that BM = CM. Based on the Inscribed Angle Theorem, $\angle MBA = \angle MCA$ and $\angle CMB = \angle CAB$. Thus, by ASA congruence, $\triangle MDC \cong \triangle MGB$ which means MG = MD = 1.

Lets connect a line from M to A. Since $\angle MAC = \angle MBC$ due to the Inscribed Angle Theorem, $\triangle MDA \sim \triangle MEB$ by AAA similarity. Since $\angle AMB = \angle ACB$ due to the Inscribed Angle Theorem, $\triangle MDA \sim \triangle CDB$ by AAA similarity. Therefore, $\triangle MEB \sim \triangle CDB$. Moreover, since $\angle DCB = \angle ACF$, $\triangle CDB \sim \triangle AFC$ by AAA similarity which means $\triangle MEB \sim \triangle AFC$.

Let CE=x. Then by the Pythagorean Theorem, $CM=\sqrt{x^2+36}$ and $CD=\sqrt{(\sqrt{x^2+36})^2-1^2}=\sqrt{x^2+35}$. Since BM=CM and ME=ME, $\triangle MEC\cong\triangle MEB$ by HL congruence. This means that CE=EB=x and CB=2x. Then, $DB=\sqrt{(2x)^2-(x^2+35)}=\sqrt{3x^2-35}$.

Since $\triangle MEB \sim \triangle CDB$, $\frac{CD}{ME} = \frac{DB}{EB}$. Substituting the values we've obtained previously, we get

$$rac{\sqrt{x^2+35}}{6} = rac{\sqrt{3x^2-35}}{x}.$$

Solving for x, we obtain $x=2\sqrt{7}$ and $x=3\sqrt{5}$. We will now calculate the area of $\triangle ABC$ for each x value.

If $x=2\sqrt{7}$, $\triangle MEC$ has sides $CE=2\sqrt{7}, ME=6, MC=8$. Plugging $x=2\sqrt{7}$ into our previous equations, we get $CB=4\sqrt{7}$ and $CD=\sqrt{x^2+35}=\sqrt{63}=3\sqrt{7}$.

Since $\triangle MEC\cong\triangle MEB$, $EB=2\sqrt{7}$ and MB=8. We have previously proven that $\triangle MDA\sim\triangle MEB$. Thus, $\frac{ME}{MD}=\frac{EB}{DA}=\frac{6}{1}=\frac{2\sqrt{7}}{DA}$. We find that $DA=\frac{1}{3}\sqrt{7}$. We thus have $AC=CD+DA=\frac{10}{3}\sqrt{7}$.

Previously, we have also proven that $\triangle MEB \sim \triangle AFC$. This means

$$\frac{AC}{MB} = \frac{AF}{EB} = \frac{\frac{10}{3}\sqrt{7}}{8} = \frac{AF}{2\sqrt{7}}.$$

We then obtain $AF = \frac{35}{6}$. The area of $\triangle ABC = \frac{(AF)(CB)}{2} = \frac{\frac{35}{6}(4\sqrt{7})}{2} = \frac{35}{3}\sqrt{7}$.

If $x=3\sqrt{5}$, $\triangle MEC$ has sides $CE=3\sqrt{5}, ME=6, MC=9$. Plugging $x=3\sqrt{5}$ into our previous equations, we get $CB=6\sqrt{5}$ and $CD=\sqrt{x^2+35}=\sqrt{80}=4\sqrt{5}$.

Since $\triangle MEC\cong\triangle MEB$, $EB=3\sqrt{5}$ and MB=9. We have previously proven that $\triangle MDA\sim\triangle MEB$. Thus, $\frac{ME}{MD}=\frac{EB}{DA}=\frac{6}{1}=\frac{3\sqrt{5}}{DA}$. We find that $DA=\frac{1}{2}\sqrt{5}$. We thus have $AC=CD+DA=\frac{9}{2}\sqrt{5}$.

Previously, we have also proven that $\triangle MEB \sim \triangle AFC$. This means

$$rac{AC}{MB}=rac{AF}{EB}=rac{rac{9}{2}\sqrt{5}}{9}=rac{AF}{3\sqrt{5}}.$$

We then obtain $AF=rac{15}{2}.$ The area of $\triangle ABC=rac{(AF)(CB)}{2}=rac{(rac{15}{2})(6\sqrt{5})}{2}=rac{45\sqrt{5}}{2}.$

Therefore, the areas of $\triangle ABC$ can be either $\frac{35}{3}\sqrt{7}$ or $\frac{45\sqrt{5}}{2}$.