Errores de truncamiento Lección 03

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre 2017

Contenido

- Series de Taylor
- 2 Estimación de errores de truncamiento
- 3 Diferenciación numérica
- Propagación de errores

Errores de truncamiento

Producidos al utilizar una aproximación en vez de procedimiento matemático exacto.

Por ejemplo:

$$\frac{dv(t)}{dt} = g - \frac{c}{m}v(t)$$

se aproximó con

$$\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} = g - \frac{c}{m}v(t_i)$$

Serie infinita:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}h^n$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
$$\dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ か Q C

 $f(x) = \cos(\pi x)$ centrado en $x_0 = 1/2$:

Serie finita más residuo:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
$$\dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_n$$

donde el residuo R_n en su forma integral se calcula como

$$R_n = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \int_{x_0}^{x} \frac{(x - \tau)^n}{n!} f^{(n+1)}(\tau) d\tau$$

Si se omite R_n se tiene una aproximación de f(x)

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$\approx \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

donde *n* es el **orden** de la aproximación.

 R_n correspone entonces al **error de truncamiento**.

◆ロト ◆部 ▶ ◆ 差 ▶ ◆ 差 ● からぐ

Teorema del valor medio

Para integrales de funciones **continuas**, y si h(t) no cambia de signo en $[x_0, x]$

$$\int_{x_0}^x g(t)h(t)\,dt = g(\xi)\int_{x_0}^x h(t)\,dt$$

donde $\xi \in [x_0, x]$.

Con h(t) = 1 se tiene el caso especial

$$\int_{x_0}^{x} g(t) dt = g(\xi) \int_{x_0}^{x} dt = g(\xi)(x - x_0)$$

Forma de Lagrange del residuo

Aplicando el teorema de valor medio a la forma integral

$$R_n = \int_{x_0}^{x} \frac{(x-\tau)^n}{n!} f^{(n+1)}(\tau) d\tau$$

con

$$g(t) = f^{(n+1)}(t)$$
 $h(t) = \frac{(x-t)^n}{n!}$

se obtiene la forma de Lagrange del residuo

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Ejemplo

Encuentre la serie de Taylor centrada en $x_0 = 1/2$ de la función $f(x) = \cos(\pi x)$. Calcule el peor caso de los resíduos de las aproximaciones en x = 3/2.

Solución:

Para las derivadas en este caso se cumple:

$$f(x) = \cos(\pi x)$$

$$f'(x) = -\sin(\pi x)\pi$$

$$f''(x) = -\cos(\pi x)\pi^{2}$$

$$f'''(x) = \sin(\pi x)\pi^{3}$$

$$\vdots$$

$$f^{(n)}(x) = \begin{cases} (-1)^{\frac{n+1}{2}} \sin(\pi x)\pi^{n} & \text{para } n \text{ impar} \\ (-1)^{\frac{n}{2}} \cos(\pi x)\pi^{n} & \text{para } n \text{ par} \end{cases}$$

◆ロ → ◆母 → ◆ き → も ● ・ り へ ○

Ejemplo: Serie de Taylor de la función cosenoidal

(3)

Con $x_0 = 1/2$ se tiene

$$f^{(n)}(x_0) = egin{cases} (-1)^{rac{n+1}{2}} \operatorname{sen}(\pi/2)\pi^n & \operatorname{para}\ n & \operatorname{impar}\ (-1)^{rac{n}{2}} \cos(\pi/2)\pi^n & \operatorname{para}\ n & \operatorname{para}\ \end{cases}$$
 $= egin{cases} (-1)^{rac{n+1}{2}}\pi^n & \operatorname{para}\ n & \operatorname$

Con lo que finalmente se tiene

$$\cos(\pi x) = \sum_{n=0}^{\infty} a_n \left(x - \frac{1}{2} \right)^n$$

$$a_n = \begin{cases} 0 & \text{para } n \text{ par} \\ (-1)^{\frac{n+1}{2}} \frac{\pi^n}{n!} & \text{para } n \text{ impar} \end{cases}$$

P. Alvarado Errores de truncamiento

El resíduo para la aproximación de n-ésimo orden es

$$\begin{split} R_n &= \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1} \\ &= \begin{cases} \frac{(-1)^{\frac{n+2}{2}} \operatorname{sen}(\pi\xi) \pi^{n+1}}{(n+1)!} (x-x_0)^{n+1} & \operatorname{para} \ n \ \operatorname{para} \\ \frac{(-1)^{\frac{n+1}{2}} \operatorname{cos}(\pi\xi) \pi^{n+1}}{(n+1)!} (x-x_0)^{n+1} & \operatorname{para} \ n \ \operatorname{impar} \end{cases} \end{split}$$

Puesto que $|\operatorname{sen}(\pi\xi)| \leq 1$ y $|\operatorname{cos}(\pi\xi)| \leq 1$, entonces

$$|R_n| \le \frac{\pi^{n+1}}{(n+1)!} (x - x_0)^{n+1}$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 Q (*)

Ejemplo: Serie de Taylor de la función cosenoidal

y con $x_0 = 1/2$ y x = 3/2

$$|R_n| \leq \frac{\pi^{n+1}}{(n+1)!}$$

n	$ R_n _{máx}$	$ E_t $
0	π \approx 3, 1415	0
1	$\frac{\pi^2}{2!} \approx 4,9348$	3, 1415
3	$\frac{\pi^3}{3!} \approx 4,0587$	2,0261
5	$\frac{\pi^5}{5!} \approx 1,3353$	0,5240
7	$\frac{\pi^7}{7!} \approx 0,2353$	0,0752
9	$\frac{\pi^9}{9!} \approx 0,0258$	0,0069
11	$\frac{\pi^{11}}{11!} \approx 0,0019$	0,0004
13	$\frac{\pi^{\frac{1}{13}}}{13!} \approx 0,0001$	0,0000

Residuo

- Si bien f(x) y sus derivadas usualmente no se conocen, la serie de Taylor expresa posiblidad de una serie de potencias.
- Resíduo indica límites de error de truncamiento
- Su cálculo **exacto** depende de ξ
- No se puede calcular si se desconoce $f^{(n)}(x)$ y ξ
- Se sabe que el resíduo es $\mathcal{O}\left(h^{n+1}\right) = \mathcal{O}\left((x-x_0)^{n+1}\right)$

Estimación de errores de truncamiento

En el ejemplo del paracaidista:

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c}{m}v(t_i)\right](t_{i+1} - t_i)$$

= $v(t_i) + v'(t_i)(t_{i+1} - t_i) + \frac{v''(t_i)}{2!}(t_{i+1} - t_i)^2 + \dots + R_n$

Truncando a una expresión de primer orden

$$v(t_{i+1}) = v(t_i) + v'(t_i)(t_{i+1} - t_i) + R_1$$

de donde se despeja

$$v'(t_i) = \underbrace{\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}}_{ ext{Aprox. 1}^{ ext{er} orden}} - \underbrace{\frac{R_1}{t_{i+1} - t_i}}_{ ext{Error de truncamiento}}$$

Residuo y error de truncamiento

Con

$$R_1 = \frac{f''(\xi)}{2!}(t_{i+1} - t_i)^2$$

entonces el error de truncamiento es:

$$\frac{R_1}{t_{i+1}-t_i}=\frac{f''(\xi)}{2!}(t_{i+1}-t_i)$$

que es $\mathcal{O}(t_{i+1}-t_i)$, lo que quiere decir que el error es proporcional al incremento:

• Si se reduce $t_{i+1} - t_i$ a la mitad, entonces también el error.

Aproximación con diferencias hacia adelante

La ecuación anterior

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} + \mathcal{O}(x_{i+1} - x_i)$$
$$= \frac{\Delta f_i}{h} + \mathcal{O}(h)$$

se conoce como aproximación por cociente de diferencias finitas, donde

- Δf_i es la primera diferencia hacia adelante
- h es el tamaño de paso, o incremento

Aproximación con diferencias hacia atrás

Se pueden repetir las deducciones anteriores y encontrar:

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} + \mathcal{O}(x_i - x_{i-1})$$

se conoce como aproximación por cociente de diferencias finitas, donde

- $f(x_i) f(x_{i-1})$ es la primera diferencia hacia atrás
- $x_i x_{i-1}$ es el tamaño de paso, o incremento

Aproximación con diferencias centradas

Utilizando las series de Taylor hacia adelante y hacia atrás se tiene:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \dots$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2!}h^2 - \frac{f'''(x_i)}{3!}h^3 + \dots$$

Restando ambas formulaciones resulta en:

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + 2\frac{f'''(x_i)}{3!}h^3 + 2\frac{f^{(5)}(x_i)}{5!}h^5 + \dots$$

de donde se despeja:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} - \underbrace{\frac{f'''(x_i)}{3!}h^2 - \frac{f^{(5)}(x_i)}{5!}h^4 - \dots}_{\mathcal{O}(h^2)}$$

Con otra aproximación hacia adelante con paso 2h

$$f(x_{i+2}) = f(x_i) + f'(x_i)(2h) + \frac{f''(x_i)}{2!}(2h)^2 + \frac{f'''(x_i)}{3!}(2h)^3 + \dots$$

y con la aproximación anterior

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \dots$$

se calcula $f(x_{i+2}) - 2f(x_{i+1})$ para obtener:

$$f(x_{i+2}) - 2f(x_{i+1}) = -f(x_i) + 2\frac{f''(x_i)}{2!}h^2 + 6\frac{f'''(x_i)}{3!}h^3 + \dots$$

P. Alvarado Errores de truncamiento

Finalmente, despejando f''(x) se tiene la segunda diferencia finita dividida hacia adelante:

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} - \underbrace{\frac{f'''(x_i)}{3!}h - \dots}_{\mathcal{O}(h)}$$

La versión hacia atrás es:

$$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} + \mathcal{O}(h)$$

y la versión centrada

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + \mathcal{O}(h^2)$$

◆ロト ◆部ト ◆草ト ◆草ト 草 めので

Propagación de error

Se desea estimar

$$\Delta f(\tilde{x}) = |f(x) - f(\tilde{x})|$$

en función de la diferencia $\Delta \tilde{x} = x - \tilde{x}$.

Usualmente se desconoce x pues por el error de redondeo solo se cuenta con \tilde{x} .

Si $x \approx \tilde{x}$ entonces con la serie de Taylor se desarrolla:

$$f(x) = f(\tilde{x}) + f'(\tilde{x})(x - \tilde{x}) + \frac{f''(\tilde{x})}{2}(x - \tilde{x})^2 + \dots$$

y con una aproximación de primer orden

$$f(x) - f(\tilde{x}) \approx f'(\tilde{x})(x - \tilde{x})$$

 $\Delta f(\tilde{x}) \approx |f'(\tilde{x})|\Delta \tilde{x}$

Ejemplo: Propagación de error

(1)

Ejemplo

Dado $\tilde{x}=2,5$ con un error $\Delta \tilde{x}=0,01$, estime el error de $f(x)=x^3$.

Solución:

Con $f'(x) = 3x^2$ se tiene que

$$\Delta f'(\tilde{x}) \approx |f'(\tilde{x})|\Delta \tilde{x}$$
$$= 3(2,5)^2 0,01 = 0,1875$$

Puesto que $f(2,5) = (2,5)^3 = 15,625$ se pronostica que

$$f(2,5)=15,625\pm0,1875$$

Observe que

$$f(2,5-0,01) = 15,438249 = 15,625-0,186751$$

 $f(2,5+0,01) = 15,813251 = 15,625+0,188251$

por lo que el error es aproximado satisfactoriamente.

P. Alvarado Errores de truncamiento

Propagación de funciones de múltiples variables

Utilizando series de Taylor para funciones de múltiples variables se demuestra que

$$\Delta f(\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n) \approx \left| \frac{\partial f}{\partial x_1} \right| \Delta \tilde{x}_1 + \left| \frac{\partial f}{\partial x_2} \right| \Delta \tilde{x}_2 + \dots + \left| \frac{\partial f}{\partial x_n} \right| \Delta \tilde{x}_n$$

con lo que se obtiene para las operaciones aritméticas básicas:

Operación	Error	Estimación
Adición Sustracción	$\Delta(\tilde{u}+ ilde{v}) \ \Delta(\tilde{u}- ilde{v})$	$\Delta ilde{u} + \Delta ilde{v} \ \Delta ilde{u} + \Delta ilde{v}$
Multiplicación	$\Delta(\tilde{u}-\tilde{v})$ $\Delta(\tilde{u}\times\tilde{v})$	$ \tilde{v} \Delta \tilde{u} + \Delta \tilde{v}$ $ \tilde{v} \Delta \tilde{u} + \tilde{u} \Delta \tilde{v}$
División	$\Delta\left(rac{ ilde{u}}{ ilde{v}} ight)$	$\frac{ \tilde{v} \Delta \tilde{u} + \tilde{u} \Delta \tilde{v}}{ \tilde{v} ^2}$

Utilizando la aproximación de Taylor de primer orden

$$f(x) \approx f(\tilde{x}) + f'(\tilde{x})(x - \tilde{x})$$

con lo que se puede estimar el error relativo de la función:

$$E_f = \frac{f(x) - f(\tilde{x})}{f(x)} \approx \frac{f'(\tilde{x})(x - \tilde{x})}{f(\tilde{x})}$$

El error relativo de x es

$$E_x = \frac{x - \tilde{x}}{\tilde{x}}$$

Número de condición

El **número de condición** es la relación entre los dos errores relativos

$$N = \frac{E_f}{E_x} = \frac{\tilde{x}f'(\tilde{x})}{f(\tilde{x})}$$

indica qué tanto una inexactitud de x se aumenta por f(x).

- N=1: Error relativo de la función idéntico al de x.
- N > 1: Error relativo se amplifica.
 - N ≫ 1: Función mal condicionada
- N < 1: Error relativo se atenúa

Un cálculo es **numéricamente inestable** si la inexactitud de los valores de entrada aumenta por el método numérico (la función es mal condicionada).

Error numérico total

El error numérico total es la suma de los errores de redondeo y truncamiento.

Error numérico total Caso de diferencias centradas

La aproximación de la primera derivada es:

$$f'(x_i) = \underbrace{\frac{f(x_{i+1}) - f(x_{i-1})}{2h}}_{\text{Aproximación}} - \underbrace{\frac{f^{(3)}(x_i)}{3!}h^2 - \frac{f^{(5)}(x_i)}{5!}h^4 - \dots}_{\text{Truncamiento}}$$

Sin embargo, los valores de la función tienen error por redondeo e_i :

$$f(x_{i-1}) = \tilde{f}(x_{i-1}) + e_{i-1}$$

 $f(x_{i+1}) = \tilde{f}(x_{i+1}) + e_{i+1}$

por lo que

$$f'(x_i) \approx \underbrace{\frac{f(x_{i+1}) - f(x_{i-1})}{2h}}_{\text{Aproximación}} + \underbrace{\frac{e_{i+1} - e_{i-1}}{2h}}_{\text{Redondeo}} - \underbrace{\frac{f^{(3)}(x_i)}{3!}h^2}_{\text{Truncamiento}}$$

≣ ୭९୯

$$f'(x_i) pprox \underbrace{\frac{f(x_{i+1}) - f(x_{i-1})}{2h}}_{ ext{Aproximación}} + \underbrace{\frac{e_{i+1} - e_{i-1}}{2h}}_{ ext{Redondeo}} - \underbrace{\frac{f^{(3)}(x_i)}{3!}h^2}_{ ext{Truncamiento}}$$

- Si h se reduce
 - Error de redondeo crece
 - Error de truncamiento se reduce
- Si máx $e_i = \epsilon$ entonces el peor caso de $(e_{i+1} e_{i-1}) = 2\epsilon$.
- Si la 3ra derivada nunca supera en magnitud a *M*, entonces

$$E_T = \left| f'(x_i) - \frac{f(x_{i+1}) - f(x_{i-1})}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2 M}{6}$$

El paso óptimo $h_{\rm opt}$ se obtiene derivando e igualando a cero:

$$\frac{\partial}{\partial h} \left[\frac{\epsilon}{h} + \frac{h^2 M}{6} \right] = 0$$

$$h_{\text{opt}} = \sqrt[3]{\frac{3\epsilon}{M}}$$

TAREA

Realice un programa para GNU/Octave que calcule el valor de la derivada de la función

$$f(x) = 0.3x^4 - 0.15x^2$$

en x = 1 por

- diferencias hacia atrás
- diferencias hacia adelante
- diferencias centradas

con pasos a partir de 1, que se reduzcan cada vez con un factor de 10, es decir

$$h_0=1 \qquad \qquad h_i=\frac{h_{i-1}}{10}$$

Realice un gráfico con el error calculado, a partir de la evaluación analítica de la derivada.

Control de errores numéricos

- Evitar restas de números similares, pues se pierden cifras significativas
- Reordenar operaciones aritméticas e iniciar con números más pequeños
- Utilizar precisión extendida

Resumen

- Series de Taylor
- 2 Estimación de errores de truncamiento
- 3 Diferenciación numérica
- Propagación de errores

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2017 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica