MT-2005: Probability & Statistics BSCS (Part A) (A, B, C, D, E, F, G, H, J, K)

Tuesday, 27th February, 2024

Course Instructor(s)

Dr. Muhammad Usman Ashraf, Dr. Neelam, Ms. Amara, Ms. Kiran

Sessional-I Exam

Total Time: 0.5 Hour

Total Marks: 25

Total Questions: 02

Semester: SP-2024 Campus: Islamabad

Dept: Computer Science

Student Name	Roll No	Section	Student Signature	
Vetted by			Vetter Signature	

CLO #:

Q1: The following data gives the weight of 40 students at a university:

138	164	150	132	144	125	149	157
147	136	148	152	144	168	126	138
163	119	154	165	146	173	142	147
140	135	161	145	135	142	150	156
158	140	153	128	146	176	135	145

Construct a frequency distribution by taking a class interval of width 9 and starting first class interval from the minimum observation of the data. [10 marks]

CLO #:

Q2:

Part A:

A sociologist has been studying the yearly changes in the number of convicts assigned to the largest correctional facility in the state. His data are expressed in terms of the

percentage increase in the number of prisoners (a negative number indicates a percentage decrease). The sociologist's most recent data are as follows:

1999	2000	2001	2002	2003	2004
- 5%	6 %	9 %	4 %	7 %	-6%

- (a) Calculate the average percentage increase using only the 1999-2002 data.
- (b) A new penal code was passed in 1998. Previously, the prison population grew at a rate of about 2 percent per year. What seems to be the effect of the new penal code?

Part B:

Following are the marks obtained a Mathematics course by a class of 20 students

11	53	72	48	38	39	39	67	24	61
36	56	57	69	55	70	65	43	42	42

Compute Mean and Standard deviation of the marks [08 marks+ 07 marks = 15 marks]

MT-2005: Probability & Statistics BSCS (Part B) (A, B, C, D, E, F, G, H, J, K)

Tuesday, 27th February, 2024

Course Instructor(s)

Dr. Muhammad Usman Ashraf, Dr. Neelam, Ms. Amara, Ms. Kiran

Sessional-I Exam

Total Time: 0.5 Hour

Total Marks: 30

Total Questions: 02

Semester: SP-2024 Campus: Islamabad

Dept: Computer Science

Student Name	Roll No	Section	Student Signature	
Vetted by			Vetter Signature	

CLO #:

Q1:

Part A:

Differentiate between the following terms with example

- a) Parameter and statistics
- b) Primary source and secondary source of data.
- c) Quantitative variable and qualitative
- d) Discrete and continuous variables

Part B:

The following data indicate income (x) and percentage expenditure on food (y) of families. Construct a bivariate frequency table classifying x into intervals 200 - 300, 300 - 400, . . . and y into 10 - 15, 15 - 20,

X	y	X	y	X	y	X	y
550	12	225	25	680	13	202	29
689	11	623	14	310	26	300	25
255	27	523	12	310	18	640	20

425	16	492	18	317	18	420	16
512	18	555	15	587	21	384	17
600	15	690	12	325	23	643	19
400	19						

[08 marks+ 07 marks = 15 marks]

CLO #:

Q2:

The distribution of the insurance money paid by an automobile insurance company to owners of automobiles in a particular year is given below:

Amount paid	Frequency
below 1500	52
1500-1999	108
2000–2499	230
2500–2999	528
3000–3499	663
3500–3999	816
4000–4499	993
4500–4999	825
5000 and above	650

- a. Calculate the median amount of money paid.
- b. Calculate 85th percentile and lower quartile for amount of money paid.

[07 marks+ 08 marks = 15 marks]

DAC+-A

	De C	that A		
EA	01			7 13 2 4 1
9	min. value = 119.	, max.	value = 176	
	class lines tally	101	C.B.	Mod Pront
	119 -127 111	3	1185-1275	123
	128 - 136 NUI	6	127-5-136-5	132
	137 - 145 MINH	16	1365-1455	141
	146 - 154 NHNHI	11	145.5-154.5	150
	155 - 163 M	5	1545-1635	159
	1624 - 172 111	3	1635-1725	168
	173 - 181 11	2	1725-1815	177
		40		
	119-128 3	123.5		
T	128 - 137 6	132.5		
	137-146 16	141.5		
i	146-155 11	150.5		
1	15-164 5	159.5		
	164-173 3	1685		
1	173-182. 2.	1775		
1				
1				
- 1		1 10 10		

(No.2 (A) 1999 _ 2002 195 X 106 X 109 X 104 = 103.3647 162.3293 in heave=70.3293% increase = \[\frac{53659}{20} = \frac{149.35}{20} \rm \] 247.5275 = 15.7336

FAST School of Computing

Spring -2024

Islamabad Campus

Part B: The following data indicate income (x) and percentage expenditure on food (y) of families. Construct a bivariate frequency table classifying x into intervals 200-300, 300-400, ... and y into 10-15, 15-20, ...

	2 = W P	25
y 229 225 200 16 17	(1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1	
* E & E E E E E E E E E E E E E E E E E	500-600 (2) (2) (2)	2
7 113 26 18 18 18 23 23	2c mates 400-500 11 (4)	+
SEE EE XX	Income 300 - 400	9
25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	300 = -=	M
× 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	200 – 30 – 30 – 30 – 30 – 30 – 30 – 30 –	100
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(8) Expendence Perentage 10-15 10-15 20-25 25-30	
	Exp - 122 - 128 y	

$$P_{85} = 100 + 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1$$

FAST School of Computing

Spring -2024

Islamabad Campus

Question #2 [07 marks+ 08 marks]

The distribution of the insurance money paid by an automobile insurance company to owners of automobiles in a particular year is given below:

Amount paid	Frequency	c.f
selow 1500	52	52
1500-1999	108	160
2000-2499	230	390
2500-2999	528	918
3000-3499	663	1581 -
3500-3999	816	2397
4000-4499	993	3390
4500-4999	825	4215
5000 and above	650	4 865

- a. Calculate the median amount of money paid.
- b. Calculate 85th percentile and lower quartile for amount of money paid.

Median = 
$$l + h = \left(\frac{n}{2} - c\right)$$
  
 $\left(\frac{n}{2}\right)$  th Median =  $\frac{4865}{2} = 2432.5$   
 $\frac{14000 - 4499}{2}$  Median

(a) = 
$$l + h$$
 ( $\frac{n}{4} - c$ )  
( $\frac{n}{4}$ ) th =  $\frac{4865}{4} = \frac{1216.25 \text{ th observation}}{4}$ 

$$Q_1 = 360 + \frac{499}{663} (1216.25 - 918) = 3224.4747$$