Project Report №3

Team: GroShi

Members:

Arsen Mutalapov a.mutalapov@innopolis.university

Gleb Kirillov g.kirillov@innopolis.university
Ruslan Kudinov r.kudinov@innopolis.university

Project topic: Grocery object detection.

Github: https://github.com/system205/PMLDL project

GitHub with deployment:

https://github.com/system205/GroceryObjectDetectionTelegramBot

Current status

- 1. We **deployed** the YOLOv8 small model locally in Docker with GPU. For that, we used the <u>Roboflow Inference Server</u>.
- 2. We **saved** the trained **weights** on GitHub in the "train" folder.
- We created an <u>InnoGrocery Telegram Bot</u> that accepts users' photos and says what products our model recognizes on them. Also, the time of inference and request processing is measured and output.
- 4. We prepared **a single command** (docker-compose up) to run the bot with the server to make inferences locally.
- 5. We **collected more images**. We identified that our previously trained model performed on items wrapped with **cellophane** poorly.
- 6. We **explored** our dataset more. We analyzed the **area of masks and bounding boxes** of our marked objects.
- 7. According to the graph in the appendix, we understood the final production-ready **confidence level** for our model: 0.715
- 8. Visualized training with **TensorBoard**

Future work

As we have already shown that YOLOv5 is worse than YOLOv8 we won't compare them more. Instead, we will try to train and deploy larger versions of YOLOv8. So far, we have a small one that has

11.2M parameters and 28.6B FLOPs. We will test medium and large versions that have twice and four times more parameters. Finally, we write a bit more in README files.

Appendix

Telegram bot

GroceryBot

bot

Hi. I can recognize some grocery items in your shopping cart. Send me a picture $^{\wedge}$

Description

@InnoGroceryBot

Username

Example of interaction

Graph with confidence to F1

Graph with confidence to recall

Graph with confidence to precision

New inference example on an expanded dataset

TensorBoard training:

metrics

train

val

