A Minimal Model for Nonlinear Market Impact

ShengQuan Zhou, Zhongkai He

Baruch MFE

May 7, 2017

A fully consistent, minimal model for non-linear market impact

J. Donier, $^{1,\,2}$ J. Bonart, $^{1,\,3}$ I. Mastromatteo, 4 and J.-P. Bouchaud $^{1,\,3}$

¹Capital Fund Management, 23-25 Rue de l'Université, 75007 Paris, France.
 ²Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie (Paris 6).
 ³CFM-Imperial Institute of Quantitative Finance, Department of Mathematics,

Imperial College, 180 Queen's Gate, London SW7 2RH

⁴ Centre de Mathématiques Appliquées, CNRS, UMR7641, Ecole Polytechnique, 91128 Palaiseau, France.

(Dated: March 3, 2015)

A Reaction-Diffusion Model of Latent Order Book

Two pivotal ideas

Latent order book

Reaction-Diffusion model

Order Book Dynamics (x : price)

Buy volume density $\rho_B(x,t)$

Sell volume density $\rho_A(x,t)$

Transaction Price p_t

$$\rho_A(p_t,t) = \rho_B(p_t,t)$$

$$\frac{\partial \rho_B(\mathbf{x},t)}{\partial t} = -V_t \frac{\partial \rho_B(\mathbf{x},t)}{\partial \mathbf{x}} + D \frac{\partial^2 \rho_B(\mathbf{x},t)}{\partial \mathbf{x}^2} - \nu \rho_B(\mathbf{x},t) + \lambda \Theta(p_t - \mathbf{x}) - \kappa R_{AB}(\mathbf{x},t)$$

$$\frac{\partial \rho_A(\mathbf{x},t)}{\partial t} = \underbrace{-V_t \frac{\partial \rho_A(\mathbf{x},t)}{\partial \mathbf{x}} + D \frac{\partial^2 \rho_A(\mathbf{x},t)}{\partial \mathbf{x}^2}}_{\text{Drift-Diffusion: price reassessments}} - \underbrace{\nu \rho_A(\mathbf{x},t)}_{\text{Cancellation}} + \underbrace{\lambda \Theta(\mathbf{x} - \mathbf{p}_t)}_{\text{Deposition}} - \underbrace{\kappa R_{AB}(\mathbf{x},t)}_{\text{Reaction: trades}}$$

Price Dynamics within a Locally Linear Order Book

Define $\hat{p}_t \triangleq \int_0^t V_s ds$, $y \triangleq x - \hat{p}_t$, the net order density $\phi(x,t) \triangleq \rho_B(x,t) - \rho_A(x,t)$

$$\frac{\partial \phi(y,t)}{\partial t} = D \frac{\partial^2 \phi(y,t)}{\partial y^2} - \nu \phi(y,t) + \lambda \text{sign}(p_t - \hat{p}_t - y)$$

Zoom into the *universal linear regime* $\nu \to 0$, $\lambda \to 0$, $J \triangleq D \left| \partial_y \phi_{\text{s.t.}} \right|_{y=0} = \lambda \sqrt{\frac{D}{\nu}}$ fixed:

$$\phi_{\mathsf{s.t.}} = -\mathcal{L}y,$$

where $\mathcal{L} \triangleq J/D$ is the *latent liquidity* of the market. Add <u>meta-order</u> to the system:

$$\begin{cases} \frac{\partial \phi(y,t)}{\partial t} = D \frac{\partial^2 \phi(y,t)}{\partial y^2} + m_t \delta(y-y_t) \\ \partial_y \phi(y \to \pm \infty,t) = -\mathcal{L} \end{cases} \Rightarrow \phi(y,t) = -\mathcal{L}y + \int_0^t \frac{ds \ m_s}{\sqrt{4\pi(t-s)}} e^{-\frac{(y-y_s)^2}{4D(t-s)}}$$

where m_t is the signed trading intensity at time t. Transaction price $\phi(y_s,s)\equiv 0$

$$y_t = \frac{1}{\mathcal{L}} \int_0^t \frac{ds \, m_s}{\sqrt{4\pi(t-s)}} e^{-\frac{(y_t-y_s)^2}{4D(t-s)}}$$

This is the central equation of the paper: a self-consistent integral equation for t > 0.

3 / 5

Impact of Meta-Order and Impact Decay

For a meta-order of size Q executed at constant rate $m_t = \begin{cases} m_0 = Q/T, & t \in [0,T], \\ 0, & t > T. \end{cases}$ Define market impact $\mathcal{I}(Q,t) \triangleq \langle \epsilon \cdot (p_t - p_0) | Q \rangle = \langle \epsilon \cdot (y_t - y_0) | Q \rangle + \langle \epsilon \cdot (\hat{p}_t - \hat{p}_0) | Q \rangle$.

Solving the self-consistency equation for y_t yields

$$\frac{\mathcal{I}(Q,t)}{\mathcal{I}(Q)} = \begin{cases} \sqrt{\frac{t}{T}}, & t \in [0,T], \\ \sqrt{\frac{t}{T}} - \sqrt{\frac{t-T}{T}}, & t > T, \end{cases}$$

where total market impact gives precisly the celebrated *square-root impact law*:

$$\mathcal{I}(Q) = \mathcal{I}(Q, T) pprox egin{cases} \sqrt{rac{m_0}{\pi J}} imes \sqrt{rac{Q}{\mathcal{L}}}, & m_0 \ll J, \ \sqrt{2} imes \sqrt{rac{Q}{\mathcal{L}}}, & m_0 \gg J. \end{cases}$$

=0. uninformed meta-order

Absence of Price Manipulation & Extensions

Average cost of a closed price trajectory: $C = \int_0^T ds \, m_s y_s$, with $\int_0^T ds \, m_s = 0$.

$$\mathcal{C} = rac{1}{2} \int_0^T \int_0^T ds ds' \; M(s,s') m_s m_{s'}$$

where

$$M(s,s') = \frac{1}{\mathcal{L}\sqrt{4\pi|s-s'|}}e^{-\frac{(y_s-y_{s'})^2}{4D|s-s'|}}$$

is a semi-positive definite kernel. Therefore, $\mathcal{C} \geq 0$ for any execution schedule, i.e. price manipulation is impossible within the model of Locally Linear Order Book (LLOB).

Possible Extensions and Open Problems

- ☐ Relax the approximation made in limit of
 - (1) slow latent order books $\nu T \ll 1$;
 - (2) large liquidity, i.e., meta-order only probes the linear region of order book.
 - $\hfill\Box$ Corrections to the LLOB induced by fluctuations.
 - $\hfill\square$ Introduce random fluctuations in the interacting meta-order flows.
 - \square Cancellation rate ν is expected to increase with the intensity of meta-orders.
 - \square Deposition rate λ is expected to increase with the distance $|x-p_t|$.
 - \square Drift term V_t could be non-Gaussian.