Networking and Interworking

Network issues

- Performance
 - Latency
 - o Data transfer rate
 - Data transfer rate = amount of Data / time
 - Message transfer rate time = latency + massage length / data transfer rate
 - Total system bandwidth of network
 - Throughput (吞吐量) in the end systems
 - Total volume of traffic can be transferred across network in a time
- Scalability No designable to cope with size and load about network growing
- Reliability Recoverable from communication failures
- Security Protecting network and computers
- Mobility
 - Portability of computer and handled digital devices using wireless network
 - Location and identification are depicted with each other
 - No designable to cope with size and load about network growing
- QoS (Quality of Service)

Guarantee for requirements of computer and network to meet deadline, bandwidth, bounded latency

• Multicasting One-to-many communication

Types of Networks

- LANs (Local Area Networks) Technology suitable for small area, wire/fiber
 - High bandwidth
 - Low latency
 - ATM, better QoS, but more expensive
- WANs (Wide Area Networks) Large distances, inter-city/country/continental
 - Low bandwidth, high latency
 - Satellite/wire/cable
 - Routers introduce delays
- MANs (Metropolitan Area Networks) Intra-city, cable based, multimedia
- Wireless networks WLANs, WPANs (wireless personal area network)
 - WLANs: Wireless Local Area Networks to replace wired LANs

WaveLAN technology

WIFI: Wireless Internet Platform for Interoperability

IEEE 802.11

• WMAN: Wireless Metropolitan Area Networks

WiMAX: Worldwide Interoperability for Microwave Access

IEEE 802.16

- WPANs: Wireless Personal Area Networks
 - Infrared (infra-red) links
 - Bluetooth: IEEE 802.15.1 (standard no longer maintained)
 - Mobile phone network (Wireless WAN)
 - European GSM: Global system for Mobile communication
 - US: analogue AMPS: Advanced Mobile Phone System Cellular radio network, Cellular digital packet data Replaced by GSM
 - WAP: Wireless Applications Protocol For use on wireless potable devices

Network Principles

Mode of Transmission

- Packets
 - 1. Messages divided into packets (on Transport Layer)
 - 2. Packets **queued in buffers** before sent onto link
 - QoS not guaranteed
- Data streaming
 - Links **guarantee QoS** (rate of delivery)
 - For multimedia traffic
 - Need higher bandwidth

Switching Schemes

- Broadcasts (Ethernet, wireless)
 - Send messages to all nodes
 - Nodes listen for own messages (carrier sensing)
- Circuit switching (phone networks)

- Packet switching (TCP/IP)
 - Store-and-forward
 - Unpredictable delays
- Frame/Cell relay (ATM)
 - Bandwidth & latency guaranteed (virtual path)
 - Small, fixed size packets (padded if necessary) 53 bytes= header 5 + body 48
 - Avoids error checking at nodes (use reliable links)

Protocols

• OSI Model

• Internetwork protocol

Network header

IP, ATM

- Internetwork layer(=Virtual network layer) internet packet → destination (by datagram protocol)
- Network interfaces layer internetwork packets → suitable packets → underlying layer
- Underlying network layer

Transport header

- Port & Addressing
 - Port
 - Network-independent message transport service between networks ports
 - Software-definable destination points for communications
 - Addressing
 - Delivering messages to destination with transport addresses
 - Transport address Network address + port number
- Packet delivery
 - In network layer
 - Datagram packet delivery (IP in Ethernet, most wired and wireless LAN technologies)
 - Virtual circuit packet delivery (ATM)
 - In transport layer
 - Connection-oriented transmission(TCP) Reliable communication with static routing table (ISO, X.25) Ex) remote login(Telnet), FTP, HTTP(bigsized file), stream data
 - Connectionless transmission (UDP) Unreliable communication with predefined routing table Ex) rcp, rwho, RPC, HTTP(small-sized file), FTP(nonerror bulk file)

Routing

- Necessary in non-broadcast networks (cf Internet): Hop by Hop
- Distance-vector algorithm for each node
 - Stores table of state & cost information of links, cost infinity for faulty links
 - Determines route taken by packet (the next hop)
 - Periodically updates the table and sends to neighbors
 - May converge slowly [Bellman-Ford]
- RIP-1 (Router Information Protocol) for Internet

- Local router table changes
- Use default routes, plus multicast and authentication
- Better convergence (routes better route to an existing destination)

• RIP routing algorithm

Variables: Tl local table, Tr remote table received.

• Rr: remote, Rl: local

Send: Each t seconds or when Tl changes, send Tl on each non-faulty outgoing link. Receive: Whenever a routing table Tr is received on link n:

```
for all rows Rr in Tr {
   if (Rr.link != n) {
      Rr.cost = Rr.cost + 1; // hop
      Rr.link = n;
      if (Rr.destination is not in Tl) add Rr to Tl;
      // add new destination to Tl
      else for all rows Rl in Tl {
        if (Rr.destination = Rl.destination and (Rr.cost < Rl.cost or
   Rl.link = n))
        Rl = Rr;
        // Rr.cost < Rl.cost : remote node has better route
        // Rl.link = n : remote node is more authoritative
    }
}</pre>
```

• Routing tables (A -> C)

	Routings from A			_	Routings from B					Routing	s from C
	To	Link	Cost		b L	ink	Cost		То	Link	Cost
	A	local	0	A	1	1	1		A	2	2
	В	1	1	Е	l c	ocal	0		В	2	1
	$\frac{\mathbf{C}}{\mathbf{D}}$	1	<u>2(2)</u>	(2	2	1(1)		\mathbf{C}	local	0
	D	3	1	····· Ī)	1	2		D	5	2
	_ E	1	2	<u> </u>		4	1		E	5	1
	A-	B(select	Rr.	cost(=1) <	< Rl.cost((=2)]———	-	С		
	Routing			itings fro	from D Rout			tings fr	gs from E		
			То	Link	Cost		То	Link	Cos	<u>t</u>	
		<u> </u>	A	3	1		A	4	2		
Rr.c	ost(=2) :	>= Rl.cost(=2) B	3	2		В	4	1		
	Ţ		<u>C</u>	6	<u>2</u>		\mathbf{C}	5	1		
	The same of the sa	*****************	D	local			D	6	1		
			E	6	1		Е	local	0		

Congestion Control

- When load on network exceeds 80% of its capacity packet queues long, links blocked
- Solutions (in datagram-based network layers)
 - packet dropping reliable of delivery at higher levels
 - reduce rate of transmission
 - nodes send choke packets (Ethernet) special message requesting a reduction in transmission rate
 - transmission control (TCP)
 - transmit congestion information to each node QoS guarantees (ATM)

Transport level protocols

IP(TCP/IP) Addressing

• IP Structure(Universal)(IPv4 : 4bytes = 32bits)

• IP Packet layout

octet 1		octet 2		octet 3		octet4	Range of addresses
_	Network ID			Host ID			
Class A:	1 to 127	0 to 255		0 to 255		0 to 255	7 1.0.0.0 to 127.255.255.255
	Network ID			Но	st ID		
Class B:	128 to 191	0 to 255	Г	0 to 255		0 to 255	128.0.0.0 to 191.255.255.255
_		Network ID			_	Host ID	
Class C:	192 to 223	0 to 255		0 to 255	'	1 to 254	192.0.0.0 to 223.255.255.255
_	Multicast address			address			
Class D (multicast):	224 to 239	0 to 255		0 to 255		1 to 254	224.0.0.0 to 239.255.255.255
Class E (reserved):	240 to 255	0 to 255		0 to 255		1 to 254	128.0.0.0 to 247.255.255.255

- Large Address Space 128 bit addresses Every toaster can have its own IP address
- Aggregation-based address hierarchy Efficient backbone routing
- Efficient and Extensible IP datagram
 - No fragmentation by routers
 - 64 bits field alignment
 - Simpler basic header
- Auto-configuration
- Security
- IP Renumbering part of the protocol

TLA	NLA(s)	SLA	Interface ID		
16 bits	32 bits	16 bits	64 bits		

- TLA top level aggregator Primary providers
- NLA: Next Level Aggregator Can have multiple NLA as sub-NLA
- SLA: Site Level Aggregator Your site (16 bits)
- Addresses are allocated from your provider If you change provider, your prefix changes But renumbering (of hosts, routers and sites) has been included in the IPv6 protocol
- IPv6 Header layout (16bytes: 128bits)

Version (4 bits)	Traffic class (8 bits) Flow label (20 bits)							
Payload leng	th (16 bits)	Next header (8 bits)	Hop limit (8 bits)					
	Source address (128 bits)							
Destination address (128 bits)								

- IPv6's main advances (Adapted by IETF in 1994)
 - Address space (2128 = 3×1038 IPs), routing speed up
 - Real-time and other special services
 - Future evolution
 - Multicating & anycasting
 - Security

MobileIP

- At home normal, when elsewhere mobile host: notifies HA(Home Agent) before leaving informs FA(Foreign Agent), who allocates temporary care-of IP address & tells HA
- Packets for mobile host (MH): first packet routed to HA, encapsulated in MobileIP packet and sent to FA (tunneling) FA unpacks MobileIP packet and sends to mobile host sender notified of the care-of address for future communications which can be direct via FA
- Problems efficiency low, need to notify HA

Wireless LAN: IEEE 802.11

- Radio broadcast (fading strength, obstruction)
- Collision avoidance by Slot reservation mechanism by Request to Send (RTS) and Clear to Send (CTS) Stations in range pick up RTS/CTS and avoid transmission at the reserved times Collisions less likely than Ethernet, since RTS/CTS short Random back off period
- Problems Security (eaves dropping), use shared-key authentication

Asynchronous Transfer Mode (ATM)

- Multimedia data(voice and video), distributed system services are available
- Packet switching network based on Cell-relay (a method of packet routing)
- Avoiding flow-control and error checking at the intermediate nodes
- Small and fixed length unit of data transmitted (53bytes= header 5 + body 48) reduction of buffer size, complexity, queuing delay at intermediate nodes
- B-ISDN (CCITT I.150 standard)
- Optical fiber transmission medium (155 622 megabits/sec)
- ATM protocol layers (next page)

ATM Protocol Layer

ATM Cell Layout

Switching virtual in an ATM network

From 202.30.11.187 to 202.30.11.44

202,30,11,187	110010100001111100000101111011	1011								
AND										
255,255,255,0	1111111111111111111111111111110000	0000								
202,30,11,0	1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0	0000								
202,30,11,44	1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0	1 1 0 0								
AND										
255,255,255,0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0								
202,30,11,0	$1 \; 1 \; 0 \; 0 \; 1 \; 0 \; 1 \; 0 \; 0 \; 0 \; $	0000								