عدد الصفحات 4

الإجابة النموذجية

العلامة		
المجموع	مجزأة	عناصر الإجابة الموضوع الأول
		لتمرين الأول (3 نقاط)
	0,75+0,25	$V_{n+1} = 3 V_n$ الإجابة الصحيحة هي $($
3 نقاط	0,75+0,25	$\lim_{n\to +\infty} 3^n = +\infty$ و $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$ لأن $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$ و $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$ و $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$
	0,75+0,25	$S_n = V_0 + V_1 + + V_n = -\frac{1}{2} \frac{3^{n+1} - 1}{2}$ لأن $\frac{3^{n+1} - 1}{2}$ لأن 3.
		التمرين الثاني (5 نقاط)
	1	$-2x + y + 5z - 1 = 0$: هي (\mathcal{P}) هي المعادلة ديكارتية للمستوي (\mathcal{P})
	0,5	(Q) و (P) تحقق معادلة كل من (P) و $(B(-1;4;-1)$ و (P)
	0,5	(Δ) عير متوازيين و منه (\mathcal{P}) و (\mathcal{P}) متقاطعان وفق مستقيم $\vec{n}'(1;2;0)$
5 نقاط	0,5	$t \in \mathbb{R} egin{cases} x = 7 - 2t \ y = t \end{cases}$ تمثيله الوسيطي: $z = 3 - t$
	0,5	$d_1 = \frac{3\sqrt{30}}{5} : (\mathscr{P})$ و C ا - المسافة بين C. ا - المسافة بين
	0,5	$\mathbf{d}_2 = \frac{6\sqrt{5}}{5}:(\mathcal{O})$ و C المسافة بين C
	1	$\vec{n}.\vec{n}' = 0$ ب \vec{n} و منه (\mathcal{P}) و (\mathcal{P}) متعامدان.
	0,5	$d(C;(\Delta)) = \sqrt{d_1^2 + d_2^2} = 3\sqrt{2} : (\Delta)$ و المستقيم C المستقيم المسافة بين النقطة C المستقيم C
		التمرين الثالث (5 نقاط)
5 نقاط	0.75	$\frac{z_C-z_A}{z_B-z_A}=i$: الشكل الجبري للعدد المركب. 1
	0.5 x 2	$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \frac{\pi}{2} \cdot \frac{\left z_C - z_A\right }{z_B - z_A} = 1 : \text{algorithms} \frac{z_C - z_A}{z_B - z_A} \text{and} \text{and} \frac{z_C - z_A}{z_B - z_A}$
	0,5	ABC المثلث ABC : المثلث ABC متساوي الساقين وقائم في ABC
	0,5	$\frac{\pi}{2}$ محددا عناصره المميّزة: T هو الدوران ذو المركز A والزاوية $\frac{\pi}{2}$
	0,5	$T\left(B\right)=C:T$ بالنقطة B بالنحويل $T:T\left(B\right)$

 عطوم تجريبية	الشعية:	الرياضيات	 اختيار مادّة:

العلامة		
مجموع	بزأة ال	تابع عناصر الإجابة للموضوع الأول
	0,5	D ، C ، A و منه $\overline{AD} = \frac{3}{2} \overline{AC}$. i . 3
	0,5	$K = \frac{z_D - z_A}{z_C - z_A} = \frac{3}{2} : h$ ب. تعیین نمبهٔ التحاکی
	0,75	$a=rac{3}{2}$ i و منه $z_D-z_A=a(z_B-z_A)$ بعناصر النشابه S هي المركز A والنسبة $\frac{3}{2}$ والزاوية $\frac{\pi}{2}$.
		التمرين الرابع (7 نقاط)
	0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,5	ب - 0<(x ∈]-∞;-1[∪]1;+∞[تكافئ g(x)>0 ب
7 نقاط	0,5	.x ∈]1;+∞[تكافئ 0 < g(x) < 1 - بـــ
	1	$\lim_{x \to +\infty} f(x) = 1$ و $\lim_{x \to +\infty} f(x) = -\infty$.1 (II) د حساب النهائين: $\lim_{x \to +\infty} f(x) = 1$
	0,5	C_{f} و $y=1$ معادلتا مستقیمین مقاربین لی $x=1$
	0,5	$g'(x) = \frac{2}{(x+1)^2}$ ،]1;+∞[من المجال x من المجال عدد حقيقي x من المجال 2. أ - تبيان أنه من أجل كل عدد حقيقي
	0,5+1	$x > 1$ کن $f'(x) > 0$ ، $f'(x) = \frac{2}{(x+1)^2} \left(\frac{2x}{x-1}\right)$ ب
	0,5	جه جدول تغیر ات الدالة f : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,5	:]1;+ ∞ [على المجال $\ln\left(\frac{x-1}{x+1}\right)$ <0 - ا .3
	0,5	$h'(x) = \ln(x - \alpha)$ و منه $h(x) = (x - \alpha)\ln(x - \alpha) - x$
	0,5	$F(x) = x - (x + 3) \ln(x + 1) + (x - 1) \ln(x - 1), g(x) = 1 - \frac{2}{x + 1}$

العلامة		
المجموع	مجزأة	عناصر الإجابة للموضوع الثاني
		التمرين الأول (4 نقاط)
4 نقاط	1	$v_{n+1}=\alpha\;v_n\;:$ ان (v_n) هندسیهٔ أساسها α لأن α
	0,5	$v_n = \left(6 + \frac{1}{\alpha - 1}\right)\alpha^n : \alpha$ و $\alpha = n$ ب عبارة α بدلالة α
	0,5	$u_n = \left(6 + \frac{1}{\alpha - 1}\right)\alpha^n - \frac{1}{\alpha - 1}$: α و α بدلالة α و α بدلالة α و α
	0,5	$\alpha \in]0;1[$ منقاربة إذا كان $[u_n]$ منقاربة إذا كان $\alpha \in]0;1[$
	0,75	$S_n = 16 \left[\left(\frac{3}{2} \right)^{n+1} - 1 \right] : S_n$ نضع $\alpha = \frac{3}{2}$ نضع $\alpha = \frac{3}{2}$ نضع .2
	0,75	$T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18$: $T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18$ المجموع $T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18$
		التمرين الثاني (4 نقاط)
	0,75	1. أ - تعليم النقط B ، A و C:
Ы й 4	0,75	$\overline{OA} = \overline{CB}$ اي $\frac{z_B - z_C}{z_A} = 1$ التعليل: $\frac{z_B - z_C}{z_A}$ اي $OABC$
	0,5	$z_{\Omega} = \frac{3}{2} + i : OABC$ جـ لاحقة النقطة Ω مركز الرباعي Ω
	0,75	 الدائرة التي مركزها Ω و نصف قطرها 3 + الإنشاء الدائرة التي مركزها Ω و نصف قطرها 3 + الإنشاء
	0,75	z ₁ = 3+2i وعليه z ₀ = 3-2i و z ₁ = 3+2i أو العكس.
	0,5	$ z-z_0 = z-z_1 $ بن المجموعة المطلوبة هي محور $ z-z_0 = z-z_1 $ القطعة $[AB]$ أي محور الفواصل.

	العلامة			
بموع	زأة المج	عناصر الإجابة للموضوع الثاني		
		التمرين الثالث (5 نقاط)		
	1	$\begin{cases} x=2+\lambda \ y=1-4\lambda \; ; \; \lambda \in \mathbb{R} \; : \left(\Delta\right)$ للمستقيم للمستقيم $z=7-\lambda$		
	0,5	$\overrightarrow{BC}=\overrightarrow{u}$ ب $\lambda=1$ تتنمى إلى Δ الأنه بالتعويض بإحداثيات C نجد $C=1$ أو Δ		
	1	$\overrightarrow{AB}.\overrightarrow{BC} = 0$ $\overrightarrow{BC}(1;-4;-1)$ $\overrightarrow{AB}(2;0;2) \rightarrow$		
	0,5	$d(A,(\Delta)) = AB = 2\sqrt{2} - 3$		
5 نقاط	0,75	$h(t) = AM = \sqrt{8 + 18t^2}$: $h(t)$ بدلالة $h(t) = AM = \sqrt{8 + 18t^2}$		
	0,5	$h'(t) = \frac{18t}{\sqrt{18t^2 + 8}} + t$ عدد حقیقی $t + t$ عدد حقیقی الله من أجل كل عدد حقیقی الله عدد عقیقی الله عدد حقیقی الله عدد عدد عدد عدد عدد عدد عدد عدد عدد عد		
	0,75	t = 0 أصغر ما يمكن عندما يكون $h'(t) = 0$ أي $h'(t) = 0$		
	0,70	$h(0) = d(A,(\Delta))$ ومنه $h(0) = 2\sqrt{2}$ ومنه $h(0) = h(0) = 0$		
		التمرين الرابع: (07 نقاط)		
	0,5 x 2	: $\lim_{x \to +\infty} f(x) = +\infty$ و $\lim_{x \to -\infty} f(x) = +\infty$: $\lim_{x \to +\infty} f(x) = +\infty$ 1.		
	0,5	$f'(x)=e^x-e$: $f'(x)$ بـ حساب		
	0,5	دراسة إشارة (x): f'(x) دراسة إشارة (x): f'(x)		
	0,5	ج- جدول تغيرات الدالة f:		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
7 نقاط		$f(x) +\infty$		
		-1		
	0,5	$\lim_{x \to -\infty} [f(x) - (-ex - 1)] = 0 - 1.2$		
	0,5	$y = (1-e)x : 0$ يند النقطة ذات الفاصلة (C_f) مماس (T) مماس بند النقطة ذات الفاصلة		
	1	 f (1,76) = 0,028 f (1,75) = -0,0024 [1,75;1,76] ج - f مستمرة و منز ايدة تماما على [1,76] على [1,75;1,76] 		
	1	\cdot] $-\infty$;2] على المجال (C_f) و (T) و (T) على المجال (T) على المجال (T) و (T) و (T) على المجال (T) على المجال (T)		
	1	$A(\alpha) = \left(-e^{\alpha} + \frac{1}{2}e^{\alpha^2} + \alpha + 1\right)ua : A(\alpha)$ المساحة $\alpha : A(\alpha)$ المساحة $\alpha : A(\alpha)$		
	0,5	$e^{\alpha}=e\alpha+1$ نجد $f(\alpha)=0$ و بالتعویض نجد أن $A(\alpha)=\left(\frac{1}{2}e\alpha^2-e\alpha+\alpha\right)ua$		