TD 2: Fonctions, limites, continuité

Exercice 1 Montrer que toute fonction $f : \mathbb{R} \to \mathbb{R}$ s'écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire.

Exercice 2 Montrer que toute fonction définie sur \mathbb{R} périodique et non constante n'admet pas de limite en $+\infty$.

Exercice 3 Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{\sin x}{x}$ si $x \neq 0$ et f(0) = 1. Montrer que f est continue sur \mathbb{R} .

Exercice 4 Soit $f:[a,b] \to [a,b]$ continue. Montrer qu'il existe $c \in [a,b]$ tel que f(c) = c.

Exercice 5 Justifier que pour tout réel r > 0 il existe un entier n tel que $0 < \frac{1}{n} \le r$. En déduire que tout réel est limite d'une suite de nombre rationnels.

Exercice 6 Soit f, g deux fonctions continues telles que f(x) = g(x) pour tout $x \in \mathbb{Q}$. Montrer que f = g. Est-ce toujours vrai si on ne suppose plus f et g continues?

Exercice 7 Montrer que le maximum de deux fonctions continues est une fonction continue.

Exercice 8 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 1 telle que f(1) > 0. Montrer que f(x) > 0 pour tout x assez proche de 1.

Exercice 9 Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f(x+y) = f(x) + f(y) pour tout $x, y \in \mathbb{R}$. Que vaut f en 0? Exprimer f(n) en fonction de f(1) pour tout $n \in \mathbb{N}$ puis pour tout $n \in \mathbb{Z}$. Exprimer $f(\frac{p}{q})$ en fonction de f(p) pour tout $p, q \in \mathbb{N}$. Si f est continue, en déduire l'expression de f.

Exercice 10 Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f(x+y) = f(x)f(y) pour tout $x, y \in \mathbb{R}$. Montrer que f est la fonction nulle ou bien f(0) = 1. Montrer que si f est continue en 0 alors f est continue partout.

Exercice 11 Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ telle que f(xf(y)) = yf(x) pour tout $x, y \in \mathbb{R}$. On suppose que f tend vers $+\infty$ en zéro. Calculer f(1), montrer que f(f(x)) = f(x) pour tout x, en déduire que f est une bijection. Montrer que f(ab) = f(a)f(b) pour tout $a, b \in \mathbb{R}$. Montrer que f est décroissante. Montrer que f est continue. Montrer que $f(x) = \frac{1}{x}$.

Exercice 12[Théorème de Césaro] Soit $u=(u_n)_n$ une suite réelle qui converge vers l. Montrer que la suite de terme général $v_n=\frac{1}{n}\sum_{k=1}^n u_k$ converge vers l.

Exercice 13 La somme de deux suites géométriques est-elle une suite géométrique?