Calculates groebner basis of

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

$$\overline{S(x^3 + (-2)xy, x^2y + (-2)y^2 + x)} = (-1)x^2.$$

Not enough. Appends

•
$$(-1)x^2$$

$$\overline{S(x^3 + (-2)xy, (-1)x^2)} = (-2)xy.$$

$$\overline{S(x^2y + (-2)y^2 + x, (-1)x^2)} = (-2)y^2 + x.$$

Not enough. Appends

$$\bullet$$
 $(-2)xy$

$$\overline{S(x^3 + (-2)xy, (-2)xy)} = 0.$$

$$\overline{S(x^2y + (-2)y^2 + x, (-2)xy)} = (-2)y^2 + x.$$

$$\overline{S((-1)x^2, (-2)xy)} = 0.$$

Not enough. Appends

•
$$(-2)y^2 + x$$

$$\overline{S(x^3 + (-2)xy, (-2)y^2 + x)} = 0.$$

$$\overline{S(x^2y + (-2)y^2 + x, (-2)y^2 + x)} = 0.$$

$$\overline{S((-1)x^2, (-2)y^2 + x)} = 0.$$

$$\overline{S((-2)xy, (-2)y^2 + x)} = 0.$$

Enough for groebner basis. Result is

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

•
$$(-1)x^2$$

$$\bullet$$
 $(-2)xy$

•
$$(-2)y^2 + x$$

. \blacksquare Minimalizes groebner basis

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

•
$$(-1)x^2$$

$$\bullet$$
 $(-2)xy$

•
$$(-2)y^2 + x$$

 $x^3 + (-2)xy$ is removed by $(-1)x^2$.

 $x^2y + (-2)y^2 + x$ is removed by $(-1)x^2$.

Minimalized groebner basis is

- x²
- xy
- $y^2 + (\frac{-1}{2})x$

Reduce groebner basis

- x²
- *xy*
- $y^2 + (\frac{-1}{2})x$

Reducing: $\overline{x^2} = x^2$.

Reducing: $\overline{xy} = xy$.

Reducing: $\frac{v}{y^2 + (\frac{-1}{2})x} = y^2 + (\frac{-1}{2})x$.

Reduced groebner basis is

- $y^2 + (\frac{-1}{2})x$
- xy
- x²

Reduce groebner basis

- $x^2 + xy$
- *xy*
- $y^2 + (\frac{-1}{2})x$

Reducing: $\overline{x^2 + xy} = x^2$.

Reducing: $\overline{xy} = xy$.

Reducing: $\overline{y^2 + (\frac{-1}{2})x} = y^2 + (\frac{-1}{2})x$.

Reduced groebner basis is

- $y^2 + (\frac{-1}{2})x$
- *xy*
- $\bullet x^2$

. ■