Intuitive explanation of the Riemann hypothesis

1. Characterisation of the nontrivial zeroes of ζ .

There is a unique (canonical) one-form α on \mathbb{H} invariant under $\Gamma(2)$ with a pole of residue 1 at the image of $i\infty$ and a pole of residue -1 at the image of 1. Under the embedding $\mathbb{H} \to \mathbb{C}$ with τ the coordinate on \mathbb{C} the ratio $[\alpha:d\tau]$ tends to one at the upper end of the interval $(0,i\infty)$. Let T be the connected real multiplicative group and consider the multiplication actions

$$\begin{cases} \mu_{+}: T \times \mathbb{H} \to \mathbb{H} \\ (g, z) \mapsto \sqrt{g}z \end{cases}$$
$$\begin{cases} \mu_{-}: T \times \mathbb{H} \to \mathbb{H} \\ (g, z) \mapsto \frac{1}{\sqrt{g}}z \end{cases}$$

1. Theorem. For each unitary character ω of T and each real number c with 0 < c < 1, the differential two-form

$$g^{2-2c}\omega(g)\mu_+^*(\alpha-d\tau)\wedge\mu_-^*(\alpha-d\tau)$$

is real and integrable (rapidly decreasing, that is 'Schwartz') on $T \times (0, i\infty)$. Among rapidly decreasing forms, it is exact if and only if $\zeta(c+i\omega_0)$ is zero where ζ is Riemann's zeta function and ω_0 is the real number corresponding to ω under the rule $\omega(g) = g^{i\omega_0}$.

Proof. It is real because the factors besides $\omega(g)$ are anti-symmetric with respect to interchanging μ_+ and μ_- which matches the reversal of orientation of T. The two-form integrates to the squared absolute value of a holomorphic integral, namely $\int g^{1-c}\omega(g)(\alpha-d\tau)$. In turn, it is easy to calculate the holomorphic definite integral; it is $iL(s,\chi)\Gamma(s)\pi^{-s}$ where i is the imaginary unit, and L is the L series for sums of four squares, χ is the Dirichlet sign character and $s=c+i\omega_0$. The rule $\omega(g_1g_2^{-1})=\omega(g_1)\omega(g_2)^{-1}$ is all that is needed.

2. Remark about the dynamical interpretation.

Here is an intuitive way of integrating the two-form let, us call it A_s for $s = c + i\omega_0$. if we let $\tau = ie^t$. By 'integration by parts'

$$\frac{1}{i\pi} \int e^{(c-1)t+i\omega_0 t} d\log(\lambda/q) = \frac{c-1+i\omega_0}{i\pi} \int e^{(c-1)t+i\omega_0 t} \log(\lambda/q(ie^t)) dt.$$

Therefore

$$\int \int A_s = \left(\frac{|(s-1)|}{\pi}\right)^2 \left|\int_{-\infty}^{\infty} e^{i\omega_0 t} e^{(c-1)t} \log(\lambda/q(ie^t)) dt\right|^2.$$

The second term on the right is the squared magnitude of the Fourier transform value at frequency ω_0 of the real function

$$e^{(c-1)t}log(\lambda/q(ie^t)).$$

A disk spinning with angular rate ω_0 with pivot point held by a pair of opposing movable bearings, if we move the bearings in a line according to this function (of time), the limiting radius of the circle traced by the initial pivot point will be the magnitude and

2. Theorem.

$$\frac{\pi^3}{|s-1|^2} \int A_s = \text{ area inside final circle.}$$

3. Lie actions.

Whenever A_s is a Lie derivative, meaning $A_s = \delta B$ for some rapidly decreasing B, under the action of a vector-field δ , then A_s can be obtained by multiplying B by a suitable divergence ratio; put differently $A_s = d i_{\delta} B$ which is an exact form; this can only happen if $\zeta(s) = 0$ (still assuming 0 < 1 < c).

4. The action of $\frac{\partial}{\partial c}$.

A vector field which does not preserve $T \times (0, i\infty)$ is the partial derivative with respect to c. If $g = e^t$ it sends A_s to $2tA_s$.

2. Conjecture. For 0 < c < 1/2, the integral of tA_s is non-positive.

The conjecture implies that A_s is non-exact, and $\zeta(c+i\omega_0) \neq 0$, for all c in the same range, because it would imply that $\frac{\partial}{\partial c} \int A_s \leq 0$. For each value of ω_0 the dependence on c is a non-increasing real analytic function $(0,1/2) \to [0,\infty)$. Such a function cannot take the value of zero.

3. Theorem

- i) The integral of A_s is nonnegative when ω is any unitary character,
- ii) The integral of tA_s is strictly negative for 0 < c < 1/2 when ω in the definition is replaced by the delta function representing any point of T.

Proof. Part i) is clear; Part ii) is a consequence of monotonicity of the derivative of the second logarithm $\frac{d}{dt}log\ log\lambda/q(t)$.

4. Remark. It is not possible to deduce just from i) and ii) that the integral of A_s is strictly positive for 0 < c < 1/2. We have negative expected value when ω is any delta function, and positive average value when ω is any unitary character. When a cosine function is approximated by delta functions the delta functions which have negative coefficients contribute positively to the expectation. A further statistical independence lemma would be needed before we deduce that the expectation is negative in the case of a character. That would suffice, by the argument preceding the theorem.

References

- 1. Marcus Du Sautoy, The music of the primes: why an unsolved problem in Mathematics matters, 2004
- 2. Keith Ball, Rational approximations to the zeta function, June, 2017
 - 3. Robert Mackay, email, 19 October, 2017
 - 4. Robert Mackay, email, 20 October, 2017
 - 5. Robert Mackay, email, 22 October, 2017
 - 6. Robert Mackay, email, 14 December, 2017
- 7. Nayo Reid, conversation, Euston Place, Leamington, 23 January, 2018
 - 8. Robert Mackay, email, 28 February, 2018
 - 9. Robert Mackay, email, 20 March, 2018

John Atwell Moody 20 April 2018