Package fanalysis

Analyse des Correspondances Multiples

Ce tutoriel a pour objectif de présenter rapidement les principales fonctionnalités offertes par le package *fanalysis* pour réaliser une Analyse des Correspondances Multiples.

Il suppose connu les soubassements théoriques de cette méthode.

Il ne s'attarde pas non plus sur l'interprétation du jeu de données, qui n'a pour but que de présenter les fonctionnalités du package.

2 approches sont présentées :

- Une approche "datamining" : l'ACM vise à décrire un jeu de données
- Une approche "machine learning" : l'ACM est utilisée comme méthode de réduction des données, le résultat servant d'entrée pour un modèle prédictif (nous ferons ici l'usage d'outils de scikit-learn).

I. Approche Datamining

L'ACM a ici pour but de décrire un fichier de données.

Celui-ci est extrait du site de Ricco Rakotomalala (Université Lyon 2) :

http://eric.univ-lyon2.fr/%7Ericco/tanagra/fichiers/races_canines_acm.xls

Nous partons d'un fichier texte intitulé "mca_data.txt".

On importe la librairie pandas pour charger les données, ainsi que la classe MCA du package fanalysis.

Les données sont transformées en matrice de type numpy.ndarray.

Dans la matrice de données X, les catégories peuvent être codées :

- soit par des entiers
- soit par des chaines de caractères

Dans cet exemple, les catégories sont codées par des chaines de caractère.

```
In [1]: import pandas as pd
from fanalysis.mca import MCA
%matplotlib inline

In [2]: df = pd.read_table("mca_data.txt", header=0, index_col=0, delimiter="\t", encoding=
"utf-8")
```

<pre>print(df)</pre>							
	Taille	Poids	Velocite	Intelligence	Affection	Agressivite	\
Chien							
Beauceron	Taille++	Poids+	Veloc++	Intell+	Affec+	Agress+	
Basset	Taille-	Poids-	Veloc-	Intell-	Affec-	Agress+	
Berger-All	Taille++	Poids+	Veloc++	Intell++	Affec+	Agress+	
Boxer	Taille+	Poids+	Veloc+	Intell+	Affec+	Agress+	
Bull-Dog	Taille-	Poids-	Veloc-	Intell+	Affec+	Agress-	
Bull-Mastif	Taille++	Poids++	Veloc-	Intell++	Affec-	Agress+	
Caniche	Taille-	Poids-	Veloc+	Intell++	Affec+	Agress-	
Chihuahua	Taille-	Poids-	Veloc-	Intell-	Affec+	Agress-	
Cocker	Taille+	Poids-	Veloc-	Intell+	Affec+	Agress+	
Colley	Taille++	Poids+	Veloc++	Intell+	Affec+	Agress-	
Dalmatien	Taille+	Poids+	Veloc+	Intell+	Affec+	Agress-	
Doberman	Taille++	Poids+	Veloc++	Intell++	Affec-	Agress+	
Dogue-All	Taille++	Poids++	Veloc++	Intell-	Affec-	Agress+	
EpagBreton	Taille+	Poids+	Veloc+	Intell++	Affec+	Agress-	
EpagFrançais	Taille++	Poids+	Veloc+	Intell+	Affec-	Agress-	
Fox-Hound	Taille++	Poids+	Veloc++	Intell-	Affec-	Agress+	
Fox-Terrier	Taille-	Poids-	Veloc+	Intell+	Affec+	Agress+	
Gd-Bleu-Gasc	Taille++	Poids+	Veloc+	Intell-	Affec-	Agress+	
Labrador	Taille+	Poids+	Veloc+	Intell+	Affec+	Agress-	
Levrier	Taille++	Poids+	Veloc++	Intell-	Affec-	Agress-	
Mastiff	Taille++	Poids++	Veloc-	Intell-	Affec-	Agress+	
Pekinois	Taille-	Poids-	Veloc-	Intell-	Affec+	Agress-	
Pointer	Taille++	Poids+	Veloc++	Intell++	Affec-	Agress-	
St-Bernard	Taille++	Poids++	Veloc-	Intell+	Affec-	Agress+	
Setter	Taille++	Poids+	Veloc++	Intell+	Affec-	Agress-	
Teckel	Taille-	Poids-	Veloc-	Intell+	Affec+	Agress-	
Terre-Neuve	Taille++	Poids++	Veloc-	Intell+	Affec-	Agress-	
	Fonction						
Chien							
Beauceron	utilite						
Basset	chasse						
Berger-All	utilite						
Boxer	compagnie						

Fonction
utilite
chasse
utilite
compagnie
compagnie
utilite
compagnie
utilite
utilite
chasse
chasse
chasse
compagnie
chasse
chasse
chasse
utilite
compagnie
chasse
utilite
chasse
compagnie
utilite

L'analyse va porter sur les 6 premières variables.

```
In [4]: X = df.iloc[:, 0:6].as_matrix()
```

On crée une instance de la classe MCA, en lui passant ici des étiquettes pour les lignes et les variables. Ces paramètres sont facultatifs ; en leur absence, le programme détermine automatiquement des étiquettes.

```
In [5]: my_mca = MCA(row_labels=df.index.values, var_labels=df.columns.values[0:6])
```

On estime le modèle en appliquant la méthode fit de la classe MCA sur le jeu de données.

L'exécution de la méthode *my_mca.fit(X)* provoque a minima le calcul des attributs :

- my_pca.eig_ : valeurs propres
- my_pca.row_coord_ : coordonnées des points lignes
- my_pca.col_coord_ : coordonnées des points colonnes

I.1. Analyse des valeurs propres

L'attribut my_mca.eig_ contient :

- en 1ère ligne : les valeurs propres en valeur absolue
- en 2ème ligne : les valeurs propres en pourcentage de la variance totale
- en 3ème ligne : les valeurs propres en pourcentage cumulé de la variance totale

```
In [7]: print(my_mca.eig_)
       [[ 4.81606165e-01 3.84737288e-01
                                           2.10954049e-01
                                                           1.57554025e-01
           1.50132670e-01
                           1.23295308e-01
                                           8.14624601e-02
                                                           4.56697566e-02
           2.35419107e-02
                          7.71303416e-03]
                                                           9.45324152e+00
        [ 2.88963699e+01
                           2.30842373e+01
                                           1.26572430e+01
           9.00796020e+00
                                                           2.74018539e+00
                          7.39771849e+00
                                           4.88774761e+00
           1.41251464e+00 4.62782050e-01]
        [ 2.88963699e+01 5.19806071e+01 6.46378501e+01
                                                           7.40910916e+01
           8.30990518e+01 9.04967703e+01
                                           9.53845179e+01
                                                           9.81247033e+01
           9.95372180e+01 1.00000000e+02]]
```

Les valeurs propres peuvent être représentées graphiquement (par défaut : représentation en valeur absolue).

In [9]: my_mca.plot_eigenvalues(type="percentage")

In [10]: my_mca.plot_eigenvalues(type="cumulative")

Quand l'objet my_mca a été instancié, son paramètre stats a reçu la valeur True par défaut.

En conséquence, lors de l'exécution de la méthode $my_mca.fit(X)$, les statistiques suivantes ont été calculées :

- my_mca.row_contrib_ : contributions des points lignes à la variance de l'axe
- my_mca.co/_contrib_: contributions des points colonnes à la variance de l'axe
- my_mca.row_cos2_ : cosinus carrés des points lignes
- my_mca.col_cos2_ : cosinus carrés des points colonnes

Si l'on avait souhaité éviter le calcul de ces statistiques pour gagner du temps et économiser des ressources mémoire, il aurait fallu instancier :

```
my\_mca = MCA(stats=False)
```

Par défaut, les coordonnées des points lignes et colonnes, leurs contributions et cosinus carrés sont calculés sur l'ensemble des axes extraits de l'analyse.

On aurait toutefois pu spécifier le nombre d'axes à retenir via le paramètre *n_components* avec par exemple : my_mca = MCA(n_components=3)

I.2. Extraction des statistiques sur les points lignes

Export de la totalité des données lignes vers une DataFrame pandas

On peut simplement envoyer vers une Dataframe : les coordonnées, les contributions et les cos2 de chacun des points **lignes**, pour tous les axes factoriels (identifiés par les suffixes dim1, dim2, etc.).

```
In [11]: df_rows = my_mca.row_topandas()
```

In [12]: print(df_rows)

	row goord dim1	row_coord_dim2	row_coord_dim3	\
Beauceron	row_coord_dim1 -0.317200	-0.417701	-0.101468	/
Basset	0.254110	1.101227	-0.190701	
Berger-All	-0.486396	-0.464450	-0.498134	
Boxer	0.447365	-0.881778	0.692016	
Bull-Dog	1.013352	0.549879	-0.163423	
Bull-Mastif	-0.752574	0.546912	0.497573	
Caniche	0.912301	-0.016188	-0.576570	
Chihuahua	0.840799	0.843852	-0.469947	
Cocker	0.733295	0.079073	0.662230	
Colley	-0.117325	-0.526108	-0.334894	
Dalmatien	0.647240	-0.990184	0.458590	
Doberman	-0.873210	-0.315481	-0.452314	
Dogue-All	-1.047017	0.506958	0.165035	
EpagBreton	0.478044	-1.036933	0.061924	
EpagFrançais	-0.144910	-0.515783	0.117127	
Fox-Hound	-0.876568	0.025240	-0.362171	
Fox-Terrier	0.881622	0.138967	0.053522	
Gd-Bleu-Gasc	-0.517338	-0.113404	0.044029	
Labrador Levrier	0.647240 -0.676693	-0.990184 -0.083167	0.458590 -0.595598	
Mastiff	-0.755932	0.887633	0.587715	
Pekinois	0.840799	0.843852	-0.469947	
Pointer	-0.673335	-0.423887	-0.685740	
St-Bernard	-0.583379	0.593660	0.894239	
Setter	-0.504140	-0.377139	-0.289074	
Teckel	1.013352	0.549879	-0.163423	
Terre-Neuve	-0.383504	0.485254	0.660813	
	row_coord_dim4	row_coord_dim5	row_coord_dim6	\
Beauceron	-0.211436	-0.118510	-0.844917	
Basset	0.292637	-0.524009	0.039895	
Berger-All	0.577425	0.275902	-0.567765	
Boxer	0.260002	-0.455590	-0.213746	
Bull-Dog Bull-Mastif	-0.349919	0.330786	-0.201414	
Caniche	0.655153 0.628133	0.721946 0.434017	0.117926 0.386066	
Chihuahua	-0.086343	-0.177346	0.197088	
Cocker	0.189743	-0.104627	-0.626726	
Colley	-0.657755	0.192130	-0.374168	
Dalmatien	-0.186316	-0.144950	0.257003	
Doberman	0.510087	0.239880	-0.254209	
Dogue-All	0.062888	-0.316522	-0.001702	
EpagBreton	0.602545	0.249461	0.534156	
EpagFrançais	-0.468922	0.000850	0.490693	
Fox-Hound	-0.015198	-0.662665	-0.132859	
Fox-Terrier	0.285590	-0.271035	-0.361835	
Gd-Bleu-Gasc	0.240972	-0.817923	0.418446	
Labrador	-0.186316	-0.144950	0.257003	
Levrier	-0.461516	-0.352025	0.337890	
Mastiff	0.129868	-0.180598	0.239276	
Pekinois	-0.086343	-0.177346	0.197088	
Pointer	0.063769	0.550519	0.216540	
St-Bernard	-0.133709	0.327535	-0.159227	
Setter	-0.725093	0.156108	-0.060612	
Teckel Terre-Neuve	-0.349919 -0.580027	0.330786 0.638174	-0.201414 0.311523	
TCTTG-MEUVE	-0.560027	0.0301/4	0.311323	
	row_coord_dim7	row_coord_dim8	row_coord_dim9	\
Beauceron	0.089050	0.201986	-0.167019	
Basset	0.052833	-0.447363	0.100738	
Berger-All	-0.129097	0.187330	-0.234185	
Boxer	-0.003008	-0.019819	-0.002446	
Bull-Dog	0.063544	-0.079036	-0.035602	

Statistiques pour les points lignes

In [13]: # Coordonnées des points lignes
 print(my_mca.row_coord_)

]]	-3.17200051e-01	-4.17701298e-01	-1.01467714e-01	-2.11436281e-01
	-1.18509544e-01	-8.44917274e-01	8.90501548e-02	2.01986411e-01
	-1.67018837e-01	-2.28067149e-02]		
Γ	2.54109843e-01	1.10122699e+00	-1.90700968e-01	2.92637269e-01
-	-5.24008519e-01	3.98946811e-02	5.28331582e-02	-4.47362922e-01
	1.00738366e-01	-1.47102197e-011		
Г	-4.86395534e-01	-4.64449578e-01	-4.98133882e-01	5.77425252e-01
L	2.75902052e-01	-5.67764838e-01	-1.29096839e-01	1.87330321e-01
	-2.34185002e-01	8.91993408e-03]	-1.290900396-01	1.075505216-01
		-	C 00015004- 01	0 (0001005- 01
[-8.81777941e-01	6.92015804e-01	2.60001835e-01
	-4.55589836e-01	-2.13745841e-01	-3.00768021e-03	-1.98192681e-02
_	-2.44628915e-03	-1.40900948e-01]		
L	1.01335218e+00	5.49879489e-01	-1.63423202e-01	-3.49919273e-01
	3.30786485e-01	-2.01414177e-01	6.35440823e-02	-7.90356807e-02
	-3.56024365e-02	-6.65432469e-02]		
[-7.52574495e-01	5.46911834e-01	4.97573073e-01	6.55152661e-01
	7.21946355e-01	1.17925813e-01	-1.85943335e-02	-3.73250962e-02
	-1.12102625e-01	-2.45732947e-02]		
[9.12301484e-01	-1.61876744e-02	-5.76569722e-01	6.28133396e-01
	4.34016531e-01	3.86066396e-01	4.01809663e-01	2.49346973e-01
	1.65086085e-01	1.13481695e-01]		
[8.40799374e-01	8.43852157e-01	-4.69947142e-01	-8.63428687e-02
	-1.77346455e-01	1.97088251e-01	-3.27291133e-01	1.31410453e-01
	-1.36707423e-01	2.48406642e-03]		
Γ	7.33295293e-01	7.90731735e-02	6.62230424e-01	1.89743186e-01
_	-1.04627236e-01	-6.26726024e-01	-4.74951235e-01	-4.06017775e-01
	1.43663776e-01	3.04810338e-01]		
[-1.17325200e-01	-5.26107651e-01	-3.34893734e-01	-6.57754538e-01
	1.92130196e-01	-3.74168009e-01	-8.41976661e-02	2.76173951e-01
	-1.10667059e-01	5.06561417e-02]		
[6.47239775e-01	-9.90184294e-01	4.58589784e-01	-1.86316421e-01
-	-1.44950097e-01	2.57003424e-01	-1.76255501e-01	5.43682719e-02
	5.39054897e-02	-6.74380911e-02]		
Γ	-8.73210214e-01	-3.15481101e-01	-4.52313727e-01	5.10087132e-01
٠	2.39879728e-01	-2.54209144e-01	7.77796319e-02	-3.17255514e-01
	5.96125655e-02	-6.72034723e-02]		
Γ	-1.04701683e+00	5.06957678e-01	1.65034759e-01	6.28882045e-02
-	-3.16521571e-01	-1.70166797e-03	-1.12827456e-01	5.06165196e-01
	4.48174302e-01	1.95886373e-021		
[4.78044292e-01	-1.03693257e+00	6.19236160e-02	6.02545112e-01
•	2.49461500e-01	5.34155860e-01	-3.94402495e-01	3.97121822e-02
	-1.32606750e-02	-3.57114421e-02]		
Г	-1.44910083e-01	-5.15782953e-01	1.17126612e-01	-4.68922193e-01
٠	8.49711247e-04	4.90693297e-01	6.00636280e-01	-2.03761210e-01
	-1.43230553e-01	1.15969760e-01]	0.0000000000000000000000000000000000000	2,03,012100 01
Г	-8.76567539e-01	2.52398470e-02	-3.62171499e-01	-1.51979963e-02
٠	-6.62664808e-01	-1.32859151e-01	-9.49085902e-02	-9.21532905e-02
	2.56737440e-02	-2.99028079e-02]	J. 19003902C 02	J.21332703C 02
Г	8.81622116e-01	1.38966958e-01	5.35224668e-02	2.85590120e-01
L	-2.71034805e-01	-3.61835304e-01	7.93204478e-01	1.89815523e-01
	1.75900471e-01	8.29218930e-03]	7.752011700 01	1.070133230 01
г	-5.17337740e-01	-1.13403932e-01	4.40286924e-02	2.40972468e-01
L	-8.17922968e-01	4.18446461e-01	3.83048885e-01	-6.75026163e-02
	-3.00687318e-01	1.11534217e-01]	3.030400030 01	0.750201030 02
Г	6.47239775e-01	-9.90184294e-01	4.58589784e-01	-1.86316421e-01
L	-1.44950097e-01	2.57003424e-01	-1.76255501e-01	5.43682719e-02
	5.39054897e-01	-6.74380911e-02]	T. 10233301E-01	J. 43002/13E-02
г	-6.76692688e-01	-8.31665059e-02	-5.95597519e-01	-4.61516253e-01
L	-3.52025068e-01	3.37890114e-01	-3.95597519E-01 -2.68156411e-01	-4.61516253E-01 -1.79657504e-02
	8.20255228e-02	4.35600486e-02]	7.00130411E-01	1.//03/3046-02
г	-7.55931819e-01	8.87632782e-01	5.87715302e-01	1.29867533e-01
L	-7.55931819E-01 -1.80598180e-01	2.39275806e-01	-1.91282556e-01	1.87777127e-01
	-1.46041447e-01	1.27273696e-01	T.91202000E-UI	1.0///12/E-UI
[8.43852157e-01	-4.69947142e-01	-8.63428687e-02
L	J. 40/993/48-UI	0.4303Z13/E-U1	4.0994/142E-U1	0.0342000/E-U2

In [14]: # Contributions des points lignes
 print(my_mca.row_contrib_)

]]	7.73767876e-01	1.67959126e+00	1.80760743e-01	1.05091056e+00
	3.46471633e-01	2.14446056e+01	3.60535532e-01	3.30865774e+00
	4.38859435e+00	2.49767800e-01]		
[4.96577656e-01	1.16741602e+01	6.38490092e-01	2.01310302e+00
-	6.77388350e+00	4.78101032e-02	1.26908835e-01	1.62303361e+01
	1.59655665e+00	1.03908074e+01]		
[1.81937974e+00	2.07658208e+00	4.35652825e+00	7.83787399e+00
	1.87789320e+00	9.68337324e+00	7.57722059e-01	2.84592660e+00
	8.62805061e+00	3.82062375e-02]		
[1.53910433e+00	7.48497608e+00	8.40776174e+00	1.58913049e+00
	5.12046123e+00	1.37241366e+00	4.11284205e-04	3.18553782e-02
	9.41477848e-04	9.53320231e+00]		
[7.89705226e+00	2.91076402e+00	4.68895218e-01	2.87834243e+00
	2.69933348e+00	1.21862409e+00	1.83581510e-01	5.06586878e-01
	1.99413231e-01	2.12627267e+00]		
[4.35555187e+00	2.87943048e+00	4.34672445e+00	1.00900136e+01
	1.28579249e+01	4.17741330e-01	1.57195441e-02	1.12982040e-01
	1.97708842e+00	2.89959779e-01]		
[6.40060403e+00	2.52255635e-03	5.83649387e+00	9.27492702e+00
	4.64700961e+00	4.47727416e+00	7.34039564e+00	5.04214975e+00
	4.28761188e+00	6.18390213e+00]		
[5.43661975e+00	6.85495624e+00	3.87745169e+00	1.75250667e-01
	7.75900532e-01	1.16683960e+00	4.87020447e+00	1.40044921e+00
	2.94021250e+00	2.96303915e-03]		
[4.13525212e+00	6.01908248e-02	7.69957277e+00	8.46328783e-01
	2.70053951e-01	1.17989984e+01	1.02559704e+01	1.33689603e+01
	3.24705079e+00	4.46139180e+01]		
[1.05858761e-01	2.66453355e+00	1.96907570e+00	1.01703158e+01
	9.10651649e-01	4.20555184e+00	3.22313741e-01	6.18547372e+00
	1.92677615e+00	1.23218295e+00]		
[3.22162209e+00	9.43852268e+00	3.69230120e+00	8.16035401e-01
	5.18320094e-01	1.98411803e+00	1.41242071e+00	2.39716870e-01
	4.57151890e-01	2.18384353e+00]		
[5.86383597e+00	9.58117236e-01	3.59193035e+00	6.11639421e+00
	1.41954159e+00	1.94120777e+00	2.75049260e-01	8.16255080e+00
	5.59075103e-01	2.16867467e+00]		
[8.43046492e+00	2.47408927e+00	4.78188600e-01	9.29704908e-02
	2.47154005e+00	8.69839921e-05	5.78773059e-01	2.07774430e+01
_	3.16000979e+01	1.84255063e-01]		
[1.75743986e+00	1.03507779e+01	6.73226167e-02	8.53465298e+00
	1.53521105e+00	8.57088522e+00	7.07225679e+00	1.27895435e-01
-	2.76646889e-02	6.12386712e-01]		- 16000110 00
[1.61488428e-01	2.56097846e+00	2.40857143e-01	5.16902112e+00
	1.78116339e-05	7.23285797e+00	1.64021899e+01	3.36705771e+00
r	3.22749712e+00	6.45803658e+00]	2 20200071 00	F 400744FC- 00
[5.90901328e+00	6.13261066e-03	2.30290971e+00 4.09533807e-01	5.42974456e-03
	1.08330025e+01	5.30240175e-01	4.0953380/e-01	6.88698652e-01
г	1.03698611e-01 5.97735639e+00	4.29373190e-01]	E 0204E126- 02	1 01721222-100
[1.81222100e+00	1.85906708e-01 3.93288786e+00	5.02945136e-02 2.86054661e+01	1.91731332e+00 2.92193795e+00
	4.86775300e+00	3.30178961e-02]	2.00054001e+01	2.92193/95E+00
[2.05822345e+00	1.23802149e-01	3.40345447e-02	1.36502808e+00
L	1.65038716e+01	5.25980306e+00	6.67094131e+00	3.69529191e-01
	1.42240985e+01	5.97347744e+00]	0.070741316100	3.073271710 01
[3.22162209e+00	9.43852268e+00	3.69230120e+00	8.16035401e-01
L	5.18320094e-01	1.98411803e+00	1.41242071e+00	2.39716870e-01
	4.57151890e-01	2.18384353e+00]	110/100	JJ,100,0C 0I
[3.52149573e+00	6.65838446e-02	6.22807925e+00	5.00703621e+00
	3.05708990e+00	3.42957778e+00	3.26930233e+00	2.61756975e-02
	1.05850409e+00	9.11145413e-01]		
[4.39449982e+00	7.58470376e+00	6.06432357e+00	3.96467792e-01
-	8.04614339e-01	1.71983690e+00	1.66352543e+00	2.85951856e+00
	3.35541916e+00	7.77836458e-02]		
[5.43661975e+00	6.85495624e+00	3.87745169e+00	1.75250667e-01

In [15]: # Cos2 des points lignes
print(my_mca.row_cos2_)

]]	8.86354732e-02	1.53699594e-01	9.06978140e-03	3.93822110e-02
	1.23722226e-02	6.28882412e-01	6.98570800e-03	3.59406044e-02
	2.45737810e-02	4.58212084e-04]		
[3.38043142e-02	6.34867136e-01	1.90385973e-02	4.48320320e-02
	1.43749337e-01	8.33218971e-04	1.46130981e-03	1.04772939e-01
	5.31274484e-03	1.13283712e-02]		
[1.53722499e-01	1.40163659e-01	1.61231704e-01	2.16645575e-01
	4.94615977e-02	2.09457186e-01	1.08290285e-02	2.28020784e-02
	3.56349731e-02	5.16989317e-05]		
[1.11330751e-01	4.32523528e-01	2.66393303e-01	3.76048711e-02
	1.15462068e-01	2.54147956e-02	5.03216176e-06	2.18507578e-04
	3.32894680e-06	1.10438146e-02]		
[6.24484641e-01	1.83880633e-01	1.62415840e-02	7.44623393e-02
	6.65420938e-02	2.46706743e-02	2.45556352e-03	3.79880801e-03
	7.70833162e-04	2.69282992e-03]		
[2.70690765e-01	1.42958206e-01	1.18328181e-01	2.05144306e-01
	2.49106067e-01	6.64648773e-03	1.65247798e-04	6.65849872e-04
	6.00628608e-03	2.88603256e-04]		
[3.85193916e-01	1.21275082e-04	1.53853124e-01	1.82602376e-01
	8.71796657e-02	6.89805511e-02	7.47211265e-02	2.87747035e-02
	1.26131510e-02	5.96011012e-03]		
[3.79931295e-01	3.82695220e-01	1.18691149e-01	4.00657480e-03
	1.69030599e-02	2.08757353e-02	5.75690136e-02	9.28068713e-03
	1.00439490e-02	3.31624583e-06]		
[2.79156818e-01	3.24600200e-03	2.27671518e-01	1.86905820e-02
	5.68303006e-03	2.03913464e-01	1.17108519e-01	8.55816269e-02
	1.07148229e-02	4.82336169e-02]		
[1.23961745e-02	2.49260987e-01	1.00999475e-01	3.89612409e-01
	3.32427027e-02	1.26077730e-01	6.38418085e-03	6.86863599e-02
	1.10291440e-02	2.31083688e-03]		
[2.36285170e-01	5.53016560e-01	1.18619154e-01	1.95798039e-02
	1.18506750e-02	3.72549417e-02	1.75223129e-02	1.66723619e-03
	1.63897399e-03	2.56517269e-03]		
[4.87611688e-01	6.36477694e-02	1.30832617e-01	1.66389236e-01
	3.67979467e-02	4.13255677e-02	3.86872855e-03	6.43657523e-02
	2.27254304e-03	2.88815115e-03]		
[5.60793909e-01	1.31473847e-01	1.39330697e-02	2.02317920e-03
	5.12510285e-02	1.48130883e-06	6.51216736e-03	1.31063126e-01
	1.02751900e-01	1.96292818e-04]		
[1.04983391e-01	4.93952692e-01	1.76155797e-03	1.66787484e-01
	2.85885007e-02	1.31075135e-01	7.14601014e-02	7.24489049e-04
	8.07821830e-05	5.85867084e-04]		
[1.75332292e-02	2.22125629e-01	1.14544928e-02	1.83597294e-01
	6.02847459e-07	2.01041147e-01	3.01222788e-01	3.46663185e-02
_	1.71291589e-02	1.12293397e-02]		
[5.58313038e-01	4.62892815e-04	9.53093579e-02	1.67833893e-04
	3.19076498e-01	1.28259619e-02	6.54512653e-03	6.17061850e-03
_	4.78944747e-04	6.49727046e-04]		
[4.36271010e-01	1.08396312e-02	1.60791707e-03	4.57802078e-02
	4.12326772e-02	7.34874674e-02	3.53152039e-01	2.02234317e-02
_	1.73670242e-02	3.85948911e-05]		
[1.86023209e-01	8.93871388e-03	1.34738090e-03	4.03602327e-02
	4.64990004e-01	1.21702250e-01	1.01982866e-01	3.16708720e-03
_	6.28418601e-02	8.64639470e-03]		
[2.36285170e-01	5.53016560e-01	1.18619154e-01	1.95798039e-02
	1.18506750e-02	3.72549417e-02	1.75223129e-02	1.66723619e-03
-	1.63897399e-03	2.56517269e-03]	0.604=000=	1 5550000
[3.38815590e-01	5.11772953e-03	2.62473933e-01	1.57599349e-01
	9.16911884e-02	8.44756203e-02	5.32055317e-02	2.38820247e-04
r	4.97826984e-03	1.40396775e-03]	1 01225511 01	0 05401450 00
[2.99995069e-01	4.13633334e-01	1.81335511e-01	8.85421459e-03
	1.71228323e-02	3.00570559e-02	1.92087717e-02	1.85111860e-02
г	1.11969855e-02	8.50405730e-05]	1 10601140- 01	4 006E7400- 00
[3.79931295e-01	3.82695220e-01	1.18691149e-01	4.00657480e-03

I.3. Extraction des statistiques sur les points colonnes

Export de la totalité des données colonnes vers une DataFrame pandas

On peut envoyer vers une Dataframe : les coordonnées, les contributions et les cos2 de chacun des points **colonnes**, pour tous les axes factoriels (identifiés par les suffixes dim1, dim2, etc.).

In [17]: print(df_cols)

	col_coord_dim1	col_coord_dim2	col_coord_dim3	\
Taille_Taille+	0.851088	-1.231720	1.016052	
Taille_Taille++	-0.836675	-0.020578	-0.051217	
Taille_Taille-	1.184956	0.923897	-0.616000	
Poids_Poids+	-0.305405	-0.818876	-0.231272	
Poids_Poids++	-1.015134	0.973901	1.221595	
Poids_Poids-	1.168918	0.824345	-0.358770	
Velocite_Veloc+	0.603687	-0.887814	0.356312	
Velocite_Veloc++	-0.892100	-0.371832	-0.763088	
Velocite_Veloc-	0.319941	1.044900	0.401729	
<pre>Intelligence_Intell+ Intelligence_Intell++</pre>	0.369443	-0.285503 -0.459483	0.493203 -0.599924	
Intelligence_Intell-	-0.335066 -0.349045	0.808555	-0.351511	
Affection_Affec+	0.775496	-0.266936	-0.351511	
Affection_Affec-	-0.835150	0.287470	0.065474	
Agressivite_Agress+	-0.431539	0.209196	0.333548	
Agressivite_Agress-	0.400714	-0.194253	-0.309723	
11g1 CDD1 V1 CC_11g1 CDD	0.100711	0.171233	0.305723	
	col_coord_dim4	col_coord_dim5	col_coord_dim6	\
Taille_Taille+	0.342456	-0.310040	0.118297	
Taille_Taille++	-0.170222	0.112663	-0.049965	
Taille_Taille-	0.120149	-0.019963	0.022569	
Poids_Poids+	-0.118364	-0.190201	0.012908	
Poids_Poids++	0.067605	0.614518	0.289232	
Poids_Poids-	0.164884	-0.051221	-0.203360	
Velocite_Veloc+	0.370243	-0.371036	0.629313	
Velocite_Veloc++	-0.239848	-0.010089	-0.532181	
Velocite_Veloc-	-0.080331	0.305908	-0.024488	
Intelligence_Intell+	-0.603492	0.146256	-0.378518	
Intelligence_Intell++	1.275249	1.063191	0.205389	
Intelligence_Intell-	0.024238	-1.035060	0.461050	
Affection_Affec+	0.077216	0.040322	-0.318067	
Affection_Affec-	-0.083156	-0.043424	0.342534	
Agressivite_Agress+	0.551156	-0.374464	-0.514255	
Agressivite_Agress-	-0.511788	0.347717	0.477522	
	col_coord_dim7	col_coord_dim8	col_coord_dim9	\
Taille_Taille+	-0.858306	-0.259599	0.307322	\
Taille_Taille++	0.117844	0.056414	-0.144633	
Taille_Taille-	0.360553	0.064541	0.090411	
Poids_Poids+	-0.037178	-0.125673	-0.184946	
Poids_Poids++	-0.067864	0.641508	0.204009	
Poids_Poids-	0.107475	-0.181014	0.196151	
Velocite_Veloc+	0.625743	0.173445	-0.008821	
Velocite_Veloc++	-0.192758	0.141837	0.291628	
Velocite_Veloc-	-0.327112	-0.266409	-0.255408	
Intelligence_Intell+	0.281329	-0.075777	0.041319	
Intelligence_Intell++	-0.092247	-0.094569	-0.020514	
Intelligence_Intell-	-0.387975	0.194064	-0.051758	
Affection_Affec+	-0.170577	0.311516	-0.130227	
Affection_Affec-	0.183698	-0.335479	0.140244	
Agressivite_Agress+	0.153837	-0.049324	-0.026899	
Agressivite_Agress-	-0.142849	0.045801	0.024978	
m '11	col_coord_dim10		col_cos2_dim1	/
Taille_Taille+	-0.015208	• • •	0.164625	
Taille_Taille++	0.121550	• • •	0.875032	
Taille_Taille-	-0.249601	• • •	0.491442	
Poids_Poids+	-0.097573	• • •	0.100447	
Poids_Poids++	-0.071494	• • •	0.234204	
Doida Doida	0 015426		U EDE313	
Poids_Poids-	0.215436	• • •	0.575313	
Velocite_Veloc+	0.053786		0.153447	

Statistiques pour les points colonnes

In [18]: # Coordonnées des points colonnes print(my_mca.col_coord_)

```
[[\ 0.85108805\ -1.23171972\ \ 1.01605178\ \ 0.34245635\ -0.31004022\ \ 0.11829709]
 -0.85830588 - 0.25959948 0.30732198 - 0.01520824
 [-0.83667535 \ -0.02057846 \ -0.05121744 \ -0.17022176 \ \ 0.11266304 \ -0.04996469]
   0.11784406 0.05641401 -0.14463269 0.12155001]
 [1.18495571 \quad 0.9238965 \quad -0.61599962 \quad 0.12014924 \quad -0.0199635 \quad 0.02256927
   0.36055265 0.06454103 0.09041149 -0.24960128]
 [-0.30540525 \ -0.81887572 \ -0.23127208 \ -0.11836395 \ -0.19020146 \ \ 0.0129084]
  -0.03717755 -0.12567337 -0.18494632 -0.09757299
 -0.06786357 0.64150795 0.20400871 -0.07149381
 [ \ 1.16891802 \quad 0.82434462 \quad -0.35877044 \quad 0.16488382 \quad -0.05122143 \quad -0.20335954]
   0.10747545 -0.18101407 0.19615062 0.21543637]
 [ 0.60368666 - 0.88781355 \ 0.35631249 \ 0.37024339 - 0.37103561 \ 0.62931321 
   0.62574307   0.17344491   -0.00882083   0.05378561]
  [-0.89209989 \ -0.37183247 \ -0.76308752 \ -0.23984823 \ -0.01008873 \ -0.5321807 ] 
  -0.19275804 0.1418371
                            0.29162795 -0.02074368]
  \begin{smallmatrix} 0.31994057 & 1.04490006 & 0.40172878 & -0.0803313 & 0.30590834 & -0.02448794 \end{smallmatrix} 
  \hbox{\tt -0.32711222 -0.26640932 -0.25540849 -0.02435918]}
  \begin{bmatrix} 0.3694426 & -0.28550314 & 0.49320252 & -0.6034918 & 0.14625633 & -0.37851765 \end{bmatrix} 
   0.28132937 -0.07577653 0.04131926 -0.01449247]
 [-0.33506557 \ -0.45948302 \ -0.59992378 \ 1.27524863 \ 1.06319128 \ 0.20538874
  -0.09224687 -0.09456899 -0.02051408 0.00222567
 -0.38797506 0.19406361 -0.05175824 0.02188101]
 [ \ 0.77549643 \ -0.26693613 \ -0.06079688 \ \ 0.07721587 \ \ 0.04032182 \ -0.31806714 ]
  -0.17057709 0.31151592 -0.13022666 0.01931353]
 [-0.83515001 \quad 0.28746968 \quad 0.06547357 \quad -0.08315555 \quad -0.0434235 \quad 0.34253384]
   0.1836984 - 0.33547868 \ 0.14024409 - 0.02079919
  \begin{bmatrix} -0.43153864 & 0.20919553 & 0.33354829 & 0.55115649 & -0.37446406 & -0.51425491 \end{bmatrix} 
   0.15383745 - 0.04932429 - 0.02689949 - 0.02007225
 [ \ 0.40071446 \ -0.19425299 \ -0.30972341 \ -0.51178817 \ \ 0.34771663 \ \ 0.47752242 ]
  -0.14284906 0.04580113 0.0249781 0.01863851]]
```

In [19]: # Contributions des points colonnes
 print(my_mca.col_contrib_)

]]	4.64207270e+00	1.21706703e+01	1.51042375e+01	2.29739639e+00
	1.97613161e+00	3.50313262e-01	2.79114015e+01	4.55442881e+00
	1.23822770e+01	9.25524242e-02]		
[1.34585463e+01	1.01914919e-02	1.15139433e-01	1.70285200e+00
	7.82823704e-01	1.87480502e-01	1.57846191e+00	6.45240301e-01
	8.22749141e+00	1.77362173e+01]		
[1.25978150e+01	9.58661729e+00	7.77241612e+00	3.95909184e-01
	1.14704658e-02	1.78513713e-02	6.89545420e+00	3.94117907e-01
	1.50033602e+00	3.49020865e+01]		
[1.67368602e+00	1.50620723e+01	2.19114722e+00	7.68462024e-01
	2.08240645e+00	1.16791442e-02	1.46628075e-01	2.98862105e+00
	1.25563298e+01	1.06671161e+01]		
[6.60404174e+00	7.60886705e+00	2.18333953e+01	8.95328362e-02
	7.76335649e+00	2.09411430e+00	1.74490143e-01	2.78118821e+01
	5.45645635e+00	2.04534510e+00]		
[1.40104164e+01	8.72224556e+00	3.01314769e+00	8.52121591e-01
	8.62984888e-02	1.65637063e+00	7.00222427e-01	3.54299832e+00
	8.07072682e+00	2.97158224e+01]		
[3.73685373e+00	1.01170578e+01	2.97200269e+00	4.29655213e+00
	4.52825567e+00	1.58621525e+01	2.37361098e+01	3.25289013e+00
_	1.63211906e-02	1.85217469e+00]		
[9.18041736e+00	1.99644722e+00	1.53351608e+01	2.02848142e+00
	3.76638865e-03	1.27614255e+01	2.53393206e+00	2.44725085e+00
-	2.00698479e+01	3.09937280e-01]	4 =00400=0	
[1.31199315e+00	1.75174229e+01	4.72240258e+00	2.52827940e-01
	3.84762211e+00	3.00222251e-02	8.10813552e+00	9.59301475e+00
-	1.71046406e+01	4.74881221e-01]	0.05210004 .00	1 05400001 .01
[2.27420826e+00	1.70014447e+00	9.25318084e+00	1.85499001e+01
	1.14335856e+00	9.32511183e+00	7.79652272e+00	1.00894867e+00
-	5.81957996e-01	2.18518362e-01]	C 21000C0E .00	2 00002106 :01
[8.63383636e-01	2.03240794e+00	6.31888605e+00	3.82293106e+01
	2.78858471e+01	1.26719352e+00	3.86885106e-01	7.25278956e-01
г	6.62061645e-02	2.37866987e-03]	2 0024402600	1 04121470- 00
[1.24923997e+00	8.39130827e+00	2.89244826e+00	1.84131478e-02
	3.52395869e+01	8.51380619e+00 3.06538061e-01]	9.12483625e+00	4.07225041e+00
г	5.61942915e-01		1 514015075 01	2 27026020- 01
[1.07914697e+01	1.60052866e+00	1.51421587e-01	3.27036829e-01
	9.35875699e-02 6.22545488e+00	7.09094445e+00 4.17937293e-011	3.08671758e+00	1.83630496e+01
г	1.16215827e+01	1.72364624e+00	1 620604020 01	2 521025000 01
L	1.00786614e-01	7.63640171e+00	1.63069402e-01 3.32415740e+00	3.52193508e-01 1.97755919e+01
	6.70433602e+00	4.50086316e-01]	3.32413/400+00	1.9//559190+01
г	3.10295649e+00	9.12785746e-01	4.23211941e+00	1.54720794e+01
[7.49503059e+00	1.72122911e+01	2.33128271e+00	4.27485436e-01
	2.46646321e-01	4.19174645e-01]	2.331202/1E+00	4.7/4024306-0T
[2.88131675e+00	8.47586764e-01	3.92982517e+00	1.43669309e+01
L	6.95967126e+00	1.59828417e+01	2.16476252e+00	3.96950762e-01
	0.737071206100	T.37020-II/ETUI	2.101/02/20100	3.7073070ZE-UI

2.29028726e-01 3.89233599e-01]]

In [20]: # Cos2 des points colonnes print(my_mca.col_cos2_) [[1.64625197e-01 3.44803059e-01 2.34627550e-01 2.66537163e-02 1.53163382e-02 2.18465774e-02 3.18050046e-03 1.67429315e-01 2.14651811e-02 5.25660553e-05] [8.75032050e-01 5.29341341e-04 3.27903251e-03 3.62193103e-02 1.58662007e-02 3.12058795e-03 1.73590277e-02 3.97817561e-03 2.61482672e-02 1.84680068e-02] [4.91442014e-01 2.98754660e-01 1.32809435e-01 5.05254394e-03 1.78280217e-04 1.39489425e-04 4.54993737e-02 1.45794078e-03 2.18052798e-02] 2.86098291e-03 [1.00447166e-01 7.22138784e-01 5.76011410e-02 1.50877186e-02 3.89594100e-02 1.79444121e-04 1.48849136e-03 1.70087034e-02 3.68363070e-02 1.02528343e-02] 3.39157541e-01 1.03873360e-03 [2.34203931e-01 2.15564186e-01 8.58256441e-02 1.90125017e-02 1.04669646e-03 9.35301025e-02 9.45898915e-03 1.16167377e-03] [5.75313407e-01 2.86123812e-01 5.41963075e-02 1.14470212e-02 1.74126746e-02 1.10468845e-03 4.86356754e-03 1.37962500e-02 1.62000281e-02 1.95422436e-02] [1.53447405e-01 3.31879115e-01 5.34562485e-02 5.77179639e-02 5.79652297e-02 1.66751629e-01 1.64865004e-01 1.26665839e-02 3.27608348e-05 1.21805981e-03] [3.97921103e-01 6.91296921e-02 2.91151283e-01 2.87635872e-02 5.08912185e-05 1.41608150e-01 1.85778305e-02 1.00588815e-02 2.15150115e-04] 4.25234310e-02 [6.02129213e-02 6.42244786e-01 9.49329478e-02 3.79595157e-03 3.52740658e-04 5.50470073e-02 6.29425906e-02 4.17493676e-02 3.49040920e-04] 3.83726466e-02 [1.26738700e-01 7.56897524e-02 2.25873819e-01 3.38187895e-01 1.98629905e-02 1.33041636e-01 7.34929109e-02 5.33193380e-03 1.58533237e-03 1.95029438e-04] [3.20768394e-02 6.03213262e-02 1.02831012e-01 4.64645451e-01 3.22964487e-01 1.20527241e-02 2.43128154e-03 2.55522703e-03 1.41532164e-06] 1.20236370e-04 2.47354011e-04 [5.12978688e-02 2.75267773e-01 5.20253342e-02 4.51094394e-01 8.95017905e-02 6.33788003e-02 1.58571300e-02 1.12796422e-03 2.01590970e-04] [6.47655853e-01 7.67360421e-02 3.98058885e-03 6.42092843e-03 1.75091491e-03 1.08948761e-01 3.13347388e-02 1.04506948e-01 1.82635190e-02 4.01705745e-04] [6.47655853e-01 7.67360421e-02 3.98058885e-03 6.42092843e-03 1.08948761e-01 1.75091491e-03 3.13347388e-02 1.04506948e-01 1.82635190e-02 4.01705745e-04] 4.06368567e-02 [1.72923773e-01 1.03307716e-01 2.82075371e-01 2.45568248e-01 2.19755343e-02 2.25910803e-03 1.30207379e-01 6.71897969e-04 3.74116824e-04] [1.72923773e-01 4.06368567e-02 1.03307716e-01 2.82075371e-01 1.30207379e-01 2.45568248e-01 2.19755343e-02 2.25910803e-03

I.4. Graphiques

6.71897969e-04 3.74116824e-04]]

2 types de graphiques peuvent être réalisés :

- Les mapping classiques qui représentent les points lignes et colonnes sur un plan factoriel
- Des graphiques qui permettent d'interpréter rapidement les axes : on choisit un axe factoriel (le 1er axe dans notre exemple) et on observe quels sont les points lignes et colonnes qui présentent les plus fortes contributions et cos2 pour cet axe

Graphiques factoriels

In [21]: # Mapping simultané des points lignes et colonnes
Les paramètres de la méthode mapping indiquent que ce sont les axes 1 et 2 qui so
nt ici représentés

my_mca.mapping(num_x_axis=1, num_y_axis=2)

In [22]: # Mapping des points lignes
my_mca.mapping_row(num_x_axis=1, num_y_axis=2)

In [23]: # Mapping des points colonnes
my_mca.mapping_col(num_x_axis=1, num_y_axis=2)

Sur les 3 graphiques factoriels précédents, les catégories ne sont pas préfixées par les noms des variables auxquelles elles appartiennent (c'est le choix fait par défaut par le package).

Ce choix est pertinent dans cet exemple car l'omission des préfixes permet d'alléger les graphiques, et il n'y a pas de risque de confusion entre les catégories.

Mais quand l'ensemble des catégories présente des doublons, il est préférable de les préfixer par les noms de variables pour lever toute ambiguïté, ce qui alourdit la présentation.

Dans ce cas, on fixe le paramètre short_labels à False

Analyse du 1er axe - Points lignes

In [25]: # Classement des points lignes en fonction de leur contribution au 1er axe
 # Le paramètre de la méthode plot_row_contrib indique que c'est pour l'axe numéro 1
 que les contributions sont ici
 # représentées
 my_mca.plot_row_contrib(num_axis=1)

In [26]: # Classement des points lignes en fonction de leur cos2 sur le 1er axe
 my_mca.plot_row_cos2(num_axis=1)

Analyse du 1er axe - Points colonnes

In [28]: # Classement des points colonnes en fonction de leur cos2 sur le 1er axe
 my_mca.plot_col_cos2(num_axis=1)

Pour ces graphiques produits par les méthodes *plot_row_contrib*, *plot_row_cos2*, *plot_col_contrib*, *plot_col_cos2*, on peut se limiter à visualiser les x valeurs les plus grandes via le paramètre nb_values.

In [29]: my_mca.plot_row_contrib(num_axis=1, nb_values=10)

Pour tous les graphiques présentés plus haut, il est possible de définir un taille particulière via le paramètre figsize.

II. Approche Machine Learning

Ici, l'objectif est d'utiliser l'Analyse des Correspondance Multiples en tant que méthode de prétraitement.

La classe MCA implémente les méthodes fit, transform et fit_transform bien connues des utilisateurs de scikit-learn.

Il est ici judicieux de fixer le paramètre stats à False pour gagner en temps de traitement et en ressources mémoire.

```
In [31]: my_mca = MCA(stats=False)
In [32]: my_mca.fit(X)
Out[32]: MCA(n_components=None, row_labels=None, stats=False, var_labels=None)
```

In [33]: my_mca.transform(X)

```
Out[33]: array([[ -3.17200051e-01, -4.17701298e-01, -1.01467714e-01,
                    -2.11436281e-01, -1.18509544e-01, -8.44917274e-01,
                    8.90501548e-02, 2.01986411e-01, -1.67018837e-01,
                    -2.28067149e-02],
                  [ 2.54109843e-01, 1.10122699e+00, -1.90700968e-01, 2.92637269e-01, -5.24008519e-01, 3.98946811e-02,
                     5.28331582e-02, -4.47362922e-01, 1.00738366e-01,
                   -1.47102197e-01],
                 [-4.86395534e-01, -4.64449578e-01, -4.98133882e-01,
                     5.77425252e-01, 2.75902052e-01, -5.67764838e-01,
                    -1.29096839e-01, 1.87330321e-01, -2.34185002e-01,
                     8.91993408e-03],
                 [ 4.47364924e-01, -8.81777941e-01, 6.92015804e-01,
                     2.60001835 e-01, \quad -4.55589836 e-01, \quad -2.13745841 e-01,
                   -3.00768021e-03, -1.98192681e-02, -2.44628915e-03,
                   -1.40900948e-01],
                 [ 1.01335218e+00, 5.49879489e-01, -1.63423202e-01,
                   -3.49919273e-01, 3.30786485e-01, -2.01414177e-01,
                    6.35440823e-02, -7.90356807e-02, -3.56024365e-02,
                   -6.65432469e-02],
                   [ \ -7.52574495e-01 \, , \quad \  5.46911834e-01 \, , \quad \  4.97573073e-01 \, , \\
                   6.55152661e-01, 7.21946355e-01, 1.17925813e-01, -1.85943335e-02, -3.73250962e-02, -1.12102625e-01,
                   -2.45732947e-02],
                  [ 9.12301484e-01, -1.61876744e-02, -5.76569722e-01,
                    6.28133396e-01, 4.34016531e-01, 3.86066396e-01,
                     4.01809663e-01, 2.49346973e-01, 1.65086085e-01,
                     1.13481695e-01],
                 [ 8.40799374e-01, 8.43852157e-01, -4.69947142e-01, -8.63428687e-02, -1.77346455e-01, 1.97088251e-01, -3.27291133e-01, 1.31410453e-01, -1.36707423e-01,
                     2.48406642e-03],
                 [ 7.33295293e-01, 7.90731735e-02, 6.62230424e-01,
                    1.89743186e-01, -1.04627236e-01, -6.26726024e-01,
                    -4.74951235e-01, -4.06017775e-01, 1.43663776e-01,
                     3.04810338e-01],
                 [ -1.17325200e-01, -5.26107651e-01, -3.34893734e-01,
                   -6.57754538e-01, 1.92130196e-01, -3.74168009e-01, -8.41976661e-02, 2.76173951e-01, -1.10667059e-01,
                    5.06561417e-02],
                 [ 6.47239775e-01, -9.90184294e-01, 4.58589784e-01,
                   -1.86316421e-01, -1.44950097e-01, 2.57003424e-01,
                   -1.76255501e-01, 5.43682719e-02, 5.39054897e-02,
                    -6.74380911e-02],
                 [ -8.73210214e-01, -3.15481101e-01, -4.52313727e-01,
                     5.10087132e-01, 2.39879728e-01, -2.54209144e-01, 7.77796319e-02, -3.17255514e-01, 5.96125655e-02,
                    -6.72034723e-02],
                 [ -1.04701683e+00, 5.06957678e-01, 1.65034759e-01,
                    6.28882045e-02, -3.16521571e-01, -1.70166797e-03,
                   -1.12827456e-01, 5.06165196e-01, 4.48174302e-01,
                    1.95886373e-02],
                 [ 4.78044292e-01, -1.03693257e+00, 6.19236160e-02,
                    6.02545112e-01, 2.49461500e-01, 5.34155860e-01, -3.94402495e-01, 3.97121822e-02, -1.32606750e-02,
                   -3.57114421e-02],
                 [ -1.44910083e-01, -5.15782953e-01, 1.17126612e-01,
                   -4.68922193e-01, 8.49711247e-04, 4.90693297e-01,
                    6.00636280e-01, -2.03761210e-01, -1.43230553e-01,
                     1.15969760e-01],
                 [-8.76567539e-01, 2.52398470e-02, -3.62171499e-01,
                    -1.51979963e-02, -6.62664808e-01, -1.32859151e-01,
                    -9.49085902e-02, -9.21532905e-02, 2.56737440e-02,
                    -2.99028079e-02],
```

In [34]: my_mca.fit_transform(X)

```
Out[34]: array([[ -3.17200051e-01, -4.17701298e-01, -1.01467714e-01,
                    -2.11436281e-01, -1.18509544e-01, -8.44917274e-01,
                    8.90501548e-02, 2.01986411e-01, -1.67018837e-01,
                    -2.28067149e-02],
                  [ 2.54109843e-01, 1.10122699e+00, -1.90700968e-01, 2.92637269e-01, -5.24008519e-01, 3.98946811e-02,
                     5.28331582e-02, -4.47362922e-01, 1.00738366e-01,
                   -1.47102197e-01],
                 [-4.86395534e-01, -4.64449578e-01, -4.98133882e-01,
                     5.77425252e-01, 2.75902052e-01, -5.67764838e-01,
                    -1.29096839e-01, 1.87330321e-01, -2.34185002e-01,
                     8.91993408e-03],
                 [ 4.47364924e-01, -8.81777941e-01, 6.92015804e-01,
                     2.60001835 e-01, \quad -4.55589836 e-01, \quad -2.13745841 e-01,
                   -3.00768021e-03, -1.98192681e-02, -2.44628915e-03,
                   -1.40900948e-01],
                 [ 1.01335218e+00, 5.49879489e-01, -1.63423202e-01,
                   -3.49919273e-01, 3.30786485e-01, -2.01414177e-01,
                    6.35440823e-02, -7.90356807e-02, -3.56024365e-02,
                   -6.65432469e-02],
                   [ \ -7.52574495e-01 \, , \quad \  5.46911834e-01 \, , \quad \  4.97573073e-01 \, , \\
                   6.55152661e-01, 7.21946355e-01, 1.17925813e-01, -1.85943335e-02, -3.73250962e-02, -1.12102625e-01,
                   -2.45732947e-02],
                  [ 9.12301484e-01, -1.61876744e-02, -5.76569722e-01,
                    6.28133396e-01, 4.34016531e-01, 3.86066396e-01,
                     4.01809663e-01, 2.49346973e-01, 1.65086085e-01,
                     1.13481695e-01],
                 [ 8.40799374e-01, 8.43852157e-01, -4.69947142e-01, -8.63428687e-02, -1.77346455e-01, 1.97088251e-01, -3.27291133e-01, 1.31410453e-01, -1.36707423e-01,
                     2.48406642e-03],
                 [ 7.33295293e-01, 7.90731735e-02, 6.62230424e-01,
                    1.89743186e-01, -1.04627236e-01, -6.26726024e-01,
                    -4.74951235e-01, -4.06017775e-01, 1.43663776e-01,
                     3.04810338e-01],
                 [ -1.17325200e-01, -5.26107651e-01, -3.34893734e-01,
                   -6.57754538e-01, 1.92130196e-01, -3.74168009e-01, -8.41976661e-02, 2.76173951e-01, -1.10667059e-01,
                    5.06561417e-02],
                 [ 6.47239775e-01, -9.90184294e-01, 4.58589784e-01,
                   -1.86316421e-01, -1.44950097e-01, 2.57003424e-01,
                   -1.76255501e-01, 5.43682719e-02, 5.39054897e-02,
                    -6.74380911e-02],
                 [ -8.73210214e-01, -3.15481101e-01, -4.52313727e-01,
                     5.10087132e-01, 2.39879728e-01, -2.54209144e-01, 7.77796319e-02, -3.17255514e-01, 5.96125655e-02,
                    -6.72034723e-02],
                 [ -1.04701683e+00, 5.06957678e-01, 1.65034759e-01,
                    6.28882045e-02, -3.16521571e-01, -1.70166797e-03,
                   -1.12827456e-01, 5.06165196e-01, 4.48174302e-01,
                    1.95886373e-02],
                 [ 4.78044292e-01, -1.03693257e+00, 6.19236160e-02,
                    6.02545112e-01, 2.49461500e-01, 5.34155860e-01, -3.94402495e-01, 3.97121822e-02, -1.32606750e-02,
                   -3.57114421e-02],
                 [ -1.44910083e-01, -5.15782953e-01, 1.17126612e-01,
                   -4.68922193e-01, 8.49711247e-04, 4.90693297e-01,
                    6.00636280e-01, -2.03761210e-01, -1.43230553e-01,
                     1.15969760e-01],
                 [-8.76567539e-01, 2.52398470e-02, -3.62171499e-01,
                    -1.51979963e-02, -6.62664808e-01, -1.32859151e-01,
                    -9.49085902e-02, -9.21532905e-02, 2.56737440e-02,
                    -2.99028079e-02],
```

Intégration dans une Pipeline de scikit-learn

La class MCA peut être intégrée dans une Pipeline de scikit-learn.

Dans le cadre de notre exemple, nous cherchons à prédire la 7ème variable (variable *Fonction*) à partir des 6 premières variables du jeu de données.

Fonction est une variable nominale comprenant 3 catégories : "chasse", "compagnie" et "utilite".

Pour la prédire, nous allons utiliser un modèle de régression logistique, qui prendra en input des axes issus d'une Analyse des Correspondances Multiples pratiquée sur les données brutes.

Dans un premier temps, et de façon tout à fait arbitraire, nous fixons le nombre de composantes extraites à 4.

```
In [35]: from sklearn.pipeline import Pipeline
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import GridSearchCV
In [36]: df = pd.read_table("mca_data.txt", header=0, index_col=0, delimiter="\t", encoding=
         "utf-8")
In [37]: \# X = features
         X = df.iloc[:, 0:6].as_matrix()
         # y = labels
         y = df.iloc[:, 6].as_matrix()
In [38]: # Construction de la Pipeline
         \# On enchaine une Analyse des Correspondances Multiples (4 axes retenus) puis une r
         égression logistique multinomiale
         pipe = Pipeline([("mca", MCA(n_components=4, stats=False)),
                          ("logit", LogisticRegression(multi_class="multinomial", solver="lb
         fgs"))])
In [39]: # Estimation du modèle
         pipe.fit(X, y)
Out[39]: Pipeline(steps=[('mca', MCA(n_components=4, row_labels=None, stats=False, var_la
         bels=None)), ('logit', LogisticRegression(C=1.0, class_weight=None, dual=False,
         fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='multinomial',
                   n_jobs=1, penalty='12', random_state=None, solver='lbfgs',
                   tol=0.0001, verbose=0, warm_start=False))])
In [40]: # Prédiction sur l'échantillon de test
         print(pipe.predict(X))
         ['chasse' 'compagnie' 'chasse' 'compagnie' 'compagnie' 'utilite'
          'compagnie' 'compagnie' 'compagnie' 'chasse' 'compagnie' 'utilite'
          'utilite' 'compagnie' 'chasse' 'utilite' 'compagnie' 'utilite' 'compagnie'
          'chasse' 'utilite' 'compagnie' 'chasse' 'utilite' 'chasse' 'compagnie'
          'utilite']
```

Le paramètre *n_components* peut faire l'objet d'une optimisation via GridSearchCV de scikit-learn. Nous reconstruisons donc une Pipeline, sans spécifier de valeur a priori pour *n_components*.

```
In [41]: # Reconstruction d'une Pipeline, sans spécifier de valeur a priori pour n_component
s
pipe2 = Pipeline([("mca", MCA(stats=False)), ("logit", LogisticRegression(multi_cla
ss="multinomial", solver="lbfgs"))])
```

```
In [42]: # Paramétrage de la grille de paramètres
         # Attention à l'étendue des valeurs possibles pour mca__n_components !!!
         param = [\{\text{"mca}_n\text{-components"}: [x + 1 \text{ for } x \text{ in } range(10)]\}]
In [43]: # Construction de l'obet GridSearchCV
         grid_search = GridSearchCV(pipe2, param_grid=param, scoring="accuracy")
In [44]: # Estimation du modèle
         grid_search.fit(X, y)
Out[44]: GridSearchCV(cv=None, error_score='raise',
                estimator=Pipeline(steps=[('mca', MCA(n_components=None, row_labels=None,
         stats=False, var_labels=None)), ('logit', LogisticRegression(C=1.0, class_weight
         =None, dual=False, fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='multinomial',
                   n_jobs=1, penalty='12', random_state=None, solver='lbfgs',
                   tol=0.0001, verbose=0, warm_start=False))]),
                fit_params={}, iid=True, n_jobs=1,
                param_grid=[{'mca__n_components': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}],
                pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                scoring='accuracy', verbose=0)
In [45]: # Affichage du score optimal
         grid_search.best_score_
Out[45]: 0.777777777777779
In [46]: # Affichage du paramètre optimal
         grid_search.best_params_
Out[46]: {'mca__n_components': 5}
In [47]: # Prédiction sur l'échantillon de test
         grid_search.predict(X)
Out[47]: array(['chasse', 'compagnie', 'chasse', 'compagnie', 'compagnie',
                 'utilite', 'compagnie', 'compagnie', 'compagnie', 'chasse',
                 'compagnie', 'utilite', 'utilite', 'compagnie', 'chasse', 'chasse',
                 'compagnie', 'chasse', 'compagnie', 'chasse', 'utilite',
                 'compagnie', 'chasse', 'utilite', 'chasse', 'compagnie', 'utilite'], dtyp
         e=object)
```