Geração e Resolução de puzzles do tipo Grape Puzzles

Gonçalo Alves $^{[up201806451]}$ e António Bezerra $^{[up201806854]}$

FEUP-PLOG, Turma 3MIEIC03, Grupo Grape_3 $\frac{1}{\text{https:}}/\text{web.fe.up.pt}$

Resumo Começa-se por definir o objetivo deste trabalho e pela apresentação de informações relevantes sobre cada ponto do trabalho. De seguida, é descrito o problema *Grape Puzzles* em detalhe. Na abordagem são descritas: as variáveis de decisão e as restrições aplicadas. Na secção de visualização da solução são explicados os predicados que permitem diferentes visualizações. De seguida, são apresentadas as experiências com os respetivos resultados. Finalmente, são apresentadas as conclusões e o possível trabalho futuro.

Keywords: Grape · Linhas · Restrição.

1 Introdução

Este artigo descreve o segundo trabalho realizado para a unidade curricular de Programação em Lógica, tendo como objetivo a resolução e geração de problemas do tipo *Grape Puzzles*, através de programação em lógica com restrições.

Inicialmente, o objetivo deste trabalho foi desenvolver um predicado que permitisse resolver os problemas apresentados no enunciado disponibilizado [1]. Após esta fase inicial, o próximo passo foi o melhoramento do nosso solucionador de modo a permitir a geração de problemas.

O artigo começa por descrever o problema em questão, seguido da abordagem tomada para o resolver. Após isto, são apresentadas as formas de visualização dos problemas e das soluções e também são apresentadas as experiências e os resultados. Finalmente, são discutidas as conclusões do trabalho.

2 Descrição do Problema

O problema de decisão $Grape\ Puzzle$, tal como descrito no site [1], tem como objetivo, colocar um número positivo em cada "uva". Cada número na primeira linha tem apenas um dígito e nas restantes linhas, os números são a soma das duas "uvas" da linha imediatamente acima. Além disso, "uvas" com o mesmo número têm a mesma cor. Assim, podemos interpretar este problema como a resolução de $n-1+\ldots+1$ somas, em que cores iguais representam variáveis iguais. Tomemos o exemplo, do problema seguinte, com 4 linhas:

Figura 1. Problema de 4 Linhas

As somas correspondentes, apresentadas de linha a linha, serão:

$$\begin{cases} A+B=D\bigcap B+B=A\bigcap B+C=E\\ D+A=C\bigcap A+E=F\\ C+F=G \end{cases} \tag{1}$$

Tendo como solução:

 ${\bf Figura\,2.}$ Solução de um problema de 4 Linhas

3 Abordagem

3.1 Variáveis de Decisão

Tal como descrito na secção anterior, as variáveis de decisão serão os números de cada "uva". De modo, a representar um *puzzle* como o da Fig.1, optou-se por uma lista de listas, em que cada lista representa uma linha do problema.

O predicado defineDomains/1 é responsável por definir os domínios para cada linha. Inicialmente, atribui à primeira linha o domínio [1,9] e depois vai atribuindo às outras listas o domínio [2,MaxValue]. A variável MaxValue é calculada consoante o número de linhas, através do predicado defineUpperBound/2.

3.2 Restrições

As restrições deste problema são as seguintes:

- Primeira linha apenas pode conter números positivos de um dígito
- A "uva" que se encontra debaixo de duas "uvas" é a soma destas
- "Uvas"com a mesma cor, contêm o mesmo número, com excepção da cor branca
- Há um número máximo de cores

As três primeiras restrições do problema são restrições rígidas. A última restrição foi assumida pelo grupo e isto deve-se ao facto de não estar presente no enunciado qualquer tipo de indicação sobre o número de cores obrigatórias que o problema deve ter. Assim, criou-se esta restrição flexível para poder gerar problemas inferiores a 4 linhas (problemas de 2 linhas não conseguiriam ter 3 cores) e problemas superiores a 6 linhas (problemas maiores vão necessitar de mais cores para não se tornarem demasiado difíceis para quem os está a resolver).

Assim, para a primeira restrição fez-se uso do predicado domain/3 da biblioteca clpfd do SICStus para limitar o domínio, como referido na subsecção anterior. Para a restrição da soma, desenvolveu-se o predicado defineSumConstraints/1, que percorre as listas e coloca a restrição FirstUpper + SecondUpper #= Child, para cada linha após a primeira. Por fim, a restrição de cor é feita com recurso ao predicado global_cardinality/2. Numa primeira fase, este predicado permite contar o número de ocorrências de números numa lista e com uma segunda chamada deste predicado, é possível restringir a ocorrência de pares de números ao número de cores necessárias.

4 Visualização da Solução

De modo a visualizar o "cacho de uvas"e tornar a experiência do utilizador mais apelativa, foram criados dois predicados displayOutput/2 e displayOutput/3, que apresentam a solução e o puzzle seguido da solução, respetivamente.

A primeira versão do predicado apenas apresenta a solução do problema e é utilizada no predicado grapesolver/1.

A segunda versão apresenta tanto o problema, com as cores substituidas por letras, como a solução respetiva. Esta versão é utilizada no predicado grapegenerator/2.

```
Puzzle:
(A)(C)(C)(B)
(B)(A)()
()()
()()
Solution:
(2)(1)(1)(3)
(3)(2)(4)
(5)(6)
(11)
```

Figura 3. Impressão de Resultados

5 Experiências e Resultados

O programa foi testado de modo a ser possível estudar o comportamento da nossa resolução não só com puzzles de tamanho diferente, mas também com estratégias de pesquisa diferentes. É de salientar que os resultados apresentados poderão diferir de máquina para máquina, devido aos diferentes tempos de processamento.

5.1 Análise Dimensional

O programa foi testado com problemas de 2 a 7 linhas.

Número de Linhas	Tempo de Execução (s)	Número de Soluções	
2	0	9	
3	0.015	80	
4	0.125	240	
5	1.438	9854	
6	13.906	96134	
7	128.641	212350	

Tabela 1. Resultados de uma Análise Dimensional

Como podemos observar pela tabela acima e pelos gráficos respetivos [4,5], o crescimento do tempo e das soluções encontradas foi exponencial. Por esta razão, não se testaram problemas de tamanho superior a 7 linhas.

Devido à falta de tempo, não foi possível desenvolver uma restrição que nos permitisse remover puzzles "espelhados", ver Fig7e8.

5.2 Estratégias de Pesquisa

O programa foi testado com todas as combinações de heurísticas, para problemas de 5 linhas.

Através da observação da tabela seguinte e do respetivo gráfico [6], concluímos que a combinação mais eficiente seria [ffc,enum,up].

Ordenação de Variáveis	Seleção de Valores	Ordenação de Valores	
	step	up	2.422
leftmost		down up	2.563 1.531
1010111000	enum	down	1.531
	bisect	up	1.875
	515555	down	2.047
	median	up down	2.469 2.547
	. , ,,	up	2.422
	middle	down	2.578
	step	up	2.656
min		down	2.594
	enum	up down	1.547 1.578
	1.	up	2.453
	bisect	down	2.531
	median	up	2.656
		down	2.594
	middle	up down	2.656 2.594
	-4	up	3.156
	step	down	3.782
max	enum	up	1.875
		down	1.89 3.203
	bisect	up down	3.172
	modian	up	3.266
	median	down	3.828
	middle	up	3.219
		down	3.781
	step	up down	2.438 2.562
ff		up	1.516
	enum	down	1.547
	bisect	up	1.89
		down	2.016
	median	up down	2.453 2.578
	. , ,,	up	2.453
	middle	down	2.578
	step	up	12.672
anti_first_fail		down	11.078
	enum	up down	5.157 5.187
	1:4	up	6.125
	bisect	down	6.297
	median	up	12.781
		down	11.156 12.735
	middle	up down	11.203
	,	up	2.406
occurrence	step	down	2.485
	enum	up	1.485
		down	1.5 1.828
	bisect	up down	1.922
	modian	up	2.343
	median	down	2.438
	middle	up	2.344
		down up	2.453 2.359
	step	down	2.453
ffc	enum	up	1.469
	enum	down	1.516
	bisect	up	1.796
		down up	1.954 2.375
	median	down	2.515
	middle	up	2.344
	middle	down	2.484
	step	up	2.5
$\max_{r} egret$		down up	2.672 1.578
man _r eyi ei	enum	down	1.61
	bisect	up	1.922
	Disect	down	2.031
	median	up	2.484
		down up	2.703 2.469
	middle	down	2.656
Tabala 2 Dage	iltados do dif	erentes Estratés	

Tabela 2. Resultados de diferentes Estratégias de Pesquisa

6 Conclusão e Trabalho Futuro

Este trabalho permitiu-nos aprender uma nova metodologia de programar, muito diferente e mais eficaz do que a abordagem tradicional de *Generate&Test*. Além disso, ficámos cientes da utilidade de programação em lógica com restrições, no mundo real.

Quanto a trabalho futuro, gostaríamos de melhorar a restrição flexível do número de cores e para além disso, realizar mais testes. Devido à falta de tempo, não conseguimos pensar numa relação entre o tamanho do problema e o número de cores e não conseguimos desenvolver a restrição de para análise dimensional referida na secção respetiva.

Referências

1. $Grape\ Puzzles,\ https://erich-friedman.github.io/puzzle/grapes/.$ Last accessed 3 Jan 2021

A Gráficos

Figura 4. Tempos de execução por Número de linhas do problema

 ${\bf Figura~5.}$ Número de soluções por Número de linhas do problema

 ${\bf Figura\,6.}$ Análise temporal de estratégias de pesquisa, para um problema de 5 linhas

B Imagens

Figura 7. Problema original

Figura 8. Problema invertido