1. Graph Basics

 $\begin{array}{c} 1 \\ \hline \\ \\ 5 \end{array} \begin{array}{c} 2 \\ \hline \\ 4 \end{array}$

Figure 1: An undirected graph G_1 with 5 vertices and 7 edges

Figure 2: A directed graph G_2 with 5 vertices and 7 edges.

a. Representation: Adjacency List, Adjacency Matrix What is the adjacency list and adjacency matrix of G_1 and G_2 , respectively?

	1	2	3	4	5
1	0	1	0	0	1
$\frac{1}{2}$	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Figure 3: Adjacency list and adjacency matrix representation of G_1

How about G_2 ? It's your turn now!

- 1. Adjacency matrix is of size $|V| \times |V|$ while adjacency list needs $\Theta(|V| + |E|)$ space.
- 2. If G is undirected, its adjacency matrix A is symmetric. Namely, $A^T = A$. Further, the main diagonal entries of A are all zeros.
- 3. **Self-loops**—edges from a vertex to itself—are possible in a directed graph, but are forbidden in an undirected graph.

b. Degree

- 1. $\sum_{u \in V} \text{degree}(u) = 2|E|$, where G is an undirected graph.
- 2. $\sum_{u \in V} \text{out-degree}(u) = \sum_{u \in V} \text{in-degree}(u) = |E|$, where G is a directed graph.
- 3. degree(u) = out-degree(u) + in-degree(u), where $u \in V$ and G is a directed graph.
- 4. A vertex whose degree is 0 is **isolated**.

c. Path, Connected Component

- 1. A **path** of length k from a vertex u to a vertex u' in a graph G = (V, E) is a sequence $\langle v_0, v_1, v_2, ..., v_k \rangle$ of vertices such that $u = v_0, u' = v_k$.
- 2. An undirected graph is **connected** if every vertex is reachable from all other vertices.
- 3. A directed graph is **strongly connected** if every two vertices are reachable from each other.

Figure 4: An undirected graph G_3 with 3 connected components: $\{1, 2, 5\}, \{3, 6\} \text{ and } \{4\}$

Figure 5: A directed graph G_4 with 3 strongly connected components: $\{1, 2, 4, 5\}, \{3\}$ and $\{6\}$

2. BFS and DFS

```
BFS(G, s)
 1 // G: input graph (sorted in alphabetical/ascending order);
    /\!\!/ s: source vertex
    for each vertex u \in V - \{s\}
 4
         d[u] = +INFTY
 5
    d[s] = 0
 6
    // create FIFO queue
 8
    Q = \text{EMPTY}
   Enqueue(G, s)
 9
10
    while Q not EMPTY
         u = \text{Dequeue}(G)
11
12
         for each v \in Adj[u]
              if d[v] = +INFTY
13
                   d[v] = d[u] + 1
14
                   Engueue(G, v)
15
16
    return d
```

Let's run BFS on graph G_1 !

Three-color is used to indicate search status of vertices

- White = a vertex is undiscovered
- Gray = a vertex is discovered, but its processing is incomplete
- Black = a vertex is discovered, and its processing is complete

Classification of edges (When we explore the edge, line 7-9 in DFS-Visit(u)):

- T = Tree edge = encounter new vertex (GRAY to WHITE)
- B = Back edge = from descendant to ancestor (GRAY to GRAY)
- F = Forward edge = from ancestor to descendant (GRAY to BLACK)
- C = Cross edge = any other edges (between trees and subtrees) (GRAY to BLACK)

DFS(G)

```
1  // G: input graph (sorted in alphabetical/ascending order);

2  for each vertex u \in V

3     u.color = White

4  time = 0

5  for each vertex u \in V

6     if u.color = White

7     // recursive routine/function

DFS-Visit(u)
```

DFS-Visit(u)

```
/\!\!/ white vertex u has just been discovered
    time = time + 1
3
    u.discover = time
4
   u.color = Gray
5
    /\!\!/ explore edge (u, v)
6
    for each vertex v \in Adi[u]
7
8
         if v.color = White
9
              DFS-Visit(v)
10
    /\!\!/ blacken u, it is finished
11
    u.color = Black
12
13
    time = time + 1
    u.finish = time
```


Try DFS on graph G_2 !