Теория вероятностей и математическая статистика

Некрасова Руслана Сергеевна

2022

TEMA 1:

Классическая вероятностная схема, пространство элементарных событий.

Предпосылки теории вероятностей

Все явления, происходящие в природе и обществе можно по признаку их предсказуемости разделить на 3 типа:

- **детерминированные:** при реализации определенного комплекса условий предсказываются абсолютно достоверно;
- случайные: предсказываются с определённой вероятностью;
- неопределенные: предсказание невозможно в силу неповторяемости или исключительности.

Теория вероятностей

изучает случайные явления.

(Детерминированные явления – частный случай.)

Историческая справка:

Комбинаторные задачи азартных игр (новые понятия, подходы, идеи).

- Ферма, Паскаль, Гюйгенс.
- Якоб Бернулли, Лаплас, Гаусс.
- Гюйгенс: "О расчетах в азартной игре", 1657.
- Бернулли: "'Искусство предположений", 1713.
- 19— начало 20 вв. Более серьезные проблемы, предпосылки для создания отдельного раздела математики.

Историческая справка:

20 век:

- П. Л. Чебышёв,
- А. А. Марков,
- А. Н. Колмогоров.

Основной предмет изучения: случайность и неопределенность.

При рассмотрении отдельных экспериментов трудно обнаружить закономерности. Рассматривается последовательность большого числа опытов. Индивидуальные опыты могут вести себя "неправильно", средние результаты помогают обнаружить устойчивость.

- Во многих областях человеческой деятельности существуют ситуации, когда те или иные эксперименты (наблюдения) могут быть повторены большое число раз в одинаковых условиях.
- Теорию вероятностей интересуют эксперименты, результаты которых выражаются известным образом, но могут меняться от опыта к опыту.
- События, относящиеся к результату эксперимента, которые при этом могут происходить или не происходить, называются случайными событиями.

Пример:

монета подбрасывается n раз, n_r — число выпадений герба.

$$\frac{n_r}{n} \to \frac{1}{2}, \quad n \to \infty.$$

Бюффон (18 век): 4040 подбрасываний, $n_r=2048,\; n_r/n\approx 0.508.$

Пирсон: n = 204000, $n_r = 12012$, $n_r/n \approx 0.5005$.

Вероятность

Частота осуществления какого-либо исхода в последовательности повторяющихся в одинаковых условиях экспериментов приближается к некоторому фиксированному числу $p\in[0,\,1]$ при росте числа экспериментов. Это число принимается за вероятность данного

исхода.

Дискретное пространство элементарных исходов

Цель:

математическое описание событий (исходов).

Пространство элементарных исходов

Любое множество Ω взаимоисключающих исходов эксперимента такое, что каждый интересующий нас результат эксперимента может быть однозначно описан с помощью элементов данного множества.

Дискретное пространство

Будем рассматривать конечное или счетное множество Ω .

$$\omega \in \Omega$$
.

 ω – элементарный исход (событие).

Случайное событие -

это любое подмножество $A\subseteq\Omega$. Событие A произошло, если произошло одно из элементарных событий $\omega:\omega\in A$.

Для случайных событий справедлива теория множеств

- Сумма: A + B, $(A \cup B)$.
- Произведение: AB, $(A \cap B)$.
- Разность: A B, $(A \setminus B)$.
- ullet Дополнение: $\Omega A = \overline{A}$.
- Ω достоверное событие
- ∅– невозможное событие
- *А* и *B* несовместные события, если $A \cap B = \emptyset$.

Пример.

Двукратное бросание кубика.

$$|\Omega| = 36,, \quad \omega = (i, j), \quad i, j = 1, \dots, 6.$$

i — число точек на первом кубике, j — число точек на втором кубике.

Случайные события:

- $A = \{i + j \leq 3\};$
- $B = \{j = 6\};$
- $C = \{j \text{ четно}\}.$

Тогда: $AB = \emptyset$, AC = (1, 2).

Вероятность элементарного события

Говорят, что заданы вероятности элементарных событий, если на Ω задана неотрицательная числовая функция P такая, что

$$\sum_{\omega \in \Omega} \mathsf{P}(\omega) = 1. \tag{1}$$

Вероятность случайного события A

$$P(A) = \sum_{\omega \in A} P(\omega).$$
 (2)

(Определяется корректно, т. к. ряд в правой части абсолютно сходится.)

- ! Не для всех моделей можно построить дискретное пространство элементарных событий.
- Учитывая абсолютную сходимость рядов (2) можно сформулировать следующие

свойства вероятности

- 1. $P(\emptyset) = 0$.
- 2. $P(\Omega) = 1$.

3.

$$P(A+B) = \sum_{\omega \in A+B} P(\omega) = \sum_{\omega \in A} P(\omega) + \sum_{\omega \in B} P(\omega) - \sum_{\omega \in A \cap B} P(\omega)$$
$$= P(A) + P(B) - P(AB).$$

свойства вероятности

- $4. \ \mathsf{P}(\overline{A}) = 1 \mathsf{P}(A).$
- 5. для непересекающихся (несовместных событий): P(A+B) = P(A) + P(B). (Свойство аддитивности.)
- 5' Свойство счетной аддитивности: $A_1,\ A_2,\dots$ группа несовместных событий, т.е. $A_iA_j=\emptyset,\ i\neq j$. Тогда

$$\mathsf{P}\big(\cup_{k=1}^{\infty}A_k\big)=\sum_{k=1}^{\infty}\mathsf{P}(A_k).$$

T.K.

$$P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k), \quad P(\bigcup_{k=n+1}^\infty A_k) \to 0, \quad n \to \infty.$$

Для произвольных случайных событий:

$$P(A+B) \leqslant P(A+P(B),$$

 $P(\bigcup_{k=1}^{\infty} A_k) \leqslant \sum_{k=1}^{\infty} P(A_k).$

Классическая вероятностная схема

Все элементарные исходы равновероятны

- $|\Omega| = n < \infty$.
- $\mathsf{P}(\omega) = 1/n$ для любого $\omega \in \Omega$.

Следовательно,

$$P(A) = \frac{|A|}{n}.$$

Литература

- [1] Боровков А. А., *Теория вероятностей*/ А. А. Боровков. 2-е изд. Москва: Наука, 1986.- 432 с.
- [2] МОРОЗОВ Е. В., *Теория вероятностей*/ Е. В. Морозов. Петрозаводск : Изд-во ПетрГУ, 2018. -93 с.
- [3] ГМУРМАН, В.Е., Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие/ В.Е. Гмурман. Изд. 3-е, перераб. и доп. Москва: Высшая школа, 1979. 400 с.
- [4] ЕФИМОВ А.В., ПОСПЕЛОВ А.С., Сборник задач по математике для втузов. в 4 частях. Часть 4: учебное пособие для втузов.

Комбинаторный метод вычисления вероятностей при классической схеме

Метод урн

Опыт состоит в выборе наудачу m элементов из n различных элементов множества $E = \{e_1, e_2, \dots\}$.

1. Выбор без возвращения,	3. Выбор с возвращением,
без упорядочивания.	без упорядочивания.
2. Выбор без возвращения,	4. Выбор с возвращением,
с упорядочиванием.	с упорядочиванием

1. Выбор без возвращения, без упорядочивания (многомерное гипергеометрическое распределение).

Число сочетаний

Различные исходы — m-элементные подмножества множества E, имеющие различный состав. Тогда

$$|\Omega| = C_n^m = \frac{n!}{m!(n-m)!}.$$

2. Выбор без возвращения, с упорядочиванием.

Число размещений

Различные исходы – упорядоченные m-элементные подмножества

множества Е. Тогда

$$|\Omega| = A_n^m = C_n^m \cdot m! = \frac{n!}{(n-m)!}.$$

(При m=n имеем $|\Omega|=n!$)

3. Выбор с возвращением, без упорядочивания (полиномиальное распределение).

Сочетания с повторениями

Различные исходы – т-элементные наборы, отличающиеся составом.

Тогда

$$|\Omega| = C_{n+m-1}^m.$$

4. Выбор с возвращением, с упорядочиванием.

Размещения с повторениями

Различные исходы – все возможные *m*-элементные наборы, отличающиеся либо составом элементов, либо порядком следования. Тогда

$$|\Omega|=n^m$$
.

TEMA 2:

Условная вероятность. Формула Байеса.

Дискретное вероятностное пространство.

Условная вероятность

Рассмотрим $A, B \subseteq \Omega$, причем P(B) > 0.

Условной вероятностью события А относительно события В

называется величина

$$P(A|B) = \frac{P(AB)}{P(B)}.$$
 (3)

Независимость случайных событий

Если

$$P(AB) = P(A)P(B), (4)$$

то события А и В называются независимыми.

- Вероятностная независимость носит информационный, а не причинно-следственный характер.
- Свойство независимости симметрично (если A не зависит от B, то B не зависит от A.).
- Для **независимых** событий условная вероятность совпадает с безусловной: P(A|B) = P(A). Заметим,

$$P(AB) = P(A)P(B) = P(A|B)P(B) = P(B|A)P(A).$$

Для произведения произвольных n событий $A_1,...,A_n$ по индукции можно показать следующее соотношение:

$$\mathsf{P}(A_1 \cdots A_n) = \mathsf{P}(A_1) \mathsf{P}(A_2 | A_1) \mathsf{P}(A_3 | A_1 A_2) \cdots \mathsf{P}(A_n | A_1 \cdots A_{n-1}), \; n > 1.$$

Независимость в совокупности

События $A_1,...,A_n$ называются **независимыми в совокупности**, если для любой группы $A_{i_1},...,A_{i_k}$ из $k\leqslant n$ событий выполняется равенство

$$P\left(\bigcap_{p=1}^{k} A_{i_p}\right) = \prod_{p=1}^{k} P(A_{i_p}). \tag{5}$$

Если это равенство верно лишь для k=2, то события называются **попарно независимыми**.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

В₁, В₂, ... — полная группа несовместных событий.

(
$$B_i \cap B_j = \emptyset$$
, $\forall i \neq j$; $\sum_i B_i = \Omega$.)

- $P(B_i) > 0$.
- *A* некоторое событие.

Тогда

$$A = A\Omega = A\left(\sum_{i} B_{i}\right) = \sum_{i} AB_{i}.$$
 (6)

Из (6):

$$P(A) = P\left(\sum_{i} AB_{i}\right) = \sum_{i} P(AB_{i}) = \sum_{i} P(A|B_{i})P(B_{i}).$$

⇒ Формула полной вероятности

$$P(A) = \sum_{i} P(A|B_i)P(B_i). \tag{7}$$

⇒ Формула Байеса

$$P(B_i|A) = \frac{P(AB_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}, \quad i \geqslant 1.$$
 (8)

(Обе формулы верны в случае счетного числа событий $\{B_i\}$.)

Дискретное вероятностное пространство

- Ω конечное или счетное множество (элементарных исходов).
- $\mathcal{F} \sigma$ -алгебра подмножеств множества Ω .
- $\langle \Omega, \mathcal{F} \rangle$ измеримое пространство.
- Р вероятностная мера, определенная на элементах \mathcal{F} , (счетно-аддитивная, неотрицательная, нормированная 1).

Вероятностное пространство

Множество элементарных сходов, σ -алгебра его подмножеств и заданная на ней вероятностная мера

 $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$ есть вероятностное пространство.

Прямое произведение вероятностных пространств

- Рассмотрим n независимых экспериментов (пусть n=2).
- $\langle \Omega_1, \mathcal{F}_1, \mathsf{P}_1 \rangle$, $\langle \Omega_2, \mathcal{F}_2, \mathsf{P}_2 \rangle$ вероятностные пространства, соответствующие экспериментам.
- $\Omega_1 = \{\omega_i\}$, и $\Omega_2 = \{\omega_j\}$.

Проблема:

- Независимость экспериментов
 ⇔ независимость связанных с ними случайных событий.
- \Rightarrow события разных экспериментов должны быть определены на *одном* вероятностном пространстве.
- ullet ! Пространства $\langle \Omega_1,\, \mathcal{F}_1,\, \mathsf{P}_1 \rangle$ и $\langle \Omega_2,\, \mathcal{F}_2,\, \mathsf{P}_2 \rangle$, вообще говоря, различны.

Прямое произведение вероятностных пространств

Новое вероятностное пространство

множество элементарных исходов:

$$\Omega := \Omega_1 \times \Omega_2 = \{ \omega = (\omega_i, \omega_j) : \omega_i \in \Omega_1, \omega_j \in \Omega_2 \},$$

вероятностная мера:

$$P(\omega) := P_1(\omega_i)P_2(\omega_j).$$

- Рассмотрим с. с. $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$.
- В новом пространстве строим события А и В (цилиндрические множества):

$$A = \{(\omega_i, \omega_j) : \omega_i \in A_1, \, \omega_j \in \Omega_2\},$$

$$B = \{(\omega_i, \omega_j) : \omega_i \in \Omega_1, \, \omega_j \in A_2\}.$$

A и B – аналоги событий $A_1,\ A_2$ в общем вероятностном пространстве.

Учитывая абсолютную сходимость всех встречающихся далее рядов, имеем:

$$P(A) = \sum_{\omega \in A} P(\omega) = \sum_{\omega_i \in A_1, \, \omega_j \in \Omega_2} P_1(\omega_i) P_2(\omega_j)$$

$$= \sum_{\omega_i \in A_1} P_1(\omega_i) \sum_{\omega_j \in \Omega_2} P_2(\omega_j) = \sum_{\omega_i \in A_1} P_1(\omega_i) = P_1(A_1).$$

Аналогично получаем $P(B) = P_2(A_2)$.

Теорема.

События A и B независимы для любых A_1, A_2 , т.е.

$$P(AB) = P(A)P(B). (9)$$

Доказательство:

Очевидно, $AB = \{\omega : \omega_i \in A_1, \omega_j \in A_2\}$. Поэтому

$$\mathsf{P}(AB) = \sum_{\omega_i \in A_1} \mathsf{P}(\omega_i) \sum_{\omega_j \in A_2} \mathsf{P}(\omega_j) = \mathsf{P}_1(A_1) \mathsf{P}_2(A_2) = \mathsf{P}(A) \mathsf{P}(B). \quad \blacksquare$$

Случайные события, связанные с каждым из двух независимых опытов в терминах одного вероятностного пространства Ω , оказываются независимыми, и кроме того, эта независимость сохраняется при любом изменении вероятностных мер $\mathsf{P}_1,\,\mathsf{P}_2.$

Данная схема верна для любого числа независимых экспериментов.

TEMA 3:

Дискретная случайная величина, примеры распределений.

Случайная величина.

Пусть задано вероятностное пространство $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$, причем Ω не более чем счетно.

Измеримое отображение

$$\xi: \Omega \to \mathbf{R} = (-\infty, \infty)$$

называется дискретной случайной величиной (с.в.).

$$\xi$$
 – [кси].

Если $\xi:\Omega\to \mathsf{R}^n$, и n>1, то ξ называется случайным вектором.

ullet Пусть $\{x_i\} \in {\sf R}$ — значения с. в. ξ (их число не более чем счетно).

Определим вероятность P_{ε} на R:

$$P_{\xi}(x_i) = P(\xi = x_i) = P(\omega : \xi(\omega) = x_i) = P(A_i) = p_i,$$
 (10)

где

$$A_i = \{\omega : \xi(\omega) = x_i\} =: \xi^{-1}(x_i).$$

 ξ^{-1} означает операцию взятия полного прообраза.

Распределение случайной величины

Множество пар чисел $\{x_i, p_i\}$ называется распределением дискретной случайной величины ξ .

(Законом распределения с.в. ξ .)

Примеры дискретных распределений

Равномерное распределение

с. в. ξ принимает значения 1,...,N с вероятностями

$$p_i = \mathsf{P}(\xi = i) = 1/N$$
 (классическая вероятность).

$$x_i = i, p_i = 1/N, i = 1, ..., N.$$

Распределение Бернулли (биномиальное распределение)

 ξ принимает значения k=0,1,...,n с вероятностями

$$P(\xi = k) = C_n^k p^k q^{n-k}. \tag{11}$$

 $p\geqslant 0,\ q\geqslant 0,\ p+q=1$ – заданные параметры.

Данное распределение описывает число успехов в схеме Бернулли длины n с вероятностью успеха p, заметим

$$\sum_{k=0}^{n} p_{k} = \sum_{k=0}^{n} C_{n}^{k} q^{n-k} p^{k} = (p+q)^{n} = 1.$$

Геометрическое распределение

 ξ – число испытаний до первого успеха в схеме Бернулли.

Удобно использовать прямое произведение вероятностных пространств

$$\Omega_i = \{0,1\}$$
, каждый элементарный исход имеет вид $\omega = (0,\dots,0,1).$

Тогда $\mathsf{P}(\omega) = q^{\xi(\omega)} p$ и

$$P_{\xi}(k) := P(\xi = k) = (1 - p)^{k} p = q^{k} p, \ k \geqslant 0.$$
 (12)

Свойство потери памяти

$$P(\xi = k + n | \xi \geqslant n) = q^k p, \ k, n \geqslant 0.$$
 (13)

Пуассоновское распределение

 ξ имеет Пуассоновское распределение с параметром $\lambda>0$, если

$$P_{\xi}(k) = P(\xi = k) = p_k = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, ...$$
 (14)

Показать:

$$\sum_{k\geqslant 0}p_k=1.$$

Индикатор случайного события

Индикатором случайного события $A \in \mathcal{F}$ называется с. в.

$$I(A) = I_A(\omega) = \begin{cases} 1, & \omega \in A; \\ 0 & \omega \notin A. \end{cases}$$

Свойства индикаторов:

$$I(\emptyset) = 0; I(\Omega) = 1; I(\bar{A}) = 1 - I(A); I(AB) = I(A)I(B);$$

$$I(A + B) = I(A) + I(B) - I(AB); I^{n}(A) = I(A);$$

$$I(\bigcup_{i=1}^{n} A_{i}) = 1 - I(\bigcup_{i=1}^{n} A_{i}) = 1 - I(\bigcap_{i=1}^{n} \overline{A_{i}})$$

$$= 1 - \prod_{i=1}^{n} (1 - I(A_{i})), n \geqslant 1.$$

TEMA 4:

Характеристики дискретных случайных величин.

Математическое ожидание дискретной случайной величины

Пусть задана дискретная с.в. ξ . Если ряд $\sum_{\omega} \xi(\omega) P(\omega)$ абсолютно сходится, т.е. $\sum_{\omega} |\xi(\omega)| P(\omega) < \infty$, то величина

$$\mathsf{E}\xi := \sum_{\omega} \xi(\omega) \mathsf{P}(\omega) \tag{15}$$

называется **математически ожиданием** с. в. ξ .

Замечание: если $\xi(\omega)\geqslant 0$, то случай $\sum_{\omega}\xi(\omega)\mathsf{P}(\omega)=\infty$ можно интерпретировать как существование бесконечного м. о. (E $\xi=\infty$.) (Аналогичные рассуждения верны при $\xi\leqslant 0$.)

◆ロト ◆個ト ◆注ト ◆注ト 注 りへぐ

Теорема.

Пусть $\{x_i, p_i\}$ — распределение с.в. ξ . Тогда

$$\mathsf{E}\xi = \sum_{i} x_{i} p_{i}. \tag{16}$$

Доказательство:

$$\mathsf{E}\xi = \sum_{\omega} \xi(\omega) \mathsf{P}(\omega) = \sum_{i} \sum_{\omega: \, \xi(\omega) = x_i} \xi(\omega) \mathsf{P}(\omega) = \sum_{i} x_i p_i,$$

перемена порядка суммирования возможна ввиду абсолютной сходимости,

также учтено
$$p_i = P(\omega : \xi(\omega) = x_i)$$
.

Замечание.

Ряды $\sum_{\omega} \xi(\omega) P(\omega)$ и $\sum_{i} x_{i} p_{i}$ одновременно, либо сходятся абсолютно, либо расходятся, однако множество значений $\{x_{i}\}$ с.в. ξ имеет более простую структуру, чем исходное (часто даже нечисловое) пространство Ω , и поэтому работать с выражением $\sum_{i} x_{i} p_{i}$ существенно проще.

Математическое ожидание $\mathsf{E}\xi$ также называют **средним значением** случайной величины ξ .

Свойства математического ожидания

- 1. Если $\xi \geqslant 0$, то Е $\xi \geqslant 0$.
- 2. $|E\xi| \le E|\xi|$.
- 3. Ec = c(= const).
- 4. Линейность

$$\mathsf{E}(\mathsf{a}\xi\pm\mathsf{b}\eta)=\mathsf{a}\mathsf{E}\xi\pm\mathsf{b}\mathsf{E}\eta,$$

где a, b - произвольные константы.

Доказательство сво-ва 4.:

Обозначим $I_i = I(\xi(\omega) = x_i), \ I_j = I(\eta(\omega) = y_j), \ I(\xi = x_i, \ \eta = y_j) = I_{ij}.$ Тогда $\xi = \sum_i x_i I_i, \ \eta = \sum_j y_j I_j$, и кроме того,

$$I_{ij} = I_i I_j, \sum_i I_i = \sum_j I_j = 1, \sum_j I_{ij} = I_i, \sum_i I_{ij} = I_j.$$

Пусть $(x_i, p_i), (y_j, q_j)$ – распределения с.в. ξ, η соответственно, а $P(\xi = x_i, \eta = y_j) = p_{ij}$ - их совместное распределение.

Заметим, что Е $I_i=p_i,\, \mathsf{E} I_j=q_j,\, \mathsf{E} I_{ij}=p_{ij},\, \mathsf{u}$

$$a\xi \pm b\eta = \sum_{i} ax_{i}I_{i} \pm \sum_{j} by_{j}I_{j} = \sum_{i} ax_{i} \sum_{j} I_{ij}$$
$$\pm \sum_{i} by_{j} \sum_{i} I_{ij} = \sum_{i} (ax_{i} \pm by_{j})I_{ij}.$$

4 D > 4 B > 4 E > 4 E > 9 Q P

Переходя к м.о. и учитывая $\mathsf{E}\xi = \sum_i x_i \mathsf{E} I_i$, получаем

$$\mathsf{E}(a\xi\pm b\eta)=\mathsf{E}(\sum_{ij}(ax_i\pm by_j)I_{ij})=\sum_{ij}(ax_i\pm by_j)p_{ij}=a\mathsf{E}\xi\pm b\mathsf{E}\eta,\ (17)$$

где учтено, что
$$\sum_j p_{ij} = p_i, \; \sum_i p_{ij} = q_j.$$

Свойства математического ожидания

5. Если $\xi \geqslant \eta$, то Е $\xi \geqslant$ Е η . Действительно, $\xi - \eta \geqslant 0$, и по свойству 1, Е $(\xi - \eta) \geqslant 0$. Теперь по свойству 4 получаем Е $\xi \geqslant$ Е η .

Примеры

Индикатор случайного события

Для индикатора события A справедливо EI(A) = P(A).

Распределение Бернулли

Пусть $\mu(n)$ — число успехов в схеме Бернулли длины n и p — вероятность успеха. Заметим, что

$$\mathsf{E}\mu(n) = \sum_{k} k \mathsf{P}(\mu(n) = k) = \sum_{k} k C_n^k \rho^k q^{n-k},$$

и непосредственный подсчет м.о. числа успехов по данной формуле быстро усложняется с ростом n.

Распределение Бернулли

Используя индикаторы

$$I_i = egin{cases} 1, & ext{успех в i-м испытании;} \ 0, & ext{иначе,} \end{cases}$$

и представление $\mu(n) = \sum_{i=1}^n I_i$, легко подсчитать, что

$$\mathsf{E}\mu(n) = \sum_{i=1}^{n} \mathsf{E}I_{i} = np. \tag{18}$$

Примеры

Функция от с.в.

Пусть ξ -дискретная с.в. и функция $\varphi: \mathbf{R} o \mathbf{R}$ так, что

 $\sum_i |arphi(x_i)| p_i < \infty$. Тогда справедливо равенство

$$\mathsf{E}\varphi(\xi) = \sum_{i} \varphi(x_{i})p_{i},\tag{19}$$

доказательство которого совпадает с выводом формулы (16):

$$\mathsf{E}\varphi(\xi) = \sum_{\omega} \varphi(\xi(\omega)) \mathsf{P}(\omega) = \sum_{i} \sum_{\omega: \xi(\omega) = x_i} \varphi(\xi(\omega)) \mathsf{P}(\omega) = \sum_{i} \varphi(x_i) p_i.$$

Дисперсия с.в.

Математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.

$$D\xi = \mathsf{E}(\xi - \mathsf{E}\xi)^2$$

называется **дисперсией** с.в. ξ .

Среднеквадратическое отклонение

Величина

$$+\sqrt{D\xi} = \sigma_{\xi} \tag{20}$$

называется среднеквадратическим отклонением с.в. ξ .

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Дисперсия может быть записана в виде

$$D\xi = \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2. \tag{21}$$

Свойства дисперсии

- 1. $D\xi \geqslant 0$.
- 2. Dc = 0 (c = const).
- 3. $D(c\xi) = c^2 D\xi$.

Моменты случайной величины

Начальный момент

Пусть ξ — с.в. с распределением (x_i, p_i) . Если ряд $\sum_i |x_i|^k p_i, \ k>0,$ сходится (следовательно, сходится ряд $\sum_i x_i^k p_i$), то выражение

$$\mathsf{E}\xi^k = \sum_i x_i^k p_i \tag{22}$$

называется начальным моментом k-го порядка с.в. ξ .

Моменты случайной величины

Центральный момент

Величина

$$E(\xi - E\xi)^k = \sum_{i} (x_i - E\xi)^k p_i$$
 (23)

называется центральным моментом k-го порядка с.в. ξ .

Мат. ожидание – начальный момент первого порядка, а дисперсия — центральный момент второго порядка.

Замечание.

Если существует (начальный) момент k-го порядка, т. е., $E|\xi|^k < \infty$ (иначе говоря, с.в. ξ^k – *суммируема*), то существуют и моменты порядка n < k. Действительно,

$$\begin{aligned}
\mathsf{E}|\xi|^n &= \mathsf{E}|\xi|^n I(|\xi| > 1) + \mathsf{E}|\xi|^n I(|\xi| \leqslant 1) \leqslant \mathsf{E}|\xi|^k I(|\xi| > 1) + 1 \\
&\leqslant \mathsf{E}|\xi|^k + 1 < \infty.
\end{aligned} \tag{24}$$

TEMA 5:

Независимость случайных величин.

Пусть с. в. ξ и η имеют распределения $\{x_i, p_i\}$ и $\{y_j, q_j\}$, соответственно.

Рассмотрим события
$$A_i = \{\omega : \xi(\omega) = x_i\}, \ B_j = \{\omega : \eta(\omega) = y_j\}.$$

Независимость

Случайные величины ξ и η называются **независимыми**, если независимы события

$$A_i$$
, B_j , $\forall i, j$.

Теорема.

Пусть с. в. ξ и η независимы, и функции $f,g: \mathbf{R} \to \mathbf{R}$ измеримы (т. е. борелевские). Тогда функции

$$f(\xi) =: \phi, \quad g(\eta) =: \psi$$

есть независимые с. в.

Доказательство

Каждая из функций ϕ и ψ есть с. в. как композиция измеримых функций. Далее пусть $\{x_i\}$ и $\{y_i\}$ есть значения с. в. ϕ и ψ , соответственно. Тогда

$$P_{\phi,\psi}(x_i, y_j) = P(\omega : \phi(\omega)) = x_i, \ \psi(\omega)) = y_j$$

$$= P(\omega : \xi(\omega) \in f^{-1}(x_i), \ \eta(\omega) \in g^{-1}(y_j))$$

$$= P(\xi \in f^{-1}(x_i)) P(\eta \in g^{-1}(y_j))$$

$$= P(\phi = x_i) P(\psi = y_i). \tag{25}$$

Независимость в совокупности

Рассмотрим набор с. в. $\xi_1,...,\xi_n$, где с. в. ξ_k принимает значения $\{x_i^{(k)}\}$. Введем события

$$A_i^{(1)} = \{\omega : \xi_1(\omega) = x_i^{(1)}\}, \ldots, A_i^{(n)} = \{\omega : \xi_n(\omega) = x_i^{(n)}\}.$$

Случайные величины $\xi_1,...,\xi_n$ называются независимыми в совокупности, если события $\{A_i^{(k)},\ k\in\mathcal{K}\}$ независимы для в совокупности для любого набора с. в. \mathcal{K} .

Мультипликативность математического ожидания

Если с. в. ξ и η независимы и $\xi < \infty$, $\xi < \infty$, то

$$\mathsf{E}(\xi\eta) = \mathsf{E}\xi\mathsf{E}\eta. \tag{26}$$

Доказательство:

Пусть $\{x_i, p_i\}$ и $\{y_i, q_i\}$ – распределения ξ и η . Поскольку

$$\xi = \sum_i x_i I_i, \ \eta = \sum_j y_j I_j, \ \xi \eta = \sum_{ij} I_i I_j x_i y_j = \sum_{ij} I_{ij} x_i y_j,$$
 To

$$\mathsf{E}(\xi\eta) = \mathsf{E}\big(\sum_{ij} x_i y_j I_{ij}\big) = \sum_{ij} x_i y_i \mathsf{E}(I_{ij}) = \sum_{ij} x_i y_j p_i q_j = \sum_i x_i p_i \sum_j y_i q_i = \mathsf{E}\xi \mathsf{E}\eta.$$

Свойство мультипликативности математического ожидания переносится на любую последовательность $\xi_1,...,\xi_n$ независимых в совокупности с. в.:

$$\mathsf{E}\Big(\prod_{i}\xi_{i}\Big) = \prod_{i}\mathsf{E}\xi_{i}.\tag{27}$$

Ковариация случайных величин

Величины

$$cov(\xi, \eta) := \mathsf{E}[(\xi - \mathsf{E}\xi)(\eta - \mathsf{E}\eta)] \tag{28}$$

называется ковариацией с.в. ξ и η

Ковариация выражает меру зависимости между с. в.

Показать

$$cov(\xi, \eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi\mathsf{E}\eta; \tag{29}$$

$$D(\xi \pm \eta) = D\xi + D\eta \pm 2cov(\xi, \eta). \tag{30}$$

$$cov(\xi,\xi) = D\xi$$
, $cov(-\xi,\xi) = -D\xi$, $cov(c\xi,\xi) = cD\xi$. (31)

- Если $cov(\xi, \eta) = 0$, то с.в. ξ и η называются некоррелированными.
- Если с. в. ξ и η независимы, то $cov(\xi, \eta) = 0$.
- Независимость ⇒ некоррелированность,
- обратное не верно!

Пример

Пусть α – с. в. с распределением

$$P(\alpha = 0) = P(\alpha = \pi/2) = P(\alpha = \pi) = 1/3,$$

и пусть $\xi = \sin \alpha, \ \eta = \cos \alpha.$ Легко увидеть, что

$$cov(\xi, \eta) = \mathsf{E}(\sin \alpha \cos \alpha) - \mathsf{E}(\sin \alpha)\mathsf{E}(\cos \alpha) = 0,$$

т. е. с.в. ξ, η – некоррелированы, но очевидно, зависимы, т.к.

$$P(\xi = 1, \eta = 1) = 0 \neq P(\xi = 1)P(\eta = 1) = 1/9.$$

(Более того, эти с.в. функционально зависимы $\xi^2 + \eta^2 = 1$.)

Среднеквадратическое отклонение

$$+\sqrt{D\xi} = \sigma_{\xi}. (32)$$

Коэфициент корреляции

величина

$$cor(\xi, \eta) = \frac{cov(\xi, \eta)}{\sigma_{\xi}\sigma_{\eta}}$$
 (33)

называется коэффициентом корреляции с.в. ξ .

Показать:

$$|cor(\xi,\eta)| \leqslant 1.$$
 (34)

Доказательство:

достаточно показать $|cov(\xi,\eta)| \leqslant \sigma_{\xi}\sigma_{\eta}$.

Действительно,

$$\begin{split} 0 \leqslant D(\xi\sqrt{D\eta} - \eta\sqrt{D\xi}) &= & \mathsf{E}(\xi\sqrt{D\eta} - \eta\sqrt{D\xi})^2 - (\mathsf{E}(\xi\sqrt{D\eta} - \eta\sqrt{D\xi}))^2 \\ &= & 2D\xi D\eta - 2\sqrt{D\xi D\eta} \operatorname{cov}(\xi,\eta). \end{split}$$

Тогда

$$-\sigma_{\xi}\sigma_{\eta}\leqslant cov(\xi,\eta)\leqslant \sigma_{\xi}\sigma\eta.$$

Пример

Пусть с.в. ξ,η линейно зависимы, т.е. $\xi=a\eta+b$, тогда

$$cov(\xi, \eta) = cov(a\eta + b, \eta) = aD\eta,$$

и кроме того, $D\xi=a^2D\eta$. Поэтому

$$cor(\xi, \eta) = rac{aD\eta}{|a|D\eta} = egin{cases} 1, & a > 0, \\ -1, & a < 0. \end{cases}$$

TEMA 6:

Некоторые неравенства.

Неравенство Маркова

Пусть $\mathsf{E}|\xi|^k < \infty$. Тогда для любого $\varepsilon > 0$

$$P(|\xi| \geqslant \varepsilon) \leqslant \frac{E|\xi|^k}{\varepsilon^k}, \ k \geqslant 0.$$
 (35)

Доказательство:

Очевидно,

$$|\xi| \geqslant |\xi|I(|\xi| \geqslant \varepsilon) \geqslant \varepsilon I(|\xi| \geqslant \varepsilon),$$

и поэтому $|\xi|^k\geqslant \varepsilon^k I(|\xi|\geqslant \varepsilon)$. Отсюда

$$E(|\xi|^k) \geqslant P(|\xi| \geqslant \varepsilon) \varepsilon^k$$
.

Неравенство Чебышёва

$$P(|\xi - \mathsf{E}\xi| \geqslant \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}.$$
 (36)

Следует из неравенства Маркова при k=2 и замене ξ на $\xi-\mathsf{E}\xi.$

Неравенство Коши-Буняковского

$$(\mathsf{E}|\xi\eta|)^2 \leqslant \mathsf{E}\xi^2 \mathsf{E}\eta^2,\tag{37}$$

если $\mathsf{E}\xi^2<\infty,\,\mathsf{E}\eta^2<\infty.$

Доказательство:

Заметим, если

$$E\xi^2 = 0 \ (E\eta^2 = 0),$$

TO

$$P(\xi = 0) = 1 \ (P(\eta = 0) = 1).$$

Достаточно рассмотреть случай: $\mathsf{E}\xi^2 > 0, \; \mathsf{E}\eta^2 > 0.$

Доказательство

Введем вспомогательные с. в.

$$\xi' = \frac{\xi}{\sqrt{\mathsf{E}\xi^2}}, \ \eta' = \frac{\eta}{\sqrt{\mathsf{E}\eta^2}}.$$

Очевидно,

$$\mathsf{E}(\xi')^2 = \mathsf{E}(\eta')^2 = 1, \; (|\xi'| - |\eta'|)^2 \geqslant 0.$$

Это влечет

$$2E(|\xi'\eta'|) \leqslant E|\xi'|^2 + E|\eta'|^2 = 2.$$

(37) следует из

$$\mathsf{E}(|\xi'\eta'|) = \mathsf{E}\Big(\frac{|\xi\eta|}{\sqrt{\mathsf{E}\xi^2}\sqrt{\mathsf{E}\eta^2}}\Big) \leqslant 1.$$

Неравенство Колмогорова

Рассмотрим независимые с.в. $\xi_1,\dots,\xi_n,\ \mathsf{E}\xi_i=0$, $\mathsf{E}\xi_i^2<\infty$, и пусть

$$S_n = \xi_1 + \cdots + \xi_n, \ n \geqslant 1 \ (S_0 = 0).$$

Тогда для любых $\varepsilon > 0$ и $n \geqslant 1$,

$$P\left(\max_{1\leq k\leq n}|S_k|\geq \varepsilon\right)\leq \frac{\mathsf{E}S_n^2}{\varepsilon^2}.\tag{38}$$

Доказательство

Введем события $A = \{\max_{1 \leq k \leq n} |S_k| \geq \varepsilon\}$ и

$$A_k = \{|S_i| < \varepsilon, \ i = 1, \dots, k-1, \ |S_k| > \varepsilon\}, \ 1 \leqslant k \leq n.$$

Тогда

$$A=\sum_{k=1}^n A_k, \,\,$$
где $A_k\cap A_j=\emptyset,\,\,k
eq j,$

и поэтому $I(A) = I(\sum\limits_k A_k) = \sum\limits_k I(A_k)$. Следовательно

$$\mathsf{E} S_n^2 \geq \mathsf{E} S_n^2 I(A) = \sum_{k=1}^n \mathsf{E} S_n^2 I(A_k).$$

Для произвольного $k \leqslant n$ имеем

$$ES_{n}^{2}I(A_{k}) = E(S_{k} + \xi_{k+1} + \dots + \xi_{n})^{2}I(A_{k})$$

$$= ES_{k}^{2}I(A_{k}) + 2E(S_{k}(\xi_{k+1} + \dots + \xi_{n}))I(A_{k})$$

$$+ E(\xi_{k+1} + \dots + \xi_{n})^{2}I(A_{k})$$

$$= ES_{k}^{2}I(A_{k}) + E(\xi_{k+1} + \dots + \xi_{n})^{2}I(A_{k}) \geqslant ES_{k}^{2}I(A_{k}),$$

где учтена независимость S_k и $\xi_i, i > k$, а также равенство $\mathsf{E} \xi_k = 0$. Так как $S_k > \varepsilon$ на событии A_k (а вне этого события $I(A_k) = 0$), то получаем требуемое неравенство (38):

$$\mathsf{E}S_n^2 \geqslant \sum_{k=1}^n \mathsf{E}S_k^2 I(A_k) \geq \varepsilon^2 \sum_{k=1}^n \mathsf{P}(A_k) = \varepsilon^2 \mathsf{P}(A).$$

Неравенство Иенсена

Если функция φ выпуклая вниз, то для любой с.в. ξ

$$\mathsf{E}\varphi(\xi)\geqslant\varphi(\mathsf{E}\xi).\tag{39}$$

Доказательство:

Очевидно, для любого x найдется такое число c,что для всех y выполнено неравенство

$$rac{arphi(y)-arphi(x)}{y-x}\geqslant c,$$
 или $arphi(y)\geqslant arphi(x)+c(y-x).$

Положив $x = \mathsf{E}\xi, \ y = \xi$ и применив операцию м.о. к обеим частям данного неравенства, получим (39).

Неравенство Ляпунова

Если 0 < s < t, то

$$(\mathsf{E}|\xi|^s)^{\frac{1}{s}} \le (\mathsf{E}|\xi|^t)^{\frac{1}{t}}.$$
 (40)

Доказательство:

Обозначим r=t/s, $\eta=|\xi|^s$, так как r>1, то функция $\varphi(\eta):=|\eta|^r$ выпукла книзу. Применяя к ней неравенство Иенсена, получим $|\mathrm{E}\eta|^r\leqslant\mathrm{E}|\eta|^r$, т.е.,

$$(\mathsf{E}|\xi|^s)^{t/s} \le \mathsf{E}|\xi|^t.$$

Отсюда следует

$$(\mathsf{E}|\xi|^s)^{1/s} \le (\mathsf{E}|\xi|^t)^{1/t}.$$

Неравенство Гельдера

Пусть

$$1$$

и пусть $\mathsf{E}|\xi|^p<\infty, \mathsf{E}|\eta|^q<\infty.$ Тогда

$$|E|\xi\eta| \le (E|\xi|^p)^{1/p} (E|\eta|^q)^{1/q}.$$
 (41)

Доказательство:

Если ${\sf E}|\xi|^p=0$ или ${\sf E}|\eta|^q=0$, то доказательство следует как при выводе неравенства Коши – Буняковского. Поэтому пусть ${\sf E}|\xi|^p>0,\ {\sf E}|\eta|^q>0.$ Введем обозначения:

$$\tilde{\xi} = \frac{|\xi|}{(\mathsf{E}|\xi|^p)^{1/p}}, \ \tilde{\eta} = \frac{|\eta|}{(\mathsf{E}|\eta|^q)^{1/q}}.$$

Доказательство

Для положительных a,b,x,y воспользуемся неравенством $x^ay^b \leq ax+by$, где a+b=1, и положим

$$x = \tilde{\xi}^p, \ y = \tilde{\eta}^q, \ a = \frac{1}{p}, \ b = \frac{1}{q}.$$

Взяв м. о. от левой и правой частей данного неравенства, получаем

$$\begin{split} \mathsf{E}\tilde{\xi}\tilde{\eta} & \leq & \frac{1}{p}\,\mathsf{E}\tilde{\xi}^p + \frac{1}{q}\,\mathsf{E}\tilde{\eta}^q \\ & = & \frac{1}{p}\,\mathsf{E}\Big(\frac{|\xi|^p}{\mathsf{E}|\xi|^p}\Big) + \frac{1}{q}\,\mathsf{E}\Big(\frac{|\eta|^q}{\mathsf{E}|\eta|^q}\Big) \\ & = & \frac{1}{p} + \frac{1}{q} = 1. \end{split}$$

Доказательство

Таким образом, Е $ilde{\xi} ilde{\eta} \leq 1$, и значит,

$$\mathsf{E}\Big(\frac{|\xi|}{(\mathsf{E}|\xi|^p)^{1/p}}\cdot\frac{|\eta|}{(\mathsf{E}|\eta|^q)^{1/q}}\Big)\leq 1,$$

что эквивалентно (41). В случае p=q=2 получаем неравенство Коши — Буняковского ($\mathsf{E}|\xi\eta|$) $^2\leq \mathsf{E}|\xi|^2\mathsf{E}|\eta|^2.$

Неравенство Минковского

Пусть

$$1 \leqslant p < \infty$$
, $\mathsf{E}|\xi|^p < \infty$, $\mathsf{E}|\eta|^p < \infty$, $\mathsf{E}|\eta + \xi|^p < \infty$.

Тогда

$$\left(\mathsf{E}|\xi+\eta|^{p}\right)^{1/p} \le (\mathsf{E}|\xi|^{p})^{1/p} + (\mathsf{E}|\eta|^{p})^{1/p}. \tag{42}$$

TEMA 7:

Законы больших чисел.

Определения

Сходимость по вероятности

Последовательность случайных величин $\xi_1,\,\xi_2,\ldots$ называется сходящейся по вероятности при $n\to\infty$ к случайной величине ξ , если для $\forall \varepsilon>0$

$$\lim_{n \to \infty} P(|\xi_n - \xi| \geqslant \varepsilon) = 0.$$
 (43)

Попарная независимость

Случайные величины (с. в.) $\xi_1,\ \xi_2,\dots$ называются попарно независимыми, если для $\forall n\geqslant 1$, величины $\xi_n,\ \xi_{n+1}$ — независимые.

Закон больших чисел (ЗБЧ) в форме Чебышева

Теорема Чебышева (ЗБЧ).

Пусть последовательность попарно независимых с. в. ξ_1, ξ_2, \ldots имеет конечные математические ожидания и равномерно ограниченные дисперсии, т.е. $\mathsf{E}\xi_n < \infty, \ D\xi_n < C < \infty, \ n \geqslant 1$, где C — некоторая константа.

Тогда среднее арифметическое случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий, т.е.

Теория вероятностей и математическая

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i} - \frac{1}{n}E\left[\sum_{i=1}^{n}\xi_{i}\right]\right| \geqslant \varepsilon\right) = 0.$$
 (44)

Закон больших чисел в форме Чебышева

Доказательство:

Обозначим

$$\eta_n := \frac{\sum_{i=1}^n \xi_i}{n}.$$

В силу неравенства Чебышева и попарной независимости получаем для $\forall \varepsilon>0$

$$\lim_{n\to\infty} \mathsf{P}\big(|\eta_n - \mathsf{E}\eta_n| \geqslant \varepsilon\big) \leqslant \frac{D[\eta_n]}{\varepsilon^2} = \frac{1}{n^2 \varepsilon^2} D\Big[\sum_{i=1}^n \xi_i\Big] \leqslant \frac{c}{n\varepsilon^2} \to 0, \quad n\to\infty.$$

Закон больших чисел в форме Чебышева

Замечания

- Для выполнения теоремы Чебышева достаточно некоррелированности с. в.
- Если $\xi_1, \, \xi_2, \ldots$ одинаково распределенные с.в. и Е $\xi_1 = a$, то (48) означает, что среднее арифметическое с. в. сходится по вероятности к математическому ожидания, т. е.

$$\frac{\sum_{i=1}^{n} \xi_i}{n} \to_{p} a, \quad n \to \infty.$$
 (45)

 3БЧ в форме Чебышева (48) может быть сформулирован в следующем альтернативном виде

$$\lim_{n\to\infty} \mathsf{P}\Big(\Big|\frac{1}{n}\sum_{i=1}^n \xi_i - \frac{1}{n}\mathsf{E}\Big[\sum_{i=1}^n \xi_i\Big]\Big| < \varepsilon\Big) = 1. \tag{46}$$

Закон больших чисел в форме Маркова

Теорема Маркова (ЗБЧ в общей формулировке)

Если дисперсии произвольных случайных величин в последовательности $\xi_1,\,\xi_2,\dots$ удовлетворяют условию

$$\lim_{n \to \infty} \frac{1}{n^2} D\left[\sum_{i=1}^n \xi_i\right] = 0, \tag{47}$$

тогда

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} \xi_{i} - \frac{1}{n}E\left[\sum_{i=1}^{n} \xi_{i}\right]\right| \geqslant \varepsilon\right) = 0.$$
 (48)

Закон больших чисел в форме Бернулли

Распределение Бернулли

Пусть с. в. μ_n есть число "успехов" в серии из независимых n испытаний, а p – вероятность успеха в каждом из n испытаний, соответсвенно q=1-p есть вероятность "неудачи". Заметим, что

$$\mathsf{E}[\mu_n] = np, \qquad D[\mu_n] = npq.$$

Теорема Бернулли (ЗБЧ)

Для $\forall \varepsilon > 0$

$$\lim_{n \to \infty} P\left(\left|\frac{\mu_n}{n} - p\right| \geqslant \varepsilon\right) = 0. \tag{49}$$

Доказательство: по неравенству Чебышева

$$\mathsf{P}\Big(\Big|\frac{\mu_n}{n}-p\Big|\geqslant \varepsilon\Big)\leqslant \frac{D[\mu_n/n]}{\varepsilon^2}=\frac{pq}{n\varepsilon^2}\to 0, \qquad n\to\infty.$$

Закон больших чисел в форме Бернулли

Замечание

По ЗБЧ при любом $\varepsilon>0$ вероятность выхода частоты успеха μ_n/n за пределы ε -окрестности вероятности p с ростом числа испытаний n, стремится к 0, однако выход значений частоты за пределы этой окрестности не исключен при любом сколь угодно большом n (в отличии от обычной числовой сходимости).

Закон больших чисел в форме Бернулли

Теорема: Усиленный Закон Больших Чисел в форме Бернулли

Для
$$\forall \varepsilon > 0 : \lim_{n \to \infty} P\left(\sup_{k \geqslant n} \left| \frac{\mu_k}{k} - p \right| \geqslant \varepsilon\right) = 0.$$
 (50)

Доказательство см. [Боровков(1999)] стр.96.

Заметим, что основной смысл (50) состоит в том, что определение вероятности соответствует ее интуитивному пониманию как предела частоты появления события. В свою очередь, μ_n/n можно рассматривать как частоту появления события "успех в одном из испытаний", вероятность которого равна p. Оказалось, что в известном смысле μ_n/n неограниченно сближается с p.

Законы больших чисел

Теорема Бернштейна

Пусть f — непрерывная действительная функция на $[0,\,1]$ и μ_n — число успехов в схеме Бернулли длины n с вероятностью успеха p. Тогда равномерно по p имеет место сходимость

$$\mathsf{E}\Big[f\Big(\frac{\mu_n}{n}\Big)\Big] \to f(p), \qquad n \to \infty.$$
 (51)

Доказательство см. [Морозов(2018)], стр. 26 (или в соответствующем разделе более ранних изданий).

Полином Бернштейна степени п:

$$B_n(x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}.$$
 (52)

Полином Бернштейна

Заметим, что

$$B_n(x) = E\left[f\left(\frac{\mu_n}{n}\right)\right] = \sum_{k=0}^n f\left(\frac{k}{n}\right) P_n(x, k),$$

где

$$P_n(x, k) = P(\mu_n = k) = C_n^k x^k (1 - x)^{n-k}.$$

есть вероятность k успехов в схеме Бернулли длины n с вероятностью успеха x.

Теорема Вейерштрасса

Для любой непрерывной на отрезке [0, 1] функции f имеет место сходимость

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k} \to f(x), \qquad n \to \infty.$$
 (53)

Таким образом, любую непрерывную функцию f на [0, 1] можно равномерно приблизить с помощью полинома Бернштейна достаточно большой степени n.

TEMA 8:

Предельные теоремы для схемы Бернулли.

Схема Бернулли

Пусть n — число испытаний в схеме Бернулли, p_n — вероятность успеха в одном испытании из серии независимых испытаний фиксированной длины n. Определим случайную величину μ_n — число успехов в серии из n испытаний и вероятность

$$P_n(k) := P(\mu_n = k) = C_n^k p_n^k (1 - p)^{n - k}.$$
 (54)

Теорема Пуассона

Пусть число испытаний (длина серии) $n o \infty$ так, что $np_n = const.$

$$P_n(k) \to e^{-\lambda} \frac{\lambda^k}{k!}, \qquad n \to \infty.$$
 (55)

Доказательство

Согласно условию, $p_n=\lambda/n o 0$ при $n o \infty$. Следовательно,

$$P_{n}(k) = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^{k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \frac{n(n-1)\dots(n-k+1)}{n\dots n} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{(k-1)}{n}\right) \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$\to \frac{\lambda^{k}}{k!} e^{-\lambda}, \quad n \to \infty,$$

где учтено, что $(1-\lambda/n)^n o e^{-\lambda}$.

Локальная теорема

Локальная Теорема Лапласа

$$\sup_{k:|k-np|\leqslant o(n^{2/3})} \left| \mathsf{P}_n(k) - \frac{1}{\sqrt{2\pi npq}} \exp\left\{ -\frac{(k-np)^2}{2npq} \right\} \right| \to 0. \tag{56}$$

Доказательство основывается на формуле Стирлинга $n! pprox \sqrt{2\pi n} n^n e^{-n}$.

Упрощенная формулировка

при "больших" *п*:

$$\mathsf{P}_n(k) \approx \frac{1}{\sqrt{2\pi npq}} \exp\Big\{-\frac{(k-np)^2}{2npq}\Big\}. \tag{57}$$

Локальная Теорема Лапласа

Упрощенная формулировка

$$\varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \qquad x = \frac{k - np}{\sqrt{npq}}.$$
 (58)

Тогда (57) примет вид

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \varphi(x).$$
 (59)

Значения функции $\varphi(x)$ представлены в Таблице (например, [Гмурман(1979)], Приложение 1, стр. 387), для отрицательных значений используется свойство четности: $\varphi(-x) = \varphi(x)$. Приближения (57), (59) используются при $n \geqslant 40$.

Локальная Теорема Лапласа

Пример 1

[Гмурман(1979)] № 119, стр. 40.

Найти вероятность того, что некоторое случайное событие A наступит ровно 70 раз в 243 испытаниях, если вероятность проявления этого события в каждом испытании равно 0.25.

Решение:

имеем

$$n = 243,$$

 $k = 70,$
 $p = 0.25,$
 $x = \frac{k - np}{\sqrt{npq}} = 1.37.$

Пример 1

Таблица значений функции
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
(3)	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
	1005	100/						1	1.20.20	2 2 2 2

Пример 1

Таким образом,

$$\varphi(1.37) = 0.1561.$$

Значение функции $\varphi(x)$ может быть найдено в MS Excel по следующей встроенной функции с соответствующими аргументами:

$$=$$
HOPM.CT.PACП $(x;$ ЛОЖЬ $)$.

Получаем

$$P_{243}(70) = \frac{1}{6.75}0.1561 = 0.0231.$$

Интегральная теорема

Приближенное значение вероятности

$$P(k_1 \leqslant \mu_n \leqslant k_2).$$

Определим центрированную с. в. с единичной дисперсией:

$$S_n := \frac{\mu_n - np}{\sqrt{npq}}. (60)$$

Интегральная Теорема Муавра-Лапласа

$$\sup_{-\infty \leqslant a < b \leqslant \infty} \left| \mathsf{P}(a \leqslant S_n \leqslant b) - \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{x^2}{2}} dx \right| \to 0, \qquad n \to \infty. \quad (61)$$

Частный случай центральной предельной теоремы.

Интегральная Теорема Муавра-Лапласа

Приближенное значение

$$P\left(a \leqslant \frac{\mu_n - np}{\sqrt{npq}} \leqslant b\right) \approx \Phi(b) - \Phi(a), \tag{62}$$

где

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{y^2}{2}} dy$$
 (63)

есть функция Лапласа (значения представлены в Таблице (например, [Гмурман(1979)], Приложение 2, стр. 389).

Тогда, (62) эквивалентно

$$P(k_1 \leqslant \mu_n \leqslant k_2) \approx \Phi(b) - \Phi(a), \tag{64}$$

где

$$a = \frac{(k_1 - np)}{\sqrt{npq}}, \qquad b = \frac{(k_2 - np)}{\sqrt{npq}}.$$
 (65)

Интегральная Теорема Муавра-Лапласа

Пример 2

[Гмурман(1979)] № 125, стр. 41.

Вероятность появления некоторого события в каждом из 100 независимых потоянна и равна 0.8. Найти вероятность того, что это событие наступит не менее 75 и не более 90 раз.

Решение: имеем

$$n = 100,$$

 $p = 0.8,$
 $q = 0.2,$
 $k_1 = 75,$
 $k_2 = 90.$

$$a = \frac{(k_1 - np)}{\sqrt{npq}} = -1.25, \qquad b = \frac{(k_2 - np)}{\sqrt{npq}} = 2.5.$$

Учитывая нечетность функции Лапласа $\Phi(-x) = -\Phi(x)$, получим

$$P(75 \leqslant \mu_{100} \leqslant 90) = \Phi(2.5) + \Phi(1.25).$$

Далее воспользуемся таблицей

								Z	(x)	Z.	Ø (x)	x	(x)	x	Ф (x)
	Таблица	значент	ій функци	w (x	$=\frac{1}{\sqrt{2\pi}}$	e-2-/2	lz	1,26	0,3962	1,59	0,4441	1,92	0,4726	2,50	0,4938
					3201 o	1861 1 61	110,10,1	1,27	0,3980	1,60	0,4452	1,93	0,4732	2,52	0,4941
0	0830 686	8880	A95 1 174	10000	3 8066 [200 - 0	49 1 2 3 1 00	1,28	0,3997	1.61	0.4463	1.94	0.4738	2.54	0.4945
	Ф (x)	X	(x)	X	(x)	X O	(x)	1,29	0.4015	1,62	0.4474	1,95	0,4744	2,56	0,4948
			1		il arna I		20 10 -	1,30	0.4032	1.63	0.4484	1.96	0,4750	2,58	0,4951
00	0,0000	0,32	0,1255	0,64	0,2389	0,96	0,3315	1,31	0.4049	1,64	0.4495	1.97	0,4756	2,60	0,4953
01	0,0040	0,33	0,1293	0,65	0,2422	0,97	0,3340	1,32	0.4066	1,65	0.4505	1,98	0,4761	2,62	0,4956
02	0,0080	0,34	0,1331	0,66	0,2454	0,98	0,3365	1,33	0,4082	1,66	0,4515	1,99	0,4767	2.64	0.4959
03	0,0120	0,35	0,1368	0,67	0,2486	0,99	0,3389			1000				CONTRACTOR OF	
04	0,0160	0,36	0,1406	0,68	0,2517	1,00	0,3413	1,34	0,4099	1,67	0,4525	2,00	0,4772	2,66	0,4961
05	0,0199	0,37	0,1443	0,69	0,2549	1,01	0,3438	1,35	0,4115	1,68	0,4535	2,02	0,4783	2,68	0,4963
06	0,0239	0,38	0,1480	0,70	0,2580	1,02	0,3485	1,36	0,4131	1,69	0,4545	2,04	0,4793	2,70	0,4965
08	0.0319	0,39	0,1517	0.72	0,2611	1,03	0,3508	1,37	0,4147	1,70	0,4554	2,06	0,4803	2,72	0,4967
09	0,0359	0,41	0.1591	0.73	0.2673	1.05	0,3531	1,38	0,4162	1,71	0,4564	2,08	0,4812	2,74	0,4969
10	0.0398	0,42	0.1628	0,74	0,2703	1,06	0,3554	1,39	0.4177	1,72	0,4573	2,10	0,4821	2,76	0,4971
11	0.0438	0.43	0.1664	0,75	0,2734	1,07	0,3577	1,40	0,4192	1,73	0,4582	2,12	0,4830	2,78	0,4973
12	0,0478	0,44	0,1700	0,76	0,2764	1,08	0,3599	1,41	0,4207	1,74	0,4591	2,14	0,4838	2,80	0.4974
13	0,0517	0,45	0,1736	0,77	0,2794	.09	0,3621	1,42	0,4222	1.75	0.4599	2,16	0,4846	2,82	0.4976
14	0,0557	0,46	0,1772	0,78	0,2823	1,10	0,3643	1,43	0,4236	1.76	0.4608	2,18	0.4854	2,84	0.4977
15	0,0596	0,47	0,1808	0,79	0,2852	1,11	0,3665								0.4979
16	0,0636	0,48	0,1844	0,80	0,2881	1,12	0,3686	1,44	0,4251	1,77	0,4616	2,20	0,4861	2,86	1 100
17	0,06/5	0,49	0,1879	0,81	0,2910	1,13	0,3729	1,45	0,4265	1,78	0,4625	2,22	0,4868	2,88	0,4980
19	0.0753	0.51	0,1950	0,83	0,2967	1,15	0,3749	1,46	0,4279	1,79	0,4633	2,24	0,4875	2,90	0,4981
20	0.0793	0.52	0,1985	0,84	0,2995	1.16	0,3770	1,47	0,4292	1,80	0,4641	2,26	0,4881	2,92	0,4982
21	0,0832	0,53	0,2019	0,85	0,3023	1,17	0,3790	1,48	0,4306	1,81	0,4649	2,28	0,4887	2,94	0,4984
22	0,0871	0,54	0,2054	0,86	0,3051	1,18	0,3810	1,49	0,4319	1,82	0,4656	2,30	0,4893	2,96	0,4985
,23	0,0910	0,55	0,2088	0,87	0,3078	1,19	0,3830	1,50	0.4332	1,83	0.4664	2,32	0,4898	2,98	0,4986
,24	0,0948	0,56	0,2123	0,88	0,3106	1,20	0,3849	1,51	0,4345	1,84	0,4671	2,34	0,4904	3,00	0,49865
25	0,0987	0,57	0,2157	0,89	0,3133	1,21	0,3869	1,52	0.4357	1,85	0,4678	2,36	0.4909	3,20	0.49931
26	0,1026	0,58	0,2190	0,90	0,3159	1,22	0,3907	1,53	0,4370	1,86	0,4686	2,38	0,4913	3,40	0,49966
,28	0,1103	0,60	0,2257	0,92	0,3212	1,24	0.3925						0,4918	3,60	0.49984
29	0,1141	0,61	0,2291	0,93	0,3238	1,25	0,3944	1,54	0,4382	1,87	0,4693	2,40			1
30	0,1179	0,62	0,2324	0,94	0,3264	0		1,55	0,4394	1,88	0,4699	2,42	0,4922	3,80	0,4999
31	0,1217	0,63	0,2357	0,95	0,3289		TO ASSESSED TO SOME	1,56	0,4406	1,89	0,4706	2,44	0,4927	4,00	0,4999
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		1,57	0,4418	1,90	0,4713	2,46	0,4931	4,50	0,4999
	1	B	1	0		1	1.000	1,58	0.4429	1.91	0.4719	2,48	0,4934	5,00	0,4999

112 / 238

Таким образом,

$$\Phi(2.5) = 0.4938, \qquad \Phi(1.25) = 0.3944.$$

Значение функции $\Phi(x)$ может быть найдено в MS Excel по следующей встроенной функции с соответствующими аргументами:

$$=$$
HOPM.CT.РАСП $(x;$ ИСТИНА $)$ -1/2 .

Получаем

$$P(75 \le \mu_{100} \le 90) = 0.4938 + 0.3944 = 0.8882.$$

Заметим, что для $x \geqslant 5$, $\Phi(x) = 0.5$.

Определим

$$\Phi^*(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy = \Phi(x) + \frac{1}{2}.$$
 (66)

Теорема (Берри-Эссеен)

$$\sup_{-\infty \leqslant x \leqslant \infty} \left| \mathsf{P}(S_n \leqslant x) - \Phi^*(x) \right| \leqslant \frac{p^2 + q^2}{\sqrt{npq}} \leqslant \frac{1}{\sqrt{npq}}. \tag{67}$$

TEMA 9:

Производящая функция.

Производящая функция

Определение

Пусть задано распределение вероятностей $(p_k), \ k=0,\,1,\dots$ Функция

$$P(z) = \sum_{k=0}^{\infty} z^k p_k, \tag{68}$$

где $|z| \leqslant 1$ называется *производящей функцией* распределения (p_k) . В общем случае аргумент z может быть комплексным.

Производящая функция

Некоторые свойства

• P(z) и вероятности p_k связаны взаимно однозначным соответствием:

$$P(0) = p_0,$$
 $P'(0) = p_1,$
 $\dots,$
 $\frac{P^{(k)}(0)}{k!} = p_k,$

ullet Пусть с.в. ξ принимает значения 0,1... Тогда,

$$P(z) =: P_{\xi}(z) = \mathsf{E}[z^{\xi}].$$

Некоторые свойства

В частности,

$$\begin{aligned}
\mathsf{E}\xi &= \sum_{k} k p_{k} = P'_{\xi}(1), \\
D\xi &= \mathsf{E}\xi^{2} - (\mathsf{E}\xi)^{2} = P''_{\xi}(1) + P'_{\xi}(1) - (P'_{\xi}(1))^{2}.
\end{aligned} (69)$$

Следовательно,

$$P_{\xi}''(1) = \mathsf{E}\xi^2 - \mathsf{E}\xi.$$

Пример 1

Пусть $\xi_1, ..., \xi_n$ — независимые случайные величины, принимающие значения из множества $\{0, 1, ...\}$. Определим

$$\xi = \xi_1 + \cdots + \xi_n.$$

Тогда

$$P_{\xi}(z) = \sum_{k=0}^{\infty} z^{k} P(\xi = k) = \mathsf{E} z^{\xi} = \mathsf{E} [z^{\sum \xi_{i}}]$$
$$= \prod_{i=1}^{n} \left(\mathsf{E} [z^{\xi_{i}}] \right) = \prod_{i=1}^{n} P_{\xi_{i}}(z).$$

Таким образом, производящая функция суммы независимых слагаемых является мультипликативной.

Пусть ξ_1, ξ_2 — независимые неотрицательные целочисленные с.в., принимающие значения $\{0, 1, \ldots\}$ с вероятностями (p_i) и (q_j) , соответственно.

Тогда для каждого $n \geqslant 0$

$$P(\xi_1 + \xi_2 = n) = \sum_{k=0}^{n} P(\xi_1 + \xi_2 = n | \xi_2 = k) P(\xi_2 = k)$$

$$= \sum_{k=0}^{n} P(\xi_1 = n - k) q_k = \sum_{k=0}^{n} p_{n-k} q_k =: r_n.$$

Распределение вероятностей (r_k) суммы двух независимых с.в. называется сверткой распределений (p_k) и (q_k) . Заметим, что производящая функция свертки равна произведению производящих функций слагаемых:

$$P_{\xi_1+\xi_2}(z) = P_{\xi_1}(z)P_{\xi_2}(z).$$

Пусть производится n независимых испытаний, причем в первом испытании вероятность появления некоторого события A равна p_1 , во втором — p_2,\ldots , в n-ом — p_n . Вероятность непоявления события A в k-ом испытании равна $q_k=1-p_k,\;k=1,\ldots,n$.

Пусть $p_n(k)$ — вероятность, что событие A появится ровно k раз. Тогда, производящая функции распределения $\left(p_n(k)\right)$ имеет вид

$$P_n(z) = (p_1 z + q_1)(p_2 z + q_2) \dots (p_n z + q_n). \tag{70}$$

В частности, для n=2 имеем

$$P_2(z) = (p_1z + q_1)(p_2z + q_2) = q_1q_2 + (p_1q_2 + p_2q_1)z + p_1p_2z^2.$$
 (71)

TEMA 10:

Общее вероятностное пространство.

Вероятностное пространство в общем случае

Дискретный случай

- Ранее рассматривались задачи, в которых множество элементарных исходов Ω состояло не более, чем из счетного числа элементов.
- Вероятность некоторого случайного события P(A) определялась как сумма вероятностей $P(\omega)$ элементарных исходов, составляющих событие A.
- Р определена на всех подмножествах Ω .

Вероятностное пространство в общем случае

Непрерывный случай

- На практике часто встречаются задача, где множество Ω несчетно (например, бросание точки на отрезок).
- Проблематично считать случайным событием любое подмножество непрерывного Ω .
- В качестве событий выделяется специальный класс подмножеств
 - элементы σ -алгебры.

Сигма-алгебра

Определение

 \mathcal{F} есть σ -алгебра подмножеств (называемых случайными событиями) множества Ω , если выполняются следующие условия:

- 1) Пустое множество $\oslash \in \mathcal{F}$ и $\Omega \in \mathcal{F}$.
- 2) Если $A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$.
- 3) Для не более, чем счетного числа событий если $\{A_i\}\in \mathcal{F}$ тогда
- $\bigcup A_i \in \mathcal{F}, \ \bigcap A_i \in \mathcal{F}.$

Измеримое пространство

Множество и заданное на нем σ -алгебра есть измеримое пространство.

 $\langle \Omega, \mathcal{F} \rangle$.

Измеримое пространство

- Чтобы формализовать вероятностную задачу, необходимо соответствующему эксперименту приписать измеримое пр-во $\langle \Omega, \mathcal{F} \rangle$.
- Подмножества Ω , не входящие в \mathcal{F} , событиями не являются.
- Выбор σ -алгебры обусловлен существом рассматриваемой задачи и природой множества Ω .
- Не всегда можно определить вероятность так, чтобы она имела смысл для любого множества Ω .

Аксиоматика Колмогорова

Вероятностная мера

Вероятность на $\langle \Omega, \mathcal{F} \rangle$ есть числовая функция, определенная на \mathcal{F} и обладающая следующими свойствами:

P1 (аксиома неотрицательности): $\mathsf{P}(A)\geqslant 0$ для любого $A\in\mathcal{F}.$

P2 (аксиома достоверности): $P(\Omega) = 1$.

P3 (аксиома счетной аддитивности): Если последовательность A_n событий такова, что $A_iA_j=\oslash$ при $i\neq j$, $\bigcup_{n=1}^\infty A_n\in \mathcal{F}$, то

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} P(A_n). \tag{72}$$

Аксиоматика Колмогорова

Эквивалентным аксиоме РЗ будет требование аддитивности (72) для конечного набора $\{A_j\}$ и следующая

Аксиома непрерывности

РЗ': Пусть последовательность событий $\{B_n\}$ такова, что $B_{n+1} \in B_n$ и

$$igcap_{n=1}^{\infty} B_n = B \in \mathcal{F}$$
, тогда

$$P(B_n) \to P(B), \qquad n \to \infty.$$
 (73)

Аксиоматика Колмогорова

Наряду с (73) имеет место результат

$$\lim_{n\to\infty}\mathsf{P}(\bigcup_{i=1}^nB_i)=\mathsf{P}(\lim_{n\to\infty}\bigcup_{i=1}^nB_i)=\mathsf{P}(B),$$

эквивалентный

$$\lim_{n\to\infty} P(B_n) = P(\lim_{n\to\infty} B_n) = P(B),$$

что проясняет термин "непрерывность". Монотонно возрастающую последовательность можно заменить на монотонно убывающую (тогда объединение событий выше должно быть заменено на их пересечение).

Вероятностное пространство

Определение

Тройка $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$ называется вероятностным пространством.

- Вероятность P на $\langle \Omega, \mathcal{F} \rangle$ иногда называются распределением вероятностей на Ω .
- Таким образом, задание вероятностного пространства есть задание такой счетно-аддитивной неотрицательной меры на измеримом пространстве $\langle \Omega, \mathcal{F} \rangle$, что мера Ω равна 1. В таком виде аксиоматика теории вероятностей была сформулирована А. Н. Колмогоровым.
- Построение вероятностного пространства $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$ является основным этапом в создании математической модели (формализации) того или иного эксперимента.

130 / 238

Построение вероятностного пространства

Чтобы задать вероятностную меру на σ - алгебре \mathcal{F} , обычно удобнее сначала построить ее на более простой системе множеств, например, алгебре или полуалгебре, а затем распространить ее на \mathcal{F} .

Полуалгебра

Система подмножеств S множества Ω называется полуалгеброй, если

- 1) \emptyset , $\Omega \in S$;
- 2) $A_1, A_2 \in S \Rightarrow A_1 \cap A_2 \in S$;
- 3) $\forall A \in S$ дополнение представимо как конечное объединение:

$$\overline{A} = \sum_{i=1}^n A_i$$
, где $n < \infty$, $A_i \in S$, $A_i \cap A_j = \emptyset$, $i \neq j$.

Алгебра

Полуалгебра S является алгеброй, если

- 1) $A_1, A_2 \in S \Rightarrow A_1 \bigcup A_2 \in S$;
- 2) $A \in S$, $\overline{A} \in S$.

Построение вероятностного пространства

Пример

- Множество интервалов вида $[a_i, b_i)$, $a_i < b_i$, образуют полуалгебру на вещественной прямой \mathcal{R} .
- Подмножества A, представимые как сумма непересекающихся интервалов, т.е. $A = \sum_{i=1}^n (a_i, b_i]$, образуют алгебру.

Очевидно

S есть σ – алгебра \Rightarrow S – полуалгебра.

Построение вероятностного пространства

Продолжение вероятностной меры

Пусть вероятностная мера P_i задана на (полу)алгебре $S_i,\ i=1,2,$ причем, $S_1\subseteq S_2.$ Тогда мера P_2 называется *продолжением* вероятностной меры P_1 , если

$$P_1(A) = P_2(A)$$
, для любого $A \in S_1$. (74)

Продолжение вероятностной меры P_1 с (полу)алгебры S_1 на (полу)алгебру S_2 является единственным, если

$$P_1(A) = P_2(A)$$
 для любого $A \in S_2$. (75)

Теорема Каратеодори

Теорема Каратеодори (о продолжении вероятностной меры) Вероятностная мера P, заданная на (полу)алгебре S, допускает единственное продолжение на σ -алгебру $\sigma(S)$ (на минимальную σ -алгебру, порожденную системой S).

TEMA 11:

Функция распределения.

Функция распределения

Рассмотрим:

- ullet измеримое пространство $(\mathsf{R},\,\mathcal{B}(\mathsf{R}));$
- ullet вероятностную меру P, заданную на $\mathcal{B}(\mathsf{R})$;
- интервалы $(-\infty, x] \in \mathcal{B}(\mathsf{R})$.

Определение

Вероятностную меру данных интервалов (или сужение вероятностной меры на интервалы вида $(-\infty,x]$), т.е.

$$F(x) = P(-\infty, x]$$

называют функцией распределения (ф.р.).

Свойства ф.р.

- $\bullet F(x)$ не убывает по x.
- $oldsymbol{0}$ F(x) непрерывна справа и имеет предел слева в каждой точке.

Свойства 2) - 3) следуют из непрерывности вероятности.

Всякая вещественная функция F, удовлетворяющая свойствам 1)-3), является ф. р. на \mathbf{R} .

Теорема

Пусть задана ф. р. F на R. Тогда на пространстве $(R,\mathcal{B}(R))$ существует единственная вероятностная мера P, такая что для всех $a,b:-\infty\leqslant a < b \leqslant \infty$, выполняется

$$P(a,b] = F(b) - F(a).$$

(Иначе, F – сужение P на борелевские элементы вида $(-\infty,x]$).

Доказательство (схема)

Рассмотрим алгебру множеств $\mathcal{A} = \{A\}$, вида $A = \sum_{i=1}^n (a_i, b_i]$.

Определим на элементах этой алгебры функцию P_0

$$P_0(A) = \sum_{i=1}^n (F(b_i) - F(a_i)).$$

Очевидно, $P_0(A)\geqslant 0,\ P_0(R)=1$ и кроме того, функция P_0 является конечно аддитивной, т.е. удовлетворяет аксиоме конечной аддитивности.

Аналогично можно доказать, что P_0 также удовлетворяет аксиоме счетной аддитивности.

Тогда вероятностную меру P_0 , заданную на алгебре \mathcal{A} , по теореме Каратеодори можно единственным образом продолжить до вероятностной меры P на минимальной σ – алгебре, содержащей \mathcal{A} , т.е. на $\mathcal{B}(\mathbf{R})$.

Замечания

Вероятностная мера Р однозначным образом строится по заданной функции распределения F.

Вероятностная мера Р, построенная указанным выше способом по заданной ф.р. F, называется мерой Лебега-Стилтьеса.

Взаимно-однозначное соответствие между мерой P и ϕ . р. Fпозволяет строить вероятностную меру, исходя из заданной ϕ . р. F.

Виды функций распределения

1. Дискретная мера

Пусть задана кусочно – постоянная ф.р. F(x) со скачками в точках $\{x_i\}$, т.е.

$$F(x_i) - F(x_i - 0) = p_i > 0.$$

Набор (p_i) называется дискретным распределением, а F – дискретной функцией распределения.

Соответствующая дискретная мера P сосредоточена в точках $x_1, x_2 \dots$, т.е.

$$P\{x_i\} = p_i, \quad P(A) = \sum_{i:x_i \in A} p_i.$$

◆ロ → ◆母 → ◆ き → ◆ き → りへ()

Виды функций распределения

2. Абсолютно непрерывная мера

Пусть F(x) представима в виде интеграла Лебега следующим образом:

$$F(x) = \int_{-\infty}^{x} f(y) dy,$$

Тогда ф.р. F(x) называется абсолютно непрерывной (относительно меры Лебега), а функция $f(x) = F'(x) \geqslant 0$ — плотностью распределения. Вероятностная мера P, построенная по абсолютно непрерывной ф. р. F (или по плотности f), называется абсолютно непрерывной вероятностной мерой.

Виды функций распределения

3. Сингулярная мера

Точка x называется точкой роста ф.р. F, если для любого $\epsilon > 0$,

$$F(x+\epsilon)-F(x-\epsilon)>0$$

(т.о. на интервалах постоянства точек роста нет). Если F — непрерывная функция, но мера Лебега множества точек роста F равна нулю, то такая ф.р. называется *сингулярной по отношению к мере Лебега*. Вероятностная мера, построенная по такой ф.р. называется сингулярной.

Теорема Лебега

Каждая функция распределения F может быть представлена в виде:

$$F = p_1 F_1 + p_2 F_2 + p_3 F_3, (76)$$

где F_1 — дискретная ф.р., F_2 — абсолютно непрерывная ф.р., F_3 — сингулярная ф.р. и $\sum_i p_i = 1, p_i \geqslant 0$.

Дискретная мера

Примеры

Изученные ранее распределения биномиальное, пуассоновское, равномерное, геометрическое, полиномиальное, гипергеометрическое являются дискретными.

F(x) – кусочно-постоянная функция со скачками в точках $\{x_i\}$, т.е.

$$F(x_i) - F(x_i - 0) = p_i > 0.$$

Дискретная функция распределения

Абсолютно непрерывная мера

F(x) представима в виде интеграла Лебега

$$F(x) = \int_{-\infty}^{x} f(y) dy,$$

функция $f(x) = F'(x) \geqslant 0$ – плотность распределения.

Примеры непрерывных распределений

Равномерное распределение на [a, b], a < b,

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b]; \\ 0, & x \notin [a,b] \end{cases},$$

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x-a}{b-a}, & x \in [a,b]; \\ 1, & x > b. \end{cases}$$

Примеры непрерывных распределений

Показательное распределение (с параметром $\lambda > 0$)

$$f(x) = \lambda e^{-\lambda x}, \quad x \geqslant 0;$$

$$f(x) = \lambda e^{-\lambda x}, \quad x \geqslant 0;$$

 $F(x) = 1 - e^{-\lambda x}, \quad x \geqslant 0.$

Примеры непрерывных распределений

Нормальное распределение (с параметрами $a\in \mathsf{R},\,\sigma>0$)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, x \in \mathbb{R};$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{(y-a)^2}{2\sigma^2}}dy, x \in \mathbb{R}.$$

Сингулярная мера

F — непрерывная функция, но мера Лебега множества точек роста F равна нулю.

Пример (Функция Кантора)

Строим вспомогательные функции $F_n, n = 1, 2, \ldots$ интервале [0, 1] следующим образом:

$$F_1(x) = \begin{cases} 0, & x = 0, \\ 1/2, & 1/3 < x < 2/3 \\ 1, & x = 1, \end{cases}$$

в остальных точках дополним функцию по непрерывности.

$F_1(x)$

 F_2 со значениями 1/4 при $x \in [1/9, 2/9]$ и 3/4 при $x \in [7/9, 8/9]$.

2022

Строим функции $F_n,\ n\geqslant 3$ по аналогии. Тогда для каждого n и $\forall m\geqslant 1,$

$$\sup_{x \in [0,1]} |F_n(x) - F_{n+m}(x)| \leqslant 1/2^n.$$

Следовательно, $|F_n(x)-F_{n+m}(x)|\to 0$, при $n\to\infty$ равномерно по $x\in[0,1]$, причем все функции F_n непрерывны по построению.

Функция Кантора

- Последовательность $\{F_n\}$ сходится равномерно по x.
- Существует предел

$$\lim_{n\to\infty}F_n(x)=F(x),$$

называемый функцией Кантора ("Канторова лестница").

• F(x) непрерывна как равномерный предел непрерывных функций F_n , не убывает по x и определена на [0, 1].

Функция Кантора

Пусть N – множество точек роста F,

 $ar{\mathit{N}} = [0,1] \setminus \mathit{N}$ – множество точек постоянства, а λ – мера Лебега.

В частности, $\lambda([0,1])=1$. Тогда

$$\lambda(\bar{N}) = 1/3 + 2/9 + 4/27 + \dots = 1.$$

Поскольку

$$1 = \lambda([0,1]) = \lambda(\mathsf{N} \cup \bar{\mathsf{N}}) = \lambda(\mathsf{N}) + \lambda(\bar{\mathsf{N}}),$$

то $\lambda(N) = 0$.

Функция Кантора

Следовательно, функция F сингулярна и она может быть продолжена до ф .p., если положить $F(x)=1,\,x\geqslant 1$ и $F(x)=0,\,x<0.$

п-мерный случай

Пусть на измеримом пространстве $(\mathsf{R}^n,\mathcal{B}(\mathsf{R}^n))$

задана вероятностная мера P.

Определим параллелепипед в \mathbb{R}^n :

$$(-\infty, x] = (-\infty, x_1] \times \cdots \times (-\infty, x_n] \in \mathcal{B}(\mathbb{R}^n),$$

где
$$x = (x_1, \ldots, x_n)$$
.

Рассмотрим функцию

$$F_n(x) = P(-\infty, x]$$

(сужение вероятностной меры на параллелепипеды).

Свойства функции F_n

- **①** $F_n(x)$ не убывает по x_i , $\forall i$;
- ② $\lim_{x\to\infty} F_n(x) = 1$ $(x\to\infty$ ποκοмпонентно);
- **4** данное свойство сформулируем лишь для случая n=2.

Рассмотрим прямоугольник

$$(a, b] = (a_1, b_1] \times (a_2, b_2] \in \mathcal{B}(\mathsf{R}^2).$$

Легко заметить, что

$$P(a,b] = F_2(a_2,b_2) - F_2(a_2,b_1) - \left(F_2(a_1,b_2) - F_2(a_1,b_1)\right) \geqslant 0.$$

- Свойство неотрицательности разностных соотношений (4.) легко переносится по аналогии на случай любого n.
- Всякая функция F_n , удовлетворяющая свойствам 1-4., называется n-мерной функцией распределения.

Теорема

Пусть задана ф.р. F_n . Тогда в пространстве $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ единственным образом можно построить вероятностную меру P, которая является продолжением ф.р. F_n .

Непрерывный случай

Если ф.р. F_n может быть представлена в виде n-мерного интеграла Лебега

$$F_n(x) = \int_{\infty}^{x} f(y)dy, \quad x = (x_1, x_2, \dots x_n) \in \mathbb{R}^n$$
 (77)

то ф.р. F_n называется абсолютно непрерывной, а ее производная,

$$f(x_1, ..., x_n) = \frac{\partial F^{(n)}(x)}{\partial x_1 ... \partial x_n}$$
(78)

называется п-мерной плотностью.

Для функции плотности (при $n\geqslant 1$) верно:

Бесконечномерный случай

Рассмотрим измеримое пространство ($\mathbf{R}^{\infty},\mathcal{B}(\mathbf{R}^{\infty})$) и цилиндрическое множество в \mathbf{R}^{∞} :

$$I_n(B) = \{x \in \mathsf{R}^\infty : (x_1,..,x_n) \in B \in \mathcal{B}(\mathsf{R}^n)\},\$$

где $B\subset\mathcal{B}(\mathsf{R}^n)$ называется борелевским основанием.

Бесконечномерный случай

Пусть, что в пространстве $(R^{\infty}, \mathcal{B}(R^{\infty}))$ задана вероятностная мера P. Тогда, можно ввести новую вероятностную меру P_n в пространстве $(R^n, \mathcal{B}(R^n))$ следующим образом:

$$\mathsf{P}(I_n(B))=\mathsf{P}_n(B),$$

т.е. положив меру борелевского элемента $B \in \mathcal{B}(\mathsf{R}^n)$) равной (уже построенной) мере цилиндрического множества $I_n(B) \in \mathsf{R}^\infty$, для которого элемент B является основанием.

Бесконечномерный случай

Определим в n+1 – мерном пространстве цилиндр такого вида

$$I_{n+1}(B \times R) = \{x \in R^{\infty} : (x_1, ..., x_n, x_{n+1}) \in B \times R\}.$$

Если мера цилиндра в пространстве размерности n+1 совпадает с мерой его борелевского основания B в пространстве размерности n, т.е.,

$$P_{n+1}(B \times R) = P_n(B), n \geqslant 1,$$

то выполнено условие согласованности мер (Колмогорова).

Теорема Колмогорова

Теорема о продолжении вероятностной меры в пространстве R^∞

Пусть на последовательности измеримых пространств $(\mathsf{R}^n,\mathcal{B}(\mathsf{R}^n))$ заданы вероятностные меры $\mathsf{P}_n,\ n=1,2,...$ удовлетворяющие свойству

Тогда на пространстве $(\mathsf{R}^\infty,\mathcal{B}(\mathsf{R}^\infty))$ существует единственная вероятностная мера P такая, что

$$P(I_n(B)) = P_n(B).$$

согласованности.

Полное вероятностное пространство

Пусть задано вероятностное пространство . Множество N называется P — нулевым, если

$$\exists A \in \mathcal{F} : N \subseteq A, P(A) = 0.$$

Дополним ${\mathcal F}$ всеми такими P –нулевыми множествами и положим $\sigma({\mathcal F}\cup{\mathsf N})=\overline{{\mathcal F}}.$

Полученное вероятностное пространство $<\Omega,\overline{\mathcal{F}},\overline{P}>$, где \overline{P} - продолжение меры P на $\overline{\mathcal{F}}$ называется полным.

Всякое вероятностное пространство можно изначально считать полным.

TEMA 12:

Измеримость

Пусть задано вероятностное пространство

$$<\Omega, \mathcal{F}, P>$$

и измеримое отображение

$$\xi: \Omega \to \mathbf{R}$$
.

Измеримость означает, что

$$\xi^{-1}(B) = \{\omega : \xi(\omega) \in B\} \in \mathcal{F}, \ \forall B \in \mathcal{B}(R).$$
 (79)

(У каждого образа есть прообраз.)

- Случайная величина выражает некоторый числовой результат случайного эксперимента.
- Важно уметь определять вероятностную меру вида $P_{\xi}(B)$ вероятность события, что значения случайной величины ξ принадлежат некоторому борелевскому множеству B:

$$P_{\xi}(B) = P(\xi \in B), B \in \mathcal{B}(R).$$

Мера P задана лишь на исходном вероятностном пространстве Ω . Поэтому, чтобы решить указанную проблему, полагают

$$P_{\xi}(B) = P(\omega : \xi(\omega) \in B) = P(\omega : \omega \in \xi^{-1}(B)), \tag{80}$$

Иначе можно записать

$$P(\xi^{-1}(B)) = P_{\xi}(B),$$
 (81)

т.е. в качестве вероятностной меры P_ξ борелевского элемента B (определенной на пространстве $\mathcal{B}(\mathsf{R})$) принимается вероятность P его полного прообраза $\xi^{-1}(B)$.

- Представление (81) имеет место в силу измеримости отображения ξ , т.е. $\xi^{-1}(B) \in \mathcal{F}$, и исходная мера P элемента $\xi^{-1}(B)$ существует.
- Вероятностная мера P_ξ называется *распределением* с. в. ξ на (измеримом) пространстве $\langle \mathbf{R}, \mathcal{B}(\mathbf{R}) \rangle$.
- Всякое измеримое отображение $\xi:\Omega \to {\sf R}$ называется *случайной* величиной (с.в.).
- ullet Если $\xi:\Omega o {\sf R}^n$, то ξ называется случайным вектором.

- Пусть $B=(-\infty,x]$, тогда мера $\mathsf{P}_{\xi}(-\infty,x]=F_{\xi}(x)$ называется функцией распределения (ф.р.) с. в. ξ .
- Случайная величина ξ называется дискретной, если ф.р. F_{ξ} дискретная, и непрерывной, если F_{ξ} непрерывная.

По сути, отображение ξ переводит вероятностное пространство

$$\langle \Omega, \mathcal{F}, P \rangle$$

в вероятностное пространство

$$\langle R, \mathcal{B}, (R)P_{\xi} \rangle$$
.

Плотность распределения с. в.

Для абсолютно непрерывных с. в. определена функция плотности f_{ξ} такая, что $F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy$.

Физический смысл f_{ξ} : вероятность того, что ξ примет значения из интервала $(x, x + \Delta x)$, Δx мало, приближенно равна произведению плотности распределения вероятности в точке x на приращение Δx , т.е.

$$P(\xi \in (x, x + \Delta x)) \approx f_{\xi}(x)\Delta x. \tag{82}$$

Функция от случайной величины

Рассмотрим борелевскую (т.е. измеримую) функцию

$$\varphi: \langle \mathsf{R}_1, \mathcal{B}_1 \rangle \to \langle \mathsf{R}_2, \mathcal{B}_2 \rangle,$$

где $\mathcal{B}(\mathsf{R}_i)=\mathcal{B}_i$. Таким образом, $arphi^{-1}(B)\in\mathcal{B}_1,\ orall B\in\mathcal{B}_2.$

Отображение $\eta=\varphi(\xi)$, где ξ задана на $\langle \Omega, \mathcal{F}, \, \mathsf{P} \rangle$, также есть с.в.

$$\{\omega : \varphi(\xi(\omega)) \in B \in \mathcal{B}_2\} = \{\omega : \xi(\omega) \in \varphi^{-1}(B) \in \mathcal{B}_1\}$$
$$= \{\omega : \omega \in \xi^{-1}(\varphi^{-1}(B))\} \in \mathcal{F}. \quad (83)$$

Свойства с вероятностью единица

Определение

Пусть задано вероятностное пространство $\langle \Omega, \mathcal{F}, \, \mathsf{P} \rangle$ и на нем некоторое "свойство" $\varepsilon(\omega)$. Если

 $\mathsf{P}(\omega$: свойство $\varepsilon(\omega)$ выполнено) =1,

то говорят, что свойство $\varepsilon(\omega)$ выполнено c вероятностью 1 (c в. 1, почти всюду, почти наверное).

Свойства с вероятностью единица

Пример 1

Если для двух с.в. ξ, η

$$P(\omega : \xi(\omega) = \eta(\omega)) = 1, \tag{84}$$

то ξ и η *стохастически эквивалентны* (равны с в. 1).

Свойства с вероятностью единица

Пример 2 (СХОДИМОСТЬ С ВЕРОЯТНОСТЬЮ 1).

Если ξ_1, ξ_2, \dots — последовательность с.в. и существует такая с.в. ξ , что

$$P(\omega: \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)) = 1, \tag{85}$$

то говорят, что последовательность с.в. ξ_n сходится к с.в. ξ с в. 1.

Иначе это можно записать так:

$$P(\omega: \lim_{n\to\infty} \xi_n(\omega) \neq \xi(\omega)) = 0.$$

Сходимость с вероятностью 1

Замечание

Если ω – фиксировано, то фиксированы значения (бесконечной) числовой последовательности $(\xi_n(\omega))$ и значение $\xi(\omega)$. Таким образом, для каждого ω имеет место обычная числовая сходимость $\lim_{n\to\infty} \xi_n(\omega) = \xi(\omega)$.

Пример 3

Пусть $(\xi_n)_{n=1}^{\infty}$ — последовательность с.в. и

$$\lim_{n \to \infty} \xi_n = \xi \quad \text{c B.1.} \tag{86}$$

Тогда ξ является с.в.

Пример 4

Пусть $(\xi_n)_{n=1}^{\infty}$, $(\eta_n)_{n=1}^{\infty}$ — две последовательности с.в., причем, $\xi_n = \eta_n$ с в.1, а φ — борелевская функция.

Тогда $\varphi(\xi_1,...,\xi_n)$ есть с.в. при любом n, кроме того,

$$\varphi(\xi_1,...,\xi_n) = \varphi(\eta_1,...,\eta_n)$$
 с в. 1.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 G

Независимые случайные величины

Определение

Случайные величины ξ , η , заданные на одном вероятностном пространстве $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$, называются *независимыми*, если для любых борелевских элементов $B_1, B_2 \in \mathcal{B}(\mathsf{R})$

$$P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1)P(\eta \in B_2).$$
 (87)

Теорема

Пусть ξ, η — независимые с.в., φ, f — борелевские функции. Тогда с.в. $\varphi(\xi), f(\eta)$ — независимы.

Доказательство

В силу независимости ξ и η , для любых $B_1, B_2 \in \mathcal{B}(\mathsf{R})$,

$$P(\varphi(\xi) \in B_1, f(\eta) \in B_2) = P(\xi \in \varphi^{-1}(B_1), \eta \in f^{-1}(B_2))$$

$$= P(\xi \in \varphi^{-1}(B_1))P(\eta \in f^{-1}(B_2))$$

$$= P(\varphi(\xi) \in B_1)P(f(\eta) \in B_2).$$

Независимость в савокупности

Определение

Семейство случайных величин $\{\xi_i, i \in I\}$ называется независимым в совокупности, если для любых множеств $B_i \in \mathcal{B}(\mathbf{R})$ независимы в совокупности события $\{\xi_i \in B_i\}, i \in I$.

В полном вероятностном пространстве достаточно проверять независимость событий для борелевских множеств $B=(-\infty,x].$

Критерий независимости случайных величин

Рассмотрим n–мерный случайный вектор $\xi=(\xi_1,...,\xi_n):\Omega \to \mathbb{R}^n$ с ф.р.

$$F_{\xi}(x) = \mathsf{P}(\xi_1 \leqslant x_1, ..., \xi_n \leqslant x_n),$$

и пусть $\mathsf{P}(\xi_i\leqslant x)=:F_i(x)-\mathsf{ф}.\mathsf{p}.$ компоненты $\xi_i.$

Критерий

Случайные величины $\xi_1,...,\xi_n$ независимы в совокупности тогда и только тогда, когда ф.р. вектора ξ имеет форму произведения

$$F_{\xi}(x) = \prod_{i=1}^{n} F_{i}(x_{i}). \tag{88}$$

Критерий независимости случайных величин

Если определены плотности компонент ξ , то критерий независимости может быть сформулирован в следующем виде:

$$f_{\xi}(x_1,\ldots,x_n) = \prod_{i=1}^n f_i(x_i).$$
 (89)

Равенство (89) можно получить путем n-кратного дифференцирования обех частей (88) по каждой переменной x_i .

Функция распределения F_i компоненты ξ_i , называется маргинальной.

Экспоненциально (показательно) распределенная случайная величина с параметром $\lambda>0$

Обозначение:

$$\xi \sim \exp(\lambda).$$
 (90)

Плотность:

$$f_{\xi}(x) = \lambda e^{-\lambda x}, \quad x \geqslant 0; \quad (f_{\xi}(x) = 0, x < 0).$$
 (91)

Функция распределения:

$$F_{\xi}(x) = 1 - e^{-\lambda x}, \quad x \geqslant 0; \quad (F_{\xi}(x) = 0, x < 0).$$
 (92)

Нормально распределенная случайная величина параметрами

$$a \in (-\infty, \infty), \sigma > 0.$$

Обозначение:

$$\xi \sim \mathcal{N}(\mathbf{a}, \, \sigma).$$
 (93)

Плотность:

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \ x \in \mathbb{R}.$$
 (94)

Функция распределения:

$$F_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(y-a)^2}{2\sigma^2}} dy, \ x \in \mathbb{R}.$$
 (95)

Случайная величина, равномерно распределенная на отрезке $[a,b],\ a < b,$

Обозначение:

$$\xi \sim \mathcal{U}[\mathsf{a},\,\mathsf{b}].\tag{96}$$

Плотность:

$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b]; \\ 0, & x \notin [a,b] \end{cases}$$
 (97)

Функция распределения:

$$F_{\xi}(x) = \begin{cases} 0, & x < a; \\ \frac{x-a}{b-a}, & x \in [a, b]; \\ 1, & x > b. \end{cases}$$
 (98)

Основное свойство плотности:

$$\int_{-\infty}^{\infty} f_{\xi}(x) dx = 1. \tag{99}$$

Связь плотности и функции распределения:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy,$$

$$f_{\xi}(x) = F'_{\xi}(x).$$
(100)

$$f_{\xi}(x) = F'_{\xi}(x). \tag{101}$$

Пример 1

Задана плотность распределения с. в. ξ

$$f_{\xi}(x) = \begin{cases} cx, & x \in [1, 5]; \\ 0, & x \notin [1, 5] \end{cases}$$
 (102)

Найти параметр c и функцию распределения ξ .

Решение:

По основному свойству плотности:

$$\int_{-\infty}^{\infty} f_{\xi}(x) dx = 0 + \int_{1}^{5} cx dx + 0 = 1.$$
 (103)

Следовательно

$$\left. \frac{cx^2}{2} \right|_1^5 = c\left(\frac{25-1}{2}\right) = 12c = 1.$$
 (104)

Тогда c = 1/12.

Ищем функцию распределения, по формуле:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy.$$

На интервалах $(-\infty, 1), [1, 5], (5, +\infty)$ плотность равна 0, x/12, 0, соответственно. Вычисляем функцию $F\xi(x)$ для каждого из трех интервалов отдельно.

При $x \in (-\infty, 1)$, очевидно $F\xi(x) = 0$.

При $x \in [1, 5]$:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy = \int_{-\infty}^{1} 0 dy + \int_{1}^{x} (y/12) dy = \frac{y^{2}}{24} \Big|_{1}^{x} = \frac{x^{2} - 1}{24}.$$
(105)

При $x \in (5, +\infty)$:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy = \int_{-\infty}^{1} 0 dy + \int_{1}^{5} (y/12) dy + \int_{5}^{x} 0 dy = 0 + 1 + 0 \equiv 1.$$
(106)

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩ભ

Таким образом,

$$F_{\xi}(x) = \begin{cases} 0, & x < 1; \\ \frac{x^2 - 1}{24}, & x \in [1, 5]; \\ 1, & x > 5. \end{cases}$$
 (107)

 \Rightarrow

Для непрерывных случайных величин не принципиально включаются ли границы интервалов (строгие ли неравенства), т.е. при замене [1, 5] на (1, 5) (или [1, 5), или (1, 5]), решение данной задачи аналогичное.

Физический смысл функции распределения:

$$F_{\xi}(x) = P(\xi \in (-\infty, x]) = P(\xi \leqslant x). \tag{108}$$

Вероятность, что с.в. попадает в интервал [a, b]:

$$P(a \leqslant \xi \leqslant b) = F_{\xi}(b) - F_{\xi}(a). \tag{109}$$

Пример 2

Функция распределения с. в. ξ имеет вид

$$F_{\xi}(x) = \begin{cases} 0, & x < 0; \\ \frac{x^2}{9}, & x \in [0, 3]; \\ 1, & x > 3. \end{cases}$$
 (110)

Найти: a). $P(1 \le \xi < 2)$; б). $P(-2 < \xi \le 2)$; a). $P(0 < \xi < 4)$.

Решение:

$$P(1 \leqslant \xi < 2) = F_{\xi}(2) - F_{\xi}(1) = \frac{4}{9} - \frac{1}{9} = \frac{1}{3}.$$

$$P(-2 < \xi \leqslant 2) = F_{\xi}(2) - F_{\xi}(-2) = \frac{4}{9} - 0 = \frac{4}{9}.$$

$$P(0 < \xi < 4) = F_{\xi}(4) - F_{\xi}(0) = 1 - 0 = 1.$$

Пример 3

Случайная величина ξ распределена по показательному закону с параметром $\lambda=2.$

Найти: $P(0, 5 < \xi < 4)$.

Решение:

$$\begin{array}{lcl} \mathsf{P}(0,5<\xi<4) & = & F_{\xi}(4) - F_{\xi}(0,5) \\ & = & (1-e^{-2*4}) - (1-e^{-2*0,5}) = e^{-1} - e^{-8}. \end{array}$$

Характеристики непрерывных случайных величин

Математическое ожидание

$$\mathsf{E}\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx \equiv \int_{-\infty}^{\infty} x dF_{\xi}(x). \tag{111}$$

Дисперсия

$$D\xi = \mathsf{E}\xi^2 - \left(\mathsf{E}\xi\right)^2,\tag{112}$$

где

$$\mathsf{E}\xi^2 = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx. \tag{113}$$

Ш

Дисперсия всегда неотрицательная: $D\xi \geqslant 0$.

Экспоненциально (показательно) распределенная случайная величина (с параметром $\lambda>0$), $\xi\sim \exp(\lambda)$:

Математическое ожидание

$$\mathsf{E}\xi = \frac{1}{\lambda}.\tag{114}$$

Дисперсия

$$D\xi = \frac{1}{\lambda^2}. (115)$$

Нормально распределенная случайная величина

(с параметрами
$$a\in (-\infty,\,\infty),\,\sigma>0$$
), $\xi\sim \mathcal{N}(a,\,\sigma)$

Математическое ожидание

$$\mathsf{E}\xi = \mathsf{a}.\tag{116}$$

Дисперсия

$$D\xi = \sigma^2, \tag{117}$$

Свойство нормального распределения

$$P(\xi < E\xi) = P(\xi < E\xi) = \frac{1}{2}.$$
 (118)

Случайная величина, равномерно распределенная на отрезке

$$[\mathbf{a},\mathbf{b}],\,\mathbf{a}<\mathbf{b},\!,\,\xi\sim\mathcal{U}[\mathbf{a},\,\mathbf{b}]$$

Математическое ожидание

$$\mathsf{E}\xi = \frac{a+b}{2}.\tag{119}$$

Дисперсия

$$D\xi = \frac{(b-a)^2}{12}. (120)$$

Пример

Случайная величина ξ задана функцией распределения

$$F_{\xi}(x) = \begin{cases} 0, & x \leq 0, \\ \frac{x^2}{9}, & 0 < x \leq 3, \\ 1, & x > 3. \end{cases}$$
 (121)

Найти: $E\xi$, $D\xi$.

Решение

Найдем плотность:

$$f_{\xi}(x) = \frac{\partial F(x)}{\partial x}.$$

Поскольку при $x \notin (0, 3]$ $F_{\xi}(x) = const$, $f_{\xi}(x) = 0$.

При $x \in (0, 3]$:

$$f_{\xi}(x)=\frac{2x}{9}.$$

Математическое ожидание:

$$\mathsf{E}\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx = \int_{0}^{3} \frac{2x^{2}}{9} dx = \frac{2x^{3}}{27} \Big|_{0}^{3} = \frac{2 \cdot 3^{3}}{27} = 2. \tag{122}$$

Второй начальный момент:

$$\mathsf{E}\xi^2 = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx = \int_0^3 \frac{2x^3}{9} dx = \frac{x^4}{18} \Big|_0^3 = \frac{3^4}{18} = \frac{9}{2}. \tag{123}$$

Дисперсия:

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{9}{2} - 4 = \frac{1}{2}.$$
 (124)

TEMA 14:

Рассмотрим абсолютно непрерывную с.в. ξ с функцией распределения

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy,$$

и заметим, что для любого борелевского множества $B \in \mathcal{B}(\mathcal{R})$:

$$P(\xi \in B) = EI(\xi \in B) = \int_{R} I(x \in B) P_{\xi}(dx) = \int_{x \in B} P_{\xi}(dx).$$
 (125)

Рассмотрим случайную величину $\eta=\varphi(\xi)$, где φ – борелевская функция, обозначим $B_y:=(-\infty,\,y].$

Установим связь между F_{ξ} и F_{η} :

$$F_{\eta}(y) = P(\eta \leqslant y) = P(\varphi(\xi) \in B_{y}) = P(\xi \in \varphi^{-1}(B_{y}))$$

$$= \int_{x \in \varphi^{-1}(B_{y})} P_{\xi}(dx) = \int_{x \in \varphi^{-1}(B_{y})} f_{\xi}(x) dx.$$

Заметим, что $\varphi^{-1}(B_y)$ – борелевский элемент.

Пример

Пусть $arphi(\xi)=\eta=a\xi+b$, где a=const>0. Тогда

$$\xi = \varphi^{-1}(\eta) = \frac{\eta - b}{a}, \qquad \varphi^{-1}(B_y) = \left(-\infty, \frac{y - b}{a}\right].$$

Тогда

$$F_{\eta}(y) = \int_{-\infty}^{\frac{y-b}{a}} f_{\xi}(x) dx.$$

- ullet Пусть функция arphi строго возрастает, непрерывно дифференцируема и arphi'
 eq 0.
- Тогда обратная функция $\varphi^{-1} =: h$ также строго возрастает и имеет непрерывную производную $h' = 1/\varphi'$.

В этом случае

$$F_{\eta}(y) = \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\xi \leqslant h(y)) = \int_{-\infty}^{h(y)} f_{\xi}(x) dx. \tag{126}$$

Перейдем к переменной z=arphi(x). Таким образом, если

$$-\infty < x \leqslant h(y)$$
, to $-\infty < z \leqslant y$ if $x = h(z)$.

Из (126):

$$F_{\eta}(y) = \int_{-\infty}^{y} f_{\xi}(h(z)) dh(z) = \int_{-\infty}^{y} f_{\xi}(h(z)) h'(z) dz.$$
 (127)

Следовательно, плотность f_{η} существует и равна

$$f_{\eta}(y) = f_{\xi}(h(y))h'(y).$$

Если функция φ строго убывает, то

$$F_{\eta}(y) = \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\xi \geqslant h(y)) = \int_{h(y)}^{\infty} f_{\xi}(x) dx,$$

и $f_{\eta}(y) = -f_{\xi}(h(y))h'(y)$, причем h'(y) < 0. Таким образом, общая формула перехода от исходной плотности к новой имеет вид:

$$f_{\eta}(y) = f_{\xi}(h(y))|h'(y)|.$$
 (128)

Пример

Случайная величина ξ задана плотностью

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$
 (129)

Найти плотность с. в. $\eta = \varphi(\xi) = \xi^3$.

Поскольку функция arphi монотонна на ${f R}$, существует обратная функция:

$$h(x) = \varphi^{-1}(x), \tag{130}$$

$$h'(x) = \frac{1}{3\sqrt[3]{x^2}}. (131)$$

и можно применить формулу (128).

Таким образом,

$$f_{\eta}(x) = \frac{1}{3\sqrt{2\pi}} e^{-\sqrt[3]{x^2}/2} \frac{1}{\sqrt[3]{x^2}}.$$
 (132)

Математическое ожидание неотрицательной с .в .

Теорема

Пусть ξ — абсолютно непрерывная суммируемая случайная величина и $\xi \geqslant 0$. Тогда ее математическое ожидание может быть найдено по формуле

$$\mathsf{E}\xi = \int_0^\infty [1 - F_{\xi}(x)] dx. \tag{133}$$

Доказательство

По определению математическое ожидание ξ имеет вид

$$\mathsf{E}\xi = \int_0^\infty x dF_\xi(x),\tag{134}$$

что эквивалентно

$$\mathsf{E}\xi = -\int_0^\infty x d[1 - F_{\xi}(x)]. \tag{135}$$

Проинтегрирует (135) по частям, положив

$$u = x,$$
 $dv = d[1 - F_{\xi}(x)],$
 $v = [1 - F_{\xi}(x)],$ $du = dx.$

Получаем

$$\mathsf{E}\xi = -x[1 - F_{\xi}(x)]\Big|_{0}^{\infty} + \int_{0}^{\infty} [1 - F_{\xi}(x)] dx. \tag{136}$$

Рассмотрим

$$-x[1-F_{\xi}(x)]\Big|_{0}^{\infty} = 0 + \lim_{x \to \infty} x[1-F_{\xi}(x)]. \tag{137}$$

Поскольку с.в. ξ – суммируема (Е $\xi<\infty$), интеграл (134) сходится. По определению интеграла для $\forall\, \varepsilon>0\,\,\exists\,\, N$:

$$\varepsilon > \int_{N}^{\infty} x dF(x) \geqslant N P(\xi > N) = N[1 - F_{\xi}(N)], \tag{138}$$

т. е. выражение $N[1-F_{\xi}(N)]$ можно ограничить сверху. Таким образом, если математическое ожидание ξ конечно, то x растет медленнее, чем убывает хвост интеграла: $x[1-F_{\xi}(x)] \to 0, x \to \infty$.

TEMA 15:

Центральная предельная теорема.

Комплексная случайная величина

Определение

Пусть ξ, η — с.в., тогда выражение

$$au = \xi + i\eta$$
, где $i^2 = -1$,

называется комплексной с.в. Ясно, что

$$e^{it\xi} = \cos t\xi + i\sin t\xi$$

также есть комплексная с.в. и $|e^{it\xi}|=1.$

Комплексная случайная величина

Математическое ожидание комплексной случайной величины определяется как

$$\mathsf{E}\tau=\mathsf{E}\xi+i\mathsf{E}\eta.$$

Заметим, что $\mathsf{E}|e^{it\xi}|=1.$

Характеристическая функция

Определение

Детерминированная функция

$$\varphi_{\xi}(t) := \mathsf{E}e^{it\xi} \tag{139}$$

называется характеристической функцией $(x.\phi.)$ с.в. ξ .

Ясно, что

$$\varphi_{\xi}(t) = \mathsf{E}e^{it\xi} = \int_{R} e^{itx} dF_{\xi}(x) = \int_{R} e^{itx} f_{\xi}(x) dx. \tag{1}$$

Последнее равенство имеет место, если существует плотность с.в. ξ .

1. Пусть Е $\xi^n < \infty$ для некоторого $n \geqslant 1$. Тогда существует n-я производная функции $arphi_\xi$ и

$$\mathsf{E}\xi^n = \frac{\varphi_{\xi}^{(n)}(0)}{(i)^n}.\tag{2}$$

2. Пусть $\xi_1,...,\xi_n$ — независимые с.в. и $\varphi_1,...,\varphi_n$ — их х.ф. Тогда х.ф. суммы $\xi=\xi_1+\dots+\xi_n$ равна

$$\varphi_{\xi}(t) = \mathsf{E}e^{it\sum_{k=1}^{n}\xi_{k}} = \prod_{k=1}^{n}\mathsf{E}e^{it\xi_{k}} = \prod_{k=1}^{n}\varphi_{k}(t). \tag{3}$$

- 3. X. ф. $\varphi_{\xi}(t)$ и ф. р. $F_{\xi}(x)$ взаимно однозначно определяют друг друга.
- 4. $|\varphi_{\xi}(t)| \leqslant \int_{R} |e^{itx}| F_{\xi}(dx) = 1$.
- 5. $\varphi(0) = 1$.
- 6. Пусть х. ф. $\varphi_{\xi}(t)$ абсолютно интегрируема, т.е. $\int\limits_{R}|\varphi_{\xi}(t)|dt<\infty$ и существует плотность $f_{\xi}(x)$. Тогда имеет место формула обращения:

$$f_{\xi}(x) = \frac{1}{2\pi} \int\limits_{R} e^{itx} \varphi_{\xi}(t) dt.$$

7. Пусть с. в. $\xi = N(0,1)$. Тогда

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{R} e^{itx} e^{-x^2/2} dx, \tag{4}$$

и производная х.ф. равна (с учетом интегрирования по частям)

$$\varphi_{\xi}^{(1)}(t) = \frac{1}{\sqrt{2\pi}} \int_{R} i \, x \, e^{itx - \frac{x^2}{2}} \, dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{R} i \, e^{itx} \, d(-e^{-\frac{x^2}{2}})$$

$$= -\frac{1}{\sqrt{2\pi}} \int_{R} t \, e^{itx - \frac{x^2}{2}} = -t \, \varphi_{\xi}(t).$$
 (5)

Таким образом, $(\ln \varphi_{\xi}(t))' = -t$, и значит,

$$\ln \varphi_{\xi}(t) = -\frac{t^2}{2} + c.$$
(6)

Начальное условие дает $arphi_{\xi}(0)=1$, и т.о. х.ф. с.в. N(0,1) равна

$$\varphi_{\xi}(t)) = e^{-\frac{t^2}{2}} =: \varphi_0(t).$$
(7)

Пример

Пусть

$$\eta = \sigma N(0,1) + a, \sigma > 0,$$
 $\xi = N(0,1).$

Причем функция $\varphi(\xi)=\eta$) – строго возрастающая.

Тогда

$$f_{\eta}(y) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(y-a)^2}{2\sigma^2}}, \ y \in \mathsf{R}.$$

Таким образом, линейное преобразование нормальной с.в. сохраняет нормальность, но меняет параметры, смысл которых следует из равенств:

$$\mathsf{E}\eta = \mathsf{E}(\sigma\xi + \mathsf{a}) = \sigma\mathsf{E}\xi + \mathsf{a} = \mathsf{a},$$

$$\mathsf{D}n = \mathsf{D}(\sigma\xi + \mathsf{a}) = \mathsf{D}(\sigma\xi) = \sigma^2.$$

Найдем х.ф. с.в. $\eta = N(a, \sigma^2)$. Используя обозначение в (7),

$$\varphi_{\eta}(t) = \mathsf{E}e^{it(\sigma\xi + a)} = e^{ita}\mathsf{E}e^{it\sigma\xi} = e^{ita}e^{-\frac{(t\sigma)^2}{2}} = e^{ita}\varphi_0(\sigma t). \tag{8}$$

8. Пусть $\xi_k = N(a_k, \sigma_k^2)$ — независимые с.в., k = 1, ..., n и пусть $\eta := \sum_{k=1}^{n} \xi_{k}$. Тогда

$$\varphi_{\eta}(t) = \mathsf{E} e^{it\sum_{k=1}^{n} \xi_{k}} = \prod_{k=1}^{n} \mathsf{E} e^{it\xi_{k}} = \prod_{k=1}^{n} \varphi_{\xi_{k}}(t) = e^{it\sum_{k=1}^{n} a_{k} - (t^{2}\sum_{k=1}^{n} \sigma_{k}^{2})/2}$$

Поэтому (по свойству 3 х. ф.)

$$\eta = N\Big(\sum_{k=1}^n a_k, \sum_{k=1}^n \sigma_k^2\Big).$$

$$\mathsf{E} \eta = \sum_{k=1}^n \mathsf{E} \xi_k = \sum_{k=1}^n a_k, \ D \eta = \sum_{k=1}^n D \xi_k = \sum_{k=1}^n \sigma_k^2.$$

Центральная Предельная Теорема

Пусть $\xi_1,...,\xi_n$ — независимые, одинаково распределенные (н.о.р.) с.в.

И

$$|E|\xi_1|^2 < \infty, \ E\xi_1 = a < \infty, \ D\xi_1 = \sigma^2 < \infty.$$

Тогда при $n \to \infty$,

$$\frac{\sum_{i=1}^{n} \xi_{i} - \mathsf{E}(\sum_{i=1}^{n} \xi_{i})}{\sqrt{D \sum_{i=1}^{n} \xi_{i}}} = \frac{\sum_{i=1}^{n} \xi_{i} - \mathsf{an}}{\sigma \sqrt{n}} \Rightarrow \mathsf{N}(0,1), \tag{9}$$

где знак \Rightarrow означает сходимость по распределению (слабую сходимость).

Доказательство ЦПТ

Пусть a=0 (иначе можно перейти к центрированным с. в. ξ_i-a).

Обозначим

$$S_n = \frac{\sum_{k=1}^n \xi_k}{\sigma \sqrt{n}} = \sum_{k=1}^n \frac{\xi_k}{\sigma \sqrt{n}},$$

В силу независимости слагаемых

$$arphi_{\mathcal{S}_n}(t) = \mathsf{E} \mathrm{e}^{it\sum rac{\xi_k}{(\sigma\sqrt{n})}} = \prod_{k=1}^n \mathsf{E} \mathrm{e}^{itrac{\xi_k}{(\sigma\sqrt{n})}} = \left(arphi_\xi\left(rac{t}{\sigma\sqrt{n}}
ight)
ight)^n.$$

Поскольку $-\varphi_{\xi}^{(2)}(0)=\sigma^2=\mathsf{E}\xi^2<\infty$, то можно разложить $\varphi_{\xi}(t)$ в ряд

Тейлора в окрестности точки 0:

$$arphi_{\xi}(t) = 1 + arphi_{\xi}^{(1)}(0)\,t + rac{arphi_{\xi}^{(2)}(0)\,t^2}{2!} + o(t^2),$$
 при $t o 0.$

Поскольку Е $\xi_1 = \varphi_{\xi}^{(1)}(0) = 0$, то

$$\varphi_{\xi}(t) = 1 - \frac{\sigma^2 t^2}{2} + o(t^2),$$

и значит,

$$\varphi_{\xi}\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + o\left(\frac{t^2}{\sigma^2 n}\right) = 1 - \frac{t^2}{2n} + o(1/n), \ n \to \infty.$$

Заметим, что

$$no(1/n) = o(1/n)/\frac{1}{n} \to 0$$
 при $n \to \infty$.

Таким образом,

$$\varphi_{\xi}\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 + \alpha_{n},$$

где $lpha_n = -rac{t^2}{2n} + o(1/n)$. Следовательно, $arphi_{\mathcal{S}_n}(t) = (1+lpha_n)^n$ и

$$\ln \varphi_{S_n}(t) = n \ln(1 + \alpha_n).$$

При $n \to \infty$,

$$lpha_n = -rac{t^2}{2n} + o(1/n) o 0,$$

и по свойству замечательного предела,

$$\frac{\ln(1+\alpha_n)}{\alpha_n}=1+\varepsilon_n\to 1,\ n\to\infty.$$

Последнее влечет при $n o \infty$

$$\ln \varphi_{S_n}(t) = n \alpha_n \frac{\ln(1+\alpha_n)}{\alpha_n} = n \left(-\frac{t^2}{2n} + o(1/n)\right) (1+\varepsilon_n)$$
$$= \left[-\frac{t^2}{2} + n o(1/n)\right] (1+\varepsilon_n) \to -\frac{t^2}{2}.$$

Таким образом, при $n o \infty$

$$\varphi_{S_n}(t) \rightarrow e^{-\frac{t^2}{2}},$$

что соответствует х. ф. с.в. N(0,1) (7).

Экзаменационные вопросы

- 1. Пространство элементарных событий. Вероятность. Свойства вероятности.
- 2. Классическая вероятностная схема. Примеры.
- Независимые и несовместные события. Условная вероятность, формула полной вероятности, формула Байеса (вывод).
- 4. Дискретное вероятностное пространство. Прямое произведение вероятностных пространств.
- 5. Дискретная случайная величина. Примеры дискретных распределений.
- 6. Мат. ожидание дискретной случайной величины: определение, примеры.

- 7. Математическое ожидание дискретной случайной величины: свойства.
- 8. Характеристики дискретных случайных величин: дисперсия, моменты.
- 9. Независимые случайные величины: независимость в совокупности и попарная независимость.
- 10. Ковариация, коэффициент корреляции.
- 11. Некоторые неравенства: неравенства Маркова и Чебышева (вывод), другие примеры.
- 12. Некоторые неравенства: неравенство Коши-Буняковского (вывод), другие примеры.

- 13. Закон больших чисел (в форме Чебышева, в форме Маркова, в форме Бернулли).
- 14. Теоремы Бернштейна и Вейерштрасса (об аппроксимации непрерывных функций).
- 15. Теорема Пуассона для схемы Бернулли (вывод).
- 16. Локальная теорема Лапласа для схемы Бернулли.
- 17. Интегральная теорема Муавра-Лапласа для схемы Бернулли.
- 18. Производящая функция, ее применение, мультипликативность, примеры.

Экзаменационные вопросы

- 19. Общее вероятностное пространство. Аксиоматика Колмогорова.
- Общее вероятностное пространство. Примеры. Теорема Каратеодори.
- Функция распределения. Абсолютно непрерывная мера, дискретная. Примеры.
- 22. Функция распределения. Сингулярная мера. Примеры.
- 23. Непрерывная случайная величина. Примеры.
- 24. Свойства с вероятностью 1, сходимость с вероятностью 1.

Экзаменационные вопросы

- 25. Критерий независимости случайных величин.
- Математическое ожидание случайной величины как интеграл Лебега – Стилтьеса. Примеры.
- Свойства математического ожидания (теорема Лебега о мажорирующей сходимости, теорема Леви о предельном переходе под знаком математического ожидания).
- 28. Плотность функции от случайной величины.
- 29. Характеристическая функция, примеры, свойства.
- 30. Центральная предельная теорема.