平成 19 年度大学院前期課程入試試験問題

選択科目 b. システム制御

平成 18 年 8 月 22 日

注意事項

- ・ 問題用紙は全部で8枚(但し、表紙を除く)あるので確認すること。
- ・ 解答には必ず問題番号を書き、どの問題に解答したかわかるようにすること。
- 「制御工学」(問題1、2-1および2-2)は全員が解答せよ。
- ・ 選択問題(問題3~7)から2分野を選択して解答せよ。選択しなかった問題の 解答用紙には×印を記して選択した問題が明確に分かるようにせよ。
- ・ 選択問題から3分野以上解答した場合には選択問題の解答を全て無効とするので 注意せよ。
- ・ 「電気機器」を選択する者は、問題3-1および3-2を解答せよ。
- ・ 「パワーエレクトロニクス」を選択する者は、問題4-1、4-2および4-3を解答せよ。
- ・ 「信号処理」を選択する者は、問題5を解答せよ。
- ・ 「論理回路・計算機システム」を選択する者は、問題6を解答せよ。
- ・ 「基本アルゴリズム・プログラミング」を選択する者は、問題 7 1 および 7 2 を解答せよ。
- 解答用紙は色分けしてあるので、問題番号と対応させて以下のように使い分けよ。 (間違わないように注意せよ。)

問題番号 解答用紙の色 1・・・・・・ 白 2・・・・・・ 赤 3・・・・・・ 青 (紺) 4・・・・・・ 黄 5・・・・・・・ 水 (薄い青) 6・・・・・・・ 桃 7・・・・・・ 緑

- ・ 解答用紙の表に書き切れない場合は裏を使用しても良い。
- ・ 問題用紙は持ち帰っても良い。

制御工学

1. 図1のフィードバックシステムについて問いに答えよ.

図 1

- (i) 状態変数を x_1, x_2, x_3 にとったときの状態方程式ならびに出力方程式を示せ.
- (ii) このシステムが可制御となる α, β の条件を示せ.
- (iii) u から y への伝達関数を求めよ.
- (iv) このシステムが安定となる α, β の条件を求めよ.
- (v) システムが安定な場合、単位ランプ入力時の定常偏差 $u(\infty)-x_3(\infty)$ を求めよ.
- (vi) $\alpha = 16, \beta = 7$ のときのフィードバックシステム全体のボード線図(ゲイン特性のみ)を描け. (注意:折点周波数を明示すること.)
- (vii) $\alpha = 16$, $\beta = 7$ における単位ステップ入力時の時間応答 y(t) を求めよ.

2-1 図 2-1 のフィードバック制御系に対して、以下の問いに答えよ、ただし、 $G_c(s)=K$ (K>0) である、

- (i) 外乱 d から出力 y への伝達関数を求めよ、また、外乱 d として単位ステップ関数を入力したときの(このとき $u(t)\equiv 0$ とする)定常出力 $y(\infty)$ を求めよ、
- (ii) K を変化させて、閉ループ系の根軌跡を描け、ただし、軌跡の開始点、実軸からの分岐点や $K \to \infty$ での解の挙動は正確に記述すること、
- (iii) 閉ループ系の特性方程式の減衰係数が $\zeta=0.5$ となるように、自然角周波数 ω_n とゲイン K の値を求めよ (特性方程式を $s^2+2\zeta\omega_n s+\omega_n^2=0$ と表記したときの ζ と ω_n がそれぞれ減衰係数、自然角周波数である).
- 2-2 前問と同様に図 2-1 のフィードバック制御系を考える.以下の問いに答えよ.ただし, $G_c(s)=K\cdot \frac{s+b}{s+a}$ $(K>0,\ a>b>0)$ である.
 - (i) 閉ループ系の特性方程式を

$$\frac{1}{s(s+1)} \times \boxed{ } = -\frac{1}{K}$$

と書き表す. 空欄に該当するものを答えよ.

(ii) 閉ループ系の特性方程式が $s=-1\pm\sqrt{3}j$ を支配的な解(実部が最大の解)として持つように、補償器 G_c を設計したい. (i) で求めた特性方程式に $s=-1+\sqrt{3}j$ を代入し、両辺の偏角 (arg) を取ると

$$\operatorname{arg}\left[\frac{1}{(-1+\sqrt{3}i)\sqrt{3}i}\right] + \operatorname{arg}\right] = (2k+1)\pi, \quad (k=0,\pm 1,\pm 2,\cdots)$$

となった(特性方程式の位相条件). 空欄に該当するものを答えよ. 特に b=2 のとき, この位相条件を満足するような a の値を求めよ(ヒント: 複素平面上で、上の空欄に該当するものを作図して考える. 図 2-2 参照).

このとき、ゲインKの値を求めよ(ヒント:ゲイン条件(偏角の代わりに、特性方程式の両辺の絶対値を取ったもの)を考える).

さらに、ここで求めたa, b, K の値に対して、特性方程式の実解を求めよ、

(iii) (ii) で求めた a, b の値に対して,K を変化させて閉ループ系の根軌跡の概形を描け.ただし,軌跡の開始点や $K \to \infty$ での解の挙動は正確に記述すること.特に,(ii) で求めた K に対応する 3 つの根が軌跡上のどこにあるかを標せ.

電気機器

- 3-1 三相誘導電動機とその等価回路について、以下の問いに答えよ.
- (i) 図3-1に誘導電動機の一相分の簡易等価回路を示す. r_1 , x_1 は一次側の抵抗とリアクタンス, r_2 ', x_2 ' は一次側に換算された二次側の抵抗とリアクタンスである. また, $Y_0=g_0$ $-jb_0$ は励磁アドミタンスであり(j は虚数単位), R'は機械出力に関係した等価抵抗である. 有効巻数比 a ($a=E_1/E_2$, E_1 : 一次誘導起電力, E_2 : 二次誘導起電力), 換算前の二次抵抗 r_2 , すべり s を用いて R'を表せ.
- (ii) $s \geq r_2$, 電流 I_2 'を用いて三相分の機械出力 P_0 を表せ、ただし、機械的損失は無いものとする.
- (iii) 等価回路において、相電圧 V, を印加した場合の電流の大きさ L'を求めよ.
- (iv) この誘導電動機の拘束試験の結果、端子間印加電圧 V_s 、拘束電流(定格電流) I_{ln} 、トルク T_s の値が得られた. r_2 の値と、この誘導電動機に全電圧 (定格電圧) V を印加した場合の始動トルク T_{st} を求めよ.
- (v) 誘導電動機の定常運転中に、三相電源の二相をつなぎ換えた.この場合、誘導電動機はどのようになるか.すべり、電力の流れとともに誘導機の動作を説明せよ.

3-2 同期機について以下の問いに答えよ

(i) 突極同期発電機のベクトル図を図3-2に示す。ただし、無負荷誘導起電力を \dot{E}_0 、端子電圧を \dot{V} 、電機子電流を \dot{I} 、直軸電流(\dot{I} の直軸成分)を \dot{I}_d 、横軸電流(\dot{I} の横軸成分)を \dot{I}_g 、直軸同期リアクタンスを x_d 、横軸同期リアクタンスを x_q 、内部相差角を δ とする。また、電機子抵抗は無視した。次の空欄を埋めよ。

図より角 δ と ϕ の関係を E_0 , I, x_d , x_a を用いて表すと,

$$V\cos\delta=$$
 (a) 数式 , $V\sin\delta=$ (b) 数式

となる.次に三相分の出力Pは、

$$P = 3VI\cos(\phi - \delta)$$

となるから、数式(a), (b)を用いることによって、I, ϕ を用いずに三相分の出力 P を表すと以下の式を得る.

- (ii) 同期発電機は電動機としても動作する. 突極同期電動機について, (i)の数式(c)を参考に, 界磁電流が 零の場合の出力 P'について求め, それが何に起因する出力か説明せよ.
- (iii) 非突極機 (円筒機)の場合の出力 P"を求めよ. 次に、同期電動機の V 曲線について説明し、同期調相機 の働きについて説明せよ.

パワーエレクトロニクス

- 4-1 図 4-1 (a)に示す単相ブリッジ回路において、以下の各間いに答えよ、ただし、電源電圧は角周波数 ω の正弦波電圧で、直流インダクタ L は十分に大きく直流電流 i_a は平滑化されているものとする。また、サイリスタの制御は図 4-1 (b)のとおり行われるものとする。
- (i) 交流側リアクタンス $X_s=0$ として、直流側の電力 P_a は交流側の有効電力 P_a に等しいことを証明せよ.
- (ii) 交流側リアクタンス $X_s=0$ として、交流電流iの総合ひずみ率(THD) を求めよ、
- (iii) 交流側リアクタンス X_s を考慮した場合の直流電圧 e_d の平均値 E_d の式を求めよ.

- 4-2 図 4-2 に示す昇圧形チョッパ回路について以下の各問いに答えよ。ただし、キャパシタ Cは十分に大きく、負荷電圧は平滑化されており、スイッチング周波数は 20kHz、電源電圧 E_{C=}100V、L=1mH とする。
- (i) 5Ω の負荷抵抗 Rに 60A の電流を流したい. スイッチ S のオン時間 $T_{\rm on}$ を求めよ.
- (ii) 問い(i) の場合のリアクトル電流 i_1 のリプルの振幅を求めよ.

4-3 図 4-3 に示す自励式電圧形インバータのダイオードの役割について述べよ.

信号処理

5. 図のように時刻n=0において値が1となる単位インパルス信号x[n]を考える.

(i) これを因果性のあるシステム $y[n] = \sum_{k=1}^{3} b_k x[n-k]$ に入力したところ, 以下のような出力信号系列 y[n] (n=0,1,2,3,4) が得られた.

n	0	1	2	3	4
y[n]	0.00	0.50	0.60	0.20	0.00

この時、このシステムの係数 b_1 , b_2 , b_3 を求めよ.

(ii) 次に同じ単位インパルス信号x[n]を、因果性のあるシステム

 $y[n] + \sum_{k=1}^{2} a_k y[n-k] = \sum_{k=1}^{3} b_k x[n-k]$ に入力したところ,以下のような出力信号系列 y[n] (n=0,1,2,3,4) が得られた.ただし,係数 b_1 , b_2 , b_3 は(i)と全く同一であることが分かっている.

n	0	1	2	3	4
y[n]	0.00	0.50	0.85	0.50	0.0375

この時,このシステムの係数 a_1 , a_2 を求めよ.

- (iii) 上記(i)のシステム $y[n] = \sum_{k=1}^{3} b_k x[n-k]$ の伝達関数のゼロ点を z 変換を用いて求めよ.
- (iv) 上記(ii)のシステム $y[n] + \sum_{k=1}^{2} a_k y[n-k] = \sum_{k=1}^{3} b_k x[n-k]$ の伝達関数の極を z 変換を用いて求めよ.
- (v) 上記(iv)の結果より、(ii)のシステム $y[n] + \sum_{k=1}^{2} a_k y[n-k] = \sum_{k=1}^{3} b_k x[n-k]$ は安定か否かを理由と共に答えよ.

論理回路・計算機システム

- 6. 正の2進数の加算と減算を行う組合せ論理回路について、以下の問いに答えよ、
 - (i) n 桁の 2 進数の i 桁目($0 \le i < n$)の加算を考える。下の桁からの桁上がりを考慮しない加算器は半加算器(HA)と呼ばれる。半加算器の i 桁目の被加数を a_i ,加数を b_i ,加算結果の和を s_i ,i 桁目から i+1 桁目への桁上げ(繰り上げ)を c_{i+1} とする。 a_i , b_i の値に対する s_i , c_{i+1} の値に関する真理値表を記述し, s_i , c_{i+1} を表す論理式をそれぞれひとつの論理演算子を用いて表せ。
 - (ii) 下の桁からの桁上げを考慮する加算器は全加算器(FA)と呼ばれる. i 桁目の被加数を a_i , 加数を b_i , 下の桁からの桁上げを d_i 全加算した結果を t_i , 次の桁への桁上げを d_{i+1} とする. このような 2 進数 1 桁の全加算器の真理値表を記述し, t_i 及び d_{i+1} それぞれの論理式を積和標準形で示せ.
 - (iii) 上記(ii)で求めた論理式を変形し、 t_i と d_{i+1} を、(i)の s_i 、 c_{i+1} と d_i のみを用いてできるだけ簡単な形で表せ、ただし、 t_i については排他的論理和(XOR)を用いて表せ、
 - (iv) 以上の考察から、1 ビットの半加算器 HA を 2 つ用いることで、1 ビットの全加算器 FA の組合せ論理回路を構成することができる。(ii)と同じ記号を用いて、 a_i , b_i , d_i を入力とし、 t_i , d_{i+1} を回路の出力とする。そのような回路を 5 つの論理ゲート(それぞれ論理積(AND)、論理和(OR)、論理否定(NOT)、排他的論理和(XOR)ゲートのいずれかとする)を用いて示せ。また、どの部分がひとつの半加算器であるかを点線で囲って示せ。なお、解となる複数の回路構成が存在する場合にはその 1 つを示せばよい。
 - (v) 上記(iv)の全加算器 FA を 3 つ用いて,リプルキャリー(順次桁上げ)方式の 3 桁の 2 進数の加算・減算器を構成した回路図を示せ.回路への入力は,0 ではない正の整数 x,y と,加算・減算の切り替えを指示する信号 w とし,出力は加算または減算した結果 f ,数値 f の最上位桁 f_2 からの桁上がり c とする. x_0 , y_0 , f_0 はそれぞれ数値 x,y,f の最下位桁であり,最上位桁 f_2 からの桁上がり f_3 として出力され。 のとき負数を表すものとする.加減算切替信号 f_4 のとき f_5 は符号を表し,0 のとき正数,1 のとき負数を表すものとする.加減算切替信号 f_5 のこの結数 (符号桁は 1 とする) を f_5 に出力され, f_5 は無視される. f_5 として出力される. f_5 になり f_5 を f_5 になり f_5 を f_5 になり f_5 が正の解となる. f_5 になり, f_5 になり。 f_5 であれば f_5 になり f_5 が正の解となる. f_5 になり。 f_5 であれば f_5 になり。 f_5 が最下位桁の演算を表すものとする. また,用いる論理ゲートは論理積(AND)、論理和(OR)、論理否定(NOT)、排他的論理和(XOR)ゲートのいずれかとし、ゲートの数は 3 以下とする. なお、解となる複数の回路が存在する場合にはその 1 つを示せばよい.

例 $\begin{bmatrix} a_i & t_i \\ b_i & \text{FA}_i \\ d_i & d_{i+1} \end{bmatrix}$

基本アルゴリズム・プログラミング

7-1 プログラム A は、N 個の配列要素を、ある変数 x (基準値と呼ぶ) よりも大きな数と小さな数の 2 つのグループに分けることを行い、その後グループ毎にデータ 個数が 1 になるまで同じ操作を繰り返すことで整列を行うクイックソートのプログラムである、以下の問いに答えよ、

<プログラム A>

```
#include <stdio.h>
#define N 7
void quicksort(int a[], int first, int last)
  int i, j, k, x, n, t;
  n=(int)((first+last)/2);
  x=a[n];
  i=first; j=last;
  for(;;){
      while (a[i] < x) i++;
     while (x < a[j]) j - - ;
      if(i>j)break;
      t=a[i]; a[i]=a[j]; a[j]=t;
      i++; j--;
  for(k=0; k<N; k++) printf("%4d ", a[k]); }
  printf("\formalf");
  if((1) <
                         ) \{ /* Smaller than x */
      quicksort(a, (1)
                         ], (2);
  if ( (3) < (4) ) \{ /* Larger than x */
     quicksort(a, (3), (4));
int main()
   int i;
   int a[] = {71,20,91,65,28,41,11};
   quicksort(a, 0, N-1);
   for (i=0; i<N; i++) printf("%4d.", a[i]);
   printf("\n");
}
```

- (i) プログラム A は、関数 quicksort()の中で自身の関数 quicksort()を呼び出す構造となっている。このようなプログラム構造を何と呼ぶか、
- (ii) プログラム A にある空欄(1) \sim (4)を埋めよ、ただし、同一番号には同一 内容が入るので注意すること。
- (iii) プログラム A の quicksort 関数における $<\alpha>$ 部分の出力結果を示せ、 ただし、プログラム A の実行が完了するまでの出力を順に示すこと、
- (iv) クイックソートのアルゴリズムにおいて,整列すべきデータの中で基準値としてどのような値を選ぶと,計算量が最も少なくなるかを述べよ.
- 7-2 スタックとキューの二つのデータ構造がある. 次の操作内容を順に実行した場合,変数 X,Y に代入される値は何か. なお,ここで各操作を以下のように定義する.

<操作の定義>

push(a): データ a をスタックに挿入する

pop(): スタックからデータを一つ取り出す

enqueue(a): データ a をキューに挿入する

dequeue(): キューからデータを一つ取り出す

<操作内容>

push(a)

push(b)

push(c)

 $X \leftarrow pop()$

enqueue(pop())

enqueue(d)

push(dequeue())

 $Y \leftarrow pop()$