Corollary 5.2. Suppose I is integrable on Casto and let (Pn) be a sequence of partitions of [a,b] such that $h(P_n) \rightarrow 0$ as $n \rightarrow \infty$. $S_n = \frac{1}{n^{17}} \sum_{i=1}^{n} i$ Then $U(P_n,f)-L(P_n,f)\to 0$ as $n\to\infty$ Furthermore, if S(Pn,f) is a Riemann sum corresponding to Pn and f Let $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ Then Pn is a partition of [0,1] with $[n]=\frac{1}{n}$. S(Pn,f) -> Sf(x)dx. as n=0 Now $\mu(P_n) \to 0$ as Clearly $S_n = S(P_n, f)$ where $f(x) = x^{16}$ for $x \in [0, 1]$. with the tag set $\{\frac{1}{n}, \frac{2}{n}, ---, \frac{n}{n}\}$ is differentiable Since f is integrable, we see that $S_n o \int_0^\infty f(x) dx$ as $n \to \infty$. in Costil. $P_n = \{0, \frac{1}{n}\} \stackrel{1}{\Rightarrow} \}$

Note that e^{-x} is continuous in [1, a] for all a>1.

Thus e^{-x} is integrable on [1,a] for all a>1.

Thus $\int_{1}^{\infty} e^{-x} dx$ is convergent \iff $\lim_{\alpha \to \infty} \int_{1}^{\alpha} e^{-x} dx$ exists.

Now, $\int_{1}^{Q} e^{-x} dx = \frac{FTC(Q)}{e^{-x}} = -e^{-x} = -e^{-x} = -e^{-x} = \frac{1}{e} = \frac{1}{e} = \frac{1}{e}$ lim $\int_{0}^{\infty} e^{-x} dx = \lim_{\alpha \to \infty} \left(\frac{1}{e} - \frac{1}{e^{\alpha}} \right) = \frac{1}{e}$. exists and hence the integral is convergent. [],a] +a>,1 f. [a,b] = TR

Exc 6.8 (a) $\int_{1+x}^{\infty} dx$

(Note the change in lower limit)

We know that () x dx is divergent.

Let $f(x) = \frac{1}{x}$

Then $\frac{f(x)}{g(x)} = \frac{x+1}{x} \rightarrow 1$ as $x \rightarrow \infty$.

 $g(x) = \frac{1}{x+1}$

By the limit comparison tests

∫ ½dx is divergent.

Jef Coyav. (a, c) (c, b) Sf Z Sp

0<1(x) < 9(x)

 $lim \frac{f(x)}{g(x)}$ exists and \$0 (-3; 4)

(-3,-0(-1,6)

Exercise 7.3

Determine the area of the region bounded by

$$y = -x^2 + 3x$$
. = $f(x)$
 $y = 2x^3 - x^2 - 5x$. = $g(x)$.

$$g(x) - f(x) = (2x^3 - x^2 - 5x) - (-x^2 + 3x)$$

$$= 2x^3 - 8x$$

$$= 2x (x^2 - 4)$$

$$= 2x (x + 2) (x - 2)$$

$=2\times(\times+2)(\times-2)$			• • •	
X	<-2	x >2	0 <x<2< th=""><th>-2<×<0</th></x<2<>	-2<×<0
800 >to				
300 < f(x)				

The curry $3=f(x)$ $3=g(x)$	ves intersect
at the	points

f(x) & g(x)

Area of the nequired region
$$= \int (9(x)-f(x))dx + \int (f(x)-g(x))dx.$$

$$= \int (2x^{3}-8x)dx + \int (8x-2x^{3})$$

$$= -2$$

$$= 2 \cdot \frac{x^{4}}{4} \cdot \frac{1}{2} - 8 \cdot \frac{x^{2}}{2} \cdot \frac{1}{2} - 2 \cdot \frac{x^{3}}{4} \cdot \frac{1}{2} = 16$$