

Tropical mathematics

(and why you should care)

Manos Theodosis

Outline

Introduction

Motivation (algebra and geometry)
General definitions
Eigenvalues and polynomials
Dilations and erosions
Curves and surfaces

Applications

Neural networks
Curve fitting
Spectral analysis
Parameter reduction

Introduction

Motivation (geometry)

Multidimensional manifolds

Figure 1 Complex manifolds.

Geometric algorithms

(a) Unconnected components.

Figure 2 DBSCAN algorithm.

Neural networks

(a) Decision region of a morphological neural network.

Tropical neural networks
and their regions.

Figure 3

(b) Newton polytope of a tropical polynomial.

Motivation (algebra)

Shortest path problems

Figure 4General formulation of a shortest path problem.

Bonus:

Matrix representation (vector spaces)
Piecewise linear solution spaces

Scheduling problems

Figure 5Scheduling problem of connecting flights.

General definitions

Similar to linear algebra, but replace the pair $(+, \times)$ with $(\min, +)$.

Matrix-vector multiplication becomes

$$(\mathbf{A}\mathbf{x})_j = \sum_i (A_{ji} \cdot x_i) \quad \Leftrightarrow \quad (\mathbf{A} \coprod' \mathbf{x})_j = \min_i (A_{ji} + x_i)$$

In general two variants; min-plus algebra and max-plus algebra.

Example

$$\mathbf{A} \boxplus' \mathbf{b} = \begin{bmatrix} 3 & 4 \\ 1 & -2 \\ 6 & 2 \end{bmatrix} \boxplus' \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} \min(3+1, 4+3) \\ \min(1+1, -2+3) \\ \min(6+1, 2+3) \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$$

VS

$$\mathbf{Ab} = \begin{bmatrix} 3 & 4 \\ 1 & -2 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} (3 \cdot 1) + (4 \cdot 3) \\ (1 \cdot 1) + (-2 \cdot 3) \\ (6 \cdot 1) + (2 \cdot 3) \end{bmatrix} = \begin{bmatrix} 15 \\ -5 \\ 12 \end{bmatrix}$$

Eigenvalues and polynomials

Eigenvalues

Two very important matrices

$$\Gamma(\mathbf{A}) = \min(\mathbf{A}, \mathbf{A}^2, \dots) = \min_{n=1}^{\infty} \mathbf{A}^n, \quad \Delta(\mathbf{A}) = \min(\mathbf{I}, \mathbf{A}, \mathbf{A}^2, \dots) = \min_{n=0}^{\infty} \mathbf{A}^n$$

Solutions to the generalized (sub)eigenvalue problems

$$\mathbf{A} \coprod' \mathbf{x} = \lambda + \mathbf{x}, \quad \mathbf{A} \coprod' \mathbf{x} \ge \lambda + \mathbf{x}$$

Polynomials

Exponents change meaning

$$x^a = x \cdot x \cdot \dots \cdot x \quad \Leftrightarrow \quad x^a = x + x + \dots + x = a \cdot x$$

linear

tropical

General form of a tropical polynomial

$$y = \min_{i} a_{i}x + c_{i} \Rightarrow y = \min_{i} \mathbf{a}_{i}^{T} \mathbf{x}$$

We can allow for non integer (or negative) exponents

$$y = \min(0.3x + 4, -5x - 5, \frac{1}{5}x)$$

Dilations and erosions

Distributivity

Erosions distribute over infima, dilations over suprema

$$\bigwedge_{i} \varepsilon(X_{i}) = \varepsilon \left(\bigwedge_{i} X_{i} \right), \quad \bigvee_{i} \delta(X_{i}) = \delta \left(\bigvee_{i} X_{i} \right)$$

Formulation

A unique adjunction pair

$$\delta(X) \le Y \Leftrightarrow X \le \varepsilon(Y)$$

Fundamental property

For any dilation, erosion, lattice element

$$\delta(\varepsilon(X)) \le X \le \varepsilon(\delta(X))$$

Tropical erosions and dilations

In our context

$$\delta_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \coprod \mathbf{x}, \quad \boldsymbol{\varepsilon}_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}^* \coprod' \mathbf{x}$$

where $A^* = -A^T$ and \coprod is the max-plus multiplication.

Curves: Polynomials

Euclidean curves

Figure 6 Euclidean polynomials.

Tropical curves

(b)
$$y = \min(a + 2x, b + x, c)$$

(c) $y = \min(a + 3x, b + 2x, c + x, d)$

Figure 7Tropical polynomials.

Curves: Halfspaces and polytopes

ID Halfspaces

(a) Tropical line and its halfspaces. x

Figure 8
Halfspaces and polytopes in ID. For example, the red line is y = min(1 + x,2).

(b) Tropical polytope; intersection of tropical halfspaces.

2D Halfspaces

(a) First view.

(b) Second view.

Figure 9

Tropical polytopes in 2D. Blue is $z_1 = \max(0 + x, 2 + y, 7)$ and red is $z_2 = \min(5 + x, 7 + y, 9)$.

Curves: Tropical Loci

Figure 10 Tropical locus of the equation y = min(2x, c) and the resulting space clustering.

Figure 11 Tropical locus of the general quadratic tropical 2-D polynomial $z = \min(2x + a, x + y + b, 2y + c, y + d, x + f, e)$.

Applications

Neural networks

Neural networks

Traditional morphological perceptron

$$\tau(\mathbf{x}) = \max_{i} w_i + x_i = \mathbf{w}^T \boxplus \mathbf{x}$$

ReLUs and maxout units are tropical polynomials

$$ReLU(\mathbf{x}) = \max(0, \mathbf{w}^T \mathbf{x} + b), \quad \max(\mathbf{x}) = \max_{j} (\mathbf{W}_{j}^T \mathbf{x} + b_{j})$$

Idea: find a bound the number of linear regions/vertices of the solution space.

Figure 12
Regions of a morphological perceptron for binary classification.

Neural networks: Linear regions

Tropical polynomials

Remember the definition

$$y = \min_{i} \mathbf{a}_{i}^{T} \mathbf{x}$$

Newton polytope

Defined as the convex hull of the coefficient vectors \mathbf{a}_i . How do operations on polynomials affect the Newton polytope?

- · Newt $(y_1 + y_2) = P_1 \oplus P_2$ Minkwoski sum
- · Newt(max(y_1, y_2)) = conv(P_1, P_2)

Figure 13

Newton polytopes of the tropical polynomials $z_1 = \max(-x, -x + y, y, 0)$ and $z_2 = \max(x + y, 3x + y, x + 2y)$, their Minkwoski sum, and their convex hull.

Curve fitting

Modeling

Suppose we fit a model

For more data

Fundamental property

Remember that

In the tropical case

Optimal solutions

Optimal solution for w

Optimal unconstrained solution

$$y = \max(\mathbf{a}_1^T \mathbf{x} + w_1, ..., \mathbf{a}_k^T \mathbf{x} + w_k)$$

hyperplanes

$$X \boxplus w \leq b$$

$$\delta(\varepsilon(X)) \le X \le \varepsilon(\delta(X))$$

$$\delta_{\mathbf{X}}(\boldsymbol{\varepsilon}_{\mathbf{X}}(\mathbf{b})) \leq \mathbf{b} \Leftrightarrow \mathbf{X} \boxplus (-\mathbf{X}^T \boxplus' \mathbf{b}) \leq \mathbf{b}$$

$$\hat{\mathbf{w}} = -\mathbf{X}^T \coprod' \mathbf{b}$$

$$\hat{\mathbf{w}}_{\infty} = -\mathbf{X}^T \boxplus' \mathbf{b} + \mu$$

$$\hat{\mathbf{w}}_{\infty} = -\mathbf{X}^T \boxplus' \mathbf{b} + \mu \qquad \qquad \mu = \frac{1}{2} \|\mathbf{X} \boxplus \hat{\mathbf{w}} - \mathbf{b}\|_{\infty}$$

Curve fitting: ID examples

Tropical models

Figure 14
Euclidean vs tropical fitting for the max-plus line $y = \max(x - 2.3)$ under different noises.

Arbitrary models

Figure 15Toy circle fitting; highlights the various tropical lines.

Figure 16Optimal fitting of the max-afine curve given by $y = \max(-6x - 6, \frac{1}{2}x, \frac{1}{5}x^5 + \frac{1}{2}x)$.

Curve fitting: 2D examples

2D surfaces

Figure 17 Optimal fitting (left) of parabolic data and the corresponding

unconstrained solution (right).

Questions

Number of terms?

Complexity?

How to compute the slopes?

Spectral Analysis of WFSTs

Weight pushing

Can be written in tropical algebra

$$\lambda' = \Lambda \boxplus' \mathbf{v}_{\infty}, \quad \rho' = \mathbf{P} \boxplus' (-\mathbf{v}_{\infty}), \quad \mathbf{A}' = \mathbf{V}^- \boxplus' \mathbf{A} \boxplus' \mathbf{V}^+$$

with
$$\mathbf{v}_{\infty} = \Delta(\mathbf{A}) \boxplus' \boldsymbol{\rho}$$
.

Epsilon removal

Can be written in tropical algebra

$$\mathbf{A}' = \Delta(\mathbf{E}) \boxplus' \mathbf{A}_{\varepsilon}, \quad \boldsymbol{\rho}' = \Delta(\mathbf{E}) \boxplus' \boldsymbol{\rho}$$

Do they remind you something?

(a) WFST before the weight pushing operation.

Figure 18

Example showcasing the weight pushing algorithm for WFSTs.

Figure 19

Example showcasing the epsilon removal algorithm for WFSTs.

(a) WFST before the epsilon removal operation.

(b) WFST after the epsilon removal operation.

Spectral Analysis of WFSTs

Eigenproblems

 $\Delta(A)$ provides the solution to

$$\mathbf{A} \boxplus' \mathbf{x} \ge \lambda + \mathbf{x}$$

Solution set is

$$V^*(\mathbf{A}, \lambda) = \{ \Delta(-\lambda + \mathbf{A}) \coprod' \mathbf{u}, \mathbf{u} \in \mathbf{R}^n \}$$

Interpretation

For weight pushing $\mathbf{v}_{\infty} = \Delta(\mathbf{A}) \boxplus' \rho$; eigenvalue of zero.

For epsilon removal $\mathbf{A}' = \Delta(\mathbf{E}) \boxplus' \mathbf{A}_{\varepsilon}$, $\boldsymbol{\rho}' = \Delta(\mathbf{E}) \boxplus' \boldsymbol{\rho}$; eigenvalues of zero.

Idea: what about other eigenvalues?

Parameter Reduction

Euclidean

What's the minimum number of hyperplanes required for a closed region?

d = 2: three lines

d = 3: four planes

d = n: (?) n + 1 hyperplanes

Proof: I. d + 1 hyperplanes can bound d-dimensional space (axes + a d-dimensional hyperplane passing through d points)

2. d hyperplanes can't bound the d-dimensional space (induction)

How many parameters? d parameters per hyperplane; d(d+1) total parameters.

Tropical

2 hyperplanes of d parameters each; 2d total parameters.

Common ground

For a polytope of 2^d vertices

- · Euclidean needs $2d^2$ parameters.
- \cdot Tropical needs 2d parameters.

Thanks!