

Winning Space Race with Data Science

Monther Alharbi 5/30/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - 1. Data were collected
 - 2. ML models were built
 - 3. Data visualizations were shown
- Summary of all results
 - 1. The optimal model was acquired
 - Visualizations were great for decision making

Introduction

- SpaceX can reuse the first stage unlike other providers
- Falcon 9 rocket launches cost 62 million dollars only
- Therefore, if we can predict the first stage will land successfully, we can determine the cost of a launch.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scraping from a static page (Wikipedia)
- Perform data wrangling
 - One hot encoding
 - Data cleaning
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, SVM, Decision Tree, KNN models

Data Collection

The sources of processed data are:

- SpaceX REST API
- Wikipedia

Data Collection - SpaceX API

- Data collection with SpaceX REST calls
- https://github.com/Montheralharbi/testrepo.git

1) Request and convert

```
response = requests.get(spacex_url)

data= pd.json_normalize(response.json())
```

2) Apply functions

```
# Call getLaunchSite
getLaunchSite(data)

# Call getPayloadData
getPayloadData(data)

# Call getCoreData
getCoreData(data)
```

3) Save data into csv file

```
data_falcon9.to_csv('dataset_part_1.csv', index=False)
```

Data Collection - Scraping

- Data collection with BeautifulSoup
- https://github.com/Montheralharbi/testrepo.git

1) Request HTML

```
http = requests.get(static_url).text
```

2) Extract data

```
for head in first_launch_table.find_all('th'):
    column_names.append(extract_column_from_header(head))
```

3) Save into CSV

```
df.to_csv('spacex_web_scraped.csv', index=False)
```

Data Wrangling

EDA with Data Visualization

EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Rank the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

:	Algorithm	Accuracy
0	Logistic Regression	0.846429
1	SVM	0.848214
2	KNN	0.848214
3	Decision Tree	0.901786

https://github.com/Montheralharbi/testrepo.git

Results

- KSC LC-39A has the highest score site
- Payload of 0kg to 5000kg was more diverse
- Decision tree was the best model with accuracy of 0.90

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

```
[11]: %sql select distinct Launch_Site from SPACEXTBL
      * sqlite:///my_data1.db
     Done.
11]: Launch_Site
      CCAFS LC-40
       VAFB SLC-4E
        KSC LC-39A
     CCAFS SLC-40
             None
```

Launch Site Names Begin with 'CCA'

2]:	%sql selec	t* from	SPACEXTBL where	Launch_Site	like 'CCA%' limit 5					
	* sqlite:, Done.	///my_dat	a1.db							
2]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (parachute)
	12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No attempt
	10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No attempt
	03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where Customer='NASA (CRS)'
    * sqlite://my_data1.db
Done.
sum(PAYLOAD_MASS__KG_)
    45596.0
```

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

```
%sql select min(Date) from SPACEXTBL where Landing_Outcome='Success (ground pad)'

* sqlite://my_data1.db
Done.

min(Date)

01/08/2018
```

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select distinct Booster_Version from SPACEXTBL where Landing_Outcome='Success (drone ship)' and PAYLOAD_MASS__KG_ between 4000 and 6000

* sqlite:///my_data1.db
Done.

Booster_Version

F9 FT B1022

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

```
%sql select substr(Mission_Outcome,1,7) as Mission_Outcome, count(*) from SPACEXTBL group by 1

* sqlite://my_datal.db
Done.

Mission_Outcome count(*)

None 898

Failure 1

Success 100
```

Boosters Carried Maximum Payload

```
%sql select distinct Booster_Version from SPACEXTBL where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)
* sqlite:///my_data1.db
Done.
Booster_Version
  F9 B5 B1048.4
  F9 B5 B1049.4
  F9 B5 B1051.3
  F9 B5 B1056.4
  F9 B5 B1048.5
  F9 B5 B1051.4
  F9 B5 B1049.5
  F9 B5 B1060.2
  F9 B5 B1058.3
  F9 B5 B1051.6
  F9 B5 B1060.3
  F9 B5 B1049.7
```

2015 Launch Records

* sqlite://my_data1.db
Done.

* month Date Booster_Version Launch_Site Landing_Outcome

10 01/10/2015 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

04 14/04/2015 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

All launch sites marked on map

success/failed launches for each site on the map

- Green means success
- Red means failed

Distances between a launch site to its proximities

Total success lanunches by all sites

Success rate by site

<Payload vs launch outcome>

Classification Accuracy

	Algorithm	Accuracy
0	Logistic Regression	0.846429
1	SVM	0.848214
2	KNN	0.848214
3	Decision Tree	0.901786

Confusion Matrix

Conclusions

- We know the launch sites distance to its proximities
- KSC LC-39A has the highest score site
- Payload of Okg to 5000kg was more diverse
- Decision tree was the best model with accuracy of 0.90

Appendix

• https://github.com/Monther-alharbi/testrepo.git

