Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 2 по дисциплине "Анализ алгоритмов"

Тема Сравнение алгоритмов матричного умножения

Студент Калашников С.Д.

Группа ИУ7-53Б

Преподаватель Волкова Л.Л. Строганов Ю.В.

СОДЕРЖАНИЕ

Введение							
1	Ана	литическая часть	5				
2	Технологическая часть						
	2.1	Средства реализации	6				
	2.2	Сведения о модулях программы	6				
	2.3	Реализация алгоритмов	7				
	2.4	Функциональное тестирование					
3	Исс	ледовательская часть	13				
	3.1	Технические характеристики	13				
	3.2	Демонстрация работы программы	13				
	3.3	Время выполнения реализаций алгоритмов	14				
	3.4	Затрачиваемая память при выполнении реализаций алгоритмов	15				
	3.5	Вывод	15				
3a	ключ	іение	16				
C	шооч		17				

Введение

Операции работы со строками являются важными компонентами в программирования. Часто возникает потребность в использовании строк при решении различных задач, в которых нужны алгоритмы сравнения строк, о которых и пойдет речь в данной работе. Одними из самых популярных алгоритмов в данной сфере являютя алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна.

Расстояние Левенштейна — минимальное количество редакционных операций (вставка, удаление, замена символа), необходимых для преобразования одной строки в другую.

Если текст был набран с клавиатуры, то вместо расстояния Левенштейна чаще используют расстояние Дамерау-Левенштейна, в котором добавляется еще одно возможное действие — перестановка двух соседних символов.

Расстояния Левенштейна и Дамерау-Левенштейна применяются в таких сферах, как:

- компьютерная лингвистика (автозамена в посиковых запросах, текстовая редактура);
- биоинформатика (последовательности белков);
- нечеткий поиск записей в базах (борьба с мошенниками и опечатками).

Целью данной лабораторной работы является изучение, реализация и исследование алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна.

Для достижения поставленной цели требуется решить ряд задач:

1) изучить алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна;

- 2) разработать алгоритмы поиска этих расстояний;
- 3) реализовать каждый из данных алгоритмов;
- 4) провести замеры процессорного времени для каждой из реализаций алгоритмов;
- 5) расчитать затрачиваемую реализованными алгоритмами пиковую память;
- 6) выполнить анализ полученных результатов;
- 7) по итогам работы составить отчет.

1. Аналитическая часть

2. Технологическая часть

В данном разделе будут рассмотрены средства реализации, а также представлены листинги сортировок.

2.1 Средства реализации

В данной работе для реализации был выбран язык программирования c++. В текущей лабораторной работе требуется замерить процессорное время для выполняемой программы. Для визуализации результатов использовался язык Python.

Время работы реализаций алгоритмов было замерено с помощью функции GetProcessTimes(...) [1] из библиотеки Windows.h. Функция возвращает пользовательское процессорное временя типа float. Использовать функцию приходится дважды, затем из конечного времени нужно вычесть начальное, чтобы получить результат.

2.2 Сведения о модулях программы

Программа состоит из следующих модулей:

- AA2.cpp файл, содержащий весь служебный код;
- *Matrix.cpp* файл, реализующий операции над матрицами;
- algoc.cpp файл, содержаший реализации алгритмов поиска расстояний Л. и Д-Л.;
- TimeCompare.cpp файл, производящий замеры времени;
- GetCPUTime.cpp файл, определяющий функцию замера времени;

- Gen.cpp файл, генерирующий входную матрицу;
- Matrix.hpp заголовочный файл модуля Matrix.cpp;
- TimeCompare.hpp заголовочный файл модуля TimeCompare.cpp;
- algoc.hpp заголовочный файл модуля algos.cpp;
- GetCPUTime.hpp заголовочный файл модуля GetCPUTime.cpp;
- Gen.hpp заголовочный файл модуля Gen.cpp.

Реализация алгоритмов 2.3

В листингах, представлены реализации алгоритмов поиска расстояний — .

Листинг 2.1 — Матричный алгоритм поиска пути Левенштейна

```
int non rec lev(const char* s1, const char* s2)
   int n = strlen(s1) + 1;
   int m = strlen(s2) + 1;
   if (n == 1)
   return m - 1;
   if (m == 1)
   return n - 1;
   data t mtrx;
   mtrx.matrix = create matrix(strlen(s1) + 1, strlen(s2) + 1);
   mtrx.n = strlen(s1) + 1;
   mtrx.m = strlen(s2) + 1;
   for (int i = 0; i < n; ++i)
     for (int j = 0; j < m; ++i)
      {
17
        if (i == 0 \&\& i == 0)
       mtrx.matrix[i][j] = 0;
        else if (i == 0)
       mtrx.matrix[i][j] = j;
        else if (j == 0)
```

```
mtrx.matrix[i][j] = i;
23
        else
24
        mtrx.matrix[i][j] = min int(3, mtrx.matrix[i][j-1] + 1, mtrx.
25
           matrix[i - 1][j] + 1,
        mtrx.matrix[i - 1][j - 1] + (s1[i - 1] != s2[j - 1])
        );
      }
28
29
    int result = mtrx.matrix[n - 1][m - 1];
30
    free matrix (& mtrx);
    return result;
32
33 }
```

Листинг 2.2 — Матричный алгоритм поиска пути Дамерау-Левенштейна

```
int non rec dam lev(const char* s1, const char* s2)
   int n = strlen(s1) + 1;
   int m = strlen(s2) + 1;
    if (n == 1)
   return m-1;
    if (m == 1)
   return n-1;
    data t mtrx;
   mtrx.matrix = create matrix(strlen(s1) + 1, strlen(s2) + 1);
    mtrx.n = strlen(s1) + 1;
11
    mtrx.m = strlen(s2) + 1;
12
    for (int i = 0; i < n; ++ i)
13
14
      for (int j = 0; j < m; ++j)
15
      {
16
        if (i == 0 \&\& i == 0)
17
        mtrx.matrix[i][j] = 0;
18
        else if (i == 0)
        mtrx.matrix[i][j] = j;
20
        else if (j == 0)
        mtrx.matrix[i][j] = i;
22
        else
24
```

```
mtrx.matrix[i][j] = min_int(3,
25
          mtrx.matrix[i][j-1]+1,
26
          mtrx.matrix[i - 1][j] + 1,
27
          mtrx.matrix[i - 1][j - 1] + (s1[i - 1] != s2[j - 1])
28
          if (i > 1 \&\& j > 1 \&\& s1[i - 1] == s2[j - 2] \&\& s1[i - 2] == s2
             [j - 1]
          mtrx.matrix[i][j] = min int(2, mtrx.matrix[i][j], mtrx.matrix[i
              -2][j -2] + 1);
        }
      }
33
34
    int result = mtrx.matrix[n - 1][m - 1];
35
    free matrix (& mtrx);
36
    return result;
37
38
```

Листинг 2.3 — Рекурсивый алгоритм поиска пути Дамерау-Левенштейна

```
int rec dam lev(const char* s1, const char* s2)
   return rec dam lev1(s1, s2, strlen(s1), strlen(s2));
 int rec dam lev1 (const char* s1, const char* s2, const int li1, const
    int 1i2)
   int result = -1;
   if (1i1 == 0 || 1i2 == 0)
   return std::abs(1i1 - 1i2);
10
   result = min int(3,
11
   rec_dam_lev1(s1, s2, li1 - 1, li2) + 1,rec_dam_lev1(s1, s2, li1, li2
12
      -1) + 1,
   rec dam lev1(s1, s2, li1 - 1, li2 - 1) + (s1[li1 - 1] != s2[li2 - 1])
      );
   if (1i1 > 1 \&\& 1i2 > 1 \&\& s1[1i1 - 1] == s2[1i2 - 2] \&\& s1[1i1 - 2]
      == s2[1i2 - 1])
   result = min_int(2, result, rec_dam_lev1(s1, s2, li1 - 2, li2 - 2) + 1)
```

```
return result;

| 7 | }
```

Листинг 2.4 — Рекурсивый с кешем алгоритм поиска пути Дамерау-Левенштейна

```
int cache dam lev(const char* s1, const char* s2)
      data t cache;
      cache.matrix = create matrix(strlen(s1) + 1, strlen(s2) + 1);
      cache.n = strlen(s1) + 1;
      cache.m = strlen(s2) + 1;
      fill mtrx with inf(&cache);
      int r = cache dam lev1(&cache, s1, s2, strlen(s1), strlen(s2));
      free matrix (& cache);
      return r;
10
    }
11
12
    int cache_dam_lev1(data_t* cache, const char* s1, const char* s2,
13
       const int lil, const int li2)
14
      if (cache -> matrix [1i1] [1i2] != LONG MAX)
15
      return cache -> matrix [1i1] [1i2];
16
      if (1i1 == 0 \&\& 1i2 == 0)
17
      {
18
        cache \rightarrow matrix[1i1][1i2] = 0;
        return cache -> matrix [lil][li2];
20
21
      if (1i1 == 0 \&\& 1i2 > 0)
22
23
        cache -> matrix [1i1] [1i2] = 1i2;
24
        return 1i2;
25
26
      if (1i2 == 0 \&\& 1i1 > 0)
27
28
        cache -> matrix [1i1][1i2] = 1i1;
29
        return lil;
      }
31
      int r1 = 0, r2 = 0, r3 = 0;
32
      r1 = cache_dam_lev1(cache, s1, s2, li1 - 1, li2) + 1;
33
```

```
r2 = cache_dam_lev1(cache, s1, s2, li1, li2 - 1) + 1;
34
      r3 = cache dam lev1(cache, s1, s2, li1 - 1, li2 - 1) + (s1[li1 - 1])
35
          != s2[1i2 - 1]);
      cache -> matrix [1i1][1i2] = min_int(3, r1, r2, r3);
36
      int result = 0;
37
      if (1i1 > 1 \&\& 1i2 > 1 \&\& s1[1i1 - 1] == s2[1i2 - 2] \&\& s1[1i1 - 2]
          == s2[1i2 - 1])
        int r4 = 0;
40
        r4 = cache_dam_lev1(cache, s1, s2, li1 - 2, li2 - 2) + 1;
        cache -> matrix [1i1] [1i2] = min_int(2, cache -> matrix [1i1] [1i2], r4)
42
      }
43
      return cache -> matrix [1i1] [1i2];
44
45
```

2.4 Функциональное тестирование

В таблице 2.1 приведены тесты для функций, реализующих алгоритмы матричного умножения. Тесты для всех реализаций алгоритмов пройдены успешно.

Таблица 2.1 — Функциональные тесты

	Входные данные		Ожидаемый результат	
No	Строка 1	Строка 2 Левенштейн		Дамерау-Л.
1	"пустая строка"	"пустая строка"	0	0
2	"пустая строка"	слово	5	5
3	проверка	оверка "пустая строка"		8
4	ремонт	емонт	1	1
5	гигиена	иена	3	3
6	нисан	автоваз 6		6
7	спасибо	пожалуйста	9	9
8	ЧТО	КТО	1	1
9	ТЫ	тыква	3	3
10	есть	кушать	4	4
11	abba	baab	3	2
12	abcba bacab 4		2	

Вывод

В данном разделе были представлены реализации следующих алгоритмов: стандартного матричного умножения, Винограда, Винограда с оптимизацией. Выполнено тестирование реализаций алгоритмов.

3. Исследовательская часть

В данном разделе будут приведены примеры работы программы, а также проведен сравнительный анализ процессорного времени и затрачиваемой памяти работы реализаций алгоритмов при различных ситуациях на основе полученных данных.

3.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры времени представлены далее:

- операционная система Windows 11 Pro Версия 22H2 (22621.674) [2];
- память 16 ГБ;
- процессор 11th Gen Intel(R) Core(TM) i5-11400 2.59 ГГц [3].

При тестировании компьютер был включен в сеть электропитания. Во время замеров процессорного времени устройство было нагружено только встроенными приложениями окружения, а также системой тестирования.

3.2 Демонстрация работы программы

На рисунке 3.1 представлен результат работы программы. На экран выводятся результаты заемров времени для разных размеров строк и разных видов алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна в мс.

3.3 Время выполнения реализаций алгоритмов

Как было сказано выше, используется функция замера процессорного времени GetProcessTimes(...) из библиотеки Windows.h.

Входные данные: строки размером от 10 до 500 элементов.

Результаты замеров времени работы реализаций алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна на различных входных данных (в мс) приведены в таблице 3.1.

Таблица 3.1 — Процессорное время работы реализаций алгоритмов

Размер	Л.(матр.)	Д-Л.(матр.)	Д-Л.(рек.)	Д-Л.(рек. с кешем)
10	0	0.015625	0	

Также на рисунке 3.2 приведены графические результаты замеров времени работы алгоритмов в зависимости от линейного размера входных строк.

Рис. 3.2 – Процессорное время вычислений

- 3.4 Затрачиваемая память при выполнении реализаций алгоритмов
- 3.5 Вывод

Заключение

Цель, которая была поставлена в начале лабораторной работы, была достигнута: изучены, реализованы и исследованы алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна.

В ходе выполнения лабораторной работы были решены все задачи:

- 1) изучены алгоритмы нахождения расстояний Левенштейна и Дамерау-Левенштейна;
- 2) разработаны алгоритмы поиска этих расстояний;
- 3) реализован каждый из данных алгоритмов;
- 4) проведены замеры процессорного времени для каждой из реализаций алгоритмов;
- 5) расчитана затрачиваемая реализованными алгоритмами пиковая память;
- 6) выполнен анализ полученных результатов;
- 7) по итогам работы составлен отчет.

Список использованных источников

- 1. GetProcessTimes function [Эл. ресурс]. Режим доступа: https://clck.ru/32NCYi (дата обращения: 13.10.2022).
- 2. Windows 11, version 22H2 [Эл. ресурс]. Режим доступа: https://clck.ru/32NCXx (дата обращения: 14.10.2022).
- 3. Процессор Intel® CoreTM i7 [Эл. ресурс]. Режим доступа: https://clck.ru/yeQa8 (дата обращения: 14.10.2022).