

Mapa de contenidos

- 1 Visualización de información
- 2 Marco de trabajo para el análisis visual

Libro de referencia

Análisis y diseño de visualización

Munzner, T. (2014)

Munzner, T. (2014). Visualization analysis and design. CRC press.

https://www.cs.ubc.ca/~tmm/vadbook/

"Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva."

(Munzner, 2014, p. 1).

¿Por qué involucrar a las personas?

Recurso humano

- Las visualizaciones son apropiadas cuando se desea aumentar las capacidades de una persona para el desarrollo de sus tareas.
- No tiene sentido construir visualizaciones que se consuman en un proceso totalmente automatizado.

Automatización

- Cuando los responsables de un proceso de negocio aceptan y confían en una solución automática, no es necesario implementar un sistema de visualización.
- Es útil **emplear visualizaciones que apoyen el proceso** de diseño desde su concepción hasta su puesta en marcha.

¿Por qué involucrar a las personas?

Entendimiento del negocio

Al entender el negocio y planear un proyecto de análisis de datos, se identifica el **problema** y las **tareas** que apoyará el sistema de visualización con detalles específicos del **dominio**. Además, se describen los datos y se definen las preguntas que se piensan solucionar sobre ellos en forma de requisitos.

¿Por qué involucrar a las personas?

En las etapas preliminares del entendimiento de los datos, es necesario construir visualizaciones para llevar a cabo el **análisis exploratorio de los datos**. Se obtienen conclusiones iniciales que permitan decidir la manera en la que se debe proceder.

¿Por qué involucrar a las personas?

Preparación de los datos y modelado

Las visualizaciones sirven de apoyo a los desarrolladores de sistemas analíticos, para tomar decisiones sobre la preparación y modelado de los datos. Gracias a las visualizaciones es posible **seleccionar** características y parámetros, para **refinar** o **depurar** los modelos.

¿Por qué involucrar a las personas?

Después de terminar un proceso de modelado de un sistema que provee soluciones automáticas, se emplean visualizaciones para **validar**, **verificar** e **interpretar** los resultados obtenidos.

¿Por qué involucrar a las personas?

Al momento de desplegar un sistema de análisis de datos, se emplean visualizaciones para **monitorear el desempeño** del modelo en un escenario real y para **presentar los resultados** obtenidos en el proceso.

¿Por qué depender de la visión?

- De todas las posibles formas en que percibimos la realidad, la visión se considera el mejor medio para comunicar información en forma abstracta a otros seres humanos.
- La vista es el sentido más robusto de la **percepción** humana, permite procesar mucha información de manera simultánea a partir de la luz capturada en el campo de visión. Posee un canal de **ancho de banda** amplio para la transmisión de la información.
- Realiza **preprocesamiento** en la etapa preconsciente, lo que permite destacar la información más importante de acuerdo a la experiencia.

¿Para qué usar representaciones externas?

¿Por qué involucrar computadores?

¿Por qué involucrar computadores?

¿Por qué involucrar computadores?

0.00 ________

Visualización de la información

¿Por qué concentrarse en tareas?

- La visualización tiene como objetivo apoyar al usuario a realizar una tarea.
- Diferentes formas de visualización pueden tener una efectividad totalmente distinta, dependiendo de la tarea que se desea realizar.

¿Cuáles son más apropiadas? y ¿cuáles más efectivas?

10

15

20

¿Para qué presentar los datos en detalle?

- Se recomienda recurrir a visualizaciones para conocer en detalle los datos, en vez de depender únicamente de medidas descriptivas generales.
- Por ejemplo, el famoso Cuarteto de Anscombe (1973) contiene cuatro conjuntos de datos que producen las mismas estadísticas descriptivas, a pesar de tener condiciones únicas diferenciables que se pueden apreciar fácilmente a partir de una visualización.

X,	Υ,	X ₂	Y ₂	X,	Υ,	X ₄	Y,
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.1	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.1	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Correlación Pearson	Regresión lineal	Media	9.0	7.5
r = 0.816	$y = 0.50 \cdot x + 3.00$	Varianza	11.0	4.12

¿Para qué presentar los datos en detalle?

Χ,	Υ,	Χ,	Y2	X,	Υ,	X ₄	Y ₄
^1	'1	^2	'2	^3	'3	^4	'4
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.1	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.1	4.0	5.39	19.0	12.5
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Correlación Pearson	Regresión lineal	Media	9.0	7.5
r = 0.816	$y = 0.50 \cdot x + 3.00$	Varianza	11.0	4.12

¿Para qué presentar los datos en detalle?

En el año 2017, investigadores de Autodesk Research, propusieron una técnica para generar conjuntos de datos con estadísticas equivalentes a partir de formas geométricas distinguibles, basadas en la idea propuesta por Anscombe.

Dominio: Requisitos y restricciones específicos del problema ¿Quiénes son los usuarios objetivo?

Abstracción: Traducción de los detalles del dominio al vocabulario de visualización

¿Qué se va a representar? Abstracción de datos. No solo dibujar lo que le dan: transformar a nueva forma

¿Por qué se necesita una visualización? Abstracción de la tarea

Representación: Solución posible al problema.

¿Cómo se va a representar?

Codificación visual: ¿Cómo dibujarlo?

Interacción: ¿Cómo manipularlo?

Algoritmo: Diseño del programa de computador

Detalles de implementación para computación eficiente

Dominio

Inicialmente, se conceptualiza el **problema** definiendo la **tarea** que apoyará el sistema de visualización con detalles específicos del **dominio** que cada tipo de usuario involucrado llevará a cabo. Además, se describen los **datos** y se definen las preguntas que se piensan solucionar sobre ellos en forma de **requerimientos**.

Abstracción

¿Qué?

¿Por qué?

Representación

¿Cómo?

Algoritmo

Dominio

Abstracción

¿Qué?

Se abstraen los datos del dominio sobre los que se trabajará en tipos de dato y estructuras genéricas. ¿Por qué?

Se **abstrae la tarea** necesaria en la definición de dominio en acciones y objetivos genéricos.

Representación

¿Cómo?

Algoritmo

Abstracción

¿Qué?

¿Por qué?

Representación

¿Cómo?

Se define una representación de los datos para la ejecución de las tareas. Esta representación involucra aspectos de la **codificación visual** y la **interacción.**

Algoritmo

Actividades Unidad 4

Logística

Actividades Unidad 4

Objeto Virtual de Aprendizaje (OVA)

Visualización de datos con Python

Tarea 4 – Visualización de datos con Python

Notebook

Visualización con Matplotlib

- Taller guiado (notebook)
- Quiz 7 (notebook)

Foros

Visualización de datos estadísticos con Seaborn

- Taller guiado (notebook)
- Quiz 8 (notebook)

Logística

- **Unidad 3: miércoles 07/09/2022**
- Quiz 5: estadística inferencial
- Quiz 6: análisis de correlación
- Tarea 3: análisis avanzado de datos

- **Unidad 4: miércoles 14/09/2022**
- Quiz 7: Matplotlib
- Quiz 8: Seaborn
- Tarea 4: visualización de datos con Python

- Unidad 5:
- Visualizaciones interactivas
- Quiz 9: Visualización de mapas coropléticos **Opcional**
- No habrá tarea en esta unidad.

- **Unidad 6: viernes 16/09/2022**
- Proyecto aplicado
- Fecha máxima de entrega: viernes 16/09/2022
- Socialización de algunos proyectos: sábado 17/09/2022

Derechos de imágenes

Entendimiento del negocio https://www.freepik.com/free-photo/two-colleagues-factory_4410938.htm

Entendimiento de los datos https://www.freepik.com/free-photo/high-view-person-writing-notepad_8397706.htm

Preparación de los datos y modelado https://www.freepik.com/free-photo/team-stockbrokers-are-having-conversation-dark-office-with-display-screens-analyzing-data-graphs-reports-investment-purposes-creative-teamwork-traders_9277155.htm

Evaluación https://www.freepik.com/free-photo/doctor-typing-laptop_1315154.htm

Despliegue https://www.freepik.com/free-photo/businessman-making-presentation-with-his-colleagues-business-strategy-digital-layer-effect-office-as-concept_1202402.htm

Limitación de recursos http://www.freepik.com por macrovector_official / Freepik

Referencias

Munzner, T. (2014). Visualization analysis and design. CRC press. https://www.cs.ubc.ca/~tmm/vadbook/

Anscombe, F. (1973). Graphs in Statistical Analysis. The American Statistician, 27(1), 17-21. doi:10.2307/2682899

Guerra, J.A. (s.f.). Visual Analytics. https://johnguerra.co/

Matejka, J. & Fitzmaurice, G. (2017). Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing. CHI 2017 Conference proceedings: ACM SIGCHI Conference on Human Factors in Computing Systems. https://www.autodeskresearch.com/publications/samestats

Murphy, A. (21 de marzo del 2017). The Five Senses of Computing. https://loupventures.com/the-five-senses-of-computing/

Navio (s.f.). Navio. https://navio.dev/

Vidya. (11 de noviembre del 2016). The Role of Visual Perception in Data Visualization [El papel de la percepción visual en la visualización de datos]. http://daydreamingnumbers.com/blog/visual-perception-data-visualization/

Facultad de

INGENIERÍA

Autores

Felipe Restrepo Calle, PhD

Asistente docente

Alberto Nicolai Romero Martínez

Diseño instruccional

Claudia Patricia Rodríguez Sánchez

Diseño gráfico

Clara Valeria Suárez Caballero Milton R. Pachón Pinzón

Diagramadora PPT

Daniela Duque García

2022

