TRhizo-localAdaptation

Microbiome Analyses

David Murray-Stoker

Contents

Load Packages & Data	4
Load Data	5
phyloseq & tidyamplicons Processing	7
Root	
Soil	. 8
Fitness & Rhizobia Abundances	9
Data Management	. 9
Aboveground Biomass	
Fit the Linear Models	
Check Model Assumptions	
ANOVAs	
Effect Sizes	
Belowground Biomass	
Check Model Assumptions	
ANOVAs	
Effect Sizes	
Nodule Density	
Check Model Assumptions	
ANOVAs	
Effect Sizes	
Fixing Nodule Density	
Check Model Assumptions	
ANOVAs	
Effect Sizes	
	00
Fitness by Microbiome Dissimilarity	22
Data Management	
Calculate Fitness Responses (LA Indices)	
Calculate Microbiome Dissimilarities	
Aboveground Biomass	
Fit the Linear Model	
Check Model Assumptions	
Model Summary	
Effect Sizes	
Belowground Biomass	
Fit the Linear Model	
Check Model Assumptions	
Model Summary	. 29

Effect Sizes	29
Nodule Density	
Fit the Linear Model	
Check Model Assumptions	
Model Summary	
Effect Sizes	
Fixing Nodule Density	32
Fit the Linear Models	32
Check Model Assumptions	32
Model Summary	33
Effect Sizes	35
Rhizobium Abundance by Microbiome & Nitrogen	34
Fit the (Generalized) Linear Models	
Check Model Assumptions	
Effect Sizes	
Effect Sizes	30
Community Composition by Microbiome & Nitrogen	37
Data Management	
NMDS Ordination	
PERMANOVAs	
Inoculant Community Composition	40
Inoculant Rhizobium Abundances	42
Data Management	42
Fit the Generalized Linear Model	
Check Model Assumptions	
ANOVA	
Effect Sizes	43
Supplementary: Fitness by Rhizobium Estimated Marginal Means	44
Aboveground Biomass	
Estimated Marginal Means & Trends	
Contrasts	
Contrast Effect Sizes	
Belowground Biomass	48
	٠
Contrasts	
Nodule Density	
Estimated Marginal Means & Trends	
Contrasts	
Contrast Effect Sizes	
Fixing Nodule Density	
Estimated Marginal Means & Trends	
Contrasts	
Contrast Effect Sizes	
Supplementary: Rhizobium Abundance by Microbiome & Nitrogen Estimated Mar	ginal
Means	60
Rhizobium Abundance	
Estimated Marginal Means & Trends	61

Contrast E	fect Sizes																	-	 •	
Rhizobium Relat	ive Abund	ance .																		
Estimated 1	Marginal M	Ieans &	z Tr	ends																
Contrasts																				
Contrast E	fect Sizes																			
Sunnlementary: I	noculant	Rhizo	him	тΔ	hiii	nda	nces	E	stir	กลใ	-ed	М	ar	oin	al	M	6 91	กร		
Supplementary: I														_						
Estimated Margi	nal Means																			
Estimated Margi	nal Means			 																
Estimated Margi	nal Means			 																
Estimated Margi	nal Means Sizes			 																

Load Packages & Data

```
## Load the tidyverse
library(tidyverse)

## Packages for analyses
library(broom)
library(car)
library(easystats)
library(emmeans)
library(phyloseq)
library(tidyamplicons)
library(vegan)
```

Load Data

```
## Load the data
# Root fitness variables
root.fitness.variable.data <- read_csv(</pre>
  "data/localAdaptation-microbiome_data-root.csv",
  show_col_types = FALSE
  select(UID, Population, Microbiome:Fixing_Nodule_Density)
# Root microbiome data
root.microbiome.sample.data <- read_csv(</pre>
  "data/localAdaptation-microbiome_data-root.csv",
  show_col_types = FALSE
) %>%
  select(Sequence_ID, UID, Population, Microbiome, Nitrogen)
# Soil local adaptation BLUPs
# Aboveground biomass
aboveground.biomass.uncleaned.BLUPs <- read_rds(</pre>
  file = "data/aboveground_biomass_uncleaned_BLUPs.rds"
)
# Belowground biomass
belowground.biomass.uncleaned.BLUPs <- read_rds(</pre>
  file = "data/belowground_biomass_uncleaned_BLUPs.rds"
# Nodule density
nodule.density.uncleaned.BLUPs <- read rds(</pre>
  file = "data/nodule_density_uncleaned_BLUPs.rds"
)
# Fixing nodule density
fixing.nodule.density.uncleaned.BLUPs <- read_rds(</pre>
  file = "data/fixing_nodule_density_uncleaned_BLUPs.rds"
# Soil microbiome data
soil.microbiome.sample.data <- read_csv(</pre>
  "data/localAdaptation-microbiome_data-soil.csv",
  show_col_types = FALSE
  select(Sequence_ID, Population, Inoculant_Type)
# ASV data
root.ASV.table <- read_rds("data_analysis/8-microbiome_analyses/root_ASV_abundance_table.rds")</pre>
soil.ASV.table <- read_rds("data_analysis/8-microbiome_analyses/soil_ASV_abundance_table.rds")</pre>
# Taxonomy tables
root.taxonomy.table <- read_rds("data_analysis/8-microbiome_analyses/root_ASV_taxonomy_table.rds")</pre>
soil.taxonomy.table <- read_rds("data_analysis/8-microbiome_analyses/soil_ASV_taxonomy_table.rds")</pre>
## Add re-coded Microbiome variable to calculate global nonlocal effects
# Fitness variables
root.fitness.variable.data$Microbiome_Global <- (</pre>
if_else(root.fitness.variable.data$Microbiome == "Local", "Local", "Nonlocal_Global")
```

```
# Root microbiome data
root.microbiome.sample.data$Microbiome_Global <- (
   if_else(root.microbiome.sample.data$Microbiome == "Local", "Local", "Nonlocal_Global", "NULL")

## Set function to calculate relative abundances
relative_abundance <- function(x) {
   x / sum(x)
}</pre>
```

phyloseq & tidyamplicons Processing

Root

```
## Set sample metadata
# Sample and treatment identifiers
root.sample.metadata <- root.microbiome.sample.data %>%
  select(UID, Population, Microbiome, Nitrogen)
# Set row names for phyloseq processing
rownames(root.sample.metadata) <- root.microbiome.sample.data$Sequence ID</pre>
## Set phyloseq components
# ASV
root.ASV.table.phyloseq <- otu_table(root.ASV.table, taxa_are_rows = FALSE)</pre>
root.taxonomy.table.phyloseq <- tax_table(root.taxonomy.table)</pre>
# Sample data
root.sample.data.phyloseq <- sample_data(root.sample.metadata)</pre>
rownames(root.sample.data.phyloseq) <- root.microbiome.sample.data$Sequence_ID</pre>
## Set the reference phyloseq object
root.phyloseq.reference <- phyloseq(</pre>
  otu_table(root.ASV.table.phyloseq, taxa_are_rows = FALSE),
  sample_data(root.sample.data.phyloseq),
  tax_table(root.taxonomy.table.phyloseq)
) %>%
  subset_taxa(Kingdom == "Bacteria")
## Get the number of reads per sample
# Set sample metadata for correct merging
root.sample.reads.metadata <- root.sample.metadata %>%
  rownames_to_column(var = "Sequence_ID")
# Get the number of reads and merge with sample data
root.sample.reads <- sample_sums(root.phyloseq.reference) %>%
  as.data.frame() %>%
  rownames_to_column(var = "Sequence_ID") %>%
  rename(Root_Sample_Reads = 2) %>%
  as tibble() %>%
  full_join(root.sample.reads.metadata, by = "Sequence_ID")
## Convert the phyloseq reference to tidyamplicons
root.tidyamplicon.base.microbiome.data <- as_tidyamplicons(root.phyloseq.reference)</pre>
```

Soil

```
## Set sample metadata
# Sample and treatment identifiers
soil.sample.metadata <- soil.microbiome.sample.data %>%
  select(Population, Inoculant_Type)
# Set row names for phyloseq processing
rownames(soil.sample.metadata) <- soil.microbiome.sample.data$Sequence_ID</pre>
## Set phyloseq components
# ASV
soil.ASV.table.phyloseq <- otu_table(soil.ASV.table, taxa_are_rows = FALSE)</pre>
soil.taxonomy.table.phyloseq <- tax_table(soil.taxonomy.table)</pre>
# Sample data
soil.sample.data.phyloseq <- sample_data(soil.sample.metadata)</pre>
rownames(soil.sample.data.phyloseq) <- soil.microbiome.sample.data$Sequence_ID</pre>
## Set the reference phyloseq object
soil.phyloseq.reference <- phyloseq(</pre>
  otu_table(soil.ASV.table.phyloseq, taxa_are_rows = FALSE),
  sample_data(soil.sample.data.phyloseq),
  tax_table(soil.taxonomy.table.phyloseq)
## Get the number of reads per sample
# Set sample metadata for correct merging
soil.sample.reads.metadata <- soil.sample.metadata %>%
 rownames_to_column(var = "Sequence_ID")
# Get the number of reads and merge with sample data
soil.sample.reads <- sample_sums(soil.phyloseq.reference) %>%
  as.data.frame() %>%
  rownames_to_column(var = "Sequence_ID") %>%
 rename(Soil_Sample_Reads = 2) %>%
  as tibble() %>%
 full_join(soil.sample.reads.metadata, by = "Sequence_ID")
## Convert the phyloseg reference to tidyamplicons
soil.tidyamplicon.base.microbiome.data <- as tidyamplicons(soil.phyloseq.reference)</pre>
```

Fitness & Rhizobia Abundances

Data Management

Note: summed abundances and relative abundances across all ASVs identified to Rhizobium in the sample

```
## Add relative abundances
root.tidyamplicon.base.microbiome.data <- add_rel_abundance(root.tidyamplicon.base.microbiome.data)
## Root abundances
root.abundances <- abundances(root.tidyamplicon.base.microbiome.data)</pre>
root.taxa <- taxa(root.tidyamplicon.base.microbiome.data)</pre>
## Set tibble of abundances of only Rhizobium
root.fitness.by.rhizobium.data <- root.abundances %>%
  full_join(root.taxa, by = "taxon_id") %>%
  full_join(root.tidyamplicon.base.microbiome.data$samples, by = "sample_id") %>%
  filter(genus == "Rhizobium") %>%
  select(UID, sample, Population: Nitrogen, genus, abundance, rel abundance) %>%
  rename(Sequence_ID = sample, Genus = genus, Abundance = abundance, Relative_Abundance = rel_abundance
  group_by(Population, Microbiome, Nitrogen) %>%
  summarise(
   Summed_Abundance = sum(Abundance),
   Summed_Relative_Abundance = sum(Relative_Abundance),
    .groups = "keep"
  ) %>%
  full_join(
    select(root.fitness.variable.data, Population:Microbiome_Global),
   by = c("Population", "Microbiome", "Nitrogen")
  ) %>%
 full_join(
   root.sample.reads,
   by = c("Population", "Microbiome", "Nitrogen")
  ) %>%
  select(
    Sequence_ID, UID, Population: Nitrogen, Root_Sample_Reads, Summed_Abundance: Microbiome_Global
## Export data for figures
write_rds(
 root.fitness.by.rhizobium.data,
  file = "data/fitness_by_rhizobia_data.rds"
)
```

Aboveground Biomass

Fit the Linear Models

```
## Fit the aboveground biomass by rhizobium abundance linear model
aboveground.biomass.by.rhizobium.LM <- lm(
  log(Aboveground_Biomass) ~ Summed_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)

## Fit the aboveground biomass by rhizobium relative abundance linear model
aboveground.biomass.by.rhizobium.RA.LM <- lm(
  log(Aboveground_Biomass) ~ Summed_Relative_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(aboveground.biomass.by.rhizobium.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(aboveground.biomass.by.rhizobium.LM)
# Normality of residuals (P = 0.163)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(aboveground.biomass.by.rhizobium.LM)
# No statistical evidence for heteroscedasticity (P = 0.446)

## Check for outliers
check_outliers(aboveground.biomass.by.rhizobium.LM)
# 1 outlier detected
```

```
## Visual assessment of model diagnostics
check_model(aboveground.biomass.by.rhizobium.RA.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(aboveground.biomass.by.rhizobium.RA.LM)
# Normality of residuals (P = 0.204)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(aboveground.biomass.by.rhizobium.RA.LM)
# No statistical evidence for heteroscedasticity (P = 0.480)

## Check for outliers
check_outliers(aboveground.biomass.by.rhizobium.RA.LM)
# No outliers detected
```

ANOVAs

```
## Fit ANOVAs with Type III sums-of-squares
# Aboveground biomass by rhizobium abundance linear model
aboveground.biomass.by.rhizobium.LM.ANOVA <- Anova(
    mod = aboveground.biomass.by.rhizobium.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)

# Aboveground biomass by rhizobium relative abundance linear model
aboveground.biomass.by.rhizobium.RA.LM.ANOVA <- Anova(
    mod = aboveground.biomass.by.rhizobium.RA.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 1: ANOVA table for the aboveground biomass by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	61.158	1	48.480	0.000
$Summed_Abundance$	0.666	1	0.528	0.470
Nitrogen	6.043	1	4.790	0.033
Root_Sample_Reads	2.674	1	2.120	0.151
Summed_Abundance:Nitrogen	0.178	1	0.141	0.709
Residuals	68.121	54	NA	NA

Table 2: ANOVA table for the aboveground biomass by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	37.586	1	29.616	0.000
Summed_Relative_Abundance	0.583	1	0.460	0.501
Nitrogen	4.301	1	3.389	0.071
Root_Sample_Reads	1.640	1	1.292	0.261
$Summed_Relative_Abundance: Nitrogen$	0.407	1	0.321	0.574
Residuals	68.532	54	NA	NA

Table 3: Table of effect sizes for the terms in the above ground biomass by rhizobium abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Abundance	0.010	0.95	0.000	1
Nitrogen	0.081	0.95	0.004	1
Root_Sample_Reads	0.038	0.95	0.000	1
$Summed_Abundance: Nitrogen$	0.003	0.95	0.000	1

Table 4: Table of effect sizes for the terms in the above ground biomass by rhizobium relative abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Relative_Abundance	0.008	0.95	0	1
Nitrogen	0.059	0.95	0	1
Root_Sample_Reads	0.023	0.95	0	1
$Summed_Relative_Abundance: Nitrogen$	0.006	0.95	0	1

Belowground Biomass

```
## Fit the belowground biomass by rhizobium abundance linear model
belowground.biomass.by.rhizobium.LM <- lm(
  log(Belowground_Biomass) ~ Summed_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)

## Fit the belowground biomass by rhizobium relative abundance linear model
belowground.biomass.by.rhizobium.RA.LM <- lm(
  log(Belowground_Biomass) ~ Summed_Relative_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(belowground.biomass.by.rhizobium.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(belowground.biomass.by.rhizobium.LM)
# Normality of residuals (P = 0.487)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(belowground.biomass.by.rhizobium.LM)
# No statistical evidence for heteroscedasticity (P = 0.061)

## Check for outliers
check_outliers(belowground.biomass.by.rhizobium.LM)
# No outliers detected
```

```
## Visual assessment of model diagnostics
check_model(belowground.biomass.by.rhizobium.RA.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(belowground.biomass.by.rhizobium.RA.LM)
# Normality of residuals (P = 0.450)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(belowground.biomass.by.rhizobium.RA.LM)
# Statistical evidence for heteroscedasticity (P = 0.045)

## Check for outliers
check_outliers(belowground.biomass.by.rhizobium.RA.LM)
# No outliers detected
```

ANOVAs

```
## Fit ANOVAs with Type III sums-of-squares
# Aboveground biomass by rhizobium abundance linear model
belowground.biomass.by.rhizobium.LM.ANOVA <- Anova(
    mod = belowground.biomass.by.rhizobium.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)

# Aboveground biomass by rhizobium relative abundance linear model
belowground.biomass.by.rhizobium.RA.LM.ANOVA <- Anova(
    mod = belowground.biomass.by.rhizobium.RA.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 5: ANOVA table for the belowground biomass by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	89.248	1	114.430	0.000
Summed_Abundance	0.007	1	0.009	0.924
Nitrogen	8.909	1	11.423	0.001
Root_Sample_Reads	4.573	1	5.864	0.019
Summed_Abundance:Nitrogen	0.109	1	0.140	0.709
Residuals	42.116	54	NA	NA

Table 6: ANOVA table for the belowground biomass by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	63.191	1	81.844	0.000
Summed_Relative_Abundance	0.209	1	0.271	0.605
Nitrogen	9.707	1	12.572	0.001
Root_Sample_Reads	4.496	1	5.823	0.019
$Summed_Relative_Abundance: Nitrogen$	0.461	1	0.598	0.443
Residuals	41.693	54	NA	NA

Table 7: Table of effect sizes for the terms in the below ground biomass by rhizobium abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Abundance	0.000	0.95	0.000	1
Nitrogen	0.175	0.95	0.047	1
Root_Sample_Reads	0.098	0.95	0.009	1
$Summed_Abundance: Nitrogen$	0.003	0.95	0.000	1

Table 8: Table of effect sizes for the terms in the below ground biomass by rhizobium relative abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Relative_Abundance	0.005	0.95	0.000	1
Nitrogen	0.189	0.95	0.056	1
Root_Sample_Reads	0.097	0.95	0.009	1
$Summed_Relative_Abundance: Nitrogen$	0.011	0.95	0.000	1

Nodule Density

```
## Fit the nodule density by rhizobium abundance linear model
nodule.density.by.rhizobium.LM <- lm(
  log(Nodule_Density + 1) ~ Summed_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)

## Fit the nodule density by rhizobium relative abundance linear model
nodule.density.by.rhizobium.RA.LM <- lm(
  log(Nodule_Density + 1) ~ Summed_Relative_Abundance * Nitrogen + Root_Sample_Reads,
  data = root.fitness.by.rhizobium.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(nodule.density.by.rhizobium.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(nodule.density.by.rhizobium.LM)
# Normality of residuals (P = 0.161)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(nodule.density.by.rhizobium.LM)
# No statistical evidence for heteroscedasticity (P = 0.213)

## Check for outliers
check_outliers(nodule.density.by.rhizobium.LM)
# No outliers detected
```

```
## Visual assessment of model diagnostics
check_model(nodule.density.by.rhizobium.RA.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(nodule.density.by.rhizobium.RA.LM)
# Non-normality of residuals detected (P = 0.042)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(nodule.density.by.rhizobium.RA.LM)
# No statistical evidence for heteroscedasticity (P = 0.127)

## Check for outliers
check_outliers(nodule.density.by.rhizobium.RA.LM)
# No outliers detected
```

ANOVAs

```
## Fit ANOVAs with Type III sums-of-squares
# Aboveground biomass by rhizobium abundance linear model
nodule.density.by.rhizobium.LM.ANOVA <- Anova(
    mod = nodule.density.by.rhizobium.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)

# Aboveground biomass by rhizobium relative abundance linear model
nodule.density.by.rhizobium.RA.LM.ANOVA <- Anova(
    mod = nodule.density.by.rhizobium.RA.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 9: ANOVA table for the nodule density by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	0.760	1	21.193	0.000
$Summed_Abundance$	0.027	1	0.741	0.393
Nitrogen	0.053	1	1.488	0.228
Root_Sample_Reads	0.043	1	1.197	0.279
$Summed_Abundance:Nitrogen$	0.000	1	0.012	0.913
Residuals	1.937	54	NA	NA

Table 10: ANOVA table for the nodule density by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	0.244	1	6.977	0.011
Summed_Relative_Abundance	0.118	1	3.388	0.071
Nitrogen	0.001	1	0.016	0.901
Root_Sample_Reads	0.003	1	0.089	0.767
$Summed_Relative_Abundance: Nitrogen$	0.051	1	1.449	0.234
Residuals	1.886	54	NA	NA

Table 11: Table of effect sizes for the terms in the nodule density by rhizobium abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Abundance	0.014	0.95	0	1
Nitrogen	0.027	0.95	0	1
Root_Sample_Reads	0.022	0.95	0	1
Summed_Abundance:Nitrogen	0.000	0.95	0	1

Table 12: Table of effect sizes for the terms in the nodule density by rhizobium relative abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Relative_Abundance	0.059	0.95	0	1
Nitrogen	0.000	0.95	0	1
Root_Sample_Reads	0.002	0.95	0	1
$Summed_Relative_Abundance: Nitrogen$	0.026	0.95	0	1

Fixing Nodule Density

```
## Fit the fixing nodule density by rhizobium abundance linear model
fixing.nodule.density.by.rhizobium.LM <- lm(
   log(Fixing_Nodule_Density + 1) ~ Summed_Abundance * Nitrogen + Root_Sample_Reads,
   data = root.fitness.by.rhizobium.data
)

## Fit the fixing nodule density by rhizobium relative abundance linear model
fixing.nodule.density.by.rhizobium.RA.LM <- lm(
   log(Fixing_Nodule_Density + 1) ~ Summed_Relative_Abundance * Nitrogen + Root_Sample_Reads,
   data = root.fitness.by.rhizobium.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(fixing.nodule.density.by.rhizobium.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(fixing.nodule.density.by.rhizobium.LM)
# Non-normality of residuals detected (P < 0.001)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(fixing.nodule.density.by.rhizobium.LM)
# No statistical evidence for heteroscedasticity (P = 0.210)

## Check for outliers
check_outliers(fixing.nodule.density.by.rhizobium.LM)
# No outliers detected</pre>
```

```
## Visual assessment of model diagnostics
check_model(fixing.nodule.density.by.rhizobium.RA.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(fixing.nodule.density.by.rhizobium.RA.LM)
# Non-normality of residuals detected (P < 0.001)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(fixing.nodule.density.by.rhizobium.RA.LM)
# No statistical evidence for heteroscedasticity (P = 0.574)

## Check for outliers
check_outliers(fixing.nodule.density.by.rhizobium.RA.LM)
# No outliers detected</pre>
```

ANOVAs

```
## Fit ANOVAs with Type III sums-of-squares
# Aboveground biomass by rhizobium abundance linear model
fixing.nodule.density.by.rhizobium.LM.ANOVA <- Anova(
    mod = fixing.nodule.density.by.rhizobium.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)

# Aboveground biomass by rhizobium relative abundance linear model
fixing.nodule.density.by.rhizobium.RA.LM.ANOVA <- Anova(
    mod = fixing.nodule.density.by.rhizobium.RA.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 13: ANOVA table for the fixing nodule density by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	0.212	1	10.253	0.002
$Summed_Abundance$	0.013	1	0.644	0.426
Nitrogen	0.004	1	0.195	0.661
$Root_Sample_Reads$	0.043	1	2.072	0.156
Summed_Abundance:Nitrogen	0.007	1	0.343	0.560
Residuals	1.115	54	NA	NA

Table 14: ANOVA table for the fixing nodule density by rhizobium abundance and nitrogen treatment, with the number of reads as a covariate.

	Sums-of-Squares	df	F	P-value
(Intercept)	0.069	1	3.447	0.069
Summed_Relative_Abundance	0.049	1	2.447	0.124
Nitrogen	0.000	1	0.011	0.918
Root_Sample_Reads	0.021	1	1.037	0.313
Summed_Relative_Abundance:Nitrogen	0.031	1	1.563	0.217
Residuals	1.073	54	NA	NA

Table 15: Table of effect sizes for the terms in the fixing nodule density by rhizobium abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Abundance	0.012	0.95	0	1
Nitrogen	0.004	0.95	0	1
Root_Sample_Reads	0.037	0.95	0	1
$Summed_Abundance: Nitrogen$	0.006	0.95	0	1

Table 16: Table of effect sizes for the terms in the fixing nodule density by rhizobium relative abundance model.

Term	Partial eta-squared	CI	CI Low	CI High
Summed_Relative_Abundance	0.043	0.95	0	1
Nitrogen	0.000	0.95	0	1
Root_Sample_Reads	0.019	0.95	0	1
$Summed_Relative_Abundance: Nitrogen$	0.028	0.95	0	1

Fitness by Microbiome Dissimilarity

Data Management

```
## Set the soil abundance matrix
soil.base.abundance.matrix <- abundances_matrix(</pre>
  soil.tidyamplicon.base.microbiome.data,
 value = abundance,
 sample_name = sample,
 taxon_name = taxon
## Set the sample IDs
soil.abundance.matrix.sample.IDs <- rownames(soil.base.abundance.matrix) %%
  as_tibble()
## Convert the abundance matrix to a tibble and add the sample IDs
soil.abundance.matrix <- soil.base.abundance.matrix %>%
  as_tibble() %>%
   bind_cols(soil.abundance.matrix.sample.IDs) %>%
 rename(Sequence_ID = value) %>%
   drop_na()
## Merge sample data with the abundance matrix
soil.community.composition.data <- soil.sample.metadata %>%
 rownames_to_column(var = "Sequence_ID") %>%
 left_join(soil.abundance.matrix, by = "Sequence_ID") %>%
 left_join(soil.sample.reads %>%select(Sequence_ID, Soil_Sample_Reads), by = "Sequence_ID") %>%
   filter(Inoculant_Type == "Local" | Inoculant_Type == "Rural" | Inoculant_Type == "Urban") %>%
   filter(Population != "P25")
```

Calculate Fitness Responses (LA Indices)

```
## Aboveground biomass
aboveground.biomass.LA.global.data <- aboveground.biomass.uncleaned.BLUPs %%
  select(Population, Microbiome_Global, Estimate) %>%
  group_by(Population, Microbiome_Global) %>%
  summarise(AG_Biomass = mean(Estimate), .groups = "keep") %>%
  pivot_wider(names_from = Microbiome_Global, values_from = AG_Biomass) %>%
  mutate(AG_Biomass_LA_Global = Local - Nonlocal_Global) %>%
  ungroup() %>%
    select(1, 4)
## Belowground biomass
belowground.biomass.LA.global.data <- belowground.biomass.uncleaned.BLUPs %>%
  select(Population, Microbiome_Global, Estimate) %>%
  group by (Population, Microbiome Global) %>%
  summarise(BG_Biomass = mean(Estimate), .groups = "keep") %>%
  pivot_wider(names_from = Microbiome_Global, values_from = BG_Biomass) %>%
  mutate(BG_Biomass_LA_Global = Local - Nonlocal_Global) %>%
  ungroup() %>%
    select(1, 4)
## Nodule density
nodule.density.LA.global.data <- nodule.density.uncleaned.BLUPs %>%
  select(Population, Microbiome_Global, Estimate) %>%
  group_by(Population, Microbiome_Global) %>%
  summarise(Nod_Density = mean(Estimate), .groups = "keep") %>%
  pivot_wider(names_from = Microbiome_Global, values_from = Nod_Density) %%
  mutate(Nod_Density_LA_Global = Local - Nonlocal_Global) %>%
  ungroup() %>%
    select(1, 4)
## Fixing nodule density
fixing.nodule.density.LA.global.data <- fixing.nodule.density.uncleaned.BLUPs %>%
  select(Population, Microbiome_Global, Estimate) %>%
  group_by(Population, Microbiome_Global) %>%
  summarise(Fix_Nod_Density = mean(Estimate), .groups = "keep") %>%
  pivot_wider(names_from = Microbiome_Global, values_from = Fix_Nod_Density) %>%
  mutate(Fix_Nod_Density_LA_Global = Local - Nonlocal_Global) %>%
  ungroup() %>%
    select(1, 4)
## Combine into a single dataframe
soil.fitness.variable.data <- aboveground.biomass.LA.global.data %>%
   full_join(belowground.biomass.LA.global.data, by = "Population") %>%
    full_join(nodule.density.LA.global.data, by = "Population") %>%
   full_join(fixing.nodule.density.LA.global.data, by = "Population") %>%
   filter(Population != "P25")
```

Calculate Microbiome Dissimilarities

```
## Set data for analyses
# Local microbiome
local.community.composition.data <- soil.community.composition.data %>%
    filter(Inoculant_Type == "Local")
# Nonlocal microbiome
nonlocal.community.composition.data <- soil.community.composition.data %>%
    filter(Inoculant_Type != "Local")
## Set the function
soil_microbiome_BC_dissimilarity_function <- function(local_df, nonlocal_df) {</pre>
    ## Set empty dataframe for results
    soil.BC.dissimilarity.data <- data.frame("BC Dissimilarity" = numeric(length = 29))</pre>
    ## Set the nonlocal (rural, urban, or rural + urban) microbiome
  nonlocal.microbiome <- nonlocal_df %>%
  replace(is.na(.), 0) %>%
   summarise(across(everything(), mean)) %>%
   select(-c(Inoculant_Type:Population, Sequence_ID))
  # Remove any columns with O
  nonlocal.microbiome <- nonlocal.microbiome[, colSums(nonlocal.microbiome != 0) > 0]
  ## Set to X
  for (x in 1:29) {
    ## Set the local microbiome
   local.microbiome <- local_df[x, 4:14301] %>%
        replace(is.na(.), 0)
    # Remove any columns with O
   local.microbiome <- local.microbiome[, colSums(local.microbiome != 0) > 0]
    ## Combine local and nonlocal into single abundance matrix
    community.matrix <- bind rows(local.microbiome, nonlocal.microbiome) %%
        replace(is.na(.), 0)
    ## Calculate pairwise BC dissimilarity distance
   local.vs.nonlocal.BC.distance <- vegdist(</pre>
        community.matrix,
        method = "bray"
   )
   ## Export the pairwise BC distance
   soil.BC.dissimilarity.data[x, ] <- local.vs.nonlocal.BC.distance</pre>
  }
    ## Set vector of pairwise BC distance
   pairwise.BC.data <- as_tibble(soil.BC.dissimilarity.data)</pre>
```

```
## Local vs nonlocal dissimilarity
local.vs.nonlocal.dissimilarity <- soil_microbiome_BC_dissimilarity_function(</pre>
  local_df = local.community.composition.data,
  nonlocal_df = nonlocal.community.composition.data
) %>%
  mutate(Population = local.community.composition.data$Population) %>%
  type_convert(col_types = c("nf"))
## Combine fitness and dissimilarity data
fitness.by.soil.dissimarility.data <- soil.fitness.variable.data %>%
  full_join(local.vs.nonlocal.dissimilarity, by = "Population") %>%
  left_join(soil.sample.reads, by = "Population") %>%
  select(
    Population, AG_Biomass_LA_Global:Fix_Nod_Density_LA_Global,
    BC_Dissimilarity, Soil_Sample_Reads
  )
## Export data for figures
write_rds(
    fitness.by.soil.dissimarility.data,
    file = "data/fitness_by_soil_dissimarility_data.rds"
```

Aboveground Biomass

Fit the Linear Model

```
## Fit the aboveground biomass by microbiome dissimilarity model
aboveground.biomass.by.BC.dissimilarity.LM <- lm(
   AG_Biomass_LA_Global ~ BC_Dissimilarity + Soil_Sample_Reads,
   data = fitness.by.soil.dissimarility.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(aboveground.biomass.by.BC.dissimilarity.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(aboveground.biomass.by.BC.dissimilarity.LM)
# Non-normality of residuals detected (P < 0.001)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(aboveground.biomass.by.BC.dissimilarity.LM)
# Good

## Check for outliers
check_outliers(aboveground.biomass.by.BC.dissimilarity.LM)
# No outliers detected</pre>
```

Model Summary

Table 17: Summary of the aboveground biomass local adaptation global index by microbiome dissimilarity, with the number of reads as a covariate.

Term	Estimate	SE	t	P-value
(Intercept)	0.106	0.130	0.816	0.422
BC_Dissimilarity	-0.115	0.139	-0.833	0.412
Soil_Sample_Reads	0.000	0.000	-0.311	0.758

Table 18: Table of effect sizes for the terms in the above ground biomass local adaptation global index by microbiome dissimilarity model. Adjusted R-squared < 0.001

Term	Standardize Slope	CI	CI Low	CI High
(Intercept)	0.000	0.95	-0.390	0.390
BC_Dissimilarity	-0.232	0.95	-0.805	0.341
Soil_Sample_Reads	-0.087	0.95	-0.660	0.486

Belowground Biomass

Fit the Linear Model

```
## Fit the belowground biomass by microbiome dissimilarity model
belowground.biomass.by.BC.dissimilarity.LM <- lm(
   BG_Biomass_LA_Global ~ BC_Dissimilarity + Soil_Sample_Reads,
   data = fitness.by.soil.dissimarility.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(belowground.biomass.by.BC.dissimilarity.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(belowground.biomass.by.BC.dissimilarity.LM)
# Good

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(belowground.biomass.by.BC.dissimilarity.LM)
# Good

## Check for outliers
check_outliers(belowground.biomass.by.BC.dissimilarity.LM)
# No outliers detected
```

Model Summary

Table 19: Summary of the below ground biomass local adaptation global index by microbiome dissimilarity, with the number of reads as a covariate.

Term	Estimate	SE	t	P-value
(Intercept)	0.034	0.051	0.658	0.517
BC_Dissimilarity	-0.036	0.055	-0.662	0.514
Soil_Sample_Reads	0.000	0.000	-0.401	0.692

Table 20: Table of effect sizes for the terms in the below ground biomass local adaptation global index by microbiome dissimilarity model. Adjusted R-squared < 0.001

Term	Standardize Slope	CI	CI Low	CI High
(Intercept)	0.000	0.95	-0.393	0.393
BC_Dissimilarity	-0.186	0.95	-0.763	0.391
Soil_Sample_Reads	-0.113	0.95	-0.690	0.465

Nodule Density

Fit the Linear Model

```
## Fit the nodule density by microbiome dissimilarity model
nodule.density.by.BC.dissimilarity.LM <- lm(
   Nod_Density_LA_Global ~ BC_Dissimilarity + Soil_Sample_Reads,
   data = fitness.by.soil.dissimarility.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(nodule.density.by.BC.dissimilarity.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(nodule.density.by.BC.dissimilarity.LM)
# Good

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(nodule.density.by.BC.dissimilarity.LM)
# Good

## Check for outliers
check_outliers(nodule.density.by.BC.dissimilarity.LM)
# No outliers detected
```

Model Summary

Table 21: Summary of the nodule density local adaptation global index by microbiome dissimilarity, with the number of reads as a covariate.

Term	Estimate	SE	t	P-value
(Intercept)	-0.201	0.289	-0.696	0.493
BC_Dissimilarity	0.204	0.309	0.662	0.514
Soil_Sample_Reads	0.000	0.000	1.032	0.312

Table 22: Table of effect sizes for the terms in the nodule density local adaptation global index by microbiome dissimilarity model. Adjusted R-squared < 0.001

Term	Standardize Slope	CI	CI Low	CI High
(Intercept)	0.000	0.95	-0.388	0.388
BC_Dissimilarity	0.184	0.95	-0.387	0.755
Soil_Sample_Reads	0.287	0.95	-0.284	0.857

Fixing Nodule Density

Fit the Linear Models

```
## Fit the fixing Nodule Density by microbiome dissimilarity model
fixing.nodule.density.by.BC.dissimilarity.LM <- lm(
   Fix_Nod_Density_LA_Global ~ BC_Dissimilarity + Soil_Sample_Reads,
   data = fitness.by.soil.dissimarility.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(fixing.nodule.density.by.BC.dissimilarity.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(fixing.nodule.density.by.BC.dissimilarity.LM)
# Good

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(fixing.nodule.density.by.BC.dissimilarity.LM)
# Good

## Check for outliers
check_outliers(fixing.nodule.density.by.BC.dissimilarity.LM)
# No outliers detected
```

Model Summary

Table 23: Summary of the fixing nodule density local adaptation global index by microbiome dissimilarity, with the number of reads as a covariate.

Term	Estimate	SE	t	P-value
(Intercept)	-0.038	0.063	-0.610	0.547
BC_Dissimilarity	0.040	0.067	0.598	0.555
Soil_Sample_Reads	0.000	0.000	0.638	0.529

Table 24: Table of effect sizes for the terms in the fixing nodule density local adaptation global index by microbiome dissimilarity model. Adjusted R-squared < 0.001

Term	Standardize Slope	CI	CI Low	CI High
(Intercept)	0.000	0.95	-0.393	0.393
BC_Dissimilarity	0.168	0.95	-0.409	0.746
Soil_Sample_Reads	0.179	0.95	-0.398	0.757

Rhizobium Abundance by Microbiome & Nitrogen

Fit the (Generalized) Linear Models

```
## Fit the rhizobium abundance by microbiome and nitrogen model
rhizobium.abundance.GLM <- glm(
   Summed_Abundance ~ Microbiome_Global * Nitrogen,
   data = root.fitness.by.rhizobium.data,
   family = poisson(link = "log")
)

## Fit the rhizobium relative abundance by microbiome and nitrogen model
rhizobium.relative.abundance.LM <- lm(
   Summed_Relative_Abundance ~ Microbiome_Global * Nitrogen,
   data = root.fitness.by.rhizobium.data
)</pre>
```

```
## Visual assessment of model diagnostics
check_model(rhizobium.abundance.GLM)
# Overdispersion
# Residuals could be improved

## Check for overdispersion
check_overdispersion(rhizobium.abundance.GLM)
# Overdispersion detected
```

```
## Visual assessment of model diagnostics
check_model(rhizobium.relative.abundance.LM)
# Visual check = assumptions met

## Check normality of predictors (Shapiro-Wilk test)
check_normality(rhizobium.relative.abundance.LM)
# Non-normality of residuals detected (P < 0.001)

## Check for non-constant variance of residuals (i.e., heteroscedasticity)
check_heteroscedasticity(rhizobium.relative.abundance.LM)
# Statistical evidence for heteroscedasticity (P < 0.001)

## Check for outliers
check_outliers(rhizobium.relative.abundance.LM)
# 1 outlier detected</pre>
```

ANOVAs

```
## Fit ANOVAs with Type III sums-of-squares
# Rhizobium abundance by microbiome and nitrogen model
rhizobium.abundance.GLM.ANOVA <- Anova(
    mod = rhizobium.abundance.GLM,
    type = "III",
    test.statistic = "Wald",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)

# Rhizobium relative abundance by microbiome and nitrogen model
rhizobium.relative.abundance.LM.ANOVA <- Anova(
    mod = rhizobium.relative.abundance.LM,
    type = "III",
    test.statistic = "F",
    contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 25: ANOVA table for rhizobium abundance by microbiome, nitrogen, and the interaction.

	df	chi-squared	P-value
(Intercept)	1	1155839.252	0.00
$Microbiome_Global$	1	0.769	0.38
Nitrogen	1	39.060	0.00
${\bf Microbiome_Global:Nitrogen}$	1	373.176	0.00

Table 26: ANOVA table for rhizobium relative abundance by microbiome, nitrogen, and the interaction.

	Sums-of-Squares	df	F	P-value
(Intercept)	0.013	1	5.783	0.020
${\it Microbiome_Global}$	0.000	1	0.034	0.854
Nitrogen	0.003	1	1.097	0.299
$Microbiome_Global:Nitrogen$	0.001	1	0.367	0.547
Residuals	0.127	55	NA	NA

Table 27: Table of effect sizes (Cohen's w) for the terms in the rhizobium abundance by microbiome and nitrogen model.

Term	Cohens_w
Intercept	138.795
Microbiome	0.113
Nitrogen	0.807
Microbiome x Nitrogen	2.494

Table 28: Table of effect sizes (partial eta-squared) for the terms in the rhizobium relative abundance by microbiome and nitrogen model.

Term	Partial eta-squared	CI	CI Low	CI High
Microbiome_Global	0.001	0.95	0	1
Nitrogen	0.020	0.95	0	1
${\bf Microbiome_Global:} {\bf Nitrogen}$	0.007	0.95	0	1

Community Composition by Microbiome & Nitrogen

Data Management

Note: summed abundances and relative abundances across all ASVs identified to Rhizobium in the sample

```
## Convert abundance to relative abundance
root.phyloseq.reference.relativized <- transform_sample_counts(
  root.phyloseq.reference,
  relative_abundance
)</pre>
```

NMDS Ordination

```
## Calculate Bray-Curtis Distance
root.BC.distance.matrix <- distance(</pre>
 root.phyloseq.reference.relativized,
 method = "bray"
## Set tibble with scores and predictor variables
root.BC.distance.data <- scores(root.BC.distance.matrix) %>%
  as.data.frame() %>%
 rownames_as_column(var = "Sequence_ID") %>%
 full_join(root.microbiome.sample.data, by = "Sequence_ID") %>%
  select(Sequence_ID, Population:Microbiome_Global, LA1:LA9)
## Export NMDS data for figures
write_rds(
 root.BC.distance.data,
 file = "data/root_BC_distance_data.rds"
## NMDS Ordination
root.BC.NMDS <- ordinate(</pre>
 root.phyloseq.reference.relativized,
 method = "NMDS",
 distance = "bray",
 k = 3
)
## Export NMDS data for figures
write_rds(
 root.BC.NMDS,
  file = "data/root BC NMDS.rds"
```

PERMANOVAs

```
## PERMANOVA by microbiome, nitrogen, and the interaction
root.community.composition.PERMANOVA <- adonis2(
   root.BC.distance.matrix ~ Microbiome * Nitrogen,
   data = root.BC.distance.data,
   permutations = 10000
)

## PERMANOVA by microbiome (global), nitrogen, and the interaction
root.community.composition.global.PERMANOVA <- adonis2(
   root.BC.distance.matrix ~ Microbiome_Global * Nitrogen,
   data = root.BC.distance.data,
   permutations = 10000
)</pre>
```

Table 29: Summary of the PERMANOVA comparing root composition by microbiome, nitrogen, and the two-way interaction.

Term	df	Sums-of-Squares	R2	F	P-value
Microbiome	2	0.549	0.029	0.853	0.815
Nitrogen	1	0.297	0.016	0.924	0.561
Microbiome:Nitrogen	2	0.803	0.042	1.248	0.082
Residual	54	17.385	0.913	NA	NA
Total	59	19.034	1.000	NA	NA

Table 30: Summary of the PERMANOVA comparing root composition by microbiome (local vs. nonlocal global), nitrogen, and the two-way interaction.

Term	df	Sums-of-Squares	R2	F	P-value
Microbiome_Global	1	0.256	0.013	0.793	0.824
Nitrogen	1	0.297	0.016	0.921	0.569
Microbiome_Global:Nitrogen	1	0.394	0.021	1.220	0.162
Residual	56	18.087	0.950	NA	NA
Total	59	19.034	1.000	NA	NA

Inoculant Community Composition

```
## Set the base abundance matrix for the inoculant communities
inoculant.base.abundance.matrix <- abundances_matrix(</pre>
  soil.tidyamplicon.base.microbiome.data,
  value = abundance,
  sample_name = sample,
 taxon_name = taxon
## Set the sample IDs
inoculant.abundance.matrix.sample.IDs <- rownames(inoculant.base.abundance.matrix) %>%
  as_tibble()
## Convert the abundance matrix to a tibble and add the sample IDs
inoculant.abundance.matrix <- inoculant.base.abundance.matrix %>%
  as tibble() %>%
 bind_cols(inoculant.abundance.matrix.sample.IDs) %>%
 rename(Sequence_ID = value)
## Inoculant and control data (N Addition and Ambient N)
inoculant.community.composition.data <- soil.sample.metadata %>%
  rownames_to_column(var = "Sequence_ID") %>%
 left_join(inoculant.abundance.matrix, by = "Sequence_ID") %>%
 full_join(soil.sample.reads %% select(Sequence_ID, Soil_Sample_Reads), by = "Sequence_ID") %>%
  slice(-20) # Remove P25 (missing data)
## Export data for figures
write rds(
  inoculant.community.composition.data,
 file = "data/inoculant_community_composition_data.rds"
## Conduct a Principal Coordinates Analysis (PCoA)
inoculant.PCoA <- capscale(</pre>
  inoculant.abundance.matrix %>% select(-Sequence_ID) ~ 1,
  data = inoculant.abundance.matrix
## Check the screeplot
screeplot(inoculant.PCoA)
```

inoculant.PCoA


```
## Get eigenvalue summary
inoculant.PCoA.eigen.values <- eigenvals(inoculant.PCoA) %>%
    summary()
# MDS1-MDS2 explain ~18.9% of the variation in the data
# MDS1 = 10.5%
# MDS2 = 8.4%
# Poor ordination, but caveated with drastic differences in group representation

## Export PCoA for figures
write_rds(
   inoculant.PCoA,
   file = "data/inoculant_PCoA.rds"
)
```

Inoculant Rhizobium Abundances

Data Management

```
## Root abundances
inoculant.abundances <- abundances(soil.tidyamplicon.base.microbiome.data)</pre>
## Root taxa
inoculant.taxa <- taxa(soil.tidyamplicon.base.microbiome.data)</pre>
## Set tibble of abundances of only Rhizobium
inoculant.rhizobium.abundance.data <- inoculant.abundances %>%
  full_join(inoculant.taxa, by = "taxon_id") %>%
  full_join(soil.tidyamplicon.base.microbiome.data$samples, by = "sample_id") %>%
  filter(genus == "Rhizobium") %>%
  select(Population, Inoculant_Type, abundance) %>%
  rename(Rhizobium_Abundance = abundance) %>%
  group_by(Population, Inoculant_Type) %>%
  summarise(
   Summed Rhizobium Abundance = sum(Rhizobium Abundance),
    .groups = "keep"
## Set tibble of samples with no rhizobia
inoculant.rhizobium.abundance.supplement.data <- tibble(</pre>
  Population = c(
    "Ambient_N-1", "N_Addition-1", "N_Addition-2", "N_Addition-3",
    "P1", "P4", "P6", "P8", "P12", "P14", "P16", "P18", "P23", "P30",
    "P34", "P43", "P45", "P48"
 ),
  Inoculant_Type = c("Ambient_N", rep("N_Addition", 3), rep("Local", 14)),
  Summed_Rhizobium_Abundance = c(rep(0, 18))
## Bind all inoculant vs. control data into a single tibble
inoculant.rhizobium.abundance.full.data <- bind_rows(</pre>
  inoculant.rhizobium.abundance.data,
  inoculant.rhizobium.abundance.supplement.data
## Export data for figures
write_rds(
  inoculant.rhizobium.abundance.data,
  file = "data/inoculant_rhizobium_abundance_data.rds"
```

Fit the Generalized Linear Model

```
## Fit the rhizobium abundance by inoculant and control
inoculant.rhizobium.abundance.GLM <- glm(
   Summed_Rhizobium_Abundance ~ Inoculant_Type,
   data = inoculant.rhizobium.abundance.full.data,
   family = poisson(link = "log")
)</pre>
```

Check Model Assumptions

```
## Visual assessment of model diagnostics
check_model(inoculant.rhizobium.abundance.GLM)
# Residuals could be improved but are tolerable

## Check for overdispersion
check_overdispersion(inoculant.rhizobium.abundance.GLM)
# Overdispersion detected
```

ANOVA

```
## Fit ANOVA with Type III sums-of-squares
inoculant.rhizobium.abundance.GLM.ANOVA <- Anova(
  mod = inoculant.rhizobium.abundance.GLM,
  type = "III",
  test.statistic = "Wald",
  contrasts = list(topic = contr.sum, sys = contr.sum)
)</pre>
```

Table 31: ANOVA table for rhizobium abundance by inoculant and control communities.

	df	chi-squared	P-value
(Intercept)	1	4890.397	0
$Inoculant_Type$	4	617.394	0

Effect Sizes

Table 32: Table of effect sizes (Cohen's w) for the terms in the rhizobium abundance by inoculant communities.

Term	Cohens_w
Intercept	10.425
Inoculant Type	3.704

Supplementary: Fitness by Rhizobium Estimated Marginal Means

Aboveground Biomass

```
## Set the estimated marginal means
# Nitrogen
aboveground.biomass.by.rhizobium.N.emmeans <- emmeans(
    aboveground.biomass.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    weights = "cells",
    adjust = "none"
)

# Nitrogen x Rhizobium
aboveground.biomass.by.rhizobium.NR.emmeans <- emtrends(
    aboveground.biomass.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    var = "Summed_Abundance",
    weights = "cells",
    adjust = "none"
)</pre>
```

Estimated Marginal Means & Trends

Table 33: Estimated marginal means of the main effect of nitrogen in the above ground biomass by rhizobium model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N	-3.067	0.212	54	-14.464	0
$N_Addition$	-1.929	0.206	54	-9.362	0

Table 34: Estimated marginal trends of the interaction between nitrogen and rhizobium abundance in the aboveground biomass by rhizobium model.

Nitrogen	Rhizobia Trend	SE	df	t	Р
Ambient_N	-0.000108	0.000149	54	-0.726815	0.470479
N_Addition	-0.000045	0.000080	54	-0.568100	0.572322

Table 35: Post-hoc comparisons of the main effect of nitrogen in the aboveground biomass by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	-1.138	0.296	54	-3.845	0

Table 36: Post-hoc comparisons of the interaction between nitrogen and rhizobium abundance in the above-ground biomass by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	-6.2e-05	0.000166	54	-0.375375	0.708852

Table 37: Effect sizes for the constrasts by nitrogen in the aboveground biomass by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	-1.013	0.281	54	-1.577	-0.45

Table 38: Effect sizes for the constrasts by nitrogen and rhizobia in the aboveground biomass by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	-5.6e-05	0.000148	54	-0.000353	0.000242

Belowground Biomass

```
## Set the estimated marginal means
# Nitrogen
belowground.biomass.by.rhizobium.N.emmeans <- emmeans(
  belowground.biomass.by.rhizobium.LM,
  specs = pairwise ~ Nitrogen,
  weights = "cells",
  adjust = "none"
)

# Nitrogen x Rhizobium
belowground.biomass.by.rhizobium.NR.emmeans <- emtrends(
  belowground.biomass.by.rhizobium.LM,
  specs = pairwise ~ Nitrogen,
  var = "Summed_Abundance",
  weights = "cells",
  adjust = "none"
)</pre>
```

Estimated Marginal Means & Trends

Table 39: Estimated marginal means of the main effect of nitrogen in the below ground biomass by rhizobium model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N	-3.331	0.167	~ -	-19.976	0
N_Addition	-2.229	0.162	54	-13.754	0

Table 40: Estimated marginal trends of the interaction between nitrogen and rhizobium abundance in the belowground biomass by rhizobium model.

Nitrogen	Rhizobia Trend	SE	df	t	Р
Ambient_N	1.1e-05	0.000117	54	0.095988	0.923885
N_Addition	-3.8e-05	0.000063	54	-0.600991	0.550360

Table 41: Post-hoc comparisons of the main effect of nitrogen in the belowground biomass by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	-1.102	0.233	54	-4.736	0

Table 42: Post-hoc comparisons of the interaction between nitrogen and rhizobium abundance in the below-ground biomass by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	P
Nitrogen	$Ambient_N - N_Addition$	0	4.9e-05	0.000131	54	0.374669	0.709374

Table 43: Effect sizes for the constrasts by nitrogen in the belowground biomass by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
$(Ambient_N - N_Addition)$	-1.248	0.29	54	-1.829	-0.667

Table 44: Effect sizes for the constrasts by nitrogen and rhizobia in the below ground biomass by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	5.6e-05	0.000148	54	-0.000242	0.000353

Nodule Density

```
## Set the estimated marginal means
# Nitrogen
nodule.density.by.rhizobium.N.emmeans <- emmeans(
    nodule.density.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    weights = "cells",
    adjust = "none"
)

# Nitrogen x Rhizobium
nodule.density.by.rhizobium.NR.emmeans <- emtrends(
    nodule.density.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    var = "Summed_Abundance",
    weights = "cells",
    adjust = "none"
)</pre>
```

Estimated Marginal Means & Trends

Table 45: Estimated marginal means of the main effect of nitrogen in the nodule density by rhizobium model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N N Addition	0.355 0.268	0.036 0.035	~ -	9.915 7.702	0

Table 46: Estimated marginal trends of the interaction between nitrogen and rhizobium abundance in the nodule density by rhizobium model.

Nitrogen	Rhizobia Trend	SE	df	t	Р
Ambient_N N Addition	2.2e-05 2.5e-05		-	0.860791 1.825838	0.000=00

Table 47: Post-hoc comparisons of the main effect of nitrogen in the nodule density by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	Ambient_N - N_Addition	0	0.087	0.05	54	1.741	0.087

Table 48: Post-hoc comparisons of the interaction between nitrogen and rhizobium abundance in the nodule density by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	Ambient_N - N_Addition	0	-3e-06	2.8e-05	54	-0.109912	0.912886

Table 49: Effect sizes for the constrasts by nitrogen in the nodule density by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	0.459	0.267	54	-0.077	0.995

Table 50: Effect sizes for the constrasts by nitrogen and rhizobia in the nodule density by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	-1.6e-05	0.000148	54	-0.000313	0.000281

Fixing Nodule Density

```
## Set the estimated marginal means
# Nitrogen
fixing.nodule.density.by.rhizobium.N.emmeans <- emmeans(
    fixing.nodule.density.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    weights = "cells",
    adjust = "none"
)

# Nitrogen x Rhizobium
fixing.nodule.density.by.rhizobium.NR.emmeans <- emtrends(
    fixing.nodule.density.by.rhizobium.LM,
    specs = pairwise ~ Nitrogen,
    var = "Summed_Abundance",
    weights = "cells",
    adjust = "none"
)</pre>
```

Estimated Marginal Means & Trends

Table 51: Estimated marginal means of the main effect of nitrogen in the fixing nodule density by rhizobium model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N	0.161	0.027	54	5.951	0
$N_Addition$	0.108	0.026	54	4.088	0

Table 52: Estimated marginal trends of the interaction between nitrogen and rhizobium abundance in the fixing nodule density by rhizobium model.

Nitrogen	Rhizobia Trend	SE	df	t	Р
Ambient_N	1.5e-05	1.9e-05	54	0.802249	0.425926
$N_Addition$	3.0e-06	1.0e-05	54	0.270412	0.787874

Table 53: Post-hoc comparisons of the main effect of nitrogen in the fixing nodule density by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	0.054	0.038	54	1.418	0.162

Table 54: Post-hoc comparisons of the interaction between nitrogen and rhizobium abundance in the fixing nodule density by rhizobium model.

Term	Contrast	Null Value	Estimate	SE	df	t	P
Nitrogen	$Ambient_N - N_Addition$	0	1.2e-05	2.1 e- 05	54	0.585846	0.56042

Table 55: Effect sizes for the constrasts by nitrogen in the fixing nodule density by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	0.374	0.266	54	-0.16	0.907

Table 56: Effect sizes for the constrasts by nitrogen and rhizobia in the fixing nodule density by rhizobium model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	8.7e-05	0.000148	54	-0.000211	0.000384

Supplementary: Rhizobium Abundance by Microbiome & Nitrogen Estimated Marginal Means

Rhizobium Abundance

```
## Set the estimated marginal means
# Microbiome
rhizobium.abundance.M.emmeans <- emmeans(</pre>
  rhizobium.abundance.GLM,
  specs = pairwise ~ Microbiome_Global,
  weights = "cells",
  adjust = "none"
# Nitrogen
rhizobium.abundance.N.emmeans <- emmeans(</pre>
  rhizobium.abundance.GLM,
  specs = pairwise ~ Nitrogen,
  weights = "cells",
  adjust = "none"
# Microbiome x Nitrogen
rhizobium.abundance.MN.emmeans <- emmeans(</pre>
  rhizobium.abundance.GLM,
  specs = pairwise ~ Nitrogen | Microbiome_Global,
  weights = "cells",
  adjust = "none"
```

Estimated Marginal Means & Trends

Table 57: Estimated marginal means of the main effect of microbiome in the rhizobium abundance by microbiome and nitrogen model.

Microbiome	Estimate	SE	df	t	Р
Local	7.632	0.005	Inf	1549.888	0
$Nonlocal_Global$	7.743	0.003	Inf	2309.742	0

Table 58: Estimated marginal means of the main effect of nitrogen in the rhizobium abundance by microbiome and nitrogen model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N N Addition	7.596 7.811	$0.004 \\ 0.004$		1825.019 2119.537	0

Table 59: Estimated marginal means of the interaction between microbiome and rhizobium abundance in the rhizobium abundance by microbiome and nitrogen model.

Nitrogen	Microbiome	Estimate	SE	df	t	Р
Ambient_N	Local	7.601152	0.007070	Inf	1075.100	0
N_Addition	Local	7.662703	0.006856	Inf	1117.688	0
$Ambient_N$	$Nonlocal_Global$	7.593480	0.005149	Inf	1474.759	0
$N_Addition$	$Nonlocal_Global$	7.885480	0.004337	Inf	1818.251	0

Table 60: Post-hoc comparisons of the main effect of microbiome in the rhizobium abundance by microbiome and nitrogen model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Microbiome_Global	Local - Nonlocal_Global	0	-0.111	0.006	Inf	-18.683	0

Table 61: Post-hoc comparisons of the main effect of nitrogen in the rhizobium abundance by microbiome and nitrogen model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	-0.215	0.006	Inf	-38.691	0

Table 62: Post-hoc comparisons of the interaction between microbiome and nitrogen abundance in the rhizobium abundance by microbiome and nitrogen model.

Microbiome	Term	Contrast	Null Value	Estimate	SE	df	t	Р
Local	Nitrogen	Ambient_N - N_Addition	0	-0.062	0.010	Inf	-6.250	0
$Nonlocal_Global$	Nitrogen	$Ambient_N - N_Addition$	0	-0.292	0.007	Inf	-43.375	0

Table 63: Effect sizes for the constrasts by microbiome in the rhizobium abundance by microbiome and nitrogen model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Local - Nonlocal_Global)	-0.003	0	Inf	-0.003	-0.002

Table 64: Effect sizes for the constrasts by nitrogen in the rhizobium abundance by microbiome and nitrogen model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	-0.005	0.001	Inf	-0.007	-0.004

Table 65: Effect sizes for the constrasts by microbiome and nitrogen and rhizobia in the rhizobium abundance by microbiome and nitrogen model.

Contrast	Microbiome	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	Local	-0.001561	0.000291	Inf	-0.002131	-0.000991
$(Ambient_N - N_Addition)$	$Nonlocal_Global$	-0.007406	0.000726	Inf	-0.008830	-0.005982

Rhizobium Relative Abundance

```
## Set the estimated marginal means
# Microbiome
rhizobium.relative.abundance.M.emmeans <- emmeans(</pre>
  rhizobium.relative.abundance.LM,
  specs = pairwise ~ Microbiome_Global,
 weights = "cells",
  adjust = "none"
# Nitrogen
rhizobium.relative.abundance.N.emmeans <- emmeans(</pre>
  rhizobium.relative.abundance.LM,
  specs = pairwise ~ Nitrogen,
  weights = "cells",
  adjust = "none"
# Microbiome x Nitrogen
rhizobium.relative.abundance.MN.emmeans <- emmeans(</pre>
  rhizobium.relative.abundance.LM,
  specs = pairwise ~ Nitrogen | Microbiome_Global,
  weights = "cells",
  adjust = "none"
```

Estimated Marginal Means & Trends

Table 66: Estimated marginal means of the main effect of microbiome in the rhizobium relative abundance by microbiome and nitrogen model.

Microbiome	Estimate	SE	df	t	Р
Local	0.048	0.011	55	4.448	0
$Nonlocal_Global$	0.043	0.008	55	5.632	0

Table 67: Estimated marginal means of the main effect of nitrogen in the rhizobium relative abundance by microbiome and nitrogen model.

Nitrogen	Estimate	SE	df	t	Р
Ambient_N	0.039	0.009	55	4.350	0
$N_Addition$	0.051	0.009	55	5.777	0

Table 68: Estimated marginal means of the interaction between microbiome and rhizobium relative abundance in the rhizobium relative abundance by microbiome and nitrogen model.

Nitrogen	Microbiome	Estimate	SE	df	t	Р
Ambient_N	Local	0.036606	0.015223	55	2.404723	0.019578
N_Addition	Local	0.059155	0.015223	55	3.885977	0.000276
$Ambient_N$	Nonlocal_Global	0.040078	0.011044	55	3.629069	0.000624
N_Addition	$Nonlocal_Global$	0.046582	0.010764	55	4.327555	0.000064

Table 69: Post-hoc comparisons of the main effect of microbiome in the rhizobium relative abundance by microbiome and nitrogen model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Microbiome_Global	Local - Nonlocal_Global	0	0.004	0.013	55	0.337	0.737

Table 70: Post-hoc comparisons of the main effect of nitrogen in the rhizobium relative abundance by microbiome and nitrogen model.

Term	Contrast	Null Value	Estimate	SE	df	t	Р
Nitrogen	$Ambient_N - N_Addition$	0	-0.012	0.013	55	-0.949	0.347

Table 71: Post-hoc comparisons of the interaction between microbiome and nitrogen abundance in the rhizobium relative abundance by microbiome and nitrogen model.

Microbiome	Term	Contrast	Null Value	Estimate	SE	df	t	Р
Local	Nitrogen	Ambient_N - N_Addition	0	-0.023	0.022	55	-1.047	0.299
$Nonlocal_Global$	Nitrogen	$Ambient_N - N_Addition$	0	-0.007	0.015	55	-0.422	0.675

Table 72: Effect sizes for the constrasts by microbiome in the rhizobium relative abundance by microbiome and nitrogen model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Local - Nonlocal_Global)	0.093	0.275	55	-0.459	0.644

Table 73: Effect sizes for the constrasts by nitrogen in the rhizobium relative abundance by microbiome and nitrogen model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	-0.247	0.261	55	-0.771	0.277

Table 74: Effect sizes for the constrasts by microbiome and nitrogen and rhizobia in the rhizobium relative abundance by microbiome and nitrogen model.

Contrast	Microbiome	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - N_Addition)	Local	-0.468414	0.449438	55	-1.369108	0.432281
$(Ambient_N - N_Addition)$	$Nonlocal_Global$	-0.135105	0.320621	55	-0.777643	0.507433

Supplementary: Inoculant Rhizobium Abundances Estimated Marginal Means

```
## Set the estimated marginal means
inoculant.rhizobium.abundance.emmeans <- emmeans(
  inoculant.rhizobium.abundance.GLM,
  specs = pairwise ~ Inoculant_Type,
  weights = "cells",
  adjust = "none"
)</pre>
```

Estimated Marginal Means

Table 75: Estimated marginal means by community type in the rhizobium abundance by inoculant and control communities model.

Community Type	Estimate	SE	df	t	Р
Ambient_N	4.423	0.063	Inf	69.931	0.000
Local	4.017	0.023	Inf	171.991	0.000
N_Addition	-13.303	270.964	Inf	-0.049	0.961
Rural	4.147	0.063	Inf	65.964	0.000
Urban	5.349	0.049	Inf	109.762	0.000

Table 76: Post-hoc comparisons by community type in the rhizobium abundance by inoculant and control communities model.

Term	Contrast	Null Value	Estimate	SE	df	t	P
Inoculant_Type	Ambient_N - Local	0	0.406	0.067	Inf	6.017	0.000
Inoculant_Type	$Ambient_N - N_Addition$	0	17.725	270.964	Inf	0.065	0.948
Inoculant_Type	$Ambient_N - Rural$	0	0.276	0.089	Inf	3.092	0.002
$Inoculant_Type$	$Ambient_N$ - $Urban$	0	-0.927	0.080	Inf	-11.605	0.000
$Inoculant_Type$	Local - N_Addition	0	17.320	270.964	Inf	0.064	0.949
$Inoculant_Type$	Local - Rural	0	-0.130	0.067	Inf	-1.937	0.053
Inoculant_Type	Local - Urban	0	-1.332	0.054	Inf	-24.651	0.000
$Inoculant_Type$	$N_Addition$ - Rural	0	-17.450	270.964	Inf	-0.064	0.949
Inoculant_Type	$N_Addition$ - Urban	0	-18.652	270.964	Inf	-0.069	0.945
$Inoculant_Type$	Rural - Urban	0	-1.202	0.080	Inf	-15.115	0.000

Table 77: Effect sizes for the constrasts by community type in the rhizobium abundance by inoculant and control communities model.

Contrast	Cohen's d	SE	df	CI Lower	CI Upper
(Ambient_N - Local)	0.048	0.010	Inf	0.029	0.066
(Ambient_N - N_Addition)	2.086	31.889	Inf	-60.415	64.587
(Ambient_N - Rural)	0.032	0.011	Inf	0.011	0.054
$(Ambient_N - Urban)$	-0.109	0.015	Inf	-0.139	-0.079
(Local - N_Addition)	2.038	31.889	Inf	-60.462	64.539
(Local - Rural)	-0.015	0.008	Inf	-0.031	0.001
(Local - Urban)	-0.157	0.019	Inf	-0.193	-0.120
(N_Addition - Rural)	-2.054	31.889	Inf	-64.554	60.447
(N_Addition - Urban)	-2.195	31.889	Inf	-64.696	60.306
(Rural - Urban)	-0.142	0.018	Inf	-0.178	-0.105

R Session Information

Table 78: Packages required for data management and analysis.

Package	Loaded Version	Date
bayestestR	0.13.1	2023-04-07
broom	1.0.5	2023-06-09
car	3.1-2	2023-03-30
carData	3.0 - 5	2022-01-06
correlation	0.8.4	2023-04-06
datawizard	0.8.0	2023-06-16
dplyr	1.1.2	2023-04-20
easystats	0.6.0	2022 - 11 - 29
effectsize	0.8.3	2023-01-28
emmeans	1.8.7	2023-06-23
forcats	1.0.0	2023-01-29
ggplot2	3.4.2	2023-04-03
insight	0.19.3	2023-06-29
kableExtra	1.3.4	2021-02-20
knitr	1.43	2023-05-25
lattice	0.21-8	2023-04-05
lubridate	1.9.2	2023-02-10
modelbased	0.8.6	2023-01-13
parameters	0.21.1	2023-05-26
performance	0.10.4	2023-06-02
permute	0.9-7	2022-01-27
phyloseq	1.40.0	2022-04-26
purrr	1.0.1	2023-01-10
readr	2.1.4	2023-02-10
report	0.5.7	2023-03-22
see	0.8.0	2023-06-05
stringr	1.5.0	2022-12-02
tibble	3.2.1	2023-03-20
tidyamplicons	0.2.2	2022-09-10
tidyr	1.3.0	2023-01-24
tidyverse	2.0.0	2023-02-22
vegan	2.6-4	2022-10-11