3. Diagnostic tumor size and post treatment

April 29, 2022

```
[1]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np
   import statsmodels.api as sm
   /matplotlib inline
   pd.set_option('display.max_rows', None)
   import scipy.stats as stats
   from scipy.stats import shapiro
   import copy
   import statsmodels.stats.api as sms
   from scipy.stats import wilcoxon
   sns.set(style="darkgrid")
   import test_mod as mod
   from scipy.stats import chi2_contingency
```

1 Descriptive analysis of attributes

1.1 Importing data

```
[2]: df = pd.read_csv(r"C:\Users\gdbt0\OneDrive\GitHub\Projects\cancer_\
     →research\data\processed\research_variables.csv")
     df.head()
[2]:
         id tumour_stage diagnos_tumor_size after EBRT_tumor_size \
     0 101
                      2B
     1 102
                      2B
                                                             2
     2 103
                      3B
                                       >4
                                                             >2
                      2B
     3 104
                                       >4
                                                             >2
     4 105
                      3B
                                                             2
                                       >4
        before_brachy_categor post_treatment_response
     0
                            1
                                                     0
     1
                            1
     2
                            2
                                                     2
                            2
                                                     0
     3
```

1

[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 120 entries, 0 to 119
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype		
0	id	120 non-null	int64		
1	tumour_stage	120 non-null	object		
2	diagnos_tumor_size	120 non-null	object		
3	after EBRT_tumor_size	120 non-null	object		
4	before_brachy_categor	120 non-null	int64		
5	<pre>post_treatment_response</pre>	120 non-null	int64		
dtypes: int64(3), object(3)					

dtypes: int64(3), object(3) memory usage: 5.8+ KB

1.2 diagnos_tumor_size and post_treatment_response

```
[4]: #Transforming data

primary_var_name = 'diagnos_tumor_size'

secondary_var_name = 'post_treatment_response'

primary_vs_secondary = df[[primary_var_name, secondary_var_name]].copy()

primary_vs_secondary.dropna(inplace=True)

primary_vs_secondary[primary_var_name] = primary_vs_secondary[primary_var_name].

→astype('category')
```

1.2.1 Diagnostic tumor size

```
[5]: # Declaration of the variable
primary_var = df[primary_var_name].copy()
primary_var.dropna(inplace=True)
primary_var_value_counts = primary_var.value_counts()
```

```
[6]: ## Finding the frequency distribution of categories in the variable print("The frequency distribution of categories in {}.".

→format(primary_var_name))
print("In total, there are {} categories.".format(primary_var.value_counts().

→count()))
primary_var.value_counts()
```

The frequency distribution of categories in diagnos_tumor_size. In total, there are 2 categories.

[6]: >4 63
4 57
Name: diagnos_tumor_size, dtype: int64

```
[7]: # Boxplot for numberical values sns.boxplot(data=primary_vs_secondary,x=secondary_var_name, y=primary_var_name)
```

[7]: <AxesSubplot:xlabel='post_treatment_response', ylabel='diagnos_tumor_size'>

Let's graph the frequency distribution of the categorical features to a barplot.

```
[8]: # Barplot
plot = sns.countplot(primary_var)
mod.show_values(plot)
plt.title("Frequency distribution of {}".format(primary_var_name))
plt.ylabel('Number of Occurences', fontsize=12)
plt.xlabel('{}'.format(primary_var_name),fontsize=12)
plt.show()
```

C:\Users\gdbt0\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
[9]: #Making a pie chart

plt.title("Percentage distribution of {}".format(primary_var_name))

plt.pie(primary_var_value_counts, labels=primary_var_value_counts.index,

→autopct='%.0f%%')

plt.show()
```

Percentage distribution of diagnos_tumor_size

1.2.2 Post treatment response

```
[10]: # Declaration of the variable
secondary_var = df[secondary_var_name].copy()
secondary_var.dropna(inplace=True)
secondary_var_value_counts = secondary_var.value_counts()
```

The frequency distribution of categories in post_treatment_response. In total, there are 3 categories.

```
[12]: # Barplot
plot = sns.countplot(secondary_var)
mod.show_values(plot)
plt.title("Frequency distribution of {}".format(secondary_var_name))
```

```
plt.ylabel('Number of Occurences', fontsize=12)
plt.xlabel('{}'.format(secondary_var_name),fontsize=12)
plt.show()
```

C:\Users\gdbt0\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Percentage distribution of post_treatment_response

1.2.3 Analysis of groups

Creates groups by tumour stage

1.2.4 belowFour

The group where the initial tumor size is below 4cm

```
[15]: ## Finding the frequency distribution of categories in the variable print("The frequency distribution of categories in the group 2B.") print("In total, there are {} categories.".format(firstGroup.value_counts(). →count())) firstGroup.value_counts()
```

The frequency distribution of categories in the group 2B. In total, there are 3 categories.

[16]: # Barplot plot = sns.countplot(firstGroup) mod.show_values(plot) plt.title("The frequency distribution of categories in the group belowFour.") plt.ylabel('Number of Occurences', fontsize=12) plt.xlabel('{}'.format(primary_var_name),fontsize=12) plt.show()

C:\Users\gdbt0\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Percentage distribution of categories in the group belowFour

1.2.5 aboveFour

The group where the initial tumor size is below 4cm

```
[18]: ## Finding the frequency distribution of categories in the variable print("The frequency distribution of categories in the group aboveFour.") print("In total, there are {} categories.".format(secondGroup.value_counts(). →count())) secondGroup.value_counts()
```

The frequency distribution of categories in the group aboveFour. In total, there are 3 categories.

```
[19]: # Barplot
plot = sns.countplot(secondGroup)
mod.show_values(plot)
plt.title("The frequency distribution of categories in the group aboveFour.")
plt.ylabel('Number of Occurences', fontsize=12)
plt.xlabel('{}'.format(primary_var_name),fontsize=12)
plt.show()
```

 $\verb|C:\Users\gdbt0\anaconda3\lib\site-packages\seaborn_decorators.py:36:|$

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[20]: #Pie chart plt.title("The percentage distribution of categories in the group aboveFour.") plt.pie(secondGroup.value_counts(), labels=secondGroup.value_counts().index, →autopct='%.0f%%') plt.show()

The percentage distribution of categories in the group aboveFour.

1.2.6 Chi square test for Independence

Test that the categorical values of the two groups are different to each other.

Reference

- [1] Chi-Bar-Squared. Retrieved March 9, 2022 from:
- [2] Johns Hopkins.
- [3] Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.
- [4] https://www.statisticshowto.com/probability-and-statistics/chi-square/
- [5] https://www.askpython.com/python/examples/chi-square-test

1.2.7 Uses the pandas crosstab() function to create a contingency table of the two selected variables

post_treatment_response	0	1	2	All
diagnos_tumor_size				
>4	17	19	27	63
4	40	10	7	57
All	57	29	34	120

```
[22]: value = np.array([chisqt.iloc[0][0:5].values, chisqt.iloc[1][0:5].values])
    print(value)

[[17 19 27 63]
    [40 10 7 57]]

[23]: chi_stat = chi2_contingency(value)[0]
    p_value = chi2_contingency(value)[1]
    degrees_of_freedom = chi2_contingency(value)[2]
    significance_level = 0.05
```

The null hypothesis: The grouping variables have no association or correlation amongst them. #### The alternate hypothesis The variables are associated with each other and happen to have a correlation between the variables.

```
[24]: print("The p-value of the test is: {}".format(p_value) + "\nThe test statistic

→is: {}".format(chi_stat) + "\nThe degrees of freedom is: {}".

→format(degrees_of_freedom)

)
```

The p-value of the test is: 3.031067690672718e-05 The test statistic is: 23.597504847132598 The degrees of freedom is: 3

```
[25]: if p_value <= significance_level:
    print('Reject NULL HYPOTHESIS')
else:
    print('Accept NULL HYPOTHESIS')</pre>
```

Reject NULL HYPOTHESIS