Разработка мета-классификатора выбора вспомогательных функций приспособленности, основанного на свойствах ландшафта целевой функции, на примере решения задачи коммивояжера

Басин А.О. - магистрант, кафедра компьютерных технологий, Университет ИТМО, anton.bassin@gmail.com

Аннотация

В работе представлен новый способ выбора функций приспособленности вспомогательных многокритериального генетического алгоритма, на примере решения задачи коммивояжера. Метод состоит из фазы построения мета-классификатора выбора на обучающих задачах с использованием информации о ландшафте целевой приспособленности и мета-признаков оптимизации, и фазы запуска генетического алгоритма, в котором вспомогательную функцию подбирает обученный классификатор.

Введение

Генетические алгоритмы относятся к алгоритмам локального поиска, в которых поиск ведется только на основании текущего состояния, а ранее пройденные состояния не учитываются и не запоминаются в процессе оптимизации целевой функции. Для описания пространства состояний в таких задачах используют ландшафт пространства состояний, в этом представлении задача сводится к поиску состояния глобального оптимума на данном ландшафте. Вспомогательные функции приспособленности позволяют в ряде случаев повысить эффективность оптимизации целевой функции приспособленности. На разных этапах оптимизации могут быть выгодны разные вспомогательные функции.

В известных на данный момент методах выбора вспомогательных функций практически не учитываются свойства задачи и того, как алгоритм оптимизации ее решает. Например, в работе [2] предлагается следующий метод выбора вспомогательных функций: случайным образом выбирается одна из множества вспомогательных функций для конкретной задачи. Алгоритм на протяжении заданного отрезка времени работает с этой вспомогательной функцией, далее случайным образом выбирается

другая функция из того же множества. Подход, описанный в [4], использует обучение с подкреплением. Проблема этого метода машинного обучения заключается в том, что, зачастую, описать состояние среды для конкретной задачи оптимизации очень сложно, а в общем случае — еще сложнее. Данный метод использует только разницу в значении целевой функции в качестве подсчета вознаграждения за выбор вспомогательной функции. Следовательно, выбор вспомогательной функции не зависит от состояния самого генетического алгоритма.

Основные положения исследования

Целью работы является создание метода выбора вспомогательных функций приспособленности на основе свойств ландшафта целевой функции и мета-признаков задачи оптимизации.

Научная новизна предлагаемого метода заключается в использовании информации о ландшафте целевой функции приспособленности, а также в том, что выбор вспомогательных функций впервые производится с помощью классификатора, построенного методами машинного обучения.

Предлагаемый метод состоит из двух этапов. Первый этап — это оффлайн машинное обучение мета-классификатора выбора вспомогательных функций на обучающих задачах. Используются свойства ландшафта целевой функции и мета-признаки задачи оптимизации. Ниже представлен псевдокод первого этапа.

```
tasks <- load learn tasks()
for (task in tasks)
  helpers <- generate helpers for the task()
  do
    features <- extract meta and landscape features()
    for (function in helpers)
       run K genetic iterations with helper = function
       fitnessRaise <- calculate fitness raise()
  end for
  dataset.put(features + best helper number as class)
  geneticAlgo.setState(state after best helper use)
  while(stop criteria is not met)
end for</pre>
```

```
train classifier on dataset store dataset and classifier
```

Второй этап заключается в запуске многокритериального генетического алгоритма, в котором вспомогательную функцию в разные моменты времени работы подбирает полученный на первом этапе работы классификатор. Ниже представлен псевдокод второго этапа.

```
classifier <- load classifier()
helpers <- load helpers()
do
    features <- extract meta and landscape features()
    predicted helper <- classifier.predict(features)
    geneticAlgo.setHelper(predicted helper)
    run K genetic iterations
while(stop criteria is not met)
store best answer</pre>
```

Результаты

Был реализован программный код для решения тестовой задачи (NP-полной задачи коммивояжера), использующий многокритериальный генетический алгоритм NSGAII, статистические свойства ландшафта целевой функции и мета-признаки задачи оптимизации.

Для обучения мета-классификатора выбора вспомогательной функции было использовано 27 задач из сборника *TSPLIB*. Значения метрик точности предсказаний классификатора выбора, полученные путем кроссвалидации на обучающей выборке, представлены в Таблице 1.

Метрика	Значение
TP Rate	0.85
FP Rate	0.39
F-Measure	0.83

Таблица 1: Метрики обученного классификатора

Предлагаемый подход был сравнен с методами выбора вспомогательной функции, предложенными *Jensen* [2] и *Jahne* [3]. Алгоритмы были запущены на 49 тестовых задачах коммивояжера из *TSPLIB*. Для каждой задачи каждый метод был запущен 40 раз. Из 40

полученных оптимумов выбирался наилучший ответ и среднее значение результатов. В Таблице 2 представлен анализ полученных результатов, результаты предлагаемого подхода находятся в колонке ОМО.

Метрика	ОМО	Jensen	Jahne
Число лучших решений	42	39	41
Число лучших усредненных решений	35	19	21
Число задач, для которых разность между усредненным решением и известным лучшим ответом оказалась лучшей	34	20	21
Число найденных известных лучших ответов	21	12	16

Таблица 2: Результаты сравнения предлагаемого подхода

Заключение

Опираясь на результаты экспериментальных данных при решении задачи коммивояжера, предложенный подход позволяет увеличить стабильность работы эволюционного алгоритма по сравнению со стандартными подходами, а также увеличивает вероятность получения абсолютных оптимумов задач оптимизации.

Литература

- 1. J. D. Knowles, R. A. Watson, and D. Corne. Reducing local optima in single-objective problems by multi-objectivization. // The first international conference on evolutionary multi-criterion optimization. 2001. P. 269–283.
- 2. M. T. Jensen. Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimization. // Journal of mathematical modelling and algorithms. 2004. V. 3 P. 323–347.
- 3. M. Jahne, X. Li, J. Branke. Evolutionary algorithms and multi-objectivization for the travelling salesman problem. // The 11th annual conference on genetic and evolutionary computation. 2009. P. 595–602.
- 4. A. Buzdalova, M. Buzdalov. Increasing efficiency of evolutionary algorithms by choosing between auxiliary fitness functions with reinforcement learning. // Proceeding of the 11th international conference on machine learning and applications. 2012 V. 1 P. 150–155.