Introdução

Floriano Ferreira dos Reis Filho

Agenda

- Álgebra Relacional
- Seleção
- Projeção
- Seleção e Projeção
- União
- Intersecção
- Condições para União e Intersecção
- Diferença
- Produto Cartesiano
- Junção
- Operadores da Álgebra Relacional

Relação

 Representa uma tabela de duas dimensões (linhas e colunas)

Tupla

Corresponde a uma linha da relação

Atributo

Corresponde a cada coluna da relação

Relação ALUNO

Álgebra Relacional

É um conjunto básico de operações sobre modelos relacionais de dados.

O resultado de uma operação sobre uma ou mais relações gera uma outra relação.

A álgebra relacional auxilia o entendimento e o aprendizado da linguagem SQL.

Operações primárias

- Seleção
- Projeção

Operações binárias

- União
- Intersecção
- Diferença
- Produto Cartesiano

Operações adicionais

- Junção
- Divisão

Funcionário

Cód.	Nome	Sexo	Data Admis.	Salário	Depto.
10	Visconde	M	01/02/1983	R\$ 1230,00	3
20	Pedrinho	М	29/07/1990	R\$ 867,00	3
30	Dona Benta	F	30/11/1992	R\$ 2560,00	1
40	Emília	F	22/02/1998	R\$ 1170,00	2
50	Rabicó	М	08/09/2000	R\$ 2300,00	1

Departamento

CódDepto.	Nome Depto.
1	Administração
2	Contabilidade
3	Informática

Seleção

□ É a operação usada para <u>selecionar um subconjunto de</u> <u>tuplas</u> de uma relação R <u>que satisfaça uma condição</u> de seleção.

É representada como:

<condição> permite o uso dos operadores:

- □ De comparação: =, <>, <, >, <=, >=
- \square Lógicos: and (\land), or (\lor), not (\neg)

- □ Representação gráfica
 - Obtenção de um subconjunto horizontal de uma relação R

- ☐ Exemplo 1:
 - □ Selecionar todos os funcionários do sexo feminino

Cód.	Nome	Sexo	Data Admis.	Salário	Depto.
30	Dona Benta	F	30/11/1992	R\$ 2560,00	1
40	Emília	F	22/02/1998	R\$ 1170,00	2

- **Exemplo 2:**
 - □ Selecionar todos os funcionários do sexo masculino que ganham mais de R\$ 1000,00

σ_{Sexo = 'M' Λ Salário > 1000} (Funcionário)

Cód.	Nome	Sexo	Data Admis.	Salário	Depto.
10	Visconde	M	01/02/1983	R\$ 1230,00	3
50	Rabicó	М	08/09/2000	R\$ 2300,00	1

Projeção

 □ É a operação usada para selecionar determinadas colunas de uma relação R.

- Já que a relação é um conjunto, quaisquer linhas em duplicidade são eliminadas.
- ☐ É representada como:

π_{sta de atributos>} (R)

- ☐ Representação gráfica.
 - ☐ Obtenção de um subconjunto vertical de uma relação R

- **Exemplo 3:**
 - ☐ Listar o nome, o sexo e o salário de todos os funcionários

π_{Nome, Sexo, Salário} (Funcionário)

Nome	Sexo	Salário
Visconde	M	R\$ 1230,00
Pedrinho	M	R\$ 867,00
Dona Benta	F	R\$ 2560,00
Emília	F	R\$ 1170,00
Rabicó	M	R\$ 2300,00

Seleção e Projeção

- As operações podem ser utilizadas em conjunto.
- Exemplo 4:
 - □ Selecionar o nome e o salário de todos os funcionários que ganham mais de R\$ 2000,00

$$T_{\text{Nome, Salário}}$$
 ($\sigma_{\text{Salário}}$ (Funcionário))

Nome	Salário
Dona Benta	R\$ 2560,00
Rabicó	R\$ 2300,00

União

Funcionário

Cód.	Nome	Sexo	Data Admis.	Salário	Depto.
10	Visconde	M	01/02/1983	R\$ 1230,00	3
20	Pedrinho	М	29/07/1990	R\$ 867,00	3
30	Dona Benta	F	30/11/1992	R\$ 2560,00	1
40	Emília	F	22/02/1998	R\$ 1170,00	2
50	Rabicó	М	08/09/2000	R\$ 2300,00	1

Aluno

Cód.	Nome	Sexo
1	Visconde	М
2	Dona Benta	F
3	Rabicó	М
4	Cuca	F

União

- □ R U S
 - ☐ A união de duas relações R e S é o conjunto de todas as tuplas pertencentes à relação R ou à relação S ou a ambas.
- ☐ Representação gráfica:

União

- **Exemplo 5:**
 - Obter os nomes e o sexo de todos os funcionários e alunos

 $T_{Nome, Sexo}$ (Funcionário) $T_{Nome, Sexo}$ (Aluno)

Nome	Sexo
Visconde	М
Pedrinho	М
Dona Benta	F
Emília	F
Rabicó	М
Cuca	F

Intersecção

- \square R \bigcap S
 - □ A intersecção de duas relações R e S é o conjunto de todas as tuplas pertencentes à relação R <u>e</u> à relação S.
- Representação gráfica:

Intersecção

- **Exemplo 6:**
 - Obter o nome e o sexo de todos os funcionários que são alunos.

Nome	Sexo
Visconde	M
Dona Benta	F
Rabicó	M

Condições para União e Intersecção

Condições

- Uma operação de União / Intersecção só é válida se:
- As relações R e S possuírem o mesmo número de atributos;

Diferença

- □ R S
 - □ A diferença de duas relações R e S é o conjunto de todas as tuplas pertencentes à relação R e não pertencentes à relação S.
- ☐ Representação gráfica:

Diferença

- ☐ Exemplo 7:
 - ☐ Obter os nomes e o sexo de todos os funcionários que não são alunos.

Nome	Sexo
Pedrinho	М
Emília	F

Produto Cartesiano

- \square R \times S
 - O produto cartesiano de duas relações R e S é o uma relação T cujas tuplas são a combinação das tuplas das relações R e S, tomando-se uma tupla de R e concatenando-a com cada tupla de S.
- Representação gráfica:

Produto Cartesiano

- ☐ Exemplo 8:
 - ☐ Obter, para cada funcionário, uma lista de todos os departamentos.

Nome Func.	Sexo	Data Adm.	Nome Depto.
Vinconde	M	01/02/1983	Administração
Visconde	М	01/02/1983	Contabilidade
Visconde	М	01/02/1983	Informática
(continua)			

Produto Cartesiano

Nome Func.	Sexo	Data Adm.	Nome Depto.
Pedrinho	М	29/07/1990	Administração
Pedrinho	М	29/07/1990	Contabilidade
Pedrinho	М	29/07/1990	Informática
Dona Benta	F	30/11/1992	Administração
Dona Benta	F	30/11/1992	Contabilidade
Dona Benta	F	30/11/1992	Informática
Emília	F	22/02/1998	Administração
Emília	F	22/02/1998	Contabilidade
Emília	F	22/02/1998	Informática
Rabicó	М	08/09/2000	Administração
Rabicó	М	08/09/2000	Contabilidade
Rabicó	M	08/09/2000	Informática

Junção

- É utilizada para combinar *tuplas relacionadas* de duas relações em uma única tupla
- ☐ É representada como:

R ⋈ < condição de junção > S

Junção

- **Exemplo 9:**
 - ☐ Listar todos os funcionários e o nome do departamento em que cada um deles trabalha

Funcionário Depto. = CódDepto. Departamento

Junção

Junção

Nome	Sexo	Data Admis.	Depto.	CódDepto.	Nome Depto.
Visconde	M	01/02/1983	3	3	Informática
Pedrinho	M	29/07/1990	3	3	Informática
Dona Benta	F	30/11/1992	1	1	Administração
Emília	F	22/02/1998	2	2	Contabilidade
Rabicó	M	08/09/2000	1	1	Administração

Operadores da Álgebra Relacional

	Símbolo	Operação	Sintaxe	Tipo
	π	Projeção (project)	$\pi_{atributos}(Relacao)$	Primitiva - Unária
	σ	Seleção (select)	$\sigma_{condicao}(Relacao)$	Primitiva - Unária
	×	Produto Cartesiano	$Relacao1 \times Relacao2$	Primitiva - Binária
		(cartesian product)		
	U	União (union)	Relacao1∪Relacao2	Primitiva - Binária
Operadores da Álgebra Relacional	_	Diferença entre Conjuntos	Relacao1 – Relacao2	Primitiva - Binária
		(set difference)		
	\cap	Conjunto Intersecção	Relacao1∩Relacao2	Derivada - Binária
		(set intersection)		
	\bowtie	Junção Natural	Relacao1 ⋈ Relacao2	Derivada - Binária
		(natural join)		
	÷	Divisão (division)	Relacao1 ÷ Relacao2	Derivada - Binária
	ρ	Renomear Relação	$ ho_{Nome}(Relacao)$	Especial - Unária
		ou Atributo	100 000	111
	\leftarrow	Designação, ou Atribuição	$variavel \leftarrow Relacao$	Especial - Unária
	2	(assignment)		

Fonte: WILL, Newton Carlos. Operações da Álgebra Relacional. Disponível em: https://coens.dv.utfpr.edu.br/will/wp-content/uploads/2022/03/Apostila_Algebra_Relacional.pdf Acesso em: 24 ago. 2023 (Adaptado).

Exercício

		Atributo				
	CódigoCliente	Nome	TipoRelação	Sexo	DataNasc	
	0001	Maria	Esposa	F	01/01/1970	
	0001	Vítor	Filho	М	02/02/2002	
*	0001	Ana	Filha	F	03/03/2003)
	1000	João	Filho	М	02/02/2002	
Tupla	1000	Vítor	Filho	М	02/02/2002	
	1000	Vítor	Marido	М	02/02/1971	Ĺ
	9876	Sônia	Esposa	F	01/01/1970	
		(3	Valor			

O conjunto de atributos de uma relação é chamado de **relação esquema**

Cada atributo possui um domínio.

dom = domínio

O grau de uma relação é o número de atributos da relação.

Tuplas são as linhas da tabela.

t = tupla

Cada **relação** pode ser entendida como uma **tabela**.

A figura apresenta a Relação DEPENDENTE t = <0001, Ana, Filha, F, 03/03/2003> é uma tupla t[CódigoCliente] = 0001

 $t[Nome, Sexo] = \langle Ana, F \rangle$.

DEPENDENTE(CódigoCliente, Nome, TipoRelação, Sexo, DataNasc)

- É a relação esquema.
- DEPEDENTE é o nome da relação.
- O Grau da Relação é 5.
- Os Domínios dos Atributos são:

dom(CódigoCliente) = 4 dígitos que representam o Código do Cliente.
 dom(Nome) = Caracteres que representam nomes dos dependentes.
 dom(TipoRelação) = Tipo da Relação (filho, esposa, pai, mãe e outras) do dependente em relação do seu cliente .

dom(Sexo) = Caractere: (M: Masculino, F: Feminino) do dependente.dom(DataNasc) = Datas de Nascimento do dependente.

Exercício:

Analise as afirmações e indique na resposta V para Verdadeira e F para Falsa.

Afirmação	Resposta
O conjunto de atributos de uma relação é chamado de relação esquema.	V
Cada atributo possui um domínio.	V
O grau de uma relação é o número de atributos da relação.	У
Tuplas são as linhas da tabela.	V
Cada relação pode ser entendida como uma tabela.	V

Cada atributo possui um domínio.

dom = domínio

O grau de uma relação é o número de atributos da relação.

Tuplas são as linhas da tabela.

t = tupla

Cada relação pode ser entendida como uma tabela.

ENGENHEIRO (codigo, nome)

dom(codigo): código numérico de 4 posições

dom(nome): cadeia de caracteres de até 50 posições

PROJETO (codigo, nome)

dom(codigo): código numérico de 3 posições

dom(titulo): cadeia de caracteres de até 30 posições

ATUACAO (codproj, codenq, funcao)

codproj Referencia PROJETO

codeng Referencia ENGENHEIRO

dom(codproj): código numérico de 3 posições dom(codeng): código numérico de 4 posições

dom(funcao): cadeia de caracteres de até 15 posições

ENGENHEIRO (Código, Nome)

- (Código, Nome) é a relação esquema.
- ENGENHEIRO é o nome da relação.
- O Grau da Relação é 2.
- Os Domínios dos Atributos são:

dom(codigo): código numérico de 4 posições

dom(nome): cadeia de caracteres de até 50 posições

Analise as afirmações e indique na resposta V para Verdadeira e F para Falsa.

Afirmação	Resposta
Os registros (ou tuplas) contidos em cada relação são apresentados nas Tabelas.	V
O símbolo σ (sigma) é usado para indicar o operador SELEÇÃO e a condição de seleção é uma expressão booleana (condição) especificada nos atributos da relação R.	V
É a operação usada para selecionar um subconjunto de tuplas de uma relação R que satisfaça uma condição de projeção.	F
A união de duas relações R e S é o conjunto de todas as tuplas pertencentes à relação R ou à relação S ou a ambas.	V
A junção é representada pelo símbolo Theta, essa junção também é conhecida como Junção Condicional e baseia-se em uma combinação dos operadores produto cartesiano e seleção.	F

QUESTÃO 23

Considere o esquema de banco de dados relacional apresentado a seguir, formado por 4 relações, que representa o conjunto de estudantes de uma universidade que podem, ou não, morar em repúblicas (moradias compartilhadas por estudantes). A relação Estudante foi modelada como um subconjunto da relação Pessoa. Considere que os atributos grifados correspondam à chave primária da respectiva relação e os atributos que são seguidos da palavra referencia sejam chaves estrangeiras.

```
Pessoa(<u>IdPessoa</u>:integer, Nome:varchar(40),
Endereco:varchar(40))
FonePessoa(<u>IdPessoa</u>:integer referencia Pessoa,
<u>DDD</u>:varchar(3), <u>Prefixo</u>:char(4), <u>Nro</u>:char(4))
Republica(<u>IdRep</u>:integer, Nome:varchar(30),
Endereco:varchar(40))
Estudante(<u>RA</u>:integer, Email:varchar(30),
IdPessoa:integer referencia Pessoa,
IdRep:integer referencia Republica)
```

Suponha que existam as seguintes tuplas no banco de dados:

```
Pessoa(1, 'José Silva', 'Rua 1, 20');
Republica(20, 'Várzea', 'Rua Chaves, 2001')
```

Qual opção apresenta apenas tuplas válidas para esse esquema de banco de dados relacional?

```
A Estudante(10, 'jsilva@ig.com.br', null, 20);
FonePessoa(10, '019', '3761', '1370')
Estudante(10, 'jsilva@ig.com.br', 1, null);
FonePessoa(10, '019', '3761', '1370')

© Estudante(10, 'jsilva@ig.com.br', 1, 20);
FonePessoa(1, null, '3761', '1370')

© Estudante(10, 'jsilva@ig.com.br', 1, 50);
FonePessoa(1, '019', '3761', '1370')

© Estudante(10, 'jsilva@ig.com.br', 1, null);
FonePessoa(1, '019', '3761', '1370')
```

Analise as afirmações e indique na resposta V para Verdadeira e F para Falsa.

Afirmação	Resposta
Para uma operação de União e Intersecção ser válida é preciso que as relações R e S possuam o mesmo número de atributos.	V
Seleção é a operação usada para selecionar determinadas colunas de uma relação R.	F
Junção é utilizada para combinar tuplas relacionadas de duas relações em uma única tupla.	V
O produto cartesiano de duas relações R e S é o uma relação T cujas tuplas são a combinação das tuplas das relações R e S, tomando-se uma tupla de R e concatenando-a com cada tupla de S.	V
A diferença de duas relações R e S é o conjunto de todas as tuplas pertencentes à relação R e não pertencentes à relação S.	V

QUESTÃO 40 – DISCURSIVA

O banco de dados de um sistema de controle bancário implementado por meio de um SGBD relacional possui a relação Cliente, com as informações apresentadas a seguir, em que a chave primária da relação é grifada.

Cliente (<u>nroCliente</u>, nome, endereco, data_nascimento, renda, idade)

Para essa relação, foram criados dois índices secundários: IndiceIdade, para o atributo idade, e IndiceRenda, para o atributo renda. Existe um tipo de serviço nesse banco cujo alvo são tanto os clientes que possuem menos de 40 anos de idade quanto aqueles que possuem renda mensal superior a 30.000 reais. Para recuperar esses clientes, a seguinte expressão de consulta em SQL foi utilizada:

SELECT nome, endereco
FROM Cliente
WHERE idade < 40 OR renda > 30000;

Com o aumento do número de clientes desse banco, essa consulta passou a apresentar problemas de desempenho. Verificou-se, então, que o otimizador de consultas não considerava os índices existentes para idade e renda, e a consulta era realizada mediante varredura seqüencial na relação Cliente, tornando essa consulta onerosa. O plano de execução da consulta, usado pelo otimizador, é apresentado na árvore de consulta abaixo, na qual π e σ representam as operações de projeção e de seleção, respectivamente.

Para que o otimizador de consultas passasse a utilizar os índices, a solução encontrada foi elaborar a consulta em dois blocos separados — um que recupera os clientes com idade inferior a 40 anos, e outro que recupera os clientes com renda mensal superior a 30.000 reais — para, então, juntar as tuplas das duas relações geradas.

Considerando a situação apresentada, faça o que se pede a seguir.

A Escreva o código de uma consulta em SQL que corresponda à solução proposta.

(valor: 5,0 pontos)

B Desenhe a árvore de consulta para essa solução.

(valor: 5,0 pontos)

```
QUESTÃO 24 Considere as seguintes tabelas de um banco de dados:
```

- Fornecedor (cod_fornec, nome_fornec, telefone, cidade, UF)
- 2. Estado (UF, nome_estado)

A expressão SQL que obtém os nomes dos estados para os quais não há fornecedores cadastrados é

```
SELECT E.UF
  FROM Estado AS E
A WHERE E. nome estado NOT IN (
    SELECT F.UF
    FROM Fornecedor AS F);
  SELECT E.nome estado
  FROM Estado AS E, FROM
  Fornecedor AS F
  WHERE E.UF = F.UF;
  SELECT E.nome estado
  FROM Estado AS E
  WHERE E.UF NOT IN (
```

FROM Fornecedor AS F);

```
SELECT E.nome_estado
FROM Estado AS E, FROM
Fornecedor AS F
WHERE E.nome_estado = F.UF;

SELECT E.nome_estado
FROM Estado AS E
WHERE E.UF IN (
SELECT F.UF
FROM Fornecedor AS F);
```

Fonte: INEP. Exame Nacional de Desempenho dos Estudantes. ENADE 2014. Disponível em: https://download.inep.gov.br/educacao_superior/enade/provas/2014/03_computacao_bacharelado.pdf Acesso em: 24 ago. 2023 (Adaptado).

Considere o diagrama Entidade-Relacionamento apresentado a seguir.

Qual código SQL exibe o nome de todos os deputados que compareceram a pelo menos uma seção e as datas de cada seção em que os deputados participaram?

- A SELECT Deputado.nomeDeputado, Secao.dataSecao FROM Deputado, Participacao, Secao WHERE Deputado.idDeputado=Participacao.idDeputado;
- B SELECT Deputado.nomeDeputado, Secao.dataSecao FROM Deputado,
 Participacao, Secao WHERE Deputado.idDeputado = Participacao.
 idDeputado OR Secao.idSecao = Participacao.idSecao;
- SELECT Deputado.nomeDeputado, Secao.dataSecao FROM Deputado LEFT OUTER JOIN Participacao ON Deputado.idDeputado = Participacao.idDeputado LEFT OUTER JOIN Secao ON Secao.idSecao = Participacao.idSecao;

Fonte: INEP. Exame Nacional de Desempenho dos Estudantes. ENADE 2017. Disponível em: https://download.inep.gov.br/educacao_superior/enade/provas/2017/03_CIE_COM_BACHAREL_BAIXA.pdf Acesso em: 24 ago. 2023 (Adaptado).

QUESTÃO 30

```
CREATE TABLE JOGADOR (PSEUDONIMO VARCHAR(10) NOT NULL,
NOME VARCHAR(25) NOT NULL,
SENHA VARCHAR(6) NOT NULL,
PRIMARY KEY (PSEUDONIMO));

CREATE TABLE NIVEL(NIVEL NUMERIC(3) NOT NULL,
NOMEPSEUD VARCHAR(10) NOT NULL,
PONTOS NUMERIC(5) NOT NULL,
BONUS NUMERIC(5) NOT NULL,
PRIMARY KEY(NIVEL, NOMEPSEUD),
FOREIGN KEY (NOMEPSEUD) REFERENCES JOGADOR);
```

A partir do *script* SQL de criação de um banco de dados acima, assinale a opção que apresenta comando SQL que permite obter uma lista em ordem crescente de quantidade de bônus e que contenha somente o pseudônimo do jogador e seu bônus.

```
-- Alternativa A
SELECT NOME, BONUS FROM JOGADOR, NIVEL ORDER BY NIVEL BONUS DESC
 -- Alternativa b
SELECT * FROM JOGADOR, NIVEL WHERE
 JOGADOR.PSEUDONIMO = NIVEL.NOMEPSEUD ORDER BY NIVEL.BONUS DESC
 -- Alternativa c
SELECT NOME, BONUS FROM JOGADOR, NIVEL WHERE
 JOGADOR.PSEUDONIMO = NIVEL.NOMEPSEUD ORDER BY NIVEL.BONUS DESC
 -- Alternativa d
SELECT NOME, PONTOS FROM JOGADOR, NIVEL WHERE
 JOGADOR.PSEUDONIMO = NIVEL.NOMEPSEUD ORDER BY NIVEL.BONUS DESC
-- Alternativa e
SELECT NOME, PONTOS FROM JOGADOR, NIVEL
WHERE JOGADOR PSEUDONIMO = NIVEL NOMEPSEUD ORDER BY NIVEL BONUS ASC
```

Fonte: INEP. Exame Nacional de Desempenho dos Estudantes. ENADE 2008. Disponível em: https://download.inep.gov.br/download/Enade2008_RNP/TECNOLOGIA_DESENVOLVIMENTO_SISTEMAS.pdf Acesso em: 24 ago. 2023 (Adaptado).

Operação de Seleção

• 1. Implementar em SQL o Exemplo 1 e Exemplo 2 da operação de seleção.

Operação de Projeção

• 2. Implementar em SQL o Exemplo 3 da operação de projeção.

Operação de Seleção e Projeção

• 3. Implementar em SQL o Exemplo 4 da operação de seleção e projeção.

Operação de União

• 4. Implementar em SQL o Exemplo 5 da operação de união.

Operação de Intersecção

• 5. Implementar em SQL o Exemplo 6 da operação de intersecção.

Operação de Diferença

• 6. Implementar em SQL o Exemplo 7 da operação de diferença.

Operação de Plano Cartesiano

• 7. Implementar em SQL o Exemplo 8 da operação de plano cartesiano.

Operação de Junção

• 8. Implementar em SQL o Exemplo 9 da operação de junção.

Referências

CHEN, Peter. Modelagem de dados: a abordagem entidade-relacionamento para projeto lógico. São Paulo: Makron Books, 1990.

DATE, C. J. Introdução a sistemas de banco de dados. Rio de Janeiro: Campus, 1991.

DEVMEDIA. SQL Magazine 02. Bancos de Dados Orientados a Objetos: Uma Introdução. Revista SQL Magazine, Edição 2, 2008. Disponível em: https://www.devmedia.com.br/artigo-sql-magazine-02-bancos-de-dados-orientados-a-objetos-uma-introducao/7623 Acesso em: 08 fev. 2023.

ELMASRI, Ramez; NAVATHE, Shamkant B. Sistemas de banco de dados. 4. ed. São Paulo: Pearson Addison Wesley, 2005.

EMANUEL, Arthur. Java: Introdução à Orientação a Objetos.Instituto Federal de São Paulo, IFSP. Disponível em: https://pt.slideshare.net/ArthurEmanuel/java-introduo-orientao-a-objetos-66560721> Acesso em: 09 fev. 2023.

IFSUL. Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense. Modelo Entidade Relacionamento. Disponível em: http://tics.ifsul.edu.br/matriz/conteudo/disciplinas/pbdr/ud/1/2.html Acesso em: 16 fev. 2023.

INEPa. Exame Nacional de Desempenho dos Estudantes. ENADE 2008. Disponível em: https://download.inep.gov.br/download/Enade2008_RNP/TECNOLOGIA_DESENVOLVIMENTO_SISTEMAS.pdf Acesso em: 15 fev. 2023.

INEPb. Exame Nacional de Desempenho dos Estudantes. ENADE 2014. Disponível em: https://download.inep.gov.br/educacao_superior/enade/provas/2014/40_tecnologia_analise_desenv_sistemas.pdf Acesso em: 15 fev. 2023.

INEPc. Exame Nacional de Desempenho dos Estudantes. ENADE 2014. Disponível em: https://download.inep.gov.br/educacao_superior/enade/provas/2014/03_computacao_bacharelado.pdf Acesso em: 15 fev. 2023.

Referências

HEUSER, Carlos Alberto. Projeto de banco de dados. Porto Alegre: Sagra Luzzatto, 2004.

MASLAKOWSKI, Mark. Aprenda em 21 dias MySQL / Mark Maslakowski, Tony Butcher; tradução de Edson Furmankiewicz, Joana Figueiredo. Rio de Janeiro: Campus, 2000

PRESSMAN, Roger S. Engenharia de software. São Paulo: Makron Books, 1995.

SILVA, Flávio de Oliveira. Projeto Banco de Dados. Faculdade de Computação. Universidade Federal de Uberlândia. Disponível em: https://www.facom.ufu.br/~flavio/sbd/files/02-sbd-projeto-banco-dados.pdf

SETZER, Valdemar W.; SILVA, Flávio Soares Corrêa da. Banco de dados: aprenda o que são, melhore seu conhecimento, construa os seus. São Paulo: Edgard Blücher, 2005.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de banco de dados. 3. ed. São Paulo: Makron Books, 1999.

WILL, Newton Carlos. Operações da Álgebra Relacional. Disponível em: https://coens.dv.utfpr.edu.br/will/wp-content/uploads/2022/03/Apostila_Algebra_Relacional.pdf> Acesso em: 24 ago. 2023.

Obrigado.

Floriano Ferreira dos Reis Filho