Communication Networks I

TECHNISCHE UNIVERSITÄT DARMSTADT

Physical Layer Fundaments

Prof. Dr.-Ing. **Ralf Steinmetz**KOM - Multimedia Communications Lab

Overview

- 1 Basics
 - 1.1 Characteristics
 - 1.2 Bit Rate and Baud Rate
 - 1.3 Operating Modes
- 2 Analog and Digital Information Encoding and Transmission
 - 2.1 Binary Encoding
 - 2.2 Manchester Encoding
 - 2.3 Differential Manchester Encoding
- 3 Multiplexing Techniques
 - 3.1 Frequency Multiplexing
 - 3.2 Time Division Multiplexing
 - 3.3 Multiplexer and Concentrator

1.1 Characteristics

International Standarts

ISO DEFINITION: the physical layer provides the following features...

- Mechanical
- Electrical
- Functional
- Procedural

... to initiate, maintain and terminate physical connections between

- Data Terminal Equipment (DTE) and
- Data Circuit Terminating Equipment (DCE, "postal socket")
- And/or data switching centers.

... using physical connections, the physical layer ensures

- The transfer of a Transparent Bitstream
- Between Data Link Layer Entities.

A physical connection permits transfer of a bitstream in the modes

- Duplex or
- Semi-duplex

Characteristics

MECHANICAL: size of plugs, allocation of pins, etc.

- e. g. ISO 4903:
- data transfer 15 pin DTE/DCE connection and pin allocation

ELECTRICAL: voltage, etc.

- e. g. CCITT X.27/V.11:
- electrical features for the symmetric data transfer

FUNCTIONAL: definition of switching functions; pin allocation (data, control, timing, ground)

- e. g. CCITT X.24:
- list of the switching functions between DTE und DCE in public data networks

PROCEDURAL: rules for using switching functions

- e. g. CCITT X.21:
- protocol between DTE and DCE for synchronized data transfer in public data networks

Mechanical

Source: http://techpubs.sgi.com

Source: http://de.mouser.com/images/microsites/Kycondimen.png

Electrical

Properties

- Designed for IC Technology
- Balanced generator
- Differential receiver
- Two conductors per circuit
- Signal rate up to 10 Mbps
- Distance: 1000m (at appr. 100 Kbps) to10m (at 10Mbps)
- Considerably reduced crosstalk
- Interoperable with V.10 / X.26 ..."

CCITT V.11 / X.27 (EIA RS -422-A)

Functional, Procedural

Example RS-232-C (25pins), functional specification describes

- Connection between pins
 - e.g. "zero modem" computer-computer-connection (Transmit(2) - Receive(3))
- Meaning of the signals on the lines
 - DTR=1, when the computer is active, DSR=1, modem is active, ...
 - Action/reaction pairs specify the permitted sequence per event
 - e.g. when the computer sends an RTS, the modem responds with a CTS when it is ready to receive data

1.2 Bit Rate and Baud Rate

BAUD RATE = Number of symbols (characters) transmitted per unit of time

- Signal speed = number of signal changes per second
- Changes in amplitude, frequency, phase
- Each symbol represents of a number of bits
- Baud rate = Bit rate only when there is 1bit/symbol

BIT RATE = Number of Bits transferred per Second (bps)

- Bit rate may be higher than baud rate ("signal speed")
- Because one signal value may transfer several bits
- E.g. below same baud rate, but different bit rate (assuming x-axes have same dimension)

Bit Rate and Baud Rate: Example

We encounter

- 4 possible values per symbol
- i.e each value encoded with 2 bits (per symbol)
- 3 symbols per sec.

Baud Rate: 3 Bd

Bit Rate: 3 Bd * 2 bit/symbol = 6 bit per sec

We encounter

- 8 possible values per symbol
- i.e. each value encoded with 3 bits (per symbol)
- 3 symbols per sec.

Baud Rate: 3 Bd

Bit Rate: 3 Bd * 3 bit/symbol = 9 bit per sec

1.3 Operating Modes

Transfer directions (temporal parallelism)

- Simplex
 - Data is always transferred into one direction only
- Semi-duplex (half-duplex)
 - Data is transferred into both directions
 - But never simultaneously
- Full-duplex
 - Data may flow simultaneously in both directions

Serial and parallel transmission

- Parallel
 - Signals are transmitted simultaneously over several channels
- Serial
 - Signals are transmitted sequentially over one channel

Operating Modes: Synchronous Transmission

Definition

- The point in time at which the bit exchange occurs is pre-defined by a regular clock pulse (requires synchronization)
- Whereby the clock pulse lasts as long as the transmission of a series of multiple characters takes

Implementation

- Receiving clock pulse
 - On a separate line (e. g. X.21) or
 - Gained from the signal
- Bit synchronous or frame synchronous (frames in fact on data link level)
 - Special characters, e. g.

```
SOH Start of Header
STX Start of Text
ETX End of Text
```

Operating Modes: Asynchronous Transmission

Definition

- Clock pulse fixed for the duration of a signal
- Termination marked by
 - Stop signal (bit) or
 - Number of bits per signal

Implementation

- Simple: Sender and receiver generate the clock pulse independently from each other
- Frame size usually approx. 9 bit
 - (of this approx. 70% reference data)
 - Example

```
7 Bit ASCII reference data
1 Parity Bit (odd, even, or unused)
1 Start-Bit
1 Stop-Bit
```

- Example: RS-232-C
 - UART (universal asynchronous receiver and transmitter) IC module
 - Often between
 - Computer and printer or
 - Computer and modem

2 Analog and Digital Information Encoding and Transmission

Variants and examples

		Transmission	
		Analog	Digital
Information Coding	Analog (voice, music)	"Plain old" telephone service (POTS) → AM, FM	ISDN (voice service) Internet Audio → PCM, DM,
	Digital (texts, images)	Modem (modulator demodulator) at analog telephone connection Radio Data System RDS →PAM, PPM, PFM, and V.21, V.22 bis,, V.32 bis, V.34.	Traditional computer networks and applications ISDN (data service) → Manchester Encoding,

Digital Information – Digital Transmission

Digital information at end system

Usually TTL-Logic ("1" : 3V, "0" : 0V)

Digital transmission

- Sender/receiver synchronization
- Signal levels around 0V (lower power)
- → Conversion

Coding techniques

- Binary Encoding, Non-return to zero-level (NRZ-L)
 - 1: high level
 - 0: low level
- Return-to-zero (RZ)
 - 1: clock pulse (double frequency) during interval
 - 0: low level
- Manchester Encoding
- Differential Manchester Encoding

- ...

2.1 Binary Encoding

Binary encoding (Nonreturn to zero):

■ "1": voltage on high

■ "0": voltage on low

Pros and Cons

- + Simple, cheap
- + Good utilization of the bandwidth (1 bit per Baud)
- No "self-clocking" feature

2.2 Manchester Encoding

Bit interval is divided into two partial intervals: I1, I2

I1: low \rightarrow I2: high

Pros and Cons

+ good "self-clocking" feature

- 0.5 bit/Baud

Application: 802.3 (CSMA/CD)

2.3 Differential Manchester Encoding

Differential Manchester Encoding

- Bit interval divided into two partial intervals:
 - "1": no change in the level at the beginning of the interval
 - "0": change in the level

Pros and Cons

- + Good "self-clocking" feature
- + Low susceptibility to noise because only the signal's polarity is recorded; absolute values are irrelevant
- 0.5bit/Baud
- Complex

3 Multiplexing Techniques

The costs for implementing and maintaining either a narrowband or a wideband cable are almost the same

→ Multiplexing many conversations onto one channel

Two types

Frequency Division Multiplexing (FDM)

■ Time Division Multiplexing (TDM)

3.1 Frequency Multiplexing

Principle

- Frequency band is split between the users
- Each user is allocated one frequency band

Application

- Example: multiplexing of voice telephone channels: phone, cable-tv
- Filters limit voice channel to ~3000 Hz bandwidth
- Each voice channel receives 4000 Hz bandwidth
 - 3 000 Hz voice channel
 - 2 x 500 Hz gap (guard band)

3.2 Time Division Multiplexing

Principle

- User receives a time slot
- During this time slot the user has the full bandwidth

Application

- Multiplexing of end systems, but also
- In transmission systems

3.3 Multiplexer and Concentrator

Multiplexer

- INPUT from various links in predefined order
- OUTPUT at one single link in the same order
- Disadvantage: waste of timeslots if station is not sending

Concentrator

- INPUT from several links
- OUTPUT at one single link
- No fixed slot allocation, instead sending of [station addresses, data]
- PROBLEM: All stations use maximum speed for sending
- SOLUTION: internal buffers

Multiplexer and Concentrator

Multiplexer:

time

Concentrator:

