VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Mathematics and Statistics Te Kura Mātai Tatauranga

PO Box 600 Wellington New Zealand

Tel: +64 4 463 5341 Fax: +64 4 463 5045 Internet: sms-office@vuw.ac.nz

Graph Algorithms with Hostile Partners

Matthew Askes

Supervisor: Rod Downey

Submitted in partial fulfilment of the requirements for Bachelor of Science with Honours in Mathematics.

Abstract

A short description of the project goes here.

Contents

1	Introduction			
2	Dominating sets	3		
	2.1 min size dominating set	3		

Figures

Chapter 1

Introduction

Chapter 2

Dominating sets

We begin by listing some definitions.

Definition. The Dominating set, D, of a graph G = (E, V) is any subset of V such that every vertex in V is adjacent to at least one vertex in D.

Definition. The Dominating number, $\gamma(G)$, of a graph G = (E, V) is the size of the smallest dominating set of G.

Definition. Independent set, maximum independent set, independence number $\alpha(G)$

2.1 min size dominating set

Lemma 2.1. *Let G be a graph.*

$$\gamma(G) \ge \alpha(G)$$

Proof. Let X be a minimum dominating set in some graph G = (V, E). By definition of dominating set vertex in V is adjacent to at least one vertex in

Recall that $\chi(G)$ is the chromatic number of the graph G.

Theorem 2.2 (Willis 2011 3.1). *For any graph G* = (V, E) [2]

$$\alpha(G) \le \frac{|V|}{\chi(G)}$$

Recall that $\Delta(G)$ is the maximum degree of any vertex in G.

Theorem 2.3 (Balakrishnan 2012 10.3.2). For any graph G with n vertices,

$$\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \le \gamma(G) \le n - \Delta(G)$$

[1]

Theorem 2.4. *Let* G *be a graph with n vertices, such that* $n \geq 4$ *. Then,*

$$\gamma_g(G) > \left\lfloor \frac{n}{2} \right\rfloor$$

Proof. Worst case is *G* is minimally connected, i.e. *G* is a tree. Thus by 2.3

$$\gamma(G) \ge \left\lceil \frac{n}{1 + \Delta(G)} \right\rceil$$

Theorem 2.5. *Let G be a graph with n vertices. Then,*

$$\gamma_g(G) \leq \frac{2n}{3}$$

It is obvious that in the case when $\gamma(G)$ is known that $\gamma(G) > \gamma_g(G)$.

Theorem 2.6. Let G be a graph if x is a tight upper bound for the domination number $(\gamma(G))$ then

$$\gamma_{g}(G) > x$$

Proof. Let *G* be a graph where $\gamma(G) = x$

Thus for G we are unable to find a dominating set with < x vertices.

Thus there cannot be a winning strategy for Alice with $\leq x$ vertices.

Therefore
$$\gamma_g(G) > x$$

Bibliography

- [1] BALAKRISHNAN, R. A Textbook of Graph Theory (Universitext). Springer, sep 2012.
- [2] WILLIS, W. Bounds for the independence number of a graph.