CONTENTS

Final Project

Zhezheng Jin

Contents

Data Import and Wrangling	2
EDA	4
Model Training	1(

```
library(caret)
library(MASS)
library(mlbench)
library(pROC)
library(klaR)
library(glmnet)
library(pdp)
library(vip)
library(AppliedPredictiveModeling)
library(tidyverse)
library(summarytools)
library(corrplot)
library(plotmo)
library(viridis)
library(gtsummary)
library(e1071)
library(tidymodels)
library(patchwork)
library(kernlab)
library(doParallel)
```

Data Import and Wrangling

```
load("severity_training.RData")
load("severity_test.RData")
skimr::skim(test_data)
```

Table 1: Data summary

Name	test_data
Number of rows	200
Number of columns	15
Column type frequency:	
factor	3
numeric	12
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
race	0	1	FALSE	4	1: 135, 3: 35, 4: 16, 2: 14
smoking	0	1	FALSE	3	0: 117, 1: 65, 2: 18
severity	0	1	FALSE	2	0: 135, 1: 65

Variable type: numeric

skim_variable r	_missing comp	lete_rat	e mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	453.05	279.98	5.0	230.25	441.00	676.25	1000.0	
age	0	1	60.24	4.18	49.0	58.00	60.00	63.00	71.0	
gender	0	1	0.44	0.50	0.0	0.00	0.00	1.00	1.0	
height	0	1	169.63	6.15	152.0	166.00	169.65	174.12	188.1	
weight	0	1	79.51	6.51	61.5	74.80	79.20	84.15	96.3	
bmi	0	1	27.72	2.72	20.4	26.05	27.50	29.70	35.3	
diabetes	0	1	0.12	0.33	0.0	0.00	0.00	0.00	1.0	
hypertension	0	1	0.48	0.50	0.0	0.00	0.00	1.00	1.0	
SBP	0	1	130.01	7.49	108.0	125.00	130.00	135.00	148.0	
LDL	0	1	111.30	18.45	70.0	98.75	111.50	124.00	165.0	
vaccine	0	1	0.64	0.48	0.0	0.00	1.00	1.00	1.0	
depression	0	1	6.72	2.21	2.0	5.00	7.00	8.00	12.0	

skimr::skim(training_data)

Table 4: Data summary

Name Number of rows	training_data 800
Number of columns	15
Column type frequency:	
factor	3
numeric	12
Group variables	None

Variable type: factor

$skim_variable$	$n_{missing}$	$complete_rate$	ordered	n_unique	top_counts
race	0	1	FALSE	4	1: 521, 3: 149, 4: 80, 2: 50
$\operatorname{smoking}$	0	1	FALSE	3	0: 467, 1: 248, 2: 85
severity	0	1	FALSE	2	0: 514, 1: 286

Variable type: numeric

skim_variable n	_missing com	plete_rate	e mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	512.36	289.95	1.0	255.75	515.5	767.25	999.0	
age	0	1	60.03	4.30	46.0	57.00	60.0	63.00	72.0	
gender	0	1	0.49	0.50	0.0	0.00	0.0	1.00	1.0	
height	0	1	170.00	6.09	150.2	165.70	170.0	174.10	190.3	
weight	0	1	79.42	7.26	56.6	74.38	79.3	84.40	104.8	
bmi	0	1	27.54	2.74	19.6	25.78	27.6	29.10	37.4	
diabetes	0	1	0.15	0.36	0.0	0.00	0.0	0.00	1.0	
hypertension	0	1	0.46	0.50	0.0	0.00	0.0	1.00	1.0	
SBP	0	1	129.85	7.97	109.0	124.00	130.0	135.00	154.0	
LDL	0	1	110.25	20.05	41.0	98.00	111.0	123.00	174.0	

skim_variable n_missing complete_rate mean				sd	p0	p25	p50	p75	p100	hist
vaccine	0	1	0.58	0.49	0.0	0.00	1.0	1.00	1.0	
depression	0	1	6.91	2.12	0.0	5.00	7.0	8.00	13.0	

```
# In total, 7 factor variables in the data
train <- training_data %>%
  janitor::clean_names() %>%
  select(-id) %>%
  select(age,height,weight,bmi,sbp,ldl,everything()) %>%
  mutate(
    gender = factor(gender,levels = c("0","1"), labels = c("Female", "Male")),
   race = factor(race,levels = c("1","2","3","4"),
                  labels = c("White", "Asian", "Black", "Hispanic")),
    smoking = factor(smoking,levels = c("0","1","2"),
                     labels = c("Never_smoked", "Former_smoker", "Current_smoker")),
   hypertension = factor(hypertension, levels = c("0", "1"),
                          labels = c("No", "Yes")),
   diabetes = factor(diabetes,levels = c("0", "1"),
                      labels = c("No", "Yes")),
   vaccine = factor(vaccine,levels = c("0", "1"),
                     labels = c("Not_vaccinated", "Vaccinated")),
    severity = factor(severity,levels = c("0", "1"),
                      labels = c("not_severe", "severe"))
      )
test <- test_data %>%
  janitor::clean_names() %>%
  select(-id) %>%
  mutate(
    gender = factor(gender,levels = c("0","1"), labels = c("Female", "Male")),
    race = factor(race,levels = c("1","2","3","4"),
                  labels = c("White", "Asian", "Black", "Hispanic")),
    smoking = factor(smoking,levels = c("0","1","2"),
                     labels = c("Never_smoked", "Former_smoker", "Current_smoker")),
   hypertension = factor(hypertension, levels = c("0", "1"),
                          labels = c("No", "Yes")),
   diabetes = factor(diabetes,levels = c("0", "1"),
                      labels = c("No", "Yes")),
   vaccine = factor(vaccine,levels = c("0", "1"),
                     labels = c("Not_vaccinated", "Vaccinated")),
    severity = factor(severity, levels = c("0", "1"),
                      labels = c("not_severe", "severe"))
```

EDA

We will use training data for EDA.

Outcome:severity

Bar Chart of Severity of COVID-19 infection

Numerical Predictors

```
skimr::skim(train)
```

Table 7: Data summary

Name	train
Number of rows	800
Number of columns	14
Column type frequency:	
factor	7
numeric	7
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
gender	0	1	FALSE	2	Fem: 410, Mal: 390
race	0	1	FALSE	4	Whi: 521, Bla: 149, His: 80, Asi: 50
$\operatorname{smoking}$	0	1	FALSE	3	Nev: 467, For: 248, Cur: 85
diabetes	0	1	FALSE	2	No: 679, Yes: 121
hypertension	0	1	FALSE	2	No: 432, Yes: 368
vaccine	0	1	FALSE	2	Vac: 464, Not: 336
severity	0	1	FALSE	2	not: 514, sev: 286

Variable type: numeric

skim_variable	n_missing cor	nplete_rate	mean	sd	p0	p25	p50	p75	p100	hist
age	0	1	60.03	4.30	46.0	57.00	60.0	63.0	72.0	
height	0	1	170.00	6.09	150.2	165.70	170.0	174.1	190.3	
weight	0	1	79.42	7.26	56.6	74.38	79.3	84.4	104.8	
bmi	0	1	27.54	2.74	19.6	25.78	27.6	29.1	37.4	
sbp	0	1	129.85	7.97	109.0	124.00	130.0	135.0	154.0	
ldl	0	1	110.25	20.05	41.0	98.00	111.0	123.0	174.0	
depression	0	1	6.91	2.12	0.0	5.00	7.0	8.0	13.0	

```
# Multicollinearity
corrplot(cor(train[, 1:6]), method = "circle", type = "full")
```


Density Plots of Numerical Predictors by Severity of COVID-19 infection

Categorical Predictors

```
# Bar Chart
gender_bar <- train %>%
  ggplot(aes(x = gender, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Gender", fill = "Severity of COVID-19 infection") +
  theme minimal() +
  theme(legend.position = "bottom")
race_bar <- train %>%
  ggplot(aes(x = race, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Race", fill = "Severity of COVID-19 infection") +
  theme_minimal() +
  theme(legend.position = "bottom")
smoking_bar <- train %>%
  ggplot(aes(x = smoking, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Smoking", fill = "Severity of COVID-19 infection") +
  theme_minimal() +
  theme(legend.position = "bottom")
diabetes_bar <- train %>%
```

```
ggplot(aes(x = diabetes, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Diabetes", fill = "Severity of COVID-19 infection") +
  theme_minimal() +
  theme(legend.position = "bottom")
hypertension_bar <- train %>%
  ggplot(aes(x = hypertension, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Hypertension", fill = "Severity of COVID-19 infection") +
  theme_minimal() +
  theme(legend.position = "bottom")
vaccine_bar <- train %>%
  ggplot(aes(x = vaccine, fill = severity)) +
  geom_bar(stat = "count", position = "dodge", alpha = 0.8) +
  labs(x = "Vaccine", fill = "Severity of COVID-19 infection") +
  theme_minimal() +
  theme(legend.position = "bottom")
cate.bar <- gender_bar + race_bar + smoking_bar +</pre>
 diabetes_bar + hypertension_bar + vaccine_bar +
 plot_layout(ncol = 2) +
 plot_annotation(title = "Bar Charts of Severity of COVID-19 Infection
by Categorical Predictors")
cate.bar + plot_layout(guides = 'collect') &
  theme(legend.position = "bottom", plot.title = element_text(hjust = 0.5))
```


Model Training

Using caret

Penalized Logistic Regression

```
## alpha lambda
## 265 0.25 0.03243324
```

```
# Performance Evaluation
glmn.pred.prob <- predict(glmn.fit, newdata = test,type = "prob") [,2]</pre>
glmn.pred <- rep("not_severe", length(glmn.pred.prob))</pre>
glmn.pred[glmn.pred.prob>0.5] <- "severe"</pre>
confusionMatrix(data = as.factor(glmn.pred),
                reference = test$severity,
                positive = "severe")
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction not_severe severe
                      122
##
    not_severe
##
     severe
                        13
                               50
##
##
                  Accuracy: 0.86
##
                    95% CI: (0.8041, 0.9049)
##
       No Information Rate: 0.675
##
       P-Value [Acc > NIR] : 1.698e-09
##
##
                     Kappa: 0.6783
##
##
    Mcnemar's Test P-Value: 0.8501
##
##
               Sensitivity: 0.7692
##
               Specificity: 0.9037
            Pos Pred Value: 0.7937
##
##
            Neg Pred Value: 0.8905
##
                Prevalence: 0.3250
##
            Detection Rate: 0.2500
##
      Detection Prevalence: 0.3150
##
         Balanced Accuracy: 0.8365
##
##
          'Positive' Class : severe
##
coef(glmn.fit$finalModel, s = glmn.fit$bestTune$lambda)
## 17 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                         -10.445162599
## age
                           0.043691132
## height
                          -0.003841106
## weight
## bmi
                           0.092054943
                           0.046329891
## sbp
## ldl
                           0.004695970
## genderMale
                          -0.192816190
## raceAsian
```

raceBlack
raceHispanic

vip(glmn.fit\$finalModel)

MARS

```
## Loading required package: earth
```

```
ggplot(mars.fit, highlight = TRUE)
```



```
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction
                not_severe severe
##
     not_severe
                       116
                                17
                        19
                                48
##
     severe
##
##
                  Accuracy: 0.82
                    95% CI : (0.7596, 0.8706)
##
##
       No Information Rate : 0.675
##
       P-Value [Acc > NIR] : 3.135e-06
##
##
                     Kappa : 0.593
##
##
    Mcnemar's Test P-Value: 0.8676
##
##
               Sensitivity: 0.7385
               Specificity: 0.8593
##
            Pos Pred Value : 0.7164
##
```

```
## Neg Pred Value : 0.8722
## Prevalence : 0.3250
## Detection Rate : 0.2400
## Detection Prevalence : 0.3350
## Balanced Accuracy : 0.7989
##
## 'Positive' Class : severe
##
```

SVM-Radial Kernel


```
# Performance Evaluation
svmr.pred <- predict(svmr.fit, newdata = test)</pre>
confusionMatrix(data = as.factor(svmr.pred),
                reference = test$severity,
                positive = "severe")
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction
              not severe severe
##
                     119
    not_severe
##
     severe
                        16
                               50
##
##
                  Accuracy: 0.845
                    95% CI: (0.7873, 0.8922)
##
##
       No Information Rate: 0.675
       P-Value [Acc > NIR] : 3.744e-08
##
##
##
                     Kappa : 0.6481
##
    Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.7692
##
               Specificity: 0.8815
##
            Pos Pred Value : 0.7576
            Neg Pred Value: 0.8881
##
                Prevalence: 0.3250
##
            Detection Rate: 0.2500
##
##
      Detection Prevalence: 0.3300
##
         Balanced Accuracy: 0.8254
##
##
          'Positive' Class : severe
##
```

Random Forest


```
## Confusion Matrix and Statistics
##
##
               Reference
                not_severe severe
## Prediction
##
     not_severe
                       126
                               19
                         9
                               46
##
     severe
##
##
                  Accuracy: 0.86
                    95% CI : (0.8041, 0.9049)
##
##
       No Information Rate: 0.675
##
       P-Value [Acc > NIR] : 1.698e-09
##
##
                     Kappa: 0.6677
##
##
   Mcnemar's Test P-Value: 0.08897
##
##
               Sensitivity: 0.7077
               Specificity: 0.9333
##
            Pos Pred Value: 0.8364
##
```

```
## Neg Pred Value : 0.8690
## Prevalence : 0.3250
## Detection Rate : 0.2300
## Detection Prevalence : 0.2750
## Balanced Accuracy : 0.8205
##
## 'Positive' Class : severe
##
```

Classification Tree(Adaboost)


```
# Variable importance
summary(gbmA.fit$finalModel, las = 2, cBars = 7, cex.names = 0.6)
```



```
##
                                                   rel.inf
                                           var
                             vaccineVaccinated 35.60604381
## vaccineVaccinated
## sbp
                                           sbp 13.15191007
## height
                                        height 12.69336688
                                           bmi 9.79417630
## bmi
                                           age 9.03634720
## age
## weight
                                        weight 6.57422671
## ldl
                                           ldl 6.49548285
## depression
                                    depression 2.64439101
## smokingCurrent_smoker smokingCurrent_smoker 1.35288280
## genderMale
                                    genderMale 0.93432633
## smokingFormer_smoker
                          smokingFormer_smoker 0.49852423
## raceAsian
                                     raceAsian 0.37282520
## diabetesYes
                                   diabetesYes 0.27504987
## raceBlack
                                     raceBlack 0.27252134
## hypertensionYes
                               hypertensionYes 0.24327454
## raceHispanic
                                  raceHispanic 0.05465085
# Performance Evaluation
gbmA.pred <- predict(gbmA.fit, newdata = test)</pre>
confusionMatrix(data = as.factor(gbmA.pred),
```

```
reference = test$severity,
positive = "severe")
```

```
## Confusion Matrix and Statistics
##
##
               Reference
## Prediction
               not_severe severe
##
                     124
    not_severe
                               18
##
     severe
                       11
                               47
##
                  Accuracy: 0.855
##
##
                    95% CI: (0.7984, 0.9007)
##
       No Information Rate: 0.675
##
       P-Value [Acc > NIR] : 4.95e-09
##
##
                     Kappa : 0.66
##
   Mcnemar's Test P-Value: 0.2652
##
##
##
               Sensitivity: 0.7231
##
               Specificity: 0.9185
            Pos Pred Value: 0.8103
##
            Neg Pred Value: 0.8732
##
##
                Prevalence: 0.3250
##
           Detection Rate: 0.2350
##
     Detection Prevalence: 0.2900
##
         Balanced Accuracy: 0.8208
##
##
          'Positive' Class : severe
##
```

Comparison

```
res <- resamples(
  list(
    Glm_net = glmn.fit,
    MARS = mars.fit,
    SVM_Radial = svmr.fit,
    Random_Forest = rf.fit,
    CT_Adaboost = gbmA.fit
    ))
summary(res)</pre>
```

```
##
## Call:
## summary.resamples(object = res)
##
## Models: Glm_net, MARS, SVM_Radial, Random_Forest, CT_Adaboost
## Number of resamples: 10
##
## Accuracy
```

```
##
                  Min.
                         1st Qu.
                                    Median
                                                 Mean
                                                        3rd Qu.
## Glm_net
                 0.800 0.8250000 0.8564619 0.8575389 0.8881857 0.9250000
## MARS
                 0.800 0.8297454 0.8490506 0.8537414 0.8746044 0.9125000
                 0.775 0.8375000 0.8385031 0.8587256 0.8850211 0.9500000
                                                                              0
## SVM_Radial
## Random_Forest 0.825 0.8485759 0.8509259 0.8662268 0.8959256 0.9135802
                                                                              0
## CT Adaboost
                 0.825 0.8255401 0.8428006 0.8600227 0.8881857 0.9375000
                                                                              0
##
## Kappa
##
                      Min.
                             1st Qu.
                                        Median
                                                     Mean
                                                            3rd Qu.
                                                                          Max. NA's
                 0.5626822 0.6184653 0.6835201 0.6882100 0.7629431 0.8352780
## Glm_net
## MARS
                 0.5736176 0.6237332 0.6690666 0.6779444 0.7121073 0.8033708
                                                                                  0
                 0.5272489 0.6463772 0.6603063 0.6944816 0.7513171 0.8885017
## SVM_Radial
                                                                                  0
## Random_Forest 0.5909423 0.6418413 0.6665123 0.6954834 0.7721945 0.8105580
                                                                                  0
                 0.5882353 0.6189778 0.6400205 0.6862958 0.7593196 0.8595506
## CT_Adaboost
```

bwplot(res, metric="Accuracy")


```
res$values %>%
  dplyr::select(1, ends_with("Accuracy")) %>%
  gather(model, Accuracy, -1) %>%
  mutate(model = sub("~Accuracy", "", model)) %>%
  ggplot() +
  geom_boxplot(aes(x = Accuracy, y = model)) +
  labs(x = "CV Accuracy", y = "Models")
```

