Ambiguously-Typed Lambda Calculus

Athan Clark

Abstract

Here, we present the ambiguously-typed lambda calculus - a size-dependent type system measuring the *shape* of terms, based on their context, and an additional *substitution system*, facilitating the merge and sort of multiple terms' parameters.

1 Motivation

The Simply-Typed Lambda Calculus follows from the untyped lambda calculus in that there is structural assignment to parameters, and each "step" of arity is mechanically separated with \rightarrow . Values are given type labels, and arguments' types are checked one-for-one to the specification signature. Higher order function application, the true nature of lambda calculus, is retained through parameter specification (or type signature) nesting. The grammars are structured as follows:

Untyped Lambda Calculus	Simply-Typed Lambda Calculus	
	$\tau ::= \tau \to \tau T \text{ where } T \in B$	
e = x	$e = x : \tau$	
$\lambda x.e$	$\lambda(x: au).e$	
e e	e e	

c

c is a "term constant", such that c is an inhabitant of a type T included in our working set B.

The untyped lambda calculus gives us a foundation to base all others off of it is the minimum embodyment of higher-order function application and abstraction. But, there is no beginning, and no end; it suffices only to provide action, and not results. This is what the simply-typed lambda calculus fills it provides an encoding of the finite "end" of an expression in it's type, by utilizing \rightarrow for each step.

The simply-typed lambda calculus makes a critical decision - it gives up infinite arity for the sake of traction and decidable termination. We present the ambiguously-typing scheme to give back our infinite arity, at the cost of detailed knowledge.

2 Overview

Our system encodes arity in the space of variables quantified over natural numbers, and constrained based on requirements induced by application and abstraction context. This is a size-dependent type system variant, similar to Cryptol. Indeed, our "size" of terms is ambiguous - it gives us no insight to how parameters are resolved. We additionally include a parameter resulution system - a method for unifying substitutions. We later shoe-horn a pseudo-monoid instance to our system, with the union of lambdas as our monoidal append.

Our type system also has decidable and total type inference; the size-dependent system initially assumes all terms to be polymorphic in arity, then, depending on how terms are used, minimum bounds are enforced in our sizes based on natural number literals.

2.1 Brief Example

$$x: \forall a \in \mathbb{N}. \Rightarrow$$
 a (1)

$$f: \forall b \in \mathbb{N}. \Rightarrow b$$
 (2)

$$f x: \forall a \in \mathbb{N}, b \in \mathbb{N}. \{a \ge 1\} \Rightarrow (a-1) + b \tag{3}$$

(4)

In our first examples 1 and 2, their sizes are purely polymorphic because there is no context telling us how the expression should behave. In 3, we can see some interesting ideas: because f was applied to x, we now have a constraint bound to it's type variable¹. Also, because x consumed one parameter in a, we must decrement it. Lastly, we take the left-over parameters in x and a-1 and combine them; in our (commutative) sized interpretation, this is simply addition².

¹A degenerate consequence of our structureless arity specification is that a type variable's reference to it's term must be syntactically in-order - $\forall a \, b$ over $x \, y$ will match x with a, and y with b.

 $^{^2}$ This neglects the order that the parameters get combined intentionally.

Note that I didn't include the type of a lambda. Please be patient; we will find that a function's size depends on it's body.

2.2 Grandiose Hand-Wave

Here is our grammar:

(5)	term	e = x
(6)	abstraction	$\lambda x.e$
(7)	inner application	$\lceil e e$
(8)	outer application	$e \lceil e$
(9)	append	$e \diamond \rfloor e$
(10)	contra - append	$e \ \diamond e $
(11)	literal	l

The first four elements of our grammar are inherited from our tradtional untyped lambda calculus, with two different application styles to handle how parameters are combined - we stick with simple precedence in this draft 3 , such that $x \lceil y$ will precede y's parameters over x's, and vise-versa for $\lceil x y \rceil$.

The last three exist for our free monoid - the normal append takes it's left-most argument as most precedent, while contra-append is convenient for short-circuiting with rightward precedence. Literals are not necessary for the soundness of our system, but they will be for terminating execution - l:0.

2.2.1 Operator Type Signatures

To give a feel for how the system works, it is important to give a description of the operators we use:

$$\lceil f \, x : \forall ab \in \mathbb{N}. \{ a \ge 1 \} \Rightarrow \qquad (a-1) + b \tag{12}$$

$$f \left[x : \forall ab \in \mathbb{N}. \{ a \ge 1 \} \right] \Rightarrow (a-1) + b \tag{13}$$

$$x \diamond | y : \forall ab \in \mathbb{N}. \Rightarrow$$
 (14)

$$x \mid \diamond y : \forall ab \in \mathbb{N}. \Rightarrow \qquad \qquad a+b \tag{15}$$

Our monoid does not apply or reduce our parameter size, while application will. Notice that the size is commutative in our parameter stacks - even though the parameter stack in 12 and 13 are opposite, their size is the same.

 $^{^3\}mathrm{We}$ could, in theory, make any coinductive zipper facilitate parameter resolution.

2.2.2Elementary Term Type Signatures

For verbosity, we show the most simple terms and their types. In λ text, a literal is a Haskell String:

$$x : \forall a \in \mathbb{N}. \Rightarrow a$$
 (16)

"foo":
$$0$$
 (17)

(18)

2.3**Abstraction Type Signature**

In the simply-typed lambda calculus, we can't find the entire type signature of a lambda term, based solely on the lambda itself - we can see that the parameter would prepend a $a \to \dots$, but ... depends entirely on the body e of

Our system here is similar, but a bit simpler:

$$p: \qquad \forall a. \Rightarrow \qquad \qquad a \qquad (19)$$

$$e: \qquad \forall b. \Rightarrow \qquad \qquad b \qquad (20)$$

$$else \, \forall ab \in \mathbb{N}. \Rightarrow b+1$$
 (22)

In this instance, our type variables for 22 lenses into our lambda for brevity; our actual implementation will construct our types bottom-up, so one should not take this voodoo seriously.

However, our type signature is fairly straigt forward - if p occours in e, then it's arity must obviously be included in our lambda (but only once - even multiple occourances of p in e will still be delegated from p's unique parameter listing) - if it's not in our function body, then there will be no delegation. This is how we handle constant functions:

$$\lambda c. \lambda \epsilon. c : \forall ab \in \mathbb{N} \Rightarrow a+1$$
 (23)

Note that we don't type-variable match against the lambda body because it's already captured with a. Absurd hand wave, I know. This will be fine going bottom-up with our substitution model.

3 Substitution Mapping

We must have some tractable method for this to be legible and actually useful, which we attempt to present here. First and foremost is the notion of a *substitution mapping* - an idea we can use when modeling lambdas and reduction.

We are going to sidestep everything we've worked on now to give a different perspective of how to model lambdas, via substitution.

3.1 Notation

::=x	
::= y]
a-1	

This diagram can be seen as a manual abstraction in our system - we assign countable parameters at the top of our stack to names we use in our substitution body, and hand-over the rest to those bound terms. A substitution mapping has scope to only the parameters declared, both in the body and fall-over parameters.

In a substitution body, we have access to a restricted set of operators - monoidal append, term application, and literals. Free variables should not exist⁴, and the operators we use in the body are the plain-jane ones we know and love, because precedence is already handled in our stack system.

3.2 Translation

We assume that substitution maps are the values referenced by ATLC expressions. A substitution map must be constructively finite, but referencing the "rest" (for learning purposes) is done through quantification. Literals are 0-ary substitutions, ATLC monoidal append merges respective parameters and homomorphically settles natural append in the substitution body. Substitution application has a similar flavour; we consume our bound variable in the applyee and literally substitute the applied term's substitution body for the variable. Abstraction may either bind a free variable (when evaluating our expression), or induce a shadow on a previous binding⁵

A Appendix Heading

⁴This will be unavoidable when we translate expressions to substitution maps.

 $^{^5} Previous$, because we are going "bottom-up".