1 Schwach konstruierbare Garben auf Simplizialkomplexen

Ziel dieses Abschnitts ist die Charakterisierung schwach konstruierbarer Garben auf Simplizialkomplexen und ihrer derivierten Kategorie. Die Darstellung folgt Kashiwara-Schapira.

In diesem Abschnitt bezeichne \mathcal{K} einen lokal-endlichen Simplizialkomplex und $|\mathcal{K}|$ seine geometrische Realisierung. Wir erhalten eine stetige Abbildung

$$p: |\mathcal{K}| \to \mathcal{K},$$

genannt Simplexanzeiger oder Indikatorabbildung, der einem Punkt $x \in |\mathcal{K}|$ in der geometrischen Realisierung den eindeutigen Simplex $\sigma \in \mathcal{K}$ mit $x \in |\sigma|$ zuordnet.

Definition 1. Eine Garbe $F \in Ab_{/|\mathcal{K}|}$ heißt schwach $|\mathcal{K}|$ -konstruierbar (oder kurz: schwach konstruierbar), falls für alle $\sigma \in \mathcal{K}$, die Einschränkungen $F|_{|\sigma|}$ konstante Garben sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren Garben in $Ab_{/|\mathcal{K}|}$ mit s-Kons (\mathcal{K}) .

Eine derivierte Garbe $F \in \text{Der}(Ab_{/|\mathcal{K}|})$ heißt schwach $|\mathcal{K}|$ -konstruierbar, falls für alle $j \in \mathbb{Z}$ die Kohomologiegarben $H^j(F)$ schwach konstruierbar sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren derivierten Garben in $\text{Der}(Ab_{/|\mathcal{K}|})$ mit $\text{Der}_{\text{sk}}(|\mathcal{K}|)$.

Wir bemerken zunächst:

Lemma 2. Die Kategorie s-Kons(K) ist abelsch.

Beweis. Durch den offensichtlichen Isomorphismus zur Kategorie der abelschen Gruppen (durch den Funktor der globalen Schnitte) ist die Kategorie der konstanten abelschen Garben auf einem topologischen Raum X eine abelsche Kategorie. Nun folgt die Aussage aus der Exaktheit des Pullbacks i_{σ}^* entlang den Inklusionen $i_{\sigma}: |\sigma| \hookrightarrow |\mathcal{K}|$.

Entscheidend ist die folgende Charakterisierung schwach $|\mathcal{K}|$ -konstruierbarer derivierter Garben:

Proposition 3. Für $F \in \text{Der}(Ab_{/|\mathcal{K}|})$ sind äquivalent:

- 1. F ist schwach $|\mathcal{K}|$ -konstruierbar
- 2. Die Koeinheit der Adjunktion ist auf F ein Isomorphismus $p^*p_*F \xrightarrow{\sim} F$.

Beweis. \Box

Wir bezeichnen den Funktor $p^*p_*: \mathrm{Ab}_{/\mathrm{X}} \to \mathrm{s}\text{-}\mathrm{Kons}$ kurz mit β und bemerken, dass er nach obiger Proposition ein Rechtsadjungierter zur Inklusion ι : $\mathrm{s}\text{-}\mathrm{Kons} \to \mathrm{Ab}_{/|\mathcal{K}|}$ ist:

Als Komposition zweier linksexakter Funktoren ist β natürlich wieder linksexakt.

Proposition 4. Sei $F \in \text{Ket}^+(\text{Ab}_{/|\mathcal{K}|})$ ein gegen die Richtung der Pfeile beschränkter Kettenkomplex aus β -azyklischen Garben mit ebenfalls schwach $|\mathcal{K}|$ -konstruierbaren Kohomologiegarben $H^q(F)$. Dann ist $\beta F \to F$ ein Quasi-Isomorphismus.

Beweis. Wir schneiden aus dem Kettenkomplex $({\cal F}^n,d^n)$ kurze exakte Sequenzen aus:

$$\begin{split} H^0 = \ker d^0 &\hookrightarrow F^0 \twoheadrightarrow \operatorname{im} d^0 \\ &\operatorname{im} d^0 \hookrightarrow \ker d^1 \twoheadrightarrow H^1 \\ &\ker d^1 \hookrightarrow F^1 \twoheadrightarrow \operatorname{im} d^1 \\ & \vdots \end{split}$$

Sind in einer kurzen exakten Sequenz zwei der drei Objekte azyklisch, so nach dem Fünferlemma auch das dritte. Da nach Voraussetzung F^q und H^q β -azyklisch sind, sind alle oben betrachteten Objekte β -azyklisch und die kurzen exakten Sequenzen bleiben exakt nach Anwendung von β . Es folgt $H^q(\beta F) \xrightarrow{\sim} \beta(H^q F)$ und weiter $\beta(H^q F) \xrightarrow{\sim} H^q F$ nach der schwachen Konstruierbarkeit von $H^q F$.

Damit ist der entscheidende Schritt für unser Ziel gezeigt. Wir erhalten:

Theorem 5. K lokal endlicher Simplizialkomplex beschränkter Dimension $\ref{eq:condition}$ Die oben definierten Funktoren ι, β induzieren auf den derivierten Kategorien eine Äquivalenz

$$\operatorname{Der}^b(\operatorname{s-Kons}(\mathcal{K})) \stackrel{\iota}{\underset{R\beta}{\rightleftharpoons}} \operatorname{Der}_{\operatorname{sk}}(|\mathcal{K}|).$$

Beweis. \Box