ema	1	COLOQUIO FÍSICA II	11 de febrero de 2010
lomb	re y Apellido:	Padrón: Física	II AB
orrec	electrónico:		
		Turno: Profesor:	
-uau ii	mestre y ano	Turio Profesor.	
iercio	clo 1) Se tiene una barra me	tálica de resistividad ρ y sección transversal S que s	se
		s que forman un ángulo α a una velocidad v = vo i, e	n
	п	presencia de un campo magnético homoge	
**		constante B = -B ₀ k , que se extiende en tor región. En t=0 , la barra se encuentra en e	
	Select Control of the	de coordenadas.	oligen
	P	a) ¿Cuál es la fuerza electromotriz inducida	a entre
	000000	los extremos de la barra que están en cont	acto
1	000	con los rieles?	
1_	- R 00 00 00 00	 b) Suponiendo despreciables los efectos autoinductivos, ¿qué corriente circulará po 	rla
-	0 00 00	barra si los rieles son también de resistivid	
	000000	sección S? Indicar el sentido de la corrient	
	B	figura.	
		c) ¿Si la máxima potencia que puede disip	
	U-10	barra sin fundirse es P, en qué instante de	tiempo
e fund	nra r		
		uales estáticas y en el vacío: q1=24 nC situada en el	
		50 nC en (-2,1,5). Las distancias están dadas en me	tros.
	ular el potencial eléctrostátic	ectrostática de este sistema de cargas?.	
		ina carga puntual de –10 nC se traslada cuasiestaci	onaria e
		1,1) al origen?. Explique fisicamente el signo del res	
ue ob	tuvo		
lamia	de 3 a). Dans un bile sente in	Enite an aliveria manal ava aliveria van anche de	
		finito en el vacío, por el que circula una corriente le Biot y Savart , hallar la circulación del campo	
		a circular de radio arbitrario centrada en el hilo y ubio	ada en
	no normal al mismo.	, , , , , , , , , , , , , , , , , , , ,	
		la corriente para que la circulación obtenida coincid	a con la
	edice la Ley de Ampere?		
) Si es	stas condiciones no se cump	len, indicar el nuevo término correctivo.	
	lo 4) Responder justificand		
a)		pira circular de corriente en un campo magnético de	forma
ы	que la espira no tienda a gir		
uj		anzan dos partículas cargadas con la misma velocid en una zona del espacio vacio donde un campo mag	
		perpendicular a la dirección de las velocidades. Si la	
		ciones opuestas una respecto de la otra, ¿qué se pu	
	decir de ellas?		
c)		a las siguientes máquinas térmicas en evolución cícli	
	son reversibles, irreversible	as indicadas, completar la información faltante, e in	dicar si
	con leversibles, illeversible	a o impositios)	

d) Las Leyes de Kirchhoff se relacionan con dos leyes de conservación. ¿Cuáles son?
e) Se tiene dos conductores rectilíneos infinitamente largos, paralelos y en el vacío, por los que circulan las corrientes I₁= 10 A entrante al papel e I₂= 10 A saliente al papel, respectivamente. Para cual de estas curvas la circulación de B es nula? Justifique

