Федеральное агентство связи (Россвязь)

Сибирский государственный университет телекоммуникаций и информатики

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

ДИСЦИПЛИНА

АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Расчетно-графические задания

Составитель – к.т.н. А.В. Ефимов

- 1. Осуществить анализ архитектуры мультипроцессорных вычислительных систем. Привести пример отечественной ВС.
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и коэффициента s готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-3}$ 1/ч,
 - интенсивности восстановления $\mu = 1 \ 1/q$.

Задание 2

- 1. Произвести анализ архитектур механических и электромеханических вычислительных машин.
- 2. Построить блок-схему р -алгоритма умножения матриц:

$$\Psi[1:Q;1:R],\Omega[1:S;1:Q]$$

обеспечивающего распределение в элементарных машинах ВС элементов результирующей матрицы по вертикальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10$ Мегабод.

Задание 3

- 1. Дать анализ (качественный и количественный) тороидальных макроструктур вычислительных систем.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) ЭВМ и осуществимости f(t) решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0,007 \ 1/4$,
 - среднего времени безотказной работы $9 = 10^3$ ч.

Задание 4

- 1. Оценить архитектурные возможности вычислительных средств IV и V поколений. Описать функциональную структуру одной из суперВС (из списка Top500).
- 2. Разработать блок-схему p -алгоритма для вычисления произведения двух матриц:

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p - алгоритма на BC МИНИМАКС.

- 1. Осуществить анализ архитектуры распределенных вычислительных систем. Привести пример функциональной структуры суперВС (из списка Top500).
- 2. Произвести численный расчет показателей надежности ЭВМ, режим работы которой является стационарным и которая характеризуется следующими параметрами $\lambda = 0,001 \, 1/v$, $\mu = 1 \, 1/v$.

Задание 6

- 1. Произвести анализ архитектурных концепций отечественных ЭВМ.
- 2. Разработать блок-схему p -алгоритма для вычисления произведения A[1:L;1:G] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы L[1:L;1:G] по вертикальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p -алгоритма на BC МИКРОС-Т.

Задание 7

- 1. Выполнить архитектурный анализ современных вычислительных систем. Описать архитектуру одной из суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.02 \text{ 1/} q$,
 - среднего времени безотказной работы $9 = 10^2$ ч.

Задание 8

- 1. Осуществить анализ архитектуры семейства Z вычислительных машин К. Цузе.
- 2. Построить блок-схему р-алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 15$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 0,7$ нс.

- 1. Выполнить анализ простейших макроструктур вычислительных систем. Привести примеры промышленных ВС, в которых используются простейшие макроструктуры.
- 2. Произвести расчет и построить графики для функций надежности r(t) и восстановимости u(t) ЭВМ, которая характеризуется средним временем безотказной работы, равным $\mathcal{G}=100$ ч, и интенсивностью восстановления $\mu=1$ 1/u.

Задание 10

- 1. Оценить возможности ЭВМ с SISD-архитектурой. Привести пример использования SISD-архитектуры в суперВС.
- 2. Разработать блок-схему p -алгоритма для вычисления произведения O[1:L;1:N] двух матриц:

p -алгоритм должен обеспечить распределение элементов матрицы O[1:L;1:N] по горизонтальным полосам в элементарных машинах BC.

Определить максимум коэффициента ε накладных расходов при реализации p - алгоритма на модифицированной ВС СУММА.

Задание 11

- 1. Осуществить анализ архитектуры и функциональной структуры одной из современных суперВС (из списка Тор500).
- 2. Выполнить численный расчет и построить графики для функции s(i,t) готовности ЭВМ, интенсивности отказов и восстановления которой соответственно равны $\lambda = 10^{-2} \ 1/u$, $\mu = 1 \ 1/u$.

- 1. Осуществить анализ принципов технической реализации модели коллектива вычислителей. Проанализировать функциональную структуру одной из суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $9 = 10^6$ ч,
 - интенсивностью восстановления $\mu = 10 \ 1/q$.

- 1. Осуществить анализ архитектуры EDVAC.
- 2. Построить блок-схему *p* -алгоритма умножения матриц:

обеспечивающего распределение в элементарных машинах ВС элементов результирующей матрицы по вертикальным полосам.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 10$ Мегабод.

Задание 14

- 1. Дать анализ архитектурных свойств современных высокопроизводительных вычислительных систем. Привести пример функциональной структуры суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $9 = 10^5$ ч,
 - интенсивностью восстановления $\mu = 10 \ 1/q$.

Задание 15

- 1. Осуществить анализ архитектуры ЭВМ I поколения. Привести пример функциональной структуры ЭВМ I поколения.
- 2. Построить блок-схему p-алгоритма умножения двух матриц:

$$\Omega[1:N;1:M], \Sigma[1:L;1:N],$$

применив методику крупноблочного распараллеливания.

Отыскать максимум коэффициента ε накладных расходов при реализации p-алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 10$ Гигабод;
- время выполнения операции сложения $t_c = 0.1$ нс;
- время выполнения операции умножения $t_v = 1$ нс.

- 1. Выполнить сравнительный анализ вычислительных систем с архитектурами MISD и MIMD. Привести примеры функциональных структур промышленных BC.
- 2. Осуществить численный расчет функции r(t) надежности ЭВМ III поколения и построить для нее график.

- 1. Выполнить сравнительный анализ вычислительных систем с архитектурами SIMD и MIMD. Привести примеры функциональных структур суперВС (из списка Top500).
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.005 \text{ 1/} \text{y}$,
 - среднего времени безотказной работы $9 = 10^3$ ч.

Задание 18

- 1. Проанализировать эффективность схем обмена информацией между ветвями параллельных алгоритмов.
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.05 \text{ 1/} y$,
 - среднего времени безотказной работы $\mathcal{G} = 10^2$ ч.

Залание 19

- 1. Осуществить качественный анализ структур коммуникационных сетей одной из современных суперВС (из списка Тор500).
- 2. Выполнить численный расчет и построить графики для функции готовности S(i,t) ЭВМ для следующих количественных характеристик:
 - среднего времени безотказной работы $9 = 10^3 \, \text{ч.}$
 - интенсивности восстановления $\mu = 1 \ 1/q$.

Задание 20

- 1. Произвести анализ возможностей вычислительных систем с MIMD-архитектурой. Привести пример функциональной структуры суперВС.
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.07 \text{ 1/} \text{y}$,
 - среднего времени безотказной работы $9 = 10^2$ ч.

- 1. Проанализировать архитектурные возможности вычислительных систем с программируемой структурой. Привести пример функциональной структуры ВС и рассчитать её структурные характеристики.
- 2. Произвести численный расчет показателей надежности ЭВМ, режим работы которой является стационарным и которая характеризуется следующими параметрами:
 - среднего времени безотказной работы $9 = 10^2$ ч;
 - интенсивности восстановления $\mu = 1 \ 1/q$.

- 1. Выполнить анализ архитектурных принципов модели коллектива вычислителей. Привести пример суперВС, в которой модель используется на нескольких уровнях иерархической функциональной структуры.
- 2. Оценить основные показатели эффективности современных микропроцессоров.

Задание 23

- 1. Произвести анализ архитектуры ЭВМ Дж. фон Неймана. Привести пример функциональной структуры ЭВМ I поколения.
- 2. Разработать блок-схему p -алгоритма умножения матриц большого размера, обеспечивающего распределение в элементарных машинах BC результирующей матрицы по горизонтальным полосам. Определить максимум коэффициента ε накладных расходов при реализации p -алгоритма для BC "Минск-222".

Задание 24

- 1. Проанализировать архитектуру матричных вычислительных систем. Привести примеры промышленных ВС.
- 2. Выполнить численный расчет и построить графики для функции r(t) надежности и функции S(i, t) готовности ЭВМ для следующих количественных характеристик:
 - интенсивности отказов $\lambda = 10^{-2}$ 1/ μ ,
 - интенсивности восстановления $\mu = 1 \ 1/q$.

Задание 25

- 1. Осуществить анализ возможностей вычислительных систем с MISD-архитектурой. Привести пример функциональной структуры промышленной ВС.
- 2. Произвести численный расчет функции r(t) надежности ЭВМ I поколения и изобразить ее графически.

Задание 26

- 1. Осуществить анализ возможностей вычислительных систем с SIMD-архитектурой. Привести пример использования SIMD-архитектуры в суперВС.
- 2. Произвести численный расчет и построить графики для функций надежности r(t) и готовности s(i,t) ЭВМ, обладающей следующими техническими параметрами:
 - средним временем безотказной работы $\theta = 10^8$ ч,
 - интенсивностью восстановления $\mu = 100 \ 1/q$.

- 1. Обосновать необходимость использования парадигмы мультиархитектуры в суперВС.
- 2. Рассчитать функцию r(t) надежности ЭВМ II поколения и построить для нее график.

- 1. Дать анализ методики крупноблочного распараллеливания сложных задач.
- 2. Выполнить численный расчет и построить график для функции s(i,t) готовности ЭВМ, интенсивности отказов и восстановления которой соответственно равны $\lambda = 10^{-3} \ 1/u$, $\mu = 10 \ 1/u$.

Задание 29

- 1. Выполнить анализ архитектуры ENIAC.
- 2. Построить блок-схему p -алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 100\,$ Мегабод;
- время выполнения операции сложения $t_c = 10$ нс;
- время выполнения операции умножения $t_v = 100$ нс.

Задание 30.

- 1. Произвести анализ архитектуры ЭВМ II поколения. Описать архитектуру и функциональную структуру одной из отечественных ЭВМ II поколения.
- 2. Построить блок-схему р-алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p-алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 64;
- полосу пропускания канала между машинами $\nu = 5$ Гигабод;
- время выполнения операции сложения $t_c = 0.5$ нс;
- время выполнения операции умножения $t_v = 1$ нс.

- 1. Выполнить сравнительный анализ вычислительных систем с архитектурами MISD и SIMD. Привести пример функциональной структуры промышленной BC.
- 2. Произвести численный расчет и построить график для функции осуществимости f(t) решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.003 \ 1/4$,
 - интенсивности отказов ЭВМ $\lambda = 10^{-3} \, y$.

- 1. Осуществить анализ гиперкубических макроструктур вычислительных систем. Привести пример суперВС.
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.003 \, 1/y$,
 - среднего времени безотказной работы $9 = 10^3$ ч.

Задание 33

- 1. Выполнить анализ архитектуры ЭВМ III поколения. Описать функциональную структуру одной из ЭВМ III поколения.
- 2. Разработать блок-схему *p* -алгоритма для вычисления произведения двух матриц:

обеспечивающего распределение в элементарных машинах ВС результирующей матрицы по горизонтальным полосам.

Определить максимум коэффициента ε накладных расходов при реализации p -алгоритма на BC СУММА.

Задание 34

- 1. Проанализировать архитектуру конвейерных вычислительных систем. Привести примеры промышленных ВС.
- 2. Произвести численный расчет и построить график для функции f(t) осуществимости решения задач на ЭВМ для следующих показателей:
 - интенсивности решения задач $\beta = 0.05 \text{ 1/} v$,
 - среднего времени безотказной работы $9 = 10^2$ ч.

Задание 35

- 1. Проанализировать мультиархитектуру одной из современных суперВС (из списка Тор500).
- 2. Произвести численный расчет и построить график для функции надежности r(t) ЭВМ, характеризуемой интенсивности отказов $\lambda = 10^{-3} \ v$.

- 1. Осуществить анализ "парадокса" параллелизма.
- 2. Произвести расчет и построить графики для функций надежности r(t) и восстановимости u(t) ЭВМ, которая характеризуется средним временем безотказной работы, равным $\mathcal{G}=10^3$ ч, и интенсивностью восстановления $\mu=10\,1/u$.

- 1. Оценить архитектурные возможности модели вычислителя. Привести пример суперВС, в которой используется модель вычислителя.
- 2. Построить блок-схему p-алгоритма умножения матриц:

обеспечивающего распределение элементов результирующей матрицы по горизонтальным полосам в элементарных машинах ВС.

Отыскать максимум коэффициента ε накладных расходов при реализации p -алгоритма на вычислительной системе, имеющей следующие параметры:

- разрядность l = 32;
- полосу пропускания канала между машинами $\nu = 1$ Мегабод;
- время выполнения операции сложения $t_c = 1$ мкс;
- время выполнения операции умножения $t_v = 10$ мкс.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хорошевский В.Г. Архитектура вычислительных систем. М.: МГТУ им. Н.Э. Баумана, 2008. 520 с.
- 2. Конспект лекций по курсу "Архитектура вычислительных систем"
- 3. Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники. М.: Физматлит, 2002. 440 с.
- 4. Евреинов Э.В., Хорошевский В.Г. Однородные вычислительные системы. Новосибирск: Наука, 1978. 320 с.
- 5. Хорошевский В.Г. Инженерный анализ функционирования вычислительных машин и систем. М.: Радио и связь, 1987. 255 с.
- 6. Головкин Б.А. Параллельные вычислительные системы. М.: Наука, 1980. 520 с.
- 7. Поиск...