STAT 6390: Analysis of Survival Data

Textbook coverage: Chapter 3

Steven Chiou

Department of Mathematical Sciences, University of Texas at Dallas

Cox proportional hazards model

- The Cox model is expressed by the hazard function.
- The hazard function can be (loosely) interpreted as the risk of dying at time t
- The Cox model has the form:

$$h(t) = h_0(t) \cdot \exp{\{\beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p\}},$$

where

- t is the survival time.
- $\{x_1, \ldots, x_p\}$ is a set of p covariates.
- $\{\beta_1, \dots, \beta_p\}$ is the regression parameters; effect of covariates.
- $h_0(t)$ is the baseline hazard. It is the value of the hazard when all x's are 0.
- No need to specify an "intercept" term as it gets absorb to $h_0(t)$.

Cox proportional hazards model

- The quantity e^{β_i} is interpreted as the hazard ratio (HR).
 - $\beta_i > 0 \rightarrow HR > 1 \rightarrow hazard increases \rightarrow survival time decreases.$
 - $\beta_i = 0 \rightarrow HR = 1 \rightarrow no$ change in hazard \rightarrow no change in survival time.
 - $\beta_i < 0 \rightarrow HR < 1 \rightarrow hazard decreases \rightarrow survival time increases.$
- HR (and hazard) is negatively associated with the length of survival.
- The Cox model assumes the hazard curves among different patients should be proportional and cannot cross.

- We have used coxph to compute the Nelson-Aalen estimator.
- The usage of coxph is similar to that of survreg.
- We will start with one covariate, gender.

```
> fm <- Surv(lenfol, fstat) ~ gender
> fit.cox <- coxph(fm, data = whas100)
> fit.aft <- survreg(fm, data = whas100)</pre>
```

The coefficients are in opposite directions.

```
> coef(fit.cox)
    gender
0.5548116
> coef(fit.aft)
(Intercept)     gender
    8.463727   -0.790436
```

- fit.cox does not have an intercept term.
- The two parameter estimates have opposite signs.

The summary gives:

```
> summary(fit.cox)
Call:
coxph(formula = fm, data = whas100)
 n= 100, number of events= 51
        coef exp(coef) se(coef) z Pr(>|z|)
gender 0.5548 1.7416 0.2824 1.965 0.0494 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
      exp(coef) exp(-coef) lower .95 upper .95
gender 1.742 0.5742 1.001 3.029
Concordance= 0.565 (se = 0.035)
Rsquare= 0.037 (max possible= 0.985)
Likelihood ratio test= 3.75 on 1 df, p=0.05
Wald test = 3.86 on 1 df, p=0.05
Score (logrank) test = 3.96 on 1 df, p=0.05
```

• The $\hat{\beta}$ is positive indicating that male patients (gender = 1) have higher risk of death.

- The hazard ratio in this example is $e^{0.5548} \approx 1.7416$.
- This implies males (gender = 1) die at about 1.74 times (74% higher) the rate of females.
- Like in interpreting the odds-ratio estimator in logistic regression, the end-points of a 95% confidence interval for the hazard ratio is

$$\exp\left[\hat{\beta} \pm 1.96 \cdot \widehat{SE}(\hat{\beta})\right] = \exp\left[0.5548 \pm 1.96 \cdot 0.2824\right] \approx [1.001, 3.029].$$

• The 95% confidence interval lies entirely above 1, echoing the significance of $\hat{\beta}$ at $\alpha = 0.05$.

- Three related tests to assess the significance of the model.
 - Partial likelihood ratio test
 - Wald test
 - score test
- These three tests are also indicated in the bottom of the summary.

- The partial likelihood ratio test is calculated as twice the difference between the log-partial likelihood of the
 - "full model", denoted by $\ell_p(\hat{\beta})$.
 - "reduced model", denoted by $\ell_p(0)$.
- The log-partial likelihood ratio is then defined as

$$G = 2 \cdot \{\ell_p(\hat{\beta}) - \ell_p(0)\},\,$$

where

$$\ell_p(\hat{\beta}) = \sum_{i=1}^n \Delta_i \left[X_i \hat{\beta} - \log \left\{ \sum_{j \in R(t_i)} e^{X_j \hat{\beta}} \right\} \right],$$

$$\ell_p(0) = -\sum_{i=1}^n \Delta_i \log(n_i)$$
, and n_i is the number of risk at t_i .

 The test statistic, G, follows approximately a chi-square distribution with one degree of freedom under null.

The log-partial likelihood are stored in the coxph object as loglik:

```
> fit.cox$loglik
[1] -209.0977 -207.2247
```

- The two log-partial likelihoods are $\ell_p(0)$ and $\ell_p(\hat{\beta})$ respectively.
- $\ell_p(0)$ can be computed only with survfit, e.g.,

```
> fit.surv <- survfit(Surv(lenfol, fstat) ~ 1, data = whas100)
> with(fit.surv, -sum(n.event * log(n.risk)))
[1] -209.1197
```

The test statistic, G, and its p-value can be computed as follow

```
> 2 * diff(fit.cox$loglik)
[1] 3.746038
> 1 - pchisq(2 * diff(fit.cox$loglik), 1)
[1] 0.05293283
```

- Two useful statistics are by-product of the log-partial likelihood.
- The Rsquare is the (generalized) R² statistic, defined as

$$R^2 = 1 - \left\{ \frac{L_{\rho}(0)}{L_{\rho}(\hat{\beta})} \right\}^{2/n} = 1 - \left\{ e^{\ell_{\rho}(0) - \ell_{\rho}(\hat{\beta})} \right\}^{2/n}.$$

The following code verifies this in R.

```
> 1 - exp(-diff(fit.cox$loglik))^.02
[1] 0.03676742
```

- Note that the message max possible gives the most extreme possible value the R^2 can be achieved given the observed data.
- In this case max possible = 0.985, so 0.985 represents the "prefect fit" for the dataset.

- The other useful measure is the concordance.
- The concordance gives the fraction of pairs in the sample (gender = 1 and gender = 0), where the observations with the higher survival time has the higher probability of survival predicted by the model.
- The concordance is robust to monotone transformation of the predictor.

Wald test

- The ratio of the estimated coefficient to its estimated standard error is commonly referred to as a Wald statistic.
- The Wald statistic (z) and its p-value are reported in summary.
- The Wald statistic follows a standard normal distribution under null.
- The Wald statistic and the two-sided p-value can be computed as follow:

The Wald statistic displayed below is the chi-square version of it.

- The test statistic for the score test is the ratio of the derivative of the log-partial likelihood to the square root of the observed information at $\beta = 0$.
- The test statistic, $(z^*)^2$, is evaluated based on the score function

$$z^* = \frac{\mathrm{d}\ell_p(\beta)}{\mathrm{d}\beta} \cdot \frac{1}{\sqrt{I(\beta)}} \bigg|_{\beta=0},$$

where $I(\cdot)$ is the observed information.

The score test is equivalent to the log-rank test.

Recall that the score function has the form

$$\frac{\mathrm{d}\ell_p}{\mathrm{d}\beta} = \sum_{i=1}^n \Delta_i \left[X_i - \left\{ \frac{\sum_{j \in R(t_i)} X_j e^{X_j \beta}}{\sum_{j \in R(t_i)} e^{X_j \beta}} \right\} \right].$$

- Suppose X_i is a categorical variable that takes values 0 and 1.
- When $\beta = 0$,
 - $\sum_{i \in R(t_i)} e^{X_i \beta}$ is the total number in the risk set at t_i .
 - $\sum_{j \in R(t_i)} X_j e^{X_j \beta}$ is the number of individual from group 1 in the risk set at t_i .

Recall the 2 by 2 table we used to construct the log-rank statistic:

	Group 1	Group 0	Total
Failure	d_{1i}	d_{0i}	d_i
Non-failure	$n_{1i} - d_{1i}$	$n_{0i}-d_{0i}$	$n_i - d_i$
At risk	n _{1i}	n_{0i}	n_i

Using the table notations,

$$\sum_{j\in R(t_i)} e^{X_j \beta} = n_i$$
 and $\sum_{j\in R(t_i)} X_j e^{X_j \beta} = n_{1i}$.

- We also used $E(d_{1i}) = \frac{n_{1i} \cdot d_i}{n_i}$.
- The score function reduced to

$$\frac{\mathrm{d}\ell_p}{\mathrm{d}\beta} = \sum_{i=1}^n \Delta_i \left[X_i - \frac{n_{1i}}{n_i} \right] = \sum_{i=1}^D \{ d_{1i} - \mathrm{E}(d_{1i}) \}$$

under the assumption of no ties.

Now recall the observed information based on the score function is

$$I(\beta) = -\frac{\mathrm{d}^2 \ell_p}{\mathrm{d}\beta^2} = \sum_{i=1}^n \Delta_i \sum_{j \in R(t_i)} (\beta) \cdot (X_j - \bar{X})^2$$
$$= \sum_{i=1}^n \Delta_i \sum_{j \in R(t_i)} (X_j^2 - 2X_j \bar{X} + \bar{X}^2)$$

- With the table notations,
 - $\sum_{j \in R(t_i)} X_j^2 = \sum_{j \in R(t_i)} X_j = n_{1j}$
 - $\sum_{j \in R(t_i)} 2X_j \bar{X} = 2 \cdot n_{1i} \cdot \frac{n_{1i}}{n_i}$
 - $\sum_{j \in R(t_i)} \bar{X}^2 = n_i \cdot \left(\frac{n_{1i}}{n_i}\right)^2$
- Simple algebra shows

$$I(\beta) = \sum_{i=1}^m \operatorname{Var}(d_{1i}).$$

• The following confirms the relationship between survdiff and the score test.

- In general, the numeric values of the three test statistics are usually similar, and thus lead to the same conclusion.
- In situations where there is disagreement, the is the preferred test*.
- The partial likelihood ratio test is also useful when comparing nested models.

Model selection with partial likelihood ratio tests

 Suppose we want to test whether the addition of bmi is statistically significant, we can fit a new Cox model with both bmi and gender:

```
> fit.cox2 <- update(fit.cox, ~. + bmi)
> summary(fit.cox2)
Call:
coxph(formula = Surv(lenfol, fstat) ~ gender + bmi, data = whas100)
 n= 100, number of events= 51
          coef exp(coef) se(coef) z Pr(>|z|)
gender 0.53794 1.71248 0.28257 1.904 0.05694 .
      -0.09460 0.90974 0.03391 -2.790 0.00527 **
hm i
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
      exp(coef) exp(-coef) lower .95 upper .95
gender 1.7125 0.5839 0.9842 2.9795
bmi 0.9097
                  1.0992 0.8512 0.9723
Concordance= 0.632 (se = 0.043)
Rsquare= 0.113 (max possible= 0.985)
Likelihood ratio test= 11.94 on 2 df,
                                     p=0.003
Wald test = 11.92 on 2 df,
                                     p=0.003
Score (logrank) test = 12.26 on 2 df,
                                     p=0.002
```

Model selection with partial likelihood ratio tests

The corresponding partial likelihoods are.

```
> fit.cox$loglik
[1] -209.0977 -207.2247
> fit.cox2$loglik
[1] -209.0977 -203.1269
```

- Note that they share the same $\ell_p(0)$.
- The partial likelihood ratio test can be performed as follow:

```
> G <- 2 * sum(fit.cox2$loglik - fit.cox$loglik)
> 1 - pchisq(G, 1)
[1] 0.004199217
```

Baseline cumulative hazard

- The function basehaz function computes the cumulative baseline hazard function, $H_0(t)$.
- The only argument besides the fit is centered, which specifies the covariate value used in the plot.

```
> args(basehaz)
function (fit, centered = TRUE)
NULL
```

- The default is centered = TRUE estimate at the mean of the covariates.
- Setting centered = TRUE does not always make sense, particularly for categorical covariates.

Baseline cumulative hazard

- The red curve gives the baseline cumulative hazard for gender = 0.
- The black curve gives the cumulative hazard at gender = 0.5 (mean).
- The two curves are parallel to each other.

```
> ggplot(data = basehaz(fit.cox), aes(x = time, y = hazard)) + geom_step() +
+ geom_step(data = basehaz(fit.cox, center = FALSE), aes(x = time, y = hazard),
```


- The inference remains the same when multiple covariates are involved in the model.
- Recall the Cox model with both gender and bmi:

```
> summarv(fit.cox2)
Call:
coxph(formula = Surv(lenfol, fstat) ~ gender + bmi, data = whas100)
 n= 100, number of events= 51
          coef exp(coef) se(coef) z Pr(>|z|)
gender 0.53794 1.71248 0.28257 1.904 0.05694 .
bmi -0.09460 0.90974 0.03391 -2.790 0.00527 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
      exp(coef) exp(-coef) lower .95 upper .95
gender 1.7125 0.5839 0.9842 2.9795
bmi 0.9097 1.0992 0.8512 0.9723
Concordance= 0.632 (se = 0.043)
Rsquare= 0.113 (max possible= 0.985)
Likelihood ratio test= 11.94 on 2 df,
                                     p=0.003
Wald test = 11.92 on 2 df,
                                     p=0.003
                                     p=0.002
Score (logrank) test = 12.26 on 2 df,
```

- The hazard ratio can be interpreted jointly or separately while holding the other covariate constant.
- The regression paramter for bmi is negative.
- This indicates patients with higher bmi have lower risk of death.
- For every one unit increase in bmi the risk of death decrease by 10%.
- This result does not make (medical) sense and is possible due to non-linear effect in bmi

```
> fit.cox3 <- update(fit.cox2, ~ . + I(bmi^2))</pre>
```

24 / 27

• The summary with bmi2 is

```
> summary(fit.cox3)
Call:
coxph(formula = Surv(lenfol, fstat) ~ gender + bmi + I(bmi^2),
   data = whas100)
 n= 100, number of events= 51
            coef exp(coef) se(coef) z Pr(>|z|)
gender 0.407036 1.502358 0.293804 1.385 0.16593
bmi -0.757980 0.468612 0.230462 -3.289 0.00101 **
I(bmi^2) 0.012260 1.012335 0.004165 2.944 0.00324 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
       exp(coef) exp(-coef) lower .95 upper .95
gender 1.5024 0.6656 0.8447 2.6721
bmi
   0.4686 2.1340 0.2983 0.7362
I(bmi^2) 1.0123 0.9878 1.0041 1.0206
Concordance= 0.652 (se = 0.043)
Rsquare= 0.174 (max possible= 0.985)
Likelihood ratio test= 19.08 on 3 df, p=3e-04
Wald test = 23.11 on 3 df, p=4e-05
Score (logrank) test = 25.05 on 3 df, p=2e-05
```

Note that the inclusion of bmi (and bmi²) makes gender less significant.

- The partial likelihood ratio test can be used to test whether we should delete gender (backward selection).
- First we fit a reduced model without the gender term.

The partial likelihoods are

```
> fit.cox4$loglik
[1] -209.0977 -200.4951
> fit.cox3$loglik
[1] -209.0977 -199.5602
```

The test statistic and the corresponding p-value can be computed with

```
> 1 - pchisq(2 * sum(fit.cox3$loglik - fit.cox4$loglik), 1)
[1] 0.1714918
```

- Back to the model with gender and bmi.
- The partial likelihood ratio test statistic can be computed similarly, but the Wald test statistics needs to be computed accounting for covariances.

 The degrees of freedom is 2 because we now have 2 covariates in the model.