

Trabalho Prático II Investigação Operacional

Trabalho realizado por:

Gabriela Santos Ferreira da Cunha - a97393

João António Redondo Martins - a96215

João Pedro Antunes Gonçalves - a95019

Nuno Guilherme Cruz Varela - a96455

Miguel de Sousa Braga - a97698

maio, 2022

1 Formulação do Problema

1.1 Descrição do Problema

O problema proposto para o segundo trabalho prático consiste em atribuir a equipas serviços a efetuar a clientes distribuídos geograficamente. As equipas partem da sede da empresa, em Keleirós, às 09:00, para realizarem os serviços aos clientes, tendo em conta os custos e os tempos de deslocação entre clientes e entre estes e a sede da empresa. Cada equipa pode fornecer serviços a mais do que um cliente, desde que a visita aos vários clientes seja compatível com os tempos de deslocação entre clientes. Trata-se, assim sendo, de um problema de fluxos em rede, onde os clientes são representados por vértices e as deslocações possíveis entre clientes por arcos na rede.

1.2 Objetivo

De acordo com o enunciado, o objetivo deste problema é atribuir serviços a efetuar a clientes distribuídos geograficamente por equipas, de modo a minimizar o custo total da operação, que inclui custos de deslocação e custos fixos de utilização de veículos. Após a resolução deste problema, estaremos perante um conjunto de N equipas com N percursos diferentes, a visitar todos os clientes. A solução é ótima, se o somatório dos custos das equipas for o mínimo possível.

1.3 Explicação da rede

A rede que modela o problema vai ser composta por um conjunto de vértices V e arcos, sendo que os vértices são os clientes por onde as equipas têm de passar, partindo de um vértice que representa a sede da empresa, e os arcos correspondem às deslocações possíveis entre os vértices. A deslocação entre a sede e os clientes é sempre possível de ser realizada. Já em relação à deslocação entre clientes $i,j \in V$ só é possível chegar ao cliente j a partir do cliente i se, após terminar o serviço de um cliente i, a equipa puder chegar ao cliente j num instante igual ou anterior à hora de serviço associada, a_j , ou seja, $a_i + t_{ij} \leq a_j$, em que t_{ij} é o tempo de deslocação entre os clientes i e j, $\forall i, j \in V$.

1.4 Explicação do modo como os valores dos fluxos nos arcos numa solução se traduzem em decisões a implementar no sistema real

O valor do fluxo num arco corresponde ao número de equipas que percorrem esse arco. Se o fluxo for positivo, temos uma ou mais equipas a visitar esse cliente a partir de um dado vértice origem. Se o fluxo for 0, nenhuma equipa visita esse cliente a partir de um dado vértice origem. O conjunto formado pelos fluxos em cada um dos arcos da rede vai, portanto, dar-nos uma solução admissível, na medida em que representam os percursos realizados por cada uma das equipas na rede.

1.5 Explicação dos valores dos custos e das capacidades

Neste problema, os valores dos custos representam os custos de deslocação de um cliente para o outro, e as capacidades não apresentam grande relevância neste problema pois, segundo o enunciado, as cargas não constituem uma limitação para o problema.

1.6 Explicação dos valores das ofertas e dos consumos

Neste problema de escalonamento de equipas, queremos que haja conservação do fluxo em cada um dos clientes, i.e o fluxo que entra é igual ao fluxo que sai de cada vértice (cliente). Como tal, não queremos que haja oferta nem procura nestes nodos intermédios. Já para o vértice Keleirós (partida) queremos que a oferta seja igual ao número de clientes a visitar, pois este é o número máximo de equipas que podem circular na rede. Quanto ao vértice Keleirós (chegada), o valor da procura será igual ao valor da oferta no vértice Keleirós (partida), pois todas as equipas regressam à sede.

1.7 Remoção de clientes e tempos de deslocação dependentes de BCDE

Para a remoção dos clientes e tempos de deslocação, seguimos o método indicado no enunciado. Como o maior número de aluno do grupo é 97698 e o vértice E (8) é par, removemos o cliente 8 (Helena). Para a_1 e a_8 , obtivemos os seguintes resultados:

$$a_1 = 7 + 1 = 8$$

 $a_8 = 6 + 1 = 7$

Assim, a atualização do quadro com as horas de serviço dos clientes, em quartos de hora desde o início do período de trabalho (1/4 h) e em valores de relógio foi a seguinte:

$_{j}$	cliente	$a_j(1/4 \text{ hora})$	a_j (hora do serviço)
1	Ana	8	11:00
2	Beatriz	7	10:45
3	Carlos	4	10:00
4	Diogo	2	09:30
5	Eduardo	10	11:30
6	Francisca	6	10:30
7	Gonçalo	9	11:15
9	Inês	2	09:30
10	José	5	10:15

Tabela 1: Quadro após a remoção.

Os tempos e custos de deslocação entre clientes e entre clientes e sede podem ser obtidos através das seguintes tabelas, disponibilizadas no enunciado do trabalho.

Figura 1: Tabelas com tempos e custos de deslocação.

Estes tempos e custos dizem respeito a uma deslocação direta entre os clientes i e j. Neste trabalho, assumimos que estes valores representam, respetivamente, os tempos e os custos mínimos da deslocação do cliente i para o cliente j.

Deste modo, e recorrendo às tabelas acima, apresentamos o grafo de compatibilidades, cujas arestas correspondem a deslocações permitidas entre clientes, cada uma com o seu custo respetivo. De notar ainda que todos os vértices possuem arestas incidentes com origem em Keleirós (partida), em que os custos são os dados na tabela, bem como arestas a sair dos mesmos para Keleirós (chegada), em que os custos são os custos de deslocação respetivos adicionados ao custo fixo de cada equipa de 1 U.M.

Figura 2: Grafo de compatibilidades.

2 Apresentação do Modelo

Há duas restrições inerentes a um modelo de fluxo em redes: conservação de fluxo nos nodos e capacidade nos arcos.

2.1 Restrições de capacidade

Tal como foi explicado na formulação, a capacidade não é uma restrição a considerar neste problema. Como tal, consideramos uma capacidade suficientemente elevada (1000) para todos os arcos. Contudo, temos a noção de que a solução ótima deverá apresentar um valor máximo de fluxo por cada arco de 1 unidade.

2.2 Restrições de conservação de fluxo

Quanto à conservação do fluxo, temos de garantir que o fluxo de entrada e o fluxo de saída de cada vértice intermédio são os mesmos. De modo a contornar este problema, dividimos cada vértice em dois subvértices: subvértice de entrada com todos os arcos incidentes e subvértice de saída com todos os arcos que partem desse vértice.

Assim, podemos definir que cada subvértice (entrada) tem uma procura de 1 unidade, garantindo que uma e uma só equipa chega a cada cliente e, da mesma forma, que cada subvértice (saída) tem uma oferta de 1 unidade, assegurando que uma e uma só equipa sai daquele cliente. Para que o grafo seja ligado, adicionamos uma nova aresta (com custo 0) a unir estes dois subvértices.

Em seguida, apresenta-se uma tabela com uma síntese do que foi dito nos parágrafos anteriores.

Vértice (Entrada)	Oferta	Procura	Vértice (Saída)	Oferta	Procura
Ana	0	1	Ana	1	0
Beatriz	0	1	Beatriz	1	0
Carlos	0	1	Carlos	1	0
Diogo	0	1	Diogo	1	0
Eduardo	0	1	Eduardo	1	0
Francisca	0	1	Francisca	1	0
Gonçalo	0	1	Gonçalo	1	0
Inês	0	1	Inês	1	0
José	0	1	José	1	0
Keleirós	0	9	Keleirós	9	0

Tabela 2: Ofertas e Procuras.

Os valores dos custos dos arcos entre Keleirós (partida) e os clientes e entre os vários clientes são dados na figura 1. Quanto aos custos entre um dado cliente e Keleirós (chegada), estes calculam-se somando uma unidade ao valor dado na tabela.

Em suma, partindo do grafo de compatibilidades definido anteriormente podemos definir a rede do problema adicionando dois vértices (Keleirós origem e Keleirós destino) e uma aresta que une diretamente os mesmos (com custo 0). Para além disso, dividimos cada um dos vértices intermédios em dois subvértices para garantir a conservação do fluxo de 1 unidade, de acordo com o indicado na tabela 2.

3 Ficheiro de Input

Como os vértices são bipartidos, a formulação do problema vai ter 20 vértices. Contudo no software Relax4 vamos apresentar 22 vértices, visto que apesar de não usarmos os vértices 8 e 18 temos de apresentá-los. Para tal, utilizamos a seguinte representação para os vértices:

cliente	vértice	vértice bipartido
Ana	1	11
Beatriz	2	12
Carlos	3	13
Diogo	4	14
Eduardo	5	15
Francisca	6	16
Gonçalo	7	17
Inês	9	19
José	10	20
Keleirós	21	22

Tabela 3: Representação dos vértices no Relax4.

O modelo anteriormente definido foi introduzido no Relax4:

Figura 3: Input Relax4.

4 Output Produzido

Depois de introduzir o ficheiro de texto correspondente ao nosso modelo, obtivemos os seguintes resultados:

Figura 4: Output produzido.

f 12 7 1	f 13 10 1	f 14 6 1
f 16 5 1	f 19 1 1	f 20 2 1
f 22 3 1	f 22 4 1	f 22 9 1
f 11 21 1	f 15 21 1	f 17 21 1
f 22 21 6		

Tabela 4: Output das arestas do Relax4.

5 Interpretação da Solução Ótima

Tendo em conta a solução ótima do software Relax4, podemos observar que foram escalonadas 3 equipas para satisfazer os clientes propostos.

Figura 5: Solução ótima.

		a_{j}	a_{j}	tempo deslocação	custo
j	cliente	(1/4 hora)	(hora do serviço)	(1/4 hora)	deslocação
	Keleirós	0	09:00	[KD]1	4
4	Diogo	2	09:30	[DF]3	8
6	Francisca	6	10:30	[FE]2	6
5	Eduardo	10	11:30	[EK]2	6
_	Keleirós	12	12:00		1*
				Custo da equipa :	25

Tabela 5: Escalonamento da equipa 1.

		a_{j}	a_{j}	tempo deslocação	custo
j	cliente	(1/4 hora)	(hora do serviço)	(1/4 hora)	deslocação
_	Keleirós	0	09:00	[KI]2	9
9	Inês	2	09:30	[IA]0	0
1	Ana	8	11:00	[AK]1	1
_	Keleirós	9	11:15		1*
				Custo de equipe :	11

Custo da equipa :

Tabela 6: Escalonamento da equipa 2.

		a_{j}	a_{j}	tempo deslocação	custo
j	cliente	(1/4 hora)	(hora do serviço)	(1/4 hora)	deslocação
	Keleirós	0	09:00	[KC]2	2
3	Carlos	4	10:00	[CJ]1	6
10	José	5	10:15	[JB]2	4
2	Beatriz	7	10:45	[BG]2	6
7	Gonçalo	2	11:15	[GK]3	9
	Keleirós	12	12:00		1*

Custo da equipa: 28

Tabela 7: Escalonamento da equipa 3.

Portanto, para resolver este problema de fluxos em rede de uma forma ótima, podem ser escalonadas 3 equipas cada uma com um custo de 25, 11 e 28, e obtemos, assim, um custo total ótimo de 64 unidades.

6 Validação do Modelo

Com base na solução obtida como output do Relax 4, podemos concluir que se trata de uma solução válida, pois cada cliente é servido uma e uma só vez. Para além disso, todas as arestas adicionadas pertencem ao grafo de compatibilidades, pelo que são percursos possíveis de realizar por cada equipa.

Temos também a conservação do fluxo em cada vértice. Nos vértices intermédios, o número de equipas que entram e que saem é 1, sempre. Quanto aos vértices Keleirós partida e chegada, verificamos que o fluxo que sai do nodo de partida é igual ao fluxo que chega ao nodo de chegada, representando esse fluxo o total de clientes a visitar. Também podemos concluir que a solução faz sentido porque o valor do fluxo no arco que vai de Keleirós partida para Keleirós chegada é 6, que é exatamente igual ao número de clientes menos o número de equipas da solução ótima.

De modo a comprovar a validade do nosso modelo e da solução ótima obtida no Relax, introduzimos no LPSolve um modelo semelhante ao explicitado anteriormente. Neste modelo, garantimos na mesma um fluxo obrigatório de 1 unidade em cada vértice (cliente). Para isso, adicionamos restrições que indicam que o n^{o} de equipas que chegam a cada vértice é igual ao n^{o} de equipas que saem de cada vértice (1 equipa entra e sai em cada cliente). A função objetivo

minimiza o custo total das deslocações das equipas. Esperávamos, assim, que o resultado do LPSolve tivesse o mesmo custo que a solução obtida no Relax (64). Os percursos (arestas adicionadas) poderiam ser diferentes, no entanto, o custo teria que ser o mesmo e, nesse caso, teríamos encontrado uma solução ótima alternativa.

Figura 6: Validação da Solução Ótima

Como podemos ver, na figura 7, o output do LPSolve condiz com a solução obtida anteriormente no Relax4. Como tal, concluímos que, à luz deste modelo e tendo por base o grafo de compatibilidades apresentado, a nossa solução é ótima.

Figura 7: Output LPSolve

7 Conclusão

Com este trabalho, fomos apresentados a um exemplo de problema de escalonamento de equipas a determinados clientes, sob restrições de horários. Este foi um exemplo de problema onde uma modelação possível seria através de uma rede, onde os vértices correspondem a clientes e as arestas a possíveis deslocações entre os mesmos. Conseguimos também perceber como é que podemos realizar certas transformações no grafo de modo a garantir que certas restrições são obedecidas. Por exemplo, o problema de ter um fluxo de uma unidade em cada vértice. Para além disso, pudemos experimentar o uso de um software de resolução de problemas de fluxo mínimo, o Relax4, que nos ajudou a encontrar a solução ótima. Conseguimos ainda complementar a nossa aprendizagem da modelação com recurso a programação inteira utilizando para isso o software utilizado anteriormente, no trabalho 1, o LPSolve. Com isso, conseguimos validar o resultado obtido com este modelo. Assim, fazemos um balanço bastante positivo deste trabalho, visto que consolidamos os conhecimentos adquiridos nas aulas teóricas, aplicando-os na prática a um problema real.