

BRANDON ADAMS
MICHAEL ASHWORTH
ZACH CUMM
BRANDON DIAL
NATASHA NAPIER
JOHN SKAGGS

${\bf Scope} \ \underline{\underbrace{\ of\ Work}}$

- Design 125' of Highway Bridge
 - Spans Bryce Creek on Begley Road in Cabell Co., WV
 - Selection & sizing of bridge girders
 - Design of bridge deck & shear connectors
 - Lateral bracing design
 - Prepare plans, schedules, construction estimates

Alternatives Summary

- Comparison Criteria
 - Cost
 - Construction
 - Material
 - Shipping Limitations
 - 100 feet shipping limit
 - Scheduling
 - Manufacturing Availability
 - Capacity Requirements

- Alternatives
 - Steel Plate Girder
 - AASHTO Type V Concrete I-Beam
 - Steel Rolled Beam

Design Alt. #1

- Steel Plate Girder
 - AASHTO M 270 (ASTM 709M) Grade 50 Steel
 - F_v = 50 ksi
 - $F_u = 65 \text{ ksi}$
 - 4 plate girders
 - 9.0 feet spacing (center-to-center)
 - 2 ft 10 in deck overhang
 - 18 in x 20 in x 5.875 in elastomeric bearing pad (e-Span 140)

Section Dimensions (in)					
Component Thickness Width					
Top Flange	0.75	16.00			
Web	55.00	0.50			
Bottom Flange	1.25	16.00			

Design Alt. #1

- Steel Plate Girder
 - Field Splice at L = 100'
 - AASHTO M 164 Type 3 Bolts
 - 7/8 in diameter
 - 328 bolts/beam x 4 beams = 1312 bolts total

Splice Plate Dimensions (in)					
Component	Plate Thickness Plate Dimensions		Number of Plates		
Top Flange	0.5	16 x 39.5	1 (top)		
	0.5	7.5 x 39.5	2 (bottom)		
Web	0.5	45 x 34	2		
Bottom Flange	1.0	69.5 x 8.5	2 (top)		
	1.0	69.5 x 16	1 (bottom)		

Design Alt. #2

- AASHTO Type V Concrete I-Beam
 - 4 girders
 - 8.o feet spacing (center-to-center)
 - 125 feet span length
 - 18 in x 20 in x 5.875 in elastomeric bearing pad (e-Span 140)
 - 3' 3" deck overhang distance

Design Alt. #2

- AASHTO Type V Concrete I-Beam
 - Cross Section
 - 28 in bottom flange
 - 42 in top flange
 - 63 in total height
 - · Reinforcement area shown

*Due to shipping limit (100') the concrete alternative is not feasible

Design Alt. #3

- Rolled Steel Beam (W Shape)
 - W44x335 ASTM A709 Grade 50 Steel
 - F_y = 50 ksi
 - $F_u = 65 \text{ ksi}$
 - Beam dimensions (Largest Manufactured Beam)
 - 44in deep web
 - Top Flange 16" x 1 3/4"
 - Bottom Flange 16 x 1 3/4"
 - *Manufacturers limit on rolled W beams is a w44x335, which concluded to be insufficient for this project.

Cost Assumptions

Overall

- Excludes any features that have a consistent design & cost (deck, parapet wall, etc.)
- Crane size calculated using an online crane calculator based off of weight and radius required.
- Running percent of 15% on job office overhead (Primary Contractor), 15% on home office overhead (Primary Contractor), 10% on Profit (Primary Contractor), 2% on bond (Primary Contractor), and 6% on taxes (Project). 25% percent running percent for sub-contractor.
- MII & RSMeans cost books used for any pricing that is not separately noted.
- 10% of girder cost estimated for shipping

Cost Assumptions

• Steel Plate Girder

- Quote that was given for the steel plate girders are for four 125 ft girders. Cost is still accurate since it is the same amount of steel.
- 100 ton crane required for installation.
- 5% lump sum used to account for elements that were not priced such as sheer studs, etc.

Cost Assumptions

• Concrete Type V I Beam

- \cdot 400 ton crane needed for girders
- Concrete girder shared from quote obtained by BRAHMS Design Group

Cost Assumptions

• Rolled Steel Girder

- 100 ton crane was found to be needed
- 5% lump sum used to account for elements that were not priced such as sheer studs, etc.

Steel Plate Girder

*Labor and Equipment are included in cost with further details included in MII Report

Steel Plate Girder Alternative Cost					
Description	Quantity	UOM	Contractor	Direct Cost	Project Cost
Steel Plate Girders: grade 50, 125' long	4	EA	Prime	\$178,080	\$264,243
Steel Plate Girder Installation	80	HR	Prime	\$69,291	\$102,817
Shipping for Steel Plate Girder	1	LS	Sub	\$19,130	\$35,483
Steel Plate Girder Misc. (Bolts, Sheer Studs, etc.)	1	LS	Prime	\$9,540	\$14,156
M 164 Type 3 Bolts, 7/8" dia, incl nut & washer.	1,312	EA	Prime	\$8,193	\$12,157
Top Flange: Steel plate, structural, for connections & stiffeners, 1/2" T, shop fabricated, incl shop primer	4898	SI	Prime	\$973	\$1,444
Bottom Flange: Steel plate, structural, for connections & stiffeners, 1" T, shop fabricated, incl shop primer	9174	SI	Prime	\$1,768	\$2,623
Web: Steel plate, structural, for connections & stiffeners, 1/2"T, shop fabricated, incl shop primer	12,240	SI	Prime	\$2,432	\$3,609
Splice Connection Installation, Crane- 40 Ton	4	EA	Prime	\$3,168	\$4,701
Total	-	-	-	\$295,000	\$445,000

Description	Quantity	UOM	Contractor	Direct Cost	Project Cost
Prestressed Concrete Type V I-beam w/ Installation	263.75	TON	Prime	\$290,158	\$430,550
Shipping for Concrete I-Beam	1	LS	Sub	\$37,110	\$68,833
Total	-	-	-	\$330,000	\$500,000

 $Rolled\ Plate\ Girder \\ \hbox{*-Labor and Equipment are included in cost with further details included in MII Report}$

Rolled Steel Alternative Cost					
Description	Quantity	UOM	Contractor	Direct Cost	Project Cost
Rolled Steel Beam w/ Installation	52	TON	Prime	\$288,411	\$427,957
Shipping for Rolled Beam	1	LS	Sub	\$20,194	\$37,457
Rolled Steel Girder Misc. (Bolts, Sheer Studs, etc.)	1	LS	Prime	\$12,296	\$18,245
M 164 Type 3 Bolts, 7/8" dia, incl nut & washer.	1,312	EA	Prime	\$8,193	\$12,157
Top Flange: Steel plate, structural, for connections & stiffeners, 1/2" T, shop fabricated, incl shop primer	4,898	SI	Prime	\$973	\$1,444
Bottom Flange: Steel plate, structural, for connections & stiffeners, 1" T, shop fabricated, incl shop primer	9,174	SI	Prime	\$1,768	\$2,623
Web: Steel plate, structural, for connections & stiffeners, 1/2" T, shop fabricated, incl shop primer	12,240	SI	Prime	\$2,432	\$3,609
Splice Connection Installation, Crane- 40 Ton	4	EA	Prime	\$3,168	\$4,701
Total	-	-	-	\$340,000	\$515,000

Cost Comparison

Cost Comparison of Alternatives						
Alternative	Direct Material Cost	Project Cost	Direct Cost			
Steel Plate Girders	\$215,000	\$445,000	\$295,000			
AASHTO Type V Concrete I- Beam	\$225,000	\$500,000	\$330,000			
Steel Rolled Beam	\$230,000	\$515,000	\$340,000			

- Steel Plate Girder Alternative was determined to be the cheapest with the next closest being 12% higher in cost
- Difference between Steel Plate Girder and Rolled Steel Girder is significant enough (\$45,000) to deem the Steel Plate Girder as a better choice from a cost perspective.

Summary

- Selected Alternative:
 - O Alternative #1 Steel Plate Girder
 - O Justification for Alternative #1:
 - ➤ Shipping length made the AASHTO Type V Beam Concrete I-Beams not feasible
 - ▼ Cost of the Rolled Beam alternative compared to the Plate Girder alternative was too high

Conclusion

- Design Tasks Remaining:
 - o Refined Shear & Moment Analysis
 - o Lateral Bracing Design
 - o Camber Design
 - o Approach Slab Design
 - o Shear Stud Design
 - o Steel Reinforcement Analysis
 - o Connection Design Refinement & Analysis
 - Girder optimization

