- 1. True of False. Whether following vectors could construct a subspace (Rⁿ is the n- dimensional space).
 - a) The n-dimensional vectors in which each elements is integer
 - b) The solution of equation $x_1 + x_2 + \cdots + x_n = 0$.
 - c) The solution of equation $x_1 + x_2 + \cdots + x_n = 1$.
 - d) The n-dimensional vectors in which the first two elements are equal.
 - e) The points in the first quadrant.
- 2. Let $a_1 = (0,1,1)^T$, $a_2 = (1,0,1)^T$, $a_3 = (1,1,0)^T$. Prove that **span**{ a_1, a_2, a_3 } = R³.
- 3. Let $a_1 = [1, 2, -1, 0]^T$, $a_2 = [1, 1, 0, 2]^T$, $a_1 = [2, 1, 1, a]^T$. If dim **span**{ a_1, a_2, a_3 }=2, what is the value of a?
- 4. Let W is a real number set in [0,1]. Then we define the **addition** operator on W: if $f_1+f_2\in W$, then f_1+f_2 is a function as $(f_1+f_2)(x)=f_1(x)+f_2(x)$. Also we define the **multiplication function by scalars** as $(rf)(x)=r\cdot f(x)$ where r is a real number. Proof W is a vector space on R, and given the zero vector in W.
- 5. Computer the Nul A

$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix}$$

- 6. Let $W = \begin{cases} \begin{bmatrix} s+3t \\ r+s-2t \\ 2r+s \\ 3r-s+t \end{bmatrix} : r, s, t \in R \end{cases}$. If W = Col A, compute the matrix A.
- 7. Determine whether the vector v either in Col A or in Nul A, or in both Col A and Nul A.

$$v = \begin{bmatrix} -7\\3\\2 \end{bmatrix}, A = \begin{bmatrix} 1 & -1 & 5\\2 & 0 & 7\\-3 & -5 & -3 \end{bmatrix}$$

8. Let $\{a_1, a_2, a_3\}$ be a basis for R^3 , and $b_1=a_1+a_2-2a_3$, $b_2=a_1-a_2-a_3$, $b_3=a_1+a_3$, $\beta=6a_1-a_2-a_3$. Proof that $\{b_1, b_2, b_3\}$ is also a basis for R^3 , and find the coordinate vector of β relative to $\{b_1, b_2, b_3\}$