

Shreyas_Vedantu

HOD Physics-JEE

Shreyas H

- B.Tech from NIT Nagpur
- Research from IIT Bombay
- > 12+ Years Teaching Experience
- Produced top 100 AIRs
- Mentored 1,000s into IITs, BITs, NITs, IISER, IISC & premier institutes
- Foodie by heart, teacher by choice ... Techie by passion!

Not 1, not 2, not 3

20+ Vedantu students

scored 98% and above in 12th Boards!

Adarsh V Kerala Board

Abhinav Pradeep

Aastha N Raj ISC Board

Bharat Kumar B

Krithika B Karnataka Board

Niranjana R Kerala Board

Vivek Mohan J Kerala Board

Kalidas Viswam Kerala Board

Devika V Kerala Board

98.8% Rajasthan Board

Aatman Upreti CBSE Board

Mrinal Gauray J&K Board

Our students have scored well across the board!

12th Board Results

CBSE, ISC & State Boards

ENTHUSE-11TH (JEE 2023)

Batch startson Monday

Use Code SHHPRO 10% Off	LITE	CLASSIC	PLUS
	₹3,600 Per Month	₹4,950 Per Month	₹6,750 Per Month
Live Interactive Online Classes	✓	√	✓
Test Series & Analysis	✓	\checkmark	
Notes & Study Materials	\checkmark	\checkmark	✓
Doubt Solving During Class			
Doubt Solving on Mobile App	BANDAN MAR		
Personal Mentor		Nan T	

For any queries shreyas_vedantu

VENTHUSE

NEW OFFICIAL TELEGRAM GROUP

Link: https://vdnt.in/venthuse

JOIN NOW

TO GET INSTANT UPDATES AND EXAM RELATED NOTIFICATIONS.

Angular Position

Angle made by position vector of a moving particle with respect to origin with reference line is known as angular position.

Angular Displacement

Angular displacement is the angle subtended by the position vector at the centre of the circular path.

Angular displacement $(\Delta \theta) = \frac{\Delta s}{r}$

Where, Δs is the linear displacement and \mathbf{r} is the radius.

Its SI unit is radian.

Angular Velocity

Angular Velocity

The time rate of change of angular displacement ($\Delta\theta$) is called angular velocity.

Angular velocity
$$\ (\omega) = rac{\Delta heta}{\Delta t}$$

Angular velocity is a vector quantity SI unit is rad/s.

Relation between linear velocity(v) and angular velocity(ω) is given by

$$\mathbf{v} = \mathbf{\omega} \mathbf{x} \mathbf{r}$$

Instantaneous Angular Velocity

The angular velocity of a particle at any instant is called instantaneous angular velocity.

$$\omega = d\theta/dt$$

Nurture 2023 Circular Motion

Angular Acceleration

The rate of change of angular velocity is called angular acceleration.

Angular acceleration
$$= rac{d\omega}{dt} = rac{d^2 heta}{dt^2}$$

Its SI unit is rad/s²

Relation between linear acceleration(a) and angular acceleration(α)

$$a = r \alpha$$

Where, r = radius.

(a) Rotation rate counterclockwise and increasing

(b) Rotation rate counterclockwise and decreasing

Instantaneous Angular Acceleration

The angular Acceleration of a particle at any instant is called instantaneous angular Acceleration.

$$\alpha = d\omega/dt$$

The angular velocity of hour's hand in wall clock is (in(rads-1))

$$\mathbf{A} \qquad \frac{\pi}{3000}$$

$$\frac{\mathbf{B}}{3600}$$

$$\begin{array}{c} \mathbf{C} & \frac{\pi}{21600} \end{array}$$

$$\mathbf{D} \qquad \frac{\pi}{1800}$$

The angular velocity of hour's hand in wall clock is (in(rads-1))

$$\mathbf{A} \qquad \frac{\pi}{3000}$$

$$\frac{\mathbf{B}}{3600}$$

$$\begin{array}{c} \mathbf{C} & \frac{\pi}{21600} \end{array}$$

$$\mathbf{D} \qquad \frac{\pi}{1800}$$

Let's Solve A point on the rim of a wheel 2m in diameter has linear acceleration of 8ms⁻². The angular acceleration of the wheel is

- **A** 4 rad s⁻²
 - \mathbf{B} 8 rad s⁻²
- C 16 rad s⁻²
- $\mathbf{D} \qquad 10 \text{ rad s}^{-2}$

Let's Solve
A point on the rim of a wheel 2m in diameter has linear acceleration of 8ms⁻². The angular acceleration of the wheel is

- **A** 4 rad s⁻²
- \mathbf{B} 8 rad s⁻²
- C 16 rad s⁻²
- $\mathbf{D} \qquad 10 \text{ rad s}^{-2}$

The angle turned by a body undergoing circular motion depends on time as $\theta = \theta_0 + \theta_1 t + \theta_2 t^2$. Then the angular acceleration of the body is

$$\theta_2$$

The angle turned by a body undergoing circular motion depends on time as $\theta = \theta_0 + \theta_1 t + \theta_2 t^2$. Then the angular acceleration of the body is

$$\theta_2$$

Centripetal Acceleration

In circular motion, an acceleration acts on the body, whose direction is always towards the centre of the path. This acceleration is called centripetal acceleration.

Centripetal acceleration
$$=rac{
u^2}{r}=r\omega^2$$

Centripetal acceleration is also called radial acceleration as it acts along radius of circle.

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 90 kmph?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 90 kmph?

Ans

 1.25 m/s^2

Doubts

More than 2 Million doubts solved

Uniform Circular Motion

If the magnitude of the velocity (=speed) of the particle in circular motion remains constant, then it is called uniform circular motion.

Time Period

The time required to complete one rotation is called time period (T).

$$T=2\pi/\omega$$

Frequency

Number of rotations in one second is called frequency f.

$$f = 1/T$$

Angular frequency $\omega = 2 \pi f$

Revolution

A point on the rim of a wheel 2m in diameter has linear velocity of 8m/s. What will be the angular velocity of the wheel in RPM? What is the time period of revolution?

Nurture 2023 Circular Motion

A point on the rim of a wheel 2m in diameter has linear velocity of 8m/s. What will be the angular velocity of the wheel in RPM? What is the time period of revolution?

Ans

 $240/\pi$ RPM, $\pi/4$ s

Let's Solve

Nurture 2023 Circular Motion

What will be the average acceleration of a car travelling at 36 kmph to take a turn by 180°, while travelling along an arc of length 314 m? What would its instantaneous acceleration be?

Nurture 2023 Circular Motion

What will be the average acceleration of a car travelling at 36 kmph to take a turn by 180°, while travelling along an arc of length 314 m? What would its instantaneous acceleration be?

Ans

 $2/\pi \text{ m/s}^2$ 1 m/s^2

Homework

Nurture 2023

Circular Motion The angular displacement of a particle is given by $\theta = t^3 + t^2 + t + 1$ where 't' is time in seconds. Its angular velocity after 3s is

- A 34 radius⁻¹
- B 24 radius⁻¹
- C 15 radius⁻¹

D 6 radius⁻¹

Homework

Nurture 2023

Circular Motion The angular displacement of a particle is given by $\theta = t^3 + t^2 + t + 1$ where 't' is time in seconds. Its angular velocity after 3s is

$$\theta = t^3 + t^2 \times t + 1$$

$$T = 3 \text{ sec}$$

$$\omega = \frac{d\theta}{dt} = 3t^2 + 2t + 1$$

$$3(9) + 2t + 1$$

$$=27 + 6 + 1$$

A particle moves in a circle of radius 100 m with constant speed of 20 m/s. What is its angular velocity in radians per second about the centre of the circle? What is the centripetal acceleration?

A particle moves in a circle of radius 100 m with constant speed of 20 m/s. What is its angular velocity in radians per second about the centre of the circle? What is the centripetal acceleration?

Ans

0.2 rad /s, $4m/s^2$

$$\omega = 20 / 100 = 0.2 \text{ rad/s}$$

$$a_s = \omega^2 r = 0.2^2 (100) = 4 \text{ m/s}^2$$

A particle moves in a circle of radius 100 m with constant speed of 20 m/s. What is the frequency?

A particle moves in a circle of radius 100 m with constant speed of 20 m/s. What is the frequency?

Ans

 $1/10\pi$ Hz

$$f = \omega / 2\pi = v/2\pi r = 20 / 2\pi (100) = 1/10\pi Hz$$

ENTHUSE-11TH (JEE 2023)

Batch starts ON MONDAY

Use Code SHHPRO 10% Off	LITE	CLASSIC	PLUS
	₹3,600 Per Month	₹4,950 Per Month	₹6,750 Per Month
Live Interactive Online Classes	✓	√	✓
Test Series & Analysis	✓	\checkmark	
Notes & Study Materials	\checkmark	\checkmark	✓
Doubt Solving During Class	lacksquare		
Doubt Solving on Mobile App	BANDAN MAR	A	
Personal Mentor		Nan T	

For any queries shreyas_vedantu

SUBSCRIBE

Share

Subscribe