Отчёт по лабораторной работе №16

Администрирование локальных сетей

Ищенко Ирина НПИбд-02-22

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	12
5	Контрольные вопросы	13
Список литературы		15

Список иллюстраций

3.1	Размещение оборудования	6
3.2	Физическая область	6
3.3	Первоначальная настройка	7
3.4	Первоначальная настройка	8
3.5	Настройка интерфейсов	8
3.6	Настройка интерфейсов	9
3.7	Проверка	9
3.8	Настройка VPN	LO
3.9	Настройка VPN	LO
3.10) Настройка VPN	1

1 Цель работы

Получение навыков настройки VPN-туннеля через незащищённое Интернетсоединение [1].

2 Задание

Настроить VPN-туннель между сетью Университета г. Пиза (Италия) и сетью «Донская» в г. Москва.

3 Выполнение лабораторной работы

Сеть Университета г. Пиза (Италия) содержит маршрутизатор Cisco 2811 pisa-inipi-gw-1, коммутатор Cisco 2950 pisa-unipi-sw-1 и конечное устройство РС рс-unipi-1. Разместим оборудование в рабочей области проекта. Изменим модули медиаконвертера (рис. 3.1).

Рис. 3.1: Размещение оборудования

В физической рабочей области проекта создадим город Пиза, здание Университета г. Пиза. Переместим туда соответствующее оборудование (рис. 3.2).

Рис. 3.2: Физическая область

Сделаем первоначальную настройку маршрутизатора Университета г. Пиза (рис. 3.3).

```
Router tonfiguration commands, one per line. End with CNTL/Z.
Router(config) #hostname pisa-unipi-ioithenko-gw-1
pisa-unipi-ioithenko-gw-1 (config) #^Z
pisa-unipi-ioithenko-gw-1 (config) # SYSS-5-CONFIG_I: Configured from console by console

pisa-unipi-ioithenko-gw-1 # configured from console by console

pisa-unipi-ioithenko-gw-1 # configured from console by console

pisa-unipi-ioithenko-gw-1 (configured from console by console

pisa-unipi-ioithenko-gw-1 (configured from console by console

pisa-unipi-ioithenko-gw-1 (configured from console opisa-unipi-ioithenko-gw-1 (configured from console by console

Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 2048

© Generating 2048 bit RSA keys, keys will be non-exportable...[OK]

**Mar 1 0:10:38.654: %SSH-5-ENABLED: SSH 1.99 has been enabled pisa-unipi-ioithenko-gw-1 (configured from console by console

pisa-unipi-ioithenko-gw-1 (configured from console by console
```

Рис. 3.3: Первоначальная настройка

Сделаем первоначальную настройку коммутатора Университета г. Пиза (рис. 3.4).

```
Switch(config) #hostname pisa-unipi-ioithenko-sw-1
pisa-unipi-ioithenko-sw-1(config) #^2
pisa-unipi-ioithenko-sw-1#
$\text{SYS-5-CONFIG_I:} Configured from console by console

pisa-unipi-ioithenko-sw-1#
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-ioithenko-sw-1(config) #line vty 0 4
pisa-unipi-ioithenko-sw-1(config-line) #password cisco
pisa-unipi-ioithenko-sw-1(config-line) #password cisco
pisa-unipi-ioithenko-sw-1(config-line) #login
pisa-unipi-ioithenko-sw-1(config-line) #sasword cisco
pisa-unipi-ioithenko-sw-1(config-line) #password cisco
pisa-unipi-ioithenko-sw-1(config-line) #password cisco
pisa-unipi-ioithenko-sw-1(config-line) #password cisco
pisa-unipi-ioithenko-sw-1(config-line) #exit
pisa-unipi-ioithenko-sw-1(config) #service password-encryption

* Invalid input detected at '^' marker.

pisa-unipi-ioithenko-sw-1(config) #service password-encryption
pisa-unipi-i
```

Рис. 3.4: Первоначальная настройка

Сделаем настройку интерфейсов коммутатора Университета г. Пиза (рис. 3.5).

```
pisa-unipi-ioithenko-gw-1 config) #int f0/0
pisa-unipi-ioithenko-gw-1 (config) #int f0/0
pisa-unipi-ioithenko-gw-1 (config) #int f0/0
pisa-unipi-ioithenko-gw-1 (config-if) #
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
pisa-unipi-ioithenko-gw-1 (config-if) #exit
pisa-unipi-ioithenko-gw-1 (config) #int f0/0.401
pisa-unipi-ioithenko-gw-1 (config) #int f0/0.401
pisa-unipi-ioithenko-gw-1 (config-subif) #
%LINK-5-CHANGED: Interface FastEthernet0/0.401, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.401, changed state to up
pisa-unipi-ioithenko-gw-1 (config-subif) #encapsulation dot10 401
pisa-unipi-ioithenko-gw-1 (config-subif) #je address 10.131.0.1 255.255.255.0
pisa-unipi-ioithenko-gw-1 (config-subif) #description unipi-main
pisa-unipi-ioithenko-gw-1 (config-subif) #sint f0/1
pisa-unipi-ioithenko-gw-1 (config) #int f0/1
pisa-unipi-ioithenko-gw-1 (config-if) # % shutdown
pisa-unipi-ioithenko-gw-1 (config-if) # % paddress 192.0.2.20 255.255.255.0
pisa-unipi-ioithenko-gw-1 (config-if) # paddress 192.0.2.20 255.255.255.0
pisa-unipi-ioithenko-gw-1 (
```

Рис. 3.5: Настройка интерфейсов

Сделаем настройку интерфейсов коммутатора Университета г. Пиза (рис. 3.6).

```
pisa-unipi-ioithenko-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-ioithenko-sw-1(config)#int f0/24
pisa-unipi-ioithenko-sw-1(config-if)#switchport mode trunk
pisa-unipi-ioithenko-sw-1(config-if)#switchport mode access
pisa-unipi-ioithenko-sw-1(config-if)#switchport mode access
pisa-unipi-ioithenko-sw-1(config-if)#switchport access vlan 401
% Access VLAN does not exist. Creating vlan 401
pisa-unipi-ioithenko-sw-1(config-if)#switchport access vlan 401
pisa-unipi-ioithenko-sw-1(config-if)#swit
pisa-unipi-ioithenko-sw-1(config-ylan)#name unipi-main
pisa-unipi-ioithenko-sw-1(config-vlan)#name unipi-main
pisa-unipi-ioithenko-sw-1(config-if)#
pisa-unipi-ioithenko-sw-1(config-if)#
%LINK-5-CHANGED: Interface Vlan401, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan401, changed state to up
pisa-unipi-ioithenko-sw-1(config-if)#swit
pisa-unipi-ioith
```

Рис. 3.6: Настройка интерфейсов

Зададим IP-адрес оконечному устройству и проверим работоспособность (рис. 3.7).

Рис. 3.7: Проверка

Настроим VPN на основе протокола GRE (рис. 3.8) и (рис. 3.9).

```
msk-donskaya-ioithenko-gw-1>enable
Password:
msk-donskaya-ioithenko-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-ioithenko-gw-1(config)#int Tunnel0
msk-donskaya-ioithenko-gw-1(config-if)#
%LINK-5-CHANGED: Interface Tunnel0, changed state to up
msk-donskaya-ioithenko-gw-1(config-if)#tunnel source f0/1.4
msk-donskaya-ioithenko-gw-1(config-if)#tunnel source f0/1.4
msk-donskaya-ioithenko-gw-1(config-if)#tunnel destination 192.0.2.20
msk-donskaya-ioithenko-gw-1(config-if)#tunnel destination 192.0.2.20
msk-donskaya-ioithenko-gw-1(config-if)#sizi
msk-donskaya-ioithenko-gw-1(config-if)#exit
msk-donskaya-ioithenko-gw-1(config-if)#exit
msk-donskaya-ioithenko-gw-1(config-if)#interface loopback0
msk-donskaya-ioithenko-gw-1(config-if)# %LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
msk-donskaya-ioithenko-gw-1(config-if)#ip address 10.128.254.1 255.255.255.255
msk-donskaya-ioithenko-gw-1(config-if)#ip address 10.128.254.5 255.255.255.255
msk-donskaya-ioithenko-gw-1(config-if)#ip route 10.128.254.5 255.255.255.255.255
msk-donskaya-ioithenko-gw-1(config)#ip route 10.128.254.5 255.255.255.255.255
msk-donskaya-ioithenko-gw-1(config)#ip route 10.128.254.5 255.255.255.255.255.255
msk-donskaya-ioithenko-gw-1(config)#ip route 10.128.254.5 255.255.255.255.255.255
```

Рис. 3.8: Настройка VPN

```
pisa-unipi-ioithenko-gw-1 #conf t
Enter configuration commands, one per line. End with CNTL/Z.
pisa-unipi-ioithenko-gw-1 (config) #interface Tunnel0

pisa-unipi-ioithenko-gw-1 (config-if) #
%LINK-5-CHANGED: Interface Tunnel0, changed state to up
pisa-unipi-ioithenko-gw-1 (config-if) #ip address 10.128.255.254 255.255.255.252
pisa-unipi-ioithenko-gw-1 (config-if) #tunnel source f0/1
pisa-unipi-ioithenko-gw-1 (config-if) #tunnel destination 198.51.100.2
pisa-unipi-ioithenko-gw-1 (config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up
pisa-unipi-ioithenko-gw-1 (config-if) #exit
pisa-unipi-ioithenko-gw-1 (config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface loopback0

pisa-unipi-ioithenko-gw-1 (config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up

pisa-unipi-ioithenko-gw-1 (config-if) #ip address 10.128.254.5 255.255.255
pisa-unipi-ioithenko-gw-1 (config-if) #exit
pisa-unipi-ioithenko-gw-1 (config) #ip route 10.128.254.1 255.255.255.255 10.128.255.253
pisa-unipi-ioithenko-gw-1 (config) #router ospf 1
pisa-unipi-ioithenko-gw-1 (config) #router ospf 1
pisa-unipi-ioithenko-gw-1 (config-router) #router-ind 10.128.254.5
pisa-unipi-ioithenko-gw-1 (config-router) #router-ind 10.128.254.5
pisa-unipi-ioithenko-gw-1 (config-router) #exit
```

Рис. 3.9: Настройка VPN

Проверим доступность узлов сети Университета г. Пиза с ноутбука администратора сети «Донская». Доступно (рис. 3.10).

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.131.0.1

Pinging 10.131.0.1 with 32 bytes of data:

Reply from 10.131.0.1: bytes=32 time=13ms TTL=254
Reply from 10.131.0.1: bytes=32 time=10ms TTL=254
Ping statistics for 10.131.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 13ms, Average = 8ms

C:\>ping 10.131.0.200

Pinging 10.131.0.200 bytes=32 time=10ms TTL=126
Reply from 10.131.0.200: bytes=32 time=16ms TTL=126
Reply from 10.131.0.200: bytes=32 time=16ms TTL=126
Reply from 10.131.0.200: bytes=32 time=10ms TTL=126
Reply from 10.131.0.200:
```

Рис. 3.10: Настройка VPN

4 Выводы

В ходе выполнения лабораторной работы я получила навыков настройки VPNтуннеля через незащищённое Интернетсоединение.

5 Контрольные вопросы

1. Что такое VPN?

Виртуальная частная сеть (Virtual Private Network, VPN) — технология, обеспечивающая одно или несколько сетевых соединений поверх другой сети (например, Интернет).

2. В каких случаях следует использовать VPN?

VPN шифрует интернет-трафик, защищая данные от хакеров и интернетпровайдеров, что особенно важно в общедоступных Wi-Fi сетях. Он скрывает реальный ІР-адрес, предотвращая отслеживание местоположения и онлайнактивности. VPN помогает обходить цензуру и географические ограничения, предоставляя доступ к заблокированным сайтам и региональному контенту. Он также незаменим для безопасной работы в корпоративных сетях, позволяя сотрудникам удаленно подключаться к корпоративным ресурсам и защищая корпоративные данные от несанкционированного доступа. VPN защищает от атак типа «человек посередине» и блокирует вредоносные веб-сайты и фишинговые атаки. Он также позволяет экономить на покупках, предоставляя доступ к региональным ценам на товары и услуги в интернете. Примеры использования VPN включают защиту личной информации в общедоступных Wi-Fi сетях, обход географических ограничений, безопасную удаленную работу и анонимный серфинг. В современном цифровом мире, где угрозы кибербезопасности и ограничения доступа становятся все более распространенными, VPN является мощным инструментом для обеспечения безопасности и конфиденциальности.

3. Как с помощью VPN обойти NAT?

Обход NAT с помощью VPN возможен благодаря тому, что VPN создает зашифрованное соединение между устройством пользователя и удаленным сервером, обходя при этом ограничения, налагаемые NAT. Это позволяет устройству пользователя обмениваться данными через интернет, игнорируя ограничения NAT.

Список литературы

1. Королькова А.В., Кулябов Д.С. Администрирование сетевых подсистем. Лабораторный практикум: учебное пособие. Москва: РУДН, 2021. 137 с.