

Introduction aux Réseaux de Communication (IRC, ou « réseaux 1A »)

Roland Groz

Roland.Groz@imaq.fr

IMAG 241

LIG équipe VASCO

Lab. d'Informatique de Grenoble

Ghislaine Maury

Maury@minatec.grenoble-inp.fr

Minatec A435

IMEP

Institut de Microélectronique, Electromagnétisme et Photonique

Quelques mots sur le prof

- Ingénieur du corps (fonctionnaire) des télécom Mines
- 1982-2002: chercheur au Centre National d'Études des Télécommunications (Lannion)
 - Devenu France Télécom R&D, devenu Orange Labs
 - Responsable d'un laboratoire et des recherches en GL
- 2002-2023: professeur à l'INP de Grenoble
- Domaine de recherche: réseaux Génie Logiciel
 - Méthodes formelles, test, sécurité, rétro-ingénierie
- Responsable cours: IRC (1A) Sécurité (1A), MAP (1A), projet GL (2A), Histoire de l'informatique (2A), Test des logiciels (3A)
- Chargé de mission Culture pour l'INP

Problématique: échange d'informations

Utilisateurs

Machines

Applications

Information en réseau

Information en réseau

Métaphore: réseau=nuage

D'où « cloud computing » quand l'information est stockée et traitée dans le réseau (« <u>infonuagique</u> » en bon français)

Objectifs du cours IRC (réseaux 1A)

- Concepts de base de la communication de l'information
 - Ce que tout IG Ensimag doit savoir, quels que soient son orientation et ses métiers ultérieurs
- Réseau vu de l'utilisateur
 - Focalisation sur les applications
 - Part de l'expérience courante: mél, web, téléphone
- Ouvertures sur le traitement de l'information (et aspects mathématiques associés)
 - Disciplines connexes: théorie de l'information, signal, cryptographie, graphes...

Objectifs du cours: <u>exemples</u>

- Analyser et comprendre le déroulement d'une requête Web
 - machines impliquées, messages échangés, gestion de la sécurité
 - « soulever le capot » pour comprendre les mécanismes
- Structures à mettre en place pour constituer un réseau d'information (cf annales examens)
 - Salles de marché, hotspot Wifi, réseaux de capteurs d'une centrale nucléaire, vote électronique...

Exemple: requête Web

Texte, images, animations:

Serveur Www.

magnolia.infra.grenoble-inp.fr
 alias ensimag.grenoble-inp.fr
alias phelma.grenoble-inp.fr etc.

http://ensimag.grenoble-inp.fr

Client WWW Navigateur (Firefox,IE...)

Méthode pédagogique & symboles

• Support: diapos + Vidéo

Notions clés de chaque chapitre

- Questions échanges (en cours)
 - Travail de groupe avec voisins
 - Court: soyez efficaces

- Recherche biblio-réflexion (1 petite question en fin de cours)
 - Interrogation en début de cours suivant

- Illustration expérimentale du fonctionnement de réseaux
- Reprises en TP

- Ouvertures scientifiques
 - Problèmes en réseaux, et liens avec autres cours (maths)
- Histoire des sciences et techniques

Votre école: l'Ensimag

Positionnement scientifique

Ecole généraliste ou spécialisée ?

Disciplines phares de l'Ensimag ?

Positionnement

Information

- Représentation de connaissances
- Peut être représentée de deux manières
 - analogique (grandeur physique)
 - numérique (bits)
- Tout devient numérique
 - TV, radio, téléphone, journaux, livres
- La représentation numérique est meilleure
 - traitement informatique
 - copie parfaite, transmission (=copie distante) sans altération
 - banalisation: un même réseau transmet des nombres, qui peuvent représenter des sons, des images, des textes etc.
 - transmission efficace → réseaux d'ordinateurs

NB: « digital » = anglicisme pour « numérique » pour les nuls qui comptent sur leurs doigts (digits)

Simplification-uniformisation: information = suite de bits

R. GROZ Intro-11

$ho^{i\pi}$

Les mesures associées à l'information

Vous verrez dans ce cours:

- Bit: unité de mesure de la quantité d'information (cf. cours Théorie de l'information)
- Baud: unité de transfert d'information
 - Nombre de symboles/unité de temps
- Erlang: unité de mesure de trafic

Unités sans dimension physique (MKSA): l'information est immatérielle, conceptuelle.

Au cœur du traitement de l'information

IRC: CHapitres du cours

CN - Communication Numérique

- Comment l'information représentée par des bits (nombres) peut être transmise à distance sans erreur malgré les déformations
- Vous comprendrez:

Le lien entre bande de fréquence et débit (formules...)

AR – Architecture

- Comment on découpe et assemble les
 « briques » pour combiner les fonctions nécessaires à la communication
 - Architecture en couches
- Vous comprendrez:
 - Pourquoi il y a tant de normes de réseaux et non une seule
 - Comment choisir et argumenter entre plusieurs solutions pour relier des sites d'une entreprise

PR - Protocoles

- Comment s'organise le dialogue entre machines différentes
- Vous comprendrez:
 - Comment analyser les échanges entre deux machines
 - Comment deux machines peuvent acheminer sans perte des informations même si le réseau perd des messages

AP – Applications

- Fonctionnement d'applications réparties
 - Courriel mél
 - Web
 - Connexions distantes (ssh, X11)
- Vous verrez en TP:
 - Comment relever le courrier par une connexion POP
 - Comment installer et sécuriser un site Web

NF – aspects Non-Fonctionnels

- •F = Propriété 1^{ère} (« fonctionnelle »): assurer la communication de l'information
- NF: qualités de la communication, en 1A on abordera:
 - Performance (débits, délais...)
 - Sécurité: aspects « réseaux » (en // du cours d'intro à la sécurité, cryptographie...)

Réseaux: concepts de base

Réseau: en une image

- reticulum: réseau, résille, sachet ou retiolum: petit filet

- de rete, retis: filet

Réseau <-> Filet

- Rétiaire
- Rets (Le lion & le rat)

Les réseaux des ingénieurs

- Transport
 - routier
 - ferroviaire
 - aérien
- Eau
 - adduction
 - assainissement
- Energie
 - électricité
 - gaz

Les réseaux d'information

- Signalisation militaire (depuis l'Antiquité)
- La Poste (idem. Puis 1296 monopole Sorbonne. 1464 Louis XI)
- Télégraphe optique (aérien) de Chappe (1792-1855)
- Télégraphe électrique Morse (1838-197x) (Ampère, Wheatstone)
- Télex (1946-): commutation de messages
- Radio TSF (Marconi 1895) (après Popov, Ducretet)
- Téléphone (Bell 1876-) (après Meucci)
- Diffusion TV (hertzienne, satellitaire, câble)
- Réseaux informatiques
 - X.25 (Transpac), *Internet*, ...
- Téléphones mobiles

Réseaux: les concepts communs

• Filet, maillage: *graphe*, associant des <u>nœuds</u> et des <u>liens</u>

 Mise en relation d'extrémités (terminaux) via le graphe

 <u>Circulation</u>: de personnes, de matière, d'énergie, d'information

Nœuds: chapitres ARchi, APpli

Liens: chapitres ComNum, RxAcc

Relation: chapitres PRot, NonFonc

Éléments de structure

Réseau Concept	Route train	Eau	EdF	Féléphone	Internet
Objets	véhicule	eau	électricité	voix, sons	paquets
Lien	voie, ligne, route			ligne, câble	liaison, canal, route
Noeud	gare, carrefour				nœud, routeur
Terminal	terminus	source, puits			?

Fonctions des noeuds

- Stockage (réservoir, gare)
 - -> tampons (buffers)
- Acheminement (aiguillage, commutateur)
 - > routage
- Concentration/distribution (transformateurs)
 - -> multiplexage

Bilan Intro: notions essentielles à retenir

- Contrat pédagogique
 - Façon de travailler pour ce cours
 - Situer les grands chapitres du cours: CN AR PR NF AP
- Focalisation du cours:
 - bases de la communication de l'information numérique
 - réseau vu de l'utilisateur
- Concept de <u>réseau</u>
 - Représentation graphique: nuage

Une diapositive «ce qu'il faut avoir compris » à la fin de chaque chapitre

Intro-28

La question du jour

Retrouvez les 3 sens du mot bit

Étymologique

 Pour le stockage de musique sur votre téléphone (ou sur « clé USB » de 16Go)

 Pour le codage et la transmission d'information (à N kb/s)

Organisation pédagogique

- 21h de cours en amphi + 2h perm.
 - Support: diapositives schématiques => prise de <u>notes</u> essentielle
 - Pas de « poly » : livres de référence (méthodes universitaires internationales)
 - Commentaires supports + débats-questions + démos
 - <u>Noter</u> réponses et questions
- Chamilo: diapos, sujets TD et TP, exercices d'entraînement
- TD: 8 séances de 1h30 par groupe
 - TD: anciens sujets examens
 - A préparer AVANT la séance. Corrigé des questions que vous aurez préparées.
- Travaux Pratiques (encadrés, dirigés)
 - 4 sujets réseaux de données
 - Outils d'observation, Adresses, Messagerie, Serveur Web
 - 2 sujets de sécurité
 - Connexions sécurisées, protocoles cryptographiques
 - dernière séance: <u>examen de TP d'UE</u> (sur les 6 séances)

Importance des notes prises (cours,TD,TP)

- Cours sur diapos: « effet TV », passivité
 - Se comprend bien sur le moment avec le discours
 - S'oublie très vite
- Débats et questions en amphi et en TD
 - Pas de trace en l'absence de notes
 - Les <u>questions</u> de vos camarades sont plus importantes que les réponses de votre prof (car ce sont vos reformulations)
 - Pas forcément de corrigé « unique » en TD ou TP
- Notes à finaliser et revoir très vite
 - le soir, en tous cas avant le TD et le cours suivant
 - Les notes vous serviront pour l'examen

Travail demandé

UE à 6 ECTS (6 « crédits » européens)

- 1 ECTS: 25 à 30h de travail étudiant
- Méthode française (IG): beaucoup de cours encadrés
 - 1h encadrée 1hxx travail personnel
- Méthode universitaire internationale
 - 1h encadrée <-> 3 à 4h de travail personnel, beaucoup de devoirs, projets, travail en bibliothèque
- UE Rx & sécu: 30h Cours + 16,5h TD +18h TP ~ 65h

```
=> travail personnel ~ 80 à 120 h
(~ 9h/semaine sur 11 semaines)
```

- Travail à faire
 - <u>lire (avant)</u>, relire, réorganiser ses notes, <u>reformuler</u>
 - préparer des <u>questions</u> (pour amphi, pour TD)

Evaluation

Examen de cours SANS

Examen de TP

AVEC documents

- Examen final sur cours + TD
 - SANS Documents, sauf 1 feuille recto-verso (synthèse de notes)
 - Préparation: travail personnel régulier (9h/semaine)
 - Type de sujets = sujets de TD
- Examen de TP: non rattrapable
 - dernière séance de TP
 - pot-pourri de questions traitées lors des TP précédents

Note finale = 2/3 examen cours + 1/3 examen TP - pénalités pour absences

- Présence: contrôlée (en TP et TD)
 - 1 point en moins par absence non justifiée (justification à la scolarité=pour maladie, forum...)

Des enseignants à votre écoute

- Prise en compte des retours des étudiants.
 - réunions pédagogiques de mi-semestre (avec délégués),
 - évaluation de fin d'année (pensez à les remplir!)
 - retours en amphi, TD etc. + INP-PerForm
- Séances TD
 - demande que toutes les questions soient corrigées
 - » suppose que vous les ayez traitées, et préparé le TD
 - Sujets de TD et TP trop longs
 - » nous les réduisons, mais laissons des questions optionnelles
- Beaucoup de notions, cours vaste, survol
 - Mais seul cours de réseau pour certaines filières (MMIS, IF)

Cours déstabilisant pour élèves CPGE

- Introduction aux Réseaux de Communication
 - vs Analyse, Proba, TL: continuité <u>maths</u> de prépa
- Discipline *technologique*, d'ingénierie:
 - ne se prête pas à une présentation déductive
 - intégrant beaucoup d'éléments (*multiplicité des concepts* vs économie des concepts en maths)
 - état technologique *contingent* vs vérité scientifique nécessaire
 - pas de solution unique, choix résultants de compromis
 - Exemples: moteur rotatif vs alternatif, avion vs dirigeable, courant continu vs alternatif etc.
- Effort d'adaptation à l'enseignement « ingénieur »

Disciplines connexes

- Probas, processus stochastiques
 - Crucial dans la conception des réseaux
 - Cours de maths + cours d'évaluation de performances
- Graphes et optimisation
 - Algèbre linéaire, algorithmique
- Théorie de l'information, traitement du signal
 - Théorie des codes (algèbre, corps finis)
 - Cryptographie
 - Traitement du signal (analyse)
- Logique et preuves de programmes
 - Logiques temporelles ou modales
 - Validation de protocoles, de systèmes temps-réels...
- Physique des ondes électro-magnétiques
- SHS: Histoire des Techniques, Secteur industriel des télécom, Aspects juridiques, Ethique...

Cours réseaux dans le cursus Ensimag

Cours 1A:

- Aspects conceptuels:
 - Comprendre un des piliers du traitement de l'information
- Ce qui est visible: interface et supports physiques
- Compétence pratique: le réseau vu de l'utilisateur/administrateur
 - TP: commandes « Unix »
- Filières 2A & 3A: ISI, masters MoSIG & CySec
 - Technologies de réseaux
 - Sécurité
 - Programmation d'applications réparties, communicantes

Bibliographie principale

- J. Kurose & K. Ross <u>Analyse structurée des réseaux</u>, Pearson éducation.
 - Des applications vers le cœur de l'Internet
- A. Tanenbaum Réseaux, Pearson éducation.
 - Ouvrage de base classique, des couches basses aux couches hautes
- M. Joindot, A. Glavieux, <u>Introduction aux</u> <u>communications numériques</u>, Editions Dunod.
 - Ouvrage de base sur les communications numériques dans cours 1A, seul cas du canal idéal traité
- P. Lecoy, <u>Principes et technologies des télécoms</u>, Hermès Science Publications.

Rappels sur la méthode de travail

- •Support = poly-diapos + VOS <u>NOTES</u>
- Urgent!
 - Diapos: trop « légères ». Livres: trop « gros ».
 - Bon compromis nb pages: diapos < <u>NOTES</u> < livre
- Travail à faire
 - <u>lire (avant)</u>, relire, réorganiser ses notes, <u>reformuler</u>
 - préparer des <u>questions</u> (pour amphi, pour TD)
 - ==> préparez le TD1 à l'avance
- Les enseignants de TD sont là pour vous aider à réfléchir et évaluer vos solutions
 - ils ne vous donneront pas de corrigés pour des questions que le groupe n'aura pas traitées
- Chamilo & exercices: pour relire le cours et s'entraîner

R. GROZ PR1-39