```
In [1]: import nltk
    from nltk.tokenize import word_tokenize
    from nltk.corpus import stopwords
    from nltk.probability import FreqDist
    import matplotlib.pyplot as plt
    import numpy as np
    from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
    from collections import Counter
    import os
    import string
    import argparse
    import operator
```

```
In [2]: log = open("text.txt", "r")
        #print(log.read())
        tokenized word = word tokenize(log.read().lower())
        #print(tokenized word)
        from nltk.corpus import stopwords
        stop_words = set(stopwords.words('english'))
        items = [',', '.','...','-',':',';','?',"'s"]
        1 = list(stop words)
        for x in items:
            1.append(x)
        filtered sentence = []
        for w in tokenized word:
            if w not in 1:
                filtered sentence.append(w)
        #print(filtered sentence)
        fdist = FreqDist(filtered_sentence)
        plt.figure(figsize=(20,10))
        fdist.plot(70,cumulative=False)
        plt.show()
```



```
In [4]: data = ' '.join(filtered_sentence)

fout = open('text_new.txt', "a")
fout.write(data)
fout.close()
```

```
In [5]: def main():
            parser = argparse.ArgumentParser(description= doc , formatter class=argparse.RawDescriptionHelpFormatter)
            parser.add argument('-f','--filepath',dest='filepath',metavar='file path',help='Path to text input file to be anal
        vsed.', required=True)
            parser.add argument('-n','--number',dest='number',metavar='number',help='Most frequent n words will be displayed a
        nd plotted.', required=False, default=50, type=int)
            args = parser.parse args()
            # Path to text file to analyse
            rawfilepath = args.filepath
            # Print a histogram containing the top N words, and print them and their counts.
            top n = args.number
            # Load the file
            filepath = os.path.normpath(os.path.join(rawfilepath))
            file = open('text new.txt')
            # Parse as a list, removing lines
            content sublists = [line.split(',') for line in file.readlines()]
            # Parse into a single list (from a list of lists)
            content list = [item for sublist in content sublists for item in sublist]
            # Remove whitespace so we can concatenate appropriately, and unify case
            content list strip = [str.strip().lower() for str in content list]
            # Concatenate strings into a single string
            content concat = ' '.join(content list strip)
            # Remove punctuation and new lines
            punct = set(string.punctuation)
            unpunct content = ''.join(x for x in content concat if x not in punct)
            # Split string into list of strings, again
            word list = unpunct content.split()
            # Perform count
            counts_all = Counter(word_list)
```

```
words, count values = zip(*counts all.items())
   # Sort both lists by frequency in values (Schwartzian transform) - thanks, http://stackoverflow.com/questions/9543
211/sorting-a-list-in-python-using-the-result-from-sorting-another-list
   values sorted, words sorted = zip(*sorted(zip(count values, words), key=operator.itemgetter(0), reverse=True))
    # Top N
   words sorted top = words sorted[0:top n]
   values sorted top = values sorted[0:top n]
   print("{0} unique words identified in the text file, {1}".format(len(values sorted), filepath))
   print("The top {0} words are: \n{1}".format(top n, words sorted top))
   print("... their respective frequencies: \n{0}".format(values sorted top))
   print("-----")
    # Pandas DataFrame just for visualisation
   df = pd.DataFrame({'count': values sorted top, 'word': words sorted top})
    print("{0}".format(df))
   sys.stdout.flush()
    # Histogram
   # Make xticklabels comprehensible by matplotlib
   xticklabels = str(list(words sorted top)).split()
   # Remove the single quotes, commas and enclosing square brackets
   xtlabs = [xstr.replace("'","").replace(",","").replace("]","").replace("[","") for xstr in xticklabels]
   indices = np.arange(len(words sorted top))
   width = 0.6
   fig = plt.figure(figsize=(20,10))
   fig.suptitle('Word frequency histogram, top {0}'.format(top n), fontsize=25)
   plt.xlabel('word', fontsize=13)
   plt.ylabel('count', fontsize=13)
   plt.bar(indices, values sorted top, width)
   plt.xticks(indices, xtlabs, rotation='vertical', fontsize=12)
    plt.show()
if __name__ == '__main__':
   main()
```

Word frequency histogram, top 50

