

Dokumentacja Projektu grupowego

Informacje o projekcie Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

{wersja dokumentu wzorcowego: wersja 2/2023}

Nazwa i akronim projektu:	Zleceniodawca:		
Symulator pojazdu autonomicznego – SPA	dr inż. Paweł Kowalski		
Numer zlecenia:	Kierownik projektu:	Opiekun projektu:	
4@KAMS'2023/24	Łukasz Nowakowski	dr inż. Paweł Kowalski	

Nazwa dokumentu/akronim:	Nr wersji:	
Informacje o projekcie – IoP		
, , ,	1.01	
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:	
Konrad Bryłowski	24.10.2023	
	Data ostatniej aktualizacji:	
	31.10.2023	
	Studia I stopnia, inżynierskie	
	Semestr realizacji Projektu grupowego: 1	

Historia zmian

Thotoria Elman				
Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
1.00	wstępna wersja	całość	Konrad Bryłowski	24.10.2023
1.01	dodanie roli osoby odpowiedzialnej za dokumenty	rozdział 3.1	Konrad Bryłowski	31.10.2023

Spis treści

1	VVpro	owadzenie - o dokumencie	6
	1.1	Cel dokumentu	3
	1.2	Odbjorcy	3
	1.3	Terminologia	3
2	Cel i	założenia projektu	3
	2.1	Cel projektu	3
	2.2	Cel projektuZałożenia projektu	3
	2.2.1	Zakres prac	3
3	Orga	nizacja projektu	3
	3.1	Zespół projektowy	-
	3.2	Nadzór nad projektem	3
	3.3	Infrastruktura komunikacyjna	3
	3.4	Zarządzanie jakością w projekcie	4
4	Anali	za ryzyka i zarządzanie ryzykiem w projekcie	

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

Celem dokumentu jest uporządkowanie podstawowych informacji o projekcie, wykonawcach, temacie, zakresie projektu, wstępnie planowanym zakresie prac, zarządzaniu jakością i wykonanie uproszczonej analizy ryzyka.

1.2 Odbiorcy

Odbiorcami dokumentu są członkowie zespołu projektowego oraz zleceniodawca i opiekun projektu.

1.3 Terminologia

Git – system kontroli wersji

system kontroli wersji – oprogramowanie służące do śledzenia zmian w kodzie źródłowym oraz pomagające łączyć zmiany dokonane przez różnych członków zespołu

2 Cel i założenia projektu

2.1 Cel projektu

Celem projektu jest opracowanie dedykowanego symulatora pojazdu autonomicznego do przeprowadzania badań z obszaru sztucznej inteligencji. Symulacja obejmuje pojazd wyposażony w kamery oraz otoczenie, w którym będzie się on poruszał. Głównym celem symulatora jest trenowanie sztucznych sieci neuronowych, które będą sterować pojazdami autonomicznymi na podstawie obrazu z kamer. Ponadto, symulator powinien umożliwiać umieszczenie w środowisku wielu pojazdów, każdy z nich sterowany za pomocą innej sieci neuronowej, co pozwala na badania różnych strategii sterowania.

2.2 Założenia projektu

2.2.1 Zakres prac

- 1. Przegląd istniejących rozwiązań.
- 2. Projektowanie symulatora.
- 3. Implementacja głównego silnika symulatora.
- 4. Implementacja interfejsów komunikacji między sieciami neuronowymi a symulacja pojazdu.
- 5. Testy z wykorzystaniem popularnych architektur sieci neuronowych.

3 Organizacja projektu

3.1 Zespół projektowy

Tabela 3.1. Członkowie zespołu projektowego

bola 6.1. Ozlotikowie zeopola projektowego			
Lp.	Imię i nazwisko członka zespołu	Rola w projekcie	E-mail kontaktowy
1.	Konrad Bryłowski	dokumentacja	s188577@student.pg.edu.pl
2.	Aleksander Czerwionka		s188659@student.pg.edu.pl
3.	Michał Krause		s188592@student.pg.edu.pl
4.	Krystian Nowakowski		s188728@student.pg.edu.pl
5.	Łukasz Nowakowski	kierownik	s189396@student.pg.edu.pl

3.2 Nadzór nad projektem

Tabela 3.2. Osoby pełniące nadzór nad projektem

rabela 3.2. Osoby perniące naużor nau projektem			
Nazwa katedry	Katedra Algorytmów i Modelowania Systemów		
Opiekun	dr inż. Paweł Kowalski	e-mail: pawel.kowalski@pg.edu.pl	
Klient (osoba reprezentująca klienta)	dr inż. Paweł Kowalski	e-mail: pawel.kowalski@pg.edu.pl	
Koordynator katedralny	dr inż. Krzysztof Manuszewski	e-mail: manus@eti.pg.edu.pl	
Koordynator wydziałowy	dr inż. Sławomir Gaiewski	e-mail: slawomir.gaiewski@eti.pg.edu.pl	

3.3 Infrastruktura komunikacyjna

Kontakt zespołu z opiekunem będzie odbywał się stacjonarnie w środy między 12:00 a 13:00 i zdalnie przez spotkania na platformie Microsoft Teams oraz mailowo. Postępy prac opiekun będzie

mógł śledzić za pomocą platformy GitHub, gdzie będą umieszczane wszystkie dokumenty i wytworzone oprogramowanie.

Kontakt między członkami zespołu będzie realizowany przez komunikator Discord i komunikator Messenger. Fragmenty projektu będą przekazywane przez system kontroli wersji Git za pomocą platformy GitHub. Pracę koordynować będzie kierownik projektu.

3.4 Zarządzanie jakością w projekcie

W repozytorium na platformie GitHub będzie ustawiona obowiązkowa kontrola kodu przez innego członka zespołu przed zatwierdzeniem i zastąpieniem dotychczasowej wersji. Kontrolowane będą: poprawność, zgodność z przyjętymi zasadami formatowania oraz dobrymi praktykami programistycznymi. Dokumentacja projektu będzie przesyłana do Serwisu Projektów Grupowych dopiero po zatwierdzeniu.

Pomysły, uwagi będą zgłaszane pozostałym członkom zespołu a zadania będą przydzielane przez odpowiednie funkcjonalności platformy GitHub.

4 Analiza ryzyka i zarządzanie ryzykiem w projekcie

Tabela 4.1. Potencjalne ryzyka

Lp.	Nazwa ryzyka	Ocena prawdop. wystąpienia	Opis potencjalnych skutków	Sposoby rozwiązywania problemów
1.	Wyjazd członka zespołu	5%	Brak jednego ogniwa w projekcie. Brak dostępu do dokumentacji/ oprogramowania wytworzonej przez tą osobę.	Należy przeorganizować pracę zespołu.
2.	Awaria komputera członka zespołu	10%	Utrata postępów prac nieprzekazanych na platformę GitHub. Brak możliwości pracy przez jednego członka zespołu.	Trzeba zadbać o jak najczęstsze przekazywanie kodu na platformę GitHub lub używać oprogramowania automatycznie przesyłającego pliki do chmury.
3.	Choroba członka zespołu	25%	Spowolnienie pracy i brak możliwości stacjonarnego spotkania.	Chory członek zespołu będzie uczestniczyć w projekcie jedynie zdalnie, pozostali członkowie zespołu będą mu streszczać ewentualne spotkania stacjonarne, które go ominęły.