Paths, Cycles and Permanent A bridge between Combinatorics and Algebra

Kishlaya Jaiswal Advisor: Samir Datta

Chennai Mathematical Institute

June 4, 2021

▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \le k}$, find paths between each pair such that they are all pairwise disjoint.

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \le k}$, find paths between each pair such that they are all pairwise disjoint.
- k not fixed: NP-hard even for undirected planar graphs

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \le k}$, find paths between each pair such that they are all pairwise disjoint.
- ▶ *k* **not fixed**: NP-hard even for undirected planar graphs
- So let k be **fixed** but still NP-hard for <u>directed graphs</u> even for k = 2

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \leq k}$, find paths between each pair such that they are all pairwise disjoint.
- ▶ *k* **not fixed**: NP-hard even for undirected planar graphs
- So let k be **fixed** but still NP-hard for <u>directed graphs</u> even for k = 2
- ▶ But for directed planar graphs, *k*-disjoint paths can be found in poly-time [Schrijver 1994]

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \le k}$, find paths between each pair such that they are all pairwise disjoint.
- ▶ *k* **not fixed**: NP-hard even for undirected planar graphs
- So let k be **fixed** but still NP-hard for <u>directed graphs</u> even for k = 2
- ▶ But for directed planar graphs, k-disjoint paths can be found in poly-time [Schrijver 1994]
- ▶ If G is <u>undirected</u> then k-disjoint paths can be found in $O(n^3)$ for any fixed k [Robertson, Seymour]

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \le k}$, find paths between each pair such that they are all pairwise disjoint.
- ▶ *k* **not fixed**: NP-hard even for undirected planar graphs
- So let k be **fixed** but still NP-hard for <u>directed graphs</u> even for k = 2
- ▶ But for directed planar graphs, k-disjoint paths can be found in poly-time [Schrijver 1994]
- ▶ If G is <u>undirected</u> then k-disjoint paths can be found in $O(n^3)$ for any fixed k [Robertson, Seymour]
- ▶ What about shortest disjoint paths in undirected graphs?

- ▶ DP(k) problem: Given a graph G and k pairs of vertices $\{s_i, t_i\}_{i \leq k}$, find paths between each pair such that they are all pairwise disjoint.
- ▶ *k* **not fixed**: NP-hard even for undirected planar graphs
- So let k be **fixed** but still NP-hard for <u>directed graphs</u> even for k = 2
- ▶ But for directed planar graphs, k-disjoint paths can be found in poly-time [Schrijver 1994]
- ▶ If G is <u>undirected</u> then k-disjoint paths can be found in $O(n^3)$ for any fixed k [Robertson, Seymour]
- What about shortest disjoint paths in undirected graphs?
- ▶ A randomized poly-time algorithm for shortest DP(2) was presented by [Björklund, Husfeldt]

ightharpoonup For any matrix A over integers, $\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod a_{i\sigma(i)}$

- ▶ For any matrix A over integers, $det(A) = \sum_{\sigma} sgn(\sigma) \prod a_{i\sigma(i)}$
- Computing determinant is well-studied in the past and several fast (both parallel and sequential) algorithms are known.

- ▶ For any matrix A over integers, $\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod a_{i\sigma(i)}$
- ► Computing determinant is well-studied in the past and several fast (both parallel and sequential) algorithms are known.
- Permanent is defined as the following algebraic analogue of determinant: $\operatorname{perm}(A) = \sum_{\sigma} \prod a_{i\sigma(i)}$

- ▶ For any matrix A over integers, $det(A) = \sum_{\sigma} sgn(\sigma) \prod a_{i\sigma(i)}$
- ► Computing determinant is well-studied in the past and several fast (both parallel and sequential) algorithms are known.
- Permanent is defined as the following algebraic analogue of determinant: $\operatorname{perm}(A) = \sum_{\sigma} \prod a_{i\sigma(i)}$
- On the contrary, computing permanent is #P-hard [Valiant 1979]

- ▶ For any matrix A over integers, $\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod a_{i\sigma(i)}$
- ► Computing determinant is well-studied in the past and several fast (both parallel and sequential) algorithms are known.
- Permanent is defined as the following algebraic analogue of determinant: $\operatorname{perm}(A) = \sum_{\sigma} \prod a_{i\sigma(i)}$
- On the contrary, computing permanent is #P-hard [Valiant 1979]
- Nevertheless, Valiant also showed that we can compute permanent mod 2^k in $O(n^{4k-3})$, using Gaussian elimination, which is highly sequential.

- ▶ For any matrix A over integers, $\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod a_{i\sigma(i)}$
- ► Computing determinant is well-studied in the past and several fast (both parallel and sequential) algorithms are known.
- Permanent is defined as the following algebraic analogue of determinant: $\operatorname{perm}(A) = \sum_{\sigma} \prod a_{i\sigma(i)}$
- On the contrary, computing permanent is #P-hard [Valiant 1979]
- Nevertheless, Valiant also showed that we can compute permanent mod 2^k in $O(n^{4k-3})$, using Gaussian elimination, which is highly sequential.
- A parallel algorithm to compute permanent $\pmod{2^k}$ was discovered by [Braverman, Kulkarni & Roy]

► The permanent of a matrix can be regarded as the weighted sum of cycle covers of a directed graph.

- ► The permanent of a matrix can be regarded as the weighted sum of cycle covers of a directed graph.
- Cycle cover of a graph is a subset of edges which is form vertex-disjoint directed cycles covering all the vertices.

- ► The permanent of a matrix can be regarded as the weighted sum of cycle covers of a directed graph.
- Cycle cover of a graph is a subset of edges which is form vertex-disjoint directed cycles covering all the vertices.
- Given a weighted directed graph (G, w) with vertices labelled $\{v_1, \ldots, v_n\}$, adjacency matrix A_G of G is defined as $(A_G)_{ij} = \begin{cases} w(e) & \text{if } e = (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$

- ► The permanent of a matrix can be regarded as the weighted sum of cycle covers of a directed graph.
- Cycle cover of a graph is a subset of edges which is form vertex-disjoint directed cycles covering all the vertices.
- For Given a weighted directed graph (G, w) with vertices labelled $\{v_1, \ldots, v_n\}$, adjacency matrix A_G of G is defined as $(A_G)_{ij} = \begin{cases} w(e) & \text{if } e = (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$
- ▶ Denote by $w(C) = \prod_{e \in C} w(e)$ the weight of cycle cover then

$$\operatorname{perm}(A_G) = \sum_{\text{cycle covers } C} w(C)$$

Undirected Graphs

We view undirected graph as a directed graph with each edge $\{u, v\}$ replaced with two directed edges (u, v) and (v, u) with $w((u, v)) = w((v, u)) = w(\{u, v\})$ (symmetrical weights)

Shortest 2-disjoint paths [BH]

▶ SDP(2): Given a undirected graph G and 2 pairs of vertices $\{s_i, t_i \mid i \in \{1, 2\}\}$, find disjoint paths between each pair such that the sum of the lengths of these paths is minimum.

- ▶ SDP(2): Given a undirected graph G and 2 pairs of vertices $\{s_i, t_i \mid i \in \{1, 2\}\}$, find disjoint paths between each pair such that the sum of the lengths of these paths is minimum.
- ► Assign weight *x* to each edge and add self-loops (of weight 1) on all vertices except terminals

- ▶ SDP(2): Given a undirected graph G and 2 pairs of vertices $\{s_i, t_i \mid i \in \{1, 2\}\}$, find disjoint paths between each pair such that the sum of the lengths of these paths is minimum.
- ► Assign weight *x* to each edge and add self-loops (of weight 1) on all vertices except terminals
- ➤ To force cycles (in a cycle cover) to pass through the given terminals, we introduce pattern graphs.

- ▶ SDP(2): Given a undirected graph G and 2 pairs of vertices $\{s_i, t_i \mid i \in \{1, 2\}\}$, find disjoint paths between each pair such that the sum of the lengths of these paths is minimum.
- ► Assign weight *x* to each edge and add self-loops (of weight 1) on all vertices except terminals
- ➤ To force cycles (in a cycle cover) to pass through the given terminals, we introduce pattern graphs.
- ▶ A pattern P is an ordered pairing of the given terminals.

- ▶ SDP(2): Given a undirected graph G and 2 pairs of vertices $\{s_i, t_i \mid i \in \{1, 2\}\}$, find disjoint paths between each pair such that the sum of the lengths of these paths is minimum.
- ► Assign weight *x* to each edge and add self-loops (of weight 1) on all vertices except terminals
- ➤ To force cycles (in a cycle cover) to pass through the given terminals, we introduce *pattern graphs*.
- ► A pattern P is an ordered pairing of the given terminals.
- ▶ A pattern graph G_P is same as G but such that if $(u, v) \in P$ then all outgoing edges from u, except edge (u, v), are deleted.

Shortest 2-disjoint paths [BH]

Smallest exponent with non-zero coefficient in $\operatorname{perm}(A_{P_0}) + \operatorname{perm}(A_{P_1}) - \operatorname{perm}(A_{P_2})$ gives length of shortest 2-disjoint paths

Shortest disjoint cycles

► SDC(I, k): Given a weighted undirected graph G with k-marked vertices, find shortest I-disjoint cycles through these k vertices.

- SDC(I, k): Given a weighted undirected graph G with k-marked vertices, find shortest I-disjoint cycles through these k vertices.
- ► Edge variant: Given an undirected graph *G* with *k*-marked edges, find *l*-disjoint cycles through these *k*-edges.

- ► SDC(I, k): Given a weighted undirected graph G with k-marked vertices, find shortest I-disjoint cycles through these k vertices.
- ► Edge variant: Given an undirected graph *G* with *k*-marked edges, find *l*-disjoint cycles through these *k*-edges.
- $\triangleright SDP(2) =_{\mathsf{L}} SDC(2,2)$

- SDC(I, k): Given a weighted undirected graph G with k-marked vertices, find shortest I-disjoint cycles through these k vertices.
- ► Edge variant: Given an undirected graph *G* with *k*-marked edges, find *l*-disjoint cycles through these *k*-edges.
- ► $SDP(2) =_{\mathsf{L}} SDC(2,2)$
- We were able to find algorithms for shortest disjoint cycle SDC(1, k) shortest disjoint cycle and shortest 2-disjoint cycles SDC(2, k), for all $k \ge 1$

- SDC(I, k): Given a weighted undirected graph G with k-marked vertices, find shortest I-disjoint cycles through these k vertices.
- ► Edge variant: Given an undirected graph *G* with *k*-marked edges, find *l*-disjoint cycles through these *k*-edges.
- ► $SDP(2) =_{\mathsf{L}} SDC(2,2)$
- We were able to find algorithms for shortest disjoint cycle SDC(1, k) shortest disjoint cycle and shortest 2-disjoint cycles SDC(2, k), for all $k \ge 1$
- ▶ Although our algorithm for SDC(1, k) is already reminiscient in the work of [Wahlström] on finding a cycle through k-vertices

Shortest cycle [Wahlström]

For each binary sequence $b = (b_1b_2 \dots b_{k-1})$ consider the pattern P_b defined as: $(s_1, t_1) \in P_b$ and $b_{i-1} = 0 \implies (s_i, t_i) \in P_b$ else $(t_i, s_i) \in P_b$

Shortest cycle [Wahlström]

- For each binary sequence $b = (b_1b_2 \dots b_{k-1})$ consider the pattern P_b defined as: $(s_1, t_1) \in P_b$ and $b_{i-1} = 0 \implies (s_i, t_i) \in P_b$ else $(t_i, s_i) \in P_b$
- ▶ Exponent of smallest term in $\sum_b \operatorname{perm}(A_{P_b}) \pmod{2}$ gives the weight of shortest cycle

Shortest 2-disjoint cycles [DJ]

 \blacktriangleright Let P_b be the patterns defined previously

Shortest 2-disjoint cycles [DJ]

- \blacktriangleright Let P_b be the patterns defined previously
- For each binary sequence $c = (c_1 c_2 \dots c_{k-2})$ consider the pattern Q_c defined as: $(s_1, s_2), (t_1, t_2) \in Q_c$ and $c_{i-2} = 0 \implies (s_i, t_i) \in Q_c$ else $(t_i, s_i) \in Q_c$

Shortest 2-disjoint cycles [DJ]

- Let P_b be the patterns defined previously
- For each binary sequence $c = (c_1c_2 \dots c_{k-2})$ consider the pattern Q_c defined as: $(s_1, s_2), (t_1, t_2) \in Q_c$ and $c_{i-2} = 0 \implies (s_i, t_i) \in Q_c$ else $(t_i, s_i) \in Q_c$
- Exponent of smallest term in $\sum_b \operatorname{perm}(A_{P_b}) \sum_c \operatorname{perm}(A_{Q_c}) \pmod{4}$ gives the weight of shortest 2-disjoint cycles separating (s_1, t_1) and (s_2, t_2)

Shortest 2-disjoint cycles [DJ]

- \blacktriangleright Let P_b be the patterns defined previously
- For each binary sequence $c = (c_1 c_2 \dots c_{k-2})$ consider the pattern Q_c defined as: $(s_1, s_2), (t_1, t_2) \in Q_c$ and $c_{i-2} = 0 \implies (s_i, t_i) \in Q_c$ else $(t_i, s_i) \in Q_c$
- Exponent of smallest term in $\sum_b \operatorname{perm}(A_{P_b}) \sum_c \operatorname{perm}(A_{Q_c}) \pmod{4}$ gives the weight of shortest 2-disjoint cycles separating (s_1, t_1) and (s_2, t_2)

► Class NC which encaptures the notion of parallel computation, which is defined as follows

- Class NC which encaptures the notion of parallel computation, which is defined as follows
- NCⁱ is the class of decision problems solvable in time $O(\log^i n)$ on a parallel computer with a polynomial number of processors, or the class of decision problems decidable by uniform boolean circuits with a polynomial number of gates of fan-in 2 and depth $O(\log^i n)$

- Class NC which encaptures the notion of parallel computation, which is defined as follows
- NCⁱ is the class of decision problems solvable in time O(logⁱ n) on a parallel computer with a polynomial number of processors, or the class of decision problems decidable by uniform boolean circuits with a polynomial number of gates of fan-in 2 and depth O(logⁱ n)
- ightharpoonup NC = \bigcup NCⁱ

- Class NC which encaptures the notion of parallel computation, which is defined as follows
- NCⁱ is the class of decision problems solvable in time O(logⁱ n) on a parallel computer with a polynomial number of processors, or the class of decision problems decidable by uniform boolean circuits with a polynomial number of gates of fan-in 2 and depth O(logⁱ n)
- ightharpoonup NC = \bigcup NCⁱ
- ▶ \oplus L \subseteq NC² is the class of decision problems solvable by an NL machine such that:
 - ▶ If the answer is 'yes', then the number of accepting paths is odd.
 - ▶ If the answer is 'no', then the number of accepting paths is even.

▶ Let $A \in \mathbb{Z}^{n \times n}$

- ▶ Let $A \in \mathbb{Z}^{n \times n}$
- ▶ $perm(A) = det(A) \pmod{2}$ can be computed in $\oplus L$ [MV97]

- ▶ Let $A \in \mathbb{Z}^{n \times n}$
- ▶ $perm(A) = det(A) \pmod{2}$ can be computed in $\oplus L$ [MV97]
- ightharpoonup perm(A) (mod 4)?

- ▶ Let $A \in \mathbb{Z}^{n \times n}$
- ▶ $perm(A) = det(A) \pmod{2}$ can be computed in $\oplus L$ [MV97]
- ightharpoonup perm(A) (mod 4)?
- ▶ Two cases: $\operatorname{perm}(A) \equiv 0 \pmod{2}$ or $\operatorname{perm}(A) \not\equiv 0 \pmod{2}$

- ▶ Let $A \in \mathbb{Z}^{n \times n}$
- ▶ $perm(A) = det(A) \pmod{2}$ can be computed in $\oplus L$ [MV97]
- ightharpoonup perm(A) (mod 4)?
- ▶ Two cases: $\operatorname{perm}(A) \equiv 0 \pmod{2}$ or $\operatorname{perm}(A) \not\equiv 0 \pmod{2}$
- ► That is: det(A) is even or odd

- ▶ Let $A \in \mathbb{Z}^{n \times n}$
- ▶ $perm(A) = det(A) \pmod{2}$ can be computed in $\oplus L$ [MV97]
- ightharpoonup perm(A) (mod 4)?
- ▶ Two cases: $\operatorname{perm}(A) \equiv 0 \pmod{2}$ or $\operatorname{perm}(A) \not\equiv 0 \pmod{2}$
- ► That is: det(A) is even or odd
- ► Shall reduce odd case to even case by matrix perturbation

Assume $\det(A)$ is even. Then we can find a vector $v \in \mathbb{Z}_2^n$ such that $A^T v = 0 \pmod{2}$. Assume WLOG $v_1 = 1$

Even case

- Assume $\det(A)$ is even. Then we can find a vector $v \in \mathbb{Z}_2^n$ such that $A^T v = 0 \pmod{2}$. Assume WLOG $v_1 = 1$
- Let A' be the matrix obtained by replacing the first row with $\sum v_i r_i$ where r_i denotes i^{th} row of A

Even case

- Assume det(A) is even. Then we can find a vector $v \in \mathbb{Z}_2^n$ such that $A^T v = 0 \pmod{2}$. Assume WLOG $v_1 = 1$
- Let A' be the matrix obtained by replacing the first row with $\sum v_i r_i$ where r_i denotes i^{th} row of A
- ▶ Denote by $A[\hat{I}, \hat{J}]$ the matrix obtained from A by removing the I-rows and J-columns

Even case

- Assume $\det(A)$ is even. Then we can find a vector $v \in \mathbb{Z}_2^n$ such that $A^T v = 0 \pmod{2}$. Assume WLOG $v_1 = 1$
- Let A' be the matrix obtained by replacing the first row with $\sum v_i r_i$ where r_i denotes i^{th} row of A
- ▶ Denote by $A[\hat{I}, \hat{J}]$ the matrix obtained from A by removing the I-rows and J-columns
- ► Then

$$\operatorname{perm}(A') = \sum_{j} \left(\sum_{i} v_{i} a_{ij} \right) \operatorname{perm}(A[\hat{1}, \hat{j}])$$

► Ha! We have a double summation so we can evaluate this sum in two ways

$$\operatorname{perm}(A') = \sum_{i} v_i \left(\sum_{j} a_{ij} \operatorname{perm}(A[\hat{1}, \hat{j}]) \right)$$

► Ha! We have a double summation so we can evaluate this sum in two ways

$$\operatorname{perm}(A') = \sum_{i} v_{i} \left(\sum_{j} a_{ij} \operatorname{perm}(A[\hat{1}, \hat{j}]) \right)$$

► Ha! We have a double summation so we can evaluate this sum in two ways

$$\operatorname{perm}(A') = \sum_{i} v_{i} \left(\sum_{j} a_{ij} \operatorname{perm}(A[\hat{1}, \hat{j}]) \right)$$

► Let *A_i* denote the matrix *A* but with the first row replaced with *i*th row then

$$\operatorname{perm}(A') = \sum_{i} v_{i} \operatorname{perm}(A_{i}) = \operatorname{perm}(A) + \sum_{i>1} v_{i} \operatorname{perm}(A_{i})$$

▶ Since $A^T v = 0 \pmod{2} \implies \sum_i v_i a_{ij} = 2b_j$ and so

- Since $A^T v = 0 \pmod{2} \implies \sum_i v_i a_{ij} = 2b_j$ and so $\operatorname{perm}(A^i) \pmod{4} = 2 \left(\sum_j b_j \operatorname{perm}(A[\hat{1}, \hat{j}]) \pmod{2}\right)$
- ▶ But *A_i* has two equal rows and we exploit this as follows:

$$\operatorname{perm}(A_i) = \sum_{j,k} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{1,i\}}, \widehat{\{j,k\}}])$$

- Since $A^T v = 0 \pmod{2} \implies \sum_i v_i a_{ij} = 2b_j$ and so $\operatorname{perm}(A') \pmod{4} = 2 \left(\sum_j b_j \operatorname{perm}(A[\hat{1}, \hat{j}]) \pmod{2} \right)$
- ▶ But A_i has two equal rows and we exploit this as follows:

$$\operatorname{perm}(A_i) = \sum_{j,k} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{1,i\}}, \widehat{\{j,k\}}])$$

Re-write this as $\operatorname{perm}(A_i) = 2\left(\sum_{j < k} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{1, i\}}, \widehat{\{j, k\}}])\right)$

$$\operatorname{perm}(A) \pmod{4}$$

$$= 2 \left(\sum_{j=1}^{n} b_{j} \operatorname{perm}(A[\widehat{\{1\}}, \widehat{\{j\}}]) \pmod{2} \right)$$

$$- 2 \sum_{i=2}^{n} v_{i} \left(\sum_{\substack{j,k=1\\j < k}}^{n} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{1,i\}}, \widehat{\{j,k\}}]) \pmod{2} \right)$$

▶ So perm(A) $\not\equiv 0 \pmod{2}$

- ▶ So perm(A) $\not\equiv$ 0 (mod 2)
- Expand along *i*th row

- ▶ So perm(A) $\not\equiv$ 0 (mod 2)
- Expand along *i*th row
- $ightharpoonup \operatorname{perm}(A) = \sum_{j} a_{ij} \operatorname{perm}(A[\hat{i},\hat{j}]) \not\equiv 0 \pmod{2}$

- ▶ So perm(A) $\not\equiv$ 0 (mod 2)
- Expand along *i*th row
- $ightharpoonup \operatorname{perm}(A) = \sum_{j} a_{ij} \operatorname{perm}(A[\hat{i},\hat{j}]) \not\equiv 0 \pmod{2}$
- ▶ $\exists j \text{ such that } \operatorname{perm}(A[\hat{i},\hat{j}]) \not\equiv 0 \pmod{2}$

- ▶ So perm(A) $\not\equiv$ 0 (mod 2)
- Expand along *i*th row
- $ightharpoonup \operatorname{perm}(A) = \sum_{j} a_{ij} \operatorname{perm}(A[\hat{i}, \hat{j}]) \not\equiv 0 \pmod{2}$
- ▶ $\exists j \text{ such that } \operatorname{perm}(A[\hat{i},\hat{j}]) \not\equiv 0 \pmod{2}$
- ▶ Increment a_{ij} by 1 and call the resulting matrix C. So we get

$$\operatorname{perm}(\mathcal{C}) = \operatorname{perm}(A) + \operatorname{perm}(A[\hat{i},\hat{j}]) \equiv 0 \pmod{2}$$

- ▶ So perm(A) $\not\equiv 0 \pmod{2}$
- Expand along *i*th row
- $ightharpoonup \operatorname{perm}(A) = \sum_{j} a_{ij} \operatorname{perm}(A[\hat{i}, \hat{j}]) \not\equiv 0 \pmod{2}$
- ▶ $\exists j \text{ such that } \operatorname{perm}(A[\hat{i},\hat{j}]) \not\equiv 0 \pmod{2}$
- ▶ Increment a_{ij} by 1 and call the resulting matrix C. So we get

$$\operatorname{perm}(C) = \operatorname{perm}(A) + \operatorname{perm}(A[\hat{i}, \hat{j}]) \equiv 0 \pmod{2}$$

► This gives us a sequential algorithm for computing perm(A) (mod 4)

ightharpoonup det(A) is odd that means A is non-singular.

- ightharpoonup det(A) is odd that means A is non-singular.
- Every non-singular matrix can be written as A = PLU where L, U are lower,upper triangular matrices, P is a permutation matrix.

- det(A) is odd that means A is non-singular.
- Every non-singular matrix can be written as A = PLU where L, U are lower,upper triangular matrices, P is a permutation matrix.

Theorem (Okunev, Johnson)

Let A be a non-singular matrix over a field $\mathbb F$ then all leading principal minors of A are non-zero iff A admits a LU decomposition

- det(A) is odd that means A is non-singular.
- Every non-singular matrix can be written as A = PLU where L, U are lower,upper triangular matrices, P is a permutation matrix.

Theorem (Okunev, Johnson)

Let A be a non-singular matrix over a field $\mathbb F$ then all leading principal minors of A are non-zero iff A admits a LU decomposition

▶ Thus
$$QA = LU (Q = P^{-1})$$

- det(A) is odd that means A is non-singular.
- Every non-singular matrix can be written as A = PLU where L, U are lower,upper triangular matrices, P is a permutation matrix.

Theorem (Okunev, Johnson)

Let A be a non-singular matrix over a field $\mathbb F$ then all leading principal minors of A are non-zero iff A admits a LU decomposition

- ▶ Thus $QA = LU (Q = P^{-1})$
- ▶ Q is also a permutation matrix and so QA is just the matrix A with it's rows permuted. Hence perm(A) = perm(QA)

► How to find this permutation matrix?

- How to find this permutation matrix?
- ► Let *A_i* be the matrix formed by taking by only taking the first *i* columns of *A*

- How to find this permutation matrix?
- ► Let *A_i* be the matrix formed by taking by only taking the first *i* columns of *A*
- We construct S_i , be the lexicographically first set of indices which correspond to maximal linearly independent rows of A_i

- How to find this permutation matrix?
- ► Let *A_i* be the matrix formed by taking by only taking the first *i* columns of *A*
- We construct S_i , be the lexicographically first set of indices which correspond to maximal linearly independent rows of A_i
- $ightharpoonup rank(A_i) = i \implies |S_i| = i \text{ and } S_i \subset S_{i+1}$

Parallel algorithm for permanent over integers Eberly

- How to find this permutation matrix?
- ► Let *A_i* be the matrix formed by taking by only taking the first *i* columns of *A*
- We construct S_i , be the lexicographically first set of indices which correspond to maximal linearly independent rows of A_i
- $ightharpoonup rank(A_i) = i \implies |S_i| = i \text{ and } S_i \subset S_{i+1}$
- ▶ Permute rows of A such that $S_i = [1 ... i]$. How?

Parallel algorithm for permanent over integers Eberly

- How to find this permutation matrix?
- ► Let *A_i* be the matrix formed by taking by only taking the first *i* columns of *A*
- We construct S_i , be the lexicographically first set of indices which correspond to maximal linearly independent rows of A_i
- $ightharpoonup rank(A_i) = i \implies |S_i| = i \text{ and } S_i \subset S_{i+1}$
- ▶ Permute rows of A such that $S_i = [1 ... i]$. How?
- ▶ Let $S_1 = s_1$ and s_i the unique element in $S_i \setminus S_{i-1}$ for i > 1.

Parallel algorithm for permanent over integers Eberly

- How to find this permutation matrix?
- Let A_i be the matrix formed by taking by only taking the first i columns of A
- We construct S_i , be the lexicographically first set of indices which correspond to maximal linearly independent rows of A_i
- $ightharpoonup rank(A_i) = i \implies |S_i| = i \text{ and } S_i \subset S_{i+1}$
- ▶ Permute rows of A such that $S_i = [1 ... i]$. How?
- ▶ Let $S_1 = s_1$ and s_i the unique element in $S_i \setminus S_{i-1}$ for i > 1.
- ▶ Required permutation is $Q = (n, s_n) \dots (2, s_2)(1, s_1)$ such that all leading principal minors of QA are non-zero

Polynomial permanent Intro

► Let A be a matrix of integer polynomials

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.
- ▶ We present a parallel algorithm to compute permanent of a matrix over integer polynomials (modulo 2^k) in $\oplus L$

Intro

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.
- ▶ We present a parallel algorithm to compute permanent of a matrix over integer polynomials (modulo 2^k) in $\oplus L$
- ► Can we adopt the above [BKR] technique to get a parallel algorithm?

Intro

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.
- ▶ We present a parallel algorithm to compute permanent of a matrix over integer polynomials (modulo 2^k) in $\oplus L$
- Can we adopt the above [BKR] technique to get a parallel algorithm?
- ▶ Replacing \mathbb{Z} with $\mathbb{Z}[x]$ fails because \mathbb{Z}_2 is a field whereas $\mathbb{Z}_2[x]$ is not!

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.
- ▶ We present a parallel algorithm to compute permanent of a matrix over integer polynomials (modulo 2^k) in $\oplus L$
- Can we adopt the above [BKR] technique to get a parallel algorithm?
- ▶ Replacing \mathbb{Z} with $\mathbb{Z}[x]$ fails because \mathbb{Z}_2 is a field whereas $\mathbb{Z}_2[x]$ is not!
- ▶ How do we get a field? Quotient $\mathbb{Z}_2[x]$ by an irreducible polynomial p(x)

- ► Let A be a matrix of integer polynomials
- ▶ Björklund and Husfeldt gave a poly-time algorithm to find $perm(A) \pmod{2^k}$.
- ▶ We present a parallel algorithm to compute permanent of a matrix over integer polynomials (modulo 2^k) in $\oplus L$
- Can we adopt the above [BKR] technique to get a parallel algorithm?
- ▶ Replacing \mathbb{Z} with $\mathbb{Z}[x]$ fails because \mathbb{Z}_2 is a field whereas $\mathbb{Z}_2[x]$ is not!
- ► How do we get a field? Quotient $\mathbb{Z}_2[x]$ by an irreducible polynomial p(x)
- Need a notion of modulo 4 arithmetic extending this field structure

Motivation

Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.

- Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.
- We recognize the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$

- Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.
- We recognize the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$
- ▶ Modulo 4 corresponds to $\Re/(4) = \mathbb{Z}[x]/(4, p(x))$

- Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.
- We recognize the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$
- ▶ Modulo 4 corresponds to $\Re/(4) = \mathbb{Z}[x]/(4, p(x))$
- ► Choose p(x) such that its degree is larger than the degree of the permanent polynomial

- Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.
- We recognize the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$
- ▶ Modulo 4 corresponds to $\Re/(4) = \mathbb{Z}[x]/(4, p(x))$
- ▶ Choose p(x) such that its degree is larger than the degree of the permanent polynomial
- $\mathbf{x}^{2.3^l} + \mathbf{x}^{3^l} + 1$ is irreducible over \mathbb{Z}_2 for all $l \geq 0$ [JH van Lint] [HV]

- Let \mathbb{F} be a finite field of characteristic 2. Corresponds to modulo 2 arithmetic.
- We recognize the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$
- ▶ Modulo 4 corresponds to $\Re/(4) = \mathbb{Z}[x]/(4, p(x))$
- ► Choose p(x) such that its degree is larger than the degree of the permanent polynomial
- $x^{2.3'} + x^{3'} + 1$ is irreducible over \mathbb{Z}_2 for all $l \geq 0$ [JH van Lint] [HV]
- Can we do better?

Degree reduction via interpolation

▶ Let \mathbb{F} be a characteristic 2 field of order q

Degree reduction via interpolation

▶ Let \mathbb{F} be a characteristic 2 field of order q

Degree reduction via interpolation

- ▶ Let \mathbb{F} be a characteristic 2 field of order q
- Let $f(x) = \sum_{i=0}^{d} c_i x^i$ be an integer polynomial such that q > d+2 then $\sum_{a \in \mathbb{F}^*} a^{q-1-t} f(a) = c_t \pmod{2}$

Degree reduction via interpolation

- Let \mathbb{F} be a characteristic 2 field of order q
- Let $f(x) = \sum_{i=0}^{d} c_i x^i$ be an integer polynomial such that q > d+2 then $\sum_{a \in \mathbb{F}^*} a^{q-1-t} f(a) = c_t \pmod{2}$
- How do we extract coefficients mod 4?

Degree reduction via interpolation

 \triangleright We observe that if we instead do the computations over \Re

then
$$\sum_{a\in\mathbb{F}^*} a^m = egin{cases} 2lpha_m & \text{if } q-1 \nmid m \\ 2eta_m+1 & \text{otherwise} \end{cases}$$
 where $lpha_m, eta_m \in \mathfrak{R}$

Degree reduction via interpolation

$$\sum_{a_1,a_2\in\mathbb{F}^*} (a_1 a_2)^m = \left(\sum_{a\in\mathbb{F}^*} a^m\right)^2 = \begin{cases} 4\alpha_m^2 \text{ if } q-1\nmid m \\ 4\beta_m^2+4\beta_m+1 \text{ otherwise} \end{cases} = \begin{cases} 0 \pmod{4} \text{ if } q-1\nmid m \\ 1 \pmod{4} \text{ otherwise} \end{cases}$$

Degree reduction via interpolation

We observe that if we instead do the computations over \mathfrak{R} then $\sum_{a\in\mathbb{F}^*}a^m=egin{cases}2lpha_m\ \mathrm{if}\ q-1\nmid m\ 2eta_m+1\ \mathrm{otherwise}\end{cases}$ where $\alpha_m,\beta_m\in\mathfrak{R}$

$$\sum_{a_1,a_2 \in \mathbb{F}^*} (a_1 a_2)^m = \left(\sum_{a \in \mathbb{F}^*} a^m\right)^2 = \begin{cases} 4\alpha_m^2 \text{ if } q - 1 \nmid m \\ 4\beta_m^2 + 4\beta_m + 1 \text{ otherwise} \end{cases} = \begin{cases} 0 \pmod{4} \text{ if } q - 1 \nmid m \\ 1 \pmod{4} \text{ otherwise} \end{cases}$$

Theorem

$$\sum_{a_1,\dots,a_{2^{k-1}}\in\mathbb{F}^*}(a_1\cdots a_{2^{k-1}})^m=\begin{cases} 0\pmod{2^k} \text{ if } q-1\nmid m\\ 1\pmod{2^k} \text{ otherwise}\end{cases}$$

Degree reduction via interpolation

Let A(x) be a matrix of integer polynomials (in x).

Degree reduction via interpolation

- Let A(x) be a matrix of integer polynomials (in x).
- ightharpoonup Compute over \mathbb{F} :

$$\sum_{a\in\mathbb{F}^*}a^{q-1-t}\mathrm{perm}(A(a))=c_t\ (\mathrm{mod}\ 2)$$

- Let A(x) be a matrix of integer polynomials (in x).
- ightharpoonup Compute over \mathbb{F} :

$$\sum_{a\in\mathbb{F}^*}a^{q-1-t}\mathrm{perm}\big(A(a)\big)=c_t\ (\mathrm{mod}\ 2)$$

Compute over $\mathfrak{R} \pmod{2^k}$:

$$\sum_{a_1,a_2,\ldots\in\mathbb{F}^*}(a_1a_2\ldots)^{q-1-t}\operatorname{perm}(A(a_1a_2\ldots))=c_t\ (\mathrm{mod}\ 2^k)$$

Small field

▶ Only need to choose field such that it's order q > N + 2 where N is the degree of permanent polynomial

Small field

- ▶ Only need to choose field such that it's order q > N + 2 where N is the degree of permanent polynomial
- Polynomial size field!

Small field

- ▶ Only need to choose field such that it's order q > N + 2 where N is the degree of permanent polynomial
- ► Polynomial size field!
- ▶ But how to find this field?

Small field

- ▶ Only need to choose field such that it's order q > N + 2 where N is the degree of permanent polynomial
- Polynomial size field!
- But how to find this field?
- $igspace x^{2.3'} + x^{3'} + 1$ is irreducible over \mathbb{Z}_2 for all $I \geq 0$ [JH van Lint] [HV]

- ▶ Only need to choose field such that it's order q > N + 2 where N is the degree of permanent polynomial
- Polynomial size field!
- But how to find this field?
- $x^{2.3'} + x^{3'} + 1$ is irreducible over \mathbb{Z}_2 for all $l \ge 0$ [JH van Lint] [HV]
- ► Choose $I = \lceil \frac{\log \log N}{\log 3} \rceil$ such that $2^{2 \cdot 3^l} > N + 2$ where N = poly(n) (and n =size of matrix)

Let
$$A = \begin{pmatrix} 1 & x+1 & x+2 \\ x & x^2 & x^2+x \\ x^2 & 3 & x^2+3 \end{pmatrix}$$
, $p(x) = x^6 + x^3 + 1$ be the irreducible polynomial and we want to evaluate $\operatorname{perm}(A) \pmod{4}$ over the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$.

- Let $A = \begin{pmatrix} 1 & x+1 & x+2 \\ x & x^2 & x^2+x \\ x^2 & 3 & x^2+3 \end{pmatrix}$, $p(x) = x^6 + x^3 + 1$ be the irreducible polynomial and we want to evaluate $\operatorname{perm}(A) \pmod{4}$ over the ring $\mathfrak{R} = \mathbb{Z}[x]/(p(x))$.
- Direct computation gives us $perm(A) = 2x^5 + 6x^4 + 2x^3 + 12x^2 + 12x$. Now we demonstrate the steps taken by our algorithm.

Step 1: We start by evaluating perm(A) (mod 2). We directly notice here that det(A) = 0 ⇒ perm(A) ≡ 0 (mod 2)

- **Step 1**: We start by evaluating $perm(A) \pmod{2}$. We directly notice here that $det(A) = 0 \implies perm(A) \equiv 0 \pmod{2}$
- **Step 2**: We solve the equation $A^T v = 0$ over \mathbb{F} by our

method as follows:
$$\begin{pmatrix} 1 & x & x^2 \\ x+1 & x^2 & 1 \\ x & x^2+x & x^2+1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0$$

- Step 1: We start by evaluating perm(A) (mod 2). We directly notice here that det(A) = 0 ⇒ perm(A) ≡ 0 (mod 2)
- ▶ **Step 2**: We solve the equation $A^T v = 0$ over \mathbb{F} by our method as follows: $\begin{pmatrix} 1 & x & x^2 \\ x+1 & x^2 & 1 \\ x & x^2+x & x^2+1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0$
- $\begin{pmatrix} x^3 + 1 \\ x^5 + x \\ 1 \end{pmatrix}$ is a solution to the above equations

▶ **Step 3**: For each j = 1, 2, 3, we find b_j such that $\sum_i v_i a_{ij} = 2b_j \pmod{4}$

$$j = 1: (x^3 + 1) + x(x^5 + x) + x^2 = 2x^2$$

$$j = 2: (x + 1)(x^3 + 1) + x^2(x^5 + x) + 3 = 2x^3$$

$$j = 3: (x + 2)(x^3 + 1) + (x^2 + x)(x^5 + x) + x^2 + 3 = 2x^3 + 2x^2$$

▶ **Step 4**: We have the formula

$$\operatorname{perm}(A) \pmod{4} = 2 \left(\sum_{j=1}^{3} b_{j} \operatorname{perm}(A[\widehat{\{3\}}, \widehat{\{j\}}]) \pmod{2} \right)$$
$$-2 \sum_{i=1}^{2} v_{i} \left(\sum_{\substack{j,k=1\\j < k}}^{3} t_{jk} \pmod{2} \right)$$

where

$$t_{jk} = a_{ij}a_{ik}\operatorname{perm}(A[\widehat{\{3,i\}},\widehat{\{j,k\}}])$$

► Step 4.1:

$$\operatorname{perm}(A[\widehat{\{3\}}, \widehat{\{1\}}]) = \operatorname{perm}\begin{pmatrix} x+1 & x+2 \\ x^2 & x^2+x \end{pmatrix} = x \pmod{2}$$

$$\operatorname{perm}(A[\widehat{\{3\}}, \widehat{\{2\}}]) = \operatorname{perm}\begin{pmatrix} 1 & x+2 \\ x & x^2+x \end{pmatrix} = x \pmod{2}$$

$$\operatorname{perm}(A[\widehat{\{3\}}, \widehat{\{3\}}]) = \operatorname{perm}\begin{pmatrix} 1 & x+1 \\ x & x^2 \end{pmatrix} = x \pmod{2}$$

$$\Longrightarrow \sum_{j=1}^{3} b_j \operatorname{perm}(A[\widehat{\{3\}}, \widehat{\{j\}}]) = 0 \pmod{2}$$

► Step 4.2:

$$\sum_{\substack{j,k=1\\j< k}}^{3} a_{1j} a_{1k} \operatorname{perm}(A[\widehat{\{1,3\}}, \widehat{\{j,k\}}]) = x^3 + x^2 + x \pmod{2}$$

$$\sum_{\substack{j,k=1\\j< k}}^{3} a_{2j} a_{2k} \operatorname{perm}(A[\widehat{\{2,3\}}, \widehat{\{j,k\}}]) = x^4 + x^3 + x^2 \pmod{2}$$

$$\sum_{j,k=1}^{2} v_j \left(\sum_{j=1}^{3} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{3,i\}}, \widehat{\{j,k\}}]) \pmod{2}\right)$$

$$\sum_{i=1}^{2} v_{i} \left(\sum_{\substack{j,k=1\\j < k}}^{3} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{3,i\}}, \widehat{\{j,k\}}]) \pmod{2} \right)$$

$$= x^5 + x^4 + x^3 \pmod{4}$$

► Step 4.2:

$$\sum_{\substack{j,k=1\\j< k}}^{3} a_{1j} a_{1k} \operatorname{perm}(A[\widehat{\{1,3\}}, \widehat{\{j,k\}}]) = x^3 + x^2 + x \pmod{2}$$

$$\sum_{\substack{j,k=1\\j< k}}^{3} a_{2j} a_{2k} \operatorname{perm}(A[\widehat{\{2,3\}}, \widehat{\{j,k\}}]) = x^4 + x^3 + x^2 \pmod{2}$$

$$\sum_{i=1}^{2} v_i \left(\sum_{\substack{j,k=1\\j\neq i}}^{3} a_{ij} a_{ik} \operatorname{perm}(A[\widehat{\{3,i\}}, \widehat{\{j,k\}}]) \pmod{2} \right)$$

▶ Therefore, perm(A) (mod 4) = $2x^5 + 2x^4 + 2x^3$ which matches with our direct computation.

 $= x^5 + x^4 + x^3 \pmod{4}$

Further work

► Can we find shortest 3-disjoint paths using this method?

Further work

- ► Can we find shortest 3-disjoint paths using this method?
- ▶ SDC(I, k) for other values of $I \ge 3$?

Further work

- Can we find shortest 3-disjoint paths using this method?
- ▶ SDC(I, k) for other values of $I \ge 3$?
- Permanent over rings with characteristic 2^k , $k \ge 2$?

Thank you!

Questions?