What makes the area surrounding MRT stations in Singapore look Beautiful, Safe & Welcome?

Introduction

What makes the area surrounding MRT stations in Singapore look Beautiful, Safe & Welcome?

Leveraging Image Analysis and crowdsourcing

To understand public perceptions on "What makes the area surrounding MRT stations in Singapore look Beautiful, Safe, and Welcome?"

BACKGROUND

 Inspired by the research paper "Aesthetic Capital: What makes London looks Beautiful, Quiet and Happy?" published by Yahoo Labs in 2014

 Complement the past urban perception studies done in Singapore which focuses on other aspects such as heritage, tourism, green and sustainability initiatives

BACKGROUND

Why "Beautiful", "Safe" and "Welcome"?

- Multiple studies: "Beautiful" as a common and important indicator of a desirable city
- Safety is fundamental to the development and growth of cities
- Welcoming cities often associated with tourism

Focusing on the perspectives of people living in Singapore, whose perspectives towards these metrics matter the most.

How we define "Beautiful", "Safe" and "Welcome"?

- Beautiful refers to the aesthetic of the place, the structure of the buildings/ greenery that makes the place looks astounding
- Safe refers to the environment of the place,
 where you feel safe to walk without any fear
- Welcome refers to the place making you feel invited and comfortable, somewhere where you are willing to stay for awhile longer (assuming you are not busy and don't have anywhere to go)

BACKGROUND

Why MRT stations?

- Starting point used in the 2014 London reference research paper
- Reasonable to represent Singapore as a whole due to its dense and widespread distribution
- Narrow the scope to **only MRT stations** for ease of data collection, processing and analysis

Project Objective

To quantify the Singapore public's perceptions towards MRT stations and its surroundings on the qualities of "Beautiful", "Safe" and "Welcome"

Expected Outcome

To discover the visual elements that defines the qualities of "Beautiful", "Safe" and "Welcome in the eyes of the Singapore public

Project Sponsor:

Project Supervisor:

DATA COLLECTION & PROCESSING

MRT STATIONS DATA

How we retrieve **MRT stations data**?

- Obtained data from open-sourced platform, data.gov.sg provided by LTA
- Data is in .shp/.xml file format

How we process MRT stations data?

- Process MRT stations data using open-sourced geospatial software, QGIS
- Remove duplicates and non-operational MRT stations
- Extract latitude and longitude values for each MRT

station

Outcome

Obtain pairs of latitude and longitude geographic coordinates for 122 MRT stations in Singapore

MRT STATIONS IMAGES DATA

Google Street images centered around Promenade MRT station

180 degrees

270 degrees

How we collect MRT and the areas surrounding it images?

Retrieve outdoor images of areas surrounding MRT stations (300m radius) using **Google Street View API**, with the latitude and longitude coordinates as inputs

- 1 pair of lat/lon coordinates = 1 image returned Google Street View API
- 4 images (4 different angles) per MRT station (each pair of lat/long coordinates)

Google Street View API (Google map services)

- Massive collection of street-level images, which closely resembles actual landscape from a person's point of view
- Consistent image quality

Outcome

Obtain 488 images from 122 MRT stations

MRT STATIONS IMAGES DATA

How we **filter out** unwanted MRT images?

Criteria

- Old images (by images' date of captures, reject those taken before 2018
- Indoor/hybrid indoor images
- Huge objects blocking/affecting > 50% the view (E.g advertisement boards, trucks)
- Blurred images (areas censored by Google API)

Purpose of filtering out unwanted MRT images:

To ensure the MRT images are clean and not corrupted

Outcome

- 427 valid images from 113 MRT stations
- 97 MRT stations with 4 images each
- 10 MRT stations with 3 images each
- 3 MRT stations with 2 images and 1 images each respectively

MRT STATIONS IMAGES DATA

How we **choose the images** after filtering out the unwanted images to be used for our Survey?

Perform **simple random sampling** of MRT images to reduce selection bias due to **unequal number of images** per MRT stations after filtering

 Random select 2 images from each MRT stations that have at least 2 valid images using python's random.sample

Outcome

220 images from 110 MRT stations

IMAGES PERCEPTION DATA

10,382 members

Singapore Management Univers...

7,324 members

SNOWBALL SAMPLING

Details on our Survey:

- Survey platform: **Qualtrics** to crowdsource perceptions on MRT images
- Target audience: **SMU community and their social networks**
- Target survey respondents: 200
- Survey is **IRB approved**

Survey distribution

- **Convenience sampling** via social media platforms like telegram and class announcements (Prof
- **Snowball sampling** where survey participants recruit more participants through their social connections via word-of-mouth
- Survey incentives: \$5 Grab transport voucher

Expected Outcome:

At least 200 survey responses

IMAGES PERCEPTION DATA

Format of survey

- Demographics questions (Gender, Age, Nationality)
- 10 image perception questions
 - Each question contain 1 image and 3 metrics (Beautiful,Safe,Welcome)
 - Respondents have to rate the image for each metric on a scale of 1 (Strongly disagree) to 5 (Strongly agree)
 - 10 images will be randomly selected out of 220 MRT images for display to each survey respondent

Expected Outcome:

At least 200 survey responses

To ensure **validity** of the images perception data,

SURVEY RESULTS

Descriptive statistics

Female

Average (**median**): 8 responses per image

(**minimum**): **2 responses** per image

(maximum): 17 responses per image

*Total images: 220

VALIDITY OF SURVEY

Did the survey respondents speed through our survey?

Median time taken for each person to finish each image rating qn: **10.346 seconds**

All but **1 survey respondents sped** through our survey, this implies that our survey data on image perceptions are validated

All 231 survey responses pertaining to image perceptions will be used in our survey result and image analysis

Ranking of MRT images

Compute the Median ratings for each of the 3 metrics for each of the 220 images

Ranking of MRT stations

Add up the median ratings for each of the 3 metrics for images belonging to the same MRT station

SURVEY RESULTS

Based on overall median ratings for each of the 110 MRT stations

Overall

Most **beautiful** MRT stations and its surroundings

CITY HALL MRT STATION

RAFFLES PLACE MRT STATION

Least **beautiful** MRT stations and its surroundings

ANG MO KIO MRT STATION

SERANGOON MRT STATION

Insights

- Beautiful images tend to contain greenery
- Unbeautiful images tend to contain trucks and bicycles

Overall

Most **safe** MRT stations and its surroundings

CHINESE GARDEN MRT STATION

YIO CHU KANG MRT STATION

Least **safe** MRT stations and its surroundings

Insights

- Safe images tend to contain sheltered walkways
- Unsafe images tend to contain trucks, vans and lorries

PUNGGOL MRT STATION

BISHAN MRT STATION

Overall

Most **welcome** MRT stations and its surroundings

TIONG BAHRU MRT STATION

UPPER CHANGI MRT STATION

Insights

- Welcoming images tend to contain greenery and houses
- Unwelcoming images tend to contain dull and greyish colour tones and trucks

Least **welcome** MRT stations and its surroundings

SERANGOON MRT STATION

BISHAN MRT STATION

SURVEY RESULTS

Inferential Statistics

DEMOGRAPHIC DIFFERENCES

Is there are any **difference** in the **mean of images ratings** for each metrics due to demographics differences in our survey respondents?

Paired T-test Result									
Metrics	Demographic (Gender)	P-value	Demographic (Age)	P-value					
Beautiful	Female 3.14 +- 0.81	0.255	24 years and below 3.25 +- 0.82	0.133					
	Male 3.21 +- 0.90	0.255	25 years old-44 years old 3.15 +- 0.89						
Safe	Female 3.44 +- 0.70	0.491	24 years and below 3.50 +- 0.73	0.209					
	Male 3.4 +- 0.78	0.491	25 years old-44 years old 3.43 + -0.71	0.209					
Welcome	Female 3.15 +- 0.72	0.025	24 years and below 3.24 +- 0.75	0.200					
	Male 3.29 +- 0.83	0.025	25 years old-44 years old 3.18 +- 0.80	0.290					

Paired-test applied only on images ratings from 210 images for **Gender**

Paired-test applied only on images ratings from 195 images for **Age**

P-value <= 0.05:

difference in the mean of images ratings due to demographic differences is **statistically significant** at 5% significance level

Insights

There is gender difference in perceiving welcomeness of an image

IMAGE ANALYSIS

Based on overall median ratings on each of the 220 images

IMAGE ANALYSIS COLOURS

Based on overall median ratings on each of the 220 images

Perform linear regression to find out the effects of colors on image perception ratings for each of the 3 metrics (Beautiful,Safe, Welcome)

How and What colors are extracted and tested on?

Extract average redness, blueness and greenness (based on the RGB color model)
 from each image for all 220 images using skimage image processing python package

Why RGB color model to represent colors?

- 1. Most well-known and **common representation** of colors
- 2. Simple to understand
 - Different intensities and combinations of the 3 primary colors (Red, Green, Blue) add up to give rise to different colors
 - b. Color intensity ranges from 0 to 255 for each of the 3 primary colors

Outcome

Obtained average redness, greenness and blueness values from each of the 220 images

P-value <= 0.05 means that the effect of the color in the images on the image ratings given is **statistically** significant at 5% significance level

(highlighted in green fill)

R-squared: How well these 3 colors explain the change in image ratings, assuming a linear

relationship exists

Linear Regression Result Image ratings = Average Redness + Average Greenness + Average Blueness + Constant

Avg_R

-0.0569

0.0002

P-value

0.000

0.984

Dependent

variable

Image ratings

Beautiful

Safe

Image

ratings

ratings

metrics					3,33			
	Welcome	-0.0191	0.105	0.0312	0.032	-0.0093	0.192	0.029
Insights								

Greater average redness in images lead to lower beautiful image ratings

Independent variables

Ava G

0.0696

0.0085

Greater average greenness in images lead to higher beautiful and welcome image

These 3 primary colors alone are insufficient in explaining the changes in image

P-value

0.000

0.534

Avg_B

-0.0107

-0.0046

P-value

0.176

0.488

R-squared

0.102

0.016

Perform a more **refined linear regression** to find out the effects of colors on image perception ratings for each of the 3 metrics (**Beautiful**, **Safe**, **Welcome**)

Increase the number and variation of colors used in the linear regression model

How and what colors are extracted and tested on?

Part 1: Condense all possible colors into 64 colors (color bins) based on RGB color model Color intensities split into 4 range

Perform a more **refined linear regression** to find out the effects of colors on image perception ratings for each of the 3 metrics (**Beautiful**, **Safe**, **Welcome**)

Increase the **number and variation of colors** used in the linear regression model

How and what colors are extracted and tested on?

Part 2: Compute the 64-colors histogram

- a. Compute the **frequencies** of each color in each image for all 220 images
- b. Max color frequency = 94376 = total number of image pixels in an image (with dimensions of 251 in width x 376 in height)

Outcome

Obtained counts for 53 colors in each of the 220 images

(remaining 11 colors are not present in any of the 220 images)

R2G2B3

R1G0B0

R1G1B1

Perform **correlation analysis** (Pearson's correlation) to select the colors that have a strong linear relationship with image perception ratings for each of the 3 image metrics (**Beautiful**, **Safe**, **Welcome**)

R1G1B2

R3G2B2

Strong correlation value set at >0.15 or <-0.15 (referenced from the London paper)

R1G2B1

Strong correlated color bins, ordered in descending order (from left to right)

R1G2B2

Beautif	ⁱ ul											
	Light blue-magneta	Dark red	Dark gray	Dark green		Cyan		Green	Blue-mag		ngneta Light	
	R3G1B2	R1G2	R1G2B0		1	R3G2B0		R30	G3B1	3B1		
Safe												
	Light pink	Dark g	Dark green y		en	yellow		Light yel	low-gre	en		
	R3G2B2		R2G2B3		R0G2B2		R1G	1B1 R2	R2G0B1		R3G1B2	
Welcom	ne											
	Light red	Lig	Light blue-magneta		Dark	Dark gray		r	pink L		ht pink	

R1G2B0

Outcome

8, 5, 6 color bins for
Beautiful, Safe and
Welcome respectively

Light blue-magneta, dark green, light pink and cyan tend to have strong effects

on Beautiful, Safe and Welcome qualities of

Insights

images

Refined Linear Regression Result Image ratings = strongly correlated colors + Constant

R-squared value: 0.163

Signifies how well these colors explain the change in image ratings, assuming a linear relationship exists

Dependent variable	Independent variables (colors)									
Image ratings (<mark>Beautiful</mark>)	Light blue-magneta	Dark red	Dark gray	Dark green	Cyan	Green	Blue- magneta	Light red		
	0.00005	0.00007	-0.00001	0.00020	0.00006	0.00009	0.00004	0.00004		
P-value	0.141	0.393	0.281	0.13	0.118	0.196	0.006	0.348		

P-value <= 0.05 means that the effect of the color in the images on the image ratings given is **statistically significant** at 5% significance level

(highlighted in green fill)

Insights

- More blue-magneta color in images lead to higher beautiful image ratings
- These 8 colors alone are insufficient in explaining the changes in image ratings

These images contain high counts of **blue-magneta** which is highly correlated with beautiful images

PROMENADE MRT STATION

BUONA VISTA MRT STATION

R-squared value: 0.098

Signifies how well these colors explain the change in image ratings, assuming a linear relationship exists

Refined Linear Regression Result

P-value <= 0.05 means that the effect of the color in the images on the image ratings given is **statistically significant** at 5% significance level

(highlighted in green fill)

Insights

- More light pink color in images lead to lower safe image ratings
- More dark green color images lead to higher safe image ratings
- These 5 colors alone are insufficient in explaining the changes in image ratings

These images contain high counts of **light pink** which is highly correlated to less safe images

CLEMENTI MRT STATION

UBI MRT STATION

BISHAN MRT STATION

Light pink

These images contain high counts of dark green which is highly correlated to safer images

DAKOTA MRT STATION

BUKIT BATOK MRT STATION

TAMPINES EAST MRT STATION

Dark green

COLOURS

R-squared value : 0.123

colors explain the change in image ratings, assuming a linear relationship exists

Signifies how well these

Refined Linear Regression Result Image ratings = strongly correlated colors + Constant Dependent variable Independent variables (colors) Image ratings Light red Light blue-magneta Dark cyan Dark gray pink Light pink (Welcome) 0.00007 0.00002 -0.01590 -0.00001 -0.015100.00110 P-value 0.007 0.241 0.15200 0.128 0.113 0.07

P-value <= 0.05 means that the effect of the color in the images on the image ratings given is **statistically significant** at 5% significance level

(highlighted in green fill)

Insights

- Greater light red color in images lead to higher welcome image ratings
- These 6 colors alone are insufficient in explaining the changes in image ratings

COLOURS

These images contain high counts of **light red**, which is highly correlated with welcoming images

UPPER CHANGI MRT STATION

BOON KENG MRT STATION

Light red

IMAGE ANALYSIS OBJECT DETECTION

Based on overall median ratings on each of the 220 images

OBJECT DETECTION

Use **correlation analysis (Pearson's correlation)** to find out the association between objects and image perception ratings for each of the 3 metrics (Beautiful,Safe, Welcome) for each of the 220 images

The object detection model can detect cars, traffic lights, trucks, persons, bicycles and motorbikes

How and what objects are detected?

- Used opency's (image processing python package) pretrained DeepNeuralNetwork(DNN) object detection model (MobileNet SSD ver3) to detect objects in images
 - Pre-trained to detect 80 different types of objects such as person, car from the popular computer vision dataset MS COCO dataset
 - Confidence threshold set at 50%, only objects detected with at least 50% confidence level will be recorded
- Manual checking is done to filter out objects that are wrongly detected by the model and are not present in any of the images (E.g bird, boat, laptop)

Outcome

- 149 images with at least 1 object detected (out of 220)
- 8 Types of Objects detected in ALL 149 images

OBJECT DETECTION

Correlation analysis result

where the 8 strongly correlated objects are ordered in descending order (from left to right)

P-value <= 0.05: effect of the color in the images on the image ratings given is **statistically significant** at 5% significance level

Beautiful								
Objects detected	truck	person	train	bicycle	motorbike	bus	traffic light	car
	-0.2566	-0.1390	-0.1322	-0.1227	-0.0636	-0.0427	-0.0074	-0.0006
P-value	0.0001	0.0394	0.0501	0.0692	0.3479	0.5285	0.9132	0.9922
Safe								
Objects detected	truck	traffic light	car	bus	motorbike	person	bicycle	train
	-0.2670	-0.1697	-0.1317	-0.1185	-0.0798	0.0340	0.0310	0.0183
P-value	0.00006	0.61563	0.05104	0.07944	0.23830	0.01172	0.64790	0.78668
Welcome								
Objects detected	truck	traffic light	train	car	bicycle	person	bus	motorbike
	-0.26299	-0.1235	-0.0976	-0.0653	-0.0398	0.0383	-0.0324	-0.0080
P-value	0.00008	0.06751	0.14922	0.33528	0.55726	0.57245	0.63234	0.90644

Insights

- Presence of Trucks in images leads to lower Beautiful, Safe and Welcome ratings
- Presence of Persons in images leads to higher Beautiful & Safe ratings

IMAGE ANALYSIS BAG OF VISUAL WORDS

Based on overall median ratings on each of the 220 images

To identify the images features that are crucial in rating images as **beautiful**, **safe** and **welcome**

What and how to extract image features?

- Use skimage's Oriented FAST and Rotated BRIEF(ORB) feature
 detector, robust and fast in extracting key features from all 220 images
- **K-means Clustering** is subsequently used to group the image features into 500 clusters (referenced from London paper) based on inherent similarity. Within each group, image features are highly *similar*. Across each group, image features would be highly *different*
- **500 "visual words"** (VW) (image feature in each of the 500 cluster centers) that are most representative from all 220 images would be selected

Outcome

Obtained 500 representative visual words from 220 images

Compute the 500 VW histogram

Compute the **frequencies of each VW** in each image for all 220 images

Perform **correlation analysis** (Pearson's correlation) to select the visual words that have a strong linear relationship with image perception ratings for each of the 3 image metrics (Beautiful, Safe, Welcome)

Strong correlation value set at >=0.10 or <-=0.10 (referenced from the London paper)

500VW Histogram of an MRT image

Outcome

VW Frequency

- Obtained counts for 500 Visual Words in each of the 220 images
- **Obtained 115, 90 and 94 strongly correlated Visual Words** with Beautiful, Safe and Welcome respectively

Blue dots signify the locations of the strongly correlated visual words that can be found in the images

Most **beautiful** MRT stations and its surroundings

RAFFLES PLACE MRT STATION

Insights

- Grass, Blue Skies \rightarrow correlated with Most Beautiful
- MRT tracks, Barricades, Trucks, Bicycles →

correlated with Least Beautiful

Least **beautiful** MRT stations and its surroundings

ANG MO KIO MRT STATION

SERANGOON MRT STATION

Blue dots signify the locations of the strongly correlated visual words that can be found in the images

Insights

- Trees, Shelters →
 correlated with Most Safe
- Vans, Trucks, Lorries→
 correlated with Least Safe

Most **safe** MRT stations and its surroundings

Google

CHINESE GARDEN MRT STATION

YIO CHU KANG MRT STATION

Least **safe** MRT stations and its surroundings

PUNGGOL MRT STATION

BISHAN MRT STATION

Blue dots signify the locations of the strongly correlated visual words that can be found in the images

Most **welcome** MRT stations and its surroundings

TIONG BAHRU MRT STATION

UPPER CHANGI MRT STATION

Least **welcome** MRT stations and its surroundings

Insights

- Wide Roads, Blue Skies, Shelter, Trees and persons→ correlated with Most Welcome
- Bus Stops, White Barricades, and Trucks → correlated with Least Welcome

SERANGOON MRT STATION

BISHAN MRT STATION

Build a binary classification model that can predict whether an image is beautiful, safe and welcome, based on the strongly correlated visual words histogram

- Decision rules for classification of prediction
 - **Recap:** image ratings ranges from 1(Strongly disagree) to 5(Strong agree)
 - If image rating <= 3, classify image as NOT beautiful/safe/welcome ("No")
 - o If **image rating >3**, classify image as beautiful/safe/welcome ("Yes")
- Choice of classification of Machine Learning model
 - Support Vector Machine (SVM)

Strongly correlated VW histogram for this image

Predicted Image rating = "Yes"

Outcome

Transform output variable in dataset (image ratings) from Numerical to Categorical data type

Build a binary classification model that can predict whether an image is beautiful/safe/welcome, based on the strongly correlated visual words histogram

Image metrics	Beautiful Safe		Welcome	
Input variables: Strongly correlated VW histogram	115 VW histogram	90 VW histogram	94 VW histogram	
Output variable; Image ratings ("Yes"/No")	55% "No" , 45% "Yes"	63% "No" ,37% "Yes"	56% "Yes", 44% "No"	

Training and testing the performance of classification model

 Dataset is split into 5 different pairs of 80% training and 20% testing sets in a manner where the class proportion of the output variable in the original dataset is maintained

Insights

Dataset is quite well-balanced
 (proportion of classes of the output variable is relatively equal)

Accuracy =
the "correctness" of
all (YES, NO)

Precision = For all the predictions made, how many are actually correct?

predictions

Recall = For all the actual results, how many did the the model manage to predict

F1 score = weighted average of precision and recall

Evaluation of the performance of the classification model based on the mean scores from 5 pairs of training and test sets

-				
Image metrics	Accuracy score	Precision score	Recall score	F1 score
Beautiful	0.64+- 0.076	0.60+-0.099	0.64+-0.183	0.61+-0.099
Safe	0.63+-0.055	0.71+-0.029	0.69+-0.104	0.70+-0.061
Welcome	0.64+-0.025	0.58+-0.023	0.64+-0.038	0.61+-0.026

Outcome

• Classification model which can be used determine which MRT stations need improvement in the aspects of Beautiful, Safe, Welcome

Insights

- The classification model is relatively good in predicting of whether an image is
 - Beautiful / Safe / Welcome
 There is greater consistency in how people perceive image as Safe, thus the classification model is able to learn the patterns easily and make more accurate predictions for Safe

Summary of Insights

From descriptive statistics, colours, object detection and visual words

SUMMARY OF INSIGHTS

Expected Outcome

To discover the visual elements that defines the qualities of "Beautiful", "Safe" and "Welcome in the eyes of the Singapore public

	Beautiful	Safe	Welcome			
Descriptive Stats	 Beautiful images tend to contain greenery Unbeautiful images tend to contain trucks and bicycles 	 Beautiful images tend to contain greenery Unbeautiful images tend to contain trucks and bicycles 	 Welcoming images tend to contain greenery and houses Unwelcoming images tend to contain dull and greyish colour tones and trucks 			
Colours	Greater average greenness in images lead to higher beautiful image ratings Greater average redness in images lead to lower beautiful image ratings More blue-magenta color in images lead to higher beautiful image ratings	 More light pink color in images lead to lower safe image ratings More dark green color images lead to higher safe image ratings 	Greater average greenness in images lead to higher welcome image rating: Greater light red color in images lead to higher welcome image ratings			
Object Detection	Presence of Trucks in images leads to lower Beautiful, Safe and Welcome ratings					
	Presence of Persons in images leads to higher Beautiful ratings		Presence of Persons in images leads to highe Safe ratings			
Visual Words	Beautiful images tend to contain grass and blue skies Unbeautiful images tend to contain MRT tracks, Barricades, Trucks and Bicycles	Safe images tend to contain trees and shelters Unsafe images tend to contain vans, trucks, and lorries	 Welcoming images tend to contain wide roads, blue skies, shelter, trees and persons Unwelcoming images tend to contain bus stops, white barricades, and trucks 			

Project Schedule

Status Update

PROJECT SCHEDULE

LEGEND Achievements Done ••• Ongoing PHASE 3 | Analysing Data Insights TASK 8 - PREPARE CODES FOR IMAGE ANALYSIS BI-WEEKLY MEETING WITH PROJECT SPONSOR TASK 9- DATA PROCESSING AND CLEANING OF ANNOTATED IMAGES MILESTONE 1 - MID-TERM PRESENTATION TASK 10 - ANALYSE THE ANNOTATED IMAGES BI-WEEKLY MEETING WITH PROJECT SPONSOR TASK 11 - REPRESENT DATA INSIGHTS IN VISUALISATIONS

PHASE 4 | Preparing for Data Collection

BI-WEEKLY MEETING WITH PROJECT SPONSOR

TASK 12 - PREPARE FOR FINAL PRESENTATION

TASK 13 - PREPARE FOR FINAL REPORT

MILESTONE 2 - FINAL PRESENTATION

MILESTONE 3 - FINAL REPORT

Delayed

PHASE 2 | Preparing for Data Collection TASK 4 - EXTRACTING IMAGES FROM GOOGLESTREETVIEW API TASK 5 - SET UP SURVEY PLATFORM TASK 6 - DISTRIBUTE SURVEY & WAIT FOR RESPONSES BI-WEEKLY MEETING WITH PROJECT SPONSOR TASK 7 - PREPARE FOR MID-TERM PRESENTATION

PHASE 1 | Defining Project Methodology

TASK 2 - DECIDE ON SURVEY PLATFORM AND APPROACH

BI-WEEKLY MEETING WITH PROJECT SPONSOR

TASK 1 - DISCUSS ABOUT THE PROJECT METHODOLOGY INDEPTH

TASK 3 - SELF LEARN ON EXTRACTING IMAGES AND IMAGE ANALYSIS

IMPACT TO SOCIETY

PROJECT'S IMPACT TO SOCIETY

- Informs public policy decision-making as mentioned by Idrovo and Duarte (2015)
 - E.g. beneficial to **urban planners**
 - (Quercia et al., 2014) demonstrated the viability of the recommendations gleaned the analysis of perceptions of the urban environment with **architects**
- Promotes the virtue of co-creation and civic participation in national issues (Ministry of Culture, Community and Youth, 2019)
 - Helps to improve public trust in the government (Chiang & Soon, 2019)
 - Boost citizens' confidence in the value of their contributions (Soon & Sim, 2021)

Together, our project will help to promote and contributes towards Singapore's strong commitment in achieving the United Nations Sustainable Development Goal (SDG) ("Goal 11: Makes cities inclusive")

IMPACT TO SPONSOR

PROJECT'S IMPACT TO SPONSOR

Feasibility of Our Project Methodology

From collection of images, crowdsourcing perceptions to image analysis methods, is it meaningful to carry out in a larger-scale to the Singapore population?

Findings from Survey Insights

From our survey insights, is there any interesting findings that is worthy to extend similar research study on other aspects of Singapore urban landscapes

We hope that our project will help our sponsor to better conduct similar research studies to the Singapore population

PROJECT CHALLENGES

LIST OF CHALLENGES

Steep Learning Curve in image analysis techniques

Unexpected delays due to administrative matters relating to IRB approval on survey

Time-consuming collection of primary data (survey)

- Read up other relevant research papers and online sources
- Consulted project sponsor for guidance

- Sent out pilot survey
- Faster turnaround time
 when liaising with
 project sponsor regarding
 IRB approval matters

Incentivise the participantsby providingreimbursement of \$5 grab

first 50 participants

transport vouchers to the

FUTURE WORK

FUTURE WORK

Collect images that are more representative of Singapore

Increase the volume and quality of survey data

Increase relevancy of Object Detection model

Use grid-based geographic sampling method to collect images that are more representative of Singapore due to the limitations of Google Street View API

Increase the number and demographic representativeness of survey responses from the Singapore Public to improve validity and correctness of analysis results

Improve object detection model to detect greater variety of objects (e.g. trees and buildings) such that it is more relevant to our analysis of images Thank you, Q&A

References

- Bhandari, P. (2020, October 12). Designing and analyzing Likert scales. Scribbr. https://www.scribbr.com/methodology/likert-scale/
- Bhat, A. (2018, August 27). Snowball Sampling: Definition, Method, Advantages and Disadvantages. Retrieved October 7, 2021, from https://www.questionpro.com/blog/snowball-sampling/
- Bock, H. (2019, November 15). Singapore is most beautiful city in Asia, 11th most beautiful in the world. The Straits Times. https://www.straitstimes.com/lifestyle/singapore-is-most-beautiful-city-in-asia-11th-most-beautiful-in-the-world
- Chiang, B., & Soon, L. (2019, November 19). How can public services be more citizen-centric? Retrieved October 6, 2021, from https://www.ey.com/en_sg/government-public-sector/how-can-public-services-be-more-citizen-centric--
- Faulds, J. (2020, August 3). Qualtrics XM review. Retrieved October 7, 2021, from https://www.techradar.com/sg/reviews/qualtrics-xm
- Idrovo, D & Duarte, C. M. (2015). Urban Security: urban perception techniques as a tool to analyse urban regeneration. ResearchGate. https://www.researchgate.net/publication/279953086_Urban_Security_urban_perception_techniques_as_a_tool_to_analyse_urban_regeneration
- Kok, L. M. (2017, November 9). Singapore is world's most welcoming city for tourists: Travel index. The Straits Times. https://www.straitstimes.com/singapore/singapore-is-worlds-most-welcoming-city-for-tourists-travel-index
- Ministry of Culture, Community and Youth. (2019, June 19). Deepening citizen participation for effective and inclusive governance. Retrieved from https://www.mccy.gov.sg/about-us/news-and-resources/speeches/2019/jun/deepening-citizen-participation-for-effective-and-inclusive-governance
- Quercia, Daniele & O'Hare, Neil & Cramer, Henriette. (2014). Aesthetic capital: What makes london look beautiful, quiet, and happy?. Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW. 945-955. https://doi.org/10.1145/2531602.2531613
- Soon, C., & Sim, J. L. (2021, May). Citizen Engagement in Singapore: Applications of the Citizens' Panel. Institute of Policy Studies. Retrieved from https://lkyspp.nus.edu.sg/docs/default-source/ips/ips-report-on-citizen-engagement-in-singapore-applications-of-the-citizens-panel.pdf
- Yee, Y. W. (2019, August 29). Singapore is world's second safest city, after Tokyo, in EIU's Safe Cities Index. The Straits Times. https://www.straitstimes.com/singapore/singapore-is-worlds-second-safest-city-after-tokyo-on-eius-safe-cities-index