模块一 直线与方程

第1节 直线的方程(★☆)

内容提要

- 1. 直线的倾斜角与斜率
- ①倾斜角:直线朝上的方向与x轴正向形成的夹角,叫做直线的倾斜角;当直线与x轴平行或重合时,规定直线的倾斜角为 0° ,所以直线倾斜角 α 的取值范围为 $0^{\circ} \le \alpha < 180^{\circ}$.
- ②直线的斜率 k 与倾斜角 α 的关系: $k = \tan \alpha$, 当 $\alpha = 90^{\circ}$ 时,称直线的斜率不存在.
- ③两点连线斜率公式: 设 $A(x_1,y_1)$, $B(x_2,y_2)$, $x_1 \neq x_2$, 则直线 AB 的斜率 $k = \frac{y_2 y_1}{x_2 x_1}$.
- ④斜率与方向向量的关系: 当直线 l 的斜率为 k 时,l 的一个方向向量为 m = (1, k); 当直线 l 的斜率不存在时,l 的一个方向向量为 m = (0, 1); 若已知直线 l 的一个方向向量为 m = (x, y),则当 $x \neq 0$ 时,其斜率 $k = \frac{y}{x}$; 当 x = 0 时,其斜率不存在.
- ⑤计算两直线的夹角余弦:设直线 l_1 的一个方向向量为m,直线 l_2 的一个方向向量为n, l_1 与 l_2 的夹角为 θ ,

则
$$\cos \theta = |\cos \langle m, n \rangle| = \frac{|m \cdot n|}{|m| \cdot |n|}$$
.

2. 直线的方程:

名称	条件	方程形式	表示范围
点斜式	斜率 k ,点 $P(x_0, y_0)$	$y - y_0 = k(x - x_0)$	不含斜率不存在的直线
斜截式	斜率 k , y 轴上的截距 b	y = kx + b	不含斜率不存在的直线
横截式	倒斜率 $m(m = \frac{1}{k}$ 或 $m = 0$), x 轴上的截距 t	x = my + t	不含斜率为0的直线
截距式	x轴、 y 轴上的截距 a 、 b	$\frac{x}{a} + \frac{y}{b} = 1$	不与坐标轴垂直且 不过原点的直线
两点式	$A(x_1, y_1), B(x_2, y_2)$	$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$	不与坐标轴垂直的直线
一般式		Ax + By + C = 0 (A, B 不同时为 0)	所有直线

- 3. 直线 $l_1: A_1x + B_1y + C_1 = 0$ 和 $l_2: A_2x + B_2y + C_2 = 0$ 的平行与垂直:
- ①当 $l_1 // l_2$ 时, $A_1 B_2 = A_2 B_1$,但需注意,当两直线重合时也满足此式,故应检验是否重合.
- ② $l_1 \perp l_2 \Leftrightarrow A_1A_2 + B_1B_2 = 0$,这一式子包括了两直线斜率都存在,且乘积为 –1 的一般情况,和一条直线斜率为 0,另一条直线斜率不存在的特殊情况.
- 4. 若直线方程只含 1 个参数,则该直线很可能过定点. 例如,直线 l 的方程为 x-my+1-m=0,则可变形为 x+1-m(y+1)=0,无论 m 如何变化,点 A(-1,-1) 始终满足该方程,所以直线 l 过定点 A.

典型例题

类型 I: 直线的倾斜角与斜率

【例 1】直线 l 经过点 (0,2) 和 (3,-1),则直线 l 的倾斜角 α 为_____.

解析: 已知两点,可先求斜率,再求倾斜角, $k = \frac{-1-2}{3-0} = -1 \Rightarrow \tan \alpha = -1$,结合 $\alpha \in [0,\pi)$ 知 $\alpha = \frac{3\pi}{4}$.

答案: $\frac{3\pi}{4}$

【变式 1】若直线 l 经过 (3,4), (-1,-4), (a,6)三点,则 $a = _____.$

解析: 三点共线,则任取其中两点求得的斜率相等,由题意, $\frac{6-4}{a-3} = \frac{-4-4}{-1-3}$,解得: a = 4.

答案: 4

【反思】解析几何中的三点共线问题,常由任取两点斜率相等来建立方程,但需注意斜率不存在的情况.

【变式 2】已知直线 l 经过 $A(2\sqrt{2}x,-2)$, $B(0,x^2)$ 两点, 其中 $x \ge 0$,则直线 l 的倾斜角 α 的取值范围是()

(A)
$$\left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$$
 (B) $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right]$ (C) $\left[\frac{\pi}{2}, \pi\right)$ (D) $\left[\frac{3\pi}{4}, \pi\right)$

解析:已知两点坐标,可求出斜率的范围,再求倾斜角的范围,先考虑斜率不存在的情形,

当 x = 0 时, A(0,-2) , B(0,0) , $l \perp x$ 轴, 所以直线 l 的倾斜角 $\alpha = \frac{\pi}{2}$;

当
$$x > 0$$
 时, l 不与 x 轴垂直,其斜率 $k = \frac{-2 - x^2}{2\sqrt{2}x - 0} = -\frac{2 + x^2}{2\sqrt{2}x} = -\frac{\sqrt{2}}{4}(\frac{2}{x} + x) \le -\frac{\sqrt{2}}{4} \times 2\sqrt{\frac{2}{x} \cdot x} = -1$,

当且仅当 $\frac{2}{x}=x$,即 $x=\sqrt{2}$ 时取等号,所以 $k=\tan\alpha\in(-\infty,-1]$,如图,由图可知 $\alpha\in(\frac{\pi}{2},\frac{3\pi}{4}]$;

综上所述, α 的取值范围是[$\frac{\pi}{2}$, $\frac{3\pi}{4}$].

答案: A

【变式 3】设 A(2,3), B(-3,6),直线 l 过点 M(-1,-1) 且与线段 AB 相交,则 l 的斜率 k 的取值范围是()

(A)
$$(-\infty, -\frac{7}{2}] \cup [\frac{4}{3}, +\infty)$$
 (B) $[-\frac{7}{2}, \frac{4}{3}]$ (C) $(-\infty, -\frac{2}{7}] \cup [\frac{3}{4}, +\infty)$ (D) $[-\frac{7}{2}, \frac{3}{4}]$

解析: 要求斜率的范围, 不妨先画图分析直线 l 的变动范围, 找到临界状态,

如图,直线l从MA绕点M逆时针旋转至MB,与线段AB有交点,

两个临界状态的斜率分别为 $k_{MA} = \frac{-1-3}{-1-2} = \frac{4}{3}$, $k_{MB} = \frac{-1-6}{-1-(-3)} = -\frac{7}{2}$,

最后分析范围应取两者之间,还是两者之外,可分两部分考虑,

当直线 l 从 MA 旋转到图中虚线时, 斜率 k 从 $\frac{4}{3}$ 变到 $+\infty$;

当直线从虚线继续旋转到 MB 时,斜率从 $-\infty$ 变到 $-\frac{7}{2}$;

所以
$$k \in (-\infty, -\frac{7}{2}] \cup [\frac{4}{3}, +\infty).$$

答案: A

【反思】①若题目与l有关的条件改为l的方程为x-my+1-m=0,还会做吗?根据内容提要第4点,直 线 l 过定点(-1,-1),接下来的过程和本题相同;②当直线 l 从 l,绕定点旋转到 l,时,若旋转过程中经过了 竖直线,则斜率的变化范围取两者之外;若没有经过竖直线,则取两者之间.

类型 II: 斜率的几何意义的运用

【例 2】已知点 $A(-1-\sqrt{3},-1)$, B(3,0), 若点 M(x,y) 在线段 AB 上,则 $\frac{y-2}{y+1}(x \neq -1)$ 的取值范围是(

(A)
$$(-\infty, -\frac{1}{2}] \cup [\sqrt{3}, +\infty)$$
 (B) $[-1, -\frac{1}{2}]$ (C) $[-1, \sqrt{3}]$ (D) $[-\frac{1}{2}, \frac{1}{2}]$

(B)
$$[-1, -\frac{1}{2}]$$

(C)
$$[-1,\sqrt{3}]$$

(D)
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

解析: 出现关于 x, y 的一次分式结构, 可考虑用两点连线的斜率来分析,

因为 $\frac{y-2}{x+1} = \frac{y-2}{x-(-1)}$, 所以 $\frac{y-2}{x+1}$ 可以看成动点M(x,y)与定点P(-1,2)的连线斜率,

如图, 当M从A运动到B, 直线PM就从PA绕点P逆时针旋转至PB,

由题意,
$$k_{PA} = \frac{-1-2}{-1-\sqrt{3}-(-1)} = \sqrt{3}$$
, $k_{PB} = \frac{2-0}{-1-3} = -\frac{1}{2}$,

因为旋转过程中经过了竖直线,所以斜率的变化范围是 $(-\infty, -\frac{1}{2}]$ U[$\sqrt{3}, +\infty$).

答案: A

【反思】根据两点连线的斜率公式 $k = \frac{y_2 - y_1}{x_2 - x_1}$ 所展现的形式,解析几何中涉及关于 x,y 的一次分式结构,都可以尝试运用斜率的几何意义来分析问题.

【变式】已知实数 x, y 满足 $x^2 + y^2 = 4(y \ge 0)$,则 $\frac{x + y - 1}{x - 3}$ 的取值范围是_____.

解析:出现关于x,y的一次分式结构,考虑运用斜率来分析,要凑出斜率,得先把分子的x拆掉,

因为
$$\frac{x+y-1}{x-3} = \frac{(x-3)+y+2}{x-3} = 1 + \frac{y+2}{x-3}$$
, 记 $t = \frac{y+2}{x-3}$, 则 $\frac{x+y-1}{x-3} = 1 + t$,

下面先分析 t 的范围, $t = \frac{y+2}{x-3} = \frac{y-(-2)}{x-3}$, 所以 t 表示动点 P(x,y) 和定点 Q(3,-2) 连线的斜率,

因为 $x^2 + y^2 = 4(y \ge 0)$,所以点P在如图所示的半圆上运动,直线PQ的临界状态为图中的 l_1 和 l_2 ,

其中直线
$$l_1$$
过点 $A(-2,0)$ 和点 Q ,其斜率为 $\frac{-2-0}{3-(-2)} = -\frac{2}{5}$,

直线 l_2 与半圆相切,设其斜率为k,则其方程为y-(-2)=k(x-3),即kx-y-3k-2=0,

所以圆心 O 到 l_2 的距离 $d = \frac{\left| -3k - 2 \right|}{\sqrt{k^2 + 1}} = 2$,解得: $k = -\frac{12}{5}$ 或 0 (舍去,图中 l_2 的斜率显然为负),

当P在半圆上运动时,直线PQ的扫动范围是从 l_2 绕点Q逆时针旋转至 l_1 ,过程中不经过竖直线,

故其斜率 t 的变化范围是 $\left[-\frac{12}{5}, -\frac{2}{5}\right]$,所以 $\frac{x+y-1}{x-3} = 1 + t \in \left[-\frac{7}{5}, \frac{3}{5}\right]$.

答案: $\left[-\frac{7}{5}, \frac{3}{5}\right]$

类型Ⅲ:用方向向量解决夹角问题

【例 3】已知正三角形某内角的平分线所在直线的斜率为 $\frac{2\sqrt{3}}{3}$,写出该内角的两边中,其中一边所在直线的斜率: .

解析:如图,设AD是正 ΔABC 的内角A的平分线,则AD与AB和AC的夹角均为30°,

涉及直线与直线的夹角,考虑用直线的方向向量来计算,

直线 AD 斜率为 $\frac{2\sqrt{3}}{3}$ ⇒ 其方向向量可取 $\mathbf{m} = (1, \frac{2\sqrt{3}}{3})$,设 AB 斜率为 k,则其方向向量可取 $\mathbf{n} = (1, k)$,

所以
$$|\cos \langle m, n \rangle| = \frac{|m \cdot n|}{|m| \cdot |n|} = \frac{\left|1 + \frac{2\sqrt{3}}{3}k\right|}{\frac{\sqrt{21}}{3} \cdot \sqrt{1 + k^2}} = \cos 30^\circ = \frac{\sqrt{3}}{2},$$
解得: $k = \frac{\sqrt{3}}{5}$ 或 $3\sqrt{3}$.

答案:
$$\frac{\sqrt{3}}{5}$$
 (或 $3\sqrt{3}$)

【反思】涉及直线与直线的夹角问题,常考虑用直线的方向向量来处理.

类型Ⅳ: 求直线的方程

【例 4】直线 l 过点 (1,1),倾斜角为 α ,且 $\sin \alpha = \frac{2\sqrt{5}}{5}$,则直线 l 的方程为_____.

解析: 已知 $\sin \alpha$ 可求出 $\tan \alpha$,得到斜率,用点斜式写出直线的方程,

由题意,
$$\alpha \in [0,\pi)$$
 且 $\sin \alpha = \frac{2\sqrt{5}}{5} \Rightarrow \cos \alpha = \pm \sqrt{1-\sin^2 \alpha} = \pm \frac{\sqrt{5}}{5} \Rightarrow \tan \alpha = \pm 2$,

所以直线 l 的方程为 y-1=2(x-1)或 y-1=-2(x-1),整理得: y=2x-1或 y=-2x+3.

答案: y = 2x - 1 或 y = -2x + 3

【例 5】已知 $\triangle ABC$ 中,已知 B(2,1), C(-2,3),则边 BC 的中垂线 l 的方程为_____.

解析:如图,中垂线l过BC中点D(0,2),还差斜率,可先求BC的斜率,再由 $l \perp BC$ 求l的斜率,

由题意,
$$k_{BC} = \frac{3-1}{-2-2} = -\frac{1}{2}$$
,所以 $-\frac{1}{2}k_l = -1$,从而 $k_l = 2$,

故 l 的方程为 y-2=2(x-0),即 2x-y+2=0.

答案: 2x-y+2=0

【例 6】直线 l 过点(1,2), 且在两坐标轴上截距相等,则直线 l 的方程为____.

解析: 涉及截距, 可设直线的截距式方程, 先考虑截距为 0 的特殊情况,

当直线 l 过原点时,其斜率为 2,故其方程为 y = 2x,即 2x - y = 0,

此时直线 l 在两坐标轴上截距均为 0, 满足题意;

当直线 l 不过原点时,可设其方程为 $\frac{x}{a} + \frac{y}{a} = 1$ $(a \neq 0)$,将点 (1,2)代入可得 $\frac{1}{a} + \frac{2}{a} = 1$,解得: a = 3 ,

所以直线 l 的方程为 $\frac{x}{3} + \frac{y}{3} = 1$,即 x + y - 3 = 0;

综上所述,直线 l 的方程为 2x-y=0 或 x+y-3=0.

答案: 2x-y=0或x+y-3=0

类型V:直线的平行与垂直

【例 7】设直线 $l_1:(a+1)x+a^2y-3=0$, $l_2:2x+ay-2a-1=0$,则"a=0"是" $l_1//l_2$ "的(

(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 解析: 涉及 $l_1 // l_2$, 可先用 $A_1B_2 = A_2B_1$ 求出参数 a 的值并检验是否重合, 得到 $l_1 // l_2$ 的充要条件再看, 由 $l_1 // l_2$ 可得 $(a+1)a=2a^2$,所以a=0或 1,经检验,a=1时 l_1 与 l_2 重合,故a=0是 $l_1 // l_2$ 的充要条件.

答案: C

【例 8】设直线 $l_1:(a+2)x+(1-a)y-3=0$, $l_2:(a-1)x+(2a+3)y+2=0$,则"a=1"是" $l_1\perp l_2$ "的(

(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件

解析: 涉及 $l_1 \perp l_2$, 可用 $A_1A_2 + B_1B_2 = 0$ 求参数的值, 由题意, $l_1 \perp l_2 \Leftrightarrow (a+2)(a-1) + (1-a)(2a+3) = 0$,

解得: $a = \pm 1$, 所以"a = 1"是" $l_1 \perp l_2$ "的充分不必要条件.

答案: A

【变式】若直线 $l_1: x-my+1=0$ 过定点A, $l_2: mx+y-m+3=0$ 过定点B, l_1 与 l_2 交于点P,则 $|PA|^2+|PB|^2=0$

解析: 为了找到两直线所过的定点,可先把参数集中起来再看,

由题意, l_1 过定点 A(-1,0), $mx+y-m+3=0 \Rightarrow m(x-1)+(y+3)=0 \Rightarrow$ 直线 l_2 过定点 B(1,-3),

接下来若去求交点P,再算 $|PA|^2 + |PB|^2$,则计算量大,而 $|PA|^2 + |PB|^2$ 的结构让我们联想到勾股定理,故来 看看 PA, PB 是否垂直,

因为两直线方程的系数满足 $A_1A_2 + B_1B_2 = 1 \times m + (-m) \times 1 = 0$,所以 $l_1 \perp l_2$,如图,

故 $|PA|^2 + |PB|^2 = |AB|^2 = (-1-1)^2 + [0-(-3)]^2 = 13$.

答案: 13

【反思】当两直线都含参时,应通过分析系数来判断两直线是否隐藏了垂直、平行这些特殊的位置关系.

强化训练

- 1. (★) 已知 $\triangle ABC$ 中, A(2,-1), B(4,3), C(3,-2),则 BC 边上的高所在直线的方程为_____.
- 2. (★) 过点(5,2), 且在x 轴上截距是在y 轴上截距 2 倍的直线 l 的方程是 ()

- 3. (★) 已知直线 $l_1: x + m^2y + 6 = 0$ 和直线 $l_2: (m-2)x + 3my + 2m = 0$ 平行,则实数 $m = ____$.
- 4. (2022 泰州模拟 ★★)已知直线 l_1 : x+(a-1)y+2=0, l_2 : $\sqrt{3}bx+y=0$,且 $l_1\perp l_2$,则 a^2+b^2 的最小值 为(
- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{13}{16}$
- 5. (2022 重庆月考 ★★)已知两条直线 l_1 , l_2 的斜率分别为 k_1 , k_2 , 倾斜角分别为 α , β , 若 α < β , 则下列关系不可能成立的是()

- (A) $0 < k_1 < k_2$ (B) $k_1 < k_2 < 0$ (C) $k_2 < k_1 < 0$ (D) $k_2 < 0 < k_1$

- 6. (2022 扬州模拟 ★★) 直线 $l: x\sin a + \sqrt{3}y b = 0 (a, b \in \mathbb{R})$ 的倾斜角的取值范围是()
- (A) $[0,\pi)$ (B) $\left[\frac{\pi}{6},\frac{\pi}{2}\right] \cup \left(\frac{\pi}{2},\frac{5\pi}{6}\right]$ (C) $\left[0,\frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6},\pi\right)$ (D) $\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$
- 7. (★★) 已知 A(-1,1), B(2,2),若直线 l: x+my-1=0 与线段 AB 有交点,则实数 m 的取值范围为_____.
- 8. (★★★) 已知 A(-1,0), B(0,3),若直线 l: ax + y + 2a 1 = 0上存在点 P,满足 |PA| + |PB| = |AB|,则 l 的 倾斜角的取值范围是()
- (A) $[0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \pi)$ (B) $[\frac{\pi}{4}, \frac{3\pi}{4}]$ (C) $[0, \frac{\pi}{6}] \cup [\frac{5\pi}{6}, \pi)$ (D) $[\frac{\pi}{6}, \frac{5\pi}{6}]$

- 9. (★★★) (多选) 实数 x, y 满足 $x^2 + y^2 + 2x = 0$, 则下列关于 $\frac{y}{x-1}$ 的判断正确的是 ()
- (A) $\frac{y}{x-1}$ 的最大值为 $\sqrt{3}$ (B) $\frac{y}{x-1}$ 的最小值为 $-\sqrt{3}$
- (C) $\frac{y}{x-1}$ 的最大值为 $\frac{\sqrt{3}}{3}$ (D) $\frac{y}{x-1}$ 的最小值为 $-\frac{\sqrt{3}}{3}$

10. (2022•保定月考•★★★) 若正三角形的一条高所在直线的斜率为3,则该正三角形的三边所在直线 的斜率之和为 .