Distributed System

- A system is said to fail when it does not meet its specification
- Banking system
- Component faults
 - Failing due to fault in some component (processor, memory, cable)
 - Fault: Malfunction caused by design error, manufacturing error, programming error, physical damage, deterioration in the course of time, unexpected inputs,.....
 - Transient faults
 - > Occur once and then disappear
 - > Fault goes away if operation is repeated
 - Intermittent fault
 - > Occurs, vanishes, reappears,.....
 - > Loose contact on a connector
 - > Difficult to diagnose
 - Permanent fault
 - > Continues to exist until the faulty component is repaired
 - > Burnt-out chips, software bugs
 - Fault-tolerant system: Ensuring that a system as a whole continues to function correctly, even in the presence of faults

- System failures
 - Surviving component faults rather than making these unlikely
 - Fail-silent faults/Fail-stop faults
 - > A faulty processor just stops and does not respond to subsequent input or produce further output
 - > Easier to identify and resolve
 - Byzantine faults
 - > A faulty processor continues to run issuing wrong answers to questions
 - > Works together maliciously with other faulty processors to give the impression that they are all working correctly when they are not
 - > Difficult to deal with
- Use of redundancy
 - General approach to fault tolerance
 - Information redundancy
 - > Extra bits are added to allow recovery from garbled bits
 - > Hamming code
 - Time redundancy
 - > An action is performed and then if needed it is performed again
 - > Redoing atomic transaction if it gets aborted
 - > Transient, intermittent

- Use of redundancy
 - Physical redundancy
 - > Adding extra equipment to tolerate loss or malfunctioning
 - > Adding extra processors
 - > Active replication
 - TMR
 - Why 3?
 - A₁ fails
 - V₁ malfunctions

Figure 1: Triple modular redundancy

- Use of redundancy
 - Physical redundancy
 - > Active replication
 - K fault tolerant: Survive faults in k components and still meet its specifications
 - Fail silent: K+1 for achieving K fault tolerance
 - Byzantine failure: 2K+1 for achieving K fault tolerance
 - Replicas can also fail
 - > Primary backup
 - One server is primary
 - If primary fails backup takes over
 - Requires fewer machines
 - Works poorly in presence of byzantine faults
 - Primary crash
 - 1. After doing the work, before sending the update
 - → Backup takes over
 - → Request comes again
 - \rightarrow Work will be done 2nd time
 - → Problematic in some cases

Figure 2: A simple primary backup protocol

- Use of redundancy
 - Physical redundancy
 - > Primary backup
 - Primary crash
 - 2. After doing the work in backup, before sending reply to client
 - → Doing the work three times
 - \rightarrow By primary
 - → In backup
 - → When backup becomes primary
 - \rightarrow When to takeover the primary
 - → Disk between primary and secondary

Figure 2: A simple primary backup protocol