Mathematics Department Perth Modern Perth Modern Perth Modern Perth Modern Perth Modern

Course Methods Test 3 Year 12

Formula sheet provided:	tud oN	some formulae given on page 2	
Task weighting:	_{bī}	%	
Marks available:	8£	тыгка ——	
Special items:	Drawing A4 pape	g instruments, templates, notes on one unfolded sheet of er	
Standard items:		ılue/black preferred), pencils (including coloured), sharpener, ion fluid/tape, eraser, ruler, highlighters	
Materials required:	No class	speds	
Number of questions:	9	g	
Working time allowed for	orking time allowed for this task: 40 mins		
Reading time for this test	nim 2 : t	sı	
լցջk քλbe։	Kespon	noitsgitzevnl\esr	
Student name:		Тевсрег пате:	

Note: All part questions worth more than 2 marks require working to obtain full marks.

1 | Page

End of test Working out space

8 P A g e

Useful formulae

Logarithms

$x = \log_a b \iff a^x = b$	$a^{\log_a b} = b$ and $\log_a(a^b) = b$
$\log_a mn = \log_a m + \log_a n$	$\log_a \frac{m}{n} = \log_a m - \log_a n$
$\log_a(m^k) = k \log_a m$	$\log_e x = \ln x$

$\frac{d}{dx} \ln x = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c, x > 0$
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$

$\frac{d}{dx}\ln f(x) = \frac{f(x)}{f(x)}$		$\int \frac{f(x)}{f(x)} dx = 1$	$\ln f(x) + c, f(x) > 0$
	If $y = uv$		If $y = f(x) g(x)$
Product rule	then	or	then
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y'=f'(x) g(x) + f(x) g'(x)
	If $y = \frac{u}{v}$		$If y = \frac{f(x)}{g(x)}$
Quotient rule	then	or	then
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$
Chain rule	then	or	then
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\left \frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$

Q6 continued

iii) E(X) i.e the mean. (No need to simplify)

b) Derive the cumulative probability function $P(X \le x)$ for $0 \le x \le 10$.

Perth Modern Mathematics Department

Q1 (2 & 2 = 4 marks)

a) $\log_a b + 3\log_a (ab) - 4\log_a b$. Express each of the following as a single logarithm.

b)
$$\delta + 3 \log_5 c - \log_5 \left(c^3\right) + \log_5 b$$
.

Q2 (2 & 2 = 4 marks) Solve each of the following, giving your answer in exact form.

Solve each of the following, giving your answer in **exact** form. a)
$$2^{2x}-12(2^x)+32=0$$

 $1\mathcal{E} = \left({^{2+x}} \nabla \right) \mathcal{E} + {^x} \nabla \right) (d$

Perth Modern Mathematics Department

Consider the continuous random variable X and its probability density function which is graphed Q6 (3, 3, 3 & 3 = 12 marks)

a) Determine the following exactly.

below.

(vilidmis of been oN). $(\xi > X \mid \xi < X)^{q}$ (ii)

6 Page

Q3 (1, 3 & 3 = 7 marks)

The Richter scale, R, of an earthquake of intensity I is given by $R = \log_{10} \left(\frac{I}{I_o} \right)$ where I_o is a minimum intensity level used for comparison.

- a) Determine R for an earthquake with intensity $10000I_a$.
- b) An earthquake measuring 5 on the Richter scale is how many times as intense as that of one measuring 4 on the Richter scale?
- c) If an earthquake registers x on the Richter scale and a second earthquake registers x+4 on the Richter scale, how many more times as intense is the second earthquake?

Q4 (3 marks)

Consider the function $f(x) = \log_2 x$ which undergoes a transformation f(ax+b) where a & b are constants. The graph y = f(ax+b) is plotted below, determine the values of a & b showing reasoning.

4 | Page

Q5 (3 & 5 = 8 marks) Consider the function $g(x) = (x^2 + 3) \ln(x^3 + 3x)$.

Mathematics Department

a) Determine g'(x).(Simplify)

b) Use the result from part a to determine $\int 2x \ln(x^3 + x) dx$.