Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

Erfüllbarkeitsproblem

SAT

Eingabe: aussagenlogische Formel *F*

Frage: lst F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0,1, x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis (Idee, Details später)

Teil 1: "SAT ∈ NP": rate erfüllende Belegung (Zertifikat) und verifiziere sie.

Teil 2: "SAT ist NP-schwer": mit $L \in NP$ beliebig,

transformiere NTM N mit T(N) = L in Formel $\varphi(x)$ sodass $x \in L \Leftrightarrow \varphi(x) \in SAT$.

CNF-SAT ist NP-vollständig

CNF-SAT

Eingabe: aussagenlogische Formel *F* in "konjunktiver Normalform"

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

Theorem leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

i neorer

 $SAT \leq_m^p CNF-SAT (\sim CNF-SAT NP-vollständig)$

Beweis (Skizze)

Reduktion: $\varphi \sim \text{erf\"{u}llbarkeits}$ -äquivalente Formel ψ :

- (1) neue Variable y_i für jeden Knoten im "Formelbaum" mit "äquivalentem Wahrheitswert"
- (2) neue Klausel für die Wurzel

 ψ erfüllbar $\Leftrightarrow \varphi$ erfüllbar \checkmark

poly-time computable ✓ (ab jetzt implizit)

3-SAT ist NP-vollständig

Theorem

CNF-SAT $\leq_m^p 3$ -SAT (also ist 3-SAT NP-vollständig).

Beweis (Skizze)

Reduktion: CNF-Formel $\varphi \sim$ **erfüllbarkeits**-äquivalente 3CNF-Formel ψ Für jede Klausel $c_i = (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_r) \in \varphi$,

- ▶ falls $r \leq 3$, dann füge c_i zu ψ hinzu;
- ► sonst füge c' hinzu mit

$$c_j' \coloneqq (\ell_1 \vee \ell_2 \vee y_1) \wedge (\overline{y_1} \vee \ell_3 \vee y_2) \wedge (\overline{y_2} \vee \ell_4 \vee y_3) \dots (\overline{y_{r-3}} \vee \ell_{r-1} \vee \ell_r)$$

wobei y_1, \ldots, y_{r-3} neue Variablen sind.

 \rightarrow Belegung β erfüllt $c_j \Leftrightarrow$ Erweiterung von β erfüllt c_i'

 ψ erfüllbar $\Leftrightarrow \varphi$ erfüllbar 🗸

Bemerkung: $|\psi| \leq 2|\varphi|$

VERTEX COVER ist NP-vollständig

Theorem

 $3-SAT \leq_m^p VERTEX COVER.$

Beweis (Skizze)

Formel $\varphi \rightsquigarrow (G, k = \#Var + 2\#Klauseln)$

- 1. Variablen-Gadget: Variable $x_i \sim 2$ benachbarte Knoten mit Beschriftungen x_i und $\overline{x_i}$
- 2. Klausel-Gadget: Klausel $(\ell_{i_1} \vee \ell_{i_2} \vee \ell_{i_3}) \sim$ Dreieck mit Beschriftungen $\ell_{i_1}, \ell_{i_2}, \ell_{i_3}$
- 3. Verbinde Knoten mit gleicher Beschriftung
- "> ": aus Variablen-Gadget, wähle entsprechend der Belegung
- ightarrow alle anderen Kanten mit 2 Knoten aus jedem Klausel-Gadget überdeckt
- "←":
- (a) = 1 Knoten von jedem Variablen-Gadget in jeder VC-Lösung
- (b) = 2 Knoten von jedem Klausel-Gadget in jeder VC-Lösung.
- → jedes Klausel-Gadget benachbart zu einem Knoten in VC-Lösung
- → entsprechende Belegung erfüllt die Formel!

DOMINATING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Dominating Set.

Beweis (Skizze)

$$(G,k) \sim (G',k)$$

- 1. setze initial G' = G
- 2. für jede Kante $e = \{u, v\}$ in G:

erzeuge einen neuen (grauen) Knoten in G' und verbinde ihn mit u und v

Korrektheit: " \Rightarrow ": VC-Lösung in G ist auch DS-Lösung in G'

- $A \leftarrow$ ": Sei $X \subseteq V(G')$ eine DS-Lösung für G' mit |X| < k
- (a) neuer (grauer) Knoten ∈ DS-Lösung ~ mit weißem Nachbarn tauschen
- → Lösung ohne graue Knoten
- (b) graue Knoten dominiert \sim jede Kante in G hat Endpunkt in X
- $\sim X$ ist vertex cover in G

CLIQUE ist NP-vollständig

Clique

Eingabe: ungerichteter Graph G und Zahl $k \in \mathbb{N}$

Frage: Hat G einen vollständigen Teilgraph G' mit $\geq k$ Knoten?

Theorem

Independent Set \leq_m^p Clique.

Beweis (Skizze)

$$(G = (V, E), k) \rightsquigarrow (\overline{G} = (V, {V \choose 2} \setminus E), k)$$

Korrektheit:

Jede unabhängige Knotenmenge in G bildet eine Clique in \overline{G} und umgekehrt, also:

$$(G, k) \in \text{Independent Set} \Leftrightarrow (\overline{G}, k) \in \text{Clique}$$

CLIQUE

Wenn ein Dominostein fiele...

Netzwerk polynomieller Reduktionen I

. . .

HITTING SET und SET COVER

Eingabe:

- (1) Grundmenge ("Universum") $U := \{x_1, x_2, \dots, x_n\}$,
- (2) eine Teilmengenfamilie $\mathcal{F} := \{S_1, S_2, \dots, S_m\}$ mit $S_i \subseteq U$ für $1 \leq i \leq n$ und
- (3) ein $k \in \mathbb{N}$

Hitting Set

Frage: Existiert eine Teilmenge $X \subseteq U$ mit $|X| \le k$ und $X \cap S_i \ne \emptyset$ für jedes S_i ?

Set Cover

Frage: Existiert ein $\mathcal{Z} \subseteq \mathcal{F}$ mit $|\mathcal{Z}| \leq k$ und $\bigcup_{S \in \mathcal{Z}} S = U$?

Beispiel

- (1) $U = \{1, 2, 3, 4, 5, 6\},\$
- (2) $S_1 = \{1,3\}$, $S_2 = \{3,4\}$, $S_3 = \{1,5\}$, $S_4 = \{2,4,6\}$, $S_5 = \{1,3,5\}$
- (3) k = 2

$$\sim X = \{1, 4\}, \ \mathcal{Z} = \{S_4, S_5\}.$$

HITTING SET ist NP-vollständig

Theorem

Vertex Cover \leq_m^p Hitting Set.

Beweis (Skizze)

$$(G = (V, E), k) \rightsquigarrow (U = V, \mathcal{F} = E, k)$$

Korrektheit: klar

In der Tat ist VERTEX COVER auch bekannt als "2-Hitting Set".

SET COVER ist NP-vollständig

Theorem

HITTING SET \leq_m^p SET COVER.

Beweis (Skizze)

$$(U, \mathcal{F}, k) \rightsquigarrow (U_{SC} = \mathcal{F}, \mathcal{F}_{SC} = \{F_x \mid x \in U\}, k)$$

mit $F_x := \{S_i \in \mathcal{F} \mid x \in S_i\}$

Korrektheit:

$$X \subseteq U$$
 ist ein Hitting Set für \mathcal{F}

$$\Leftrightarrow \forall_{S_i \in \mathcal{F}} \ \exists_{x \in X} \ x \in S_i$$

$$\forall s_i \in \mathcal{F} \ \exists x \in X \ \land \ \subset \ S_i$$

$$\Leftrightarrow \bigcup_{x \in X} F_x = \mathcal{F}$$

$$\Leftrightarrow \mathcal{Z} := \{ F_x \mid x \in X \} \text{ ist ein Set Cover für } \mathcal{F} = U_{SC}$$

Netzwerk polynomieller Reduktionen II

Subset Sum

Ein Problem u.a. aus dem Bereich "Scheduling" (Ablaufsteuerung).

Subset Sum

Eingabe: Multi-Menge $U := \{u_1, u_2, \dots, u_n\}$ von natürlichen Zahlen und eine Zahl $B \in \mathbb{N}$

Frage: Existiert eine Teilmenge $X \subseteq U$, die sich zu B summiert, d.h. $\sum_{u \in X} u = B$?

Beispiel

$$U = \{4, 4, 11, 16, 21\}$$
 und $B = 29$.
 $X = \{4, 4, 21\}$.

SUBSET SUM ist NP-vollständig Theorem

 $3-SAT \leq_m^p SUBSET SUM.$

Beweis (Skizze)

Konstruktion: Variablen x_1, \ldots, x_n , Klauseln c_1, \ldots, c_m

- 1. Für jedes x_i bilde zwei Dezimalzahlen $y_i, z_i \in \{0, 1\}^{n+m}$ mit:
 - Vordere *n* Ziffern: *i*-te Stelle von y_i und z_i ist 1, alle anderen sind 0.
 - Hintere *m* Ziffern: *j*-te Stelle von y_i ist 1 falls $x_i \in c_i$, und sonst 0. *j*-te Stelle von z_i ist 1 falls $\overline{x_i} \in c_i$, und sonst 0.
 - 2. Für jede Klausel c_i , bilde zwei **dezimale** "Füllzahlen" g_i , h_i 3. Setze Dezimalzahl $B := 1 \dots 13 \dots 3$.

Korrektheit " \Rightarrow ": Sei β eine erfüllende Belegung.

Korrektheit "
$$\Rightarrow$$
": Sei β eine erfüllende Belegung. \sim Lösung = $\{y_i \mid \beta(x_i) = 1\} \cup \{z_i \mid \beta(x_i) = 0\} + \text{geeignete } g_i \& h_i$ " \Leftarrow ": Sei X eine Menge von Zahlen mit $\sum_{u \in X} u = B$.

erste *n* Ziffern $\rightsquigarrow y_i \in X \Leftrightarrow z_i \notin X$

 $C_1: X_1 \vee X_2 \vee \overline{X_3}$ $c_2: \overline{X_1} \vee X_2 \vee X_3$

Beispiel

 $C_3: \overline{X_1} \vee \overline{X_2} \vee \overline{X_3}$

X1 X2 X3 C1 C2

Die Belegung β mit $\beta(x_i) = 1$ falls $y_i \in X$, und $\beta(x_i) = 0$ sonst, ist erfüllend.

Mathias Weller (TU Berlin) Berechenbarkeit und Komplexität

NP-Vollständigkeit

Netzwerk polynomieller Reduktionen III

