Problems for Section

Megan Selbach-Allen, Pranav Nuti, Shintaro Fushida-Hardy ${\bf SSEA~2022}$

1. For each of the following sets of vectors, prove or disprove that it is a subspace.

(a)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \,\middle|\, z = 2x - y \right\}$$

(b)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \, \middle| \, z = 1 + 2x - y \right\}$$

(c)
$$\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid y = x^2 \right\}$$

(d)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \middle| 3x - y + z = 0, x + y - 4z = 0 \right\}$$

2. Consider the 3-vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$. Find scalars $a,b,c \in \mathbb{R}$ such that

$$\operatorname{span}(\mathbf{v}, \mathbf{w}) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \, \middle| \, ax + by + cz = 0 \right\}.$$

Interpret this in terms of descriptions of planes.

3. Find a pair of 3-vectors \mathbf{v} , \mathbf{w} such that $\operatorname{span}(\mathbf{v}, \mathbf{w}) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \,\middle|\, 2x - 3y + 2z = 0 \right\}$.

4. Consider the 4-vectors $\mathbf{v_1} = \begin{bmatrix} -2\\2\\1\\1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 3\\4\\0\\1 \end{bmatrix}$. Show that the set of vectors

$$V = \{ \mathbf{w} \in \mathbb{R}^4 \mid \mathbf{w} \cdot \mathbf{v_1} = 0, \mathbf{w} \cdot \mathbf{v_2} = 0 \}$$

is a subspace in each of the following ways:

• Write V as a span of some vectors. (Hint: write \mathbf{w} as the vector (w_1, w_2, w_3, w_4) and try to solve for w_1 and w_2 .)

- ullet Show that V contains 0, and is closed under vector addition and scalar multiplication.
- 5. Consider the 3-vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}' = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{w}' = \begin{bmatrix} -2 \\ -3 \\ 4 \end{bmatrix}$. Show that span(\mathbf{v} , \mathbf{w}) = span(\mathbf{v}' , \mathbf{w}'). (For example, show that \mathbf{v} and \mathbf{w} are contained in the span of \mathbf{v}' and \mathbf{w}' and vice versa.)