

REVISION

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Bernhard Kainz

b.kainz@imperial.ac.uk

Boolean Algebra – Truth Tables

 All possible outcomes of the operators can be written as truth tables

Boolean Algebra – Rules

Note: A and B can be any Boolean Expression

Negation: Assignifient Project Examinative:
$$(A')' = A$$
 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ $A \cdot B = B \cdot A$ $(A + A' = 0)$ $A \cdot A' = 0$ Add WeChat powcoder

Distributive:

Distributive:

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

 $A + (B \cdot C) = (A + B) \cdot (A + C)$
Note the precedence

Boolean Algebra – Rules

Single variables (Idempotent law):

https://powcoder.com

Simplification rules with 1 and 0:

AAdd WeChat powcoder

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

Boolean Algebra – de Morgan's Rule

```
(A + B)' = A' • B'

(A • B)' Assignment Project Exam Help

as before, A and B can be any Boolean expression

https://powcoder.com
```

Can generalise the welcan ariables: coder (A + B + C + D + ...)' = A' • B' • C' • D' • ...

(A • B • C • D • ... • X)' = A' + B' + C' + D' + ... + X'

Half Adder

Recall

	0	0	1	1				
Ass	signment	Project	Exam He	elp 1				
	00	01	01	10				
https://powcoder.com								

Truth Table

Α	Add W	eChat po	Sum	Carry
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	2	0	1

Full Adder

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = (A \cdot B) + C_{in} \cdot (A \oplus B)$$

Full Adder

Conceptually

Latches

• SR-Latch: Truth table

Ass i gnn	nent Pro	ject©Exai	m Help
0	,0	Latch	
₀ http	s://pow	coder.co	\mathbf{m}_{-1}
¹ A de	1 WeCh	at power	der
1	1	at powco Undefined	CICI

Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- · Constructed to ingether inverted Sampulles the R input signal
 - Allows for a single the si-pow and sinput is inverted

Memory

- Memories hold binary values
 - · Data (e.g. Integers neelst Phorecter Exam Help
 - · CPU Instructions kittep Samporter code racesim
 - Memory Addresses 4 omters hat all worms fructions)
- Contents remain unchanged unless overwritten with a new binary value
 - Some of them *lose* the content when power is turned off (volatile memory)

Computer Architecture

Summary

Byte Addressing (Big Endian)

Byte Addressing (Little Endian)

1GB (256M x 32-bit) Memory

1GB (256M x 32-bit) Memory

Four 256MB memory modules

Memory Interleaving

- Example:
 - Memory = 4M words, each word = 32-bits
 - · Built with 4 Alligatheting Property Learn Help
 - For 4M words we need 22 bits for an address
 - 22 bits = 2 bits (to select row within Module)

Add WeChat powcoder
2 20

Module Row within Module High-Order Interleave
20 2

Row within Module Module Low-Order Interleave

MSI Chips – Multiplexer

- A multiple-input, single-output switch
- Also called MUX for short ©

- sel selects which of I₀ or I₁ is mapped to the output
- For example, sel = 0 selects I₀ and sel = 1 selects I₁
- Example is called a 2-to-1 MUX
- With n selects/control lines, we can have 2ⁿ input lines

MSI Chips – Decoder

MSI Chips – Decoder

Truth Table

Α	ВД	ssig	nPae	rR ₆ F	reje	CP4E	ixan	144e	21B1	D ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1 h	ttps	// p c	WCC	der	.con	n 0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1 A	agi	wet	_nai	Bo.	vço	uer	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

MSI Chips – Calculations – Comparator

MSI Chips – Calculations – Bit-shifter

- Faster calculations for powers of 2
- Shift left and right (multiply and divide)

- $c = 0 \rightarrow \text{shift left}$
- $c = 1 \rightarrow shift right$

The Arithmetic Logic Unit (ALU)

nment Project Exame Attelp able to perform multiple functions

Depending on the input to powcoder (F₀,F₁) one of four functions is selected -A and B, A or B, not B, arithmetic A+B

Data representation

Bit Pattern	0000	0001	I 🔺	0011		1	0110 Dro i	0111	1000		1010 H O		1100	1101	1110	1111
Unsigned	0	1	2	5138	4		6	eçt	Exa	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+ h	ttps	:// ⁵ p	o₩c	ode	r.ec	om¹	-2	-3	-4	-5	-6	-7
1s Complement	+0	+1	+2	+3	t ⁴	$\overset{\pm 5}{ ext{We}}$ e	Cha	+7 1 nc	-7 W C	-6 Ode	-5	-4	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

ASCII Character Set

								Bit positions	
Bit positions 654									
000	001	010	011	100	101	110	111		
NUL	DLE	SP	0	@	Р	6	р	0000	
SOH	DC1	!	1	А	Q	а	q	0001	
STX	DC2		ım ệnt	Drogiac	t Elean	L L D	r	0010	
ETX	DC3	Lysaigi	mignt		t Lgan	Ticip	S	0011	
EOT	DC4	\$	4	D	Т	d	t	0100	
ENQ	NAK	%	5 , ,	E	U	е	u	0101	
ACK	SYN	& n 1	tos://p	OWCOO	er.con	1 f	V	0110	
BEL	ETB	6	7	G	W	g	W	0111	
BS	CAN	(8	Н	X	h	Х	1000	
HT	EM) 🔥	119 M	Chat p		lar i	У	1001	
LF	SUB	*	aa iv c	Chat	O VECO		Z	1010	
VT	ESC	+	• •	K	[k	{	1011	
FF	FS	,	<	L	\	I		1100	
CR	GS	-	=	М]	m	}	1101	
SO	RS		>	N	٨	n	~	1110	
SI	US	/	?	0		0	DEL	1111	

Strings are represented as sequence of characters. E.g. **Fred** is encoded as follows:

English	F	r	е	d
ASCII (Binary)	0100 0110	0111 0010	0110 0101	0110 0100
ASCII (Hex)	46	72	65	64

Two's Complement – BNA Summary

Addition

Add the values, discarding any carry-out bit

Assignment Project Exam Help

- Subtraction
 - Negate the subtracted and additional and carry-out bit

Overflow

Add WeChat powcoder

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

Floating point zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

 Zones of expressibility: https://powcoder.com

Normalised forms (base 10)

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Bely 10 ⁵
-4.01×10^{-3}	$\frac{-4.01 \times 10^{-3}}{1000}$
-4.01 × 10 ⁻³ https://powe 343 000 × 10 ⁰ Add WeCha	3.43×10^{5}
0.000 000 098 9 × 10	9.89 × 10 ⁻⁸

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

•
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = 1000$$
 Fow coder.com

32	16 A C	ld WeC	hat ⁴ pov	wcoder	1
	0	1	1	0	1

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer:
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we multiplysthe coefficients and add the exponents
- Example:

Add WeChat powcoder

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$

= 14.04×10^3

• We must also **normalise the result**, so final answer is 1.404×10^4

Floating point addition

• A floating point addition such as $4.5 \times 10^3 + 6.7 \times 10^2$ is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1 + N_2 = (M_1 \times 10^{E_1}) + (M_2 \times 10^{E_2})$$

https://powcoder.com/
 $M_1 + M_2 \times 10^{E_2}) \times 10^{E_1}$

Add WeChat powcoder

 To align, choose the number with the smaller exponent and shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$

= $5.17 \times 10^{3} = 5.2 \times 10^{3}$
(rounded)

IEEE Single precision format (32-bit)

Exponent Significand Sign

1 Assignment Project Exant Help

- Coefficient is calletone significandom the IEEE standard
- Value represented is $\pm 1.F \times 2^{E-127}$ The **normal bit** (the 1.) is omitted from the significand field → a hidden bit
- Single precision yields 24 bits (approx. 7 decimal digits) of precision)
- Normalised ranges in decimal are approximately:

$$-10^{38}$$
 to -10^{-38} , 0, 10^{38} to 10^{-38}

Special values

 IEEE formats can encode five kinds of values: zero, normalised numbers, denormalised numbers, infinity and not-a-number (NaNs) roject Exam Help

Single precision representations:

https://powcoder.com **IEEE** value Exponent Significand True Value Sign exponent

	1 1	du WCC	nat poweous		
±0	0 or 1	0	0 (all zeros)		$\pm 0.0 \times 2^{0}$
± denormalised no.	0 or 1	0	Any non-zero bit pattern	-126	$\pm 0. \mathrm{F} \mathrm{x} 2^{-126}$
±normalised no.	0 or 1	1 254	Any bit pattern	−126 127	±1. F x 2 ^{E-127}
±∞	0 or 1	255	0 (all zeros)		$\pm 1.0 \times 2^{128}$
Not-a-number	0 or 1	255	Any non-zero bit pattern		±1. F x 2 ¹²⁸

