

Data Structures (2018)

AVL Tree

Hyoungshick Kim

College of Software Sungkyunkwan University

Complexity of Dictionary Operations Get(), Insert() and Delete()

Data Structure	Worst Case	Expected
Hash Table	O(n)	O(1)
Binary Search Tree	O(n)	O(log n)
Balanced Binary Search Tree	O(log n)	O(log n)

n is number of elements in dictionary

AVL Tree

- (self-balancing) binary tree
- Georgy <u>A</u>delson-<u>V</u>elsky and <u>L</u>andis' tree, named after the inventors
- for every node x, define its balance factor
 balance factor of x = height of left subtree of x
 height of right subtree of x
- balance factor of every node x is -1, 0, or 1

Balance Factors

This is an AVL tree.

Proof of Upper Bound on Height

- Let $N_h = \min \#$ of nodes in an AVL tree whose height is h.
- $N_0 = 0$.
- $N_1 = 1$.

$N_h, h > 1$

- Both L and R are AVL trees.
- The height of one is h-1.
- The height of the other is h-2.
- The subtree whose height is h-1 has N_{h-1} nodes.
- The subtree whose height is h-2 has N_{h-2} nodes.
- So, $N_h = N_{h-1} + N_{h-2} + 1$.

•
$$N_h = N_{h-1} + N_{h-2} + 1$$

•
$$N_{h-1} = N_{h-2} + N_{h-3} + 1$$

•
$$N_h = (N_{h-2} + N_{h-3} + 1) + N_{h-2} + 1$$

•
$$N_h > 2 \cdot N_{h-2}$$

•
$$N_h > 2 \cdot 2 \cdot N_{h-4}$$

•
$$N_h > 2^{h/2}$$

•
$$\log N_h > \log 2^{h/2}$$

•
$$2 \cdot \log N_h > h$$

•
$$h = O(\log N_h)$$

The height of an AVL tree with n nodes is $O(log_2 n)$.

AVL Search Tree

Search operation can be performed in the same manner.

Insert(9)

We need to go further up the tree to adjust balance factors.

Insert(29)

Insert(29)

RR rotation.

Insert

- Following insert, retrace path towards root and adjust balance factors as needed.
- Stop when you reach a node whose balance factor becomes 0, 2, or -2, or when you reach the root.
- The new tree is not an AVL tree only if you reach a node whose balance factor is either 2 or -2.
- In this case, we say the tree has become unbalanced.

A-Node

Let A be the nearest ancestor of the newly inserted node whose balance factor becomes
 +2 or -2 following the insert.

Imbalance Types

- RR ... newly inserted node is in the right subtree of the right subtree of A.
- LL ... left subtree of left subtree of A.
- RL... left subtree of right subtree of A.
- LR... right subtree of left subtree of A.

LL Rotation

Before insertion.

After insertion.

After rotation.

- Subtree height is unchanged.
- No further adjustments to be done.

LR Rotation (case 1: B is a leaf)

Before insertion.

After insertion.

After rotation.

- Subtree height is unchanged.
- No further adjustments to be done.

LR Rotation (case 2: B is not a leaf, insert in the left subtree of C)

- Subtree height is unchanged.
- No further adjustments to be done.

LR Rotation (case 3: B is not a leaf, insert in the right subtree of C)

- Subtree height is unchanged.
- No further adjustments to be done.

Single & Double Rotations

- Single
 - LL and RR
- Double
 - LR and RL
 - LR is RR followed by LL
 - RL is LL followed by RR

LR is RR + LL

After insertion.

After RR rotation.

After LL rotation.

Rotation Frequency

- Insert random numbers.
 - No rotation ... 53.4% (approx).
 - LL/RR ... 23.3% (approx).
 - LR/RL ... 23.2% (approx).

Delete an Element

Delete 8.

Delete an Element

- Let q be parent of deleted node. 25
- Retrace path from q towards root.

New Balance Factor of q

- Deletion from left subtree of $q \Rightarrow bf$ --.
- Deletion from right subtree of $q \Rightarrow bf++$.
- New balance factor = 1 or -1 => no change in height of subtree rooted at q.
- New balance factor = 0 => height of subtree rooted at q has decreased by 1.
- New balance factor = 2 or -2 => tree is unbalanced at q.

Imbalance Classification

- Let A be the nearest ancestor of the deleted node whose balance factor has become 2 or -2 following a deletion.
- Deletion from left subtree of A => type L.
- Deletion from right subtree of A => type R.
- Type $R \Rightarrow \text{new bf}(A) = 2$.
- So, old bf(A) = 1.
- So, A has a left child B.
 - $bf(B) = 0 \Longrightarrow R0$.
 - $bf(B) = 1 \Longrightarrow R1$.
 - bf(B) = -1 => R-1.

R0 Rotation

Before deletion.

After deletion.

After rotation.

- Subtree height is unchanged.
- No further adjustments to be done.
- Similar to LL rotation.

R1 Rotation

Before deletion.

After deletion.

After rotation.

- Subtree height is reduced by 1.
- Must continue on path to root.
- Similar to LL and R0 rotations.

R-1 Rotation

- New balance factor of A and B depends on b.
- Subtree height is reduced by 1.
- Must continue on path to root.
- Similar to LR.