Name:.	•••••	***************************************			
Roll No.	:				
Invigilate	or's S	ignature:			
		CS/B.Tech(CSE)/SEM-7/CS-701/2010-11			
		2010-11			
		LANGUAGE PROCESSOR			
Time All	otted	: 3 Hours Full Marks : 70			
		ne figures in the margin indicate full marks.			
Candid	ates	are required to give their answers in their own words			
		as far as practicable.			
		GROUP - A			
•		(Multiple Choice Type Questions)			
1 Cho	MSE 1	the correct alternatives for any ten of the following:			
i. Circ	JUSC ($10 \times 1 = 10$			
i)	Syn	nbol table can be used for			
	a)	checking type compatibility			
	b)	suppressing duplicate error messages			
	c)	storage allocation			
	d)	all of these.			
ii)	Wh	ich data structure is mainly used during shift-			
•	reduce parsing?				
	a)	Pointers b) Arrays			
	c)	Stacks d) Queues.			
7101		[Turn over			

3.10	ech(C	CSE)/SEM-7/CS-701/20	010-1	1			
iii)	Which of the following is not an intermediate code						
	for	m ?	s				
	a)	Postifix notation	b)	Syntax trees			
	c)	Three address codes	d)	Quadruples.			
iv)	If x	is a terminal then FIRS	ST (x) is			
	a)	ε	b)	{x}			
	c)	x	d)	none of these.			
v).	Wh	uch one of the following	erro	r will not be detected by			
	the	compiler?					
	a)	Lexical error	b)	Syntactic error			
	c)	Semantic error	d)	Logical error.			
vi)	The	e grammar $E \rightarrow E + E$	E * E	a is			
	a)	ambiguous					
	b)	unambiguous					
	c)	not given sufficient inf	orma	tion			
	d)	none of these					

		CS/B.Tech(CSE)/SEM-7/CS-70	1/2010-11				
vii)	YAC	CC builds up					
	a)	SLR parsing table					
	b)	LALR parsing table					
	c)	canonical LR parsing table					
	d)	none of these.					
viii)	If a	grammer is in LALR (1) then it is necessa	rily				
	a)	LL(1) b) SLR(1)					
	c) ,	LR(1) d) none of the	se.				
ix)	Wh	Which one of the following is not true about dynamic					
	che	ecking?					
. -	a)	It increases the cost of execution					
	b)	Type checking is done during execution					
	c)	All the type error are detected /					
	d)	None of these.					
11		3	[Turn over				

- x) A basic block can be analyzed by
 - a) DAG

- b) Flow graph
- c) Graph with cycles
- d) None of these.
- xi) The method which merges the bodies of two loops is
 - a) loop unrolling
- b) loop ramming
- c) constant folding
- d) none of these.
- xii) A top down parser generates
 - a) leftmost-derivation
 - b) rightmost-derivation
 - c) leftmost derivation in reverse
 - d) rightmost derivation in reverse.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. How the following statement is translated via the different phases of compilation?

position : = initial + rate * 70.

3. Convert the following NFA into its equivalent DFA:

The set of all strings with 0 and 1, beginning with 1 & ending with 00.

4. Explain inherited attribute and synthesized attribute for Syntax directed translation with suitable example.

- 5. What is type checking? Differentiate between Dynamic and Static Type checking.
- 6. Differentiate Quadruple, Triples and Indirect triples with example.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) What are the analysis phase and synthesis phase of an assembler?
 - b) Suppose a robot can be instructed to move one step east, north, west or south from its current position. A sequence of such instruction is generated by the following grammar:

 $Seq \rightarrow Seq_1$ instr | begin

Instr \rightarrow east | north | west | south

- i) Construct a syntax directed definition to translate an instruction sequence into a robot position.
- ii) Draw a parse tree for : begin west south.

4 + 7 + 4

8. Construct a predictive parsing table for the grammar:

 $S \rightarrow iEtSS' \mid a$

 $S' \rightarrow eS \mid \epsilon$

 $E \rightarrow b$

Here S is star symbol & S' are non-terminals & i, t, a, e, b are terminals.

Explain the steps in brief.

7101

5

Turn over

9. Construct DFA directly from [not by generating NFA] the regular expression

$$L = (a \mid b) * ab$$

What are the main contributions of Syntax Directed Translation in Compiler? Design a Dependency Graph and Direct acylcic graph for the string

$$a + a * (b - c) + (b - c) * d$$
 $7 + 3 + 5$

- 10. Translate the expression a = -(a + b) * (c + d) + (a + b + c) into
 - a) Quardruple
 - b) Triple
 - c) Indirect Triple

Draw the flow graph for the following code:

- i) location = -1
- ii) i = 0
- iii) i < 100 goto 5
- iv) goto 13
- $v) t_1 = 4i$
- vi) $t_2 = A[t_1]$
- vii) if $t_2 = x$ goto 9
- viii) goto 10
- ix) = location = i
- $x) \qquad t_3 = i + 1$
- xi) $i = t_3$
- xii) goto 3
- xiii)

What do you understand by terminal table and literal table?

6 + 6 + 3

11. Write short notes on any three of the following:

 3×5

- a) LEX and YAAC
- b) Activation record
- c) Symbol Table
- d) Peephole optimization
- e) Cross compiler.