Differential Geometry

LIN150117

TSINGHUA UNIVERSITY.

linzj23@mails.tsinghua.edu.cn

October 26, 2024

Contents

1	Smooth Manifold		2	
	1.1	Lie groups and homogeneous spaces	3	
	1.2	Bump Function and Partition of Unity	4	
2	Tan	gent space and tangent vectors	5	
	2.1	Tangent Space	5	
	2.2	Vector Field, Curves and Flows	7	
	2.3	Another definition of vector field	10	
3	Lie	group, Lie algebra and Lie bracket	10	
	3.1	Lie bracket	10	
	3.2	Lie algebra of a Lie group	13	
	3.3	Morphisms between Lie group and Lie algebras	14	

4	Vector Field					
	4.1	Canonical form of a field	14			
	4.2	Lie derivative of vector field	15			
	4.3	The constant rank theorem	16			
Index						
Li	List of Theorems					

1 Smooth Manifold

Theorem 1.1 (Kervaire). \exists 1 10-dimensional topological manifold without smooth manifold.

Theorem 1.2 (Milnor). \exists a smooth manifold M s.t. $M \cong S^7$ but not in diffeomorphism meaning.

Theorem 1.3 (Kervaire-Milnor). \exists 28 smooth structures (up to orientation preserving diffeomorphism) on S^7

Theorem 1.4 (Morse-Birg). On S^7 . If $n \le 3$, then any n-dimensional topological manifold M has a unique smooth structure up to diffeomorphism.

Theorem 1.5 (Stallings). If $n \neq 4$, then \exists a unique smooth structure on \mathbb{R}^n up to diffeomorphism.

Theorem 1.6 (Donaldson-Freedom-Gompf-Faubes). \exists *uncountable smooth structures on* \mathbb{R}^4 *up to diffeomorphism.*

Our motivation for studying manifold is to study the space of solution for equations.

Question 1. Given $f: \mathbb{R}^n \to \mathbb{R}$ smooth, $q \in \mathbb{R}^n$, when is $f^{-1}(q)$ is a smooth manifold?

For $f:U\to\mathbb{R}^n$ smooth, U open in \mathbb{R}^m , the differential of f at $p\in U$ denoted as $\mathrm{d}f(p)$.

Theorem 1.7 (Implicit function theorem). *If* $p \in U$ *is a regular point of* $f : U \to \mathbb{R}^n$. *Then there exists*

• An open neighbourhood V of p in U

- An open subset V' of \mathbb{R}^m
- A diffeomorphism $\varphi: V \to V'$ such that $P \circ \varphi = f$ where P is the projection from \mathbb{R}^m to \mathbb{R}^n .

In other words, near a regular point, we can do local coordinate change to turn f into the projection.

Corollary 1.8. If q is a regular value of $f: U \to \mathbb{R}^n$ then $f^{-1}(q)$ is a smooth manifold.

Theorem 1.9 (Sard). If $f: U \to \mathbb{R}^n$ is a smooth map, then the set of critical values of f has measure 0.

Corollary 1.10. If $f: U \to \mathbb{R}^n$ is smooth and m < n then f(U) has measure 0.

1.1 Lie groups and homogeneous spaces

Theorem 1.11 (Carton). Let H be a closed subgroup of Lie group G. Then H is a Lie group. More precisely, H is topological manifold, carries a canonical smooth structure that makes the multiplication and inverse smooth. Also, G/H is a smooth manifold

Theorem 1.12. p is always a diffeomorphism.

Therefore, we have this proposition

Proposition 1.13. M is a homogeneous space $\Leftrightarrow M = G/H$ for some closed subgroup H.

A connected closed surface is a homogeneous space if and only if it is diffeomorphic to \mathbb{RP}^2 , S^2 , T^2 and Klein bottle.

Theorem 1.14 (Whithead). Any smooth manifold has a triangulation.

Theorem 1.15 (Poincare-Hopf). *G* is compact Lie group $\Rightarrow \chi(G) = 0$.

Theorem 1.16 (Mostow2005). *M* is a compact homogeneous space $\Rightarrow \chi(M) \ge 0$.

1.2 Bump Function and Partition of Unity

Theorem 1.17 (Urysohn smooth version). Given M, closed disjoint A, B, \exists smooth $f: M \to [0,1]$ s.t. $f|_A = 0$, $f|_B = 1$.

Theorem 1.18 (Tietze). Given M, closed A, smooth $f: A \to \mathbb{R}^n$, there exists smooth $\hat{f}: M \to \mathbb{R}^n$ s.t. $\hat{f}|_A = f$

To prove these and much more result we need partition of unity theorem. First we define bump function.

Lemma 1.19. Let U be a neighbourhood of $p \in M$. Then \exists smooth $\sigma : M \to [0,1]$ s.t.

- 1. $\sigma \equiv 1$ near p
- 2. Supp $\sigma \subset U$

Such σ is called a **bump function** at p, supported in U.

Proposition 1.20. Given compact $K \subset U$ and open neighbourhood U of K, \exists a smooth $g: M \to [0, +\infty)$ s.t. $g|_K \equiv 1$ and $Supp g \subset U$.

Theorem 1.21. Any topological manifold has an exhaust.

Given two open covers \mathcal{U} , \mathcal{V} , we say \mathcal{V} is a **refinement** of \mathcal{U} if $\forall U_{\alpha} \in \mathcal{U}$, $\exists V_{\beta} \in \mathcal{V}$ *s.t.* $V_{\beta} \subset U_{\alpha}$.

We say a space X is paracompact if any open cover has a locally finite refinement.

Actually, any metric space is paracompact.(The proof is hard)

Proposition 1.22. Let $\mathcal{U} = \{U_{\alpha}\}$ be an open cover of a topological manifold M. Then there exists countable open covers $\mathcal{W} = \{W_i\}$, $\mathcal{V} = \{V_i\}$ s.t.

• For any i, $\overline{V_i}$ is compact and $\overline{V_i} \subset W_i$

- *W* is locally finite.
- *W* is a refinement of *U*.

As a corollary, we have any topological manifold is paracompact.

Theorem 1.23 (Existence of P.O.U). For any open cover \mathcal{U} of smooth M, \exists a P.O.U subordinate to \mathcal{U}

Theorem 1.24 (Whitney approximation theorem). *Given any smooth* M, any closed A and any continuous $f: M \to \mathbb{R}$, $\delta: M \to (0, +\infty)$. Suppose f is smooth on A. Then $\exists g: M \to \mathbb{R}$ smooth s.t.

- $g|_A = f|_A$
- $\forall p \in M, |g(p) f(p)| < \delta(p).$

2 Tangent space and tangent vectors

2.1 Tangent Space

Given $p \in M$, consider the set $C_p^{\infty}(M) = \{\text{smooth function } V \to \mathbb{R}\}/_{\sim}$ where $f_1 \sim f_2$ if and only if \exists neighbourhood U of p, $f_1|_U = f_2|_U$.

 $C_p^{\infty}(M)$ is the space of **genus of smooth function** near p.

A partial-derivative of p is a \mathbb{R} -linear map $D:C_p^\infty(M)\to\mathbb{R}$ that satisfies the Leibniz rule:

$$D(fg) = D(f)g(p) + f(p)D(g)$$

Proposition 2.1. For $M = U \subset \mathbb{R}^n$ open. We have $\{\frac{\partial}{\partial x_i}\}$ is a basis for T_pU .

Proposition 2.2.

$$\frac{\partial}{\partial x^i}|_p = \sum_{1 \leqslant i \leqslant n} \frac{\partial y^i}{\partial x^i} \cdot \frac{\partial}{\partial y^i}|_p$$

Now we try to define differential of a smooth map.

M, N smooth manifolds, $C^{\infty}(N, M) = \{\text{smooth } F : N \to M\}.$

Given $F \in C^{\infty}(N, M)$, F induces $F^* : C^{\infty}_{F(p)}(M) \to C^{\infty}_p(N)$, $f \mapsto f \circ F$.

By taking dual, we get

$$F_*: T_pN \to T_{F(p)}M$$

we also write F_* as $F_{*,p}$, call it the **differential** of F at p.

where

$$F_*(\frac{\partial}{\partial x^i}|_p) = \sum_k \frac{\partial F^k}{\partial x^i} \cdot \frac{\partial}{\partial y^k}|_{F(p)}$$

Proposition 2.3. *The differential satisfies the composition law.*

$$(G \circ F)_* = G_* \circ F_* : T_p N \to T_{G \circ F(p)} W$$

Proposition 2.4. Given vector bundle $f: E \to B$, the fiber $f^{-1}(p)$ has a structure of a vector space.

Given vector bundles $E_1 \xrightarrow{\pi_1} B_1$, $E_2 \xrightarrow{\pi_2} B_2$, a bundle map consists of (\hat{f}, f) s.t.

$$E_1 \xrightarrow{\hat{f}} E_2$$

$$\downarrow_{\pi} \qquad \downarrow_{\pi} \text{ commutes.}$$

$$B_1 \xrightarrow{f} B_2$$

• $\forall b \in B, \hat{f}: \pi_1^{-1}(b) \to \pi_2^{-1}(f(b))$ is linear.

If \hat{f} , f are diffeomorphisms, then we call (\hat{f}, f) an **isomorphism** of vector bundle.

An isomorphism to a product bundle is called a **trivialization**. An bundle is **trivial** if it has a trivialization.

Theorem 2.5. If G is a Lie group, then TG is trivial.

Proposition 2.6 (Adams, 1960s). TS^n is trivial if and only if n = 0, 1, 3, 7.

Proposition 2.7. 1. Given any $F \in C^{\infty}(M, N)$, $F_* : TM \to TN$ is a bundle map.

2. TS^n is isomorphic to the following bundle:

$$B = s^n$$
 $E = \{(p, v) \in S^n \times \mathbb{R}^{n+1} | v \perp p\}$

2.2 Vector Field, Curves and Flows

Given any $f: \mathbb{R}^n \to \mathbb{R}$, define the **gradient vector field**

$$\nabla f_p := \sum_{1 \le i \le n} \frac{\partial f}{\partial x^i}(p) \frac{\partial}{\partial x^i}$$

Theorem 2.8 (Poincare-Hopf). For closed M, M has a nowhere vanishing vector field if and only if $\chi(M) = 0$.

So S^n has a nowhere vanishing vector field if and only if n is odd.

Theorem 2.9 (MaoQiu). S^2 has no no-where vanishing vector field.

So We cannot smooth out all the hairs on a ball.

Given a vector field $X = \{X_p\}_{p \in M}$, a curve $\gamma : (a,b) \to M$ is called an **integral** curve of X if $\gamma'(t) = X_{\gamma(t)}$, $\forall t \in (a,b)$, where $\gamma'(t) = \gamma_*(\frac{\partial}{\partial t}) \in T_{\gamma(t)}M$.

We say γ is maximal if the domain cannot be extended to a larger interval. Denote the set of all smooth vector fields on M by $\mathfrak{T}M$

Recall that γ is maximal if it's domain can not be extended to a large open interval.

In a local chart (U, x^1, \dots, x^n) , $X|_U = \sum_{i=1}^n a^i \partial x^i$. Then γ is an integral curve if and only if $(\gamma^i)'(t) = a^i(\gamma(t))$, $\forall 1 \leq i \leq n$, where $\gamma^i = x^i \circ \gamma : (a, b) \to \mathbb{R}$.

And in this case the initial value condition: $\gamma(0) = p \Leftrightarrow \gamma^i(0) = p^i$.

Locally, solving integral curve starting at p is equivalent to solving ODE with initial value p^1, \dots, p^n . By existence and uniqueness of solutions of ODE, we have

Theorem 2.10 (Fundamental theorem of integral curve). *Let* $X \in \mathfrak{T}M$, $p \in M$, *then:*

(1) (Uniqueness) Given any two integral curves $\gamma_1, \gamma_2 : (a, b) \to M$, then we have:

$$\gamma_1(c) = \gamma_2(c)$$
 for some $c \in (a,b) \implies \gamma_1 = \gamma_2$

- (2) there exists a unique max integral curve $\gamma:(a(p),b(p))\to M$ starting at p.
- (3) (integral curve smoothly depend on initial values) \exists Nbh U of p, $\varepsilon > 0$, and smooth $\varphi : (-\varepsilon, \varepsilon) \times U \to M$ s.t. $\forall q \in U$, $\varphi_{\varepsilon} := \varphi(-, q) : (-\varepsilon, \varepsilon) \to M$ is an integral curve starting at p.

we call such φ a local **flow** generated by X.

If such global flow exists, then we say *X* is **complete**.

Given $X \in \mathfrak{T}M$, we define $\operatorname{Supp} X = \overline{\{p \in M : X_p \neq 0\}}$.

Theorem 2.11. If a vector field X is compactly supported, then X is complete.

Corollary 2.12. Any vector field on closed manifold is complete.

Lemma 2.13 (Escaping lemma). Suppose $\gamma:(a,b)\to M$ is a max integral curve, with $(a,b)\neq\mathbb{R}$. Then \nexists compact $K\subset M$ s.t. $\gamma(a,b)\subset K$

A smooth $\varphi: \mathbb{R} \times M \to M$ is called an **one-parameter transformation group** if

(1)
$$\varphi_0 := \varphi(0, -) = id_M$$

(2) $\varphi_s \circ \varphi_t = \varphi_{s+t}$ for all $s, t \in \mathbb{R}$. In particular, $\varphi_s^{-1} = \varphi_{-s}$.

Theorem 2.14. $\varphi \in C^{\infty}(\mathbb{R} \times M, M)$, then φ is an one-parameter transformation group if and only if φ is the global flow generated by some $X \in \mathfrak{T}M$

Lemma 2.15 (Translation lemma). If $\gamma:(a,b)\to M$ is an integral curve for some $X\in\mathfrak{T}M$, then $\forall s\in\mathbb{R},\,\gamma(-+s):(a-s,b-s)\to M$ is also an integral curve for X.

Lemma 2.16. Let $\varphi: (-\varepsilon, \varepsilon) \times U \to M$ be a local flow for some $X \in \mathfrak{T}M$. Then $\varphi_s \circ \varphi_r(p) = \varphi_{s+r}(p)$ provided that $s, t, s+t \in (-\varepsilon, \varepsilon), p, \varphi_r(p) \in U$.

Lemma 2.17. Let $\varphi: (-\varepsilon, \varepsilon) \times U \to M$ be a local flow for some $X \in \mathfrak{T}M$. Then $\varphi_{s,*}(X_p) = X_{\varphi_s(p)} \in T_{\varphi_s(p)}M$ i.e. any vector field is invariant under its flow.

Time dependent vector field is a smooth map $X : \mathbb{R} \times M \to TM$ *s.t.* $X_{(t,p)} \in T_pM$.

A smooth curve $\gamma(a,b) \to M$ is the **integral curve** for X if $\gamma'(t) = X_{(t,\gamma(t))}$.

In local chart, solving γ is still solving ODE, so most results still holds for time dependent vector field. Those are some properties:

- Uniqueness: γ_1, γ_2 are both integral curves for X, $\gamma_1(c) = \gamma_2(c) \Rightarrow \gamma_1 \equiv \gamma_2$
- Max integral curve exists and is unique.
- Local flow exists.

Now define $\text{Supp}X = \overline{\{p \in M : X_{t,p} \neq 0 \text{ for some } t\}}$.

Then X is compactly supported, then X is complete(i.e. a global flow φ : $\mathbb{R} \times M \to M$)

But something is not true for time dependent vector field:

- translation lemma is not true.
- vector field change under its flow.
- global flow can not implies one-parameter transformation group.

2.3 Another definition of vector field

A derivation on M is a \mathbb{R} -linear map $C^{\infty}(M) \xrightarrow{D} C^{\infty}(M)$ that satisfies the Leibniz rule:

$$D(f \cdot q) = Df \cdot q + f \cdot Dq$$

Theorem 2.18. We have a bijection:

$$\rho: \mathfrak{T}M \xrightarrow{1:1} \{derivation \ on \ M\}$$
$$X \mapsto D_X: f \mapsto X(f)$$

Lemma 2.19. $D_p: \mathfrak{T}_pM \to \mathbb{R}$ -linear map $C^{\infty}(M) \to \mathbb{R}$ s.t. $D_p(f \cdot g) = D_p(f) \cdot g(p) + f(p) \cdot D_p(g)$ is an isomorphism of vector spaces.

Lemma 2.20. Given a vector field(not necessarily smooth) $X = \{X_p\}_{p \in M}$, X is smooth $\Leftrightarrow \forall f \in C^{\infty}(M), X(f)$ is smooth.

Theorem 2.21. The map $\rho : \mathfrak{T}M \to \{\text{derivation on } M\}, X \mapsto (D_x : f \mapsto X(f)) \text{ is }$ well-defined and bijective.

3 Lie group, Lie algebra and Lie bracket

3.1 Lie bracket

In this section, we can actually find those identification:

$$\begin{split} \{ \text{Tangent vector at } p \} &= \{ \text{point derivation at } p \} \\ &= \{ \mathbb{R}\text{-linear maps } C_p^\infty(M) \xrightarrow{D_p} \mathbb{R} \quad s.t. \end{split}$$

$$D_p(fg) = D_p(f)g(p) + f(p)D_p(g)$$

 $\{\text{smooth vector fields}\} = \{\text{smooth sections of } TM\}$ $= \{\text{derivation on } M\}$

Notation 3.1. We will identify $X \in \mathfrak{T}M$ with its derivation $D_x : C^{\infty}(M) \to C^{\infty}(M)$. So a vector field is just a \mathbb{R} -linear map $X : C^{\infty}(M) \to C^{\infty}(M)$ s.t. X(fg) = fX(g) + X(f)g.

Theorem 3.2. For any $X, Y \in \mathfrak{T}M$, $[X, Y] \in \mathfrak{T}M$

So What is the geometric meaning of [X, Y]? Non commutatiy of flows.

Fact 3.3. Given $X,Y \in \mathfrak{T}M$, we say X,Y are commutative vector field if [X,Y]=0X,Y are commutative iff for any local flows $\varphi^X:(-\varepsilon,\varepsilon)\times U\to M$, $\varphi^Y:(-\varepsilon,\varepsilon)\times U\to M$ we have $\varphi^X_s\circ\varphi^T_t=\varphi^Y_t\circ\varphi^X_s$

Proposition 3.4 (Calculation of [V, W] using local charts). Chart (U, x^1, \dots, x^n) , $V, W \in \mathfrak{T}M$, $V|_U = \sum_{i=1}^n V^i \frac{\partial}{\partial x^i}$, $W|_U = \sum_{i=1}^n W^i \frac{\partial}{\partial x^i}$. Then

$$[V, W]|_{U} = \sum_{i=1}^{n} (V(W^{i}) - W(V^{i})) \frac{\partial}{\partial x^{i}}$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} V^{j} \frac{\partial W^{i}}{\partial x^{j}} - W^{j} \frac{\partial V^{i}}{\partial x^{j}}) \frac{\partial}{\partial x^{i}}$$

$$= \sum_{1 \leq i, j \leq n} (V^{j} \frac{\partial W^{i}}{\partial x^{j}} - W^{j} \frac{\partial V^{i}}{\partial x^{j}}) \frac{\partial}{\partial x^{i}}$$

Proposition 3.5 (Properties of Lie bracket).

(a) Natuality under push-forword.

Given any $F \in \text{Diff}(M, N)$, $V \in \mathfrak{T}M, W \in \mathfrak{T}M$, we have $[F_*V, F_*W] = F_*[V, W]$.

(b) \mathbb{R} -linearity $\forall a, b \in \mathbb{R}$

$$[aX + bV, W] = a[X, W] + b[V, W]$$

 $[W, aX + bV] = b[W, X] + a[W, V]$

- (c) anti-symmetric [V, W] = -[W, V]
- (d) Jacobi identity

$$[V, [W, X]] + [W, [X, V]] + [X, [V, W]] = 0$$

(f) Leibuniz rule

$$[fV, gW] = fg[V, W] + (f \cdot Vg)W - (g \cdot Wf)V$$

Note 1. In general, given $V \in \mathfrak{T}M$ and $F \in C^{\infty}(M, N)$. There may not exist $W \in \mathfrak{T}M$ *s.t.* V, W are F-related. Even such W exists, it may not be unique.

However, if F is a diffeomorphism, given any V, \exists unique W s.t. V and W are F-related. Actually, $W_p = F_*V_{F^{-1}(p)}$.

Such W is called **push forward** of V along F, denoted by F_*V , only defined when F is a diffeomorphism.

Lemma 3.6. $\forall V \in \mathfrak{T}M, W \in \mathfrak{T}N, F \in C^{\infty}(M, N)$. Then W is F-related to V iff $\forall f \in C^{\infty}(N), V(f \circ F) = W(f) \circ F \in C^{\infty}(M)$

Proposition 3.7. Given $V_0, V_1 \in \mathfrak{T}M$, $W_0, W_1 \in \mathfrak{T}N$, $F \in C^{\infty}(M, N)$, W_i is F-related to V_i , $i = 0, 1 \Rightarrow [W_0, W_1]$ is F-related to $[V_0, V_1]$

Corollary 3.8 (Naturality of Lie bracket). *Given any* $F \in \text{Diff}(M, N)$, $V \in \mathfrak{T}M$, $W \in \mathfrak{T}M$, we have $[F_*V, F_*W] = F_*[V, W]$

The rest of Proposition 3.5 is easy to check if it is viewed as a mapping $C^{\infty}(M) \to C^{\infty}(M)$.

3.2 Lie algebra of a Lie group

For G Lie group, $\forall g \in G$ we have diffeomorphism

$$l^g: G \to G, h \mapsto gh$$

$$r^g: G \to G, h \mapsto hg$$

We say $X \in \mathfrak{T}G$ is **left invariant** if $l_*^g(X) = X$, $\forall g \in G$. Similarly, X is **right** invariant if $r_*^g(X) = X$.

Proposition 3.9. X, Y are left/right invariant $\Rightarrow [X, Y]$ is left/right invariant.

So we can find a natural Lie algebra of *G*:

 $Lie(G) := \{ left invariant vector fields on G \}, with [-, -] restricted from \mathfrak{T}G$

Theorem 3.10. Given any $V \in T_eG$, \exists unique left invariant $\hat{V} \in \mathfrak{T}G$ s.t. $\hat{V}_e = V$.

Corollary 3.11. Lie(G) $\cong T_eG$ as vector spaces.

Theorem 3.12. $\forall A, B \in \operatorname{gl}(n, \mathbb{R}) = M_n(\mathbb{R}), [A, B] = AB - BA.$

Lemma 3.13. $\forall A \in \operatorname{gl}(n,\mathbb{R})$, the left invariant vector field \hat{A} is complete and generated the flow $\varphi_t : \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R}), \varphi_t(g) = ge^{At} = g(I + At + \frac{A^2t^2}{2!} + \cdots)$

Similarly, for $G=\mathrm{GL}(n,\mathbb{C}),\mathrm{Lie}(G)=\mathrm{gl}(n,\mathbb{C})=M_n(\mathbb{C}),$ we have [A,B]=AB-BA.

Actually, we have those properties of Lie group and Lie algebra.

- Any simply connected Lie group are determined by its Lie algebra.
- Given any connected Lie group G, its universal cover \hat{G} is simply-connected with $\pi^{-1}(G) \subset Z(\hat{G})$.

What is the meaning of Lie bracket. There is a fact about it:

Fact 3.14. G is connected Lie group. G is abelian iff [-,-]=0 on $\mathrm{Lie}(G)$

3.3 Morphisms between Lie group and Lie algebras

A smooth map $F:G\to H$ between two Lie group is called a **morphism** if F(gh)=F(g)F(h).

A linear map $L: g \to h$ between Lie algebra is called a **morphism** if L[u, v] = [Lu, Lv].

Proposition 3.15. Let $F: G \to H$ be a morphism of Lie groups. Then $F_{e,*}: \operatorname{Lie}(G) \to \operatorname{Lie}(H)$ is a morphism of Lie algebra.

4 Vector Field

4.1 Canonical form of a field

Recall that $V \in \mathfrak{T}M$, $p \in M$ is called a **regular point** if $V_p \neq 0$, and is called a **singular point** if $V_p = 0$.

Theorem 4.1 (Canonical Form Theorem). Let p be a regular point of V. Then \exists local chart (U, x^1, \dots, x^n) around p s.t. $V|_U = \partial x^1$

4.2 Lie derivative of vector field

 $V, W \in \mathfrak{T}M$, $\mathcal{L}_V W$ = is the directional derivative of W in the direction of V.

Theorem 4.2. TFAE:

- 1 V, W commutes.
- 2 W is invariant under the flow generated by V, i.e. $\theta_{t,*}(W_p) = W_{\theta_t(p)}$
- 3 The flow for V, W commutes, i.e. $\theta_t \circ \eta_s = \eta_s \circ \theta_t$ whenever either side is defined or equivalently, whose the domain is compatible.

Lemma 4.3. Given $F \in C^{\infty}(M, N)$, $V \in \mathfrak{T}M, W \in \mathfrak{T}N$. Then W is F-related to V if and only if $\forall t \in \mathbb{R}$, $\eta_t \circ F = F \circ \theta_t$ on the domain of θ_t , which means

$$\begin{array}{ccc} M \stackrel{F}{\longrightarrow} N \\ \downarrow_{\theta_t} & & \downarrow_{\eta_t} \ commutes. \\ M \longrightarrow N \end{array}$$

4.2.1 Canonical form of commuting vector field

Theorem 4.4. Given $V_1, \dots, V_k \in \mathfrak{T}M$, s.t.

- 1) $[V_i, V_j] = 0, \forall i, j.$
- 2) $V_{1,p}, V_{2,p}, \cdots, V_{k,p}$ linearly independent at some $p \in M$

Then \exists local chart (U, x^1, \dots, x^n) around p s.t. $V_i|_U = \frac{\partial}{\partial x^i}, \forall 1 \leq i \leq k$

We prove it using the inverse function theorem.

4.3 The constant rank theorem

 $F \in C^{\infty}(M, N), p \in M$. The rank of F at p is

$$\operatorname{rank}_{p} F := \operatorname{rank}(F_{p,*} : T_{p} M \to T_{F(p)} N)$$
$$= \operatorname{rank}\left(\frac{\partial F^{i}(p)}{\partial x^{j}}\right)_{i,j}$$

We say F has **constant rank** k near p if \exists Nbh U of p s.t. rank $_qF=k$, $\forall q\in U$

Proposition 4.5.

$$\operatorname{rank}_q(F) \leq \min(\dim(M), \dim(N))$$

Theorem 4.6 (The constant rank theorem). Suppose $F: M \to N$ has constant rank k near $p \in M$, then \exists local charts $U \xrightarrow{\varphi} \mathbb{R}^m$ around $p, V \xrightarrow{\psi} \mathbb{R}^n$ around F(p) s.t.

$$\psi \circ F \circ \varphi^{-1} : \mathbb{R}^m \to \mathbb{R}^n \text{ is given by } (x^1, \cdots, x^m) \mapsto (x^1, \cdots, x^k, 0, \cdots, 0)$$

Lemma 4.7. *X* is compact, *Y* Hausdorff, then $F: X \to Y$ is proper.

Proposition 4.8. $F \in C^{\infty}(M, N)$ is an injective immersion, and F is proper. Then F is an embedding.

Theorem 4.9 (Sard). *Singular value has measure* 0.

Theorem 4.10. M is an embedded submanifold of N if and only if $\forall p \in M \subset N$, \exists local chart (U, x^1, \dots, x^n) around p of N s.t. $M \cap U = \{(x^1, \dots, x^m, 0, \dots, 0)\}$

Theorem 4.11. $F \in C^{\infty}(M, N)$, q is a regular valur of F. Then $F^{-1}(q)$ is an embedded submanifold of M. And

$$\forall p \in F^{-1}(q), T_p F^{-1}(q) = \ker(F_{p,*} : T_p M \to T_{F(p)} N)$$

Denote

$$\mathfrak{so}(n) = \mathfrak{o}(n) = \{ A \in M_n(\mathbb{R}) | A + A^T = 0 \}$$

$$\mathfrak{u}(n) = \{ A \in M_n(\mathbb{C}) | A + A^* = 0 \}$$

$$\mathfrak{su}(n) = \{ A \in \mathfrak{u}(n) | \text{tr} A = 0 \}$$

$$\mathfrak{sl}(n, \mathbb{R}) = \{ A \in M_n(\mathbb{R}) | \text{tr} A = 0 \}$$

$$\mathfrak{sl}(n, \mathbb{C}) = \{ A \in M_n(\mathbb{C}) | \text{tr} A = 0 \}$$

Index

```
\mathcal{L}_V W, 16
                                                 regular point, 15
\mathfrak{T}M, 8
                                                 right invariant, 14
Lie(G), 14
                                                 singular point, 15
\operatorname{Supp}X, 9, 10
                                                 trivialization, 7
GL(n), O(n), SO(n), U(n), SU(n), 4
\mathfrak{so}(n), \mathfrak{o}(n), \mathfrak{u}(n), \mathfrak{su}(n), \mathfrak{sl}(n), 18
                                                 vector bundle
                                                      isomorphism, 7
bump function, 5
                                                 vector field
complete, 9
                                                      Time dependent, 10
differential, 7
flow, 9
genus of smooth function, 6
gradient vector field, 8
integral curve, 8, 10
left invariant, 14
morphism, 15
one-parameter transformation group, 9
partial-derivative, 6
push forward, 13
rank, 17
    constant rank, 17
refinement, 5
```

List of Theorems

1.1	Theorem (Kervaire)	2
1.2	Theorem (Milnor)	2
1.3	Theorem (Kervaire-Milnor)	2
1.4	Theorem (Morse-Birg)	2
1.5	Theorem (Stallings)	2
1.6	Theorem (Donaldson-Freedom-Gompf-Faubes)	2
1.7	Theorem (Implicit function theorem)	2
1.9	Theorem (Sard)	3
1.11	Theorem (Carton)	3
1.12	Theorem	3
1.13	Proposition	3
1.14	Theorem (Whithead)	3
1.15	Theorem (Poincare-Hopf)	3
1.16	Theorem (Mostow2005)	3
1.17	Theorem (Urysohn smooth version)	4
1.18	Theorem (Tietze)	4
1.20	Proposition	4
1.21	Theorem	4
1.22	Proposition	4
1.23	Theorem (Existence of P.O.U)	5
1.24	Theorem (Whitney approximation theorem)	5
2.1	Proposition	5
2.2	Proposition	5
2.3	Proposition	6
2.4	Proposition	6

2.5	Theorem	6
2.6	Proposition (Adams, 1960s)	7
2.7	Proposition	7
2.8	Theorem (Poincare-Hopf)	7
2.9	Theorem (MaoQiu)	7
2.10	Theorem (Fundamental theorem of integral curve)	8
2.11	Theorem	8
2.14	Theorem	9
2.18	Theorem	10
2.21	Theorem	10
3.2	Theorem	11
3.4	Proposition (Calculation of $[V, W]$ using local charts)	11
3.5	Proposition (Properties of Lie bracket)	11
3.7	Proposition	13
3.9	Proposition	13
3.10	Theorem	13
3.12	Theorem	13
3.15	Proposition	14
4.1	Theorem (Canonical Form Theorem)	15
4.2	Theorem	15
4.4	Theorem	15
4.5	Proposition	16
4.6	Theorem (The constant rank theorem)	16
4.8	Proposition	16
4.9	Theorem (Sard)	16
4.10	Theorem	16
4.11	Theorem	16