Mathematical Analysis Vol.1

@Souez3

22.11.2024

1 Билет 1

1.1 Последовательность

f(n) - последовательность задана на множестве N Когда каждому $n \in N$ поставлено в соответствие некоторого закона $a(n) \in R$, тогда говорят, что задана числовая последовательность a_n^{\inf}

Примеры: n-ный член арифметической прогрессии: $a_n = a_1 + \alpha(n-1)$ геометрическая прогрессия: $b_n = b_1 * q^(n-1)$

1.2 Предел числовой последовательности

Определение: Число A называют пределом числовой последовательности X_n , если $\forall \epsilon > 0 \exists N(\epsilon)$: $\forall n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon$

Определение: Сходящаяся последовательность - последовательность, которая имеет конечный предел

Определение: Расходящаяся последовательность - последовательность, которая имеет бесконечный предел либо предела не существует.

Последовательноть ограничена, если $\exists M>0: \forall n\in N$ выполняется $a_n <= M$ (существует такое число M, что для любого номера последовательности все члены последовательности не превосходят это число по модулю.

2 Билет 2

2.1 Теорема о единственности предела последовательности

Теорема: Если у последовательности есть предел, то он единственный **Доказательство:** Докажем от противного. Допустим существует 2 предела.

$$\exists \lim_{x\to\infty} X_n = A \ \exists \lim_{x\to\infty} X_n = B$$
, при этом $B! = A$ (1)

Тогда возьмем
$$\epsilon=(B-A)/3>0,\ (\epsilon_A\cap\epsilon_B!=0)$$
 Следовательно

$$n>=N$$
 $\exists N_1: \forall n>N$ выполняется $|X_n-A|<\epsilon$ (2)

 $\exists N_2 \forall_n >= N_2$ и тоже выполняется, что $|X_n - B| < \epsilon$ (3)

Тогда $|a-b|=|a-X_n+X_n-b|<=|X_n-A|+X_n-B|<\epsilon+\epsilon=2\epsilon=\frac{2*|A-B|}{3},$ тогда получим $|A-B|<=\frac{2}{3}*|B-A|$ Получим противорчие

3 Билет 3

Определение: Последовательность ограничена, если $\exists M>0: \forall b\in N$ выполняется $|a_n|<=M$ Теорема об ограниченности сходящейся последовательности: Всякая сходящаяся последовательность ограничена!

Доказательство: $\Box A = \lim_{n \to \infty} X_n \in R$, тогда и только тогда, когда $\forall \epsilon > 0 \exists N(\epsilon) \in mathdsN$ такое что $\forall n \in mathdsN : n > N(\epsilon)$ выполняется $|X_n - A| < \epsilon \forall n > N(\epsilon)X_n \in (A - \epsilon; A + \epsilon)$ содержит конечное число $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k \Box m = minX^-; A - \epsilon M = maxA - \epsilon; x^+$ Тогда на отрезке [m; M] находятся $\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_k (A - \epsilon; A + \epsilon)[m; M] x_n, \forall n \in mathdsN x_n <= mx_n >= M$ Примеры:

1)

 $1_{\overline{n^2=1;\frac{1}{4},\frac{1}{4};\frac{1}{9};\frac{1}{16}...}}$ $\lim \frac{1}{n^2}=0$ - ограничена сверху 2) $\frac{n^2}{n+1}=\frac{1}{2};\frac{4}{3};\frac{9}{4};\frac{16}{5};...$ $\lim \frac{n^2}{n+1}>=\frac{1}{2}$ - ограничена снизу (4)

4 Билет 4

Арифметические операции над сходящимися последовательностями

 $\Box X_n; Y_n$ - две сходящиеся последовательности. Тогда $\exists \lim_{n \to \infty} X_n = A; \lim_{n \to \infty} Y_n = B$ Свойства 1) $X_n + = Y_n; X_n * Y_n; \frac{X_n}{Y_n}$ - тоже сходящиеся последовательности. 2) $\lim_{n \to \infty} (X_n + Y_n) = A + B$ 3) $\lim_{n \to \infty} (X_n - Y_n) = A - B$ 4) $\lim_{n \to \infty} (X_n * Y_n) = A * B$ 5) $\lim_{n \to \infty} \frac{X_n}{Y_n} = \frac{A}{B}$ Доказательство: 1) $\forall N > 0_0$: $\forall n > N_0$ выполняется $|X_n - A| < \frac{\epsilon}{2}() \exists N_1 : \forall n > N_1$ выполняется $|Y_n - B| < \frac{\epsilon}{2}$ Пусть $N = \max(N_2; N_1), n > N \forall n > N | (X_n + Y_n) - (A + B) | = |X_n - A + Y_n - B| < = |X_n - A| + |Y_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

5 Билет 5

5.1 Понятие функции через последовательность

Если каждому $x \in X$ по некоторому закону поставлен в соответствии единственный у, то говорят что на множестве X задана функция f

 $\forall x \in X \exists ! y \in R : f(x) = y$ (5)

5.2 Предел функции в точке

Определение по Гейне: $\supset f(x)$ - определена в некоторой проколотой окрестности точки х

 $\lim_{x\to x_0} f(x) = A$ если $\forall x_n \exists \mathring{U}_{x0} > 0$ $\lim_{x\to x_0} f(x) - g(x) > 0 => f(x) - g(x) > 0$ по теореме если f(x) имеет предел A и в окрестности (а) принимает значения больше нуля, то A>=0 (6)

5.3 Теорема о единственности предела

Если функция имеет предел в точке, то он единственнй.

Доказательство от противного: $\Box \exists X_n = \lim_{n \to \infty} X_n = A$ и $\lim_{n \to \infty} X_n = B$, A! = B; $A, B \in R$ Возьмем $\epsilon_n \bigcap \epsilon_b! =$, тогда $|f(x) - A| < \frac{\epsilon}{2}; |f(x) - B| < \frac{\epsilon}{2} |A - B| = |A - B + f(x) - f(x)| = |A - f(x) + f(x) - B| < = |A - f(x)| + |B - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ То есть получили $\forall \epsilon > 0 - > |A - B| < \epsilon$