

Thermodynamik III

3 – Gasarbeitsprozesse Verbrennungsmotoren

HS 2021 Dr. Ndaona Chokani

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

4.1 Verbrennungsmotoren

- Verbrennungsmotoren arbeiten hauptsächlich nach dem Dieseloder Otto-Prinzip
- Unterschiede:

Otto	Diesel	
Fremdzündung durch Zündkerze	Selbstzünder	
Vorgemischtes Kraftstoff-Luft	Kraftstoff wird kurz vor der	
Gemisch	Verbrennung eingespritzt	
Quantitätsregelung,	Qualitätsregelung über	
Kraftstoffeinspritzung	Einspritzmenge	

Ferrari V10 F1

3 I 800 PS 18000 U/min 120 kg 6.7 PS/kg 500 km

Audi V8 TDI

3.3 I 250 PS 4500 U/min 250 kg 1 PS/kg 300000 km

4.1.1 Realer Arbeitsprozess eines 4-Takters

- Volumenänderung abwechselnd zur Arbeitsleistung und Ladungswechsel
- Vollständiges Arbeitsspiel hat 4 Takte
 - Ansaugen von frischem Gemisch
 - Verdichten
 - Expandieren nach Zündung
 - Ausstossen

- 2 → 3 Kompression des Gemischs
- 3 → 4 Verbrennung
- 4 → 5 Expansion und Arbeitsabgabe
- 5 → 1 Auspuff

1. Takt

2. Takt

3. Takt

Takt

Druckverlauf im Zylinder

s: Kolbenhub

A_k: Kolbenfläche

p: Gasdruck

V_c: Kompressionsvolumen

V_h: Hubvolumen

- Annahme: adiabat
- Arbeit der Gaskraft am Kolben:

$$dW_k = pA_k ds_\alpha$$

Arbeit pro Arbeitspiel:

$$W_k = \oint p dV$$

Mitteldruck: bezieht sich auf die Arbeit pro Hubvolumen

$$p_{mi}V_h = \oint pdV = W_{kA}$$

Innere Leistung pro Motor ergibt (für 4-Takt):

$$P_{iZ} = 1/2 \times i n p_{mi} V_h$$

 Effektive Leistung an der Welle ergibt sich nach Abzug der Reibungsverluste und der Leistung der Hilfsaggregate:

$$P_e = P_i - P_r$$

Entsprechend spricht man vom effektiven
 Mitteldruck p_e und vom Reibmitteldruck p_r

$$P_e = 1/2 \times i n p_{me} V_h$$

$$P_r = 1/2 \times i \ n \ p_{mr} V_h$$

i : Anzahl der Kolben

n: Drehzahl

P_m: Mitteldruck

P_i: Innere Leistung

P_e: Effektive Leistung

P_r: Reibungsverlust Leistung

4.1.2 Motordynamische Grundlagen

- Im Brennstoff enthaltene Energie soll in mechanische Arbeit umgewandelt werden
- Zwei Teilprozesse
 - Ladungswechsel, Arbeitraum = offenes System
 - Hochdruckprozess, Arbeitsraum = geschlossenes System
- Einfachste Modelle: intern reversible Kreisprozesse
 - Verbrennung = Wärmezufuhr q_B
 - Ladungswechsel = Wärmeabfuhr q_A
- Thermischer Wirkungsgrad:

$$\eta_{th} = \frac{w_{kA}}{q_B} = \frac{q_B - q_A}{q_B} = 1 - \frac{q_A}{q_B}$$

Prozesse werden als intern reversibel angenommen. Daraus folgt:

$$w_{kA} = \oint p dv = \oint T ds$$

- Am Kolben geleistete Arbeit entspricht der im p-v-Diagramm oder T-s-Diagramm eingeschlossenen Fläche
- Idealer Prozess: Carnot Zyklus
 - 1. Isentrope Kompression
 - 2. Isochore Wärmezufuhr
 - 3. Isentrope Expansion
 - 4. Isochore Wärmeabfuhr
- Carnot Zyklus lässt sich praktisch nicht realisieren

$$\eta_{thC} = 1 - \frac{T_1}{T_3}$$

4.1.3 Gleichraumprozess

– Teilprozesse:

- $-1 \rightarrow 2$ Isentrope Kompression
- $-3 \rightarrow 4$ Isentrope Expansion

2 → 3 Isochore Wärmezufuhr

4 → 1 Isochore Wärmeabfuhr

Bemerkung: Die Nomenklatur ist hier im Vergleich zu Slide 7 (realer Prozess) verändert, da die Schritte $5 \rightarrow 1$ und $1 \rightarrow 2$ im Schritt $4 \rightarrow 1$ zusammengefasst werden. Damit existiert der alte Prozesspunkt 1 nicht mehr und wird neu vor der idealisierten isentropen Kompression $(1 \rightarrow 2)$ gesetzt.

 Wärme müsste im OTP (konstantes Volumen) zugeführt und im UTP abgeführt werden:

$$\eta_{th GR} = 1 - \frac{q_A}{q_B} = 1 - \frac{c_v(T_4 - T_1)}{c_v(T_3 - T_2)}$$

– Isentropenbeziehung:

$$\frac{T_1}{T_2} = \left(\frac{v_2}{v_1}\right)^{\gamma - 1} = \left(\frac{v_3}{v_4}\right)^{\gamma - 1} = \frac{T_4}{T_3}$$

- Wirkungsgrad:

$$\eta_{th GR} = 1 - \frac{T_1}{T_2} = 1 - \left(\frac{v_2}{v_1}\right)^{\gamma - 1}$$

Zusammen mit dem Verdichtungsverhältnis ergibt sich:

$$\varepsilon = \frac{v_h + v_c}{v_c} = \frac{v_1}{v_2} \longrightarrow \eta_{th \ GR} = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$$

- Für einen hohen Wirkungsgrad:
 - hohes Verdichtungsverhältnis
 - Wärmezufuhr in der Nähe von OTP
- Max. Verdichtungsverhältnis für Ottomotoren bestimmt durch Klopfgrenze

- Zu hohes Verdichtungsverhältnis führt zu "Klopfen"
 - Klopfen: Verbrennen des Gemisches auf
 Grund einer Überhitzung vor der Zündung
 - Hohe Motortemperatur
 - Hoher Motorlärm
 - Reduzierte Leistung
 - Langfristige auftretendes Klopfen führt zu schweren Motorschäden

Von Klopfen beschädigter Kolben

Beispiel: Gleichraumprozess

Die Temperatur zu Beginn des Kompressionshubs eines Standard Otto Zyklus mit einem Volumenverhältnis von 8 ist 300 K, der Druck 1 bar, das Zylindervolumen 500 cm³ (5 x 10⁻⁴ m³). Die maximale Temperatur während des Zyklus beträgt 2000 K.

Man bestimme:

- a) Temperatur und Druck am Ende jedes Teilprozesses
- b) Thermischer Wirkungsgrad
- c) Effektiver Mitteldruck

Annahmen:

- Kompression und Expansion sind adiabat
- Alle Prozesse intern reversibel
- Arbeitsgas ist Luft, ideales Gas
- Kinetische und potentielle Energie vernachlässigbar

Lösung:

- a) Bestimmung der Temperaturen und Drücke, sowie der inneren Energie.
- <u>Isentrope Kompression 1-2:</u>

$$T_1 = 300 \ K$$

 $u_1 = 214.07 \ kJ/kg \ (Tabelle)$
 $v_{r1} = 621.2 \ *10^{-3} \ [-] \ (Table \ relative \ specific \ volume, \ only \ used \ in \ isentropic \ processes, \ not \ equal \ to \ specific \ volume)$

$$v_{r2} = \frac{V_2}{V_1} \cdot v_{r1} = \frac{1}{8} \cdot v_{r1} = 77.65$$

 $T_2 = 673 K (Tabelle : mit Hilfe von v_{r2})$

$$u_2 = 491.22 \, kJ / kg \, (Tabelle : mit \, Hilfe \, von \, v_{r2})$$

– Mit der idealen Gasgleichung folgt:

$$p_2 = p_1 \frac{T_2}{T_1} \frac{V_1}{V_2} = 1 \cdot \frac{673}{300} \cdot 8 = 17.95 \ bar$$

– Verbrennung 2-3:

Da der Prozess bei konstantem Volumen abläuft, folgt mit der idealen Gasgleichung:

$$p_3 = p_2 \frac{T_3}{T_2} = 17.95 \cdot \frac{2000}{673} = 53.3 \ bar$$

- Bei T_3 = 2000 K folgt aus der Tabelle:

$$u_3 = 1678.7 \text{ kJ/kg (Tabelle)}$$

 $v_{r3} = 2.776 *10^{-3} [-]$

Isentrope Expansion 3-4

$$v_{r4} = v_{r3} \frac{V_4}{V_3} = v_{r3} \frac{V_1}{V_2} = 2.776 \cdot 8 = 22.208 [-]$$
 $T_4 = 1042.7 \ K \ (Tabelle \ mit \ Hilfe \ von \ v_{r4})$
 $u_4 = 795.7 \ kJ \ / \ kg \ (Tabelle \ mit \ Hilfe \ von \ v_{r4})$

Mit der idealen Gasgleichung und V₄=V₁ folgt

$$p_4 = p_1 \frac{T_4}{T_1} = 1 \cdot \frac{1042.7}{300} = 3.48bar$$

b) Thermischer Wirkungsgrad:

$$\eta_{th} = 1 - \frac{Q_{41}/m}{Q_{23}/m} = 1 - \frac{u_4 - u_1}{u_3 - u_2}$$
$$= 1 - \frac{795.7 - 214.07}{1678.7 - 491.22} = 0.51 [-]$$

 c) Um den Mitteldruck zu bestimmen, benötigt man die Arbeit pro Zyklus:

$$W_{cycle} = m[(u_3 - u_4) - (u_2 - u_1)]$$

m ist die Luftmasse in einem Zyklus:

$$m = \frac{p_1 V_1}{R_{air} T_1} = \frac{10^5 \cdot 5 \cdot 10^{-4}}{287.15 \cdot 300} = 5.8 \cdot 10^{-4} \text{ kg}$$

$$W_{cycle} = 351 \text{ J}$$

- Effektiver Mitteldruck: $mep = \frac{W_{cycle}}{V_1 - V_2}$

$$mep = \frac{W_{cycle}}{V_1[1 - V_2/V_1]} = \frac{351}{5 \cdot 10^{-4} (1 - 1/8)} = 8.02 \ bar$$

– Falls isentrope Bedingungen mit konstantem γ =1.4 angenommen werden ergibt sich:

	air standard (table)	γ=1.4
T ₂	673 K	689 K
T ₃	2000 K	2000 K
T ₄	1043 K	870.5 K
η	51 %	56.5 %
mep	8.02 bar	7.05 bar

4.1.4 Gleichdruckprozess

– Teilprozesse:

- 1 → 2 Isentrope Kompression
- 2 → 3 Isobare Wärmezufuhr
- 3 → 4 Isentrope Expansion
- 4 → 1 Isochore Wärmeabfuhr

Theoretischer Wirkungsgrad:

$$\eta_{th GD} = 1 - \frac{1}{\gamma q^*} \left[\left(\frac{q^*}{\varepsilon^{\gamma - 1}} + 1 \right)^{\gamma} - 1 \right]$$

Dimensionslose Grösse q* ist ein Mass für die Grösse der

Wärmezufuhr:

$$q^* = \frac{q_B}{c_{\scriptscriptstyle D} T_1}$$

4.1.5 Seiliger-Prozess

- Kombination von Gleichraum- und Gleichdruck- Prozess
- Wärmezufuhr teilweise isochor und isobar

$$\eta_{th S} = 1 - \frac{\left[q^* - \frac{1}{\gamma^{\varepsilon}} \left(\frac{p_3}{p_1} - \varepsilon^{\gamma}\right) + \frac{p_3}{p_1}\right]^{\gamma} \left(\frac{p_1}{p_3}\right)^{\gamma - 1} - 1}{\gamma q^*}$$

4.1.6 Offener - geschlossener Prozess

- Warum wird die Innere Energie benutzt, um einen Otto Zyklus zu berechnen?
- Für eine geschlossenes System lautet der 1. Hauptsatz:

$$de = dq - dw,$$
 $wobei \ q = W\ddot{a}rme$
 $w = Arbeit$
 $e = innere + kinetische + potentielle Energie$

$$\therefore du = dq - dw$$

Für eine adiabate Zustandsänderung gilt dq=0, d.h.

$$du = -dw$$

Änderung der Arbeit für einen Kolben (adiabat) ist:

$$\partial w = pA \partial x$$

$$= p \partial (Ax)$$

$$= p \partial v$$

Integration von 1 nach 2 ergibt:

$$\int_{1}^{2} dw = \int_{1}^{2} p dv$$

 Die Arbeit, um den Kolben von 1 nach 2 zu bewegen, ist gegeben durch:

$$W_{12} = \int_{v_1}^{v_2} p dv$$

Für einen reversiblen isentropen Prozess eines perfekten Gases

gilt:
$$pv^{\gamma} = const$$

$$\therefore W_{12} = \int_{V_1}^{V_2} \frac{const}{v^{\gamma}} dv = const \left(\frac{V_2^{1-\gamma} - V_1^{1-\gamma}}{1-\gamma} \right)$$

- Nun ist aber $const = p_1V_1^{\gamma} = p_2V_2^{\gamma}$

$$W_{12} = \frac{p_2 V_2^{\gamma} V_2^{1-\gamma} - p_1 V_1^{\gamma} V_1^{1-\gamma}}{1 - \gamma} = \frac{p_2 V_2 - p_1 V_1}{1 - \gamma}$$

Für ein ideales Gas gilt pV=mRT. Das ergibt:

$$w_{12} = \frac{W_{12}}{m} = \frac{R}{1 - \gamma} (T_2 - T_1)$$

$$R = c_p - c_v, \ \gamma = c_p / c_v$$

$$\therefore \frac{R}{1 - \gamma} = \frac{c_p - c_v}{1 - c_p / c_v} = -c_v$$

Das ergibt dann:

$$w_{12} = -c_v(T_2 - T_1), -dw = du$$

 Bemerkung: In einem offenen Zyklus kann Energie auch durch die totale Enthalpie des Fluids ins oder aus dem Kontrollvolumen transportiert werden.