Portfolio assignment 13

10 min: Do a bivariate analysis on the penguins dataset for the following combination of columns:

- species VS sex
- island VS sex

species

island

species Adelie Chinstrap Gentoo

For this bivariate analysis, at least perform the following tasks:

- Do you expect their to be a correlation between the two columns?
- Create a contigency table. Do you observe different ratios between categories here?
- Create a bar plot for this contigency table. Do you observe different ratios between categories here?
- Do a chi-squared test. What does the result say? What's the chance of there being a correlation between the two columns?

```
import pandas as pd
import seaborn as sns
```

flipper_length_mm body_mass_g

sex

bill_length_mm bill_depth_mm

island

island Biscoe Dream Torgersen sex

80

Female	80	61	24
Male	83	62	23

one in the islands table has a slight difference in height, but that's it. from scipy.stats import chi2_contingency

Looking at both barplots, there is almost no difference between the female and male graphs. The Gentoo

The Formula for Chi Square Is

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
 where:

c = degrees of freedom

O = observed value(s)

E =expected value(s)

chi2_contingency(speciesTable)

since there shouldn't be any correlation in both comparisons.

array([[80.76576577, 60.94594595, 23.28828829], [82.23423423, 62.05405405, 23.71171171]])) For both tables, there is a ~5% chance there is a correlation between the two data types. This makes sense,