Lecture 2:

Some basic facts:

(1) 1/2 (d+1) = 1/2 (d)

(2) p < p(d) = 0 (p) = 0 p > p(d) = 0 p > 0 (p) > 0

(3) b= b(d) we don't have any info

 $p_c(d) = p_c$

Thm: For d > 2, we have $0 < \frac{1}{2}(d) < 1$

Actually we'll show to (2) = 2/3

and $P_c(2) > \frac{1}{3}$ Proof: Pc(d) > 1 2d-1 - length & n Starting from O. Courting Argument: First Step has 2d choices step has ad-1 choèces All further step - each has atmost ad-1 Total # of baths from the arigin of leapth $\leq n$ is atmost $2d(2d-1)^{n-1}$

For a given path of length n- The prob that the path is open is ph. So the expected number of open paths of length n, starting from the origin is > ph 11 (path is open) Paths of length n < 2d (2d-1) n-1 ph Bin (2d(2d-1)ⁿ⁻¹, ph) OCP) Phere is atteast one sen path from the origin of length n

$$\frac{1}{2} \int_{\mathbb{R}} \left(\frac{1}{2} \operatorname{open} \operatorname{paths} from the}{\operatorname{diagh} n} \right) \\
= 2d \left(2d + 1 \right)^{n-1} p^{n}$$

$$= \frac{1}{2d-1} p^{n} + \frac{1}{2d-1} p^{n}$$

April (2)
$$\leq \frac{2}{3}$$
 (Peierls Argument)

 $d=2$

Not et dande the edge in it which the edge e & I Blue lattice: $1 = 2^2$

intersects.

Red Lattice: $1 = 1 + (\frac{1}{2} + \frac{1}{2})$

(Dual lattice (of 1)

The edge et is declared open/closed ist he edge e is Open/closed.

Suppose the open cluster C(0) of the original lattice is bounded.

closed colored edges in the dual lattice

CCO) < W. iff I a closed dual
Circuit surronding it

Whitney's theorem for formalexaction.

Now well count the # of circuits in It surronding the origin of L of -> first Edge = choical right most edge of The Circuit : # closed < n 3ⁿ⁻¹
circuts < n 3ⁿ⁻¹ Any such circuit it is closed w.p. (1-15) # of closed dual circuits surrondure of

 $n_{3}^{n-1}((-12)^{n})$ If 1-12 500 1003 for $\phi > \frac{2}{3}$ Chaose N s. l. $13^{n-1}(1-1)^{n}<\frac{1}{2}$ For $\beta > \frac{2}{3}$, $P_{\beta}(A)$ any closed dual Cercuit of length N or more the box must have length ZN An= fall edges of The lattice & BN:= { 7 any closed dual Circuit suronding}

Pp (BN) >0 - from above, \$>2/3 P(AN) = b^{N2} >0 for P>0

Event An depends on the edges inside the box

An and Bn are independent events,

 $P_{p}(A_{N} \cap B_{N}) = P_{p}(A_{N})P_{p}(B_{N}) > 0$ for p > 2/3

... O(P) > 1Pp (AN) (Pp (BN) >0 for

Such courting arguments in mathematical physics are called Peierls argument—after Rudofl Peierls.

Thus,

Tools (required to study tercolation)

Lemma (Subadditive lemma) [Fekete's lemma]

Let fan: n>19 be a R-valued seque

S-b.

amon & am +an & m,n > 1

Then $\lim_{n\to\infty} \frac{\alpha_n}{n}$ exists and

 $\lim_{n\to\infty}\frac{a_n}{n}=\inf_{n>1}\frac{a_n}{n}$

Pf: (1) lummf
$$\frac{\alpha_n}{n} > \inf_{n \ge 1} \frac{\alpha_m}{n}$$

Write $n = lm + \delta$ || $r \in \{0,1,2...l-1\}$

by Subadditivity,

 $\alpha_n \le \alpha_{lm} + \alpha_{ln}$ | $\alpha_{l} = l + (m-1)l$
 $\leq m\alpha_{l} + \alpha_{l}$
 $\leq m\alpha_{l} + \alpha_{l}$
 $\leq m\alpha_{l} + \alpha_{l}$
 $\leq m\alpha_{l} + \alpha_{l}$
 $\leq m\alpha_{l} + \frac{m\alpha_{l}}{n} + \frac{m\alpha_{l}}$

 $0 \le n \longrightarrow \infty$

This is true for all 1=1. So $\frac{a_n}{n} \leq \inf_{l \geq 1} \frac{a_l}{l}$ (A n) lunsup $\frac{a_n}{n} \leq \frac{1}{2} \frac{a_k}{k}$ By (1),(2) => Subaddutye lemma , nathematician FKG Ineq Marris - FKG meg)

SZ = SOSIZ W, W E SZ $\omega(e_1)$, $\omega(e_2)$, ... w: E -> foils

w': E→30/13

Define a partial order

M ≤ M, (L2, mcc) - A ∈ ∈ E.

If edge e is ofen in the config w, Then it is also ofen in w

Defⁿ: A function $f: \Sigma \to \mathbb{R}$ is increasing if $f(\omega) \in f(\omega')$ for all $\omega \leq \omega'$, dec if $f(\omega) \geq f(\omega')$ for all $\omega \leq \omega'$.

An event $A \in F$ is increasing decreasing if 11_A is included

Thm (FKG Ineq.) Let $f_1, f_2: S2 \rightarrow P$ be both increasing or both decreosing.

Assume they are square integerable (i-e. f_1^2 dprod

Then

In particular if $f_1 = 11_A$ and $f_2 = 11_B$ then

Pp (AnB) > P(A) P(B)

*FKGr tells us that $f_p(f_1f_2) - f_p(f_1) f_p(f_2)$ i.e. $COV(f_1,f_2) > 0$ i.e f_1,f_2 are positively correlated.

Exercise

= a rooted binary to ce

二<u>工</u>

Using Kolmogorov's 0-1 law show that QCP)>0 => Pp (∃u∈ V s·t· #(cu)=∞)

Zue vis increasing.