

Banking Service Subscription Classification

Huỳnh Kim Hưng – 1952745 Lưu Chấn Hưng – 1952063 Trần Quốc Hoàn – 1952051 Lê Huy Hoàng – 1752209

Table of contents

02. 01.

Introduction **EDA**

03. **Problem &**

Solution

04.

Demo

X

Introduction

Motivation

In a modern economy, banks are to be considered not as dealers in money but as the leaders of development.

The banking system reflects the economic health of the country.

Telephonic marketing campaigns still remain one of the most effective way to reach out to people.

Motivation

Neural Network Architecture Optimization

Hyper parameters tuning for neural network *is challenging*, especially in determine the architecture (number of layers, number of nodes for each layers)

The data is related to the **direct marketing campaigns** of a Portuguese banking institution.

Target: Predict whether a customer will subscribe to the bank's campaign (**'yes'**) or not (**'no'**).

The data folder contains two datasets:-

train.csv: 45,211 rows and 18 columns ordered by date (from May 2008 to November 2010)

test.csv: 4521 rows and 18 columns with 10% of the examples (4521), randomly selected from train.csv


```
1. age (numeric)
2. job: type of job
(categorical:
"admin.", "unknown", "unemployed", "management", "housemaid", "entreprene"
ur", "student", "blue-collar", "self-employed", "retired", "technician", "services")
3. marital: marital status
(categorical: "married", "divorced", "single";
note: "divorced" means divorced or widowed)
4. education
(categorical: "unknown", "secondary", "primary", "tertiary")
5. default: has credit in default?
(binary: "yes","no")
```

- **6. balance**: average yearly balance, in euros (*numeric*)
- 7. housing: has housing loan? (binary: "yes", "no")
- **8. loan**: has personal loan? (binary: "yes", "no")
- **9. contact**: contact communication type (categorical: "unknown", "telephone", "cellular")
- **10. day**: last contact day of the month (*numeric*)
- **11. month**: last contact month of year (*categorical*: "jan", "feb", "mar", ..., "nov", "dec")
- **12. duration**: last contact duration, in seconds (*numeric*)

- **13. campaign**: number of contacts performed during this campaign and for this client (*numeric*, includes last contact)
- **14. pdays**: number of days that passed by after the client was last contacted from a previous campaign
- (numeric, -1 means client was not previously contacted)
- **15. previous**: number of contacts performed before this campaign and for this client (*numeric*)
- **16. poutcome**: outcome of the previous marketing campaign (categorical: "unknown", "other", "failure", "success")

Output variable (desired target):

17. y - has the client subscribed a term deposit? (*binary*: "yes","no")

Explanatory Data Analysis

Convert Numerical to Categorical data

X

Age of the client data, we separate into 8 categories.

Convert Numerical to Categorical data

X

Data of *customer's balance*, we separate into 19 categories

Convert Numerical to Categorical data

X

Number of **contacts performed** during this campaign to the client, we separate into 17 categories

Convert Numerical to Categorical data

X

Number of **days that passed by** after the client was last contacted, we separate into 13 categories

Convert Numerical to Categorical data

X

Number of **contacts performed before this campaign**, we separate into 18 categories

Treating Missing Data

X

The % of unknown in **job** is 0.63 The % of unknown in **education** is 4.10 The % of unknown in **poutcome** is 81.74 The % of unknown in **contact** is 28.79

Fixing Job Unknown data

X

Primary education JOB mode is:

blue-collar 0.5485

retired 0.1160

housemaid 0.091

Secondary education JOB mode is:

blue-collar 0.2314

technician 0.2253

admin. 0.1818

Tertiary education JOB mode is:

management 0.5864

technician 0.1479

self-employed 0.0626

If job is unknown and education is primary, we will assign with **blue collar**

If job is unknown and education is secondary, we will **random the job**

If job is unknown and education is tertiary, we will assign with **management**

Fixing Education Unknown Data

X

If job is in this list ['blue-collar', 'technician', 'admin.', 'student', 'education', 'retired', 'services', 'unemployed'] we assign **secondary.**

If job is in this list ['management','entrepreneur','self-employed'] we will assign **tertiary**

Housemaid job will be assign with **primary** education

Fixing Contact Unknown Data

X

cellular 29236 unknown 12966 telephone 2882

We will assign unknown value with **cellular**

Fixing poutcome Unknown Data

X

unknown 81.72 failure 10.86 other 4.08 success 3.34

Since most of the poutcome is 'unknown' any attempt to replace them will bring a lot of BIAS so we'll **discard the column**

"y" column information

X

Problem & Solution

Unbalance Dataset

Only 10% of the data indicates a **1** outcome in the target column.

SMOTE

V

Synthetic Minority Oversampling Technique (SMOTE) is a statistical technique for increasing the number of cases in your dataset in a balanced way.

The component works by generating **new instances from existing minority cases** that supply as input.

- Majority class samples
- ➡ Minority class samples
- Randomly selected minority class sample x_i
- igoplus 5 K-nearest neighbors of $x_{
 m i}$
- Randomly selected sample \hat{x}_i from the 5 neighbors
- Generated synthetic minority instance

Propose Solution

Tabu search for Architecture Optimization + Cross validation for Model Selection

Tabu search

- A meta-heuristic search that overcome local optimum problems
- Is not problem specific

- General Idea:

X

- First find an **optimum** in a local scope → Generate a new neighbor scope and find in them
- ⇒ Not stuck in local optimum
- Have a **Tabu list**→ To ensure that we not visited the move we have already made

~~~ Architecture Optimization

```
0
```

```
INPUT: # input neurons, # output neurons, max, Iter
For H_L = 1 to max
   Input \leftarrow #input neurons
   Output \leftarrow # output neurons
   N_List[] \leftarrow NULL
   Tabu\ List[] \leftarrow NULL
   For H_N = 1 to H_L
      b \leftarrow \frac{(Input + Output) \times 2}{(Input + Output)}
      N_List[H_N] \leftarrow random(a,b)
      Input \leftarrow N \ List[H_N]
   s_0 \leftarrow calculate\_fitness(H_L, N\_List)
   s_0 is the initial solution update with s_{hest}
   Tabu\_List[] \leftarrow s_{best}
   For x = 1 to Iter
      s' \leftarrow Generate_Neighbor(s_{r-1})
      s' is best from neighbor of s_{r-1}
      if f(s') < f(s_{best})
      else
         Tabu\_List[next] \leftarrow s'
         s_x \leftarrow s'
   optimal[H_L] \leftarrow s_{best} //list contains best architecture
Return best of optimal[H_I]
```

```
INPUT: P_{max}, p, K
Candidate\_List[P_{max}] \leftarrow NULL
For i = 1 to (P_{max}/2)
               Ft \leftarrow NULL
      For j = 1 to H_L
               \omega = random(0.1)
               if \omega \geq p
                                  // p is probability
        Increase number of neurons by 'K' at that layer
                        No change with neurons at that layer
      Update N_List[] for Candidate_List[i]
      Ft \leftarrow calculate\ fitness(Candidate\ List[i])
               Update Ft of Candidate List[i]
For i = 1 to (P_{max}/2)
               Ft \leftarrow NULL
      For i = 1 to H_i
               \omega = random(0,1)
               if \omega \geq p // p is probability
                        decrease number of neurons by 'K' at that layer
               else
                        No change with neurons at that layer
      Update N_List[] for Candidate_List[i + P_{max}/2]
      Ft \leftarrow calculate\ fitness(Candidate\ List[i + P_{max}/2])
      Update Ft of Candidate\_List[i + P_{max}/2]
Return best of candidate_List[P_{max}]
```

Implementation

Experiment setup

- Max number of layers: 5
- Number of iteration: 10
- Number of training for each neighbors: 20

Tabu search for best architecture for each number of layers Cross validation to choose the best architecture

Run others classification method with Cross Validation

- Logistic Regression
- SVM
- Random Forest

Evaluation

Search Result

,	Architecture	Accuracy	F1	Precision	Recall		
1 Layer	45	0.9106	0.7458	0.6982	0.8634		
2 Layers	59, 57	0.9334	0.7895	0.7669	0.8558		
3 Layers	40, 36, 40	0.9305	0.7877	0.7585	0.8627		
4 Layers	53, 48, 53 58	0.9427	0.8222	0.7805	0.9171		
5 Layers	60, 51, 55, 55, 58	0.9432	0.8281	0.7951	0.9074		

Evaluation

Cross Validation result for each Neural Network Architectures

	Accuracy(%)	F1(%)	Precision(%)	Recall(%)
1 Layer	89.93	67.72	65.07	77.76
2 Layers	91.42	69.76	66.31	80.83
3 Layers	91.13	68.96	66.13	78.93
4 Layers	91.90	70.04	67.06	79.38
5 Layers	92.20	71.04	68.16	80.68

Evaluation

Evaluation between Algorithms

		igtriangledown				
	Accuracy	Fl	Precision	Recall	0	
Best NN Architecture	0.922	0.7105	0.682	0.807		
Logistic Regression	0.838	0.534	0.399	0.805		
SVM	0.829	0.527	0.386	0.83	4	
Random Forest	0.997	0.986	0.998	0.975		

Conclusion

For this dataset, after some preprocessing, the number of features is still really small for a neural network solution

→ Therefore, Random Forest out-perform Neural Network.

In fact, Random Forest is more commonly used in these kind of problems because its light-weight and can perform exceptionally.

However, **Tabu Search for Neural Network Architecture Optimization** have a big advantage in terms of scalability

 \Rightarrow If the problems are more complex, the number of features is huge \Rightarrow This method could potentially perform well.

Demo

References

Banking Dataset - Marketing Targets

https://www.kaggle.com/datasets/prakharrathi25/banking-dataset-marketing-targets

Gupta, T.K., Raza, K. (2018) Optimizing Deep Feedforward Neural Network Architecture: A Tabu Search Based Approach: https://link.springer.com/article/10.1007/s11063-020-10234-7

Thanks!

Do you have any questions?

