Relational Algebra (Part II)

R & G, Chapter 4

Last Lecture

Relational Algebra: 5 Basic Operations

- Selection (σ): Selects a subset of rows from relation.
- <u>Projection</u> (π): Retains only wanted <u>columns</u> from relation.
- <u>Union</u> (U): Tuples in r1 and/or in r2.
- Set-difference (): Tuples in r1, but not in r2.
- Cross-product (X): Cartesian product.

Today's Lecture

- Compound operations
 - Intersection (∩)
 - Join (►
 - Division (/)
- Renaming operation (ρ)

Intersection

- Notation: R ∩ S
- Output: the tuples in both R and S.
- R and S must be <u>union-compatible</u>.
- - It can be expressed by using basic operations

$$R \cap S = R - (R - S)$$

Intersection

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

Sid	Sname	Rating	Age
28	Yuppy	9	35
31	Lubber	8	55
44	Guppy	5	35
58	Rusty	10	35

S1

S2

Sid	Sname	Rating	Age
31	Lubber	8	55
58	Rusty	10	35

 $S1 \cap S2$

Q1: is \cap a symmetric operator? (i.e., is S1 \cap S2 = S2 \cap S1?)

Q2: is there any duplicate in R ∩ S?

Join ⋈

- "Natural join" (often just called "join").
 - Notation: R ⋈S
 - Output of join:
 - Schema: All attributes in R & S
 - Keep only one copy of the common attributes in R & S
 - Output: All rows in R X S where they have <u>equal values on the</u> <u>common attributes</u>
 - If there are no attributes in common between two relations, the natural join will return the result of R X S.

Natural Join Example

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

R1

S1

$$R1 \bowtie S1 =$$

Sid	Sname	Rating	Age	Bid	day
22	Dustin	7	45	101	10/10/96
58	Rusty	10	35	103	11/12/96

Note: Attribute Sid only appears ONCE in the join result.

Natural Join Exercise

- Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of $R \bowtie S$?
- Given R1(A, B, C) and S1(D, E)
 - What is the schema of R1 ⋈S1?
 - What is the schema of R1 X S1?
- Given R2(A, B) shown at right:
 - What is the result of R2 ⋈ R2?
 - What is the result of R2 X R2?

A	В
a1	b1
a2	b2

Condition Join

- Notation: R ⋈_c S
 - C: the condition that the output records must satisfy
- Condition join R \bowtie_c S is equivalent to σ_c (R \times S)
- Output:
 - Schema: the same as R X S.
 - Instances: Only those records in R X S that satisfies condition c

Condition Join Example

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

R1

S1

S1.sid	Sname	Rating	Age	R1.sid	Bid	day
22	Dustin	7	45	58	103	11/12/96
31	Lubber	8	55	58	103	11/12/96

 $R\bowtie_{S1.sid < R1.sid} S$

Note: Attribute Sid appears TWICE in the join result (as S1.sid and R1.sid).

Equi-Join

- A special case of condition join where condition contains only *equality comparison =*
- Result schema: same as cross-product

A	В	C
a1	b1	c1
a1	b2	c2

A	В	D
a1	b1	d1
a1	b2	d2

R

R.A	R.B	C	S.A	S.B	D
a1	b1	c1	a1	b1	d1
a1	b1	c1	a1	b2	d2
a1	b2	c2	a1	b1	d1
a1	b2	c2	a1	b2	d2

$$R \bowtie_{R,A=S,A} S$$

Equi-join VS. Natural join

- *Equi-join*: the equality operator on specified attributes (not necessarily the common attributes).
- Natural join: an equi-join on ALL common attributes.

A	В	С		
a1	b1	c1		
a1	b2	c2		
R				

A	В	D
a1	b1	d1
a1	b2	d2
	C	

Is $R \bowtie S = R \bowtie_{R A=S A \land R B=S B} S$?

Division

- Notation: A/B or A÷B
- A/B is used when we wish to express queries with the keyword "ALL":
 - Examples:
 - "Which students are registered with ALL the courses taught by Dr. X?"
 - "Which students have taken ALL the HUM courses?"

Output of A/B

- Attributes of B is proper subset of Attributes of A.
- Attributes of the relation returned by A/B = (All attributes of A All Attributes of B)
 - E.g., given A (SID, PID, grade) and B (PID)
 - The schema of A/B is (SID, grade)
- The relation returned by division operator will return those tuples from relation A which are associated to every B's tuple.

X	Y
x1	y1
x1	y2
x1	у3
x1	y4
x2	y1
x2	y2

Y	
y1	
y2	
у3	
y4	
\boldsymbol{B}	

X x1

A/B

Exercise

- Consider A (SID, Name, Age), B(SID, Address)
 - Is A/B allowed?

- Is $\pi_{SID, Name}$ (A)/ π_{SID} (B) allowed?

– Is B/ $\pi_{SID}(A)$ allowed?

Examples of Division A/B

Sno	pno	Pno	Pno	
S1	P1	P2	P2	
S1	P2	B1	P4	
S1	P3	$D\mathbf{I}$	<i>B</i> 2	
S1	P4		<i>D2</i>	
S2	P1	Sno		
S2	P2	S1		
S3	P2	S2	Sno	
S4	P2	S3	S1	
S4	P4	S4	S4	
Δ		A/B1	A/B2	

Renaming Operator (ρ)

- It allows to name the results of relational-algebra expressions as a new instance
- Notation: ρ(X, E)
 - Assign name X to the results of expression E
- Rename the results of an expression, e.g., $\rho(OldSailor, \sigma_{age>45}(Sailor))$
- Renaming operator (ρ) is NOT a compound operation

Renaming Example

Sid	Sname	Rating	Age
22	Dustin	7	48
31	Lubber	8	55
58	Rusty	10	35

Sailor

$$\rho(OldSailor, \sigma_{age>45}(Sailor))$$

Sid	Sname	Rating	Age
22	Dustin	7	48
31	Lubber	8	55

OldSailor

Use the renamed OldSailor as a new relation

For example: π_{Sname} (OldSailor)