Görbeillesztés Lineáris regresszió, legkisebb négyzetek módszere

Illés Gergő és Sarkadi Balázs

PTE TTK Fizikai Intézet

2023. március 3.

Tartalom

Lineáris regresszió

Bevezetés

Általános eset

Egy darab független változó esete

Legkisebb négyzetek módszere

Bevezetés

Általános megoldás

Lineáris regresszió – Bevezetés

- A lineáris regresszió a leggyakrabban használt görbeillesztési módszer.
- Lineáris regresszió használatakor lineáris kapcsolatot feltételezünk a független- és függő változó között.
- Nemlineáris kapcsolatokra is alkalmazható a függő- és független változók közti kapcsolat linearizálásával.

Lineáris regresszió – Általános eset

Tételezzük fel, hogy rendelkezünk egy adathalmazzal amely n darab statisztikai egységet tartalmaz. Ezt mátrix formájában a következőképp írhatjuk le.

$$\begin{bmatrix} \{y_1, [x_{11}, \dots, x_{1p}]\} \\ \vdots \\ \{y_n, [x_{n1}, \dots, x_{np}]\} \end{bmatrix}$$

Ebben az írásmódban y a függő változó, \vec{x} p hosszúságú vektor pedig az úgynevezett regresszor ami a független változókat tartalmazza.

Lineáris regresszió – Általános eset

A becslésünk jóságára vezessünk be egy hibaváltozót, ez legyen ϵ . Lineáris függést, valamint ϵ hibát feltételezve az egyes y_i -k a következőképp írhatók fel:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i = \vec{x_i} \vec{\beta}^T + \epsilon_i, \qquad i = 1, 2, \dots, n$$

Az egyenletből látszik, hogy itt feltételezünk egy 0-ik x_{i0} elemet, ami minden \vec{x} esetén 1-nek adódik.

Lineáris regresszió – Általános eset

A lineáris egyenletrendszerek témakörben szerzett tudásunk alapján beláthatjuk, hogy amennyiben $\vec{x_i}$ -kből mátrixot képzünk, valamint ϵ_i -kből vektort képzünk, egy lineáris egyenletrendszert írhatunk fel mátrixműveletek formájában a következő módon:

$$\vec{y} = \mathbf{X}\vec{\beta} + \vec{\epsilon}.$$

Célunk innentől az ϵ tag "minimalizálása".

- Az eddig tárgyalt általános esetben $\vec{x_i}$ egy $1 \times (p+1)$ méretű vektor volt, azonban 1 darab független változóval dolgozunk az esetek többségében.
- A továbbiakban 1 darab független változóval dolgozunk.
- ▶ Ebből adódik, hogy $\mathbf X$ egy $n \times 2$ méretű mátrix lesz aminek a második oszlopban lévő elemeit x_i -vel jelöljük.
- lacktriangle A $ec{eta}$ együttható vektor pedig 1 imes 2-es vektor lesz, ennek elemit eta_i -vel jelöljük.

Definiáljuk $Q(\vec{\beta})$ függvényt az egyes x_i -khez tartozó hibák négyzetösszegeként.

$$Q(\vec{\beta}) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$
$$= \sum_{i=1}^{n} (y_i^2 + \beta_0^2 + \beta_1^2 x_i^2 - 2y_i \beta_0 - 2y_i \beta_1 x_1 + 2\beta_0 \beta_1 x_i)$$

Célunk azon β_0 és β_1 paraméterek megkeresésre amelyre $Q(\vec{\beta})$ függvény minimális értéket vesz fel.

Minimalizáljuk $Q(\vec{\beta})$ -t β_0 szerint:

$$\frac{\partial Q(\vec{\beta})}{\partial \beta_0} = \sum_{i=1}^n (2\beta_0 - 2y_i + 2\beta_1 x_i)$$
$$= 2n\beta_0 - 2\sum_{i=1}^n (y_i) + 2\beta_1 \sum_{i=1}^n (x_i)$$
$$= \beta_0 - \overline{y} + \beta_1 \overline{x} = 0$$

Most tegyük ugyanezt β_1 szerint:

$$\frac{\partial Q(\vec{\beta})}{\partial \beta_1} = \sum_{i=1}^n (2\beta_1 x_i^2 - 2y_i x_i + 2\beta_0 x_i)$$

$$= 2\beta_1 \sum_{i=1}^n (x_i^2) - 2\sum_{i=1}^n (x_i y_i) + 2\beta_0 \sum_{i=1}^n (x_i)$$

$$= \beta_1 \overline{x^2} - \overline{xy} + \beta_0 \overline{x} = 0$$

A minimalizációval kapott lineáris egyenletrendszert megoldva β_0 és β_1 a következőknek adódik:

$$\beta_0 = \frac{\overline{x} \overline{xy} - \overline{x^2} \overline{y}}{\overline{x^2} - \overline{x^2}}$$
$$\beta_1 = \frac{\overline{x} \overline{y} - \overline{xy}}{\overline{x^2} - \overline{x^2}}$$

 eta_0 és eta_1 paraméterek segítségével már meghatározhatjuk az adathalmazra négyzetesen legjobban illeszkedő egyenes paramétereit.

Legkisebb négyzetek módszere – Bevezetés

- ▶ A legkisebb négyzetek módszerének, lényege az, hogy a modell (magyarázó függvény) paramétereit úgy hangoljuk, hogy a görbe a lehető legjobban illeszkedjen az adathalmazra.
- Az előző fejezetben az egyenes paramétereinek kiszámításakor ugyan így a legkisebb négyzetek módszerét alkalmaztuk.
- ► Két legkisebb négyzetes módszert különböztetünk meg:
 - Lineáris/közönséges négyzetek: a maradékok a paraméterektől lineárisan függ
 - Nemlineáris négyzetek: a maradékok nemlineárisan függnek a paraméterektől

Legkisebb négyzetek módszere – Általános megoldás

Tegyük fel, hogy mérési eredményeként kaptunk egy x_i és y_i értékekből álló adathalmazt utóbbi tartalmaz némi zajt. Feltételezzük továbbá, hogy a valódi y értékek előállnak egy ismert függvény értékeként, ez legyen $f(x;\mathbf{a})$. A mérési eredményeket ekkor a következőképp fejezhetjük ki:

$$y_i = f(x; \mathbf{a}) + n_i$$

Legkisebb négyzetek módszere – Általános megoldás

Tegyük fel, hogy a hibák függetlenek és normál eloszlásúak $(N(0, \sigma_i))$ ekkor bevezethetünk egy mennyiséget:

$$\chi^2(\mathbf{a}) = \sum_{i=1}^{N} \left[\frac{y_i - f(x_i; \mathbf{a})}{\sigma_i} \right]^2$$

Legkisebb négyzetek módszere – Általános megoldás

 $\chi^2(\mathbf{a})$ minimalizálásával megkaphatjuk a legjobban illeszkedő görbét. Ezt az a_i paraméterek szerinti deriválással tehetjük meg a következőképp:

$$\frac{\partial \chi^2(\mathbf{a})}{\partial a_i}\Big|_{\mathbf{a}=\mathbf{a}_{LS}} = 0$$
 $i = 1, 2, \dots, N$

 $\chi^2(\mathbf{a})$ -be behelyettesítve a megoldandó egyenlet a következő:

$$\sum_{i=1}^{N} \left((f(x_i; \mathbf{a}) - y_i) \frac{\partial f(x_i; \mathbf{a})}{\partial a_i} \right) \Big|_{\mathbf{a} = \mathbf{a}_{LS}} = 0$$