CS 491 CAPIntroduction to Graphs and Search

Jingbo Shang

University of Illinois at Urbana-Champaign

Sep 15, 2017

- Graphs
- Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- ♦ Topological Sort

- **♦** Graphs
- Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- ♦ Topological Sort

Graphs

- Graph is an abstract way of representing connectivity using nodes (vertices) and edges (arcs)
- $\diamond n$ nodes, labeled from 1 to n
- ⋄ m edges connect some pairs of nodes
 - either directed (unidirected) or bidirectional (undirected)
- Nodes and edges can carry some extra information such as weights

Graph Problems

- Shortest path
- Minimum spanning tree
- Matching / Network flow
- ♦ 2-SAT
- Graph coloring
- ♦ Traveling salesman problem
- **\lambda** ...

- Graphs
- ♦ Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- ♦ Topological Sort

Graph storage

- Adjacency matrix
 - bool mat[n][n]
 - mat[u][v] is the indicator that whether there is an edge between node u and v.
- Adjacency list
 - vector<int> adj[n]
 - adj[u] stores a list of nodes which are adjacent to node u.

Matrix v.s. List

- ♦ Checking if two nodes are directly connected:
 - Matrix: *O*(1)
 - List: O(n) worst, $O(\frac{m}{n})$ average.
- ♦ Memory
 - Matrix: $O(n^2)$
 - List: O(m+n)

- Graphs
- Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- ♦ Topological Sort

Special Graphs

♦ Tree

- A connected acyclic graph
- A connected graph with n-1 edges
- An acyclic graph with n-1 edges
- There is exactly one path between every pair of nodes
- An acyclic graph but adding any edge results in a cycle
- A connected graph but removing any edge disconnects it

Bipartite Graph

- Separate into two groups of nodes such that the edges exist between these two groups only.
- ♦ Directed Acyclic Graph (DAG)
 - Nodes have a partial ordering.

- Graphs
- Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- ♦ Topological Sort

Depth-First Search

- DFS(v): visits all the nodes reachable from v in depthfirst order
 - Mark v as visited
 - For each edge $v \rightarrow u$:
 - If u is not visited, call DFS(u)

Example

Property

- ♦ In undirected graph
 - No cross edges, only tree-edges and back edges

Figure from Wikipedia Depth-first-search

Example Problems

- ♦ What is the minimum number of edges should be added to make an undirected graph connected?
- ♦ E.g.
- ♦ 5 nodes, 3 edges
- ♦ 1-2
- ♦ 1-3
- **♦ 2-3**
- ♦ Then, the answer is 2.

Example Problems: Solution

- ♦ Figure out the number of components *N*
- \diamond The answer is N-1

Breadth-First Search

- ♦ BFS(v): visits all the nodes reachable from v in breadthfirst order
 - Initialize a queue Q
 - Mark v as visited and push it to Q
 - While Q is not empty:
 - Take the front element of Q and call it w
 - For each edge $w \rightarrow u$:
 - If u is not visited, mark it as visited and push it to Q

Example

Example Problems

- ♦ The distance from node *u* to node *v* are defined by the minimum number of edges should be traversed from *u* to *v*.
- ♦ Find the furthest node from node 1.
- ♦ E.g. Answer is 3

Example Problems: Solution

♦ Depth of the BFS tree

- Graphs
- Adjacency Matrix vs. Adjacency List
- Special Graphs
- Depth-first and Breadth-first Search
- **⋄** Topological Sort

Topological Sort Problem

- \diamond Input: a DAG G = (V, E)
- \diamond Output: an ordering of nodes such that for each edge $u \rightarrow v$, u comes before v

Example

♦ Possible Orders:

- **4**,1,6,2,3,7,5
- **4**,6,3,1,2,5,7
- **-** ...

Topological Sort

- ♦ Key Idea
 - Any node without an incoming edge can be the "first element"

Topological Sort

- Precompute the number of incoming edges deg(v) for each node v
- \diamond Put all nodes v with deg(v) = o into a queue Q
- ♦ Repeat until Q becomes empty:
 - Take v from Q
 - For each edge $v \rightarrow u$:
 - Decrement deg(u) (essentially removing the edge $v \rightarrow u$)
 - If deg(u) = 0, push u to Q
- \diamond Time complexity: $\Theta(n + m)$

Example Problems

- ♦ *N* people
- ♦ Have known *M* relations that
 - *u* is strictly higher than *v*
- Check whether someone are lying.

Questions?

