Model Checking

Patrick Lam

Outline

Posterior Predictive Distribution

Posterior Predictive Checks
An Example

Bayes Factor

Outline

Posterior Predictive Distribution

Posterior Predictive Checks
An Example

Bayes Factor

Once we have a model and generated draws from our posterior distribution, we may want to predict future data points.

Once we have a model and generated draws from our posterior distribution, we may want to predict future data points.

We may want to make predictions in order to:

Once we have a model and generated draws from our posterior distribution, we may want to predict future data points.

We may want to make predictions in order to:

1. Predict how a system would behave in the future (substantive implications)

Once we have a model and generated draws from our posterior distribution, we may want to predict future data points.

We may want to make predictions in order to:

- 1. Predict how a system would behave in the future (substantive implications)
- 2. Assess model accuracy (modeling implications)

Once we have a model and generated draws from our posterior distribution, we may want to predict future data points.

We may want to make predictions in order to:

- 1. Predict how a system would behave in the future (substantive implications)
- 2. Assess model accuracy (modeling implications)

Through simulation, we can get a **posterior predictive distribution**.

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}, \theta|y) d\theta$$
$$= \int p(y^{\text{rep}}|\theta, y) p(\theta|y) d\theta$$

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}, \theta|y) d\theta$$

= $\int p(y^{\text{rep}}|\theta, y) p(\theta|y) d\theta$

If we assume $y \perp y^{\text{rep}} | \theta$, then

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}, \theta|y) d\theta$$

= $\int p(y^{\text{rep}}|\theta, y) p(\theta|y) d\theta$

If we assume $y \perp y^{\text{rep}} | \theta$, then

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|y)p(\theta|y)d\theta$$

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}, \theta|y) d\theta$$

$$= \int p(y^{\text{rep}}|\theta, y) p(\theta|y) d\theta$$

If we assume $y \perp y^{\text{rep}} | \theta$, then

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|y)p(\theta|y)d\theta$$

If y is a vector of n observations, then y^{rep} is also a vector of length n with covariates set at the observed (model checking) or hypothetical values (prediction)

Predicted distribution of some future data point(s) y^{rep} after having seen the data y.

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}, \theta|y) d\theta$$

$$= \int p(y^{\text{rep}}|\theta, y) p(\theta|y) d\theta$$

If we assume $y \perp y^{\text{rep}} | \theta$, then

$$p(y^{\text{rep}}|y) = \int p(y^{\text{rep}}|y)p(\theta|y)d\theta$$

If y is a vector of n observations, then $y^{\rm rep}$ is also a vector of length n with covariates set at the observed (model checking) or hypothetical values (prediction) and $p(y^{\rm rep}|y)$ can be thought of as an n-variate distribution.

1. Sample m values of θ from our posterior.

- 1. Sample m values of θ from our posterior.
- 2. For each posterior draw, sample a value (vector) of y^{rep} from our likelihood $p(y^{\text{rep}}|\theta)$.

- 1. Sample m values of θ from our posterior.
- 2. For each posterior draw, sample a value (vector) of y^{rep} from our likelihood $p(y^{\text{rep}}|\theta)$.

The m values (vectors) of y^{rep} represent draws from the posterior predictive distribution $p(y^{\text{rep}}|y)$.

- 1. Sample m values of θ from our posterior.
- 2. For each posterior draw, sample a value (vector) of y^{rep} from our likelihood $p(y^{\text{rep}}|\theta)$.

The m values (vectors) of y^{rep} represent draws from the posterior predictive distribution $p(y^{\text{rep}}|y)$.

We can use the posterior predictive distribution to predict the future or assess model accuracy with posterior predictive checks.

Outline

Posterior Predictive Distribution

Posterior Predictive Checks
An Example

Bayes Factor

Much of what we have done so far is based on a model that we specify, which may or may not be accurate.

Much of what we have done so far is based on a model that we specify, which may or may not be accurate.

Specifically, we make many assumptions with our model which may or may not be accurate (for example, independence across observations). Much of what we have done so far is based on a model that we specify, which may or may not be accurate.

Specifically, we make many assumptions with our model which may or may not be accurate (for example, independence across observations).

We can attempt to check specific model assumptions with **posterior predictive checks**.

To conduct a posterior predictive check, do the following:

1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate *T* for the observed data *y*:

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate T for the observed data y: T(y)

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each y^{rep} draw from the posterior predictive distribution:

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each $y^{\rm rep}$ draw from the posterior predictive distribution: $T(y^{\rm rep}|y)$

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each y^{rep} draw from the posterior predictive distribution: $T(y^{\text{rep}}|y)$
- 4. Calculate the fraction of times $T(y^{\text{rep}}|y) > T(y)$.

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing.
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each y^{rep} draw from the posterior predictive distribution: $T(y^{\text{rep}}|y)$
- 4. Calculate the fraction of times $T(y^{\text{rep}}|y) > T(y)$. This is an estimate of the *posterior predictive p-value*.

The idea is that if our data violates one of our model assumptions, then our observed test statistic T(y) should be significantly different than our model predicted test statistics $T(y^{\text{rep}}|y)$.

The idea is that if our data violates one of our model assumptions, then our observed test statistic T(y) should be significantly different than our model predicted test statistics $T(y^{\text{rep}}|y)$.

If our posterior predictive p-value is close to 0 or 1 (say 0.05 or 0.95), then it suggests that our observed data has an extreme test statistic and that something in our model may be inadequate.

► Choice of test statistic is very important.

- Choice of test statistic is very important.
 - ► Test statistic must be meaningful and pertinent to the assumption you want to test.

- Choice of test statistic is very important.
 - ► Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)
 - ► Test statistics should be not based on aspects of the data that are being explicit modeled (for example, the mean of *y* in a linear model).

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)
 - ► Test statistics should be not based on aspects of the data that are being explicit modeled (for example, the mean of *y* in a linear model).
- ▶ If the model passes posterior predictive check, it does not necessarily mean there are no problems with the model.

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)
 - ► Test statistics should be not based on aspects of the data that are being explicit modeled (for example, the mean of *y* in a linear model).
- ▶ If the model passes posterior predictive check, it does not necessarily mean there are no problems with the model.
 - ▶ Test statistic may have low power.

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)
 - ► Test statistics should be not based on aspects of the data that are being explicit modeled (for example, the mean of *y* in a linear model).
- ▶ If the model passes posterior predictive check, it does not necessarily mean there are no problems with the model.
 - ▶ Test statistic may have low power.
 - May be testing the wrong assumption.

- Choice of test statistic is very important.
 - Test statistic must be meaningful and pertinent to the assumption you want to test.
 - ► Test statistics often have low power (inability to find problems when problems exist)
 - ► Test statistics should be not based on aspects of the data that are being explicit modeled (for example, the mean of *y* in a linear model).
- ▶ If the model passes posterior predictive check, it does not necessarily mean there are no problems with the model.
 - ► Test statistic may have low power.
 - ▶ May be testing the wrong assumption.
- ▶ It is not always clear how to correct the incorrect model assumptions.

Outline

Posterior Predictive Distribution

Posterior Predictive Checks
An Example

Bayes Factor

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

```
> data <- read.table("FLdata.txt")
```

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

```
> data <- read.table("FLdata.txt")
```

Dependent variable: binary variable on civil war onset

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

```
> data <- read.table("FLdata.txt")
```

Dependent variable: binary variable on civil war onset

Independent variables: the normal set of independent variables predicting civil wars

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

```
> data <- read.table("FLdata.txt")
```

Dependent variable: binary variable on civil war onset

Independent variables: the normal set of independent variables predicting civil wars

Model: Bayesian logistic regression with binomial likelihood and multivariate Normal priors (using MCMCpack)

Time-series cross-sectional dataset on civil war onset from Fearon and Laitin.

```
> data <- read.table("FLdata.txt")
```

Dependent variable: binary variable on civil war onset

Independent variables: the normal set of independent variables predicting civil wars

Model: Bayesian logistic regression with binomial likelihood and multivariate Normal priors (using MCMCpack)

```
> library(MCMCpack)
```

1. Create model matrix of covariates X.

1. Create model matrix of covariates X.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.
- 3. Convert linear predictors into probabilities with the inverse logit function.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.
- 3. Convert linear predictors into probabilities with the inverse logit function.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.
- 3. Convert linear predictors into probabilities with the inverse logit function.
- 4. Draw m samples of y^{rep} from the binomial likelihood.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.
- 3. Convert linear predictors into probabilities with the inverse logit function.
- 4. Draw m samples of y^{rep} from the binomial likelihood.

- 1. Create model matrix of covariates X.
- 2. Get linear predictors by multiplying X and our m draws from the posterior.
- 3. Convert linear predictors into probabilities with the inverse logit function.
- 4. Draw m samples of y^{rep} from the binomial likelihood.

The resulting posterior predictive distribution is an $n \times m$ matrix.

Let T= the fraction of y's that take on the value of 1

Let T= the fraction of y's that take on the value of 1

What's wrong with this test statistic?

Let T= the fraction of y's that take on the value of 1

What's wrong with this test statistic?

Unclear what assumption are we testing.

Let T= the fraction of y's that take on the value of 1

What's wrong with this test statistic?

- Unclear what assumption are we testing.
- ► The fraction of 1s is explicitly being modeled in the logit model.

Let T= the fraction of y's that take on the value of 1

What's wrong with this test statistic?

- Unclear what assumption are we testing.
- The fraction of 1s is explicitly being modeled in the logit model.
 - ► The test will never show anything is wrong regardless of how bad our model is.

A Better Test Statistic

A Better Test Statistic

 $\label{eq:Assumption: No clustering within years} Assumption: No clustering within years$

A Better Test Statistic

Assumption: No clustering within years

Test Statistic: T = the variance of the number of 1s in each year

1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing:

1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y:

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y: T(y)

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y: T(y)

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each y^{rep} draw from the posterior predictive distribution:

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each $y^{\rm rep}$ draw from the posterior predictive distribution: $T(y^{\rm rep}|y)$

- 1. Come up with a test statistic T that has power to diagnose violations of whatever assumption you are testing: T = the variance of the number of 1s in each year
- 2. Calculate T for the observed data y: T(y)
- 3. Calculate T for each $y^{\rm rep}$ draw from the posterior predictive distribution: $T(y^{\rm rep}|y)$

4. Calculate the fraction of times $T(y^{\text{rep}}|y) > T(y)$.

Does this mean our assumption is correct?

Does this mean our assumption is correct? Not necessarily (low power?)

Outline

Posterior Predictive Distribution

Posterior Predictive Checks
An Example

Bayes Factor

Suppose we have two competing models/hypotheses:

Suppose we have two competing models/hypotheses: M_1 and M_2

Suppose we have two competing models/hypotheses: M_1 and M_2

Assuming that either M_1 or M_2 is true, we would like to know what the data \mathbf{y} tell us about the probabilities of either model being true.

Suppose we have two competing models/hypotheses: M_1 and M_2

Assuming that either M_1 or M_2 is true, we would like to know what the data \mathbf{y} tell us about the probabilities of either model being true.

That is, we would like to know $p(M_1|\mathbf{y})$ and $p(M_2|\mathbf{y})$.

Suppose we have two competing models/hypotheses: M_1 and M_2

Assuming that either M_1 or M_2 is true, we would like to know what the data \mathbf{y} tell us about the probabilities of either model being true.

That is, we would like to know $p(M_1|\mathbf{y})$ and $p(M_2|\mathbf{y})$.

We can then compare $p(M_1|\mathbf{y})$ and $p(M_2|\mathbf{y})$ to see which model fits the data better.

Suppose we have two competing models/hypotheses: M_1 and M_2

Assuming that either M_1 or M_2 is true, we would like to know what the data \mathbf{y} tell us about the probabilities of either model being true.

That is, we would like to know $p(M_1|\mathbf{y})$ and $p(M_2|\mathbf{y})$.

We can then compare $p(M_1|\mathbf{y})$ and $p(M_2|\mathbf{y})$ to see which model fits the data better.

This is known as the Bayes factor approach and it is the Bayesian alternative to hypothesis testing in classical statistics.

In comparing the two models, we want to look at the posterior odds in favor of one model (say M_1):

In comparing the two models, we want to look at the posterior odds in favor of one model (say M_1):

$$\frac{\rho(\mathcal{M}_1|\mathbf{y})}{\rho(\mathcal{M}_2|\mathbf{y})} \ = \ \frac{\frac{\rho(\mathbf{y}|\mathcal{M}_1)\rho(\mathcal{M}_1)}{\rho(\mathbf{y})}}{\frac{\rho(\mathbf{y}|\mathcal{M}_2)\rho(\mathcal{M}_2)}{\rho(\mathbf{y})}}$$

In comparing the two models, we want to look at the posterior odds in favor of one model (say M_1):

$$\frac{\frac{\rho(M_1|\mathbf{y})}{\rho(M_2|\mathbf{y})}}{\frac{\rho(M_1|\mathbf{y})}{\rho(M_2|\mathbf{y})}} = \frac{\frac{\rho(\mathbf{y}|M_1)\rho(M_1)}{\rho(\mathbf{y})}}{\frac{\rho(\mathbf{y}|M_2)\rho(M_2)}{\rho(\mathbf{y})}}$$
$$= \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_2)} \frac{\rho(M_1)}{\rho(M_2)}$$

In comparing the two models, we want to look at the posterior odds in favor of one model (say M_1):

$$\frac{\frac{\rho(M_1|\mathbf{y})}{\rho(M_2|\mathbf{y})}}{\frac{\rho(M_1)\mathbf{y}}{\rho(M_2|\mathbf{y})}} = \frac{\frac{\rho(\mathbf{y}|M_1)\rho(M_1)}{\rho(\mathbf{y})}}{\frac{\rho(\mathbf{y}|M_2)\rho(M_2)}{\rho(\mathbf{y})}}$$

$$= \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_2)} \frac{\rho(M_1)}{\rho(M_2)}$$

The term $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)}$ is known as the **Bayes factor**.

In comparing the two models, we want to look at the posterior odds in favor of one model (say M_1):

$$\frac{\frac{\rho(M_1|\mathbf{y})}{\rho(M_2|\mathbf{y})}}{\frac{\rho(M_1)\rho(M_1)}{\rho(\mathbf{y})}} = \frac{\frac{\rho(\mathbf{y}|M_1)\rho(M_1)}{\rho(\mathbf{y})}}{\frac{\rho(\mathbf{y}|M_2)\rho(M_2)}{\rho(\mathbf{y})}}$$
$$= \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_2)} \frac{\rho(M_1)}{\rho(M_2)}$$

The term $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)}$ is known as the **Bayes factor**.

 $posterior odds = Bayes factor \times prior odds$

$$\frac{\underline{\rho(M_1|\mathbf{y})}}{\underline{\rho(M_2|\mathbf{y})}} = \frac{\underline{\rho(\mathbf{y}|M_1)}}{\underline{\rho(\mathbf{y}|M_2)}}$$

$$\frac{\rho(M_1|\mathbf{y})}{\rho(M_2|\mathbf{y})} = \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_2)}$$

Thus, the Bayes factor is a measure of how much the data supports one model relative to the other.

$$\frac{p(M_1|\mathbf{y})}{p(M_2|\mathbf{y})} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)}$$

Thus, the Bayes factor is a measure of how much the data supports one model relative to the other.

The individual terms that make up the Bayes factor, $p(\mathbf{y}|M_1)$ and $p(\mathbf{y}|M_2)$, are known as **marginal likelihoods**

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

Thus, the marginal likelihood is "marginal" because it is the likelihood of \mathbf{y} under M_k averaged over the model parameters θ_k .

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

Thus, the marginal likelihood is "marginal" because it is the likelihood of \mathbf{y} under M_k averaged over the model parameters θ_k .

Note that $p(\theta_k|M_k)$ is just the prior for θ under M_k .

Marginal Likelihood

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

Thus, the marginal likelihood is "marginal" because it is the likelihood of \mathbf{y} under M_k averaged over the model parameters θ_k .

Note that $p(\theta_k|M_k)$ is just the prior for θ under M_k .

The marginal likelihood can be interpreted as

Marginal Likelihood

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

Thus, the marginal likelihood is "marginal" because it is the likelihood of \mathbf{y} under M_k averaged over the model parameters θ_k .

Note that $p(\theta_k|M_k)$ is just the prior for θ under M_k .

The marginal likelihood can be interpreted as

▶ the normalizing constant of the posterior $p(\theta|\mathbf{y})$ given M_k

Marginal Likelihood

The marginal likelihood for model M_k is

$$p(\mathbf{y}|M_k) = \int_{\Theta_k} p(\mathbf{y}|\theta_k, M_k) p(\theta_k|M_k) d\theta_k$$

where θ_k are the model parameters for model M_k .

Thus, the marginal likelihood is "marginal" because it is the likelihood of \mathbf{y} under M_k averaged over the model parameters θ_k .

Note that $p(\theta_k|M_k)$ is just the prior for θ under M_k .

The marginal likelihood can be interpreted as

- ▶ the normalizing constant of the posterior $p(\theta|\mathbf{y})$ given M_k
- the expected value of the likelihood function taken over the prior density

$$p(\mathbf{y}) = \int_{\Theta} p(\mathbf{y}|\theta) p(\theta) d\theta$$

conditioned on M_k .

$$p(\mathbf{y}) = \int_{\Theta} p(\mathbf{y}|\theta) p(\theta) d\theta$$

conditioned on M_k .

Also recall Bayes rule:

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

$$p(\mathbf{y}) = \int_{\Theta} p(\mathbf{y}|\theta) p(\theta) d\theta$$

conditioned on M_k .

Also recall Bayes rule:

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

This means that for model M_k , the marginal likelihood is just the normalizing constant for the posterior of θ !

$$p(\mathbf{y}) = \int_{\mathbf{\Theta}} p(\mathbf{y}|\mathbf{\theta}) \frac{p(\mathbf{\theta})}{p(\mathbf{\theta})} d\mathbf{\theta}$$

conditioned on M_k .

Also recall Bayes rule:

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

This means that for model M_k , the marginal likelihood is just the normalizing constant for the posterior of θ !

Therefore, except in simple cases (such as conjugacy), the marginal likelihood usually has to be approximated.

$$\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)} = \frac{\int_{\Theta_1} p(\mathbf{y}|\theta_1, M_1) p(\theta_1|M_1) d\theta_1}{\int_{\Theta_2} p(\mathbf{y}|\theta_2, M_2) p(\theta_2|M_2) d\theta_2}$$

$$\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)} = \frac{\int_{\Theta_1} p(\mathbf{y}|\theta_1, M_1) p(\theta_1|M_1) d\theta_1}{\int_{\Theta_2} p(\mathbf{y}|\theta_2, M_2) p(\theta_2|M_2) d\theta_2}$$

Interpretation of the Bayes factor is somewhat arbitrary.

$$\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)} = \frac{\int_{\Theta_1} p(\mathbf{y}|\theta_1, M_1) p(\theta_1|M_1) d\theta_1}{\int_{\Theta_2} p(\mathbf{y}|\theta_2, M_2) p(\theta_2|M_2) d\theta_2}$$

Interpretation of the Bayes factor is somewhat arbitrary.

Generally speaking, for the Bayes factor of M_1 over M_2 , a Bayes factor

▶ less than $\frac{1}{100}$ leads us to reject M_1

$$\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)} = \frac{\int_{\Theta_1} p(\mathbf{y}|\theta_1, M_1) p(\theta_1|M_1) d\theta_1}{\int_{\Theta_2} p(\mathbf{y}|\theta_2, M_2) p(\theta_2|M_2) d\theta_2}$$

Interpretation of the Bayes factor is somewhat arbitrary.

Generally speaking, for the Bayes factor of M_1 over M_2 , a Bayes factor

- ▶ less than $\frac{1}{100}$ leads us to reject M_1
- lacktriangle greater than 1 leads us to accept M_1

One can also rely on tables such as the one given by Jeffreys for the Bayes factor of M_1 over M_2 :

One can also rely on tables such as the one given by Jeffreys for the Bayes factor of M_1 over M_2 :

Bayes Factor	Strength of Evidence for M_1
< 1	Negative (supports M_2)
1 to 3	Barely Worth Mentioning
3 to 10	Substantial
10 to 30	Strong
30 to 100	Very Strong
> 100	Decisive