Updating Variational Bayes: Fast sequential posterior inference

Nathaniel Tomasetti (Coles), Catherine Forbes (Monash University) and Anastasios Panagiotelis (University of Sydney)

ISBA 2022, with thanks to Nadja Klein

Introduction

- Intermittent time series data, may require quick response
 - e.g. self-driving vehicles require regular monitoring all surrounding vehicles to predict imminent behaviour of their human drivers
- Bayesian methods account for uncertainty in the models and/or predictions
 - updating methods target a sequence of posterior distributions, each conditioned on an expanding data set
 - produced through a sequential application of Bayes theorem
- So-called "Exact" computational methods are slow and may scale poorly
 - ► MCMC . . .
 - ► **SMC** (Doucet *et al*, 2001; Chopin, 2002)

Introduction

- Other approximations may be slow, and have unknown error
 - grid-based methods (Bhattacharya & Wilson, 2018; Chen X, Dai H, Song L, 2019)
 - ► ABC (Jasra et al., 2010; Del Moral et al., 2015)
- VB produces approximate posterior inference, via optimisation
 - ▶ fast
 - produces good point estimates and predictions
 - ► See Zhang et al., 2017 for a recent review

Exact posterior vs VB approximation

• Target of Bayesian inference: the posterior

$$p(\theta \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \theta)p(\theta)}{\int_{\theta} p(\mathbf{Y} \mid \theta)p(\theta)d\theta}$$

- \triangleright θ , parameter vector
- $\mathbf{Y} = \mathbf{y}_{1:T} = {\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_T}, \text{ time series of observed vectors}$
- VB Posterior approximation:
 - **1** Choose parametric family $q_{\lambda}(\theta \mid \mathbf{Y})$
 - **2** Select λ^* to maximise the ELBO^{1,2}:

$$\mathcal{L}(q, \lambda) = \textit{E}_{q} \left[\log(\textit{p}(\theta, \textbf{Y})) - \log(\textit{q}_{\lambda}(\theta \mid \textbf{Y})) \right]$$

¹ELBO = Evidence Lower Bound.

²Minimising the ELBO equivalently minimises KL divergence from $q_{\lambda}(\theta \mid \mathbf{Y})$ to $p(\theta \mid \mathbf{Y})$

Exact posterior vs VB approximation

• Exact posterior updates the prior:

$$\underbrace{\rho(\boldsymbol{\theta} \mid \mathbf{Y})}_{\text{posterior}} \propto \underbrace{\rho(\boldsymbol{\theta})}_{\text{prior}} \cdot \underbrace{\rho(\mathbf{y} \mid \boldsymbol{\theta})}_{\text{likelihood}}$$

VB posterior:

$$q_{\lambda^*}(\theta \mid \mathbf{Y})$$
, where λ^* maximises the **ELBO**

Stochastic VB posterior (SVB):

$$q_{\lambda^{(m^*)}}(\theta \mid \mathbf{Y})$$
, where $\lambda^{(m^*)}$ numerically maximises the **ELBO**

SVB

- For general λ , maximise **ELBO** with **SGA**³
 - Set $\lambda^{(1)}$. Then, for $m=1,2,\ldots$, let

$$\lambda^{(m+1)} = \lambda^{(m)} + \rho^{(m)} \frac{\partial \widehat{\mathcal{L}(q,\lambda)}}{\partial \lambda} \bigg|_{\lambda = \lambda^{(m)}}$$

• Unbiased score estimator (Ranganath et al., 2014)

$$\frac{\partial \widehat{\mathcal{L}(q,\lambda)}}{\partial \lambda}_{SC} = \frac{1}{S} \sum_{i=1}^{S} \frac{\partial \log(q_{\lambda}(\boldsymbol{\theta}^{(j)} \mid \mathbf{Y}))}{\partial \lambda} \left(\log(p(\mathbf{Y},\boldsymbol{\theta}^{(j)})) - \log(q_{\lambda}(\boldsymbol{\theta}^{(j)} \mid \mathbf{Y})) - \widehat{\mathbf{a}} \right)$$

- ullet $\{m{ heta}^{(j)}, ext{ for } j=1,2,\ldots,S\}$ drawn from $q_{m{\lambda}^{(m)}}(m{ heta} \mid m{y}_{1:T})$
- ▶ â, control variates

³SGA = Stochastic Gradient Ascent (Bottou, 2010; Hoffman *et al.*, 2013)

Dependence in the approximation

- Let $\boldsymbol{\theta} = (\theta_1, \theta_2)'$
 - ► **MFVB**⁴ (independence)

$$q_{\lambda}(\theta_1, \theta_2 \mid \mathbf{y}_{1:T}) = q_{\lambda}(\theta_1 \mid \mathbf{Y}) \ q_{\lambda}(\theta_2 \mid \mathbf{Y})$$

More general forms possible, e.g.

$$q_{\lambda}(\theta_1, \theta_2 \mid \mathbf{Y}) = q_{\lambda}(\theta_1 \mid \mathbf{Y}) \ q_{\lambda}(\theta_2 \mid \theta_1, \mathbf{Y})$$

If possible, use exact conditional posterior:

$$q_{\lambda}(\theta_1, \theta_2 \mid \mathbf{Y}) = q_{\lambda}(\theta_1 \mid \mathbf{Y}) \underbrace{p(\theta_2 \mid \theta_1, \mathbf{Y})}_{ ext{exact conditional}}$$

Or use exact marginal posterior:

$$q_{\lambda}(\theta_1, \theta_2 \mid \mathbf{Y}) = \underbrace{\rho(\theta_1 \mid \mathbf{Y})}_{ ext{exact marginal}} q_{\lambda}(\theta_2 \mid \theta_1, \mathbf{Y})$$

⁴MFVB = Mean Field VB, (Bishop, 2006)

Updating Variational Bayes (UVB)

- Notation:
 - $ightharpoonup T_1, T_2, \ldots$, a sequence of time points
 - $\qquad \qquad \mathbf{Y}_k = \mathbf{y}_{T_{k-1}+1:T_k} = \{\mathbf{y}_{T_{k-1}+1}, \mathbf{y}_{T_{k-1}+2}, \ldots, \mathbf{y}_{T_k}\}, \text{ data vectors in "batch" } k$
 - $\mathbf{Y}_{1:k} = {\mathbf{\hat{Y}}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_k}$, expanding dataset for $k = 1, 2, \dots$
- We want the sequence of posterior distributions:

At time T_1 :

 $p(\theta \mid \mathbf{Y}_1) \propto p(\theta) \underbrace{p(\mathbf{Y}_1 \mid \theta)}$

• \Rightarrow At time T_1 , **UVB** targets exact posterior:

$$\underbrace{\rho(\theta \mid \mathbf{Y}_1)}_{\text{exact posterior}} \propto \underbrace{\rho(\theta)}_{\text{prior}} \underbrace{\rho(\mathbf{Y}_1 \mid \theta)}_{\text{likelihood}}$$

- Apply SVB:
 - **①** Choose (dependent) parametric distribution $q_{\lambda}(\theta \mid \mathbf{Y}_1)$
 - ② Use SGA to maximise the corresponding ELBO and find $q_{\lambda_1^*}(\theta \mid \mathbf{Y}_1)$
 - Use approximation as UVB posterior

$$\widetilde{p}(\boldsymbol{\theta} \mid \mathbf{Y}_1) = q_{\lambda_1^*}(\boldsymbol{\theta} \mid \mathbf{Y}_1)$$

• \Rightarrow At time T_1 , **UVB** = **SVB**

- At time T_k , we have **UVB posterior**: $\widetilde{p}(\theta \mid \mathbf{Y}_{1:k-1})$ Based on data $\mathbf{Y}_{1:k-1}$
 - ightharpoonup Based on data ightharpoonup $_{1:k-1}$
- ullet We want **exact posterior**: $p(oldsymbol{ heta} \mid \mathbf{Y}_{1:k})$
 - lacksquare Based on data $old Y_{1:k} = \{old Y_{1:k-1}, old Y_k\}$
- We could apply **SVB** again:
 - **①** Choose (dependent) parametric distribution $q_{\lambda}(\theta \mid \mathbf{Y}_1 : k)$ targeting

$$\underbrace{\rho(\theta \mid \mathbf{Y}_{1:k})}_{\text{exact posterior}} \propto \underbrace{\rho(\theta)}_{\text{prior}} \underbrace{\rho(\mathbf{Y}_{1:k} \mid \theta)}_{\text{likelihood}}$$

② Use **SGA** to maximise the corresponding **ELBO** and find $q_{\lambda_k^*}(\theta \mid \mathbf{Y}_{1:k})$

• Rather, at time T_k , **UVB targets**:

$$\underbrace{\tilde{p}(\boldsymbol{\theta}\mid\mathbf{Y}_{1:k})}_{\text{UVB posterior}} \propto \underbrace{\tilde{p}(\boldsymbol{\theta}\mid\mathbf{Y}_{1:k-1})}_{\text{UVB prior}} \underbrace{p(\mathbf{Y}_{T_{1:k}}\mid\boldsymbol{\theta})}_{\text{predictive likelihood}}$$

- ① Choose (dependent) parametric distribution $q_{\lambda}(\theta \mid \mathbf{Y}_1:k)$ targeting the UVB posterior
- ② Use SGA to maximise the corresponding ELBO and find $q_{\lambda_k^*}(\theta \mid \mathbf{Y}_{1:k})$
- Use approximation as UVB posterior

$$\widetilde{p}(\boldsymbol{\theta} \mid \mathbf{Y}_k) = q_{\lambda_1^*}(\boldsymbol{\theta} \mid \mathbf{Y}_k)$$

- What is the difference between SVB and UVB?
- At time T_k , the **SVB ELBO** is:

$$\mathcal{L}_{SVB}(q, \lambda) = E_q \left[\log \left(\underbrace{p(\theta)}_{\text{prior}} \underbrace{p(\mathbf{Y}_{1:k} \mid \theta)}_{\text{likelihood}} \right) - \log(q_{\lambda}(\theta \mid \mathbf{Y}_{1:k})) \right]$$

• Whereas the UVB ELBO is:

$$\mathcal{L}_{\textit{UVB}}(\textit{q}, \lambda) = \textit{E}_{\textit{q}} \left[\log \left(\underbrace{\widetilde{p}(\theta \mid \mathbf{Y}_{1:k-1})}_{\text{UVB prior}} \underbrace{p(\mathbf{Y}_{k} \mid \mathbf{Y}_{1:k-1}, \theta)}_{\text{predictive likelihood}} \right) - \log(q_{\lambda}(\theta \mid \mathbf{Y}_{1:k})) \right]$$

Notes on UVB

- UVB does not impose MFVB⁵, and hence will typically require iterative **SGA** for each k = 1, 2, ..., n
- Many updates require repeated applications of SGA
 - ightharpoonup ightharpoonup May be able to exploit Importance Sampling within one update⁶
- Sequence of distributional families $q_{\lambda_1}, q_{\lambda_2}, \dots, q_{\lambda_n}$ can be different for each k
 - ► So far we have always retained the same functional form
 - ▶ Then the UVB objective is to find sequence of optimal $\lambda_1^*, \lambda_2^*, \dots, \lambda_n^*, \dots$
- We introduce a novel use of Importance Sampling for **UVB** that exploits draws from $\widetilde{\rho}_l \theta \mid \mathbf{Y}_{k-1}$ for the score estimator associated with $\widetilde{\rho}_l \theta \mid \mathbf{Y}_k$
 - We refer to our method as UVB-IS

⁵See Broderick *et al.*, 2013) for approach exploiting MFVB

 $^{^6}$ See Sayaka & Klami (2017) for an Importance Sampling approach for SGA at a given k, to reduce the cost of obtaining the score estimator

SVB with Importance Sampling

Figure 1: Importance sampling from Sayaka and Klami (2017).

UVB with Importance Sampling (UVB-IS)

Figure 2: UVB-IS

Some simulation and empirical studies

- We investigate UVB and UVB-IS using two simulation studies
 - \bullet AR(3) time series forecasting application
 - Clustering based on a mixture model
- Use the "Eight Schools" example from Gelman et al. (2014)
 - Start with one school and add data from other schools one at a time
- Compare against MCMC (RWMH) and standard SVB in terms of:
 - Classification/Prediction error
 - Mean cumulative run time

General Findings

- Approximation error relatively small for UVB
 - UVB comparable to SVB
 - errors accumulate more rapidly with UVB-IS
- Computational speed fast for UVB-IS
 - UVB slower but not as slow as full SVB updates
- Performance improved
 - Using "warm starts"
 - ▶ Periodic update with "true" posterior prior to further updating

Vehicle Lateral Lane Deviation

- NGSIM Data of 6000 vehicles driving on US 101 Highway
- Interest in driver behaviour
- Model the deviation from a vehicle to lane centre
 - details of data calculations in appendix
- Some groups of drivers may be similar, some may be unique
 - DPM model incorporates driver heterogeneity
- Analysis suggest smart vehicle (without a human driver) may be able to 'observe' and 'predict' neighbouring car positions and react in 'real time'

Vehicle Lateral Lane Deviation

Figure 3: Raw data of car paths over five lanes. Each black line charts the path of a single car, with 100 randomly selected cars per lane shown on the figure. A fitted spline model (in red) for each lane used to correct for the geometry of the road.

Vehicle Lateral Lane Deviation

Figure 4: The path of five selected vehicles from the NGSIM dataset, travelling from left to right, with each black line representing a unique vehicle and with the estimated lane centre lines in red. This section of US Route 101 is comprised of five main lanes, with a sixth entry-exit lane not shown.

The Dirichlet Process Mixture (DPM)

DPM

$$y_{i,t} \mid \boldsymbol{\theta}_i \stackrel{ind}{\sim} \mathcal{N}\left(\mu_i, \sigma_i^2\right), \quad \boldsymbol{\theta}_i = (\mu_i, \log(\sigma_i^2))'$$
 $\boldsymbol{\theta}_i \mid G \stackrel{iid}{\sim} G, \text{ for } i = 1, 2, \dots, N$ $G \sim DP(\alpha, G_0)$

- Update times
 - $T_n = 25 + 25n$ for n = 1, 2, 3, 4, 5, 6
 - ▶ All times use N = 500 Vehicles.

Why DPM?

- Cars may display similar behaviour, model allows different cross-sectional units to share parameters
- Cross-sectional units belong to mixture components
 - ▶ ⇒ predictions 'borrow strength' from the full sample of vehicles
- Number of components unknown
- There is a possibility that a new vehicle will be observed with behaviour that cannot be well described by any of the prevailing parameters
- ⇒ We consider an infinite mixture model.
- Let k_i denote an indicator variable for vehicle i belonging to mixture component j
- Vehicles in same cluster share parameters

The first posterior

• The exact initial posterior can be expressed as

$$p(\boldsymbol{\theta}_{1:N}^*, \boldsymbol{k}_{1:N} \mid \boldsymbol{y}_{1:N,1:T_1}) \propto \left[\prod_{i=1}^{N} \prod_{t=1}^{T_1} p(y_{i,t} \mid \boldsymbol{\theta}_{1:N}^*, k_i) \right] \times \left[\prod_{i=1}^{N} p(k_i \mid \boldsymbol{k}_{1:i-1}) \right] p(\boldsymbol{\theta}_{1:N}^*)$$

Our UVB approximation:

$$q_{\lambda_{1}^{*}}(\boldsymbol{\theta}_{1:N}^{*}, \boldsymbol{k}_{1:N} \mid \boldsymbol{y}_{1:N,1:T_{1}}) = \left[\prod_{i=1}^{N} \rho(k_{i} \mid \boldsymbol{y}_{1:N,1:T_{1}}, \boldsymbol{k}_{1:i-1}, \boldsymbol{\theta}_{1:N}^{*}) \right] \times q_{\lambda_{1}^{*}}(\boldsymbol{\theta}_{1:N}^{*} \mid \boldsymbol{y}_{1:N,1:T_{1}})$$

Updating the DPM at T_{n+1}

- ullet Replace $p(m{ heta}_{1:N}^*)$ with $q_{\lambda_n^*}(m{ heta}_{1:N}^* \mid m{y}_{1:N,1:T_n})$
- $p(k_i \mid \mathbf{y}_{1:N.1:T_n}, \mathbf{k}_{1:i-1}, \mathbf{\theta}_{1:N}^*)$ uses $\mathbf{y}_{1:N.1:T_n}$ in SGA
 - Marginalise:

$$q(k_i = j \mid \mathbf{y}_{1:N,1:T_n}, \mathbf{k}_{1:i-1}) = \int_{\boldsymbol{\theta}_{1:N}^*} q_{\lambda_n^*}(\boldsymbol{\theta}_{1:N}^*, \mathbf{k}_{1:N} \mid \mathbf{y}_{1:N,1:T_n}) d\boldsymbol{\theta}_{1:N}^*,$$

- Use $y_{1:N,1:T_n}$ once before updating.
- ightharpoonup Constant for different values of heta
- ▶ Will not need to use $y_{1:N,1:T_n}$ for new θ in subsequent SGA

Updating the DPM at T_{n+1}

• The exact posterior is

$$\begin{split} & \rho(\boldsymbol{\theta}_{1:N}^*, \boldsymbol{k}_{1:N} \mid \boldsymbol{y}_{1:N,1:T_{n+1}}) \propto \left[\prod_{i=1}^{N} \prod_{t=T_{n}+1}^{T_{n+1}} p(y_{i,t} \mid \boldsymbol{\theta}_{1:N}^*, k_i) \right] \\ & \times \prod_{i=1}^{N} \left[p(k_i \mid \boldsymbol{y}_{1:N,1:T_n}, \boldsymbol{\theta}_{1:N}^*, \boldsymbol{k}_{1:i-1}) \right] p(\boldsymbol{\theta}_{1:N}^* \mid \boldsymbol{y}_{1:N,1:T_n}) \end{split}$$

Instead target

$$\widetilde{p}(\boldsymbol{\theta}_{1:N}^*, \boldsymbol{k}_{1:N} \mid \boldsymbol{y}_{1:N,1:T_{n+1}}) \propto \left[\prod_{i=1}^{N} \prod_{t=T_{n}+1}^{T_{n+1}} p(y_{i,t} \mid \boldsymbol{\theta}_{1:N}^*, k_i) \right] \\ \times \prod_{i=1}^{N} \left[q(k_i \mid \boldsymbol{y}_{1:N,1:T_n}, \boldsymbol{k}_{1:i-1}) \right] q_{\lambda_n^*}(\boldsymbol{\theta}_{1:N}^* \mid \boldsymbol{y}_{1:N,1:T_n})$$

Updating the DPM at T_{n+1}

Approximate with

$$q_{\lambda_{n+1}^*}(\boldsymbol{\theta}_{1:N}^*, \boldsymbol{k}_{1:N} \mid \boldsymbol{y}_{1:N,1:T_{n+1}}) = q_{\lambda_{n+1}^*}(\boldsymbol{\theta}_{1:N}^* \mid \boldsymbol{y}_{1:N,1:T_{n+1}})$$

$$\times \prod_{i=1}^{N} \widehat{\rho}(k_i \mid \boldsymbol{y}_{1:N,1:T_{n+1}}, \boldsymbol{k}_{1:i-1}, \boldsymbol{\theta}_{1:N}^*)$$

where

$$\widehat{p}(k_i \mid \mathbf{y}_{1:N,1:T_{n+1}}, \mathbf{k}_{1:i-1}, \mathbf{\theta}_{1:N}^*) \propto \prod_{t=T_n+1}^{T_{n+1}} p(y_{i,t} \mid \mathbf{\theta}_{1:N}^*, k_i) \times q(k_i \mid \mathbf{y}_{1:N,1:T_n}, \mathbf{k}_{1:i-1})$$

Approximating Posterior Distribution at T_6

Figure 5: UVB Weighted marginal posterior mixture components at time T_6 .v Densities are weighted by the number of vehicles associated with each $heta_i^*$.

Predictive distribution implied for each θ_i^*

Figure 6: "UVB predictive moments for high probability groups at time T_6 . Figure represents 80% of all vehicles."

Some predictive distributions

Figure 7: Individual vehicles and average predictive densities from UVB at time T_6 . Grey: Individual, Blue: Average of 500 vehicles

Forecasting Methodology

At each T_n forecast next 50 observations for 500 vehicles via

- The DPM model with UVB
- The DPM model with SVB
- The DPM model with MFVB
- A Normal Likelihood / Jeffrey's Prior model applied independently for each vehicle
 - Methods evaluated out-of-sample using mean cumulative log score (MCLS)
- Both 1. and 2. outperform 3. and 4.

Results Averaged Across 500 Vehicles

Figure 8: DPM Forecast Accuracy: Mean cumulative predictive log scores (MCLS) for each model, averaged across N=500 vehicles and 50 forecast periods before updating. SVB and UVB outcomes are visually indistinguishable, while MFVB performs only slightly better than the fully independent model.

Summary: Lane Position Model

- Propose a hierarchical time series model for vehicles
- Using model posterior as a prior for new vehicles
- Show that the model outperforms alternatives
- Show that inclusion of heterogeneity improves forecasts
- Demonstrate that UVB inference can feasibly update this model in close to real-time

Contributions of the paper:

- Propose a method to update VB approximations (UVB).
- Introduce UVB with Importance Sampling (UVB-IS).
- Open Demonstrate applications of UVB and UVB-IS
- Introduce idea of posterior dependence in VB approximation
- $oldsymbol{\mathfrak{g}}$ \Rightarrow a new class of approximations for the DPM
- Oetail how to update a DPM model
- Challenging examples
 - Time series forecasting (AR(3))
 - Clustering with a binary mixture model
 - Seight Schools example (normal means)
 - 4 Lane Position model (DPM)

Questions?

Paper available:

Figure 9: Statistics and Computing (2022)

Upcoming BNP Event October 2022

Upcoming BNP Event December 2023

https://buseco.wufoo.com/forms/x9cczu20glq3b3/

e: bnpnet@monash.edu or catherine.forbes@monash.edu