Exercice 1:

Soit ABC un triangle et E un point tel que $\overline{BE} = 3\overline{BA}$.

 (Δ) est la droite passant par E, parallèle à (BC) et qui coupe (AC) en un point F.

Soit h l'homothétie de centre A qui transforme B en E.

- 1. Déterminer le rapport de h.
- 2. Déterminer l'image de la droite (BC) par h.
- 3. Déduire l'image de C par h.

Exercice 2:

Soit ABC un triangle rectangle en A et G un point à l'intérieur de ABC.

La droite (AG) coupe la droite (BC) en un point D.

Soit h l'homothétie de centre A qui transforme G en D.

- 1. a) Déterminer l'image de chacune des deux droites (AB) et (AC).
 - b) Construire l'image de la droite (BC) par h.
- 2. E et F sont les symétriques de G respectivement par rapport à (AB) et (AC).
 - a) Montrer que A est le milieu de [EF]
 - b) Placer P et Q les images respectives de E et F par l'homothétie h.
 - c) Déterminer le milieu du segment [PQ].

Exercice3:

Soit ABCD un parallélogramme et E le point tel que $\overrightarrow{CE} = \frac{1}{4}\overrightarrow{CA}$.

La droit (Δ) passant par E et parallèle à la droite (AB) coupe (AD) et (BC) respectivement en M et N. On considère l'homothétie h de centre E qui transforme A en C.

- 1. Déterminer le rapport de h.
- 2. Montrer que h(M) = N
- 3. Déterminer l'image de la droite (AD) par h.
- 4. Soit I le milieu du segment [AM] , la droite (IE) coupe la droite (BC) en un point J . Montrer que le point J est le milieu du segment [CN].