vergleich

N	Anzahl Werte (NxN)	versch. Werte DCT	Bewertung DCT (N*N / Anzahl versch. Werte)	versch. Werte DFT	Bewertung DFT (N*N / Anzahl versch. Werte)	Verhältnis DCT/DFT
2	(10X10)	(Betrag)	(N°N / Alizanii verscii. werte)	(Betrag)	(N'N / Alizalli versch. Werte)	0.5
3	9	5	1.8	4	2.25	1.25
4	16	3	5.3333	2	8	1.5
5	25	7	3.5714	6	4.1666	1.1666
6	36	7	5.1428	4	9	1.75
7	49	9	5.4444	8	6.125	1.125
8	64	7	9.1428	3	21.3333	2.3333
9	81	11	7.3636	10	8.1	1.1
10	100	11	9.0909	6	16.6666	1.8333
11	121	13	9.3076	12	10.0833	1.0833
12	144	13	11.0769	4	36	3.25
13	169	15	11.2666	14	12.0714	1.0714
14	196	15	13.0666	8	24.5	1.875
15	225	17	13.2352	16	14.0625	1.0625
16	256	15	17.0666	5	51.2	3
17	289	19	15.2105	18	16.0555	1.0555
18	324	19	17.0526	10	32.4	1.9
19	361	21	17.1904	20	18.05	1.05
20	400	21	19.0476	6	66.6666	3.5
21	441	23	19.1739	22	20.0454	1.0454
22	484	23	21.0434	12	40.3333	1.9166
23	529	25	21.16	24	22.0416	1.0416
24	576	25	23.04	7	82.2857 <mark>-</mark>	3.5714
25	625	27	23.1481	26	24.0384	1.0384
26	676	27	25.0371	14	48.2857	1.9285
27	729	29	25.1379	28	26.0357	1.0357
28	784	29	27.0344	8	98 <mark>-</mark>	3.625
29	841	31	27.1291	30	28.03333	1.0333
30	900	31	29.0322	16	56.25	1.9375
31	961	33	29.1212	32	30.03125	1.03125
32	1024	31	33.0322	9	113.7777 <mark>-</mark>	3.4444

- --> Alle 4+N*4 Werte ist das Verhältnis besonders gut für die DFT, auffallend ist jedoch, dass 2^N Werte das Ergebnis etwas schlechter ausfällt
- → Schlussfolgerung: Die DFT ist besser geeignet, bei 2^N Werten hat auch die DCT gute Eigenschaften