B

wherein A is a hydrophobic polysiloxane or perfluoroalkyl polyether segment;

B is a surface-modifying hydrophilic segment having a weight average molecular weight of ≥ 100 that is devoid of a crosslinkable group;

Q is a moiety comprising at least one crosslinkable ethylenically unsaturated group; (alk) is C₂-C₂₀-alkylene which is unsubstituted or substituted by hydroxy; L₁, L₂ and L₃ are each independently of the other a linking group; p1 and q1 are each independently of the other an integer from 1 to 12; and either t is 0 and p and q are each independently of the other an integer from 2 to 20; or

t is an integer from 1 to 8 and p and q are each 0.

Br

7. (once amended) An amphiphilic block copolymer according to claim 1, wherein B is a non-ionic segment selected from the group consisting of a polyoxyalkylene, polysaccharide, polypeptide, poly(vinylpyrrolidone), polyalkylacrylate, polymethacrylate, polyhydroxyalkylacrylate, polyhydroxymethacrylate, polyacyl alkylene imine, polyacryl amide, polyvinyl alcohol, polyvinyl ether and a polyol, or B is a polyionic segment selected from the group consisting of a polyallylammonium, polyethyleneimine, polyvinylbenzyltrimethylammonium, polyaniline, sulfonated polyaniline, polypyrrole, polypyrridine, polyacrylic acid, polymethacrylic acid, a polythiophene-acetic acid, a polystyrenesulfonic acid and a zwitterionic segment, or a salt thereof.

23

- 9. (once amended) An amphiphilic block copolymer according to claim 1, wherein Q is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmeth-acrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers which in each case comprises one or more ethylenically unsaturated bond and has a weight average molecular weight of ≥100.
- 10. (once amended) An amphiphilic block copolymer according to claim 9, wherein Q is a hydrophilic segment of formula

$$-((alk'')-O)_{c}-[(CH_{2}-CH_{2}-O)_{a}-(CHR_{6}-CHR_{7}-O)_{b}]-(alk'')-L_{1}'-Q_{2}$$
(5a)

wherein L₁' is a bivalent linking group of formula

wherein X_1 and X_2 are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₆-C₁₀-arylene, C₇-C₁₈-aralkylene, C₆-C₁₀-arylene-C₁-C₂-alkylene-C₆-C₁₀-arylene, C₃-C₈-cycloalkylene, C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene or C₁-C₆-alkylene-C₃-C₈-cycloalkylene-C₁-C₆-alkylene, Q₂ is a radical of formula

$$\frac{1}{\sqrt{5}} \frac{1}{\sqrt{(Alk)} - x - c + \frac{0}{w}} R_{11}$$
 (7),

wherein (Alk) is linear or branched C_1 - C_{12} -alkylene, X is -O- or -NH-, R_{11} is an olefinically unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C_1 - C_4 alkoxy, halogen, phenyl or carboxy, and W is the number 0 or 1, Q_3 is C_3 - C_{12} -alkenyl or a radical -(CH_2)₁₋₄-O- R_{16} wherein R_{16} is acryloyl, methacryloyl or a group -C(O)-NH-(CH_2)₂₋₄-O-C(O)- $C(R_{17})$ = CH_2 and R_{17} is hydrogen or methyl, Q_4 is a radical of formula

wherein X_3 is -O- or -NR-, R is hydrogen or C_1 - C_4 -alkyl, X_4 is a group -C(O)-O-, -O-C(O)-NH- or -NH-C(O)-O-, (Alk') is C_1 - C_8 -alkylene, e is an integer of 0 or 1, and R_{18} is C_1 - C_{12} -alkylene, phenylene or C_7 - C_{12} -phenylenealkylene,

one of the radicals R₆ and R₇ is hydrogen and the other is methyl,

(alk") is C_1 - C_6 -alkylene, c is the number 0 or 1, and each of a and b independently of the other is a number from 0 to 100, the sum of (a+b) being from 2 to 100,

R₈ is hydrogen; C₁-C₁₂-alkyl unsubstituted or substituted by hydroxy or fluoro and/or uninterrupted or interrupted by oxygen; C₅-C₈-cycloalkyl; phenyl; or benzyl,

 R_9 is C_1 - C_{12} -alkyl, benzyl, C_2 - C_4 -alkanoyl, benzoyl or phenyl, and z is an integer from 2 to 150.

11. (once amended) An amphiphilic block copolymer according to claim 2 of formula (1a), wherein A is a polysiloxane segment of formula

wherein x and s₂ are each 0, and R₁, R₁', R₁", R₂, R₂', R₂", R₃ and R₄ are each independently of one another C₁-C₄-alkyl, B is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers,

L₁ is a linking group of formula

$$-X_1 - C(O) - NH - R_{10} - NH - C(O) - X_2 -$$
 (4a),
 $-X_1 - C(O) -$ (4c), or
 $-X_1 - C(O) - X_2 -$ (4e),

 L_2 is a linking group of the above formula (4a), and L_3 is a linking group of the above formula (4c) or of the formula

$$-X_1 - C(O) - R_{10} - C(O) - X_2 -$$
 (4b),

wherein X_1 and X_2 are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C_1 - C_4 -alkyl, and R₁₀ is linear or branched C_1 - C_{18} -alkylene or unsubstituted or C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_6 - C_{10} -arylene, C_7 - C_{18} -aralkylene, C_6 - C_{10} -arylene- C_1 - C_2 -alkylene- C_6 - C_{10} -arylene, C_3 - C_8 -cycloalkylene, C_3 - C_8 -cycloalkylene, C_3 - C_8 -cycloalkylene or C_1 - C_6 -alkylene, C_3 - C_8 -cycloalkylene, C_3 - C_8 -cycloalkylene

