McGill Artificial Intelligence Society

Lecture 7: Generative Adversarial Nets

Slides ripped off inspired by Ian Goodfellow's NIPS 2016 GAN tutorial

Announcements

Exec applications are out! Go Apply!

Flask Workshop for Final Project Deliverables

Today's Lesson Plan

- Why Study Generative Modelling?
- 2. Motivating Examples
- 3. How does Generative Modelling Work?
- 4. Tips And Tricks
- 5. Research Frontiers
- 6. Combining GANs with Other Methods

Why Study Generative Models

- A way for us to verify that deep learning does indeed learn accurate representations (and to see where it fails)
- Simulate possible features for planning (especially in RL we'll see why this doesn't work next lecture)
- Missing Data
 - Semi-supervised learning
- Multi-modal outputs
- Realistic generation tasks

Rotating Heads

Single Image Super-Resolution

original

bicubic (21.59dB/0.6423)

SRResNet (23.44dB/0.7777)

SRGAN (20.34dB/0.6562)

Why Study Generative Models

Maximum Likelihood Operation

$$heta^* = \mathop{argmax}_{ heta} \mathbb{E}_{x \sim p_{data}} \log p_{model}(x| heta)$$

Taxonomy of Generative Models

(Goodfellow 2016)

Fully Visible Belief Nets

Explicit Formula Based on PGM

$$p_{model}(x) = p_{model}(x_1)\Pi_{i=2}^n p_{model}(x_i|x_1,\ldots,x_{i-1})$$

Disadvantages:

- O(n) sample time
- Generation controlled by latent code

Generated by pixelCNN

WaveNet

Super High Quality Generation, but takes 2 minutes to generate a second of audio

Change of Variables

$$y=g(x)
ightarrow p_x(x)=p_y(g(x))|detrac{\delta g(x)}{\delta x}|$$

E.g. change of variables

Disadvantages

- Transformation must be invertible
- Latent Dimension must match Visible Dimension

Variational Autoencoder

$$\log p(x) \geq D_{KL}(q(z)||p(z|x) = \mathbb{E}_{z\sim q} \log(p(x,z)) + H(q)$$

Does use a latent code to generate samples

Disadvantages

- Asymptotically inconsistent unless q is perfect cannot be guaranteed
- In practice, samples generated are worse

CIFAR-10 Samples (Kingma 2016)

Boltzmann Machines

$$egin{aligned} p(x) &= rac{1}{Z} exp(-E(x,z)) \ Z &= \sum_x \sum_z exp(-E(x,z)) \end{aligned}$$

Disadvantages

- Relies on Monte Carlo Methods to approximate partition function
- Only perform well on small datasets like MNIST but don't scale

Why Use GANs

- Does use a latent code to generate samples
- Asymptotically Consistent
- No Markov Chains Needed

Break

Break

How do Adversarial Nets Work?

Generator Network

$$x=G(z; heta^{(G)})$$

- Must be differentiable
- No invertibility requirement
- Trainable for any size of z
- Some guarantees require x to have higher dimension than z

Training Procedure

- Use SGD-esque algorithm on two minibatches simultaneously
 - Minibatch of training examples
 - Minibatch of test examples
- Optional: Run k-steps of one player per step of the other player

Minimax Game

$$J^D = -rac{1}{2}\mathbb{E}_{x\sim p_{data}} \log D(x) - rac{1}{2}\mathbb{E} \log(1-D(G(z))$$
 $J^G = -J^D$

- Equilibrium is at saddle point of discriminator loss
- Resembles Jensen-Shannon divergence
- Generator minimizes log probability of discriminator being correct

Discriminator Strategy

Optimal D(x) for any
$$p_{model}$$
 and p_{data} is $D^*(x) = rac{p_{data}}{p_{model} + p_{data}}$

• Typically estimate this with a supervised learning procedure

Non-Saturating Game

$$egin{aligned} J^D &= -rac{1}{2}\mathbb{E}_{x\sim p_{data}} \log D(x) - rac{1}{2}\mathbb{E} \log(1-D(G(z))) \ J^G &= rac{1}{2}\mathbb{E} log(D(G(z))) \end{aligned}$$

- Equilibrium no longer describable with a single loss
- Generator maximizes log-probability of discriminator being mistaken
- Heuristically, generator can still learn even when discriminator rejects all generator examples

Vector Arithmetic

Radford et al. 2015

Man with glasses

Man

Woman

Woman with Glasses

Original argument for using reverse-KL

Reducing GANs to RL

- Generator makes a sample
- Discriminator evaluates sample and gives a reward
- Generator's cost (negative reward) is a function of D(G(z))

GAN Costs

Comparison to Noise Contrastive Estimation

$$V(G, D) = \mathbb{E}_{p_{\text{data}}} \log D(\boldsymbol{x}) + \mathbb{E}_{p_{\text{generator}}} \left(\log \left(1 - D(\boldsymbol{x}) \right) \right)$$

	NCE (Gutmann and Hyvärinen 2010)	MLE	GAN
D	$D(x) = \frac{p_{\text{model}}(\boldsymbol{x})}{p_{\text{model}}(\boldsymbol{x}) + p_{\text{generator}}(\boldsymbol{x})}$		Neural network
Goal	${ m Learn}p_{ m model}$		Learn $p_{ m generator}$
G update rule	None (G is fixed)	Copy $p_{ m model}$ parameters	
D update rule	Gradient ascent on V		

Problem with using JS-Divergence

- Generator Gradient disappears as discriminator approaches optimality
- ullet As $||D-D^*||<\epsilon$

$$||
abla_{ heta}\mathbb{E}_{z\sim p(z)}[\log(1-D(g_{ heta}(z)))]||_2 < Mrac{\epsilon}{1-\epsilon}$$

Or

So we can see that as discriminator approaches optimality, generator goes to 0

-log(D) alternative

Alternative gradient step

$$\Delta heta =
abla_{ heta} \mathbb{E}_{z \sim p(z)} [-\log D(g_{ heta}(z))]$$

We obtain

$$\mathbb{E}_{z\sim p(z)}[-
abla_{ heta}log D^*(g_{ heta}(z))|_{ heta= heta_0}] =
abla_{ heta}[KL(P_{g_{ heta}}||P_r) - 2JSD(P_{g_{ heta}}||P_r)]|_{ heta= heta_0}$$

Problems: 2 JSD are minus sign, so they are pushing distributions to be different Reverse KL assigns an extremely high cost to fake looking samples and extremely low cost to mode dropping

Also HIGHLY unstable generator gradients

$$\mathbb{E}_{z \sim p(z)} ig[rac{-J_ heta g_ heta(z) r(z)}{\epsilon(z)} ig]$$

Kantorovich-Rubinstein (Wasserstein) Metric

$$W(P,Q) = \inf_{\gamma \in \Gamma} \int_{\chi imes \chi} \left| \left| x - y
ight|
ight|_2 d\gamma(x,y)$$

Result in Optimal Transport

$$W(P_r,P_g) \leq 2V^{rac{1}{2}} + 2C\sqrt{JSD(P_{r+\epsilon}||P_{g+\epsilon})}$$

Cool New Advancements

Cool New Advancements

Jo 2019

Further Readings

- (Should Read, but mathematically highly challenging) Why WGANs work: https://arxiv.org/pdf/1701.13851.pdf
- Language GANs falling short: https://arxiv.org/pdf/1811.02549.pdf
- WGAN-GP: https://arxiv.org/pdf/1704.00028.pdf