Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Percepcja maszyn

Sprawozdanie z laboratorium L4+L5

Kaniuka Jan

Spis treści

1.	. Filtracja sygnału audio		
	1.1.	Treść z	zadania
	1.2.	Rozwia	gzanie
		1.2.1.	Analiza spektrogramu surowego sygnału
		1.2.2.	Zidentyfikowanie zakresów częstotliwości do wycięcia
		1.2.3.	Charakterystyka amplitudowa przygotowanych filtrów
		1.2.4.	Analiza spektrogramu przefiltrowanego sygnału
		1.2.5.	Ocena jakości otrzymanego nagrania
		1.2.6.	Kody źródłowe

1. Filtracja sygnału audio

1.1. Treść zadania

Na dołączonym do zadania nagraniu, oprócz rozmowy dwóch osób, pojawiają się dwa rodzaje zakłóceń. Pierwszym jest stały przydźwięk spowodowany sprzężeniem sieciowym. Drugie zakłócenie pojawia się pod koniec nagrania - jest to sygnał budzika. Proszę przefiltrować nagranie w taki sposób, aby oba te zakłócenia usunąć, pozostawiając przy tym możliwie najmniejsze zniekształcenia właściwej mowy.

W ramach zadania proszę przygotować zestaw filtrów typu windowed-sinc, które będą wycinały odpowiednie pasma częstotliwości. Analizę pasm do wycięcia proszę wykonać "naocznie" na podstawie analizy spektrogramu nagrania. Filtry powinny być wyznaczane zgodnie z metodami przestawionymi na wykładzie. W ramach rozwiązania proszę przygotować co najmniej dwa różne filtry: filtr dolnoprzepustowy oraz pasmowoblokujący.

Filtracji sygnału proszę dokonać przez wykorzystanie standardowej funkcji splotu (conv). Proszę pamiętać o tym, że parametry filtrów wyznaczane są w relacji do częstotliwości próbkowania, a więc częstotliwości wyrażone w Hz należy odpowiednio przeliczać na ułamek [0 - 0.5].

1.2. Rozwiązanie

1.2.1. Analiza spektrogramu surowego sygnału

Rozwiązywanie zadania zacząłem od analizy spektrogramu otrzymanego sygnału audio.

1.2.2. Zidentyfikowanie zakresów częstotliwości do wycięcia

1.2.3. Charakterystyka amplitudowa przygotowanych filtrów

Przygotowałem cztery filtry:

- filtr doloprzepustowy (1.1)
- filtr górnoprzepustowy (1.2)
- filtr pasmowoprzepustowy (1.3)
- filtr pasmowozaporowy (1.4)

(wzmocnienie w dziedzinie częstotliwości)

Rys. 1.1. Sygnał po filtracji

Rys. 1.2. Sygnał po filtracji

Rys. 1.3. Sygnał po filtracji

Rys. 1.4. Sygnał po filtracji

1.2.4. Analiza spektrogramu przefiltrowanego sygnału

1.2.5. Ocena jakości otrzymanego nagrania

(tzn. nauszne stwierdzenie, jak duże zniekształcenia sygnału użytecznego spowodowała filtracja)

Listing 1.4. BAND STOP

1.2.6. Kody źródłowe

(wyznaczanie filtrów oraz ich aplikacja do sygnału)

Listing 1.1. LOW PASS

Listing 1.2. HIGH PASS

Listing 1.3. BAND PASS