Untersuchungen zur Impedanzreduktion an MA-Kavitäten durch Kurzschließen von Ringkernen

TECHNISCHE UNIVERSITÄT DARMSTADT

Betreuer: Jens Schweickhardt, M.Sc.

Fachgebietsleiter: Prof. Dr.-Ing. Harald Klingbeil

Inhalt

- Aufgabenstellung
- Der Messaufbau
- Simulation
- Gegenüberstellung der Messung und Simulation
- Auswertung der Kurzschlussanordnungen
- Fazit und Ausblick

Aufgabenstellung

- MA(Magnetic Alloy)-Ringkerne als Last der Kavität
- Im nicht beschleunigenden Betrieb Kavität möglichst wenig Einfluss auf den Strahl gewünscht (geringe Shuntimpendanz)
- Theorie: Kurzschlussschaltung um die Ringkerne soll dessen Einfluss auf die Impedanz reduzieren

Herangehensweise

- Abwechselnde Messungen und Simulationen
- Parameter f
 ür Kurzschl
 üsse abgeleitet
 - ► Form
 - Abmessungen
 - Anzahl

Die Testbox

- Innen mit Kupferblech (Dicke 1 mm ausgekleidet
- Holzkonstruktion als Ringkernhalterung
- Kupferrohr zur Einkopplung
 - Am Rand der Box mit BNC-Steckerausgang

Konstruktion der Ringkernhalterung

Entwurf der Kurzschlussschienen

Messaufbau

Durchgeführte Messungen

Kurzschlussform			Anzahl
Höhe in z	Breite in x	Blechdicke	Kurzschlüsse
160 mm	30 mm	1 mm	1-8
160 mm	20 mm	1 mm	1-2
160 mm	50 mm	1 mm	1-2
200 mm	30 mm	1 mm	1-2
250 mm	30 mm	1 mm	1-2
160 mm	30 mm	2 mm	1-2

RLC-Ersatzschaltbild der Testbox mit Ringkern

Simulation

Realitätsgetreue Anpassungen der Simulation

Ringkernmodellierung

- Ringkernmaterial anhand von Messung modelliert
- ightharpoonup Dissipatives, komplexes $\mu_{
 m c}$
- Material in CST übergeben und für Simulation verwendet

Gegenüberstellung der Simulations- und Messergebnisse (ohne Kurzschlüsse)

Anzahl der Kurzschlüsse

Anzahl der Kurzschlüsse

Breite der Kurzschlüsse

Länge der Kurzschlüsse

Dicke der Kurzschlüsse

Einfluss im Leerlauf befindlicher Schienen auf die Ringkernimpedanz

Zusammenfassung

Was wurde erreicht:

- Messung Testbox
- Modifikation
- Reproduzierbare Messungen
- Simulation
- Ergebnisse quantifiziert, evaluiert

Fazit

- Reduktion ein Kurzschluss: 80 %
- Reduktion sieben Kurzschlüsse: > 98 %
- Geringer Einfluss restlicher Paramter
- Empfehlung

Ausblick

- Verbesserung des Simulationsmodells
- Modelierung der Kavität in CST
- Messung an der Kavität

Vielen Dank für Ihre Aufmerksamkeit!

