Size of a DT Signal (1)

- ☐ Signal Size: depends on signal amplitude and its duration i.e. area.
- ☐ Signal Size Measure: Energy and Power. Area under the signal x[n], because it takes account not only amplitude but also duration.
- □ Energy must be finite i.e.: $Amplitude \rightarrow 0$ as $|n| \rightarrow \infty$
- $egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} E_{\mathbf{x}} & E_{\mathbf{x}} = \sum_{i=1}^{n} \left| x[n] \right|^2 \end{aligned}$
- ☐ Energy Signal: finite energy and zero average power i.e. 0<E<∞ and P= 0. Ex. $x[n] = e^{-|n|}$

Size of a DT Signal (2)

 \square If amplitude of x[n] does not \rightarrow 0 when n \rightarrow ∞ , need to measure time average of energy i.e. power P_x instead energy (because E_x

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N_{0} + 1} \sum_{n = -N_{0}}^{N_{0}} |x[n]|^{2} = \lim_{N \to \infty} \frac{1}{N_{0}} \sum_{n = 0}^{N_{0} - 1} |x[n]|^{2}$$

interval from -No to No.

- ☐ Power signal: must have finite average power and infinite energy i.e. $0 < P_x < \infty$ and $E = \infty$. Ex. $x[n] = \sin[n]$
- \square P_x is the time average (mean) of signal amplitude squared, i.e. mean squared value of x(t). i.e. RMS value of x(t) is $\sqrt{P_x}$

Note: A DT signal can either be an energy signal or power signal but can not be both at the same time.

Example

- ☐ Determine the suitable measures of the signal
 - \checkmark (a) Since **signal amplitude** → 0 as $|n| \rightarrow \infty$., Choose Energy

$$E_x = \sum_{n=0}^{5} n^2 = 55$$

 \checkmark (b) Since amplitude does not \rightarrow 0 as |n| \rightarrow ∞. However, it is periodic, and therefore its power exists. periodic signal repeats regularly each period(6 seconds in this case).

☐ Signal power is the square of its RMS value. Hence RMS value of the signal 1/√3

Typical Sequences and Sequences Representation: Basic sequences (1)

☐ Unit sample sequence (discrete-time impulse, impulse)

☐ Any sequence can be represented as a sum of scaled, delayed impulses

$$x[n] = a_{-2}\delta[n+2] + a_1\delta[n-1] + \dots + a_6\delta[n-6]$$

Typical Sequences and Sequences Representation: Basic sequences (2)

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Unit step sequence $u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$

□ Related to the impulse I

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \dots$$

$$u[n] = \sum_{k=-\infty}^{\infty} u[k] \delta[n-k] = \sum_{k=-\infty}^{\infty} \delta[n-k]$$
Running
Sum

■ More generally

$$\therefore \delta[n] = u[n] - u[n-1]$$

Typical Sequences and Sequences Representation: Basic sequences (3)

☐ The unit sample is the first difference of the unit step:

Discrete-Time Systems (1)

☐ Discrete-time system: A device or an algorithm that performs some prescribed operation on a discrete-time signal (input or excitation) to produce another discrete-time signal (output or response)

- ☐ Single-input single-output system
 - Output sequence is generated sequentially, beginning with a certain time index value n

A certain class of DT systems are linear and time invariant (LTI) systems

DT System Example

Classification of DT Systems (1): Linear Systems

☐ A linear discrete-time system:

$$y[n] = 0.5 x[n] + 0.5 x[n-1]$$

 \square A non-linear discrete-time system: $y[n] = (x[n])^3$

Linear DT Systems: Moving (Running) Average System OR Filter

☐ M-point moving-average system: Used to reduce fluctuations in the data OR Used in smoothing random variations in data.

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k = -M_1}^{M_2} x[n - k]$$

□ For M₁ = 1 and M₂ = 1, the input sequence
DT system whose output
y[n] is the average of the
three most recent values of
the input signal, called
Moving Average System.

$$y[2] = \frac{1}{3}(x[1] + x[2] + x[3])$$
$$y[3] = \frac{1}{3}(x[2] + x[3] + x[4])$$
$$\vdots$$

Linear Systems: Moving Average Filter

 $\hfill \square$ An application: Consider x[n]=s[n]+d[n] where s[n]=2[(0.9)^n] is the signal corrupted by a random noise d[n]

5-point moving average $y[n] = \frac{1}{5} \sum_{k=0}^{4} x[n-k]$

Classification of DT Systems (2): Shift-Invariant Systems A system is time-invariant (or shift-invariant):

 if a time shift in the input signal results in an identical time shift in the output signal

Classification of DT Systems (3): Causal System

- ☐ If output depends only on past and current inputs (not future), system is called causal
- \square The output sequence value at the index $n=n_0$ depends only on the input sequence values for $n \le n_0$.
- Example

$$y[n] = x[n - n_d], -\infty < n < \infty$$

- Causal for n_d<=0
- Non-causal for n_d>0
- ☐ Example: Accumulator

Linear DT Systems: Accumulator

$$y[n] = \sum_{l=-\infty}^{n} x[l]$$
$$= \sum_{l=-\infty}^{n-1} x[l] + x[n] = y[n-1] + x[n]$$

- $\hfill \square$ The output y[n] is the sum of the input sample x[n] and the previous output y[n-1]
- ☐ The system cumulatively adds, i.e., it accumulates all input sample
- ☐ Input-output relation can also be written in the form

$$y[n] = \sum_{l=-\infty}^{-1} x[l] + \sum_{l=0}^{n} x[l] = y[-1] + \sum_{l=0}^{n} x[l], \quad n \ge 0$$

☐ The second form is used for a causal input sequence, in which case y[-1] is called the initial condition

Drill Problem

- \square An accumulator is excited by the sequence x[n] = nu[n]. Determine its output under the condition that:
 - It is initially relaxed [i.e., y(-1) = 0] 0+1+2+3+...+n
 - Initially, y(-1) = 1.

$$S = \frac{(n+1)}{2} [2a + \{(n+1)-1\}d]$$

- Initially, y(-1) = 1.

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] = \sum_{k=-\infty}^{-1} x[k] + \sum_{k=0}^{n} x[k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] = \sum_{k=-\infty}^{-1} x[k] + \sum_{k=0}^{n} x[k]$$

$$= y[-1] + \sum_{k=0}^{n} x[k] = y[-1] + \frac{n(n+1)}{2}$$

- It is initially relaxed [i.e., y(-1) = 0] $y[n] = \frac{n(n+1)}{2}, \quad n \ge 0$
- Initially, y(-1) = 1. $y[n] = 1 + \frac{n(n+1)}{2}, n \ge 0$

Linear Time-Invariant DT Systems (1)

- ☐ Important due to convenient representations and significant applications
- □ A linear system is completely characterized by its impulse response

$$y[n] = T\{x[n]\} = T\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}$$
$$= \sum_{k=-\infty}^{\infty} x[k]T\{\delta[n-k]\} = \sum_{k=-\infty}^{\infty} x[k]h_k[n]$$

□ Time invariance $h_k[n] = \delta[n-k]$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n]*h[n]$$
Convolution sum

Linear Time-Invariant DT Systems (2): Computation of the Convolution Sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- Obtain the sequence h[n-k]
 - Reflecting h[k] about the origin to get h[-k]
 - Shifting the origin of the reflected sequence to k=n
- \square Multiply x[k] and h[n-k] for $-\infty < k < \infty$
- ☐ Sum the products to compute the output
- □ sample y[n]

Impulse and Step Response (1)

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

 $\hfill \square$ Unit sample response or (unit) impulse response is the response of the system to a unit impulse

$$x[n] = \delta[n]$$

$$y[n] = x[n] * h[n] = \sum_{n=0}^{\infty} h[m]x[n-m]$$

☐ Unit step response or step response is the output sequence when the input sequence is the unit step

$$x[n] = u[n]; \quad y[n] = s[n]$$

Impulse and Step Response (2)

 \square The impulse response of the system (Given by Difference equation) is obtained by putting $x[n] = \delta[n]$ and y[n] = h[n]

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

$$h[n] = \alpha_1 \delta[n] + \alpha_2 \delta[n-1] + \alpha_3 \delta[n-2] + \alpha_4 \delta[n-3]$$

☐ The impulse response is thus a finite-length sequence of length

$$\{h[n]\} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$$

Finite-Dimensional LTI Discrete-Time Systems (2)

☐ The output can also be computed recursively by solving y[n] i.e. Rearrange for y[n] in causal form:

$$\sum_{k=0}^{M} p_k x[n-k]$$

$$T$$

$$\sum_{k=0}^{M} y[n]$$

$$\sum_{k=0}^{N} J_k y[n-k]$$

$$y[n] = -\sum_{k=1}^{N} \frac{d_k}{d_0} y[n-k] + \sum_{k=0}^{M} \frac{p_k}{d_0} x[n-k] \quad \begin{array}{c} \text{provided that} \\ d_0 \neq 0 \end{array}$$

□ The output y[n] can be computed for all $n \ge n_0$, knowing the input x[n] and the initial conditions $y[n_0-1]$, $y[n_0-2]$, ..., $y[n_0-N]$

Finite-Dimensional LTI Discrete-Time Systems (1)

□ LTI discrete-time is characterized by a linear constant coefficient difference equation.

$$\sum_{k=0}^{M} p_k x[n-k] \xrightarrow{T} \sum_{k=0}^{N} d_k y[n-k]$$

$$\sum_{k=0}^{N} d_k y[n-k] = \sum_{k=0}^{M} p_k x[n-k]$$

where x[n] and y[n] are, respectively, the input and output of the system and $\{d_k\}$ and $\{p_k\}$ are constants

☐ The ORDER of the system is max{N,M}

Classification of LTI Discrete-Time Systems (1)

☐ LTI discrete-time are usually classified

- according to the length of their impulse response sequences
- according to the method of calculation employed to determine the output samples

✓ Impulse response classification:

- Finite impulse response(FIR) systems
- Infinite impulse response (IIR) systems

\checkmark Output calculation classification:

- Recursive systems i.e. using Feedback → IIR
- non-recursive systems i.e. without feedback \rightarrow FIR

Impulse Response Length Based Classification

☐ FIR system: If h[n] is of finite length, i.e.,

h[n] = 0, for $n < N_1$ and $n > N_2$, with $N_1 < N_2$

☐ The output can be computed as the finite convolution sum:

$$y[n] = x[n] * h[n] = \sum_{k=N_1}^{N_2} x[k] h[n-k]$$

Same number of operations for all n

☐ IIR system: If h[n] is of infinite length, i.e.,

- ☐ Number of operations grows with n
- ☐ The limits are due to causality of an LTI system

Network View of Filtering (FIR Filter)

Network View of Filtering (FIR Filter)

 $\ \square$ Find the impulse response h[n] of the following fourth order non-recursive system.

 $y[n] = a_0[n] + a_1x[n-1] + a_2x[n-2] + a_3x[n-3] + a_4x[n-4]$

To find h[n], put $x[n] = \delta[n]$

$$n=0 \Rightarrow h[0] = a_0\delta[0] + a_1\delta[-1] + a_2\delta[-2] + a_3\delta[-3] + a_4\delta[-4] = a_0$$

$$n=1 \rightarrow h[1] = a_0\delta[1] + a_1\delta[0] + a_2\delta[-1] + a_3\delta[-2] + a_4\delta[-3] = a_1$$

$$n=2 \rightarrow h[2] = a_0 \delta[2] + a_1 \delta[1] + a_2 \delta[0] + a_3 \delta[-1] + a_4 \delta[-2] = a_2$$

$$n=3 \rightarrow h[3] = a_0\delta[3] + a_1\delta[2] + a_2\delta[1] + a_3\delta[0] + a_4\delta[-1] = a_3$$

$$n=4 \rightarrow h[4] = 0 + 0 + 0 + 0 + a_4\delta[0] = a_4$$

$$n=5 \Rightarrow h[5] = 0 + 0 + 0 + 0 + a_4\delta[1] = 0$$

For $n \geq 5$, h[n] = 0, since the nonzero value of $\delta[n]$ has moved out of the memory of this system.

Network View of Filtering (IIR Filter)

If $x[n] = \delta[n]$, calculate h[n] for n=0,1,2,...

Network View of Filtering (IIR Filter)

☐ Find the impulse response h[n] of the following first-order recursive system.

$$y[n] = \begin{cases} ay[n-1] + x[n] & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

 \square To find h[n], Put x[n] = δ [n] and apply the zero-condition.

$$n = 0$$
, $y[0] = h[0] = ay[-1] + \delta[0] = 1$

$$n = 1, y[1] = h[1] = ay[0] + \delta[1] = a$$

$$n = 2$$
, $y[2] = h[2] = ay[1] + \delta[2] = a^2$

$$n = n$$
, $y[n] = h[n] = a^n$ for $n \ge 0$

Network View of Filtering (IIR Filter)

 \square y[n] = h[n] = 0 for n < 0, because δ [n] is zero for n < 0 and y[-1]= 0. Hence, h[n]=a^u[n] for all n

Discrete-time systems (Cont'd): Example of IIR Discrete Time System

□ Autoregressive (AR) model is IIR system: past values have an effect on current values

$$y[n] = x[n] - \sum_{k=0}^{N} d_k y[n-k]$$
 AR model \rightarrow All Pole system

□ Autoregressive moving average (ARMA) model is IIR system:

$$y[n] = \sum_{k=0}^{M} p_k x[n-k] - \sum_{k=0}^{N} d_k y[n-k]$$

AR model → Poles and Zeros system