In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

In [2]: df=pd.read_csv("customer_data.csv") df.head()

[2]:	id	age	gender	race	driving_experience	education	income	credit_score	vehicle_ownership	vehicle_year	married	children	postal_code	annual_mileage	vehicle_type	speeding_violations	DUIs	past_accidents	outcome
	0 569520	65+	female	majority	0-9y	high school	upper class	0.629027	True	after 2015	False	True	10238	12000.0	sedan	0	0	0	False
	1 750365	16-25	male	majority	0-9y	none	poverty	0.357757	False	before 2015	False	False	10238	16000.0	sedan	0	0	0	True
	2 199901	16-25	female	majority	0-9y	high school	working class	0.493146	True	before 2015	False	False	10238	11000.0	sedan	0	0	0	False
	3 478866	16-25	male	majority	0-9y	university	working class	0.206013	True	before 2015	False	True	32765	11000.0	sedan	0	0	0	False
	4 731664	26-39	male	majority	10-19y	none	working class	0.388366	True	before 2015	False	False	32765	12000.0	sedan	2	0	1	True

In [9]: sns.countplot(data=df, x="income") plt.title("Number of Customer") plt.ylabel("Number of clients") plt.show()

income

In [11]: plt.figure(figsize=(6,6))

data=df["income"].value_counts(normalize=True) labels=["upper class", "middle class", "poverty", "working class"] colors=sns.color_palette("pastel") plt.pie(data, labels=labels, colors=colors, autopct="%.0f%%") plt.title("Proportion of clients by income groups") plt.show() Proportion of clients by income groups

plt.title("Number of student pe education") plt.show() Number of student pe education

sns.countplot(data=df,x="education",order=["university","high school","none"],color="#E42C6A")

10000.000000

In [12]: plt.figure(figsize=[8,5])

plt.show() Distribution of Credit Scores

sns.histplot(data=df,x="credit_score",bins=40).set(title="Distribution of Credit Scores",ylabel="Number of clients")

Distribution of Credit Scores

Annual Mileage Vs Speeding Violation

Correlation Heatmap 0.0009B.00920.0150.00120.006-0.00180.00820.00930.0018-0.011

plt.show() Age Distribution by Gender

