I have a strong foundational understanding and practical experience with several core machine learning techniques, including K-Nearest Neighbors (KNN), Naive Bayes, Logistic Regression, Neural Networks, Linear Regression, and K-Means Clustering. I've implemented these using libraries like scikit-learn and TensorFlow, and have applied them to various classification and clustering tasks. Currently, I am focusing on building a deeper understanding of Support Vector Machines (SVM) and Principal Component Analysis (PCA) — exploring how SVMs separate data using optimal hyperplanes and how PCA reduces dimensionality by capturing maximum variance in fewer components.

K-Nearest Neighbors (KNN)

Definition: K-Nearest Neighbors is a non-parametric, instance-based learning algorithm that classifies a data point based on the majority class of its k nearest neighbors in the feature space, using a distance metric.

How it works:

- During training, the algorithm simply stores all training examples
- For prediction, it calculates the distance between the query instance and all training examples
- It identifies the K nearest neighbors based on distance metric (commonly Euclidean)
- The majority class among these K neighbors becomes the prediction
- For regression tasks, it returns the average of the K neighbors' values

Key Parameters:

- n_neighbors: Number of neighbors to consider (higher values reduce noise sensitivity but may blur decision boundaries)
- weights: Uniform (all neighbors weighted equally) or distance-based (closer neighbors have more influence)
- metric: Distance measure (Euclidean, Manhattan, Minkowski, etc.)
- algorithm: Method used to compute nearest neighbors ('auto', 'ball_tree', 'kd_tree', 'brute')
- leaf_size: Affects speed of tree-based algorithms

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# Create the model
knn = KNeighborsClassifier(
    n_neighbors=5,
    weights='uniform',
    algorithm='auto',
    metric='minkowski',
    p=2 # p=2 for Euclidean distance
)

# Train the model
knn.fit(X_train, y_train)

# Make predictions
```

```
y_pred = knn.predict(X_test)

# Evaluate
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.4f}")
```

Naive Bayes

Definition: Naive Bayes is a probabilistic classifier based on Bayes' theorem with an assumption of conditional independence between features given the class label.

How it works:

- Applies Bayes' theorem: P(y|X) = P(X|y) * P(y) / P(X)
- "Naive" because it assumes all features are conditionally independent given the class
- Calculates the probability of each class for a given input
- Selects the class with the highest probability as the prediction
- Different variants handle different types of features (Gaussian for continuous, Multinomial for counts, Bernoulli for binary)

Key Parameters:

- var_smoothing: Portion of the largest variance of all features that is added to variances for calculation stability (Gaussian NB)
- alpha: Additive (Laplace/Lidstone) smoothing parameter (Multinomial NB)
- fit_prior: Whether to learn class prior probabilities or use a uniform prior
- class_prior: Prior probabilities of the classes

```
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report

# Create model for continuous features
nb = GaussianNB(var_smoothing=1e-9)

# Train the model
nb.fit(X_train, y_train)

# Make predictions
y_pred = nb.predict(X_test)

# Evaluate
print(classification_report(y_test, y_pred))

# For text classification (discrete features):
from sklearn.naive_bayes import MultinomialNB

# Create model for text/count data
```

```
mnb = MultinomialNB(alpha=1.0)
mnb.fit(X_train_text, y_train)
```

Logistic Regression

Definition: Logistic Regression is a statistical model that uses a logistic function to model a binary dependent variable, estimating the probability that an instance belongs to a particular category.

How it works:

- Computes a weighted sum of input features: $z = w_0 + w_1x_1 + w_2x_2 + ... + w_nx_n$
- Transforms this sum using the sigmoid function: $\sigma(z) = 1/(1 + e^{-z})$
- Output is interpreted as probability of belonging to positive class
- Uses threshold (usually 0.5) to convert probability to class label
- Parameters are typically learned using maximum likelihood estimation

Key Parameters:

- C: Inverse of regularization strength (smaller values = stronger regularization)
- penalty: Type of regularization ('I1', 'I2', 'elasticnet', 'none')
- solver: Algorithm for optimization ('lbfgs', 'liblinear', 'newton-cg', 'sag', 'saga')
- max iter: Maximum number of iterations for solver
- multi_class: Strategy for multi-class classification ('ovr' one-vs-rest, 'multinomial')
- class_weight: Weights associated with classes to handle imbalanced datasets

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc auc score
# Create model with L2 regularization
log_reg = LogisticRegression(
    C=1.0,
    penalty='12',
    solver='lbfgs',
    max iter=1000,
    class weight='balanced'
)
# Train model
log_reg.fit(X_train, y_train)
# Predict probabilities
y_prob = log_reg.predict_proba(X_test)[:, 1]
y_pred = log_reg.predict(X_test)
# Evaluate
roc_auc = roc_auc_score(y_test, y_prob)
print(f"ROC AUC: {roc auc:.4f}")
```

```
# Get coefficients
coefficients = pd.DataFrame({
    'Feature': X_train.columns,
    'Coefficient': log_reg.coef_[0]
}).sort_values('Coefficient', ascending=False)
```

Support Vector Machines (SVM)

Definition:

Support Vector Machines (SVM) are powerful supervised learning algorithms used for both classification and regression tasks. They aim to find the **optimal hyperplane** that best separates data points of different classes in a high-dimensional space, with the **maximum margin** between the classes.

How It Works (In Depth):

- The core idea is to **maximize the margin** between two classes the distance between the hyperplane and the nearest points (called **support vectors**). These support vectors are critical to defining the decision boundary.
- SVM can handle **linearly separable** and **non-linearly separable** data. For non-linear cases, it applies the **kernel trick** to map data into higher-dimensional spaces where separation is possible.
- Common kernel functions include:
 - o linear: for linearly separable data
 - o poly: polynomial kernel, useful when decision boundaries are curved
 - o rbf: radial basis function, the most commonly used for non-linear data
 - sigmoid: behaves like a neural network's activation
- **Soft Margin SVM** allows some misclassifications to improve generalization on unseen data. This is controlled using the **C** parameter.
- The optimization behind SVM is formulated as a **convex quadratic programming** problem, ensuring a global minimum.
- It also supports **probability estimates** (though computationally more expensive), and handles **imbalanced datasets** by adjusting class weights.

Key Hyperparameters in scikit-learn's SVC:

Parameter	Description
С	Regularization strength. Smaller values allow wider margin (more tolerance).
kernel	Kernel type to be used. Default is 'rbf'.
gamma	Defines influence of a single training example. Lower = far, higher = close.
degree	Degree for polynomial kernel (used if kernel='poly').
class_weight	Adjusts weights for imbalanced datasets. 'balanced' auto-adjusts.
probability	If True, enables probability estimates via Platt scaling.

Practical Implementation using scikit-learn:

```
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# Pipeline: Scaling is important for SVM performance
svm_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('svm', SVC(
        C=1.0,
        kernel='rbf',
        gamma='scale',
        probability=True,
        class_weight='balanced'
    ))
1)
# Train the model
svm_pipeline.fit(X_train, y_train)
# Predict
y_pred = svm_pipeline.predict(X_test)
```

Hyperparameter Tuning with Grid Search:

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'svm_C': [0.1, 1, 10, 100],
    'svm_gamma': ['scale', 'auto', 0.1, 0.01],
    'svm_kernel': ['rbf', 'poly']
}

grid = GridSearchCV(svm_pipeline, param_grid, cv=5)
grid.fit(X_train, y_train)

print("Best parameters:", grid.best_params_)
```

Neural Networks

Definition: Neural Networks are computational models inspired by the human brain's structure, consisting of interconnected nodes (neurons) organized in layers that transform input data into desired outputs through a process of learning from examples.

How it works:

- Organizes artificial neurons in layers: input, hidden, and output
- Each connection between neurons has an associated weight
- Each neuron computes weighted sum of inputs, applies activation function

- Forward propagation passes inputs through the network to generate predictions
- Backpropagation calculates gradients of the error with respect to weights
- Optimization algorithms (like gradient descent) adjust weights to minimize error
- Deep networks have multiple hidden layers to learn hierarchical representations

Key Parameters:

- hidden_layer_sizes: Number and size of hidden layers (tuple)
- activation: Activation function ('relu', 'tanh', 'logistic', 'identity')
- solver: Weight optimization algorithm ('adam', 'sgd', 'lbfgs')
- alpha: L2 regularization parameter
- learning_rate: Learning rate schedule ('constant', 'invscaling', 'adaptive')
- max iter: Maximum number of iterations
- batch_size: Size of minibatches for stochastic optimizers
- early_stopping: Whether to use early stopping to terminate training when validation score stops improving

```
from sklearn.neural network import MLPClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# Create pipeline with scaling
nn_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('mlp', MLPClassifier(
        hidden_layer_sizes=(100, 50),
        activation='relu',
        solver='adam',
        alpha=0.0001,
        batch_size='auto',
        learning rate='adaptive',
        max iter=1000,
        early_stopping=True,
        validation_fraction=0.1,
        random state=42
    ))
])
# Train model
nn_pipeline.fit(X_train, y_train)
# Make predictions
y_pred = nn_pipeline.predict(X_test)
# Learning curves
plt.figure(figsize=(10, 6))
plt.plot(nn_pipeline.named_steps['mlp'].loss_curve_)
plt.title('Learning Curve')
plt.xlabel('Iterations')
```

```
plt.ylabel('Loss')
plt.grid(True)
```

Linear Regression

Definition: Linear Regression is a linear approach to modeling the relationship between a dependent variable and one or more independent variables, finding the linear function that minimizes the sum of squared differences between observed and predicted values.

How it works:

- Models relationship as $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \epsilon$
- Finds coefficients (β) that minimize the sum of squared errors
- Can be solved analytically using Ordinary Least Squares (OLS)
- Can incorporate regularization to prevent overfitting (Ridge, Lasso)
- Neural network equivalent is a single neuron with no activation function

Key Parameters:

- fit_intercept: Whether to calculate the intercept (β₀)
- normalize: Whether to normalize features (deprecated in newer versions)
- copy_X: Whether to copy X
- n_jobs: Number of parallel jobs for computation
- For regularized variants:
 - alpha: Regularization strength
 - 11_ratio: Mix ratio for ElasticNet (0 = Ridge, 1 = Lasso)

```
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
# Create and train standard linear regression model
lin reg = LinearRegression(fit intercept=True)
lin_reg.fit(X_train, y_train)
# Make predictions
y_pred = lin_reg.predict(X_test)
# Evaluate
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"RMSE: {rmse:.4f}")
print(f"R2: {r2:.4f}")
# Feature importance
coefficients = pd.DataFrame({
```

```
'Feature': X_train.columns,
    'Coefficient': lin_reg.coef_
}).sort_values('Coefficient', ascending=False)

# With regularization (Ridge)
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)
```

Unsupervised Learning

K-Means Clustering

Definition: K-Means is an unsupervised learning algorithm that partitions n observations into k clusters, where each observation belongs to the cluster with the nearest mean, minimizing within-cluster variances.

How it works:

- Randomly initializes k cluster centroids
- Iteratively performs two steps until convergence:
 - 1. Assignment: Assign each data point to the nearest centroid
 - 2. Update: Recalculate centroids as the mean of all points in the cluster
- Aims to minimize the sum of squared distances between points and their assigned centroids
- Final result depends on initial centroid positions (may find local optimum)
- Uses distance metrics (usually Euclidean) to determine similarity

Key Parameters:

- n_clusters: Number of clusters (k)
- init: Method for initialization ('k-means++', 'random', or an array)
- n_init: Number of times algorithm runs with different centroid seeds
- max iter: Maximum number of iterations per run
- tol: Tolerance for declaring convergence
- algorithm: Implementation algorithm ('auto', 'full', 'elkan')

```
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt

# Scale data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Create and fit model
kmeans = KMeans(
    n_clusters=3,
    init='k-means++',
    n_init=10,
```

```
max_iter=300,
    random_state=42
)
clusters = kmeans.fit_predict(X_scaled)
# Evaluate using silhouette score
silhouette_avg = silhouette_score(X_scaled, clusters)
print(f"Silhouette Score: {silhouette avg:.4f}")
# Finding optimal k using elbow method
inertia = []
range_k = range(1, 11)
for k in range_k:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X_scaled)
    inertia.append(kmeans.inertia_)
plt.figure(figsize=(10, 6))
plt.plot(range_k, inertia, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method')
plt.grid(True)
```

Principal Component Analysis (PCA)

Definition

Principal Component Analysis (PCA) is an unsupervised learning technique used for **dimensionality reduction**. It transforms the original features into a new set of uncorrelated variables called **principal components**, ordered by the amount of variance they capture from the original data. The main goal is to simplify the dataset, reduce redundancy, and retain the most important information.

How it Works

1. Standardization:

PCA starts by **standardizing** the dataset — each feature is centered (mean = 0) and scaled (unit variance). This is crucial because PCA is affected by the scale of the variables.

2. Covariance Matrix Calculation:

It then calculates the **covariance matrix** of the data, which measures how much the variables vary together.

3. Eigendecomposition:

The covariance matrix is decomposed into **eigenvectors** and **eigenvalues**:

- **Eigenvectors** → directions (axes) of the new feature space (principal components)
- **Eigenvalues** → magnitude of variance carried by each principal component

4. Component Selection:

The eigenvectors are sorted based on their corresponding eigenvalues (variance), and the top k components are selected that together retain a desired proportion of the total variance (e.g., 95%).

5. Projection:

The data is projected onto the selected principal components, effectively reducing the number of dimensions while preserving the structure that contributes most to its variance.

Key Parameters in sklearn.decomposition.PCA

n_components:

Specifies the number of principal components to keep.

Can be:

- An integer (e.g., 5)
- A float (e.g., 0.95 to keep 95% of the variance)
- 'mle' to use Minka's MLE for dimensionality estimation
- svd solver:

Determines the algorithm used for Singular Value Decomposition (SVD):

```
'auto', 'full', 'arpack', 'randomized'
```

whiten:

If True, it scales the principal components to have unit variance (removes correlations between them)

random_state:

Seed for reproducibility when using randomized solver

• tol:

Tolerance for small singular values (used when filtering components)

Implementation (with scikit-learn)

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns

# Step 1: Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Step 2: Fit PCA model (retain 95% of variance)
pca = PCA(n_components=0.95)
X_pca = pca.fit_transform(X_scaled)

# Step 3: Analyze explained variance
explained_variance = pca.explained_variance_ratio_
cumulative_variance = explained_variance.cumsum()
```

```
print(f"Number of components selected: {pca.n_components_}")
print(f"Total explained variance: {sum(explained_variance):.4f}")
# Step 4: Plot individual and cumulative explained variance
plt.figure(figsize=(10, 6))
plt.bar(range(1, len(explained_variance) + 1), explained_variance, alpha=0.6,
label='Individual')
plt.plot(range(1, len(cumulative_variance) + 1), cumulative_variance, marker='o',
color='red', label='Cumulative')
plt.xlabel('Principal Components')
plt.ylabel('Explained Variance Ratio')
plt.title('Explained Variance by PCA Components')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# Step 5: Visualize data on first two principal components
if X_pca.shape[1] >= 2:
    plt.figure(figsize=(10, 8))
    sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y if 'y' in locals() else
None)
    plt.xlabel('First Principal Component')
    plt.ylabel('Second Principal Component')
    plt.title('PCA: First Two Principal Components')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```