UNCLASSIFIED

AD NUMBER AD354042 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; JUL 1964. Other requests shall be referred to Naval Weapons Laboratory, Dahlgren, VA.

AUTHORITY

5 Mar 1975, per USNSWC LTR; USNSWC ltr, 5 Mar 1975

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND MO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

GENERAL DECLASSIFICATION SCHEDULE

MACCORDANCE WITH
DAD 5200.1-R & EXECUTIVE ORDER 11652

AD 354042W

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

JUNEASSIF LE

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF
THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18,
U.S.C., SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF
ITS CONTENTS IN ANY MANNER TO AN
UNAUTHORIZED PERSON IS PROHIBITED
BY LAW.

Best Available Copy

Copy No. 37

Technical Memo Memorandum 354042L

No. K-24/64

ANALYSIS OF THE PENETRATION OF ELECTRONIC COMPONENTS BY STEEL FRAGMENTS (U)

> Gerald Hertweck Dean R. Snyder

Computation and Analysis Laboratory

U. S. Naval Weapons Laboratory Dahlgren, Virginia

DOWNGRADED AT 3-YEAR INTERVALS DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10

CONFIDENTIAL

U. S. NAVAL WEAPONS LABORATORY

TECHNICAL MEMORANDUM

July 1964

No. K-24/64

ANALYSIS OF THE PENETRATION OF ELECTRONIC COMPONENTS BY STEEL FRAGMENTS (U)

Gerald Hertweck Dean R. Snyder

Computation and Analysis Laboratory

Approved by:

(in ha pleans

RALPH A. NIEMANN, Director Computation and Analysis Laboratory

While the contents of this memorandum are considered to be correct, they are subject to modification upon further study.

U. S. MILITARY AGENCIES MAY OBTAIN COPIES OF THIS REPORT DIRECT FROM DDC. OTHER QUALIFIED DDC USERS SHOULD REQUEST THROUGH THE TECHNICAL LIBRARY OF THE U. S. NAVAL WEAPONS LABORATORY, DAHLGREN, VIRGINIA.

TABLE OF CONTENTS

NWL Technical Memorandum No. K-24/64

· · ·	Page
ABSTRACT	4
FOREWORD	5
INTRODUCTION	6
EQUIVALENT MATERIALS AND THICKNESSES	7
Table 1. Material Constants	9
Table 2. Fragment Perforation Data	10
Table 3. Equivalent Materials and Thicknesses	19
RELATIONSHIPS AMONG FRAGMENT DATA, EQUIVALENT MATERIALS AND ELECTRONIC COMPONENTS	7
Figures 1-4. Ratio of Fragment Residual Velocity to Striking Velocity versus Striking Velocity for Materials Equivalent to Various Electronic Components	
REFERENCES	8
APPENDIX A: COMPUTER PROGRAM FOR SELECTION OF MATERIALS AND THICKNESSES POSSESSING PERFORATION CHARACTERISTICS SIMILAR TO ELECTRONIC COMPONENTS	A-1
Figure A-1. Flow Diagram	A-3
Figure A-2. Input Format	A-5
Figure A-3. Program Deck Listing	A-6
Figure A-4. Sample Output	A-7

* * * * * * * * * * * * *

Initial Distribution

```
Chief of Naval Operations
  Attn: Op-03EG
  Attn: Op-06C
  Attn: Op-350
  Attn: Op-34
  Attn: Op-342
  Attn: Op-50
  Attn: Op-506
  Attn: Op-507
  Attn: Op-722
  Attn: Op-725
Chief, Bureau of Naval Weapons
  Attn: DLI-3
  Attn: RMMO-4
  Attn: RMMO-42
  Attn: RMMO-5
  Attn: RMMO-52
Commander, U. S. Naval Ordnance Test Station
China Lake, California
Attn: Mr. M. H. Keith (Code 4034)
```

Commander, U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland

COMOPTEVFOR Norfolk 11, Virginia

Commanding Officer, Naval Air Development Center Johnsville, Pennsylvania

Director, Defense Intelligence Agency Washington 25, D. C. Attn: Code DIA AP-1 (3K2)

WSEG The Pentagon Washington 25, D. C.

Commanding General U. S. Army Ballistics Research Laboratories Aberdeen Proving Ground, Maryland

Commanding Officer Engineer Research & Development Laboratories Fort Belvoir, Virginia

Initial Distribution (Cont'd)

Bureau of Naval Weapons (2) Technical Library Department of the Navy Washington 25, D. C.

Picatinny Arsenal Dover, New Jersey Attn: Navy Liaison Officer

Director, Operations Research Office Department of the Army 6935 Arlington Road Bethesda, Maryland

Director, Project RAND Department of the Air Force 1700 Main Street Santa Monica, California

Ballistics Analysis Laboratory Johns Hopkins University 3506 Greenway Baltimore 18, Maryland

The Martin Company Orlando Division Orlando, Florida

Falcon Research and Development 1567 Marion Street Denver 18, Colorado

Defense Documentation Center (20)

Local:

K, KE, KP, KPB, KR, T, TD, TE, TEV, TY, ACMF KRT (3) $^{\circ}$ ACL (6)

ABSTRACT

This memorandum describes a technique for determining the materials, and their thicknesses, which possess fragment perforation characteristics most similar to certain electronic circuitry components, as established by test firings.

FOREWORD

The Tactical Weapons Analysis Branch, Computation and Analysis Laboratory, was requested by the Warhead and Terminal Ballistics Laboratory, Project Assistance Request RMMO-42-003/210-1/F008-08-06 of 12 August 1963, to provide a technique for determining materials "equivalent" to electronic circuitry components, in the sense that they possess similar fragment perforation characteristics. A method for solution of the problem was derived from the Project THOR analyses, and formulated as a computer program for an IBM 7030 computer by Mr. W. J. Graves, Head, Ballistic Sciences Branch.

INTRODUCTION

The requirements of the problem are to determine the materials that can best be used to simulate electronic circuitry components in computer-type studies of the vulnerability of electronic equipment to fragmenting warheads. The purpose in adopting this procedure is that if an "equivalence" relationship can be established with sufficient accuracy, the amount of penetration test data required for electronic items would be minimized, since a great deal of such data are readily available for various metallic and non-metallic materials from the Project THOR studies, references 1 and 2.

A method is described in this memorandum for determining the "equivalent" materials on the basis of the minimum error between the observed residual velocities of fragments perforating the electronic item and computed residual velocities for identical fragments perforating various metallic and non-metallic materials of some specified thickness. A computer program developed for this purpose is discussed in Appendix A. The results from using this program with data from a series of test firings of pre-formed steel fragments against selected electronic items are given in Table 3. Also, graphs showing the relationships among the fragment test data, "equivalent" materials, and the electronic items are presented in Figures 1 through 4.

EQUIVALENT MATERIALS AND THICKNESSES

The first phase of the analysis was to determine the materials and their thicknesses that are "equivalent" to electronic components, in the sense that they possess similar fragment perforation characteristics. The material type and thickness for a given electronic component and fragment data are selected on the basis of the minimum value of the error between the observed and calculated values of residual velocity for all materials considered.

Fragment perforation tests were conducted with four different fragment weights fired, with various initial velocities, into a capacitor, condenser, and two types of vacuum tubes. The fragment characteristics and velocities are summarized in Table 2. The characteristics of the materials which were compared to the fragment perforation data for the electronic components are defined by a set of constants derived in references 1 and 2, and are given in Table 1. These constants are defined in Appendix A. Using these data and the program described in Appendix A, the "equivalent" materials, material thicknesses, and an estimate of the residual velocity errors, shown in Table 3 were computed.

RELATIONSHIPS AMONG FRAGMENT DATA, EQUIVALENT MATERIALS, AND ELECTRONIC COMPONENTS

The second phase was to show the relationships among the fragment data and the materials and thicknesses "equivalent" to the electronic components tested.

Using the fragment data in Tables 1 and 2 and the "equivalent" material constants and thickness from Table 3, estimates of residual fragment velocity were computed, using the procedures described in reference 3, for a range of initial fragment velocities of 500-6000 feet/second and for the four fragment weights considered. The results of these computations are presented in graphical form in Figures 1-4.

REFERENCES

- The Resistance of Various Metallic Materials to Perforation by Steel Fragments; Empirical Relationships for Fragment Residual Velocity and Residual Weight (U), Project THOR Technical Report No. 47, Ballistic Analysis Laboratory, Institute for Cooperative Research, The Johns Hopkins University, Baltimore, Maryland. April 1961. CONFIDENTIAL.
- 2. The Resistance of Various Non-Metallic Materials to Perforationby Steel Fragments; Empirical Relationships for Fragment Residual Velocity and Residual Weight (U), Project THOR Technical Report No. 51, Ballistics Analysis Laboratory, Institute for Cooperative Research, The Johns Hopkins University, Baltimore, Maryland. April 1963. GONFIDENTIAL.
- 3. Hertweck, G. and Cardwell, R., <u>Programs for Fragment Penetration Analysis</u>, U. S. Naval Weapons Laboratory Technical Memorandum No. K-100/63, U. S. Naval Weapons Laboratory, Dahlgren, Virginia. December 1963. CONFIDENTIAL

TABLE 1

MATERIAL CONSTANTS

~	-0.162	0000 0000 0000 0000 0000	962	-0.087	0.167	0.019	0.019	0.818
Ø	-0.654	1.035	-1-014	11.170	-1.095	-0.945	-0.945	-0.502
ಶ	1.144	1.044	1.021	0000	10103	0.674	0.889	0.499
U	5.816	2.000 5.000 5.000 5.000	7.600	6.904	6.292	4.3¤6	6.475	1.999
MATERIAL	HONDED NYLON	LEXON PLEXIGLAS (CAST) PLEXIGLAS (CAST)	DORON GARAGE OF ASS	MAGNESIUM ALIMINIM ALL OV 2024TES		FACE-HARDENED STEFL MILD HOMOGENEOUS STEFL	HARD HOMOGENEOUS STEFL CORDER	LFAD TUBALLOY

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
AL 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AD CAPACIT 0 03008	788. 1008. 11008. 11008. 11008. 11009. 11019. 11019. 1101. 1	0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
6AS7G VAC	CUUM TUBE		
8 88 58 88 88 88 88 88 88 88 88 88 88 88	0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008 0.03008	1543. 1639. 1765. 2284. 2368. 2458. 2545. 2571. 2697. 2818. 2830. 2945. 3043. 3047. 3152. 3177. 3299. 3436. 4249.	582. 230. 0. 709. 482. 1592. 1978. 429. 1592. 2191. 1431. 1355. 1592. 1592. 1661. 2014. 1530. 1819. 2403. 2352.

Table 2

10

CONFIDENTIAL

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
6AU6 VAC			
5 0	0.03008	1229•	517.
5 • 8 5 • 8	0.03008	1339	595•
5 • 8	0.03008	1351.	548.
5 • 8	. 0.03008	1354.	730•
5 • 8	0.03008	1363.	647.
5 . 8	0.03008	1371.	· 517•
5 • 8	0.03008	1422•	730 •
5 • 8	0.03008	1432.	686.
5 • 8	0.03008	1466.	414•
5 • 8	0.03008	1473•	744•
5 • 8	0.03008	1489• 1510•	675 • 748 •
5 • 8	0.03008 0.03008	1510•	784.
5 • 8 5 • 8	0.03008	1593 •	815.
5 • 8	0.03008	1595•	801.
5 • 8	0.03008	1607.	1053.
5 • 8	0.03008	1694•	806.
5.8	0.03008	1706.	870.
5 • 8	0.03008	1826.	555•
5 • 8	0.03008	1906.	1028.
5 • 8	0.03008	1966.	1019.
5 • 8	0.03008	1970.	892•
5 • 8	0.03008	2063.	990•
5 • 8	0.03008	2064 •	1153.
5 • 8	0.03008	2074 • 2235 •	1107. 1271.
5 • 8 5 • 8	0.03008	2237.	1218
5.8	0.03008	2329	1182.
5 • 8	0.03008	2386	1245•
5 • 8	0.03008	2814.	1606.
5.8	0.03008	2820.	1564.
5 • 8	.0.03008	2841.	1564.
5 • 8	0.03008	2879.	1513•
5 • 8	0.03008	2977.	1962•
5 • 8	0.03008	2990•	1675•
5 • 8	0.03008	3008.	2157.
5 • 8	0.03008	3128.	1751.
5 • 8	0.03008	4145 •	2229•
5 • 8 5 • 8	0.03008 0.03008	4161 • 4242 •	2656 • 2274 •

Table 2 (Continued)

FRAGMENT PERFORATION DATA

Striking Mass (Grains) MICA COM 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.	Impact Area (Inches) NDENSER 0.03801	913. 994. 1027. 1075. 1293. 1426. 1530. 1553. 1703. 2011. 2012. 2067. 2089. 2168. 2958. 2958. 2959. 2962. 3050. 3093.	Residual Velocity (ft/sec) 360. 513. 439. 556. 1025. 863. 1189. 970. 854. 972. 1384. 1521. 1367. 1473. 1559. 2123. 2418. 2475. 2328. 2858.
METAL C 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.	LAD CAPACITOR 0.03801	1428 • 1456 • 1481 • 1541 • 1680 • 2093 • 2095 • 2123 • 2906 • 2906 • 2906 • 2950 • 3801 • 3897 • 3968 • 3997 • 4040 • 4052 •	574. 529. 743. 738. 827. 1106. 1303. 1486. 1164. 1335. 1843. 2336. 2189. 220. 2335. 2446. 2630. 2189. 1957. 2144. 1957. 2102.

Table 2 (Continued)

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
6AS7G VA	CUUM TUBE		
17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801 0.03801	1007. 1218. 1267. 1361. 2009. 2012. 2042. 2907. 2965. 2991. 3904. 3907. 3920. 3942. 3955.	143. 694. 761. 511. 912. 1217. 1230. 1552. 1952. 1700. 3026. 2109. 2576. 2245.
64Ú6 VACI	JUM TUBE		
17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	0.03801 0.03801	854. 1045. 1090. 1124. 1308. 1402. 1520. 1522. 1556. 1668. 1694. 1989. 2053. 2079. 2137. 2146. 2874. 2932. 3064. 3114. 3148.	378. 481. 562. 682. 839. 895. 940. 959. 1027. 1050. 222. 1356. 1367. 1356. 1452. 1485. 2328. 2244. 2214. 2230. 2168.

Table 2 (Continued)

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
METAL CLA	D CAPACITO	₹ .	
44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069	947. 958. 965. 971. 1030. 1618. 1632. 1638. 1651. 1671. 1982. 1987. 2001. 2032. 2059. 2934. 3001. 3003. 3005. 3021.	263. 286. 428. 196. 259. 1023. 968. 1004. 950. 1004. 1482. 1367. 1315. 1332. 1404. 2311. 2311. 2364. 2260. 2260.
MICA CONE	DENSER .		
44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0	0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069 0.07069	961 • 1028 • 1624 • 1646 • 1659 • 1684 • 1968 • 1994 • 2017 • 2081 • 2925 • 2982 • 2983 • 3000 • 3046 •	934 • 927 • 1315 • 1404 • 1504 • 1315 • 1549 • 1441 • 1597 • 1549 • 2421 • 2479 • 2541 •

Table 2 (Continued)

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
64576 VAC	UUM TUEE		
44.0 44.0	0.07069	699.	389.
44.0	0.07069 0.07069	762.	375.
44.0	0.07069	899. 956.	555.
4.4.	0.07069	465	215.
44.0	0.07069	999	483.
44 . C	C:37069	1627.	1086.
44.0	0.07069	1651.	1283.
44.0	0.07369	1662.	1143.
4+•0	0.07669	1663.	1013.
44.0	U.07065	1675.	994.
44.0	0.07069	2053.	1572.
44.0	0.07069	2057.	1549
44.0	0.07069	2083.	1525.
44.	0.07069 0.07069	2103.	1549•
44.0	0.07069	2131. 2922.	1385.
44.0	0.07069	2998.	2212•
44.0	0.07069	3331.	2312.
44.0	0.07069	3034.	2312.
44.0	0.07069	3106.	2121.
*.			
SAUS VACUI	UM TUBE		
44.0	0.07069	610.	258.
44.0	0.07069	614.	319.
4400	0.07069	623.	259.
44.0	0.07069	665.	307.
44.0	J.07069	584.	422.
44.0	0.07069	917.	597.
44.0	0.07069	965.	656.
44•0	0.07069	966.	578.
44.0	0.07065	970.	630.
44.0	0.07069	1048.	840.
44.0	0.07059	1622.	1157.
44.0 44.0	0.07069	1655.	1239.
44.0	0.07069	1659. 1662.	1109.
44.0	0.07069	1693•	1268.
44.0	0.07069	1928	1546.
44.0	0.07069	1967.	1482.
44.0	0.07069	1969.	1504.
44.0	0.07069	1985.	1504.
44.C	0.07069	1990.	1462.
44 • C	U.07069	2959.	c365.
44.0	0.07069	2968.	2213.
44.0	0.07069	2992.	2420 •
44.0 44.0	0.07069 0.07069	3000.	2479.
44•0	0.07089	3050.	2479.

Table 2 (Continued)
15

CONFIDENTIAL

FRAGMENT PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches) ²	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
MICA CON	DENSER		
208.0	0.19640	573•	511.
208.0	0.19640	591.	571.
208.0	0.19640	593.	479.
208.0	0.19540	613.	.583.
208.0	0.19640	.641.	511.
208.0	0.19640	878.	726 •
208.0	0.19640	882.	760.
208.0	0.19640	967.	823.
208.0	0.19640	984.	831.
208.0	0.19640	1028.	949.
208.0	0.19640	1033.	919.
208.0	0.19640	1050.	932.
208.0	0.19640	1491.	1444 •
208.0	0.19640	1527.	1361.
208.0	0.19640	1543.	1552 •
208.0	0.19640	1581.	1412.
208.0	0.19640	1581.	1417.
208.0	0.19640	1966.	1756 •
208.0	0.19640	1986.	1771 •
208.0	0.19640	2006.	1756 •
208.0	0.19640	2017.	1763 •
208.0	0.19640	2842.	2689.
208.0	0.19640	2972.	2671.
208.0	0.19540	3066.	2689.
208.0	0.19640	3066.	2.877.
208.0	0.19640	3115.	2764.

Table 2 (Continued)

PAGNEST PERFORATION DATA

Striking Mass (Grains)	Impact Area (Inches)2	Striking Velocity (ft/sec)	Residual Velocity (ft/sec)
TETAL CLAS	CAPACITO	4	
2 - 0	J.196.0	002.	** ** ** •
208.0		656.	542 .
218.0	19640	924.	675.
2 14	0.1904	427.	631.
208.0	.1054.	3340	622.
208.0	.19540	950.	716.
203.0	0.19640	957.	258.
208.6	0.19540	964.	652 • 621 •
2.8.0	0.19640	474.	757.
200.0	0.19540	984 •	729.
208.0	1.19640	1026 • 1026 •	814.
208.0	0.19640	1053	816.
208.0	0.19640	1418.	1107.
208.0	J.19640	1438	1060•
208.0	0.19640	1470.	994.
208.0 238.0	0.19640	1473.	1060•
203.0	0.19540	1474.	1205.
2 8 .0	: 19640	1495.	1057.
208.0	0.19640	1513.	1234 •
208	0.19640	1569.	1255•
208.0	0.19640	1572.	
208.0	0.19640		
238.0	0.19640	1903.	
208.0	0.19640		
208.0	0.19640		
208.0	0.19640		
208.0	0.1964		-
208.0	0.1964	0 1999 0 2053	
208.0	0.1964	0 2058	•
208.0	0.1964	-	-
208.0	0.1964		
208.0	0.1964 0.1964		2463.
208.0	0.1964		
208.0	0.1964		2543.
208.0	0.1964	0 3093	
208.0	0.1964	0 315	
208.0	0.1964	.0 180	
208.0	0.1964	.c 315	
208.0	0.1964	.0 315	9 · 2675 · 2653 ·
218.0	0.1964	.0 316	2501
208.0	0.1964	.0 318	2125
208.0	0.1964	5 319	0.

Table 2 (Continued)

FRAGMENT PERFORATION DATA Residual Striking Impact Striking Velocity Velocity Area Mass (ft/sec) (Inches)2 (ft/sec) (Grains) 64576 VACUUM TUBE 297. 475. 0.19640 208.0 349 . 0.19640 561. 208.0 396 . 595. 0.19640 208.0 464. 0.19640 595. 208.0 722. 434. 0.19640 208.0 658. 947. 0.19640 208.0 590 . 0.19640 1002. 208.0 825. 1028. 0.19540 208.0 814. 1054 . 0.19640 208.0 845. 0.19640 1070. 208.0 1278. 1526. 0.19640 208.0 1354. 0.19640 1595. 208.0 1454. 1.678. 238.0 0.19640 1654. 0.19640 1837. 208.0 1628. 1927. 208.0 0.19640 0.19640 1665. 1928. 208.0 1758 • 2145. 0.19640 208.0 2581. 2863. 0.19640 208.0 2754. 0.19640 3165. 208.0 2792. 0.19640 3192. 208.0 2797. 3248. 0.19640 208.0 6AUS VACUUM TUBE 368. 499. 0.19640 208.0 1156. 1341. 0.19640 208.0 1263. 1463. 0.19640 208.0 1363. 1478. 0.19640 208.C 1300. 0.19640 1494. 208.0 1311. 1497. 0.19640 208.0 1462. 1737. 0.19640 238.0 1602. 1838. 208.0 0.19640 1650 • 0.19640 1941. 208.0 1650. 1962 • 0.19640 208.0 2089. 1721• 0.19640 208.0 2387. 2773 • 208.0 0.19640 2564. 0.19640 2905 . 208.0 2608 • 3137. C.19540 208.0 2675 . 3140 . 0.19640 208.0 2723. 3147 • 0.19640 208.0

Table 2 (Continued)

Table 3

EQUIVALENT MATERIALS AND THICKNESSES

Electronic Component	Equivalent Material	Equivalent Thickness (in.)	Prediction Error (ft/sec)
Metal-clad Capacitor	Lexon	0.62938	239.4
Mica Con- denser	Cast iron	0.09393	126.9
6AS7G Vacuum Tube	Lexon	0.50719	293.9
6AU6 Vacuum Tube	Lexon	0.38909	151.8

Material: Lexon Thickness: 0.62938 inches

RATIO OF FRACMENT RESIDUAL VELOCITY TO STRIKING VELOCITY VERSUS STRIKING VELOCITY FOR MATERIAL EQUIVALENT TO METAL CLAD CAPACITOR

Figure 1

20

CONFIDENTIAL

Cast Iron 0.09393 inches Material: Thickness:

RATIO OF FRACMENT RESIDUAL VELOCITY TO STRIKING VELOCITY VERSUS STRIKING VELOCITY FOR MATERIAL EQUIVALENT TO MICA CONDENSER

Figure 2

Material: Lexon Thickness: 0.50719 inches

RATIO OF FRACMENT RESIDUAL VELOCITY TO STRIKING VELOCITY VERSUS STRIKING VELOCITY FOR MATERIAL EQUIVALENT TO 6AS7G VACUUM TUBE

Figure 3

Material: Lexon Thickness: 0.38909 inches

Ratio of Residual Velocity to Striking Velocity, $V_{\mathbf{r}}/V_{\mathbf{s}}$

Striking Velocity, V_S (ft./sec.)

RATIO OF FRACMENT RESIDUAL VELOCITY TO STRIKING VELOCITY VERSUS STRIKING VELOCITY FOR MATERIAL EQUIVALENT TO 6AUG VACUUM TUBE

Figure 4

APPENDIX A

COMPUTER PROGRAM FOR SELECTION OF MATERIALS AND THICKNESSES POSSESSING PERFORATION CHARACTERISTICS SIMILAR TO ELECTRONIC COMPONENTS

A computer program has been developed to determine the materials and appropriate thicknesses which are "equivalent" to electronic components in the sense that they possess similar fragment perforation characteristics.

In references 1 and 2, an empirical equation relating residual velocity to important impact parameters for both metallic and non-metallic materials is given as:

$$V_r = V_s - 10^C \text{ (eA)}^{\alpha} \text{ M}_s^{\beta} \text{ (sec } \theta)^{\beta} \text{ } V_s^{\lambda}$$

where

 V_r = residual velocity of fragment, feet/second

 V_{S} = striking velocity of fragment, feet/second

e = material thickness, inches

 $A = average impact area of fragment, (inches)^2$

 M_S = initial weight of fragment, grains

9 = angle of fragment trajectory from normal to target, degrees

and c, α , β , γ , and λ are constants determined by fitting the equation to experimental perforation data by the method of least squares.

For materials described by the above material constants and for given fragment test data, a material thickness, e, can be calculated which minimizes the error function σ , where

$$\sigma = \left[\frac{\sum_{i=1}^{n} (V_{r_i} - V_{r_i}^i)^2}{n-1} \right]^{\frac{1}{2}}$$

and,

 V_{r_i} = observed residual velocity of each fragment V_{r_i} = computed residual velocity of each fragment

It can be shown by elementary calculus that σ is a minimum when

$$\sum_{i=1}^{n} V_{r_{i}}^{i} = \sum_{i=1}^{n} V_{r_{i}}.$$
 Recalling that $V_{r_{i}}^{i} = V_{s_{i}} - 10^{C}$ (eA) M_{s}^{ω} (sec θ) $V_{s_{i}}^{\lambda}$,

the following mathematical expression may be obtained for e,

$$e = \begin{bmatrix} \sum_{i=1}^{n} (V_{s_i} - V_{r_i}) \\ \frac{10^{C} A^{\alpha} M^{2} \sum_{i=1}^{n} (V_{s_i})^{\lambda}}{10^{C} A^{\alpha} M^{2} \sum_{i=1}^{n} (V_{s_i})^{\lambda}} \end{bmatrix}$$

The parameter, (sec θ) , is eliminated from the equation since the fragment trajectory angle is zero under testing conditions.

The appropriate material and thickness, for a given electronic component and fragment data, are selected on the <code>basis</code> of the minimum calculated value of σ for all materials considered.

The procedure described above is outlined in detail in the flow diagram in Figure A-1. The input format and a listing of the FORTRAN IV program deck are provided in Figures A-2 and A-3. A sample output format is shown in Figure A-4.

Figure A-1. Flow Diagram

INPUT FORMAT

Card Type 1	М	Number of sets of material constants.
	N	Number of sets of fragment data.
Card Type 2	Material Identification	Identifies material (may use 72 columns).
Card Type 3	c,∝, <i>&</i> ,λ	Appropriate values of material constants.
Repeat Cards 2 a	nd 3 until all mate	rials are entered.
Card Type 4	Fragment Identification	Identifies set of fragment data.
	NOF	Number of fragments in set of data.
Card Type 5	$M_{\mathbf{S}}$	Striking Mass (grains).
	A	Impact Area (inches) ² .
	v_s	Striking Velocity (ft/sec).
	$v_{\mathbf{r}}$	Residual Velocity (ft/sec).

One Card Type 5 is prepared for each fragment in set of data. Repeat Card Types 4 and 5 until all sets of fragment data are entered.

FIGURE A-2. INPUT FORMAT

CONFIDENTIN

FIGURE A-2. INPUT FORMAT

CONFIDENT

```
100 FCRMAT (12A6)
101 FORMAT (4F10.5)
102 FORMAT (9A5, 15)
103 FERMAT (215)
    CIMENSION EM(500), A(500), VI (500), VR (500), MID(1200), DID(9), C(100),
   1ALPHA(100), BETA(100), ALAMDA(100)
104 FORMAT (1HJ, 12A6)
105 FERMAT (1HJ, 9A5)
106 FORMAT (1HJ, 2E17.10)
  5 READ 103, M, N
    DV 1 I=1 . M
    J=12#I
    K = J - 11
    READ ICC, (MID(L), L=K, J)
  1 READ 101,C(I),ALPHA(I),BETA(I),ALAMDA(I)
    DØ 4 IA=1.N
    READ 1C2, DID, NØF
    READ 101, (EM(I), A(I), VI(I), VR(I), I=1, NØF)
    D@ 4 J=1,M
    B1=0.
    B2=0.
    84=(1C. **C(J))
    DØ 2 I=1,NØF
     B1=VI(I)-VR(I)+B1
     B6=(A(I)**ALPHA(J))*(EM(I)**BETA(J))
     B7=VI(I) **ALAMDA(J)
  2 82=B2+B4*B6*B7
     EALFA=B1/B2
     E=EALFA**(1./ALPHA(J))
     83=0.
     B5=B4#EALFA
     DØ 3 I=1.NØF
     B6=VI(I)-B5*(A(I) **ALPHA(J)) *(EM(I) **BETA(J))*(VI(I) **ALAMDA(J))-
    IVR(I)
   3 B3=B3+B6*B6
     B6=NØF-1
     S=SQRT(B3/B6)
     K=12+J
     L=K-11
     PRINT 104, (MID(I), I=L,K)
     PRINT 105,DID
   4 PRINT 106, E, S
     GØ TØ 5
     FND
```

BULLET-PREEF GLASS

CONDENSER

0.9904226930E-01 0.1371180534E+03

MAGNES IUM

CANDENSER

0.1495236572E-00 0.1412786815E+03

ALUMINUM ALLEY 2024T-3

CONDENSER

0.8389952371E-01 0.149057005CE+03

TITANIUM ALLØY

CONDENSER

0.7852643271E-01 0.1310332128E+03

CAST IREN

CONCENSER

0.9392946520E-01 0.1269118118E+03

FACE-HARDENED STEEL

CØNDENSER

0.2002214531E-01 0.1272961626E+03

MILD HØMØGENEØUS STEEL

CUNCENSER

0.3122708173E-01 0.140169503CE+03

HARD HOMEGENERUS STEEL

CØNDENSER

0.2564732564E-01 0.1401695030F+03

COPPER

CØNDENSER

0.5115912822E-01 0.1423751516E+03

Figure A-4. Sample Output.

CONFIDENTIAL