Monte Carlo Simulation Project

Course: Advanced Statistics with Applications in R **Delivery Format:** Team project (1–3 students)

Overview

In this project, your team will design and conduct a Monte Carlo simulation study based on a real-world context. Rather than abstract synthetic scenarios, each team will choose an application domain such as public health, supply chains, sports analytics, finance, or environmental monitoring.

While you will *simulate* data, your design must be rooted in a *realistic* dataset, scenario, or journal article that provides motivation for the distributions and assumptions you use. The focus is on learning how to model randomness and uncertainty using tools from this course.

Learning Objectives

By the end of this project, you should be able to:

- Translate a real-world decision problem into a statistical simulation framework.
- Choose and justify appropriate probability models and distributions.
- Implement a reproducible Monte Carlo simulation in R.
- Analyze the results using inferential and descriptive tools (e.g., confidence intervals, hypothesis tests *Optional*).
- Communicate insights clearly and professionally in written and oral formats.

№ Team Structure

- Teams of 1–3 students.
- Assign a Team Leader to oversee progress and communication.
- Each member must actively contribute and present a portion of the final deliverables.
- Peer evaluations may affect individual grades in cases of unequal participation.

Project Tasks

1. Choose a Context & Define Your Simulation Goal

Start with a real-world question (e.g., from a journal article, online dataset, or report).

- Example: "How would increased demand variability affect order delays in a supply chain?" or "How often would a cancer screening test miss a diagnosis under new sensitivity thresholds?"
- Translate this into a *simulation* problem (define variables, events, outcomes).

2. Build the Statistical Framework

- Identify key random variables and their distributions.
- Distributions must be covered in the course (e.g., Exponential, Poisson, Binomial, Normal, Gamma, Lognormal).
- Justify each choice and define assumptions clearly.
- Explain how you will simulate the process (what loops? what metrics? how many repetitions?).

3. Implement in R

- Use set.seed() for reproducibility.
- Your code must be:
 - Well-annotated with comments.
 - Modular, ideally using functions.
 - Saved and submitted as a .R or .Rmd file.
- Use vectorized operations where possible to ensure efficiency.

4. Analyze & Interpret

- Summarize simulation results using appropriate statistical methods:
 - Descriptive summaries (means, variances).
 - Visualization (histograms, density plots, etc.).
 - Confidence intervals and hypothesis tests (where relevant) Optional.
- Discuss what these results mean in context what decision could the client make?

5. Communicate Your Findings

- Written Report (5–7 pages):
 - Problem background.
 - Simulation design and methods.
 - Results and interpretation.
 - Limitations and possible extensions.

• Live Presentation (15–20 min): Each team member should explain a substantial part.

Al Usage Policy

- Up to 10% of code or text can originate from AI tools (e.g., ChatGPT, Copilot).
- You must document any Al use in an Appendix: Al Log:
 - What tools were used.
 - What parts of the code/text it helped generate.
 - How you reviewed/verified the results.
- Clearly label Al-assisted content in comments or footnotes.

Timeline

Deliverable	. Description	Due
Week 4	Submit group info, topic, and a brief idea	June 20
Week 6	status report with partial code and participation update July 4	
Week 8	Final report, code, and presentation	July 18

Evaluation Rubric Highlights

- Clarity and feasibility of simulation design.
- Justification of statistical assumptions.
- · Quality and reproducibility of code.
- Accuracy and depth of analysis.
- Professional communication (written and oral).
- Transparency and ethical use of AI tools.