

0、求能够获得最大功率的 R,并求其获得的最大功率。

解:
$$I = \frac{U_S}{R_S + R_L}$$
 $P_L = I^2 R_L = \left(\frac{U_S}{R_S + R_L}\right)^2 \cdot R_L$

$$R_{\rm L} = R_{\rm S}$$
 是 $R_{\rm L}$ 获得最大功率的充要条件

电阻匹配

$$U = \frac{U_{\rm S}}{2}$$
, $\eta = 50\%$, $P_{\rm L} = \frac{U_{\rm S}^2}{4R_{\rm S}}$

把负载获得最大电压和最大功率对比进行思考和记忆!

一、求 U_{ab}

$$I = \frac{3U_{\rm S}}{3R} = \frac{U_{\rm S}}{R}$$

$$U = RI = R \times \frac{U_{S}}{R} = U_{S}$$

$$U_{ab} = U - U_{S} = U_{S} - U_{S} = 0$$

二、(a) 求 R_{ab} 、 R_{ac}

$$R_{ab} = 3//(2//2 + 4//(4//4 + 2))$$

= 1.5\O

$$R_{ac} = \frac{2}{2} \frac{4}{4} \frac{4}{4} + 2 + 3$$

$$= \frac{5}{6} \Omega = 0.83 \Omega$$

二、(c) 求 R_{ab} .

- (a) 开路: $R_{ab}=2//(4+2)//(2+1)=1\Omega$
- (b) 短路: $R_{ab}=2/(4/(2+2)/(1))=1\Omega$

二、(d) 求 R_{ab} .

三、求入端电阻 Rab

四、

- (1) 求 $I_1, I_2, I_3, U_{ab}, U_{eg}$;
- (2) 若 R 变为 5Ω ,问 U_{eg} , I_1 和 I_2 如何变化?

$$U_{ab}$$
=3-1=2V
 U_{eg} =4-2-6 =-4V
 I_1 =2+1-1=2A
 I_2 =2-0.5=1.5A
 I_3 = -2A

(2) 若 R 变为 5Ω , 问 U_{eg} , I_1 和 I_2 如何变化?

 I_1, I_2 保持不变。

$$U_{\rm eg} = 4 - 2 - 10 = -8 \text{V}$$

五、分别用回路法和节点法列写下图电路的方程。

列写方程时,既要掌握一般列写方法,又要注意其**中电压源支路**, **电流源支路及受控源支路**的处理方法。

此电路节点数n=4,支路数b=6,独立回路数l=b-n+1=3

回路法: (1) 设电流源两端的电压为us.

$$\begin{cases}
(R_1 + R_2)i_1 - R_1i_2 - R_2i_3 = u_{s1} - u_{s2} \\
-R_1i_1 + (R_1 + R_3 + R_4 + R_5)i_2 - R_5i_3 = u_s \\
-R_2i_1 - R_5i_2 + (R_2 + R_5 + R_6)i_3 = u_{s2} - u_s \\
i_s = i_2 - i_3
\end{cases}$$

补充方程:电流源支路电流与回路电流关系的方程。

回路法: (2) 选择更合适的一组回路

$$\begin{cases} i_2 = i_s \\ (R_1 + R_2)i_1 - R_1i_2 = u_{s1} - u_{s2} \\ (R_3 + R_4)i_2 + (R_3 + R_4 + R_6)i_3 = u_{s1} \end{cases}$$

节点法:

方法1: 设电压源

 u_{s1} 支路的电流为 i

节点法:

方法2: 选电压源 u_{s1} 支路所接的节点之一作为参考 节点,则 $u_{n1}=u_{s1}$,此时可不必再列节点1的方程。

$$u_{s1} = u_{n1}$$

六、求电流 I。

8条支路, 4个独立节点, 4个独立回路

解法一: 节点法

电压源支路的处理: 选电

压源的负端为参考节点

$$\begin{cases} U_{n1} = U_{S} \\ \left(\frac{1}{3} + \frac{1}{6} + \frac{1}{6.4}\right) U_{n2} - \frac{1}{3} U_{n1} - \frac{1}{6.4} U_{n4} = 0 \\ \left(\frac{1}{4} + \frac{1}{4}\right) U_{n3} - \frac{1}{4} U_{n1} - \frac{1}{4} U_{n4} = -15 \\ \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{6.4}\right) U_{n4} - \frac{1}{4} U_{n3} - \frac{1}{6.4} U_{n2} = 0 \end{cases}$$

$$\begin{cases} U_{n1} = 45V \\ U_{n2} = 23.4V \\ U_{n3} = -6.36V \\ U_{n4} = 2.28V \end{cases}$$

$$I = \frac{U_{n2} - U_{n4}}{6.4}$$
$$= 3.3 A$$

解法二: 回路法

电流源支路的处理:

选一组合适的回路

$$\begin{cases} I_{12} = 15 \\ (3+6)I_{11} + 9I_{14} - 6I_{13} = 45 \\ (2+6+6.4)I_{13} - 6I_{11} - 2I_{12} - (6+2)I_{14} = 0 \\ (4+3+6+2+4)I_{14} + (3+6)I_{11} + (2+4)I_{12} - (6+2)I_{13} = 0 \end{cases}$$

$$I = I_{13} = 3.3 \text{ A}$$

解法三:叠加定理

电阻串并联,电源变换 $I_2 = 1.2$ A

解法四: 用戴维南定理

求开路电压 U_{oc} (叠加):

$$U_{\text{oc}}' = U_1' + U_2'$$

= 30-9=21V

$$U_{\text{oc}}"=U_1"+U_2"$$

=0 + 12=12V

$$U_{\rm oc} = U_{\rm oc}$$
 '+ $U_{\rm oc}$ "
$$= 21 + 12 = 33 \text{ V}$$

I=33/(3.6+6.4)=3.3A

33V

b

$$T = \begin{bmatrix} 2 & 8\Omega \\ 0.5 & 2.5 \end{bmatrix}$$

七、如图所示,二端口网络N的传输参数为

 $U_{\rm S}$ =6V和 $R_{\rm I}$ =2 Ω 的串联支路连接到端口 1。问: **R** 获得**最大功率**时的值,并求此最大功率以及**电源** $U_{\rm S}$ 发出的功率。

解:

$$P_{\rm U_S} = \frac{U_{20}^2}{2R} \times$$

$$\begin{bmatrix} U_1 = 6 - 2I_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 0.5 & 2.5 \end{bmatrix} \begin{bmatrix} U_{20} \\ 0 \end{bmatrix}$$

フエル台

$$\begin{bmatrix} U_1 = 6 - 2I_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 0.5 & 2.5 \end{bmatrix} \begin{bmatrix} 0 \\ -I_{2d} \end{bmatrix}$$

短路电流: I_{2d}= - 6/13A

$$R_{\mbox{$\frac{4}{9}$}} = \frac{U_{20}}{-I_{2d}} = \frac{13}{3}\Omega$$

$$P_{\text{max}} = \frac{U_{20}^2}{4R} = 0.23 \text{W}$$

$$T = \begin{bmatrix} 2 & 8\Omega \\ U_s & U_1 \\ \vdots & \vdots \\ 0.5 & S & 2.5 \end{bmatrix}$$

$$U_1 = 2U_2 - 8I_2$$

$$I_1 = 0.5U_2 - 2.5I_2$$

$$U_2 = -\frac{13}{3}I_2$$

$$\longrightarrow U_1 = \frac{25}{7}I_1 \longrightarrow R_{\text{eq}} = 3.57\Omega$$

$$P = \frac{U_{\rm S}^2}{R_1 + R_{\rm eq}} = 6.46 \text{W}$$

八、用OpAmp实现乘法和除法运算

$$\frac{u_{i}}{R} = i = I_{S}e^{u/U_{TH}} = I_{S}e^{-u_{0}/U_{TH}}$$

$$u_{0} = -U_{TH} \ln \left(\frac{u_{i}}{I_{S}R}\right)$$

$$i = I_{S}e^{u_{i}/U_{TH}} = -\frac{u_{0}}{R}$$
$$u_{0} = -RI_{S}e^{u_{i}/U_{TH}}$$

$$xy = e^{(\ln x + \ln y)}$$

除法运算

$$u_{\rm O} = -\frac{R_2}{R_1} \cdot \frac{u_{\rm II}}{k u_{\rm I2}}$$

乘方运算

$$u_{\rm O} = \sqrt{-\frac{R_2}{kR_1} \cdot u_{\rm I}}$$

九、题图所示电路中理想运算放大器工作于线 性放大区。二极管的性质如图所示。

- (1) 求*u*₁和*u*₁、*u*₂的关系。
- (2) 如果 $u_1 \ge 0$, 求 u_2 和 u_1 的关系。
- (3) 如果 $u_1 < 0$, 求 u_2 和 u_1 的关系。
- (4) 该电路实现了怎样的运算?

D_1	D_2
短路	短路
- 电阻	电阻
短路	电阻
电阻	短路

D₁短路, D₂相当于一个电阻

D₁相当于一个电阻, D₂短路

十、图示方框为线性含独立源(不含受控源)的电阻网络。已知:图(a)电路 当 U_S =10V时, I_1 =2A, I_2 =1A;当 U_S =20V时, I_1 =6A, I_2 =3A。求图(b) 电路中ab支路的电流 I_{ab} 。

诺顿定理,叠加定理,齐性原理,互易定理

设 $U_{\rm S}$ =10V单独作用时在两个支路产生的电流分别为 I_{1}' 和 I_{2}' A中电源单独作用时在两个支路产生的电流分别为 I_{1}'' 和 I_{2}''

齐性

