EJERCICIOS DE EXAMEN

1. Una compañía manufactura dos modelos de radar (A y B) para controlar la velocidad de los automóviles. Para la próxima semana tiene un pedido de 100 unidades del modelo A y 150 unidades del modelo B. Aunque la compañía compra a terceros todos los componentes electrónicos usados en ambos modelos, los receptáculos de plástico para los mismos los fabrica en su propia planta de producción. Cada receptáculo del modelo A requiere 4 minutos de tiempo de moldeado y 6 minutos de tiempo de ensamblado; cada receptáculo del modelo B requiere 3 minutos de tiempo de moldeado y 8 minutos de tiempo de ensamblado. Para la próxima semana la planta de producción dispone de 600 minutos de tiempo de moldeado y de 1080 minutos de tiempo de ensamblado. Los costes de producción de los receptáculos son de 10€ y 6€, respectivamente, para los modelos A y B. Dependiendo de la demanda la compañía puede comprar receptáculos a un proveedor externo para cubrir los pedidos de los clientes que no podrían cubrirse de otro modo. Los costes de compra de los receptáculos son 14€ y 9€, respectivamente para los modelos A y B.

Plantear el modelo de programación lineal (PL) que permita determinar cuantos receptáculos deben fabricarse y/o comprarse de cada modelo para poder atender los pedidos de la próxima semana, minimizando el coste total de producción y compra.

2. Una compañía fabrica escritorios, mesas y sillas. Para ello dispone de dos tipos de mano de obra cualificada: acabado y carpintería. Los recursos necesarios para elaborar cada tipo de mueble se muestran en la Tabla 1.

	Tabla 1		
Recurso	Escritorios	Mesas	Sillas
Madera (metros)	8	6	1
Horas de acabado	4	2	1,5
Horas de carpintería	2	1,5	0,5

En la actualidad se cuenta con 48 metros de tablón de madera, 20 horas de acabado y 8 horas de carpintería. Los precios de venta son 60€, 30€ y 20€ para los escritorios, mesas y sillas, respectivamente. La empresa opina que la demanda de escritorios y sillas es ilimitada, pero como mucho se van vender 5 mesas. Con el objetivo de determinar la producción que maximiza las ventas, se plantea el siguiente modelo de programación lineal:

Max
$$Z=60X_1+30X_2+20X_3$$

Sujeto a:
 $8X_1+6X_2+X_3\leq 48$
 $4X_1+2X_2+1,5X_3\leq 20$
 $2X_1+1,5X_2+0,5X_3\leq 8$
 $X_2\leq 5$
 $X_1,X_2,X_3\geq 0$,

Replantear el modelo de PL anterior como un modelo de programación con las siguientes metas:

- i. El gerente de la empresa desea conseguir una ventas de al menos 300€
- ii. Consumir todo el recurso de madera para evitar almacenar stocks.
- iii. Se permite realizar horas extras, pero estas no deben superar las 3 horas en el proceso de acabado y 1 hora en el proceso de carpintería.
- iv. No producir ninguna mesa.

Plantear el modelo que permita determinar la producción de modo que se intente lograr todas las metas lo máximo posible.

- 3. Se dispone de una cantidad de dinero para invertir en tres valores de bolsa y se desea repartir la inversión total entre estos tres valores, de modo que se minimice el riesgo y se alcance un beneficio anual esperado del 3%. En la Tabla 4 se muestra la información disponible y la solución óptima obtenida con Solver de Excel y en la Tabla 5 se muestra el informe de confidencialidad.
 - a. Plantear el modelo de programación no lineal (PNL) que se resultve con Solver para obtener los resultados de la Tabla 4.
 - b. ¿Podría resolver el modelo anterior con el algoritmo SIMPLEX?. Si la respuesta es negativa intente describir, en términos generales, un algoritmo que utilizaría.
 - c. Describir la solución óptima que se muestra en la Tabla 4.
 - d. Como interpreta, en términos económicos, el valor de los Multiplicadores de Lagrange de la Tabla 5.

Tabla 4

Problema de selección de cartera

	Renta	bilidad M	ensual		Matriz de varianz	as y covarianzas		
Año	V1	V2	V3		V1	V2	V3	<u>-</u> ,
1	0.82%	-19.13%	-8.00%	V1	0.00320	0.00270	-0.00070	
2	0.82%	1.57%	4.01%	V2	0.00270	0.01110	0.00040	
3	0.00%	4.73%	5.30%	V3	-0.00070	0.00040	0.00380	_
4	-4.90%	9.59%	-2.65%					
5	-4.86%	4.86%	-9.37%		V1	V2	V 3	Total
6	6.48%	4.91%	-1.35%	Cartera	24.43%	60.65%	14.92%	100.00%
7	4.10%	2.47%	-1.36%				Beneficio	deseado
8	-4.10%	-5.75%	10.75%	Benefic	io esperado	3.00%	3.00%	
9	9.05%	18.29%	2.65%	Varianza	de la cartera	0.0051798		
10	12.60%	20.71%	-5.32%					
11	-0.85%	-0.88%	1.34%					
12	-3.38%	10.65%	7.94%					
Media Anual	1.32%	4.34%	0.33%					

Tabla 5

das de	e variable:	S		
			Final	Reducido
elda	1	Nombre	Valor	Degradado
G\$11	Cartera V	V1	0.244299915	0
H\$11	Cartera V	V2	0.606469079	0
\$11	Cartera V	V3	0.149231006	0
tricci	ones			
			Final	Lagrange
elda	1	Nombre	Valor	Multiplicador
H\$13	Benefici	o esperado V2	0.03	0.340081111
\$11	Cartera	Γotal	1	0.000
	elda 6\$11 1\$11 \$11 triccio	elda \$\frac{1}{3}\$11 Cartera \\ \frac{1}{3}\$11 Cartera \\ \frac{1}{3}\$11 Cartera \\ \frac{1}{3}\$tricciones elda \$\frac{1}{3}\$13 Benefici	G\$11 Cartera V1 H\$11 Cartera V2 \$11 Cartera V3 tricciones Plant Strict	elda Nombre Valor 3\$11 Cartera V1 0.244299915 4\$11 Cartera V2 0.606469079 \$11 Cartera V3 0.149231006 tricciones Final elda Nombre Valor #\$13 Beneficio esperado V2 0.03

4. Una empresa produce dos tipos de minimotocicletas de 49cc: R y Z. En la próxima semana la empresa manufacturera quiere producir un máximo de 700 unidades y quiere asegurarse que el número de motocicletas tipo R no excede el de tipo Z en más de 300 unidades. Con el tipo Z la empresa obtiene un beneficio unitario de 70 euros y con el tipo R el beneficio unitario se reduce a 40 euros. Las bicicletas

poseen un mecanismo idéntico, sólo difieren en su apariencia. Por ello cada motocicleta de tipo R requiere 1 kilo de polímero y 3 horas de tiempo de producción, mientras que cada motocicleta de tipo Z requiere 0,5 kilos de polímero y 4 horas de producción. Se asume que la empresa dispone de 450 kilos de polímero y 2.400 horas para producción. El objetivo de la empresa es maximizar beneficios dadas las restricciones de recursos y producción.

- a. Plantee el problema de programación lineal (PL) que permita determinar cuántas motocicletas deben producirse de modo que se maximice el beneficio y se cumplan las restricciones de materia prima y producción.
- b. Resuelva el modelo utilizando el método gráfico. Debe determinar cuál es la región factible y el punto óptimo. También debe representar la recta ligada a la función objetivo que pasa por el punto óptimo. Interpretar la solución.
- 5. Una agencia de inversión necesita determinar cómo repartir 100.000 euros en el siguiente conjunto de bonos (Tabla 2) con el objetivo de maximizar el rendimiento anual:

Tabla 2.

Bono	Rendimiento	Vencimiento	Riesgo	Libre de
	anual			impuestos
A	9,5%	Largo	Alto	Si
В	8,0%	Corto	Bajo	Si
C	9,0%	Largo	Bajo	No
D	9,0%	Largo	Alto	Si
E	9,0%	Corto	Alto	No

La agencia desea invertir al menos el 50% del dinero en el corto plazo y no más del 50% en bonos de alto riesgo. También, desea invertir al menos el 30% de los fondos en bonos libres de impuestos y, por último, el 40% de las ganancias anuales deben ser libres de impuestos.

El modelo de PL que permite determinar cómo repartir la inversión de forma que se maximice la rentabilidad y se cumplan las condiciones de la agencia es:

Max
$$Z=0.095X_1+0.08X_2+0.09X_3+0.09X_4+0.09X_5$$

Sujeto a:
 $X_2+X_5\ge 50.000$
 $X_1+X_4+X_5\le 50.000$
 $X_1+X_2+X_4\ge 30.000$
 $0.057X_1+0.048X_2-0.036X_3+0.054X_4-0.036X_5\ge 0$
 $X_1, X_2, X_3, X_4, X_5\ge 0$

En las Tablas 3 y 4 se muestran los resultados obtenidos tras resolver el modelo anterior con el procedimiento PROC LP de SAS/OR, a partir de estos resultados responda a las preguntas planteadas posteriormente.

Tabla 3.

C	1 2 3 4 5	Nombre de la variable x1 x2 x3 x4 x5 Corto_plazo	Estado BASIC BASIC BASIC	NON-NEG NON-NEG NON-NEG NON-NEG	Precio 0.095 0.08 0.09 0.09	31578.947 31578.947 18421.053 0	0 0 0	
C	1 2 3 4 5	variable x1 x2 x3 x4 x5	Estado BASIC BASIC BASIC	Tipo NON-NEG NON-NEG NON-NEG NON-NEG	Precio 0.095 0.08 0.09 0.09	31578.947 31578.947 18421.053 0	reducida 0 0 0	
C	1 2 3 4 5	variable x1 x2 x3 x4 x5	BASIC BASIC BASIC	NON-NEG NON-NEG NON-NEG NON-NEG	0.095 0.08 0.09 0.09	31578.947 31578.947 18421.053 0	reducida 0 0 0	
C	1 2 3 4 5	x1 x2 x3 x4 x5	BASIC BASIC BASIC	NON-NEG NON-NEG NON-NEG NON-NEG	0.095 0.08 0.09 0.09	31578.947 31578.947 18421.053 0	0 0 0	
	2 3 4 5 6	x2 x3 x4 x5	BASIC BASIC	NON-NEG NON-NEG NON-NEG	0.08 0.09 0.09	31578.947 18421.053 0	0	
	2 3 4 5 6	x2 x3 x4 x5	BASIC BASIC	NON-NEG NON-NEG NON-NEG	0.08 0.09 0.09	31578.947 18421.053 0	0	
	3 4 5 6	x3 x4 x5	BASIC BASIC	NON-NEG NON-NEG	0.09	18421.053	0	
	4 5 6	x4 x5	BASIC	NON-NEG	0.09	0		
	5 6	x5	BASIC	NON-NEG			-0.005053	
	6				0.09	10401 050		
		Corto_plazo					0	
	7			SURPLUS	0	0	-0.007579	
		Riesgo		SLACK	0	0	-0.007579	
	8	Impuestos	BASIC	SURPLUS	0	33157.895	0	
	9	Rent		SURPLUS	0	0	-0.017544	
			Resume	n de resti	ricciones			
		Nombre de la		Col			Actividad	
Fi	la	restricción	Tipo	S/S	Rhs	Actividad	dual	
	1	wontobilitot	OD TEGE	· · · ·	0	0040 1050		
		rentabilitat						
		Corto_plazo				50000		
		Riesgo				50000		
		Impuestos						
		Rent		9				
	6	Total	EQ	•	100000	100000	0.0884211	

Tabla 4.

				Anális	sis	de ra	ngo RHS	3					
				Phi mínimo	o				Phi má	ximo			
	Fil	la	Rhs D	ejar		Objet	ivo	Rh	s Dejar	Ob	jetivo		
	Cor	rto_plazo	11956.522 x	5	9	9130.4	348 85	714.28	6 x3	857	1.4286		
	Rie	esgo	14285.714 x	5	8	3571.4	286 880	043.47	8 x3	913	0.4348		
	Imp	puestos	-INFINIDA .				. 633	L57.89	5 Impuest	os 884	2.1053		
	Rer	nt	-4725 Iı	mpuestos		8	925	525	0 x5		8750		
	Tot	al	73076.923 x	3	6	5461.5	385 158	333.3	3 x5		14000		
				Análisis	del	rang	o del p	precio					
		Nombre d	e la	Phi míı	nimo)			Phi	máximo			
	Col	variable	Preci	o Introduo	cir	Ob	jetivo	Pr	ecio Intr	oducir	Objetivo		
	1	x1	0.089893	б х4		868	0.8511		0.1 Rent		9000		
	2	x2	-INFINID	Α.		-IN	FINIDA	0	.085 Rent		9000		
	3	x3	0.08	5 Rent			8750	0.105	6522 Ries	go :	9130.4348		
	4	x4	-INFINID	Α.		884	2.1053	0.095	0526 x4	;	8842.1053		
	5	x5	0.08	5 Rent			8750	0.105	6522 Cort	o_plazo	9130.4348		
	6	Corto_pl	azo -INFINID	Α.		884	2.1053	0.007	5789 Cort	o_plazo	8842.1053		
	7	Riesgo	-INFINID	Α.		884	2.1053	0.007	5789 Ries	go	8842.1053		
	8	Impuesto	s -INFINID	Α.		-IN	FINIDA	0.	0025 Rent		8925		
	9	Rent	-INFINID	Α.		884	2.1053	0.017	5439 Rent		8842.1053		
				2	Sist	ema S	AS		13:23 Wed	nesday, J	une 5, 2013	3 1 P	
									С			Н	
									0			A	
									r		I	S	
									t		m	E	
	0	R							0		р	_	
	В	Н	В	I					_	R	u	1	
	J	S	A	N					p	i	e	_	_
	_	_	S	V					1	е	s R	0	
0	I	I	I	В					a	s	t e	В	t
b	D	D	С	_	х	хх	x	х	Z	g	o n	J	a
s	-	_	_	R	1	2 3	4	5	0	0	s t	E	t
1 rent	abilit	at _rhs_	R_COSTS		0	-0 -0	-0.00	505 0	-0.00758	-0.00758	0 -0.01754	1 0	0
2 rent	abilit	at _rhs_	x3	18421.05	0	0 1	0.010	053 0	0.51579	-0.48421	0 3.5087	7 0	0
3 rent	abilit	at _rhs_	x2	31578.95	0	1 0	-0.01	053 -0	-0.51579	-0.51579	0 -3.5087	7 0	0
4 rent	abilit	at _rhs_	x1	31578.95	1	0 0	0.989	947 -0	0.48421	0.48421	0 -3.5087	7 0	0
5 rent	abilit	at _rhs_	Impuestos	33157.89	0	0 0	-0.02	L05 -0	-0.03158	-0.03158	1 -7.01754	1 0	0
6 rent	abilit	at _rhs_	x 5	18421.05	0	-0 0	0.01	53 1	-0.48421	0.51579	0 3.5087	7 0	0
7 rent	abilit	at _rhs_	PHASE_1_OBJE	0.00	0	0 0	0.000	000 0	0.00000	0.00000	0.00000) 1	0
8 rent	abilit	at _rhs_	rentabilitat	8842.11	-0	0 0	0.00	505 -0	0.00758	0.00758	0 0.01754	1 0	1

- Interprete en términos económicos el modelo planteado al inicio del enunciado (función objetivo y restricciones y sus coeficientes).
- b. Interprete en términos económicos la solución óptima (función objetivo, variables de decisión y restricciones).
- c. Qué ocurriría con la solución óptima (función objetivo y variables) si la agencia decidiera invertir al menos un 70% de la inversión en el corto plazo y no el 50% actual.
- d. Qué ocurriría con la solución óptima (función objetivo y variables) si la rentabilidad de los bonos D incrementara al 9,6%. (0,75 puntos)
- Qué ocurriría con la solución óptima (función objetivo y variables) si la empresa se viera obligada a invertir el 5% de la inversión total en bonos del tipo D al 9%.
- 6. Una empresa manufactura tres tipos de *chips* para ordenadores, cada tipo de *chip* requiere diferente

cantidad de tiempo en tres departamentos distintos que se resumen en la Tabla 5. Tabla 5.

		Tubia e.		
	Chip A	Chip B	Chip C	Total de horas
				disponibles
Dept. 1	3	2	4	80
Dept. 2	2	4	3	90
Dept. 3	3	4	2	90

Siendo X₁, X₂ y X₃ el número de unidades de *chips* A, B y C, respectivamente, el beneficio total asociado a cada tipo de chip es:

- \checkmark para el *chip* A el beneficio es -0.35 X_1^2 +8,3 X_1 +540
- para el el *chip* B el beneficio es -0.60 X_2^2 +9,45 X_2 +1.108
- ✓ para el el *chip* C el beneficio es -0.47 X_3^2 +11,0 X_3 +850
- Plantee el modelo de programación a resolver si el objetivo es maximizar el beneficio sujeto a la disponibilidad de horas en cada departamento. ¿Se trata de un modelo lineal o no lineal? Justifique la respuesta. (0,75 puntos)
- b. En la Tabla 6 se muestra algunos resultados relacionados con la solución des modelo obtenida con Excel:

- b.1. Interprete la solución óptima.
- b.2. Interprete los valores de los multiplicadores de Lagrange.

Tabla 6.

NOM DELS PRODUCTES	A	В	С		
Número de unidades (producción)	9,517618151	6,965183911	9,379194431	Beneficio Total	
Efecto Lineal	8,3	9,45	11	146	
Efecto Cuadrático	-0,35	-0,6	-0,47		
Restricciones				Utilizado	Disponible
Dept. 1	3	2	4	80	80
Dept. 2	2	4	3	75,03355524	90
Dept. 3	3	4	2	75,17197896	90

Restricciones

		Final	Lagrange
Celda	Nombre	Valor	Multiplicador
\$E\$10	Dept. 1 Utilizado	80	0,545888066
\$E\$11	Dept. 2 Utilizado	75,03355524	0
\$E\$12	Dept. 3 Utilizado	75,17197896	0

7. Una compañía produce dos tipos de cortadoras de césped: eléctricas y de gas. La compañía ha contratado un pedido de 30.000 modelos eléctricos y 15.000 de gas, que está obligada a servir. Sin embargo, la compañía tiene una capacidad de producción limitada, que se resume en la Tabla 2:

Tabla 2: Horas requeridas por cortacésped.

Proceso	Modelo	Modelo de	Tiempo Total
	Eléctrico	Gas	Disponible
Producción	0,2	0,4	10.000
Ensamblaje	0,3	0,5	15.000
Embalaje	0,1	0,1	5.000

El coste de producir un cortacésped eléctrico es de 55€ y el de producir un cortacésped de gas es de 85€. Alternativamente, la compañía puede comprar cortacésped eléctricos y de gas a un precio de 67€ y 95€, respectivamente. La compañía quiere saber cuántos cortacéspedes producir y cuantos tiene que comprar a un tercero para satisfacer el pedido. El modelo de PL a resolver es:

Sujeto a:

- (1) $P_1+C_1\geq 30.000$
- (2) $P_2+C_2\geq 15.000$
- (3) $0.2 P_1 + 0.4 P_2 \le 10.000$
- (4) $0.3 P_1+0.5P_2 \le 15.000$
- $(5) 0,1 P_1+0,1P_2 \le 5.000$
- (6) $P_1, P_2, C_1, C_2 \ge 0$

Donde P_1 y P_2 son, respectivamente, el número de cortacéspedes que se fabrican: eléctricos y de gas; C_1 y C_2 son, respectivamente, el número de cortacéspedes que se compran a un tercero: eléctricos y de gas. A continuación, en las tablas 3 y 4 se muestran los resultados de la solución del modelo de PL anterior en SAS.

Tabla 3.

		The	LP Procedu	re			
		Var	riable Summa	rv			
	Variable			. ,		Reduce	d
Co1	Name	Status	Type	Price	Activi		
1	p1		NON - NEG	55		-	0
	p2		NON - NEG	85			0
	c1		NON - NEG	67		0	7
4	c2	BASIC	NON - NEG	95	50	000	0
5	Produccion		SLACK	0		0 2	5
6	Emsamblaje	BASIC	SLACK	0	10	000	0
7	Embalaje	BASIC	SLACK	0	10	000	0
		Cons	straint Summ	arv			
	Constraint	00110	S/S	u. y		Dua	1
Row	Name	Type	Col	Rhs	Activi	ty Activit.	_
	coste	OBJECTV		0		•	
	demandaElec			30000			0
3	demandaGas	EQ		15000			5
4	Produccion	LE	5	10000	100	000 -2	5
5	Emsamblaje	LE	6	15000			0
	Embalaje	LE	7	5000	40	000	0
		RHS	Range Analy	sis			
	Mi				Ma	ximum Phi	
Row	Rhs Lea		Objective		Rhs Lea		bjective
demandaElec	20000 c2	v ±g	2375000		0000 p2	.ving 0	4175000
demandaGas	10000 c2		2500000		•		
Produccion	6000 p2		3075000		0800 Ems	amblaie	2955000
Emsamblaje	14000 Ems	amblaie	2975000			, -	
Embalaje	4000 Emb		2975000				
		Price	Range Anal	veie			
Variable			•	•		-Maximum Ph	i
Col Name		Entering				Entering	Objective
1 p1	-INFINITY		-INFIN	ITY	62	c1	3185000
2 p2	71		2835		95	Produccion	3075000
3 c1	60				NFINITY		2975000
4 c2		Producci			109		3045000
5 Produccion		Producci			NFINITY		2975000
6 Emsamblaje		Producci			NFINITY		INFINITY
7 Embalaje		Producci			NFINITY		INFINITY
			Tabla	4.			

Tabla 4.

												Р	
												Н	
									Р	Е		Α	
									r	m		S	
									0	s	Е	E	
	<u>_</u>	– R							d	a	m	-	
	В	н	_ B	I					u	m	b	_ 1	
	J	S	A	N					C	b		'	С
	U	J		V							a	<u> </u>	
•	Ţ	Ţ	S	· ·					C	1	1		0
0	I	I	I	В					i	a	a	В	S
b	D	D	С	_	р	р	С	С	0	j	j	J	t
S	_	_	_	R	1	2	1	2	n	е	е	E	е
1	coste	_rhs_	R_COSTS		0	0	7.00	0	25.00	0	0	0	0
2	coste	_rhs_	p1	30000	1	0	1.00	0	0.00	0	0	0	0
3	coste	_rhs_	c2	5000	- 0	-0	0.50	1	-2.50	0	0	0	0
4	coste	_rhs_	p2	10000	0	1	-0.50	0	2.50	0	0	0	0
5	coste	_rhs_	Emsamblaje	1000	0	0	-0.05	0	-1.25	1	0	0	0
6	coste	_rhs_	Embalaje	1000	0	0	-0.05	0	-0.25	0	1	0	0
7	coste	_rhs_	PHASE_1_0BJE	0	0	0	0.00	0	0.00	0	0	1	0
8	coste	_rhs_	coste	2975000	- 0	-0	-7.00	0	-25.00	0	0	0	1

- f. Interprete en términos económicos el modelo planteado al inicio del enunciado (función objetivo y restricciones y sus coeficientes).
- g. Interprete en términos económicos la solución óptima (función objetivo, variables de decisión y restricciones).
- h. ¿Qué ocurriría con la solución óptima (función objetivo y variables) si la empresa se viera obligada a comprar 100 cortacéspedes eléctricos?. Calcule los resultados y descríbalos.
- i. ¿Hasta que valor tendría que reducirse el precio de los cortacéspedes eléctricos para que sea rentable su compra por parte de la empresa proveedora? Justifique la respuesta.
- j. ¿Qué ocurriría con la solución óptima (función objetivo y variables) si el tiempo disponible para producción pasara a ser de 10.200 horas?. Calcule los resultados y descríbalos.
- 8 Una empresa manufacturera produce dos tipos de mesas: A y B, para ello utiliza tres tipos de máquinas: I, II y III. Los tiempos de producción requeridos (en horas) en cada máquina para cada mesa se muestran en la Tabla 1:

Tabla 1.

Máquina	Mesa Tipo A	Mesa Tipo B	Tiempo Total
			Disponible
I	1,5	2,0	1.000
II	3,0	4,5	2.000
III	2,5	1,5	1.500

Las mesas del tipo A se venden a 350 € la unidad y las de tipo B a 450€ la unidad. El gerente de la empresa determina que al menos el 20% de las mesas deben ser de tipo A y al menos el 30% de las mesas debe ser de tipo B.

- a. Plantee el problema de programación lineal (PL) que permita determinar cuántas mesas deben producirse de cada tipo de modo que se maximicen las ventas y se cumplan las restricciones de disponibilidad de horas de producción y exigencias del gerente. Debe deducir las dos restricciones ligadas a las exigencias de producción (al menos el 20% de Tipo A y al menos el 30% de Tipo B).
- b. La empresa se replantea su único objetivo de maximización de beneficios y a cambio desea determinar cuál es la producción óptima si se quieren alcanzar al máximo posible las siguientes metas:
 - I. Alcanzar al menos unas ventas de 300.000 euros.
 - II. Cumplir con las exigencias del gerente.
 - III. No subutilizar la capacidad de producción de la empresa (horas de trabajo).

Plantee el modelo de programación por metas.

c.	Utilizando variables binarias, modifique el planteamiento del modelo del apartado a. de modo que se incorpore la existencia de unos costes fijos de producción CF1 y CF2.
	se incorpore la existencia de unos costes fijos de producción el 1 y el 2.