МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 2.3.1

Получение и измерение вакуума

Автор: Чикин Андрей Павлович Б05-304

Содержание

1	Kpa	аткая Теория.	
	1.1	Экспериментальная установка	
	1.2	Диффузионный насос (ВН).	
	1.3	Масляный манометр (M)	
	1.4	Термопарный манометр.	
	1.5	Ионизационный манометр.	
2	Teo	ретическая часть	
3	Ход работы		
	3.1	Определение объемов форвакуумной и высоковакуумной частей установки	
	3.2	Получение высокого вакуума и измерение скорости откачки	
4	Вы	вод.	
C	Спис	сок иллюстраций	
	1	Схема экспериментальной установки	
	2	Схема действия ФН	
	3	Схема действия диффузионного насоса.	
	4	Схема термопарного манометра.	
	5	Градуировочная кривая термопары	
	6	Суема монизационной пампы ПМ-2	

Список таблиц

Цель работы:

- 1. измерение объемов форвакуумной и высоковакуумной частей установки.
- 2. определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

Приборы:

1. вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1 Краткая Теория.

По степени разрежения вакуумные установки принято делить на три класса:

- 1. низковакуумные: до $10^{-2} 10^{-3}$ торр.
- 2. высоковакуумные: до $10^{-4} 10^{-7}$ торр.
- 3. установки сверхвысокого вакуума: до $10^{-8} 10^{-11}$ торр.

В данной работе изучаются традиционные методы откачки механическим форвакуумным насосом до 10^{-2} торр

и диффузионным масляным насосом до 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

1.1 Экспериментальная установка.

Рис. 1: Схема экспериментальной установки

Установка изготовлена из стекла и состоит из:

- форвакуумного баллона (ФБ)
- высоковакуумного диффузионного насоса (ВН)
- высоковакуумного баллона (ВБ)
- масляного (М) и ионизационного (И) манометров
- термопарных манометров (M_1 и M_2)
- форвакуумного насоса (ФН)
- соединительных кранов $(K_1, ..., K_6)$

Все краны вакуумной установки стеклянные. Стенки кранов тонкие, пробки кранов полые и составляют одно целое с рукоятками. Пробки кранов притерты к корпусам. Для герметизации используется вакуумная смазка.

Рис. 2: Схема действия ФН.

Устройство и принцип действия ϕ орважуумного насоса схематически, но довольно ясно изображены на рис. 2.

1.2 Диффузионный насос (ВН).

Рис. 3: Схема действия диффузионного насоса.

Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубе B и вырываются из сопла B. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку BB. Дальше смесь попадает в вертикальную трубу Г. Здесь масло осаждается на стенках трубы и маслосборников и стекает вниз, а оставшийся газ через трубу ФВ откачивается форвакуумным насосом. Диффузионный насос работает наиболее эффективно при давлении, когда длина свободного пробега молекул воздуха примерно равна ширине кольцевого зазора между соплом В и стенками трубы ВВ. В этом случае пары масла увлекают молекулы воздуха из всего сечения зазора.

Включать ВН стоит только при уже имеющемся вакууме $5 \cdot 10^{-2}$ торр. После включения ВН, давление в системе сначала будет подниматся. Через десять минут масло начнет испарятся, а ВН - работать.

1.3 Масляный манометр (М).

Две U-образные трубки, наполовину заполненные маслом. Разница давления измеряется по разнице высот масла в двух трубках.

$$\rho \approx 0.9 \; \frac{\Gamma}{\text{cm}^3} \tag{1.1}$$

 ρ - плотность масла в маслянном манометре.

1.4 Термопарный манометр.

(см. рис. 4)

По нити накала НН пропускается ток постоянной величины. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла вокружающее пространство. Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы и теплоизлучением нити (инфракрасноетепловое излучение). В обычном режимелампы основную роль играет теплопроводность газа. При давлениях >1 торр теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает. При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает и температура спая возрастает. При вакууме 10^{-3} торр теплоотвод, осуществляемый газом, становится сравнимым с другими видами потерь теплаи температура нити становится практически постоянной.

Градуировочная кривая термопарного манометра приведена на (см. рис. 5).

P, Topp

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁴

10⁻⁴

10⁻⁴

10⁻⁴

10⁻⁸

10⁻⁹

10⁻⁹

10⁻¹

10⁻¹

10⁻¹

10⁻¹

10⁻¹

10⁻¹

10⁻¹

10⁻²

10⁻¹

10⁻²

10⁻²

10⁻³

10⁻⁴

Рис. 4: Схема термопарного манометра.

Рис. 5: Градуировочная кривая термопары.

1.5 Ионизационный манометр.

Схема ионизационного манометра изображена на (см. рис. 6). Он представляет собой трехэлектродную лампу. Электроны испускаются накаленным катодом и увлекаются электрическим полем к аноду, имеющему вид спирали. Проскакивая за ее витки, электроны замедляются полем коллектора и возвращаются к катоду, а от него вновь увлекаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своем пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток. Ионный ток в цепи коллектора пропорционален плотности газа и поэтому может служить мерой давления. Вероятность ионизации зависит от рода газа, заполняющего лампу (а значит, и откачиваемый объем). Калибровка манометра верна, если остаточным газом является воздух. Накаленный катод ионизационного манометра перегора-

ет, если давление в системе превышает 10^{-3} торр. Поэтому включать ионизационный манометр можно, только убедившись по термопарному манометру, что давление в системе не превышает 10^{-3} торр. При измерении нить ионизационного манометра сильно греется. При этом она сама, окружающие ее электроды и стенки стеклянного баллона могут десорбировать поглощенные ранее газы. Выделяющиеся газы изменяют давление в лампе и приводят к неверным показаниям. Поэтому перед измерениями ионизационный манометр прогревается (обезгаживается) в течение 10-15 мин. Для прогрева пропускается ток через спиральный анод лампы.

Рис. 6: Схема ионизационной лампы ЛМ-2.

2 Теоретическая часть

Процесс откачки: Производительность насоса определяется скоростью откачки W (π /c). Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду.

Обозначим через $Q_{\rm d}$ количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, $Q_{\rm u}$ — количество газа, проникающего в единицу времени в этот объем извне (через течи).

Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа.

Пусть $Q_{\rm h}$ — поток газа, поступающего из насоса назад в откачиваемую систему.

Пусть $Q = Q_{\rm g} + Q_{\rm h} + Q_{\rm h}$ (моль/с).

Получаем формулу:

$$-VdP = (PW - Q \cdot RT) dt$$
(2.1)

При предельном давлении dP = 0 и поэтому получаем:

$$P_{\text{np}}W = Q \cdot RT; \quad W = \frac{Q \cdot RT}{P_{\text{np}}}$$
 (2.2)

Подставляя получаем

$$-VdP = W(P - P_{\text{np}}) dt \tag{2.3}$$

Интегрируем полученное ур-е и получаем

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V}t\right)$$
(2.4)

Пренебрегая $P_{\rm np}$ относитеьно P_0

$$P = P_0 \exp\left(-\frac{W}{V}t\right) \tag{2.5}$$

Как видим, величина $\tau = V/W$ показывает характерное время откачки системы.

Теперь попробуем понять чем обусловлена скорость откачки. Очевидно, скорость W зависит от скорости откачки насоса $W_{\rm H}$, но она так же зависит от трубопровода соединяющего насос к откачиваемой части, т.к. если трубопровод не сможет обеспечить достаточное количество газа к входу насоса то, производительность упадет.

Попробуем описать систему математически. Пусть у нас есть насос со скоростью откачки $W_{\rm H}$ и трубопровод с пропускной способностью C. Давление в откачиваемом объеме $-P_1$.

$$C(P_1 - P_2) = W_{\text{H}} P_2 \implies P_2 = \frac{CP_1}{C + W_{\text{H}}} \Rightarrow W P_1 = W_{\text{H}} 2 = \frac{CW_{\text{H}}}{C + W_{\text{H}}} P_1$$
 (2.6)

Как видим, для результирующей скорости W верно соотношение

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C} \tag{2.7}$$

Обобщая это выражение для последовательно соединенных труб получаем

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{2.8}$$

Заметим только что данные формулировки верны при молекулярном режиме течения, когда вязкое трение не имеет большого вклада в движение газа.

Течение газа через трубу: Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула (см. формулу 3.6):

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_2 - P_1}{L}$$
 (2.9)

где r и L соответственно радиус и длина трубы. Если пренебречь давлением P_1 у конца, обращенного к насосу, получаем формулу для пропускной способности трубы

$$C_{\rm TP} = \frac{dV}{\mathrm{d}t} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \tag{2.10}$$

Для пропускной способности отверстия (например в кранах) имеем формулу

$$C_{\text{\tiny OTB}} = S \frac{\bar{v}}{4} \tag{2.11}$$

3 Ход работы

3.1 Определение объемов форвакуумной и высоковакуумной частей установки

- 1. Проверим, что кран K4 открыт. Откроем все краны, кроме K1 и K2.
- 2. Впустим в установку атмосферный воздух через краны К1 и К2.
- 3. Закроем краны K5 и K6. В этих кранах и соединяющем их капилляре «запирается» $V_{\rm san}$ воздуха при атмосферном давлении.

$$V_{\text{зап}} = 50 \text{см}^3$$

- 4. Закроем краны K1 и K2, включим ФН и дадим ему откачать себя. Подключим установку к ФН краном K2 и откачаем установку до давления 10^{-2} торр.
- 5. Повернув рукоятку крана К2, отсоединим установку от ФН. Оставим ФН работать.
- 6. Закроем К3.
- 7. Закроем К4.
- 8. Откроем К5.
- 9. Зная $V_{\text{зап}}$ (см. п. 3) и $\Delta h_{1,2}$, найдем, пользуясь законом Бойля–Мариотта, объем $V_{\Phi B}$ форвакуумной части. Считаем, что объем труб мал, по сравнению с $V_{\Phi B}$ и $V_{B G}$.

$$P_{
m atm}V_{
m 3ah}=P_1V_{
m eta B}=P_2(V_{
m eta B}+V_{
m B6})$$
 $\Delta h_1=(25.3\pm0.1)~{
m cm};~~\Delta h_2=(16.3\pm0.1)~{
m cm}$ $P=
ho g\Delta h.~~~1.1$ $P_1=()~\Pi {
m a}$

3.2 Получение высокого вакуума и измерение скорости откачки

4 Вывод.