第十九章 格与布尔代数

□格的定义与性质

□子格、格同态

□布尔代数概念

19.1 格的定义和性质

- □格的定义
- □格的基本性质
 - ■对偶原理
 - ■格中的基本等式与不等式
 - ■格中的基本等价条件
 - ■格中的算律
- □格的代数定义
- □格中的不等式

格的定义

格的偏序集定义:

<S, ≤>, S的任何二元子集都有最大下界、最小上界. 求最大下界、最小上界构成格中的运算∧, ∨ 格<L, ≤>与导出的代数系统<L, ∧, ∨>有对应关系

格的实例:

n的正因子格 F_n

幂集格P(B)

子群格L(G)

格的实例——正因子格

例1设n是正整数, F_n 是n的正因子的集合。D为整除关系,则偏序集 $\langle F_n, D \rangle$ 构成格——正因子格。

 $\forall x, y \in F_n$, $x \lor y \in Lcm(x, y)$, 即x = y的最小公倍数。 $x \land y \in Lcd(x, y)$, 即x = y的最大公约数。

下图给出了格 $<F_8, D>$, $<F_6, D>$ 和 $<F_{30}, D>$

格的实例(续)

- 例2 判断下列偏序集是否构成格,并说明理由。
 - (1) < Z, ≤ >, 其中Z是整数集, ≤为小于或等于关系。
 - (2) 偏序集的哈斯图分别在下图给出。

- (1)是格。
- (2)都不是格。

格的性质—对偶原理

对偶命题:设P是由格中元素, \leq , \geq ,=, \wedge , \vee 等表示的命题,将P中的 \leq , \geq , \wedge , \vee 分别替换成 \geq , \leq , \vee , \vee 得到的命题称为P的对偶命题,记作P*.

对偶原理:如果 P 对于一切格为真,则P*也对一切格为真。

实例 P: $a \wedge b = b \wedge a$

 P^* : $a \lor b = b \lor a$

性质: $(P^*)^* = P$

格中的基本不等式和等式

自反: *a*≼*a*

反对称性: $a \leq b$, $b \leq a \Rightarrow a = b$

传递: $a \leq b, b \leq c \Rightarrow a \leq c$

上界: $a \leq a \vee b$, $b \leq a \vee b$

下界: $a \land b \leq a$, $a \land b \leq b$

最大下界: $a \leq b$, $a \leq c \Rightarrow a \leq b \wedge c$

最小上界: $a \ge b$, $a \ge c \Rightarrow a \ge b \lor c$

定理 下列条件彼此等价(格中的基本等价条件):

- $(1) a \leq b$
- $(2) a \wedge b = a$
- $(3) a \lor b = b$
- 证 (1) \Rightarrow (2) $a \leq a, a \leq b \Rightarrow a \leq a \wedge b, 又 a \wedge b \leq a, 故得 <math>a \wedge b = a.$
- (2)⇒(3) $a=a \land b \leqslant b, b \leqslant b \Rightarrow a \lor b \leqslant b, 又<math>b \leqslant a \lor b$, 故得 $a \lor b=b$.
- $(3) \Rightarrow (1) a \leq a \vee b = b.$

格中交换律、结合律、幂等律、吸收律

- 证 (1) $a \land b \not= \{a, b\}$ 的下界, $b \land a \not= \{b, a\}$ 的下界,而 $\{a, b\} = \{b, a\}$,因此 $a \land b = b \land a$.
- $(2) 由 (a \land b) \land c \leq a \land b \leq b 和 (a \land b) \land c \leq c 知,$ $(a \land b) \land c \leq b \land c.$

 $又(a \land b) \land c \leq a \land b \leq a$,故 $(a \land b) \land c \leq a \land (b \land c)$.

同理, $a \land (b \land c) \leq (a \land b) \land c$. 所以, $a \land (b \land c) = (a \land b) \land c$.

格的代数定义

吸收律 设 \circ ,*可交换 $\forall a,b \in S$, $a \circ (a * b) = a$, $a * (a \circ b) = a$

引理 $\langle S, *, \circ \rangle$ 是具有两个二元运算的代数系统。

如果*,。运算满足交换、结合、吸收律,则:

- (1) *, 。满足幂等律
- (2) $a * b = a \Leftrightarrow a \circ b = b$
- 证: (1) $a * a = a * (a \circ (a * a)) = a$ 同理, $a \circ a = a$
 - $(2) (\Leftarrow) a * b = a * (a \circ b) = a$ $(\Rightarrow) a \circ b = (a * b) \circ b = b$

格的代数定义(续)

定理 设 $< S,*,\circ>$ 是具有两个二元运算的代数系统,若*和。运算满足交换、结合、吸收律,则可以适当定义S上偏序 \leq ,使得 $< S, \leq>$ 构成格,且 $< S, \leq>$ 导出的代数系统就是 $< S,*,\circ>$.

证明思路:利用运算。或*定义S上的二元关系R证明 R 为 S 上的偏序

证明对于S中任意两个元素x,y

$$x \lor y = x \circ y$$
, $x \land y = x * y$

< S, A, V> 构成格。

定理的证明

- 证 (1) 定义二元关系R, $aRb \Leftrightarrow a \circ b = b$,
 - (2) R为偏序:

$$a \circ a = a \Rightarrow aRa$$
 $aRb, bRa \Rightarrow a \circ b = b, b \circ a = a \Rightarrow a = b$
 $aRb, bRc \Rightarrow a \circ b = b, b \circ c = c$
 $\Rightarrow a \circ c = a \circ (b \circ c) = (a \circ b) \circ c = b \circ c = c$
将R记作≼.

定理的证明(续)

 $a \leq b \Leftrightarrow a \circ b = b$

(3) 先证a o b 为 {a, b} 的上界:

 $由 a \circ (a \circ b) = (a \circ a) \circ b = a \circ b$ 知, $a \leq a \circ b$.

由 $b\circ(a\circ b)=a\circ(b\circ b)=a\circ b$ 知, $b\leqslant a\circ b$.

下证 $a \circ b$ 为{a, b}的最小上界:假设c为上界,由 $(a \circ b) \circ c = a \circ (b \circ c) = a \circ c = c$ 得 $a \circ b \leq c$.

同理可证,a*b是 $\{a,b\}$ 的最大下界。

格的代数定义

等价定义: 设<L, <, <>>是具有两个二元运算的代数系统,如果<, <满足交换、结合、吸收律,则称<L, <, <, <>是格。

实例: $\langle F_n, \gcd, lcm \rangle$

 $\forall x, y \in F_n$, gcd(x, y) = gcd(y, x), lcm(x, y) = lcm(y, x)

gcd(x, gcd(y, z))=gcd(gcd(x, y), z)

lcm(x, lcm(y, z)) = lcm(lcm(x, y), z)

gcd(x, lcm(x, y))=x, lcm(x, gcd(x, y))=x

 $x|y \Leftrightarrow \text{lcm}(x, y)=y$, $\langle F_n, | > \leq \langle F_n, \text{gcd}, \text{lcm} \rangle$ 是同一个格

格的不等式

- (1) 保序不等式 $a \leq b, c \leq d \Rightarrow a \wedge c \leq b \wedge d, a \vee c \leq b \vee d$
- (2) 分配不等式 $a \lor (b \land c) \leq (a \lor b) \land (a \lor c),$ $a \land (b \lor c) \geq (a \land b) \lor (a \land c)$
- (3) 模不等式 $a \leq b \Leftrightarrow a \vee (c \wedge b) \leq (a \vee c) \wedge b$

思考:如何证明以上不等式?

不满足分配律的格

钻石格: $b\lor(c\land d)=b\lor a=b$ $(b\lor c)\land(b\lor d)=e\land e=e$

思考: 指出五角格不满足分配律的元素

19.2 子格、格同态

- □子格
 - ■子格定义
 - ■子格判别
- □格的同态与同构
 - ■格同态定义
 - ■格同态的性质
 - ■完备格

格的子格

L的子格: L的非空子集S,且S关于L中 \wedge 和 \vee 运算封闭.

注意: 子格元素在原格中求最大下界,最小上界.

实例: 子群格L(G)是格,但不一定是P(G)的子格.

例如Klein四元群 $G=\{e,a,b,c\}$,

$$L(G) = \{ \langle e \rangle, \langle a \rangle, \langle b \rangle, \langle c \rangle, G \}$$

$$P(G) = \{ \phi, \langle e \rangle, \{a\}, \{b\}, \{c\}, \langle a \rangle, \langle b \rangle, \langle c \rangle,$$

 $\{a,b\},\{a,c\},\{b,c\},\{a,b,c\},\{a,b,e\},\{a,c,e\},\{b,c,e\},G\}$

格的同态

定义 设 L_1 和 L_2 是格, $f: L_1 \to L_2$, $\forall x, y \in L_1$, 有 $f(x \land y) = f(x) \land f(y)$, $f(x \lor y) = f(x) \lor f(y)$ 则称 $f \to L_1$ 到 L_2 的同态.

实例: $L_1 = \langle \{1, 2, 3, 6\}, | \rangle$, $L_2 = \langle \{0, 1\}, \leq \rangle$ f(1) = f(2) = 0, f(3) = f(6) = 1 $f \Rightarrow L_1 \Rightarrow L_2 \Rightarrow L_2 \Rightarrow L_3 \Rightarrow L_4 \Rightarrow L_5 \Rightarrow L_5$

格同态的性质

格同态具有保序性

定理1 f是格 L_1 到 L_2 的同态,则 $\forall a, b \in L_1$, $a \le b \Rightarrow f(a) \le f(b)$.

$$\mathbf{ii}: a \leq b \Rightarrow a \wedge b = a \\
\Rightarrow f(a \wedge b) = f(a) \\
\Rightarrow f(a) \wedge f(b) = f(a) \\
\Rightarrow f(a) \leq f(b)$$

注意: $f(a) \leq f(b)$ 不一定推出 $a \leq b$. 思考反例.

格同态的性质(续)

定理2 f 为双射,f 为 L_1 到 L_2 的同构当且仅当 $\forall a, b \in L_1, a \leq b \Leftrightarrow f(a) \leq f(b)$

证: (必要性) 由定理1知, $a \le b \Rightarrow f(a) \le f(b)$. 反过来,设 $f(a) \le f(b)$,则有 $f(a) \land f(b) = f(a)$. 因为f是同态,故 $f(a \land b) = f(a)$. 进而由f是单射知, $a \land b = a$,于是有 $a \le b$. (充分性) 见后

格同态的性质(续)

定理2 f 为双射,f 为 L_1 到 L_2 的同构当且仅当 $\forall a, b \in L_1, a \leq b \Leftrightarrow f(a) \leq f(b)$

(充分性)证明同构的思路:

- (1) 由保序性证明 $f(a) \lor f(b) ≤ f(a \lor b)$
- (2) 由满射性存在d使得 $f(a) \lor f(b) = f(d)$. 由 $f(a) \le f(d)$ 推出 $a \le d$, 同理 $b \le d$.
- (3) $a \lor b \leqslant d$ 推出 $\underline{f(a \lor b)} \leqslant \underline{f(a)} \lor \underline{f(b)}$ 于是由(1)和(3)得 $\underline{f(a)} \lor \underline{f(b)} = \underline{f(a \lor b)}$. 同理 $\underline{f(a)} \land \underline{f(b)} = \underline{f(a \land b)}$.

完备格

定义设L是格,若对L的任何子集S,S的最大下界 $\wedge S$,最小上界 $\vee S$ 均存在,称L是完备格.

注意: S可以是空集

x是Ø的下界 $\Leftrightarrow \forall a(a \in \emptyset \rightarrow x \leq a)$

x是Ø的上界 $\Leftrightarrow \forall a(a \in \emptyset \rightarrow a \leq x)$

前件为假,L中任何元素都是Ø的上界和下

界,取L最大元为 \wedge Ø,最小元为 \vee Ø

判定: L为偏序,任意子集 $S\subseteq L$, $\vee S$ (或 $\wedge S$) 存在.

实例:有限格、幂集格均为完备格

布尔代数的定义 $\frac{a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)}{a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)}$

定义 有补分配格称为布尔格(布尔代数)

定理 设<B,*,°, \triangle ,a,b>是代数系统,其中*,°为二元运算, \triangle 为一元运算,a,b为0元运算.如果满足以下算律:

交換律
$$x * y = y * x, x \circ y = y \circ x$$

分配律 $x * (y \circ z) = (x * y) \circ (x * z)$
 $x \circ (y * z) = (x \circ y) * (x \circ z)$

同一律
$$x * b = x, x \circ a = x$$

补元律
$$x * \triangle x = a, x \circ \triangle x = b$$

则 $< B,*,\circ,\triangle,a,b >$ 构成布尔格.

布尔代数的定义(续)

集合的幂集格 $\langle P(B), \cap, \cup, \sim, \emptyset, B \rangle$ 是布尔代数。 逻辑代数 $\langle \{0, 1\}, \wedge, \vee, -, 0, 1 \rangle$ 是布尔代数。

任何有限布尔代数元素数为2″.

任何有限布尔代数都同构于{0,1}".