Exercices sur les racines carrées

Exercice 1:

Écris sans radical les expressions.

a.
$$\sqrt{\frac{4}{9}}$$

c.
$$\sqrt{\frac{49}{25}}$$

b.
$$\sqrt{\frac{1}{16}}$$

d.
$$\frac{2}{7}\sqrt{\frac{49}{64}}$$

Exercice 2:

Écris sous la forme \sqrt{a} (a est un entier positif).

a.
$$\sqrt{5} \times \sqrt{3}$$

a.
$$\sqrt{5} \times \sqrt{3}$$
 b. $\sqrt{2} \times \sqrt{7}$ **c.** $2\sqrt{3}$ **d.** $3\sqrt{2}$

c.
$$2\sqrt{3}$$

d.
$$3\sqrt{2}$$

Exercice 5:

Écris les nombres suivants sous la forme $a\sqrt{b}$, où a et b sont deux entiers relatifs et best le plus petit possible.

a.
$$\sqrt{45}$$

d.
$$5\sqrt{18}$$

b.
$$\sqrt{162}$$

e.
$$-4\sqrt{32}$$

c.
$$-\sqrt{48}$$

f.
$$2 \times \sqrt{700} \times 8$$

Exercice 7:

Écris les expressions suivantes sous la forme $a\sqrt{2}$ ou $a\sqrt{3}$, où a est un entier relatif.

$$A = 4\sqrt{2} + 2\sqrt{2}$$

$$B = 7\sqrt{3} - 9\sqrt{3}$$

$$D = 3\sqrt{2} - 5\sqrt{2} + \sqrt{2}$$

$$B=7\sqrt{3}-9\sqrt{3}$$

$$\mathsf{E} = 4\sqrt{2} - 6\sqrt{2} + 2\sqrt{2}$$

$$C = \sqrt{3} - 8\sqrt{3} + 15\sqrt{3}$$

$$C = \sqrt{3} - 8\sqrt{3} + 15\sqrt{3}$$
 $F = 5\sqrt{3} - 7\sqrt{3} + 3\sqrt{3}$

Exercice 9:

Écris les expressions suivantes sous la forme $a\sqrt{b}$, où a et b sont deux entiers relatifs.

$$A = \sqrt{8} + 7\sqrt{2}$$

$$A = \sqrt{8} + 7\sqrt{2}$$
 $C = 2\sqrt{3} - \sqrt{75}$

$$B = \sqrt{5} - \sqrt{20}$$

$$B = \sqrt{5} - \sqrt{20}$$

$$D = 4\sqrt{2} - 5\sqrt{8} + 3\sqrt{18}$$

Exercice 11:

Dans chaque cas, détermine si le triangle GHI est rectangle ou non. Justifie ta réponse.

a. GH = 5 dm ; GI = 7 dm et HI =
$$\sqrt{74}$$
 dm.

b. GH =
$$\sqrt{13}$$
 m; HI = $\sqrt{12}$ m et GI = 6 m.

Exercice 3:

a. Écris sous la forme \sqrt{a} (a est un entier

$$A = \sqrt{8} \times \sqrt{5}$$

$$B = 3\sqrt{11}$$

b. Sans effectuer de calcul, donne les valeurs exactes de A² et de B².

Exercice 4:

Écris sous la forme $a\sqrt{3}$, où a est un entier.

a.
$$\sqrt{5} \times \sqrt{15}$$

b.
$$\sqrt{7} \times \sqrt{21}$$

Exercice 6:

a. On considère la somme $A = \sqrt{36} + \sqrt{64}$.

b. On considère l'expression $B = \sqrt{100}$. Calcule B.

c. Que peux-tu en conclure ? Justifie ta réponse.

d. Trouve un exemple similaire pour la différence de deux racines carrées.

e. Que peux-tu déduire des deux exemples précédents?

Exercice 8:

a. Écris $\sqrt{8}$, $\sqrt{18}$ et $\sqrt{50}$ sous la forme $a\sqrt{b}$, où a et b sont entiers et b le plus petit possible. Réduis l'expression $G = \sqrt{50} + \sqrt{18} - 2\sqrt{8}$.

b. En raisonnant de façon identique, réduis l'expression $H = \sqrt{12} - 7\sqrt{27} + \sqrt{3}$.

Exercice 10:

EDF est un triangle rectangle en F. On donne ED = $5\sqrt{2}$ cm et DF = $3\sqrt{2}$ cm.

a. Détermine la valeur exacte de EF. Tu donneras le résultat sous la forme $a\sqrt{2}$ où aest un entier positif.

b. Donne la valeur exacte du périmètre du triangle EDF puis l'arrondi au millimètre.

Exercice 12:

a. Écrire sous la forme $a\sqrt{5}$ avec a entier.

$$A = 3\sqrt{20} + \sqrt{45}$$

$$B = \sqrt{180} - 3\sqrt{5}$$

b. En utilisant les résultats de la question a., démontrer que $A \times B$ et $\frac{A}{B}$ sont des nombres