TeXmacs""

1.4 Formal proof with mapping reduction

Suppose we have D_{HALT} , a decider for HALT. We define the mapping reduction as:

$$f(\langle M, w \rangle) = \langle M', w \rangle$$

where the TM M' is constructed as computing the function:

$$M'(x) = if \frac{(eval(\langle M, x \rangle))}{then \ accept}$$
else $loop$

This means exactly (but concisely) what the above informal description says:

Construct the following machine M'.

"On input x:

- 1. Run M on x.
- 2. If M accepts, accept.
- 3. If M rejects, enter a loop."

Notice although M' takes input named "x", the actual input is w when it is simulated. This is because when $\langle M', w \rangle$ is passed as input to a decider of HALT, it uses the w part as the *actual argument* for M'. This is like the difference between a formal parameter and the actual argument in a function call when using a programming language such as Java or Python.

We can see the behavior of M, M' and D_{HALT} in the following table:

M accepts w	M' accepts w	D_{HALT} accepts $\langle M', w \rangle$
M does not accept w	M' loops	D_{HALT} rejects $\langle M', w \rangle$

Table 1. Behavior table for M, M' and D_{HALT}

TeXmacs TeXmacs

TeXmacs

- Lyx TeX "" TeX TeXmacs TeX TeX C++ TeX
- Word "" (WYSIWYG)Word "" Word TeX Lyx, Scientific Workspace
- TeX TeXmacs TeX
- TAB "" @ TAB > = TAB
- """proof eqnarry* (1,1) start" proof eqnarry (1,1) Ctrl-Backspace"" Ctrl-Backspace

- Ctrl-PgUp, Ctrl-PgDn ""
- MAXIMAOctave..... TeXmacs "TeX" Scheme TeX

TeX TeXmacs ""

TeXmacs TeXmacs

