

Figure 1: Überblick theoretische Informatik

1 Grundlagen

1.1 Notationen und begriffe

- N bezeichnet die {1, 2, 3}
- \mathbb{N}_0 , sei $[n] = \{1, ..., n\}$ und $[n]_0 = \{0, 1, ..., n\}$
- Für eine Menge A und $n \in \mathbb{N}$ ist $A^n = \{(a_1, \dots, a_n): a_1, \dots a_n \in A\}$
- Für $n \in \mathbb{N}$ ist eine n-äre partielle funktion $\varphi : A^n \leadsto B$ eine Funktion mit $\operatorname{dom}(\varphi) \supseteq A^n$ und $\operatorname{Im}(\varphi) \subseteq B$. Für $a_1, ..., a_n \in A$ bedeuted $\varphi(a_1, ..., a_n) \downarrow$, dass $(a_1, ..., a_n) \in \operatorname{dom}(\varphi)$ gilt und $\varphi(a_1, ..., a_n) \uparrow$ bedeutet, dass $(a_1, ..., a_n) \notin \operatorname{dom}(\varphi)$. Statt $\varphi(a_1, ..., a_n) \uparrow$ schreiben wir auch $\varphi(a_1, ..., a_n) = \uparrow$. Die partielle Funktion φ ist total, wenn $\operatorname{dom}(\varphi) = A^n$ gilt.
- Eine lineare Ordnung, auch totale Ordnung, auf einer Menge A ist eine Relation ≤⊆ A^n m sodass die folgende Eigenschaften erfüllt sind. (wie für Relationen üblich verwenden wir hier Infixntation, schreiben also für a,b ∈ A den Ausdruck a ≤ b anstatt (a,b) ∈≤):
 - (i) $a \le a \ \forall \ a \in A$ (Reflexivität)
 - (ii) $a \le b \land b \le a \Rightarrow a = b \ \forall a,b \in A \ (Antisymetrie)$
 - (iii) $a \le b, b \le c \Rightarrow a \le c$ for all $a,b,c \in A$ (Transitiität)
 - (iv) $a \le b \lor b \le a \forall a,b \in A$ (Totalität)

1.2 Alphabet, Wörter und Sprachen

Eingaben und Ausgaben in unseren Berechnungsmodellen werden wörter genannt, wobei wir beliebige Zeichenketten als Wörter zulassen.

1.3 Definition (Alphabet)

Ein Alphabet ist eine nichtleere endliche Menge Σ . Das Alphabet Σ wird $|\Sigma|$ - är bezeichnet. Die Elemente von Σ heißen Buchstaben oder Symbole.

1.4 Definition (Wörter)

Ein Wort über einem Alphabet Σ ist eine endliche Folge von Symbolen aus Σ . Die Länge eines Wortes w ist |w|. Für $i \in |w|$ bezeichnet w(i) das i-te Element von w und für Symbole $a_1, \dots, a_n \in \Sigma$ bezeichnet a_1, \dots, a_n das Wort w der Länge v mit v das i-te Element von v und für Symbole v symbole v bezeichnet v das Wort v der Länge v mit v mit v mit v der Länge v mit v heißt leeres Wort und wird v bezeichnet. Ein Wort der länge v wird mit dem Symbol v bezeichnet.

1.5 Definition (Binärwörter)

Das Alphabet {0, 1} heißt Binäralphabet. Die Wörter über dem Binäralphabet heißen Binärwörter.

1.6 Definition

Die Menge Aller Wörter über Σ wird mit Σ^* bezeichnet. Für $n \in \mathbb{N}_0$ setzen wir:

$$\Sigma^{\leq n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| \leq \mathbf{n} \}$$

$$\Sigma^{=n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| = \mathbf{n} \}$$

$$\Sigma^{\geq n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| \geq \mathbf{n} \}$$

$\Sigma^+ := \Sigma^{\leq 1}$

1.7 Definition (Verkettung)

Für Wörter w_1, w_2 ist die verkettung $w_1 \circ w_2$, auch $w_1 w_2$, von w_1 und w_2 ist definiert durch:

$$w_1 \circ w_2 := w_1 \cdots w_1(|w_1|) w_2 \cdots w_2(|w_2|)$$

Für ein Wort w und $n \in \mathbb{N}_0$ ist w^k induktiv definiert durch $w^n := \lambda$ falls n = 0 und $w^n := w^{n-1} \circ w^n$ falls n = 0. Für eine Sprachen L_1, L_2 sei durch $L_1 \circ L_1$, auch $L_1 L_2$ definiert durch

$$L_1 \circ L_1 := \{ w_1 w_2 : w_1 \in L_1, w_2 \in L_2 \}$$

Für eine Sprache L und und $n \in \mathbb{N}_0$ ist L^n moduliert definiert durch $L^n = \{\lambda\}$ falls n = 0 und $L^n := L \cdot L^{n-1}$ falls $n \ge 1$. Zudem sei $L^* := \bigcup_{n \in \mathbb{N}_0} L^n$. Für ein Wort w und eine Sprache L sei wL $:= \{w\} \circ L$ und Lw $:= L \circ \{w\}$.

Wir folgen der Konventrion, dass \bullet^n und \bullet^* stärker binden als 0;?? für Wörter u, v gilt also uv = u $\circ (v^n)$. Insbesondere gilt auch $ab^n = a(b^n)$ für Symbole a, b eines Alphabets Σ .

1.8 Definition (Präfix, Infix, Suffix)

Seiene u, v Wörter.

- (i) u ist Präfix von v, kurz u \sqsubseteq v, falls es ein Wort w gibt ,sodass uw = v.
- (ii) u ist Infix von v falls es Wörter w_1 , w_1 gibt sodass $v = w_1 u w_2$
- (iii) u ist Suffic von v, falls es ein Wort w gibt, sodass v = wu.

1.9 Definition (präfixfrei)

Eine Sprache heißt **präfixfrei**, wenn $u \sqsubseteq v \Rightarrow u = v \forall u, v \in L$.

1.10 Definition (Homomorphismus)

Für Sprache L und M heißt eine Funktion $\varphi: L \to M$ Homomorphismus von Sprachen, wenn $\varphi(uv) = \varphi(u)\varphi(v) \forall u, v \in L$ gilt.

1.11 Definition (Längenlexikographische Ordnung)

Ist Σ ein Alphabet und \leq eine lineare Ordnung auf Σ , so ist die zu \leq gehörige **längenlexikographische Ordnung** \leq_{llex} auf Σ^* die lineare Ordnung für die $u \leq_{llex} v$ genau dann für zwei verschiedene $u, v \in \Sigma^*$ gilt, wenn eine der folgenden Bedingungen gilt:

- |u| < |v|
- |u| = |v| und ist $i \in [|u|]$ minimal mit $u(i) \neq v(i)$ m so gilt $u(i) \leq v(i)$.

Bemerkung: Oft gehen wir von einer impliziten Ordnung auf Σ aus. Ist $\Sigma = a_1, \dots, a_n$ so gilt $a_1 \leq \dots \leq a_n$

1.12 Bemerkung

Sei Σ ein Alphabet $\forall w \in \Sigma^*$ ist $v \in \Sigma^*$: $v \leq_{llex} w$ endlich. Dies erlaubt es uns für ein Alphabet Σ die Wörter über Σ in längenlexilographischen Reihenfolge w_1, w_2, \cdots zu betrachten, wobei wir w_i für $i \in \mathbb{N}$ als kleinstes Element von $\Sigma^*/w_1, \cdots, w_{i-1}$ gewählt sei. Wir identifizieren oft \mathbb{N}_0 mit $0, 1^*$ indem wir $i \in \mathbb{N}_0$ mit in die längenlexilographische Reihenfolge (i+1)-ten Wort $w_{i+1} \in 0, 1^*$ identifiziernen.

1.13 Definition

Es bezeichnet $bin: \mathbb{N}_0 \to \{0,1\}^*$ die Funktion, für die bin(i) das in längenlexikographischer Reihenfolge (i+1)-te Binärwort ist $\forall i \in \mathbb{N}_0$

1.14 Bemerkung

 $\forall i \in \mathbb{N}_0$ ist 1bin(i) die Binärdarstellung von i+1. Umgekehrt ist $\forall w \in 0, 1^*$ das $(2^{|w|} + \sum_{i \in [|w|]} w(i)2^{|w|-i})$ -te Binärwort.