HW 6 DUAL STUFF

HW 6 Dual Stuff

Liu Mingdao 2020011156

Exercise 1.6.1

1. We know

$$L([1, \cdots, x^{n-1}]) = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \begin{bmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{bmatrix}$$

Then the matrix of L is

$$\begin{bmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{bmatrix}$$

It is a Vandermonde matrix.

2. L is invertible \iff the matrix of L is invertible. Note that for Vandermonde matrix L,

$$det(L) = \prod_{i>j, i,j \in \{1,\dots,n\}} (a_i - a_j)$$

Then we have a_1, \dots, a_n are distinct $\iff det(L) \neq 0 \iff L$ is invertible

3. First prove that $\{ev_{a_1}, \dots, ev_{a_n}\}$ form a basis implies a_1, \dots, a_n are distinct. Suppose $\{ev_{a_1}, \dots, ev_{a_n}\}$ forms a basis and $\exists m, n \in \{1, \dots, n\}$ s.t. $a_m = a_n (m \neq n)$. We know $ev_m = ev_n$, then $\{ev_{a_1}, \dots, ev_{a_n}\}$ are linearly dependent. It is contradictory to the assumption that $\{ev_{a_1}, \dots, ev_{a_n}\}$ is a basis of an n dimensional vector space V^* .

Then prove that a_1, \dots, a_n are distinct implies $\{ev_{a_1}, \dots, ev_{a_n}\}$ form a basis of V^* . From the previous subproblem, we know that there is a unique solution to the interpolation problem with n distinct points. So let $l_i = \prod_{j \neq i} \frac{x-a_j}{a_i-a_j}$, $\{l_i\}$ is the Lagrange basis for V. For $\forall v \in V$, we have

$$\boldsymbol{v}(x) = \sum_{i=1}^{n} e v_{a_i}(\boldsymbol{v}) l_i$$

For $\forall \alpha \in V^*, \ \forall \boldsymbol{v} \in V$, we get

$$\alpha(\boldsymbol{v}) = \alpha(\sum_{i=1}^{n} ev_{a_i}(\boldsymbol{v})l_i) = \sum_{i=1}^{n} \alpha(l_i)ev_{a_i}(\boldsymbol{v})$$

So for any given distinct a_1, \dots, a_n and given $\alpha \in V^*$, α is a linear combination of $\{ev_{a_1}, \dots, ev_{a_n}\}$. I.e. $\{ev_{a_1}, \dots, ev_{a_n}\}$ forms a basis of V^* .

4. Consider polynomials in V. Let

$$[p_{-1}, p_0, p_1] = [1, x, x^2]W$$

for some $W \in M_3(\mathbb{R})$. The dual vectors of $[p_{-1}, p_0, p_1]$ are $[ev_{-1}, ev_0, ev_1]$. Then we know

$$IW^{-1} = \begin{bmatrix} ev_{-1}(1) & ev_{-1}(x) & ev_{-1}(x^2) \\ ev_0(1) & ev_0(x) & ev_0(x^2) \\ ev_1(1) & ev_1(x) & ev_1(x^2) \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

So
$$W = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$
, we have $p_{-1} = \frac{1}{2}x^2 - \frac{1}{2}x$, $p_0 = 1 - x^2$, $p_1 = \frac{1}{2}x^2 + \frac{1}{2}x$.

HW 6 DUAL STUFF 2

5. Since -1, 0, 1, 2 are distinct, from subproblem 3 we know $\{ev_{-1}, ev_0, ev_1, ev_2\}$ forms a basis of V*. For $i \in -1, 0, 1, 2$, let $k_i = \prod_{j \neq i} \frac{x-j}{i-j}$, then we have

$$ev_{-2} = \sum_{i=-1}^{2} ev_{-2}(k_i) \cdot ev_i$$

Specifically, we have

$$-ev_{-2} + 4ev_{-1} - 6ev_0 + 4ev_1 - ev_2 = 0$$

Exercise 1.6.2 Let \boldsymbol{v} and \boldsymbol{w} be two polynomials in V. To say α is a dual vector of V is equivalent to say that α is a linear map from V to \mathbb{R} . I.e. we only need to show that for $\forall \lambda$, $\mu \in \mathbb{R}$, $\alpha(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \alpha(\boldsymbol{v}) + \mu \alpha(\boldsymbol{w})$. We write the 5 maps mentioned in this questions as $\alpha_1, \dots, \alpha_5$.

- 1. α_1 is a dual vector. $\alpha_1(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = 6(\lambda \boldsymbol{v} + \mu \boldsymbol{w})(5) = \lambda \cdot 6\boldsymbol{v}(5) + \mu \cdot 6\boldsymbol{w}(5) = \lambda\alpha_1(\boldsymbol{v}) + \mu\alpha_1(\boldsymbol{w})$. So $\alpha_1 \in V^*$.
- **2.** α_2 is not a dual vector. Consider $\mathbf{v} = x^2$. $\alpha_2(\mathbf{v}) = +\infty \notin \mathbb{R}$.
- 3. α_3 is a dual vector. This map takes the coefficient of term x^2 for a polynomial in V, so it is linear. Let $\mathbf{v} = a_0 + a_1 x + a_2 x^2$, $\mathbf{w} = b_0 + b_1 x + b_2 x^2$. We have $\alpha_3(\lambda \mathbf{v} + \mu \mathbf{w}) = \lim_{x \to +\infty} \frac{\lambda(a_0 + a_1 x) + \mu(b_0 + b_1 x)}{x^2} + \lim_{x \to +\infty} \frac{\lambda a_2 x^2 + \mu b_2 x^2}{x^2} = \lambda a_2 + \mu b_2 = \lambda \alpha_3(\mathbf{v}) + \mu \alpha_3(\mathbf{w})$.
- 4. α_4 is not a dual vector. For $\forall \boldsymbol{v} \in V$, let $\boldsymbol{v} = a_0 + a_1 x + a_2 x^2$, we have $\alpha_4(\boldsymbol{v}) = (8a_2 + a_1)(9a_2 + 3a_1 + a_0)$. It is not linear. Specifically, we show a conter example. Let $\boldsymbol{v} = 1$, $\boldsymbol{w} = x$, then $\alpha_4(\boldsymbol{v}) = 0$, $\alpha_4(\boldsymbol{w}) = 3$, $\alpha_4(\boldsymbol{v} + \boldsymbol{w}) = 4$, we get $\alpha_4(\boldsymbol{v}) + \alpha_4(\boldsymbol{w}) \neq \alpha_4(\boldsymbol{v} + \boldsymbol{w})$.
- 5. α_5 is not a dual vector, since the degree of a polynomial is not a linear function of the polynomial. Specifically, let $\mathbf{v} = \mathbf{w} = x$, then $\mathbf{v} + \mathbf{w} = 2x$, $deg(\mathbf{v}) = deg(\mathbf{w}) = 1$, $deg(\mathbf{v} + \mathbf{w}) = 1 \neq deg(\mathbf{v}) + deg(\mathbf{w})$.

Exercise 1.6.3 Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. From the differentiability of f, we have $f(\mathbf{p} + t\mathbf{v}) - f(\mathbf{p}) = tv_1 \frac{\partial f}{\partial x_1}(\mathbf{p}) + tv_2 \frac{\partial f}{\partial x_2}(\mathbf{p}) + o(||v||t)$, then $\nabla_{\mathbf{v}} f = \lim_{t \to 0} (v_1 \frac{\partial f}{\partial x_1}(\mathbf{p}) + v_2 \frac{\partial f}{\partial x_2}(\mathbf{p}) + \frac{o(||v||t)}{t}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) & \frac{\partial f}{\partial x_2}(\mathbf{p}) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. So $\nabla_{\mathbf{v}} f$ is a linear map from \mathbb{R}^2 to \mathbb{R} , and is thus a dual vector in $(\mathbb{R}^2)^*$. Its "coordinates" under standard dual basis are $\begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{p}) & \frac{\partial f}{\partial x_2}(\mathbf{p}) \end{bmatrix}$. (Of course, the dual basis is $\{\begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix} \}$)

Exercise 1.6.4

- 1. For $\forall \alpha \in Ker(L^*)$, $L^*(\alpha) = \mathbf{0}$. Then we know for $\forall \mathbf{v} \in V$, $L^*(\alpha)(v) = \alpha \circ L(v) = \mathbf{0}$. For $\forall \mathbf{w} \in Ran(L)$, we have $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. So $\alpha(\mathbf{w}) = \alpha \circ L(v) = \mathbf{0}$. Conversely, suppose $\forall \alpha \in W^*$ s.t. for $\forall \mathbf{w} \in Ran(L)$, $\alpha(\mathbf{w}) = \mathbf{0}$. Since for $\forall \mathbf{v} \in V$, $L(\mathbf{v}) \in Ran(L)$, we have $\alpha \circ L(v) = \alpha(L(v)) = \mathbf{0}$. Note that \mathbf{v} is arbitrary, so $L^*(\alpha) = \alpha \circ L = \mathbf{0}$. I.e. $\alpha \in Ker(L^*)$.
- **2.** For $\forall \beta \in Ran(L^*)$, we have $\beta = L^*(\gamma) = \gamma \circ L$ for some $\gamma \in W^*$. Then for $\forall \boldsymbol{v} \in Ker(L), \beta(\boldsymbol{v}) = \gamma(L(\boldsymbol{v})) = \boldsymbol{0}$. Conversely, we try to prove if for $\forall \alpha \in V^*$ s.t. $\forall z \in Ker(L), \ \alpha(z) = \boldsymbol{0}$, then $\alpha \in Ran(L^*)$.

We first show that for $\forall v, w \in V$ s.t. L(v) = L(w), we have $\alpha(v) = \alpha(w)$. **Proof.** If L(v) = L(w), then L(v - w) = 0. I.e. $(v - w) \in Ker(L)$, so $\alpha(v - w) = 0$, i.e. $\alpha(v) = \alpha(w)$. Thus, we know that the value of $\alpha(v)$ is only dependent on L(v).

HW 6 DUAL STUFF 3

Suppose $\dim W = m$. We pick a basis for Ran(L), i.e. $Ran(L) = span(\{w_1, \dots, w_k\})$. Then expand this basis such that $W = span(\{w_1, \dots, w_m\})$. Let $W' = span(\{w_{k+1}, \dots, w_m\})$, we have $W = Ran(L) \oplus W'$, i.e. $\forall \boldsymbol{x} \in W$, there is a unique decomposition $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2$ s.t. $\boldsymbol{x}_1 \in Ran(L)$, $\boldsymbol{x}_2 \in W'$. Then we define a map $\beta : W \to \mathbb{R}$, s.t. $\beta(\boldsymbol{x}) = \alpha(\boldsymbol{v})$, where \boldsymbol{v} is any preimage of \boldsymbol{x}_1 (We define \boldsymbol{x}_1 as such: $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2$, $\boldsymbol{x}_1 \in Ran(L)$, $\boldsymbol{x}_2 \in W'$). We know β is well defined, since the value of $\alpha(\boldsymbol{v})$ depends only on $\boldsymbol{x}_1 = L(\boldsymbol{v})$. We immdeiately know that $\beta(\boldsymbol{x}) = \beta(\boldsymbol{x}_1)$.

Then we try to show that β is a linear map. Suppose $\forall x, y \in W$, we decompose them into $x = x_1 + x_2$, $x_1 \in Ran(L)$, $x_2 \in W'$ and $y = y_1 + y_2$, $y_1 \in Ran(L)$, $y_2 \in W'$. Let $v, w \in V$ be any vector s.t. $x_1 = L(v)$, $y_1 = L(w)$. Note that $x_1 + y_1 = L(v + w)$, $kx_1 = L(kv)$, we have $\beta(x + y) = \alpha(v + w) = \alpha(v) + \alpha(w) = \beta(x_1) + \beta(y_1) = \beta(x) + \beta(y)$, $\beta(kx) = \alpha(kv) = k\alpha(v) = k\beta(x_1) = k\beta(x)$. So β is a linear map, i.e. $\beta \in W^*$.

Then $\forall v \in V$, $\alpha(v) = \beta(L(v)) = L^*(\beta)(v)$, i.e. $\alpha \in Ran(L^*)$.

Exercise 1.6.5

1. Bilinear:

$$(\lambda \boldsymbol{a} + \mu \boldsymbol{b}, \boldsymbol{w}) = (\lambda \boldsymbol{a} + \mu \boldsymbol{b})^T A \boldsymbol{w}$$

$$= \lambda \boldsymbol{a}^T A \boldsymbol{w} + \mu \boldsymbol{b}^T A \boldsymbol{w}$$

$$= \lambda (\boldsymbol{a}, \boldsymbol{w}) + \mu (\boldsymbol{b}, \boldsymbol{w})$$

$$(\boldsymbol{v}, \lambda \boldsymbol{a} + \mu \boldsymbol{b}) = \boldsymbol{v}^T A (\lambda \boldsymbol{a} + \mu \boldsymbol{b})$$

$$= \lambda \boldsymbol{v}^T A \boldsymbol{a} + \mu \boldsymbol{v}^T A \boldsymbol{b}$$

$$= \lambda (\boldsymbol{v}, \boldsymbol{a}) + \mu (\boldsymbol{v}, \boldsymbol{b})$$

Symetic: Note that A is symetic, we have $(\boldsymbol{v}, \boldsymbol{w}) = (\boldsymbol{v}, \boldsymbol{w})^T = \boldsymbol{w}^T A^T \boldsymbol{v} = \boldsymbol{w}^T A \boldsymbol{v} = (\boldsymbol{w}, \boldsymbol{v})$. Positive definite: Note that A is positive definite, we know

$$\begin{cases} v^T A v > 0 \iff v \neq 0 \\ v^T A v = 0 \iff v = 0 \end{cases}$$

So we have $(\boldsymbol{v}, \boldsymbol{v}) \geq 0$ and $(\boldsymbol{v}, \boldsymbol{v}) = 0 \iff \boldsymbol{v} = \boldsymbol{0}$.

- **2.** Note that $(A^{-1}v, w) = v^T (A^{-1})^T A^T w = v^T (A^T)^{-1} A w = v^T w$, we have $Riesz(v^T) = A^{-1}v$.
- 3. We know $Reisz^{-1}(\mathbf{v}) = (\mathbf{v}|, \text{ so } Reisz^{-1}(\mathbf{v}) = \mathbf{v}^T A.$
- 4. First, we prove

Lemma For any linear bijection $A: V \to W$, $(A^*)^{-1} = (A^{-1})^*$.

Proof. Suppose arbitrary $\boldsymbol{v} \in V, \boldsymbol{w} \in W, \boldsymbol{\alpha} \in V^*, \boldsymbol{\beta} \in W^*$ s.t. $\boldsymbol{w} = A(\boldsymbol{v}), \boldsymbol{\alpha} = A^*(\boldsymbol{\beta})$. We have $(A^{-1})^*(\boldsymbol{\alpha})(\boldsymbol{w}) = \boldsymbol{\alpha} \circ A^{-1}(\boldsymbol{w}) = \boldsymbol{\alpha}(\boldsymbol{v}) = A^*(\boldsymbol{\beta})(\boldsymbol{v}) = \boldsymbol{\beta} \circ A(\boldsymbol{v}) = \boldsymbol{\beta}(\boldsymbol{w}) = (A^*)^{-1}(\boldsymbol{\alpha})(\boldsymbol{w})$. Thus, $(A^*)^{-1} = (A^{-1})^*$.

Then, let L be the bra map $L: \mathbb{R}^n \to (\mathbb{R}^n)^*$, $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$. Consider $L^*: (\mathbb{R}^n)^{**} \to (\mathbb{R}^n)^*$, we have $L^*(ev_{\boldsymbol{v}})(\boldsymbol{w}) = ev_{\boldsymbol{v}} \circ L(\boldsymbol{w}) = ev_{\boldsymbol{v}}((\boldsymbol{w}|) = (\boldsymbol{w}, \boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{w}) = L(\boldsymbol{v})(\boldsymbol{w})$. With the canonical isomorphism between $(\mathbb{R}^n)^{**}$ and \mathbb{R}^n , we can say $L = L^*$. Note that $Reisz = L^{-1}$, from **Lemma**, we know $Reisz^* = Reisz$. So $Reisz^*(\boldsymbol{v}^T) = Reisz(\boldsymbol{v}^T) = A^{-1}\boldsymbol{v}$.

5. From the previous subproblem, we know $Reisz^* = Reisz$, then $Reisz^{ad} = Reisz^{-1} \circ Reisz^* \circ Reisz^{-1} = Reisz^{-1} \circ Reisz^{-1} \circ Reisz^{-1} = Reisz^{-1}$. We have $Reisz^{ad}(\mathbf{v}) = Reisz^{-1}(\mathbf{v}) = \mathbf{v}^T A$.