```
import pandas as pd
import numpy as np
```

import matplotlib.pyplot as plt

Data=pd.read_csv("/content/sales_data.csv")

Data

:е	Day	Month	Year	Customer_Age	Age_Group	Customer_Gender	Country	State
3- 26	26	November	2013	19	Youth (<25)	М	Canada	British Columbia
5- <u>?</u> 6	26	November	2015	19	Youth (<25)	М	Canada	British Columbia
4- ?3	23	March	2014	49	Adults (35- 64)	М	Australia	New South Wales
6- !3	23	March	2016	49	Adults (35- 64)	М	Australia	New South Wales
4- 5	15	May	2014	47	Adults (35- 64)	F	Australia	New South Wales
6- 12	12	April	2016	41	Adults (35- 64)	М	United Kingdom	England
4-)2	2	April	2014	18	Youth (<25)	М	Australia	Queensland
6-)2	2	April	2016	18	Youth (<25)	М	Australia	Queensland
4-)4	4	March	2014	37	Adults (35- 64)	F	France	Seine (Paris)
6-)4	4	March	2016	37	Adults (35- 64)	F	France	Seine (Paris)

Data.head()

18 columns

Data.shape

(113036, 18)

Data.info()

Data.describe()

	Day	Year	Customer_Age	Order_Quantity	Unit_Cost	Uı
count	113036.000000	113036.000000	113036.000000	113036.000000	113036.000000	1130
mean	15.665753	2014.401739	35.919212	11.901660	267.296366	4
std	8.781567	1.272510	11.021936	9.561857	549.835483	9
min	1.000000	2011.000000	17.000000	1.000000	1.000000	
25%	8.000000	2013.000000	28.000000	2.000000	2.000000	
50%	16.000000	2014.000000	35.000000	10.000000	9.000000	
75%	23.000000	2016.000000	43.000000	20.000000	42.000000	
max	31.000000	2016.000000	87.000000	32.000000	2171.000000	35
4						•

Data.dtypes

Data.dropna(inplace=True)

Data['Order_Quantity'].plot(kind='hist',figsize=(14,6))

Data['Year'].value_counts()

Data['Year'].value_counts().plot(kind='pie')

<Axes: ylabel='Year'>

Data['Month'].value_counts()

Data['Month'].value_counts().plot(kind='bar',figsize=(14,6))

Data['Country'].value_counts()

sales = Data.groupby('Country')['Cost'].sum().plot(kind="bar")

Data['Product'].unique()

Data["Product"].value_counts().head(10).plot(kind="bar",figsize=(10,4))

Data.plot(kind="scatter",x="Unit_Cost",y="Unit_Price")

<Axes: xlabel='Unit_Cost', ylabel='Unit_Price'>

Data.plot(kind="scatter",x="Profit",y="Order_Quantity")

<Axes: xlabel='Profit', ylabel='Order_Quantity'>

Data.plot(kind="box",x="Country",y="Profit",figsize=(12,4),vert=False)

Data[["Customer_Age","Country"]].boxplot(by="Country",figsize=(10,6))

<Axes: title={'center': 'Customer_Age'}, xlabel='[Country]'>

 $\texttt{Data["Calculated_Date"]=Data[['Year','Month','Day']].apply(lambda x:'{}-{}'.format(x[0],x[1],x[2]),axis=1) }$ Data["Calculated_Date"]=pd.to_datetime(Data["Calculated_Date"]) Data['Calculated_Date'].head()

- 2013-11-26
- 2015-11-26
- 2014-03-23
- 2016-03-23 3
- 2014-05-15

Name: Calculated_Date, dtype: datetime64[ns]

Data["Calculated_Date"].value_counts().plot(kind="line",figsize=(14,6))


```
Data['Revenue']+50
               1000
     0
     1
               1000
     2
               2451
     3
               2138
     4
                468
     113031
                234
     113032
               1233
     113033
               1233
     113034
               1310
     113035
               1257
     Name: Revenue, Length: 113036, dtype: int64
canada_orders = len(Data[Data["Country"] == "Canada"])
france_orders = len(Data[Data["Country"] == "France"])
print(f"Number of Orders in Canada: {canada_orders}")
print(f"Number of Orders in France: {france_orders}")
     Number of Orders in Canada: 14178
     Number of Orders in France: 10998
Data.loc[(Data['Country']=="canada") & (Data['Sub_Category']=="Bike Racks")].shape[0]
     0
Data.groupby('State').size()
     State
     Alabama
     Alberta
                                56
     Arizona
                                4
     Bayern
                              1426
     Brandenburg
                              198
     British Columbia
     California
     Charente-Maritime
                               148
     England
                             13620
                               994
     Essonne
     Florida
                               14
     Garonne (Haute)
                               208
     Georgia
                              1836
     Hamburg
     Hauts de Seine
                              1084
     Hessen
                              2384
     Illinois
                                10
     Kentucky
     Loir et Cher
     Loiret
                               382
     Massachusetts
                                 2
                                 6
     Minnesota
                                 4
6
     Mississippi
     Missouri
```

Montana

Moselle	386
New South Wales	10412
New York	20
Nord	1670
Nordrhein-Westfalen	2484
North Carolina	4
Ohio	28
Ontario	6
Oregon	5286
Pas de Calais	96
Queensland	5220
Saarland	2776
Seine (Paris)	2328
Seine Saint Denis	1684
Seine et Marne	394
Somme	134
South Australia	1564
South Carolina	10
Tasmania	724
Texas	36
Utah	10
Val d'Oise	264
Val de Marne	158
Victoria	6016
Virginia	4
Washington	11264
Wyoming	8
Yveline	954
dtype: int64	

Data.groupby('State').size().plot(kind="bar",figsize=(14,6))

Data["Sub_Category"].value_counts()

Tires and Tubes	33870		
Bottles and Cages	15876		
Road Bikes	13430		
Helmets	12158		
Mountain Bikes	8854		
Jerseys	6010		
Caps	4358		
Fenders	4032		
Touring Bikes	3698		
Gloves	2686		
Cleaners	1802		
Shorts	1794		
Hydration Packs	1334		
Socks	1122		

Vests 964
Bike Racks 592
Bike Stands 456
Name: Sub_Category, dtype: int64

Data["Sub_Category"].value_counts().plot(kind="pie",figsize=(14,6))

<Axes: ylabel='Sub_Category'>

Data.groupby('Product_Category').size().reset_index(name='sales').loc[Data['Product_Category'].str.contains('Accessories')]

	Product_Category	sales	\blacksquare
0	Accessories	70120	ılı
1	Bikes	25982	
2	Clothing	16934	

 $\label{lem:decomp} Data.groupby('Product_Category').size().reset_index(name='sales').loc[Data['Product_Category'].str.contains('Accessories')].plot(kind="lemonth of the contains of the con$

Data.loc[Data['Product_Category']=="Bikes","Sub_Category"].value_counts()

Road Bikes 13430 Mountain Bikes 8854 Touring Bikes 3698

Name: Sub_Category, dtype: int64

Data.loc[Data['Product_Category']=="Bikes","Sub_Category"].value_counts().plot(kind="pie")

<Axes: ylabel='Sub_Category'>

Data['Customer_Gender'].value_counts()

58312 54724

Name: Customer_Gender, dtype: int64

Data.loc[(Data['Customer_Gender']=="M") & (Data['Revenue']>=500)].shape[0]

21781

Data.sort_values(["Revenue"],ascending=False).head(5)

	Date	Day	Month	Year	Customer_Age	Age_Group	Customer_Gender	Country
112073	2015- 07-24	24	July	2015	52	Adults (35- 64)	М	Australia
112072	2013- 07-24	24	July	2013	52	Adults (35- 64)	М	Australia
71129	2011- 07-08	8	July	2011	22	Youth (<25)	М	Canada
70307	2011- 04-30	30	April	2011	44	Adults (35- 64)	М	Canada
70601	2011- 09-30	30	September	2011	19	Youth (<25)	F	Canada

Data['Revenue'].max()

58074

Data.loc[Data['Revenue']> 10_1000 ,"Order_Quantity"].mean()

Data.loc[Data['Revenue']<10_1000 ,"Order_Quantity"].mean()</pre>

11.901659648253654

Data.loc[(Data['Year']==2016) & (Data['Month']=="May")].shape[0]

5015

Data.loc[(Data['Year']==2016) & (Data['Month'].isin(["May","June","July"]))].shape[0]

12164

ax = Data.boxplot(column="Profit", by="Month", figsize=(14, 6))


```
tax_rate = 0.072
us_sales = Data[Data["Country"] == "United States"]
us_sales["Unit_Price"] = us_sales["Unit_Price"] * (1 + tax_rate)
print(us_sales["Unit_Price"].head())
```