Human-level control through deep reinforcement learning (Nature, 2015)

```
Introduction (2 slides)
```

• RL basics (4 slides)

• **Q-value iteration** (4 slides)

DQN = Deep Q-network (3 slides)

• Results (1 slide)

• **Discussion/conclusions** (3 slides)

• Code/tips (1 slide)

DQN (overview)

- Mnih et al. introduced *Deep* Q-Network (*DQN*) algorithm, applied it to ATARI games
- Used deep learning / ConvNets, published in early stages of deep learning craze
- Popularized ATARI (Bellemare et al., 2013) as RL benchmark

Outperformed baseline methods, which used hand-crafted features

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

What is Reinforcement Learning (RL)?

- ML ~ concerned with taking sequences of actions
- Try to maximize cumulative reward

Robotics

Observation: camera images, joint angles

Actions: joint torques

Rewards: stay balanced, navigate, serve humans

Inventory management

Observation: current inventory levels

Actions: number of units of each item to purchase

Rewards: profit

Machine translation (sequential prediction)

Observation: words in source language

Action: emit word in target language

Reward: sentence-level accuracy metric

- Deep RL use NN to approximate functions
 - Policies (select next action)
 - Value functions (measure goodness of states or state-action pairs)
 - Dynamics Models (predict next states and rewards)

Basic RL

- Markov Decision Process (MDP)
 - **S**: state space set of states of the environment
 - A: action space set of actions, which the agent selects from at each time step
 - **P**(r,s'|s,a) a transition probability distribution (emit reward r and transition to s')

Goal

- find a policy π which maps states to actions
- can be stochastic $\pi(a|s)$ or deterministic $a = \pi(s)$

Compared to supervised learning:

- don't have full access to function to be optimized
- must query it through interaction
- Interacting with a stateful world (input depends on previous actions)

Discounted setting

- Discount factor $0 \le \gamma < 1$
- Preference for present rewards compared to future rewards
- Effective time horizon = $1 + \gamma + \gamma^2 + \cdots = 1/(1 \gamma)$
- Discounted problem can be obtained from original, by adding transitions to a "sink state"

$$\tilde{P}(s' \mid s, a) = \begin{cases} P(s' \mid s, a) \text{ with probability } \gamma \\ \text{sink state with probability } 1 - \gamma \end{cases}$$

Basic concepts

- Policy optimization
 - maximize expected reward with respect to policy π

$$\max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} r_t \right]$$

- Policy evaluation
 - compute expected **return** for fixed policy π
 - return = sum of future rewards in an episode
 - discounted return: $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
 - undiscounted return: $r_t + r_{t+1} + \cdots + r_{T-1} + V(s_T)$
 - state value function

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} \left[Q^{\pi}(s, a) \right]$

state-action value function / Q function

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, a_0 = a \right]$$

Bellman equations

$$Q^{\pi}(s_{0}, a_{0}) = \mathbb{E}_{s_{1} \sim P(s_{1} \mid s_{0}, a_{0})} [r_{0} + \gamma V^{\pi}(s_{1})]$$

$$= \mathbb{E}_{s_{1} \sim P(s_{1} \mid s_{0}, a_{0})} [r_{0} + \gamma \mathbb{E}_{a_{1} \sim \pi} [Q^{\pi}(s_{1}, a_{1})]]$$

$$= \mathbb{E}_{s_{1}, a_{1}, \dots, s_{k}, a_{k} \mid s_{0}, a_{0}} [r_{0} + \gamma r_{1} + \dots + \gamma^{k-1} r_{k-1} + \gamma^{k} Q^{\pi}(s_{k}, a_{k})]$$

- Bellman backup operator $[\mathcal{T}^{\pi}Q](s_0,a_0)=\mathbb{E}_{s_1\sim P(s_1\mid s_0,a_0)}\left[r_0+\gamma\mathbb{E}_{a_1\sim\pi}\left[Q(s_1,a_1)\right]\right]$
- Q^{π} is a fixed point of this operator $\mathcal{T}^{\pi}Q^{\pi}=Q^{\pi}$
- AND if we apply it repeatedly to any initial Q, the series converges to Q^{π}

$$Q, \ \mathcal{T}^{\pi}Q, \ (\mathcal{T}^{\pi})^{2}Q, \ (\mathcal{T}^{\pi})^{3}Q, \ \cdots \rightarrow Q^{\pi}$$

Finding the optimal Q

- Let π^* denote an optimal policy
- Define $Q^*=Q^{\pi^*}$, which satisfies $Q^*(s,a)=\max_{\pi}Q^{\pi}(s,a)$
- π^* satisfies $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Then Bellman equation $Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$ becomes $Q^*(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q^*(s_1, a_1) \right]$

(optimal strategy is to select a1 that maximizes the expected value)

$$[\mathcal{T}Q](s_0,a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0,a_0)} \left[r_0 + \gamma \max_{a_1} Q(s_1,a_1) \right] \qquad Q, \ \mathcal{T}Q, \ \mathcal{T}^2Q, \ \cdots \to Q^*$$

Q-value iteration

Algorithm 1 Q-Value Iteration

Initialize $Q^{(0)}$

for n = 0, 1, 2, ... until termination condition **do** $Q^{(n+1)} = \mathcal{T}Q^{(n)}$

end for

$$[\mathcal{T}Q](s,a) = \mathbb{E}_{s_1}\left[r_0 + \gamma \max_{a_1} Q(s_1,a_1) \middle| s_0 = s, a_0 = a\right]$$

- we can compute greedily max Q(s,a)
- without knowing transition probabilities (model-free RL)

Q-Value iteration + Function Approximation: Batch Method

Parameterize Q-function with a neural network Q_{θ}

Backup estimate $\widehat{\mathcal{T}Q}_t = r_t + \max_{a_{t+1}} \gamma Q(s_{t+1}, a_{t+1})$

To approximate $Q \leftarrow \widehat{\mathcal{T}Q}$, solve minimize $_{\theta} \sum_{t} \left\| Q_{\theta}(s_{t}, a_{t}) - \widehat{\mathcal{T}Q}_{t} \right\|^{2}$

can compute estimator of backup without knowing P using **OFF-POLICY** data, a single trasition (s,a,r,s')

Algorithm 2 Neural-Fitted Q-Iteration (NFQ)¹

Initialize $\theta^{(0)}$.

for n = 0, 1, 2, dots**do**

Run policy for K timesteps using some policy $\pi^{(n)}$.

$$heta^{(n+1)} = \mathsf{minimize}_{ heta} \sum_t \Bigl(\widehat{\mathcal{T}Q_{ heta^{(n)}}}_t - Q_{ heta}(s_t, a_t)\Bigr)^2$$

end for

Q-Value iteration + Function Approximation Online/Incremental Method

Algorithm 3 Watkins' Q-learning / Incremental Q-Value Iteration

Initialize $\theta^{(0)}$. **for** n=0,1,2,dots **do** Run policy for K timesteps using some policy $\pi^{(n)}$. $g^{(n)} = \nabla_{\theta} \sum_{t} \left(\widehat{\mathcal{T}Q}_{t} - Q_{\theta}(s_{t}, a_{t})\right)^{2}$ $\theta^{(n+1)} = \theta^{(n)} - \alpha g^{(n)}$ (SGD update) **end for**

DQN (network)

DQN (algorithm)

- Hybrid of online + batch Q-value iteration
- Transition (s,a,r,s') φ is processed s
- Interleaves optimization with data collection

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For
$$t = 1$$
,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set
$$s_{t+1} = s_t, a_t, x_{t+1}$$
 and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Key concepts

- Replay memory = history of last N transitions
 - Is it valid? yes: Q-function backup can be done with off-policy data
 - Each transition (s,a,r,s') seen many times
 better data efficiency, reward propagation

(example)

- History contains data form many past policies, derived from $Q^{(n)}$, $Q^{(n-1)}$, $Q^{(n-2)}$, ... and changes slowly => increased stability
- Target network
 - Gets updated infrequently, while current Q is updated constantly by SGD
 - Why not use Q as backup target?
 - Fixed target $TQ^{(n)}$ easier to reach than chasing a moving target

Video Pinball 2539% Boxing Breakout 1327% Star Gunner Robotank Atlantis 449% Crazy Climber Gopher Demon Attack Name This Game Krull Game Assault 246% Road Runner Kangaroo 224% Breakout James Bond 145% Tennis Pong 132% Enduro Space Invaders Beam Rider River Raid Tutankham 112% Kung-Fu Master 102% Freeway 102% Seaquest Time Pilot Enduro Fishing Derby Space Invaders Up and Down Ice Hockey Q*bert At human-level or above H.E.R.O. Asterix Below human-level Battle Zone Wizard of Wor Chopper Command Centipede Bank Heist River Raid Zaxxon Amidar Alien Venture Seaguest **- 25%** Double Dunk Bowling **-14%** Ms. Pac-Man Asteroids Frostbite - 6% Gravitar Private Eye **⊣2%** Montezuma's Revenge ☐ 0% 500 600 1,000 4,500% 100 200 300 400

Results

With replay,

with target Q

316.8

1006.3

7446.6

2894.4

1088.9

With replay, without target Q	Without replay, with target Q	Without replay, without target G
240.7	10.2	3.2
831.4	141.9	29.1
4102.8	2867.7	1453.0
822.6	1003.0	275.8
826.3	373.2	302.0

Are Q-values Meaningful?

... but:

- Q function severely overestimating returns!
 - Q value can shift a lot without much impact to the loss
 - Differences between Q of different actions more important than their absolute value!

Conclusions

- Single architecture control policies 49 different environments (same algorithm, network architecture and hyperparameters)
- Minimal prior knowledge, only pixels and score as input
- Not equally reliable on all tasks

- Improvements:
 - Double DQN (closer DQN estimates to true values)
 - Dueling nets (separately estimate V and A) Q(s, a) = V(s) + A(s, a)
 - Prioritized replay (favor important time steps with large gradients)

Some practical tips

- Large replay buffers (~1 M) improve robustness
- Memory efficiency is key! use uint8, don't duplicate data etc.
- Converges slowly: ATARI often needs 10-40M frames (hours on a GPU)
 >> random policy
- Double DQN (2 lines change) but significant improvement
- Run at least 2-3 different seeds when experimenting
- Learning rate scheduling is important (high rates in initial exploration)

CODE:

Torch https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner
Keras: Theano/Tensorflow https://yanpanlau.github.io/2016/07/10/FlappyBird-Keras.html

11. Cooler to the section of the sec

DL4J: Scala https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN.html