Intercepts of the Quadratic Given a quadratic $g(z) = a z^2 + b z + c$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

△=**289**>**0**

Example 2.

Case3: △<0

△=-784<0

no z-intercepts.

g(0) = -245 g-intercept.

However there is a g-intercept.

 $z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the z-intercepts of multiplicity 1.

$$g(0) = c$$
 computes the single g-intercept.
Example 1.
$$g(z) = 2z^2 - z - 36$$
 compute its discriminant \triangle :

$$z_{1,2} = \frac{9}{2}, -4$$

 $g(0) = -36$ g-intercept.

$z_{1,2} = -7, -7$ g(0) = -147 g-intercept.

 $g(z) = -3z^2 - 42z - 147$ compute its discriminant \triangle :

-1000

Example 3. $g(z) = -4z^2 + 56z - 245$ compute its discriminant \triangle :

 $\sqrt{\,{\sf b}^2\,_-\,\,{\sf 4}\,\,{\sf ac}}$ has no value in Real Numbers. Therefore there are

