
Monday, October 19th 2020

Wk 8, Mo

Topic:: Joint continuous distributions

Read:: FASt 3.8

 X_1, X_2, X_3 all normal, independent, N_1, σ_1 $X_1 + X_2 + X_3 \sim \text{Norm}\left(\frac{\mu_1 + \mu_2 + \mu_3}{2}, \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}\right)$ Yes

Joint Distributions for Continuous r.v.s

Definition 1: Let $f: \mathbb{R}^k \to \mathbb{R}$ be a nonnegative function for which the multiple integral

$$\int_{\mathbb{R}^k} f(\mathbf{x}) d\mathbf{x} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_k) dx_k \cdots dx_2 dx_1 = 1.$$

Then f is called a **probability density function**. A continuous **random vector** $\mathbf{X} = \langle X_1, X_2, \dots, X_k \rangle$ whose components X_i are continuous random variables is said to have (joint) pdf f if, for subsets A of \mathbb{R}^k ,

$$P(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \, d\mathbf{x}.$$

We write $f_{\mathbf{X}}(\mathbf{x})$, or $f_{X_1,...,X_k}(x_1,...,x_k)$.

The joint cdf of X, denoted by $F_X(x)$ is evaluated as

$$F_{\mathbf{X}}(\mathbf{x}) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_k \le x_k)$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_k} f(t_1, t_2, \dots, t_k) dt_k \dots dt_2 dt_1.$$

Likewise, the pdf can be obtained from the cdf via differentiation:

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_k) = \frac{\partial}{\partial x_k} \dots \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} F(x_1, x_2, \dots, x_k).$$

We will generally consider bivariate distributions for random vectors $\mathbf{X} = (X_1, X_2)$, but most results carry over naturally to multivariate distributions.

Definition 2: Suppose X, Y are jointly distributed continuous r.v.s with pdf $f_{X,Y}(x,y)$. Define the **marginal density function** for X (resp. Y) to be

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 (and $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$).

Given the marginal distributions, we can define conditional ones via the ratio

$$f_{X|Y=y}(x) = f_{X|Y}(x \mid y) := \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

of joint to marginal pdf. Here, $f_{X|Y=y}(x)$ is the **conditional distribution** of X given Y=y.

If

$$f_{X,Y}(x,y) = f_X(x)f_Y(y),$$

then *X*, *Y* are **independent**.

Example 1:

Let
$$f(x,y) = \begin{cases} kxy^2, & 0 \le x \le y \le 1, \\ 0 & \text{otherwise} \end{cases}$$
.

(a) Find the value of k for which f is a densit function.

(b) Determine if *X* and *Y* are independent.

Lemma 1 (Lemma 3.8.7, p. 186 in FASt): If X, Y are independent continuous r.v.s, then for each x, y,

(i)
$$f_X(x) = f_{X|Y}(x|y)$$
, and

(ii)
$$f_Y(y) = f_{Y|X}(y|x)$$
.

Example 2:

(a) =

support of

pdf for X

Suppose $X, Y \sim \mathsf{Unif}(0,1)$ are independent.

(a) What is the joint pdf $f_{X,Y}(x,y)$?

$$f_{x,y}(x,y) = f_{x}(x) \cdot f_{y}(y) = \begin{cases} 1 \\ 0 \end{cases}$$

 $\begin{cases} 1, & 0 \leq x, y \leq 1 \\ 0, & \text{otherwise} \end{cases}$

(b) Let S = X + Y. What are the cdf and pdf of S?

$$= P(S \leq A) = \begin{cases} 0, A < 0 & \Rightarrow 2 \\ P(\chi_{+} Y \leq A) = P(Y \leq A - X) = \int f_{\chi}(Y) \end{cases}$$

$$= \begin{cases} 0, & 0 < 0 \text{ or } \lambda > 2 \\ \frac{1}{2} \lambda^2, & 0 < \beta < 1 \\ 1 - \frac{1}{2}(2-\lambda)^2, & 1 \le \beta \le 2 \end{cases}$$

$$f_{S}(\lambda) = \begin{cases} 0 \\ 0 \\ 0 < N < 1 \end{cases}$$

Lemma 2 (Lemma 3.8.8, p. 188 in FASt): Let X, Y be independent r.v.s, t and s transformations. Then t(X), s(Y) are independent.

Theorem 1 (Theorem 3.8.9, p. 188 in FASt): Let *X*, *Y* be r.v.s. Then

- (i) E(X + Y) = E(X) + E(Y).
- (ii) E(XY) = E(X)E(Y), if X, Y are independent.
- (iii) Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y), with Cov(X, Y) = 0 when X, Y are independent.

Proof? it's 2.02.

Theorem 2 (Theorem 3.8.10, p. 189 in FASt): Let M_X , M_Y be moment generating functions, defined on an interval containing 0, for independent r.v.s X, Y. Then $M_{X+Y}(t) =$ $M_X(t)M_Y(t)$, with M_{X+Y} defined on the intersection of intervals of definition for $\overline{M_X}$, M_Y .

$$M_{x+y}(t) = E(e^{t(x+y)}) = E(\underline{e^{tx}} \cdot \underline{e^{ty}}) = \underline{E(e^{tx})} \cdot \underline{E(e^{ty})}$$

$$= M_{x}(t) \cdot M_{y}(t)$$

Example 3:

X ~ Norm (M2, 02) (a) The sum of two independent normal r.v.s is another normal r.v.

(a) The sum of two independent normal r.v.s is another normal r.v.

Note: For
$$X_1 \sim \text{Norm}(\mu_1, \sigma_1)$$
, $M_X(t) = e^{\mu_1 t + \sigma_1^2 t^2/2}$.

$$M_{X_1 + X_2}(t) = M_{X_1}(t) \cdot M_{X_2}(t) = e^{\mu_1 t + \sigma_1^2 t^2/2} \cdot e^{\mu_2 t + \sigma_2^2 t^2/2}$$

$$= e^{(\mu_1 + \mu_2)t + (\sigma_1^2 + \sigma_2^2)t^2/2} \longrightarrow X_1 + X_2 \sim \text{Norm}(\mu_1 + \mu_2)$$

another binomial r.v.

Note: For
$$X_1 \sim \operatorname{Binom}(m, \pi)$$
, $M_X(t) = (\pi e^t + 1 - \pi)^m$. $X_2 \sim \operatorname{Binom}(n, \pi)$

$$X_1 + X_2 \qquad \text{has} \qquad M_{X_1 + X_2}(t) = M_X(t) M_X(t) = (\pi e^t + 1 - \pi)^m (\pi e^t + 1 - \pi)^m$$

$$= (\pi e + 1 - \pi)^m$$

Definition 3: Suppose $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is a random vector with joint pdf $f_{\mathbf{X}}(\mathbf{x})$. Suppose there is a single density function f(x) that serves as the pdf for the marginal distribution for each X_i , so that

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \prod_{j=1}^n f(x_i).$$

Then the r.v.s X_1, \ldots, X_n are said to be **independent and identically distributed**, or i.i.d..

In particular, if the X_j are independent with each $X_j \sim \mathsf{Exp}(\lambda)$, we will denote this by $\mathbf{X} \stackrel{\text{i.i.d.}}{\sim} \mathsf{Exp}(\lambda)$.

Lemma 3: Suppose X_1, \ldots, X_n are i.i.d. and that each $E(X_i) = \mu$, each $Var(X_i) = \sigma^2$. Let $S = X_1 + X_2 + \cdots + X_n$, and $\overline{X} = \frac{1}{n}S$. Then

- (i) $E(S) = n\mu$ and $Var(S) = n\sigma^2$.
- (ii) $E(\overline{X}) = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$.

Lemma 4: Suppose $X \stackrel{\text{i.i.d.}}{\sim} \text{Norm}(\mu, \sigma)$, and define S, \overline{X} as in the previous lemma. Then

- (i) $S \sim \text{Norm}(n\mu, \sigma\sqrt{n})$, and
- (ii) $\overline{X} \sim \text{Norm}(\mu, \sigma/\sqrt{n})$.

Proof: By induction on Theorem 2, we have that

$$M_S(t) = \prod_{j=1}^n M_{X_j}(t) = \prod_{j=1}^n e^{\mu t + \sigma^2 t^2/2} = e^{n\mu t + n\sigma^2 t^2/2},$$

which is the mgf for a normal r.v. with distribution Norm $(n\mu, n\sigma^2)$. This proves (i).

For (ii), Theorem 3.3.6 (p. 133) gives that $M_{\overline{X}}(t) = M_{X/n}(t) = M_X(t/n) = e^{\mu t + (\sigma^2/n)t^2/2}$, which is the mgf for an r.v. distributed as Norm(μ , σ^2/n).

Question: What if the components X_i of **X** have different means μ_i and standard deviations σ_i ?