Time distributions and coronavirus control

Jonathan Dushoff, McMaster University

Cornell CAM Colloquium, Oct 2020

What is dynamical modeling?

Measles reports from England and Wales

- ► A way to connect scales
- ▶ Start with rules about how things change in short time steps
 - Usually based on individuals
- Calculate results over longer time periods
 - Usually about populations

Covid modeling questions

- How far and fast would it spread if unchecked?
- ► How hard is it to eliminate?
- How are we doing on control in a particular place and time?

https://wzmli.github.io/COVID19-Canada

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time Generations in space

Serial intervals

The speed paradigm

Real-time evaluation

Simple dynamical models use compartments

Divide people into categories:

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- Individuals recover independently
- Individuals are infected by infectious people

$$\begin{array}{rcl} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Deterministic implementation

Box models

More detailed dynamics

Childs et al., http://covid-measures.stanford.edu/

$$\begin{array}{rcl} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Event	transition	rate
Infection	S o I	R_0SI/N
Recovery	$I \rightarrow R$	$(1-\rho)I$
Rebirth	R o S	ho R
Rebirth	$I \rightarrow S$	ho I

Deterministic implementation

Individual-based implementation

Renewal equation

- ➤ A broad framework that covers a wide range of underlying models
- $i(t) = S(t) \int k(\tau) i(t-\tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - \triangleright S(t) is the proportion of the population susceptible
 - $k(\tau)$ measures how infectious a person is (on average) at time τ after becoming infected
- For invasion, treat S as constant

Infection kernel

- $k(\tau)$ is the expected rate at which you infect at time τ after being infected
- $\int_{\tau} k(\tau) d\tau$ is the expected number of people infected:
 - R the effective reproductive number
- $\blacktriangleright k(\tau)/\mathcal{R}$ is a distribution:
 - $g(\tau)$, the *intrinsic* generation distribution

Linear chain trick

 Create ODEs to follow a cohort of people infected at the same time

Linear chain trick

Childs et al., http://covid-measures.stanford.edu/

How long until the bus comes?

Mean of a self-weighted quantity

- ► Infectious period of an infector
- Activity level of an interactor

$$\mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$$

▶ Time until bus comes: $\mu(1+\kappa)/2$

Generation interval

- One generation:
 - ► Latent period (time until infectiousness) +
 - Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - Equal to infectious period only when we assume a Markovian process

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time
Generations in space

The speed paradigm

Real-time evaluation

Lessons from simple models

- Exponential invasion potential
- ► Tendency to oscillate
- ► Thresholds

Strength

- $lackbox{ }$ We describe epidemic strength with big ${\cal R}$
- ► Number of new cases per case
- ▶ Uncontrolled, initial value of \mathcal{R} is called \mathcal{R}_0 .

${\cal R}$ and control

Herd immunity

- lacktriangle If we have ${\mathcal R}$ new cases per case when everyone is susceptible
- ▶ And 1 case per case (on average) at equilibrium:
 - ▶ Proportion susceptible at equilibrium is $S = 1/\mathcal{R}$
 - Proportion affected at equilibrium is $V=1-1/\mathcal{R}$

Speed

- ▶ We measure epidemic speed using little *r*:
 - ► The ratio of the *change* in disease impact to the *amount* of disease impact
 - ► *Units*: [1/time]
 - Disease increases like e^{rt}
- ▶ Time scale is C = 1/r

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Faster than expected.

Ebola outbreak

 $C \approx 1 \, \mathrm{month}$. Slower than expected.

Coronavirus speed

 $C \approx 5 \,\mathrm{day}$. Coronavirus!

Coronavirus

- ▶ What we see clearly is *r*
- ightharpoonup What we rush to calculate is \mathcal{R}
- ► How do we do this?
- ▶ Why do we do this?

How long is a disease generation? (present)

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

Generation intervals

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods
- Error often not propagated

Quickness: $g(\tau)$

Approximate generation intervals

- ► The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- Does "quick" disease (short generations) mean more danger or less danger?

Danger?

Conditional effect of quickness

- ightharpoonup Given the reproductive number ${\cal R}$
 - quicker disease means faster growth rate r
 - More danger
- Given the growth rate r
 - ightharpoonup quicker disease means *smaller* ${\cal R}$
 - Less danger

Generations and \mathcal{R}

Powers et al., https://www.pnas.org/content/111/45/15867

Linking framework

- ▶ Epidemic speed (r) is a product:
 - ▶ (something to do with) quickness ×
 - (something to do with) epidemic strength
- ▶ Strength (R) is therefore (sort-of) a quotient
 - More quickness implies less strength
 - ...if speed is known

Speed and strength

Measles reports from England and Wales

Euler-Lotka equation

- ightharpoonup If we neglect S, we expect exponential growth
- $1 = \int k(\tau) \exp(-r\tau) d\tau$
 - i.e., the total of discounted contributions is 1
- ▶ $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

Interpretation: generating functions

►
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

$$ightharpoonup \mathcal{R} = 1/M(-r)$$

► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

Compound-interest interpretation

- \triangleright κ is the 'effective dispersion'
 - Equal to the squared coefficient of variation when G is gamma-distributed
- ▶ X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$
- ▶ Park et al., Epidemics DOI:10.1101/312397

Approximating the rR relationship

Exponential growth rate (per generation)

Propagating error

Propagating error

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time Generations in space Serial intervals

The speed paradigm

Real-time evaluation

Estimating transmission intervals

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time

Generations in space Serial intervals

The speed paradigm

Real-time evaluation

Generations through time

- Generation intervals can be estimated by:
 - Observing patients:
 - How long does it take to become infectious?
 - How long does it take to recover?
 - What is the time profile of infectiousness/activity?
 - Contact tracing
 - Who (probably) infected whom?
 - ▶ When did each become infected?
 - or ill (serial interval)?

Which is the real interval?

- Contact-tracing intervals look systematically different, depending on when you observe them.
- Observed in:
 - Real data, detailed simulations, simple model
- Also differ from intrinsic (infector centered) estimates

Types of interval

Define:

- Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When will the people infected today infect others?
- Backward interval: When did the people who infected people today themselves become infected?
- Censored interval: What do all the intervals observed up until a particular time look like?
 - Like backward intervals, if it's early in the epidemic

Growing epidemics

- ► Generation intervals look *shorter* at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Backward intervals

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time

Generations in space

Serial intervals

The speed paradigm

Real-time evaluation

Generations in space

▶ How do local interactions affect realized generation intervals?

Generation-interval perspective

- Modelers don't usually question the intrinsic generation interval
- But spatial network structure does change generation intervals:
 - Local interactions
 - ▶ ⇒ wasted contacts
 - shorter generation intervals
 - $\blacktriangleright \implies$ smaller estimates of \mathcal{R} .

Observed and estimated intervals

Outbreak estimation

Park et al. JRSI, DOI: 10.1098/rsif.2019.0719

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time Generations in space

Serial intervals

The speed paradigm

Real-time evaluation

Serial intervals

Serial intervals

- ▶ Do serial intervals and generation intervals have the same distribution?
- ▶ It seems that they should: they describe generations of the same process
 - But serial intervals can be very different
 - Even negative! You might report to the clinic with flu before me, even though I infected you

Rabies

- ► If symptoms always start *before* infectiousness happens, then serial interval should equal generation interval:
 - ▶ incubation time + extra latent time + waiting time
 - extra latent time + waiting time + incubation time

Serial interval anomaly

What if individuals aren't homogeneous?

Observed intervals

The link paradox

- ► Imagine a renewal process where symptoms in the infector cause symptoms in the infectee
 - Assume homogeneity
- ▶ This has to match the same rR link as the true process
- But it also can't (because the serial interval is in general broader than the generation interval)

The forward serial interval

Dynamical effects mean that the forward serial interval is shortened!

Observed epidemiological intervals

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time
Generations in space
Social intervals

The speed paradigm

Real-time evaluation

The speed paradigm

- ▶ Why are people scrambling to estimate \mathcal{R} and mostly ignoring r?
 - History
 - Equilibrium and herd immunity
 - ► Modelers gotta model

The strength paradigm

- $ightharpoonup \mathcal{R} > 1$ is a threshold
- If we can reduce transmission by a constant *factor* of $\theta > \mathcal{R}$, disease can be controlled
- In general, we can define θ as a (harmonic) mean of the reduction factor over the course of an infection
 - weighted by the intrinsic generation interval
- ▶ Epidemic is controlled if $\theta > \mathcal{R}$
- More direct information about long term (tells us about final size, equilibrium)

The speed paradigm

- ightharpoonup r > 0 is a threshold
- If we can reduce transmission at a constant hazard rate of $\phi > r$, disease can be controlled
- In general, we can define ϕ as a (very weird) mean of the reduction factor over the course of an infection
 - weighted by the backward generation interval
- **E**pidemic is controlled if $\phi > r$
- More direct information about short term (tells us about, um, speed)

Epidemic strength (present)

Strength of intervention

... by what factor do I need to reduce this curve to eliminate the epidemic?

Strength-like interventions

- idealized vaccination
- removes a fixed proportion of people

Speed-like interventions

- idealized quarantine
- removes people at a fixed rate

Epidemic speed

r, the epidemic speed, is the "discount" rate required to balance the tendency to grow

Epidemic speed

▶ $k(\tau) = \exp(r\tau)b(\tau)$, where $b(\tau)$ is the initial backward generation interval

Speed of intervention

...how quickly do I need to reduce this curve to eliminate the epidemic?

Different interventions (present)

Measuring the intervention

Measuring the intervention

- ▶ We imagine an intervention that takesj
- Assume the intervention takes
 - $ightharpoonup k(au)
 ightarrow \hat{k}(au)$
- ▶ Instantaneous strength of intervention is $L(\tau) = k(\tau)/\hat{k}(\tau)$
- ▶ Instantaneous speed of intervention is $h(\tau) = \frac{dL(\tau)}{L(\tau)d\tau}$

The strength paradigm

- \blacktriangleright $k(\tau) = \mathcal{R}g(\tau)$
 - g is the intrinsic generation interval
 - $ightharpoonup \mathcal{R}$ is the strength of the epidemic
- ▶ If $L(\tau) \equiv L$, then $\theta = L$ is the strength of the intervention
- ▶ In general, θ is a (harmonic) mean of L
 - weighted by $g(\tau)$, but not affected by \mathcal{R} .
- ▶ Epidemic is controlled if $\theta > \mathcal{R}$

The speed paradigm

- $\blacktriangleright k(\tau) = \exp(r\tau)b(\tau),$
 - r is the speed of the epidemic
 - b is the initial backward generation interval
- ▶ If $h(\tau) \equiv h$, then $\phi = h$ is the speed of the intervention
- ▶ In general, ϕ is a (weird) mean of h
 - weighted by $b(\tau)$, but not affected by r.
- **Epidemic** is controlled if $\phi > r$

HIV

- ▶ The importance of transmission speed to HIV control is easier to understand using the speed paradigm
 - We know the speed of invasion
 - ightharpoonup $\approx 0.7/\mathrm{yr}$
 - ► Characteristic scale $\approx 1.4 \mathrm{yr}$
 - And can hypothesize the speed of intervention
 - Or aim to go fast enough

HIV test and treat

HIV test and treat

Coronavirus outbreak

- What do we think if the pathogen is actually quicker than we thought?
 - e.g., more pre-symptomatic transmission
- ▶ Initial speed is well known ⇒
- Estimate of invasion strength goes down
 - easier to control by universal changes like masking
- Does not change estimate of invasion speed
 - Puts more weight on what happens earlier in infection
 - Good news for event-based screening
 - Bad news for symptom-based screening

Outline

Modeling disease spread

Linking strength and speed

Estimating transmission intervals

Generations through time
Generations in space
Social intervals

The speed paradigm

Real-time evaluation

How are conditions changing through time?

https://coronavirus.jhu.edu 2020 Jul 08

https://rt.live 2020 Jul 08

Using available data

- ▶ Time distributions are hard to measure
 - ▶ Infection date \implies Symptom onset date \implies Sample collection date \implies Test conducted \implies Test result recorded
- Deconvolution is hard

Wuhan control measures

Time-varying reproductive numbers

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - \blacktriangleright $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):
 - $i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$

Wuhan control measures

https://jamanetwork.com/journals/jama/fullarticle/2764658

Shifts

- We could best evaluate current conditions by calculating \mathcal{R}_i using *incidence* data
 - ► Requires deconvolution
- If transmission is centered at "report" time, using \mathcal{R}_c with report data may be "second-best"

Assumptions

- ► All current methods assume that (some version of) the generation interval does not change through time!
- ➤ This is a good match for 'strength-like' interventions (movement restrictions, masks for all)
- It's a bad match for 'speed-like' interventions (tracing, testing and isolation)

New results

- Speed-like changes cannot be distinguished from strength-like changes using incidence data
 - They can give identical results
- \triangleright $\mathcal{R}_i(t)$ based on incidence data gives a good measure of effectiveness of strength-like interventions
- r(t) based on incidence data gives a good measure of effectiveness of speed-like interventions
- ► These insights do not solve the delay and deconvolution problems

Thanks

- CAM and the organizers
- ► Collaborators:
 - Li, Park, Weitz, Bolker, Earn, Champredon, Gharouni, Papst, Hampson . . .
- ► Funders: NSERC, CIHR, PHAC, WHO