In this exercise I was to solve the Bandwidth Coloring Problem. I chose to do this three different ways where they all produce feasible solutions.

Method 1 - Adapted Prim's Algorithm with Multistart

The first method I used is loosely based on Prim's algorithm with a multistart approach. I started by choosing a starting node randomly, and expanded with the edge that had the lowest available cost. This method has a runtime of $\mathcal{O}(nml)$, where n is the number of nodes, m is the number of edges, and l is the number iterations. Therefore, this is a quite slow method, but you are guaranteed an ok solution.

Method 2 - Adapted Kruskal's Algorithm

This method was based on Kruskal's Algorithm, i.e. I evaluated the edge with the lowest cost of all the edges if one of the connected nodes hadn't been visited yet. This had a total runtime of $\mathcal{O}(nm)$, where n was the number of nodes, m was the number of edges. This is a rather quick method, but it comes on the cost of a guaranteed optimal solution.

Method 3 - Method of Randomized Edges with Multistart

The last method I implemented was an algorithm that chose a random edge where one of the nodes hadn't been visited yet, and calculated the lowest possible coloring for the nodes. To ensure good results, I used the multistart method. The runtime was therefore $\mathcal{O}(nml)$, where n was the number of nodes, m was the number of edges, and l was the number iterations. However, it still runs quicker than Method 1 and gives a better solution given that you have enough iterations in the multistart.

Results

One can see that Method 3, i.e. the method of randomized edges with multistart, produces the best results overall. Method 2 runs much quicker than the others and still produces quite good results, so it is a good option if speed is an important factor. Method 1 however is quite slow for larger datasets, but produces better results than Method 3 when we have a high amount of nodes. The reason for this is because I've chosen to only look at a few iterations of the multistart for such large datasets, and thus Method 1 has an advantage as it chooses the lowest cost edges, while Method 3 picks edges randomly. Therefore Method 3 won't really be optimized, it will only show a random solution. If one however had run the methods with a higher number of iterations, Method 3 would be the best results wise.

	Method 1	Method 2	Method 3
GEOM020a	23	25	26
GEOM020b	16	16	19
GEOM020c	24	26	23
GEOM030a	38	41	36
GEOM030b	32	42	34
GEOM030c	33	35	30
GEOM040a	50	60	47
GEOM040b	47	58	44
GEOM040c	33	36	33
GEOM050a	66	73	60
GEOM050b	69	83	62
GEOM050c	38	44	38

	Method 1	Method 2	Method 3
GEOM060a	71	80	74
GEOM060b	81	96	84
GEOM060c	40	57	49
GEOM070a	85	112	86
GEOM070b	96	118	85
GEOM070c	56	84	57
GEOM080a	115	119	108
GEOM080b	109	142	118
GEOM080c	62	119	67
GEOM090a	120	160	128
GEOM090b	144	161	141
GEOM090c	74	124	71

	Method 1	Method 2	Method 3
GEOM0100a	161	206	135
GEOM0100b	157	192	157
GEOM0100c	89	136	87
GEOM0110a	166	220	144
GEOM0110b	185	205	161
GEOM0110c	103	136	86
GEOM0120a	195	243	162
GEOM0120b	212	219	186
GEOM0120c	115	169	92
rand0100a	147	187	151
rand0100b	137	152	146
rand0100c	152	167	163
rand0100d	144	177	148

	Method 1	Method 2	Method 3
rand0200a	346*	333	345
rand0200b	334*	391	356
rand0200c	325*	377	356
rand0200d	309*	388	340
rand0500a	375*	511	541*
rand0500b	399*	478	471*
rand0500c	390*	481	619*
rand0500d	381*	498	658*
rand01000a	-	837	1368*
rand01000b	-	961	1293*
rand01000c	_	919	1146*
rand01000d	-	945	1248*

Table 1: Results for the Bandwidth Coloring Problem. Did not run Method 1 for the rand1000-files as it was incredibly slow.

^{*}Only iterates with 10 times for datasets of this size as it becomes too slow otherwise.