Chapter 1: Systems of Linear Equations and Matrices

Gwinnett School of Math, Science, and Technology

Multivariable Calculus Yearlong Notes

Anish Goyal 5th Period Donny Thurston Educator

2023-2024

Table of Contents

2		•	23
			22
		1.8.2.1 Multiply:	21
		1.8.2 With Matrices	21
	1.8	Matrix Properties, Equations, and Inverses	21 21
	1.0	1.7.1 Goal:	21
	1.7	Gauss-Jordan Elimination	21
	4 7	` ' '	20
		1.6.1 Goal:	19
	1.6	Gaussian Elimination With Back-Substitution	19
		1.5.1 Examples	19
	1.5	Gaussian Elimination	18
			18
		1.4.3 Example 4: Solve the following system	17
		1.4.2 Example 3: again	17
		1.4.1 Example 2: again	17
	1.4	Connection to Matrices	16
		1.3.1 Example 1 again	16
	1.3	Elementary Row Operations	16
	1.2	The Augmented Matrix	16
		1.1.2 Inconsistent	15
		1.1.1 Consistent	15
•	1.1		15
1	Intra	o to Systems	14
		0.3.2 Consider the matrices	12
		0.3.1 Suppose that A, B, C, D and E are matrices with the following sizes:	12
	0.3	Homework — "Matrix Stuff" (08/03/2023)	12
		0.2.1 Transpose Matrix Properties	11
	0.2	Transpose of a Matrix	11
		0.1.5 Examples	10
		0.1.4 Properties of Matrix Arithmetic	9
		0.1.3 Matrix Multiplication	9
		0.1.2 Scalar Multiplication	9
	0.1	0.1.1 Addition & Subtraction	9
	0.1	Matrix Operations	9

2.2	Minor	s & Cofa	ctors	23				
			e					
2.3	Cofac	tor Expa	nsion	24				
			e					
			ne method generalize to 2×2 matrices?					
	2.3.3	Find the	e determinant of a 4×4	25				
2.4	Theor	em		25				
	2.4.1	Example	e					
2.5	Triang	gular Mat	trices	26				
2.6	An Im	portant [Definition	26				
2.7			rems	27				
	2.7.1		m: If a square matrix A has a row of column of zeros, then $0 \dots 0$	27				
	2.7.2		m: If A is a square matrix, then $det(A) = det(A^T) \dots \dots$					
2.8			nework Problems	28				
2.0	2.8.1		fan Elimination" (08/11/2023)					
	2.0.1	2.8.1.1	Solve this system using Gaussian Elimination	28				
			Solve this system using Gaussian Elimination					
	2.8.2		es and Determinants" (08/14)	29				
	2.0.2	2.8.2.1		29				
		2.8.2.2	<u> </u>	29				
	2.8.3	Inverse	s and Determinants (08/15)	30				
			Use a matrix equation to solve the following problems:	30				
	2.8.4	2.8.4 Consistent Systems (08/21)						
		2.8.4.1	Solve the linear systems together by reducing the appro-					
			priate augmented matrix	31				
		2.8.4.2	Determine the conditions on b , if any, in order to guarantee					
			that the linear system is consistent	32				
	2.8.5		r "determining the conditions" problem:					
	2.8.6	_	lar and Diagonal Matrices					
		2.8.6.1						
		2.8.6.2	,	34				
		2.8.6.3	3	36				
	2.8.7		inants and Triangular Matrices (08/29)					
		2.8.7.1	What is C_{32}	37				
		2.8.7.2	Find all values of λ such that $ A = 0$	37				
		2.8.7.3	For the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{bmatrix}$ find the determinant 3					
			sp.different ways with cofactor expansion. Pick					
			sp.different rows and columns each time	38				

			2.8.7.4 Evaluate det(A) by a cofactor expansion along a row or column of your choice	9
			2.8.7.5 Evaluate the determinant of the following matrices by just	
			looking at them	
		2.8.8	Row operations and Determinants (08/31) 4	
			2.8.8.1 Find the determinant of $\begin{bmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{bmatrix}$ WITHOUT using co-	
			factor expansion	0
			2.8.8.2 Find the determinant of $\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$	ļ1
		2.8.9	Adjoints and Cramer's Rule $(09/05)$.2
			2.8.9.1 Find the inverse of $A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$ using the adjoint method 4	2
	2.8.9.2 Solve the following system of equations using Crame			
3	Cha 3.1		Eigenvectors and Eigenvalues4values and Eigenvectors (11/06)	4
			Examples	4
			3.1.1.2 Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors	
	3.2	Eigenv	of A?	
		3.2.1	$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \dots \dots$	5
	3.3	Findin	g Eigenvalues and Eigenvectors (11/07)	5
			$\begin{bmatrix} 3 & 0 & 5 \end{bmatrix}$	6
		3.3.2	Find the characteristic equation and the eigenvalues of $A = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$	
			-1 3 0 -4 13 -1	6

				[2 0 0]	
		3.3.3	Find the	eigenvalues of $A = \begin{bmatrix} 2 & 3 & 5 \\ 6 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$	47
		3.3.4	Find the	e eigenvalues of A^3 if $A = \begin{bmatrix} \frac{1}{2} & 4 & 5 & -2 \\ 0 & -1 & 3 & -8 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 4 \end{bmatrix}$	47
		3.3.5	Give me	a matrix with eigenvalues λ = 0, 2, 5	47
				5	
	3.4	•		3	48
		3.4.1			49
		3.4.2		_	49
				e: Find a matrix <i>P</i> that diagonalizes <i>A</i> and compute <i>P</i> ⁻¹ <i>AP</i> . ion	49 50
	3.5			r Matrices	51
	5.5	3.5.1		9	51
				eview	52
				Theorem: Geometric and Algebraic Multiplicity	52
	3.6	Simila	r Matrice	s Continued (11/13/2023)	52
		3.6.1		p	52
				ork Review	52
		3.6.3		e that a characteristic polynomial of some matrix A is found	53
4	Sem	ester l	I		53
•	4.1				53
		4.1.1		· , ,	
	4.2	Limits	and Con	tinuity (01/05)	54
		4.2.1		, , ,	54
				ith Multivariable Functions	54
			•	es _.	54
		4.2.4	Homewo	ork	55
			4.2.4.1	Evaluate the limit $\lim_{(x,y)\to(0,0)} \frac{3x^2+y^2+3}{x^2+y^2+2}$	55
				Evaluate the limit $\lim_{(x,y)\to(1,1)} \cos \sqrt[3]{ xy -1}$	
			4.2.4.3	Evaluate the limit $\lim_{(x,y)\to(1,1)} \frac{xy-y-2x+2}{y-1} \dots \dots$	55
			4.2.4.4	Evaluate the limit $\lim_{(x,y)\to(1,1)} \frac{xy}{x-1} = \dots$ On what interval is the function $f(x,y) = \sin(x+y)$ continuous?	55
			4.2.4.5	On what interval is the function $f(x, y, z) = x^2 + y^2 - 2z^2$	
				continuous?	55
			4.2.4.6	On what interval is the function $f(x, y, z) = xy \sin(\frac{1}{z})$ con-	
				tinuous?	55

4.3	Limits		55
	4.3.1	Question: Does the function $f(x,y) = \frac{2x^2y}{x^4 + y^2}$ have a limit as (x,y)	
		approaches (0,0)?	55
	4.3.2	Find $f(x,y) _{y=x^2}$ and compute $\lim_{(x,y)\to(0,0)} f(x,y)$ along $y=x^2$	56
	4.3.3	Find $f(x,y) _{y=-x^2}$ and compute $\lim_{(x,y)\to(0,0)} f(x,y)$ along $y=-x^2$	56
	4.3.4	Explain why we can conclude that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist	56
	4.3.5	How did we know to choose $y = x^2$ and $y = -x^2$ to evaluate the limit?	56
	4.3.6	Show that these functions have no limit as (x,y) approaches $(0,0)$	50
	4.5.0	by considering an different noths of approach	56
		4.3.6.1 $f(x,y) = \frac{x^4}{x^4 + y^2}$	56
		$x_1^4 + y^2$	50
		4.3.6.2 $f(x,y) = \frac{x^2 + y}{y}$	56
		$4.5.0.2 f(x,y) = \frac{y}{y} \dots \dots \dots \dots \dots$	
4.4			57
	4.4.1	First Order Partial Derivatives	57
	4.4.0	4.4.1.1 Notation	57
	4.4.2	Examples	57 57
		4.4.2.2 $f(x,y) = 2x^2y - 4x^2y + 5x^2 + 5x$	57
		4.4.2.3 $f(x,y) = \tan(2x - y)$	57
	4.4.3	The Second Fundamental Theorem of (Multivariable) Calculus	57
		Examples	57
		4.4.4.1 $f(x,y) = \int_{3x}^{2y} (t^2 - 1) dt$	57
		4.4.4.2 Find both partial derivatives and evaluate each at the point	
		(1, ln 2)	58
4.5		artial Derivatives (01/11)	59
	4.5.1	First, let's see this one. If $f(x, y, z) = x \sin(y + 3z)$, find f_x , f_y , f_z	59
	4.5.2	2nd-Order Partial Derivatives	59
	4.5.0	4.5.2.1 Notation	59
	4.5.3	Mixed Partial Derivatives	59
	4.5.4	4.5.3.1 Notation	59 60
		Examples	60
	4.0.0	4.5.5.1 Given that $f(x, y) = x^2y - y^3 + \ln x$, find all 2nd order partial	00
		derivatives	60
	4.5.6	$f(x,y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2$	60
	4.5.7	$f(x,y) = \sqrt{x^2 + y^2} \dots \dots \dots \dots \dots \dots$	61
		$f(x,y) = e^{(x+y+1)} \dots \dots \dots \dots \dots \dots \dots \dots$	61
	4.5.9	$f(x,y) = \int_{x}^{y} g(t)dt \dots \dots$	61
		· · · · · · · · · · · · · · · · · · ·	

	4.5.10	f(x, y, z)	$= xy + yz + xz \dots $	62
	4.5.11	f(x, y, z)	$= \ln(x + 2y + 3z) \dots$	62
	4.5.12	If $f(x, y)$	= $x \cos(y) + ye^x$, find $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, and $\frac{\partial^2 f}{\partial y \partial x}$	62
4.6			ferentiability (01/16)	63
	4.6.1	Rememb	per local linearization?	63
	4.6.2	Example	s	63
		4.6.2.1	Find the linearization of $f(x, y) = y^2 + 2xy - \frac{1}{2}x^2$ at the point	
			(2,3)	63
	4.6.3	Homewo		64
			Find the linearization of $f(x, y) = x^2 + y^2 + 1$ at $(1, 1) \dots$	64
			Find the linearization of $f(x, y) = 3x - 4y + 5$ at $(1, 1)$	64
			Find the linearization of $f(x, y) = e^x \cos y$ at $(0, \frac{\pi}{2}) \dots$	64
4.7		Rule (01/		65
	4.7.1	•	Find the linearization of $f(x, y) = x^3y^4$ at the point \$(1, 1).	65
	4.7.2		ıle (1-Variable)	65
	4.7.3		ıle (Multi Variable)	65
	4.7.4	Example		65
			If $w = x^2y - y^2$ where $x \sin t$ and $y = e^t$, find $\frac{dw}{dt}$ at $t = 0$	65
		4.7.4.2	If $w = xy + xz + yz$ and $x = t - 1, y = t^2 - 1, z = t$, find $\frac{dw}{dt}$	66
	4.7.5	Homewo		66
			$W = x^2 + y^2, x = \cos t, y = \sin t \text{ at } t = \pi$	66
			$w = 2ye^{x} - \ln z$, $x = \ln(t^{2} + 1)$, $y = \arctan t$, $z = e^{t}$ at $t = 1$	66
		4.7.5.3	$z = 4e^x \ln y$, $x = \ln(r \cos \theta)$, $y = r \sin \theta$; $(r, \theta) = \left(2, \frac{\pi}{4}\right) \dots$	67
		4.7.5.4	$u = \frac{p-q}{a-r}, p = x + y + z, q = x - y + z, r = x + y - z; (x, y, z) = (\sqrt{3}, 2, 1)$	67

0.1 Matrix Operations

- Matrix operations are given as: rows x columns

0.1.1 Addition & Subtraction

Two matrices can be added/subtracted \iff they have the same dimensions.

0.1.2 Scalar Multiplication

• Scalar multiplication is defined as multiplying each element of a matrix by a number

$$3\left[\begin{array}{c} 2 & 1 \\ 5 & 2 \end{array}\right] = \left[\begin{array}{c} 6 & 3 \\ 15 & 6 \end{array}\right]$$

0.1.3 Matrix Multiplication

- We can only multiply an (m x n) by (n x p) matrix.
- The resulting matrix will be (m x p)

0.1.4 Properties of Matrix Arithmetic

- (a) A + B = B + A (Commutative law for addition)
- (b) A + (B + C) = (A + B) + C (Associative law for addition)
- (c) A(BC) = (AB)C (Associative law for multiplication)
- (d) A(B + C) = AB + AC (Left distributive law)

(e) (B + C)A = BA + CA (Right distributive law)

(f) A(B-C) = AB - AC

(g) (B-C)A = BA-CA

(h) a(B+C) = aB + aC

(i) a(B-C) = aB - aC

(j) (a+b)C = aC + bC

(k) (a-b)C = aC - bC

(I) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)

0.1.5 Examples

1.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \\ 3 \cdot 1 + 4 \cdot 3 & 3 \cdot 2 + 4 \cdot 4 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

2.

$$\begin{bmatrix} 2 & -3 \\ 5 & 0 \\ -2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \cdot (-1) + (-3) \cdot 3 \\ 5 \cdot (-1) + 0 \cdot 3 \\ -2 \cdot (-1) + 4 \cdot 3 \\ 1 \cdot (-1) + 2 \cdot 3 \end{bmatrix}$$

$$= \begin{bmatrix} -11 \\ -5 \\ 14 \\ 5 \end{bmatrix}$$

3.

$$\begin{bmatrix} 4 & 5 & -1 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \cdot 8 + 5 \cdot 0 + (-1) \cdot 2 \end{bmatrix}$$
$$= \begin{bmatrix} 30 \end{bmatrix}$$

0.2 Transpose of a Matrix

The transpose of an (m x n) matrix is the (n x m) matrix where the rows and columns are swapped.

If
$$B = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$

$$B \cdot B^{T} = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \cdot 4 + 2 \cdot 2 & 4 \cdot (-1) + 2 \cdot 0 & 4 \cdot 3 + 2 \cdot 5 \\ (-1) \cdot 4 + 0 \cdot 2 & (-1) \cdot (-1) + 0 \cdot 0 & (-1) \cdot 3 + 0 \cdot 5 \\ 3 \cdot 4 + 5 \cdot 2 & 3 \cdot (-1) + 5 \cdot 0 & 3 \cdot 3 + 5 \cdot 5 \end{bmatrix}$$

$$= \begin{bmatrix} 20 & -4 & 22 \\ -4 & 1 & -3 \\ 22 & -3 & 34 \end{bmatrix}$$

- The transpose of a matrix is **always** multiplicative with the original.
- There is also a main diagonal that is the diagonal from the top left to the bottom right, but only square matrices have these.
- The **trace** of a square matrix A is equal to the sum of all the elements on the main diagonal: tr(A)

0.2.1 Transpose Matrix Properties

•
$$(A^T)^T = A$$

•
$$(A + B)^T = A^T + B^T$$

• $(A - B)^T = A^T - B^T$
• $(AA)^T = AA^T$
• $(AB)^T = B^T A^T$

$$\bullet \ (A-B)^T = A^T - B^T$$

•
$$(kA)^T = kA^T$$

$$\bullet \ (AB)^T = B^T A^T$$

0.3 Homework — "Matrix Stuff" (08/03/2023)

0.3.1 Suppose that A, B, C, D and E are matrices with the following sizes:

A B C D E
$$(3 \times 2)$$
 (2×3) (3×3) (3×2) (2×3)

For each matrix operation, sort them into undefined if the operation can't be done, or defined if it can along with the correct dimensions of the outcome.

Undefined	Defined; (4 × 2)	Defined; (5 × 5)	Defined; (5 × 2)
BA AB + B E ^T A AE + B	AC + D	E(A + B)	$(A^T + E)D$ E(AC)

0.3.2 Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

In each part, compute the given expression (where possible).

2. **2A^T + C**

$$2A^{T} + C = 2\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}^{T} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= 2\begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -2 & 2 \\ 0 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

3. $B^{T} + 5C^{T}$

$$B^{T} + 5C^{T} = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}^{T} + 5\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}^{T}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + 5\begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 15 \\ 20 & 5 \\ 10 & 25 \end{bmatrix}$$

= Undefined

4. $2E^{T} - 3D^{T}$

$$2E^{T} - 3D^{T} = 2\begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}^{T} - 3\begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}^{T}$$

$$= 2\begin{bmatrix} 6 & -1 & 4 \\ 1 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & -1 & 3 \\ 5 & 0 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & -2 & 8 \\ 2 & 2 & 2 \\ 6 & 4 & 6 \end{bmatrix} - \begin{bmatrix} 3 & -3 & 9 \\ 15 & 0 & 6 \\ 6 & 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -5 & -1 \\ -13 & 2 & -4 \\ 0 & 1 & -6 \end{bmatrix}$$

5. tr(**DE**)

$$tr(DE) = tr \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 1 \cdot 6 + 5 \cdot (-1) + 2 \cdot 4 & 1 \cdot 1 + 5 \cdot 1 + 2 \cdot 1 & 1 \cdot 3 + 5 \cdot 2 + 2 \cdot 3 \\ (-1) \cdot 6 + 0 \cdot (-1) + 1 \cdot 4 & (-1) \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & (-1) \cdot 3 + 0 \cdot 2 + 1 \cdot 3 \\ 3 \cdot 6 + 2 \cdot (-1) + 4 \cdot 4 & 3 \cdot 1 + 2 \cdot 1 + 4 \cdot 1 & 3 \cdot 3 + 2 \cdot 2 + 4 \cdot 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 9 & 8 & 19 \\ -2 & 0 & 0 \\ 32 & 9 & 25 \end{bmatrix}$$

$$= 34$$

1 Intro to Systems

What are we looking for?

Lines: How many possible solutions?

- · Infinite solutions
- · One solution
- No solutions

Planes: How many possible solutions?

- · Infinite solutions
- No solutions

What does linear actually mean?

- The word linear *really* means that you've got equations with variables and **all** of the variables are degree one.
- This means that there is no limit to the number of dimensions in a linear system.

Linear Systems in Three Unknowns

1.1 Review: Solve the following systems

1.
$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$5x = 15$$

$$x = 3$$

$$2(3) + y = 10$$

$$6 + y = 10$$

$$y = 4$$

2.
$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$y = 10 - 2x$$

 $6x + 3(10 - 2x) = 10$
 $6x + 30 - 6x = 10$
 $30 = 10$: no solution

3.
$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$0 = 0$$

12 = 12: infinite solutions

1.1.1 Consistent

1.1.2 Inconsistent

- A system of equations is **consistent** if it has at least one solution.
- A system of equations is inconsistent if it has no solutions.

1.2 The Augmented Matrix

$$\begin{cases} x - y + 2z = 5 \\ 2x - 2y + 4z = 10 \longrightarrow \begin{bmatrix} 1 & -1 & 2 & 5 \\ 2 & -2 & 4 & 10 \\ 3 & -3 & 6 & 15 \end{bmatrix}$$

1.3 Elementary Row Operations

- 1. Interchange 2 rows
- 2. Multiply a row by a non-zero constant
- 3. Add/substract a multiple of one row to/from another row

Doing these things changes the matrix, but it's the same system!

1.3.1 Example 1... again

$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & | & 10 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & -\frac{5}{2} & | & -10 \end{bmatrix}$$

$$\xrightarrow{-\frac{2}{5}R_2} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_1 - \frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \end{bmatrix}$$

And so... x = 3 and y = 4!

1.4 Connection to Matrices

If we can make a system's matrix look like

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & c_1 \\ 0 & 1 & 0 & c_2 \\ 0 & 0 & 1 & c_3 \end{array}\right],$$

then the solution to the system will be the ordered triple (c_1, c_2, c_3) .

1.4.1 Example 2: again

$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & | & 10 \\ 6 & 3 & | & 10 \end{bmatrix} \xrightarrow{\frac{1}{2}R1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 6 & 3 & | & 10 \end{bmatrix} \xrightarrow{R2-6R1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & 0 & | & -20 \end{bmatrix}$$

This is inconsistent, so there is no solution.

1.4.2 Example 3: again

$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$\begin{bmatrix} 5 & -2 & | & 4 \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{\frac{1}{5}R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{R2-15R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 0 & 0 & | & 0 \end{bmatrix}$$

Since 0 = 0, there are infinitely many solutions.

1.4.3 Example 4: Solve the following system

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \xrightarrow{R3+4R1} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R3+\frac{3}{2}R2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R_3+3R_2} \begin{bmatrix} 1 & 0 & -7 & 8 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{R_1+7R_3} \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Therefore the solution to (x_1, x_2, x_3) is (29, 16, 3).

1.4.4 Elementary Row Operations & REF Homework Problem (08/08/2023)

$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \xrightarrow{R_2+R_1} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 10 & 2 & 14 \end{bmatrix}$$

$$\xrightarrow{R_1-R_2} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 52 & 104 \end{bmatrix} \xrightarrow{\frac{1}{52}R_3} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1-7R_3} \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Therefore, the solution to (x, y, z) is (3, 1, 2).

1.5 Gaussian Elimination

Vocabulary: A matrix is in Row Echelon Form (REF) if:

- (a) Any rows of all zeroes are placed at the bottom of the matrix
- (b) All other rows have a leading 1 ("pivot")
- (c) As we move down the matrix, each leading 1 is further to the right than the 1 above it

A matrix is in Row Reduced Echelon Form if the three above conditions are met in adition to:

(d) Each column with a leading 1 has all other entries in the column as a 0. ("pivot column")

1.5.1 Examples

1.6 Gaussian Elimination With Back-Substitution

1.6.1 Goal:

To get the augmented matrix in REF

Solve:
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 9 \\ -x_1 + 3x_2 = -4 \\ 2x_1 - 5x_2 + 5x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\stackrel{R_2 + R_1}{R_3 - 2R_1}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{\stackrel{R_1 + 2R_2}{R_3 + R_2}} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{\stackrel{1}{2}R_3} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$x + 9z = 19$$

$$y + 3z = 5$$

$$z = 2$$

$$\therefore z = 2, y = 5 - 3z, x = 19 - 9z$$

$$z = 2, y = 5 - 3(2), x = 19 - 9(2)$$

$$z = 2, y = -1, x = 1$$

Therefore, the solution (x_1, x_2, x_3) is (1, -1, 2).

1.6.2 Gaussian Elimination Homework Problem (08/09/2023)

$$\begin{cases}
-2w & + y + z = -3 \\
x + 2y - z = 2 \\
-3w + 2x + 4y + z = -2 \\
-w + x - 4y - 7z = -19
\end{cases}$$

$$\begin{bmatrix} -2 & 0 & 1 & 1 & | & -3 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -1 & 1 & -4 & -7 & | & -19 \end{bmatrix} \xrightarrow{R_4} \begin{bmatrix} -1 & 1 & -4 & -7 & | & -19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -2 & 0 & 1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -2 & 0 & 1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & -2 & 9 & 15 & | & 35 \end{bmatrix} \xrightarrow{R_3 + R_2} \xrightarrow{R_3 + 2R_2} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 18 & 21 & | & 57 \\ 0 & 0 & 13 & 13 & | & 39 \end{bmatrix} \xrightarrow{\frac{18}{18}R_3} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 1 & 3 & | & \frac{19}{6} \\ 0 & 0 & 13 & 13 & | & 39 \end{bmatrix} \xrightarrow{R_1 - 6R_3 \atop R_2 - 2R_3} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_3} \begin{bmatrix} 1 & 0 & 0 & -1 & | & 2 \\ 0 & 1 & 0 & -\frac{10}{6} & | & \frac{13}{6} \\ 0 & 0 & 0 & 1 & | & \frac{13}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_4}{R_2 + 10R_4}} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_3} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R_3 - \frac{10}{6}R_4} \xrightarrow{R_4 - 13R_4} \xrightarrow{R$$

1.7 Gauss-Jordan Elimination

1.7.1 Goal:

To get the matrix into RREF

Solve:
$$\begin{cases} x_1 & -3x_3 = -2 \\ 3x_1 + x_2 - 2x_3 = 5 \\ 2x_1 + 2x_2 + x_3 = 4 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 3 & 1 & -2 & | & 5 \\ 2 & 2 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 2 & 7 & | & 8 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 0 & -7 & | & -14 \end{bmatrix}$$

$$\xrightarrow{\frac{-1}{7}R_3} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \xrightarrow{\frac{R_1 + 3R_3}{R_2 - 7R_3}} \begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \Longrightarrow \begin{cases} X_1 = 4 \\ X_2 = -3 \\ X_3 = 2 \end{cases}$$

1.8 Matrix Properties, Equations, and Inverses

1.8.1 With Real Numbers

- If ab = bc, then a = c, if $b \neq 0$
- If ab = 0, then a = 0 or b = 0, or both

1.8.2 With Matrices

- If AB = AC, then B = C, if A is invertible
- If AB = [0], then A = [0] or B = [0], or both

1.8.2.1 Multiply:

$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(5) + 3(-3) & 2(-3) + 3(2) \\ 3(5) + 5(-3) & 3(-3) + 5(2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

1.8.3 Matrix Inverses

- If a matrix has an inverse, it is said to be invertible or non-singular.
- If a matrix does not have an inverse, it is said to be singular.
- Every square matrix has a "special number" associated with it called the **determinant**.
- For the 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant is ad bc
- $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- When det A = 0, the matrix is singular and has no inverse (since you cannot divide by zero)

Find the inverse of $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \frac{1}{(4)(2) - (3)(1)} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{4}{5} \end{bmatrix}$$

2 Chapter 2: Determinants

2.1 Prior Knowledge:

$$\begin{bmatrix} 10 & -4 \\ -3 & -5 \end{bmatrix} = -50 - = -62$$

$$\begin{bmatrix} 2 & 4 & 3 \\ -1 & 2 & 3 \\ 3 & 0 & -2 \end{bmatrix}$$

$$= ((2 \cdot 2 \cdot -2) + (4 \cdot 3 \cdot 3) + (3 \cdot -1 \cdot 0)) - ((3 \cdot 2 \cdot 3) + (0 \cdot 3 \cdot 2) + (-2 \cdot -1 \cdot 4))$$

$$= (-8 + 36 + 0) - (18 + 0 + 8)$$

$$= 28 - 26$$

$$= 2$$

2.2 Minors & Cofactors

Given a square matrix A, the $\underline{\text{minor}}$ of matrix element a_{ij} , (M_{ij}) is the determinant of the matrix formed by removing the i^{th} row and j^{th} column from matrix A.

The <u>cofactor</u> of matrix element a_{ij} , $C_{ij} = (-1)^{i+j} \cdot M_{ij}$

2.2.1 Example

Let
$$\det \begin{bmatrix} 2 & 4 & 3 \\ -1 & 2 & 3 \\ 3 & 0 & -2 \end{bmatrix}$$
. What is the cofactor of element (1, 1)?

Cofactor checkerboard:
$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

$$M_{11} = \begin{vmatrix} 2 & 3 \\ 0 & -2 \end{vmatrix} = -4$$

$$C_{11} = 1 \cdot -4 = -4$$

Find the minor and cofactor of: \ a) $a_{21} = -1$

$$M_{21} = \begin{vmatrix} 4 & 3 \\ 0 & -2 \end{vmatrix} = -8$$
$$C_{21} = 8$$

b)
$$a_{33} = -2$$

$$M_{33} = \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = 8$$

$$C_{33} = 8$$

2.3 Cofactor Expansion

- 1) Pick a row or column
- 2) Multiply every entry in that row or column by it's corresponding cofactor
- 3) Add those together. That's it

$$A = \begin{bmatrix} 6 & 7 & -1 \\ 0 & 4 & 1 \\ 2 & 5 & -3 \end{bmatrix}$$

$$det(A) = 6 \begin{pmatrix} 4 & 1 \\ 5 & -3 \end{pmatrix} + 7 \begin{pmatrix} -1 & 0 & 1 \\ 2 & -3 \end{pmatrix} + -1 \begin{pmatrix} 0 & 4 \\ 2 & 5 \end{pmatrix}$$

$$= 6(-17) + 7(2) + (-1(-8))$$

$$= -102 + 14 + 8$$

$$= -80$$

2.3.1 Example

$$A = \begin{bmatrix} 6 & 4 & 2 \\ 5 & -6 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$

$$6\begin{vmatrix} -6 & 1 \\ 3 & 0 \end{vmatrix} + 4\begin{pmatrix} -\begin{vmatrix} 5 & 1 \\ 0 & 0 \end{vmatrix} \end{pmatrix} + 2\begin{vmatrix} 5 & -6 \\ 0 & 3 \end{vmatrix}$$

$$= 6(-3) + 0 + 2(15)$$

$$= -18 + 30$$

$$= 12$$

2.3.2 Does the method generalize to 2×2 matrices?

The determinant of a 1×1 matrix is... itself!

2.3.3 Find the determinant of a 4×4

$$A = \begin{bmatrix} -3 & 2 & 0 & 8 \\ 2 & 1 & 0 & -4 \\ 5 & -2 & 1 & 5 \\ 2 & 3 & 0 & 6 \end{bmatrix}$$

$$= 0 + 0 + \begin{vmatrix} -3 & 2 & 8 \\ 2 & 1 & -4 \\ 2 & 3 & 6 \end{vmatrix} + 0$$

$$= -2 \begin{vmatrix} 2 & 8 \\ 3 & 6 \end{vmatrix} + \begin{vmatrix} -3 & 8 \\ 2 & 6 \end{vmatrix} - \left(-4 \begin{vmatrix} -3 & 2 \\ 2 & 3 \end{vmatrix} \right)$$

$$= 24 - 34 - 52$$

$$= -62$$

2.4 Theorem

If A is an $n \times n$ matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the elements in that row or column by their corresponding cofactors is **always the same** and is called the determinant of A.

2.4.1 Example

Find the determinant of
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

$$1 \cdot \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix}$$

$$= \left(-2 \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \right)$$

$$= -6$$

2.5 Triangular Matrices

Find the determinant of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 4 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 3 & 3 \\ 0 & 4 \end{vmatrix}$$

$$= 2(3 \cdot 4)$$

$$= 2 \cdot 12$$

$$= 24$$

If A is an $n \times n$ triangular matrix, then det(A) is equal to the product of the elements along the main diagonal.

2.6 An Important Definition

Elementary Matrix a matrix that can be obtanied from the $n \times n$ identity matrix by performing a single row operation. \

Are the following matrices elementary? 1) $\begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$ + $(R_3 + 5R_1)$ yes 2) $\begin{bmatrix} -5 & 1 \\ 1 & 0 \end{bmatrix}$ + $(R_1 + 5R_2)$...

2.7 A Pair of Theorems

- **2.7.1** Theorem: If a square matrix A has a row of column of zeros, then det(A) = 0
- **2.7.2** Theorem: If A is a square matrix, then $det(A) = det(A^T)$

2.8 Unit 1 & 2 Homework Problems

2.8.1 "Gaussian Elimination" (08/11/2023)

2.8.1.1 Solve this system using Gaussian Elimination

$$\begin{cases} x_1 + x_2 + 2x_3 = 8 \\ -x_1 - 2x_2 + 3x_3 = 1 \\ 3x_1 - 7x_2 + 4x_3 = 10 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \xrightarrow{R_2 + R_1 \atop R_3 - 3R_1} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \xrightarrow{-R_2} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & -10 & -2 & -14 \end{bmatrix}$$

$$\xrightarrow{R_3 + 10R_2} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & -52 & -104 \end{bmatrix} \xrightarrow{-\frac{1}{52}R_3} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\therefore \begin{cases} x_1 + x_2 + 2x_3 = 8 \\ x_2 - 5x_3 = -9 \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

2.8.1.2 Solve this system using Gaussian Elimination

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 0 \\ -2x_1 - 3x_2 - 4x_3 = 0 \\ 2x_1 - 4x_2 + 4x_3 = 0 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 1 & -2 & 3 & 0 \\ -2 & -3 & -4 & 0 \\ 2 & -4 & 4 & 0 \end{bmatrix} \xrightarrow{R_2 + 2R_1 \atop R_3 - 2R_1} \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & -2 & 0 \end{bmatrix} \xrightarrow{-\frac{7}{7}R_2 \atop -\frac{1}{2}R_3} \begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & \frac{2}{7} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\therefore \begin{cases} x_1 - 2x_2 + 3x_3 = 0 \\ x_2 + \frac{2}{7}x_3 = 0 \Rightarrow 1 \neq 0 \therefore \text{ no solution} \\ x_3 = 0 \end{cases}$$

2.8.2 "Inverses and Determinants" (08/14)

2.8.2.1 Find the determinants of the following:

$$1) \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

$$\begin{vmatrix} 2 & -3 \\ 4 & 4 \end{vmatrix} = 2(4) - (-3)(4) = 8 + 12 = 20$$

$$2) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} = 2(3) - 0(0) = 6$$

3)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$

2.8.2.2 Find the INVERSES of those matrices:

1)
$$\begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}^{-1} = \frac{1}{20} \begin{bmatrix} 4 & 3 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{20} \\ -\frac{1}{5} & \frac{1}{10} \end{bmatrix}$$

$$2) \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

3)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

2.8.3 Inverses and Determinants (08/15)

2.8.3.1 Use a matrix equation to solve the following problems:

1)
$$\begin{cases} 3x_1 - 2x_2 = 1 \\ 4x_1 + 5x_2 = 3 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{23} \begin{bmatrix} 5 & 2 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{23} \begin{bmatrix} -1 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{23} \\ \frac{9}{23} \end{bmatrix}$$

2)
$$\begin{cases} 6x_1 + x_2 = 0 \\ 4x_1 - 3x_2 = -2 \end{cases}$$

$$\Rightarrow \begin{bmatrix} 6 & 1 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 4 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{-22} \begin{bmatrix} -3 & -1 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{-22} \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{11} \\ -\frac{4}{11} \end{bmatrix}$$

2.8.4 Consistent Systems (08/21)

2.8.4.1 Solve the linear systems together by reducing the appropriate augmented matrix.

$$\begin{cases} x_1 - 5x_2 = b_1 \\ 3x_1 + 2x_2 = b_2 \end{cases}$$

1)
$$b_1 = 1$$
, $b_2 = 4$
2) $b_1 = -2$, $b_2 = 5$

2)
$$b_1 = -2$$
, $\bar{b}_2 = 5$

First, let's solve it for the general case:

$$\begin{bmatrix} 1 & -5 & b_1 \\ 3 & 2 & b_2 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -5 & b_1 \\ 0 & 17 & b_2 - 3b_1 \end{bmatrix} \xrightarrow{\frac{1}{17}R_2} \begin{bmatrix} 1 & -5 & b_1 \\ 0 & 1 & \frac{b_2 - 3b_1}{17} \end{bmatrix} \xrightarrow{\frac{R_1 + 5R_2}{17}} \begin{bmatrix} 1 & 0 & \frac{2b_1 + 5b_2}{17} \\ 0 & 1 & \frac{-3b_1 + b_2}{17} \end{bmatrix}$$

Therefore, the solution to the general case is $(x_1, x_2) = (\frac{2b_1 + 5b_2}{17}, \frac{-3b_1 + b_2}{17})$

And so, for the specific cases:

1)
$$(x_1, x_2) = \left(\frac{2(1)+5(4)}{17}, \frac{-3(1)+4}{17}\right) = \left(\frac{13}{17}, \frac{1}{17}\right)$$

1)
$$(x_1, x_2) = \left(\frac{2(1)+5(4)}{17}, \frac{-3(1)+4}{17}\right) = \left(\frac{13}{17}, \frac{1}{17}\right)$$

2) $(x_1, x_2) = \left(\frac{2(-2)+5(5)}{17}, \frac{-3(-2)+5}{17}\right) = \left(\frac{16}{17}, \frac{11}{17}\right)$

2.8.4.2 Determine the conditions on b, if any, in order to guarantee that the linear system is consistent.

$$\begin{cases} x_1 + 3x_2 = b_1 \\ -2x_1 + x_2 = b_2 \end{cases}$$

$$\begin{bmatrix} 1 & 3 & b_1 \\ -2 & 1 & b_2 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 7 & b_2 + 2b_1 \end{bmatrix} \xrightarrow{\frac{1}{7}R_2} \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 1 & \frac{b_2 + 2b_1}{7} \end{bmatrix} \xrightarrow{\frac{R_1 - 3R_2}{7}} \begin{bmatrix} 1 & 0 & \frac{b_1 - 3b_2}{7} \\ 0 & 1 & \frac{b_2 + 2b_1}{7} \end{bmatrix}$$

There are no conditions. The system is consistent for all values of b_1 and b_2 .

2.8.5 Another "determining the conditions" problem:

$$\begin{cases} x_1 - 2x_2 - x_3 = b_1 \\ -4x_1 + 5x_2 + 2x_3 = b_2 \\ -4x_1 + 7x_2 + 4x_3 = b_3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ -4 & 5 & 2 & b_2 \\ -4 & 7 & 4 & b_3 \end{bmatrix} \xrightarrow{R_2 + 4R_1} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -3 & -2 & b_2 + 4b_1 \\ 0 & -1 & 0 & b_3 + 4b_1 \end{bmatrix} \xrightarrow{-\frac{1}{3}R_2} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & 1 & \frac{2}{3} & \frac{-b_2 - 4b_1}{3} \\ 0 & 0 & -\frac{2}{3} & \frac{b_3 + 4b_1}{3} \end{bmatrix}$$

$$\xrightarrow{-\frac{3}{2}R_3} \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & 1 & \frac{2}{3} & \frac{-b_2 - 4b_1}{3} \\ 0 & 0 & 1 & \frac{-b_3 - 4b_1}{3} \end{bmatrix}$$

Therefore, the system is consistent for all values of b_1 , b_2 , and b_3 .

2.8.6 Triangular and Diagonal Matrices

2.8.6.1 Find A^2

1)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 0(0) & 1(0) + 0(-2) \\ 0(1) + (-2)(0) & 0(0) + (-2)(-2) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} (-6)(-6) + (0)(0) + (0)(0) & (-6)(0) + (0)(3) + (0)(0) & (-6)(0) + (0)(0) + (0)(5) \\ (0)(-6) + (3)(0) + (0)(0) & (0)(0) + (3)(3) + (0)(0) & (0)(0) + (3)(0) + (0)(5) \\ (0)(-6) + (0)(0) + (5)(0) & (0)(0) + (0)(3) + (5)(0) & (0)(0) + (0)(0) + (5)(5) \end{bmatrix}$$

$$= \begin{bmatrix} 36 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 25 \end{bmatrix}$$

2.8.6.2 Find A^{-k} , such that k is some nonzero constant

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$A^{-k} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}^{-k}$$

$$= \begin{bmatrix} 2^{-k} & 0 & 0 & 0 \\ 0 & (-4)^{-k} & 0 & 0 \\ 0 & 0 & (-3)^{-k} & 0 \\ 0 & 0 & 0 & 2^{-k} \end{bmatrix}$$

4. Determine whether each matrix is symmetric or not.

 $\mathbf{\#} \begin{bmatrix} -8 & -8 \\ 0 & 0 \end{bmatrix}$

 $\mathbf{ii} \quad \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

 $\mathbf{ii} \begin{bmatrix} 3 & 4 \\ 4 & 0 \end{bmatrix}$

 $\mathbf{II} \begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$

Symmetric

 $\begin{bmatrix} 0 & -7 \\ -7 & 7 \end{bmatrix}$

 $\begin{bmatrix} 3 & 4 \\ 4 & 0 \end{bmatrix}$

 $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & 7 \end{bmatrix}$

Not symmetric

 $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

ō

ō

 $\begin{bmatrix} -8 & -8 \\ 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 5 & -6 \\ 2 & 6 & 6 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$

2.8.6.3 Find a diagonal matrix A that satisfies the given condition

1)
$$A^5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{\frac{1}{5}}$$

$$= \begin{bmatrix} 1^{\frac{1}{5}} & 0 & 0 \\ 0 & (-1)^{\frac{1}{5}} & 0 \\ 0 & 0 & (-1)^{\frac{1}{5}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

2)
$$A^{-2} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-\frac{1}{2}}$$

$$= \begin{bmatrix} 9^{-\frac{1}{2}} & 0 & 0 \\ 0 & 4^{-\frac{1}{2}} & 0 \\ 0 & 0 & 1^{-\frac{1}{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.8.7 Determinants and Triangular Matrices (08/29)

2.8.7.1 What is C_{32}

$$A = \begin{bmatrix} 2 & 3 & -1 & 1 \\ -3 & 2 & 0 & 3 \\ 3 & -2 & 1 & 0 \\ 3 & -2 & 1 & 4 \end{bmatrix}$$

$$C_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 & 1 \\ -3 & 0 & 3 \\ 3 & 1 & 0 \end{vmatrix}$$

$$= -\begin{vmatrix} 2 & -1 & 1 \\ -3 & 0 & 3 \\ 3 & 1 & 0 \end{vmatrix}$$

$$= -\left(2\begin{vmatrix} 0 & 3 \\ 1 & 0 \end{vmatrix} - (-1)\begin{vmatrix} -3 & 3 \\ 3 & 0 \end{vmatrix} + 1\begin{vmatrix} -3 & 0 \\ 3 & 1 \end{vmatrix}\right)$$

$$= -(2(-3) - (-1)(-9) + 1(-3))$$

$$= -(-6 + 9 - 3)$$

$$= 0$$

2.8.7.2 Find all values of λ such that |A| = 0

$$A = \begin{bmatrix} \lambda - 2 & 1 \\ -5 & \lambda + 4 \end{bmatrix}$$

$$det(A) = (\lambda - 2)(\lambda + 4) - (-5)(1)$$

$$= \lambda^2 + 2\lambda - 8 + 5$$

$$= \lambda^2 + 2\lambda - 3$$

$$= (\lambda + 3)(\lambda - 1)$$

$$= 0$$

Therefore, $\lambda = -3, 1$

2.8.7.3 For the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 5 \\ 1 & 9 & -4 \end{bmatrix}$ find the determinant 3 sp.different ways with co-

factor expansion. Pick sp.different rows and columns each time.

$$det(A) = 3 \begin{vmatrix} -1 & 5 \\ 9 & -4 \end{vmatrix} - 0 \begin{vmatrix} 2 & 5 \\ 1 & -4 \end{vmatrix} + 0 \begin{vmatrix} 2 & -1 \\ 1 & 9 \end{vmatrix}$$

$$= 3(-1(-4) - 5(9)) - 0(2(-4) - 5(1)) + 0(2(9) - (-1)(1))$$

$$= 3(4 - 45) - 0(-8 - 5) + 0(18 + 1)$$

$$= 3(-41) - 0(-13) + 0(19)$$

$$= 36$$

$$det(A) = 0 \begin{vmatrix} 2 & 5 \\ 9 & -4 \end{vmatrix} - 3 \begin{vmatrix} 3 & 0 \\ 1 & -4 \end{vmatrix} + 0 \begin{vmatrix} 3 & 0 \\ 2 & 5 \end{vmatrix}$$

$$= 0(2(-4) - 5(9)) - 3(3(-4) - 0(1)) + 0(3(5) - 0(2))$$

$$= 0(-8 - 45) - 3(-12 - 0) + 0(15 - 0)$$

$$= 0(-53) - 3(-12)$$

$$= 36$$

$$det(A) = 0 \begin{vmatrix} 2 & -1 \\ 9 & -4 \end{vmatrix} - 0 \begin{vmatrix} 3 & 0 \\ 1 & -4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix}$$

$$= 0(2(-4) - (-1)(9)) - 0(3(-4) - 0(1)) + 3(3(-1) - 0(2))$$

$$= 0(-8 + 9) - 0(-12 - 0) + 3(-3 - 0)$$

$$= 0(1) - 0(-12) + 3(-3)$$

$$= 0 + 0 - 9$$

$$= 36$$

2.8.7.4 Evaluate det(A) by a cofactor expansion along a row or column of your choice

$$A = \begin{bmatrix} 1 & k & k^2 \\ 1 & k & k^2 \\ 1 & k & k^2 \end{bmatrix}$$

$$\det(A) = 1 \begin{vmatrix} k & k^2 \\ k & k^2 \end{vmatrix} - k \begin{vmatrix} 1 & k^2 \\ 1 & k^2 \end{vmatrix} + k^2 \begin{vmatrix} 1 & k \\ 1 & k \end{vmatrix}$$
$$= 1(k^2 - k^2) - k(1(k^2) - k^2(1)) + k^2(1(k) - k(1))$$
$$= 0$$

2.8.7.5 Evaluate the determinant of the following matrices by just looking at them.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(A) = 1(-1)(1) = -1$$

$$A = \begin{bmatrix} 1 & 2 & 7 & -3 \\ 0 & 1 & -4 & 1 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$det(A) = 1(1)(2)(3) = 6$$

2.8.7.6 Show that the value of the determinant is independent of θ

$$A = \begin{vmatrix} \sin \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 0 \\ \sin \theta - \cos \theta & \sin \theta + \cos \theta & 1 \end{vmatrix}$$

$$\det(A) = \sin\theta \begin{vmatrix} \sin\theta & 0 \\ \sin\theta + \cos\theta & 1 \end{vmatrix} - \cos\theta \begin{vmatrix} \cos\theta & 0 \\ \sin\theta + \cos\theta & 1 \end{vmatrix} + 0 \begin{vmatrix} \cos\theta & \sin\theta \\ \sin\theta + \cos\theta & \sin\theta \end{vmatrix}$$

$$=\sin\theta\left(\sin\theta(1)-0(\sin\theta+\cos\theta)\right)-\cos\theta\left(\cos\theta(1)-0(\sin\theta+\cos\theta)\right)$$

 $+0 (\cos \theta (\sin \theta) - \sin \theta (\sin \theta + \cos \theta))$

$$= \sin^2 \theta - \cos^2 \theta$$

2.8.8 Row operations and Determinants (08/31)

2.8.8.1 Find the determinant of $\begin{bmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{bmatrix}$ WITHOUT using cofactor expansion

$$det(A) = \begin{vmatrix} 1 & -3 & 0 \\ -2 & 4 & 1 \\ 5 & -2 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & -3 & 0 \\ 0 & -2 & 1 \\ 0 & 13 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & -3 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{28}{2} \end{vmatrix}$$
$$= 1(-2)\left(\frac{28}{2}\right)$$
$$= -28$$

2.8.8.2 Find the determinant of $\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$

$$det(A) = \begin{vmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 & 1 \\ 0 & -2 & -5 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 1 & 3 & 1 \\ 0 & -2 & -5 & -1 \\ 0 & 0 & -4 & -1 \\ 0 & 0 & -3 & 2 \end{vmatrix}$$
$$= 2(-2)(-4)(2)$$
$$= 64$$

2.8.9 Adjoints and Cramer's Rule (09/05)

2.8.9.1 Find the inverse of $A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$ using the adjoint method

$$\det(A) = 2 \begin{vmatrix} -1 & 0 \\ 4 & 3 \end{vmatrix} - 5 \begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix} + 5 \begin{vmatrix} -1 & -1 \\ 2 & 4 \end{vmatrix}$$

$$= 2(-3) - 5(-3) + 5(-2)$$

$$= -6 + 15 - 10$$

$$= -1$$

$$\det(A) = \begin{bmatrix} (-1)^{1+1} \begin{vmatrix} -1 & 0 \\ 4 & 3 \end{vmatrix} & (-1)^{1+2} \begin{vmatrix} -1 & 0 \\ 2 & 3 \end{vmatrix} & (-1)^{1+3} \begin{vmatrix} -1 & -1 \\ 2 & 4 \end{vmatrix}$$

$$(-1)^{2+1} \begin{vmatrix} 5 & 5 \\ 4 & 3 \end{vmatrix} & (-1)^{2+2} \begin{vmatrix} 2 & 5 \\ 2 & 3 \end{vmatrix} & (-1)^{2+3} \begin{vmatrix} 2 & 5 \\ 2 & 4 \end{vmatrix}$$

$$(-1)^{3+1} \begin{vmatrix} 5 & 5 \\ -1 & 0 \end{vmatrix} & (-1)^{3+2} \begin{vmatrix} 2 & 5 \\ -1 & 0 \end{vmatrix} & (-1)^{3+3} \begin{vmatrix} 2 & 5 \\ -1 & -1 \end{vmatrix}$$

$$= \begin{bmatrix} (-1)(3) & -(-1)(3) & -4 + 2 \\ -(15 - 20) & 6 - 10 & -(8 - 10) \\ 5 & -5 & -2 + 5 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -3 & 3 & -2 \\ 5 & -4 & 2 \\ 5 & -5 & 3 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -3 & 5 & 5 \\ 3 & -4 & -5 \\ -2 & 2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = -\begin{bmatrix} -3 & 5 & 5 \\ 3 & -4 & -5 \\ -2 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -5 & -5 \\ -3 & 4 & 5 \\ 2 & -2 & -3 \end{bmatrix}$$

2.8.9.2 Solve the following system of equations using Cramer's Rule

$$\begin{cases} 4x + 5y &= 2 \\ 11x + y + 2z = 3 & \longrightarrow \begin{vmatrix} 4 & 5 & 0 \\ 11 & 1 & 2 \\ x + 5y + 2z = 1 \end{vmatrix} \longrightarrow 4 \begin{vmatrix} 1 & 2 \\ 5 & 2 \end{vmatrix} - 5 \begin{vmatrix} 11 & 2 \\ 1 & 2 \end{vmatrix} = -132$$

$$\det(x) = \begin{vmatrix} 2 & 5 & 0 \\ 3 & 1 & 2 \\ 1 & 5 & 2 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 & 2 \\ 5 & 2 \end{vmatrix} - 5 \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix}$$

$$= 2(2 - 10) - 5(6 - 2)$$

$$= -16 - 20$$

$$= -36$$

$$\det(y) = \begin{vmatrix} 4 & 2 & 0 \\ 11 & 3 & 2 \\ 1 & 1 & 2 \end{vmatrix}$$

$$= 4 \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 11 & 2 \\ 1 & 2 \end{vmatrix}$$

$$= 4(6 - 2) - 2(22 - 2)$$

$$= 16 - 40$$

$$= -24$$

$$\det(z) = \begin{vmatrix} 4 & 5 & 2 \\ 11 & 1 & 3 \\ 1 & 5 & 1 \end{vmatrix}$$

$$= 4 \begin{vmatrix} 1 & 3 \\ 5 & 1 \end{vmatrix} - 5 \begin{vmatrix} 11 & 3 \\ 1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 11 & 1 \\ 1 & 5 \end{vmatrix}$$

$$= 4(1 - 15) - 5(33 - 3) + 2(55 - 1)$$

$$= -56 - 150 + 108$$

$$= -98$$

Therefore, the solution $(x, y, z) = (\frac{3}{11}, \frac{2}{11}, -\frac{49}{66})$

3 Chapter 5: Eigenvectors and Eigenvalues

3.1 Eigenvalues and Eigenvectors (11/06)

If A is an $n \times n$ matrix, then a non-zero vector \mathbf{x} , in R^n , is called an eigenvector of A if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . This scalar λ is called an eigenvalue of A and \mathbf{x} is said to be an eigenvector corresponding to λ .

See, normally, multiplying a vector by a square matrix changes both the magnitude and the direction of the vector. Really screws it up.

Some examples:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 8 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 23 \\ 4 \end{bmatrix}$$

However, there are some ways to get consistent results.

3.1.1 Examples

3.1.1.1
$$\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector of $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$ because

$$A\vec{x} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2\vec{x} : \lambda = 2$$

3.1.1.2 Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors of A ?

$$A\vec{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 1(6)+6(-5) \\ 5(6)+2(-5) \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} \therefore \lambda = -4$$

$$A\vec{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1(3) + 6(-2) \\ 5(3) + 2(-2) \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \vec{v}$$

3.2 Eigenvector Homework Problem (11/06)

Confirm by multiplication that ${\bf x}$ is an eigenvector of ${\bf A}$, and find the corresponding eigenvalue.

3.2.1
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$A\mathbf{x} = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4(1) + 0(2) + 1(1) \\ 2(1) + 3(2) + 2(1) \\ 1(1) + 0(2) + 4(1) \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} :: \lambda = 5$$

3.3 Finding Eigenvalues and Eigenvectors (11/07)

Essential question:

If we know an $n \times n$ matrix A, can we find its λ ?

If $A\vec{x} = \lambda \vec{x}$, then:

$$A\vec{x} = \lambda \vec{x}$$

$$A\vec{x} - \lambda \vec{x} = \vec{0}$$

$$(A-\lambda I)\vec{x}=\vec{0}$$

This equation is familiar. It's the homogeneous system of equations $A\vec{x} = \vec{0}$, the solution of which is the nullspace of $A - \lambda I$. Therefore, \vec{x} is an eigenvector of $A \iff \vec{x}$ is in the nullspace of $A - \lambda I$.

In this situation, what do we know about that matrix?

Everything in the equivalent statements is false because \vec{x} cannot be the zero vector. Therefore, we can see that $\det(A - \lambda I)$ OR $\det(\lambda I - A)$ MUST be 0.

Big Idea: If A is an $n \times n$ matrix, then λ is an eigenvalue of $A \iff \det(\lambda I - A) = 0$. This is called the characteristic equation of A.

3.3.1 Find the characteristic equation and the eigenvalues of
$$A = \begin{bmatrix} 3 & 0 & 5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix}$$

$$\det(\lambda I - A) = 0$$

$$\begin{vmatrix} \lambda - 3 & 0 & 5 \\ -\frac{1}{5} & \lambda + 1 & 0 \\ -1 & -1 & \lambda + 2 \end{vmatrix} = 0$$

$$0 = (\lambda - 3)((\lambda + 1)(\lambda + 2)) + 5(\frac{1}{5} + \lambda + 1)$$

$$0 = (\lambda - 3)(\lambda^2 + 3\lambda + 2)$$

$$0 = \lambda(\lambda^2 - 2)\lambda$$

$$0 = \lambda(\lambda^2 - 2)\lambda$$

$$= 0, \pm \sqrt{2}$$

3.3.2 Find the characteristic equation and the eigenvalues of $A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$

$$\begin{vmatrix} -1 - \lambda & 0 & 1 \\ -1 & 3 - \lambda & 0 \\ -4 & 13 & -\lambda \end{vmatrix} = 0$$

$$(-1 - \lambda)((3 - \lambda)(-\lambda) - 0(13)) + (-1(13) - (3 - \lambda)(-4)) = 0$$

$$(-1 - \lambda)(\lambda^2 - 3\lambda) + (-13 - 4\lambda + 12) = 0$$

$$(-1 - \lambda)(\lambda^2 - 3\lambda) + (-4\lambda - 1) = 0$$

$$-\lambda^3 + 3\lambda^2 + 2 = 0$$

$$(-\lambda + 2)(-\lambda^2 - \lambda - 1) = 0$$

$$(-\lambda + 2)(-\lambda - 1)(-\lambda + 1) = 0$$

$$\lambda = 2$$

3.3.3 Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$$

$$\begin{vmatrix} \lambda - 2 & 0 & 0 \\ 6 & \lambda - 3 & 0 \\ 1 & 4 & \lambda - 5 \end{vmatrix} = 0$$
$$(\lambda - 2)(\lambda - 3)(\lambda - 5) = 0$$
$$\lambda = 2, 3, 5$$

Theorem 1: For a triangular matrix, the eigenvalues are the elements on the main diagonal.

3.3.4 Find the eigenvalues of
$$A^3$$
 if $A = \begin{bmatrix} \frac{1}{2} & 4 & 5 & -2 \\ 0 & -1 & 3 & -8 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 4 \end{bmatrix}$

$$\lambda_A = \frac{1}{2}, -1, 2, 4$$
 $\lambda_{A^3} = \frac{1}{8}, -1, 8, 64$

Theorem 2: The eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, ...$

3.3.5 Give me a matrix with eigenvalues $\lambda = 0, 2, 5$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 2 & 5 \end{bmatrix}$$

Theorem 3: A square matrix A is invertible $\iff \lambda \neq 0$ (which also means its determinant is 0).

3.3.6 Finding eigenvectors!

Find the nontrivial eigenvectors of:

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$\begin{vmatrix} \lambda - 1 & -6 \\ -5 & \lambda - 2 \end{vmatrix} = 0$$

$$(\lambda - 1)(\lambda - 2) - (-6)(-5) = 0$$

$$\lambda^2 - 3\lambda - 28 = 0$$

$$(\lambda - 7)(\lambda + 4) = 0$$

$$\lambda = 7, -4$$

Substitute each λ , one at a time into the λI – A matrix and find the null space.

For $\lambda = -4$:

$$\begin{pmatrix} -5 & -6 & 0 \\ -5 & -6 & 0 \end{pmatrix}$$
$$\begin{pmatrix} -5 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\langle -\frac{6}{5}t, t \rangle$$
$$\vec{x} = \{ \langle -6, 5 \rangle \}$$

For $\lambda = 7$:

$$\begin{pmatrix} 6 & -6 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix}$$
$$\begin{pmatrix} 6 & -6 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$
$$\langle t, t \rangle$$
$$\vec{x} = \{ \langle 6, 6 \rangle \}$$

Therefore, the eigen space is: $\{\langle -6, 5 \rangle, \langle 6, 6 \rangle\}$

3.4 Diagonalization and Similar Triangles

Similar matrices: If A and D are square matrices, we say that A and D are "similar" if there exists an invertible matrix P such that:

$$D = P^{-1}AP$$
.

3.4.1 Properties of Similar Matricces

- They have the same determinant
- If one is invertible, so is the other
- They have the same trace
- They have the same characteristic polynomial
- They have the same eigenvalues

3.4.2 Procedure

- 1. Find the eigenvectors for the $n \times n$ matrix A.
- Theorem: If an n × n matrix A has n distinct eigenvalues, then A is for sure diagonalizable.
- 2. Make matrix P out of the eigenveectors (P is the matrix that diagonalizes A)
- 3. Check your work to find matrix D if reasonable

3.4.3 Example: Find a matrix P that diagonalizes A and compute $P^{-1}AP$

1.
$$A = \begin{bmatrix} 3 & 7 \\ 5 & 5 \end{bmatrix}$$

Find the eigenvalues:

$$\begin{bmatrix} \lambda - 3 & -7 \\ -5 & \lambda - 5 \end{bmatrix} = 0$$

$$(\lambda - 3)(\lambda - 5) - (-7)(-5) = 0$$

$$\lambda^2 - 5\lambda - 3\lambda + 15 - 35 = 0$$

$$\lambda^2 - 8\lambda - 20 = 0$$

$$\lambda = -2, 10$$

Find the eigenvectors:

$$\lambda = -2 : \begin{bmatrix} -5 & -7 & 0 \\ -5 & -7 & 0 \end{bmatrix} \vec{x} = \{\langle -7, 5 \rangle\}$$
$$\lambda = 10 : \begin{bmatrix} -7 & -7 & 0 \\ -5 & 5 & 0 \end{bmatrix} \vec{x} = \{\langle 1, 1 \rangle\}$$

Create the matrix P:

$$P = \begin{bmatrix} -7 & 1 \\ 5 & 1 \end{bmatrix}$$

Find matrix D:

$$D = P^{-1}AP$$

$$= \begin{bmatrix} 7 & 1 \\ 5 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 7 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 5 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 0 \\ 0 & 10 \end{bmatrix}$$

3.4.4 Conclusion

• If *D* has the same eigenvalues of *A* and if *D* must be diagonal, then *D* is **THE** diagonal matrix with eigenvalues of *A* on the diagonal.

2.
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

First, find D:

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Then, find P:

$$\lambda = 2 : \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \vec{x} = \langle 1, 0, 0 \rangle$$

$$\lambda = 3 : \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \vec{x} = \langle 0, 1, 0 \rangle$$

$$\lambda = 1 : \begin{bmatrix} -1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \vec{x} = \langle 2, 0, 1 \rangle$$

$$P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3.5 More on Similar Matrices

There are a few more properties of similar matrices:

- They have the same rank (non-zero eigenvalues)
- They have the same nullity
- They have the same column space
- They have the same row space

3.5.1 Example

**Matrix A is similar to the following matrix:

Rank of A: 4

Nullity of A: 2

Eigenvalues: 3, -3, 5, 2, 0, 0

Characteristic Polynomial:

$$\det(\lambda I - A) = 0$$

$$\begin{vmatrix} \lambda - 3 & 1 & -1 & -4 & -5 & -2 \\ 0 & \lambda + 3 & -5 & 10 & 16 & -1 \\ 0 & 0 & \lambda - 5 & -7 & 8 & -2 \\ 0 & 0 & 0 & \lambda - 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda \end{vmatrix} = 0$$

$$(\lambda - 3)(\lambda + 3)(\lambda - 5)(\lambda - 2)\lambda^2 = 0$$

3.5.2 Some review

- Eigenspace of λ : The nullspace of λI A. Each eigenvalue will have its own eigenspace.
- Algebraic multiplicty: The number of times a given λ appears as a root of the characteristic equation.
- Geometric multiplicity: The number of eigenvectors it maps to.

3.5.2.1 Theorem: Geometric and Algebraic Multiplicity

If A is a square matrix, then: a. For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity. b. A is diagonalizable \iff the geometric multiplicity of each eigenvalue is equal to the algebraic multiplicity.

3.6 Similar Matrices Continued (11/13/2023)

3.6.1 Warm-Up

Can you write a new statement involving eigenvalues to add to the list of equivalent statements?

 $\lambda = 0$ is not an eigenvalue of A

3.6.2 Homework Review

$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

$$\begin{bmatrix} \lambda - 19 & 9 & 6 \\ -25 & \lambda + 11 & 9 \\ 17 & 9 & \lambda + 4 \end{bmatrix} = (\lambda - 19)((\lambda + 11)(\lambda + 4) - 81) + 25(9\lambda + 36 - 54) - 17(81 - 6\lambda - 66)$$

$$= (\lambda - 1)^{2}(\lambda - 2)$$

 λ = 1 has an algebraic multiplicity of 2 and λ = 2 has an algebraic multiplicity of 1.

3.6.3 Suppose that a characteristic polynomial of some matrix A is found to be:

$$p(\lambda) = (\lambda - 1)(\lambda - 3)^2(\lambda = 4)^3$$

a. What are the dimensions of A?

6 × 6

b. What are the algebraic multiplicities of each eigenvalue?

$$\lambda = 1 : 1, \lambda = 3 : 2, \lambda = 4 : 3$$

c. What are the possible dimensions of the eigenspace associated with each of the eigenvalues?

$$\lambda = 1 : 1, \lambda = 3 : 1 \text{ or } 2, \lambda = 4 : 1 \text{ or } 2 \text{ or } 3$$

d. If $\{v_1, v_2\}$ is a linearly independent set of eigenvectors of A, all of which correspond to the same eigenvalue of A, what can you say about the eigenvalue?

The eigenvalue must be 3 or 4.

4 Semester II

4.1 Introduction to Multivariable functions (01/04)

4.1.1 Definition of a Multivariable Function

Suppose D is a set of n-tuples of real numbers $(x_1, x_2, ..., x_n)$. A function f on D is a rule that assigns a real number

$$w = f(x_1, x_2, ..., x_n)$$

to each element in D. The set D is the function's **domain**. The set of w-values taken on by f is the function's **range**. The symbol w is the **dependent variable** of f, and f is a function of the n **independent variables** x_1 to x_n . The x's are the function's **input variables**; w is the function's **output variable**.

4.2 Limits and Continuity (01/05)

4.2.1 Level Curve, Graph, Surface

The set of points in the plane where a function f(x, y) has a constant value k is called a **level curve** of f. The graph of f is the set of all points (x, y, z) in space, where z = f(x, y). The graph of f is a surface in space.

4.2.2 Limits With Multivariable Functions

Limits: Let f be a function of two variables defined on an open region, except possibly at (x_0, y_0) .

In 2-D:

 $\lim_{x\to c^+} f(x)$ exists iff $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L \in \mathbb{R}$

In 3-D

 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ exists iff $\lim_{(x,y)\to(x_0,y_0)^-}f(x,y)=L\in\mathbb{R}$ from <u>all</u> directions.

4.2.3 Examples

1.
$$\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2} = \frac{5\cdot 1\cdot 2}{1+4} = \frac{10}{5} = 2$$

2.
$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2} = \frac{0}{0}$$

Since this is indeterminate, you need to switch to traditional limit solving methods. There is no *L'Hopital's Rule* for multivariable functions. Instead, factor the numerator and denominator and cancel out common factors.

$$\lim_{(x,y)\to(1,1)}\frac{x-y}{(x-y)(x+y)}=\frac{1}{2}$$

3.
$$\lim_{(x,y)\to(4,3)} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$$

4.2.4 Homework

4.2.4.1 Evaluate the limit $\lim_{(x,y)\to(0,0)} \frac{3x^2-y^2+5}{x^2+y^2+2}$

$$\lim_{(x,y)\to(0,0)} \frac{3x^2-y^2+5}{x^2+y^2+2}\bigg|_{(0,0)} = \frac{5}{2}$$

4.2.4.2 Evaluate the limit $\lim_{(x,y)\to(1,1)}\cos \sqrt[3]{|xy|-1}$

$$\lim_{(x,y)\to(1,1)}\cos\sqrt[3]{|xy|-1}\Big|_{(1,1)}=\cos 0=1$$

4.2.4.3 Evaluate the limit $\lim_{(x,y)\to(1,1)} \frac{xy-y-2x+2}{x-1}$

$$\lim_{(x,y)\to(1,1)}\frac{xy-y-2x+2}{x-1}=\frac{(x-1)(y-2)}{x-1}=y-2\big|_{(1,1)}=-1$$

4.2.4.4 On what interval is the function $f(x, y) = \sin(x + y)$ continuous?

The sin function is continuous everywhere, so $(x, y) \in \mathbb{R}^2$

- **4.2.4.5** On what interval is the function $f(x, y, z) = x^2 + y^2 2z^2$ continuous? $(x, y, z) \in \mathbb{R}^3$
- **4.2.4.6** On what interval is the function $f(x, y, z) = xy \sin(\frac{1}{z})$ continuous?

Can't divide by zero, so $(x, y, z) \in \mathbb{R}^3 | z \neq 0$

- 4.3 Limits that DO NOT EXIST in 3-Space (01/08)
- **4.3.1** Question: Does the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ have a limit as (x,y) approaches (0,0)?

Nope, it approaches the point sp.differently.

4.3.2 Find $f(x, y)|_{y=x^2}$ and compute $\lim_{(x,y)\to(0,0)} f(x,y)$ along $y=x^2$

$$f(x,y) = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=x^2} = \frac{2x^4}{2x^4} = 1$$

4.3.3 Find $f(x, y)|_{y=-x^2}$ and compute $\lim_{(x,y)\to(0,0)} f(x, y)$ along $y=-x^2$

$$f(x,y) = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=x^2} = \frac{-2x^4}{2x^4} = 1$$

4.3.4 Explain why we can conclude that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 along $y=x^2\neq\lim_{(x,y)\to(0,0)} f(x,y)$ along $y=-x^2$

4.3.5 How did we know to choose $y = x^2$ and $y = -x^2$ to evaluate the limit?

You want to try to choose things that, as you plug them in, you get a nice expression that you can simplify. For this problem in particular, we chose paths towards (0,0) that would be easy to solve and yield sp.different answers upon simplification. We could've also used the equation of the x-axis (y = 0).

4.3.6 Show that these functions have no limit as (x, y) approaches (0, 0) by considering sp.different paths of approach.

4.3.6.1
$$f(x,y) = \frac{x^4}{x^4 + y^2}$$

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ along } y = 2x^2 = \frac{x^4}{5x^4} = \frac{1}{5} \neq \lim_{(x,y)\to(0,0)} f(x,y) \text{ along } y = x^2 = \frac{x^4}{2x^4} = \frac{1}{2}$$

4.3.6.2
$$f(x,y) = \frac{x^2 + y}{y}$$

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 along $y=x^2=\frac{2y}{y}=2\neq \lim_{(x,y)\to(0,0)} f(x,y)$ along $y=2x^2=\frac{3x^2}{2x^2}=\frac{3}{2}$

4.4 Partial Derivatives (01/10)

4.4.1 First Order Partial Derivatives

A **partial derivative** is obtained by holding all but one of the independent variables constant and differentiating with respect to that variable.

4.4.1.1 Notation

 $\frac{\partial f}{\partial x} = f_x = \frac{\partial}{\partial x} f(x, y)$ is the partial derivative of f with respect to x

4.4.2 Examples

4.4.2.1
$$f(x, y) = 2x^3y - 4x^2y^3 + 5x^4$$

$$f_x = 6x^2y - 8xy^3 + 20x^3$$

 $f_y = 2x^3 - 12x^2y^2$

4.4.2.2
$$f(x,y) = 4x^2y - 8x^3y^4 + 2xy^7$$

$$f_x = 8xy - 24x^2y^4 + 2y^7$$

 $f_y = 4x^2 - 32x^3y^3 + 14xy^6$

4.4.2.3
$$f(x, y) = \tan(2x - y)$$

$$f_x = 2 \sec^2(2x - y)$$

 $f_y = -\sec^2(2x - y)$

4.4.3 The Second Fundamental Theorem of (Multivariable) Calculus

•
$$\frac{d}{dx} \int_5^x f(t) dt = f(x)$$

•
$$\frac{d}{dx} \int_5^{x^2} f(t) dt = 2x \cdot f(x^2)$$

4.4.4 Examples

4.4.4.1
$$f(x,y) = \int_{3x}^{2y} (t^2 - 1) dt$$

```
# import libraries
import sympy as sp
from IPython.display import display, Math, Latex

x, y, t, z, r, , p, q = sp.symbols('x y t z r p q', real=True, positive=True)
f = sp.integrate(t**2-1, (t, 3*x, 2*y))
display(sp.diff(f, x))
display(sp.diff(f, y))

3-27x²
8y²-2
```

4.4.4.2 Find both partial derivatives and evaluate each at the point $(1, \ln 2)$

```
1. f(x,y) = xe^{x^2y}

1. f = x*sp.exp(x**2*y)

2. display(sp.diff(f, x))

3. display(sp.diff(f, y))

4. display(sp.diff(f, x).subs({x:1, y:sp.ln(2)}))

5. display(sp.diff(f, y).subs({x:1, y:sp.ln(2)}))

2x^2ye^{x^2y} + e^{x^2y}

x^3e^{x^2y}

2 + 4 log(2)
```

4.5 2nd Partial Derivatives (01/11)

4.5.1 First, let's see this one. If $f(x, y, z) = x \sin(y + 3z)$, find f_x , f_y , f_z .

```
f = x*sp.sin(y+3*z)
display(sp.diff(f, x))
display(sp.diff(f, y))
display(sp.diff(f, z))
sin(y+3z)
x cos(y+3z)
3x cos(y+3z)
```

4.5.2 2nd-Order Partial Derivatives

The **second-order partial derivatives** of f are the partial derivatives of the partial derivatives of f.

4.5.2.1 Notation

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

4.5.3 Mixed Partial Derivatives

The **mixed partial derivatives** of f are the partial derivatives of f with respect to many other different variables.

4.5.3.1 Notation

$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

To compute a mixed partial derivative, you must evaluate the order from right to left. For example, f_{xy} is the partial derivative of f_x with respect to y, which is notated as $\frac{\partial^2 f}{\partial x \partial y}$.

4.5.4 Theorem (Clairaut's Theorem)

If f_{xy} and f_{yx} are continuous on an open region D, then $f_{xy}(a,b) = f_{yx}(a,b)$ on D.

4.5.5 Examples

```
4.5.5.1 Given that f(x, y) = x^2y - y^3 + \ln x, find all 2nd order partial derivatives
f = x^{**}2^*y - y^{**}3 + sp.ln(x) display(sp.diff(f, y, x)) display(sp.diff(f, x, y)) display(sp.diff(f, y, x)) displa
x, x)) display(sp.diff(f, y, y))
#### Given that w = xy+\frac{e^y}{y^2+1}, find \frac{2 w}{partial x partial y}
For this problem, you need to "choose wisely." Knowing that the function and it's partial de
 ### Partial Derivatives Homework (01/11)
### Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y)$
#### f(x, y) = x(y-1)$
 ::: {.cell execution_count=5}
 ``` {.python .cell-code}
f = x*(y-1)
display(sp.diff(f, x))
display(sp.diff(f, y))
y – 1
Χ
:::
4.5.6 f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2
1 f = 5*x*y - 7*x**2 - y**2 + 3*x - 6*y + 2
display(sp.diff(f, x))
3 display(sp.diff(f, y))
```

```
-14x + 5y + 3
5x - 2y - 6
4.5.7 f(x,y) = \sqrt{x^2 + y^2}
1 f = sp.sqrt(x**2 + y**2)
display(sp.diff(f, x))
display(sp.diff(f, y))
4.5.8 f(x,y) = e^{(x+y+1)}
f = sp.exp(x+y+1)
display(sp.diff(f, x))
3 display(sp.diff(f, y))
e^{x+y+1}
e^{x+y+1}
4.5.9 f(x,y) = \int_{x}^{y} g(t) dt
g = sp.Function('g')
g f = sp.integrate(g(t), (t, x, y))
display(sp.diff(f, x))
display(sp.diff(f, y))
-g(x)
```

g(y)

```
4.5.10 f(x, y, z) = xy + yz + xz
```

```
f = x*y + y*z + x*z
display(sp.diff(f, x))
display(sp.diff(f, y))
display(sp.diff(f, z))

y+z

x+z

x+y
```

#### **4.5.11** $f(x, y, z) = \ln(x + 2y + 3z)$

```
f = sp.ln(x + 2*y + 3*z)
display(sp.diff(f, x))
display(sp.diff(f, y))
display(sp.diff(f, z))
```

$$\frac{1}{x+2y+3z}$$

$$\frac{2}{x+2y+3z}$$

$$\frac{3}{x+2y+3z}$$

### **4.5.12** If $f(x, y) = x \cos(y) + ye^x$ , find $\frac{\partial^2 f}{\partial x^2}$ , $\frac{\partial^2 f}{\partial y^2}$ , $\frac{\partial^2 f}{\partial x \partial y}$ , and $\frac{\partial^2 f}{\partial y \partial x}$

```
f = x*sp.cos(y) + y*sp.exp(x)
display(sp.diff(f, x, x))
display(sp.diff(f, y, y))
display(sp.diff(f, x, y))
display(sp.diff(f, y, x))

ye^x
-x cos(y)
```

$$e^{x} - \sin(y)$$

$$e^x - \sin(y)$$

#### 4.6 Definition of Differentiability (01/16)

So, how do we solve the apparent contradiction?

Defintion of differentiability in multivaraible calculus:

The function f(x, y) is said to be differentiable if there exists a *linear function* at the point (a, b):

$$L(x, y) = f(a, b) + p(x - a) + q(y - b)$$

#### 4.6.1 Remember local linearization?

...what it means for a function to be "locally linear?"

Consider the following:

Is this function differentiable at x = 0?

$$f(x) = |x| + 1$$

What about this one?

$$g(x) = \sqrt{x^2 + 0.0001} + 0.99$$

The linearization of a function f(x, y) at a point  $(x_0, y_0)$  where f is differentiable is given by the function:

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) \ z = z_0 + m_x(x-x_0) + m_y(y-y_0) \ 0 = m_x(x-x_0) + m_y(y-y_0) + (z-z_0)$$
 
$$0 = A(x-x_0) + B(y-y) + C(z-z_0) \ \text{end} \{\text{align*}\} \ \dots \text{where } \vec{n} = \langle A,B,C \rangle \ \text{and } p = (x_0,y_0,z_0)$$

#### 4.6.2 Examples

**4.6.2.1** Find the linearization of  $f(x, y) = y^2 + 2xy - \frac{1}{2}x^2$  at the point (2, 3).

#### 4.6.3 Homework

#### **4.6.3.1** Find the linearization of $f(x, y) = x^2 + y^2 + 1$ at (1, 1)

```
1 f = x**2 + y**2 + 1
2 x_0 = 1
3 y_0 = 1
4 z_0 = f.subs({x:x_0, y:y_0})
5 f_x = sp.diff(f, x).subs({x:x_0, y:y_0})
6 f_y = sp.diff(f, y).subs({x:x_0, y:y_0})
7 display(z_0 + f_x*(x-x_0) + f_y*(y-y_0))
2x + 2y - 1
```

#### **4.6.3.2** Find the linearization of f(x, y) = 3x - 4y + 5 at (1, 1)

```
1 f = 3*x - 4*y + 5
2 x_0 = 1
3 y_0 = 1
4 z_0 = f.subs({x:x_0, y:y_0})
5 f_x = sp.diff(f, x).subs({x:x_0, y:y_0})
6 f_y = sp.diff(f, y).subs({x:x_0, y:y_0})
7 display(z_0 + f_x*(x-x_0) + f_y*(y-y_0))
3x - 4y + 5
```

#### **4.6.3.3** Find the linearization of $f(x, y) = e^x \cos y$ at $(0, \frac{\pi}{2})$

```
1 f = sp.exp(x)*sp.cos(y)
2 x_0 = 0
3 y_0 = sp.pi/2
4 z_0 = f.subs({x:x_0, y:y_0})
5 f_x = sp.diff(f, x).subs({x:x_0, y:y_0})
6 f_y = sp.diff(f, y).subs({x:x_0, y:y_0})
7 display(z_0 + f_x*(x-x_0) + f_y*(y-y_0))
-y + \frac{\pi}{2}
```

#### 4.7 Chain Rule (01/18)

#### **4.7.1** Warmup: Find the linearization of $f(x, y) = x^3y^4$ at the point \$(1, 1)

```
1 f = x**3*y**4
2 x_0 = 1
3 y_0 = 1
4 z_0 = f.subs({x:x_0, y:y_0})
5 f_x = sp.diff(f, x).subs({x:x_0, y:y_0})
6 f_y = sp.diff(f, y).subs({x:x_0, y:y_0})
7 display(z_0 + f_x*(x-x_0) + f_y*(y-y_0))
3x + 4y - 6
```

#### 4.7.2 Chain Rule (1-Variable)

The "normal" chain rule formula:

$$\frac{d}{dt}f(g(t)) = f'(g(t)) \cdot g'(t) = \frac{df}{dt} \cdot \frac{dg}{dt} = \frac{df}{dt}$$

#### 4.7.3 Chain Rule (Multi Variable)

Let w = f(x, y) where f is a differentiable function of x and y. If x = g(t) and y = h(t) where g and h are differentiable functions of t, then w is also a differentiable function of t and  $\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$ 

#### 4.7.4 Examples

**4.7.4.1** If  $w = x^2y - y^2$  where  $x \sin t$  and  $y = e^t$ , find  $\frac{dw}{dt}$  at t = 0

```
1 w = x**2*y - y**2
2 w_t = w.subs({x: sp.sin(t), y: sp.exp(t)})
3 dw_dt = sp.diff(w_t, t)
4 display(dw_dt.subs(t, 0))
```

```
4.7.4.2 If w = xy + xz + yz and x = t - 1, y = t^2 - 1, z = t, find \frac{dw}{dt}
1 \quad w = x*y + x*z + y*z
v_t = v.subs({x: t-1, y: t**2-1, z: t})
3 display(sp.diff(w_t, t))
4t^2 + 2t(t-1) + 2t - 3
 4.7.5 Homework
4.7.5.1 w = x^2 + y^2, x = \cos t, y = \sin t at t = \pi
w = x**2 + y**2
w_t = w.subs({x: sp.cos(t), y: sp.sin(t)})
3 display(sp.diff(w_t, t))
display(sp.diff(w_t, t).subs(t, sp.pi))
0
 0
4.7.5.2 w = 2ye^x - \ln z, x = \ln(t^2 + 1), y = \arctan t, z = e^t at t = 1
1 \quad w = 2*y*sp.exp(x) - sp.ln(z)
part_wx = sp.diff(w, x)
3 part_wy = sp.diff(w, y)
4 part_wz = sp.diff(w, z)
dx_dt = sp.diff(sp.ln(t**2 + 1), t)
6 dy_dt = sp.diff(sp.atan(t), t)
7 dz_dt = sp.diff(sp.exp(t), t)
8 dw_dt = part_wx * dx_dt + part_wy * dy_dt + part_wz * dz_dt
9 display(dw_dt)
display(dw_dt.subs(t, 1))
\frac{4tye^{x}}{t^{2}+1}+\frac{2e^{x}}{t^{2}+1}-\frac{e^{t}}{z}
```

 $2ye^x + e^x - \frac{e}{z}$ 

```
4.7.5.3 z = 4e^x \ln y, x = \ln(r \cos \theta), y = r \sin \theta; (r, \theta) = (2, \frac{\pi}{4})
1 z = 4*sp.exp(x)*sp.ln(y)
part_zx = sp.diff(z, x)
g part_zy = sp.diff(z, y)
4 dx_dr = sp.diff(sp.ln(r*sp.cos()), r)
dx_d = sp.diff(sp.ln(r*sp.cos()),)
6 dy_dr = sp.diff(r*sp.sin(), r)
7 dy_d = sp.diff(r*sp.sin(),)
8 dz_dr = part_zx * dx_dr + part_zy * dy_dr
9 dz_d = part_zx * dx_d + part_zy * dy_d
display(Latex(r"$\frac{\partial z}{\partial r} = " + sp.latex(dz_dr) +
display(Latex(r"$\frac{\partial z}{\partial\theta} = " + sp.latex(dz d)
 + "$"))
display(dz_dr.subs({r:2, :sp.pi/4}))
display(dz_d.subs(\{r:2, :sp.pi/4\}))
\frac{\partial z}{\partial r} = \frac{4e^x \sin(\theta)}{v} + \frac{4e^x \log(y)}{r}
\frac{\partial z}{\partial \theta} = \frac{4re^{x}\cos(\theta)}{y} - \frac{4e^{x}\log(y)\sin(\theta)}{\cos(\theta)}
2e^{x}\log(y) + \frac{2\sqrt{2}e^{x}}{y}
-4e^{x}\log(y)+\frac{4\sqrt{2}e^{x}}{v}
4.7.5.4 u = \frac{p-q}{q-r}, p = x + y + z, q = x - y + z, r = x + y - z; (x, y, z) = (\sqrt{3}, 2, 1)
1 u = (p-q)/(q-r)
part_ux = sp.diff(u.subs(\{p: x+y+z, q: x-y+z, r: x+y-z\}), x)
part_uy = sp.diff(u.subs({p: x+y+z, q: x-y+z, r: x+y-z}), y)
display(Latex(r"$\frac{\partial u}{\partial x} = " + sp.latex(part_ux) +
5 display(Latex(r"$\frac{\partial u}{\partial y} = " + sp.latex(part_uy) +
6 display(Latex(r"$\frac{\partial u}{\partial z} =
 \frac{4y}{(-2y+2z)^2}"))
```

```
7 display(part_ux.subs({x:sp.sqrt(3), y:2, z:1}))
8 display(part_uy.subs({x:sp.sqrt(3), y:2, z:1}))
9 display(Latex(r"-2"))

\frac{\partial u}{\partial x} = -\frac{16ye^{x}\log(y)}{(-2y+8e^{x}\log(y))^{2}}

\frac{\partial u}{\partial y} = \frac{2y\left(2-\frac{8e^{x}}{y}\right)}{(-2y+8e^{x}\log(y))^{2}} + \frac{2}{-2y+8e^{x}\log(y)}

\frac{\partial u}{\partial z} = \frac{4y}{(-2y+2z)^{2}}

-2

1 - 4e^{\sqrt{3}}
```