Answer 1.

Relation R with attributes ABCDEFGH

FD's given:

 $A \rightarrow C$, $A \rightarrow D$, $C \rightarrow F$, $G \rightarrow B$, $G \rightarrow H$, $G \rightarrow D$, $CD \rightarrow G$, $BF G \rightarrow H$, $BCG \rightarrow F$, $BCG \rightarrow H$, $DF \rightarrow E$, $DEF \rightarrow B$, $DEF \rightarrow C$, $DEF \rightarrow D$, $AD \rightarrow G$, $E \rightarrow A$, $E \rightarrow C$, $E \rightarrow D$

(a) Minimal Basis:

- 1. **A** → **C** ✓
- 2. **A** →**D** ✓
- 3. **C** → **F** ✓
- 4. **G** → **B** ✓
- 5. **G** → **H** ✓
- 6. **G** → **D** ✓
- 7. **CD** → **G** ✓
- 8. BF G \rightarrow H x : This can be achieved using 5, G \rightarrow H
- 9. BCG \rightarrow F x : This can be achieved using 3, C \rightarrow F
- 10.BCG \rightarrow H x : This can be achieved using 5, G \rightarrow H

11.**DF** → **E** ✓

- 12.DEF → B x : This can be achieved using 1,2,7,4,16 , $[E^+]$ =EADCGB
- 13.DEF →C x : This can be achieved using 1,16, $[E^+]=EAC$
- 14.DEF →D x: This can be achieved using 2,16, $[E^+]=EAD$
- 15.AD \rightarrow G x : This can be achieved using 1,2,7, [A⁺]=ACDG

16.**E** → **A** ✓

17.E →C x : This can be achieved using 1,16, $[E^+]$ =EAC

18.E →D x : This can be achieved using 2,16, $[E^+]=EAD$

Therefore,

1. A
$$\rightarrow$$
 C, A \rightarrow D, C \rightarrow F, E \rightarrow A, G \rightarrow B, G \rightarrow H, G \rightarrow D, CD \rightarrow G, DF \rightarrow E

(b) 3NF decomposition of R

Step1. Finding FD that violates R

- **A** → **C**, [A⁺]=ABCDEFGH ✓ : As A is a key
- **A** →**D**, [A⁺]=ABCDEFGH ✓ : As A is a key
- C → F, [C⁺]=CF xviolates: As neither C is a key nor F is a prime
- **E** → **A**, [E⁺]=ABCDEFGH ✓ : As E is a key
- $\mathbf{G} \rightarrow \mathbf{B}$, $[G^+]=BDGH$ xviolates: As neither G is a key nor B is a prime
- $G \rightarrow H$, $[G^+]=BDGH \times violates$: As neither G is a key nor H is a prime
- **G** → **D**, [G⁺]=BDGH **✓**: As D is a prime
- **CD** → **G**, [CD⁺]=ABCDEFGH ✓: As CD is a key
- **DF** → **E**, [DF⁺]=ABCDEFGH ✓: As DF is a key

Step2. Decomposing using FD, G → H

[G⁺]=BDGH

Therefore, the 2 decomposition are :

R1:ACEFG & R2:GBDH

FD, $\mathbf{C} \rightarrow \mathbf{F}$ violates R1

 $[C^+]=CF$

Decomposing R1 further into

R3: AEGC & R4:CF

The following are the 3NF decomposition:

R2: GBDH, key(s): G ([G⁺]=BDGH)

R3: AEGC , key(s) : A and E (keys for relation R)

R4: CF, key(s): C ($[C^+]$ =CF)

Answer 2.

Relation R with attributes HIJK

FDs given:

 $JK \rightarrow H, \, JK \rightarrow I, \, H \rightarrow J, \, I \rightarrow K$

Step1. Finding FD that violates BCNF

 $H \rightarrow J$ violates as $[H^+] = HJ$

Decomposing:

R1: IKH & R2: HJ

 $I \rightarrow K \text{ violates R1 as } [I^+] = IK$

Decomposing R1:

R3: HI & R4: IK

So these decomposed relations are:

R2: HJ , FD : $H \rightarrow J$

R3:HI (key) as [HI] = HIJK , FDs: H \rightarrow J, I \rightarrow K

R4: IK , FD : I \rightarrow K