מתמטיקה בדידה - תרגיל בית 10

ניתן בתאריך 17.1.24. להגשה עד יום שלישי 23.1.24.

- :ו יהי R יחס מעל A. הוכיחו
- $Id_A\subseteq R$ אם ורק אם רפלקסיבי R (א)
- $R^{-1}=R$ בי אם ורק אם R
- $R \circ R \subseteq R$ טרנזיטיבי אם ורק אם R (ג)
- . $\forall x \in B. \ \forall a \in A. \ (xRa \to a \in B)$ אם מתקיים ל-X' אם נקראת שגורה ביחט ל-X' געבור קבוצה A געבור את הקבוצה A נגדיר את הקבוצה A נגדיר את הקבוצה A נגדיר את הקבוצה A מתקיים ש־A מתקיים ש־A מעורה ביחט ל-A מרכיחו כי אם A יחס טרנזיטיבי אז לכל קבוצה A בוצה A מתקיים ש־A מערים ש-A מערים ש-A
 - 3. עבור כל אחד מהיחסים הבאים, הוכיחו שמדובר ביחס שקילות.
 - $a,b\in\mathbb{R}$ על המספרים הממשיים, המוגדר באופן הבא: עבור Res

$$\langle a, b \rangle \in Res \iff b - a \in \mathbb{Z}$$

$$(Res = \{\langle a,b
angle \in \mathbb{R}^2 \, | \, b-a \in \mathbb{Z} \}$$
 (כלומר

נב) נגדיר נגדיר את גדיר אלם $X+k\coloneqq\{x+k\,|\,x\in X\}$ נגדיר את גדיר את נגדיר שלם אלם $X\in\mathcal{P}\left(\mathbb{N}\right)$ נגדיר נגדיר את בהינתן קבוצה באופן הבא:

$$A \sim B \iff \left\{ \langle A, B \rangle \in \mathcal{P} \left(\mathbb{N} \right)^2 \mid \exists k \in \mathbb{Z}. \ A = B + k \right\}$$

- $\mathcal{P}\left(\mathbb{N}
 ight)$ מעל $R_{1}=\left\{ \left\langle C,D
 ight
 angle \in\mathcal{P}\left(\mathbb{N}
 ight)^{2}\mid C\cap E=D\cap E
 ight\}$ מעל מעל געבור $E\subseteq\mathbb{N}$
- A מעל $R_2=\left\{\left\langle\left\langle a,b\right\rangle,\left\langle c,d\right\rangle
 ight
 angle\in A^2\,|\,ad=cb
 ight\}$ היחס היחס $A=\left\{\left\langle a,b\right\rangle\in\mathbb{Z}^2\,|\,b>0
 ight\}$

$$\mathbb{R} o \mathbb{R}$$
 מעל $R_3 = \left\{ \langle f,g
angle \in (\mathbb{R} o \mathbb{R})^2 \mid \exists \delta > 0. \, \forall x \in (-\delta,\delta) \, . \, f\left(x
ight) = g\left(x
ight)
ight\}$ היחס

4. בדקו עבור היחסים הבאים האם הם רפלקסיביים, סימטריים וטרנזיטיביים והוכיחו תשובתכם:

$$\mathcal{P}\left(\mathbb{N}
ight)$$
 מעל $R_1=\left\{\left\langle A,B
ight
angle\in\mathcal{P}\left(\mathbb{N}
ight)^2\mid\exists n\in\mathbb{N}.\,A\Delta B=\left\{ n
ight\}
ight\}$ (א)

$$\mathcal{P}\left(\mathbb{N}
ight)$$
 מעל $R_{2}=\left\{ \left\langle A,B
ight
angle \in\mathcal{P}\left(\mathbb{N}
ight)^{2}\mid A\subseteq B
ight\}$ (ב)

$$\mathbb{Z}$$
 מעל מעל $R_3=\left\{\langle a,b
angle\in\mathbb{Z}^2\,|\,a+b=100
ight\}$ (ג)

$$\mathbb{N} o \mathbb{N}$$
 מעל $R_4 = \left\{ \langle f,g
angle \in (\mathbb{N} o \mathbb{N})^2 \mid f \circ g = id_\mathbb{N}
ight\}$ (ד)

- 5. הוכיחו או הפריכו את הטענות הבאות:
- . יחס שקילות על אז אז $R\cap S$ אז קבוצה על שקילות שקילות יחסי R,S אם אם
- . יחס שקילות על קבוצה $R \cup S$ אז אין שקילות שקילות אסיר יחסי אם (ב)
- .יחס טרנזיטיביי $R\circ S$ אז אז קבוצה על טרנזיטיביי טרנזיטיביי אם R,S יחס טרנזיטיביי
 - $a,b \in A$ יחס שקילות מעל קבוצה A, ויהיו ויהיו 6.
- (א) הוכיחו שמתקיים $p \lor q$ מספיק להראות עאם ($[a]_R \cap [b]_R = \emptyset$) עונה מספיק להראות שאם (א) הוכיחו שמתקיים $q \vdash \emptyset$ אז מתקיים $q \vdash \emptyset$.

- (ב) הוכיחו שהטענות הבאות שקולות:
 - aRb .i
 - $a \in [b]_R$.ii

$$[a]_R = [b]_R$$
 .iii

- $\exists x \in A. \, \forall y \in A. \, xRy$ יחס על קבוצה A, המקיים את התנאי יחס על יחס על יחס על 7.
 - R=A imes A או שאם R יחס שקילות, או
 - T=A imes A אז $R\subseteq T$ ו-ו על א יחס שקילות על T יחס אז T
 - ויהי, $A=\mathcal{P}\left(\mathbb{N} imes\mathbb{N}
 ight)$ ניקח

$$R = \{ (R_1, R_2) \in \mathcal{P} (\mathbb{N} \times \mathbb{N}) \times \mathcal{P} (\mathbb{N} \times \mathbb{N}) : R_1 \circ R_2 = R_2 \circ R_1 \}$$

יחס שקילות? $\exists x \in A. \, \forall y \in A. \, xRy$ יחס שקילות? מקיים את מקיים א

- A אחס מעל R יחס מעל $A
 eq \emptyset$ יחס מעל 8.
- (א) נגדיר $R^*=\bigcup_{k=1}^\infty R^{(k)}$. הוכיחו כי היחס $R^*=\bigcup_{k=1}^\infty R^{(k)}$ א נגדיר $R^*=\bigcup_{k=1}^\infty R^{(k)}$. אונגדיר הוכיחו בטענה הבאה ללא הוכחה: תוכלו להשתמש בטענה הבאה ללא הוכחה: תוכלו להשתמש בטענה הבאה ללא הוכחה:
- - .5 הערה: אותו לראשונה בתרגיל של הטרנזיטיבי של הסגור הטרנזיטיבי אותו הסגור הטרנזיטיבי R^{\ast}
 - עבור היחס R^st (ג)

$$R = \left\{ \left\langle \left\langle a, b \right\rangle, \left\langle c, d \right\rangle \right\rangle \in \mathbb{R}^2 \times \mathbb{R}^2 \mid a = c \lor b = d \right\}$$

מעל \mathbb{R}^2 הוכיחו את תשובתכם.

- $.Sym\left(R
 ight) =R\cup R^{-1}$ נגדיר .A יחס מעל קבוצה .B
 - (א) הוכיחו ש־ $Sym\left(R
 ight)$ יחס סימטרי.
- ושלכל יחס סימטרי את $R\subseteq Sym\left(R\right)$ ש־ $R\subseteq Sym\left(R\right)$ ושלכל יחס סימטרי הוכיחו ש־ $R\subseteq Sym\left(R\right)$ הוא היחס הסימטרי שמכיל את את הוכיחו ש־ $R\subseteq Sym\left(R\right)$ מעל $R\subseteq S$ מעל R
 - (ג) נניח ש־ $\emptyset \neq M$ יחס שקילות. $Sym(R^* \cup Id_A)$ יחס שקילות.