Exam 2 Review

Cathy Poliak, Ph.D. cpoliak@central.uh.edu Office in Fleming 11c

Department of Mathematics University of Houston

Exam structure.

- First three problems will present you with a data example and ask you an array of modeling/interpretation questions about that data. (Short answer questions)
- Five (5) multiple choice questions. No partial credit for the multiple choice questions.
- 75 minutes, in the classroom.
- May use one-page notes front/back can be typed if desired. To be handed in for extra credit.

Topics Covered

- Types of statistical learning
- Cross-Validation
- Leave-One-Out Cross-Validation
- K-Fold Cross Validation
- Bootstrap Methods
- Regression Tree
- Classification Tree
- Bagging
- Random Forests
- Boosting
- Single Layer Linear Neural Network

Training error, overfitting.

Training error - not a good metric of model performance. (Why?)

Sometimes good training test performance is more indicative of over-fitting (\Longrightarrow fitting the noise instead of true signal) rather than of a good generalizable model.

Training error, overfitting.

Training error - not a good metric of model performance. (Why?)

Sometimes good training test performance is more indicative of overfitting (\Longrightarrow fitting the noise instead of true signal) rather than of a good generalizable model.

Instead, we need to estimate **test** error (out-of-sample error). This class covered two ways to do it:

- Validation Set Approach, Hold out set # of samples = 1
- K-fold Cross-Validation # of re-samples = ~

I excluded Leave-One-Out CV (LOOCV) as it's just a special case of K-fold CV. $\Leftrightarrow h \circ h \circ e - s \circ h \circ e = k = h$

Validation Set Approach.

One way is **validation** (or **hold-out**) **set** approach:

- 1. Randomly divide data set into two parts:
 - Training set
 - Validation set
- 2. Fit the model on training data, and use the fitted model to predict responses \hat{y}_i for validation data.
- 3. Calculate validation set error rate: $\sum_{i \in \{\text{validation set}\}} (\hat{y}_i y_i)^2 \approx \text{test error rate}$

Validation Set Approach.

One way is **validation** (or **hold-out**) **set** approach:

- 1. Randomly divide data set into two parts:
 - Training set
 - Validation set
- 2. Fit the model on training data, and use the fitted model to predict responses \hat{y}_i for validation data.
- 3. Calculate validation set error rate:

$$\sum_{i \in \{\text{validation set}\}} (\hat{y}_i - y_i)^2 \approx \text{test error rate}$$

Validation set approach has two big drawbacks:

1. Test error estimates vary heavily across different splits.

 Only a moderate subset of data used for training (less data ⇒ worse performance ⇒ overestimated MSE).

K-fold Cross-Validation.

A more effective alternative is K-fold cross-validation (K-fold CV)

- 1. Data is randomly divided into K subsets of \approx same size n_K .
- 2. For each subset j, j = 1, ..., K, we
 - use it as a validation set, while
 - ▶ using other K-1 subsets to train the model
 - ► Calculate $MSE_j = \frac{1}{n_k} \sum_{i \in \{validation \ set\}} (y_i \hat{y}_i)^2$.
- 3. The K-fold CV (squared) test error estimate is

$$CV_{(k)} = \frac{1}{K} \sum_{j=1}^{K} MSE_j$$

For K-fold CV:

- We use more data for training compared to validation set method.
- Test error estimates are much more stable across splits:

K-fold Cross-Validation.

Illustration of random data subdivision into training and testing subsets for 5-fold CV (as opposed to LOOCV and validation set approaches):

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is randomly split into five non-overlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

Bootstrap is a universal resampling method used to evaluate uncertainty around sample estimates for population parameter. In particular, it helps evaluate **standard error** of an estimate.

with replacement

Bootstrap is a universal resampling method used to evaluate uncertainty around sample estimates for population parameter. In particular, it helps evaluate **standard error** of an estimate.

Presume you have a

- sample $\mathbf{x} = (x_1, \dots, x_n)$ of *n* observations (e.g. *LSAT* scores),
- a sample statistic $\hat{\alpha}$ of interest (e.g. sample mean $\hat{\alpha}(\mathbf{x}) = \bar{\mathbf{x}}$)

Bootstrap is a universal resampling method used to evaluate uncertainty around sample estimates for population parameter. In particular, it helps evaluate **standard error** of an estimate.

Presume you have a

- sample $\mathbf{x} = (x_1, \dots, x_n)$ of n observations (e.g. LSAT scores),
- a sample statistic $\hat{\alpha}$ of interest (e.g. sample mean $\hat{\alpha}(\mathbf{x}) = \bar{\mathbf{x}}$)

MAIN IDEA of BOOTSTRAP (for standard error calculation):

1. Randomly resample n observations from \mathbf{x} with replacement (see next slide for illustration), to get $\mathbf{z}^* = (x_1^*, \dots, x_n^*)$,

Bootstrap is a universal resampling method used to evaluate uncertainty around sample estimates for population parameter. In particular, it helps evaluate **standard error** of an estimate.

Presume you have a

- sample $\mathbf{x} = (x_1, \dots, x_n)$ of n observations (e.g. LSAT scores),
- a sample statistic $\hat{\alpha}$ of interest (e.g. sample mean $\hat{\alpha}(\mathbf{x}) = \bar{\mathbf{x}}$)

MAIN IDEA of BOOTSTRAP (for standard error calculation):

- 1. Randomly resample n observations from \mathbf{x} with replacement (see next slide for illustration), to get $\mathbf{z}^* = (x_1^*, \dots, x_n^*)$,
- 2. Calculate and **record** value $\hat{\alpha}(\mathbf{z}^*) \equiv \hat{\alpha}^*$.

Bootstrap is a universal resampling method used to evaluate uncertainty around sample estimates for population parameter. In particular, it helps evaluate **standard error** of an estimate.

Presume you have a

- sample $\mathbf{x} = (x_1, \dots, x_n)$ of *n* observations (e.g. *LSAT* scores),
- a sample statistic $\hat{\alpha}$ of interest (e.g. sample mean $\hat{\alpha}(\mathbf{x}) = \bar{\mathbf{x}}$)

MAIN IDEA of BOOTSTRAP (for standard error calculation):

- 1. Randomly resample n observations from \mathbf{x} with replacement (see next slide for illustration), to get $\mathbf{z}^* = (x_1^*, \dots, x_n^*)$,
- 2. Calculate and record value $\hat{\alpha}(\mathbf{z}^*) \equiv \hat{\alpha}^*$.
- 3. Repeat steps 1 & 2 a total of *B* times, to get a sample of values $\hat{\alpha}^{*,1}, \dots, \hat{\alpha}^{*,B}$, calculate **standard deviation** of that sample.

Bootstrap: Illustration.

Tree-based Models: Decision Trees.

We've covered the following tree-based models: decision trees, bagging, random forests.

Two types of decision trees: regression trees and classification trees.

Tree-based Models: Decision Trees.

We've covered the following tree-based models: decision trees, bagging, random forests.

Two types of decision trees: regression trees and classification trees.

Example. For *Hitters* data on baseball hitters, we'd like to predict baseball player's *Salary* (qua**NT**.) based on

- Years # years he played in major leagues, and
- Hits # hits made in the previous year.

An example of a fitted **regression** tree looks as follows (plot on the right):

Regression Trees: Hitters example.

Example (cont'd):

- Predictor space (range of values for *Years* and *Hits* variables) got segmented into 3 regions (terminal nodes):
 - $R_1 = (Years < 4.5)$
 - $R_2 = (Years \ge 4.5) \& (Hits < 117.5),$
 - R₃ = (Years ≥ 4.5) & (Hits ≥ 117.5)

Regression Trees: Hitters example.

Example (cont'd):

- Predictor space (range of values for *Years* and *Hits* variables) got segmented into 3 regions (terminal nodes):
 - $R_1 = (Years < 4.5)$
 - $R_2 = (Years \ge 4.5) \& (Hits < 117.5),$
 - *R*₃ = (*Years* ≥ 4.5) & (*Hits* ≥ 117.5)
- − Salary prediction in region $R_i = (\text{mean Salary of all hitters} \in R_i)$:
 - Any hitter in R_1 (< 4.5 years of experience) is predicted to make $e^{5.11} \approx 165k$.
 - For hitters with over 4.5 years of experience:
 - ▶ if hitter $\in R_2$ (< 117.5 hits), he is projected to make $e^{6.00} \approx 403k$,
 - ▶ while for R_3 (≥ 117.5 hits) $e^{6.74} \approx 845k$

Back to *Hitters*: How do we segment?

Example (cont'd). How do we construct the regions R_1, \ldots, R_J ?

 Regions are built via splitting range of a variable. E.g. range of Years is split at value 4.5 into (Years < 4.5) and (Years ≥ 4.5).

Results are boxes, or high-dimensional rectangles, for the sake of

- simplicity,
- ease of interpretation

Recursive Binary Splitting: Simulated Example.

Example. Below is the output of recursive binary splitting applied to a simulated two-dimensional example with full predictor space $\{(X_1, X_2)\}$. It resulted into five regions, which can be seen on the left, and the corresponding tree is on the right.

Overfitting Issue: Tree Pruning.

Recursive binary splitting usually results into large trees that

- produce good predictions on training data, but
- tends to overfit and perform poorly on test data.

A smaller tree with fewer splits (\leftrightarrow fewer regions R_1, \dots, R_J) might have better test data performance and better interpretation.

Overfitting Issue: Tree Pruning.

Recursive binary splitting usually results into large trees that

- produce good predictions on training data, but
- tends to overfit and perform poorly on test data.

A smaller tree with fewer splits (\leftrightarrow fewer regions R_1, \dots, R_J) might have better test data performance and better interpretation.

Solution:

- 1. Grow a large tree T_0 , but then
- 2. Prune it back in order to obtain a subtree.

Pruning - selecting a subtree (of the large tree) which will yield the lowest **test** error rate.

For each subtree, test error is estimated via cross-validation).

Tree Pruning: Carseats example.

Example.

Results of pruning the classification tree for *Carseats* data (*Sales* = *High/Low*).


```
> cv.carseats$size
[1] 19 17 14 13 9 7 3 2 1
> cv.carseats$dev
[1] 55 55 53 52 50 56 69 65 80
```

Look for tree size corresponding to **smallest CV error**. Here, smallest CV error is 50 ⇒ best tree size is 9.

Classification Tree Example: Heart data.

Example. Heart data contains info on patients with chest pains, and we'd like to classify if a patient has a heart disease (HD) depending on multiple factors (Age, Sex, Chol). Below is the large classification tree:

Notice qualitative predictors and how they are being split.

Interpreting Splits and Node Summaries.

Example (cont'd).

1. How would you interpret this terminal node?

For observations with $Thal \in \{f, n\}$ we predict "No", for obs. with $Thal \notin \{f, n\}$ we predict "Yes".

2. How would you interpret summary of terminal node 17?

```
8) MaxHR < 159.5 19 16.570 No ( 0.84211 0.15789 )
```

Task: What's Chol > 229? What's number 10? What is 12.220? What is No? What's (0.70, 0.30)?

Answer: All obs. in this branch have *Chol* > 229; 10 - total of these observations; 12.220 - deviance (Gini index); "No" - node prediction; 70% of "No" and 30% of "Yes" observations.

Classification Tree Example: Heart data, node purity.

Example (cont'd). Surprising characteristic of the resulting tree: some splits yield two terminal nodes with **same** predicted value.

E.g., *Chol* < 229 in the bottom left results into a *No* prediction for **both** nodes. Why perform it?

Classification Tree Example: *Heart* data, node purity.

Example (cont'd). Surprising characteristic of the resulting tree: some splits yield two terminal nodes with **same** predicted value.

E.g., *Chol* < 229 in the bottom left results into a *No* prediction for **both** nodes. Why perform it? It leads to increased node purity:

```
8) MaxHR < 159.5 19 16.570 No ( 0.84211 0.15789 )
16) Chol < 229 9 0.000 No (1.00000 0.00000) *
17) Chol > 229 10 12.220 No ( 0.70000 0.30000 ) (1)
 • in the left node (Chol < 229), 9/9 obs. have a No response, = 12-22
```

- in the right node (*Chol* > 229), it's just 7/10.

Hence, the *Chol* < 229 split improves node purity

BUT

it does NOT reduce the classification error. That it means it is likely to be eliminated during tree pruning.

Node Interpretation: Another Example.

Example. From *Carseats* data in Lab #5:

```
1) root 400 541.500 No ( 0.59000 0.41000 )
2) ShelveLoc: Bad, Medium 315 390.600 No ( 0.68889 0.31111 )
...
17) CompPrice > 110.5 5 6.730 Yes ( 0.40000 0.60000 ) *
```

For each particular branch of the tree, *R* displays:

- the split branch criterion (e.g. Price < 92.5),
- the total number of observations,
- the deviance (Gini index),
- the overall prediction (Yes or No), and
- fraction of obs. that take on values Yes and No, respectively.

Task: Interpret the terminal node 17: what's *CompPrice* > 110.5? What's number 5? What is 6.730? What is *Yes*? What's (0.40, 0.60)?

Answer: All obs. in this branch have *CompPrice* > 110.5; 5 - total observations; 6.730 - deviance (Gini index); "Yes" - node prediction; 40% of "No" and 60% of "Yes" observations.

Decision Trees: Issues & Their Solution (Bagging).

Decision trees from previous lecture do suffer from two issues:

- They struggle with prediction accuracy.
- They suffer from high variance: different subsets of same data could yield drastically different results.

To tackle those issues, we defer to

- Bagging, and
- Random Forests.

Bagging, or bootstrap aggregation, is a general-purpose procedure for **reducing the variance** of a statistical learning method. Here, bootstrap is used differently compared to when we were evaluating standard errors of estimates:

- 1. Bootstrapped samples produce different large trees T_1, \ldots, T_B ,
- 2. which, in their turn, produce predictions Z_1, \ldots, Z_B for a given **x**,
- 3. which are then **averaged** to **reduce variance** of the prediction.

How do we apply bagging to decision trees?

- 1. Generate *B* bootstrapped training sets $\mathbf{x}_1^*, \dots, \mathbf{x}_B^*$.
- 2. Construct *B* large (not pruned) regression trees for those sets, obtain predictions z_1, \ldots, z_B from those trees.
- 3. Average the resulting predictions $\bar{\mathbf{z}} = \frac{1}{B} \sum_{b=1}^{B} z_b$ from those trees.

How do we apply bagging to decision trees?

- 1. Generate *B* bootstrapped training sets $\mathbf{x}_1^*, \dots, \mathbf{x}_B^*$.
- 2. Construct *B* large (not pruned) regression trees for those sets, obtain predictions z_1, \ldots, z_B from those trees.
- 3. Average the resulting predictions $\bar{\mathbf{z}} = \frac{1}{B} \sum_{b=1}^{B} z_b$ from those trees.

To produce a single prediction across all B trees via bagging,

• for regression trees - we take **average** of all B predictions (e.g. for *Hitters* example, our final log-Salary prediction for each player was an average of B=100 bootstrap predictions for that player).

How do we apply bagging to decision trees?

- 1. Generate *B* bootstrapped training sets $\mathbf{x}_1^*, \dots, \mathbf{x}_B^*$.
- 2. Construct *B* large (not pruned) regression trees for those sets, obtain predictions z_1, \ldots, z_B from those trees.
- 3. Average the resulting predictions $\bar{\mathbf{z}} = \frac{1}{B} \sum_{b=1}^{B} z_b$ from those trees.

To produce a single prediction across all B trees via bagging,

- for regression trees we take **average** of all B predictions (e.g. for *Hitters* example, our final log-Salary prediction for each player was an average of B = 100 bootstrap predictions for that player).
- for classification task (qualitative response)?

How do we apply bagging to decision trees?

- 1. Generate *B* bootstrapped training sets $\mathbf{x}_1^*, \dots, \mathbf{x}_B^*$.
- 2. Construct *B* large (not pruned) regression trees for those sets, obtain predictions z_1, \ldots, z_B from those trees.
- 3. Average the resulting predictions $\bar{\mathbf{z}} = \frac{1}{B} \sum_{b=1}^{B} z_b$ from those trees.

To produce a single prediction across all B trees via bagging,

- for regression trees we take **average** of all B predictions (e.g. for *Hitters* example, our final log-Salary prediction for each player was an average of B = 100 bootstrap predictions for that player).
- for classification task (qualitative response)? Take majority vote (the most frequently predicted class)

Variable Importance Measures.

While bagging improves prediction performance compared to single decision tree, it comes with a relative drawback: it is **difficult to interpret** the resulting model.

Variable Importance Measures.

While bagging improves prediction performance compared to single decision tree, it comes with a relative drawback: it is **difficult to interpret** the resulting model.

Partial solution: relative variable importance measures.

- If variable is important, the tree split over that variable causes the RSS (or Gini index for classification trees) to decrease the most.
- Hence, the measure of variable's importance
 ≡ total amount by which RSS (Gini) decreased after each split over that variable.
- Larger value \implies more importance to the variable.

The reason for us specifying option importance = T of randomForest() function was to be able to plot those importance measures as:

```
> varImpPlot(bag.model)
```

Variable Importance Measure: Heart example.

Example. Plot of variable importances for *Heart* data contains variable hierarchy w. r. t. mean decrease in Gini index (right).

Largest decreases were recorded for *Ca* variable, with *Oldpeak*, *RestBP* and *ChestPain* being in the Top-4.

JUST REMEMBER - THE LARGER THE VALUE (be it DecreaseGini or PurityIncrease, etc)

THE MORE IMPORTANT THE VARIABLE IS.

Random Forests.

Random forests add a small tweak to further improve on bagging:

- 1. Random forests also grow *B* large **un**-pruned trees, **BUT**
- 2. each time a tree split is considered, it picks a **random** subset of m ($\approx \sqrt{p}$) predictors from the full set of p predictors.

Random Forests.

Random forests add a small tweak to further improve on bagging:

- 1. Random forests also grow *B* large **un**-pruned trees, **BUT**
- 2. each time a tree split is considered, it picks a **random** subset of m ($\approx \sqrt{p}$) predictors from the full set of p predictors.

That tweak leads to

- 1. Decorrelating the bagged trees (why?),
 - Less of a chance to have same variable dominating each bagged tree (which would've led to high correlation between estimates),

Random Forests.

Random forests add a small tweak to further improve on bagging:

- 1. Random forests also grow *B* large **un**-pruned trees, **BUT**
- 2. each time a tree split is considered, it picks a **random** subset of m ($\approx \sqrt{p}$) predictors from the full set of p predictors.

That tweak leads to

- 1. Decorrelating the bagged trees (why?),
 - Less of a chance to have same variable dominating each bagged tree (which would've led to high correlation between estimates),
- 2. hence stabilizing the variance of the estimate

In general, we would expect:

- Test error for random forest to be smaller than for bagging, while
- both random forest & bagging test errors should be smaller than those for a single decision tree.

Mathematical Model of a (Linear) Neuron.

Similar to the biological neuron structure, ANNs define the neuron as a:

"Central processing unit that performs a mathematical operation to generate output from a set of inputs."

Mathematical Model of a (Linear) Neuron.

Similar to the biological neuron structure, ANNs define the neuron as a:

"Central processing unit that performs a **mathematical operation** to generate **output** from a set of **inputs**."

For a linear neuron, mathematical model would look as follows:

Mathematical model

Example

Assume we have a linear neuron with

- inputs x₁, x₂, x₃, x₄
- weights $w_1 = 0.7$, $w_2 = -0.5$, $w_3 = -0.1$, $w_4 = 0.5$
- for bias node, b = 0.3.

Draw the corresponding neuron structure. Calculate the output of the previous linear neuron for $x_1 = 3$, $x_2 = 7$, $x_3 = -3$, and $x_4 = 10$.

$$= 4.3$$

$$+ (-0.1)(-3) + 0.5(10)$$

$$= 4.3$$

Training ANN: Minimizing the Error.

Likewise for the Linear Neuron Model, in order to obtain optimal values b, w_1, \ldots, w_n that minimize (??), we **could** analytically solve:

Training ANN: Minimizing the Error.

Likewise for the Linear Neuron Model, in order to obtain optimal values b, w_1, \ldots, w_p that minimize (??), we **could** analytically solve:

$$\implies \hat{\mathbf{w}} = (\hat{b}, \hat{w}_1, \dots, \hat{w}_p) = \underset{b, w_1, \dots, w_p}{\operatorname{argmin}} \sum_{i=1}^n [y_i - (b + \sum_{j=1}^p w_j x_{j,i})]^2$$

Gradient Descent

That's where such numerical optimization technique as **gradient descent** comes in extremely handy.

For neural networks, the gradient descent approach is used when iterating the **updates** of weights and biases.

Global cost function in our case is the squared prediction error,

$$\frac{1}{2}(\hat{y}-y)^2$$
, or $\frac{1}{2}\sum_{i=1}^n(\hat{y}_i-y_i)^2$

which we are trying to minimize.