Landmarks Detection by Applying Deep Networks

Van-Linh LE^{1,3}, Marie BEURTON-AIMAR¹, Akka ZEMMARI¹, Nicolas PARISEY²

linhlv@dlu.edu.vn/van-linh.le@labri.fr, beurton@labri.fr
akka.zemmari@labri.fr, nicolas.parisey@inra.fr

¹LaBRI-CNRS 5800, Bordeaux University, France ²IGEPP, INRA 1349 Rennes, France ³ITDLU, Dalat University, Vietnam

MAPR Conference

Ho Chi Minh City, 5-6 April, 2018

Context

Morphometry analysis

- Used to study the complex interaction between the evolution of insect and environmental factors.
- Characterize the common information of biological shape, such as, shape, sizes, or landmarks,....

Landmark

- A kind of point of interest
- ► A specific point defined by biologist. For example, intersection of viens on fly wing, the tip of beetle's mandible,...

Dataset

- Images have been taken from 293 beetles, seperate into 5 parts (images),
- Format: 2D in RGB color.
- ► Focus on **pronotum** images.

(a) Left mandible

(b) Right mandible

(c) Body

(d) Head

Problems

With segmentable images:1

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Problems

With segmentable images:1

With un-segmentable images:

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Problems

With segmentable images:1

With un-segmentable images:

How to predict the landmarks coordinates?

¹Van-Linh Le, Marie Beurton-Aimar, Adrien Krähenbühl, and Nicolas Parisey. "MAELab: a framework to automatize landmark estimation." WSCG 2017.

Content

Deep learning and Convolutional Neural Networks

Deep learning Convolutional neural networks (CNNs)

Proposed method

Network architectures Data augmentation Training

Experiments

Conclusion

Deep learning

Definition

- A class of machine learning,
- Use a cascade of multiple layers for feature extraction and transformation,
- Learn multiple levels of representation in supervised or unsupervised.

Deep learning

Definition

- A class of machine learning,
- Use a cascade of multiple layers for feature extraction and transformation,
- Learn multiple levels of representation in supervised or unsupervised.

Applications

- Computer vision (image recognition and classification)
- Speech recognition
- Question answering [], language translation[]

CNNs

- Consists an input, an output and multiple hidden layers
- ► Arranges the data in 3 dimensions: width, height and depth
- Classical layers: convolutional layers (CONV), pooling layers (POOLING), dropout layers (DROPOUT), full-connected layers (FC), . . .

Figure: An example of CNN

The first model includes:

- An gray-scale input,
- 3 CNN layers,
- 3 POOLING layers,
- ▶ 3 FC layers.

Problems:

- Output is not good enough,
- Overfitting.

The second model:

- Has the same architecture with the first one,
- Modify the output of FC layers,
- Result is not improved.

The third model includes:

- An gray-scale input,
- 3 CNN layers,
- ▶ 3 POOLING layers,
- 4 DROPOUT layers,
- ▶ 3 FC layers.

Proposed method Data augmentation

Dataset: 293 pronotum images in RGB format.

Proposed method Data augmentation

Augmentation methods:

Increase the value of each channel,

Proposed method Data augmentation

Augmentation methods:

► Split the channels.

Proposed method

Data augmentation

Dataset: 293 pronotum images in RGB format. Augmentation methods:

- Increase the value of each channel,
- ▶ Split the channels.

Total: $293 \times 7 = 2051$ images

- ▶ In Feather theme, the title page frame and the last frame have the Feather image as the background image.
- ► The Feather background image can be produced to any frame by wrating on the begining at the choosen frame the following

```
{\1bg
\begin{frame}[<options>]{Frame Title}{Frame Subtitle}
...
\end{frame}}
```


- ▶ In Feather theme, the title page frame and the last frame have the Feather image as the background image.
- ► The Feather background image can be produced to any frame by wrating on the begining at the choosen frame the following

```
{\1bg
\begin{frame}[<options>]{Frame Title}{Frame Subtitle}
...
\end{frame}}
```


- ▶ In Feather theme, the title page frame and the last frame have the Feather image as the background image.
- ► The Feather background image can be produced to any frame by wrating on the begining at the choosen frame the following

```
{\1bg
\begin{frame}[<options>]{Frame Title}{Frame Subtitle}
...
\end{frame}}
```


- ▶ In Feather theme, the title page frame and the last frame have the Feather image as the background image.
- ► The Feather background image can be produced to any frame by wrating on the begining at the choosen frame the following

```
{\1bg
\begin{frame}[<options>]{Frame Title}{Frame Subtitle}
...
\end{frame}}
```

