22.46 Procesamiento Adaptativo de Señales Aleatorias

Trabajo Práctico 4

Procesamiento de arreglos

En este trabajo deberán analizar señales espaciales.

La grabación mtms-arrC1A.wav (de la *CMU Microphone Array Database*) fue realizada con un arreglo de 15 micrófonos, ubicados según el siguiente esquema:

Los elementos 3, 4, 5, 6, 7, 8, 9, 10 y 11 forman un sub-arreglo con un espaciamiento de 4 cm entre elementos.

Los elementos 1, 2, 3, 5, 7, 9, 11, 12 y 13 forman un sub-arreglo con un espaciamiento de 8 cm entre elementos.

Los elementos 0, 1, 3, 7, 11, 13 y 14 forman un sub-arreglo con un espaciamiento de 16 cm entre elementos.

La grabación involucra un locutor que habla siempre desde cierta dirección, una radio AM ubicada en otra dirección, y varios coolers desde múltiples direcciones. Fue realizada en una habitación con reverberancia no despreciable.

- 1. Representen el espectrograma de frecuencia espacial de la grabación para la frecuencia portadora $F_c = 2000$ Hz. ¿Qué sub-arreglo de sensores es óptimo para este caso? ¿Qué ancho de banda B para la señal demodulada es óptimo? ¿Qué señales espaciales observan? Justifiquen sus decisiones y observaciones.
 - Consejos para Python: usen np.take (x,indices) para formar sub-arreglos; usen np.swapaxes (x,0,1) para intercambiar los ejes de canales y muestras; multipliquen por np.exp(2j*np.pi*Fc/Fs*np.arange(N)) para demodular, y filtren la señal compleja resultante con un pasa-bajos apropiado.
- 2. La señal deseada es la voz del locutor; la interferencia, la radio AM, los coolers y la reverberancia. Seleccionen una zona de interferencia+ruido y estimen el beamformer óptimo SMI. Representen el patrón beam. Saquen conclusiones.

3.	Punto opcional, para osados (les permite sacar más de 10). Utilicen la FFT con ventaneo Hamming con overlap del 50% para demodular la señal temporal en bandas de frecuencia angosta. Procesen cada banda con beamformers óptimos para minimizar la interferencia+ruido y enfatizar la señal deseada.