이 휴의 압밀

# 7.1 개설

- 흙은 구조물하중이나 성토하중을 받으면 체적이 감소하면서 압축이 발생.
- 흙 입자와 물은 하중에 대한 체적의 감소가 극히 작아 비압축성으로 볼 수 있어, 압축은 간극을 차지하고 있는 공기의 압축이나 간극수(pore water)가 빠져나가면서 발생.
- 지표면에 하중을 받아 발생하는 수직변형을 침하(settlement).
- 침하는 세 가지 성분

 $S_t = S_i + S_c + S_s \tag{7.1}$ 

 $S_t$ : 전체 침하(total settlement),  $S_i$ : 즉시 침하,  $S_c$ : 1차압밀침하,  $S_s$ : 2차압밀침하.

- 즉시침하(immediate settlement): 하중을 받은 즉시 발생하는 침하.

   투수계수가 큰 사질토 등 조립토에서 발생.

   즉시침하는 탄성침하(elastic settlement)라고도 하며, 탄성론으로 부터 유도한 공식을 이용하여 침하량 계산.
- 1차압밀침하(primary consolidation settlement) : 포화된 흙에서 간극수가 흘러

   나오면서 오랜 시간에 걸쳐 흙이 압축되며 나타나는 침하.

   투수계수가 작은 점성토에서 발생하며 시간 의존적인 침하.

 • 2차압밀침하(secondary consolidation settlement) : 과잉간국수업 소산 이후 지속작용 하중에 의하여 발생하는 침하.

 경년효과(aging) 등으로 인한 흙 구조의 소성변화에 의하여 발생.

 해안가에 대단위의 면적을 조성하기 위하여 사용하는 준설토(dredged soil)나유기질 흙(organic soil)에서 많이 발생.

 점토의 경우 즉시침하량은 수mm~수cm, 압밀침하량은 수m 이상으로 발생.



# 7.2 압밀 개념모델

- • 과잉간극수압(excessive pore water pressure)
   포화되어 있는 흙에 하중이 가해

   계 그 하중에 의해 발생한 간극수압
   흙의 내부에 과잉간극수압이 발생하면 이를 해소

   하기 위하여 간극수압이 높은 지점으로부터 낮은 지점으로 물이 빠져나가게 되는데 점

   토의 경우 투수계수가 낮아 오랜 시간이 소요.
- \* 압밀(consolidation)
   : 포화된 간극으로부터 오렌 시간 동안 물이 흘러나오면서 흙이 천천히 압축되는 현상.
- Terzaghi의 스프링 용기 모델
  - Terzaghi는 얇은 판에 작은 구멍을 뚫고 스프링을 달아 상부에서 하중을 가함.
- 얇은 판 하부의 스프링이 있는 공간은 물로 포화되어 있으며 스프링은 흙을, 물은 간극수를 모사.
- 판과 판 사이에는 마노메터를 달아 각 판 사이의 과잉간극수압 측정.



호기에 판자의 구멍을 모두 막은 상태에서 용기 상단에 하중( $\Delta \sigma$ )을 가하면 스프링은 압축되지 않고 물이 모든 하중을 받아 초기과잉간극수앱( $u_o$ )은 다음과 같다.

$$u_o = \Delta \sigma = \gamma_w h \tag{7.2}$$

h : 초기 마노메터에 나타난 압력수두 높이,  $\gamma_w$  : 물의 단위중량.

## ■ Kelvin 모델

- 포화된 점토의 시간의존적인 변형은 탄성 스프 링과 완충기(dashpot)를 병렬로 연결한 Kelvin모형 으로도 설명할 수 있다. 여기서 완충기는 포화된 흙속의 물을, 스프링은 흙입자를 나타낸다.



#### 스프링과 완충기의 응력-변형률 관계 다

스프링 : 
$$\sigma = k \epsilon$$
 (7.1)

완충기 : 
$$\sigma = \eta \frac{d\epsilon}{dt}$$
 (7.2)

 $\sigma$  = 응력,  $\epsilon$  = 변형률, k = 스프링 상수  $\eta$  = 완충기 상수, t = 시간

## 이 모델에 가해진 응력 $\sigma_o$ 에 대한 점탄성 거동은 다음 식과 같다.

$$\sigma_o = k \; \epsilon + \eta \frac{d\epsilon}{dt} \tag{7.3}$$

## t=0일 때 $\sigma_a$ 가 작용하고, 임의의 시간 t에서 미분방정식은

$$\epsilon = \frac{\sigma_o}{k} \left( 1 - e^{-(k/\eta)t} \right) \tag{7.5}$$

임의 시간 t에서 스프링과 완충기가 분담하는 응력 :

스프링 : 
$$\sigma_s = k \epsilon = \sigma_o (1 - e^{-(k/\eta)t})$$
 (7.6)

완충기 
$$\sigma_d = \eta \frac{d\epsilon}{dt} = \sigma_o e^{-(k/\eta)t}$$
 (7.7)

- 응력 📆의 시간에 따른 스프링과 완충기가 분담변화

t = 0에서 전응력은 완충기가 모두 부담하지만,

시간이 지나면서 완충기가 부담하는 하중은 감소하고 스프링이 부담하는 하중이 증가하여,

궁극적으로는 모든 하중을 스프링에 부담하게 된다.





# 7.3 Terzaghi의 1차원압밀

# 7.3.1 1차원압밀방정식의 유도

Terzaghi(1943)의 <mark>압밀이론</mark> 가정:

- (1) 흙은 균질(homogeneous)하고 완전히 포화(saturated)되어 있다.
- (2) 흙입자와 물의 압축성은 무시할 만하다.
- (3) 흙입자 사이의 물의 이동은 Darcy 법칙을 만족하며 압밀기간 동안 투수계수는 일정하다.
  - (4) 간극수의 흐름은 1차원의 연직방향으로만 발생한다.
  - (5) 간국비(e)는 유효응력 $(\sigma')$ 에 반비례한다. 즉 압밀토층의 유효응력이 증가하면 간국비는 감소한다.



그림 7.3 압밀방정식의 유도를 위한 흙의 미소요소

이 요소에서 물의 유출입은 오직 깊이 길방향으로만 이루어진다. 길방향으로 물의 유출량에서 유입량을 빼면 이는 미소점토 부피 내에서 부피변화.

$$\left(v_z + \frac{\partial v_z}{\partial z}dz\right)dxdy - v_zdxdy = \frac{\partial V}{\partial t}$$
(7.3)

식의  $v_z dx dy$ 항을 제거하고 정리하면

$$\frac{\partial v_z}{\partial z} dz dx dy = \frac{\partial V}{\partial t} \tag{7.4}$$

고이방향으로의 흐름에 대한 Darcy 법칙은 다음과 같이 표현된다.

$$v_z = ki = k \frac{\partial h}{\partial z} = \frac{k}{\gamma_w} \frac{\partial u}{\partial z}$$
 (7.5)

식 7.5를 식 7.4에 대입하여 정리하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{dx dy dz} \frac{\partial V}{\partial t}$$
 (7.6)

흙입자는 비압축성이므로 흙의 부피변화율은 간극부피변화율과 같다. 따라서

$$\frac{\partial V}{\partial t} = \frac{\partial V_V}{\partial t} = V_s \frac{\partial e}{\partial t} 
= \frac{V}{1+e} \frac{\partial e}{\partial t} = \frac{dxdydz}{1+e} \frac{\partial e}{\partial t}$$
(7.7)

싀 7.7을 싀 7.6에 대입하면 싀 7.8과 같다.

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{1}{1+e} \frac{\partial e}{\partial t} \tag{7.8}$$

가정 5로부터  $\partial e = -a_n \partial \sigma'$ 이며  $a_n$ 는 압축계수(coefficient of compressibility)이다(그림 7.9a 참조). 이를 식 7.8에 적용하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{-a_v}{1+e} \frac{\partial \sigma'}{\partial t} \tag{7.9}$$

## $\sigma' = \sigma - u$ (유효응력법칙)을 이용하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{-a_v}{1+e} \frac{\partial (\sigma - u)}{\partial t} \tag{7.10}$$

## 여기서 전응력 교은 시간변화의 함수가 아니므로 제거하면

$$\frac{k}{\gamma_w} \frac{\partial^2 u}{\partial z^2} = \frac{a_v}{1+e} \frac{\partial u}{\partial t} = m_v \frac{\partial u}{\partial t}$$
(7.11)

 $m_v = rac{a_v}{1+e_o}$ ,  $m_v$ 는 체적압축계수(coefficient of volumetric compressibility).

상수 
$$k, m_v, \gamma_w$$
를  $C_v (=\frac{k}{m_v \gamma_w})$ 로 묶어 재정리하면  $1$ 차압밀의 기본 미분방정식 :

$$\frac{\partial u}{\partial t} = \frac{k}{m_v \gamma_w} \frac{\partial^2 u}{\partial z^2} \tag{7.12}$$

$$\frac{\partial u}{\partial t} = C_v \frac{\partial^2 u}{\partial z^2} \tag{7.13}$$

 $C_v(=rac{k}{m_v\gamma_w})$  : 압밀계수(coefficient of consolidation). 그 차원은  $[L^2T^{-1}]$ 

투수계수, 
$$k = C_v m_v \gamma_w$$
 (7.14)



# 7.3.2 1차원압밀방정식의 해

$$\frac{\partial u}{\partial t} = C_v \frac{\partial^2 u}{\partial z^2} :$$

 간극수압 u : 시간 t
 의 1차도함수, 깊이 ₂
 의 2차도함수

 두께가 2H인 얇은 점토층이 모래층 사이에 끼어 있고,

 간극수압의 분포는 깊이에 대하여 일정한 경우(그림 7.4a)의 해 :

- H는 점토층의 두께가 아닌 배수거리.
- 점토층 상하 양면에 모래층이 있어서 물이 양쪽으로 배수되는 양면배수의 경우

(그림 (-17(a))에는 점토층 두께  $(H_a)$ 의 (1/2이 배수거리이고(즉  $H=\frac{H_o}{2})$ ,

 - 점토층
 한쪽에만
 모래층이
 있어서
 물이
 한쪽으로만
 배수되는
 일면배수의
 경우

 (그림
 7-17(b))에는
 점토층
 두께가
 배수거리가
 된다(즉
  $H=H_o$ ).



그림 7.4 압밀되는 점토의 경계조건과 배수거리

$$u = \sum_{m=0}^{\infty} \frac{2u_i}{M} sin(\frac{Mz}{H}) e^{-M^2T}$$
(7.17)

$$M = \frac{(2m+1)\pi}{2}$$
이며  $m$ 은 정수,  $T$ 는 시간계수(time factor),  $H =$ 배수거리(distance of drainage)이며,

 $E = \frac{1}{2} =$ 

시간계수 T는 무차원(dimensionless) 계수.

$$T = \frac{C_v t}{H^2} \tag{7.18}$$

#### t : 압밀소요시간.

압밀소요시간 t는 압밀층 두께의 제곱에 비례.

## 7.3.3 압밀도

$$u=\sum_{m=0}^{\infty}rac{2\,u_i}{M}sin(rac{Mz}{H})\,\,e^{-\,M^2T}$$
 : 임의 시간  $t$ 에 임의 깊이  $z$ 에서의 과잉간극수압의 크기.

- 압밀도(degree of consolidation) : 과잉간극수압이 감소한 비율 또는 그 결과 압밀침하가 일어 난 비율. 임의 시간에 임의 깊이에서의 압밀도  $U_z$  :

$$U_z = \frac{\text{소실된 과잉간극수압}}{\text{초기 과잉간극수압}} = \frac{u_i - u}{u_i} = 1 - \frac{u}{u_i}$$
 (7.19)

여기서,  $u_i = |$ 초기 과잉간극수압

u = |남아 있는 과잉간극수압

식 (7.17)을 식 (7.19)에 대입하면 압밀도 U,는 다음 식과 같이 된다.

$$U_z = 1 - \sum_{m=0}^{m=\infty} \frac{2}{M} \sin \frac{Mz}{H} e^{-M^2T}$$
 (7.20)

- 양면배수 조건의 점토층에서의 압밀도  $U_z$ 를 구하기 위하여 식 (7.20)을 직접 사용하는 것은 매우 복잡하므로, 이 식을 도표화한 그림 7.5 사용.
- 그림에서 z는 점토층 상부로부터의 거리.
- 점토층 상부에만 모래층이 있는 일면배수의 경우에는 그림 7.5의 상반부 사용.
- 점토층 하부에만 모래층이 있는 일면배수의 경우에는 그림 7.5의 하반부 사용.



그림 7.5 깊이에 따른 압밀도, U와 시간계수, T사이의 관계

#### 예제 7.1

다음 그림에 보인 바와 같은 지표면에 50kWm²의 등분포하중을 받는 지반이 있다. 지표면으로부터 4m 하부

에 두께 4m의 점토층이 존재한다고 <mark>할 때</mark> 다음에 답하시오.

1) 하중작용 1년 후 시간계수와 깊이 -5m, -6m, -7m에서의 압밀도를 계산하여라.

2) 1) 번과 같은 조건에서 과잉간극수압을 계산하여라.

3) 1), 2)번과 같은 조건에서 유효연직응력을 계산하고 그 분포를 깊이에 대하여 도시하여라.



그림 7.6 예제 7.1

#### 풀 이

1) 그림의 점토층의 압밀배수조건은 양면배수이므로 점토층의 배수거리 H=4/2=2m이다. 하중재하 1년 후의 시간계수는 실 7.18로부터

$$T = \frac{C_v t}{H^2} = \frac{5 \times 10^{-4} \times 3600 \times 24 \times 365}{200^2} = 0.39$$

각 깊이에 대응하는 T=0.39에 대한 압밀도를 그림 7.5에서 찾으면

$$z=4 \text{m}$$
  $z/H=0.0$   $U_z=100\%$   
 $z=5 \text{m}$   $z/H=0.5$   $U_z=64\%$   
 $z=6 \text{m}$   $z/H=1.0$   $U_z=51\%$   
 $z=7 \text{m}$   $z/H=1.5$   $U_z=64\%$ 

2) 과잉간국수압을 계산하기 위한 초기과잉간국수압은  $u_o = 50 \, \mathrm{kN/m^2o}$ 다.  $4 \, | 7.16 - 2 \, \mathrm{FH}$ ,

$$U_z = 1 - \frac{u}{u_i}$$
,  $\frac{u}{u_i} = 1 - U_z$ ,  $u = u_i (1 - U_z)$ 

# $u_z = u_o(1-U_z)$ 로 <mark>수정하여 각 깊이별</mark> 과잉간극수압을 계산한다.

## 3) 유효응력은 초기유효응력을 계산한 후 간극수압이 소산되어 추가되는 유효응력을 계산한다.

경계면 z=-4m, -8m에서의 초기유효응력은

$$z = -4 \text{m},$$
  $\sigma'_{z=4m} = \gamma'_{sand} z = 8 \times 4 = 32 \text{kNm}^2$   $z = -8 \text{m},$   $\sigma'_{z=8m} = \sigma'_{z=4m} + \gamma'_{day} z = 32 + 7 \times 4 = 60 \text{kN/m}^2$ 

#### 하중재해 1년 후의 유효응력 = 초기유효응력+추가유효응력이므로

$$z = 5 \text{m} \qquad z/H = 0.5 \qquad \sigma'_{z=5m} = \underbrace{(32 + 7(=7*1)) + (50 - 18)}_{=39 + 32 = 61 \text{kV/m}^2}$$

$$z = 6 \text{m} \qquad z/H = 1.0 \qquad \sigma'_{z=6m} = \underbrace{(32 + 14(=7*2)) + (50 - 24.5)}_{=4.6 + 2.55 = 71.5 \text{kV/m}^2}$$

$$z = 7 \text{m} \qquad z/H = 1.5 \qquad \sigma'_{z=7m} = \underbrace{(32 + 21(=7*3)) + (50 - 18)}_{=53 + 32 = 85 \text{kV/m}^2}$$

## 경계면인 z=-4m -8m에서의 유효응력은

초기유효응력 1), 2)에 추가유효응력이 된 상재하중 50kN/m²을 더하면, 각각 (32+50) = 82kN/m² (60+50) = 110kN/m²

## 7.3.4 평균압밀도

그림 7.5는 어느 시간 t에서 임의 지층 깊이 ②에서 <mark>과잉간극수압을</mark> 나타냄.

- 점토층 전체에 대한 평균압밀도(average degree of consolidation  $\overline{U}$ ):

$$\overline{U} = \frac{U_i - U}{U_i} = 1 - \frac{U}{U_i} = 1 - \frac{\int_0^{2H} u dz}{\int_0^{2H} u_o dz}$$
(7.21)

U 점토층 전체 소실된 과잉간극수압의 합,  $U_i$  : 점토층 전체 초기과잉간극수압의 합.

$$\overline{U} = 1 - \sum_{m=0}^{\infty} \frac{2}{M} e^{-M^2 T}$$
 (7.22)

## 시간계수와 평균압밀도와의 관계 :



그림 7.7 평균압밀도 <mark>77</mark>와 시간계수 **7**와의 관계

압밀도  $\overline{U}$ =53%에 해당하는 시간계수는 0.2이므로,

이를 기준으로 두 식의 사용 여부를 결정할 수도 있다.

(7.23b)

(7.23a)

평균압밀도는 최종침하량을 기준으로 하여 다음 식과 같이 구할 수도 있다.

$$\overline{U} = \frac{S_t}{S_c} \tag{7.24}$$

 $|S_{t}|$  : 임의 시간에서의 점토층 압밀침하량,

S : 최종시간 $(t=\infty)$ 에서 점토층 압밀침하량(전압밀침하량).

예제 7.2

T=0.6에서의 z/H=0.1, 0.5에서의 압밀도 U와 점토층 전체 평균압밀도 U를 구하여라.

풀 이

T=0.6에서의 z/H=0.1, 0.5에서의 압밀도는 그림 7.5로부터 구하면 다음과 같다. z/H=0.1  $U_{z=0.1H}$ =0.9 ; z/H= 0.5  $U_{z=0.5H}$ =0.8

T=0.6에서의 점토층 전체 평균압밀도는 그림 7.7로 부터 구하면  $\overline{U}$ =0.82이다.

예제 7.3

다음의 배수조건에 대하여 계산하여라.

- 1) 양면배수 시
- 2) 일면배수 시

#### 풀이

압밀도 50%, 90%에 해당하는 시간계수는 그림 7.7의 도표에 의하면 각각 *T*=0.197, 0.848이다.

1) 양면배수 시 : 합밀도 
$$50\%$$
  $t=\frac{T_{50}H^2}{C_v}=\frac{0.197\times 200^2}{0.002}=3,940,000\sec=45.6$ 일 합밀도  $90\%$   $t=\frac{T_{90}H^2}{C_v}=\frac{0.848\times 200^2}{0.002}=16,960,000\sec=196$ 일

2) 일면배수 시 : 압밀도 
$$50\%$$
  $t = \frac{T_{50}H^2}{C_v} = \frac{0.197 \times 400^2}{0.002} = 15,760,000 \sec = 182.4$ 일

일 일도 90% 
$$t = \frac{T_{90}H^2}{C_v} = \frac{0.848 \times 400^2}{0.002} = 67,840,000 \sec = 784 일$$

위의 관계로부터 압밀소요시간은 배수거리의 제곱에 비례함을 알 수 있다.

#### 예제 7.4

예제 7.1의 점토층에 대하여 1년 후 평균압밀도를 다음과 같이 계산하여라

- 1) 평균압밀도 도표 7.6 이용
- 2) 평균압밀도 계산 식 7.21a, 7.21b 이용

풀 이

- [1] 하중재하 1년 후의 시간계수 T=0.39이었으므로 이에 상응한 평균압밀도는 그림 7.7로부터  $\overline{U}=0.68$ 이다.
- 2) 시간계수 T=0.39에 대해서는 식 7.23b를 사용

$$T = 1.781 - 0.933 \log(100 - \overline{U}) = 0.39$$

 $100 - \overline{U} = 30.96\% \rightarrow \overline{U} = 69\%$ 

# 7.4 압밀시험

# 7.4.1 시험장치

- 압밀시험은 압밀시험기(consolidometer 또는 oedometer)를 이용.
- <u>압밀시험장치는</u> 직경 6cm, 높이 2cm의 Oedometer와 하중재하장치, 변위측정장치,
- 표준압밀시험의 순서
- (1) 초기하중 0.05kg/cm<sup>2</sup>을 24시간 재하하고, 시료의 압축량을 다이얼게이지로 측정.
- (2) 이후 처음 가한 하중의 2배(0.1kg/cm²)를 가하여 시간간격 15, 30초, 1, 2, 4, 8,

   15, 30분, 1, 2, 4, 8, 24시간 간격으로 압축량을 기록.
- (3) 하중을 [0.2, [0.4, [0.8, [1.6, [3.2, [6.4kg/cm²]로 2배씩 들려가며 각 단계마다 [24시

간씩 2) 항의 방법으로 재하하고 압축량을 기록.

 (4) 최종단계의 하중에 의한 압밀이 끝나면 6.4, 3.2, 1.6, 0.8, 0.05kg/cm²로 제하(unloading)하면서 각 변형량을 측정한다. 이후 하중을 다시 재재하(reloading)하면서 압축량을 측정.

(5) 시험 후 시료의 건조단위중량을 측정.

압밀시험 결과에 의한 가해지는 하중에 대한 점성토의 침하량, 각 하중별 압밀시간자 료로부터 간극비와 하중의 관계, 압밀계수와 하중의 관계, 압축지수 등을 알 수 있다.





## 7.4.2 간극비-압력곡선

간극비-압력 $(e - \log \sigma')$ 곡선을 정규그래프(regular graph)와 반대수지(semi-log graph)로 작성.

 - 이후
 cd-de(압력제하-재재하)
 부분은 과거에 받았던 압력을 다시 받을 때까지의

 완만한 경사의 곡선으로 재압축곡선(re-compression curve).

재압축곡선의 기울기 $(C_r)$ 는 압밀시험 초기에 가한 압력에 대한 간극비 곡선(ab)의 기울기와 매우 유사 함.

- 재압축곡선에 의하면 압밀곡선은 과거에 받았던 압력을 다시 받을 때까지는 곡선의 경사가 완만하게 유지되나 어떤 압력을 넘으면 그 경사가 급격히 변하는 것을 알 수 있는데(그림 7.9의 d, e, f 점) 이 경사변화의 경계가 되는 점 e의 압력을 선행압밀압력 (pre-consolidation pressure, ♂,)이라고 한다.



그림 7.9 간극비-압력곡선

#### 예제 7.5

불교란 점토의 압밀시험 결과 다음과 같은 값을 얻었다. 시험 전의 공시체 두께 H=2cm, 공시체의 노건조중 량  $W_s=37.7g$  공시체의 단면적 A=19.62cm 흙입자의 비중  $G_s=2.65$ 이었다.

| 재하(loading)               |                                |  |
|---------------------------|--------------------------------|--|
| $\sigma'(\text{kg/cm}^2)$ | 최대침하량 d (×10 <sup>-2</sup> mm) |  |
| 0                         | 0                              |  |
| 0.2                       | 18                             |  |
| 0.4                       | 45                             |  |
| 0.8                       | 81                             |  |
| 1.6                       | 126                            |  |
| 3.2                       | 247                            |  |
| 6.4                       | 405                            |  |

| 제하(unloading)             |                               |  |
|---------------------------|-------------------------------|--|
| $\sigma'(\text{kg/cm}^2)$ | 최대침하량 d(×10 <sup>-2</sup> mm) |  |
| 3.2                       | 400                           |  |
| 1.6                       | 394                           |  |
| 0.8                       | 375                           |  |
| 0.4                       | 366                           |  |
| 0.2                       | 344                           |  |
| 0                         | 292                           |  |
|                           |                               |  |

- [1]  $e \log \sigma$  곡선을 그리고 압축지수(C。)와 재압축지수(C.)를 계산하여라.
- 2)  $\sigma = 5.0 \text{kg/cm}^2$ 에서  $6.0 \text{kg/cm}^2$ 으로 유효응력증가를 받을 때 압밀계수  $a_v$ , 체적압축계수  $m_v$ 를 구하여라.

해)

$$\begin{array}{c} \boxed{1)} \ G_s = \frac{\gamma_s}{\gamma_w} = \frac{W_s}{V_s\gamma_w} \end{array} \vec{\Xi} \ddot{+} \vec{\boxminus} \ V_s = \frac{W_s}{G_s\gamma_w} = \frac{37.7}{2.65\times 1} = 14.23\,\mathrm{cm}^3 \\ \hline V = A\times H = 19.62\times 2 = 39.24\,\mathrm{cm}^3 \\ \hline V_v = V - V_s = 39.24 - 14.23 = 25.01\,\mathrm{cm}^3 \\ \hline \ \ddot{\Xi}$$
기간국비  $e_0 = \frac{V_v}{V_s} = \frac{25.01}{14.23} = 1.76 \\ \hline \ \ddot{\Xi}$ 하량,  $d = \frac{(e_o - e_1)H}{1 + e_0} \circ \Box \vec{\Xi}$ ,  $d(1 + e_o) = (e_o - e_1)H = e_o H - e_1 H \\ \hline e_1 H = e_o H - d(1 + e_o) \ \Box \ \ddot{\Xi} \ddot{\dashv} \ddot{\dashv} \ddot{\dashv} , e_1 = e_0 - \frac{d(1 + e_0)}{H} . \end{array}$ 

문제의 표에 침하량 d를 넣어가며 작성한 표와 그래프는 다음과 같다.

| σ (1 / 2)             | d     | е    | σ (1 / 2)             | d     | е    |
|-----------------------|-------|------|-----------------------|-------|------|
| (kg/cm <sup>2</sup> ) | (cm)  |      | (kg/cm <sup>2</sup> ) | (cm)  |      |
| 0                     | 0     | 1.76 | 3.2                   | 0.400 | 1.21 |
| 0.2                   | 0.018 | 1.73 | 1.6                   | 0.394 | 1.22 |
| 0.4                   | 0.045 | 1.70 | 0.8                   | 0.375 | 1.24 |
| 0.8                   | 0.081 | 1.65 | 0.4                   | 0.366 | 1.25 |
| 1.6                   | 0.126 | 1.58 | 0.2                   | 0.344 | 1.28 |
| 3.2                   | 0.247 | 1.42 |                       |       |      |
| 6.4                   | 0.405 | 1.20 |                       |       |      |



그림 7.10 예제 7.5 간극비-압력곡선

재하응력  $[1.6 \ kg/cm^2 \sim 3.2 \ kg/cm^2]$  구간에서 압축지수 $(C_c)$ 를 계산하면

$$Cc = -\frac{e_1 - e_2}{\log(\frac{\sigma'_1}{\sigma'_2})} = -\frac{1.58 - 1.42}{\log(\frac{1.8}{3.2})} = -0.16/(-0.30) = 0.53$$

제하응력  $3.2 \ kg/cm^2 \sim 0.8 kg/cm^2$  구간에서 재압축지수(C,)를 계산하면,

$$Cr = -\frac{e_{1}-e_{2}}{\log(\frac{\sigma'_{1}}{\sigma'_{2}})} = -\frac{1.21-1.24}{\log(\frac{3.2}{0.8})} = 0.03/0.602 = 0.05$$

 2) σ=5.0kg/cm²에서 e= 1.3 이고, σ=6.0kg/cm²에서 e = 1.22이다.

 식 7.8과 식 7.11을 참조하여 압축계수와 체적 압축계수를 계산하면

$$\begin{aligned} a_v &= -\frac{\partial e}{\partial \sigma'} = -(1.22 - 1.3)/1 = 0.08 \, cm^2/kg \\ m_v &= \frac{a_v}{1 + e_0} = 0.08/(1 + 1.76) = 0.03 \, cm^2/kg \end{aligned}$$

## 7.4.3 정규압밀점토와 과압밀점토

- 1) 과압밀비와 선행압밀압력의 결정
- 정규압밀점토(normally consolidated clay, N.C. clay) :
  점토가 퇴적된 후 지층이나 지하수위의 변화가 없었다면 임의 깊이 흙 요소에서의 유효연직응력(σ΄)은 그 깊이에서 채취된 시료의 압밀곡선으로부터 얻어진 선행압밀압력 (σ΄)과 동일하게 되며, 이와 같은 응력상태 (즉, σ΄) 때 있는 흙.
- 과압밀점토(overconsolidated clay, O.C. clay):
  지표층의 토층이 일부 제거되었거나 또는 지하수위가 저하되었다가 회복된 경우에는 임의 깊이 흙요소는 원래 퇴적된 당시의 압력이나 지하수가 최대로 저하될 당시의 유효 응력이 선행압밀압력이 된다. 이때는 선행압밀압력(ơ) 이 압밀시험이 수행된 현재의 유효연직응 력(ơ) 보다 크게 되는데 ơ, > ơ 인 경우 점토를 말 함.



③ 과압밀비(OCR: Over Consolidation Ratio)

$$OCR = \frac{P_c}{P_o}$$
 (1)

여기서,  $P_c$ : 선행압밀하중

P<sub>o</sub>: 유효상재하중(유효연직응력)

- ① OCR <1 : 압밀이 진행 중인 점토(그림에서 A점)
- OCR = 1 : 정규압밀점토(그림에서 B점)
- © OCR >1: 과압밀점토(그림에서 C점)
- 과압밀비(over consolidation ratio, OCR) : 유효연직압력 $(\sigma_o)$ 에 대한 선행압밀압력

 $(\sigma_c)$ 의 비, 토층의 응력이력(stress history)을 나타내는 토질정수이다.

$$OCR = \frac{\sigma_{c}'}{\sigma_{o}'} \tag{7.25}$$

OCR≈ 1이면 <mark>정규압밀점토,</mark> OCR>1이면 <mark>과압밀점토,</mark>

OCR<1이면 미압밀점토(underconsolidated clay)로 분류.

- 과압밀점토 : 현재 유효상재압보다 큰 압력으로 과거에 이미 압밀이 일어난 점토.
- 미압밀점토(underconsolidated clay) [ 지층의 형성된 연대가 오래되지 않거나 인공

적으로 최근에 조성되어 현재 압밀이 진행 중인 점토.

- 그림 7.9의 ab, cd, de는 과압밀점토, bc는 정규압밀점토 상태. 대부분의 흙은 정규압밀이내 과압밀상태의 특성을 가짐.
- 과압밀이 발생하는 원인 :

#### 표 7.1 과압밀의 원인

| 원인                     | ପା                                                   |
|------------------------|------------------------------------------------------|
| 전응력의 변화(지질학적 요인, 인공굴착) | 빙하의 퇴거, 토피하중이나 구조물 제거                                |
| 간극수압의 변화(지하수위 변화)      | 피압수압, 우물의 양수, 식생에 의한 증발산, 건조에<br>의한 증발산(desiccation) |
| 흙의 구조변화                | 2차압밀, 경년효과(aging)                                    |
| 환경의 변화                 | 온도, 염분농도, 흙이나 지하수의 pH 등                              |
| 화학적 변화                 | 고결물질(cementing agent)의 침전, 이온교환                      |

## Casagrande는 e - log p 곡선으로부터 선행압밀압력을 구하는 작도법 제안.

- 1) 육안으로 곡률이 가장 큰 점 P를 찾는다.
- 2) 수평선 PQ를 그린다.
- 3) P점에서 접선 PR을 그린다.
- 4) ∠QPR을 이등분하는 센 PS를 그린다.
- [5]  $[e-\log p]$  곡선의 직선부를 연장하여 [PS선과] 만나는 [A] T를 그린다.
- $oxed{6}$  점  $oxed{TM}$  해당하는  $oxed{R}$  요합력이 선행압밀압력  $oxed{p_c}$ 다.



## 2) 압축지수

그림 7.9b와 같은 압밀곡선에서 전행압밀압력을 초과한 직선부의 기울기인 압축지수(compression index)는 식 7.26과 같이 표시한다.

$$C_c = \frac{e_1 - e_2}{\log \sigma'_2 - \log \sigma'_1} = -\frac{\Delta e}{\log \frac{\sigma'_2}{\sigma'_1}}$$

$$(7.26)$$

여기서 
$$\Delta e = e_2 - e_1$$
이다.

- 일반 점토의 압축지수 : 0.2~0.9
- 예민점토 : 1을 초과하며, 유기질 점토나 이탄(peat, Pt)은 4 이상.
- 선행압밀 이전의 압밀곡선에 대한 기울기도 결정가능 : 흙이 하중을 받은 후 제거되었다 다시 재하된 경우의 기울기(cd, de와 유사하며, 재압축지수(recompression index,  $C_r$ ). 재압축지수  $C_r = (0.1~0.2)$   $C_c$

#### 표 7.2 자연토의 압축지수와 재압축지수(Das, 2006)

| <u>ठ</u> ं<br>हो       | 액성한계 | 소성한계 | 압축지수, $C_c$ | 재압축지수, $C_r$ |
|------------------------|------|------|-------------|--------------|
| Boston 푸른 점토           | 41   | 20   | 0.35        | 0.07         |
| Chicago 점토             | 60   | 20   | 0.40        | 0.07         |
| Ft. Gordon 점토, Georgia | 51   | 26   | 0.12        | _            |
| New Orleans 점토         | 80   | 25   | 0.30        | 0.05         |
| Montana 점토             | 60   | 28   | 0.21        | 0.05         |

- 압밀시험 : 하중재하(loading)시험에 1주일 이상소요,
   하중제하(unloading) 및

   재재하(reloading)를 포함하면 최소 2주일 이상 시험기간 필요.
- 간단한 흙의 기본물성시험만으로 압축지수를 추정할 수 있는 경험식.

## 표 7.3 압축지수 C<sub>e</sub>에 대한 상관식(Rendon-Herrero, 1980)

| 식                         | 적용지역                   | 참고문헌           |
|---------------------------|------------------------|----------------|
| $C_c = 0.007(LL - 7)$     | 재성형 점토                 | Skempton(1944) |
| $C_c = 0.0046(LL - 9)$    | 브라질 점토                 |                |
| $C_c = 0.009(LL - 10)$    | 무기질 흙, 예민비 > 4         |                |
| $C_c = 1.15(e_0 - 0.27)$  | 모든 점토                  | Nishida(1956)  |
| $C_c = 0.30 (e_0 - 0.27)$ | 무기질 흙 : 실트, 실트질 점토, 점토 | Hough(1957)    |
| $C_c = 0.0115w_N$         | 유기질 흙 : 토탄, 유기질 실트, 점토 |                |
| $C_c = 0.001 w_N$         | Chicago 점토             |                |
| $C_c = 0.75 (e_0 - 0.5)$  | 낮은 소성을 가진 점토           |                |
| $C_c = 0.208e_0 + 0.0083$ | Chicago 점토             |                |
| $C_c = 0.156e_0 + 0.0107$ | 모든 점토                  |                |

<sup>\*</sup>  $e_0$ =현장간극비,  $w_N$ =현장함수비, LL :액성한계

- 액성한계(LL)를 기준으로 Terzaghi & Peck(1967)이 제안한 압축지수 식:

교란 지료(disturbed sample) :  $C_c = 0.007 (LL - 10)$  (7.27)

불교란 시료(undisturbed sample) :  $C_c \boxminus 0.009(LL-10)$  (7.28)

## 7.4.4 시료교란의 영향

- 압밀시험은 현장특성을 잘 반영할 수있는 흐트러지지 않은 불교란시료(undisturbed sample)를 사용하는 것이 정확한 시험결과 산출에 좋다.
- 실제시료는 현장에서 채취하는 과정과 운반, 시험을 위해 트리밍(trimming)하는 과정 등 여러 경로에서 교란발생.
- 교란시료는 불교란 시료에 비하여 그래프의 경사가 완만한 곡선을 나타내고, 이 때 얻은 압축지수의 값은 작아진다. 즉 시료가 교란되면 교란될수록 그 기울기는 완만하 고, 불교란 시료에 가까울수록 그 기울기는 직선에 가까운 꺾임형태를 나타낸다.



그림 7.12 불교란시료와 교란시료의 압밀곡선의 비교

- 정규압밀점토의 압밀시험 결과는 그림 7-13의 곡선 ①과 같다. 이것을 수정압밀곡 선(원시압축곡선) 또는 처녀압축곡선(virgin compression curve)이라고 한다.
- 실험실에서 정규압밀점토의 교란시료에 대하여 압밀시험을 하면 곡선 ②와 같다.
- 시료를 재성형하여 압밀시험을 하면 하중제거압축곡선(하중제거시의 팽창곡선, 곡선 3)과 같은 형태를 보인다.





(a)정규압밀점토의 수정압밀곡선

(b) 과압밀점토의 수정압밀곡선

그림 7.13 현장압밀곡선의 추정(Schmertmann, 1953)





그림 7-11 정규압밀점토의 압밀특성

그림 7-12 과압밀점토의 압밀특성

#### ● Terzaghi와 Peck:

- 정규압밀점토의 원시압축곡선과 실내시험 곡선은 0.4e,(e, =시료의 현장 간극비)에 서 만나며, 그 점을 점 A라고 한다.
- 현재의 유효연직압력  $p_o$ 와  $e_o$ 를 나타내는 점을 B라고 하면, 점 A와 점 B를 연결한 선이 수정압밀곡선(원시압축곡선)이 된다.
- 과압밀점토에 대하여 현장상태에서 압밀시험을 하면, 그림 7-12의 곡선 1과 같다.
- 실험실에서 과압밀점토의 교란시료에 대하여 압밀시험을 하면 곡선 2와 같이 된다.
- 이 경우에는 점 B에서 팽창곡선 AC와 평행하게 직선을 그어,

선행압밀압력  $p_a$ 선과 만나는 점 D점과 A점을 연결한 선 abcd,  $e_0$  BDA)이 실제 압

밀곡선(원시압축곡선)이 된다.

# 7.4.5 압밀계수의 산출

- 점토층의 압밀도나 압밀소요시간 구득 : 압밀계수,  $C_{u}$  압밀계수를 구하는 방법 :  $logt법과 \sqrt{t}$ 법.

## 1) logt법

- 평균압밀도와 시간계수의 이론곡선  $(\overline{U} \log T)$ 의 직선부분과 그 곡선의 점근선과의 교점이 압밀도 100%.
- 실측곡선 중간부분의 직선과 마지막부분의 직선을 연결하여 교차하는 점 : 1차압밀100%,  $d_{100}$ .

Casagrande and Fadum (1940)은 logt법의 압밀계수를 결정법.



그림 7.14 logt법에 의한 시간-압축량곡선의 작도

(1) 압력 대 시료 변형량(다이얼게이지 변형량)을 반대수지에 작도.

[2]  $t_2 = 4t_1$  되는 두 점 A, B의 변형량의 차이  $\triangle$  를 A의 연직상부로 올려 C점 구함. C점에 대응하는 다이얼 게이지 량이 압축량  $\bigcirc$  인점.

 $d_{50} = \frac{d_s + d_{100}}{2}$  에 해당하는 압밀곡선상의 점을 E라 하면 ,

대응시간  $t_{50}$ 는 압밀이 50% 완료된 시간.

(5)  $\overline{U}=50\%$ 일 때 시간계수는 T=0.197이며, 압밀계수는 다음과 같다.

$$C_v = \frac{TH^2}{t} = \frac{0.197H^2}{t_{50}}$$

(7.27)

- 압밀도가 0인 점 as는 초기 다이알 게이지 눈금을 나타내는 점 as와 일치하지 않음. 이와 같은 차이는 흙속의 간극이 100% 포화되어 있지 않기 때문.
- 이러한 압축을 초기압축이라고 하며, as와 a100 사이의 압축을 1차압밀, 그 후의 압축을 2차압밀이라 함.

## (2) $\sqrt{t}$ 법

-  $\overline{U}-\sqrt{T}$  곡선의  $\overline{U}=60\%$ 까지 직선부 기울기의 1/1.15인 기울기. 그은 직선이 이론곡선과 만나는 점의 압밀도가 90%.



그림 7.15 **√t** 법에 의한 시간-압축량곡선의 작도

[1] 초기 직선부 AB로부터 기울기 = AB/1.15 가 되게 AC를 작도. AC와 곡선부 교점 D는  $d_{90}$ 이며 이에 상응한 x축은  $\sqrt{t_{90}}$ .

(2) 평균압밀도  $\overline{U} = 90\%$ 에 대한 시간계수 T = 0.848, 이 때 압밀계수는 다음과 같다.

$$C_v = \frac{0.848H^2}{t_{90}}$$

(7.28)

- (3) AD의 y축 투영값/0.9으로 d<sub>100</sub> 결정.

## 3) 압밀비

- 전체 침하량은 초기압축량, 1차압밀침하량, 2차압밀침하량을 합한 값. 전체 침하량에 대한 초기압축량, 1차압밀침하량, 2차압밀침하량의 비를

## 각각 초기압축비, 1차압밀비, 2차압밀비라고 하며, 다음 식과 같다.

조기압축비 
$$\eta_0 = \frac{d_0 - d_s}{d_0 - d_f}$$
 (7.31)

[기타일 및 
$$\eta_p = \frac{\mathrm{d_s} - \mathrm{d_{100}}}{\mathrm{d_0} - \mathrm{d_f}}$$
 (7.32)

1차압밀비(
$$\sqrt{t}$$
 방법)  $\eta_p = \frac{10}{9} \frac{d_s - d_{90}}{d_0 - d_t}$  (7.33)

2차압밀비 
$$\eta_s = 1 - (\eta_0 + \eta_p)$$
 (7.34)

#### 예제 7.6

#### 양면배수 압밀시험을 실시하여 하중증가 2~4kg/cm² 구간에서 다음과 같은 데이터를 얻었다.

| 시간(min) | 누적침하량(mm) | 시간(min) | 누적침하량(mm) |
|---------|-----------|---------|-----------|
| 0       | 0.0       | 15      | 1.25      |
| 1/4     | 0.34      | 30      | 1.65      |
| 1/2     | 0.38      | 60      | 1.96      |
| 1       | 0.44      | 120     | 2.11      |
| 2       | 0.58      | 240     | 2.23      |
| 4       | 0.75      | 480     | 2.25      |
| 8       | 0.89      | 1440    | 2.38      |

2.0kg/cm<sup>2</sup>의 하중으로 압밀완료 시 간극비는 1.43이고 4.0kg/cm<sup>2</sup> 하중으로 압밀완료 시 간극비는 1.08이 메이때의 시료의 두께는 1.41cm이었다.

- 1) logt법과 √t 법으로 시간-압축량곡선을 구하고 압밀계수를 구하라.
- 2) 압밀시험하중  $2\sim 4 {
  m kg/cm}^2$  구간에서 압축지수( $C_c$ ), 압축계수( $a_v$ ), 체적압축계수( $m_v$ ), 투수계수(k)의 값을 구하시오.
- [3] 합밀시험 결과로부터 logt법과 √t 법으로 각각 초기압축비, 1차압밀비, 2차압밀비를 구하시오

#### 풀 이

[1] 압력증가구간에서 시료두께의 평균값은 
$$1.41 + \frac{0.238}{2} = 1.53$$

시료의 배수거리는 
$$H = \frac{1.53}{2} = 0.76$$
cm

logt법에 의한 시간-압축량곡선은 그림 7.14에 도시하였다.

$$\boxed{\text{cityle} \ d_{50} = \frac{1}{2}(d_{100} - d_s) + d_s = \frac{1}{2}(2.02 - 0.23) + 0.23 = 1.13 \text{mm},}$$

$$d_{50} = \frac{d_s + d_{100}}{2} = \frac{0.23 + 2.02}{2} = 1.125mm$$

이에 상응한  $t_{50}=12 \text{min}$ 이다. 4 7.27 로부터

$$c_v = \frac{TH^2}{t_{50}} = \frac{0.197 \times 0.76^2}{12 \times 60} = 1.58 \times 10^{-4} \text{cm}^2/\text{sec}$$

 $\sqrt{t}$  법에 의한 시간—압축량곡선은 그림 7.15b에 도시하였다. 그림으로부터  $\sqrt{t_{90}}$  =7.2,  $t_{90}$  =51.84min이

#### 다. 식 7.28로부터

$$c_v = \frac{TH^2}{t_{90}} = \frac{0.848 \times 0.76^2}{51.84 \times 60} = 1.57 \times 10^{-4} \text{cm}^2/\text{sec}$$

#### 2) 압축지수 : 식 7.26으로부터

$$C_c = \frac{e_2 - e_1}{\log \sigma_2 / \log \sigma_1} = \frac{1.43 - 1.08}{\log_{10}(4/2)} = \frac{0.35}{0.30} = 1.17$$

압축계수 : 
$$a_v = -\frac{\partial e}{\partial \sigma'} = -\frac{1.08 - 1.43}{4 - 2} = 0.175 \text{cm}^2/\text{kg}$$

#### 체적압축계수 : 식 7.11로부터

$$m_v = \frac{a_v}{1 + e_o} = \frac{0.175}{1 + 1.43} = 0.072 \text{cm}^2/\text{kg}$$

#### 투수계수 : 식 7.14로부터

$$k = C_v m_v \gamma_w = 1.58 \times 10^{-4} \times 0.072 \times \frac{1}{1000} \times 1 = 1.14 \times 10^{-8} \text{cm/sec}$$
ੀਈ

## 3) logt법과 √t 법으로 각각에 대해 계산하면

## ① logt법

조기압축비 
$$\eta_0 = \frac{\mathrm{d_0} - \mathrm{d_s}}{\mathrm{d_0} - \mathrm{d_f}} = \frac{0 - 0.223}{0 - 2.4} = 0.096$$

[1차일발비(
$$\log t$$
방법)]  $\eta_p = \frac{\mathrm{d_s} - \mathrm{d_{100}}}{\mathrm{d_0} - \mathrm{d_f}} = \frac{0.23 - 2.02}{0 - 2.4} = 0.746$ 

$$2$$
차압밀비  $\eta_s = 1 - (\eta_0 + \eta_p) = 1 - (0.096 + 0.746) = 0.158$  이다.

# $2\sqrt{t}$ 법

조기압축비 
$$\eta_0 = \frac{\mathrm{d}_0 - \mathrm{d}_\mathrm{s}}{\mathrm{d}_0 - \mathrm{d}_\mathrm{f}} = \frac{0 - 0.2}{0 - 2.38} = 0.084$$

[차합밀비(
$$\sqrt{t}$$
 방법)]  $\eta_p = \frac{10}{9} \frac{\mathrm{d_s} - \mathrm{d_{90}}}{\mathrm{d_0} - \mathrm{d_f}} = \frac{10}{9} \frac{0.2 - 1.84}{0 - 2.38} = 0.69$ 

2차이민비 
$$\eta_s = 1 - (\eta_0 + \eta_p) = 1 - (0.084 + 0.69) = 0.226$$

#### 예제 7.7

어떤 현장의 점토에 대하여 양면배수조건에서 압밀시험을 실시한 결과 19mm 두께의 시료에 U=30%의 1차 압밀에 5분이 소요되었다. 현장에 점토의 두께가 15m라고 할 때 동일한 압밀이 발생하는 데 걸리는 시간을 다음 조건에 대하여 계산하여라.

- 1) 양면배수
- 2) 일면배수

#### 풀

압밀시험에서 배수거리는, 
$$H_{test} = \frac{19}{2}$$
 =9.5mm

1) 양면배수조건에서 현장토의 배수거리는  $H_f = \frac{15}{2}$  =7.5m : (211p) 식 7.18에 의하여 실험실시료와 현장 시료의 지간계수는 동일하므로

[2) 일면배수조건에서 현장토의 배수거리는  $H_f = 15$ m

$$t_f = \frac{(1500)^2 \times 5}{(0.95)^2 \times 60 \times 24 \times 365} = 23.72$$
년

 $t_f = \frac{(1500)^2 \times 5}{(0.95)^2 \times 60 \times 24 \times 365} = 23.72$ 년 따라서 일면배수조건의 압밀소요시간은 양면배수조건에 비해 4배의 소요시간이 더 필요하다.

# 7.5 2차압밀

= 2차압밀(secondary compression, secondary consolidation) : 과잉간국수압에 소산되면서 발생하는 1차 압밀의 완료 후 경년 효과(aging)와 점토입자 재배열(rearrangement) 등의 요인에 의하여 장기간에 걸쳐 일 어나는 압축현상. 2차압축계수  $C_{\alpha}$ :

$$C_{\alpha} = \frac{\Delta e}{\Delta \log t} = \frac{\Delta e}{\log t_2 - \log t_1} = \frac{\Delta e}{\log \frac{t_2}{t_1}}$$

$$(7.29)$$

- 2차압축침하량  $S_s$  :

$$S_s = \frac{\Delta e}{1 + e_p} H = \frac{C_\alpha}{1 + e_p} H \log \frac{t_2}{t_1}$$
 (7.30)

여기서,  $e_p$  : 1차압밀 종료 후의 간극비,  $t_1$  : 1차압밀 또는 시공 종료시간,  $t_2$  : 구조물의 수명, H : 압밀층의 두께.



그림 7.16 2차압밀과 2차압밀계수의 결정

- 2차압밀의 산정은 어렵다. 지반침하계측 분석 후 최종침하량을 추정하는 기법사용 예측방법 ⇒ 비교적 신뢰.

- 2차압축량의 크기 : 현장함수비, 압축지수, 소성지수, 유기질 함유량 등에 변화. Mesri(1973)는 자연함수비와 2차압축계수의 관계도시.
- 유기질 점토와 압축성이 큰 점토(예 : 준설점토) : 2차압축침하가 케 구조물 설계 및 시공 시 지반개량, 말뚝 등 깊은기초 사용.



그림 7.17 2차압밀침하와 자연함수비의 관계(Mesri, 1973)

# 7.6 1차압밀침하량 계산

# <합밀침하량 계산의 기본원리>



## (2) 압축계수

$$a_v = -\frac{\Delta e}{\Delta \sigma'}, \quad \Delta e = -a_v \cdot \Delta \sigma'$$

## 이를식(1)에 대입하면

$$S = \frac{a_v}{1+e} H \Delta \sigma' \tag{B}$$

#### (3) 체적변화계수

$$m_v = \frac{a_v}{1+e}$$
이 므로  $S = M_v H \Delta \sigma'$  .....(C)

#### (4) 압축지수

$$C_c = \frac{\varDelta e}{\varDelta \log \sigma'}$$
에서  $\varDelta e = C_c \varDelta \log \sigma'$ 

$$\begin{cases} C_c = \frac{e_1 - e_2}{\log \sigma_2{'} - \log \sigma_1{'}} = \frac{e_1 - e_2}{\log \left(\frac{\sigma_2{'}}{\sigma_1{'}}\right)} \\ \Leftrightarrow \circlearrowleft \ \ \, , \sigma_2{'} = \sigma_1{'} + \Delta\sigma \\ \Delta e = e_1 - e_2 = C_c \log \left(\frac{\sigma_1{'} + \Delta\sigma}{\sigma_1{'}}\right) \end{cases}$$

## 이를 <mark>식(A)에</mark> 대입

$$S = \frac{C_c}{1+e} H \log(\frac{\sigma_1' + \Delta \sigma}{\sigma_1'}) \tag{D}$$

- 흙이 수직방향으로만 침하한다고 할 때(1차압밀), 두께 H인 점토층의 침하량 △H와의 관계는 그림 7.18로부터 식 7.37와 같이 부피와 간극비의 관계로 유도.

[1차합밀비( $\sqrt{t}$  방법)]  $r_p = \frac{10}{9} \frac{d_s - d_{90}}{d_0 - d_f}$  (7.50)



그림 7.18 점토층의 침하량과 간극비 관계의 유도

$$\frac{\Delta H}{H} = \frac{\Delta V}{V} = -\frac{\Delta e}{1+e} \tag{7.37}$$

- 싀 7.37의 첫 항과 셋째 항을 이용하여 정리하면,
 1차압밀침하랭(S<sub>c</sub>)은 다음과 같다. 이 침하량 계산법 ⇒ 초기간극비(e<sub>0</sub>)법.

$$S_c = \Delta H = -\frac{\Delta e}{1 + e_o} H \tag{7.38}$$

- 식 7.26의  $\Delta e = -C_c \log \frac{\sigma'_2}{\sigma'_1}$ 를 식 7.38에 대입  $\Rightarrow$ 

 $\sigma_c' < \sigma_o' + \Delta \sigma'$ 인 정규압밀점토에 대한 1차압밀침하량은 4 7.39와 같다.

이 침하량 계산법 ⇒ 압축지수(*C<sub>c</sub>*)법(그림 7.19a 참조).

$$S_c = \frac{C_c}{1 + e_o} H \log \frac{\sigma'_2}{\sigma'_1} = \frac{C_c}{1 + e_o} H \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_o}$$

$$(7.39)$$

여기서  $C_c$  : 압축지수,  $e_o$  : 초기간극비,  $\sigma_o$  : 점토층 중앙부 초기유효수직응력,

 $\Delta \sigma'$  : 점토층 중앙부 유효수직응력증가분





(a) 정규압밀점토  $(\sigma'_{c} \leq \sigma'_{o} \sim \sigma'_{o} + \Delta \sigma')$ 

(b) 과압밀점토 $(\sigma'_o + \Delta \sigma' < \sigma'_c)$ 



(c) 과입밀점토 $(\sigma'_o < \sigma'_c < \sigma'_o + \Delta \sigma')$ 

고림 7.19 <mark>정규압밀점토와 과압밀점토의 하중─침하량곡선</mark> 개요 (σ'。): 현장유효응력; σ'。: 선행압밀압력)

 $-\Delta e = -a_v \Delta \sigma$  의 관계(식 7.8 참조)를 식 7.39에 대입  $\Rightarrow$ 

1차압밀침하량의 식은 식 7.40

$$S_c = \Delta H = \frac{a_v}{1 + e_o} H \Delta \sigma' \tag{7.40}$$

- 식 7.40에 체적압축계수  $m_v = \frac{a_v}{1+e_o}$ 의 관계 이용  $\Rightarrow$ 

1차압밀침하량은 식 7.41과 같다.

이 침하량 계산법  $\Rightarrow$  체적압축계수 $(m_v)$ 법.

과압밀 영역에서는  $m_v$ 의 분산 정도개 높아 오차가 많으나,

정규압밀 영역에서는 비교적 정도가 좋다.

$$S_c = \Delta H = m_v \ H \ \Delta \sigma' \tag{7.41}$$

-  $\sigma_{o}' + \Delta \sigma' < \sigma_{c}'$ 인 과압밀점토에 대한 1차압밀침해  $\Rightarrow$ 

압축지수  $C_c$  대신 재압축지수  $C_r$ 을 이용하여 다음 식으로 계산(그림 7.19b).

$$S_c = \frac{C_r}{1 + e_0} H \log \frac{\sigma_o + \Delta \sigma'}{\sigma_o'}$$
(7.42)

- $\sigma_o < \sigma_c < \sigma_o + \Delta \sigma$ 로 과압밀점토와 정규압밀점토 범위 모두 포함(그램 7.18c)  $\Rightarrow$
- 현장토 유효수직압력 $(\sigma_o)$ 이 선행압밀압력 $(\sigma_o)$ 보다 작은범위  $\Rightarrow$  재압축지수 C사용.
- $\circ$  유효수직압력 $(\sigma_o')$ 이 선행압밀압력 $(\sigma_o')$ 보다 큰 범위  $\Rightarrow$  압축지수  $C_o$ 사용.

$$S_c = \frac{C_r}{1 + e_o} H \log \frac{\sigma'_c}{\sigma'_o} + \frac{C_c}{1 + e_o} H \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_c}$$

$$(7.43)$$

- 수직압력증가량  $\Delta \sigma'$ 의 계산 :

점토층의 상부, 중앙, 하부에서 유효응력증가분을 Boussinesq 공식이나 도표(5.3.5, 5.3.7절 참조) 활용으로 구한 식 7.44 적용계산.

$$\Delta \sigma' = \frac{1}{6} (\Delta \sigma_u' + 4\Delta \sigma_m' + \Delta \sigma_l') \tag{7.38}$$

여기서  $\left[\Delta\sigma_{u}\right]$ ,  $\left[\Delta\sigma_{u}\right]$ ,  $\left[\Delta\sigma_{l}\right]$ 은 상·중·하부의 유효응력증가분.

#### 예제 7.8

다음 그림과 같이 상하 모래층 사이에 5m 두께의 점토층이 있는 지반이 있다. 지표에 상재하증  $50kN/m^2$ 이 작용한다고 할 때 다음에 답하여라. 단 점토층의 간극비 e=1.6, 압축계수  $C_c=0.6$ , 압밀계수  $C_c$  = $4\times10^{-3} cm^2/sec$ 이다.

- 1) 최종침하량을 계산하여라.
- 2) 90% 압밀에 소요되는 시간은 얼마인가?



그림 7.20 예제 7.7

품 0

1) 점토층 중심부에서 연직응력 : σ'₀=9×2+5×2.5=30.5kN/m²

최종침하량은 식 7.33으로 부터

$$S = \frac{C_C}{1+e} H \log_{10} \frac{\sigma' + \Delta \sigma'}{\sigma'} = \frac{0.6}{1+1.6} (5) \log_{10} \frac{30.5 + 50}{30.5} = 0.48 \,\text{m}$$

2) 식 7.28을 변환하면 
$$t_{90} = \frac{T_v H^2}{C_v} = \frac{0.848 \times 250^2}{4.0 \times 10^{-3}} = 13,250,000 \sec = 153.4 \, \mathrm{days}$$

#### 예제 7.9

다음 그림과 같이 모래층 사이에 10m의 점토층이 있는 지반이 있다. 지하수면은 원래 지표면에 위치하다가 4m 저하하였다. 점토층의 압축지수는 0.5, 간국비는 0.75, 압밀계수는  $c_v = 4.0 \times 10^{-4} \mathrm{cm}^2/\mathrm{sec}$ 이라고 할 때 다음에 답하시오.

- 1) 지하수 저하로 인한 최종침하량을 계산하여라.
- 2) 지하수 저하 후 1년이 경과하였을 때의 침하량을 계산하여라.



그림 7.21 예제 7.8

풀 이

1) 점토층 중심부에서 연직응력 :  $\sigma'_0 = 19 \times 5 + 15 \times 5 - 9.81 \times 10 = 71.9 \text{kN/m}^2$ 

지하수 4m 저하 시 증가하는 유효연직응력은  $\Delta \sigma' = -\Delta u = -(-\gamma_w h_w) = 9.81 \times 4 = 39.2 \text{kW} m^2$ 

$$S_c = \frac{C_C}{1+e} H \log_{10} \frac{{\sigma_o}^{'} + \Delta \sigma^{'}}{{\sigma_o}^{'}} = \frac{0.5}{1+0.75} \times 10 \times \log_{10} \frac{71.9 + 39.2}{71.9} = 0.54 \, \mathrm{m}$$

2) 
$$T_v = \frac{c_v t}{H^2} = \frac{4 \times 10^{-4} \times 365 \times 24 \times 60 \times 60}{500^2} = 0.05$$

그림 7.7에서 시간계수 0.05에 대한 평균압밀도는 24.5%이다.

$$S_{\overline{U}=25\%} = S \times 0.25 = 0.56 \times 0.25 = 0.14 \,\mathrm{m} = 14 \,\mathrm{cm}$$

#### 예제 7.10

아래 그럼에 나타난 바와 같이 폭B=10m의 줄기초에 50톤의 하중에 작용하고 있는 경우와 무한등분포하중 q=5t/m $^2$ 이 작용하는 경우의 최종침하량을 계산하여라. 지하수는 지표에 위치한다(기초가 있는 경우의 지중 응력분포는 2:1 분포법(식 5.27a 응용).



품 이

점토층 중심에서의 유효연직응력 :  $\sigma'_0 = 8 \times 2 + 4 \times 2.5 = 26 \text{kNVm}^2$ 

1) 기초에 작용하는 하중으로 인한 점토층 중심에서의 추가응력

$$\Delta \sigma'_{z} = \frac{qB}{(B+z)} = \frac{50 \times 10}{(10+4.5)} = 34.5 \text{keVm}^{2}$$

$$S_{c} = \frac{C_{C}}{1+e} H \log_{10} \frac{\sigma'_{o} + \Delta \sigma'}{\sigma'_{o}} = \frac{0.8}{1+1.5} \times 5 \times \log_{10} \frac{26+34.5}{26} = 0.586 \text{ m} = 58.6 \text{ cm}$$

2) 무한등분포하중  $q=50 \text{kV/m}^2$ 이 작용하는 경우 (점토층 표면에  $B=\infty$  로 작용하는 경우로 점토 중앙부에 작용하는 유효응력은  $\Delta \sigma' = 50 \text{kV/m}^2$  )

$$S_c = \frac{C_C}{1+e} \ H \ \log_{10} \frac{\sigma_o{'} + \Delta \sigma{'}}{\sigma_o{'}} = \frac{0.8}{1+1.5} \times 5 \times \log_{10} \frac{26+50}{26} = 0.745 \, \mathrm{m} = 74.5 \, \mathrm{cm}$$

예제 7.11

그림과 같은 4m 두께의 점토층의 지표면에 등분포상재하증 40kN/m²이 작용하고 있다. 이 점토층 중앙에서의 선행압밀응력이 70kN/m²이라고 할 때 이 점토층의 압밀침하량을 구하라.



그림 7.23 예제 7.10

풀 0

점토층 중심부에서 연직응력:  $\sigma'_0 = 0.8 \times 3.5 + 0.7 \times 2 = 4.2 \text{t/m}^2$ 이므로 선행압밀응력에  $7 \text{t/m}^2$ 까지는 과압밀영역이었다가 그 이상의 하중에 대해서는 정규압밀영역이다. 최종침하량은 식 7.37로부터 다음과 같이 구한다.

$$\begin{split} S_c &= \frac{C_r}{(1+e_o)} H \log \frac{\sigma'_c}{\sigma'_o} \ + \ \frac{C_c}{(1+e_o)} H \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_c} \\ &= \frac{0.05}{1+1.5} (400) \ \log_{10}(\frac{70}{42}) + \frac{0.35}{1+1.5} (400) \ \log_{10}(\frac{42+40}{70}) = 1.77 + 3.85 = 5.62 \text{cm} \end{split}$$

# 연|습|문|제

- 7.1 어떤 점토에 압밀실험을 하여 체적압축계수  $m_v = 4.0 \times 10^{-2} \text{cm}^2/\text{kg}$ , 압밀계수  $C_v = 2.5 \times 10^{-2} \text{cm}^2/\text{sec}$ 를 얻었다. 이 점토의 투수계수를 구하여라.
- 7.2
   양면배수 8m 두께의 점토층의 압밀계수가  $C_n = 0.008 \text{cm}^2/\text{sec}$ 이다. 압밀 개시 후 4개월 후의 압밀 침하량이 7cm라고 할 때 최종압밀침하량을 계산하여라.

- 7.3 양면배수된 5m 두께의 포화점토에 하중을 재하하여 200일 후에 90% 압밀도에 도달하였다. 점토의 압밀계수 C 를 계산하여라.
- 7.4
   일면배수인 두께 4m의 점토층이 있다. 이 점토의 압축계수  $C_v = 1.8 \times 10^{-3} \text{cm}^2/\text{sec}$ 이라고 할 때 100일이 경과한 후의 이 점토층의 평균압밀도를 계산하여라.
- 7.5 3m 두께의 포화점토에 하중을 재하하여 나타나는 최종압밀침하량이 30cm라고 할 때 초기 10cm의 침하가 발생하는 데 걸린 시간이 100일이라면 초기 5cm의 침하가 발생하는 데 소요되는 시간을 계산하여라.
- 7.6
   예제 7.5에서 나타난 압밀 특성을 가진 점토층의 두께가 2m이고, 점토층의 중심에서 초기

   5.0kg/cm²의 유효응력을 받고 있다고 한다. 상재하중으로 유효응력이 1.0kg/cm²들면 압밀 침하량은 얼마가 발생하는가?
- 7.7 압밀시험을 실시하여 하중증가 1~2kg/m² 구간에서 다음과 같은 데이터를 얻었다.

| 시료의 두께(mm) | 누적침하량(mm) | 시간(min)          |
|------------|-----------|------------------|
| 12.20      | 0.0       | 0                |
| 12.14      | 0.05      | 1/4              |
| 12.10      | 0.10      | 1                |
| 12.07      | 0.13      | 2 <sub>1/4</sub> |
| 12.04      | 0.16      | 4                |
| 11.98      | 0.72      | 9                |
| 11.92      | 0.28      | 16               |
| 11.86      | 0.34      | 25               |
| 11.82      | 0.38      | 36               |
| 11.80      | 0.4       | 49               |
| 11.80      | 0.4       | 64               |

- 1) 이 흙의 압밀계수를 √t 법으로 구하라.
- 2) 10m 두께의 점성토가 일면배수조건으로 80% 압밀에 도달하는 시간은?
- 3) 시료의 간극비가 0.90에서 0.79로 변화되었다면 대상 시료의 투수계수는? (단  $a_n = 0.18cm^2/kg$ )
- [7.8] 점토시험의 압밀을 행하여, 하중강도 1.6kg/cm²일 때의 압밀시간과 압밀침하량을 측정한 결과 다음 표의 결과를 얻었다. 이 값으로부터 √t, logt법에 의하여 압밀계수 C,를 구하라. 단, 시료의 두께는 2H=1.851이다.

| 압축시간 | 다이얼게이지 |
|------|--------|
| 0초   | 216.1  |
| 8초   | 218.3  |
| 15초  | 219.0  |
| 30초  | 221.4  |
| 1분   | 227.0  |
| 2분   | 240.0  |
| 4분   | 250.9  |
| 8부   | 268.4  |

| 압숙시간 | 나이얼게이시 |
|------|--------|
| 15분  | 292.1  |
| 30분  | 305.2  |
| 1시간  | 308.9  |
| 2시간  | 310.4  |
| 4시간  | 311.9  |
| 8시간  | 313.8  |
| 12시간 | 314.6  |
| 24시간 | 331.4  |

7.9 고속도로 건설을 위한 두께 2m의 성토를 점성토 위에 실시하였다. 점성토는 상부는 연약점토와

중간점토로, 하부는 밀한 사질토로 구성되었다. 아래 그림은 초기 및 성토의 흙의 단면도를 보이고 있다. 지하수위가 침하가 발생한 이후 원지반의 지표면에 있다고 가정하고 다음을 계산하여라.



그림 7.24 연습문제 7.9

- [1] 연약점토와 중간점토의 가운데 점에서의  $e \log \sigma$  를 도시하여라. 각 도시한 도표에  $e_a$ ,  $\sigma_{zo}$ ,  $\sigma_p$ ,  $e_f$ ,  $\sigma_{zf}$ ,  $\Delta e$ 를 표시하여라.
- 2) 각 점토단면의 중앙부에서 평균압밀계수를 이용하여 전체 침하량을 계산하여라.
- 3) 상부 점성토를 3등분하여 전체 침하량을 다시 계산하여라.
- [7.10]  $\Delta \sigma = 60 \text{kN/m}^2$ 의 [균일하중이] 다음과 [같은] 흙의 [단면에] 놓여 있다. 점토층 [중간부의] 변형이 [점토] 전체의 평균변형과 [같다고] 가정하고 [다음을 ]계산하여라.
  - 1) 6.0kN/m² 하중에 의하여 1차압밀 후 나타나는 최종침하량을 계산하여라.
  - 2) 90% 1차압밀이 발생하는 시간은?
  - 3) 1차압밀 종료 후 30년 이후 발생할 전침하(1차 및 2차압밀의 합)를 계산하여라((1차 압밀 종료시 간) $t_c = t_{90}$ 으로 가정).



그림 7.24 연습문제 7.10

7.11 간극수압계가 다음 흙단면 A점에 설치되었다. 200kPa의 균일하중이 작용하여 30일 후 간극수압

## 계의 $\overline{\text{간국수압은}}$ u=174.6kPaol었다. 이때 지반의 침하량은 0.44mol었다(양면배수로 가정).



그림 7.26 연습문제 7.11

- 1) 균일하중 200kPa가 가해지기 전 측정된 간극수압은? 이때 과잉간극수압은 얼마인가?
- 2) 200kPa의 하중이 가해진 직후의 과잉간극수압계에 나타난 간극수압은 얼마인가?
- 3) 이 흙의 단면에서 30일에 상응하는 시간계수 T는 얼마인가?
- 4) 이 흙의 압밀계수 [조]를 계산하여라.
- 5) 90% 압밀에 걸리는 시간을 계산하여라.
- 6) 1차압밀에 의하여 나타난 최종침하량을 계산하여라.

7.12 다음 그림에 보인 바와 같은 3m×3m 기초가 놓인 점토지반이 있다. 이 점토층의 포화단위중량이 18.4kN/m³이고 지하수면은 지표에 위치한다고 할 때 기초중심의 압밀침하량을 다음과 같이 층을 나누어 계산하여라.

- 1) 한 층으로 점토층의 중심에서 계산
- 2) 3개 층으로 나누어 계산
- 3) 위의 계산으로 알 수 있는 사항을 설명하여라.



그림 7.27 연습문제 7.12

7.13 연습문제 7.12를 연직압력증가량 △♂의 계산을 점토층의 상부・중앙·하부에서 유효응력증가분 을 영향계수도표(그림 5.11)로부터 구한 후 식 7.36을 이용하여 압밀침하량을 계산하여라.

## 참 고 문 헌

- 1. 권호진, 박준범, 송영우, 이영생(2008), 토질역학, 구미서관.
- 2. 김상규(1991), 토질역학, 동명사.
- 3. 한국지반공학회(2009) 구조물 기초기준해설
- 4. Casagrande, A.(1936) "Determination of the Preconsolidation Load and its Practical Significance" Proceedings of First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass., Vol.3, pp.60-64.
- 5. Casagrande, A. and Fadum, R.E.(1940), Notes on Soil Testing for Engineering Purposes, Harvard University Graduate Engineering Publication No.8.
- 6. Craig, R.F.(1983) Soil Mechanics 3rd Edition, Van Nostrand Reinhold Co.
- 7. Das, B. M.(1990), Principles of Foundation Engineering, 2nd Ed., PWS-KENT Publisher Company, Boston, pp.289+290.
- 8. Das B.M., (2006) Principles of Geotechnical Engineering, 6th Editions, PWS, MA.
- 9. Mesri, G.(1973), Coefficient of Secondary Compression, Journal of Soil Mechanics and Foundation Division, ASCE, Vol.99, No.SM1, pp.123-137.
- 10. NAVFAC(1971), Design Manual-Soil Mechanics, Foundations, and Earth Structures, NAVFAVC DM-7, US Dapartment of Navy, Washington D.C.
- 11. Rendon-Herrero, O.(1980), "Universal Compression Index Equation", Journal of the Geotechnical Engineering Division, ASCE, Vol.106, No.GT11, pp.1179-1200.
- 12. Schmertmann, J.H.(1953). The Undisturbed Consolidation Behavior of Clay, Transactions,

- ASCE, Vol.120, p.1201.
- 13. Taylor, D.W.(1948), Fundamentals of Soil Mechanics, John Wiley and Sons, New York.
- 14. Terzaghi, K.(1943) Theoretical Soil Mechanics, John Wiley and Sons, New York.
- Terzaghi, K, and Peck, R.B.(1948) Soil Mechanics in Engineering Practice, John Wiley and Sons, New York.
- 16. Terzaghi and Peck(1967), Soil Mechanics and Engineering Practice, 2nd Ed., John Wiley and Sons, New York.