

Tree Search and the EURO/ROADEF challenge

Luc Libralesso, Florian Fontan

May 20, 2019

G-SCOP

Table of contents

- 1. Glass Cutting Challenge?
- 2. Branching Scheme
- 3. Anytime Algorithms & Tree Search
- 4. Results and Conclusion

Glass Cutting Challenge?

EURO/ROADEF Challenge

- Presented by the French and European Operations Research societies
- International competition

EURO/ROADEF Challenge

- Presented by the French and European *Operations Research* societies
- International competition

- A challenge every two years
 - 2012: Google
 - 2014: SNCF (state-owned railway company)
 - 2016: Air Liquide

EURO/ROADEF Challenge

- Presented by the French and European Operations Research societies
- International competition

- A challenge every two years
 - 2012: Google
 - 2014: SNCF (state-owned railway company)
 - 2016: Air Liquide
 - 2018: Saint Gobain

2018 edition of the challenge - glass cutting

- Founded in 1665
- produces pipes, mirrors, mortars and glass

2018 edition of the challenge - glass cutting

- Founded in 1665
- produces pipes, mirrors, mortars and glass

Cut rectangular glass items from big glass plates (Plates)

How to make glass

One of our solutions

OBJECTIVE:

minimize waste

Objective:

minimize waste

DATA:

• Items (defined width and height, rotation possible)

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m x 3m) with defects

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m × 3m) with defects

Constraints:

Figure 1: Example of a solution

Figure 2: Example of a solution

 $\textbf{Figure 3:} \ \, \mathsf{Example of a solution}$

Figure 4: Example of a solution

Figure 5: Example of a solution

Figure 6: Example of a solution

guillotine cuts and not allowed cuts

guillotine

guillotine cuts and not allowed cuts

guillotine cuts and not allowed cuts

Precedence constraints

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m x 3m) with defects

Constraints:

- guillotine constraint
- all items produced in a valid order

Precedence Constraint

Precedence Constraint

Defect avoidance

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m × 3m) with defects

Constraints:

- guillotine constraint
- all items produced in a valid order
- · no defects in items
- no cut on a defect

minimum/maximum cut size

OBJECTIVE:

minimize waste

DATA:

- Items (defined width and height, rotation possible)
- Stacks (chain precedence constraints)
- 100 Plates (6m x 3m) with defects

Constraints:

- guillotine constraint
- all items produced in a valid order
- no defects in items
- no cut on a defect
- min/max constraints on cuts and waste

Figure 7: Min waste: easy case

Figure 8: Min waste: easy case

Figure 9: Min waste: more difficult

Figure 10: Min waste: more difficult

Figure 11: Min waste: more difficult

Figure 12: Min waste: more difficult

The problem is $\mathcal{N}\mathcal{P}\text{-Hard}.$

Glass cutting Problem

The problem is $\mathcal{N}\mathcal{P}\text{-Hard}.$

Difficult problem and big instances

Glass cutting Problem

The problem is $\mathcal{NP}\text{-Hard}.$

Difficult problem and big instances

We use anytime algorithms (meta-heuristics)

In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme**

In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme**

We explore this search tree cleverly (section after) we use **anytime tree searches**

In this talk

We generate an implicit search tree. (next section) It is called **Branching Scheme**

We explore this search tree cleverly (section after) we use **anytime tree searches**

Results & conclusions & perspectives

• Root node (initial solution): empty solution, no item placed.

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

J

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?

- Root node (initial solution): empty solution, no item placed.
- Children: where to place items?
- In a corner?

•	For the classical two-dimensional packing problem, it is dominant to							
	place items in a corner.							

 For the classical two-dimensional packing problem, it is dominant to place items in a corner.

 There exists an optimal solution such that for each item of the solution, its left and its bottom touch either another item or a border.

 For the classical two-dimensional packing problem, it is dominant to place items in a corner.

 There exists an optimal solution such that for each item of the solution, its left and its bottom touch either another item or a border.

 For the classical two-dimensional packing problem, it is dominant to place items in a corner.

 There exists an optimal solution such that for each item of the solution, its left and its bottom touch either another item or a border.

- There exists an optimal solution such that for each item of the solution, its left and its bottom touch either another item or a border.
- Does the property hold in our problem?

• The property holds for the guillotine two-dimensional packing problem.

 The property holds for the guillotine two-dimensional packing problem.

 There exists an optimal solution such that every left side of its vertical cuts and every bottom sides of its horizontal cuts touch an item.

• The border of an item corresponds to one unique cut (or border)

• The border of an item corresponds to one unique cut (or border)

• Then the proof is trivial

• The border of an item corresponds to one unique cut (or border)

• Then the proof is trivial

• The border of an item corresponds to one unique cut (or border)

• Then the proof is trivial

And with defects?

• The border of an item corresponds to one unique cut (or border)

Then the proof is trivial

• And with defects?

• The border of an item corresponds to one unique cut (or border)

Then the proof is trivial

• And with defects? And with precedences?

• No defects, no precedences, but minimum waste.

- No defects, no precedences, but minimum waste.
- There exists an optimal solution such that every left side of its vertical cuts and every bottom sides of its horizontal cuts touch an item

- No defects, no precedences, but minimum waste.
- There exists an optimal solution such that every left side of its vertical cuts and every bottom sides of its horizontal cuts touch an item

- No defects, no precedences, but minimum waste.
- There exists an optimal solution such that every left side of its vertical cuts and every bottom sides of its horizontal cuts touch an item or is exactly at w_{min} from an item.

• But what happens with minimum waste and precedences? or with minimum waste and defects?

• But what happens with minimum waste and precedences? or with minimum waste and defects?

 $J_1 \prec J_3$

• But what happens with minimum waste and precedences? or with minimum waste and defects?

J_3	
J_1 J_2	$J_1 \prec J_3$
J ₃	
J_1 J_2	

• Placing items in a corner is not dominant.

- Placing items in a corner is not dominant.
- Finding a dominant branching scheme that does not increase too much the number of nodes is hard.

- Placing items in a corner is not dominant.
- Finding a dominant branching scheme that does not increase too much the number of nodes is hard.
- Placing items in a corner is still dominant for several subproblems

- Placing items in a corner is not dominant.
- Finding a dominant branching scheme that does not increase too much the number of nodes is hard.
- Placing items in a corner is still dominant for several subproblems
- We are only looking for heuristics and not for exact algorithms.

- Placing items in a corner is not dominant.
- Finding a dominant branching scheme that does not increase too much the number of nodes is hard.
- Placing items in a corner is still dominant for several subproblems
- We are only looking for heuristics and not for exact algorithms.

 \implies We base our branching scheme on it anyway.

- 1 item at the bottom of the block (231, 334, 335...)
- 1 item at the top of the block (6, 56)
- 2 items (409 and 410)
- a defect (before 232, before 409 and 410, before 247)

Four depths of insertions:

- 0: on a new plate (231)
- 1: new current 1-cut (8, 244, 193, 104)
- 2: new 2-cut (334, 159, defect before 232...)
- 2: new 3-cut (335, 6, 7, defect before 409 and 410...)

Four depths of insertions:

- 0: on a new plate (231)
- 1: new current 1-cut (8, 244, 193, 104)
- 2: new 2-cut (334, 159, defect before 232...)
- 2: new 3-cut (335, 6, 7, defect before 409 and 410...)

Note that items may be rotated.

feasible

feasible

Pseudo-dominance

• Dominance rule: if two partial solutions S_1 and S_2 contain the same items and the front of S_1 is before the front of S_2 , then S_1 dominates S_2 .

Pseudo-dominance

Pseudo-dominance

Symmetry breaking

 Symmetry breaking strategy: for two consecutive blocks, the one with the smallest minimum item id comes before.

Wrapping up

Branching scheme

• not dominant, but good compromise

Wrapping up

Branching scheme

- not dominant, but good compromise
- all constraints taken into account

Wrapping up

Branching scheme

- not dominant, but good compromise
- all constraints taken into account
- very high number of nodes

Wrapping up

Branching scheme

- not dominant, but good compromise
- all constraints taken into account
- very high number of nodes
- pseudo-dominance rules and symmetry breaking strategy

Anytime Algorithms & Tree

Search

Some formalizations

Two separate parts in *Tree Search*:

Branching Scheme: The implicit search tree. Contains

- root node
- how to generate children from a node
- lower bounds
- guides (estimation of node quality)

Some formalizations

Two separate parts in *Tree Search*:

Branching Scheme: The implicit search tree. Contains

- root node
- how to generate children from a node
- lower bounds
- guides (estimation of node quality)

Tree Search Algorithms: How to visit the tree (Branch & Bound, Greedy, *others ?*)

Anytime algorithms (meta-heuristics) - A landscape

Figure 13: Anytime algorithms: a classification

Anytime algorithms (meta-heuristics) - A landscape

Figure 14: Anytime algorithms: a classification

Anytime algorithms (meta-heuristics) - A landscape

Figure 15: Anytime algorithms: a classification

Anytime algorithms (meta-heuristics)

- Many anytime algorithms are based on **Local Improvement**
- A few are constructive

Anytime algorithms (meta-heuristics)

- Many anytime algorithms are based on Local Improvement
- A few are constructive

Why?

Can constructive methods be competitive with Local Searches?

Branch & Bound

Branch & Bound

time – quality +

Branch & Bound

time – quality +

Greedy

Branch & Bound time quality +

Figure 16: time vs quality axis

Figure 17: time vs quality axis

Figure 17: time vs quality axis

• Beam Search behaves like a BFS when the beam is big.

Figure 17: time vs quality axis

- Beam Search behaves like a BFS when the beam is big.
- Ant Colony depends too much on the structure of the problem

Figure 17: time vs quality axis

- Beam Search behaves like a BFS when the beam is big.
- Ant Colony depends too much on the structure of the problem

Are there some other algorithms?

Al and Tree Search

Not in Meta-heuristics nor Operations Research¹

 $^{^{1}\}mathrm{to}$ the best of our knowledge

²and a bit in CP

Al and Tree Search

Not in Meta-heuristics nor Operations Research¹

But in AP^2

¹to the best of our knowledge

²and a bit in CP

Al and Tree Search

Not in Meta-heuristics nor Operations Research¹

But in AP^2

We import those methods

 $^{^{1}}$ to the best of our knowledge

²and a bit in CP

Tree Searches in AI

Many algorithms usable in Operations Research:

Beam Stack Search ([ZH05]), Limited Discrepancy Search ([HG95]), BULB ([FK05]), others

Tree Searches in Al

Many algorithms usable in Operations Research:

Beam Stack Search ([ZH05]), Limited Discrepancy Search ([HG95]), BULB ([FK05]), others

Our Approach (Memory Bounded A*)

MBA*: A* or Best First with a limit on the number of nodes (like Beam Search)

Figure 19: MBA* with a maximum fringe size of 4

Figure 20: MBA* with a maximum fringe size of 4

Figure 21: MBA* with a maximum fringe size of 4

Figure 22: MBA* with a maximum fringe size of 4

Figure 23: MBA* with a maximum fringe size of 4

Figure 24: MBA* with a maximum fringe size of 4

Figure 25: MBA* with a maximum fringe size of 4

Results and Conclusion

• 20 over 74 international teams qualified for the Final phase.

• 20 over 74 international teams qualified for the Final phase.

• 30 instances (15 known, 15 unknown), 1 hour running time.

• 20 over 74 international teams qualified for the Final phase.

- 30 instances (15 known, 15 unknown), 1 hour running time.
- for each instance, a team earns 10 points minus the number of teams that found a better solution.

• Ranked first during the Final phase of the challenge.

- Ranked first during the Final phase of the challenge.
- Best solutions found on 20 over 30 instances.

- Ranked first during the Final phase of the challenge.
- Best solutions found on 20 over 30 instances.
- Total waste: 493*M*, Total waste 2nd team: 506*M*.

- Ranked first during the Final phase of the challenge.
- Best solutions found on 20 over 30 instances.
- Total waste: 493*M*, Total waste 2nd team: 506*M*.
- Total waste new version: 469*M*; better on 26 instances compared to the challenge version.

- Ranked first during the Final phase of the challenge.
- Best solutions found on 20 over 30 instances.
- Total waste: 493*M*, Total waste 2nd team: 506*M*.
- Total waste new version: 469*M*; better on 26 instances compared to the challenge version.
- Anytime algorithm

Conclusion

ullet Algorithm design: implicit search tree + tree search algorithm.

Conclusion

- Algorithm design: implicit search tree + tree search algorithm.
- New simple and competitive tree search algorithm MBA*

Conclusion

- Algorithm design: implicit search tree + tree search algorithm.
- New simple and competitive tree search algorithm MBA*

Perspectives

• Problem remains open (mean gap to best known solution: 7%).

Conclusion

- Algorithm design: implicit search tree + tree search algorithm.
- New simple and competitive tree search algorithm MBA*

Perspectives

- Problem remains open (mean gap to best known solution: 7%).
- Combining tree search with local searches.

Conclusion

- Algorithm design: implicit search tree + tree search algorithm.
- New simple and competitive tree search algorithm MBA*

Perspectives

- Problem remains open (mean gap to best known solution: 7%).
- Combining tree search with local searches.
- Apply method for classical and industrial problems.

Questions or remarks?

References i

David Furcy and Sven Koenig.

Limited discrepancy beam search.

In IJCAI, pages 125-131, 2005.

William D Harvey and Matthew L Ginsberg.

Limited discrepancy search.

In IJCAI (1), pages 607-615, 1995.

Rong Zhou and Eric A Hansen.

Beam-stack search: Integrating backtracking with beam search.

In ICAPS, pages 90-98, 2005.

Trailing vs Copying

Trailing

(+) more nodes(-) less tree searches available

Copying

(-) less nodes(+) more tree search available