Summary Tables of Sampling Distributions

Estimating $E(X) = \mu$ by $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$				
$X_i \sim i.i.d.N(\mu, \sigma^2)$		$X_i \sim i.i.d. \ (\mu, \sigma^2)$		
for any n , σ^2 known	for small n , σ^2 unknown	for sufficiently large n		
$ar{X} \sim N(\mu, rac{\sigma^2}{n})$ $rac{ar{X} - \mu}{\sqrt{rac{\sigma^2}{n}}} \sim N(0, 1)$	$ar{X} \sim t_{n-1}(\mu, rac{s^2}{n})$ $rac{ar{X} - \mu}{\sqrt{rac{s^2}{n}}} \sim t_{n-1}$	$\bar{X} \sim_{approx.} N(\mu, \frac{\sigma^2}{n})$ by CLT $\frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim_{approx.} N(0, 1)$ by CLT		
Estimating π by $P = \frac{\sum_{i=1}^{n} X_i}{n}$ where $\sum_{i=1}^{n} X_i \sim Bino(n, \pi)$				
for any n	for any <i>n</i>	for sufficiently large n		
N/A	N/A	$P \sim_{approx.} N(\pi, \frac{\pi(1-\pi)}{n})$ by CLT $\frac{P-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \sim_{approx.} N(0, 1)$ by CLT		

Estimating $E(D) = \mu_D = \mu_X - \mu_Y$ by $\bar{D} = \frac{\sum_{i=1}^n D_i}{n}$ where $D_i = X_i - Y_i$ with a matched pair X_i, Y_i				
$D_i \sim i.i.d.N(\mu_D, \sigma_D^2)$			$D_i \sim i.i.d.(\mu_D, \sigma_D^2);$	
for any n , σ_D^2 known	for small n , σ_D^2 unknown		for sufficiently large <i>n</i>	
$rac{ar{D}-\mu_D}{\sqrt{rac{\sigma_D^2}{n}}}\sim N(0,1)$	$\frac{\bar{D}-\mu_D}{\sqrt{\frac{s_D^2}{n}}} \sim t_{n-1}, (s_D^2 = \frac{\sum (D_i - \bar{D})^2}{n-1})$		$rac{ar{D}-\mu_D}{\sqrt{rac{\sigma_D^2}{n}}}\sim_{approx.} N(0,1) ext{ by CLT}$	
Estimating $E(X - Y) = \mu_X - \mu_Y$ by $\bar{X} - \bar{Y}$ where $\bar{X} = \frac{\sum_{i=1}^{n_X} X_i}{n_X}$, $\bar{Y} = \frac{\sum_{i=1}^{n_Y} Y_i}{n_Y}$, $(X_i, Y_i \text{ indep.})$				
$X_i \sim i.i.d.N$	$V(\mu_X, \sigma_X^2); Y_i \sim i.i.d.N(\mu_Y, \sigma_Y^2)$	$X_i \sim i.i.d.(\mu_X, \sigma_X^2); Y_i \sim i.i.d.(\mu_Y, \sigma_Y^2);$		
for any n_X , n_Y , σ_X^2 , σ_Y^2 known	for small n_X , n_Y , σ_X^2 , σ_Y^2 unknown		for sufficiently large n_X , n_Y	
	$\sigma_X^2 = \sigma_Y^2$	$\sigma_X^2 \neq \sigma_Y^2$		
$\frac{\frac{(\bar{X}-\bar{Y})-(\mu_X-\mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X}+\frac{\sigma_Y^2}{n_Y}}}\sim N(0,1)$	$\frac{(\bar{X}-\bar{Y})-(\mu_X-\mu_Y)}{s_p\sqrt{\frac{1}{n_X}+\frac{1}{n_Y}}}\sim t_{n_X+n_Y-2}$	$rac{(ar{X}-ar{Y})-(\mu_X-\mu_Y)}{\sqrt{rac{s_X^2}{n_X}+rac{s_Y^2}{n_Y}}}\sim t_{df}$	$\frac{\frac{(\bar{X}-\bar{Y})-(\mu_X-\mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X}+\frac{\sigma_Y^2}{n_Y}}}}{\sqrt{\frac{\sigma_X^2}{n_X}+\frac{\sigma_Y^2}{n_Y}}} \sim_{approx.} N(0,1) \text{ by CLT}$	
Estimating $\pi_X - \pi_Y$ by $P_X - P_Y$ where $P_X = \frac{\sum_{i=1}^{n_X} X_i}{n_X}$, $P_Y = \frac{\sum_{i=1}^{n_Y} Y_i}{n_Y}$, $\sum_{i=1}^{n_X} X_i \sim Bino(n_X, \pi_X)$; $\sum_{i=1}^{n_Y} Y_i \sim Bino(n_Y, \pi_Y)$, $(X_i, Y_i \text{ indep.})$				
for any n_X , n_Y	for any n_X, n_Y		for sufficiently large n_X , n_Y	
N/A	N/A		$\frac{\frac{(P_X - P_Y) - (\pi_X - \pi_Y)}{\sqrt{\frac{\pi_X(1 - \pi_X)}{n_X} + \frac{\pi_Y(1 - \pi_Y)}{n_Y}}} \sim_{approx.} N(0, 1) \text{ by CLT}$	