

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Наглядный вероятностно-статистический анализ данных

Практическое задание 5

«Построение регрессии»

Пройдакова Екатерина Вадимовна, доцент кафедры ТВиАД ИИТММ

Содержание

- □ Инструменты Python для построения регрессии
- □ Линейная регрессия
 - Пример: данные о результатах экзаменов
 - Простая линейная регрессия
 - Множественная линейная регрессия
 - Оценка качества модели
- □ Полиномиальная регрессия
 - Пример: данные о продаже домов
 - Регрессия нелинейная по независимым переменным и линейная по параметрам
- □ Практическое задание

1. ИНСТРУМЕНТЫ РҮТНОN ДЛЯ ПОСТРОЕНИЯ РЕГРЕССИИ

1. Инструменты Python для построения регрессии

□ Библиотека scikit-learn (sklearn) содержит инструменты для работы с линейными регрессионными моделями

(https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)

Classical linear regressors

linear_model.LinearRegression([])	Ordinary least squares Linear Regression.
<pre>linear_model.Ridge([alpha, fit_intercept,])</pre>	Linear least squares with I2 regularization.
<pre>linear_model.RidgeCV([alphas,])</pre>	Ridge regression with built-in cross-validation.
linear_model.SGDRegressor([loss, penalty,])	Linear model fitted by minimizing a regularized empirical loss with SGD

Regressors with variable selection

The following estimators have built-in variable selection fitting procedures, but any estimator using a L1 or elastic-net penalty also performs variable selection: typically SGDRegressor or SGDClassifier with an appropriate penalty.

linear_model.ElasticNet([alpha, l1_ratio,])	Linear regression with combined L1 and L2 priors as regularizer.
<pre>linear_model.ElasticNetCV([l1_ratio, eps,])</pre>	Elastic Net model with iterative fitting along a regularization path.
<pre>linear_model.Lars([fit_intercept, verbose,])</pre>	Least Angle Regression model a.k.a.
linear_model.LarsCV([fit_intercept,])	Cross-validated Least Angle Regression model.
linear_model.Lasso([alpha, fit_intercept,])	Linear Model trained with L1 prior as regularizer (aka the Lasso)
linear_model.LassoCV([eps, n_alphas,])	Lasso linear model with iterative fitting along a regularization path.
linear_model.LassoLars([alpha,])	Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV([fit_intercept,])	Cross-validated Lasso, using the LARS algorithm.
linear_model.LassoLarsIC([criterion,])	Lasso model fit with Lars using BIC or AIC for model selection
linear_model.OrthogonalMatchingPursuit([])	Orthogonal Matching Pursuit model (OMP)
linear_model.OrthogonalMatchingPursuitCV([])	Cross-validated Orthogonal Matching Pursuit model (OMP).

1. Инструменты Python для построения регрессии

- □ Подмодуль sklearn.linear_model.LinearRegression: построение и верификация линейной регрессии на основе метода наименьших квадратов (МНК):
 - fit(): подгоняет линейную модель к выбранным данным
 - get_params() : возвращает значения параметров модели
 - score() : возвращает коэффициент детерминации
 - predict() : предсказывает значение на основе построенной модели

1. Инструменты Python для построения регрессии

□ Подмодуль sklearn.metrics.mean_squared_error, sklearn.metrics.r2_score:
вычисление метрик построенных моделей: средней квадратической ошибки и коэффициента детерминации

□ Подмодуль sklearn.model_selection.train_test_split: метод train_test_split() разделения выборки на тренировочное множество для построения модели и валидационное множество для оценки качества модели при прогнозировании

2. ЛИНЕЙНАЯ РЕГРЕССИЯ

2.1 Пример: данные о результатах экзаменов

□ Имеются данные о результатах сдачи итоговых экзаменов по математике, чтению, письму, а также о поле, расовой принадлежности выпускника, уровне образования родителей, наличии льгот и прохождении подготовительного курса.

1	gender	race/ ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
2	female	group B	bachelor's degree	standard	none	72	72	74	
3	female	group C	some college	standard	completed	69	90	88	
4	female	group B	master's degree	standard	none	90	95	93	
5	male	group A	associate's degree	free/reduced	none	47	57	44	
6	male	group C	some college	standard	none	76	78	75	
7	female	group B	associate's degree	standard	none	71	83	78	
8	female	group B	some college	standard	completed	88	95	92	
		0 1							

- □ Задача: выявить зависимость между приведенными характеристиками.
- □ Более узкая задача: построить модель линейной зависимости между величинами и прогнозировать значение одной величины (например, оценки по письму) на основе других (например, оценки по чтению)

2.1 Пример: данные о результатах экзаменов

□ Ранее произвели простейший корреляционный анализ (практическое занятие 4)

2.2 Простая линейная регрессия

```
50 # Разделение выборки на тренировочный набор и набор для валидации (проверки)
51 examsTr, examsVal = train test split(examsData, test size = 0.2, train size = 0.8)
52
53 # независимая переменая: оценка по математике
54 # зависимая переменная: оценка по письму
55 X = np.reshape(dataByType(examsTr, 5), (-1, 1)) # создаем из вектора вектор одномерных векторов
56 # обучение модели
57 linR = LinearRegression().fit(X, dataByType(examsTr, 7))
58 # коэффициенты регрессии
59 a = linR.coef
60 b = linR.intercept
61 print("Построена зависимость: Y = " + str(a[0]) + " X + " + str(b))
62 # валидация модели на проверочном множестве
63 Y predict = linR.predict(np.reshape(dataByType(examsVal, 5), (-1, 1)))
64 # коэффициент детерминации R2
65 r2 1 = r2 score(dataByType(examsVal, 7), Y predict)
66 # То же самое
67 linR.score(np.reshape(dataByType(examsVal, 6), (-1, 1)), dataByType(examsVal, 7))
68 print("Коэффициент детерминации = " + str(r2 1))
69 # Mean squared error - Средняя квадратическая ошибка
70 mse_1 = mean_squared_error(dataByType(examsVal, 7), Y_predict)
71 print("Средняя квадратическая ошибка (MSE) = " + str(mse 1))
72 # Residual sum of squares - Остаточная сумма квадратов
73 rss 1 = ((dataByType(examsVal, 7) - Y predict)**2).sum()
74 print("Остаточная сумма квадратов (RSS) = " + str(rss 1))
```


2.2 Простая линейная регрессия

□ Этап 1: разделение имеющейся выборки (examsData) на две части: 80% наблюдений будут составлять тренировочные данные (examsTr), 20% — данные для валидации модели (examsVal)

```
50 # Разделение выборки на тренировочный набор и набор для валидации (проверки)
51 examsTr, examsVal = train_test_split(examsData, test_size = 0.2, train_size = 0.8)
```

□ Этап 2: подгонка модели

```
53 # независимая переменая: оценка по математике
54 # зависимая переменная: оценка по письму
55 X = np.reshape(dataByType(examsTr, 5), (-1, 1)) # создаем из вектора вектор одномерных век
56 # обучение модели
57 linR = LinearRegression().fit(X, dataByType(examsTr, 7))
58 # коэффициенты регрессии
59 a = linR.coef_
60 b = linR.intercept_
61 print("Построена зависимость: Y = " + str(a[0]) + " X + " + str(b))
```


2.2 Простая линейная регрессия

Метод np.reshape() используется для придания многомерным данным заданного формата.

Пример:

Атрибуты coef_ и intercept_ дают значения для коэффициента наклона прямой регрессии и свободного члена соответственно

2.2 Простая линейная регрессия

 □ Этап 3: прогноз относительно значений зависимой переменной на валидационном множестве

```
62 # валидация модели на проверочном множестве
63 Y_predict = linR.predict(np.reshape(dataByType(examsVal, 5), (-1, 1)))
```

□ **Этап 4**: подсчет метрик: коэффициент детерминации, средняя квадратическая ошибка, остаточная сумма квадратов (строки 65-74)

Имеем следующий результат выполнения представленного кода:

```
Построена зависимость: Y = 0.8057168430059412 X + 14.963002116684159
Коэффициент детерминации = 0.676276496700704
Средняя квадратическая ошибка (MSE) = 81.18286219979218
Остаточная сумма квадратов (RSS) = 16236.572439958436
```


2.2 Простая линейная регрессия

□ Визуализация данных: диаграмма рассеивания и прямая регрессии

```
76 plt.scatter(dataByType(examsVal, 5), dataByType(examsVal, 7))
77 plt.plot(dataByType(examsVal, 5), Y_predict, color = 'green')
78 plt.title("Модель линейной регрессии")
79 plt.xlabel("Оценка по математике")
80 plt.ylabel("Оценка по письму")
81 plt.show()
```


2.3 Множественная линейная регрессия

- □ Серия моделей линейной регрессии. Зависимая переменная всегда оценка по письму; независимые переменные:
 - 1) оценка по математике
 - 2) оценка по чтению
 - 3) личная характеристика выпускника, включающая пол, расу, уровень образования родителей, принадлежность к льготной группе, прохождение подготовительного курса
 - 4) личная характеристика и оценка по математике
 - 5) личная характеристика и оценки по математике и чтению.
- □ В пунктах 3) 5) строится модель множественной регрессии с несколькими независимыми переменными

2.4 Оценка качества модели

Незав. переменные	R2	MSE	RSS
Матем.	0.676276	81.182862	16236.572440
Чтение	0.916312	20.987110	4197.421938
Хар-ка	0.345355	164.170820	32834.163926
Хар-ка + Матем.	0.902208	24.524229	4904.845807
Хар-ка + Матем. + Чтение	0.949028	12.782766	2556.553225

- □ Как известно из более ранних результатов, между оценками по письму и чтению существует более сильная линейная зависимость, чем между оценками по математике и письму –> прогноз на основе оценки по чтению является более точным, чем на основе оценки по математике (коэффициент детерминации ближе к единице, ошибки существенно меньше).
- □ Прогноз оценки только на основе общих характеристик выпускника является наименее точным, как и ожидается. Однако, добавляя эти данные к оценке по математики, можно значительно улучшить качество модели линейной регрессии.
- □ Имея в распоряжении личную характеристику выпускника и результаты экзаменов по математике и чтению, можно с высокой степенью точности предсказать оценку по письму: коэффициент детерминации R2 = 0.949028 и близок к единице, средняя квадратическая ошибка MSE = 12.782766 мала

3. ПОЛИНОМИАЛЬНАЯ РЕГРЕССИЯ

3.1 Пример: данные о продаже домов

- □ Имеются наблюдения за несколькими величинами для проданных домов, включая, стоимость дома, жилую площадь, количество этажей, общую оценку дома (от 1 до 10) и т.д. Данные взяты с сайта https://www.kaggle.com/harlfoxem/housesalesprediction
- □ Задача: построение прогноза о стоимости дома на основе общей оценки дома

1	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1	id	date	price		bathr ooms	sqft_li ving	sqft_lo t	floors	water front	view	condi tion	grade	sqft_abo ve	sqft_ba sement	yr_built	yr_ren ovated		sqft_lot1 5
2	712930052	20141013	221900	3	1	1180	5650	1	0	0	3	7	1180	0	1955	0	1340	5650
3	641410019	20141209	538000	3	2.25	2570	7242	2	0	0	3	7	2170	400	1951	1991	1690	7639
4	563150040	20150225	180000	2	1	770	10000	1	0	0	3	6	770	0	1933	0	2720	8062
5	248720087	20141209	604000	4	3	1960	5000	1	0	0	5	7	1050	910	1965	0	1360	5000
6	195440051	20150218	510000	3	2	1680	8080	1	0	0	3	8	1680	0	1987	0	1800	7503

3.1 Пример: данные о продаже домов

- □ Диаграмма рассеяния дает основание подозревать наличие нелинейной регрессии по независимым переменным
- □ Начнем с полиномиальной регрессии, степень полинома неизвестна

3.2 Регрессия линейная по параметрам

- □ Часто полиномиальная регрессия одновременно является линейной регрессией по оцениваемому параметру
- □ В этом случае задачу построения полиномиальной регрессии решаем уже известными методами

```
190 def polynomicSample(data, degree):
191     res = []
192     for rec in data:
193         for every in rec:
194              for d in range(degree):
195                   res.append(every**(d+1))
196     res = np.reshape(res, (len(data), -1))
197     return res
```


3.2 Регрессия линейная по параметрам

Функция polynomicSample()

```
In [44]: np.reshape(dataByType(houseDataTr, 11), (-1, 1))[0:5]
Out[44]:
array([[10.],
        [ 8.],
        [ 8.],
        [ 7.]])

In [45]: polynomicSample(np.reshape(dataByType(houseDataTr, 11), (-1, 1)), 3)[0:5]
Out[45]:
array([[ 10., 100., 1000.],
        [ 8., 64., 512.],
        [ 8., 64., 512.],
        [ 8., 64., 512.],
        [ 8., 64., 512.],
        [ 7., 49., 343.]])
```


3.2 Регрессия линейная по параметрам

Построим **полиномиальную** регрессию, где в качестве **зависимой** переменной выступает **стоимость дома**, а в качестве **независимой** – **оценка дома**.

```
199 plts = []
200 plt.figure(figsize=(7, 10))
201 plt.scatter(dataByType(houseDataVal, 11), dataByType(houseDataVal, 2))
202 plts.append(plt.scatter(dataByType(houseDataVal, 11), Y predict, color = 'green', label = "1"))
203 plt.title("Модель полиномиальной регрессии")
204 plt.xlabel("Оценка")
205 plt.ylabel("Стоимость дома")
206
207 colors = ["red", "yellow", "black"]
208 for d in [2, 3, 4]:
       squareSample = polynomicSample(np.reshape(dataByType(houseDataTr, 11), (-1, 1)), d)
209
210
       linR = LinearRegression().fit(squareSample, dataByType(houseDataTr, 2))
       Y predict = linR.predict(polynomicSample(np.reshape(dataByType(houseDataVal, 11), (-1,1)), d))
211
       r2.append(r2 score(dataByType(houseDataVal, 2), Y predict))
212
213
       er.append(mean squared error(dataByType(houseDataVal, 2), Y predict))
       rss.append(((dataByType(houseDataVal, 2) - Y predict)**2).sum())
214
       plts.append(plt.scatter(dataByType(houseDataVal, 11), Y_predict, color = colors[d-2], label = str(d)))
215
216 plt.legend(title = "Степень полинома:", handles = plts, labels = ["1", "2", "3", "4"])
217 plt.show()
218
219 print("%18s %12s %18s %18s" % ("Степень полинома", "R2", "MSE", "RSS"))
220 models = [1, 2, 3, 4]
221 for i in range(len(r2)):
       print("%18d %12f %18f %18f" % (models[i], r2[i], er[i], rss[i]))
222
223
```


3.2 Регрессия линейная по параметрам

- □ При переходе к полиномиальной регрессии удалось достичь положительного результата, хоть и незначительного
- □ Модели полиномиальной регрессии степеней 2, 3, 4 незначительно различаются по качеству.
- □ Коэффициентѕ детерминации R2 все еще достаточно далек от единицы, а ошибки MSE достаточно велики - имеет смысл искать другие более точные модели нелинейной регрессии

0.442997 71253582352.469604

0.497890 64231555024.029068

0.498586 64142564967.215088

Степень полинома

MSE

4. ПРАКТИЧЕСКОЕ ЗАДАНИЕ

4. Практическое задание

- □ Данные файл *05_Зачисление.xl*s содержащий информацию об абитуриентах некоторой учебной магистерской программы.
 - Serial No идентификатор,
 - GRE (Graduate Record Examinations) и TOEFL (Test of English as a Foreign Language) Score оценки за экзамены GRE (0-140) и TOEFL(0-120),
 - University Rating рейтинг университета, в котором абитуриент обучался в бакалавриате (0-5),
 - SOP (Statement of Purpose) и LOR (Letter of Recommendations) оценка убедительности заявления абитуриента и рекомендательного письма,
 - CGPA (Undergraduate Grade Point Average) средний балл в бакалавриате (0-10),
 - Research наличие опыта исследований (0/1),
 - Chance of Admit оценка шанса приема абитуриента (0-1).

Serial No.	GRE Score	TOEFL Score	Universi ty Rating	SOP	LOR	CGPA	Resear ch	Chance of Admit
1	337	118	4	4.5	4.5	9.65	1	0.92
2	324	107	4	4	4.5	8.87	1	0.76
3	316	104	3	3	3.5	8	1	0.72
/1	277	110	2	2.5	2.5	8 67	1	nΩ

Источник данных:

https://www.kaggle.com/mohansacharya/g raduate-admissions

Mohan S Acharya, Asfia Armaan, Aneeta S Antony. A Comparison of Regression Models for Prediction of Graduate Admissions, IEEE International Conference on Computational Intelligence in Data Science, 2019.

4. Практическое задание

- 1. Определить тип данных для каждого столбца.
- 2. Построить диаграммы рассеивания для пар данных:

GRE – Chance of Admit, TOEFL – Chance of Admit, University Rating – Chance of Admit, SOP – Chance of Admit,

LOR – Chance of Admit, CGPA – Chance of Admit.

Привести визуальную оценку зависимости шанса поступления от указанных величин.

3. Построить модель регрессии (простой линейной / множественной линейной / полиномиальной по независимым переменным), которая даст наилучший прогноз шанса поступления абитуриента. В качестве независимых переменных может выбираться любое количество величин из пункта 2.

Выбрать оптимальную и обосновать оптимальность построенной модели с помощью разобранных метрик (R2, MSE, RSS)

4. Практическое задание

4. Факультативная задача

Haписать вспомогательные методы – аналоги методов библиотеки scikit-learn:

- Метод разбиения выборки на два множества (тренировочное и валидационное) в заданном через параметры соотношении.
- Метод подгонки модели простой линейной регрессии на основе метода наименьших квадратов.
- Методы подсчета коэффициента детерминации и среднеквадратической ошибки.

Проверить правильность работы методов, сравнив результаты с результатами библиотечных методов, при построении линейной регрессии, где в качестве зависимой переменной выступает оценка GRE, а в качестве независимой – CGPA.

