Problem

(AMC) In the obtuse triangle $ABC, AM = MB, MD \perp BC, EC \perp BC$. If the area of $\triangle ABC$ is 24, find the area of $\triangle BED$.

Solution

E. Let E and F be the feet of the perpendicular from B and C to AD.

Applying Pythagorean Theorem to right $\triangle ABE$, $AE^2 = AB^2 - BE^2 = 13^2 - 12^2 = 5^2$. So AE = 5.

Applying Pythagorean Theorem to right $\triangle DCF$,

 $DF^2 = DC^2 - CF^2 = 37^2 - 12^2 = 35^2$. So DF = 35. The trapezoid has area $\frac{BC + AD}{2} \times 12 = 318 \Rightarrow$

$$BC + AE + EF + DF = 53$$

$$\Rightarrow BC + 5 + BC + 35 = 53 \Rightarrow BC = \frac{13}{2}$$