Reducing Unintended Bias of ML Models on Tabular and Textual Data

Café TAL

Guilherme Alves Maxime Amblard Fabien Bernier Vaishnavi Bhargava Miguel Couceiro Amedeo Napoli

Univ. Lorraine, CNRS, Inria N.G.E., LORIA

Unintended bias of ML Models

ML models: designed to have some bias that guide them in their tasks

```
Expected bias

Credit card default prediction (good) credit payment history ↑
Hate speech prediction (presence of) offensive terms ↑

Unintented bias

Credit card default prediction ethnicity (minority) ↓
Hate speech prediction language variant ↓
```

Unexpected bias can lead to unfair algorithmic decisions and discrimination!

Discrimination: "unjust or prejudicial treatment of different categories of people, especially, on the grounds of race, age, or sex"

Unintended bias of ML Models

ML models: designed to have some bias that guide them in their tasks

```
Credit card default prediction (good) credit payment history ↑
Hate speech prediction (presence of) offensive terms ↑

Unintented bias

Credit card default prediction ethnicity (minority) ↓
Hate speech prediction language variant ↓
```

Unexpected bias can lead to unfair algorithmic decisions and discrimination!

Discrimination: "unjust or prejudicial treatment of different categories of people, especially, on the grounds of race, age, or sex"

Unintended bias of ML Models

ML models: designed to have some bias that guide them in their tasks

```
Credit card default prediction (good) credit payment history ↑
Hate speech prediction (presence of) offensive terms ↑

Unintented bias

Credit card default prediction ethnicity (minority) ↓
Hate speech prediction language variant ↓
```

Unexpected bias can lead to **unfair** algorithmic decisions and **discrimination**!

Discrimination: "unjust or prejudicial treatment of different categories of people, especially, on the grounds of race, age, or sex"

Motivation: unfair algorithmic decisions

Chatbot Tay² (Text)

Other Critical applications of algorithmic decisions: loan requests, job applications, Stop & Frisk, etc.

Need of fairness: Unfair outcomes not only affect human rights, but they undermine public trust in ML & Al.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

² https://www.bbc.com/news/technology-35902104

Defining and improving "fairness" of ML...

Based on decision outcomes, fairness can be assessed through:

- Fairness metrics: individual & group fairness, equal opportunity, demographic parity, equal accuracy, etc.
- Process fairness: model's reliance on "sensitive features"
 (e.g., salient features such as race, age, or sex,...)

Two main approaches to dealing with ML unfairness:

1 Enforce fairness constraints while learning, e.g.:

$$P(y_{\text{pred}} \neq y_{\text{true}} | race = Black) = P(y_{\text{pred}} \neq y_{\text{true}} | race = White)$$

Drawback: Complexity, fairness "gerrymandering" & overfitting

Exclude sensitive/salient features

Drawback: Decreased accuracy!

Defining and improving "fairness" of ML...

Based on decision outcomes, fairness can be assessed through:

- Fairness metrics: individual & group fairness, equal opportunity, demographic parity, equal accuracy, etc.
- Process fairness: model's reliance on "sensitive features"
 (e.g., salient features such as race, age, or sex,...)

Two main approaches to dealing with ML unfairness:

Enforce fairness constraints while learning, e.g.:

$$P(y_{\mathsf{pred}} \neq y_{\mathsf{true}} | race = Black) = P(y_{\mathsf{pred}} \neq y_{\mathsf{true}} | race = White)$$

Drawback: Complexity, fairness "gerrymandering" & overfitting

Exclude sensitive/salient features

Drawback: Decreased accuracy!

Fairness through eXplanations

FixOut:

and feature dropOut

FixOut (FaIrness through eXplanations and feature dropOut)

Goal: reduce model's dependence on sensitive/salient features while keeping (or improving) its classification performance

Fair Model: if its outcomes do not depend on sensitive features

FixOut: Human-centered approach to deal process fairness

Input: model M, dataset D, sensitive features F, explanation method E

Output: M if fair, otherwise a fairer and more accurate M_{final}

FixOut, 1st step: Fairness Assessment

Idea: Use explanations to assess model's dependence sensitive feat.s

However: LIME and SHAP provide "local" explanations

Solution: Sample a set of instances and aggregate the contributions to estimate the global contribution of each feature.

Example: Random Sampling (RS) or "Submodular pick" (SP)

Output: *k* most important (globally) features.

Rule:

If there is at least one sensitive feature among the top-k, then M is deemed unfair and FixOut builds an ensemble.

FixOut, 2nd step: Ensemble Building

Idea: Use feature dropout follow by an ensemble approach

Let a_1, a_2, \ldots, a_k be the k most important features

Suppose that $a_{j_1}, a_{j_2}, \ldots, a_{j_i}, i > 1$, are sensitive (i.e., $\in F$)

Then FixOut trains i + 1 classifiers obtained by "feature dropout":

- M_t after removing a_{j_t} from the dataset, for $t=1,\ldots,i$, and
- M_{i+1} after removing all sensitive features $a_{j_1}, a_{j_2}, \ldots, a_{j_i}$.

Output: Ensemble classifier M_{final} as an aggregation of all M_t 's.

For an instance x and a class C, M_{final} is defined as a **simple average**

$$P_{M_{final}}(x \in C) = \frac{1}{i+1} \sum_{t=1}^{i+1} P_{M_t}(x \in C).$$

6

Example with LIME explanations

FixOut with LIME explanations

Exp_{Global}: LIME + random sampling (of instances and use their explanations to get global explanations)

As before: if $\mathsf{Exp}_{\mathsf{Global}}$ outputs a_1, a_2, \ldots, a_k and $a_{j_1}, a_{j_2}, \ldots, a_{j_i} \in \mathcal{F}$, **then** FixOut trains i+1 classifiers obtained by "feature dropout":

- ullet M_t after removing a_{j_t} from the dataset, for $t=1,\ldots,i$, and
- M_{i+1} after removing all sensitive features $a_{j_1}, a_{j_2}, \dots, a_{j_i}$.

EnsembleOut: Ensemble classifier M_{final} defined as

- a simple average (FixOut)
- a weighted average (FixOut (w))

FixOut with LIME: RF on German dataset

German Credit Card Score (UCI):

- Goal: Predict credit risks (likely & unlikely to pay back)
- Applicant profiles (demographic and socio-economic).
- Sensitive: 'Statussex', 'telephone', 'foreign worker'

Empirical setting:

- Random Forest: 70% training & 30% test data
- Used: SMOTE oversampling & threshold tuning while training
- Accuracy of *M*: 0.783

Question: Is this model fair?

FixOut with LIME: RF on German dataset

German Credit Card Score (UCI):

- Goal: Predict credit risks (likely & unlikely to pay back)
- Applicant profiles (demographic and socio-economic).
- Sensitive: 'Statussex', 'telephone', 'foreign worker'

Empirical setting:

- Random Forest: 70% training & 30% test data
- Used: SMOTE oversampling & threshold tuning while training
- Accuracy of *M*: 0.783

Question: Is this model fair?

FixOut with LIME: RF on German dataset (Exp_{Global})

Feature	Contribution
foreignworker	2.664899
other install ment plans	-1.354191
housing	-1.144371
savings	0.984104
property	-0.648104
purpose	-0.415498
existingchecking	0.371415
telephone	0.311451
credithistory	0.263366
duration	-0.223288

Table 1: Top 10 features used by M

Hence: Model deemed unfair

FixOut with LIME: RF on German dataset (Ensemble_{Out})

Approach: Train multiple models obtained with feature dropout

- M1: Model trained after removing 'foreignworker'.
- M2: Model trained after removing 'telephone'.
- M3: Model trained after removing the 2 (accuracy of 0.773)
 NB: Accuracy drop when all sensitive features are removed!

M_{final}: Ensemble of M1, M2 and M3 (accuracy of 0.786)

FixOut with LIME: RF on German dataset

Origina	I	Ensemble				
Feature	Contribution	Feature	Contribution			
foreignworker	2.664899	otherinstallmentplans	-1.487604			
otherinstallmentplans	-1.354191	housing	-1.089726			
housing	-1.144371	savings	0.679195			
savings	0.984104	duration	-0.483643			
property	-0.648104	foreignworker	0.448643			
purpose	-0.415498	property	-0.386355			
existingchecking	0.371415	credithistory	0.258375			
telephone	0.311451	job	-0.252046			
credithistory	0.263366	existingchecking	-0.21358			
duration	-0.223288	residencesince	-0.138818			

Result: M_{final} is "fairer" & at least as accurate (from 0.783 to 0.786)

Fairness & Classification assessment (German dataset)

Classification assessment

Dataset Method		Accuracy			Precision				Recall				
Dataset	ivietnoa	ADA	BAG	LR	RF	ADA	BAG	LR	RF	ADA	BAG	LR	RF
	Original	.7362	.7019	.7398	.7556	.5707	.5124	.5716	.6883	.5317	.5738	.5495	.3595
German	FixOut	.7419	.7273	.7418	.7598	.5801	.5549	.5754	.7060	.5321	.5371	.5622	.3585
	FixOut (w)	.7405	.7219	.7400	.7583	.5764	.5471	.5708	.7019	.5373	.5076	.5602	.3541

What about Fairness metrics?

- Separate instances into two groups based on one sensitive feature
 Unprivileged group (unp) versus privileged group (priv)
 Example: female versus male
- Demographic Parity (DP):

$$DP = P(\hat{y} = pos|D = unp) - P(\hat{y} = pos|D = priv)$$

Equal Opportunity (EO):

$$EO = \frac{TP_{unp}}{TP_{unp} + FN_{unp}} - \frac{TP_{priv}}{TP_{priv} + FN_{priv}}$$

Predictive Equality (PE):

$$PE = \frac{FP_{unp}}{FP_{unp} + TP_{unp}} - \frac{FP_{priv}}{FP_{priv} + TP_{priv}}.$$

Assessment w.r.t. some fairness metrics (German dataset)

Example with SHAP explanations

FixOut with SHAP: RF on German dataset (Exp_{Global})

Same dataset and empirical setting...

Feature	Contribution
existingchecking	-7.11624
statussex	-5.950176
housing	-3.27344
job	-2.868195
residencesince	2.832573
telephone	2.290478
property	2.042944
otherinstallmentplans	-1.985275
existingcredits	1.984547
purpose	1.711321

Table 2: Top 10 features used by M

Hence: Model deemed unfair

FixOut with SHAP: RF on German dataset (Ensemble_{Out})

Approach: Train multiple models obtained with feature dropout

- M1: Model trained after removing 'statussex'.
- M2: Model trained after removing 'telephone'.
- M3: Model trained after removing the 2

NB: Performance drop when all sensitive features are removed!

M_{final}: Ensemble of M1, M2 and M3

FixOut with **SHAP**: RF on German dataset

Original		Ensemble				
Feature	Contribution	Feature	Contribution			
existingchecking	-7.11624	existingchecking	-4.285092			
statussex	-5.950176	housing	-3.771932			
housing	-3.27344	property	3.506007			
job	-2.868195	job	-3.061209			
residencesince	2.832573	employmentsince	2.646814			
telephone	2.290478	existingcredits	2.409782			
property	2.042944	otherinstallmentplans	-2.389899			
otherinstallmentplans	-1.985275	savings	-2.215407			
existingcredits	1.984547	residencesince	2.212183			
purpose	1.711321	credithistory	1.188159			

Result: M_{final} is fairer & better performance

Fairness & Classification assessment (German dataset)

Classification assessment

D	Method		Accı	ıracy		Precision				Recall			
Dataset	Method	ADA	BAG	LR	RF	ADA	BAG	LR	RF	ADA	BAG	LR	RF
	Original	.7362	.7019	.7398	.7556	.5707	.5124	.5716	.6883	.5317	.5738	.5495	.3595
German	FixOut	.7419	.7273	.7418	.7598	.5801	.5549	.5754	.7060	.5321	.5371	.5622	.3585
	FixOut (w)	.7427	.7253	.7417	.7613	.5809	.5537	.5746	.7003	.5390	.5142	.5632	.3708

Assessment w.r.t. some fairness metrics (German dataset)

Comparison: Average contribution of sensitive features

	Method		ADA			BAG			LR			RF	
	Wethod	tos.	^{tele} phone	foreign	foreign	^{tele} phone	foreign	tos	^{tele} phone	foreign	tog	^{tele} phone	foreign
	Original+LIME	-0.13	0.12	3.84	-2.13	0.33	6.36	-13.90	10.08	25.55	-3.29	0.85	23.00
_	FixOut +LIME	-0.05	0.09	0.85	-0.63	0.15	1.88	-7.46	2.86	11.90	-0.55	0.67	7.47
German	FixOut w+LIME	0.00	0.06	0.02	-0.79	0.11	0.65	-2.00	1.24	3.28	-0.49	0.69	0.23
er	Original+SHAP	-0.68	0.10	0.01	-5.13	1.55	0.00	-31.20	11.59	0.00	-10.53	3.21	0.00
10	FixOut +SHAP	-0.02	0.08	0.04	-0.76	1.08	0.00	-10.20	3.52	0.00	-1.87	0.69	0.00
	FixOut w+SHAP	-0.07	0.08	0.13	-0.87	0.71	0.00	-1.37	3.25	0.06	-1.87	0.69	0.00

How to reduce human intervention in FixOut on tabular data?

Suitable value for k

Recall: FixOut builds L with the k most important features

Problem: Practitioners must know beforehand a suitable value for k

An algorithm that automatically finds a value for *k* **Idea**: Kurtosis indicates the "*flatness*" of a distribution

Suitable value for k

Recall: FixOut builds L with the k most important features

Problem: Practitioners must know beforehand a suitable value for k

An algorithm that automatically finds a value for k

Idea: Kurtosis indicates the "flatness" of a distribution

Suitable value for k (cont.)

- Input: L: sorted list of contributions of all features (descending order); α : a threshold
- Output: L' a new list of contributions of subset of features

Find-K algorithm

- Iterative algorithm
- Remove features from L
- Stop when $|\gamma(L) \gamma(L')| > \alpha$

- \bullet α encodes the **accepted perturbation** in L
- Single value of α , multiple values of k

Suitable value for k (cont.)

- Input: L: sorted list of contributions of all features (descending order); α : a threshold
- Output: L' a new list of contributions of subset of features

Find-K algorithm

- Iterative algorithm
- Remove features from L
- Stop when $|\gamma(L) \gamma(L')| > \alpha$

- \bullet α encodes the **accepted perturbation** in L
- Single value of α , **multiple** values of k

Results - **Average** value of *k*

Γ.			Random Forest						AdaBoost					
Data	Selection			C	χ			α						
		0.5	1	1.5	2	2.5	3	0.5	1	1.5	2	2.5	3	
	LIME+RS	9.90	8.30	5.18	2.72	1.54	1.18	10	10	9.76	9.4	9.2	9.04	
German	LIME+SP	10.0	9.98	9.74	8.54	6.96	5.46	10.0	10.0	10.0	10.0	10.0	10.0	
er	SHAP+RS	9.92	8.98	6.46	4.52	2.74	2.04	10.0	8.78	6.44	4.28	3.24	2.90	
0	SHAP+SP	9.86	8.70	5.64	3.68	2.28	1.42	9.98	8.68	6.78	5.82	4.92	4.04	
	LIME+RS	9.76	8.38	7.00	5.48	4.44	3.64	10.0	10.0	8.22	5.54	3.40	2.20	
Adult	LIME+SP	9.30	7.80	6.76	5.80	5.00	4.32	10.0	9.90	7.98	5.74	3.84	2.48	
Αď	SHAP+RS	10.0	9.96	9.30	8.12	6.48	5.14	10.0	9.02	6.62	4.76	3.28	2.38	
	SHAP+SP	10.0	9.98	9.38	8.02	6.26	4.94	10.0	9.16	7.22	5.36	4.06	2.82	
	LIME+RS	6.46	4.04	2.02	1.46	1.10	1.02	6.98	4.52	3.02	1.92	1.28	1.12	
AC	LIME+SP	8.92	7.30	5.38	3.66	2.66	1.96	7.08	5.06	3.44	2.22	1.78	1.28	
LS/	SHAP+RS	7.80	5.80	3.88	2.48	1.76	1.40	8.68	6.52	4.78	3.34	2.08	1.52	
	SHAP+SP	8.18	5.78	4.04	2.86	2.10	1.70	8.84	7.08	5.42	3.84	2.68	1.90	

- $0.5 \le \alpha \le 1$ allows FIND-K to find a suitable value of k
- ullet $\alpha <$ 0.5 (and closer to 0) all features are removed
- ullet $\alpha >$ 3 all features are kept
- Similar results with Logistic Regression, Bagging

Does FixOut reduce model's dependence on sensitive words on textual data?

Example: FixOut on a hate speech classifier

Goal: Classify tweets as hate speech or not

• Idea: Bag of Words (BoW) (Or: Groups of words)

• Dataset: Hate speech dataset ³

Illustration of textual classifiers used in the ensemble.

 $^{^3}$ Davidson et al. Automated hate speech detection and the problem of offensive language. AAAI. 2017

Textual data: FixOut on a hate speech classifier

Setting: RF classifier, SHAP explanations, RS and BoW

	Withou	it grouping	With grouping			
Word	Rank	Contrib.	Rank	Contrib.		
niggah	18	0.149	23	0.03		
nigger	15	0.164	21	0.031		
nigguh	22	0.13	83	0.008		
nig	12	0.202	65	0.011		
nicca	22	0.107	39	0.018		
nigga	20	0.125	12	0.067		
white	25	0.087	36	0.018		

Textual data: FixOut on a hate speech classifier

Process fairness assessment on textual data with LIME and SP

		Origin	al model	FixOut	Ensemble
	Word	Rank Contrib.		Rank	Contrib.
	niggah	7	0.517	12	0.257
0	nigger	9	0.476	15	0.23
RF, LIME+SP	nigguh	13	0.339	17	0.194
ė	nig	10	0.445	16	0.204
\leq	nicca	16	0.265	20	0.121
шî	nigga	17	0.235	23	0.112
\simeq	white	23	0.127	34	0.07
	black	>500	~ 0	>500	~ 0
	niggah	2	0.167	4	0.083
Δ.	nigger	7	0.052	10	0.026
+	nigguh	5	0.144	6	0.073
M	nig	18	0.014	24	0.006
Ξ	nicca	17	0.015	23	0.007
ADA, LIME+SP	nigga	4	0.166	5	0.083
ΑĽ	white	23	0.011	26	0.005
	black	113	0.0	196	0.0

Similar results with Logistic Regression and Bagging

Conclusion

FixOut:

- Human-centered framework to tackle process fairness.
- Showed how to use Exp_{Global} to assess model fairness.
- Illustrated the feasibility of 'feature dropout' followed by an ensemble approach.

Improve process fairness on tabular and textual data!

Thank you for your attention!

FixOut: https://fixout.loria.fr/

References

Alves, et al. Reducing Unintended Bias of ML Models on Tabular and Textual Data, DSAA'21.

Alves, et al. Making ML models fairer through explanations: the case of LimeOut, AIST'20.

Bhargava, et al. LimeOut: An Ensemble Approach To Improve Process Fairness, XKDD'20 @ECML-PKDD.

Davidson, et al. Automated hate speech detection and the problem of offensive language, ICWSM'17.

Lundberg, et al. A Unified Approach to Interpreting Model Predictions, NIPS'17, 4765–4774.

Ribeiro, *et al.* "Why Should I Trust You?": Explaining the Predictions of Any Classifier, *SIGKDD'16*, *1135–1144*.

LIME Explanations⁴

LIME: learns a linear $g \in \mathcal{G}$ on a neighborhood of x (to explain) by

$$g = argmin_{g' \in \mathcal{G}} \mathcal{L}(f, g', \pi_x) + \Omega(g')$$

for the distance $\mathcal{L}(f,g',\pi_{\mathsf{x}})$ of f and g' on the kernel π_{x}

Figure 1: Illustration of optimal kernel on the (interpretable) space

⁴Ribeiro, *et al.* "Why Should I Trust You?": Explaining predictions of any...

LIME Explanations

LIME: learns a model g on the neighborhood of an instance to explain

$$g(\hat{x}) = \hat{\alpha}_0 + \sum_{1 \leq i \leq d'} \hat{\alpha}_i \hat{x}_i,$$

where $\hat{\alpha}_i$ represents the contribution or importance of feature \hat{x}_i

Figure 2: Local explanation in case of Adult dataset (salary prediction)

SHAP Explanations⁵

Still: an additive feature attribution method, i.e., linear model

$$g(z) = \phi_0 + \sum_{1 \leq i \leq d'} \phi_i z_i,$$

where ϕ_i represents the contribution (importance) of interpretable feature z_i

SHAP: uses Shapley kernel π_x and thus estimation of Shapley values ϕ_i (coalitional game theory)

Figure 3: SHAP explanation in case of Adult dataset (salary prediction)

⁵Lundberg, et al. A Unified Approach to Interpreting Model Predictions...