6. Finite State Machines

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

Our New Machine

combinations

A Simple Sequential Circuit...

Lets make a digital binary Combination Lock:

Specification:

- One input ("0" or "1")
- One output ("Unlock" signal)
- UNLOCK is 1 if and only if:

Last 4 inputs were the "combination": 0110

Abstraction du jour: Finite State Machines

A FINITE STATE MACHINE has

- k STATES: S₁ ... S_k (one is "initial" state)
- m INPUTS: I₁ ... I_m
- n OUTPUTS: O₁ ... O_n
- Transition Rules: s'(s, I) for each state s and input I
- Output Rules: Out(s) or Out(s, I) for each state s and input I

Designing our lock ...

- Need an initial state; call it SX.
- Must have a separate state for each step of the proper entry sequence
- Must handle other (erroneous) entries

Valid State Diagrams

MOORE Machine: Outputs on States

MEALY Machine: Outputs on Transitions

Arcs leaving a state must be:

- (1) mutually exclusive
 - can't have two choices for a given input value
- (2) collectively exhaustive
 - every state must specify what happens for each possible input combination. "Nothing happens" means are back to itself.

State Transition Diagram as a Truth Table

IN Current State	Next State Unlock				
0 000 SX	SO 001 0				

UUU () ΣX ΣX 001 **S**0 $001 \, \Omega$ S0001 S0S01 011 S01 $001 \, \cap$ 011 S01 010 S011 S0110100 0 010 010 S011 000Ω 100 S0110 S0001 1 S0110 S01 100 011 1

The assignment of codes to states can be arbitrary, however, if you choose them carefully you can greatly reduce your logic requirements.

All state transition diagrams can be described by truth tables...

Binary encodings are assigned to each state (a bit of an art)

The truth table can then be simplified using the reduction techniques we learned for combinational logic

Now Put It In Hardware!

Trigger update periodically ("clock")

Discrete State, Discrete Time

Housekeeping Issues...

- 1. Initialization? Clear the memory?
- 2. Unused state encodings?
 - waste ROM (use gates)
 - what does it mean?
 - can the FSM recover?
- 3. Choosing encoding for state?
- 4. Synchronizing input changes with state update?

Now, that's a funny looking state machine

FSM States

1. What can you say about the number of states?

2. Same question:

3. Here's an FSM. Can you discover its rules?

What's My Transition Diagram?

- If you know NOTHING about the FSM, you're never sure!
- If you have a BOUND on the number of states, you can discover its behavior:

K-state FSM: Every (reachable) state can be reached in < k steps.

BUT ... FSMs may be equivalent!

FSM Equivalence

ARE THEY DIFFERENT?

NOT in any practical sense! They are EXTERNALLY INDISTINGUISHABLE, hence interchangeable.

FSMs are *EQUIVALENT* iff every input sequence yields identical output sequences.

ENGINEERING GOAL:

- HAVE an FSM which works...
- WANT <u>simplest</u> (ergo cheapest) equivalent FSM.

Let's Build a RoboAnt

- SENSORS: antennae L and R, each 1 if in contact with something.
- ACTUATORS: Forward Step F, ten-degree turns TL and TR (left, right).

GOAL: Make our ant smart enough to get out of a maze like:

STRATEGY: "Right antenna to the wall"

Lost In Space

Action: Go forward until we hit something.

"lost" is the initial state

Bonk!

Action: Turn left (CCW) until we don't touch anymore

A Little to the Right...

Action: Step and turn right a little, look for wall

Then a Little to the Left

Action: Step and turn left a little, till not touching (again)

Dealing With Outside Corners

Action: Step and turn right until we hit perpendicular wall

Equivalent State Reduction

Observation: two states are equivalent if

- 1. Both states have identical outputs; AND
- 2. Every input \Rightarrow equivalent states.

Reduction Strategy:

Find pairs of equivalent states, MERGE them.

An Evolutionary Step

Merge equivalent states Wall1 and Corner into a single new, combined state.

Behaves exactly as previous (5-state) FSM, but requires <u>half</u> the ROM in its implementation!

Building The Transition Table

			•			TL	
			-+-				
00	0	0	1	00	0	0	1
00	0	1	1	01	0	0	1
00	1	0	1	01	0	0	1
00	1	1		01	0	0	1
01	0	1	1	01	0	1	0
01	1	0	1	01	0	1	0
01	1	1	1	01	0	1	0

Implementation Details

Complete Transition table

S1'
$$S_1S_0$$
00 01 11 10
00 0 0 1 1 1

LR 01 0 0 1 1
11 0 0 0 1
10 0 0 0 1

 $S_1' = S_1 \overline{S_0} + \overline{L}S_1 + \overline{L}RS_0$

S0' S_1S_0
00 01 11 10
00 0 0 0 0

LR 01 1 1 1 1
11 1 1 1
10 1 1 1 0

 $S_0' = R + L\overline{S_1} + LS_0$

Ant Schematic

FSMs All the Way Down?

- More than ants: Swarming, flocking, and schooling can result from collections of very simple FSMs
- Perhaps most physics:
 Cellular automata, arrays of simple
 FSMs, can more accurately model
 fluids than numerical solutions to
 PDEs
- What if:
 We replaced the ROM with a RAM and have outputs that modify the RAM?
- ... You'll see FSMs for the rest of your life!

The World Doesn't Run on Our Clock!

What if each button input is an asynchronous 0/1 level?

But what about the dynamic discipline?

To build a system with asynchronous inputs, we have to break the rules: we cannot guarantee that setup and hold time requirements are met at the inputs!

So, we need a "synchronizer" at each input:

The Bounded-time Synchronizer

A classic problem

UNSOLVABLE

For NO finite values of t_E and t_D is this spec realizable, even with reliable components!

Synchronizer specifications:

- finite t_D (decision time)
- finite t_E (allowable error)
- value of S at time t_C+t_D:

1 if
$$t_{IN} < t_C - t_E$$

0 if $t_{IN} > t_C + t_E$
0, 1 otherwise

Unsolvable? That can't be true...

Let's just use a D Register:

We're lured by the digital abstraction into assuming that Q must be either 1 or 0. But let's look at the input latch in the flip flop when IN and CLK change at about the same time...

DECISION TIME is $T_{\rm PD}$ of register.

ALLOWABLE ERROR is $max(t_{SETUP}, t_{HOLD})$

Our logic:

 T_{PD} after T_{C} , we'll have

$$Q=1$$
 iff $t_{IN} + t_{SETUP} < t_{C}$

$$Q=0 \text{ iff } t_C + t_{HOLD} < t_{IN}$$

Q=0 or 1 otherwise.

The Mysterious Metastable State

Recall that the latch output is the solution to two simultaneous constraints:

1. The VTC of path thru MUX; and

$$2. V_{in} = V_{out}$$

In addition to our expected stable solutions, we find an unstable equilibrium in the forbidden zone called the "Metastable State"

Metastable State: Properties

- 1. It corresponds to an *invalid* logic level.
- 2. It's an *unstable* equilibrium; a small perturbation will cause it to move toward a stable 0 or 1.
- 3. It will settle to a valid 0 or 1... eventually.
- 4. BUT depending on how close it is to the $V_{in}=V_{out}$ "fixed point" of the device it may take arbitrarily long to settle out.
- 5. EVERY bistable system exhibits at least one metastable state!

If metastable at t_0 :

- p(metastable at t₀+T) > 0
 for finite T
- p(metastable at t₀+T) decreases exponentially with increasing T

Solution: Delay Increases Reliability

Extra registers between the asynchronous input and your logic are the best insurance against metastable states.

For higher clock rates, consider adding additional registers.

