

The overall goal of this course is for you to:

How to use the web as a platform for data collection, computation, and publishing. Accessing data via scraping and APIs. Using the cloud for tasks that are beyond the capability of your local computing resources

Admin stuff...

1) Class hours

T-Th: 11:00am – 12:30pm

2) Office hours: mostafa.mohamed@ubc.ca

By appointment SCI 200E

3) Class collaboration (in-class/out-of-class Class collaboration (in-class/out-of-class)

I encourage collaboration

3) Communication: Slack, email

Assessment	Weight	Deadline (where to submit)	Туре
Labs (4)	50%	Sunday at Noon (Canvas)	Individual
Project Proposal	10%	Third Week (Canvas)	Group
Group Project	40%	Last week, In-class presentation	Group

DATE	DAY	TOPIC	FORMAT	
09-Jan-2024	Tues	Introduction	In-Class	
11-Jan-2024	Thurs	Internet: protocol, HTML, CSS, Web scrapping	In-Class	
16-Jan-2024	Tues	APIs, JSON, and how the Internet works	In-Class	
18-Jan-2024	Thurs	Cloud computing platform in practice	In-Class	
23-Jan-2024	Tues	Parallel Computing, Map Reduce	In-Class	
25-Jan-2024	Thurs	Project's Time	Online	
30-Jan-2024	Tues	Apache Spark, NoSQL	In-Class	
01-Feb-2024	Thurs	Project's Time	Online	
06-Feb-2024	Tues	Final Project Presentation	In-Class	
08-Feb-2024	Thurs	Final Project Presentation	In-Class	

Labs

#	Topic
1	Web Scraping
2	API
3	AWS
4	Map Reduce

Project

MILESTONES:

MILESTONE	INFO	%
Project Proposal	Each team will submit one page document with details about their project.	
Project Presentation	Each team will have 10 minutes for the presentation and 2 min for Q&A.	
	 (1) Installable package in Windows, Mac, Linux, (2) Source code tested and documented, (3) Complete documentation and Vignettes (4) Individual Code Diary 	30

Cheating is strictly prohibited and is taken very seriously by UBC.

A guideline to what constitutes cheating:

- Labs
 - Submitting code produced by others.
 - Working in groups to solve questions and/or comparing answers to questions once they have been solved (except for group assignments).
 - Discussing HOW to solve a particular question instead of WHAT the question involves.

Academic dishonesty may result in a "F" for the course and removal from the MDS program.

Attend **every** class:

• Participate in class exercises and questions.

Attend and complete all labs:

• Labs practice the fundamental employable skills as well as being for marks.

Practice on your own. Practice makes perfect.

- There are a lot of documentation to read in order to set up everything needed for the labs. Before asking the TA, make sure you have read the documentation.
- Read the additional reference material and perform practice questions.

Systems and Tools

Course material is on Canvas.

Marks are distributed on Canvas. Demos will be uploaded on Canvas

Your laptop will be used to install all software and run programs.

The Project

Do you want to form the groups yourselves?

Project Info

The course objectives are to train students in:

- 1. Scraping data from websites
- 2. Accessing data using APIs where available
- 3. Understanding the different cloud computing architectures
- 4. Deploying tasks in the various cloud architectures

What is the Web?

What does the web have to do with data science?

- Emerging technology
- New programming model
- Is the future of computing
- Running application on very large data-sets

What computing solutions are currently available ?

Personal Computing

- Personal computing system
- Local software installation, maintenance
- Local system maintenance
- Customizable to user needs
- Very low utilization
- High up-front cost

Reconfigurable Computing

Field Programmable Gate Arrays (FPGAs)

- Reprogrammable Hardware
- Can exploit embarrassingly parallel code
- Slow programming time (ms)
- Power hungry

Mobile Computing

- You can use computing technology on the move
- **Since 1990s**
- Intermittent connectivity
- Limited Bandwidth
- Mobile device maturity

Water, gas, and electricity are provided to every home and business as commodity services

- You get connected to the utility companies' "public" infrastructure
- You get these utility services on-demand
- And you pay-as-you use

Utility Computing is doing same for computing resources (processing power, bandwidth, data storage, and enterprise software services)

Distributed Computing

- Using distributed systems to solve large problems.
- Distributed System: multiple autonomous computers connected through a communication network
- The system has a distributed memory where each processor has its private memory.
- Information exchanged using communication models, ex: MPI

Distributed Computing Contd...

Cluster Computing:

- Characteristics:
 - tightly coupled computers
 - single system image
 - Centralized Job management & scheduling system
- Better performance and availability and more cost- effectiveness over single computer with same capabilities
- Since 1987

Grid Computing:

- According to Gartner, "a grid is a collection of resources owned by multiple organizations that is coordinated to allow them to solve a common problem."
 - Characteristics: loosely coupled
 - no Single System Image
 - distributed Job Management & scheduling
- Originated early 1990s

Calculations of large problems are divided into smaller parts and carried out simultaneously/concurrently on different processors.

All have access to a **shared memory** that is used to exchange information between processors

Super Computing

Super Computing

- Thousands of processors
- Used for compute-intensive problems
- Days instead of Years!!!
- introduced in the 1960s

Ubiquitous and Pervasive Computing

Ubiquitous= "seeming to be in all places"

Pervasive= "present or noticeable in every part of a thing or place"

Information processing engaged in everyday's activities and objects.

Term used since 1980s

Different models but same vision:

• Small, inexpensive, robust devices distributed throughout everyday's life

Ubiquitous and Pervasive Computing

Cloud Computing

Cloud Computing

Think of it as Internet Computing

Computation done over the internet

Enabled through:

- High Bandwidth and High Speed Internet
- Utility Computing
- Virtualization
- •

Cloud Computing Services

Three basic services:

- Software as a Service (SAAS) model
 - Apps through browser
- Platform as a Service (PAAS) model
 - Delivery of a computing platform for custom software development as a service
- Infrastructure as a Service (IAAS) model
 - Deliver of computer infrastructure as a service
- XAAS, (the list continues to grow)

Some useful videos...

SaaS:

https://www.youtube.com/watch?v=kGUPSvswmY0&feature=related

Virtualization:

https://www.youtube.com/watch?v=p11lJOnALS4&feature=related

Cloud Computing:

https://www.youtube.com/watch?v=M988_fsOSWo

Summary

We looked at various computing frameworks

We learnt about application domains for cloud computing

Next Lecture

HTML, XML, CSS

Web Scraping

Some Demos

