Kha's Mock Ciphering Questions

Calculus AB Set 1 LaMA⊖ State Convention Thursday to Saturday March 26 - 28, 2020

Rules

- Two minutes are allotted for each question.
- All answers must be in exact, simplified form unless otherwise requested.
- Four points are awarded for answering the question correctly within one minute.
- Two points are awarded for answering correctly within two minutes.
- Good luck and have fun!

1. Find $\frac{d^5y}{dx^5}$, given that $y = 2x^5 + 19x^4 + 5x^3 + 7x^2 + 11x + 17$.

2. Evaluate $\lim_{k \to -2} \frac{3k^2 - 12}{\sqrt{2k + 4}}$.

3. Let $a(x) = x^4 + 3x^2 + 6$. Find the equation in slope-intercept form of the tangent line to a(x) when x = 2.

4. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$. If h = 3r and the radius is increasing at 2 inches per minute when the radius is 6 inches, find the rate of change of volume at that time.

5. The position of a particle at time t is given by $x(t) = x^4 + \frac{8}{3}x^3 + 2x^2 + 8x$. Find the interval(s) where the particle speeds up.

6. Suppose there is a function such that:

$$T(x) = \begin{cases} \frac{\pi}{2} \ln \frac{\pi}{4} \cdot (\log_{\frac{\pi}{4}} x - 1) + \alpha & \text{if } x \leq \frac{\pi}{4} \\ \beta \tan x & \text{if } x > \frac{\pi}{4} \end{cases}$$

 α and β are integer constants that make T(x) continuous and differentiable. Find $\alpha + \beta$.

7. The generalized mean value theorem states that if f and g are differentiable on [a,b], then there is some $c \in (a,b)$ such that:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

If $f(x) = x^2 + 7x + 4$ and $g(x) = x^2 - 3x + 5$, what is the value of c guaranteed by the generalized mean value theorem on [0, 1]?

8. Let $f^{-1}(x) = g(x)$ be the inverse function of f(x). Using the information from the table below, find g'(3).

X	f(x)	g(x)	f'(x)
4	3	6	5
$\frac{4}{5}$	7	9	2
6	4	8	8
7	2	5	7

9. Suppose $f(x) = x^2 + x$. Approximate the area between f(x) and the x-axis from x = 0 to x = 2 using a trapezoidal sum with 4 equal subdivisions.

10. Suppose $0 < k < h < a < \pi$. If $\int_a^k f(x) dx = -2$ and $\int_h^k f(x) dx = 9$, find $\int_a^h f(x) dx$.

Answers

- **1.** 240
- **2.** 0
- 3. y = 44x 54
- 4. 216π inches³ per minute
- **5.** $(-2,-1) \cup (-\frac{1}{3},\infty)$
- **6.** 2
- 7. $\frac{1}{2}$
- 8. $\frac{1}{5}$
- **9.** $\frac{19}{4}$
- **10.** −11

Solutions

1. Find $\frac{d^5y}{dx^5}$, given that $y = 2x^5 + 19x^4 + 5x^3 + 7x^2 + 11x + 17$.

Ans: 240

You only have to differentiate $2x^5$ because the other terms will eventually become 0 after iterated differentiation. It will become $2 \cdot 5!$ or 240.

2. Evaluate $\lim_{k \to -2} \frac{3k^2 - 12}{\sqrt{2k + 4}}$.

Ans: 0

Plugging in -2 returns indeterminate form. Apply L'Hospital's rule.

3. Let $a(x) = x^4 + 3x^2 + 6$. Find the equation in slope-intercept form of the tangent line to a(x) when x = 2.

Ans: y = 44x - 54

Use the point-slope formula where the point =(2, a(2)) and slope =a'(2).

4. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$. If h = 3r and the radius is increasing at 2 inches per minute when the radius is 6 inches, find the rate of change of volume at that time.

Ans: 216π inches³ per minute

We have to make a choice to use either r or h in our primary function. We do not know h', but we do know r'. Because of this, we put V in terms of r. You get $V = \pi r^3$. From there, differentiate and plug in values. **5.** The position of a particle at time t is given by $x(t) = x^4 + \frac{8}{2}x^3 + 2x^2 + 8x$. Find the interval(s) where the particle speeds up.

Ans:
$$(-2, -1) \cup (-\frac{1}{3}, \infty)$$

A particle speeds up when its velocity and acceleration have the same sign. We need to perform the first and second derivative test on x(t).

$$x'(t) = 4x^3 + 8x^2 + 4x + 8$$

$$x'(t) = 4x(x^2 + 1) + 8(x^2 + 1)$$

$$x'(t) = (x^2 + 1)(4x + 8) = 0$$

x'(t) is positive on $(-2, \infty)$ and negative on $(-\infty, -2)$.

$$x''(t) = 12x^2 + 16x + 4$$

$$x''(t) = 4(3x^2 + 4x + 1)$$

$$x''(t) = 4(3x+1)(x+1) = 0$$

x''(t) is positive on $(-\infty, -1) \cup (-\frac{1}{3}, \infty)$ and negative on $(-1, -\frac{1}{3})$.

x'(t) and x''(t) share the same sign on $(-2, -1) \cup (-\frac{1}{3}, \infty)$.

6. Suppose there is a function such that:

$$T(x) = \begin{cases} \frac{\pi}{2} \ln \frac{\pi}{4} \cdot (\log_{\frac{\pi}{4}} x - 1) + \alpha & \text{if } x \leq \frac{\pi}{4} \\ \beta \tan x & \text{if } x > \frac{\pi}{4} \end{cases}$$

 α and β are integer constants that make T(x) continuous and differentiable. Find $\alpha + \beta$.

Ans: 2

Set
$$\lim_{x \to \frac{\pi}{4}^-} T(x) = \lim_{x \to \frac{\pi}{4}^+} T(x)$$
 and $\lim_{x \to \frac{\pi}{4}^-} T'(x) = \lim_{x \to \frac{\pi}{4}^+} T'(x)$.

The first equation results in

$$\frac{\pi}{2}\ln\frac{\pi}{4}\cdot(\log\frac{\pi}{4}\frac{\pi}{4}-1)+\alpha=\beta\tan\frac{\pi}{4}$$

$$\frac{\pi}{2} \ln \frac{\pi}{4} \cdot (1-1) + \alpha = \beta \cdot 1$$

$$\frac{1}{2} \ln \frac{\pi}{4} \cdot (\log \frac{\pi}{4} + 1) + \alpha = \frac{\pi}{2} \ln \frac{\pi}{4} \cdot (1 - 1) + \alpha = \beta \cdot 1$$

$$\frac{\pi}{2} \ln \frac{\pi}{4} \cdot (0) + \alpha = \beta$$

$$\alpha = \beta$$

$$\alpha = \beta$$

The second equation results in

$$\frac{\pi}{2} \ln \frac{\pi}{4} \cdot \left(\frac{1}{\ln \frac{\pi}{4} \cdot \frac{\pi}{4}} \right) = \beta \sec^2 \frac{\pi}{4}$$

$$2=2\beta$$

$$\beta = 1$$

$$\alpha = \beta = 1$$
, so $\alpha + \beta = 2$.

7. The generalized mean value theorem states that if f and g are differentiable on [a, b], then there is some $c \in (a, b)$ such that:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

If $f(x) = x^2 + 7x + 4$ and $g(x) = x^2 - 3x + 5$, what is the value of c guaranteed by the generalized mean value theorem on [0, 1]?

Ans: $\frac{1}{2}$

Plug in 0 and 1 into their respective positions in the formula.
$$[f(1) - f(0)]g'(c) = [g(1) - g(0)]f'(c)$$

$$[12 - 4](2c - 3) = [3 - 5](2c + 7)$$

$$16c - 24 = -4c - 14$$

$$c = \frac{1}{2}.$$

8. Let $f^{-1}(x) = g(x)$ be the inverse function of f(x). Using the information from the table below, find g'(3).

х	f(x)	g(x)	f'(x)
4	3	6	5
4 5	7	9	2
6	4	8	8
7	2	5	7

Ans: $\frac{1}{5}$

We know that
$$f(g(x)) = x$$
. Differentiate this to obtain $f'(g(x)) \cdot g'(x) = 1$. Plug in 3. $f'(g(3)) \cdot g'(3) = 1$. Note: $g(3) = 4$ because $f(3) = 4$ $f'(4) \cdot g'(x) = 1$ $5 \cdot g'(3) = 1$ $g'(3) = \frac{1}{5}$

9. Suppose $f(x) = x^2 + x$. Approximate the area between f(x) and the x-axis from x = 0 to x = 2 using a trapezoidal sum with 4 equal subdivisions.

Ans:
$$\frac{19}{4}$$

Each trapezoid has equal height of
$$\frac{1}{2}$$
, so we can just calculate $\frac{1}{2} \cdot \frac{1}{2} \cdot (f(0) + 2f(\frac{1}{2}) + 2f(1) + 2f(\frac{3}{2}) + f(2))$, which equals $19/4$.

10. Suppose $0 < k < h < a < \pi$. If $\int_a^k f(x) dx = -2$ and $\int_h^k f(x) dx = 9$, find $\int_a^h f(x) dx$.

Ans: -11

Integral properties. Since
$$0 < k < h < a < \pi$$
:
$$\int_k^h f(x) dx + \int_h^a f(x) dx = \int_k^a f(x) dx.$$
$$- \int_h^k f(x) dx - \int_a^h f(x) dx = - \int_a^k f(x) dx$$
$$\int_h^k f(x) dx + \int_a^h f(x) dx = \int_a^k f(x) dx$$
$$9 + \int_a^h f(x) dx = -2$$
$$\int_a^h f(x) dx = -11$$
You can also solve intuitively with a diagram/graph.