Tercer Parcial

Análisis funcional

Instrucciones

- Total de puntos 10/10.
- Trabajo en equipos de hasta 3 personas.
- Entrega martes 22 de julio, 11:59pm, enviar archivo por correo a ogrianoc@unal.edu.co.
- No habrá sesiones de dudas ni entregas parciales: deben resolver los ejercicios con los apuntes y la bibliografía propia.
- Se espera que todo el desarrollo sea resultado de su trabajo autónomo y riguroso.

Problema 1 (3/10)

Dado $u \in L^2((0,1))$, definimos el operator $T: L^2((0,1)) \to L^2((0,1))$ por

$$Tu(x) = \int_0^x t \, u(t) \, dt.$$

- (a) (1 punto) Demuestre que $T \in \mathcal{K}(L^2((0,1)))$. (Esto incluye mostrar que es un operador acotado).
- (b) (1 punto) Determine EV(T) y $\sigma(T)$.
- (c) (0.5 puntos) ¿Se puede escribir explícitamente $(T \lambda I)^{-1}$ cuando $\lambda \in \rho(T)$?
- (d) (**0.5 puntos**) Encuentre T^* .

Problema 2 (7/10)

Consideraciones preliminares. Sea H un espacio de Hilbert separable y $\mathcal{J} \subseteq \mathbb{R}$ un intervalo abierto. $C(\mathcal{J}; H)$ denota el espacio de todas las funciones $u : \mathcal{J} \to H$ que son continuas, es decir, para todo $t \in \mathcal{J}$, se tiene que

$$\lim_{t' \to t} ||u(t) - u(t')||_H = 0.$$

Por otro lado, denotamos por $C^1(\mathcal{J}; H)$ como el conjunto de las funciones $u \in C(\mathcal{J}; H)$ para las cuales

$$u'(t) = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h}$$

existe para todo $t \in \mathcal{J}$ (el límite anterior se toma en H) y $u'(t) \in C(\mathcal{J}; H)$. Luego, podemos definir $u \in C^2(\mathcal{J}; H)$ como la clase de funciones u para las cuales $u' \in C^1(\mathcal{J}; H)$. De manera recursiva se define $C^k(\mathcal{J}; H)$, para enteros k > 1.

Note que, definiendo derivadas laterales, podemos considerar el espacio $C^k(\mathcal{J}; H)$ donde \mathcal{J} un intervalo cerrado.

(a) (1.5 puntos) Sea $k \ge 0$ entero. Suponga que el intervalo $\mathcal J$ cerrado y acotado. Muestre que $C^k(\mathcal J;H)$ es un espacio de Banach con la norma

$$||u||_{C^k} = \sum_{l=0}^k \sup_{t \in \mathcal{J}} ||u^{(l)}(t)||_H,$$

donde $u^{(l)}$ denota la l-ésima derivada de $u, l = 0, \dots, k$.

(b) (1.5 puntos) Sean $a, b \in \mathbb{R}$ con a < b. Dada una función $F \in C([a, b]; H)$, muestre que podemos definir la integral $\int_a^b F(\tau) d\tau \in H$ como límite de sumas de Riemann en H. Además, se sigue que

$$\left\| \int_a^b F(\tau) \, d\tau \right\|_H \le \int_a^b \|F(\tau)\|_H \, d\tau.$$

Más precisamente, sea $\mathcal{Z} = \{t_0, t_1, \dots, t_n\}$ una partición del intervalo [a, b] dada por $t_0 = a < t_1 < \dots < t_{n-1} < t_n = b$. Muestre que las sumas de Riemann $S(f, \mathcal{Z}) = \sum_{j=1}^n F(t_j^*)(t_j - t_{j-1})$ donde $t^* \in [t_{j-1}, t_j]$ convergen a un límite en H, que denotaremos como la integral, cuando el tamaño de la partición $|\mathcal{Z}| = \max_{j=1,\dots,n} |t_j - t_{j-1}|$ tiende a cero.

(c) (4 puntos) Sea $A \in \mathcal{K}(H)$ un operador autoadjunto tal que $A \geq 0$ (es decir, $(Ax, x) \geq 0$ para todo $x \in H$). Sea $F \in C([0, \infty), H)$. Dado $u_0 \in H$, considere el problema de Cauchy para la ecuación del calor abstracta con termino forzante

(1)
$$\begin{cases} u'(t) = -Au(t) + F(t), & t \in (0, \infty), \\ u(0) = u_0. \end{cases}$$

(c.1) (2 puntos) Suponga que F = 0. Utilizando el cálculo funcional, que es válido por el teorema espectral (recuerde que A es compacto y autoadjunto) defina el operador e^{-tA} y muestre que

$$u(t) = e^{-tA}u_0, \quad t > 0,$$

es solución de (1) con F=0 y que $u\in C^1((0,\infty),H)$. ¿Es posible concluir que $u\in C^k((0,\infty),H)$ para todo $k\geq 1$ y además

$$\sup_{t>0} \|u(t)\|_H < \infty?$$

(c.2) (2 puntos) Muestre que en el caso general (F no necesariamente nula), la función

$$u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-\tau)A}F(\tau) d\tau,$$

pertenece a $C^1((0,\infty),H)$ es solución de la ecuación en (1). ¿Bajo qué condiciones sobre F puede concluir que para un $k \geq 1$ entero dado, $u \in C^k((0,\infty),H)$ y además

$$\sup_{t\geq 0} \|u(t)\|_H < \infty?$$