

Hartree-Fock Stability and its Relation to Strong Correlation

Evan Curtin

November 2, 2017

University of Illinois at Urbana-Champaign

Table of contents

- 1. Background Information
- 2. Hartree-Fock Stability
- 3. Homogeneous Electron Gas
- 4. Results
- 5. Future Directions

Background Information

The Molecular Electronic S.E. in the Born-Oppenheimer approximation

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{elec-elec}\right)\Psi = E_{exact}\Psi$$

The Molecular Electronic S.E. in the Born-Oppenheimer approximation

$$\left(\hat{T}_{\textit{elec}} + \hat{V}_{\textit{elec-nuc}} + \hat{V}_{\textit{elec-elec}}\right)\Psi = E_{\textit{exact}}\Psi$$

• in Hartree-Fock theory is replaced by

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{mean-field}\right)\Psi = E_{HF}\Psi$$

The Molecular Electronic S.E. in the Born-Oppenheimer approximation

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{elec-elec}\right)\Psi = E_{exact}\Psi$$

in Hartree-Fock theory is replaced by

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{ootnotesize{mean-field}}
ight)\Psi = E_{HF}\Psi$$

the difference between the two energies is the correlation energy

$$E_{corr} = E_{exact} - E_{HF}$$

The Molecular Electronic S.E. in the Born-Oppenheimer approximation

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{elec-elec}\right)\Psi = E_{exact}\Psi$$

• in Hartree-Fock theory is replaced by

$$\left(\hat{T}_{elec} + \hat{V}_{elec-nuc} + \hat{V}_{rac{mean-field}{}}
ight)\Psi = E_{HF}\Psi$$

the difference between the two energies is the correlation energy

$$E_{corr} = E_{exact} - E_{HF}$$

 The correlation energy is recovered by post Hartree-Fock methods (CC, MBPT) which perform better the closer the HF solution is to the exact.

Hartree-Fock Theory is Almost Always Restricted

Method	Spinorbital	DoF	Eigenfunction of
Restricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\beta(\sigma)$	N/2	\hat{S}^2 , \hat{S}_z
Unrestricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)$	N	\hat{S}_z
General	$\chi_{j}(\vec{r},\sigma) = \sum_{i=1}^{N} [c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma) + c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)]$	2N	Neither

Case Study: H₂ Dissociation

Project Questions

• How can we improve our HF solutions?

Project Questions

- How can we improve our HF solutions?
- Does this actually help in finding the exact energy?

Project Questions

- How can we improve our HF solutions?
- Does this actually help in finding the exact energy?
- Apply to systems (known molecules, periodic systems)

Hartree-Fock Stability

• Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- This not the case if any Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- This not the case if any Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

Where

$$A_{ia,jb} = \langle {}_{i}^{a}|H - E_{0}|_{j}^{b} \rangle = (\epsilon_{a} - \epsilon_{i}) \delta_{ij}\delta_{ab} + \langle aj||ib\rangle$$

$$B_{ia,jb} = \langle {}_{ij}^{ab}|H - E_{0}|0\rangle = \langle ab||ij\rangle.$$
(2)

The Matrix Equation Factorizes

Solution Type	Space Type					
	Real RHF	Complex RHF	Real UHF	Complex UHF	Real GHF	Complex GHF
Real RHF	$^{1}\mathbf{A}^{\prime}+{}^{1}\mathbf{B}^{\prime}$	$^{1}A^{\prime}-{}^{1}B^{\prime}$	${}^{3}\mathbf{A}' + {}^{3}\mathbf{B}'$	${}^{3}A' - {}^{3}B'$	${}^{3}A' + {}^{3}B'$	${}^{3}A' - {}^{3}B'$
Complex RHF	-	¹ H′	-	³ H ′	-	³ H′
Real UHF	-	-	$\mathbf{A}'+\mathbf{B}'$	$\mathbf{A}' - \mathbf{B}'$	$\mathbf{A}''+\mathbf{B}''$	$\mathbf{A}'' - \mathbf{B}''$
Complex UHF	-	-	-	H'	-	H'
Real GHF	-	-	-	-	A-B	A-B
Complex GHF	-	-	-	-	-	Н

Table reproduced from Seeger & Pople 1

Homogeneous Electron Gas

Brief Overview

- Homogeneous Electron Gas (HEG) model, also known as Uniform Electron Gas or Jellium Model.
- Characterized by r_s , inversely proportional to density
- \bullet Electrons in a box with "smeared" nuclei \rightarrow uniform positive background charge
- The total charge is constrained to be neutral,

$$V_{bg}(\mathbf{r}) = \sum_{i} \frac{-Ze^2}{|\mathbf{r} - \mathbf{R_i}|} \to -e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|},\tag{3}$$

and the background and coulomb terms cancel exactly,

$$V_{ee} = e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}.$$
 (4)

Brief Overview

The discretized solutions are given by,

$$\epsilon_{\vec{k}} = \frac{\hbar^2 k^2}{2m} - \sum_{\vec{k'}}^{|\vec{k'}| < k_f} \langle \vec{k}, \vec{k'} | \vec{k'}, \vec{k} \rangle \tag{5}$$

Where the 2D and 3D two electron integral is given by

$$\langle \vec{k}, \vec{k}' | \vec{k}'', \vec{k}''' \rangle = \begin{cases} \frac{\pi}{V} \frac{2^{D-1}}{|\vec{k} - \vec{k}''|^{D-1}} & \vec{k}''' = \vec{k} + \vec{k}' - \vec{k}'' \\ 0 & \text{else} \end{cases}$$

• In 1D, if $V(r_{12}) = V_0 \delta(r_{12})$,

$$\langle k, k' | k'', k''' \rangle = \begin{cases} V_0 ; & k''' = k + k' - k'' \\ 0 ; & \text{else} \end{cases}$$
 (6)

Exact Results

• Can we use the HF-Stability analysis to determine where the HEG is unstable?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.
- Can we show this numerically?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the GHF solution persists at all densities for the HEG¹.
- Can we show this numerically?
- (Future) Can we find a lower energy GHF solution to reduce "correlation energy"?

Results

Stability Curves

Convergence of Stability Curves

Dependence on r_s

# Dimensions	Instability r_s	Literature	
1	0.15	01	
2	0.95	0.82	
3	3.0	3.0^{3}	

⁽¹⁾ Overhauser, A. W. Phys. Rev. 1962, 128 (3), 14371452.

⁽²⁾ Bernu, B.; Delyon, F.; Holzmann, M.; Baguet, L. Phys. Rev. B 2011, 84 (11), 115115.

⁽³⁾ Baguet, L.; Delyon, F.; Bernu, B.; Holzmann, M. Phys. Rev. B 2014, 90 (16), 165131.

Future Directions

Find the lowest energy GHF solution

(1) Ohno, K. Chem. Rec. 2016, 16 (5), 21982218. (2) Supady, A.; Blum, V.; Baldauf, C. J. Chem. Inf. Model. 2015, 55 (11), 23382348.

- Find the lowest energy GHF solution
- Use algorithms inspired by similar problems (atomic configuration)

⁽¹⁾ Ohno, K. Chem. Rec. 2016, 16 (5), 21982218.

- Find the lowest energy GHF solution
- Use algorithms inspired by similar problems (atomic configuration)
- Global Reaction Route Mapping (GRRM) / Anharmonic Downard Distortion (ADD)¹

- Find the lowest energy GHF solution
- Use algorithms inspired by similar problems (atomic configuration)
- Global Reaction Route Mapping (GRRM) / Anharmonic Downard Distortion (ADD)¹
- Genetic Algorithm²

Anharmonic Downard Distortion

Replace atomic coordinates with MO coefficients and vibrational information with MO eigenvalues/vectors

Genetic Algorithm

Genetic Algorithm promising in finding many low energy solutions

Proposal: Genetic Algorithm

- Use as the gene the density matrix / MO coefficients
- Less human input
- Less dependence on underlying PES structure
- How the HF solution gets found is irrelevant

Concluding Remarks

- Paramagnetic HEG instabilities are successfully reproduced by the MO hessian approach
- HF Stability analysis can show when restrictions should be lifted
- It is feasible that even stable HF are not global minimum
- Other approaches should be used to find even lower energy HF solutions
- Inspiration from similar problems could help; GRRM or Genetic Algorithms

Iterative Subspace Eigenvalue

Methods

Davidson's Algorithm

$$\begin{array}{lll} \mathbf{A}\mathbf{x} = \lambda\mathbf{x} & & \text{Eigenvalue Problem} \\ \mathbf{V} = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_M}] & & \text{Guess vectors} \\ \mathbf{\tilde{A}} = \mathbf{V}^\dagger \mathbf{A} \mathbf{V} & & \text{Transform into subspace} \\ \mathbf{\tilde{A}} \mathbf{\tilde{x}} = \tilde{\lambda} \mathbf{\tilde{x}} & & \text{Solve the subspace problem} \\ \mathbf{x_i} \approx \mathbf{x}_i^R = \mathbf{V} \mathbf{\tilde{x}}_i & & \text{Approximate eigenvectors} \\ \lambda_i \approx \lambda_i^R = \tilde{\lambda}_i & & \text{Approximate eigenvalues} \\ \mathbf{r}_i = (\mathbf{A} - \lambda_i \mathbf{I}) \, \mathbf{x}_i^R & & \text{Calculate the residue} \\ \delta_i = c_i \mathbf{r}_i & & \text{Correction vectors} \\ c_i = \frac{1}{\lambda_i \mathbf{I} - \mathbf{D}} & & \text{Diagonal Precondition} \\ \mathbf{V} = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_M}, \delta_1, \delta_2, ..., \delta_I] & & \text{Append to guess and restart} \\ \mathbf{V} = orthonormalized(\mathbf{V}) & & \text{Ensure orthonormal projection} \\ \end{array}$$

Eigenvalue Problem

Correction vectors

Guess vectors

- 1. Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
- 2. Davidson, E. R. J. Comput. Phys. 1975, 17 (1), 8794.

• The convergence of these subspace algorithms depends on:

Saad, Y. Numerical Methods for Large Eigenvalue Problems; SIAM, 2011.
 Li, R.-C.; Zhang, L.-H. Convergence of Block Lanczos Method for Eigenvalue Clusters; 2013.

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy
 - The approximate eigenvectors become non-orthogonal

- The convergence of these subspace algorithms depends on:
 - Number of eigenvalues requested
 - The block size of the algorithm
 - The density of the eigenvalue spectrum
 - The initial guess eigenvectors
 - The preconditioner (Davidson only)
- They can have convergence issues if:
 - The block size is too small compared to degeneracy
 - The approximate eigenvectors become non-orthogonal
- My recommendation for guess eigenvectors is

$$v_j^{(i)} = normalize\left(\frac{1}{|A_{ii} - A_{ij}| + 1}\right). \tag{7}$$

Davidson Scaling

- Davidson is Asymptotically quadratic.
- Full diagonalization is almost cubic.
- Matrix multiplication is order¹ $log_2(7) \approx 2.807$

Orthogonalization

ullet The condition number, κ , is bound from below by

$$\kappa \ge \frac{Max(A_{ii})}{Min(A_{jj})} \tag{8}$$

• The Gram-Schmidt procedure has numerical issues,

$$||\mathbf{I} - \mathbf{Q}^{\mathsf{T}} \mathbf{Q}|| \le \frac{\alpha \kappa^2}{1 - \beta \kappa^2}.$$
 (9)

Modified Gram-Schmidt is better, but not perfect,

$$||\mathbf{I} - \mathbf{Q}^\mathsf{T} \mathbf{Q}|| \le \frac{\gamma \kappa}{1 - \eta \kappa}$$
 (10)

May need multiple orthogonalization steps