Power series #definition

$$\sum_{n=0}^\infty a_n (x-a)^n$$

Where a_n does not depend on x is called a power series in the neighborhood of a

Convergence domain(interval) #definition

Convergence domain is a set X such that:

$$orall I \subseteq X: \sum_{n=0}^\infty f_n(x) ext{ converges pointwise on } I$$

Convergence domain of a power series #lemma

Convergence domain of $\sum_{n=0}^{\infty} a_n (x-a)^n$ can be one of three options:

1.
$$\mathbb{R}$$
, for example $\sum_{n=0}^{\infty} \frac{x^n}{n!}$

2.
$$\{a\}$$
, for example $\sum_{n=0}^{\infty} n! x^n$

3. Interval, that is symmetric around a

Convergence radius #lemma

Let
$$R \in \mathbb{R} : \sum_{n=0}^{\infty} a_n (x-a)^n$$
 converges on $(a-R,a+R)$ and diverges if $x \in (-\infty,a-R) \cup (a+R,\infty)$
 R is then called a convergence radius of power series And there are no "holes" in the convergence domain Note: endpoints of convergence might be included or excluded

Proof:
Let
$$b \in (a-R, a+R)$$

Let $|c-a| < |b-a|$
Let $\sum_{n=0}^{\infty} a_n (b-a)^n$ converges

$$\sum_{n=0}^{\infty} |a_n (c-a)^n| = \sum_{n=0}^{\infty} a_n (c-a)^n \frac{(b-a)^n}{(b-a)^n} =$$

$$= \sum_{n=0}^{\infty} |a_n (b-a)^n| \cdot \frac{c-a}{b-a}^n$$

$$a_n (b-a)^n \xrightarrow[n \to \infty]{} 0$$

$$\Rightarrow |a_n (b-a)^n| \xrightarrow[n \to \infty]{} 0 \Rightarrow \forall n > N : |a_n (b-a)^n| < 1$$

$$\forall n > N : |a_n (b-a)^n| \cdot \frac{c-a}{b-a}^n < \frac{c-a}{b-a}^n$$

$$\frac{c-a}{b-a} < 1 \Rightarrow \sum_{n=0}^{\infty} \frac{c-a}{b-a}^n \text{ converges}$$

$$\Rightarrow \sum_{n=0}^{\infty} |a_n (b-a)^n| \cdot \frac{c-a}{b-a}^n \text{ converges}$$

$$\Rightarrow \sum_{n=0}^{\infty} |a_n (c-a)^n| \text{ converges} \Rightarrow$$

Determining convergence radius

$$\operatorname{Let} \sum_{n=0}^{\infty} a_n (x-a)^n$$

$$\operatorname{Let} L = \lim_{n \to \infty} \frac{a_{n+1} (x-a)^{n+1}}{a_n (x-a)^n} =$$

$$= \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \cdot |x-a| = |x-a| \cdot \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

$$\operatorname{Let} t = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

$$t \cdot |x-a| < 1 \implies \operatorname{Series converges}$$

$$t \cdot |x-a| > 1 \implies \operatorname{Series diverges}$$

$$\implies \operatorname{Series converges} \iff |x-a| < \frac{1}{t}$$

$$\implies R = \frac{1}{t} = \frac{1}{\lim_{n \to \infty} \frac{a_{n+1}}{a_n}}$$
Note:

We can also write $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0 \implies R = \infty$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \infty \implies R = 0$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \infty \implies R = 0$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \implies ?$$

$$\sum_{n=0}^{\infty} rac{(-1)^n}{(2n)!} x^{2n} \ a_n = egin{cases} 0 & n=2k-1 \ rac{(-1)^n}{(2n)!} & n=2k \end{cases}$$
 $???$ Let $t=x^2$

$$\sum_{n=0}^{\infty} rac{(-1)^n}{(2n)!} t^n$$

$$R=\lim_{n o\infty}rac{1}{2n+1}=0$$