EXERCISE SHEET 1

ANDREI NEGUT

- 1. Calculate $\operatorname{Hilb}_n(\mathbb{P}^1)$.
- 2. Compute $\operatorname{Tan}_{\mathscr{I}}(\operatorname{Hilb}(S))$ for S a smooth surface and \mathscr{I} a finite-colength ideal. Prove that if S is a K3 surface, then $\operatorname{Hilb}(S)$ is a holomorphic symplectic manifold.
- 3. Suppose that operators $A^*(\text{Hilb}) \xrightarrow{a_n} A^*(\text{Hilb} \times S)$ satisfy the following (Heisenberg) relation:

$$[a_n, a_{n'}] = n\delta^0_{n+n'} \Delta_* \Pi^*.$$

Compute

$$[a_n a_m(\Delta), a_{n'} a_{m'}(\Delta)].$$

What is the algebra generated by the operators

$$a_n a_m(\Delta): A^*(Hilb) \rightarrow A^*(Hilb)$$
?