1 Compute Gershgorin Disks

Compute the Gershgorin disks of the following matrices and denote the matrices which necessarily have positive eigenvalues:

$$A = \begin{pmatrix} 14 & 10 & 8 \\ 10 & 14 & 8 \\ 8 & 8 & 6 \end{pmatrix}, B = \begin{pmatrix} 10 & 1 & 5 \\ 1 & 17 & 5 \\ 5 & 5 & 25 \end{pmatrix}, C = \begin{pmatrix} 5 & 1 & 3 \\ 1 & -2 & -3 \\ 3 & -3 & -6 \end{pmatrix}.$$

Solution:

• $a_{11} = 14$, $R_1 = 18$ $a_{22} = 14$, $R_2 = 18$ $a_{33} = 6$, $R_3 = 16$

Based on Gershgorin discs we cannot say wether A is positive definite.

- $b_{11} = 10$, $R_1 = 6$ $b_{22} = 17$, $R_2 = 6$ $b_{33} = 25$, $R_3 = 10$ A is positive definite.
- $c_{11} = 5$, $R_1 = 4$ $c_{22} = -2$, $R_2 = 4$ $c_{33} = -6$, $R_3 = 9$

Based on Gershgorin discs we cannot say wether A is positive definite.