3) Metada Newton-Raphson:

La fiecare pas
$$m \ge 1$$
, grazimarea x_m se alitine prim intersectia cu asa O_x a tangentai la graficul funcției f

$$\widehat{\mathcal{L}}_{m-1}, \widehat{\mathcal{L}}_{m-1})$$

$$\widehat{\mathcal{L}}_{m-1}$$

$$\widehat{\mathcal{L}}_{m-1}$$

$$\widehat{\mathcal{L}}_{m-1}$$

$$\widehat{\mathcal{L}}_{m-1}$$

$$\widehat{\mathcal{L}}_{m-1}$$

$$=) O = \rho(\mathcal{X}_{m-1}) + \rho'(\mathcal{X}_{m-1})(\mathcal{X}_m - \mathcal{X}_{m-1})$$

Em = { y = 0} () {y=p(x_m-1)+p'(x_m-1)(x-x_m-1)}

$$=) \quad \mathcal{X}_{m} = \mathcal{X}_{m-1} - \frac{\mathcal{L}(\mathcal{X}_{m-1})}{\mathcal{L}'(\mathcal{X}_{m-1})} \quad \forall m \geq 1$$

· Tearona (Comergento metadei Neuton-Parlison) Fie PEE2 ([a, e]) cu pa). Pa) <0 Daca x * e (0, l) a.2. P(x*) = 0 s p'(x*) ≠0, 7 S>0 o. c. sirul definit de metoda Neuton-Ranson: $\left\{ \mathscr{Z}_{o} \in \left[\mathscr{Z}^{*} - S, \mathscr{Z}^{*} + S \right] \right\}$ $\mathcal{Z}_{m} = \mathcal{Z}_{m-1} - \frac{\mathcal{L}(\mathcal{Z}_{m-1})}{\mathcal{L}'(\mathcal{Z}_{m-1})}$ Comerge catro xº cu vitera patratica. Demonstratie: Definim Punctio de punct Pire $\Phi: \Gamma_0, Q \supset \mathbb{R}, \Phi(x) = x - \frac{Q(x)}{Q'(x)}$ Ols. cā p(x*)=0 (=) \$\Phi(x*) = x* Cum p'(x*) to si p' & 6"([0, Q]), 3 Sy >0 a.ê. P'(x) +0 Yx e[x-S, x+S,] Postrictioner domaniel lui I la $\Phi : [x^* - S_1, x^* + S_1] \longrightarrow \mathbb{R}$

$$\Phi'(x) = 1 - \frac{\rho'(x)^2 - \rho(x)\rho''(x)}{\rho'(x)^2} = \frac{\rho(x)\rho''(x)}{\rho'(x)^2}$$

$$=) \Phi'(x^*) = 0 \quad \text{Gum } \Phi' \in \mathcal{C}'(x^* - s_1, x^* + s_1]$$

$$\exists 0 < S \leq S_1 \quad a. 1.$$

$$|\Phi'(x)| = |\Phi'(x) - \Phi'(x^*)| \leq l < 1,$$

$$\forall x \in [x^* - s, x^* + s_1]$$

$$[astrictionand domonial lui Φ la$$

$$\Phi: [x^* - s, x^* + s_1] \longrightarrow R,$$

$$arat \quad ca \quad \Phi([x^* - s, x^* + s_1]) \subseteq [x^* - s, x^* + s_1]$$

$$\text{Fix } x \in [x^* - s, x^* + s_1].$$

$$|\Phi(x) - x^*| = |\Phi(x) - \Phi(x^*)| = |\Phi'(x)| = |\Phi'(x)| = |\Phi'(x)|$$

$$= l \cdot |x - x^*| < |x - x^*| < s.$$
Prin urmane, Φ satisfoce instacle
toronei ob punct $P(x)$ perture Φ

$$\text{vitora} \quad de \quad \text{convergento} \quad \text{patrotica} \quad \Box$$

Q: be no facem cand arem
$$f'(x^*) = 0?$$
• Definiție

O radacina $x^* \in \mathbb{R}$ a ecuației
$$\rho(x) = 0 \text{ s.m. radacina cu multiplici-}$$
tate $m \in \mathbb{N}^*$ doca
$$\begin{cases} i) \ \rho(x) = (x - x^*)^m \ \rho(x). \end{cases}$$

$$(ii) \ q(x^*) \neq 0$$

$$xau, adivalent,$$

$$\begin{cases} i) \ \rho(x^*) = \rho'(x^*) = ... = \rho^{(m-1)}(x^*) = 0. \end{cases}$$

$$\begin{cases} ii) \ \rho'''''' \ (x^*) = \rho'(x^*) = ... = \rho^{(m-1)}(x^*) = 0. \end{cases}$$
• Problemā: be vitera de convergenta are metoda Newton-Paphson pentrue radacini de multiplicitate $m > 1$?
$$\boxed{\Phi(x) = x - \rho'(x)} \qquad (x - x^*)^m q(x) = x - \rho'(x) \qquad (x - x^*)^m$$

$$\bar{\Phi}(\bar{x}) = \bar{x} - (\bar{x} - \bar{x}^*) \cdot \frac{2(\bar{x})}{mq(\bar{x}) + l\bar{x} - \bar{x}^*)} q'(\bar{x})$$

$$\bar{\Phi}'(\bar{x}^*) = 1 - \frac{2(\bar{x}^*)}{mq(\bar{x}^*)} = 1 - \frac{1}{m} > 0 \quad \forall m > 1$$

$$=) \text{ (itera de convergențā este doar liniona!}$$

$$\cdot \text{ Tehnicā de accelerore a convergenței}$$

$$pentru m > 1 \quad \text{ curroscut:}$$

$$\bar{\Phi}_m(\bar{x}) := \bar{x} - m \quad \frac{\beta(\bar{x})}{\beta'(\bar{x})}$$

$$\bar{\Phi}_m(\bar{x}) = \bar{x} - m(\bar{x} - \bar{x}^*) - \frac{2(\bar{x})}{mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})}$$

$$\bar{\Phi}_m(\bar{x}^*) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}^*) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}^*) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}^*) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = \bar{x} - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = \bar{x} - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = \bar{x} - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = \bar{x} - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x}^*)} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x})} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x}^*)}{mq(\bar{x})} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x})}{mq(\bar{x})} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x})}{mq(\bar{x})} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$\bar{\Phi}_m(\bar{x}) = 1 - \frac{mq(\bar{x})}{mq(\bar{x})} = 0$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{x})$$

$$mq(\bar{x}) + l\bar{x} - \bar{x}^*/q'(\bar{$$

Temā lænus: Aratați $\tilde{\Phi}'(x^*) = 0$.

4) Metoda secontei

· Atunci când nue cunsastem derivata

Punctiei, putem so o grossimam cu

differente finite: $\ell'(\mathcal{X}_{m-1}) \approx \ell(\mathcal{X}_{m-1}) - \ell(\mathcal{X}_{m-2}), \forall m \geq 2$

si, înlocuind grossimaras în metoda

Neuton, Olitinen metoda sacostei:

 $\mathcal{X}_{m} = \mathcal{X}_{m-1} - \rho \left(\mathcal{X}_{m-1} \right) \cdot \frac{\mathcal{X}_{m-1} - \mathcal{X}_{m-2}}{\rho \left(\mathcal{X}_{m-1} \right) - \rho \left(\mathcal{X}_{m-2} \right)}$

· Interpretaro grafica: Inlocuim tangenta in (Xm-1, p(Xm-1)) cu dregata seconta

core uneste $(\mathfrak{X}_{m-2}, f(\mathfrak{X}_{m-2}))$ cu $(\mathfrak{X}_{m-1}, f(\mathfrak{X}_{m-1}))$:

· Observație Metada secontei comunge cu un ordin de comvergento do $r = \frac{1+05}{2}$ Domonstratie: Notam em:= X - Xm, m = 1 Se anata ca 3 M > 0 a.2. $Q_m \leq M \cdot Q_{m-1} \cdot Q_{m-2}, \forall m \geq 2$ =) Q2 = M Q1 Q0 => (MQ2) = (MQ1). (MQ6) Fix S:= mase { Meo, Me, 3 =) Mo2 = 82 Analog, Me3 & (Me2) · (Me1) & 83 $M e_m \leq S^{2m}$, unde (20 = 21 = 1)(sinul Filonacci) (2m = 2m-1 + 2m-2 $\frac{2m}{2m-1} = 1 + \frac{2m-2}{2m-1}$. Notam $72 := \lim_{m \to \infty} \frac{2m}{2m-1}$

5	:)	Л.	? =	: 1	+	1	_	ر-		77	2 _ ,	77		1 =	0	=	·>	77	= .	1	+ (5	<u> </u>	
) (2			
le	m		Л	1 6	?m			=	Q.			C	2.	, -	דע	2 m	-1				P			
4	77		(N	1 0	?m	, / '	7		M)		ð						_	<u></u>	-	// ·	<i>†</i> '		