

	Online		POMOP		Methods	5
	Name) 5	A	0	(T	Z
Zc		7 D	D	D	E	E
201	MCTS MCTS PO-UCT	100,	\triangleright	D	6	6
201	PO-UCT POMCP DESPOT	C	D	P	6	6
2018	POMCPOW	C	D (1-1C)		6	E
2019	DESPOT-al		D		6	E
2020	Bomcp				16	E
2021	· .		Č		16	E

Online Offline
Only tryinto Good action for
find agood action all beliefs
for current
belief
SARSOP

DESPOT \\ \alpha - vectors \\ \Q(b,a) only

AEMS

while time remains b* = argmax E(b) b ∈ Fringe(G) expand (bx)

backup (b")

$$P(a|b) = \frac{U(a,b) - L(b)}{U(b) - L(b)}$$

P(alb) = { 1 if a = argumax U(a,b) AEMS Z a'ch 0 otherwize

6.

VEW?

Breakout Rooms

How can we modify MCTS

to work for POMDPS

(b, a, o, az, oz ... o) Belief Updates?

function simulate!(π ::MonteCarloTreeSearch, s, d= π .d) if $d \le 0$ return 0.0 \mathcal{P} , N, Q, c = $\pi.\mathcal{P}$, $\pi.N$, $\pi.Q$, $\pi.c$ \mathcal{A} , TR, γ = $\mathcal{P}.\mathcal{A}$, $\mathcal{P}.TR$, $\mathcal{P}.\gamma$ if !haskey(N, (s, first(\mathcal{A}))) for a in A N[(h,a)] = 0 Q[(h,a)] = 0.0 return rollout(\mathcal{P} , s, $\pi.\pi$, d) a = explore(\(\pi\), s)
s', r = TR(\(s\),a)
q = r + \(\gamma\)simulate!(\(\pi\), s', d-1)
N[(\(\beta\),a)] += 1
Q[(\(\beta\),a)] += (q-Q[(\(\beta\),a)])/N[(\(\beta\),a)]
return q

Oroup

Real Life Group

QMDP

$$U(b)$$
 $L(b)$
 $L(b)$
 $C^{*} = ang_{max} \mu(b,a)$
 $C^{*} = ang_{max} F(T(b,a,o))$
 $C^{*} = ang_{max} F(T(b,a,o))$
 $C^{*} = ang_{max} F(T(b,a,o))$