实验一 二进制与格雷码转换

一、二进制转格雷码设计

1. 实验内容

真值表构建:

二进制				格雷码				
В3	B2	B1	ВО	G3	G2	G1	G0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	0	0	0	
1	0	0	1	1	0	0	1	
1	0	1	0	1	0	1	1	
1	0	1	1	1	0	1	0	
1	1	0	0	1	1	1	0	
1	1	0	1	1	1	1	1	
1	1	1	0	1	1	0	1	
1	1	1	1	1	1	0	0	

函数表达式:

G3=B3; G2=B3 \oplus B2; G1=B2 \oplus B1; G0=B1 \oplus B0.

设计思路说明:

通过 74LS197 提供 16 进制计数, 根据函数表达式使用 3 个或非门把二进制转换成格雷码。

2. 仿真电路与结果

上方为二进制,下方为转换后的格雷码

3、实验结果与分析

下方为二进制,上方为转换后的格雷码

结果分析论证:

转换后的格雷码有长横线中间一条竖线, 经分析应该是异或门延迟导致。 其他方面基本符合预想。

二、格雷码转二进制设计

1. 实验内容

直值表构建:

英国农村定 :								
格雷码				二进制				
G3	G2	G1	G0	В3	B2	B1	В0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	0	1	1	0	
0	1	1	0	0	1	0	0	
0	1	1	1	0	1	0	1	

1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

函数表达式:

B3=G3; B2=B3 \oplus G2; B1=B2 \oplus G1; B0=B1 \oplus G0.

设计思路说明:

通过 74LS197 提供 16 进制计数当作格雷码,根据函数表达式使用 3 个或非门把格雷码转换成二进制。

2. 仿真电路与结果

上方为格雷码,下方为转换后的二进制

3、实验结果与分析

下方为格雷码,上方为转换后的二进制

结果分析论证:

转换后的二进制也有长横线中间一条竖线,应该也是异或门延迟导致。 其他方面基本符合预想。

- 三、七段数码管静态显示学号最后两位实验设计
 - 1. 实验内容

显示数字4、6

设计思路说明:

通过 74LS47 芯片把 4、6 的 BCD 码转换成七段码,再用 7SEG 器件显示数字。

2. 仿真电路与结果

3. 实验结果与分析

结果分析论证:

仿真数字显示中 6 没有顶上的第一行,应该是 7SEG 器件和实验箱中不同,测试得到数字 6、9 均有显示的不同,但仍然为数字 6、9,其他数字显示一样,其他方面基本符合预想。

四、实验总结

实验中遇到的问题:

- 1. 一开始不知道如何输入格雷码,如何使用7段管显示学号后两位
- 2. 同桌的示波器 d10-d14 输入线有问题

解决方案:

- 1. 问老师知道直接把 74LS197 输入的 16 进制当作格雷码输入就好了
- 2. 请教同学学习到静态显示的方法
- 3. 示波器这个线路没办法, 勉强用 d1-d8 线路去解决

收获:

- 1. 提前完成了所有实验
- 2. 提前学习了38译码器动态显示整个学号(8用7表示)