How do you answer all these question?

CS 434 - Machine Learning & Data Mining Final Project

Quora Questions

Miles A. Curry - Christian Armatas

Approach - Neural Network Design

- Siamese Two Layer Design
 - Inputs and recognized features are captured and categorized separately in Layer 1
 - Then, inputs are reduced down into Layer 2 to determine if the two questions were similar
- Similar in design as Homma et al'
- Using Keras Library

1. Data Processing

- a. Removed entries that had encoding errors or special characters unrecognizable by python
- b. Tokenized sentences into words and then encode them as a *bag-of-words*
 - i. Each question was added together to be its own bag-of-words instead of a bag-of-words of the entire question set
 - 1. We reasoned that data in other questions is not relevant in determining whether or not two questions were directly related.
 - 2. This would also reduce the algorithm's amount of data consumption
 - ii. Questions were encoded as ID's and their count
 - iii. Parts of speech (POS) for each word was also recorded
 - 1. We figured POS would give the Neural Network more data to analyze
 - 2. Difficult to encode this number effectively
 - 3. Thought about giving some POS higher priority than others
 - a. See if added weights to specific parts of speech affected performance

Data Representation of the first question pair

NN Design cont.

- Distance calculated by Euclidian Distance
 - Gave the best accuracy ~ 50-54%
 - Cosine accuracy gave ~ 15%
- Contrastive Loss as Loss Function
 - Function given with Keras' simease example (https://github.com/fchollet/keras/blob/master/examples/mnist_siamese_graph.py)
 - O Not sure what this is... (We pulled it from the internet)
- Dropout = 0.1
 - No Dropout gave us a higher percent correct... but it's probably overfitting

Results Thus Far

- Around 50% Accuracy on training set
 - Depending on number of epochs and input size
- N = 395,548, Epochs = 20, Accuracy = 54.84% (Entire Testing Set)
 - ~8000 Entries Removed for encoding errors
- N = 10,000, Epochs = 20, Accuracy = 52.81%

Current Problems and Lessons Learned

- 1. Data Processing takes a long time and needs to be optimized
 - a. Its around cubic time currently...
- See if we can encode POS into data
- 3. Accuracy is bad.. Very baaad..
 - a. Need to try
 - different activation functions
 - ii. different difference functions
 - iii. see what other groups have done for there siamese nn
 - iv. Verify if our nn is predicting correctly or not.
- 4. Lessons Learned
 - a. Inputs of differing sizes
 - i. Can't take dot product of different size 1D arrays
 - ii. Compensated by padding the small inputs with zeros and truncating large inputs
 - b. Verification Do n-fold testing on training set
 - c. Experiment more with Keras!
 - d. Do our data encoding ideas work