酯皂化反应动力学

班级: 化工224 **姓名:** 陈祎洋 **学号:**

实验时间: 2024/04/22 **实验地点:** 实验四楼105

实验目的

1. 了解化学动力学实验的原理和基本测量方法。

2. 理解化学反应动力学方程的意义,掌握动力学实验数据分析方法,了解误差的来源和影响实验结果的主要因素。

3.测定乙酸乙酯皂化反应过程中溶液电导率的变化,计算其反应速率常数。

4.掌握电导率仪的使用方法

实验原理

乙酸乙酯皂化反应为二级反应,若反应物浓度为 \mathbf{c}_0 , \mathbf{t} 时刻的浓度为 \mathbf{c} ,则根据动力学原理可以得到反应速率系数 \mathbf{c} 的表达式为:

$$k_{\text{CH}_3\text{COONa}} = \frac{1}{tc_0} \cdot \frac{c_0 - c}{c}$$

为了得到在不同时间细反应物浓度c,本实验中用电导率仪测定溶液电导率 K的变化来表示。这是因为随着皂化反应的进行,溶液中导电能力强的OH^一离子逐渐被导电能力弱的CH3COO^一离子所取代,所以溶液的电导率逐渐减小。

在电解质的稀溶液中,电导率K与浓度C有正比关系:k = K·c。

当
$$t=0$$
时, $\kappa_0 = K_{\text{NaOH}} \cdot c_0$

所以当 $t=t$ 时, $\kappa_t = K_{\text{NaOH}} \cdot c + K_{\text{CH}_3\text{COONa}}(c_0-c)$
当 $t=\infty$ 时, $\kappa_\infty = K_{\text{CH}_3\text{COONa}} \cdot c_0$

式中比例常数K与电解质性质及浓度有关,而且溶液的总电导率就等于组成溶液的解质的电导之和。因此,以对作图前得到一条直线,从其斜率中即可求得反应速率系数

仪器设备及装置图

(上传清晰的仪器设备装置图)

实验步骤和原始数据记录

1回、吴子包生了程 人 了相呼导文(外变用方法 大科 4.64 \$50ml 支完于人。心》的人 Walther	积定的用头房 铂 电 积 和 电 积 的 电 系 中 常 数
成校摊的第一月移浓度于025mL0.02mo// 一)60/140H,另一移海等加入 25mL0.2mol/L之形公两于10样。	·混合 使用吸球治暖 梅皮料比中较入 空气·无何恍
3高4miniの次 12月達0.0 mol/2 CH3COO Na ' 中号年 次 K∞	

孔的橡皮塞塞住,置于恒温槽内。	9
4. 百组三年	1 , 13
五. 18 数数数数形成。 Co = 00/0 mol/L + 25,0°C Ko = 2380 MS/cm Ko = 2380 MS/cm Ko =	920 MSkm
12 16 20 35 40 K. F. MS. Cm. 1920 1728 1597 1506 1423 - 1298 1212	10
	T T
	£3
172	200
15072	-
「アンクユ	
Tebial or	_
2024年 04月 22日	

数据处理

含图表制作、计算示例及实验结论。(可以使用下面的表格制作表,使用坐标系制图)

一、数据处理表格

使用Excel表格软件进行数据处理得到表1:

	Α	В	С	D	Е	
1	表1: 酯皂化反应中电导率随时间的变化 t=25.0℃ c₀=0.010mol/L					
2	t/min	$\kappa_t / \mu S \bullet cm^{-1}$	κ_0 - κ_t / $\mu S \bullet cm^{-1}$	κ_t - $\kappa_{\infty} / \mu S \cdot cm^{-1}$	$\frac{\kappa_0 - \kappa_t}{\kappa_t - \kappa_\infty}$	
3	0	2380	0	1460	0	
4	4	1920	460	1000	0.46	
5	8	1728	652	808	0.806931	
6	12	1597	783	677	1.156573	
7	16	1506	874	586	1.491468	
8	20	1423	957	503	1.902584	
9	30	1298	1082	378	2.862434	
10	40	1212	1168	292	4	
11	50	1147	1233	227	5.431718	
12	∞	920				

自定义列名

坐标系

分析讨论

含数据分析讨论和实验思考题。

一、数据讨论:

1. 由于公式是在已假设该反应为二级反应的基础上推导得出的,而现在实验结果与理论基本一致,,故该拟合成的图片验证了乙酸乙酯皂化反应为二级反应,同时也可以用电导率对时间 的其他线性关系处理得到反应速率常数**。**

2. 查阅文献得到不同温度下的反应速率系数如下表:

表2 不同温度下乙酸乙酯皂化反应的速率系数文献值

t°C	k(L·mol ⁻¹ ·min ⁻¹)	t℃	k (L·mol ⁻¹ ·min ⁻¹)	t℃	k (L·mol ⁻¹ ·min ⁻¹)
15	3.3521	24	6.0293	33	10.5737
16	3.5828	25	6.4254	34	11.2382
17	3.8280	26	6.8454	35	11.9411
18	4.0887	27	7.2906	36	12.6843
19	4.3657	28	7.7624	37	13.4702
20	4.6599	29	8.2622	38	14.3007
21	4.9723	30	8.7916	39	15.1783
22	5.3039	31	9.3522	40	16.1055
23	5.6559	32	9.9457	41	17.0847

又上表可得:乙酸乙酯皂化反应化学方法测定的速率常数——文献值为6.4254L/(mol·min),而在实验数据处理中拟合得到的实验数据为10.23L/(mol·min),二者具有较大的误差,经过合理的误差分析后,得到如下可能的原因:

a.由于 NaOH 溶液会吸收空气中的 CO₂,而使其浓度发生变化,而在移液管取得溶液后到反应开始的这段时间,由于吸收空气的CO₂,故会影响滴定数据的准确性,进而影响加入乙酸乙酯的量。又由于皂化反应过程中 NaOH 溶液还在不断吸收 CO₂, 故也会影响实际参与皂化反应的NaOH溶液的量。

b.实验仪器的精确性也会给实验带来误差。注意到大部分的电导率仪的反应时间是± 0.5%(Fs), 对于乙酸乙酯皂化的缓慢反应来说可忽略不记;但是在使用移液管时,仪器也有一定的误差,在个人操作中难免也有读数的误差。

c.在将两溶液迅速混合时,由于速度太快导致了一小部分溶液飞溅到反应容器以外,这一小部分的误差也会导致溶液的电导率下降。

d.对电导法,由于无法搅拌,温度波动大,温度对电导率的影响大,造成初期线性差。对动力学实验而言,初期的数据很重要,因为实验中后期产物往往产生抑制作用,特别是对本实验,抑制作用很明显。

3.根据已得到的实验数据,我们可以根据**阿伦尼乌斯方程^[1]来**求解本反应的活化能:

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

测定不同温度下的k就可以由上式算出反应的表观活化能Ea。

- 4. 由本实验我们也可以知道,对于动力学的研究,物理量及实验仪器的选择应该从以下几个方面考虑:
- a.反应前后体系的物理量变化显著;
- b.测的物质浓度成线性关系的特征物理量为最佳。
- 二、课后思考题

- 1.本实验为什么可用测定反应液的电导率的变化来代替浓度变化?为什么要求反应物的溶液浓度相当稀?
- 2.为什么本实验要求但我反应一开始混合就立即计时?此时反应中的c₀应该是多少?
- 3.试由实验结果得到的k_{CH3COONa}值计算反应开始10min后NaOH作用掉的百分数?并由此解释实验过程中测定电导率的时间间隔可逐步增加的原因
- , 答:①两溶液混合后, 随着反应的进行. 溶液中 OH 离子逐渐被导电能力舒加 CH3 COO-离子价配价, 溶液的智等逐渐降价;
 - 5有当浓度极稀. 才有了后吃新货稀酪滚滚和溶液中电军力与浓度的EL比 郑.. 得到实验需要的详性知识... 者浓度大. 体积影响回季变多.女。大量效型 导致体标温度不稳定,同时浓洁海较大的黏度也产品的物。
- 2. 反应、混合化、液度主即变化,又扩上级反应、外线也已知反应的浓度形物。 that xt and Co = 0.0/00 mol/2
- 3. 0 根据 RCH3COONA = tCo· Co-c 升河得: 当t=/0min 时. 对他的C=0.0064 mol/2, 故作用掉的为:WAE = 0.0100-0.0064 1/00% ② 附有着化学反应的进行,NaOH 冰枝被步,反应进车下降。=31.00厘次
 - 故电子等测定的对词间隔透渐增加

感想感悟

针对此实验的研究背景、应用状况、思维方法、相关科学家的感想,或者通过文献学习对于实验方法的改进的设想等等。

本实验除了使用电导法测量外,还可以使用吸光光度法^[1]、量热法^[2]等方法探究动力学过程,具体方法如下:

一、吸光光度法:

可以利用分光光度计测量反应体系中的吸光度,再根据朗伯-比尔定律计算乙酸乙酯的浓度。

根据朗博-比尔定律: A = ε·l·c 其中, ε表示摩尔吸光系数,也称为摩尔吸光率,是与待测物质的性质和波长有关的常数。它衡量了单位浓度下物质对特定波长光的吸收能力。I 表示光 程长度,即光通过样品的距离。c表示溶液中待测物质的浓度。

分光光度计是一种分析仪器,它利用物质对特定波长的光吸收的特性来测定物质的浓度。在乙酸乙酯的皂化反应中,可以选择适当的波长,使乙酸乙酯的吸光度与其浓度呈线性关 系。

二、量热法

具体操作见参考文献,设备同测定无机盐溶解热

本方法同样适用于初始浓度不相等的二级反应。另外,用常规动力学方法较难以处理的反应体系诸如聚合反应、胶束催化等,量热法有实验方便、结果准确度较高等优越性。

对比电导法,本方法实验的优势如下:对电导法而言,凡对电导率有贡献的溶剂(水)或杂质(反应物或产物)均会干扰实验结果;量热法带有搅拌器,可适当提高浓度。对于电导法, 浓度大时会成非均相,且反应快,但低的初始浓度又会引起作图公式的误差(因该公式只有在初始浓度相同的前提下才成立,所以,如果由于乙酸乙酯的挥发或NaOH吸收CO2而改变浓 度,则会造成很大的误差。

参考文献:

[1] 复旦大学等编. 物理化学实验 (上册)[M]. 北京: 高等教育出版社,1979

[2]张来英,陈良坦,李海燕.乙酸乙酯皂化反应的热动力学实验[J].大学化学,2015,30(02):56-60.

[3]凌锦龙.乙酸乙酯皂化反应实验数据处理方法的改进[J].通化师范学院学报,2005(02):49-51.