

Beispiele zur Codetransformation

Variableninhalte und Zugriffsoperatoren:

Konsequenz:

Typen ordnen Variablen

- Größe im Speicher und
- Interpretation zu

Zeichen
Unsigned
Signed

Float

Double

ASCII
Betragsdarstellung
2-er Komplement
single precision format
double precision format
nach IEEE 754

ASCII - American Standard Code for Information Interchange

ASCII-Zeichentabelle, hexadezimale Nummerierung

							_						-			
Code	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	İ	п	#	\$	%	&	1	()	*	+	1	-		1
3	0	1	2	3	4	5	6	7	8	9	:		<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0
5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Ζ	[١]	Λ	_
6		а	b	С	d	е	f	g	h	i	j	k		m	n	0
7	р	q	r	s	t	u	٧	W	Х	у	z	{		}	-2	DEL

Betragsdarstellung

2-er Komplement

IEEE 754 Single Precision Format

Single Precision Floating Point (IEEE 754):

Darstellung mit:

• Vorzeichen \rightarrow 1 Bit

• Exponent mit Bias−Darstellung →8 Bit Exponent, Bias 127

normierter Mantisse →23 Bit

Float(b) =
$$(-1)^{VZ} * 2^{(\sum_{i=0}^{7} e_i * 2^i - 127)} * (1 + \sum_{i=1}^{23} m_i * 2^{-i})$$

 $b = VZ \mid e_7 \dots e_0 \mid m_1 \dots m_{23}$

IEEE 754 Double Precision Format

Double Precision Floating Point (IEEE 754):

Darstellung mit:

• Vorzeichen \rightarrow 1 Bit

• Exponent mit Bias−Darstellung →11 Bit Exponent, Bias 1023

• normierter Mantisse →52 Bit

Konvertiere float in Binärdarstellung (C)

```
main() {
    float f;
    printf ("Bitte float-Zahl eingeben: ");
    scanf ("%f", &f);
    fausgeben(f);
    return 0;
}
```


Konvertiere float in Binärdarstellung (C)

```
void fausgeben(float f) {
      int i, w;
      w= * ((int *)(&f));
      for (i=31; i>=0; i--) {
            switch (i) {
            case31:
                    printf("Vorzeichen:");
                        break;
            case30:
                        printf("Exp:");
                        break;
            case22:
                        printf("Mantisse:");
```


Konvertiere float in Dezimaldarstellung (C)

```
printf("%c", ((w&(1<<i)) !=0) + '0' );
switch (i) {
    case31:
    case23:
    case0: printf("\n");
}
}</pre>
```


Instruktions Codierung

Bestandteile:

- 1. Opcode
- 2. Operandenspezifikation
- 3. Operanden

Welche Operation ist auszuführen

wo stehen Operanden,

Operanden - Register, Speicher,

Instruktions Codierung: Beispiel

push 5

Instruktions Codierung: Beispiel

Volume 2: Instruction Set Reference

Instruktions Codierung: Beispiel

push

5

PUSH—Push Word or Doubleword Onto the Stack

Opcode	Instruction	Description	
FF /6	PUSH r/m16	Push <i>r/m16</i>	
FF /6	PUSH r/m32	Push r/m32	
50+rw	PUSH r16	Push r16	
50+rd	PUSH r32	Push r32	
6A	PUSH imm8	Push imm8	
68	PUSH imm16	Push imm16	
68	PUSH imm32	Push imm32	
0E	PUSH CS	Push CS	
16	PUSH SS	Push SS	
1E	PUSH DS	Push DS	
06	PUSH ES	Push ES	
0F A0	PUSH FS	Push FS	
0F A8	PUSH GS	Push GS	

IA-32 Intel[®] Architecture Software Developer's Manual

Volume 2: Instruction Set Reference

Instruktions Codierung: Beispiel

push

5

PUSH—Push Word or Doubleword Onto the Stack

Opcode	Instruction	Description
FF /6	PUSH r/m16	Push r/m16
FF/6	PUSH r/m32	Push r/m32
50+rw	PUSH r16	Push r16
50+rd	PUSH r32	Push r32
6A	PUSH imm8	Push imm8
68	PUSH imm16	Push imm16
68	PUSH imm32	Push imm32
0E	PUSH CS	Push CS
16	PUSH SS	Push SS
1E	PUSH DS	Push DS
06	PUSH ES	Push ES
0F A0	PUSH FS	Push FS
0F A8	PUSH GS	Push GS

IA-32 Intel[®] Architecture Software Developer's Manual

Volume 2: Instruction Set Reference

Instruktions Codierung: Beispiel

6A 05

push

PUSH—Push Word or Doubleword Onto the Stack

Opcode	Instruction	Description	
FF /6	PUSH r/m16	Push r/m16	
FF /6	PUSH r/m32	Push r/m32	
50+rw	PUSH r16	Push r16	
50+rd	PUSH r32	Push r32	
6A	PUSH imm8	Push imm8	
68	PUSH imm16	Push imm16	
68	PUSH imm32	Push imm32	
0E	PUSH CS	Push CS	
16	PUSH SS	Push SS	
1E	PUSH DS	Push DS	
06	PUSH ES	Push ES	
0F A0	PUSH FS	Push FS	
0F A8	PUSH GS	Push GS	

IA-32 Intel[®] Architecture Software Developer's Manual

Volume 2: Instruction Set Reference

Instruktions Codierung: Beispiel

Instruktions Codierung: Beispiel

83 C4 04 add esp,4

ADD-Add

Opcode	Instruction	Description
04 ib	ADD AL,imm8	Add imm8 to AL
05 <i>iw</i>	ADD AX,imm16	Add imm16 to AX
05 id	ADD EAX,imm32	Add imm32 to EAX
80 /0 <i>ib</i>	ADD r/m8,imm8	Add imm8 to r/m8
81 /0 <i>iw</i>	ADD r/m16,imm16	Add imm16 to r/m16
81 /0 id	ADD r/m32,imm32	Add imm32 to r/m32
83 /0 <i>ib</i>	ADD r/m16,imm8	Add sign-extended imm8 to r/m16
83 /0 ib	ADD r/m32,imm8	Add sign-extended imm8 to r/m32
00 /r	ADD r/m8,r8	Add r8 to r/m8
01 /r	ADD r/m16,r16	Add r16 to r/m16
01 /r	ADD r/m32,r32	Add r32 to r/m32
02 /r	ADD r8,r/m8	Add r/m8 to r8
03 /r	ADD r16,r/m16	Add r/m16 to r16
03 /r	ADD r32,r/m32	Add r/m32 to r32

Instruktions Codierung: Beispiel

>83 C4 04 add esp,4

ADD-Add

Opcode	Instruction	Description
04 <i>ib</i>	ADD AL,imm8	Add imm8 to AL
05 <i>iw</i>	ADD AX,imm16	Add imm16 to AX
05 id	ADD EAX,imm32	Add imm32 to EAX
80 /0 ib	ADD r/m8,imm8	Add imm8 to r/m8
81 /0 iw	ADD r/m16,imm16	Add imm16 to r/m16
81 /0 id	ADD r/m32,imm32	Add imm32 to r/m32
83 /0 ib	ADD r/m16,imm8	Add sign-extended imm8 to r/m16
83 /0 ib	ADD r/m32,imm8	Add sign-extended imm8 to r/m32
00 /r	ADD <i>r/m8,r8</i>	Add r8 to r/m8
01 /r	ADD r/m16,r16	Add r16 to r/m16
01 /r	ADD r/m32,r32	Add r32 to r/m32
02 /r	ADD r8,r/m8	Add r/m8 to r8
03 /r	ADD r16,r/m16	Add r/m16 to r16
03 /r	ADD r32,r/m32	Add r/m32 to r32

Instruktions Codierung: Beispiel

Instruktions Codierung: Beispiel

Instruktions Codierung: Beispiel

