运筹学第十二次作业参考答案(20230524)

1. 求下图所示有向网络中从 s 到 t 的最大流。

解:

初始化每边流量为 0 分别找到可增广链s \rightarrow a \rightarrow c \rightarrow t以及s \rightarrow b \rightarrow d \rightarrow t S = {s,a}, \bar{S} = {b,c,d,t},割集容量为 5 最大流为 5

权人派内:

(图略)

2. 用 Bellman-Ford-Moore 算法和 Dijkstra 算法求图 2 中 V1 至各点的最短距离和最短路径。

解: Bellman-Ford-Moore 算法:

	v_1	v ₂	v_3	V_4	V ₅	v ₆	v ₇	v ₈	V ₉	V ₁₀	V ₁₁
1	0	2	9	8	8	8	8	8	8	8	8
2	0	2	8	16	5	8	∞	∞	8	8	8
3	0	2	8	15	5	8	25	∞	6	8	8
4	0	2	8	15	5	8	9	13	6	26	8

5	0	2	8	15	5	∞	9	13	6	10	22
6	0	2	8	15	5	∞	9	13	6	10	22

迭代完成

Dijkstra 算法:

加入边的顺序:

	v_2	v_3	V_4	V ₅	v_6	V ₇	v ₈	V ₉	V ₁₀	v ₁₁
1	2,v ₁	9,v ₁	8	8	8	8	8	8	8	8
2		8,v ₂	8	5,v ₂	8	8	8	8	8	8
3		8,v ₂	8		8	8	8	6,v ₅	8	8
4		8,v ₂	8		8	9,v ₉	13,v ₉		8	8
5			15,v ₃		8	9,v ₉	13,v ₉		8	8
6			15,v ₃		8		13,v ₉		10,v ₇	8
7			15,v ₃		8		13,v ₉			8
8			15,v ₃		8					22,v ₈
9					8					22, v ₈

25937108411

结论:

目标	最短路径	最短距离
v_2	$v_1 \rightarrow v_2$	2
v_3	$v_1 \rightarrow v_2 \rightarrow v_3$	8
V_4	$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$	15
V ₅	$v_1 \rightarrow v_2 \rightarrow v_5$	5
v_6		∞
v_7	$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_9 \rightarrow v_7$	9
v_8	$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_9 \rightarrow v_8$	13
V ₉	$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_9$	6
V ₁₀	$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_9 \rightarrow v_7 \rightarrow v_{10}$	10
V ₁₁	$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_9 \rightarrow v_8 \rightarrow v_{11}$	22

路径图在上图中用红色线表示。

附加题:如何对于 Floyd 算法找到的最短路径值推导出任意两点的最短链路。或者改造一下 Floyd 算法的迭代过程,使得我们最后能容易地输出任意两点的最短链路。

修改思路为:另外创建矩阵 P,初始时 P[i,j]=j,即 i 到 j 一定会经过 j。在课件 49 页代码三重循环内,若 k 点可以使得 i,j 的路径缩短,则 P[i,j]=P[i,k]。迭代完成后, P[i,j]即表示从 i 到 j 最短路径中 i 的下一个点。

注: 部分同学设计的方法中 P[i,j]=k, 但此后仍要使用递归, 较为复杂