Model-Free Reinforcement Learning

Mathias Winther Madsen

March 1, 2017

Policy Gradient Methods

Reinforcement Learning = Game Theory

Reinforcement Learning = Game Theory

Action ~ distribution(history, weights)

The Policy Gradient Method

The Policy Gradient Method

For I epochs:

Collect N episodes, using
your stochastic policy;

Rate your actions according to their (empirical) consequences.

Change W so that the good actions become more probable.

Importance Weighting

$$E_{new}[X] = E_{old}\left[X \cdot \frac{p_{new}}{p_{old}}\right]$$

The Policy Gradient

$$\nabla_{W} E_{W} [Reward] = E_{W_{0}} \left[Reward \cdot \frac{\nabla_{W} p_{W}}{p_{W_{0}}} \right]$$

The Fisher Score

$$F(\theta \,|\, x) \quad = \quad \frac{\nabla_\theta \, p(x \,|\, \theta)}{p(x \,|\, \theta)} \quad = \quad \nabla_\theta \, \log p(x \,|\, \theta)$$

The Fisher Score

$$\nabla_{(\mu,\tau)} \, \log \left(\sqrt{\frac{\tau}{\pi}} \, \exp \left\{ -\tau (x-\mu)^2 \right\} \right) \ = \ \left(\begin{array}{c} 2\tau (x-\mu) \\ (2\tau)^{-1} - (x-\mu)^2 \end{array} \right)$$

The Policy Gradient

Dart-Throwing Game: $R(u) = -\|u - u^*\|^2$

Scores Given Rollouts

Scores Given Rollouts

$$\frac{\nabla \left(q_0 \, p_1 \, q_1 \, p_1 \, q_2 \, p_2 \, \cdots \, q_{T-1} \, p_{T-1}\right)}{\left(q_0 \, p_1 \, q_1 \, p_1 \, q_2 \, p_2 \, \cdots \, q_{T-1} \, p_{T-1}\right)} \quad = \quad \frac{\nabla \left(p_1 \, p_1 \, p_2 \, \cdots \, p_{T-1}\right)}{\left(p_1 \, p_1 \, p_2 \, \cdots \, p_{T-1}\right)}$$

Hence:

$$F = \nabla \log p_0 + \nabla \log p_1 + \nabla \log p_2 + \dots + \nabla \log p_{T-1}$$

Repeat-After-Me Game: $R(s, u) = -\|s - u\|^2$

$$s \sim \mathcal{N}(1/2, 1)$$

$$F\left(\begin{array}{c|c} a \\ b \end{array}\middle| s, u\right) = \left(\begin{array}{c|c} (as + b - u)s \\ (as + b - u)\end{array}\right)$$
 $u \sim \mathcal{N}(as + b, 1)$

Repeat-After-Me Game: $R(s, u) = -\|s - u\|^2$

