SCS 2112 : Automata Theory

Dinuni Fernando, PhD

Languages

- A language is a set of words (strings): Notation: L
- A language can be finite or infinite.
- The language with all words over some alphabet Σ is denoted Σ^* .
- ullet A language with zero words called an Empty Language and denoted by ϕ .
- The empty string is denoted with ε or sometimes Λ or λ .

Regular Languages

Definition: A language is regular if there exist a finite acceptor for it.

Every regular language can be described by some NFA

or DFA.

 Acceptor = determines if an input string belongs to a language L

Regular Expressions

- One way of describing regular languages is via the notation of regular expressions.
- Regular Expressions involves a combination of strings of symbols from some alphabet Σ , parentheses, and the operators +, . and *.
- The simplest case is the language {a}, which will be denoted by the regular expression a.

Regular Expressions

- Slightly more complicated is the language {a, b, c},
 - o for which, using the + to denote union, we have the regular expression a+b+c.
- We use \cdot for concatenation and * for star-closure in a similar way. Consider following regular expression (a + (b·c))*

What is the strings that accepted by above regular Language?

Regular Expressions

- Slightly more complicated is the language {a, b, c},
 - for which, using the + to denote union, we have the regular expression a+b+c.
- We use \cdot for concatenation and * for star-closure in a similar way . Consider following regular expression (a + (b·c))*
- Accepting regular Language is $\{\lambda, a, bc, aa, abc, bca, bcbc, aaa, abc,...\}$.
 - We construct regular expressions from primitive constituents respectedly applying certain recursive rules.

Definition of Regular Expression

Let Σ be a given alphabet. Then,

1. ϕ , ε (λ) and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.

Eg:
$$L(\phi) = \{\}$$

$$L(\varepsilon) = \{\varepsilon\} = \{""\}$$

Eg:
$$L(\phi) = \{\}$$
 $L(\epsilon) = \{\epsilon\} = \{""\}$ $L(a) = \{a\}$ For every $a \in \Sigma$.

- 2. If r1 and r2 are regular expressions, so are r1+ r2,r1.r2 and (r1)*.
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Regular Expression

• If r1 and r2 are regular expressions,

```
1. L(r_1+r_2) = L(r_1) \cup L(r_2) 3. L((r)) = L(r) 2. L(r_1,r_2) = L(r_1) \cdot L(r_2) 4. L(r^*) = (L(r))^*
```

- Generally symbol "." is omitted in regular expressions.
- Any language that can be obtained by applying of the above rules in a **regular language** over Σ .
- In some literature "|" meta-symbol has been used instead of "+".
- Theorem: A language is regular if and only if some regular theorem if an an analysis of the some regular if an analysis of the source of the s

Algebraic properties of regular expressions

For regular expressions

L + M = M + L (commutative law for union)

(L+M) + N = L + (M+N) (Associative law for union)

(L.M).N= L.(M.N) (Associative law for concatenation)

L.(M + N) = LM + LN (Distributive Laws)

(M + N).L = ML + NL

L + L = L (Idempotent Law)

 $(L^*)^* = L^*$ $L? = \varepsilon + L$

(L*M*)* = (L + M)* LL* = L* = L*L

Abbreviations

- \circ [qb01] = q|b|0|1
- o [0-9] = [0123456789]
- [a-zA-Z] all uppercase and lowercase English letters.
- [0-9]* zero or more occurrences of digits 0 -9
- o s⁺ one or more occurrences of s
- s? zero or one occurrence of s (s| \in)

Example:

Abbreviations

- \circ [qb01] = q|b|0|1
- o [0-9] = [0123456789]
- [a-zA-Z] all uppercase and lowercase English letters.
- [0-9]* zero or more occurrences of digits 0 -9
- o s⁺ one or more occurrences of s
- s? zero or one occurrence of s (s| \in)

Example:

Example 1, 2

Example 1:

For
$$\Sigma = \{a, b, c\}$$
, the string $(a+b+c)^* \cdot (c+\phi)$ is a regular expression

Example 2:

For
$$\Sigma = \{a, b, c\}$$
, the string $(a+b+)^* \cdot (c+\phi)$ is not a regular expression

Let $\Sigma = \{a,b\}$, What are the elements in $L(a^*.(a+b))$?

Let $\Sigma = \{a,b\}$, What are the elements in L(a*.(a+b))?

```
L(a^*.(a+b)) = L(a^*).L(a+b)
= (L(a))^*.(L(a) \cup L(b))
= \{\varepsilon,a,aa,aaa,....\}.\{a,b\}
= \{a,aa,aaa,...,b,ab,aab,....\}
```


1. Let $\Sigma = \{a, b\}$, the expression $r = (a+b)^*(a+bb)$. What are the elements in L(r)?

2. Let $\Sigma = \{a, b\}$, the expression $r = (aa)^* (bb)^* b$. What are the elements in L(r)?

1. Let $\Sigma = \{a, b\}$, the expression $r = (a+b)^*(a+bb)$. What are the elements in L(r)?

$$L(r) = \{a, bb, aa, abb, ba, bbb, ...\}.$$

2. Let $\Sigma = \{a, b\}$, the expression $r = (aa)^* (bb)^* b$. What are the elements in L(r)?

$$L(r) = \{a^{2n}b^{2m+1}: n \ge 0, m \ge 0\}$$

Example 5:

- a+b+c = ?
- abc = ?
- $ab^* = ?$
- $(ab)^* = ?$
- $(a+b)^* = ?$
- $a+b^* = ?$

Example 5:

- \bullet a+b+c = {a, b, c}
- abc = {abc}
- ab* = {a, ab, abb, abbb, ...}
- $(ab)^* = \{ \in, ab, abab, ababab, ... \}$
- $(a+b)^* = \{ \in, a, b, aa, ab, ba, bb, aaa, ... \}$
- $a+b^* = \{a, \in, b, bb, bbb, ...\}$

Let $\Sigma = \{0,1\}$, r be a regular expression and L(r) $= \{w \in \Sigma^* \mid w \text{ has at least one pair of consecutive zeros}\}$. What is r?

Let $\Sigma = \{0,1\}$, r be a regular expression and L(r) = $\{w \in \Sigma^* \mid w \text{ has at least one pair of consecutive zeros}\}$. What is r?

Every string in L(r) must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^*$.

$$r = (0+1)*00(0+1)*$$

What is the language L(a.b+c)?

Two interpretations

- L(a.(b+c))? Or
- \circ L((a.b) +c))?

Set of precedence rules are being used to solve this problem.

- Star-Closure highest precedence
- Concatenation
- Union (+)

(UCSC is even).

- 1. Find all strings in $L((a + b) b (a + ab)^*)$ of length less than four.
- 2. Find all strings in L((a + b)*b(a + ab)*) of length less than four.
- 3. Find a regular expression for the set $\{a^nb^m : n \ge 3, m \text{ is even}\}$.
- Find a regular expression for the set $\{a^nb^m:(n+m)\}$

Give regular expressions for the following languages

- $L1 = \{a^n b^m : n \ge 4, m \le 3\}.$
- $L2 = \{a^n b^m : n < 4, m \le 3\}.$

Give regular expressions for the following languages

∘
$$L1 = \{a^n b^m : n \ge 4, m \le 3\}.$$

$$(aaaa)a*.(\in +b+bb+bbb)$$

○
$$L2 = \{a^n b^m : n < 4, m \le 3\}.$$

Equivalence in Regular Expressions

- Two regular expressions are said to be equivalent if they define the same language.
 - Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Generally, there are an unlimited number of regular expressions for any given language.

Relationship between Regular Expressions and Regular Languages

- For every regular language a regular expression can be constructed and
- For every regular expression there is a regular language.

Theorem

Let r be a regular expression. Then there exists some nondeterministic finite accepter (NFA) that accepts L(r). Consequently, L(r) is a regular language.

Proofs

• We begin with automata that accept the languages for the simple regular expressions (primitive regular expressions): ϕ , ϵ , a

a) NFA accepts φ

b) NFA accepts $\{\epsilon\}$

c) NFA accepts {a}

Schematic representation of an nfa accepting L(r).

Assume now that we have automata $M(r_1)$ and $M(r_2)$ that accept languages denoted by regular expressions r_1 and r_2 , respectively.

d) Automata for $L(r_1 + r_2)$

Automaton for $L(r_1r_2)$

Build an automaton to accept the language defined by the regular expression

$$R = (ab + a)^*$$

$$R = a$$

Example 10 – cont'd

$$R = b$$

Example 10 – cont'd

R = ab

Example 10 – cont'd

Example 10 – cont'd

Exercises

- Find an nfa that accepts L(r), where $r = (a + bb)^*$ $(ba^* + \varepsilon)$
- Find an nfa that accepts L(r), where $r = (\varepsilon | a^*b)$
- Find an nfa that accepts the language L(ab*aa + bba*b*)

Regular Expressions for Regular Languages

- For every regular language, there should exist a corresponding regular expression
- Representation: Generalized Transition Graphs (GTG)
- A generalized transition graph is a transition graph whose edges are labeled with regular expressions; otherwise it is the same as the usual transition graph.
- The label of any walk from the initial state to a final state is the
 concatenation of several regular expressions, and hence itself

UCSA regular expression.

41

Example

How to deduce the regular expression represented by a generalized transition graph?

Reducing the number of states

Reducing the number of states

Resulting Regular Expression

$$r = (bb*a)*bb*(a+b)b*$$

 The regular expression represented by a generalized transition graph can be deduced much easily by reducing the states of the graph.

Let's assume that state q is neither final nor initial state.

Reducing a state (say q) from the transition graph.

Regular expression generated ae*b

 $\bullet \ \ \text{Possible paths} \\ e \\ q_i \\ q_j \\$

Regular expression generated ce*d

Possible paths...

Regular expression generated ce*b

Final generalized graph

 Reducing a state of a transition graph should not reduce any of its possible paths.

Converting DFA's to Regular Expressions (by Eliminating states)

State reduction algorithm

- 1. Replace edges of the automata with equivalent regular expressions.
- 2. Eliminate all states except the initial and final states.

3. If initial state is not a final state the final automata must consist of two nodes as below

Example

• What is the Regular expression representing the above GTG?

Regular expression representing the above RTG is R*S(U+TR*S)*

State reduction algorithm [cont'd]

4. If the start state is also an accepting state after reduction we may end up in the following form.

The regular expression denoting this machine is R*

Exercise

 What is the language (Regular Expression) accepted by the following GTG.

$$L = (a^* + a^* (a + b) c^*)$$