集積回路設計 (INTEGRATED CIRCUIT DESIGN) 第11回

配置

- □ 論理セルの配置によって必要な配線幅が変わる
 - □トラック
 - ■垂直方向の配線位置
 - ■トラック数が配線領域の幅(面積)を決定
 - □配線ネット
 - ■2つ以上の論理セルにつながった配線

配置

- □配置と配線の同時決定:理想的だが複雑
 - ■2つの処理(「配置」と「配線」)に分けて決定
 - ■配線した結果で評価するべき⇔配線前に評価
 - □配置の評価指標
 - ■仮想配線長の総和
 - ■論理結合度
 - ■カットラインを横切る配線数
 - ■配線混雑度
 - ■概略配線経路
 - etc...

仮想配線長の総和

- 始点と終点を結ぶ最短経路=マンハッタン距離
 - □ 二点間配線の場合:

どっちを使うかはアルゴリズムのルール次第

■ 多点間配線の場合:

完全グラフの枝の X_3 長さの総和×2/n (n:端子数) ○左例) $(x_1 + ... + x_6) \times 2/4$ X_6

全端子を囲む最小 矩形の2辺の和

左例)X₁+X₂

論理結合度

- □データや制御の流れ=結合
- $□ 結合度 = \frac{\alpha_i \cdot Y_{ij}}{X_i Y_{ij}} \cdot \frac{\alpha_j \cdot Y_{ij}}{X_j Y_{ij}}$
 - □ *a_i*: 重み付けパラメータ
 - X_i: セルiの結線数
 - □ Y_{ii}: セルiとセルjの共通結線数

配置アルゴリズム

処理分類	評価指標 (目的関数)	アルゴリズム	手法分類	
初期配置手法	論理結合度	クラスタリング配置手法		
		Min-cut配置手法		
反復改良法	仮想配線長 総和	ペア交換法	単点探索	
		重心緩和法		
		ネットバランス法		
		シミュレーティッドアニーリング (Simulated Annealing; SA)		
		遺伝的アルゴリズム (Genetic Algorithm; GA)	多点探索	

二次元クラスタリング配置手法

- ロアルゴリズム
 - 1. 基本クラスタ作成
 - 2. 基本クラスタ配置
 - 3. 基本クラスタ内のセル配置
- □評価指標:結合度
 - 重みa_iをうまく決定する 必要がある
 - ■例)遅延制約ネットの端子を 持つセル同士はa_iを大きくする
- □ 計算量:*O(N¹.5)*
 - □初期配置が大きく影響

確率的手法

□単点探索

■ Simulated Annealing (SA)など

目 的 関 数 Simulated Annealing 発見的手法

反復改善回数(時間)

□多点探索

■ Genetic Algorithm (GA)など

反復改善回数(時間)

一次元ペア交換法

- □ 隣接するセルのペアの配置交換
 - 評価指標:トラック数N_iの最大値
 - 各セルの位置で必要なトラック数N_i=論理セルの端子数+貫通する配線ネット数
 - 右図の最大トラック数= 4
 - Min: max N_i = 必要トラックを 最小にする配置を探索
 - AとBを交換:
 - 配線ネットcは<mark>論理セルB</mark>を貫通 しなくなる
 - 配線ネットbは論理セルAを貫通 する

配線ネット

b: 論理ブロックBの隣接右配線ネット

& 論理ブロックCの隣接左配線ネット

a: 論理ブロックDの

非隣接左配線ネット

 \mathbf{B}

b

D

Ε

□ 各位置iを端点とするネットに着目

- ■左(右)配線ネット
 - 位置iの論理セルを右(左)端点として、 左側(右側)に配線されている配線ネット
 - 隣接左(右)配線ネット:左隣(右隣)の 論理セルに端点を持つ左(右)配線ネット
 - 非隣接左(右)配線ネット:それ以外の左 (右) 配線ネット

非隣接左配線ネット

右交換の貫通ネット増加量

□ 位置iの論理セルとその右側の位置i+1の論理セルの 交換による、位置iの貫通ネット数の増減

- □ 位置iの論理セルの左配線ネット(ネットb):位置iに移った論理セルを貫通 → 増加
- □ 位置iの論理セルの非隣接右配線ネット(ネットa):位置i+1の論理セルを貫通しなくなる → 減少
- □位置iの論理セルの隣接右配線ネット(ネットc): 左端点になる → 増減には無関係

右交換の貫通ネット増加量

- □ <u>交換前</u>の位置iのネット情報を用いて
 - □交換後の位置iの右交換貫通ネット増加量
 - 一左配線ネット数一非隣接右配線ネット数
 - ■例)1-1=0
 - 交換後の位置iのトラック数
 - 一右側論理セルのトラック数十右交換貫通ネット増加量
 - ■例)2+0=2

左交換の貫通ネット増加量

- □ <u>交換前</u>の位置iのネット情報を用いて
 - □交換後の位置iの左交換貫通ネット増加量
 - 一右配線ネット数一非隣接左配線ネット数
 - ■例)0-0=0
 - 交換後の位置iのトラック数
 - 一左側論理セルのトラック数十左交換貫通ネット増加量
 - ■例)3+0=3

左・右交換の貫通ネット増加量

位置	1	2	3	4	5
セル名	Α	В	C	D	Е
端子数	2	2	3	2	2
貫通配線数	0	1	1	1	0
トラック数	2	თ	4	თ	2
非隣接左配線数	0	0	0	1	1
隣接左配線数	0	0	1	1	0
非隣接右配線数	1	0	1	0	1
隣接右配線数	0	1	0	0	0
右交換の貫通配線増加量	-1	0	0	2	
左配線ネット数	0	0	1	2	
左交換の貫通配線増加量		1	1	-1	0
右配線ネット数		1	1	0	1

交換グラフ

- □ 交換後の位置iのトラック数
 - 一節点内のトラック数十交換方向の枝の貫通トラック増加数

- ■例)論理セルCとDの交換
 - Cから見た右交換=Dから見た左交換
 - 交換後の位置3のトラック数 =交換前の位置4のトラック数+位置3の右交換貫通トラック増加数 =3+0
 - 交換後の位置4のトラック数= 交換前の位置3のトラック数+位置4の左交換貫通トラック増加数=4+(-1)

交換グラフ

