Liver cancer segmentati on

Luka Diktić, Ivan Mihaljević, Ivan Kovač, Matija Jakovac, Dominik Poljak

Introduction

 Liver cancer is the 5th most common cancer in men and the 9th in women

Complex shape of tumor makes it hard to det

- Solution: neural networks
- Tensorflow, Fastai

Dataset

- 131 CT scans
- Library: 'nibabel'
- Multiple layers, each layer is 512 x 512
- Each layer has its coresponding mask
- Hounsfield scale
- Windowing
- Train set: over 17000 images

Convolution neural network

- Main focus is analysis of visual data
- Consists of :
 - Convolution layer
 - Activation layer
 - Pooling
 - Dense layer

Transformer

- Architecture of deep learning
- Efficient in recognition of complex links in data
- Consists of encoder and decoder
- Encoder:
 - Self-atention
 - Feed-forward
 - Positional coding

UNet

- Most used model in medicine
- Encoder extract features
 Conv2D -> Normalization -> ReLU -> Co
 Normalization -> ReLu -> MaxPooling

• Decoder

Upsampling -> Concatenate -> Conv2D -> Normalization ->
ReLU -> Conv2D -> Normalization -> ReLu

- Skip connections
- ReLU activation

SegNet

- Indexing maximum values while max-pooling
- Encoder

Conv2D -> Normalization -> ReLU -> MaxPooling

• Decoder

Upsampling -> Conv2D -> Normalization -> ReLU

EfficientNe⁻

- B0 B7
- Compound scaling
- Trained on imagenet dataset
- Feature extractor
- Adapted for segmentation with decoder

Transformers

- Batch normalization
- Image to patches
- Embeddings
- Transformer encoder
- FC layer
- Patch to image

Vision Transformer For Image Segmentation

Results: UNet

- Hyperparamethers:
 - Learning rate: 0.00100
 - Batch size: 16
 - Epochs: 3
 - Class weight: bg 1, liver -
- Adam, categorical corssentro
- Results:
 - Dice score: 0.9846
 - Precission: 0.9953

Results: Seg

- Hyperparamethers:
 - Learning rate: 0.0(100)
 - Batch size: 16
 - Epochs: 5
 - Class weight: bg 1, liver 5
- Adam, categorical corssentro
- Results:
 - Dice score: 0.9899
 - Precission: 0.9908

Predicted Mask

Results: Efficie

- Hyperparamethers:
 - Learning rate: 0.001
 - Batch size: 64
 - Epochs: 20
- Adam, categorical corssentropy
- Results:
 - Dice score: 0.944
 - Accuracy: 0.9502

Predicted Mask

Results: Transformer

- Hyperparamethers:
 - Learning rate: 0.000
 - Batch size: 64
 - Epochs: 10
- Adam
- categorical corssen 120

Original Image

- Results:
 - Dice score: 0.9921
 - Accuracy: 0.9948

Conclusion

- Convolution neural networks are great solution for liver cancer segmentation
- Accuracy is not yet high enough for clinical use

Literature

- J. Howard et al., "fastai Medical Imaging Documentation," available: https://docs.fast.ai/medical.imaging.html
- R. Sharma, "CT Scans DICOM Files Windowing Explained," available: https://www.kaggle.com/code/redwankarimsony/ct-scans-dicom-files-windowing-explained
- R. Spark, "Liver Tumor Segmentation Final," available: https://www.kaggle.com/code/rishabhspark/liver-tumor-segmentation-final
- S. Tenebris, "Liver Segmentation ResNet-50," available: https://www.kaggle.com/code/tenebris97/liver-segmentation-resnet-50
- L. Luyen, "Liver Segmentation UNet," available: https://www.kaggle.com/code/luyen0/liver-segmentation-unet
- N. Sowmik, "Liver Segmentation with fastai v2 using UNet," available: https://www.kaggle.com/code/nurislamsowmik/liver-segwith-fastai-v2-using-unet-sowmik
- A. Mvd, "Liver Tumor Segmentation Dataset," available: https://www.kaggle.com/datasets/andrewmvd/liver-tumor-segmentation/data
- A. Mvd, "Liver Tumor Segmentation Part 2 Dataset," available: https://www.kaggle.com/datasets/andrewmvd/liver-tumor-segmentation-part-2
- S. Haider, "SegNet," available: https://medium.com/@saba99/segnet-a139ce77b570#:~:text=1,identifying%20objects%20and%20their%20boundaries.
- A. Vidhya, "What is UNet," available: https://medium.com/analytics-vidhya/what-is-unet-157314c87634
- A. Sarkar, "Understanding EfficientNet: The Most Powerful CNN Architecture," available: https://arjunsarkar786.medium.com/understanding-efficientnet-the-most-powerful-cnn-architecture-eaeb40386fad