Let A and B be two Sets, then the relation R is the Subset of AXB.

$$R_1 = \{ (1,a), (2,a) \}$$

$$R_2 = \{ (2,a), (2,b) \}$$

$$R_3 = \{ (2,a) \}$$

Counting of relations

$$M(A) = 2$$
, $M(B) = 2$

$$M(A \times B) = 2 \times 2 = 4$$

$$\frac{A\times B}{R} \rightarrow \frac{2}{R} - \frac{1}{R}$$

Total no of Relation=2×2×2×2

$$= 2 = 2 = 2$$

$$= 2 = 2$$

—×—

p het A and B be two Sets having n and m elements then find the total no of Relation from the Set A to Set B.

Solv: no. of elements in Ser A = n

no. of elements in Ser-B=m

Total no. of Relation = 2 $\frac{n(A) \times n(B)}{2}$

$$= 2 \qquad = 2$$

Total no of Relation from Ser \underline{A} to Ser $\underline{A} = 2$ = 2 = 2 $-\times$

- Reflexive relation: Let A be a non-empty Set, then the relation R defined on AXA is called reflexive.

 if aRa + aEA
- 2) Symmetric relation: Let A be a non-empty Ser, then the relation R defined on AXA is called Symmetric if (a,b) CR then (b,a) CR
- 3) Transitive Relation: the A be a non-empty Ler, then the gredation R defined on AXA is called transitive if (a,b) (R and (b,c) (R =) (a,c) (-R X -
- Q1 fer A= {1,2,3},

 R= { (1,1), (2,2), (1,2), (2,3), (1,3) }

 Check is this relation (i) Refrexive (ii) Symmetric (iii) Transitive.

 $S_{6}M$: $A = \{ 1, 2, 3 \}$ $R = \{ (1,1), (2,2), (1,2), (2,3), (1,3) \}$

- (1) Refrexive
 As (3,3) &R => Relation is not refrexive.
- 2) Symmetric (1,2) ER but (2,1) & R =) Relation is not Symmetric
- 3 Transitive
 As (1,2) (R, (2,3) (R =) (1,3) (R

It het IN be the Set of natural nos. define a relation of R on INXIN by $R = \{(a,b): a < b\}$. Prove that this relation is reflexive, transitive but not symmetric.

$$Sa^{n}$$
: $R = \{(a,b): a \leq b\}$
(i) Reflexive.

As every element is less than or equal to itself
ie, $a \le a$ $\forall a \in \mathbb{N}$ $\Rightarrow (a,a) \in \mathbb{R}$ $\forall a \in \mathbb{N}$ This relation is reflexive.

Transitive

Let
$$(a,b)$$
 (+R and (b,c) (+R

 $a \le b \le c$ =) $a \le c$

=) (a,c) (+R

This relation is transitive.

p het L be the Set of all lines in a plane define a relation

called an equivalence relation if it is

1) Refrexive -

alb= b/a

- 3 Symmetric
- (8) Transitive

P Let M be the Ser of natural nois. define a relation R on NXN as R= ((a,b): a|by, Check that relation is not an equivalence relation.

Say R= { (a,b): a|b}

- D Reflexive

 Every element divides itself

 i.e., a a + a E M

 =) (a,a) (-R

 =) Relation is reflexive.
- Symmetric

 fut (a,b) ER

 =) a/b

=) (b, a) & Relation is not Symmetric we can say that this relation

is not an equivalence relation.

Integers define a Refarm R on \mathbb{Z} by $\mathbb{R} = \{(a,b): 2 \text{ divides } a-b\}$. Prove that this relation is an equivalence orefarion.

 $S_{\bullet}M$ $R = \{(a_{1b}): 2 \text{ divides } a-b\}$

0

(1) Reflexive.

we know that 2 or 2 a-a + atz 2 divides a-a → ac-z (a,a)∈R =) Relation is reflexive.

2) Symmetric her (a, b) (R =) 2 (a-b), true 7 integer k s.t $\frac{a-b}{2} = K \qquad \left(K \in \mathbb{Z} \right)$ a-b=2kMultiply both sides by -1 -(a-b) = 2(-K)(b-q) = 2(-K) 2 (b-a) (b, a) -R

=) Relation is Symmetric 2/4, 2/6=)2/(4+6) 3 Transitive Let (a,b) ER and (b,e) ER 2|(a-b)| and 2|(b-c)|2(a+x)+(x-c)2) (a-c) =) (a/c)(-R =) This relation is transitive. -. This relation is an equivalence

I het IR be the Set of real moss. Define a Relation R= (a,b): |a|=|b| Prive that this relation is an equivalence relation.

 $S_{1}^{M} \qquad R = \left\{ (a,b) : |a| = |b| \right\}$

- 1) Reflexive Relation. (2) Symmetric

3 Transitive. LI+ CO. WILD OUT TO THE

1) Reflexive Relation	2 Symmetric		3 Transitive.
As we know that	Let (a,b)ER		het (a,6)(-R and (b,c)(-R
	a = b		1a= b and b = c
lal=lal + a CR	or 161 = 1a1		
=> (a,a)ER + a ER	(b,a) ← R		a = b = c
This relation is reflexive			=) a = c
			=) (a,c)(-R
			Tuis Relation is transitive
			Hence, we can say that
$R = \{(a,b): a \leq b\}$			this relation is an
	•		equivalence relation.
Tuis relation is not Symmetric			
her (a,b) ER	4 <u><</u> 8		
\neq $b \leq a$			
$(b,a) \notin \mathbb{R}$			
: Tuis relation is not un equivalence relation.			
1 Let R be the relation over the Set NXN and is defined			
by (a,b) R(c,d) (=) ad=bc Represented that the relation is			
an equivalence relation.			
Sol ^N D Reflexive			Refrexive.
As we know that			
a+b=b+a			$(\underline{a},\underline{b})R(\underline{a},\underline{b})$ $\forall (a,b) \in Nxn$
(a,b) R(a,b) + (a,b) ENXN			
		Transitive	
(2) <u>Symmetric</u>		Let $(\underline{a}, b) R(c, \underline{d})$ and $(c, d) R(e, \underline{f})$	
het (a,b) R (c,d)		•	
a+d=b+c			$b+c \longrightarrow 0 \qquad c+f = d+e \longrightarrow 2$
d+a=C+b		Addin	g O& O, we ger
c+b=d+a			d+d+f= b+d+4
(c A) R (a.b)			91x++= 0+9+9+E

Anti-Symmetric relation: Let A be a non-empty set, then
The relation R is called anti-Symmetric if

(a,b) (-R and (b,a) (-R then a=b)

How to express a relation in matrix form.

$$A = \{1, 2, 3\}$$

$$A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$$

$$A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$$

$$A = \{(1, 1), (1, 2), (2, 3), (2, 2)\}$$

$$A = \{(2, 1), (2, 2), (2, 3)\}$$

$$A = \{(2, 1), (2, 3), (2, 3)\}$$

$$A = \{(2,$$

$$A = \left\{ 1, 2, 3, 4 \right\}$$

$$R = \left\{ (1, 1), (1, 4), (2, 2), (2, 4), (3, 1), (3, 2), (4, 1), (4, 4) \right\}$$

Def of Partial order relation (P.O.R)

her A be a non-empty Ser, then the Relation R on A

is /// Called Partial order relation if it is

O Refrexive

The House

2 Auri-Symmetric

(3) Transitive.

