PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-088126

(43)Date of publication of application: 07.04.1998

(51)Int.CI.

CO9K 11/62 CO9K 11/00

CO9K 11/00

C09K 11/08

CO9K 11/64

(21)Application number: 08-246417

(71)Applicant: KASEI OPTONIX CO LTD

(22)Date of filing:

18.09.1996

(72)Inventor: UEDA KYOTA

MARUYAMA TAKUYA TAKIZAWA HIROTANE

ENDO TADASHI

(54) LUMINOUS SINTERED FLUORESCENT SUBSTANCE AND ITS PRODUCTION (57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject fluorescent substance having luminous characteristics, a property for emitting a green color good in color purity, good in chemical stability and excellent in weather resistance by press-molding fluorescent raw materials and subsequently sintering the molded product. SOLUTION: Zn oxide, Mg oxide, Ga oxide, Al oxide and Mn oxide as raw materials are press-molded and subsequently sintered to obtain the luminous Mn-activated gallium acid salt sintered fluorescent substance of the formula (Zn1-x-yMgxMny)O.n(Ga1-2Al2)2O3 $[0\le(x)\le1.0;$ $1\times10-5\le(y)\le1\times10-1;$ $0\le(z)\le1.0;$ $0.95\le(n)1.05$].

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-88126

(43)公開日 平成10年(1998) 4月7日

(51) Int.Cl. ⁶		識別記号	FΙ						
C09K	11/62	CPN	C09K 1	1/62	CPN				
	11/00		1	1/00		C Z			
	11/02		1	1/02					
	11/08		1:	1/08	В				
11/64		CPP	1	11/64			CPP		
			審査請求	未請求	請求項の数4	OL	(全 7	頁)	
(21)出願番	——— 身	特願平8-246417	(71)出廣人	3900199	76				
				化成オン	プトニクス株式	会社			
(22)出願日		平成8年(1996)9月18日		東京都港		38番1	2号		
			(72)発明者	上田 ま	太孝				
				宫城県仙台市太白区向山1丁目				穂	
				山アパー	-トA-101号室	i			
			(72)発明者	丸山 卓	色也				
				宮城県仙台市太白区八木山弥生町22-2					
				忠恕館2	03				
			(72)発明者	滝沢 博					
				宮城県仙	L台市太白区富	尺4丁目	8 -50	コ	
				ーポレジ	らかば102				
			(74)代理人	弁理士	内田 明 (タ	12名)			
						振	終頁に	虎く	
		2022					終頁に	売く 	

(54) 【発明の名称】 蓄光性焼結蛍光体及びその製造方法

(57) 【要約】

【課題】 蓄光特性を有し、色純度の良い緑色発光を有し、更に化学的に安定で耐侯性に優れた蓄光性焼結蛍光体及びその製造方法を提供しようとするものである。

【解決手段】 蛍光体原料を加圧成形し、焼結してなる、組成式(Zn_{1-x-y} Mg_xMn_y) $0 \cdot n$ (Ga_{1-z} Al_z) 20_3 で表される蓄光性ガリウム酸塩焼結蛍光体。(ただし、組成式中のx, y, z 及びnは下記の条件を満たす数値である。

 $0 \le x \le 1.0$, $1 \times 10^{-5} \le y \le 1 \times 10^{-1}$, $0 \le z \le 1.0$, $0.95 \le n \le 1.05$)

【特許請求の範囲】

【請求項1】 Mn付活ガリウム酸塩からなる蓄光性蛍光体において、蛍光体原料を加圧成形し、焼結してなる、組成式(Z_{n1-x-y} Mgx Mny) O・n(Ga 1-z A 1-z)2 O3 で表される蓄光性Mn付活ガリウム酸塩焼結蛍光体。(ただし、組成式中のx、y、z 及びnは下記の条件を満たす数値である。

 $0 \le x \le 1.0$ $1 \times 10^{-5} \le y \le 1 \times 10^{-1}$

 $0 \le z \le 1.0$

 $0.95 \le n \le 1.05$

【請求項2】 上記蛍光体の密度が4.0~6.1g/cm³の範囲にあることを特徴とする請求項1記載の蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。

【請求項3】 ① Zn酸化物又は焼成によりZn酸化物に代わり得るZn化合物、②Mg酸化物又は焼成によりMg酸化物に代わり得るMg化合物、③ Ga酸化物又は焼成により K成によりGa酸化物に代わり得るGa化合物、④ Al酸化物又は焼成により Mn酸化物に代わり得る Al化合物、及び⑤ Mn酸化物又は焼成により Mn酸化物に代わり得る Mn化合物を含む化合物を蛍光体原料として用い、これらの蛍光体原料を化学量論的に組成式(Znl-x-y Mgx Mny)〇・n(Gal-z Alz)2〇3で表される割合で混合し、加圧成形して焼成するか、又は、上記蛍光体原料を焼成し、粉砕して粉末蛍光体を立は、上記蛍光体原料を焼成し、粉砕して粉末蛍光体を足した後、該粉末蛍光体を加圧成形し、再度焼成することを特徴とする蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。(ただし、組成式中のx、y、z及びnは下記の条件を満たす数値である。

0 $\leq x \leq$ 1. 0 1 x 1 0⁻⁵ $\leq y \leq$ 1 x 1 0⁻¹ 0 $\leq z \leq$ 1. 0

 $0.95 \le n \le 1.05$

【請求項4】 上記蛍光体原料、又は、上記粉末蛍光体を1~5000kg/cm² で加圧成形することを特徴とする請求項3記載の蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、屋内、屋外、さらには水中などの暗所における表示や光源として利用することができ、耐侯性に優れ、長残光性を有し、紫外線の励起によって緑色発光を呈する蓄光性マンガン付活ガリウム酸塩焼結蛍光体及びその製造方法に関する。

[0002]

【従来の技術】 蓄光性蛍光体は、蛍光体に何らかの励起を与えて発光させ、励起を停止した後も発光を持続する 蛍光体である。ところで、最近は、表示の多様化、高機能化に伴い、蓄光性蛍光体の多色化、長残光化及び耐侯性改良が求められているが、従来の蓄光性蛍光体は、発 光や残光の色の種類が限定され、かつ、耐侯性が悪く、 残光時間が短いものであった。

【〇〇〇3】例えば、青色発光蓄光性蛍光体としては、 (Ca, Sr) S: Bi蛍光体、黄緑色発光蓄光性蛍光体としては、ZnS: Cu蛍光体、赤色発光蓄光性蛍光体としては(Zn, Cd) S: Cu蛍光体等が知られている。

【0004】しかし、上記(Ca、Sr)S:Bi蛍光体は、母体の化学安定性が極めて悪く、また、輝度及び残光特性も十分でないため、現在ではほとんど使用されていない。また、(Zn, Cd)S:Cu蛍光体は、毒性物質であるCdが母体の半分ほどを占めており、輝度及び残光特性も満足できないため、これも現在ではほとんど使用されていない。一方、ZnS:Cuは安価なこともあり、時計の文字盤や避難誘導標識など屋内用に多用されているが、湿気が存在すると紫外線により分解し、黒化し易く、残光特性も十分でないなどの欠点があった。

[0005]

【発明が解決しようとする課題】そこで、本発明は、上 記の欠点を解消し、蓄光特性を有し、色純度の良い緑色 発光を有し、さらに化学的に安定で耐侯性に優れた蓄光 性焼結蛍光体及びその製造方法を提供しようとするもの である。

[0006]

【課題を解決するための手段】本発明者等は、従来の蓄光性蛍光体の有する欠点を解消するため、特に酸化物系の蛍光体について鋭意検討の結果、Mnで付活した特定組成の(Mg、Zn)O一(Ga、Al)2O3ガリウム酸塩系の粉末蛍光体が、加圧成形、焼結化することによって、従来の粉末蛍光体では得られない蓄光性を有することを見出し、本発明を完成することができた。

【 O O O 7】 ガリウムアルミン酸塩系の粉末蛍光体は、...
H. W. Leverenz "An Introduction toLuminescence of Solids," John Wiley &: Sons Inc. New York (1959)やJ.
J. Brown, "J. Electrochem. Soc." p. 114, 245 (1967)に記載されているが、これらのガリウムアルミン酸塩系の粉末蛍光体は紫外線で励起すると、極めて色純度の良い緑色発光を示すものの、蓄光性が全く無い。

【0008】ところが、本発明者等が、このガリウムアルミン酸塩系の蛍光体原料を加圧成形して焼成したところ、蓄光性が表れ、色純度の良い緑色発光を有し、かつ化学的に安定で耐侯性に優れていることを見出した。即ち、本発明は、下記の構成からなる緑色発光を呈する蓄光性焼結蛍光体及びその製造方法である。

【 O O O 9 】 (1) M n 付活ガリウム酸塩からなる蓄光性 蛍光体において、蛍光体原料を加圧成形し、焼結してな る、組成式 (Z n 1-x-y M g x M n y) O・n (G a 1-z A l z) 2 O 3 で表される蓄光性M n 付活ガリウム 酸塩焼結蛍光体。(ただし、組成式中の x , y , z 及び nは下記の条件を満たす数値である。

 $0 \le x \le 1.0$

 $1 \times 10^{-5} \le y \le 1 \times 10^{-1}$

 $0 \leq z \leq 1. 0$

 $0.95 \le n \le 1.05$

【0010】(2) 上記蛍光体の密度が4.0~6.1g ノcm³の範囲にあることを特徴とする上記(1) 記載の 蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。

【OO11】(3) ① Zn酸化物又は焼成によりZn酸化物に代わり得るZn化合物、②Mg酸化物又は焼成によりMg酸化物に代わり得るMg化合物、③ Ga酸化物区は焼成によりGa酸化物に代わり得るGa化合物、④ AI酸化物又は焼成によりAI酸化物に代わり得るAI化合物及び⑤Mn酸化物又は焼成によりMn酸化物に代わり得るMn化合物を含む化合物を蛍光体原料として用い、これらの蛍光体原料を化学量論的に組成式(Zn1-x-y Mgx Mny)O·n(Ga1-z AIz)2O3で表される割合で混合し、加圧成形して焼成するか、又は、上記蛍光体原料を焼成し、粉砕して粉末蛍光体を成した後、該粉末蛍光体を加圧成形し、再度焼成することを特徴とする蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。(ただし、組成式中のx、y、z及びnは下記の条件を満たす数値である。

 $0 \le x \le 1. 0$

 $1 \times 10^{-5} \le y \le 1 \times 10^{-1}$

 $0 \le z \le 1.0$

 $0.95 \le n \le 1.05$

【0012】(4) 上記蛍光体原料、又は上記粉末蛍光体を1~5000kg/cm²で加圧成形することを特徴とする上記(3) 記載の蓄光性Mn付活ガリウム酸塩焼結蛍光体の製造方法。

[0013]

【発明の実施の態様】本発明の蓄光性焼結蛍光体は、次のようにして製造される。蛍光体原料としては、Zn、Mg、Ga、Al及びMnの酸化物、焼成によりZn酸化物に代わり得る炭酸塩、硝酸塩、塩化物などを挙げることができる。

【 O O 1 4 】これらの蛍光体原料を化学量論的に組成式(Z n 1-x-y M g x M n y) O・n(G a 1-z A l z) 2 O 3 で表される割合で混合する。また、その際、融剤としてアルカリ金属又はアルカリ金属塩、本発明蛍光体の母体を構成する元素又は付活剤を構成する元素のアンモニウム塩又はハロゲン化合物を若干添加してもよい。蛍光体原料の混合は、乾式で混合してもよいし、アルコール、水等を混ぜてペースト状にして湿式で混合してもよい。

【0015】 蛍光体原料を十分に混合した後、湿式混合 の場合はさらに乾燥した後、混合物を $1\sim5000$ kg \prime c m^2 の範囲、好ましくは $500\sim3000$ kg \prime c m^2 の範囲の圧力で加圧成形し、その成形物をアルミナ

ルツボ等の耐熱容器に充填し、水素含有中性ガス又はCO×ガス等の還元性雰囲気、若しくは、アルゴンガスや窒素ガス等の不活性ガス雰囲気の下で800~1600 ℃で1~24時間で1回以上、好ましくは1100~1500℃で1~24時間で1回以上焼成する。

【 O O 1 6 】加圧成形は、錠剤成形機等を用いて、原料に対して一定の圧力が均一にかかるようにプレスする方法で行う。焼成は、これを繰り返して行うときには、最初は空気中で焼成してもよいが、最後の焼成工程は必ず還元性雰囲気又は不活性ガス雰囲気中で行う。また、予め粉末蛍光体を合成し、その後、上記条件で加圧して焼成してもよい。そして、焼成を一度行う場合も、繰り返して焼成す場合も、最終的な焼成物の密度が4.0~6.1g/cm³の範囲、好ましくは4.5~6.0の範囲にあるときに特に蓄光性が優れていた。

【 O O 1 7 】焼結後の蛍光体は、粉砕し、洗浄し、乾燥し、篩分して種々の用途に供せられる。このようにして得た本発明の蓄光性焼結蛍光体は、極めて長い緑色の残光特性を有し、化学的に安定で耐侯性に優れている。

【 $0 \ 0 \ 1 \ 8$ 】 本発明にかかる $M \ n \ d$ 活ガリウム酸塩からなる蓄光性焼結蛍光体の組成は、組成式($Z \ n \ 1-x-y \ M$ $g \ x \ M \ n \ y$) $O \cdot n$ ($G \ a \ 1-z \ A \ l \ z$) $2 \ O \ 3$ で表すことができ、高効率の蓄光性を確保するために、($Z \ n \ 1-x-y \ M \ g \ x \ M \ n \ y$) $O \cdot c \ (G \ a \ 1-z \ A \ l \ z$) $2 \ O \ 3$ $c \ D \cdot c$ の比(n) を、 $0 \ 9 \ 5 \le n \le 1$. $0 \ 5$ の範囲、好ましくは $0 \ 9 \ 7 \le n \le 1$. $0 \ 5$ の範囲を外れると、目的以外の化合物が生成したり、未反応の原料酸化物が残存するためと思われるが、発光輝度及び残光特性が低下する。

【 OO19】 Zn を Mg に置換するモル数 (x) は、発 光輝度の点から、 $O \le x \le 1$ の、好ましくは $O \le x \le 0$ 6 の範囲が適している。

【0020】また、GaをAIに置換するモル数(z) は、0≦z≦1.0、好ましは0≦z≦0.2の範囲が 適している。

【0021】他方、付活剤であるMnの配合量y(モル数)は、 $1\times10^{-5} \le y \le 1\times10^{-1}$ 、好ましくは $1\times10^{-4} \le y \le 5\times10^{-2}$ の範囲が適しており、 1×10^{-5} 未満では発光センターが少なくなり、十分な発光輝度が得られない。また、 1×10^{-1} を越えると濃度消光を起こすとともに、目的以外の化合物が出来るためか、やはり発光輝度が低下すると共に残光特性も低下するので好ましくない。

【0022】図1の曲線 a, b, cは、実施例1で製造された蓄光性焼結蛍光体 Zn0、999 Ga2 O4 : Mn0、001、実施例2で製造された蓄光性焼結蛍光体 Zn0、599 Mg0、4 Ga2 O4 : Mn0、001、実施例3で製造された蓄光性焼結蛍光体 Zn0、999 Ga1、95 Al0、05 O4: Mn0、001 に対し、254 nmの紫外線で励起し

たときの発光スペクトルを示したもので、各蓄光性焼結 蛍光体の発光ピーク波長はそれぞれ503nm、506 nm及び504nmであった。

【0023】図2は、実施例1~3の蓄光性焼結蛍光体を用いて、励起スペクトルを測定して示したものである。励起スペクトルの測定は、分光光度計の出力側の分光波長を蓄光性焼結蛍光体の発光波長である503nmに固定し、試料に照射する光の励起波長を変化させた時の、蓄光性焼結蛍光体の506nm(出力光)の発光光強度をプロットしたもので、縦軸は504nmの相対発光強度、横軸は照射する励起光の波長を意味する。なお、この蓄光性焼結蛍光体組成が、請求項1に記載の範囲で変化しても、その発光スペクトルは図1に示した発光スペクトルは図1に示した発光スペクトルは図2に示した励起スペクトルとほぼ同様の励起スペクトルを示した。

【0024】図3は、実施例1~3の蓄光性焼結蛍光体、比較例1の蓄光性粉末蛍光体2n0.99Ga2 O4:Mn0.01、及び、比較例2の蓄光性粉末蛍光体ZnS:Cu、それぞれに対して主発光波長365nmの紫外線を発する紫外線ランプを用いて10分間照射し、照射停止2分後の残光特性を測定しものであり、その測定方法は、ランプを各蛍光体試料に照射し、ランプを切った後の蛍光体の残光特性(ランプを切った後の経過時間とその時の各蛍光体の刻々の発光強度との相関)を視感度フ

Z n O G a 2 O 3 M n C O 3

上記の各原料に純水を加えてペースト状にし、充分に湿式混合した後、これを乾燥し、1000Kg/cm²の圧力で混合原料を直径8mmの円盤状に加圧成形し、ルツボのアルミナとの反応を防止するため、ルツボの底に白金板を敷いて加圧成形物を入れ、ルツボを電気炉にセットしてアルゴンガスを炉内に通じ、1300℃で20時間焼成し、焼結蛍光体を得た。

【 O O 2 8 】得られた焼結蛍光体は、 Z n 0.999 G a 2 O 4 : M n 0.001 組成を有し、これを 2 5 4 n m 紫外線 で励起した時の発光スペクトルを測定したところ、図 1 の曲線 a の通りで、その発光スペクトルのピーク波長は

ZnO MgO Ga2 O3 MnCO3 NH4 Cl

上記の各原料に純水を加えてペースト状にし、充分に湿式混合した後、これを乾燥し、1000Kg/cm²の圧力で混合原料を直径8mmの円盤状に加圧成形し、ルツボのアルミナとの反応を防止するため、ルツボの底に白金板を敷いて加圧成形物を入れ、ルツボを電気炉にセットして窒素ガスを炉内に通じ、1350℃で10時間

ィルター付き輝度計で時間と共に残光の発光輝度を測定 して求めるものである。

【0025】図3から明らかなように、発光スペクトルピーク波長503nmの蓄光性焼結蛍光体である実施例1の蛍光体は、比較例1の蛍光体に比べて極めて顕著な残光特性を有することが分かる。また、実施例2、3の蓄光性焼成蛍光体も、実施例1の蓄光性焼結蛍光体と比べてその発光色は異なるものの、従来の市販品に相当する比較例2のZnS:Cu黄緑色発光蛍光体に比べて優れた残光特性を有していることが分かる。

【OO26】本発明の蓄光性焼成蛍光体は、このように極めて高輝度で、長残光性を示し、耐侯性にも優れ、かつ、化学的に安定なため、従来のZnS系の蓄光性蛍光体に比べて、広い用途への利用が可能である。例えば、種々の物品の表面に塗布したり、プラスチックス、ゴム、塩化ビニール、合成樹脂又はガラス等に混合し、成型体もしくは蛍光膜として、道路標識、視認表示、装飾品、レジャー用品、時計、OA機器、教育機器、安全標識及び建築材等に利用することができる。また、この蓄光性焼成蛍光体を蛍光ランプの蛍光膜として用いるときには、残光性の優れた蛍光ランプとして使用することができる。

[0027]

【実施例】

〔実施例1〕

2.36 g

5.54 g

0.003g

503 nmの緑色発光蓄光性を有するものであった。また、この焼結蛍光体の発光ピーク波長503 nmを与えるための励起スペクトルは、図2の曲線 a のように可視域まで広がっていた。さらに、この焼結蛍光体の残光は、図3の曲線 a に示すように長残光を示した。得られた焼結蛍光体の発光ピーク波長、残光特性値(励起光照射停止2分後と60分後のそれぞれの発光強度を、2 n S: C u 黄緑色発光蓄光蛍光体の発光強度を100%にした場合の発光強度比)を表1に記載した。

【0029】〔実施例2〕

1. 41 g

0.47 g

5.44 g

0.003g

0.15 g

焼成し、焼結蛍光体を得た。

【0030】得られた焼結蛍光体は、Zn0.599 Mg 0.4 Ga2 O4: Mn0.001 組成を有し、これを254 nm紫外線で励起した時の発光スペクトルを測定したと ころ、図1の曲線bの通りで、その発光スペクトルのピ ーク波長は506nmの緑色発光蓄光性を有するもので あった。また、この焼結蛍光体の発光ピーク波長を与えるための励起スペクトルは、図2曲線 bのように可視域まで広がっていた。さらに、この焼結蛍光体の残光は、図3曲線 b に示すように長残光を示した。得られた焼結蛍光体の発光ピーク波長、残光特性値(励起光照射停止

Z n 0

Ga2 O3

A 1 2 O 3

Mn 02

上記の各原料を充分に乾燥し、混合した後、2000kg/cm²の圧力で混合原料を直径8mmの円盤状に加圧成形し、ルツボのアルミナとの反応を防止するため、ルツボの底に白金板を敷いて加圧成形物を入れ、ルツボを電気炉にセットし、周囲をCO×ガスによる雰囲気にして1300℃で5時間焼成し焼結蛍光体を得た。

【0032】この蛍光体は、Zn0.999 Ga1.95Al0.05O4:Mn0.001 の組成を有し、これを254nm紫外線で励起した時の発光スペクトルを測定したところ、図1の曲線cの通りで、その発光スペクトルのピー

ZnO

G a 2 O 3

Mn CO3

上記の各原料に純水を加えてペースト状にし、充分に湿式混合した後、これを乾燥し、空気中、1300℃で5時間焼成して、表1に示した組成を有する粉末蛍光体を得た。

【0034】次に、この粉末蛍光体を1000kg/cm²の圧力で直径8mmの円盤状に加圧成形し、ルツボのアルミナとの反応を防止するため、ルツボの底に白金板を敷いて加圧成形物を入れ、ルツボを電気炉にセットしてアルゴンガスを通気しながら1300℃で20時間焼成し、焼結蛍光体を得た。この焼結蛍光体の発光ピーク波長、残光特性値(照射停止2分後と60分後のそれぞれの発光強度を、2nS:Cu黄緑色蓄光性蛍光体の発光強度を100%にした場合の発光強度比)を表1に記載した

【0035】 [実施例5] 実施例4と同様の方法で、表 1に記載の組成(Zn0.799 Mg0.2) Ga0.95A I 0.05 O4 Mn0.001 を有する焼結蛍光体を得た。この焼 2分後と60分後のそれぞれの発光強度を、ZnS:Cu 黄緑色発光蓄光蛍光体の発光強度を100%にした場合の発光強度比)を表1に記載した。

【0031】 [実施例3]

2.36 g

5.30 g

0.074g

0.002g

ク波長は504nmの緑色発光蓄光性を有するものであった。また、この焼結蛍光体の発光ピーク波長を与えるための励起スペクトルは、図2曲線cのように可視域まで広がっていた。さらに、この焼結蛍光体の残光は、図3曲線cに示すように長残光を示した。得られた焼結蛍光体の発光ピーク波長、残光特性値(励起光照射停止2分後と60分後のそれぞれの発光強度を、2nS:Cu黄緑色発光蓄光蛍光体の発光強度を100%にした場合の発光強度比)を表1に記載した。

【0033】〔実施例4〕

2.36 g

5.54 g

0.003g

結蛍光体の発光ピーク波長、残光特性値(照射停止2分後と60分後のそれぞれの発光強度を、ZnS:Cu黄緑色蓄光性蛍光体の発光強度を100%にした場合の発光強度比)を表1に記載した。

【0036】 [比較例1~2] 実施例1において、加圧成形工程を省略した以外は、実施例1と同様にして比較例1のZn0.999 Ga2 O4:Mn0.001 粉末蛍光体を得た。また、化成オプトニクス社製のZnS: Cu黄緑色発光蓄光性蛍光体(LC-G1) を比較例2の螢光体とした。これらの蛍光体を254nmの紫外線で励起した時の発光ピーク波長、残光特性値(照射停止2分後と60分後のそれぞれの発光強度を、比較例2の、ZnS: Cu黄緑色発光蓄光性蛍光体を100%にした場合の発光強度比)を表1に記載した。

[0037]

【表 1 】

		% 2 %	残光特性 (%)		
:	組成式 	ピーク (mm)	5分後	60分後	
実施例 1	Zno. 919Ga2O4 : Mno. 001	503	239	667	
実施例2	Zno. saaMgo. 4G82O4 : Mno. oo1	506	227	466	
実施例3	Zno. 999Ga: 95Ale. 08O4 : Mno. 901	504	182	400	
実施例 4	Zno. 223Ga2O4 : Mno. 001	503	2 4 5	685	
実施例 5	(Zno. 709Mgo. 2)Gao. 95Alo. 05O4 : Mno. 501	505	139	267	
比較例1	Zno. 999Ga2O4 : Mno. 001	503	5		
比較例2	ZnS : Cu	5 1 6	100	100	

[0038]

【発明の効果】本発明は、上記の構成を採用することにより、化学的に安定で、市販の2nS系黄緑色発光蓄光 蛍光体と比較しても、高輝度ではるかに長い残光を示す、緑色蓄光性焼結蛍光体を提供することができ、表示 の多色化多機能化に大きく寄与するものである。

【図面の簡単な説明】

【図1】 実施例1~3の蓄光性焼結蛍光体に254n

mの紫外線で励起したときの発光スペクトルを示した図である。

【図2】 実施例1~3の蓄光性焼結蛍光体の励起スペクトルを示した図である。

【図3】 実施例1~3及び比較例1~2の蛍光体に対し、主発光波長365nmの紫外線を照射し、照射停止2分後の残光による発光強度を示した図である。

フロントページの続き

(72) 発明者 遠藤 忠宮城県岩沼市相の原3丁目2-23