Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones: Búsqueda Tabú y Simulated Annealing

Nicolás Rojas Morales

Departamento de Informática Universidad Técnica Federico Santa María

Clasificación de Técnicas de Resolución

Escape de óptimos locales

Problema

• Estancamiento de la búsqueda en óptimos locales

Escape de óptimos locales

Problema

• Estancamiento de la búsqueda en óptimos locales

Solución

- Opción 1: Reiniciar la búsqueda → pérdida de información
- Opción 2: Aceptar movimientos que empeoran la calidad de la solución actual
 - Pueden producir ciclos en la búsqueda.

Búsqueda Tabú (Tabu Search)

Búsqueda Tabú (Tabu Search)

- Búsqueda Tabú (Glover, 86) es una estrategia para resolver problemas de optimización combinatoria. Algo muy parecido sugirió Hansen al mismo tiempo (steepest ascent/mildest descent).
- Utiliza una búsqueda local con memoria a corto plazo
 - El proceso es capaz de escapar de óptimos locales y evitar ciclos utilizando la información almacenada en la memoria.
- La memoria de corto plazo esta representada por la lista tabú, la cual registra las últimas soluciones visitadas e impide volver a ellas en los próximos movimientos.

Lista Tabú

- Por razones de eficiencia, no se guarda la solución completa en la lista tabú, sino una parte de sus atributos. Se define una lista tabú de condiciones.
- La lista tabú se actualiza normalmente en forma FIFO.
- El largo de la lista tabú controla la memoria del proceso de búsqueda.
 - Una lista tabú corta, controla áreas reducidas del espacio de búsqueda y una larga, fuerza a una búsqueda en áreas mayores.

Lista Tabú

- Por razones de eficiencia, no se guarda la solución completa en la lista tabú, sino una parte de sus atributos. Se define una lista tabú de condiciones.
- La lista tabú se actualiza normalmente en forma FIFO.
- El largo de la lista tabú controla la memoria del proceso de búsqueda.
 - Una lista tabú corta, controla áreas reducidas del espacio de búsqueda y una larga, fuerza a una búsqueda en áreas mayores.
- El largo de la lista puede cambiar a lo largo del proceso de búsqueda.

Pseudo-código

```
Procedure tabu search
    initialize s_c at random
    initialize tabulist as empty
    initialize s_{best} \leftarrow s_c
    Repeat
        s_v \leftarrow select from \mathcal{N}(s_c) the best non tabu point
        s_c \leftarrow s_v
        update tabulist
         If f(s_c) is better than f(s_{best}) then
            S_{hest} \leftarrow S_c
    Until terminationCriterion()
EndProcedure
```

Ejemplo

• Considerando el problema de la mochila

$$\begin{aligned} \text{máx } 18 \cdot x_1 + 25 \cdot x_2 + 11 \cdot x_3 + 14 \cdot x_4 \\ \text{s.a. } 2 \cdot x_1 + 2 \cdot x_2 + x_3 + x_4 &\leq 3 \\ x_1, x_2, x_3, x_4 &\in \{0, 1\} \end{aligned}$$

- Proponga una representación acorde al problema
- Proponga un movimiento acorde al problema
- Describa el proceso de búsqueda realizado por Búsqueda Tabú.
 - Criterio de parada: 5 iteraciones
 - Largo de la lista: 2

 Representación binaria de largo n, donde n corresponde a la cantidad de objetos.

- Movimiento: Cambio de una variable desde 0 a 1, ó desde 1 a 0
- Observación: Se trabaja sólo con soluciones factibles

It S_c S_{best} $\mathcal{N}(S_c)$ Labulist MOV. Labu	It	s_c	s_{best}	$\mathcal{N}\left(s_{c}\right)$	tabu _{list}	mov. tabú
---	----	-------	------------	---------------------------------	----------------------	-----------

it	s _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		

it	S _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			` ,		<i>j</i> 4

it	s _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
	, ,	, ,	0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			, ,		<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	

it	s _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			()		<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	
			0001(14)		
			1101(57)		
			1011(43)		
			1000(18)		

it	s _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
					<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	
			0001(14)		
			1101(57)		
			1011(43)		
			1000(18)		
					j1

_					
it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			` ,		<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	
			0001(14)		
			1101(57)		
			1011(43)		
			1000(18)		
			, ,		j1
3	0 001(14)	1001(32)		$\{j4, j1\}$	

it	s _c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
	` ,	, ,	0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			,		<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	
			0001(14)		
			1101(57)		
			1011(43)		
			1000(18)		
			, ,		j1
3	0 001(14)	1001(32)		<i>{j4, j1}</i>	
			1001(14)		
			0101(39)		
			0011(25)		
			0000(0)		
			` '		

it s_c s_{best} $\mathcal{N}(s_c)$ $tabu_{list}$ mo	v. tabú
To the state of th	v. tabu
1 1000(18) 1000(18) {}	
0000(18)	
1100(43)	
1010(29)	
1001(32)	
` '	<i>j</i> 4
2 100 1 (32) 1001(32) { <i>j</i> 4}	
0001(14)	
1101(57)	
1011(43)	
1000(18)	
	<i>j</i> 1
3 0 001(14) 1001(32) { <i>j</i> 4, <i>j</i> 1}	
1001(14)	
0101(39)	
0011(25)	
0000(0)	
	j2

it	<i>5_c</i>	s_{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
1	1000(18)	1000(18)		{}	
			0000(18)		
			1100(43)		
			1010(29)		
			1001(32)		
			()		<i>j</i> 4
2	100 1 (32)	1001(32)		{ <i>j</i> 4}	
			0001(14)		
			1101(57)		
			1011(43)		
			1000(18)		
			,		j1
3	0 001(14)	1001(32)		<i>{j</i> 4, <i>j</i> 1}	
			1001(14)		
			0101(39)		
			0011(25)		
			0000(0)		
			()		<i>j</i> 2
4	0101(39)	0101(39)		$\{i1, i2\}$	

10/34

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		<i>{j</i> 1, <i>j</i> 2}	

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		$\{j1, j2\}$	
			1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		{ <i>j</i> 1, <i>j</i> 2}	
			1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		
			, ,		<i>j</i> 4

it	S _C	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		<i>{j</i> 1, <i>j</i> 2}	
			1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		
					<i>j</i> 4
5	010 0 (25)	0101(39)		{ <i>j</i> 2, <i>j</i> 4}	

it	s_c	S _{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		$\{j1, j2\}$	
			1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		
			,		<i>j</i> 4
5	010 0 (25)	0101(39)		{ <i>j</i> 2, <i>j</i> 4}	
			1100(43)		
			0000(0)		
			0110(36)		
			0101(39)		

			1.66		
it	s_c	s_{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		$\{j1, j2\}$	
	` ,	` ,	1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		
					<i>j</i> 4
5	010 0 (25)	0101(39)		{ <i>j</i> 2, <i>j</i> 4}	
			1100(43)		
			0000(0)		
			0110(36)		
			0101(39)		
			()		<i>j</i> 3

			1.51		
it	s_c	s_{best}	$\mathcal{N}(s_c)$	tabu _{list}	mov. tabú
4	0 1 01(39)	0101(39)		$\{j1, j2\}$	
	` ,	, ,	1101(57)		
			0001(14)		
			0111(50)		
			0100(25)		
			, ,		<i>j</i> 4
5	010 0 (25)	0101(39)		<i>{j</i> 2, <i>j</i> 4}	
	, ,	, ,	1100(43)		
			0000(0)		
			0110(36)		
			0101(39)		
			()		j3
6	01 1 0(36)	0101(39)		{ <i>j</i> 4, <i>j</i> 3}	

Intensificación y Diversificación en Búsqueda Tabú

- Intensificación: Búsqueda local.
- Diversificación: Aceptando soluciones de peor calidad.
- Balance estático a través del tamaño de la lista tabú.
 - Lista tabú larga: fomenta la diversificación a zonas más alejadas del espacio de búsqueda.

Intensificación y Diversificación en Búsqueda Tabú

- Intensificación: Búsqueda local.
- Diversificación: Aceptando soluciones de peor calidad.
- Balance estático a través del tamaño de la lista tabú.
 - Lista tabú larga: fomenta la diversificación a zonas más alejadas del espacio de búsqueda.
- Cambios dinámicos en el largo de la lista tabú (Reactive Tabu Search).
 - El largo de la lista varía según las propiedades de la trayectoria en el espacio de búsqueda.

Criterio de aspiración

- En el proceso se pierde información y buenas soluciones pueden ser excluidas del conjunto permitido.
- Para reducir este problema, se define un *criterio de aspiración* que permitiría a una solución estar dentro del conjunto de soluciones permitidas aún cuando figure en la lista tabú.

Pseudo-código

```
Procedure tabu search
       initialize s<sub>c</sub> at random
       initialize tabu<sub>list</sub> as empty
       initialize s_{best} \leftarrow s_c
       Repeat
              s_v \leftarrow select from \mathcal{N}(s_c) the best point that
              satisfies the aspiration criteria or the best non tabu point
              s_c \leftarrow s_v
              update tabulist
              If f(s_c) is better than f(s_{best}) then
                      S_{best} \leftarrow S_c
      Until terminationCriterion()
EndProcedure
```

Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones: Búsqueda Tabú y Simulated Annealing

Nicolás Rojas Morales

Departamento de Informática Universidad Técnica Federico Santa María Simulated Annealing (Recocido Simulado)

Simulated Annealing (Recocido Simulado)

- Se basa en el trabajo de Metropolis et al. (1953) en el campo de la termodinámica estadística.
- Modelamiento del proceso de recocido simulando los cambios energéticos en un sistema de partículas conforme decrece la temperatura, hasta que converge a un estado estable (congelado).

Idea:

- Permitir movimientos a soluciones que empeoren la función de evaluación de forma de poder escapar de los óptimos locales.
- Permitir movimientos que empeoran la calidad de la función de evaluación de acuerdo a una probabilidad asociada a la temperatura del sistema.
- Al comienzo, la temperatura es alta y cualquier transición entre estados es permitida y soluciones que empeoren la función de evaluación pueden ser aceptadas con mayor probabilidad que más tarde cuando la temperatura disminuye.
- Mientras que las soluciones que mejoran la función de evaluación siempre son aceptadas.

Pseudo-código I

```
Procedure simulated annealing
        t \leftarrow 0
        initialize T
        initialize s_c at random
        initialize s_{best} \leftarrow s_c
        Repeat
                 Repeat
                        s_n \leftarrow select a new point in \mathcal{N}(s_c)
                        If f(s_n) is better than f(s_c) then
                               S_C \leftarrow S_n
                        Else If random([0,1]) < e^{\frac{\Delta_{eval}}{T}} then
                                s_c \leftarrow s_n
                        If f(s_c) is better than f(s_{best}) then
                                S_{best} \leftarrow S_c
                 Until haltingCriterion()
                 T \leftarrow g(T, t)
                 t \leftarrow t + 1
```

EndProcedure

Until terminationCriterion()

Probabilidad de Aceptación y Temperatura

P(temperatura, solución nueva, solución actual) = P(.)

$$P(.) = e^{(\Delta_{eval}/temperatura)} \tag{1}$$

donde

 $\Delta_{\it eval} = {\sf Se}$ considera siempre como un valor negativo, pues implica un empeoramiento de la calidad de las soluciones.

Acerca de la Temperatura:

- Temperatura versus Probabilidad de aceptación
- ullet Cada línea muestra un valor distinto de Δ_{eval}

Observaciones

- La temperatura del sistema es controlada con enfriamientos sucesivos (función logarítmica) y recalentamientos periódicos, que permiten escapar de óptimos locales.
- Enfriamiento: Cada cierto número de iteraciones

$$T_{i+1} = \alpha \cdot T_i \tag{2}$$

donde 0 < α < 1, se recomienda utilizar $\alpha \in \{0.8; 0.99\}$

Diversificación e Intensificación en Simulated Annealing

- Intensificación: Búsqueda local.
- Balance dinámico controlado a través del valor de la temperatura: Inicialmente alta diversificación y al final del algoritmo baja diversificación.
 - Alta Temperatura: gran diversificación
 - Baja Temperatura: poca diversificación.

Diversificación e Intensificación en Simulated Annealing

- Intensificación: Búsqueda local.
- Balance dinámico controlado a través del valor de la temperatura:
 Inicialmente alta diversificación y al final del algoritmo baja diversificación.
 - Alta Temperatura: gran diversificación
 - Baja Temperatura: poca diversificación.
- Diversificación: Técnicas de recalentado y posterior enfriamiento (enfriamiento no monótono).

Ejemplo

Considerando el problema de la mochila

$$\begin{aligned} \text{máx } 18 \cdot x_1 + 25 \cdot x_2 + 11 \cdot x_3 + 14 \cdot x_4 \\ \text{s.a. } 2 \cdot x_1 + 2 \cdot x_2 + x_3 + x_4 &\leq 3 \\ x_1, x_2, x_3, x_4 &\in \{0, 1\} \end{aligned}$$

- Proponga una representación acorde al problema
- Proponga un movimiento acorde al problema
- Describa el proceso de búsqueda realizado por Simulated Annealing.
 - Criterio de parada: 4 iteraciones
 - Temperatura Inicial: t=10 (fija durante las 4 iteraciones)

 Representación binaria de largo n, donde n corresponde a la cantidad de objetos.

- Movimiento: Cambio de una variable desde 0 a 1, ó desde 1 a 0
- Observación: Se trabaja sólo con soluciones factibles

Considere la siguiente secuencia de números aleatorios:

 $0.72;\ 0.33;\ 0.41;\ 0.83;\ 0.23;\ 0.64;\ \dots$

it s_c s_{best} T mov. Δ_{eval} $e^{\Delta_{eval}/T}$ condición

Considere la siguiente secuencia de números aleatorios:

it	S _C	S _{best}	T	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				

Considere la siguiente secuencia de números aleatorios:

it	S _C	S _{best}	T	mov.	Δ_{eval}	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				i1. i3 ó i4			

Considere la siguiente secuencia de números aleatorios:

 $0.72;\ 0.33;\ 0.41;\ 0.83;\ 0.23;\ 0.64\ ;\ ...$

it	S _C	S _{best}	Т	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				j1, j3 ó j4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado

Considere la siguiente secuencia de números aleatorios:

it	S _C	S _{best}	T	mov.	Δ_{eval}	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				

Considere la siguiente secuencia de números aleatorios:

 $0.72;\ 0.33;\ 0.41;\ 0.83;\ 0.23;\ 0.64\ ;\ ...$

it	S _C	S _{best}	Т	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			

Considere la siguiente secuencia de números aleatorios:

 $0.72;\ 0.33;\ 0.41;\ 0.83;\ 0.23;\ 0.64\ ;\ ...$

it	S _C	S _{best}	Т	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado

Considere la siguiente secuencia de números aleatorios:

it	s_c	s_{best}	T	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				

Considere la siguiente secuencia de números aleatorios:

						A /T	
it	S_C	s_{best}	Τ	mov.	Δ_{eval}	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
	, ,	, ,		<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				j1 ó j4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				j1 ó j4			

Considere la siguiente secuencia de números aleatorios:

						A /T	
it	S_C	s_{best}	Τ	mov.	Δ_{eval}	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				j1, j3 ó j4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				<i>j</i> 1 ó j4	-14	$e^{-14/10} = 0.247$	aceptado

Considere la siguiente secuencia de números aleatorios:

it	s_c	s_{best}	Τ	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				j1 ó j4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				j1 ó j4			
				<i>j</i> 1 ó j4	-14	$e^{-14/10} = 0.247$	aceptado
4	1000(18)	1001(32)	10				

Considere la siguiente secuencia de números aleatorios:

it	s_c	s_{best}	T	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				j1, j3 ó j4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				<i>j</i> 1 ó j4	-14	$e^{-14/10} = 0.247$	aceptado
4	1000(18)	1001(32)	10				
				j1, j3 ó j4			

Considere la siguiente secuencia de números aleatorios:

						. /=	
it	s_c	s_{best}	Τ	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				j1, j3 ó j4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				<i>j</i> 1 ó <i>j</i> 4			
				<i>j</i> 1 ó j4	-14	$e^{-14/10} = 0.247$	aceptado
4	1000(18)	1001(32)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, j3 ó <i>j</i> 4	11		aceptado

Considere la siguiente secuencia de números aleatorios:

0.72; 0.33; 0.41; 0.83; 0.23; 0.64; ...

						. /=	
it	s_c	s_{best}	T	mov.	$\Delta_{\it eval}$	$e^{\Delta_{eval}/T}$	condición
1	1000(18)	1000(18)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, <i>j</i> 3 ó j4	14		aceptado
2	1001(32)	1001(32)	10				
				j1 ó j4			
				j1 ó <i>j</i> 4	-18	$e^{-18/10} = 0.165$	rechazado
3	1001(32)	1001(32)	10				
				j1 ó j4			
				<i>j</i> 1 ó j4	-14	$e^{-14/10} = 0.247$	aceptado
4	1000(18)	1001(32)	10				
				<i>j</i> 1, <i>j</i> 3 ó <i>j</i> 4			
				<i>j</i> 1, j3 ó <i>j</i> 4	11		aceptado
5	1010(25)	1001(32)	10				

Simulated Annealing para TSP

- Representación: Xi la i-ésima ciudad visitada
- Función de Evaluación: Largo del tour
- Movimiento: Intercambio de 2 arcos (2-opt)
- Criterio de selección de los dos arcos: Aleatorio
- Solución inicial: Aleatoria factible.

Simulated Annealing para TSP

- Representación: Xi la i-ésima ciudad visitada
- Función de Evaluación: Largo del tour
- Movimiento: Intercambio de 2 arcos (2-opt)
- Criterio de selección de los dos arcos: Aleatorio
- Solución inicial: Aleatoria factible.
- Criterio de Termino: Máximo número de iteraciones o estancamiento en óptimo local
- Número de pasos: 3
- Maxiter: 4

Simulated Annealing para TSP

_ ._

```
Procedure SA TSP
Begin
   f(Mejor\_solucion) = MAXVALUE
   Solucion_actual = Generar_solucion_inicial
   For i=1 to steps
       iteraciones=0:
       While(iteraciones<Maxiter and no_optimo_local)
           Arco1 = random(1, ciudades)
           Arco2 = random(1, ciudades)
           Candidata_solucion=2-opt(Solucion_actual, Arco1, Arco2)
           If f(Candidata_solucion)<f(Solucion_actual) then
              Solucion_actual=Candidata_solucion
          \textbf{Else If } \textit{random}([0,1]) < e^{\frac{f(\textit{Solucion\_actual}) - f(\textit{Candidata\_solucion})}{T}}
                                                                    Then
              Solucion actual=Candidata solucion
           iteraciones++
           If f(Solucion_actual)<f(Mejor_solucion) then
              Mejor_solucion=Solucion_actual
           iteraciones++
       EndWhile
       T = \alpha * T
```

Inteligencia Artificial Técnicas Incompletas de Búsqueda de Soluciones: Búsqueda Tabú y Simulated Annealing

Nicolás Rojas Morales

Departamento de Informática Universidad Técnica Federico Santa María Heurísticas K-opt

Heurísticas K-opt

 Definición K-opt (K-exchange): Es un procedimiento que reemplaza K arcos de un tour de TSP por K nuevos arcos, tal que el tour resultante es un tour factible del TSP.

2-opt

• En el tour:

Tour1: A - B - C - D - E - F - G - H - I - JEl tour resultante después de swap es: Tour2: A - B - H - D - E - F - G - C - I - J

• En el tour:

El tour resultante después de swap es:

En términos de costo, la nueva solución difiere en cuatro arcos respecto a la original:

$$\begin{split} f(Tour2) &= f(Tour1) - (d(B,C) + d(C,D) + d(G,H) + d(H,I)) \\ &+ (d(B,H) + d(H,D) + d(G,C) + d(C,I)) \end{split}$$

• En el tour:

El tour resultante después de swap es:

En términos de costo, la nueva solución difiere en cuatro arcos respecto a la original:

$$\begin{split} f(\mathsf{Tour2}) &= f(\mathsf{Tour1}) - (\mathsf{d}(\mathsf{B},\mathsf{C}) + \mathsf{d}(\mathsf{C},\mathsf{D}) + \mathsf{d}(\mathsf{G},\mathsf{H}) + \mathsf{d}(\mathsf{H},\mathsf{I})) \\ &+ (\mathsf{d}(\mathsf{B},\mathsf{H}) + \mathsf{d}(\mathsf{H},\mathsf{D}) + \mathsf{d}(\mathsf{G},\mathsf{C}) + \mathsf{d}(\mathsf{C},\mathsf{I})) \end{split}$$

• En el tour:

El tour resultante después de 2-opt es:

• En el tour:

Tour1: A - B - C - D - E - F - G - H - I - J

El tour resultante después de swap es:

En términos de costo, la nueva solución difiere en cuatro arcos respecto a la original:

$$\begin{split} f(\mathsf{Tour2}) &= f(\mathsf{Tour1}) - (\mathsf{d}(\mathsf{B},\mathsf{C}) + \mathsf{d}(\mathsf{C},\mathsf{D}) + \mathsf{d}(\mathsf{G},\mathsf{H}) + \mathsf{d}(\mathsf{H},\mathsf{I})) \\ &+ (\mathsf{d}(\mathsf{B},\mathsf{H}) + \mathsf{d}(\mathsf{H},\mathsf{D}) + \mathsf{d}(\mathsf{G},\mathsf{C}) + \mathsf{d}(\mathsf{C},\mathsf{I})) \end{split}$$

• En el tour:

Tour1: A - B - C - D - E - F - G - H - I - J

El tour resultante después de 2-opt es:

En términos de costo, la nueva solución difiere en dos arcos respecto a la original: f(Tour3) = f(Tour1) - (d(B,C) + d(H,I)) + (d(B,H) + d(C,I))

3-opt

