Δομές Δεδομένων και Τεχνικές Προγραμματισμού (Άρτιοι)

Αναστασία Μαρινάκου | ΑΜ: 1115202400120

1 Ερώτηση 2

Υποθέστε ότι έχουμε 10 αλγόριθμους A, B, Γ , Δ , E, Z, H, Θ , I και K με τις παρακάτω υπολογιστικές πολυπλοκότητες χρόνου (παραλείπουμε το O()).

```
A. 1000n \text{ B. } 500n + logn \text{ } \Gamma. \text{ } 2^{3000nlogn} \text{ } \Delta. \text{ } 2^{300logn} \text{ E. } n^8
```

Z.
$$6n^8 + n$$
 H. $nlogn2^{n+5}$ Θ . 2^{2^n} I. $2^{2^{logn}}$ K. $2^{2^{n+logn}}$

Να ταξινομήσετε τους αλγόριθμους από τον καλύτερο στον χειρότερο με βάση την υπολογιστική πολυπλοκότητα τους. Να δώσετε λεπτομερώς όσους μαθηματικούς υπολογισμούς χρειάζονται για να τεκμηριώσετε την απάντηση σας.

1.1 Τάξεις Πολυπλοκότητας

Οι βασικές τάξεις πολυπλοκότητας είναι οι εξής (ταξινομημένες):

Σταθερές < Λογαριθμικές < Πολυωνυμικές < Εκθετικές

Επίσης, αποδεχόμαστε πως όλοι οι λογάριθμοι έχουν βάση 2 ($log \equiv log_2$)

Στους δοσμένους αλγόριθμους, μπορούμε να διακρίνουμε δύο βασικές τάξεις πολυπλοκότητας:

1. Πολυωνυμική

Στην οποία ανήχουν οι:

- A. 1000n
- B. 500n + logn
- Δ . $2^{300logn}$ Επειδή: $2^{300logn} \Leftrightarrow 2^{logn^{300}} \Leftrightarrow n^{300}$
- E. n^8
- Z. $6n^8 + n$

2. Εκθετική

Στην οποία ανήκουν οι:

- Γ. 2^{3000nlogn}
- H. $nlogn2^{n+5}$
- \bullet Θ . 2^{2^n}
- I. $2^{2^{logn}}$
- K. $2^{2^{n+logn}}$

Αφού οι πολυωνυμικοί αλγόριθμοι έχουν μικρότερη πολυπλοκότητα από τους εκθετικούς, μένει να ταξινομήσουμε μεταξύ τους, τους αλγόριθμους για κάθε τάξη.

1.1.1 Πολυωνυμικοί

Μπορούμε να ταξινομήσουμε όλους τους πολυωνυμικούς αλγορίθμους ως εξής: $A \leq B \leq E \leq Z \leq \Delta$

Βάση των πράξεων:

• A < B

$$1000n \le 500n + logn$$

Το n είναι ο υπερισχύων όρος, οπότε μπορούμε να κρατήσουμε μόνο αυτό στο $\mathbf B$ και η ανισότητα γίνεται:

$$1000n \le 500n$$

Τα οποία είναι και ίσα, αφού είναι ίδιας ακριβώς τάξης (πολυωνυμικής/γραμμικής).

 \bullet B < E

$$500n + logn \le n^8 \Leftrightarrow 500n \le n^8 \Leftrightarrow 500 \le n^7$$

Ισχύει αφού η τάξη πολυπλοκότητας του 500 είναι σταθερή, που είναι η μικρότερη δυνατή (σταθερός χρόνος) και πάντα < πολυωνυμικών.

• $E \le Z$

$$n^8 < 6n^8 + n$$

Στο Z κρατάμε το $(6)n^8$ που είναι ο υπερισχύων όρος.

$$n^8 \le 6n^8$$

Που είναι και ίσα.

• $Z < \Delta$

$$6n^8 + n \le 2^{300logn} = n^{300} \Leftrightarrow 6n^8 \le n^{300}$$

Τα οποία είναι ίσα.

1.1.2 Εκθετικές

Για τις εκθετικές πολυπλοκότητες έχουμε πώς:

$$H \leq \Gamma \leq I \leq \Theta \leq K$$

Αυτό το διαπιστώνουμε με τις εξής πράξεις:

H ≤ Γ

$$nlog n 2^{n+5} \le 2^{3000nlog n} \Leftrightarrow log(nlog n 2^{n+5}) \le log 2^{3000nlog n}$$

$$\Leftrightarrow log(nlogn) + log2^{n+5} \le log2^{3000nlogn} \Leftrightarrow log(nlogn) + n + 5 \le 3000nlogn$$

Σε αυτό το σημείο, μπορούμε να χρατήσουμε στο αριστερό μέλλος μόνο το n, καθώς έχουμε άθροισμα σταθερού όρου (5), λογαρίθμου (log(nlogn)) και πολυωνύμου/γραμμικού όρου (n), όπου το τελευταίο είναι ο υπερισχύων όρος. Οπότε, μας μένει:

$$n \leq n log n$$

Το οποίο γνωρίζουμε πως ισχύει.

Γ ≤ I

$$2^{3000nlogn} \le 2^{2^{logn}} \Leftrightarrow log 2^{3000nlogn} \le log 2^{2^{logn}} \Leftrightarrow 3000nlogn \le 2^{logn}$$

Που ισχύει, αφού πολυωνυμικοί < εκθετικοί.

• $I \leq \Theta$

$$2^{2^{logn}} \leq 2^{2^n} \Leftrightarrow log2^{2^{logn}} \leq log2^{2^n} \Leftrightarrow 2^{logn} \leq 2^n \Leftrightarrow log2^{logn} \leq log2^n \Leftrightarrow logn \leq n$$

Που ισχύει, αφού λογαριθμικοί < πολυωνυμικοί.

$\bullet \ \Theta \leq K$

$$2^{2^n} \leq 2^{2^{n+\log n}} \Leftrightarrow \log 2^{2^n} \leq \log 2^{2^{n+\log n}} \Leftrightarrow 2^n \leq 2^{n+\log n} \Leftrightarrow \log 2^n \leq \log 2^{n+\log n} \Leftrightarrow n \leq n + \log n$$

Στο δεύτερο μέλος, κρατάμε μόνο το n, αφού είναι υπερισχύων όρος και έχουμε:

$$n \leq n$$

Που προφανώς είναι ίσα.

1.2 Συμπέρασμα

Άρα, η τελική διάταξη των αλγορίθμων, από τον πιο αποδοτικό στον λιγότερο, είναι:

$$A \leq B \leq E \leq Z \leq \Delta \leq H \leq \Gamma \leq I \leq \Theta \leq K$$