Question number	Scheme	Marks
7 (a)	$\frac{3 + \left(1 - \cos^2\theta\right)}{\cos\theta - 2} = 3\cos\theta$	M1
	$4 - \cos^2 \theta = 3\cos^2 \theta - 6\cos \theta$	M1
	$(2\cos\theta+1)(2\cos\theta-4)=0$	M1
	$(\cos \theta = 2 \text{ does not exist so}) \cos \theta = -\frac{1}{2}$ *	A1 cso (4)
(b)	$\cos 3x = -\frac{1}{2}$	M1
	$3x = 120^{\circ}, 240^{\circ}, 480^{\circ}$	A1
	$x = 40^{\circ}, 80^{\circ}, 160^{\circ}$	A1 A1
		(4)
Total 8 mark		

Part	Mark	Notes		
(a)	M1	For the correct use of $\sin^2 \theta + \cos^2 \theta = 1$		
	M1	For multiplying both sides by $\cos \theta - 2$ and expanding brackets		
		For solving their 3TQ using any method.		
	M1	$4\cos^2\theta - 6\cos\theta - 4 = 0 \Rightarrow 2(2\cos\theta - 1)(\cos\theta - 2) = 0$		
		See General Guidance.		
	A1cso For obtaining the given equation: $\cos \theta = -\frac{1}{2}$			
		Must reject $\cos \theta = 2$		
	ALT			
	M1	For the correct use of $\sin^2 \theta + \cos^2 \theta = 1$		
	M1	Factorises LHS $\frac{4-\cos^2\theta}{\cos\theta-2} = 3\cos\theta \Rightarrow \frac{(2-\cos\theta)(2+\cos\theta)}{\cos\theta-2} = 3\cos\theta$		
	M1	Cancels through by $\cos \theta - 2$ and solves their linear equation in terms of $\cos \theta$		
		$-(2+\cos\theta)=3\cos\theta\Rightarrow\cos\theta=$		
	A1cso	For obtaining the given equation: $\cos \theta = -\frac{1}{2}$		
(b)	M1	For $\cos 3x = -\frac{1}{2}$		
	A1	For $3x = 120^{\circ}$ or any other correct angle, e.g. even $3x = -120^{\circ}$		
		Allow an angle in radians for this mark. E.g. $3x = \frac{2\pi}{3}$		
	A1	For one from $x = 40^{\circ}$, 80° , 160°		
	4.1	For all angles correct with no additional angles within range. $x = 40^{\circ}$, 80° , 160°		
	A1	Ignore any angles out of range.		