### Analizar el algoritmo

## Calcular su eficiencia o complejidad algoritmica

Complejidad temporal o eficiencia en tiempo: Número de operaciones o pasos ejecutados para resolver un problema con una entrada de tamaño n. Se denota por T(n).

Complejidad espacial o eficiencia en espaico: Qué tantos recursos de memoria utiliza el algoritmo para resolver un problema de tamaño n. Se denota por S(n).

# Análisis on Prior:

Búsqueda Secuencial.

Entrada: A [0,--, n-i], elemento a busa X.

Salida: S: x se encuentra en A

regresar la posición

en caso contrario

regresa -1.

proceso:

for 
$$i \leftarrow 0$$
 to  $i \leftarrow n-1$ 

if  $A \subset i \subset I = X$ 

return i

Yeturn -1

Mejor Caso: The se encuentra en la primera

posición, lvego T(n) = C E M(1)

Per Caso:

| (ntl)                                       | Castos | #pape ejectados |
|---------------------------------------------|--------|-----------------|
| proceso: $i=0,1,\dots,n-1$ n to $i \in n-1$ | C,     | n+1.            |
| D-for i = 0 to i = 1.                       | Cz     | n               |
| (3) return i                                | C3     | 0               |
|                                             | Ly     |                 |
| G Yeturn -1                                 | la Dri | merus           |

Pew Caso: A no se encuentra en el orreglo,

lvego 
$$T(n) = C_1(n+1) + C_2n + C_3 \cdot O + C_4 \cdot 1$$

$$= C_1n + C_1 + C_2n + C_4$$

$$= (C_1 + C_2)n + (C_1 + C_4)$$

$$= an + b$$

$$T(n) \in O(n)$$





### Costos es el tiempo de ejecución



viernes, 27 de agosto de 2021 14:29

Análisis a Priori (Teórico): Cálculo de la Complejidad algoritmica mediante conceptis teóricos. So obtiene una función que acota el Lienno de ejecicin del algoritmo.

Analisii a Posteri L'experimental). Se recogen estadísticas de tiempo consumidas por el algoritmo mientras se ejecuta.

|                                            |            |   |   |     |   | TAIVI=n= |
|--------------------------------------------|------------|---|---|-----|---|----------|
| -1 7 6                                     | 0          | 1 | 9 | 5 4 | 2 | 5        |
| j ;                                        |            |   |   |     |   |          |
| $-1 \le j \le i - 1 \qquad \qquad 1 \le i$ | $\leq n-1$ |   |   |     |   |          |

A[j] > Key

Key = A[i] = 6

Entra da: A[0, --, n-1] Salida: El arreglo ordenado (ascendente)

| Proceso;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COHO           | # Paso  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
| $f_{\alpha} \qquad i=1 \qquad +o \qquad n-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>1</sub> | n       |
| 6 Key = A [i]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cz             | n-1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C3             | N - 1   |
| $\frac{3}{2}$ while $j \ge 0$ and $AC_{\overline{j}} > \text{Reg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cy             | Žt;     |
| AC:17=AC;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cs             | ₹(t;-1) |
| $ \begin{array}{c c} \hline S & & & \\ S & & & \\ \hline S & & & \\ S & & & \\ S & & & \\ \hline S & & & \\ S & & & \\ \hline S & & & \\ S & & & \\ S $ | CL             | E(t;-1) |
| (1) AC;+17 = 1< ej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4             | n-1     |

| 1 |   |
|---|---|
| 2 | 1 |
| 3 | 1 |
|   |   |
|   |   |

- obs - Si i es la i-ésima línea del prevdo-código, asunimos que C; es la cantidad constante requerida par e, ecutorse.

$$i=1 \longrightarrow t_{1}$$

$$i=2 \longrightarrow t_{2}$$

$$i=3 \longrightarrow t_{3}$$

$$i=n_{1} \longrightarrow t_{n-1}$$

- obs:- Para i=1,...,n-1, See t; el número de veces que el ciclo while es ejecutado par cada valor de i.



Arreglo Ordenado Ascendentemente



Key = A[i] = 5while  $j \ge 0$  and A[j] > Key do

 $T(n) = C, n + C_2(n-1) + C_3(n-1) + C_4 \sum_{i=1}^{n-1} t_i + C_5 \sum_{i=1}^{n-1} |t_i-1|$ Se trène: + C6 = (n-1) + (7-1). -obs-El tiempo de ejecución depende del temano de la entrada y de cono esten orderado la

Mejor caso: Ocurre cuando el orreglo se encuentes ordenado (ascendente), en fai caso, para cada i=1,..., n-1, se trene A [i] = key, lvego t;=1 + i=1,--, n-1.

Luego:  

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1)$$
  
 $= C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$   
 $= (C_1 + C_2 + C_3 + C_4 + C_4) n + (-C_2 - C_3 - C_4 - C_7)$   
 $= an + b$   
...  $T(n) \in A_1(n)$ 



#### Peor Caso



```
lear caso: Ocune cuando el arreglo se encuentra
                       ordenado descendentemente. En fal caso,
                          Se trene que t= i+1 7 i=1,-,n-1.
                          T(n) = C, n + C<sub>2</sub>(n-1) + C<sub>3</sub>(n-1) + C<sub>4</sub>\sum_{i=1}^{n-1} (i+i) + C_5\sum_{i=1}^{i-1} (i+i) + C_5\sum_{i=1}^{n-1} (i+i) + C_5\sum_
                Luego:
                                                                  = c_{1}n + (2(n-1)) + (3(n-1)) + (4(n-1)) + (5(n-1)) + (5(n-1)) + (6(n-1)) 
                                                                                              + (6 (n-1)(n) + (7 (n-1)
                                                                                             + C6 n (n-1) + C7 (n-1)
                                                                                                                                                                                                                                                                                                                           9= (C4 + C8 + C6)/2
                                                                  : 7(n) € O(n²)
                    Insertion-Sort
                                                                                                       Mejor (2010: TON) & a (h)
                                                                                                             Per caso: Ton + (1 (n2)
```

```
void insertionSort(int *A, int n, int *ct)
{
    int i; (*ct)++;
    int j; (*ct)++;
    int key; (*ct)++;

    (*ct)++;
    for(i=1; i<n; i++)
    {
        (*ct)++;
        key=A[i]; (*ct)++;
        j=i-1; (*ct)++;
        |
        while(j>=0 && A[j]>key)
    {
        (*ct)++;
        (*ct)++;
        (*ct)++;
        A[j+1]=A[j]; (*ct)++;
        j--; (*ct)++;
        (*ct)++;
```



| producto.c  #include <stdio.h> int main(void)</stdio.h> |      | Costo | #Paro tando |
|---------------------------------------------------------|------|-------|-------------|
| 3 { 4 int m, n;                                         |      | С.    | 1           |
| scanf(" %d", &n);                                       |      | Cz    | 1           |
| 6 n = n * n;                                            |      | C3    | 1           |
| printf(" %d\n", m);                                     |      | Сч    | 1           |
| s return 0;                                             |      | Ls    | 1           |
| 9 }                                                     |      |       |             |
| Mejor Caso = Peos                                       | Casa |       | '           |

Lugo  $T(n) = C_1 + C_2 + C_3 + C_4 + C_5$  $T(n) \in \Theta(1)$ 

| suma.c  #include <stdio.h>  int main(void)</stdio.h>          | costo | # parol fordal |
|---------------------------------------------------------------|-------|----------------|
| 3 {                                                           | C,    | j              |
| int m(n) i; scanf("%d", &n);                                  | Cz    | 1              |
| 6  m = 0; [50, 151,, 15n] := n                                | (3    | 1              |
| 7 for (i=0; i <n; i++)<="" td=""><td>C4</td><td>n+1</td></n;> | C4    | n+1            |
| 8 m = m + n;                                                  | Cs    | h              |
| <pre>printf(" %d\n", m);</pre>                                | CG    | )              |
| o return 0;                                                   | C7    | 1              |
| 1 }                                                           |       |                |

Mejor Caso = Peor Caso loego  $T(n) = C_1 + C_2 + C_3 + C_4(n+1) + C_7 + C_6 + C_7$   $= (C_1 + C_7) + (C_1 + C_2 + C_3 + C_4 + C_6 + C_7)$  = an + b.:  $T(n) \in \theta(n)$ 

| incremento.c                                                  |                | لمل ،           |
|---------------------------------------------------------------|----------------|-----------------|
| <pre>#include <stdio.h> int main(void)</stdio.h></pre>        | Costo          | # Poros curtado |
| {     int m, n, i, j;                                         | C,             | 1               |
| scanf(" %d", &n);                                             | Cz             | 1               |
| m = 0;                                                        | C3             | l               |
| for (i=0; i <n; i++)<="" td=""><td>Cy</td><td>h+1</td></n;>   | Cy             | h+1             |
| for (j=0; j <n; j++)<="" td=""><td>Cs</td><td>No to</td></n;> | Cs             | No to           |
| m++;                                                          | Li             | Z(t,-1)         |
| <pre>printf("%d\n", m);</pre>                                 | C <sub>7</sub> | 1               |
| return 0;                                                     | (8             | 1               |
| }                                                             |                |                 |

Luego 
$$T(N) = C_1 + C_2 + C_3 + C_4(n+1) + C_5 \frac{7}{2}t_1$$
  
 $+ C_6 \frac{7}{2}(t_1-1) + C_4 + C_8$ 

Mejor Caso = Pear Caso.

So there give  $t_1 = n+1$   $f_1 = 0,..., n-1$ 

Luego  $T(n) = C_1 + C_2 + C_3 + C_4(n+1) + C_5 \frac{7}{10}(n+1)$ 
 $+ C_6 \frac{7}{10}(n+1) + C_7 + C_8$ 
 $= C_1 + C_2 + C_3 + C_4(n+1) + C_5 \frac{7}{10}(n+1)$ 
 $+ C_6 \frac{7}{10}(n+1) + C_7 + C_8$ 
 $= C_1 + C_2 + C_3 + C_4(n+1) + C_7 \frac{7}{10}(n+1)$ 
 $+ C_6 \frac{7}{10}(n+1) + C_7 \frac{7}{10}(n+1)$ 
 $+ C_6 \frac{7}{10}(n+1) + C_7 \frac{7}{10}(n+1)$ 
 $+ C_7 \frac$ 

| Mayor (m,n)                              | cas)o | # poros genteras      |
|------------------------------------------|-------|-----------------------|
|                                          | C,    |                       |
| if (m>n) return m                        | Cz    | 1                     |
|                                          | C3    | 0                     |
| tle return n                             | Сч    | D                     |
|                                          |       |                       |
| Suponganou que m zn.  <br>Se fiere que T | (m)=( | $c + c \in \Theta(1)$ |

Sin pérdida de generalidad supongamos que el mínimo se encuentra en la primera posición, es decir min = A [0].

|                          | Costos | # pasos ejecutados |
|--------------------------|--------|--------------------|
| min = A[0]               | C1     | 1                  |
| for $i=0$ to $i \le n-1$ | C2     | n+1                |
| if(A[i] < min)           | C4     | n                  |
| min = A[i]               | C3     | 0                  |
| return min               | C5     | 1                  |

Fundamentos para el análisis de la eticienca de algoritmos.

Obs La notación que se usora para describir la compleji dad algorítmica estará definida en terminos de funciones cuyo dominio es 1NU301, aunque comunmente se mustará extendido a 12.

 $f(n) \in \theta(g(n))$  $f(n) = \theta(g(n))$ 

Notación  $\theta$ .

Det: Dordor una función g(h).  $\theta(g(h))$ Det: Dordor una función g(h).  $\theta(g(h))$ Denota el conjunto de funciones Jetinidas

Como:  $\theta(g(h)) = \{f(h): \exists h \ C_1, C_2 > 0 \ y \ h > 0 \}$   $\theta(g(h)) = \{f(h): \exists h \ C_1, C_2 > 0 \ y \ h > 0 \}$   $\theta(g(h)) = \{f(h): \exists h \ C_1, C_2 > 0 \ y \ h > 0 \}$ 



Decimos que gen) es un ajuste auntôtico pora fun)

obs Si fun  $\in$  f (gen) en tonies f (h)  $\geq$  o  $\forall$   $n \in A$ tala funciones son llama das asintóticamente

no negutivas o asintóticamente positivas.

Ejemplo:  
① 
$$f(n) = \frac{1}{2}n^2 - \frac{1}{2}n \in \theta(n^2)$$
  
Soli En efecto, se hene:  
 $\frac{1}{2}n^2 - \frac{1}{2}n \leq \frac{1}{2}n^2 \quad \forall n \geq 1 \quad -1$   
 $\frac{1}{2}n^2 - \frac{1}{2}n \geq C_1n^2$   
\* Encontar in value  $C > 0$  fail que  
 $\frac{1}{2}n^2 - \frac{1}{2}n \geq \frac{1}{2}(n^2) > 0$ 

Si: 
$$\frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{6}n^2 \ge \frac{1}{6}n^2 - \frac{1}{6}n^2 > 0$$

$$S_{11}^{11} = -\frac{1}{2}n^{2} + \frac{1}{2}n^{2} > 0$$

Si: 
$$\frac{1}{2}n \leq \frac{1}{6}n^2$$
 if  $\frac{(c-2)n^2 > 0}{n^2}$ 

$$2n - 2$$
  
 $5i$ :  $2n \le 2n^2$  &  $2 \le 2 \le 2$ 

$$Sii$$
  $C \leq 2n$   $BB$   $C > 2$ 

Si: 
$$cn \le 2n$$
 &&  $c > 2$   
Sii  $c \le 2n$  &&  $c > 2$   
Para  $n=1$   $c \le 2$  &&  $c > 2$   
Para  $n=2$   $c \le 2(2)=4$  &&  $c > 2$   $c = 4$ 

Sabemos que n^2 >0 entonces

Se tiene que 
$$\frac{1}{2}n^2 - \frac{1}{2}n = \frac{1}{2}n^2 - \frac{1}{4}n^2$$
  $\frac{1}{2}n^2 - \frac{1}{2}n = \frac{1}{2}n^2 + n = 2$ 

$$= \frac{1}{4}n^2 + n = 2$$

$$= \frac{1}{4}n^2 + n = 2$$

$$= \frac{1}{4}n^2 + n = 2$$

$$= \frac{1}{4}n^2 + \frac{1}{2}n^2 + \frac{1}{2}n^2 + \frac{1}{2}n^2 + \frac{1}{2}n^2 + \frac{1}{2}n = 2$$
i.e forward of  $C_1 = \frac{1}{4}u_1 + C_2 = \frac{1}{4}h_2 + \frac{1}{4}n = 2$ 
Se frene:  $C_1 = \frac{1}{4}u_1 + C_2 = \frac{1}{4}h_2 + \frac{1}{4}n = 2$ 

$$C_1 = \frac{1}{4}u_1 + \frac{1}{4}u_2 + \frac{1}{4}u_3 + \frac{1}{4}u_4 + \frac{1}{4}u_4$$

Sustituyendo C=4 en (\*)

$$\frac{1}{2}n^2 - \frac{1}{2}n \in \mathcal{C}(n^2)$$

Soli Suponyamu que 
$$6n^3 \in H(n^2)$$

$$\begin{array}{l}
\text{Soli} \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Soli} \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Soli} \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Soli} \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Soli} \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Suponyamu} \quad \text{que } 6n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^3 \in H(n^2) \\
\text{Of } \quad \text{Que } n^$$

Colocamos n^2 para factorizarlo puesto que Necesitamos acotarlo por arriba

```
Ejemplo: fon = \frac{1}{2}n^2-3n \in \text{O}(n^2)
         \begin{bmatrix} \exists_n & C_1, C_2 > 0 \text{ y } n_o > 0 & D & 0 \neq C_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq C_2 n^2 & \sqrt{n \geq N_o} \end{bmatrix}
        Sal: Se fitne:

\frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2 + 3n \quad \forall n \ge 1
\le \frac{1}{2}n^2 + 3n^2 \quad \forall n \ge 1
= \frac{7}{2}n^2 \quad \forall n \ge 1
        por otro lado \frac{1}{2}n^2 - 3n \ge \frac{1}{4}n^2
       5ii \qquad \frac{1}{2}n^2 - \frac{1}{4}n^2 - 3n \ge 0
       Si: \frac{1}{4}n^2 - 3n \ge 0

Si: \frac{1}{4}n - 3 \ge 0

\frac{1}{4}n - 3 \ge 0
                n \ge 12 1), logo \frac{1}{2}n^2 \cdot 3n \ge \frac{1}{4}n^2 \cdot 4n \ge 12
    Se tiene:
        \frac{1}{4}n^2 \leq \frac{1}{2}n^2 - 3n \leq \frac{7}{2}n^2 \qquad \forall n \geq 12
        \frac{1}{2}n^2 - 3n \in \theta(n^2)
```

obs En general. S: 
$$P(n) = a_1 n^d + a_1 - n^d + a_2 - n^d + a_3 - n^d + a_4 - n^d + a_5 - a_5$$

Big o



Ejemplo: 
$$f(n) = 100n + 5 \in \mathcal{A}(n^2)$$

Sal: Se tiene:
$$f(n) = 100n + 5 \leq 100n + 5n \quad \forall n \geq 1$$

$$= 105n \quad \forall n \geq 1$$

$$\leq 105n^2 \quad \forall n \geq 1$$

$$\leq 105n^2 \quad \forall n \geq 1$$

$$con \quad c = 105 \quad \& \quad n_0 = 1$$

$$100n + 5 \in \mathcal{A}(n^2) \quad \downarrow$$



Siempre nos quedamos con la de menor grado

El alumno que suba a la plataforma teams lo sube a plataforma



entances  $P(n) = a_{d} n^{d} + a_{d-1} n^{d-1} + \cdots + a_{n} n^{n} + a_{0}$ entances  $P(n) = O(n^{d})$ entances P(n) = R can it una constante, entances P(n) = O(1)

No fación  $\Lambda$ .

Def: Da da una fención gen).  $\Lambda(gan)$  denta el conjunto de finido como:  $\Lambda(gan) = \beta f(n) : \exists n C, ho > 0 D$   $\Lambda(gan) = \beta f(n) : \exists n C, ho > 0 D$   $\Lambda(gan) = \Lambda(gan)$   $\Lambda(gan) = \Lambda(gan)$   $\Lambda(gan) = \Lambda(gan)$   $\Lambda(gan) = \Lambda(gan)$ 

obs gin) es una cota interior asintofice para t'an).

Teorema: Dada dos funciones f(m) y g(h),  $f(m) \in O(g(n))$  Si;  $f(n) \in O(g(n))$  y  $f(n) \in O(g(n))$ .

Sal:  $f(n) \in O(g(n)) = O(g(n)$ 

```
S; h_1(n) \in \mathcal{O}(g_1(n)) y h_2(n) \in \mathcal{O}(g_2(n)), entances
leavence *
 h, (m) + hz (n) E & [ max 39, (n), 2 (n) 4).
 Den: Sea hi(n) & () (g,(n)) y hz(n) & (gz(n))
 =) \exists_{n} c_{1} > 0 \ y \ n_{1} > 0 \ | T  0 \le h_{1}(n) \le c_{1}g_{1}(n) \ \forall h \ge n_{1}

y \ \exists_{n} c_{2} > 0 \ y \ n_{2} \ge 0 \ | T  0 \le h_{1}(n) \le c_{2}g_{2}(n) \ \forall h \ge n_{2}
=) 0 \le h_1(n) + h_2(n) \le c_1 g_1(n) + c_2 g_2(n)  \forall n \ge n_0 \le m \omega \beta n_1, n_2 

\leq Cg_1(n) + Cg_2(n) \quad \forall n \geq n_0 \quad \text{con } c = \max\{c, (24)\}

                                         = C \left[ g_{1}(n) + g_{2}(n) \right] + n = n_{0}
\leq C \left[ \max \S g_{1}(n), g_{2}(n) + \max \S g_{1}(n), g_{2}(n) + \max \S g_{2}(n), g_{2}(n) \right] + \max \left[ \sum_{n=0}^{\infty} \frac{1}{n} \right] 
                                          =(2c)max 3g,(n), 92(n) { Y n ≥ ho
```

o: h, (h) + hz in) & O (max 3 9, un), 92(m) }

obs 
$$5n^2+2n+1 \in O(n^2)$$
, par otro lado  
 $lim \frac{5n^2+2n+1}{n^2} = lim \left(5+\frac{2}{n}+\frac{1}{n^2}\right) = 5 = c \neq 0$   
 $livego \frac{5n^2+2n+1}{n^2} \neq o(n^2)$ .  
 $livego \frac{5n^2+2n+1}{n^2} \neq o(n^2)$ .  
Esto es, en general, Si fan  $\neq O(g(n))$ .  
no significa que fan  $\neq O(g(n))$ .

$$\frac{h^{2}}{2} \in \Lambda(n), \text{ por other lade}$$

$$\lim_{n \to \infty} \frac{y_{1}^{2}}{n} = \infty \implies \frac{y_{1}^{2}}{2} \in \omega(n)$$

$$\lim_{n \to \infty} \frac{y_{2}^{2}}{n} = \frac{1}{2} = C$$

$$\lim_{n \to \infty} \frac{y_{1}^{2}}{n^{2}} = \frac{1}{2} = C$$

$$\frac{h^{2}}{2} \in \Omega(n), \text{ por other lado}$$

$$\lim_{n \to \infty} \frac{n^{2}}{n^{2}} = \infty \implies \lim_{n \to \infty} e^{2n} = 0$$

$$\lim_{n \to \infty} \frac{n^{2}}{n} = \infty \implies \lim_{n \to \infty} e^{2n} = 0$$

$$\lim_{n \to \infty} \frac{n^{2}}{n} = 0$$

$$\lim_{n \to \infty} \frac{n^{2}}{n}$$

17.- Induction materialism
$$T(n) = \begin{cases} 2 & \text{si} & n=2 \\ 2T(nh) + n & \text{si} & n=2 \end{cases}, \text{ para } k>1 \end{cases}$$

$$T(n) = n \log n$$

$$Sul: \text{ for } n = 2^{k} \left( k = \log n \right)$$

$$\text{Inerval}$$

$$T(2^{k}) = \begin{cases} 2 & \text{si} & k=1 \\ 2T(2^{k-1}) + 2^{k} & \text{si} & k>1 \end{cases}$$

$$T(2^{1/2}) = 2^{k} \log 2^{k}$$

case lase:

$$T(2') = T(2) = 2 = 2 \log 2$$

case inductive:

Supergamos que  $T(2^{k-1}) = 2^{k-1} \log 2^{k-1}$ 

Se tiene

 $T(2^k) = 2 \frac{T(2^{k-1})}{2} + 2^k$ 
 $= 2^{2^{k-1}} \log 2^{k-1} + 2^k$ 
 $= 2^k \log 2^k - \log^2 2 + 2^k$ 
 $= 2^k \log 2^k - \log^2 2 + 2^k$ 
 $= 2^k \log^2 2^k$