Optimisation discrète - Course d'avions

Quentin Burthier

Antoine Gauthier

ENSTA Paris

ENSTA Paris

quentin.burthier@ensta-paris.fr

antoine.gauthier@ensta-paris.fr

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

Introduction

1.1 Notations

Une instance du problème est composée des données suivantes :

- Nombre d'aérodromes : n
- Aérodrome de départ : k
- Aérodrome d'arrivée : l
- Nombre d'aérodromes à parcourir : A_{min}
- Nombre de régions : m
- Région de l'aérodrome $i: r_i$
- Distance maximale de vol sans se poser : R
- Coordonnées cartésiennes de l'aérodrome $i:(x_i,y_j)$

On suppose que la distance entre deux aérodromes est la distance euclidienne, et on note $d_{ij} :=$ $\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}$ la distance entre l'aérodrome i et l'aérodrome j.

Modélisation

2.1 Objectif

On cherche à minimiser la distance parcourue, soit

$$\mathcal{Z} = \min \sum_{i,j} x_{ij} d_{ij} \tag{1}$$

où $x_{ij} \in \{0, 1\}.$

2.2 Contraintes du problème

Unicité des visites Chaque aérodrome est visité au plus une fois, sauf les aéroports d'arrivée et de départ qui sont visités exactement une fois.

$$\forall i \notin \{k, l\}, \ \sum_{i} x_{ij} \le 1 \tag{2a}$$

$$\forall i \notin \{k, l\}, \sum_{j} x_{ij} \le 1$$

$$\forall i \notin \{k, l\}, \sum_{j} x_{ji} \le 1$$
(2a)

Connexité L'avion doit partir de k

$$\sum_{j} x_{kj} = 1 \tag{3a}$$

$$\sum_{j} x_{jk} = \delta_{kl} \tag{3b}$$

et arriver en l

$$\sum_{j} x_{lj} = \delta_{kl} \tag{3c}$$

$$\sum_{i} x_{jl} = 1 \tag{3d}$$

On autorise ainsi que les aérodromes d'arrivée et de départ soient identiques.

Un avion repart d'un aérodrome seulement si et seulement si il s'est posé à cet aérodrome.

$$\forall i \notin \{k, l\}, \ \sum_{j} x_{ji} = \sum_{j} x_{ij} \tag{3e}$$

Nombre minimum d'aérodromes visités L'avion doit visiter au moins A_{\min} aérodromes :

$$\sum_{i,j} x_{ij} \ge A_{\min} \tag{4}$$

Diversité des régions La contrainte de visiter au moins une fois chaque région une fois s'écrit, en notant $I_r := \{i : r_i = r\}$ l'ensemble des aéroports appartenant à la région r, et R l'ensemble des régions comportant au moins un aérodrome,

$$\forall r \in R \setminus \{0, r_k, r_l\}, \ \sum_{i \in I_r} x_{ij} \ge 1$$
 (5)

On a supprimé les contraintes sur les régions r_1 et r_l , qui sont redondantes avec **FILLME**

Distance de vol maximale Un avion peut parcourir une distance d'au plus R sans se poser. Cela se traduit par

$$\forall i, j : i \neq j, \ x_{ij}d_{ij} \le R \tag{6}$$

2.3 Contraintes d'élimination des sous-tours

Il nous reste à supprimer la possibilité d'avoir solutions composées de plusieurs cycles.

Nombre polynomial de contraintes

$$\forall i, j : i \neq k, j \neq k, \ u_i \geq u_i - n(1 - x_{ij}) \tag{7a}$$

Cela force $u_i > u_j$ pour i et j connectés, et interdit donc les cycles (sauf pour i = k ou j = k, ce qui permet de revenir en k si k = l).

Nombre exponentiel de contraintes

$$\forall S \subset (V \setminus \{l\}) \cup (V \setminus \{r\}), |S| > 1, \sum_{i \in S, j \in S} x_{ij} \le |S| - 1, \tag{7b}$$

3 Étude numérique