Wi-Fi TRAINING - MODULE 3

Akash S, embedUR Systems

Qn 1:

What are the different 802.11 PHY layer standards? Compare their characteristics.

802.11 Overview:

- 802.11 standards define how Wi-Fi devices communicate at the physical level
- Over time, Wi-Fi has evolved to support more devices, higher data rates, and better coverage
- The standards are backward compatible to ensure older devices can still connect

can stitt connect					
STD	FREQ	SPEED	MOD TYPE	BW	COMMENTS
802.11a	5 GHz	54 Mb/s	OFDM	20 MHz	Faster but Shorter Range
802.11b	2.4 GHz	11 Mb/s	DSS	20 MHz	Slower but Better range
802.11g	2.4 GHz	54 Mb/s	OFDM	20 MHz	Backward Compatible
802.11n	2.4 & 5 GHz	600 Mb/s	OFDM + MIMO	20/40 MHz	MIMO is introduced
802.11ac	5 GHz	~3.5 Gb/s	OFDM + MU-MIMO	20/40/8 0/160 MHz	Faster, multiple user support
802.11ax	2.4 & 5 GHz	~10 Gb/s	OFDM + MU-MIMO	Up to 160 MHz	Also Wi-Fi 6, for crowded nw

Qn 2:

What are DSSS and FHSS? How do they work?

Overview:

- DSSS and FHSS are both methods used to spread wireless signals across a wider frequency range
- This is to minimize interference in wireless communication

DSSS:

What it is:

- DSSS Direct Sequence Spread Spectrum
- It is a modulation technique used in telecommunications to reduce interference in signals during transmission
- Frequency of the signal is increased so that the final signal will be wider in bandwidth

How it works:

- DSSS spreads data by multiplying it with a high-rate pseudorandom code (chipping code).
- The result is a signal that takes up more bandwidth but is more resilient to interference.

Benefits:

- Commonly used in 802.11b WiFi
- Provides strong resistance to signal interference
- Consumes more bandwidth than the original data

FHSS:

What it is:

- FHSS Frequency Hopping Spread Spectrum
- FHSS is a method of transmitting radio signals by rapidly switching between different frequencies within a given range
- It helps reduce interference and makes the signal harder to intercept

How it works:

- The available frequency range is divided into smaller channels like **79** in bluetooth
- The transmitter and receiver switch frequencies together in a predefined sequence called a hopping pattern
- Each hop happens at regular intervals like milliseconds so the signal doesn't stay long on any single frequency
- Even if one frequency channel experiences interference, it only affects a tiny part of the transmission So no problem
- The hopping makes it difficult for others to intercept or jam the full communication unless they know the exact sequence

Benefits:

- Used in early Wi-Fi versions and Bluetooth
- Highly secure due to rapid hopping
- Less affected by narrowband interference

Qn 3:

How do modulation schemes work in the PHY layer? Compare different modulation schemes and their performance across various Wi-Fi standards.

Modulation:

- Modulation is the method used to convert binary data into signals like radio signals
- Physical layer handles this process using different types of modulation based on the Wi-Fi standard and signal conditions

TYPE	SYMBOL	SPEED	NEED
BPSK	1	Low	Very low
QPSK	2	Moderate	low
16-QAM	4	High	Medium
64-QAM	6	Very high	High
256-QAM	8	Extremely high	Very high
1024-QAM	10	Ultra high	Clean signal

Modulation:

- Modulation changes the amplitude, frequency, or phase of the carrier signal to represent digital data
- Goal is to transmit more bits per second without increasing the frequency range too much
- Each symbol can carry multiple bits depending on the modulation type
- Advanced schemes send more bits per symbol so that we can increase the speed but they also require stronger signal quality

Performance Comparison:

802.11b

- Uses BPSK and QPSK with DSSS
- Very stable but low throughput 11Mbps only

• 802.11g and 802.11a

- Use OFDM with BPSK, QPSK, 16-QAM and 64-QAM
- Higher speeds up to 54 Mbps

• 802.11n

- MIMO is introduced and used upto 64-QAM
- Speed increased upto 600 Mbps

• 802.11ac

- Added 256-QAM and wider channel bandwidths
- Boosted performance to Gbps

• 802.11ax (Wi-Fi 6)

- Uses 1024-QAM, OFDMA and better efficiency techniques
- High throughput can be achieved

Qn 4:

What is the significance of OFDM in WLAN? How does it improve performance?

OFDM:

- OFDM Orthogonal Frequency Division Multiplexing
- It's a method of breaking a wide wireless channel into many smaller sub-channels (called subcarriers) that transmit data in parallel.
- OFDM is a method to break a wide wireless channel into multiple small channels and they are called as subchannels or subcarriers
- The speciality in OFDM is to transmit parallely
- Instead of sending data one chunk at a time OFDM sends smaller pieces over multiple frequencies simultaneously
- like sending multiple mini-packs instead of one big one

How OFDM works:

- A full channel bandwidth is split into multiple subcarriers
- Like 20 MHz in 802.11a or g or n can be split into 64 each

$$\frac{20MHz}{64} = 312.5KHz$$

- Each subcarrier sends a part of the data using a modulation scheme like QAM
- These subcarriers are spaced orthogonally they don't interfere with each other
- OFDM allows all subcarriers to transmit at the same time without overlapping signals

Hand-drawn Illustration:

Why OFDM is important for WLAN:

- Parallel data streams improve overall throughput
- Narrower subcarriers are less affected by interference or multipath fading
- Orthogonal spacing avoids overlap, maximizing channel usage
- Performs well even when signals reflect off walls or objects (multipath)

Qn 5:

How are frequency bands divided for Wi-Fi? Explain different bands and their channels

WiFi Frequency Bands:

- When we connect to the wifi, it sometimes shows two are three wifi names that is because the routers transmit different frequency bands
- Currently 2.4 GHz, 5 GHz, 6 GHz are the main bands
- Wi-Fi works over different frequency bands
- Like sections of the radio spectrum allocated for wireless communication
- Each band is divided into channels so multiple networks can coexist without clashing

Main Frequency Bands:

BAND	RANGE	USE	FEATURES
2.4 GHz	2.4 - 2.4835 GHz	802.11b/g/n/ax	Longer rangeFewer channelsmore interference
5 GHz	5.15 – 5.825 GHz	802.11a/n/ac/ax	 More channels less interference Shorter range
6 GHz	5.925 - 7.125 GHz	802.11ax (Wi-Fi 6E)	Cleannew bandultra-fast speedlow congestion

Channel division:

• 2.4 GHz

- Has 14 channels (each 22 MHz wide, but only 3 nonoverlapping: 1, 6, and 11)
- Channels overlap, so interference is common

• 5 GHz

- Has 24+ non-overlapping channels (each 20 MHz, or bonded to 40/80/160 MHz)
- Better for high-speed, high-density environments

• 6 GHz

- Offers 60+ non-overlapping channels
- Ideal for future-proof, ultra-fast Wi-Fi
- Requires compatible hardware (Wi-Fi 6E routers and

Qn 6:

What is the role of Guard Intervals in WLAN transmission? How does a short Guard Interval improve efficiency?

Guard Interval:

- Guard Interval is a short time gap inserted between symbols during wireless transmission
- It helps prevent signal interference caused by reflections or delays like multipath effects

Why are they used:

- When a Wi-Fi signal reflects off walls or objects, it can arrive late and interfere with the next symbol
- Guard Interval gives extra time between symbols so that these delayed signals don't cause overlap

Types

- Long Guard Interval:
 - 800 nanoseconds
 - Default in older Wi-Fi (802.11a/b/g/n)
- Short Guard Interval:
 - 400 nanoseconds
 - Optional in 802.11n/ac/ax for better speed
 - **50%** of the long Guard interval

For example, if we are sending 1000 symbols

Long G1: Total G1 time = 1000 x 800ns = 8,00,000ns Short G1: Total G1 time = 1000 x 400ns = 4,00,000ns

Short Guard Interval for better efficiency:

- Short GI reduces the gap between signals, so more data can be sent in less time
- Improves overall Wi-Fi speed by around 10%
- Smaller intervals allow more symbols to be transmitted every second
- Works best when there's less interference or echo like in small rooms
- Overall network efficiency increases when Short GI is used correctly

Practical implementation:

- I logged into my Jio Broadband 192.168.29.1
- There I found the frequency division 5 GHz

Qn 7:

Describe the structure of an 802.11 PHY layer frame. What are its key components?

802.11 PHY Layer:

- The PHY layer frame is the physical format of how Wi-Fi data is transmitted over radio waves.
- It ensures proper signal detection, synchronization, and data decoding at the receiver's end.
- The frame is made up of multiple sections that guide the receiver in reading the data correctly.

PHY Layer Frame Format:

Key Components:

Preamble:

 helps the receiving device detect, synchronize, and prepare for the incoming signal

- Sync / Short Training Field (STF) used for signal detection and timing synchronization
- Long Training Field (LTF) used for channel estimation and fine synchronization
- Signal Field (SIG) carries details like modulation type and data rate for the rest of the frame

PLCP Header (Physical Layer Convergence Protocol Header)

- Provides information on how to decode the frame
 - Indicates frame length, modulation scheme, coding rate, and transmission rate
 - Ensures compatibility between sender and receiver, even if they support different versions of 802.11

PSDU (PLCP Service Data Unit)

- This is the actual data payload coming from the MAC layer.
- Contains:
 - MAC Header Source/destination addresses, control info, etc
 - MSDU The MAC-level data to be transmitted
 - Tail bits Help in returning the decoder to a known state
 - Padding Ensures total bits match symbol size required by modulation

VHT PLCP Preamble

used for synchronization and channel estimation

Field	What It Does
L-STF	Helps detect the signal and timing sync (Legacy devices)
L-LTF	Legacy training sequence for channel estimation
L-SIG	Legacy signal info (e.g., length of PSDU)
VHT-SIG-A	Provides MCS, bandwidth, and other VHT info
VHT-STF	Short training field for VHT signal detection
VHT-LTF	VHT training fields — used for MIMO channel estimation
VHT-SIG-B	Contains information about user allocation and data

Qn 8:

What is the difference between OFDM and OFDMA?

OFDM:

- OFDM Orthogonal Frequency Division Multiplexing
- OFDM is a technique where a single user's data is split across multiple closely spaced subcarriers
- All subcarriers are used by one user at a time
- Commonly used in older Wi-Fi standards like 802.11a/g/n/ac
- Helps improve speed and resistance to interference

OFDMA:

- OFDMA Orthogonal Frequency Division Multiple Access
- OFDMA allows multiple users to transmit data simultaneously by assigning different subcarriers to each one
- Introduced in 802.11ax (Wi-Fi 6) for better efficiency in crowded networks
- Reduces latency and improves throughput, especially when many devices are connected

Comparison:

FEATURE	OFDM	OFDMA	
Users per time	One user	Multiple users at once	
Efficiency	Lower in dense networks	Higher in dense environments	
Used in Wi-Fi	802.11a/g/n/ac	802.11ax (Wi-Fi 6)	
Subcarrier use	All subcarriers to one user	Divides subcarriers across users	

Qn 9:

What is the difference between MIMO and MU-MIMO?

MIMO:

- MIMO Multiple Input Multiple Output
- MIMO uses multiple antennas on both the transmitter and receiver to send and receive multiple data streams simultaneously
- Increases speed and reliability by using spatial streams
- Used in standards like 802.11n and 802.11ac
- Only one user is served at a time, but with multiple data streams

MU-MIMO:

- MU-MIMO Multi-User Multiple Input Multiple Output
- An upgrade of MIMO that allows multiple users to be served at the same time using different spatial streams
- Used in 802.11ac (downlink only) and 802.11ax (uplink & downlink)
- Great for environments with many devices (homes, offices, stadiums)

Comparison:

		A1
FEATURE	МІМО	ми-мімо
Users per time	One user	Multiple users
Spatial streams	Sent to one device	Shared between multiple devices
Used in Wi-Fi 802.11n, 802.11ac		802.11ac (DL), 802.11ax (UL & DL)
Benefit Speed boost		Speed + efficiency in multi- user

Qn 10:

What are PPDU, PLCP, and PMD in the PHY layer?

PPDU:

- PPDU PLCP Protocol Data Unit
- The complete physical layer data unit that's sent over the air
- Includes
 - Preamble (for synchronization)
 - PLCP header (for decoding instructions)
 - PSDU (actual data from MAC layer)
- Different Wi-Fi generations have different types of PPDUs (legacy, HT, VHT, HE)
- Format varies depending on whether the device is using 802.11a/b/g/n/ac/ax
- The receiver starts decoding only after it gets the full PPDU

PLCP:

- PLCP Physical Layer Convergence Protocol Sublayer
- Responsible for preparing MAC data for physical transmission
- Adds important control info (like rate, length, modulation type) to the frame
- Ensures interoperability between different PHY types and the MAC layer

- Adds:
 - Training sequences (used for estimating the channel)
 - Signal field (helps the receiver understand how to decode the data)
- PLCP makes sure the data is properly packaged and understood by the receiver

PMD:

- PMD Physical Medium Dependent Sublayer
- Converts digital data into analog RF signals for over-the-air transmission
- Handles modulation/demodulation, frequency selection, and antenna signaling
- Closely tied to the radio hardware
- Responsible for
 - Signal power control
 - Frequency hopping or channel selection
 - Managing noise, interference, and errors
- It's where bits become radio waves and vice versa

Qn 11:

What are the types of PPDU? Explain the PPDU frame format across different Wi-Fi generations.

PPDU:

- PPDU PLCP Protocol Data Unit
- It's the complete physical layer frame that gets transmitted over the air
- It includes everything needed for the receiver to understand and decode the data:
 - Preamble (for synchronization)
 - Header (with control info like rate, length, etc.)
 - Payload (the actual data to be delivered)

Types of PPDU:

Legacy PPDU

- Used in 802.11a/b/g
- o Only supports one user at a time
- o Simple structure with basic fields

HT PPDU (High Throughput)

- Used in 802.11n
- Adds support for MIMO and 40 MHz channels
- o Includes HT-specific fields for improved performance

VHT PPDU (Very High Throughput)

- Used in 802.11ac
- Introduces MU-MIMO, 80/160 MHz bandwidths
- Has more detailed headers like VHT-SIG-A and VHT-SIG-B

HE PPDU (High Efficiency)

- Used in 802.11ax (Wi-Fi 6)
- Supports OFDMA and uplink/downlink MU-MIMO
- Designed for dense environments and more users

PPDU Frame Format Across WiFi generations:

GENERATION	PREAMBLE	MAIN FEATURES
Legacy	Short Training → Long Training → Signal → Data	Basic transmission, single user
HT (n)	Legacy fields + HT-SIG + HT-STF/LTF → Data	MIMO, 20/40 MHz support
VHT (ac)	Legacy preamble + VHT- SIG-A/B + VHT-STF/LTF → Data	MU-MIMO, wide channels (80/160 MHz)
HE (ax)	HE-SIG-A/B + HE- STF/LTF + Trigger + Data	OFDMA, UL/DL MU-MIMO, power saving

PPDU Frame Format:

Qn 12:

How is the Data Rate Calculated?

Formula:

here

- Nsubcarriers = Number of data subcarriers
 - Varies by channel width and modulation
 - For 20 MHz in OFDM 52 data subcarriers are there
- Bits per subcarrier = Based on modulation scheme
 - BPSK = 1
 - QPSK = 2
 - 16-QAM = 4,
 - 64-QAM = 6
- Coding rate = Error correction ratio like 1/2, 2/3, 3/4, 5/6
- Symbol rate = OFDM symbols transmitted per second
 - for 20MHz it is 250000

Scenario based calculations:

Let us take two examples

- One with **802.11a** with 20MHz
- One with **802.11n** with 20MHz
- For error correction, I have chosen the coding rate as ¾ for simpler calculation

Calculation Examples:

= 78 Mbps

THE END

