NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2538 is a silicon NPN epitaxial planar type transistor designed for RF amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 10dB$ $@V_{CC} = 13.5V, P_0 = 0.5W, f = 175MHz$
- TO-92 similar package is combinient for mounting.
- Equivalent input/output series impedance: $Z_{in} = 5.3 j2.9\Omega \text{ @V}_{CC} = 13.5\text{V}, P_{o} = 500\text{mW}, f = 175\text{MHz}$ $Z_{out} = 29 j63.5\Omega$

APPLICATION

Driver amplifiers in general VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	
V _{СВО}	Collector to base voltage		40	V
VEBO	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
Ic	Collector current		0.4	А
Pc	Collector dissipation	Ta = 25°C	0.7	w
		T _C = 25°C	3	W
Τį	Junction temperature		135	*c
Tstg	Storage temperature		-55 to 135	°C
Rth-a		Junction to ambient	157	°C/W
Rth-c	Thermal resistance	Junction to case	36.7	°C/W

Note. Above parameters are guaranteed independently

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter Test conditions	▼	Limits			11-74
		l est conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	1 _E =1mA.1 _C =0	4			٧
V(BR)CBO	Collector to base breakdown voltage	1 _C =1mA, 1 _È =0	40			٧
V(BR)CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{RE} = ∞	. 17			V
СВО	Collector cutoff current	V _{CB} =15V, I _E =0			100	μА
1EBO	Emitter cutoff current	V _{EB} =3V, 1 _C =0			200	μΑ
hfE	DC forward current gain *	V _{CE} = 10V, _C = 0.1A	10	80	300	_
Po	Output power	V _{CC} =13.5V, P _{in} =50mW, f=175MHz	500	600		mW
$\eta_{\rm C}$	Collector efficiency		45	55		%

Note. *Pulse test, $P_W=150\mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

D: Inner diameter of coil
T: Turn number of coil

P: Pitch of coil

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE V_{CE} (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)