Lab Practice - V

	Assignment No.04
	Title: Write a CUDA Program for:
	1. Addition of two large vectors
Main's	2. Matrix multiplication using CUDA C
	objective: students should be able to perfor-
	m CUDA Program for Addition of
a	two vectors and Matrix Multiplica-
	tion
	Pre requisite: Concept of CUDA
	· Vector Addition
	· How to execute program in
	CUDA environment.
	Contents for theory:
	· concept of CUDA, what is CUDA
	· Addition of two vectors
6	· Matrix Multiplication
	What is CUDA:
	CUDA (Compute Unified Device Architecture)
L I BOU	is a parallel computing platform and
1000	programming model developed by NVIDIA.
	Using CUDA, developens can exploit the
	massive parallelism and high computational
3 3155	power of GPUS to accelerate computation-
	ally intensive tasks such as matrix
Sundaram	FOR EDUCATIONAL USE
Quintalam	1 ON DE CONTONIE COE

	Operations, image processing and deep
	learning.
	steps for Addition of two vectors using CUDA
	1. Define the size of the vectors. 2. Allocate memory on the host You can
	use the molloc function to allocate
	3. Initialize vectors we can use loops
	to fill vectors with data
	4. Allocote memory on the device you
	can use cupa function cuda Malloc to
	allocate memory.
	5. Copy the input vectors from host to
	device.
	6 Lounch the CUDA kernel that will
	perform the oddition operation.
	7. Copy the result vector from device
	to host
	8. Free memory on the device
	g. Free memory on the host
	Steps for Matrix Multiplication using CUDA:
and the same of	1. Matrix Initialization: The matrices are
	usually represented as 20 arrays
	2. Memory Allocation: You can use the
	standard C malloc function to allocate
	memory on the host.

FOR EDUCATIONAL USE

Sundaram

	3. Data Transfer: The third step is to
	transfer data between the host and the
	device for matrices
	4 kernel Lounch: The fourth step is to
	lounch CUDA kernel. Each thread in the
	kernel will compute one element of
	output matrix
	5. Device Synchronization: The fifth step
	is to synchronize the device to ensure
	that all kernel executions have completed
	before proceeding.
	6. Poto Retrievol: You con use the CUDA
	function cudo Memcpy () to transfer data
	from the device to the host
	7. Memory Peollocation: The Cfree func
	con be used to Deallocate Memory on
	host and CUDA function cudafree () to
	deallocate memory on the device
•	
	Execution of program over cupa
	Environment:
	1. Install CUDA toolkit: we can download
	CUDA toolkit from the NYTOGA website and
	follow installation instructions
	2. setup CUDA environment: Once the
	CUPA toolkit is installed set PATH and
	LO_LIBRART PATH environment Variables
	to appropriate directories.
Sundaram	FOR EDUCATIONAL USE
Quidalani	33.25 3.113.12 3.02

	3. Write CUDA program: You need to write a CUDA program that performs the addition of 2 vectors and Matrix Multiplication. 4. Compile CUDA program: You can compile the program with nvcc compiler. The command to compile the program is: nvcc -o program name program name.cu
	5. This will generate an executable program. The command to run is:
	./program_name
America .	
	Conclusion: Thus we have executed Addition of vectors and Matrix Multi-
	plication using CUDA.
the state	and the state of t
has	
	FOR EDUCATIONAL USE
Sundarnin	

Jundarum

Lob Proctice - V

Assignment No. 05 [DL]

Title: Linear regression using Deep Neural

network: Implement Boston housing

price prediction problem by Linear regression. Use Boston House Price predictionset.

chjective! Students should be able to perform
Linear regression using neep Neural
network on Boston House dataset

Prerequisite: Concept of linear Regression Concept of Deep Neural network

Contents for theory:

1 Example of linear Regression

3: Code explanation with output

Theory ! -

What is linear Regression:

Linear regression is a statistical approach that is commonly used to model the
relationship between a dependent variable
and one or more independent variables.

It assumes a linear relationship between
the variables and uses mathematical methods
to estimate the coefficients that best fit data

Example of linear Regression: A Suitable example of linear regression using deep neural network would be predicting the price of a house based on various features such as the size of the house. no of bedrooms, the location and the age of During troining, the weights and biases of the neural network would be adjusted to minimize the difference between the predicted price and actual price of house. Concept of Deep Neural Network: A Deep neural network is a type of machine learning algorithm that is modeled ofter the structure and function of the humon brain It consists of multiple Layers of inter. connected nodes, or ortificial node neurons that process data and leave from it to make predictions or classifications. How Deep Neural network work: Baston House Price Prediction is a Common example used to illustrate how a deep neural network can work for regression task Here's how a deep neural network can work for Boston House price prediction: FOR EDUCATIONAL USE

- 1. Data preprocessing: The first step is to preprocess the data. This involves normalizing the input features to have a mean of 0 and Standard Deviation 1
 - 2. Model Architecture: The first layer is the input layer which takes in the normalized features. This is followed by several hidden layers.
- 3. Model training: During training, the weights and biases of the nodes are adjusted based on the error between predicted output and the actual output
- it is evaluated using testing set The performance of the model is measured using metrics
- S. Model Prediction: Finally, the model can be used to make predictions on new data.

 Such as predicting the price of a new house in Boston
- Conclusion: In this way we can Predict
 the Boston House Price Using Deep Neural
 Network