КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

	Фізичний факультет	
	(назва факультету, інституту)	
Кафедра <u>ядерної фізики</u>	Ba B	ТВЕРДЖУРО» фудник декина момот О.В.
РОБОЧА ПРО	ОГРАМА НАВЧАЛЬНО	Т #ИСЦИПЛІНИ
<u>,, Суча</u>	сні розрахункові коди у фізиці висок	их енергій ??
	(повна назва навчальної дисципліни)	
40	для студентів	
галузь знань <u>10 «</u>	Природничі науки» (шифр і назва)	
спеціальність 104	«Фізика та астрономія»	
	(шифр і назва спеціальності)	
освітній рівень	бакалавр (молодший бакалавр, бакалавр, магістр)	
освітня програма	Фізика	
(за наявності)	(назва освітньої програми) рвий блок "фізика високих енергій" (назва спеціалізації)	
вид дисципліни	вибіркова	
	Форма навчання	денна_
	Навчальний рік	2022/2023
	Семестр	7
	Кількість кредитів ECTS	4
	Мова викладання, навчан та оцінювання	ня українська
	Форма заключного контр	
Викладачі: канд <u>. фізмат</u>	<u>. наук, доцент</u> Ю.М <u>.</u> Оніщук	олю <u>залік</u>
(Науково-педагогічні пр	рацівники, які забезпечують викладання даної дисципліни з	у відповідному навчальному році)
Проло	нговано: на 20/20 н.р(
	на 20/20 н.р(підпис, 1	ПБ, дата) «»20р.
	на 20/20 н.р(підпис, 1	(ПІБ, дата) «» 20p.

КИЇВ – 2022

	методичною комісі фізичного факульте		y
	червня 20 <u>22</u> року №		(<u>Олег Оліх</u>)
		(підпис)	(прізвище та ініціали)
« »	20 року	V	

ЗАТВЕРДЖЕНО

(підпис)

Зав. кафедри ядерної фізики та високих енергій Пер Каденко

Протокол № <u>14</u> від «<u>03</u>» <u>червня</u> 2022 р.

(прізвище та ініціали)

ВСТУП

1. Мета дисципліни ϵ отримання студентами додаткових знань із застосування об'єктно-орієнтованих мов програмування у фізиці високих енергій.

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- 1. Успішне опанування базових курсів фізики («Фізика атомного ядра та елементарних частинок», «Фізика високих енергій»).
- 2. Знання теоретичних основ курсів («Фізика атомного ядра та елементарних частинок», «Фізика високих енергій»).

3. Анотація навчальної дисципліни:

Навчальна дисципліна "Сучасні розрахункові коди у фізиці високих енергій" ε складовою циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня "бакалавр фізики". Дисципліна "Сучасні розрахункові коди у фізиці високих енергій" дозволить студентам оволодіти сучасними уявленнями про експериментальні і теоретичні підходи, що застосовуються для моделювання процесів взаємодії елементарних частинок, як на адронному рівні, так і на рівні детектуючих пристроїв.

4. Завдання (навчальні задачі)

Основними завданнями вивчення дисципліни "Сучасні розрахункові коди у фізиці високих енергій" ϵ :

- Освоїти ROOT Framework як інструмент обробки даних у ФВЕ.
- Ознайомитися із програмним пакетом Python, його особливостями при використанні у аналізі даних у ФВЕ.
- Освоїти пакет мінімізації Minuit і його застосування для фітування даних у ФВЕ
- Ознайомитися із програмним пакетом MATLAB, його можливостями для ускладненого аналізу даних у ФВЕ.

Згідно вимог Стандарту вищої освіти України (перший (бакалаврський) рівень вищої освіти, галузь знань 10 «Природничі науки», спеціальність 104 «Фізика та астрономія», ОНП «Фізика» дисципліна забезпечує набуття здобувачами освіти наступних компетентностей:

Інтегральних:

Здатність розв'язувати складні задачі і проблеми дослідницького та інноваційного характеру у фізиці та астрономії.

Загальних:

- ЗК2. Здатність застосовувати знання у практичних ситуаціях.
- 3К3. Навички використання інформаційних і комунікаційних технологій. Фахові:

ФК2. Здатність використовувати на практиці базові знання з математики як математичного апарату фізики і астрономії при вивченні та дослідженні фізичних та астрономічних явищ і процесів.

- ФК3. Здатність оцінювати порядок величин у різних дослідженнях, так само як точності та значимості результатів.
- ФК4. Здатність працювати із науковим обладнанням та вимірювальними приладами, обробляти та аналізувати результати досліджень.
- ФК5. Здатність виконувати обчислювальні експерименти, використовувати чисельні методи для розв'язування фізичних та астрономічних задач і моделювання фізичних систем.
- ФК6. Здатність моделювати фізичні системи та астрономічні явища і процеси.
- ФК13. Орієнтація на найвищі наукові стандарти обізнаність щодо фундаментальних відкриттів та теорій, які суттєво вплинули на розвиток фізики, астрономії та інших природничих наук.
- ФК15. Здатність аналізувати світові тренди розвитку фізики та астрономії для вибору власної освітньої траєкторії навчання та тематики майбутніх наукових досліджень.

5. Результати навчання за дисципліною:

Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)		Методи викладання і	Методи оцінювання	Відсоток у підсумковій	
Код	Результат навчання	навчання	оцінювиння	оцінці з дисципліни	
1.1	Освоїти можливості реалізації об'єкто-орієнтованих мов програмування для аналізу даних у ФВЕ	,	Тест	15	
2.1	Застосовувати теоретичні знання з фізики високих енергій	Лекція, практичне заняття (лабораторні)	Тест	85	

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Результати навчання дисципліни	1.1	2.1
Програмні результати навчання	1.1	2.1
ПРН6. Оцінювати вплив новітніх відкриттів на розвиток сучасної	+	
фізики та астрономії.		
ПРН7. Розуміти, аналізувати і пояснювати нові наукові результати,		+
одержані у ході проведення фізичних та астрономічних досліджень		
відповідно до спеціалізації.		
ПРН9. Мати базові навички проведення теоретичних та/або	+	+
експериментальних наукових досліджень з окремих спеціальних		
розділів фізики або астрономії, що виконуються індивідуально		
(автономно) та/або у складі наукової групи.		
ПРН26. Мати базові навички самостійної оцінки рівня освітніх	+	+
програм з фізики та астрономії у глобальному освітньому просторі		

для	вибору	цілеспрямованих	візитів	по	програмі	академічної	
мобі	ільності.						

8. Схема формування оцінки:

Навчальна дисципліна "Сучасні розрахункові коди у фізиці високих енергій " оцінюється за модульно-рейтинговою системою. Вона складається з 2-х модулів. Результати навчальної діяльності студентів оцінюються за 100 - бальною шкалою.

- **8.1 Форми оцінювання студентів:** (зазначається перелік видів робіт та форм їх контролю / оцінювання із зазначенням Міп. рубіжної та Мах. кількості балів чи відсотків)
 - семестрове оцінювання:
 - 1. 2-і модульні контрольні роботи (максимум 10+20=30 балів).
 - 2.Опитування і контрольні при проведенні лекційних занять (максимум 10 балів).
 - 3.Оцінювання лабораторних робіт (максимум 30 балів).
 - підсумкове оцінювання у формі заліку(максимум –30 балів)
- Підсумкове оцінювання у формі заліку (підсумкова кількість балів з дисципліни (максимум 100 балів), яка визначається як сума (проста або зважена) балів за систематичну роботу впродовж семестру. Оцінка виставляється за результатами роботи студента впродовж усього семестру.

	Семестрова кількість балів	ПКР (підсумкова контрольна робота) чи/або чи іспит	Підсумкова оцінка
Мінімум	30	0	60
Максимум	70	30	100

8.2 Організація оцінювання:

Шкала відповідності (за умови іспиту) Шкала відповідності (за умови заліку)

За 100 – бальною шкалою	За національною шкалою		
90 – 100	5 відмінно		
85 – 89			
75 – 84	4	добре	
65 – 74	3		
60 – 64	3	задовільно	
35 – 59	2	не задовільно	
1 – 34			

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ

		Кількіст	Сількість годин		
N	НАЗВА ТЕМИ	Лекції	практичні	іСамостійна роб.	
3N	ПСТОВИЙ МОДУЛЬ 1. " <i>Програмні пакети ROOT і Python</i> "				
1	ROOT Framework як інструмент обробки даних у ФВЕ. Загальна організація пакету програмного пакету Python	4	2	8	
2	Робота з гістограмами і графіками у ROOT Framework	4	2	8	
3	Робота з ROOT інтерпретатором (CINT). Графічні об'єкти у ROOT Framework	4	2	8	
4	Директорії (Folders) і Дерева (Trees) у ROOT Framework. Зчитування/запис у ROOT-файл	4	2	8	
5	Математичні бібліотеки у ROOT Framework	4	2	8	
M	одульна контрольна робота I				
3М	ПСТОВИЙ МОДУЛЬ 2 "Пакет мінімізації Minuit і програмний па	кет МА	ATLAB"		
6	Загальна організація пакету мінімізації Minuit. Внутрішні і зовнішні параметри.	4	2	8	
7	Структура підпрограми FCN пакету мінімізації Minuit. Вхідні і вихідні параметри. Дві моди використання	2		8	
8	Стратегія отримання правильного результату у пакеті мінімізації Minuit. Мінімізатори: MIGRAD, SCAN, SEEK, SIMPLEX	2	8	8	
9	. Інтерпретація похибок параметрів у пакеті мінімізації Міпціт. Проблеми мінімізації. Використання χ^2 і максимуму правдоподібності	2		6	
Mo	одульна контрольна робота 2				
Вс	ього	30	14	75	

Загальний обсяг 120 год., в тому числі

Лекцій - *30* год.

Практичні заняття - 14 год.

Семінари – θ год.

Тренінги - *0* год.

Консультації — 1 год.

Самостійна робота - 75 год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова)

- 1. ROOT. An Object-Oriented Data Analysis Framework. Users Guide 5.26. December 2009.
- 2. James F. and Winkler M. Minuit. User's Guide. June 16, 2004 CERN, Geneva.

- 3. *James F.* MINUIT Tutorial. Function Minimization. Proc. 1972 CERN Comp. Data Processing School, Pertisau, Austria, 10-24 September, 1972 (CERN 72-21).
- 4. *James F.* The Interpretation of Errors. June 16, 2004 CERN, Geneva.
- 5. *Ануфриев И., Смирнов А., Смирнова Е.* МАТLAB. Наиболее полное руководство. СПб, 2005. 1104 с.
- 6. $Poccym \Gamma$. и др.. Язык программирования Python. М:, 2001. 454 с.

Додаткова:

- 7. *Чен К., Джиблин П., Ирвинг А.* MATLAB в математических исследованиях. М.: Мир, 2001. 346 с.
- 8. *Кетков Ю.Л., Кетков А.Ю., Шульц М.М.* MATLAB 7: программирование, численные методы. СПб, 2005. 752 с.

Інтернет-ресурси:

http://root.cern.ch/drupal/;

http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/;

http://www.mathworks.com/matlabcentral/;

http://atom.univ.kiev.ua/;