Cognome:	; No
	, ,

Nome:

__ ; matricola: _____

ESERCIZI (Max 24 punti)

Tempo a disposizione: 45 minuti

CONSEGNARE SOLO QUESTO FOGLIO

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

X = (numero di lettere che compongono il Cognome) - 2. (max 9) Y = (numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari;

Z = 1 se X è pari; Z = 0 se X è dispari;

S = (penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

X =;Y =;

 $W = \dots$;

 $Z = \dots$;

 $S = \dots$;

 $T = \dots$;

- 1. Spiegare l'effetto del comando seguente:
 - \$ cp /var/spool/*.mbox /home/giacomo sistema in cui sono in esecuzione 5 processi (P₀, P₁, P₂, P₃, P₄) e sono disponibili 3 tipi di risorse (A, B, C).

	Alloc.	Max	Available
	ABC	ABC	ABC
P_0	0 1 W	5 4 3	2 2 1
P_1	200	3 2 2	
P_2	3 0 W	902	
P_3	2ZZ	2 1 2	
P_4	0 1 1	2 3 3	

Le seguenti matrici descrivano lo stato corrente di un

Quante risorse di tipo A, B e C sono presenti nel sistema?

Il sistema è in uno stato sicuro? Perché?

2. Specificare il risultato del comando:

\$ cat cat | wc >out

se nel file di nome **prova** è contenuta il seguente testo:

questo è un errore

- 3. Scrivere la *pipe* di comandi per contare gli utenti distinti collegati al sistema.
- 4. Scrivere la pipe di comandi dell'utente **gianni** che voglia conoscere la lista dei suoi processi attivi nel sistema.
- 5. Specificare il comando per cercare nella directory /home/web/miosito/fotografie/ tutti i file con dimensione uguale o maggiore di 100 K.
- 6. Indicare l'effetto del seguente comando

e quello, invece, del comando

grep casa *.html

- 8. La Memory Management Unit (MMU) opera la *traduzione* da indirizzo logico (relativo al program address space) a indirizzo fisico assoluto (relativo alla RAM). Quanti accessi alla RAM comporta tale traduzione nel caso di paginazione e qual è l'hardware che consente di ridurre il numero degli accessi?
- Si consideri un disco fisso costituito da 200 cilindri, 40 tracce per cilindro e 50 blocchi peer traccia. A *quale elemento della linked list* corrisponderà il blocco avente le seguenti coordinate:

$$C = 1SO$$
 $T = 2T$ $B = 30$

10. Si consideri un process scheduler che usi l'algoritmo di attribuzione ai processi di priorità dinamiche basate sul merito. Se un processo ha ricevuto Y time slice, impiegandone completamente (Y – 2), quale sarà la sua priorità? Si assuma che la priorità sia espressa tramite un intero naturale da 1 byte.

POLITECNICO DI BARI

Corso di Laurea in Ing. Informatica n.o.

11. La tavola che segue riporta, per un blocco di memoria B, il tempo di caricamento T_{Load} e il tempo dell'ultimo accesso T_{Ref} .

В	T _{Load}	T _{Ref}	C	R
0	1X6	2T9	0	1
1	1Y0	2S0	1	0
2	1S0	2Y0	0	1
3	1T0	2X0	0	0

Quale blocco sarà rimpiazzato se l'algoritmo di Page Replacement è:

FIFO	
LRU	
LRU approssimato	

12. Qual è la funzione svolta dal client stub e dal server stub nella comunicazione client-server attraverso *Remote Procedure Call* (RPC)?

13.	Quanti	saranno	i	blocchi	(di	dati	\boldsymbol{e}	di	indicizza	zione)
	allocati	in totale	d	a un SO	UNI	X-lik	e p	er ı	ın file che	abbia
	richiesto	o la scritt	ur	a di 6T00	00 b	locchi	?			

Blocchi di dati allocati	
Blocchi di indicizzazione allocati	
Blocchi totali allocati	

14. Si assuma che lo *scheduling della CPU* avvenga secondo il *merito* e che i processi abbiano i seguenti valori di merito:

$$P1 = 0.4X$$
 $P2 = 0.81$ $P3 = 0.6T$ $P4 = 0.54$ $P5 = 0.31$ $P6 = 0.7S$ $P7 = 0.59$ $P8 = 0.8Y$ $P9 = 0.91$ $P10 = 0.93$

Tra quali valori sarà compresa la *mediana*?

Quale sarà *la retroazione prodotta sul valore del timeslice* se la mediana attesa è pari a 0.X0?

15. Quali sono le fasi del *protocollo di lock delle transazioni* e quali le caratteristiche di tali fasi? Qual è il *limite* di tale protocollo?

16. La "proprietà acida" dell'isolamento impone la serializzabilità delle transazioni? Qual è il suo significato?

17. Quali sono le *tecniche di commutazione* impiegate in una rete di calcolatori?

Nel seguito vengono riportate affermazioni vere e affermazioni false:

- barra la casella "Sicuramente Vera" (SV), se sei sicuro che l'affermazione è vera;
- barra la casella "Sicuramente Falsa" (SF), se sei sicuro che l'affermazione è falsa;

Per ogni corretta risposta ottieni 1 punto. Per ogni erronea risposta ottieni -1 punto. Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF
Per consentire la <i>commit a due fasi</i> è necessario che l'atomicità sia garantita dall'uso del file di log.		
Se in un <i>monitor</i> non è sospeso alcun processo, l'operazione signal non ha alcun effetto.		
Una <i>mailbox</i> (o porta di comunicazione <i>client-server</i>) consente di realizzare una comunicazione asincrona.		
I sistemi operativi UNIX-like impiegano l'algoritmo del banchiere per prevenire il deadlock.		
Le procedure pubbliche di un <i>monitor</i> sono mutuamente esclusive.		

POLITECNICO DI BARI		Corso ai Laurea in Ing. Injorm	Corso ai Laurea in Ing. Informatica n.o.		
Cognome:	; Nome:	; matricola:	;		
	<u>Problema</u>				
Tempo a disposizione: 45 minuti		Max 6 punti			

CONSEGNARE SOLO QUESTO FOGLIO e UTILIZZARE ANCHE IL RETRO

Si vuole realizzare una funzione **AMMIS** che verifichi, ai fini dell'applicazione del teorema di Habermann, l'ammissibilità dello stato di un sistema costituito da **N** processi che utilizzano **M** tipi di risorse.

Si assuma che alla procedura suddetta vengano passati:

- il numero **N** dei processi ed il numero **M** dei tipi di risorse
- la matrice **ALL** delle risorse allocate ai processi al tempo t
- la matrice MAX delle risorse massime che i processi possono richiedere
- il vettore **AVAIL** delle risorse ancora disponibili al tempo t.

Si vuole che la funzione **AMMIS** restituisca uno 0 se il sistema è ammissibile oppure un 1 se non lo è.

<u>Utilizzare unicamente i nomi indicati</u> e descrivere l'algoritmo con un <u>flow-chart (o pseudocodice) rigorosamente strutturato</u>.

Avvertenze

I risultati della prova saranno pubblicati sul sito.

La data, l'ora e l'aula della prova orale saranno rese note in calce ai risultati della prova scritta.