DNA-PK SEQUENCE LISTING <110> Brookhaven Science Associates Anderson, Carl\ W Connelly, Margery A RECEIVED <120> DNA-PK Assay <130> BSA 01-02 FEB 0 4 2002 <140> US 09/695,437 TECH CENTER 1600/2900 <141> 2000-10-24 US 08/398,139 <150> <151> 1995-03-03 <150> 08/132,284 <151> 1993-10-06 <160> <170> PatentIn version 3.1 <210> 1 <211> 28 <212> <213> Homo sapiens <220> MISC_FEATURE <221> <223> Human p53 residues 1-28 <400> 1 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Aro Glu 20 <210> <211> 28 <212> PRT <213> Musca domestica <220> <221> MISC_FEATURE <223> Mourse p53 residues 4-31 <400> 2 Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pto Leu Ser Gln 15

Page 1

RECEIVED

FEB u 4 2002 TECH CENTER 1600/2900

```
Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro
             20
 <210> 3
 <211> 16
 <212> PRT
<213> Musca domestica
 <220>
 <221> MISC FEATURE
 <223> Mouse p53 residues 4-13
 <400> 3
 Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pro Tyr Lys Lys
                                     10
 <210> 4
 <211> 25
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> MISC FEATURE
 <223> Human p53 residues 1-24
 <400> 4
 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln
 Glu Thr Phe Ser Asp Leu Trp Lys Lys
             20
 <210> 5
 <211> 25
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> MISC FEATURE
 <223> Human p53 residues 1-24; S15A substitution
 <400> 5
 Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ala Gln
                 5
                                     10
```

```
20
<210> 6
<211>
      18
<212>
      PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 29-44
<400> 6
Asn Asn Val Leu Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met
Lys Lys
<210> 7
<211> 16
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 160-175
<400> 7
Met Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg
                                                       15
               5
<210> 8
<211>
      15
<212>
      PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24
<400> 8
Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
                                    10
```

Glu Thr Phe Ser Asp Leu Trp Lys Lys

```
<210>
      9
      11
<211>
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 11-19
<400> 9
Glu Pro Pro Leu Ser Gln Glu Thr Phe Lys Lys
<210> 10
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 11-21
<400> 10
Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Lys Lys
                5
<210> 11
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
      Human p53 residues 11-24:T18A and S20A substitutions
<400> 11
Glu Pro Pro Leu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 12
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> \operatorname{Human} p53 residues 11-24:T18A and S20A and W23L substitutions
```

```
· <400> 12
  Glu Pro Pro Leu Ser Gln Glu Ala Phe Ala Asp Leu Leu Lys Lys
                                      10
  <210> 13
  <211> 15
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> MISC_FEATURE
  <223> Human p53 residues 11-24:E17K, T18A and S20A substitutions
  <400> 13
  Glu Pro Pro Leu Ser Gln Lys Ala Phe Ala Asp Leu Trp Lys Lys
  <210> 14
  <211> 15
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> MISC_FEATURE
  <223> Human p53 residues 11-24:L14Q, Q16L, T18A and S20A substitutions
  <400> 14
  Glu Pro Pro Gln Ser Leu Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                     10
  <210> 15
  <211> 15
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> MISC FEATURE
  <223> Human p53 residues 11-24:L14Q, T18A and S20A substitutions
  <400> 15
  Glu Pro Pro Gln Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                      10
  <210> 16
  <211> 15
```

```
<212>
       PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
      Human p53 residues 11-24:S15T, T18A and S20A substitutions
<223>
<400> 16
Glu Pro Pro Leu Thr Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 17
<211>
      15
<212>
      PRT
<213> Homo sapiens
<220>
<221>
      MISC FEATURE
<223> Human p53 residues 11-24:L14D, T18A and S20A substitutions
<400> 17
Glu Pro Pro Asp Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
                5
<210> 18
<211>
      14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 12-24:P13E, L14E, T18A and S20A substitutions
<400> 18
Pro Glu Glu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 19
<211>
      13
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 13-24:L13P, S14E, T18A and S20A
       substitutions
```

```
<400> 19
Pro Glu Ser Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210> 20
<211>
      15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
      Human p53 residues 11-24 with Q16E, E17Q, T18A and S20A
       substitutions
<400> 20
Glu Pro Pro Leu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
<210> 21
<211>
      15
<212> PRT
<213> Artificial Sequence
<220>
      DNA-PK assay negative control peptide
<223>
<400>
      21
Glu Pro Pro Leu Ala Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
               5
                                   10
<210> 22
<211>
      15
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      DNA-PK assay negative control peptide
<400> 22
Glu Pro Pro Leu Ala Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
<210> 23
<211>
      13
<212> PRT
<213> Artificial Sequence
<220>
```

```
DNA-PK assay negative control peptide
 <223>
 <400> 23
· Pro Glu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
                 5
 <210> 24
 <211>
       14
 <212>
       PRT
 <213> Artificial Sequence
 <220>
 <223> DNA-PK assay negative control peptide
<400> 24
 Pro Glu Glu Ala Gln Glu Ala Phe Ala Asp Leu Trp Lys Lys
 <210> 25
 <211>
       14
 <212>
       PRT
 <213> Artificial Sequence
 <220>
       DNA-PK assay negative control peptide
 <223>
 <400> 25
 Pro Glu Glu Ser Glu Gln Ala Phe Ala Asp Leu Trp Lys Lys
 <210> 26
 <211>
       14
 <212>
       PRT
 <213> Artificial Sequence
 <220>
       Example of inappropriate DNA-PK negative control peptide
 <223>
 <400> 26
 Pro Glu Glu Ala Gln Glu Thr Phe Ser Asp Leu Trp Lys Lys
                 5
                                     10
 <210>
       27
 <211>
        24
 <212>
       DNA
 <213> Artificial Sequence
 <220>
 <223> DNA effector for in vitro DNA-PK assays
```

```
<400> 27
                                                                   24
gegegege gegegegege gege
<210> 28
<211>
     19
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 92-108
<400> 28
Pro Leu Ser Ser Ser Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr
Gly Lys Lys
<210> 29
<211>
      21
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 306-327
<400> 29
Ala Leu Pro Asn Asn Thr Ser Ser Pro Gln Pro Lys Lys Pro
               5
                                                     15
Leu Asp Gly Glu Tyr
           20
<210> 30
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223> Human p53 residues 371-385
<400> 30
```

```
Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met Phe
                5
<210>
      31
<211>
      14
<212> PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<223>
      Human p53 residues 380-393
<400> 31
His Lys Lys Leu Met Phe Lys Thr Glu Gly Pro Asp Ser Asp
<210>
      32
<211>
      15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:Q16E, T18A and S20A substitutions
<400> 32
Glu Pro Pro Leu Ser Glu Glu Ala Phe Ala Asp Leu Trp Lys Lys
                                   10
<210> 33
<211>
      15
<212> PRT
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24:Q16N, T18A and S20A substitutions
<400> 33
Glu Pro Pro Leu Ser Asn Glu Ala Phe Ala Asp Leu Trp Lys Lys
<210>
       34
<211>
      15
<212>
      PRT
<213> Homo sapiens
```

```
<220>
<221> MISC FEATURE
<223> Human p53 residues 11-24 with Q16Y, T18A, S20A and W23L
       substitutions
<400> 34
Glu Pro Pro Leu Ser Tyr Glu Ala Phe Ala Asp Leu Leu Lys Lys
                                   10
<210> 35
<211> 10
<212>
      PRT
<213> Artificial Sequence
<220>
<223> Synthetic Casein kinase I substrate
<400> 35
Asp Asp Asp Glu Glu Ser Ile Thr Arg Arg
                5
<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic S6 kinase substrate
<400> 36
Arg Arg Leu Ser Ser Leu Arg Ala
<210> 37
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic casein kinase II substrate
<400> 37
Arg Arg Glu Glu Glu Thr Glu Glu Glu
                5
<210> 38
<211>
<212> PRT
```

```
<213> Artificial
<220>
<221> MISC FEATURE
<223>
      peptide fragement
<400> 38
Ser Asp Leu Trp
<210> 39
<211>
      10
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      Synthetic casein kinase II substrate
<400> 39
Arg Arg Asp Asp Asp Ser Asp Asp
<210> 40
<211>
      17
<212>
      PRT
<213> Homo sapiens
<220>
<221> MISC_FEATURE
<222>
      (1)..(4)
<223> human hsp90 residues 1-4
<220>
<221> MISC_FEATURE
<222>
      (5)..(17)
<223> human p53 residues 15-27 with S20E substitution
<400> 40
Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu
                                   10
                                                       15
Pro
<210> 41
<211>
<212> PRT
```

```
<213> Homo sapiens
<220>
<221> MISC FEATURE
<223>
      human hsp90 residues 1-4
<400> 41
Met Pro Glu Glu
<210> 42
<211>
      13
<212>
      PRT
<213>
      Homo sapiens
<220>
<221>
      MISC FEATURE
<223> human p53 residues 15 to 27 with S20E substitution
<400> 42
Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro
<210> 43
<211>
      11
<212> PRT
<213> herpes simplex virus 1
<220>
<221> MISC FEATURE
<223> HSV 1 glycoprotein D precursor residues 289-299
<400> 43
Glu Pro Glu Leu Ala Pro Glu Asp Pro Glu Asp
                5
<210> 44
<211>
      4
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      Consensus cleavage site of human adenovirus endoproteinase
<400> 44
Met Ser Gly Gly
```

```
<210>
      45
<211>
      20
<212>
      PRT
<213>
      Artificial Sequence
<220>
       Synthetic phosphorylation site segment
<223>
<400>
      45
Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu
                                    10
Pro Gly His His
            20
<210>
      46
<211>
      53
<212>
      DNA
<213> Artificial Sequence
<220>
      Sense strand oligonucleotide encoding DNA-PKphosphorylation segme
<223>
       nt SEQ ID NO: 45
<400> 46
tatgcctgag gaaagtcagg agacattcga agatctatgg aaactacttc ctg
                                                                       53
<210>
      47
<211>
      56
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Antisense oligonucleotide for phosphorylation site segment
<400>
                                                                       56
gtgaccagga agtagtttcc atagatcttc gaatgtgtcc tgactttcct caggca
<210>
       48
<211>
       53
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       Sense primer sequence
<400>
      48
                                                                       53
gctctagaag tcgactttaa gaaggagata ccaagatgcc tgaggaaagt cag
```

```
<210>
      49
<211>
       61
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      Antisense primer with HSV epitope sequence
<400> 49
cgggatccta atcctcaggg tcttccgggg cgagctctgg ctgtgggttg attcttttt
                                                                      60
                                                                      61
<210>
       50
<211>
       46
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      sense primer for substrate PCR
<400> 50
                                                                      46
catcaccatg gtatgagcgg cggcatggag gagcccagtg accttg
<210>
      51
<211>
       61
<212>
       DNA
<213> Artificial Sequence
<220>
      antisense primer for substrate PCR
<223>
cgggatccta atcctcgggg tcttccgggg cgagttctgg ctgtgggttg attcttttt
                                                                      60
                                                                      61
<210> 52
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic substrate fragment
<400> 52
Glu Glu Ala Gln Glu Thr Phe Glu
                5
<210> 53
<211> 25
<212> DNA
```

<213>	Artificial Sequence	
<220>	Sense strand for SEQ ID NO: 52	
<400>	53 agec caggagacat tegaa	25
cgagga	agee caggagacae tegaa	
<210>	5.4	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Antisense strand for SEQ ID NO: 52	
<400>		
gatctt	cgaa tgtctcctgg gcttcc	26
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
	Sense strand for negative control vector	
<400>	55	
tgagga	gtct gagcagacat tcgaa	25
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	complement of SEQ ID NO: 55	
<400>	5.6	
	cgaa tgtctgctca gactcc	26
<210>	57	
	36	
<212>	DNA Artificial Sequence	
	merrer beganne	
<220>	sense strand for multiple cloning site	
\ 223 <i>></i>	sense strand for murciple cronting sice	
<400>	57	36
CEAGCE	CLAO ADDECECCO GOOLACEGEO GECOCE	

<210> 58 <211> 36 <212> DNA <213> Artificial Sequence <220> complement of SEQ ID NO: 57 multiple cloning site <223> <400> 36 tcgaggcggc cgcggtaccc gggcgcgcct ctagag <210> 59 <211> 177 <212> PRT <213> Artificial Sequence <220> sequence of Human Oct-1 POU domain with His6 tag, expressed from <223> plasmid pT7HPOU1 <400> 59 Met Ala Ser Met Thr Gly His His His His His Gly Met Ser Gly Gly Met Glu Glu Pro Ser Asp Leu Glu Glu Leu Glu Gln Phe Ala Lys 25 20 Thr Phe Lys Gln Arg Arg Ile Lys Leu Gly Phe Thr Gln Gly Asp Val 45 35 40 Gly Leu Ala Met Gly Lys Leu Tyr Gly Asn Asp Phe Ser Gln Thr Thr 50 55 Ile Ser Arq Phe Glu Ala Leu Asn Leu Ser Phe Lys Asn Met Cys Lys 80_ 65 70 75 Leu Lys Phe Leu Leu Glu Lys Trp Leu Asn Asp Ala Glu Asn Leu Ser Ser Asp Ser Ser Leu Ser Ser Pro Ser Ala Leu Asn Ser Pro Gly Ile Glu Gly Leu Ser Arg Arg Lys Lys Arg Thr Ser Ile Glu Thr Asn 120 125 115 Ile Arg Val Leu Glu Lys Ser Phe Leu Glu Asn Gln Lys Pro Thr Ser

140

135

130

Glu Glu	Ile	Thr	Met	Ile	Ala	Asp	Gln	Leu	Asn	Met	Glu	Lys	Glu	Val
145				150					155					160

Ile Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Glu Lys Arg Ile Asn 165 170 175

Pro

<210> 60 <211> 5005 <212> DNA <213> Artificial Sequence

<220>

<223> nucleotide sequence of pT7HPOU1

<400> 60

gatecacagg acgggtgtgg tegecatgat egegtagteg atagtggete caagtagega 60 120 agcgagcagg actgggcggc ggccaaagcg gtcggacagt gctccgagaa cgggtgcgca 180 tagaaattgc atcaacgcat atagcgctag cagcacgcca tagtgactgg cgatgctgtc 240 qqaatqqacq atateeegea agaggeeegg cagtaeegge ataaccaage etatgeetae agcatccagg gtgacggtgc cgaggatgac gatgagcgca ttgttagatt tcatacacgg 300 360 tgcctgactg cgttagcaat ttaactgtga taaactaccg cattaaagct tatcgatgat 420 aagctgtcaa acatgagaat tettgaagae gaaagggeet egtgataege etatttttat 480 aggttaatgt catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac ccctatttgt ttattttct aaatacattc aaatatgtat ccgctcatga 540 600 gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac 660 atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc 720 caqaaacqct qqtqaaaqta aaagatgctg aagatcagtt gggtgcacga gtgggttaca 780 tcqaactqqa tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc 840 caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt gttgacgccg 900 ggcaaqagca actoggtogo ogcatacact attotoagaa tgacttggtt gagtactoac 960 cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca 1020 taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg

1080 agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac 1140 cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct gcagcaatgg 1200 caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg gatggaggcg gataaagttg caggaccact tetgegeteg gecetteegg 1260 1320 ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc ggtatcattg 1380 cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc 1440 aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc 1500 attggtaact gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt 1560 tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt 1620 aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt 1680 gagateettt ttttetgege gtaatetget gettgeaaae aaaaaaacea eegetaeeag 1740 eggtggtttg tttgeeggat caagagetae caactetttt teegaaggta aetggettea gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca 1800 agaactetgt agcacegeet acataceteg etetgetaat eetgttaeca gtggetgetg 1860 1920 ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg 1980 cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct 2040 acaccgaact gagataccta cagcgtgagc attgagaaag cgccacgctt cccgaaggga 2100 gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc 2160 ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg 2220 agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg 2280 eggeettttt aeggtteetg geettttget ggeettttge teacatgtte ttteetgegt 2340 tateceetga ttetgtggat aacegtatta eegeetttga gtgagetgat aeegetegee gcagccgaac gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcctgatgc 2400 2460 ggtattttct ccttacgcat ctgtgcggta tttcacaccg catatatggt gcactctcag 2520 tacaatctgc tctgatgccg catagttaag ccagtataca ctccgctatc gctacgtgac 2580 tgggtcatgg ctgcgccccg acacccgcca acacccgctg acgcgccctg acgggcttgt 2640 ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag 2700 aggttttcac cgtcatcacc gaaacgcgcg aggcagctgc ggtaaagctc atcagcgtgg tegtgaageg atteacagat gtetgeetgt teateegegt eeagetegtt gagtttetee 2760

agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	taagggcggt	tttttcctgt	2820
ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	tgggggtaat	gataccgatg	2880
aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	gttactggaa	2940
cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	aatcactcag	3000
ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	ccagcagcat	3060
cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	ttccagactt	3120
tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	cgttttgcag	3180
cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	agtaaggcaa	3240
ccccgccagc	ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	ccgtggccag	3300
gacccaacgc	tgcccgagat	gcgccgcgtg	cggctgctgg	agatggcgga	cgcgatggat	3360
atgttctgcc	aagggttggt	ttgcgcattc	acagttctcc	gcaagaattg	attggctcca	3420
attcttggag	tggtgaatcc	gttagcgagg	tgccgccggc	ttccattcag	gtcgaggtgg	3480
cccggctcca	tgcaccgcga	cgcaacgcgg	ggaggcagac	aaggtatagg	gcggcgccta	3540
caatccatgc	caacccgttc	catgtgctcg	ccgaggcggc	ataaatcgcc	gtgacgatca	3600
gcggtccagt	gatcgaagtt	aggctggtaa	gagccgcgag	cgatccttga	agctgtccct	3660
gatggtcgtc	atctacctgc	ctggacagca	tggcctgcaa	cgcgggcatc	ccgatgccgc	3720
cggaagcgag	aagaatcata	atggggaagg	ccatccagcc	tcgcgtcgcg	aacgccagca	3780
agacgtagcc	cagcgcgtcg	gccgccatgc	cggcgataat	ggcctgcttc	tcgccgaaac	3840
gtttggtggc	gggaccagtg	acgaaggctt	gagcgagggc	gtgcaagatt	ccgaataccg	3900
caagcgacag	gccgatcatc	gtcgcgctcc	agcgaaagcg	gtcctcgccg	aaaatgaccc	3960
agagcgctgc	cggcacctgt	cctacgagtt	gcatgataaa	gaagacagtc	ataagtgcgg	4020
cgacgatagt	catgccccgc	gcccaccgga	aggagctgac	tgggttgaag	gctctcaagg	4080
gcatcggtcg	acgctctccc	ttatgcgact	cctgcattag	gaagcagccc	agtagtaggt	4140
tgaggccgtt	gagcaccgcc	gccgcaagga	atggtgcatg	caaggagatg	gcgcccaaca	4200
gtcccccggc	cacggggcct	gccaccatac	ccacgccgaa	acaagcgctc	atgagcccga	4260
agtggcgagc	ccgatcttcc	ccatcggtga	tgtcggcgat	ataggcgcca	gcaaccgcac	4320
ctgtggcgcc	ggtgatgccg	gccacgatgc	gtccggcgta	gaggatcgag	atctcgatcc	4380
cgcgaaatta	atacgactca	ctatagggag	accacaacgg	tttccctcta	gaaataattt	4440

tgtttaactt	taagaaggag	atatacatat	ggcttctatg	actggtcacc	accaccatca	4500
ccatggtatg	agcggcggca	tggaggagcc	cagtgacctt	gaggagctcg	agcagtttgc	4560
caagaccttc	aaacaaagac	gaatcaaact	tggattcact	cagggtgatg	ttgggctcgc	4620
tatggggaaa	ctatatggaa	atgacttcag	ccaaactacc	atctctcgat	ttgaagcctt	4680
gaacctcagc	tttaagaaca	tgtgcaagtt	gaagccactt	ttagagaagt	ggctaaatga	4740
tgcagagaac	ctctcatctg	attcgtccct	ctccagccca	agtgccctga	attctccagg	4800
aattgagggc	ttgagcaggc	gcaggaagaa	acgcaccagc	atagagacca	acatccgtgt	4860
ggccttagag	aagagtttct	tggagaatca	aaagcctacc	tcggaagaga	tcactatgat	4920
tgctgatcag	ctcaatatgg	aaaaagaggt	gattcgtgtt	tggttctgta	accgtcgaca	4980
gaaagaaaaa	agaatcaacc	catag				5005

<210> 61

<211> 201

<212> PRT

<213> Artificial Sequence

<220>

<223> POUSUB1 artificial DNA-PK substrate

<400> 61

Met Pro Glu Glu Ser Gln Glu Thr Phe Glu Asp Leu Trp Lys Leu Leu 1 5 10 15

Pro Gly His His His His His Gly Met Ser Gly Gly Met Glu Glu 20 25 30

Pro Ser Asp Leu Glu Glu Leu Glu Gln Phe Ala Lys Thr Phe Lys Gln 35 40 45

Arg Arg Ile Lys Leu Gly Phe Thr Gln Gly Asp Val Gly Leu Ala Met 50 55 60

Gly Lys Leu Tyr Gly Asn Asp Phe Ser Gln Thr Thr Ile Ser Arg Phe 65 70 75 80

Glu Ala Leu Asn Leu Ser Phe Lys Asn Met Cys Lys Leu Lys Pro Leu 85 90 95

Leu Glu Lys Trp Leu Asn Asp Ala Glu Asn Leu Ser Ser Asp Ser Ser 100 105 110

Leu Ser Ser Pro Ser Ala Leu Asn Ser Pro Gly Ile Glu Gly Leu Ser 115 120 125	
Arg Arg Arg Lys Lys Arg Thr Ser Ile Glu Thr Asn Ile Arg Val Ala 130 135 140	
Leu Glu Lys Ser Phe Leu Glu Asn Gln Lys Pro Thr Ser Glu Glu Ile 145 150 155 160	
Thr Met Ile Ala Asp Gln Leu Asn Met Glu Lys Glu Val Ile Arg Val 165 170 175	
Trp Phe Cys Asn Arg Arg Gln Lys Glu Lys Arg Ile Asn Pro Gln Pro 180 185 190	
Glu Leu Ala Pro Glu Asp Pro Glu Asp 195 200	
<210> 62 <211> 5873 <212> DNA <213> Artificial Sequence	
<220> <223> Plasmid P349SUB1 sequence	
<400> 62 cgagctccgt cgacaagctt gcggccgcac tcgagcacca ccaccaccac cactgagatc	60
cggctgctaa caaagcccga aaggaagctg agttggctgc tgccaccgct gagcaataac	120
tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttgctg aaaggaggaa	180
ctatatecgg attggcgaat gggacgegee etgtagegge geattaageg eggegggtgt	240
ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc	300
tttetteeet teettteteg ceaegttege eggettteee egteaagete taaategggg	360
gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgatta	360 420
gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgatta	420
gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt	420 480

aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	720
ttcaaatatg	tatccgctca	tgaattaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	780
actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	840
atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	900
cgattccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	960
tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	aaaagtttat	1020
gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	1080
catcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gagacgaaat	acgcgatcgc	1140
tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	1200
catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	gctgttttcc	1260
cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggataaaa	tgcttgatgg	1320
tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	gtaacatcat	1380
tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	1440
atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	tacccatata	1500
aatcagcatc	catgttggaa	tttaatcgcg	gcctagagca	agacgtttcc	cgttgaatat	1560
ggctcataac	accccttgta	ttactgttta	tgtaagcaga	cagttttatt	gttcatgacc	1620
aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	1680
ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaaacca	1740
ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	tccgaaggta	1800
actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	1860
caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	1920
gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	1980
ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	2040
cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	2100
cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	2160
acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	2220
ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	2280
gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	2340
tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	2400

accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	2460
cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	catatatggt	2520
gcactctcag	tacaatctgc	tctgatgccg	catagttaag	ccagtataca	ctccgctatc	2580
gctacgtgac	tgggtcatgg	ctgcgccccg	acacccgcca	acacccgctg	acgcgccctg	2640
acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	2700
catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	aggcagctgc	ggtaaagctc	2760
atcagcgtgg	tcgtgaagcg	attcacagat	gtctgcctgt	tcatccgcgt	ccagctcgtt	2820
gagtttctcc	agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	taagggcggt	2880
tttttcctgt	ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	tgggggtaat	2940
gataccgatg	aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	3000
gttactggaa	cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	3060
aatcactcag	ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	3120
ccagcagcat	cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	3180
ttccagactt	tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	3240
cgttttgcag	cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	3300
agtaaggcaa	cccgccagc	ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	3360
ccgtggggcc	gccatgccgg	cgataatggc	ctgcttctcg	ccgaaacgtt	tggtggcggg	3420
accagtgacg	aaggcttgag	cgagggcgtg	caagattccg	aataccgcaa	gcgacaggcc	3480
gatcatcgtc	gcgctccagc	gaaagcggtc	ctcgccgaaa	atgacccaga	gcgctgccgg	3540
cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	cgatagtcat	3600
geceegegee	caccggaagg	agctgactgg	gttgaaggct	ctcaagggca	tcggtcgaga	3660
tcccggtgcc	taatgagtga	gctaacttac	attaattgcg	ttgcgctcac	tgcccgcttt	3720
ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	3780
cggtttgcgt	attgggcgcc	agggtggttt	ttcttttcac	cagtgagacg	ggcaacagct	3840
gattgccctt	caccgcctgg	ccctgagaga	gttgcagcaa	gcggtccacg	ctggtttgcc	3900
ccagcaggcg	aaaatcctgt	ttgatggtgg	ttaacggcgg	gatataacat	gagctgtctt	3960
cggtatcgtc	gtatcccact	accgagatat	ccgcaccaac	gcgcagcccg	gactcggtaa	4020
tggcgcgcat	tgcgcccagc	gccatctgat	cgttggcaac	cagcatcgca	gtgggaacga	4080

4140 tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc cagtcgcctt 4200 cccgttccgc tatcggctga atttgattgc gagtgagata tttatgccag ccagccagac 4260 gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa ataatactgt 4320 4380 tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg caggcagctt 4440 ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca ctgacgcgtt 4500 gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt tctaccatcg 4560 acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac tgtttgcccg 4620 4680 ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc gcttccactt 4740 tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa acggtctgat 4800 aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca ttcaccaccc 4860 tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg cgccattcga 4920 tggtgtccgg gatctcgacg ctctccctta tgcgactcct gcattaggaa gcagcccagt 4980 agtaggttga ggccgttgag caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg 5040 cccaacagte ecceggeeac ggggeetgee accataceca egeegaaaca agegeteatg 5100 agcccgaagt ggcgagccg atcttcccca tcggtgatgt cggcgatata ggcgccagca 5160 accgcacctg tggcgccggt gatgccggcc acgatgcgtc cggcgtagag gatcgagatc 5220 gatctcgatc ccgcgaaatt aatacgactc actatagggg aattgtgagc ggataacaat 5280 teceetetag aagtegaett taagaaggag taecaagatg eetgaggaaa gteaggagae 5340 attegaagat ctatggaaac tactteetgg teaceaceae cateaceatg gtatgagegg 5400 cggcatggag gagcccagtg accttgagga gctcgagcag tttgccaaga ccttcaaaca aagacgaatc aaacttggat tcactcaggg tgatgttggg ctcgctatgg ggaaactata 5460 5520 tggaaatgac ttcagccaaa ctaccatctc tcgatttgaa gccttgaacc tcagctttaa 5580 gaacatgtgc aagttgaagc cacttttaga gaagtggcta aatgatgcag agaacctctc 5640 atctgattcg tccctctcca gcccaagtgc cctgaattct ccaggaattg agggcttgag 5700 caggogocgt aagaaacgca ccagcataga gaccaacatc cgtgtggcct tagagaagag 5760 tttcttggag aatcaaaagc ctacctcgga agagatcact atgattgctg atcagctcaa 5820 tatggaaaaa gaggtgattc gtgtttggtt ctgtaaccgt cgacagaaag aaaaaagaat

ai

Lys Lys

caacccacag ccdgaactcg ccccggaaga ccccgaggat taggatccga att . 5873 <210> 63 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> DNA-PK synthetic substrate based on human p53 residues 14-28 <400> 63 Pro Leu Ser Gln Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro Lys Lys <210> 64 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> DNA-PK synthetic substate based on human p53 residues 14-28 <400> 64 Pro Leu Ser Gln Glu Ala Phe Ala Gly Leu Trp Lys Leu Leu Pro Pro 10

Page 26