1. Parameters' tables

Table superscript references: 1: Bugaysen et al. (2010), 2: Baufreton (2005), 3: Beurrier et al. (1999), 3: Connelly et al. (2010), 4: Dayan and Abbott (2001), 5: Fountas (2016), 6: Galarreta and Hestrin (1997), 7: Humphries et al. (2010), 8: Humphries (2009), 9: Humphries et al. (2009), 10: Humphries, in code., 11: Izhikevich (2007), 12: Lindahl et al. (2013), 13: Loucif et al. (2008), 14: Moyer et al. (2007), 15: Mahon (2000), 16: Oorschot (1996), 17: Richards et al. (1997), 18: Tomkins et al. (2014), 19: Tateno and Robinson (2011), *: Manually tuned. \bigstar : Local search.

Connection	Receptor	Connection type	Probability	λ	G	E	au
$Ctx \rightarrow MSN$	AMPA	One-to-one		10.0 5	6.1 9	0.0 18,14	6.0 18
	NMDA	One-to-one		10.0^{-5}	3.05^{-9}	$0.0^{\ 18,14}$	160.0^{-18}
$\mathrm{MSN}\rightarrow\mathrm{MSN}$	GABAA	All-to-all	0.32^{-18}	$uniform(1.0, 2.0)^{-10}$	0.25 *	$-60.0^{\ 18,14}$	11.0^{-6}
$\mathrm{MSN} \to \mathrm{SNr}$	GABAA	All-to-all	$0.033^{\ 5}$	$1.0^{\ 5}$	57.66 ★	$-80.0^{5,4}$	$5.2^{\ 5,3,12}$
$\mathrm{SNr} \to \mathrm{SNr}$	GABAA	All-to-all	0.1^{-5}	1.0^{-5}	$0.3254 \bigstar$	$-80.0^{5,4}$	$3.0^{-5,4}$
$\mathrm{Ctx} \to \mathrm{STN}$	AMPA	One-to-one		2.5^{-5}	0.0215 *	$0.0^{-5,4}$	$2.0^{-5,4}$
	NMDA	One-to-one		2.5^{-5}	$\times 0.6^{-5}$	$0.0^{-5,4}$	$100.0^{-5,4}$
$\mathrm{STN}\rightarrow\mathrm{GPe}$	AMPA	All-to-all	$0.3^{\ 5}$	2.0^{-5}	0.3 *	$0.0^{-5,4}$	$2.0^{-5,4}$
	NMDA	All-to-all	$0.3^{\ 5}$	2.0^{-5}	$\times 0.36^{-5}$	$0.0^{-5,4}$	$100.0^{-5,4}$
$\mathrm{GPe} \to \mathrm{STN}$	GABAA	All-to-all	0.1^{-5}	$4.0^{\ 5}$	0.518^{-5}	$-84.0^{\ 5,2,12}$	$8.0^{\ 5,2,12}$
$\mathrm{GPe} \to \mathrm{GPe}$	GABAA	All-to-all	0.1^{-5}	1.0^{-5}	0.765^{-5}	$-65.0^{5,12}$	$5.0^{-5,12}$
$\mathrm{MSN} \to \mathrm{GPe}$	GABAA	All-to-all	0.033^{-5}	5.0^{-5}	10.0 *	$-65.0^{5,12}$	$6.0^{-5,12}$
$\mathrm{STN} \to \mathrm{SNr}$	AMPA	All-to-all	0.3^{-5}	1.5^{-5}	3.392 ★	$0.0^{-5,4}$	$2.0^{-5,4}$
	NMDA	All-to-all	$0.3^{\ 5}$	1.5^{-5}	$\times 0.2^{-5}$	$0.0^{-5,4}$	$100.0^{-5,4}$
$\mathrm{GPe} \to \mathrm{SNr}$	GABAA	All-to-all	0.1066^{-5}	$3.0^{\ 5}$	59.672 ★	$-80.0^{5,4}$	$2.1^{\ 5,3,12}$

Table 1: Synaptic and connectivity parameters.

Parameter	MSN D1	MSN D2		
\overline{N}	1146 18,7	$1146^{\ 18,7}$		
C	$15.0^{18,8}$	$15.0\ ^{18,9}$		
k	1.0 18,11	$1.0^{\ 18,11}$		
v_t	$-30.0^{18,8}$	$-30.0^{\ 18,8}$		
v_r	$-80.0^{18,11}$	$-80.0\ ^{18,11}$		
v_{peak}	40.0 18,11	$40.0\ ^{18,11}$		
a	0.01 18,15,11	$0.01\ ^{18,15,11}$		
b	$-20.0^{18,11}$	$-20.0\ ^{18,11}$		
c	$-55.0^{\ 18,11}$	$-55.0\ ^{18,11}$		
d	91.0 18,11	$91.0\ ^{18,11}$		
I_{F-I}	25.0 *	25.0 *		
I_{sim}	0.0 18	0.0^{18}		
ϕ_1	$0.3^{18,9}$	$0.3^{\ 18,9}$		
ϕ_2	$0.3^{18,9}$	$0.3^{\ 18,9}$		
eta_1	6.3 8	6.3^{-8}		
eta_2	0.215 8	$0.215\ ^8$		
α	0.0 18,8	$0.032\ ^{18,8}$		
K	$0.0289^{\ 18,8}$	$0.0^{-18,8}$		
L	$0.331^{18,8}$	$0.0^{-18,8}$		

Table 2: MSN parameters.

Parameter	STN RB	STN LLRS	STN NR
$\overline{}$	28 5,16	$12^{5,16}$	7 5,16
C	23.0^{5}	40.0^{-5}	30.0^{-5}
k	0.439^{-5}	$0.3^{\ 5}$	$0.105\ ^{5}$
v_t	$-41.4^{\ 5,3}$	$-50.0^{5,3}$	-43.75 5,3
v_r	$-56.2^{\ 5,13}$	$-56.2^{\ 5,13}$	-58.5 5,13
v_{peak}	$15.4^{5,3}$	$15.4^{-5,3}$	$15.4^{-5,3}$
a_1	0.021^{-5}	0.05^{-5}	$0.44^{\ 5}$
b_1	$4.0^{\ 5}$	$0.2^{\ 5}$	$-1.35\ ^{5}$
c	$-47.7^{\ 5}$	-60.0^{-5}	$-52.34\ ^{5}$
d_1	17.1^{-5}	1.0^{-5}	$17.65\ ^5$
I_{F-I}	56.1 ⁵	25.0^{-5}	$-1.0^{\ 5}$
I_{sim}	56.1 ⁵	8.0^{5}	$-18.0\ ^{5}$
a_2	0.123^{-5}	0.001^{-5}	$0.32\ ^5$
b_2	0.015^{-5}	$0.3^{\ 5}$	$3.13\ ^5$
d_2	$-68.4^{\ 5}$	10.0^{-5}	$92.0^{\ 5}$
v_{r2}	-60.0^{5}	-60.0^{-5}	$-43.2\ ^5$
w_1	0.1^{-5}	0.01^{-5}	$0.001\ ^5$
w_2	0.0 5	0.0^{-5}	$1.0^{\ 5}$
eta_1	0.5^{-5}	0.5^{-5}	0.5^{-5}
eta_2	0.5^{-5}	0.5^{-5}	$0.5^{\ 5}$

Table 3: STN parameters.

Parameter	GPe A	$\mathbf{GPe}\ \mathbf{B}$	$\mathbf{GPe}\ \mathbf{C}$	\mathbf{SNr}
N	7 5,16	$131^{5,16}$	$17^{5,16}$	3000 *
C	55.0 ⁵	$68.0\ ^5$	$57.0^{\ 5}$	$172.1\ ^5$
k	0.06^{-5}	$0.943\ ^5$	$0.099\ ^5$	$0.7836^{\ 5}$
v_t	$-42.0^{5,1}$	$-44.0^{\ 5,1}$	$-43.0^{\ 5,1}$	$-51.8^{\ 5,17}$
v_r	$-50.7^{5,1}$	$-53.0^{5,1}$	$-54.0^{5,1}$	-64.58 5,19
v_{peak}	$38.0^{5,1}$	$25.0^{5,1}$	$34.5^{\ 5,1}$	$9.8^{\ 5,17}$
a	0.29^{-5}	$0.0045^{\ 5}$	$0.42\ ^5$	$0.113\ ^5$
b	4.26^{-5}	$3.895\ ^5$	7.0^{-5}	$11.057\ ^{5}$
c	-57.4^{-5}	$-58.36\ ^5$	$-52.0\ ^{5}$	$-62.7\ ^5$
d	110.0^{-5}	$0.353\ ^5$	$166.0\ ^5$	$138.4\ ^5$
I_{F-I}	107.0 5	$52.0^{\ 5}$	$187.5\ ^5$	$150.0\ ^5$
I_{sim}	167.0^{-5}	$64.0\ ^5$	$237.5\ ^5$	690.4 *
eta_1	0.5^{-5}	0.5^{-5}	0.5^{-5}	0.5^{-5}
eta_2	0.5^{-5}	0.5^{-5}	0.5^{-5}	0.5^{-5}

Table 4: GPe and SNr neurons parameters.

2. References

References

- J. Baufreton. Enhancement of Excitatory Synaptic Integration by GABAergic Inhibition in the Subthalamic Nucleus. *Journal of Neuroscience*, 25(37):8505–8517, sep 2005. ISSN 0270-6474. doi:10.1523/JNEUROSCI.1163-05.2005.
- C. Beurrier, P. Congar, B. Bioulac, and C. Hammond. Subthalamic Nucleus Neurons Switch from Single-Spike Activity to Burst-Firing Mode. The Journal of Neuroscience, 19(2):599–609, jan 1999. ISSN 0270-6474. doi:10.1523/JNEUROSCI. 19-02-00599.1999.
- J. Bugaysen, M. Bronfeld, H. Tischler, I. Bar-Gad, and A. Korngreen. Electrophysiological Characteristics of Globus Pallidus Neurons. *PLoS ONE*, 5(8):e12001, aug 2010. ISSN 1932-6203. doi:10.1371/journal.pone.0012001.
- W. M. Connelly, J. M. Schulz, G. Lees, and J. N. J. Reynolds. Differential Short-Term Plasticity at Convergent Inhibitory Synapses to the Substantia Nigra Pars Reticulata. *Journal of Neuroscience*, 30(44):14854–14861, 2010. ISSN 0270-6474. doi:10.1523/JNEUROSCI.3895-10.2010.
- P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling of neural systems. 2001.
- Z. Fountas. Action selection in the rhythmic brain: The role of the basal ganglia and tremor, PhD Thesis. PhD thesis, Imperial College London, 2016.
- M. Galarreta and S. Hestrin. Properties of GABA A Receptors Underlying Inhibitory Synaptic Currents in Neocortical Pyramidal Neurons. The Journal of Neuroscience, 17(19):7220-7227, oct 1997. ISSN 0270-6474. doi:10.1523/JNEUROSCI. 17-19-07220.1997.
- M. Humphries. Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Frontiers in Computational Neuroscience, 3(November):1–16, 2009. ISSN 16625188. doi:10.3389/neuro.10.026.2009.
- M. D. Humphries, R. Wood, and K. Gurney. Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. *Neural Networks*, 22(8):1174–1188, 2009. ISSN 08936080. doi:10.1016/j.neunet.2009.07.018.
- M. D. Humphries, R. Wood, and K. Gurney. Reconstructing the Three-Dimensional GABAergic Microcircuit of the Striatum. *PLoS Computational Biology*, 6(November), 2010. ISSN 1553734X. doi:10.1371/journal.pcbi.1001011.
- E. M. Izhikevich. Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cerebral Cortex, 17 (10):2443–2452, oct 2007. ISSN 1047-3211. doi:10.1093/cercor/bhl152.
- M. Lindahl, I. Kamali Sarvestani, O. Ekeberg, and J. H. Kotaleski. Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways. Frontiers in computational neuroscience, 7(June):76, 2013. ISSN 1662-5188. doi:10.3389/fncom.2013.00076.
- A. J. C. Loucif, G. L. Woodhall, U. S. Sehirli, and I. M. Stanford. Depolarisation and suppression of burst firing activity in the mouse subthalamic nucleus by dopamine D1/D5 receptor activation of a cyclic-nucleotide gated non-specific cation conductance. *Neuropharmacology*, 55(1):94–105, 2008.
- S. Mahon. Role of a Striatal Slowly Inactivating Potassium Current in Short-Term Facilitation of Corticostriatal Inputs: A Computer Simulation Study. Learning & Memory, 7(5):357–362, sep 2000. ISSN 10720502. doi:10.1101/lm.34800.
- J. T. Moyer, J. A. Wolf, and L. H. Finkel. Effects of Dopaminergic Modulation on the Integrative Properties of the Ventral Striatal Medium Spiny Neuron. *Journal of Neurophysiology*, 98(6):3731–3748, dec 2007. ISSN 0022-3077. doi:10.1152/jn. 00335.2007.
- D. E. Oorschot. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. *The Journal of Comparative Neurology*, 366 (4):580–599, mar 1996. ISSN 0021-9967. doi:10.1002/(SICI)1096-9861(19960318)366:4\(580::AID-CNE3\)\(3.0.CO;2-0.
- C. D. Richards, T. Shiroyama, and S. T. Kitai. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. *Neuroscience*, 80(2):545–557, jul 1997. ISSN 03064522. doi:10.1016/ S0306-4522(97)00093-6.
- T. Tateno and H. P. C. Robinson. The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of I h and GABAergic synaptic integration. *Journal of Neurophysiology*, 106(4):1901–1922, oct 2011. ISSN 0022-3077. doi:10.1152/jn.00162.2011.
- A. Tomkins, E. Vasilaki, C. Beste, K. Gurney, and M. D. Humphries. Transient and steady-state selection in the striatal microcircuit. Frontiers in Computational Neuroscience, 7(January):192, 2014. ISSN 1662-5188. doi:10.3389/fncom.2013. 00192.