Systemes Masses-Ressorts Etude en dimension 1

III. L'oscillateur mécanique élémentaire

III.1. Système différentiel d'ordre 2

- Masse libre (m) se déplaçant sur un axe. Son état est caractérisé par
 - sa position x(t) (équilibre x = 0)
 - sa vitesse $(\dot{x}(t))$
 - la résultante de force qu'elle subie $(f(t, x(t), \dot{x}(t)))$
- Elle est reliée à un point fixe $(\forall t \ x(t) = 0)$ par :
 - un ressort linéaire de raideur k > 0 et longueur de repos $l_0 = 0$,
 - un frein linéaire de viscosité z > 0.
- la masse n'a pas de volume (point),
- les éléments visco-élastiques (ressort et frein) n'ont ni masse ni position

1.1. Équation à temps continu

Équation fondamentale de la dynamique :

$$m.\ddot{x}(t) = f(t, (x(t), \dot{x}(t))) = -z.\dot{x}(t) - k.x(t) \iff m\ddot{x}(t) + z\dot{x}(t) + kx(t) = 0$$
(34)

a Solution analytique (en fonction du signe de $\frac{z^2-4km}{2m}$)

Ce système peut évoluer selon trois régimes :

• si $(z > 2\sqrt{km})$ retour à l'équilibre sans oscillation :

$$x(t) = \sigma_1 \cdot e^{\left(-\frac{z - \sqrt{z^2 - 4km}}{2m} \cdot t\right)} + \sigma_2 \cdot e^{\left(-\frac{z + \sqrt{z^2 - 4km}}{2m} \cdot t\right)} \quad (\sigma_1, \sigma_2 : \text{cond. init.})$$
 (35)

• si $(z = 2\sqrt{km})$ régime critique (seuil d'oscillation) :

$$x(t) = (\sigma_1 t + \sigma_2) e^{(-\frac{z}{2m} \cdot t)}$$
 (\sigma_1, \sigma_2 : cond. init.) (36)

• si $(z < 2\sqrt{km})$ oscillations amorties (pseudo-périodique) :

$$x(t) = A.e^{-\frac{z}{2m}t}.\cos\left(t\sqrt{\frac{k}{m} - \left(\frac{z}{2m}\right)^2} + \phi\right) \quad (A, \phi : \text{cond. init.})$$
 (37)

b Caractéristiques modales du régime oscillant

Les éléments propres du mode vibratoire de l'oscillateur continu sont:

Fréquence propre : $f_c = \frac{1}{2\pi} \sqrt{\frac{k}{m_z} - \left(\frac{z}{2m}\right)^2}$ Fonction d'amortissement : $\gamma_c(t) = e^{-\frac{1}{2m}t}$ (38)

1.2. Formalisation du processus approché

L'équation (34) peut être écrite sous la forme :

$$\ddot{x}(t) = f\left(\dot{x}(t), x(t), t\right) \quad \text{où} \quad f\left(\dot{x}(t), x(t), t\right) = -\frac{1}{m}\left(z.\dot{x}(t) + k.x(t)\right) \quad \text{est le bilan dynamique} \tag{39}$$

On peut étudier la forme des processus numériques produits par les différentes méthodes de résolution.

a Euler Explicite

D'après le schéma de Euler Explicite appliqué sur \ddot{x}_n , le processus approché déduit de (34) est :

$$\dot{x}_{n} = \dot{x}_{n-1} + h.f(\dot{x}_{n-1}, x_{n-1}) = \dot{x}_{n-1} - \frac{h}{m}(z.\dot{x}_{n-1} + k.x_{n-1})$$
(40)

Par les mêmes schémas explicites on peut écrire

$$\dot{x}_n = \frac{x_{n+1} - x_n}{h}$$
 et $\dot{x}_{n-1} = \frac{x_n - x_{n-1}}{h}$

En injectant ces relations dans (40), on forme le système suivant réalisant la simulation :

$$x_{n+1} = \left(2 - h.\frac{z}{m}\right)x_n + \left(-1 + h.\frac{z}{m} - h^2.\frac{k}{m}\right)x_{n-1}$$
 (41)

Pour simplifier, on peut introduire des *paramètres réduits* : $K = h^2 \frac{k}{m}$ et $Z = h \frac{z}{m}$. Alors l'eq.(41) s'écrit :

$$x_{n+1} = (2 - Z)x_n + (-1 + Z - K)x_{n-1}$$
 (42)

b Euler Implicite

D'après le schéma de Euler Implicite appliqué sur \ddot{x}_n , le processus approché déduit de (34) est :

$$\dot{x}_{n+1} = \dot{x}_n + h.f(\dot{x}_{n+1}, x_{n+1}) = \dot{x}_n - \frac{h}{m}(z.\dot{x}_{n+1} + k.x_{n+1})$$
(43)

Par les mêmes schémas implicites on peut écrire : $\dot{x}_{n+1} = \frac{x_{n+1}-x_n}{h}$ et $\dot{x}_n = \frac{x_n-x_{n-1}}{h}$

En injectant ces relations dans (43), on forme le système : $(m + h.z + h^2.k)x_{n+1} = (2.m + h.z)x_n - m.x_{n-1}$

Soit, avec les paramètres réduits : $(1 + Z + K)x_{n+1} = (2 + Z)x_n - x_{n-1}$

Le système explicitement calculable est finalement donné par :

$$x_{n+1} = \frac{2+Z}{1+Z+K} \cdot x_n - \frac{1}{1+Z+K} \cdot x_{n-1}$$
 (44)

Leapforg

D'après les schémas de dérivation associés à la méthode l'équation (34) devient :

$$m\left(\frac{x_{n+1}-2x_{n}+x_{n-1}}{h^{2}}\right)+z\left(\frac{x_{n}-x_{n-1}}{h}\right)+k.x_{n}=0 \implies x_{n+1}=\left(2-\frac{zh}{m}-\frac{kh^{2}}{m}\right).x_{n}+\left(\frac{zh}{m}-1\right).x_{n-1}=0$$

Soit, avec les paramètres réduits, le processus simulé :

$$x_{n+1} = (2 - Z - K)x_n + (Z - 1)x_{n-1}$$
 (45)

III.2. Suite récurrente d'ordre 2

Une EDO <u>d'ordre 2</u> (processus fonctionnel continu), associée à un (ou plusieurs) schéma(s) de discrétisation <u>d'ordre 1</u>, permet de construire un processus numérique discret <u>d'ordre 2</u>.

Sous certaines conditions ces deux objets mathématiques peuvent avoir des comportements suffisamment proches pour que le second puisse être interprété comme une discrétisation du premier.

2.1. Solution analytique

Dans tous les cas [(41)(48)(45)], le processus prend la forme d'une suite récurrente :

$$(x_0, x_1) \in \mathbb{R}^2$$
, et $\forall n \ge 1 \ x_{n+1} = A.x_n + B.x_{n-1}$ (46)

Cette suite peut évoluer selon six régimes distincts (neuf en comptant les cas limites de raisons 1) Dans toute la suite, on pose $\Delta = A^2 + 4B$

a Régime non oscillant : $(\Delta > 0)$

```
\begin{array}{ll} \underline{\text{terme g\'en\'eral}} & X_n = \alpha \left(\frac{A-\sqrt{\Delta}}{2}\right)^n + \beta \left(\frac{A+\sqrt{\Delta}}{2}\right)^n \\ \text{convergence vers 0} & \text{si } ((-A+B<1) \text{ et } (A+B<1)) \\ \text{constante ou altern\'ee} & \text{si } ((-A+B=1) \text{ ou } (A+B=1)) \\ \text{divergence} & \text{si } ((-A+B>1) \text{ ou } (A+B>1)) \end{array}
```

2023

b **Régime critique :** (seuil d'oscillation $\Delta = 0$)

terme général
$$X_n = (\alpha + \beta n) \left(\frac{A}{2}\right)^n$$
 convergence vers 0 si $(|A| < 2)$ divergence si $(|A| > 2)$ constante ou alternée si $(|A| = 2)$

$oxed{c}$ Régime oscillant pseudo-périodique : $\Delta < 0$

```
\frac{\text{terme général}}{\text{convergence vers 0}} \quad \begin{array}{l} X_n = \alpha (-B)^{n/2} \cos{(2\pi.f_d.h.n)} \\ \text{où } f_d \text{ est la fréquence propre} \\ \text{convergence vers 0} \quad \text{si } (-B < 1) \\ \text{constante ou alternée} \quad \text{si } (-B = 1) \end{array}
```

Détail du calcul de la fréquence $X_n = \alpha . \rho^n \cos(n\phi)$

- Conditions Initiales : position déplacée, vitesse nulle \Rightarrow X₀ = X₁ = α
- $X_{n+1} A.X_n B.X_{n-1} = 0 \implies \alpha.\rho^n \left(\rho\cos\left((n+1)\phi\right) A\cos\left(n\phi\right) + \frac{-B}{\rho}\cos\left((n-1)\phi\right)\right)$
- mais $\rho = \sqrt{-B}$ et B < 0 \Rightarrow (-B) = $\left(\sqrt{-B}\right)^2 = \rho^2 \Rightarrow \frac{-B}{\rho} = \rho$
- Soit $\rho \left[\cos(n\phi + \phi) + \cos(n\phi \phi) \right] A\cos(n\phi) = 0$ $\Rightarrow \rho \left[2\cos(n\phi)\cos(\phi) \right] - A\cos(n\phi) = 0 \Rightarrow 2\rho\cos(\phi) - A = 0$
- soit finalement : $\cos(\phi) = \frac{A}{2\rho} \implies \cos(2\pi f_d.h.n) = \frac{A}{2\sqrt{-B}}$

Caractéristiques modales

Les éléments propres du mode vibratoire de l'oscillateur discret sont:

Fréquence propre :
$$f_d = \frac{1}{2\pi . h} . \arccos\left(\frac{A}{2\sqrt{-B}}\right)$$

Fonction d'amortissement : $\gamma_d(n) = (-B)^{n/2}$ (47)

d Diagramme de stabilité

- La forme discrète de l'EDO (continue) (34) peut donc adopter des régimes non convergents.
- Les caractéristiques modales ont des expressions très différentes du cas continu.
- Les conditions de stabilité d'une méthode d'intégration dépendent donc à la fois
 - des paramètres du modèle (m, k, z),
 - du pas d'échantillonnage (h)
 - et de la *méthode* elle-même (A = ϕ (m, k, z, h), B = ψ (m, k, z, h)).
- Dans les 3 modèles étudiés [(41)(48)(45)], lorsque (h \rightarrow 0.), les coefficients A et B tendent vers les mêmes valeurs ($A_{h\rightarrow 0}=2$) et ($B_{h\rightarrow 0}=-1$) correspondant à la solution analytique (inaccessible).

Les zones de stabilité du processus numérique (46) sont donnée par le diagramme suivant :

2.2. Retour sur les méthodes : étude de la stabilité

Les conditions de stabilité énoncées précédemment sont :

- $(\Delta > 0)$ et $((-A + B < 1) [a_1]$ et $(A + B < 1) [a_2])$
- $(\Delta = 0)$ et (|A| < 2) [b]
- $(\Delta < 0)$ et (-B < 1) [c]
- Les paramètres (m, k, z) étant censées représenter un système mécanique réel, il faut ajouter des conditions⁷ sur les paramètres réduits : $K \ge 0$ et $Z \ge 0$ ([d] - supposée vérifiée)

a **Euler Implicite**

$$A = \frac{2 + Z}{1 + Z + K}$$
 et $B = -\frac{1}{1 + Z + K}$ $\Rightarrow \Delta = \frac{Z^2 - 4K}{(1 + Z + K)^2}$

- régime non oscillant :
 - $\left[B A = -\frac{3+Z}{1+Z+K} < 0 < 1 \right] \Rightarrow \left[a_1 \right]$ toujours vraie. $\left[A + B = \frac{(1+Z)}{(1+Z)+K} < 1 \right] \Rightarrow \left[a_2 \right]$ toujours vraie.
- seuil d'oscillation : [b] toujours vraie et $Z = 2\sqrt{K}$
- régime oscillant : [c] toujours vraie.

La méthode Euler Implicite est donc inconditionnellement stable.

Un gros souci tout de même :

la fonction d'amortissement $\gamma_d(n) = (-B)^{n/2}$ dépend de K : la solution est amortie même si le paramètre physique z est nul!!! Une méthode implicite contient toujours un amortissement implicite (anticipation de la convergence)

⁷d'un point de vue strictement algorithmique, ces conditions ne sont pas nécessaires - cf. plus tard

b Euler Explicite

$$A = 2 - Z$$
 et $B = Z - 1 - K$
 $\Rightarrow \Delta = Z^2 - 4K = (Z - 2\sqrt{K})(Z + 2\sqrt{K})$

- régime non oscillant :
 - condition $[a_1] \Rightarrow Z < 2 + K/2$
 - condition [a2] toujours vraie
- seuil d'oscillation : [b] \Rightarrow Z < 4 et Z = $2\sqrt{K}$
- régime oscillant : $[c] \Rightarrow Z \ge K$

C Leapfrog

$$A = 2 - Z - K \text{ et } B = Z - 1$$

$$\Rightarrow \Delta = (K + Z)^2 - 4K = (K + Z + 2\sqrt{K})(K + Z - 2\sqrt{K})$$

- régime non oscillant :
 - condition $[a_1] \Rightarrow Z < 2 K/2$
 - condition [a2] toujours vraie
- seuil d'oscillation : [b] \Rightarrow (K + Z) < 4 et Z = $2\sqrt{K}$ K
- régime oscillant : [c] toujours vraie mais $B \ge -1 \implies Z \ge 0 \implies 2\sqrt{K} - K \ge 0 \implies 0 < K \le 4$

2.3. Adéquation avec la solution réelle en régime oscillant

a Fonction d'amortissement

- Solution réelle : $\gamma(t) = e^{-(z/2m)t}$:
 - indépendante du paramètre k,
 - à (z = 0), le système est conservatif
- Euler Implicite : $\gamma(n) = \left(\frac{1}{\sqrt{1+7+k}}\right)^n = (1+zh+kh^2)^{-\frac{n}{2}}$
 - dépend du paramètre k et du pas d'échantillonnage h^2
 - \Rightarrow même pour (z = 0), le système est dissipatif.

Bien que inconditionnellement stable, ce schéma produit toujours un signal amorti, d'autant plus éloigné du comportement dynamique du modèle que h et k sont grands.

La stabilité s'obtient au sacrifice de la fiabilité.

- Euler Explicite : $\gamma(n) = (\sqrt{1-Z+K})^n = (1-zh+kh^2)^{+\frac{n}{2}}$
 - on retrouve le même problème que pour la méthode implicite sauf qu'il se traduit, à l'inverse par un amortissement trop faible du processus, voire une amplification – $(1 - zh + kh^2) > 1$ – qui provogue la divergence, lorsque h et k sont grands.
- Leapfrog : $\gamma(n) = (\sqrt{1-Z})^n = (1-zh)^{+\frac{n}{2}}$
 - ne dépend pas du paramètre k
 - \Rightarrow pour (z = 0), le système est bien conservatif.

Bien que potentiellement instable, ce schéma produit, s'il ne diverge pas, un processus beaucoup plus proche de la solution réelle, principalement en situation oscillante.

• Exemples : avec deux valeurs de h

2023

b Fréquence propre

- Solution analytique : $f_c = \frac{1}{2\pi} \sqrt{\frac{k}{m} \left(\frac{z}{2m}\right)^2}$ lorsque z augmente, f_c diminue.
- Euler Explicite : $f_d = \frac{h}{2\pi} .acos \left(\frac{2-Z}{2\sqrt{1+K-Z}} \right)$
- Euler Implicite : $f_d = \frac{h}{2\pi} .acos \left(\frac{2+Z}{2\sqrt{1+K+Z}} \right)$
- Leapfrog : $f_d = \frac{h}{2\pi} .acos \left(\frac{2-Z-K}{2\sqrt{1-Z}}\right)$
- Exemples : avec 4 valeurs de k et h = 0.01

2023

c Euler Implicite Rectifié

On peut corriger le défaut du schéma de Euler Implicite (amortissement excessif) en utilisant un modèle de dissipation adapté :

- On veut simuler un oscillateur de paramètres physiques m, k et z avec un pas h
- on utilise un modèle discret implicite de paramètres m, k et z' = (z kh)
- la force d'amortissement produite est alors $\vec{F_v}(t) = z' \cdot \vec{v}(t) = (z kh) \vec{v}(t)$
- en injectant ces relations dans (43), on forme le processus numérique complet :

$$(m + zh) X_{n+1} = (2.m + zh - kh^2) X_n - mX_{n-1}$$

soit, avec les paramètres réduits : $(1 + Z) X_{n+1} = (2 + Z - K) X_n - X_{n-1}$

Le système explicitement calculable est finalement donné par :

$$X_{n+1} = \frac{2 + Z - K}{1 + Z} X_n - \frac{1}{1 + Z} X_{n-1}$$
 (48)

On obtient un schéma *implicite* dont le coefficient d'amortissement $(\frac{1}{1+Z})$ est indépendant de K L'étude du domaine de stabilité de ce schéma montre que :

- il est potentiellement instable en régime non oscillant
- il est théoriquement stable en régime oscillant (comme Leapfrog) et sa fonction d'amortissement ne dépend que de Z
- sa zone de stabilité est beaucoup plus large.
- sa fonction d'amortissement en régime.
- son adéquation avec la solution analytique est bien meilleure que celle des autres schémas.

Euler Implicite Rectifié: stabilité

$$A = \frac{2 + Z - K}{1 + Z} \text{ et } B = -\frac{1}{1 + Z}$$

$$\Rightarrow \Delta = \frac{(K - Z)^2 - 4K}{(1 + Z)^2}$$

- régime non oscillant :
 - $[B A < 1] \Rightarrow [a_1] : Z > \frac{K}{2} 2$. $[A + B < 1] \Rightarrow [a_2]$ toujours vraie.
- seuil d'oscillation :
 - [b] toujours vraie
- régime oscillant : $(K Z)^2 4K < 0$
 - [c] toujours vraie

14=15.110649

B=-0.330579 OSC=oil DIV=non 8=-0.975000 OSC=out DM-non