LAB #2: THREE-BIT ALU (Verilog)

Due: at the beginning of your registered lab section between Sep 23 and Sep 27

Objective:

 The objective of this lab is to learn the basic logic synthesis steps by synthesizing a 3-bit <u>signed</u> Arithmetic Logic Unit (ALU) using Verilog.

Lab Description and Specs:

Function:

Three-bit addition, subtraction, XOR (bitwise between A and B), and 3-bit shift-left (on A; shift in zero at the least significant bit).

• Inputs:

fun_sel0 and fun_sel1: Selects one of the four functions.
ain[2:0] and bin[2:0]: Bus inputs for the two 3-bit numbers or one 3-bit number.

Outputs:

- o *out[2:0]*: The three-bit number that is the result of the ALU operation.
- HEX0[6:0] HEX1[6:0]: 2 digits 7-segment display control output to show the final result on 7-segment display.

Here is the 7-segment definition on Altera board, for detail, please refer to the board tutorial.

Recommended Procedures:

- For this lab you will use logic synthesis to design a 3-bit ALU block that performs the four functions on two 3-bit input buses.
 - o Write a Verilog model for the 3-bit ALU. Use <u>case constructs</u> in lieu of "if" statements.
 - o Run the Cadence simulator to verify the Verilog model.
 - o Run Quartus to synthesize it.
 - o Download it into the Altera Field Programmable Gate Array (FPGA) protoboard.
 - o Verify the ALU operations on the protoboard.
 - Using 7-segment display to show your final result.

Prelab:

Verilog code for 3-bit ALU

Questions:

Discuss the advantages of a Hardware Descriptive Language (HDL).