CATALOG 30 JUL 93 1915

BAKER ICE MACHINE CO.

AMMONIA FITTINGS
AND SUPPLIES

OMAHA NEBRASKA :U.S.A

I S S U E D B Y T H E

BAKER ICE MACHINE COMPANY

ICE MAKING AND REFRIGERATING MACHINERY

OUR PATENT AUTOMATIC EXPANSION VALVE See Page Forty for Description

COLD STORAGE AND ICE MAKING PLANTS

GENERAL OFFICES AND FACTORY 1901-1929 NICHOLAS STREET, OMAHA, NEB., U. S. A.

INTRODUCTORY

E are pleased to present herewith catalog of our Standard Type of Ammonia Fittings, Valves, etc., which we manufacture. Owing to the phenomenal growth of our Fitting business, we have been compelled to greatly increase our special tools and equipment, and are now in better position than ever to turn out our high grade Ammonia Fittings and Valves and to meet the requirements of our customers.

Several of our Special Ammonia Fittings have been patented, the patents being controlled exclusively by us, and we particularly call attention to our Special Double Pipe Condenser and Double Pipe Brine Cooler Fittings, also to our Patented Automatic Expansion Valve, all of which are being so generally adopted by the trade, and details of which you will find explained elsewhere in this catalog.

We appreciate the many courtesies shown us by our patrons in the past, and shall endeavor to warrant a continuance of same, and to ensure the support of all others who may favor us with their orders, by supplying them with high grade Ammonia Fittings at as low prices as are consistent with good material and high class workmanship.

Special Notice Page 32

Baker Ice Machine Company

Omaha, Nebraska U. S. A.

Patents Owned and Controlled Exclusively by Us

Our Compressor Valves have a distinct individuality and are thoroughly covered by patents. They are unequaled for their long life, noiseless operation, and general safety features, and the workmanship and material are of the very highest grade. See page 43.

Our Double Pipe Condenser Fittings and Water Return Bends are patented, and ours is the only bend which is held in place by a single bolt. It is simple to remove and makes the cleaning out of a double pipe condenser extremely simple. There are no screw joints exposed to the ammonia pressure, and every pipe can be readily removed without disturbing any other pipe in the condenser. See page 44.

Our Patent Double Pipe Flooded Type Brine Cooler has all the advantages of the flooded system and none of the disadvantages. Our apparatus is at all times under the eye of the operator, while other flooded systems are submerged in a tank of brine beyond the control or sight of the party operating the plant. The increase in the capacity of the machine with our flooded system is very marked. See page 27.

Our Patent Triplex Water Cooler is for reducing the temperature of water for bottlers' use or for drinking water, or any other purpose where quick and positive action is required. This cooler takes up less space and is simpler and more economical than any other on the market today. See page 36.

Our Patent Automatic Expansion Valve is for the purpose of regulating the pressure of the expanding ammonia gas in cold storage and ice making plants, and in regulating the pressure it thereby regulates the temperatures. See page 40.

The Largest Factory in the United States Devoted Exclusively to the Manufacturing of Medium Sized Refrigerating and Ice Making Machines.

A Continuous Cold Wave From Shore to Shore Produced With Baker Ice and Refrigerating Machinery

Each dot represents one of our Refrigerating Plants doing actual work in the United States.

We have also many in foreign countries.

Some of our patented features exclusively controlled by us: Automatic Expansion Valve, Compressor Valves, Double Pipe Ammonia Condenser Fittings, Double Pipe Flooded Type Brine Cooler, and Triplex Water Cooler.

We have separate illustrated bulletins showing the construction of plants for confectioners, ice cream and cheese makers, creameries, grocers, butchers, fish and oyster dealers, bakeries, fur storage, produce and fruit storage, hotels, cafes, etc.

Also water cooling bulletins of plants for bottlers, factories, apartment houses, offices and other large buildings. We would be pleased to mail you either, that you may be particularly interested in.

We manufacture all sizes of ice making and refrigerating machinery up to fifty tons daily capacity, for all purposes, either of the "brine circulation" or "direct expansion" systems.

Round Flange Ammonia Globe Valve

Size, inches	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3
Number	590	588	587	586	585	763
Face to face of flanges	$7\frac{1}{2}$	$7\frac{1}{2}$	81/2	$8\frac{1}{2}$	12	12
Outside diameter of flanges	$4\frac{1}{2}$	5	$5\frac{7}{8}$	5 7 8	71/8	77/8
Diameter of bolt circle	$3\frac{1}{4}$	$3\frac{3}{4}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{1}{4}$	$6\frac{1}{4}$
Size of bolts	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{5}{8} \times 2\frac{3}{4}$	$\frac{5}{8} \times 2\frac{3}{4}$	$\frac{3}{4} \times 3\frac{1}{2}$	$\frac{3}{4} \times 3\frac{1}{2}$
Number of bolts	4	4	4	4	6	6
Price without com- panion flanges, bolts or gaskets	\$16.00	\$18.00	\$21.50	\$27.00	\$31.50	\$36.00

OMAHA, NEBRASKA, U.S.A.

Square Flange Ammonia Globe Valve

Size, inches	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3
Number	591	570	592	576	593	594
Face to face of flanges	$6\frac{1}{2}$	$6\frac{1}{2}$	$8\frac{1}{2}$	$8\frac{1}{2}$	12	12
Outside size of flange.	$3\frac{5}{8}$	35/8	$4\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{5}{8}$	$6\frac{1}{8}$
Center of bolts	$2\frac{3}{8}$	$2\frac{3}{8}$	$3\frac{1}{16}$	$3\frac{1}{16}$	4	$4\frac{1}{8}$
Size of bolts	$\frac{1}{2} \times 2\frac{3}{4}$	$\frac{1}{2} \times 2\frac{3}{4}$	$\frac{5}{8} \times 3\frac{1}{2}$	$\frac{5}{8} \times 3\frac{1}{2}$	$\frac{3}{4} \times 4\frac{1}{2}$	$\frac{3}{4} \times 4\frac{1}{2}$
Number of bolts	4	4	4	4	4	4
Price without companion flanges, bolts or gaskets	\$10.00	\$15.00	\$16.00	\$19.00	\$28.50	\$36.00

Square Flange Ammonia Angle Valve

Size, inches	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3
Number	595	575	596	581	597	598
Center to face of flanges	31/4	$3\frac{1}{4}$	$4\frac{1}{4}$	$4\frac{1}{4}$	6	6
Outside size of flanges	$3\frac{5}{8}$	$3\frac{5}{8}$	$4\frac{1}{2}$	$4\frac{1}{2}$	$5\frac{5}{8}$	$6\frac{1}{8}$
Center of bolts	$2\frac{3}{8}$	$2\frac{3}{8}$	31/16	31/16	4	$4\frac{1}{8}$
Size of bolts	$\frac{1}{2}$ x $2\frac{3}{4}$	$\frac{1}{2} \times 2\frac{3}{4}$	$\frac{5}{8} \times 3\frac{1}{2}$	$\frac{5}{8} \times 3\frac{1}{2}$	$\frac{3}{4} \times 4\frac{1}{2}$	$\frac{3}{4} \times 4\frac{1}{2}$
Number of bolts	4	4	4	4	4	4
Price without com- panion flanges, bolts or gaskets	\$10.00	\$15.00	\$16.00	\$19.00	\$28.50	\$36.00

Oval Flange Ammonia Valves

GLOBE

ANGLE

Globe

Size, inches	$\frac{1}{4}$	3/8	$\frac{1}{2}$	34	1	11/4
Number	751	752	753	754	755	756
Face to face of flanges	$4\frac{3}{4}$	$5\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{2}$	7	$7\frac{1}{2}$
Outside size of flange	$3\frac{1}{2}$	$3\frac{3}{4}$	$\frac{3\frac{3}{4}}{2\frac{5}{8}}$	$4\frac{1}{8}$	$4\frac{1}{2}$	$4\frac{7}{8}$
Center of bolts	$2\frac{1}{4}$	$2\frac{5}{8}$	$2\frac{5}{8}$	$2\frac{3}{4}$	$3\frac{1}{8}$	$3\frac{5}{16}$
Size of bolts	$\frac{1}{2} \times 2\frac{1}{4}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{2} \times 2\frac{1}{2}$	5 x 3	$\frac{5}{8} \times 3$	5 x 31/4
Number of bolts	2	2	2	2	2	2
Price without companion						
flanges, bolts or gaskets	\$6.00	\$6.50	\$7.00	\$8.00	\$9.00	\$12.00

Angle

Size, inches	1/4	3/8	$\frac{1}{2}$	34	1	11/4
Number	757	758	759	760	761	762
Center to face of flanges	$2\frac{3}{8}$	$2\frac{3}{4}$	$\frac{2\frac{3}{4}}{3\frac{3}{4}}$	$3\frac{1}{4}$	$3\frac{1}{2}$	$3\frac{3}{4}$
Outside size of flange	$3\frac{1}{2}$	$\frac{2\frac{3}{4}}{3\frac{3}{4}}$	$3\frac{3}{4}$	$4\frac{1}{8}$	$4\frac{1}{2}$	47/8
Center of bolts	$2\frac{1}{4}$	$2\frac{5}{8}$	$2\frac{5}{8}$	$2\frac{3}{4}$	$3\frac{1}{8}$	$3\frac{5}{16}$
Size of bolts	$\frac{1}{2} \times 2\frac{1}{4}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{5}{8} \times 3$	$\frac{5}{8} \times 3$	$\frac{5}{8} \times 3\frac{1}{4}$
Number of bolts	2	2	2	2	2	2
Price without companion						
flanges, bolts or gaskets	\$6.00	\$6.50	\$7.00	\$8.00	\$9.00	\$12.00

Screw End Ammonia Valves

ANGLE

Globe

Size, inches	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	1	$1\frac{1}{4}$	11/2	2
Number	550	764	556	765	766	767	768	769
Face to face	$3\frac{1}{4}$	4	4	$4\frac{1}{4}$	$4\frac{1}{2}$	$5\frac{3}{4}$	6	7
Price	\$3.50	\$4.50	\$5.00	\$5.50	\$6.00	\$7.50	\$9.00	\$12.00

Angle

Size, inches	$\frac{1}{4}$	3/8	$\frac{1}{2}$	$\frac{3}{4}$	1	11/4	$1\frac{1}{2}$	2
Number	770	771	555	772	773	774	775	776
Center to face.	$1\frac{5}{8}$	2	2	$2\frac{1}{8}$	$2\frac{1}{4}$	$2\frac{7}{8}$	3	$3\frac{1}{2}$
Price								

Oval Flange Ammonia Expansion Valve

GLOBE

Globe

Size, inches	1/4	3 8	1/2	34	1
Number	788	789	790	791	792
Face to face of flanges	$4\frac{3}{4}$	$5\frac{1}{2}$	$5\frac{1}{2}$	$6\frac{1}{2}$	7
Outside size of flanges	$3\frac{1}{2}$	$3\frac{3}{4}$	$3\frac{3}{4}$	41/8	$4\frac{1}{2}$
Center of bolts	$2\frac{1}{4}$	$2\frac{5}{8}$	$2\frac{5}{8}$	$2\frac{3}{4}$	31/8
Size of bolts	$\frac{1}{2} \times 2\frac{1}{4}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{2} \times 2\frac{1}{2}$	5 x 3	5 x 3
Number of bolts	2	2	2.	2	2
Price without companion flanges, bolts or gaskets	\$6.00	\$6.50	\$7.00	\$8.00	\$9.00

Angle

Size, inches	1/4	3 8	1/2	34	1
Number	793	794	795	796	797
Center to face of flange	238	$2\frac{3}{4}$	$2\frac{3}{4}$	$3\frac{1}{4}$	$3\frac{1}{2}$
Outside size of flanges	$3\frac{1}{2}$	334	334	41/8	$4\frac{1}{2}$
Center of bolts	$2\frac{1}{4}$	25/8	25/8	$2\frac{3}{4}$	31/8
Size of bolts	$\frac{1}{2} \times 2\frac{1}{4}$	$\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{2} \times 2\frac{1}{2}$	5 x 3	5 x 3
Number of bolts	2	2	2	2	2
Price without companion flanges, bolts or gaskets	\$6.00	\$6.50	\$7.00	\$8.00	\$9.00

Screw End Expansion Valves

Globe

	۵.				
Size, inches	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	1
Number	798	799	1200	1201	1202
Face to face	$3\frac{1}{4}$	4	4	$4\frac{1}{4}$	$4\frac{1}{2}$
Price	\$3.50	\$4.50	\$5.00	\$5.50	\$6.00

Angle

		0			
Size, inches	$\frac{1}{4}$	3/8	$\frac{1}{2}$	$\frac{3}{4}$	1
Number	1203	1204	1205	1206	1207
Center to face	$1\frac{5}{8}$	2	2	$2\frac{1}{8}$	$2\frac{1}{4}$
Price	\$3.50	\$4.50	\$5.00	\$5.50	\$6.00

Tee

Size, inches	1/4	3/8	$\frac{1}{2}$	34	$\frac{3}{4}$ X $\frac{3}{4}$ X $\frac{1}{2}$	1	1 x 1 x ½
Number	1208	1209	1210	1211	1212	1213	1214
Center to face	$1\frac{5}{8}$	2	2	21/8	21/8	21/4	$2\frac{1}{4}$
Price	\$4.75	\$6.00	\$6.50	\$7.00	\$7.00	\$8.00	\$8.00

Square Flanged Ammonia Fittings

TEE

ELBOW

Tee

				RUN					OUT	LET		
Size	Number	Length Face to Face	Outside Size of Flange	Center of Bolts	Size of Bolts	No. of Bolts	Center to Face	Outside Size of Flange	Center of Bolts	Size of Bolts	No. of Bolts	Price less Companion Flanges, Bolts and Gaskets
1 x 1 1 4 x 1 4 x 1 4 x 1 4 x 1 1 4 x 2 1 2 x 1 1 2 x 2 2 x 2 2 x 2 2	1215 1216 673 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1234 1235 1234	61/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	3 3 3 5 5 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4	34 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 1/4 3 1/4 3 1/4 4 1/4 3 1/2 4 1/4 4 1/4 4 1/4 4 1/4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	31/2 31/2 31/2 31/2 31/2 31/2 31/2 0v. 41/2 0v. 41/2 55/8 4 41/2 61/8 55/8 61/8	222322232232234422234434	2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	444444444444444444444444444444444444444	\$ 3.00 3.75 3.75 3.75 3.75 3.75 3.75 4.00 4.00 4.00 4.00 5.50 6.75 7.00 7.00 7.25 8.00 9.50 10.00

Elbow

Size Inches	1	11/4	11/2	2	21/2	3
Number. Center to face of flange Outside size of flange Center of bolts Size of bolts Number of bolts Price less companion flanges, bolts and gaskets	1279 3½ 358 238 ½ x 2¾ 4 \$2.00	672 3½4 35% 23% ½ x 23¼ 4	1280 4½ 4 25% 58 x 3¼ 4 \$2.50	1281 4 1/4 4 1/2 3 1/6 5/8 x 3 1/2 4 \$3.00	1282 6 5 5 5 8 4 34 x 4 1/2 4 \$5,50	1283 6 6½8 4½8 34 x 4½ 4 \$7.00

Oval Flanged Ammonia Fittings

TEE

ELBOW

Tee

Size, inches	1/4	3 8	$\frac{1}{2}$	34	1
Number Center to face of flange. Outside size of flange Center of bolts Size of bolts Number of bolts Price less companion flanges, bolts or	$1238 \\ 2\frac{3}{8} \\ 3\frac{1}{2} \\ 2\frac{1}{4} \\ 2 \\ 2$	$ \begin{array}{c} 1239 \\ 2\frac{3}{4} \\ 3\frac{3}{4} \\ 2\frac{5}{8} \\ \frac{1}{2} \times 2\frac{1}{2} \\ 2 \end{array} $	$ \begin{array}{c} 1240 \\ 2\frac{3}{4} \\ 3\frac{3}{4} \\ 2\frac{5}{8} \end{array} $ $ \begin{array}{c} \frac{1}{2} \times 2\frac{1}{2} \\ 2 \end{array} $	1241 3½ 4½ 2¾ 58 x 3 2	1242 3½ 4½ 3½ 3½ 58 x 3 2
gaskets	\$1.50	\$1.75	\$1.75	\$2.00	\$2.50

Elbow

Size, inches	1/4	3 6	1/2	3 4	1
Number. Center to face of flange Outside size of flange Center of bolts Size of bolts Number of bolts Price less companion flanges, bolts or	$1284 \\ 2\frac{3}{8} \\ 3\frac{1}{2} \\ 2\frac{1}{4} \\ 2 \\ 2$	1285 2 ³ / ₄ 3 ³ / ₄ 2 ⁵ / ₈ ¹ / ₂ x 2 ¹ / ₂ 2	1286 2 ³ / ₄ 3 ³ / ₄ 2 ⁵ / ₈ ¹ / ₂ x 2 ¹ / ₂ 2	1287 3¼ 4½ 2¾ 58 x 3 2	1288 3½ 4½ 3½ 4½ 3½ 58 x 3 2
gaskets	\$1.00	\$1.25	\$1.50	\$1.75	\$2.00

Screw End Ammonia Fittings

TEE

ELBOW

Tee

Size Inches	Number	Center to Face	Price
į.	1243	1	\$0.55
4k 3k	1244	$1\frac{1}{8}$.65
1/2	1245	$1\frac{5}{16}$.80
34	1246	$1\frac{1}{2}$.90
1	1247	$1\frac{13}{16}$	1.10
$1\frac{1}{4}$	1248	$2\frac{1}{8}$	1.45
$1\frac{1}{2}$	1249	$2\frac{1}{2}$	1.90
2	1250	$2\frac{7}{8}$	2.45
$2\frac{1}{2}$	1251	$3\frac{1}{4}$	4.00
3	1252	$3\frac{5}{8}$	5.50

Elbow

Size Inches	Number	Center to Face	Price
1	1289	1	\$0.35
3	1290	110	.45
1 2	1291	1 5	.55
3	1292	110	.65
1	1293	113	.75
11	1294	$2^{\frac{1}{6}}$	1.00
11	1295	21	1.25
2	1296	$\frac{2^{\frac{7}{2}}}{2}$	1.60
21	1297	31	2.75
3	1298	35	3.70

Ammonia Crosses

SQUARE FLANGED

SCREW END

Square Flanged

				R	UN	OUTLET						union
SIZE	Number	Length Face to Face	Outside Size of Flange	Center of Bolts	Size of Bolts	No. of Bolts	Length Face to Face	Outside Size of Flange	Center of Bolts	Size of Bolts	No. of Bolts	Price less Companion Flanges, Bolts
1 x 1 1 4 x 1 14 1 2 x 1 14 2 x 2 2 2 2 2 2 2 3 2 x 2 3 2 x 2 3 2 x 2 3 3 x 2 3 3 x 3	1260 1261 1262	7 8½ 8½ 8½ 8½ 8½ 12 12 12 12 12 12	3 5/8 4 4 4 1/2 4 1/2 4 1/2 5 5/8 6 1/8 6 1/8	21/4 25/8 25/8 31/6 31/6 31/6 4 4 41/8 41/8 41/8	56 x 3 56 x 4 56 x 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 8½ 8½ 8½ 8½ 8½ 12 12 12 12 12	3 5/8 4 4 4 4 1/2 4 1/2 5 5/8 4 1/2 5 5/8 6 1/8	21/4 25/8 25/8 25/8 25/8 31/6 31/6 4 41/8	5/8 x 3 5/8 x 3 3 1/4 5/8 x 3 3 1/4 5/8 x 3 3 1/4 5/8 x 3 3 1/4 5/8 x 3 3 1/2 5/8 x 3 3 1/2 5/8 x 3 3 1/2 5/8 x 4 1/2 5/8 x 4 1/2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$ 4.5 5.0 5.0 6.0 6.0 6.0 10.0 11.5 12.0

Screw End

Size Inches	Number	Face to Face	Pric
3/4 3/8 1/2	1269 1270 1271	21/4	\$0.75
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1272 1273 1274	2 % 3 3 5 % 4 1/4	1.10 1.25 1.50 2.00
21/2 21/2 3	1275 1276 1277 1278	57* 534 61/2 71/4	2.60 3.35 5.00

Square Flanged Ammonia Return Bends

SEMI-STEEL

WROUGHT IRON

Wrought Iron

Size pipe, inches	1	1	$1\frac{1}{4}$	$1\frac{1}{4}$	$1\frac{1}{4}$	$1\frac{1}{4}$	2	2	2
Center to center	$4\frac{1}{2}$	6	$4\frac{1}{2}$	6	8	10	8	10	12
Center bend to end pipe	9	9	10	$10\frac{1}{2}$	11	12	$13\frac{1}{2}$	15	12
Number	1414	1416	1418	1419	1420	1421	1422	1423	1424
Price with flanges	\$2.55	\$2.80	\$2.90	\$3.00	\$3.25	\$3.50	\$4.75	\$5.00	\$5.25

Semi-Steel

Size Inches	Number	Center to Center	Outside Size of Flange	Center of Bolts	Size of Bolts	No. of Bolts	Price less Companion Flanges, Bolts or Gaskets
11/4	1425	338	$4\frac{7}{8} \times 2\frac{5}{8}$	3 5 1 6	5 x 31	2	\$1.70
11/4	1426	4	$4\frac{7}{8} \times 2\frac{5}{8}$	$3\frac{5}{16}$	$\frac{5}{8} \times 3\frac{1}{4}$ $\frac{5}{8} \times 3\frac{1}{4}$	2	1.90
11/4	1427	$4\frac{1}{2}$	$4\frac{7}{8} \times 2\frac{5}{8}$	3 5/16	$\frac{5}{8} \times 3\frac{1}{4}$	2 2	2.10
11/4	1428	6	$4\frac{7}{8} \times 2\frac{5}{8}$	$3\frac{5}{16}$	$\frac{5}{8} \times 3\frac{1}{4}$	2	2.40
11/4	671	$4\frac{1}{2}$	35	$2\frac{3}{8}$	$\frac{1}{2} \times 2^{\frac{3}{4}}$	4	2.50
11/4	670	6	$\frac{3\frac{5}{8}}{3\frac{5}{8}}$	$2\frac{3}{8}$	$\frac{1}{2} \times 2\frac{3}{4}$	4	2.70
11	1429	6	4	$2\frac{3}{8}$ $2\frac{5}{8}$	$\frac{5}{8} \times 3\frac{1}{4}$	4	2.80
$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	1430	8	4	$2\frac{5}{8}$	$\frac{5}{8} \times 3\frac{1}{4}$	4	3.10
2	1431	45/8	$4\frac{1}{2}$	3 1/16	$\frac{5}{8} \times 3\frac{1}{4}$	4	2.15
2	1432	6	$4\frac{1}{2}$	31/16	$\frac{5}{8} \times 3\frac{1}{2}$	4	2.35
2	1433	8	$4\frac{1}{2}$	31/16	$\frac{5}{8} \times 3\frac{1}{2}$	4	2.75
2 2	1434	10	$4\frac{1}{2}$	31/16	$\frac{5}{8} \times 3\frac{1}{2}$	4	3.50
2	1435	12	$4\frac{1}{2}$	$3\frac{1}{16}$	$\frac{5}{8} \times 3\frac{1}{2}$	4	4.25

Screw End Ammonia Return Bends

SOLID

SPLIT

Solid

Size, Inches	1	1	1	1	11/4	11/4	11/4	11/4	11/4	11/4	11/2	11/2	11/2	11/2
										1445 8 \$1.50				

Size, Inches	11/2	2	2	2	2	2	2	2	2	a . L	11/4	11/4
Number	1450 8 \$2.00	1451 3½ \$1.70	31/6	33/4	4	1455 4 ³ / ₄ \$2.25	6	0	10	Singl Bolt Wate	674 4 \$1.30	1463 6 \$1.50

Split

Size, Inches	1	1	1	11/4	11/4	11/2	11/2	2
Number. Centers. No. of Bolts. Size Bolts. Price.	1459 $2\frac{1}{2}$ 2 $1\frac{1}{2}$ $\$1.20$	1460 4 2 1/2 \$1.25	1461 6 2 ½ \$1.30	1462 3 3 1/2 \$1.40	1464 5 3 1/2 \$1.80	1466 4 3 1/2 \$2.25	1467 6 3 1/2 \$2.60	1468 3 ¹ / ₄ 3 ⁵ / ₈ \$2.60

Size, Inches	2	2	2	2	2
Number Centers No. of Bolts Size Bolts Price	1469	680	1471	1472	1473
	3½	3 ³ / ₄	4	4 ³ / ₄	6
	3	4	3	3	3
	5/8	5/ ₈	5/8	⁵ / ₈	5/8
	\$2.70	\$2.80	\$2.90	\$3.25	\$3.75

Ammonia Flanges

Square

Size of Pipe Inches	Male Flange Number of Female Flange	Outside Size of Plange	Center of Bolts	Size of Bolts	Number of Bolts	Price each, less Bolts and Gasket	Price Per Pair, with Bolts and Gasket
	520 1474 342 1343 344 1345 346 1347 618 1349 348 1351 350 1353 352 1355 616 1357 354 1359 356 1361 358 1363 614 1365 360 1367 362 1369 612 1371 364 1373 366 1367 368 1387 368 1387 368 1387 374 1387 610 1377 370 1381 608 1383 378 1393 380 1395 374 1387 606 1399 376 1391 378 1393 380 1395 384 1399 604 1401 388 1405 389 1407 392 1409 602 1411 396 1415	3 5 6 4 1 2 3 5 6 4 1 5 8 4 1 5 8 6 6 6 1 8 6 6 1 8 6 6 1 8 6 6 1	1223122312231223232323433444455444554445	Land	444444444444444444444444444444444444444	\$0.60 .70 .85 1.00 .60 .70 .85 1.00 .60 .70 .85 1.00 .70 .85 1.00 .70 .85 1.00 .85 1.00 2.00 2.00 2.00 2.50 3.50 4.25 2.50 3.00 3.50 4.25 2.50 3.00 3.50 4.25 2.50 3.00 3.50 4.25 2.50 3.00 3.50 4.25 2.50 3.00 3.50 4.25 2.50 3.00 3.50 4.25	\$1.60 1.90 2.20 2.65 1.60 1.90 2.20 2.65 1.60 1.90 2.20 2.65 1.90 2.20 2.65 2.50 2.65 2.50 2.65 2.50 2.65 2.50 2.65 2.70 2.65 2.70 2.65 2.70 2.65 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70

Blind

SIZE 3/2	1400	617	3	134	14 x 214	4	\$0.60 .70	\$1.60 1.90
134	1402 1404	613 611	356	236 238	16 x 214 16 x 214	4	.85	2.20
132	1406 1408	609 607	439	31/4	34 x 334 34 x 334	4	.85 1.00	2.20 2.65
234	1410 1412	605 603	536	416	34 x 432 34 x 432	4	2.00	5.00 6.00

Ammonia Flanges

Oval

Size of Pipe Inches	Number of Male Flange	Number of Female Flange	Outside Size of Flange	Center of Bolts	Size of Bolts	Number of Bolts	Price each, less Bolts or Gasket	Price Per Pair, with Bolts and Gasket
144	750 1300 1302 1304 1306 1308 1310 1312 1314 652 1316 1318 1320 1322 1324 1326 656 1328 1330	1299 1301 1303 1305 1307 651 1309 1311 1313 1315 1317 1319 1321 1323 1325 1327 1329 1331 1333	33448584485444457844457844457844457844457844578445784457844578	2 2 2 3 3 2 4 5 4 5 6 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6	19 x 214 19 x 212 9 8 x 3 9 8 x 3 19 x 212 9 8 x 3 19 x 212 9 8 x 3 9 8 x 3 19 x 212 19 8 x 3 19 8 x 3 14 8 8 x 3 16 8 x 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$0.40 .50 .55 .65 .75 .50 .55 .65 .75 .65 .75 .65 .75 .65	\$1.00 1.20 1.40 1.60 1.80 1.20 1.40 1.60 1.80 1.20 1.40 1.60 1.80 1.60 1.80

Blind

SIZE 1/4 3/8 1/2 3/4 1 11/4	1332 1334 1336 1338 658 1340	1335 1337 653 1339 1341 661	3 ¹ / ₂ 3 ³ / ₄ 3 ³ / ₄ 4 ¹ / ₈ 4 ¹ / ₂ 4 ⁷ / ₈	21/4 25/8 25/8 25/8 23/4 31/8 3 1/6	1/2 x 21/4 1/2 x 21/2 1/2 x 21/2 1/2 x 21/2 5/8 x 3 5/8 x 3 5/8 x 31/4	2 2 2 2 2 2 2	.40 .50 .50 .55 .65	\$1.00 1.20 1.20 1.40 1.60 1.80
-----------------------------	---	--	--	---	--	---------------------------------	---------------------------------	--

Ammonia Flanges

ROUND

Size of Pipe	Number of Flange	Diameter of Flange	Diameter of Bolt Circle	No. of Bolts	Size of Bolts	Price each less Bolts and Gasket	Price Per Pair with Bolts and Gasket
1	353	$4\frac{1}{2}$	$3\frac{1}{4}$	4	$\frac{1}{2} \times 2\frac{3}{8}$	\$1.85	\$3.95
11/4	352	5	37/8	4	$\frac{1}{2}$ x $2\frac{3}{8}$	2.10	4.45
2	350	6	$4\frac{1}{2}$	4	$\frac{5}{8} \times 2\frac{3}{4}$	- 2.50	5.40
$2\frac{1}{2}$	368	$7\frac{1}{4}$	$5\frac{3}{8}$	6	$\frac{5}{8} \times 3\frac{1}{4}$	3.00	6.75
3	369	8	$6\frac{1}{4}$	6	$\frac{3}{4} \times 3\frac{1}{4}$	3.50	7.80

Rubber Gaskets

SIZE INCHES			RUBBER GASKETS		
Inside Diameter	Outside Diameter	Size of Return Bend	Number	Price per Doz	
$\begin{array}{c} 1_{\frac{1}{4}}^{\frac{1}{4}} \\ 1_{\frac{1}{16}}^{\frac{1}{16}} \\ 1_{\frac{1}{4}}^{\frac{1}{16}} \\ 2_{\frac{1}{4}}^{\frac{1}{4}} \\ 3 \\ 3_{\frac{1}{2}}^{\frac{1}{2}} \\ 2_{\frac{1}{16}}^{\frac{5}{16}} \end{array}$	$\begin{array}{c} 1\frac{3}{4}\\ 2\frac{5}{16}\\ 2\frac{5}{32}\\ 2\frac{3}{4}\\ 3\frac{1}{2}\\ 4\\ 2\frac{5}{32}\\ 3\\ \end{array}$	$\begin{array}{c} 1 \\ 1^{\frac{1}{4}} \\ 1^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \\ 2^{\frac{1}{2}} \\ 3 \\ 1^{\frac{1}{4}} \\ 2 \end{array}$	1465 1470 1492 1493 1494 1495 1496 1497	\$0.30 .45 .45 .55 .65 .70 .45	

SIZE I	NCHES	Size and State of	RUBBER GA	ASKETS
Inside Diameter	Outside Diameter	Size and Style of Flange	Number	Price per Doz
114 14 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 oval 3 oval 3 oval 3 oval 3 oval 4 oval 1 oval 11 square 12 square 2 square 22 square 3 round 3 square 1 round	1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487	\$0.25 .30 .30 .40 .40 .45 .50 .55 .60 .70
$2\frac{3}{8}$ $2\frac{7}{8}$	$\frac{3\frac{8}{8}}{3\frac{7}{8}}$ $\frac{4\frac{3}{4}}{4}$	$1\frac{1}{4}$ round 2 round $2\frac{1}{2}$ round	1489 1490 1491	.50 .55 .60

Ammonia Headers and Coils

EXTRA HEAVY PIPE HEADERS

Ammonia Coils

We can furnish continuous welded pipe coils of any size or style upon short notice.

Prices on application.

Wrought Iron Branch Headers

We make any size branch headers in any combination. They are made of extra heavy pipe with the nipples welded in, and can be made to any desired center. When ordering specify size of header, and outlet, and style of flanges.

Prices on application.

Condenser and Cooler Stands Condenser and Cooler Stands

Number Pipes High	Number of Stand	Size Pipe Inches	Distance Center to Center of Pipe Inches	Price
3	921	2	4 combination	\$2.70 Each
4	908	2	4 combination	2.85 Each
4	682	2	33	2.40 per Pair
4	111	2	4	2.70
4	119	2	45	3.10
4	127	3	$5\frac{1}{2}$	4.00
6	110	2	4	3.90
6	118	2	45	4.50
6	128	3	51/2	5.60
2	140	5	8	3.00

Liquid Receiver Stands

Diameter Receiver	Number	Width	Price, Each
4 inches	913	101/4	\$1.80
5 inches.	915	$10^{\frac{5}{4}}$	1.90
6 inches	916	12	2.70
8 inches	917	12	3.25
10 inches	918	14	4.70
Plain Bottom Stand	126	12	1.80

Sprinkling Device

The above cut illustrates our Sprinkling Device for atmospheric condensers. It is made in any lengths of heavily galvanized pipe, slotted so as to secure the most even distribution of water over the pipes.

Prices on application. Write for Discounts on Stands.

Double Pipe Ammonia Condenser

OUR IMPROVED DOUBLE PIPE CONDENSER

Special heavy fittings and special ammonia pipe used in these parts Notice the simple and effective construction and how easily the joints can be taken apart.

See page 44 for illustration and description of our Patented Double Pipe Return Bend.

Capacity Tons	CONDENSER, I	NCLUDING A	LL VALVES	RECEIVER	, INCLUDING	VALVES
Refrigerator	Number Pipes	Length	Weight	Dia. Inch	Length	Weight
1 to 2	3	11' 6"	315	4	8' 6"	95
2 to 3	4	11' 6"	430	4	8' 6"	95
4 1 5	8	11' 6"	900	6	8' 6"	150
4 to 5	4	20′ 6″	660	4	17′ 4″	190
0.1.7	12	11' 6"	1300	6	8' 6"	170
6 to 7	6	20′ 6″	1000	5	17′ 4″	190
0 1 - 10	16	11' 6"	1760	8	8' 6"	300
8 to 10	8	20′ 6″	1300	6	17′ 4″	340
10 to 12	10	20′ 6″	1600	6	17′ 4″	340
12 to 15	12	20′ 6″	1900	6	17′ 4″	340

Prices on application.

Double Pipe Brine Cooler

OUR IMPROVED DOUBLE PIPE BRINE COOLER

Special heavy fittings and special ammonia pipe used in these parts. Notice the simple and effective construction and how easily the joints can be taken apart.

See page 44 for illustration and description of our Patented Double Pipe Return Bend.

Tons Capacity	Number Pipes	Length	Weight
$2\frac{1}{2}$ to 3	4	10′ 6″	810
	2	18' 6"	640
4	6	10′ 6″	1160
5 to 6	8	10′ 6″	1520
	4	18' 6"	1170
6 to $6\frac{1}{2}$	10	10′ 6″	1870
7 to 8	12	10′ 6″	2210
	6	18' 6"	1725
9 to 10	14	10′ 6″	2540
	8	18' 6"	2240
11 to 12	10	18' 6"	2765
13 to 15	12	18' 6"	3300

Prices on application

Flooded Type Brine Cooler

- 1-Expansion Valve.
- 2—Injector Tee.
- 3—Ammonia Accumulator.
- 4-Ammonia Inlet Header.
- 5—Ammonia Suction Header.
- 6—Packing Gland.
- 7—Open Brine Return Bend.
- 8—Liquid Overflow Fitting.
- 9-3-inch Packing Ring and Gasket.

- 10-5-inch Square Flange.
- 11-3-inch Ammonia Expansion Pipe.
- 12-Stands.
- 13-Accumulator Stand.
- 14-5-inch Brine Pipe.
- 15—Spiral.
- 16-Liquid Pre-Cooler.
- 17—Liquid Pre-Cooler Stand.
- 18-Blind Brine Return Bend.

Our Patent Double Pipe Flooded Type Brine Cooler has all the advantages of the flooded system and none of the disadvantages. Our apparatus is at all times under the eye of the operator, while other flooded systems are submerged in a tank of brine beyond the control or sight of the party operating the plant. The increase in the capacity of the machine with our flooded system is very marked, often as great as 30%.

Tons Capacity	Number Pipes	Length	Weight	Price
$4\frac{1}{2}$	4	12 feet	1500	\$245.00
$6\frac{3}{4}$	6	12 feet	2100	330.00
9	8	12 feet	2700	410.00
1114	10	12 feet	3300	495.00
131/4	12	12 feet	3900	585.00
9	4	22 feet	2100	310.00
$13\frac{1}{2}$	6	22 feet	3000	420.00
18	8	22 feet	3900	535.00
$22\frac{1}{2}$	10	22 feet	4800	650.00
$26\frac{1}{2}$	12	22 feet	5800	800.00

Note—Above prices include Accumulator and Liquid Pre-Cooler.

Write for Discounts.

Ammonia Oil Separators

1		
	В	
	T	

Diameter Inches	Length Inches	Number	Size of Pipe Connection	Weight	Price
$6\frac{1}{2}$	17	303	1"	75	\$45.00
$6\frac{1}{2}$	17	1498	11/4"	85	55.00
$8\frac{1}{2}$	25	300	2"	175	72.50
$8\frac{1}{2}$	25	1499	$2\frac{1}{2}''$	200	80.00

The above cut shows our Ammonia Oil Separator used to prevent oil which may come from the compressor entering the ammonia condenser. These separators are cast of semi-steel, fitted with a removable cover, companion flanges and blow-off valve, tested to 300 pounds air pressure. The top of the trap is fitted with a baffle plate to abstract from the ammonia gas any oil that may come in contact with it, dropping it to the bottom of the trap so that it can be blown off.

Write for Discounts.

Suction Scale Traps

Our Suction Scale Traps are constructed to prevent scale, grit, or foreign matter of any kind from entering the compressor. They are fitted with companion flanges and a cleanout connection equipped with a large pocket below the screen so as to allow the foreign matter to drop out of the screen and not interfere with the gases going to the compressor. Made in all sizes.

Prices on application.

Ammonia Receivers

We can furnish Ammonia Receivers of any size and length desired, of either the vertical or horizontal type. Our receivers are made of the very best of flange steel, the heads being welded to the shell, all tested to a pressure of 500 pounds.

RECE	IVER, INCL	UDING ALI	VALVES	RECE	IVER, INCI	UDING AL	L VALVES
Diameter Inches	Length	Weight	Price	Diameter Inches	Length	Weight	Price
4	8' 6"	95	\$36.00	6	17′ 4′′	340	\$ 72.00
5	8' 6"	150	50.00	8	17' 4''	510	115.00
4	17′ 4′′	190	50.00	10	8' 6"	360	120.00
6	8' 6"	170	57.00	10	17′ 4′′	725	155.00
8	8' 6"	300	86.00				

Automatic Liquid Ammonia Gauge

Our Automatic Liquid Ammonia Gauges are fitted with automatic closing valves, so that the valve will automatically close in the event of the glass tube being broken. These gauges are used to ascertain the amount of liquid ammonia in the liquid receiver.

SIZE	PRICE
½ inch, standard with guards and glass	510.00
1 inch, extra heavy with guards and glass	12.50
3 inch, standard with guards and glass.	12.50
3 inch, extra heavy with guards and glass	15.00
1 inch, standard with guards and glass	15.00
1 inch, extra heavy with guards and glass	20.00

Write for Discounts

Exhaust Steam Condensers

The above cut shows our Flask Type Steam Condenser which is made of heavy galvanized steel and properly brazed inside to prevent bulging. These condensers are fitted on the lower ends with an exhaust steam inlet flange, and at the opposite end a condensed water outlet flange, top being fitted with a water distributing device and an outlet for the foul gases. These condensers are very efficient on account of their large cooling surface and are very easy to keep clean, any scale that may form being kept free by the expansion and contraction of the metal.

WE ALSO MAKE

Double Pipe Exhaust Steam Condensers

Our Double Pipe Exhaust Steam Condensers are made of 2" and $1\frac{1}{4}$ " galvanized pipe. They are galvanized throughout and fitted with clamps and stands. The steam enters these condensers between the $1\frac{1}{4}$ " and 2" pipe, the cool water passing through the $1\frac{1}{4}$ " pipe in the opposite direction to the flow of the steam. With this style condenser the coldest cooling water comes in contact with the condensed water just before it leaves the condenser. In this way the condensed water can be obtained at almost the same temperature as the cooling water. We furnish these condensers fitted with inlet and outlet steam and water valves.

WE ALSO MAKE

Atmospheric Exhaust Steam Condensers

Our Atmospheric Exhaust Steam Condensers are made of 2" galvanized iron pipe fitted on the ends with headers into which the exhaust steam enters, each one of the 2" pipes being fitted with a connection so that any pipe can be taken out and replaced without interfering with the balance of the condenser. These condensers are fitted with water distributing device, foul gas outlet, condensed water outlet, a drip pan being placed in under them to collect the cooling water.

Prices on application.

Reboiler and Skimmer

These are made in rectangular shape of heavy galvanized steel, fitted with steam coils which are fed from a header, fitted with valves for adjusting the steam supply. The condensed water enters the reboiler at the opposite end from the skimming attachment causing the water to travel the full length of the steam coil during which time it is thoroughly boiled. The reboiled water is taken from the bottom of the tank close to the skimming attachment, the impurities being skimmed from the surface of the water through small openings into a pan which is connected to the sewer. These reboilers are fitted with V-shaped covers, having openings to carry off all steam and gases.

Made in all sizes. Prices on application.

Double Pipe Distilled Water Cooler

Our Double Pipe Distilled Water Cooler is of the same careful construction as are our double pipe ammonia condenser and brine cooler. All parts in contact with the distilled water are heavily galvanized. The counter current ensures a thorough cooling of the water, and a maximum efficiency. See page 44 for detail of Return Bend.

Prices on application.

Special Notice

In addition to this Fitting Catalog, we also issue a separate catalog showing our High-grade Ammonia Compressors, direct connected to engine, belt driven with any available power, and motor driven either direct, belt or gear drive.

We have also Special Bulletins dealing exclusively with our Ice Making Plants, and giving descriptive layout of our Refrigerating Machinery, of which we make a specialty for the following lines of work:

MEAT MARKETS
CREAMERIES
CONFECTIONERS
ICE CREAM MANUFACTURERS
CHEESE MAKERS
GROCERS
PRODUCE AND FRUIT STORAGE
BAKERIES
FISH AND OYSTER DEALERS
FUR STORAGE
HOTELS, CAFES, ETC.

We install several different systems for refrigeration depending on the local conditions existing, the nature of the work to be performed, and the quantity of goods to be refrigerated.

We have also Special Water Cooling Bulletins for plants for bottlers, factories, offices and large buildings.

We would be pleased to mail you either that you may be particularly interested in.

Filter

CHARCOAL AND QUARTZ

Our Charcoal and Quartz Filters shown above, are constructed of galvanized steel throughout, fitted with a removable cover which is bolted to a top angle ring, a gasket being provided to make top water tight. They are also fitted inside with metal rings and screws for holding the filtering medium in place, charcoal and crushed quartz being used for filtering medium.

Prices on application.

Flat Filters

Our Flat Filters are constructed of galvanized iron and bronze. The filtering medium is cloth and a special filtering paper. We highly recommend this filter for ice plants or where thoroughly filtered water is required.

Prices on application.

Ice Cans

Cans are made throughout of galvanized material, well riveted and soldered, and guaranteed tight. Cans made of No. 16 gauge material will be turned over top and bottom. The 200, 300 and 400-pound cans have $\frac{1}{4}$ x 2-inch galvanized bands around top. Small sizes have $\frac{1}{4}$ x $1\frac{1}{4}$ -inch bands; $\frac{5}{8}$ -inch lifting holes are punched through bands. Prices quoted on application.

Automatic Can Fillers

In ordering, give inside dimensions of can at top and inside depth.

	The state of	D: C		
0 . 1	100	Price Co		
Crated,	100-pound	can	326.00	
Crated,	200-pound	can	26.00	
Crated,	300-pound	can	30.00	
Crated,	400-pound	can	33.00	

Write for Discounts.

Weight of Cake of	Ins	Inside Dimensions			Thickness of Material U. S. Standard Gauge	
Ice	Тор	Bottom	Length	Over All	Sides	Bottom
50 lbs. 100 lbs. 200 lbs. 300 lbs. 400 lbs.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7\frac{1}{2} \times 7\frac{1}{2} \\ 7\frac{1}{4} \times 15\frac{1}{4} \\ 10\frac{1}{2} \times 21\frac{1}{2} \\ 10\frac{1}{2} \times 21\frac{1}{2} \\ 10\frac{1}{2} \times 21\frac{1}{2} \end{array}$	31 31 31 44 57	32 32 32 45 58	No. 16 No. 16 No. 16 No. 16 No. 14	No. 16 No. 16 No. 16 No. 16 No. 14

The above sizes are in accordance with the standard adopted by the Ice Machine Builders Association of the United States. These sizes are carried in stock, and prices will be quoted on application. All other sizes are regarded as special, will be built only on order, and will be subject to special price.

Automatic Ice Dumps

ROCKING TYPE

Our Ice Dumps are made of steel with cast iron balance weights, the entire apparatus being constructed very substantially, fitted with welded iron pans to catch the waste water, and fitted with automatic water shut-off, which is self-operating when the ice leaves the can.

Made in all sizes.

Prices on application.

D A

A—Float Tank B—Water Supply C—Ammonia Expansion

Valve D—Ammonia Suction Valve E—Blow Off Valve

F—Drain G—Water Supply to Pump

Our Special Water-Cooling Systems

TRIPLE PIPE GRAVITY SYSTEM

This is our new patented type of Water Cooler and is used extensively for bottler's use and for cooling water for buildings and factories. The cooling tank consists of two tanks, one inside the other, and the space between is thoroughly insulated with cork insulation. This cooling tank is made in different sizes, cooling from 500 to 4,000 gallons of water in ten hours through a range of 20 to 40 degrees F. This cooler is patented and is known as the triplex system. There are no coils inside the water cooling tank, but the cooling surface is of very large pipes thoroughly tinned throughout. The water passes over a tinned surface so that by the time the water has passed over this surface it is reduced almost to freezing point. The entire apparatus is extremely simple in construction and very effective. One of the principal advantages with this device is that five minutes after starting the plant up you can get as cold water as you desire and a steady stream of cold water can be taken from the apparatus continually. This system is similar to the gravity system described below and requires a triplex or force pump to operate it successfully. There is also a float on this for regulating the level of the water in the main tank.

GRAVITY SYSTEM

This system is used where the water pressure is not strong enough to raise the water to the faucets on the upper floors of the building. After the plant is once in operation it is to a certain extent a balance system, as the fall on the down leg equalizes the power required to lift the water on the up leg from which the water to the faucets is taken. There is a float attached to the side of this tank through which the city water is brought after passing through the filter, which regulates the amount of water in the main tank. The advantage of keeping the water supply at a given level in the tank is that you can thereby get a greater efficiency out of the coils in the water cooler tank. This type has a quantity of galvanized spiral coils and the tank is made of galvanized sheet metal.

A—Float Tank B—Water Supply C—Ammonia Expansion

D-Ammonia Suction
Valve

E-Water Supply to Pump F-Drain

A—Ammonia Suction B—City Water Supply C—Ammonia Expansion Valve

D-Blow Off E-Air Cock

PRESSURE SYSTEM

This system is operated in the following manner. There is a heavy iron tank made to withstand the city pressure where the tank is to be located, and in this tank is installed a certain amount of spiral coils. The tank is made absolutely water tight and is made to withstand any pressure that may be brought upon it. The water from the city mains is brought into this tank at the top and the suction or cold water is taken out at the bottom. There is a small centrifugal pump attached to this cold water line, and the discharge of this pump circulates the water throughout the building and returns over a loop which is above the highest faucet, back to the tank again. The centrifugal pump is simply for the purpose of keeping the water in motion so that there will always be absolutely cold ice water at the faucet. This system is automatic in operation and takes the advantage of the city pressure for carrying the water to the different floors of the building, thus reducing the amount of power required to operate the plant successfully.

Prices on application.

Electric Hoist

This illustration shows our Electric Ice
Hoist. We recommend these electric
hoists for plants of the larger sizes. We
furnish these hoists arranged for lifting one or more cans
at a time. These hoists are light and of substantial construction and operate very economically. When ordering
state voltage, also whether direct or alternating current
is to be used.

ELECTRIC HOIST

Air Hoist

The construction of this Air Hoist is such that a very little head room is required. Operation is very simple and is easily controlled by the operator.

Prices of Hoists on application.

New Style Swivel Hand Hoist and Conveyor

This cut illustrates our standard new style Swivel Hand Hoist and Conveyor for handling ice cans which shows it only in two different positions.

The Conveyor consists of a steel "I" beam of ample strength. The wheels of the Conveyor are fitted with roller bearings, insuring easy running throughout the length of the tank.

The Hoist is so designed as to turn freely in all directions, and may be used not only where other styles can, but has advantages not found in others. It is of special advantage when there is very little room between wall and side of the ice tank in cases where the regular styles cannot be used.

Brine Agitators

HORIZONTAL

VERTICAL

We make our Brine Agitators either vertical or horizontal. The above cuts show our horizontal agitators arranged for belt drive and the vertical agitator direct connected to electric motor. The propeller is cast of bronze and the shaft of steel. All bearings are extra large and are babbitted with the highest grade of babbitt.

Prices on application.

Brine Circulating Pumps

Made in various sizes and styles. Prices on application.

Ammonia Gauges and Gauge Board

METAL GAUGE BOARD

The above cut shows our Standard Metal Gauge Board and Gauges, which is arranged for holding one high and one low pressure gauge.

We also make marble, slate, or metal gauge boards of any size to accommodate any number of gauges.

SIZE	PRICE
2-hole metal gauge board for 4½-inch gauges	\$4.50
2-hole metal gauge board for 63-inch gauges	6.50

Ammonia Gauges

When ordering gauges, give size of gauge, state whether gauge is for high or low pressure, also state whether a compound gauge is wanted, showing both pressure and vacuum, or pressure only. Also state whether bottom or back connections are wanted.

SIZE	PRICE
4½-inch dial, iron case and nickle-plated ring	\$22.00
63/4-inch dial, iron case and nickle-plated ring	26.50

Write for Discounts.

Automatic Ammonia Expansion Valve

Our newly Patented Automatic Expansion Valve is designed for the purpose of regulating the back pressure in ammonia systems, and by so doing, the temperature is regulated in the cold storage rooms, or wherever this valve is used. It is absolutely efficient and reliable in its action, and we mention a few of the many instances where it is of great value in regulating the back pressure: In direct expansion cold storage rooms; in indirect combined brine and ammonia cold storage rooms where hold-over tanks are used; in ammonia coils submerged in a brine tank; and also on our Patented Flooded Type Brine Cooler, or on the regular Standard Double Pipe Brine Cooler. In installations where there are two or three or more refrigerator boxes located in different parts of the building or on different floors, it requires very fine adjustment of the ordinary expansion valves, and even with the greatest care and attention they frequently require readjustment several times a day, and even then they never work in perfect harmony, for the reason that one or more of the valves may get choked with scale or dirt, thus reducing the refrigeration of the boxes and causing considerable trouble and annoyance. Our Patent Automatic Expansion Valve eliminates trouble of this kind entirely because of its construction, and the one main valve can be opened or closed in the machine room with every assurance that an exact back pressure will be obtained in the different boxes or chambers where these valves are located. Our Patent Automatic Expansion Valve is so constructed that the flow of liquid ammonia is regulated to accommodate the size of the compressor which is taking the gas away from the low pressure side, or what is known as the expansion side. It is particularly adapted for placing in plants where the cold storage rooms are scattered throughout the building. These valves are giving the highest satisfaction wherever they are in use, and are being universally adopted because of their economy and convenience. Price, complete, \$50.00.

Special Ammonia Fittings

The above cut shows our Screw End Angle Valve of the smallest size. The body is made of open hearth machine steel, and the valve stem of tool steel with hardened seat.

See page 10 for prices.

Square Flanged Offset Fitting

This fitting is made of semi-steel, and designed specially to eliminate work and extra fittings wherever it is necessary to connect with coils in tank.

Price, less Companion Flanges, Bolts and Gaskets \$2.75

Sectional Cut of Compressor

1-Fly Wheel.

2-Out Board Bearing.

3-Oiling Chain.

4-Packing Gland.

5-Shaft Packing.

6-Crank Shaft.

7-Main Bearing.

8-Crank Pin Box Bolts.

9-Crank Pin Box.

10-Blind Bearing.

11—Connecting Rods.

12-Bearing Gaskets.

13—Compressor Frame.

14-Pistons.

15-Water Jacket Gaskets.

16-Drain Cock.

17-Water Jacket.

18-Piston Pin Set Screws.

19-Piston Pin.

20-Piston Rings.

21-Cylinder Head Gaskets. 22-Cylinder Head.

23-Suction Valves.

24-Valve Caps.

25-Main Valve Gaskets.

26—By-Pass Connections.

27-Main Valve.

28-Water Jacket Bolts.

29—Discharge Valve.

30—Equalizing Line.

31-Gauge Glass Valves.

32-Gauge Glass.

33-Gauge Glass Guard.

34-Bed Plate.

35-Cover Plate.

Sectional drawing showing construction in detail of the simple and compact design of our Ammonia Compressors. Note the automatic oiling system.

Our Compressor Construction

We particularly want to call your attention to the construction of our Compressor in its different parts, as we believe our success is largely due to the special features found in our Compressor only, as well as to the fact that we use nothing but the highest grade of material. The metals used in the construction of our Compressor are semi-steel, forged steel and tool steel.

The valves are the most important part of any compressor, and upon the proper operation of them depends in a large measure the capacity of the compressor, more especially the discharge valve, as this valve handles the high pressure gas, and therefore should open and close quickly; otherwise too much pressure is generated in the cylinder and unnecessary power consumed; and, should this valve be retarded in closing, the leaking back of the compressed gas into the cylinders will reduce the capacity and cause a further loss of power.

The *Discharge Valves* of our Compressor, are so constructed that they open and close with the least possible amount of resistance, and, owing to our special cushion effect, are practically noiseless. The construction of the cushioning piston is such that it does not in any way retard the return of the valve to its seat.

The Suction Valve Stems are turned out of a solid bar of tool steel, therefore using only the heart of the metal. The seats on both valves are narrow, therefore open quickly, and are also made of tool steel. The construction of both discharge and suction valves is such that the greatest possible amount of opening for the gas passage is given with the least possible amount of lift or movement of the valve.

The construction of our valves differs in this essential from any other valves on the market, and for simplicity and durability they are unequaled. Our machinists are all experts in this class of work, and it is these very essential components, together with years of experience in the manufacture of refrigerating machinery, that has made the *Baker Ice Machine Company's* Compressor the best in the world.

Our Special Double Pipe Fittings

PATENTED RETURN BENDS

We show below drawings and illustrations of our Patent Return Bend, as used on our Double Pipe Ammonia Condenser and Brine Cooler, which is but one of many patents in our plants owned and controlled exclusively by us. This return bend is so constructed that any one with a wrench can readily put it together, or replace any part that may be required. The water or brine return bend is held in place by a single bolt. The pressure exerted by this bolt is central, and in this way draws up the return bend even on both sides, thereby getting a tight joint with the least possible amount of pressure, and without any screwed

PATENT DOUBLE PIPE RETURN BEND FOR AMMONIA CONDENSER

- A—Water Return Bend B—Gland for Water Return Bend C—Gasket for Water Return Bend D—Bolt E—Clamp
- -Condensing Water Pipe
- G—Slip Flange H—Gasket for Ammonia Return Bend -Ammonia Return Bend
- J-Bolt K-Screw Flange
- L-Gasket M-Ammonia Pipe

PATENT DOUBLE PIPE RETURN BEND FOR BRINE COOLER

- Brine Return Bend
- B-Gland for Brine Return Bend
- C-Gasket for Brine Return Bend D-Bolt E-Clamp
- F-Brine Pipe
- G-Slip Flange
- H-Gasket for Ammonia Return Bend I-Ammonia Return Bend
- J-Bolt
- K-Screw Flange L-Gasket
- M-Ammonia Pipe

Manufacturers' Standard List of Machine Bolts

With Square Heads and Square Nuts. Finished Points—Price per Hundred Adopted September 20, 1899, to take effect October 1, 1899.

Length Inches	1/4	<u>5</u> 16	3/8	7 16	$\frac{1}{2}$	$\frac{9}{16} & \frac{5}{8}$	$\frac{3}{4}$	7/8	1	$1\frac{1}{8}$	$1\frac{1}{4}$
1½	\$1.70	\$2.00	\$2.40	\$2.80	\$3.60	\$5.20	\$7.20	\$10.50	\$15.10	\$22.50	\$30.00
2	1.78	2.12	2.56	3.00	3.86	5.58	7.70	11.20	16.00	23.70	31.50
$\frac{1}{2}$	1.86	2.24	2.72	3.20	4.12	5.96	8.20	11.90	16.90	24.90	33.00
3	1.94	2.36	2.88	3.40	4.38	6.34	8.70	12.60	17.80	26.10	34.50
$3\frac{1}{2}$	2.02	2.48	3.04	3.60	4.64	6.72	9.20	13.30	18.70	27.30	36.0
4	2.10	2.60	3.20	3.80	4.90	7.10	9.70	14.00	19.60	28.50	37.50
$4\frac{1}{2}$	2.18	2.72	3.36	4.00	5.16	7.48	10.20	14.70	20.50	29.70	39.0
5	2.26	2.84	3.52	4.20	5.42	7.86	10.70	15.40	21.40	30.90	40.5
$5\\5\frac{1}{2}$	2.34	2.96	3.68	4.40	5.68	8.24	11.20	16.10	22.30	32.10	42.0
6	2.42	3.08	3.84	4.60	5.94	8.62	11.70	16.80	23.20	33.30	43.5
$6\frac{1}{2}$	2.50	3.20	4.00	4.80	6.20	9.00	12.20	17.50	24.10	34.50	45.0
7	2.58	3.32	4.16	5.00	6.46	9.38	12.70	18.20	25.00	35.70	46.5
$7\frac{1}{2}$	2.66	3.44	4.32	5.20	6.72	9.76	13.20	18.90	25.90	36.90	48.0
8	2.74	3.56	4.48	5.40	6.98	10.14	13.70	19.60	26.80	38.10	49.5
9	2.90	3.80	4.80	5.80	7.50	10.90	14.70	21.00	28.60	40.50	52.5
10	3.06	4.04	5.12	6.20	8.02	11.66	15.70	22.40	30.40	42.90	55.5
11	3.22	4.28	5.44	6.60	8.54	12.42	16.70	23.80	32.20	45.30	58.5
12	3.38	4.52	5.76	7.00	9.06	13.18	17.70	25.20	34.00	47.70	61.5
13			6.08	7.40	9.58	13.94	18.70	26.60	35.80	50.10	64.5
14			6.40	7.80	10.10	14.70	19.70	28.00	37.60	52.50	67.5
15			6.72	8.20	10.62	15.46	20.70	29.40	39.40	54.90	70.5
16			7.04	8.60	11.14	16.22	21.70	30.80	41.20	57.30	73.5
17					11.66	16.98	22.70	32.20	43.00	59.70	76.5
18					12.18	17.74	23.70	33.60	44.80	62.10	79.5
19					12.70	18.50	24.70	35.00	46.60	64.50	82.5
20					13.22	19.26	25.70	36.40	48.40	66.90	85.5
21							26.70	37.80	50.20	69.30	88.5
22							27.70	39.20	52.00	71.70	91.5
23							28.70	40.60	53.80	74.10	94.5
24							29.70	42.00	55.60	76.50	97.5
25							30.70	43.40	57.40	78.90	100.5
26							31.70	44.80	59.20	81.30	103.5
27							32.70	46.20	61.00	83.70	106.5
28							33.70	47.60	62.80	86.10	109.5
29							34.70	49.00	64.60	88.50	112.5
30							35.70	50.40	66.40	90.90	115.5

The following extras are to be understood as a part of this list: Bolts with hexagon heads or hexagon nuts, 10 per cent extra. If both hexagon heads and hexagon nuts, 20 per cent extra.

Note—All bolts used on our ammonia fittings have cold punched, chamfered, and trimmed hexagon nuts.

BAKER ICE MACHINE COMPANY

Dimensions of Wrought Iron and Steel Pipe

STANDARD

DI	DIAMETER	×	Thick-	CIRCUM	CIRCUMFERENCE	TR	TRAVERSE AREAS	EAS	Length per Squ	Length of Pipe per Square Foot of	Length of	Weight	No. of Threads	Contents in U. S.	Weight of Water
Nominal Internal	Actual External	Actual	Metal	External	Internal	External	Internal	Metal	External Surface	External Internal Surface Surface	One Cubic Foot	of Length	per Inch of Screw	per Inch Cals. per post of Screw Length	of Length
Inches	Inches	Inches	Inches	Inches	Inches	Sq. Inch	Sq. Inch	Sq. Inch	Feet	Feet	Feet	Lbs.		Gals.	Lbs.
-ix	.405	.27	890.	1.272	.848	.129	.0573	7170.	9.434	14.151	2500.	241	27	0600	094
	.54	.364	.085	1.696	1.144	.229	.1041	.1249	7.075	10.5	1383.28	42	18	0054	045
mic.	.675	.493	160.	2.121	1.552	.358	7161.	.1663	5.658	7.732	754.322	.559	18	6600	083
-909	.84	.622	601.	2.639	1.957	.554	3048	.2492	4.547	6.132	473.84	.837	14	.0158	.132
204	1.05	.824	.113	3,299	2.589	998.	.5333	3327	3.638	4.635	270.016	1.115	14	7760	931
1	1.315	1.048	.134	4.131	3.292	1.358	.861	497	2.904	3.645	167.246	1.668	111	0447	373
14	1.66	1.38	.14	5.215	4.335	2.164	1.496	899.	2.301	2.768	96.257	2.944	1112	0777	648
100	1.9	1.610	.145	5.969	5.058	2.835	2.036	.799	2.01	2.372	70.727	2.678	112	.1058	.882
2	2.375		.154	7.461	6.434	4.43	3,356	1.074	1.608	1.848	49 008	3 600	111	1742	1 459
23	2.875	2.468	.204	9.032	7.753	6.492	4.780	1.712	1.329	1.548	30,337	5.739	x	2483	9.070
00	3.5		.217	10.996	9.635	9.621	7.383	2.238	1.091	1.245	19.504	7.536	000	3835	3 197
33	4	3.548	.226	12.566	11.146	12.566	9.887	2.679	.955	1.077	14.567	100.6	000	.5136	4.291
4	4.5	4.026	.237	14.137	12.648	15.904	19.73	3 174	640	040	11 219	10.665	0	0010	2
44	5.	4.508	.246	15.708	14.162	19.635	15 961	3 674	764	242	210.11	19.94	00	6100.	210.0
5	5.563	5.045	.259	17.477	15.849	24.301	19.086	4.315	687	757	7 905	14 509	00	1 000	0.910
9	6.625	6.065	.28	20.813	19.054	34.472	28.890	5.582	577	.63	4.984	18.762	0 00	1.500	12.503
1-1	7.625	7.023	301	23.955	22.063	45.664	38.738	6.926	.501	.543	3.717	23 271	×	9.019	16 771
00	8.625	7.981	.322	27.096	25.076	58.426	50.027	8.399	.443	479	2.876	98 177	ox	9 500	91 664
6	9.625	8.937	.344	30.238	28.076	72.76	62.73	10.03	397	.427	2.29	33.701	000	3.259	27.166
10	10.75	810.01	366	33.772	31.476	90.763	78.823	11.940	355	382	1.897	40.065	ď		24 124
		11.	375	37.699	34.558	108.434	95.033	13.401	325	347	1,515	45.09	0 00	4.037	41 152
		12.	375	AD ORK	37.7	197 677	119 000	14 570	000	0.00	OTOUT .	TOTOL	0		41.100

Dimensions of Wrought Iron and Steel Pipe

per per ds	Noming Noming No. 1 (1986) Williams No. 1 (1986) March 1 (1986) No. 1	.29	.54	.74	1.09	1.39	2.17	6	3.63	5.02	7.67	10.95	19.47	14 97	90.54	28.58		17	9.44	2 65	6.00	2.5	000	12.62	18.56	99.75	27.70	90 19	20.12
Length of Pipe oer Square Foot of	Internal Surface Feet	18.632	12.986	9.07	7.046	5.109	4.016	3.003	2.556	1.975	1 649	1398	1.137	1	703	.664		15 667	0.000	6 508	4.317	2511	9.561	9.176	1 679	1 406	1 917	010	010.
Length per Squar	External Surface Feet	9.433	7.075	5.657	4.547	3.637	2.904	2.301	2.01	1.608	1 328	1.091	955	849	687	.577		4 547	3 637	2.004	2.304	2.001	1,608	1 398	1 001	955	840	687	577
EAS	Metal Square Inches	980.	.161	.219	.323	.414	.648	.893	1.082	1.495	2.283	3.052	3.71	4.455	6 19	8.505		507	7.67	1 087	1.549	1 905	2,686	4 073	5.524	6.772	× ×	11.34	15 806
FRAVERSE AREAS	Internal Square Inches	.033	890.	.139	.231	.452	.71	1.271	1.753	2.935	4.209	6.569	8.856	11.449	18.193	25.967		047	139	271	615	93	1.744	2.419	4.097	5.794	7.724	19.965	18 666
TR	External Square Inches	.129	.229	.358	.554	998.	1.358	2.164	2.835	4.43	6.492	9.621	12.566	15.904	24.306	34.472	NG PIPE	554	866	1.358	2.164	2.835	4.43	6.492	9.621	12.566	15.904	24 306	34 479
RENCE	Internal	.644	.924	1.323	1.703	2.312	2.988	3.996	4.694	6.073	7.273	9.085	10.549	11.995	15.120	18.064	EXTRA STRONG PIPI	766	1.326	1.844	2.78	3.418	4.684	5.513	7.175	8.533	9.852	12.764	15.315
CIRCUMFERENCE	External Inches	1.272	1.696	2.121	2.639	3.299	4.131	5.215	5.969	7.461	9.032	10.996	12.566	14.137	17.477	20.813	DOUBLE EX	2.639	3.299	4.131	5.215	5.969	7.461	9.032	10.996	12.566	14.137	17.477	20.813
tse sauge 190	Neard DesiW Jumy	$12\frac{1}{2}$	11	$10\frac{1}{2}$	6	001	7	61	9	5	2	1	0	0	00	000	I	1	1	00	00	000	0000	9	11000	+	- 111	6 4	* 2-10
ness	Тһіскі Пасы	.1	.123	.127	.149	.157	.182	.194	.203	.221	.28	.304	.321	.341	.375	.437		.298	.314	.364	.388	.406	.442	.560	809.	.642	.682	.75	.875
	Actual Internal Inches	.205	.294	.421	.542	.736	.951	1.272	1.494	1.933	2.315	2.892	3.358	3.818	4.813	5.75		.244	.422	587	.885	1.088	1.491	1.755	2.284	2.716	3.136	4.063	4.875
DIAMETER	Actual External Inches	.405	.54	.675	.84	1.05	1.315	1.66	1.9	2.375	2.875	3.5	.4.	4.5	5.563	6.625		.84	1.05	1.315	1.66	1.9	2.375	2.875	3.5	4.	4.5	5.563	6.625
	Nominal Internal Inches	HI.	-1-40	0000	-1040	লাৰ	1	11	12	2	22	3	32	4	5	9		7 2 7	6	1	14	12	2	22	3	32	4	5	9

Table Showing Refrigerating Effect

of One Cubic Foot of Ammonia Gas at Different Condenser and Suction (Back) Pressures in B. T. Units

5	ding ssure			Ten	nperature o	f the Liqui	d in Degre	es F.		
Lemperature Gas in Degrees F.	onding Pressure nds rre Inch	65°	70°	75°	80°	850	900	950	100°	105°
mperatu Gas in Degrees	orresponding ction Pressur Pounds r Square Incl		Corresp	oonding Co	ndenser Pr	essure (gai	ige), Pound	ls per Squa	are Inch	
Ie	Suction 1	103	115	127	139	153	168	184	200	218
	G. Pres.									
-27	1	27.30	27.01	26.73	26.44	26.16	25.87	25.59	25.30	25.02
-20	4	33.74	33.40	33.04	32.70	32.34	31.99	31.64	31.30	30.94
-15	6	36.36	36.48	36.10	35.72	35.34	34.96	34.58	34.20	33.82
-10	9	42.28	41.84	41.41	40.97	40.54	40.10	39.67	39.23	38.80
- 5	13	48.31	47.81	47.32	46.82	46.33	45.83	45.34	44.84	44.3
0	16	54.88	54.32	53.76	53.20	52.64	52.08	51.52	50.96	50.40
5	20	61.50	60.87	60.25	59.62	59.00	58.37	57.75	57.12	56.50
10	24	68.66	67.97	67.27	66.58	65.88	65.19	64.49	63.80	63.10
15	28	75.88	75.12	74.35	73.59	72.82	72.06	71.29	70.53	69.70
20	33	85.15	84.30	83.44	82.59	81.73	80.88	80.02	79.17	78.3
25	39	95.50	94.54	93.59	92.63	91.68	90.72	89.97	88.81	87.80
30	4.5	106.21	105.15	104.09	103.03	101.97	100.91	99.85	98.79	97.73
35	51	115.69	114.54	123.39	112.24	111.09	109.94	108.79	107.64	106.4

Table Giving Number of Cubic Feet

of Gas that must be pumped per minute at Different Condenser and Suction Pressures to produce One Ton of Refrigeration in Twenty-Four Hours

10 . 00	ssure				mperature	of the Gas	in Degrees	F.		
s in	Pressure inds are Inch	65°	70°	75°	80°	850	900	950	100°	105
Gas in Degrees F.	Suction Pre Pounds per Square		Corresp	onding Co	ndenser Pr	essure (gau	ige), Pound	ls per Squa	re Inch	
	Suct	103	115	127	139	153	168	184	200	218
07	G. Pres.								1	
-27	1	7.22	7.3	7.37	7.46	7.54	7.62	7.70	7.79	7.88
-20	4	5.84	5.9	5.96	6.03	6.09	6.16	6.23	6.30	6.43
-15	6	5.35	5.4	5.46	5.52	5.58	5.64	5.70	5.77	5.83
-10	9	4.66	4.73	4.76	4.81	4.86	4.91	4.97	5.05	5.08
- 5	13	4.09	4.12	4.17	4.21	4.25	4.30	4.35	4.40	4.44
0	16	3.59	3.63	3.66	3.70	3.74	3.78	3.83	3.87	3.91
5	20	3.20	3.24	3.27	3.30	3.34	3.38	3.41	3.45	3.49
10	24	2.87	2.9	2.93	2.96	2.99	3.02	3.06	3.09	3.12
15	28	2.59	2.61	2.65	2.68	2.71	2.73	2.76	2.80	2.82
20	33	2.31	2.34	2.36	2.38	2.41	2.44	2.46	2.49	2.51
25	39	2.06	2.08	2.10	2.12	2.15	2.17	2.20		2.24
30	45	1.85	1.87	1.89	1.91	1.93	1.95		2.22	
35	51	1.70	1.72	1.74	1.76	1.77	1.79	1.97	2.00 1.83	2.01 1.85

Table of Chloride of Calcium Solution

Specific Gravity at 64 Degrees F.	Degree Beaume at 64 Degrees F.	Degree Sal- ometer at 64 Degrees F.	Per Cent.	Freezing Point in Degrees F.	Ammonia Gauge Pressure Pounds per Square Inch
1.007 1.014 1.021 1.028 1.035 1.043	1 2 3 4 5 6 7	4 8 12 16 20 24	0.943 1.886 2.829 3.772 4.715 5.658	+31.20 +30.40 +29.60 +28.80 +28.00 +26.89	46 45 44 43 42 41
1.050 1.058 1.065	7 8 9	28 32	6.601 7.544	+25.78 $+24.67$ $+23.56$	40 38 37
1.073 1.081	10 11	36 40 44	8.487 9.430 10.373	$+22.09 \\ +20.62$	35.5 34
1.089 1.097 1.105	12 13 14	48 52 56	11.316 12.259 13.202	+19.14 +17.67 +15.75	32.5 30.5 29
1.114 1.112 1.131	15 16 17	60 64	14.145 15.088 16.031	+13.82 +11.89 + 9.96	29 27 25 23 5
1.140 1.149 1.158	18 19 20	68 72 76 80	16.974 17.917 18.860	+ 7.68 + 5.40 + 3.12	23.5 21.5 20
1.167 1.176 1.186	21 22 23	84 88	19.803 20.746	- 0.84 - 4.44	18 15 12.5
1.196 1.205	24 25	92 96 100	21.689 22.632 23.575	- 8.03 -11.63 -15.23	10.5 8 6
1.215 1.225 1.236	26 27 28	104 108 112 116	24.518 25.461 26.404	-19.56 -24.43 -29.29	4 1.5 1" vacuum 5" vacuum
1.246 1.257 1.268 1.279	29 30 31	116 120	27.347 28.290 29.233 30.176	-35.30 -41.32 -47.66	5" vacuum 8.5" vacuum 12" vacuum
1.279 1.290 1.302	30 31 32 33 34		30.176 31.119 32.062	-54.00 -44.32 -34.66	8.5" vacuum 12" vacuum 15" vacuum 10" vacuum 4" vacuum
1.313	35		33.	-25.00	1.5 pounds

Table of Brine Solution

(Chloride of Sodium—Common Salts)

Percenatge of Salt by Weight	Degrees on Salometer at 60 Degrees F.	Specific Gravity at 60 Degrees F.	Specific Heat	Weight of 1 Gallon	Pounds of Salt in 1 Gallon	Pounds of Water in 1 Gallon	Weight of 1 Cubic Foot	Pounds of Salt in 1 Cubic Foot	Pounds of Water in 1 Cubic Foot	Freezing Point Degrees F.
0	0	1.	1.	8.35	0.	8.35	62.4	0.	62.4	32.
1	4	1.007	0.992	8.4	0.084	8.316	62.8	0.628	62.172	31.8
5	20	1.037	0.96	8.65	0.432	8.218	64.7	3.237	61.465	25.4
10	40	1.073	0.892	8.95	0.895	8.055	66.95	6.695	60.253	18.6
15	60	1.115	0.855	9.3	1.395	7.905	69.57	10.435	59.134	12.2
20	80	1.150	0.829	9.6	1.92	7.68	71.76	14.352	57.408	6.86
25	100	1.191	0.783	9.94	2.485	7.455	74.26	18.565	55.695	1.00

0 M P В A K E R I C E M A C H I N E C A N

Table of Comparative Capacities of Pipes of Standard Sizes Showing the Number of Times the Area of One Pipe is Contained in that of a Large

H ∞	L 4	(2) (2)	H 23	ω 4	1	14	12	2	$2\frac{1}{2}$	3	$3\frac{1}{2}$	4	2	9	1	00	6
6.	1.																
3.3	1.8	1.															
5.3	2.9	1.5	1.														
9.3	5.2	2.7	1.7	1.													
14.7	7.7	4.1	2.6	1.6	1.												
26.2	14.3	7.8	4.9	2.8	1.6	1.											
35.6	19.5	9.01	9.9	3.8	2.4	1.3	1.										
58.6	32.2	17.5	11.0	6.9	3.9	2.2	1.6	Ι.									
83.6	44.6	25.0	15.7	9.0	5.5	3.2	2.3	1.4	1.								
129.1	71.0	38.5	24.2	13.8	8.5	5.0	3.6	2.2	1.5	1.							
172.8	95.0	51.6	32.4	18.5	11.4	9.9	4.8	2.9	2.0	1.3	1.						
222.5	122.3	66.4	41.7	23.8	14.7	8.5	6.2	3.8	2.6	1.7	1.3	1.					
349.4	192.0	104.3	65.6	37.4	23.1	13.3	8.6	5.9	4.1	2.7	2.0	1.5	1.				
505.0	277.5	150.7	94.7	54.1	33.4	19.3	14.1	8.6	0.9	3.9	2.9	2.2	1.4	1.			
677.2	372.1	202.2	127.0	71.3	44.9	25.9	19.0	11.5	8.1	5.2	3.9	3.0	1.9	1.3	1.		
878.3	480.7	261.2	164.1	93.8	58.0	34.5	24.5	14.9	10.4	6.7	5.0	3.9	2.5	1.7	1.3	1.	
1112.4	611.2	332.1	208.7	179.3	73.4	42.7	31.2	19.0	13.3	8.7	6.4	5.0	3.1	2.2	1.6	1.2	1.
1378.3	757.3	411.5	258.6	147.8	91.3	52.7	38.6	23.5	16.5	10.6	7.9	6.3	3.9	7.6	0.6	10	1 9 1

Areas of Circles Advancing by Eighths

Dia.	0	18	1/4	3 8	$\frac{1}{2}$	58	34	7 8
0	.0	.0122	.0490	.1104	.1963	.3068	.4417	.601;
1	.7854	.9940	1.227	1.484	1.767	2.073	2.405	2.761
2	3.1416	3.546	3.976	4.430	4.908	5.411	5.939	6.491
3	7.068	7.669	8.295	8.946	9.621	10.32	11.04	11.79
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66
5	19.63	20.62	21.64	22.69	23.75	24.85	25.96	27.10
6	28.27	29.46	30.67	31.91	33.18	34.47	35.78	37.12
7	38.48	39.87	41.28	42.71	44.17	45.66	47.17	48.70
8	50.29	51.84	53.45	55.08	56.74	58.42	60.13	61.86
9	63.61	65.39	67.20	69.02	70.88	72.75	74.69	76.58
10	78.54	80.51	82.51	84.54	86.59	88.66	90.76	92.88
11	95.03	97.20	99.40	101.6	103.8	106.1	108.4	110.7
12	113.0	115.4	117.8	120.2	122.7	125.1	127.6	130.1
13	132.7	135.2	137.8	140.5	143.1	145.8	148.4	151.2
14	153.9	156.6	159.4	162.2	165.1	167.9	170.8	173.7
15	176.7	179.6	182.6	185.6	188.6	191.7	194.8	197.9
16	201.0	204.2	207.3	210.5	213.8	217.0	220.3	223.6
17	226.9	230.3	233.7	237.1	240.5	243.9	247.4	250.9
18	254.4	258.0	261.5	265.1	268.8	272.4	276.1	279.8
19	283.5	287.2	291.0	294.8	298.6	302.4	306.3	310.2
20	314.1	318.1	322.0	326.0	330.0	334.1	338.1	342.2
21	346.3	350.4	354.6	358.8	363.0	367.2	371.5	375.8
22	380.1	384.4	388.8	393.2	397.6	402.0	406.4	410.9
23	415.4	420.0	424.5	429.1	433.7	438.3	433.0	447.6
24	452.3	457.1	461.8	466.6	471.4	476.2	481.1	485.9
25	490.8	495.7	500.7	505.7	510.7	515.7	520.7	525.8
26	536.9	536.0	541.1	546.3	551.5	556.7	562.0	567.2
27	572.5	577.8	583.2	588.5	593.9	599.3	604.8	610.2
28	615.7	621.2	626.7	632.3	637.9	643.5	649.1	654.8
29	660.5	666.2	671.9	677.7	683.4	689.2	695.1	700.9
30	706.8	712.7	718.6	724.6	730.6	736.6	742.6	748.6
31	754.8	760.9	767.9	773.1	779.3	785.5	791.7	798.0
32	804.3	810.6	816.9	823.2	829.6	836.0	842.4	848.8
33	855.3	861.8	868.3	874.9	881.4	888.0	894.6	901.3
34	907.9	914.7	921.3	928.1	934.8	941.6	948.4	955.3
35	962.1	969.0	975.9	982.8	989.8	996.8	1003.8	1010.8
36	1017.9	1025.0	1032.1	1039.2	1046.3	1053.5	1060.7	1068.0
37	1075.2	1082.5	1089.8	1097.1	1104.5	1111.8	1119.2	1126.9
38	1134.1	1141.6	1149.1	1156.6	1164.2	1171.7	1179.3	1186.7
39	1194.6	1202.3	1210.0	1217.7	1225.4	1233.2	1241.0	1248.8
40	1256.6	1264.5	1272.4	1280.3	1288.2	1296.2	1304.2	1312.2
41	1320.3	1328.3	1336.4	1344.5	1352.7	1360.8	1369.0	1377.2
42	1385.4	1393.7	1402.0	1410.3	1418.6	1427.0	1435.4	1443.8
43	1452.2	1460.7	1469.1	1477.6	1486.2	1494.7	1503.3	1511.9
44	1520.5	1529.2	1537.9	1546.6	1555.3	1564.0	1572.8	1581.6
45	1590.4	1599.3	1608.2	1617.0	1626.0	1634.9	1643.9	1652.9

The area of a circle is equal to the square of the diameter multiplied by 0.7854.

The circumference of a circle is equal to the diameter multiplied by 3.1416.

Useful Numbers for Rapid Approximation

Feet	X	.00019	=miles
Yards	X	.0006	=miles
Links	X	.22	=vards
Links	X	.66	=feet
Feet	X	1.5	=links
Square inches	Y	.007	=square feet
Circular inches	X	.00546	=square feet
Square feet	X	.111	=square yards
Acres	X	4840.	=square yards
Square yards	X		66—acres
Cubic feet	X	.04	=cubic yards
Cubic inches	X	.00058	=cubic feet
U. S. bushels	V	.046	=cubic yards
U. S. bushels	X	1.244	=cubic feet
U. S. bushels	X	2150.42	=cubic inches
Cubic feet	X	.8036	=U. S. bushels
Cubic inches	X	.000466	
U. S. gallons	Y	.13368	=cubic feet
U. S. gallons	~	231.	=cubic inches
Cubic feet	X	7.48	=U. S. gallons
Cylindrical feet	X	5.878	=U. S. gallons
Cubic inches	X	.004329	=U. S. gallons
Cylindrical inches	X	.0034	=U. S. gallons
Pounds	×	.009	=cwt. (112 lbs.)
Pounds	Y	.00045	=tons (2,240 lbs.)
Cubic feet water	Y	62.5	=lbs. avdps.
Cubic inches water	~	.03617	=lbs. avdps.
Cylindrical feet of water	~	49.1	=lbs. avdps.
Cylindrical inches of water	Y	.02842	=lbs. avdps.
U. S. gallons of water	÷	13.44	=cwt. (112 lbs.)
U. S. gallons of water	÷	268.8	=tons
Cubic feet water	÷	1.8	=cwt. (112 lbs.)
Cubic feet water		35.88	=tons
Cylindrical feet of water	÷	5.875	=U. S. gallons
Column of water 12 in, high, 1 in, diam		0.010	= 34 lbs.
155.540 circular inches			=1 square foot
2.200 cylindrical inches			=1 cubic foot
French meters	×	3.281	=feet
Allogrammes	×	2.205	=avdps. lbs.
Grammes	X	.0022	=avdps. lbs.
			a + ups. 105.

```
12 × weight of pine pattern—iron casting
13 × weight of pine pattern—brass casting
19 × weight of pine pattern—lead casting
12.2× weight of pine pattern—tin casting
11.4× weight of pine pattern—zinc casting
1 cubic foot anthracite coal—54 lbs.
40-43 cu. ft. anthracite coal—1 ton
49 cubic feet bituminous coal—I ton
```

537 lbs. per cu. ft.—weight of copper 450 lbs. per cu. ft.—weight of cast iron 485 lbs. per cu. ft.—weight of wrought iron 708 lbs. per cu. ft.—weight of cast lead 490 lbs. per cu. ft.—weight of steel 1 gal water—\$\frac{1}{3}\$ lbs.—231 cu. in. 1 cu. ft. water—\$6\frac{1}{2}\$ lbs.=7\frac{1}{2}\$ gals. 1 lb. water—27.8 cu. in.—1 pint

The friction of water in pipes is as the square of its velocity.

Doubling the diameter of a pipe increases

its capacity four times.

Horse Power Transmitted by Leather Belts

SINGLE

Speed in	WIDTH OF BELTS IN INCHES												
Feet per Minute	2	3	4	5	6	8	10	12	14	16	18	20	
400 600	H. P. 1 1 ¹ / ₂	H. P. 1½ 2¼	H. P.	H. P. $\frac{2\frac{1}{2}}{3\frac{3}{4}}$	H. P. 3 4½	H. P. 4 6	H. P. 5	H. P. 6 9	H. P. 7 10½	H. P. 8 12	H. P. 9 13½	H. P. 10 15	
800 1000 1200	$\begin{array}{c} 2\\ 2\frac{1}{2}\\ 3 \end{array}$	$ \begin{array}{c} 3 \\ 3\frac{3}{4} \\ 4\frac{1}{2} \end{array} $	4 5 6	$ \begin{array}{c} 5 \\ 6^{1}_{4} \\ 7^{1}_{2} \end{array} $	$\begin{array}{c} 6\\7\frac{1}{2}\\9\end{array}$	8 10 12	$ \begin{array}{c} 10 \\ 12\frac{1}{2} \\ 15 \end{array} $	12 15 18	$ \begin{array}{c} 14 \\ 17\frac{1}{2} \\ 21 \end{array} $	16 20 24	$ \begin{array}{r} 18 \\ 22\frac{1}{2} \\ 27 \end{array} $	20 25 30	
1500 1800 2000 2400 2800	$ \begin{array}{r} 3\frac{3}{4} \\ 4\frac{1}{2} \\ 5 \\ 6 \\ 7 \end{array} $	$ \begin{array}{r} 5\frac{3}{4} \\ 6\frac{3}{4} \\ 7\frac{1}{2} \\ 9 \\ 10\frac{1}{2} \end{array} $	$ \begin{array}{c} 7\frac{1}{2} \\ 9 \\ 10 \\ 12 \\ 14 \end{array} $	$\begin{array}{c} 9\frac{1}{2} \\ 11\frac{1}{4} \\ 12\frac{1}{2} \\ 15 \\ 17\frac{1}{2} \end{array}$	$ \begin{array}{c} 11\frac{1}{2} \\ 13\frac{1}{2} \\ 15 \\ 18 \\ 21 \end{array} $	15 18 20 24 28	$ \begin{array}{r} 18\frac{3}{4} \\ 22\frac{1}{2} \\ 25 \\ 30 \\ 35 \end{array} $	$ \begin{array}{c} 22\frac{1}{2} \\ 27 \\ 30 \\ 36 \\ 42 \end{array} $	$ \begin{array}{c} 26\frac{1}{2} \\ 31\frac{1}{2} \\ 35 \\ 42 \\ 49 \end{array} $	30 36 40 48 56	$ \begin{array}{r} 33\frac{3}{4} \\ 40\frac{1}{2} \\ 45 \\ 54 \\ 63 \end{array} $	$ \begin{array}{r} 37\frac{1}{2} \\ 45 \\ 50 \\ 60 \\ 70 \end{array} $	
3000 3500 4000 4500 5000	$ \begin{array}{c} 7\frac{1}{2} \\ 8\frac{3}{4} \\ 10 \\ 11\frac{1}{4} \\ 12\frac{1}{2} \end{array} $	$ \begin{array}{c} 11\frac{1}{4} \\ 13 \\ 15 \\ 17 \\ 19 \end{array} $	$ \begin{array}{r} 15 \\ 17\frac{1}{2} \\ 20 \\ 22\frac{1}{2} \\ 25 \end{array} $	$ \begin{array}{r} 18\frac{3}{4} \\ 22 \\ 25 \\ 28 \\ 31 \end{array} $	$ \begin{array}{r} 22\frac{1}{2} \\ 26 \\ 30 \\ 34 \\ 37\frac{1}{2} \end{array} $	30 35 40 45 50	$ \begin{array}{r} 37\frac{1}{2} \\ 44 \\ 50 \\ 57 \\ 62\frac{1}{2} \end{array} $	$ \begin{array}{r} 45 \\ 52\frac{1}{2} \\ 60 \\ 69 \\ 75 \end{array} $	$ 52\frac{1}{2} \\ 61 \\ 70 \\ 78 \\ 87\frac{1}{2} $	60 70 80 90 100	$ \begin{array}{c} 67\frac{1}{2} \\ 79 \\ 90 \\ 102 \\ 112 \end{array} $	75 88 100 114 125	

Belts supposed to be not overstrained, so they will last. 1-inch wide, 800 feet per minute—1 Horse Power.

DOUBLE

in t nute		WIDTH OF BELTS IN INCHES												
Speed in Feet per Minute	4	6	8	10	12	14	16	18	20	22	24	28	30	
400 600 800 1000 1200	$2\frac{3}{4}$	H. P. 4 ¹ / ₄ 6 ¹ / ₂ 8 ¹ / ₂ 11 13	H. P. $\frac{5\frac{3}{4}}{8\frac{3}{4}}$ $\frac{11\frac{1}{2}}{14\frac{1}{2}}$ $\frac{17\frac{1}{2}}{17}$	H. P. $7\frac{1}{4}$ 11 $14\frac{1}{2}$ $18\frac{1}{4}$ 22	$\begin{array}{c} \text{H. P.} \\ 8\frac{1}{2} \\ 13 \\ 17\frac{1}{2} \\ 21\frac{1}{2} \\ 26 \end{array}$	H. P. 10 15 20½ 25½ 30½	H. P. $\frac{11\frac{1}{2}}{17\frac{1}{2}}$ $\frac{23}{29}$ $\frac{29}{34\frac{1}{4}}$	H. P. 13 19½ 26 32½ 39	H. P. 14½ 22 29 36 44	H. P. 16 24 32 40 48	H. P. $17\frac{1}{2}$ 26 $34\frac{1}{2}$ $43\frac{1}{2}$ $52\frac{1}{2}$	$\begin{array}{c} \text{H. P.} \\ 20 \\ 30\frac{1}{2} \\ 40\frac{1}{2} \\ 51 \\ 60\frac{1}{2} \end{array}$	H. P. $21\frac{1}{2}$ $32\frac{1}{2}$ $43\frac{1}{2}$ $54\frac{1}{2}$ 65	
1500 1800 2000 2400 2800	13 $14\frac{1}{2}$ $17\frac{1}{4}$	$\begin{array}{c} 16\frac{1}{4} \\ 19\frac{1}{2} \\ 21\frac{3}{4} \\ 26 \\ 30\frac{1}{2} \end{array}$	$ \begin{array}{c} 21\frac{3}{4} \\ 26 \\ 29 \\ 34\frac{3}{4} \\ 40\frac{1}{2} \end{array} $	$\begin{array}{c} 27\frac{1}{4} \\ 32\frac{3}{4} \\ 36\frac{1}{2} \\ 44 \\ 51 \end{array}$	$ \begin{array}{r} 32\frac{1}{2} \\ 39 \\ 43\frac{1}{2} \\ 52\frac{1}{2} \\ 61 \end{array} $	$ \begin{array}{r} 38 \\ 45\frac{1}{2} \\ 50\frac{1}{2} \\ 60\frac{1}{2} \\ 71 \end{array} $	$ \begin{array}{r} 43\frac{1}{2} \\ 52 \\ 58 \\ 69\frac{1}{2} \\ 81 \end{array} $	$ \begin{array}{r} 49 \\ 59 \\ 65\frac{1}{2} \\ 78\frac{1}{2} \\ 91\frac{1}{2} \end{array} $	$ \begin{array}{r} 54\frac{1}{2} \\ 65\frac{1}{2} \\ 72\frac{1}{2} \\ 88 \\ 102 \end{array} $	60 72 80 96 112	$ \begin{array}{c} 65\frac{1}{2} \\ 78\frac{1}{2} \\ 87 \\ 105 \\ 122 \end{array} $	$ 76\frac{1}{2} 91\frac{1}{2} 102 122 142 $	$ \begin{array}{r} 81\frac{1}{2} \\ 98 \\ 109 \\ 131 \\ 153 \end{array} $	
3000 3500 4000 4500 5000	$25\frac{1}{2}$ 29 $32\frac{1}{2}$	$\begin{array}{c} 32\frac{1}{2} \\ 38 \\ 43\frac{1}{2} \\ 49 \\ 54\frac{1}{2} \end{array}$	$43\frac{1}{2} \\ 50\frac{3}{4} \\ 58\frac{1}{4} \\ 65 \\ 72\frac{3}{4}$	$54\frac{1}{2} \\ 63\frac{1}{2} \\ 72\frac{3}{4} \\ 82 \\ 91$	65½ 76 87 98 109	76 89 101 114 127	87½ 101 116 131 145	98 114 131 147 163	108 127 145 163 182	120 140 160 180 200	131 153 174 196 218	153 178 204 229 254	163 191 218 245 272	

1-inch wide, 550 feet per minute=1 Horse Power.

Horsepower Turned Steel Shafting For Line Shaft Service Bearings Eight Feet Apart

Formula: H. P.=horsepower; D=diameter of shaft in inches; R=revolutions per minute.

H. P.=
$$\frac{D^3 R}{90}$$

Size Shaft Inches	REVOLUTIONS PER MINUTE													
	100	125	150	175	200	225	250	300	350	400				
13	2.1	2.6	3.2	3.7	4.2	4.7	5.3	6.3	7.4	0				
$1\frac{3}{16}$ $1\frac{7}{16}$	3.7		5.6		7.4	8.3	9.3	11.1	7.4	8.4				
111	5.3		8.0		10.7	12.0	13.4	16	18.7	14.5				
1 116 1 16 1 16	8.1		12.1	14.1	16.1	18.2	20	24	28	21 32				
23	11.6	14.6	17.5	20	23	26	29	35	41	47				
$2\frac{3}{16}$ $2\frac{7}{16}$	16	20	24	28	32	36	40	48	56	64				
214	21	27	32	38	43	48	54	65	76	86				
215	28	35	42	49	56	63	70	84	99	113				
$\frac{3\frac{3}{16}}{3\frac{7}{16}}$	36	45	54	63	72	81	90	108	126	144				
376	45	56	68	79	90	102	113	135	158	181				
311	56	70	83	98	111	125	139	167	195	223				
315	68	85	102	118	135	152	169	203	237	271				
$4\frac{7}{16}$	97	122	146	171	193	219	243	292	341	390				
416	134	168	201	235	268	302	336	402	470	537				
$5\frac{7}{16}$	184	230	277	322	369	415	461	553	645	738				
6	240	300	360	419	480	540	600	720	840	960				
$6\frac{7}{16}$	305	382	459	535	611	687	764	917	1069	1222				
7	381	476	573	667	762	857	953	1143	1333	1524				
$\frac{7\frac{1}{2}}{8}$	468	586	704	822	938	1055	1173	1406	1641	1875				
8	568	712	855	998	1138	1280	1423	1707	1991	2275				
81	681	853	1025	1197	1364	1535	1707	2047	2387	2728				
9	809	1013	1217	1421	1620	1822	2027	2430	2834	3240				
91	951	1191	1431	1671	1904	2142	2382	2858	3334	3808				
10	1111	1388	1666	1944	2222	2500	2778	3333	3888					

Head Shaft Service

For head and jack shafts, supported by bearings close to the main sheave or pulley, so as to prevent transverse strain, the following formula may be used with safety:

H. P.=horsepower; D=diameter of shaft in inches; R=revolutions per minute.

H. P.= $\frac{D^3 R}{125}$

Comparison of Thermometers

	Réau.	Fahr.	Cent.	Réau.	Fahr.	Cent.	Réau.	Fahr
-40	-32.0	-40.0	21	16.8	69.8	62	49.6	143.6
-38	-30.4	-36.4	22	17.6	71.6	63	50.4	145.4
-36	-28.8	-32.8	23	18.4	73.4	64	51.2	147.
-34	-27.2	-29.2	24	19.2	75.2	65	52.0	149.
-32	-27.2 -25.6	-25.2 -25.6	25	20.0	77.0	66	52.8	150.
$-32 \\ -30$	-25.0 -24.0	-23.0 -22.0	26	20.8	78.8	67	53.6	152.
	-24.0 -22.4	-22.0 -18.4	27	20.8	80.6	68	54.4	154.
-28			28	22.4	82.4	69	55.2	156.
-26	-20.8	-14.8				70	56.0	158.
-24	-19.2	-11.2	29	23.2	84.2			159.
-22	-17.6	- 7.6	30	24.0	86.0	71	56.8	161.
-20	-16.0	-4.0	31	24.8	87.8	72	57.6	
-18	-14.4	- 0.4	32	25.6	89.6	73	58.4	163.
-16	-12.8	+ 3.2	33	26.4	91.4	74	59.2	165.
-14	-11.2	6.8	34	27.2	93.2	75	60.0	167.
-12	- 9.6	10.4	35	28.0	95.0	76	60.8	168.
-10	-8.0	14.0	36	28.8	96.8	77	61.6	170.
- 8	-6.4	17.6	37	29.6	98.6	78	62.4	172.
- 6	-4.8	21.2	38	30.4	100.4	79	63.2	174.
- 4	-3.2	24.8	39	31.2	102.2	80	64.0	176.
- 2	-1.6	28.4	40	32.0	104.0	81	64.8	177.
0	0.0	32.0	41	32.8	105.8	82	65.6	179.
+1	+ 0.8	33.8	42	33.6	107.6	83	66.4	181.
2	1.6	35.6	43	34.4	109.4	84	67.2	183.
3	2.4	37.4	44	35.2	111.2	85	68.0	185.
4	3.2	39.2	45	36.0	113.0	86	68.8	186.
5	4.0	41.0	46	36.8	114.8	87	69.6	188.
6	4.8	42.8	47	37.6	116.6	88	70.4	190.
7	5.6	44.6	48	38.4	118.4	89	71.2	192.
8	6.4	46.4	49	39.2	120.2	90	72.0	194.
9	7.2	48.2	50	40.0	122.0	91	72.8	195.
10	8.0	50.0	51	40.8	123.8	92	73.6	197.
11	8.8	51.8	52	41.6	125.6	93	74.4	199.
12	9.6	53.6	53	42.4	127.4	94	75.2	201.
13	10.4	55.5	54	43.2	129.2	95	76.0	203.
14	11.2	57.2	55	44.0	131.0	96	76.8	204.
15	12.0	59.0	56	44.8	132.8	97	77.6	206.
16	12.8	60.8	57	45.6	134.6	98	78.4	208.
17	13.6	62.6	58	46.4	136.4	99	79.2	210.
18	14.4	64.4	59	47.2	138.2	100	80.0	212.
19	15.2	66.2	60	48.0	140.0	100	00.0	
20	16.0	68.0	61	48.8	141.8			-

Fahr.= $32 + \frac{9}{5}$ Cent.= $32 + \frac{9}{4}$ Réau.

Freezing point on Fahrenheit scale is +32 degrees; boiling point, 212 degrees.

Freezing point on Centigrade scale is +0 degrees; boiling point, 100 degrees.

Freezing point on Réaumur scale is+0 degrees; boiling point, 80 degrees.

Of water at sea level at normal barometer pressure (29.9 inch).

The "absolute zero" of temperature denotes that condition of matter at which heat ceases to exist. At this point a body would be wholly deprived of heat and a gas would exert no pressure.

The absolute zero on the Fahrenheit scale is about 461 degrees below zero. The absolute zero on the Centigrade scale is about 274 degrees below zero.

The absolute zero on the Réaumur scale is about 219 degrees below zero.

An English unit of heat (B. T. U.) is the quantity required to raise one pound of water one degree Fahrenheit. A metric unit of heat or metric caloric (M. C.) is the quantity of heat required to raise one litre of water one degree centigrade.

Index

Agitators, Brine	
Areas of Circles (Table)	
Cans, Ice	
Coils, Ammonia	2
Compressors, Sectional View	4
Condensers, Double Pipe Ammonia	2
Condensers, Exhaust Steam	3
Coolers, Double Pipe Brine	2
Coolers, Double Pipe Distilled Water	3
Coolers, Flooded Type Brine	2
Crosses, Ammonia	
Dumps, Automatic Ice	
Fillers, Automatic Can	3
Filters	3:
Fittings, Oval Flanged Ammonia	1:
Fittings, Screw End Ammonia	11
Fittings, Special Ammonia	41
Fittings, Special Double Type	44
Fittings, Square Flanged Ammonia	
Fittings, Square Flanged Offset	41
Flanges, Ammonia	19-21
Gaskets, Rubber	
Gauge Board	39
Gauges, Ammonia	39
Gauges, Automatic Liquid Ammonia	29
Headers, Wrought Iron Branch	23
Hoist and Conveyor, Swivel Hand	37
Hoists, Air and Electric	37
Pumps, Brine Circulating	38
Return Bends, Screw End Ammonia	18
Return Bends, Square Flanged Ammonia	
Return Bends, Patented	44
Reboiler and Skimmer	31
Receivers, Ammonia	29
Separators, Ammonia Oil	28
Sprinkling Device	24
Stand , Condenser and Cooler	24
Stands, Liquid Receiver	
Tables.	45-55
Traps, Suction Scale	28
Valves, Automatic Ammonia Expansion	40
Valves, Oval Flange Ammonia	9
Valves Oval Flange Ammonia Expansion	11
Valves, Round Flange Ammonia Globe	6
Valves, Screw End Ammonia	
Valves, Screw End Expinsion	
Valves, Square Flange Ammonia Angle	
Valves, Square Flange Ammonia Globe	7
Water Cooling Systems	36

