

Efficient Algorithm for

"Ear Decomposition"

Debarshi Dutta, Kishore Kothaplli

IIIT Hyderabad

G.Ramakrishna, Sai Charan.R and Sai Harsh.T

IIIT Chittoor, Sri City

Overview

Terminology

Ear Decomposition Problem

Past Work

Our Contribution

Experiments

Bi-Connected Graph

Ear Decomposition Definition

An ear decomposition of a graph G = (V, E) is partition of E into a sequence (P_0, P_1, P_k) such that

- (i) P_0 is a cycle
- (ii) for each $i \geq 1$, P_i is an ear of $P_0 \cup ... \cup P_i$.
- (iii) end points of all the ears P_i , $i \geq 1$, are distinct.

 $(P_1, P_2, P_3, P_4,$

 $(P_1, P_2, P_3, P_4, P_5,$

 $(P_1, P_2, P_3, P_4, P_5, P_6)$

Ear Decomposition Problem

Input: An unweighted bi-connected Graph G

Question: Obtain Ear Decomposition of G?

Efficiently

Past Work

Lovász's Algorithm

L. Lovász. Computing ears and branchings in parallel. Found. of Comp. Sci, 464-467, 1985.

Schmidt's Algorithm

J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Info. Proc. Lett., 113, 241-244, 2013.

Our Contribution

In Theory

An Algorithm that is Asymptotically equivalent to Schmidt's Algorithm

In Practice

An Algorithm with 2X SpeedUp w.r.t Schmidt's Algorithm

Schmidt's Algorithm

Graph

Schmidt's Algorithm

rs rree

Tree Edges

Schmidt's Algorithm

Graph DFS Tree

Tree Edges
..... Non-Tree Edges

Schmidt's Algorithm $(P_1, P_2,$

Graph DFS Tree Ear Decomposition

Schmidt's Algorithm $(P_1, P_2, P_3,$

Graph DFS Tree Ear Decomposition

Schmidt's Algorithm $(P_1, P_2, P_3, P_4,$

Graph DFS Tree Ear Decomposition

Length
6
$\frac{6}{2}$
1
1
2
1

Chain	Lengt
P_1	6
P_2	2
P_3	1
P_4	1
P_5	2
P_6	1

 P_1

 P_2

Ear Decomposition with Trivial Ears

1	Length
	6
	2
	1
	1
	2
	1

Ear Decomposition without Trivial Ears

Lemma

G: Graph

 $T: Spanning\ Tree\ of\ G$

 $F: Spanning\ Forest\ of\ G-T$

 $|BiconnectedComponents(G)| = |BiconnectedComponents(T \cup F)|$

G. Cong and D. A. Bader. An experimental study of parallel biconnected components algorithms on symmetric multiprocessors. *Inter. Par. and Dist. Proc. Symp*, 2005.

Key Approach

BFS Tree

(T From G)

Construct a Spanning Forest

(F From G - T)

Theorem

 $n: number\ of\ vertices$

 $\frac{\ln n}{n}$

A random graph G(n, p) is connected with very high probability

P. Erds and A Rnyi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. pages 17-61, 1960.

CSR Format of a Graph (G)

A			В		C		D		E			F			G			H									
B	G	Н	A	C	Н	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

CSR Format of a Dense Graph

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}

Here $\log n = 4$

Moving $\log n$ edges of each vertex from G to $T \cup F$

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}

Here $\log n = 4$

Moving $\log n$ edges of each vertex from G to $T \cup F$

Random Sampling

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}

Here $\log n = 4$

Moving $\log n$ edges of each vertex from G to $T \cup F$

Running Time Comparision

S	chmidt's A	Algorithm: 4m+C	O(n)	
	BFS (T)	Spanning Forest (F)	$EarDecomposition(T \cup F)$	Total
Breadth First or Depth First Traversals	2m + O(n)	2m + O(n)	O(n)	4m + O(n)
$\begin{array}{c} disjoint-set-forest\\ \text{union-by-rank and}\\ \text{path compression} \end{array}$	2m + O(n)	$m\alpha(n) + O(n)$	O(n)	$2m + \alpha(n)m + O(n)$
Random Sampling	2m + O(n)	$O(n \log n)$	O(n)	$2m + O(n\log n)$

Results

2X Seed Up

Thank You..!!
Questions?

Results

	A			B			(7			D			I	E			F			G				Н		
B	G	Н	A	C	H	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

 $B \mid G \mid H \mid A \mid C \mid H \mid B \mid D \mid F \mid H \mid$

H

 $C \mid E \mid$

 $C \mid E \mid F \mid D \mid F \mid G \mid H \mid C \mid D \mid E \mid A \mid E \mid H \mid A \mid B \mid$

	A			B			(C			D			1	Ξ			F			G				Н		
B	G	Н	A	C	H	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

		A			B			(J			D			I	Ξ			F			G				Н		
E	3	G	Н	A	C	H	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

	A			В			(J			D			1	Ξ			F			G				Н		
B	G	H	A	C	H	В	D	F	Н	C	E	F	D	F	G	H	C	D	E	A	E	Н	A	В	C	E	G

	A			B			(J			D			1	Ξ			F			G				Н		
B	G	H	A	C	H	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

	A			В			(Z .			D			1	Ξ			F			G				Н		
B	G	H	A	C	H	В	D	F	Н	C	E	F	D	F	G	Н	C	D	E	A	E	Н	A	В	C	E	G

	A			B			(T			D			I	$\overline{\mathcal{E}}$			F			G				Н		
B	G	H	A	C	H	B	D	F	H	C	E	F	D	F	G	Н	C	D	E	A	E	H	A	B	C	E	G

TUF is connected graph with some isolated vertices.

