Notes Section 5.6 – Logarithmic Equations Using Properties

Lesson Objectives

1. Use logarithm properties to solve equations

Expanding/Condensing Logarithm Properties – Reminder for your reference:

• Product Rule:

$$\log_a(mn) = \log_a(m) + \log_a(n)$$
 EXPANDING (Product to Sum)

or
$$\log_a(m) + \log_a(n) = \log_a(mn)$$
 CONDENSING (Sum to Product)

• Quotient Rule:

$$\log_a\left(\frac{m}{n}\right) = \log_a(m) - \log_a(n)$$
 EXPANDING (Quotient to Difference)

or
$$\log_a(m) - \log_a(n) = \log_a\left(\frac{m}{n}\right)$$
 CONDENSING (Difference to Quotient)

• Power Rule:

$$\log_a(m^r) = r \log_a(m)$$
 EXPANDING (Exponent to Coefficient)

or
$$r \log_a(m) = \log_a(m^r)$$
 CONDENSING (Coefficient to Exponent)

EXAMPLE: Solve the equation. $\log_5 2 + \log_5 x = 0$ [*Martin-Gay 9.8.13]

Use Product Rule (sum to product) to CONDENSE to single logarithm.	$\log_5(2) + \log_5(x) = 0$
This will also isolate the logarithm.	
Do NOT divide by the 2 yet! It is trapped inside the logarithm.	$\log_5(2 \cdot x) = 0$
To undo the logarithm, convert to the exponential form.	$\log_5(2x) = 0$ A logarithm is an exponent
Simplify. Remember property: $a^0=1$	$5^{0} = 2x$
Solve the equation. (Divide both sides by 2)	1 = 2x
Simplify.	$\frac{1}{2} = \frac{2x}{2}$
Answer:	$x=\frac{1}{2}$

Notes Section 5.6 – Logarithmic Equations Using Properties

• **EXAMPLE:** Solve the following logarithmic equation.

$$\log_2 x + \log_2 7 = 3$$

[*Angel 13.6.47]

Use Product Rule (sum to product) to CONDENSE to single logarithm.	$\log_2(x) + \log_2(7) = 3$
This will also isolate the logarithm.	
Do NOT divide by the 7 yet! It is trapped inside the logarithm.	$\log_2(x \cdot 7) = 3$
To undo the logarithm, convert to the exponential form.	$log_2(7x) = 3$ A logarithm is an exponent
Simplify. $2^3 = 8$	$2^3 = 7x$
Solve the equation. (Divide both sides by 7)	8 = 7x
Simplify.	$\frac{8}{7} = \frac{7x}{7}$
Answer:	$x=\frac{8}{7}$

• **EXAMPLE:** Solve the logarithmic equation. $\ln x + \ln x^2 = 4$ [5.6.59] (Round to the nearest thousandth as needed.)

Use Product Rule (sum to product) to CONDENSE to single logarithm. This will also isolate the logarithm.	$\ln(x) + \ln(x^2) = 4$
Simplify. $x \cdot x^2 = x^3$ (add exponents)	$\ln(x \cdot x^2) = 4$
Equation will be EASIER with just x than with x^3 . Use Power Rule (exponent to coefficient)	$\ln(x^3) = 4$
Divide both sides by 3.	$3\ln(x)=4$
Simplify. Remember that In is same as log e	$\frac{3\ln(x)}{3} = \frac{4}{3}$
To undo the logarithm, convert to the exponential form.	$\log_e(x) = \frac{4}{3}$ A logarithm is an exponent
This is the exact answer : $x=e^{4/3}$	$e^{4/3}=x$
Use calculator to get the rounded answer: A	Rounded Answer: $x \approx 3.793667895$

(RESET – Here's another way to do the previous problem):

• **EXAMPLE:** Solve the logarithmic equation. $\ln x + \ln x^2 = 4$ [5.6.59] (Round to the nearest thousandth as needed.)

Rather than use the Product Rule like before, use the Power Rule (exponent to coefficient) on the second term.	$\ln(x) + \ln(x^2) = 4$
The first term has an understood coefficient 1.	$1\ln(x) + 2\ln(x) = 4$
Combine like terms: 1 of them + 2 of them = 3 of them	$1\ln(x) + 2\ln(x) = 4$
(From here, the steps are the same as before.) Divide both sides by 3.	$3\ln(x)=4$
Simplify. Remember that In is same as log e	$\frac{3\ln(x)}{3} = \frac{4}{3}$
To undo the logarithm, convert to the exponential form.	$\log_e(x) = \frac{4}{3}$ A logarithm is an exponent
This is the exact answer : $\pmb{x} = \pmb{e}^{4/3}$	$e^{4/3}=x$
Use calculator to get the rounded answer: 2ND LN 4 3 ENTER	Rounded Answer: $x \approx 3.793667895$

You can use EITHER method when you solve a problem like the previous examples (for Question 7 in the Homework). Be ready to do either the **exact** answer (like $e^{4/3}$) or the rounded answer.

Sources Used:

^{1.} MyLab Math for Elementary & Intermediate Algebra for College Students, 5th Edition, Angel, Pearson Education Inc.

^{2.} MyLab Math for *Intermediate Algebra: A Graphing Approach*, 5th Edition, Martin-Gay, Pearson Education Inc.

^{3.} MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.

^{4.} Texas Instruments TI Connect® CE software, https://education.ti.com/en/products/computer-software/ti-connect-ce-sw