

CS5340 Uncertainty Modeling in Al

Lecture 4: Variable Elimination and Belief Propagation

Asst. Prof. Lee Gim Hee
AY 2020/21
Semester 1

Course Schedule

Week	Date	Topic	Remarks
1	12 Aug	Introduction to probabilistic reasoning	1830hrs: MS Teams (Live Introduction)
2	19 Aug	Bayesian networks (Directed graphical models)	
3	26 Aug	Markov random Fields (Undirected graphical models)	1830hrs: Zoom discussions
4	02 Sep	Variable elimination and belief propagation	Assignment 1: Belief propagation and maximal probability (15%)
5	09 Sep	Factor graph and the junction tree algorithm	
6	16 Sep	Parameter learning with complete data	Assignment 1: Due Assignment 2: Junction tree and parameter learning (15%) 1830hrs: Zoom discussions
-	23 Sep	Recess week	No lecture
7	30 Sep	Mixture models and the EM algorithm	Assignment 2: Due Online quiz 1 (20%)
8	07 Oct	Hidden Markov Models (HMM)	Assignment 3: Hidden Markov model (15%)
9	14 Oct	Monte Carlo inference (Sampling)	1830hrs: Zoom discussions
10	21 Oct	Variational inference	Assignment 3: Due Assignment 4: MCMC Sampling (15%)
11	28 Oct	Variational Auto-Encoder and Mixture Density Networks	
12	04 Nov	Graph-cut and alpha expansion	Assignment 4: Due 1830hrs: Zoom discussions
-	11 Nov		Online quiz 2 (20%)

CS5340 :: G.H. Lee

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- Michael I. Jordan "An introduction to probabilistic graphical models", 2002
 Chapters 3 and 4.1
 http://people.eecs.berkeley.edu/~jordan/prelims/chapter3.pdf (Section 4.1)
- 2. Kevin Murphy, "Machine learning: a probabilistic approach" Chapter 20.1, 20.2, 20.3
- Daphne Koller and Nir Friedman, "Probabilistic graphical models" Chapter 9
- 4. David Barber, "Bayesian reasoning and machine learning" Chapter 5
- 5. Christopher Bishop "Machine learning and pattern recognition" Chapter 8.4

Learning Outcomes

- Students should be able to:
- 1. Use the Variable Elimination algorithm to compute the conditional probability of a single random variable X_f , i.e. $p(x_f|x_E)$.
- 2. Explain the computational complexity of variable elimination using the constituted graph.
- 3. Use the sum-product algorithm to compute all single-node marginals for "tree-like" graphical models.

- Let *E* and *F* be disjoint subsets of the node indices of a graphical model.
- X_E and X_F are disjoint subsets of the random variables in the domain.
- Our goal is to calculate $p(X_F|X_E)$ for arbitrary subsets E and F.
- This is the general probabilistic inference problem for graphical models (directed or undirected).

Conditional probability:

$$p(x_F \mid x_E) = \frac{p(x_E, x_F)}{p(x_E)}$$

Marginals from joint probability:

$$p(x_E, x_F) = \sum_{x_R} p(x_E, x_F, x_R),$$

 $p(x_E) = \sum_{x_E} p(x_E, x_F)$

 X_R : nuisance variables

 $\{X_E, X_R, X_F\}$: all random variables in the graphical model

- Dark shading indicates the "evidence nodes" X_E on which we condition.
- Unshaded node is the "query node" X_F for which we wish to compute conditional probabilities.
- Lightly shaded nodes $X_R = X_V \setminus (X_E, X_F)$ are the nodes that must be marginalized out of the joint probability.

Marginals from joint probability:

$$p(x_E, x_F) = \sum_{x_E} p(x_E, x_F, x_R), \quad p(x_E) = \sum_{x_F} p(x_E, x_F)$$

- Σ_{x_R} expands into a sequence of summations, one for each of the random variables indexed by R.
- A naïve summation over the joint distribution of n variables that takes k states will incur a computational complexity of $O(k^n)!$

Variable Elimination Algorithm

- We will first look at how to calculate the conditional probability of a single node X_F given an arbitrary set of nodes X_E .
- Refer to X_F as the "query node", and X_E as the "evidence nodes".
- Variable elimination algorithm: an efficient algorithm based on marginalization and conditional independence of the graphical model.

Naive Summation

Naïve summation is intractable!

Consider:

Joint probability table size is k^6

$$p(x_1, x_2, x_3, x_4, x_5) = \sum_{x_6} p(x_1, x_2, x_3, x_4, x_5, x_6)$$

 $o(k^6)$ operations to do a single sum $\Rightarrow O(k^n)$ complexity!

Variable Elimination

• To reduce computational complexity let's represent the joint probability in its factored form and exploit the distributive law:

$$p(x_1, x_2, ..., x_5) = \sum_{x_6} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) p(x_5 | x_3) p(x_6 | x_2, x_5)$$

$$= p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) p(x_5 | x_3) \sum_{x_6} p(x_6 | x_2, x_5)$$

 $O(k^6)$ to $O(k^3)$ operations to do a single sum!

Table size of k^3

 $\Rightarrow O(k^r)$ instead of $O(k^n)$ complexity, where $r \ll n$

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Evidence Node

Consider:

$$p(x_1|x_6) = \frac{p(x_1, x_6)}{p(x_6)}$$

where

 X_6 : evidence node

 X_1 : query node

- Evidence node X_6 is observed, hence a fixed constant that does not contribute to the computational complexity.
- Let us denote an observed evidence node as \bar{X}_i :

$$p(x_1|\bar{x}_6) = \frac{p(x_1, \bar{x}_6)}{p(\bar{x}_6)}$$

Evidence Node

Example: $x_i \in \{0,1\}$

We observed that $\bar{X}_6 = 1$

X_2	X_5	X_6	$p(x_6 x_2,x_5)$
0	0	0	v_0
0	0	1	v_1
0	1	0	v_2
0	1	1	v_3
1	0	0	v_4
1	0	1	v_5
1	1	0	v_6
1	1	1	v_7

X_2	X_5	$p(\overline{x}_6=1 x_2,x_5)$
0	0	v_1
0	1	v_3
1	0	v_5
1	1	v_7

13

We are taking a 2d slice of the 3d probabilities or potentials!

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee

Variable Elimination

Conditional probability:

$$p(x_1|\bar{x}_6) = \frac{p(x_1, \bar{x}_6)}{p(\bar{x}_6)}$$

Marginal probability:

$$\begin{array}{lcl} p(x_{1},\bar{x}_{6}) & = & \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p(x_{1}) p(x_{2} \mid x_{1}) p(x_{3} \mid x_{1}) p(x_{4} \mid x_{2}) p(x_{5} \mid x_{3}) p(\bar{x}_{6} \mid x_{2}, x_{5}) \\ & = & p(x_{1}) \sum_{x_{2}} p(x_{2} \mid x_{1}) \sum_{x_{3}} p(x_{3} \mid x_{1}) \sum_{x_{4}} p(x_{4} \mid x_{2}) \sum_{x_{5}} p(x_{5} \mid x_{3}) p(\bar{x}_{6} \mid x_{2}, x_{5}) \\ & = & p(x_{1}) \sum_{x_{2}} p(x_{2} \mid x_{1}) \sum_{x_{3}} p(x_{3} \mid x_{1}) \sum_{x_{4}} p(x_{4} \mid x_{2}) m_{5}(x_{2}, x_{3}) & \text{eliminate } X_{5} \end{array}$$

- Summands can be pushed in due to the distributive law.
- $m_i(x_{S_i})$ denote the expression from performing Σ_{x_i} , where X_{S_i} are the variables, other than X_i , that appear in the summand.

Variable Elimination

Marginal probability:

$$\begin{array}{lll} p(x_1,\bar{x}_6) & = & \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2) p(x_5 \mid x_3) p(\bar{x}_6 \mid x_2,x_5) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) \sum_{x_4} p(x_4 \mid x_2) \sum_{x_5} p(x_5 \mid x_3) p(\bar{x}_6 \mid x_2,x_5) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \sum_{x_4} p(x_4 \mid x_2) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \end{array} \begin{array}{l} \text{eliminated } X_4, \\ \text{Independent of } X_3 \end{array}$$

$$= & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) \sum_{x_3} p(x_3 \mid x_1) m_5(x_2,x_3) \\ & = & p(x_1) \sum_{x_2} p(x_2 \mid x_1) m_4(x_2) m_3(x_1,x_2) \end{array} \begin{array}{l} \text{eliminated } X_4, \\ \text{Independent of } X_3 \end{array}$$

Marginalization Table

Example: $x_i \in \{0,1\}$ We observed that $\overline{X}_6 = 1$

X_2	X_5	$p(\overline{x}_6=1 x_2,x_5)$
0	0	a_1
0	1	a_2
1	0	a_3
1	1	a_4

X_3	X_5	$p(x_5 x_3)$
0	0	b_1
0	1	b_2
1	0	b_3
1	1	b_4

X_2	X_3	$\sum_{x_5} p(x_5 x_3) p(\overline{x}_6 = 1 x_2, x_5)$
0	0	$p(x_5 = 0 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 0) + p(x_5 = 1 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 1) = (b_1)(a_1) + (b_2)(a_2)$
0	1	$p(x_5 = 0 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 0) + $ $p(x_5 = 1 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 0, x_5 = 1) = $ $(b_3)(a_1) + (b_4)(a_2)$
1	0	$p(x_5 = 0 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 0) + $ $p(x_5 = 1 x_3 = 0)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 1) = $ $(b_1)(a_3) + (b_2)(a_4)$
1	1	$p(x_5 = 0 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 0) +$ $p(x_5 = 1 x_3 = 1)p(\bar{x}_6 = 1 x_2 = 1, x_5 = 1) =$ $(b_3)(a_3) + (b_4)(a_4)$

Variable Elimination

Marginal probability:

$$p(x_1, \bar{x}_6) = p(x_1)m_2(x_1)$$

From this result we can obtain the probability $p(\bar{x}_6)$ by taking an additional sum over X_1 :

$$p(\bar{x}_6) = \sum_{x_1} p(x_1) m_2(x_1)$$

The desired conditional is obtained by:

$$p(x_1 \mid \bar{x}_6) = \frac{p(x_1)m_2(x_1)}{\sum_{x_1} p(x_1)m_2(x_1)}$$

- Notational trick in which conditioning is viewed as a summation.
- This trick will allow us to treat marginalization and conditioning as formally equivalent.
- Make it easier to bring the key operations of the inference algorithms into focus.

• To capture the fact that X_i is fixed at the value \overline{X}_i , we define an evidence potential:

$$\delta(x_i, \bar{x}_i) = \begin{cases} 1 & if \ x_i = \bar{x}_i \\ 0 & otherwise \end{cases}$$

The evidence potential allows us to turn evaluations into sums:

$$g(\bar{x}_i) = \sum_{x_i} g(x_i) \delta(x_i, \bar{x}_i)$$

• A trick that also extends to multivariate functions with X_i as one of the arguments.

Proof:

$$g(\bar{x}_i) = \sum_{x_i} g(x_i) \delta(x_i, \bar{x}_i)$$

$$\sum_{x_i} g(x_i)\delta(x_i, \bar{x}_i)$$

$$= g(x_i = 0)\delta(x_i = 0) + \dots + g(x_i = \bar{x}_i)\delta(x_i = \bar{x}_i) + \dots + g(x_i = k)\delta(x_i = k)$$

$$= g(x_i = \bar{x}_i)$$

Example:

(Directed Graph)

 $p(\bar{x}_6|x_2,x_5)$ from the previous example can be written as:

$$m_6(x_2, x_5) = \sum_{x_6} p(x_6 | x_2, x_5) \delta(x_6, \bar{x}_6)$$
$$= p(\bar{x}_6 | x_2, x_5)$$

(Undirected Graph)

 $\psi(x_2, x_5, \bar{x}_6)$ can be written as:

$$m_6(x_2, x_5) = \sum_{x_6} \psi(x_2, x_5, x_6) \delta(x_6, \bar{x}_6)$$
$$= \psi(x_2, x_5, \bar{x}_6)$$

We have turned conditioning into marginalization!

• We further define the total evidence potential on a set of nodes X_E to be conditioned on:

$$\delta(x_E, \bar{x}_E) = \prod_{i \in E} \delta(x_i, \bar{x}_i) = \begin{cases} 1 & if \ x_E = \bar{x}_E \\ 0 & otherwise \end{cases}$$

• The numerator and the denominator of the conditional probability $p(x_F|\bar{x}_E)$ can be obtained by summation:

$$p(x_F|\bar{x}_E) = \frac{p(x_F, \bar{x}_E)}{p(\bar{x}_E)} = \frac{\sum_{x_E} p(x_F, x_E) \delta(x_E, \bar{x}_E)}{\sum_{x_F} \sum_{x_E} p(x_F, x_E) \delta(x_E, \bar{x}_E)}$$

Again, we have turned conditioning into marginalization!

- Note: evidence potentials is merely a piece of formal trickery to simplifies our description of various inference algorithms.
- In practice we would not perform the sum over a function that we know to be zero over most of the sample space.
- But rather we would take "slices" of the appropriate probabilities or potentials.


```
// main steps of the "Variable Elimination Algorithm"
       ELIMINATE(\mathcal{G}, E, F)
            Initialize(\mathcal{G}, F)
            EVIDENCE(E)
            UPDATE(G)
            Normalize(F)
                                      // choose elimination ordering, and add local condition probabilities in active list
       Initialize(\mathcal{G}, F)
            choose an ordering I such that F appears last
            for each node X_i in \mathcal{V}
                 place p(x_i | x_{\pi_i}) on the active list
            end
2:
       Evidence(E)
                                     // add evidence potentials in active list
            for each i in E
                  place \delta(x_i, \bar{x}_i) on the active list
            end
                                     // marginalization, and update active list
3:
       UPDATE(G)
            for each i in I
                 find all potentials from the active list that reference x_i and remove them from the active list
                 let \phi_i(x_{T_i}) denote the product of these potentials
                 let m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})
                 place m_i(x_{S_i}) on the active list
            end
                                   // compute the desired conditional probability
       Normalize(F)
            p(x_F | \bar{x}_E) \leftarrow \phi_F(x_F) / \sum_{x_F} \phi_F(x_F)
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 24

// choose elimination ordering, and add local condition probabilities in active list

1: Initialize(\mathcal{G}, F)

```
choose an ordering I such that F appears last
```

for each node X_i in \mathcal{V} place $p(x_i | x_{\pi_i})$ on the active list end

Example:

Evidence node is X_6 and query node is X_1 . We choose the elimination ordering: $I = \{6, 5, 4, 3, 2, 1\},$

in which the query node appears last.

25

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee

// choose elimination ordering, and add local condition probabilities in active list

1: Initialize(\mathcal{G}, F)

choose an ordering I such that F appears last

for each node X_i in \mathcal{V} place $p(x_i | x_{\pi_i})$ on the active list end

Example:

Active list:

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), p(x_6|x_2, x_5)\}$$

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

// add evidence potentials in active list

2: EVIDENCE(E)

```
for each i in E
place \delta(x_i, \bar{x}_i) on the active list end
```

Example:

Active list:

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), p(x_6|x_2, x_5), \delta(x_6, \bar{x}_6)\}$$

// marginalization, and update active list

```
3: Update(\mathcal{G})
```

for each i in I

find all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials

let
$$m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$$

place $m_i(x_{S_i})$ on the active list

end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

$$i = 6$$
: $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), \frac{p(x_6|x_2, x_5), \delta(x_6, \bar{x}_6)}{\delta(x_6, \bar{x}_6)}\}$

$$\phi_6(x_2, x_5, x_6) = p(x_6|x_2, x_5)\delta(x_6, \bar{x}_6)$$

$$m_6(x_2, x_5) = \sum_{x_6} \phi_6(x_2, x_5, x_6) = \sum_{x_6} p(x_6 | x_2, x_5) \delta(x_6, \bar{x}_6)$$

$$\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), p(x_5|x_3), m_6(x_2, x_5)\}$$

// marginalization, and update active list 3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 5$: $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), \frac{p(x_5|x_3), m_6(x_2, x_5)}{\phi_5(x_2, x_3)} = p(x_5|x_3)m_6(x_2, x_5)$
 $m_5(x_2, x_3) = \sum_{x_5} \phi_5(x_2, x_3) = \sum_{x_5} p(x_5|x_3)m_6(x_2, x_5)$
 $\{p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), \frac{m_5(x_2, x_3)}{\phi_5(x_2, x_3)} \}$

// marginalization, and update active list 3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

$$i = 4$$
: { $p(x_1), p(x_2|x_1), p(x_3|x_1), p(x_4|x_2), m_5(x_2, x_3)$ }

$$\phi_4(x_2) = p(x_4|x_2)$$

$$m_4(x_2) = \sum_{x_4} \phi_4(x_2) = \sum_{x_4} p(x_4|x_2) = 1$$

$${p(x_1), p(x_2|x_1), p(x_3|x_1), m_5(x_2, x_3)}$$

Ignore $m_4(x_2)$ since its 1!

// marginalization, and update active list 3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 3$: $\{p(x_1), p(x_2|x_1), p(x_3|x_1), m_5(x_2, x_3)\}$
 $\phi_3(x_1, x_2) = p(x_3|x_1)m_5(x_2, x_3)$
 $m_3(x_1, x_2) = \sum_{x_3} \phi_3(x_1, x_2) = \sum_{x_3} p(x_3|x_1)m_5(x_2, x_3)$
 $\{p(x_1), p(x_2|x_1), m_3(x_1, x_2)\}$

end

// marginalization, and update active list 3: UPDATE(\mathcal{G})

for each i in Ifind all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials let $m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$ place $m_i(x_{S_i})$ on the active list

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

 $i = 2$: $\{p(x_1), p(x_2|x_1), m_3(x_1, x_2)\}$
 $\phi_2(x_1) = p(x_2|x_1)m_3(x_1, x_2)$
 $m_2(x_1) = \sum_{x_2} \phi_2(x_1) = \sum_{x_2} p(x_2|x_1)m_3(x_1, x_2)$
 $\{p(x_1), m_2(x_1)\}$

end

// marginalization, and update active list

3: UPDATE(\mathcal{G})

for each i in I

find all potentials from the active list that reference x_i and remove them from the active list let $\phi_i(x_{T_i})$ denote the product of these potentials

let
$$m_i(x_{S_i}) = \sum_{x_i} \phi_i(x_{T_i})$$

place $m_i(x_{S_i})$ on the active list

end

Example:
$$I = \{6, 5, 4, 3, 2, 1\}$$

i = 1:

$$\{p(x_1), m_2(x_1)\}$$

$$\phi_1(x_1) = p(x_1) m_2(x_1)$$

$$m_1(x_1) = \sum_{x_1} \phi_1(x_1) = \sum_{x_1} p(x_1) m_2(x_1)$$

Unnormalized conditional probability, $p(x_1, \bar{x}_6)$

Normalization factor, $p(\bar{x}_6)$

// compute the desired conditional probability

4: Normalize(F)

$$p(x_F | \bar{x}_E) \leftarrow \phi_F(x_F) / \sum_{x_F} \phi_F(x_F)$$

Example:

From the previous step, we have $\phi_1(x_1)$ and $m_1(x_1) = \sum_{x_1} \phi_1(x_1)$, which we use to compute the desired conditional probability:

$$p(x_1|x_6) = \frac{\phi_1(x_1)}{\sum_{x_1} \phi_1(x_1)}$$

Elimination order: $I = \{6, 5, 4, 3, 2, 1\}$ $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} p(x_1) p(x_2 | x_1)$ $p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2,x_5)\delta(x_6,\bar{x}_6)$ i = 6: $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) p(x_5|x_3)$ $\sum_{x_6} p(x_6|x_2, x_5) \delta(x_6, \bar{x}_6)$ $m_6(x_2, x_5)$ $= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) p(x_5|x_3) m_6(x_2, x_5)$ i = 5: $p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2) \sum_{x_5} p(x_5 | x_3) m_6(x_2, x_5)$ $m_5(x_2,x_3)$ $= \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} p(x_1) p(x_2|x_1) p(x_3|x_1) p(x_4|x_2) m_5(x_2, x_3)$

Elimination order: $I = \{6, 5, 4, 3, 2, 1\}$

$$\begin{array}{l} \pmb{i} = \pmb{4}: \\ p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1) p(x_2|x_1) p(x_3|x_1) m_5(x_2,x_3) \sum_{x_4} p(x_4|x_2) \\ \pmb{i} = \pmb{3}: & m_4(x_2) = 1 \\ p(\bar{x}_6) = \sum_{x_1} \sum_{x_2} p(x_1) p(x_2|x_1) \sum_{x_3} p(x_3|x_1) m_5(x_2,x_3) \\ \pmb{i} = \pmb{2}: & m_3(x_1,x_2) \\ p(\bar{x}_6) = \sum_{x_1} p(x_1) \sum_{x_2} p(x_2|x_1) m_3(x_1,x_2) \\ \pmb{i} = \pmb{1}: & m_2(x_1) \\ \pmb{i} = \pmb{1}: & p(\bar{x}_6) = \sum_{x_1} p(x_1) m_2(x_1) & \text{Normalization factor} \\ & \text{Unnormalized conditional probability,} \\ p(x_1,\bar{x}_6) = p(x_1) m_2(x_1) & \end{array}$$

- Entire variable eliminate algorithm for directed graph goes through without essential change to the undirected case.
- Only change needed in the initialize procedure.
- Instead of using local conditional probabilities we initialize the active list to contain the potentials of $\{\psi_{x_C}(x_C)\}$.

Example:

$$p(x_{1}, \bar{x}_{6}) = \frac{1}{Z} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \sum_{x_{6}} \psi(x_{1}, x_{2}) \psi(x_{1}, x_{3}) \psi(x_{2}, x_{4}) \psi(x_{3}, x_{5}) \psi(x_{2}, x_{5}, x_{6}) \delta(x_{6}, \bar{x}_{6})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4}) \sum_{x_{5}} \psi(x_{3}, x_{5}) \sum_{x_{6}} \psi(x_{2}, x_{5}, x_{6}) \delta(x_{6}, \bar{x}_{6})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4}) \sum_{x_{5}} \psi(x_{2}, x_{5})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) m_{5}(x_{2}, x_{3}) \sum_{x_{4}} \psi(x_{2}, x_{4})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) m_{4}(x_{2}) \sum_{x_{3}} \psi(x_{1}, x_{3}) m_{5}(x_{2}, x_{3})$$

$$= \frac{1}{Z} \sum_{x_{2}} \psi(x_{1}, x_{2}) m_{4}(x_{2}) m_{3}(x_{1}, x_{2})$$

$$= \frac{1}{Z} m_{2}(x_{1}).$$

• Marginalizing further over X_1 yields:

$$p(\bar{x}_6) = \frac{1}{Z} \sum_{x_1} m_2(x_1),$$

We calculate the desired conditional as:

$$p(x_1 \mid \bar{x}_6) = \frac{m_2(x_1)}{\sum_{x_1} m_2(x_1)}$$

- where the normalization factor Z cancels.
- Important note: For a marginal probability the normalization factor Z does not cancel, and must be calculated explicitly.

- The variable elimination algorithm successively eliminates the nodes of \mathcal{G} in the ordering I.
- "Eliminate" means removing the node from the graph and connecting the (remaining) neighbors of the node.
- The original and newly created edges created during the elimination process are recorded in the reconstituted graph $\tilde{\mathcal{G}} = (\mathcal{V}, \tilde{\mathcal{E}})$.

Example: Elimination ordering (6; 5; 4; 3; 2; 1)

Example: Elimination ordering (6; 5; 4; 3; 2; 1)

Original undirected graph

Reconstituted graph: additional edges (red) added during the elimination process

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

- A simple greedy algorithm for eliminating nodes in an undirected graph.
- The additional edges added during the elimination process forms the reconstituted graph.

```
Under Interest of the remaining neighbors of X_i and X_i in X_i connect all of the remaining neighbors of X_i remove X_i from the graph X_i
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 44

- Elimination process adds new edges between (remaining) neighbors of the node.
- This creates new "elimination cliques" in the graph.
- Overall complexity depends on the size of the largest elimination clique.
- Which depends on the choice of elimination ordering.

- Treewidth: one less than the smallest achievable cardinality of the largest elimination clique over all possible elimination orderings.
- Elimination ordering with the lowest complexity has to achieve the treewidth of the graph.
- Unfortunately, the general problem of finding the best elimination ordering that achieves the treewidth is NP-hard.

Example:

- A graph whose treewidth is equal to one.
- However, the wrong choice of eliminating the center node would immediately leads to a elimination clique with all the neighbors!

 Computation complexity of DGMs can be analyzed in the same way as UGMs by moralization.

```
DIRECTEDGRAPHELIMINATE(G, I)
G^m = \text{Moralize}(G)
\text{UndirectedGraphEliminate}(G^m, I)
\text{Moralize}(G)
\text{for each node } X_i \text{ in } I
\text{connect all of the parents of } X_i
\text{end drop the orientation of all edges}
\text{return } G
```


Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 48

 A DGM is converted into UGM, where the computational complexity can be analyzed.

Limitation of Variable Elimination

Limitation:

• We have to re-run the variable elimination algorithm with every new query node.

Solution:

• The sum-product or belief propagation algorithm allows us to compute all single-node marginals for certain "tree-like" graphs in a single run.

"Tree-Like" Graphs

- a) Undirected tree: without any loop.
- b) Directed tree: only 1 single parent for every node, moralizations lead to an undirected tree.
- Polytree: nodes with more than 1 parent. Not a directed tree, moralizations lead to loops.
- d) Chain: this is also a directed tree (more on chains when we look at Hidden Markov Models).

CS5340 :: G.H. Lee

51

Parameterization

Undirected Trees:

• The cliques are single and pairs of nodes, thus the joint probability is:

$$p(x) = \frac{1}{Z} \left(\prod_{i \in \mathcal{V}} \psi(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$

where \mathcal{V} and \mathcal{E} are the nodes and edges of a tree $\mathcal{T}(\mathcal{V}, \mathcal{E})$.

Parameterization

Directed Trees:

Joint probability is given by:

$$p(x) = p(x_r) \prod_{(i,j)\in\mathcal{E}} p(x_j \mid x_i)$$

where

- $p(x_r)$: marginal probability at the root, and
- $\{p(x_i|x_i)\}$: conditional probabilities at all other nodes.
- (i, j) is a directed edge such that i is the parent of j.

Parameterization

Directed Tree → **Undirected Tree**:

We define

$$\psi(x_r) = p(x_r)$$

$$\psi(x_i, x_j) = p(x_j | x_i),$$

for i the parent of j, and define all other singleton potentials $\psi(x_i) = 1 \ \forall \ i \neq r$.

The partition function Z = 1.

We will not make any distinction between directed and undirected trees since they are formally identical!

Conditioning

• To capture conditioning i.e. $p(x | \bar{x}_E)$ for some subset E, let us define the local potentials as:

$$\psi_i^E(x_i) \triangleq \begin{cases} \psi_i(x_i)\delta(x_i, \bar{x}_i) & i \in E \\ \psi_i(x_i) & i \notin E \end{cases}$$

where $\delta(x_i, \bar{x}_i)$ is the "evidence potential" defined earlier.

Conditioning

 Making use of the joint probability of undirected trees, we get the conditional probability:

$$p(x \mid \bar{x}_E) = \frac{1}{Z^E} \left(\prod_{i \in V} \psi^E(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$

where the original Z vanishes and

$$Z^{E} = \sum_{x} \left(\prod_{i \in V} \psi^{E}(x_i) \prod_{(i,j) \in \mathcal{E}} \psi(x_i, x_j) \right)$$

From Elimination to Message Passing

 Question: What are the special features of the variable elimination algorithm when the graph is a tree?

 Answer: We can consider elimination orderings that arise from a depth-first traversal of the tree.

Depth-First Tree Traversal

- Take advantage of the recursive structure of a tree to specify an elimination ordering.
- Treat query node X_f as the root.
- View the tree as a directed tree by directing all edges of the tree to point away from X_f .
- Elimination proceeds inward from the leaves, with treewidth equals to one!

Intermediate Factor: "Message"

- Consider nodes X_i and X_j that are neighbors in the tree, where X_i is closer to the root node.
- To eliminate X_j , we take the product over all potentials that reference X_i and sum over X_i :

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$

• This is the intermediate factor ("message") that X_i sends to X_i .

Root Node

Message at Final Node (Root)

- All other nodes have been eliminated when we arrive at X_f .
- Thus messages $m_{ef}(x_f)$ have been computed for each of the neighbours $e \in N(f)$.
- We write the marginal of X_F as:

$$p(x_f | \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

Messages

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi^E(x_j) \psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j) \right)$$
$$p(x_f \mid \bar{x}_E) \propto \psi^E(x_f) \prod_{e \in \mathcal{N}(f)} m_{ef}(x_f)$$

 It turns out that these messages are sufficient for obtaining not only a single marginal, but also obtaining all of the marginals in the tree!

Reuse Messages

Obtain all of the marginals in the tree.

Key idea:

Messages can be "reused"!

We can achieve the effect of computing over all possible elimination orderings (huge number) by computing all possible messages (small number).

Example:

Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Example: Messages are "reused"!

Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 64

Example:

 All of the messages needed to compute all singleton marginals.

 The sum-product algorithm is an algorithm to compute all messages in a tree, and hence all singleton marginals

efficiently!

Source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 65

Message-Passing Protocol

A node can send a message to a neighboring node when (and only when) it has received messages from all of its other neighbors.

CS5340 :: G.H. Lee

66

- Two phases:
- Messages flow inward from leaves toward the root.
- 2. Initiated once all incoming messages have been received by the root node messages flow outward from root toward the leaves.


```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
Evidence(E)
                                     // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                   // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
     SENDMESSAGE(i, i)
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
          DISTRIBUTE(j,k)
                                   // intermediate factors (messages)
SENDMESSAGE(i, i)
    m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal (i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```



```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
Evidence(E)
                                      // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                                                                                                       Send Message
                                    // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
     SENDMESSAGE(i, i)
                                                                                                                                              Collect
                                                                                                                       Collect
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
           DISTRIBUTE(j,k)
                                    // intermediate factors (messages)
SENDMESSAGE(j, i)
     m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal(i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod_i m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```



```
// main steps of the "Sum-Product Algorithm"
Sum-Product(\mathcal{T}, E)
     EVIDENCE(E)
     f = \text{ChooseRoot}(\mathcal{V})
     for e \in \mathcal{N}(f)
          Collect(f, e)
     for e \in \mathcal{N}(f)
          DISTRIBUTE(f, e)
     for i \in \mathcal{V}
          ComputeMarginal(i)
Evidence(E)
                                      // add evidence potentials (convert conditioning into marginalization)
     for i \in E
          \psi^E(x_i) = \psi(x_i)\delta(x_i, \bar{x}_i)
     for i \notin E
          \psi^E(x_i) = \psi(x_i)
                                                                                                                     Send Message
                                    // messages flow inward from leaves toward the root
Collect(i, j)
     for k \in \mathcal{N}(j) \setminus i
          Collect(j, k)
     SENDMESSAGE(i, i)
                                                                                                                   Distribute
                                                                                                                                             Distribute
                                    // messages flow outward from root toward the leaves
DISTRIBUTE(i, j)
     SENDMESSAGE(i, j)
     for k \in \mathcal{N}(j) \setminus i
           DISTRIBUTE(j,k)
                                    // intermediate factors (messages)
SENDMESSAGE(i, i)
     m_{ji}(x_i) = \sum_{x_j} (\psi^E(x_j)\psi(x_i, x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{kj}(x_j))
Compute Marginal (i) // message to final node
     p(x_i) \propto \psi^E(x_i) \prod_i m_{ji}(x_i)
                      j \in \mathcal{N}(i)
```


Summary

- You have learned how to:
- 1. Use the Variable Elimination algorithm to compute the conditional probability of a single random variable X_f , i.e. $p(x_f|x_E)$.
- 2. Explain the computational complexity of variable elimination using the constituted graph.
- 3. Use the sum-product algorithm to compute all single-node marginals for "tree-like" graphical models.

