Complex Geometry - Index of Notations and ideas $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

Taper

October 25, 2016

Contents

	0.1	Note	4			
Ι	Inc	dices of Notation	5			
1	Book					
	1.1	1. Local Theory	7			
		1.1.1 1.1 Holomorphic Functions of Several Variables	7			
		1.1.2 1.2 Complex and Hermitian Structures	8			
	1.2	2. Complex Manifolds	9			
		1.2.1 2.1 Complex and Hermitian Structures	9			
		1.2.2 2.2 Holomorphic Vector Bundles	9			
		1.2.3 2.6 Differential Calculus on Complex Manifolds	9			
		1.2.4 Appendix B: Sheaf Cohomology	9			
2	My	lecture Notes	11			
	2.1	Lecture 2016 Lecture 1	11			
	2.2	Lecture 4 (20160307) Complex Manifold	11			
	2.3	Lecture 5 Submanifolds (20160308)	12			
	2.4	Lecture 6 Sheaf & Cohomology (20160315)	13			
		2.4.1 Notes of Čech Cohomology with Coeficients in a Sheaf	13			
	2.5	Lecture 7 Vector Bundle (20160321)	14			
	2.6	Lecture 8 Almost Complex Structures (20160322)	15			
	2.7	Lecture 9 Exterior Algebra on Complex Manifold (20160329)	15			
	2.8	Lecture 10 Debeault Cohomology (20160406)	16			
	2.9	Lecture 11 (20160412)	16			
	2.10	Lecture 12 Hermitian Structure on Manifold Manifold (20160418)	16			
	2.11	Lecture 13 Kähler Manifold (20160419)	17			
		Lecture 14 Hodge Theory (20160425)	17			
		Lecture 15 Hodge Theory on Manifold (20160426)	18			
		Lecture 16 Harmonic forms on Kähler Manifold (20160503)	18			
		Lecture 17 Hermitian Vector Bundle (20160510)	18			
		Lecture 18 Connection (20160516)	19			
		Lecture 19 Holomorphic Connection & Curvature (20160517)	19			
	2 18	Lecture 20 Divisors & (Holomorphic) Line Bundles (20160524)	20			

4 CONTENTS

2.19 Lecture 21 Divisors & (Holomorphic) Line Bundles (20160530)	. 20
2.20 Lecture 22 Divisors & (Holomorphic) Line Bundles (20160606)	. 21
II Indices of Results	23
3 Local Theory	27
3.1 1.1 Holomorphic Functions of Several Variables	. 27
3.2 1.2 Complex and Hermitian Structures	. 28
III Misc	31
4 Anchor	33
т.	0.5
5 License	37
$0.1 \mathrm{Note}$	

This notes aims to provide an index of symbols, definitions of the book [1]. It is very useful, especially when there are so many wildly different concepts introduced!

Part I Indices of Notation

Chapter 1

Book

1.1 1. Local Theory

1.1.1 1.1 Holomorphic Functions of Several Variables

Note: the content covered by this seciton is geared for accompanying my personal notes of lecture 1.

```
holomorphic: pp.1. pp4. Def 1.1.1. pp.10(Def.1.1.8).
Cauchy-Riemann equations: pp.2
\begin{array}{l} \frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}} \colon \frac{\partial}{\partial z} := \frac{1}{2} (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}) \ , \ \frac{\partial}{\partial \bar{z}} := \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}) \\ \text{Maximum principle: pp.3.} \end{array}
Identity theorem: pp.3.
Riemann extension theorem: pp.3. pp.9 (Prop. 1.1.7).
Riemann mapping theorem: pp.3.
Liouville theorem: pp.4.
Residue theorem: pp.4.
polydiscs B_{\epsilon}(\omega): \{z||z_i - \omega_i| < \epsilon\}. pp.4.
Hartogs' theorem: Prop. 1.1.4. pp.6.
Weierstrass preparation theorem (WPT): Prop. 1.1.6. pp.8.
Weierstrass polynomial: Def. 1.1.5. pp.7.
Z(f): zero set of f. pp.9.
biholomorphic: pp.10.
(complex) Jacobian, regular, regular value: Def. 1.1.9. pp.10.
IFT. Inverse function theorem: Prop 1.1.10 pp.11.
IFT. Implicit function theorem: Prop 1.1.11. pp.10.
\mathcal{O}_{\mathbb{C}^n}: sheaf of holomorphic functions on \mathbb{C}^n. Def. 1.1.14. pp.14.
\mathcal{O}_{\mathbb{C}^n,z}: Def. 1.1.14. pp.14.
\mathcal{O}_{\mathbb{C}^n,0}^*: units of \mathcal{O}_{\mathbb{C}^n,0}. pp.14.
UFD, unique factorization domain, irreducible: Def. 1.1.16. pp.14.
Gauss Lemma: pp.14.
Weierstrass division theorem: Prop. 1.1.17. pp.15.
germ of set: (pp.18)
```

```
Z(f): germ of zero set of f. (pp.18) analytic germ: Z(f_1, \dots, f_k). (pp.18) analytic subset: locally are zero sets. (pp.18) I(X): the set of all f \in \mathcal{O}_{\mathbb{C}^n,0} with X \subset Z(f). (pp.18)
```

1.1.2 1.2 Complex and Hermitian Structures

```
almost complex structure, I: I^2 = -id. (pp.25)
     V^{1,0} and V^{0,1}: the \pm i eigenspaces of I. (pp.25)
     \bigwedge^{p,q} V := \bigwedge^p V^{1,0} \oplus_{\mathbb{C}} \bigwedge^q V^{0,1}. (pp.27)
     \prod_{i=1}^{k} \prod_{p,q}^{p,q} : \text{ natural projections. } (\mathbf{pp.28})
\mathbf{I} := \sum_{p,q} i^{p-q} \cdot \prod_{q,p}^{q,p} . (\mathbf{pp.28})
     compatible: an almost complex structure I is compatible with the scalar prod-
uct <, >, if < I(v), I(w) > = < v, w >. (pp.28)
     Conformal equivalence(between scalar product): (pp.29)
     fundamental form, \omega := \langle I(), () \rangle. (pp.29)
                                      \omega = \frac{i}{2} \sum_{i} z^{i} \wedge \bar{z}^{i} = \sum_{i} x^{i} \wedge y^{i}.
    (Local calculation could be found on pp.31)
     hermitian form (,):=<,>-i \cdot \omega. (pp.30)
     Lefschetz operator L: \bigwedge^* V_{\mathbb{C}}^* \to \wedge^* V_{\mathbb{C}}^*, given by \alpha \to \omega \wedge \alpha. (pp.31)
     Hodge star *-operator: \alpha \wedge *\beta = \langle \alpha, \beta \rangle \cdot \text{vol.} (pp.33)
     dual Lefschetz operator \Lambda: \langle \Lambda \alpha, \beta \rangle = \langle \alpha, L \beta \rangle, degree -2, bidegree (-1, -1),
\Lambda = *^{-1} \circ L \circ *.  (pp.33 to 34)
     Counting operator H: H = \sum_{k=0}^{2n} (k-n) \cdot \prod^k, where \dim_{\mathbb{R}} = 2n. (pp.34) commutator [A,B]:= A \circ B - B \circ A. (pp.34)
```

Commutators

$$[H, L] = 2L, \ [H, \Lambda] = -2\Lambda, \ [L, \Lambda] = H.$$

(pp.34)

$$[L^{i}, \Lambda](\alpha) = i(k - n + i - 1)L^{i-1}(\alpha), \text{ for all } \alpha \in \bigwedge^{k} V^{*}$$

 $(\mathbf{pp.35})$

primitive element in $\bigwedge^k V^*$: α is primitive if and only if $\Lambda \alpha = 0$. (**pp.36**) $P^k \subset \bigwedge^k V^*$: is the subspace of all primitive elements. (**pp.36**) Hodge-Riemann pairing Q:

$$\bigwedge^k V^* \times \bigwedge^k V^* \to \mathbb{R}, \ (\alpha, \beta) \mapsto (-1)^{k(k-1)} 2\alpha \wedge \beta \wedge w^{n-k}$$

Note: here we identify $\bigwedge^{2n} V^*$ with \mathbb{R} by the volumn form vol. Also the \mathbb{C} -linear extension of this is still denoted Q.

1.2 2. Complex Manifolds

1.2.1 2.1 Complex and Hermitian Structures

almost complex structure: (pp.25)

2.2 Holomorphic Vector Bundles 1.2.2

 τ_X : holomorphic tangent bundle of a complex manifold X (Def 2.2.14 at pp.

 Ω_X , Ω_X^p : holomorphic cotangent bundle and holomorphic p-forms. (Def 2.2.14 at pp. 71)

 K_X :=det $(\Omega_X) = \Omega_X^n$, the canonical bundle of X. (Def 2.2.14 at pp. 71)

1.2.32.6 Differential Calculus on Complex Manifolds

```
\wedge_{\mathbb{C}}^{k} X := \wedge^{k} (T_{\mathbb{C}} X)^{*}. (Def 2.6.7 at pp. 105)
```

 $\wedge^{p,q}X:=\wedge^p(T^{1,0}X)^*\bigoplus_{\mathbb{C}}\wedge^q(T^{0,1}X)^*$. (Def 2.6.7 at pp. 105) $\mathcal{A}^k_{X,\mathbb{C}},\mathcal{A}^{p,q}_X:$ sheaves of section of the above correspond items. (Def 2.6.7 at

 $\mathcal{A}^{p,q}(E)$: the sheaf of p, q-forms with values in E, a complex vector bundle. (Def 2.6.22 at pp.109). Note that in particular, $\mathcal{A}^0(E)$ is the sheaf of sections of E.

Appendix B: Sheaf Cohomology 1.2.4

- pre-sheaf: Def B.0.19, pp. 287.
- $\mathcal{C}'_{\mathcal{M}}$: the pre-sheaf of continuous functions on M. Example B.0.20, pp.
- sheaf: Def B.0.21, at pp.288.
- \mathbb{R},\mathbb{Z} : constant sheaves, Sometimes written simply as \mathbb{R},\mathbb{Z} respectively.
- \mathcal{E} : actually a \mathcal{C}_M^0 -modules. Sometimes identified as E. pp.288.
- (pre)-sheaf homomorphism: Def B.0.23. pp.288.
- $Ker(\phi), Im(\phi), Coker(\phi)$: as pre-sheaves in pp.288. sheaves in pp.289, Def B.0.26.
- injective, surjective of sheaf-homomorphism:pp.289.
- complex, exact complex: Def B.0.27. pp.289
- text:
- text:

- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:
- text:

Chapter 2

My lecture Notes

2.1 Lecture 2016 Lecture 1

The first few lectures are not well noted, hence I delegate the task of recording the theorems and notations to the book's correspoding section:section 1.1.1 on page 7.

2.2 Lecture 4 (20160307) Complex Manifold

Note: we use abbrevation *mnfd* for *manifold*.

pp. A:

- Holomorphic Atlas
- Holmorphic chart
- Complex mnfd

pp. B:

- Holomorphic function
- \mathcal{O}_X : sheaf of holomorphic functions on a complex mnfd X.

pp. C:

- Hartdogs' theorem: on complex mnfd.
- Holomorphic functions on complex mnfd:

pp. D:

- Complex Lie group
- Complex Projective Space, \mathbb{CP}^n , or just \mathbb{P}^n .

pp. E:

- Topology in \mathbb{P}^n
- Mnfd structure on \mathbb{P}^n , atlas, and the **canonical covering**

pp. F

• Grassmannian mnfd.

2.3 Lecture 5 Submanifolds (20160308)

pp. A:

• Affine Hypersurface (actually this is not quite different from the usual \mathbb{C}^n .)

Part 2. Sheaf Theory

pp. A:

- pre-sheaf
- $\mathcal{O}_X(U)$
- $\mathcal{O}_X^*(U)$

pp. B:

- \bullet C^{∞}
- $\underline{\mathbb{Z}}$, sometimes simply denoted as \mathbb{Z} : sheaf of localy constant \mathbb{Z} -valued functions.
- Sheaf

pp. D:

 \bullet sheaf-morphisms

pp. E:

- Section
- $\bullet~\mathrm{Ker}(\phi)$ sheaf of kernals.

pp. F:

- $\operatorname{Im}(\phi)$ is a presheaf, but not a sheaf.
- $\operatorname{Im}(\phi)$: the sheafification of $\operatorname{Im}(\phi)$ above. Note that we use the same notation to denote both.

2.4 Lecture 6 Sheaf & Cohomology (20160315)

pp. A:

- Stalk \mathcal{F}_x .
- germ
- Directed partial order set
- Directed System

pp. B:

• Directed limit

pp. C:

- Exact Complex/ Exact Sequence.
- Exponential sequence (mentioned under the definition of exact sequence).

•

pp. D:

• Čech cohomology

pp. E:

- q-cochain
- coboundary operator. δ .
- $Z^p(U, \mathcal{F}) = \text{Ker.}$
- $B^p(U, \mathcal{F}) = \text{Im}.$
- $\check{H}^p(U,\mathcal{F}) = \frac{Ker}{Im}$.

2.4.1 Notes of Čech Cohomology with Coeficients in a Sheaf

pp.1:

- q-simplex σ .
- support $|\sigma|$.
- \bullet q-cocain
- $C^q(U,\mathcal{F})$
- Coboundary Operator δ .

pp.2,3,4:

- Cochain Complex
- Čech cohomology
- \bullet cocycle
- \bullet cochain
- $\check{H}^p(U,\mathcal{F}), Z^p(U,\mathcal{F}), B^p(U,\mathbb{F}).$
- $\check{H}^0(\{u_i\}, \mathcal{F}) = \mathcal{F}(X)$.

2.5 Lecture 7 Vector Bundle (20160321)

pp.1,2:

- Vector Bundle
- Trivializing covering, $\{(U_i, \tau_i)\}$.
- \bullet trivializing maps, trivializes.
- VB-equivalent of trivializing maps.
- E: total space, X: base space.

pp. 3,5:

- transition maps.
- fibre.
- $\mathcal{O}(-1)$
- cocycle condition.
- \mathcal{T}_X , Holomorphic tangent bundle.

pp. 8:

- $\bullet\,$ s: section of a holomorphic vector bundle.
- \mathcal{E} : sheaf of sections of holomorphic vector bundle. $\mathcal{E}(U)$.

2.6 Lecture 8 Almost Complex Structures (20160322)

pp. 1,2:

- I: Almost Complex Structure. $I^2 = -1$. Sometime J is used in place of I.
- $V_{\mathbb{C}} := V \otimes \mathbb{C}$.
- $I_{\mathbb{C}}$: I extending to $V_{\mathbb{C}}$. Usually abbreviated simply as I.
- $V^{1,0} := \ker(I+i)$.
- $V^{0,1} := \ker(I i)$.

2.7 Lecture 9 Exterior Algebra on Complex Manifold (20160329)

pp.1,2:

- V^* : dual of V.
- $\{dx^i, dy^i\}$.
- J^* : J extending to dual space.
- $dz^i, d\bar{z}^i$.

pp. 3:

- $S^k(V)$, $\Lambda^k(V)$.
- \bullet s and a, symmetrization and anti-symmetrization of a tensor.
- Λ*V.

pp. 4:

- $\Lambda^n T_{\mathcal{C}}^* X$.
- $\Lambda^*T^*_{\mathcal{C}}X$.
- $\Lambda^{p,q}T_{\mathcal{C}}^*X$.

pp. 5,6:

- A: sheaf of section of cotangent bundle.
- $\mathcal{A}^n(U)$, $\mathcal{A}^{p,q}(U)$.
- Λ on \mathcal{A} .
- \bullet d: de Rham differential.
- \bullet $\partial, \bar{\partial}$.

2.8 Lecture 10 Debeault Cohomology (20160406)

pp. 1:

- $\mathcal{H}^{p,q}(X)$.
- f^* : pull-back. Various defintion from pp.1 to pp.4.

pp. 5,6,7:

- $\bullet \ \mathcal{A}^{p,q}(U,E):=\Gamma(U,\Lambda^{p,q}T_{\mathbb{C}}^*X\otimes E).$
- $\bar{\partial}_E$
- $\mathcal{H}^{p,q}(X,E)$.
- $\bar{\partial}$ -Poincaré lemma in one variable.

2.9 Lecture 11 (20160412)

pp.1,2,3:

- $\bar{\partial}$ -Poincaré lemma in n-dimension
- Ω_X^p : holomorphic p-forms. On pp.2.
- $\check{H}^q(X,\Omega^p)(\check{\operatorname{Cech}}) \cong \mathcal{H}^{p,q}_{\bar{\partial}}(X)(\operatorname{Dolbeault})$. On pp.3.

pp. 6,7:

- Analytic Subvarity.
- Analytic Hybersurface.
- Cousin's Problem.

2.10 Lecture 12 Hermitian Structure on Manifold Manifold (20160418)

pp. 1,2,3:

- I compatible with <-,->.
- ω : Fundamental form associated with <,> and I. $\omega(v,w):=< I(v),w>$.
- Conformal Equivalence.
- \bullet <,>: Hermitian Inner Product.

pp. 4:

• (,): s.t. $(v, w) := \langle v, w \rangle - i\omega(v, w) = \langle v, w \rangle - i \langle I(v), w \rangle$

pp. 5:

• $<,>_{\mathbb{C}}$ be s.t. $< v \otimes \alpha, w \otimes \beta > := \alpha \bar{\beta} < v, w >$.

pp. 6:

• $\frac{1}{2}(,) = <,>_{\mathbb{C}}|_{V^{1,0}}$

pp. 7,8:

• Local computations: z_i, h_{ij} ,

• $\omega = (...dx^i...dy^i)$

• ω , Fundamental form on Riemannian Mnfd.

• Kähler mnfd: $d\omega \equiv 0$.

2.11 Lecture 13 Kähler Manifold (20160419)

pp.1:

• Local computation: $\omega = (...dz^i...d\bar{z}^i)$

pp.4:

• Fubini-Study Metric on \mathbb{CP}^n .

2.12 Lecture 14 Hodge Theory (20160425)

pp.1:

- <,> on $\Lambda^k V$
- vol: volumn element.
- *: Hodge Star Operator.

pp.4:

- \bullet L: Lefschetz Operator
- Λ : adjoint of L. $\Lambda = *^{-1} \circ L \circ *$.

pp.5:

- $*, L, \Lambda$ on Kähler mnfd.
- $d^* := (-1)^{m*(k+1)+1} * \circ d \circ *$, adjoint of d. On a Kähler mnfd, $d^* = * \circ d \circ *$
- $\bullet \ \Delta := d^* \circ d + d \circ d^*.$

pp. 6:

- $\bar{\partial}^*, \partial^*$: Similar to the above for d.
- $\Delta_{\partial}, \Delta_{\bar{\partial}}$: Similar to the above for d.

2.13 Lecture 15 Hodge Theory on Manifold (20160426)

pp.1:

• (,) on $\mathcal{A}^*(X)$. $(\alpha, \beta) := \int_X g_{\mathbb{C}}(\alpha, \beta) vol$

pp.3:

- $\mathcal{H}^k(X,g)$: d-harmonic forms. Sometimes we replace \mathcal{H} with \mathscr{H} for harmonic forms, so is for symbols below.
- $\mathcal{H}^k_{\bar{\partial}}(X,g)$: $\bar{\partial}$ -harmonic forms. (Be careful to distinguish this with Dolbeault Cohomology groups).
- $\mathcal{H}_{\partial}^{k}(X,g)$: ∂ -harmonic forms.

pp. 5:

- $\mathcal{H}_d^k(X,g) \cong \mathcal{H}_d^{2n-k}(X,g)$, Poincaré duality
- $\mathcal{H}^{p,q}_{\bar{\partial}}(X,g)\cong \left(\mathcal{H}^{n-p,n-q}_{\bar{\partial}}(X,g)\right)^*$, both are harmonic forms, called Serre Duality.

pp. 6,7:

- $\mathcal{A}^{p,q} = \bar{\partial} \mathcal{A}^{p,q-1}(X) \oplus \bar{\partial}^* \mathcal{A}^{p,q+1}(X) \oplus \mathcal{H}^{p,q}_{\bar{\partial}}(X,g)$: Hodge decomposition
- $\mathcal{H}^{p,q}_{\bar{\partial}}(\text{harmonic forms}) \cong \mathcal{H}^{p,q}_{\bar{\partial}}(X)(\text{Dolbeault Cohomology group})$
- $\mathcal{H}^{p,q}_d(\text{harmonic forms}) \cong \mathcal{H}^{p,q}_{dR}(X)(\text{de Rham Cohomology group})$

pp. 8:

• A lot of isomorphisms between de Rham, Dolbeault and harmonic forms.

2.14 Lecture 16 Harmonic forms on Kähler Manifold (20160503)

pp.1:

• $\Delta_{\partial} = \Delta_{\bar{\partial}} = \frac{1}{2}\Delta_d$, for Kähler mnfd.

2.15 Lecture 17 Hermitian Vector Bundle (20160510)

pp.1,3:

- Hermitian Vector Bundle. pp.1
- Antilinear map. pp.3.

- Hermitian Inner Product on $\mathcal{A}^{p,q}(X,E)$. pp.4
- $\bar{*}_E$ Hodge Operator on Hermitian vector bundle. pp.5.
- $\bar{\partial}_E^*$

pp. 8:

• Kadaira-Serre Duality.

2.16 Lecture 18 Connection (20160516)

- ∇ : connection. pp.1.
- Trivial connections. pp.2
- $\mathcal{A}^1(M, End(E)) := \Gamma(M, \Lambda^1 M \otimes End(E))$. pp.3. Also, one may find how elements in this sheaf act on $\mathcal{A}^0(M)$ on pp.173, inside proof of proposition 4.2.3.
- $s \in \mathcal{A}^0(E)$ is Parrallel/flat/constant $\Leftrightarrow \Delta(s) = 0$. pp.4.
- $\Delta = d + A$. pp.4.
- Δ be compatible with hermitian structure on E. pp.5.
- Δ be compatible with holomorphic vector bundle. pp.6.
- $A = \bar{H}^{-1}\partial H$. Chern connection. pp.6.

2.17 Lecture 19 Holomorphic Connection & Curvature (20160517)

- Holomorphic Connecction. pp.1.
- At(E): Atiyah class of E. pp.2.
- Δ^k . pp.4.
- F_{Δ} : curvature associated with Δ . pp.5.
- $F_{\Delta} = dA + A \wedge A$: Cartan structure equation. pp.6.
- First Chern class of complex line bundle.

2.18 Lecture 20 Divisors & (Holomorphic) Line Bundles (20160524)

- Analytic Subvariety. pp.1.
- Regular/Smooth Point. pp.1.
- Singular Point. pp.2.
- Irreducible analytic subvariety. pp.2.
- dim(Y): dimension of analytic subvariety. pp.2. Also pp.4.
- Affine algebraic varieties. pp.3.
- Projective algebraic varieties. pp.3.
- Hypersurface. pp.4.
- Divisor, Div(X):=group of all divisors. pp.5.
- Effective divisor. pp.6.
- $Ord_Y(f)$: order of function. pp.6. Also pp.8.
- Meromorphic function on complex mnfd.
- (f): divisor given by a global meromorphic function.
- Principal divisor. pp.8.

2.19 Lecture 21 Divisors & (Holomorphic) Line Bundles (20160530)

- $H^0(X, K_X^*/\mathcal{O}_X^*) \cong Div(X)$. pp.1.
- Pic(X): Picard group, all holomorphic line bundles. pp.3.
- $Pic(X) \cong \check{H}^1(X, \mathcal{O}_X^*)$. pp.3.
- $\mathcal{O}(D)$: line bundle given by divisor D. pp.5.
- Linear equivalent of divisors.
- *: used only in this section to denoted the map:

$$(Div(X)/Pic(X)) \hookrightarrow Pic(X)$$

pp.6.

• Z(s): divisor constructed from nonzero section $s \in H^0(X, L)$ for a line bundle L.

- Base point of a line bundle. pp.4.
- Bs(L):= set of all base points of line bundle L. pp.4.
- $\mathcal{O}(1), \mathcal{O}(k)$. pp.6.

Part II Indices of Results

Theorems, Remarks, etc.

Chapter 3

Local Theory

3.1 1.1 Holomorphic Functions of Several Variables

Proposition 3.1.1. The local ring $\mathcal{O}_{\mathbb{C}^n,0}$ is a UFD.

(pp.14 of [1])

Proposition 3.1.2. Weierstrass division theorem Let $f \in \mathcal{O}_{\mathbb{C}^n,0}$ and $g \in \mathcal{O}_{\mathbb{C}^{n-1},0}[z_1]$ be a Weierstrass polynomial of degree d. Then there exist $r \in \mathcal{O}_{\mathbb{C}^{n-1},0}[z_1]$ of degree < d and $h \in \mathcal{O}_{\mathbb{C}^n,0}$ such that $f = g \cdot h + r$. The functions h and r are uniquely determined.

(pp.15 of [1])

Proposition 3.1.3. The local UFT $\mathcal{O}_{\mathbb{C}^n,0}$ is Noetherian.

(pp.16 of [1])

Corollary 3.1.1. Let $g \in \mathcal{O}_{\mathbb{C}^n,0}$ be an irreducible function. If $f \in \mathcal{O}_{\mathbb{C}^n,0}$ vanishes on Z(g), then g divides f.

(**pp.16** of [1])

Lemma 3.1.1. For any germ $X \subset \mathbb{C}^n$ the set $I(X) \subset \mathcal{O}_{\mathbb{C}^n,0}$ is an ideal. If $(A) \subset \mathcal{O}_{\mathbb{C}^n,0}$ denotes the ideal generated by the subset $A \subset \mathcal{O}_{\mathbb{C}^n,0}$, then Z(A) = Z((A)) and Z(A) is analytic.

(pp.18 of [1])

Lemma 3.1.2. If $X_1 \subset X_2$, then $I(X_2) \subset I(X_1)$. If $I_1 \subset I_2$, then $Z(I_2) \subset Z(I_1)4$. For any analytic germ X one has Z(I(X)) = X. For any ideal $I \subset \mathcal{O}_{\mathbb{C}^n,0}$, one has $I \subset I(Z(I))$.

(pp.18 of [1])

3.2 1.2 Complex and Hermitian Structures

Lemma 3.2.1. If I is an almost complex structure on a real vector space V, then V admits in a natural way the structure of a complex vector space

Remark 3.2.1. An almost complex structure can only exist on an even dimensional real vector space.

Corollary 3.2.1. Any almost complex structure on V induces a natural orientation on V.

Lemma 3.2.2. Let V be a real vector space endowed with an almost complex structure I. Then

$$V_{\mathbb{C}} = V^{1,0} \oplus V^{0,1}$$

Complex conjugation on $V_{\mathbb{C}}$ induces an \mathbb{R} -linear isomorphism $V^{1,0} \cong V^{0,1}$.

Remark 3.2.2. Two almost complex structures on $V_{\mathbb{C}}$: I and i, coincide on the subspace $V^{1,0}$ but differ by a sign on $V^{0,1}$.

Lemma 3.2.3. Let V be a real vector space endowed with an almost complex structure I. Then the dual space $V^* = Hom_{\mathbb{R}}(V, \mathbb{R})$ has a natural almost complex structure given by I(f)(v) = f(I(v)). The induced decomposition on $(V^*)_{\mathbb{C}} = Hom_{\mathbb{R}}(V, \mathbb{C}) = (V_{\mathbb{C}})^*$ is given by

$$(V^*)^{1,0} = \{ f \in Hom_{\mathbb{R}}(V, \mathbb{C}) | f(I(v)) = if(v) \} = (V^{1,0})^*$$

$$(V^*)^{0,1} = \{f \in \mathit{Hom}_{\mathbb{R}}(V,\mathbb{C}) | f(I(v)) = -if(v)\} = (V^{0,1})^*$$

Also note that $(V^*)^{1,0} = Hom_{\mathbb{C}}((V,I),\mathbb{C}).$

Proposition 3.2.1. For a real vector space V endowed with an almost complex structure I, one has:

- 1. $\bigwedge^{p,q} V$ is in a canonical way a subsapce of $\bigwedge^{p+q} V_{\mathbb{C}}$.
- 2. $\bigwedge^k V_{\mathbb{C}} = \bigoplus_{p+q=k} \bigwedge^{p,q} V$.
- 3. Complex conjugation on $\bigwedge^* V_{\mathbb{C}}$ defines a (\mathbb{C} -linear) isomorphism $\bigwedge^{p,q} V \cong \bigwedge^{q,p} V$, i.e. $\bigwedge^{p,q} V = \bigwedge^{q,p} V$.
- 4. The exterior prodoct is of bidegree (0,0).

Remark 3.2.3. Local calculation of $V^{1,0}$, $(V^*)^{1,0}$

$$z_{i} = \frac{1}{2}(x_{i} - y_{i}), \ \bar{z}_{i} = \frac{1}{2}(x_{i} + iy_{i})$$
$$z^{i} = x^{i} + iy^{i}, \ \bar{z}^{i} = x^{i} - iy^{i}$$
$$I(z_{i}) = iz_{i}, \ I(z^{i}) = iz^{i}$$

(pp.27 to 28 of [1])

Lemma 3.2.4. For any $m \leq dim_{\mathbb{C}}V^{1,0}$, one has

$$(-2i)^m(z_1 \wedge \bar{z}_1) \wedge \cdots \wedge (z_m \wedge \bar{z}_m) = (x_1 \wedge y_1) \wedge \cdots \wedge (x_m \wedge y_m).$$

For $m = \dim_{\mathbb{C}} V^{1,0}$, this defines a positive oriented volume form for the natural orientation of V.

Also

$$\left(\frac{i}{2}\right)^m (z^1 \wedge \bar{z}^1) \wedge \dots \wedge (z^m \wedge \bar{z}^m) = (x^1 \wedge y^1) \wedge \dots \wedge (x^m \wedge y^m).$$

Proposition 3.2.2 (Lefschetz decomposition). There exists a direct sum decomposition of the form:

$$\bigwedge^{k} V^{*} = \bigoplus_{i>0} L^{i}(P^{k-2i})$$
 (3.2.0.1)

Also, $P^k = \alpha \in \bigwedge^k V^* | L^{n-k+1}\alpha = 0$, for $k \le n$. Naturally $P^k = 0$ for k > 0. We also have several morphisms induced by L, which is illustrated in the following graph adapted from the book:

Figure 3.1: Morphisms

(pp.36 of [1])

As shown in the theorem, the map Λ^{n-k} is produce a mirror effect in $\bigwedge^* V^*$, very similar to the Hodge *. The next proposition relates the two:

Proposition 3.2.3. For all $\alpha \in P^k$, we have:

$$*L^{j}\alpha = (-1)^{\frac{k(k+2)}{2}} \frac{j!}{(n-k-j)!} \cdot L^{n-k-j}I(\alpha).$$
 (3.2.0.2)

Particularly, when j=k=0, we have $*1=\mathrm{vol}=\frac{\omega^n}{n!},$ or,

$$n! \text{vol} = \omega^n \tag{3.2.0.3}$$

(pp.37 of [1])

Corollary 3.2.2 (Hodge—Riemann bilinear relation).

$$Q(\bigwedge^{p,q} V^*, \bigwedge^{p',q'} V^*) = 0 (3.2.0.4)$$

for $(p,q) \neq (p',q')$, and

$$i^{p-q}Q(\alpha,\bar{\alpha}) = (n - (p+q))! \cdot \langle \alpha, \alpha \rangle_{\mathbb{C}} > 0$$
 (3.2.0.5)

for $0 \neq \alpha \in P^{p,q}$, with $p + q \leq n$.

(pp.39 of [1])

Part III

Misc

Chapter 4

Anchor

Bibliography

[1] Complex Geometry

Chapter 5

License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.