Tesis de doctorado

Jorge Alejandro Tarango Yong

22 de mayo de 2017

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

INSTITUTO DE RADIOASTRONOMÍA Y ASTROFÍSICA

"Estudio de la Interacción de Flujos Múltiples de Fuentes Astrofísicas, Aplicada a los Proplyds Clásicos de la Nebulosa de Orión"

TESIS

PARA OBTENER EL GRADO ACADÉMICO DE DOCTOR EN CIENCIAS (ASTRONOMÍA)

PRESENTA

JORGE ALEJANDRO TARANGO YONG

Director de Tesis: Dr. William J. Henney Morelia, Michoacán

2017

Índice general

1.	Obje	etos Astrofísicos Relevantes	9		
	1.1.	La Nebulosa de Orión	10		
	1.2.	Estrellas "Errantes"	10		
	1.3.	Discos Protoplanetarios	10		
		Proplyds			
		Objetos LL	10		
		1.5.1. Mapa de Objetos	10		
2.	Marco Teórico				
	2.1.	Vientos Estelares	12		
	2.2.	Choques	12		
	2.3.	Frentes de Ionización	12		
	2.4.	Regiones HII	12		
	2.5.	Aproximación Hipersónica	12		
	2.6.	Modelo Genérico de los Choques de Proa	12		
		2.6.1. Radios "Característicos"	12		
	2.7.	Proyección en el Plano del Cielo	15		
		2.7.1. Vectores normal y tangente a la superficie	15		
		2.7.2. Línea tangente	17		
	2.8.	Cuádricas de Revolución	19		
	Herramientas de Programación				
	The Work				
5.	Resultados obtenidos				

	GENERAL	

6. Conclusiones 27

Agradecimientos

Esta tesis se realizó para obtener el título de doctorado en ciencias (Astronomía).

Deseo aprovechar esta sección para hacer agradecimientos a personas y/o instituciones que me ayudaron para que pueda completar este trabajo de manera exitosa.

Resumen

Abstract en español

Abstract

Abstract written in english

Objetos Astrofísicos Relevantes

- 1.1. La Nebulosa de Orión
 - 1.2. Estrellas "Errantes"
- 1.3. Discos Protoplanetarios
 - 1.4. Proplyds
 - 1.5. Objetos LL
 - 1.5.1. Mapa de Objetos

Marco Teórico

2.1. Vientos Estelares

2.2. Choques

2.3. Frentes de Ionización

2.4. Regiones HII

2.5. Aproximación Hipersónica

2.6. Modelo Genérico de los Choques de Proa

Para este trabajo consideramos en general dos modelos de interacción de vientos:

- Una fuente localizada en el origen que emite un viento esférico que puede ser isotrópico o anisotrópico (figura 2.6) no acelerado que interactúa con el viento esférico isotrópico de otra fuente que se encuentra a una distancia *D* de la primera(figura 2.6)
- Una fuente localizada en el origen que emite un viento esférico isotrópico no acelerado que interactúa con un viento plano paralelo no acelerado y densidad constante (figura)

El sitema en su conjunto tiene simtería cilíndrica.

2.6.1. Radios "Característicos"

Las cantidades medibles que nos ayudan a caracterizar un choque de proa las llamamos "Radios característicos" (ilustrados en la figura 2.6.1):

- Radio del choque en la dirección del eje de simetría del sistema. Denotado como R₀
- Radio en dirección perpendicular al eje de simetría del sistema. Denotado como *R*₉₀
- Radio de curvatura en la "nariz" del choque de proa. Denotado como R_c

Figura 2.1: Representación esquemática de vientos con diferentes anisotropías: Arriba izquierda: Viento isotrópico esfrico. Arriba derecha: viento isotrópico hemisférico. Abajo: Vientos anisotrópicos donde el parámetro k indica el grado de anisotropía (ver sección 2.5)

Figura 2.2: Representación esquemática de los radios característicos de un choque de proa

2.7. Proyección en el Plano del Cielo

Para un choque de proa que es la vez geométricamente delgado y ópticamente delgado, únicamente se observa el borde de éste por abrillantamiento al limbo, por lo tanto, sua orientación respecto a la línea de visión modifica su forma respecto a la forma real del choque. Para ello, rotamos el sistema de referencia del choque de proa en coordenadas cartesianas, denotado por (x, y, z), por un ángulo que

llamamos *inclinación*, denotado por i, en el plano xz, de modo que la transformación entre el sistema de referencia del choque y el sistema de referencia del plano del cielo, denotado por (x', y', z') queda como sigue:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \cos i - z \sin i \\ y' \\ z \cos i + x \sin i \end{pmatrix}$$
 (2.1)

Por otro lado, la forma tridimensional del choque de proa viene dado por:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R(\theta) \begin{pmatrix} \cos \theta \\ \sin \theta \cos \phi \\ \sin \theta \sin \phi \end{pmatrix}$$
 (2.2)

La relación entre ambos sistemas de referencia se ilustra en la figura 2.7.

2.7.1. Vectores normal y tangente a la superficie

Si definimos los vectores \hat{n} y \hat{t} , como los vectores normal y tangente a la superficie, respectivamente para ϕ constante. En el caso $\phi = 0$ (figura 2.7.1), ambos vectores se encuentran en el plano xy y es fácil mostrar que:

$$\hat{t}_0 = \begin{pmatrix} -\cos\alpha \\ \sin\alpha \\ 0 \end{pmatrix} \quad \text{y} \quad \hat{n}_0 = \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix}$$
 (2.3)

Donde:

$$\tan \alpha = -\frac{dy}{dx} = \frac{1 + \omega \tan \theta}{\tan \theta - \omega} \tag{2.4}$$

Figura 2.3: Sistema de referencia del choque vs sistema de referencia del plano del cielo. Los ejes x' y y' se encuentran en el plano del cielo, mientras el eje z' es paralelo a la línea de visión. Solo la región del choque cuya tangente sea paralela a la línea de visión será visible por abrillantamiento al limbo.

y:

$$\omega(\theta) = -\frac{1}{R} \frac{dR}{d\theta} \tag{2.5}$$

Para otros valores de ϕ , basta con hacer una rotación de las ecuaciones (2.3) alrededor del eje x. Para la conversión al sistema de referencia del plano del cielo se utiliza la ecuación (2.1):

$$\hat{n}' = \frac{1}{(1+\omega^2)^{1/2}} \tag{2.6}$$

$$\times \begin{pmatrix} (\cos\theta + \omega\sin\theta)\cos i - (\sin\theta - \omega\cos\theta)\sin i\sin\phi \\ (\sin\theta - \omega\cos\theta)\cos\phi \\ (\cos\theta + \omega\sin\theta)\sin i + (\sin\theta - \omega\cos\theta)\sin\phi\cos i \end{pmatrix}$$
(2.7)

$$\hat{t}' = \frac{1}{(1+\omega^2)^{1/2}} \tag{2.8}$$

$$\times \begin{pmatrix} -(\sin\theta - \omega\cos\theta)\cos i - (\cos\theta + \omega\sin\theta)\sin i\sin\phi \\ (\cos\theta + \omega\sin\theta)\cos\phi \\ -(\cos\theta + \omega\sin\theta)\sin i + (\sin\theta - \omega\cos\theta)\sin\phi\cos i \end{pmatrix}$$
(2.9)

2.7.2. Línea tangente

Debido a que el choque es ópticamente delgado y geométricamente delgado, solo la región del choque cuya tangente sea paralela a la línea de visión será visible. Esto corresponde a una curva que denominamos *línea tangente*, que debe cumplir con la siguiente condición:

$$\hat{n}' \cdot \hat{z}' = 0 \tag{2.10}$$

Denotamos como ϕ_T al ángulo azimutal que cumple la condición anterior para una inclinación dada, en función del ángulo polar θ :

$$\sin \phi_T = \tan i \tan \alpha = \tan i \frac{1 + \omega \tan \theta}{\omega - \tan \theta}$$
 (2.11)

Figura 2.4: Vectores unitarios normal y tangente a la superficie $R(\theta)$ en un plano de azimuth ϕ constante.

De esta manera, la forma de la línea tangente del choque de proa, a la que llamamos *forma proyectada* viene dada por:

$$\begin{pmatrix} x'_T \\ y'_T \\ z'_T \end{pmatrix} = R(\theta) \begin{pmatrix} \cos \theta \cos i - \sin \theta \sin \phi_t \sin i \\ \sin \theta \left(1 - \sin^2 \phi_T \right)^{1/2} \\ \cos \theta \sin i + \sin \theta \sin \phi_T \cos i \end{pmatrix}$$
(2.12)

En el caso general, z_T' no es una función lineal de x_t' y y_T' , por lo que la línea tangente no se encuentra en un plano.

La forma aparente (x'_t, y'_T) de la línea tangente también puede escribirse en coordenadas polares (R', θ') , donde:

$$R'(\theta) = (x_t'^2 + y_T'^2)^{1/2} y$$
 $\tan \theta' = \frac{y_T'}{x_T'}$ (2.13)

2.8. Cuádricas de Revolución

Buscamos adjuntar el paper "quadrics bowshock"

Herramientas de Programación

CAPÍTULO 3. HERRAMIENTAS DE PROGRAMACIÓN

This is chapter 3

The Work

This is chapter 4

Resultados obtenidos

This is chapter 5

Conclusiones

This is chapter 6