PREDIKSI JUMLAH PENERIMAAN SISWA SMK SWASTA TAHUN AJARAN 2011/2012

Haryadi Sarjono

Management Department, School of Business and Management, BINUS University Jln. K.H. Syahdan No. 9, Kemanggisan-Palmerah, Jakarta Barat 11480

ABSTRACT

This study aims to determine prediction number of modern private Vocational High School (SMK) students in a province in Borneo with the approach of six forecasting methods: Linear Regression, Exponential Smoothing with Trend, Exponential Smoothing, Weighted Moving Average, Moving Average, and the Naive Method, besides using Manual calculation, the approach of QM for windows is used as a comparison. The result will be determined by the six forecasting methods which is used as a proper basis for the next calculating based on the smallest MAD (Mean Absolute Deviation) and MSE (Mean Squared Error) approach. The data in this study were made by the writer alone.

Keywords: prediction of Vocational High School students, MAD, MSE, manual, QM for windows

ABSTRAK

Penelitian ini bertujuan untuk mengetahui prediksi jumlah siswa Sekolah Menengah Kejuruan (SMK) swasta modern di sebuah propinsi di Kalimanatan dengan pendekatan enam metode forecasting yaitu Linear Regression, Exponential Smoothing With Trend, Exponential Smoothing, Weighted Moving Average, Moving Average, dan Naïve Method, selain menggunakan perhitungan secara Manual juga menggunakan pendekatan QM for windows, sebagai perbandingan. Hasilnya akan ditentukan dari enam metode forecasting tersebut yang layak dipakai sebagai dasar perhitungan selanjutnya berdasarkan pendekatan MAD (Mean Absolute Deviation) dan MSE (Mean Squared Error) terkecil. Data dalam penelitian ini hanyalah rekayasa penulis semata.

Kata kunci: prediksi siswa SMK, MAD, MSE, manual, QM for windows

PENDAHULUAN

SMK swasta modern merupakan salah satu SMK yang berada di sebuah provinsi di Kalimantan. Tabel 1 berikut ini adalah data penerimaan selama 6 tahun ajaran yang dimulai tahun ajaran 2005/2006 sampai 2010/2011.

Tabel 1 Penerimaan Siswa/i SMK Swasta Modern

Tahun Ajaran	Penerimaan Siswa/i
2005/2006	459
2006/2007	499
2007/2008	486
2008/2009	300
2009/2010	482
2010/2011	466
2011/2012	?

Sumber: SMK Swasta Modern (2011) – rekayasa penulis

Dalam penelitian ini bertujuan untuk memprediksi penerimaan siswa SMK swasta modern tahun ajaran 2011/2012 dengan pendekatan menggunakan enam metode peramalan yang ada, antara lain: Linear Regression, Exponential Smoothing With Trend, Exponential Smoothing, Weighted Moving Average, Moving Average, dan Naïve Method.

Dari uraian diatas, berikut adalah masalah-masalah yang akan diselesaikan dalam penelitian ini, antara lain: 1) seberapa besar prediksi penerimaan siswa SMK swasta modern dengan pendekatan enam metode forecasting, dan 2) Dari enam metode forecasting yang dipakai, manakah yang mempunyai MAD dan MSE terkecil.

Peramalan

Menurut Heizer dan Render (2009: 162), peramalan (*forecasting*) adalah seni dan ilmu untuk memperkirakan kejadian di masa depan. Hal ini dapat dilakukan dengan melibatkan pengambilan data masa lalu dan menempatkannya ke masa yang akan datang dengan suatu bentuk model matematis. Menurut Assauri (1984) pada Hastarita (2008), Peramalan merupakan bagian awal dari suatu proses pengambilan suatu keputusan. Pujawan (2005: 87) menyatakan bahwa peramalan permintaan adalah kegiatan untuk mengestimasi besarnya permintaan terhadap barang barang atau jasa tertentu pada suatu periode dan wilayah pemasaran tertentu.

Menurut Santoso (2009: 7) definisi peramalan sebenarnya beragam, berikut beberapa definisi mengenai peramalan: perkiraan munculnya sebuah kejadian di masa depan, berdasarkan data yang ada di masa lampau; proses menganalisis data historis dan data saat ini untuk menentukan *trend* masa mendatang; proses estimasi dalam situasi yang tidak diketahui; pernyataan yang dibuat tentang masa depan; penggunaan ilmu dan teknologi untuk memperkirakan situasi di masa depan; upaya sistematis untuk mengantisipasi kejadian atau kondisi masa depan.

Dari beberapa definisi di atas, dapat disimpulkan bahwa peramalan berkaitan dengan upaya memperkirakan apa yang terjadi di masa depan, berbasis pada metode ilmiah (ilmu dan teknologi) serta dilakukan secara sistematis.

Menghitung Kesalahan Peramalan

Menurut Heizer dan Render (2009: 165), ada 2 untuk menghitung *forecast error*, yaitu: pertama, Deviasi Rata-rata Absolut (*Mean Absolute Deviation* – MAD); MAD merupakan ukuran pertama kesalahan peramalan keseluruhan untuk sebuah model. Nilai ini dihitung dengan mengambil jumlah nilai absolut dari kesalahan peramalan dibagi dengan jumlah periode data (n).

$$MAD = \frac{\sum |permintaan \ aktual - peramalan|}{n}$$

Kedua, Kesalahan Rata-rata Kuadrat (*Mean Squared Error* – MSE); MSE merupakan cara kedua untuk mengukur kesalahan peramalan keseluruhan. MSE merupakan rat-rata selisih kuadrat antara nilai yang diramalkan dan yang diamati. Kekurangan penggunaan MSE adalah bahwa ia cenderung menonjolkan deviasi yang besar karen adanya pengkuadratan.

$$MSE = \frac{\sum (kesalahan \, peramalan)^2}{n}$$

METODOLOGI PENELITIAN

Berikut adalah tabel metodologi penelitian ini.

Tabel 2 Metode Penelitian

No	Variabel	Konsep Variabel	Indikator Utama
1	Peramalan	Predisksi penerimaan siswa SMK	Data penerimaan siswa SMK swasta Modern dari tahun ajaran 2005/2006 – 2010/2011.
2	Model Peramalan	Metode prediksi yang akan diterapkan pada penelitian ini di SMK swasta	Linear Regression, Exponential Smoothing With Trend, Exponential Smoothing, Weighted Moving Average, Moving Average dan Naïve Method.
3	Hasil Peramalan	Ukuran akurasi hasil peralaman	MAD dan MSE terkecil

Sumber: Hasil pengolahan penulis (2012)

HASIL DAN PEMBAHASAN

Forecasting Metode "Linear Regression"

Secara Manual, berdasarkan data di atas, maka dapat ditentukan: a) prediksi penerimaan siswa (Ft) SMK tahun ajaran (2011/2012) dengan menggunakan pendekatan metode *regresi linear / least square*, b) penghitungan MAD dan MSE, seperti pada tabel 3 berikut:

Tabel 3 Forecasting "Linear Regression"

Tahun	Penerimaan (Ft)	Xi	(Xi) (Yi)	$(Xi)^2$	Ft (428,5 + 5,77X)	Yt - Ft)
2005/2006	459	1	459	1	434,27	24,73
2006/2007	499	2	998	4	440,04	58,96
2007/2008	486	3	1458	9	445,81	40,19
2008/2009	300	4	1200	16	451,58	151,58
2009/2010	482	5	2410	25	457,35	24,65
2010/2011	466	6	2796	36	463,12	2,88
Total	2692	-	9321	91	-	302,99

Sumber: Hasil perhitungan penulis (2011)

 $F_{2011/2012} = 463,12 \cong 463$ Siswa/i

$$\mathbf{b} = \frac{6 \times 9321 - 21 \times 2692}{6 \times 91 - 21^2} = 5,77$$

$$a = \frac{2692}{6} - 5,77 \times \frac{21}{6} = 428,5$$

$$\mathbf{Y} = 428,5 + 5,77$$
 dimana $\mathbf{Y}_7 = 428,7 + 5,77 \times 7 = 3.039,89$

$$\mathbf{MAD} = \frac{302,99}{6} = 50,5983 \text{ dan } \mathbf{MSE} = 4.882,5849$$

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah sebagai berikut:

Tabel 4 Hasil Penghitungan dengan Program QM

Jumlah Siswa SMK Swasta Modern Di Kalimantan Selatan Solution							
Demand(y)	Time(x)	x^2	x * y	Forecast	Error	Error	Error^2
459.	1.	1.	459.	464.238	-5.238	5.238	27.437
499.	2.	4.	998.	457.6095	41.3905	41.3905	1,713.174
486.	3.	9.	1,458.	450.9809	35.0191	35.0191	1,226.335
300.	4.	16.	1,200.	444.3524	-144.3524	144.3524	20,837.6
482.	5.	25.	2,410.	437.7238	44.2762	44.2762	1,960.38
4 60.	6.	36.	2,760.	431.0952	28.9048	28.9048	835.4849
2,686.	21.	91.	9,285.		0.0001	299.1809	26,600.42
447.6667	3.5	15.1667	1,547.5		0.	49.8635	4,433.403
				424.4667	(Bias)	(MAD)	(MSE)
470.8666						Std err	81.5482
-6.6286							
	459. 499. 486. 300. 482. 460. 2,686. 447.6667	459. 1. 499. 2. 486. 3. 300. 4. 482. 5. 460. 6. 2,686. 21. 447.6667 3.5	Demand(y) Time(x) x^2 459. 1. 1. 499. 2. 4. 486. 3. 9. 300. 4. 16. 482. 5. 25. 460. 6. 36. 2,686. 21. 91. 447.6667 3.5 15.1667	Demand(y) Time(x) x*2 x*y 459. 1. 1. 459. 499. 2. 4. 998. 486. 3. 9. 1,458. 300. 4. 16. 1,200. 482. 5. 25. 2,410. 460. 6. 36. 2,760. 2,686. 21. 91. 9,285. 447.6667 3.5 15.1667 1,547.5 470.8666 . . .	Demand(y) Time(x) x*2 x * y Forecast 459. 1. 1. 459. 464.238 499. 2. 4. 998. 457.6095 486. 3. 9. 1,458. 450.9809 300. 4. 16. 1,200. 444.3524 482. 5. 25. 2,410. 437.7238 460. 6. 36. 2,760. 431.0952 2,686. 21. 91. 9,285. 447.6667 3.5 15.1667 1,547.5 470.8666 470.8666 424.4667	Demand(y) Time(x) x^2 x * y Forecast Error 459. 1. 1. 459. 464.238 -5.238 499. 2. 4. 998. 457.6095 41.3905 486. 3. 9. 1,458. 450.9809 35.0191 300. 4. 16. 1,200. 444.3524 -144.3524 482. 5. 25. 2,410. 437.7238 44.2762 460. 6. 36. 2,760. 431.0952 28.9048 2,686. 21. 91. 9,285. 0.0001 447.6667 3.5 15.1667 1,547.5 0. 470.8666 (Bias)	Demand(y) Time(x) x^2 x * y Forecast Error [Error] 459. 1. 1. 459. 464.238 -5.238 5.238 499. 2. 4. 998. 457.6095 41.3905 41.3905 486. 3. 9. 1,458. 450.9809 35.0191 35.0191 300. 4. 16. 1,200. 444.3524 -144.3524 144.3524 482. 5. 25. 2,410. 437.7238 44.2762 44.2762 460. 6. 36. 2,760. 431.0952 28.9048 28.9048 2,686. 21. 91. 9,285. 0.0001 299.1809 447.6667 3.5 15.1667 1,547.5 0. 49.8635 470.8666 6. 424.4667 (Bias) (MAD)

Forecasting Metode "Exponential Smoothing with Trend"

Secara manual, berdasarkan data di atas, maka dapat ditentukan: **a**) prediksi penerimaan siswa (Ft) SMK tahun ajaran 2011/2012 dengan menggunakan pendekatan metode *exponential smoothing* with trend dengan asumsi F1 = 459, T1 = 0, α = 0,3 dan β = 0,2 dan **b**) penghitungan MAD dan MSE nya, dimana untuk penentuan (α) dan (β) tidak ada ketentuannya, dalam soal ini penentuan (α = **0,3**) dan (β = **0,2**) hanya rekayasa penulis, kita bisa menentukan sendiri berapa (α) dan berapa (β)

Tabel 5 Forecasting "Exponential Smoothing with Trend"

Tahun	Periode	Penerimaan (Yt)	Ft
 2005/2006	1	459	-
2006/2007	2	499	$0.3 \times 459 + 0.7 \times (459 + 0) = 459$
2007/2008	3	486	$0.3 \times 499 + 0.7 \times (459 + 0) = 471$
2008/2009	4	300	$0.3 \times 486 + 0.7 \times (471 + 2.4) = 477.18$
2009/2010	5	482	$0.3 \times 300 + 0.7 \times (477.18 + 1.62) = 425.16$
2010/2011	6	466	$0.3 \times 482 + 0.7 \times (425.16 + 9.108) = 448.5876$
 2011/2012	7	=	$0.3 \times 466 + 0.7 \times (448.5876 + 0039) = 521.7140$
Tahun	Periode	Penerimaan (Yt)	Tt
1 411411	1 011040	renermann (re)	
2005/2006	1	459	-
** **	1 2	` /	$0.2 \times (459 - 459) + 0.8 \times 0 = 0$
2005/2006	1	459	<u> </u>
2005/2006 2006/2007	1 2	459 499	$-0.2 \times (459 - 459) + 0.8 \times 0 = 0$
2005/2006 2006/2007 2007/2008	1 2 3	459 499 486	$0.2 \times (459 - 459) + 0.8 \times 0 = 0$ $0.2 \times (471 - 459) + 0.8 \times 0 = 2.4$
2005/2006 2006/2007 2007/2008 2008/2009	1 2 3 4	459 499 486 300	$0.2 \times (459 - 459) + 0.8 \times 0 = 0$ $0.2 \times (471 - 459) + 0.8 \times 0 = 2.4$ $0.2 \times (477.18 - 471) + 0.8 \times 2.4 = 1.62$

Tahun	Periode	Penerimaan (Yt)	FIT = Ft + Tt	Yt – FIT
2005/2006	1	459	-	-
2006/2007	2	499	459	40
2007/2008	3	486	473,4	2,6
2008/2009	4	300	478,8	178,8
2009/2010	5	482	434,268	47,732
2010/2011	6	466	545,5915	79,5915
2011/2012	7	-	613,9423	-
		Total		348,7235

Sumber: Hasil perhitungan penulis (2012)

a.
$$F_{2011/2012} = 613,9423 \cong$$
 614 Siswa/i

a.
$$F_{2011/2012} = 613,9423 \cong 614 \text{ Siswa/1}$$
b. $MAD = \frac{348,7235}{5} = 69,7447$
 $MSE = \frac{40^2 + 2,6^2 + 178,8^2 + 47,732^2 + 79,5915^2}{5} = 8.437,8701$

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah seperti tabel 6 berikut.

Tabel 6 Hasil Penghitungan dengan Program QM Jumlah Siswa SMK Swasta Modern di Kalimantan Selatan

	Demand(y)	unadjusted forecast	trend	adjusted forecast	error	Error	Error^2
2005/2006	459.	459.	0.				
2006/2007	499.	459.	0.	459.	40.	40.	1,600.
2007/2008	486.	471.	2.4	473.4	12.6	12.6	158.7601
2008/2009	300.	477.18	3.156	480.336	-180.336	180.336	32,521.07
2009/2010	482.	426.2352	-7.6642	418.571	63.429	63.429	4,023.232
2010/2011	460.	437.5997	-3.8584	433.7413	26.2587	26.2587	689.5192
TOTALS	2,686.				-38.0483	322.6237	38,992.58
AVERAGE	447.6667				-7.6097	64.5247	7,798.517
Next period forecast		441.6189	-2.2829	439.336	(Bias)	(MAD)	(MSE)
						Std err	114.0067

Forecasting Metode "Exponential Smoothing"

Secara manual, berdasarkan data di atas, maka dapat ditentukan: a) prediksi penerimaan siswa (Ft) SMK tahun ajaran 2011/2012 dengan pendekatan metode *exponential smoothing* dimana $\alpha=0.3$ dan F1 = 215, b) penghitungan MAD dan MSE.

Tabel 7 Forecasting "Exponential Smoothing"

Tahun	Periode	Penerimaan (Yt)	Ft	Yt - Ft
2005/2006	1	459	-	-
2006/2007	2	499	$459 + 0.3 \times (459 - 459) = 0$	40
2007/2008	3	486	$459 + 0.3 \times (499 - 459) = 471$	15
2008/2009	4	300	$471 + 0.3 \times (486 - 471) = 475.51$	175,51
2009/2010	5	482	$475,5 + 0,3 \times (300 - 475,5) = 422,85$	59,15
2010/2011	6	466	422,85 + 0,3 (482 - 422,85) = 439,995	26,01
2011/2012	7	-	439,995 + 0,3 (466 - 439,995) = 447,7965	-
		Total		316,005

Sumber: Hasil perhitungan penulis (2012)

a.
$$F_{2011/2012} = 447,7965 \cong$$
 448 Siswa/i

b. MAD =
$$\frac{316,005}{5}$$
 = **63,201** dan

$$MSE = \frac{40^2 + 15^2 + 175,5^2 + 59,15^2 + 26,005^2}{5} = 7.360,04$$

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah seperti pada tabel 8 berikut.

Tabel 8 Hasil Penghitungan dengan Program QM Jumlah Siswa SMK Swasta Modern di Kalimantan Selatan

	Demand(y)	Forecast	Error	[Error]	Error^2
2005/2006	459.	459.			
2006/2007	499.	459.	40.	40.	1,600.
2007/2008	486.	471.	15.	15.	225.
2008/2009	300.	475.5	-175.5	175.5	30,800.25
2009/2010	482.	422.85	59.15	59.15	3,498.722
2010/2011	460.	440.595	19.405	19.405	376.554
TOTALS	2,686.		-41.945	309.055	36,500.53
AVERAGE	447.6667		-8.389	61.811	7,300.105
Next period forecast		446.4165	(Bias)	(MAD)	(MSE)
				Std err	110.3034

Forecasting metode "Weighted Moving Average"

Secara manual, berdasarkan data di atas, maka dapat ditentukan: **a)** prediksi penerimaan siswa (Ft) pada tahun 2011/2012 dengan metode *weighted moving average* dimana ditentukan bobotnya sebesar **0,2**; **03**; dan **0,5 b)** penghitungan MAD dan MSE.

Tabel 9 Forecasting "Weighted Moving Average"

Tahun	Periode	Penerimaan (Yt)	Ft	$ \mathbf{Y}\mathbf{t} - \mathbf{F}\mathbf{t} $
2005/2006	1	459	-	-
2006/2007	2	499	-	-
2007/2008	3	486	-	-
2008/2009	4	300	$(0.2 \times 459 + 0.3 \times 499 + 0.5 \times 486) = 484.5$	184,50
2009/2010	5	482	$(0.2 \times 499 + 0.3 \times 486 + 0.5 \times 300) = 395.6$	86,41
2010/2011	6	466	$(0.2 \times 486 + 0.3 \times 300 + 0.5 \times 482) = 428.2$	37,81
2011/2012	7	-	$(0.2 \times 300 + 0.3 \times 482 + 0.5 \times 466) = 437.6$	-
		Total		308,72

Sumber: Hasil perhitungan penulis (2012)

a.
$$F_{2011/2012} = 437,6 \cong 438$$
 siswa

b. MAD =
$$\frac{308.7}{3}$$
 = 102.9 dan MSE = $\frac{184.5^2 + 86.4^2 + 37.8^2}{3}$ = 14,259.5

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah sebagai berikut.

Tabel 10 Hasil Penghitungan dengan Program QM Jumlah Siswa SMK Swasta Modern di Kalimantan Selatan

	Demand(y)	Forecast	Error	Error	Error^2
2005/2006	459.	459.			
2006/2007	499.	459.	40.	40.	1,600.
2007/2008	486.	471.	15.	15.	225.
2008/2009	300.	475.5	-175.5	175.5	30,800.25
2009/2010	482.	422.85	59.15	59.15	3,498.722
2010/2011	460.	440.595	19.405	19.405	376.554
TOTALS	2,686.		-41.945	309.055	36,500.53
AVERAGE	447.6667		-8.389	61.811	7,300.105
Next period forecast		446.4165	(Bias)	(MAD)	(MSE)
				Std err	110.3034

Forecasting metode "Moving Average"

Secara Manual, berdasarkan data diatas, tentukanlah: **a**) prediksi penerimaan siswa (Ft) pada tahun 2011/2012 dengan metode *moving average* dengan n = 3? **b**) penghitungan **MAD** dan **MSE**.

Tabel 11 Forecasting "Moving Average"

Tahun	Periode	Penerimaan (Yt)	Forecast (Ft)	Yt – FtI
2005/2006	1	459	-	-
2006/2007	2	499	-	-
2007/2008	3	486	-	-
2008/2009	4	300	(459 + 499 + 486) : 3 = 481,34	181,33
2009/2010	5	482	(499 + 486 + 300) : 3 = 428,34	53,67
2010/2011	6	466	(486 + 300 + 482) : 3 = 422,67	43,33
2011/2012	7	-	(300 + 482 + 466) : 3 = 416,00	-
		Total		278,33

Sumber: Hasil perhitungan penulis (2012)

a.
$$F_{2011/2012} = 416$$
 Siswa

b. MAD =
$$\frac{278,33}{3}$$
 = 92,772
MSE = $\frac{181,333^2 + 53,667^2 + 43,33^2}{3}$ = 12.546,434

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah sebagai berikut.

Tabel 12 Hasil Penghitungan dengan Program QM Jumlah Siswa SMK Swasta Modern di Kalimantan Selatan

	Demand(y)	Forecast	Error	Error	Error^2
2005/2006	459.				
2006/2007	499.				
2007/2008	486.				
2008/2009	300.	481.3333	-181.3333	181.3333	32,881.78
2009/2010	482.	428.3333	53.6667	53.6667	2,880.11
2010/2011	460.	422.6667	37.3333	37.3333	1,393.776
TOTALS	2,686.		-90.3334	272.3333	37,155.67
AVERAGE	447.6667		-30.1111	90.7778	12,385.22
Next period forecast		414.	(Bias)	(MAD)	(MSE)
				Std err	192.7581

Forecasting metode "Naive Method"

Secara manual, berdasarkan data di atas, tentukanlah: **a**) prediksi penerimaan siswa (Ft) pada tahun 2011/2012 dengan metode *naive method*, **b**) penghitungan **MAD** dan **MSE**.

Tabel 13 Forecasting "Naive Method"

Tahun	Periode	Penerimaan (Yt)	Ft= Yt - 1	Yt – FtI
2005/2006	1	459	-	=
2006/2007	2	499	459	40
2007/2008	3	486	499	13
2008/2009	4	300	486	186
2009/2010	5	482	300	182
2010/2011	6	466	482	16
2011/2012	7	-	466	-
		Total		437

Sumber: Hasil perhitungan penulis (2012)

a. $F_{2011/2012} = 466 \text{ Siswa/i}$

b. MAD =
$$\frac{437}{5}$$
 = **87,4**
MSE = $\frac{40^2 + 13^2 + 186^2 + 182^2 + 16^2}{5}$ = **13.948**

Secara program QM for Windows, hasil akhir menggunakan program QM for Windows, adalah sebagai berikut.

Tabel 12 Hasil Penghitungan dengan Program QM Jumlah Siswa SMK Swasta Modern di Kalimantan Selatan

	Demand(y)	Forecast	Error	Error	Error^2
2005/2006	459.				
2006/2007	499.	459.	40.	40.	1,600.
2007/2008	486.	499.	-13.	13.	169.
2008/2009	300.	486.	-186.	186.	34,596.
2009/2010	482.	300.	182.	182.	33,124.
2010/2011	460.	482.	-22.	22.	484.
TOTALS	2,686.		1.	443.	69,973.
AVERAGE	447.6667		0.2	88.6	13,994.6
Next period forecast		460.	(Bias)	(MAD)	(MSE)
				Std err	152.7231

Berikut ini adalah tabel dan gambar hasil rekapitulasi prediksi penerimaan siswa di SMK Swasta Modern di Kalimantan Selatan.

Tabel 8 Rekapitulasi Prediksi Penerimaan Siswa di SMK Swasta Modern

NO	Forecasting	MAD	MSE	Hasil Prediksi
1	Linear Regression	50,49	4.882,58	463,11
2	Exponential Smooting With Trend	69,74	8.437,87	613,94
3	Exponential Smooting	63,21	7.360,04	447,79
4	Weighted Moving Average	102,90	14.259,51	437,61
5	Moving average	92,77	12.546,43	416,00
6	Naïve Method	87,41	13.948,42	466,00

Sumber: Hasil perhitungan penulis (2012)

Gambar 1 Hasil Rekapitulasi Prediksi SMK Swasta Modern

Jadi, dari hasil perhitungan *forecasting* didapat hasil MAD dan MSE yang terkecil pada metode *Linear Regression* yaitu MAD sebesar 50,4983 dan MSE sebesar 4.882,5849. Untuk perhitungan selanjutnya menggunakan data dari metode *forecasting Linear regression* menghasilakn *forecast* 463 siswa. Hasil perhitungan manual dan *QM for Windows* mungkin saja berbeda karena adanya pembulatan pada perhitungan manual.

SIMPULAN

Dari hasil perhitungan secara manual dibandingkan dengan menggunakan program QM for windows, terhadap prediksi penerimaan siswa SMK swasta modern tahun ajaran 2011/2012 sebesar 463 siswa, dimana prediksi ini menggunakan 6 metode forecasting, yaitu Linear Regression, Exponential Smoothing With Trend, Exponential Smoothing, Weighted Moving Average, Moving Average dan Naïve Method, ternyata metode Linear Regression/Least Squares menghasilkan MAD dan MSE terkecil, yaitu 50,4983 dan 4.882,58.

DAFTAR PUSTAKA

- Anderson, Sweeney, Williams, Martin. (2008). *Quantitative Methods for Business*. International Student Edition. Eleventh Edition. Canada: South-Western Cengage Learning.
- Hanke, J. E., and Wichern, D. W. (2005). *Business Forecasting*. Eighth Edition. New Jersey: Pearson Prentice Hall.
- Heizer, J., dan Render, B. (2009). *Manajemen Operasi*, (terjemahan), Buku 1, Edisi 9, Jakarta: Salemba Empat.
- Pramesti, G. (2009). Buku Pintar, Minitab 15. Jakarta: Elex Media Komputindo.
- Render, B., Ralph M, Stair Jr, and Hanna, Michael E, (2006), *Quantitative Analysis for Management*, International Edition, Pearson Prentice Hall, USA,
- Santoso, S. (2009). Business Forecasting, Metode Peramalan Bisnis Masa Kini dengan MINITAB dan SPSS. Jakarta: Elex Media Komputindo.
- Sarjono, H. (2010). Aplikasi Riset Operasi. Jakarta: Salemba Empat.
- Taylor, B. W. (2010), Introduction to Management Science. Tenth Edition. New Jersey: Pearson.
- Wongso, T. (2012). Optimalisasi Penentuan Rute dengan Pendekatan Forecasting dan Metode Distribusi Saving Matrix Serta Perancangan Sistem Informasi Pendistribusian Barang Pada Tirta Bintaro", Skripsi Manajemen Sistem Informasi, Universitas Bina Nusantara, Jakarta Barat.
- http://www,ittelkom,ac,id/library/index,php?view=article&catid=25%3Aindustri&id=258%3Ametode -peramalan-forecasting-method&option=com_content&Itemid=15