Assignment7 - Learning

Given: June 9 Due: July 18

Problem 7.1 (Weight Updates)

0 pt

Our hypothesis space contains the functions $h_{\mathbf{w}}(\mathbf{x}) = F(\mathbf{w} \cdot \mathbf{x})$ for 2+1-dimensional vectors \mathbf{w} , \mathbf{x} (using the trick $\mathbf{x}_0 = 1$ to allow for the constant term \mathbf{w}_0) and some fixed function F. Our examples are the set

Example number	\mathbf{x}_1	\mathbf{x}_2	y
1	2	0	2
2	3	1	2

As the initial weights, we use $\mathbf{w}_0 = \mathbf{w}_1 = \mathbf{w}_2 = 0$.

For each of the following cases, iterate the weight update rule once for each example (using the examples in the order listed). Use learning rate $\alpha = 1$.

- 1. Using the threshold function $F(z) = \mathcal{F}(z)$, i.e., F(z) = 1 if z > 0 and F(z) = 0 otherwise.
- 2. Using the logistic function $F(z) = 1/(1 + e^{-x})$.

Solution:

- 1. The update rule is $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha(y h_{\mathbf{w}}(\mathbf{x}))\mathbf{x}_i$. Using the examples, we obtain:
 - Example 1: $y h_{\mathbf{w}}(\mathbf{x}) = 2 \mathcal{F}((0, 0, 0) \cdot (1, 2, 0)) = 2$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (2, 4, 0)$.
 - Example 2: $y h_{\mathbf{w}}(\mathbf{x}) = 2 \mathcal{F}((2, 4, 0) \cdot (1, 3, 1)) = 1$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (3, 7, 1)$.
- 2. The update rule is $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha(y h_{\mathbf{w}}(\mathbf{x}))h_{\mathbf{w}}(\mathbf{x})(1 h_{\mathbf{w}}(\mathbf{x}))\mathbf{x}_i$. Using the examples, we obtain:
 - Example 1: $h_{\mathbf{w}}(\mathbf{x}) = 1/(1 + e^0) = 1/2$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1/4(2 1/2)\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (3/8, 3/4, 0)$.
 - Example 2: $h_{\mathbf{w}}(\mathbf{x}) = 1/(1 + e^{-((3/8,3/4,0)\cdot(1,3,1))}) = 1/(1 + e^{-21/8})$, i.e., (after rounding) $\mathbf{w}_i \leftarrow \mathbf{w}_i + 0.07\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (0.44, 0.95, 0.07)$.

Problem 7.2 (Decision Tree Learning in Python)

40 pt

 $Implement \ the \ \textit{Decision Tree Learning} \ algorithm \ (DTL) \ in \ Python \ using \ the \ files \ at \ https://kwarc.info/teaching/AI/resources/AI2/dtl.$

Solution:

Problem 7.3 (Decision List)

30 pt

We want to construct a decision list to classify the data below where result values V depend on 4 attributes A, B, C, D. The tests should be conjunctions of literals.

- 1. Assume your literals must be of the form attribute = number. For which k-can we give the shortest possible decision list in k-DL (i.e., using at most k literals per test)? Give the list.
- 2. Now assume your literals may also be of the form *attribute* = *attribute*. Answer the same question as above.

Example	A	B	C	D	V
#1	1	0	0	0	1
#2	1	0	1	1	1
#3	0	1	0	0	1
#4	1	1	0	1	1
#5	0	0	1	1	1
#6	0	1	1	0	0
#7	0	1	0	1	0
#8	0	0	1	0	0

Solution:

1. For k = 3, we can build a list of length 2:

if
$$A = 0 \land C = 1 \land D = 0$$
 then 0 else

if
$$A = 0 \land C = 0 \land D = 1$$
 then 0 else

1.

We also accepted the following solutions for k = 2 with a list of length 3:

if
$$A = 1$$
 then 1 else

if
$$C = 0 \land D = 0$$
 then 1 else

if
$$C = 1 \land D = 1$$
 then 1 else

0

2. For k = 1, we can build a list of length 2:

if
$$A = 1$$
 then 1 else

if
$$C = D$$
 then 1 else

0

Problem 7.4 (XOR Neural Network)

30 pt

Consider the following neural network with

- inputs a_1 and a_2
- units 3, 4, 5 with activation functions such that $a_i \leftarrow \begin{cases} 1 & \text{if } \Sigma_j w_{ji} a_j > b_i \\ 0 & \text{otherwise} \end{cases}$
- weights w_{ij} as given by the labels on the edges

- 1. Assume $b_3=b_4=b_5=0$ and inputs $a_1=a_2=1$. What are the resulting activations $a_3,\,a_4,$ and a_5 ?
- 2. Choose appropriate values for b_3 , b_4 , and b_5 such that the network implements the XOR function.

Solution:

- 1. $a_3 = 1$, $a_4 = 0$, $a_5 = 1$
- 2. E.g., $b_3=0.5,$ $b_4=-1.5,$ $b_5=1.5.$ More generally, any values work that satisfy $0\leq b3<1,$ $-2\leq b4<-1,$ and $1\leq b5<2.$