## Target Analysis

#### About the dataset:

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allow viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
  - A. Data type of columns in a table

## Query:

Desc`brahmaasmi.Target\_Dataset.orders`;



Similarly we can check for other tables as well.

## B. Time period for which the data is given

### Query:

```
SELECT
  date_diff(
  max(date(order_delivered_customer_date)), min(date(order_p
  urchase_timestamp)), year) as year,
  date_diff(
  max(date(order_delivered_customer_date)), min(date(order_p
  urchase_timestamp)), month) as month,
  date_diff(
  max(date(order_delivered_customer_date)), min(date(order_p
  urchase_timestamp)), day) as day FROM `brahmaasmi.Target_D
  ataset.orders`;
```

| Query results |            |    |       |    |      | SAVE RESULTS ▼ |                   |
|---------------|------------|----|-------|----|------|----------------|-------------------|
| JOB IN        | IFORMATION |    | RESUL | TS | 102L | 1              | EXECUTION DETAILS |
| Row           | year       | 11 | month | 11 | day  | 11             |                   |
| 1             |            | 2  |       | 25 |      | 773            |                   |

SELECT date(min(order\_purchase\_timestamp)) as min\_time,
date(max(order\_delivered\_customer\_date)) as max\_time
FROM `brahmaasmi.Target\_Dataset.orders`;

| Quer   | y results  | <b>≛</b> SAVE RESU | JLTS |    |
|--------|------------|--------------------|------|----|
| JOB IN | IFORMATION | RESULTS            | JSON | E. |
| Row    | min_time   | max_time           | 6    |    |
| 1      | 2016-09-04 | 2018-10-17         |      |    |

C. Cities and States covered in the dataset

```
select distinct c.customer_state
FROM `brahmaasmi.Target_Dataset.customers` c join
`brahmaasmi.Target_Dataset.geolocation` g
  on c.customer_zip_code_prefix=g.geolocation_zip_code_prefix;
```

| Quer   | y results      |         |      |         |
|--------|----------------|---------|------|---------|
| JOB IN | IFORMATION     | RESULTS | JSON | EXECUTI |
| Row    | customer_state | 11      |      |         |
| 23     | PE             |         |      |         |
| 24     | PR             |         |      |         |
| 25     | RN             |         |      |         |
| 26     | RS             |         |      |         |
| 27     | SC             |         |      |         |

```
select distinct c.customer_city
FROM `brahmaasmi.Target_Dataset.customers` c join
`brahmaasmi.Target_Dataset.geolocation` g
  on c.customer_zip_code_prefix=g.geolocation_zip_code_prefix;
```

| Query results |                   |                          | <b>▲</b> SAVE RESULTS <b>¬</b> |    |  |
|---------------|-------------------|--------------------------|--------------------------------|----|--|
| JOB IN        | IFORMATION        | RESULTS                  | JSON                           | EX |  |
| Row           | customer_city     | ,                        | 4                              |    |  |
| 1             | aracaju           |                          |                                |    |  |
| 2             | riachuelo         |                          |                                |    |  |
| 3             | nossa senhora d   | nossa senhora do socorro |                                |    |  |
| 4             | barra dos coquei  | ros                      |                                |    |  |
| 5             | itaporanga d'ajud | la                       |                                |    |  |

## 2. In-depth Exploration:

A. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
select extract(month from o.order_purchase_timestamp) as M
onth_,
count(o.order_id) as no_of_orders
FROM `brahmaasmi.Target_Dataset.orders` o
group by 1 order by no_of_orders desc;
```

➤ August sees maximum number of purchases followed by July & May.

Orders dip to their lowest in the month of September then it starts

picking up till Jan. All in all September, October, November, December comprise of lowest number of purchases across all the months.

| Quer   | y results  |              | ♣ SAVE RESULTS ▼  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑  ↑ |          |  |
|--------|------------|--------------|---------------------------------------------------------|----------|--|
| JOB IN | IFORMATION | RESULTS      | JSON                                                    | EXECUTIO |  |
| Row    | Month_     | no_of_orders |                                                         |          |  |
| 1      | 8          | 10843        |                                                         |          |  |
| 2      | 5          | 10573        |                                                         |          |  |
| 3      | 7          | 10318        |                                                         |          |  |
| 4      | 3          | 9893         |                                                         |          |  |
| 5      | 6          | 9412         |                                                         |          |  |
|        |            |              |                                                         |          |  |

B. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

select extract(hour from o.order\_purchase\_timestamp) as Ho
urs\_of\_day,

count(o.order\_id) as no\_of\_orders
FROM

`brahmaasmi.Target\_Dataset.orders` o group by 1 order by n o\_of\_orders desc ;

| Query results |              |              | <b>≛</b> SAVE RESULTS ▼ |          |  |
|---------------|--------------|--------------|-------------------------|----------|--|
| JOB IN        | NFORMATION   | RESULTS      | JSON                    | EXECUTIO |  |
| Row           | Hours_of_day | no_of_orders |                         |          |  |
| 1             | 16           | 6675         |                         |          |  |
| 2             | 11           | 6578         |                         |          |  |
| 3             | 14           | 6569         |                         |          |  |
| 4             | 13           | 6518         |                         |          |  |
| 5             | 15           | 6454         |                         |          |  |
|               |              |              |                         |          |  |

♣ Brazilians tends to order majorily afternoon

## 3. Evolution of E-commerce orders in the Brazil region:

A. Get month on month orders by region, states

Month on Month orders By States:

```
select extract(month from o.order_purchase_timestamp) as M
onth_,
p.customer_state,
count(o.order_id) as no_of_orders
FROM `brahmaasmi.Target_Dataset.orders` o
join `brahmaasmi.Target_Dataset.customers` p on o.customer
_id=p.customer_id
group by 1, 2 order by month_ , no_of_orders desc;
```

| Query results |            |                  | ♣ SAVE RESULTS ▼   ★ EXPLORE DA |              |       |  |
|---------------|------------|------------------|---------------------------------|--------------|-------|--|
| JOB IN        | IFORMATION | RESULTS          | JSON                            | EXECUTION DE | TAILS |  |
| Row           | Month_     | customer_state   | e //                            | no_of_orders |       |  |
| 187           | 7          |                  | ~                               | 9 ~          |       |  |
| 188           | 7          | AP               |                                 | 7            |       |  |
| 189           | 7          | RR               |                                 | 6            |       |  |
| 190           | 8          | SP               |                                 | 4982         |       |  |
| 191           | 8          | RJ               |                                 | 1307         |       |  |
| 102           | 8          | MG               |                                 | 1177         |       |  |
|               |            | Results per page | e: 200 <b>▼</b> 1               | - 200 of 322 | 14 4  |  |

Month on Month orders By City:

```
select extract(month from o. order_purchase_timestamp) as M
onth_,
p. customer_ci ty,
count(o. order_id) as no_of_orders
FROM `brahmaasmi.Target_Dataset.orders` o
join `brahmaasmi.Target_Dataset.customers` p on o. customer
_id=p. customer_id
group by 1, 2 order by month_ , no_of_orders desc;
```



| ~     | <b>EXPI</b> |     |    |
|-------|-------------|-----|----|
|       | FXPI        | URF | 1) |
| 41111 |             |     | _  |

| JOB INFORMATION |        | RESULTS        | JSON EXECUTION DETA |              |  |
|-----------------|--------|----------------|---------------------|--------------|--|
| Row             | Month_ | customer_city  | h                   | no_of_orders |  |
| 1               | 1      | sao paulo      |                     | 1195         |  |
| 2               | 1      | rio de janeiro |                     | 545          |  |
| 3               | 1      | belo horizonte |                     | 239          |  |
| 4               | 1      | brasilia       |                     | 151          |  |
| 5               | 1      | curitiba       |                     | 150          |  |
|                 |        |                |                     |              |  |

#### B. How are customers distributed in Brazil

#### sel ect

```
p. customer_ci ty, p. customer_state,
count(p. customer_i d) as no_of_customers
from `brahmaasmi . Target_Dataset . customers` p
group by 1, 2 order by no_of_customers desc, customer_state;
```

| JOB IN | IFORMATION     | RESULTS | JSON           | EXECUTION DE | TAILS        |
|--------|----------------|---------|----------------|--------------|--------------|
| Row    | customer_city  | 11      | customer_state | 11           | no_of_orders |
| 1      | sao paulo      |         | SP             |              | 15540        |
| 2      | rio de janeiro |         | RJ             |              | 6882         |
| 3      | belo horizonte |         | MG             |              | 2773         |
| 4      | brasilia       |         | DF             |              | 2131         |
| 5      | curitiba       |         | PR             |              | 1521         |

- 4. Impact on Economy: Analyze the money movemented by ecommerce by looking at order prices, freight and others.
  - A. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
with cte_price_difference as
 (select x. *,
lag(x. total_price, 8) over( order by x. year, x. month)
as diff_in_price from
(select Extract(year from o.order_purchase_timestamp) as y
ear,
Extract(month from o.order_purchase_timestamp) as month,
sum(oi.price) as total_price
from `brahmaasmi.Target_Dataset.orders`
join `brahmaasmi.Target_Dataset.order_items` as oi on
 o. order_i d=oi . order_i d
 group by 1, 2) x
 where x. year in (2017, 2018) and month not in (9, 10, 11, 12)
 order by year desc, month)
 select y.month , (total_price-
diff_in_price)*100/diff_in_price as
percentage_diff_in_cost
from cte_price_difference y limit 8;
```

| JOB IN | IFORMATION | RESULTS    | JSON | EXECUTIO |
|--------|------------|------------|------|----------|
| Row    | month      | percentage |      |          |
| 1 "    | 1 ′′       | 689.633195 |      |          |
| 2      | 2          | 241.353983 |      |          |
| 3      | 3          | 162.649502 |      |          |
| 4      | 4          | 176.902570 |      |          |
| 5      | 5          | 96.9125684 |      |          |
| 6      | 6          | 99.7799526 |      |          |
| 7      | 7          | 79.8093606 |      |          |

B. Mean & Sum of price and freight value by customer state

```
select x.customer_state,
sum(oi.freight_value) as total_freight_value,
avg(oi.freight_value) as avg_freight_value,
sum(oi.price) as total_price,
avg(oi.price) as avg_price
from
(
select o.order_id,c.customer_state
from `brahmaasmi.Target_Dataset.orders` o
join `brahmaasmi.Target_Dataset.customers` c on
o.customer_id=c.customer_id
) x join
`brahmaasmi.Target_Dataset.order_items` oi on
x.order_id=oi.order_id
group by 1;
```

| Query results |                | <u>.</u>      | SAVE RESULTS | ORE DATA ▼     |            |    |
|---------------|----------------|---------------|--------------|----------------|------------|----|
| JOB IN        | IFORMATION     | RESULTS       | JSON E       | EXECUTION DETA | ILS        |    |
| Row           | customer_state | total_freight | avg_freight  | total_price    | avg_price  | 11 |
| 1             | MT             | 29715.4300    | 28.1662843   | 156453.529     | 148.297184 |    |
| 2             | MA             | 31523.7700    | 38.2570024   | 119648.219     | 145.204150 |    |
| 3             | AL             | 15914.5899    | 35.8436711   | 80314.81       | 180.889211 |    |
| 4             | SP             | 718723.069    | 15.1472753   | 5202955.05     | 109.653629 |    |
| 5             | MG             | 270853.460    | 20.6301668   | 1585308.02     | 120.748574 |    |
|               |                |               |              |                |            |    |

## 5. Analysis on sales, freight and delivery time

#### A. Create columns:

- time\_to\_delivery = order\_purchase\_timestamporder\_delivered\_customer\_date
- diff\_estimated\_delivery = order\_estimated\_delivery\_dateorder\_delivered\_customer\_date

```
SELECT
  date_diff(
  date(order_delivered_customer_date), date(order_purchase_t
imestamp), day)
as time_to_delivery,
  date_diff(
  date(order_estimated_delivery_date), date(order_delivered_
customer_date), day)
as diff_estimated_delivery
  FROM `brahmaasmi.Target_Dataset.orders`;
```

| JOB IN | IFORMATION       | RESULTS         | JSON     | EXECUTION DETAIL |
|--------|------------------|-----------------|----------|------------------|
| Row    | time_to_delivery | diff_estimated_ | delivery |                  |
| 1      | 30               |                 | -12      |                  |
| 2      | 31               |                 | 29       |                  |
| 3      | 36               |                 | 17       |                  |
| 4      | 31               |                 | 2        |                  |
| 5      | 33               |                 | 1        |                  |
|        |                  |                 |          |                  |

B. Group data by state, take mean of freight\_value, time\_to\_delivery, diff\_estimated\_delivery

```
with cte_freight as (SELECT
 date diff(
 date(order_delivered_customer_date), date(order_purchase_t
imestamp), day) as time_to_delivery,
 date_diff(
 date(order_estimated_delivery_date), date(order_delivered_
customer_date), day) as diff_estimated_delivery,
oi.freight value,
o.customer_id
FROM `brahmaasmi.Target_Dataset.orders` o join
`brahmaasmi.Target_Dataset.order_items` oi on oi.order_id=
o. order id)
select c. customer state,
sum(x.diff_estimated_delivery) as mean_estimated_del,
sum(x.time_to_delivery) as mean_time_del ,
sum(x.freight_value) as mean_freight,
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c. customer_i d=x. customer_i d
group by 1;
```

#### ▲ SAVE RESULTS ▼

| ~~ | EVDI | ODE | DATA | _ |
|----|------|-----|------|---|
| MM |      | UKE | DAIA | • |

| JOB INFORMATION |                | RESULTS JSON       | N EXECUTION   | DETAILS         |
|-----------------|----------------|--------------------|---------------|-----------------|
| Row             | customer_state | mean_estimated_del | mean_time_del | mean_freight // |
| 1               | MT             | 15111              | 18570         | 29715.4300      |
| 2               | MA             | 7925               | 17272         | 31523.7700      |
| 3               | AL             | 3730               | 10439         | 15914.5899      |
| 4               | SP             | 520529             | 402301        | 718723.069      |
| 5               | MG             | 172347             | 153980        | 270853.460      |
|                 |                |                    |               |                 |

C. Sort the data to get the following:

With the help of same CTE function mentioned above we can answer below questions:

 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 states with highest average freight value:

```
select c. customer_state,
avg(x. freight_value) as mean_freight,
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c. customer_id=x. customer_id
group by 1 order by mean_freight desc LIMIT 5;
```



| JOB INFORMATION |                | RESULTS      | JSON    |
|-----------------|----------------|--------------|---------|
| Row             | customer_state | mean_freight | //      |
| 1               | RR             | 42.98442307  | 6923093 |
| 2               | РВ             | 42.72380398  | 6710941 |
| 3               | RO             | 41.06971223  | 0215842 |
| 4               | AC             | 40.07336956  | 5217405 |
| 5               | PI             | 39.14797047  | 9704767 |

Top 5 states with lowest average freight value:

```
select c.customer_state,
avg(x.freight_value) as mean_freight,
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c.customer_id=x.customer_id
group by 1 order by mean_freight LIMIT 5;
```

| Query results |                |    |              |      |  |  |
|---------------|----------------|----|--------------|------|--|--|
| JOB IN        | IFORMATION     | R  | ESULTS       | JSOI |  |  |
| Row           | customer_state | // | mean_freight | /    |  |  |
| 1             | SP             |    | 15.1472753   |      |  |  |
| 2             | PR             |    | 20.5316515   |      |  |  |
| 3             | MG             |    | 20.6301668   |      |  |  |
| 4             | RJ             |    | 20.9609239   |      |  |  |
| 5             | DF             |    | 21.0413549   |      |  |  |

Top 5 states with highest/lowest average time to delivery

## Top 5 states with highest average time to delivery:

```
select c.customer_state,
sum(x.time_to_delivery) as mean_time_del
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c.customer_id=x.customer_id
group by 1 order by mean_time_del desc limit 5;
```

## Query results

## **▲** SAVE RESULTS

| JOB INFORMATION |                | RESULTS |            | JSON        | Е |
|-----------------|----------------|---------|------------|-------------|---|
| Row             | customer_state | 11      | mean_time_ | _del        |   |
| 1               | AP             |         | 28.22222   | 2222222218  |   |
| 2               | RR             |         | 28.17391   | 13043478258 |   |
| 3               | AM             |         | 26.33742   | 23312883427 |   |
| 4               | AL             |         | 24.44730   | 06791569098 |   |
| 5               | PA             |         | 23.70208   | 37286527469 |   |

# Top 5 states with lowest average time to delivery:

```
select c.customer_state,
avg(x.time_to_delivery) as mean_time_del
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c.customer_id=x.customer_id
group by 1 order by mean_time_del limit 5;
```



| JOB INFORMATION |                | RESULTS JSON       |
|-----------------|----------------|--------------------|
| Row             | customer_state | mean_time_del      |
| 1               | SP             | 8.66225265379071   |
| 2               | PR             | 11.893078420959467 |
| 3               | MG             | 11.920724626461224 |
| 4               | DF             | 12.893842887473479 |
| 5               | SC             | 14.950219619326486 |

 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states where delievery is fast:

```
select c.customer_state,
avg(x.diff_estimated_delivery) as mean_estimated_del
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c.customer_id=x.customer_id
group by 1 order by mean_estimated_del limit 5;
```



| JOB INFORMATION |                |    | RESULTS     | JSON      | Eλ |
|-----------------|----------------|----|-------------|-----------|----|
| Row             | customer_state | 11 | mean_estima | ted_del   |    |
| 1               | AL             |    | 8.735362    | 299765808 |    |
| 2               | MA             |    | 9.90624999  | 999999929 |    |
| 3               | SE             |    | 10.0026666  | 666666677 |    |
| 4               | ES             |    | 10.6462921  | 134831446 |    |
| 5               | ВА             |    | 10.982622   | 286179745 |    |

Top 5 states with slow delivery:

```
select c.customer_state,
avg(x.diff_estimated_delivery) as mean_estimated_del
from cte_freight x join
`brahmaasmi.Target_Dataset.customers` c on
c.customer_id=x.customer_id
group by 1 order by mean_estimated_del desc limit 5;
```

| Query results |                |         | ▲ SAVE RESU | JLTS ▼ <b></b> |
|---------------|----------------|---------|-------------|----------------|
| JOB IN        | IFORMATION     | RESULTS | JSON        | EXECUTION      |
| low           | customer_state | ĺ,      | mean_estima | ted_del        |
| 1             | AC             |         | 20.978021   |                |
| 2             | RO             |         | 20.040293   | 040293058      |
| 3             | AM             |         | 19.932515   | 337423315      |
| 4             | AP             |         | 18.395061   | 728395063      |
| 5             | RR             |         | 18.326086   | 956521742      |

### 6. Payment type analysis:

A. Month over Month count of orders for different payment types

```
select extract(month from o.order_purchase_timestamp) as M
onth_,
p. payment_type,
count(o.order_id) as no_of_orders
FROM `brahmaasmi.Target_Dataset.orders` o
join `brahmaasmi.Target_Dataset.payments` p on o.order_id=
p.order_id
group by 1, 2 order by month_, no_of_orders desc;
```

#### Query results ▲ SAVE RESULTS ▼ **M** EXPLORI JOB INFORMATION **JSON EXECUTION DETAILS** RESULTS Row Month\_ no\_of\_orders payment\_type 3 1 voucher 477 debit\_card 4 118 5 2 credit\_card 6609 6 2 UPI 1723 7 2 voucher 424

B. Distribution of payment installments and count of orders

#### sel ect

```
p. payment_i nstall ments,
count(p. order_i d) as no_of_orders
from `brahmaasmi . Target_Dataset . payments` p
group by 1 order by no_of_orders desc ;
```

# **▲** SAVE RESULTS ▼

| JOB INFORMATION |            | RESULTS      | JSON | EXE |
|-----------------|------------|--------------|------|-----|
| Row             | payment_in | no_of_orders |      |     |
| 1               | 1          | 52546        |      |     |
| 2               | 2          | 12413        |      |     |
| 3               | 3          | 10461        |      |     |
| 4               | 4          | 7098         |      |     |
| 5               | 10         | 5328         |      |     |
|                 |            |              |      |     |

### Actionable Insights:

- ➤ Maximum number of orders are coming from Afternoon 1 PM to 4 PM.

  Among this patch there is a pattern too. Order starts increasing from 1

  PM and reaches to max by 4 PM.
- ➤ Least number of orders are coming from morning 1 AM to 7 AM. Among this patch there is a pattern too. Order starts decreasing from 1 AM and reaches to its low by 5 PM. Then from 6 AM onwards it starts picking up and by 11 AM it reached to 2<sup>nd</sup> max no of orders.
- Credit\_Card is the most used Payment type followed by UPI & Debit\_Card is the least used Payment Type.
- ➤ August sees maximum number of purchases followed by July & May.

  Orders dip to their lowest in the month of September then it starts

  picking up till Jan. All in all September, October, November, December comprise of lowest number of purchases across all the months.
- ➤ Most used payment\_installment is 1 followed by 2,3 & 4. People are rarely using installments above 9
- > % increase in cost of orders from 2017 to 2018 shows decreasing trend from Jan to Aug
- > SP,RJ,MG are leading states with maximum total price & freight value when AC,AP,RR being states with lowest total price & freight value
- ➤ Among states AL being the state with fastest delivery of orders followed by MA,SE

#### Recommendations:

- ➤ Debit\_Card being the least used Payment Type, Coupons, discounts and other lucrative offers can be availed to the customers to encourage the usage of this Pyament\_Type
- ➤ Maximum numbers of orders are coming from August, July & May month. Sale/ discounts can be offered to increase orders in other months as well. December being one of the lowest months for orders Christmas sales, new year sale/discount can be lucrative option to attract customers
- ➤ Percentage price rise is lowest in the month of August and maximum in the month of January and we see most orders are coming from August and January being one of lowest order receiving month. With this trend conclusion can be drawn that price rise is one of the most important contributing factors for customers. Multiple Market decisions and strategies can be adopted to cater this huge price rise in mentioned month to attract customers in months where we are receiving less orders.
- ➤ Campaigns or other marketing strategies can be used to increase penetration in states like AC, AP, RR from where we are receiving least sum of price/freight value
- ➤ There are multiple instances where estimated\_delievery time is quite longer. Ways can be adopted to shorten this mismatch between actual delivery & estimated delivery to improve the customer experience.