1 Microlocal Analysis

Theorem 1.1 (Schwartz Kernel Theorem [Taylor, 2011, Chapter 4.6, p. 345]). Let M, N be compact manifold and

$$T: C^{\infty}(M) \to \mathcal{D}'(N)$$

be a continuous linear map $(C^{\infty}(M))$ being given Frechet space topology and D'(N) the weak* topology). Define a bilinear map

$$B: C^{\infty}(M) \times C^{\infty}(N) \to \mathbb{C}$$
$$(u, v) \mapsto B(u, v) = \langle v, Tu \rangle.$$

Then, there exist a distribution $k \in \mathcal{D}'(M \times N)$ such that for all $(u, v) \in C^{\infty}(M) \times C^{\infty}(N)$

$$B(u, v) = \langle u \otimes v, k \rangle$$
.

We call such k the kernel of T.

1.1 Symbols

1.2 Pseudodifferential Operators (ΨDO's)

2 Sobolev Spaces [Taylor, 2011, Chapter 4]

Definition 2.1 (Sobolev Spaces). Let $p \in \mathbb{R}$ and $k \in \mathbb{N}$ be given. We define the k^{th} -order L^p -based Sobolev spaces on \mathbb{R}^n as the Banach space

$$W^{p,k}(\mathbb{R}^n) = \{ u \in L^p(\mathbb{R}^n) \mid D^{\alpha}u \in L^p(\mathbb{R}^n), \mid \alpha \mid \leqslant k \}$$

with the norm

$$||u||_{W^{p,k}} = ||u||_{L^p} + ||D^k u||_{L^p}.$$

For p=2, we have denote $H^k:=W^{2,k}$ and note that result from Fourier analysis gives

$$H^{k} = \left\{ u \in L^{2}(\mathbb{R}^{n}) \mid \langle \xi \rangle^{k} \, \hat{u} \in L^{2}(\mathbb{R}^{n}) \right\}$$

allowing us to extend the definition to each real order $s \in \mathbb{R}$,

$$H^{s} = \left\{ u \in S'(\mathbb{R}^{n}) \mid \langle \xi \rangle^{s} \, \hat{u} \in L^{2}(\mathbb{R}^{n}) \right\}$$

where $S'(\mathbb{R}^n)$ is the space of tempered distribution on \mathbb{R}^n . This forms a Hilbert space with inner product given by

$$\langle u, v \rangle_{H^s} = \langle \Lambda^s u, \Lambda^s v \rangle_{L^2}$$

with $\Lambda^s: S'(\mathbb{R}^n) \to S'(\mathbb{R}^n)$ being the operator $\Lambda^s u = \mathcal{F}^{-1}(\langle \xi \rangle^s \hat{u})$.

3 Linear Elliptic equations [Taylor, 2011, Chapter 5]

Theorem 3.1 (Elliptic estimate). Let $\overline{\Omega}$ be a compact Riemanian manifold and Ω be its interior. Let $L = -\Delta + X$, where Δ is the Laplacian and X and first order differential operator with smooth

coefficient in $\overline{\Omega}$. Then, we have the estimate

$$\|u\|_{H^{k+1}}^2 \leqslant C\left(\|Lu\|_{H^{k-1}}^2 + \|u\|_{H^k}^2\right)$$

for all $u \in H^{k+1}(\Omega) \cap H_0^1(\Omega)$ and for some C > 0.

4 Compact and Fredholm Operators

5 Miscellaneous

Lemma 5.1 (Riez's inequality). Let X be a normed linear space. Given a non-dense subspace (or closed proper subspace) $Y \subset X$ and any $r \in (0,1)$, then there exist $x \in X$ with ||x|| = 1 such that

$$\inf_{y \in Y} ||x - y|| \geqslant r.$$

Proof

Let $x_0 \in \overline{Y}^c$ and $R = \inf_{y \in Y} ||y - x_0|| > 0$. Given any $\epsilon > 0$ we can pick (by definition of inf) a $y_0 \in Y$ such that

$$||y_0 - x_0|| < R + \epsilon.$$

Take $\epsilon < R \frac{1-r}{r}$ and define $x \in X$ to be

$$x = \frac{y_0 - x_0}{\|y_0 - x_0\|}.$$

Observe that ||x|| = 1 and

$$\inf_{y \in Y} \|x - y\| = \frac{1}{\|x_0 - y_0\|} \inf_{y \in Y} \|y_0 - x_0 - y\| \|x_0 - y_0\| \|$$

$$= \frac{1}{\|x_0 - y_0\|} \inf_{y \in Y} \|x_0 - y\| \qquad \text{since } \alpha y - y_0 \in Y \text{ for any scalar } \alpha$$

$$\geqslant \frac{R}{R + \epsilon}$$

$$\geqslant \frac{R}{R + R \frac{1 - r}{r}}$$

as required.

Corollary. The closed unit ball in a Banach Space X is compact iff X is finite dimensional.

Proof. Let X be a Banach space and \overline{B} be closed unit ball.

Case 1 (\iff). If X is finite dimensional, it is isometrically isomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$, where, by Heine-Borel theorem, the closed unit ball is compact.

Case 2 (\Longrightarrow). We will prove the contrapositive. Suppose, X is infinite dimensional. Let $x_0 \in \partial \overline{B}$ be an element in the unit sphere. For each $n \in \mathbb{N}$, we will use Riez Lemma to obtain a unit vector x_n such that

$$\inf_{y \in \text{span}\{x_0, \dots, x_{n-1}\}} ||x_n - y|| \geqslant \frac{1}{2}.$$

It is clear that $\{x_n \mid n \in \mathbb{N}\}$ is a sequence of element in \overline{B} that has no convergent subsequence. Therefore \overline{B} is not compact.

References

[Taylor, 2011] Taylor, M. (2011). Partial Differential Equations I, volume 115 of Applied Mathematical Sciences. Springer-Verlag, New York, 2 edition.