MTH 3001 Problem Set 7: Some Number Theory Problems

A few number theory problems have appeared on problem sets #3 and #6. Here are a few more. [Adapted by Professor Jerrold Grossman from material prepared by Professor Barry Turett, Oakland University. October 26, 2004.]

- 1. $(1974, B-3)^{***}$ Prove that if α is a real number such that $\cos(\pi\alpha) = 1/3$, then α is irrational. (The angle $\pi\alpha$ is in radians.)
- 2. $(1988, B-1)^*$ A composite (positive integer) is a product ab with a and b not necessarily distinct integers in $\{2, 3, 4, \ldots\}$. Show that every composite is expressible as xy + xz + yz + 1 with x, y, and z positive integers.
- 3. $(1995, A-3)^{**}$ The number $d_1d_2...d_9$ has nine (not necessarily distinct) decimal digits. The number $e_1e_2...e_9$ is such that each of the nine 9-digit numbers formed by replacing just one of the digits d_i in $d_1d_2...d_9$ by the corresponding digit e_i $(1 \le i \le 9)$ is divisible by 7. The number $f_1f_2...f_9$ is related to $e_1e_2...e_9$ in the same way: that is, each of the nine numbers formed by replacing one of the e_i by the corresponding f_i is divisible by 7. Show that, for each $i, d_i f_i$ is divisible by 7. [For example, if $d_1d_2...d_9 = 199501996$, then e_6 may be 2 or 9 since 199502996 and 199509996 are multiples of 7.]
- 4. $(1998, A-4)^{**}$ Let $A_1=0$ and $A_2=1$. For n>2, the number A_n is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example, $A_3=A_2A_1=10$, $A_4=A_3A_2=101$, $A_5=A_4A_3=10110$, and so forth. Determine all n such that 11 divides A_n .
- 5. $(1998, B-5)^{***}$ Let N be the positive integer with 1998 decimal digits all of them 1; that is,

$$N = 1111...11.$$

Find the thousandth digit after the decimal point of \sqrt{N} .

- 6. $(1998, B-6)^{***}$ Prove that, for every three integers a, b, and c there exists a positive integer n such that $\sqrt{n^3 + an^2 + bn + c}$ is not an integer.
- 7. $(2001, A-5)^{****}$ Prove that there are unique positive integers a and n such that

$$a^{n+1} - (a+1)^n = 2001.$$

Hints:

- 1. Let $\alpha = m/n$. Show that there are only finitely many possible values of $\cos(k\pi\alpha)$ for integer values of k. Use the double-angle formula to show that there are infinitely many.
- 2. Let z = 1 and factor.
- 3. Let $D = d_1 d_2 \dots d_9$ and $E = e_1 e_2 \dots e_9$. Write the given conditions on D and E and sum them.
- 4. Find the number of digits in A_n , and find a recursion formula for A_n modulo 11.
- 5. Note that $N=(10^{1998}-1)/9$ and that the 1000th digit after the decimal point of \sqrt{N} is $\lfloor 10^{1000}\sqrt{N} \rfloor$. Or use a Taylor expansion to approximate \sqrt{N} .
- 6. All perfect squares are congruent to 0 or 1 modulo 4.
- 7. Considering the equation modulo a implies that a divides 2002. Then consider the equation modulo 3, modulo a + 1, and finally modulo 8.