Sistemi Operativi: Prof.ssa A. Rescigno

Anno Acc. 2015-2016

Esame 13 Giugno 2016

Università di Salerno

- 1. Codice comportamentale. Durante questo esame si deve lavorare da soli. Non si puó consultare materiale di nessun tipo. Non si puó chiedere o dare aiuto ad altri studenti.
- 2. **Istruzioni.** Rispondere alle domande. Per la brutta usare i fogli posti alla fine del plico (NON si possono usare fogli aggiuntivi); le risposte verranno corrette solo se inserite nello spazio ad esse riservate oppure viene indicata con chiarezza la posizione alternativa.

Per essere accettata per la correzione la risposta deve essere ordinata e di facile lettura. TUTTE le risposte vanno GIUSTIFICATE. Ciascuna risposta non giustificata vale ZERO.

Nome e Cogno	ome:	
Matricola:		
Firma		

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	7	8	tot
/7	/16	/10	/17	/15	/12	/8	/15	/100

NOTA: I primi 4 esercizi riguardano la gestione del sistema operativo UNIX

1. 7 punti

Si supponga di mandare in esecuzione il seguente programma:

```
int main(void)
{
  pid_t p;

fork();

p = fork();

fork();

if (p==0) {fork();}

sleep(30);
  exit(0);
}
```

Usando un albero che mostra l'evoluzione dei processi, dire quanti processi sono presenti nel sistema durante i 30 secondi dell'istruzione sleep(30).

2. 16 punti

Si supponga di compilare e mandare in esecuzione il codice seguente. Sia 112 il pid di tale processo.

```
static void exit1(void);
static void exit2(void);
main() {
         pid_t pid;
         atexit(exit1);
         pid=fork();
         if(pid==0) {
             atexit(exit2);
             write(1, "figlio",6);
             printf("mio padre %d ", getppid());
             exit(0);
             }
         else {
            wait();
            write(1,"padre",5);
            printf("esce %d ", getpid());
            exit(0);
            }
}
static void exit1(void) {
printf("sono il primo handler");
return;
}
static void exit2(void) {
printf("sono il secondo handler");
return;
}
```

a) Dire quale dei due processi termina per primo. Giustificare la risposta.

In questo caso, cosa si ottiene su standard output.

- d) Cambiereste qualcosa per far si che sia il **figlio a terminare per primo**? Specificare dettagliatamente. Sia cod1.out l'eseguibile ottenuto in questo caso,
- d1) dire cosa si ottiene dando: cod1.out
- d2) dire cosa contiene il file prova dopo aver dato cod1.out > prova

3. 10 punti

Sia File un file presente nella cwd. Si consideri il codice seguente.

```
int main(void)
{
  int fd;
  fd=open("File",O_RDWR);
  dup2(fd,1);
  write(1,"Ciao",4);
  exit(0);
}
```

Ricordando che dup2 é una operazione atomica, si faccia quanto segue:

(a) riscrivere il codice precedente cosí da sostituire la chiamata dup2(fd,1); con una sequenza di system call che simulino i passi che dup2(fd,1); effettua atomicamente.

(b) sia cod2.out il codice scritto nel punto (a). Che cosa potrebbe succedere durante un'esecuzione di cod2.out che consente di evidenziare la necessitá che dup2 sia un'operazione atomica?

4. 17 punti

Sia FF un file presente nella cwd. a) Ricordando che il comando bash 1n crea un hard link ad un file esistente, si scriva un programma C tale che:

- crei HFF-1 hard link a FF, HFF-2 hard link a HFF-1,
- la creazione di ciascun hard link deve essere eseguita utilizzando una delle funzioni exec.
- successivamente alla creazione degli hard link, si stampi su standard output il numero di link di ciascuno dei file FF, HFF-1, HFF-2.

b) Dire, giustificando la risposta che cosa si ottiene mandando in esecuzione il codice dato al punto a).

5. 15 punti

Si consideri un negozio di panettiere, con cinque garzoni che servono i clienti, in attesa del loro turno. Ogni volta che si libera un garzone viene servito un nuovo cliente.

Descrivere con uno pseudocodice i due processi garzone e cliente utilizzando, per la sincronizzazione, i semafori.

6. 12 punti

Quattro processi arrivano al tempo indicato, consumano la quantitá di CPU indicata e hanno le prioritá indicate nella tabella sottostante:

Processo	T. di Arrivo	Burst	Prioritá
P_1	0	15	2
P_2	5	21	1
P_3	3	5	3
P_4	10	8	1

Calcolare il turnaround medio di ogni processo nel caso sia usato l'algoritmo di

- (a) Scheduling a prioritá (numero piccolo corrisponde ad alta prioritá) con code multiple (tre code, gestite con FCFS);. Riportare il diagramma di GANTT usato per il calcolo.
- (b) Scheduling RR con quanto di tempo q=4. Riportare il diagramma di GANTT usato per il calcolo.

7. 8 punti

Data la seguente stringa di riferimenti a pagine,

 $0 \quad 7 \quad 1 \quad 5 \quad 1 \quad 2 \quad 7 \quad 1 \quad 5 \quad 7$

Utilizzando come algoritmo di sostituzione delle pagine LRU, si riporti la sequenza di occupazioni della memoria riservata al processo nel caso in cui

- a) sia costituita da 3 frame
- b) sia costituita da 4 frame

Considerando che ogni accesso alla pagina 5 é in scrittura, si determini in ciascun caso il numero di page fault.

8. 14 punti

In un sistema con memoria virtuale le pagine sono grandi 2⁸ byte, la RAM é costituita da di 2¹² frame, e lo spazio di indirizzamento logico massimo é di 2¹³ pagine. (a) Come é strutturato e che lunghezza ha in bit un indirizzo logico?

Come é strutturato e che lunghezza ha in bit un indirizzo fisico?

b) Si consideri la PT sottostante (attenzione: nella tabella i numeri sono tutti in base decimale)

numero pagina	numero frame	bit di validitá
0	5200	v
1	1001	v
2	10	v
3	2003	i
4	779	i
5	3111	v
6	7	v

(b1) Dati i seguenti indirizzi logici:

 $0000000000010111111110 \qquad 00000000001111110011 \\$

dire se causano page fault o meno; nel secondo caso ricostruire l?indirizzo fisico.

(b2) Nella tabella data, un valore ?e chiaramente sbagliato, dire quale e spiegare perch?e.