

Offene Vorlesung / Wiederholung

Damien Foucard, Christoph Seifert | Open Distributed Systems | Einführung in die Programmierung Wintersemester 2019/2020

Pointer

"Because they, quite honestly, can cause electric shocks to come up through the keyboard and physically weld your arms permantly in place, cursing you to a life at the keyboard.", Beej's Guide to C Programming

Virtueller Speicher

- "Array von Bytes"
- Linearer Speicher, initial unfragmentiert

Speicherreferenz

Position/Addresse im Speicher → Pointer

Aber warum?

- Call-by-Value, Call-by-Reference
 - Speicherverbrauch
 - Overhead bei Allokierung von lokalen Variablen
- Pointerarithmetik
 - Freier Zugriff auf Speicherbereich (z.B. Zeichenketten)

Asymptotisches Laufzeitverhalten

Laufzeiten

Bild: CC BY-SA 4.0, https://en.wikipedia.org/wiki/Computational_ complexity_of_mathematical_operations

Groß-O (obere Schranke)

Bild: Cormen et al., 2001, Introduction to Algorithms

Groß-Omega: Ω (untere Schranke)

Bild: Cormen et al., 2001, Introduction to Algorithms

Groß-Theta: Θ (obere u. untere S.)

Bild: Cormen et al., 2001, Introduction to Algorithms

Vereinfacht: O, Ω , Θ , o, ω sind die "asymptotischen Versionen" von \leq , \geq , =, <, > (in dieser Reihenfolge)

f ∈ <i>o</i> (g)	Wachstum von f	<	Wachstum von g
$f \in O(g)$	Wachstum von f	≤	Wachstum von g
$f \in \Theta(g)$	Wachstum von f	=	Wachstum von g
$f\in\Omega(g)$	Wachstum von f	≥	Wachstum von g
$f \in \omega(g)$	Wachstum von f	>	Wachstum von g

Beispiele

Insertionsort:

- Genereller Fall: $O(n^2)$, $\Omega(n) \rightarrow \Theta(?)$
- Best-Case: $O(n), \Omega(n) \rightarrow \Theta(n)$

Mergesort:

- Genereller Fall: O(n log n), Ω (n log n) → Θ(n log n)

Sortieren Laufzeitvergleich

Parameter

- Wertebereich m
 - m = \mathbb{N} ,
 - $m = \{1, 2, ..., 10\}$
- Problemegröße n
 - n \rightarrow ∞ (asympt. Verhalten)
 - n = 10
- Verteilung der Probe
 - zufällig, vorsortiert (auf- oder absteigend)

Beispiele

$$m = \mathbb{N}$$
, $n = \{1,...,10\}$, keine Annahme über Verteilung:

- Countsort, Mergesort, Insertionsort
- Insertionsort!

$$m = \mathbb{N}$$
, $n = \{1, ..., 10^6\}$, aufsteigend vorsortiert:

- Quicksort, Mergesort, Insertionsort
- Insertionsort!

