Binary and Matrix Exponentiation

Lecture 6: Number Theory

Rishabh Dhiman

Algorithms and Coding Club Indian Institute of Technology Delhi

18 July 2021

Problem

Find $a^n \mod m$ for $1 \le a, m \le 10^9$ and $1 \le n \le 10^{18}$.

```
For n = 2^k,

a^{2^k} = (a^{2^{k-1}})^2

int b = a;

for (int i = 0; i < k; ++i)

b = b * b % M;
```

For other $n, n = (n_{k-1} \dots n_1 n_0)_2$.

$$a^n = a^{\sum_{i=0}^{k-1} n_i 2^i} = \prod_{i=0}^{k-1} a^{n_i 2^i}.$$

```
int b = a, res = 1;
while (n != 0) {
    if (n & 1)
        res = res * b % M;
        n >>= 1;
        b = b * b % M;
```

For other n, a = 3, n = 13.

$$13 = (1101)_2.$$

$$n = (1101)_2$$
 $res = 1$ $b = 3$
 $n = (110)_2$ $res = 1 \times 3$ $b = 9$
 $n = (11)_2$ $res = 1 \times 3$ $b = 81$
 $n = (1)_2$ $res = 1 \times 3 \times 81$ $b = 6561$
 $n = 0$ $res = 1 \times 3 \times 81 \times 6561$ $b = 43046721$

Generalizing Binary Exponentiation

Only property of multiplication that was used is that it is associative.

Generalizing Binary Exponentiation

Only property of multiplication that was used is that it is associative.

We can replace multiplication with any associative binary operator,

$$(a*b)*c = a*(b*c).$$

Generalizing Binary Exponentiation

Example of such operators,

- Addition
- 2 Matrix Multiplication

Generalizing Binary Exponentiation Repeated Addition

Problem

Given a number a and n, find

$$\underbrace{a+a+\cdots+a}_{n \text{ times}}$$
.

Generalizing Binary Exponentiation Repeated Addition

```
int b = a, res = 0;
while (n != 0) {
    if (n & 1)
        res = res + b;
        n >>= 1;
        b = b + b;
}
```

Generalizing Binary Exponentiation Matrix Exponentiation

Problem

Given a matrix A and a positive integer n, find A^n .

Problem

Find the n-th Fibonacci number modulo m for $1 \le n \le 10^{18}$.

$$F_n = F_{n-1} + F_{n-2}$$

$$F_n = F_{n-1} + F_{n-2}$$

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} F_{n-2} \\ F_{n-3} \end{bmatrix}$$

$$\vdots$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^k \begin{bmatrix} F_{n-k} \\ F_{n-k-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$

Problem

Compute $f_n \mod 10^9 + 7$ for $1 \le n \le 10^{18}$ where,

$$f_n = c^{2n-6} \cdot f_{n-1} \cdot f_{n-2} \cdot f_{n-3}$$
 for $n \ge 4$

given f_1, f_2, f_3 .

Let
$$f_n = c^{g_n}$$
,

Product-Oriented Recurrence

Codeforces Round #566 Div. 2E

Let
$$f_n = c^{g_n}$$
,
$$c^{g_n} = c^{2n-6}c^{g_{n-1}}c^{g_{n-2}}c^{g_{n-3}}$$

$$= c^{2n-6+g_{n-1}+g_{n-2}+g_{n-3}}$$

 $\implies g_n = 2n - 6 + g_{n-1} + g_{n-2} + g_{n-3}$

Let
$$f_n = c^{g_n}$$
,

$$= c^{2n-6+g_{n-1}+g_{n-2}+g_{n-3}}$$

$$\implies g_n = 2n - 6 + g_{n-1} + g_{n-2} + g_{n-3}$$

$$\iff g_n + n = g_{n-1} + (n-1) + g_{n-2} + (n-2) + g_{n-3} + (n-3)$$

$$\iff h_n = h_{n-1} + h_{n-2} + h_{n-3}$$

where you define $h_n = g_n + n$.

 $c^{g_n} = c^{2n-6}c^{g_{n-1}}c^{g_{n-2}}c^{g_{n-3}}$

$$\begin{bmatrix} h_n \\ h_{n-1} \\ h_{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} h_{n-1} \\ h_{n-2} \\ h_{n-3} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} {}^{n-3} \begin{bmatrix} h_3 \\ h_2 \\ h_1 \end{bmatrix}$$

Let

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{n-3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

$$\begin{bmatrix} h_n \\ h_{n-1} \\ h_{n-2} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} h_3 \\ h_2 \\ h_1 \end{bmatrix}$$
$$\implies h_n = a_{11}h_3 + a_{12}h_2 + a_{13}h_1.$$

$$\begin{bmatrix} h_n \\ h_{n-1} \\ h_{n-2} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} h_3 \\ h_2 \\ h_1 \end{bmatrix}$$
$$\implies h_n = a_{11}h_3 + a_{12}h_2 + a_{13}h_1.$$

$$f_n = c^{g_n} = c^{h_n - n}$$

$$= c^{a_{11}h_3 + a_{12}h_2 + a_{13}h_1 - n}$$

$$= \left(c^{h_3 - 3}\right)^{a_{11}} \cdot \left(c^{h_2 - 2}\right)^{a_{12}} \cdot \left(c^{h_1 - 1}\right)^{a_{13}} \cdot c^{3a_{11} + 2a_{12} + a_{13} - n}$$

$$= f_3^{a_{11}} \cdot f_2^{a_{12}} \cdot f_1^{a_{13}} \cdot c^{3a_{11} + 2a_{12} + a_{13} - n}.$$

From Fermat's Little Theorem we know that, for a prime p and a not divisible by p,

$$a^n \mod p = a^{n \mod p - 1} \mod p$$
.

So, compute the matrix modulo $10^9 + 6$ rather than $10^9 + 7$.