Real Variables: Problem Set XI

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set XI of Real Variables 2015 at NYU.

1 Solutions

Question Royden 17-6.

6. Let (X, \mathcal{M}, μ) be a measure space and X_0 belong to \mathcal{M} . Define \mathcal{M}_0 to be the collection of sets in \mathcal{M} that are subsets of X_0 and μ_0 the restriction of μ to \mathcal{M}_0 . Show that $(X_0, \mathcal{M}_0, \mu_0)$ is a measure space.

Solution. We first show that (X_0, \mathscr{M}_0) is a measurable space. To this end, we must show that \mathscr{M}_0 is a σ -algebra of X_0 . As \emptyset and X_0 belong to \mathscr{M} , are subsets of X_0 , it follows that \emptyset and X_0 belong to \mathscr{M}_0 . Let $\{A_n\}_{n=1}^\infty$ be a countable collections of sets in \mathscr{M}_0 . As $A_n \subseteq X_0$ for all n, we have $\bigcup_{n=1}^\infty A_n \subseteq X_0$. Furthermore, as \mathscr{M} is a σ -algebra, and $A_n \in \mathscr{M}$ for all n, we also have $\bigcup_{n=1}^\infty A_n \in \mathscr{M}$. Hence, it follows that $\bigcup_{n=1}^\infty A_n \in \mathscr{M}_0$. Now, let A be a set, belonging to \mathscr{M}_0 . Then, as $X_0 \setminus A$ is a subset of X_0 , and X_0 and A belong to A, which gives $A_0 \setminus A \in \mathscr{M}_0$, we have $A_0 \setminus A = X_0 \setminus$

$$\sum_{n=1}^{\infty} \mu_0(A_n) = \sum_{n=1}^{\infty} \mu(A_n)$$
$$= \mu(\bigcup_{n=1}^{\infty} A_n)$$
$$= \mu_0(\bigcup_{n=1}^{\infty} A_n).$$

Therefore, we have shown that $(X_0, \mathcal{M}_0, \mu_0)$ is a measure space.

Question Royden 17-15.

15. Show that if ν_1 and ν_2 are any two finite signed measures, then so is $\alpha\nu_1 + \beta\nu_2$, where α and β are real numbers. Show that

$$|\alpha \nu| = |\alpha| |\nu|$$
 and $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$,

where $\nu \le \mu$ means $\nu(E) \le \mu(E)$ for all measurable sets E.

Solution. Let (X, \mathcal{M}) be a measurable space. Let v_1 and v_2 be two finite signed measures. Consider a set function $\alpha v_1 + \beta v_2$ on \mathcal{M} , for $\alpha, \beta \in \mathbb{R}$, which is defined by

$$\alpha v_1 + \beta v_2(E) = \alpha v_1(E) + \beta v_2(E),$$

for $E \in \mathcal{M}$. As v_1 and v_2 only take finite values, it also follows that $\alpha v_1 + \beta v_2$ also assumes only finite values, as an addition of two finite values are finite. Furthermore, it follows that

$$\alpha v_1 + \beta v_2(\emptyset) = \alpha v_1(\emptyset) + \beta v_2(\emptyset)$$

= 0 + 0 = 0,

as v_1 and v_2 are signed measures.

Question Royden 17-17.

- 17. Let μ and ν be finite signed measures. Define $\mu \wedge \nu = \frac{1}{2}(\mu + \nu |\mu \nu|)$ and $\mu \vee \nu = \mu + \nu \mu \wedge \nu$.
 - (i) Show that the signed measure $\mu \wedge \nu$ is smaller than μ and ν but larger than any other signed measure that is smaller than μ and ν .
 - (ii) Show that the signed measure $\mu \lor \nu$ is larger than μ and ν but smaller than any other measure that is larger than μ and ν .
 - (iii) If μ and ν are positive measures, show that they are mutually singular if and only if $\mu \wedge \nu = 0$.

Solution.

Question Royden 18-50.

50. Establish the uniqueness of the function f in the Radon-Nikodym Theorem.

Solution. Let \mathcal{A} be an algebra of continuous real-valued functions on a compact Hausdorf space X that separates points. Show that either $\bar{\mathcal{A}} = C(X)$ or there is a point $x_0 \in X$ for which $\bar{\mathcal{A}} = \{f \in C(X) | f(x_0) = 0\}$.

To solve this problem, it suffices to prove that $\bar{A}=C(X)$ assuming $\bar{\mathcal{A}}\neq\{f\in C(X)|f(x_0)=0\}$, i.e., $\forall x\in X, \exists f_x\in C(X), \text{ s.t. } f_x(x)=y_x\neq 0.$ Then, the open interval $I_x=(y_x-\delta,y_x+\delta)$ where $0<\delta<|y_x|$, is mapped to an open interval $O_x=f_x^{-1}(I_x)\subset X$ where $x\in O_x$. Therefore, $X\subseteq \cup_{x\in X}O_x$. Since the foregoing is an open cover of a compact space X, it contains a finite subcover $\cup_{i=1}^n O_{x_i}$. By construction, $0\notin f_{x_i}(O_{x_i})$. Thus $g=\sum_{i=1}^n f_{x_i}^2$ is in A and takes strictly positive values on X.

Define $h: K \cup \{0\} \to R_+$ as follows

$$h(x) = \begin{cases} 1/x & \text{if } x \in K \\ 0 & \text{if } x = 0 \end{cases}$$

By Proposition 20, since X is compact and g is a continuous mapping, the range of g, K = g(X), is compact, which in the case of a real-valued range means that it is closed and bounded. Furthermore, since K is closed and $0 \notin K$, it is not possible to have a sequence in K converging to K. Therefore, K is continuous on K in K is continuous on K is continuous on K is continuous on K is continuous on K in K in K is continuous on K in K in K in K in K is continuous on K in K

Now, since $h \in C(K)$, by Stone-Weierstrass, given $\epsilon > 0$, there exists p_n , a polynomial, s.t.

$$|h(x) - p_n(x)| < \epsilon/2$$

for all $x \in K$. Since the above implies that $|p_n(0)| < \epsilon/2$

$$|h(x) - (p_n(x) - p_n(0))| \le |h(x) - p_n(x)| + |p_n(0)| < \epsilon$$

where $p_n^*(x) = p_n(x) - p_n(0)$ (and thus $p_n^*(0) = 0$, which trivially guarantees the uniform convergence on $K \cup \{0\}$). Therefore, p_n^* is continuous on D, and $p_n^* \circ g \in A$. Since p_n^* converges uniformly to h and g is continuous and bounded (and consequently uniformly continuous on a compact set, $p_n^* \circ g \to 1/g$ uniformly. Therefore, $1/g \in \bar{A}$, which together with the fact that $g \in A$, implies that $1 \in \bar{A}$. This generates the family of constant functions in A. By the Stone-Weierstrass Approximation, \bar{A} is dense in C(X). Since \bar{A} is closed, this implies that $\bar{A} = C(X)$.

Question Royden 18-54. Solution.

54. Let μ , ν , and λ be σ -finite measures on the measurable space (X, \mathcal{M}) .

(i) If $\nu \ll \mu$ and f is a nonnegative function on X that is measurable with respect to \mathcal{M} , show that

$$\int_X f \, d\nu = \int_X f \left[\frac{d\nu}{d\mu} \right] d\mu.$$

(ii) If $\nu \ll \mu$ and $\lambda \ll \mu$, show that

$$\frac{d(\nu + \lambda)}{d\mu} = \frac{d\nu}{d\mu} + \frac{d\lambda}{d\mu}$$
 a.e. $[\mu]$.

(iii) If $\nu \ll \mu \ll \lambda$, show that

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} \text{ a.e. } [\lambda].$$

Question Royden 18-55.

55. Let μ , ν , ν_1 , and ν_2 be measures on the measurable space (X, \mathcal{M}) .

- (i) Show that if $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$.
- (ii) Show that if ν_1 and ν_2 are singular with respect to μ , then, for any $\alpha \ge 0$, $\beta \ge 0$, so is the measure $\alpha \nu_1 + \beta \nu_2$.
- (iii) Show that if ν_1 and ν_2 are absolutely continuous with respect to μ , then, for any $\alpha \ge 0$, $\beta \ge 0$, so is the measure $\alpha \nu_1 + \beta \nu_2$.
- (iv) Prove the uniqueness assertion in the Lebesgue decomposition.

Solution.