This document was prepared using R version 4.0.1

Depending on R version, the output may be slightly different, and that's acceptable.

Session 8:

8 Learning Objective

Understand how the cutoff values can be adapted to suit the distribution of the two classes in a binary classification

Assignment 8 (15 marks total)

Steps

- 1. Load the auction data ("auction.csv") on Rattle and define variable appropriately (won.auction is the target variable)
- 2. Use the partitioning scheme 95/5/0
- 3. Run Random Forest model with default options
- 4. Save probability scores on validate data in a an excel/ csv file
- 5. Create a scoring method in Excel where given a cutoff probability it determines the error matrix
- 6. Finally, choose a cutoff probability at which errors are minimized (try cutoff probabilities from 0.1 to 0.9, increasing by 0.1)

Deliverables 8

Deliverables:

- 1. **Deliverable part 8_1**: Follow the instruction and provide screenshots of each step and the final results for the RF model and the optimum cutoff value for probability
- 2. **Deliverable part 8_2**: Briefly explain what you have done in each step and interpret your final result.

Rubric for MOD 8 Peer Review Assignment

For Deliverable 8_1: (5 points)

- 5 points: Screen shot(s) provided for all steps and the final results.
 - 3 points: Screen shot(s) are missing for 1 or 2 steps.
 - 1 point: Screen shot(s) are missing most of the steps.
 - 0 points: No screen shots are provided, or irrelevant screen shots are provided, or no assignment submission.

This document was prepared using R version 4.0.1

Depending on R version, the output may be slightly different, and that's acceptable.

For Deliverable 8_2: (10 points)

- 10 points: Each step has been explained and verified, and findings are interpreted.
- 8 points: Explanation or verification of 1 or 2 steps are missing
- 5 point: Explanation or verification of multiple steps are missing, or findings are not interpreted.
- 0 points: No explanations, verification, or interpretations are given, or no assignment submission.

Solution 8

 Load the auction data ("auction.csv") on Rattle and define variable appropriately (won.auction is the target variable)

Answer

Data Explore Test Transform Cluster Associate Model Evaluate Log										
Sou	Source: File ARFF ODBC R Dataset RData File Library Corpus Script									
Filename: 📴 auction.csv 🖹 Separator: , Decimal: . 🗹 Header										
✓ Partition 95/5/0 Seed: 42 View Edit										
□ Input										
No.	Variable	Data Type Input	Target	Risk	Ident	Ignore	Weight	Comment		
1	Bid	Numeric 🔾	0	0	0	•	0	Unique: 272		
2	MSRP	Numeric	0	0	0	0	0	Unique: 3		
3	Price	Numeric	0	0	0	0	0	Unique: 249		
4	MSRP.Price	Numeric	0	0	0	0	0	Unique: 252		
5	Year	Numeric	0	0	0	0	0	Unique: 36		
6	Model.528	Numeric	0	0	0	0	0	Unique: 2		
7	Model.526	Numeric	0	0	0	0	0	Unique: 2		
8	Model.Baby	Numeric	0	0	0	0	0	Unique: 2		
9	Serviced1.0.	Numeric	0	0	0	0	0	Unique: 2		
10	Number.of.bidders	Numeric	0	0	0	0	0	Unique: 20		
11	won.auction.	Numeric 🔘	•	0	0	0	0	Unique: 2		

2. Run Random Forest model with default options

3. Save probability scores on validate data in a an excel/ csv file

We can compare the actual outcome ("won") with the predicted outcome (by specifying a cutoff probability ("rf") value such that if the "rf" is above the cutoff, the predicted outcome is "won"=1. Then we can compare the actual outcome with the predicted outcome to see how accurate our predictions are.

This document was prepared using R version 4.0.1 Depending on R version, the output may be slightly different, and that's acceptable.

4. Create a scoring method in Excel where given a cutoff probability it determines the error matrix

Note this may not be the real solutionyou may or may not get similar solution. However, you need to report a similar table.

Α	В	C	D	E	F	G	Н	1	J	K	L
won.auction	rf	Predict	0,0	0,1	1,0						
0	0.172	0	1	0	0			Predict			
0	0.138	0	1	0	0			0	1	Error	
0	0.132	0	1	0	0	Actual	0	11	1	0.0833333	
0	0.366	0	1	0	0		1	2	0	1	
0	0.89	1	0	1	0						
0	0.25	0	1	0	0						
0	0.092	0	1	0	0		Cutoff	Error	Sensitivity	Specificity	Precision
0	0.024	0	1	0	0			0.2142857	0	0.917	0.00
0	0.05	0	1	0	0		0.1	0.5714286	1	0.333	0.20
0	0.12	0	1	0	0		0.2	0.2142857	1	0.750	0.40
1	0.418	0	0	0	1		0.3	0.2142857	0.5	0.833	0.33
0	0.064	0	1	0	0		0.4	0.1428571	0.5	0.917	0.50
0	0.102	0	1	0	0		0.5	0.2142857	0	0.917	0.00
1	0.24	0	0	0	1		0.6	0.2142857	0	0.917	0.00
			11	1	2		0.7	0.2142857	0	0.917	0.00
							0.8	0.2142857	0	0.917	0.00
Cutoff	0.8										

The error is minimized at 0.4 value of cutoff value.