Grundlagen wissenschaftlicher Programmierung

Sommersemester 2017

8. Aufgabenblatt

Der Abgabetermin für Ihre Lösungen ist Montag, der 3. Juli 2017 um 23⁵⁵ Uhr. Die Bewertung erfolgt auf der Grundlage Ihres git-Repositories zu diesem Zeitpunkt. Stellen Sie sicher, dass Sie bis zu diesem Zeitpunkt alle Änderungen in Ihr Repository übertragen haben und vergessen Sie nicht das makefile!

Aufgabe 20

Berechnen Sie mittels Monte-Carlo-Integration das Volumen eines Körpers, der durch

$$z^2 + \left(\sqrt{x^2 + y^2} - 3\right)^2 \le 1\tag{1}$$

definiert ist, wobei zusätzlich

$$x \ge 1$$
 und $-2 \le y \le 3$ (2)

gelten soll. Dieser Körper entspricht einem abgeschnittenen Torus (siehe Abbildung).

- ▶ Verwenden Sie für die Erzeugung der hierfür benötigten Zufallszahlen einen Zufallszahlengenerator der Boost-Bibliothek (www.boost.org), zum Beispiel den Mersenne-Twister boost::mt19937.
- ► Für die zufälligen x-, y- und z-Koordinaten des zu untersuchenden Volumens müssen die ganzzahligen Zufallszahlen des Mersenne-Twisters in Fließkommazahlen vom Typ double konvertiert werden, was sich mit boost::uniform_real bewerkstelligen lässt.
- Führen Sie mehrere Berechnungen mit unterschiedlich vielen Zufallszahlen zwischen ≈ 1000 und 2^{28} durch und lassen Sie die Ergebnisse (zusammen mit der Anzahl der Iterationen) in eine Datei schreiben.
- ▶ Überlegen Sie, wie Sie Ihr Programm hinsichtlich der Ausführungsgeschwindigkeit verbessern können, bzw. dokumentieren Sie im Quelltext, ob und wo Sie versucht haben, Ihren Code zu optimieren.
- ▶ Recherchieren Sie ggf. die Verwendung der benötigten Funktionen. Falls Sie es Ihnen nicht gelingt, die Boost-Bibliothek zu verwenden, können Sie auch Ihre eigene Fließkommazahlenmethode aus Aufgabe 18 verwenden.

(7 Punkte)

Aufgabe 21

Schreiben Sie ein Programm, das die beiden Summen

$$\sum_{i=1}^{N} \frac{1}{i^2} \quad \text{und} \quad \sum_{i=N}^{1} \frac{1}{i^2}$$

mit $N = 2^{31} - 1$ berechnet und mit einer Genauigkeit von 15 Nachkommastellen ausgibt. Was können Sie dabei beobachten und warum? Beantworten Sie die Frage über ISIS.

(3 Punkte)

Aufgabe 22

Entwerfen Sie eine Klasse zur numerischen Bestimmung der Ableitung einer beliebigen Funktion f an einer Stelle x.

- ▶ Die abzuleitenden Funktion *f* soll bei der Instanziierung des Objekts über den Konstruktor angegeben werden; ein optionaler Parameter ist der Abstand *h*.
- ightharpoonup Überladen Sie den Klammeroperator zur Berechnung von f'(x).
- ▶ Implementieren Sie jeweils eine Methode, um *h* zu lesen und zu setzen.
- ► Implementieren Sie eine Methode, um das Verfahren zur Bestimmung der Ableitung auswählen zu können.
- ▶ Als Verfahren implementieren Sie zunächst den einfachen Differenzenquotient und den symmetrischen, wobei der einfache Differenzenquotient die Voreinstellung ist.
- ▶ Lagern Sie Ihre Klasse in eine Datei namens derive.cpp aus und erstellen Sie die passende Header-Datei.

(6 Punkte)

Informationen zur mündlichen Rücksprache

Die mündlichen Rücksprachen finden an den unten aufgeführten Tagen jeweils in der Zeit zwischen 9:30 und 13:00 Uhr statt (Einzelgespräche, Dauer: 30 Minuten):

Dienstag, 25. Juli

Mittwoch, 26. Juli

Donnerstag, 27. Juli

Montag, 1. August

Dienstag, 2. August

Mittwoch, 3. August

Bitte schicken Sie mir bis zum **10. Juli** eine E-Mail mit Ihrem Wunschtermin, falls Sie an einer Prüfung interessiert sind.