Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №3
по дисциплине
«Методы машинного обучения»
на тему
«Обработка пропусков в данных,
кодирование категориальных
признаков, масштабирование
данных»

Выполнил: студент группы ИУ5-21М Сефербеков М.С

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

In [2]:

```
# Будем использовать только обучающую выборку
data = pd.read_csv('Building_Permits.csv', sep=",")
```

c:\users\innap\miniconda3\lib\site-packages\IPython\core\interactiveshell.
py:3063: DtypeWarning: Columns (22,32) have mixed types. Specify dtype opt
ion on import or set low_memory=False.

interactivity=interactivity, compiler=compiler, result=result)

In [3]:

data.head()

Out[3]:

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Black	Lot	Street Number	Street Number Suffix	Street Name	Stre Suff
0	201505065519	4	sign - erect	05/06/2015	0326	023	140	NaN	Ellis	
1	201604195146	4	sign - erect	04/19/2016	0306	007	440	NaN	Geary	
2	201605278609	3	additions alterations or repairs	05/27/2016	0595	203	1647	NaN	Pacific	,
3	201611072166	8	otc alterations permit	11/07/2016	0156	011	1230	NaN	Pacific	,
4	201611283529	6	demolitions	11/28/2016	0342	001	950	NaN	Market	

5 rows × 43 columns

→

In [4]:

data.shape

Out[4]:

(198900, 43)

In [5]:

data.dtypes

Out[5]:

Permit Number	object
Permit Type	int64
Permit Type Definition	object
Permit Creation Date	object
Block	object
Lot	object
Street Number	int64
Street Number Suffix	object
Street Name	object
Street Suffix	object
Unit	float64
Unit Suffix	object
Description	object
Current Status	object
Current Status Date	object
Filed Date	object
Issued Date	object
Completed Date	object
First Construction Document Date	object
Structural Notification	object
Number of Existing Stories	float64
Number of Proposed Stories	float64
Voluntary Soft-Story Retrofit	object
Fire Only Permit	object
Permit Expiration Date	object
Estimated Cost	float64
Revised Cost	float64
Existing Use	object
Existing Units	float64
Proposed Use	object
Proposed Units	float64
Plansets	float64
TIDF Compliance	object
Existing Construction Type	float64
Existing Construction Type Description	object
Proposed Construction Type	float64
Proposed Construction Type Description	object
Site Permit	object
Supervisor District	float64
Neighborhoods - Analysis Boundaries	object
Zipcode	float64
Location	object
Record ID	int64
dtype: object	

In [6]:

```
# проверим есть ли пропущенные значения data.isnull().sum()
```

Out[6]:

Permit Number	0
Permit Type	9
Permit Type Definition	9
Permit Creation Date	9
Block	ø
Lot	0
Street Number	0
Street Number Suffix	196684
Street Name	0
Street Suffix	2768
Unit	169421
Unit Suffix	196939
Description	290
Current Status	0
Current Status Date	0
Filed Date	0
Issued Date	14940
Completed Date	101709
First Construction Document Date	14946
Structural Notification	191978
Number of Existing Stories	42 7 84
Number of Proposed Stories	42868
Voluntary Soft-Story Retrofit	198865
Fire Only Permit	180073
Permit Expiration Date	51880
Estimated Cost	38066
Revised Cost	6066
Existing Use	41114
Existing Units	51538
Proposed Use	42439
Proposed Units	50911
Plansets	37309
TIDF Compliance	198898
Existing Construction Type	43366
Existing Construction Type Description	43366
Proposed Construction Type	43162
Proposed Construction Type Description	43162
Site Permit	193541
Supervisor District	1717
Neighborhoods - Analysis Boundaries	1725
Zipcode	1716
Location	1700
Record ID	0
dtype: int64	

In [7]:

```
total_count = data.shape[0]
print('Всего строк: {}'.format(total_count))
```

Всего строк: 198900

1. Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

```
In [8]:
```

```
# Удаление колонок, содержащих пустые значения
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)

Out[8]:

((198900, 43), (198900, 12))

In [9]:

# Удаление строк, содержащих пустые значения
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)

Out[9]:

((198900, 43), (0, 43))

In [10]:

data.head()
```

Out[10]:

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	Street Name	Stre Suff
0	201505065519	4	sign - erect	05/06/2015	0326	023	140	NaN	Ellis	
1	201604195146	4	sign - erect	04/19/2016	03 0 6	007	440	NaN	Geary	
2	201605278609	3	additions alterations or repairs	05/27/2016	0595	203	1647	NaN	Pacific	,
3	201611072166	8	otc alterations permit	11/07/2016	0156	011	1230	NaN	Pacific	,
4	201611283529	6	demolitions	11/28/2016	0342	001	950	NaN	Market	

5 rows × 43 columns

In [11]:

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориальны
е колонки
data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[11]:

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	Street Name	Stre Suff
0	201505065519	4	sign - erect	05/06/2015	0326	023	140	0	Ellis	
1	201604195146	4	sign - erect	04/19/2016	0306	007	440	0	Geary	
2	201605278609	3	additions alterations or repairs	05/27/2016	0595	203	1647	0	Pacific	ŧ
3	201611072166	8	otc alterations permit	11/07/2016	0156	011	1230	0	Pacific	,
4	201611283529	6	demolitions	11/28/2016	0342	001	950	0	Market	
5 re	ows × 43 colum	ıns								
4										•

1.2. "Внедрение значений" - импьютация (imputation)

1.2.1. Обработка пропусков в числовых данных

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка Unit. Тип данных float64. Количество пустых значений 169421, 85.1 8%.

Колонка Number of Existing Stories. Тип данных float64. Количество пустых значений 42784, 21.51%.

Koлoнкa Number of Proposed Stories. Тип данных float64. Количество пустых значений 42868, 21.55%.

Колонка Estimated Cost. Тип данных float64. Количество пустых значений 380 66, 19.14%.

Koлoнкa Revised Cost. Тип данных float64. Количество пустых значений 6066, 3.05%.

Колонка Existing Units. Тип данных float64. Количество пустых значений 515 38, 25.91%.

Колонка Proposed Units. Тип данных float64. Количество пустых значений 509 11, 25.6%.

Koлoнкa Plansets. Тип данных float64. Количество пустых значений 37309, 1 8.76%.

Колонка Existing Construction Type. Тип данных float64. Количество пустых значений 43366, 21.8%.

Колонка Proposed Construction Type. Тип данных float64. Количество пустых значений 43162, 21.7%.

Koлoнкa Supervisor District. Тип данных float64. Количество пустых значени й 1717, 0.86%.

Колонка Zipcode. Тип данных float64. Количество пустых значений 1716, 0.8 6%.

In [13]:

```
# Фильтр по колонкам с пропущенными значениями
data_num = data[num_cols]
data_num
```

	Unit	Number of Existing Stories	Number of Proposed Stories	Estimated Cost	Revised Cost	Existing Units	Proposed Units	Plansets	Con
0	NaN	6.0	NaN	4000.00	4000.00	143.0	NaN	2.0	
1	0.0	7.0	NaN	1.00	500.00	NaN	NaN	2.0	
2	NaN	6.0	6.0	20000.00	NaN	39.0	39.0	2.0	
3	0.0	2.0	2.0	2000.00	2000.00	1.0	1.0	2.0	
4	NaN	3.0	NaN	100000.00	100000.00	NaN	NaN	2.0	
5	NaN	5.0	5.0	4000.00	4000.00	326.0	326.0	2.0	
6	0.0	3.0	3.0	12000.00	12000.00	5.0	5.0	0.0	
7	NaN	NaN	NaN	NaN	0.00	NaN	NaN	NaN	
8	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
9	NaN	NaN	NaN	NaN	0.00	NaN	NaN	NaN	
10	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
11	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
12	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
13	NaN	2.0	2.0	30000.00	0.00	1.0	1.0	2.0	
14	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
15	301.0	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
16	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
17	0.0	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
18	1.0	4.0	4.0	75000.00	0.00	6.0	6.0	2.0	
19	0.0	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
21	NaN	2.0	2.0	100000.00	0.00	2.0	2.0	2.0	
22	NaN	3.0	3.0	100000.00	NaN	6.0	6.0	2.0	
23	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
24	NaN	4.0	4.0	64650.00	64650.00	9.0	9.0	0.0	
25	NaN	2.0	2.0	7000.00	7000.00	1.0	1.0	0.0	
26	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
27	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
28	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
29	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198870	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198871	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198872	NaN	2.0	2.0	10000.00	0.00	NaN	NaN	2.0	
198873	0.0	2.0	2.0	1.00	1.00	1.0	1.0	0.0	

	Unit	Number of Existing Stories	Number of Proposed Stories	Estimated Cost	Revised Cost	Existing Units	Proposed Units	Plansets	Con
198874	0.0	3.0	3.0	10000.00	15000.00	3.0	3.0	0.0	
198875	NaN	NaN	5.0	1.00	0.00	NaN	29.0	2.0	
198876	NaN	NaN	NaN	NaN	0.00	NaN	NaN	NaN	
198877	NaN	2.0	2.0	1000.00	1000.00	1.0	1.0	0.0	
198878	0.0	2.0	2.0	20000.00	0.00	4.0	4.0	2.0	
198879	NaN	2.0	2.0	18453.12	18453.12	1.0	1.0	0.0	
198880	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198881	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198882	NaN	2.0	2.0	1.00	1.00	1.0	1.0	0.0	
198883	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198884	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198885	NaN	2.0	2.0	5000.00	0.00	1.0	1.0	2.0	
198886	NaN	3.0	3.0	65000.00	65000.00	6.0	6.0	2.0	
198887	NaN	4.0	4.0	30000.00	30000.00	191.0	191.0	2.0	
198888	NaN	9.0	9.0	18000.00	30000.00	78.0	78.0	0.0	
198889	NaN	1.0	1.0	20000.00	20000.00	1.0	1.0	0.0	
198890	NaN	6.0	6.0	750000.00	750000.00	NaN	NaN	2.0	
198891	NaN	2.0	2.0	1.00	1.00	0.0	0.0	2.0	
198892	NaN	3.0	3.0	55000.00	38000.00	5.0	5.0	2.0	
198893	NaN	3.0	3.0	2800.00	2800.00	3.0	3.0	0.0	
198894	NaN	2.0	2.0	7400.00	7400.00	2.0	2.0	0.0	
198895	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198896	NaN	4.0	4.0	5000.00	5000.00	4.0	4.0	2.0	
198897	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198898	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	
198899	NaN	NaN	NaN	NaN	1.00	NaN	NaN	NaN	

198900 rows × 12 columns

In [14]:

```
# Гистограмма по признакам

for col in data_num:

plt.hist(data[col], 50)

plt.xlabel(col)

plt.show()
```

c:\users\innap\miniconda3\lib\site-packages\numpy\lib\histograms.py:824: R
untimeWarning: invalid value encountered in greater_equal

keep = (tmp_a >= first_edge)

c:\users\innap\miniconda3\lib\site-packages\numpy\lib\histograms.py:825: R
untimeWarning: invalid value encountered in less_equal

keep &= (tmp_a <= last_edge)</pre>

In [15]:

Фильтр по пустым значениям поля Estimated Cost data[data['Estimated Cost'].isnull()]

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	\$
7	M803667	8	otc alterations permit	06/30/2017	4789	014	1465	NaN	R
8	M8 0 4227	8	otc alterations permit	07/05/2017	1212	054	20 9 4	NaN	
9	M804767	8	otc alterations permit	07/06/2017	1259	016	89	NaN	,
10	M805287	8	otc alterations permit	07/ 06/2 0 17	3541	0 0 1	106	NaN	Sai
11	M805907	8	otc alterations permit	07/07/2017	0829	021	675	NaN	
12	M806447	8	otc alterations permit	07/10/2017	6537	023	4082	NaN	
14	M813729	8	otc alterations permit	07/26/2017	1049	027	2761	NaN	
15	M813907	8	otc alterations permit	07/27/2017	0243	043	840	NaN	F
16	M813967	8	otc alterations permit	07/27/2017	0268	0 0 8	220	NaN	Montge
17	M814148	8	otc alterations permit	07/27/2017	3621	097	3707	NaN	
19	M814368	8	otc alterations permit	07/28/2017	2659	001	263	NaN	С
20	M814 96 7	8	otc alterations permit	07/31/2017	1176	068	1624	NaN	F
23	M816927	8	otc alterations permit	08/07/2017	0941	012	28 2 4	NaN	F
26	M820728	8	otc alterations permit	08/18/2017	1449	0 0 6	331	NaN	
27	M8212 07	8	otc alterations permit	08/21/2017	1193	024	120	NaN	Sł
28	M821268	8	otc alterations permit	08/21/2017	1851	012	1512	NaN	
29	M821847	8	otc alterations permit	08/22/2017	0326	001	165	NaN	F

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	ξ
30	M822 307	8	otc alterations permit	08/23/2017	0182	004	1441	NaN	
31	M822487	8	otc alterations permit	08/23/2017	3580	017	3830	NaN	
32	M822 707	8	otc alterations permit	08/23/2017	3610	041	563	NaN	
34	M823847	8	otc alterations permit	08/25/2017	3545	018A	1810	NaN	
35	M8240 07	8	otc alterations permit	08/25/2017	0749	0 0 6A	1445	NaN	
36	M82412 7	8	otc alterations permit	08/28/2017	6 551	023	1383	NaN	С
37	M824 92 7	8	otc alterations permit	08/29/2017	6597	024	681	NaN	Sar
38	M825267	8	otc alterations permit	08/29/2017	1572	017	606	NaN	
39	M828787	8	otc alterations permit	09/07/2017	0177	022	655	NaN	F
40	M829567	8	otc alterations permit	09/08/2017	0490	002	3325	NaN	S
41	M832207	8	otc alterations permit	09/15/2017	1609	021F	700	NaN	
43	M833229	8	otc alterations permit	09/19/2017	0 605	028	2379	NaN	Ja⊦
44	M834107	8	otc alterations permit	09/21/2017	7151	014	247	NaN	Cl
***	•••	•••							
198822	M892988	8	otc alterations permit	02/23/2018	5811	042	815	NaN	Mε
198824	M893007	8	otc alterations permit	02/23/2018	5880	007	36	NaN	
198830	M893027	8	otc alterations permit	02/23/2018	6474	014	680	NaN	Brun
198831	M893047	8	otc alterations permit	02/23/2018	4343	029	2587	NaN	

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	ξ
198833	M893067	8	otc alterations permit	02/23/2018	1523	031	462	NaN	
198837	M8 9 3087	8	otc alterations permit	02/23/2018	1144	0 0 1B	222	NaN	Sta
198840	M893107	8	otc alterations permit	02/23/2018	0576	011	1856	NaN	F
198841	M893127	8	otc alterations permit	02/23/2018	0652	032	2215	NaN	Cali
198842	M893147	8	otc alterations permit	02/23/2018	0191	018	1242	NaN	٨
198843	M893167	8	otc alterations permit	02/23/2018	0852	042	221	NaN	
198847	M8 9 3187	8	otc alterations permit	02/23/2018	1205	035	403	NaN	Broi
198850	M893207	8	otc alterations permit	02/23/2018	3644	015	143	NaN	Sar
198858	M893227	8	otc alterations permit	02/23/2018	0652	0 0 5	20 07	NaN	Bucł
198859	M893247	8	otc alterations permit	02/23/2018	3504	030	1699	NaN	٨
198861	M893267	8	otc alterations permit	02/23/2018	0309	009	156	NaN	•
198862	201802232161	8	otc alterations permit	02/23/2018	0670	004	1233	NaN	
198865	M893307	8	otc alterations permit	02/23/2018	1070	0 0 1A	2750	NaN	•
198868	M893327	8	otc alterations permit	02/23/2018	5744	021	311	NaN	Cre
198869	M8 9332 8	8	otc alterations permit	02/23/2018	0025	024	884	NaN	North
198870	M8 9332 8	8	otc alterations permit	02/23/2018	0025	024	888	NaN	North
198871	M893347	8	otc alterations permit	02/23/2018	1253	0 0 1	701	NaN	CI
198876	M893367	8	otc alterations permit	02/23/2018	1213	013	500	NaN	Sta

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	\$ I
198880	M893387	8	otc alterations permit	02/23/2018	1841	0 2 5D	1442	NaN	Fu
198881	M893407	8	otc alterations permit	02/23/2018	0018	004	2300	NaN	Stc
198883	M893427	8	otc alterations permit	02/23/2018	0315	021	377	NaN	{
198884	M893447	8	otc alterations permit	02/23/2018	3504	030	1699	NaN	٨
198895	M862628	8	otc alterations permit	12/05/2017	0113	017A	1228	NaN	Montgo
198897	M863507	8	otc alterations permit	12/06/2017	4 318	019	1568	NaN	In
198898	M863747	8	otc alterations permit	12/06/2017	0298	029	795	NaN	1
198899	M864287	8	otc alterations permit	12/07/2017	0160	006	838	NaN	F

38066 rows × 43 columns

→

In [16]:

```
# Запоминаем индексы строк с пустыми значениями
flt_index = data[data['Estimated Cost'].isnull()].index
flt_index
```

Out[16]:

```
7,
                             9,
Int64Index([
                                             11,
                      8,
                                     10,
                                                     12,
                                                            14,
                                                                    1
5,
               16,
                      17,
           198871, 198876, 198880, 198881, 198883, 198884, 198895, 19889
7,
           198898, 198899],
          dtype='int64', length=38066)
```

In [17]:

Проверяем что выводятся нужные строки data[data.index.isin(flt_index)]

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	<u> </u>
7	M803667	8	otc alterations permit	06/30/2017	4789	014	1465	NaN	R
8	M8 0 4227	8	otc alterations permit	07/05/2017	1212	054	20 9 4	NaN	
9	M804767	8	otc alterations permit	07/06/2017	1259	016	89	NaN	1
10	M8 0 5287	8	otc alterations permit	07/06/2017	3541	001	106	NaN	Sai
11	M805907	8	otc alterations permit	07/07/2017	0829	021	675	NaN	
12	M8 0 6447	8	otc alterations permit	07/10/2017	6537	023	4082	NaN	
14	M813729	8	otc alterations permit	07/26/2017	1049	027	2761	NaN	
15	M813 907	8	otc alterations permit	07/27/2017	0243	043	840	NaN	F
16	M813967	8	otc alterations permit	07/27/2017	0268	800	220	NaN	Montge
17	M814148	8	otc alterations permit	07/27/2017	3621	097	3707	NaN	
19	M814368	8	otc alterations permit	07/28/2017	2659	001	263	NaN	С
20	M814967	8	otc alterations permit	07/31/2017	1176	068	1624	NaN	F
23	M816927	8	otc alterations permit	08/07/2017	0941	012	2824	NaN	F
26	M820728	8	otc alterations permit	08/18/2017	1449	0 0 6	331	NaN	
27	M8212 07	8	otc alterations permit	08/21/2017	1193	024	120	NaN	Sł
28	M821268	8	otc alterations permit	08/21/2017	1851	012	1512	NaN	
29	M821847	8	otc alterations permit	08/22/2017	0326	001	165	NaN	F

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	ξ
30	M822307	8	otc alterations permit	08/23/2017	0182	004	1441	NaN	
31	M822487	8	otc alterations permit	08/23/2017	3580	017	3830	NaN	
32	M822 707	8	otc alterations permit	08/23/2017	3 61 0	041	563	NaN	
34	M823847	8	otc alterations permit	08/25/2017	3545	018A	1810	NaN	
35	M8240 07	8	otc alterations permit	08/25/2017	0749	0 0 6A	1445	NaN	
36	M824127	8	otc alterations permit	08/28/2017	6551	023	1383	NaN	С
37	M824927	8	otc alterations permit	08/29/2017	6597	024	681	NaN	Sar
38	M8252 67	8	otc alterations permit	08/29/2017	1572	017	606	NaN	
39	M828787	8	otc alterations permit	09/07/2017	0177	022	655	NaN	F
40	M829567	8	otc alterations permit	09/08/2017	0490	002	3325	NaN	S
41	M832207	8	otc alterations permit	09/15/2017	1609	021F	700	NaN	
43	M833229	8	otc alterations permit	09/19/2017	0 605	028	2379	NaN	Ja
44	M834107	8	otc alterations permit	09/21/2017	7151	014	247	NaN	Cl
	•••						•••	•••	
198822	M8 929 88	8	otc alterations permit	02/23/2018	5811	042	815	NaN	Mŧ
198824	M893007	8	otc alterations permit	02/23/2018	5880	007	36	NaN	
198830	M893027	8	otc alterations permit	02/23/2018	6474	014	680	NaN	Brun
198831	M893047	8	otc alterations permit	02/23/2018	4343	029	2587	NaN	

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	ξ
198833	M893067	8	otc alterations permit	02/23/2018	1523	031	462	NaN	
198837	M893087	8	otc alterations permit	02/23/2018	1144	0 0 1B	222	NaN	Sta
198840	M893107	8	otc alterations permit	02/23/2018	0576	011	1856	NaN	F
198841	M893127	8	otc alterations permit	02/23/2018	0652	032	2215	NaN	Cali
198842	M893147	8	otc alterations permit	02/23/2018	0191	018	1242	NaN	٨
198843	M893167	8	otc alterations permit	02/23/2018	0852	042	221	NaN	
198847	M893187	8	otc alterations permit	02/23/2018	1205	035	403	NaN	Broi
198850	M8 9 32 0 7	8	otc alterations permit	02/23/2018	3644	015	143	NaN	Sar
198858	M893227	8	otc alterations permit	02/23/2018	0652	0 0 5	2007	NaN	Bucł
198859	M8 9 3247	8	otc alterations permit	02/23/2018	3504	030	16 9 9	NaN	٨
198861	M893267	8	otc alterations permit	02/23/2018	0309	009	156	NaN	•
198862	201802232161	8	otc alterations permit	02/23/2018	0670	004	1233	NaN	
198865	M8 9330 7	8	otc alterations permit	02/23/2018	1070	0 0 1A	2750	NaN	•
198868	M893327	8	otc alterations permit	02/23/2018	5744	021	311	NaN	Cre
198869	M8 9332 8	8	otc alterations permit	02/23/2018	0025	024	884	NaN	North
198870	M8 9332 8	8	otc alterations permit	02/23/2018	0025	024	888	NaN	North
198871	M8 9 3347	8	otc alterations permit	02/23/2018	1253	0 0 1	701	NaN	CI
198876	M8 9 3367	8	otc alterations permit	02/23/2018	1213	013	500	NaN	Sta

	Permit Number	Permit Type	Permit Type Definition	Permit Creation Date	Block	Lot	Street Number	Street Number Suffix	£
198880	M893387	8	otc alterations permit	02/23/2018	1841	025D	1442	NaN	Fu
198881	M893407	8	otc alterations permit	02/23/2018	0018	0 0 4	2300	NaN	Stc
198883	M893427	8	otc alterations permit	02/23/2018	0315	021	377	NaN	1
198884	M893447	8	otc alterations permit	02/23/2018	3504	030	1699	NaN	٨
198895	M862628	8	otc alterations permit	12/05/2017	0113	017A	1228	NaN	Montgε
198897	M863507	8	otc alterations permit	12/06/2017	4318	019	1568	NaN	ln
198898	M863747	8	otc alterations permit	12/06/2017	0298	029	795	NaN	1
198899	M864287	8	otc alterations permit	12/07/2017	0160	0 0 6	838	NaN	F

38066 rows × 43 columns

◀ |

In [18]:

```
# фильтр по колонке data_num.index.isin(flt_index)]['Estimated Cost']
```

Out[18]:

Out[18]:	
Out[18]: 7 8 9 10 11 12 14 15 16 17 19 20 23 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 43 44	NaN
198822 198824 198830 198831	NaN NaN NaN NaN
198833 198837 198840 198841	NaN NaN NaN NaN
198842 198843 198847 198850	NaN NaN NaN NaN
198858 198859 198861 198862	NaN NaN NaN NaN
198865 198868 198869 198870	NaN NaN NaN
198871 198876 198880	NaN NaN NaN NaN
198881 198883	NaN
19 8884 19 88 95	NaN NaN NaN

```
198899
         NaN
Name: Estimated Cost, Length: 38066, dtype: float64
In [19]:
data_num_EstCost = data_num[['Estimated Cost']]
data_num_EstCost.head()
Out[19]:
   Estimated Cost
0
          4000.0
1
             1.0
         20000.0
2
          2000.0
3
4
        100000.0
In [20]:
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
In [21]:
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_EstCost)
mask_missing_values_only
Out[21]:
array([[False],
       [False],
       [False],
       [ True],
       [ True],
       [ True]])
In [22]:
strategies=['mean', 'median', 'most_frequent']
In [23]:
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_num_EstCost)
    return data_num_imp[mask_missing_values_only]
```

198898

NaN

```
In [24]:
strategies[0], test num impute(strategies[0])
Out[24]:
('mean',
 array([168955.44329682, 168955.44329682, 168955.44329682, ...,
        168955.44329682, 168955.44329682, 168955.44329682]))
In [25]:
strategies[1], test_num_impute(strategies[1])
Out[25]:
('median', array([11000., 11000., 11000., ..., 11000., 11000., 11000.]))
In [26]:
strategies[2], test_num_impute(strategies[2])
Out[26]:
('most_frequent', array([1., 1., 1., ..., 1., 1., 1.]))
In [27]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled data = data_num_imp[mask_missing_values_only]
    return column, strategy param, filled data.size, filled data[0], filled data[filled
_data.size-1]
```

```
In [28]:
data[['Revised Cost']].describe()
Out[28]:
      Revised Cost
 count 1.928340e+05
 mean 1.328562e+05
  std 3.584903e+06
  min 0.000000e+00
 25% 1.000000e+00
 50% 7.000000e+03
 75% 2.870750e+04
 max 7.805000e+08
In [29]:
test_num_impute_col(data, 'Revised Cost', strategies[0])
Out[29]:
('Revised Cost', 'mean', 6066, 132856.1864917494, 132856.1864917494)
In [30]:
test_num_impute_col(data, 'Revised Cost', strategies[1])
Out[30]:
('Revised Cost', 'median', 6066, 7000.0, 7000.0)
In [31]:
test_num_impute_col(data, 'Revised Cost', strategies[2])
Out[31]:
('Revised Cost', 'most_frequent', 6066, 1.0, 1.0)
2. Обработка пропусков в категориальных
данных
In [32]:
```

```
In [32]:
data = pd.read_csv('vehicles.csv')
```

In [33]:

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка manufacturer. Тип данных object. Количество пустых значений 22764, 11.44%.

Колонка model. Тип данных object. Количество пустых значений 7989, 4.02%.

Колонка condition. Тип данных object. Количество пустых значений 231934, 1 16.61%.

Koлoнкa cylinders. Тип данных object. Количество пустых значений 199683, 1 00.39%.

Колонка fuel. Тип данных object. Количество пустых значений 3985, 2.0%.

Колонка title_status. Тип данных object. Количество пустых значений 3062, 1.54%.

Колонка transmission. Тип данных object. Количество пустых значений 3719, 1.87%.

Колонка vin. Тип данных object. Количество пустых значений 207425, 104.2 9%.

Колонка drive. Тип данных object. Количество пустых значений 144143, 72.4 7%.

Колонка size. Тип данных object. Количество пустых значений 342003, 171.9 5%.

Колонка type. Тип данных object. Количество пустых значений 141531, 71.1 6%.

Колонка paint_color. Тип данных object. Количество пустых значений 164706, 82.81%.

Колонка image_url. Тип данных object. Количество пустых значений 14, 0.0

Колонка description. Тип данных object. Количество пустых значений 16, 0.0 1%.

In [34]:

```
cat_temp_data = data[['model']]
cat_temp_data.head()
```

Out[34]:

	model
0	golf r
1	f-150
2	sierra 1500
3	f- 150
4	f -450

```
In [35]:
cat_temp_data['model'].unique()
Out[35]:
array(['golf r', 'f-150', 'sierra 1500', ..., 'Camaro 2-door coupe',
                        'Isuzu VehiCROSS', 'peterbilt 378'], dtype=object)
In [36]:
cat_temp_data[cat_temp_data['model'].isnull()].shape
Out[36]:
(7989, 1)
In [37]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data_imp2
Out[37]:
array([['golf r'],
                      ['f-150'],
                      ['sierra 1500'],
                       . . . ,
                       ['cherokee'],
                      ['Porsche Macan GTS'],
                      ['f-150']], dtype=object)
In [38]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[38]:
array(['#350', '#4', '$1500 DOWN PAYMENT', ..., 'É\x9bÌ\x83fini MS-9',
                        'â\x80\x9898 Astro',
                        'ð\x9d\x97\x9fð\x9d\x97¶ð\x9d\x97»ð\x9d\x97°ð\x9d\x97¼ð\x9d\x97¹ð\x
9d\x97» \delta\x97\xa0\delta\x97\x9e\delta\x97\\delta\delta\x9f\delta\x9f\delta\delta\x9f\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\
7\x9f \delta\x9d\x97\x94\delta\x9d\x97^a\delta\x9d\x97\x97'],
                   dtype=object)
```

```
In [39]:
  # Импьютация константой
 imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
 data_imp3 = imp3.fit_transform(cat_temp_data)
 data imp3
Out[39]:
 array([['golf r'],
                                                         ['f-150'],
                                                        ['sierra 1500'],
                                                        ['cherokee'],
                                                        ['Porsche Macan GTS'],
                                                        ['!!!']], dtype=object)
 In [40]:
 np.unique(data_imp3)
Out[40]:
 array(['!!!', '#350', '#4', ..., 'É\x9bÌ\x83fini MS-9',
                                                           'â\x80\x9898 Astro',
                                                           'ð\x9d\x97\x9fð\x9d\x97¶ð\x9d\x97»ð\x9d\x97°ð\x9d\x97¼ð\x9d\x97¹ð\x
 7 \times 6 \times 9d \times 97 \times 94\delta \times 9d \times 97^2\delta \times 9d \times 97^2\delta \times 97
                                                dtype=object)
In [41]:
 data_imp3[data_imp3=='!!!'].size
Out[41]:
```

2. Преобразование категориальных признаков в числовые

7989

In [42]:

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
```

Out[42]:

c1
golf r
f-150
sierra 1500
f-150
f-450
f-150
f- 3 50
sierra
f-250
f-150
f-250
yukon
tundra
sierra
f-150
2500
sierra
silverado
s-class
f- 3 50
sierra
wrangler rubicon unlimited
excursion limited
olet Silverado 2500HD
civic
sierra 1500
ierra 1500
3500 hd
silverado 1500
spark ev
 f-150
express 3500
silverado 1500
f-150
versa note
fusion

	CI
509553	mustang
509554	f-350 super duty
509555	canyon crew cab slt
509556	f-150
509557	3500
509558	wheelchair conversion van
509559	silverado 2500hd
509560	olet Silverado 2500HD
509561	gx470
509562	silverado 1500
509563	ierra 1500
509564	pathfinder platinum
509565	super duty f-250 srw
509566	silverado
509567	f-250
509568	F-150
509569	olet Silverado 1500
509570	jetta 2.0l s
509571	peterbilt 378
509572	xterra
509573	3 series 328i
509574	cherokee
509575	Porsche Macan GTS
509576	f-150

509577 rows × 1 columns

Кодирование категорий целочисленными значениями - label encoding¶

```
In [43]:
```

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
```

```
In [44]:
```

```
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
```

```
In [45]:
cat_enc['c1'].unique()
Out[45]:
array(['golf r', 'f-150', 'sierra 1500', ..., 'Camaro 2-door coupe',
      'Isuzu VehiCROSS', 'peterbilt 378'], dtype=object)
In [46]:
np.unique(cat enc le)
Out[46]:
array([
                1, 2, ..., 35849, 35850, 35851])
        0,
In [47]:
le.inverse_transform([0, 1, 2, 3])
Out[47]:
array(['#350', '#4', '$1500 DOWN PAYMENT', '$500 DOWN PROGRAMS!'],
     dtype=object)
Кодирование категорий наборами бинарных
значений - one-hot encoding
In [48]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
In [49]:
cat_enc.shape
Out[49]:
(509577, 1)
In [50]:
cat_enc_ohe.shape
Out[50]:
(509577, 35852)
In [51]:
cat_enc_ohe
Out[51]:
```

<509577x35852 sparse matrix of type '<class 'numpy.float64'>'

with 509577 stored elements in Compressed Sparse Row format>

```
In [24]:
cat_enc_ohe.todense()[0:10]
Out[24]:
matrix([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., \ldots, 0., 0., 0.],
        [0., 0., 0., \ldots, 0., 0., 0.]
         [0., 0., 0., \ldots, 0., 0., 0.]
         [0., 0., 0., \ldots, 0., 0., 0.],
        [0., 0., 0., \ldots, 0., 0., 0.]
In [52]:
cat_enc.head(10)
Out[52]:
          c1
        golf r
        f-150
   sierra 1500
2
3
        f-150
        f-450
4
5
        f-150
        f-350
6
7
        sierra
8
        f-250
        f-150
9
```

Pandas get_dummies - быстрый вариант one-hot кодирования

```
In [57]:
pd.get_dummies(cat_enc[:30000]).head(2)
                                           Traceback (most recent call las
MemoryError
t)
<ipython-input-57-bc7013508324> in <module>
----> 1 pd.get_dummies(cat_enc).head(2)
c:\users\innap\miniconda3\lib\site-packages\pandas\core\reshape\reshape.py
in get_dummies(data, prefix, prefix_sep, dummy_na, columns, sparse, drop_f
irst, dtype)
    857
                    dummy = _get_dummies_1d(col[1], prefix=pre, prefix_sep
=sep,
                                             dummy_na=dummy_na, sparse=spar
   858
se,
--> 859
                                             drop_first=drop_first, dtype=d
type)
                    with dummies.append(dummy)
    860
    861
                result = concat(with_dummies, axis=1)
c:\users\innap\miniconda3\lib\site-packages\pandas\core\reshape\reshape.py
in _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse, drop_first,
dtype)
    961
    962
            else:
--> 963
                dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes
, axis=0)
    964
    965
                if not dummy_na:
MemoryError:
In [27]:
pd.get_dummies(cat_temp_data, dummy_na=True).head()
Out[27]:
```

	model_08 titan	model_1 series	model_117,000	model_122S Amazon	model_124 spider	model_128i	model_135i	mc CO	
0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0		
5 rows × 2494 columns									

•

3 Масштабирование данных

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

3.1. MinMax масштабирование

```
In [34]:
```

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['odometer']])
```

In [35]:

```
plt.hist(data['odometer'], 50)
plt.show()
```

/srv/conda/envs/notebook/lib/python3.7/site-packages/numpy/lib/histograms.
py:824: RuntimeWarning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
/srv/conda/envs/notebook/lib/python3.7/site-packages/numpy/lib/histograms.
py:825: RuntimeWarning: invalid value encountered in less_equal
 keep &= (tmp_a <= last_edge)</pre>

In [36]:

```
plt.hist(sc1_data, 50)
plt.show()
```


3.2. Масштабирование данных на основе Z-оценки - StandardScaler

In [37]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['odometer']])
```

In [38]:

```
plt.hist(sc2_data, 50)
plt.show()
```

```
/srv/conda/envs/notebook/lib/python3.7/site-packages/numpy/lib/histograms.
py:824: RuntimeWarning: invalid value encountered in greater_equal
  keep = (tmp_a >= first_edge)
/srv/conda/envs/notebook/lib/python3.7/site-packages/numpy/lib/histograms.
py:825: RuntimeWarning: invalid value encountered in less_equal
  keep &= (tmp_a <= last_edge)</pre>
```


3.3. Нормализация данных

```
In [43]:
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['odometer']])
In [67]:
dict = {'odometer': 0}
data = data.fillna(dict)
In [68]:
data[data['odometer'].isnull()]
Out[68]:
  id url region region_url price year manufacturer model condition cylinders ... driv-
0 rows × 25 columns
In [69]:
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['odometer']])
In [70]:
plt.hist(sc3_data, 50)
plt.show()
 1.0
 0.8
 0.6
 0.4
 0.2
 0.0 -
          0.6
                                    1.2
                                            1.4
                  0.8
                           1.0
In [ ]:
In [ ]:
```

In []:	

Вывод: в ходе выполнения лабораторной работы были изучены способы обработки пропусков данных, выполнено кодирование категориальных признаков, произведено масштабирование данных.

Обработка пропусков данных может быть выполнена следующими способами:

- Удаление или заполнение нулями недостающих данных;
- Внедрение значений (импьюация).

С помощью импьютации можно обрабатывать числовые и категориальные данные, цель метода – заполнить пропуски в данных усредненными значениями, заданными значениями и т.д. При выполнении лабораторной работы использовался класс SimpleImputer библиотеки sklearn, использовались следующие стратегии: 'mean', 'most_frequent'.

Кодирование категориальных признаков выполняется при помощи целочисленных значений (label encoding) и бинарных значений (one-hot encoding). Используются классы библиотеки sklearn LabelEncoder и OneHotEncoder соответственно. Также был рассмотрен Pandas get_dummies - быстрый вариант one-hot кодирования. Масштабирование данных - изменение диапазона измерения величины. Если признаки лежат в различных диапазонах, то необходимо их нормализовать. Как правило, применяют два подхода:

- МіпМах масштабирование;
- Масштабирование данных на основе Z-оценки.

MinMax масштабирование реализовано при помощи класса MinMaxScaler библиотеки sklearn, а масштабирование данных на основе Z-оценки - StandardScaler. Нормализация данных предполагает изменение распределения данных. Доступна в sklearn при помощи класса Normalizer.

Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных» [Электронный ресурс] // GitHub. 2020. Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/LAB_MISSING (дата обращения: 25.03.2020).
- [2] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).
- [3] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).
- [4] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- [5] Gupta L. Google Play Store Apps [Electronic resource] // Kaggle. 2019. Access mode: https://www.kaggle.com/lava18/google-play-store-apps (online; accessed: 05.04.2019).