SEMICONDUCTOR DEVICES

p-n Junctions: Part 5

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

pn junction diode: AC and transient conditions

* We have looked at the DC behaviour of a pn junction diode so far. We now want to consider V_a (the applied voltage) varying with time.

pn junction diode: AC and transient conditions

- * We have looked at the DC behaviour of a pn junction diode so far. We now want to consider V_a (the applied voltage) varying with time.
- * Two situations are of interest:
 - * Small-signal behaviour (AC): With $V_a(t) = V_{DC} + V_m \sin \omega t$, how does the current vary with time when V_m is "small?"
 - * Large-signal behaviour: The variation in the applied voltage is not small. In particular, we are interested in the turn-off and turn-on transients.

* Let $v(t) = V_{DC} + V_m \sin \omega t$.

* Let $v(t) = V_{DC} + V_m \sin \omega t$.

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.
- * In small-signal analysis, we are interested in the relationship between the sinusoidal parts of the current and voltage, in particular, the ratio of the current and voltage phasors, $I_m \angle \phi / V_m \angle 0$.

* A pn junction diode conducts negligibly small current with a DC reverse bias.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- * With a time-varying applied reverse bias, it can conduct an appreciable current.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- * With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_a = -V_R$, i.e., a reverse bias of V_R . If V_R is increased to $V_R + \Delta V_R$, the depletion width must change from W to $W + \Delta W$.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_{\partial} = -V_R$, i.e., a reverse bias of V_R . If V_R is increased to $V_R + \Delta V_R$, the depletion width must change from W to $W + \Delta W$.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- * With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_{a}=-V_{R}$, i.e., a reverse bias of V_{R} . If V_{R} is increased to $V_{R}+\Delta V_{R}$, the depletion width must change from W to $W+\Delta W$.
- This change is made possible by removal of majority carriers.

Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm}^{-3}$, $\mu_n=1000\,\mathrm{cm}^2/\mathrm{V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

* The situation is similar to a parallel-plate capacitor.

- * Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{}$ for electrons.
 - For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.
- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{X_n}^{X_n} \rho dx = \text{Area} \times q N_d W_n$.

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{x_i}^{x_n} \rho dx = \text{Area} \times q N_d W_n$.
- * $V_R \rightarrow V_R + \Delta V_R \Rightarrow Q \rightarrow Q + \Delta Q$.

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{a u_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V^{-s}}$, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{x_n}^{x_n} \rho dx = \text{Area} \times q N_d W_n$.
- * $V_P \rightarrow V_P + \Delta V_P \Rightarrow Q \rightarrow Q + \Delta Q$.

M. B. Patil, IIT Bombay

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{X_n}^{X_n} \rho dx = \text{Area} \times q N_d W_n$.
- * $V_R \rightarrow V_R + \Delta V_R \Rightarrow Q \rightarrow Q + \Delta Q$.

Note: For simplicity, we have not shown $V_{\rm bi}$ in the figure; the drop across the junction is actually $V_{\rm bi}+V_{\rm R}$, as seen before.

* In semiconductor devices, "capacitance" generally refers to the differential capacitance $C_d = \frac{dQ}{dV}$ (the subscript d is usually dropped).

M. B. Patil, IIT Bombay

- * In semiconductor devices, "capacitance" generally refers to the differential capacitance $C_d = \frac{dQ}{dV}$ (the subscript d is usually dropped).
- * For a reverse-biased pn junction, $C = \frac{\Delta Q}{\Delta V_P}$.

M. B. Patil, IIT Bombay

$$V_{\rm bi} + V_R = -\int_{x_p}^{x_n} \mathcal{E}(x) dx$$

$$\begin{aligned} V_{\mathsf{bi}} + V_R &= -\int_{\mathsf{x}_p}^{\mathsf{x}_n} \mathcal{E}(\mathsf{x}) d\mathsf{x} \\ V_{\mathsf{bi}} + V_R + \Delta V_R &= -\int_{\mathsf{x}_p'}^{\mathsf{x}_n'} \mathcal{E}'(\mathsf{x}) d\mathsf{x} \end{aligned}$$

$$\begin{aligned} V_{\text{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \\ V_{\text{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \\ &\to \Delta V_R = -\int_{x_-'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_-'}^{x_n'} \Delta \mathcal{E}(x) dx \end{aligned}$$

$$\begin{split} V_{\text{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \\ V_{\text{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \\ &\to \Delta V_R = -\int_{x_p'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_p'}^{x_n'} \Delta \mathcal{E}(x) dx \\ &= \Delta \mathcal{E}_0 W \text{ as } \Delta V_R \to 0 \text{ V}. \end{split}$$

$$egin{aligned} V_{ ext{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \ V_{ ext{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \ & o \Delta V_R &= -\int_{x_p'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_p'}^{x_n'} \Delta \mathcal{E}(x) dx \ &= \Delta \mathcal{E}_0 W ext{ as } \Delta V_R o 0 \text{ V}. \end{aligned}$$

 ΔQ , the total charge in the Gaussian box between AA'D'D and BB'C'C, is given by

$$\Delta Q = \epsilon_s \oint \mathbf{E} \cdot d\mathbf{S} = A \, \epsilon_s \Delta \mathcal{E}_0.$$

$$\begin{aligned} V_{\text{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \\ V_{\text{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \\ &\to \Delta V_R = -\int_{x_n'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_n'}^{x_n'} \Delta \mathcal{E}(x) dx \end{aligned}$$

$$\int_{x'_p} (x') \cdot f(x') dx = \int_{x'_p} f(x') dx$$

$$=\Delta \mathcal{E}_0 W$$
 as $\Delta V_R
ightarrow 0 \, \mathsf{V}.$

 ΔQ , the total charge in the Gaussian box between AA'D'D and BB'C'C, is given by

$$\Delta Q = \epsilon_s \oint \mathbf{E} \cdot d\mathbf{S} = A \epsilon_s \Delta \mathcal{E}_0.$$

$$\rightarrow C_J = \left. \frac{\Delta Q}{\Delta V_R} \right|_{\Delta V_{r-r} \rightarrow 0} = \frac{A \epsilon_s}{W}.$$

 C_J is called the "junction capacitance" or "depletion layer capacitance."

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \, \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_{eta} N_d}{n_i^2}
ight) = 0.77 \,
m V \, .$$

The depletion width for $V_R = 2 \, \text{V}$ is $W = \sqrt{\frac{2\epsilon}{q}} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\text{bi}} + V_R) = 0.464 \, \mu\text{m}.$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_{eta} N_d}{n_i^2}
ight) = 0.77 \,
m V \, .$$

The depletion width for $V_R = 2 \, \text{V}$ is $W = \sqrt{\frac{2\epsilon}{q}} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\text{bi}} + V_R) = 0.464 \, \mu\text{m}.$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} \ = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

The depletion width for $V_R = 2 \, \text{V}$ is $W = \sqrt{\frac{2\epsilon}{q}} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\text{bi}} + V_R) = 0.464 \, \mu\text{m}.$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

$$= 2.23 \times 10^{-10} \, \, \mathrm{F}$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

The depletion width for $V_R = 2 \, \text{V}$ is $W = \sqrt{\frac{2\epsilon}{q}} \, \frac{N_a + N_d}{N_a N_d} \, (V_{\text{bi}} + V_R) = 0.464 \, \mu\text{m}.$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

$$= 2.23 \times 10^{-10} \, \mathrm{F}$$

$$= 0.223 \, \mathrm{nF}.$$

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{
m bi}-V_a)}}.$$

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{\mathrm{bi}} - V_a)}}.$$

$$\frac{1}{C_I^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{\text{bi}} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{\text{bi}} - V_a).$$

$$C_J = \frac{A\epsilon_s}{W} = A\epsilon_s \sqrt{\frac{qN_a}{2\epsilon_s(V_{bi} - V_a)}}.$$

$$\frac{1}{C_J^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{bi} - V_a).$$

$$C_J = \frac{A\epsilon_s}{W} = A\epsilon_s \sqrt{\frac{qN_a}{2\epsilon_s(V_{bi} - V_a)}}.$$

$$\frac{1}{C_J^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{bi} - V_a).$$

Solution: The junction capacitance is given by

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{
m bi}-V_a)}}.$$

$$\frac{1}{C_I^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s (V_{\rm bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{\rm bi} - V_a).$$

 $ightarrow 1/C_J^2$ versus V_a : Slope gives N_a ; x-intercept gives $V_{
m bi}$.

 $V_a(V)$

 $\mbox{Small signal} \rightarrow \mbox{With a sinusoidal input, the output (voltage or current) should} \\ \mbox{also be sinusoidal, i.e., it should not be distorted.}$

Small signal \rightarrow With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

Small signal \rightarrow With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

With
$$V_a(t) = -(V_R + V_m \sin \omega t)$$
, $i(t) = \frac{dQ}{dt} = \frac{dQ}{dV_a} \frac{dV_a}{dt} = C_J(V_a) \times (-\omega V_m \cos \omega t)$.

Small signal \rightarrow With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

With
$$V_a(t) = -(V_R + V_m \sin \omega t)$$
, $i(t) = \frac{dQ}{dt} = \frac{dQ}{dV_a} \frac{dV_a}{dt} = C_J(V_a) \times (-\omega V_m \cos \omega t)$.

 $\rightarrow i(t)$ is sinusoidal if C_J can be treated as a constant.

$$egin{aligned} & v_{a}(t) = -(V_R + V_m \sin \omega t)
ightarrow -(V_R + V_m) < v_a < -(V_R - V_m). \ & C_J^{\min} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}, \quad C_J^{\max} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R - V_m}}. \end{aligned}$$

$$v_a(t) = -(V_R + V_m \sin \omega t) \rightarrow -(V_R + V_m) < v_a < -(V_R - V_m).$$

$$C_J^{\min} = rac{\mathcal{K}}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}, \quad C_J^{\max} = rac{\mathcal{K}}{\sqrt{V_{\mathrm{bi}} + V_R - V_m}}.$$

Consider one of these two extreme values.

$$C_J^{\text{max}} = \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R - V_m}} = \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R}} \times \frac{1}{\sqrt{1 - \frac{V_m}{V_{\text{bi}} + V_R}}} \approx \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R}} \left(1 + \frac{1}{2} \frac{V_m}{V_{\text{bi}} + V_R}\right).$$

$$v_a(t) = -(V_R + V_m \sin \omega t) \to -(V_R + V_m) < v_a < -(V_R - V_m).$$

$$C_J^{\min} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}, \quad C_J^{\max} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R - V_m}}.$$

Consider one of these two extreme values,

$$C_J^{\text{max}} = \frac{K}{\sqrt{V_{\text{bi}} + V_R - V_m}} = \frac{K}{\sqrt{V_{\text{bi}} + V_R}} \times \frac{1}{\sqrt{1 - \frac{V_m}{V_{\text{bi}} + V_R}}} \approx \frac{K}{\sqrt{V_{\text{bi}} + V_R}} \left(1 + \frac{1}{2} \frac{V_m}{V_{\text{bi}} + V_R}\right).$$

If $\frac{V_m}{2(V_{i,j} + V_D)} \ll 1$, C_J can be treated as a constant.

* Small-signal condition: $\frac{V_m}{2\left(V_{\mathrm{bi}}+V_R\right)}\ll 1.$

* Small-signal condition: $\frac{V_m}{2\left(V_{\rm bi}+V_R\right)}\ll 1.$

* Small-signal condition: $\frac{V_m}{2\left(V_{\mathrm{bi}}+V_R\right)}\ll 1.$

* Small-signal condition:
$$\frac{V_m}{2\left(V_{\rm bi}+V_R\right)}\ll 1.$$

* If the small-signal condition is not satisfied, i(t) shows distortion.

* The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.

- * The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.
- * Specially designed diodes called "varactors" (variable reactors) are used in applications such as voltage-variable tuning, mixing, detection, etc.

- * The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.
- * Specially designed diodes called "varactors" (variable reactors) are used in applications such as voltage-variable tuning, mixing, detection, etc.
- * In these devices, the doping density profiles are designed so as to get a large capacitance change for a small change in reverse bias.

*
$$p(x_n) = p_{n0} (e^{V_a/V_T} - 1), \quad n(x_p) = n_{p0} (e^{V_a/V_T} - 1).$$

- * $p(x_n) = p_{n0} (e^{V_a/V_T} 1), \quad n(x_p) = n_{p0} (e^{V_a/V_T} 1).$
- * If the applied voltage is increased from V_{∂} to $(V_{\partial} + \Delta V_{\partial})$, the carrier densities would also increase.

- * $p(x_n) = p_{n0} (e^{V_a/V_T} 1), \quad n(x_n) = n_{n0} (e^{V_a/V_T} 1).$
- * If the applied voltage is increased from V_a to $(V_a + \Delta V_a)$, the carrier densities would also increase.
- * At low frequencies, the minority carrier profiles change in synchronisation with $V_a(t)$. \to The Shockley equation can be used, with $V_a \to v_a(t)$, $I \to i(t)$, i.e., $i(t) = I_s \left[e^{v_a(t)/V_T} 1 \right] \approx I_s e^{v_a(t)/V_T}$.

$$i(t) = I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right) = \left[I_s \exp\left(\frac{V_{DC}}{V_T}\right)\right] \exp\left(\frac{V_m \sin \omega t}{V_T}\right) = I_{DC} \exp\left(\frac{V_m \sin \omega t}{V_T}\right).$$

$$i(t) = I_{s} \exp\left(\frac{V_{DC} + V_{m} \sin \omega t}{V_{T}}\right) = \left[I_{s} \exp\left(\frac{V_{DC}}{V_{T}}\right)\right] \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) = I_{DC} \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right).$$
If $V_{m} \in V_{m} = \sup\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) = I_{DC} \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right)$.

If
$$V_m \ll V_T$$
, $\exp\left(rac{V_m \sin \omega t}{V_T}
ight) pprox 1 + rac{V_m \sin \omega t}{V_T}$,

$$\begin{split} i(t) &= I_{s} \exp\left(\frac{V_{DC} + V_{m} \sin \omega t}{V_{T}}\right) = \left[I_{s} \exp\left(\frac{V_{DC}}{V_{T}}\right)\right] \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) = I_{DC} \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right). \\ \text{If } V_{m} \ll V_{T}, \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) \approx 1 + \frac{V_{m} \sin \omega t}{V_{T}}, \\ i(t) &= I_{DC} + \frac{I_{DC}}{V_{T}} V_{m} \sin \omega t \rightarrow \mathbf{I} = \frac{I_{DC}}{V_{T}} \mathbf{V}. \end{split}$$

$$i(t) = I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right) = \left[I_s \exp\left(\frac{V_{DC}}{V_T}\right)\right] \exp\left(\frac{V_m \sin \omega t}{V_T}\right) = I_{DC} \exp\left(\frac{V_m \sin \omega t}{V_T}\right).$$
If $V_m \ll V_T$, $\exp\left(\frac{V_m \sin \omega t}{V_T}\right) \approx 1 + \frac{V_m \sin \omega t}{V_T}$,

$$i(t) = I_{DC} + \frac{I_{DC}}{V_T} V_m \sin \omega t \rightarrow \mathbf{I} = \frac{I_{DC}}{V_T} \mathbf{V}.$$

ightarrow The low-frequency small-signal model of a diode is a resistance $r_d = rac{V_T}{I_{DC}}$.

$$\begin{split} i(t) &= I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right) = \left[I_s \exp\left(\frac{V_{DC}}{V_T}\right)\right] \exp\left(\frac{V_m \sin \omega t}{V_T}\right) = I_{DC} \exp\left(\frac{V_m \sin \omega t}{V_T}\right). \\ \text{If } V_m \ll V_T, \ \exp\left(\frac{V_m \sin \omega t}{V_T}\right) \approx 1 + \frac{V_m \sin \omega t}{V_T}, \\ i(t) &= I_{DC} + \frac{I_{DC}}{V_T} V_m \sin \omega t \rightarrow \mathbf{I} = \frac{I_{DC}}{V_T} \mathbf{V}. \end{split}$$

ightarrow The low-frequency small-signal model of a diode is a resistance $r_d = rac{V_T}{I_{DC}}$.

$$\begin{split} i(t) &= I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right) = \left[I_s \exp\left(\frac{V_{DC}}{V_T}\right)\right] \exp\left(\frac{V_m \sin \omega t}{V_T}\right) = I_{DC} \exp\left(\frac{V_m \sin \omega t}{V_T}\right). \\ \text{If } V_m \ll V_T, \exp\left(\frac{V_m \sin \omega t}{V_T}\right) \approx 1 + \frac{V_m \sin \omega t}{V_T}, \\ i(t) &= I_{DC} + \frac{I_{DC}}{V_T} V_m \sin \omega t \rightarrow \mathbf{I} = \frac{I_{DC}}{V_T} \mathbf{V}. \end{split}$$

 \rightarrow The low-frequency small-signal model of a diode is a resistance $r_d = \frac{V_T}{I_{DC}}$.

Example:
$$T = 300 \text{ K}$$
, $I_{DC} = 1 \text{ mA} \rightarrow r_d = \frac{25.9 \text{ mV}}{1 \text{ m}^{\Delta}} = 25.9 \Omega$.

$$\begin{split} i(t) &= I_{s} \exp\left(\frac{V_{DC} + V_{m} \sin \omega t}{V_{T}}\right) = \left[I_{s} \exp\left(\frac{V_{DC}}{V_{T}}\right)\right] \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) = I_{DC} \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right). \\ \text{If } V_{m} \ll V_{T}, \exp\left(\frac{V_{m} \sin \omega t}{V_{T}}\right) \approx 1 + \frac{V_{m} \sin \omega t}{V_{T}}, \\ i(t) &= I_{DC} + \frac{I_{DC}}{V_{T}} V_{m} \sin \omega t \rightarrow \mathbf{I} = \frac{I_{DC}}{V_{T}} \mathbf{V}. \end{split}$$

$$\rightarrow$$
 The low-frequency small-signal model of a diode is a resistance $r_d = \frac{V_T}{L}$.

Example:
$$T = 300 \text{ K}, I_{DC} = 1 \text{ mA} \rightarrow r_d = \frac{25.9 \text{ mV}}{1 \text{ m/s}} = 25.9 \Omega.$$

 r_d is small, compared to typical resistance values used in electronics ($\sim k\Omega$).

Example

For a silicon pn diode, $I_s=10^{-13}$ A. Consider $V_a(t)=0.6\,\mathrm{V}+V_m\sin\omega t$. Assume that the frequency is low enough so that the minority carrier profiles can follow $V_a(t)$.

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model.

Consider two values of V_m : 2 mV and 10 mV ($T = 300 \,\mathrm{K}$).

Example

For a silicon pn diode, $I_s=10^{-13}$ A. Consider $V_a(t)=0.6\,\mathrm{V}+V_m\sin\omega t$. Assume that the frequency is low enough so that the minority carrier profiles can follow $V_a(t)$.

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model. Consider two values of V_m : 2 mV and 10 mV ($T = 300 \,\mathrm{K}$).

(a)
$$i(t) \approx I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right)$$
.

Example

For a silicon pn diode, $I_s=10^{-13}$ A. Consider $V_a(t)=0.6\,\mathrm{V}+V_m\sin\omega t$. Assume that the frequency is low enough so that the minority carrier profiles can follow $V_a(t)$.

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model. Consider two values of V_m : 2 mV and 10 mV ($T = 300 \,\mathrm{K}$).

(a)
$$i(t) pprox I_s \exp\left(rac{V_{DC} + V_m \sin \omega t}{V_T}
ight)$$
.

(b)
$$I_{DC} pprox I_s \exp\left(rac{V_{DC}}{V_T}
ight)$$
,

For a silicon pn diode, $I_s=10^{-13}$ A. Consider $V_a(t)=0.6\,\mathrm{V}+V_m\sin\omega t$. Assume that the frequency is low enough so that the minority carrier profiles can follow $V_a(t)$.

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model. Consider two values of V_m : 2 mV and 10 mV ($T = 300 \,\mathrm{K}$).

(a)
$$i(t) \approx I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right)$$
.

(b)
$$I_{DC} \approx I_s \exp\left(\frac{V_{DC}}{V_T}\right)$$
, $r_d = \frac{V_T}{I_{DC}} \rightarrow i_{ac} = \frac{V_m \sin \omega t}{r_d}$,

For a silicon pn diode, $I_s=10^{-13}$ A. Consider $V_a(t)=0.6\,\mathrm{V}+V_m\sin\omega t$. Assume that the frequency is low enough so that the minority carrier profiles can follow $V_a(t)$.

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model. Consider two values of V_m : 2 mV and 10 mV ($T = 300 \,\mathrm{K}$).

(a)
$$i(t) \approx I_s \exp\left(\frac{V_{DC} + V_m \sin \omega t}{V_T}\right)$$
.

(b)
$$I_{DC} \approx I_s \exp\left(\frac{V_{DC}}{V_T}\right)$$
, $r_d = \frac{V_T}{I_{DC}} \rightarrow i_{ac} = \frac{V_m \sin \omega t}{r_d}$,

 $i(t) = I_{DC} + i_{ac}$

If V_m is not small compared to V_T ,

* The diode current waveform is significantly distorted.

If V_m is not small compared to V_T ,

- * The diode current waveform is significantly distorted.
- * The small-signal model is not accurate.

High-frequency small-signal model (forward bias)

* At high frequencies, the carrier profiles cannot follow changes in the applied voltage, and the minority-carrier continuity equation needs to be solved to obtain p(x, t) on the n-side and n(x, t) on the p-side.

At high frequencies, the carrier profiles cannot follow changes in the applied voltage, and the minority-carrier continuity equation needs to be solved to obtain

p(x, t) on the *n*-side and n(x, t) on the *p*-side.

P

n

 Using the above solution, the small-signal model can be derived.¹

(p

n

¹M. Shur, *Physics of Semiconductor Devices*. New Delhi: Prentice-Hall India, 1990.

* C_J is the depletion capacitance.

- * C_J is the depletion capacitance.
- * G_D and C_D arise from diffusion of minority carriers.

- * C_J is the depletion capacitance.
- * G_D and G_D arise from diffusion of minority carriers.
- * For a $p^+ n$ junction,

$$G_D = \frac{G_0}{\sqrt{2}} \left(\sqrt{1 + (\omega \tau_p)^2} + 1 \right)^{1/2}, \quad C_D = \frac{G_0}{\omega \sqrt{2}} \left(\sqrt{1 + (\omega \tau_p)^2} - 1 \right)^{1/2},$$
 where $G_0 = \frac{I_s}{V_T} \exp\left(\frac{V_{DC}}{V_T} \right)$ is the low-frequency conductance seen earlier.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_{\rm s}=1\times10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ $\mu {\rm s}$.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_s=1\times 10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ μs .

(a) For $f=1\,\mathrm{kHz}$, plot C_J and C_D versus V_{DC} for $0\,\mathrm{V} < V_{DC} < 0.65\,\mathrm{V}$. Also, show (C_J+C_D) on the same plot.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_{\rm s}=1\times10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ $\mu {\rm s}$.

- (a) For $f=1\,\mathrm{kHz}$, plot C_J and C_D versus V_{DC} for $0\,\mathrm{V} < V_{DC} < 0.65\,\mathrm{V}$. Also, show (C_J+C_D) on the same plot.
- (b) For $f=1\,\mathrm{kHz}$, plot G_D versus V_{DC} for $0\,\mathrm{V} < V_{DC} < 0.65\,\mathrm{V}$.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_{\rm s}=1\times10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ $\mu \rm s$.

- (a) For f = 1 kHz, plot C_J and C_D versus V_{DC} for $0 \text{ V} < V_{DC} < 0.65 \text{ V}$. Also, show $(C_J + C_D)$ on the same plot.
- (b) For $f = 1 \, \text{kHz}$, plot G_D versus V_{DC} for $0 \, \text{V} < V_{DC} < 0.65 \, \text{V}$.
- (c) Find G_{D0} and C_{D0} , the values of G_D and C_D , respectively, as $\omega \to 0$.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_{\rm s}=1\times10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ $\mu \rm s$.

- (a) For $f=1\,\mathrm{kHz}$, plot C_J and C_D versus V_{DC} for $0\,\mathrm{V} < V_{DC} < 0.65\,\mathrm{V}$. Also, show (C_J+C_D) on the same plot.
- (b) For $f = 1 \, \text{kHz}$, plot G_D versus V_{DC} for $0 \, \text{V} < V_{DC} < 0.65 \, \text{V}$.
- (c) Find G_{D0} and C_{D0} , the values of G_D and C_D , respectively, as $\omega \to 0$.
- (d) For $V_{DC} = 0.6 \,\text{V}$, plot G_D/G_{D0} and C_D/C_{D0} versus f for $10 \,\text{Hz} < f < 1 \,\text{MHz}$.

For a silicon p^+n diode at 300 K, $V_{\rm bi}=0.72$ V, $I_{\rm s}=1\times10^{-13}$ A, and the junction capacitance $C_J=340$ pF at $V_{DC}=0$ V. Assume $\tau_p=1.5$ $\mu \rm s$.

- (a) For $f=1\,\mathrm{kHz}$, plot C_J and C_D versus V_{DC} for $0\,\mathrm{V} < V_{DC} < 0.65\,\mathrm{V}$. Also, show (C_J+C_D) on the same plot.
- (b) For $f = 1 \, \text{kHz}$, plot G_D versus V_{DC} for $0 \, \text{V} < V_{DC} < 0.65 \, \text{V}$.
- (c) Find G_{D0} and C_{D0} , the values of G_D and G_D , respectively, as $\omega \to 0$.
- (d) For $V_{DC} = 0.6 \, \text{V}$, plot G_D/G_{D0} and C_D/C_{D0} versus f for $10 \, \text{Hz} < f < 1 \, \text{MHz}$.
- (e) For $V_{DC} = 0.6 \, \text{V}$, plot G_D and $\omega(C_J + C_D)$ versus frequency for $10 \, \text{Hz} < f < 1 \, \text{MHz}$.

*
$$C_J = \frac{A\epsilon_s}{W} = \frac{K}{\sqrt{V_{\text{bi}} - V_{DC}}} \rightarrow \frac{C_J(V_{DC})}{C_J(0 \text{ V})} = \sqrt{\frac{V_{\text{bi}}}{V_{\text{bi}} - V_{DC}}} \rightarrow C_J \uparrow \text{as } V_{DC} \uparrow.$$

*
$$C_D = \frac{G_0}{\omega\sqrt{2}} \left(\sqrt{1 + (\omega \tau_p)^2} - 1 \right)^{1/2}$$
, $G_0 = \frac{I_s}{V_T} \exp\left(\frac{V_{DC}}{V_T} \right) = \frac{I_{DC}}{V_T} \rightarrow C_D \uparrow$ as $V_{DC} \uparrow$

* C_J dominates at low V_{DC} , C_D dominates at high V_{DC} .

*
$$G_D = \frac{G_0}{\sqrt{2}} \left(\sqrt{1 + (\omega \tau_p)^2} + 1 \right)^{1/2}, \quad C_D = \frac{G_0}{\omega \sqrt{2}} \left(\sqrt{1 + (\omega \tau_p)^2} - 1 \right)^{1/2}, \quad G_0 = \frac{I_s}{V_T} \exp\left(\frac{V_{DC}}{V_T} \right).$$

 \rightarrow Both G_D and C_D increase exponentially with V_{DC} .

For
$$\omega \tau_p \ll 1$$
, $G_D \to G_0$, $C_D \to \frac{G_0 \tau_p}{2}$ $(\because \sqrt{1 + (\omega \tau_p)^2} \approx 1 + \frac{1}{2} (\omega \tau_p)^2)$.

* For $V_D = 0.6 \,\mathrm{V}$, the conductance G_D dominates for this device.

* For $V_D = 0.6 \,\mathrm{V}$, the conductance G_D dominates for this device.

Home work: Show that (a) For $\omega \tau_p \ll 1$, $\frac{G_D}{\omega C_D} = \frac{2}{\omega \tau_p}$, (b) For $\omega \tau_p \gg 1$, $\frac{G_D}{\omega C_D} \to 1$.

* There are major differences between forward and reverse bias:

- * There are major differences between forward and reverse bias:
 - The depletion region is wider in reverse bias.

- * There are major differences between forward and reverse bias:
 - The depletion region is wider in reverse bias.
 - The hole density at x_n is much larger in forward bias.

- * There are major differences between forward and reverse bias:
 - The depletion region is wider in reverse bias.
 - The hole density at x_n is much larger in forward bias.
 - The total minority carrier charge $q \int_{x_n}^{\infty} p(x) dx$ is 2 also much larger in forward bias.

- * There are major differences between forward and reverse bias:
 - The depletion region is wider in reverse bias.
 - The hole density at x_n is much larger in forward bias.
 - The total minority carrier charge $q \int_{x_n}^{\infty} p(x) dx$ is $2 \begin{cases} 1 & \text{also much larger in forward bias.} \end{cases}$
- * For the diode to change from f.b. to r.b. (or *vice versa*), large changes within the device are required. These transients are called "large-signal" transients.

- * There are major differences between forward and reverse bias:
 - The depletion region is wider in reverse bias.
 - The hole density at x_n is much larger in forward bias.
 - The total minority carrier charge $q \int_{x_n}^{\infty} p(x) dx$ is 2 also much larger in forward bias.
- For the diode to change from f.b. to r.b.
 (or vice versa), large changes within the device are required. These transients are called "large-signal" transients.
- * We will consider a representative circuit and look at the turn-on and turn-off transients

- * Turn-off: switch changes from position 1 to 2.
- * Turn-on: switch changes from position 2 to 1.

- * Turn-off: switch changes from position 1 to 2.
- * Turn-on: switch changes from position 2 to 1.

* There is an interval t_s , known as the "storage time" or "storage delay time" during which the diode current is approximately constant $(-I_R)$, and the diode voltage continues to be positive.

 $N_{\rm d} = 5 \times 10^{16} \, \rm cm^{-3}$ $\mu_{\rm p} = 500 \, \rm cm^{2}/V - s$ $\tau_{\rm p} = 0.1 \, \mu \rm s$ $A = 0.001 \, \rm cm^{2}$ $T = 300 \, \rm K$

- * There is an interval t_s , known as the "storage time" or "storage delay time" during which the diode current is approximately constant $(-I_R)$, and the diode voltage continues to be positive.
- * After the t_s phase, the diode current and voltage start approaching their final values. The "reverse recovery time" t_r is defined as the time required for the current to decrease (in magnitude) from I_R to $0.1 I_R$.

M. B. Patil. IIT Bombay

 $N_d = 5 \times 10^{16} \, cm^{-3}$

 $\mu_{\rm p} = 500 \, {\rm cm}^2 / {\rm V} - {\rm s}$

 $\tau_{\rm p} = 0.1 \, \mu {\rm s}$

T = 300 K

 $A = 0.001 \text{ cm}^2$

* The total time $t_{rr} = t_s + t_r$ that the diode takes to "recover" to the reverse-bias steady state condition is called the "reverse recovery" time.

$$\begin{split} \tau_{\mathrm{p}} &= 0.1 \, \mu \mathrm{s} \\ \mathrm{A} &= 0.001 \, \mathrm{cm}^2 \\ \mathrm{T} &= 300 \, \mathrm{K} \end{split}$$

M. B. Patil, IIT Bombay

 $\mu_{\rm p} = 500 \, {\rm cm}^2 / {\rm V} - {\rm s}$

- * The total time $t_{rr} = t_s + t_r$ that the diode takes to "recover" to the reverse-bias steady state condition is called the "reverse recovery" time.
- * If R_F is reduced, t_S increases.

 $\mu_{\rm p} = 500 \, {\rm cm}^2 / {\rm V} - {\rm s}$

 $\tau_{\rm p} = 0.1 \, \mu {\rm s}$

 $A = 0.001 \text{ cm}^2$

- * The total time $t_{rr} = t_s + t_r$ that the diode takes to "recover" to the reverse-bias steady state condition is called the "reverse recovery" time.
- * If R_F is reduced, t_s increases.
- * If R_R is reduced, t_s decreases.

M. B. Patil, IIT Bombay

 $\mu_{\rm p} = 500 \, {\rm cm}^2 / {\rm V} - {\rm s}$

 $\tau_{\rm p} = 0.1 \, \mu {\rm s}$

 $A = 0.001 \text{ cm}^2$ T = 300 K

Continuity equation for holes in the neutral n region $(x > x_n)$:

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - (R - G), \quad (R - G) = \frac{p - p_{n0}}{\tau_p}.$$

Continuity equation for holes in the neutral *n* region $(x > x_n)$:

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - (R - G), \quad (R - G) = \frac{p - p_{n0}}{\tau_p}.$$

In terms of the excess hole density, $\Delta p(x) = p(x) - p_{n0}$,

$$q\frac{\partial \Delta p}{\partial t} = -\frac{\partial J_p}{\partial x} - q\frac{\Delta p}{\tau_p}$$

Continuity equation for holes in the neutral *n* region $(x > x_n)$:

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - (R - G), \quad (R - G) = \frac{p - p_{n0}}{\tau_p}.$$

In terms of the excess hole density, $\Delta p(x) = p(x) - p_{n0}$,

$$q\,\frac{\partial\Delta\rho}{\partial t} = -\frac{\partial J_p}{\partial x} - q\,\frac{\Delta\rho}{\tau_p} \quad \to \quad qA\,\frac{\partial}{\partial t}\int_{x_0}^{\infty}\Delta\rho\,dx = -A\int_{x_0}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_0}^{\infty}\Delta\rho\,dx.$$

$$qA\frac{\partial}{\partial t}\int_{x_n}^{\infty}\Delta p\,dx = -A\int_{x_n}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_n}^{\infty}\Delta p\,dx.$$

$$qA\frac{\partial}{\partial t}\int_{x_p}^{\infty}\Delta p\,dx = -A\int_{x_p}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_p}^{\infty}\Delta p\,dx.$$

The first term on the right is $A[J_p(x_n)-J_p(\infty)]=AJ_p^{\mathrm{diff}}(x_n)=I_p^{\mathrm{diff}}(x_n)$.

$$qA\frac{\partial}{\partial t}\int_{x_0}^{\infty}\Delta p\,dx = -A\int_{x_0}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_0}^{\infty}\Delta p\,dx.$$

The first term on the right is $A[J_p(x_n) - J_p(\infty)] = AJ_p^{\text{diff}}(x_n) = I_p^{\text{diff}}(x_n)$.

The quantity $qA \int_{x_0}^{\infty} \Delta p dx$ is the "excess hole charge" Q_p in the neutral n region.

$$qA\frac{\partial}{\partial t}\int_{x_0}^{\infty}\Delta\rho\,dx = -A\int_{x_0}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_0}^{\infty}\Delta\rho\,dx.$$

The first term on the right is $A[J_p(x_n) - J_p(\infty)] = AJ_p^{\text{diff}}(x_n) = I_p^{\text{diff}}(x_n)$.

The quantity $qA \int_{x_{-}}^{\infty} \Delta p dx$ is the "excess hole charge" Q_p in the neutral n region.

We can rewrite the continuity equation as

$$\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.$$

$$qA\frac{\partial}{\partial t}\int_{x_p}^{\infty}\Delta p\,dx = -A\int_{x_p}^{\infty}\frac{\partial J_p}{\partial x}\,dx - \frac{qA}{\tau_p}\int_{x_p}^{\infty}\Delta p\,dx.$$

The first term on the right is $A[J_p(x_n) - J_p(\infty)] = AJ_p^{\text{diff}}(x_n) = I_p^{\text{diff}}(x_n)$.

The quantity $qA \int_{x_n}^{\infty} \Delta p dx$ is the "excess hole charge" Q_p in the neutral n region.

We can rewrite the continuity equation as

$$\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.$$

We can think of this equation as the continuity equation for the total excess hole charge in the neutral n region.

$$\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.$$

$$\begin{split} \frac{\partial Q_p}{\partial t} &= I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.\\ \text{For a } p^+ n \text{ junction, } J \approx J_p^{\text{diff}}(x_n) \to I \approx I_p^{\text{diff}}(x_n). \end{split}$$

$$\begin{split} &\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.\\ &\text{For a } p^+ n \text{ junction, } J \approx J_p^{\text{diff}}(x_n) \to I \approx I_p^{\text{diff}}(x_n).\\ &\to \frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p}. \end{split}$$

$$\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.$$

For a $p^+ n$ junction, $J \approx J_p^{\text{diff}}(x_n) \to I \approx I_p^{\text{diff}}(x_n)$.

$$\rightarrow \frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p}.$$

At $t=0^-$, we have a steady-state situation, with $I\equiv I_F=\frac{V_F-V_{\rm on}}{R_F}$, where $V_{\rm on}$ is the voltage drop across the diode when conducting. ($V_{\rm on}\approx 0.7\,{\rm V}$ for a typical low-power silicon diode.)

$$\frac{\partial Q_p}{\partial t} = I_p^{\text{diff}}(x_n) - \frac{Q_p}{\tau_p}.$$

For a p^+n junction, $J \approx J_n^{\text{diff}}(x_n) \to I \approx I_n^{\text{diff}}(x_n)$.

$$\to \frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p}.$$

At $t=0^-$, we have a steady-state situation, with $I\equiv I_F=\frac{V_F-V_{\rm on}}{R_F}$, where $V_{\rm on}$ is the voltage drop across the diode when conducting. ($V_{on} \approx 0.7 \,\text{V}$ for a typical low-power silicon diode.)

$$\rightarrow 0 = I_F - \frac{Q_\rho(0^-)}{\tau_\rho} \ \rightarrow \ Q_\rho(0^-) = I_F \tau_\rho \text{ is the excess hole charge in the neutral } n \text{ region at } t = 0^-.$$

After the transient is over $(t > t_{rr})$, we have a steady-state situation again, with $I \approx 0$ A, $V \approx -V_R$.

After the transient is over $(t>t_{rr})$, we have a steady-state situation again, with $I\approx 0$ A, $V\approx -V_R$.

$$\frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p} \ \to \ 0 = 0 - \frac{Q_p(\infty)}{\tau_p} \ \to \ Q_p(\infty) = 0.$$

After the transient is over $(t > t_{rr})$, we have a steady-state situation again, with $I \approx 0$ A, $V \approx -V_R$.

$$\frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p} \ \to \ 0 = 0 - \frac{Q_p(\infty)}{\tau_p} \ \to \ Q_p(\infty) = 0.$$

Starting from $Q_p(0^-) = I_F \tau_p$ at $t = 0^-$, the excess hole charge must become nearly zero at $t = t_{rr}$.

After the transient is over $(t > t_{rr})$, we have a steady-state situation again, with $I \approx 0$ A, $V \approx -V_R$.

$$\frac{\partial Q_p}{\partial t} = I - \frac{Q_p}{\tau_p} \ \to \ 0 = 0 - \frac{Q_p(\infty)}{\tau_p} \ \to \ Q_p(\infty) = 0.$$

Starting from $Q_p(0^-)=I_F au_p$ at $t=0^-$, the excess hole charge must become nearly zero at $t=t_{rr}$.

How does this happen?

* The storage time t_s ($\approx t_9$ in the figure) can be estimated by observing that $I \approx -I_R$ for $0 < t < t_s$.

- * The storage time t_s ($\approx t_9$ in the figure) can be estimated by observing that $I \approx -I_R$ for $0 < t < t_s$.
- * Note that, in the interval $0 < t < t_s$, the slope $\frac{dp}{dx}(x_n)$ is positive, corresponding to a negative current.

- * The storage time t_s ($\approx t_9$ in the figure) can be estimated by observing that $I \approx -I_R$ for $0 < t < t_s$.
- * Note that, in the interval $0 < t < t_s$, the slope $\frac{dp}{dx}(x_n)$ is positive, corresponding to a negative current.
- * By $t = t_s$, the hole charge Q_p in the neutral n region has reduced substantially. As an approximation, we may use $Q_n(t_s) = 0$.

$$0 < t < t_s$$
: $rac{dQ_
ho}{dt} = -I_R - rac{Q_
ho}{ au_
ho}$, with $Q_
ho(0^+) = I_F au_
ho$ and $Q_
ho(t_s) pprox 0$.

$$0 < t < t_s$$
: $rac{dQ_p}{dt} = -I_R - rac{Q_p}{ au_p}$, with $Q_p(0^+) = I_F au_p$ and $Q_p(t_s) pprox 0$. $ightarrow Q_p(t) = au_p (I_F + I_R) \, e^{-t/ au_p} - I_R au_p$, $0 < t < t_s$.

$$0 < t < t_s$$
: $rac{dQ_p}{dt} = -I_R - rac{Q_p}{ au_p}$, with $Q_p(0^+) = I_F au_p$ and $Q_p(t_s) pprox 0$. $ightarrow Q_p(t) = au_p \left(I_F + I_R\right) e^{-t/ au_p} - I_R au_p$, $0 < t < t_s$.

We can now use $Q_p(t_s) \approx 0$ to estimate t_s as

$$t_s = au_p \log \left(1 + rac{I_F}{I_R}
ight).$$

$$0 < t < t_s$$
: $\frac{dQ_p}{dt} = -I_R - \frac{Q_p}{\tau_p}$, with $Q_p(0^+) = I_F \tau_p$ and $Q_p(t_s) \approx 0$.
 $\Rightarrow Q_p(t) = \tau_p (I_F + I_R) e^{-t/\tau_p} - I_R \tau_p$, $0 < t < t_s$.

We can now use $Q_p(t_s) \approx 0$ to estimate t_s as

$$t_s = au_p \log \left(1 + rac{I_F}{I_R}
ight).$$

A more accurate analysis yields 2 erf
$$\left(\sqrt{\frac{t_s}{\tau_p}}\right) = \frac{1}{1 + \frac{I_R}{I_P}}$$
.

²R.F. Pierret, Semiconductor Device Fundamentals. New Delhi: Pearson Education, 1996.

(1)
$$t_s = \tau_p \log \left(1 + \frac{I_F}{I_R} \right)$$

(2) $\operatorname{erf} \left(\sqrt{\frac{t_s}{\tau_p}} \right) = \frac{1}{1 + \frac{I_R}{I_F}}$

(1)
$$t_s = \tau_p \log \left(1 + \frac{I_F}{I_R} \right)$$

(2) $\operatorname{erf} \left(\sqrt{\frac{t_s}{\tau_p}} \right) = \frac{1}{1 + \frac{I_R}{I_L}}$

(1) $t_s = \tau_p \log \left(1 + \frac{I_F}{I_R} \right)$ * If I_F is increased, the initial charge $Q_p(0^-) = I_F \tau_p$ is larger $\to t_s$ increases.

$$(1) \ t_s = \tau_p \log \left(1 + \frac{I_F}{I_R} \right)$$

(2)
$$\operatorname{erf}\left(\sqrt{\frac{t_s}{ au_p}}\right) = rac{1}{1 + rac{I_R}{I_F}}$$

- (1) $t_s = \tau_p \log \left(1 + \frac{I_F}{I_D} \right)$ * If I_F is increased, the initial charge $Q_p(0^-) = I_F \tau_p$ is larger $\rightarrow t_s$ increases.
- (2) $\operatorname{erf}\left(\sqrt{\frac{t_s}{\tau_p}}\right) = \frac{1}{1 + \frac{I_R}{I}} \quad * \quad \operatorname{lf } I_R \text{ is increased, the excess charge is removed at a higher rate } \to t_s \text{ decreases.}$

* In the t_s phase, $\Delta p(x_n) > 0$ which is consistent with $v_D > 0$ V during this phase (since $\Delta p(x_n) = p_{n0} \left(e^{v_D/V_T} - 1 \right)$).

M. B. Patil, IIT Bombay

- * In the t_s phase, $\Delta p(x_n) > 0$ which is consistent with $v_D > 0$ V during this phase (since $\Delta p(x_n) = p_{n0} \left(e^{v_D/V_T} 1 \right)$).
- * If R_F is reduced, I_F increases, and the initial excess hole charge $Q_p(0) = I_F \tau_p$ also increases. The increased charge takes a longer time for removal, leading to a larger value of t_s .

* If R_R is reduced, the reverse current (magnitude) I_R increases. Since I_R is one of the factors responsible for removal of Q_p , a larger value of I_R results in a smaller t_s .

M. B. Patil, IIT Bombay

* If R_R is reduced, the reverse current (magnitude) I_R increases. Since I_R is one of the factors responsible for removal of Q_p , a larger value of I_R results in a smaller t_s .

(The other factor is recombination in the neutral n region.)

M. B. Patil. IIT Bombay

Turn-on transient

Turn-on transient

During turn-on,

- The diode current must change from nearly zero to a significant forward current $I_D \approx \frac{V_F - V_{\rm on}}{R_F}$.

Turn-on transient

During turn-on,

- The diode current must change from nearly zero to a significant forward current $I_D \approx \frac{V_F V_{\rm on}}{R_E}$.
- The diode voltage must change from -V_R to the steady-state forward bias value corresponding to the steady-state forward current.

