Lecture - 12

Gauss's law

The total flux through this closed Gaussian surface is

$$\Phi_{E} = \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q}{4\pi\varepsilon_{o}} \int_{S} \left(\frac{1}{y^{2}} \hat{r} \right) \cdot \underbrace{\left(y^{2} \sin\theta d\theta d\phi \hat{r} \right)}_{\equiv d\vec{A}}$$

$$\hat{n}, \vec{r} = R\hat{r}$$
 $\vec{E}(\vec{r}) = \vec{E}(R\hat{r})$

Infinitesimal Area Element, dA

Imaginary/Fictitious Surface, *S* aka Gaussian Surface of radius *R* centered on charge *Q*.

Thus:
$$\Phi_E = \frac{Q}{4\pi\varepsilon_o} \int_{\theta=o}^{\theta=\pi} \int_{\varphi=o}^{\varphi=2\pi} \sin\theta d\theta d\varphi \underbrace{\left(\hat{r} \cdot \hat{r}\right)}_{=1} = \underbrace{\frac{2\pi Q}{4\pi\varepsilon_o}}_{2} \int_{\theta=o}^{\theta=\pi} \sin\theta d\theta$$

$$=\frac{2Q}{2\varepsilon_o} = \frac{Q}{\varepsilon_o}$$

Gauss' Law (in Integral Form):
$$\Phi_E = \oint_s \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o}$$

Electric flux through closed surface $S = \text{(electric charge enclosed by surface } S)/\varepsilon_0$

The circle on the integral sign indicates that the Gaussian surface must be enclosed.

Can we prove the above statement for arbitrary closed shape?

volume charge density $\rho(\vec{r}')$, then: $Q_{encl} = \int_{0}^{\infty} \rho(\vec{r}') d\tau'$

$$\Phi_{E} = \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{v} \left(\overrightarrow{\nabla} \cdot \vec{E}(\vec{r}) \right) d\tau' = \frac{Q_{encl}}{\varepsilon_{o}} = \frac{1}{\varepsilon_{o}} \int_{v} \overbrace{\rho(\vec{r})} d\tau'$$

This relation holds for <u>any</u> volume $v \Rightarrow$ the <u>integrands</u> of $\int_{\mathbb{R}} (\)d\tau' \ \underline{must}$ be equal

Gauss' Law (in Differential Form):
$$\nabla \cdot \vec{E}(\vec{r}) = \rho(\vec{r}) / \varepsilon_o$$

Dirac Delta Function

Dirac delta function is a special function, which is defined as:

$$\delta(x) = 0,$$
 if $x \neq 0$
= ∞ , if $x = 0$
$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

Realization of a Dirac Delta function

$$\delta(x) = \lim_{s \to 0} \frac{1}{\sqrt{2\pi s^2}} \exp\left[-\frac{(x-a)^2}{2s^2}\right]$$

Example: What is the charge density of a point charge q kept at the origin?

$$\rho(x) = q\delta(x); \qquad \int_{-\infty}^{\infty} \rho(x)dx = \int_{-\infty}^{\infty} q\delta(x)dx = q$$

Important Properties of Dirac Delta Function

(1)
$$\delta(kx) = \frac{1}{|k|}\delta(x)$$
,

(2) Dirac delta function centered at x = a is defined as follows

$$\delta(x-a) = 0,$$
 if $x \neq 0$
= ∞ , if $x = a$ $\int_{-\infty}^{\infty} \delta(x-a) dx = 1$

(3) If f(x) is a continuous function of x

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = \int_{-\infty}^{\infty} f(a)\delta(x-a)dx = f(a)$$

(4) 3D Dirac delta function is defined as:

$$\delta^{3}(\mathbf{r}) = \delta(x)\delta(y)\delta(z) \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{r})\delta^{3}(\mathbf{r} - \mathbf{a}) = f(\mathbf{a})$$

$$\nabla \cdot \left(\frac{\hat{\mathbf{r}}}{r^n}\right) = \frac{2-n}{r^{(n+1)}}$$

$$V = \frac{\hat{\mathbf{r}}}{r^2}$$

$$\mathbf{V} = \frac{\mathbf{r}}{r^2}$$
 $\nabla \cdot \mathbf{V} = \nabla \cdot \left(\frac{\hat{\mathbf{r}}}{r^2}\right) = \frac{0}{r^3} = 0$

except at r=0 where it is 0/0, not defined

Let's calculate the divergence using the divergence theorem:

$$\int_{Vol} (\mathbf{\nabla} \cdot \mathbf{V}) d\tau = \oint_{Surf} \mathbf{V} \cdot d\mathbf{a}$$

Take the volume integral over a sphere of radius R and the surface integral over the surface of a sphere of radius R.

$$\oint_{Surf} \mathbf{V} \cdot d\mathbf{a} = \iint \left(\frac{\hat{\mathbf{r}}}{R^2}\right) \cdot (R^2 \sin\theta \ d\theta \ d\phi \hat{\mathbf{r}}) = \iint \sin\theta \ d\theta \ d\phi = 4\pi$$

$$\nabla \cdot \mathbf{V} = \nabla \cdot \left(\frac{\hat{\mathbf{r}}}{r^2}\right) = 4\pi \ \delta(\mathbf{r})$$

