

CSE 4621 Machine Learning

Lecture 10

Md. Hasanul Kabir, PhD.

Professor, CSE Department
Islamic University of Technology (IUT)

Convolutional Neural Networks

Introduction

Source & Special Thanks to (Coursera) CNN Course (Deep Learning Specialization)

Computer Vision Problems

Image Classification

 $\longrightarrow \text{ Cat? (0/1)}$

Neural Style Transfer

Object Detection

Deep Learning on large images

- Learning 3 billion parameters for just one layer is too computationally expensive.
- **Convolution layers** provide solution to this problem.

Convolutional Neural Networks

Edge detection with Convolution

Feature Extraction in Computer Vision

Edge detection is a basic example of convolution operation that is a fundamental element in the convolution layers.

Convolution Operation (Step1)

Input 4 9 2 5 8 3 5 6 2 4 0 3				Filter				Result							
	4	9	2	5	8	3					I	2			
	5	6	2	4	0	3		1	0	-1		/			
	2	4	5	4	5	2	*	1	0	-1	=	/			
				·				1	0	-1					
	5	6	5	4	7	8		Para	ımet	ers:	· /				
	5	7	7	9	2	1	1		inter			= 4*1	1 + 9*(1 + 6*(0 + 2*((-1) +
	5	8	5	3	8	4			e: ing:		_		1 + 6*(1 + 4*(
ı		n_{u}	$x n_w$	= 6	x 6			uuu	uig.	Р –		h	ttns://i	indoml	com

Convolution Operation (Step 2)

Why Convolution Operation?

- Parameter sharing: A kernel is shared among every section of the input. For example, an edge detector is useful in detecting edges at any part of the image, with just few numbers.
- Sparsity of connections: each element of the output depends only on the small section of the input.

Vertical edge detection

3	0	1-0	2-10	7-0	4-1
1	5 10	8-10	9 -10	3	1-1
2 1	7	2-1	5	1	3
0	1	3-10	1-1	7 ⁻⁰	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	3	9

*

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

Goal: Learning to detect edges

Convolutional Neural Networks

Padding

Padding

- Add extra zeros around.
- It allows us to use a CONV layer without necessarily shrinking the height and width of the volumes.
- This is important for building deeper networks, since otherwise the height/width would shrink as we go to deeper lavers.

Valid Padding vs. Same Padding

"VALIP" CONV :
$$p = 0$$
"SAME" CONV : $p = \frac{f-1}{2}$

Valid and Same Convolutions

"Same": Pad so that output size is the same

as the input size.

http-ft1 xhttp-ft1

f o usually odd

kl

 $\chi + 2p - f + 1 = \chi \Rightarrow p = \frac{f - 1}{2}$

 3×3 $p = \frac{3-1}{2} = 1$ | 5×5 p = 2

Convolutional Neural Networks

Strided Convolutions

Strided convolution

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Technical note on cross-correlation vs. convolution (Optional)

Convolution in math textbook:

3	4	5
1	0	2
-1	9	7

Convolutional Neural Networks

Convolutions over Volumes

Convolution Operation on Volume

• When input has more than one channels (e.g. an RGB image), the filter should have matching number of channels.

Convolutions on RGB images

Convolutions on RGB image 4 x 4

Multiple filters

Example of a layer (with bias & activation function)

Example:

Convolutional Neural Networks

Pooling layers

Pooling layer: Max pooling

Pool layer reduces the size of the inputs to speed up computation and make features more robust.

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Max Pooling with multiple Channels

Pooling layer: Average pooling

1	3	2	1					
2	9	1	1				3.75	1.2
1	4	2	3				4	7
5	6	1	2			0 -	,	J
						f=2 S=2		
			7.	72 1000		_	1	
			+7	7 (000	→	(x/x	(000)	

Summary of pooling

Hyperparameters:

f: filter size
s: stride
$$f=2, s=2$$

$$f=3, s=2$$

type: Max or Average pooling

$$N_{H} \times N_{W} \times N_{C}$$

$$N_{H} - f + 1 + 1 \times N_{W} + 1 = 1$$

$$\times N_{C}$$

No parameters to learn.

there's nothing for gradient descent to learn!

Simple CNN Example

- In most Conv networks, as we propagate forward, the filter sizes get bigger and the outputs get smaller.
- Towards the end, for classification purposes, we unfold (flattening) all the features to use Fully Connected (FC) layers.
 - Fully connected layer involves weights, biases, and neurons. It connects neurons in one layer to neurons in another layer.
- Finally a Softmax Layer to classify the input into various categories.

Softmax

- The **softmax function**, also known as **softargmax** or **normalized exponential function**, is a generalization of the logistic function to multiple dimensions.
- Takes as input a vector **z** of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers.
- Prior to applying softmax, some vector components could be negative, or greater than one; and might not sum to 1; but after applying softmax, each component will be in the interval (0,1), and the components will add up to 1.

$$e(z)_i = \frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_i}}$$

$$\begin{bmatrix} 1.2 \\ 0.9 \\ 0.4 \end{bmatrix} \xrightarrow{\text{Softmax}} \begin{bmatrix} 0.46 \\ 0.34 \\ 0.20 \end{bmatrix}$$

Softmax assumes that each example is a member of exactly one class. Some examples, however, can simultaneously be a member of multiple classes. For such examples:

- You may not use Softmax.
- You must rely on multiple logistic regressions.

$$z = (z_1, z_2, ..., z_K) \in R^K$$

Convolutional Neural Networks

Well Known
Architectures

LeNet - 5

• Number of parameters: ~ 60 thousands.

AlexNet

https://indoml.com

- Similar to LeNet-5 with just more convolution and pooling layers:
- Number of parameters: ~ 60 million.

- Number of parameters: ~ 138 millions.
- The strength is in the simplicity: the dimension is halved and the depth is increased on every step (or stack of layers)

<u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u> paper by Karen Simonyan and Andrew Zisserman (2014).

ResNet

- The problem with deeper neural networks are they are harder to train and once the number of layers reach certain number, the training error starts to raise again.
- Deep networks are also harder to train due to exploding and vanishing gradients problem.
- Residual Network solves these problems by implementing skip connection where output from one layer is fed to layer deeper in the network

$$z^{[l+2]} = W^{[l+2]} a^{[l+1]} + b^{[l+2]}$$

$$a^{[]+2]} = g^{[]+2]}(z^{[]+2]} + a^{[]]}$$

The benefit of training a residual network is that even if we train deeper networks, the training error does not increase.

ResNet

He et al. in Deep Residual Learning for Image Recognition paper (2015)

1×1 Convolutions

- The basic idea of using 1 X 1 convolution is to reduce the number of channels from the image.
 - We generally use a pooling layer to shrink the height and width of the image
 - To reduce the number of channels from an image, we convolve it using a 1 X 1 filter (hence reducing the computation cost as well)

Inception Network - Motivation

- The motivation of the inception network is, rather than requiring us to pick the filter size manually, let the network decide what is best to put in a layer.
- We give it choices and hopefully it will pick up what is best to use in that layer:

Inception Network - Motivation

• Let's look at the computations a 1 X 1 convolution and then a 5 X 5 convolution will give us:

Inception Module

Inception Network (V1)

- Inception network called **GoogLeNet**, described in <u>Going Deeper with</u> <u>Convolutions paper</u> by Szegedy et al. (2014), (Winner ILSCVC 2014)
 - has 9 inception modules

