Image/Mesh Filtering & Its Applications

-- non-local means filtering

Junjie Cao

New Idea: NL-Means Filter (Buades 2005)

- Same goals: 'Smooth within Similar Regions'
- KEY INSIGHT: Generalize, extend 'Similarity'
 - Bilateral:
 - Averages local neighbors with similar intensities;
 - NL-Means:
 - Averages nonlocal neighbors with similar neighborhoods!

For each and every pixel p:

 For each and every pixel p:

- Define a small, simple fixed size neighborhood;

- Define a small, simple fixed size neighborhood;
- Define vector $\mathbf{V}_{\mathbf{p}}$: a list of neighboring pixel values.

'Similar' pixels p, q
→ SMALL
vector distance;

 $||V_{p} - V_{q}||^{2}$

'Dissimilar' pixels p, q
→ LARGE
vector distance;

$$||V_{p} - V_{q}||^{2}$$

p, **q** neighbors define a vector distance;

$$||V_{p}-V_{q}||^{2}$$

Filter with this:

No spatial term!

$$NLMF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^{2}) I_{\mathbf{q}}$$

• Input, Gaussian, Anisotropic Diffusion, Biliteral, NLM

Advanced introduction