第11章 グリーン関数に対する摂動論

Ryoi Ohashi

Department of Applied Physics, Nagoya University

July 16, 2018

目次

- ① T 指数関数および T 記号の性質
- ② グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用

復習

ハミルトニアンが $H = H_0 + H'$. $\mathcal{H} = H + \mu N$ のとき 以下のように定義を行う。

1体のグリーン関数

$$G_r[u, u'] = -\langle TA_r(u)A_r^{\dagger}(u')\rangle \tag{1}$$

- r は状態を表す指数
- $A_r^{(\dagger)}(u)$ は $a_r^{(\dagger)}$ のハイゼンベルグ表示
- < · · · > は大正準集団に対する平均

$$<\cdots>= \operatorname{tr}(\cdots e^{-\beta\mathcal{H}})/\operatorname{tr}(e^{-\beta\mathcal{H}})$$
 (3)

Rvoi Ohashi 第 11 章グリーン関数に対する摂動論

- T指数関数および T 記号の性質
- 2 グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用

- ① T指数関数およびT記号の性質
- ② グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用

- T指数関数およびT記号の性質
- ② グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用

T 指数関数および T 記号の性質 グリーン関数に対する表式 グリーン関数に対するファインマン図形

T 指数関数および T 記号の性質 グリーン関数に対する表式 グリーン関数に対するファインマン図形

一般項に対する考察

- ① T指数関数およびT記号の性質
- ② グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用

- T指数関数およびT記号の性質
- ② グリーン関数に対する表式
- ③ グリーン関数に対するファインマン図形
- 4 自己エネルギー (self-energy)
- 5 電子ガスへの応用