Tema 5 La inducció electromagnètica

1. Les experiències de Faraday.

En el seu afany per produïr corrent a partir d'un camp elèctric, Faraday va fer un sèrie d'experiments que es poden resumir en els següents.

1a experiència

Faraday va disposar una espira conductora connectada a un galvanòmetre. Com que no hi hi ha cap generador al circuit, el galvanòmetre no marca pas de corrent. Ara bé, al acostar o allunyar un imant a l'espira, llavors l'agulla del galvanòmetre es desvia, assenyalant el pas de corrent per l'espira.

2a experiència

Ara Faraday va usar un solenoide en lloc d'un imant, amb resultats semblants (ja que el solenoide crea un camp magnètic con l'imant.)

3a experiència

En aquesta experiència, Faraday va col·locar dues espires enfrontades, una connectada a un galvanòmetre i l'altra connectada a una bateria amb un iterruptor. Al accionar l'interruptor el galvanòmetre marcava pas de corrent per l'espira.

Faraday es va adonar que el que hi havia en comú era que sempre que apareixia corrent induit hi havia una variació de flux del camp magnètic.

2. El flux magnètic. Donat un camp magnètic \vec{B} i una superfície, es defineix el flux magnètic Φ_B que travessa la superfície, com

$$\Phi_B = \vec{B} \cdot \vec{S} = B \cdot S \cos \theta$$

on \vec{S} és un vector normal a la superfície i θ , l'angle que formen \vec{B} i \vec{S} . El mòdul de \vec{S} és l'àrea de la superfície. Les unitats del flux magnètic són tesles per metre quadrat, i s'anomenen **weber** (**Wb**)

$$1 Wb = 1 T \cdot 1 m^2$$

3. Lleis de la inducció electromagnètica

• Llei de Lenz (indica el sentit del corrent induit): el sentit de la intensitat que s'indueix en els experiments de Farady és tal que crea un camp magnètic que s'oposa a l'aplicat externament.

L'acció en la figura a) indueix un corrent en l'espira. Aquest corrent crea un camp tal i com es mostra en la figura b). Clarament, aquest camp s'oposa a la variació de flux que s'observava en la figura a). Una cosa semblant succeeix en les figures c) i d).

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

Si no coneixem la dependència de B amb el temps, podem usar

$$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$$

i gràcies a la llei d'Ohm podem relacionar la intensitat induïda I amb aquesta força electromotriu ε i la resistència R de l'espira

$$\varepsilon = I \cdot R$$