מתמטיקה בדידה - תרגיל בית 14 - שחר פרץ

מידע כללי

ניתן בתאריך: 21.2.2024 תאריך הגשה: 27.2.2024

מאת: שחר פרץ **:.ī.n** 334558962

תרגיל בית 14 – עוצמות

שאלה 1

 $A:A\to A',h_B\colon B\to B'$ יהיו $A:A:A\to A',h_B\colon B\to B'$ לכן קיימים זיווגים $A:A:A\to A',h_B:B\to A'$ יהיו

(א) סעיף

נוכיח $h\colon \mathcal{P}(A)\to \mathcal{P}(A'), h=\lambda\mathcal{A}\in \mathcal{P}(A).\{h_A(a)\mid a\in\mathcal{A}\}$. נוכיח שהוא זיווג. $\mathcal{P}(A)=|\mathcal{P}(A')|=|\mathcal{P}(A')|$. נבחר זיווג. $\mathcal{A}\in \mathcal{P}(A)=(\mathcal{A}, \mathcal{A})$ נוכיח שהוא זיווג. נחשב: $\mathcal{A}\in \mathcal{P}(A)=(\mathcal{A}, \mathcal{A})$

$$h(\mathcal{A}') = \{h_A(a) \mid a \in \{h_A^{-1} \mid a \in \mathcal{A}\}\} = \{h_A(h_A^{-1}) \mid a \in \mathcal{A}\} = \{a \mid a \in \mathcal{A}\} = \mathcal{A}$$
 : מסה"כ משוויון קבוצות: $\{h_A(a) \mid a \in \mathcal{A}\} = \{h_A(b) \mid b \in \mathcal{B}\}$ לכו $\{h_A(a) \mid a \in \mathcal{A}\} = \{h_A(b) \mid b \in \mathcal{B}\}$ וסה"כ משוויון קבוצות:

$$b \in \mathcal{B} \land c = h_A(b) \longleftrightarrow a \in \mathcal{A} \land c = h_A(a)$$

 $\mathcal{A}=\mathcal{B}$ כלומר $\forall a\in\mathcal{A}\land b\in\mathcal{B}.a=b$ זיווג חח"ע אז $d\in\mathcal{A},b\in\mathcal{B}.h_A(a)=h_A(b)$ ומשום ש־מטרנזיטיביות כדרוש

(ב) סעיף

. $|A \uplus B| = |A' \uplus B'|$ נניח A', B' זרות. נוכיח A, B נניח

$$\mathbf{h} = \lambda x \in A \uplus B. egin{cases} h_A(x) & \text{if } x \in A \\ h_B(x) & \text{if } x \in B \end{cases}, h \colon A \uplus B o A' \uplus B \colon A \uplus B$$
בתבונן בזיווג:

נוכיח שהוא זיווג.

על: תהי
$$A' \in A'$$
 ומפילוג למקרים (אם .A' = $\{egin{array}{l} h_A^{-1}(x) & \text{if } x \in A' \\ h_B^{-1}(x) & \text{if } x \in B' \\ \end{pmatrix}$ ומפילוג למקרים (אם .A' = $\{A' \in A' \mid x \in A' \mid x$

חח"ע: נניח h(A') = h(B'). מתקיים באופן מידי מתוך שוויון פונקציות.

שאלה 2

יהיו A,A' קבוצות. נניח $|A'| \leq |A'|$ כלומר קיימת A,A',B יהיו

(א) סעיף

 $.h=\lambda f\in B o A.h_A\circ f$ נוכיח h:(B o A) o (B o A'). נמצא פונקציה (B o A'). נמצא פונקציה h:(B o A) o (B o A') חח"ע. נבחר h:(B o A'). נמצא פונקציה $h_A\circ f=h_A\circ g$ נוכיח ש־h:(g) o (B o A'). ונניח h:(g) o (B o A'). ונניח h:(g) o (B o A') ומכיוון ש־h:(g) o (B o A') ומכיוון פונקציות h:(g) o (B o A') ומכיוון שh:(g) o (B o A') ומכיוון פונקציות h:(g) o (B o A')

(ב) סעיף

 $A = \lambda f \in B \to A.f \circ h_A$ נוכיח $A : (A \to B) \to (A' \to B)$. נמצא פונקציה ($A \to B = A.f \circ h_A$ חח"ע. נבחר $A \to B = A.f \circ h_A$ נוכיח ש־ $A \to B = A.f \circ h_A$ נוכיח ש־ $A \to B = A.f \circ h_A$ ונניח ש־ $A \to B = A.f \circ h_A$ ונניח ש $A \to B = A.f \circ h_A$ ומשוויון פונקציות $A \to B = A.f \circ h_A$ ומשוויון פונקציות $A \to B = A.f \circ h_A$ מכיוון ש־ $A \to B.f \circ h_A$ ומכיוון ש- $A \to B.f \circ h_A$

שאלה 3

(א) סעיף

נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}. (\lambda m \in \mathbb{N}.n)$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}. (\lambda m \in \mathbb{N}.n)$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$ נוכיח $h:\mathbb{N} o (\mathbb{N} o \mathbb{N}), h=\lambda n \in \mathbb{N}.$

(ב) סעיף

:נוכיח פונקציה. $|\mathbb{R}| \leq |\mathbb{R} \to \{0,1\}|$ נוכיח

$$h: \mathbb{R} \to (\mathbb{R} \to \{0, 1\}), h = \lambda r \in \mathbb{R}. \left(\lambda x \in \mathbb{R}. \begin{cases} 1 & \text{if } x = r \\ 0 & \text{else} \end{cases}\right)$$

נוכיח h חח"ע. נניח $f_1=h(r_1), f_2=h(r_2)$ נסמן $f_1, r_2\in\mathbb{R}$ נוכיח h ונניח $h(r_1)=h(r_2)$ ונניח $h(r_1)=h(r_2)$ וואו סתירה. $f_1(x)\neq f_2(x)$ נניח בשלילה $f_1(x)\neq f_2(x)$ ונתבונן ב־ $f_1(x)=f_2(x)=1$ נקבל $f_1(x)=f_2(x)=1$ על־כן $f_1(x)=f_2(x)=1$

(ג) סעיף

נוכיח $|\mathbb{Z}|=|\{-1,1\}, imes \mathbb{N}|$ משום ש־ $|\{-1,1\}|=|\{-1,1\}|=|\{-1,1\}|$ נוכל להוכיח באופן שקול $|\mathbb{Z}|=|\{0,1\}\times \mathbb{N}|$. נבחר פונקציה $h\colon \mathbb{Z} \to (\{0,1\}\times \mathbb{N}), h=\lambda z\in \mathbb{Z}. \langle \frac{z}{|z|}, |z| \rangle$

חח"ע: יהיו $\langle \frac{z_1}{|z_1|},|z_1| \rangle = \langle \frac{z_2}{|z_2|},|z_2| \rangle$ מההנחה $z_1=z_2$ מההנחה $z_1=z_2$ ומהתכונה המרכזית של $z_1=z_2$ נניח $z_1=z_2$, נניח $z_1=z_2$ מההנחה $z_1=z_2$ מההנחה $z_1=z_2$ ומהתכונה המרכזית של $z_1=z_2$ כדרוש.

שאלה 4

(א) סעיף

צ.ל. $[0,1] \sim [2,7]$. נבחר זיווג $h = \lambda x \in [2,7]$. נבחר זיווג (בחר זיווג $[0,1] \sim [2,7]$

. בדרוש. x=y כדרוש. נכפיל את האגפים ב־6 ונוסיף 1. סה"כ מרx=y. כלומר x=y. נכפיל את האגפים ב־6 ונוסיף x=y.

lacktriangleעל: יהי $h(y)=rac{6x+1-1}{6}=x$.y=6x+1 נבחר $x\in[0,1]$ כדרוש.

(ב) סעיף

צ.ל. [2,7] $\sim [2,7] \sim [2,7] \times [2,7]$, שהוכחנו בסעיף צ.ל. [2,7] $\sim [0,1] \sim [2,7] \times [2,7]$, שהוכחנו בסעיף זה בסעיף זה שלות בסעיף זה

(ג) סעיף

צ.ל. $\{5,6\} o \mathbb{N} \sim \mathbb{N} imes \mathbb{N}_{\mathrm{even}}$. נבחר זיווג

$$h \colon (\{5,6\} \to \mathbb{N}) \to (\mathbb{N} \times \mathbb{N}_{\text{even}}), h = \lambda f \in \{5,6\} \to \mathbb{N}.\langle f(5), 2f(6) \rangle$$

נוכיח ש־h זיווג.

 nn ע: יהי $\langle f(5), 2f(6) \rangle = \langle g(5), 2g(6) \rangle$ לכן, $\langle f(f) \rangle = \langle f(5), 2f(6) \rangle = \langle f(5), 2g(6) \rangle$ ובאופן שקול $f(5) = g(5) \wedge f(6) = g(6) \wedge f(6) = g(6) \wedge f(6) = g(6)$ נחסר 1 ונחלק את האגפים ב־2, נקבל $f(5) = g(5) \wedge f(6) = g(6) \wedge f(6) \wedge f(6) = g(6) \wedge$

k נעביר אגפים ונקבל . $b+1=2k^-$ על: יהי $a\in\mathbb{N}$ לכן, קיים k טבעי כך ש $a\in\mathbb{N}$, כלומר על: יהי $a\in\mathbb{N}$, כלומר $a\in\mathbb{N}$, כלומר $a\in\mathbb{N}$, נעביר אגפים ונקבל . $a\in\mathbb{N}$, נבחר $a\in\mathbb{N}$, נבחר $a\in\mathbb{N}$, נבחר $a\in\mathbb{N}$, נבחר $a\in\mathbb{N}$, ונוכיח $a\in\mathbb{N}$, ונוכיח $a\in\mathbb{N}$, ונוכיח $a\in\mathbb{N}$, ונוכיח $a\in\mathbb{N}$

(ד) סעיף

צ.ל. $\mathbb{Z} \times [0,7) \to \mathbb{R}, h = \lambda \langle z,r \rangle \in \mathbb{Z} \times [0,7).z + rac{r}{7}$ נוכיח $\mathbb{Z} \times [0,7) \sim \mathbb{R}$. צ.ל.

נכפיל אגפים $z_1+\frac{r_1}{7}=z_1+\frac{r_2}{7}$ נכפיל אגפים . $z_1=z_2$ נציב $z_1=z_2$. נציב $z_1+z_2<-1$ נכפיל אגפים $z_1+1>z_2$ ונחסיר וסה"כ $z_1=r_2<-1$ כדרוש.

 $h(x') = \lfloor x \rfloor + rac{7(x-\lfloor x \rfloor)}{7} = \lfloor x \rfloor + x - \lfloor x \rfloor = x$ לכן $x' = \langle \lfloor x \rfloor, 7(x-\lfloor x \rfloor) \in \rangle \mathbb{Z} \times [0,7)$ נבחר $x \in \mathbb{R}$ יהי $x \in \mathbb{R}$ יהי בחר נדרוש.

(ה) סעיף

צ.ל. $(\{1,4,9,16\} \times \mathbb{N}) \rightarrow \mathbb{N}.h = \langle a,b \rangle \in \{1,4,9,16\} \times \mathbb{N}.\sqrt{a} + 4b$. נבחר זיווג . $\{1,4,9,16\} \times \mathbb{N} \sim \mathbb{N}_+$ זיווג.

על: יהי $n \in \mathbb{N}_+$ נוכיח $h(\langle a,b \rangle) = \sqrt{(n-4b)}^2 + 4b = n - 4b + 4b = n$ נוכיח $b = \left\lceil \frac{n}{4} \right\rceil, a = (n-4b)^2$ נוכיח $n \in \mathbb{N}_+$ יהי $n \in \mathbb{N}_+$ יהי $n \in \mathbb{N}_+$ ויהי $n \in \mathbb{N}_+$ ויהי $n \in \mathbb{N}_+$ את תחום ההגדרה המתאים כדרוש. $n \in \mathbb{N}_+$ את תחום ההגדרה המתאים כדרוש.

(ו) סעיף

צ.ל. $(5,7] \sim \mathbb{R}$. נבחר זיווג:

f:
$$(3,4) \cup (5,7] \to \mathbb{R}.f = \lambda r \in (3,4) \cup (5,7].\begin{cases} \frac{1}{r-4} + 1 & \text{if } r \in (3,4) \\ \frac{2}{r-5} - 1 & \text{if } r \in (5,7] \end{cases}$$

.נוכיח ש־f זיווג

על: יהי $x\in\mathbb{R}$ נמצא r בתחום כך ש־x בתחום כ $x\in\mathbb{R}$ יהי

:עמאים, כלומר: x<0 אם x<0 אם x<0

$$\frac{1}{r-4} + 1 = x$$

$$1 = (r-4)(x-1)$$

$$1 = r(x-1) - 4x + 4$$

$$4x - 3 = r(x-1)$$

$$\frac{4x-3}{x-1} = r$$

כאשר $\frac{4x-3}{x-1}$ מוגדר לכל $x \neq 1$ ו $x \neq 1$, כששניהם פסוקי אמת תחת ההנחות. נוכיח שx בתחום המתאים. נניח בשלילה שהוא אינו, ונגיע לסתירה בכל אחד מהמקרים:

$$\begin{cases} \frac{4x-3}{x-1} < 4 \\ \frac{4x-3}{x-1} > 3 \end{cases} \iff \begin{cases} 4x-3 > 4x-4 \\ 4x-3 < 3x-3 \end{cases} \iff \begin{cases} -3 > -4 \\ x < 0 \end{cases}$$

. הערה: הסימן הוחלף כי לכל x בתחום ההגדרה [x-1<0]. סה"כ הגענו לשקילות לפסוקי אמת כדרוש.

 $r=rac{5x+7}{x+1}$ באופן דומה (רק על מספרים אחרים), אם $x\geq 0$ אז נבחר -

ים: נפלג למקרים: $f(x_1) = f(x_2)$ ונניח $x_1, x_2 \in \mathbb{R}$ יהי

 $x_1 \in (3,4) \land x_2 \in (5,7]$ אם •

$$\frac{1}{x_1 - 4} + 1 = \frac{2}{x_2 - 5} - 1$$
$$1 + x_2 - 5 = 2 - x_1 + 4$$
$$-5 = x_2 - x_1$$

 $x_2 - x_1 \le 3 - 7 = -2$ זאת בסתירה לכך ש

- . באופן דומה, אם $x_1 \in (5,7] \wedge x_2 \in (3,4)$ נגיע לסתירה באופן באופן באופן אופ
- . אם $x_1=x_2$ ולכן $rac{1}{x_1-4}=rac{1}{x_2-4}$ אז $x_1\in(3,4)\land x_2\in(3,4)$. •
- . אם $x_1=x_2$ ולכן $rac{1}{x_1-5}=rac{1}{x_2-5}$ אז אז $x_1\in (5,7] \wedge x_2\in (5,7]$.

סה"כ כיסינו את כל המקרים ■

(ז) סעיף

נוכיח (בחר את הזיווג להלן: נמצא (בחר את הזיווג להלן: $[0,1] \cup \{2\} \sim [0,1]$

f:
$$[0,1] \cup \{2\} \to [0,1], f = \lambda x \in \mathbb{R}.$$

$$\begin{cases} 1 & \text{if } x = 2\\ \frac{1}{n+1} & \exists n \in \mathbb{N}. \frac{1}{n} = x\\ x & \text{else} \end{cases}$$

[מעמצום] לכל x שונה] מתאים n באופן חח"ע (מצמצום) לכל x שונה] נוכיח ש־t זיווג. (הערה: הפונקציה מוגדרת היטב כיx בה"כ, נפלג למקרים (לא אציין מקרים שנכונים באופן ריק). בה"כ, נפלג למקרים (לא אציין מקרים שנכונים באופן ריק).

- לאחר $.h(x_1):=1=rac{1}{n+1}:=h(x_2)$ אם $.h(x_1):=1=h(x_1):=h(x_1$
 - . אם $x_2=x_1$ אם $h(x_1):=2=x_2=h(x_2)$ אז אז אז או הערנזיטיביות $n\in\mathbb{N}.rac{1}{n}
 eq x\wedge x_1=2$ אם $h(x_1):=x_2=x_1$
- $n'=n+1\in\mathbb{N}$ כלומר קיים אם $h(x_1):=rac{1}{n+1}=x_2:=h(x_2)$, ידוע אם $n\in\mathbb{N}.rac{1}{n}=x\wedge \forall n\in\mathbb{N}.rac{1}{n}
 eq x \wedge \forall n\in\mathbb{N}.rac{1}{n}
 eq x$ בך ש־ $x=rac{1}{n'}$ עם חתירה.

על: יהי $x \in [0,1]$. נטיק, שכל המקרים אינם תקפים ובפרט $r \in [0,1] \cup \{2\}$ כך שלילה שלא קיים $x \in [0,1]$. נטיק, שכל המקרים אינם תקפים ובפרט המקרה אחרון, כלומר $x \neq x$, בסתירה לכך שזה עובד בעבור r = x (ההנחה בשלילה כאן מאפשרת להתעלם משאר המקרים), כדרוש

(ח) סעיף

. נוכיח $f \colon [0,1] \cup \mathbb{N} \to \mathbb{R}$ נמצא נוכיח $f \colon [0,1] \cup \mathbb{N} \to \mathbb{R}$ נוכיח

$$f = \lambda x \in [0, 1] \cup \mathbb{N}.$$

$$\begin{cases} \frac{1}{2x} & \text{if } x \in \mathbb{N} \\ \frac{1}{2n+1} & \text{if } \exists n \in \mathbb{N}. a = \frac{1}{n} \\ x & \text{else} \end{cases}$$

נוכיח ש־f זיווג. [הערה: הפונקציה מוגדרת היטב כי $\frac{1}{2n+1}=x$ מתאים n באופן חח"ע (מצמצום) לכל

חח"ע: יהי $\mathbb{N} \cup \mathbb{N}$ אתעלם ממקרים הנכונים $h(x_1) = h(x_2)$ נוכיח (אתעלם ממקרים הנכונים $x_1, x_2 \in [0,1] \cup \mathbb{N}$ יהי $x_1, x_2 \in [0,1] \cup \mathbb{N}$ מקיימים את אותו התנאי כך שניתן להוכיח בעזרת פישוט אלגברי פשוט):

- $h(x_1):=rac{1}{2x_1}=rac{1}{2n+1}:=h(x_2)$ נציב: $x_1\in\mathbb{N}\land\exists n\in\mathbb{N}.x_2=rac{1}{n}\land x_2
 otin\mathbb{N}$. נעלה את המשוואה ב $x_1=rac{1}{2x_1}=rac{1}{2n+1}:=h(x_2)$ נציב: $x_1\in\mathbb{N}\land\exists n\in\mathbb{N}.x_2=rac{1}{n}\land x_2
 otin\mathbb{N}$ אם $x_1=rac{1}{n}\land x_2
 otin\mathbb{N}$ ולכן $x_1=x_2$ אז $x_2\neq x_1=x_2$ לא מתחלק ב $x_1=x_2=x_1$ ולכן $x_1=x_2=x_2$ טבעי.
- עביר $h(x_1):=\frac{1}{2n+1}=x_2:=h(x_2)$ אז $\exists n\in\mathbb{N}.\frac{1}{n}=x_1\wedge\forall n'\in\mathbb{N}.\frac{1}{2n'+1}\neq x_2\wedge x_2, x_1\not\in\mathbb{N}$ שם $h(x_1):=\frac{1}{2n+1}=x_2:=h(x_2)$ אגפים, נקבל $x_1=x_2$ ומכאן $x_2=x_2$ ומכאן $x_2=x_2$, מההנחות לעיל $x_2\neq0$ ולכן נוכל לחלק ב־ $x_2=x_2$ ומכאן $x_2=x_2$ ומכאן $x_1=x_2$ ומכאן $x_1=x_1$ ומכאן $x_1=x_2$ ומכאן $x_1=x_2$ ומכאן $x_1=x_1$ ומכאן
- אם $h(x_1):=\frac{1}{2x_1}=x_2:=h(x_2)$ אז $\forall n'\in\mathbb{N}.\frac{1}{2n'+1}\neq x_2\wedge x_2\not\in\mathbb{N}\wedge x_1\in\mathbb{N}$ אם $h(x_1):=\frac{1}{2x_1}=x_2:=h(x_2)$ אז $h(x_1):=\frac{1}{2x_1}=x_2:=h(x_2)$

סה"כ כיסינו את כל המקרים הלא־טרוויאלים, והגענו לסתירה/פסוק אמת, כדרוש

 \blacksquare (ז) על: באופן דומה לסעיף

שאלה 5

(א) סעיף

נגדיר:

$$R = \{ \langle \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \rangle \in \mathbb{R}^2 \times \mathbb{R}^2 \mid x_1 + y_1 = x_2 + y + 2 \}$$

: נבחר p ביווג מוגדרת היטב. נוכיח זאת: $\mathbb{R}^2/R o \mathbb{R}, h = \lambda[\langle x,y
angle]_R \in \mathbb{R}^2 imes \mathbb{R}^2/R.x + y$ נבחר

מוגדרת היטב: יהי $x_1+y_1 \neq x_2+y_2$ מוגדרת היטב: יהי $\langle x_1,y_1 \rangle R \langle x_2,y_2 \rangle$ ונניח $\langle x_1,y_2 \rangle, \langle x_2,y_2 \rangle \in \mathbb{R}^2 \times \mathbb{R}^2$ יהי יהי מוגדרת היטב: יהי $\langle x_1,y_2 \rangle, \langle x_2,y_2 \rangle = \langle x_1,y_1 \rangle R \langle x_1,y_2 \rangle$ נחשב ונמצא ונמצא היטב: יהי י $\langle x_1,y_2 \rangle, \langle x_2,y_2 \rangle = \langle x_1,y_1 \rangle$ נחשב ונמצא היטב: יהי י $\langle x_1,y_2 \rangle, \langle x_2,y_2 \rangle = \langle x_1,y_1 \rangle$ נחשב ונמצא היטב: יהי י $\langle x_1,y_2 \rangle, \langle x_2,y_2 \rangle = \langle x_1,y_1 \rangle$ נחשב ונמצא היטב: יהי י

נסיק $.x_1+y_1 \neq x_2+y_2$ יהי $.(\langle x_1,y_1 \rangle)_R, [\langle x_2,y_2 \rangle]_R \in \mathbb{R}^2 \times \mathbb{R}^2/R$ נטיק $.(\langle x_1,y_1 \rangle)_R, [\langle x_2,y_2 \rangle]_R \in \mathbb{R}^2 \times \mathbb{R}^2/R$ נטיק $.(\langle x_1,y_1 \rangle)_R = x_1+y_1 \neq x_2+y_2 = h([\langle x_2,y_2 \rangle])$

lacktriangleעל: יהי $h([\langle 0,r
angle])=0+r=r$ נסיק , $[\langle 0,r
angle]$, נחר $h([\langle 0,r
angle])=0$

(ב) סעיף

ינגדיר: $f=\lambda A\in\mathcal{P}(\mathbb{Z}).A\cup\mathbb{N}$ נניח $f\colon\mathcal{P}(\mathbb{Z}) o\mathcal{P}(\mathbb{N})$ נגדיר:

$$S = \{ \langle A, B \rangle \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z}) \mid \min(f(A)) = \min(f(B)) \}$$

 $\mathrm{range}(f)=\mathbb{N}$ וכי $h\colon \mathcal{P}(\mathbb{Z})/S o\mathbb{N}, h=\lambda[A]_S\in \mathcal{P}(\mathbb{Z}) imes\mathcal{P}(\mathbb{Z}).\min(f(A))$ וכי $\mathrm{range}(\min(f(A))=\mathbb{N}$ ולכן $\mathrm{range}(f(A))=\mathbb{N}$ וווג מוגדר היטב. נוכיח זאת:

מוגדר היטב: יהי $\min(f(A)) \neq \min(f(B))$ כלומר $\neg ASB$ נניח $A,B \in \mathcal{P}(\mathbb{Z})$ יהי יהי $h(A) = \min(f(A)) \neq \min(f(B)) = h(B)$

ASB , לכן, $\min(f(A)) = \min(f(B))$ כלומר $h([A]_S) = h([B]_S)$ נניח ($[A]_S, [B]_S \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z})/S$ יהי ($[A]_S = [B]_S$ כדרוש.

 $h(A)=h([\{n\}]_S)=\min(f(\{n\}))=\min(\{n\}\cap\mathbb{N})=\min(\{n\})=n$, נבחר $A=[\{n\}]_S$, נבחר $A=[\{n\}]_S$, נבחר כדרוש

(ג) סעיף

. נגדיר: $\mathbb{R}/T o [0,1), h = \lambda[x]_T \in \mathbb{R}^2/T.\sin(x)$ נוכיח . $T = \{\langle x,y \rangle \in \mathbb{R}^2 \mid \sin(x) = \sin(y)\}$ נגדיר: נגדיר:

בדרוש. $h(x)=\sin(x)
eq \sin(y) = h(y)$ בדרוש. $[x]_T
eq [y]_T$ נניח $[x]_T, [y]_T \in \mathbb{R}^2/T$ מוגדר היטב: יהי

 $\sin(x)=\sin(y)$ מההנחה $\sin(x)=\sin(y)$, נניח $\sin(x)=\sin(y)$, ונוכיח $\sin(x)=\sin(y)$ ונוכיח $\sin(x)=\sin(y)$, ובאופן שקול $\sin(x)=\sin(y)$, בלומר $\sin(x)=\sin(y)$ כלומר $\sin(x)=\sin(y)$

על: יהי $h(y)=\sin(\arcsin(x))=x$, נקבל $y=\arcsin(x)$, נקבל $x\in[0,1)$ (משפט מקורס מתמטיקה א תחת ההנחה $x\in[0,1)$ כדרוש ($x\in[0,1)$

(ד) סעיף

: נבחר זיווג $R=\{\langle f,g
angle \in (\mathbb{N} o \mathbb{N})^2 \mid \mathrm{Im}(f)=\mathrm{Im}(g)\}$ נגדיר

$$h\colon (\mathbb{N}\to\mathbb{N})/R\to (\mathcal{P}(\mathbb{N})\setminus\emptyset), h=\lambda[f]_R\in (\mathbb{N}\to\mathbb{N})/R.\mathrm{Im}(f)$$

מוגדר היטב: יהי $h(f) \neq h(g)$ נניח $f(g)_R \neq [g]_R$ נניח $f(g)_R \neq [g]_R$ מההנחה מוגדר היטב: יהי $h(f)_R \neq [g]_R \neq [g]_R$ נניח $h(f)_R \neq [g]_R \neq [g]_R$ כדרוש.

 $\mathrm{Im}(f)
eq \mathrm{Im}(g)$ נניח $[f]_R = [g]_R$ ונוכיח $[f]_R = [g]_R$ ונוכיח נקבל ($[f]_R = [g]_R$ נניח ($[f]_R = [g]_R$ ובאופן שקול $[f]_R = [g]_R$ כלומר $[f]_R = [g]_R$ כדרוש.

c נבחר את הפונקציה: $N \in \mathbb{N} \setminus \emptyset$ יהי $N \in \mathbb{N} \setminus \emptyset$ יהי משום ש־

$$f = \lambda n \in \mathbb{N}. \begin{cases} n & \text{if } n \in \mathbb{N} \\ c & \text{else} \end{cases}$$

ונוכיח באמצעות הכלה דו כיוונית. $h([f]_R)=N$

- . כדרוש. $n\in h([f]_R)$ נציב ונקבל ($n\in\mathbb{N}$ כדרוש. $n\in h([f]_R)$ כדרוש. $n\in h([f]_R)$
- n
 otin Mנניח בשלילה $n \in M$. נניח בשלילה $n \in M$. נניח בשלילה $n \in M([f]_R)$. נניח בשלילה $n \in M([f]_R)$. יהי $n \in M([f]_R)$ יהי $n \in M([f]_R)$. נפצל למקרים: אם $n \in M$ אז $n \in M$ אז $n \in M$ כלומר $n \in M$ וזו סתירה. סה"כ $n \in M$ כדרוש $n \in M$

יהיו A,B קבוצות ונניח $A\sim B$, ולכן קיימת זיווג $A \to B$ נוכיח נניח $A \to B$, ולכן קיימת זיווג $A \to B$, ולכן קיימת φ : $\varphi = Af \in A \to A.h \circ f \circ h^{-1}$ המוגדר לפי $\varphi : (A \to A) \to (B \to B)$ נוכיח שהוא זיווג ע"י כך שנוכיח שהוא הופכי שני הצדדים. נבחר את הפונקציה $\varphi : (A \to A).h^{-1} \circ f \circ h$ ונוכיח שהיא הופכית.

 $: \varphi \circ \psi = id_{B \to B}$ הופכי מימין: נוכיח

$$\forall f \in B \to B. (\varphi \circ \psi)(f) = \varphi(\psi(f)) = \varphi(h^{-1} \circ f \circ h) = \underbrace{h \circ h^{-1}}_{id_B} \circ f \circ \underbrace{h \circ h^{-1}}_{id_B} = f$$

 $arphi \circ \psi = id_{A
ightarrow A}$ הופכי משמאל: נוכיח

$$\forall f \in A \to A. (\psi \circ \varphi)(f) = \psi(\varphi(f)) = \psi(h \circ f \circ h^{-1}) = \underbrace{h^{-1} \circ h}_{id_A} \circ f \circ \underbrace{h^{-1} \circ h}_{id_A} = f$$

 \blacksquare סה"כ φ הופכית, ולכן זיווג

שאלה ז

תהי קבוצה A. נסמן S(A) כקבוצת כל יחסי הסדר החזקים על A וב־W(A) את כל יחסי הסדר החלשים. נוכיח תהי קבוצה A נסמן A נכחר זיווג $F:S(A) \to W(A)$ נבחר זיווג.

בטענות עזר: $s_1=s_2$ ונוכיח $F(s_1)=F(s_2)$, נניח (גניח $F(s_1)=F(s_2)$, ונוכיח אונים בטענות עזר:

- $A \neq \emptyset$ אם $A \in A$ קיים $A \in A$ לפיכך קיים $A \neq \emptyset$ אם $A \notin A$ ווניח בשלילה שקיים $A \notin A$ שקיים $A \notin A$ לפיכך קיים $A \notin A$ קבוצות זרות: נניח בשלילה שקיים $A \notin A$ שקיים $A \notin A$ אזי $A \notin A \notin A$ אזי $A \notin A \notin A$ כדרוש כך ש־ $A \notin A$ וונים סדר $A \notin A$ אנטי־סימטרי חזק, אזי $A \notin A$ אזי $A \notin A$ וובפרט אנטי־סימטרי חזק, אזי $A \notin A$ אזי $A \notin A$ וובפרט עבור $A \notin A$ כלומר נגרר $A \notin A$ וונים סתירה. סה"כ $A \notin A$ כדרוש.

ידוע $s_1\cap id_A=\emptyset \wedge s_2\cap id_A=\emptyset$ משום ש־ $s_1,s_2\in S$ אז מ־(1) נקבל (מענה $s_1,s_2\in S$ משום ש־ $s_1,s_2\in S$ משום ש־ $s_1,s_2\in S$ מדרוש.

על: יהי w יחס סדר חזק. נותר להוכיח w יחס סדר חלש ומטענה נתונה נקבל w יחס סדר חזק. נותר להוכיח w יהי w יחס סדר חזק. נוכיח w יחס סדר חזק. נוכיח w יהי w יחס סדר חזק. נוכיח חזק. נו

$$x \in (A \setminus B) \cup B \tag{1}$$

$$\iff (x \in A \land x \notin B) \lor x \in B \tag{2}$$

$$\iff (x \in A \lor x \in B) \land (x \in B \lor x \notin B) \tag{3}$$

$$\iff \neg((x \notin A \land x \notin B) \lor (x \in B \land x \notin B)) \tag{4}$$

$$\iff \neg(x \notin A \land x \notin B)) \tag{5}$$

$$\iff x \in A \lor x \in B \tag{6}$$

$$\iff x \in A \cup B \tag{7}$$

וסה"כ $w \in W(A)$ נסיק $w \in W(A)$ מההנחה הנחה הובפרט רפלקסיבי, ולכן $w \in W(A)$ מההנחה הובפרט רפלקסיבי, ולכן $w \in W(A)$ מטרנזיטיביות $w \in W(A)$ באופן שקול $w \in W(A)$ מטרנזיטיביות מטרנזיטיביות מטרנזיטיביות שוובפרט רפלקסיבי, ולכן מההנחה הובפרט רפלקסיבי, ולכן מההנחה הובפרט רפלקסיבי, ולכן מההנחה הובפרט רפלקסיבי, ולכן מההנחה הובפרט רפלקסיבי, ולכן מהחנים הובפרט הובפ