Full-Stack Web Development

5

for Auto-Assessment Platform (AASP)

Chua Chong Yih U2022784B

Table of contents

11 Introduction

Background, prior works, problem statement & objective

12 Related Works

Related platforms & technologies

03 Design

Requirements & methodologies

04 Implementation

System architecture & features

05 Conclusion

Achievements & future works

06 Demo

Live demo of main features

Introduction

Background

Programming Assessments

- Evaluate learner's understanding of Computer Science concepts
- Automation help ease educator's burden

Hardware Description Language (HDL)

- Specialized computer language
- Simulate behavior of digital circuits and systems
- Lack of available platforms for evaluation

Hardware Description Language

Module Design

Testbench

Waveform Visualization

Prior Work

Lee Jun Wei

Designed and developed AASP

Liu Wing Lam

Test **Proctoring**

Implemented test proctoring feature and enhancements

Chua Chong Yih

Hardware Description Language

Problem Statement

- AASP lacks HDL assessment support
- Limitations in evaluating digital circuit behavior
- Closing this gap is crucial for holistic assessment

Objectives

Build and improve AASP

Effective HDL assessments

Scalability

Related Works

HDLBits

Circuit Design

Reading **Simluations**

Writing **Testbenches**

Exercise Evaluation

Circuit Design Exercises

- Combinational and sequential logic designs
- Sequential logic involves timing elements
- Waveform visualization of outputs

Verification: Reading Simulations

- Presented with simulation waveforms
- Interpret and recreate module design

Verification: Writing Testbenches

- Create testing code
- Generate specific inputs and monitor outputs
- Verify output with expected results

Exercise Evaluation

- Evaluate HDL assessment output
- Compares learner solution waveform with expected solution waveform
- Mismatch graph highlight points of divergence

tb/clock — Compile and simulate

Running Icarus Verilog compile. Show Icarus Verilog compile messages...
Running Icarus Verilog simulation. Show Icarus Verilog simulation messages...

Status: Incorrect

Compile and simulation succeeded, but the circuit's output wasn't entirely correct. The hints below may help.

Hint: Output 'dut.clk' has 1010 mismatches. First mismatch occurred at time 5. Hint: Total mismatched samples is 1010 out of 2021 samples

Timing diagrams for selected test cases

These are timing diagrams from some of the test cases we used. They may help you debug your circuit. The diagrams show inputs to the circuit, outputs from your circuit, and the expected reference outputs. The 'Mismatch' trace shows which cycles your outputs don't match the reference outputs (o - correct, 1 - incorrect).

Design Methodology

03

Overview

Summary of Functional Requirements

HDL Assessment Integration

- HDL-based assessments
- Different assessment configurations
- Generate boilerplate code

Component Validation

Validate correctness of student code

Compilation and Simulation

Incorporate modified Judge0 framework

Waveform Visualization

- Interactive waveform visualization
- Static waveform visualization
- Mismatch Graph

Implementation

Judge0

Online Code Execution Engine

- Open source
- Lack HDL support

Modify compiler Docker image

- Add Icarus Verilog compiler
- Curate selected compilers

Modify core Judge0 Docker image

Add additional parameters

Boilerplate Code Generation

Module Code

Generate module design code from form

Testbench

Generate testbench code from module design code

Waveform Visualization

WaveDrom

Static compiled output visualization and mismatch graph comparison

VCDrom

Navigate through compiled output with an interactive UI

Conclusion

Conclusion

Achievements

- Developed and enhanced AASP to include HDL assessments
- Implemented HDL related technologies to enhance assessment experience

Future Works

- Additional HDL
- More Question Types
- Unit Test

Live Demo

http://172.21.148.181

Thanks!

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

