AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A battery active material powder
mixture comprising:

a battery active material with an average particle size of 1 to 100 $\mu\text{m}\text{,}$ and

an electrically conductive powder which adheres to the periphery of the battery active material;

wherein the conductive powder has an average particle size that is 10 nm to 10 µm and <u>is</u> smaller than the average particle size of the active material, wherein the mixture is prepared by placing the battery active material and the electrically conductive powder in a mixing container, then dry mixing the mixture by rotating and revolving the container.

- 2. (Currently Amended) A method for preparing a battery active material powder mixture which is prepared by comprising the steps of:
- (1) placing a battery active material and an electrically conductive powder in a mixing container, and then
- $\underline{\text{(2)}}$ then rotating and revolving the container so as to effect dry mixture.

- 3. (Currently Amended) The powder mixture method of claim

 2, wherein the powder mixture which is composed of 0.1 to 20

 parts by weight of the conductive powder per 100 parts by weight of the battery active material.
- 4. (Currently Amended) The powder mixture method of claim 2 or 3, wherein the battery active material has an average particle size of 1 to 100 μ m, and wherein the conductive powder adheres to the periphery of the battery active material and has an average particle size that is 10 nm to 10 μ m and is smaller than the average particle size of the active material.
- 5. (Currently Amended) An electrode composition prepared by wet mixing the powder mixture of claim 1 or 27 with a binder polymer in a mixing container subjected to both rotation and revolution.
- 6. (Original) The electrode composition of claim 5, wherein the binder polymer is an unsaturated polyurethane compound prepared by reacting:
- (A) an unsaturated alcohol having at least one (meth)acryloyl group and a hydroxyl group on the molecule;
 - (B) a polyol compound of general formula (1) below

$$HO-[(R^1)_h-(Y)_i-(R^2)_j]_q-OH$$
 (1)

wherein R^1 and R^2 are each independently a divalent hydrocarbon group of 1 to 10 carbons which may contain an amino, nitro, carbonyl or ether group,

 Υ is -COO-, -OCOO-, -NR 3 CO- (R 3 being hydrogen or an alkyl group of 1 to 4 carbons), -O- or an arylene group,

the letters h, i and j are each independently 0 or an integer from 1 to 10, and

the letter q is an integer which is ≥1;

- (C) a polyisocyanate compound; and
- (D) an optional chain extender.
- 7. (Original) The electrode composition of claim 5, wherein the binder polymer is a polymeric material having an interpenetrating network structure or a semi-interpenetrating network structure.
- 8. (Original) The electrode composition of claim 7, wherein the polymeric material having an interpenetrating network structure or a semi-interpenetrating network structure comprises a hydroxyalkyl polysaccharide derivative, a polyvinyl alcohol derivative or a polyglycidol derivative in combination with a crosslinkable functional group-bearing compound, part or

all of which compound is the unsaturated polyurethane compound of claim 6.

9. (Original) The electrode composition of claim 5, wherein the binder polymer is a thermoplastic resin containing units of general formula (2) below

$$\begin{array}{c|c}
 & C & CH_2 \\
 & O \\
 & O
\end{array}$$
(2)

in which the letter r is 3, 4 or 5, and the letter s is an integer \geq 5.

- 10. (Original) The electrode composition of claim 5, wherein the binder polymer is a fluoropolymer material.
- 11. (Previously Presented) A secondary cell electrode comprising a current collector coated with an electrode composition according to claim 5.
- 12. (Original) A secondary cell comprising in part the secondary cell electrode of claim 11 and an electrolyte.

13. (Currently Amended) A carbonaceous material powder mixture for electrical double-layer capacitors, which powder mixture comprises:

a carbonaceous material for electrical double-layer capacitors with an average particle size of 0.1 to 100 $\mu m\text{,}$ and

an electrically conductive powder which adheres to the periphery of the carbonaceous material;

wherein the conductive powder has an average particle size that is 10 nm to 10 µm and smaller than the average particle size of the carbonaceous material, wherein the mixture is prepared by placing the carbonaceous material and the electrically conductive powder in a mixing container, then dry mixing the mixture by rotating and revolving the container.

14. (Cancelled)

- 15. (Currently Amended) The powder mixture of claim 14 13, which is composed of 0.1 to 20 parts by weight of the conductive powder per 100 parts by weight of the carbonaceous material.
- 16. (Currently Amended) The powder mixture of claim $\frac{14}{13}$ or 15, wherein the carbonaceous material has an average particle size of 0.1 to 100 μ m, and wherein the conductive powder adheres to the periphery of the carbonaceous material and has an average

particle size that is 10 nm to 10 μ m and smaller than the average particle size of the carbonaceous material.

- 17. (Previously Presented) The powder mixture of claim 13, wherein the carbonaceous material has a packing density of not more than 1.0 g/cm³ and an average particle size of 0.1 to 100 $\,\mu m$.
- 18. (Previously Presented) The powder mixture of claim 13, wherein the carbonaceous material for electrical double-layer capacitors is prepared by subjecting a mesophase pitch-based carbon material, a polyacrylonitrile-based carbon material, a gas phase-grown carbon material, a rayon-based carbon material or a pitch-based carbon material to alkali activation with an alkali metal compound, then grinding the activated carbon material.
- 19. (Previously Presented) A polarizable electrode composition prepared by wet mixing the powder mixture of claim 13 with a binder polymer in a mixing container subjected to rotational and revolutionary motion.

- 20. (Original) The polarizable electrode composition of claim 19, wherein the binder polymer is an unsaturated polyurethane compound prepared by reacting:
- (A) an unsaturated alcohol having at least one (meth)acryloyl group and a hydroxyl group on the molecule;
 - (B) a polyol compound of general formula (1) below

$$HO-[(R^1)_h-(Y)_i-(R^2)_j]_q-OH$$
 (1)

wherein R^1 and R^2 are each independently a divalent hydrocarbon group of 1 to 10 carbons which may contain an amino, nitro, carbonyl or ether group,

Y is -COO-, -OCOO-, $-NR^3CO-$ (R^3 being hydrogen or an alkyl group of 1 to 4 carbons), -O- or an arylene group,

the letters h, i and j are each independently 0 or an integer from 1 to 10, and $\,$

the letter q is an integer which is ≥1;

- (C) a polyisocyanate compound; and
- (D) an optional chain extender.

- 21. (Original) The polarizable electrode composition of claim 19, wherein the binder polymer is a polymeric material having an interpenetrating network structure or a semi-interpenetrating network structure.
- 22. (Original) The polarizable electrode composition of claim 21, wherein the polymeric material having an interpenetrating network structure or a semi-interpenetrating network structure comprises a hydroxyalkyl polysaccharide derivative, a polyvinyl alcohol derivative or a polyglycidol derivative in combination with a crosslinkable functional groupbearing compound, part or all of which compound is the unsaturated polyurethane compound of claim 20.
- 23. (Original) The polarizable electrode composition of claim 19, wherein the binder polymer is a thermoplastic resin containing units of general formula (2) below

$$\begin{array}{c|c}
 & C & CH_2 \\
 & O \\
 & O \\
 & O
\end{array}$$
(2)

in which the letter r is 3, 4 or 5, and the letter s is an integer \geq 5.

- 24. (Original) The polarizable electrode composition of claim 19, wherein the binder polymer is a fluoropolymer material.
- 25. (Previously Presented) A polarizable electrode for electrical double-layer capacitors, which electrode comprises a current collector coated with a polarizable electrode composition according to claim 19.
- 26. (Original) An electrical double-layer capacitor comprising in part the polarizable electrode of claim 25 and an electrolyte.
- 27. (NEW) The battery active material powder mixture of claim 1, wherein the electrically conductive powder is at least one selected from the group consisting of carbon black, Ketjen black, acetylene black, carbon whiskers, carbon fibers, natural graphite, synthetic graphite, titanium oxide and ruthenium oxide.