Formelsammlung zur Klausur "Mathematische Grundlagen der (Wirtschafts-)Informatik"

Notationen

Summenzeichen

$$\sum_{k=0}^{n} a_{k} = a_{m} + a_{m+1} + a_{m+2} + \ldots + a_{n-1} + a_{n}$$

Produktzeichen

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdot \ldots \cdot a_{n-1} \cdot a_n$$

Fakultät

$$n! = \prod_{k=1}^{n} k = 1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n$$
$$0! = 1$$

Einfaches Rechnen

Betrag

Für eine reelle Zahl x ist der (Absolut-)Betrag definiert durch:

$$|x| = \sqrt{x^2} = \begin{cases} x & : x > 0\\ 0 & : x = 0\\ -x & : x < 0 \end{cases}$$

Rechnen mit Beträgen

Für reelle Zahlen x,y und eine nicht-negative reelle Zahlp gelten die folgenden Regeln:

$$\begin{aligned} |x| &\geq 0 & |x| &= 0 \Longleftrightarrow x = 0 \\ |x \cdot y| &= |x| \cdot |y| & |x \cdot p| &= |x| \cdot p & |x \cdot (-p)| &= |x| \cdot p \\ |x + y| &\leq |x| + |y| & |x - y| &\geq ||x| - |y|| \\ |\frac{x}{y}| &= \frac{|x|}{|x|} & |x - y| &\geq ||x| - |y|| \end{aligned}$$

Bruchrechnen

Für alle Zahlen a, b, c, d mit $c \neq 0$ und $d \neq 0$ gilt:

$$\begin{array}{ll} \frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd} & \frac{a}{c} - \frac{b}{d} = \frac{ad - bc}{cd} \\ \frac{c \cdot a}{c} = \frac{a}{d} & \frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd} \\ \frac{c}{b} = \frac{ad}{bc} & \frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd} \end{array}$$

Potenzrechengesetze

Für reelle Zahlen $a \neq 0$ und $b \neq 0$, reelle Zahlen r und s

falls a>0 und rationale Zahlen r und s falls a<0 ist gilt:

$$a^{0} = 1$$

$$a^{r+s} = a^{r} \cdot a^{s}$$

$$(a \cdot b)^{r} = a^{r} \cdot b^{r}$$

$$(a^{r})^{s} = a^{r \cdot s}$$

$$a^{r-s} = \frac{a^{r}}{a^{s}}$$

$$\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}}$$

Für positive Zahlen a kann man die Potenz durch Exponentialfunktion und Logaritmus ausdrücken:

$$x^r = \exp\left(r \cdot \ln(x)\right)$$

Wurzelrechnengesetze

Für positive Zahlen a und b und $n, m, k \in \mathbb{N}$ gilt:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \qquad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[k]{\sqrt[n]{a}} = \sqrt[k \cdot n]{a} \qquad a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$$

$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} \qquad \sqrt[n]{a} \cdot \sqrt[m]{a} = a^{\frac{1}{n} + \frac{1}{m}} = \sqrt[nm]{a^{n+m}}$$

Höhere Wurzeln aus positiven Zahlen x kann man wie jede Potenz durch Exponentialfunktion und Logarithmus ausdrücken:

$$\sqrt[n]{x} = x^{1/n} = \exp\left(\frac{\ln(x)}{n}\right)$$

Logarithmengesetze

Für reellen, positive Zahlen a,b,x,y mit $a,b\neq 1$, einem reellen r und einer natürlichen Zahl n gilt:

$$\begin{split} \log_a(1) &= 0 \\ \mathrm{lb}(x) &= \log_2(x) \qquad \ln(x) = \log_e(x) \qquad \lg(x) = \log_{10}(x) \\ \log_a(x \cdot y) &= \log_a(x) + \log_a(y) \\ \log_a\left(\frac{x}{y}\right) &= \log_a(x) - \log_a(y) \\ \log_a(x^r) &= r \cdot \log_a(x) \\ \log_a\left(\frac{1}{x}\right) &= -\log_a(x) \\ \log_a(x + y) &= \log_a(x) + \log_a\left(1 + \frac{x}{y}\right) \\ \log_b\left(\sqrt[n]{x}\right) &= \log_b\left(x^{\frac{1}{n}}\right) &= \frac{1}{n}\log_b x \\ \log_a(x) &= \frac{\log_b(x)}{\log_a(a)} \end{split}$$

Binomische Formeln

Für reelle Zahlen x und y gelten die folgenden Regeln:

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x - y)^2 = x^2 - 2xy + y^2$$

$$(x-y)(x+y) = x^2 - y^2$$

Binomischer Lehrsatz

Für zwei reelle Zahlen $x,\ y$ und eine natürliche Zahln gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{k}{n} x^{n-k} y^k$$

Normalform von Polynomgleichungen

Jede Polynomgleichung (2. Grades) der Form $ax^2 + bx + c = d$, mit $a \neq 0$ lässt sich umformen in **Normalform** der Art $x^2 + px + q = 0$.

Diskriminante

Für eine Polynomgleichung (2. Grades) ist die **Diskriminante** definiert durch $D = \frac{p^2 - 4 \cdot q}{4}$.

Es gilt:

- D < 0: die Gleichung hat keine (reelle) Lösung!
- D=0: die Gleichung hat eine Lösung nämlich $-\frac{p}{2}$.
- D > 0: die Gleichung hat zwei Lösungen. (\rightarrow pq-Formel)

pq-Formel

Für eine Polynomgleichung (2. Grades) mit positiver Diskriminante findet sich die Nullstellen $x_{1/2}$ durch

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{D} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Satz von Vieta

Für die Lösungen x_1 und x_2 einer Polynomgleichung (2. Grades) in Normalform gilt:

$$x_1 \cdot x_2 = q \text{ und } -(x_1 + x_2) = p$$

Logik

Aussagen

Sätze, die entweder wahr oder falsch sind, heißen Ausagen.

Aussageformen / offene Aussagen

Hängte die Wahrheit einer Aussage von einem Parameter x ab, so nennt man die Aussage A(x) eine offene Aussage oder Aussageform.

Lösungsmenge

Die Menge der Werte x, die eine Aussageform A(x) zu einer wahren Aussage machen heißt Lösungemenge

Es seien A und B Aussagen, dann gilt:

Implikation (Aus A folge B)

 $A \Longrightarrow B$: falls A wahr ist, dann ist auch B wahr.

Äquivalenz

 $A \Longleftrightarrow B: A$ ist genau dann wahr, falls B wahr ist.

Konjunktion

 $A \wedge B : A$ ist wahr und B ist wahr.

Disjunktion

 $A \vee B : A$ ist wahr oder B ist wahr.

Negation

 $\neg A$ ist wahr $\iff A$ ist falsch.

Allquantor

 \forall : "Für alle""

Existenzquantor

 \exists : "Es gibt ein"

Mengenlehre

Für beliebige Mengen A und B gilt:

Element

Ist a ist ein **Element** von A, dann schreiben wir $a \in A$. Teilmenge

$$A \subseteq B \iff (x \in A \Rightarrow x \in B)$$

Echte Teilmenge

$$A \subsetneq B \Longleftrightarrow (A \subset B \land \exists z \in B : z \not\in A)$$

Gleichheit von Mengen

$$A = B \iff A \subseteq B \land B \subseteq A$$

Vereinigungsmenge zweier Mengen

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Schnittmenge zweier Mengen
$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A^c = \{x \mid x \in U \land x \notin A\}, U \text{ ein } \mathbf{Universum} \text{ mit } A \subset U$$

$$A \setminus B = \{x \mid x \in A \land x \notin B\} = A \cap B^c$$

Gleichmächtigkeit von Mengen

A und B sind gleichmächtig, falls es eine Bijektion $f:A \leftrightarrow B$ gibt.

Endlichkeit

Eine Menge ist **endlich**, wenn sie **gleichmächtig** zu einem Element von \mathbb{N}_0 im Sinne von $\{von\ Neumann\}$ ist.

Abzählbar

Eine Menge ist abzählbar, wenn sie endlich ist oder gleichmächtig zu einer Teilmenge von \mathbb{N} ist.

Unendlichkeit

Eine nicht endliche Menge ist unendlich

Mächtigkeit von Mengen (allgemein)

|A| heißt Betrag der Menge A und bezeichnet die Mächtigkeit der Menge.

Mächtigkeit von endlichen Mengen

| A| ist die Anzahl der unterscheidbaren Elemente der (endlichen) Menge A.

Potenzmenge

$$\mathcal{P}(A) = \{ U \mid U \subset A \}$$

Satz von Cantor

Für jede Menge A gilt: $|A| < |\mathcal{P}(A)|$

Produktmenge

$$A \times B = \{(x; y) \mid x \in A \land y \in B\}$$

De Morgansche Regeln

$$(A \cup B)^c = A^c \cap B^c \text{ und } (A \cap B)^c = A^c \cup B^c$$

Disjunktheit

 $A \ und \ B \ sind \ \textit{disjunkt} \Longleftrightarrow A \cap B = \emptyset$

Zerlegung / Partition

Die Mengen $A_1, ..., A_n$ mit $A_1 \cup A_2 \cup \cdots \cup A_n = A$ und $A_i \cap A_j = \emptyset$ für alle $0 \le i \ne j \le n$ heißt **Partition** oder **Zerlegung** von A.

Zahlen

Natürliche Zahlen

$$\mathbb{N} = \{1, 2, 3, 4, ...\}$$

Natürliche Zahlen mit Null:

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, ...\}$$

Ganze Zahlen

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Rationale Zahlen

$$\mathbb{Q} = \left\{ \left. \frac{q}{p} \right| \ q \in \mathbb{Z}, p \in \mathbb{N}, p \text{ und } q \text{ sind teilerfremd} \right\}$$

Reelle Zahlen

 \mathbb{R}

Komplexe Zahlen

$$\mathbb{C} = \{ x + y \cdot i \, | \, x, y \in \mathbb{R} \, \}$$

Es gilt:

$$\mathbb{N}\subsetneq\mathbb{N}_0\subsetneq\mathbb{Z}\subsetneq\mathbb{Q}\subsetneq\mathbb{R}\subsetneq\mathbb{C}$$

Vollständige Induktion

Sei A(n)eine Aussageform, die es für alle $n\in\mathbb{N}$ zu beweisen gilt

- Induktionsanfang: A(1) gilt.
- Induktionsschritt: Unter der Annahme das A(n) gilt zeigt man, dass A(n+1) gilt.
 - Induktionsannahme: Es gelte A(n).
 - Induktionsschluss: Zu zeigen ist dann, dass A(n+1) gilt.

Kombinatorik

Summenregel

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Inklusion und Exklusion

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

Produktregel

$$|A \times B| = |A| \cdot |B|$$

k-Permutationen / Variation

$$P(n,k) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Permutation

$$n! = P(n,n) = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

Binomial koeffizient

$$\binom{n}{k} = C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k! \cdot (n-k)!}$$

Für die Anzahl der Möglichkeiten aus n Objekten k Objekte auszuwählen, gelten die folgenden Regeln:

Auswahl	mit Beachtung der Reihenfolge (Variation)	ohne Beachtung der Reihenfolge (Kombination)
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$

Lineare Algebra

Lineares Gleichungssystem

Ein LGS mit m Gleichungen und n unbekannten Variabeln hat die Form :

$$\begin{array}{rclcrcrcr} a_{11} \cdot x_1 + a_{12} \cdot x_2 + & \cdots & + a_{1n} \cdot x_n & = & b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + & \cdots & + a_{2n} \cdot x_n & = & b_2 \\ & & & & \vdots \\ a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + & \cdots & + a_{mn} \cdot x_n & = & b_m \end{array}$$

 a_{ij} : Koeffizienten

 b_i : rechte Seite

Homogene / Inhomogene LGS

Sind alle $b_i = 0$, nennt man das LGS homogen, sonst inhomogen

Homogene LGS besitzen immer eine **triviale Lösung**, bei der alle $x_i = 0$ sind.

Quandratische LGS

Ist m = n so nennt man das LGS quadratisch

Elementare Zeilenumformungen

Man ändert die Lösungsmenge eines LGS nicht, wenn man

- zwei Zeilen vertauscht,
- eine Zeile auf beiden Seiten mit einer beliebigen Konstante $c \neq 0$ multipliziert,
- das Vielfache einer Zeile zu einer anderen hinzuaddiert oder
- das Vielfache einer Zeile von einer anderen subtrahiert.

Eliminationsverfahren

Man benutzt die elementaren Zeilenumformungen um aus einem beliebigen LGS ein LGS in Zeilenstufenform oder Diagonalgestallt zu erhalten. Das Ziel ist dabei die Lösungen einfach oder gar direkt abzulesen.

Lösungsverhalten eines LGS

Ein homogenes LGS besitzt entweder

• genau eine Lösung, nämlich die triviale Lösung oder

• unendlich viele Lösungen.

Ein inhomogenes LGS besitzt entweder

- genau eine Lösung oder
- unendlich viele Lösungen oder
- überhaupt keine Lösung.

Matrizen

Matrizen sind geordnete, rechteckige Schemata von Zahlen oder Symbolen.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{m \times n}$$

mit m und $n \in \mathbb{N}$.

m: Zeilen

n: Spalten

 $m \times n$: Orndung der Matrix

 a_{11}, \ldots, a_{mn} : Elemente der Matrix

i: Zeilenindex

j: Spaltenindex

Vektoren

 $n\times 1\text{-Matrix}$ heißt Spaltenvektor mit nKomponenten

 $1 \times n$ -Matrix heißt **Zeilenvektor mit** n **Komponenten**

Skalar

Einen Wert aus dem Grundkörper (meistens \mathbb{R}) nennen wir einen Skalar.

Addition & Subtraktion von Matrizen und Vektoren

Die **Addition** und **Subtraktion** von Matrizen gleicher Ordnung erfolgt **komponentenweise**.

Multiplikation mit einem Skalar

Matrix werden mit einem Skalar multiplizieren, in dem wir jedes Element mit dem Skalar multipliziert.

Linearkombination

 $v_1, \ldots v_n, v$ Vektoren. v ist Linearkombination, falls gilt:

$$v = \sum_{i=1}^{n} c_i v_i$$

Lineare (Un-)abhängigkeit

Eine Menge von Vektoren ist linear unabhängig falls keiner von ihnen als Linearkombination der anderen ausgedrückt werden kann.

Ansonsten sind sie linear abbhängig.

Multiplikation von Matrizen

Sei $A_{n\times p},\,B_{p\times m},$ dann lässt sich $C_{n\times m}=A\cdot B$ berechnen mit

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

für 1 < i < n und 1 < j < m.

Transposition

Die transponierte Matrix A^T einer Matrix A ergibt sich in dem jede Spalte von A, bei gleichbleibender Reihenfolge, zu einer Zeile von A^T wird.

Skalarprodukt

Das **Skalarprodukt** zweier (Spalten-) Vektoren x und y lautet:

$$\langle x, y \rangle = x^T \cdot y$$

Einheitsmatrix

 E_n heißt Einheitsmatrix mit $n \times n$ Elementen, wenn gilt:

$$e_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Inverse einer Matrix

Gibt es zu $A_{n\times n}$ eine Matrix X mit

$$E_n = X \cdot A = A \cdot X = E_n$$

so nennen wir X die Inverse der Matrix A und schreiben dafür A^{-1} .

Finanzmathematik

Notationen

 K, K_0, K_t : Kapital (zum Zeitpunkt 0 oder t)

t: Zeitpunkt oder Zeitraum

 Z, Z_t : Zinsen(für den Zeitraum t)

i: Zins, Zinssatz

q = 1 + i: Aufzinsungsfaktor

Zinseszinsformel

$$K_n = K_0 \cdot (1+i)^n = K_0 \cdot q^n$$

Unterjährige Verzinsung

$$K_t = K_0 + Z \cdot t = K_0 + i \cdot K_0 \cdot t = K_0 (1 + i \cdot t)$$

 $t = \frac{T_2 - T_1}{360}$

 T_2 : Auszahlungszeitpunkt in Zinstagen

 T_1 : Einzahlungszeitpunkt in Zinstagen

 $T_i = (\text{aktueller Monat} - 1) \cdot 30 + \text{Tag im Monat}$

Gemischte Verzinsung

$$\begin{split} K_t &= K_0 \cdot (1+i \cdot t_1) \cdot (1+i)^n \cdot (1+i \cdot t_2) \\ K_t &= K_0 \cdot \left(1+i \cdot \frac{360-T_0+1}{360}\right) \cdot (1+i)^n \cdot \left(1+i \cdot \frac{T_1-1}{360}\right) \\ T_0 &: \text{Einzahlungszeitpunkt in Zinstagen im ersten Jahr} \end{split}$$

 t_0 : Anlagedauer in Zinstagen im ersten Jahr

 T_1 : Auszahlungszeitpunkt in Zinstagen im letzten Jahr

 t_1 : Anlagedauer in Zinstagen im letzten Jahr

n: Anzahl der ganzen Jahre

Approximative Verzinsung

$$K_t = K_0 \cdot (1+i)^t = K_0 \cdot q^t$$

t: Anlagedauer als nicht-ganzzahliger Wert