Advanced Robot Perception

Fortgeschrittene Konzepte der Wahrnehmung für Robotersysteme

Georg von Wichert, Siemens Corporate Technology

BEISPIEL: VERWENDUNG EUKLIDISCHER TRANSFORMATIONEN IN DER ROBOTIK

Koordinatensysteme

• Ein Roboter irgendwo in der Ebene

Koordinatensysteme

Ein Roboter irgendwo in der Ebene

$$WT_B = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} \cos \psi & -\sin \psi & x \\ \sin \psi & \cos \psi & y \\ 0 & 0 & 1 \end{pmatrix} \in SE(2) \subset \mathbb{R}^{3x3}$$

Koordinatensysteme

Roboter an der Stelle x=0.7, y=0.5, yaw=45deg

$${}^{W}T_{B} = \begin{pmatrix} \cos 45 & -\sin 45 & 0.7 \\ \sin 45 & \cos 45 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.71 & -0.71 & 0.7 \\ 0.71 & 0.71 & 0.5 \\ 0 & 0 & 1 \end{pmatrix}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter hat einen Sensorausleger von 1m Länge
- Was ist die Position des Sensors in W-Koordinaten?

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter hat einen Sensorausleger von 1m Länge

Inhomogene Koordinaten

$$B_{\mathbf{v}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad y$$
 Homogene Koordinaten
$$B_{\mathbf{\tilde{v}}} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter detektiert Objekt 1m voraus

$${}^{W}\mathbf{\tilde{v}} = {}^{W}T_{B}{}^{B}\mathbf{\tilde{v}}$$

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter hat einen Sensorausleger von 1m Länge

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter hat einen Sensorausleger von 1m Länge

- Roboter an der Stelle x=0.7, y=0.5, yaw=45deg
- Roboter hat einen Sensorausleger von 1m Länge

$${}^{B}\tilde{\mathbf{v}} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \psi$$

$${}^{W}\tilde{\mathbf{v}} = \begin{pmatrix} 1.41\\1.21\\1 \end{pmatrix}$$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$

$${}^{B}\mathbf{\tilde{v}}={}^{B}T_{W}{}^{W}\mathbf{\tilde{v}}$$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}}$$
 ${}^{B}\tilde{\mathbf{v}} = {}^{B}T_{W}{}^{W}\tilde{\mathbf{v}}$
 ${}^{B}\tilde{\mathbf{v}} = ({}^{W}T_{B})^{-1}{}^{W}\tilde{\mathbf{v}}$

- Wir haben Roboter- in Weltkoordinaten transformiert
- Manchmal muss man das Umgekehrte tun
- Wie transformiert man Welt- in Roboterkoordinaten?

$${}^{W}\tilde{\mathbf{v}} = {}^{W}T_{B}{}^{B}\tilde{\mathbf{v}} = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} {}^{B}\tilde{\mathbf{v}}$$

$${}^{B}\tilde{\mathbf{v}} = \left({}^{W}T_{B}\right)^{-1}{}^{W}\tilde{\mathbf{v}} = \left({}^{R^{+}} - R^{+}\mathbf{t} \atop \mathbf{0} \right){}^{W}\tilde{\mathbf{v}}$$

Gegeben: Objekt wird von Sensor gesehen

Position relativ zum Sensor: 0.2m in x-Richtung, 0.1m in y-

Richtung, 10deg verdreht

 Position relativ zum Sensor:
 0.2m in x-Richtung, 0.1m in y-Richtung, 10deg verdreht

$${}^{B}T_{S} = \begin{pmatrix} \cos 10 & -\sin 10 & 0.2 \\ \sin 10 & \cos 10 & 0.1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.98 & -0.17 & 0.2 \\ 0.17 & 0.98 & 0.1 \\ 0 & 0 & 1 \end{pmatrix}$$

Die Position des Objekts in W-Koordinaten?

$${}^{W}T_{S} = {}^{W}T_{B}{}^{B}T_{S} =$$

$$= \begin{pmatrix} 0.71 & -0.71 & 0.7 \\ 0.71 & 0.71 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.98 & -0.17 & 0.2 \\ 0.17 & 0.98 & 0.1 \\ 0 & 0 & 1 \end{pmatrix} = \cdots$$

Beachte: Auf die Reihenfolge kommt es an!!!

- 1m gehen, 90 Grad drehen
- 90 Grad drehen, 1m gehen

$$AB \neq BA$$

3D-Transformationen

Translation

$$\bar{\mathbf{x}}' = \underbrace{\begin{pmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}}_{4 \times 4} \bar{\mathbf{x}}$$

• Euklidische Transformation (Translation + Rotation),

$$ar{\mathbf{x}}' = egin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} ar{\mathbf{x}}$$

• Ähnlichkeitstransformation, Affine Transformation, ...

3D-Transformationen

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{3 imes 4}$	7	angles	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{3 imes 4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes4}$	15	straight lines	

Euklidische Transformation in 3D

- Translation t hat 3 Freiheitsgrade
- Rotation R hat 3 Freiheitsgrade

$$X = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3D-Rotationen

- Rotationsmatrix
- Euler-Winkel
- Rodriguez-Darstellung (Drehachse / Winkel)
- Einheitsquaternionen

Rotationsmatrix

Orthonormale 3x3 Matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

• Spaltenvektoren entsprechen den Koordinatenachsen

Rotationsmatrix

Orthonormale 3x3 Matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

- Vorteil: Einfache Verkettung
- Nachteil: Überparametrisiert (9 Parameter statt 3)

Euler-Winkel

- Rotation durch Verkettung von 3 Achsrotationen (z.B., um X-Y-Z Achsen)
- Aus der Luftfahrt: Roll-Pitch-Yaw Konvention

Roll-Pitch-Yaw Konvention

ullet Yaw Ψ , Pitch Θ , Roll Φ in Rotationsmatrix umrechnen

$$R = R_Z(\Psi)R_Y(\Theta)R_X(\Phi)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\Phi & \sin\Phi \\ 0 & -\sin\Phi & \cos\Phi \end{pmatrix} \begin{pmatrix} \cos\Theta & 0 & -\sin\Theta \\ 0 & 1 & 0 \\ \sin\Theta & 0 & \cos\Theta \end{pmatrix} \begin{pmatrix} \cos\Psi & \sin\Psi & 0 \\ -\sin\Psi & \cos\Psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos\Theta\cos\Psi & \cos\Theta\sin\Psi & -\sin\Theta \\ \sin\Phi\sin\Theta\cos\Psi - \cos\Phi\sin\Psi & \sin\Phi\sin\Psi + \cos\Phi\cos\Psi & \sin\Phi\cos\Theta \\ \cos\Phi\sin\Theta\cos\Psi + \sin\Phi\sin\Psi & \cos\Phi\sin\Psi - \sin\Phi\cos\Psi \end{pmatrix}$$

Rotation matrix nach Yaw-Pitch-Roll

$$\phi = \operatorname{Atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

$$\psi = -\operatorname{Atan2}\left(\frac{r_{21}}{\cos(\phi)}, \frac{r_{11}}{\cos(\phi)}\right)$$

$$\theta = \operatorname{Atan2}\left(\frac{r_{32}}{\cos(\phi)}, \frac{r_{33}}{\cos(\phi)}\right)$$

Euler-Winkel

Vorteil:

- Minimale Repräsentation (3 Parameter)
- "Einfach" interpretierbar

Nachteile:

- Es gibt 24 "alternative" Euler-Winkel-Darstellungen
 (XYZ, ZXZ, ZYX, ...)
- Schwierig zu Verketten
- Singularitäten (sog. "gimbal lock")

Euler-Winkel

- Verkettung: Konversion in Rotationsmatrix, Multiplikation, Re-Konversion
- Invertierung: Konversion in Rotationsmatrix, Matrixinversion, Re-Konversion

$$R_Z(\psi_1)R_Y(\theta_1)R_X(\phi_1) \cdot R_Z(\psi_2)R_Y(\theta_2)R_X(\phi_2)$$

 $\neq R_Z(\psi_1 + \psi_2)R_Y(\theta_1 + \theta_2)R_X(\phi_1 + \phi_2)$

Singularitäten

Verlust eines Freiheitsgrades

Rodriguez-Darstellung

(Drehachse / Winkel)

- Representiert Rotation durch
 - Drehachse $\hat{\mathbf{n}}$ und
 - Drehwinkel θ
- 4 Parameter $(\hat{\mathbf{n}}, \theta)$
- 3 Parameter $\boldsymbol{\omega} = \theta \hat{\mathbf{n}}$
 - Länge kodiert Winkel
 - Minimal aber nicht eindeutig (Warum?)

Konversion

Rodriguez-Formel

$$R(\hat{\mathbf{n}}, \theta) = I + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}$$

Inverse

$$\theta = \cos^{-1}\left(\frac{\operatorname{trace}(R) - 1}{2}\right), \hat{\mathbf{n}} = \frac{1}{2\sin\theta} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$$

 see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 (available online)

Einheitsquaternionen

- Quaternion $\mathbf{q} = (q_x, q_y, q_z, q_w)^{\top} \in \mathbb{R}^4$
- Einheitsquaternionen $\|\mathbf{q}\|=1$
- Entgegengesetzte Quaternionen repräsentieren dieselbe Rotation ${f q}=-{f q}$
- Ansonsten eindeutig

"Komplexe Zahl mit 3 Imaginärteilen"
$$\mathbf{q}=iq_x+jq_y+kq_z+q_w$$

$$i^2=j^2=k^2=ijk=-1$$

$$ij=k, \quad ji=-k, \\ jk=i, \quad kj=-i, \\ ki=j, \quad ik=-j,$$

Einheitsquaternionen

- Vorteil: Operationen für Multiplikation und Inversion sind effizient
- Quaternion-Quaternion Multiplikation

$$\mathbf{q}_0 \mathbf{q}_1 = (\mathbf{v}_0, w_0)(\mathbf{v}_1, w_1)$$

$$= (\mathbf{v}_0 \times \mathbf{v}_1 + w_0 \mathbf{v}_1 + w_1 \mathbf{v}_0, w_0 w_1 - \mathbf{v}_0 \mathbf{v}_1)$$

Inverse (Vorzeichenwechsel bei v oder w)

$$\mathbf{q}^{-1} = (\mathbf{v}, w)^{-1}$$
$$= (\mathbf{v}, -w)$$

Einheitsquaternionen

 Quaternion-Vektor Multiplikation (rotiert Punkt p mit Rotation q)

$$\mathbf{p}' = \mathbf{q}\mathbf{\bar{p}}\mathbf{q}^{-1}$$

$$\mathbf{mit} \quad \mathbf{\bar{p}} = (x, y, z, 0)^{\top}$$

Beziehung zu Rodriguez-Darstellung

$$\mathbf{q} = (\mathbf{v}, w) = (\sin \frac{\theta}{2} \hat{\mathbf{n}}, \cos \frac{\theta}{2})$$

3D Orientierung im Allgemeinen

 Beachte: "Lesen von Rotationen" im Allgemeinen schwierig, egal in welcher Darstellung

 Beobachtung: Rotationen sind einfach zu visualisieren und dann intuitiv verständlich

 Rat: Zum Debugging immer visualisieren!! Es gibt viele gute 3D Visualisierungstools

C++ Libraries für Lin. Alg./Geometry

 Es gibt viele C/C++ libraries für lineare Algebra und 3D- Geometry

Beispiele:

- C arrays, std::vector (no linear alg. functions)
- gsl (gnu scientific library, umfangreich, plain C)
- boost::array (ROS messages)
- Bullet library (3D-Geometry und Dynamik, ROS tf)
- Eigen (Sowohl lineare Algebra als auch Geometry, guter Tipp)

WAHRNEHMUNG MIT PUNKTEWOLKEN

Wahrnehmungsaufgabe

- Aufgabe: Extraktion von Fakten aus unstrukturierten Sensordaten, z.B.
 - Für den Roboter relevante Objekte in der Umgebung
 - Lage / Pose, Klasse, Instanz

Beispiel: Objekterkennung und -lokalisierung

- Drei wesentliche Verarbeitungsschritte
 - Segmentierung
 - Gegebenenfalls Erkennung / Vermessung
 - Lagebestimmung

Beispiel: Objekterkennung und -lokalisierung

- Drei wesentliche Verarbeitungsschritte
 - Segmentierung
 - Gegebenenfalls Erkennung / Vermessung
 - Lagebestimmung

Beispiel: Objekterkennung und -lokalisierung

- Drei wesentliche Verarbeitungsschritte
 - Segmentierung
 - Gegebenenfalls Erkennung / Vermessung
 - Lagebestimmung

- Aufteilung der Daten in inhaltlich zusammenhängende Teilmengen
 - Was ist ein Segment? Kommt darauf an!
 - Segmente entsprechen beispielsweise Objekten
 - Definition (und Lösung) aufgabenabhängig

Binarisierung mit Schwellwert

- Aufteilung der Daten in inhaltlich zusammenhängende Teilmengen
 - Was ist ein Segment? Kommt darauf an!
 - Segmente entsprechen beispielsweise Objekten
 - Definition (und Lösung) aufgabenabhängig

Binarisierung mit Schwellwert

- Aufteilung der Daten in inhaltlich zusammenhängende Teilmengen
 - Was ist ein Segment? Kommt darauf an!
 - Segmente entsprechen beispielsweise Objekten
 - Definition (und Lösung) aufgabenabhängig

Binarisierung mit Schwellwert

- Aufteilung der Daten in inhaltlich zusammenhängende Teilmengen
 - Was ist ein Segment? Kommt darauf an!
 - Segmente entsprechen beispielsweise Objekten
 - Definition (und Lösung) aufgabenabhängig

Binarisierung mit Schwellwert

Segmentierung in Punktewolke

- Vorteil: Nutzen von räumlicher Struktur
 - z.B. Objekte stehen auf Tisch

Segmentierung in Punktewolke

- Vorteil: Nutzen von räumlicher Struktur
 - z.B. Objekte stehen auf Tisch
- Grundsätzliches Vorgehen
 - Detektion und Vermessung der Tischebene (Höhe und Normalenrichtung)
 - Objekte sind zusammenhängende Teilpunktewolken oberhalb des Tisches
 - Bestimmung der jeweiligen Objektgeometrie

Detektion und Vermessung der Tischebene

- Ziel: Eine Ebene in die Punktewolke einpassen
 - Minimierung des mittleren quadratischen Fehlers

$$\theta^* = \arg\min_{\theta} \sum_i d^2(x_i, \theta)$$

Problem hier bei uns: Objekte stören

Robuste Parameterschätzung

- Allgemeiner Ansatz zur robusten Modellanpassung (Model Fit)
 - Aufteilen der Punkte in Inlier und Outlier
 - Modellanpassung nur mit den Inliern durchführen
- RANSAC: Random Sample Consensus
 - Zufällig aus den Datenpunkten die minimal für das Modell erforderliche Anzahl von Punkten auswählen
 - Nachprüfen, wieviele Punkte zu dem geschätzten Modell passen
 - Das Modell mit den meisten unterstützenden Datenpunkten auswählen
 - Alle nicht unterstützenden Daten ignorieren und Modellanpassung mit den passenden Daten durchführen

M. A. Fischler and R. C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". *Comm. of the ACM* **24**: 381--395.

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes
 Sample bekommen
- Antwort: $1 (1 (1 e)^s)^N = p$

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes Sample bekommen

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Wahrscheinlichkeit einen Inlier zu ziehen

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes
 Sample bekommen

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Wahrscheinlichkeit s Inlier nacheinander zu ziehen

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes
 Sample bekommen

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Wahrscheinlichkeit mindestens einen Outlier zu erwischen: Sample ist "verschmutzt".

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes
 Sample bekommen

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Wahrscheinlichkeit N verschmutzter Samples

- Frage, wie oft müssen wir Samples ziehen?
 - e: Wahrscheinlichkeit dass ein Punkt ein Outlier ist
 - s: Anzahl (minimal) erforderlicher Punkte im Sample
 - N: Anzahl der Samples (wollen wir ausrechnen)
 - p: Gewünschte Wahrscheinlichkeit, dass wir ein gutes
 Sample bekommen

$$1 - (1 - (1 - e)^{s})^{N} = p$$

Wahrscheinlichkeit mindestens ein reines Sample zu erhalten

Wahl von N so, dass mit p=99% mindestens 1 Sample keine Outlier enthält.

$$(1 - (1 - e)^s)^N = 1 - p$$

$$N = \frac{\log(1-p)}{\log(1-(1-e)^{s})}$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

- 12 Punkte
- Samplegröße s = 2
- Ausreißer: 2 -> e = 1/6
- N=5: p=99% dass mindestens ein reines Sample gezogen wird
- Bei 66 Punktpaaren
- Auch andere Abbruchkriterien denkbar (viel Literatur)

RANSAC für Bildkorrespondenzen

Eckendetektion: Finde Punkte, die sich gut vergleichen lassen

Multiple View Geometry in Computer Vision Richard Hartley and Andrew Zisserman, Cambridge University Press, Second Edition, 2004.

RANSAC für Bildkorrespondenzen

Ebenenfit mit RANSAC

- Eine Ebene ist gegeben durch 3 Punkte: a,b,c
 - Ebenennormale n, Abstand der Ebene vom Ursprung d
 - Abstand des Punktes P von der Ebene

$$e = \frac{\mathbf{P} \cdot \mathbf{n}}{|\mathbf{n}|} - d$$

Ebenenfit mit RANSAC

Trennung von Tisch und Objekten

- Subtraktion aller Punkte in und unter der Tischebene von der Gesamtpunktewolke
 - Es bleibt eine Punktewolke, die alle Objektepunkte enthält

Extraktion der Einzelobjekte

- Pro Objekt gibt es eine zusammenhängende Teil-Punktewolke
 - Punkte, deren minimaler euklidischer Abstand untereinander kleiner als der zu den Nachbarobjekten ist
- Segmentierung mit dem sogenannten "Region growing"
 - Andere Möglichkeit z.B. k-Means

Segmentierung der Objekte

Extraktion euklidischer Cluster (engl. "Haufen") durch "Region Growing":

- 1. Ausgangspunkt ist eine Menge von Punkten P
- Erzeuge eine leere Liste von Clustern C und eine Liste von zu überprüfenden Punkte Q
- 3. Für jeden Punkt $p_i \in P$ führe die folgenden Schritte aus
 - Füge den Punkt p_i in die Liste zu überprüfender Punkte Q
 - Für jeden Punkt $p_i \in Q$
 - Suche nach der Menge aller Nachbarn N_{jk} von p_{jk} deren Abstand zu p_{jk} kleiner ist als t
 - Für jeden Nachbar $n \in N_{jk}$ prüfe, ob dieser schon verarbeitet wurde, falls nicht, füge ihn zu Q hinzu
 - Wenn alle Punkte in Q bearbeitet wurden, füge Q der Liste der Cluster C hinzu und dann Q zurück

Der Algorithmus terminiert wenn alle Punkte $p_i \in P$ bearbeitet wurden und jetzt Teil eines der Cluster C sind

Vermessung und Lagebestimmung

- 2D Position auf dem Tisch: x,y
 - Relativ zur Tischebene
 - Rotationssymmetrie
- Vereinfachte Objektgeometrie
 - 2 Radien, 3 Höhen

- Anpassung an Objektpunktewolke
 - Kleinste Quadrate
 - Optimierung über alle 7 Parameter

Vermessung und Lagebestimmung

Was lernen wir jetzt daraus?

- Wahrnehmung: Extrahiert strukturierte Information aus unstrukturierten Sensordaten
 - Anzahl vorhandener Objekte
 - Position und Formparameter für jedes Objekt
- Das beschriebene Vorgehen ist nur eine von vielen Möglichkeiten, aber recht typisch
 - Modellannahmen: Einzelne Objekte auf Tischebene aufrechtstehend, rotationssymmetrisch, "flaschenförmig"

Was lernen wir jetzt daraus?

- Starke Dimensionsreduktion durch Wahl der Objekt- und Szenenmodellierung
 - Objektlage (senkrecht auf Tisch): 6D Pose ->
 3D Pose
 - Rotationssymmetrie: 3D Pose -> 2D Pose
 - Abstrahiertes Flaschenmodell: Form 5D
- Schätzung der verbliebenen 7D
 Parametervektoren mit verhältnismäßig vielen Sensormessungen (3D Punkte) -> erhöht die Genauigkeit
 - Siehe auch Tischebene

Was lernen wir jetzt daraus?

- Nutzt wissen über die Szene -> funktioniert nicht / schlecht bei Abweichungen von den Annahmen
 - z.B. sich (fast) berührende Flaschen stören die Segmentierung
- Aber auch wenn alles klappt: Fehler bleiben! Immer!
 - Messfehler: z.B. Objektradius niemals
 - Strukturfehler: 3 **rdose**
- bekommt beiben immer O Es bleiben immer O Es bleiben immer O Es bleiben immer veim Zylinder meter für Minimierung des Ges
 - Folge der Modellannahmen

