

Data Management, And Warehousing-Analytics Lab 2 Summer 2024

DATA MODELLING PROCESS

Teaching Assistants & Markers
Axata Darji(ax583820@dal.ca)
Bharat Shankaranarayanan (bh277785@dal.ca)
Mahsa Mousavi Diva(mahsa.msv@dal.ca)

Some content in this presentation is referred from Winter 2024 (with permission)

Data modelling

Data modelling

- A process for defining fundamental components of the database
- It is the process of creating a data model for the data to be stored in a database

Phases of Data Modelling

Data modelling flowchart

Gather	Gather enough requirements
Identify	Identify entities and attributes
Design	Design a basic conceptual model
Design	Design a logical model
Create	Finally, create the database/ Physical model

Normalization

- Process of organizing the database.
- Main objective of normalization is to:
 - 1. Reduce the redundancy,
 - 2. Simplify the queries and reduce the cost,
 - 3. Reduce/Avoid data modification issues.

Normalization Forms

Normal Form	Description
First Normal Form (1NF)	Should be in a proper format, no group values for a field and a primary key is identified.
Second Normal Form (2NF)	Should be in 1 st Normal Form and there should be no partial dependency.
Third Normal Form (3NF)	Should be in 2 nd Normal Form and there should be no transitive dependency.

FULL NAMES	PHYSICAL ADDRESS	Movies rented	SALUTATION 🕾
Janet Jones	First Street Plot No 4	Pirates of the Caribbean, Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal, Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

FULL NAMES	PHYSICAL ADDRESS	MOVIES RENTED	SALUTATION
Janet Jones	First Street Plot No 4	Pirates of the Caribbean	Ms.
Janet Jones	First Street Plot No 4	Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal	Mr.
Robert Phil	3 rd Street 34	Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

Partial Dependency

■ When we have a composite primary key and some attributes dependent only on a part of the primary key then it is a partial dependency.

FULL NAMES	PHYSICAL ADDRESS	MOVIES RENTED	SALUTATION
Janet Jones	First Street Plot No 4	Pirates of the Caribbean	Ms.
Janet Jones	First Street Plot No 4	Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal	Mr.
Robert Phil	3 rd Street 34	Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION
1	Janet Jones	First Street Plot No 4	Ms.
2	Robert Phil	3 rd Street 34	Mr.
3	Robert Phil	5 th Avenue	Mr.

MEMBERSHIP ID	Movies rented
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

Source: What is Normalization in DBMS (SQL)? 1NF, 2NF, 3NF Example (guru99.com)

Transitive Dependency

■ When an attribute is independent of the primary key but dependent on some other non-key attribute then it is transitive dependency.

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION
1	Janet Jones	First Street Plot No 4	Ms.
2	Robert Phil	3 rd Street 34	Mr.
3	Robert Phil	5 th Avenue	Mr.

MEMBERSHIP ID	Movies rented
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

Source: What is Normalization in DBMS (SQL)? 1NF, 2NF, 3NF Example (guru99.com)

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION ID
1	Janet Jones	First Street Plot No 4	2
2	Robert Phil	3 rd Street 34	1
3	Robert Phil	5 th Avenue	1

MEMBERSHIP ID	MOVIES RENTED
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

SALUTATION ID	SALUTATION	
1	Mr.	
2	Ms.	
3	Mrs.	
4	Dr.	

De-Normalization

- Refers to the process of intentionally introducing redundancy into a table structure to improve query performance
- The purpose of denormalization is to reduce the number of Joins as Joins can be expensive and slow, especially when dealing with large and complex databases.
- By de-normalizing the database, you can store frequently accessed or related data in one table, which can improve the query speed and response time.

De-Normalization Challenges

- It can increase storage space requirements, as redundant data or combined tables will need to be stored
- Update anomalies may arise when updating the data in a denormalized database, leading to insertion, deletion, or modification issues that affect the integrity and accuracy of the data.

When to do De-Normalization?

- Depends on the use case and the trade-offs involved.
- Frequent read operations and infrequent write operations
- Query efficiency rather than transactional consistency.

Transactions

- A Database transaction is a feature in the database which helps to perform one or more operations maintaining the consistency of the database.
- All the statements between the beginning and ending of a transaction can be considered as a single unit.
- While performing a Transaction, the database will be in an inconsistent state.
- Only if the transaction is committed (COMMIT;) the database's state is changed from one consistent state to other.
- Transactions that do not modify data in the tables but only fetch the required data are known as read-only transactions.
- ACID properties.

ACID properties in DBMS

Transaction Syntax

- To inform the system that a transaction is being started, we use START TRANSACTION command.
- We can perform any operation which we need inside a transaction UPDATE, INSERT, SELECT, etc.
- At the end of the transaction, we can either COMMIT the transaction or ROLLBACK the transaction.

Transaction Syntax continued...

- SET autocommit = 0;
- before the start of the transaction.
- Example:

```
INSERT INTO Student VALUES(1, "XYZ", "XYZ@dal.ca");
INSERT INTO Student VALUES(2, "ABC", "ABC@dal.ca");
INSERT INTO Student VALUES(3, "PQR", "PQR@dal.ca");
COMMIT; ROLLBACK;
```

Transaction Lifecycle: Different states in a Transaction

Image source: https://www.guru99.com/dbms-transaction-management.html

SAVEPOINT

- SAVEPOINT is like a flag which breaks down a task into several tasks.
- SAVEPOINT helps to rollback a part of the transaction.
- SAVEPOINTs are exactly like the checkpoints in the video games. We create a checkpoint when we have completed a sure or difficult task.
- The SAVEPOINTs are released after a COMMIT or ROLLBACK. However, we can use RELEASE SAVEPOINT to manually release a SAVEPOINT.
- In case of RELEASE, the SAVEPOINT is destroyed without undoing the effects of the queries executed after the SAVEPOINT was created. You cannot ROLLBACK a SAVEPOINT after RELEASE.
- In case of ROLLBACK, all queries after the SAVEPOINT are rolled back without destroying the rest of the transaction

Time for some hands-on (Transactions)

Example using SAVEPOINT

```
4
       INSERT INTO employee(emp_id, emp_name)
       VALUES (6, 'Rita');
 6
       SAVEPOINT my savepoint;
 9
       INSERT INTO employee(emp_id, emp_name)
10 •
       VALUES (7, 'Jeremy');
11
12
13 •
       ROLLBACK TO SAVEPOINT my_savepoint;
14
15 •
       INSERT INTO employee(emp_id, emp_name)
       VALUES (8, 'Jonathan');
16
17
18 •
       SELECT * FROM employee;
19
20 •
       COMMIT;
```

Transaction with rolled back Savepoint

Example using SAVEPOINT

```
START TRANSACTION;
      INSERT INTO employee(emp_id, emp_name)
       VALUES (9, 'Jimmy');
    SAVEPOINT my_savepoint;
       update employee set emp_name = 'Saville' where emp_id=9;
       RELEASE SAVEPOINT my_savepoint;
10
11 •
      INSERT INTO employee(emp_id, emp_name)
12
       VALUES (11, 'Jake');
13
14 •
       SELECT * FROM employee;
15
      COMMIT;
16 •
```

Transaction with released Savepoint

Graded Exercise

Question: Normalize Invoice Table

	NAME OF TAXABLE PARTY.		41							
InvoiceID	Date	Branch	BranchLocation	City	CustomerType	CustomerName	Gender	Product	UnitPrice	Quantity
1101	2/5/2024	1,004,008	Quinpool,Windsor,Dartmouth	Halifax	Member, Normal	Alex,Rohan,Mark	Female, Male	Phone,Battery,Cover	200,50,25	1,2,5
2104	3/3/2024	3,007,008	Dowry Street, Abbey Lane, GlenView	Toronto	Member,Normal	Suzan,Carla,Andreq	Female,Male	Code, Power bank	10,35	20,45

- 1. Normalize Invoice table to 1NF.
- 2. Normalize the 1NF tables to 2NF.
- 3. Normalize 2NF tables to 3NF.

At each normal form stage, present the resulting tables with their columns and dependencies.

4. Do you think it will be a good design decision to de-normalize the normal forms generated for the Product table in the above steps? Why/Why not? Provide a brief explanation.

Deliverables

■ For Steps 1,2 and 3

Provide diagrams showing the dependencies in the table(where applicable). This can be
a set of arrows indicating the dependencies between columns(see Figure 1).

Figure 1

 Give a brief explanation of the normalization process at each step, discussing why specific dependencies were identified(where applicable) and how the table was decomposed to adhere to that normal form.

■ For Step 4

Provide a brief explanation in paragraph or bullet point form.

Deadline: Before Sunday(19th May 2024), 11:59 pm. Please refer "Submission Guideline" in Brightspace.

Q&A

References

- D. Taylor, "What is data modelling? types (conceptual, logical, physical)," *Guru99*, 05-Jan-2023. [Online]. Available: https://www.guru99.com/data-modelling-conceptual-logical.html. [Accessed: 14-Sep-2023].
- "Database model," Wikipedia, 23-Nov-2022. [Online]. Available: https://en.wikipedia.org/wiki/Database_model. [Accessed: 14-Sep-2023].
- "What is the purpose of denormalization in relational databases?", LinkedIn[Online]. Available: https://www.linkedin.com/advice/0/what-purpose-denormalization-relational-databases-2acff. [Accessed: January 23,2024].
- "DBMS Transaction Management: ACID Properties, Schedule," Guru99 [Online]. Available at: https://www.guru99.com/dbms-transaction-management.html [Accessed 24 September 2023].
- "ACID Properties in DBMS GeeksforGeeks," GeeksforGeeks [Online]. Available at: https://www.geeksforgeeks.org/acid-properties-in-dbms/ [Accessed 24 September 2023].