

Thành viên trong nhóm:

Nguyễn Thị Vân Anh	20195949
--------------------	----------

Nguyễn Phương Khánh Linh	20195977
Tibayen inaong knami Emm	

Lê Thi Hồng Trang	20196000
-------------------	----------

Nguyễn Thị Thu Thủy 20195996

Đào Thị Phương Nga 20195983

PHƯƠNG PHÁP LẶP NEWTON

Ý TƯỞNG

Cho $a \in R(a \neq 0)$, tìm \mathcal{X} thỏa mãn $ax = 1 \Rightarrow a = \frac{1}{x}$

$$\text{D} \, \text{\'at} \, f\left(x\right) = a - \frac{1}{x} = 0$$

Áp dụng phương pháp Newton (tiếp tuyến) đối với phương trình trên để tìm nghiệm gần đúng $\boldsymbol{\mathcal{X}}$

NỘI DUNG PHƯƠNG PHÁP

Cho A là ma trận vuông cấp n, không suy biến $(\det A \neq 0)$

Trong (2) coi a là ma trận A, x là ma trận X

Cần tìm ma trận X là ma trận nghịch đảo của A sao cho AX = XA = E

Ta có công thức lặp suy ra từ (2) như sau:

$$X_{k+1} = X_k (2E - AX_k)$$
 với $k = 0, 1, 2, ...$

Trong đó E là ma trận đơn vị cùng cấp.

ĐIỀU KIỆN HỘI TỤ

$$G_{k} = E - AX_{k}, \forall k = 0, 1, 2, ...$$

$$G_{k} = E - AX_{k} = E - AX_{k-1} (2E - AX_{k-1})$$

$$= E - 2AX_{k-1} + (AX_{k-1})^{2} = (E - AX_{k-1})^{2} = G_{k-1}^{2}$$

$$G_{k} = G_{k-1}^{2} = G_{k-2}^{4} = ... = G_{0}^{2^{k}}$$

Mặt khác:
$$A^{-1} - X_k = A^{-1} (E - AX_k) = A^{-1} G_k = A^{-1} G_0^{2^k}$$

Suy ra:
$$||A^{-1} - X_k|| \le ||A^{-1}|| ||G_0||^{2^k}$$

Nếu:
$$\|G_0\| < 1$$
 Thì: $\|A^{-1} - X_k\| \to 0$ khi $k \to \infty$ hay $\lim_{k \to \infty} X_k = A^{-1}$

Điều kiện hội tụ của quá trình lặp là: $||G_0|| = ||E - AX_0|| < 1$

CÔNG THỨC SAI SỐ

Giả sử:
$$||G_0|| \le q < 1$$

Ta lại có:
$$G_0 = E - AX_0 \Leftrightarrow X_0 = A^{-1} \left(E - G_0 \right)$$
$$\Leftrightarrow A^{-1} = X_0 \left(E - G_0 \right)^{-1}$$
$$\Leftrightarrow A^{-1} = X_0 \left(E + G_0 + G_0^2 + \dots \right)$$

$$\Rightarrow ||A^{-1}|| \le ||X_0|| (1 + q + q^2 +) = ||X_0|| \frac{1}{1 - q}$$

Công thức sai số là:
$$||A^{-1} - X_k|| \le \frac{||X_0||}{1-q} ||G_0||^{2^k} = \frac{||X_0||}{1-q} q^{2^k}$$

CÁC PHƯƠNG PHÁP CHỌN XẤP XỈ ĐẦU VÀO

- Chọn X₀ thông qua các phương pháp tính đúng
 Đầu tiên tìm ma trận nghịch đảo thông qua các phương pháp tính đúng như: Gauss-Jordan
 Cholesky,... sau đó sử dụng phương pháp Newton để đánh giá sai số.
- Chọn X_0 thông qua khai triển SVD

Dựa trên khai triển SVD ta có thể chọn
$$X_0 = \frac{A^T}{\|A\|_1 \|A\|_{\infty}}$$

Ta sẽ thử ngược lại xem với X_0 như trên thì có thỏa mãn điều kiện hội tụ $||G_0|| < 1$ không.

CÁC PHƯƠNG PHÁP CHỌN XẤP XỈ ĐẦU VÀO

$$E = (E - G_{0})(E - G_{0})^{-1}$$

$$\Rightarrow (E - G_{0})^{-1} = E + G_{0}(E - G_{0})^{-1}$$

$$\Rightarrow \|(E - G_{0})^{-1}\| \le \|E\| + \|G_{0}\| \|(E - G_{0})^{-1}\|$$

$$1 \le \frac{\|E\|}{\|(E - G_{0})^{-1}\|} + \|G_{0}\| \Rightarrow \|(E - G_{0})^{-1}\| \le \frac{\|E\|}{1 - \|G_{0}\|}$$
Mà:
$$G_{0} = E - AX_{0}$$

$$\Rightarrow (AX_{0})^{-1} = (E - G_{0})^{-1}$$

$$\Rightarrow A^{-1} = X_{0}(E - G_{0})^{-1}$$
Suy ra:
$$\|A^{-1}\| \le \|X_{0}\| \|(E - G_{0})^{-1}\|$$

CÁC PHƯƠNG PHÁP CHỌN XẤP XỈ ĐẦU VÀO

Thay (7) vào bất đẳng thức trên:

$$||A^{-1}|| \le ||X_0|| \frac{||E||}{1 - ||G_0||}$$

$$\Rightarrow 1 - ||G_0|| \le ||X_0|| \frac{||E||}{||A^{-1}||}$$

$$\Rightarrow c \left(1 - ||G_0||\right) = ||X_0|| \frac{||E||}{||A^{-1}||} (c \ge 1)$$

$$\Rightarrow ||G_0|| = 1 - c' ||X_0|| \frac{||E||}{||A^{-1}||} (c' = \frac{1}{c} \le 1)$$

Như vậy, nếu $\{X_k\}$ hội tụ thì $\|G_0\|$ có dạng như trên.

Input: Ma trận A, ε

Output: Ma trận A^{-1} là ma trận nghịch đảo.

Bước 1: Nhập A, ε

Buốc 2: Tính
$$X_0 = \frac{A^T}{\|A\|_1 \|A\|_{\infty}}$$

Bước 3: Gán

$$q := ||E - AX_0||$$
 $k := 0$ $X := X_0$

 $q\coloneqq \|E-AX_0\| \quad k\coloneqq 0 \quad X\coloneqq X_0$ **Bước 4**: Kiểm tra điều kiện, chừng nào $\frac{\|X_0\|q^{2^k}}{1-\alpha}>\varepsilon$ còn đúng thì tiếp tục thực hiện gán X := X(2E - AX)

$$k := k + 1$$

Sai thì chuyển sang bước 5.

Bước 5: Đưa ra X là chính là ma trận nghịch đảo.

PHƯƠNG PHÁP LẶP JACOBI

Ý TƯỞNG

• Tương tự phương pháp lặp Jacobi giải hệ phương trình AX = b, ta giải phương trình AX = E với *ma trận A chéo trội*.

• Lặp dãy ma trận: Cho xấp xỉ đầu vào X_0 và tính theo công thức lặp:

$$X_{k} = \alpha X_{k-1} + \beta$$
 $k=1,2,...$

Nếu dãy hội tụ thì giới hạn là nghiệm cần tìm.

XÂY DỰNG CÔNG THỨC

$$T = diag\left\{\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{nn}}\right\}$$

Với $a_{11}, a_{12}, ..., a_{nn}$ là các phần tử trên đường chéo chính của A.

A là ma trận chéo trội hàng:

$$AX = E \Rightarrow TAX = TE \Rightarrow X = X - TAX + TE \Rightarrow X = (E - TA)X + TE$$

Công thức lặp:

XÂY DỰNG CÔNG THỨC

A là ma trận chéo trội cột:

Đặt
$$X = TY$$
, $D = T^{-1}$

$$AX = E \Leftrightarrow ATY = E \Leftrightarrow Y = Y - ATY + E \Leftrightarrow Y = (E - AT)Y + E$$

Công thức lặp:

$$\begin{aligned} Y_k &= (E-TA)Y_{k-1} + E \Leftrightarrow TY_k = T(E-TA)DTY_{k-1} + TE \\ &\Leftrightarrow X_k = (E-TA)X_{k-1} + T \end{aligned}$$

ĐIỀU KIỆN HỘI TỤ

Phương pháp hội tụ nếu $\|E-TA\|<1$, tức là ma trận A phải là ma trận chéo trội

CÔNG THỰC SAI SỐ

Trường hợp ma trận chéo trội hàng: đặt $\alpha = E - TA$ và $\lambda = 1$, tồn tại q để $\|\alpha\|_{\infty} \le q < 1$

Trường hợp ma trận chéo trội cột: đặt $\alpha' = E - AT$ và $\lambda = \frac{\max |a_{ii}|}{\min |a_{ii}|}$, tồn tại q để $\|\alpha'\|_1 \le q < 1$

Công thức sai số:

$$||X_k - X^*|| \le \lambda \frac{q}{1 - q} ||X_k - X_{k-1}||$$

$$||X_k - X^*|| \le \lambda \frac{q^k}{1 - q} ||X_1 - X_0||$$

Input: Ma trận A chéo trội, sai số ε .

Output: Ma trận A^{-1} là ma trận nghịch đảo.

Bước 1: Nhập A, &

Bước 2: Kiểm tra tính chéo trội của ma trận A

Nếu p=1, ma trận A chéo trội hàng

Nếu p = -1, ma trận A chéo trội cột

Bước 3: Tìm ma trận đường chéo $T = diag\left\{\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{nn}}\right\}$

Buốc 4: Gán $\alpha := E - TA$, $\alpha' := E - AT$

Bước 5: Tính q

Nếu
$$p=1$$
, $q = \|\alpha\|_{\infty}$

Nếu
$$p = -1, q = \|\alpha'\|_1$$

Bước 6: Xác định λ

Nếu
$$p=1$$
, $\lambda=1$

Nếu
$$p = -1$$
, $\lambda = \frac{\max |a_{ii}|}{\min |a_{ii}|}$

Bước 7: Thực hiện lặp

Đánh giá tiên nghiệm:

Gán
$$q_k := 1, X := X_0$$

Chừng nào $\frac{\lambda q_k \left\| (\alpha X_0 + T) - X_0 \right\|}{1 - q} > \varepsilon$ còn đúng thì thực hiện gán:

(công thức chuẩn tùy thuộc vào p)

$$X := \alpha X + T$$

$$q_k \coloneqq q_k * q$$

Sai thì trả về X.

Bước 7: Thực hiện lặp

Đánh giá hậu nghiệm:

Gán
$$X_t := X_0, X_s := \alpha X_0 + T$$

Chừng nào $\frac{\lambda q \|X_s - X_t\|}{1 - q} > \varepsilon \text{ còn đúng thì tiếp tục thực hiện gán:}$

(công thức chuẩn tùy thuộc vào p)

$$X_{t} := X_{s}$$

$$X_{s} := \alpha * X_{t} + T$$

Sai thì trả về X_s

PHƯƠNG PHÁP LĂP GAUSS-SEIDEL

Ý TƯỞNG

- Dựa trên sự phát triển phương pháp lặp Jacobi, muốn tăng tốc độ hội tụ, giảm số lần lặp.
- Sử dụng ngay kết quả vừa tính được tại bước k để tính các thành phần khác của bước k, thành phần nào chưa được tính thì mới lấy ở bước k-1.

XÂY DỰNG CÔNG THỰC

Công thức lặp tính toán:
$$X_{k+1} = LX_{k+1} + UX_k + T$$

Hay

$$X_{i}^{(k+1)} = \sum_{j=1}^{i-1} \alpha_{ij} X_{j}^{(k+1)} + \sum_{j=i+1}^{n} \alpha_{ij} X_{j}^{(k)} + T_{i} \qquad i = \overline{1, n}$$

Với
$$T = diag\left(\frac{1}{a_{ii}}\right), i = \overline{1m}$$
 và $D = diag\left(a_{ii}\right)$ ta có:

$$A = D - L - U$$

$$\Rightarrow TA = TD - TL - TU$$

Ta có:

$$AX = E$$

$$\Rightarrow TAX = TE \Rightarrow (E - TL - TU)X = T \Rightarrow X = (TL + TU)X + T$$

XÂY DỰNG CÔNG THỨC

Lại có

$$X_{k+1} = TUX_k + TLX_{k+1} + T$$

$$\Leftrightarrow X_{k+1} - TLX_{k+1} = TUX_k + T$$

$$\Leftrightarrow (E - TL)X_{k+1} = TUX_k + TE$$

$$\Leftrightarrow D(E-TL)X_{k+1} = DTUX_k + DTE$$

$$\Leftrightarrow (D-L)X_{k+1} = UX_k + E$$

$$\Leftrightarrow X_{k+1} = (D-L)^{-1}[UX_k + E]$$

ĐIỀU KIỆN HỘI TỤ

$$X_{k+1} = \left(D - L\right)^{-1} \left[UX_k + E\right]$$

Đặt: $M = (D-L)^{-1}U$, M là ma trận lặp.

Phương pháp Gauss-Seidel hội tụ tới nghiệm đúng X^* khi $\|M\| < 1$ tức là ma trận A phải là ma trận chéo trội.

CÔNG THỰC SAI SỐ

Trường hợp chéo trội hàng:
$$\alpha = E - TA$$
, $q = \max_{1 \le i \le n} \frac{\sum_{j=i}^{n} |\alpha_{ij}|}{1 - \sum_{j=1}^{i-1} |\alpha_{ij}|} \le ||\alpha||_{\infty} < 1$, $S = 0$

Trường hợp chéo trội cột: $\alpha' = E - AT, q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{l} |\alpha'_{ji}|}{1 - \sum_{i=1}^{n} |\alpha'_{ji}|} \le \|\alpha'\|_{1} < 1S = \max_{1 \le i \le n} \sum_{j=i+1}^{n} |\alpha'_{ji}|$

Sai số giá trị tuyệt đối:
$$||X_k - X^*|| \le \frac{q}{(1-q)(1-S)} ||X_k - X_{k-1}||$$

$$||X_k - X^*|| \le \frac{q^k}{(1-q)(1-S)} ||X_1 - X_0||$$

CÔNG THỰC SAI SỐ

Sai số tương đối:

$$\frac{\left\|X_{k+1} - X_k\right\|}{\left\|X_{k+1}\right\|} \le \delta$$

Input: Ma trận chéo trội A, sai số

Output: Ma trận A^{-1} là ma trận nghịch đảo

Bước 1: Nhập A, \mathcal{E}

Bước 2: Kiểm tra tính chéo trội của ma trận A

Bước 3: Tìm ma trận đường chéo $T = diag\left\{\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{nn}}\right\}$

Buốc 4:
$$\alpha := E - TA$$
 $\alpha' = E - AT$

Bước 5: Nếu ma trận A chéo trội hàng: S := 0, $q = \max_{1 \le i \le n} \frac{\sum_{j=i}^{n} |\alpha_{ij}|}{1 - \sum_{j=1}^{i-1} |\alpha_{ij}|}$

Nếu ma trận A chéo trội cột:
$$S := \max_{1 \le i \le n} \sum_{j=i+1}^{n} \left| \alpha'_{ji} \right|, \qquad q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{i} \left| \alpha'_{ji} \right|}{1 - \sum_{j=i+1}^{n} \left| \alpha'_{ij} \right|}$$

Bước 6: Thực hiện lặp

Đánh giá tiên nghiệm

- Gán $q_k \coloneqq 1, X \coloneqq X_0$
- Tính X_1 : Gán X_1 là ma trận không cấp n

$$X_{1(row_{-}i)} := \sum_{j=1}^{i-1} \alpha_{ij} * X_{1(row_{-}j)} + \sum_{j=i+1}^{n} \alpha_{ij} * X_{0(row_{-}j)} + T_{i}, \quad i = \overline{1,n}$$

• Chừng nào $\frac{q_k * \|X_1 - X_0\|}{(1 - q) * (1 - S)} > \varepsilon \text{ còn đúng thì thực hiện gán}$

TínhX: Gán X_{next} là ma trận không cấp n

$$X_{next(row_{-}i)} := \sum_{j=1}^{i-1} \alpha_{ij} * X_{next(row_{-}j)} + \sum_{j=i+1}^{n} \alpha_{ij} * X_{(row_{-}j)} + T_{i}, \quad i = \overline{1,n}$$

$$X := X_{next}$$

$$q_k \coloneqq q_k * q$$

Nếu sai trả về X.

Đánh giá hậu nghiệm

- $\operatorname{Gán} X_{old} := X_0$
- Tính X_{new} : Gán X_{next} là ma trận không cấp n

$$X_{next(row_{-}i)} := \sum_{j=1}^{i-1} \alpha_{ij} * X_{1(row_{-}j)} + \sum_{j=i+1}^{n} \alpha_{ij} * X_{0(row_{-}j)} + T_{i}$$

$$X_{new} := X_{next}$$

• Chừng nào $\frac{q*\|X_{new}-X_{old}\|}{1-q}>_{\mathcal{E}}$ còn đúng thì thực hiện gán

$$X_{old} \coloneqq X_{new}$$

Tính X_{new} : Gán X_{new} là ma trận không cấp n

$$X_{new(row_i)} \coloneqq \sum_{j=1}^{i-1} \alpha_{ij} * X_{new(row_j)} + \sum_{j=i+1}^{n} \alpha_{ij} * X_{old(row_j)} + T_i$$

$$X_{new} := X_{next}$$

Nếu sai trả về X.

ĐÁNH GIÁ CÁC PHƯƠNG PHÁP

	LĂP JACOBI	LĂP GAUSS-SEILDEL	LĂP NEWTON
ƯU ĐIỂM	 Tiết kiệm bộ nhớ. Có thể tính toán song song. Giá trị chọn xấp xỉ ban đầu là tùy ý. 	 Tốc độ hội tụ lớn hơn hoặc bằng Jacobi Giá trị chọn xấp xỉ ban đầu là tùy ý. 	- Tốc độ hội tụ rất cao, nhanh hơn nhiều so với các phương pháp
NHƯỢC ĐIỂM	 Chỉ sử dụng cho ma trận chéo trội. Tốc độ hội tụ chậm. 	Chỉ sử dụng cho ma trận chéo trội.Không tính toán song song.	- Khó tìm xấp xỉ đầu vào, không được phép chọn tùy ý.