LigGPT: Molecular Generation using a Transformer-Decoder Model

Viraj Bagal,^{†,‡} Rishal Aggarwal,[†] P. K. Vinod,[†] and U. Deva Priyakumar*,[†]

†International Institute of Information Technology, Hyderabad 500 032, India ‡Indian Institute of Science Education and Research, Pune 411 008, India

E-mail: deva@iiit.ac.in

List of Tables

S1	Comparison of CharRNN and LigGPT on the generation of 10,000 molecules	
	by training only on 10% of the MOSES train split. CharRNN and LigGPT	
	have 11.9 M and 6.3 M trainable parameters respectively	1
S2	$Scaffold + Single \ property \ (logP, \ TPSA) \ conditional \ training \ on \ MOSES$	
	dataset. Temperature 1.6 was used. Metric calculated only for molecules	
	having tanimoto similarity of the scaffold of the generated molecule and the	
	scaffold used for condition greater than 0.8. (a) $O=C(Cc1cccc1)NCc1ccccc1$	
	(b) c1cnc2[nH]ccc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d) c1ccc(-n2cnc3ccccc32)cc1	
	(e) O=C(c1cc[nH]c1)N1CCN(c2cccc2)CC1	1

S3	$Scaffold \ + \ Multi-property \ conditional \ training \ on \ MOSES \ dataset. \ Tem-$	
	perature 1.6 was used. Metric calculated only for molecules having tani-	
	moto similarity of the scaffold of the generated molecule and the scaffold	
	used for condition greater than 0.8. (a) O=C(Cc1ccccc1)NCc1ccccc1 (b)	
	c1cnc2[nH]ccc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d) c1ccc(-n2cnc3ccccc32)cc1 (e)	
	O=C(c1cc[nH]c1)N1CCN(c2cccc2)CC1 	2
List	of Figures	
S1	$Scaffolds \ from \ test \ set \ used \ for \ scaffold + property \ based \ conditioning \ results.$	3
S2	Scaffold 1: O=C(Cc1ccccc1)NCc1ccccc1. Scaffold 2: c1cnc2[nH]ccc2c1. In	
	both the subfigures, the molecule in black box is the scaffold used for con-	
	ditional generation. (a, b) 8 random generated molecules having the same	
	scaffold as scaffold 1 and 2 respectively	3
S3	Scaffold 1: O=C(Cc1ccccc1)NCc1ccccc1. Scaffold 2: c1cnc2[nH]ccc2c1. In all	
	the subfigures, the molecule in black box is the scaffold used for conditional	
	generation. (a, b) Conditioned on scaffold as well as $log P = 2$. (c, d)	
	Conditioned on scaffold as well as $SAS = 2.75$	4

Table S1: Comparison of CharRNN and LigGPT on the generation of 10,000 molecules by training only on 10% of the MOSES train split. CharRNN and LigGPT have 11.9 M and 6.3 M trainable parameters respectively.

Model	Validity	Unique	Novelty	Temperature
CharRNN	0.961	1.0	0.888	0.9
LigGPT	0.983	1.0	0.903	0.9
CharRNN	0.581	1.0	0.987	1.6
LigGPT	0.707	1.0	0.985	1.6

Table S2: Scaffold + Single property (logP, TPSA) conditional training on MOSES dataset. Temperature 1.6 was used. Metric calculated only for molecules having tanimoto similarity of the scaffold of the generated molecule and the scaffold used for condition greater than 0.8. (a) O=C(Cc1cccc1)NCc1cccc1 (b) c1cnc2[nH]cc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d) c1ccc(-n2cnc3cccc32)cc1 (e) O=C(c1cc[nH]c1)N1CCN(c2cccc2)CC1

Cond	Validity	Unique	Novelty	MAD	Cond	Validity	Unique	Novelty	MAD
$\overline{\text{(a)}+\text{logP}}$	0.893	0.812	1.0	0.145	$\overline{\text{(a)+TPSA}}$	0.906	0.870	1.0	2.303
(b)+logP	0.712	0.975	1.0	0.151	(b)+TPSA	0.692	0.961	1.0	3.239
${\rm (c)}{+}{\rm logP}$	0.826	0.922	1.0	0.146	(c)+TPSA	0.894	0.874	1.0	2.439
(d)+logP	0.891	0.858	1.0	0.160	(d)+TPSA	0.902	0.891	1.0	3.178
$\rm (e) + log P$	0.898	0.461	1.0	0.125	(e)+TPSA	0.882	0.431	1.0	3.986
(a)+SAS	0.812	0.934	1.0	0.124	(a)+QED	0.872	0.951	1.0	0.05
(b)+SAS	0.726	0.775	1.0	0.174	(b)+QED	0.702	0.98	1.0	0.052
(c)+SAS	0.698	0.862	1.0	0.167	(c)+QED	0.849	0.947	1.0	0.045
(d)+SAS	0.823	0.910	1.0	0.173	(d)+QED	0.905	0.933	1.0	0.072
(e)+SAS	0.820	0.541	1.0	0.125	(e)+QED	0.824	0.571	1.0	0.081

Table S3: Scaffold + Multi-property conditional training on MOSES dataset. Temperature 1.6 was used. Metric calculated only for molecules having tanimoto similarity of the scaffold of the generated molecule and the scaffold used for condition greater than 0.8. (a) O=C(Cc1cccc1)NCc1cccc1 (b) c1cnc2[nH]ccc2c1 (c) c1ccc(-c2ccnnc2)cc1 (d) c1ccc(-n2cnc3cccc32)cc1 (e) O=C(c1cc[nH]c1)N1CCN(c2cccc2)CC1

-	Cond	Validit	y Uniqu	e Novelt	ty MAD_TPS	A MAD_log	$\overline{\mathrm{P}}$
$\overline{\text{(a)+TPSA+logP}}$			0.737	1.0	3.667	0.249	
${\rm (b) + TPSA + logP}$		0.693	0.931	1.0	4.117	0.199	
(c)+TPSA+logP		0.830	0.852	1.0	3.903	0.152	
(d)+TPSA+logP		0.773	0.818	1.0	4.617	0.204	
	(e)+TPSA+logP		0.511	0.999	4.046	0.242	
-	Cond		y Uniqu	e Novelt	ty MAD_SAS	MAD_logP	
	$\overline{\text{(a)+SAS+logP}}$	0.727	0.818	1.0	0.146	0.255	_
	(b)+SAS+logP	0.591	0.649	1.0	0.193	0.191	
	(c)+SAS+logP	0.75	0.711	1.0	0.196	0.183	
	(d)+SAS+logP	0.748	0.731	1.0	0.171	0.246	
	(e)+SAS+logP	0.847	0.439	1.0	0.153	0.203	
-	Cond	Validit	y Uniqu	e Novelt	ty MAD_TPS	A MAD_SA	S
-	(a)+TPSA+SAS	0.751	0.901	1.0	3.947	0.192	
	(b)+TPSA+SAS	0.649	0.744	1.0	5.120	0.226	
	(c)+TPSA+SAS	0.683	0.803	1.0	4.074	0.210	
	(d)+TPSA+SAS	0.733	0.861	1.0	4.345	0.199	
	(e)+TPSA+SAS	0.838	0.482	1.0	3.827	0.162	
	Cond	Validity	Unique	Novelty	MAD_TPSA	MAD_logP	MAD_SAS
(a)+TPS	SA + logP + SAS	0.618	0.681	1.0	4.935	0.551	0.311
(b)+TPS	SA + logP + SAS	0.653	0.649	1.0	5.325	0.238	0.262
(c)+TPS	$_{\mathrm{SA+logP+SAS}}$	0.582	0.620	1.0	5.318	0.292	0.242
(d)+TPS	SA + logP + SAS	0.530	0.646	1.0	5.559	0.531	0.309
(e)+TPS	SA + logP + SAS	0.754	0.388	1.0	5.729	0.403	0.241
						•	

(a) Scaffold 1

(b) Scaffold 2

(c) Scaffold 3

(d) Scaffold 4

(e) Scaffold 5

Figure S1: Scaffolds from test set used for scaffold + property based conditioning results.

Figure S2: Scaffold 1: O=C(Cc1cccc1)NCc1cccc1. Scaffold 2: c1cnc2[nH]ccc2c1. In both the subfigures, the molecule in black box is the scaffold used for conditional generation. (a, b) 8 random generated molecules having the same scaffold as scaffold 1 and 2 respectively.

Figure S3: Scaffold 1: O=C(Cc1cccc1)NCc1cccc1. Scaffold 2: c1cnc2[nH]ccc2c1. In all the subfigures, the molecule in black box is the scaffold used for conditional generation. (a, b) Conditioned on scaffold as well as logP = 2. (c, d) Conditioned on scaffold as well as SAS = 2.75.