This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 5: C12N 15/13, 15/62, C12P 21/08 C07K 13/00, 15/28, C12N 1/21 G01N 33/68, 33/574	A2	(11) International Publication Number (43) International Publication Date:	19 August 1993 (19.08.93
21) International Application Number:	PCT/US93/01 ary 1993 (05.02	Exchange Place, 53 Stat	; Testa, Hurwitz & Thibeauli e Street, Boston, MA 0210
(30) Priority data: 831,967 6 February 1992	2 (06.02.92)	(81) Designated States: AU, CA, CH, DE, DK, ES, FR, G PT, SE).	JP, European patent (AT, BI B, GR, IE, IT, LU, MC, NI
(71) Applicants: CREATIVE BIOMOLECU US]; 35 South Street, Hopkinton, MA TUS ONCOLOGY CORPORATION Horton Street, Emeryville, CA 94608-2	N 01748 (US). (N (US/US): 4	E- Published	report and to be republishe
(72) Inventors: HUSTON, James, S.; Five Inut Hill, MA 02167 (US). HOUSTON, Crest Drive, Oakland, CA 94602 (US).; 1248 Truman Street, Redwood City OPPERMANN, Hermann; 23 Sui Medway, MA 02053 (US).	, L., L. ; 1901 O . RING, David v, CA 94061 (U	k- B. S).	
(54) Title: BIOSYNTHETIC BINDING PF	OTEIN FOR	ANCER MARKER	
(34) Mac. Bloothy Metre Birds 17			4
		afin :	
	mmm	- sFv	

(57) Abstract

Disclosed is a single-chain Fv (sFv) polypeptide defining a binding site which exhibits the immunological binding properties of an immunoglobulin molecule which binds c-erbB-2 or a c-erbB-2-related tumor antigen, the sFv includes at least two polypeptide domains connected by a polypeptide linker spanning the distance between the C-terminus of one domain and the N-terminus of the other, the amino acid sequence of each of the polypeptide domains includes a set of complementarity determining regions (CDRs) interposed between a set of framework regions (FRs), the CDRs conferring immunological binding to the c-erbB-2 or c-erbB-2-related tumor antigen.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					•
AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gahon ,	MW	Malawi
88	Barbados	CB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BC	Bulgaria	HU	Hungary	Pł.	Poland
BJ	Benin	1E	Ireland	PT	Portugal
BR	Brazil	₽T `	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KK	Republic of Korea	SK	Slovak Republic
CI	Cote d'Ivoire	ΚZ	Kazaklistan	SN	Senegal .
CM	Cameroon .	1.}	Licehtenstein	SU	Soviet Union
CS	Czechoslovakia -	LK	Sri Lanka	TD	Chad
C2	Czech Republic	1.0	Luxembourg	TG	Togo
ÐE	Germany	MC	Monaco	U٨	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	ML.	Mali	VN	Vict Nam
FI	Finland	MN	Mongolia		

PCT/US93/01055

BIOSYNTHETIC BINDING PROTEIN FOR CANCER MARKER

This invention relates in general to novel biosynthetic compositions of matter and, specifically, to biosynthetic antibody binding site (BABS) proteins, and conjugates thereof. Compositions of the invention are useful, for example, in drug and toxin targeting, imaging, immunological treatment of various cancers, and in specific binding assays, affinity purification schemes, and biocatalysis.

10

Background of the Invention

Carcinoma of the breast is the most common malignancy among women in North America, with 130,000 new cases in 1987. Approximately one in 11 women 15 develop breast cancer in their lifetimes, causing this malignancy to be the second leading cause of cancer death among women in the United States, after lung cancer. Although the majority of women with breast cancer present with completely resectable disease, 20 metastatic disease remains a formidable obstacle to cure. The use of adjuvant chemotherapy or hormonal therapy has definite positive impact on disease-free survival and overall survival in selected subsets of women with completely resected primary breast cancer, 25 but a substantial proportion of women still relapse with metastatic disease (see, e.g., Fisher et al. (1986) J. Clin. Oncol. 4:929-941; "The Scottish trial", Lancet (1987) 2:171-175). In spite of the regularly induced objective responses induced by chemotherapy and 30 hormonal therapy in appropriately selected patients, cure of metastatic breast cancer has not been achieved (see e.g., Aisner, et al. (187) J. Clin. Oncol.

20

5:1523-1533). To this end, many innovative treatment programs including the use of new agents, combinations of agents, high dose therapy (Henderson, ibid.) and increased dose intensity (Kernan et al. (1988) Clin. Invest. 259:3154-3157) have been assembled. Although improvements have been observed, routine achievement of complete remissions of metastatic disease, the first step toward cure, has not occurred. There remains a pressing need for new approaches to treatment.

The Fv fragment of an immunoglobulin molecule from IgM, and on rare occasions IgG or IgA, is produced by proteolytic cleavage and includes a non-covalent $V_{\rm H}$ -V, heterodimer representing an intact antigen binding site. A single chain Fv (sFv) polypeptide is a covalently linked $V_H^-V_L^-$ heterodimer which is expressed from a gene fusion including V_H - and V_L -encoding genes connected by a peptide-encoding linker. See Huston et al., 1988, Proc. Nat. Aca. Sci. 85: 5879, hereby incorporated by reference.

U.S. Patent 4,753,894 discloses murine monoclonal antibodies which bind selectively to human breast cancer cells and, when conjugated to ricin A chain, exhibit a TCID 50% against at least one of MCF-7, CAMA-1, SKBR-3, or BT-20 cells of less than about 10 nM. 25 The SKBR-3 cell line is recognized specifically by the monoclonal antibody 520C9. The antibody designated 52009 is secreted by a murine hybridoma and is now known to recognize c-erbB-2 (Ring et al., 1991, Molecular Immunology 28:915).

Summary of the Invention

The invention features the synthesis of a class of novel proteins known as single chain Fv (sFv) polypeptides, which include biosynthetic single polypeptide chain binding sites (BABS) and define a binding site which exhibits the immunological binding properties of an immunoglobulin molecule which binds c-erbB-2 or a c-erbB-2-related tumor antigen.

The sFv includes at least two polypeptide domains 10 connected by a polypeptide linker spanning the distance between the carboxy (C) - terminus of one domain and the amino (N)- terminus of the other domain, the amino acid sequence of each of the polypeptide domains including a set of complementarity determining regions (CDRs) interposed between a set of framework regions (FRs), the CDRs conferring immunological binding to c-erbB-2 or a c-erbB-2 related tumor antigen.

In its broadest aspects, this invention features single-chain Fv polypeptides including biosynthetic 20 antibody binding sites, replicable expression vectors prepared by recombinant DNA techniques which include and are capable of expressing DNA sequences encoding these polypeptides, methods for the production of these polypeptides, methods of imaging a tumor expressing 25 c-erbB-2 or a c-erbB-2-related tumor antigen, and methods of treating a tumor using targetable therapeutic agents by virtue of conjugates or fusions with these polypeptides.

As used herein, the term "immunological binding" or "immunologically reactive" refers to the non-30 covalent interactions of the type that occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific; "c-erbB-2" refers to a

protein antigen expressed on the surface of tumor cells, such as breast and ovarian tumor cells, which is an approximately 200,000 molecular weight acidic glycoprotein having an isoelectric point of about 5.3 and including the amino acid sequence set forth in SEQ ID NOS:1 and 2. A "c-erbB-2-related tumor antigen" is a protein located on the surface of tumor cells, such as breast and ovarian tumor cells, which is antigenically related to the c-erbB-2 antigen, i.e., 10 bound by an immunoglobulin that is capable of binding the c-erbB-2 antigen, examples of such immunoglobulins being the 520C9, 741F8, and 454C11 antibodies; or which has an amino acid sequence that is at least 80% homologous, preferably 90% homologous, with the amino 15 acid sequence of c-erbB-2. An example of a c-erbB-2 related antigen is the receptor for epidermal growth factor.

An sFv CDR that is "substantially homologous with" an immunoglobulin CDR retains at least 70%, preferably 80% or 90%, of the amino acid sequence of the immunoglobulin CDR, and also retains the immunological binding properties of the immunoglobulin.

The term "domain" refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and may exhibit discrete binding or functional properties. The term "CDR" or complementarity determining region, as used herein, refers to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site, or a synthetic polypeptide which mimics this function. CDRs typically are not wholly homologous to hypervariable regions of natural Fvs, but rather may also include specific amino acids or amino acid sequences which

30

flank the hypervariable region and have heretofore been considered framework not directly determinative of complementarity. The term "FR" or framework region, as used herein, refers to amino acid sequences which are naturally found between CDRs in immunoglobulins.

Single-chain Fv polypeptides produced in accordance with the invention include biosyntheticallyproduced novel sequences of amino acids defining polypeptides designed to bind with a preselected 10 c-erbB-2 or related antigen material. The structure of these synthetic polypeptides is unlike that of naturally occurring antibodies, fragments thereof, or known synthetic polypeptides or "chimeric antibodies" in that the regions of the single-chain Fv responsible 15 for specificity and affinity of binding (analogous to native antibody variable (V_H/V_{I_i}) regions) may themselves be chimeric, e.g., include amino acid sequences derived from or homologous with portions of at least two different antibody molecules from the same 20 or different species. These analogous V_H and V_T regions are connected from the N-terminus of one to the C-terminus of the other by a peptide bonded biosynthetic linker peptide.

The invention thus provides a single-chain Fv polypeptide defining at least one complete binding site capable of binding c-erbB-2 or a c-erbB-2-related tumor antigen. One complete binding site includes a single contiguous chain of amino acids having two polypeptide domains, e.g., $V_{\rm H}$ and $V_{\rm L}$, connected by a amino acid linker region. An sFv that includes more than one complete binding site capable of binding a c-erbB-2-related antigen, e.g., two binding sites, will be a single contiguous chain of amino acids having four polypeptide domains, each of which is covalently linked

by an amino acid linker region, e.g., $V_{\rm H1}^{\rm -linker-V}_{\rm L1}^{\rm -linker-V}_{\rm H2}^{\rm -linkerV}_{\rm L2}^{\rm -linker-V}_{\rm L2}^{\rm -linker-V}_{\rm H3}^{\rm -linker-V}_{\rm L1}^{\rm -linker-V}_{\rm L1}^{\rm$

In one preferred embodiment of the invention, the single-chain Fv polypeptide includes CDRs that are substantially homologous with at least a portion of the amino acid sequence of CDRs from a variable region of an immunoglobulin molecule from a first species, and includes FRs that are substantially homologous with at least a portion of the amino acid sequence of FRs from a variable region of an immunoglobulin molecule from a second species. Preferably, the first species is mouse and the second species is human.

The amino acid sequence of each of the polypeptide domains includes a set of CDRs interposed between a set of FRs. As used herein, a "set of CDRs" refers to 3 CDRs in each domain, and a "set of FRS" refers to 4 FRs in each domain. Because of structural considerations, an entire set of CDRs from an immunoglobulin may be used, but substitutions of particular residues may be desirable to improve biological activity, e.g., based on observations of conserved residues within the CDRs of immunoglobulin species which bind c-erbB-2 related antigens.

In another preferred aspect of the invention, the CDRs of the polypeptide chain have an amino acid sequence substantially homologous with the CDRs of the variable region of any one of the 520C9, 741F8, and 454C11 monoclonal antibodies. The CDRs of the 520C9 antibody are set forth in the Sequence Listing as amino acid residue numbers 31 through 35, 50 through 66, 99

PCT/US93/01055 WO 93/16185

- 7 -

through 104, 159 through 169, 185 through 191, and 224 through 232 in SEQ ID NOS: 3 and 4, and amino acid residue numbers 31 through 35, 50 through 66, 99 through 104, 157 through 167, 183 through 189, and 222 5 through 230 in SEQ ID NOS: 5, and 6.

In one embodiment, the sFv is a humanized hybrid molecule which includes CDRs from the mouse 520C9 antibody interposed between FRs derived from one or more human immunoglobulin molecules. This hybrid sFv 10 thus contains binding regions which are highly specific for the c-erbB-2 antigen or c-erbB-2-related antigens held in proper immunochemical binding conformation by human FR amino acid sequences, and thus will be less likely to be recognized as foreign by the human body.

In another embodiment, the polypeptide linker region includes the amino acid sequence set forth in the Sequence Listing as amino acid residue numbers 123 through 137 in SEQ ID NOS:3 and 4, and as amino acid residues 1-16 in SEQ ID NOS:11 and 12. In other 20 embodiments, the linker sequence has the amino acid sequence set forth in the Sequence Listing as amino acid residues 121-135 in SEQ ID NOS:5 and 6, or the amino acid sequence of residues 1-15 in SEQ ID NOS:13 and 14.

15

The single polypeptide chain described above also 25 may include a remotely detectable moiety bound thereto to permit imaging or radioimmunotherapy of tumors bearing a c-erbB-2 or related tumor antigen. "Remotely detectable" moiety means that the moiety that is bound 30 to the sFv may be detected by means external to and at a distance from the site of the moiety. Preferable remotely detectable moieties for imaging include radioactive atom such as 99 Technetium (99 Tc), a gamma emitter. Preferable nucleotides for high dose

radioimmunotherapy include radioactive atoms such as, (90 Yttrium (90 Yt), 131 Iodine (131 I) or 111 Indium (111 In).

In addition, the sFv may include a fusion protein

5 derived from a gene fusion, such that the expressed
sFv fusion protein includes an ancillary polypeptide
that is peptide bonded to the binding site polypeptide.
In some preferred aspects, the ancillary polypeptide
segment also has a binding affinity for a c-erbB-2 or

10 related antigen and may include a third and even a
fourth polypeptide domain, each comprising an amino
acid sequence defining CDRs interposed between FRs, and
which together form a second single polypeptide chain
biosynthetic binding site similar to the first

15 described above.

In other aspects, the ancillary polypeptide sequence forms a toxin linked to the N or C terminus of the sFv, e.g., at least a toxic portion of Pseudomonas exotoxin, phytolaccin, ricin, ricin A chain, or diphtheria toxin, or other related proteins known as ricin A chain-like ribosomal inhibiting proteins, i.e., proteins capable of inhibiting protein synthesis at the level of the ribosome, such as pokeweed antiviral protein, gelonin, and barley ribosomal protein inhibitor. In still another aspect, the sFv may include at least a second ancillary polypeptide or moiety which will promote internalization of the sFv.

The invention also includes a method for producing sFv, which includes the steps of providing a replicable expression vector which includes and which expresses a DNA sequence encoding the single polypeptide chain; transfecting the expression vector into a host cell to produce a transformant; and culturing the transformant to produce the sFv polypeptide.

The invention also includes a method of imaging a tumor expressing a c-erbB-2 or related tumor antigen. This method includes the steps of providing an imaging agent including a single-chain Fv polypeptide as

5 described above, and a remotely detectable moiety linked thereto; administering the imaging agent to an organism harboring the tumor in an amount of the imaging agent with a physiologically-compatible carrier sufficient to permit extracorporeal detection of the tumor; and detecting the location of the moiety in the subject after allowing the agent to bind to the tumor and unbound agent to have cleared sufficiently to permit visualization of the tumor image.

The invention also includes a method of treating

15 cancer by inhibiting in vivo growth of a tumor
expressing a c-erbB-2 or related antigen, the method
including administering to a cancer patient a tumor
inhibiting amount of a therapeutic agent which includes
an sFv of the invention and at least a first moiety

20 peptide bonded thereto, and which has the ability to
limit the proliferation of a tumor cell.

Preferably, the first moiety includes a toxin or a toxic fragment thereof, e.g., ricin A; or includes a radioisotope sufficiently radioactive to inhibit
25 proliferation of the tumor cell, e.g., 90 Yt, 111 In, or 131 I. The therapeutic agent may further include at least a second moiety that improves its effectiveness.

The clinical administration of the single-chain Fv or appropriate sFv fusion proteins of the invention, which display the activity of native, relatively small Fv of the corresponding immunoglobulin, affords a number of advantages over the use of larger fragments or entire antibody molecules. The single chain Fv and sFv fusion proteins of this invention offer fewer

cleavage sites to circulating proteolytic enzymes and thus offer greater stability. They reach their target tissue more rapidly, and are cleared more quickly from the body, which makes them ideal imaging agents for 5 tumor detection and ideal radioimmunotherapeutic agents for tumor killing. They also have reduced non-specific binding and immunogenicity relative to murine immunoglobulins. In addition, their expression from single genes facilitates targeting applications by fusion to other toxin proteins or peptide sequences that allow specific coupling to other molecules or drugs. In addition, some sFv analogues or fusion proteins of the invention have the ability to promote the internalization of c-erbB-2 or related antigens 15 expressed on the surface of tumor cells when they are bound together at the cell surface. These methods permit the selective killing of cells expressing such antigens with the single-chain-Fv-toxin fusion of appropriate design. sFv-toxin fusion proteins of the 20 invention possess 15-200-fold greater tumor cell killing activity than conjugates which include a toxin that is chemically crosslinked to whole antibody or Fab.

Overexpression of c-erbB-2 or related receptors
on malignant cells thus allows targeting of sFv species
to the tumor cells, whether the tumor is well-localized
or metastatic. In the above cases, the internalization
of sFv-toxin fusion proteins permits specific
destruction of tumor cells bearing the over expressed
c-erbB-2 or related antigen. In other cases, depending
on the infected cells, the nature of the malignancy, or
other factors operating in a given individual, the same
c-erbB-2 or related receptors may be poorly
internalized or even represent a static tumor antigen

WO 93/16185 PCT/US93/01055

- 11 -

population. In this event, the single-chain Fv and its fusion proteins can also be used productively, but in a different mode than applicable to internalization of the toxin fusion. Where c-erbB-2 receptor/sFv or sFv 5 fusion protein complexes are poorly internalized, toxins, such as ricin A chain, which operate cytoplasmically by inactivation of ribosomes, are not effective to kill cells. Nevertheless, single-chain unfused Fv is useful, e.g., for imaging or 10 radioimmunotherapy, and bispecific single-chain Fv fusion proteins of various designs, i.e., that have two distinct binding sites on the same polypeptide chain, can be used to target via the two antigens for which the molecule is specific. For example, a bispecific 15 single-chain antibody may have specificity for both the c-erbB-2 and CD3 antigens, the latter of which is present on cytotoxic lymphocytes (CTLs). This bispecific molecule could thus mediate antibody dependent cellular cytotoxicity (ADCC) that results in 20 CTL-induced lysis of tumor cells. Similar results could be obtained using a bispecific single-chain Fv specific for c-erbB-2 and the Fcy receptor type I or II. Other bispecific sFv formulations include domains with c-erbB-2 specificity paired with a growth factor 25 domain specific for hormone or growth factor receptors, such as receptors for transferrin or epidermal growth factor (EGF).

Brief Description of the Drawings

The foregoing and other objects of this invention, the various features thereof, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings.

FIG. 1A is a schematic drawing of a DNA construct encoding an sFv of the invention, which shows the $V_{\rm H}$ and $V_{\rm L}$ encoding domains and the linker region; FIG. 1B is a schematic drawing of the structure of Fv illustrating $V_{\rm H}$ and $V_{\rm L}$ domains, each of which comprises three complementarity determining regions (CDRs) and four framework regions (FRs) for monoclonal 520C9, a well known and characterized murine monoclonal antibody specific for c-erbB-2;

FIGS. 2A-2E are schematic representations of embodiments of the invention, each of which comprises a biosynthetic single-chain Fv polypeptide which recognizes a c-erbB-2-related antigen: FIG. 2A is an SFv having a pendant leader sequence, FIG. 2B is an sFv-toxin (or other ancillary protein) construct, and FIG. 2C is a bivalent or bispecific sFv construct; FIG. 2D is a bivalent sFv having a pendant protein attached to the carboxyl-terminal end; FIG. 2E is a bivalent sFv having pendant proteins attached to both amino- and carboxyl-terminal ends.

FIG. 3 is a diagrammatic representation of the construction of a plasmid encoding the 520C9 sFv-ricin A fused immunotoxin gene; and

FIG. 4 is a graphic representation of the results of a competition assay comparing the c-erbB-2 binding activity of the 520C9 monoclonal antibody (specific for c-erbB-2), an Fab fragment of that monoclonal antibody (filled dots), and different affinity purified

fractions of the single-chain-Fv binding site for c-erbB-2 constructed from the variable regions of the 520C9 monoclonal antibody (sFv whole sample (+), sFv bound and eluted from a column of immobilized extracellular domain of C-erbB-2 (squares) and sFv flow-through (unbound, *)).

Detailed Description of the Invention

Disclosed are single-chain Fv's and sFv fusion proteins having affinity for a c-erbB-2-related antigen expressed at high levels on breast and ovarian cancer 5 cells and on other tumor cells as well, in certain other forms of cancer. The polypeptides are characterized by one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site. As shown in FIG. 1, the sites 10 comprise heavy chain variable region (V_H) 10, light chain variable region (V_{τ}) 14 single chains wherein $\rm V_{H}$ 10 and $\rm V_{I}$ 14 are attached by polypeptide linker 12. The binding domains include CDRs 2, 4, 6 and 2', 4', 6' from immunoglobulin molecules able to bind a c-erbB-2-15 related tumor antigen linked to FRs 32, 34, 36, 38 and 32', 34', 36' 38' which may be derived from a separate immunoglobulin. As shown in FIGS. 2A, 2B, and 2C, the BABS single polypeptide chains (V_H 10, V_L 14 and linker 12) may also include remotely detectable moieties 20 and/or other polypeptide sequences 16, 18, or 22, which function e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization matrix or radioactive atom. Also disclosed are methods for producing the proteins and methods of their use.

The single-chain Fv polypeptides of the invention are biosynthetic in the sense that they are synthesized and recloned in a cellular host made to express a protein encoded by a plasmid which includes genetic sequence based in part on synthetic DNA, that is, a 30 recombinant DNA made from ligation of plural, chemically synthesized and recloned oligonucleotides, or by ligation of fragments of DNA derived from the genome of a hybridoma, mature B cell clone, or a cDNA library derived from such natural sources.

proteins of the invention are properly characterized as "antibody binding sites" in that these synthetic single polypeptide chains are able to refold into a 3-dimensional conformation designed specifically to have affinity for a preselected c-erbB-2 or related tumor antigen. Single-chain Fv's may be produced as described in PCT application US88/01737, which corresponds to USSN 342,449, filed February 6, 1989, and claims priority from USSN 052,800, filed May 21, 1987, assigned to Creative BioMolecules, Inc., hereby incorporated by reference. The polypeptides of the invention are antibody-like in that their structure is patterned after regions of native antibodies known to be responsible for c-erbB-2-related antigen

More specifically, the structure of these biosynthetic antibody binding sites (BABS) in the region which imparts the binding properties to the protein, is analogous to the Fv region of a natural antibody to a c-erbB-2 or related antigen. It includes a series of regions consisting of amino acids defining at least three polypeptide segments which together form the tertiary molecular structure responsible for affinity and binding. The CDRs are held in appropriate conformation by polypeptide segments analogous to the framework regions of the Fv fragment of natural antibodies.

The CDR and FR polypeptide segments are designed empirically based on sequence analysis of the Fv region of preexisting antibodies, such as those described in U.S. Patent No. 4,753,894, herein incorporated by reference, or of the DNA encoding such antibody molecules.

One such antibody, 520C9, is a murine monoclonal antibody that is known to react with an antigen expressed by the human breast cancer cell line SK-Br-3 (U.S. Patent 4,753,894). The antigen is an approximately 200 kD acidic glycoprotein that has an isoelectric point of 5.3, and is present at about 5 million copies per cell. The association constant measured using radiolabelled antibody is approximately 4.6 x 10⁸ M⁻¹.

In one embodiment, the amino acid sequences 10 constituting the FRs of the single polypeptide chains are analogous to the FR sequences of a first preexisting antibody, for example, a human IgG. amino acid sequences constituting the CDRs are 15 analogous to the sequences from a second, different preexisting antibody, for example, the CDRs of a rodent or human IgG which recognizes c-erbB-2 or related antigens expressed on the surface of ovarian and breast tumor cells. Alternatively, the CDRs and FRs may be 20 copied in their entirety from a single preexisting antibody from a cell line which may be unstable or, difficult to culture; e.g., an sFy-producing cell line that is based upon a murine, mouse/human, or human monoclonal antibody-secreting cell line.

Practice of the invention enables the design and biosynthesis of various reagents, all of which are characterized by a region having affinity for a preselected c-erbB-2 or related antigen. Other regions of the biosynthetic protein are designed with the particular planned utility of the protein in mind. Thus, if the reagent is designed for intravascular use in mammals, the FRs may include amino acid sequences that are similar or identical to at least a portion of the FR amino acids of antibodies native to that

mammalian species. On the other hand, the amino acid sequences that include the CDRs may be analogous to a portion of the amino acid sequences from the hypervariable region (and certain flanking amino acids) of an antibody having a known affinity and specificity for a c-erbB-2 or related antigen that is from, e.g., a mouse or rat, or a specific human antibody or immunoglobulin.

Other sections of native immunoglobulin protein structure, e.g., C_H and C_L, need not be present and normally are intentionally omitted from the biosynthetic proteins of this invention. However, the single polypeptide chains of the invention may include additional polypeptide regions defining a leader sequence or a second polypeptide chain that is bioactive, e.g., a cytokine, toxin, ligand, hormone, immunoglobulin domain(s), or enzyme, or a site onto which a toxin, drug, or a remotely detectable moiety, e.g., a radionuclide, can be attached.

One useful toxin is ricin, an enzyme from the 20 castor bean that is highly toxic, or the portion of ricin that confers toxicity. At concentrations as low as 1 ng/ml ricin efficiently inhibits the growth of cells in culture. The ricin A chain has a molecular 25 weight of about 30,000 and is glycosylated. The ricin B chain has a larger size (about 34,000 molecular weight) and is also glycosylated. The B chain contains two galactose binding sites, one in each of the two domains in the folded subunit. The crystallographic 30 structure for ricin shows the backbone tracing of the A chain. There is a cleft, which is probably the active site, that runs diagonally across the molecule. present is a mixture of «-helix, ß-structure, and irregular structure in the molecule.

The A chain enzymatically inactivates the 60S ribosomal subunit of eucaryotic ribosomes. The B chain binds to galactose-based carbohydrate residues on the surfaces of cells. It appears to be necessary to bind the toxin to the cell surface, and also facilitates and participates in the mechanics of entry of the toxin into the cell. Because all cells have galactose-containing cell surface receptors, ricin inhibits all types of mammalian cells with nearly the same efficiency.

Ricin A chain and ricin B chain are encoded by a gene that specifies both the A and B chains. The polypeptide synthesized from the mRNA transcribed from the gene contains A chain sequences linked to B chain 15 sequences by a 'J' (for joining) peptide. The J peptide fragment is removed by post-translational modification to release the A and B chains. However, A and B chains are still held together by the interchain disulfide bond. The preferred form of ricin is 20 recombinant A chain as it is totally free of B chain and, when expressed in E. coli, is unglycosylated and thus cleared from the blood more slowly than the gycosylated form. The specific activity of the recombinant ricin A chain against ribosomes and that of 25 native A chain isolated from castor bean ricin are equivalent. An amino acid sequence and corresponding nucleic acid sequence of ricin A chain is set forth in the Sequence Listing as SEQ ID NOS:7 and 8.

Recombinant ricin A chain, plant-derived ricin A chain, deglycosylated ricin A chain, or derivatives thereof, can be targeted to a cell expressing a c-erbB-2 or related antigen by the single-chain Fv polypeptide of the present invention. To do this, the sFv may be chemically crosslinked to ricin A chain or

an active analog thereof, or in a preferred embodiment a single-chain Fv-ricin A chain immunotoxin may be formed by fusing the single-chain Fv polypeptide to one or more ricin A chains through the corresponding gene fusion. By replacing the B chain of ricin with an antibody binding site to c-erbB-2 or related antigens, the A chain is guided to such antigens on the cell surface. In this way the selective killing of tumor cells expressing these antigens can be achieved. This selectivity has been demonstrated in many cases against cells grown in culture. It depends on the presence or absence of antigens on the surface of the cells to which the immunotoxin is directed.

The invention includes the use of humanized

single-chain-Fv binding sites as part of imaging
methods and tumor therapies. The proteins may be
administered by intravenous or intramuscular injection.
Effective dosages for the single-chain Fv constructs in
antitumor therapies or in effective tumor imaging can

be determined by routine experimentation, keeping in
mind the objective of the treatment.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions. In all cases, the form must be sterile and must be fluid so as to be easily administered by syringe. It must be stable under the conditions of manufacture and storage, and must be preserved against the contaminating action of microorganisms. This may, for example, be achieved by filtration through a sterile 0.22 micron filter and/or lyophilization followed by sterilization with a gamma ray source.

Sterile injectable solutions are prepared by incorporating the single chain constructs of the invention in the required amount in the appropriate

solvent, such as sodium phosphate-buffered saline, followed by filter sterilization. As used herein, "a physiologically acceptable carrier" includes any and all solvents, dispersion media, antibacterial and antifungal agents that are non-toxic to humans, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. The media or agent must be compatible with maintenance of proper conformation of the single polypeptide chains, and its use in the therapeutic compositions. Supplementary active ingredients can also be incorporated into the compositions.

A bispecific single-chain Fv could also be fused to a toxin. For example, a bispecific sFv construct

15 with specificity for c-erbB-2 and the transferrin receptor, a target that is rapidly internalized, would be an effective cytolytic agent due to internalization of the transferrin receptor/sFv-toxin complex. An sFv fusion protein may also include multiple protein

20 domains on the same polypeptide chain, e.g., EGF-sFv-ricin A, where the EGF domain promotes internalization of toxin upon binding of sFv through interaction with the EGF receptor.

The single polypeptide chains of the invention

25 can be labelled with radioisotopes such as Iodine-131,

Indium-111, and Technetium-99m, for example. Beta
emitters such as Technetium-99m and Indium-111 are
preferred because they are detectable with a gamma
camera and have favorable half-lives for imaging in

vivo. The single polypeptide chains can be labelled,
for example, with radioactive atoms and as Yttrium-90,
Technetium-99m, or Indium-111 via a conjugated metal
chelator (see, e.g., Khaw et al. (1980) Science
209:295; Gansow et al., U.S. Patent No. 4,472,509;

Hnatowich, U.S. Patent No. 4,479,930), or by other standard means of isotope linkage to proteins known to those with skill in the art.

The invention thus provides intact binding sites for c-erbB-2 or related antigens that are analogous to $V_H^-V_L^-$ dimers linked by a polypeptide sequence to form a composite $(V_H^-linker^-V_L^-)_n$ or $(V_L^-linker^-V_H^-)_n$ polypeptide, where n is equal to or greater than 1, which is essentially free of the remainder of the antibody molecule, and which may include a detectable moiety or a third polypeptide sequence linked to each V_H^- or V_L^- .

FIGs. 2A-2E illustrate examples of protein structures embodying the invention that can be produced by following the teaching disclosed herein. All are characterized by at least one biosynthetic sFv single chain segment defining a binding site, and containing amino acid sequences including CDRs and FRs, often derived from different immunoglobulins, or sequences homologous to a portion of CDRs and FRs from different immunoglobulins.

FIG. 2A depicts single polypeptide chain sFv 100 comprising polypeptide 10 having an amino acid sequence analogous to the heavy chain variable region ($V_{\rm H}$) of a given anti-c-erbB-2 monoclonal antibody, bound through its carboxyl end to polypeptide linker 12, which in turn is bound to polypeptide 14 having an amino acid sequence analogous to the light chain variable region ($V_{\rm L}$) of the anti-c-erbB-2 monoclonal. Of course, the light and heavy chain domains may be in reverse order. Linker 12 should be at least long enough (e.g., about 10 to 15 amino acids or about 40 Angstroms) to permit chains 10 and 14 to assume their proper conformation and interdomain relationship.

Linker 12 may include an amino acid sequence homologous to a sequence identified as "self" by the species into which it will be introduced, if drug use is intended. Unstructured, hydrophilic amino acid sequences are preferred. Such linker sequences are set forth in the Sequence Listing as amino acid residue numbers 116 through 135 in SEQ ID NOS:3, 4, 5, and 6, which include part of the 16 amino acid linker sequences set forth in the Sequence Listing SEQ ID NOS:12 and 14.

Other proteins or polypeptides may be attached to either the amino or carboxyl terminus of protein of the type illustrated in FIG. 2A. As an example, leader sequence 16 is shown extending from the amino terminal end of V_{μ} domain 10.

rig. 2B depicts another type of reagent 200 including a single polypeptide chain 100 and a pendant protein 18. Attached to the carboxyl end of the polypeptide chain 100 (which includes the FR and CDR sequences constituting an immunoglobulin binding site) is a pendant protein 18 consisting of, for example, a toxin or toxic fragment thereof, binding protein, enzyme or active enzyme fragment, or site of attachment for an imaging agent (e.g., to chelate a radioactive ion such as Indium-111).

FIG. 2C illustrates single chain polypeptide 300 including second single chain polypeptide 110 of the invention having the same or different specificity and connected via peptide linker 22 to the first single polypeptide chain 100.

FIG. 2D illustrates single chain polypeptide 400 which includes single polypeptide chains 110 and 100 linked together by linker 22, and pendant protein 18 attached to the carboxyl end of chain 110.

20

FIG. 2E illustrates single polypeptide chain 500 which includes chain 400 of Fig. 2D and pendant protein 20 (EGF) attached to the amino terminus of chain 400.

As is evident from Figs. 2A-E, single chain 5 proteins of the invention may resemble beads on a string by including multiple biosynthetic binding sites, each binding site having unique specificity, or repeated sites of the same specificity to increase the avidity of the protein. As is evidenced from the 10 foregoing, the invention provides a large family of reagents comprising proteins, at least a portion of which defines a binding site patterned after the variable region or regions of immunoglobulins to c-erbB-2 or related antigens.

The single chain polypeptides of the invention are designed at the DNA level. The synthetic DNAs are then expressed in a suitable host system, and the expressed proteins are collected and renatured if necessary.

The ability to design the single polypeptide chains of the invention depends on the ability to identify monoclonal antibodies of interest, and then to determine the sequence of the amino acids in the variable region of these antibodies, or the DNA sequence encoding them. Hybridoma technology enables production of cell lines secreting antibody to essentially any desired substance that elicits an immune response. For example, U.S. Patent No. 4,753,894 describes some monoclonal antibodies of 30 interest which recognize c-erbB-2 related antigens on breast cancer cells, and explains how such antibodies were obtained. One monoclonal antibody that is particularly useful for this purpose is 520C9 (Bjorn et al. (1985) Cancer Res. 45:124-1221; U.S. Patent

No. 4,753,894). This antibody specifically recognizes the c-erbB-2 antigen expressed on the surface of various tumor cell lines, and exhibits very little binding to normal tissues. Alternative sources of sFv sequences with the desired specificity can take advantage of phage antibody and combinatorial library methodology. Such sequences would be based on cDNA from mice which were preimmunized with tumor cell membranes or c-erb-B-2 or c-erbB-2-related antigenic fragments or peptides. (See, e.g., Clackson et al, Nature 352 624-628 (1991))

The process of designing DNA that encodes the single polypeptide chain of interest can be accomplished as follows. RNA encoding the light and 15 heavy chains of the desired immunoglobulin can be obtained from the cytoplasm of the hyridoma producing the immunoglobulin. The mRNA can be used to prepare the cDNA for subsequent isolation of $\mathbf{V}_{\mathbf{H}}$ and $\mathbf{V}_{\mathbf{T}}$ genes by PCR methodology known in the art (Sambrook et al., 20 eds., Molecular Cloning, 1989, Cold Spring Harbor Laboratories Press, NY). The N-terminal amino acid sequence of H and L chain may be independently determined by automated Edman sequencing; if necessary, further stretches of the CDRs and flanking FRs can be 25 determined by amino acid sequencing of the H and L chain V region fragments. Such sequence analysis is now conducted routinely. This knowledge permits one to design synthetic primers for isolation of $V_{\rm H}$ and $V_{\rm T}$ genes from hybridoma cells that make monoclonal 30 antibodies known to bind the c-erbB-2 or related antigen. These V genes will encode the Fv region that binds c-erbB-2 in the parent antibody.

Still another approach involves the design and construction of synthetic V genes that will encode an Fv binding site specific for c-erbB-2 or related

receptors. For example, with the help of a computer program such as, for example, Compugene, and known variable region DNA sequences, one may design and directly synthesize native or near-native FR sequences from a first antibody molecule, and CDR sequences from a second antibody molecule. The V_H and V_L sequences described above are linked together directly via an amino acid chain or linker connecting the C-terminus of one chain with the N-terminus of the other.

These genes, once synthesized, may be cloned with or without additional DNA sequences coding for, e.g., a leader peptide which facilitates secretion or intracellular stability of a fusion polypeptide, or a leader or trailing sequence coding for a second polypeptide. The genes then can be expressed directly in an appropriate host cell.

By directly sequencing an antibody to a c-erbB-2 or related antigen, or obtaining the sequence from the literature, in view of this disclosure, one skilled in 20 the art can produce a single chain Fv comprising any desired CDR and FR. For example, using the DNA sequence for the 520C9 monoclonal antibody set forth in the Sequence Listing as SEQ ID NO:3, a single chain polypeptide can be produced having a binding affinity 25 for a c-erbB-2 related antigen. Expressed sequences may be tested for binding and empirically refined by exchanging selected amino acids in relatively conserved regions, based on observation of trends in amino acid sequence data and/or computer modeling techniques. Significant flexibility in $V_{_{\mbox{\scriptsize H}}}$ and $V_{_{\mbox{\scriptsize T},}}$ design is possible because alterations in amino acid sequences may be made at the DNA level.

Accordingly, the construction of DNAs encoding the single-chain Fv and sFv fusion proteins of the

invention can be done using known techniques involving the use of various restriction enzymes which make sequence-specific cuts in DNA to produce blunt ends or cohesive ends, DNA ligases, techniques enabling 5 enzymatic addition of sticky ends to blunt-ended DNA, construction of synthetic DNAs by assembly of short or medium length oligonucleotides, cDNA synthesis techniques, and synthetic probes for isolating immunoglobulin genes. Various promoter sequences and other regulatory RNA sequences used in achieving expression, and various type of host cells are also known and available. Conventional transfection techniques, and equally conventional techniques for cloning and subcloning DNA are useful in the practice 15 of this invention and known to those skilled in the art. Various types of vectors may be used such as plasmids and viruses including animal viruses and bacteriophages. The vectors may exploit various marker genes which impart to a successfully transfected cell a detectable phenotypic property that can be used to identify which of a family of clones has successfully incorporated the recombinant DNA of the vector.

Of course, the processes for manipulating, amplifying, and recombining DNA which encode amino acid sequences of interest are generally well known in the art, and therefore, not described in detail herein. Methods of identifying the isolated V genes encoding antibody Fv regions of interest are well understood, and described in the patent and other literature. In general, the methods involve selecting genetic material coding for amino acid sequences which define the CDRs and FRs of interest upon reverse transcription, according to the genetic code.

One method of obtaining DNA encoding the singlechain Fv disclosed herein is by assembly of synthetic oligonucleotides produced in a conventional, automated, polynucleotide synthesizer followed by ligation with 5 appropriate ligases. For example, overlapping, complementary DNA fragments comprising 15 bases may be synthesized semi-manually using phosphoramidite chemistry, with end segments left unphosphorylated to prevent polymerization during ligation. One end of the synthetic DNA is left with a "sticky end" corresponding to the site of action of a particular restriction endonuclease, and the other end is left with an end corresponding to the site of action of another restriction endonuclease. Alternatively, this approach 15 can be fully automated. The DNA encoding the single chain polypeptides may be created by synthesizing longer single strand fragments (e.g., 50-100 nucleotides long) in, for example, a Biosearch oligonucleotide synthesizer, and then ligating the 20 fragments.

Additional nucleotide sequences encoding, for example, constant region amino acids or a bioactive molecule may also be linked to the gene sequences to produce a bifunctional protein.

For example, the synthetic genes and DNA fragments designed as described above may be produced by assembly of chemically synthesized oligonucleotides. 15-100mer oligonucleotides may be synthesized on a Biosearch DNA Model 8600 Synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-30 Borate-EDTA buffer (TBE). The DNA is then electroeluted from the gel. Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified 35 by PAGE.

The blocks or the pairs of longer oligonucleotides may be cloned in E. coli using a suitable cloning vector, e.g., pUC. Initially, this vector may be altered by single-strand mutagenesis to 5 eliminate residual six base altered sites. example, $V_{_{\mbox{\scriptsize H}}}$ may be synthesized and cloned into pUC as five primary blocks spanning the following restriction sites: (1) EcoRI to first NarI site; (2) first NarI to XbaI; (3) XbaI to SalI; (4) SalI to NcoI; and (5) NcoI 10 to BamHI. These cloned fragments may then be isolated and assembled in several three-fragment ligations and cloning steps into the pUC8 plasmid. Desired ligations, selected by PAGE, are then transformed into, for example, E. coli strain JM83, and plated onto LB 15 Ampicillin + Xgal plates according to standard procedures. The gene sequence may be confirmed by supercoil sequencing after cloning, or after subcloning into M13 via the dideoxy method of Sanger (Molecular Cloning, 1989, Sambrook et al., eds, 2d ed., Vol. 2, 20 Cold Spring Harbor Laboratory Press, NY).

The engineered genes can be expressed in appropriate prokaryotic hosts such as various strains of <u>E. coli</u>, and in eucaryotic hosts such as Chinese hamster ovary cells (CHO), mouse myeloma, hybridoma, transfectoma, and human myeloma cells.

If the gene is to be expressed in <u>E. coli</u>, it may first be cloned into an expression vector. This is accomplished by positioning the engineered gene downstream from a promoter sequence such as <u>Trp</u> or <u>Tac</u>, and a gene coding for a leader polypeptide such as fragment B (FB) of staphylococcal protein A. The resulting expressed fusion protein accumulates in refractile bodies in the cytoplasm of the cells, and may be harvested after disruption of the cells by

French press or sonication. The refractile bodies are solubilized, and the expressed fusion proteins are cleaved and refolded by the methods already established for many other recombinant proteins (Huston et al, 1988, supra) or, for direct expression methods, there is no leader and the inclusion bodies may be refolded without cleavage (Huston et al, 1991, Methods in Enzymology, vol 203, pp 46-88).

For example, subsequent proteolytic cleavage of
the isolated sFv from their leader sequence fusions can
be performed to yield free sFvs, which can be renatured
to obtain an intact biosynthetic, hybrid antibody
binding site. The cleavage site preferably is
immediately adjacent the sFv polypeptide and includes
one amino acid or a sequence of amino acids exclusive
of any one amino acid or amino acid sequence found in
the amino acid structure of the single polypeptide
chain.

The cleavage site preferably is designed for 20 specific cleavage by a selected agent. Endopeptidases are preferred, although non-enzymatic (chemical) cleavage agents may be used. Many useful cleavage agents, for instance, cyanogen bromide, dilute acid, trypsin, Staphylococcus aureus V-8 protease, post-25 proline cleaving enzyme, blood coagulation Factor Xa, enterokinase, and renin, recognize and preferentially or exclusively cleave at particular cleavage sites. One currently preferred peptide sequence cleavage agent is V-8 protease. The currently preferred cleavage site 30 is at a Glu residue. Other useful enzymes recognize multiple residues as a cleavage site, e.g., factor Xa (Ile-Glu-Gly-Arg) or enterokinase (Asp-Asp-Asp-Asp-Lys). Dilute acid preferentially leaves the peptide bond between Asp-Pro residues, and CNBr in acid cleaves 35 after Met, unless it is followed by Tyr.

If the engineered gene is to be expressed in eucaryotic hybridoma cells, the conventional expression system for immunoglobulins, it is first inserted into an expression vector containing, for example, the 5 immunoglobulin promoter, a secretion signal, immunoglobulin enhancers, and various introns. This plasmid may also contain sequences encoding another polypeptide such as all or part of a constant region, enabling an entire part of a heavy or light chain to be 10 expressed, or at least part of a toxin, enzyme, cytokine, or hormone. The gene is transfected into myeloma cells via established electroporation or protoplast fusion methods. Cells so transfected may then express V_H -linker- V_I or V_I -linker- V_H single-chain 15 Fv polypeptides, each of which may be attached in the various ways discussed above to a protein domain having another function (e.g., cytotoxicity).

For construction of a single contiguous chain of amino acids specifying multiple binding sites, 20 restriction sites at the boundaries of DNA encoding a single binding site (i.e., V_H -linker- V_L) are utilized or created, if not already present. DNAs encoding single binding sites are ligated and cloned into shuttle plasmids, from which they may be further 25 assembled and cloned into the expression plasmid. order of domains will be varied and spacers between the domains provide flexibility needed for independent folding of the domains. The optimal architecture with respect to expression levels, refolding and functional activity will be determined empirically. To create bivalent sFv's, for example, the stop codon in the gene encoding the first binding site is changed to an open reading frame, and several glycine plus serine codons including a restriction site such as BamHI (encoding

Gly-Ser) or XhoI (encoding Gly-Ser-Ser) are put in place. The second sFv gene is modified similarly at its 5' end, receiving the same restriction site in the same reading frame. The genes are combined at this site to produce the bivalent sFv gene.

Linkers connecting the C-terminus of one domain to the N-terminus of the next generally comprise hydrophilic amino acids which assume an unstructured configuration in physiological solutions and preferably are free of residues having large side groups which might interfere with proper folding of the V_H , V_L , or pendant chains. One useful linker has the amino acid sequence [(Gly) $_4$ Ser] $_3$ (see SEQ ID NOS:5 and 6, residue numbers 121-135). One currently preferred linker has the amino acid sequence comprising 2 or 3 repeats of [(Ser) $_4$ Gly], such as [(Ser) $_4$ Gly] $_2$ and [(Ser) $_4$ Gly] $_3$ (see SEQ ID NOS:3 and 4).

The invention is illustrated further by the following non-limiting Examples.

20

15

EXAMPLES

Antibodies to c-erbB-2 Related Antigens

Monoclonal antibodies against breast cancer have been developed using human breast cancer cells or membrane extracts of the cells for immunizing mice, as described in Frankel et al. (1985) J. Biol. Resp. Modif. 4:273-286, hereby incorporated by reference. Hybridomas have been made and selected for production of antibodies using a panel of normal and breast cancer cells. A panel of eight normal tissue membranes, a fibroblast cell line, and frozen sections of breast cancer tissues were used in the screening. Candidates that passed the first screening were further tested on 16 normal tissue sections, 5 normal blood cell types,

11 nonbreast neoplasm sections, 21 breast cancer sections, and 14 breast cancer cell lines. From this selection, 127 antibodies were selected. Irrelevant antibodies and nonbreast cancer cell lines were used in control experiments.

Useful monoclonal antibodies were found to include 520C9, 454C11 (A.T.C.C. Nos. HB8696 and HB8484, respectively) and 741F8. Antibodies identified as selective for breast cancer in this screen reacted 10 against five different antigens. The sizes of the antigens that the antibodies recognize: 200 kD; a series of proteins that are probably degradation products with Mr's of 200 kD, 93kD, 60 kD, and 37 kD; 180 kD (transferrin receptor); 42 kD; and 55 kD, 15 respectively. Of the antibodies directed against the five classes of antigens, the most specific are the ones directed against the 200 kD antigen, 520C9 being a representative antibody for that antigen class. 520C9 reacts with fewer breast cancer tissues (about 20-70% 20 depending on the assay conditions) and it reacts with the fewest normal tissues of any of the antibodies. 520C9 reacts with kidney tubules (as do many monoclonal antibodies), but not pancreas, esophagus, lung, colon, stomach, brain, tonsil, liver, heart, ovary, skin, bone, uterus, bladder, or normal breast among some of

the tissues tested.

2. <u>Preparation of cDNA Library Encoding 520C9</u> Antibody.

Polyadenylated RNA was isolated from
approximately 1 x 10⁸ (520C9 hybridoma) cells using the
"FAST TRACK" mRNA isolation kit from Invitrogen (San
Diego, CA). The presence of immunoglobulin heavy chain
RNA was confirmed by Northern analysis (Molecular
Cloning, 1989, Sambrook et al., eds., 2d ed., Cold

Spring Harbor Laboratory Press, NY) using a recombinant probe containing the various J regions of heavy chain genomic DNA. Using 6 µg RNA for each, cDNA was prepared using the Invitrogen cDNA synthesis system with either random and oligo dT primers. Following synthesis, the cDNA was size-selected by isolating 0.5-3.0 Kilobase (Kb) fragments following agarose gel electrophoresis. After optimizing the cDNA to vector ratio, these fragments were then ligated to the pcDNA II Invitrogen cloning vector.

3. <u>Isolation of V_H and V_L Domains</u>

After transformation of the bacteria with plasmid library DNA, colony hybridization was performed using antibody constant (C) region and joining (J) region probes for either light or heavy chain genes. Orlandi, R., et al., 1989, Proc. Nat. Aca. Sci. 86:3833. The antibody constant region probe can be obtained from any of light or heavy chain nucleotide sequences from an immunoglobulin gene using known procedures. Several potential positive clones were 20 identified for both heavy and light chain genes and, after purification by a second round of screening, these were sequenced. One clone (M207) contained the sequence of non-functional Kappa chain which has a 25 tyrosine substituted for a conserved cysteine, and also terminates prematurely due to a 4 base deletion which causes a frame-shift mutation in the variable-J region junction. A second light chain clone (M230) contained virtually the entire 520C9 light chain gene except for the last 18 amino acids of the constant region and approximately half of the signal sequence. The 520C9 heavy chain variable region was present on a clone of approximately 1,100 base pairs (F320) which ended near the end of the CH2 domain.

10

Mutagenesis of V_H AND V_I

In order to construct the sFv, both the heavy and light chain variable regions were mutagenized to insert appropriate restriction sites (Kunkel, T.A., 1985, 5 Proc. Nat. Acad. Sci. USA 82:1373). The heavy chain clone (F320) was mutagenized to insert a BamH1 site at the 5' end of $V_{\rm H}$ (F321). The light chain was also mutagenized simultaneously by inserting an EcoRV site at the 5' end and a PstI site with a translation stop codon at the 3' end of the variable region (M231).

Sequencing

cDNA clones encoding light and heavy chain were sequenced using external standard pUC primers and several specific internal primers which were prepared on the basis of the sequences obtained for the heavy chain. The nucleotide sequences were analyzed in a Genbank homology search (program Nucscan of DNA-star) to eliminate endogenous immunoglobulin genes. Translation into amino acids was checked with amino acid sequences in the NIH atlas edited by E. Kabat.

Amino acid sequences derived from 520C9 immunoglobulin confirmed the identity of these $\mathbf{V}_{\mathbf{H}}$ and V_{τ} cDNA clones. The heavy chain clone pF320 started 6 nucleotides upstream of the first ATG codon and 25 extended into the CH2-encoding region, but it lacked the last nine amino acid codons of the CH2 constant domain and all of the CH3 coding region, as well as the 3' untranslated region and the poly A tail. Another short heavy chain clone containing only the CH2 and CH3 coding regions, and the poly A tail was initially assumed to represent the missing part of the 520C9 heavy chain. However, overlap between both sequences was not identical. The 520C9 clone (pF320) encodes the CH1 and CH2 domains of murine IgG1, whereas the short clone pF315 encodes the CH2 and CH3 of IgG2b.

6. Gene Design

A nucleic acid sequence encoding a composite 520C9 sFv region containing a single-chain Fv binding site which recognizes c-erbB-2 related tumor antigens 5 was designed with the aid of Compugene software. gene contains nucleic acid sequences encoding the V_H and V_{τ} regions of the 520C9 antibody described above linked together with a double-stranded synthetic oligonucleotide coding for a peptide with the amino acid sequence set forth in the Sequence Listing as amino acid residue numbers 116 through 133 in SEQ ID NOS:3 and 4. This linker oligonucleotide contains helper cloning sites EcoRI and BamHI, and was designed to contain the assembly sites SacI and EcoRV near its 15 5' and 3' ends, respectively. These sites enable match-up and ligation to the 3' and 5' ends of 520C9 $\rm V_{\rm H}$ and V_{τ} , respectively, which also contain these sites $(V_H-linker-V_{\overline{L}})$. However, the order of linkage to the oligonucleotide may be reversed $(V_L$ -linker- V_H) in this 20 or any sFv of the invention. Other restriction sites were designed into the gene to provide alternative assembly sites. A sequence encoding the FB fragment of protein A was used as a leader.

The invention also embodies a humanized singlechain Fv, i.e., containing human framework sequences
and CDR sequences which specify c-erbB-2 binding, e.g.,
like the CDRs of the 520C9 antibody. The humanized Fv
is thus capable of binding c-erbB-2 while eliciting
little or no immune response when administered to a

patient. A nucleic acid sequence encoding a humanized
sFv may be designed and constructed as follows. Two
strategies for sFv design are especially useful. A
homology search in the GenBank database for the most
related human framework (FR) regions may be performed

and FR regions of the sFv may be mutagenized according to sequences identified in the search to reproduce the corresponding human sequence; or information from computer modeling based on x-ray structures of model 5 Fab fragments may be used (Amit et al., 1986, Science 233:747-753; Colman et al., 1987, Nature 326:358-363; Sheriff et al., 1987, Proc. Nat. Aca. Sci., 84:8075-8079; and Satow et al., 1986, J. Mol. Biol. 190:593-604, all of which are hereby incorporated by In a preferred case, the most homologous human $\boldsymbol{V}_{\boldsymbol{H}}$ and $\boldsymbol{V}_{\boldsymbol{I}}$ sequences may be selected from a collection of PCR-cloned human V regions. The FRs are made synthetically and fused to CDRs to make successively more complete V regions by PCR-based 15 ligation, until the full humanized V_{t} and V_{H} are completed. For example, a humanized sFv that is a hybrid of the murine 520C9 antibody CDRs and the human myeloma protein NEW FRs can be designed such that each variable region has the murine binding site within a 20 human framework (FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4). The Fab NEW crystal structure (Saul et al., 1978, J. Biol. Chem. 253:585-597) also may be used to predict the location of FRs in the variable regions. Once these regions are predicted, the amino acid sequence or the 25 corresponding nucleotide sequence of the regions may be determined, and the sequences may be synthesized and cloned into shuttle plasmids, from which they may be further assembled and cloned into an expression plasmid; alternatively, the FR sequences of the 520C9 sFv may be mutagenized directly and the changes verified by supercoil sequencing with internal primers (Chen et al., 1985, DNA 4:165-170).

PCT/US93/01055 WO 93/16185

- 37 -

7. Preparation of and Purification 520C9 sFv

Inclusion Body Solubilization.

The 520C9 sFv plasmid, based on a T_7 promoter and vector, was made by direct expression in E. coli of the 5 fused gene sequence set forth in the Sequence Listing as SEQ. ID NO:3. Inclusion bodies (15.8 g) from a 2.0 liter fermentation were washed with 25 mM Tris, 10 mM EDTA, pH 8.0 (TE), plus 1 M guanidine hydrochloride (GuHCl). The inclusion bodies were solubilized in TE, 6 M GuHCl, 10 mM dithiothreitol (DTT), pH 9.0, and yielded 3825 A₂₈₀ units of material. This material was ethanol precipitated, washed with TE, 3M urea, then resuspended in TE, 8M urea, 10 mM DTT, pH 8.0. This precipitation step prepared the protein for ion exchange purification of the denatured sFv.

Ion Exchange Chromatography

10

15

The solubilized inclusion bodies were subjected to ion exchange chromatography in an effort to remove contaminating nucleic acids and E. coli proteins before 20 renaturation of the sFv. The solubilized inclusion bodies in 8M urea were diluted with TE to a final urea concentration of 6M, then passed through 100 ml of DEAE-Sepharose Fast Flow in a radial flow column. sFv was recovered in the unbound fraction (69% of the 2.5 starting sample).

The pH of this sFv solution ($A_{280} = 5.7$; 290 ml) was adjusted to 5.5 with 1 M acetic acid to prepare it for application to an S-Sepharose Fast Flow column. When the pH went below 6.0, however, precipitate formed 30 in the sample. The sample was clarified; 60% of the sample was in the pellet and 40% in the supernatant. The supernatant was passed through 100 ml S-Sepharose Fast Flow and the sFv recovered in the unbound fraction. The pellet was resolubilized in TE, 6 M

GuHCl, 10 mM DTT, pH 9.0, and was also found to contain primarily sFv in a pool of 45 ml volume with an absorbance at 280 nm of 20 absorbance units. This reduced sFv pool was carried through the remaining steps of the purification.

C. Renaturation of sFv

Renaturation of the sFv was accomplished using a disulfide-restricted refolding approach, in which the disulfides were oxidized while the sFv was fully denatured, followed by removal of the denaturant and refolding. Oxidation of the sFv samples was carried out in TE, 6 M GuHCl, 1 mM oxidized glutathione (GSSG), 0.1 mM reduced glutathione (GSH), pH 9.0. The sFv was diluted into the oxidation buffer to a final protein A280 = 0.075 with a volume of 4000 ml and incubated overnight at room temperature. After overnight oxidation this solution was dialyzed against 10 mM sodium phosphate, 1 mM EDTA, 150 mM NaCl, 500 mM urea, pH 8.0 (PENU) [4 x (20 liters X 24 hrs)]. Low levels of activity were detected in the refolded sample.

D. Membrane Fractionation and Concentration of Active sFv

In order to remove aggregated misfolded material before any concentration step, the dialyzed refolded 520C9 sFv (5050 ml) was filtered through a 100K MWCO membrane (100,000 mol. wt. cut-off) (4 x 60 cm²) using a Minitan ultrafiltration device (Millipore). This step required a considerable length of time (9 hours), primarily due to formation of precipitate in the retentate and membrane fouling as the protein concentration in the retentate increased. 95% of the protein in the refolded sample was retained by the 100K membranes, with 79% in the form of insoluble material. The 100K retentate had very low activity and was discarded.

The 100K filtrate contained most of the soluble sFv activity for binding c-erbB-2, and it was next concentrated using 10K MWCO membranes (10,000 mol. wt. cut-off) (4 x 60 cm²) in the Minitan, to a volume of 100 ml (50X). This material was further concentrated using a YM10 10K MWCO membrane in a 50 ml Amicon stirred cell to a final volume of 5.2 ml (1000X). Only a slight amount of precipitate formed during the two 10K concentration steps. The specific activity of this concentrated material was significantly increased relative to the initial dialyzed refolding.

E. Size Exclusion Chromatography of Concentrated sFv

when refolded sFv was fractionated by size
exclusion chromatocraphy, all 520C9 sFv activity was
determined to elut at the position of folded monomer.
In order to enrich for active monomers, the 1000X
concentrated sFv sample was fractionated on a Sephacryl
S-200 HR column (2.5 x 40 cm) in PBSA (2.7 mM KCl, 1.1
mm KH2PO4, 138 mm NaCl, 8.1 mm Na2HPO4 7H2O, 0.02%
NaN3) + 0.5 M urea. The elution profile of the column
and SDS-PAGE analysis of the fractions showed two sFv
monomer peaks. The two sFv monomer peak fractions were
pooled (10 ml total) and displayed c-erbB-2 binding
activity in competition assays.

The extracellular domain of (ECD) c-erbB-2 was expressed in bacculovirus-infected insect cells. This protein (ECD c-erbB-2) was immobilized on an agarose affinity matrix. The sFv monomer peak was dialyzed against PBSA to remove the urea and then applied to a 0.7 x 4.5 cm ECD c-erbB-2-agarose affinity column in PBSA. The column was washed to baseline A_{280} , then eluted with PBSA + 3 M LiCl, pH = 6.1. The peak

fractions were pooled (4 ml) and dialyzed against PBSA to remove the LiCl. 72 μg of purified sFv was obtained from 750 μg of S-200 monomer fractions. Activity measurements on the column fractions were determined by 5 a competitive assay. Briefly, sFv affinity purification fractions and HRP-conjugated 520C9 Fab fragments were allowed to compete for binding to SK-BR-3 membranes. Successful binding of the sFv preparation prevented the HRP-52069 Fab fragment from 10 binding to the membranes, thus also reducing or preventing utilization of the HRP substrate, and no color development (see below for details of competition assay). The results showed that virtually all of the sFv activity was bound by the column and was recovered 15 in the eluted peak (Figure 4). As expected, the specific activity of the eluted peak was increased relative to the column sample, and appeared to be essentially the same as the parent Fab control, within the experimental error of these measurements.

20 9. Yield After Purification.

Table I shows the yield of various 520C9
preparations during the purification process. Protein
concentration (μg/ml) was determined by the BioRad
protein assay. Under "Total Yield", 300 AU denatured

25 sFv stock represents 3.15 g inclusion bodies from 0.4
liters fermentation. The oxidation buffer was 25 mM
Tris, 10 mM EDTA, 6 M GdnHCl, 1 MM GSSG, 0.1 mM GSH, pH
9.0. Oxidation was performed at room temperature
overnight. Oxidized sample was dialyzed against 10 mM
30 sodium phosphate, 1 mM EDTA, 150 mM NaCl, 500 mM urea,
pH 8.0. All subsequent steps were carried out in this
buffer, except for affinity chromatography, which was
carried out in PBSA.

Table I

5	Sample	Volume	Protein Concentration	Total Yield %	Yield
J	1. Refolding III (oxidation)	4000 ml	0.075 A ₂₈₀	300 AU	-
10	2. Dialyzed Refolding III	5050 ml	38 μg/ml	191.9 mg	100
15	3. Minitan 100K Filtrate	5000 ml	2 μg/ml	10.0 mg	5.4
15	4. Minitan 10K Retentate	100 ml ~	45 μg/ml	4.5 mg	2.3
20	6. YM10 10K Retentate	5.2 ml	600 μg/ml	3.1 mg	1.6
	7. S-200 sFv Monomer Peak	10.0 ml	58 μg/ml	0.58 mg	0.3
25	8. Affinity Purified sFv	5.5 ml	13 μg/ml	0.07 mg	0.04

10. Immunotoxin Construction

The ricin A-520C9 single chain fused immunotoxin (SEQ. ID NO:7) encoding gene was constructed by isolating the gene coding for ricin A on a HindIII to 5 BamHl fragment from pPL229 (Cetus Corporation, Emeryville, CA) and using it upstream of the 520C9 sFv in pH777, as shown in FIG. 3. This fusion contains the 122 amino acid natural linker present between the A and B domains of ricin. However, in the original pRAP229 10 expression vector the codon for amino acid 268 of ricin was converted to a TAA translation stop codon so that the expression of the resulting gene produces only ricin A. Therefore, in order to remove the translation stop codon, site-directed mutagenesis was performed to 15 remove the TAA and restore the natural serine codon. This then allows translation to continue through the entire immunotoxin gene.

In order to insert the immunotoxin back into the pPL229 and pRAP229 expression vectors, the PstI site at the end of the immunotoxin gene had to be converted to a sequence that was compatible with the BamHI site in vector. A synthetic oligonucleotide adaptor containing a BclI site nested between PstI ends was inserted. BclI and BamHI ends are compatible and can be combined into a hybrid BclI/BamHI site. Since BclI nuclease is sensitive to dam methylation, the construction first was transformed into a dam(-) E. coli strain, Gm48, in order to digest the plasmid DNA with BclI (and HindIII), then insert the entire immunotoxin gene on a HindIII/BclI fragment back into both Hind III/BamHI-digested expression vectors.

When native 520C9 IgG1 is conjugated with native ricin A chain or recombinant ricin A chain, the resulting immunotoxin is able to inhibit protein

10

synthesis by 50% at a concentration of about 0.4 x 10^{-9} M against SK-Br-3 cells. In addition to reacting with SK-Br-3 breast cancer cells, native 520C9 IgG1 immunotoxin also inhibits an ovarian cancer cell line, OVCAR-3, with a ID₅₀ of 2.0 x 10^{-9} M.

In the ricin A-sFv fusion protein described above, ricin acts as leader for expression, i.e., is fused to the amino terminus of sFv. Following direct expression, soluble protein was shown to react with antibodies against native 520C9 Fab and also to exhibit ricin A chain enzymatic activity.

In another design, the ricin A chain is fused to the carboxy terminus of sFv. The 520C9 sFv may be secreted via the PelB signal sequence with ricin A 15 chain attached to the C-terminus of sFv. For this construct, sequences encoding the PelB-signal sequence, sFv, and ricin are joined in a bluescript plasmid via a HindIII site directly following sFv (in our expression plasmids) and the HindIII site preceding the ricin 20 gene, in a three part assembly (RI-HindIII-BamHI). A new PstI site following the ricin gene is obtained via the Bluescript polylinker. Mutagenesis of this DNA removes the stop codon and the original PstI site at the end of sFv, and places several serine residues 25 between the sFv and ricin genes. This new gene fusion, PelB signal sequence/sFv/ricin A, can be inserted into expression vectors as an EcoRI/PstI fragment.

In another design, the pseudomonas exotoxin fragment analogous to ricin A chain, PE40, is fused to the carboxy terminus of the anti-c-erbB-2 741F8 sFv (Seq ID NOS: 15 and 16). The resulting 741F8 sFv-PE40 is a single-chain Fv-toxin fusion protein, which was constructed with an 18 residue short FB leader which initially was left on the protein. E. coli expression

of this protein produced inclusion bodies that were refolded in a 3 M urea glutathione/redox buffer. The resulting sFv-PE40 was shown to specifically kill c-erbB-2 bearing cells in culture more fully and with apparently better cytotoxicity than the corresponding crosslinked immunotoxin. The sFv-toxin protein, as well as the 741F8 sFv, can be made in good yields by these procedures, and may be used as therapeutic and diagnostic agents for tumors bearing the c-erbB-2 or related antigens, such as breast and ovarian cancer.

11. Assays

A. Competition ELISA

SK-Br-3 extract is prepared as a source of c-erbB-2 antigen as follows. SK-Br-3 breast cancer 15 cells (Ring et al. 1989, Cancer Research 49:3070-3080), are grown to near confluence in Iscove's medium (Gibco BRL, Gaithersburg, Md.) plus 5% fetal bovine serum and 2 mM glutamine. The medium is aspirated, and the cells are rinsed with 10 ml fetal bovine serum (FBS) plus 20 calcium and magnesium. The cells are scraped off with a rubber policeman into 10 ml FBS plus calcium and magnesium, and the flask is rinsed out with another 5 ml of this buffer. The cells are then centrifuged at 100 rpm. The supernate is aspirated off, and the cells 25 are resuspended at 10^7 cells/ml in 10 mM NaCl, 0.5% NP40, pH 8 (TNN buffer), and are pipetted up and down to dissolve the pellet. The solution is then centrifuged at 1000 rpm to remove nuclei and other insoluble debris. The extract is filtered through 0.45 30 Millex HA and 0.2 Millex Gv filters. The TNN extract is stored as aliquots in Wheaton freezing vials at -70°C.

A fresh vial of SK-Br-3 TNN extract is thawed and diluted 200-fold into deionized water. Immediately thereafter, 40ug per well are added to a Dynatech PVC

5

96 well plak, which is allowed to sit overnight in a 37°C dry incubator. The plates are washed four times in phosphate buffered saline (PBS), 1% skim milk, 0.05% Tween 20.

The non-specific binding sites are blocked as follows. When the plate is dry, 100 ug per well PBS is added containing 1% skim milk, and the incubation allowed to proceed for one hour at room temperature.

The single-chain Fv test samples and standard

520C9 whole antibody dilutions are then added as
follows. 520C9 antibody and test samples are diluted
in dilution buffer (PBS + 1% skim milk) in serial twofold steps, initially at 50ug/ml and making at least 10
dilutions for 520C9 standards. A control containing
only dilution buffer is included. The diluted samples
and standards are added at 50ul per well and incubated
for 30 minutes at room temperature.

The 520C9-horseradish peroxidase (HRP) probe is added as follows. 520C9-HRP conjugate (Zymed Labs., South San Francisco, California) is diluted to 14 ug/ml with 1% skim milk in dilution buffer. The optimum dilutions must be determined for each new batch of peroxidase conjugate without removing the previous steps. 20 ul per well of probe was added and incubated 25 for one hour at room temperature. The plate is then washed four times in PBS. The peroxidase substrate is then added. The substrate solution should be made fresh for each use by diluting tetramethyl benzidine stock (TMB; 2mg/ml in 100% ethanol) 1:20 and 3% 30 hydrogen peroxide stock 1:2200 in substrate buffer (10mM sodium acetate, 10mM Na, EDTA, pH 5.0). This is incubated for 30 minutes at room temperature. wells are then quenched with 100 ul per well 0.8 M $\mathrm{H}_2\mathrm{SO}_4$ and the absorbance at 150 nm read.

10

refolded but unpurified 520C9 monoclonal antibody, 520C9 Fab fragments, and the 520C9 sFv single-chain binding site after binding and elution from an affinity column (eluted) or the unbound flow through fraction (passed). In Fig. 4, the fully purified 520C9 sFv exhibits an affinity for c-erbB-2 that is indistinguishable from the parent monoclonal antibody, within the error of measuring protein concentration.

B. In vivo testing

Immunotoxins that are strong inhibitors of protein synthesis against breast cancer cells grown in culture may be tested for their in vivo efficacy. The in vivo assay is typically done in a nude mouse model using xenografts of human MX-1 breast cancer cells.

Mice are injected with either PBS (control) or different concentrations of sFv-toxin immunotoxin, and a concentration-dependent inhibition of tumor growth will be observed. It is expected that higher doses of immunotoxin will produce a better effect.

The invention may be embodied in other specific forms without departing from the spirit and scope thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalence of the claims are intended to be embraced therein.

WO 93/16185 PCT/US93/01055

- 47 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Huston, James S. Oppermann, Hermann Houston, L. L. Ring, David B.
- (ii) TITLE OF INVENTION: Biosynthetic Binding Protein for Cancer Marker
- (iii) NUMBER OF SEQUENCES: 16
- CORRESPONDENCE ADDRESS: (i⊽)
 - (A) ADDRESSEE: Edmund R. Pitcher, Testa, Hurwitz, & Thibeault
 - (B) STREET: Exchange Place, 53 State Street
 - (C) CITY: Boston
 - (D) STATE: Massachusetts
 - (E) COUNTRY: USA
 - (F) ZIP: 02109
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- CURRENT APPLICATION DATA: (vi)
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- ATTORNEY/AGENT INFORMATION: (viii)
 - (A) NAME: Pitcher, Edmund R.
 - (B) REGISTRATION NUMBER: 27,829
 - (C) REFERENCE/DOCKET NUMBER: 2054/22
- TELECOMMUNICATION INFORMATION: (ix)
 - (A) TELEPHONE: (617) 248-7000 (B) TELEFAX: (617) 248-7100
- (2) INFORMATION FOR SEQ ID NO:1:
 - SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4299 base pairs(B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

	•	(ix)	(A (B	í t	AME/	TON.	1	4299 TION	: /n	ote=	"pr	oduc	t =	"c~e	rb-b-2""	
		(xi)	SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:1:					
ATG Met 1	GAG Glu	CTG Leu	GCG Ala	GCC Ala 5	TTG Leu	TGC Cys	CGC Arg	TGG Trp	GGG Gly 10	CTC Leu	CTC Leu	CTC Leu	GCC Ala	CTC Leu 15	TTG Leu	48
CCC Pro	CCC Pro	GGA Gly	GCC Ala 20	GCG Ala	AGC Ser	ACC Thr	CAA Gln	GTG Val 25	TGC Cys	ACC Thr	GGC Gly	ACA Thr	GAC Asp 30	ATG M et	AAG Lys	96
CTG Leu	CGG Arg	CTC Leu 35	CCT Pro	GCC Ala	AGT Ser	CCC Pro	GAG Glu 40	ACC Thr	CAC His	CTG Leu	GAC Asp	ATG Met 45	CTC Leu	CGC Arg	CAC His	144
CTC Leu	TAC Tyr 50	CAG Gln	GGC Gly	TGC Cys	CAG Gln	GTG Val 55	GTG Val	CAG Gln	GGA Gly	AAC Asn	CTG Leu 60	GAA Glu	CTC Leu	ACC Thr	TAC Tyr	192
CTG Leu 65	CCC Pro	ACC Thr	AAT Asn	GCC Ala	AGC Ser 70	CTG Leu	TCC Ser	TTC Phe	CTG Leu	CAG Gln 75	GAT Asp	ATC Ile	CAG Gln	GAG Glu	GTG Val 80	240
CAG Gln	GGC Gly	TAC Tyr	GTG Val	CTC Leu 85	ATC Ile	GCT Ala	CAC His	AAC Asn	CAA Gln 90	GTG Val	AGG Arg	CAG Gln	GTC Val	CCA Pro 95	CTG Leu	288
CAG Gln	AGG Arg	CTG Leu	CGG Arg 100	Ile	GTG Val	CGA Arg	GGC Gly	ACC Thr 105	GIn	CTC Leu	TTT Phe	GAG Glu	GAC Asp 110	AAC Asn	TAT Tyr	336
GCC Ala	CTG Leu	GCC Ala 115	GTG Val	CTA Leu	GAC Asp	AAT Asn	GGA Gly 120	Asp	CCG Pro	CTG Leu	AAC Asn	AAT Asn 125	ACC Thr	ACC Thr	CCT Pro	384
Val	Thr 130	Gly	7 Ala	Ser	Pro	Gly 135	Gly	Leu	. Arg	GIU	140	Gin -	reu	ALE	AGC Ser	432
CTC Let	Thi	GA(G ATO	TTC Leu	AAA Lys 150	Gly	GGC Gly	GTC Val	TTC L Lei	ATC 111e 155	: GIII	G CGG	AAC Asn	CCC Pro	CAG Gln 160	480
CT(Lev	TG(TA Ty	C CAC	G GAG n Ası 165	Thi	ATT	TTO Let	TG(AA(Lys 17(ASP	C ATO	TTC Phe	CAC His	Lys 175	G AAC S Asn	528
AA(As)	C CA	G CT n Le	G GC u Ala 18	a Lei	C AC	A CTO	G ATA	A GAG A A S 18	p Thi	C AA(C CGO	C TC1 g Sei	CG(Arg 190	S wre	TGC Cys	576

CAC His	CCC Pro	TGT Cys 195	TCT Ser	CCG Pro	ATG Met	TGT Cys	AAG Lys 200	GGC Gly	TCC	CGC Arg	TGC Cys	TGG Trp 205	GGA Gly	GAG Glu	AGT Ser	624
TCT Ser	GAG Glu 210	GAT Asp	TGT Cys	CAG Gln	AGC Ser	CTG Leu 215	ACG Thr	CGC Arg	ACT Thr	GTC Val	TGT Cys 220	GCC Ala	GGT Gly	GGC Gly	TGT Cys	672
GCC Ala 225	CGC Arg	TGC Cys	AAG Lys	GGG Gly	CCA Pro 230	CTG Leu	CCC Pro	ACT Thr	GAC Asp	TGC Cys 235	TGC Cys	CAT His	GAG Glu	CAG Gln	TGT Cys 240	720
GCT Ala	GCC Ala	GGC Gly	TGC Cys	ACG Thr 245	GGC Gly	CCC Pro	AAG Lys	CAC His	TCT Ser 250	GAC Asp	TGC Cys	CTG Leu	GCC Ala	TGC Cys 255	CTC Lèu	768
CAC His	TTC Phe	AAC Asn	CAC His 260	AGT Ser	GGC Gly	ATC Ile	TGT Cys	GAG Glu 265	CTG Leu	CAC His	TGC Cys	CCA Pro	GCC Ala 270	CTG Leu	GTC Val	816
ACC Thr	TAC Tyr	AAC Asn 275	ACA Thr	GAC Asp	ACG Thr	TTT Phe	GAG Glu 280	TCC Ser	ATG Met	CCC Pro	AAT Asn	CCC Pro 285	GAG Glu	GGC Gly	CGG Arg	864
TAT Tyr	ACA Thr 290	TTC Phe	GGC Gly	GCC Ala	AGC Ser	TGT Cys 295	GTG Val	ACT Thr	GCC Ala	TGT Cys	CCC Pro 300	TAC Tyr	AAC Asn	TAC Tyr	CTT Leu	912
TCT Ser 305	ACG Thr	GAC Asp	GTG Val	GGA Gly	TCC Ser 310	TGC Cys	ACC Thr	CTC Leu	GTC Val	TGC Cys 315	CCC Pro	CTG Leu	CAC His	AAC Asn	CAA Gln 320	960
GAG Glu	GTG Val	ACA Thr	GCA Ala	GAG Glu 325	GAT Asp	GGA Gly	ACA Thr	CAG Gln	CGG Arg 330	TGT Cys	GAG Glu	AAG Lys	TGC Cys	AGC Ser 335	AAG Lys	1008
CCC Pro	TGT Cys	GCC Ala	CGA Arg 340	GTG Val	TGC Cys	TAT Tyr	GGT Gly	CTG Leu 345	Gly	ATG Met	GAG Glu	CAC His	TTG Leu 350	CGA Arg	GAG Glu	1056
GTG Val	AGG Arg	Ala	Val	Thr	AGT Ser	Ala	Asn	Ile	Gln	Glu	Phe	Ala	Gly	TGC Cys	AAG Lys	1104
AAG Lys	ATC Ile 370	Phe	GGG Gly	AGC Ser	CTG Leu	GCA Ala 375	TTT Phe	CTG Leu	CCG Pro	GAG Glu	AGC Ser 380	TTT	GAT Asp	GGG Gly	GAC Asp	1152
CCA Pro 385	Ala	TCC Ser	AAC Asn	ACT Thr	GCC Ala 390	Pro	CTC Leu	CAG Gln	CCA Pro	GAG Glu 395	CAG Gln	CTC Leu	CAA Gln	GTG Val	TTT Phe 400	1200
GAG Glu	ACT	CTG Leu	GAA Glu	GAG Glu 405	ATC	ACA Thr	GGT Gly	TAC	CTA Leu 410	Tyr	ATC Ile	TCA Ser	GCA Ala	TGG Trp 415	CCG Pro	1248

GAC Asp	AGC Ser	CTG Leu	CCT Pro 420	GAC Asp	CTC Leu	AGC Ser	GTC Val	TTC Phe 425	CAG Gln	AAC Asn	CTG Leu	CAA Gln	GTA Val 430	ATC Ile	CGG Arg	1296
GGA Gly	CGA Arg	ATT Ile 435	CTG Leu	CAC His	AAT Asn	GGC Gly	GCC Ala 440	TAC Tyr	TCG Ser	CTG Leu	ACC Thr	CTG Leu 445	CAA Gln	GGG Gly	CTG Leu	1344
GGC Gly	ATC Ile 450	AGC Ser	TGG Trp	CTG Leu	GGG Gly	CTG Leu 455	CGC Arg	TCA Ser	CTG Leu	AGG Arg	GAA Glu 460	CTG Leu	GGC Gly	AGT Ser	GGA Gly	1392
CTG Leu 465	GCC Ala	CTC Leu	ATC Ile	CAC His	CAT His 470	AAC Asn	ACC Thr	CAC His	CTC Leu	TGC Cys 475	TTC Phe	GTG Val	CAC His	ACG Thr	GTG Val 480	1440
CCC Pro	TGG Trp	GAC Asp	CAG Gln	CTC Leu 485	TTT Phe	CGG Arg	AAC Asn	CCG Pro	CAC His 490	CAA Gln	GCT Ala	CTG Leu	CTC Leu	CAC His 495	ACT Thr	1488
GCC Ala	AAC Asn	CGG Arg	CCA Pro 500	GAG Glu	GAC Asp	GAG Glu	TGT Cys	GTG Val 505	GGC Gly	GAG Glu	GGC Gly	CTG Leu	GCC Ala 510	TGC Cys	CAC His	1536
CAG Gln	CTG Leu	TGC Cys 515	GCC Ala	CGA Arg	GGG Gly	CAC His	TGC Cys 520	TGG Trp	GGT Gly	CCA Pro	GGG Gly	CCC Pro 525	ACC Thr	CAG Gln	TGT Cys	1584
GTC Val	AAC Asn 530	TGC Cys	AGC Ser	CAG Gln	TTC Phe	CTT Leu 535	CGG Arg	GGC Gly	CAG Gln	GAG Glu	TGC Cys 540	GTG Val	GAG Glu	GAA Glu	TGC Cys	1632
CGA Arg 545	GTA Val	CTG Leu	CAG Gln	GGG Gly	CTC Leu 550	CCC Pro	AGG Arg	GAG Glu	TAT Tyr	GTG Val 555	AAT Asn	GCC Ala	AGG Arg	CAC His	TGT Cys 560	1680
TTG Leu	CCG Pro	TGC Cys	CAC His	CCT Pro 565	GAG Glu	TGT Cys	CAG Gln	CCC	CAG Gln 570	AAT Asn	GGC Gly	TCA Ser	GTG Val	ACC Thr 575	TGT Cys	1728
TTT Phe	GGA Gly	CCG Pro	GAG Glu 580	GCT Ala	GAC	CAG Gln	TGT Cys	GTG Val 585	GCC Ala	TGT Cys	GCC Ala	CAC His	TAT Tyr 590	AAG Lys	GAC Asp	1776
CCT	CCC Pro	TTC Phe 595	Cys	GTG Val	GCC Ala	CGC Arg	TGC Cys 600	CCC Pro	AGC Ser	GGT Gly	GTG Val	AAA Lys 605	Pro	GAC Asp	CTC Leu	1824
TCC Ser	TAC Tyr 610	ATG Met	CCC Pro	ATC	TGG Trp	AAG Lys 615	TTT Phe	CCA	GAT Asp	GAG Glu	GAG Glu 620	GGC Gly	GCA Ala	TGC Cys	CAG Gln	1872
CCT Pro 625	Cys	CCC Pro	ATC Ile	AAC Asn	TGC Cys 630	Thr	CAC His	TCC Ser	TGT Cys	GTG Val 635	Asp	CTG Leu	GAT Asp	GAC Asp	AAG Lys 640	1920

GGC Gly	TGC Cys	CCC Pro	GCC Ala	GAG Glu 645	CAG Gln	AGA Arg	GCC Ala	AGC Ser	CCT Pro 650	CTG Leu	ACG Thr	TCC Ser	ATC Ile	ATC Ile 655	TCT Ser	1968
GCG Ala	GTG Val	GTT Val	GGC Gly 660	ATT Ile	CTG Leu	CTG Leu	GTC Val	GTG Val 665	GTC Val	TTG Leu	GGG Gly	GTG Val	GTC Val 670	TTT Phe	GGG Gly	2016
ATC Ile	CTC Leu	ATC Ile 675	AAG Lys	CGA Arg	CGG Arg	CAG Gln	CAG Gln 680	AAG Lys	ATC Ile	CGG Arg	AAG Lys	TAC Tyr 685	ACG Thr	ATG Met	CGG Arg	2064
Arg	CTG Leu 690	Leu	CAG Gln	GAA Glu	ACG Thr	GAG Glu 695	CTG Leu	GTG Val	GAG Glu	CCG Pro	CTG Leu 700	ACA Thr	CCT Pro	AGC Ser	GGA Gly	2112
GCG Ala 705	ATG Met	CCC Pro	AAC Asn	CAG Gln	GCG Ala 710	CAG Gln	ATG Met	CGG Arg	ATC Ile	CTG Leu 715	AAA Lys	GAG Glu	ACG Thr	GAG Glu	CTG Leu 720	2160
AGG Arg	AAG Lys	GTG Val	AAG Lys	GTG Val 725	CTT Leu	GGA Gly	TCT Ser	GGC Gly	GCT Ala 730	TTT Phe	GGC Gly	ACA Thr	GTC Val	TAC Tyr 735	AAG Lys	2208
GGC Gly	ATC Ile	TGG Trp	ATC Ile 740	CCT Pro	GAT Asp	GGG Gly	GAG Glu	AAT Asn 745	GTG Val	AAA Lys	ATT Ile	CCA Pro	GTG Val 750	GCC Ala	ATC Ile	2256
AAA Lys	GTG Val	TTG Leu 755	AGG Arg	GAA Glu	AAC Asn	ACA Thr	TCC Ser 760	CCC Pro	AAA Lys	GCC Ala	AAC Asn	AAA Lys 765	GAA Glu	ATC Ile	TTA Leu	2304
GAC Asp	GAÀ Glu 770	GCA Ala	TAC Tyr	GTG Val	ATG Met	GCT Ala 775	GGT Gly	GTG Val	GGC Gly	TCC Ser	CCA Pro 780	TAT Tyr	GTC Val	TCC	CGC Arg	2352
Leu 785	Leu	Gly	Ile	Cys	CTG Leu 790	Thr	Ser	Thr	Val	Gln 795	Leu	Val	Thr	Gln	Leu 800	2400
Het	Pro	Tyr	Gly	Cys 805	CTC Leu	Leu	Asp	His	Val 810	Arg	Glu	Asn	Arg	Gly 815	Arg	2448
CTG Leu	GGC Gly	TCC Ser	CAG Gln 820	Asp	CTG Leu	CTG Leu	AAC Asn	TGG Trp 825	TGT Cys	ATG Met	CAG Gln	ATT Ile	GCC Ala 830	AAG Lys	GGG Gly	2496
ATG Met	AGC Ser	TAC Tyr 835	Leu	GAG Glu	GAT Asp	GTG Val	CGG Arg 840	Leu	GTA Val	CAC	AGG Arg	GAC Asp 845	TTG Leu	GCC Ala	GCT Ala	2544
CGG Arg	AAC Asn 850	Val	CTG Leu	GTC Val	AAG Lys	AGT Ser 855	Pro	AAC Asn	CAT His	GTC Val	AAA Lys 860	Ile	ACA Thr	GAC Asp	TTC Phe	2592

GGG Gly 865	CTG Leu	GCT Ala	CGG Arg	CTG Leu	CTG Leu 870	GAC Asp	ATT Ile	GAC Asp	GAG Glu	ACA Thr 875	GAG Glu	TAC Tyr	CAT His	GCA Ala	GAT Asp 880	2	2640
GGG Gly	GGC Gly	AAG Lys	GTG Val	CCC Pro 885	ATC Ile	AAG Lys	TGG Trp	ATG Het	GCG Ala 890	CTG Leu	GAG Glu	TCC Ser	ATT Ile	CTC Leu 895	CGC Arg	2	2688
CGG Arg	CGG Arg	TTC Phe	ACC Thr 900	CAC His	CAG Gln	AGT Ser	GAT Asp	GTG Val 905	TGG Trp	AGT Ser	TAT Tyr	GG T Gly	GTG Val 910	ACT Thr	GTG Val	Ź	2736
TGG Trp	GAG Glu	CTG Leu 915	ATG Met	ACT Thr	TTT Phe	GGG Gly	GCC Ala 920	AAA Lys	CCT Pro	TAC Tyr	GAT Asp	GGG Gly 925	ATC Ile	CCA Pro	GCC Ala	2	2784
CGG Arg	GAG Glu 930	ATC Ile	CCT Pro	GAC Asp	CTG Leu	CTG Leu 935	GAA Glu	AAG Lys	GGG Gly	GAG Glu	CGG Arg 940	CTG Leu	CCC Pro	CAG Gln	CCC Pro	2	2832
CCC Pro 945	ATC Ile	TGC Cys	ACC Thr	ATT Ile	GAT Asp 950	GTC Val	TAC Tyr	ATG Met	ATC Ile	ATG Met 955	GTC Val	AAA Lys	TGT Cys	TGG Trp	ATG Met 960	2	2880
ATT Ile	GAC Asp	TCT Ser	GAA Glu	TGT Cys 965	CGG Arg	CCA Pro	AGA Arg	TTC Phe	CGG Arg 970	GAG Glu	TTG Leu	GTG Val	TCT Ser	GAA Glu 975	TTC Phe	:	2928
TCC Ser	CGC Arg	ATG Met	GCC Ala 980	AGG Arg	GAC Asp	CCC Pro	CAG Gln	CGC Arg 985	TTT Phe	GTG Val	GTC Val	ATC Ile	CAG Gln 990	AAT Asn	GAG Glu	:	2976
GAC Asp	TTG Leu	GGC Gly 995	Pro	GCC Ala	AGT Ser	CCC Pro	TTG Leu 100	Asp	AGC Ser	ACC Thr	TTC Phe	TAC Tyr 100	Arg	TCA Ser	CTG Leu	;	3024
CTG Leu	GAG Glu 101	Asp	GAT Asp	GAC Asp	ATG Met	GGG Gly 101	Asp	CTG Leu	GTG Val	GAT Asp	GCT Ala 102	Glu	GAG Glu	TAT Tyr	CTG Leu	-	3072
Val	Pro	Gln	Gln	GGC	Phe	Phe	Cys	Pro	Asp	Pro	Ala	CCG Pro	GGC Gly	GCT Ala	GGG Gly 1040		3120
GGC Gly	ATG Met	GTC Val	CAC His	CAC His	Arg	CAC	CGC	AGC Ser	TCA Ser 105	Ser	ACC Thr	AGG Arg	AGT Ser	GGC Gly 105	GIA		3168
GGC Gly	GAC Asp	CTC Lev	ACA Thr 106		GGG Gly	CTG Leu	GAG Glu	CCC Pro 106	Ser	GAA Glu	GAG Glu	GAG Glu	GCC Ala 107	Pro	AGG Arg		3216
TCT Ser	CCA Pro	CTO Let	ı Ala	CCC Pro	TCC Ser	GAA Glu	GGC Gly 108	Ala	GGC Gly	TCC Ser	GAT Asp	GTA Val	. Phe	GAT Asp	GGT		3264

GAC CTG GGA Asp Leu Gly 1090	ATG GGG Het Gly	GCA GCC Ala Ala 1095	Lys Gly	CTG CAA Leu Gln	AGC CTC Ser Leu 1100	CCC ACA	CAT	3312
GAC CCC AGC Asp Pro Ser 1105	CCT CTA Pro Leu	CAG CGG Gln Arg 1110	TAC AGT Tyr Ser	GAG GAC Glu Asp 111	Pro Thr	GTA CCC Val Pro	CTG Leu 1120	3360
CCC TCT GAG Pro Ser Glu	ACT GAT Thr Asp 112	Gly Tyr	GTT GCC Val Ala	CCC CTG Pro Leu 1130	ACC TGC Thr Cys	AGC CCC Ser Pro	Gln	3408
CCT GAA TAT Pro Glu Tyr	GTG AAC Val Asn 1140	CAG CCA Gln Pro	GAT GTT Asp Val	Arg Pro	CAG CCC Gln Pro	CCT TCG Pro Ser 1150	CCC Pro	3456
CGA GAG GGC Arg Glu Gly 115	Pro Leu	CCT GCT Pro Ala	GCC CGA Ala Arg 1160	CCT GCT Pro Ala	GGT GCC Gly Ala 1165	Thr Leu	GAA Glu	3504
AGG CCC AAG Arg Pro Lys 1170	ACT CTC Thr Leu	TCC CCA Ser Pro 117	Gly Lys	AAT GGG Asn Gly	GTC GTC Val Val 1180	AAA GAC Lys Asp	GTT Val	3552
TTT GCC TTT Phe Ala Phe 1185	GGG GGT Gly Gly	GCC GTG Ala Val 1190	GAG AAC Glu Asn	CCC GAG Pro Glu 119	Tyr Leu	ACA CCC Thr Pro	CAG Gln 1200	3600
GGA GGA GCT Gly Gly Ala	GCC CCT Ala Pro 120	Gln Pro	CAC CCT His Pro	CCT CCT Pro Pro 1210	GCC TTC Ala Phe	AGC CCA Ser Pro 121	Ala	3648
TTC GAC AAC Phe Asp Asn	CTC TAT Leu Tyr 1220	TAC TGG Tyr Trp	GAC CAG Asp Gln 122	Asp Pro	CCA GAĞ Pro Glu	CGG GGG Arg Gly 1230	GCT Ala	3696
CCA CCC AGC Pro Pro Ser 123	Thr Phe	AAA GGG Lys Gly	ACA CCT Thr Pro 1240	ACG GCA Thr Ala	GAG AAC Glu Asn 124	Pro Glu	TAC Tyr	3744
CTG GGT CTG Leu Gly Leu 1250	GAC GTG Asp Val	Pro Val	TGA ACC * Thr 5	AGA AGG Arg Arg	CCA AGT Pro Ser 1260	CCG CAC Pro Glr	AAG Lys	3792
CCC TGA TGT Pro * Cys 1265	Val Leu	AGG GAG Arg Glu 1270	CAG GGA Gln Gly	AGG CCT Arg Pro	Asp Phe	TGC TGC Cys Trp	CAT His 1280	3840
CAA GAG GTG Gln Glu Val	GGA GGC Gly Gly 128	Pro Ser	GAC CAC Asp His	TTC CAC Phe Glr 1290	G GGG AAC Gly Asn	CTG CCA Leu Pro 129	Cys	3888

CAG Gln	GAA Glu	CCT Pro	GTC Val 1300	Leu	AGG Arg	AAC Asn	CTT Leu	CCT Pro 1305	Ser	TGC Cys	TTG Leu	AGT Ser	TCC Ser 1310	GIn	ATG Met	3936
GCT Ala	GGA Gly	AGG Arg 1315	GGT Gly	CCA Pro	GCC Ala	TCG Ser	TTG Leu 1320	Glu	GAG Glu	GAA Glu	CAG Gln	CAC His 1325	Trp	GGA Gly	GTC Val	3984
TTT Phe	GTG Val 1330	Asp	TCT Ser	GAG Glu	GCC Ala	CTG Leu 1335	Pro	AAT Asn	GAG Glu	ACT Thr	CTA Leu 1340	Gly	TCC Ser	AGT Ser	GGA Gly	4032
TGC Cys 1345	His	AGC Ser	CCA Pro	GCT Ala	TGG Trp 1350	Pro	TTT Phe	CCT Pro	TCC Ser	AGA Arg 1355	Ser	TGG Trp	GTA Val	CTG Leu	AAA Lys 1360	4080
GCC Ala	TTA Leu	GGG Gly	AAG Lys	CTG Leu 136	Ala	TGA *	GAG Glu	GGG Gly	AAG Lys 1370	Arg	CCC Pro	TAA *	GGG Gly	AGT Ser 1375	Val	4128
TAA *	GAA Glu	CAA Gln	AAG Lys 1380	Arg	CCC Pro	ATT Ile	CAG Gln	AGA Arg 138	Leu	TCC Ser	CTG Leu	AAA Lys	CCT Pro 1390	Ser	ACT Thr	4176
GCC Ala	CCC Pro	CAT His 139	GAG Glu 5	GAA Glu	GGA Gly	ACA Thr	GCA Ala 140	Het	GTG Val	TCA Ser	GTA Val	TCC Ser 140	Arg	CTT Leu	TGT Cys	4224
ACA Thr	GAG Glu 141	Cys	TTT Phe	TCT Ser	GTT Val	TAG * 141	Phe	TTA Leu	CTT Leu	TTT Phe	TTG Leu 142	Phe	TGT Cys	TTT	TTT Phe	4272
AAA Lys 142	Asp	GAA Glu	ATA Ile	AAG Lys	ACC Thr 143	Gln	GGG Gly	GAG Glu								4299

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1433 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 150 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 265 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 320 305

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys 360 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe 390 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg 425 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val 470 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp

Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu

Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile 745 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu 790 Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp 875 Gly Gly Lys Val Pro Ile Lys Trp Het Ala Leu Glu Ser Ile Leu Arg

- Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val 900 905 910
- Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala 915 920 925
- Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro 930 935 940
- Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met 945 950 955 960
- Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe 965 970 975
- Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu 980 985 990
- Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu 995 1000 1005
- Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu 1010 1015 1020
- Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala Gly 1025 1030 1035 1040
- Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly
 1045 1050 1055
- Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Glu Ala Pro Arg 1060 1065 1070
- Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp Val Phe Asp Gly 1075 1080 1085
- Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Thr His 1090 1095 1100
- Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu 1105 1110 1115 1120
- Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln 1125 1130 1135
- Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro 1140 1145 1150
- Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu 1155 1160 1165
- Arg Pro Lys Thr-Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val 1170 1175 1180

Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln 1185 1190 1195 1200

Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala 1205 1210 1215

Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala 1220 1225 1230

Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr 1235 1240 1245

Leu Gly Leu Asp Val Pro Val * Thr Arg Arg Pro Ser Pro Gln Lys 1250 1255 1260

Pro * Cys Val Leu Arg Glu Gln Gly Arg Pro Asp Phe Cys Trp His 1265 1270 1275 1280

Gln Glu Val Gly Gly Pro Ser Asp His Phe Gln Gly Asn Leu Pro Cys 1285 1290 1295

Gln Glu Pro Val Leu Arg Asn Leu Pro Ser Cys Leu Ser Ser Gln Met 1300 1305 1310

Ala Gly Arg Gly Pro Ala Ser Leu Glu Glu Glu Gln His Trp Gly Val 1315 1320 1325

Phe Val Asp Ser Glu Ala Leu Pro Asn Glu Thr Leu Gly Ser Ser Gly 1330 1340

Cys His Ser Pro Ala Trp Pro Phe Pro Ser Arg Ser Trp Val Leu Lys 1345 1350 1355 1360

Ala Leu Gly Lys Leu Ala * Glu Gly Lys Arg Pro * Gly Ser Val 1365 1370 1375

* Glu Gln Lys Arg Pro Ile Gln Arg Leu Ser Leu Lys Pro Ser Thr 1380 . 1385 1390

Ala Pro His Glu Glu Gly Thr Ala Het Val Ser Val Ser Arg Leu Cys 1395 1400 1405

Thr Glu Cys Phe Ser Val * Phe Leu Leu Phe Leu Phe Cys Phe Phe 1410 1415 1420

Lys Asp Glu Ile Lys Thr Gln Gly Glu 1425 1430

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 739 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 1..739
 (D) OTHER INFORMATION: /note= "product = "520C9sFv/ amino acid info: 520C9sFv protein""

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAG Glu 1	ATC Ile	CAA Gln	TTG Leu	GTG Val 5	CAG Gln	TCT Ser	GGA Gly	CCT Pro	GAG Glu 10	CTG Leu	AAG Lys	AAG Lys	CCT Pro	GGA Gly 15	GAG Glu	48	
ACA Thr	GTC Val	ΛAG Lys	ATC Ile 20	TCC Ser	TGC Cys	AAG Lys	GCT Ala	TCT Ser 25	GGA Gly	TAT Tyr	ACC Thr	TTC Phe	GCA Ala 30	AAC Asn	TAT Tyr	96	
GGA Gly	ATG Met	AAC Asn 35	TGG Trp	ATG Met	AAG Lys	CAG Gln	GCT Ala 40	CCA Pro	GGA Gly	AAG Lys	GGT Gly	TTA Leu 45	AAG Lys	TGG Trp	ATG Met	144	
GGC Gly	TGG Trp 50	ATA Ile	AAC Asn	ACC Thr	TAC Tyr	ACT Thr 55	GGA Gly	CAG Gln	TCA Ser	ACA Thr	TAT Tyr 60	GCT Ala	GAT Asp	GAC Asp	TTC Phe	192	
AAG Lys 65	GAA Glu	CGG Arg	TTT Phe	GCC Ala	TTC Phe 70	TCT Ser	TTG Leu	GAA Glu	ACC Thr	TCT Ser 75	GCC Ala	ACC Thr	ACT Thr	GCC Ala	CAT His 80	240	
TTG Leu	CAG Gln	ATC Ile	AAC Asn	AAC Asn 85	CTC Leu	AGA Arg	AAT Asn	GAG Glu	GAC Asp 90	TCG Ser	GCC Ala	ACA Thr	TAT Tyr	TTC Phe 95	TGT Cys	288	
GCA Ala	AGA Arg	CGA Arg	TTT Phe 100	GGG Gly	TTT Phe	GCT Ala	TAC Tyr	TGG Trp 105	GGC Gly	CAA Gln	GGG Gly	ACT Thr	CTG Leu 110	GTC Val	AGT Ser	336	
GTC Val	TCT Ser	GCA Ala 115	TCG Ser	ATA Ile	TCG Ser	AGC Ser	TCC Ser 120	TCC Ser	GGA Gly	TCT Ser	TCA Ser	TCT Ser 125	AGC Ser	GGT Gly	TCC Ser	384	
AGC Ser	TCG Ser 130	Ser	GGA Gly	TCC Ser	GAT Asp	ATC Ile 135	CAG Gln	ATG Met	ACC Thr	CAG Gln	TCT Ser 140	CCA Pro	TCC Ser	TCC Ser	TTA Leu	432	
TCT Ser 145	Ala	TCT Ser	CTG Leu	GGA Gly	GAA Glu 150	AGA Arg	GTC Val	AGT Ser	CTC	ACT Thr 155	TGT Cys	CGG Arg	GCA Ala	AGT Ser	CAG Gln 160	480	
GAC Asp	ATT Ile	GGT Gly	AAT Asn	AGC Ser 165	TTA Leu	ACC Thr	TGG Trp	CTT Leu	CAG Gln 170	Gln	GAA Glu	CCA Pro	GAT Asp	GGA Gly 175	Thr	528	

ATT Ile	AAA Lys	CGC Arg	CTG Leu 180	ATC Ile	TAC Tyr	GCC Ala	ACA Thr	TCC Ser 185	AGT Ser	TTA Leu	GAT Asp	TCT Ser	GGT Gly 190	GTC Val	CCC Pro		576
AAA Lys	AGG Arg	TTC Phe 195	AGT Ser	GGC Gly	AGT Ser	CGG Arg	TCT Ser 200	GGG Gly	TCA Ser	GAT Asp	TAT Tyr	TCT Ser 205	CTC Leu	ACC Thr	ATC		624
AGT Ser	AGC Ser 210	CTT Leu	GAG Glu	TCT Ser	GAA Glu	GAT Asp 215	TTT Phe	GTA Val	GTC Val	TAT Tyr	TAC Tyr 220	TGT Cys	CTA Leu	CAA Gln	TAT Tyr	•	672
GCT Ala 225	ATT Ile	TTT Phe	CCG Pro	TAC Tyr	ACG Thr 230	TTC Phe	GGA Gly	GGG Gly	GGG Gly	ACC Thr 235	AAC Asn	CTG Leu	GAA Glu	ATA Ile	AAA Lys 240		720
	GCT Ala			TCT Ser 245		G											739
(2)	INE	FORMA	MOITA	· FOE	R SEC] ID	NO: 4	¥:									
		(i)	(<i>I</i>	A) I 3) I	ICE (LENGT TYPE:	TH: 2 : ami	246 a ino a	amino acid		lds							
		(ii)) M(LEC	JLE T	TYPE:	pro	oteir	1 ,								
		(xi)) SI	EQUEI	VCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:4	:					
Glu 1	Ile	Gln	Leu	Val 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Lys	Lys	Pro	Gly 15	Glu		
Thr	Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ala 30	Asn	Tyr		
Gly	Met	Asn 35	Trp	Met	Lys	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Lys	Trp	Het		
Gly	Trp 50	Ile	Asn	Thr	Tyr	Thr 55	Gly		Ser				Asp	Asp	Phe		
Lys 65	Glu	Arg	Phe	Ala	Phe 70	Ser	Leu	Glu	Thr	Ser 75	Ala	Thr	Thr	Ala	His 80		
Leu	Gln	Ile	Asn	Asn 85	Leu	Arg	Asn	Glu	Asp 90	Ser	Ala	Thr	Tyr	Phe 95	Cys		
Ala	Arg	Arg	Phe 100	Gly	Phe	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Ser		
Val	Ser	Ala 115	Ser	Ile	Ser	Ser	Ser 120	Ser	Gly	Ser	Ser	Ser 125	Ser	Gly	Ser		

Ser	Ser 130	Ser	Gly	Ser	Asp	Ile 135	Gln	Het	Thr	Gln	Ser 140	Pro	Ser	Ser	Leu	
Ser 145	Ala	Ser	Leu	Gly	Glu 150	Arg	Val	Ser	Leu	Thr 155	Cys	Arg	Ala	Ser	Gln 160	
Asp	Ile	Gly	Asn	Ser 165	Leu	Thr	Trp	Leu	Gln 170	Gln	Glu	Pro	Asp	Gly 175	Thr	
Ile	Lys	Arg	Leu 180	Ile	Tyr	Ala	Thr	Ser 185	Ser	Leu	Asp	Ser	Gly 190	Val	Pro	
Lys	Arg	Phe 195	Ser	Gly	Ser	Arg	Ser 200	Gly	Ser	Asp	Tyr	Ser 205	Leu	Thr	Ile	
Ser	Ser 210	Leu	Glu	Ser	Glu	Asp 215	Phe	Val	Val	Tyr	Tyr 220	Cys	Leu	Gln	Tyr	
Ala 225	Ile	Phe	Pro	Tyr	Thr 230	Phe	Gly	Gly	Gly	Thr 235	Asn	Leu	Glu	Ile	Lys 240	
Arg	Ala	Asp	*	Ser 245	Ala											
(2)	IN	FORM	ATIO	N F01	R SE	Q ID	NO:	5:					ORDII AMEI			
(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	6:					ORDII AMEI			
(2)	IN	FORM.	ATIO	N FO	R SE	Q IS	NO:	7:								
		(i	´ (, (,	B) ˈ C)	LENG TYPE STRA	TH:	807 clei NESS	base c ac : si	pai	rs						
		(ii) H	OLEC	ULE	TYPE	: DN	A (g	enom	ic)					•	
		(ix	´ (B) D)	NAHE LOCA OTHE	R IN	: 1. FORM	.807 ATIO	N: /	note o:	= "p Rici	rodu n-A	ct = chai	"Ri n pr	cin-A chain otein""	
		(xi) S	EQUE	NCE	DESC	RIPT	: NOI	SEQ	ID	NO:7	:				
ATG Met	Ile	TTC Phe	CCC Pro	AAA Lys	Gln	TAC Tyr	CCA Pro	ATT	ATA Ile 10	Asn	TTT Phe	ACC Thr	ACA Thr	GCG Ala 15	Gly	48
GCC Ala	ACT Thr	GTG Val	CAA Glr 20	AGC Ser	TAC	ACA	AAC Asn	TTT Phe 25	Ile	AGA Arg	GCT Ala	GTT Val	CGC Arg 30	Gly	CGT Arg	96

TTA Leu	ACA Thr	ACT Thr 35	GGA Gly	GCT Ala	GAT Asp	GTG Val	AGA Arg 40	CAT His	GAA Glu	ATA Ile	CCA Pro	GTG Val 45	TTG Leu	CCA Pro	AAC Asn		144
AGA Arg	GTT Val 50	GGT Gly	TTG Leu	CCT Pro	ATA Ile	AAC Asn 55	CAA Gln	CGG Arg	TTT Phe	ATT Ile	TTA Leu 60	GTT Val	GAA Glu	CTC Leu	TCA Ser		192
AAT Asn 65	CAT His	GCA Ala	GAG Glu	CTT Leu	TCT Ser 70	GTT Val	ACA Thr	TTA Leu	GCG Ala	CTG Leu 75	GAT Asp	GTC Val	ACC Thr	AAT Asn	GCA Ala 80		240
TAT Tyr	GTG Val	GTA Val	GGC Gly	TAC Tyr 85	CGT Arg	GCT Ala	GGA Gly	AAT Asn	AGC Ser 90	GCA Ala	TAT Tyr	TTC Phe	TTT Phe	CAT His 95	CCT Pro		288
GAC Asp	AAT Asn	CAG Gln	GAA Glu 100	GAT Asp	GCA Ala	GAA Glu	GCA Ala	ATC Ile 105	ACT Thr	CAT His	CTT Leu	TTC Phe	ACT Thr 110	GAT Asp	GTT Val		336
CAA Gln	AAT Asn	CGA Arg 115	TAT Tyr	ACA Thr	TTC Phe	GCC Ala	TTT Phe 120	GGT Gly	GGT Gly	AAT Asn	TAT Tyr	GAT Asp 125	AGA Arg	CTT Leu	GAA Glu		384
CAA Gln	CTT Leu 130	GCT Ala	GGT Gly	AAT Asn	CTG Leu	AGA Arg 135	Glu	AAT Asn	ATC Ile	GAG Glu	TTG Leu 140	GGA Gly	AAT Asn	GGT Gly	CCA Pro		432
CTA Leu 145	GAG Glu	GAG Glu	GCT Ala	ATC Ile	TCA Ser 150	GCG Ala	CTT Leu	TAT Tyr	TAT Tyr	TAC Tyr 155	AGT Ser	ACT Thr	GGT Gly	GGC Gly	ACT Thr 160		480
CAG Gln	CTT Leu	CCA Pro	ACT Thr	CTG Leu 165	GCT Ala	CGT Arg	TCC Ser	TTT Phe	ATA Ile 170	ATT Ile	TGC Cys	ATC Ile	CAA Gln	ATG Met 175	ATT Ile		528
TCA Ser	GAA Glu	GCA Ala	GCA Ala 180	Arg	TTC Phe	CAA Gln	TAT Tyr	ATT Ile 185	GAG Glu	GGA Gly	GAA Glu	ATG Met	CGC Arg 190	ACG Thr	AGA Arg		576
ATT Ile	AGG Arg	TAC Tyr 195	AAC Asn	CGG Arg	AGA	Ser	Ala	Pro	GAT Asp	Pro	Ser	Val	Ile	ACA Thr	CTT Leu		624
GAG Glu	AAT Asn 210	Ser	TGG Trp	GGG Gly	AGA Arg	CTT Leu 215	TCC Ser	ACT Thr	GCA Ala	ATT Ile	CAA Gln 220	Glu	TCT	AAC Asn	CAA Gln		672
GGA Gly 225	Ala	TTT Phe	GCT	AGT Ser	CCA Pro 230	Ile	CAA Gln	CTG Leu	CAA Gln	AGA Arg 235	Arg	AAT Asn	GGT Gly	TCC Ser	AAA Lys 240	c	720
TTC Phe	AGT Ser	GTG Val	TAC	GAT Asp 245	Val	AGT	ATA	TTA Leu	ATC Ile 250	Pro	ATC	ATA Ile	GCT Ala	CTC Leu 255	ATG Met		768

GTG TAT AGA TGC GCA CCT CCA CCA TCG TCA CAG TTT TAA
Val Tyr Arg Cys Ala Pro Pro Pro Ser Ser Gln Phe
260 265

807

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 268 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ile Phe Pro Lys Gln Tyr Pro Ile Ile Asn Phe Thr Thr Ala Gly
1 5 10 15

Ala Thr Val Gln Ser Tyr Thr Asn Phe Ile Arg Ala Val Arg Gly Arg 20 25 30

Leu Thr Thr Gly Ala Asp Val Arg His Glu Ile Pro Val Leu Pro Asn 35 40 45

Arg Val Gly Leu Pro Ile Asn Gln Arg Phe Ile Leu Val Glu Leu Ser 50 55 60

Asn His Ala Glu Leu Ser Val Thr Leu Ala Leu Asp Val Thr Asn Ala 65 70 75 80

Tyr Val Val Gly Tyr Arg Ala Gly Asn Ser Ala Tyr Phe Phe His Pro 85 90 95

Asp Asn Gln Glu Asp Ala Glu Ala Ile Thr His Leu Phe Thr Asp Val

Gln Asn Arg Tyr Thr Phe Ala Phe Gly Gly Asn Tyr Asp Arg Leu Glu 115 120 125

Gln Leu Ala Gly Asn Leu Arg Glu Asn Ile Glu Leu Gly Asn Gly Pro

Leu Glu Glu Ala Ile Ser Ala Leu Tyr Tyr Tyr Ser Thr Gly Gly Thr 145 150 155 160

Gln Leu Pro Thr Leu Ala Arg Ser Phe Ile Ile Cys Ile Gln Met Ile 165 170 175

Ser Glu Ala Ala Arg Phe Gln Tyr Ile Glu Gly Glu Met Arg Thr Arg 180 185 190

Ile Arg Tyr Asn Arg Arg Ser Ala Pro Asp Pro Ser Val Ile Thr Leu 195 200 205

	Asn 210	Ser	Trp (31y 1	arg .	215	ser	Ini	Ald	116	220	GIU	001	••••			
Gly 225	Ala	Phe	Ala S	Ser :	Pro 230	Ile(Gln	Leu	Gln	Arg 235	Arg	Asn	Gly	Ser	Lys 240		
Phe	Ser	Val	Tyr A	Asp '	Val	Ser	Ile	Leu	Ile 250	Pro	Ile	Ile	Ala	Leu 255	Met		
Val	Tyr	Arg	Cys 2	Ala	Pro	Pro	Pro	Ser 265	Ser	Gln	Phe					٠	
(2) INFORMATION FOR SEQ ID NO:9:																	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1605 base pairs																	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
		(ii	`	•		YPE:			enom:	ic)					-		
		` (ix) FE	ATUR	Œ:	···	65	•									
			-	Ĺί	CAT	KEY:	1.	. 160	5 N• /:	note:	:מ" =	rodu	:t =	"G-1	FIT""		
		(xi	(D) SE	-						ID I							,
AAG Lys 1	CTT Leu	· ΔTC	ATA Ile	TTC Phe 5	CCC Pro	AAA Lys	CAA Gln	TAC Tyr	CCA Pro 10	ile	ATA Ile	AAC Asn	TTT Phe	ACC Thr 15	ACA Thr		48
GCG Ala	GGT Gly	GCC	ACT Thr 20	GTG Val	CAA Gln	AGC Ser	TAC Tyr	ACA Thr 25	Asn	TTT	ATC Ile	AGA Arg	GCT Ala 30	Val	CGC Arg		96
GGT Gly	CGT Arg	TTA Leu	ACA Thr	ACT Thr	GGA Gly	GCT Ala	GAT Asp 40	Val	AGA Arg	CAT His	GAA Glu	ATA Ile 45	PIO	GTG Val	TTG Leu		144
CCA Pro	AAC Asn 50	Arg	A GTT g Val	GGT Gly	TTG Leu	CCT Pro 55	Ile	AAC AST	CAA Glr	A CGG	TTT Phe 60	116	TTA Leu	GTT Val	GAA Glu		192
CTO Let	ı Ser	AA:	r CAT	GCA Ala	GAG Glu 70	Leu	TCT Ser	GTT Val	r ACA	TTA Leu 75	LATS	CTC Leu	GAT Asp	GTC Val	ACC Thr 80		240
AA] Ası	GCA	TA'	r GTG r Val	GTA Val 85	. Gly	TAC Tyr	CGT	GC GC	r GGA a Gly	y Asi	AGC Sei	GCA Ala	TAT Tyi	TTC Phe 95	THE		288

CAT His	CCT Pro	GAC Asp	AAT Asn 100	CAG Gln	GAA Glu	GAT Asp	GCA Ala	GAA Glu 105	GCA Ala	ATC Ile	ACT Thr	CAT His	CTT Leu 110	TTC Phe	ACT Thr	336
GAT Asp	GTT Val	CAA Gln 115	AAT Asn	CGA Arg	TAT Tyr	ACA Thr	TTC Phe 120	GCC Ala	TTT Phe	GGT Gly	GGT Gly	AAT Asn 125	TAT Tyr	GAT Asp	AGA Arg	384
CTT Leu	GAA Glu 130	CAA Gln	CTT Leu	GCT Ala	GGT Gly	AAT Asn 135	CTG Leu	AGA Arg	GAA Glu	AAT Asn	ATC Ile 140	GAG Glu	TTG Leu	GGA Gly	AAT Asn	432
GGT Gly 145	CCA Pro	CTA Leu	GAG Glu	GAG Glu	GCT Ala 150	ATC Ile	TCA Ser	GCG Ala	CTT Leu	TAT Tyr 155	TAT Tyr	TAC Tyr	AGT Ser	ACT Thr	GGT Gly 160	480
GGC Gly	ACT Thr	CAG Gln	CTT Leu	CCA Pro 165	ACT Thr	CTG Leu	GCT Ala	CGT Arg	TCC Ser 170	TTT Phe	ATA Ile	ATT	TGC Cys	ATC Ile 175	CAA Gln	528
ATG Het	ATT Ile	TCA Ser	GAA Glu 180	GCA Ala	GCA Ala	AGA Arg	TTC Phe	CAA Gln 185	TAT Tyr	ATT Ile	GAG Glu	GGA Gly	GAA Glu 190	ATG Met	CGC Arg	576
ACG Thr	AGA Arg	ATT Ile 195	Arg	TAC Tyr	AAC Asn	CGG Arg	AGA Arg 200	TCT Ser	GCA Ala	CCA Pro	GAT Asp	CCT Pro 205	AGC Ser	GTA Val	ATT Ile	624
ACA Thr	CTT Leu 210	Glu	AAT Asn	AGT Ser	TGG Trp	GGG Gly 215	AGA Arg	CTT Leu	TCC Ser	ACT Thr	GCA Ala 220	ATT Ile	CAA Gln	GAG Glu	TCT Ser	672
AAC Asn 225	Gln	GGA Gly	GCC	TTT Phe	GCT Ala 230	Ser	CCA Pro	ATT	CAA Gln	CTG Leu 235	Gin	AGA Arg	CGT Arg	AAT Asn	GGT Gly 240	720
TCC Ser	AAA Lys	TTC	AGT Ser	GTG Val 245	Tyr	GAT Asp	GTG Val	AGT Ser	ATA Ile 250	Leu	ATC	CCT	ATC Ile	ATA Ile 255	Ala	768
CTC Lev	: ATG	. Val	TAT Tyr 260	Arg	TGC Cys	GCA Ala	. CCT . Pro	CCA Pro 265	Pro	TCG Ser	TCA Ser	CAG Gln	TTT Phe 270	Ser	CTT Leu	816
CTI Let	T ATA	AGC Arg 275	Pro	GTO Val	GTA Val	CCA Pro	AAT ASD 280	. Phe	AAT Asr	GCT Ala	GAT Asp	GTT Val 285	Cys	ATG Met	GAT Asp	864
CCT Pro	GAC Glu 290	ı Ile	C CAA	TTO	GTO Val	G CAC Glr 295	ı Ser	GGA Gly	CCT Pro	GAC Glu	CTC Leu 300	ı Lys	AAG Lys	CCT Pro	GGA Gly	912

GAG Glu 305	ACA Thr	GTC Val	AAG Lys	Ile	TCC Ser 310	TGC Cys	AAG Lys	GCT Ala	TCT Ser	GGA Gly 315	TAT Tyr	ACC Thr	TTC Phe	GCA Ala	AAC Asn 320	960
TAT Tyr	GGA Gly	ATG Met	AAC Asn	TGG Trp 325	ATG Met	AAG Lys	CAG Gln	GCT Ala	CCA Pro 330	GGA Gly	AAG Lys	GĞT Gly	Leu	AAG Lys 335	TGG Trp	1008
ATG Met	GGC Gly	TGG Trp	ATA Ile 340	AAC Asn	ACC Thr	TAC Tyr	ACT Thr	GGA Gly 345	CAG Gln	TCA Ser	ACA Thr	TAT Tyr	GCT Ala 350	GAT Asp	GAC Asp	1056
TTC Phe	AAG Lys	GAA Glu 355	CGG Arg	TTT Phe	GCC Ala	TTC Phe	TCT Ser 360	TTG Leu	GAA Glu	ACC Thr	TCT Ser	GCC Ala 365	ACC Thr	ACT Thr	GCC Ala	1104
CAT His	TTG Leu 370	CAG Gln	ATC Ile	AAC Asn	AAC Asn	CTC Leu 375	AGA Arg	AAT Asn	GAG Glu	GAC Asp	TCG Ser 380	GCC Ala	ACA Thr	TAT Tyr	TTC Phe	1152
TGT Cys 385	GCA Ala	AGA Arg	CGA Arg	TTT	GGG Gly 390	TTT Phe	GCT Ala	TAC Tyr	TGG Trp	GGC Gly 395	CAA Gln	GGG Gly	ACT Thr	CTG Leu	GTC Val 400	1200
AGT Ser	GTC Val	TCT Ser	GCA Ala	TCG Ser 405	ATA Ile	TCG Ser	AGC Ser	TCT Ser	GGT Gly 410	GGC Gly	GGT Gly	GGC Gly	TCG Ser	GGC Gly 415	GGT Gly	1248
GGT Gly	GGG Gly	TCG Ser	GGT Gly 420	GGC Gly	GGC	GGA Gly	TCG Ser	GAT Asp 425	ATC Ile	CAG Gln	ATG Met	ACC Thr	CAG Gln 430	TCT Ser	CCA Pro	1296
TCC Ser	TCC Ser	TTA Leu 435	Ser	GCC Ala	TCT Ser	CTG Leu	GGA Gly 440	GAA Glu	AGA Arg	GTC Val	AGT Ser	CTC Leu 445	ACT Thr	TGT Cys	CGG	1344
GCA Ala	AGT Ser 450	Gln	GAC Asp	ATT Ile	GGT	AAT Asn 455	AGC Ser	TTA Leu	ACC Thr	TGG Trp	CTT Leu 460	Ser	CAG Gln	GAA Glu	CCA Pro	1392
GAT Asp 465	Gly	ACT Thr	ATT	Lys	CGC Arg 470	Leu	Ile	Tyr	Ala	Thr	Ser	Ser	Leu	Asp	TCT Ser 480	1440
GGT Gly	GTC Val	CCC Pro	AAA Lys	AGG Arg 485	Phe	AGT Ser	GGC	AGT Ser	CGG Arg 490	Ser	GGC Gly	TCA Ser	GAT Asp	TAT Tyr 495	TCT	1488
CT(Let	ACC Thi	ATO	C AGT Ser 500	Sei	CTT Leu	GAG Glu	TCI Ser	GAA Glu 505	ı Asp	TTI Phe	GTA Val	GTC Val	TAT Tyr 510	Tyr	TGT Cys	1536
CT/ Let	A CAA	TAT Ty: 515	Ala	ATI	r TTI e Phe	CCC Pro	TAC Tyr 520	Thi	TTO Phe	GGA Gly	GGC Gly	G GGG 7 Gly 525	rini	AAC Asn	CTG Leu	1584

GAA ATA AAA CGG GCT GAT TAA Glu Ile Lys Arg Ala Asp 530 535 1605

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 534 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Lys Leu Met Ile Phe Pro Lys Gln Tyr Pro Ile Ile Asn Phe Thr Thr

Ala Gly Ala Thr Val Gln Ser Tyr Thr Asn Phe Ile Arg Ala Val Arg 20 25 30

Gly Arg Leu Thr Thr Gly Ala Asp Val Arg His Glu Ile Pro Val Leu
35 40 45

Pro Asn Arg Val Gly Leu Pro Ile Asn Gln Arg Phe Ile Leu Val Glu 50 60

Leu Ser Asn His Ala Glu Leu Ser Val Thr Leu Ala Leu Asp Val Thr 65 70 75 80

Asn Ala Tyr Val Val Gly Tyr Arg Ala Gly Asn Ser Ala Tyr Phe Phe 90 95

His Pro Asp Asn Gln Glu Asp Ala Glu Ala Ile Thr His Leu Phe Thr 100 105 110

Asp Val Gln Asn Arg Tyr Thr Phe Ala Phe Gly Gly Asn Tyr Asp Arg

Leu Glu Gln Leu Ala Gly Asn Leu Arg Glu Asn Ile Glu Leu Gly Asn 130 135 140

Gly Pro Leu Glu Glu Ala Ile Ser Ala Leu Tyr Tyr Tyr Ser Thr Gly

Gly Thr Gln Leu Pro Thr Leu Ala Arg Ser Phe Ile Ile Cys Ile Gln
165 170 175

Met Ile Ser Glu Ala Ala Arg Phe Gln Tyr Ile Glu Gly Glu Met Arg 180 185 190

Thr Arg Ile Arg Tyr Asn Arg Arg Ser Ala Pro Asp Pro Ser Val Ile 195 200 205

Thr	Leu 210	Glu	Asn	Ser	Trp	215	Arg	Leu	Ser	Thr	220	116	GIN	GIU	ser
Asn 225	Gln	Gly	Ala	Phe	Ala 230	Ser	Pro	Ile	Gln	Leu 235	Gln	Arg	Arg	Asn	Gly 240
Ser	Lys	Phe	Ser	Val 245	Tyr	Asp	Val	Ser	Ile 250	Leu	Ile	Pro	Ile	Ile 255	Ala
Leu	Met	Vaï	Tyr 260	Arg	Cys	Ala	Pro	Pro 265	Pro	Ser	Ser	Gln	Phe 270	Ser	Leu
Leu	Ile	Arg 275	Pro	Val	Val	Pro	Asn 280	Phe	Asn	Ala	Asp	Val 285	Cys	Met	Asp
Pro	Glu 290	Ile	Gln	Leu	Val	Gln 295	Ser	Gly	Pro	Glu	Leu 300	Lys	Lys	Pro	Gly
Glu 305	Thr	Val	Lys	Ile	Ser 310	Cys	Lys	Ala	Ser	Gly 315	Tyr	Thr	Phe	Ala	Asn 320
Tyr	Gly	Met	Asn	Trp 325	Met	Lys	Gln	Ala	Pro 330	Gly	Lys	Gly	Leu	Lys 335	Trp
Met	Gly	Trp	Ile 340	Asn	Thr	Tyr	Thr	Gly 345	Gln	Ser	Thr	Tyr	Ala 350	Asp	Asp
Phe	Lys	Glu 355	Arg	Phe	Ala	Phe	Ser 360	Leu	Glu	Thr	Ser	Ala 365	Thr	Thr	Ala
His	Leu 370	Gln	Ile	Asn	Asn	Leu 375	Arg	Asn	Ģlu	Asp	Ser 380	Ala	Thr	Tyr	Phe
Cys 385	Ala	Arg	Arg	Phe	Gly 390	Phe	Ala	Tyr	Trp	Gly 395	Gln	Gly	Thr	Leu	Val 400
Ser	Val	Ser	Ala	Ser 405	Ile	Ser	Ser	Ser	Gly 410	Gly	Gly	Gly	Ser	Gly 415	Gly
Gly	Gly	Ser	Gly 420	Gly	Gly	Gly	Ser	Asp 425	Ile	Gln	Met	Thr	Gln 430	Ser	Pro
Ser	Ser	Leu 435	Ser	Ala	Ser		Gly 440		Arg		Ser			Cys	Arg
	450					455		2		•	Leu 460				
Asp 465		Thr	Ile	Lys	Arg 470	Leu	Ile	Tyr	Ala	Thr 475	Ser	Ser	Leu	Asp	Ser 480
Gly	Val	Pro	Lys	Arg 485		Ser	Gly	Ser	Arg 490	Ser	Gly	Ser	Asp	Tyr 495	Ser

Leu Thr Ile Ser Ser Leu Glu Ser Glu Asp Phe Val Val Tyr Tyr Cys 500

Leu Gln Tyr Ala Ile Phe Pro Tyr Thr Phe Gly Gly Gly Thr Asn Leu 520

Glu Ile Lys Arg Ala Asp 530

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..45
 - (D) OTHER INFORMATION: /note= "product = "new linker/ info: new linker""
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TCG AGC TCC TCC GGA TCT TCA TCT AGC GGT TCC AGC TCG AGT GGA Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Gly 10 1.

45

- (2) INFORMATION FOR SEQ ID NO:12:
 - SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ser Ser Ser Gly Ser Ser Ser Gly Ser Ser Ser Gly

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 145 (D) OTHER INFORMATION: /note= "protein info: old linker""	product = "old linker/
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:	13:
GGA GGA Gly Gly 1	A GGA GG 7 Gly G	A TCT GGA GGA GGA GGA TCT GGA GG y Ser Gly Gly Gly Ser Gly Gl 5	GA GGA GGA TCT 45 Ly Gly Gly Ser 15
(2) II	VFORMAT	ON FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: protein	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:	:14:
Gly Gly	y Gly G	ly Ser Gly Gly Gly Gly Ser Gly Gl 5 10	ly Gly Gly Ser 15
(2) I	NFORMAŢ	ON FOR SEQ ID NO:15:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2001 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	•
	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 12001 (D) OTHER INFORMATION: /note= '	"product = "741sFv-PE40""
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO	:15:
GAT CC Asp Pr	T GAG A o Glu I	TC CAA TTG GTG CAG TCT GGA CCT GA le Gln Leu Val Gln Ser Gly Pro G 5	AG CTG AAG AAG CCT 48 lu Leu Lys Lys Pro 15
GGA GA Gly Gl	G ACA G u Thr V	TC AAG ATC TCC TGC AAG GCT TCT GO al Lys Ile Ser Cys Lys Ala Ser G 20 25	GG TAT ACC TTC ACA 96 ly Tyr Thr Phe Thr 30

AAC Asn	TAT Tyr	GGA Gly 35	ATG Met	AAC Asn	TGG Trp	GTG Val	AAG Lys 40	CAG Gln	GCT Ala	CCA Pro	GGA Gly	AAG Lys 45	GGT Gly	TTA Leu	AAG Lys	144
TGG Trp	ATG Met 50	GGC G ly	TGG Trp	ATA Ile	AAC Asn	ACC Thr 55	AAC Asn	ACT Thr	GGA Gly	GAG Glu	CCA Pro 60	ACA Thr	TAT Tyr	GCT Ala	GAA Glu	192
GAG Glu 65	TTC Phe	AAG Lys	GGA- Gly	CGG Arg	TTT Phe 70	GCC Ala	TTC Phe	TCT Ser	TTG Leu	GAA Glu 75	ACC Thr	TCT Ser	GCC Ala	AGC Ser	ACT Thr 80	240
GCC Ala	TAT Tyr	TTG Leu	CAG Gln	ATC Ile 85	AAC Asn	AAC Asn	CTC Leu	AAA Lys	AAT Asn 90	GAG Glu	GAC Asp	ACG Thr	GCT Ala	ACA Thr 95	TAT Tyr	288
TTC Phe	TGT Cys	GGA Gly	AGG Arg 100	CAA Gln	TTT Phe	ATT Ile	ACC Thr	TAC Tyr 105	GGC Gly	GGG Gly	TTT Phe	GCT Ala	AAC Asn 110	TGG Trp	GGC Gly	336
CAA Gln	GGG Gly	ACT Thr 115	CTG Leu	GTC Val	ACT Thr	GTC Val	TCT Ser 120	GCA Ala	TCG Ser	AGC Ser	TCC Ser	TCC Ser 125	GGA Gly	TCT Ser	TCA Ser	384
TCT Ser	AGC Ser 130	GGT Gly	TCC Ser	AGC Ser	TCG Ser	AGC Ser 135	GAT Asp	ATC Ile	GTC Val.	ATG Met	ACC Thr 140	CAG Gln	TCT Ser	CCT Pro	AAA Lys	432
TTC Phe 145	ATG Met	TCC Ser	ACG Thr	TCA Ser	GTG Val 150	GGA Gly	GAC	AGG Arg	GTC Val	AGC Ser 155	ATC Ile	TCC Ser	TGC Cys	AAG Lys	GCC Ala 160	480
AGT Ser	CAG Gln	GAT Asp	GTG Val	AGT Ser 165	ACT Thr	GCT Ala	GTA Val	GCC Ala	TGG Trp 170	TAT Tyr	CAA Gln	CAA Gln	AAA Lys	CCA Pro 175	GGG Gly	528
CAA Gln	TCT Ser	CCT Pro	AAA Lys 180	CTA Leu	CTG Leu	ATT Ile	TAC Tyr	TGG Trp 185	ACA Thr	TCC Ser	ACC. Thr	CGG Arg	CAC His 190	ACT Thr	GGA Gly	576
GTC Val	CCT Pro	GAT Asp 195	CCG Pro	TTC Phe	ACA Thr	GGC Gly	AGT Ser 200	Gly	TCT Ser	GGG Gly	ACA Thr	GAT Asp 205	TAT Tyr	ACT Thr	CTC Leu	624
ACC Thr	ATC Ile 210	Ser	AGT Ser	GTG Val	CAG Gln	GCT Ala 215	GAA Glu	GAC Asp	CTG Leu	GCA Ala	CTT Leu 220	CAT His	TAC Tyr	TGT Cys	CAG Gln	672
CAA Gln 225	His	TAT Tyr	AGA	GTG Val	GCC Ala 230	TAC Tyr	ACG Thr	TTC Phe	GGA Gly	AGG Arg 235	GGG Gly	ACC Thr	AAG Lys	CTG Leu	GAG Glu 240	720
ATA Ile	AAA Lys	CGG Arg	GCT Ala	GAT Asp 245	GCT Ala	GCA Ala	CCA Pro	ACT Thr	GTA Val 250	Ser	ATC Ile	TTC Phe	CCA Pro	CCA Pro 255	TCC Ser	768

AGT Ser	GAG Glu	CAG Gln	TTT Phe 260	GAG Glu	GGC Gly	GGC Gly	AGC Ser	CTG Leu 265	GCC Ala	GCG Ala	CTG Leu	AAC Asn	GCG Ala 270	CAC His	CAG Gln	816
GCT Ala	TGC Cys	CAC His 275	CTG Leu	CCG Pro	CTG Leu	GAG Glu	ACT Thr 280	TTC Phe	ACC Thr	CGT Arg	CAT His	CGC Arg 285	CAG Gln	CCG Pro	CGC Arg	864
GGC Gly	TGG Trp 290	GAA Glu	CAA Gln	CTG Leu	GAG Glu	CAG Gln 295	TGC Cys	GGC Gly	TAT Tyr	CCG Pro	GTG Val 300	CAG Gln	CGG Arg	CTG Leu	GTC Val	912
GCC Ala 305	CTC Leu	TAC Tyr	CTG Leu	GCG Ala	GCG Ala 310	CGG Arg	CTG Leu	TCG Ser	TGG	AAC Asn 315	CAG Gln	GTC Val	GAC Asp	CAG Gln	GTG Val 320	960
ATC Ile	CGC Arg	AAC Asn	GCC Ala	CTG Leu 325	GCC Ala	AGC Ser	CCC Pro	GGC Gly	AGC Ser 330	GGC Gly	GGC Gly	GAC Asp	CTG Leu	GGC Gly 335	GAA Glu	1008
GCG Ala	ATC Ile	CGC Arg	GAG Glu 340	CAG Gln	CCG Pro	GAG Glu	CAG Gln	GCC Ala 345	CGT Arg	CTG Leu	GCC Ala	CTG Leu	ACC Thr 350	CTG Leu	GCC Ala	1056
GCC Ala	GCC Ala	GAG Glu 355	AGC Ser	GAG Glu	CGC	TTC Phe	GTC Val 360	CGG Arg	CAG Gln	GGC Gly	ACC Thr	GGC Gly 365	Asn	GAC Asp	GAG Glu	1104
GCC Ala	GGC Gly 370	GCG Ala	GCC Ala	AAC Asn	GCC Ala	GAC Asp 375	GTG Val	GTG Val	AGC Ser	CTG Leu	ACC Thr 380	TGC Cys	CCG Pro	GTC Val	GCC Ala	1152
GCC Ala 385	Gly	GAA Glu	TGC Cys	GCG Ala	GGC Gly 390	CCG Pro	GCG Ala	GAC Asp	AGC Ser	GGC Gly 395	Asp	GCC Ala	CTG Leu	CTG Leu	GAG Glu 400	1200
CGC Arg	AAC Asn	TAT Tyr	CCC Pro	ACT Thr 405	GGC Gly	GCG Ala	GAG Glu	TTC Phe	CTC Leu 410	GGC Gly	GAC Asp	GGC Gly	GGC Gly	GAC Asp 415	GTC Val	1248
AGC Ser	TTC Phe	AGC Ser	AAC Asn 420	CGC Arg	GGC Gly	ACG Thr	CAG Gln	AAC Asn 425	TGG Trp	ACG Thr	GTG Val	GAG Glu	CGG Arg 430	CTG Leu	CTC Leu	1296
CAG Gln	GCG Ala	CAC His 435	Arg	CAA Gln	CTG Leu	GAG Glu	GAG Glu 440	CGC Arg	GGC Gly	TAT Tyr	GTG Val	TTC Phe 445	GTC Val	GGC Gly	TAC Tyr	1344
CAC His	GGC Gly 450	Thr	TTC Phe	CTC Leu	GAA Glu	GCG Ala 455	GCG Ala	CAA Gln	AGC Ser	ATC Ile	GTC Val 460	TTC Phe	GGC Gly	GGG Gly	GTG Val	1392
CGC Arg 465	Ala	CGC Arg	AGC Ser	CAG Gln	GAC Asp 470	Leu	GAC	GCG Ala	ATC Ile	TGG Trp 475	Arg	GGT Gly	TTC Phe	TAT Tyr	ATC Ile 480	1440

GCC Ala	GGC Gly	GAT Asp	CCG Pro	GCG Ala 485	CTG Leu	GCC Ala	TAC Tyr	GGC Gly	TAC Tyr 490	GCC Ala	CAG Gln	GAC Asp	CAG Gln	GAA Glu 495	CCC Pro	1488
GAC Asp	GCA Ala	CGC Arg	GGC Gly 500	CGG Arg	ATC Ile	CGC Arg	AAC Asn	GGT Gly 505	GCC Ala	CTG Leu	CTG Leu	CGG Arg	GTC Val 510	TAT Tyr	GTG Val	1536
CCG Pro	CGC Arg	TCG Ser 515	AGC Ser	CTG Leu	CCG Pro	GGC Gly	TTC Phe 520	TAC Tyr	CGC Arg	ACC Thr	AGC Ser	CTG Leu 525	ACC Thr	CTG Leu	GCC Ala	1584
GCG Ala	CCG Pro 530	GAG Glu	GCG Ala	GCG Ala	GGC Gly	GAG Glu 535	GTC Val	GAA Glu	CGG Arg	CTG Leu	ATC Ile 540	GGC Gly	CAT His	CCG Pro	CTG Leu	1632
CCG Pro 545	CTG Leu	CGC Arg	CTG Leu	GAC Asp	GCC Ala 550	ATC Ile	ACC Thr	GGC Gly	CCC Pro	GAG Glu 555	GAG Glu	GAA Glu	GGC Gly	GGG Gly	CGC Arg 560	1680
CTG Leu	GAG Glu	ACC Thr	ATT Ile	CTC Leu 565	GGC Gly	TGG Trp	CCG Pro	CTG Leu	GCC Ala 570	GAG Glu	CGC Arg	ACC Thr	GTG Val	GTG Val 575	ATT Ile	1728
CCC Pro	TCG Ser	GCG Ala	ATC Ile 580	CCC	ACC Thr	GAC Asp	CCG Pro	CGC Arg 585	Asn	GTC Val	GGC Gly	GGC Gly	GAC Asp 590	CTC Leu	GAC Asp	1776
CCG Pro	TCC Ser	AGC Ser 595	ATC Ile	CCC Pro	GAC Asp	AAG Lys	GAA Glu 600	Gln	GCG Ala	ATC Ile	AGC Ser	GCC Ala 605	CTG Leu	CCG Pro	GAC Asp	1824
TAC Tyr	GCC Ala 610	Ser	CAG Gln	CCC Pro	GGC Gly	AAA Lys 615	CCG Pro	CCG Pro	CGC Arg	GAG Glu	GAC Asp 620	Leu	AAG Lys	TAA *	CTG Leu	1872
CCG Pro 625	Arg	CCG	GCC Ala	GGC	TCC Ser 630	Leu	CGC	AGG Arg	AGC Ser	CGG Arg 635	Pro	TCT Ser	CGG Arg	GGC Gly	CTG Leu 640	1920
GCC Ala	ATA Ile	CAT His	CAG Gln	GTT Val 645	. Phe	CTG Leu	ATG Met	CCA Pro	GCC Ala 650	Gln	TCG Ser	AAT Asn	ATG Met	AAT Asn 655	TGA *	1968
TCC Ser	TCI Ser	AGA Arg	GTC Val	. Asp	CTG Leu	CAG Gln	GCA Ala	TGC Cys 665	Lys	CTT Leu	<u>.</u>					2001

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 667 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Asp Pro Glu Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Gly Met Asn Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly Trp Ile Asn Thr Asn Thr Gly Glu Pro Thr Tyr Ala Glu Glu Phe Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys Gly Arg Gln Phe Ile Thr Tyr Gly Gly Phe Ala Asn Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Asp Ile Val Met Thr Gln Ser Pro Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Ile Ser Cys Lys Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Thr Ser Thr Arg His Thr Gly Val Pro Asp Pro Phe Thr Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Leu His Tyr Cys Gln 215 Gln His Tyr Arg Val Ala Tyr Thr Phe Gly Arg Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Phe Glu Gly Gly Ser Leu Ala Ala Leu Asn Ala His Gln

265

Ala	Cys	His 275	Leu	Pro	Leu	Glu	Thr 280	Phe	Thr	Arg	His	Arg 285	Gln	Pro	Arg
Gly	Trp 290	Glu	Gln	Leu	Glu	Gln 295	Cys	Gly	Tyr	Pro	Val 300	Gln	Arg	Leu	Val
Ala 305	Leu	Tyr	Leu	Ala	Ala 310	Arg	Leu	Ser_	Trp	Asn 315	Gln	Val	Asp	Gln	Val 320
Ile	Arg	Asn	Ala	Leu 325	Ala	Ser	Pro	Gly	Ser 330	Gly	Gly	Asp	Leu	Gly 335	Glu
Ala	Ile	Arg	Glu 340	Gln	Pro	Glu	Gln	Ala 345	Arg	Leu	Ala	Leu	Thr 350	Leu	Ala
Ala	Ala	Glu 355	Ser	Glu	Arg	Phe	Val 360	Arg	Gln	Gly	Thr	Gly 365	Asn	Asp	Glu
Ala	Gly 370	Ala	Ala	Asn	Ala	Asp 375		Val	Ser	Leu	Thr 380	Cys	Pro	Val	Ala
Ala 385	Gly	Glu	Cys	Ala	Gly 390	Pro	Ala	Asp	Ser	Gly 395	Asp	Ala	Leu	Leu	Glu 400
Arg	Asn	Tyr	Pro	Thr 405	Gly	Ala	Glu	Phe	Leu 410	Gly	Asp	Gly	Gly	Asp 415	Val
Ser	Phe	Ser	Asn 420	Arg	Gly	Thr	Gln	Asn 425	Trp	Thr	Val	Glu	Arg 430	Leu	Leu
Gln	Ala	His 435	Arg	Gln	Leu	Glu	Glu 440	Arg	Gly	Tyr	Val	Phe 445	Val	Gly	Tyr
His	Gly 450	Thr	Phe	Leu	Glu	Ala 455	Ala	Gln	Ser	Ile	Val 460	Phe	Gly	Gly	Val
Arg 465	Ala	Arg	Ser	Gln	Asp 470	Leu	Asp	Ala	Ile	Trp 475	Arg	Glÿ	Phe	Tyr	Ile 480
Ala	Gly	Asp	Pro	Ala 485	Leu	Ala	Tyr	Gly	Tyr 490	Ala	Gln	Asp	Gln	Glu 495	Pro
Asp	Ala	Arg	Gly 500	Arg	Ile	Arg	Asn	Gly 505	Ala	Leu	Leu	Arg	Val 510	Tyr	Va]
Pro	Arg	Ser 515		Leu	Pro	Gly	Phe 520	Tyr	Arg	Thr	Ser	Leu 525	Thr	Leu	Ala
Ala	Pro 530		Ala	Ala	Gly	Glu 535	Val	Glu	Arg	Leu	Ile 540	Gly	His	Pro	Let
Pro 545		Arg	Leu	. Asp	Ala 550	Ile	Thr	Gly	Pro	Glu 555	Glu	Glu	Gly	Gly	Arg 560

LeuGluThrIleLeuGlyTrpProLeuAlaGluArgThrValValSerIleProSerAlaIleProThrAspProArgAspValGlyGlyAspLeuAspProSerSerIleProAspLysGluGlnAlaIleSerAlaLeuProAspTyrAlaSerGlnProProProArgGluAspLeuLys*LeuProArgProArgArgProArgProArgProSerArgProSerArgGlyLeuAlaIleHisGlnValPheLeuHetProAlaGlnSerAsnHetAsn*SerSerArgValAspLeuGlnAlaCysLysLeuHetHetHet

PCT/US93/01055

CLAIMS

- 1 1. A single-chain Fv (sFv) polypeptide defining a
- 2 binding site which exhibits the immunological binding
- 3 properties of an immunoglobulin molecule which binds
- 4 c-erbB-2 or a c-erbB-2-related tumor antigen, said sFv
- 5 comprising at least two polypeptide domains connected
- 6 by a polypeptide linker spanning the distance between
- 7 the C-terminus of one domain and the N-terminus of the
- 8 other, the amino acid sequence of each of said
- 9 polypeptide domains comprising a set of complementarity
- 10 determining regions (CDRs) interposed between a set of
- 11 framework regions (FRs), said CDRs conferring
- 12 immunological binding to said c-erbB-2 or c-erbB-2-
- 13 related tumor antigen.
 - 1 2. The single-chain Fv polypeptide of claim 1
 - 2 wherein said CDRs are substantially homologous with the
 - 3 CDRs of the c-erbB-2-binding immunoglobulin molecules
 - 4 selected from the group consisting of 520C9, 741F8, and
 - 5 454C11 monoclonal antibodies.
 - 1 3. The single-chain Fv polypeptide of claim 2
 - wherein the amino acid sequence of each of said sFv
 - 3 CDRs and each of said FRs are substantially homologous
 - 4 with the amino acid sequence of CDRs and FRs of the
 - 5 variable region of 520C9 antibody.
 - 1 4. The single-chain Fv polypeptide of claim 1
 - 2 wherein said polypeptide linker comprises the amino
 - 3 acid sequence as set forth in the Sequence Listing as
 - 4 amino acid residue numbers 118 through 133 in SEQ ID
 - 5 NO:4.

- 1 5. The single-chain Fv polypeptide of claim 1
- 2 wherein said polypeptide linker comprises an amino acid
- 3 sequence selected from the group of sequences set forth
- 4 as amino acid residues 116-135 in SEQ ID NO:6, or 122-
- 5 135 in SEQ. ID NO:15 and the amino acid sequences set
- 6 forth in SEQ ID NO: 12 and SEQ ID NO: 14.
- 1 6. The single-chain Fv polypeptide of claim 1
- 2 further comprising a remotely detectable moiety bound
- 3 thereto to permit imaging of a cell bearing said
- 4 c-erbB-2-related tumor antigen.
- 1 7. The single-chain Fv polypeptide of claim 6
- 2 wherein said remotely detectable moiety comprises a
- 3 radioactive atom.
- 1 8. The single-chain Fv polypeptide of claim 1
- 2 further comprising, linked to the N or C terminus of
- 3 said linked domains, a third polypeptide domain
- 4 comprising an amino acid sequence defining CDRs
- 5 interposed between FRs and defining a second
- 6 immunologically active site.
- 1 9. The single-chain Fv polypeptide of claim 8,
- 2 further comprising a fourth polypeptide domain, wherein
- 3 said third and fourth polypeptide domains together
- 4 comprise a second site which immunologically binds a
- 5 c-erbB-2-related tumor antigen.
- 1 10. The single-chain Fv polypeptide of claim 1 or 7
- 2 further comprising a toxin linked to the N or C
- 3 terminus of said linked domain.

- 1 11. The single-chain Fv polypeptide of claim 10
- 2 wherein said toxin comprises a toxic portion selected
- 3 from the group: Pseudomonas exotoxin, ricin, ricin A
- 4 chain, phytolaccin and diphtheria toxin.
- 1 12. The single-chain Fv polypeptide of claim 10
- 2 wherein said toxin comprises at least a portion of the
- 3 ricin A chain.
- 1 13. A DNA sequence encoding the polypeptide chain of
- 2 claim 1.
- 1 14. A method of producing a single chain polypeptide
- 2 having specificity for a c-erbB-2-related tumor
- 3 antigen, said method comprising the steps of:
- 4 (a) transfecting the DNA of claim 13 into a
- 5 host cell to produce a transformant; and
- 6 (b) culturing said transformant to produce
- 7 said single-chain polypeptide.
- 1 15. A method of imaging a tumor expressing a
- 2 c-erbB-2-related antigen, said method comprising the
- 3 steps of:
- 4 (a) providing an imaging agent comprising the
- 5 polypeptide of claim 7;
- 6 (b) administering to a mammal harboring said
- 7 tumor an amount of said imaging agent together with a.
- 8 physiologically-acceptable carrier sufficient to permit
- 9 extracorporeal detection of said tumor after allowing
- 10 said agent to bind to said tumor; and
- 11 (c) detecting the location of said remotely
- 12 detectable moiety in said subject to obtain an image of
- 13 said tumor.

- 1 16. A host cell transfected with a DNA of claim 13.
- 1 17. A method of inhibiting in vivo growth of a tumor
- 2 expressing a c-erbB-2-related antigen, said method
- 3 comprising:
- 4 administering to a patient harboring the tumor a
- 5 tumor inhibiting amount of a therapeutic agent
- 6 comprising a single-chain Fv of claim 1 and at least a
- 7 first moiety peptide bonded thereto, said first moiety
- 8 having the ability to limit the proliferation of a
- 9 tumor cell.
- 1 18. The method of claim 17 wherein said first moiety
- 2 comprises a cell toxin or a toxic fragment thereof.
- 1 19. The method of claim 17 wherein said first moiety
- 2 comprises a radioisotope sufficiently radioactive to
- 3 inhibit proliferation of said tumor cell.
- 1 20. A DNA sequence encoding the polypeptide chain of
- 2 claim 10.

Fig. 1B

Fig. 3

⁺ sFv Sample

Fig. 4

 $^{\ \}square$ sFv, Bound and eluted

^{*} sFv, Unbound and flow through

					170					175					180
_	Glu	Ser	Pro	Ile	Arg 185	Ile	Ser	Val	Ser	Thr 190	Glu	Gly	Ala	Asn	Thr 195
5	Ser	Ser	Ser	Thr	Ser 200	Thr	Ser	Thr	Thr	Gly 205	Thr	Ser	His	Leu	Val 210
10	Lys	Cys	Ala	Glu	Lys 215	Glu	Lys	Thr	Phe	Cys 220	Val	Asn	Gly	Gly	Glu 225
	Cys	Phe	Met	Val	Lys 230	Asp	Leu	Ser	Asn	Pro 235	Ser	Arg	Tyr	Leu	Cys 240
15	Lys	Cys	Pro	Asn	Glu 245	Phe	Thr	Gly	Asp	Arg 250	Cys	Gln	Asn	Tyr	Val 255
m	Met	Ala	Ser	Phe	Tyr 260	Lys	His	Leu	Gly	Ile 265	Glu	Phe	Met	Glu	Ala 270
20	Glu	Glu	Leu	Tyr	Gln 275	Lys	Arg	Val	Leu	Thr 280	Ile	Thr	Gly	Ile	Cys 285
25	Ile	Ala	Leu	Leu	Val 290	Va1	Gly	Ile	Met	Cys 295	Val	Val	Ala	Tyr	Cys 300
	Lys	Thr	Lys	Lys	Gln 305	Arg	Lys	Lys	Leu	His 310	Asp	Arg	Leu	Arg	Gln 315
30			Arg		320	•				325		·		•	330
35	Pro	His	His	Pro	Asn 335	Pro	Pro	Pro	Glu	Asn 340	Val	Gln	Leu	Val	Asn 345
33	Gln	Tyr	Val	Ser	Lys 350	Asn	Val	Ile	Ser	Ser 355	Glu	His	Ile	Val	Glu 360
40			Ala		365					370					3/3
			His		380					385					390
45			Gly		395					400					405
50	Ile	Val	Met	Ser	Ser 410	Val	Glu	Asn	Ser	Arg 415	His	Ser	Ser	Pro	Thr 420
w	Gly	Gly	Pro	Arg	Gly 425	Arg	Leu	Asn	Gly	Thr 430	Gly	Gly	Pro	Arg	Glu 435
55	Cys	Asn	Ser	Phe	Leu 440	Arg	His	Ala	Arg	Glu 445	Thr	Pro	Asp	Ser	Tyr 450
	Arg	Asp	Ser	Pro	His 455	Ser	Glu	Arg	Tyr	Val 460	Ser	Ala	Met	Thr	Thr 465
60	Pro	Ala	Arg	Met	Ser 470	Pro	Val	Asp	Phe	His 475	Thr	Pro	Ser	Ser	Pro 480
	Lys	Ser	Pro	Pro	Ser 485	Glu	Met	Ser	Pro	Pro 490	Val	Ser	Ser	Met	Thr 495

	Val	Ser	Met	Pro	Ser 500	Met	Ala	Val	Ser	Pro 505	Phe	Met	Glu	Glu	Glu 510
5	Arg	Pro	Lėu	Leu	Leu 515	Val	Thr	Pro	Pro	Arg 520	Leu	Arg	Glu	Lys	Lys 525
10	Phe	Asp	His	His	Pro 530	Gln	Gln	Phe	Ser	Ser 535	Phe	His	His	Asn	Pro 540
10	Ala	His	Asp	Ser	Asn 545	Ser	Leu	Pro	Ala	Ser 550	Pro	Leu	Arg	Ile	Val 555
1 5	Glu	Asp	Glu	Glu	Tyr 560	Glů	Thr	Thr	Gln	Glu 565	Tyr	Glu	Pro	Ala	Gln 570
	Glu	Pro	Val	Lys	Lys 575	Leu	Ala	Asn	Ser	Arg 580	Arg	Ala	Lys	Arg	Thr 585
20	Lys	Pro	Asn	Gly	His 590	Ile	Ala	Asn	Arg	Leu 595	Glu	Val	Asp	Ser	Asn 600
25	Thr	Ser	Ser	Gln	Ser 605	Ser	Asn	Ser	Glu	Ser 610	Glu	Thr	Glu	Asp	Glu 615
ω	Arg	Val	Gly	Glu	Asp 620	Thr	Pro	Phe	Leu	Gly 625	Ile	Gln	Asn	Pro	Leu 630
30	Ala	Ala	Ser	Leu	Glu 635	Ala	Thr	Pro	Ala	Phe 640	Arg	Leu	Ala	Asp	Ser 645
	Arg	Thr	Asn	Pro	Ala 650	Gly	Arg	Phe	Ser	Thr 655	Gln	Glu	Glu	Ile	Gln 660
35	Ala	Arg	Leu	Ser	Ser 665	Val	Ile	Ala	Asn	Gln 670	Asp	Pro	Ile	Ala	Val 675
40	Xaa	Asn	Leu	Asn	Lys 680	His	Ile	Asp	Ser	Pro 685	Val	Lys	Leu	Tyr	Phe 690
40	Ile	Xaa	Xaa	Ser	Ile 695	Pro	Pro	Xaa	Ile	Lys 700	Gln	Phe	Ile		Phe 705
45	Xaa	Gln	Phe	Cys	Lys 710	Xaa	Lys	Thr	Gly	Lys 715	Lys	Leu	Leu	Xaa	Ile 720
	Lys	Tyr	Met	Tyr	Val 725	Lys	Met	Lys	Lys	Lys 730	Lys	Lys 732			
50	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:10	:						
	(()	EQUEI A) LI	ENGT	H: 6	6 am:	ino a	ICS: acid:	s						
55			B) TY	YPE: OPOLO											
	(x	i) S	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	NO:1	0:				
60	Ser 1	His	Leu	Val	Lys 5	Cys	Ala	Glu	Lys	Glu 10	Lys	Thr	Phe	Cys	Val 15
	Asn	Gly	Gly	Glu	Cys 20	Phe	Met	Val	Ļys	Asp 25	Leu	Ser	Asn	Pro	Ser 30

	Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys 35 40 45
5	Thr Glu Asn Val Pro Met Lys Val Gln Asn Gln Glu Lys Ala Glu 50 55 60
	Glu Leu Tyr Gln Lys Arg 65 66
10	(2) INFORMATION FOR SEQ ID NO:11:
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 71 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
20	Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val 1 5 15
•	Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser 20 25 30
25	Arg Tyr Leu Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys 35 40 45
30	Gln Asn Tyr Val Met Ala Ser Phe Tyr Lys His Leu Gly Ile Glu 50 55 60
30	Phe Met Glu Ala Glu Glu Leu Tyr Gln Lys Arg 65 70 71
35	(2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS:
40	(A) LENGTH: 2010 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
45	GGGCGCGAGC GCCTCAGCGC GGCCGCTCGC TCTCCCCCTC GAGGGACAAA 50
	CTTTTCCCAA ACCCGATCCG AGCCCTTGGA CCAAACTCGC CTGCGCCGAG 100
50	AGCCGTCCGC GTAGAGCGCT CCGTCTCCGG CGAGATGTCC GAGCGCAAAG 150
55	AAGGCAGAGG CAAAGGGAAG GGCAAGAAGA AGGAGCGAGG CTCCGGCAAG 200
	AAGCCGGAGT CCGCGGCGGG CAGCCAGAGC CCAGCCTTGC CTCCCCGATT 250
60	GAAAGAGATG AAAAGCCAGG AATCGGCTGC AGGTTCCAAA CTAGTCCTTC 300
	COTOTONANO CAGITOTGAN TACTOCTOTO TONGATTONA GIGGITCANG 35

	AATGGGAATG	AATTGAATCG	AAAAAACAAA	CCACAAAATA	TCAAGATACA	400
5	AAAAAAGCCA	GGGAAGTCAG	AACTTCGCAT	TAACAAAGCA	TCACTGGCTG	450
	ATTCTGGAGA	GTATATGTGC	AAAGTGATCA	GCAAATTAGG	AAATGACAGT	500
10	GCCTCTGCCA	ATATCACCAT	CGTGGAATCA	AACGAGATCA	TCACTGGTAT	550
15	GCCAGCCTCA	ACTGAAGGAG	CATATGTGTC	TTCAGAGTCT	CCCATTAGAA	600
	TATCAGTATC	CACAGAAGGA	GCAAATACTT	CTTCATCTAC	ATCTACATCC	650
20	ACCACTGGGA	CAAGCCATCT	TGTAAAATGT	GCGGAGAAGG	AGAAAACTTT	700
	CTGTGTGAAT	GGAGGGGAGT	GCTTCATGGT	GAAAGACCTT	TCAAACCCCT	750
25	CGAGATACTT	GTGCAAGTGC	CAACCTGGAT	TCACTGGAGC	AAGATGTACT	800
30	GAGAATGTGC	CCATGAAAGT	CCAAAACCAA	GAAAAGGCGG	AGGAGCTGTA	850
	CCAGAAGAGA	GTGCTGACCA	TAACCGGCAT	CTGCATCGCC	CTCCTTGTGG	900
35	TCGGCATCAT	GTGTGTGGTG	GCCTACTGCA	AAACCAAGAA	ACAGCGGAAA	950
	AAGCTGCATG	ACCGTCTTCG	GCAGAGCCTT	CGGTCTGAAC	GAAACAATAT	1000
40	GATGAACATT	GCCAATGGGC	CTCACCATCC	TAACCCACCC	CCCGAGAATG	1050
45	TCCAGCTGGT	GAATCAATAC	GTATCTAAAA	ACGTCATCTC	CAGTGAGCAT	1100
	ATTGTTGAGA	GAGAAGCAGA	GACATCCTTT	TCCACCAGTC	ACTATACTTC	1150
50	CACAGCCCAT	CACTCCAÇTA	CTGTCACCCA	GACTCCTAGC	CACAGCTGGA	1200
	GCAACGGACA	CACTGAAAGC	ATCCTTTCCG	AAAGCCACTC	TGTAATCGTG	1250
55	ATGTCATCCG	TAGAAAACAG	TAGGCACAGC	AGCCCAACTG	GGGGCCCAAG	1300
60	AGGACGTCTT	AATGGCACAG	GAGGCCCTCG	TGAATGTAAC	AGCTTCCTCA	1350
•	GGCATGCCAG	AGAAACCCCT	GATTCCTACC	GAGACTCTCC	TCATAGTGAA	1400

PCT/US92/04295

	AGGTATGTGT CAGCCATGAC CACCCCGGCT CGTATGTCAC CTGTAGATTT 14	50
5	CCACACGCCA AGCTCCCCCA AATCGCCCCC TTCGGAAATG TCTCCACCCG 15	00
Ū	TGTCCAGCAT GACGGTGTCC ATGCCTTCCA TGGCGGTCAG CCCCTTCATG 15	50
10	GAAGAAGAG GACCTCTACT TCTCGTGACA CCACCAAGGC TGCGGGAGAA 16	00
	GAAGTTTGAC CATCACCCTC AGCAGTTCAG CTCCTTCCAC CACAACCCCG 16	50
15	CGCATGACAG TAACAGCCTC CCTGCTAGCC CCTTGAGGAT AGTGGAGGAT 17	00
20	GAGGAGTATG AAACGACCCA AGAGTACGAG CCAGCCCAAG AGCCTGTTAA 17	50
	GAAACTCGCC AATAGCCGGC GGGCCAAAAG AACCAAGCCC AATGGCCACA 18	00
25	TTGCTAACAG ATTGGAAGTG GACAGCAACA CAAGCTCCCA GAGCAGTAAC 18	50
	TCAGAGAGTG AAACAGAAGA TGAAAGAGTA GGTGAAGATA CGCCTTTCCT 19	00
30	GGGCATACAG AACCCCCTGG CAGCCAGTCT TGAGGCAACA CCTGCCTTCC 19	50
35	GCCTGGCTGA CAGCAGGACT AACCCAGCAG GCCGCTTCTC GACACAGGAA 20	00
	GAAATCCAGG 2010	
40	(2) INFORMATION FOR SEQ ID NO:13:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 669 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
50	Ala Arg Ala Pro Gln Arg Gly Arg Ser Leu Ser Pro Ser Arg Asp 1 5 10 15	
FF	Lys Leu Phe Pro Asn Pro Ile Arg Ala Leu Gly Pro Asn Ser Pro 20 25 30	
55	Ala Pro Arg Ala Val Arg Val Glu Arg Ser Val Ser Gly Glu Met 35 40 45	
60	Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Gly Lys Lys 50 55	
	Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser Gln	

	Ser	Pro	Ala	Leu	Pro 80	Pro	Arg	Leu	Lys	Glu 85	Met	Lys	Ser	Gln	Glu 90
5	Ser	Ala	Ala	Gly	Ser 95	Lys	Leu	Val	Leu	Arg 100	Cys	Glu	Thr	Ser	Ser 105
	Glu	Tyr	Ser	Ser	Leu 110	Arg	Phe	Lys	Trp	Phe 115	Lys	Asn	Gly	Asn	Glu 120
10	Leu	Asn	Arg	Lys	Asn 125	Lys	Pro	Gln	Asn	Ile 130	Lys	Ile	Gln	Lys	Lys 135
45	Pro	Gly	Lys	Ser	Glu 140	Leu	Arg	Ile	Asn	Lys 145	Ala	Ser	Leu	Ala	Asp 150
15	Ser	Gly	Glu	Tyr	Met 155	Cys	Lys	Val	Ile	Ser 160	Lys	Leu	Gly	Asn	Asp 165
20	Ser	Ala	Ser	Ala	Asn 170	Ile	Thr	Ile	Val	Glu 175	Ser	Asn	Glu	Ile	I∛ a 130
	Thr	Gly	Met	Pro	Ala 185	Ser	Thr	Glu	Gly	Ala 190	Tyr	Val	Ser	Ser	Glu 195
25	Ser	Pro	Ile	Arg	Ile 200	Ser	Val	Ser	Thr	Glu 205	Gly	Ala	Asn	Thr	Ser 210
30	Ser	Ser	Thr	Ser	Thr 215	Ser	Thr	Thr	Gly	Thr 220	Ser	His	Leu	Val	Lys 225
50	Суѕ	Ala	Glu	Lys	Glu 230	Lys	Thr	Phe	Cys	Val 235	Asn	Gly	Gly	Glu	Cys 240
35	Phe	Met	Val	Lys	Asp 245	Leu	Ser	Asn	Pro	Ser 250	Arg	Tyr	Leu	Cys	Lys 255
	Cys	Gln	Pro	Gly	Phe 260	Thr	Gly	Ala	Arg	Cys 265	Thr	Glu	Asn	Val	Pro 270
40	Met	Lys	Val	Gln	Asn 275	Gln	Glu	Lys	Ala	Glu 280	Glu	Leu	Tyr	Gln	Lys 285
45	Arg	Val	Leu	Thr	Ile 290	Thr	Gly	Ile	Cys	11e 295	Ala	Leu	Leu	Val	Val 300
10	Gly	IÌe	Met	Cys	Val 305	Val	Ala	Tyr	Cys	Lys 310	Thr	Lys	Lys	Gln	Arg 315
50	Lys	Lys	Leu	His	Asp 320	Arg	Leu	Arg	Gln	Ser 325	Leu	Arg	Ser	Glu	Arg 330
	Asn	Asn	Met	Met	Asn 335	Ile	Ala	Asn	Gly	Pro 340	His	His	Pro	Asn	Pro 345
5 5	Pro	Pro	Glu	Asn	Val 350	Gln	Leu	Val	Asn	Gln 355	Tyr	Val	Ser	Lys	Asn 360
	Val	Ile	Ser	Ser	Glu 365	His	Ile	Val	Glu)	Arg 370	Glu	Ala	Glu	Thr	Ser 375
	Phe	Ser	Thr	Ser	His 380	Tyr	Thr	Ser	Thr	Ala 385	His	His	Ser	Thr	Thr 390
	Val	Thr	Gln	Thr	Pro	Ser	His	Ser	Trp	Ser	Asn	Gly	His	Thr	Glu

					395					400					405
	Ser	Ile	Leu	Ser	Glu 410	Ser	His	Ser	Val	Ile 415	Val	Met	Ser	Ser	Val 420
5	Glu	Asn	Ser	Arg	His 425	Ser	Ser	Pro	Thr	Gly 430	Gly	Pro	Arg	Gly	Arg 435
10	Leu	Asn	Gly	Thr	Gly 440	Gly	Pro	Arg	Glu	Cys 445	Asn	Ser	Phe	Leu	Arg 450
	His	Ala	Arg	Glu	Thr 455	Pro	Asp	Ser	Tyr	Arg 460	Asp	Ser	Pro	His	Ser 465
15	Glu	Arg	Tyr	Val	Ser 470	Ala	Met	Thr	Thr	Pro 475	Ala	Arg	Met	Ser	Pro 480
20	Val	Asp	Phe	His	Thr 485	Pro	Ser	Ser	Pro	Lys 490	Ser	Pro	Pro	Ser	€ u 415
20	Met	Ser	Pro	Pro	Val 500	Ser	Ser	Met	Thr	Val 505	Ser	Met	Pro	Ser	Met 510
25	Ala	Val	Ser	Pro	Phe 515	Met	Glu	Glu	Glu	Arg 520	Pro	Leu	Leu	Leu	Val 525
	Thr	Pro	Pro	Arg	Leu 530	Arg	Glu	Lys	Lys	Phe 535	Asp	His	His	Pro	Gln 540
30			Ser		545					550					555
35			Ala		560					565					570
00			Gln		575					580					565
40			Ser		590					595					800
			Arg		605					610					913
45			Glu		620					625					030
50			Leu		635					640					040
	Thr	Pro	Ala		Arg 650	Leu	Ala	Asp	Ser	Arg 655	Thr	Asn	Pro	Ala	Gly 660
55	Arg	Phe	Ser	Thr	Gln 665	Glu	Glu	Ile	Gln 669						
	(2)	INFO	RMAT:	ION .	FOR S	SEQ :	ID N	0:14	:						
ക	(:	i) Si	EQUE!	NCE (CHARA	ACTE	RIST ino a	ICS:	5						

- (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val 5 Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys 10 Thr Glu Asn Val Pro Met Lys Val Gln Asn Gln Glu Lys Ala Glu Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr Gly Ile Cys Ile 15 Ala Leu Leu Val Val Gly Ile Met Cys Val Val Ala Tyr Cys Lys 20 Thr Lys Lys Gln Arg (2) INFORMATION FOR SEQ ID NO:15: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 91 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu 35 His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg 40 Asp Leu Lys Trp Trp Glu Leu Arg His Ala Gly His Gly Gln Gln Gln Lys Val Ile Val Val Ala Val Cys Val Val Val Leu Val Met 45 Leu Leu Leu Ser Leu Trp Gly Ala His Tyr Tyr Arg Thr Gln 50 Lys 91 (2) INFORMATION FOR SEQ ID NO:16: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Asn Asp Cys Pro Asp Ser His Thr Gln Phe Cys Phe His Gly Thr

	Cys	Arg	Phe	Leu	Val 20	Gln	Glu	Asp	Lys	Pro 25	Ala	Cys	Val	Cys	30
5	Ser	Gly	Tyr	Val	Gly 35	Ala	Arg	Cys	Glu	His 40	Ala	Asp	Leu	Leu	Ala 45
	Val	Val	Ala	Ala	Ser 50	Gln	Lys	Lys	Gln	Ala 55	Ile	Thr	Ala	Leu	Val 60
10	Val	Val	Ser	Ile	Val 65	Ala	Leu	Ala	Val	Leu 70	Ile	Ile	Thr	Cys	Val 75
15	Leu	Ile	His	Cys	Cys 80	Gln	Val 82						•	-	
	(2)	INFO	RMATI	ON E	FOR S	SEQ :	ID NO	0:17	•						
20	(:	(2	EQUEN A) LE B) TY D) TO	ENGTI	1: 87 amir	7 am:	ino a cid	ICS: acids	5						
ne.	(x:	i) S	EQUE	ICE I	DESC	RIPT	: 1101	SEQ	ID 1	10:17	7:				
25	Lys 1	Гл̀г	Lys	Asn	Pro 5	Cys	Asn	Ala	Glu	Phe 10	Gln	Asn	Phe	Cys	Ile 15
30	His	Gly	Glu	Cys	Lys 20	Tyr	Ile	Glu	His	Leu 25	Glu	Ala	Val	Thr	Cys 30
	Lys	Cys	Gln	Gln	Glu 35	Tyr	Phe	Gly	Glu	Arg 40	Cys	Gly	Glu	Lys	Ser 45
35	Met	Lys	Thr	His	Ser 50	Met	Ile	Asp	Ser	Ser 55	Leu	Ser	Lys	Ile	Ala 60
40 [°]	Leu	Ala	Ala	Ile	Ala 65	Ala	Phe	Met	Ser	Ala 70	Val	Ile	Leu	Thr	Ala 75
40	Val	Ala	Val	Ile	Thr 80	Val	Gln	Leu	Arg	Arg 85	Gln	Tyr 87			•
45	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:18	:						
40	((,	EQUEI A) LI B) T	NCE (ENGTI YPE: OPOL(H: 8' amin	7 am: no ac	ino a cid	ICS: acids	5						
50	/••	·	D) TO EQUE!					SEO	ID 1	10:18	3:				
			Lys							-		Asn	Phe	Cys	Ile
55	1			•	5					10					13
	•		Glu		20					25					30
60			His		35					40		•			43
	Met	Lys	Thr	Gln	Lys	Lys	Asp	Asp	Ser	Asp 55	Leu	Ser	Lys	Ile	Ala 60

Leu Ala Ala Ile Ile Val Phe Val Ser Ala Val Ser Val Ala Ala 65 . Ile Gly Ile Ile Thr Ala Val Leu Leu Arg Lys Arg 5 85 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 86 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: 15 Lys Lys Arg Asp Pro Cys Leu Arg Lys Tyr Lys Asp Phe Cys Ile His Gly Glu Cys Lys Tyr Val Lys Glu Leu Arg Ala Pro Ser Cys 20 Ile Cys His Pro Gly Tyr His Gly Glu Arg Cys His Gly Leu Ser Leu Pro Val Glu Asn Arg Leu Tyr Thr Tyr Asp His Thr Thr Ile 25 Leu Ala Val Val Ala Val Val Leu Ser Ser Val Cys Leu Leu Val 30 Ile Val Gly Leu Leu Met Phe Arg Tyr His Arg 85 86 (2) INFORMATION FOR SEQ ID NO:20: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Arg Pro Asn Ala Arg Leu Pro Pro Gly Val Phe Tyr Cys 45 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 bases 50 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 55

CCTCGCTCCT TCTTCTTGCC CTTCC 25

(2)	INFORMATION	FOR	SEQ	ID	NO:22:
-----	-------------	-----	-----	----	--------

5	(i)	(A) (B) (C)	JENCI LENC TYPI STRJ TOPC	STH: E: nu ANDEI	496 icle: ONES	base ic ac	es cid ingle								
10	(xi)	SEQ	JENC	E DES	SCRI	PTIO	4: SI	EQ II	ОИО	: 22 :					
		AA	AGA Arg 1	GCC Ala	GGC Gly	GAG Glu	GAG Glu 5	TTC Phe	CCC Pro	GAA Glu	ACT Thr	TGT Cys 10	TGG Trp	AAC Asn	38
15		TCC Ser	GGG Gly	CTC Leu 15	GCG Ala	CGG Arg	AGG Arg	CCA Pro	GGA Gly 20	GCT Ala	GAG Glu	CGG Arg	CGG Arg	CGG Arg 25	77
20		CTG Leu	CCG Pro	GAC Asp	GAT Asp	GGG Gly 30	AGC Ser	GTG Val	AGC Ser	AGG Arg	ACG Thr 35	GTG Val	ATA Ile	ACC Thr	116
25		TCT Ser	CCC Pro 40	CGA Arg	TCG Ser	GGT Gly	TGC Cys	GAG Glu 45	GGC Gly	GCC Ala	GGG Gly	CAG Gln	AGG Arg 50	CCA Pro	155
30		GGA Gly	CGC Arg	GAG Glu	CCG Pro 55	CCA Pro	GCG Ala	GTG Val	GGA Gly	CCC Pro 60	ATC Ile	GAC Asp	GAC Asp	TTC Phe	194
0E		CCG Pro 65	GGG Gly	CGA Arg	CAG Gln	GAG Glu	CAG Gln 70	CCC Pro	CGA Arg	GAG Glu	CCA Pro	GGG Gly .75	CGA Arg	GCG Ala	233
35		CCC Pro	GTT Val	CCA Pro 80	GGT Gly	GGC Gly	CGG Arg	ACC Thr	GCC Ala 85	CGC Arg	CGC Arg	GTC Val	CGC Arg	GCC Ala 90	272
40		GCG Ala	CTC Leu	CCT Pro	GCA Ala	GGC Gly 95	AAC Asn	GGG Gly	AGA Arg	CGC Arg	CCC Pro 100	CGC Arg	GCA Ala	GCG Ala	311
45		CGA Arg	GCG Ala 105	CCT Pro	CAG Gln	CGC Arg	GGC Gly	CGC Arg 110	TCG Ser	CTC Leu	TCC Ser	CCC Pro	TCG Ser 115	AGG Arg	350
50		GAC Asp	AAA Lys	CTT Leu	TTC Phe 120	CCA Pro	AAC Asn	CCG Pro	ATC Ile	CGA Arg 125	GCC Ala	CTT Leu	GGA Gly	CCA Pro	389
	·	AAC Asn 130	TCG Ser	CCT Pro	GCG Ala	CCG Pro	AGA Arg 135	GCC Ala	GTC Val	CGC Arg	GTA Val	GAG Glu 140	CGC Arg	TCC Ser	428
55		GTC Val	TCC Ser	GGC Gly 145	GAG Glu	ATG Met	TCC Ser	GAG Glu	CGC Arg 150	AAA Lys	GAA Glu	GGC Gly	AGA Arg	GGC Gly 155	467
60		AAA Lys	GGG Gly	AAG Lys	GGC Gly	AAG Lys 160	AAG Lys	AAG Lys	GAG Glu	CGA Arg 164	GG 4	196			

55

60

				83				
	(2) IN	FORMATION FO	R SEQ ID	NO:23:				
5	(i)	SEQUENCE CH (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG	2490 bas ucleic ac DNESS: si	es id ngle				
10	(xi)	SEQUENCE DE	SCRIPTION	: SEQ II	NO:23:			
		GTGGCTGCGG	GGCAATTGA	A AAAGAG	SCCGG CG	AGGAGTTC	CCCGAAAG	TT 50
15		GTTGGAACTC	CGGGCTCGC	G CGGAGG	GCCAG GA	GCTGAGCG	GCGGCGGC	TG 100
20		CCGGACGATG	ggagcgtga	G CAGGAC	CGGTG AT	AACCTCTC	CCCGATCC	GG 150
٠.		TTGCGAGGGC	GCCGGGCAG.	A GGCCAC	GGACG CG	AGCCGCCA	GCGGCGGG	AC 200
25		CCATCGACGA	CTTCCCGGG	G CGACAC	GGAGC AG	CCCCGAGA	GCCAGGGC	GA 250
		GCGCCCGTTC	CAGGTGGCC	G GACCGO	cccc cc	CGTCCGCG	CCGCGCTC	cc 300
30		TGCAGGCAAC	GGGAGACGC	c ccccc	GCAGC GC	GAGCGCCT	CAGCGCGG	CC 350
0.5		GCTCGCTCTC	CCCATCGAG	G GACAAA	ACTTT TC	CCAAACCC	GATCCGAG	CC 400
35		CTTGGACCAA	ACTCGCCTG(C GCCGAG	GAGCC GT	CCGCGTAG	AGCGCTCC	GT 450
40		CTCCGGCGAG	ATG TCC (Met Ser (490
45		GGG AAG GGC Gly Lys Gly						529
EO.		CCG GAG TCC Pro Glu Ser 25						568
50		CCC CAA TTG Pro Gln Leu						607

GGT TCC AAA CTA GTC CTT CGG TGT GAA ACC AGT TCT GAA 646 Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu

TAC TCC TCT CTC AGA TTC AAG TGG TTC AAG AAT GGG AAT 685
Tyr Ser Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn
65 70

55

	GAA Glu	TTG Leu	AAT Asn	CGA Arg	AAA Lys 80	AAC Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 85	ATC Ile	AAG Lys	ATA Ile	724
5	CAA Gln	AAA Lys 90	AAG Lys	CCA Pro	GGG Gly	AAG Lys	TCA Ser 95	GAA Glu	CTT Leu	CGC Arg	ATT Ile	AAC Asn 100	AAA Lys	763
10	GCA Ala	TCA Ser	CTG Leu	GCT Ala 105	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 110	ATG Met	TGC Cys	AAA Lys	GTG Val	802
15	ATC Ile 115	AGC Ser	AAA Lys	TTA Leu	GGA Gly	AAT Asn 120	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 125	AAT Asn	ATC Ile	841
m	ACC Thr	ATC Ile	GTG Val 130	GAA Glu	TCA Ser	AAC Asn	GAG Glu	ATC Ile 135	Ile	ACT Thr	GGT Gly	ATG Met	CCA Pro 140	880
20	GCC Ala	TCA Ser	ACT Thr	GAA Glu	GGA Gly 145	GCA Ala	TAT Tyr	GTG Val	TCT Ser	TCA Ser 150	GAG Glu	TCT Ser	CCC Pro	919
25	ATT Ile	AGA Arg 155	ATA Ile	TCA Ser	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	958
30	TCA Ser	TCT Ser	ACA Thr	TCT Ser 170	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT Leu	997
35	GTA Val 180	AAA Lys	TGT Cys	GCG Ala	GAG Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	GTG Val	AAT Asn	1036
40	GGA Gly	GGG Gly	GAG Glu 195	TGC Cys	TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	1075
40	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	TGC Cys 210	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	1114
45	GAT Asp	CGC Arg 220	TGC Cys	CAA Gln	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AAG Lys	1153
50	GCG Ala	GAG Glu	GAG Glu	CTG Leu 235	TAC Tyr	CAG Gln	AAG Lys	AGA Arg	GTG Val 240	CTG Leu	ACC Thr	ATA Ile	ACC Thr	1192
55	GGC Gly 245	ATC Ile	TGC Cys	ATC Ile	GCC Ala	CTC Leu 250	CTT Leu	GTG Val	GTC Val	GGC Gly	ATC Ile 255	ATG Met	TGT Cys	1231
m	GTG Val	GTG Val	GCC Ala 260	TAC Tyr	TGC Cys	AAA Lys	ACC Thr	AAG Lys 265	AAA Lys	CAG Gln	CGG Arg	AAA Lys	AAG Lys 270	1270
60	CTG Leu	CAT His	GAC Asp	CGT Arg	CTT Leu 275	CGG Arg	CAG Gln	AGC Ser	CTT Leu	CGG Arg 280	TCT Ser	GAA Glu	CGA Arg	1309

						CAT His 295	1348
5					Val	CAA Gln	1387
10						GTT Val	1426
15						TAT Tyr	1465
~						ACT Thr	1504
20						ATC Ile 360	1543
25						GTA Val	1582
30						AGA Arg	1621
35						AAC Asn	1660
						TAC Tyr	1699
40						ATG Met 425	1738
45						ACG Thr	1777
50						CCA Pro	1816
55						GCG Ala	1855
						CTC Leu	1894
60						CAT His 490	1933

		CCT Pro	CAG Gln	CAG Gln	TTC Phe 495	AGC Ser	TCC Ser	TTC Phe	CAC His	CAC His 500	AAC Asn	CCC Pro	GCG Ala	CAT His	1972
5		GAC Asp 5.05	AGT Ser	AAC Asn	AGC Ser	CTC Leu	CCT Pro 510	GCT Ala	AGC Ser	CCC Pro	TTG Leu	AGG Arg 515	ATA Ile	GTG Val	2011
10		GAG Glu	GAT Asp	GAG Glu 520	GAG Glu	TAT Tyr	GAA Glu	ACG Thr	ACC Thr 525	CAA Gln	GAG Glu	TAC Tyr	GAG Glu	CCA Pro 530	2050
15		GCC Ala	CAA Gln	GAG Glu	CCT Pro	GTT Val 535	AAG Lys	AAA Lys	CTC Leu	GCC Ala	AAT Asn 540	AGC Ser	CGG Arg	CGG Arg	2089
20		GCC Ala	AAA Lys 545	AGA Arg	ACC Thr	AAG Ly,s	CCC Pro	AAT Asn 550	GGC Gly	CAC His	ATT Ile	GCT Ala	AAC Asn 555	AGA Arg	2128
لك		TTG Leu	GAA Glu	GTG Val	GAC Asp 560	AGC Ser	AAC Asn	ACA Thr	AGC Ser	TCC Ser 565	CAG Gln	AGC Ser	AGT Ser	AAC Asn	2167
25		TCA Ser 570	GAG Glu	AGT Ser	GAA Glu	ACA Thr	GAA Glu 575	GAT Asp	GAA Glu	AGA Arg	GTA Val	GGT Gly 580	GAA Glu	GAT Asp	2206
30	•	ACG Thr	CCT Pro	TTC Phe 585	CTG Leu	GGC Gly	ATA Ile	CAG Gln	AAC Asn 590	CCC Pro	CTG Leu	GCA Ala	GCC Ala	AGT Ser 595	2245
35		CTT Leu	GAG Glu	GCA Ala	ACA Thr	CCT Pro 600	GCC Ala	TTC. Phe	CGC Arg	CTG Leu	GCT Ala 605	GAC Asp	AGC Ser	AGG Arg	2284
40		ACT Thr	AAC Asn 610	CCA Pro	GCA Ala	GGC Gly	CGC Arg	TTC Phe 615	TCG Ser	ACA Thr	CAG Gln	GAA Glu	GAA Glu 620	ATC Ile	2323
40		CAG Gln	GCC Ala	AGG Arg	CTG Leu 625	TCT Ser	AGT Ser	GTA Val	ATT Ile	GCT Ala 630	AAC Asn	CAA Gln	GAC Asp	CCT Pro	2362
45		Ile	GCT Ala		TAAA	ACCI	ra az	XAAT!	CACI	A TAC	ATTO	CACC	TGTA	AAAC	TT 2410
50		TAT									•	CAAT	TTAT	TTTA	TT 2460
		TTAC	. فالأماد	110 1	LGCAL	74 1 W.			vu	. 547					

55 (2) INFORMATION FOR SEQ ID NO:24:

60

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1715 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

5	GCG	CCTG	CCT	CCAA	CCTG	CG G	GCGG	GAGG'	r GG	GTGG	CTGC	GGG	GCAA	TTG	50
	AAA	AAGA	GCC	GGCG.	AGGA	GT T	cccc	GAAA(C TT	GTTG	GAAC	TCC	GGGC	TCG	100
10	CGC	GGAG	GCC	AGGA	GĊTG.	AG C	GGCG	GCGG	TG	CCGG	ACGA	TGG	GAGC	GTG	150
	AGC	AGGA	CGG	TGAT.	AACC	TC T	cccc	GATC	G GG	TTGC	GAGG	GCG	CCGG	GCA	200
15	GAG	GCCA	GGA	CGCG.	AGCC(GC C	AGCG	GCGG	G AC	CCAT	ÇGAC	GAC	TTCC	CGG	250
20	GGC	GACA	GGA	GCAG	CCC	ga g	AGCC	AGGG	C GA	GCGC	CCGT	TCC	AGGT(GC	300
	CGG	ACCG	ccc	GCCG	CGŤC	CG C	GCCG	CGCT	c cc	TGCA	GGCA	ACG	GGAG.	ACG	350
25	ccc	CCGC	GCA	GCGC	GAGC	GC C	TCAG	CGCGC	G CC	GCTC	GCTC	TCC	CCAT	CGA	400
20	GGG	ACAA	ACT	TTTC	CCAA	AC C	CGAT	CCGAC	G CC	CTTG	GACC	AAA	CTCG	CT	450
30	GCG	CCGA	GAG	CCGT	CCGC	GT A	GAGC	GCTC	GT	CTCC	GGCG	AG	ATG Met 1	495	
35								GGC Gly						534	
40								AAG Lys						573	
45				Gln				TTG Leu 35						612	
								GCT Ala						651	
50								TCT Ser						690	
55								GGG Gly						729	
60								AAG Lys						768	

	GGG Gly	AAG Lys	TCA Ser 95	GAA Glu	CTT Leu	CGC Arg	ATT Ile	AAC Asn 100	AAA Lys	GCA Ala	TCA Ser	CTG Leu	GCT Ala 105	807	
5	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 110	ATG Met	TGC Cys	AAA Lys	GTG Val	ATC Ile 115	AGC Ser	AAA Lys	TTA Leu	846	
10	GGA Gly	AAT Asn 120	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 125	AAT Asn	ATC Ile	ACC Thr	ATC Ile	GTG Val 130	GAA Glu	885	
15	Ser	Asn	Glu	Ile 135	Ile	Thr	Gly	Met	140	Ala	Ser	THE			
	GGA Gly 145	GCA Ala	TAT Tyr	GTG Val	TCT Ser	TCA Ser 150	GAG Glu	TCT Ser	CCC Pro	ATT Ile	AGA Arg 155	ATA Ile	TCA Se;	963	
20	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	TCA Ser	TCT Ser	ACA Thr	TCT Ser 170	100	2
25	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT Leu	GTA Val 180	AAA Lys	TGT Cys	GCG Ala	104	1
30	GAG Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	GTG Val	AAT Asn	GGA Gly	GGG Gly	GAG Glu 195	TGC Cys	108	0
35	TTC Phe	ATG Met	GTG .Val	AAA Lys 200	Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	111	9
	TGC Cys 210	Lys	TGC Čys	CCA	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	GAT Asp	CGC Arg 220	TGC Cys	CAA Gln	115	8
40	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AGT Ser	ACG Thr	TCC Ser	ACT Thr	CCC Pro 235	119	7
45	TTT Phe	CTG Leu	TCT Ser	CTG Leu	Pro	GAA Glu 241	TAG	GA G	CATG	CTCA	G TT	GGTG(CTGC	124	0
50															1290
															1340 1390
55															1440
60	GTG	ATAC	AAA	TTGA	TAGT	CA A	TATC	AAGC	A GT	gaaa	TATG	ATA	ATAA	AGG	1490
	Cጀጥ	ב∵דידי	AAG	тстс	ACTT	TT A	TTGA	TAAA	а та	AAAA	TCAT	TCT	ACTG	AAC	1540

		AGTCCATCTT	CTTTATACAA	TGACCACATC	CTGAAAAGGG	TGTTGCTAAG	1590
5		CTGTAACCGA	TATGCACTTG	AAATGATGGT	AAGTTAATTT	TGATTCAGAA	1640
10		TGTGTTATTT	GTCACAAATA	AACATAATAA	AAGGAGTTCA	GATGTTTTC	1690
		TTCATTAACC	ААААААААА	ААААА 1715		·	
15	(2) INF	ORMATION FO	OR SEQ ID NO	D:25:		· ·	
20	(i)	(B) TYPE: r	2431 bases aucleic acid DNESS: N.A.	5 ∃			
25	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:2	25:		
		GAGGCGCCTG	CCTCCAACCT	GCGGGCGGGA	GGTGGGTGGC	TGCGGGGCAA	50
30		TTGAAAAAGA	GCCGGCGAGG	AGTTCCCCGA	AACTTGTTGG	AACTCCGGGC	100
35		TCGCGCGGAG	GCCAGGAGCT	GAGCGGCGGC	GGCTGCCGGA	CGATGGGAGC	150
		GTGAGCAGGA	CGGTGATAAC	CTCTCCCCGA	TCGGGTTGCG	AGGGCGCCGG	200
40		GCAGAGGCCA	GGACGCGAGC	CGCCAGCGGC	GGGACCCATC	GACGACTTCC	250
		CGGGGCGACA	GGAGCAGCCC	CGAGAGCCAG	GGCGAGCGCC	CGTTCCAGGT	300
45		GGCCGGACCG	CCCGCCGCGT	CCGCGCCGCG	CTCCCTGCAG	GCAACGGGAG	350
50		ACGCCCCCGC	GCAGCGCGAG	CGCCTCAGCG	CGGCCGCTCG	CTCTCCCCAT	400
		CGAGGGACAA	ACTTTTCCCA	AACCCGATCC	GAGCCCTTGG	ACCAAACTCG	450
55		CCTGCGCCGA	GAGCCGTCCG	CGTAGAGCGC	TCCGTCTCCG	GCGAG AT Met 1	
60	•				AAA GGG AA Lys Gly Ly 10		37
				r Gly Lys L	AG CCG GAG ys Pro Glu 25		

_	GCG Ala	GGC Gly	AGC Ser 30	CAG Gln	AGC Ser	CCA Pro	GCC Ala	TTG Leu 35	CCT Pro	CCC Pro	CAA Gln	TTG Leu	AAA Lys 40	615
5	GAG Glu	ATG Met	AAA Lys	AGC Ser	CAG Gln 45	GAA Glu	TCG Ser	GCT Ala	GCA Ala	GGT Gly 50	TCC Ser	AAA Lys	CTA Leu	654
10	GTC Val	CTT Leu 55	CGG Arg	TGT Cys	GAA Glu	ACC Thr	AGT Ser 60	TCT Ser	GAA Glu	TAC Tyr	TCC Ser	TCT Ser 65	CTC Leu	693
15	AGA Arg	TTC Phe	AAG Lys	TGG Trp 70	TTC Phe	AAG Lys	AAT Asn	GGG Gly	AAT Asn 75	GAA Glu	TTG Leu	AAT Asn	CGA Arg	732
20	AAA Lys 80	AAC Asn	AAA Lys	CCA Pro	CAA Gln	AAT Asn 85	ATC Ile	AAG Lys	ATA Ile	CAA Gln	AAA Lys 90	AAG Lys	CCA Pro	771
	GGG Gly	AAG Lys	TCA Ser 95	GAA Glu	CTT Leu	CGC Arg	ATT Ile	AAC Asn 100	AAA Lys	GCA Ala	TCA Ser	CTG Leu	GCT Ala 105	810
25	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 110	ATG Met	TGC Cys	AAA Lys	GTG Val	ATC Ile 115	AGC Ser	AAA Lys	TTA Leu	849
30 ,	GGA Gly	AAT Asn 120	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 125	AAT Asn	ATC Ile	ACC Thr	ATC Ile	GTG Val 130	GAA Glu	888
35	TCA Ser	AAC Asn	GAG Glu	ATC Ile 135	ATC Ile	ACT Thr	GGT Gly	ATG Met	CCA Pro 140	GCC Ala	TCA Ser	ACT Thr	GAA Glu	927
40	GGA Gly 145	GCA Ala	TAT Tyr	GTG Val	TC T Ser	TCA Ser 150	GAG Glu	TCT Ser	CCC Pro	ATT Ile	AGA Arg 155	ATA Ile	TCA Ser	966
	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	TCA Ser	TCT Ser	ACA Thr	TCT Ser 170	1005
45	ACA Thr	TCC	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT Leu	GTA Val 180	AAA Lys	TGT Cys	GCG Ala	1044
50	GAG Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	GTG Val	AAT Asn	GGA Gly	GGG Gly	GAG Glu 195	TGC Cys	1083
55	TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	1122
60	TGC Cys 210	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	GAT Asp	CGC Arg 220	TGC Cys	CAA Gln	1161
	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AAG Lys	GCG Ala	GAG Glu	GAG Glu	CTG Leu 235	1200

-	TAC Tyr	CAG Gln	AAG Lys	AGA Arg	GTG Val 240	CTG Leu	ACC Thr	ATA Ile	ACC Thr	GGC Gly 245	ATC Ile	TGC Cys	ATC Ile	1239
5	GCC Ala	CTC Leu 250	CTT Leu	GTG Val	GTC Val	GGC Gly	ATC Ile 255	ATG Met	TGT Cys	GTG Val	GTG Val	GCC Ala 260	TAC Tyr	1278
10	TGC Cys	AAA Lys	ACC Thr	AAG Lys 265	AAA Lys	CAG Gln	CGG Arg	AAA Lys	AAG Lys 270	CTG Leu	CAT His	GAC Asp	CGT Arg	1317
15		CGG Arg												1356
20	AAC Asn	ATT Ile	GCC Ala 290	AAT Asn	GGG Gly	CCT Pro	CAC His	CAT His 295	CCT Pro	AAC Asn	CCA Pro	CCC Pro	CCC Pro 300	1395
25	GAG Glu	AAT Asn	GTC Val	CAG Gln	CTG Leu 305	GTG Val	AAT Asn	CAA Gln	TAC Tyr	GTA Val 310	TCT	AAA Lys	AAC Asn	1434
ω		ATC Ile 315						Val						1473
30		TCC Ser												1512
35	CAC His 340	TCC Ser	ACT Thr	ACT Thr	GTC Val	ACC Thr 345	CAG Gln	ACT Thr	CCT Pro	AGC Ser	CAC His 350	AGC Ser	TGG Trp	1551
40		AAC Asn												1590
		GTA Val												1629
45	AGC Ser	AGC Ser 380	CCA Pro	ACT Thr	GGG Gly	GGC Gly	CCA Pro 385	AGA Arg	GGA Gly	CGT Arg	CTT Leu	AAT Asn 390	GGC Gly	1668
50	ACA Thr	GGA Gly	GGC Gly	CCT Pro 395	CGT Arg	GAA Glu	TGT Cys	AAC Asn	AGC Ser 400	TTC Phe	CTĊ Leu	AGG Arg	CAT	1707
55	GCC Ala 405	Arg	GAA Glu	ACC Thr	CCT Pro	GAT Asp 410	TCC Ser	TAC Tyr	CGA Arg	GAC Asp	TCT Ser 415	CCT Pro	CAT His	1746
.60		GAA Glu		TAA	AA C	CGAA	GCA)	A AGO	CTACT	rgca	GAGO	eaga <i>i</i>	AAC 1	.790

TCAGTCAGAG AATCCCTGTG AGCACCTGCG GTCTCACCTC AGGAAATCTA 1840

	CTCTAATCAG AATAAGGGGC GGCAGTTACC TGTTCTAGGA GTGCTCCTAG 18	96
5	TTGATGAAGT CATCTCTTTG TTTGACGGAA CTTATTTCTT CTGAGCTTCT 19	40
Ū	CTCGTCGTCC CAGTGACTGA CAGGCAACAG ACTCTTAAAG AGCTGGGATG 19	90
10	CTTTGATGCG GAAGGTGCAG CACATGGAGT TTCCAGCTCT GGCCATGGGC 20	40
	TCAGACCCAC TCGGGGTCTC AGTGTCCTCA GTTGTAACAT TAGAGAGATG 20	90
15	GCATCAATGC TTGATAAGGA CCCTTCTATA ATTCCAATTG CCAGTTATCC 21	40
20	AAACTCTGAT TCGGTGGTCG AGCTGGCCTC GTGTTCTTAT CTGCTAACCC 21	90
	TGTCTTACCT TCCAGCCTCA GTTAAGTCAA ATCAAGGGCT ATGTCATTGC 22	40
25	TGAATGTCAT GGGGGGCAAC TGCTTGCCCT CCACCCTATA GTATCTATTT 22	90
	TATGAAATTC CAAGAAGGGA TGAATAAATA AATCTCTTGG ATGCTGCGTC 23	40
30 -	TGGCAGTCTT CACGGGTGGT TTTCAAAGCA GAAAAAAAAA AAAAAAAAA 23	90
35	алалалала алалалала алалалалал алалалал	
	(2) INFORMATION FOR SEQ ID NO:26:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 625 amino acids (B) TYPE: amino acid	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
40	Met Ser Glu Arg Lys Glu Gly Arg Gly Lys Gly Lys Gly Lys Lys 1 5 10 15	
50	Lys Glu Arg Gly Ser Gly Lys Lys Pro Glu Ser Ala Ala Gly Ser 20 25 30	
	Gln Ser Pro Ala Leu Pro Pro Arg Leu Lys Glu Met Lys Ser Gln 35 40 45	
55	Glu Ser Ala Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser 50 55 60	
60	Ser Glu Tyr Ser Ser Leu Arg Phe Lys Trp Phe Lys Asn Gly Asn 65 70 75	
	Glu Leu Asn Arg Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys	

	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
5	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
10	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
15	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
10	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
20	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
25	Lys	Cys	Gln	Pro	Gly 215	Phe	Thr	Gly	Ala	Arg 220	Cys	Thr	Glu	Asn	Val 225
30	Pro	Met	Lys	Val	Gln 230	Asn	Gln	Glu	Lys	Ala 235	Glu	Glu	Leu	Tyr	Gln 240
	Lys	Arg	Val	Leu	Thr 245	Ile	Thr	Gly	Ile	Cys 250	Ile	Ala	Leu	Leu	Val 255
35	Val	Gly	Ile	Met	Cys 260	Val	Val	Ala	Tyr	Cys 265	Lys	Thr	Lys	Lys	Gln 270
	Arg	Lys	Lys	Leu	His 275	Asp	Arg	Leu	Arg	Gln 280	Ser	Leu	Arg	Ser	Glu 285
40	Arg	Asn	Asn	Met	Met 290	Asn	Ile	Ala	Asn	Gly 295	Pro	His	His	Pro	Asn 300
45	Pro	Pro	Pro	Gĺu	Asn 305	Val	Gln	Leu	Val	Asn 310	Gln	Tyr	Val	Ser	Lys 315
	Asn	Val	Ile	Ser	Ser 320	Glu	His	Ile	Val	Glu 325	Arg	Glu	Ala	Glu	Thr 330
50					335		-			Thr 340			¥		345
					350					Trp 355			•		360
55	Glu	Ser	Ile	Leu	Ser 365	Glu	Ser	His	Ser	Val 370	Ile	Val	Met	Ser	Ser 375
60					380					Thr 385					390
	Arg	Leu	Asn	Gly	Thr 395	Gly	Gly	Pro	Arg	Glu 400	Cys	Asn	Ser	Phe	Leu 405

	Arg	His	Ala	Arg	Glu 410	Thr	Pro	Asp	Ser	Tyr 415	Arg	Asp	Ser	Pro	420
5	Ser	Glu	Arg	Tyr	Val 425	Ser	Ala	Met	Thr	Thr 430	Pro	Ala	Arg	Met	Ser 435
	Pro	Val	Asp	Phe	His 440	Thr	Pro	Ser	Ser	Pro 445	Lys	Ser	Pro	Pro	Ser 450
10	Glu	Met	Ser	Pro	Pro 455	Val	Ser	Ser	Met	Thr 460	Val	Ser	Met	Pro	Ser 465
	Met	Ala	Val	Ser	Pro 470	Phe	Met	Glu	Glu	Glu 475	Arg	Pro	Leu	Leu	Leu 480
15	Val	Thr	Pro	Pro	Arg 485	Leu	Arg	Glu	Lys	Lys 490	Phe	Asp	His	His	Pro 495
20	Gln	Gln	Phe	Ser	Ser 500	Phe	His	His	Asn	Pro 505	Ala	His	Asp	Ser	Asn 510
	Ser	Leu	Pro	Ala	Ser 515	Pro	Leu	Arg	Ile	Val 520	Glu	Asp	Glu	Glu	Tyr 525
25	Glu	Thr	Thr	Gln	Glu 530	Tyr	Glu	Pro	Ala	Gln 535	Glu	Pro	Val	Lys	Lys 540
••	Leu	Ala	Asn	Ser	Arg 545	Arg	Ala	Lys	Arg	Thr 550	Lys	Pro	Asn	Gly	His 555
30	Ile	Ala	Asn	Arg	Leu 560	Glu	Val	Asp	Ser	Asn 565	Thr	Ser	Ser	Gln	Ser 570
35	Ser	Asn	Ser	Glu	Ser 575	Glu	Thr	Glu	Asp	Glu 580	Arg	Val	Gly	Glu	Asp 585
	Thr	Pro	Phe	Leu	Gly 590	Ile	Gln	Asn	Pro	Leu 595	Ala	Ala	Ser	Leu	Glu 600
40	Ala	Thr	Pro	Ala	Phe 605	Arg	Leu	Ala	Asp	Ser 610	Arg	Thr	Asn	Pro	Ala 615
	Gly	Arg	Phe	Ser	Thr 620	Gln	Glu	Glu	Ile	Gln 625					
45	(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID NO	27:	:						
50	(:	(1	EQUENA) LI B) TY D) TY	NCE (ENGTI YPE: OPOL(H: 64	15 ar no ac	mino cid	ICS: acio	is						
	(x:	i) Si	EQUE	NCE I	DESC	RIPT:	ION:	SEQ	ID 1	NO:27	7:				
55	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
~	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
60	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45

	Glu	Ser	Ala	Ala	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Суѕ	Glu	Thr	Ser 60
5	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90
10	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
15	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
	qsA	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
20	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
25	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
30	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
		Phe			200					205					210
35		Cys			215					220					225
		Ala			230					235					240
40		Glu			245					250					255
45		Ala			260					265					270
	_	Thr			275		٠.			280					285
50		Leu			290					295					300
		His			305					310				•	315
55		Tyr	÷		320					325					330
60		Glu			335.	•	•			340					345
	Ala	His	His	Ser	Thr 350	Thr	Val	Thr	Gln	Thr 355	Pro	Ser	His	Ser	360

	Ser	Asn	Gly	His	Thr	Glu	Ser	Ile	Leu	Ser 370	Glu	Ser	His	Ser	Val 375
5	Ile	Val	Met	Ser	Ser 380	Val	Glu	Asn	Ser	Arg 385	His	Ser	Ser	Pro	Thr 390
J	Gly	Gly	Pro	Arg	Gly 395	Arg	Leu	Asn	Gly	Thr 400	Gly	Gly	Pro	Arg	Glu 405
10	Cys	Asn	Ser	Phe	Leu 410	Arg	His	Ala	Arg	Glu 415	Thr	Pro	Asp	Ser	Tyr 420
	Arg	Asp	Ser	Pro		Ser	Glu	Arg	Tyr	Val 430	Ser	Ala	Met	Thr	Thr 435
15	Pro	Ala	Arg	Met		Pro	Val	Asp	Phe	His	Thr	Pro	Ser	Ser	Pro 450
20	Lys	Ser	Pro	Pro		Glu	Met	Ser	Pro	Pro 460	Val	Ser	Ser	Met	Thr 465
ш	Val	Ser	Met	Pro		Met	Ala	Val	Ser	Pro 475	Phe	Met	Glu	Glu	Glu 480
25	Arg	Pro	Leu	Leu	Leu 485	Val	Thr	Pro	Pro	Arg 490	Leu	Arg	Glu	Lys	Lys 495
	Phe	Asp	His	His	Pro 500	Gln	Gln	Phe	Ser	Ser 505	Phe	His	His	Asn	Pro 510
30	Ala	His	Asp	Ser	Asn 515	Ser	Leu	Pro	Ala	Ser 520	Pro	Leu	Arg	Ile	Val 525
35	Glu	Asp	Glu	Glu	Tyr 530	Glu	Thr	Thr	Gln	Glu 535	Tyr	Glu	Pro	Ala	Gln 540
	Glu	Pro	Val	Lys	Lys 545	Leu	Ala	Asn	Ser	Arg 550	Arg	Ala	Lys	Arg	Thr 555
40	Lys	Pro	Asn	Gly	His 560	Ile	Ala	Asn	Arg	Leu 565	Glu	Val	Asp	Ser	Asn 570
	Thr	Ser	Ser	Gln	Ser 575	Ser	Asn	Ser	Glu	Ser 580	Glu	Thr	Glu	Asp	Glu 585
45	Arg	Val	Gĺy	Glu	Asp 590	Thr	Pro	Phe	Leu	Gly 595	Ile	Gln	Asn	Pro	Leu 600
50	Ala	Ala	Ser	Leu	Glu 605	Ala	Thr	Pro	Ala	Phe 610	Arg	Leu	Ala	Asp	Ser 615
	Arg	Thr	Asn	Pro	Ala 620	Ġly	Arg	Phe	Ser	Thr 625	Gln	Glu	Glu	Ile	Gln 630
55	Ala	Arg	Leu	Ser	Ser 635	Val	Ile	Ala	Asn	Gln 640	Asp	Pro	Ile	Ala	Val 645

(2) INFORMATION FOR SEQ ID NO:28:

60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 637 amino acids
- (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

	,,,,,	-,													
5	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
10	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45
45	Glu	Ser	Ala	Ala	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Cys	Glu	Thr	Ser 60
15	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
20	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90
	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
25	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
30	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
30	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Va1	Ser	Ser 150
35	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
40	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
45	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
43	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
50	Met	Ala	Ser	Phe	Tyr 230	Lys	Ala	Glu	Glu	Leu 235	Tyr	Gln	Lys	Arg	Val 240
	Leu	Thr	Ile	Thr	Gly 245	Ile	Суѕ	Ile	Ala	Leu 250	Leu	Val	Val	Gly	Ile 255
55	Met	Cys	Val	Val	Ala 260	Tyr	Cys	Lys	Thr	Lys 265	Lys	Gln	Arg	Lys	Lys 270
60	Leu	His	Asp	Arg	Leu 275	Arg	Gln	Ser	Leu	Arg 280	Ser	Glu	Arg	Asn	Asn 285
60	Met	Met	Asn	Ile	Ala 290	Asn	Gly	Pro	His	His 295	Pro	Asn	Pro	Pro	Pro 300

	Glu	Asn	Val	Gln	Leu 305	Val	Asn	Gln	Tyr	Val 310	Ser	Lys	Asn	Val	Ile 315
5	Ser	Ser	Glu	His	Ile 320	Val	Glu	Arg	Glu	Ala 325	Glu	Thr	Ser	Phe	Ser 330
	Thr	Ser	His	Tyr	Thr 335	Ser	Thr	Ala	His	His 340	Ser	Thr	Thr	Val	Thr 345
10	Gln	Thr	Pro	Ser	His 350	Ser	Trp	Ser	Asn	Gly 355	His	Thr	Glu	Ser	Ile 360
45	Leu	Ser	Glu	Ser	His 365	Ser	Val	Ile	Val	Met 370	Ser	Ser	Val	Glu	Asn 375
15	Ser	Arg	His	Ser	Ser 380	Pro	Thr	Gly	Gly	Pro 385	Arg	Gly	Arg	Leu	Asn 390
20	Gly	Thr	Gly	Gly	Pro 395	Arg	Glu	Cys	Asn	Ser 400	Phe	Leu	Arg	His	Ala 405
	Arg	Glu	Thr	Pro	Asp 410	Ser	Tyr	Arg	Asp	Ser 415	Pro	His	Ser	Glu	Arg 420
25	Tyr	Val	Ser	Ala	Met 425	Thr	Thr	Pro	Ala	Arg 430	Met	Ser	Pro	Val	Asp 435
30	Phe	His	Thr	Pro	Ser 440	Ser	Pro	Lys	Ser	Pro 445	Pro	Ser	Glu	Met	Ser. 450
30					455					460				Ala	405
35					470					4/5				Thr	400
					485					490				Gln	400
40					500					505				Leu	210
45					515					520				Thr	223
40					530				,	535					Asn 540
50					545					550	•				Asn 555
					560					202				Asn	5.0
55					575					580					Phe 585
80	Leu	Gly	Ile	Gln	Asn 590	Pro	Leu	Ala	Ala	Ser 595	Leu	Glu	Ala	Thr	Pro 600
60	Ala	Phe	Arg	Leu	Ala 605	Asp	Ser	Arg	Thr	Asn 610	Pro	Ala	Gly	Arg	Phe 615

	Ser	Thr	Gln	Glu	Glu 620	Ile	Gln	Ala	Arg	Leu 625	Ser	Ser	Val	Ile	Ala 630
5	Asn	Gln	Asp	Pro	Ile 635	Ala	Val 637								
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:29	•						
10	i)	()	A) LI 3) T	NCE (ENGT! YPE: OPOL(H: 42 amin	20 ar	mino cid		ds						٠
15	(xi	i) SI	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:2	€:				
,,,	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
20	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45
25	Glu	Ser	Ala	Ala	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Cys	Glu	Thr	Ser 60
30	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
50	Glu	Leu	Asn	Arg	Lys 80	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90
35	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
40	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
45	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
40	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
-50	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val	Asn	Gly	Gly	Glu 195
55	Cys	Phe	Met	Val	Lys 200	Asp	Leu	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
60	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
60	Met	Ala	Ser	Phe	Tyr 230	Lys	Ala	Glu	Glu	Leu 235	Tyr	Gln	Lys	Arg	Val 240

	Leu	Thr	Ile	Thr	Gly 245	Ile	Cys	Ile	Ala	Leu 250	Leu	Val	Val	Gly	Ile 255
5	Met	Cys	Val	Val	Ala 260	Tyr	Cys	Lys	Thr	Lys 265	Lys	Gln	Arg	Lys	Lys 270
	Leu	His	Asp	Arg	Leu 275	Arg	Gln	Ser	Leu	Arg 280	Ser	Glu	Arg	Asn	Asn 285
10	Met	Met	Asn	Ile	Ala 290	Asn	Gly	Pro	His	His 295	Pro	Asn	Pro	Pro	Pro 300
	Glu	Asn	Val	Gln	Leu 305	Val	Asn	Gln	Tyr	Val 310	Ser	Lys	Asn	Val	Ile 315
15	Ser	Ser	Glu	His	Ile 320	Val	Glu	Arg	Glu	Ala 325	Glu	Thr	Ser	Phe	Ser 330
20	Thr	Ser	His	Tyr	Thr 335	Ser	Thr	Ala	His	His 340	Ser	Thr	Thr	Val	Thr 345
	Gln	Thr	Pro	Ser	His 350	Ser	Trp	Ser	Asn	Gly 355	His	Thr	Glu	Ser	Ile 360
25	Leu	Ser	Glu	Ser	His 365	Ser	Val	Ile	Val	Met 370	Ser	Ser	Val	Glu	Asn 375
00	Ser	Arg	His	Ser	Ser 380	Pro	Thr	Gly	Gly	Pro 385	Arg	Gly	Arg	Leu	Asn 390
30	Gly	Thr	Gly	Gly	Pro 395	Arg	Glu	Cys	Asn	Ser 400	Phe	Leu	Arg	His	Ala 405
35	Arg	Glu	Thr	Pro	Asp 410	Ser	Tyr	Arg	Asp	Ser 415	Pro	His	Ser	Glu	Arg 420
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	30:30	:						
40	(.	(1	A) Li B) Ti	NCE (ENGT! YPE: OPOL(H: 24	41 ar no ac	nino cid	ICS: acid	ds						
45	(x	i) Sl	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	NO:36	0:				
	Met 1	Ser	Glu	Arg	Lys 5	Glu	Gly	Arg	Gly	Lys 10	Gly	Lys	Gly	Lys	Lys 15
50	Lys	Glu	Arg	Gly	Ser 20	Gly	Lys	Lys	Pro	Glu 25	Ser	Ala	Ala	Gly	Ser 30
	Gln	Ser	Pro	Ala	Leu 35	Pro	Pro	Gln	Leu	Lys 40	Glu	Met	Lys	Ser	Gln 45
55	Glu	Ser	Ala	Alā	Gly 50	Ser	Lys	Leu	Val	Leu 55	Arg	Cys	Glu	Thr	Ser 60
60	Ser	Glu	Tyr	Ser	Ser 65	Leu	Arg	Phe	Lys	Trp 70	Phe	Lys	Asn	Gly	Asn 75
	Glu	Leu	Asn	Arg	Lys 60	Asn	Lys	Pro	Gln	Asn 85	Ile	Lys	Ile	Gln	Lys 90

	Lys	Pro	Gly	Lys	Ser 95	Glu	Leu	Arg	Ile	Asn 100	Lys	Ala	Ser	Leu	Ala 105
5	Asp	Ser	Gly	Glu	Tyr 110	Met	Cys	Lys	Val	Ile 115	Ser	Lys	Leu	Gly	Asn 120
	Asp	Ser	Ala	Ser	Ala 125	Asn	Ile	Thr	Ile	Val 130	Glu	Ser	Asn	Glu	Ile 135
10	Ile	Thr	Gly	Met	Pro 140	Ala	Ser	Thr	Glu	Gly 145	Ala	Tyr	Val	Ser	Ser 150
45	Glu	Ser	Pro	Ile	Arg 155	Ile	Ser	Val	Ser	Thr 160	Glu	Gly	Ala	Asn	Thr 165
15	Ser	Ser	Ser	Thr	Ser 170	Thr	Ser	Thr	Thr	Gly 175	Thr	Ser	His	Leu	Val 180
20	Lys	Cys	Ala	Glu	Lys 185	Glu	Lys	Thr	Phe	Cys 190	Val.	Asn	Gly	Gly	Glu 195
	Cys	Phe	Met	Val	Lys 200	Asp	Leú	Ser	Asn	Pro 205	Ser	Arg	Tyr	Leu	Cys 210
25	Lys	Cys	Pro	Asn	Glu 215	Phe	Thr	Gly	Asp	Arg 220	Cys	Gln	Asn	Tyr	Val 225
20	Met	Ala	Ser	Phe	Tyr 230	Ser	Thr	Ser	Thr	Pro 235	Phe	Leu	Ser	Leu	Pro 240
30	Glu 241														

WE CLAIM:

- A composition comprising isolated heregulin polypeptide.
- 5 2 The composition of claim 1 wherein the heregulin is antigenically active.
 - 3. The composition of claim 1 wherein the heregulin is biologically active.
 - 4. The composition of claim 3 wherein the heregulin is HRG-GFD.

10

- 5. The composition of claim 1 wherein the heregulin is heregulin $-\alpha$, $-\beta 1$, $-\beta 2$, or $-\beta 3$.
- 6. The composition of claim 3 wherein the heregulin is human heregulin- α -GFD.

15

- 7. The composition of claim 3 wherein the heregulin is human heregulin- β 1–GFD, heregulin- β 2–GFD or heregulin- β 3–GFD .
- The composition of claim 1 further comprising pharmaceutically acceptable carrier.

- 9. The composition of claim 8 wherein the heregulin is a heregulin GFD.
- 10. The composition of claim 9 further comprising an immune adjuvant.
- 25 11. The composition of claim 10 wherein the heregulin GFD comprises an immunogenic, non-heregulin polypeptide.
 - 12. The composition of claim 1 wherein the heregulin is NTD-GFD.
- The composition of claim 1 wherein the heregulin is NTD-GFD-transmembrane polypeptide.
 - 14. The composition of claim 1 wherein the heregulin is HRG-GFD.
- 35 15. The composition of claim 1 wherein the heregulin comprises a cytoplasmic domain.
 - 16. The composition of claim 1 wherein the heregulin is NTD-GFD and it has an amino acid sequence which is at least 85% homologous with the native heregulin- α , $-\beta$ 1. $-\beta$ 2, $-\beta$ 3 NTD-GFD sequence.

- 17. The composition of claim 1 wherein the heregulin polypeptide comprises an enzyme.
- 18. The composition of claim 16 wherein the heregulin is HRG- α .

5

- 19. The composition of claim 18 wherein the heregulin- α has an amino acid substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108,121-123, 128-130 and 163-247 (Fig. 15).
- 10 20. The composition of claim 16 wherein the heregulin is HRG- β_1 .
 - 21. The composition of claim 20 wherein the heregulin β_1 has an amino acid substituted, deleted or inserted adjacent to residues 1-23, 107-108, 121-123, 128-130 and 163-252 (Fig. 15).

15

- 22. The composition of claim 16 wherein the heregulin is HRG- β_2 .
- 23. The composition of claim 22 wherein the heregulin β_2 has an amino acid substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108, 121-123, 128-130 and 163-244 (Fig. 15).
- 24. The composition of claim 16 wherein the heregulin is HRG- β_3 .
- 25. The composition of claim 24 wherein the heregulin β₃ has an amino acid
 25 substituted, deleted or inserted adjacent to any one of residues 1-23, 107-108, 121-123, 128-130 and 163-241 (Fig. 15).
 - 26. An isolated antibody that is capable of binding a heregulin polypeptide.
- The isolated antibody of claim 26 that is capable of binding specifically to a heregulin- α , heregulin- β 1, heregulin- β 2, or heregulin- β 3.
 - 28. Isolated heregulin encoding nucleic acid.
- 35 29. The nucleic acid of claim 28 which encodes heregulin- α , heregulin- β 1, heregulin- β 2, or heregulin- β 3 polypeptide.
 - 30. The nucleic acid of claim 28 that encodes a heregulin-GFD.

- 31. An expression vector comprising the nucleic acid of claim 28.
- 32. The expression vector of claim 31 wherein the nucleic acid encodes a heregulin-GFD.
- 5 33. A host cell transformed with a vector of claim 31.
 - 34. A method comprising culturing the host cell of claim 33 to express the heregulin and recovering the heregulin from the host cell.
- 10 35. The method of claim 34 wherein the heregulin is heregulin- α , heregulin- β 1, heregulin β 2, or heregulin- β 3.
 - 36. The method of claim 34 wherein the heregulin is heregulin-NTD-GFD.
- 15 37. The method of claim 34 wherein the heregulin is heregulin-GFD.
 - 38. A method of determining the presence of a heregulin nucleic acid, comprising contacting the nucleic acid of claim 28 with a test sample nucleic acid and determining whether hybridization has occurred.
- A method of amplifying a nucleic acid test sample comprising priming a nucleic acid polymerase chain reaction with the nucleic acid of claim 28.
- 40. A method for purifying a heregulin comprising adsorbing heregulin from a contaminated solution thereof onto heparin Sepharose or a cation exchange resin.

FIG. 1

						, /3.	2 .		•				
GG					CAG	CGC	GGC				TCC Ser		
			Lys					Pro			GCC Ala		
					Ala						GTA Val		116
											GAA Glu 50		155
											GGC Gly		194
											AGC Ser		233
											CAG Gln		272
											GAA Glu		311
Ser	Ser	Glu	Tyr	Ser	Ser	Leu	Arg	Phe	Lys	Trp	TTC Phe 115	Lys	350
											CAA Gln		389
											CTT Leu		428
											TAT Tyr		467
Cys		Val	Ile								GCC Ala		506

	Ile		GTG		TCA				ATC Ile 180		' 545
							Tyr		TCT Ser		584
Ser									GGA Gly		
									GGG Gly		662
									ACT		701
									GAC Asp 245		740
									CCT Pro		779
									ATG Met		818
									CAG Gln		857
									CTC Leu		896
								*	AAA Lys 310		935
						_			CGG Arg		974
		Glu		Asn			Met	Asn	ATT Ile FIG	Ala	1013 B

6/32AAT GGG CCT CAC CAT CCT AAC CCA CCC CCC GAG AAT GTC 1052 Asn Gly Pro His His Pro Asn Pro Pro Glu Asn Val 340 345 350 CAG CTG GTG AAT CAA TAC GTA TCT AAA AAC GTC ATC TCC 1091 Gln Leu Val Asn Gln Tyr Val Ser Lys Asn Val Ile Ser AGT GAG CAT ATT GTT GAG AGA GAA GCA GAG ACA TCC TTT 1130 Ser Glu His Ile Val Glu Arg Glu Ala Glu Thr Ser Phe 370 365 TCC ACC AGT CAC TAT ACT TCC ACA GCC CAT CAC TCC ACT 1169 Ser Thr Ser His Tyr Thr Ser Thr Ala His His Ser Thr 380 385 ACT GTC ACC CAG ACT CCT AGC CAC AGC TGG AGC AAC GGA 1208 Thr Val Thr Gln Thr Pro Ser His Ser Trp Ser Asn Gly 395 CAC ACT GAA AGC ATC CTT TCC GAA AGC CAC TCT GTA ATC 1247 His Thr Glu Ser Ile Leu Ser Glu Ser His Ser Val Ile 410 415 405 GTG ATG TCA TCC GTA GAA AAC AGT AGG CAC AGC CCA 1286 Val Met Ser Ser Val Glu Asn Ser Arg His Ser Ser Pro 420 425 ACT GGG GGC CCA AGA GGA CGT CTT AAT GGC ACA GGA GGC 1325 Thr Gly Gly Pro Arg Gly Arg Leu Asn Gly Thr Gly Gly . 435 440 430 CCT CGT GAA TGT AAC AGC TTC CTC AGG CAT GCC AGA GAA 1364 Pro Arg Glu Cys Asn Ser Phe Leu Arg His Ala Arg Glu 445 ACC CCT GAT TCC TAC CGA GAC TCT CCT CAT AGT GAA AGG 1403 Thr Pro Asp Ser Tyr Arg Asp Ser Pro His Ser Glu Arg 460 465 TAT GTG TCA GCC ATG ACC ACC CCG GCT CGT ATG TCA CCT 1442 Tyr Val Ser Ala Met Thr Thr Pro Ala Arg Met Ser Pro 470 475 480 GTA GAT TTC CAC ACG CCA AGC TCC CCC AAA TCG CCC CCT 1481 Val Asp Phe His Thr Pro Ser Ser Pro Lys Ser Pro Pro 490 485 TCG GAA ATG TCT CCA CCC GTG TCC AGC ATG ACG GTG TCC 1520 Ser Glu Met Ser Pro Pro Val Ser Ser Met Thr Val Ser 500 495

						7/3	2						
ATG Met	CCT Pro	TCC Ser	ATG Met 510	GCG Ala	GTC	AGC	CCC	TTC Phe 515	ATG Met	GAA Glu	GAA Glu	GAG Glu	1559
	CCT Pro												1598
AAG Lys	AAG Lys	TTT Phe 535	Asp	CAT His	CAC His	CCT Pro	CAG Gln 540	CAG Gln	TTC Phe	AGC Ser	TCC Ser	TTC Phe 545	1637
												GCT Ala	1676
	CCC Pro 560												1715
ACC Thr	CAA Gln	GAG Glu	TAC Tyr 575	GAG Glu	CCA Pro	GCC Ala	CAA Gln	GAG Glu 580	CCT Pro	GTT Val	AAG Lys	AAA Lys	1754
	GCC Ala												1793
GGC Gly	CAC His	ATT Ile 600	GCT Ala	AAC Asn	AGA Arg	TTG Leu	GAA Glu 605	GTG Val	GAC Asp	AGC Ser	AAC Asn	ACA Thr 610	1832
AGC Ser	TCC Ser	CAG Gln	AGC Ser	AGT Ser 615	AAC Asn	TCA Ser	GAG Glu	AGT Ser	GAA Glu 620	ACA Thr	GAA Glu	GAT Asp	1871
GAA Glu	AGA Arg 625	GTA Val	GGT Gly	GAA Glu	GAT Asp	ACG Thr 630	CCT Pro	TTC Phe	CTG Leu	GGC Gly	ATA Ile 635	CAG Gln	1910
AAC Asn	CCC Pro	CTG Leu	GCA Ala 640	GCC Àla	AGT Ser	CTT Leu	GAG Glu	GCA Ala 645	ACA Thr	CCT Pro	GCC Ala	TTC Phe	1949
CGC Arg 650	CTG Leu	GCT Ala	GAC Asp	AGC Ser	AGG Arg 655	ACT Thr	AAC Asn	CCA Pro	Ala	GGC Gly 660	CGC Arg	TTC Phe	1988
	ACA Thr						G 20	010	FI	G. 4	1D		

8/32

FIG. 5

		_			_	9	/32-						
2	~	H	五不	ы Ж	<u>.</u>		- ≃	\times	>	>	~	æ	
⊔ —	\ 0	ш	9	9	Ξ.		0	0	Ō	Ġ	\leq	I	
<u></u>	-	-5	-5	-	<u> </u>		\succeq		ں	\simeq	\simeq	>-	
2	8	~	~_	~	<u>~</u>		\times	\simeq	ں	\simeq		α	
	لنا	A	ليا	ليا	ш		310 K T	>-	工		_	щ	
O A	9	9	9	9	9 H		31(K	<u>≻</u> H		0		Ξ	
C	1 ≻	>	ш.	Υ			2			>	. A	_	
26(F		>_	>-		>		A Y	6 A	>)	_	Ī	9	
.~9	9 /	9 :	- E	0	b 6		/			>	_	· /	
۵	> >	H S	N N	М (0	Ξ			M		A	9	_	
	$\frac{1}{2}$			-	<u> </u>		۰ > د	S	_	>		>	
L C K C 0	z	>	¥	I			Σ	_	_	A	⋖	7	
Ú	. ن	ں	ن	ပ	S				>	 	A	_	S
	A	A	—	\vdash			9	_	<		>	ں	REGION
>	>	Ъ	>	>	Ь		300	_	_	_	S	>	띺
0 R	\times	\prec	₩	>	A		[\ \	Σ	A /	>	Α <	SS	யு
250 P S I		<u> </u>	ل نا	ш	~			>]	> I	SA	S		TRANSMEMBRANE
., S	1 i	1	1	1	1		A	>	S	Σ	>	>	MB.
S	' 1	•	1	i	1		t	>	>	ш	Ľ.	>	ME.
		لبا					ر 1	>	>	A	>	∢	SE
D	A	Ö	\equiv	Z	لنا		6 I	ပ	>	\forall	-	>	TR
\checkmark	لبنا	>	ш	ш	×		9	>	_	-	_	>	
>	-		-	—	>			A	A	A	¥	¥	•
Σ	>	ш.	>	>-	>-		29 I	>	—	Α.	¥.		
<u> </u>	<u>Z</u>	<u>~</u>		<u>ر</u> ۳	○ ×			>	A	A	A L		
24 E (0	<u> </u>	<u> </u>	<u></u>	Ш	E F		>	>	0	_	<u> </u>	H	
9	6	.	9	5	9	•	~	×	\times	×	×	Ŧ	
9	0	ı	1	ı	1		\times	1	1	1	1	1	
Z		工	=	工	Ŧ		0	Ø	- 1	1	t	1	
>		ш_		<u> </u>			>	0	1	1	t .	1.	
ا ا	ပ	ں	ن	ن	ت		ب س	0	1	S	- 1	i	
<u>u</u> .	· >	ц.	<u>.</u>	<u>ц</u>	F		\sim	_	1		رن		
	9	9	~~	~	I >		A E	9	¥	S	0	-	9
30 E	<u></u>	=	<u> </u>	, <u>i</u>	<u>~</u>		. 7	V	Ø	S	S	-	•
22 	S	S	ш	\succeq	\succeq		لبا	<u> </u>	S	$\overline{\mathbf{Q}}$		>-	္က
221 S H L V K C A E K E K T	_	NDCPDSHTQ	V	KKKNPCAAKFON	KKRDPCLRKYKD		270 . 280 .	DLKWWELRSHAGH	DLLA SVAASOK-	SMKTHSMIDSSL	TMKTQKKDDSDL	SLPVENRLYTYD	FIG. 6
A	۵	٩	Z	⋖			Z		A	Σ	\times	~	. —
C	ပ	ں	ب	ب	<u>ပ</u>		0	E	>	S	~	2	
~	لنا	0	<u> </u>	<u>a</u>	Р (<i>></i>	-S	ووكمه	_	_	<u>-</u>	
>	S	2	~	~			<u>×</u>	- 	_	· -	~	٩	
<u> </u>	S	•	×	~	~		70 P 1			Σ	Σ		
21 S	z	•	~	~	\checkmark		<	<u> </u>	Ω	S	—	S	
2													
1RG2-a1pha		ha	Amphiregulin	Schwannoma			HRG2-a1pha		TGF-alpha	Amphiregulin	Schwannoma		
-a]		alp	ire	anr	GF.		-a_		alt	Ìre	anı	<u> 6</u> E	
-29	E6F	lGF-alpha	ıldı	:hw	HB-EGF		162.	EGF	3F-	ıtdıı	WE!	HB-EGF	
≆	9	16	A	Sc	H		盖	Ē	\preceq	A	Š	Ξ	

FIG. 7

GG-	GAC Asp 1	AAA Lys	CTT Leu	TTC Phe	CCA Pro 5	AAC Asn	2 CCG Pro	ATC Ile	CGA Arg	GCC Ala 10	CTT Leu	GGA Gly	38
		TCG Ser 15										CGC Arg -25	77
		TCC Ser										AGA Arg	116
		GGG Gly										GGC Gly	155
		CCG Pro										GCC Ala	194
		CCC Pro										TCG Ser	233
		GGT Gly 80										AGT Ser 90	272
		TAC Tyr										AAT Asn	311
Gly	Asn	GAA Glu	Leu	Asn	Arg	Lys	Asn	Lys	Pro	Gln		ATC Ile	350
AAG Lys	ATA Ile	CAA Gln	AAA Lys 120	AAG Lys	CCA Pro	GGG Gly	AAG Lys	TCA Ser 125	GAA Glu	CTT Leu	CGC Arg	ATT Ile	389
		GCA Ala										TGC Cys	428
AAA Lys	GTG Val	ATC Ile 145	AGC Ser	AAA Lys	TTA Leu	GGA Gly	AAT Asn 150	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 155	467
AAT Asn	ATC Ile	ACC Thr	ATC Ile	GTG Val 160	GAA Glu	TCA Ser	AAC Asn	GAG Glu	ATC Ile 165	ATC Ile	ACT Thr	GGT Gly	506

FIG. 8A

						2 / 2							
				ACT Thr									545
				ATA Ile									584
				ACA Thr									623
				TGT Cys									662
				GAG Glu 225									701
				TAC Tyr									740
				TGC Cys									779
				GGG Gly									818
				AGA Arg	Val		Thr	Ile					857
				GTG Val 290									896
				AAG Lys									935
				AGC Ser			Ser						974
ATG Met 325	AAC Asn	ATT Ile	GCC Ala	AAT Asn	GGG Gly 330	Pro	His	CAT His	Pro	Asn 335	Pro	Pro	1013
				•			U. (30	D 5	1107	ΓE SH

CCC	GAG Glu	AAT Asn 340	GTC Val	CAG Gln	CTG Leu	3/3 GTG Val	AAT Asn 345	CAA Gln	TAC Tyr	GTA Val	TCT Ser	AAA Lys 350	1052
AAC Asn	GTC Val	ATC Ile	TCC Ser	AGT Ser 355	GAG Glu	CAT His	ATT Ile	GTT Val	GAG Glu 360	AGA Arg	GAA Glu	GCA Ala	1091
								TAT Tyr					1130
CAT His	CAC His	TCC Ser	ACT Thr 380	ACT Thr	GTC Val	ACC Thr	CAG Gln	ACT Thr 385	CCT Pro	AGC Ser	CAC His	AGC Ser	1169
								ATC Ile					1208
CAC	TCT Ser	GTA Val 405	ATC Ile	GTG Val	ATG Met	TCA Ser	TCC Ser 410	GTA Val	GAA Glu	AAC Asn	AGT Ser	AGG Arg 415	1247
CAC His	AGC Ser	AGC Ser	CCA Pro	ACT Thr 420	GĠG Gly	GGC Gly	CCA Pro	AGA Arg	GGA Gly 425	CGT Arg	CTT	AAT Asn	1286
								AAC Asn					1325
CAT His	Ala	Arg	Glu	Thr	Pro	Asp	Ser	TAC Tyr 450	Arg	GAC Asp	TCT Ser	CCT Pro	1364
CAT His 455	AGT Ser	GAA Glu	AGG Arg	TAT	GTG Val 460	TCA Ser	GCC Ala	ATG Met	ACC Thr	ACC Thr 465	CCG Pro	GCT Ala	1403
								ACG Thr					1442
AAA Lys	TCG Ser	CCC	CCT Pro	TCG Ser 485	GAA Glu	ATG Met	TCT Ser	CCA Pro	CCC Pro 490	GTG Val	TCC	AGC Ser	1481
ATG Met	ACG Thr 495	GTG Val	TCC Ser	ATG Met	CCT Pro	TCC Ser 500	Met	GCG Ala	Val	Ser	CCC Pro 505	TTC Phe	1520

SUBSTITUTE SHEET

FIG. 8C

ATG GAA GAA GAA GAA AGA CCT CTA CTA CTA CTA CTA CTA CTA CTA CT
Arg Leu Arg Glu Lys Lys Phe Asp His His Pro Gln Gln Gln 520 TTC AGC TCC TTC CAC CAC AAC CCC GGG CAT GAC AGT AAC 1637 Phe Ser Ser Phe His His Ass Pro Ala His Asp Ser Ass 545 AGC CTC CCT GCT AGC CCC TTG AGG ATA GTG GAG GAT GAG 1676 GET Leu Pro Ala Ser Pro Leu Arg Ile Val Glu Asp Glu 550 GAG TAT GAA ACG ACC CAA GAG TAC GAG CCA GCC CAA GAG I715 GIU Tyr Glu Thr Thr Gln Glu Tyr Glu Pro Ala Glu Glu Fro Val Lys Lys Leu Ala Ass Ser Arg Arg Ala Lys Arg 585 ACC AAG CCC AAT GGC CAC AAT AGC CGG GG GGC AAA AGA 1754 Pro Val Lys Lys Leu Ala Ass Ser Arg Arg Ala Lys Arg 585 ACC AAG CCC AAT GGC CAC ATT GCT AAC AGA TTG GAA GTG I793 GAC ASS Ser Ass Thr Ser Ser Gln Ser Ser Ass Ser Glu Ser Gal Gad AGT 1832 ASS Ser Ass Thr Glu Asp Glu Arg Glu Asp Thr Pro Phe G15 GAA ACA GAA GAT GAA AGA GTA GGT GAA GAT AGC CGT TTC 1871 GLU Asp Glu Asp Thr Pro Phe G25 ACC GGC ATA CAG AAC CCC CTG GCA GAC AGT AGC CTT TGC TACC GAG AGT AGC CTT TTC 1871 GLU Asp Glu Arg Arg Ala Ala Ser Leu Glu Ala Ass G25 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGC AGC AGT AAC CCA GAG GCA I910 GCA GGC CGC TTC CGC CTG GCT GAC AGC AGT AGC CTT THR Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Ass Pro 640 GCA GGC CGC TTC TCG ACA CAG GAC AGC AGC AGT ACC CAG GCC AGC I949 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 GCA GGC CGC TTC TCG ACA CAG GAA AAC CCA AGC AGT ACC CAG GCC AGC AGC AGC AGC AGC AGC AGC
Phe Ser Ser Phe His His Asn Pro Ala His Asp Ser Asn 545 AGC CTC CCT GCT AGC CCC TTG AGG ATA GTG GAG GAT GAG GAG GAT Ser Leu Pro Ala Ser Pro Leu Arg Ile Val Glu Asp Glu 555 GAG TAT GAA ACG ACC CAA GAG TAC GAG CCA GCC CAA GAG GAG TYT Glu Thr Thr Gln Glu Tyr Glu Pro Ala Gln 570 CCT GTT AAG AAA CTC GCC AAT AGC CGG CGG GCC AAA AGA IT54 Pro Val Lys Lys Leu Ala Asn Ser Arg Arg Arg Ala Lys Arg 585 ACC AAG CCC AAT GGC CAC ATT GCT AAC AGA AGA GTG GAG GAT GAG AGT ATT GAA ASN ARG GIV His Ile Ala Asn Arg Leu Glu Val 595 GAC AGC AAC ACA ACA AGC TCC CAG AGC AGT AAC AGA TTG GAA GTG 1793 GAC AGC AAC AAC AGA GAC TCC CAG AGC AGT AAC TCA GAG AGT Ser Asn Thr Ser Ser Gln Ser Ser Asn Ser Glu Ser 610 GAA ACA GAA GAT GAA AGA GTG GAA GGT GAA GAT AGC CCT TTC 1871 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 GAA ACA CT GCC TTC CGC CTG GCA GAC AGC AGC AGT AGC CCT TTC Ala Ala Ala Ser Leu Glu Ala CGA AGC AGC AGC AGC AGC AGC AGC AGC AGC
Ser Leu Pro Ala Ser Pro Leu Arg Ile Val Glu Asp Glu GAG TAT GAA ACG ACC CAA GAG TAC GAG CCA GCC CAA GAG 1715 Glu Tyr Glu Tyr Glu Pro Ala GIn Glu 570 CCT GTT AAG AAA CTC GCC AAT AGC CGG CGG CCA AAA AGA ATT GU Pro Ala Lys Arg
Glu Tyr Glu Thr Thr Gln Glu Tyr Glu Pro Ala Gln Glu 570 CCT GTT AAG AAA CTC GCC AAT AGC CGG CGG GCC AAA AGA 1754 Pro Val Lys Lys Leu Ala Asn Ser Arg Arg Arg Ala Lys Arg 580 ACC AAG CCC AAT GGC CAC ATT GCT AAC AGA TTG GAA GTG 1793 Thr Lys Pro Asn Gly His Ile Ala Asn Arg Leu Glu Val 595 GAC AGC AAC ACA AGC TCC CAG AGC AGT AAC TCA GAG AGT 1832 Asp Ser Asn Thr Ser Ser Gln Ser Ser Glu Ser Glu Asp Glu Arg Val Gly Glu Asp Glu Asp Glu G15 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 CTG GGC ATA CAG AAC CCC CTG GCA AGC AGC AGT CTT GAG GCA 1910 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGC AGT ACC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro G45 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 665 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Pro Val Lys Lys Leu Ala Asn Ser Arg Arg Ala Lys Arg ACC AAG CCC AAT GGC CAC ATT GCT AAC AGA TTG GAA GTG 1793 Thr Lys Pro Asn Gly His Ile Ala Asn Arg Leu Glu Val 585 GAC AGC AAC ACA ACC TCC CAG AGC AGT AAC TCA GAG AGT 1832 Asp Ser Asn Thr Ser Ser Gln Ser Ser Asn Ser Glu Ser 600 GAA ACA GAA GAT GAA AGA GTA GGT GAA AGA GAT ASD Ser Glu 615 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 Leu Gly Ile Gln Asn Pro Leu Ala Asp 635 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGG ACT AAC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp 645 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 655 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CCTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CCTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CCTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029
Thr Lys Pro Asn Gly His Ile Ala Asn Arg Leu Glu Val S85 GAC AGC AAC ACA AGC TCC CAG AGC AGT AAC TCA GAG AGT 1832 Asp Ser Asn Thr Ser Ser Gln Ser Ser Asn Ser Glu Ser 600 GAA ACA GAA GAT GAA AGA GTA GGT GAA GAT ACG CCT TTC Glu Thr Glu Asp Glu Arg Val Gly Glu Asp Thr Pro Phe 620 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 Leu Gly Ile Gln Asn Pro Leu Ala Ala Ser Leu Glu Ala 625 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGG ACT AAC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro 640 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 650 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Asp Ser Asn Thr Ser Ser Gln Ser Ser Asn Ser Glu Ser 610 GAA ACA GAA GAT GAA AGA GTA GGT GAA GAT ACG CCT TTC 1871 Glu Thr Glu Asp Glu Arg Val Gly Glu Asp Thr Pro Phe 620 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 Leu Gly Ile Gln Asn Pro Leu Ala Ala Ser Leu Glu Ala 635 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGG ACT AAC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro 640 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 660 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Glu Thr Glu Asp Glu Arg Val Gly Glu Asp Thr Pro Phe 615 CTG GGC ATA CAG AAC CCC CTG GCA GCC AGT CTT GAG GCA 1910 Leu Gly Ile Gln Asn Pro Leu Ala Ala Ser Leu Glu Ala 625 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGG ACT AAC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro 640 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 650 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Leu Gly Tle Gln Asn Pro Leu Ala Ala Ser Leu Glu Ala 635 ACA CCT GCC TTC CGC CTG GCT GAC AGC AGG ACT AAC CCA 1949 Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro 645 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 650 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Thr Pro Ala Phe Arg Leu Ala Asp Ser Arg Thr Asn Pro 640 GCA GGC CGC TTC TCG ACA CAG GAA GAA ATC CAG GCC AGG 1988 Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 650 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Ala Gly Arg Phe Ser Thr Gln Glu Glu Ile Gln Ala Arg 650 655 660 CTG TCT AGT GTA ATT GCT AAC CAA GAC CCT ATT GCT GTA TA 2029 Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val
Leu Ser Ser Val Ile Ala Asn Gln Asp Pro Ile Ala Val

SUBSTITUTE SHEET FIG. 8D

15/32

لنالنا	r R R			SS	<u> </u>	[مـمـ	مم	ပပ	шш	11.11	조조	<<	>		
노노			~~		ပပ	ZZ		النالنا	SS	SO		lulu!	ط		
~~	>>			ZZ		امما	30	22		လလ	~~		S		
ww	1	SS	امما	လလ	99				امما	╙╙	スス	SS	Ω		
SS	トスト	AA	SS			三王	>>	99	SS	00	AA	AA	_	\simeq	
ΣΣ	SS	スス	اسسا					99	スス	00	22	AA	工	\simeq	
اسسا	99	ZZ	SS	ス ス		00			0-0-		22		\times	\prec	
ပ်ပ	AA		SS	>>		ZZ	SS	99	SS	==	SS	م م	Z	\times	
SS	AA	22	>>	ΣΣ	>>	AA	エエ	ZZ	SS	一工工	ZZ	ZZ	_	\prec	
>>	SS		 	144	x x		工工			00	AA	00	Z	Σ	
SS	шш	шш	AA	ျပပ	スス	ZZ	AA	~~~		14-14-			0	\prec	
~~	00	SO	ပြတ	ww	33	ΣΣ		00	エエ	スス	XX	99	>	>	
шш	SS	~ ~		99	->	ΣΣ	SS	22	444	~~	소소		V	>	
>>	× ×	ပ်		00		ZZ				اساسا	>>	LL 6	_	Σ	
2	ΣΣ	امما	SS	ZZ		ZZ	->	99	>>			0.0	Ъ	>	
>>	mm	スス	AA	>>	mm	22	エエ	99	0-0-		اسسا		Ω	\times	
AA	~ ~	XX		ادر	VV	mm	SS		SS	~~	00		0	-	
~~	لنسا	00	EE	444	\times m	SS		امـما	ΣΣ		AA		Z	0	
امما	<u>~O</u>		99		ШΣ	122	SS	SS	2		9	99	A	_	
AA	مما	XX		スス	1 14			SS	AA		لعالنا	>>			
احما					لينا	SS	SS	工工	امما	>>	>>	2	>	\simeq	
SS		ZZ		スス	1	00		22			шш	البالبا	S	~	
ZZ	AA	00	шш	шш	10	22	шш	SS			00		S	9	
			ZZ	AA	1 —		AA	ZZ	ΣΣ					<u> </u>	
99	SS	~~	SS	ادد	⊘ ±	~~	шш	ШШ	AA	مم			~	~	
	00	ZZ	ШШ	スス	ZY		22	>>	SS	22	ШШ	шш	<u> </u>	0	ത
AA	SS	スス	>>	>>	⊘≻		ШШ	SS	>>	النالنا	>>	SS	00		
2	99	~~			>44		>>	SS	>> ~~			шш			<u>ල</u>
	AA	ZZ		王王	~ ~ ~	スス	王王	ΣΣ >>	E WE	ΣΣ		SS	шш	0 F	_
<u> </u>	AA			လလ	GΕ	22	шш		SS	1111		SS	00	0	
ZZ	SS	البالنا	ZZ	1 9 1 9		00	SS	>>	工工	طم	>>	SS		<u> </u>	
مما	mm)	99	SSA	1	<u> >></u> ≥≻	**	SS	SS	4	SS		00	SS		
	주주	ZZ	AA		ШZ	ネ ス		王王	SS	>>	~~	SS	LLL	<u> </u>	
スス	주주 구구	××	SS	SS	⊢ ⊘		>>	SS		AA		SS	~~	ш.	
00	00			H-H	اتت	\times	ZZ	шш	22	ΣΣ	امما		ပ္ပပ	_ _	
R -	SS	33	zz	SS	~~	ပပ	\times	SS	->	SS	SS	zz	AA	\succeq	
Si	ပ်ပ	**	ပ်ပ		A	->	SSS		SS	امما	AA	200	امما	· 🛏	
٠. ا ۵	22	11.11		SS	00	AA	>>			ΣΣ	امما		zz	0	
SI	انتانتا	~~	~~	SSS		>>	->	SS	مما	Sool		>>		Д	
۱ ليــ	~~		SS	SS	444	>>	00	اسسا	⊢⊢	>>	SS	шш	22	Ь	
Si	~~	SS			nб	اںںا	zz		шш		ZZ		SS	_	
≃ 1	YX	SS	>>	zz	ΔZ	ΣΣ	>>	土工	~~	ΣΣ	SS	~~		S	
9	00	>>	~~	AA	Od-			ပြတ	AA	SS		ZZ	AA	0	
ı <u>د</u>	~~	шш	ပပ	ပြတ	ပြပ	ပ်ပ	00	zz		SS		AA		0	
3 1	ပပ	SS	EE	إسسا	~~	>>	>>	SS	22	>>	AA		~~	_	
ا ے	~~	SSS	>>		ပြပ	>>	zz	33		مما		==	ப்பட	ட	
ø i	ပပ		اسسا	SOS		انـــــــــــــــــــــــــــــــــــــ	إسسا	SS		مما	ZZ	ပြတ	AA	>-	
≃ ι	~~	اسسا	ပ်ပ	>>	>>		امما	二二	SS	SS	모되	ZZ	امما	_	
Ø I	ගග	ပပ	<u> </u>	လလ	22	AA	اعما	SS	ZZ	ΣΣ	王王	مما	⊢⊢	\succeq	
	_,,		7		1	9	9	9	9	9	9	9	9	_	
——	51 37	101 87	151	201	25J 23/	296	34(387	44	<u>6</u>	54(596	64(63)	.89	
ьq	ьa	Q.a	~ ^						œФ	œ۵					
IRGa IRGb	HRGa HRGb	HRGa HRGb	HRG	HRGa HRGD	HRGa HRGb	HRGa HRGb	HRGa HRGb	HRGa HRGb	HRGa HRGb	HRGa HRGb	HRGa HRGb	HRGa HRGD	HRGa HRGb	HRGD	
==	II	工工	x=	工工	==	<u> </u>	二二	≟ .∓	<u> </u>		مشة بطب		<u>-</u> =	<u> </u>	

STIMULATION OF HER2 AUTOPHOSPHORYLATION

FIG. 10

AA	AGA Arg 1	GCC Ala	GGC Gly	GAG Glu	GAG Glu 5	TTC Phe	Pro	GAA Glu	ACT Thr	TGT Cys 10	TGG Trp	AAC Asn	38
TCC Ser	GGG Gly	CTC Leu 15	GCG Ala	CGG Arg	AGG Arg	CCA Pro	GGA Gly 20	GCT Ala	GAG Glu	CGG Arg	CGG Arg	CGG Arg 25	77
CTG Leu	CCG Pro	GAC Asp	GAT Asp	GGG Gly 30	AGC Ser	GTG Val	AGC Ser	AGG Arg	ACG Thr 35	GTG Val	ATA Ile	ACC Thr	116
TCT Ser	CCC Pro 40	CGA Arg	TCG Ser	GGT Gly	TGC	GAG Glu 45	GGC Gly	GCC Ala	GGG Gly	CAG Gln	AGG Arg 50	CCA Pro	155
GGA Gly	CGC Arg	GAG Glu	CCG Pro 55	CCA Pro	GCG Ala	GTG Val	GGA Gly	CCC Pro 60	ATC Ile	GAC Asp	GAC Asp	TTC Phe	194
CCG Pro 65	GGG Gly	CGA Arg	CAG Gln	GAG Glu	CAG Gln 70	CCC Pro	CGA Arg	GAG Glu	CCA Pro	GGG Gly 75	CGA Arg	GCG Ala	233
CCC Pro	GTT Val	CCA Pro 80	GGT Gly	GGC Gly	CGG Arg	ACC Thr	GCC Ala 85	CGC Arg	ĆGC Arg	GTC Val	CGC Arg	GCC Ala 90	272
GCG Ala	CTC Leu	CCT Pro	GCA Ala	GGC Gly 95	AAC Asn	GGG Gly	AGA Arg	CGC Arg	CCC Pro 100	CGC Arg	GCA Ala	GCG Ala	311
CGA Arg	GCG Ala 105	CCT Pro	CAG Gln	CGC Arg	GGC Gly	CGC Arg 110	TCG Ser	CTC Leu	TCC Ser	CCC Pro	TCG Ser 115	AGG Arg	350
GAC Asp	AAA Lys	CTT Leu	TTC Phe 120	CCA Pro	AAC Asn	CCG Pro	ATC Ile	CGA Arg 125	GCC Ala	CTT	GGA Gly	CCA Pro	389
AAC Asn 130	TCG Ser	CCT Pro	GCG Ala	CCG Pro	AGA Arg 135	GCC Ala	GTC Val	CGC Arg	GTA Val	GAG Glu 140	CGC Arg	TCC Ser	428
GTC Val	TCC Ser	GGC Gly 145	GAG Glu	ATG Met	TCC Ser	GAG Glu	CGC Arg 150	AAA Lys	GAA Glu	GGC Gly	AGA Arg	GGC Gly 155	467
AAA Lys	GGG Gly	AAG Lys	GGC Gly	AAG Lys 160	AAG Lys	AAG Lys	GAG Glu	CGA Arg 164	GG 4	196			

SUBSTITUTE SHEET FIG. 11

GTGGCTGCGG	GGCAATTG.	AA AA	18/3 agagcco	2 GG CGAGG	AGTTC	CCCG	AAACTI	50
GTTGGAACTC	CGGGCTCG	CG CG(gaggcc <i>i</i>	G GAGCT	GAGCG	GCGG	CGGCTG	100
CCGGACGATG	GGAGCGTG.	AG CAG	GGACGG	G ATAAC	CTCTC	CCCG	ATCGGG	150
TTGCGAGGGC	GCCGGGCA	GA GG	CCAGGAC	CG CGAGC	CGCCA	GCGG	CGGGAC	200
CCATCGACGA	CTTCCCGG	gg cgi	ACAGGAG	GC AGCCC	CGAGA	GCCA	.GGGCGA	250
GCGCCCGTTC	CAGGTGGC	CG GA	CCGCCC	GC CGCGI	cccc	CCGC	GCTC	300
TGCAGGCAAC	GGGAGACG	cc cc	CGCGCA	GC GCGAG	CGCCT	CAGC	GCGGCC	350
GCTCGCTCTC	CCCATCGA	GG GA	CAAACT	TT TCCCÀ	AACCC	GATC	CGAGCC	400
CTTGGACCAA	ACTCGCCT	GC GC	CGAGAG	CC GTCCG	CGTAG	AGCG	CTCCGI	450
CTCCGGCGAG	ATG TCC Met Ser 1	GAG (CGC AAA Arg Lys	A GAA GG 3 Glu Gl 5	C AGA y Arg	GGC Gly	AAA 49 Lys 10	0
GGG AAG GGG	C AAG AAG y Lys Lys 15	AAG (GAG CGA Glu Arg	Gly Se	C GGC F Gly	AAG Lys	AAG 52 Lys	9
CCG GAG TCG Pro Glu Se 25	C GCG GCG r Ala Ala	GGC A	AGC CAG Ser Gli 30	G AGC CO	CA GCC	TTG Leu 35	CCT 56	8
CCC CAA TT Pro Gln Le	G AAA GAG u Lys Glu 40	ATG . Met	AAA AG Lys Se	C CAG GA r Gln Gl 45	A TCG	GCT Ala	GCA 60 Ala	17
GGT TCC AA Gly Ser Ly 50	A CTA GTC s Leu Val	CTT Leu 55	CGG TG	r gaa ac s Glu Th	CC AGT ar Ser 60	TCT Ser	GAA 64 Glu	16
TAC TCC TC Tyr Ser Se 6	T CTC AGA r Leu Arg 5	TTC Phe	Lys Tr	G TTC AM p Phe Ly	AG AAT ys Asn	GGG Gly	AAT 68 Asn 75	35
GAA TTG AA Glu Leu As	n Arg Lys	Asn	AAA CC Lys Pr	o Gln As	AT ATC on Ile 35	AAG Lys	ATA 72 Ile	24

			•					_						
C <i>I</i> Gl	AA .n	AAA Lys 90	AAG Lys	CCA Pro	GGG Gly	AAG Lys	9/3 TCA Ser 95	GAA Glu	CTT Leu	CGC Arg	ATT Ile	AAC Asn 100	AAA Lys	763
GC Al	CA .a	TCA Ser	CTG Leu	GCT Ala 105	GAT Asp	TCT Ser	GGA Gly	GAG Glu	TAT Tyr 110	ATG Met	TGC Cys	AAA Lys	GTG Val	802
A7 11	.e	AGC Ser	AAA Lys	TTA Leu	GGA Gly	AAT Asn 120	GAC Asp	AGT Ser	GCC Ala	TCT Ser	GCC Ala 125	AAT Asn	ATC Ile	841
AC Th	CC	ATC Ile	GTG Val 130	GAA Glu	TCA Ser	AAC Asn	GAG Glu	ATC Ile 135	ATC Ile	ACT Thr	GGT Gly	ATG Met	CCA Pro 140	880
GC Al	CC. _a	TCA Ser	ACT Thr	GAA Glu	GGA Gly 145	GCA Ala	TAT Tyr	GTG Val	TCT Ser	TCA Ser 150	GAG Glu	TCT Ser	CCC Pro	919
AT Il	T .e	AGA Arg 155	ATA Ile	TCA Ser	GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	958
TC S∈	:A er	TCT Ser	ACA Thr	TCT Ser 170	ACA Thr	TCC Ser	ACC Thr	ACT Thr	GGG Gly 175	ACA Thr	AGC Ser	CAT His	CTT	997
GI Va 18	1	AAA Lys	TGT Cys	GCG Ala	GAG Glu	AAG Lys 185	GAG Glu	AAA Lys	ACT Thr	TTC Phe	TGT Cys 190	GTG Val	AAT Asn	1036
G1	GA -Y	GGG Gly	GAG Glu 195	TGC Cys	TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	1075
TC Se	G	AGA Arg	TAC Tyr	TTG Leu	TGC Cys 210	AAG Lys	TGC Cys	CCA Pro	AAT Asn	GAG Glu 215	TTT Phe	ACT Thr	GGT Gly	1114
G <i>P</i> As	T SP	CGC Arg 220	TGC Cys	CAA Gln	AAC Asn	TAC Tyr	GTA Val 225	ATG Met	GCC Ala	AGC Ser	TTC Phe	TAC Tyr 230	AAG Lys	1153
GC Al	G .a	GAG Glu	GAG Glu	CTG Leu 235	TAC Tyr	CAG Gln	AAG Lys	AGA Arg	GTG Val 240	CTG Leu	ACC Thr	ATA Ile	ACC Thr	1192
G() G1 24	y.	ATC Ile	TGC Cys	ATC Ile	GCC Ala	CTC Leu 250	CTT Leu	GTG Val	GTC Val	GGC Gly	ATC Ile 255	ATG Met	TGT Cys	1231
Vā	1	GTG Val 2B	Ala	TAC Tyr	TGC Cys	AAA Lys	ACC Thr	AAG Lys 265	AAA Lys	CAG Gln	CGG Arg	AAA Lys	AAG Lys 270	1270

CTG CAT GAC CGT CTT CGG CAG AGC CTT CGG TCT GAA CGA 1309 Leu His Asp Arg Leu Arg Gln Ser Leu Arg Ser Glu Arg 275 AAC AAT ATG ATG AAC ATT GCC AAT GGG CCT CAC CAT CCT 1348 Asn Asn Met Met Asn Ile Ala Asn Gly Pro His His Pro 285 290 AAC CCA CCC CCC GAG AAT GTC CAG CTG GTG AAT CAA TAC 1387 Asn Pro Pro Pro Glu Asn Val Gln Leu Val Asn Gln Tyr 305 300 GTA TCT AAA AAC GTC ATC TCC AGT GAG CAT ATT GTT GAG 1426 Val Ser Lys Asn Val Ile Ser Ser Glu His Ile Val Glu 315 AGA GAA GCA GAG ACA TCC TTT TCC ACC AGT CAC TAT ACT 1465 Arg Glu Ala Glu Thr Ser Phe Ser Thr Ser His Tyr Thr 325 TCC ACA GCC CAT CAC TCC ACT ACT GTC ACC CAG ACT CCT 1504 Ser Thr Ala His His Ser Thr Thr Val Thr Gln Thr Pro 340 345 AGC CAC AGC TGG AGC AAC GGA CAC ACT GAA AGC ATC CTT 1543 Ser His Ser Trp Ser Asn Gly His Thr Glu Ser Ile Leu 355 350 TCC GAA AGC CAC TCT GTA ATC GTG ATG TCA TCC GTA GAA 1582 Ser Glu Ser His Ser Val Ile Val Met Ser Ser Val Glu 365 370 AAC AGT AGG CAC AGC AGC CCA ACT GGG GGC CCA AGA GGA 1621 Asn Ser Arg His Ser Ser Pro Thr Gly Gly Pro Arg Gly 375 380 CGT CTT AAT GGC ACA GGA GGC CCT CGT GAA TGT AAC AGC 1660 Arg Leu Asn Gly Thr Gly Gly Pro Arg Glu Cys Asn Ser 390 395 TTC CTC AGG CAT GCC AGA GAA ACC CCT GAT TCC TAC CGA 1699 Phe Leu Arg His Ala Arg Glu Thr Pro Asp Ser Tyr Arg 405 GAC TCT CCT CAT AGT GAA AGG TAT GTG TCA GCC ATG ACC 1738 Asp Ser Pro His Ser Glu Arg Tyr Val Ser Ala Met Thr 420 415 ACC CCG GCT CGT ATG TCA CCT GTA GAT TTC CAC ACG CCA 1777 Thr Pro Ala Arg Met Ser Pro Val Asp Phe His Thr Pro 435 430 AGC TCC CCC AAA TCG CCC CCT TCG GAA ATG TCT CCA CCC 1816 Ser Ser Pro Lys Ser Pro Pro Ser Glu Met Ser Pro Pro 440 445

GTG Val	TCC Ser	AGC Ser 455	ATG Met	ACG Thr	GTG Val	21/ TCC Ser	AAG	CCT Pro	TCC Ser	ATG Met	GCG Ala	GTC Val 465	1855
AGC Ser	CCC Pro	TTC Phe	ATG Met	GAA Glu 470	GAA Glu	GAG Glu	AGA Arg	CCT Pro	CTA Leu 475	CTT Leu	CTC Leu	GTG Val	1894
ACA Thr	CCA Pro 480	CCA Pro	AGG Arg	CTG Leu	CĢG Arg	GAG Glu 485	AAG Lys	AAG Lys	TTT Phe	GAC Asp	CAT His 490	CAC	1933
CCT Pro	CAG Gln	CAG Gln	TTC Phe 495	AGC Ser	TCC Ser	TTC Phe	CAC His	CAC His 500	AAC Asn	CCC Pro	GCG Ala	CAT His	1972
GAC Asp 505	AGT Ser	AAC Asn	AGC Ser	CTC Leu	CCT Pro 510	GCT Ala	AGC Ser	CCC Pro	TTG Leu	AGG Arg 515	ATA Ile	GTG Val	2011
GAG Glu	GAT Asp	GAG Glu 520	GAG Glu	TAT Tyr	GAA Glu	ACG Thr	ACC Thr 525	CAA Gln	GAG Glu	TAC Tyr	GAG Glu	CCA Pro 530	2050
GCC Ala	CAA Gln	GAG Glu	CCT Pro	GTT Val 535	AAG Lys	AAA Lys	CTC Leu	GCC Ala	AAT Asn 540	AGC Ser	CGG Arg	CGG Arg	2089
GCC Ala	AAA Lys 545	AGA Arg	ACC Thr	AAG Lys	CCC Pro	AAT Asn 550	GGC Gly	CAC His	ATT Ile	GCT Ala	AAC Asn 555	AGA Arg	2128
TTG Leu	GAA Glu	GTG Val	GAC Asp 560	AGC Ser	AAC Asn	ACA Thr	AGC Ser	TCC Ser 565	CAG Gln	AGC Ser	AGT Ser	AAC Asn	2167
TCA Ser 570	GAG Glu	AGT Ser	GAA Glu	ACA Thr	GAA Glu 575	GAT Asp	GAA Glu	AGA Arg	GTA Val	GGT Gly 580	GAA Glu	GAT Asp	2206
ACG Thr	CCT Pro	TTC Phe 585	CTG Leu	GGC Gly	ATA Ile	CAG Gln	AAC Asn 590	CCC Pro	CTG Leu	GCA Ala	GCC Ala	AGT Ser 595	2245
CTT	GAG Glu	GCA Ala	ACA Thr	CCT Pro 600	GCC Ala	TTC Phe	CGC Arg	CTG Leu	GCT Ala 605	GAC Asp	AGC Ser	AGG Arg	2284
ACT Thr	AAC Asn 610	CCA Pro	GCA Ala	GGC Gly	CGC	TTC Phe 615	TCG Ser	ACA Thr	CAG Gln	GAA Glu	GAA Glu 620	ATC Ile	2323
Gln	GCC Ala G. I	Arg	CTG Leu 625	TCT	AGT Ser	GTA Val	ATT Ile	GCT Ala 630	AAC Asn	CAA Gln	GAC Asp	CCT Pro	2362

22/32

ATT GCT GTA TAAAACCTA AATAAACACA TAGATTCACC TGTAAAACTT 2410 Ile Ala Val 635 637

TTAGCAGTTC TGCAAATAAA AAAAAAAAAA 2490

FIG. 12E

AGA TTC AA Arg Phe Ly	s Trp Phe	aag aat ggg Lys asn Gly FIG. 13A	AAT GAA TTG Asn Glu Leu 75	AAT CGA 729 Asn Arg
Val Leu Ar 55	g Cys Glu	Thr Ser Ser 60	GAA TAC TCC Glu Tyr Ser	Ser Leu 65
Glu Met Ly	s Ser Gln 45	Glu Ser Ala	GCA GGT TCC Ala Gly Ser 50	Lys Leu
Ala Gly Se	r Gln Ser O	Pro Ala Leu 35	CCT CCC CAA Pro Pro Gln	Leu Lys 40
Lys Lys Gl	u Arg Gly	Ser Gly Lys	AAG CCG GAG Lys Pro Glu 25	Ser Ala
Ser Glu Ar	g Lys Glu 5	Gly Arg Gly	AAA GGG AAG Lys Gly Lys 10	Gly Lys
				AG ATG 495 Met 1
GGGACAAACT	TTTCCCAAA	C CCGATCCGA	G CCCTTGGACC	AAACTCGCCT 450
CCCCGCGCA	GCGCGAGCG	C CTCAGCGCG	G CCGCTCGCTC	TCCCCATCGA 400
CGGACCGCCC	GCCGCGTCC	G CGCCGCGCT	C CCTGCAGGCA	ACGGGAGACG 350
GGCGACAGGA	GCAGCCCCG	a gagccaggg	C GAGCGCCCGT	TCCAGGTGGC 300
GAGGCCAGGA	CGCGAGCCG	C CAGCGGCGG	G ACCCATCGAC	GACTTCCCGG 250
AGCAGGACGG	TGATAACCT	C TCCCCGATC	G GGTTGCGAGG	GCGCCGGGCA 200
CGCGGAGGCC	AGGAGCTGA	G CGGCGGCGG	C TGCCGGACGA	TGGGAGCGTG 150
AAAAAGAGCC	GGCGAGGAG	T TCCCCGAAA	C TTGTTGGAAC	TCCGGGCTCG 100
GCGCCTGCCT	CCAACCTGC	G GGCGGGAGG	r gggtggctgc	GGGGCAATTG 50

```
AAA AAC AAA CCA CAA AAT ATC AAG ATA CAA AAA AAG CCA 768
Lys Asn Lys Pro Gln Asn Ile Lys Ile Gln Lys Lys Pro
                     85
GGG AAG TCA GAA CTT CGC ATT AAC AAA GCA TCA CTG GCT 807
Gly Lys Ser Glu Leu Arg Ile Asn Lys Ala Ser Leu Ala
                            100
GAT TCT GGA GAG TAT ATG TGC AAA GTG ATC AGC AAA TTA 846
Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu
                                     115
                110
GGA AAT GAC AGT GCC TCT GCC AAT ATC ACC ATC GTG GAA 885
Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr Ile Val Glu
                        125
TCA AAC GAG ATC ATC ACT GGT ATG CCA GCC TCA ACT GAA 924
Ser Asn Glu Ile Ile Thr Gly Met Pro Ala Ser Thr Glu
         . 135
                                140
GGA GCA TAT GTG TCT TCA GAG TCT CCC ATT AGA ATA TCA 963
Gly Ala Tyr Val Ser Ser Glu Ser Pro Ile Arg Ile Ser
                    150
145
GTA TCC ACA GAA GGA GCA AAT ACT TCT TCA TCT ACA TCT 1002
Val Ser Thr Glu Gly Ala Asn Thr Ser Ser Ser Thr Ser
        160
                            165
ACA TCC ACC ACT GGG ACA AGC CAT CTT GTA AAA TGT GCG 1041
Thr Ser Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala
                175
GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC 1080
Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys
                        190
    185
TTC ATG GTG AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG 1119
Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu
            200
TGC AAG TGC CCA AAT GAG TTT ACT GGT GAT CGC TGC CAA 1158
Cys Lys Cys Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln
                    215
AAC TAC GTA ATG GCC AGC TTC TAC AGT ACG TCC ACT CCC 1197
Asn Tyr Val Met Ala Ser Phe Tyr Ser Thr Ser Thr Pro
                                                 235
                            230
        225
TTT CTG TCT CTG CCT GAA TAGGA GCATGCTCAG TTGGTGCTGC 1240
Phe Leu Ser Leu Pro Glu
                240 241
```

TTTCTTGTTG CTGCATCTCC CCTCAGATTC CACCTAGAGC TAGATGTGTC 1290

TTACCAGATC TAATATTGAC TGCCTCTGCC TGTCGCATGA GAACATTAAC 1340

AAAAGCAATT GTATTACTTC CTCTGTTCGC GACTAGTTGG CTCTGAGATA 1390

CTAATAGGTG TGTGAGGCTC CGGATGTTTC TGGAATTGAT ATTGAATGAT 1440

GTGATACAAA TTGATAGTCA ATATCAAGCA GTGAAATATG ATAATAAAGG 1490

CATTTCAAAAG TCTCACTTTT ATTGATAAAA TAAAAAATCAT TCTACTGAAC 1540

AGTCCATCTT CTTTATACAA TGACCACATC CTGAAAAGGG TGTTGCTAAG 1590

CTGTAACCGA TATGCACTTG AAATGATGGT AAGTTAATTT TGATTCAGAA 1640

TGTGTTATTT GTCACAAATA AACATAATAA AAGGAGTTCA GATGTTTTTC 1690

TTCATTAACC AAAAAAAAAA AAAAA 1715

FIG. 13C

	FIG. 14A SUBSTITUTE SHEET								
AGA TTC AAG Arg Phe Lys	Trp Phe	Lys Asn	Gly As			732			
GTC CTT CGG Val Leu Arg 55						6,93			
GAG ATG AAA Glu Met Lys	Ser Gln 45	Glu Ser	Ala Al	a Gly Ser 50	Lys Leu				
GCG GGC AGC Ala Gly Ser 30	Gln Ser	Pro Ala	Leu Pr 35	o Pro Gln	Leu Lys 40				
AAG AAG GAC Lys Lys Glu 15	ı Arg Gly	Ser Gly 20	Lys Ly	rs Pro Glu 25	Ser Ala				
	Arg Lys 6	Glu Gly A	rg Gly	Lys Gly Ly 10	s Gly Ly	ys			
CCTGCGCCGA	GAGCCGTC	CCG CGTAG	AGCGC 1	PCCGTCTCCG	GCGAG	AT 497 Met 1			
CGAGGGACAA	ACTTTTC	CCA AACCC	GATCC (GAGCCCTTGG	ACCAAAC	TCG 450			
ACGCCCCCGC	GCAGCGC	GAG CGCCI	CAGCG (CGGCCGCTCG	CTCTCCC	CAT 40			
GGCCGGACCG	CCCGCCG	CGT CCGCG	CCCCC (CTCCCTGCAG	GCAACGG	GAG 35			
CGGGGCGACA	GGAGCAG	CCC CGAGA	AGCCAG (GGCGAGCGCC	CGTTCCA	.GGT 30			
GCAGAGGCCA	GGACGCG.	AGC CGCC	AGCGGC	GGGACCCATC	GACGACT	TCC 25			
GTGAGCAGGA	CGGTGAT	AAC CTCT	CCCCGA	TCGGGTTGCG	AGGGCGC	CGG 20			
TCGCGCGGAG	GCCAGGA	GCT GAGC	GCGGC	GGCTGCCGGA	CGATGGG	SAGC 15			
TTGAAAAAGA	GCGGCG	AGG AGTT	CCCGA	AACTTGTTGG	AACTCC	GGC 10			
GAGGCGCCTG	CCICCIE	CCI GCGG	ADDDDD	9919991996	. 1000000				

						27	/32						
						ATC	AAG	ATA Ile					771
								AAA Lys					810
								GTG Val					849
								ATC Ile					888
								CCA Pro 140					927
								CCC Pro					966 ्
GTA Val	TCC Ser	ACA Thr 160	GAA Glu	GGA Gly	GCA Ala	AAT Asn	ACT Thr 165	TCT Ser	TCA Ser	TCT	ACA Thr	TCT Ser 170	1005
								CTT Leu					1044
								AAT Asn					1083
TTC Phe	ATG Met	GTG Val	AAA Lys 200	GAC Asp	CTT Leu	TCA Ser	AAC Asn	CCC Pro 205	TCG Ser	AGA Arg	TAC Tyr	TTG Leu	1122
								GGT Gly					1161
								AAG Lys					1200
TAC Tyr	CAG Gln	AAG Lys	AGA Arg	GTG Val 240	CTG Leu	ACC Thr	ATA Ile	ACC Thr	GGC Gly 245	ATC Ile	TGC Cys	ATC Ile	1239
GCC Ala	CTC Leu 250	Leu	Val	GTC Val	Gly	ATC Ile 255	ATG Met	TGT Cys	GTG Val	GTG Val	GCC Ala 260	TAC Tyr	1278
			→.		-					CI II	TOC	T 1	TE QH

WO 92/20798

28 / 32 TGC AAA ACC AAG AAA CAG CGG AAA AAG CTG CAT GAC CGT 1317 Cys Lys Thr Lys Lys Gln Arg Lys Leu His Asp Arg 265 CTT CGG CAG AGC CTT CGG TCT GAA CGA AAC AAT ATG ATG 1356 Leu Arg Gln Ser Leu Arg Ser Glu Arg Asn Asn Met Met 280 AAC ATT GCC AAT GGG CCT CAC CAT CCT AAC CCA CCC CCC 1395 Asn Ile Ala Asn Gly Pro His His Pro Asn Pro Pro Pro 295 290 GAG AAT GTC CAG CTG GTG AAT CAA TAC GTA TCT AAA AAC 1434 Glu Asn Val Gln Leu Val Asn Gln Tyr Val Ser Lys Asn 305 310 GTC ATC TCC AGT GAG CAT ATT GTT GAG AGA GAA GCA GAG 1473 Val Ile Ser Ser Glu His Ile Val Glu Arg Glu Ala Glu 315 320 ACA TCC TTT TCC ACC AGT CAC TAT ACT TCC ACA GCC CAT 1512 Thr Ser Phe Ser Thr Ser His Tyr Thr Ser Thr Ala His 330 CAC TCC ACT ACT GTC ACC CAG ACT CCT AGC CAC AGC TGG 1551 His Ser Thr Thr Val Thr Gln Thr Pro Ser His Ser Trp 340 345 AGC AAC GGA CAC ACT GAA AGC ATC CTT TCC GAA AGC CAC 1590 Ser Asn Gly His Thr Glu Ser Ile Leu Ser Glu Ser His 355 TCT GTA ATC GTG ATG TCA TCC GTA GAA AAC AGT AGG CAC 1629 Ser Val Ile Val Met Ser Ser Val Glu Asn Ser Arg His 370 AGC AGC CCA ACT GGG GGC CCA AGA GGA CGT CTT AAT GGC 1668 Ser Ser Pro Thr Gly Gly Pro Arg Gly Arg Leu Asn Gly 385 380 ACA GGA GGC CCT CGT GAA TGT AAC AGC TTC CTC AGG CAT 1707 Thr Gly Gly Pro Arg Glu Cys Asn Ser Phe Leu Arg His 400 395 GCC AGA GAA ACC CCT GAT TCC TAC CGA GAC TCT CCT CAT 1746 Ala Arg Glu Thr Pro Asp Ser Tyr Arg Asp Ser Pro His 415 410 AGT GAA AGG TAAAA CCGAAGGCAA AGCTACTGCA GAGGAGAAAC 1790 Ser Glu Arg 420

FIG. 14C

TCAGTCAGAG AATCCCTGTG AGCACCTGCG GTCTCACCTC AGGAAATCTA 1840 CTCTAATCAG AATAAGGGGC GGCAGTTACC TGTTCTAGGA GTGCTCCTAG 1890 TTGATGAAGT CATCTCTTTG TTTGACGGAA CTTATTTCTT CTGAGCTTCT 1940 CTCGTCGTCC CAGTGACTGA CAGGCAACAG ACTCTTAAAG AGCTGGGATG 1990 CTTTGATGCG GAAGGTGCAG CACATGGAGT TTCCAGCTCT GGCCATGGGC 2040 TCAGACCCAC TCGGGGTCTC AGTGTCCTCA GTTGTAACAT TAGAGAGATG 2090 GCATCAATGC TTGATAAGGA CCCTTCTATA ATTCCAATTG CCAGTTATCC 2140 AAACTCTGAT TCGGTGGTCG AGCTGGCCTC GTGTTCTTAT CTGCTAACCC 2190 TGTCTTACCT TCCAGCCTCA GTTAAGTCAA ATCAAGGGCT ATGTCATTGC 2240 TGAATGTCAT GGGGGGCAAC TGCTTGCCCT CCACCCTATA GTATCTATTT 2290 TATGAAATTC CAAGAAGGGA TGAATAAATA AATCTCTTGG ATGCTGCGTC 2340 TGGCAGTCTT CACGGGTGGT TTTCAAAGCA GAAAAAAAA AAAAAAAAA 2390

FIG. 14D

	30	/ 32	
BRGKGKKKERGSGKKPESAAGSQSPALPPRLKEMKSQESAAGBRGKGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSQESAAGBRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSQESAAGBRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSQESAAGBRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSQESAAGBRGKGKKKERGSGKKPESAAGSQSPALPPQLKEMKSQESAAGBRGKGKGKKERGSGKKPESAAGS	ETSSEYSSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN ETSSEYSSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN ETSSEYSSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN ETSSEYSSLRFKWFKNGNELNRKNKPQNIKIQKKPGKSELRIN	GEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSSGEYMCKVISKLGNDSASANITIVESNEIITGMPASTEGAYVSS	VSTEGANTSSSTSTSTTGTSHLVKCAEKEKTFCVNGGECFMVK VSTEGANTSSSTSTSTTGTSHLVKCAEKEKTFCVNGGECFMVK VSTEGANTSSSTSTSTTGTSHLVKCAEKEKTFCVNGGECFMVK VSTEGANTSSSTSTSTTGTSHLVKCAEKEKTFCVNGGECFMVK
GKGKGKKERGSGK GKGKGKKERGSGK GKGKKKERGSGK GKGKKKERGSGK	TSSEYSSLRFKWFKN TSSEYSSLRFKWFKN TSSEYSSLRFKWFKN TSSEYSSLRFKWFKN TSSEYSSLRFKWFKN	EYMCKVISKLGNDSA EYMCKVISKLGNDSA EYMCKVISKLGNDSA EYMCKVISKLGNDSA EYMCKVISKLGNDSA	STEGANTSSSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTS
MSERKEGE MSERKEGE MSERKEGE MSERKEGE	51 SKLVLRCE 51 SKLVLRCE 51 SKLVLRCE 51 SKLVLRCE 51 SKLVLRCE	101 KASLADS 101 KASLADS 101 KASLADS 101 KASLADS	151 ESPIRISV 151 ESPIRISV 151 ESPIRISV 151 ESPIRISV
16 11 76 84 78	16 11 76 84 78	16 11 176 184 18	S & S 2 4 8

FIG. 15A

G E F ME A E E L Y OK R V L T S L S L P E E L Y OK R V L T L S L P E E L Y OK R V L T L S L P E E L Y OK R V L T L S L P E E L Y OK R V L T L S L P E E L Y OK R V L T L S L R S E R N N M M N A N G G R S E R N N M M N A N G G R S E R N N M M N A N G G R S I S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S H Y T S T A H H S T S F S T S T
201 DL S N P S R Y L C K C P N E F T G D R C D N Y V M A S F Y K H L 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y K H L 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y K 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y K 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y K 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y K 201 DL S N P S R Y L C K C P N E F T G D R C O N Y V M A S F Y S T S 246 ITG I C I A L L V V G I M C V V A Y C K T K K Q R K K L H D R L 251 ITG I C I A L L V V G I M C V V A Y C K T K K Q R K K L H D R L 253 ITG I C I A L L V V G I M C V V A Y C K T K K Q R K K L H D R L 2543 ITG I C I A L L V V G I M C V V A Y C K T K K Q R K K L H D R L 255 PH H P N P P P E N V Q L V N Q Y V S K N V I S S E H I V E R E A 295 PH H P N P P P E N V Q L V N Q Y V S K N V I S S E H I V E R E A 296 PH P N P P P E N V Q L V N Q Y V S K N V I S S E H I V E R E A 297 PH P N P P P E N V Q L V N Q Y V S K N V I S S E H I V E R E A 298 T V T Q T P S H S W S N G H T E S I L S E S H S V I V M S S V E N 375 T V T Q T P S H S W S N G H T E S I L S E S H S V I V M S S V E N 376 T V T Q T P S H S W S N G H T E S I L S E S H S V I V M S S V E N 377 T V T Q T P S H S W S N G H T E S I L S E S H S V I V M S S V E N
16 11 11 11 16 16 16 17 16 17 16 17 17

į

International Application No

L CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)6								
According to International Patent Classification (IPC) or to both National Classification and IPC								
Int.Cl	12N5/10							
	C12N1/21	; A61K37/02;	//(C12N1/21,C12R1:1	9)				
IL FIELDS SEARCHED								
IL FIELDS	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum Docur	nentation Searched?					
		1	Classification Symbols					
Classificat	tion System		CASHCAIDH SYEOUS					
Int.Cl	. 5	C12N ; C07K ;	A61K					
			er than Minimum Documentation s are included in the Fields Searched ⁸					
W 2007	CANED FOR	ED TO BE RELEVANT						
		ocusient, 11 with indication, where approp	since of the minner parameter 12	Rejevant to Claim No.13				
Category °	Citation of D	ocument, " with indication, where approp	riate, in the relevant passages -	RECORD TO CAME TOO				
l_				1-40				
Т	SCIENCE	6, 22 May 1992, LANCAS	TED DAIIS	1-40				
ļ	VOI. 25	205 - 1210	TER, PA 05					
	pages 1	WE;Sliwkowski MX;Akita	RW·Henzel					
l	Willes	J. Park JW: Yansura D: Ab	adi N:Raab					
	WJ;Lee J;Park JW;Yansura D;Abadi N;Raab H;Lewis GD;et al 'Identification of							
] .								
ł	p185erb	in, a specific activat B2.						
j .		whole document						
}								
ŀ								
}								
ļ								
l								
[
		10	"I" later document published after the intern	rissal filipa data				
	d categories of cited do	neral state of the art which is not	or priority date and not in conflict with t cited to understand the principle or theor	he application but				
-A- 80	y uncertying the							
TE ex	imed invention							
fili "L" doc	considered to							
whi cita	imed invention ive step when the							
"O" do	other such docu- o a person skilled							
Oth	a berzon zetiten							
P document published prior to the international filing date but in the arc international filing date but in the arc international filing date but in the arc in the same patent family								
IV. CERTIFICATION								
		the International Search	Date of Mailing of this International Sear	ch Report				
Lat VI WE	•							
	06 OCTO	3EK 1992 .	2 1. 10. 92					
Incomerce	I Separation A banks		Signature of Authorized Officer /					
mvernau003	LI Searching Authority		NAUCHE S.A.					
	EUROPE	AN PATENT OFFICE	MAUCHE 3.A.					