Process Dynamics & Control

Biochemical Reactor

 x_1 is mass of cells per unit volume in the reactor x_2 is mass of substrate per unit volume in the reactor

x_{2f} is mass of substrate per unit volume in the feed stream

Assumption:

- 1. Exit Condition = Reactor Condition
- 2. Isothermal Reaction
- 3. Constant volume, i.e, $F_{in} = F_{out} = F$
- 4. No cell/biomass is present in the feed stream.

Biochemical Reactor (Dynamic Model)

Dynamic Model

$$\frac{dx_1}{dt} = -\frac{F}{V}x_1 + \mu x_1 = (\mu - D)x_1$$

$$\frac{dx_2}{dt} = D(x_{2f} - x_2) - \frac{\mu x_1}{Y}$$

Where yield, $Y = \frac{mass\ of\ cells\ produced}{mass\ of\ substrate\ consumed}$ and μ is specific growth rate coefficient for cell mass which is not constant but function of substrate concentration. The most common functions are:

Monod model:
$$\mu = \frac{\mu_{max} x_2}{k_m + x_2}$$
 Substrate inhibition model:
$$\mu = \frac{\mu_{max} x_2}{k_m + x_2 + k_1 x_2^2}$$

Biochemical Reactor

Steady State equations:

$$\frac{dx_1}{dt} = 0 = -\frac{F}{V}x_1 + \mu x_1 = (\mu - D)x_1 = (\frac{\mu_{max} x_2}{k_m + x_2} - D)x_1$$
 if, $x_1 \neq 0$, then $x_2 = \frac{DK_m}{\mu_{max} - D}$

 $\frac{dx_2}{dt} = 0 = D(x_{2f} - x_2) - \frac{\mu x_1}{Y} \Big|_{3}^{3.5}$ So, $x_1 = Y(x_{2f} - \frac{DK_m}{\mu_{max} - D})$ $Dx_1 \text{ is the rate of cell}$ Production per unit reactor Volume.

Biochemical Reactor

We need to find optimum dilution rate to maximize Dx₁. so,

$$Dx_1 = Y(Dx_{2f} - \frac{D^2 K_m}{\mu_{max} - D})$$

$$\frac{d(\frac{Dx_1}{Y})}{dD} = x_{2f} - \frac{(\mu_{max} - D)2Dk_m - D^2K_m(-1)}{(\mu_{max} - D)^2} = 0$$

Or,
$$D^2(x_{2f} + k_m) - 2D\mu_{max}(x_{2f} + k_m) + x_{2f}\mu_{max}^2 = 0$$

Adding $K_m \mu_{max}^2$ both sides, we get

$$(D - \mu_{max})^2 = \frac{K_m \mu_{max}^2}{x_{2f} + K_m}$$

Or
$$D_{opt} = \mu_{max} \left(1 - \sqrt{\frac{K_m}{x_{2f} + K_m}} \right)$$
 since D can not be greater than μ_{max}

Non-Isothermal Jacketed CSTR

$$\frac{dC_A}{dt} = \frac{F}{V} \left(C_{A_f} - C_A \right) - r$$

$$\frac{dT}{dt} = \frac{F}{V} \left(T_f - T \right) + \left(\frac{-\Delta H}{\rho C_p} \right) r - \frac{\text{UA}}{V \rho C_p} \left(T - T_C \right)$$

$$\frac{dT_c}{dt} = \frac{F_c}{V_c} (T_{ci} - T_c) + \frac{UA}{V_c \rho_c C_{pc}} (T - T_c)$$

Data:

F/V, hr⁻¹ = 1; E=11843 kcal/kgmol; ρC_p =500; T_f = 25 0 C ; C_{af} = 10,

$$r = k_0 e^{-\frac{E}{RT}} C_A$$

Case	k ₀ , 1/h	$(-\Delta H)$, kcal/kmol	UA/V
1	14825*3600	5215	250
2	9703*3600	5960	150
3	18194*3600	8195	750

Steady State Heat Power vs Reactor Temperature

Developing Control Relevant Models

1. Develop dynamic model from 1st principles i.e,

$$\dot{x} = f(x, u) \dots (1)$$

- 2. Define control objective $y = h(x, u) \dots (2)$
- 3. Rearrange equation (1) and (2) to get control-affine nonlinear state space form

$$\dot{x} = f(x) + g(x)u$$
$$y = h(x, u)$$

4. Linearize equation (1) and (2) around nominal values of x_s and u_s and form linear state space equation after subtracting steady state equation $f(x_s, u_s) = 0$; $h(x_s, u_s) = 0$

$$\dot{X} = AX + BU$$
 $Y = CX + DU$

Developing Control Relevant Models

5. Derive transfer function model by taking Laplace transform of linear state space model:

$$Y(s) = G_P(s)M(s) + G_L(s)L(s)$$

6. Put s=jω and convert Laplace domain model to Frequency Domain transfer function model

$$Y(\omega) = G_P(\omega)M(\omega) + G_L(\omega)L(\omega)$$

7. Take inversion of Laplace domain transfer function model and get Convolution model

$$Y(t) = \int_{0}^{t} G_p(t - \tau) M(\tau) d\tau + \int_{0}^{t} G_L(t - \tau) L(\tau) d\tau$$

$$\dot{X} = AX + BU$$
$$Y = CX + DU$$

Taking Laplace Transform,

$$sX(s) = AX(s) + BU(s)$$

 $Y(s) = CX(s) + DU(s)$

Or,

$$(sI - A)X(s) = BU(s); i.e, X(s) = (sI - A)^{-1}BU(s)$$

So,

$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

Normally transfer function model is expressed in terms of process and disturbance transfer function. So, input variables U are partitioned to manipulated M and load/disturbance variable L i.e, U = [M L]

$$Y(s) = [C(sI - A)^{-1}B_M + D_M]M(s) + [C(sI - A)^{-1}B_L + D_L]L(s)$$

$$Y(s) = G_P(s)M(s) + G_L(s)L(s)$$

Dynamic model:

$$\dot{x} = f(x, u) \dots (1)$$

 $y = h(x, u) \dots (2)$

Using Taylor series approximation around (x^s, u^s) and neglecting HOT

$$\dot{x}_{1} = f_{1}(x_{1}^{s}, x_{2}^{s}, \dots x_{n}^{s}, u_{1}^{s}, u_{2}^{s}, \dots u_{m}^{s}) + \frac{\partial f_{1}}{\partial x_{1}}(x_{1} - x_{1}^{s}) + \frac{\partial f_{1}}{\partial x_{2}}(x_{2} - x_{2}^{s}) + \dots + \frac{\partial f_{1}}{\partial x_{n}}(x_{n} - x_{n}^{s}) + \frac{\partial f_{1}}{\partial u_{1}}(u_{1} - u_{1}^{s}) + \frac{\partial f_{1}}{\partial u_{2}}(u - u_{2}^{s}) + \dots + \frac{\partial f_{1}}{\partial u_{m}}(u_{m} - u_{m}^{s})$$

•••••

....

....

$$\dot{x}_n = f_n(x_1^s, x_2^s, \dots, x_n^s, u_1^s, u_2^s, \dots, u_m^s) +$$

$$\frac{\partial f_n}{\partial x_1}(x_1 - x_1^s) + \frac{\partial f_n}{\partial x_2}(x_2 - x_2^s) + \dots + \frac{\partial f_n}{\partial x_n}(x_n - x_n^s)$$

$$+\frac{\partial f_n}{\partial u_1}(u_1-u_1^s)+\frac{\partial f_n}{\partial u_2}(u-u_2^s)+\ldots+\frac{\partial f_n}{\partial u_m}(u_m-u_m^s)$$

Subtracting the steady state equations, we can write:

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \vdots \\ \dot{X}_n \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \dots & \frac{\partial f_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \dots & \frac{\partial f_n}{\partial u_m} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{bmatrix}$$

i.e,

$$\dot{X} = AX + BU$$

Where,

$$\mathsf{A} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \quad a_{ij} = \frac{\partial f_i}{\partial x_j} \text{ and } B = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_m} \end{bmatrix} \quad b_{ij} = \frac{\partial f_i}{\partial u_j}$$

Similarly for equation (2),

$$y_{1} = h_{1}(x_{1}^{S}, x_{2}^{S}, \dots x_{n}^{S}, u_{1}^{S}, u_{2}^{S}, \dots u_{m}^{S}) + \frac{\partial h_{1}}{\partial x_{1}}(x_{1} - x_{1}^{S}) + \frac{\partial h_{1}}{\partial x_{2}}(x_{2} - x_{2}^{S}) + \dots + \frac{\partial h_{1}}{\partial x_{n}}(x_{n} - x_{n}^{S}) + \frac{\partial h_{1}}{\partial u_{1}}(u_{1} - u_{1}^{S}) + \frac{\partial h_{1}}{\partial u_{2}}(u - u_{2}^{S}) + \dots + \frac{\partial h_{1}}{\partial u_{m}}(u_{m} - u_{m}^{S})$$

....

....

....

$$y_p = h_p(x_1^s, x_2^s, \dots, x_n^s, u_1^s, u_2^s, \dots, u_m^s) +$$

$$\frac{\partial h_p}{\partial x_1}(x_1 - x_1^s) + \frac{\partial h_p}{\partial x_2}(x_2 - x_2^s) + \dots + \frac{\partial h_p}{\partial x_n}(x_n - x_n^s)$$

$$+\frac{\partial h_p}{\partial u_1}(u_1-u_1^s)+\frac{\partial h_p}{\partial u_2}(u-u_2^s)+\ldots+\frac{\partial h_p}{\partial u_m}(u_m-u_m^s)$$

Subtracting the steady state equations, we can write:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_p \end{bmatrix} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \dots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_p}{\partial x_1} & \dots & \frac{\partial h_p}{\partial x_n} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} + \begin{bmatrix} \frac{\partial h_1}{\partial u_1} & \dots & \frac{\partial h_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_p}{\partial u_1} & \dots & \frac{\partial h_p}{\partial u_m} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{bmatrix}$$

i.e,

$$Y = CX + DU$$

Where,

$$\mathbf{C} = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_p}{\partial x_1} & \cdots & \frac{\partial h_p}{\partial x_n} \end{bmatrix} \quad c_{ij} = \frac{\partial h_i}{\partial x_j} \text{ and } \mathbf{D} = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} & \cdots & \frac{\partial h_1}{\partial u_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_p}{\partial u_1} & \cdots & \frac{\partial h_p}{\partial u_m} \end{bmatrix} \quad d_{ij} = \frac{\partial h_i}{\partial u_j}$$

Example: Van De Vusse Reactor

Dynamic Model:

$$\frac{dC_A}{dt} = \frac{F}{V} (C_{Af} - C_A) - k_1 C_A - k_3 C_A^2 = f_1(C_A, C_B, F/V)$$

$$\frac{dC_B}{dt} = -\frac{F}{V} C_B + k_1 C_A - k_2 C_B = f_2(C_A, C_B, F/V)$$

Non-linear state space model:

States are : $x_1 = C_A$, $x_2 = C_B$ input : u = F/V and output $y = C_B$

State equation:

$$\frac{dx_1}{dt} = (-k_1x_1 - k_3x_1^2) + (x_{1f} - x_1)u$$

$$\frac{dx_2}{dt} = k_1x_1 - k_2x_2 + (-x_2)u$$
i.e, $\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{cases} (-k_1x_1 - k_3x_1^2) \\ k_1x_1 - k_2x_2 \end{cases} + \begin{cases} (x_{1f} - x_1) \\ (-x_2) \end{cases} u = f(x) + g(x)u$
Output map:
$$y = h(x) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: Van De Vusse Reactor Linear State Space Model:

$$f_{1}(C_{A}, C_{B}, {}^{F}/_{V}) = \frac{F}{V} (C_{Af} - C_{A}) - k_{1}C_{A} - k_{3}C_{A}^{2}$$

$$f_{2}(C_{A}, C_{B}, {}^{F}/_{V}) = -\frac{F}{V}C_{B} + k_{1}C_{A} - k_{2}C_{B}$$
Let, $X_{1} = C_{A} - C_{A}^{S}$; $X_{2} = C_{B} - C_{B}^{S}$; $U = \frac{F}{V} - \frac{F^{S}}{V}$

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial C_A} & \frac{\partial f_1}{\partial C_B} \\ \frac{\partial f_2}{\partial C_A} & \frac{\partial f_2}{\partial C_B} \end{bmatrix} = \begin{bmatrix} -F^s/_V - k_1 - 2k_3C_A^s & 0 \\ k_1 & -F^s/_V - k_2 \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{\partial f_1}{\partial (\frac{F}{V})} \\ \frac{\partial f_2}{\partial (\frac{F}{V})} \end{bmatrix} = \begin{bmatrix} C_{Af} - C_A^s \\ -C_B^s \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad D = 0$$

$$\dot{X} = AX + BU$$

Y = CX + DU

Example: Van De Vusse Reactor

Transfer Domain Model -- Laplace Domain:

$$Y(s) = [C(sI - A)^{-1}B + D]U(s) = [C(sI - A)^{-1}B]U(s)$$

$$sI - A = \begin{bmatrix} s + F^{s}/V + k_{1} + 2k_{3}C_{A}^{s} & 0 \\ -k_{1} & s + F^{s}/V + k_{2} \end{bmatrix} = \begin{bmatrix} s - a_{11} & -a_{12} \\ -a_{21} & s - a_{22} \end{bmatrix}$$

$$(sI - A)^{-1} = \frac{1}{det} \begin{bmatrix} s - a_{22} & a_{12} \\ a_{21} & s - a_{11} \end{bmatrix}$$

where, $det = (s - a_{11})(s - a_{22}) - a_{12}a_{21}$

$$C(sI - A)^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix} \frac{1}{det} \begin{bmatrix} s - a_{22} & a_{12} \\ a_{21} & s - a_{11} \end{bmatrix} = \frac{1}{det} \begin{bmatrix} a_{21} & s - a_{11} \end{bmatrix}$$

$$C(sI - A)^{-1}B = \frac{1}{det} \begin{bmatrix} a_{21} & s - a_{11} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \frac{a_{21}b_1 + (s - a_{11})b_2}{(s - a_{11})(s - a_{22}) - a_{12}a_{21}}$$

Example: Van De Vusse Reactor Transfer Domain Model -- Laplace Domain:

$$C(sI - A)^{-1}B = \frac{a_{21}b_1 + (s - a_{11})b_2}{(s - a_{11})(s - a_{22}) - a_{12}a_{21}}$$

$$= \frac{k_1(C_{Af} - C_A^s) - C_B^s s - C_B^s (F^s/_V + k_1 + 2k_3C_A^s)}{(s + F^s/_V + k_1 + 2k_3C_A^s)(s + F^s/_V + k_2)}$$

$$= \frac{-C_B^s s + [k_1(C_{Af} - C_A^s) - C_B^s (F^s/_V + k_1 + 2k_3C_A^s)]}{(s + F^s/_V + k_1 + 2k_3C_A^s)(s + F^s/_V + k_2)}$$