Normalizzazione

Eliminare le anomalie

- Abbiamo sviluppato la teoria delle dipendenze funzionali per identificare le anomalie in uno schema mal definito
- Adesso siamo in grado di affrontare il passaggio da schemi "con anomalie" a schemi "ben fatti"
- Per fare ciò definiremo un nuovo concetto, le forme normali, intese come proprietà che devono essere soddisfatte dalle dipendenze fra attributi di schemi "ben fatti"
- Vedremo solo la forma normale di Boyce-Codd (BCNF) e la terza forma normale (3NF)

Forma Normale di Boyce-Codd

• Uno schema R(T,F) è in forma normale di Boyce-Codd (BCNF) se e solo se per ogni dipendenza funzionale non banale $X \to Y \in F^+$, X è una superchiave di R

• L'idea su cui si basa la BCNF è che una dipendenza funzionale $X \to A$, in cui X non contiene attributi estranei, indica che, nella realtà che si modella, esiste una collezione di entità omogenee che sono univocamente identificate da X

Forma Normale di Boyce-Codd

- Dalla definizione, il fatto che uno schema sia in **BCNF dipende dalla chiusura** F^+ , non dalla specifica copertura F
- Purtroppo per calcolare F^+ abbiamo solo algoritmi di complessità esponenziale, che costano troppo
- Tuttavia possiamo facilmente stabilire se uno schema è in BCNF con un algoritmo di complessità polinomiale

Forma Normale di Boyce-Codd

• Teorema:

Uno schema R(T, F) è in BCNF se e solo se per ogni dipendenza funzionale non banale
 X → Y ∈ F, X è una superchiave

• Corollario:

• Uno schema R(T,F) con F copertura minimale è in BCNF se e solo se per **ogni dipendenza funzionale elementare** $X \rightarrow A \in F$, X è una **superchiave**.

Input: schema R(T,F)

Output: **true** se R è in BCNF, **false** altrimenti

for each $X \to Y \in F$ do

if $Y \nsubseteq X$ and $T \nsubseteq X^+$ then

return false

Input: schema R(T,F)

Output: **true** se R è in BCNF, **false** altrimenti

for each $X \to Y \in F$ do

if $Y \not\subseteq X$ and $T \not\subseteq X^+$ then

Controlliamo ogni

dipendenza funzionale

della relazione

return false

return true

Input: schema R(T,F)

Output: **true** se R è in BCNF, **false** altrimenti

for each $X \to Y \in F$ do

if $Y \not\subseteq X$ and $T \not\subseteq X^+$ then

return false

return true

Controlliamo ogni dipendenza funzionale della relazione

Se *X* non è superchiave

Input: schema R(T, F)

Output: **true** se R è in BCNF, **false** altrimenti

for each $X \rightarrow Y \in F$ do

if $Y \not\subseteq X$ and $T \not\subseteq X^+$ then

return false

return true

Controlliamo ogni dipendenza funzionale della relazione

Se *X* non è superchiave

Se la dipendenza funzionale è non banale

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

- Impiegato → Stipendio
- Progetto → Bilancio
- Impiegato, Progetto → Funzione

- Proviamo a normalizzare il precedente schema in BNCF con una "procedura intuitiva"
- Questa procedura non è valida in generale, ma solo in alcuno "casi semplici"
- Per ogni dipendenza $X \to Y$ che viola la BCNF, definiamo una nuova relazione su XY ed eliminiamo Y dalla relazione originaria

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

- Impiegato → Stipendio
- Progetto → Bilancio
- Impiegato, Progetto → Funzione

Impiegato	Stipendio
Rossi	20
Verdi	35
Neri	55
Mori	48
Bianchi	48

Progetto	Bilancio
Marte	2
Giove	15
Venere	15

Impiegato	Progetto	Funzione
Rossi	Marte	tecnico
Verdi	Giove	progettista
Verdi	Venere	progettista
Neri	Venere	direttore
Neri	Giove	consulente
Neri	Marte	consulente
Mori	Marte	direttore
Mori	Venere	progettista
Bianchi	Venere	progettista
Bianchi	Giove	direttore

- Impiegato → Stipendio
- Progetto → Bilancio
- Impiegato, Progetto → Funzione

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

- Impiegato → Sede
- Progetto \rightarrow Sede

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

- Impiegato → Sede
- Progetto → Sede

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

- Impiegato \rightarrow Sede
- Progetto \rightarrow Sede

Ricostruiamo la relazione di partenza

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano
Verdi	Saturno	Milano
Neri	Giove	Milano

Ricostruiamo la relazione di partenza

Impiegato	Sede
Rossi	Roma
Verdi	Milano
Neri	Milano

Progetto	Sede
Marte	Roma
Giove	Milano
Saturno	Milano
Venere	Milano

Impiegato	Progetto	Sede
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Venere	Milano
Neri	Saturno	Milano
Neri	Venere	Milano
Verdi	Saturno	Milano
Neri	Giove	Milano

Decomposizione di schemi

- Dato uno schema R(T), l'insieme di schemi $\rho = \left\{R_1(T_1), ..., R_k(T_k)\right\}$ è una **decomposizione** di R se e solo se $\bigcup_i T_i = T$
- Si noti che la precedente definizione non richiede che gli schemi R_i siano disgiunti
- Come caratterizzare l'equivalenza tra schema originario e sua decomposizione? In generale la decomposizione deve:
 - preservare i dati
 - preservare le dipendenza

Esempio di perdita di dati

R

Р	Т	С
p1	t1	c1
p1	t2	c2
p1	t3	c2

Esempio di perdita di dati

R

Р	Т	С
p1	t1	c1
p1	t2	c2
p1	t3	c2

$$R_1 = \pi_{PT}(R)$$
 $R_2 = \pi_{PC}(R)$

$$R_2 = \pi_{PC}(R)$$

Р	С
p1	c1
p1	c2

Esempio di perdita di dati

R

Р	Т	С
p1	t1	c1
p1	t2	c2
p1	t3	c2

 $R_1 = \pi_{PT}(R)$ $R_2 = \pi_{PC}(R)$

Р	С
p1	c1
p1	c2

 $R_1 \bowtie R_2$

Р	Т	С
p1	t1	c1
p1	t1	c2
p1	t2	c1
p1	t2	c2
p1	t3	c1
p1	t3	c2

Esempio di perdita di dipendenze

R

Р	Т	С
p1	t1	c1
p1	t2	c2
p1	t3	c2

$$T \rightarrow C$$

$$C \rightarrow P$$

questa decomposizione preserva i dati

Esempio di perdita di dipendenze

R

Р	Т	С
p1	t1	c1
p1	t2	c2
p1	t3	c2

$$T \rightarrow C$$

$$C \rightarrow P$$

questa decomposizione preserva i dati

$$R_1 = \pi_{PT}(R) \qquad R_2 = \pi_{TC}(R)$$

Р	T
p1	t1
p1	t2
p1	t3

$$R_2 = \pi_{TC}(R)$$

Т	С
t1	c1
t2	c2
t3	c2

questa decomposizione non preserva la dipendenza

$$C \rightarrow P$$

perché gli attributi sono in relazioni diverse

Teorema della perdita di dati

• Teorema:

• Se $\rho = \{R_1(T_1), ..., R_k(T_k)\}$ è una decomposizione di R(T,F), allora per ogni istanza r di R(T) si ha

$$r \subseteq \pi_{T_1}(r) \bowtie \cdots \bowtie \pi_{T_k}(r)$$

- Dimostrazione:
 - Per esercizio

 Questo teorema ci dice che perdiamo informazione quando, ricostruendo una relazione, otteniamo più n-uple che nella relazione originaria

Decomposizione che preserva i dati

• Dato uno schema R(T,F) e una decomposizione $\rho = \{R_1(T_1), ..., R_k(T_k)\}$, ρ è una **decomposizione** di R(T,F) **che preserva i dati** se e solo se, per ogni relazione r che soddisfa R(T,F), si ha:

$$r = \pi_{T_1}(r) \bowtie \cdots \bowtie \pi_{T_k}(r)$$

• Questa definizione ci dice che, per una decomposizione che preserva i dati, ogni istanza valida r della relazione di partenza deve essere uguale al join naturale delle sue proiezioni sui vari T_i

Teorema di preservazione dei dati

• Sia $\rho = \{R_1(T_1), R_2(T_2)\}$ una decomposizione di R(T, F); essa preserva i dati se e solo se $T_1 \cap T_2 \to T_1 \in F^+$ oppure $T_1 \cap T_2 \to T_2 \in F^+$.

 In altre parole, gli attributi comuni alle due relazioni devono essere chiave in una delle due tabelle

- Nel nostro esempio, Sede è l'attributo a comune tra le due tabelle, ma non è chiave per nessuna delle due
 - Non c'è nessuna dipendenza con Sede come parte sinistra

Proiezioni di un insieme di dipendenze

• Dato R(T,F) e $T_i \subseteq T$, la proiezione dell'insieme di dipendenze F sull'insieme di attributi T_i è

$$\pi_{T_i}(F) = \{ X \to Y \in F^+ | X, Y \subseteq T_i \}$$

- Nota bene che la proiezione è costruita considerando le dipendenze in F^+ , non quelle in F
- Esempio:
 - $R(ABC, \{A \rightarrow B, B \rightarrow C, C \rightarrow A\})$
 - $\bullet \ \pi_{AB}(F) = \{A \to B, B \to A\}$
 - $\bullet \ \pi_{AC}(F) = \{A \to C, C \to A\}$

Algoritmo per il calcolo di $\pi_{T_i}(F)$

Input: R(T, F) e $T_i \subseteq T$

Output: $\pi_{T_i}(F)$

$$Z \leftarrow \{\}$$

for each $Y \subset T_i$ do

$$W \leftarrow Y^+ - Y$$

$$Z \leftarrow Z \cup \{Y \rightarrow (W \cap T_i)\}$$

return Z

Calcolo di $\pi_{T_i}(F)$

- L'algoritmo precedente ha complessità esponenziale nel caso pessimo
- Consideriamo
 - $R(A_1, ..., A_n, B_1, ..., B_n, C_1, ..., C_n, D)$
 - $F = \left(\bigcup_i \left\{ A_i \to C_i, B_i \to C_i \right\} \right) \cup \left\{ C_1 \cdots C_n \to D \right\}$
- La proiezione di F su $A_1 \cdots A_n B_1 \cdots B_n D$ è pari a $\{X_1 \cdots X_n \to D \text{ dove } X_i = A_i \text{ oppure } X_i = B_i\}$
- La sua dimensione è esponenziale rispetto al numero di attributi e di dipendenze funzionali
- Si può dimostrare che nessun altro insieme "equivalente" ha cardinalità inferiore

Decomposizione che preserva le dipendenze

• Dato uno schema R(T,F) e una decomposizione $\rho = \{R_1(T_1), ..., R_k(T_k)\}$, ρ è una **decomposizione** di R(T,F) **che preserva le dipendenze** se e solo se:

$$\cup_i \, \pi_{T_i}(F) \equiv F$$

- Si noti il simbolo di equivalenza ≡
- La decomposizione di R(T,F) in due relazioni con attributi X e Y è una decomposizione che preserva le dipendenze se $\pi_X(F) \cup \pi_Y(F) \equiv F$, cioè se

$$\left(\pi_X(F) \cup \pi_Y(F)\right)^+ = F^+$$

Verificare una decomposizione

• Per **verificare** se una decomposizione di R(T, F) in due relazioni con attributi X e Y preserva le dipendenze bisogna verificare che

$$\left(\pi_X(F) \cup \pi_Y(F)\right)^+ = F^+$$

- Per fare ciò:
 - è necessario saper calcolare la proiezione di un insieme di dipendenze funzionali su un insieme di attributi
 - è necessario saper determinare l'equivalenza di due insiemi di dipendenze funzionali

Verificare una decomposizione

- Per calcolare la proiezione di un insieme di dipendenze funzionali su un insieme di attributi abbiamo un algoritmo con complessità esponenziale
- Per verificare l'equivalenza di due insiemi di dipendenze funzionali F e G abbiamo un algoritmo con complessità polinomiale
 - Per ogni $X \to Y \in F$, calcoliamo X_G^+ e verifichiamo se $Y \in X_G^+$
 - Per ogni $X \to Y \in G$, calcoliamo X_F^+ e verifichiamo se $Y \in X_F^+$

Algoritmo per decomposizione in BCNF

Input: R(T,F) (per semplicità gli elementi di F sono nella forma $X \to A$)

Output: ρ che preserva i dati

$$\begin{split} \rho &\leftarrow \{R(T,F)\} \\ \text{while esiste } R_i(T_i,F_i) \in \rho \text{ che non è in BCNF do} \\ \text{for each } X \to A \in F_i \text{ do} \\ \text{if } A \not\in X \text{ and } T_i \not\subseteq X^+ \text{ then} \\ R_1 \leftarrow R_i \left(T_i - A, \pi_{T_i - A}(F_i) \right) \\ R_2 \leftarrow R_i \left(X + A, \pi_{X + A}(F_i) \right) \\ \rho \leftarrow \rho - \{R_i\} \cup \{R_1,R_2\} \end{split}$$

return ρ

break

Algoritmo per decomposizione in BCNF

• Teorema:

- Qualunque sia la relazione, l'esecuzione dell'algoritmo per decomposizione in BCNF su tale relazione termina e produce una decomposizione della relazione tale che:
 - la decomposizione prodotta è in BCNF
 - la decomposizione prodotta preserva i dati

 Non è garantito che la decomposizione generata preservi le dipendenze

- Sia R = Telefoni
- Sia $T = \{ \text{Prefisso, Numero, Località} \}$
- Sia $F = \{ \text{Prefisso}, \, \text{Numero} \rightarrow \text{Località}, \, \text{Località} \rightarrow \text{Prefisso} \}$
- Inizialmente $\rho = \{ \text{Telefoni} \}$
- La dipendenza Località → Prefisso viola la BCNF
- ullet Rimpiazziamo R= Telefoni in ho con
 - R_1 ({Numero, Località}, {})
 - R_2 ({Località, Prefisso}, {Località \rightarrow Prefisso})

- La decomposizione $\rho = \{R_1, R_2\}$ con
 - R_1 ({Numero, Località}, {})
 - R_2 ({Località, Prefisso}, {Località \rightarrow Prefisso})
- è in BCNF e quindi l'algoritmo termina.
- ullet La decomposizione ho preserva i dati, ma non preserva le dipendenze funzionali
 - Prefisso, Numero → Località è perduta

Qualità delle decomposizioni

- Una decomposizione dovrebbe sempre garantire
 - di essere in BCNF
 - l'assenza di perdite sui dati, in modo da poter ricostruire le informazioni originarie tramite join naturali
 - la conservazione delle dipendenze funzionali, in modo da mantenere i vincoli di integrità originari

• "Ogni dirigente ha una sede, e un progetto può essere diretto da più persone, ma in sedi diverse"

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Dirigente → Sede

Progetto, Sede → Dirigente

Questa relazione è in BNCF?

Applichiamo l'algoritmo di verifica!

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto, Sede → Dirigente

Dirigente → Sede

Applichiamo l'algoritmo di verifica!

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto, Sede → Dirigente ✓
Dirigente → Sede

Applichiamo l'algoritmo di verifica!

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto, Sede → Dirigente ✓
Dirigente → Sede

- Come decomponiamo la relazione?
 - La dipendenza Progetto, Sede → Dirigente coinvolge tutti gli attributi e quindi nessuna decomposizione potrà preservarla
 - Possiamo calcolare una decomposizione in BCNF, ma non potrà preservare questa dipendenza

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Dirigente → Sede

Progetto, Sede → Dirigente

 Quando non si può raggiungere una BCNF di buona qualità, spesso si tratta di una cattiva progettazione...

- Quando non si può raggiungere una BCNF di buona qualità, spesso si tratta di una cattiva progettazione...
- ...tuttavia possiamo "abbandonare" la BNCF...

- Quando non si può raggiungere una BCNF di buona qualità, spesso si tratta di una cattiva progettazione...
- ...tuttavia possiamo "abbandonare" la BNCF...
- ...e adottare una nuova forma normale "meno restrittiva" della BCNF

Terza Forma Normale

- Una relazione R(T,F) è in terza forma normale
 (3NF) se e solo se, per ogni dipendenza funzionale
 non banale X → A ∈ F⁺, è verificata almeno una delle seguenti condizioni:
 - X è una superchiave di R
 - A è contenuto in almeno una chiave di R (in questo caso si dice che A è un attributo primo)

• Come si vede dalla definizione, se R è in BCNF allora R è in 3NF, i.e., BCNF \Rightarrow 3NF

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto, Sede \rightarrow Dirigente Dirigente \rightarrow Sede

 L'attributo Sede è contenuto in una chiave, quindi la relazione è in 3NF

Dirigente	Progetto	<u>Sede</u>
Rossi	Marte	Roma
Verdi	Giove	Milano
Verdi	Marte	Milano
Neri	Saturno	Milano
Neri	Venere	Milano

Progetto, Sede → Dirigente

Dirigente → Sede

 Tuttavia c'è una ridondanza nella ripetizione della sede del dirigente per i vari progetti che dirige

Verifica di 3NF

- Il problema di decidere se uno schema di relazione è in 3NF è NP-completo
 - Il miglior algoritmo deterministico noto ha complessità esponenziale nel caso peggiore
 - Per stabilire se uno schema è in 3NF occorre conoscere gli attributi primi, cioè le chiavi
 - L'algoritmo per calcolare le chiavi ha complessità esponenziale
 - Tuttavia si può sempre ottenere una decomposizione in 3NF che preserva dati e dipendenze funzionali

Algoritmo per decomposizione in 3NF

• Intuizione:

- Dato un insieme di attributi T e una **copertura minimale** G, si divide G in gruppi G_i in modo che tutte le dipendenze funzionali di ogni gruppo G_i abbiano **la stessa "parte" sinistra**.
- Da ogni gruppo G_i si definisce uno schema di relazione composto da tutti gli attributi che appaiono in G_i , la cui chiave, detta **chiave sintetizzata**, è la parte sinistra comune.

Algoritmo per decomposizione in 3NF

Input: R(T,F)

Output: ρ che preserva i dati e le dipendenze e con ogni elemento in 3NF

- 1. Trovare una copertura minimale G di F e porre $\rho \leftarrow \{\}$
- 2. **Sostituire** in G ogni insieme di dipendenze $\{X \to A_1, ..., X \to A_h\}$ con la dipendenza $X \to A_1 \cdots A_h$
- 3. **Per ogni dipendenza** $X \to Y \in G$ creare uno schema con attributi XY in ρ
- 4. **Eliminare** da ho ogni schema che sia contenuto in un altro schema di ho
- 5. Se ρ non contiene nessuno schema i cui attributi costituiscono una superchiave di R, aggiungere a ρ uno schema con attributi W, dove W è una **chiave** di R

Algoritmo per decomposizione in BCNF

• Teorema:

- Qualunque sia la relazione, l'esecuzione dell'algoritmo per decomposizione in 3NF su tale relazione termina e produce una decomposizione della relazione tale che:
 - la decomposizione prodotta è in 3NF
 - la decomposizione prodotta preserva i dati e le dipendenze funzionali

• La complessità dell'algoritmo è polinomiale

- Dato R(ABCD, F) con $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow B\}$
- \bullet F è una copertura minimale
- $AB \rightarrow C$: $R_1(ABC)$ con chiave sintetizzata AB
- $C \to D$: $R_2(CD)$ con chiave sintetizzata C
- $D \to B$: $R_3(BD)$ con chiave sintetizzata D
- $\bullet \ \pi_{R_2}(F) = \{C \to D\}$
- $\bullet \ \pi_{R_3}(F) = \{D \to B\}$
- $\bullet \ \pi_{R_1}(F) = \{AB \to C, C \to B\}$

- Dato R(ABCDEGH, F) con $F = \{ABC \rightarrow DEG, BD \rightarrow ACE, C \rightarrow BH, H \rightarrow BDE\}$
- Per prima cosa, calcoliamo la copertura minimale

$$F \equiv F_1 = \{ABC \rightarrow D, ABC \rightarrow E, ABC \rightarrow G, BD \rightarrow A, \\ BD \rightarrow C, BD \rightarrow E, C \rightarrow B, C \rightarrow H, \\ H \rightarrow B, H \rightarrow D, H \rightarrow E\}$$

- ABC contiene attributi estranei?
 - $C^+ = CBHDEAG$, quindi A, B sono estranei in ABC
- BD contiene attributi estranei?
 - $B^+ = B$, $D^+ = D$ quindi non ci sono attributi estranei in BD $F_2 \equiv F_1 = \{C \to D, C \to E, C \to G, BD \to A,$ $BD \to C, BD \to E, C \to B, C \to H,$ $H \to B, H \to D, H \to E\}$

$$F_{2} \equiv F_{1} = \{C \rightarrow D, C \rightarrow E, C \rightarrow G, BD \rightarrow A, \\ BD \rightarrow C, BD \rightarrow E, C \rightarrow B, C \rightarrow H, \\ H \rightarrow B, H \rightarrow D, H \rightarrow E\}$$

- F_2 contiene dipendenze ridondanti?
 - $C \to D$ perché $C \to H \to D$
 - $C \to E$ perché $C \to H \to E$
 - $BD \rightarrow E$ perché $BD \rightarrow C \rightarrow H \rightarrow E$
 - $C \rightarrow B$ perché $C \rightarrow H \rightarrow B$

$$G \equiv F_2 = \{C \rightarrow G, BD \rightarrow A, BD \rightarrow C,$$

$$C \to H, H \to B, H \to D, H \to E$$

$$G \equiv F_2 = \{C \rightarrow G, BD \rightarrow A, BD \rightarrow C,$$

 $C \rightarrow H, H \rightarrow B, H \rightarrow D, H \rightarrow E\}$

- Prima di eseguire le sostituzioni previste,
 controlliamo se le parti sinistre delle dipendenze in
 G sono superchiavi
 - $C^+ = CBHDEAG$, quindi C è chiave
 - $BD^+ = BDACGHE$, quindi BD è superchiave
 - $H^+ = HBDEACG$, quindi H è chiave
- Possiamo concludere che il nostro schema è in BNCF, e quindi in 3NF, e non va decomposto

- Dato R(ABCDEGH, F) con $F = \{AB \rightarrow CDE, CE \rightarrow AB, A \rightarrow G, G \rightarrow BD\}$
- Per prima cosa, calcoliamo la copertura minimale

$$F \equiv F_1 = \{AB \to C, AB \to D, AB \to E, CE \to A,$$

- $CE \rightarrow B, A \rightarrow G, G \rightarrow B, G \rightarrow D$
- AB contiene attributi estranei?
 - $A^+ = AGBDCE$, quindi B è estraneo in AB
- CE contiene attributi estranei?
 - $C^+ = C$, $E^+ = E$ quindi non ci sono attributi estranei in CE

$$F_2 \equiv F_1 = \{A \rightarrow C, A \rightarrow D, A \rightarrow E, CE \rightarrow A,$$

$$CE \rightarrow B, A \rightarrow G, G \rightarrow B, G \rightarrow D$$

$$F_2 \equiv F_1 = \{A \to C, A \to D, A \to E, CE \to A,$$
$$CE \to B, A \to G, G \to B, G \to D\}$$

- F_2 contiene dipendenze ridondanti?
 - $A \to D$ perché $A \to G \to D$
 - $CE \rightarrow B$ perché $CE \rightarrow A \rightarrow G \rightarrow B$

$$G \equiv F_2 = \{A \rightarrow C, A \rightarrow E, CE \rightarrow A,$$

$$A \rightarrow G, G \rightarrow B, G \rightarrow D$$

- Controllo superchiavi
 - In G nessuna dipendenza funzionale include H, se le quindi nessuna delle parti sinistre delle dipendenze in G sono superchiavi

$$G \equiv F_2 = \{A \rightarrow C, A \rightarrow E, CE \rightarrow A, A \rightarrow G, G \rightarrow B, G \rightarrow D\}$$

- Decomponiamo!
 - $A \rightarrow C, A \rightarrow E, A \rightarrow G$, quindi creiamo $R_1(ACEG)$
 - $CE \rightarrow A$, quindi creiamo $R_2(CEA)$
 - $G \to B, G \to D$, quindi creiamo $R_3(GBD)$
- Eliminiamo!
 - $R_2(CEA)$ è contenuta in $R_1(ACEG)$, quindi la eliminiamo
- Controllo superchiave!
 - Nè $R_1(ACEG)$ nè $R_3(GBD)$ contengono H
 - Siccome AH è chiave, aggiungiamo $R_0(AH)$ alla decomposizione
- $\rho = \{R_1(ACEG), R_3(GBD), R_0(AH)\}$ è in 3NF

Progettazione e Normalizzazione

- La teoria della normalizzazione serve per verificare la qualità dello schema logico
- Ma si può usare anche durante la progettazione concettuale per ottenere uno schema di buona qualità (verifica ridondanze, partizionamento di entità/ relazioni)

Verifica di normalizzazione su entità

- Abbiamo la dipendenza funzionale
 - ullet Partita IVA o Nome fornitore, Indirizzo
- Codice è chiave

Verifica di normalizzazione su entità

- Partita IVA → Nome fornitore, Indirizzo
 - Partita IVA non è superchiave
 - Nome fornitore e Indirizzo non fanno parte di una chiave
- L'entità viola la terza forma normale

Verifica di normalizzazione su entità

- Studente → Corso di laurea
- Studente → Professore
- Professore → Dipartimento
- Studente è chiave

- Studente → Corso di laurea NON VIOLA la 3NF
- Studente → Professore NON VIOLA la 3NF
- Professore → Dipartimento VIOLA la 3NF
- Studente è chiave

- Le due relationship Afferenza e Tesi sono in 3NF (e in BCNF)
 - Tesi lo è in virtù delle dipendenze Studente →
 Corso di laurea e Studente → Professore

