cin.ufpe.br

Centro de Informática Un FILPLE

Projeto Lógico Relacional

Por: Prof. Robson do Nascimento Fidalgo

Notação Simplificada (reforçando)

- Esquema Relacional = definição das tabelas
 - Representação básica (incompleta mas compacta)
 - = Chave Estrangeira Sublinhado = Chave Primária Ex: FUNCIONARIO (FUNC PK, nome,..., DEPTO FK!) DEPTO FK -> DEPARTAMENTO (COD) DEPARTAMENTO (COD, nome, ..., [CHEFE_FK]!) CHEFE_FK → (FUNC_PK) = Valor Obrigatório (not null) = Valor Único (unique)

Mapeamento EER-Relacional

- 1 esquema EER pode gerar N esquemas Relacionais
 - Existem várias maneiras de mapear relacionamentos e heranças
- O mapeamento deve priorizar:
 - 1º) Evitar junções (consultas mais rápidas)
 - 2º) Diminuir o número de chaves (índices menores e mais rápidos)
 - 3º) Evitar campos opcionais (menos testes de qualidade dos dados)
- Dicas para nomear relações e atributos
 - Use nomes curtos
 - Elimine espaços em branco e caracteres especiais
 - Adote um padrão

Caso Prático

Passos para fazer o mapeamento

- 1º) Mapear as entidades regulares e seus atributos
- 2º) Mapear as entidades fracas e seus atributos
- 3°) Mapear as super/subentidades e seus atributos
- 4°) Mapear as entidades associativas
- ▶ 5°) Mapear os relacionamentos e seus atributos

Mapear as entidades regulares e seus atributos

- Cada entidade regular é mapeada para uma relação
 - A chave primária (PK) da relação é o atributo identificador da entidade mapeada
- Cada atributo multivalorado é mapeado para:
 - 1) N atributos (desde de que N seja pequeno) ou
 - 2) Uma relação cuja PK é o atributo multivalorado + a PK da relação origem
 - A PK que migrou da relação origem é chave estrangeira (FK)
- Atributos comum, composto ou derivado são mapeados para atributos da relação

Mapear as entidades regulares e seus atributos

Projeto(<u>serial</u>, descricao, end_CEP, end_detalhamento);

E-mail(serial, e-mail)

serial → Projeto(serial)

Midia(serial, tipo, URL)

serial → Projeto(serial)

OU

Projeto(<u>serial</u>, descricao, end_CEP, end_detalhamento, e-mail1, e-mail2, e-mail3);

Midia(serial, tipo, URL)

serial → Projeto(serial)

Mapear as entidades fracas e seus atributos

- Cada entidade fraca é mapeada para uma relação
 - A PK que mapeia a entidade forte migra como FK
 - A PK da relação é formada pela FK + o discriminador (se existir)

 Atributos comum, composto, derivado ou multivalorado seguem os mesmos mapeamentos das entidades regulares

Mapear as entidades fracas e seus atributos

Evento(<u>codigo</u>, sigla)

Comite(<u>codigo</u>, ano, tipo, descricao)

codigo → Evento(codigo)

Mapear as super/subentidades e seus atributos

- 4 alternativas
 - Uma relação para cada entidade da herança
 - Uma relação para cada subentidade da herança total
 - Uma única relação para toda herança disjunta ou direta
 - Uma única relação para toda herança sobreposta

Uma relação para cada entidade da herança

- Características fortes (+) e fracas (-)
 - Funciona bem para qualquer tipo de herança (+)
 - Reduz atributos opcionais (+)
 - Reduz testes para garantir a qualidade dos dados (+)
 - Exige junções (-)

Uma relação para cada entidade da herança

- Mapeamento
 - Cada Super/subentidade é mapeada para uma relação
 - A PK de cada relação é o atributo identificador da superentidade mapeada
 - A PK de cada relação que mapeia uma subentidade será FK para a superentidade

 Atributos comum, composto, derivado ou multivalorado seguem os mesmos mapeamentos das entidades regulares

Uma relação para cada entidade da herança

Uma relação para cada subentidade da HT

- Características fortes (+) e fracas (-)
 - Gera redundância de dados para heranças sobrepostas (-)
 - Reduz atributos opcionais (+)
 - Reduz testes para garantir a qualidade dos dados (+)
 - Reduz junções (+)

Uma relação para cada subentidade da HT

Mapeamento

- Cada subentidade é mapeada para uma relação
 - A PK de cada relação é o atributo identificador da superentidade mapeada
- Os atributos e relacionamentos da superentidade migram para as relações que mapeiam as subentidades
- Atributos comum, composto, derivado ou multivalorado → igual ao apresentado no mapeamento de entidades regulares

Uma relação para cada subentidade da HT

Professor(CPF, nascimento, instituicao, nome)

Aluno(CPF, nascimento, instituicao, nome, cotista)

Uma única relação para toda herança D ou D

- Características fortes (+) e fracas (-)
 - Só funciona com heranças definidas por um predicado/condição
 - Exige atributos opcionais (-)
 - Desaconselhada quando as subentidades têm muitos atributos ou relacionamentos
 - Exige testes para garantir a qualidade dos dados (-)
 - Testar o povoamento dos atributos e dos relacionamentos
 - Reduz junções (+)

Uma única relação para toda herança D ou D

Mapeamento

- A superentidade e as subentidades de uma herança são mapeadas para uma única relação
 - A PK da relação é o atributo identificador da superentidade mapeada
- O predicado/condição da herança torna-se um atributo da relação mapeada (seu domínio deve cobrir as subentidades)
- Os atributos e relacionamentos das subentidades migram para a relação mapeada
- ▶ Atributos comum, composto, derivado ou multivalorado → igual ao apresentado no mapeamento de entidades regulares

Uma única relação para toda herança D ou D

 (supondo que a herança é disjunta e definida por um predicado/condição)

Uma única relação para toda herança sobreposta

- Características fortes (+) e fracas (-)
 - Exige atributos opcionais (-)
 - Desaconselhada quando as subentidades têm muitos atributos ou relacionamentos
 - Exige testes para garantir a qualidade dos dados (-)
 - Testar o povoamento dos atributos e dos relacionamentos
 - Reduz junções (+)
 - Reduz redundância de dados (+)

Uma única relação para toda herança sobreposta

Mapeamento

- A superentidade e as subentidades de uma herança são mapeadas para uma única relação
 - A PK da relação é o atributo identificador da superentidade mapeada
- Para cada subentidade, criar na relação mapeada um atributo booleano
- Os atributos e relacionamentos da supertentidade e das subentidades migram para a relação mapeada
- ▶ Atributos comum, composto, derivado ou multivalorado → igual ao apresentado no mapeamento de entidades regulares

Uma única relação para toda herança sobreposta

Pesquisador(CPF, nascimento, instituicao, nome, eh_prof, eh_alu, cotista)

Mapear as entidades associativas

Mapeamento

- Cada Entidade Associativa é mapeada para uma relação
- As PK das relações envolvidas migram com FK obrigatórias
- Os atributos do relacionamento (se houverem) ficam na relação mapeada
- A PK da relação depende do grau e da cardinalidade do relacionamento
 - Usar as mesmas regras aplicadas em relacionamentos (ver próximos slides)

Mapear as entidades associativas

Escreve(<u>CPF, mat</u>)

CPF → Pesquisador(CPF)

mat → Artigo(matricula)

Mapear os relacionamentos e seus atributos

3 alternativas

- Fusão de relações
- Adição de chave estrangeira
- Criação de relação

- Características fortes (+) e fracas (-)
 - Exige atributos opcionais (-)
 - Desaconselhada quando as entidades têm muitos atributos ou relacionamentos

- Exige testes para garantir a qualidade dos dados (-)
 - Testar o povoamento dos atributos e dos relacionamentos

Reduz junções (+)

- Mapeamento (Melhor caso 1:1 Total/Total)
 - Fundir as relações em uma única relação
 - A PK da relação fundida deve ser uma das PK originais
 - Dar preferência para a PK que poderá ser mais consultada
 - Usar "[]" para definir a outra PK como chave alternativa (AK)
 - Usar "!" para definir a AK como obrigatória

Mapeamento (Melhor caso 1:1 - Total/Total)

ProjetoCartao(<u>serial</u>, descricao, end_CEP, end_detalhamento,([numero]!, saldo))

- Mapeamento (Caso alternativo 1:1 Total/Parcial)
 - Fundir as relações em uma única relação

- A PK da relação fundida deve ser a PK da relação original que tem participação parcial
 - Usar "[]" para definir a outra PK como chave alternativa (AK)

Avaliar Custo X Benefício!

Mapeamento (Caso alternativo 1:1 - Total/Parcial)

ProfessorProjetoCartao(serial, descricao, end_CEP, end_detalhamento, numero, saldo, [CPF]!

As semânticas da herança e do ternário são prejudicadas!

Adição de chave estrangeira

- Características fortes (+) e fracas (-)
 - Reduz atributos opcionais (+)
 - Reduz testes para garantir a qualidade dos dados (+)
 - Exige junção (-)

Adição de chave estrangeira

- Mapeamento (Melhor caso 1:N)
 - A PK da relação do lado 1 migra como FK para a outra relação
 - Caso o lado N seja total, usar "!" para definir a FK como obrigatória
 - Os atributos do relacionamento (se houverem) migram com a PK

Evento(<u>codigo</u>, sigla)

Artigo(<u>matricula</u>, titulo, nota, idioma, codigo)

codigo → Evento(codigo)

Adição de chave estrangeira

- Mapeamento (Caso alternativo 1:1)
 - Parcial/Parcial a PK de qualquer uma das relações migra como FK única e opcional (usar "[]" para definir a FK como única)

 Total/Parcial - a PK da relação do lado parcial migra como FK única e obrigatória (usar "[] + !" para definir a FK como única e obrigatória)

 Total/Total - a PK de qualquer uma das relações migra como FK única e obrigatória (usar "[] + !" para definir a FK como única e obrigatória)

Os atributos do relacionamento (se houverem) migram com a PK

Adição de chave estrangeira (1:1)

Professor (CPF)

CPF → Pesquisador(CPF)

ProjetoCartao(serial, descricao, end_CEP, end_detalhamento, numero, saldo [CPF]

CPF → Professor(CPF)

Criação de relação

- Características fortes (+) e fracas (-)
 - Reduz atributos opcionais (+)
 - Reduz testes para garantir a qualidade dos dados (+)
 - Exige junções (-)

- Mapeamento (Melhor caso M:N)
 - Cada relacionamento M:N é mapeado para uma relação
 - As PK das relações envolvidas migram com FK
 - A composição das FK forma a PK da relação
 - Os atributos do relacionamento (se houverem) ficam na relação mapeada

Referencia(<u>referenciador</u>, <u>referenciado</u>, ordem)
referenciador → Artigo(matricula)
referenciado → Artigo(matricula)

- Mapeamento (Caso alternativo 1:N evitar)
 - O relacionamento 1:N é mapeado para uma relação
 - As PK das relações envolvidas migram como FK
 - A FK do lado N torna-se PK
 - A outra FK torna-se obrigatória (usar "!" para definir a FK como obrigatória)
 - Os atributos do relacionamento (se houverem) ficam na relação mapeada

- Mapeamento (Caso alternativo 1:1 evitar)
 - O relacionamento 1:1 é mapeado para uma relação
 - As PK das relações envolvidas migram como FK
 - A PK é definida a partir das participações do relacionamento
 - Parcial/Parcial a PK pode ser qualquer uma das FK
 - Total/Parcial a PK é a FK do lado parcial
 - Total/Total a PK pode ser qualquer uma das FK
 - A outra FK torna-se única (AK) e obrigatória (usar "[] + !" para definir a FK como única e obrigatória)
 - Os atributos do relacionamento (se houverem) ficam na relação mapeada

Criação de relação (Relacionamentos N-ários)

Mapeamento

- Cada relacionamento n-ário é mapeado para uma relação
- As PK das relações envolvidas migram com FK obrigatórias (usar "!" para definir a FK como única e obrigatória)
- Os atributos do relacionamento (se houverem) ficam na relação mapeada
- A PK da relação depende da cardinalidade do relacionamento
 - N:N:N → PK formada por todas as FK
 - 1:N:N → PK dupla formada pelas FK do lado N
 - 1:1:N → caso raro e complexo
 - 1:1:1 → caso raro e complexo

Criação de relação (Relacionamentos N-ários)

Caso Prático

Caso Prático (Mapeando Entidades)

```
Projeto(serial, descricao, end_CEP, end_detalhamento);
E-mail(serial, e-mail)
serial → Projeto(serial)

Midia(serial, tipo, URL)
serial → Projeto(serial)

CartaoPesquisa(numero, saldo)
```


Caso Prático (Mapeando Entidades)

Caso Prático (Mapeando Herança)

Caso Prático (Mapeando E. Associativa)

Escreve(CPF, matricula)

CPF → Pesquisador(CPF)

mat → Artigo(matricula)

Caso Prático (Mapeando Relacionamento 1:1)

Caso Prático (Mapeando Relacionamento 1:N)

Caso Prático (Mapeando Relacionamento M:N)

Caso Prático (Mapeando Relacionamento N-ário)

cin.ufpe.br

Centro de Informática Un FILPLE