Experimental Mathematics in Haskell: on Pairing/Unpairing Functions and Boolean Evaluation

Paul Tarau¹ Brenda Luderman²

University of North Texas¹

ACES CAD2

TFP 2010, May 2010

Outline

- by using pairing functions (bijections N × N → N) on natural number representations of truth tables, we derive an encoding for Ordered Binary Decision Trees (OBDTs)
- boolean evaluation of a OBDT mimics its structural conversion to a natural number through recursive application of a matching pairing function
- also: we derive ranking and unranking functions for OBDTs, generalize to arbitrary variable order and multi-terminal OBDTs
- literate Haskell program, code at http://logic.csci. unt.edu/tarau/research/2009/fOBDT.hs

Pairing functions

"pairing function": a bijection $J: Nat \times Nat \rightarrow Nat$

$$K(J(x,y)) = x,$$

 $L(J(x,y)) = y$
 $J(K(z), L(z)) = z$

examples:

- Cantor's pairing function: geometrically inspired (100++ years ago - possibly also known to Cauchy - early 19-th century)
- the Pepis-Kalmar Pairing Function (1938):

$$f(x,y) = 2^{x}(2y+1) - 1 \tag{1}$$

a pairing/unpairing function based on boolean operations

```
type Nat = Integer
type Nat2 = (Nat, Nat)
bitpair :: Nat2 \rightarrow Nat
bitunpair :: Nat \rightarrow Nat2
bitpair (x,y) = inflate x . | . inflate' y
bitunpair z = (deflate z, deflate' z)
inflate: abcde-> a0b0c0d0e
inflate': abcde-> 0a0b0c0d0e
```

inflate/deflate in terms of boolean operations

```
inflate 0 = 0
inflate n = (twice . twice . inflate . half) n . | . parity n
deflate 0 = 0
deflate n = (twice . deflate . half . half) n . | . parity n
deflate' = half \cdot deflate \cdot twice
inflate' = twice . inflate
half n = shiftR n 1 :: Nat
twice n = shiftL n 1 :: Nat.
parity n = n \cdot \& \cdot 1 :: Nat
```

bitpair/bitunpair: an example

the transformation of the bitlists – with bitstrings aligned:

```
*OBDT> bitunpair 2012
(62,26)

-- 2012:[0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1]
-- 62:[0, 1, 1, 1, 1, 1]
-- 26:[ 0, 1, 0, 1, 1 ]
```

Note that we represent numbers with bits in reverse order.

Also, some simple algebraic properties:

```
bitpair (x,0) =  inflate x
bitpair (0,x) = 2 *  (inflate x)
bitpair (x,x) = 3 *  (inflate x)
```

Visualizing the pairing/unpairing functions

- Given that unpairing functions are bijections from N → N × N they will progressively cover all points having natural number coordinates in the plan.
- Pairing can be seen as a function z=f(x,y), thus it can be displayed as a 3D surface.
- Recursive application the unpairing tree can be represented as a DAG – by merging shared nodes.

Figure: 2D curve connecting values of bitunpair n for $n \in [0..2^{10} - 1]$

"curve.dat" using 1:2:3

Figure: Graph obtained by recursive application of bitunpair for 2012

Unpairing Trees: seen as OBDTs

```
data OBDT a = OBDT a (BT a)
data BT a = B0 \mid B1 \mid Da (BT a) (BT a)
unfold obdt :: Nat2 \rightarrow OBDT Nat
unfold_obdt (n,tt) | tt < 2^2 = 0DT n bt where
  bt = unfold with bitunpair n tt
  unfold with n \mid 0 \mid n < 1 = B0
  unfold with n \mid 1 \mid n < 1 = B1
  unfold with f n tt =
    D k (unfold with f k ttl) (unfold with f k tt2) where
      k=pred n
       (tt1,tt2)=ft
```

Folding back Trees to Natural Numbers

```
fold_obdt :: OBDT Nat \rightarrow Nat2 fold_obdt (OBDT n bt) = (n,fold_with bitpair bt) where fold_with rf B0 = 0 fold_with rf B1 = 1 fold_with rf (D _ 1 r) = rf (fold_with rf 1,fold_with rf r)
```

This is a purely structural operation - no boolean evaluation involved!

42

Truth tables as natural numbers

```
x y z \rightarrow f x y z
(0, [0, 0, 0]) \rightarrow 0
(1, [0, 0, 1]) \rightarrow 1
(2, [0, 1, 0]) \rightarrow 0
(3, [0, 1, 1]) \rightarrow 1
(4, [1, 0, 0]) \rightarrow 0
(5, [1, 0, 1]) \rightarrow 1
(6, [1, 1, 0]) \rightarrow 1
(7, [1, 1, 1]) \rightarrow 0
\{1, 3, 5, 6\}:: 106 = 2^1 + 2^3 + 2^5 + 2^6 = 2 + 8 + 32 + 64
01010110 (right to left)
```


Computing all Values of a Boolean Function with Bitvector Operations (Knuth 2009 - Bitwise Tricks and Techniques)

Proposition

Let v_k be a variable for $0 \le k < n$ where n is the number of distinct variables in a boolean expression. Then column k in the matrix representation of the inputs in the truth table represents, as a bitstring, the natural number:

$$v_k = (2^{2^n} - 1)/(2^{2^{n-k-1}} + 1)$$
 (2)

For instance, if n = 2, the formula computes $v_0 = 3 = [0, 0, 1, 1]$ and $v_1 = 5 = [0, 1, 0, 1]$.

we can express v_n with boolean operations + bitpair!

The function vn, working with arbitrary length bitstrings are used to evaluate the [0..n-1] *projection variables* v_k representing encodings of columns of a truth table, while vm maps the constant 1 to the bitstring of length 2^n , 111..1:

```
vn 1 0 = 1

vn n q | q == pred n = bitpair (vn n 0,0)

vn n q | q\geq0 && q < n' = bitpair (q',q') where

n' = pred n

q' = vn n' q

vm n = vn (succ n) 0
```

OBDTs

- an ordered binary decision diagram (OBDT) is a rooted ordered binary tree obtained from a boolean function, by assigning its variables, one at a time, to 0 (left branch) and 1 (right branch).
- deriving a OBDT of a boolean function f: repeated Shannon expansion

$$f(x) = (\bar{x} \land f[x \leftarrow 0]) \lor (x \land f[x \leftarrow 1])$$
(3)

with a more familiar notation:

$$f(x) = if \ x \ then \ f[x \leftarrow 1] \ else \ f[x \leftarrow 0]$$
 (4)

Boolean Evaluation of OBDTs

- OBDTs ⇒ ROBDDs by sharing nodes + dropping identical branches
- fold_obdt might give a different result as it computes different pairing operations!
- however, we obtain a truth table if we evaluate the OBDT tree as a boolean function – it would be nice if we could relate this tp the original truth table from which we unfolded the OBDT!

```
eval_obdt (OBDT n bt) = eval_with_mask (vm n) n bt where
eval_with_mask m _ B0 = 0
eval_with_mask m _ B1 = m
eval_with_mask m n (D x l r) = ite_ (vn n x)
    (eval_with_mask m n l) (eval_with_mask m n r)
```

The Equivalence of boolean evaluation and recursive pairing

SURPRISINGLY, it turns out that:

- boolean evaluation eval_obdt faithfully emulates fold_obdt
- and it also works on reduced OBDTs, ROBDDs, BDDs as they represent the same boolean formula

The Equivalence

Proposition

The complete binary tree of depth n, obtained by recursive applications of bitunpair on a truth table computes an (unreduced) OBDT, that, when evaluated (reduced or not) returns the truth table, i.e.

$$fold_obdt \circ unfold_obdt \equiv id$$
 (5)

eval_obdtounfold_obdt
$$\equiv id$$
 (6)

Ranking and Unranking of OBDTs

Ranking/unranking: bijection to/from Nat

- one more step is needed to extend the mapping between OBDTs with N variables to a bijective mapping from/to Nat:
- we will have to "shift toward infinity" the starting point of each new block of OBDTs in Nat as OBDTs of larger and larger sizes are enumerated
- we need to know by how much so we compute the sum of the counts of boolean functions with up to N variables.

Ranking/unranking of OBDTs

```
bsum 0 = 0

bsum n | n>0 = bsum1 (n-1) where

bsum1 0 = 2

bsum1 n | n>0 = bsum1 (n-1)+ 2^2^n

*OBDT> map bsum [0..6]

[0,2,6,22,278,65814,4295033110]
```

A060803 in the Online Encyclopedia of Integer Sequences

Generalizations

Given a permutation of n variables represented as natural numbers in [0..n-1] and a truth table $tt \in [0..2^{2^n}-1]$ we can define:

```
OBDT n (to_obdt_mn vs tt m n) where
   n=genericLength vs
   m=vm n
to_obdt_mn [] 0 = B0
to obdt mn [] = B1
to obdt mn (v:vs) tt m n = D v l r where
 cond=vn n v
 f0= (m 'xor' cond) .&. tt
 f1 = cond . \&. tt
 l=to obdt mn vs f1 m n
```

to_obdt vs tt | $0 \le tt \&\& tt \le m =$

Applications

- possible applications to (RO)BDDs: circuit synthesis/verification
- BDD minimization using our generalization to arbitrary variable order
- combinatorial enumeration and random generation of circuits
- succinct data representations derived from our OBDT encodings
- an interesting "mutation": use integers/bitstrings as genotypes,
 OBDTs as phenotypes in Genetic Algorithms

Conclusion

- NEW: the connection of pairing/unpairing functions and boolean evaluation of OBDTs
- synergy between concepts borrowed from foundation of mathematics, combinatorics, boolean logic, circuits
- Haskell as sandbox for experimental mathematics: type inference helps clarifying complex dependencies between concepts quite nicely - moving to a functional subset of Mathematica, after that, is routine.