

SPIS TREŚCI

	S	trona
1	Treść zadania	4
	1.1 Polecenie	. 4
	1.2 Problem	. 4
2	Siatka elementów skończonych	5
	2.1 Siatka elementów skończonych	. 5
3	Warunki brzegowe	6
	3.1 Wprowadzenie teoretyczne i podstawienia	. 6
	3.2 Zestaw warunków brzegowych przyjętych dla obu modeli	. 7
4	Proces obliczeniowy	9
	4.1 Temperatura w poszczególnych węzłach	. 9
	4.2 Temperatura poszczególnych elementów siatki	. 16
5	Porównanie wyników i wnioski	18
	5.1 Podstawowa siatka elementów skończonych	. 18
	5.2 Zagęszczona siatka elementów skończonych	. 22
6	System kontroli wersji - Github	25

1 Treść zadania Strona 2

1. Treść zadania

1.1. Polecenie

Napisać skrypt w dowolnym języku skryptowym (np. Matlab, Python, . . .), który pozwoli na rozwiązanie problemu opisującego przepływ ciepła w domenie o złożonym kształcie.

1.2. Problem

Równanie konwekcji

$$-k\frac{\partial T}{\partial \boldsymbol{n}} = h(T-T_{\infty})$$

Metodą elementów skończonych wyznaczyć rozkład temperatury T(x,y) w stanie ustalonym.

2. Siatka elementów skończonych

2.1. Siatka elementów skończonych

Badany element został podzielony na dwie siatki złożone z kwadratowych elementów w celu porównania wyników. Pierwsza z nich składa się z 10 elementów oraz 22 węzłów. Druga, zagęszczona posiada 40 elementów skończonych oraz 63 węzły. Poniższe rysunki przedstawiają zaprojektowane siatki wraz z numerami poszczególnych elementów oraz węzłów.

Rysunek 1: Siatka elementów skończonych złożona z 10 elementów

Rysunek 2: Siatka elementów skończonych po zagęszczeniu

3 Warunki brzegowe Strona 4

3. Warunki brzegowe

3.1. Wprowadzenie teoretyczne i podstawienia

Rozważamy problem dwuwymiarowy, dlatego wektor n zwany normalną zewnętrzną brzegu posiada dwa elementy:

$$n = \begin{Bmatrix} n_x \\ n_y \end{Bmatrix} |n| = \sqrt{n_x^2 + n_y^2} = 1$$

Do badanej geometrii od dołu $(n_x = 0, n_y = -1)$ przyłożony jest strumień ciepła:

$$-k\frac{\delta T}{\delta n} = -(k_x \frac{\delta T}{\delta x} n_x + k_y \frac{\delta T}{\delta y} n_y) = q_0$$

Po podstawieniu:

$$-k\frac{\delta T}{\delta n} = k\frac{\delta T}{\delta y} = q_0 \Longrightarrow \alpha = 0, \beta = 6000$$

W modelu mamy również do czynienia z konwekcją w pionie (z prawej $(n_x = 1, n_y = 0)$ oraz lewej $(n_x = -1, n_y = 0)$), a także w poziomie $(n_x = 0, n_y = 1)$.

$$-k\frac{\delta T}{\delta n} = -(k_x \frac{\delta T}{\delta x} n_x + k_y \frac{\delta T}{\delta y} n_y) = h(T - T_{\infty})$$

Z prawej:

$$\alpha = -h = -85 \text{ oraz } \beta = h * T_{\infty} = 85 * 28 = 2380$$

Z lewej:

$$\alpha = h = 85 \text{ oraz } \beta = h * T_{\infty} = 85 * 28 = 2380$$

W poziomie:

$$\alpha = -h = -85 \text{ oraz } \beta = h * T_{\infty} = 85 * 28 = 2380$$

3.2. Zestaw warunków brzegowych przyjętych dla obu modeli

Do programu warunki brzegowe zostały wprowadzone na zasadzie macierzy. Poniżej zbiory wartości dla obu rozpatrywanych siatek elementów skończonych.

Elementy ponumerowane zostały od 0 ze względu na strukturę działania języka programowania Python. Ostatnie 4 kolumny opisują nr węzłów których dotyczą warunki brzegowe. Kolumny 2-9 to warunki brzegowe dla poszczególnych brzegów i węzłów.

$$beta_1 = 6000$$

$$beta_2 = 85 * 28$$

$$alfa = -85$$

3 Warunki brzegowe Strona 5

0	0	alfa	alfa	alfa	0	beta_2	beta_2	beta_2	5	6	2	1
1	0	alfa	alfa	alfa	0	beta_2	beta_2	beta_2	7	8	4	3
2	0	alfa	0	alfa	0	beta_2	0	beta_2	9	10	6	5
3	0	alfa	0	alfa	0	beta_2	0	beta_2	14	15	8	7
4	0	0	0	alfa	beta_1	0	0	beta_2	16	17	10	9
5	0	0	alfa	0	beta_1	0	beta_2	0	17	18	11	10
6	0	0	alfa	0	beta_1	0	beta_2	0	18	19	12	11
7	0	0	alfa	0	beta_1	0	beta_2	0	19	20	13	12
8	0	0	alfa	0	beta_1	0	beta_2	0	20	21	14	13
9	0	alfa	0	0	beta 1	beta 2	0	0	21	22	15	14

Rysunek 3: Spis parametrów przyjętych dla modelu podstawowego

0	0	0	alfa	alfa	0	0	beta_2	beta_2	7	8	2	1
1	0	alfa	alfa	0	0	beta_2	beta_2	0	8	9	3	2
2	0	0	alfa	alfa	0	0	beta_2	beta_2	10	11	5	4
3	0	alfa	alfa	0	0	beta_2	beta_2	0	11	12	6	5
4	0	0	0	alfa	0	0	0	beta_2	13	14	8	7
5	0	alfa	0	0	0	beta_2	0	0	14	15	9	8
6	0	0	0	alfa	0	0	0	beta_2	16	17	11	10
7	0	alfa	0	0	0	beta_2	0	0	17	18	12	11
8	0	0	0	alfa	0	0	0	beta_2	19	20	14	13
9	0	alfa	0	0	0	beta_2	0	0	20	21	15	14
10	0	0	0	alfa	0	0	0	beta_2	22	23	17	16
11	0	alfa	0	0	0	beta_2	0	0	23	24	18	17
12	0	0	0	alfa	0	0	0	beta_2	25	26	20	19
13	0	alfa	0	0	0	beta_2	0	0	26	27	21	20
14	0	0	0	alfa	0	0	0	beta_2	35	36	23	22
15	0	alfa	0	0	0	beta_2	0	0	36	37	24	23
16	0	0	0	alfa	0	0	0	beta_2	38	39	26	25
17	0	0	0	0	0	0	0	0	39	40	27	26
18	0	0	alfa	0	0	0	beta_2	0	40	41	28	27
19	0	0	alfa	0	0	0	beta_2	0	41	42	29	28
20	0	0	alfa	0	0	0	beta_2	0	42	43	30	29
21	0	0	alfa	0	0	0	beta_2	0	43	44	31	30
22	0	0	alfa	0	0	0	beta_2	0	44	45	32	31
23	0	0	alfa	0	0	0	beta_2	0	45	46	33	32
24	0	0	alfa	0	0	0	beta_2	0	46	47	34	33
25	0	0	alfa	0	0	0	beta_2	0	47	48	35	34
26	0	0	0	0	0	0	0	0	48	49	36	35
27	0	alfa	0	0	0	beta_2	0	0	49	50	37	36
28	0	0	0	alfa	beta_1	0	0	beta_2	51	52	39	28
29	0	0	0	0	beta_1	0	0	0	52	53	40	39
30	0	0	0	0	beta_1	0	0	0	53	54	41	40
31	0	0	0	0	beta_1	0	0	0	54	55	42	41
32	0	0	0	0	beta_1	0	0	0	55	56	43	42
33	0	0	0	0	beta_1	0	0	0	56	57	44	43
34	0	0	0	0	beta_1	0	0	0	57	58	45	44
35	0	0	0	0	beta_1	0	0	0	58	59	46	45
36	0	0	0	0	beta_1	0	0	0	59	60	47	46
37	0	0	0	0	beta_1	0	0	0	60	61	48	47
38	0	0	0	0	beta_1	0	0	0	61	62	49	48
39	0	alfa	0	0	beta_1	beta_2	0	0	62	63	50	49

Rysunek 4: Spis parametrów przyjętych dla modelu zagęszczonego

4. Proces obliczeniowy

Obliczenia zostały wykonane przy użyciu opracowanego w Pythonie (biblioteki: NumPy, SymPy, Seaborn, Pandas) skryptu. Skrypt został opracowany w oparciu o przykłady obliczeniowe oraz przykładowe skrypty Matlaba pochodzące z książki FUNDAMENTAL Finite Element Analysis and Applications M. Asghar Bhattiego.

4.1. Temperatura w poszczególnych węzłach

Poniżej przedstawiony jest proces wyznaczania temperatury w poszczególnych węzłach siatki. Skrypt wykonuje kolejne kroki w pętlach dla poszczególnych elementów i węzłów danych elementów dla lokalnych układów współrzędnych na końcu agregując całość do macierzy globalnych. Przedstawiony został skrócony proces obliczeniowy dla pierwszego elementu siatki 10 podstawowej do którego należą węzły kolejno o numerach 5,6,2,1. Kolejność nie została wybrana przypadkowo ponieważ to właśnie w takiej kolejności rozpatrywane są kolejne boki poszczególnych elementów siatki.

Rysunek 5: Rozpatrywany element z numerami węzłów oraz kolejnością rozpatrywania brzegów

Macierz k_k :

$$k_k = \begin{bmatrix} 36.67 & -9.17 & -18.33 & -9.17 \\ -9.17 & 36.67 & -9.17 & -18.33 \\ -18.33 & -9.17 & 36.67 & -9.17 \\ -9.17 & -18.33 & -9.17 & 36.67 \end{bmatrix}$$

Macierz k_p :

Wektor r_q :

$$r_q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Warunki brzegowe dla poszczególnych boków elementu.

$$k_{\alpha 2-3} \begin{bmatrix} 0 & 0. & 0 & 0 \\ 0 & 1.13 & 0.57 & 0 \\ 0 & 0.57 & 1.13 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$k_{\alpha 4-1} \begin{bmatrix} 1.13 & 0 & 0 & 0.57 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0.57 & 0 & 0 & 1.13 \end{bmatrix}$$

$$r_{eta 1-2}egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix}$$

$$r_{\beta 2-3} \begin{bmatrix} 0 \\ 47.6 \\ 47.6 \\ 0 \end{bmatrix}$$

$$r_{\beta 3-4} \begin{bmatrix} 0 \\ 0 \\ 47.6 \\ 47.6 \end{bmatrix}$$

$$r_{\beta 4-1} \begin{bmatrix} 47.6\\0\\0\\47.6 \end{bmatrix}$$

Otrzymane równanie:

$$\begin{bmatrix} 37.8 & -9.17 & -18.33 & -8.6 \\ -9.17 & 37.8 & -8.6 & -18.33 \\ -18.33 & -8.6 & 38.93 & -8.6 \\ -8.6 & -18.33 & -8.6 & 38.93 \end{bmatrix} \begin{bmatrix} T_5 \\ T_6 \\ T_2 \\ T_1 \end{bmatrix} = \begin{bmatrix} 47.6 \\ 47.6 \\ 95.2 \\ 95.2 \end{bmatrix}$$

Powyższy proces został przeprowadzony dla wszystkich 10 elementów skończonych. Otrzymane macierze cząstkowe zostały agregowane do macierzy o współrzędnych globalnych.

	38.93	-8.60	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-8.60	38.93	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	38.93	-8.60	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	-8.60	38.93	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-8.60	-18.33	0.00	0.00	75.60	-18.33	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-18.33	-8.60	0.00	0.00	-18.33	75.60	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	-8.60	-18.33	0.00	0.00	75.60	-18.33	0.00	0.00	0.00	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	-18.33	-8.60	0.00	0.00	-18.33	75.60	0.00	0.00	0.00	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	-8.60	-18.33	0.00	0.00	75.60	-18.33	0.00	0.00	0.00	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	-18.33	-8.60	0.00	0.00	-18.33	112.27	-8.60	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00
Macierz globalna =	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-8.60	75.60	-8.60	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00
Macierz grobania —	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-8.60	75.60	-8.60	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-8.60	75.60	-8.60	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	-8.60	112.27	-18.33	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33
	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	-18.33	75.60	0.00	0.00	0.00	0.00	0.00	-18.33	-8.60
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-8.60	-18.33	0.00	0.00	0.00	0.00	0.00	37.80	-9.17	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00	-9.17	73.33	-9.17	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00	-9.17	73.33	-9.17	0.00	0.00	0.00
	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00	-9.17	73.33	-9.17	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00	-9.17	73.33	-9.17	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-18.33	-18.33	0.00	0.00	0.00	0.00	-9.17	73.33	-9.17
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-18.33	-8.60	0.00	0.00	0.00	0.00	0.00	-9.17	37.80

Rozwiązanie poniższego równania pozwala na wyliczenie temperatur dla wszystkich rozpatrywanych węzłów.

	$\lceil T1 \rceil$		[95.2]		[48.44]	
	T2		95.2		48.49	
	T3		95.2		48.49	
	T4	$\begin{bmatrix} 4 & 95.2 \end{bmatrix}$		48.44		
	T5		95.2		51.16	
	T6		95.2		50.93	
	T7		95.2		50.93	
	T8		95.2		51.16	
	T9		95.2		55.46	
	T10		95.2		57.62	
[Magiorz globalna] *	T11	_	95.2	Otrzymane wyniki: [T]	62.06	$[^{\circ}C]$
[Macierz globalna] *	T12	=	95.2		63.03	
	T13		95.2		62.06	
	T14		95.2		57.62	
	T15		95.2		55.46	
	T16		167.6		60.2	
	T17		240		62.72	
	T18		240		65.08	
	T19		240		66.33	
	T20		240		65.08	
	T21		240		62.72	
	$\lfloor T22 \rfloor$		[167.6]		60.2	

4.2. Temperatura poszczególnych elementów siatki

Wyznaczenie temperatury dla poszczególnych elementów siatki wiązało się z wykorzystaniem funkcji kształtu. Ta część obliczeń również została zautomatyzowana w Pythonie przy pomocy biblioteki do obliczeń symbolicznych SymPy. Schemat obliczeniowy zaimplementowany do programu: Funkcja kształtu u(s,t):

$$u(s,t) = [N_1, N_2, N_3, N_4] \begin{cases} u_1 \\ u_2 \\ u_3 \\ u_4 \end{cases}$$

gdzie:

$$s = x - a$$
 oraz $t = y - b$

$$N_1 = \frac{(a-s)(b-t)}{4ab} = 10000(x-1)/100(y-1/100)$$

$$N_2 = \frac{(a+s)(b-t)}{4ab} = -10000x(y-1/100)$$

$$N_3 = \frac{(a+s)(b+t)}{4ab} = 10000xy$$

$$N_4 = \frac{(a-s)(b+t)}{4ab} = -10000y(x-1/100)$$

$$N^T = 10000(x-1)/100(y-1/100), -10000x(y-1/100), 10000xy, -10000y(x-1/100)$$

Wyznaczone rozkłady T(x,y) dla poszczególnych elementów: Element nr 1:

$$T(x,y) = 121213.66 * x * y + 127327.72 * x * (0.02 - y) + 121096.84 * y * (0.02 - x) + 127898.21 * (0.02 - x) * (0.02 - y) + 121096.84 * y * (0.02 - x) + 127898.21 * (0.02 - x) * (0.02 - y) * (0.02$$

Element nr 2:

$$T(x,y) = 121096.84 * x * y + 127898.21 * x * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - y) + 121213.66 * y * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 - x) + 127327.72 * (0.02 - x) * (0.02 -$$

Element nr 3:

$$T(x,y) = 127327.72 \times x \times y + 144038.03 \times x \times (0.02 - y) + 127898.21 \times y \times (0.02 - x) + 138649.185 \times (0.02 - x) \times (0.02 - y) + 127898.21 \times y \times (0.02 - x) + 138649.185 \times (0.02 - x) \times (0.02 - y) + 127898.21 \times y \times (0.02 - x) + 138649.185 \times (0.02 - x) \times (0.02 - y) + 127898.21 \times y \times (0.02 - x) + 138649.185 \times (0.02 - x) \times (0.02 - x)$$

Element nr 4:

$$T(x,y)$$
127898.21* $x*y$ +138649.18* $x*(0.02-y)$ +127327.72* $y*(0.02-x)$ +144038.036971279* $(0.02-x)*(0.02-y)$

Element nr 5:

$$T(x,y) = 144038.03 * x * y + 156791.72 * x * (0.02 - y) + 138649.18 * y * (0.02 - x) + 150511.58 * (0.02 - x) * (0.02 - y) + 150511.58 * (0.02 - x) * (0.02 - y) * (0.02 - y$$

Element nr 6:

$$T(x,y) = 155148.01 * x * y + 162697.23 * x * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) * (0.02 - y)$$

Element nr 7:

$$T(x,y) = 157568.60 * x * y + 165822.28 * x * (0.02 - y) + 155148.01 * y * (0.02 - x) + 162697.23 * (0.02 - x) * (0.02 - y)$$

Element nr 8:

$$T(x,y) = 155148.01 * x * y + 162697.23 * x * (0.02 - y) + 157568.60 * y * (0.02 - x) + 165822.28 * (0.02 - x) * (0.02 - y)$$

Element nr 9:

$$T(x,y) = 144038.03 * x * y + 156791.72 * x * (0.02 - y) + 155148.01 * y * (0.02 - x) + 162697.23 * (0.02 - x) * (0.02 - y) + 155148.01 * y * (0.02 - x) + 162697.23 * (0.02 - x) * (0.02 - y) * (0.02 - y) * (0.02 - y) * (0.02 - x) * (0.02 - y) * (0.02 - x) * (0.02 - y) * (0.02 - y) * (0.02 - y) * (0.02 - y) * (0.02 - x) * (0.02 - y) * (0.02$$

Element nr 10:

$$T(x,y) = 138649.18 * x * y + 150511.58 * x * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) * (0.02 - y) + 144038.03 * y * (0.02 - x) + 156791.72 * (0.02 - x) *$$

5. Porównanie wyników i wnioski

W poniższych podrozdziałach przedstawione zostały tabelarycznie oraz w postaci wykresów wartości wszystkich obliczonych temperatur, zarówno tych dla węzłów jak i elementów. Zgodnie z przypuszczeniami zmienność temperatury dla prostszego modelu jest mniejsza, w zakresie 48-63 °C, gdy dla modelu zagęszczonego to 44-73 °C. Różnica pomiędzy wyznaczonymi temperaturami świadczy o tym, że dla badanego modelu siatka złożona jedynie z 10 elementów to zdecydowanie zbyt mało. Wyniki dla siatki zagęszczonej możemy uznać za znacznie dokładniejsze, co jednak nie wyklucza konieczności kolejnego zagęszczenia w celu sprawdzenia czy siatka jest wystarczająca.

Całość obliczeń wykonuje się automatycznie w programie, zadaniem użytkownika jest jedynie podanie ilości elementów, ilości węzłów oraz import odpowiednio wcześniej przygotowanego pliku (przykładowe pokazane w rozdziale poświęconym warunkom brzegowym) dotyczącego warunków brzegowych poszczególnych elementów.

Prezentacja wszystkich kroków obliczeniowych dla wszystkich elementów byłaby niezwykle czasochłonna i w pewnych przypadkach wręcz niemożliwa na przykład ze względu na to, że po zagęszczeniu siatki, macierz globalna rośnie do rozmiaru 63x63.

5.1. Podstawowa siatka elementów skończonych

Tabelaryczne zestawienie wartości temperatur uzyskanych dla poszczególnych elementów:

Nr elementu	Temperatura $^{\circ}C$
1	48.48546425
2	48.43873641
3	50.93108811
4	51.15928639
5	57.61521479
6	62.05920611
7	63.02744077
8	62.05920611
9	57.61521479
10	55.45967291

Tabelaryczne zestawienie wartości temperatur uzyskanych dla poszczególnych wezłów:

J. Wilczek

Nr węzła	Temperatura $^{\circ}C$
1	48.44
2	48.49
3	48.49
4	48.44
5	51.16
6	50.93
7	50.93
8	51.16
9	55.46
10	57.62
11	62.06
12	63.03
13	62.06
14	57.62
15	55.46
16	60.2
17	62.72
18	65.08
19	66.33
20	65.08
21	62.72
22	60.2

Rysunek 6: Heatmapa rozkładu temperatur dla siatki złożonej z 10 elementów

5.2. Zagęszczona siatka elementów skończonych

Tabelaryczne zestawienie wartości temperatur uzyskanych dla poszczególnych elementów:

Nr ele.	T ° C	Nr ele.	$T \circ C$	Nr ele.	T ° C	Nr ele.	T ° C
1	44.47777974	11	48.9542097	21	69.23013303	31	68.52356696
2	43.98238594	12	48.30964855	22	69.64320139	32	70.8817463
3	44.71990444	13	52.64750883	23	69.18666749	33	72.22577239
4	44.2157206	14	52.01135405	24	67.82437147	34	72.65586966
5	46.01450742	15	52.9952679	25	65.45592659	35	72.17880562
6	45.4735679	16	51.89086792	26	60.10193373	36	70.78846668
7	46.27902527	17	57.25345027	27	57.8228249	37	68.36342809
8	45.72388533	18	60.07901165	28	56.1776463	38	65.56275027
9	48.64934804	19	65.50276606	29	63.29630979	39	62.84688258
10	48.07246923	20	67.90748901	30	65.86365187	40	60.66403654

Tabelaryczne zestawienie wartości temperatur dla poszczególnych węzłów:

Nr węzła	$T \circ C$								
1	43.98	16	48.36	31	69.64	46	70.79	61	69.96
2	44.48	17	48.95	32	69.19	47	68.36	62	67.42
3	43.98	18	48.31	33	67.82	48	65.56	63	65.07
4	44.22	19	51.5	34	65.46	49	62.85		
5	44.72	20	52.65	35	60.1	50	60.66		
6	44.22	21	52.01	36	57.82	51	66.79		
7	45.47	22	52.34	37	56.18	52	69.09		
8	46.01	23	53.	38	57.03	53	70.42		
9	45.47	24	51.89	39	63.3	54	72.74		
10	45.73	25	55.61	40	65.86	55	74.79		
11	46.28	26	57.25	41	68.52	56	76.13		
12	45.72	27	60.08	42	70.88	57	76.57		
13	48.01	28	65.5	43	72.23	58	76.08		
14	48.65	29	67.91	44	72.66	59	74.68		
15	48.07	30	69.23	45	72.18	60	72.53		

Rysunek 7: Heatmapa rozkładu temperatur dla siatki złożonej z 40 elementów

6. System kontroli wersji - Github

Cała programistyczna część projektu została opracowana z wykorzystaniem systemu kontroli wersji GIT oraz zamieszczona na portalu Github.

Link do projektu: Klik

Literatura Strona 17

Literatura

- [1] Pudlik W., WYMIANA I WYMIENNIKI CIEPŁA, Politechnika Gdańska, Gdańsk 2012
- [2] Bhattiego M. A., FUNDAMENTAL Finite Element Analysis and Applications,
- [3] https://www.youtube.com/watch?v=CSAIxrWu5nc&t=431s
- [4] https://www.youtube.com/watch?v=XPbFUN-AsxU&t=453s