CS1231S: Discrete Structures Tutorial #3: Sets

(Week 5: 5 - 9 September 2022)

1. Discussion Questions

These are meant for discussion on Canvas. No answers will be provided.

D1 Which of the following are true? Which are false?

(a)
$$\emptyset \in \emptyset$$
.

(e)
$$\{\emptyset, 1\} = \{1\}.$$

(b)
$$\emptyset \subseteq \emptyset$$
.

(f)
$$1 \in \{\{1,2\}, \{2,3\}, 4\}.$$

(c)
$$\emptyset \in \{\emptyset\}$$
.

(g)
$$\{1,2\} \subseteq \{3,2,1\}$$
.

(d)
$$\emptyset \subseteq \{\emptyset\}$$
.

(h)
$$\{3,3,2\} \subseteq \{3,2,1\}$$
.

D2. Let
$$A = \{1, \{1,2\}, 2, \{2,1,1\}\}$$
. Find $|A|$.

D3. Let
$$A = \{0,1,4,5,6,9\}$$
 and $B = \{0,2,4,6,8\}$. Find $|A \cap B|$ and $|A \cup B|$.

2. Tutorial Questions

Note that the sets here are finite sets, unless otherwise stated.

1. Let $\mathcal{P}(A)$ denotes the power set of A. Find the following:

a.
$$\mathcal{P}(\{a,b,c\})$$
;

b.
$$\mathcal{P}\left(\mathcal{P}(\mathcal{P}(\emptyset))\right)$$
.

2. Let $A = \{5,6,7,...,12\}$. Find the following:

a.
$$\{n \in A : n \text{ is even}\};$$

b.
$$\{n \in A : n = m^2 \text{ for some } m \in \mathbb{Z}\};$$

c.
$$\{-5, -4, -3, ..., 5\} \setminus \{1, 2, 3, ..., 10\};$$

d.
$$\overline{\{5,7,9\} \cup \{9,11\}}$$
, where A is considered the universal set;

e.
$$\{(x,y) \in \{1,3,5\} \times \{2,4\} : x + y \ge 6\}$$
.

3. (Past year's exam question.)

Denote by |n| the absolute value of the integer n, i.e.,

$$|n| = \begin{cases} n, & \text{if } n \ge 0; \\ -n, & \text{if } n < 0. \end{cases}$$

Given the set $S = \{-9, -6, 1, 3, 5, 8\}$, for each of the following statements, state whether it is true or false, with explanation.

- a. $\exists z \in S \ \forall x, y \in S \ z > |x y|$.
- b. $\exists z \in S \ \forall x, y \in S \ z < |x y|$.
- 4. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n 5 : n \in \mathbb{Z}\}$. Is A = B? Prove that your answer is correct. What does this tell us about how odd numbers may be defined?
- 5. Using definitions of set operations (also called the **element method**), prove that for all sets A, B, C,

$$A \cap (B \setminus C) = (A \cap B) \setminus C$$
.

6. (Past year's midterm test question.)

Using **set identities** (Theorem 6.2.2), prove that for all sets A, B and C,

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

- 7. For sets A and B, define $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
 - a. Let $A = \{1,4,9,16\}$ and $B = \{2,4,6,8,10,12,14,16\}$. Find $A \oplus B$.
 - b. Using set identities (Theorem 6.2.2), prove that for all sets A and B,

$$A \oplus B = (A \cup B) \setminus (A \cap B).$$

- 8. Let A and B be set. Show that $A \subseteq B$ if and only if $A \cup B = B$.
- 9. Hogwarts School of Witchcraft and Wizardry where Harry Potter attended was divided into 4 houses: Gryffindor, Hufflepuff, Ravenclaw and Slytherin.

Let HSWW be the set of students in the Hogwarts School of Witchcraft and Wizardry, and G, H, R and S be the sets of students in the 4 houses.

What are the necessary conditions for $\{G, H, R, S\}$ to be a partition of HSWW? Explain in English and the write logical statements.

For questions 10 to 12, for sets A_m , A_{m+1} , ..., A_n , we define the following:

$$\bigcup_{i=m}^{n} A_i = A_m \cup A_{m+1} \cup \dots \cup A_n$$

and

$$\bigcap_{i=m}^{n} A_i = A_m \cap A_{m+1} \cap \dots \cap A_n$$

10. Let $A_i = \{x \in \mathbb{Z} : x \ge i\}$ for all integers i. Write down $\bigcup_{i=2}^5 A_i$ and $\bigcap_{i=2}^5 A_i$ in **roster notation**.

- 11. Let $V_i = \left\{ x \in \mathbb{R} : -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all positive integers i.
 - a. What is $\bigcup_{i=1}^4 V_i$?
 - b. What is $\bigcap_{i=1}^4 V_i$?
 - c. What is $\bigcup_{i=1}^{n} V_i$, where n is a positive integer?
 - d. What is $\bigcap_{i=1}^{n} V_i$, where n is a positive integer?
 - e. Are V_1 , V_2 , V_3 , ... mutually disjoint?
- 12. Let $B_1, B_2, B_3, \dots, B_k$ and $C_1, C_2, C_3, \dots, C_l$ be sets such that

$$\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$$

Show that $B_i \subseteq C_j$ for any $i \in \{1, 2, ..., k\}$ and any $j \in \{1, 2, ..., l\}$.