

2019-1-24

Delta-2A 通讯接口协议

[Delta-2A]

目录

— .	雷达通讯简介	2
= .	通讯帧结构	2
Ξ.	校验码计算	5
四.	通讯帧实例解析	6

一.雷达通讯简介

Delta-2A 激光雷达是通过 UART TTL 电平与外部设备通信的,仅支持单工通讯(即激光雷达主动发数据帧到外部设备),外部设备只需从数据帧中提取有效数据即可,不需要做任何回应,通讯帧中的所有数据都是 16 进制格式数据。

雷达是旋转测量一周,扫描得到周围一圈均匀分布点的信息(点的角度和距离)。sdk就是接收解析数据,得到每一圈点的信息。一圈360°被平均分为16帧上报扫描信息(见下面命令字列表)帧,所以得到16帧的每帧起始角度分别是0°(零点——位置见规格书),22.5°、45°、67.5°、90°...270°、292.5°、315、337.5°、360°。16帧数据加起来是完整一圈,一圈的总点数=16*每帧的点数;每帧的总点数根据扫描信息帧计算距离个数可以得到(距离个数=总点数)。每帧数据点的信息(角度和距离):一帧中第N个点的距离是扫描信息帧中N距离值,那一帧中第N个点距离对应的角度=此帧起始角度+(N-1)*22.5/(每帧的总点数),这样一帧点信息(角度和距离)都有了。

依照本文定义的通讯协议解析通讯数据,可以解析出实时测量信息和设备的健康状态信息。

二.通讯帧结构

通讯帧由帧头、帧长度、帧类型、命令字、参数长度、参数、校验码组成, 主要用于激光雷达主动上传测量信息,故障信息等给外部主机,主机端仅需要从 雷达上传的通讯帧中提取出有效数据即可,不需要回应。

命令帧格式如下:

帧 头: 帧头字段占用 1 Byte,固定为 0xAA.

帧长度:帧长度字段占用 2Byte,帧长度的计算是从帧头开始,到校验码前一字节, 高位在前,低位在后。

协议版本:地址码字段占用 1Byte,默认为 0x00。

帧类型: 帧类型字段占用 1Byte,固定为 0x61。

命令字:命令字字段占1Byte,是区分不同命令的标识符。

参数长度:参数长度占 2Byte,是数据帧中有效数据的长度,高位在前,低位在后。

参 数:参数字段是命令的有效数据。

校验码: 校验码字段是 16 位的累加和,占两个字节,高位在前,低位在后。

计算:从帧头开始到校验码前一字节累加起来的和。

命令字列表:

命令字	描述	参数长度	参数描述
0xAD	测量信息	(3N+5)Bytes	OBytes: 雷达转速值,8 bits 无符号数,最小分辨率为
			0.05r/s(即转速数值为 1 , 对应转速是 0.05r/s)
			1~2Bytes:零点偏移量,16 bits 有符号数,高位在前,
			低位在后,最小辨率为 0.01°(零点偏移量: 雷达调
			试信息,解析后不用)
			3 ~ 4Bytes:
			本数据帧启始角度值,16 bits 无符号数,高位在前,低
			5 Bytes: 距离值 1 对应的信号值,8 bits 无符号数(信

号值:雷达调试信息,解析后不用)
6~7Bytes:
距离值 1,16 bits 无符号数,高位在前,低位在后
8Bytes:
距离值 2 对应的信号值,8 bits 无符号数 (信号值:雷
达调试信息,解析后不用)
9 ~ 10Bytes :
距离值 2,16 bits 无符号数,高位在前,低位在后
3N + 2Bytes: 距离值 N 对应的信号值,8 bits 无符号
数(信号值:雷达调试信息,解析后不用)
3N + 3 ~ 3N + 4Bytes :
距离值 N,16 bits 无符号数,高位在前,低位在后
备注:
1.角度取值范围: 0 ~ 36000
2.角度分辨率: 0.01°(即角度数值为 1,对应角度是
0.01°)
距离分辨率 0.25mm(即距离数值为 1,对应实际距离
是 0.25mm)
3.角度计算:

			例:距离 n(n 取 1 ~ N,N 本帧距离点数)对应角度计算:
			N = (参数长度 - 5)/3
			距离 n 的角度 = 启始角度值 + 22.5°*(n - 1)/N
0xAE	设备健康	1Byte	设备转速故障
	信息		转速值, 8 bits 无符号数, 最小分辨率为 0.05r/s

三.校验码计算

本协议通讯帧校验算法采用 16 位的累加和,下面是计算校验码的例程,仅供参考。

//=====================================
=======================================
// 校验码计算
// *Start_Byte:开始字节
// Num_Bytes:被计算数据的长度
// 返回值: 16 位的校验码
//=====================================
=======================================
u16 CRC16(u8 *Start_Byte,u16 Num_Bytes)
{


```
u16 Checksum = 0;
while (Num_Bytes--)
{ // 计算 CRC
Checksum += *Start_Byte++;
}
return Checksum;
```

四.通讯帧实例解析

0. 协议中分辨率:实际测量数据=通讯中数值*分辨率

实际转速=通讯中转速数值*分辨率(0.05r/s)

实际距离=通讯中距离数值*分辨率(0.25mm)

实际角度=通讯中角度数值*分辨率(0.01°)

1. 测量数据帧:

AA 00 9A 01 61 AD 00 92 82 00 87 69 78 00 00 00 46 21 3A 54 23 78 00 00 00 00 00 00 91 33 60 82 32 F7 93 32 EB 6D 32 E0 51 21 88 00 00 00 5D 21 88 66 21 8D 68 21 BF 41 32 D4 86 33 02 4D 32 E0 89 51 48 8E 51 48 92 51 48 8C 51 48 63 50 19 6D 51 48 7C 51 64 92 51 64 89 51 48 90 51 64 89 51 48 93 51 64 4B 53 2D 57 59 BA 43 2F 78 41 2E E4 00 00

00 54 2E DE 6B 2E E4 6B 2F 50 58 2E E4 7E 2F 64 5D 2F 78 3F 5A 0B 5A 5B FD 57 5B D3 5B 5C 28 59 5C 28 59 5B FD 5E 5E 32 35 BC

AA: 帧头

00 9A: 帧长度为 0x009A(注意:只是实例帧的帧长度,不是雷达实际长度)

01: 协议版本

61: 帧类型

AD: 命令字

00 92: 有效数据长度 0x0047

82: 雷达转速 130*0.05r/s (分辨率) =6.50r/s

00 87: 零点偏移量

69 78: 起始角度 27000*0.01°(分辨率)=270°

00: 信号信1

00 00: 距离值1为0*0.25mm(分辨率)=0mm

46: 信号值 2

21 3A: 距离值 2 为 8506*0.25mm (分辨率) = 2126mm

•••••

5E: 信号值 47

5E 32: 距离值 47 为 24114*0.25mm (分辨率) =6028mm

35 BC: 校验码 0x35BC=(AA+00+9A+...+FD+5E+5E+32)

2. 雷达转速故障帧:

AA 00 09 00 61 AE 00 01 69 02 2C

AA: 帧头标识。

00 09: 帧长度为 0x0009(即 9)字节 (不包含 CRC 码)

00: 协议版本

61: 帧类型

AE: 命令字

00 01: 有效数据长度 0x0001

C9: 雷达转速 0xC9,即 201*0.05r/s (分辨率) = 10.05r/s

02 2C: 校验码 0x022c