

UNIVERSITY OF RWANDA College of Science & Technology School of Engeering

Department of Electrical & Electronics Engineering

Dr. Kizito NKURIKIYEYEZU

EPE 2165—Analog Electronics

HOMEWORK #2—Signals and amplifiers

Question:	1	2	3	4	5	Total
Points:	20	10	10	20	40	100
Score:						

Issued on:

June 23, 2022

Due on:

June 30, 2022

UNIVERSITY OF RWANDA

1. Figure 1 represents a portion of battery-charger circuit for a battery with a voltage V_B . The sine-wave input $v_S=12\,{\rm V}(rms)$, while the battery voltage varies from $12\,{\rm V}$ to $14\,{\rm V}$ from the discharged to fully charged states. The charging-source resistance $R_S=10\,\Omega$. Assuming that D is an ideal diode, and $R_C=50\,\Omega$ is a current-controlling resistor established by the designer:

FIGURE 1. Battery-charger circuit

- (a) (10 points) Sketch and label the voltage waveforms of the voltage accros the diode and the current through the diode for $V_B=12\,\mathrm{V}$.
- (b) (10 points) What is the peak diode current?
- 2. (10 points) For the circuits shown in Figure 2, using ideal diodes, find the values the output voltage V_O and the currents I_{D1} and I_{D2} .
- 3. (10 points) The diode in the circuit shown in Figure 3 has a reverse-saturation current of $I_s = 5 \times 10^{-11} A$. Determine the diode voltage V_D and current I_D .

FIGURE 2

UNIVERSITY OF RWANDA

- 4. (20 points) Figure 4 shows a 4 diode circuit. The 4 diodes are identical and each diode exhibits a voltage drop of $V_D=0.7V$ at a 1 mA current. For small input signals (e.g., 10-mV peak), find the small-signal equivalent circuit and use it to determine values of the small-signal transmission vo/vi for a current $I=1\,\mu\text{A}$
- 5. Consider a half-wave rectifier circuit shown in Figure 5.

Let v_s be a sinusoid with 10V peak amplitude, and let $R=1k\,$. Use the constant-voltage-drop diode model with $V_D=0.7V.$

- (a) (10 points) Sketch the transfer characteristic.
- (b) (10 points) Sketch the waveform of v_O .
- (c) (10 points) Find the peak current in the diode.
- (d) (10 points) Find the PIV of the diode