Binary Search Trees: Splay Trees

Splay Trees

- A **splay tree** is a binary search tree with the additional property that recently accessed elements are quick to access again by splaying these to the root.
- It is said to be an efficient binary search tree because it performs basic operations such as search, insertion, and deletion operations in $O(\log n)$ amortized time.
- For many non-uniform sequences of operations, splay trees perform better than other search trees, even when the specific pattern of the sequence is unknown.

Splay Trees

- All normal operations on a binary search tree are combined with one basic operation, called *splaying*.
- In a splay tree, search, insert and deletion are first done as BST, then followed by some rotation or splaying to bring the element to the root.

Why ?

- Since the most frequently accessed node is always moved closer to the starting point of the search (or the root node), those nodes are therefore located faster.
- A simple idea behind it is that if an element is accessed, it is likely that it will be accessed again.

Motivation for Splay Trees

Problems with other balanced Trees

- AVL Tree:
 - extra storage/complexity for height fields
 - ugly delete code
- Red-Black Tree
 - Complex coding

Solution: splay trees

- \bullet amortized time for all operations is $O(\log n)$
- worst case time is O(n)
- insert/find always rotates node to the root!

Splay Tree Idea

Splaying Cases

- When we access a node (x), splaying is performed on x to move it to the root.
- Splaying ensures that the recently accessed nodes are kept closer to the root and the tree remains roughly balanced.
- Depending on the node *x* being accessed, there are three cases:
 - x is the root
 - x is a child of the root
 - x has both parent (p) and grandparent (g)
 - ightharpoonup Zig-zig pattern: $g \to p \to x$ is left-left or right-right
 - ightharpoonup Zig-zag pattern: $g \to p \to x$ is left-right or right-left

Access root: Do nothing (that was easy!)

Access child of root: Zig (AVL single rotation)

Access (LR, RL) grandchild: Zig-Zag (AVL double rotation)

Access (LL, RR) grandchild: Zig-Zig

Splaying Example: Find(6)

... still splaying ...

... 6 splayed out!

Splaying Example: Find(4)

... 4 splayed out!

Why Splaying Helps

- If a node x on the access path is at depth d before the splay, it's at about depth d/2 after the splay
 - Exceptions are the root, the child of the root, and the node splayed
- Overall, nodes which are below nodes on the access path tend to move closer to the root
- Splaying gets amortized $O(\log n)$ performance

Splay Operation: Find

Find:

- Find the node in normal BST manner
- Splay the node to the root

Splay Operation: Insert

To insert a value *x* into a splay tree:

- Insert x as with a normal binary search tree.
- Perform splay operation on *x*.
- As a result, the node x becomes the root of the tree.

Alternatively:

- Use the 'split' operation to split the tree at the value of x to two sub-trees: S and T.
- Create a new tree in which x is the root, S is its left sub-tree and T its right sub-tree.

Splitting in Splay Trees

- Split(T, x) creates two BSTs L and R:
 - \blacksquare all elements of T are in either L or R $(T = L \cup R)$
 - all elements in L are $\leq x$
 - \blacksquare all elements in R are $\ge x$
 - L and R share no elements $(L \cap R = \emptyset)$

How can we split in splay trees?

- We have the splay operation
- We can find x or the parent of x where x should be
- We can splay it to the root
- Now, what's true about the left subtree of the root?
- And the right subtree?

Splitting in Splay Trees

Back to Insert

To insert a value *x* into a splay tree:

- Use the 'split' operation to split the tree at the value of x to two sub-trees: S and T.
- Create a new tree in which x is the root, S is its left sub-tree and T its right sub-tree.

Insert Example

Splay Operation: Delete

To delete a value *x* from a splay tree:

Use the same method as with a binary search tree:

- If x has two children:
 - Swap its value with that of either its in-order predecessor or its in-order successor
 - Remove that node instead.
 In this way, deletion is reduced to the problem of removing a node with 0 or 1 children.
- Now, splay the parent of the removed node to the top of the tree.

Alternatively:

- Splay the node x, i.e. bring it to the root and then deleted it.
- Join the two sub-trees using a 'join' operation.

Splay Operation: Delete

To delete a value *x* from a splay tree:

- Splay the node x, i.e. bring it to the root and then deleted it.
- Join the two sub-trees using a 'join' operation.

Joining in Splay Trees

Join(L, R): given two trees such that L < R, merge them.

Splay on the maximum element in L, then attach R.

Delete Example

Splay Tree Summary

- Can be shown that any m consecutive operations starting from an empty tree take at most $O(m \log n)$ time
 - \rightarrow All splay tree operations run in amortized $O(\log n)$ time
- Splay trees are simpler compared to AVL and Red-Black Trees as no extra field is required in every tree node.
- A splay tree can change even with read-only operations like search
- Splay trees are *very* effective search trees
 - relatively simple: no extra fields required
 - excellent locality properties:
 - frequently accessed keys are cheap to find (near top of tree)
 - infrequently accessed keys stay out of the way (near bottom of tree)