5.3 – Logistic Regression Case Study

See 1:15-2:10 of www.youtube.com/watch?v=j4JOjcDFtBE and 3:31-4:22 of www.youtube.com/watch?v=gEjXjfxoNXM (full text here: http://millercenter.org/scripps/archive/speeches/detail/3413)

The January 18, 1986 explosion of the space shuttle Challenger was investigated by the Presidential Commission on the Space Shuttle Challenger Accident. The Commission's 1986 report attributed the explosion to a burn through of an O-ring seal at a field joint in one of the solid-fuel rocket boosters. This 1986 launch was the 25th space shuttle launch. After each of the previous 24 launches, the solid rocket boosters were inspected.

The following data are from the Commission's 1986 report, with the following variables:

Flight	an identifier code for the launch
Temp	temperature (degrees F) at launch
Damage	indicator of damage to the field joint
	(a missing value is recorded for one launch
	where the solid rocket boosters were not
	recovered)

Note that seven of the 24 launches experienced field joint damage but did not explode like the Challenger. The Challenger launch was Flight STS51L (not in these data) and the temperature was 31.

```
/* Define options */
ods html image dpi=300 style=journal;
/* Read in the data and check it was read in properly */
data shuttle; input Flight $ Temp Damage $ @@; cards;
      66 NO
            STS9
                   70 NO
                         STS51B 75 NO
                                      STS2
                                            70 YES
STS41B 57 YES STS51G 70 NO
                               69 NO
                                      STS41C 63 YES
                         STS3
STS51F 81 NO STS4
                  80 .
                         STS41D 70 YES STS51I 76 NO
      68 NO
            STS41G 78 NO
                         STS51J 79 NO
STS5
                                      STS6
                                            67 NO
STS51A 67 NO STS61A 75 YES STS7
                               72 NO
                                      STS51C 53 YES
STS61B 76 NO STS8 73 NO STS51D 67 NO STS61C 58 YES
data shuttle; set shuttle;
 if Damage = 'YES' | Damage = 'NO';
proc print data=shuttle;
run;
```

Obs	Flight	Temp	Damage
1	STS1	66	NO
2	STS9	70	NO
3	STS51B	75	NO
4	STS2	70	YES
5	STS41B	57	YES
6	STS51G	70	NO
7	STS3	69	NO
8	STS41C	63	YES
9	STS51F	81	NO
10	STS41D	70	YES
11	STS51I	76	NO

Obs	Flight	Temp	Damage
12	STS5	68	NO
13	STS41G	78	NO
14	STS51J	79	NO
15	STS6	67	NO
16	STS51A	67	NO
17	STS61A	75	YES
18	STS7	72	NO
19	STS51C	53	YES
20	STS61B	76	NO
21	STS8	73	NO
22	STS51D	67	NO
23	STS61C	58	YES

/******************

Steps in this case study:

- 1. Visualize the data
- 2. Evaluate the probability of damage based on temperature
- 3. Check for influential observations and outliers
- 4. Calculate the probability of damage at temperature 31 (temperature at Challenger launch)
- 5. How is logistic regression different from ANOVA?

```
/* 1. Visualize the data */
proc sort data=shuttle; by damage;
proc boxplot data=shuttle;
plot temp * damage;
title1 'Full Data';
run;
proc sgplot data=shuttle;
scatter y=damage x=temp /
    markerattrs=(symbol=CIRCLEFILLED size=2pt);
xaxis label='Temperature at launch';
yaxis label='Damage to field joint';
title1 'Full Data';
run;
```


/* 2. Evaluate the probability of damage based
 on temperature */

```
proc logistic data=shuttle plots(only)=(effect);
model damage (event='YES') = temp / lackfit;
title1 'Logistic Regression with Full Data';
run;
```

Probability modeled is Damage='YES'. Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Analysis of Maximum Likelihood Estimates						
Parameter	neter DF Estimate Standard Wald Pr > C					
Intercept	1	15.0429	7.3786	4.1563	0.0415	
Temp	1	-0.2322	0.1082	4.6008	0.0320	

Odds Ratio Estimates						
Effect Point Estimate 95% Wald Confidence Limit						
Temp	0.793	0.641	0.980			

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
9.7032	7	0.2060				


```
/* outlier check using simulated envelope macro */
%macro simEnv(dataset, response, predictors, N); proc ...

data shuttle; set shuttle;
  damY=(damage='YES');
run;
%simEnv(dataset = shuttle, response = damY,
      predictors = temp, N=23);
run;
```



```
data shuttle; set shuttle;
  obs = _n_;
  infl = (obs = 17 | obs = 20 | obs = 21);
run;
proc print data=shuttle;
  where infl=1;
  var Flight Temp Damage;
  title1 'Suspect Observations';
run;
```

Suspect Observations				
Obs	Flight	Temp	Damage	
17	STS2	70	YES	
20	STS41D	70	YES	
21	STS61A	75	YES	


```
/* Try refitting without these three points
   (just for example here) */
data shuttle1; set shuttle;
   if flight ne 'STS2' & flight ne 'STS41D'
     & flight ne 'STS61A';
proc logistic data=shuttle1 plots(only)=(effect);
   model damage(event='YES') = temp;
   title1 'Logistic Regression with Separation of Points';
run;
```

Logistic Regression with Separation of Points

Probability modeled is Damage='YES'.

Model Convergence Status

Complete separation of data points detected.

Warning: The maximum likelihood estimate does not exist.

Warning: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

Analysis of Maximum Likelihood Estimates						
Parameter	er DF Estimate Standard Chi-Square Pr > C					
Intercept	1	214.5	350.2	0.3752	0.5402	
Temp	1	-3.3232	5.3974	0.3791	0.5381	

Odds Ratio Estimates					
Effect Point Estimate 95% Wald Confidence Limit					
Temp	0.036	< 0.001	>999.999		

/* How to deal with complete separation of points?
Rather than maximum likelihood, use penalized maximum
likelihood. Solution fairly recent: Heinze, G. &
Schemper, M. (2002). A solution to the problem of
separation in logistic regression. Statistics in
Medicine 21, 2409-2419. Convenient implementation even
more recent -- SAS 9.2 or later: FIRTH option in PROC
LOGISTIC

*/

```
proc logistic data=shuttle1 plots(only)=(effect);
model damage(event='YES') = temp / firth
  clparm=pl clodds=pl; /* Note PL for profile-likelihood,
    which is more accurate (likelihood ratio-based)
    than WALD (asymptotic normal approx.) for
    small sample sizes */
title1 'Logistic Regression with Separation of Points';
title2 '(using FIRTH option for pen. max. lik.)';
run;
```

Logistic Regression with Separation of Points (using FIRTH option for pen. max. lik.)

Probability modeled is Damage='YES'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiS						
Likelihood Ratio	13.0618	1	0.0003			
Score	11.8077	1	0.0006			
Wald	3.6517	1	0.0560			

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Pr > ChiSq			
Intercept	1	30.4123	16.5141	3.3915	0.0655	
Temp	1	-0.4833	0.2529	3.6517	0.0560	

Parameter Estimates and Profile-Likelihood Confidence Intervals						
Parameter	nrameter Estimate 95% Confidence Limits					
Intercept	30.4123	8.4220 162.				
Temp	-0.4833	-2.2770	-0.1448			

Prob. of Damage at Temp=31					
Obs	phat	1			
1	1.00000	1			

```
/* 5. How is logistic regression different from ANOVA? */
proc reg data=shuttle;
  model temp = damY;
  title1 'ANOVA';
run;
```

ANOVA

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	1	344.47360	344.47360	9.63	0.0054				
Error	21	751.17857	35.77041						
Corrected Total	22	1095.65217							

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	72.12500	1.49521	48.24	<.0001				
damY	1	-8.41071	2.71030	-3.10	0.0054				

