

Jundi Shapur

University of Technology-Dezful

مبانی فتوگرامتری فصل سوم: اندازه گیری بر روی عکس

Nurollah Tatar Fundamentals of Photogrammetry Semester 2021-1

فهرست مطالب

- سیستمهای مختصات اندازه گیری عکسی
 - سایر سیستمهای مختصات
 - تبدیلات دو بعدی به دو بعدی
 - دستگاه معادلات
 - حل دستگاه معادلات
 - مثال و تمرین

- سیستم مختصاتهای اندازه گیری بر روی عکس:
 - 1. سیستم مختصات کمکی عکسی
- 2. سیستم مختصات اصلی عکسی/ تصویری/ علائم تصویری یا فیدوشل مارکها
 - 3. سیستم مختصات مرکز تصویر
 - 4. سیستم مختصات دستگاهی (کامپراتور یا دیجیتال)

- سیستم مختصات عکسی/ علائم کناری:
- اگر فیدوشل مارکهای متقابل را به یکدیگر وصل نماییم، همدیگر را در یک نقطه قطع خواهند نمود که مبدا سیستم مختصات عکسی خواهد بود.
- همچنین جهت توجیه محور X در امتداد پرواز و محور Y عمود
 بر آن و به سمت بالا می باشد.
 - واحد اندازه گیری معمولا میلی متر و مختصات نقطه به صورت دوبعدی (x,y) خواهد بود.

• سیستم مختصات عکسی/ علائم کناری:

- سیستم مختصات تصویری (دیجیتال):
- مبدا سیستم مختصات منطبق بر گوشه بالای (معمولاً) تصویر می باشد.
 - همچنین جهت توجیه محور x و y در امتداد اولین سطر و ستون تصویر است.
 - واحد اندازه گیری معمولا پیکسل است.

• سیستم مختصات تصویری (رقومی):

- سیستم مختصات کمکی عکسی/ علائم کناری:
- مبدا سیستم مختصات کمکی عکسی منطبق بر نقطه نادیر n
 - توجیه محور **y** بر روی خط اصلی محور **x** عمود بر آن می باشد.
 - برای نقطه i (ایزوسنتر) نیز امکان تعریف چنین سیستمی وجود دارد.

• سیستم مختصات کمکی عکسی/ علائم کناری:

سیستم مختصات کمکی عکسی/ علائم کناری:

Fundamentals of Photogrammetry- image measurement

N. Tatar

Jundi Shapur

- سیستم مختصات مرکز عکس/ تصویر:
- در حالت ایده آل محل تقاطع تقاطع فیدوشل مارکها و نقطه اصلی باید یکسان باشد.
 - در واقعیت به دلیل وجود اعوجاجات برهم منطبق نیستند.
 - این مقدار اختلاف را با (X0, y0) نشان میدهند.
- در این خصوص در زمان بررسی و معرفی توجیه داخلی توضیح داده خواهد شد.

مبدا این سیستم مختصات به مبدا سیستم مختصات عکسی نزدیک است. شاید در عمل ۲۰ الی ۳۰ پیکسل با هم اختلاف

داشته باشند.

- سیستم مختصات مرکز عکسی/ تصویری:
- مبدأ سيستم مختصات عكسى منطبق بر مركز عدسى
- توجیه محور X در امتداد پرواز و Y عمود برآن و دست راستی می باشد (مشابه سیستم حالت علائم کناری)
- محور Z در امتداد محور اپتیکی دوربین است. (مقدار این مولفه برای تمام نقاط روی عکس برابر با f- می باشد).
- $(x-x_0$ $y-y_0$ -f) :ان برابراست با هر نقطه در آن برابراست با

• سیستم مختصات مرکز

عکسی/ تصویری:

- سیستم مختصات دستگاهی:
- اندازه گیری بر روی یک عکس از طریق یک سیستم واسط صورت گرفته و سپس با یک تبدیل ریاضی به سیستم مختصات مرکز تصویر منتقل می گردد.
 - لذا این سیستمهای دستگاهی نیز برای خود دارای سیستم مختصات اختصاصی میباشند.

- سیستم مختصات دستگاهی:
- در فتوگرامتری قدیم از کامپاراتورها
- در فتوگرامتری رقومی از کامپیوتر

- خلاصه سیستمهای مختصات:
- اندازه گیری در سیستم مختصات دستگاهی انجام می گیرد.
- مختصات اندازه گیری شده مرحله قبل به سیستم مختصات علائم کناری انتقال می یابند.
 - و در نهایت مختصات آنها به سیستم مختصات مرکز عکسی/تصویری انتقال می یابند.

Other coordinate systems

- طبقه بندی سیستم های مختصات:
- سیستم مختصات قائم الزاویه: موقعیت نقاط یا اشیاء براساس فاصله از محورهای سیستم مختصات بیان میشوند.
 - سیستم مختصات منحنی الخط: موقعیت نقاط یا اشیاء براساس زوایایی که با امتدادها یا صفحات معلوم میسازند، بیان میشوند.

- سیستم مختصات قطبی:
- یک سیستم مختصات دوبعدی است که در آن مکان هر نقطه، با فاصله آن تا مرکز مختصات (\mathbf{r}) و زاویه بین خط رسمشده از مرکز به آن نقطه و محور طول ($\mathbf{\theta}$) مشخص می شود.

- سیستم مختصات دکارتی (کارتزین):
- در هندسه، به نمایش هر نقطه از صفحه با دو عدد (یک زوج مرتب) گفته می شود. این دو عدد را معمولاً به نامهای مختصه X و مختصه Y می خوانند.
- در این سیستم مختصات محورهای X و Y برهم عمودند، از این رو به آن سیستم محورهای متعامد نیز گفته می شود.

• سیستم مختصات دکارتی (کارتزین):

کارتزین سه بعدی

- سیستم مختصات جغرافیایی:
- یک دستگاه مختصات است که با آن میتوان مکان هر نقطهای بر روی زمین را مشخص کرد.
- در این سیستم مختصات هر موقعیت با طول و عرض جغرافیایی (از جنس زاویه) و یک ارتفاع (فاصله از سطح مشخص) بیان می شود.
- طول و عرض جغرافیایی را به ترتیب با ($\lambda, \, \phi$) نشان می دهند.

- مبدا: مركز ثقل زمين
- مبنای طول جغرافیایی زاویه بین
 نصف النهار گرینویچ تا نصف
 النهار نقطه بر روی صفح استوا
- مبنای عرض جغرافیایی زاویه بین
 مدار نقطه و صفحه استوا

- سیستم مختصات استوانه ای:
- مختصات استوانهای یکی از شیوههای نمایش یک نقطه در حالت سه بعدی است.
 - از روابط بیان شده در مختصات قطبی برای بیان مختصات استوانهای استفاده می شود.
 - در مقایسه با مختصات قطبی، تنها مختصات Z به این سیستم مختصات اضافه می گردد.

• سیستم مختصات استوانه ای:

- سیستم مختصات مورد استفاده در فتوگرامتری:
 - سیستم مختصات سه بعدی محلی
 - سیستم مختصات سه بعدی جهانی
 - مانند WGS84
 - سیستم مختصات سه بعدی مدلی
 - سیستم مختصات سیستم تصویر
 - مانند UTM

- سیستم مختصات مورد استفاده در فتوگرامتری:
 - سیستم مختصات سه بعدی محلی
 - سیستم مختصات سه بعدی جهانی
 - مانند WGS84

- سیستم مختصات مورد استفاده در فتوگرامتری:
 - سیستم مختصات سه بعدی مدلی

Fundamentals of Photogrammetry- image measurement

N. Tatar

Jundi Shapur

- سیستم مختصات مورد استفاده در فتوگرامتری:
 - سیستم مختصات سیستم تصویر

• مانند UTM

Zone 39S

→ E: 257626.0

N: 3585818.0

Transformations

- منظور از تبدیلات، فرآیندی است که با آن مختصات نقاط از یک سیستم مختصات به سیستم مختصات دیگر بدست میآیند.
 - به طور مثال اگر مختصات یک نقطه در سیستم مختصات دستگاهی (X, y) باشد؛ آنگاه همین نقطه در سیستم مختصات تصویری (r, c) چقدر خواهد بود.
- در این درس فعلا تبدیلات دوبعدی به دو بعدی ارائه میشوند.

• تبدیل بین دو سیستم مختصات عبارتست از جابجایی، دوران و مقیاس بین مختصات آنها.

Transformation = translation + rotation + scale

تبدیلات دو بعدی به دو بعدی

$$x = \overline{OA} = \overline{OP}\cos(\theta + \phi)$$

$$y = AP = OP \sin(\theta + \phi)$$

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\sin(\theta + \phi) = \cos\theta \sin\phi + \sin\theta \cos\phi$$

$$x = \overline{OP}\cos\phi\cos\theta - \overline{OP}\sin\phi\sin\theta$$

$$= x' \cos \theta - y' \sin \theta$$

Similarly, $y = x' \sin \theta + y' \cos \theta$

So
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

تبدیلات دو بعدی به دو بعدی

$$\binom{x}{y} = \mathbf{R} \binom{x'}{y'}$$

$$\mathbf{R} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

• دوران:

• R یک ماتریس متعامد است. یعنی

y

RR^T = I در ترانهاده اش برابر است با ماتریس یکه.

اهد بود. R دترمینان R یک خواهد بود.

با ترانهاده آن برابر است. $R^{-1} = R^{T}$

$$\binom{x'}{y'} = \mathbf{R}^{\mathsf{T}} \binom{x}{y}$$

tθ

X

• انتقال

Rotation
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

translation
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

Tranformation
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

- انتقال (مدل متشابه یا conformal):
 - تغییر شکل نداریم.
 - زوایا حفظ می شوند.
- ممكن است تغيير مقياس داشته باشيم.
 - ۴ پارمتر مجهول دارد.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

- انتقال (مدل متشابه یا conformal):
- معادلات متشابه را می توان به فرم ریاضیاتی دیگری نوشت که

به آن فرم پارامتریک می گویند.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} \Rightarrow \begin{cases} x = ax' + by' + c \\ y = -bx' + ay' + d \end{cases}$$

• که در آن

$$a = \lambda \cos \theta$$
$$b = -\lambda \sin \theta$$
$$c = x_0$$
$$d = y_0$$

- انتقال (مدل متشابه یا conformal):
- نحوه محاسبه مقیاس، جابجایی و دوران از روی ضرایب فرم

پارامتریک:

مقیاس
$$\lambda = \sqrt{a^2 + b^2}$$

دوران
$$\theta = \tan^{-1}(-\frac{b}{a})$$

X جابجایی در راستای
$$x_0 = c$$

$$\mathbf{y}$$
 جابجایی در راستای $\mathbf{y}_0 = d$

- انتقال (مدل افاین یا affine):
- تغییر مقیاس در دو جهت یکسان نیست ولی نسبت آنها برای تمامی نقاط ثابت است.
 - محورهای مختصات متعامد نیستند.
 - خطوط موازی، موازی باقی میمانند.

- انتقال (مدل افاین یا affine):
- مشابه معادلات متشابه، معادلات افاین را هم می توان به فرم

ریاضیاتی دیگری نوشت که به آن فرم پارامتریک میگویند.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & \sin \varepsilon \\ 0 & \cos \varepsilon \end{bmatrix} \begin{bmatrix} \lambda_x & 0 \\ 0 & \lambda_y \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

• و به طور خلاصه

$$x = a_1 x' + a_2 y' + a_3$$

 $y = b_1 x' + b_2 y' + b_3$

- انتقال (مدل پروژکتیو یا projective):
- تغییر مقیاس در دو جهت یکسان نیست. نسبت آنها نیز ثابت

باقى نمىماند.

• محورهای مختصات متعامد نیستند.

• خطوط موازی، موازی نخواهند بود.

$$x = \frac{a_1 x' + a_2 y' + a_3}{c_1 x' + c_2 y' + 1}$$
$$y = \frac{b_1 x' + b_2 y' + b_3}{c_1 x' + c_2 y' + 1}$$

• ۸ پارمتر مجهول دارد.

- تبدیلات چند جمله ای:
- علاوه بر تبدیلات ارائه شده در اسلایدهای قبل، یکسری تبدیلات چندجمله ای وجود دارد که پیچیدگیهای بیشتری را مد نظر قرار میدهند.

$$x = a_0 + a_1 x' + a_2 y' + a_3 x'^2 + a_4 y'^2 + a_5 x' y' + \dots$$
$$y = b_0 + b_1 x' + b_2 y' + b_3 x'^2 + b_4 y'^2 + b_5 x' y' + \dots$$

• مهمترین ضعف این روش یافتن پارامترهای بهینه است.

- مراحل محاسبه پارامترهای تبدیل:
- 1. ابتدا بایستی مدل ریاضیاتی (متشابه، افاین و...) تعیین شود.
 - 2. اندازه گیری تعدادی نقطه متناظر در دو سیستم مختصات
 - 3. تشكيل دستگاه معادلات
 - 4. حل دستگاه معادلات به روش کمترین مربعات
 - 5. ارزیابی دقت

$$x = ax' + by' + c$$
$$y = -bx' + ay' + d$$

$$\begin{bmatrix} x_1 \\ y_1 \\ \vdots \\ x_n \\ y_n \end{bmatrix} = \begin{bmatrix} x_1' & y_1' & 1 & 0 \\ y_1' & -x_1' & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_n' & y_n' & 1 & 0 \\ y_n' & -x_n' & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

- در صورتی که پارامترهای متشابه مجهول و نقاط متناظر اندازه گیری شده باشند.
- در این دستگاه معادلات فرض شده
 انقطه متناظر وجود دارد.
- برای حل این دستگاه حداقل ۴ معادله (دو نقطه متناظر) نیاز است.

L = AX

$$x = a_1 x' + a_2 y' + a_3$$

 $y = b_1 x' + b_2 y' + b_3$

در صورتی که یارامترهای افاین

n نقطه متناظر وجود دارد.

$$\begin{bmatrix} x_1 \\ y_1 \\ \vdots \\ x_n \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 در این دستگاه معادلات فرض شده $x_1 = x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_5$

L = AX

برای حل این دستگاه حداقل ۶ معادله (سه نقطه متناظر) نیاز است.

- معادلات يروژكتيو:
- در صورتی که پارامترهای پروژکتیو مجهول و نقاط متناظر اندازه گیری شده باشند.

$$x = \frac{a_1 x' + a_2 y' + a_3}{c_1 x' + c_2 y' + 1} \Rightarrow x = a_1 x' + a_2 y' + a_3 - c_1 x' x - c_2 y' x$$

$$y = \frac{b_1 x' + b_2 y' + b_3}{c_1 x' + c_2 y' + 1} \Rightarrow y = b_1 x' + b_2 y' + b_3 - c_1 x' y - c_2 y' y$$

- در این دستگاه معادلات فرض شده **n** نقطه متناظر وجود دارد.
- برای حل این دستگاه حداقل ۸ معادله (چهار نقطه) نیاز است.

• معادلات پروژکتيو:

$$\begin{bmatrix} x_1 \\ y_1 \\ \vdots \\ x_n \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x_1 & -y_1x_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y_1 & -y_1y_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x_nx_n & -y_nx_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -x_ny_n & -y_ny_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \\ c_1 \\ c_2 \end{bmatrix}$$

L = AX

- برای حل دستگاه معادلات از روشی استفاده می شود که به آن روش کمترین مربعات گفته می شود.
- در این روش مجهولات (یا همان پارامترهای مدل ریاضیاتی) از رابطه زیر برآورد میشوند.

$$X = \left(A^T A\right)^{-1} A^T L$$

• باقیمانده از رابطه زیر برآورد میشوند.

$$V = AX - L$$

- برای توضیح روش کمترین مربعات به مثال زیر توجه کنید.
- مثال: اگر فاصله بین نقاط A و B سه بار اندازه گیری شده باشد، و اندازه ها در دفعه اول تا سوم به ترتیب ۱۰.۰۲، ۱۰.۰۴ و ۱۰.۰۳ متر قرائت شده باشند. آنگاه براساس روش کمترین

مربعات مقدار طول ۱۰.۰۳ خواهد بود.

$$\begin{bmatrix} 10.02 \\ 10.04 \\ 10.03 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} l \\ 1 \end{bmatrix} \Rightarrow X = (\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix})^{-1} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10.02 \\ 10.04 \\ 10.03 \end{bmatrix} \Rightarrow X = \frac{10.04 + 10.02 + 10.03}{3} = 10.03$$

- همانطور که در اسلاید قبلی مشاهده شد، روش کمترین مربعات میانگین فواصل اندازه گیری را به عنوان جواب نهایی میدهد.
- به مشابه همین مثال، وقتی از این روش برای برآورد ضرایب پارامترهای مدل ریاضی استفاده می شود، عادلانه ترین مقادیر برآورد می شوند.

- در عمل از بین نقاط متناظر تعدادی را به عنوان نقاط کنترل و تعدادی را به عنوان نقاط چک در نظر می گیرند.
- از نقاط کنترل برای تشکیل دستگاه معادلات و برآورد پارامترها استفاده می شود.
 - اما از نقاط چک برای ارزیابی پارامترهای برآورد شده استفاده می شود.
 - نقاط چک در دستگاه معادلات وارد نمی شوند.

مثال

• مثال ۲: چنانچه مختصات فیدوشل مارکها در سیستم

مختصات دستگاهی و سیستم مختصات کالیبره به صورت زیر

باشند، پارامترهای مدل متشابه را بدست آورید.

شماره فيدوشل	مختصات كاليبره			شماره فيدوشل	مختصات دستگاهی	
مارک	x (mm)	y (mm)		مارک	x (mm)	y (mm)
1	113.016	0.002		1	243.031	130.007
2	-112.977	-0.002		2	17.028	130.009
3	0.013	112.99		3	130.017	243.003
4	0.008	-113.008		4	130.019	16.999
5	113.008	112.995		5	243.016	243.001
6	-112.989	-113.006		6	17.017	16.998
7	-112.986	112.988	neti	7	17.027	242.995
8	113.011	-113.004		8	243.025	16.999

مثال

• مثال ۲: چنانچه نقاط ۱ تا ۴ نقاط کنترل و نقاط ۵ تا ۸ نقاط چک باشند، دستگاه معادلات به شرح زیر است.

113.016	0.002	1	0
0.002	-113.016	0	1
-112.977	-0.002	1	0
-0.002	112.977	0	1
0.013	112.99	1	0
112.99	-0.013	0	1
0.008	-113.008	1	0
-113.008	-0.008	0	1

243.031
130.007
17.028
130.009
130.017
243.003
130.019
16.999

A L

ىثال

• مثال ۲: چنانچه نقاط ۱ تا ۴ نقاط کنترل و نقاط ۵ تا ۸ نقاط چک باشند، پارامترهای مدل متشابه و مقادیر باقیمانده به

شرح زیر اند.

$$a = 1.0$$
 $b = -0.0000022$ $c = 130.0087$ $d = 130.009$

شماره فيدوشل	باقيمانده نقاط كنترل		
مارک	x (mm)	y (mm)	
1	-0.00225	0.00425	
2	-0.00025	-0.00225	
3	0.0045	-1.86E-07	
4	-0.002	-0.002	

شماره فيدوشل	باقیمانده نقاط چک		
مارک	x (mm)	y (mm)	
5	0.0045	0.00725	
6	-0.001	0.00075	
7	-0.0085	0.00575	
8	-0.001	0.00225	

تمرین شماره ۳

- با توجه به مثال اسلایدهای قبل چنانچه از مدل افاین و پروژکتیو استفاده کنیم، مقادیر باقیمانده روی نقاط چک و کنترل را بیابید. همچنین برنامه های نوشته شده برای برآورد پارامترهای مدل افاین و پروژکتیو را به همراه نتایج ارائه دهید.
- نتایج را تا ۲۶ اسفند به آدرس noorollah.tatar@gmail.com با موضوع "تمرین شماره ۳ درس مبانی فتوگرامتری" ایمیل کنید.

