

An 'end to end' 6DoF Object Pose Estimation Neural Network based on 1ms FPGA System

e2e method + RGB only + challenging scenarios = ???

2025/03/20 LU Weicheng

Inspiration

Keyword1: End-to-end Method

 Traditionally, after grasping keypoints by networks, we need to do one more mathematic calculation (such as PnP), in order to get pose estimation result.

Too slow

Costs too much resources

Possible E2E-Network Structure

Keyword2: RGB based, No Depth

- Nowadays many studies use RGBD camera to realize and optimize 6D Object Pose Estimation, in order to reach higher accuracy.
- However, considering 1ms FPGA system's super high-speed requirement and FPGA's on-chip memory, storing and processing objects' depth information costs too much.

RGB-Only: otherwise >1ms

Just doing regression!

Solution:

Directly use neural network to do both depth and

rotation parameters' regression.

Keyword3: Challenging Scenarios

Texture-less

Symmetric

Occlusion

Transparent

Challenging but step by step

Realize under **normal** scenario (software side)

Start from the easiest

Realize under **normal** scenario in 1ms (hardware side)

Realize texture-less/symmetric (software side)

Realize texture-less/symmetric in 1ms (hardware side)

Realize transparent...

Deserves to have a try in the future 8

Thank You for Listening!

