FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Um berlinde de vidro, esférico e homogéneo, tem raio $R=5~\mathrm{mm}$ e pesa 13.3 mN. O berlinde desce uma rampa muito comprida, inclinada 20° em relação à horizontal, rodando sem derrapar. A resistência do ar produz uma força igual a $\pi \rho R^2 v^2/4$, onde v é a velocidade do centro da esfera e ρ é a massa volúmica do ar, igual a 1.2 kg/m³; essa força atua no sentido oposto da velocidade e à altura do centro C da esfera. Determine a expressão da aceleração do centro da esfera em função da sua velocidade v (o momento de inércia duma esfera homogénea é $I_{\rm cm} = 2 m R^2/5$). Determine a velocidade máxima que atingirá o berlinde após descer vários metros (velocidade terminal).

2. (4 valores) (a) A expressão da aceleração tangencial dum objeto é:

$$a_{t} = 4 - s^{2} - 5\dot{s} + s\dot{s}$$

onde s é a sua posição na trajetória. Determine os pontos de equilíbrio do sistema, no espaço de fase, e demonstre que tipo de pontos são (foco, nó, etc., atrativo ou repulsivo). (b) Ignorando os termos que dependem de \dot{s} obtém-se $a_{\rm t}=4-s^2$, que corresponde a um sistema conservativo. Determine a expressão da energia potencial deste sistema, por unidade de massa (ou seja, admitindo m=1). Trace o gráfico dessa função e com base nele identifique os pontos de equilíbrio deste sistema conservativo e explique se tem ciclos ou órbitas homoclínicas ou heteroclínicas.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um projétil é lançado desde um telhado a 5.6 m de altura, com velocidade de 12 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule o tempo que o projétil demora até bater no chão.
 - (**A**) 0.93 s
- (C) 1.59 s
- **(E)** 2.24 s

- **(B)** 1.84 s
- (**D**) 1.22 s

Resposta:

4. Se o bloco B se desloca para a direita com velocidade de valor v, qual é o valor da velocidade (para a esquerda) do bloco A?

- (A) v/3
- (\mathbf{C}) v
- **(E)** v/2

- **(B)** 2v
- (D) 3v

Resposta:

- 5. O momento de inércia dum disco homogéneo de 10 cm de raio é $5.2\times 10^{-3}~\rm kg\cdot m^2.~$ Determine o valor da força tangencial que deve ser aplicada na periferia do disco, para produzir uma aceleração angular de -6 rad/s^2 .
 - (A) 1.25 N
- (C) 0.62 N
- **(E)** 0.12 N

- (**B**) 0.31 N
- (**D**) 0.21 N

Resposta:

6. As distâncias na figura são em cm e o sistema está em repouso. O carrinho, incluindo as rodas, tem massa $m_1 = 100$ g, distribuída uniformemente, e o bloco de cima tem massa $m_2 = 315$ g, também distribuída uniformemente. Determine o valor da reação normal total nas rodas do lado esquerdo.

- (**A**) 0.678 N
- (C) 1.005 N

(E) 1.356 N

- (**B**) 1.543 N
- (**D**) 2.034 N

Resposta:

- 7. A força tangencial resultante sobre uma partícula é $F_{\rm t}=$ (s+1)(s-1)(3-s). Qual das seguintes afirmações é verdadeira, em relação aos pontos de equilíbrio da partícula?
 - (A) s = -1 é instável e s = 3 é estável.
 - (B) s = -1 é estável e s = 3 é instável.
 - (C) s = -1 e s = 1 são instáveis.
 - (**D**) s = 1 é estável e s = 3 é instável.
 - (E) s = 1 é instável e s = 3 é estável.

Resposta:

8.	O sistema dinâmico não linear: $\dot{x} = xy - 4x + y - 4$ $\dot{y} = xy + x - 1y - 1$ tem um ponto de equilíbrio em $x = 1, y = 4$. Qual o sistema linear que aproxima o sistema não linear na vizinhança desse ponto de equilíbrio?		
	(A) $\dot{x} = -5 y$ $\dot{y} = -2 x$ (D) $\dot{x} = -2 y$ $\dot{y} = 5 x$ (B) $\dot{x} = 5 y$ $\dot{y} = -2 x$ (E) $\dot{x} = 2 y$ $\dot{y} = 5 x$ (C) $\dot{x} = 5 y$ $\dot{y} = 2 x$		
	Resposta:		
9.	Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?		

(A) $\dot{y} = 2y - 5y^2$	$(\mathbf{D}) \ \dot{y} = 6 y + x y$
(B) $\dot{y} = x + xy^2$	(E) $\dot{y} = 6y - y^2$
(C) $\dot{y} = 2y^2 - 3y$	

Resposta:

10. A aceleração tangencial dum objeto verifica a expressão $a_{\rm t}=3\,s^4$ (unidades SI), em que s é a posição na trajetória. Se o objeto parte do repouso em s = 1 m, determine o valor absoluto da sua velocidade em s=2 m.

(C) 4.27 m/s(A) 6.1 m/s(**E**) 9.8 m/s**(B)** 2.45 m/s(**D**) 7.95 m/sResposta:

11. Um ciclista demora 44 s a percorrer 400 m, numa pista reta e horizontal, com velocidade uniforme. Sabendo que o raio das rodas da bicicleta é 27.2 cm e admitindo que as rodas não deslizam sobre a pista, determine o valor da velocidade angular das rodas.

(A) 33.4 rad/s (C) 16.7 rad/s(**E**) 20.9 rad/s (**D**) 25.1 rad/s (**B**) 29.2 rad/s Resposta:

12. Coloca-se um carrinho numa rampa a uma altura inicial h e deixa-se descer livremente, a partir do repouso, chegando ao fim da rampa (altura zero) com velocidade v. Admitindo que a energia mecânica do carrinho permanece constante (forças dissipativas desprezáveis, massa das rodas desprezável, etc) desde que altura inicial na rampa deveria ser largado o carrinho para que chegasse ao fim com velocidade 3v?

(**A**) 9 h (C) 3h (E) 6h **(B)** h/3**(D)** h/9Resposta:

13. As equações de evolução dum sistema linear são: $\dot{x} = x + 2y$ $\dot{y} = x + y$ Que tipo de ponto de equilíbrio é o ponto (x, y) = (0, 0)? Resposta:

(A) Ponto de sela.

(B) Foco atrativo.

(C) Foco repulsivo.

14. Quando se liga um PC, o disco rígido demora 3.6 s, a partir do repouso, até alcançar a velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angular constante durante esse intervalo, determine o valor da aceleração angular

(D) Centro.

(E) Nó repulsivo.

(A) 419 rad/s^2 (C) 279 rad/s^2 (**E**) 838 rad/s^2 **(B)** 209 rad/s^2 (**D**) 182 rad/s^2 Resposta:

15. O espaço de fase dum sistema dinâmico $\acute{\rm e}$ o plano xy. Em coordenadas polares, as equações de evolução são $\theta = -3$, $\dot{r} = r^3 + 3r^2 + 2r$. Quantos ciclos limite tem o sistema?

(**A**) 1 (C) 2 **(B)** 4 (**D**) 0

16. As expressões das energias cinética e potencial dum sistema conservativo com dois graus de liberdade, $x \in \theta$, são: $E_{\rm c} = 7 \dot{x}^2 + 5 \dot{\theta}^2$ e $U = -11 x \theta$. Encontre a expressão da

Resposta:

Resposta:

17. O bloco na figura, com massa igual a 2 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco atua uma força externa \vec{F} , horizontal e constante, com módulo igual a 10 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. Calcule o módulo da aceleração do bloco.

(E) 14.9 m/s^2 (A) 5.1 m/s^2 (C) 2.55 m/s^2 **(B)** 5.8 m/s^2 (**D**) 7.45 m/s^2

Resposta:

No ponto P2, a matriz da aproximação linear é:

$$\mathbf{A}_2 = \begin{bmatrix} 0 & 1 \\ -4 & -3 \end{bmatrix}$$

E a respetiva equação de valores próprios é $\lambda^2 + 3\lambda + 4 = 0$. Conclui-se então que os valores próprios são $-3/2 \pm i\sqrt{7}/2e$ P_2 é foco atrativo.

(b) A energia potencial, por unidade de massa, obtém-se a partir da expressão:

$$u = \frac{U}{m} = -\int a_t ds = \int (s^2 - 4) ds = \frac{s^3}{3} - 4s$$

Os pontos de equilíbrio encontram-se em $s_1 = -2$ e $s_2 = 2$. O gráfico da função u, mostrando os dois pontos de equilíbrio, é o seguinte:

O ponto s_1 , máximo local, é instável (ponto de sela) e o ponto s_2 , mínimo local, é estável (centro). Existem ciclos quando a energia mecânica, por unidade de massa, estiver compreendida entre -16/3 e 16/3 (valores de u em s_2 e s_1). A reta horizontal apresentada no gráfico, entre o ponto de sela e um ponto de retorno, corresponde a uma órbita homoclínica. Ou seja, este sistema não tem nenhuma órbita heteroclínica, tem uma única órbita homoclínica e infinitos ciclos: todas as curvas de evolução dentro da órbita homoclínica, no espaço de fase.

Perguntas

3. B

6. C

9. D

12. A

15. D

4. D

7. E

10. A

13. A

16. B

5. B

8. E

11. A

14. B

17. D

Critérios de avaliação

Problema 1

Mecânica de Lagrange.

 Determinação do grau de liberdade e relação entre ν e ω 	10% (0.4)
Expressão da energia cinética	20% (0.8)
Expressão da energia potencial	20% (0.8)
Expressão da força generalizada	20% (0.8)
Aplicação da equação de Lagrange para obter a equação de movimento	10% (0.4)
Valor da aceleração, com unidades corretas	10% (0.4)
Obtenção da velocidade terminal	10% (0.4)
Mecânica vetorial.	
Diagrama de corpo livre	20% (0.8)
Expressão da soma de forças tangenciais	20% (0.8)
Expressão da soma de momentos	20% (0.8)
• Determinação da relação entre $a_{\rm t}$ e α	10% (0.4)
Obtenção da expressão da força de atrito	10% (0.4)
Valor da aceleração, com unidades corretas	10% (0.4)
Obtenção da velocidade terminal	10% (0.4)
Problema 2	
Obtenção das equações de evolução	10% (0.4)
Determinação dos 2 pontos de equilíbrio	10% (0.4)
Obtenção da matriz jacobiana	10% (0.4)
Caraterização do primeiro ponto de equilíbrio	10% (0.4)
Caraterização do segundo ponto de equilíbrio	10% (0.4)
Obtenção da expressão da energia potencial por unidade de massa	20% (0.8)
Gráfico da energia potencial por unidade de massa	10% (0.4)
Interpretação do gráfico (pontos de equilíbrio, ciclos e órbitas)	20% (0.8)