CIML Summer Institute:

4.1 Writing and Sharing Computational Analyses in Jupyter Notebooks

June 24, 2021

Peter Rose

SDSC

SAN DIEGO SUPERCOMPUTER CENTER

NSF Award 1928224

Tools and Infrastructure

Computational notebooks: combine documentation, code, and results

Open-source package and environment management system

Version-control system for tracking changes in source code

Source code

Classification Problem: Predict Protein Fold Class

Protein Sequence

TNKELQAIRKLLMLDVSEAAEHIGRVSARSWQYWESGRSAVPDDVEQEML DLASVRIEMMSAIDKRLADGERPKLRFYNKLDEYLADNPDHNVIGWRLSQS VAALYYTEGHADLI

GARSSSYSGEYGSGGKRFSHSGNQLDGPITALRVRVNTYYIVGLQVRYG KVWSDYVGGRNGDLEEIFLHPGESVIQVSGKYKWYLKKLVFVTDKGRYLSF GKDSGTSFNAVPLHPNTVLRFISGRSGSLIDAIGLHWDVYPSSCSRC

APADNAADARPVDVSVSIFINKIYGVNTLEQTYKVDGYIVAQWTGKPRKTPGD KPLIVENTQIERWINNGLWVPALEFINVVGSPDTGNKRLMLFPDGRVIYNARFL GSFSNDMDFRLFPFDRQQFVLELEPFSYNNQQLRFSDIQVYTENIDNEEIDEW WIRGKASTHISDIRYDHLSSVQPNQNEFSRITVRIDAVRNPSYYLWSFILPLGLII AASWSVFWLESFSERLQTSFTLMLTVVAYAFYTSNILPRLPYTTVIDQMIIAGYG SIFAAILLIIFAHHRQANGVEDDLLIQRCRLAFPLGFLAIGCVLVIRGITL

Fold Class

alpha

beta

alpha+beta

N-grams and Word2Vec Models

One Two Three Four

Embedding a Protein Sequence

Sequence:

TNKELQAIRKLL...

3-grams ("words"):

TNK, NKE, KEL, ELQ, ...

Word2Vec (100-dimensional vector):

[-2.23197367481583, -0.4659580592717598, ...]

Pre-trained Word2Vec model trained on 546,790 protein sequences: **ProtVec**

Asgari E, Mofrad MR (2015) Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics, PLoS One. 10(11):e0141287. doi: [10.1371/journal.pone.0141287](https://doi.org/10.1371/journal.pone.0141287).

Transfer Learning

Sequence

TNKELQAIRKLL...

3-grams

TNK, NKE, KEL, ELQ, ..

ProtVec Model

Feature Vector (embedding) 100-dimensional

[-2.23197367481583, -0.4659580592717598, ...]

Downstream Classification Models

- SVM
- Logistic Regression
- Neural Network

Pretrained BERT Models

Protein sequences

Mask amino acids in protein sequence

Pretrained BERT Model

For small datasets use embeddings as feature vectors.

Embeddings (weights) as feature vectors for ML models

Specific prediction tasks

- Protein function
- Protein properties
- Structural features

Input: DP[MASK1]KDSKAQVSAAE[MASK2]GIT...

Labels: [MASK1] = S; [MASK2] = A

Attention Mechanism (long range interactions) Text Protein Sequence

https://medium.com/deep-learning-digest/bert-model-restores-protein-structure-1171299b963d

Pretrained BERT Models

Supervised downstreams

Model	Input	Pre-training	Params	SSP	Contact
UniRep	Sequence	UR50*	18M	58.4	21.9
SeqVec	Sequence	UR50*	93M	62.1	29.0
TAPE	Sequence	PFAM*	38M	58.0	23.2
ProtBert-BFD	Sequence	BFD*	420M	70.0	50.3
Prot-T5-XL-BFD	Sequence	BFD*	3B	71.4	55.9
LSTM biLM (S)	Sequence	UR50/S	28M	60.4	24.1
LSTM biLM (L)	Sequence	UR50/S	113M	62.4	27.8
Transformer-6	Sequence	UR50/S	43M	62.0	30.2
Transformer-12	Sequence	UR50/S	85M	65.4	37.7
Transformer-34	Sequence	UR100	670M	64.3	32.7
Transformer-34	Sequence	UR50/S	670M	69.2	50.2
ESM-1b	Sequence	UR50/S	650M	71.6	56.9
ESM-MSA-1	MSA	UR50/S + MSA	100M	72.9	Coming Soor

Available as Singularity containers for Expanse (using PyTorch)

Due to high compute and memory demands, we will not use them during this workshop.

Sharing your Notebooks with MyBinder

https://mybinder.org/

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

New to Binder? Get started with a Zero-to-Binder tutorial in Julia, Python or R.

Public Cloud Environments

Platform	URL	Memory	Cores	Use for	Comments	Account				
MyBinder	https://mybinder .org/	2GB	1	small examples	some ports are blocked	no				
Pangeo Binder	https://binder.pa ngeo.io/	32GB (?)	6 (?)	when exceeding MyBinder limits	open ports, e.g., FTP	no				

GPU/TPU

store notebooks,

results, and data

software installations

Google Drive

100GB storage

using pip in Notebook, share notebooks on

yes

yes

variable

per

request

per

request

https://research.

google.com/cola

https://cyverse.o

rg/discovery-env

boratory/

ironment

Google

CyVerse

Colab

Demo

Questions?