16. Zdroje PC, BIOS, UEFI a proces bootování PC

- Typy zdrojů PC
 - Jejich charakteristiky
 - Konektory
 - o Zapojování
 - Napětí
 - Signály
- BIOS a jeho součásti, možnosti upgrade
- UEFI a rozdíly v bootování
- Proces výběru a zavedení OS, instalace OS přes UEFI

PC zdroje

- Napájí všechny součásti PC
- Převádí síťové střídavé napětí 230 V na stejnosměrné napětí v hodnotách:
 - +- 12 V ventilátory, sériové porty
 - +- 5 V mechaniky, sběrnice
 - + 3,3 V port AGP, paměti, chipset
- Obsahuje ventilátor, který odvádí teplo ze zdroje i ze skříně PC
- Má pojistku, která jej při zkratu uvnitř PC odpojí
- Formát ATX, což umožňuje SW vypnutí PC
- PC zdroj musí zabezpečit napětí v určitém rozsahu, nesmí poklesnout pod stanovený limit ani při maximálním zatížení zdroje

	AT	ATX
Napětí	+-5V, +-12V	+-5V, +-12V a 3,3V
Konektory vedoucí do zákl. Desky	Dva 6 pinové P8 a P9, černýma k sobě	20 pinové main power +4 pinový PW +12V AUX power
Zapínání	HW – přímo 220V	SW – pomocí PS ON

Tolerance výstupních napětí							
Výstupní napětí	Tolerance	Minimální napětí [V]	Maximální napětí [V]				
+12VDC	+-5%	+11,40V	+12,60V				
+5VDC	+-5%	+4,75V	+5,25V				
+3.3VDC	+-5%	+3,14V	+3,47V				
-12V	+-10%	-10,80V	-13,20V				

Charakteristiky

Parametry zdrojů

- Výkon (od 200 do 1500 W)
- Maximální poskytované proudy v jednotlivých napěťových větvích
- Stabilita Uout při zátěži
- Stabilita Uout při kolísání vstupního napětí
- Schopnost odfiltrování "špiček" ze sítě
- Účinnost zdroje

Účinnost zdroje

- Udává množství využitelné energie (zbytek se vyzáří jako teplo)
- Účinnost je vždy menší než 100%
- Čím větší účinnost, tím méně tepla
- Nejvyšší účinnost je při 50% 75% zatížení

80 Plus	ICON	Rated load percentage			
efficiency		10%	20%	50%	100%
80 Plus	80 PLUS		80%	80%	80%
80 Plus Bronze	80 PLUS BRONZE		82%	85%	82%
80 Plus Silver	80 PLUS SILVER		85%	88%	85%
80 Plus Gold	80 PLUS GOLD		87%	90%	87%
80 Plus Platinum	80 PLUS PLATINUM		90%	92%	89%
80 Plus Titanium	80 PLUS TITANIUM	90%	92%	94%	90%

Účiník

• Veličina vyjadřující poměr mezi činným a zdánlivým výkonem

PFC = Power Factor Correction

- Snaha účiníku ve zdroji o eliminaci rušení a výskyt vyšších harmonických složek, které deformují sinusový průběh
- Aktivní PFC
 - o Realizace pomocí tranzistorů a kondenzátorů (aktivní součástky)
- Pasivní PFC
 - o Pouze pasivní součástky (R, L, C)

Ochranné funkce zdroje

- OCP = Over Current Protection
 - Ochrana při nadměrném proudu
 - o Pokud je nastavená hodnota překročena, zdroj se vypne
- OVP = Over Voltage Protection
 - Odpojí zdroj při překročení napětí na větvi, které povolují normy a limity
- OPP = Over Power Protection
 - Odpojí zdroj, když je překročen maximální výkon daný výrobcem
- OTP = Over Temperature Protection
 - Ochrana proti přehřátí zdroje
 - o Při překročení maximální teploty se zdroj vypne
- SCP = Short Circuit Protection
 - Ochrana při zkratu na sekundární části zdroje

Konektory

- Konektory mají zkosené hrany nebo jsou klíčované, aby se předešlo obrácení polarity
- Hlavní napájecí konektory
 - o 20 nebo 24 pinů
 - Slouží pro připojení napájení k základní desce
- ATX 12V
 - o 4 pinový napájecí konektor
 - o Poskytuje zvláštní napájení pro VRM, které napětí upraví, vyhladí a předají procesoru
 - o Pro silné desky je zapotřebí více energie (8 pinový nebo 4+4)
- 4 pinový periferní (MOLEX)
 - o Napájení pevných disků a mechanik
 - Obsahuje čtyři vodiče
 - Dva černé (GND)
 - Jeden červený (+5 V)
 - Jeden žlutý (+12 V)
 - o Dříve používán jako napájení pro 8" a 5,25" disketové mechaniky
 - V některých případech jsou využívány jako dodatečné napájení pro různé karty
- 4 pinový Berg (mini molex)
 - o Malý napájecí konektor pro 3,5" disky
- SATA power
 - 15 pinový konektor pro komponenty, který používají disky nebo mechaniky
 - Dodává napětí +3,3, +5 a +12 V
- 6 pinové PCI-e
 - Grafické karty
 - Na výstupu max 75 W
- 6+2 pinové PCle
 - Pro účely zpětné kompatibility
 - Buď 6pinové, nebo 8pinové karty, které mají být připojeny pomocí dvou samostatných modulů kabelového připojení do stejné zdířky, jeden s 6 kolíky a další se dvěma

Typical ATX and ATX12V Power Supply Connectors

(Pin-side view, not to scale)

Řídící signály

- 5V SB (Stand by)
 - Vede ze zdroje do základní desky (fialový vodič)
 - Napětí +5 V i když jsou všechny ostatní napěťové okruhy vypnuty
 - Používá se k elektronickému zapnutí PC
 - Udržuje základní desku neustále pod napětím, aby se PC dal softwarově zapnout bez tlačítka

PS-ON

- Vede ze základní desky do zdroje (zelený vodič)
- Zapíná všechny napěťové okruhy zdroje
- V podstatě zapíná zdroj spojením PS_ON s GND pomocí tlačítka, nebo i SW
- o Krátký impuls zdroj zapne
- Dlouhý impuls (přidržení tlačítka) zdroj vypne
- o SW signál může vydat OS na základě PC programu

PW_OK

- Vede ze zdroje do základní desky (šedý vodič), PW_good (oranžový u AT zdrojů)
- Drží CPU v resetu, než všechny napětí dosáhnou předepsaných tolerancí
- o Po jeho aktivaci se začíná provádět POST

BIOS

- Basic Input Output Systém
- Adresový prostor BIOSu se nachází v RAM a může za adresovat pouze první MB
- Souhrn základních funkcí a programů nutných pro spuštění PC
- Komunikace mezi HW a SW a HW a Uživatelem
- Skládá se z:
 - BIOS základní desky
 - Uložen energeticky nezávislé Flash paměti
 - BIOS rozšiřujících karet (firmware)
 - Drivery HW na základní desce
 - POST (Power On Self Test)
 - SETUP utilities
 - Zavaděč (boot loader)
 - o API

POST

- Power On Self Test
- První program po zapnutí PC
- Prohledá BIOS rozšiřujících karet a vypíše verze jejich firmwaru
- Provede komplexní HW test PC
 - Výstupy
 - Na obrazovce
 - Beep kódy
 - LED
 - Hlasové
- Zobrazí tabulku s nalezeným HW
- Nastavení rychlostní parametry HW podle hodnot uložených v CMOS

Boot Loader

- Zavaděč OS
- Hledá na HDD Master Boot Record
- Zavede jej do OP a spustí v něm obsazený programový kód a předá mu řízení
 - o MBR v PAT nalezne aktivní oddíl a zavede jeho boot record do OP
 - Boot record oddílu najde na zaváděcím log. disku zaváděcí soubory OS a zavede do OP

SETUP

- Program pro nastavení HW konfigurace a rychlostních parametrů HW
- Aktivuje se během začátku POST kombinací kláves
 - o Kombinace kláves se liší podle výrobce základní desky
- Program se nachází v EEPROM nebo Flash a edituje data uložená v CMOS

CMOS

- Energeticky závislá paměť na základní desce
 - Obsah je při vypnutí PC udržován baterií
- Obsahuje pouze data, nikoli programy
 - Její obsah se edituje Setupem
- Lze vymazat pomocí vyjmutí baterky a vyzkratováním jumperem nebo šroubovákem
- Obsahuje
 - o RTC
 - o HW konfiguraci
 - o Rychlostní parametry HW
 - o Hesla
 - Pořadí zavádění OS

API

- Aplikační programové rozhraní vytvořené BIOSem při startu.
 - Je tvořeno předpřipravenými příkazy, funkcemi a slouží k zajištění komunikace mezi HW a OS
- Slouží k zajištění správné komunikace mezi HW a OS
 - o Aplikace nekomunikují přímo s HW ale s API, která se o vše potřebné s HW postará

DUAL BIOS

- Zdvojený BIOS
- Na základní desce dva čipy, které obsahují totožnou verzi BIOS
- Druhý je záloha prvního
- Při startu se v průběhu POSTu ověří, zda jsou totožné, v případě, že nejsou, se buď použije záložní (druhý) BIOS anebo upozorní uživatele na možný problém

Upgrade BIOSu

- Nutno zjistit typ základní desky
- Nalezení a stažení nové verze BIOS
- Zálohování důležitých dat
- Aktualizace přímo v BIOS
- Upgrade BIOSu se provádí v případě, že komponenty nefungují správně se současnou verzí BIOSu.
- BIOS lze vrátit do původního stavu resetem CMOS

UEFI

- Unified Extensible Firmware Interface
- BIOS má dva základní nedostatky
 - o Je založen na 16 bitovém assembleru nemůže využít moderní 64 bitový HW
 - Neexistuje jednotná specifikace každý výrobce si vše dělal po svém
- UEFI specifikace definuje SW rozhraní mezi výrobci OS a firmwarem HW
- Náhrada a vylepšení BIOS
- Rychlejší bootování a obnovení z režimu hibernace
- Podpora disků větších než 2,2 TB a dokáže za adresovat celou RAM
- Lze nastartovat jako BIOS pomocí CSM (Compatibility Support Module)
 - Emulace BIOS pod UEFI
 - Je nutné povolit Legacy nebo CSM v Setupu
- Secure boot kontroluje obsah diskového oddílu UEFI
 - Zkontroluje databázi klíčů, které jsou umístěny v diskovém oddílu EFI. Pokud soubory nebyly modifikovány, načte je, jinak celý proces bootování zastaví
 - o ochrana procesu proti bootkit útokům
- Fáze bootování UEFI
 - o Inicializuje se CPU, paměť a čipová sada
 - o zbytek HW se aktivuje paralelně
 - o UEFI vezme bootovácí disk z ESP oddílu na disku
- Součástí standardu je GPT
 - o GUID Partition Table
 - Standard pro členění disků na oddíly
 - Nahrazuje starší MBR a PAT, které neumožnují použít disk větší než 2,2 TB
 - Lze vytvořit až 128 primárních oddílů (MBR 3+1 nebo 4)

Rozdíly v bootování

- BIOS postupně prohledává všechna uložiště a hledá MBR
 - UEFI prohledá uložiště paralelně
- BIOS aktivují všechny komponenty postupně a UEFI to provede paralelně.
- UEFI má shell, který může spustit software

Instalace OS pres UEFI

- Vložíme paměťové médium s OS
 - Bootovatelný USB flash disk (nutno FAT 32) nebo např. CD
 - V SETUPu nastavíme pořadí, z jakého média má bootovat
- Pokud se nám rovnou nespustí instalace přes UEFI, najedeme do EFI Shell, z nabídky vybereme jednotku, ze které chceme instalovat, přepneme se do složky BOOT a následně do EFI, zde spustíme soubor bootx64.efi -> spustí se instalace

Nastavení SETUPu v BIOSu

- Do SETUPu BIOSU se dostaneme stisknutím požadované klávesy
 - o Klávesa se liší výrobcem (DEL, F1,F2,F9,F10,..)
- Modrobílé menu BIOSu se skládá z několika záložek
 - o Main
 - Přehled verze BIOSu, informace o CPU, frekvence, povolení Hyper Threading
 - Advanced
 - Důležitá sekce, konfigurace periferií, logy, HW monitoring, nastavení USB
 - Performance
 - HW taktování
 - Security
 - Nastavení hesla, uživatelů, kontrola detekce zavřené skříně
 - o Power
 - Nastavení napájení
 - o Boot
 - Nastavení pořadí bootovacích medií
 - o Exit
- Uložení a opuštění BIOSu
- LOAD SETUP DEFAULT
 - Použijeme, pokud PC po startu vykazuje problémy (pokud nejde vůbec spustit, zkratujeme propojku Clear CMOS na základní desce

Nastavení SETUPu UEFI

- Prostředí UEFI působí naprosto intuitivně
- Podpora klávesnice i myši
- Na základní obrazovce je vše důležité, včetně pořadí bootování, jeho změna se pak provádí jednoduchým přetažením
- Upgrade UEFI
 - Zjistíme typ desky výrobce a nejdeme nejnovější verzi UEFI, kterou stáhneme na USB disk (nebo na pevný disk, USB jednodušší na hledání), přesuneme se do UEFI Setupu, zvolíme aktualizaci a vybereme uložiště se souborem a spustíme proces

Nastavení hesla BIOS/UEFI

- Security
- Set Supervisior password pro administrátora, má oprávnění vstoupit do setupu
 - Nastaví heslo, které je požadováno po startu, když chce uživatel vstoupit do setupu BIOSu
- Set User password pro uživatele, který může plně pracovat se systémem, ale nemá přístup pro konfiguraci BIOS