Exercises

Advanced Machine Learning
Fall 2019

Series 8, 16 Dec 2019 (PAC learning)

Machine Learning Laboratory

Dept. of Computer Science, ETH Zürich

Prof. Joachim M. Buhmann

Web https://ml2.inf.ethz.ch/courses/aml/

Teaching assistant: Viktor Gal

viktor.gal@inf.ethz.ch

Problem 1 (PAC learnability):

Let $\mathcal C$ be a concept class and $\mathcal A$ a learning algorithm that, when given a sample of n instances as input, outputs the empirical-risk minimizer $\hat c_n^* \in \mathcal C$. Consider the following inequalities:

• For any $n \in \mathbb{N}$,

$$\mathcal{R}\left(\hat{c}_{n}^{*}\right)-\inf_{c\in\mathcal{C}}\mathcal{R}\left(c\right)<2\sup_{c\in\mathcal{C}}\left|\hat{\mathcal{R}_{n}}\left(c\right)-\mathcal{R}\left(c\right)\right|.$$

• If \mathcal{C} is finite, $n \in \mathbb{N}$, and $\epsilon > 0$,

$$\mathbf{P}\left(\sup_{c\in\mathcal{C}}\left|\hat{\mathcal{R}}_{n}\left(c\right)-\mathcal{R}\left(c\right)\right|>\epsilon\right)\leq2\left|\mathcal{C}\right|\exp\left(-2n\epsilon^{2}\right).$$

Use these inequalities to prove that $\mathbf{P}\left(\mathcal{R}\left(\hat{c}_{n}^{*}\right)-\inf_{c\in\mathcal{C}}\mathcal{R}\left(c\right)>\epsilon\right)\rightarrow0$, as $n\rightarrow\infty$.

Problem 2 (PAC learnability of intervals):

Consider the concept class $\mathcal{C}:=\left\{\mathbb{I}_{[\ell,\infty)}\mid \ell\in\mathbb{R}\right\}$ consisting of all indicator functions of intervals of the form $[\ell,\infty)$:

$$\mathbb{I}_{[\ell,\infty)}(x) = \begin{cases} 0 & x < \ell \\ 1 & x \ge \ell \end{cases}$$

Fix some $\ell^* \in \mathbb{R}$ and consider the classifier $c^* = \mathbb{I}_{[\ell^*,\infty)}$. Let X_1,X_2,\ldots be i.i.d. random variables taking values in \mathbb{R} and let $Y_i := c^*(X_i)$. Moreover, for $n \in \mathbb{N}$, let

$$X^n_{\min} := \min_{i \leq n, Y_i = 1} X_i \quad \text{and} \quad \hat{c}_n := \mathbb{I}_{\left[X^n_{\min}, \infty\right)}.$$

- 1. Let $\epsilon>0$ and assume that there is a unique $\ell_{\epsilon}^+\in\mathbb{R}$ such that $\mathbf{P}\left(\ell^*\leq X_i<\ell_{\epsilon}^+\right)=\epsilon$. Show that $\mathbf{P}\left(\ell_{\epsilon}^+\leq X_{\min}^n\right)=\left(1-\epsilon\right)^n$.
- 2. Show that if $n > \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)$, then $\mathbf{P} \left(\ell_{\epsilon}^+ \leq X_{\min}^n \right) < \delta$. Hint: $1 z \leq \exp(-z)$.
- 3. Show that \mathcal{C} is efficiently PAC-learnable from \mathcal{C} . Hint: Prove $\mathbf{P}\left(\mathcal{R}\left(\hat{c}_{n}\right)>\epsilon\right)=\mathbf{P}\left(\ell_{\epsilon}^{+}\leq X_{\min}^{n}\right)$.