Detailed Description

WORM (Write One, Run Many) was developed to simplify and streamline the creation of MCNP input decks for nuclear criticality safety analyses. However, WORM is actually usable for any computer code that uses an ASCII text file for input. WORM is completely written in Perl, the Practical Extraction and Reporting Language. Perl is one of the most portable programming languages available today. As such, the WORM works on practically any computer platform.

A WORM model is essentially a standard input deck with some of its numerical values replaced by WORM code. Within the model, the WORM code is identified with opening and closing angle brackets (< and >). WORM parses the model file. Text that is outside the angle brackets is echoed verbatim. Code that is inside the angle brackets is evaluated and the result inserted in the model at the location of the code.

The main advantage of the WORM code is the list shorthand expressions which expedite parametric studies. A parametric study requiring multiple input files, say for MCNP, can be generated from a single user-written WORM model. For example, if the objective of the parametric study were to determine the effect of increasing an input value from one to ten with a resolution of one-half, the WORM model could represent that input value with the list <t=1:10:0.5>. List values can also be generated by linear or logarithmic interpolation between two points. If multiple lists are used in the model, WORM steps through each list individually, i.e., WORM creates input decks corresponding to each and every permutation of the list values.

Within a WORM model, code can also be used to perform mathematical calculations. WORM code may include and evaluate the following mathematical operators and functions: addition, subtraction, multiplication, division, exponentiation, modulus, sine, cosine, tangent, arcsine, arccosine, arctangent, the natural logarithm, logarithm base 10, integer truncation, absolute value, and random number. Several common constants, e.g., pi, e, and Avogadro's Number (both as 6.022e23 and 0.6022), are predefined in WORM. This is useful for setting parameters that are dependent on a list. For example, if the mass of a spherical unit is varied, the corresponding radius could be calculated by the WORM code <radius = ((3*mass)/(4*pi*density))^(1/3)> where density is defined by another WORM code statement in the model.

Additionally, many unit conversion factors are also predefined: millimeters, meters, inches, feet, yards, and mils to centimeters; kilograms, pounds, and ounces to grams; liters, milliliters, gallons, and fluid ounces to cubic centimeters; and angular degrees to radians.

The user may also create their own Perl subroutine in the WORM model file. The subroutine can then be invoked by WORM code.

Additionally, a library of standard material definitions and Perl subroutines are included. Any one of these files can be incorporated into the subject model with a simple WORM read command. The WORM code <read filename> places the contents of the referenced file into the WORM model before it is evaluated by WORM. The material definitions provided are:

alumina air aluminum azelaic acid b4c beryllium beryllium oxide bisco NS4FR bisco NS4 bisco NS4FR B4C bismuth borax bpa bromobenzene cadmium carbon steel celotex cerafiber

compB3	compC4	concrete CMRR
concrete LANL	concrete PF4	copper
dapsone	ddsa	dicyandiamide
diethylenetriamine	du	duoseal
epichlorohydrin	ethanol	ethylenediamine
•	fc43	•
ethylene_glycol		foray
glass_lead	glass_plate	granite
graphite	gypsum	haynes214
hdpe	hfe7100	hfe71ipa
hfe7200	hfe72da	hfe72de
hfe7500	inconel	iron
isophorone_diamine	kaolinite	kynar
ldpe	lead	lead_oxide
lucite	magnesium_oxide	meehanite
metlx	mineral_oil	mockhe
mockhe_90024	mockhe_90503	mockhe_90505
molybdenum	mphenylenediamine	nickel
nitroglycerin	pbx_9404	pbx_9407
pbx_9501	pbx_9502	peha
pewter	pf5050	phthalic_anhydride
polybiz	polystyrene	president
pu238 239	pu238 239 water	pu239
pu239 240	pu239 240 oxide	pu239 240 oxide water
pu239 240 water	pu239 h2	pu239 h3
pu239 oxide	pu239_oxide_aries	pu239_oxide_aries_water
pu239 oxide water	pu239 water	pvc
pyrex	pyrex b11	r134a
rdx	sand	sebacic acid
silica_amorphous	silicon dioxide	sodium bicarbonate
sodium chloride	ss304 ⁻	ss316 ⁻
stearic acid	succinic anhydride	tantalum
tatb	tce	teta
tetrahydrophthalic anhydride	thorium	titanium
tmbac	tnt	torr seal
trimellitic_anhydride	tungsten	tungsten carbide
u235	u235 238	u235 238 oxide
u235 238 water	u235 oxide	u235 oxide water
u235_u236_water	u308	u3o8 enrichment
urethane	uxmo	u hydride
u natural	vaf	vermiculite
vermiculite crude	water	zeolite
zircaloy 2	zircaloy 4	zirconium
Ziicaioy_2	Ziicaloy_¬	Zii Comum

The PERL subroutines included are:

fct_lattice_parameter fct_maxfct fct_number_string

fct_minfct