유압 시스템 기초

제1장 파스칼 법칙(Pascal's Law)

1.1 파스칼 법칙의 정의와 발견 배경

파스칼 법칙(Pascal's Law)은 1653년 프랑스 수학자이자 물리학자인 블레즈 파스칼(Blaise Pascal)이 발견한 원리입니다. 이 법칙은 **유체압력 전달원리**라고도 불립니다.

정의: 밀폐된 용기 속에 있는 비압축성 유체에 압력을 가하면, 이 압력은 모든 방향, 모든 면에 동일한 크기로 작용한다.

1.2 파스칼 법칙의 기본 원리

압력의 기본 공식: P=F/A

• P: 압력 (Pascal)

• F: 힘 (Newton)

• A: 면적 (m²)

힘의 관계

파스칼 법칙에 따르면: F1/A1=F2/A2

이를 정리하면: F2=F1×A2/A1

1.3 파스칼 법칙의 적용 조건

• 밀폐된 시스템: 외부와 차단된 용기

• **비압축성 유체**: 주로 액체 사용

• 정적 평형 상태: 정지하거나 등속 운동

• 전단응력 없음: 유체 내부에 전단응력이 작용하지 않는 조건

1.4 파스칼 법칙의 유압 시스템 응용

유압 프레스(Hydraulic Press)

작은 피스톤에 작은 힘을 가하여 큰 피스톤에서 큰 힘을 얻습니다. 면적비에 따라 힘이 증폭됩니다.

유압 브레이크

자동차 브레이크 페달을 밟으면 작은 피스톤에 힘이 가해지고, 파스칼 법칙에 의해 이 압력이 브레이크 패드로 전달되어 차량을 정지시킵니다.

유압 잭

자동차 정비소에서 차량을 들어올리는 장치로, 작은 힘으로 무거운 차량을 들어올릴 수 있습니다.

제2장 유체 역학의 기본 원리

2.1 유체의 정의와 특성

유체(Fluid)는 전단응력에 의해 연속적으로 변형되는 물질로, 액체와 기체를 포함합니다. 유체의 주요 특성은 다음과 같습니다:

- 압력의 수직 작용: 유체는 접촉하는 모든 표면에 수직으로 압력을 가합니다
- 형태 변화: 용기의 모양에 따라 형태가 변합니다
- 점성: 유체 내부의 마찰력으로 흐름에 저항을 제공합니다

2.2 압력과 힘의 관계

압력(Pressure)은 단위면적당 작용하는 힘으로 정의됩니다:

P=FA

- P: 압력 (Pa = N/m²)
- F: 힘 (N)
- A: 면적 (m²)

유체 내부에서는 정수압력 분포가 형성되며, 높이에 따른 압력 변화는 다음과 같습니다:

P=pgh

여기서 ρ는 유체 밀도, g는 중력가속도, h는 높이입니다.

2.3 연속 방정식(Continuity Equation)

연속 방정식은 질량 보존 법칙을 수학적으로 표현한 것입니다.

기본 원리

폐곡면을 통해 유입되는 유체량과 유출되는 유체량이 같아야 합니다.

비압축성 유체의 연속 방정식

A1*v1=A2*v2

- A: 단면적 (m²)
- v: 유속 (m/s)

이는 체적 유량이 일정함을 의미합니다.

2.4 유체의 흐름 특성

층류(Laminar Flow)와 난류(Turbulent Flow)

층류: 유체 입자들이 질서정연하게 층을 이루며 흐르는 상태

난류: 유체 입자들이 불규칙하게 섞이며 와류를 형성하는 상태

레이놀즈 수(Reynolds Number)

층류와 난류를 구분하는 무차원 수입니다:

Re = $\rho vd / \mu = vd / v$

• ρ: 밀도 (kg/m³)

- v: 평균 속도 (m/s)
- d: 특성 길이 (m)
- µ(뮤): 점성계수 (Pa·s)
- v(누): 동점성계수 (m²/s)

유동 상태 판별 기준

- Re < 2100: 층류
- 2100 〈 Re 〈 4000: 천이구역
- Re > 4000: 난류

레이놀즈 수는 관성력과 점성력의 비를 나타내며, 유압 시스템 설계에서 유동 특성을 예측하는 데 중요한 역할을 합니다.

제3장 베르누이 원리(Bernoulli's Principle)

3.1 정의

베르누이 원리는 비압축성, 비점성 유체가 정상 상태로 흐를 때, 단면을 따라 압력 에너지, 운동 에너지, 위치 에너지의 합이 일정하다는 원리입니다.

3.2 베르누이 방정식

$$P+(1/2)\rho v^2+\rho gh=constant$$

- P: 압력 (Pa)
- p: 유체 밀도 (kg/m³)
- v: 유속 (m/s)
- g: 중력가속도 (m/s²)
- h: 기준면으로부터의 높이 (m)

3.3 적용 조건

- 비압축성 유체
- 비점성 유체
- 정상 유동(시간에 따른 변화 없음)

3.4 주요 응용

- 벤츄리 효과: 좁아진 관에서 유속 증가로 압력 감소
- 유량 계측: 벤츄리관, 오리피스판 사용
- 유압 시스템: 유체 속도와 압력 변화를 이용한 유량 제어