Section 11: GMM

ARE 210

November 14, 2017

1)

a) Suppose we draw a random sample of individuals from a large population to estimate the average income. We have two unbiased observations of individual i's income μ_i : $X_i^{\mathrm{T}} = (x_{1i}, x_{2i})$. Construct the efficient GMM estimator of the population average income μ . Interpret the estimator and the effect of the optimal weighting matrix.

Write our stacked moment conditions $m(X_i; \mu) = X_i - \mu$. The optimal weighting matrix is $V[m(X_i; \mu)] = V[X_i]^{-1}$. Let $V \equiv V[X_i]$, then

$$V[X_i]^{-1} = \frac{1}{V_{11}V_{22} - V_{12}^2} \begin{pmatrix} V_{22} & -V_{12} \\ -V_{12} & V_{11} \end{pmatrix}$$
. Our GMM estimator solves

$$\hat{\mu}_{GMM} = \arg\max_{\hat{\mu}} -\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} m(X_i; \mu) \right)^{\mathrm{T}} V[X_i]^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} m(X_i; \mu) \right)$$

Let $M(X_i; \mu) \equiv D_{\mu} m(X_i; \mu) = (-1, -1)^{\mathrm{T}}$. Then the first order condition for the maximization problem gives $\left(\frac{1}{n} \sum_{i=1}^{n} M(X_i; \hat{\mu}_{GMM})\right) V[X_i]^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} m(X_i; \hat{\mu}_{GMM})\right) = 0$. Simplifying yields

$$\hat{\mu}_{GMM} = \frac{(V_{22} - V_{12})\overline{X_1} + (V_{11} - V_{12})\overline{X_2}}{V_{11} + V_{22} - 2V_{12}}$$

where $\overline{X_j} = \frac{1}{n} \sum_{i=1}^n x_{ji}$.

To interpret this, note that $V_{22}-V_{12}$ is the variance of the residual from a regression of X_{2i} on X_{1i} . In other words, this estimator is an inverse residual variance weighted average of the two means.

b) (Random effects) Now assume for simplicity $V[X_i] = \mathbf{I}$. Also assume $\mu_i \sim N(\mu, \sigma^2)$, and assume for simplicity μ and σ^2 are known. What is $\hat{\mu}_{i,RE} \equiv \mathbf{E}[\mu_i|X_i]$? Compare this estimator to $\hat{\mu} = \overline{X}_i \equiv \frac{x_{1i} + x_{2i}}{2}$.

$$\mathbf{E}[\mu_i|X_i] = \int \mu_i p(\mu_i|X_i) d\mu_i$$
$$= \int \mu_i \left[p(X_i|\mu_i) p(\mu_i) / p(X_i) \right] d\mu_i$$

To simplify this, note that with some algebra, we can rewrite $p(X_i|\mu_i)p(\mu_i)/p(X_i) = p(\overline{X}_i|\mu_i)p(\mu_i)/p(\overline{X}_i)$, where $\overline{X}_i = \frac{x_{1i}+x_{2i}}{2}$. We can then calculate each of these terms. $p(\overline{X}_i|\mu_i) = \sqrt{2}\phi(\sqrt{2}(\overline{X}_i - \mu_i))$, $p(\mu_i) = \frac{1}{\sigma}\phi((\mu_i - \mu)/\sigma)$, and $p(\overline{X}_i) = \frac{1}{\sqrt{\sigma^2+1/2}}\phi\left(\frac{\overline{X}_i-\mu}{\sqrt{\sigma^2+1/2}}\right)$. Substituting these and further algebra yields

$$\mathbf{E}[\mu_i|X_i] = \frac{1/\sigma^2}{2 + 1/\sigma^2}\mu + \frac{2}{2 + 1/\sigma^2}\overline{X}_i$$

which is a weighted average of the population mean, μ , and the individual's mean observed income, \overline{X}_i . To interpret this, consider what happens when σ^2 gets large. When σ^2 is large, it means the population mean income carries relatively little information about an individual's income compared to noisy observations about that individual's income. In this case, all the weight gets put on \overline{X}_i .

- 2) (Overidentified linear IV) Consider the linear instrumental variable model from class. $W_i \equiv \{y_i, x_i, z_i\}$ are independently and identically distributed, where y_i and x_i are scalars and z_i is a 2x1 vector, and we impose the moment restriction $\mathbf{E}[z_i(y_i x_i\beta)] = 0$, and assume that y_i , x_i , and z_i are all mean 0.
 - a) Show that the GMM estimator using the weighting matrix $W = \hat{V}[z_i]^{-1}$ is just $\hat{\beta}_{2SLS} \equiv \frac{\text{Cov}[\hat{x}_i, y_i]}{V[\hat{x}_i]}$, where $\hat{x}_i = z_i^T V[z_i]^{-1} \text{Cov}[z_i, x_i]$, predicted x_i from a regression of x_i on z_i . Justify this choice of weights.

Hint: See your answer to 1) for the justification.

Note: This is called "Mahalanobis distance", which may seem weird but makes sense when we think of GMM as a minimum distance estimator, with the choice of weights allowing us to calculate the distance between the moments and 0.

First, let $m(W_i, \beta) = z_i(y_i - x_i\beta)$, and let $M(W_i, \beta) \equiv D_{\beta}m(X_i, \beta) = z_ix_i$. As seen previously, we can write $\hat{\beta}_{GMM} = \arg\max_b m(b)^T W m(b)$, where $m(b) = \frac{1}{n} \sum_{i=1}^n m(W_i, b)$. The first order condition of this maximization problem yields

 $M(\hat{\beta}_{GMM})Wm(\hat{\beta}_{GMM})=0$, where $M(b)=\frac{1}{n}\sum_{i=1}^{n}M(W_{i},b)$. Substituting yields

$$\operatorname{Cov}[z_i, x_i]^T W \left(\operatorname{Cov}[z_i, y_i] - \operatorname{Cov}[z_i, x_i] \hat{\beta}_{GMM} \right) = 0$$
$$\hat{\beta}_{GMM} = \left(\operatorname{Cov}[z_i, x_i]^T W \operatorname{Cov}[z_i, x_i] \right)^{-1} \operatorname{Cov}[z_i, x_i]^T W \operatorname{Cov}[z_i, y_i]$$

Now, suppose $W = V[z_i]^{-1}$. Now, note that $W = V[z_i]^{-1}\mathbf{E}[z_iz_i^T]V[z_i]^{-1}$. Substituting this into our formula for $\hat{\beta}_{GMM}$ yields $\hat{\beta}_{GMM} = \hat{\beta}_{2SLS}$. Note that this inverse variance weighting of the moments is equivalent to what we saw in 1): we're weighting the moments proportionally to their residual information. Since the moments correspond to z_i , we can also think of this as normalizing z_i such that they're independent with unit variance.

b) Show how to construct the efficient GMM estimator, using $\hat{\beta}_{2SLS}$ as the first step estimator. Interpret the weighting matrix used here. Compare it to the weighting matrix in part a).

First, we would estimate $\hat{\beta}_{2SLS}$. Second, we would estimate $W_e = \mathbf{E}[m(W_i, \beta)m(W_i, \beta)^{\mathrm{T}}] = \mathbf{E}[z_i z_i^T \epsilon_i^2]$ using $\hat{W}_e = \frac{1}{n} \sum_{i=1}^n (y_i - x_i \hat{\beta}_{2SLS})^2 z_i z_i^{\mathrm{T}}$. Finally, we would estimate

$$\hat{\beta}_{GMM,e} = [\text{Cov}[z_i, x_i]^{\text{T}} \hat{W}_e \text{Cov}[z_i, x_i]]^{-1} \text{Cov}[z_i, x_i]^{\text{T}} \hat{W}_e \text{Cov}[z_i, y_i]$$

To interpret the optimal weighting matrix, note that

$$\mathbf{E}[z_i z_i^T \epsilon_i^2] = \mathbf{E}[\epsilon_i^2] \begin{pmatrix} \mathbf{E}[z_{1i}^2 \epsilon_i^2] / \mathbf{E}[\epsilon_i^2] & \mathbf{E}[z_{1i} z_{2i} \epsilon_i^2] / \mathbf{E}[\epsilon_i^2] \\ \mathbf{E}[z_{1i} z_{2i} \epsilon_i^2] / \mathbf{E}[\epsilon_i^2] & \mathbf{E}[z_{2i}^2 \epsilon_i^2] / \mathbf{E}[\epsilon_i^2] \end{pmatrix}$$

which you can contrast with

$$\mathbf{E}[z_i z_i^T] = \left(egin{array}{cc} \mathbf{E}[z_{1i}^2] & \mathbf{E}[z_{1i}z_{2i}] \ \mathbf{E}[z_{1i}z_{2i}] & \mathbf{E}[z_{2i}^2] \end{array}
ight)$$

The two are different in that the optimal weighting matrix is just a weighted variance matrix of the z_i , where the weights used are ϵ_i^2 . In other words, we'd put relatively more weight on a z_{ji} that varies relatively less when ϵ_i^2 are large.