Field kinematics

Basic conventions						
Minkowski metric tensor	Totally antisymmetric tensor	Momentum	Norm	Frame		
$\eta_{_{IIV}}$	$\epsilon \eta_{uvo\sigma}$	k^{μ}	$k^2 == k_{\mu} k^{\mu}$	$n^{\mu} = \frac{k^{\mu}}{n}$		

Fundamental fields

Fundamental field	d Symmetries	Decomposition in SO(3) irreps	Source
$\Gamma_{lphaeta\chi}$	Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$,	$ \Gamma_{1+\beta\chi}^{\#2} n_{\alpha} + \frac{1}{9} \eta_{\beta\chi} \Gamma_{0+}^{\#3} n_{\alpha} + \frac{1}{3} \Gamma_{2+\beta\chi}^{\#2} n_{\alpha} + \frac{2}{3} \Gamma_{2+\beta\chi}^{\#3} n_{\alpha} + \frac{2}{9} \eta_{\beta\chi} \Gamma_{0+}^{\#4} n_{\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{0+}^{\#1} n_{\beta} - \Gamma_{1+\alpha\chi}^{\#1} n_{\beta} + \Gamma_{2+\alpha\chi}^{\#1} n_{\beta} + \frac{1}{9} \eta_{\alpha\chi} \Gamma_{0+}^{\#3} n_{\beta} - \frac{1}{2} \Gamma_{1+\alpha\chi}^{\#3} n_{\beta} + \frac{1}{3} \Gamma_{2+\alpha\chi}^{\#2} n_{\beta} - \frac{1}{3} \Gamma_{1-\chi}^{\#2} n_{\alpha} n_{\beta} - \frac{1}{3} \Gamma_{1-\chi}^{\#3} n_{\alpha} n_{\beta} - $	$\Delta_{lphaeta\chi}$

SO(3) irreps

	Symmetries Symmetries Symmetries	Expansion in terms of the fundamental field 1 = \alpha \beta \cdots \cdots 1 = \alpha \beta \cdots	Source			
	Symmetry[0, $\Gamma_{0}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma^{\alpha \beta}_{\alpha} n_{\beta} + \frac{1}{2} \Gamma^{\alpha \beta}_{\alpha} n_{\beta}$ $-\frac{\alpha \beta \chi}{2} n_{\beta} n_{\beta} n_{\beta}$	Δ ^{#1} ₀ +			
Γ ^{#2} ₀ +		$\Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ#2			
	Symmetry[0, $\Gamma_{0+}^{#3}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} n_{\alpha} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} - 3 \Gamma^{\alpha\beta\chi}_{\ \alpha} n_{\alpha} n_{\beta} n_{\chi}$	Δ#3			
Γ ₀ ^{#4}	Symmetry[0, $\Gamma_{0^{+}}^{#4}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} n_{\alpha} - \frac{1}{2} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} n_{\beta} - \frac{1}{2} \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta}$	Δ#4			
Γ ₀ ^{±1}		$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	Δ ₀ ^{#1}			
$\Gamma_{1}^{\#1}{}_{lphaeta}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\chi} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\chi} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\chi} n_{\chi} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X} n_{\chi} $	$\Delta_{1}^{\#1}{}_{lphaeta}$			
$\Gamma_{1}^{\#2}{}_{lphaeta}$	Strongdenset[{1, 2}, denset[-(1,2)]]]	$\frac{1}{2} \Gamma^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\chi}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#2}{}_{\alpha\beta}$			
Γ#3 1 ⁺ αβ	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \Gamma_{\alpha\beta}^{} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} - \Gamma_{\beta\alpha}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{\alpha} n_{\alpha\alpha} n_{\alpha\alpha}$	$\Delta_{1}^{#3}{}_{\alpha\beta}$			
Γ <u>#</u> 1 α	Symmetry[1, $\Gamma_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]	$1 - \frac{1}{2} \Gamma^{\beta}_{\alpha\beta} + \frac{1}{2} \Gamma^{\beta}_{\beta\alpha} - \frac{1}{2} \Gamma^{\beta}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\Delta_{1}^{\#1}{}_{\alpha}$			
Γ ₁ ^{#2} α	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\frac{1}{2} \Gamma_{\alpha}^{\beta} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi}$	$\Delta_{1}^{\#2}\alpha$			
Γ ₁ α	Symmetry[1, $\Gamma_1^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]	$ \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}^{-3} \Gamma^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} $	$\Delta_{1-\alpha}^{\#3}$			
$\Gamma_{1 \alpha}^{\#4}$	Symmetry[1, $\Gamma_1^{\#4} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha\beta}^{\beta} + \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + 3 \Gamma_{\alpha}^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#4}$			
$\Gamma_{1-\alpha}^{\#5}$	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]	$\Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}$	$\Delta_{1}^{\#5}$ α			
	Symmetry[1, $\Gamma_1^{\#_6 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{$	$\Delta_1^{\#6}$			
Γ ^{#1} ₂ + αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{ X\delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{ X\delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{ X\delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{ X\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{6} \Gamma_{\chi}^{ X\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma_{\beta}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{ X\delta} n_{\gamma} n_{\gamma$	$\Delta_{2}^{\#1}{}_{\alpha\beta}$			
Γ ^{#2} 2 ⁺ αβ	Symmetry[2, $\Gamma_{2^+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^$	$\Delta_{2}^{\#2}{}_{lphaeta}$			
 Γ ^{#3} ₂ + αβ	Symmetry[2, $\Gamma_{2^+}^{\#_3 \bullet 1 \bullet 2}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta_{2}^{#3}{}_{lphaeta}$			
Γ ^{#1} ₂ αβχ	Symmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\delta} n_{\delta} - \frac$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$			
Γ ^{#2} ₂ αβχ	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta} - \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\delta\alpha}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\delta\beta}^{\delta} - \frac{1}{3} \Gamma_{\beta\alpha}^{\delta} - \frac{1}{3} \Gamma_{\alpha\alpha}^{\delta} - $	$\Delta_2^{\#2}{}_{\alpha\beta\chi}$			
Γ ^{#1} αβχ	Symmetry[3, $\Gamma_3^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2, 3 \}$, GenSet[$\{ 1, 2, 3 \}$]]]	$\frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\alpha\chi} - \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\lambda\delta} - \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\delta\delta} - \frac{1}{15} \eta_{\alpha\gamma} \Gamma^{\delta}_{\delta\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\delta\delta} - \frac{1}{15} \Gamma^{\delta}_{\lambda\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\delta\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\delta\delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\delta} \eta_{\alpha} \eta_{\gamma} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{6} \Gamma_{\lambda\chi}^{\delta} \eta_{\alpha} \eta_{\delta} - $	$\Delta_3^{\#1}{}_{lphaeta\chi}$			