PYNQ-Z2와 ZYBO-Z7-20은 모두 **AMD/Xilinx**의 **Zynq-7000 XC7Z020 SoC**를 기반으로 한 개발 보드이지만, 메모리 용량, 확장 I/O 구성, 그리고 주된 사용 목적과 생태계에서 뚜렷한 차이를 보입니다.

PYNQ-Z2는 이름에서 알 수 있듯 PYNQ(Python on Zynq) 프레임워크에 최적화되어 있어 소프트웨어 개발자가 파이썬을 이용해 FPGA의 하드웨어 가속 기능을 쉽게 활용하도록 설계된 반면, ZYBO-Z7-20은 보다 전통적인 임베디드 시스템 및 FPGA 개발에 초점을 맞춘 범용 보드입니다.

PYNQ-Z2 vs. ZYBO-Z7-20 비교

아래는 두 보드의 주요 사양 차이점을 정리한 시트입니다.

구분 항목	PYNQ-Z2	ZYBO-Z7-20	비고
핵심 칩 (SoC)	Zynq XC7Z020-1CLG400 C	Zynq XC7Z020-1CLG400 C	동일
메모리 (DDR3)	512MB DDR3	1GB DDR3L	ZYBO-Z7-20가 2배 더 큰 용량 제공
핵심 설계 철학	PYNQ 프레임워크 최적화	범용 Zynq 개발 보드	PYNQ-Z2는 Python 생산성에 초점
확장 I/O	2개의 Pmod 포트 Arduino 쉴드 커넥터 Raspberry Pi 커넥터	6 개의 Pmod 포트	PYNQ-Z2는 특정 생태계 확장성에 유리 ZYBO-Z7-20은 범용 FPGA I/O 확장에 유리
카메라 인터페이스	없음	MIPI CSI-2 커넥터	임베디드 비전 프로젝트에서 ZYBO-Z7-20이 절대적으로 유리

사용자 I/O	- 버튼 2개 - 스위치 2개 - LED 4개 - RGB LED 2개	- 버튼 4개 - 스위치 5개 - LED 4개 - RGB LED 1개	ZYBO-Z7-20이 더 많은 범용 버튼/스위치 제공
멀티미디어	HDMI 입/출력 포트 오디오 코덱 (마이크 입력, 라인 출력)	HDMI 입(Sink)/출(Source) 포트 오디오 코덱 (마이크, 헤드폰 잭)	기능적으로 거의 동일
제조사	TUL Corporation	Digilent Inc.	Digilent는 교육용/개발용 보드로 유명
주요 타겟	소프트웨어 엔지니어, 데이터 과학자, AI/ML 연구자	하드웨어 엔지니어, 임베디드 시스템 개발자, 학생	PYNQ-Z2는 하드웨어 지식이 적어도 접근 용이

선택 가이드 요약

PYNQ-Z2를 선택해야 하는 경우:

- **파이썬(Python)**을 주력 언어로 사용하여 FPGA의 하드웨어 가속 기능을 이용하고 싶을 때
- 복잡한 HDL(Verilog/VHDL) 코딩 없이 빠르게 프로토타입을 제작하고 싶을 때
- 기존의 Arduino 쉴드나 Raspberry Pi HAT과 같은 주변 장치를 활용하고 싶을 때
- 소프트웨어 중심의 접근 방식으로 임베디드 시스템을 개발하고자 할 때

ZYBO-Z7-20를 선택해야 하는 경우:

- **더 큰 메모리(1GB)**가 필요한 리눅스 기반의 복잡한 임베디드 시스템을 구축할 때
- MIPI 카메라 센서를 이용한 고성능 임베디드 비전 시스템을 개발할 때

- 다양한 주변 장치를 연결하기 위해 **더 많은 Pmod 포트(6개)**가 필요할 때
- Vivado, Vitis 등 전통적인 Xilinx 개발 툴을 사용한 HDL 중심의 FPGA 프로젝트를 진행할 때

결론적으로, 두 보드는 동일한 '심장'을 가졌지만, 사용자가 그 능력을 어떻게 활용할 것인지에 따라 다른 '신체'와 '도구'를 제공합니다. 빠른 개발과 생산성을 원한다면 PYNQ-Z2를, 하드웨어 유연성과 고성능 비전 시스템을 목표로 한다면 ZYBO-Z7-20이 더 적합한 선택입니다.