Plus courts chemins et programmation dynamique discrète

Maël Forcier

7 octobre 2020

École des Ponts, France

Un exemple

Trouver le chemin le plus court dans ce réseau, i.e. le **s**-*t* chemin de coût minimal dans ce graphe.

Un exemple

Trouver le chemin le plus court dans ce réseau, i.e. le **s-t** chemin de coût minimal dans ce graphe. Solution en bleu et coût minimal = 15

Définition

Problème du plus court chemin :

Étant donné un graphe G = (V, E) et une fonction de coût $c : E \to \mathbb{Q}$, Trouver un o-d chemin P de coût minimal $\sum_{e \in P} c(e)$

Rappel

- un chemin simple visite chaque arc/arête au plus une fois
- un chemin élémentaire visite chaque sommets au plus une fois

Définition

Problème du plus court chemin :

Étant donné un graphe G = (V, E) et une fonction de coût $c : E \to \mathbb{Q}$, Trouver un o-d chemin simple P de coût minimal $\sum_{e \in P} c(e)$

Rappel:

- un chemin simple visite chaque arc/arête au plus une fois
- un chemin élémentaire visite chaque sommets au plus une fois

Définition

Problème du plus court chemin :

Étant donné un graphe G = (V, E) et une fonction de coût $c : E \to \mathbb{Q}$, Trouver un o-d chemin élémentaire P de coût minimal $\sum_{e \in P} c(e)$

Rappel:

- un chemin simple visite chaque arc/arête au plus une fois
- un chemin élémentaire visite chaque sommets au plus une fois

Théorème

Trouver le poids minimal d'un \mathbf{o} - \mathbf{d} chemin élémentaire lorsque le graphe $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a des poids quelconques est \mathbf{NP} -difficile.

Preuve : Réduire au problème du plus court chemin élementaire.

Réduire au problème de chemin hamiltonien :

Prendre c(e) = -1 pour tout $e \in E$

Il existe un chemin hamiltonien ssi le coût minimal est égal à -(card(V) - 1)

Théorème

Trouver le poids minimal d'un \mathbf{o} - \mathbf{d} chemin élémentaire lorsque le graphe $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a des poids quelconques est \mathbf{NP} -difficile.

Preuve : Réduire au problème du plus court chemin élementaire.

Réduire au problème de chemin hamiltonien :

Prendre c(e) = -1 pour tout $e \in E$

Il existe un chemin hamiltonien ssi le coût minimal est égal à -(card(V) - 1)

Théorème

Trouver le poids minimal d'un \mathbf{o} - \mathbf{d} chemin élémentaire lorsque le graphe $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a des poids quelconques est \mathbf{NP} -difficile.

Preuve : Réduire au problème du plus court chemin élementaire.

Réduire au problème de chemin hamiltonien :

Prendre c(e) = -1 pour tout $e \in E$

Il existe un chemin hamiltonien ssi le coût minimal est égal à $-(\operatorname{card}(V)-1)$

Théorème

Trouver le poids minimal d'un \mathbf{o} - \mathbf{d} chemin élémentaire lorsque le graphe $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a des poids quelconques est \mathbf{NP} -difficile.

Preuve : Réduire au problème du plus court chemin élementaire.

Réduire au problème de chemin hamiltonien :

Prendre c(e) = -1 pour tout $e \in E$

Il existe un chemin hamiltonien ssi le coût minimal est égal à -(card(V) - 1)

Théorème

Trouver le poids minimal d'un \mathbf{o} - \mathbf{d} chemin élémentaire lorsque le graphe $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ a des poids quelconques est \mathbf{NP} -difficile.

Preuve : Réduire au problème du plus court chemin élementaire.

Réduire au problème de chemin hamiltonien :

Prendre $\boldsymbol{c}(\boldsymbol{e}) = -1$ pour tout $\boldsymbol{e} \in \boldsymbol{E}$

Il existe un chemin hamiltonien ssi le coût minimal est égal à $-(\text{card}(\textbf{\textit{V}})-\textbf{1})$

Graphe non-orienté / orienté

Réduction d'orienté à non-orienté

Réduction:

Peut permettre de d'utiliser des algorithmes de graphes orientés au cas non orienté

Réduction d'orienté à non-orienté

Réduction:

Peut permettre de d'utiliser des algorithmes de graphes orientés au cas non orienté

Plan

- Coûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- Complexité résumé

Table of Contents

- Ooûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellmar
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- Complexité résumé

Tous les coûts sont > 0

Cas le plus naturel : tous les poids sont \geq **0**.

Tous les coûts sont > 0

Cas le plus naturel : tous les poids sont \geq **0**.

Exemple : Modélisation d'un réseau de transport.

- Initialisation : $\boldsymbol{U} := \emptyset$, $\boldsymbol{d}(\boldsymbol{o}) := \boldsymbol{0}$ et $\boldsymbol{d}(\boldsymbol{v}) = +\infty$ pour tout $\boldsymbol{v} \neq \boldsymbol{o}$.
- Tant que $V \setminus U \neq \emptyset$
 - ① Choisir \boldsymbol{v} minimisant $\boldsymbol{d}(\boldsymbol{v})$ dans $\boldsymbol{V} \setminus \boldsymbol{U}$.
 - **2** $U := U \cup \{v\}.$
 - **3** Pour chaque $\boldsymbol{a} = (\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{A}$
 - $d(v) := \min[d(v), d(u) + c(a)].$

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Fonctionne sur les graphes non-orientés (cf réduction précédente)

Converge en O(m + nlog(n)) avec n: nombre de sommets m: nombres d'arcs

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Fonctionne sur les graphes non-orientés (cf réduction précédente)

Converge en O(m + nlog(n)) avec n: nombre de sommets m: nombres d'arcs

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Fonctionne sur les graphes non-orientés (cf réduction précédente)

Converge en O(m + nlog(n)) avec

n: nombre de sommets

m: nombres d'arcs

Table of Contents

- Coûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- 3 Complexité résumé

Table of Contents

- Ooûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- Complexité résumé

L'idée de Bellman

Principe d'optimalité de Bellman

La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.2)

Soit **P** un **o**-**v** chemin avec **k** arcs et **Q** son sous-**o**-**u** chemin, pù **u** iest le sommet avant **v** dans **P**. Si **P** est le plus petit $\mathbf{o} - \mathbf{v}$ chemin parmie ceux à **k** arcs, alors **Q** est le plus petit **o**-**u** parmi ceux à **k** - **1** arcs.

Preuve

- Par l'absurde soit Q' o-u chemin avec k-1 arcs tel que c(Q') < c(Q).
- $P' = Q' \cup (u, v)$ est un o v chemin avec k arcs.
- $\bullet \ c(P') = c(Q') + c(u,v) < c(Q) + c(u,v) = c(P).$

L'idée de Bellman

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.2)

Soit **P** un **o**-**v** chemin avec **k** arcs et **Q** son sous-**o**-**u** chemin, pù **u** iest le sommet avant **v** dans **P**. Si **P** est le plus petit **o** - **v** chemin parmie ceux à **k** arcs, alors **Q** est le plus petit **o**-**u** parmi ceux à **k** - 1 arcs.

Preuve

- Par l'absurde soit Q' o-u chemin avec k-1 arcs tel que c(Q') < c(Q).
- $P' = Q' \cup (u, v)$ est un o-v chemin avec k arcs.
- c(P') = c(Q') + c(u, v) < c(Q) + c(u, v) = c(P)

L'idée de Bellman

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.2)

Soit **P** un **o-v** chemin avec **k** arcs et **Q** son sous-**o-u** chemin, pù **u** iest le sommet avant **v** dans **P**. Si **P** est le plus petit **o** - **v** chemin parmie ceux à **k** arcs, alors **Q** est le plus petit **o-u** parmi ceux à **k** - 1 arcs.

Preuve:

- Par l'absurde soit \mathbf{Q}' o- \mathbf{u} chemin avec $\mathbf{k}-\mathbf{1}$ arcs tel que $\mathbf{c}(\mathbf{Q}')<\mathbf{c}(\mathbf{Q})$.
- $P' = Q' \cup (u, v)$ est un o-v chemin avec k arcs
- c(P') = c(Q') + c(u, v) < c(Q) + c(u, v) = c(P)

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.2)

Soit **P** un **o**-**v** chemin avec **k** arcs et **Q** son sous-**o**-**u** chemin, pù **u** iest le sommet avant **v** dans **P**. Si **P** est le plus petit **o** - **v** chemin parmie ceux à **k** arcs, alors **Q** est le plus petit **o**-**u** parmi ceux à **k** - 1 arcs.

Preuve:

- Par l'absurde soit \mathbf{Q}' o- \mathbf{u} chemin avec $\mathbf{k}-\mathbf{1}$ arcs tel que $\mathbf{c}(\mathbf{Q}')<\mathbf{c}(\mathbf{Q})$.
- $P' = Q' \cup (u, v)$ est un o v chemin avec k arcs.
- c(P') = c(Q') + c(u, v) < c(Q) + c(u, v) = c(P).

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.2)

Soit **P** un **o**-**v** chemin avec **k** arcs et **Q** son sous-**o**-**u** chemin, pù **u** iest le sommet avant **v** dans **P**. Si **P** est le plus petit **o** - **v** chemin parmie ceux à **k** arcs, alors **Q** est le plus petit **o**-**u** parmi ceux à **k** - 1 arcs.

Preuve:

- Par l'absurde soit \mathbf{Q}' o- \mathbf{u} chemin avec $\mathbf{k}-\mathbf{1}$ arcs tel que $\mathbf{c}(\mathbf{Q}')<\mathbf{c}(\mathbf{Q})$.
- $P' = Q' \cup (u, v)$ est un o v chemin avec k arcs.
- c(P') = c(Q') + c(u, v) < c(Q) + c(u, v) = c(P).

Le coût minimal f(v, k) d'un o-v chemin à k arcs vérifie l'équation de Bellman

$$f(oldsymbol{v},oldsymbol{k}+oldsymbol{1}) = \min_{oldsymbol{u} \in oldsymbol{N}^-(oldsymbol{v})} f(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + oldsymbol{c}(oldsymbol{u},oldsymbol{v})$$
 $f(oldsymbol{v},oldsymbol{0}) = egin{cases} oldsymbol{0} & ext{if } oldsymbol{v} = oldsymbol{o} \ +\infty & ext{otherwise} \end{cases}$

On peut calculer récursivement à partir de k = 0. Critère d'arrêt?

Solution:

Besoin d'ajouter une hypothèse : le graphe *G* n'a pas de cycles négatifs.

Le coût minimal f(v, k) d'un o-v chemin à k arcs vérifie l'équation de Bellman

$$f(oldsymbol{v},oldsymbol{k}+oldsymbol{1}) = \min_{oldsymbol{u} \in oldsymbol{N}^-(oldsymbol{v})} f(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + oldsymbol{c}(oldsymbol{u},oldsymbol{v})$$
 $f(oldsymbol{v},oldsymbol{0}) = egin{cases} oldsymbol{0} & ext{if } oldsymbol{v} = oldsymbol{o} \ +\infty & ext{otherwise} \end{cases}$

On peut calculer récursivement à partir de k = 0. Critère d'arrêt?

Solution:

Besoin d'ajouter une hypothèse : le graphe \boldsymbol{G} n'a pas de cycles négatifs.

Le coût minimal f(v, k) d'un o-v chemin à k arcs vérifie l'équation de Bellman

$$f(oldsymbol{v},oldsymbol{k}+oldsymbol{1}) = \min_{oldsymbol{u} \in oldsymbol{N}^-(oldsymbol{v})} f(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + oldsymbol{c}(oldsymbol{u},oldsymbol{v})$$
 $f(oldsymbol{v},oldsymbol{0}) = egin{cases} oldsymbol{0} & ext{if } oldsymbol{v} = oldsymbol{o} \ +\infty & ext{otherwise} \end{cases}$

On peut calculer récursivement à partir de k = 0. Critère d'arrêt?

Solution:

Besoin d'ajouter une hypothèse : le graphe ${\it G}$ n'a pas de cycles négatifs.

Le coût minimal f(v, k) d'un o-v chemin à k arcs vérifie l'équation de Bellman

$$egin{aligned} f(oldsymbol{v},oldsymbol{k}+oldsymbol{1}) &= \min_{oldsymbol{u} \in oldsymbol{N}^-(oldsymbol{v})} f(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + oldsymbol{c}(oldsymbol{u},oldsymbol{v}) \ f(oldsymbol{v},oldsymbol{0}) &= egin{cases} oldsymbol{0} & ext{if } oldsymbol{v} = oldsymbol{o} \ +\infty & ext{otherwise} \end{cases}$$

On peut calculer récursivement à partir de k = 0. Critère d'arrêt?

Solution:

Besoin d'ajouter une hypothèse : le graphe ${\it G}$ n'a pas de cycles négatifs.

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Pas de généralisation triviale aux graphes non-orientés (la réduction crée des cycles négatifs)

Converge en O(mn) avec n: nombre de sommets m: nombres d'arcs

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Pas de généralisation triviale aux graphes non-orientés (la réduction crée des cycles négatifs)

Converge en O(mn) avec n: nombre de sommets m: nombres d'arcs

Peut être facilement adapté pour calculer le chemin lui-même (et pas seulement le coût minimum)

Pas de généralisation triviale aux graphes non-orientés (la réduction crée des cycles négatifs)

Converge en O(mn) avec

n : nombre de sommets

m: nombres d'arcs

Table of Contents

- Ooûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- Complexité résumé

Principe d'optimalité de Bellman

La sous-trajectoire d'une trajectoire optimale est encore optimale

Proposition (5.4)

Soit **G** un graphe orienté acylique, **P** un **o-v** chemin et **Q** son sous-**o-u** chemin, où **u** est le sommet avant **v** dans **P**. Si **P** est le plus petit **o-v** chemin, alors **Q** est le plus petit **o-u** chemin.

L'équation de Bellman devient $extbf{ extit{f}}(extbf{ extit{v}}) = \min_{ extbf{ extit{u}} \in extbf{ extit{N}}^-(extbf{ extit{v}})} extbf{ extit{f}}(extbf{ extit{u}}) + extbf{ extit{c}}(extbf{ extit{u}}, extbf{ extit{v}})$

Calculer tous les f(v) par récurrence : C'est possible selon un ordre dit topologique \preceq tel que $(u,v)\in extit{A}\Rightarrow u\preceq v$

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.4)

Soit **G** un graphe orienté acylique, **P** un **o**-**v** chemin et **Q** son sous-**o**-**u** chemin, où **u** est le sommet avant **v** dans **P**. Si **P** est le plus petit **o**-**v** chemin, alors **Q** est le plus petit **o**-**u** chemin.

L'équation de Bellman devient $extbf{ extit{f}}(extbf{ extit{v}}) = \min_{ extbf{ extit{u}} \in extbf{ extit{N}}^+(extbf{ extit{v}})} extbf{ extit{f}}(extbf{ extit{u}}) + extbf{ extit{c}}(extbf{ extit{u}}, extbf{ extit{v}})$

Calculer tous les f(v) par récurrence : C'est possible selon un ordre dit topologique \leq tel que $(u,v) \in A \Rightarrow u \leq v$

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.4)

Soit **G** un graphe orienté acylique, **P** un **o**-**v** chemin et **Q** son sous-**o**-**u** chemin, où **u** est le sommet avant **v** dans **P**. Si **P** est le plus petit **o**-**v** chemin, alors **Q** est le plus petit **o**-**u** chemin.

L'équation de Bellman devient $f(v) = \min_{u \in N^-(v)} f(u) + c(u, v)$

Calculer tous les f(v) par récurrence : C'est possible selon un ordre dit topologique \leq tel que $(u,v) \in A \Rightarrow u \leq v$

Principe d'optimalité de Bellman La sous-trajectoire d'une trajectoire optimale est encore optimale :

Proposition (5.4)

Soit **G** un graphe orienté acylique, **P** un **o**-**v** chemin et **Q** son sous-**o**-**u** chemin, où **u** est le sommet avant **v** dans **P**. Si **P** est le plus petit **o**-**v** chemin, alors **Q** est le plus petit **o**-**u** chemin.

L'équation de Bellman devient $f(v) = \min_{u \in N^-(v)} f(u) + c(u, v)$

Calculer tous les f(v) par récurrence : C'est possible selon un ordre dit topologique \leq tel que $(u,v)\in A\Rightarrow u\leq v$

Programmation dynamique

On a

- ① système dynamique à temps discret $x_{k+1} = f_k(x_k, u_k), k = 1, 2, ..., N$
- 2 fonction de coût additive dans le temps.

 x_0 : état initial.

 x_k : état au début de la période k.

 u_k : décision pour la période k.

 $c_k(x_k, x_{k+1})$: coût de la transition de x_k à x_{k+1} sur la période k.

Trouver la trajectoire x_0, x_1, \ldots, x_N de coût total $\sum_{k=1}^N c_k(x_k, x_{k+1})$ minimal : peut se résoudre par la programmation dynamique.

Table of Contents

- Coûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- 3 Complexité résumé

Programmation dynamique

V(t, x) := coût minimal future lorsqu'on est dans l'état x à l'étape t.

Programmation dynamique : équation de Bellman pour tout y

$$V(t,x) = \min_{\boldsymbol{y} \in X_{k+1}} (c_t(x,y) + V(t+1,y))$$

Algorithme : calculer de proche en proche

Gestion de stock

Dynamique d'un stock : $x_{t+1} = x_t - d_t + u_t$,

 d_t : demande pour la période t (supposée connue)

 $extbf{\emph{x}}_{ extbf{\emph{t}}} \in \mathbb{Z}$: nombre d'unités disponibles en début de période $extbf{\emph{t}}$

 $oldsymbol{u_t}$: nombre d'unités commandées (et reçues immédiatement) en début de période $oldsymbol{t}$

K : capacité maximale de stockage

 $oldsymbol{c}(oldsymbol{u_t}) + oldsymbol{g}(oldsymbol{x_{t+1}})$: coût de gestion de stock pour la période $oldsymbol{t}$ en

- $c(u_t)$ coût de réapprovisionnement
- $g(x_{t+1})$ coût de stockage ou coût de pénurie

Objectif. Minimiser $\sum_{t=0}^{T-1} c(u_t) + g(x_{t+1})$.

Gestion de stock

Modélisation par la programmation dynamique

périodes : périodes $t = 1, \dots, T$

états : valeurs possibles x_t de niveau de stock,

transitions: $x_t \to x_{t+1}$ tq x_{t+1} satisfasse simultanément $x_{t+1} \in \mathbb{Z}$, $x_{t+1} + d_t \le K$ et $x_{t+1} > x_t - d_t$

coût de la transition : $x_t o x_{t+1}$ est $c(x_{t+1} - x_t + d_t) + g(x_{t+1})$

Objectif. Minimiser $\sum_{t=0}^{N-1} c(x_{t+1} - x_t + d_t) + g(x_{t+1})$ (critère additif = somme des coûts des transitions de la trajectoire).

Programmation dynamique = plus court chemin dans un graphe acircuitique

Prog. dyn.	Plus court o-d chemin
états × périodes	sommets
transitions	arcs
coût de la transition	longueur l'arc
trajectoire	chemin
trajectoire optimale	plus court chemin

Si plusieurs états de départ ou plusieurs états à l'arrivée, on peut ajouter des sommets fictifs o et d, et des transitions de coût = 0.

Table of Contents

- Coûts positifs : Dijkstra
- Programmation Dynamique Ford-Bellman
 - L'algorithme de Ford-Bellman
 - Graphes acycliques : ordre topologique
 - Programmation dynamique : cas général
- 3 Complexité résumé

Complexité : Résumé

	Complexité
Graphe orienté,	O(m + nlog(n))
$c(a) \geq 0$	(Dijkstra)
Graphe orienté,	O (m)
acyclique	(Programmation dynamique)
Graphe orienté	O (nm)
sans cycle	(Programmation dynamique,
absorbant	Ford-Bellman)
Graphe orienté	NP-difficile
Graphe non-orienté,	O(m + nlog(n))
${m c}({m a}) \geq {m 0}$	(Dijkstra)
Graphe non-orienté,	O (n ³)
sans cycle absorbant	(plus compliqué)
Graphe non-orienté	NP -difficile