Optimización FAMAF, UNC — 2024

Gu a de Ejercicios N 6: métodos de penalización

1. Considerar el problema

minimizar
$$f(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

sujeto a $x_1 + x_2 \ge 1$.

Supongamos se usa la función barrera logarítmica para resolverlo.

- a) Calcular $x(\mu), \lambda(\mu) \ y \ x_*, \lambda_*$.
- b) Calcular la matriz Hessiana de la función barrera logarítmica para $\mu = 10^{-4}$. Calcular la inversa de esta matriz.
- 2. Repetir el ejercicio anterior para

minimizar
$$f(x) = x_1 + x_2$$

sujeto a $x_1 \ge 0$
 $x_2 \ge 0$.

Este ejemplo ilustra que si un problema de n variables tiene n restricciones activas en el óptimo, el método barrera logarítmica no introduce mal condicionamiento.

3. Repetir el ejercicio anterior para

minimizar
$$f(x) = x_1 + x_2$$

sujeto a $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1 + x_2 < 1$.

4. Considerar el siguiente problema unidimensional

minimizar
$$f(x) = \frac{-1}{x^2+1}$$
 sujeto a $x \ge 1$.

Mostrar que la función barrera logarítmica no es acotada inferiormente en la región factible. Mostrar también que la función barrera logarítmica tiene un minimizador local que se aproxima a la solución $x_* = 1$ cuando $\mu \to 0$.

5. Considerar el problema

Probar que la sucesión de minimizadores globales de la función barrera logarítmica converge al minimizador global del problema con restricciones $x_* = -1$, pero la sucesión de minimizadores locales, no globales, converge a 0, el cual no es el minimizador para el problema con restricciones.

6. Considerar el siguiente problema

Minimizar
$$x_1^2 + x_2^2$$

s. a $x_1 + x_2 = 1$.

1

a) Encontrar la solución óptima x^* ;

- b) Considerar el problema penalizado: Minimizar $x_1^2 + x_2^2 + \mu(x_1 + x_2 1)^2$. Para cada $\mu > 0$, calcular la solución óptima $\hat{x}(\mu)$;
- c) Verificar que $\lim_{\mu \to \infty} \hat{x}(\mu) = x^*$;
- d) Repetir los items (a), (b) y (c) cambiando la función objetivo por $x_1^3 + x_2^3$;
- e) Analizar los resultados obtenidos.
- 7. Proponer um método que combine penalización externa con barrera para minimizar c^Tx sujeta a $Ax = b, x \geq 0$, donde $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ y $A \in \mathbb{R}^{m \times n}$. Calcular el gradiente de la función penalizada.
- 8. Considerar el problema de minimizar f sujeta a $x \in S$, donde $f : \mathbb{R}^n \to \mathbb{R}$ y $S \subseteq \mathbb{R}^n$. Sea P una función de penalización para S y suponer que la función penalizada $q(x, \mu) = f(x) + \mu P(x)$ para $\mu = \tilde{\mu}$ tiene un minimizador global en \tilde{x} y que $x \in S$. Probar que \tilde{x} es un minimizador global del problema original. ? S.
- 9. Considerar la función de penalización

$$\Phi_{\lambda,\mu} = f(x) + \sum_{i=1}^{m} \mu_i \exp(\lambda_i h_i(x)/\mu_i),$$

con $\mu, \lambda \in \mathbb{R}^m$, $\mu_i > 0, i = 1, ..., m$, para resolver el problema (P):

Minimizar
$$f(x)$$
 sujeto a $h_i(x) = 0, i = 1, ..., m$.

Sea x_* una solución regular del (P) con multiplicadores asociados $\lambda_* \in \mathbb{R}^m$. Probar que x_* es un punto estacionario de $\Phi_{\lambda_*,\mu}(x)$.

10. Desarrollar un método de Lagrangiano aumentado para el problema

minimizar
$$f(x)$$

sujeto a $h(x) = 0$
 $c(x) \le 0$,

con
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $h: \mathbb{R}^n \to \mathbb{R}^m$, $c: \mathbb{R}^n \to \mathbb{R}^m$.

11. † Considerar el problema

minimizar
$$f(x) = \frac{1}{2}(x_1^2 - x_2^2) - 3x_2$$

sujeto a $x_2 = 0$.

- a) Calcular la solución óptima del Lagrangiano aumentado.
- b) Para k = 0, 1, 2 y $c^k = 10^{k+1}$ calcular y comparar las iteraciones del método de penalización cuadrática con $\lambda^k = 0$ para todo k y el método de multiplicadores con λ^0 .