高等微積分

Exercise 1 (chapter 1 to 3)

- 1. Determine all the accumulation points of the following sets in \mathbb{R} and decide whether the sets are open or closed (or neither).
 - (a) Intervals (a, b), (a, b], [a, b), [a, b].
 - (b) \mathbb{Z} : the set of all integers.
 - (c) $\{\frac{1}{n} \mid n = 1, 2, \dots \}$.
- 2. Determine all the accumulation points of the following sets in \mathbb{R}^2 and decide whether the sets are open or closed (or neither).
 - (a) All complex z such that $|z| \ge 1$.
 - (b) All points (x, y) such that $x^2 y^2 < 1$.
 - (c) All points (x, y) such that x > 0.
- 3. Prove that every non-empty open set in \mathbb{R} contains both rational and irrational numbers.
- 4. Prove that a non-empty bounded closed set S in \mathbb{R} is either a closed interval or that S can be obtained from a closed interval be removing a countable disjoint collection of open intervals whose endpoints belong to S.
- 5. If $S \subseteq \mathbb{R}^n$, prove that
 - (a) S° is the union of all open subsets of \mathbb{R}^n which are contained in S. i.e S° is the largest open set contained in S.
 - (b) \overline{S} is the intersection of all closed subsets of \mathbb{R}^n which containing S. i.e \overline{S} is the smallest closed set containing S.
- 6. If S and T are subsets of \mathbb{R}^n , prove that
 - (a) $S^{\circ} \cap T^{\circ} = (S \cap T)^{\circ}$.
 - (b) $S^{\circ} \cup T^{\circ} \subseteq (S \cup T)^{\circ}$. Give an example such that the inclusion is strict.
 - (c) S' is closed in \mathbb{R}^n ; that is $(S')' \subseteq S'$.
 - (d) If $S \subseteq T$, then $S' \subseteq T'$.
 - (e) $(S \cup T)' = S' \cup T'$.
 - (f) $(\overline{S})' = S'$.
 - (g) \overline{S} is closed in \mathbb{R}^n .
 - (h) $\overline{S \cap T} \subseteq \overline{S} \cap \overline{T}$.
 - (i) If S is open, then $S \cap \overline{T} \subset \overline{S \cap T}$.
- 7. A set $S \subseteq \mathbb{R}^n$ is called **convex** if $\forall x, y \in S$ and for any $\lambda \in (0,1)$, we have $\lambda x + (1-\lambda)y \in S$. Prove that
 - (a) All open balls and closed balls in \mathbb{R}^n are convex.
 - (b) Every *n*-dimensional open interval in \mathbb{R}^n is convex.
 - (c) The interior of a convex set is convex.
 - (d) The closure of a convex set is convex.
- 8. Let F be a collection of sets in \mathbb{R}^n , and let $S = \bigcup_{A \in F} A$ and $T = \bigcap_{A \in F} A$. For each of the following statements, either give a proof or exhibit a counterexample.
 - (a) If x is an accumulation point of T, then x is an accumulation point of each set A in F.
 - (b) If x is an accumulation point of S, then x is an accumulation point of at least one set A in F.
- 9. If $S \subseteq \mathbb{R}^n$, prove that the collection of isolated points of S is countable.
- 10. The collection of F of open intervals of the form $(\frac{1}{n}, \frac{2}{n})$, where $n = 1, 2, \dots$, is an open covering of the open interval (0, 1). Prove, by the definition of compactness, that F has no finite subcovering covers (0, 1).

- 11. Assume that $S \subseteq \mathbb{R}^n$. A point $x \in \mathbb{R}^n$ is said to be a **condensation point** of S if every r > 0, $B(x,r) \cap S$ is uncountable. Prove the following statements.
 - (a) If for every x in S, there is a $r_x > 0$ such that $B(x, r_x) \cap S$ is countable then S is countable.
 - (b) If S is not countable, then there exists a point x in S such that x is a condensation point of S.
- 12. A set in \mathbb{R}^n is called **perfect** if S = S', that is, S is a closed set which contains no isolated points. Prove the following **Cantor-Bendoxon theorem**:

Every uncountable closed set F in \mathbb{R}^n can be expressed in the form $F = A \cup B$, where A is perfect and B is countable.

- 13. A set $A, B \subseteq \mathbb{R}^n$ be two sets. Prove or disprove the following statements by counterexample.
 - (a) If A, B are open, then A + B is open.
 - (b) If A, B are closed, then A + B is closed.
- 14. Consider the following two metrics in \mathbb{R}^n :

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|, \quad d_2(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

- (a) Show that d_1 and d_2 are metrics in \mathbb{R}^n .
- (b) Prove the following inequalities for all $x, y \in \mathbb{R}^n$:

$$d_2(x,y) \le ||x-y|| \le d_1(x,y)$$
 and $d_1(x,y) \le \sqrt{n}||x-y|| \le nd_2(x,y)$.

15. Let (M, d) be a metric space. Show that

$$\hat{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is also a metric for M.

- 16. Let (M,d) be a metric space and for any $x \in M$, r > 0. Prove that $\overline{B(x,r)} \subseteq \overline{B}(x,r)$. Give an example of a metric space such that the inclusion is strict.
- 17. In a metric space M, if $A, S \subseteq M$ satisfies that $A \subseteq S \subseteq \overline{A}$, then A is said to be **dense** in S. Show that if A is dense in S and S is dense in T, then A is dense in T.
- 18. A metric space M is said to be **separable** if M has a countable dense subset. Prove that \mathbb{R}^n is separable for every $n \in \mathbb{N}$.
- 19. Prove that if a metric space is separable, then it has the Lindelöf property.
- 20. Let (M, d) be a metric space and $S, T \subseteq M$.
 - (a) Assume that $S \subseteq T \subseteq M$. Then S is compact in (M, d) if and only if S is compact in (T, d).
 - (b) If S is closed and T is compact, then $S \cap T$ is compact.
 - (c) The intersection of arbitrary collection of compact sets of M is compact.
- 21. Let M be a metric space and $A, B \subseteq M$ be subsets.
 - (a) $A^{\circ} = M \setminus \overline{M \setminus A}$.
 - (b) $(M \setminus A)^{\circ} = M \setminus \overline{A}$.
 - (c) $(\bigcap_{i=1}^{n} A_i)^{\circ} = \bigcap_{i=1}^{n} A_i^{\circ}$.
 - (d) $(\bigcap_{A \in F} A)^{\circ} \subseteq \bigcap_{A \in F} A^{\circ}$, where F is an infinite collection of subsets of M. Give an example such that the inclusion is strict.
 - (e) $\bigcup_{A \in F} A^{\circ} \subseteq (\bigcup_{A \in F} A)^{\circ}$, where F is an infinite collection of subsets of M. Give an example such that the inclusion is strict.
 - (f) $\partial A = \overline{A} \cap \overline{M \setminus A}$ and $\partial A = \partial (M \setminus A)$.
 - (g) If A is open or closed in M, then $(\partial A)^{\circ} = \phi$.
 - (h) Give an example that $(\partial A)^{\circ} = M$.

- (i) If $A^{\circ} = B^{\circ} = \phi$ and A is closed, then $(A \cup B)^{\circ} = \phi$. Give an example in which $A^{\circ} = B^{\circ} = \phi$ but $(A \cup B)^{\circ} = M$.
- (j) If $\overline{A} \cap \overline{B} = \phi$, then $\partial (A \cup B) = \partial A \cup \partial B$.
- 22. Prove the following three important inequalities:
 - (a) **(Young)** Let $a, b \ge 0$ and p, q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

(b) **(Hölder)** Let $x=(x_1,x_2,\cdots,x_n), y=(y_1,y_2,\cdots,y_n)\in\mathbb{R}^n$, and $1< p,\ q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$\sum_{j=1}^{n} |x_j y_j| \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} \left(\sum_{j=1}^{n} |y_j|^q\right)^{1/q}.$$

(c) (Minkowski) Let $x=(x_1,x_2,\cdots,x_n), y=(y_1,y_2,\cdots,y_n)\in\mathbb{R}^n, \text{ and } p\geq 1.$ Then

$$\left(\sum_{j=1}^{n} |x_j + y_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p\right)^{1/p}.$$

23. For $1 \leq p \leq \infty$, write $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, define p-norm $||\cdot||_p : \mathbb{R}^n \to \mathbb{R}$ by

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$$
, if $1 \le p < \infty$, and $||x||_\infty = \max_{1 \le j \le n} |x_j|$, if $p = \infty$.

Show that p-norm is indeed a norm on \mathbb{R}^n , $1 \leq p \leq \infty$.