STRESS TRANSFORMATION AND MOHR CIRCLE

Lecture 6 28.01.2020

MM203

Mechanics of Materials

Maximum shear stress that can be tolerated: τ_{crit}

Stresses at given coordinate system Stresses transformed to another coordinate

Stress Transformation

Stresses at given coordinate system Stresses transformed to another coordinate

Stress Transformation

Uniaxial loading

Observations on 1-D loading on oblique plane

- With initial orientation of representative element or coordinate system, there is just one non-zero stress- that is the normal stress and no other stress. (no shear stress)
- On oblique plane or the rotated representative element/coordinate system, there are more stresses: normal+ shear stress.
- The external loading has not changed.
- The magnitude that is assigned for stress depends on the orientation of reference plane/representative element/reference coordinate system.

Stress Elements

- Stress elements are a useful way to represent stresses acting at some point on a body.
- Isolate a small element and show stresses acting on all faces.
- Dimensions are "infinitesimal", but are drawn to a large scale.

Plane stress

When an element is in **plane stress** in the *xy* plane, only the *x* and *y* faces are subjected to stresses ($\sigma_z = 0$ and $\tau_{zx} = \tau_{xz} = \tau_{zy} = \tau_{yz} = 0$).

Plane stress element in 2D

Why? A material may yield or fail at the maximum value of σ or τ . This value may occur at some angle other than θ = 0. (Remember that for uniaxial tension the maximum shear stress occurred when θ = 45 degrees.)

$$\sigma_{x1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{x1y1} = -\frac{(\sigma_x - \sigma_y)}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\sigma_{y1} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$

- Principal Stress: The maximum and minimum normal stresses are called principal stresses.
- In the orientation of principal stress, shear stress is 0.

Principal Stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Principal Angles defining the Principal Planes

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Mohr Circle

- Geometrical representation of 2D state of stress.
- Useful for stress and strain transformations.

Steps to construct the Mohr Circle

- For the particular stress situation note down the stress acting on the elements with their correct signs.
- Draw x (σ) and y(τ) axis. Draw the center of the Mohr Circle. [($\sigma_{xx} + \sigma_{yy}$)/2, 0]
- First point on the circle is $(\sigma_{xx}, -\tau_{xy})$ call it X.
- Second point on the circle (σ_{yy}, τ_{xy}) call it Y.
- Positive shear stress is plotted downwards at X and upwards at Y. Negative shear stress is plotted upwards at X and downwards at Y.
- Draw the circle.
- For a rotation of θ in the physical scenario, rotation of 2θ is required in Mohr Circle. Maximum rotation is 360 degrees in the circle at which stress states coincide with original ones.
- Stress components with respect to rotated X'Y' axes can be determined from the corresponding X'Y' diameter.
- To determine the stresses after rotation by Φ , make a diameter at an angle 2Φ in the same sense (clockwise vs. anticlockwise).
- Find the x and y coordinates of these 2 points, they will give $(\sigma_{x'x'}, \sigma_{y'y'}, \sigma_{x'y'})$
- $2\theta_p$ is the angle made with the orientation for the principal stress state in the circle. θ is the physical angle.
- $\sin 2\theta_n = \tau_{xy}/\text{radius of circle.}$

Observations

- Planes of maximum shear stress occur at 45 degrees to the principal planes.
- The maximum shear stress is equal to half the difference of the principal stresses.