Loam: Soil Analysis

By

Christopher Diaz

Approved by:

Dr. Tanmay Bhowmik (Major Professor)
Dr. Stephen Torri
Dr. Shuvashis Dey
Dr. TJ Jankun-Kelly (Graduate Coordinator)
Dr. Jason M. Keith (Dean, Bagley College of Engineering)

A Final Project Report
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in Computer Science
in the Department of Computer Science

Mississippi State, Mississippi

May 2023

Name: Christopher Diaz

Date of Degree: May 12, 2023

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Tanmay Bhowmik

Title of Study: Loam: Soil Analysis

Pages in Study: 20

Candidate for Degree of Master of Science

Loam: Soil Analysis, also referred to as Loam, is a software application developed to assist in analyzing and visualizing data obtained from a sensor. This sensor is placed into soil and then gives an amplitude value which can be input into the software along with the depth of the sensor. Loam then gives a two-dimensional and three-dimensional graphical visualization of this data in two different plots while calculating the volumetric moisture content (VMC). The VMC is then used to report the moisture level quality in the tested soil area.

ACKNOWLEDGEMENTS

Thank you to Dr. Dey for working with me and supplying various datasets for this project. Thank you also to Dr. Bhowmik for supporting this program, and originally organizing the initial project meeting. I appreciate all project committee members for their time and any support they have provided.

TABLE OF CONTENTS

ACKN	OWLEDGEMENTS	iii
LIST C	F TABLES	vi
LIST C	F FIGURES	vii
CHAP	TER	
I.	INTRO TO LOAM: SOIL ANALYSIS	1
	1.1 About	1 1
II.	CALCULATIONS AND ASSUMPTIONS	5
	 2.1 Extrapolation of Data 2.2 Calculating the Dielectric Constant 2.3 Calculating the Volumetric Moisture Content 2.4 Determining the Upper and Lower Bounds of Acceptable VMC Values 	5 6
III.	FRAMEWORKS AND LIBRARIES USED	10
	3.1 ElectronJS 3.1.1 Cross-platform Applications 3.1.2 Compatibility with Plotly 3.1.3 Personal Growth 3.2 Plotly	10 10
REFER	ENCES	12
APPEN	DIX	
A.	DATA TABLES	13
	A.1 Amplitude vs. Depth Data	

B. CODE 19

LIST OF TABLES

Table 2.1	VMC vs. Dielectric Constant	6
Table 2.2	"Typical soil water thresholds for different soil textures sampled across the U.S." [3	8
Table 2.3	"Management allowable depletion (MAD) and maximum root zone depths for selected crops." [3]	9
Table A.1	"Time vs Amplitude at different moisture levels" [1]	14
Table A.2	"Calibration Curve" data [1]	16

LIST OF FIGURES

Figure 1.1	Extrapolated "Time vs. Amplitude at different moisture levels" [1]	2
Figure 1.2	Extrapolated "Calibration Curve" [1]	3
Figure 1.3	Example of Acceptable Moisture Indicator Output	4
Figure 2.1	"Soil water content at saturation, field capacity, and permanent wilting point thresholds." [3]	7

CHAPTER I

INTRO TO LOAM: SOIL ANALYSIS

1.1 About

As mentioned previously, Loam: Soil Analysis is a software application created to visualize and analyze data reported from a soil sensor. The data reported from the sensor consists of an amplitude value given in decibels and a sensor depth value given in centimeters. These values are input into Loam using the textboxes, labeled Depth(cm) and Amplitude(dB), on the left side of the window. These values are then used to create a data point on the Amplitude vs. Depth plot and the Amplitude vs. Depth vs. Dielectric Constant plot. To create the point on the three-dimensional plot, the dielectric constant is calculated using bi-linear interpolation. This will be discussed more in-depth in a later chapter. The dielectric constant is then used to calculate the volumetric moisture content.

1.2 Features

This section goes more in-depth on the features provided by Loam. These include the two plots previously discussed, and the reporting of the volumetric moisture content.

1.2.1 Amplitude vs. Depth Plot

The Amplitude vs. Depth plot is generated at the start of the application. An example reference graph, seen in Appendix A, and the numerical data used to generate the plot were provided by the client [1]. The plot produced by Loam can be viewed in Figure 1.1. The data in

1

this plot represents amplitude levels at various depths. Using the text boxes, labeled "Depth (cm)" and "Amplitude (dB)," values from the sensor can be input into Loam. Depth values must be from "0 - 8.15" centimeters while amplitude values must between "-6.0 - 2.0" decibels. Inputs are sanitized to ensure they are within these ranges. These values are then used to plot a new point on the Amplitude vs. Depth plot.

Figure 1.1 Extrapolated "Time vs. Amplitude at different moisture levels" [1] This data was recorded in uniform sandy soil [1] and contains extrapolated data.

1.2.2 Amplitude vs. Depth vs. Dielectric Constant Plot

Like the previous plot, the Amplitude vs. Depth vs. Dielectric Constant is generated at the start of the application; however, this plot is originally hidden. To view this plot, the user must click one of the arrows on either side of the Amplitude vs. Depth plot or the "unselected" gray dot underneath the same plot. These buttons will remain when the new plot is shown and can be used to switch between the two plots.

A reference graph and numerical data were provided by the client for this plot. These can be found in Appendix A [1]. The graph produced in Loam can be seen in Figure 1.2.

Dielectric Plot

Figure 1.2 Extrapolated "Calibration Curve" [1]

This data is also based on the data from the previous plot [1] and contains extrapolated data as well

When amplitude and depth data are entered, a new point is also generated on this plot. The dielectric constant is calculated based on the given amplitude and depth values to generate this point. The details of this calculation will be discussed in a later section.

1.2.3 Volumetric Moisture Content and Recommendations

Once the dielectric constant for the given input is determined, the volumetric moisture content is calculated and displayed in the "water droplet" on the top left side of the window. The circle around the droplet will also change depending on the volumetric constant. The circle contains an indicator that will move proportionally to the volumetric constant. For example, if the volumetric moisture constant is 0.25, the indicator will move to cover a quarter of the height of the containing circle. The indicator will be blue if the volumetric moisture content is at an

acceptable level and red if the soil contains too much or too little moisture. Below, is a figure that shows the output of the moisture indicator when the acceptable volumetric moisture content is calculated.

Figure 1.3 Example of Acceptable Moisture Indicator Output

CHAPTER II

CALCULATIONS AND ASSUMPTIONS

2.1 Extrapolation of Data

As requested by the client, the data was extrapolated to include data up to a volumetric moisture content value of 0.4 [1]. The following equation for linear extrapolation was used to extrapolate each data set [2]:

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} (y_2 - y_1)$$
 (Eq. 2.1)

The first dataset to be extrapolated was the volumetric moisture content and dielectric constants. This resulted in an extrapolated dataset to include dielectric constants corresponding to the moisture content of 0.4. Next, amplitude values were extrapolated from the extrapolated dielectric constant values.

2.2 Calculating the Dielectric Constant

Once the user has entered an amplitude value and depth value, the corresponding dielectric constant is calculated using bi-linear interpolation and data from the "Calibration Curve" table in Appendix A [1]. Bi-linear interpolation consists of using a series of linear interpolations to find a point between two lines [2]. The equation used for linear interpolation is given in Equation 2.1 below.

$$y = \frac{y_0 (x_1 - x) + y_1 (x - x_0)}{(x_1 - x_0)}$$
 (Eq. 2.2)

2.3 Calculating the Volumetric Moisture Content

After the dielectric constant is calculated, the volumetric moisture content can be calculated using Equation 1 along with the data from Table 2.1 [1], which includes extrapolated data. The two dielectric constants, and corresponding volumetric constants, that surround the calculated dielectric constant are selected to be used in the equation. For example, if the calculated dielectric constant, x, is 3.5, the dielectric constants used in the equation for x_0 and x_1 will be 3.42 and 3.67 respectively. Because these values correspond with VMC values of 0.1 and 0.125, these will be y_0 and y_1 . The resulting y value will then give the estimated VMC value at a dielectric constant of 3.5.

Table 2.1 VMC vs. Dielectric Constant

Volumetric Moisture Content	Dielectric Constant
0	2.53
0.025	2.74
0.05	2.96
0.075	3.18
0.1	3.42
0.125	3.67
0.15	3.92
0.175	4.18
0.2	4.45
0.225	4.73
0.25	4.92
0.275	5.17
0.3	5.41
0.325	5.66
0.35	5.90
0.375	6.15
0.4	6.39

2.4 Determining the Upper and Lower Bounds of Acceptable VMC Values

To give feedback on the volumetric moisture content, an upper bound and lower bound for acceptable VMC values must be determined. These represent too much or too little moisture in the tested area, respectively.

The upper bound is given by the field capacity (FC) which is the threshold at which the force of gravity drains water between larger openings in the grains of soil [3]. This means that the FC is directly related to the type of soil being used. Moisture above this level provides no benefit since the additional water will drain deep enough to pass the depth of the roots meaning it is lost to drainage [3]. An example of these concepts can be seen in Figure 2.1 below.

Figure 2.1 "Soil water content at saturation, field capacity, and permanent wilting point thresholds." [3]

While the permanent wilting point (PWP), seen in the figure above, could technically be considered a lower bound for acceptable VMC values, it would be dangerous to do so since at this point, the grains of soil are holding moisture with force greater than a plant can overcome to extract it [3]. This means that a plant will die if it remains at this amount of moisture for too long. Therefore, it could be viewed as a point at which planting should be redone, but this was not

applied to the scope of this project. The values used for FC, PWP, and TAW are found in Table 2.2 below. Because the data provided by the client was completed in uniform sandy soil, the values for sand were used for all calculations.

Table 2.2 "Typical soil water thresholds for different soil textures sampled across the U.S." [3

Soil Texture	FC (%)	PWP (%)	TAW (%)
Sand	10	4	6
Loamy Sand	16	7	9
Sandy Loam	21	9	12
Loam	27	12	15
Silt Loam	30	15	15
Sandy Clay Loam	36	16	20
Sandy Clay	32	18	14
Clay Loam	29	18	11
Silty Clay Loam	28	15	13
Silty Clay	40	20	20
Clay	40	22	18

Because the lower boundary should be an acceptable value to promote plant growth, total available water (TAW) and management allowable depletion (MAD) values are used. TAW is the theoretical amount of water available to a plant which is "estimated as the difference between soil water content at FC and PWP" [3]. This means that TAW is also directly correlated to the type of soil being used in the tested area which is why this value can also be found in the previous table. MAD, however, is dependent on the crop being grown, because it is the amount of TAW that can be depleted before any plant stress or growth reduction occurs [3]. For this project, MAD values corresponding to soybean, rice, and potatoes were used. These values were obtained from the following table.

Table 2.3 "Management allowable depletion (MAD) and maximum root zone depths for selected crops." [3]

Type of crop	MAD*	Maximum root depth (ft.)
Cotton	0.65	3.3-5.6
Barley and Oats	0.55	3.3-4.5
Maize	0.50-0.55	2.6-6.0
Sorghum	0.50 - 0.55	3.3 – 6.6
Rice	0.2	1.6 – 3.3
Beans	0.45	1.6 – 4.3
Soybeans	0.5	2.0 – 4.1
Alfalfa	0.50 - 0.60	3.3 – 9.9
Cool season – Turf grass	0.4	1.6 – 2.2
Warm season – Turf grass	0.5	1.6 – 2.2
Citrus	0.5	2.6 – 5.0
Walnut orchard	0.5	5.6 – 8.0
Carrots	0.35	1.5 – 3.3
Cantaloupes/watermelons	0.40 - 0.45	2.6 – 5.0
Lettuce	0.3	1.0 – 1.6
Onions	0.3	2.0 – 3.0
Potatoes	0.65	1.0 - 2.0
Sweet peppers	0.3	1.0 – 2.0
Cucumbers	0.5	2.0-4.0

After the MAD value is determined based on the plant being used and the TAW, FC, and PWP values are found based on the type of soil, an expression for the proper lower bound of VMC can be determined. This expression is given in Equation 3.1 below.

$$lower_bound = FC - (MAD * TAW)$$
 (Eq. 3.1) [3]

Finally, once the upper bound and lower bound are found, any value within this range is defined as an acceptable VMC value. However, values above the upper bound are over-watered while values under the lower bound are under-watered. This value is displayed on the moisture indicator with the corresponding recommendation for irrigation.

CHAPTER III

FRAMEWORKS AND LIBRARIES USED

3.1 Electron.JS

To complete this project, ElectronJS was used to develop the application in JavaScript, HTML, and CSS. Electron JS is a runtime framework that allows for the creation of a desktop application in these languages [4]. There are a few main reasons for selecting this framework that are discussed in the following subsections.

3.1.1 Cross-platform Applications

One of the contributing factors in selecting ElectronJS is its ability to develop cross-platform applications [4]. Because the user's and future user's operating system of choice was not known, the capability of creating a cross-platform application became desirable. However, there are many more options for developing cross-platform applications which means this was not the sole reason for selecting ElectronJS.

Packages are developed using Electron Forge, which has the capability of producing various forms of packages. This includes dmg files that are compatible with MacOS, squirrel.windows which are compatible with Windows operating systems and deb files which are compatible with Linux.

3.1.2 Compatibility with Plotly

Because two of the three features of this project are developing plots, it was important to find a quality graphing library. The JavaScript language was ultimately chosen to take advantage of the Plotly graphing library, which will be discussed more in-depth later. While Plotly is available in a few different languages, the only other available language that is also well-known is

Python. Considering the future development of this application as another person's project, it was important to select a language that is well-known which limited the options to Python and JavaScript. The selection between these two was decided with the same logic as my final point for choosing ElectronJS.

3.1.3 Personal Growth

The final reason for selecting ElectronJS was for my personal growth as a developer. Choosing this framework provided a challenge since I was not previously familiar with the technology, and it seemed extremely interesting. This was also a framework that was mentioned multiple times in my job search which led to a desire to learn it.

3.2 Plotly

As mentioned previously, graphing is a major aspect of this project. While it was technically possible to create these graphs from scratch, the time constraints were a concern, and the amount of work to develop what a library can already accomplish appeared unnecessary in this context. This led to the search for a graphing library which resulted in the selection of the Plotly graphing library.

Another main reason for selecting Plotly was its capability of creating three-dimensional graphs [5]. While there are many options for plotting libraries, many are only capable of displaying two-dimensional plots. Plotly appeared to be the best option given the requirement of this project to display both two-dimensional and three-dimensional plots.

REFERENCES

- [1] S. Dey, private communication, August 2022.
- [2] X-engineer, "Linear Interpolation Extrapolation Calculator," https://x-engineer.org/linear-interpolation-extrapolation-calculator/
- [3] H. R. Kang, "Three-Dimensional Lookup Table with Interpolation," in Computation Color Technology. SPIE Press, 2006, ch. 9, pp. 151 159.
- [4] S. Datta, S. Taghvaeian, J. Stivers, "Understanding Soil Water Content and Thresholds for Irrigation Management," Oklahoma State University. https://extension.okstate.edu/fact-sheets/understanding-soil-water-content-and-thresholds-for-irrigation-management.html (accessed Feb. 2, 2023).
- [5] ElectronJS, "ElectronJS Docs," https://www.electronjs.org/docs/latest/ (accessed Aug 2022).
- [6] Plotly, "Plotly JavaScript Open Source Graphing Library," https://plotly.com/javascript/(accessed Aug 2022).

APPENDIX A

DATA TABLES

A.1 Amplitude vs. Depth Data

The following table contains the numerical data on amplitude levels at various sensor depth values. The client provided this data, and it is used to generate the amplitude vs depth plot [1].

Table A.1 "Time vs Amplitude at different moisture levels" [1]

De pth	Ti m e	2.53	Amplitude	Amplitude	Amplitude	Amplitud e	Amplitud e	Amplitud e	Amplitud e	Amplitud e	Amplitud e
cm	ns	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
		Dry (er=2.53)	50 ml (er=2.74)	100 ml (er=2.96)	150 ml (er=3.18)	200 ml (er=3.42)	250 ml (er=3.67)	300 ml (er=3.92)	350 ml (er=4.18)	400 ml (er=4.45)	450ml (er=4.73)
0	16. 15	0.43653	0.353297	0.0435421	-1.005547	-1.500341	-1.594382	-1.710513	-2.149558	-2.655376	-3.089209
0.4 8	16. 2	0.48389624 152076	0.19021118 6093047	- 0.2299382 72336168	- 1.1886890 4002001	- 1.9651164 4332166	- 2.1199502 2411206	- 2.2961529 4317159	- 2.6454140 16008	- 3.1185521 3306653	- 3.6497792 5312656
0.9 6	16. 25	0.28588298 0590295	- 0.03924676 13806903	- 0.4593753 46723362	- 1.1435654 9194597	- 2.3985506 3101551	- 2.6003489 2946473	- 2.7780209 4687344	- 3.0352744 2421211	- 3.3848115 1175588	- 3.9954203 3866934
1.4 4	16. 3	0.10044199 0195097	- 0.37110742 9214607	- 0.5250960 44972486	- 0.8301891 12356178	- 2.2353847 8389195	- 2.5393714 0070035	- 2.6420688 172086	- 2.8972767 5937969	- 3.2501938 1790895	- 4.0285004 042021
1.9 2	16. 35	- 0.08499900 02001002	- 0.56074209 6548274 -0.78363		- 0.8980054 35217609	- 2.2313414 9654827	- 2.7677631 7358679	- 2.9261259 3066533	- 3.2145594 7873937	- 3.7376264 6423212	- 5.1296205 4427214
2.4	16. 4			- 1.0317072 2651326	- 1.2703942 4992496	- 2.5675620 3001501	- 3.2875240 14007	- 3.4699344 4932466	- 3.8367184 4222111	- 4.4038699 6598299	- 5.5825813 2916458
2.8 8	16. 45	. 0.07201226 - 11305655 0.68683283 5917959		- 1.1557447 7243622	- 1.5044090 7883942	- 2.6199687 6598299	- 3.4479300 2201101	- 3.6539396 7633817	- 3.9987623 0615308	- 4.6502887 953977	- 5.7377391 6708354
3.3 6	16. 5	0.66605204 3921961	- 0.52943606 2031016	- 1.2214996 1605803	- 1.5341357 2426213	- 2.2046375 1875938	- 2.8875174 9574787	- 3.2147097 1895948	- 3.5824303 6818409	- 4.2991859 929965	- 5.5794129 9149575
3.8	16. 55	1.61211540 170085	- 0.33221600 8004002	-1.15798	- 1.3815173 5757879	- 1.8016673 2056028	-2.11514	-2.561127	-3.042649	-3.739044	- 5.2993926 8084042
4.3	16. 6	6 103051 0.18809366 1.0309		- 1.0309381 4002001	- 1.3102954 5312656	- 1.5247798 2241121	- 1.8886475 0075038	- 2.4330694 9064532	- 3.0302076 5182591	- 3.6807368 8544272	- 5.3544486 8784392
4.7 9	16. 65			- 0.9709767 03601801	- 1.2512830 18009	- 1.4490739 1095548	- 1.8870428 014007	- 2.5062744 8354177	- 3.1214264 4722361	- 3.7583131 835918	- 5.4195148 7793897
5.2 7	16. 7	0.86788734 6773387	- 0.67404012 7563782	- 0.9754599 88394197	- 1.2375331 85993	- 1.4960458 9724862	- 1.9625387 893947	- 2.6317687 5707854	- 3.2032894 6873437	- 3.8313261 7008504	- 5.4431851 1855928

Table A.1 (Continued)

5. 75	16. 75	1.1130989 991996	- 0.8902236 48324162	- 1.0711033 9729865	- 1.3046852 6733367	- 1.6122397 5807904	- 2.0438421 6108054	- 2.6892869 6578289	- 3.2225413 2266133	- 3.8066640 9004502	- 5.3606011 0805403
6. 23	16. 8	1.0607234 4032016	- 0.9545553 64682341	- 1.2070963 6933467	- 1.8073084 2161081	- 1.9855434 3861931	- 2.5345660 8304152	- 3.0370106 8204102	- 3.5295131 0255128	- 3.9505047 2036018	- 5.2826543 6718359
6. 71	16. 85	0.4101084 4012006	- 0.7591046 89344672	- 1.6001310 028014	- 2.3404552 4922461	- 2.5739293 7218609	- 3.2169336 6683342	- 3.4971563 5167584	- 3.8873714 5372686	- 4.2083318 2891446	- 5.3299219 8149075
7. 19	16. 9	- 0.6396761 49574788	- 1.3697283 1815908	- 1.7824512 5102551	- 2.7779612 3371686	- 3.0387048 1550775	- 3.5363397 6988494	- 3.7559882 9084542	- 4.0838427 0535268	- 4.3497944 9024512	- 5.1872768 7243622
7. 67	16. 95	- 1.1142793 6228114	- 1.7584793 861931	- 1.9976489 2106053	- 3.1279660 2131066	- 3.2414260 1950975	- 3.5132380 9104552	- 3.7711958 9964982	- 4.1326783 4717359	- 4.2386042 2511256	- 4.7468288 164082
8. 15	17	-1.122131	-1.66196	-2.30849	-3.006337	-3.007367	-3.118336	-3.473147	-3.898784	-3.935144	-4.498764

A.2 Amplitude vs. Depth vs. Dielectric Constant

The following table contains the numerical data on dielectric constants at different amplitude levels and sensor depth values.

The client provided this data, and it is used to generate the Amplitude vs Depth vs Dielectric Constant plot [1].

Table A.2 "Calibration Curve" data [1]

Diel ectr ic Con sta nt	0	0.48	0.96	1.44	1.92	2.88	2.88	3.36	3.84	4.32	4.79	5.27	5.75	6.23	6.71	7.19	7.67	8.1 5
\g(e \- (r))	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB	dB
	Dep th =0	Depth =0.48	Depth =0.96	Depth =1.44	Depth =1.92	Depth =2.4	Depth =2.88	Depth =3.36	Depth =3.84	Depth =4.32	Depth =4.79	Depth =5.27	Depth =5.75	Depth =6.23	Depth =6.71	Depth =7.19	Depth =7.67	Dep th =8. 15
2.53	0.43 653	0.48389 6241520 76	0.285882 9805902 95	0.10044 1990195 097	- 0.084999 0002001 002	0.18828 4188194 097	0.072012 2611305 655	0.66605 2043921 961	1.61211 5401700 85	1.67251 2661030 51	1.25134 1598099 05	0.86788 7346773 387	1.11309 8999199 6	1.06072 3440320 16	0.41010 8440120 06	- 0.63967 6149574 788	- 1.11427 936228 114	- 1.1 221 31
2.74	0.35 329 7	0.19021 1186093 047	- 0.039246 7613806 903	- 0.37110 7429214 607	- 0.560742 0965482 74	- 0.72382 7910455 228	- 0.686832 8359179 59	- 0.52943 6062031 016	- 0.33221 6008004 002	- 0.18809 3660830 415	- 0.37631 3699849 925	- 0.67404 0127563 782	- 0.89022 3648324 162	- 0.95455 5364682 341	- 0.75910 4689344 672	- 1.36972 8318159 08	- 1.75847 938619 31	- 1.6 619 6
2.96	0.04 354 21	- 0.22993 8272336 168	- 0.459375 3467233 62	- 0.52509 6044972 486	-0.78363	- 1.03170 7226513 26	- 1.155744 7724362 2	- 1.22149 9616058 03	-1.15798	- 1.03093 8140020 01	- 0.97097 6703601 801	- 0.97545 9988394 197	- 1.07110 3397298 65	- 1.20709 6369334 67	- 1.60013 1002801 4	- 1.78245 1251025 51	- 1.99764 892106 053	- 2.3 084 9
3.18	- 1.00 554 7	- 1.18868 9040020 01	- 1.143565 4919459 7	- 0.83018 9112356 178	- 0.898005 4352176 09	- 1.27039 4249924 96	- 1.504409 0788394 2	- 1.53413 5724262 13	- 1.38151 7357578 79	- 1.31029 5453126 56	- 1.25128 3018009	- 1.23753 3185993	- 1.30468 5267333 67	- 1.80730 8421610 81	- 2.34045 5249224 61	- 2.77796 1233716 86	- 3.12796 602131 066	- 3.0 063 37

Table A.2 (Continued)

3. 4 2	- 1.50034 1	- 1.96511 6443321 66	- 2.39855 0631015 51	- 2.23538 4783891 95	- 2.23134 1496548 27		- 2.61996 8765982 99	- 2.20463 7518759 38	- 1.80166 7320560 28	- 1.52477 9822411 21	- 1.44907 3910955 48	- 1.49604 5897248 62	- 1.61223 9758079 04	- 1.98554 3438619 31	- 2.57392 9372186 09	- 3.03870 4815507 75	- 3.24142 6019509 75	- 3.00736 7
3. 6 7	- 1.59438 2	- 2.11995 0224112 06	- 2.60034 8929464 73	- 2.53937 1400700 35	- 2.76776 3173586 79	- 2.93752 4014007	- 3.44793 0022011 01	- 2.88751 7495747 87	- 2.11514	- 1.88864 7500750 38	- 1.88704 2801400 7	- 1.96253 8789394 7	- 2.04384 2161080 54	- 2.53456 6083041 52	- 3.21693 3666833 42	- 3.53633 9769884 94	- 3.51323 8091045 52	- 3.11833 6
3. 9 2	- 1.71051 3	- 2.29615 2943171 59	- 2.77802 0946873 44	- 2.64206 8817208 6	- 2.92612 5930665 33	- 3.21993 4449324 66	- 3.65393 9676338 17	- 3.21470 9718959 48		- 2.43306 9490645 32	- 2.50627 4483541 77	- 2.63176 8757078 54	- 2.68928 6965782 89	- 3.03701 0682041 02	- 3.49715 6351675 84	- 3.75598 8290845 42	- 3.77119 5899649 82	- 3.47314 7
4. 1 8	- 2.14955 8	- 2.64541 4016008	- 3.03527 4424212 11	- 2.89727 6759379 69	- 3.21455 9478739 37	- 3.73671 8442221 11	- 3.99876 2306153 08	- 3.58243 0368184 09	- 3.04264 9	- 3.03020 7651825 91	- 3.12142 6447223 61	- 3.20328 9468734 37	- 3.22254 1322661 33	- 3.52951 3102551 28	- 3.88737 1453726 86	- 4.08384 2705352 68	- 4.13267 8347173 59	- 3.89878 4
4. 4 5	- 2.65537 6	- 3.11855 2133066 53	- 3.38481 1511755 88	- 3.25019 3817908 95	- 3.73762 6464232 12	- 4.40386 9965982 99	- 4.65028 8795397 7	- 4.29918 5992996 5	- 3.73904 4	- 3.68073 6885442 72	- 3.75831 3183591 8	- 3.83132 6170085 04	- 3.80666 4090045 02	- 3.95050 4720360 18	- 4.20833 1828914 46	- 4.34979 4490245 12	- 4.23860 4225112 56	- 3.93514 4
4. 7 3	- 3.08920 9	- 3.64977 9253126 56	- 3.99542 0338669 34	- 4.02850 0404202 1	- 5.12962 0544272 14	- 5.58258 1329164 58	- 5.73773 9167083 54	- 5.57941 2991495 75	- 5.29939 2680840 42	- 5.35444 8687843 92	- 5.41951 4877938 97	- 5.44318 5118559 28	- 5.36060 1108054 03	- 5.28265 4367183 59	- 5.32992 1981490 75	- 5.18727 6872436 22	- 4.74682 8816408 2	- 4.49876 4
4. 9 2	- 3.38359 5678571 43	- 4.01025 4798881 58	- 4.40976 2042646 33	- 4.55663 7016329 59	- 6.07418 7955727 87	- 6.38242 1182752 09		6.44813 8454763 1	- 6.35820 0714267 84	- 6.49018 1696616 16	- 6.54675 8884817 4	- 6.53694 6547881 08	- 6.41505 8370274 43	- 6.18661 3056099 47	- 6.09100 1013596 09	- 5.75556 8488923 04	- 5.09169 5503358 81	- 4.88122 0428571 43
5. 1 7	- 3.77094 6571428 57	- 4.48456 4727506 6	- 4.95494 8495247 63	- 5.25155 3611234 19	- 7.31703 9812906 45		- 7.44658 9751161 29	- 7.59119 8274851 71	- 7.75136 9179303 93	- 7.98456 7234474 37	- 8.02997 4683341 66	- 7.97610 6323304 51	- 7.80250 2136353 9	- 7.37603 2383620 38	- 7.09242 0792682 06	- 6.50332 0615879 38	- 5.54546 7459872 78	- 5.38445 2571428 57
5. 4 1	- 4.14280 3428571 43	- 4.93990 2258986 63	- 5.25155 3611234 19	- 5.91867 3542342 61	- 8.51017 7595797 9	- 8.44516 6068319 87	- 8.37869 0069749 15	- 8.68853 5702136 78	- 9.08881 0905738 58	- 9.41917 7350818 26	- 9.45386 1849924 95	- 9.35769 9707711	- 9.13444 8151790 19	- 8.51787 4938040 44	- 8.05378 3780604 59	- 7.22116 2657757 46	- 5.98108 8538126 18	- 5.86755 5428571 43

Table A.2 (Continued)

	4.53015 4321428 57		- 6.61359 0137247 21						- 10.5218 9191786 97	 - 9.05520 3559690 56	- 7.96891 4784713 8	- 6.43486 0494640 15	- 6.37078 7571428 57
5	4.90201 1178571 43	- 5.86954 9719091 68	- 7.28071 0068355 62	- 10.9461 6723586 79		- 10.9289 3294951 05			- 11.8538 3793330 6		- 8.68675 6826591 89	- 6.87048 1572893 55	- 6.85389 0428571 43
1 5	5.28936 2071428 57	- 6.34385 9647716 7	 			- 12.0719 9276959 91			-	 - 11.0179 8632669 91		-	
	5.66121 8928571 43	- 6.79919 7179196 73	 			- 13.1693 3019688 41				- 11.9793 4931462 16			- 7.84022 5428571 43

APPENDIX B
CODE

```
main.js
const { app, BrowserWindow } = require('electron');
const createWindow = () => {
  const win = new BrowserWindow({
   width: 1000,
   height: 600
  })
  win.loadFile('index.html')
 app.whenReady().then(() => {
  createWindow();
  app.on('activate', () \Rightarrow {
   if (BrowserWindow.getAllWindows().length === 0) {
    createWindow();
   }
  });
 });
 app.on('window-all-closed', () => {
  if (process.platform !== 'darwin') {
   app.quit();
 });Hidden text to allow template to find last page in document
```

input validation.js function setInputFilter(textbox, inputFilter, errMsg) { ["input", "keydown", "keyup", "mousedown", "mouseup", "select", "contextmenu", "drop", "focusout", "keypress"].forEach(function(event) { textbox.addEventListener(event, function(e) { if (event === "keypress" && e.key === "Enter") { if (document.activeElement === document.getElementById("amplitudeInput")) { // console.log(document.activeElement); UpdatePlot(); Update3dPlot(); } else if (document.activeElement === document.getElementById("depthInput")){ document.getElementById("amplitudeInput").focus(); // console.log(document.activeElement); } } if (inputFilter(this.value)) { // Accepted value if (["keydown", "mousedown", "focusout"].indexOf(e.type) >= 0) { this.classList.remove("input-error"); this.setCustomValidity(""); } this.oldValue = this.value; this.oldSelectionStart = this.selectionStart; this.oldSelectionEnd = this.selectionEnd; } else if (this.hasOwnProperty("oldValue")) { // Rejected value - restore the previous one this.classList.add("input-error"); this.setCustomValidity(errMsg); this.reportValidity(); this.value = this.oldValue; this.setSelectionRange(this.oldSelectionStart, this.oldSelectionEnd); } else { // Rejected value - nothing to restore this.value = ""; **})**;

});

```
setInputFilter(document.getElementById("depthInput"), function(value) \{ return /^-?\d*[.,]?\d*\$/.test(value) && (value === "" || parseFloat(value) <= 8.15); \}, "Must be a value between 0 and 8.15"); setInputFilter(document.getElementById("amplitudeInput"), function(value) { return /^-?\d*[.,]?\d*$/.test(value) && ((value === "" || value === "-") || (parseFloat(value) >= -6.0 && parseFloat(value) <= 2.0)); }, "Must be a value between -6.0 and 2.0"); }
```

```
moisture indicator.js
const indicatorElement = document.querySelector(".moisture-indicator");
const MAX MOISTURE = 0.4;
var veg = "soybean";
function setIndicator(indicator, moisture) {
  moisture = +moisture;
  if (moisture < 0 \parallel moisture > MAX \mid MOISTURE) {
     return;
  }
  let perc_moisture = 100 - ((moisture / MAX MOISTURE) * 100);
  let TAW = 0.06;
  let FC = 0.1;
  let PWP = 0.04;
  let MAD = 0.5;
  if (veg == "soybean") {
    MAD = 0.5;
    // console.log(veg);
  } else if (veg == "rice") {
    MAD = 0.2;
    // console.log(veg);
  } else if (veg == "potato") {
    MAD = 0.65;
    // console.log(veg);
  let highMoisture = FC;
  let lowMoisture = FC - (MAD * TAW);
  let replantMoisture = PWP;
  console.log(lowMoisture, moisture, highMoisture);
  if (moisture > highMoisture) {
     indicator.querySelector(".indicator-fill").style.background = '#fc4349';
```

```
document.getElementById("report").innerHTML = "Land too hydrated. Refrain
from irrigation";
            document.getElementById("report").style.color = '#fc4349';
          } else if (lowMoisture < moisture && moisture <= highMoisture) {
            indicator.querySelector(".indicator-fill").style.background = '#3498db';
            document.getElementById("report").innerHTML = "Land properly irrigated";
            document.getElementById("report").style.color = '#3498db';
          } else if (moisture <= lowMoisture) {</pre>
            indicator.querySelector(".indicator-fill").style.background = '#fc4349';
            document.getElementById("report").innerHTML = "Land needs moisture. Irrigate
land as soon as possible";
            document.getElementById("report").style.color = '#fc4349';
          } else {
            indicator.querySelector(".indicator-fill").style.background = '#fc4349';
          // console.log(perc moisture);
          // document.getElementById("report").innerHTML = moisture;
          indicator.querySelector(".indicator-fill").style.transform =
          `translateY(${
            perc moisture
          }%)';
          indicator.querySelector(".indicator-cover p").textContent =
          `${
            moisture
          }';
       }
       function selectVeg(selected) {
          veg = selected;
          var depth = +document.getElementById('depthInput').value;
          var amplitude = +document.getElementById('amplitudeInput').value;
          if (depth != 0 \&\& amplitude != 0) {
            UpdatePlot();
            Update3dPlot();
```

```
}
return;
}
```

```
navigation.js
let plotIndex = 1;
showPlot(plotIndex);
// Next/previous controls
function changePlot(n) {
 showPlot(plotIndex += n);
}
// Thumbnail image controls
function currentPlot(n) {
 showPlot(plotIndex = n);
function showPlot(n) {
  let i;
  let plot = document.getElementsByClassName("plots");
  let dots = document.getElementsByClassName("dot");
  if (n > plot.length) \{ plotIndex = 1 \}
  if (n < 1) {plotIndex = plot.length}
  for (i = 0; i < plot.length; i++) {
   plot[i].style.display = "none";
  for (i = 0; i < dots.length; i++) {
   dots[i].className = dots[i].className.replace(" active", "");
  // console.log(plot[plotIndex-1].style)
  plot[plotIndex-1].style.display = "block";
  dots[plotIndex-1].className += " active";
}
```

plot.js

```
TESTER = document.getElementById('ampVsTimePlot');
const DEPTHS =
[0,0.48,0.96,1.44,1.92,2.4,2.88,3.36,3.84,4.32,4.79,5.27,5.75,6.23,6.71,7.19,7.67,8.15];
const AMPLITUDES = [[0.43653,0.48389624152076, 0.285882980590295,
0.100441990195097, -0.0849990002001002, -0.0882841881940968,
   0.0720122611305655, 0.666052043921961, 1.61211540170085, 1.67251266103051,
1.25134159809905, 0.867887346773387,
   1.1130989991996, 1.06072344032016, 0.41010844012006, -0.639676149574788, -
1.11427936228114, -1.122131],
   0.560742096548274, -0.723827910455228, -0.686832835917959,
   0.674040127563782, -0.890223648324162,
   1.66196],
   1.03170722651326, -1.15574477243622,
   -1.22149961605803, -1.15798, -1.03093814002001, -0.970976703601801, -
0.975459988394197, -1.07110339729865, -1.20709636933467,
   -1.6001310028014, -1.78245125102551, -1.99764892106053, -2.30849],
   0.898005435217609, -1.27039424992496, -1.50440907883942,
   -1.53413572426213, -1.38151735757879, -1.31029545312656, -1.251283018009, -
1.237533185993, -1.30468526733367, -1.80730842161081,
   -2.34045524922461, -2.77796123371686, -3.12796602131066, -3.006337],
   [-1.500341, -1.96511644332166, -2.39855063101551, -2.23538478389195, -
2.23134149654827, -2.56756203001501, -2.61996876598299,
   -2.20463751875938, -1.80166732056028, -1.52477982241121, -1.44907391095548, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.80166732056028, -1.8016678
1.49604589724862, -1.61223975807904,
   -1.98554343861931, -2.57392937218609, -3.03870481550775, -3.24142601950975, -
3.0073671,
```

2.76776317358679, -3.287524014007, -3.44793002201101,

```
-2.88751749574787, -2.11514, -1.88864750075038, -1.8870428014007, -1.9625387893947, -1.8870428014007, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.9625387893947, -1.962538789999
2.04384216108054, -2.53456608304152,
   -3.21693366683342, -3.53633976988494, -3.51323809104552, -3.118336].
   [-1.710513, -2.29615294317159, -2.77802094687344, -2.6420688172086, -
2.92612593066533, -3.46993444932466, -3.65393967633817,
   -3.21470971895948, -2.561127, -2.43306949064532, -2.50627448354177, -
2.63176875707854, -2.68928696578289, -3.03701068204102,
   -3.49715635167584, -3.75598829084542, -3.77119589964982, -3.473147],
   [-2.149558, -2.645414016008, -3.03527442421211, -2.89727675937969, -3.21455947873937,
-3.83671844222111, -3.99876230615308,
   -3.58243036818409, -3.042649, -3.03020765182591, -3.12142644722361, -
3.20328946873437, -3.22254132266133, -3.52951310255128,
   -3.88737145372686, -4.08384270535268, -4.13267834717359, -3.898784],
   [-2.655376, -3.11855213306653, -3.38481151175588, -3.25019381790895, -
3.73762646423212, -4.40386996598299, -4.6502887953977,
   -4.2991859929965, -3.739044, -3.68073688544272, -3.7583131835918, -3.83132617008504,
-3.80666409004502, -3.95050472036018,
   -4.20833182891446, -4.34979449024512, -4.23860422511256, -3.935144],
   [-3.089209, -3.64977925312656, -3.99542033866934, -4.0285004042021, -
5.12962054427214, -5.58258132916458, -5.73773916708354,
   -5.57941299149575, -5.29939268084042, -5.35444868784392, -5.41951487793897, -
5.44318511855928, -5.36060110805403,
   -5.28265436718359, -5.32992198149075, -5.18727687243622, -4.7468288164082, -
4.498764],
   [-3.38359567857143, -4.01025479888158, -4.40976204264633, -4.55663701632959, -
6.07418795572787, -6.38242118275209,
   -6.47565191929893, -6.4481384547631, -6.35820071426784, -6.49018169661616, -
6.5467588848174, -6.53694654788108, -6.41505837027443,
    -6.18661305609947, -6.09100101359609, -5.75556848892304, -5.09169550335881, -
4.88122042857143],
   [-3.77094657142857, -4.4845647275066, -4.95494849524763, -5.25155361123419, -
7.31703981290645, -7.43484204273565, -7.44658975116129,
   -7.59119827485171, -7.75136917930393, -7.98456723447437, -8.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.02997468334166, -9.029974683816
7.97610632330451, -7.8025021363539, -7.37603238362038,
```

-7.09242079268206, -6.50332061587938, -5.54546745987278, -5.38445257142857], [-4.14280342857143, -4.93990225898663, -5.2515536112341925, -5.91867354234261, -

8.5101775957979, -8.44516606831987, -8.37869006974915,

```
-8.68853570213678, -9.08881090573858, -9.41917735081826, -9.45386184992495, -
9.357699707711, -9.13444815179019, -8.51787493804044,
      -8.05378378060459, -7.22116265775746, -5.98108853812618, -5.86755542857143],
      9.75302945297649, -9.49758692830343, -9.34962790161151,
      -9.8315955222254, -10.4819793707747, -10.9135628886765, -10.9370776484492, -
10.7968594831344, -10.5218919178697, -9.70729426556135,
      -9.05520355969056, -7.9689147847138, -6.43486049464015, -6.37078757142857],
      [-4.90201117857143, -5.86954971909168, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684344, -7.28071006835562, -6.54689293684, -6.54689293684, -6.5468929368, -6.5468929368, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.546892936, -6.54689290, -6.54689290, -6.54689290, -6.54689290, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.546890, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566800, -6.566
10.9461672358679, -10.5079109538876, -10.2817282201994,
      -10.9289329495105, -11.8194210972093, -12.3481730050204, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.3609648150325, -12.36096648150325, -12.3609648150325, -12.3609648150325, -12.36096648150325, -12.3609648150325, -12.3609648150325, -12.36096648150325, -12.36096648150325, -12.36096648150325, -12.36096648150325, -12.36096648150325, -12.36096688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.3609688150325, -12.360968815005
12.1784528675409, -11.853837933306, -10.8491368199814,
      -10.0165665476131, -8.68675682659189, -6.87048157289355, -6.85389042857143],
      [-5.28936207142857, -6.3438596477167, -7.09207938944474, -7.97562666326022, -
12.1890190930465, -11.5603318138712, -11.2526660520617,
      -12.0719927695991, -13.2125895622454, -13.8425585428786, -13.8441806135567, -
13.617612642964353, -13.2412816993854, -12.0385561475023,
      -11.0179863266991, -9.43450895354822, -7.32425352940752, -7.35712257142857],
      [-5.66121892857143, -6.79919717919673, -7.61545838394199, -8.64274659436864, -
13.382156875938, -12.5706558394554, -12.1847663706496,
      -13.1693301968841, -14.55003128868, -15.2771686592225, -15.26806778014, -
14.9992060273708, -14.5732277148217, -13.1803987019224,
      -11.9793493146216, -10.1523509954263, -7.75987460766092, -7.84022542857143]
];
class Line {
      х;
      y;
      mode;
      name;
      constructor(x, y, mode, name) {
            this.x = x;
            this.y = y;
            this.mode = mode;
            this.name = name;
```

```
let dataLine1 = new Line(DEPTHS, AMPLITUDES[0], 'lines', 'Dry');
let dataLine2 = new Line(DEPTHS, AMPLITUDES[1], 'lines', '50 ml');
let dataLine3 = new Line(DEPTHS, AMPLITUDES[2], 'lines', '100 ml');
let dataLine4 = new Line(DEPTHS, AMPLITUDES[3], 'lines', '150 ml');
let dataLine5 = new Line(DEPTHS, AMPLITUDES[4], 'lines', '200 ml');
let dataLine6 = new Line(DEPTHS, AMPLITUDES[5], 'lines', '250 ml');
let dataLine7 = new Line(DEPTHS, AMPLITUDES[6], 'lines', '300 ml');
let dataLine8 = new Line(DEPTHS, AMPLITUDES[7], 'lines', '350 ml');
let dataLine9 = new Line(DEPTHS, AMPLITUDES[8], 'lines', '400 ml');
let dataLine10 = new Line(DEPTHS, AMPLITUDES[9], 'lines', '450 ml');
let dataLine11 = new Line(DEPTHS, AMPLITUDES[10], 'lines', '500 ml');
let dataLine12 = new Line(DEPTHS, AMPLITUDES[11], 'lines', '550 ml');
let dataLine13 = new Line(DEPTHS, AMPLITUDES[12], 'lines', '600 ml');
let dataLine14 = new Line(DEPTHS, AMPLITUDES[13], 'lines', '650 ml');
let dataLine15 = new Line(DEPTHS, AMPLITUDES[14], 'lines', '700 ml');
let dataLine16 = new Line(DEPTHS, AMPLITUDES[15], 'lines', '750 ml');
let dataLine17 = new Line(DEPTHS, AMPLITUDES[16], 'lines', '800 ml');
let inputValue = {
  mode: 'markers',
  type: 'scatter',
  name: 'Input'
};
let trace2d = [dataLine1, dataLine2, dataLine3, dataLine4, dataLine5, dataLine6, dataLine7,
dataLine8, dataLine9, dataLine10,
  dataLine11, dataLine12, dataLine13, dataLine14, dataLine15, dataLine16, inputValue]
let layout = {
  title: "Time vs. Amplitude at Different Moisture Levels",
  xaxis: {
    title: 'Depth (cm)',
  },
  yaxis: {
    title: 'Amplitude (dB)',
    range: [-6.0, 2.0]
  },
  legend: {
```

```
y: 0.5,
  },
  font: {
    family: 'Poppins'
  },
  paper bgcolor: 'rgba(0,0,0,0)',
  plot_bgcolor: 'rgba(0,0,0,0)',
}
function UpdatePlot() {
  var graphDiv = document.getElementById('ampVsTimePlot')
  var depth = +document.getElementById('depthInput').value;
  var amplitude = +document.getElementById('amplitudeInput').value;
  let newInput = {
     x: [depth],
     y: [amplitude],
     mode: 'markers',
     type: 'scatter',
     name: 'Input'
  };
  newData = trace2d[trace2d.length - 1] = newInput;
  // console.log(graphDiv);
  // console.log(newData);
  // console.log(layout);
  console.log(newData.x);
  Plotly.animate(graphDiv, {
     data: [{x: [depth], y: [amplitude]}],
     traces: [trace2d.length - 1],
     layout: {}
   }, {
     transition: {
      duration: 500,
      easing: 'cubic-in-out'
     },
```

```
frame: {
    duration: 500
    }
})
//Plotly.react(graphDiv, newData, layout);
}

Plotly.newPlot( TESTER, trace2d, layout);
console.log("Creating 2d plot")
```

```
plot3d.is
const DIELECTRIC CONSTANTS = [2.53, 2.74, 2.96, 3.18, 3.42, 3.67, 3.92, 4.18, 4.45, 4.73,
4.92, 5.17, 5.41, 5.66, 5.90, 6.15, 6.39];
const DC EXTRAPOLATED = [4.45, 4.73, 4.92, 5.17, 5.41, 5.66, 5.90, 6.15, 6.39];
const VMI VALUES = [0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275,
0.3, 0.325, 0.35, 0.375, 0.4;
const VMI EXTRAPOLATED = [0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4];
3.25019381790895, -3.73762646423212, -4.40386996598299, -4.6502887953977, -
4.2991859929965, -3.739044, -3.68073688544272, -3.7583131835918, -3.83132617008504, -
3.80666409004502, -3.95050472036018, -4.20833182891446, -4.34979449024512, -
4.23860422511256, -3.935144],
 [-3.089209, -3.64977925312656, -3.99542033866934, -4.0285004042021, -5.12962054427214,
-5.58258132916458, -5.73773916708354, -5.57941299149575, -5.29939268084042, -
5.35444868784392, -5.41951487793897, -5.44318511855928, -5.36060110805403, -
5.28265436718359, -5.32992198149075, -5.18727687243622, -4.7468288164082, -4.498764]];
// let extrapolatedAmp = extrapolateAmp();
let dielectricConstant = createDielectricConstantArray(DIELECTRIC CONSTANTS);
let amp3d = createAmplitudeArray();
let depth3d = createDepthArray();
class Trace {
 х;
 y;
 z;
 name;
 type;
 showscale;
 colorscale;
 constructor(x, y, z, name, colorscale) {
   this.x = x;
   this.y = y;
   this.z = z;
   this.name = name;
```

```
this.type = 'surface';
    this.showscale = false;
    this.colorscale = colorscale;
}
let trace1 = new Trace(
 dielectricConstant,
 depth3d[0],
 amp3d[0],
 DEPTHS[0].toString(),
 [['0', 'rgb(170,110,40)'], ['1.0', 'rgb(170,110,40)']],
let trace2 = new Trace(
 dielectricConstant,
 depth3d[1],
 amp3d[1],
 DEPTHS[1].toString(),
 [['0', 'rgb(230,25,75)'], ['1.0', 'rgb(230,25,75)']],
let trace3 = new Trace(
 dielectricConstant,
 depth3d[2],
 amp3d[2],
 DEPTHS[2].toString(),
 [['0', 'rgb(250,190,212)'], ['1.0', 'rgb(250,190,212)']],
let trace4 = new Trace(
 dielectricConstant,
 depth3d[3],
 amp3d[3],
 DEPTHS[3].toString(),
 [['0', 'rgb(245,130,48)'], ['1.0', 'rgb(245,130,48)']],
```

```
let trace5 = new Trace(
 dielectricConstant,
 depth3d[4],
 amp3d[4],
 DEPTHS[4].toString(),
 [['0', 'rgb(255,215,180)'], ['1.0', 'rgb(255,215,180)']],
let trace6 = new Trace(
 dielectricConstant,
 depth3d[5],
 amp3d[5],
 DEPTHS[5].toString(),
 [['0', 'rgb(128,128,0)'], ['1.0', 'rgb(128,128,0)']],
let trace7 = new Trace(
 dielectricConstant,
 depth3d[6],
 amp3d[6],
 DEPTHS[6].toString(),
 [['0', 'rgb(255,225,25)'], ['1.0', 'rgb(255,225,25)']],
let trace8 = new Trace(
 dielectricConstant,
 depth3d[7],
 amp3d[7],
 DEPTHS[7].toString(),
 [['0', 'rgb(255,250,200)'], ['1.0', 'rgb(255,250,200)']],
let trace9 = new Trace(
 dielectricConstant,
 depth3d[8],
 amp3d[8],
 DEPTHS[8].toString(),
 [['0', 'rgb(210,245,60)'], ['1.0', 'rgb(210,245,60)']],
```

```
)
let trace10 = new Trace(
 dielectricConstant,
 depth3d[9],
 amp3d[9],
 DEPTHS[9].toString(),
 [['0', 'rgb(60,180,75)'], ['1.0', 'rgb(60,180,75)']],
let trace11 = new Trace(
 dielectricConstant,
 depth3d[10],
 amp3d[10],
 DEPTHS[10].toString(),
 [['0', 'rgb(170, 255, 195)'], ['1.0', 'rgb(170, 255, 195)']],
let trace12 = new Trace(
 dielectricConstant,
 depth3d[11],
 amp3d[11],
 DEPTHS[11].toString(),
 [['0', 'rgb(0,128,128)'], ['1.0', 'rgb(0,128,128)']],
)
let trace13 = new Trace(
 dielectricConstant,
 depth3d[12],
 amp3d[12],
 DEPTHS[12].toString(),
 [['0', 'rgb(70,240,240)'], ['1.0', 'rgb(70,240,240)']],
)
let trace14 = new Trace(
 dielectricConstant,
 depth3d[13],
 amp3d[13],
```

```
DEPTHS[13].toString(),
 [['0', 'rgb(0,0,128)'], ['1.0', 'rgb(0,0,128)']],
let trace15 = new Trace(
 dielectricConstant,
 depth3d[14],
 amp3d[14],
 DEPTHS[14].toString(),
 [['0', 'rgb(0, 130, 200)'], ['1.0', 'rgb(0, 130, 200)']],
let trace16 = new Trace(
 dielectricConstant,
 depth3d[15],
 amp3d[15],
 DEPTHS[15].toString(),
 [['0', 'rgb(145,30,180)'], ['1.0', 'rgb(145,30,180)']],
)
let trace17 = new Trace(
 dielectricConstant,
 depth3d[16],
 amp3d[16],
 DEPTHS[16].toString(),
 [['0', 'rgb(220,190,255)'], ['1.0', 'rgb(220,190,255)']],
)
let trace18 = new Trace(
 dielectricConstant,
 depth3d[17],
 amp3d[17],
 DEPTHS[17].toString(),
 [['0', 'rgb(240,50,230)'], ['1.0', 'rgb(240,50,230)']],
)
var data2 = [trace1, trace2, trace3, trace4, trace5, trace6, trace7, trace8, trace9, trace10,
 trace11, trace12, trace13, trace14, trace15, trace16, trace17, trace18];
```

```
var layout2 = {
 title: 'Dielectric Plot',
 showscale: false,
 autosize: true,
 // width: 600,
 // height: 600,
 scene: {
  aspectmode: 'manual',
  aspectratio: {
   x: 1.0, y: 1.0, z: 0.7
  },
  xaxis: {
    title: 'Dielectric Constant',
    range: [2.4, 6.5],
  },
  yaxis: {
    title: 'Depth',
   range: [-0.5, 8.5]
  },
  zaxis: {
   title: 'Amplitude',
   range: [-6.0, 2.0],
    font: {
     family: 'Poppins',
    }
  },
 },
 paper bgcolor: 'rgba(0,0,0,0)',
 plot bgcolor: 'rgba(0,0,0,0)',
};
function createDepthArray() {
 let newDepth = [];
 for (let j = 0; j < DEPTHS.length; j++) {
  let trace = [];
  for (let i = 0; i < DIELECTRIC_CONSTANTS.length; i++) {
```

```
trace.push([DEPTHS[j], DEPTHS[j]]);
  newDepth.push(trace);
 // console.log(newDepth);
 return newDepth;
function createAmplitudeArray() {
 let newAmp = [];
 let MIN AMP = -6.0;
 for (let j = 0; j < DEPTHS.length; j++) {
  let trace = [];
  for (let i = 0; i < DIELECTRIC CONSTANTS.length; <math>i++) {
   trace.push([AMPLITUDES[i][j], MIN AMP]);
   //console.log(AMPLITUDES[i][index]);
  newAmp.push(trace);
 // console.log(newAmp);
 return newAmp;
}
function createDielectricConstantArray(arr) {
 let newArr = [];
 // let minDielectricConstant = Math.min(...arr);
 for (let i = 0; i < arr.length; i++) {
  newArr.push([arr[i], arr[i]/*minDielectricConstant*/]);
 // console.log(newArr)
 return newArr;
function calcVolMoisture(dielectricConstant) {
```

```
let index = 0;
 for (let i = 0; i < DIELECTRIC CONSTANTS.length; i++) {
  if (dielectricConstant < DIELECTRIC CONSTANTS[i]) {</pre>
   index = i;
   break;
  }
 }
 // console.log(DIELECTRIC CONSTANTS[index-1], VMI VALUES[index-1],
DIELECTRIC CONSTANTS[index], VMI VALUES[index]);
 let vmi = interpolate(dielectricConstant, DIELECTRIC CONSTANTS[index-1],
VMI VALUES[index-1], DIELECTRIC CONSTANTS[index], VMI VALUES[index]);
 return (vmi.toFixed(3));
}
function calcDielectric(depth, amplitude) {
 let traceFloor, traceCeiling = [];
 let x00, x01, y00, y01, z00, z01 = 0;
 let x10, x11, y10, y11, z10, z11 = 0;
 //find which two traces to use (using depth value)
 for (let k = 0; k < data2.length; k++) {
  // console.log(data2[k].y[0][0]);
  if (data2[k].y[0][0] > depth) {
   traceFloor = data2[k-1];
   traceCeiling = data2[k];
   // console.log(traceFloor);
   // console.log(traceCeiling);
   break;
 //find which AMPLITUDES to use
 for (let m = 0; m < traceFloor.z.length; <math>m++) {
  // console.log(traceFloor.z[m], amplitude);
```

40

```
if (traceFloor.z[m][0] < amplitude) {
  console.log(traceFloor.x[m][0], traceFloor.y[m][0], traceFloor.z[m][0]);
  if (traceFloor.x[m][0] == 2.53) {
    console.log("error");
    setIndicator(indicatorElement, "NaN");
    return "error";
  x00 = traceFloor.x[m][0];
  y00 = traceFloor.y[m][0];
  z00 = traceFloor.z[m][0];
  x01 = traceFloor.x[m-1][0];
  y01 = traceFloor.y[m-1][0];
  z01 = traceFloor.z[m-1][0];
  console.log(x00, x01);
  break;
 }
for (let n = 0; n < \text{traceCeiling.z.length}; n++) {
 if (traceCeiling.z[n][0] < amplitude) {
  x10 = traceCeiling.x[n][0];
  y10 = traceCeiling.y[n][0];
  z10 = traceCeiling.z[n][0];
  x11 = traceCeiling.x[n-1][0];
  y11 = traceCeiling.y[n-1][0];
  z11 = traceCeiling.z[n-1][0];
  // console.log(x10, x11);
  break;
 }
}
// console.log(depth, y00, x00, y10, x10, z00, z01, z10, z11);
let dielectricConstant floor = interpolate(depth, y00, x00, y10, x10);
let dielectricConstant ceil = interpolate(depth, y01, x01, y11, x11);
let ampFloor = interpolate(depth, y00, z00, y10, z10);
let ampCeil = interpolate(depth, y01, z01, y11, z11);
// console.log(dielectricConstant floor, dielectricConstant ceil, ampFloor, ampCeil);
```

```
let dielectricConstant = interpolate(amplitude, ampFloor, dielectricConstant floor, ampCeil,
dielectricConstant ceil);
 // console.log(dielectricConstant);
 //interpolate - fix from using average values
 return dielectricConstant.toFixed(2);
}
//returns y-value
function interpolate(x, x0, y0, x1, y1) {
 return (((y0 * (x1 - x)) + (y1 * (x - x0))) / (x1 - x0))
}
// function extrapolate(x, y) {
// let xSum = 0, ySum = 0, xxSum = 0, xySum = 0;
// let count = x.length;
// for (var i = 0; i < count; i++) {
// xSum += x[i];
// ySum += y[i];
// xxSum += x[i] * x[i];
// xySum += x[i] * y[i];
// }
// var slope = (count * xySum - xSum * ySum) / (count * xxSum - xSum * xSum);
// var intercept = (ySum / count) - (slope * xSum) / count;
// var xValues = [];
// var yValues = [];
// for (var j = 0.25; j \le 0.425; j = 0.025) {
// xValues.push(j.toFixed(3));
// yValues.push((j*slope + intercept).toFixed(3));
// }
// console.log(slope, xValues, yValues);
// return [xValues, yValues];
// }
// function extrapolateAmp() {
```

```
// // console.log(extrapolate(DC EXTRAPOLATED[0],
DIELECTRIC CONSTANTS[DIELECTRIC CONSTANTS.length-2], amp3d[i][j-2][0],
DIELECTRIC CONSTANTS[DIELECTRIC CONSTANTS.length-1], amp3d[i][j-2][0]));
// // console.log(extrapolate(DC EXTRAPOLATED[1],
DIELECTRIC CONSTANTS[DIELECTRIC CONSTANTS.length-1], amp3d[i][i-2][0],
DC EXTRAPOLATED[0], amp3d[i][j-2][0]));
// for (let i = 0; i < DC EXTRAPOLATED.length-2; i++) {
//
   let tmp = []
    for (let j = 0; j < DEPTHS.length; j++) {
     let newAmp = extrapolate(DC EXTRAPOLATED[i+2], DC EXTRAPOLATED[i],
amp extrapolated[i][j], DC EXTRAPOLATED[i+1], amp extrapolated[i+1][j]);
     tmp.push(newAmp);
//
     // console.log(newAmp, DC EXTRAPOLATED[i], DC EXTRAPOLATED[i],
amp extrapolated[i+1][j]);
//
   }
//
    amp extrapolated.push(tmp);
// }
// }
function extrapolate(x, x1, y1, x2, y2) {
 return (y1 + (((x - x1) / (x2 - x1)) * (y2 - y1)))
}
function Update3dPlot() {
 var graph3dDiv = document.getElementById('dielectricPlot');
 var depth = +document.getElementById('depthInput').value;
 var amplitude = +document.getElementById('amplitudeInput').value;
 let dielectricConstant = calcDielectric(depth, amplitude);
 // console.log(dielectricConstant);
 if (dielectricConstant != "error") {
  let new3dInput = {
   x: [dielectricConstant],
   y: [depth],
   z: [amplitude],
   mode: 'markers',
   type: 'scatter3d',
```

```
name: 'Input',
   marker: {
     size: 6,
     color: 'rgb(180, 180, 180)',
     line: {
      color: 'rgb(0,0,0)',
      width: 2,
   },
 };
 let vmi = calcVolMoisture(dielectricConstant);
 setIndicator(indicatorElement, vmi);
 new3dData = data2.concat(new3dInput);
// console.log(new3dInput);
 // console.log(new3dData);
 // console.log(layout2);
 Plotly.react(graph3dDiv, new3dData, layout2);
 } else {
  setIndicator(indicatorElement, "NaN");
}
console.log("Creating 3d Plot");
console.log(data2[0]);
Plotly.newPlot('dielectricPlot', data2, layout2);
```

preload.js

```
window.addEventListener('DOMContentLoaded', () => {
  const replaceText = (selector, text) => {
    const element = document.getElementById(selector)
    if (element) element.innerText = text
  }
  for (const type of ['chrome', 'node', 'electron']) {
    replaceText(`${type}-version`, process.versions[type])
  }
})
```

```
forge.config.js
module.exports = {
 packagerConfig: {},
 rebuildConfig: {},
 makers: [
   name: '@electron-forge/maker-squirrel',
   config: {},
  },
   name: '@electron-forge/maker-zip',
   platforms: ['darwin'],
  },
   name: '@electron-forge/maker-deb',
   config: {},
  },
   name: '@electron-forge/maker-rpm',
   config: {},
  },
],
};
```

```
index.html
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Loam: Soil Analysis</title>
  <link rel="stylesheet" href="style.css">
  k rel="stylesheet" href="https://fonts.googleapis.com/css?family=Poppins">
  <script src="plotly-2.14.0.min.js"></script>
  <script src='https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.17/d3.min.js'></script>
</head>
<body>
  <div class="sidebar">
   <div class="sidebar-element">
    <div class="moisture-indicator">
      <div class="indicator-body">
       <div class="indicator-fill"></div>
       <div class="indicator-cover">
        --
       </div>
      </div>
    </div>
   </div>
   <div class="sidebar-element">
    <label for="options">Select a type:</label>
    <select id="options" name="options" onchange="selectVeg(this.value)">
      <option value="soybean" selected>Soybean
      <option value="rice">Rice</option>
      <option value="potato">Potato</option>
    </select>
   </div>
   <div class="sidebar-element">
    <label for="depthInput">Depth (cm):</label>
    <input id="depthInput" placeholder="0 - 8.15">
```

```
</div>
  <div class="sidebar-element">
   <label for="amplitudeInput">Amplitude (dB):</label>
   <input id="amplitudeInput" placeholder="-6.0 - 2.0">
  </div>
  <div class="sidebar-element">
   <input type="button" value="Enter" id="plotBtn">
  </div>
  <div class="sidebar-element">
   </div>
 </div>
 <div class="plot-card">
  <div class="plot-container">
   <div class="plots">
    <div id="ampVsTimePlot"></div>
   </div>
   <div class="plots">
    <div id="dielectricPlot"></div>
   </div>
  </div>
  <br>
  <div style="text-align:center">
   <a class="prev" onclick="changePlot(-1)">&#10094;</a>
   <div class="dot" onclick="currentPlot(1)"></div>
   <div class="dot" onclick="currentPlot(2)"></div>
   <a class="next" onclick="changePlot(1)">&#10095;</a>
  </div>
 </div>
<script src="navigation.js"></script>
<script src="moisture-indicator.js"></script>
```

```
<script src="plot.js"></script>
  <script src="plot3d.js"></script>
   <script src="input_validation.js"></script>
  </body>
</html>
```

```
style.css
* {box-sizing:border-box; font-family: 'Poppins';}
body {
 background-color: #ffffff;
:focus {
  outline-color: #3498db;
}
.input-error{
  outline-color: #fc4349;
}
.sidebar {
 margin: 0;
 padding: 0;
 top: 0;
 left: 0;
 width: 200px;
 background-color: #2c3e50;
 color: #ffffff;
 position: absolute;
 height: 100%;
 overflow: auto;
 float: left
}
.sidebar .sidebar-element {
 display: block;
 padding: 8px;
.plot-card {
 /* display: inline-block;
```

vertical-align: middle; */

padding: 0;

```
margin-left: 245px;
 /* box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2); */
 width: 700px;
 max-width: 1000px;
}
/* Slideshow container */
.plot-container {
 /* max-width: 1000px; */
 position: relative;
 margin: auto;
}
/* Hide the images by default */
.plots {
 /* border: 2px solid black; */
 border-radius: 5px;
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2);
 display: none;
 animation: fadeIn 0.6s;
}
/* Next & previous buttons */
.prev, .next {
 cursor: pointer;
 /* position: absolute */
 padding: 10px;
 margin: 0px 50px;
 color: #2c3e50;
 font-weight: bold;
 font-size: 24px;
 transition: 0.6s ease;
 border-radius: 3px 3px 3px 3px;
 user-select: none;
}
/* .prev {
```

```
right: -10%;
/* Position the "next button" to the right */
/* .next {
 left: -10%;
} */
/* On hover, add a black background color with a little bit see-through */
.prev:hover, .next:hover {
 background-color: rgba(44,62,80,0.5);
 color: white;
}
/* The dots/bullets/indicators */
.dot {
 cursor: pointer;
 height: 15px;
 width: 15px;
 margin: 0 2px;
 background-color: rgba(44,62,80,0.5);
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
}
.active, .dot:hover {
 background-color: rgba(44,62,80,1.0);
.moisture-indicator {
 height: 10em;
 width: 10em;
 color: #004033;
 /* display: inline-block; */
 /* vertical-align: middle; */
```

```
.indicator-body {
  width: 100%;
  height: 100%;
  padding-bottom: 50%;
  background: #ffffff;
  position: relative;
  border-radius: 50%;
  overflow: hidden;
}
.indicator-fill {
  position: absolute;
  left: 0;
  width: inherit;
  height: 100%;
  background: #3498db;
  transform-origin: center bottom;
  transform: translateY(50%);
  transition: transform 0.2s ease-out;
}
.indicator-cover {
  width: 75%;
  height: 75%;
  background-color: #d7dadb;
  position: absolute;
  top: 20%;
  left: 12.5%;
  transform: rotate(45deg);
  border-bottom-right-radius: 60%;
  border-bottom-left-radius: 60% 80%;
  border-top-right-radius: 80% 60%;
  font-size: 32px;
  display: flex;
  align-items: center;
  justify-content: center;
  box-sizing: border-box;
```

```
indicator-cover p {
    transform: rotate(-45deg);
}

#report {
    background-color: #ffffff;
    color: #004033;
    text-align: center;
    border-radius: 5px;
    padding: auto;
}

@keyframes fadeIn {
    0% { opacity: 0; transform: translateX(100%);}
    100% { opacity: 1; transform: translateX(0%);}
}
```