

沈海华

shenhh@ucas.ac.cn

第十二讲 On-Chip Networks II:

On-Chip Networks II: Router Microarchitecture & Routing

Daniel Sanchez
Computer Science & Artificial Intelligence Lab
M.I.T.

Router Microarchitecture

Ring-based Interconnect

Ring Stop

Ring Flow Control: Priorities

Rotary Rule - traffic in ring has priority

Ring Flow Control: Bounces

What if traffic on the ring cannot get delivered, e.g., if output FIFO is full?

One alternative: Continue on ring (bounce)

What are the consequences of such bounces?

Traffic on ring no longer FIFO

General Interconnect Tilera, Knights Landing...

What's In A Router?

It's a system as well

- Logic State machines, Arbiters, Allocators
 - Control data movement through router
 - Idle, Routing, Waiting for resources, Active
- Memory Buffers
 - Store flits before forwarding them
 - SRAMs, registers, processor memory
- Communication Switches
 - Transfer flits from input to output ports
 - Crossbars, multiple crossbars, fully-connected, bus

Virtual-channel Router

传统的5端口虚信道路由器整体结构

五个输入端口:

4个表示东、南、西、北四个方向,与相邻的4个路由器相连

另一个表示本地端口,与处理器核相连。

还包含:

路由计算模块(Routing Computation Unit,简称RC)

虚信道分配器(Virtual Channel Allocator,简称VA)

开关分配器(Switch Allocator,简称SA) 交叉开关(Crossbar)。 五个输出端口类似。

Router Pipeline vs. Processor Pipeline

- Logical stages:
 - BW
 - RC
 - VA
 - SA
 - BR
 - ST
 - LT
- Different flits go through different stages
- Different routers have different variants
 - E.g. speculation, lookaheads, bypassing
- Different implementations of each pipeline stage

- Logical stages:
 - IF
 - ID
 - EX
 - MEM
 - WB
- Different instructions go through different stages
- Different processors have different variants
 - E.g. speculation, ISA
- Different implementations of each pipeline stage

Baseline Router Pipeline

- Route computation performed once per packet
- Virtual channel allocated once per packet
- Body and tail flits inherit this info from head flit

Allocators In Routers

VC Allocator

- Input VCs requesting for a range of output VCs
- Example: A packet of VC0 arrives at East input port. It's destined for west output port, and would like to get any of the VCs of that output port.

Switch Allocator

- Input VCs of an input port request for different output ports (e.g., One's going North, another's going West)
- "Greedy" algorithms used for efficiency
- What happens if allocation fails on a given cycle?

VC & Switch Allocation Stalls

Pipeline Optimizations: Lookahead Routing [Galles, SGI Spider Chip]

 At current router, perform route computation for next router

- Head flit already carries output port for next router
- RC just has to read output → fast, can be overlapped with BW
- Precomputing route allows flits to compete for VCs immediately after BW
- Routing computation for the next hop (NRC) can be computed in parallel with VA

Or simplify RC (e.g., X-Y routing is very fast)

Pipeline Optimizations: Speculative Switch Allocation [Peh&Dally, 2001]

- Assume that Virtual Channel Allocation stage will be successful
 - Valid under low to moderate loads
- If both successful, VA and SA are done in parallel

- If VA unsuccessful (no virtual channel returned)
 - Must repeat VA/SA in next cycle
- Prioritize non-speculative requests

Routing

Properties of Routing Algorithms

Deterministic/Oblivious

- route determined by (source, dest),
- not intermediate state (i.e. traffic)

Adaptive

route influenced by traffic along the way

Minimal

only selects shortest paths

Deadlock-free

no traffic pattern can lead to a situation where no packets move forward

Network Deadlock

- Flow A holds <u>u</u> and <u>v</u> but cannot make progress until it acquires channel <u>w</u>
- Flow B holds channels w and x but cannot make progress until it acquires channel u

Dimension-Order Routing

Uses 2 out of 4 turns

Uses 2 out of 4 turns

XY is deadlock free, YX is deadlock free, what about XY+YX?

DOR – Turns allowed

- One way of looking at whether a routing algorithm is deadlock free is to look at the turns allowed.
- Deadlocks may occur if turns can form a cycle

Allowing more turns

Allowing more turns may allow adaptive routing, but also deadlock

Turn Model [Glass and Ni, 1994]

- A systematic way of generating deadlock-free routes with small number of <u>prohibited turns</u>
- Deadlock-free if routes conform to at least ONE of the turn models (acyclic channel dependence graph)

2-D Mesh and CDG

Can create a channel dependency graph (CDG) of the network.

Disallowing 180° turns, e.g., AB → BA Vertices in the CDG represent network *links*

Cycles in CDG

The channel dependency graph D derived from the network topology may contain many cycles

Flow routed through links AB, BE, EF Flow routed through links EF, FA, AB Deadlock!

Key Insight

If routes of flows conform to acyclic CDG, then there will be no possibility of deadlock!

Disallow/Delete certain edges in CDG

Edges in CDG correspond to turns in network!

Acyclic CDG-> Deadlock-free routes

West-first → Deadlock-free routes

Resource Conflicts -> Deadlock

Routing deadlocks in wormhole routing result from Structural hazard at router resources, e.g., buffers.

How can structural hazards be avoided?

Adding more resources

Virtual Channels

Virtual channels can be used to avoid deadlock by restricting VC allocation

CDG and Virtual Channels

Randomized Routing: Valiant

 Route each packet through a randomly chosen intermediate node

A packet, going from node SA to node DA, is first routed from SA to a randomly chosen intermediate node IA, before going from IA to final destination DA.

It helps load-balance the network and has a good worst-case performance at the expense of <u>locality</u>.

ROMM: Randomized, Oblivious Multi-phase Minimal Routing

To retain locality, choose intermediate node in the minimal quadrant

Equivalent to randomly selecting among the various minimal paths from source to destination

