Mapa logístico

Marcos Benício de A. Alonso

A dinâmica do decaimento nuclear pode ser descrita através do mapa iterativo de primeira ordem $N(t + \Delta t) = N(t)(1 - \alpha \Delta t)$. Ele permite o cálculo do valor futuro N(t+1) a partir do valor atual N(t) da variável dinâmica de interesse. Esse mapa se trata de um mapa da forma $x(t+1) = \lambda x(t)$ onde particularmente tínhamos $\lambda = (1 - \alpha \Delta t)$.

De forma geral, o mapa iterativo de primeira ordem é:

$$x(t+1) = \lambda x(t) (1 - x(t)). {1}$$

Dependendo do valor de λ , temos dois possíveis cenários. Para $\lambda < 1$ temos um decaimento exponencial, sendo o valor futuro x(t+1) < x(t). Por outro lado, para $\lambda > 1$, temos um crescimento exponencial, sendo o valor futuro x(t+1) > x(t). No caso $\lambda > 1$ poderíamos representar o crescimento de uma colônica de bactérias se reproduzindo numa lamina de microscópico. Se contarmos o número N(t) de bactérias num dado instante t, e voltarmos a contar $N(t+\Delta t)$ depois de um intervalo Δt veremos que o valor aumentou. Nesse caso $\Delta N = N(t+\Delta t) - N(t)$ é o número de bactérias que se duplicaram nesse intervalo de tempo. Matematicamente, podemos escrever:

$$\Delta N = \alpha \Delta t N(t).$$

onde α seria um valor constante que depende da capacidade reprodutiva das bactérias. E portanto o mapa iterativo para uma explosão exponencial é:

$$N(t + \Delta t) = N(t)(1 + \alpha \Delta t)$$

Podemos ainda acrescentar mão um termo $-\lambda x^2(t)$, que irá limitar o crescimento incessante do mapa. Sabemos por exemplo que no caso de um crescimento de bactérias existe um limite de crescimento ditado pelo ambiente. Além disso, vamos considerar nas simulações $\Delta t = 1$, e portanto , $\lambda = 1 - \alpha$. O mapa logístico ficará:

$$x(t+1) = \lambda x(t)(1 - x(t))$$

Para tempos longos $(t \to \infty)$ chamarei $x(\infty) = x^*$, que é conhecido na literatura como ponto fixo, sendo ele o valor para o qual o mapa converge. Substituindo $x(\infty) = x^*$ na equação (7) temos duas possíveis soluções para o estado estacionário:

$$x^* = \begin{cases} 0 \\ \frac{\lambda - 1}{\lambda} \end{cases} \tag{2}$$

Para verificar isso, adotarei $\lambda = 1.01$ e x(0) = 0.0001, obtendo por conseguinte o gráfico.

FIG. 1. O gráfico mostra que assim como previsto pela equação (2), ele irá convergir para um valor fixo, sendo ele $x^* = 0.00990$.

Uma outra forma de obter os pontos fixos é a partir de um diagrama de x(t+1) por x(t), plotando os pontos fornecidos pela simulação junto as curvas $f_{\lambda}(x) = \lambda x(1-x)$ e f(x) = x.

FIG. 2. Diagramas para valores de $\lambda>1$ e $\lambda<1.$

Como pode ser visto nos diagramas (3) os pontos fixos estão de acordo com as soluções analítica. Além disso, para $\lambda < 1$, independente do valor inicial x(0) que é escolhido, sempre será observado $x^* = 0$, enquanto que para $\lambda > 1$ temos o caso onde $x^* = \frac{\lambda - 1}{\lambda}$. Em particular, com $0 < \lambda < 3$, os pontos fixos se confundem com os pontos atratores. Para $\lambda > 3$ o resultado é invalido e devemos buscar outra abordagem, pois está fora das previsões analíticas feitas anteriormente, ficando com os seguintes diagramas:

FIG. 3. Diagramas para valores $\lambda > 3.$

No novo método o mapa ao alcançar o suposto estado estacionário x^* não mais convergirá para um único valor, mas oscilará entre dois ou mais valores periodicamente, como ilustra os gráficos (4), (5) e (6). Matematicamente a forma de identificar estes pontos atratores será substituindo o mapa logístico por um mapa composto. No caso de 2 atratores, o mapa composto fica:

$$x(t+1) = f_{\lambda}(f_{\lambda}(x)) = f_{\lambda}^{(2)}(x), \tag{3}$$

 sendo

$$f_{\lambda}(x) = \lambda x(t) \left(1 - x(t) \right) \tag{4}$$

o mapa logístico original. O mesmo pode ser feito no caso em que λ tem mais de dois atratores seguindo a mesma ideia. Das simulações temos para mais de dois pontos atratores:

FIG. 4. O gráfico a esquerda mostra 2 atratores em x^* e o da direita confima isso, sendo plotado $f_{\lambda}^{(2)}(x)$ junto a reta x e verificado que os pontos de interseção nos fornecem os atratores que foram observados. Além dos pontos atratores temos como ponto fixo instável $x^* = 1 - 1/\lambda = 0.711815$ e $x^* = 0$.

FIG. 5. O gráfico a esquerda mostra 4 atratores em x^* e o da direita confirma isso, sendo plotado $f_{\lambda}^{(4)}(x)$ junto a reta x e verificando que os pontos de interseção nos fornece os atratores observados. Além dos pontos atratores temos como ponto fixo instável $x^* = 1 - 1/\lambda = 0.711815$ e $x^* = 0$.

FIG. 6. O gráfico a esquerda mostra 4 atratores em x^* e o da direita confirma isso, sendo plotado $f_{\lambda}^{(8)}(x)$ junto a reta x e verificando que os pontos de interseção nos fornece os atratores observados. Além dos pontos atratores temos o ponto fixo instavel $x^* = 1 - 1/\lambda = 0.711815$ e $x^* = 0$.

Conforme $\lambda \to 1$ mais longas são as iterações para alcançar o valor $x^* = 0$, até que para $\lambda = 1$ a função que descreve o comportamento do mapa não será mais de um decaimento exponencial, e sim um decaimento algébrico. Isso classificará o ponto crítico $\lambda = 1$, como pode ser visto nos gráficos (7)

FIG. 7. Gráficos para ilustrar o caso $\lambda < 1$ a esquerda e $\lambda = 1$ a direita.

Para confirmar os tipos de curvas que descrevem o caso $\lambda < 1$ e $\lambda = 1$ plotarei os gráficos a cima na escala log e log por log respectivamente.

FIG. 8. Gráficos na escala log para $\lambda < 1$ e log por log para $\lambda = 1$ com as devidas retas de ajuste para cada caso.

Para $\lambda=0.9$, fazendo a regressão linear a partir do gráfico, vemos que a reta de ajuste é da forma $\log x=at+b$, sendo a=-0.108406 e b=-2.80324. Exponenciando essa equação obtemos o comportamento da curva sem a necessidade de resolver uma equação diferencial.

$$x \sim e^{-0.11t} \tag{5}$$

Fazendo o mesmo para $\lambda=1$ com a reta de ajuste da forma $\log x=a\log t+b$, sendo a=-0.987588 e b=-0.109602, temos:

$$x \sim t^{-0.99t} \tag{6}$$

Isso significa que o decaimento crítico segue uma lei de potência do tipo $t^{-\alpha}$, sendo $\alpha \approx 1$ a classe de universalidade que esse problema pertence.

I. DIAGRAMA DE BIFURCAÇÕES

FIG. 9. Diagrama dos pontos atratores x^* por λ começando com x(0)=0.20. A simulação para obter esse diagrama foi feita com 1000 iterações para cada λ , com incremento de 10^{-4} partindo de $\lambda=0$ até chegar a $\lambda=4$.

Vamos agora analisar cada um dos cenários desse diagrama. Na região para $0 < \lambda < 1$ o ponto fixo é $x^* = 0$, configurando um estado absorvente do sistema. Em $\lambda = 1$ temos o ponto crítico que separa duas fases diferentes, fase onde temos apenas estado absorvente ($x^* = 0$) e a fase onde temos estado ativo ($x^* > 0$). Para $1 < \lambda < 3$, o ponto fixo assume valores da forma $x^* = 1 - \frac{1}{\lambda}$. Em $\lambda > 3$ nenhum ponto fixo é estável, podendo assumir dois ou mais valores. E por fim, para $3.5699 < \lambda < 4$ temos o chamado caos, com a janela de zoom mostrando um comportamentos periódicos dentro do caos.