What is an "Algebra"

- Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a query language for relations.

Core Relational Algebra

- Union, intersection, and difference.
 - Usual set operations, but both operands must have the same relation schema.
- Selection: picking certain rows.
- Projection: picking certain columns.
- Products and joins: compositions of relations.
- Renaming of relations and attributes.

Selection

- $ightharpoonup R1 := \sigma_c(R2)$
 - C is a condition (as in "if" statements) that refers to attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

Example: Selection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

JoeMenu := $\sigma_{bar="Joe's"}(Sells)$:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75

Projection

- $ightharpoonup R1 := \pi_{L}(R2)$
 - L is a list of attributes from the schema of R2.
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list *L*, in the order specified, and creating from those components a tuple for R1.
 - Eliminate duplicate tuples, if any.

Example: Projection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Prices := $\Pi_{beer,price}$ (Sells):

beer	price
Bud	2.50
Miller	2.75
Miller	3.00

Extended Projection

- Using the same π_L operator, we allow the list L to contain arbitrary expressions involving attributes:
 - 1. Arithmetic on attributes, e.g., A+B->C.
 - 2. Duplicate occurrences of the same attribute.

Example: Extended Projection

$$R = \begin{pmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\pi_{A+B->C,A,A}(R) =$$

O	A1	A2
3	1	1
7	3	3

Product

- ◆R3 := R1 X R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2.
 - Concatenation t1t2 is a tuple of R3.
 - Schema of R3 is the attributes of R1 and then R2, in order.
 - But beware attribute A of the same name in R1 and R2: use R1.A and R2.A.

Example: R3 := R1 X R2

R1(Α,	В)
	1	2	
	3	4	

R2(В,	C	
	5	6	
	7	8	
	9	10	

R3(Α,	R1.B,	R2.B	, C
	1	2	5	6
	1	2	7	8
	1	2	9	10
	3	4	5	6
	3	4	7	8
	3	4	9	10

Theta-Join

- $R3 := R1 \bowtie_C R2$
 - Take the product R1 X R2.
 - Then apply σ_c to the result.
- As for σ, C can be any boolean-valued condition.
 - Historic versions of this operator allowed only A θ B, where θ is =, <, etc.; hence the name "theta-join."

Example: Theta Join

Sells(bar,	beer,	price
	Joe's	Bud	2.50
	Joe's	Miller	2.75
	Sue's	Bud	2.50
	Sue's	Coors	3.00

Bars(name, addr Joe's Maple St. Sue's River Rd.

BarInfo := Sells ⋈_{Sells.bar = Bars.name} Bars

BarInfo(

bar,	beer,	price,	name,	addr
Joe's	Bud	2.50	Joe's	Maple St.
Joe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

Natural Join

- A useful join variant (*natural* join) connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- \bullet Denoted R3 := R1 \bowtie R2.

Example: Natural Join

Sells(bar,	beer,	price)
	Joe's	Bud	2.50	
	Joe's	Miller	2.75	
	Sue's	Bud	2.50	
	Sue's	Coors	3.00	

Bars(bar,	addr)
	Joe's	Maple St.	
	Sue's	River Rd.	

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural join "work."

BarInfo(

bar,	beer,	price,	addr
Joe's	Bud	2.50	Maple St.
Joe's	Milller	2.75	Maple St.
Sue's	Bud	2.50	River Rd.
Sue's	Coors	3.00	River Rd.

Renaming

- The ρ operator gives a new schema to a relation.
- •R1 := $\rho_{R1(A1,...,An)}(R2)$ makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- Simplified notation: R1(A1,...,An) := R2.

Example: Renaming

```
Bars( name, addr Joe's Maple St. Sue's River Rd.
```

R(bar, addr) := Bars

R(bar, addr Joe's Maple St. Sue's River Rd.

Building Complex Expressions

- Combine operators with parentheses and precedence rules.
- Three notations, just as in arithmetic:
 - 1. Sequences of assignment statements.
 - 2. Expressions with several operators.
 - 3. Expression trees.

Sequences of Assignments

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- ◆Example: R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written:

R4 := R1 X R2

R3 := $\sigma_{c}(R4)$

Expressions in a Single Assignment

- Example: the theta-join R3 := R1 $\bowtie_{\mathcal{C}}$ R2 can be written: R3 := $\sigma_{\mathcal{C}}$ (R1 X R2)
- Precedence of relational operators:
 - 1. $[\sigma, \pi, \rho]$ (highest).
 - $2. [X, \bowtie].$
 - **3.** ∩.
 - **4.** [∪, —]

Expression Trees

- Leaves are operands --- either variables standing for relations or particular, constant relations.
- Interior nodes are operators, applied to their child or children.

Example: Tree for a Query

Using the relations Bars(name, addr) and Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

As a Tree:

