```
1 ! pip install missingno

1 # Filtering over Dataset
2
3 from google.colab import data_table
4 data_table.enable_dataframe_formatter()
```

▼ Libraries

```
1 import numpy as np
 2 import pandas as pd
3 import matplotlib.pyplot as plt
4 %matplotlib inline
 5 import seaborn as sns
 6 import missingno as msno
 7 import plotly.express as px
8 import gc
9 from sklearn import preprocessing as pr
{\tt 10 from \ sklearn.model\_selection \ import \ train\_test\_split, \ KFold \ , \ cross\_val\_score \ , \ GridSearchCV}
11 from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
12 import sklearn.metrics as mt
{\tt 13 \ from \ sklearn.ensemble \ import \ Bagging Regressor, \ Random Forest Regressor}
14 from sklearn.svm import SVR
15 from sklearn.tree import DecisionTreeRegressor
17 sns.set_style("whitegrid")
18 plt.style.use("fivethirtyeight")
19
```

▼ Reading XLSX

```
1 data= pd.read_excel('data.xlsx')
2 #data= pd.read_csv('data_Rest.csv')
3 df=data.copy()
4 df.head(5)
```

							1 to 5	of 5 entries	Filter	?
index	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	-
0	7402935	Skye	94	Jakarta	Menara BCA, Lantai 56, Jl. MH. Thamrin, Thamrin, Jakarta	Grand Indonesia Mall, Thamrin	Grand Indonesia Mall, Thamrin, Jakarta	106.821999	-6.196778	lt: C
1	7410290	Satoo - Hotel Shangri-La	94	Jakarta	Hotel Shangri-La, Jl. Jend. Sudirman	Hotel Shangri-La, Sudirman	Hotel Shangri-La, Sudirman, Jakarta	106.8189611	-6.203291667	A In W
2	7420899	Sushi Masa	94	Jakarta	Jl. Tuna Raya No. 5, Penjaringan	Penjaringan	Penjaringan, Jakarta	106.800144	-6.101298	S Ji
3	7421967	3 Wise Monkeys	94	Jakarta	Jl. Suryo No. 26, Senopati, Jakarta	Senopati	Senopati, Jakarta	106.8134001	-6.235241091	Jŧ
4	7422489	Avec Moi Restaurant and Bar	94	Jakarta	Gedung PIC, JI. Teluk Betung 43, Thamrin, Jakarta	Thamrin	Thamrin, Jakarta	106.821023	-6.19627	F

▼ Exploring Dataset

```
1 df.shape
(9551, 15)
```

1 df.columns

```
'Aggregate rating', 'Rating color', 'Rating text', 'Votes'],
        dtype='object')
1 df.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 9551 entries, 0 to 9550
   Data columns (total 15 columns):
                      Non-Null Count Dtype
   # Column
       Restaurant
                       9550 non-null
                                     object
                       9551 non-null
       Country Code
                                     int64
    1
       City
                       9551 non-null
                                     object
       Longitude
                       9551 non-null
                                     float64
                       9551 non-null
       Latitude
                                     float64
                       9542 non-null
       Cuisines
                                     object
    6
       Cost
                       9551 non-null
                                     int64
                       9551 non-null
       Currency
                                     object
       Booking
                       9551 non-null
    8
                                     object
                       9551 non-null
       Delivery
                                     object
    10 Price range
                       9551 non-null
    11 Aggregate rating 9551 non-null
                                     float64
                       9551 non-null
                                     object
    12 Rating color
    13 Rating text
                       9551 non-null
                                     object
   14 Votes
                       9551 non-null
                                     int64
   dtypes: float64(3), int64(4), object(8)
   memory usage: 1.1+ MB
```

Renaming some Columns

▼ ---> Categorical variables

▼ Finding duplicate Row(s)

No duplicated row(s)

Missing Values

```
1 msno.bar(df, color='black')
```



```
1 # Percentage of missing values and the number of Missing Values
2 missingvalue=df.isnull().sum()
3 perc_missingvalue=df.isnull().sum()*100/len(df)
4 perc_missing_df = pd.DataFrame({'Variables': df.columns, 'MissingValues' :missingvalue ,'Percentage_Missing': perc_missingvalue })
5 perc_mising_df.sort_values('Percentage_Missing', ascending=False, inplace=True)
6 display(perc_mising_df)
7
8 print('the number of RESTAURANT missing Values :', df['Restaurant'].isnull().sum(),' and its missing value percentage: %', df['Restaurant'].isnull().sum(),' and its missing value percentage: %', df['Cuisines'].isnull().sum(),' and its missing value percentage: %', df['Cuisines'].isnull().sum(),' and its missing value percentage: %'', df['Cuisines'].isnull().sum(),'' and its missing value percentage: %'', df['Cuisines'].isnull().
```

			1 to 19 of 19 entries Filter 🔲 🔞
index	Variables	MissingValues	Percentage_Missing
Cuisines	Cuisines	9	0.09423097057899696
Restaurant	Restaurant	1	0.010470107842110775
Cost	Cost	0	0.0
Rating text	Rating text	0	0.0
Rating color	Rating color	0	0.0
Aggregate rating	Aggregate rating	0	0.0
Price range	Price range	0	0.0
Delivery	Delivery	0	0.0
Booking	Booking	0	0.0
Currency	Currency	0	0.0
Restaurant ID	Restaurant ID	0	0.0
Latitude	Latitude	0	0.0
Longitude	Longitude	0	0.0
Locality Verbose	Locality Verbose	0	0.0
Locality	Locality	0	0.0
Address	Address	0	0.0
City	City	0	0.0
Country Code	Country Code	0	0.0
Votes	Votes	0	0.0

Show 25 ✔ per page

the number of RESTAURANT missing Values : 1 and its missing value percentage : % 0.010470107842110775 the number of CUISINES missing Values : 9 and its missing value percentage : % 0.09423097057899696

▼ Drop the following columns in first step

▼ Descibing The Dataset

1 df.describe().T

1 to 7 of 7 entries	Filter	□ (
		_ `

index	count	mean	std	min	25%	50%	75%	max
Country Code	9551.0	18.365616165846507	56.75054560094657	1.0	1.0	1.0	1.0	216.0
Longitude	9551.0	64.12657446168704	41.46705784761728	-157.948486	77.08134305	77.1919642	77.2820063	174.8320893
Latitude	9551.0	25.854380700074756	11.007935124784668	-41.330428	28.4787126	28.57046888	28.6427582	55.97698
Cost	9551.0	1199.2107632708617	16121.183073499647	0.0	250.0	400.0	700.0	800000.0
Price range	9551.0	1.804837189823055	0.9056088473976142	1.0	1.0	2.0	2.0	4.0
Aggregate rating	9551.0	2.6663700136111403	1.5163775396521326	0.0	2.5	3.2	3.7	4.9
Votes	9551.0	156.909747670401	430.1691453762912	0.0	5.0	31.0	131.0	10934.0

Checking Values in Columns


```
1 display(df['Country Code'].unique())
   1 data_country= pd.read_excel('Country-Code.xlsx')
2 df_country=data_country.copy()
3 display(df_country.head())
```

		1 to 5 of 5 entries Filter 🔲 🔞
index	Country Code	Country
0	1	India
1	14	Australia
2	30	Brazil
3	37	Canada
4	94	Indonesia

Show 25 ✔ per page

- 1 df=pd.merge(df,df_country, on='Country Code', how='left') 2 df

		_
ies	Filter	\mathcal{C}

index	Restaurant	Country Code	City	Longitude	Latitude	Cuisines	Cost	Currency	Booking	Delivery	Price rang
0	Skye	94	Jakarta	106.821999	-6.196778	Italian, Continental	800000	Indonesian Rupiah(IDR)	No	No	
1	Satoo - Hotel Shangri-La	94	Jakarta	106.8189611	-6.203291667	Asian, Indonesian, Western	800000	Indonesian Rupiah(IDR)	No	No	
2	Sushi Masa	94	Jakarta	106.800144	-6.101298	Sushi, Japanese	500000	Indonesian Rupiah(IDR)	No	No	
3	3 Wise Monkeys	94	Jakarta	106.8134001	-6.235241091	Japanese	450000	Indonesian Rupiah(IDR)	No	No	
4	Avec Moi Restaurant and Bar	94	Jakarta	106.821023	-6.19627	French, Western	350000	Indonesian Rupiah(IDR)	No	No	
5	Lucky Cat Coffee & Kitchen	94	Jakarta	106.8317481	-6.218932479	Cafe, Western	300000	Indonesian Rupiah(IDR)	No	No	
6	Onokabe	94	Tangerang	106.652688	-6.241792	Indonesian	300000	Indonesian Rupiah(IDR)	No	No	
7	Lemongrass	94	Bogor	106.8078499	-6.576578026	Peranakan, Indonesian	250000	Indonesian Rupiah(IDR)	No	No	
8	MONKS	94	Jakarta	106.9113346	-6.163947933	Western, Asian, Cafe	250000	Indonesian Rupiah(IDR)	No	No	
9	Talaga Sampireun	94	Jakarta	106.7285083	-6.168466667	Sunda, Indonesian	200000	Indonesian Rupiah(IDR)	No	No	
10	OJJU	94	Jakarta	106.783162	-6.244221	Korean	200000	Indonesian Rupiah(IDR)	No	No	
11	Union Deli	94	Jakarta	106.8197488	-6.197150016	Desserts, Bakery, Western	200000	Indonesian Rupiah(IDR)	No	No	
12	Zenbu	94	Jakarta	106.8425	-6.224333333	Japanese, Sushi, Ramen	200000	Indonesian Rupiah(IDR)	No	No	
13	Talaga Sampireun	94	Jakarta	106.8335532	-6.12685982	Sunda, Indonesian	200000	Indonesian Rupiah(IDR)	No	No	
14	Talaga Sampireun	94	Tangerang	106.7261194	-6.269913889	Sunda, Indonesian	200000	Indonesian Rupiah(IDR)	No	No	
						Cafe,					

▼ To check Data Types

Western,

1 df.dtypes

Restaurant object int64 Country Code City Longitude object float64 Latitude float64 Cuisines object int64 object Cost Currency Booking object Delivery Price range object int64 Aggregate rating float64 Rating color Rating text object object Votes int64 Country object dtype: object

→ -- Country ---

Rukhara -North Indian

Japanese.

1 df['Country'].value_counts()

IIaII - ASIaII

India	8652
United States	434
United Kingdom	80
South Africa	60
UAE	60
Brazil	60
New Zealand	40
Turkey	34
Australia	24
Phillipines	22

```
Indonesia
                      21
   Sri Lanka
                      20
   Qatar
                      20
   Singapore
                      20
   Canada
                       4
   Name: Country, dtype: int64
1 from locale import normalize
2 country_names=df['Country'].value_counts().index
3 country_names
   1 country_values=df['Country'].value_counts().values
2 country_values
   array([8652, 434, 80, 60,
                                 60, 60,
                                             40,
                                                 34, 24, 22, 21,
            20,
                20,
                      20,
                            4])
1 #Pie Chart (Top 3 countries )
2 plt.figure(figsize=(10, 6))
4 colors = ['#DEDFD8', '#EB6F42', '#2E5F2B']
5 plt.pie(country_values[:3], labels=country_names[:3], autopct="%1.1f%%",labeldistance=1.15, wedgeprops = { 'linewidth' : 1, 'edgecolor' : 'gray' }, colo
```



```
1 colors = sns.color_palette('pastel')[0:10]
2 plt.figure(figsize=(14, 8))
3 sns.barplot(x=country_names, y=country_values, data=df);
```

→ -- Rating ---

Lets see the intervals of the Rating and the meaning of Rating Color and Rating Text

```
1 Rating1=df[['Aggregate rating','Rating color','Rating text','Votes']]
2 print(Rating1['Rating color'].value_counts())
3 display(Rating1['Rating color'].value_counts(normalize)) # Percentage
    Orange
                   3737
    White
                   2148
    Yellow
                   2100
    Green
                   1079
    Dark Green
                    301
    Red
                    186
    Name: Rating color, dtype: int64
    Orange
                   0.391268
                   0.224898
    White
                   0.219872
    Yellow
    Green
                   0.112972
    Dark Green
                   0.031515
    Red
                   0.019474
    Name: Rating color, dtype: float64
1 result_rating=Rating1.groupby('Rating color')['Aggregate rating', 'Rating text'].aggregate(['min','max'])
2 result_rating
    <ipython-input-36-4c111074d48e>:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tupl
      result_rating=Rating1.groupby('Rating color')['Aggregate rating', 'Rating text'].aggregate(['min','max'])
                    Aggregate rating Rating text
                   min
                             max
                                      min
                                                 max
     Rating color
      Dark Green
                        4.5
                                        Excellent
                                                   Excellent
                                  4.9
        Green
                        4.0
                                  4.4 Very Good Very Good
        Orange
                        2.5
                                  3.4
                                        Average
                                                   Average
                                                      Poor
         Red
                        1.8
                                  2.4
                                           Poor
         White
                        0.0
                                  0.0
                                        Not rated
                                                   Not rated
        Yellow
                        3.5
                                  3.9
                                           Good
                                                      Good
```

¹ Rating2 =df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0:"Rating Count"})

² Rating2

274

i	index	Aggregate rating	Rating color	Rating text	Rating Count
	0	0.0	White	Not rated	2148
	1	1.8	Red	Poor	1
	2	1.9	Red	Poor	2
	3	2.0	Red	Poor	7

Observation:

- · Rating Rates:
- 2.0 2.4 --> Poor (White)
- 2.5 2.9 --> Average (Red)
- 3.0 3.4 --> Average (Orange)
- 3.5 3.9 --> Good (Yellow)
- 4.0 4.4 --- > Very Good (Green)
- 4.5 4.9 --- Excellent (Dark Green)

Zero rating has been given by many of the people has not rated

18	3.5 Yellow	G000	480
Double-click (or enter) to	o edit		
24	3.9 Vollow	Good	400

Rating Count vs Rating Color

24

1 plt.figure(figsize=(10, 8))
2 plt.title("Rating Count vs Rating Color ")
3 sns.barplot(data=Rating2, x='Aggregate rating', y='Rating Count', hue='Rating color', palette=['#DEDFD8', '#AB3C3C', '#EB6F42', '#EB6F42', '#23B51B', '#.

Verv Good

4.1 Green

- 1. NOT RATED (Gray Bar) count is very high
- 2. Maximum number of Rating is 3.2

```
1 # Count Plot
```

² plt.figure(figsize=(10, 8))

³ plt.title("Rating Count vs Rating Color ")

⁴ sns.countplot(data=Rating2, x='Rating color', palette=['#DEDFD8', '#AB3C3C', '#EB6F42', '#EBBF3D', '#23B51B', '#2E5F2B']);

▼ Resturants with rating

```
1 Rest_rating = {}
2 Rest_rating['0 to 2'] = df[df['Aggregate rating'] < 2 ].shape[0]
3 Rest_rating['2 to 3'] = df[(df['Aggregate rating'] < 3) & (df['Aggregate rating'] > 2) ].shape[0]
4 Rest_rating['3 to 4'] = df[(df['Aggregate rating'] < 4) & (df['Aggregate rating'] > 3) ].shape[0]
5 Rest_rating['4 to 5'] = df[(df['Aggregate rating'] < 5) & (df['Aggregate rating'] > 4) ].shape[0]

1 colors = sns.color_palette('pastel')[0:4]
2 plt.pie(Rest_rating.values(),labels =Rest_rating.keys(),colors=colors,autopct = '%.f%%')
3 plt.show()
```


▶ How could Delivery affect to Rating?

```
[ ] L, 1 cell hidden
```

▼ Find the countries name that has given 0(ZERO) rating

```
1 Rate0_countries=df[df['Rating color']=='White'].groupby('Country').size().reset_index().rename(columns={0:"Not Rating Count"})
2 Rate0_countries
3
4
5 #df.groupby(['Aggregate rating', 'Country']).size().reset_index().rename(columns={0:"Zero Rating Count"})
```

- Observation: Maximum number of 0 zero ratings are from India.
- Plan: We have big quantity of ZERO outliers. It is not good idea to drop the. Better to fill with the median of each 'Country'

o unitieu otates

--- Table Booking ---

[] L, 2 cells hidden

▼ How does delivery affect the Rating?

```
1 df.groupby(["Delivery",'Rating text'])['Delivery'].count()
```

Delive	ery Rating text	
No	Average	2632
	Excellent	262
	Good	1282
	Not rated	2052
	Poor	70
	Very Good	802
Yes	Average	1105
	Excellent	39
	Good	818
	Not rated	96
	Poor	116
	Very Good	277
Namo ·	Dolivony dtypo:	in+61

Name: Delivery, dtype: int64

The Restaurant that has NO delivery are rated with AVERAGE or NOT RATED. The Restaurant that has delivery are more than NO-Delivery Restaurant. But Rating is mostly 'AVERAGE'

▼ How does VOTED DELIVERY affect RATING?

```
1 colors = sns.color_palette('pastel')[0:4]
2 sns.barplot(x='Delivery', y='Votes', hue='Rating text',data=df,palette=['#2E5F2B', '#23B51B', '#EBBF3D', '#AB3C3C','#EB6F42','#DEDFD8']);
```


Deliveries that are NOT VOTED has NOT RATED either.

```
1 plt.figure(figsize=(9,7))
2
3 sns.distplot(df['Aggregate rating'],bins=20);
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecat warnings.warn(msg, FutureWarning)

▼ What is the ratio between restaurants that allow table booking vs that do not allow table booking?

```
1 booking_values=df["Booking"].value_counts().values
2 booking_names=df["Booking"].value_counts().index
3
4 colors = sns.color_palette('pastel')[0:2]
5 plt.figure(figsize=(12, 6))
6 plt.title('Table Booking Ratio')
7 plt.pie(booking_values, labels = booking_names, colors = colors, autopct="%1.1f%%")
8 plt.show()
```


▼ Resturants are having both Online Delivery and Table Booking

```
1 colors = sns.color_palette('pastel')[0:2]
2 delivery_booking = df.query('Delivery=="Yes" & Booking == "Yes"')
3 print('Number of Resturant having both online Delivery and Table Booking is',delivery_booking.shape[0])
4 plt.pie([delivery_booking.shape[0],df.shape[0]-delivery_booking.shape[0]],labels=['Yes','No'],autopct='%.0f%%', colors=colors)
5 plt.show()
```

Number of Resturant having both online Delivery and Table Booking is 435

→ -- Currency ---

1 df['Currency']=df['Currency'].replace({'Dollar(\$)':'Dollar','Pounds(å£)':'Pounds','Brazilian Real(R\$)':'Brazilian Real','NewZealand(\$)':'NewZealand Dol

▼ Which country uses which currency???

```
1 CurrencyCountry = df.groupby(['Currency', 'Country']).size().reset_index().rename(columns={0:"Currency Count"})
2 CurrencyCountry
```

			1 to 15 of 15 entries Filter
index	Currency	Country	Currency Count
0	Botswana Pula(P)	Phillipines	22
1	Brazilian Real	Brazil	60
2	Dollar	Australia	24
3	Dollar	Canada	4
4	Dollar	Singapore	20
5	Dollar	United States	434
6	Emirati Diram(AED)	UAE	60
7	Indian Rupees(Rs.)	India	8652
8	Indonesian Rupiah(IDR)	Indonesia	21
9	NewZealand Dollar	New Zealand	40
10	Pounds	United Kingdom	80
11	Qatari Rial(QR)	Qatar	20
12	Rand(R)	South Africa	60
13	Sri Lankan Rupee(LKR)	Sri Lanka	20
14	Turkish Lira(TL)	Turkey	34

Show 25 ➤ per page

▼ Converting all Currencies to Indian Rupee and Creation New 'Cost' Column

```
1 plt.figure(figsize=(9,7))
2
3 sns.distplot(df['Cost'],bins=20);
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecat warnings.warn(msg, FutureWarning)

1 sns.boxplot(data=df, x='Aggregate rating')

▼ Rating VS Cost of dinning

```
1 colors = sns.color_palette('pastel')[0:4]
2 plt.figure(figsize=(12,6))
3 #sns.scatterplot(x="Cost", y="Aggregate rating", hue='Price range', data=df, palette=colors)
4 sns.scatterplot(y="Cost", x="Aggregate rating", hue='Price range', data=df, palette=colors)
5
```



```
1 colors = sns.color_palette('pastel')[3]
2 sns.distplot(df['Cost'], color=colors)
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use ei

-- Deliveries --

▼ Which country has online deliveries?

1 df.groupby(['Delivery']).size().reset_index().rename(columns={0:"Delivery Count"})

		1 to 2 of 2 entries Filter
index	Delivery	Delivery Count
0	No	7100
1	Yes	2451

```
Show 25 ✔ per page
```

```
1 #Pie Chart (Top 3 countries )
2
3 plt.figure(figsize=(12, 6))
4 colors = sns.color_palette('pastel')[0:3]
5 plt.pie(country_values[:3], labels=country_names[:3], autopct="%1.1f%%",labeldistance=1.15, wedgeprops = { 'linewidth' : 1, 'edgecolor' : 'gray' }, col
6
```


▼ What is the percentage of restaurants providing online delivery?

```
1 delivery_values=df['Delivery'].value_counts().values
2 delivery_names=df['Delivery'].value_counts().index
3
4 colors = sns.color_palette('pastel')[0:2]
5 plt.figure(figsize=(12, 6))
6 plt.title ('Online Delivery Ratio')
7 plt.pie(delivery_values, labels = delivery_names, colors = colors, autopct='%.0f%%')
8 plt.show()
```


India 2423 UAE 28

Name: Country, dtype: int64

1 # All deliveries

2 df[['Delivery','Country']].groupby(['Delivery','Country']).size().reset_index().rename(columns={0:"Currency Count"})

			1 to 17 of 17 entries Filter 🔲 😲			
index	Delivery	Country	Currency Count			
0	No	Australia	24			
1	No	Brazil	60			
2	No	Canada	4			
3	No	India	6229			
4	No	Indonesia	21			
5	No	New Zealand	40			
6	No	Phillipines	22			
7	No	20				
8	No	Singapore	20			
9	No	South Africa	60			
10	No	Sri Lanka	20			
11	No	Turkey	34			
12	No	32				
13	No	No United Kingdom				
14	No	United States	434			
15	Yes India					
16	Yes	UAE	28			

Show 25 ✔ per page

• Observation: Online Deliveries are mostly available in UAE and India

1 plt.figure(figsize=(12, 6))

2 sns.boxplot(x='Delivery', y='Cost' ,hue='Country', data=df, palette="Paired");

- -- Cities --

- $1 \ \text{city_number=df[['Country']].groupby(['Country']).size().reset_index().rename(columns=\{0:"City_Country'\}) }$
- 2 city_number

	1 to 15 of 15 entries Filter						
index	Country	City Count					
0	Australia	24					
1	Brazil	60					
2	Canada	4					
3	India	8652					
4	Indonesia	21					
5	New Zealand	40					
6	Phillipines	22					
7	Qatar	20					

• Observation: 8652 of 9551 restaurants in cities are from Indian Cities

▼ Top 5 cities in this dataset

```
1 City_values=df['City'].value_counts().values
2 City_names=df['City'].value_counts().index
3
4 # Create a Pie Chart for cities distribution
5 #Pie Chart (Top 5 cities that uses Zomato )
6 plt.figure(figsize=(8, 6))
7
8 # Create a set of colors
9 colors = ['#D6E681', '#BABF95', '#C4AD83', '#C6B677', '#912F0B']
10 plt.pie(City_values[:5], labels=City_names[:5], autopct="%1.1f%%",labeldistance=1.15, wedgeprops = { 'linewidth' : 1, 'edgecolor' : 'gray' }, colors=colors
```


▼ Top 5 indian Cities locations

```
1 Indian_Cities=df[df['Country']=='India']
2 Indian_Cities_Count= Indian_Cities['City'].value_counts().head(5)
3 Indian_Cities_Count
    New Delhi
                  5473
    Gurgaon
                   1118
    Noida
                  1080
    Faridabad
                   251
    Ghaziabad
                    25
    Name: City, dtype: int64
1 plt.pie (Indian_Cities_Count.values[:5],
     labels=Indian_Cities_Count.index[:5],
      autopct="%1.1f%%",
3
      colors=['#D6E681', '#BABF95', '#C4AD83', '#C6B677', '#E49D19', '#912F0B']);
```


• Observation: Indian cities are the top cities as like Top Cities in this Dataset too

ranuabau

→ --- Cuisines ---

```
1 #Helps in finding the popular cuisines
2 df.Cuisines.value_counts().head(10)
                                         936
    North Indian
    North Indian, Chinese
                                         511
    Fast Food
                                         354
    Chinese
                                         354
    North Indian, Mughlai
                                         334
    Cafe
                                         299
    Bakery
                                         218
    North Indian, Mughlai, Chinese
                                         197
    Bakery, Desserts
                                         170
    Street Food
                                         149
    Name: Cuisines, dtype: int64
1 # Find the index number of Null Values
2 print('Index Number of Null Value in Cuisines : ',df[df['Cuisines'].isnull()].index.tolist())
4 df.iloc[[9083, 9086, 9094, 9406, 9494, 9504, 9533, 9535, 9539]]
```

Index Number of Null Value in Cuisines : [9083, 9086, 9094, 9406, 9494, 9504, 9533, 9535, 9539]

									1 to 9	of 9 entri	es Filter	?
index	Restaurant	Country Code	City	Longitude	Latitude	Cuisines	Cost	Currency	Booking	Delivery	Price range	Aggre
9083	Corkscrew Cafe	216	Gainesville	-83.9858	34.5318	NaN	40	Dollar	No	No	3	
9086	Dovetail	216	Macon	-83.627979	32.83641	NaN	40	Dollar	No	No	3	
9094	Hillstone	216	Orlando	-81.36526	28.596682	NaN	40	Dollar	No	No	3	
9406	Jimmie's Hot Dogs	216	Albany	-84.1534	31.5751	NaN	10	Dollar	No	No	1	
9494	Leonard's Bakery	216	Rest of Hawaii	-157.813432	21.284586	NaN	10	Dollar	No	No	1	
9504	Tybee Island Social Club	216	Savannah	-80.848297	31.99581	NaN	10	Dollar	No	No	1	
9533	Cookie Shoppe	216	Albany	-84.154	31.5772	NaN	0	Dollar	No	No	1	
9535	Pearly's Famous Country Cookng	216	Albany	-84.1759	31.5882	NaN	0	Dollar	No	No	1	
9539	HI Lite Bar	216	Miller	-98 9891	44 5158	NaN	n	Dollar	No	Νο	1	

All of Null Values located in USA And Filling the Nan Values with MODE

```
1 from typing import ValuesView
2 #Imputing the null values with the Mode in "no_of_cusisnes"
4 USA_Cities=df[df['Country']=='United States']
5 display(USA_Cities['Cuisines'].value_counts())
6 df['Cuisines'] = df['Cuisines'].fillna(USA_Cities['Cuisines'].mode()[0])
                                       25
    Mexican
    American
                                       16
    BBQ
                                        9
    Chinese
                                        9
    Italian
                                        8
    Pizza, Bar Food, Sandwich
    Chinese, Seafood, Vegetarian
                                        1
    American, Steak
                                        1
    Asian, Japanese, Sushi
                                        1
    Desserts, Pizza, Ice Cream
    Name: Cuisines, Length: 229, dtype: int64
```

```
1 df['Cuisines'].isnull().sum()
    0
1 df["Total_Cuisines"]=df.apply((lambda x: len(x["Cuisines"].split(','))),axis=1)
2 df["Total_Cuisines"]
    0
             2
    1
             3
    2
             2
    3
             1
    4
             2
            ..
    9546
    9547
             3
    9548
             6
    9549
             1
    9550
    Name: Total_Cuisines, Length: 9551, dtype: int64
```

→ --- Price Range ---

```
1 plt.figure(figsize=(6,4),dpi=100)
2 df.groupby(['Country']).mean()['Price range'].sort_values().plot(kind='bar',figsize=(10,6), color=['#D6E681', '#BABF95', '#C4AD83', '#C6B677', '#E49D19']
3 plt.xlabel('Countries', color='Gray')
4 plt.ylabel('Price Range', color='Gray')
5 plt.title('Price Range interval in Countries', color='#E49D19')
```


¹ sns.barplot(x='Price range',y='Cost',palette="coolwarm",data=df)
2 plt.show()

```
7000
6000
5000
4000
3000
2000
```

```
1 plt.figure(figsize=(6,4),dpi=100)
```

3 table=pd.crosstab(df["Aggregate rating"],df["Price range"])

4 table.div(table.sum(1).astype(float),axis=0).plot(kind='bar',stacked=True,color=['#D6E681', '#BABF95', '#C4AD83', '#C6B677', '#E49D19', '#DBB957', '#91

<Figure size 600x400 with 0 Axes>

→ -- Votes ---

```
1 df['Votes'].unique()
    array([1498, 873, 605, ..., 880, 680, 1868])

1 plt.figure(figsize=(6,4),dpi=100)
2 df.groupby(['Country']).mean()['Votes'].sort_values().plot(kind='bar',figsize=(10,6), color=['#D6E681', '#BABF95', '#C4AD83', '#C6B677', '#E49D19', '#E 3 plt.xlabel('Votes', color='Gray')
4 plt.ylabel('Country', color='Gray')
5 plt.title('Votes by Countries', color='#AB3C3C')
```


 $^{{\}tt 1 sns.barplot(x="Country",y="Votes",hue="Booking",palette="bone",data=df)}\\$

⁴ plt.show()

▼ Pivot Table Delivery vs Booking ???

```
1 pd.crosstab(df['Delivery'],df['Aggregate rating'])
2 #pd.crosstab(df['Rating text'], df['Delivery'])

Warning: Total number of columns (33) exceeds max_columns (20). Falling back to pandas display.

Aggregate rating
0.0 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 ... 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4

Delivery

No 2052 0 1 2 4 7 14 42 42 87 ... 188 208 158 135 113 79 67 35 24
```

16

20 33 45

2 rows × 33 columns

▼ How does Booking affect Votes upon Rating?

96

1 sns.barplot(x='Rating text', y='Votes', hue='Booking',data=df);

В

² fig2 = plt.gcf()

³ fig2.set_size_inches(14,6)

Table-Booking-Restaurants have rated and voted more than No-Booking-Restaurants.

→ -- Restaurants ---

```
1 print('Index Number of Null Value in Restaurant : ',df[df['Restaurant'].isnull()].index.tolist())
    Index Number of Null Value in Restaurant : [1646]
1 df['Restaurant'].fillna('Unknown Name')
                 Satoo - Hotel Shangri-La
    1
    2
                                Sushi Masa
                            3 Wise Monkeys
    3
            Avec Moi Restaurant and Bar
           BMG - All Day Dining
Atmosphere Grill Cafe Sheesha
    9547
    9548
                                 UrbanCrave
    9549
                        Deena Chat Bhandar
    9550
                           VNS Live Studio
    Name: Restaurant, Length: 9551, dtype: object
```

▼ Find Most Expensive Restaurants

- 1 TopExpRest=df.sort_values(by="Cost", ascending=False)
- 2 TopExpRest.head()

								1	to 5 of 5 e	ntries Fi	Iter 📙 🕐
index	Restaurant	Country Code	City	Longitude	Latitude	Cuisines	Cost	Currency	Booking	Delivery	Price range
0	Skye	94	Jakarta	106.821999	-6.196778	Italian, Continental	800000	Indonesian Rupiah(IDR)	No	No	3
1	Satoo - Hotel Shangri-La	94	Jakarta	106.8189611	-6.203291667	Asian, Indonesian, Western	800000	Indonesian Rupiah(IDR)	No	No	3
2	Sushi Masa	94	Jakarta	106.800144	-6.101298	Sushi, Japanese	500000	Indonesian Rupiah(IDR)	No	No	3
3	3 Wise Monkeys	94	Jakarta	106.8134001	-6.235241091	Japanese	450000	Indonesian Rupiah(IDR)	No	No	3
4	Avec Moi Restaurant and Bar	94	Jakarta	106.821023	-6.19627	French, Western	350000	Indonesian Rupiah(IDR)	No	No	3
4	→										
Show	Show 25 ♥ per page										

▼ Find Most Expensive Restaurants in India

```
1 TopExpRestIndia = df[(df.Country == 'India')].sort_values(by="Cost", ascending=False)
```

2 TopExpRestIndia.head(15)

index	Restaurant	Country Code	City	Longitude	Latitude	Cuisines	Cost	Currency	Booking	Delivery	Price range
21	Orient Express - Taj Palace Hotel	1	New Delhi	77.170087	28.5950077	European	8000	Indian Rupees(Rs.)	Yes	No	4
22	Tian - Asian Cuisine Studio - ITC Maurya	1	New Delhi	77.1734547	28.5973505	Asian, Japanese, Korean, Thai, Chinese	7000	Indian Rupees(Rs.)	No	No	4
23	Bukhara - ITC Maurya	1	New Delhi	77.1737243	28.5974659	North Indian	6500	Indian Rupees(Rs.)	No	No	4
25	Nostalgia at 1911 Brasserie - The Imperial	1	New Delhi	77.218187	28.625445	European, Continental	6000	Indian Rupees(Rs.)	Yes	No	4
26	1911 - The Imperial	1	New Delhi	77.218185	28.625443	North Indian, Chinese, South Indian, Italian	6000	Indian Rupees(Rs.)	Yes	No	4
27	The Spice Route - The Imperial	1	New Delhi	77.218187	28.625445	Malaysian, Thai, Kerala, Vietnamese, Sri Lankan	6000	Indian Rupees(Rs.)	Yes	No	4
28	Wasabi by Morimoto - The Taj Mahal Hotel	1	New Delhi	77.2243039	28.6052532	Japanese, Sushi	6000	Indian Rupees(Rs.)	Yes	No	4
29	MEGU - The Leela Palace	1	New Delhi	77.1889651	28.5794009	Japanese, Sushi	5500	Indian Rupees(Rs.)	Yes	No	4
30	House of Ming - The Taj Mahal Hotel	1	New Delhi	77.2246182	28.6051487	Chinese	5500	Indian Rupees(Rs.)	Yes	No	4
31	24/7 Restaurant	1	New	77.22756944	28.63148611	Continental, North Indian,	5100	Indian	Yes	No	4

^{1 #}Highest 25 costly restaurants in India
2 TERI2=TopExpRestIndia.nlargest(25, "Cost")

³ TERI2

index	Restaurant	Country Code	City	Longitude	Latitude	Cuisines	Cost	Currency	of 25 en		Price range
21	Orient Express - Taj Palace Hotel	1	New Delhi	77.170087	28.5950077	European	8000	Indian Rupees(Rs.)	Yes	No	4
22	Tian - Asian Cuisine Studio - ITC Maurya	1	New Delhi	77.1734547	28.5973505	Asian, Japanese, Korean, Thai, Chinese	7000	Indian Rupees(Rs.)	No	No	4
23	Bukhara - ITC Maurya	1	New Delhi	77.1737243	28.5974659	North Indian	6500	Indian Rupees(Rs.)	No	No	4
25	Nostalgia at 1911 Brasserie - The Imperial	1	New Delhi	77.218187	28.625445	European, Continental	6000	Indian Rupees(Rs.)	Yes	No	4
26	1911 - The Imperial	1	New Delhi	77.218185	28.625443	North Indian, Chinese, South Indian, Italian	6000	Indian Rupees(Rs.)	Yes	No	4
27	The Spice Route - The Imperial	1	New Delhi	77.218187	28.625445	Malaysian, Thai, Kerala, Vietnamese, Sri Lankan	6000	Indian Rupees(Rs.)	Yes	No	4
28	Wasabi by Morimoto - The Taj Mahal Hotel	1	New Delhi	77.2243039	28.6052532	Japanese, Sushi	6000	Indian Rupees(Rs.)	Yes	No	4
29	MEGU - The Leela Palace	1	New Delhi	77.1889651	28.5794009	Japanese, Sushi	5500	Indian Rupees(Rs.)	Yes	No	4
30	House of Ming - The Taj Mahal Hotel	1	New Delhi	77.2246182	28.6051487	Chinese	5500	Indian Rupees(Rs.)	Yes	No	4
31	24/7 Restaurant - The Lalit New Delhi	1	New Delhi	77.22756944	28.63148611	Continental, North Indian, Italian, Asian	5100	Indian Rupees(Rs.)	Yes	No	4
38	Jade - The Claridges	1	New Delhi	77.2168963	28.6001953	Chinese	5000	Indian Rupees(Rs.)	Yes	No	4
43	Machan - The Taj Mahal Hotel	1	New Delhi	77.2241369	28.6051648	North Indian, European, Continental	5000	Indian Rupees(Rs.)	No	No	4
42	The Grill Room - The Taj Mahal Hotel	1	New Delhi	77.2241228	28.6051535	Mediterranean, European	5000	Indian Rupees(Rs.)	No	No	4
41	Le Cirque - The Leela Palace	1	New Delhi	77.1889752	28.5793901	French, Italian	5000	Indian Rupees(Rs.)	Yes	No	4
39	San Gimignano - The	1	New Delhi	77.218187	28.625445	Italian	5000	Indian Rupees(Rs.)	Yes	No	4

```
1 # Top 25 costly Resturants Location in Kolkata
2 !pip install jupyter-dash
 3 import plotly.express as px
 6 fig = px.scatter_mapbox(TERI2, lat="Latitude", lon="Longitude", hover_name="City", hover_data=["Aggregate rating",
                                                                                              'Restaurant',"Cost",
 8
                                                                                              "Booking"],
                         color_discrete_sequence=["fuchsia"], zoom=10, height=300)
10 fig.update_layout(mapbox_style="open-street-map")
11 fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
12 fig.update_layout(title='Top 25 costly Resturants Location',
13
                    autosize=True,
14
                    #hovermode='closest',
15
                    showlegend=False)
16 fig.update_layout(
17
     autosize=False,
18
      width=800,
19
      height=500,)
20
21 fig.show();
```

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
Collecting jupyter-dash
  Downloading jupyter_dash-0.4.2-py3-none-any.whl (23 kB)
Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from jupyter-dash) (2.23.6
Collecting ansi2html
  Downloading ansi2html-1.8.0-py3-none-any.whl (16 kB)
Requirement already satisfied: ipykernel in /usr/local/lib/python3.8/dist-packages (from jupyter-dash) (5.3.4
Requirement already satisfied: flask in /usr/local/lib/python3.8/dist-packages (from jupyter-dash) (1.1.4)
Collecting nest-asyncio
  Downloading nest_asyncio-1.5.6-py3-none-any.whl (5.2 kB)
Collecting retrying
  Downloading retrying-1.3.4-py3-none-any.whl (11 kB)
Requirement already satisfied: ipython in /usr/local/lib/python3.8/dist-packages (from jupyter-dash) (7.9.0)
Collecting dash
  Downloading dash-2.7.1-py3-none-any.whl (9.9 MB)
     | 9.9 MB 7.6 MB/s
Collecting dash-html-components==2.0.0
  Downloading dash_html_components-2.0.0-py3-none-any.whl (4.1 kB)
Requirement already satisfied: plotly>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from dash->jupyter-da
Collecting dash-table==5.0.0
  Downloading dash_table-5.0.0-py3-none-any.whl (3.9 kB)
Collecting dash-core-components==2.0.0
  Downloading dash core components-2.0.0-py3-none-any.whl (3.8 kB)
Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.8/dist-packages (from flask->jur
Requirement already satisfied: Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.8/dist-packages (from flask->jur
Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/python3.8/dist-packages (from flask-
Requirement already satisfied: click(8.0,>=5.1 in /usr/local/lib/python3.8/dist-packages (from flask->jupyter
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.8/dist-packages (from Jinja2<3.0,>=
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from plotly>=5.0.0-
Requirement already satisfied: six in /usr/local/lib/python3.8/dist-packages (from plotly>=5.0.0->dash->jupyt
Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.8/dist-packages (from ipykernel->ju
Requirement already satisfied: jupyter-client in /usr/local/lib/python3.8/dist-packages (from ipykernel->jupy
Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.8/dist-packages (from ipykernel->jupyt@
Requirement already satisfied: pygments in /usr/local/lib/python3.8/dist-packages (from ipython->jupyter-dask
Requirement already satisfied: decorator in /usr/local/lib/python3.8/dist-packages (from ipython->jupyter-das
Requirement already satisfied: backcall in /usr/local/lib/python3.8/dist-packages (from ipython->jupyter-dask
Requirement already satisfied: pickleshare in /usr/local/lib/python3.8/dist-packages (from ipython-)jupyter-c
Collecting jedi>=0.10
  Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)
     1.6 MB 47.4 MB/s
Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from i
Requirement already satisfied: pexpect in /usr/local/lib/python3.8/dist-packages (from ipython->jupyter-dash)
Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.8/dist-packages (from ipython->jup)
Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.8/dist-packages (from jedi>=0.10
Requirement already satisfied: wcwidth in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit<2.1.0,>
Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-cl
Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.8/dist-packages (from jupyter-client->ipyk
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-packages (from jupyter-c
Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.8/dist-packages (from jupyter-core
Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.8/dist-packages (from pexpect->ipyth
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packa
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->ju
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->jupyter
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->j
Installing collected packages: jedi, dash-table, dash-html-components, dash-core-components, retrying, nest-a
Successfully installed ansi2html-1.8.0 dash-2.7.1 dash-core-components-2.0.0 dash-html-components-2.0.0 dash-
                                                          Noida
                                                                                        Dadri
                                                                                Greater Noida
                  Gurugram
```

Sohna Sohna NHAA Ballabgarh

Manesa

Tauru

Faridabad

Murshadpur

utam Budda

Nagar

▼ FEATURE ENGINEERING

```
1 display(df.info())
   2 display(df.shape)
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 9551 entries, 0 to 9550
       Data columns (total 17 columns):
       # Column
                             Non-Null Count Dtype
       ---
                             _____
           Restaurant
                             9550 non-null object
                            9551 non-null
           Country Code
        1
                                             int64
           City
                             9551 non-null
                                             object
           Longitude
                             9551 non-null
                                             float64
           Latitude
                             9551 non-null
                                             float64
                             9551 non-null
        5
           Cuisines
                                             object
           Cost
                             9551 non-null
                                             int64
           Currency
                             9551 non-null
                                             object
           Booking
                             9551 non-null
        8
                                             obiect
           Delivery
                             9551 non-null
                                             object
        10 Price range
                             9551 non-null
        11 Aggregate rating 9551 non-null
                                            float64
        12 Rating color
                             9551 non-null
                                             object
        13
           Rating text
                             9551 non-null
                                             object
                             9551 non-null
                                             int64
        14 Votes
                             9551 non-null
        15 Country
                                             object
       16 Total_Cuisines
                             9551 non-null int64
       dtypes: float64(3), int64(5), object(9)
       memory usage: 1.6+ MB
       None
       (9551, 17)
  Dropping unnecessary columns mefore modelling
   1 df.drop(columns=['Restaurant','Country Code','Longitude', 'Latitude','Cuisines','Rating color', 'Currency'], axis=1, inplace=True)
   2 df.shape
       (9551, 10)
Encoding
  --> New Data
   1 # Copying DF as df1 for Encoding
   2 df1=df.copy()
```

→ --> One-Hot Encoding for Nominal Categories

```
1 # ENCODING
2 df1['Delivery1']=pr.LabelEncoder().fit_transform(df['Delivery'])
3 df1['Booking1']=pr.LabelEncoder().fit_transform(df['Booking'])
4 df1['Country1']=pr.LabelEncoder().fit_transform(df['Country'])
5 df1['City1']=pr.LabelEncoder().fit_transform(df['City'])
6
7
8 # GET DUMMY FOR preventing Logistic Regrression result
9 OneHot= pd.get_dummies(df1, columns=['Delivery', 'Booking', 'Country', 'City'], drop_first=True)
10 print(OneHot)
11
12 # dropping Columns that encoded
13 df1.drop(columns=['Delivery','Booking','Country', 'City'], axis=1, inplace=True)
14
15 print(df1)
```

```
4
                   Ø
                                  Ø
                                                         Ø
                                                                               Ø
9546
                   0
                                  0
                                                         0
                                                                                0
9547
                                                         0
                                                                                0
                   0
                                  0
9548
                                                         0
                                                                                a
                   0
                                  0
9549
                   0
                                  0
                                                         0
                                                                                0
9550
      City_Yorkton City_€¡stanbul
0
                                   0
                  0
1
2
                                   0
                  0
3
                  0
                                   0
4
                  0
                                   0
9546
                  0
                                   0
9547
                  0
                                   0
9548
                                   0
                 0
9549
                  0
                                   0
9550
                  0
                                   0
[9551 rows x 166 columns]
        Cost Price range
                            Aggregate rating Rating text
0
      800000
                         3
                                          4.1
                                                 Very Good
                                                             1498
      800000
                         3
                                          4.6
                                                 Excellent
                                                               873
1
2
      500000
                         3
                                          4.9
                                                 Excellent
                                                               605
3
      450000
                         3
                                          4.2
                                                 Very Good
                                                               395
4
      350000
                         3
                                          4.3
                                                 Very Good
                                                               243
9546
           0
                         1
                                          4.3
                                                 Very Good
                                                                63
9547
           0
                         1
                                          3.6
                                                      Good
                                                                34
9548
                                          3.9
                                                               127
           0
                         1
                                                      Good
9549
           0
                         1
                                          3.8
                                                      Good
                                                                78
9550
           0
                         1
                                          3.5
                                                      Good
                                                               109
      Total_Cuisines Delivery1 Booking1 Country1
                                                        City1
0
                    2
                                0
                                          0
                                                     4
                                0
1
                    3
                                          0
2
                    2
                                0
                                          0
                                                     4
                                                           59
3
                                                           59
                    1
                                0
                                          0
                                                     4
4
                    2
                                0
                                          0
                                                     4
                                                           59
                                                           . . .
9546
                    3
                                0
                                          0
                                                     3
                                                           35
9547
                    3
                                0
                                          0
                                                     3
                                                           61
9548
                    6
                                0
                                          0
                                                     3
                                                           61
9549
                                          0
                    1
                                0
                                                     3
                                                          130
                                          0
9550
                    2
                                0
                                                     3
                                                          130
[9551 rows x 10 columns]
```



```
1 Rating_text1=pd.Categorical(df1['Rating text'], categories =['Excellent','Very Good','Good','Average','Not Rated'], ordered=True)
2 df['Rating_text'], Rate=pd.factorize(Rating_text1, sort=True)
3 df['Rating_text']
4
    0
             1
    1
             0
    2
             0
    3
             1
    4
             1
    9546
             1
    9547
             2
    9548
    9549
             2
    9550
             2
    Name: Rating_text, Length: 9551, dtype: int64
1 df1.drop(columns=['Rating text'], axis=1, inplace=True)
1 corr= df1[['Cost','Price range','Aggregate rating','Votes', 'Country1', 'City1','Booking1', 'Delivery1']].corr(method='kendall')
2 plt.figure(figsize=(15,8))
3 sns.heatmap(corr, annot=True)
4 df1.columns
```


- 1 # Discretizing the ratings into a categorical feature with 4 classes
- 2 #df["Aggregate rating"] = pd.cut(df["Aggregate rating"], bins = [0, 3.0, 3.5, 4.0, 5.0], labels = ["0", "1", "2", "3"])
- 3 #df["Aggregate rating"]

1 df1

							5 of 9551 entr		□ ?
ndex	Cost	Price range	Aggregate rating	Votes	Total_Cuisines	Delivery1	Booking1	Country1	City1
0	800000	3	4.1	1498	2	0	0	4	59
1	800000	3	4.6	873	3	0	0	4	59
2	500000	3	4.9	605	2	0	0	4	59
3	450000	3	4.2	395	1	0	0	4	59
4	350000	3	4.3	243	2	0	0	4	59
5	300000	3	4.3	458	2	0	0	4	59
6	300000	3	3.7	155	1	0	0	4	125
7	250000	3	4.0	1159	2	0	0	4	19
8	250000	3	4.2	259	3	0	0	4	59
9	200000	3	4.9	1662	2	0	0	4	59
10	200000	3	3.9	137	1	0	0	4	59
11	200000	3	4.6	903	3	0	0	4	59
12	200000	3	4.4	841	3	0	0	4	59
13	200000	3	4.9	1640	2	0	0	4	59
14	200000	3	4.9	2212	2	0	0	4	125
15	165000	3	4.6	1476	5	0	0	4	59
16	150000	3	4.2	22	3	0	0	4	13
17	120000	3	4.4	410	1	0	0	4	59
18	100000	3	3.4	152	2	0	0	4	59
19	100000	3	4.0	331	2	0	0	4	59
20	70000	2	3.7	783	3	0	0	4	19
21	8000	4	4.0	145	1	0	1	3	88
22	7000	4	4.1	188	5	0	0	3	88
23	6500	4	4.4	2826	1	0	0	3	88
24	6000	4	4.9	621	3	0	1	6	94

¹ df1.to_excel("data_output.xlsx", index=False)

```
1 #lets create 2 dataframes in which one has target variable (i.e. Rating) and latter has predictor variables
2 # X datframe has predictor variables while y datframe has target variable
3
4 x=df1.drop(columns='Aggregate rating',axis=1)
5 y=df1['Aggregate rating']
```

▼ Splitting the Model

```
1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1 , random_state=42)
```

▼ Standardization

```
1 from sklearn.preprocessing import StandardScaler
2 scaler=StandardScaler()
3 x_train=scaler.fit_transform(x_train)
4 x_test=scaler.transform(x_test)
```

▼ Defining the Model Success

```
1 def model_predict(model):
2    model.fit(x_train , y_train)
3    predict=model.predict(x_test)
4    r2=mt.r2_score(y_test, predict)
5    rmse=mt.mean_squared_error(y_test, predict, squared=False)
6    return[r2, rmse]
7
8    print(model_predict(LinearRegression()))
        [0.3287777508810622, 1.2514204063230165]
```

▼ Lets build and compare with other REGRESSION models

```
1 models=[LinearRegression(),Ridge(),Lasso(), ElasticNet(), SVR(), DecisionTreeRegressor(random_state=0),BaggingRegressor(random_state=0 , n_estimators=2
 3 model_names = ['LinearRegression','Ridge','Lasso', 'ElasticNet', 'SVR', 'DecisionTreeRegressor', 'BaggingRegressor', 'RandomForestRegressor']
 4 results=[]
6 for i in models:
 7 results.append(model_predict(i))
8 #print(results)
11 df1_models=pd.DataFrame(model_names, columns=['Model Name'])
12 print(df1_models)
                    Model Name
     0
             LinearRegression
     1
                         Ridge
     2
                         Lasso
     3
                    {\tt ElasticNet}
     4
                           SVR
     5
        DecisionTreeRegressor
             BaggingRegressor
     6
       RandomForestRegressor
1 df1_results=pd.DataFrame(results, columns=['R2', 'RMSE'])
 2 print(df1_results)
              R2
                       RMSE
     0 0.328778 1.251420
     1 0.328776 1.251422
     2 -0.000060 1.527506
     3 0.059071 1.481659
     4 0.440272 1.142769
     5 0.922214 0.426011
     6 0.956145 0.319876
     7 0.958268 0.312036
```

▼ Models' Results and Best Model

```
1 df1_comparison=df1_models.join(df1_results)
2 print(df1_comparison)
```

Model Name	R2	RMSE
LinearRegression	0.328778	1.251420
Ridge	0.328776	1.251422
Lasso	-0.000060	1.527506
ElasticNet	0.059071	1.481659
SVR	0.440272	1.142769
DecisionTreeRegressor	0.922214	0.426011
BaggingRegressor	0.956145	0.319876
RandomForestRegressor	0.958268	0.312036
	LinearRegression Ridge Lasso ElasticNet SVR DecisionTreeRegressor BaggingRegressor	LinearRegression 0.328778 Ridge 0.328776 Lasso -0.000060 ElasticNet 0.059071 SVR 0.440272 DecisionTreeRegressor 0.922214 BaggingRegressor 0.956145

Best Model is RANDOM FOREST REGRESSOR

HYPERTUNING of Best Model

--> Random Forest Regressor

```
1 from sklearn.ensemble import RandomForestRegressor
3 RF=RandomForestRegressor(random state=0 )
5 RF.fit(x_{train}, y_{train})
6 RF_predict = RF.predict(x_test)
8 print(RF_predict)
               4.018
                         3.759
                                    2.90954603 4.183
   [3.635
                         0.
                                    3.74408333 3.4525
               3.153
                                                          3.906
    0.
    3.54833333 4.444
                         0.
                                    4.094
                                               3.16175
                                                          3.4
    3.524
               2.99591667 3.449
                                    0.
                                               3.33794286 2.901
    3.094
               2.96353333 0.
                                    3.439
                                               3.1092119 2.97361667
               3.56605 3.33916667 0.
    0.
                                               2.92503095 3.923
                                                          0.
    3.1335
               4.217
                         2.98411084 4.523
                                               3.694
    3.521
               3.858
                         3.3415
                                    2.94483333 0.
                                                          3.45
                                    3.25066667 3.16723333 0.
                         3.955
    0.
               0.
                                    3.679
                                               3.06228571 3.25972381
    3.55
               3.301
                         4.062
    3.071
               3.6825
                         4.17
                                    0.
                                               2.714
    2.99483023 2.618
                         0.
                                                          3.78525
                                               0.
                                    0.
    3.457
               3.16650317 0.
                                               0.
                                                          3.27333333
               3.758
                         4.035
                                    3.5755
                                               0.
                                                          4.432
    3.397
               3.189
                         3.56
                                    2.9033558 3.4675
                                                          4.125
                                    3.628
    4.545
                         3.085
                                               4.369
               0.
                                                          0.
               2.97519008 3.996
    0.
                                    3.2098
                                               3.456
    3.243
               3.0765
                      0.
                                    3.29171429 3.00347619 3.688
               2.847
                         3.42125
                                    3.178
                                            2.7494
                                                          2.94271905
    0.
    2.85402381 3.293
                         3.685
                                    3.612
                                               3.222
                                                          3.32133333
               2.76156667 3.16913333 4.157
                                               3.405
               3.0166972 0. 0.
    2.612
                                               3.01962517 3.137
    3.14426667 0.
                         3.454
                                    0.
                                               3.653
                         3.065
                                    4.274
                                               3.06608333 2.98211848
    2.71941667 3.376
               3.905
                         4.821
                                    3.329
                                               3.759
    3.33975
    4.25
               2.825
                         3.1165
                                    3.499
                                               0.
               2.97402002 0.
    4.083
                                    3.36883333 3.4032
                                                          2.9301039
    3.983
               3.42173333 3.993
                                    3.307
                                               0.
                                                          3,961
    3.66
                       3.792
                                    3.72
                                               2.89248571 3.847
    3.00377543 2.659
                         3.196
                                    0.
                                               2.90276667 3.059
                         0.
0.
               3.123
                                    3.08126667 2.99395714 3.608
    4.388
               4.773
                                    3.157
                                               3.26675 2.99281667
    3.798
               0.
                         3.865
                                    3.635
                                               3.01633333 0.
    3.311
               0.
                         Θ.
                                    3.238
                                               0.
                                                          3.662
               3.306
                         3.10043561 0.
                                               3.37933333 4.12
    3.37166667 2.99235971 3.543
                                    3.06526667 4.143
                                                          2.90309048
               2.83992857 0.
                                    3.803
                                               0.
                                                          0.
    3.833
    3.278
               2.96292381 3.36706667 0.
                                               3.946
                                                          3.629
    3.19001032 0.
                      3.677
                                4.485
                                    3.41458333 3.133
    4.178
             3.069
                         3.349
                                                          3.968
                         3.53271667 2.99684048 3.04205
    3.48385714 4.183
                                                          2.903
    2.95345
               3.354
                         3.565
                                    3.4675
                                                          3.593
    3.29
               3.0275
                         0.
                                    3.427
                                               4.334
               2.612
                                               3.07770476 3.639
    3.988
                         2.86141667 0.
    3.658
               2.92461667 3.09868333 3.414
                                               3.097
                                                          3.256
    3.24468333 3.3725 2.98863333 3.534
                                               3.572
    3.487
              2.904
                         3.572
                                    4.114
                                               2.8998
                                                          0.
    2.98059643 3.338
                         3.20766667 3.05506587 3.2401
                                                          3.41433333
    3.35536667 2.93028333 0.
                                0.
                                               0.
                                                          3.893
    3.789
               3.39866667 2.88047619 3.2162
                                               4.289
                                                          3.344
    3.59848333 3.431
                         3.886
                                               0.
                                    3.303
                                                          0.
```

В

```
4.27
                  3.807
                            3.22013333 3.658
                                                  2.92236667 3.561
       3.02063333 4.005
                            3.44941667 3.748
                                                  3.22
       3.25532237 0.
                             0.
                                       3.6259
                                                  3.16833333 3.407
                  3.576
                            3.17324524 3.79533333 4.082
                                                            3.486
       0.
       3.53
                  2.974
                            3.1505
                                       4.12
                                                  0.
                                                             3.936
       2.862
                  3.18286667 3.944
                                       0.
                                                  2.8416
                                                             3.83333333
       4.081
                  3.3395381 2.8846
                                       4.579
                                                  3.0455
                                                            2.92024405
   1 RF_R2= mt.r2_score(y_test, RF_predict)
   3 RF_RMSE= mt.mean_squared_error(y_test, RF_predict , squared=False )
   5 display ( 'RF R2 : ', RF_R2 , 'RF RMSE : ', RF_RMSE )
       'RF R2 : '
      0.958268036890316
       'RE RMSE :
      0.31203583191641365
                                                                                                                                  >>> I will use GridSearch to find the best Tuning - HYPERPARAMETER TUNING
   1 from sklearn.model_selection import GridSearchCV
  it will take long . You will see the better Hyperparameter to have better result the below
      #RF_Grid = GridSearchCV(estimator=RF, param_grid= RF_parameters , cv=10 )
      \#RF\_Grid .fit(x_train , y_train)
   4
      #print( RF_Grid.best_params_)
  *Random Forest Regressor Parameter metrics after Model Tuning *---->
  'max_depth': 13, 'max_features': 2, 'n_estimators': 19
      RF2=RandomForestRegressor(random\_state=0 \ , \ max\_depth=13, \ max\_features=2, \ n\_estimators=19)
  1
      RF2.fit(x_{train}, y_{train})
   2
   3
      RF2_predict = RF2.predict(x_test)
      #print(RF2_predict)
      RF2_R2= mt.r2_score(y_test, RF2_predict)
  6
      RF2_RMSE= mt.mean_squared_error(y_test, RF2_predict , squared=False )
   8
      display ( 'RF2 R2 : ', RF2_R2 , 'RF2 RMSE : ', RF2_RMSE )
       'RF2 R2 : '
      0.9635364532333441
       'RF2 RMSE :
      0.2916752075229647
                                                          + Code — + Text
  ______
  FINAL RESULTS OF BEST TESTING OF THE MODEL
                                ÞΞ
                                    \tauT
                      ⊕
                                             ••• ψ
                                                        (
                 <>
  > **First Results were**
                           R2 : 0.958268
     RandomForestRegressor
                                             RMSE: 0.312036
  > Second Results after HyperTuning
     RandomForestRegressor
                           R2 : 0.963536
                                            RMSE: 0.291675
```

First Results were

RandomForestRegressor R2: 0.958268 RMSE: 0.312036

Second Results after HyperTuning

• RandomForestRegressor R2 : 0.963536 RMSE : 0.291675

1

В

• x