Decision Making under Risk

Probabilities of states of nature is known.

Selecting the alternative with the highest expected monetary value

Expected Monetary Value (EMV)

- Expected value or mean value
- Long-run average value of a decision
- Sum of possible payoffs of the alternative, each weighted by the probability of that payoff occurring

$$EMV$$
 (alternative) = $\sum X_i P(X_i)$

where X_i = payoff for the alternative i $P(X_i)$ = probability of achieving payoff X_i

Example: Thompson Lumber Company

Alternatives	State of Nature		
Allemanves	Favorable Market	Unfavorable Market	
Construct a large plant	200,000	- 180, 000	
Construct a small plant	100,000	- 20, 000	
Do Nothing	0	0	
Probabilities	0.5	0.5	

Decision Table with EVM

	State of Nature			
Alternatives	Favorable Market	Unfavorable Market	EVM	
Construct a large plant	200,000	- 180,000	10,000	
Construct a small plant	100,000	- 20,000	40,000	
Do nothing	0	0	0	
Probabilities	0.5	0.5		

Expected Value of Perfect Information (EVPI)

Expected Value with Perfect Information (EVwPI) $EVwPI = \sum \text{(best payoff in state of nature)} \text{(Probability of state of nature)}$

Expected Value of Perfect Information (EVPI) EVPI = EVwPI - best EMV

Decision Table with EVM

	State of Nature			
Alternatives	Favorable Market	Unfavorable Market	EVM	
Construct a large plant	200,000	- 180,000	10,000	
Construct a small plant	100,000	- 20,000	40,000	
Do nothing	0	0	0	
Probabilities	0.5	0.5		

Decision Table with Perfect Information

	State of	f Nature		
Alternatives	Favorable Market	Unfavorable Market	EVM	
Construct a large plant	200,000	- 180,000	10,000	
Construct a small plant	100,000	- 20,000	40,000	best EVM
Do nothing	0	0	0	
Probabilities	0.5	0.5		
Best Payoff	200,000	0	100,000	- EVwPI

EVPI = 60,000