MAT432

Date de rendu: 11/03/2021

Exercices contrôle continu

Exercice 5 *f.* On montre l'égalité suivante

$$-\partial_x^2 u_n(x) + x^2 u_n(x) = (2n+1)u_n(x).$$

On part de $u_n(x) = C_n \cdot \exp(-\frac{x^2}{2})H_n(x)$ avec C_n une constante multiplicative ne dépendant que de n donnée dans le point e.

Ainsi

$$\partial_x u_n(x) = C_n \cdot (-x \exp(-\frac{x^2}{2}) H_n(x) + \exp(-\frac{x^2}{2}) H'_n(x)),$$

et

$$\partial_x^2 u_n(x) = C_n \cdot \left(-\exp(-\frac{x^2}{2})H_n(x) + x^2 \exp(-\frac{x^2}{2})H_n(x) - 2x \exp(-\frac{x^2}{2})H_n'(x) + \exp(-\frac{x^2}{2})H_n''(x)\right).$$

On obtient donc finalement en se souvenant de l'expression u_n et après simplifications

$$-\partial_x^2 u_n(x) + x^2 u_n(x) = C_n \cdot (\exp(-\frac{x^2}{2})H_n(x) + 2x \exp(-\frac{x^2}{2})H_n'(x) + \exp(-\frac{x^2}{2})H_n''(x)').$$

On utilise à présent la relation sur H''_n établie au point d, ce qui donne après simplifications des termes en $H'_n(x)$

$$-\partial_x^2 u_n(x) + x^2 u_n(x) = C_n \cdot (\exp(-\frac{x^2}{2})H_n(x) + 2n \exp(-\frac{x^2}{2})H_n(x)).$$

On factorise par $u_n(x)$ pour trouver finalement le résultat attendu

$$-\partial_x^2 u_n(x) + x^2 u_n(x) = (2n+1)u_n(x).$$

g. On montre que la fonction ψ donnée est bien continue en temps, L^2 en x.

Comme ψ^{in} et u_n sont des fonctions L^2 , on a

$$|\int_{\mathbf{R}} \psi^{in}(y) u_n(y) \mathrm{d}y| \le \int_{\mathbf{R}} |\psi^{in}(y) u_n(y)| \mathrm{d}y$$

$$\le (\int_{\mathbf{R}} \psi^{in}(y)^2 \mathrm{d}y)^{\frac{1}{2}} \cdot (\int_{\mathbf{R}} u_n(y)^2 \mathrm{d}y)^{\frac{1}{2}}$$

$$< +\infty,$$

où la deuxième inégalité est l'inégalité de Hölder. Le terme indépendant de x, t est borné et donc ψ est bien définie. Pour simplifier la rédaction on omettra dorénavant cette constante.

On montre la continuité en t. Pour tout $n \in \mathbb{N}$ la fonction

$$f_n(t,x) := \exp(-i\frac{2n+1}{2}t)u_n(x)$$

est continue en t sur \mathbf{R} . De plus

$$\sum_{n \in \mathbf{N}} |f_n(t, x)| \le \sum_{n \in \mathbf{N}} |u_n(x)|$$

$$\le \frac{1}{\pi^{\frac{1}{4}}} \sum_{n \in \mathbf{N}} \frac{\exp(-x^2)^{(n)}}{\sqrt{2^n n!}} < +\infty.$$

La série converge normalement indépendamment de $t \in \mathbf{R}$ donc uniformément, la continuité de chaque f_n garantit celle de ψ .

On regarde l'intégrale

$$\int_{\mathbf{R}} \psi(t, x)^2 \mathrm{d}x.$$

Le développement du carré de la somme nous donne la somme des termes au carré plus la double somme des termes croisés. Par le point e. nous savons que les $(u_n)_{n\in\mathbb{N}}$ forment une base de Hilbert de L^2 , ils sont donc orthogonaux. La convergence normale nous permet de plus d'intervertir somme et intégrale. Les termes croisés sont donc tous nuls et il reste

$$\int_{\mathbf{R}} \psi(t,x)^2 dx = \sum_{n \in \mathbf{N}} \exp(-i(2n+1)t) \int_{\mathbf{R}} u_n(x)^2 dx.$$

On utilise la définition de u_n pour trouver

$$\int_{\mathbf{R}} \psi(t,x)^2 dx = \sum_{n \in \mathbf{N}} \frac{\exp(-i(2n+1)t)}{2^n n!} \int_{R} (\exp(-x^2)^{(n)})^2 dx$$

$$< +\infty.$$

Ainsi ψ est bien L^2 par rapport à x.