Cours d'algorithmique et programmation 3

Said Jabbour

UFR des Sciences Licence Sciences et Technologie mentions Mathématiques et Informatique Semestre 3

Année universitaire 2024–2025

Sommaire

- 1. Complexité
- 2. Récursivité
- 3. La dichotomie
- 4. Algorithmes de Tri
- 5. Les listes chaînées
- 6. Une version itérative pour les listes chaînées
- 7. Une version récursive pour les listes chaînées
- 8. Les arbres binaires

Section 1

Présentation de l'unité

Modalités de Contrôle de Connaissances : Algorithmique et Programmation 3

- Deux Contrôles Continu : CC1, CC2
- Un Projet (généralement un jeu) : PRJ
- $CC = \frac{2*CC1+2*CC2+TP}{5}$
- Note Algo3 = CC
- Note SAE Algo3 : Projet

Plusieurs problèmes algorithmiques

- simples
 - Plus grande valeur dans une liste
 - deuxième plus grande valeur dans une liste
 - •
- Compliqués
 - Trier une liste
 - résoudre le problème des n reines
 - Parcours du cavalier
 - Fouille de texte
 - Coloriage de graphes, problème de couverture de graphes, etc.

Objectifs

- ► Solutions algorithmiques pour répondre à ces problèmes
- Utilisation des structures de données adéquates
- Evaluer leurs complexités

Problème des huit reines

Problème des huit reines

Parcours du cavalier

Colriage de Graphes

Colriage de Graphes

Fouille de motifs ensemblistes

Client 1	oeufs, farine, Levure, sucre		
Client 2	oeufs, farine, fromage, yaourt		
Client 3	oeufs, farine, course, boisson		
Client 4	pattes, yaourt, sauce tomates		
Client 5	pattes sauce tomates		
Client 6	boisson, cacahuètes, chips		

sous-ensembles fréquents (au moins deux fois {oeufs}, {pattes, saucetomates}, etc.

Plus court Chemin

Sudoku Puzzle

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Résoudre un ensemble d'inéquations linéaires

$$x_1 + x_2 \ge 1$$

 $x_1 - x_2 \ge 0$
 $-x_1 + x_2 \ge 0$
 $-x_1 - x_2 \ge -1$

$$x_1 \in \{0, 1\}, x_2 \in \{0, 1\}$$

Section 2

Complexité

Complexité

Temps de calcul

Ordres de grandeur Comparaisons de complexités

Lequel de ces deux algorithmes est le meilleur?

```
def min_max_v1(liste):
    mini,maxi = liste[0],liste[0]
    for i in range(1,len(liste)):
        if maxi < liste[i]:
        maxi = liste[i]
        elif liste[i] > mini:
            mini = liste[i]
    return mini,maxi
```

```
def min_max_v2(liste):
    mini,maxi = liste[0],liste[0]
    for i in range(1,len(liste)):
        if liste[i] < mini:
            mini = liste[i]
    for i in range(1,len(liste)):
        if maxi < liste[i]:
            maxi = liste[i]
    return mini,maxi</pre>
```

Temps de calcul

Complexité en temps

C(A, D) = temps d'exécution de l'algorithme A appliqué aux données D.

Eléments de calcul de la complexité en temps

- C(opération élémentaire) = constant
- ightharpoonup C(si F alors I sinon J) C(F) + max(C(I), C(J))
- ► C(pourtout *i* de e_1 à e_2 faire E_i) $\leq C(e_1) + C(e_2) + \sum C(E_i)$
- Temps de calcul de procédures récursives : solution d'équations de récurrence

Temps de calcul (2)

C(A, D) dépend en général de D

Complexité au pire

$$C_{MAX}(A, n) = max\{C(A, D); D \text{ de taille } n\}$$

Complexité au mieux

$$C_{MIN}(A, n) = min\{C(A, D); D \text{ de taille } n\}$$

Complexité en moyenne

$$C_{MOY}(A, n) = \sum_{\substack{D \text{ de taille } n}} p(D) \times C(A, D)$$

où p(D) est la probabilité d'avoir la donnée D

$$C_{MIN}(A, n) \leq C_{MOY}(A, n) \leq C_{MAX}(A, n)$$

Ordre de grandeur

	$log_2(n)$	$n^{1/2}$	nlog ₂ n	n ²	n ³	2 ⁿ
n=5	2.32	2.24	11.6	25	125	32
n=10	3.32	3.16	33.2	100	1000	1024
n=100	6.64	10	664	10000	10 ⁶	10 ³⁰
n=1000	9.97	31.62	9970	10 ⁶	10 ⁹	10 ³⁰⁰
n=10000	13.29	100	132900	10 ⁸	10 ¹²	10 ³⁰⁰⁰

Ordre de grandeur (2)

Coût $C(n)$	Evolution quand la taille est 10 fois plus grande :		
	$C(n \times 10)$		
$log_2(n)$	C(n) + 3,32		
$n^{1/2}$	$C(n) \times 3,16$		
n	<i>C</i> (<i>n</i>) × 10		
$nlog_2(n)$ n^2	$C(n) \times (10 + e)$		
	$C(n) \times 100$		
n ³	$C(n) \times 1000$		
2 ⁿ	$C(n)^{10}$		

Comparaisons de complexités : Ordres de grandeur asymptotique

- ► C(n) = O(f(n)) $\exists k > 0 \text{ et } N \in \mathbb{N} \text{ tels que } \forall n \geq N \text{ on a } C(n) \leq k \ f(n).$ On dit alors que C(n) est "grand O" de f(n).
- ► $C(n) = \Omega(f(n))$ $\exists k > 0 \text{ et } N \in \mathbb{N}, \text{ tels que } \forall n \geq N, C(n) \geq kf(n)$ On dit alors que C(n) est "grand oméga" de f(n).
- ► $C(n) = \Theta(f(n))$ si C(n) = O(f(n)) et $C(n) = \Omega(f(n))$ On dit alors que C(n) est "grand thêta" de f(n).

Comparaisons de complexités

Exemples

- ▶ $n = O(n^2)$ En effet si $n \ge 1$ on a que $n \le n^2$ et donc la condition est vérifiée avec N = 1 et k = 1.
- ▶ $log_2(n) = O(n^{\alpha})$ pour tout $\alpha > 0$
- ho $n^{\alpha} = O(a^n)$ pour tout $\alpha > 0$ et a > 1

Popriété

► Si C(n) = O(f(n)) alors $f(n) = \Omega(C(n))$

Preuve: $\forall n \geq N$, on a que $C(n) \leq k \times f(n)$ avec k > 0. Par conséquent, à partir de N on a que $f(n) \geq 1/k$ C(n).

Comparaisons de Complexités

Exemples

$$2n^2 + n = \Theta(n^2)$$

 $\forall n \geq 1, 2n^2 + n \leq 2n^2 + n^2 = 3n^2.$

Conséquence : $2n^2 + n = O(n^2)$

$$\forall n > 0, 2n^2 + n \ge 2n^2 \to 2n^2 + n = \Omega(n^2)$$

Comparaisons de Complexités

Exemples

$$2n^2 + n = \Theta(n^2)$$

 $\forall n \ge 1, 2n^2 + n \le 2n^2 + n^2 = 3n^2.$

Conséquence : $2n^2 + n = O(n^2)$

$$\forall n > 0, 2n^2 + n \ge 2n^2 \to 2n^2 + n = \Omega(n^2)$$

À vous

Quel est la complexité de l'algorithme suivant?

```
def algo1(liste):
    res = liste[0]
    for i in range(1, len(liste)):
        if res < liste[i]:
        res = liste[i]
    return res</pre>
```

Quel est la complexité de l'algorithme suivant?

```
def algo2(n):
   somme = 0
   for i in range(n-1):
     for j in range(i+1, n)
        somme += i+j
   return somme
```

À vous

Quel est la complexité de l'algorithme suivant?

```
def algo3(n):
   while n>1:
     print(n)
     n = n // 2
```

Quel est la complexité de l'algorithme suivant?

```
def alg4(n):
    m = 1
    while m < n:
        print(n)
        m = m * 2</pre>
```