**Exercise 1.** Show that the only function  $f \in L^1(\mathbb{R})$  such that f = f \* f is f = 0 a.e.

*Proof.* Let  $f \in L^1(\mathbb{R})$  such that f = f \* f. Recall we have that by Heil **Exercise 9.2.6** that then

$$\hat{f} = (f * f)^{\hat{}} = \hat{f}\hat{f},$$

so for any particular  $\xi$  we have

$$\hat{f}(\xi)^2 - \hat{f}(\xi) = 0,$$

so we consequently have

$$\hat{f}(\xi) = 0 \text{ or } 1, \quad \forall \xi \in \mathbb{R}.$$

Recall then that  $\hat{f}$  is continuous on  $\mathbb{R}$ ; it trivially follows that it thus must be either identically 0 or identically 1.

However, the **Riemann-Lebesgue Lemma** guarentees that  $|\hat{f}|$  should decay to 0 as  $|x| \to \infty$ ; so the only possibility is that  $\hat{f}$  is constantly 0.

Note then clearly  $\hat{0}=0$ ; by the **Uniqueness Theorem** then, as we thus have  $\hat{f}=\hat{0}$ , it must be then that f=0 a.e., as desired

**Exercise 6.** Suppose  $f \in AC(\mathbb{T})$ , i.e., f is 1-periodic and absolutely continuous on [0,1].

6.1 Prove that  $\hat{f}'(n) = 2\pi i n \hat{f}(n)$  for  $n \in \mathbb{Z}$  and conclude  $\lim_{|n| \to \infty} n \hat{f}(n) = 0$ .

*Proof.* By assumption  $f \in AC(\mathbb{T})$ . We know of course that  $e^{2\pi in\xi}$  is furthermore absolutely continuous are we observe it is continuously differentiable.

Thus, we can apply **Integration by Parts**, which gets us the following (note  $\frac{d}{d\xi}e^{-2\pi in\xi} = -2\pi ine^{-2\pi in\xi}$ ):

$$\hat{f}'(n) = \int_0^1 f'(\xi)e^{-2\pi i n \xi} d\xi$$

$$= e^{-2\pi i n \xi} f(1) - f(0) - \int_0^1 -2\pi i n f(\xi)e^{-2\pi i n \xi} d\xi$$

$$= e^{-2\pi i n \xi} f(1) - f(0) + 2\pi i n \hat{f}(n)$$

We note that for any value of  $n \in \mathbb{Z}$ , we have  $e^{-2\pi i n \xi} = 1$ . Moreover, as f is 1-periodic, we have f(0) = f(1). Thus we can further reduce

$$e^{-2\pi i n \xi} f(1) - f(0) + 2\pi i n \hat{f}(n)$$
  
=  $2\pi i n \hat{f}(n)$ ,

as desired. Recall the by the Riemann-Lebesgue Lemma we know

$$\lim_{|n| \to \infty} |\hat{f}'(n)| = 0,$$

and thus

$$\lim_{|n|\to\infty} |\hat{f}'(n)| = \lim_{|n|\to\infty} |2\pi i n \hat{f}(n)| = \lim_{|n|\to\infty} 2\pi n |\hat{f}(n)| = 0,$$

where from limit rules multiplying by  $\frac{1}{2\pi}$  gets the limit of  $n|\hat{f}(n)|$  as 0, which clearly implies the same for  $n\hat{f}(n)$ , as additionally desired.

6.2 Show that if  $\int_0^1 f(x)dx = 0$ , then

$$\int_0^1 |f(x)|^2 dx \le \frac{1}{4\pi^2} \int_0^1 |f'(x)|^2 dx$$