

Chapter 7: Wireless and Mobile Networks

<u>Background:</u>

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers!
- computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet access
- two important (but different) challenges
 - communication over wireless link
 - handling mobile user who changes point of attachment to network

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - O CDMA
- □ 7.3 IEEE 802.11 wireless LANs ("wi-fi")
- 7.4 Cellular Internet Access
 - o architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles:
 addressing and routing
 to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higherlayer protocols
- 7.9 Summary

Elements of a wireless network

Elements of a wireless network

Elements of a wireless network

Characteristics of selected wireless

link standards

Modes of wireless networks

Modes of wireless networks

Ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless Link Characteristics

Differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times
- make communication across (even a point to point) wireless link much more "difficult"

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- □ B, C hear each other
- □ A, C can not hear each other means A, C unaware of their interference at B

Signal fading:

- B, A hear each other
- □ B, C hear each other
- A, C can not hear each other interferring at B

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- □ all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- □ allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

12

CDMA Encode/Decode

CDMA: two-sender interference

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - o CDMA
- □ 7.3 IEEE 802.11 wireless LANs ("wi-fi")
- □ 7.4 Cellular Internet Access
 - o architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles:
 addressing and routing
 to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higherlayer protocols
- 7.9 Summary

IEEE 802.11 Wireless LAN

- □ 802.11b
 - 2 4-5 GHz unlicensed radio spectrum
 - o up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code
 - o widely deployed, using base stations

- □ 802.11a
 - 5-6 GHz range
 - o up to 54 Mbps
- □ 802.11g
 - 2.4-5 GHz range
 - o up to 54 Mbps
- ☐ All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - o ad hoc mode: hosts only

BSS 2

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - o interference possible: channel can be same as that chosen by neighboring AP!
- □ host: must associate with an AP
 - o scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - o selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

IEEE 802.11: multiple access

- □ avoid collisions: 2+ nodes transmitting at same time
- □ 802.11: CSMA sense before transmitting
 - o don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - o can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff
interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - o sender transmits data frame
 - o ther stations defer transmissions

Avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

Address 1: MAC address of wireless host or AP to receive this frame

Address 4: used only in ad hoc mode

Address 3: MAC address of router interface to which AP is attached

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing

AP MAC addr H1 MAC addr R1 MAC addr s 3

802.11 frame

802.11 frame: more

802.11: mobility within same subnet

- ☐ H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5):
 switch will see frame from H1 and
 "remember" which switch port can be used to reach H1

26

802.15: personal area network

- □ less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- □ ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - o up to 721 kbps

- Master device
- S Slave device
- P Parked device (inactive)

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - O CDMA
- □ 7.3 IEEE 802.11 wireless LANs ("wi-fi")
- 7.4 Cellular Internet Access
 - o architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles:
 addressing and routing
 to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higherlayer protocols
- 7.9 Summary

Components of cellular network architecture

- □ manages call setup (more later!)
 - □ handles mobility (more later!)

cell

- covers geographical region
- □ base station (BS) analogous to 802.11 AP
- mobile users attach to network through BS
- air-interface:
 physical and link layer
 protocol between
 mobile and BS

Cellular networks: the first hop

- Two techniques for sharing mobile-to-BS radio spectrum
- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
 frequency
- CDMA: code division multiple access

bands

Cellular standards: brief survey

26 systems: voice channels

- □ IS-136 TDMA: combined FDMA/TDMA (north america)
- □ GSM (global system for mobile communications): combined FDMA/TDMA
 - most widely deployed
- □ IS-95 CDMA: code division multiple access

Don't drown in a bowl of alphabet soup: use this oor reference only

Cellular standards: brief survey

- 2.5 G systems: voice and data channels
- □ for those who can't wait for 3G service: 2G extensions
- □ general packet radio service (GPRS)
 - evolved from GSM
 - data sent on multiple channels (if available)
- enhanced data rates for global evolution (EDGE)
 - also evolved from GSM, using enhanced modulation
 - Date rates up to 384K
- □ CDMA-2000 (phase 1)
 - data rates up to 144K
 - evolved from IS-95

Cellular standards: brief survey

36 systems: voice/data

- Universal Mobile Telecommunications Service (UMTS)
 - GSM next step, but using CDMA
- □ CDMA-2000

.... more (and more interesting) cellular topics due to mobility (stay tuned for details)

33

Chapter 7 outline

7.1 Introduction

Wireless

- □ 7.2 Wireless links, characteristics
 - O CDMA
- **7.3** IEEE 802.11 wireless LANs ("wi-fi")
- □ 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- □ 7.5 Principles: addressing and routing to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- □ 7.8 Mobility and higherlayer protocols
- 7.9 Summary

What is mobility?

□ spectrum of mobility, from the network perspective:

How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

- search all phone books?
- □ call her parents?
- expect her to let you know where he/she is?

I wonder where Alice moved to?

Mobility: approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - orouting tables indicate where each mobile located
 - o no changes to end-systems
- □ Let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: approaches

- Let routing handle it uters advertise permanent address of mobil and residence via usual routing table est scalable to millions of mobiles here each mobile located
 - o no changes to enterems
- □ let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: Vocabulary

home network: permanent

"home" of mobile (e.g., 128.119.40/24)

wide area network

Permanent address:

address in home network, can always be used to reach mobile e.g., 128.119.40.186

Networks

home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote

Mobility: more vocabulary

Mobility: registration

Networks

End result:

- Foreign agent knows about mobile
- Home agent knows location of mobile

Mobility via Indirect Routing

Indirect Routing: comments

- Mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- □ triangle routing: correspondent-home-network-mobile
 - inefficient when correspondent, mobile are in same network

Indirect Routing: moving between networks

- suppose mobile user moves to another network
 - o registers with new foreign agent
 - o new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

Mobility via Direct Routing

Mobility via Direct Routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?

Networks

Accommodating mobility with direct routing

- □ anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Chapter 7 outline

7.1 Introduction

Wireless

- □ 7.2 Wireless links, characteristics
 - O CDMA
- **7.3** IEEE 802.11 wireless LANs ("wi-fi")
- □ 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- □ 7.5 Principles: addressing and routing to mobile users
- ☐ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- □ 7.8 Mobility and higherlayer protocols
- 7.9 Summary

Networks

Mobile IP

- □ RFC 3220
- □ has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet)
- three components to standard:
 - o indirect routing of datagrams
 - agent discovery
 - o registration with home agent

Mobile IP: indirect routing

Mobile IP: agent discovery

□ agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)

H,F bits: home and/or foreign agent

R bit: registration required

Mobile IP: registration example

52

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- □ 7.3 IEEE 802.11 wireless LANs ("wi-fi")
- 7.4 Cellular Internet Access
 - o architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles:
 addressing and routing
 to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higherlayer protocols
- 7.9 Summary

Components of cellular network architecture

different cellular networks, operated by different providers

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - o could be home network

GSM: indirect routing to mobile

56

GSM: handoff with common MSC

- Handoff goal: route call via new base station (without interruption)
- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

GSM: handoff between MSCs

(a) before handoff

- □ anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- □ IS-41 allows optional path minimization step to shorten multi-MSC chain

GSM: handoff between MSCs

(b) after handoff

- □ anchor MSC: first MSC visited during cal
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- □ IS-41 allows optional path minimization step to shorten multi-MSC chain

Mobility: GSM versus Mobile IP

GSM element	Comment on GSM element Mo	bile IP element
Home system	Network to which the mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- □ 7.3 IEEE 802.11 wireless LANs ("wi-fi")
- 7.4 Cellular Internet Access
 - o architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles:
 addressing and routing
 to mobile users
- □ 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higherlayer protocols
- 7.9 Summary

Wireless, mobility: impact on higher layer protocols

- □ logically, impact should be minimal ...
 - o best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - o delay impairments for real-time traffic
 - o limited bandwidth of wireless links

63

Chapter 7: Summary

Wireless

- wireless links:
 - o capacity, distance
 - channel impairments
 - o CDMA
- □ IEEE 802.11 ("wi-fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - o architecture
 - standards (e.g., GSM, CDMA-2000, UMTS)

Mobility

- principles: addressing, routing to mobile users
 - o home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - o mobile IP
 - o mobility in GSM
- impact on higher-layer protocols