

MT-Diet: Automated Smartphone based Diet Assessment with Infrared Images

Junghyo Lee (Speaker), Ayan Banerjee, and Sandeep K. S. Gupta iMPACT Lab, CIDSE, Arizona Sate University, Tempe, AZ {jlee375, abanerj3, Sandeep.Gupta}@asu.edu

- American Medical Association in 2013
 - Recognized obesity as a disease officially [1]
- What is the effective method to treat and prevent the obesity?

Diet

- Existing Diet Monitoring and Problems
 - Self-monitoring
 - Low adherence, underreporting, and recall error
 - Smartphone camera based monitoring (State-of-the-art)
 - User inconvenience
 - Segment multiple foods to each single food
 - Select a food location in the image (Rectangle)
 - Fairly low food type identification accuracy (63%)

MT-Diet

- MT-Diet: Automated Smartphone based Diet Assessment System using *Cyber-Physical Dynamics*
- Thermal Interaction of a food plate with the environment

$$\frac{T_f - T_A}{T_i^f - T_A} = \exp\left(\frac{-hAt}{m_f C_p^f}\right), \qquad \frac{T_p - T_A}{T_i^p - T_A} = \exp\left(\frac{-hAt}{m_p C_p^p}\right)$$

If
$$T_i^f \gg T_i^p$$
, then $T_f \gg T_p$, for at least $t > 10$ mins

 T_f - Temperature of food item at time t, T_i^f - initial food temperature, m_f - mass of food item.

 T_p - Temperature of food item at time t, T_i^p - initial food temperature, m_p - mass of plate.

 T_A - Ambient temperature, h - heat transfer coefficient, A- area of food item, C_p^f - specific heat of food, C_p^p - specific heat of plate.

- Contributions: Fuse Thermal and Visual Spectra
 - Thermal and Color image correct each other
- Results
 - Segment multiple foods to each single food automatically
 - High accuracy of identifying types of food (88.93%)
 - State-of-art systems have accuracy at most 63%

Overview

System Model

Usability

- Balanced diet recommendation
 - Assume the plate has uniform depth
 - Ratio of the surface area multiplied by the density of the food item

Diet Monitoring

- Food Segmentation
- Food Identification
- Intake Amount
- Calorie Estimation
- Dietary Feedback
- Behavior Control

Food Recognition

Food Database Oriented Gradient **Support Vector Machine Classifier** Mashed potato Green bean **Turkey Food Identification** 8

Image Acquisition

Equipment of MT-Diet Prototype

Usage of Thermal Camera

Usage of Smartphone Camera

- Prototype of MT-Diet
 - Nexus 5
 - Seek thermal sensor
 - Micro USB wire
- Thermal Image
 - Seek thermal sensor interfaced with the Nexus 5
- Color Image
 - From Built-in Nexus 5 Camera

Food Segmentation

Challenges for Image Based ASU ARIZONA STATE UNIVERSITY Food Segmentation (1)

- Visual spectra may not have defined boundaries
 - Thermal boundaries more significant

Better Contrast in Infrared Spectra

DTT Output

Food Item Location

8 – connected component labeling [2]

• Thermal signatures are not stable

Dynamic Thermal Thresholding (DTT)

Challenges for Image Based ASII ARIZONA STATE UNIVERSITY Food Segmentation (2)

- Color (Gradient) and Texture are important features for identification
- Food items of same color as plate may be lost in visual spectra
- Fusion of visual and infrared spectra

Hierarchical Image Segmentation (HIS) [3]

MPACT Challenges for Image Based ASU ARIZONA STATE UNIVERSITY Food Segmentation (3)

- Food items not heated enough get deleted in DTT output
 - Color image can recognize the food

Which portions

Label Matching

• Identifies unique food items in both infrared and visual spectra

• Remove plate portions that are connected to food items with Grabcut [4]

Food Identification

Feature Set

- Objective
 - Classify the food type using SVM with kernels
- Feature Extraction
 - Color feature
 - RGB histogram: 32 histogram bins of each color channel
 - Histogram of Oriented Gradient feature [4]
 - 16 windows and 36 bins of oriented gradients of the each windows
 - Texture feature [5]
 - Resized food image (400 X 400), 5 scales, 8 orientations, 4 by 4 down sampling

Feature Fusion Methods

- Feature Fusion
 - Three fusion methods
 - Method of Dimensionality Reduction
 - Kernel Principal Component Analysis
 - Principal Component Analysis

1 Concatenation

2 Dimension Reduction of 1

Recreated Vector by Top 200 Eigen Vectors

(3) Dimension Reduction of Each Feature

ARIZONA STATE

Experimental Results

Segmentation Result

20 Food Types in practice

MPACT Execution Time of Food Segmentation ARIZONA STATE OF THE SECOND STATE OF THE SECOND

• Execution time (s) of food segmentation using i7 processor

	Min	Median	Max	Sum	Avg	STD
HIS	89.08	92.89	97.50	7403.9	92.55	1.66
DTT	2.83	3.13	3.9	256.12	3.2	0.24
ROF	0.39	0.78	1.01	62.77	0.78	0.09
Grabcut	2.4	14.24	41.15	1138.97	13.48	7.63
Total	95.51	111.59	145	8911.79	111.46	7.71

Food Identification Result

Feature	Best Methods (Reduction, Kernel, Fusion)	Accuracy(%)	Execution(s)	Feature Size
Texture	KPCA, RBF	45.08	5.13	100
HOG	PCA, RBF	63.11	0.35	100
RGB	KPCA, Sigmoid	88.11	0.57	100
HOG & Texture	KPCA, RBF, 3	59.43	5.13	200
HOG & RGB	KPCA, RBF, 3	88.93	0.7	200
RGB & Texture	KPCA, RBF, 3	88.93	5.62	200
All	KPCA, RBF, 3	87.7	5.43	300

Conclusion

- MT-Diet: Automatic diet monitoring system that interfaces thermal
- High accuracy of automated food identification (88.93%)
- User-friendly diet monitoring system application

• Only one task (Click a button)

• Expected the promoted healthy eating habits

Even If your diet log is the empty.....

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Date							
breakfast							
Lunch	2				2	M	
Dinnep				2		5	
Snacks		12	9/1/				
Calories							
Calories Water							

Weekly Food Journal

References

- [1] [Online]. Available: http://www.ama-assn.org/ama/pub/news/news/2013/2013-06-18-new-ama-policies-annual-meeting.page
- [2] H. Samet and M. Tamminen (1988). "Efficient Component Labeling of Images of Arbitrary Dimension Represented by Linear Bintrees". *IEEE Transactions on Pattern Analysis and Machine Intelligence* (TIEEE Trans. Pattern Anal. Mach. Intell.) **10** (4): 579. doi:10.1109/34.3918.
- [3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 5, pp. 898–916, 2011.
- [4] Rother, C., Kolmogorov, V., & Blake, A. (2004, August). Grabcut: Interactive foreground extraction using iterated graph cuts. In *ACM transactions on graphics (TOG)* (Vol. 23, No. 3, pp. 309-314). ACM.
- [5] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.
- [6] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, "Identification using encrypted biometrics," in Computer Analysis of Images and Patterns. Springer, 2013, pp. 440–448.

Acknowledgment

Dr. Petteri Nurmi for shepherding out paper

Dr. Meg Bruening for her insights on diet monitoring

NSF IIS 1116385

NIBIB EB019202

GPSA for supporting the conference travel grant

