Séquence : 09

Document : TD08 Lycée Dorian Renaud Costadoa

Renaud Costadoat Françoise Puig

Référence	S09 - TD08
Compétences	A3-C13: Spécifications géométriques
	Réa-C4: Mesure et contrôle dimensionnels et géométriques des pièces
Description	Mise en place de procédures de mesure au marbre ou par MMT
Système	Raboteuse

1 Corps de raboteuse

Une raboteuse est une machine-outil des métiers du bois. Elle sert à usiner une pièce de bois, préalablement dressée à l'aide d'une dégauchisseuse, pour l'amener à l'épaisseur et à la largeur désirées par enlèvements successifs de matière.

Le profondeur de la passe prise par la raboteuse correspond à l'enfoncement du fer dans le bois. Afin de garantir la stabilité de la raboteuse, le talon est situé sur un plan parallèle à celui du nez et juste en dessous.

Cette étude va traiter de la position relative des surface du corps qui permettent ce bon fonctionnement.

1.1 1 Analyse des spécifications

Dans cette partie, il s'agit de préciser le modèle défini par le dessin industriel. On restreint le problème à l'étude des surfaces 1 et 2.

Question 1 : Définir le modèle géométrique nominal, notamment en donnant la nature des surfaces fonctionnelles et en explicitant bien les paramètres de situation relative des deux surfaces.

Question 2: Expliciter selon les normes, chacune des spécifications faisant l'objet de l'étude.

Question 3 : Expliciter fonctionnellement le rôle de chacune de ces spécifications.

1.2 Technique traditionnelle de contrôle

On étudiera dans cette partie le positionnement de la pièce afin de la contrôler. On possède dans un premier temps trois vérins à vis afin de positionner la pièce.

Question 4 : Pourquoi cette installation est-elle préférable à celle qui consisterait simplement à faire reposer la pièce directement sur le marbre ?

Question 5: Quelles précautions prenez-vous? Les justifier.

Question 6: Où positionnez-vous les vérins sur la pièce? Justifier.

Pour la spécification de parallélisme et de localisation, la surface 1 est prise en référence. En conséquence, on adopte la méthode suivante :

- 1. A l'aide des vérins et d'un ensemble comparateur et porte comparateur, placer trois points (A_1, A_2, A_3) de la surface 1 à une même altitude par rapport au marbre,
- 2. Déplacer la touche du comparateur sur la surface 1 et relever les valeurs mini et maxi observées soit (h_{mini}, h_{maxi}) ,
- 3. Mettre à zéro l'indication du comparateur à l'altitude des points (A_1, A_2, A_3) . Déplacer la touche du comparateur sur la surface 2 et relever les valeurs mini et maxi observées soit (H_{mini}, H_{maxi}) .

Question 7 : Comment vérifier la spécification de planéité?

Question 8 : Comment vérifier la spécification de parallélisme?

Question 9 : Comment vérifier la spécification de position ?

1.3 Mesure à l'aide d'une MMT

On envisage de relever la position x, y, z de quelques points caractéristiques de la surface 4 (points des extrémités, bosses, creux,...)

Question 10 : Proposer un ensemble de points caractéristiques.

Question 11: Proposer un ensemble de points caractéristiques sur la surface 1.

Question 12 : Quel type de surface doit être associé à cette surface et quels sont les critères d'association (dans la norme ISO pour la spécification, dans les logiciels des MMT)

A partir de la référence spécifiée construite plus haut, il est possible de construire la zone de tolérance.

Question 13: Construire la zone de tolérance éléments par éléments.

Question 14 : Donner le critère mathématique de validité de la surface :

- pour la spécification de forme,
- pour la spécification d'orientation,
- pour la spécification de position.

L'exploration de l'intégralité de la surface 1 avec le comparateur permet de dire si le défaut de forme ne dépasse pas la valeur spécifiée.

1.4 Comparaison des deux méthode de contrôle

Confronter la mise en place des deux méthode de contrôle de la géométrie.

Question 15 : Donner les avantages et les inconvénients de chacune d'elles.

CORPS de RABOTEUSE

