16. Окружность, круг и их элементы

Окружность

Сумма градусных мер двух дуг окружности с общими концами равна 360°.

Диаметр делит окружность на две полуокружности. \cup AB=180°

Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности:

$$AB = AC$$
, $\angle 1 = \angle 2$.

Градусная мера вписанного угла (вершина лежит на окружности) измеряется половиной дуги, на которую он опирается: $\angle 1 = \frac{1}{2} \cup AB$.

Градусная мера центрального угла (вершина в центре окружности) равна градусной мере соответствующей дуги окружности: $\angle 2 = \cup AB$.

Вписанные углы, опирающиеся на одну и ту же дугу, **равны**: $\angle 1 = \angle 2 = \angle 3$.

Вписанный угол, опирающийся на полуокружность – **прямой** (90°).

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды: ab = cd.

Угол, образованный касательной и хордой измеряется половиной дуги, заключенной между его сторонами:

$$\angle BAC = \frac{1}{2} \cdot \cup AB$$
.

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть:

$$AD^2 = AB \cdot AC$$
.

Треугольник и четырехугольник

Сумма углов треугольника равна **180°**.

Сумма углов выпуклого четырехугольника равна **360**°.

Прямоугольный треугольник

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Вписанная и описанная окружность

$$S = \frac{1}{2}Pr \qquad P = a + b + c$$

$$R = 2r$$
 $h = R + r$

В любом вписанном четырехугольнике сумма противоположных углов равна 180°:

$$\angle 1 + \angle 3 = \angle 2 + \angle 4 = 180^{\circ}$$

В любом описанном четырехугольнике суммы противоположных сторон равны:

$$a+c=b+d$$
.

Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла:

$$2R = \frac{a}{\sin \alpha}$$
.

Подобные треугольники

Углы подобных треугольников соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого:

$$\angle A = \angle A_1$$
 $\angle B = \angle B_1$ $\angle C = \angle C_1$,

$$\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{CA}{C_1A_1}.$$

Правильные многоугольники

Любой правильный многоугольник можно вписать в окружность.

У правильного многоугольника все стороны равны.

$$AB = BC = CD = DE = EF = FA$$

Равные дуги стягиваются равными хордами.

$$\cup AB = \cup BC = \cup CD = \cup DE = \cup EF = \cup FA$$