Step-1

Consider the function,

$$f(x) = \sin 2x$$
.

The objective is to find the closest function $a\cos x + b\sin x$ to the function f on the interval from $-\pi$ to π .

Step-2

The closest function $a\cos x + b\sin x$ to the function f(x) is $b_1 \sin 2x$.

Here, the coefficient b_1 is the least squares solution to the inconsistent equation $b_1 \sin 2x = f(x)$ and $b_1 = \frac{(f(x), \sin x)}{(\sin x, \sin x)}$.

The formula $b_{i} = \frac{(f(x), \sin x)}{(\sin x, \sin x)}$ brings the $b_{i} \sin 2x$ as close as possible to f(x).

Now find the coefficient $b_{i} = \frac{\left(f(x), \sin x\right)}{\left(\sin x, \sin x\right)}$ as follows:

$$(f(x), \sin x) = \int_{-\pi}^{\pi} f(x) \sin x \, dx$$

$$= \int_{-\pi}^{\pi} \sin 2x \sin x \, dx \qquad \text{Use } f(x) = \sin 2x$$

$$= 2\int_{0}^{\pi} \sin 2x \sin x \, dx \qquad \left(\text{For any even function } f, \text{ i.e. } f(-x) = f(x), \right)$$

$$= 2\int_{0}^{\pi} \sin 2x \sin x \, dx \qquad \left(\int_{-a}^{a} f(x) \, dx = 2\int_{0}^{a} f(x) \, dx \right)$$
Here, $\sin 2x \cdot \sin x$ is an even function.

Step-3

Further simplification is as follows:

$$= \int_{0}^{\pi} (\cos(2x+x) - \cos(2x-x)) dx$$

$$(\text{Use } 2\sin x \sin y = \cos(x+y) - \cos(x-y))$$

$$= \int_{0}^{\pi} (\cos 3x - \cos x) dx$$

$$= \left[\frac{\sin 3x}{3} - \sin x\right]_{0}^{\pi}$$

$$= \frac{\sin 3\pi}{3} - \sin \pi - \frac{\sin(0)}{3} + \sin(0)$$

$$= 0 \qquad \text{Use } \sin n\pi = 0 \text{, for all } n = 1, 2, 3, \dots$$

Therefore, $(f(x), \sin x) = 0$.

Step-4

Now find the inner product $(\sin x, \sin x)$.

$$(\sin x, \sin x) = \int_{-\pi}^{\pi} (\sin x)(\sin x) dx$$

$$= \int_{-\pi}^{\pi} \sin^2 x \, dx$$

$$= 2 \int_{0}^{\pi} \sin^2 x \, dx \qquad \text{Here, } \sin^2 x \text{ is an even function.}$$

$$= 2 \int_{0}^{\pi} \left(\frac{1 - \cos 2x}{2} \right) dx \qquad \text{Use } \cos 2x = 1 - 2\sin^2 x$$

$$= \int_{0}^{\pi} (1 - \cos 2x) dx$$

$$= \left[x - \frac{\sin 2x}{2} \right]_{0}^{\pi}$$

$$= \pi - \frac{\sin 2\pi}{2} - 0 + \frac{\sin 2(0)}{2}$$

$$= \pi - 0$$

Therefore, $(\sin x, \sin x) = \pi$.

 $=\pi$

Step-5

Substitute the known values in the formula
$$b_1 = \frac{\left(f(x), \sin x\right)}{\left(\sin x, \sin x\right)}.$$

$$b_{1} = \frac{\left(f(x), \sin x\right)}{\left(\sin x, \sin x\right)}$$
$$= \frac{0}{\pi}$$
$$= 0$$

$$b_1 \sin 2x = 0 \cdot \sin 2x$$

Therefore, the closest function is

= 0.

Hence, the closest function to the function f(x) is $0 \cdot \sin 2x = 0$.

Step-6

Now the objective is to find the closest straight line c + dx to the function $f(x) = \sin 2x$.

The closest straight line c + dx to the function f is $a_1 + b_1 x$.

Here, the coefficients a_1, b_1 are given by the formulas,

$$a_1 = \frac{\left(f(x), \cos x\right)}{\left(\cos x, \cos x\right)}$$
 and $b_1 = \frac{\left(f(x), \sin x\right)}{\left(\sin x, \sin x\right)}$.

From the above calculations, obtained that $b_1 = \frac{\left(f(x), \sin x\right)}{\left(\sin x, \sin x\right)} = 0.$

Step-7

Now find the value of the coefficient a_1 .

First compute the inner product $(f(x), \cos x)$.

$$(f(x),\cos x) = \int_{-\pi}^{\pi} f(x)\cos x \, dx$$

$$= \int_{-\pi}^{\pi} \sin 2x \cos x \, dx \qquad \text{Use } f(x) = \sin 2x$$

$$= 0 \qquad \qquad \begin{cases} \text{For any odd function } f, \text{ i.e. } f(-x) = -f(x), \\ \int_{-a}^{a} f(x) \, dx = 0. \\ \text{Here, } \sin 2x \cdot \cos x \text{ is an odd function.} \end{cases}$$

Therefore, $(f(x), \cos x) = 0$.

Step-8

Now compute the inner product $(\cos x, \cos x)$.

$$(\cos x, \cos x) = \int_{-\pi}^{\pi} (\cos x)(\cos x) dx$$

$$= \int_{-\pi}^{\pi} \cos^2 x \, dx$$

$$= 2 \int_{0}^{\pi} \cos^2 x \, dx \qquad \text{Here, } \cos^2 x \text{ is an even function.}$$

$$= 2 \int_{0}^{\pi} \left(\frac{1 + \cos 2x}{2} \right) dx \qquad \text{Use } \cos 2x = 2 \cos^2 x - 1$$

$$= \int_{0}^{\pi} (1 + \cos 2x) dx$$

$$= \left[x + \frac{\sin 2x}{2} \right]_{0}^{\pi}$$

$$= \pi + \frac{\sin 2\pi}{2} - 0 - \frac{\sin 2(0)}{2}$$

$$= \pi - 0$$

$$= \pi$$

Therefore, $(\cos x, \cos x) = \pi$.

Step-9

Substitute the known values in the formula
$$a_1 = \frac{\left(f(x), \cos x\right)}{\left(\cos x, \cos x\right)}$$

$$a_1 = \frac{\left(f(x), \cos x\right)}{\left(\cos x, \cos x\right)}$$
$$= \frac{0}{\pi}$$
$$= 0$$

Substitute the values of a_1 and b_1 in the function $a_1 + b_1 x$.

$$a_1 + b_1 x = 0 + 0x$$
$$= 0$$

Hence, the closest straight line to the function f is 0 + 0x = 0.