We Claim:

1. A poly-o-hydroxyamide having a formula I

$$A = \left(-\frac{C}{C} - Y^{\frac{1}{2}} - \frac{C}{C} \right)_{a} \left(-\frac{N}{H} - \frac{Z^{\frac{1}{2}} N}{C} - Y^{\frac{2}{2}} - \frac{C}{C} \right)_{b} \left(-\frac{N}{H} - \frac{Z^{\frac{3}{2}} N}{C} - Y^{\frac{3}{2}} - \frac{C}{C} \right)_{c} \left(-\frac{N}{H} - \frac{Z^{\frac{3}{2}} N}{C} - \frac{N}{A} -$$

FORMULA I

wherein:

 Y^2 is

 Y^1 and Y^3 , in each case independently of one another, are a substituent selected from the group consisting of:

 Z^1 , Z^2 , and Z^3 , in each case independently, are substituents selected from the group consisting of:

A, if at least one of a=0 and d=1, is a substituent selected from the group consisting of:

A, if at least one of a=1 and d=0, is a substituent selected from the group consisting of:

*-OH

*-O-
$$\frac{C}{H_2}$$
 $\frac{1}{g}$ CH_3

*-O- $\frac{C}{H_2}$ $\frac{1}{H}$ CH_2

*-NH₂

E is a substituent selected from the group consisting of:

W is a substituent selected from the group consisting of:

T is a substituent selected from the group consisting of:

Q is

 ${\ensuremath{\mbox{R}}}^1$ is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$ f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$

 R^2 is a substituent selected from the group consisting of -H, -CF3, -OH, -SH, -COOH, -N(R^5)2, an alkyl group, an aryl group, a heteroaryl group and

 ${\ensuremath{\mathsf{R}}}^3$ is a substituent selected from the group consisting of:

R4 is a substituent selected from the group consisting of:

$$\star - H \qquad \star - C \xrightarrow{C} CH_3 \qquad \star - CF_2 \xrightarrow{f} CF_3$$

$$\star - C \xrightarrow{H_2} CF_3$$

 R^5 is a substituent selected from the group consisting of an alkyl, an aryl, and a heteroaryl radical;

a is an integer from 0 to 1;

b is an integer from 1 to 200;

c is an integer from 0 10 200;

d is an integer from 0 to 1;

e is an integer from 0 to 10;

f is an integer from 0 to 10;

g is an integer from 0 to 10;

h is an integer from 1 to 10;

n is an integer from 0 to 1; and

x is an integer from 0 to 10 if R^3 is $-CH_2-$.

- 2. The poly-o-hydroxyamide according to claim 1, wherein b is an integer from 5 to 50.
- 3. The poly-o-hydroxyamide according to claim 1, wherein c is an integer from 0 to 50.
- 4. The poly-o-hydroxyamide according to claim 1, wherein n equals 1.
- 5. The poly-o-hydroxyamide according to claim 1, wherein said hydroxyamide of said formula I includes repeating units, said repeating units being thermally labile and liberating a gas on heating.
- 6. The poly-o-hydroxyamide according to claim 5, wherein said thermally labile repeating units are formed as a block in said poly-o-hydroxyamide of said formula I.
- 7. A polybenzoxazole obtained from the poly-o-hydroxyamide according to claim 1.
- 8. A process for preparing a poly-o-hydroxyamide having a formula I

$$A = \left(-\frac{C}{C} - \frac{1}{2} - \frac{C}{C} - \frac{1}{2$$

FORMULA I

wherein:

 Y^2 is

 Y^1 and Y^3 , in each case independently of one another, are a substituent selected from the group consisting of:

 Z^1 , Z^2 , and Z^3 , in each case independently, are substituents selected from the group consisting of:

A, if at least one of a=0 and d=1, is a substituent selected from the group consisting of:

*-H

*-C

$$C = CH_2$$

*

 $C = CH_2$

A, if at least one of a = 1 and d = 0, is a substituent selected from the group consisting of:

*-OH

*-O-
$$\frac{C}{H_2}$$
 GCH3

*-NH2

*

E is a substituent selected from the group consisting of:

W is a substituent selected from the group consisting of:

T is a substituent selected from the group consisting of:

Q is

R¹ is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$ f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$

 R^2 is a substituent selected from the group consisting of -H, -CF3, -OH, -SH, -COOH, -N(R^5)2, an alkyl group, an aryl group, a heteroaryl group and

 ${\ensuremath{R}^3}$ is a substituent selected from the group consisting of:

R4 is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} CF_2 \\ H_2 \end{pmatrix}$ f CF_3

R⁵ is a substituent selected from the group consisting of an alkyl, an aryl, and a heteroaryl radical;

- a is an integer from 0 to 1;
- b is an integer from 1 to 200;
- c is an integer from 0 10 200;
- d is an integer from 0 to 1;
- e is an integer from 0 to 10;
- f is an integer from 0 to 10;
- g is an integer from 0 to 10;
- h is an integer from 1 to 10;

n is an integer from 0 to 1; and

x is an integer from 0 to 10 if R^3 is $-CH_2-$;

the process which comprises:

providing a monomer having a formula II

Formula II;

reacting the monomer with at least one of a dicarboxylic acid and an activated dicarboxylic acid derivative having a formula III

Formula III

wherein:

L is selected from the group consisting of a hydroxyl group and an activating group, and

Y is selected from the group consisting of Y^1 , Y^2 , and Y^3 .

- 9. The process according to claim 8, which further comprises including a base during the reacting step.
- 10. A process for preparing a polybenzoxazole, which comprises heating a poly-o-hydroxyamides having a formula I

$$A = \left(\begin{array}{c} O \\ C \\ \end{array} \right) = \left(\begin{array}{c} O \\ A \\$$

FORMULA I

wherein:

 Y^2 is

 Y^1 and Y^3 , in each case independently of one another, are a substituent selected from the group consisting of:

 Z^1 , Z^2 , and Z^3 , in each case independently, are substituents selected from the group consisting of:

A, if at least one of a=0 and d=1, is a substituent selected from the group consisting of:

A, if at least one of a=1 and d=0, is a substituent selected from the group consisting of:

E is a substituent selected from the group consisting of:

W is a substituent selected from the group consisting of:

T is a substituent selected from the group consisting of:

Q is

 ${\ensuremath{\mathtt{R}}}^{1}$ is a substituent selected from the group consisting of:

 R^2 is a substituent selected from the group consisting of -H, -CF_3, -OH, -SH, -COOH, -N(R^5)_2, an alkyl group, an aryl group, a heteroaryl group and

R³ is a substituent selected from the group consisting of:

 ${\ensuremath{\mathtt{R}}}^4$ is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} CF_2 \\ F_2 \end{pmatrix}$ f CF_3

 R^5 is a substituent selected from the group consisting of an alkyl, an aryl, and a heteroaryl radical;

a is an integer from 0 to 1;

b is an integer from 1 to 200;

c is an integer from 0 10 200;

d is an integer from 0 to 1;

e is an integer from 0 to 10;

f is an integer from 0 to 10;

g is an integer from 0 to 10;

h is an integer from 1 to 10;

n is an integer from 0 to 1; and

x is an integer from 0 to 10 if R^3 is $-CH_2-$.

- 11. An electronic component, comprising a dielectric including a polybenzoxazole according to claim 7.
- 12. A process for producing an electronic component including a dielectric made of a polybenzoxazole, which comprises:

preparing a solution of a poly-o-hydroxyamide having a
formula I in a solvent;

$$A = \left(-\frac{O}{C} - Y^{\frac{1}{2}} - \frac{O}{C} - \frac{O}{A} - \frac{O}{A} - \frac{O}{C} - \frac{O}{A} - \frac{$$

FORMULA I

wherein:

 Y^2 is

 Y^1 and Y^3 , in each case independently of one another, are a substituent selected from the group consisting of:

 Z^1 , Z^2 , and Z^3 , in each case independently, are substituents selected from the group consisting of:

A, if at least one of a=0 and d=1, is a substituent selected from the group consisting of:

A, if at least one of a=1 and d=0, is a substituent selected from the group consisting of:

*-OH *-O
$$\frac{C}{H_2} = CH_3$$
 *-O $\frac{C}{H_2} = CH_2$

*-NH₂ *-NH₂ - NH₂ - C $\frac{C}{H_2} = CH_2$

*-NH₂ *-NH₂ - NH₂ - C $\frac{C}{H_2} = CH_2$

*-NH₂ *-NH₂ - NH₂ - C $\frac{C}{H_2} = CH_2$

E is a substituent selected from the group consisting of:

W is a substituent selected from the group consisting of:

T is a substituent selected from the group consisting of:

Q is

 ${\ensuremath{\mathtt{R}}}^1$ is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$ f CH_3 *- $\begin{pmatrix} C \\ H_2 \end{pmatrix}$

 R^2 is a substituent selected from the group consisting of -H, -CF3, -OH, -SH, -COOH, -N($R^5)_{\,2},$ an alkyl group, an aryl group, a heteroaryl group and

 ${\ensuremath{\mbox{R}}^3}$ is a substituent selected from the group consisting of:

R4 is a substituent selected from the group consisting of:

*-H *
$$\left(\begin{array}{c} C \\ H_2 \end{array}\right)_{f} CH_3$$
 * $\left(\begin{array}{c} CF_2 \\ \end{array}\right)_{f} CF_3$

R⁵ is a substituent selected from the group consisting of an alkyl, an aryl, and a heteroaryl radical;

a is an integer from 0 to 1;

b is an integer from 1 to 200;

c is an integer from 0 10 200;

d is an integer from 0 to 1;

e is an integer from 0 to 10;

f is an integer from 0 to 10;

g is an integer from 0 to 10;

h is an integer from 1 to 10;

n is an integer from 0 to 1; and

x is an integer from 0 to 10 if R^3 is $-CH_2-$;

applying the solution to a substrate;

evaporating the solvent to obtain a film;

heating the film to cyclize the poly-o-hydroxyamide of the formula I to give the polybenzoxazole according claim 7;

structuring the film to obtain a resist structure having trenches and contact holes formed therein;

depositing a conductive material on the resist structure to fill the trenches and the contact holes with the conductive material; and

removing an excess of the conductive material.

13. A process for producing an electronic component, which comprises:

preparing a solution of a poly-o-hydroxyamide having a formula I in a solvent;

$$\mathbf{A} = \left(\begin{array}{c} O \\ C \\ \end{array} \right) = \left(\begin{array}{c} O \\ H$$

FORMULA I

wherein:

 Y^2 is

 Y^1 and Y^3 , in each case independently of one another, are a substituent selected from the group consisting of:

 Z^1 , Z^2 , and Z^3 , in each case independently, are substituents selected from the group consisting of:

A, if at least one of a=0 and d=1, is a substituent selected from the group consisting of:

A, if at least one of a=1 and d=0, is a substituent selected from the group consisting of:

E is a substituent selected from the group consisting of:

W is a substituent selected from the group consisting of:

T is a substituent selected from the group consisting of:

Q is

 ${\ensuremath{\mathtt{R}}}^1$ is a substituent selected from the group consisting of:

 R^2 is a substituent selected from the group consisting of -H, -CF_3, -OH, -SH, -COOH, -N(R^5)_2, an alkyl group, an aryl group, a heteroaryl group and

 ${\ensuremath{\mathsf{R}}}^3$ is a substituent selected from the group consisting of:

 ${\ensuremath{\mathtt{R}}}^4$ is a substituent selected from the group consisting of:

*-H *-
$$\begin{pmatrix} C \\ H_2 \end{pmatrix}$$
 f CH_3 *- $\begin{pmatrix} CF_2 \\ H_2 \end{pmatrix}$ f CF_3

R⁵ is a substituent selected from the group consisting of an alkyl, an aryl, and a heteroaryl radical;

- a is an integer from 0 to 1;
- b is an integer from 1 to 200;
- c is an integer from 0 10 200;
- d is an integer from 0 to 1;
- e is an integer from 0 to 10;
- f is an integer from 0 to 10;
- g is an integer from 0 to 10;
- h is an integer from 1 to 10;

n is an integer from 0 to 1; and

x is an integer from 0 to 10 if R^3 is $-CH_2-$

applying the solution to a substrate having a surface with trenches and contact holes formed therein;

disposing metallic structures on the surface; the trenches and contact holes being disposed between the metallic structures;

evaporating the solvent to fill the trenches and contact holes with the poly-o-hydroxyamide of the formula I; and

heating the substrate to cyclize the poly-o-hydroxyamide of the formula I to the polybenzoxazole according to claim 6.

- 14. The process according to claim 12, which further comprises adding a porogen to the solution of the poly-o-hydroxyamide of the formula I.
- 15. The process according to claim 13, which further comprises adding a porogen to the solution of the poly-o-hydroxyamide of the formula I.