

AP4B – Projet en Java – 14 janvier 2022

Sim Power

AZINCOURT Vincent DUBOIS Jérôme GUILLEUX Céleste

Simulation de façon ludique l'acheminement en électricité de la zone de jeu

Règles

La zone de jeu est une grille composée de cases présentant des caractéristiques propres (construction, pollution, climat...). Donc plusieurs états pour une case :

Туре	Nom
Case vide	Plaine
Construction	Barrage, Champs de panneau solaires, Champs d'éoliennes, Centrale nucleaire, Mine de charbon, Zone d'habitation
Reserve	Cours d'eau, Réserve naturelle de charbon
État critique/Accident de la case	Zone inondée

Règles

- Les cases de ressources sont aléatoires
- Incident tempête perturbe le déroulement de la partie et modifie les paramètres météorologiques(vent et soleil)
- Pénalités si la satisfaction des habitants n'est pas maximisée
- Règle de fin de jeu : Si la satisfaction globale est réduite à 0, le joueur perd: Game over !

Satisfaction globale

- Satisfaction locale de l'habitant :
 - ▶ Entre -125 à 125.
 - Pollution élevée = beaucoup d'effets/impacts (satisfaction)
 - Pollution faible = peu d'impact (satisfaction)
 - Vent = effets mineurs (satisfaction)

- Satisfaction globale :
 - ► La moyenne de la satisfaction locale de chaque habitation
 - ► Le prix de l'électricité
 - La subvention des besoins énergétiques

Diagramme de cas d'utilisation

Diagramme de classe du modèle

Diagramme de classe du contrôleur

Demonstration

Description

- L'interface graphique de l'application a été décomposée en 5 fichiers FXML:
 - "VueCase.fxml": affiche une case
 - "VueActionCase.fxml": affiche les actions à effectuer sur un case sélectionnée
 - "VueMenuChoixConstruction.fxml": affiche un menu pour choisir une installation à construire sur une case
 - "VueZoneDeJeu.fxml": vue principale qui affiche les cases, les actions disponibles, et les informations sur le jeu
 - "VueGame.fxml": annonce la fin de la partie + recommencer une nouvelle

Cases:

info-bulle avec les valeurs de la météo et de la pollution.

► Si clic, la case est sélectionnée (avec une bordure jaune)

- Menu latéral de modification de la case sélectionnée:
 - Affichage du libellé de la case et une description
 - Bouton "construire"
 - ouvre le menu de construction
 - Bouton "détruire"
 - supprime l'installation (s'il y en a une)

Menu de construction :

- Cliquer sur une installation -> affiche son libellé et description
- Bouton "confirmer" -> affiche une alerte (seconde confirmation)
 - > Si le joueur valide alors le bâtiment est créé et le menu disparaît
- Bouton "annuler"
 - Disparition du menu

12

- Zone de jeu:
 - ► Affichage des informations globales sur la partie
 - Affichage des cases
 - Slider qui permet de modifier le prix de l'électricité

"Game over"

- ▶ Bouton "Nouvelle partie" -> crée une nouvelle zone de jeu
- ► Bouton "Quitter" -> ferme l'application

15

Conclusion

Conception de diagrammes UML

De nouvelles bases notamment sur JavaFX

- Amélioration :
 - ► Améliorer l'interface graphique
 - Possibilité de sauvegarder et charger des parties