Improving Generalizability in Implicitly Abusive Language Detection with Concept Activation Vectors

저자: Isar Nejadgholi, Kathleen C. Fraser, Svetlana Kiritchenko

발제자: 박채원

22-11-18

Abstract

- 끊임없이 변화하는 실제 적용 데이터에 대한 기계 학습 모델의 Robustness는 매우 중요
- 특히 인간의 웰빙에 영향을 미치는 문제에 대해선 더욱이 중요시 되기 때문에 욕설(abusive) 탐지 시스템은 정확성을 유지하기 위해 정기적으로 업데이트 되어야 함
- 일반적인 욕설 분류기가 도메인 외의 명시적(explicit) 욕설 감지는 신뢰할 수 있는 결과를 내지만 암시적(implicit) 욕설 감지엔 어려움이 있다는 것을 보임
- 컴퓨터 비전의 TCAV 방법을 기반으로 해석가능성 기술을 제안
 - 명시적, 암시적 욕설에 대한 모델의 민감도를 정량화
 - 또한 이를 사용하여 새로운 개념의 데이터에 대한 모델의 일반화 가능성을 설명
- 새로운 명확성(explicit) 측정 방법론 도입
- 암시적(implicit) 데이터를 이용한 증강을 통해 모델 강화 가능

Introduction

- 세가지 질문
 - 개념(concept)을 어떻게 텍스트로 공식화하는가?
 - 새로운 개념이 등장할 때 훈련된 분류기의 민감도를 어떻게 정량화(수치화) 하는가?
 - 분류기를 어떻게 신뢰할 수 있도록 업데이트 하는가?
- 소셜 미디어에서의 코로나 관련 아시아인 인종차별
 - 코로나가 예상치 못하게 발생함으로써 새로운 용어가 나타나고, 아시아 커뮤니티를 향한 증오 발언 강조됨
 - 이러한 새로운 이벤트가 특정 유형의 혐오 발언을 강화할 수는 있지만 문제의 근본인 경우는 드물다.
 - 즉 그러한 혐오는 사건 이전에도 존재하기 때문에 분류기가 이러한 표현을 아예 못잡지는 않는다.
- 이 연구에서 중요한 포인트
 - 텍스트가 명시적(직접적) 또는 암시적(간접적) 혐오를 표현하는지 여부
 - 암시적 혐오를 이해하기 위해서는 코로나와 같은 상황에 대한 사전 지식이 필요로 됨
 - 그렇기 때문에 사전 훈련된 분류기가 이러한 데이터를 다루기는 특히 어려움
- TCAV(Testing Concept Activation Vector)
 - 분류기가 특정 개념을 클래스와 연관 시키는지 여부를 설명하는 데 사용된다
 - 즉, 코로나 관련 아시안 차별 개념을 정의하고 분류기가 이를 positive(abusive)와 연관시키는지 묻는다.

Introduction

- 데이터 증강
 - 원본 데이터셋이 아닌 다른 소스의 데이터를 추가하여 훈련 데이터를 강화하는 과정을 지칭
 - 인간이 정의한 concept에 대한 민감도를 이용해 데이터 증강이 가능한가
 - 분류기를 업데이트할 때 분류기가 아직 민감하지 않은 개념의 데이터를 추가하는 데 중점을 두어야 함
- 기존 능동 학습 프레임워크 (Conventional active learning framework)
 - 분류 신뢰도가 낮은 데이터를 가장 유익한, 정보가 많은 데이터라고 제안
 - 그러나 신뢰할 수 있는 불확실성 추정치를 제공하지 못하는 심층 신경망의 무능력은 이 방법을 선택하길 어렵게 함
- 이 논문에서는 implicit한 데이터가 분류기를 업데이트하는 데 가장 유익하다고 제안
 - 하지만 명확성 정도를 측정할 수 있는 정량적 방법이 없기 때문에 명확성 수치화를 위해 TCAV를 제안하고 이를 효율적인 데이터 증강에 사용
- 기여
 - TCAV 프레임워크를 구현해 분류기의 민감도를 정량화
 - 분류기가 **명시적**인 코로나 관련 아시안 차별에 대해서는 잘 일반화(분류) 되지만, **암시적인** 인종 차별에 대해서는 일반화되지 않음을 보임
 - TCAV 방법을 통해 데이터 증강을 하는 방법 제안

Dataset

- 4개의 영어 데이터셋
 - Founta, wiki -> 코로나 이전 구축된 데이터
 - EA, CH -> 코로나 이후 구축된 데이터 (코로나 관련 아시안 인종차별을 대상으로 함)
- 이진화
 - 모든 데이터셋을 positive(abusive, hate)와 negative(other)로 이진화함

Dataset	Data	Positive Class	Negative Class	Number (%Pos:%Neg)		
	Source			Train	Dev	Test
Wikipedia Toxicity (<i>Wiki</i>) (Wulczyn et al., 2017)	Wikipedia comments	Toxic	Normal	43,737 (17:83)	32,128 (9:91)	31,866 (9:91)
Founta et al. (2018) dataset (Founta)	Twitter posts	Abusive; Hateful	Normal	62,103 (37:63)	10,970 (37:63)	12,893 (37:63)
East-Asian Prejudice (<i>EA</i>) (Vidgen et al., 2020)	Twitter posts	Hostility against an East Asian entity	Criticism of an East Asian entity; Counter speech; Discussion of East Asian prejudice; Non-related	16,000 (19:81)	1,200 (19:81)	2,800 (19:81)
COVID-HATE (<i>CH</i>) (Ziems et al., 2020)	Twitter posts	Anti-Asian COVID-19 hate; Hate directed to non-Asians	Pro-Asian COVID-19 counterhate; Hate-neutral	-	-	2,319 (43:57)

Dataset

- 어휘의 차이
 - 새로운 주제가 등장함에 따라 어휘가 바뀜
 - Founta와 wiki는 코로나 이전에 수집되었기 때문에 chinavirus, wuhanflu와 같은 단어를 포함하지 않으며, 관련 단어(exl 'china')의 빈도가 이후의 데이터와 다를 수 있다.
- 이를 확인하기 위해 각 데이터의 positive class(hate, abusive)에서 가장 빈번하게 사용되는 100개의 단어 추출
 - 각 데이터셋 간 겹침을 계산
- 1) 코로나 관련 단어 (COVID-related)
- 2) 일반적으로 비속하고 혐오스러운 단어 (Hateful)
- 3) 기타 모든 단어 (Other)
- 코로나 이후 데이터끼리, 코로나 이전 데이터 끼리 더 많은 단어를 공유

Datasets	Count	Shared Words
EA - CH	50	COVID-related (32%): ccp, 19, communist, pandemic, coronavirus, covid19, chinesevirus
		infected, covid, chinese, chinavirus, corona, wuhanvirus, wuhan, china, virus
		Hateful (0%)
		Other (68%): racist, came, want, country, calling, come, does, spread, like, amp, media
		eating, did, human, world, know, government, say, started, think, need, blame, evil, time
		people, don, new, let, news, stop, countries, just, spreading, make
Wiki - Founta	37	COVID-related (0%)
		Hateful (30%): *ss, b*tch, id*ot, n*ggas, d*ck, f*cking, f*ck, sh*t, hell, hate, stupid
		Other (70%): oh, dont, want, way, going, come, does, like, look, life, did eat, sex, know
		say, think, man, need, time, people, said, stop, really, just, make, tell
Founta - EA	19	COVID-related (0%)
		Hateful (0%)
		Other (100%): racist, want, calling, come, does, like, did, world, know, say, think, need
		time, people, trying, let, stop, just, make
Wiki - EA	15	COVID-related (0%)
		Hateful (0%)
		Other (100%): people, want, did, say, think, good, need, come, does, stop, just, know, like
		make, time
Founta - CH	35	COVID-related (0%)
		Hateful (23%): *ss, b*tch, f*cking, f*ck, sh*t, hate, stupid, f*cked
		Other (77%): racist, want, way, going, calling, come, does, like, got, look, did, eat, world
		know, say, think, man, trump, need, time, people, said, let, stop, really, just, make
Wiki - CH	33	COVID-related (0%)
		Hateful (27%): *ss, b*tch, f*cking, f*ck, sh*t, hate, stupid, shut, kill
		Other (73%): want, way, going, come, does, like, look, did, eat, right, know, die, say, think
		man, need, time, people, don, said, stop, really, just, make

Dataset

- CH와 일반 데이터가 EA와 일반 데이터보다 더 많은 단어 공유
 - CH에 더 많은 명시적 욕설이 포함되어 있을 것이다.
- 명시적 정도에 대한 라벨링
 - CH와 EA의 positive 데이터에 규칙을 사용해 추가적으로 라벨링 진행
 - 코로나에 대한 지식 없이도 욕설로 식별될 수 있는 데이터는 명시적
 - 나머지는 암시적으로 주석
 - CH는 85%가 명시적이지만 EA는 8%만이 명시적으로 분류됨
 - CH와 EA가 코로나 관련 어휘를 공유하지만 명시성 측면에서는 매우 다름
 - CH 명시적 데이터를 많이 포함
 - EA 암시적 데이터를 많이 포함

Cross-Dataset Generalization

- 새로운 도메인의 욕설 데이터를 통해 사전 훈련된 분류기의 견고성을 평가
- 새로운 도메인의 암시적 및 명시적 혐오에 대한 분류기의 일반화 가능성에 대해 어휘 변경의 영향을 관찰
- Wiki-exp는 explicit general abuse와 randomly sampled negative 데이터로 학습된 분류기
- Wiki와 founta의 train 데이터의 pos-neg 비율이 다르지만 성능은 비슷
- CH는 데이터 크기가 작지만 성능이 잘 나옴
- 혐오 탐지의 교차 데이터셋 일반화가 종종 클래스 크기 보다는 훈련 및 테스트 레이블이 정의 및 샘플링 전략의 호환성에 의해 좌우 된다고 주장

Domain	Train Set	AUC		F1-score		
		EA	СН	EA	CH	
COVID	EA	0.94	0.82	0.74	0.66	
	CH	0.86	-	0.62	-	
	Founta	0.69	0.73	0.29	0.65	
pre-COVID	Wiki	0.64	0.74	0.27	0.69	
	Wiki-exp	0.58	0.71	0.15	0.56	

- 일반 분류기들이 CH(명시적)에는 비교적 잘 수행되지만 EA에 대해서는 어려움을 겪음
- 따라서 일반 분류기는 새 도메인의 **암시적 남용**을 학습하도록 업데이트 되어야 함

Sensitivity to Implicit & Explicit abusive to Explain Generalizability

- 일반화는 암시적 및 명시적 혐오에 대해 별도로 평가되어야 함
 - 하지만 별도의 암시적 및 명시적 테스트셋을 구축하는 데는 너무 많은 비용이 듬
- TCAV 제안
 - 적은 수의 데이터만을 이용해 명시적 및 암시적 코로나 관련 인종차별에 대한 분류기의 민감도 계산
 - 사용자가 선택한 개념이 학습 중에 특성으로 직접 사용되지 않았더라도 예측에 얼마나 중요한지를 측정하기 위한 학습 후 해석 방법이다.
 - 개념은 개념의 예시들로 정의된다
 - Ex) zebra 클래스와 관련된 시각적 개념으로 stripe를 제안, stripe가 포함된 이미지를 수집해 stripe개념을 정의
- 언어 기반 TCAV
 - 개념(concept) -> 수동으로 개념 예시들을 선택되고 이에 개념 주석을 달아줌
 - 이렇게 선택된 예시들의 표현을 평균화하여 개념을 벡터로 나타냄
 - 이를 통해 개념 활성화 벡터(CAV)는 분류기의 활성화 공간에서 개념을 표현하도록 학습됨
 - 그리고 방향 도함수를 사용해, 개념의 방향을 향한 입력 변화에 대한 예측 민감도를 계산
 - 개념의 방향을 바꾸는 입력의 예측 민감도

Sensitivity to Implicit & Explicit abusive to Explain Generalizability

- RoBERTa 기반 분류기에 TCAV 절차 적용
 - K개의 단어, n차원 입력공간
 - 입력 텍스트 $x \in \mathbb{R}^{k \times n}$
 - RoBERTa 인코더를 다음과 같이 고려 $f_{emb}: \mathbb{R}^{k imes n}
 ightarrow \mathbb{R}^m$
 - 입력 텍스트를 RoBERTa 표현([CLS] 토큰에 대한 표현)에 매핑 $r \in \mathbb{R}^m$
 - 각 컨셉 C 마다 예시 N_c 개를 수집하고 이를 RoBERTa 표현에 매핑 $r_C^j, j=1,...,N_C$
 - 랜덤하게 선택된 컨셉 예시 N_v 개의 RoBERTa 표현을 평균내서 CAV v_C^p 를 계산 ($N_v < N_c$)

$$v_C^p = \frac{1}{N_v} \sum_{j=1}^{N_v} r_C^j \quad p = 1, .., P$$
 (1)

- v_C^p (개념)에 대한 Positive class의 개념적 민감도는 도함수로 계산 가능하다
 - h는 RoBERTa의 표현을 positive 클래스의 logit값으로 매핑하는 함수

$$S_{C,p}(x) = \lim_{\epsilon \to 0} \frac{h(f_{emb}(x) + \epsilon v_C^p) - h(f_{emb}(x))}{\epsilon}$$
$$= \nabla h(f_{emb}(x)) \cdot v_C^p \tag{2}$$

Sensitivity to Implicit & Explicit abusive to Explain Generalizability

- 수학식 2에서 $S_{C,p}(x)$ 는 클래스 로짓의 변화를 측정한다.
- 일련의 입력 X에 대해서 개념 C 방향의 작은 변화에 대한 입력(X)의 비율로 TCAV score를 계산

$$TCAV_{C,p} = \frac{|x \in X : S_{C,p}(x) > 0|}{|X|}$$
 (3)

- 1에 가까운 TCAV 점수는 대부분의 입력 예에서 로짓값이 증가함을 나타냄
- 식 3은 개념에 대한 점수 분포를 정의
- 개념에 대한 분류기의 전반적인 민감도를 결정하기 위해 이 분포의 평균 및 표준 편차를 계산

Classifier's Sensitivity to a Concept

- Nc=100의 Concept C를 정의하고 6개의 개념으로 실험
 - 베이스라인을 위해 일관성 없는 개념을 형성하기 위한 랜덤 트윗
 - 코로나 관련 키워드를 포함하는 무작위 트윗을 사용해 혐오스럽지 않은 코로나 관련 트윗
 - EA의 dev와 CH에서 명시적인 욕설로 라벨링 된 트윗 선택
 - EA에서의 암시적인 아시안 차별 개념
 - CH에서의 암시적인 아시안 차별 개념
 - 두개의 서로 다른 데이터셋에서 예제를 선택하는 것이 민감도에 영향을 미치는지 여부를 평가
 - Founta dev set에서 일반적인 혐오 발언 트윗

Non-coherent concept: random tweets collected with stop words as queries

COVID-19: tweets collected with words *covid*, *corona*, *covid-19*, *pandemic* as query words

Explicit anti-Asian abuse: tweets labeled as explicit from *EA* dev and *CH*

Implicit abuse (EA): tweets labeled as implicit from *EA* dev **Implicit abuse (CH):** tweets labeled as implicit from *CH* **Generic hate:** tweets from the *Hateful* class of *Founta* dev

Classifier's Sensitivity to a Concept

• 실험

- 각 개념에 대해 P=1000 CAV를 계산
- CAV는 랜덤하게 선택된 개념 예시 Nv=5개의 평균이다.
- 2000개의 무작위 트윗을 입력 예제로 사용
- 각 데이터셋으로 학습된 분류기에 대한 positive class의 각 개념 TCAV 점수 분포의 평균과 표준 편차를 나타냄

	Concept							
Classifier	non-coherent	COVID-19	explicit anti-Asian	implicit (EA)	implicit (CH)	generic hate		
EA	0.00 (0.00)	0.00 (0.00)	0.90 (0.26)	0.87 (0.30)	0.70 (0.42)	0.00 (0.00)		
СН	0.00 (0.00)	0.00 (0.00)	-	0.35 (0.44)	-	0.21 (0.12)		
Founta	0.00 (0.02)	0.00 (0.01)	0.92 (0.22)	0.00 (0.06)	0.19 (0.32)	0.60 (0.44)		
Wiki	0.00 (0.03)	0.00 (0.05)	0.96 (0.16)	0.00 (0.03)	0.32 (0.44)	0.75 (0.41)		
Wiki-exp	0.00 (0.05)	0.00 (0.07)	0.78 (0.12)	0.00 (0.02)	0.00 (0.05)	0.59 (0.40)		

- 일관성 없는 개념과 코로나 관련 개념에 대해 모든 TCAV가 0임 -> 이 개념을 positive와 연관시키지 않음
- TCAV의 0 점수는 학습 데이터에 해당 개념이 포함되지 않았기 때문일 수도 있다. (Founta의 COVID-19 관련)
- 1에 가까운 TCAV 점수는 positive 예측을 위한 개념의 중요성을 나타냄
- 이러한 TCAV score가 일반화 성능을 설명할 수 있는가?

Classifier's Sensitivity to a Concept

- 특정 개념에 대한 평균 TCAV 점수가 일관성 없는 임의 개념의 평균 TCAV 점수와 크게 다른 경우 분류기가 해당 개념에 민감한 것(sensitive)으로 간주
- 실험 결과
 - 일반 분류기가 명시적 코로나 관련 욕설에만 민감하다
 - 분류기가 새로운 도메인의 명시적 욕설에 더 잘 일반화 됨을 의미
 - 명시적인 코로나 관련 데이터(CH)로 훈련된 분류기는 암시적 욕설 개념에 민감하지 않음
 - 명시적, 암시적 코로나 관련 욕설 개념에 민감한 분류기는 EA 분류기 뿐이다.
 - 코로나 관련 데이터셋에 훈련된 분류기는 광범위한 혐오를 다루는 일반적인 혐오 개념에 민감하지 않다.
- 이러한 결과는 도메인 내외적으로 더 나은 일반화 가능성을 위해 훈련 데이터에 암시적인 욕설 데이터를 포함하는 것의 중요성을 강조한다.

Degree of Explicitness

- 일반 분류기를 업데이트할 때, 암시적 데이터가 더 많은 정보를 제공하고 데이터 증강을 가능케 함
- 정량적 방법 제공
 - TCAV 방법론을 확장해 문장의 DoE(명시성 정도)를 추정함
 - DoE는 **명시적** 개념에 하나의 **명시적** 데이터를 추가해도 평균 TCAV 점수(1에 가까움)에 영향을 미치지 않는다는 아이디어를 기반으로 함.
 - 하지만 추가 데이터가 암시적이라면 아마 모든 CAV의 방향이 변경되고 수정된 개념에 대한 분류기의 민감도가 감소할 것이다.

$$v_{new}^p = \frac{1}{N_v} (\sum_{j=1}^{N_v - 1} r_C^j + r_{new}), \quad p = 1, ..., P$$

- 데이터 하나를 추가하고 각각의 평균 TCAV 점수를 계산
 - 만약 이 데이터가 명시적이라면 v는 explicit 개념의 표현으로 여겨지고, 평균 TCAV 점수는 1에 가깝게 유지된다.
 - 하지만 이 데이터가 덜 명시적일수록(암시적일수록) 평균 점수가 떨어진다.

DoE analysis on COVID-related abusive data

- 암시적 및 명시적 욕설 데이터를 분류하는 측면에서의 DoE의 유용성 검증 $(N_v == 3)$
- CH 및 EA dev 셋에서 명시적 아시안 차별 개념을 정의하는 데 사용된 예제를 제외하고 암시적 및 명시적 예제의 DoE 점수 계산
- 낮은 분류 신뢰도는 모델이 데이터를 올바르게 예측하는 데 어려움을 겪고 있음을 나타낼 수 있으므로 암시적 데이터는 명시적 데이터보다 분류 신뢰도가 낮을 것으로 예상할 수 있음
- 명시적 데이터와 암시적 데이터의 '분류 신뢰도'는 크게 차이나지 않음
- 그에 반해 'DoE'는 두 그래프가 구분됨
- 즉 DoE가 분류 신뢰도보다 암시적 데이터와 명시적 데이터를 분리하는 데 더 효과적

Data Augmentation with DoE score

- DoE 점수로 데이터 증강
 - 새로운 도메인의 욕설을 포함하기 위해 일반 분류기가 증강 데이터셋으로 재훈련되어야 하는 것을 고려
 - 앞에서의 실험등을 통해 암시적 데이터가 분류기를 업데이트하는 데 더욱 유익하다는 가설을 고려함
 - DoE 기반 증강 방법을 설명하고 이를 분류 신뢰도 기반 증강 방법과 비교

• 실험

- 일반적인 Wiki분류기를 사용해 이 분류기가 코로나 관련 아시안 혐오 데이터를 처리할 수 있도록, 원래 wiki 학습셋을 보강하기 위해 **EA 학습셋**의 작지만 충분한 일부를 찾는다.
- EA 훈련 셋의 모든 데이터에 대한 DoE 및 신뢰도 점수를 계산한다
- 그 중 wiki 학습 셋에, 가장 낮은 DoE 점수를 갖는 N개의 예를 더해준다.
 - N은 1k에서 6k까지 다양함 (1k씩)
- 증강 데이터 크기가 6k가 되면 wiki 테스트 셋의 분류기 성능이 두 기술 모두에서 떨어짐
- 또한 증강 데이터셋의 크기가 증가함에 따라 두 방법이 동일한 성능으로 수렴됨

Data Augmentation with DoE score

 아래 그림은 Wiki 테스트셋 및 EA 테스트셋에서 DoE 및 신뢰도 기반 확대 방법을 사용해 업데이트 된 분류기의 f1 점수를 보여줌

- 검은색 선은 베이스라인을 의미 (기존 Wiki 데이터로 학습 후 각 테스트셋을 평가한 성능)
- EA만이 증강에 사용되기 때문에 이 데이터셋의 분류기를 평가해 증강 학습셋의 최적의 크기를 찾아 가장 성능이 좋은 분류기로 CH를 평가한다.
- 효율적인 증강이 wiki에서는 성능을 유지하고 EA 테스트셋에서는 허용 가능한 결과에 도달해야한 다고 예상

Data Augmentation with DoE score

- DoE는 새로운 도메인의 혐오를 학습하는 데 더 좋음
 - EA 데이터셋에서 DoE는 N=5k를 제외하고 모든 N에 대해 신뢰기반 증강 방법보다 더 나은 결과를 얻는다.
- DoE는 기존 데이터셋의 성능을 더 잘 유지함
 - 모든 증강 크기에 대해 DoE 증강 분류기의 성능은 기준선에서 2% 이내로 유지되는 반면, 신뢰 기반 증강의 경우 최대 6%까지 소함
- DoE가 전반적으로 더 좋음
 - 옆의 표는 두가지 증강방법으로 달성한 최상의 결과를 나타냄
 - DoE가 이 데이터셋에 대해서도 더 좋은 성능을 보임
 - 또한 데이터 증강 전후에 분류기의 출력을 질적 평가함
 - 명시적 혐오 발언은 두 경우에 모두 잘 분류됨
 - 하지만 많은 암시적 데이터는 재학습된 분류기에서만 옳게 분류됨
 - "f*ck you china and your chinese virus" -> 명시적
 - "it is not covid 19 but wuhanvirus" -> 암시적

		F1-score				AUC			
Method	Aug. set	EA	CH	Wiki	EA	СН	Wiki		
DoE	3K EA	0.61	0.73	0.82	0.81	0.78	0.96		
Conf.	4K EA	0.54	0.71	0.79	0.69	0.75	0.94		
Merging	EA	0.58	0.72	0.78	0.72	0.75	0.94		
baseline	-	0.27	0.69	0.82	0.64	0.74	0.96		

Conclusion

- 실제 데이터가 발전함에 따라 학습된 모델이 새로운 데이터에 일반화 됐는지 확인되어야 함
- 민감도를 정량화(수치화)하기 위해 TCAV 도입
 - 이를 사용해 코로나 이전 데이터로 학습된 혐오 분류기의 일반화를 명시적 및 암시적 코로나 관련 아시안 혐오 와 비교
- 새로운 도메인에 대한 일반화 가능성을 개선하기 위해 민감도 기반 데이터 증강 접근 방식 제안
 - 가장 유익한 샘플은 '새로운 도메인의 암시적인 데이터' 이다.
- 최적의 개념을 선택하기 위한 전략은 향후 탐색되어야함
- 혐오 탐지뿐만 아니라 감성분석과 같은 다른 NLP에도 적용될 수 있다.
- 언어진화 관점에서 분류기의 행동을 모니터링하고 설명하는 것은 시간이 지날수록 중요해질 것이다.