



# **Databases in Astronomy**



### What is a database?

Database: organized collection of data.

Database software: application specifically designed around handling data.

Database Management System (DBMS): Also provides other things such as a privilege system, instrumentation for performance monitoring, multi-user support, an API, etc.

Relational Database: Database that organizes data into tables that "relate" to each other through keys, motivated by prior popular methods of network and hierarchical requiring rebuilding as the model changed



# Physical limitations of data access

|                                     | Nanoseconds | in ms     | 3 Seconds                  |  |
|-------------------------------------|-------------|-----------|----------------------------|--|
| execute typical instruction         | 1           | 0.000001  | 3 million instruction      |  |
| fetch from L1 cache memory          | 0.5         | 0.0000005 | 6 million fetches          |  |
| branch misprediction                | 5           | 0.000005  | 600 million mispredictions |  |
| fetch from L2 cache memory          | 7           | 0.000007  | 428.5 million fetches      |  |
| Mutex lock/unlock                   | 25          | 0.000025  | 120 Million locks          |  |
| fetch from main memory              | 100         | 0.0001    | 30 million fetches         |  |
| send 2K bytes over 1Gbps network    | 20,000      | 0.02      | 150 thousand 2k bytes      |  |
| read 1MB sequentially from memory   | 250,000     | 0.25      | 12000 MB                   |  |
| fetch from new disk location (seek) | 8,000,000   | 8         | 375 seeks                  |  |
| read 1MB sequentially from disk     | 20,000,000  | 20        | 150 MB                     |  |
| send packet US to Europe and back   | 150,000,000 | 150       | 20 packets                 |  |

ref: <a href="http://norvig.com/21-days.html#answers">http://norvig.com/21-days.html#answers</a>, Peter Norvig, Director of Research at Google



# Given an object table with 200 columns and 4 billion rows, here are theoretical performance times only for disk in a row store database

|                   | Basic Hard Disk |           | Mediur    | Medium class SSD |            | Enterprise SSD |  |
|-------------------|-----------------|-----------|-----------|------------------|------------|----------------|--|
|                   | Metric          | Unit      | Metric    | Unit             | Metric     | Unit           |  |
| Disk Read         | 120             | mb/s      | 500       | mb/s             | 2800       | mb/s           |  |
| Full table scan   | 51657           | s         | 12398     | s                | 2214       | s              |  |
| Total Time        | 861             | min       | 207       | min              | 37         | min            |  |
| Rows in 3 s       | 232,300         | rows      | 967,916   | rows             | 5,420,331  | rows           |  |
| Rows in 10 s      | 774,333         | rows      | 3,226,388 | rows             | 18,067,771 | rows           |  |
| HDs needed to     |                 |           |           |                  |            |                |  |
| scan              |                 |           |           |                  | _          |                |  |
| all rows in 3s    | 17,219 drives   |           | 4,13      | 4,133 drives     |            | 738 drives     |  |
| HDs needed for    |                 |           |           |                  |            |                |  |
| All rows in 1 min | 8               | 61 drives | 20        | 07 drives        | ;          | 37 drives      |  |

see benchmark charts for specific drives; use the minimum benchmarks:

http://www.tomshardware.com/charts/enterprise-hdd-charts/-03-Read-Throughput-Minimum-h2benchw-3.16,3374.html



### Examples of databases in astronomy



Large Synoptic Survey Telescope (LSST): 100s of Petabytes total. Catalog on QSERV > 30 TB, 55 billion rows as of 2011. Distributed, 150 node, SQL Server -based



Sloan Digital Sky Survey (SDSS): DR 12 catalogs were 9.1 TB and there are now 14 DRs



### Files vs databases

Different definitions exist for a database:

"a usually large collection of data organized especially for rapid search and retrieval (as by a computer)" -- Merriam Webster

"a large amount of information stored in a computer system in such a way that it can be easily looked at or changed" -- Cambridge Dictionary

A comma-separated file is not well organized for rapid search and retrieval: To find a record you have to scan the whole file sequentially



# Database technologies relevant for astronomy



Database Management Systems (DBMS): software to administer, query, secure, backup and recover databases



L Server



# Querying a database

Structured Query Language (SQL)

Count objects classified morphologically as "simple" galaxies by Tractor in legacysurvey DR 4, lying within a radius of 0.1 deg of Ra and Dec. We are using the q3c style spatial indexing to support this query.

```
SELECT COUNT(*)
   FROM ls_dr4.tractor
WHERE type = 'SIMP'
   AND
   q3c_radial_query(ra, dec, 66.5493, 68.1717, 0.1);
```



### What is a schema?

**Schema** in a database context is the definitions of the objects and their attributes. They specify the tables, indexes, views, stored procedures, column names, etc. and their *data types* such as *integer*, *real*, and *text*.

Example data definition for a table to create part of a schema:

```
CREATE TABLE object (
id bigint PRIMARY KEY,
ra double precision,
dec double precision,
...
```

There are "schema-less"
DBs and DBs that apply the schema on read.
Nevertheless, a developer needs to know how things are named, what their range of values should be.

);

<sup>\*</sup> The ellipsis is not part of the statement



### What is an index and how does it help?

An index helps the database find values in a table faster.

# B+ Tree Example

To find the key value 40:





### How do you design a schema?

For a relational database, understand the relational model.

Identify entities and attributes.

Create an **Entity Relationship** model/diagram (E-R diagram)

Normalize the model at least to third-normal form (3NF)

The **physical design** varies from the **logical design** often to save space or improve performance.



For astronomical data, the physical design is more involved than the logical.

### Interactive exercise

Break into 4 groups

You will be assigned a survey

Through discussion, answer some questions to help you imagine how you might design a database to serve your survey's data products



### Questions

- What measurements and information will you get from your survey?
- How will you organize the information into database tables?
- What are some questions (queries) that you will ask of the data to do your science?
- Are there data products from your survey that don't fit well in a database?



### A Near Earth Object Survey

Purpose: Discover fast-moving Near Earth Objects

Instrument: Dark Energy Camera

Filters: VR

Time: 30 nights

Area covered: 3000 sq. deg.

Exposure time: 40 sec (VR~23)

Number of objects: ~10<sup>8</sup> total, ~1000s moving objects

Cadence: 5 exposures per field separated by 5 min, repeat on two subsequent nights, 525 exposures per night



### A Wide Area Extragalactic Survey

Purpose: Identify and measure ~200 million galaxies and stars

Instrument: Dark Energy Camera

Filters: grz

Time: 64 nights

Area covered: 6200 sq. deg.

Exposure time: ~150 sec (*grz* ~ 24.7, 23.9, 23.0)

Cadence: Three exposures per location per filter, typically

separated by months



# A Time Series Survey of the Galactic Bulge

Purpose: Identify and characterize variable stars in the

Galactic Bulge

Instrument: Dark Energy Camera

Filters: ugriz

Time: 10 nights

Area covered: ~20 sq. deg.

Exposure time: ~100-300 sec (*ugriz* ~ 22.0)

Number of objects: ~30 million total

Cadence: Repeat every 1.5 hours, ~50 epochs per object per filter



# A Wide Area Spectroscopic Survey

Purpose: Measure redshifts of ~30 million galaxies, characterize spectra of ~20 million bright galaxies and ~10 million Milky Way stars

Instrument: Dark Energy Spectroscopic Instrument

Wavelengths: 380 - 980 nm, R~5500

Time: 5 years

Area covered: 14000 sq. deg.

Exposure time: ~1000 sec

