CS_336/CS_M36 (part 2)/CS_M46 Interactive Theorem Proving

Course Notes
Lent Term Term 2008
Sect. 6 Data Types

Anton Setzer

Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/~csetzer/lectures/intertheo/07/index.html

May 24, 2017

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The Σ-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (a) The Set of Booleans

- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (a) The Set of Booleans

Formation Rule

Bool : Set (Bool-F)

Introduction Rules

 $\operatorname{tt}:\operatorname{Bool}$ (Bool-I_{tt}) ff: Bool (Bool-I_{ff})

Elimination Rule

 $\frac{C: \operatorname{Bool} \to \operatorname{Set} \quad \textit{case}_{\operatorname{tt}} : C \operatorname{\ tt} \quad \textit{case}_{\operatorname{ff}} : C \operatorname{\ ff} \quad b: \operatorname{Bool}}{\operatorname{Case}_{\operatorname{Bool}} \ C \ \textit{case}_{\operatorname{tt}} \ \textit{case}_{\operatorname{ff}} \ b: C \ b} \text{ (Bool-El)}$

The Set of Booleans (Cont.)

Equality Rules

$$\frac{\textit{C}: Bool \rightarrow Set \quad \textit{case}_{tt}: \textit{C} \ tt \quad \textit{case}_{ff}: \textit{C} \ ff}{Case_{Bool} \ \textit{C} \ \textit{case}_{tt} \ \textit{case}_{ff} \ tt = \textit{case}_{tt}: \textit{C} \ tt} \ (Bool-Eq_{tt})$$

$$\frac{\textit{C}: Bool \rightarrow Set \quad \textit{case}_{tt}: \textit{C} \; tt \quad \textit{case}_{ff}: \textit{C} \; ff}{Case_{Bool} \; \textit{C} \; \textit{case}_{tt} \; \textit{case}_{ff} \; ff = \textit{case}_{ff}: \textit{C} \; ff} \; (Bool-Eq_{ff})$$

Further we have equality versions of the formation-, introduction- and elimination-rules.

Remarks

ightharpoonup Case_{Bool} C case_{tt} case_{ff} b can be read as

if b then $case_{\rm tt}$ else $case_{\rm ff}$

where the additional argument C is required in order to determine the type of $case_{\rm tt}$, of $case_{\rm ff}$, and of the result of this construct.

- ▶ The argument $C : \operatorname{Bool} \to \operatorname{Set}$ denotes the set into which we are eliminating.
 - ▶ Instead of C : Set, we demand $C : Bool \rightarrow Set$, since the set into which we are eliminating might depend on the Boolean valued argument.
 - ▶ That is necessary in order to define functions $f : (b : Bool) \rightarrow D$ where D depends on b.

▶ If we define

$$C := \lambda b^{\text{Bool}}.D$$

 $: \text{Bool} \to \text{Set}$
 $f := \lambda b^{\text{Bool}}.\text{Case}_{\text{Bool}} C \text{ case}_{\text{tt}} \text{ case}_{\text{ff}} b$
 $: (b : \text{Bool}) \to C b$

where

$$(b : Bool) \rightarrow C \ b = (b : Bool) \rightarrow D$$

we have:

- ▶ f tt : C tt.
- ▶ f ff : C ff.
- $f:(b:\operatorname{Bool})\to C\ b.$

- ▶ The argument *C* above has no computational content.
 - ▶ It is not needed in order to compute $Case_{Bool}$ *C* $case_{tt}$ $case_{ff}$ tt and $Case_{Bool}$ *C* $case_{tt}$ $case_{ff}$ ff.
- ► *C* is only needed in order to obtain decidable type checking:
 - ▶ In the presence of arguments like this we can decide whether a judgement *a* : *B* is derivable.

We can write the elimination rule in a more compact but less readable way:

```
► Case<sub>Bool</sub> : (C : Bool \rightarrow Set)

\rightarrow (case_{tt} : C tt)

\rightarrow (case_{ff} : C ff)

\rightarrow (b : Bool)

\rightarrow C b
```

▶ tt, ff are the **constructors** of Bool.

- ▶ Notice that we then get for $C : Bool \rightarrow Set$, $case_{tt} : C \ tt$, $case_{ff} : C \ ff$
 - ► $f := \operatorname{Case}_{\operatorname{Bool}} C \operatorname{\textit{case}}_{\operatorname{tt}} \operatorname{\textit{case}}_{\operatorname{ff}}$, : $(b : \operatorname{Bool}) \to C b$
 - $f \text{ tt} = \text{Case}_{\text{Bool}} C \text{ case}_{\text{tt}} \text{ case}_{\text{ft}} \text{ tt} = \text{case}_{\text{tt}} : C \text{ tt},$
 - $f ext{ ff} = ext{Case}_{ ext{Bool}} C ext{ case}_{ ext{tt}} ext{ case}_{ ext{ff}} ext{ ff} = ext{case}_{ ext{ff}} : C ext{ ff}.$
- ► So we obtain functions from Bool into other sets without having to write λb^{Bool}
- ► That's why we choose the argument to eliminate from as the last one.

- ▶ This is similar to the definition of for instance (+) in **curried form** in Haskell

 - (+): int → int → int.
 (+) 3 is the function which takes an integer and adds to it 3.
 - ▶ **Shorter** than writing $\lambda x^{\text{int}}.3 + x$.

- ► Note that we have the following **order of the arguments** of Case_{Bool}:
 - First we have the set into which we eliminate.
 - ► Then follow the **cases**, one for each constructor.
 - Finally we put the element which we are eliminating.
- ▶ In some sense Case_{Bool} is a "then _else _if " the condition (if ...) is the last one.

Select Example

Assume we have introduced in type theory

```
Name : Bool \rightarrow Set,

Name tt = FemaleName,

Name ff = MaleName.
```

Select Example

► Then we can define the function

SelectBool :
$$(b : Bool) \rightarrow Name b$$

SelectBool tt = sara
SelectBool ff = tom

as follows:

$$SelectBool = Case_{Bool}$$
 Name sara tom

▶ Note that by using twice the η -rule we get that

SelectBool =
$$\lambda b^{\text{Bool}}$$
.Case_{Bool} (λd^{Bool} .Name d) sara tom b

Select Example

▶ We verify the correctness of SelectBool:

```
SelectBool tt = Case_{Bool} Name sara tom tt = sara ,
SelectBool ff = Case_{Bool} Name sara tom ff = tom .
```

Jump over \wedge_{Bool}

▶ We want to introduce conjunction

$$\wedge_{\text{Bool}} : \text{Bool} \to \text{Bool} \to \text{Bool}$$
.

This will be of the form

$$\wedge_{\text{Bool}} = \lambda(b, c : \text{Bool}).t$$

for some term t.

t will be defined by case distinction on b, so we get

$$\wedge_{\text{Bool}} = \lambda(b, c : \text{Bool}).\text{Case}_{\text{Bool}} C e f b$$

for some e, f.

$\wedge_{\text{Bool}} = \lambda(b, c : \text{Bool}).\text{Case}_{\text{Bool}} C e f b$

- ► C will be the set into which we are eliminating, depending on a Boolean value.
 - ▶ It need to be an element of $Bool \rightarrow Set$.
 - ► Therefore we have $C = \lambda d^{\text{Bool}}.D$ for some D which might depend on d.
 - The set, into which we are eliminating, is always the same, namely Bool.
 - ightharpoonup So $D = \operatorname{Bool}$ and therefore we have

$$C = \lambda d^{\text{Bool}}.\text{Bool}$$
.

▶ Note that in

$$\lambda d^{\text{Bool}}$$
.Bool

Bool occurs in two different meanings:

- ▶ The first occurrence is that of a set.
 - d is chosen here as an element of that set.
- The second occurrence is that as an element of another type, namely Set.
 - ▶ So here Bool is a term.

Two Meanings of Elements of Set

- ▶ All elements A of Set have these two meanings:
 - ▶ They can be used as terms, which are elements of the type Set.
 - ▶ The corresponding judgements are A : Set, A = A' : Set.
 - ▶ And they can be used as sets, which have elements.
 - ▶ The corresponding judgements are a:A and a=a':A.

► So

$$\wedge_{\mathrm{Bool}} = \lambda(b, c : \mathrm{Bool}).\mathrm{Case}_{\mathrm{Bool}} (\lambda d^{\mathrm{Bool}}.\mathrm{Bool}) \ e \ f \ b$$

for some e, f.

- ► For conjunction we have:
 - ▶ If *b* is true then

$$b \wedge c = \operatorname{tt} \wedge c = c$$

- ▶ So the if-case e above is c.
- ▶ If c is false then

$$b \wedge c = \text{ff} \wedge c = \text{ff}$$

So the else-case f above is ff.

▶ In total we define therefore

- ▶ We verify the correctness of this definition:
 - \wedge_{Bool} tt $c = \text{Case}_{\text{Bool}}$ (λd^{Bool} .Bool) c ff tt = c. as desired.
 - ► \land Bool ff $c = \text{Case}_{\text{Bool}} (\lambda d^{\text{Bool}}.\text{Bool}) c$ ff ff = ff. Correct as desired.

Jump over derivation of \wedge_{Bool}

Derivation of \land_{Bool}

- ▶ We derive in the following \land_{Bool} : Bool \rightarrow Bool \rightarrow Bool.
- ▶ We write Bool, if it
 - is a type in boldface red,
 - ▶ and if it is a term, in *italic blue*.

► First we derive $b : \textbf{Bool}, c : \textbf{Bool} \Rightarrow \lambda(d^{\textbf{Bool}}).Bool : \textbf{Bool} \rightarrow \text{Set}:$

```
\frac{Bool : \operatorname{Set}}{b : \operatorname{Bool} \Rightarrow \operatorname{Context}} (\operatorname{Context_1})
\frac{b : \operatorname{Bool} \Rightarrow \operatorname{Bool} : \operatorname{Set}}{b : \operatorname{Bool} \Rightarrow \operatorname{Bool} : \operatorname{Set}} (\operatorname{Bool-F})
\frac{b : \operatorname{Bool}, c : \operatorname{Bool} \Rightarrow \operatorname{Context}}{b : \operatorname{Bool}, c : \operatorname{Bool} \Rightarrow \operatorname{Bool} : \operatorname{Set}} (\operatorname{Bool-F})
\frac{b : \operatorname{Bool}, c : \operatorname{Bool}, d : \operatorname{Bool} \Rightarrow \operatorname{Context}}{b : \operatorname{Bool}, c : \operatorname{Bool}, d : \operatorname{Bool} \Rightarrow \operatorname{Bool} : \operatorname{Set}} (\operatorname{Bool-F})
\frac{b : \operatorname{Bool}, c : \operatorname{Bool}, d : \operatorname{Bool} \Rightarrow \operatorname{Bool} : \operatorname{Set}}{b : \operatorname{Bool}, c : \operatorname{Bool} \Rightarrow \lambda d^{\operatorname{Bool}} : \operatorname{Bool} \Rightarrow \operatorname{Set}} (\rightarrow -\operatorname{I})
```

We derive

```
b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \textbf{Bool} = (\lambda d^{\textbf{Bool}}.Bool) \text{ tt} : \text{Set} (using part of the derivation above): \dots \\ \underline{b: \textbf{Bool}, c: \textbf{Bool}, d: \textbf{Bool} \Rightarrow \textbf{Context}}_{b: \textbf{Bool}, c: \textbf{Bool}, d: \textbf{Bool} \Rightarrow \textbf{Bool} : \text{Set}} \xrightarrow{(\textbf{Bool-F})} \underline{b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \textbf{Context}}_{b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \textbf{tt} : \textbf{Bool}} \xrightarrow{(\textbf{Bool-I}_{tt})} \underline{b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \textbf{tt} : \textbf{Bool}}_{(\rightarrow -\text{Eq})} \xrightarrow{(\textbf{b-Eq})} \underline{b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \textbf{Bool}} \times \textbf{Bool} \times \textbf{tt} : \textbf{Set}
```

► Similarly follows

$$b : \mathbf{Bool}, c : \mathbf{Bool} \Rightarrow \mathbf{Bool} = (\lambda d^{\mathbf{Bool}}.Bool) \text{ ff } : \text{Set}$$

▶ Using part of the proof above, we derive

$$b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow c: (\lambda d^{\textbf{Bool}}.Bool) \text{ tt}$$
...
$$b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \texttt{Context}$$

$$b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \texttt{C:Bool} \Rightarrow \texttt{(Ass)}$$

$$b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \texttt{(Ass)} \Rightarrow \texttt{(Transfer_0)}$$

$$b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \texttt{(} \lambda d^{\textbf{Bool}}.Bool) \text{ tt}$$

▶ We derive using (Transfer₀)

```
b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \text{ff}: (\lambda d^{\textbf{Bool}}.Bool) \text{ ff}
\dots
b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \text{Context}
b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \text{ff:} \textbf{Bool}
b: \textbf{Bool}, c: \textbf{Bool} \Rightarrow \text{ff:} (\lambda d^{\textbf{Bool}}.Bool) \text{ ff}
(\text{Transfer_0})
```

Derivation of \land_{Bool}

▶ We derive $b : Bool, c : Bool \Rightarrow b : Bool$ using part of the proof above:

```
\frac{b : \mathsf{Bool}, c : \mathsf{Bool} \Rightarrow \mathsf{Context}}{b : \mathsf{Bool}, c : \mathsf{Bool} \Rightarrow b : \mathsf{Bool}} (\mathsf{Ass})
```

► Finally we obtain our judgement (we stack the premises of the rule because of lack of space):

```
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow \lambda d^{\mathbf{Bool}}. Bool: \mathbf{Bool} \rightarrow \mathbf{Set}
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow c: (\lambda d^{\mathbf{Bool}}. Bool) \text{ tt}
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow \mathrm{ff:} (\lambda d^{\mathbf{Bool}}. Bool) \text{ ff}
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow b: \mathbf{Bool}
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow b: \mathbf{Bool}
b: \mathbf{Bool}, c: \mathbf{Bool} \Rightarrow \mathbf{Case}_{\mathbf{Bool}} (\lambda d^{\mathbf{Bool}}. Bool) c \text{ ff } b: \mathbf{Bool} \rightarrow \mathbf{Bool}
b: \mathbf{Bool} \Rightarrow \lambda c^{\mathbf{Bool}}. \mathbf{Case}_{\mathbf{Bool}} (\lambda d^{\mathbf{Bool}}. Bool) c \text{ ff } b: \mathbf{Bool} \rightarrow \mathbf{Bool} \rightarrow \mathbf{Bool}
\lambda(b, c: \mathbf{Bool}). \mathbf{Case}_{\mathbf{Bool}} (\lambda d^{\mathbf{Bool}}. Bool) c \text{ ff } b: \mathbf{Bool} \rightarrow \mathbf{Bool} \rightarrow \mathbf{Bool}
```

Elimination into Type

We can extend add elimination and equality rules, having as result Type : Elimination Rule into Type

$$\frac{\textit{C}: \textit{Bool} \rightarrow \textit{Type} \quad \textit{case}_{tt}: \textit{C} \; \text{tt} \quad \textit{case}_{ff}: \textit{C} \; \text{ff} \quad \textit{b}: \textit{Bool}}{\textit{Case}_{\textit{Bool}}^{\textit{Type}} \; \textit{C} \; \textit{case}_{tt} \; \textit{case}_{ff} \; \textit{b}: \; \textit{C} \; \textit{b}} \; (\textit{Bool-El}^{\textit{Type}})$$

Equality Rules into Type

Example Select

Assume we have introduced

```
 \begin{array}{cccc} FemaleName & : & Set \\ & = & \{jill, sara\} \\ MaleName & : & Set \\ & = & \{tom, jim\} \\ \end{array}
```

► Then we can define

Name : Bool
$$\rightarrow$$
 Set
:= $\lambda x^{\text{Bool}}.\text{Case}_{\text{Bool}}^{\text{Type}} (\lambda y.\text{Set})$
FemaleName MaleName x

 $: \quad \operatorname{Bool} \to \operatorname{Set}$

Elimination into Type (Cont.)

We can extend this into an elimination rule into Kind or other higher types.

6 (a) The Set of Booleans

6 (b) The Finite Sets

- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (b) The Finite Sets

Bool can be generalised to sets having n elements (n a fixed natural number):

Formation Rule

$$\operatorname{Fin}_n : \operatorname{Set} (\operatorname{Fin}_n - \operatorname{F})$$

Introduction Rules

$$A_k^n : \operatorname{Fin}_n (\operatorname{Fin}_{n} - I_k)$$

(for
$$k = 0, ..., n - 1$$
)

Rules for Fin_n

Elimination Rule

$$C: \operatorname{Fin}_{n} \to \operatorname{Set}$$

$$s_{0}: C \operatorname{A}_{0}^{n}$$

$$s_{1}: C \operatorname{A}_{1}^{n}$$

$$\dots$$

$$s_{n-1}: C \operatorname{A}_{n-1}^{n}$$

$$a: \operatorname{Fin}_{n}$$

$$\operatorname{Case}_{n} C s_{0} \dots s_{n-1} a: C a$$
(Fin_n-El)

The Finite Sets (Cont)

Equality Rules

$$C:\operatorname{Fin}_n o\operatorname{Set}$$
 $s_0:C\operatorname{A}_0^n$ $s_1:C\operatorname{A}_1^n$ \ldots $s_{n-1}:C\operatorname{A}_{n-1}^n$ $\operatorname{Case}_n C s_0\ldots s_{n-1}\operatorname{A}_k^n=s_k:C\operatorname{A}_k^n$ (Fin_n-Eq_k) (for $k=0,\ldots,n-1$).

We add as well **equality versions** of the formation-, introduction-, and elimination rules.

Remark: Note that we have just introduced infinitely many rules (for each $n \in \mathbb{N}$ and $k = 0, \dots, n - 1$).

Omitting Premises in Equality Rules

- ► Since the premises of the equality rule can in most cases be determined from the introduction and elimination rules, we will **usually omit them**, when writing down equality rules.
- ► So we write for instance for the previous rule:

Case_n
$$C$$
 s_0 ... s_{n-1} $A_k^n = s_k$: C A_k^n

▶ We sometimes even **omit the type**:

$$\operatorname{Case}_n C s_0 \ldots s_{n-1} A_k^n = s_k$$

More Compact Elimination Rules

► Case_n:
$$(C : \operatorname{Fin}_n \to \operatorname{Set})$$

 $\to (s_0 : C \operatorname{A}_0^n)$
 $\to \cdots$
 $\to (s_{n-1} : C \operatorname{A}_{n-1}^n)$
 $\to (a : \operatorname{Fin}_n)$
 $\to C a$

Elimination into Type

- Similarly as for Bool we can write down elimination rules, where
 C: Fin_n → Type (instead of C: Fin_n → Set).
- ▶ This can be done for all sets defined later as well.

Rules for \top

 \top is the special case Fin_n for n=1 (we write true for A_0^1):

Formation Rule

$$\top$$
: Set $(\top$ -F)

Introduction Rules

true :
$$\top$$
 (\top -I)

Elimination Rule

$$\frac{C: \top \to \text{Set} \quad c: C \text{ true} \qquad t: \top}{\text{Case}_{\top} c \ t: C \ t} (\top\text{-El})$$

Rules for \top

Equality Rule

 $Case_{\top} c true = c$

We add as well **equality versions** of the formation-, introduction-, and elimination rules.

Jump over next slide (advanced material)

Rules for \top (Cont.)

- ► Case_T is computationally not very interesting.
 - ▶ Case_⊤ c is the constant function $\lambda x^{\top}.c$.
 - ▶ However, in Agda we might not be able to derive

$$\lambda t^{\top}.c:(t:\top)\to C\ t$$

- From a logic point of view, it expresses:
 From an element of C true we obtain an element of C t
 for every t : T.
 - ▶ So there is no $C : T \to \text{Set s.t. } C \text{ true}$ is inhabited, but $C \times S$ is not inhabited for some other X : T.
 - ► This means that all elements of x of type T are indistinguishable from true, i.e. they are identical to true.
 - This equality is called Leibnitz equality.

Rules for \perp

 \perp is the special case Fin_n for n=0:

Formation Rule

$$\perp$$
: Set $(\perp$ -F)

There is no Introduction Rule

Elimination Rule

$$\frac{C: \bot \to \operatorname{Set} \quad f: \bot}{\operatorname{Case}_{\bot} f: C f} (\bot - \operatorname{El})$$

There is no Equality Rule

We add as well equality versions of the formation- and elimination rule.

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The Σ-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- $\mathsf{6}\;(\mathsf{g})$ The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (c) Atomic formulae and the Traffic Light Example

▶ Atom can be defined as follows:

Atom : Bool
$$\rightarrow$$
 Set
Atom = Case^{Type}_{Bool} (λb^{Bool} .Set) $\top \bot$

So we have

$$\begin{array}{rcl} \text{Atom tt} & = & \top \\ \text{Atom ff} & = & \bot \end{array}$$

Jump over Traffic Light Example.

The Traffic Light Example

► Assume a **road crossing**, controlled by **traffic lights**:

The Traffic Light Example

- ► Assume from each direction A, A', B, B' there is one traffic light,
 - ▶ but A and A' always coincide, similarly B and B'.

The Set of Physical States

For simplicity assume that each traffic light is either red or green:

data Colour : Set where

red : Colour green : Colour

► The set of **physical states of the system** is given by a pair, determining the colour of *A* (and therefore as well A') and of B (and B')

record PhysState : Set where field

eia.

sigA : Colour

sigB : Colour

The Set of Control States

- ► The set of **control states** is a set of states of the system, a controller of the system can choose.
 - ► Each of these states **should be safe**.
 - In our example, all safe states will be captured (this can usually be only achieved in small examples).
- ► A complete set of control states consists of:
 - ► allRed all signals are red.
 - ▶ onlyAGreen signal A (and A') is green, signal B is red.
 - ▶ onlyBGreen signal B is green, signal A is red.

The Set of Control States (Cont.)

▶ We therefore define

data ControlState: Set where

allRed : ControlState

onlyAGreen : ControlState

onlyBGreen : ControlState

Control States to Physical States

We define the state of signals A, B depending on a control state:

```
toSigA : ControlState \rightarrow Colour

toSigA allRed = red

toSigA onlyAGreen = green

toSigA onlyBGreen = red

toSigB : ControlState \rightarrow Colour

toSigB allRed = red

toSigB onlyAGreen = red

toSigB onlyBGreen = green
```

Control States to Physical States

Now we can define the physical state corresponding to a control state:

```
to
PhysState : ControlState \rightarrow PhysState to
PhysState c = \operatorname{record}\{\operatorname{sigA} = \operatorname{toSigA} c \; ; \\ \operatorname{sigB} = \operatorname{toSigB} c \; \}
```

Safety Predicate

- ▶ We define now when a physical state is safe:
 - It is safe iff not both signals are green.
 - We define now a corresponding predicate directly, without defining first a Boolean function.
 - ▶ We first define a predicate depending on two signals:

```
\begin{array}{cccc} CorAux : Colour \rightarrow Colour \rightarrow Set \\ CorAux & red & \_ & = & \top \\ CorAux & green & red & = & \top \\ CorAux & green & green & = & \bot \end{array}
```

Safety Predicate (Cont.)

Now we define

Remark: In some cases in order to define a function from a record type into some other set, it is better first to introduce an auxiliary function, depending on the components of that product.

Safety of the System

▶ Now we show that all control states are safe:

```
\begin{array}{lll} {\rm corProof}: (s:{\rm ControlState}) \to {\rm Cor} \ ({\rm toPhysState} \ s) \\ {\rm corProof} & {\rm allRed} & = & {\rm true} \\ {\rm corProof} & {\rm onlyAGreen} & = & {\rm true} \\ {\rm corProof} & {\rm onlyBGreen} & = & {\rm true} \\ \end{array}
```

See exampleTrafficLight1.agda

Safety of the System (Cont.)

- ► The first element true was an element of **Cor** (**phys_state Allred**), which reduces to T.
- ► Similarly for the other two elements.
- ► This works only because each control state corresponds to a correct physical state.
 - ▶ If this hadn't been the case, we would have gotten instances where the goal to solve is ⊥, which we can't solve.

Safety of the System (Cont.)

- ▶ If one makes a **mistake** which results in an unsafe situation
 - ▶ e.g. sets toSigB onlyAGreen = green, then in the last step we obtain one goal of type ⊥.
 - Then we can't solve this goal directly and cannot prove the correctness.
 - (We could in Agda solve this goal by using full recursion,
 - e.g. solve this goal as **corProof Agreen**,

but this would be rejected by the termination checker.)

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The ∑-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (d) The Disjoint Union of Sets

- ► The **disjoint union** A + B of two sets A and B is the union of A and B,
 - ▶ but defined in such a way that we can decide whether an element of this union is originally from *A* or *B*.
 - ▶ This is distinguished by having constructors inl : $A \rightarrow A + B$ and inr : $B \rightarrow A + B$.
 - ▶ Elements from a: A are inserted into A + B as inl a: A + B.
 - elements from b: B are inserted into A + B as inr b: A + B.
 - ▶ inl stands for "in-left", inr for "in-right".
 - ► If we have a: A and a: B, then a is represented both as inl a and inr a in A + B.

Visualisation (A + B)

Disjoint Union

Informally, if

$$A = \{1, 2\}$$

and

$$B = \{1, 2, 3\}$$
,

then

$$A + B = {$$
inl(1), inl(2), inr(1), inr(2), inr(3) $}$

- ▶ Each element of A + B is
 - either of the form inl(a) for some a : A
 - or of the form inr(b) for b:B.

Jump over Comparison with Product

Comparison with the Product

Note that if we have again

$$A = \{1, 2\}$$

and

$$B = \{1, 2, 3\}$$
,

then for the product we have informally

$$A \times B = \{p(1,1), p(1,2), p(1,3), p(2,1), p(2,2), p(2,3)\}$$

- ▶ Each element of $A \times B$ is of the form p(a, b) where a : A and b : B.
- So each element of A × B contains both an element of A and an element of B.

Disjoint Union vs. Product

- ▶ Note that, if *A* is empty, then
 - ▶ $A + B = {\text{inr}(b) | b : B}$, which has a copy of each element of B,
 - ▶ $A \times B$ is empty, since we cannot form a pair p(a, b) where a : A, b : B, since there is no element a : A.

Rules for A + B

Formation Rule

$$\frac{A : \text{Set}}{A + B : \text{Set}}$$
 (+-F)

Introduction Rules

$$\frac{A: \operatorname{Set} \quad B: \operatorname{Set} \quad a: A}{\operatorname{inl} A B \ a: A + B} (+-\operatorname{I}_{\operatorname{inl}})$$

$$\frac{A: \operatorname{Set} \quad B: \operatorname{Set} \quad b: B}{\operatorname{inr} A B b: A + B} \left(+ \operatorname{I}_{\operatorname{inr}} \right)$$

Rules for A + B

Elimination Rules

$$A: \operatorname{Set}$$
 $B: \operatorname{Set}$
 $C: (A+B) \to \operatorname{Set}$
 $\operatorname{\it case}_{inl}: (a:A) \to C \ (\operatorname{inl} ABa)$
 $\operatorname{\it case}_{inr}: (b:B) \to C \ (\operatorname{inr} ABb)$
 $\operatorname{\it d}: A+B$
 $\operatorname{Case}_{+} ABC \ \operatorname{\it case}_{inl} \ \operatorname{\it case}_{inr} \ d:Cd \ (+-\operatorname{El})$

(case_{inl}, case_{inr} stand for "case left", "case right").

Rules for A + B

Equality Rules

Case₊
$$A B C case_{inl} case_{inr} (inl A B a)$$

= $case_{inl} a : C (inl A B a)$ (+-Eq_{inl})
Case₊ $A B C case_{inl} case_{inr} (inr A B b)$
= $case_{inr} b : C (inr A B b)$ (+-Eq_{inr})

Additionally, we have the **equality versions** of the formation-, introduction and elimination rules.

Logical Framework Version

- ► A more compact notation for the formation, introduction and elimination rules is:
 - \blacktriangleright _+_ : Set \rightarrow Set \rightarrow Set, written infix.
 - ightharpoonup inl: $(A, B : Set) \rightarrow A \rightarrow (A + B)$.
 - inr : $(A, B : Set) \rightarrow B \rightarrow (A + B)$.
 - ► Case₊: (A, B : Set) $\rightarrow (C : (A + B) \rightarrow Set)$ $\rightarrow ((a : A) \rightarrow C (inl A B a))$ $\rightarrow ((b : B) \rightarrow C (inr A B b))$ $\rightarrow (d : A + B)$ $\rightarrow C d$
 - ► Equality rule as before.

Disjoint Union in Agda

- ► The disjoint union can be defined as a "data"-set having two constructors
 - ▶ inl (in-left for left injection) and
 - ▶ inr (in-right for right injection):

data _+_ (
$$A B : Set$$
) : Set where
inl : $A \to A + B$
inr : $B \to A + B$

Disjoint Union in Agda (Cont.)

► Elimination is represented by pattern matching. So if want to define for *A*, *B* : Set for instance

$$f: A + B \to Bool$$
$$f x = \{! \ !\}$$

we can define $f \times x$ by case distinction on x:

$$f: A + B \rightarrow \text{Bool}$$

 $f \text{ (inl } a) = \text{tt}$
 $f \text{ (inr } b) = \text{ff}$

Use of Concrete Disjoint Sets

It is usually more convenient to define concrete disjoint unions directly with more intuitive names for constructors, e.g.

data Plant : Set where tree : Tree \rightarrow Plant flower : Flower \rightarrow Plant

Now one can define for instance

isFlower : Plant \rightarrow Bool isFlower (tree t) = ff isFlower (flower f) = tt

Disjunction

- $ightharpoonup A \lor B$ is true iff A is true or B is true.
- ► Therefore a proof of A ∨ B consists of a proof of A or a proof of B, plus the information which one.
 - ▶ It is therefore an element $\operatorname{inl} p$ for a proof p : A or an element $\operatorname{inr} q$ for a proof q : B.
- Therefore the set of proofs of A ∨ B is the disjoint union of A and B, i.e. A + B.
- ▶ We can **identify** $A \lor B$ with A + B.

Disjunction in Agda

- Or is represented as disjoint union in type theory.
- ▶ In Agda we can type in the symbol for ∨ using Leim as \vee.

data
$$_\lor_$$
 ($A B : Set$) : Set where
or1 : $A \to A \lor B$
or2 : $B \to A \lor B$

- ► See exampleproofproplogic7.agda.
- ▶ On the blackboard $A \rightarrow A \lor B$ and $A \lor A \rightarrow A$ will now be shown in Agda.

Example (Disjunction)

▶ The following derives $(A \lor B) \to (B \lor A)$:

lemma3 :
$$A \lor B \to B \lor A$$

lemma3 (or1 a) = or2 a
lemma3 (or2 b) = or1 b

► See exampleproofproplogic9.agda.

Disjunction with more Args.

▶ As for conjunction, it is useful to introduce special ternary versions of the disjunction (and versions with higher arities):

data OR3 (
$$A B C : Set$$
) : Set where or1 : $A \rightarrow OR3 A B C$ or2 : $B \rightarrow OR3 A B C$ or3 : $C \rightarrow OR3 A B C$

► See exampleproofproplogic8.agda.

Jump over Σ -Type.

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (e) The **Σ**-Set

- ightharpoonup The Σ -set is a second version of the **dependent product** of two sets.
- ▶ It depends on
 - ▶ a set A,
 - ▶ and a second set B depending on A, i.e. on $B: A \rightarrow Set$.
- ▶ Similar to the standard product $(x : A) \times (B \times x)$.
- ► In Agda
 - $(x : A) \times (B x)$ is a in Agda a builtin construct,
 - ▶ the Σ -set is introduced by the user using a constructor, similar to the previous sets.
- \blacktriangleright The Σ -set behaves sometimes better than the standard product.

Rules for Σ

Formation Rule

$$\frac{A : \operatorname{Set} \quad B : A \to \operatorname{Set}}{\Sigma A B : \operatorname{Set}} (\Sigma - F)$$

Introduction Rule

$$A : Set$$

$$B : A \to Set$$

$$a : A$$

$$b : B a$$

$$p A B a b : \Sigma A B$$
(\Sigma-I)

Rules for Σ

Elimination Rule

$$A : \operatorname{Set}$$
 $B : A \to \operatorname{Set}$
 $C : (\Sigma A B) \to \operatorname{Set}$
 $c : (a : A) \to (b : B a) \to C (p A B a b))$

$$\frac{d : \Sigma A B}{\operatorname{Case}_{\Sigma} A B C c d : C d} (\Sigma - \operatorname{El})$$

Equality Rule

$$Case_{\Sigma} A B C c (p A B a b) = c a b : C (p A B a b) (\Sigma-Eq)$$

Additionally we have the **Equality versions** of the formation-, introduction- and elimination-rules.

The Σ -Set using the Log. Framew.

▶ The more compact notation is:

►
$$\Sigma$$
 : $(A : Set)$
 $\rightarrow (A \rightarrow Set)$
 $\rightarrow Set$.
► $p : (A : Set)$
 $\rightarrow (B : A \rightarrow Set)$
 $\rightarrow (a : A)$
 $\rightarrow (B a)$
 $\rightarrow \Sigma AB$.

The Σ -Set using the Log. Framew.

```
► Case<sub>∑</sub>:

(A : Set)

\rightarrow (B : A \rightarrow Set)

\rightarrow (C : (\Sigma A B) \rightarrow Set)

\rightarrow ((a : A, b : B a) \rightarrow C (p A B a b))

\rightarrow (d : \Sigma A B)

\rightarrow C d.
```

Equality rule as before.

The Σ -Set and the Dep. Prod.

- ▶ Both the Σ -set and the dep. product have similar introduction rules.
 - ► For the Σ-set, the constructors have additional arguments *A*, *B* necessary for bureaucratic reasons only.
- ▶ One can define the projections π_0 , π_1 using Case Σ :

$$\begin{array}{lll} \pi_0 & = & \operatorname{Case}_{\Sigma} A B \left(\lambda x^{(\Sigma A B)}.A \right) \left(\lambda x^A.\lambda y^{(B x)}.x \right) \\ \pi_1 & = & \operatorname{Case}_{\Sigma} A B \left(\lambda x^{(\Sigma A B)}.B \, \pi_0(x) \right) \left(\lambda x^A.\lambda y^{(B x)}.y \right) \end{array}$$

▶ On the other hand, from π_0 , π_1 we can define $Case_{\Sigma}$ as follows:

$$\lambda A^{\text{Set}}.\lambda B^{A \to \text{Set}}.\lambda C^{(\Sigma A B) \to \text{Set}}.$$

 $\lambda s^{(a:A) \to (b:B \ a) \to C \ (p \ a \ b)}.\lambda d^{(\Sigma A B)}.s \ \pi_0(d) \ \pi_1(d) \ .$

The Σ -Set and the Dep. Prod.

- ▶ However the dependent product has the η -rule (which is however not implemented in Agda).
- ▶ Because of the lack of η -rule, Σ works usually better than the dependent product in Agda.
 - ▶ I personally don't use the dependent product of Agda much.

The Σ-Set in Agda

 $ightharpoonup \Sigma$ can be defined as a "data"-set with a constructor, e.g. p:

data
$$\Sigma$$
 (A : Set) (B : $A \to$ Set): Set where $p:(a:A) \to B$ $a \to \Sigma A B$

► Elimination uses case-distinction:

$$f: \Sigma A B \rightarrow D$$

 $f(p a b) = \{! !\}$

sigmaset.agda

The **Σ**-Set in Agda (Cont.)

- Again one usually defines concrete Σ-sets more directly.
- **Example:** Assume we have defined
 - ▶ a set PlantGroup for **groups of plants** (e.g. "tree", "flower"),
 - ▶ depending on *g* : PlantGroup, sets (PlantsInGroup *g*) for **plants in** that group.
- ► The **set of plants** can then be defined as

```
data Plant : Set where plant : (g : PlantGroup) \rightarrow PlantsInGroup g \rightarrow Plant
```

The **Σ**-Set in Agda (Cont.)

► Not surprisingly, for **elimination** we use **pattern matching**, e.g.:

 $f: \text{Plant} \to \text{PlantGroup}$ $f(\text{plant } g_{-}) = g$

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- $6~(\mathrm{g})$ The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (f) Natural Deduction and Dependent Type Theory

- ▶ In this section we study, how derivations in dependent type theory correspond to derivations in natural deduction. (Omitted 2008)
- We will as well introduce constructive logic. Jump to constructive logic.

Conjunction

- ► We have seen before that we can identify in type theory conjunction with the non-dependent product.
- ▶ With this interpretation, the **introduction rule** for the product allows to form a proof of $A \land B$ from a proof of A and a proof of B:

$$\frac{p:A \qquad q:B}{\langle p,q\rangle:A\wedge B} (\times -I)$$

▶ This means that we can derive A ∧ B from A and B.

Conjunction and Natural Ded.

- ▶ In so called natural deduction, one has rules for deriving and eliminating formulas formed using the standard connectives.
- ▶ There the rule for introducing proofs of $A \land B$ is

$$\frac{A \quad B}{A \wedge B} (\land -I)$$

▶ The type theoretic introduction rule corresponds exactly to this rule.

Omit Example1

- ► For instance, assume we want to prove that a function sort from lists to lists is a sorting algorithm.
- ▶ Then we have to show that for every list / the application of sort to / is sorted, and has the same elements of /.
- ▶ In order to show this, one would assume a list / and show
 - first that sort / is sorted,
 - ▶ then, that sort / has the same elements as /
 - ▶ and finally conclude that it fulfils the conjunction of both properties.
 - ▶ The last operation uses the introduction rule for \land .

Conjunction (Cont.)

▶ The **elimination rule** for \land allows to project a proof of $A \land B$ to a proof of A and a proof of B:

$$\frac{p:A\wedge B}{\pi_0(p):A}\left(\times\text{-El}_0\right) \qquad \frac{p:A\wedge B}{\pi_1(p):B}\left(\times\text{-El}_1\right)$$

- ▶ This means that we can **derive from A** ∧ **B both A and B**.
- ► This corresponds to the natural deduction elimination rule for ∧:

$$\frac{A \wedge B}{A} (\land -\text{El}_0) \qquad \frac{A \wedge B}{B} (\land -\text{El}_1)$$

Omit Example 2

- ▶ Assume we have defined a function *f*, which takes a list of natural numbers *l*, a proof that *l* is sorted, and a natural number *n*, and returns the Boolean value tt or ff indicating whether *n* is in this list or not.
- ▶ Assume now a sorting function sort from lists of natural numbers to natural numbers, plus a proof that it is a sorting function, i.e. that sort / is sorted and has the same elements as / for every list /.
- ▶ We want to apply *f* to sort *l* and need therefore a proof that sort *l* is sorted.
- ▶ We have that the conjunction of "sort / is sorted" and "sort / has the same elements as \(I'' \) holds.
- ▶ Using the elimination rule for ∧ one can conclude the desired property, that sort *I* is sorted.

- ▶ Assume a proof of $A \land B$.
- ▶ We want to show $B \wedge A$.
 - ▶ By \land -elimination we obtain from $A \land B$ that B holds.
 - ▶ Similarly we conclude that *A* holds.
 - ▶ Using \land -introduction we conclude $B \land A$.
 - ► In natural deduction, this proof is as follows:

$$\frac{A \wedge B}{B} (\land -\text{El}_0) \quad \frac{A \wedge B}{A} (\land -\text{El}_1)$$

$$B \wedge A$$

▶ We have seen in the previous section how to derive this in Agda.

Disjunction

- ▶ We have seen before that we can identify in type theory disjunction can be identified with the disjoint union.
- ▶ With this identification, the **introduction rules** for + allows to form a proof of $A \lor B$ from a proof of A or from a proof of B.

$$\frac{A : \text{Set} \quad B : \text{Set} \quad p : A}{\text{inl } A \mid B \mid p : A + B} (+-I_{\text{inl}})$$

$$\frac{A: \operatorname{Set} \quad B: \operatorname{Set} \quad p: B}{\operatorname{inr} A B \ p: A + B} (+-\operatorname{I}_{\operatorname{inr}})$$

▶ Omitting the premises *A*, *B* : Set and omitting them as arguments of inl and inr (which is needed only for type checking purposes in the presence of the identity type – this type is not treated in this module) we get:

$$\frac{A : \text{Set} \qquad B : \text{Set} \qquad p : A}{\text{inl } p : A + B} \left(+ -I_{\text{inl}} \right)$$

$$\frac{A : \text{Set} \qquad B : \text{Set} \qquad p : B}{\text{inr } p : A + B} \left(+ -I_{\text{inr}} \right)$$

- ▶ This means that we can derive A ∨ B from A and from B.
- ► This is what is expressed by the **natural deduction introduction** rules for \vee :

$$\frac{A}{A \vee B} (\vee -I_{\text{inl}}) \qquad \frac{B}{A \vee B} (\vee -I_{\text{inr}})$$

Omit Example 1

- Assume we want to show that every prime number is equal to 2 or odd.
- ▶ In order to show this one assumes a prime number.
 - ▶ If it is 2, it is trivially equal to 2.
 - ► Using the introduction rule for ∨ one concludes that it is equal to 2 or odd.
 - Otherwise, one argues (using some proof) that it is odd.
 - ► Using the introduction rule for ∨ one concludes again that it is equal to 2 or odd.

► The **elimination rule** for + allows to form from an element of *A* + *B* an element of any set *C* provided we can compute such an element from *A* and from *B*:

$$A : Set$$

$$B : Set$$

$$C : (A \lor B) \to Set$$

$$sl : (a : A) \to C \text{ (inl } A B \text{ a)}$$

$$sr : (b : B) \to C \text{ (inr } A B \text{ b)}$$

$$\frac{d : A \lor B}{Case_{+} A B C sl sr d : C d} (+-El)$$

▶ Omitting the dependency of C on $A \lor B$, the premises A, B and C, and the arguments A, B and C, we get:

$$\frac{d: A \lor B \qquad sl: A \to C \qquad sr: B \to C}{\operatorname{Case}_{+} sl \ sr \ d: C} (+-\operatorname{El})$$

► This means that we can derive from A ∨ B a formula C, if we can derive C from A and from B.

► This is what is expressed by the natural deduction elimination rules for V:

$$\frac{A \lor B \qquad A \vdash C \qquad B \vdash C}{C} \ (\lor-El)$$

▶ In the above rule we have written

$$A \vdash C$$

for

from assumption A we can derive C.

► This is written sometimes in the following form

. . .

Note that in natural deduction, from the premise A ⊢ C we obtain A → C, which is the premise used in the corresponding rule in dependent type theory.

Omit Example 2

- Assume we want to show that every prime number is equal to 2, equal to 3, or ≥ 5 .
- ▶ We want to make use of the proof above that every prime number is equal to 2 or odd.
- ▶ We assume a prime number.
 - ▶ We know that it is equal to 2 or odd.
 - In case it is equal to 2 we conclude that it is equal to 2, equal to 3, or ≥ 5.
 - In case it is odd, we conclude using the fact that it is prime and 1 is not prime, that it is equal to 3 or ≥ 5.
 Therefore it is equal to 2, equal to 3, or > 5.
 - Now from the elimination rule for \vee we conclude that the prime number chosen is equal to 2, equal to 3, or \geq 5.

- ▶ Assume a proof of $A \lor B$.
- ▶ We want to show $B \lor A$.
 - ▶ We have $A \lor B$.
 - ▶ From assumption A we obtain A and therefore by \vee -introduction $B \vee A$.
 - ▶ From assumption B we obtain B and therefore by \vee -introduction $B \vee A$.
 - ▶ By \lor -elimination we obtain from these three premises $B \lor A$ without any premises.

Example 3 (Cont.)

▶ In natural deduction, this proof is as follows (we write $A_1, ..., A_n \vdash B$ for B follows under assumptions $A_1, ..., A_n$):

$$\frac{A \lor B}{A \vdash B \lor A} \frac{A \vdash A}{A \vdash B \lor A} (\lor -I_{inr}) \frac{B \vdash B}{B \vdash B \lor A} (\lor -I_{inr})$$

$$\frac{A \lor B}{B \lor A} (\lor -I_{inr})$$

▶ We have seen in the previous section how to derive this in Agda.

Implication

- ▶ We have seen before that we can identify in type theory implication with the non-dependent function type.
- ▶ In order to distinguish between the function type and the logical implication we will write in this subsection \supset instead of \rightarrow for logical implication.

Implication (Cont.)

▶ With this identification of logical implication and the function type, the **introduction rule for** \rightarrow allows to form a proof of $A \supset B$ from a proof of B depending on a proof P of A:

$$\frac{p:A\Rightarrow q:B}{\lambda p^A.q:A\supset B} (\rightarrow -I)$$

- ► This means that, if we, from assumptions p:A can prove B
 - (i.e. we can make use of a context p : A for proving q : B) then we can derive $A \supset B$ without assuming p:A.

Implication (Cont.)

► This is what is expressed by the introduction rule for ⊃ in natural deduction:

$$\frac{A \vdash B}{A \supset B}$$
 (\supset -I)

▶ We extend the proof that, if we have $A \lor B$, then we have $B \lor A$, to a proof of

$$(A \lor B) \supset (B \lor A)$$

- The previous proof can be easily transformed into a proof of A ∨ B ⊢ B ∨ A.
- ▶ By \supset -introduction, it follows $(A \lor B) \supset (B \lor A)$.

▶ The complete proof in natural deduction is as follows is as follows.

Implication (Cont.)

▶ The **elimination rule for** \supset allows to apply a proof p of $A \supset B$ to a proof of q of A in order to obtain a proof of B:

$$\frac{p:A\supset B \qquad q:A}{p\;q:B} (\to -\mathrm{El})$$

- ► This means that we can derive from A ⊃ B and A that B holds.
- ► This is what is expressed by the **natural deduction elimination** rule for ⊃:

$$A\supset B$$
 A $(\supset -E1)$

- ▶ Assume we want to show $A \supset (A \supset B) \supset B$.
- ▶ We can show this as follows:
 - ▶ From assumptions A and $A \supset B$ we can conclude $A \supset B$.
 - ▶ From assumptions A and $A \supset B$ we can conclude as well A.
 - ▶ Using the elimination rule for \supset , we conclude that under the same assumptions we get B.
 - ▶ Using the introduction rule for \supset we conclude from assumption A that $(A \supset B) \supset B$ holds.
 - ▶ Using again the introduction rule for \supset we conclude that $A \supset (A \supset B) \supset B$ holds without any assumptions.

► A proof in natural deduction is as follows:

$$\frac{A, A \supset B \vdash A \supset B \qquad A, A \supset B \vdash A}{A, A \supset B \vdash B \qquad (\supset -\text{El})}$$

$$\frac{A, A \supset B \vdash B}{A \vdash (A \supset B) \supset B} (\supset -\text{I})$$

$$\frac{A \vdash (A \supset B) \supset B}{A \supset (A \supset B) \supset B} (\supset -\text{I})$$

Universal Quantification

- ▶ We have seen before that we can identify in type theory universal quantification with the dependent function type.
- ▶ With this identification, the **introduction rule** for the dependent function type allows to form a proof of $\forall x^A.B$ from a proof of B depending on an element X:A:

$$\frac{x:A\Rightarrow p:B}{\lambda x^{A}.p:\forall x^{A}.B} (\rightarrow -I)$$

▶ This means that, if we, **from x:A can prove B**, then we get a proof of $\forall x^A.B$ which doesn't depend on x:A.

► This is what is expressed by the natural deduction introduction rule for ∀:

$$\frac{x:A\vdash B}{\forall x^A.B} (\forall -I)$$

where

- x might not occur free in any assumption of the proof.
 - ▶ This is guaranteed in type theory, since *x* : *A* must be the last element of the context, so any other assumptions must be located before it and can therefore **not depend on x:A.**

Note that we have written

$$x:A\vdash B$$

for

we can derive B from variable x : A.

- ▶ This is usually not mentioned as such in natural deduction.
- ▶ We prefer this notation, since it
 - makes the variable x explicit,
 - and allows to deal with more complex types A.

- The conclusion of the introduction rule will no longer depend on free variables x.
 - ▶ This is made explicit by mentioning free variables x : A in our notation.
 - ► In type theory this corresponds to the fact that x:A does no longer occur in the context of the conclusion.

- Assume one wants to show that for every natural number n we have n + 0 == n.
- ▶ In order to show this one assumes a natural number n and shows then that n + 0 == n.
- ▶ then using the introduction rule for \forall one concludes $\forall n^{\mathbb{N}}.n + 0 == n$.
- ▶ In natural deduction, this proof is as follows (where the prove of n + 0 == n is not carried out):

$$\frac{n+0==n}{\forall n^{\mathbb{N}}.n+0==n} (\forall -1)$$

▶ The **elimination rule** for the dependent function type allows to apply a proof p of $\forall x^A.B$ to an element a:A in order to obtain a proof of B[x:=a]:

$$\frac{p: \forall x^A.B \quad a: A}{p \ a: B[x:=a]} \ (\to -\text{El})$$

► This means that we can derive from $\forall x^A.B$ and an element of a:A that B[x:=a] holds.

- ► This is what is expressed by the natural deduction elimination rule for ∀
 - ► For the simple languages used in natural deduction, there is no need to derive that *a* : *A*;

in more complex type theories we have to carry out this derivation.

$$\frac{\forall x^A.B \quad a:A}{B[x:=a]} (\forall -\text{El})$$

- ▶ Assume a proof of $\forall n^{\mathbb{N}}.0 + n == n$.
- ▶ We want to conclude that $\forall n, m : \mathbb{N}.0 + (n+m) == (n+m)$.
- ▶ This can be done as follows:
 - ▶ One assumes $n, m : \mathbb{N}$.
 - ▶ Then one can conclude $n + m : \mathbb{N}$.
 - ▶ Using $\forall n^{\mathbb{N}}.0 + n == n$ and the elimination rule for \forall one concludes 0 + (n + m) == (n + m) under assumption $n, m : \mathbb{N}$.
 - Now using the introduction rule for \forall twice it follows $\forall n, m : \mathbb{N}.0 + (n+m) == (n+m).$

▶ In natural deduction, this proof is written as follows:

$$\frac{\forall n^{\mathbb{N}}.0 + n == n \qquad \frac{n:\mathbb{N}, m:\mathbb{N}-n:\mathbb{N} \qquad n:\mathbb{N}, m:\mathbb{N}-m:\mathbb{N}}{n:\mathbb{N}, m:\mathbb{N}\vdash n + m:\mathbb{N}} \text{ (\mathbb{N}-El}_{+})}{n:\mathbb{N}, m:\mathbb{N}\vdash 0 + (n+m) == (n+m)} \text{ (\forall-El}_{+})}$$

$$\frac{n:\mathbb{N}, m:\mathbb{N}\vdash \forall m^{\mathbb{N}}.0 + (n+m) == (n+m)}{\forall n, m:\mathbb{N}.0 + (n+m) == (n+m)} \text{ (\forall-I$)}}$$

Existential Quantification

- ▶ We have seen before that we can identify in type theory existential quantification with the dependent product.
- ▶ With this identification, the **introduction rule** for the dependent product allows to form a proof of $\exists x^A.B$ from an element a:A and a proof p:B[x:=a]:

$$\frac{a:A \quad p:B[x:=a]}{\langle a,p\rangle:\exists x^A.B} (\times -I)$$

► This is what is expressed by the **natural deduction introduction** rule for ∃:

$$\frac{a:A \quad B[x:=a]}{\exists x^A \ B} (\exists -I)$$

(ロ) (部) (注) (注) 注 の(0)

- ▶ Assume we want to show $\forall n^{\mathbb{N}}.\exists m^{\mathbb{N}}.m > n$.
 - ▶ In order to prove this one assumes first $n : \mathbb{N}$.
 - ▶ Then one concludes $S n : \mathbb{N}$ and S n > n.
 - ▶ Using the introduction rule for \exists one concludes $\exists m^{\mathbb{N}}.m > n$ under the assumption $n : \mathbb{N}$.
 - ▶ Using the introduction rule for \forall one concludes $\forall n^{\mathbb{N}}.\exists m^{\mathbb{N}}.m > n$.

▶ In natural deduction, this proof reads as follows:

$$\frac{\frac{n: \mathbb{N} \vdash n: \mathbb{N}}{n: \mathbb{N} \vdash S \ n: \mathbb{N}} (\mathbb{N} - I_{S})}{\frac{n: \mathbb{N} \vdash \exists m^{\mathbb{N}} . m > n}{\forall n^{\mathbb{N}} . \exists m^{\mathbb{N}} . m > n}} (\forall - I)}$$

Existential Quantification (Cont.)

- ► The **elimination rule** for the dependent product allows to project a proof p of $\exists x^A.B$ to an element $\pi_0(p): A$ and proof $\pi_1(p): B[x:=\pi_0(p)].$
- ► This kind of rule works only if we have **explicit proofs**.
- From this we can derive a rule which is essentially that used in natural deduction (in which one doesn't have explicit proofs):
 - Assume:
 - ightharpoonup C: Set, which does not depend on x:A,
 - $\triangleright p: \exists x^A.B \text{ and }$
 - $\triangleright x:A,y:B\Rightarrow c:C.$
 - ► Then we have $c[x := \pi_0(p), y := \pi_1(p)] : C$, not depending on x:A or y:B.

Existential Quantification (Cont.)

► Therefore the **rule in natural deduction** follows from the type theoretic rules:

$$\frac{\exists x^A.B \qquad x^A, B \vdash C}{C} (\exists -\text{El})$$

where C does not depend on x : A and B.

- ► Here x : A, B ⊢ C means that from x : A and assumption B we can derive C.
 - ▶ As in the introduction rule for natural deduction, *x* : *A* is usually not mentioned explicitly, since the type structure there is very simple.

- ▶ Assume we have shown $\forall n^{\mathbb{N}}.\exists m^{\mathbb{N}}.m > n \land \operatorname{Prime}(m)$.
- \blacktriangleright We want to show that for all n there exist two primes above it, i.e.

$$\forall n^{\mathbb{N}}.\exists m,k: \mathbb{N}.m > k \wedge k > n \wedge \wedge \mathrm{Prime}(m) \wedge \mathrm{Prime}(k) \ .$$

- ▶ We can derive this as follows:
 - ▶ Assume $n : \mathbb{N}$.
 - ▶ We have $\exists m^{\mathbb{N}}.m > n \land \operatorname{Prime}(m)$.
 - ▶ So assume $m : \mathbb{N}$ and $m > n \land \text{Prime}(m)$.
 - ▶ We have as well $\exists k^{\mathbb{N}}.k > m \land \text{Prime}(k)$.
 - ▶ So assume $k : \mathbb{N}$ and $k > m \land \text{Prime}(k)$.

Then we can conclude

$$m > k \land k > n \land Prime(m) \land Prime(k)$$

and therefore as well

$$\exists m, k : \mathbb{N}.m > k \wedge k > n \wedge \operatorname{Prime}(m) \wedge \operatorname{Prime}(k)$$

► Now by ∃-elimination twice follows

$$n: \mathbb{N} \vdash \exists m, k: \mathbb{N}.m > k \land k > n \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)$$

without assuming m, k as above.

▶ By ∀-introduction follows

$$\forall n^{\mathbb{N}}.\exists m, k : \mathbb{N}.m > k \wedge k > n \wedge \operatorname{Prime}(m) \wedge \operatorname{Prime}(k)$$

► The formal proof in natural deduction is as follows (some of the premises can be shown easily in natural deduction):

► First step: Under the global assumption

$$n: \mathbb{N}, m: \mathbb{N}, m > n \wedge \operatorname{Prime}(m), k: \mathbb{N}, k > m \wedge \operatorname{Prime}(k)$$

we prove the following

$$\frac{m: \mathbb{N} \quad m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)}{\exists k^{\mathbb{N}}. m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)} (\exists -\text{I})}{\exists m, k : \mathbb{N}. m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)} (\exists -\text{I})}$$

So we have shown

$$n: \mathbb{N}, m: \mathbb{N}, m > n \land \operatorname{Prime}(m), k: \mathbb{N}, k > m \land \operatorname{Prime}(k) \vdash \exists m, k: \mathbb{N}.m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)$$

► Second step: Under the assumption

$$n: \mathbb{N}, m: \mathbb{N}, m > n \wedge \operatorname{Prime}(m)$$

we can conclude

$$\exists k^{\mathbb{N}}.k > m \wedge \operatorname{Prime}(k)$$

and then conclude by ∃-elimination and Step 1

$$\frac{\exists k^{\mathbb{N}}.k > m \land \operatorname{Prime}(k)}{\underbrace{k: \mathbb{N}, k > m \land \operatorname{Prime}(k) \vdash \exists m, k: \mathbb{N}.m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)}}{\exists m, k: \mathbb{N}.m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)}} (\exists \neg I)$$

► Third step: Again we can conclude

$$n: \mathbb{N} \vdash \exists m^{\mathbb{N}}.m > n \land \operatorname{Prime}(m)$$

and then conclude by ∃-elimination and Step 2

$$n: \mathbb{N} \vdash \exists m^{\mathbb{N}}. m > n \land \operatorname{Prime}(m)$$

$$n: \mathbb{N}, m: \mathbb{N}, m > n \land \operatorname{Prime}(m) \vdash \exists m, k: \mathbb{N}. m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)$$

$$n: \mathbb{N} \vdash \exists m, k: \mathbb{N}. m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)$$

$$\forall n^{\mathbb{N}}. \exists m, k: \mathbb{N}. m > n \land k > m \land \operatorname{Prime}(m) \land \operatorname{Prime}(k)$$

$$(\forall -I)$$

Construct. (or Intuit.) Logic

- ► From type theoretic proofs we can **directly extract programs**.
- ▶ For instance, if $p: \forall x^A.\exists y^B.C[x,y]$, then we have
 - for x : A it follows $b := \pi_0(p x) : B$ and $\pi_1(p x) : C[x, b]$.
 - ► Therefore $f := \lambda x^A . \pi_0(p x)$ is a **function of type A** \rightarrow **B**, and we have

$$\lambda \mathbf{x}^{\mathbf{A}}.\pi_{1}(\mathbf{p} \ \mathbf{x}) : \forall \mathbf{x}^{\mathbf{A}}.\mathbf{C}[\mathbf{x},\mathbf{f} \ \mathbf{x}]$$

- i.e. we have a proof that $\forall x^A.C[x, f x]$ holds.
- ► Therefore, from a proof of $\forall x^A.\exists y^B.C[x,y]$, we can **extract a function**, which computes the y from the x.

- We can derive as well a function which depending on p : A + B decides whether p= inl(a) or p = inr(b).
- ► Therefore we can decide, from a proof of a disjunction, which of the disjuncts holds.
- ► This has consequences due to the undecidability of the Turing halting problem.
 - Before continuing, I introduce briefly this result for those who haven't been in the module on computability theory.

Turing Machines

- ► A Turing machine (in short TM) is a program language which is according to Church's thesis universal:
 - Every computable function can be computed by a TM.
 - TMs can have one input string, no interaction, and have as output one output string.
 - ▶ Both these strings are usually interpreted as natural numbers.
 - ► To run a TM with no input means to run it with the empty input string.

Turing Complete Languages

- ► Any programming language, which can simulate a TM, shares this property and is called **Turing complete**.
 - ► Most standard programming languages, e.g. Java, Pascal, C, C++ are **Turing complete**.
 - Agda, restricted to termination checked programs, is not Turing complete.
 - No (decidable) language, which allows to write terminating programs only, can be Turing complete.

Turing Halting Problem

- ► The **Turing halting problem** is the question, whether a TM (with no inputs) terminates.
 - ► An essentially equivalent form is the question whether a TM with one input terminates.
- ▶ One can introduce a predicate **halts x** depending on a TM **x** (which can be represented as a string, as a natural number, or as a specific data type) expressing that "TM **x** holds, if given no inputs".
- ► Therefore the Turing halting problem is the question whether we can decide

halts $x \vee \neg \text{halts } x$.

Unprovability in Type Theory

- ▶ It is known that the Turing halting problem is undecidable:
 - ▶ We cannot decide in a computable way for every *x* the Turing halting problem for *x*.
- ► Similarly we cannot decide whether a Java program with no input and no interaction terminates or not.
- Because of the undecidability of the Turing halting problem, the following formula is unprovable in Martin-Löf Type Theory and as well in Agda:

$$\forall x^{\text{TM}}.\text{halts } x \vee \neg \text{halts } x$$
.

▶ Here TM is a data type which allows to encode all TM in a standard way.

Unprovability in Constructive Logic

- ► If we could prove it, we could get a function, which determines for *x* : TM whether halts *x* or not.
- ▶ But such a function needs to be computable, and such a computable function doesn't exist.

- In classical logic we can prove the above, since we can derive A ∨ ¬A (tertium non datur) for any formula A.
- In type theory, this law cannot hold, unless we don't want that all programs can be evaluated.
 - ▶ The logic of type theory is **intuitionistic** (**constructive**) **logic**, in which $A \lor \neg A$ and $\neg \neg A \supset A$ are in general not provable for all formulae A.
- Jump over remaining slides

- ► In classical logic,
 - ▶ $\exists x^A.B$ is equivalent to $\neg \forall x^A. \neg B$,
 - ▶ $A \lor B$ is equivalent to $\neg(\neg A \land \neg B)$.
- ▶ If we take decidable atomic formulae only and

replace
$$\exists x^A.B$$
 by $\neg \forall x^A. \neg B$
replace $A \lor B$ by $\neg (\neg A \land \neg B)$

then all formulae provable in classical logic are derivable in type theory.

▶ All we need is $\neg \neg A \supset A$, which can be shown for all formulae built from decidable atomic formulae using \neg , \supset , \land , \forall .

► Especially, the tertium non datur formula

$$A \vee \neg A$$

translates into

$$\neg(\neg A \land \neg \neg A)$$

which trivially holds, since $\neg A$ and $\neg \neg A$ implies \bot .

► In this sense, type theory contains classical logic.

Weak vs. Strong Disjunction and Exist-Quantification

- ► But type theory is **richer**, since it has as well so called **strong** disjunction and existential quantification.
 - Strong disjunction and strong existential quantification are the formulae

$$A \vee B$$
 and $\exists x^A.B$

whereas weak disjunction and weak existential quantification are the formulae

$$\neg(\neg A \land \neg B)$$
 and $\neg \forall x^A . \neg B$

Weak vs. Strong Disjunction and Exist-Quantification

► From a proof $p: \exists x^A.B$ we can extract an element x of A s.t. B holds, namely

$$\pi_0(x)$$

This is in general **not possible for weak existential quantification.**

► From a proof $p: A \lor B$ we can determine which one of A or B holds (the other disjunct might hold as well). From a proof of **weak disjunction** this is in general **not possible.**

► Remark: One can always obtain classical logic in Agda for arbitrary formulae by **postulating** tertium non datur for the formulae for which one needs it:

postulate $p : A \vee \neg A$

► Jump over the following proofs.

▶ Proof (using classical logic) of

$$\exists x^A.B \leftrightarrow (\neg \forall x^A. \neg B)$$
 :

► We have classically:

$$\neg \neg A \supset A$$
 :

- ▶ If A is true, then $\neg \neg A \supset A$ holds.
- ▶ If *A* is false, then $\neg \neg A$ is false, therefore $\neg \neg A \supset A$ holds.

- ▶ We show intuitionistically $\neg \exists x^A . B \leftrightarrow \forall x^A . \neg B$:
 - Assume $\neg \exists x^A.B, \ x : A$ and show $\neg B$. If we had B, then we had $\exists x^A.B$, contradicting $\neg \exists x^A.B$. Therefore $\neg B$.
 - Assume $\forall x^A. \neg B$. Show $\neg \exists x^A.B$: Assume $\exists x^A.B$. Assume x s.t. B holds. By $\forall x^A. \neg B$ we get $\neg B$, therefore a contradiction.
- Now it follows (classically):

$$(\exists x^A.B) \leftrightarrow (\neg\neg\exists x^A.B) \leftrightarrow (\neg \forall x^A.\neg B)$$

Proof of

$$\mathbf{A} \vee \mathbf{B} \leftrightarrow \neg(\neg \mathbf{A} \wedge \neg \mathbf{B})$$
 :

- We show intuitionistically $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$:
 - ▶ Assume $\neg(A \lor B)$. If A then $A \lor B$, a contradiction, therefore $\neg A$. Similarly we get $\neg B$, therefore $\neg A \land \neg B$.
 - ► Assume $\neg A \land \neg B$, show $\neg (A \lor B)$. Assume $A \lor B$. If A then a contradiction with $\neg A$, similarly with B.
- ▶ Now it follows (classically):

$$(\mathbf{A} \vee \mathbf{B}) \leftrightarrow \neg \neg (\mathbf{A} \vee \mathbf{B}) \leftrightarrow \neg (\neg \mathbf{A} \wedge \neg \mathbf{B})$$

▶ We show that for formulas A built from \neg , \supset , \land , \forall and decidable prime formulae we have

$$\neg \neg A \supset A$$
.

- ▶ The formula $\neg \neg A \supset A$ is called **stability for A**.
- ▶ This is done by induction over the buildup of these formulae.

- ▶ Case $A \equiv \text{Atom } c$.
 - ▶ We make case distinction on c.
 - ▶ If c = tt, then we have $A \equiv \top$, A is provable, therefore as well $\neg \neg A \supset A$.
 - ▶ If c = ff, then we have $A \equiv \bot$.
 - ▶ Assume $\neg \neg A \equiv (\bot \supset \bot) \supset \bot$.
 - ▶ $\bot \supset \bot$ is provable.
 - ▶ Therefore we obtain \bot , which is A.
 - So we have

$$\neg \neg A \vdash A$$

and obtain

$$\neg \neg A \supset A$$
.

- ▶ Case $A \equiv B \supset C$, and assume we have already shown stability for B and C.
- ▶ We have to show that from $\neg \neg A$ we obtain A, which is $B \supset C$.
- ▶ So assume $\neg \neg A$, B and show C.
- ▶ We show $\neg\neg C$, then by stability of C we obtain C.
- ightharpoonup $\neg \neg C \equiv \neg C \supset \bot$.
- ▶ Therefore assume $\neg C$ and show \bot .
 - ▶ We show $\neg A$ which is $A \supset \bot$.
 - ▶ So assume *A* and show \bot . $A \equiv B \supset C$, therefore by *B* we get *C*, and by $\neg C$ therefore \bot .
 - ▶ By $\neg \neg A$, which is $\neg A \supset \bot$, we get therefore \bot , which completes the proof for this case.

- ► Case $A \equiv B \land C$, and assume we have already shown stability for B and C.
- ▶ Assume $\neg \neg A$ and show A.
 - ▶ We show $\neg\neg B$, which implies by the stability of B that B holds.
 - ▶ Since $\neg \neg B \equiv \neg B \supset \bot$, we assume $\neg B$ and have to show \bot .
 - ▶ We show $\neg A$, i.e. show that A implies \bot :

Assume A, which is $B \wedge C$. Then we get B, and by $\neg B$ therefore \bot .

- ▶ By $\neg \neg A$ we obtain \bot .
- Therefore we have shown B.
- ▶ A similar proof shows C, and therefore we get $B \wedge C$, i.e. A.

- ▶ Case $A \equiv \forall x^B.C$, and assume we have already shown stability for C.
- ightharpoonup Assume $\neg \neg A$ and show A.
- ► So assume x : B. and show C.
- ▶ We show $\neg\neg C$, which by the stability of C implies C.
 - ▶ So assume $\neg C$ and show \bot .
 - ▶ We show $\neg A$.
 - ▶ Assume A, which is $\forall x^B.C.$
 - ▶ Then we obtain C, and by $\neg C$ therefore \bot .
 - ▶ By $\neg \neg A$ we therefore get \bot , and are done.

- ▶ Case $A \equiv \neg B$, and we have stability for B.
- $ightharpoonup \neg B \equiv B \supset \bot$.
- $ightharpoonup \perp \equiv \perp = \text{Atom false}.$
- ▶ By stability for decidable prime formulae we get stability for \bot .
- ▶ Together with the stability for B we obtain by case \supset the stability for $B \supset \bot \equiv \neg B$.

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (g) The Set of Natural Numbers

- ▶ The set \mathbb{N} is the type theoretic representation of the set $\mathbb{N} := \{0, 1, 2, \dots, \}.$
- $ightharpoonup \mathbb{N}$ can be generated by
 - starting with the empty set,
 - ▶ adding 0 to it, and
 - \blacktriangleright adding, whenever we have x in it x+1 to it.

The Set of Natural Numbers (Cont.)

- ▶ Let S be a type theoretic notation for the operation $x \mapsto x + 1$.
- ► Then the type theoretic rules are

$$\mathbb{N}: \mathbf{Set} \quad (\mathbb{N}\text{-}\mathbf{F})$$

$$0:\mathbb{N} \quad (\mathbb{N}\text{-}\mathrm{I}_0)$$

$$\frac{n:\mathbb{N}}{\mathrm{S}\;n:\mathbb{N}}$$
 (\mathbb{N} - I_{S})

Primitive Recursion

► Primitive Recursion expresses:

Assume we have

- ► a: N.
- ▶ and, if $n : \mathbb{N}$, $x : \mathbb{N}$ then $g n x : \mathbb{N}$.

Then we can define $f : \mathbb{N} \to \mathbb{N}$, s.t.

- f 0 = a,
- f(S n) = g n(f n).

Primitive Recursion (Cont.)

- ► The **computation of f n** proceeds now as follows:
 - ► Compute *n*.
 - ▶ If n = 0, then the result is a.
 - ▶ Otherwise n = S n'.
 - \blacktriangleright We assume that we have determined already how to compute f n'.
 - Now f n reduces to g n' (f n').
 - ightharpoonup g n' (f n') can be computed, since we know how to compute

Example

- ► The function $f: \mathbb{N} \to \mathbb{N}$ with $f = 2 \cdot n$ can be defined **primitive recursively** by:
 - f 0 = 0.
 - f(S n) = S(S(f n)).
- ► Therefore take in the definition above:
 - ▶ a = 0,
 - g n x = S(S x).

Generalised Primitive Recursion

- We can generalise primitive recursion as follows:
 - First we can replace the range of f by an arbitrary set C
 - ▶ i.e. we allow for any set C

$$f: \mathbb{N} \to C$$

- Further, C can now **depend on** \mathbb{N} .
- We obtain the following set of rules:

Rules for the Natural Numbers

Formation Rule

$$\mathbb{N}: \mathrm{Set} \quad (\mathbb{N}\text{-}\mathrm{F})$$

Introduction Rules

$$0:\mathbb{N} \quad (\mathbb{N}\text{-}\mathrm{I}_0)$$

$$\frac{n:\mathbb{N}}{\mathrm{S}\;n:\mathbb{N}}$$
 (\mathbb{N} - I_{S})

Rules for the Natural Numbers

Elimination Rule

$$C: \mathbb{N} \to \text{Set}$$

$$a: C \ 0$$

$$g: (x: \mathbb{N}) \to C \ x \to C \ (\text{S} \ x)$$

$$n: \mathbb{N}$$

$$P \ C \ a \ g \ n: C \ n$$

$$(\mathbb{N}\text{-El})$$

Equality Rules

$$P C a g 0 = a$$
 $(\mathbb{N}-Eq_0)$
 $P C a g (S n) = g n (P C a g n)$ $(\mathbb{N}-Eq_S)$

Additionally we have the **Equality versions** of the formation-, introduction- and elimination-rules. <u>Jump over Elimination into Type</u>

Elimination into Type

▶ In order to define predicates on the natural numbers by prim. recursion, we need sometimes elimination into type:

Strong elimination Rule

$$n: \mathbb{N} \Rightarrow C[n]: \mathrm{Type}$$
 $a: C[0]$
 $g: (x: \mathbb{N}) \rightarrow C[x] \rightarrow C[S x]$

$$n: \mathbb{N}$$

$$P_C^{\mathrm{Type}} \ a \ g \ n: C[n]$$
 $(\mathbb{N}\text{-El}^{\mathrm{Type}})$

Strong Equality Rules

$$\begin{array}{rcl} \mathrm{P}_{\,C}^{\mathrm{Type}} \; a \; g \; 0 & = \; a & \qquad & \left(\mathbb{N}\text{-}\mathrm{Eq}_{0}^{\mathrm{Type}} \right) \\ \mathrm{P}_{\,C}^{\mathrm{Type}} \; a \; g \; \left(\mathrm{S} \; n \right) & = \; g \; n \left(\mathrm{P}_{\,C}^{\mathrm{Type}} \; a \; g \; n \right) & \left(\mathbb{N}\text{-}\mathrm{Eq}_{\mathrm{S}}^{\mathrm{Type}} \right) \end{array}$$

Rules for the Natural Numbers

- Note that if we define in the elimination rule $f := P \ C \ a \ g$ (which is η -equal to $\lambda n^{\mathbb{N}}.P \ C \ g \ a \ n$) then
 - ▶ The conclusion of the elimination rule reads:

which means that

$$f:(n:\mathbb{N})\to C$$
 n .

► The equality rules read:

$$f 0 = a$$

 $f (S n) = g n (f n)$

Logical Framework Rules for N

- ▶ The more compact notation is:
 - ▶ N : Set.
 - **▶** 0 : N.
 - $S: \mathbb{N} \to \mathbb{N}$.
 - ► P: $(C: \mathbb{N} \to \operatorname{Set})$ $\to C \circ 0$ $\to ((x: \mathbb{N}) \to C \times \to C (S \times))$ $\to (n: \mathbb{N})$ $\to C \circ n$
 - ▶ The same equality rules as before.

Natural Numbers in Agda

▶ N is defined using data:

data \mathbb{N} : Set where

 $Z:\mathbb{N}$

 $S: \mathbb{N} \to \mathbb{N}$

Here \mathbb{N} can be typed in using Leim as $\backslash Bbb\{N\}$. (We cannot use 0 for zero, since this denotes the builtin native natural number 0 in Agda).

► Therefore we have

 $Z : \mathbb{N}$

 $S : \mathbb{N} \to \mathbb{N}$

- ▶ Elimination is represented in Agda as before via case distinction.
- Assume we want to define

$$f:(n:\mathbb{N})\to A$$
$$f\;n=\{!\;\;!\}$$

- ► A possibly depending on n,
- ▶ Then we can distinguish the cases n = Z and n = S m and obtain:

$$f: (n: \mathbb{N}) \to A$$

$$f \quad Z = \{! \ !\}$$

$$f \quad (S n) = \{! \ !\}$$

- ► For solving the goals, we can now **make use of f**. That will be **accepted by the type checker**.
- ► However, if we use of full *f* , and then type check the file, the termination checker will complain, and we obtain for instance

$$\begin{array}{c} \mathbf{f} : (n : \mathbb{N}) \to A \\ f \ n = \mathbf{f} \ n \end{array}$$

exampleNat1.agda

► If we, in

$$g:(n:\mathbb{N})\to A$$

$$g Z = \{! !\}$$

$$g (S n) = \{! !\}$$

- lacktriangle do not make use of g when defining $g \ Z$ and
- ▶ only use of g n when defining g(S n)

then the termination check succeeds (once the definition is complete).

- ▶ If we haven't completed the definition of g, the termination checker might complain, as long as not all details are known.
 - ► For instance, if we have the following we get an error:

If we complete it as follows the error vanishes (one might need to load the agda code again):

$$g: \mathbb{N} \to \mathbb{N}$$

$$g \quad Z = Z$$

$$g \quad (S n) = g n$$

- ▶ If **check-termination succeeds**, the definition should be **correct**.
 - ► (The lecturer hasn't checked the algorithm).
- However, if check-termination fails, the definition might still be correct.

Jump over Limitations of Termination Checker.

Power of Termination Check

► The following definition of the Fibonacci numbers can't be defined this way directly using the rules of type theory, but it can be defined in Agda as follows and check-termination accepts it:

(one :=
$$S Z$$
):

fib:
$$\mathbb{N} \to \mathbb{N}$$

fib Z = one
fib (S Z) = one
fib (S (S n)) = fib $n +$ fib (S n)

fib1.agda

Limitations of Termination Checker

Assume we define the predecessor function

$$\begin{array}{lll} \operatorname{pred}: \mathbb{N} \to \mathbb{N} \\ \operatorname{pred} & \operatorname{Z} & = & \operatorname{Z} \\ \operatorname{pred} & (\operatorname{S} n) & = & n \end{array}$$

i.e.

$$\operatorname{pred}(n) = \begin{cases} 0 & \text{if } n = 0 \\ n - 1 & \text{otherwise.} \end{cases}$$

Limitations of Termination Checker

▶ Then the function

$$\begin{array}{cccc}
f & : \mathbb{N} \to \mathbb{N} \\
f & Z & = & Z \\
f & (S n) & = & f \text{ (pred } n)
\end{array}$$

terminates always

- (it returns for all $n : \mathbb{N}$ the value \mathbb{Z}).
- ► However, check-termination fails. terminationnat1.agda

Limitations of Termination Checker

- ▶ Because of the undecidability of the Turing halting problem
 - it is undecidable, whether a recursively defined function terminates or not,
- therefore there is no extension of check-termination, which accepts exactly all in Agda definable functions, which terminate for all inputs.

Example: Addition

▶ Definition of + in Agda:

infixr 10 _ + _
 _ + _ :
$$\mathbb{N} \to \mathbb{N} \to \mathbb{N}$$

 $n + Z = n$
 $n + S m = S (n + m)$

- ▶ The definitition is correct, since when defining n + S m, n + m is defined before n + S m.
- Because of the line

infixr
$$10 + ...$$

n + m + k is interpreted as n + (m + k).

Example: Multiplication

Definition

infixr 20 _ * _
_ * _ :
$$\mathbb{N} \to \mathbb{N} \to \mathbb{N}$$

 $n * Z = Z$
 $n * S m = n * m + n$

Because of the line

infixr
$$20 = *$$
,

- $_*$ binds more than $_+$
 - ▶ Remember we had infixr 10 _ + _.
- We can use in the definition of _* _ +, and can refer in case of n * S m to n * m, which is defined before n * S m.

Equality on $\mathbb N$

ightharpoonup We can define a Boolean valued equality on $\mathbb N$ as follows:

$$_==Bool_{-}: \mathbb{N} \to \mathbb{N} \to Bool$$
 $Z ==Bool_{-}Z = tt$
 $S n ==Bool_{-}S m = n ==Bool_{-}m$
 $==Bool_{-}=ff$

▶ Note that the third case expresses: in all other cases (i.e. when defining $n == \operatorname{Bool} m$ and neither both n, m are Z nor both are of the form S _) we obtain the result f.

Equality on $\mathbb N$

▶ Then we can define equality $_==_$ on $\mathbb N$ as follows

$$_==_: \mathbb{N} \to \mathbb{N} \to \text{Set}$$

 $n == m = \text{Atom } (n == \text{Bool } m)$

Equality on \mathbb{N} (Cont.)

► Alternatively we could have defined _==_ directly (this uses in fact large elimination on N):

nat1.agda

Reflexivity of ==

► **Reflexivity** of == is the formula:

$$\forall n^{\mathbb{N}}.n == n$$

► Type theoretically this means that we have to prove

$$refl : Refl$$

 $refl = \{! !\}$

where

$$\operatorname{Refl} = (n : \mathbb{N}) \to n == n$$

Reflexivity of ==

```
Refl: Set
Refl = (n : \mathbb{N}) \rightarrow n == n
refl: Refl
refl = \{! : !\}
```

 Since refl is an element of a function type, we replace the definition of refl by

refl : Refl refl
$$n = \{! \ !\}$$

where the type of the goal is n == n.

```
Refl : Set Refl = (n : \mathbb{N}) \rightarrow n == n refl : Refl refl : n = \{! : !\}
```

► This can now be shown using **pattern matching**:

refl : Refl refl Z =
$$\{! \ !\}$$
 refl (S n) = $\{! \ !\}$

▶ In order to prove refl Z, we observe

$$(Z == Z) = Atom (Z ==Bool Z)$$

= $Atom tt$
= T

▶ Therefore the goal can be solved by taking true : T.

▶ In order to prove refl (S n), we observe

$$(S n == S n) = Atom (S n ==Bool S n)$$

= $Atom (n ==Bool n)$
= $(n == n)$

▶ Therefore the goal can be solved by taking refl n: (n == n).

► The complete proof is as follows:

refl: Refl
refl:
$$Z = \text{true}$$

refl: $(S n) = \text{refl} n$

Note that this is not a black hole recursion, since in the second equation refl n is defined before refl (S n). reflnat.agda

Symmetry of ==

► Symmetry of == is the formula:

$$\forall n, m : \mathbb{N}.n == m \rightarrow m == n$$

► Type theoretically this means that we have to prove

Sym : Set
$$Sym = (n \ m : \mathbb{N}) \rightarrow n == m \rightarrow m == n$$

In Agda this is shown by defining

$$sym : Sym$$
$$sym n m nm = \{! !\}$$

```
Sym : Set
Sym = (n \ m : \mathbb{N}) \rightarrow n == m \rightarrow m == n
```

► This can now be shown using **case distinction** on both *n* and *m*:

$$sym : Sym$$

 $sym Z Z nm = \{! !\}$
 $sym Z (S m) nm = \{! !\}$
 $sym (S n) Z nm = \{! !\}$
 $sym (S n) (S m) nm = \{! !\}$

► For convenience we spell out the type of sym in the following.

```
sym : (n \ m : \mathbb{N}) \to n == m \to m == n

sym \ Z \ Z \ nm = \{! \ !\}

sym \ Z \ (S \ m) \ nm = \{! \ !\}

sym \ (S \ n) \ Z \ nm = \{! \ !\}

sym \ (S \ n) \ (S \ m) \ nm = \{! \ !\}
```

▶ In case sym Z Z nm, the goal is

$$(Z == Z) = T$$

which can be solved by using true.

► The argument nm is irrelevant and can be replaced by _.

▶ In case sym Z(S m) nm, we have

$$nm: Z == S m = \bot$$

so there is no element in nm, we can solve it as

$$\operatorname{sym} Z(Sm)()$$

▶ In case sym(S n) Z nm, we have

$$nm : S m == Z = \bot$$

so there is no element in nm, we can solve it as

▶ In case sym (S n) (S m) nm, we have that the type of the goal is

$$(S m == S n) = (m == n)$$

► This goal can be solved by

$$\operatorname{sym} n m nm : m == n$$

which is type correct since $nm : (S \ n == S \ m) = (n == m)$

▶ The complete proof is as follows:

▶ Note that this code termination checks, since in the last equation sym *n m nm* is defined before sym (S *n*) (S *m*) *nm*. symnat.aqda

▶ In the cases

we have that nm is an element of \bot , and the goal is \bot .

► So we can, instead of using empty case distinction on *nm*, return the proof *nm* and obtain the following:

symnat2.agda

Example: < on $\mathbb N$

▶ The following introduces < on \mathbb{N} :

lessnat1.agda

Example: < on $\mathbb N$

► Alternatively, we can define < using large elimination:

lessnat2.agda

Example: Tuples of Length n

▶ We define tuples (or vectors) of length *n* in Agda:

```
data Nil : Set where
[] : Nil
data Cons (A B : Set) : Set where
_::_ : A \rightarrow B \rightarrow \text{Cons } A B
```

(Cons A B is just $A \times B$ with a convenient name for the constructor).

► Now we can define

Tuple : Set
$$\to \mathbb{N} \to \text{Set}$$

Tuple $A \times \mathbb{Z} = \text{Nil}$
Tuple $A \times (S \setminus n) = \text{Cons } A \times (A \setminus n)$

Tuples of Length n

▶ Therefore,

Tuple
$$A n = \underbrace{\text{Cons } A (\text{Cons } A \cdots (\text{Cons } A \text{ Nil}) \cdots)}_{n \text{ times}}$$
.

▶ The elements of Tuple A n are

$$a_1 :: (a_2 \cdot \cdot \cdot (a_n :: []) \cdot \cdot \cdot)$$

for elements a_1, \ldots, a_n of A.

If we add infixr :: n for some n we can write as well the following

$$a_1 :: a_2 \cdot \cdot \cdot \cdot a_n :: []$$

- ▶ In ordinary mathematical notation, we would write $\langle a_1, \ldots, a_n \rangle$ for such an element.
- ► Jump over next slides.

Remarks on Tuples of Length n

► In **ordinary mathematics**, we would define

$$ext{Tuple}(A, 0) := \{\langle \rangle \} , \\ ext{Tuple}(A, n+1) := \{\langle a_1, \dots, a_{n+1} \rangle \mid a_1, \dots, a_{n+1} \in A \} .$$

▶ If we define

$$[] := \langle \rangle ,$$

$$a_1 :: \langle a_2, \dots, a_{n+1} \rangle := \langle a_1, \dots, a_{n+1} \rangle ,$$

then this reads:

$$\begin{split} \operatorname{Tuple}(A,0) &:= \ \{[]\} \ , \\ \operatorname{Tuple}(A,n+1) &:= \ \{a::b \ \mid a \in A \land b \in \operatorname{Tuple}(A,n)\} \ . \end{split}$$

Remarks on Tuples of Length n

► In the type theoretic definition we have **constructors**

[]: Tuple A Z

 $:: A \to \text{Tuple } A \ n \to \text{Tuple } A \ (S \ n)$

► This is the **type theoretic analogue** of the previous definitions.

Componentwise Sum of n-Tuples

- ► We define component-wise sum of tuples of length n.
 - ▶ Using mathematical notation, this sum for instance as follows:

$$\langle 2,3,4\rangle + \langle 5,6,7\rangle = \langle 7,9,11\rangle$$
.

Componentwise Sum of n-Tuples

```
sumNTuple : (n : \mathbb{N}) \to \text{Tuple } \mathbb{N} \ n \to \text{T
```

tuple.agda

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (h) Lists

- ▶ We define the set of lists of elements of type A in Agda.
- We have two constructors:
 - ▶ [], generating the empty list.
 - ▶ _::_, adding an element of A in front of a list
- ► So we define lists as follows:

infixr 20 _::_

data List (A: Set): Set where

[] : List *A*

 $_{-::_{-}}$: $A \to \text{List } A \to \text{List } A$

Elimination Principle for Lists

- ► The elimination principle is structural recursion on lists: Assume
 - ► *A* : Set
 - ► C : Set, depending on I : List A.

Then we can define

$$f: (I: \text{List } A) \to C$$

 $f: [] = \{!: \}$
 $f: (a:: I) = \{!: \}$

and in the second goal we can make use of f I.

Example: Length of a List

```
\begin{array}{lll} \operatorname{length} : \operatorname{List} \, \mathbb{N} \to \mathbb{N} \\ \operatorname{length} & [ \, ] & = & \operatorname{Z} \\ \operatorname{length} & ( \, \_ : : \, I ) & = & \operatorname{S} \left( \operatorname{length} \, I \right) \end{array}
```

Example: sumlist

▶ sumlist / will compute the sum of the elements of list /.

```
sumlist: List \mathbb{N} \to \mathbb{N}

sumlist [] = Z

sumlist (n::I) = n + \text{sumlist } I
```

Interesting Exercise

Define

$$_++_-:\{A:\operatorname{Set}\}\to\operatorname{List} A\to\operatorname{List} A\to\operatorname{List} A$$
,

s.t. I ++ I' is the result of appending the list I' at the end of list I.

 \blacktriangleright E.g., if a, b, c, d are elements of A, then

$$a :: b :: [] ++ c :: d :: []$$

= $a :: b :: c :: d :: []$

list.agda

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (i) Universes

- ▶ A universe U is a set, the elements of which are codes for sets.
- ► So we have
 - ▶ U : Set.
 - ▶ $T: U \rightarrow Set$ (the decoding function).
- ▶ We consider in the following a universe closed under
 - ▶ ⊥, ⊤, Bool, N,
 - **▶** +,
 - ► ∑.
 - the dependent function type.

Formation Rule

$$\frac{a:U}{T \ a:Set}$$
 (T-F)

Introduction and Equality Rules

$$\widehat{\perp}: U$$
 (U-I _{$\widehat{\perp}$}) T($\widehat{\perp}$) = $\perp: Set$ (T-Eq _{$\widehat{\perp}$})

$$\widehat{\top}: U \qquad (U-I_{\widehat{\tau}}) \qquad \qquad T(\widehat{\top}) = \top : Set \qquad \qquad (T-Eq_{\widehat{\tau}})$$

$$\widehat{\operatorname{Bool}}: \operatorname{U} \ (\operatorname{U-I}_{\widehat{\operatorname{Bool}}}) \qquad \operatorname{T} \big(\widehat{\operatorname{Bool}}\big) = \operatorname{Bool}: \operatorname{Set} \ (\operatorname{T-Eq}_{\widehat{\operatorname{Bool}}})$$

$$\widehat{\mathbb{N}}: U \qquad (U-I_{\widehat{\mathbb{N}}}) \qquad \qquad T(\widehat{\mathbb{N}}) = \mathbb{N}: Set \qquad (T-Eq_{\widehat{\mathbb{N}}})$$

Introduction and Equality Rules (Cont.)

$$\begin{split} \frac{a: \mathbf{U} \qquad b: \mathbf{U}}{a + b: \mathbf{U}} \left(\mathbf{U} - \mathbf{I}_{\widehat{+}} \right) \\ &\mathbf{T} \left(a + b \right) = \mathbf{T} \ a + \mathbf{T} \ b: \mathbf{Set} \quad \left(\mathbf{T} - \mathbf{Eq}_{\widehat{+}} \right) \\ \\ &\frac{a: \mathbf{U} \qquad b: \mathbf{T} \ a \to \mathbf{U}}{\widehat{\Sigma} \ a \ b: \mathbf{U}} \left(\mathbf{U} - \mathbf{I}_{\widehat{\Sigma}} \right) \\ &\mathbf{T} \left(\widehat{\Sigma} \ a \ b \right) = \mathbf{\Sigma} \left(\mathbf{T} \ a \right) \left(\lambda \mathbf{x}^{\mathbf{T}} \ ^{a} \cdot \mathbf{T} \ (b \ \mathbf{x}) \right) : \mathbf{Set} \quad \left(\mathbf{T} - \mathbf{Eq}_{\widehat{\Sigma}} \right) \end{split}$$

Introduction and Equality Rules (Cont.)

$$\frac{-a:\mathrm{U}\qquad b:\mathrm{T}\ a\to\mathrm{U}}{\widehat{\Pi}\ a\ b:\mathrm{U}}\left(\mathrm{U}\text{-}\mathrm{I}_{\widehat{\Pi}}\right)$$

$$T(\widehat{\Pi} \ a \ b) = (x : T \ a) \to T(b \ x) : Set (T-Eq_{\widehat{\Pi}})$$

Elimination and Equality Rules

- ► There exist as well elimination rules and corresponding equality rules for the universe.
- ▶ They are very long (one step for each of constructor of U) and are not very much used.
- ▶ They follow the principles present in previous rules.
- We have of course as well the equality versions of the formation-, introduction- and equality rules.

Applications of the Universe

- ▶ Ordinary elimination rules don't allow to eliminate into Set.
- However often, one can verify, that all sets needed are "elements of a universe",
 - ▶ i.e. there are codes in the universe representing them.
- ightharpoonup Then one can eliminate into the universe instead of Set and use T to obtain the required function.

Applications of the Universe

► Example: Define

```
\begin{array}{ccc} \widehat{\operatorname{Atom}} & : & \operatorname{Bool} \to \operatorname{U} \ , \\ \widehat{\operatorname{Atom}} & := & \operatorname{Case}_{\operatorname{Bool}} \left( \lambda x^{\operatorname{Bool}}.\operatorname{U} \right) \, \widehat{\top} \, \widehat{\perp} \ , \end{array}
```

Atom : Bool \rightarrow Set , Atom : λx^{Bool} .T $(\widehat{\text{Atom }} x)$,

Then

- Atom tt = T,
- Atom $ff = \bot$.

Universes in Agda

- ▶ U and T need to be defined simultaneously.
 - Usually Agda type checks definitions in sequence, so no reference to later definitions possible.
 - ► Special construct mutual.
 - Everything in the scope of it is type checked simultaneously.
 - Scope determined by indentation.
 - ▶ It is necessary, since the definition of U refers to that of T, and the definition of T refers to that of U.
 - In general mutual allows simultaneous inductive and/or recursive definitions.
 - ► The termination checker can handle certain terminating simultaneous inductive and/or recursive definitions like the universe.

Universes in Agda (Cont.)

mutual

```
data U : Set where
```

 \perp hat : U tophat : U Boolhat : U Nhat : U

 $_{-}+\mathrm{hat}_{-}\quad :\quad \mathrm{U}\rightarrow \mathrm{U}\rightarrow \mathrm{U}$

 $\begin{array}{ll} \Sigma \text{hat} & : & (a: U) \to (T \ a \to U) \to U \\ \Pi \text{hat} & : & (a: U) \to (T \ a \to U) \to U \end{array}$

Universes in Agda (Cont.)

T in the following is to be intended the same as U:

```
T: U \rightarrow Set

T \perp hat = \perp

T \text{ tophat} = \top

T \text{ Boolhat} = Bool

T \text{ Nhat} = \mathbb{N}

T (a + hat b) = T a + T b

T (\Sigma hat a b) = \Sigma (T a) (\lambda x \rightarrow T (b x))

T (\Pi hat a b) = \Pi (T a) (\lambda x \rightarrow T (b x))
```

- 6 (a) The Set of Booleans
- 6 (b) The Finite Sets
- 6 (c) Atomic formulae and the Traffic Light Example
- 6 (d) The Disjoint Union of Sets
- 6 (e) The **Σ**-Set
- 6 (f) Natural Deduction and Dependent Type Theory
- 6 (g) The Set of Natural Numbers
- 6 (h) Lists
- 6 (i) Universes
- 6 (j) Algebraic Types

6 (j) Algebraic Types

- ► The construct **data** in Agda is much more powerful than what is covered by type theoretic rules.
- ▶ In general we can define now sets having arbitrarily many constructors with arbitrarily many arguments of arbitrary types.

data A: Set where
$$C_1: (a_1: A_1^1) \rightarrow (a_2: A_2^1) \rightarrow \cdots (a_{n_1}: A_{n_1}^1) \rightarrow A$$

$$C_2: (a_1: A_1^2) \rightarrow (a_2: A_2^2) \rightarrow \cdots (a_{n_2}: A_{n_2}^2) \rightarrow A$$

$$\cdots$$

$$C_m: (a_1: A_1^m) \rightarrow (a_2: A_2^m) \rightarrow \cdots (a_{n_m}: A_{n_m}^m) \rightarrow A$$

Meaning of "data"

► The idea is that A as before is the least set A s.t. we have constructors:

$$egin{aligned} \mathrm{C_i}: \left(a_{i1} : \mathrm{A_{i1}}
ight) \ &
ightarrow & \cdots \ &
ightarrow \left(a_{in_i} : \mathrm{A_{in_i}}
ight) \ &
ightarrow & \mathrm{A} \end{aligned}$$

where a constructor always constructs new elements.

► In other words the elements of A are exactly those constructed by those constructors.

- ▶ In the types A_{ij} we can make use of A.
 - However, it is difficult to understand A, if we have negative occurrences of A.
 - ► Example:

data A : Set where
$$C: (A \rightarrow A) \rightarrow A$$

▶ What is the least set A having a constructor

$$C: (A \rightarrow A) \rightarrow A$$
 ?

- If we
 - ▶ have constructed some elements of A already,
 - \blacktriangleright find a function $f: A \rightarrow A$, and
 - ▶ add C f to A,

then f might no longer be a function $A \to A$. (f applied to the new element C f might not be defined).

- ▶ In fact, the termination checker issues a warning, if we define A as above.
- We shouldn't make use of such definitions.

► A "good" definition is the set of lists of natural numbers, defined as follows:

► The constructor _::_ of NList refers to NList, but in a positive way: We have: if a: N and I: NList, then

 $(a::I): \mathbb{N} \text{List}$.

- ▶ If we add a :: I to \mathbb{N} List, the reason for adding it (namely $I : \mathbb{N}$ List) is not destroyed by this addition.
- \blacktriangleright So we can "construct" the set $\mathbb{N}List$ by
 - starting with the empty set,
 - ► adding [] and
 - closing it under _::_ whenever possible.
- ▶ Because we can "construct" NList, the above is an acceptable definition.

► In general:

data A: Set where
$$C_1 : (a_1 : A_1^1) \rightarrow (a_2 : A_2^1) \rightarrow \cdots (a_{n_1} : A_{n_1}^1) \rightarrow A$$

$$C_2 : (a_1 : A_1^2) \rightarrow (a_2 : A_2^2) \rightarrow \cdots (a_{n_2} : A_{n_2}^2) \rightarrow A$$

$$\cdots$$

$$C_m : (a_1 : A_1^m) \rightarrow (a_2 : A_2^m) \rightarrow \cdots (a_{n_m} : A_{n_m}^m) \rightarrow A$$

is a strictly positive algebraic type, if all A_{ij} are

- either types which don't make use of A
- or are A itself.
- ► And if A is a strictly positive algebraic type, then A is acceptable.

▶ The definitions of finite sets, Σ A B, A + B and \mathbb{N} were strictly positive algebraic types.

One further Example

▶ The set of binary trees can be defined as follows:

data BinTree: Set where

leaf : BinTree

branch : Bintree \rightarrow Bintree

► This is a strictly positive algebraic type. bintree.aqda

Extensions of Strict. Pos. Alg. Types

- An often used extension is to define several sets simultaneously inductively.
- ► Example: the even and odd numbers:

mutual

data Even: Set where

Z : Even

 $S : Odd \rightarrow Even$ data Odd : Set where

S': Even \rightarrow Odd

 In such examples the constructors refer strictly positive to all sets which are to be defined simultaneously.
 evenodd.agda

Extensions of Strict. Pos. Alg. Types

- ▶ We can even allow $A_{ij} = B_1 \rightarrow A$ or even $A_{ij} = B_1 \rightarrow \cdots \rightarrow B_l \rightarrow A$, where A is one of the types introduced simultaneously.
- ► Example (called "Kleene's O"):

data O : Set where

leaf : O

 $\mathrm{succ} \ : \ \mathrm{O} \to \mathrm{O}$

 $\lim : (\mathbb{N} \to O) \to O$

- ▶ The last definition is unproblematic, since, if we have $f: \mathbb{N} \to O$ and construct $\lim f$ out of it, adding this new element to O doesn't destroy the reason for adding it to O.
- ► So again O can be "constructed".

Elimination Rules for data

- ► Functions f from strictly positive algebraic types can now be defined by case distinction as before.
- ▶ For termination we need only that in the definition of f, when have to define f (C a_1 \cdots a_n), we can refer only to f applied to elements used in C a_1 \cdots a_n .

Examples

- ► For instance
 - ▶ in the Bintree example, when defining

$$f: Bintree \rightarrow A$$

by case-distinction, then the definition of

f (branch
$$I r$$
)

can make use of f I and f r.

Examples

▶ In the example of O, when defining

$$g: O \to A$$

by case-distinction, then the definition of

$$g(\lim f)$$

can make use of g(f n) for all $n : \mathbb{N}$.