VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB RECORD

Bio Inspired Systems (23CS5BSBIS)

Submitted by

Shashidhar B M(1BM22CS257)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum) **Department of Computer Science and Engineering**

CERTIFICATE

This is to certify that the Lab work entitled "Bio Inspired Systems (23CS5BSBIS)" carried out by **Shashidhar B M (1BM22CS257),** who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements of the above mentioned subject and the work prescribed for the said degree.

Sneha S Bagalkot	Dr. Joythi S Nayak
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	24-10-2024	Genetic Algorithm for Optimization Problems	01-06
2	07-11-2024	Particle Swarm Optimization for Function Optimization	07-11
3	14-11-2024	Ant Colony Optimization for the Traveling Salesman Problem	11-20
4	21-11-2024	Cuckoo Search (CS)	20-27
5	28-11-2024	Grey Wolf Optimizer (GWO)	27-35
6	18-12-2024	Parallel Cellular Algorithms and Programs	36-42
7	18-12-2024	Optimization via Gene Expression Algorithms	43-49

Github Link:

https://github.com/ShashidharM0118/BIS_Lab-1BM22CS257

Program 1: Genetic Algorithm for Optimization on Problems

Genetic Algorithms (GA) are inspired by the process of natural selection and genetics, where the fittest individuals are selected for reproduction to produce the next generation. GAs are widely used for solving optimization and search problems. Implement a Genetic Algorithm using Python to solve a basic optimization problem, such as finding the maximum value of a mathematical function.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the population size, mutation rate, crossover rate, and number of generations.
- 3. Create Initial Population: Generate an initial population of potential solutions.
- 4. Evaluate Fitness: Evaluate the fitness of each individual in the population.
- 5. Selection: Select individuals based on their fitness to reproduce.
- 6. Crossover: Perform crossover between selected individuals to produce offspring.
- 7. Mutation: Apply mutation to the offspring to maintain genetic diversity.
- 8. Iteration: Repeat the evaluation, selection, crossover, and mutation processes for a fixed number of generations or until convergence criteria are met.
- 9. Output the Best Solution: Track and output the best solution found during the generations.

		Gaathi
		Date 24 / 10 / 24 -
		Genetic Algorithm
d		TO TAKE THE PARTY OF THE PARTY
Pop		Preudo code:
d		+ quitialize population 9 size pop-size with random
		values to range (x-range_low, x-range_high)
	-	For Generation in range (generation). a. Evaluate fitness & each individual:
		a Evaluate fitness g each individual:
		for each Endividuel a in population;
		4i+neus(x-i) = x-i+2
		b. select 2 parents band on fitney value (routlette
		coheel section):
		total fitner = sum g all fitner valus for
		each individual zi in population
		probability (x-i) = fitness (x-i) total-fitnes
		select > parents (p1,p2) band on probability.
		in the property of the contract of the contrac
	2000	C. putorm crossover with probability crossover rali:
		If random-number < crossover-rate; alpha = random value between 0 and 1
		alpha = random value security) = P2
		offepring! = alpha + p1+(1-alpha) + P2
		elx;
		offspring 1 = P)
		Offspring = P2
		1 11 - Little Sudation rate
		d. Apply mutation with probability mutation-rate
		For each off spring:
		offspring = random value in range [
		x-range-low, x+sange-hegh)
		e update population with new offspring
		Page No.

#lab-2: genetic import numpy as np import random

Objective function to maximize def objective_function(x): return x ** 2

Initialize parameters population_size = 100 num_generations = 50 mutation_rate = 0.1 crossover_rate = 0.7 range_min = -10

```
range max = 10
# Create initial population
def initialize_population(size, min_val, max_val):
  return np.random.uniform(min val, max val, size)
# Evaluate fitness of the population
def evaluate_fitness(population):
  return np.array([objective_function(x) for x in population])
# Selection using roulette-wheel method
def selection(population, fitness):
  total fitness = np.sum(fitness)
  probabilities = fitness / total_fitness
  return population[np.random.choice(range(len(population)), size=2, p=probabilities)]
# Crossover between two parents
def crossover(parent1, parent2):
  if random.random() < crossover_rate:
     return (parent1 + parent2) / 2 # Simple averaging for crossover
  return parent1 # No crossover
# Mutation of an individual
def mutate(individual):
  if random.random() < mutation rate:
     return np.random.uniform(range_min, range_max)
  return individual
# Genetic Algorithm function
def genetic_algorithm():
  # Step 1: Initialize population
  population = initialize_population(population_size, range_min, range_max)
  for generation in range(num_generations):
     # Step 2: Evaluate fitness
     fitness = evaluate_fitness(population)
     # Track the best solution
     best_index = np.argmax(fitness)
     best solution = population[best index]
     best_fitness = fitness[best_index]
     # print(f"Generation { generation + 1}: Best Solution = { best_solution}, Fitness =
{best_fitness}")
     # Step 3: Create new population
     new_population = []
```

```
for _ in range(population_size):
    # Select parents
    parent1, parent2 = selection(population, fitness)
    # Crossover to create offspring
    offspring = crossover(parent1, parent2)
    # Mutate offspring
    offspring = mutate(offspring)
    new_population.append(offspring)

# Step 6: Replace old population with new population
    population = np.array(new_population)

return best_solution, best_fitness

# Run the Genetic Algorithm
best_solution, best_fitness = genetic_algorithm()
print(f"Best Solution Found: {best_solution}, Fitness: {best_fitness}")
```

Best Solution Found: -9.290037411642935, Fitness: 86.30479510972536

Program 2: Particle Swarm Optimization for Function Optimization

Particle Swarm Optimization (PSO) is inspired by the social behavior of birds flocking or fish schooling. PSO is used to find optimal solutions by iteratively improving a candidate solution with regard to a given measure of quality. Implement the PSO algorithm using Python to optimize a mathematical function.

<u>Implementation Steps:</u>

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of particles, inertia weight, cognitive and social coefficients.
- 3. Initialize Particles: Generate an initial population of particles with random positions and velocities.
- 4. Evaluate Fitness: Evaluate the fitness of each particle based on the optimization function.
- 5. Update Velocities and Positions: Update the velocity and position of each particle based on its own best position and the global best position.
- 6. Iterate: Repeat the evaluation, updating, and position adjustment for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations.

(Saathi) clas Particle det_init - (self, dim). self-position = np. random uniform (-5.12, 5.12, dim) sett. velocity = np. random . wiform (-1, 1, dim) Evaluate Fitnes: det evaluate-particles (particles) for particle in particles: fitness = rastigin_function (pasticle, posts if fitnus a particle, but fitness; particle best fither = fither particle. but position = pasticle position copyc) Update velocity and positions: dy up date - particles (particles, global-best-position): take in ana 12 as random positions. Intitalize particle velocity uning 11, 12 Trutia wetan particle position += particle while In Main Loop: initialize global but position and global tetrum position as particle 100 is but position and but fitnen. Ituale through num Etrations.
call evaluate-particle (particle)

particle by current particle but fitness and position call update-particle (particle, global but-position) Output: Best Portion: [-9.58601084 e-10 FAMOU : 00 Page No.

```
#lab-3: pso
import numpy as np
import random
# Define the optimization problem (Rastrigin Function)
def rastrigin(x):
  A = 10
  return A * len(x) + sum([(xi**2 - A * np.cos(2 * np.pi * xi)) for xi in x])
# Particle Swarm Optimization (PSO) implementation
class Particle:
  def init (self, dimension, lower_bound, upper_bound):
     # Initialize the particle position and velocity randomly
     self.position = np.random.uniform(lower_bound, upper_bound, dimension)
     self.velocity = np.random.uniform(-1, 1, dimension)
     self.best_position = np.copy(self.position)
     self.best_value = rastrigin(self.position)
  def update_velocity(self, global_best_position, w, c1, c2):
     # Update the velocity of the particle
    r1 = np.random.rand(len(self.position))
    r2 = np.random.rand(len(self.position))
     # Inertia term
     inertia = w * self.velocity
     # Cognitive term (individual best)
     cognitive = c1 * r1 * (self.best_position - self.position)
     # Social term (global best)
     social = c2 * r2 * (global best position - self.position)
     # Update velocity
     self.velocity = inertia + cognitive + social
  def update_position(self, lower_bound, upper_bound):
     # Update the position of the particle
     self.position = self.position + self.velocity
     # Ensure the particle stays within the bounds
     self.position = np.clip(self.position, lower_bound, upper_bound)
  def evaluate(self):
     # Evaluate the fitness of the particle
     fitness = rastrigin(self.position)
```

```
# Update the particle's best position if necessary
    if fitness < self.best value:
       self.best_value = fitness
       self.best position = np.copy(self.position)
def particle_swarm_optimization(dim, lower_bound, upper_bound, num_particles=30, max_iter=100,
w=0.5, c1=1.5, c2=1.5):
  # Initialize particles
  particles = [Particle(dim, lower_bound, upper_bound) for _ in range(num_particles)]
  # Initialize the global best position and value
  global_best_position = particles[0].best_position
  global_best_value = particles[0].best_value
  for i in range(max_iter):
    # Update each particle
    for particle in particles:
       particle.update_velocity(global_best_position, w, c1, c2)
       particle.update position(lower bound, upper bound)
       particle.evaluate()
       # Update global best position if needed
       if particle.best_value < global_best_value:
         global best value = particle.best value
         global_best_position = np.copy(particle.best_position)
    # Optionally print the progress
    if (i+1) % 10 == 0:
       print(f"Iteration {i+1 }/{max_iter} - Best Fitness: {global_best_value}")
  return global_best_position, global_best_value
# Set the parameters for the PSO algorithm
                 # Number of dimensions for the function
\dim = 2
lower_bound = -5.12 # Lower bound of the search space
upper bound = 5.12 # Upper bound of the search space
num_particles = 30 # Number of particles in the swarm
                    # Number of iterations
max_iter = 100
# Run the PSO
best position, best value = particle swarm optimization(dim, lower bound, upper bound,
num_particles, max_iter)
# Output the best solution found
print("\nBest Solution Found:")
print("Position:", best_position)
```

print("Fitness:", best value)

OUTPUT:

```
Iteration 10/100 - Best Fitness: 1.1103296669969005
Iteration 20/100 - Best Fitness: 0.020031338560627887
Iteration 30/100 - Best Fitness: 2.788695226740856e-06
Iteration 40/100 - Best Fitness: 1.0778596895022474e-06
Iteration 50/100 - Best Fitness: 6.450946443692374e-10
Iteration 60/100 - Best Fitness: 2.0463630789890885e-11
Iteration 70/100 - Best Fitness: 1.0658141036401503e-14
Iteration 80/100 - Best Fitness: 0.0
Iteration 90/100 - Best Fitness: 0.0
Best Solution Found:
Position: [-1.63024230e-09 1.14735681e-09]
Fitness: 0.0
```

Program 3: Ant Colony Optimization for the Traveling Salesman Problem

The foraging behavior of ants has inspired the development of optimization algorithms that can solve complex problems such as the Traveling Salesman Problem (TSP). Ant Colony Optimization (ACO) simulates the way ants find the shortest path between food sources and their nest. Implement the ACO algorithm using Python to solve the TSP, where the objective is to find the shortest possible route that visits a list of cities and returns to the origin city.

Implementation Steps:

- 1. Define the Problem: Create a set of cities with their coordinates.
- 2. Initialize Parameters: Set the number of ants, the importance of pheromone (alpha), the importance of heuristic information (beta), the evaporation rate (rho), and the initial pheromone value.
- 3. Construct Solutions: Each ant constructs a solution by probabilistically choosing the next city based on pheromone trails and heuristic information.
- 4. Update Pheromones: After all ants have constructed their solutions, update the pheromone trails based on the quality of the solutions found.
- 5. Iterate: Repeat the construction and updating process for a fixed number of iterations or until convergence criteria are met.
- 6. Output the Best Solution: Keep track of and output the best solution found during the iterations.

	Caathi
	Date 14 11 , 2024
	Ant colony Optimisation
	mary that hatch be within the
	the marks have solding to the terms
0.	Interfaligation: numants, num-theations, alpha constdu parameter numants, num-theations, alpha
	beta, tho, 9.
	E Bill all Luci mans conflicts:
	pheromone_matter = np.one_lite (diff-matile)
	Tuittalize dictance nation;
	dist_matrix
	AND THE RESERVE AND THE RESERV
- 5	Ant Solution Generation
_	Select statting city: start-city = random-randhit (0, num-cities-1)
1000	Track offited city: visited = [false] * num-cities and
	visited (Haut-city) = True.
	Select next city: calculate probability
	probabilities (city) = pheromone_matrix (current-city)
	Crity 7th alpho + (1 1 det mated
	Courrent city (city) or beta
9	Selution Evaluation
	Compute tous length!
-	tous length = sum (dist matrix (tous (i), tous (it))
	tor in in range (oum cities -1))
- 7	ract but solution;
	bed tour, best length = min (aut-tours, try = tamba x
-	1) Town to watte)
-	return tour-length
	Proc In


```
#ant colony
import numpy as np
import matplotlib.pyplot as plt
# 1. Define the Problem: Create a set of cities with their coordinates
cities = np.array([
  [0, 0], # City 0
  [1, 5], # City 1
  [5, 1], # City 2
  [6, 4], # City 3
  [7, 8], # City 4
1)
# Calculate the distance matrix between each pair of cities
def calculate_distances(cities):
  num_cities = len(cities)
  distances = np.zeros((num_cities, num_cities))
  for i in range(num_cities):
    for j in range(num_cities):
       distances[i][j] = np.linalg.norm(cities[i] - cities[j])
  return distances
distances = calculate_distances(cities)
# 2. Initialize Parameters
num ants = 10
num_cities = len(cities)
alpha = 1.0 # Influence of pheromone
beta = 5.0 # Influence of heuristic (inverse distance)
rho = 0.5 # Evaporation rate
num iterations = 30
initial\_pheromone = 1.0
# Pheromone matrix initialization
pheromone = np.ones((num_cities, num_cities)) * initial_pheromone
# 3. Heuristic information (Inverse of distance)
def heuristic(distances):
  with np.errstate(divide='ignore'): # Ignore division by zero
     return 1 / distances
eta = heuristic(distances)
```

```
# 4. Choose next city probabilistically based on pheromone and heuristic info
def choose_next_city(pheromone, eta, visited):
  probs = \Pi
  for j in range(num_cities):
    if j not in visited:
       pheromone_ij = pheromone[visited[-1], j] ** alpha
       heuristic_ij = eta[visited[-1], j] ** beta
       probs.append(pheromone_ij * heuristic_ij)
     else:
       probs.append(0)
  probs = np.array(probs)
  return np.random.choice(range(num_cities), p=probs / probs.sum())
# Construct solution for a single ant
def construct solution(pheromone, eta):
  tour = [np.random.randint(0, num_cities)]
  while len(tour) < num_cities:
     next_city = choose_next_city(pheromone, eta, tour)
     tour.append(next_city)
  return tour
# 5. Update pheromones after all ants have constructed their tours
def update pheromones (pheromone, all tours, distances, best tour):
  pheromone *= (1 - rho) # Evaporate pheromones
  # Add pheromones for each ant's tour
  for tour in all_tours:
     tour_length = sum([distances[tour[i], tour[i + 1]] for i in range(-1, num_cities - 1)])
     for i in range(-1, num_cities - 1):
       pheromone[tour[i], tour[i + 1]] += 1.0 / tour_length
  # Increase pheromones on the best tour
  best length = sum([distances[best tour[i], best tour[i + 1]] for i in range(-1, num cities - 1)])
  for i in range(-1, num_cities - 1):
     pheromone[best_tour[i], best_tour[i + 1]] += 1.0 / best_length
# 6. Main ACO Loop: Iterate over multiple iterations to find the best solution
def run_aco(distances, num_iterations):
  pheromone = np.ones((num_cities, num_cities)) * initial_pheromone
  best tour = None
  best_length = float('inf')
  for iteration in range(num iterations):
     all_tours = [construct_solution(pheromone, eta) for _ in range(num_ants)]
     all\_lengths = [sum([distances[tour[i], tour[i + 1]] for i in range(-1, num\_cities - 1)]) for tour in
all_tours]
```

```
current best length = min(all lengths)
     current_best_tour = all_tours[all_lengths.index(current_best_length)]
     if current_best_length < best_length:
       best length = current best length
       best_tour = current_best_tour
     update_pheromones(pheromone, all_tours, distances, best_tour)
     print(f"Iteration {iteration + 1}, Best Length: {best_length}")
  return best_tour, best_length
# Run the ACO algorithm
best tour, best length = run aco(distances, num iterations)
#7. Output the Best Solution
print(f"Best Tour: {best_tour}")
print(f"Best Tour Length: {best_length}")
#8. Plot the Best Route
def plot_route(cities, best_tour):
  plt.figure(figsize=(8, 6))
  for i in range(len(cities)):
     plt.scatter(cities[i][0], cities[i][1], color='red')
     plt.text(cities[i][0], cities[i][1], f"City {i}", fontsize=12)
  # Plot the tour as lines connecting the cities
  tour_cities = np.array([cities[i] for i in best_tour] + [cities[best_tour[0]]]) # Complete the loop by
returning to the start
  plt.plot(tour_cities[:, 0], tour_cities[:, 1], linestyle='-', marker='o', color='blue')
  plt.title(f"Best Tour (Length: {best_length})")
  plt.xlabel("X Coordinate")
  plt.ylabel("Y Coordinate")
  plt.grid(True)
  plt.show()
# Call the plot function
plot route(cities, best tour)
```

```
→ Iteration 1, Best Length: 24.191626245470978
    Iteration 2, Best Length: 24.191626245470978
    Iteration 3, Best Length: 24.191626245470978
    Iteration 4, Best Length: 24.191626245470978
    Iteration 5, Best Length: 24.191626245470978
    Iteration 6, Best Length: 24.191626245470978
    Iteration 7, Best Length: 24.191626245470978
    Iteration 8, Best Length: 24.191626245470978
    Iteration 9, Best Length: 24.191626245470978
    Iteration 10, Best Length: 24.191626245470978
    Iteration 11, Best Length: 24.191626245470978
    Iteration 12, Best Length: 24.191626245470978
    Iteration 13, Best Length: 24.191626245470978
    Iteration 14, Best Length: 24.191626245470978
    Iteration 15, Best Length: 24.191626245470978
    Iteration 16, Best Length: 24.191626245470978
    Iteration 17, Best Length: 24.191626245470978
    Iteration 18, Best Length: 24.191626245470978
    Iteration 19, Best Length: 24.191626245470978
    Iteration 20, Best Length: 24.191626245470978
    Iteration 21, Best Length: 24.191626245470978
    Iteration 22, Best Length: 24.191626245470978
    Iteration 23, Best Length: 24.191626245470978
    Iteration 24, Best Length: 24.191626245470978
    Iteration 25, Best Length: 24.191626245470978
    Iteration 26, Best Length: 24.191626245470978
    Iteration 27, Best Length: 24.191626245470978
    Iteration 28, Best Length: 24.191626245470978
    Iteration 29, Best Length: 24.191626245470978
    Iteration 30, Best Length: 24.191626245470978
    Best Tour: [4, 3, 2, 0, 1]
    Best Tour Length: 24.191626245470978
```


Program 4: Cuckoo Search (CS)

Cuckoo Search (CS) is a nature-inspired optimization algorithm based on the brood parasitism of some cuckoo species. This behavior involves laying eggs in the nests of other birds, leading to the optimization of survival strategies. CS uses Lévy flights to generate new solutions, promoting global search capabilities and avoiding local minima. The algorithm is widely used for solving continuous optimization problems and has applications in various domains, including engineering design, machine learning, and data mining.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of nests, the probability of discovery, and the number of iterations.
- 3. Initialize Population: Generate an initial population of nests with random positions.
- 4. Evaluate Fitness: Evaluate the fitness of each nest based on the optimization function.
- 5. Generate New Solutions: Create new solutions via Lévy flights.
- 6. Abandon Worst Nests: Abandon a fraction of the worst nests and replace them with new random positions.
- 7. Iterate: Repeat the evaluation, updating, and replacement process for a fixed number of iterations or until convergence criteria are met.
- 8. Output the Best Solution: Track and output the best solution found during the iterations.

3005	Caathi
	Date 21 / 11 / 2014
	Cuckoo Seasch Algarithm.
	(ata-1) 27 211000 - 10000
TO CAN	Dinitialization: create a population of numagents
TELED	cuctoo with random possition within evarity
	CAA NI III MOI IA PETITION IN TERLIBORIE
	array - dim vashblu.
	array 7 dim vallable. bounds lower-bound and upper-bound
0000000	\$2266.1 \$200T_\$1000 to \$1.500 to \$1.
	2) Evaluate Fitness:
	This is evaluated using objective
	function (here sphere function-sphere & variables)
	27244 1212
	3) Main loop: For cash struction (t from 0 to maxitu);
-	Spenerate New Solution: Each cockoo randomly
	moves to new position, moving to better position.
	The late of the la
	=) Apply boundary Constraints: Ensure all new solutions lie within
	Ensure all new colentions lie within
	the crossen space by allpting thum to boundaring
-	Frutatu new solution;
	Calculate ten fitners & new solution
	using objective quarties
	tithus (xi') = f(xi')
	+1+11 (X;) = +(X;)
-	Declare the expect set to
77	Replace the worst solution:
1	Carilla 1 the first of the new rolution
7	(x;1) à better tran ord solution $f(x_i)$
X	place to old come new solution
	update xi and its fitness accordingly
	Penne Nin T

	Caathi)
	Abandon some nest (Exploration phase) whith probability pa, abandom a traction of cockoo's nest and resultalize new random solution.
-	Evaluate the fitness & there newly reinstalised
	Tract the best solution: After each Eteration tract the best solution So far, band on fitness
	Output: Best Solution: Best Fitney: The corresponding pitness of the best Solution
	A 4. + 1
	1) But Fitnus = 1,3219394076904. 1) 1 = 1,3219394076904
	13: " = 1.917940286054 14: 1 = 0.179780.
	But Solution: [0.36026327 -0.2261918] But fitner: 80.179780752296
	Application: Optimization Engineering during pattern Resognition Machine learning models (training)
	July 11/24
	Togn No.

```
#cuckoo search
import numpy as np
import random
import math
import matplotlib.pyplot as plt
# Define a sample function to optimize (Sphere function in this case)
def objective_function(x):
  return np.sum(x ** 2)
# Lévy flight function
def levy_flight(Lambda):
  sigma_u = (math.gamma(1 + Lambda) * np.sin(np.pi * Lambda / 2) /
         (math.gamma((1 + Lambda) / 2) * Lambda * 2 ** ((Lambda - 1) / 2))) ** (1 / Lambda)
  sigma_v = 1
  u = np.random.normal(0, sigma_u, size=1)
  v = np.random.normal(0, sigma_v, size=1)
  step = u / (abs(v) ** (1 / Lambda))
  return step
# Cuckoo Search algorithm
def cuckoo_search(num_nests=25, num_iterations=100, discovery_rate=0.25, dim=5, lower_bound=-
10. upper bound=10):
  # Initialize nests
  nests = np.random.uniform(lower_bound, upper_bound, (num_nests, dim))
  fitness = np.array([objective_function(nest) for nest in nests])
  # Get the current best nest
  best_nest_idx = np.argmin(fitness)
  best nest = nests[best nest idx].copy()
  best_fitness = fitness[best_nest_idx]
  Lambda = 1.5 # Parameter for Lévy flights
  fitness_history = [] # To track fitness at each iteration
  for iteration in range(num_iterations):
    # Generate new solutions via Lévy flight
    for i in range(num nests):
       step_size = levy_flight(Lambda)
       new solution = nests[i] + step size * (nests[i] - best nest)
       new_solution = np.clip(new_solution, lower_bound, upper_bound)
       new_fitness = objective_function(new_solution)
       # Replace nest if new solution is better
       if new fitness < fitness[i]:
```

```
nests[i] = new solution
          fitness[i] = new_fitness
    # Discover some nests with probability 'discovery_rate'
    random nests = np.random.choice(num nests, int(discovery rate * num nests), replace=False)
     for nest_idx in random_nests:
       nests[nest_idx] = np.random.uniform(lower_bound, upper_bound, dim)
       fitness[nest_idx] = objective_function(nests[nest_idx])
    # Update the best nest
     current best idx = np.argmin(fitness)
     if fitness[current_best_idx] < best_fitness:
       best_fitness = fitness[current_best_idx]
       best _nest = nests[current_best_idx].copy()
     # Store fitness for plotting
    fitness_history.append(best_fitness)
    # Print the best solution at each iteration (optional)
     print(f"Iteration {iteration+1}/{num_iterations}, Best Fitness: {best_fitness}")
  # Plot fitness convergence graph
  plt.plot(fitness history)
  plt.title('Fitness Convergence Over Iterations')
  plt.xlabel('Iteration')
  plt.ylabel('Best Fitness')
  plt.show()
  # Return the best solution found
  return best_nest, best_fitness
# Example usage
best nest, best fitness = cuckoo search(num nests=30, num iterations=30, dim=10, lower bound=-
5, upper_bound=5)
print("Best Solution:", best nest)
print("Best Fitness:", best_fitness)
```

```
→▼ Iteration 1/30, Best Fitness: 34.421347350368414
    Iteration 2/30, Best Fitness: 17.701267864864427
    Iteration 3/30, Best Fitness: 12.572246094152595
    Iteration 4/30, Best Fitness: 11.025968548544025
    Iteration 5/30, Best Fitness: 8.713786692960158
    Iteration 6/30, Best Fitness: 7.5206125475077785
    Iteration 7/30, Best Fitness: 7.5206125475077785
    Iteration 8/30, Best Fitness: 7.426062303628502
    Iteration 9/30, Best Fitness: 3.6305424687807872
    Iteration 10/30, Best Fitness: 3.122312407680085
    Iteration 11/30, Best Fitness: 2.7935374916676268
    Iteration 12/30, Best Fitness: 2.7258275326189683
    Iteration 13/30, Best Fitness: 1.5451154817432429
    Iteration 14/30, Best Fitness: 1.5138101828809285
    Iteration 15/30, Best Fitness: 1.5138101828809285
    Iteration 16/30, Best Fitness: 1.300269684490209
    Iteration 17/30, Best Fitness: 1.300269684490209
    Iteration 18/30, Best Fitness: 1.300269684490209
    Iteration 19/30, Best Fitness: 1.2738498249584989
    Iteration 20/30, Best Fitness: 1.1445834652176474
    Iteration 21/30, Best Fitness: 0.8487556087655604
    Iteration 22/30, Best Fitness: 0.8487556087655604
    Iteration 23/30, Best Fitness: 0.8289231635578032
    Iteration 24/30, Best Fitness: 0.8242402471719793
    Iteration 25/30, Best Fitness: 0.5258270013075049
    Iteration 26/30, Best Fitness: 0.5258270013075049
    Iteration 27/30, Best Fitness: 0.3996236442626478
    Iteration 28/30, Best Fitness: 0.3996236442626478
    Iteration 29/30, Best Fitness: 0.3996236442626478
    Iteration 30/30, Best Fitness: 0.3996236442626478
```


Program 5: Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) algorithm is a swarm intelligence algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It mimics the leadership structure of alpha, beta, delta, and omega wolves and their collaborative hunting strategies. The GWO algorithm uses these social hierarchies to model the optimization process, where the alpha wolves guide the search process while beta and delta wolves assist in refining the search direction. This algorithm is effective for continuous optimization problems and has applications in engineering, data analysis, and machine learning.

Implementation Steps:

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of wolves and the number of iterations.
- 3. Initialize Population: Generate an initial population of wolves with random positions.
- 4. Evaluate Fitness: Evaluate the fitness of each wolf based on the optimization function.
- 5. Update Positions: Update the positions of the wolves based on the positions of alpha, beta, and delta wolves.
- 6. Iterate: Repeat the evaluation and position updating process for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations

100	Caathi
	Grey wolf Optimization
	Charles and the Article of the Control of the Contr
1000	Algorithm:
	2) Justialize the parameter.
	- N: Number & wolver
	- Max Huation, Maximum no of Etuations
	-D. Dimensionally g problem
	- 16, ub: Lower and apper bound of up search space
	2) Inetialize the positions of the worker randomly
	within the bounds.
	- v(1) - postion a worlt?
	- Evaluate the fitner of each wolf using.
	Objective function
	- Fitner (1) = f (x6))
	101
	3) Initialize the x,B, and & wolvey.
	-a = Rest wolf
	-B = Second but woult
	- S = Third but wolt.
	A A ANT WINEAM
	a) For t =2 to maxtureation
	a update the positions of the wolves
	For each wolf i:
	1. Update the position of the world wing the
	lex mulo:
	$v(1) = x(1) + A^* D\alpha - x(1)$
	x(i) = x(i) + A DB - x(i)
	x(i) = x(i) + A + DS - x(i)
	when
	h = 2* TI -1
	Page No.

	Date
	= Dx = 1c1 = a-position - x(i)!
	DB = C2 * R - position - X(i) $DS = CS * 8 - position - X(i) $
	p 8 = 103 8 - position - x(1)
	C1, C2, C3 = 2* 82
	2. update the fitner of each wolt.
	Fitner (i) = f(x(i))
1330	b sort the wolve band on their fithen
	value and update of 185
	5. Return the best solution found (a wolf) after
	Max stration
	NOR MODELLEY
	Application:
	or Optimisation in Engineering
	structural design
4	Markey learning
	future schedien and extraction
	a Chillian
	D 28/11/24
	The thousand the property of the second

```
#GWO
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Define the Problem (a mathematical function to optimize)
def objective_function(x):
  return np.sum(x**2) # Example: Sphere function (minimize sum of squares)
# Step 2: Initialize Parameters
num_wolves = 5 # Number of wolves in the pack
num_dimensions = 2 # Number of dimensions (for the optimization problem)
num_iterations = 30 # Number of iterations
lb = -10 # Lower bound of search space
ub = 10 # Upper bound of search space
# Step 3: Initialize Population (Generate initial positions randomly)
wolves = np.random.uniform(lb, ub, (num_wolves, num_dimensions))
# Initialize alpha, beta, delta wolves
alpha_pos = np.zeros(num_dimensions)
beta_pos = np.zeros(num_dimensions)
delta_pos = np.zeros(num_dimensions)
alpha_score = float('inf') # Best (alpha) score
beta_score = float('inf') # Second best (beta) score
delta_score = float('inf') # Third best (delta) score
# To store the alpha score over iterations for graphing
alpha_score_history = []
# Step 4: Evaluate Fitness and assign Alpha, Beta, Delta wolves
def evaluate fitness():
  global alpha_pos, beta_pos, delta_pos, alpha_score, beta_score, delta_score
  for wolf in wolves:
    fitness = objective_function(wolf)
    # Update Alpha, Beta, Delta wolves based on fitness
    if fitness < alpha score:
```

```
delta score = beta score
       delta_pos = beta_pos.copy()
       beta_score = alpha_score
       beta_pos = alpha_pos.copy()
       alpha_score = fitness
       alpha_pos = wolf.copy()
    elif fitness < beta_score:
       delta score = beta score
       delta_pos = beta_pos.copy()
       beta_score = fitness
       beta_pos = wolf.copy()
    elif fitness < delta_score:
       delta_score = fitness
       delta_pos = wolf.copy()
# Step 5: Update Positions
def update_positions(iteration):
  a = 2 - iteration * (2 / num_iterations) # a decreases linearly from 2 to 0
  for i in range(num_wolves):
    for j in range(num_dimensions):
       r1 = np.random.random()
       r2 = np.random.random()
       # Position update based on alpha
       A1 = 2 * a * r1 - a
       C1 = 2 * r2
       D_alpha = abs(C1 * alpha_pos[j] - wolves[i, j])
       X1 = alpha_pos[j] - A1 * D_alpha
       # Position update based on beta
       r1 = np.random.random()
       r2 = np.random.random()
       A2 = 2 * a * r1 - a
       C2 = 2 * r2
       D_beta = abs(C2 * beta_pos[j] - wolves[i, j])
       X2 = beta_pos[j] - A2 * D_beta
```

```
# Position update based on delta
       r1 = np.random.random()
       r2 = np.random.random()
       A3 = 2 * a * r1 - a
       C3 = 2 * r2
       D_{delta} = abs(C3 * delta_pos[i] - wolves[i, j])
       X3 = delta pos[i] - A3 * D delta
       # Update wolf position
       wolves[i, j] = (X1 + X2 + X3) / 3
       # Apply boundary constraints
       wolves[i, j] = np.clip(wolves[i, j], lb, ub)
# Step 6: Iterate (repeat evaluation and position updating)
for iteration in range(num_iterations):
  evaluate_fitness() # Evaluate fitness of each wolf
  update positions(iteration) # Update positions based on alpha, beta, delta
  # Record the alpha score for this iteration
  alpha_score_history.append(alpha_score)
  # Optional: Print current best score
  print(f"Iteration {iteration+1}/{num iterations}, Alpha Score: {alpha score}")
# Step 7: Output the Best Solution
print("Best Solution:", alpha_pos)
print("Best Solution Fitness:", alpha_score)
# Plotting the convergence graph
plt.plot(alpha_score_history)
plt.title('Convergence of Grey Wolf Optimizer')
plt.xlabel('Iteration')
plt.ylabel('Alpha Fitness Score')
plt.grid(True)
plt.show()
```

```
Tration 1/30, Alpha Score: 8.789922247101906
    Iteration 2/30, Alpha Score: 8.789922247101906
    Iteration 3/30, Alpha Score: 8.789922247101906
    Iteration 4/30, Alpha Score: 6.409956649485766
    Iteration 5/30, Alpha Score: 3.383929841190778
    Iteration 6/30, Alpha Score: 1.1292299489236237
    Iteration 7/30, Alpha Score: 0.8136628488047792
    Iteration 8/30, Alpha Score: 0.07110881373527288
    Iteration 9/30, Alpha Score: 0.03823180120070083
    Iteration 10/30, Alpha Score: 0.021111314445105462
    Iteration 11/30, Alpha Score: 0.00874782100259989
    Iteration 12/30, Alpha Score: 0.00874782100259989
    Iteration 13/30, Alpha Score: 0.00874782100259989
    Iteration 14/30, Alpha Score: 0.005066807028932165
    Iteration 15/30, Alpha Score: 0.0011746187200998674
    Iteration 16/30, Alpha Score: 0.0011746187200998674
    Iteration 17/30, Alpha Score: 0.0008078646351838173
    Iteration 18/30, Alpha Score: 0.0008078646351838173
    Iteration 19/30, Alpha Score: 0.0006302256737926024
    Iteration 20/30, Alpha Score: 0.0005272190797352655
    Iteration 21/30, Alpha Score: 0.00035614966782860404
    Iteration 22/30, Alpha Score: 0.0003270119398391142
    Iteration 23/30, Alpha Score: 0.00022723766847392013
    Iteration 24/30, Alpha Score: 0.00022152382849585967
    Iteration 25/30, Alpha Score: 0.00022152382849585967
    Iteration 26/30, Alpha Score: 0.00020102313789207912
    Iteration 27/30, Alpha Score: 0.0001974565833678501
    Iteration 28/30, Alpha Score: 0.0001547675581999543
    Iteration 29/30, Alpha Score: 0.00014751518222697009
    Iteration 30/30, Alpha Score: 0.00014751518222697009
    Best Solution: [ 0.00643925 -0.01029812]
    Best Solution Fitness: 0.00014751518222697009
```


Program 6: Parallel Cellular Algorithms and Programs

Parallel Cellular Algorithms are inspired by the functioning of biological cells that operate in a highly parallel and distributed manner. These algorithms leverage the principles of cellular automata and parallel computing to solve complex optimization problems efficiently. Each cell represents a potential solution and interacts with its neighbors to update its state based on predefined rules. This interaction models the diffusion of information across the cellular grid, enabling the algorithm to explore the search space effectively. Parallel Cellular Algorithms are particularly suitable for large-scale optimization problems and can be implemented on parallel computing architectures for enhanced performance.

<u>Implementation Steps:</u>

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the number of cells, grid size, neighborhood structure, and number of iterations.
- 3. Initialize Population: Generate an initial population of cells with random positions in the solution space.
- 4. Evaluate Fitness: Evaluate the fitness of each cell based on the optimization function.
- 5. Update States: Update the state of each cell based on the states of its neighboring cells and predefined update rules.
- 6. Iterate: Repeat the evaluation and state updating process for a fixed number of iterations or until convergence criteria are met.
- 7. Output the Best Solution: Track and output the best solution found during the iterations.

200	Caatho
	Parallel Cellulas Algorithm.
	Objective Function: The function is used as sphere function particularly used in the optimization algorithms
	det sphere function (position): return sum (position = i 2 for each position = i in position)
	Fulfialize the population Grid!
	This function is used to create a onte
	g shape and fill with random values curifosmly distributed between lower bound and upper bound
	def initialize - population Corid-rise solution frame,
-	Initialize grid with random values in
	given bounds Return Grid
	Evualuate Fitness:
	This function to evaluate the
-	fitness for each cell to grid
	dly evaluate fitness (grid); For each all in grid:
	Calculate fitness using sphere-funding
	Get Neighbours of a cell:
	get-vier ghours (arrid ? -)
	marke chipty that the weather so
	For each edit, of) in
	P(-1,-1),(-1,0) (41)
	Phon Yis.

excluding (0, 0); n: = ("+di)-/- grid-siac ny = (1+dy) -1. gaid size Add and this (no) to neighbours that Roturn Neighbours - Update states g all cells in the gold, the denetion is used for gold the neighboring cells identify the neighbor with best fitness's position def = update status (grid, fitness, learning rate): tuitate new gold as a copy of grid for each cell (i, 7) in good: get neighbouss 2 au (i, 7) Find the best neighbor with minimum fitness update cul position rew-grid (i, 1) = grid (i, 1) + harrig-rate = nest-neighbar-grid (it) Output: Best Solution: [-0.00759221 8.3401244] Best Fitners 0.00125

```
Code:
#pcap
import numpy as np
# Define the problem: A simple optimization function (e.g., Sphere Function)
def optimization_function(position):
  """Example: Sphere Function for minimization."""
  return sum(x^{**}2 \text{ for } x \text{ in position})
# Initialize Parameters
GRID SIZE = (10, 10) # Grid size (rows, columns)
NEIGHBORHOOD_RADIUS = 1 # Moore neighborhood radius
DIMENSIONS = 2 # Number of dimensions in the solution space
ITERATIONS = 30 # Number of iterations
# Initialize Population
definitialize_population(grid_size, dimensions):
  """Initialize a grid with random positions."""
  population = np.random.uniform(-10, 10, size=(grid_size[0], grid_size[1], dimensions))
  return population
# Evaluate Fitness
def evaluate fitness(population):
  """Calculate the fitness of all cells."""
  fitness = np.zeros((population.shape[0], population.shape[1]))
  for i in range(population.shape[0]):
    for j in range(population.shape[1]):
       fitness[i, j] = optimization_function(population[i, j])
  return fitness
# Get Neighborhood
def get_neighborhood(grid, x, y, radius):
  """Get the neighbors of a cell within the specified radius."""
  neighbors = []
  for i in range(-radius, radius + 1):
     for j in range(-radius, radius + 1):
       if i == 0 and j == 0:
          continue # Skip the current cell
       ni, nj = x + i, y + j
       if 0 \le ni \le grid.shape[0] and 0 \le nj \le grid.shape[1]:
          neighbors.append((ni, nj))
  return neighbors
```

Update States

def update states(population, fitness):

new_population = np.copy(population)

"""Update the state of each cell based on its neighbors."""

```
for i in range(population.shape[0]):
     for j in range(population.shape[1]):
       neighbors = get_neighborhood(population, i, j, NEIGHBORHOOD_RADIUS)
       best_neighbor = population[i, j]
       best fitness = fitness[i, j]
       # Find the best position among neighbors
       for ni, nj in neighbors:
          if fitness[ni, nj] < best_fitness:
            best fitness = fitness[ni, nj]
            best_neighbor = population[ni, nj]
       # Update the cell state (move towards the best neighbor)
       new_population[i, j] = (population[i, j] + best_neighbor) / 2 # Average position
  return new_population
# Main Algorithm
def parallel cellular algorithm():
  """Implementation of the Parallel Cellular Algorithm."""
  population = initialize population(GRID SIZE, DIMENSIONS)
  best solution = None
  best fitness = float('inf')
  for iteration in range(ITERATIONS):
     # Evaluate fitness
     fitness = evaluate_fitness(population)
     # Track the best solution
     min_fitness = np.min(fitness)
     if min fitness < best fitness:
       best_fitness = min_fitness
       best_solution = population[np.unravel_index(np.argmin(fitness), fitness.shape)]
     # Update states based on neighbors
     population = update_states(population, fitness)
    # Print progress
     print(f"Iteration {iteration + 1}: Best Fitness = {best fitness}")
  print("\nBest Solution Found:")
  print(f"Position: {best_solution}, Fitness: {best_fitness}")
# Run the algorithm
if name == " main ":
  parallel_cellular_algorithm()
```

```
Iteration 1: Best Fitness = 0.43918427791098213
Iteration 2: Best Fitness = 0.43918427791098213
    Iteration 3: Best Fitness = 0.062221279350329436
    Iteration 4: Best Fitness = 0.030149522005462108
    Iteration 5: Best Fitness = 0.015791278460696168
    Iteration 6: Best Fitness = 0.0025499667118763104
    Iteration 7: Best Fitness = 0.0025499667118763104
    Iteration 8: Best Fitness = 0.00019007166980743008
    Iteration 9: Best Fitness = 0.00019007166980743008
    Iteration 10: Best Fitness = 1.0432171933623911e-05
    Iteration 11: Best Fitness = 8.406928148912647e-06
    Iteration 12: Best Fitness = 5.511032710180021e-07
    Iteration 13: Best Fitness = 4.3084388056725156e-07
    Iteration 14: Best Fitness = 2.315054420755622e-07
    Iteration 15: Best Fitness = 5.245753459404661e-08
    Iteration 16: Best Fitness = 5.245753459404661e-08
    Iteration 17: Best Fitness = 4.341357920017173e-08
    Iteration 18: Best Fitness = 1.145644119860328e-08
    Iteration 19: Best Fitness = 3.147791691706415e-09
    Iteration 20: Best Fitness = 2.8192306881167533e-09
    Iteration 21: Best Fitness = 9.788374665398935e-11
    Iteration 22: Best Fitness = 9.788374665398935e-11
    Iteration 23: Best Fitness = 9.788374665398935e-11
    Iteration 24: Best Fitness = 9.788374665398935e-11
    Iteration 25: Best Fitness = 7.537171686605552e-11
    Iteration 26: Best Fitness = 7.234639306921671e-11
    Iteration 27: Best Fitness = 7.028872029493468e-11
    Iteration 28: Best Fitness = 3.340290444524624e-11
    Iteration 29: Best Fitness = 1.4953679944431498e-11
    Iteration 30: Best Fitness = 1.0817118995466254e-11
    Best Solution Found:
    Position: [-2.92599538e-06 -1.50188883e-06], Fitness: 1.0817118995466254e-11
```

Program 7: Optimization via Gene Expression Algorithms

Gene Expression Algorithms (GEA) are inspired by the biological process of gene expression in living organisms. This process involves the translation of genetic information encoded in DNA into functional proteins. In GEA, solutions to optimization problems are encoded in a manner similar to genetic sequences. The algorithm evolves these solutions through selection, crossover, mutation, and gene expression to find optimal or near-optimal solutions. GEA is effective for solving complex optimization problems in various domains, including engineering, data analysis, and machine learning.

<u>Implementation Steps:</u>

- 1. Define the Problem: Create a mathematical function to optimize.
- 2. Initialize Parameters: Set the population size, number of genes, mutation rate, crossover rate, and number of generations.
- 3. Initialize Population: Generate an initial population of random genetic sequences.
- 4. Evaluate Fitness: Evaluate the fitness of each genetic sequence based on the optimization function.
- 5. Selection: Select genetic sequences based on their fitness for reproduction.
- 6. Crossover: Perform crossover between selected sequences to produce offspring.
- 7. Mutation: Apply mutation to the offspring to introduce variability.
- 8. Gene Expression: Translate genetic sequences into functional solutions.
- 9. Iterate: Repeat the selection, crossover, mutation, and gene expression processes for a fixed number of generations or until convergence criteria are met.
- 10. Output the Best Solution: Track and output the best solution found during the iterations.

	Gaathi
	Optimi ration via Gene Expression Algorithm
	Ol Was From their
	Objective Function calculate fitness 7 a This function calculate fitness 7 a
	given solution using nartrigio objective function
	dy varting (x):
	A = 10
	remit = A + length (n)
	I fo n i
	result += (xin2 - x 105 (20 1) 11
-	leturn renult
	Puitialize population:
	tuitialize a random population 3
-	solutions each solution represented by a
	set g gens
Tito Const	det Initiare-population (pop-size, num gen,
	lower bound, upper-bound)
	return Population.
	Evaluate Fitners:
	dy evictuate-fitners (population):
	dithem = 1517 on raction and 12
	for lash fudicident (individual)
	for each Endividual in population
	TOWNS + O.S. 12
	Tournment Schedion:
	def townmore selection (population, fitnes,
	With page 4 co
	Schooled - for each individual, Elect when
	Return Selected
	Page III.

Crossover: Greater two offspring from two extented parents by combining their genetic matural at random cossover point. def crossocer (parents, parents) crossover-point = foodouly choose a point cliffor = combine parents and parents at Croppour_point Retur elields, died 2 Mutation! des-mulate (child, mutation-rate, lover-bound, upper-bound); for each gene in child, randonly mutate with probability mutation gene Return Mutate child Gene Expunion Algorithm. gene Exprusion algorithm Coop-site, num gene, law-bound upper-bound, mutation rate crossoca rate, num genetion) population = tuitialize population but solution = None, but fitners infinity For generation = 2 to num generations: fitum = Evualet titum update bed solution on it needed geled population & Townwest Selection. new-population = For can pair & points, exorsorer and mutation Return but solution, but fitner Sport Mar.


```
import numpy as np
import random
# 1. Define the Problem: Optimization Function (e.g., Sphere Function)
def optimization_function(solution):
  """Sphere Function for minimization (fitness evaluation)."""
  return sum(x^{**}2 \text{ for } x \text{ in solution})
# 2. Initialize Parameters
POPULATION_SIZE = 50 # Number of genetic sequences (solutions)
GENES = 5 # Number of genes per solution
MUTATION_RATE = 0.1 # Probability of mutation
CROSSOVER RATE = 0.7 # Probability of crossover
GENERATIONS = 30 # Number of generations to evolve
#3. Initialize Population
def initialize_population(pop_size, genes):
  """Generate initial population of random genetic sequences."""
  return np.random.uniform(-10, 10, (pop size, genes))
#4. Evaluate Fitness
def evaluate_fitness(population):
  """Evaluate the fitness of each genetic sequence."""
  fitness = [optimization_function(solution) for solution in population]
  return np.array(fitness)
# 5. Selection: Tournament Selection
def select_parents(population, fitness, num_parents):
  """Select parents using tournament selection."""
  parents = []
  for _ in range(num_parents):
     tournament = random.sample(range(len(population)), 3) # Randomly select 3 candidates
     best = min(tournament, key=lambda idx: fitness[idx])
     parents.append(population[best])
  return np.array(parents)
# 6. Crossover: Single-Point Crossover
def crossover(parents, crossover rate):
  """Perform crossover between pairs of parents."""
  offspring = []
  for i in range(0, len(parents), 2):
    if i + 1 \ge len(parents):
       break
     parent1, parent2 = parents[i], parents[i + 1]
     if random.random() < crossover rate:
```

```
point = random.randint(1, len(parent1) - 1) # Single crossover point
       child1 = np.concatenate((parent1[:point], parent2[point:]))
       child2 = np.concatenate((parent2[:point], parent1[point:]))
    else:
       child1, child2 = parent1, parent2 # No crossover
    offspring.extend([child1, child2])
  return np.array(offspring)
#7. Mutation
def mutate(offspring, mutation_rate):
  """Apply mutation to introduce variability."""
  for i in range(len(offspring)):
    for j in range(len(offspring[i])):
       if random.random() < mutation_rate:</pre>
         offspring[i][i] += np.random.uniform(-1, 1) # Random small change
  return offspring
# 8. Gene Expression: Functional Solution (No transformation needed for this case)
def gene_expression(population):
  """Translate genetic sequences into functional solutions."""
  return population # Genetic sequences directly represent solutions here.
#9. Main Function: Gene Expression Algorithm
def gene_expression_algorithm():
  """Implementation of Gene Expression Algorithm for optimization."""
  # Initialize population
  population = initialize_population(POPULATION_SIZE, GENES)
  best solution = None
  best_fitness = float('inf')
  for generation in range(GENERATIONS):
    # Evaluate fitness
    fitness = evaluate fitness(population)
    # Track the best solution
    min_fitness_idx = np.argmin(fitness)
    if fitness[min fitness idx] < best fitness:
       best_fitness = fitness[min_fitness_idx]
       best_solution = population[min_fitness_idx]
    # Selection
    parents = select parents(population, fitness, POPULATION SIZE // 2)
    # Crossover
    offspring = crossover(parents, CROSSOVER RATE)
    # Mutation
```

```
offspring = mutate(offspring, MUTATION_RATE)

# Gene Expression
population = gene_expression(offspring)

# Print progress
print(f"Generation {generation + 1}: Best Fitness = {best_fitness}")

# Output the best solution
print("\nBest Solution Found:")
print(f"Position: {best_solution}, Fitness: {best_fitness}")

# 10. Run the Algorithm
if __name__ == "__main__":
    gene_expression_algorithm()
```

```
Generation 1: Best Fitness = 55.82997756903893
Generation 2: Best Fitness = 26.410565738143625
Generation 3: Best Fitness = 21.857647823851615
Generation 4: Best Fitness = 20.016914182036285
Generation 5: Best Fitness = 20.016914182036285
Generation 6: Best Fitness = 20.016914182036285
Generation 7: Best Fitness = 13.81760087982789
Generation 8: Best Fitness = 13.81760087982789
Generation 9: Best Fitness = 12.077725051361178
Generation 10: Best Fitness = 10.461698723345474
Generation 11: Best Fitness = 8.933105023570093
Generation 12: Best Fitness = 6.619449963941974
Generation 13: Best Fitness = 3.1567413435369454
Generation 14: Best Fitness = 3.1567413435369454
Generation 15: Best Fitness = 3.1567413435369454
Generation 16: Best Fitness = 2.74585545305795
Generation 17: Best Fitness = 2.7031453676198964
Generation 18: Best Fitness = 2.078188177116774
Generation 19: Best Fitness = 1.5193087227027497
Generation 20: Best Fitness = 1.4413606561895607
Generation 21: Best Fitness = 0.8501569187378994
Generation 22: Best Fitness = 0.4209372164676112
Generation 23: Best Fitness = 0.3893761873774093
Generation 24: Best Fitness = 0.3893761873774093
Generation 25: Best Fitness = 0.3893761873774093
Generation 26: Best Fitness = 0.3741053651316379
Generation 27: Best Fitness = 0.1381555631914642
Generation 28: Best Fitness = 0.12238160343023853
Generation 29: Best Fitness = 0.12238160343023853
Generation 30: Best Fitness = 0.12238160343023853
Best Solution Found:
Position: [-0.03614343 -0.00257499 0.02260677 0.31412563 0.14792784], Fitness: 0.12238160343023853
```