Relational Algebra

CS 4400

Relational Algebra

Relational model specifies stuctures and constraints, relational algebra provides retrieval operations

- Formal foundation for relational model operations
- Basis for internal query optimization in RDBMS
- Parts of relational algebra found in SQL

Basic Rules

- Relational algebra expressions operate on relations and produce relations as results
- Relational algebra expressions can be chained

SELECT

 $\sigma_{< condition>}(R)$

- \bullet R is the name of a relation
- < condition > is a boolean condition on the values of attributes in the tuples of R

The select operation returns all the tuples from R for which < condition > is true.

SELECT Example

Given the following data for pet:

```
+----+
| shelter_id | id | name | breed |
+------
```

```
| 1 | 1 | Chloe | Mix | | 1 | 2 | Dante | GSD | | 1 | 3 | Heidi | Dachshund | | 2 | 1 | Bailey | Mix | | 2 | 2 | Sophie | Lab | | 2 | 3 | Heidi | Dachshund |
```

 $\sigma_{breed='mix'}(pet)$ returns:

+		-+-		+-		+-		-+	
İ	shelter_id	İ	id	İ	name	l	breed	İ	
т		т-		т-		_		- —	
	1		1		Chloe	l	Mix		
1	2	1	1	١	Bailey	l	Mix	1	
+		-+-		+-		+-		-+	

Properties of SELECT

- Result of $\sigma_{\langle condition \rangle}(R)$ has same schema as R, i.e., same attributes
- SELECT is commutative, e.g.,

$$\sigma_{}(\sigma_{}(R)) = \sigma_{}(\sigma_{}(R))$$

• Cascaded SELECTs can be replaced by single SELECT with conjuction of conditions, e.g.

$$\sigma_{}(\sigma_{}(R)) = \sigma_{AND}(R)$$

• Result of $\sigma_{\langle condition \rangle}(R)$ has equal or fewer tuples than R

PROJECT

 $\pi_{\langle attributelist \rangle}(R)$

- ullet R is the name of a relation
- < attributelist > is a subset of the attributes of relation R

The project operation returns all the tuples in R but with only the attributes in < attribute - list >

PROJECT Example

 $\pi_{name,breed}(pet) =$

+		+-		-+
1	name	١	breed	
+		+-		+
1	Chloe	1	Mix	1
-	Dante	1	GSD	1
1	Heidi	1	${\tt Dachshund}$	
-	Bailey	1	Mix	1
	Sophie		Lab	1
+		+-		+

Notice that the duplicate tuple <Heidi</pre>, Dachshund> was removed. Results of relational algebra operations are sets.

Properties of PROJECT

- Number of tuples returned by PROJECT is less than or equal to the number of tuples in the input relation because result is a set, i.e., $|\pi_{< attrs>}(R)| \le |R|$
 - What if $\langle attrs \rangle$ includes a key of R?
- PROJECT is not commutative. In fact $\pi_{<attrs1>}(\pi_{<attrs2>}(R))$ is only a correct expression if <attrs2> contains the attributes in <attrs1>. In this case the result is simply $\pi_{<attrs1>}(R)$.

Combining PROJECT and SELECT

+	+		+-		+-		+
shelter_id		id	l	name	l	breed	Ī
+							+
1	1	1		Chloe		Mix	
1		2	l	Dante		GSD	
1		3		Heidi		Dachshund	1
1 2		1	١	Bailey	1	Mix	
1 2	1	2	١	Sophie		Lab	1
1 2	1	3	ı	Heidi	Ι	Dachshund	Ι

```
+----+
\pi_{name}(\sigma_{breed='Mix'}(pet)) \text{ produces:}
+----+
\mid \text{ name } \mid
+----+
\mid \text{ Chloe } \mid
\mid \text{ Bailey } \mid
```

Intermediate Results

Previous in-line expression could be split up into multiple steps with named intermediate results.

```
\pi_{name}(\sigma_{breed='Mix'}(pet))
becomes:
MIXES \leftarrow \sigma_{breed='Mix'}(pet)
RESULT \leftarrow \pi_{name}(MIXES)
```

RENAME

- Rename relation R to S:
 - $\rho_S(R)$
- Rename attributes of R to $B_1, ...B_n$:

$$\rho_{(B_1,\ldots,B_n)}(R)$$

• Rename R to S and attributes to $B_1, ...B_n$:

$$\rho_{S(B_1,\ldots,B_n)}(R)$$

Binary Operators

- UNION, $R \cup S$, is set of all tuples in either R or S
- INTERSECTION, $R \cap S$, is set of all tuples in both R and S
- SET DIFFERENCE, R-S, is set of all tuples in R but not in S

Operands must be $union\ compatible,$ or $type\ compatible.$ For R and S to be union compatible:

- Degree of R bust be same as degree of S
- For each attribute A_i in R and B_i in S, $dom(A_i) = dom(B_i)$

Cartesian Product

 $R \times S$ Creates "super-tuples" by concatenating every tuple in R with every tuple in S.

$$R(A_1,...,A_n) \times S(B_1,...,B_m) = Q(A_1,...,A_n,B_1,...,B_m)$$

Notice that

- Q has degree n+m
- $|q(Q)| = |r(R)| \times |s(S)|$

Note that the book abusses notation a bit and writes that last bullet as $|Q| = |R| \times |S|$

Cartesian Product Example

shelter

+-		+-		-+
1	id		name	1
+-		+-		+
-	1		Howell	1
1	2	1	Mansell	-
+-		+-		-+

pet

+	+	+	++
shelter_id			
1 1 2 2	1 2 3 1 2	Chloe Dante Heidi Bailey Sophie	Mix GSD Dachshund Mix
+	+	+	+

Cross Product Example

ъ.								L.		_		 _
1	sid	ĺ	sname	I	shelter_id	İ	pid	l	pname	1	breed	l
1	1	1	Howell	l	1	İ	1	l	Chloe	1	Mix	
	2	ı	Mansell		1		1		Chloe		\mathtt{Mix}	l
	1		Howell		1		2		Dante	1	GSD	١

```
2 | Mansell |
                                         | GSD
                              2 | Dante
1 | Howell |
                              3 | Heidi
                                        | Dachshund |
2 | Mansell |
                             3 | Heidi
                                        | Dachshund |
                       2 |
1 | Howell
                              1 | Bailey | Mix
2 | Mansell |
                       2 |
                             1 | Bailey | Mix
                       2 |
                             2 | Sophie | Lab
1 | Howell
2 | Mansell |
                       2 |
                              2 | Sophie | Lab
                       2 |
1 | Howell |
                              3 | Heidi
                                         | Dachshund |
2 | Mansell |
                       2 |
                              3 | Heidi
                                         | Dachshund |
```

Note that we've also done a RENAME to disambiguate names and ids:

 $\rho_{(sid,sname,shelter_id,pid,pname,breed)}(shelter \times pet)$

Cross Product and Select

Cross product meaningful when combined with SELECT.

 $\sigma_{sid=shelter_id}(\rho_{(sid,sname,shelter_id,pid,pname,breed)}(shelter \times pet))$

1 Howell 1 1 Chloe Mix	
1 Howell 1 2 Dante GSD 1 Howell 1 3 Heidi Dachshund 2 Mansell 2 1 Bailey Mix 2 Mansell 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 2 3 Heidi Dachshund 3 Heidi	1

 $CROSSED \leftarrow shelter \times pet$

 $RENAMED \leftarrow \rho_{(sid,sname,shelter_id,pid,pname,breed)}(CROSSED)$ $RESULT \leftarrow \sigma_{sid=shelter_id}(RENAMED)$

Join

 ${\tt JOIN}$ is a Cartesian product followed by ${\tt SELECT}$

 $R \bowtie_{< joincondition >} S$

Where

- ullet R and S are relations
- < joincondition > is a boolean condition on values of tuples from R and S

 $R \bowtie_{< join condition>} S$ returns the tuples in $R \times S$ that satisfy the < join condition>

Join Conditions

< joincondition >is of the form $A_i \theta B_j$

- A_i is an attribute of R, B_j is an attribute of S
- $dom(A_i) = dom(B_i)$

A < joincondition > can be a conjunction of simple conditions, e.g.:

 $< c_1 > AND < c_2 > ...AND < c_n >$

Join Example

worker

++	+	++
id name	supervisor_id	shelter_id
++	+	++
1 Tom	NULL	1
2 Jie	1	1
3 Ravi	2	1
4 Alice	2	1
5 Aparna	NULL	1 2 1
6 Bob	J 5	1 2 1
7 Xaoxi	6	1 2 1
8 Rohan	6	1 2 1
		

shelter

Join Example

 $worker \bowtie_{shelter_id=sid} \rho_{(sid,sname)}(shelter)$

+-	+			+	+	+
 	id n	ame	supervisor_id		sid	sname
i	1 T	om l	NULL	1	1 1	Howell
	2 J	ie	1	1	1	Howell
	3 R	avi	2	1	1	Howell
	4 A	lice	2	1	1	Howell
	5 A	parna	NULL	1 2	2	Mansell
	6 B	lob	5	2	2	Mansell
	7 X	aoxi	6	2	2	Mansell
-1	8 R	ohan	6	1 2	2	Mansell
			L			

Notice that we had to use renaming of attributes in shelter.

A join operation in which the comparison operator θ is = is called an *equijoin*.

Natural Join

Notice that the shelter_id attribute was repeated in the previous equijoin result. A NATURAL JOIN is a equijoin in which the redundant attribute has been removed.

R * S

Where

• R and S have an attribute with the same name and same domain which is automatically chosen as the equijoin attribute

Natural Join Example

Recall the first join example. If we rename the id attribute to shelter_id we can use a natural join:

 $\rho_{(shelter_id, sname)}(shelter) * worker$

+	+	+	+	·+
shelter_id	sname	id	name	supervisor_id
•	Howell		•	NULL
1	Howell	2	Jie	1
1	Howell	3	Ravi	2
1	Howell	4	Alice	2
1 2	Mansell	5	Aparna	NULL
1 2	Mansell	6	Bob	5
1 2	Mansell	7	Xaoxi	6

```
| 2 | Mansell | 8 | Rohan | 6 |
```

Outer Joins

The joins we've discussed so far have been inner joins. Result relations of inner joins include only tuples from the joined tables that match the join condition.

Outer join results inlude tuples that matched, and tuples that didn't match the join condition.

Left Outer Join

 $R_{< join condition >} S$

Where

- R and S are relations
- < joincondition > is a boolean condition on values of tuples from R and S

 $R_{< joincondition>}S$ returns the tuples in $R\times S$ that satisfy the < joincondition> as well as the tuples from R that don't match the join condition. In the result relation the unmatched tuples from R are null-padded to give them the correct degree in the result.

Left Outer Join Example

author

+	+	+
author_id	first_name	last_name
1	Ken Claude Alan Alonzo Perry	McCarthy Ritchie Thompson Shannon Turing Church White Vardi Batty
+	+	

book

+		+	+	+		++
1	book_id	book_title +		•		editor
1	1		April		960	
	2	CACM	July	1	974	8
-	3	BST	July	1	948	2
-	4	LMS	Novem	ber 1	936	7
-	5	Mind	Octob	er 1	950	NULL
-	6	AMS	Month	ı 1	941	NULL
-	7	AAAI	July	2	012	9
1	8	NIPS	July	2	012	9
Ψ.			+			

Return all the authors. For all the authors who are editors, show their books.

Authors and Edited Books

Show all the authors. For all the authors who are editors, show their books.

 $R_{author_i d = editor} S$

+ aı	 uthor id first	 t name last na	+ me book id	+	+
+			+	+	+
1	8 Moshe	Vardi	1 CACM	April 1960	8
1	8 Moshe	Vardi	2 CACM	July 1974	8
	2 Dennis	Ritchie	3 BST	July 1948	2
	7 Perry	White	4 LMS	November 1936	7
	9 Roy	Batty	7 AAAI	July 2012	9
	9 Roy	Batty	8 NIPS	July 2012	9
	1 John	McCarthy	NULL NULL	NULL NULL	NULL
1	3 Ken	Thompson	NULL NULL	NULL NULL	NULL
1	4 Claude	Shannon	NULL NULL	NULL NULL	NULL
	5 Alan	Turing	NULL NULL	NULL NULL	NULL
	6 Alonzo	Church	NULL NULL	NULL NULL	NULL
+			+	+	+

Notice how attribute values are padded to the right in a left outer join.

Right Outer Join

 $R_{< join condition >} S$

Where

• R and S are relations

- < joincondition > is a boolean condition on values of tuples from R and S

 $R_{< joincondition>}S$ returns the tuples in $R\times S$ that satisfy the < joincondition> as well as the tuples from S that don't match the join condition. In the result relation the unmatched tuples from S are null-padded to give them the correct degree in the result.

Right Outer Join Example

Show all the books. For books with editors, show their editors.

 $R_{author_i d = editor} S$

	thor_id first	_name las	t_na	me book_id	+	year editor
I	8 Moshe	Vardi	ı	1 CACM	April 1960	8
1	8 Moshe	Vardi		2 CACM	July 1974	8
1	2 Dennis	Ritchie		3 BST	July 1948	2
1	7 Perry	White		4 LMS	November 1936	7
I	NULL NULL	NULL	- 1	5 Mind	October 1950	NULL
l	NULL NULL	NULL	- 1	6 AMS	Month 1941	NULL
I	9 Roy	Batty	1	7 AAAI	July 2012	9
l	9 Roy	Batty	1	8 NIPS	July 2012	9

Notice how attribute values are padded to the left in a right outer join.

Full Outer Join

 $R_{< join condition >} S$

Where

- \bullet R and S are relations
- < joincondition > is a boolean condition on values of tuples from R and S

R < joincondition > S returns the tuples in $R \times S$ that satisfy the < joincondition > as well as the tuples from both R and S that don't match the join condition. In the result relation the unmatched tuples are null-padded to give them the correct degree in the result.

Full Outer Join Example

Show all authors and books, matching editors with their books.

 $R_{author_i d = editor} S$

+-	+		+	+	+
1	author_id first	_name last_na	me book_id	book_title month	year editor
+-			+	+	+
	8 Moshe	Vardi	1 CACM	April 1960	8
	8 Moshe	Vardi	2 CACM	July 1974	8
-	2 Dennis	Ritchie	3 BST	July 1948	2
-	7 Perry	White	4 LMS	November 1936	7
	9 Roy	Batty	7 AAAI	July 2012	9
	9 Roy	Batty	8 NIPS	July 2012	9
	1 John	McCarthy	NULL NULL	NULL NULL	NULL
	3 Ken	Thompson	NULL NULL	NULL NULL	NULL
-	4 Claude	Shannon	NULL NULL	NULL NULL	NULL
-	5 Alan	Turing	NULL NULL	NULL NULL	NULL
-	6 Alonzo	Church	NULL NULL	NULL NULL	NULL
-	NULL NULL	NULL	5 Mind	October 1950	NULL
-	NULL NULL	NULL	6 AMS	Month 1941	NULL
+-			+	+	+

Review Question 1

Given the r(book):

1 CACM April 1960 8	+	d book_title			++ editor
3 BST	2 3 4 5 6	CACM CACM CACM BST LMS LMS Mind AMS AMS	April July July November October Month July	1960 1974 1948 1936 1950 1941 2012	8 8 2

How many tuples are in $\pi_{book_title}(book)$? (Notice I've abused notation here, since that's how you'll see it in the book and on the test.)

Review Question 1 Answer

7:		
+-		+
1	book_title	
+-		+
-	CACM	
-	BST	
-	LMS	
-	Mind	
-	AMS	
-	AAAI	
-	NIPS	
+-		-+

The $book_title$ appears twice in book and the result of a relational algebra expression is a set.

Review Question 2

Given the relation r(book):

+			+	-
book_id	 book_title	month	 year	editor
1	CACM BST LMS Mind AMS AAAI	April July July November October Month July	1960 1974 1948 1936 1950 1941 2012	2 7 7 7
8	NIPS 	July +	2012 +	9

Which books were published before 1960 or after 2000?

Review Question 2

Which books were published before 1960 or after 2000?

 $\sigma_{year<1960}(book) \cup \sigma_{year>2000}(book)$

+	+	+	+	++
3			1948	2
4	LMS	November	1936	7
J 5	Mind	October	1950	7
l 6	AMS	Month	1941	7
7	AAAI	July	2012	9
8	NIPS	July	2012	9
+	+	+	+	++

Review Question 3

Given:

worker

+-		-+-		+	++
İ	id	İ	name	supervisor_id	shelter_id
	1		Tom	NULL	1
ı	2		Jie	1	1
	3		Ravi	2	1
-	4	1	Alice	1 2	1
-	5	1	Aparna	NULL	2
-	6	1	Bob	5	2
-	7		Xaoxi	1 6	2
	8		Rohan	1 6	2
+-		-+-		+	++

shelter

How would we find the names of all the workers who work at Mansell?

Review Question 3 Answer

How would we find all the workers who work at Mansell?

 $SHELTERS \leftarrow \rho_{sid,sname}(shelter)$

 $MANSELLERS \gets$

 $worker \bowtie_{shelter_id=sid \land sname='Mansell'} (SHELTERS)$

Gives:

+-		+-		+		+-		+-		+-	+
					supervisor_id		_				
·		Ċ	Aparna	Ċ				•		•	Mansell
			Bob			İ					Mansell
	7	1	Xaoxi		6		2	١	2	l	Mansell
-	8	1	Rohan	1	6		2	١	2		Mansell
+-		+-		+		+-		+-		+-	+

then ...

Review Question 3 Answer

 $\pi_{name}(MANSELLERS)$

gives:

Full inline expression:

 $\pi_{name}(worker \bowtie_{shelter_id=sid \land sname='Mansell'} \rho_{(sid,sname)}(shelter))$