# ALGORITMOS DE PESQUISA EM MEMÓRIA PRIMÁRIA

**PUC MINAS** 

ALGORITMOS E ESTRUTURAS DE DADOS II

- Como localizar a informação desejada;
  - em um grande volume de dados previamente armazenado em memória principal?

- Dados são organizados em registros:
  - cada registro possui um campo chave;
    - que o identifica.
  - podem existir outros campos em um registro;
    - que n\u00e3o influenciam os algoritmos de pesquisa.

#### Objetivo:

- encontrar ocorrências de registros com chaves iguais à chave de pesquisa informada.
- A pesquisa pode terminar com ou sem sucesso.

- Há diversos métodos de pesquisa.
- Escolha do método de pesquisa mais apropriado depende de:
  - tamanho do conjunto de dados;
  - conjunto de dados estar sujeito a inserções e retiradas frequentes;
    - objetivo é minimizar o tempo de pesquisa;
      - desconsiderando-se o tempo para organização do conjunto de dados.

## PESQUISA SEQUENCIAL

- Método de pesquisa mais simples.
- Busca-se o dado desejado sequencialmente dentro de um conjunto:
  - a partir do primeiro registro, pesquisa-se sequencialmente até encontrar a chave informada;
    - ou até percorrer-se todo o conjunto de dados.

## PESQUISA SEQUENCIAL

 Armazenamento de um conjunto de registros por meio do tipo estruturado arranjo.

Pesquisar: chave 92



## PESQUISA SEQUENCIAL

- Em vetores aleatórios de tamanho n;
  - qual seria a quantidade de comparações?

#### PESQUISA SEQUENCIAL

- Pesquisa com sucesso:
  - melhor caso: C(n) = 1
  - pior caso: C(n) = n
  - caso médio: C(n) = (n + 1)/2
- Pesquisa sem sucesso:
  - C(n) = n

# PESQUISA BINÁRIA

- Método de pesquisa recursivo.
- Soluciona o problema de busca mais eficientemente.

# PESQUISA BINÁRIA – IDEIA BÁSICA

- Em um conjunto ordenado de dados, a cada passo, decide-se pela continuidade da busca;
  - na metade superior ou inferior do conjunto.
- A busca baseia-se sempre no registro do meio do conjunto considerado.

## PESQUISA BINÁRIA – PROCEDIMENTO

- Compara-se a chave de pesquisa com a chave do registro que está na posição do meio do conjunto considerado:
  - se a chave de pesquisa for menor;
    - registro procurado está na primeira metade do conjunto.
  - se a chave de pesquisa for maior;
    - registro procurado está na segunda metade do conjunto.

## PESQUISA BINÁRIA – PROCEDIMENTO

- Repete-se o processo até:
  - encontrar a chave de pesquisa no conjunto;
    - pesquisa com sucesso.
  - descartar todos os registros do conjunto de dados;
    - pesquisa sem sucesso.

## PESQUISA BINÁRIA – ALGORITMO

- Se início > fim fim da pesquisa
- Se chave de pesquisa == chave do registro do meio fim da pesquisa
- Se chave de pesquisa > chave do registro do meio buscar do (meio + 1) até fim;
- Se chave de pesquisa < chave do registro do meio buscar do início até (meio 1);

Pesquisar: chave 92



Pesquisar: chave 92





Pesquisar: chave 92

92 > 23

Buscar entre os maiores



Pesquisar: chave 92





Pesquisar: chave 92

92 > 61

Buscar entre os maiores



Pesquisar: chave 92



Pesquisar: chave 92

92 > 87

Buscar entre os maiores



Pesquisar: chave 92

92 > 87

Buscar entre os maiores



Pesquisar: chave 92



Pesquisar: chave 92



Pesquisar: chave 92



Pesquisar: chave 92



Comparações: 4

Pesquisar: chave 14



Pesquisar: chave 14







Pesquisar: chave 14







14 > 11

Buscar entre os maiores



Pesquisar: chave 14





Pesquisar: chave 14

14 < 15

Buscar entre os menores



Pesquisar: chave 14



Pesquisar: chave 14 fim < início???



Pesquisar: chave 14 fim < início???



Pesquisar: chave 14



Comparações: 3

## PESQUISA BINÁRIA

- Em vetores de tamanho n;
  - qual seria a quantidade média de comparações?

## PESQUISA BINÁRIA

- Em vetores de tamanho n;
  - qual seria a quantidade média de comparações?
    - a cada busca descarta-se metade do vetor.

#### PESQUISA BINÁRIA – CONSIDERAÇÕES

- Custo elevado para manter-se o vetor sempre ordenado:
  - cada inserção na posição p do vetor implica no deslocamento de todos os registros a partir da posição p para as posições seguintes.
- Não deve ser utilizada em aplicações em que ocorrem inserções e retiradas frequentemente.

#### PESQUISA SEQUENCIAL X PESQUISA BINÁRIA – COMPARAÇÕES

Aumentando-se n gradativamente:





#### PESQUISA SEQUENCIAL X PESQUISA BINÁRIA – COMPARAÇÕES

Dobrando-se n a cada passo:



