CS 228 : Logic in Computer Science

Krishna, S

The DPLL Algorithm

Input : CNF formula F.

- 1. Initialise α as the empty assignment
- 2. While there is a unit clause L in $F|\alpha$, add L=1 to α (unit propagation)
- 3. If $F|\alpha$ contains no clauses, then stop and output α
- 4. If $F|\alpha$ contains the empty clause, then apply the learning procedure to add a new clause C to F. If it is the empty clause, output UNSAT. Otherwise, backtrack to the highest level at which C is a unit clause, go to line 2.
- 5. Decide on a new assignment p = b to be added to α , goto line 2.

DPLL Example

$$c_{1} = \neg x \lor \neg y$$

$$c_{2} = \neg x \lor y$$

$$c_{3} = x \lor \neg y$$

$$c_{4} = x \lor y$$

$$c_{4} = c_{4} \text{ conflict}$$

Clause learnt : x (Resolve c_4 with c_3)

DPLL Example

Clause learnt : Resolve c_2 with c_1, c_5 . Empty clause.

DPLL Correctness

Termination

A sequence of decisions which lead to a conflict cannot be repeated: the variables in the learned clause are all decision variables. In a future assignment, if all but one of these are set to false, the remaining one will not be a decision variable.

DPLL Correctness

Termination

A sequence of decisions which lead to a conflict cannot be repeated: the variables in the learned clause are all decision variables. In a future assignment, if all but one of these are set to false, the remaining one will not be a decision variable.

Correctness

Correctness is straightforward : $F \vdash$ the learned clause. Thus, if the empty clause is learnt, then F is unsat. Otherwise, if DPLL terminates with a satisfying assignment α , then the input formula is also satisfied by α .

Modern SAT Solvers

Numerous enhancements/heuristics

- Decision heuristics to choose decision variables
- Random restarts

FOL

Extends propositional logic

- Propositional logic : atomic formulas have no internal structure
- FOL: atomic formulas are predicates that assert a relationship between certain elements
- Quantification in FOL: ability to assert that a certain property holds for all elements or only for some element.
- ▶ Formulae in FOL are over some signature.

Signatures

- \blacktriangleright A vocabulary or signature τ is a set consisting of
 - ightharpoonup constants c_1, c_2, \dots
- Relation by objects_k
 Relation symbols R₁, R₂..., each with some arity k, denoted R_i
 Function symbols f₁,... each with some arity k, denoted f_i^k
 Maps one object to other in domain.
 We look at finite signatures
- $\tau = (E^2, F^3, f^1)$ is a finite signature with two relations, E with arity 2 and F with arity 3, and a function f with arity 1

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

▶ The symbols \bot , \top called false, true

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables
- Constants, relations and functions from τ

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables
- Constants, relations and functions from τ
- ▶ The symbols \rightarrow , \neg , \land , \lor

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables
- \blacktriangleright Constants, relations and functions from au
- ▶ The symbols \rightarrow , \neg , \land , \lor
- ► The symbol ∀ called the universal quantifier

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables
- \blacktriangleright Constants, relations and functions from au
- ▶ The symbols \rightarrow , \neg , \land , \lor
- ► The symbol ∀ called the universal quantifier
- ► The symbol ∃ called the existential quantifier

- ▶ The symbols \bot , \top called false, true
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ called variables
- Constants, relations and functions from τ
- The symbols →, ¬, ∧, √these symbols are assumed to be present
 The symbol ∀ called the universal quantifier
- The symbol ∃ called the existential quantifier
- ► The symbols (and) called paranthesis

Terms

Given a signature τ , the set of τ -terms are defined inductively as follows.

- Each variable is a term
- Each constant symbol is a term
- ▶ If $t_1, ..., t_k$ are terms and f is a k-ary function, then $f(t_1, ..., t_k)$ is a term
- ► Ground Terms : Terms without variables. For instance $f(c_1, ..., c_k)$ for constants $c_1, ..., c_k$.

A well-formed formula (wff) over a signature τ is inductively defined as follows:

A well-formed formula (wff) over a signature τ is inductively defined as follows:

 \blacktriangleright \bot , \top are wff

- \blacktriangleright \bot , \top are wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff

- \blacktriangleright \bot , \top are wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is a term, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff

- \blacktriangleright \bot , \top are wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is a term, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi, \varphi \land \psi, \varphi \lor \psi, \neg \psi$ are all wff

- \blacktriangleright \bot , \top are wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is a term, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi, \varphi \land \psi, \varphi \lor \psi, \neg \psi$ are all wff
- ▶ If φ is a wff and x is a variable, then $(\forall x)\varphi$ and $(\exists x)\varphi$ are wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ► ⊥, ⊤ are wff
 = is always given to us for any structure,
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is a term, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi, \varphi \land \psi, \varphi \lor \psi, \neg \psi$ are all wff
- ▶ If φ is a wff and x is a variable, then $(\forall x)\varphi$ and $(\exists x)\varphi$ are wff
- ► The second and third are atomic formulae.
- ▶ If a formula *F* occurs as part of another formula *G*, then *F* is called a sub formula of *G*.

A variable present alone is not a WFF, atleast some quantifiers must be attached with it.

Logical Abbreviations : Boolean Connectives

- $ightharpoonup
 eg \varphi \to \bot$
- ▶ T = ¬⊥

- $\exists x. \varphi = \neg (\forall x. \neg \varphi)$
- Precedence of operators : Quantifiers and negation highest, followed by ∨, ∧, followed by →.
 - ▶ $\forall x P(x) \land R(x) \text{ is } [\forall x.[P(x)]] \land R(x)$

An Example

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ Symmetry
- ▶ $\forall x \forall y \forall z (R(x,y) \rightarrow (R(y,z) \rightarrow R(x,z)))$ Transitivity