

Measures of Variation: The Sample Variance

- Average (approximately) of squared deviations of values from the mean
 - Sample variance:

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Where X = arithmetic mean

n = sample size

 $X_i = i^{th}$ value of the variable X

Suppose we draw n independent observations from a population with mean μ and variance σ^2 .

Usually

Usually unknown

The sample mean \bar{x} estimates the population mean μ .

The sample variance s^2 estimates the population variance σ^2 .

Ideally we would estimate σ^2 with:

$$\frac{\sum (x_i - \mu)^2}{n}$$

This is the average squared distance from the true mean

Problem: μ is unknown!

We could try:

$$\frac{\sum (x_i - \bar{x})^2}{n}$$

Tends to underestimate σ^2

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

On average, this estimator equals the population variance σ^2 .

We lost one degree of freedom when we estimated the population mean with the sample mean

The Degrees of Freedom

Suppose we draw 3 independent observations from a population where $\mu = 8$.

i	x_i	$x_i - \mu$
1	9	9 - 8 = 1
2	4	4 - 8 = -4
3	?	?

Suppose the population mean is known to be 8

Suppose we have the same situation, but μ is unknown. We find $\bar{x} = 5$.

i	x_i	$x_i - \bar{x}$
1	9	9 - 5 = 4
2	4	4 - 5 = -1
3	2	2 - 5 = -3

The deviations from the sample mean always sum to 0

Once we know two of these values, we know what the third value must be.

$$s^2 = \frac{(9-5)^2 + (4-5)^2 + (2-5)^2}{3-1}$$

When estimating the population variance, we typically divide by the degrees of freedom as opposed to the sample size.

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the variance
- Has the same units as the original data

Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Example

Sample

Data (X_i): 10 12 14 15 17 18 18 24

$$n = 8$$
 Mean = $\overline{X} = 16$

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \Lambda + (24 - \overline{X})^2}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\Lambda+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{130}{7}} = 4.3095$$

Example

Observation (x) (1)	Mean (#) (2)	(1) — (2) x — x	$(x - 3)^3$	** (1)*
		(,, (,,	11.7	(.,
863	1,351	-488	238,144	744,769
903	1,351	-448	200,704	815,409
957	1,351	-394	155,236	915,849
1.041	1,351	-310	96,100	1,083,681
1,138	1,351	-213	45,369	1,295,044
1,204	1,351	-147	21,609	1,449,616
1,354	1,351	3	9	1,833,316
1.624	1,351	273	74,529	2,637,376
1.698	1,351	347	120,409	2,883,204
1.745	1,351	394	155,236	3,045,025
1,802	1,351	451	203,401	3,247,204
1,003	1,351	532	283,024	3,545,689
			$\Sigma (x - x)^2 \rightarrow 1,593,770$	23,496,182 - X

$$s^2 = \frac{8(s - s)^2}{2 - 1}$$
$$= \frac{1.593,770}{2}$$

— 144,888 (or 144,888 [thousands of dollars]²) ← Sample variance

- V144,888

= 380.64 (that is, \$380,640) ← Sample standard deviation

Frequency Distribution of Return on Investment of Mutual Funds

Return on Investment	Number of Mutual Funds		
5-10	10		
10-15	12		
15-20	16		
20-25	14		
25-30	8		
Total	60		

A	В	C	D	E	F	G	H
1	Return on	Investment		No of			
2			MidPoint	Funds			
3	Lower limit	Upper Limit	X	f	fx	$(X - \overline{X})^*$	$f(X - \overline{X})$
4	15	10	7.50	10	75	96.69	966.94
5	10	15	12.50	12	150	23.36	280.33
6	15	20	17.50	16	280	0.03	0.44
7	20	25	22 50	14	315	26.69	373.72
8	25	30	27.50	8	220	/ 103.36	826.89
9				60	1040		2448.33
10				Mean=	17.333		
11				Sample Variance =			41.50
12				Sample Standard Deviation =			6.44

Example

	Midpoint	Frequency		Mean			
Class	(1)	(2)	(3) = (2) = (31)	(4)	(1) - (4)	$(x_i - \mu_i)^2$ $\{(1) - (4)\}^3$	$f(x - \mu)^2$ (2) × $f(1) - (4)j^2$
700- 799	750	4	3,000	1,250	-500	250,000	1,000,000
800- 899	850	7	5,950	1,250	-400	160,000	1,120,000
900- 999	950		7,600	1,250	-300	90,000	720,000
1,000-1,099	1,050	10	10,500	1,250	-200	40,000	400,000
1,100-1,199	1,150	12	13,800	1,250	-100	10,000	120,000
1,200-1,299	1,250	17	21,250	1,250	0	0	0
1,300-1,399	1,350	13	17,550	1,250	100	10,000	130,000
1,400-1,499	1,450	10	14,500	1,250	200	40,000	400,000
1,500-1,599	1,550	9	13,950	1,250	300	90,000	810,000
1,600-1,699	1,650	7	11,550	1,250	400	160,000	1,120,000
1,700-1,799	1,750	2	3,500	1,250	500	250,000	500,000
1,800-1,899	1,850	1	1,850	1,250	600	360,000	360,000
		100	125,000	1000000	1,000		6,680,000
			$x = \frac{X(f \times s)}{n} = \frac{125,000}{100}$				
			= 1,250 (thousa	nds of dollars) e-	Mean		
			$\sigma^{2} = \frac{\Sigma A r - \mu)^{2}}{R}$,			
			= 6,680,000 100				
			- 66,800 (or 66	,800 (thousands	of dollars(*) ← Varia	nce	
			$a = \sqrt{a^3}$				
			- √66,800				
			= 258.5 ← Star	ndard deviation -	1258,500		

Measures of Variation: Comparing Standard Deviations

Coefficient of Variation

The coefficient of variation (CV) is a measure of relative variability.

It is the ratio of the standard deviation to the mean (average).

Always in percentage (%)

Shows variation relative to mean

Can be used to compare the variability of two or more sets of data measured in **different** units

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

Measure of Variation

11 12 13 14 15 16 17 18 19 20 21

-

Cont'd...

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5

$$CV_A = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

- Stock B:
 - Average price last year = \$100
 - Standard deviation = \$5

Both stocks have the same standard deviation, but stock B is less variable relative to its price

$$CV_B = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{5\%}$$