

Cycle Initial en Technologies de l'Information de Saint-Étienne

OSCILLATEURS

Eva Maturana - Lucas Lescure

Table des Contenus

scillateur Pont de Wien
Oscillateur
Oscillateur avec stabilisation
scillateurs Collpit
Simulation Proteus
Manipulation
Etude I de l'influence des cables BNC
Etude II de l'influence des cables BNC
osillatour Clann

Oscillateur Pont de Wien

Oscillateur

Circuit Oscillateur

Relevées de V_{C2} et V_S

On voit que le circuit oscille autour de la fréquence théorique à $157~H_z$. On constate une amplification $A = \frac{15.6}{5.12} = 3$ ce qui resulte par un gain de $G = 10 \log (3) = 4.77~dB$.

On retrouve une oscilation normale en sortie, pour ce faire il faut être vigilant sur le réglage de P.

Oscillateur avec stabilisation

Circuit Oscillateur avec Diodes

 V_S et V_{C2} avec $P = 100\Omega$

 V_S et V_{C2} avec $P = 0\Omega$

On voit qu'en modifiant P on arrive pas à avoir un signal qui soit parfaitement sinusoidal. La résistance dynamique des diode fait en sorte qu'on ai une sorte de rampe lorsque V_S se rapproche de 0.

Pour négliger cette resistance dynamique on rajoute donc une resistance de $1\,k\Omega$ en parallèle avec les diodes. Comme nous le voyons ci-dessous le signal est bien plus propre.

 V_S et V_{C2} avec $P=0\Omega$ et la resistance en parallèle

On voit donc qu'avec cette resistance l'socillation est plus propre, mais on perd aussi un peut en amplitude.

Oscillateurs Collpit

Après avoir réglé le point de fonctionnement du transistor on calcule la fréquence d'oscillation suivante:

$$\omega_0 = \frac{1}{2\pi\sqrt{\frac{C_1C_2}{C_1 + C_2}L}} = 299 \ kH_z$$

Simulation Proteus

Circuit du Collpit

Diagramme de Bode

Pour que le montage puisse osciller on voit donc qu'il faut une fréquence à $300\ kH_z$ ce qui correspond à la valeur théorique. On peut aussi déduire que ce filtre est du 3^{eme} ordre puisque la pente est à $-60~dB.dec^{-1}$ et la phase se situe sur un intervale de 270° .

Manipulation

Réponse indicielle, V_1 et V_2

En cablant le montage on relève une même fréquence d'oscillation à $300\,kH_z$. On peut aussi determiner que ce filtre est inverseur car le signal est déphasé de 180°.

Pour 470~pF on relève par simulation une fréquence d'oscillation à environ $1~MH_z$

Réponse indicielle, V_1 et V_2

En cablant ce montage sur la maquette on obtient une fréquence d'oscillation à $745~kH_z$. Ceci est dû à la capacitée parasite des cables coaxiaux qui modifient donc la capacitance du circuit et ainsi modifient la fréquence d'oscillation.

Etude I de l'influence des cables BNC

En débranchant V_2 on obtient la réponse suivante:

Circuit de l'oscillateur

Réponse Indicielle

On obtient une fréquence de $800\ kH_z$ ce qui se rapproche de la simulation éfféctuée précédemment.

Faisant de même en échangeant V_1 et V_2 on obtient:

Circuit de l'oscillateur

Réponse Indicielle

La fréquence d'oscillation est à $750\,kH_z$, ce qui est toujours moins que la simulation, mais aussi ne change pas grand chose par rapport au circuit avec V_1 et V_2 de branchées.

Etude II de l'influence des cables BNC

On supprimme maintenant les deux capacitor de $470\,pF$, et on rebranche V_1 et V_2 :

Circuit de l'oscillateur

Réponse Indicielle

Cette fois-ci la fréquence d'oscillation est à $1.5\ MH_z$ ce qui est bien supérieur aux deux circuits précédent mais dépasse la fréquence trouvée en simulation.

On débranche V_2 encore une fois, laissant V_1 :

Circuit de l'oscillateur

Réponse Indicielle

La fréquence d'oscillation est à $4.2\ MH_z$

On débranche V_1 et rebranche V_2 :

Circuit de l'oscillateur

Réponse Indicielle

La fréquence d'oscillation est à $2.16~MH_z$.

On en conclut que pour pour ce type d'oscillateur, l'utilisation de faibles capacitances pour augmenter la fréquence d'oscillation est une mauvaise idée. Lorsqu'elle sont très faibles les capacitances parasites, qui peuvent provenir de l'environment ou du circuit, s'ajoutent à celles qui sont déjà présentes, et modifie donc la fréquence de l'oscillation de façon indésirable.

Pour éviter cet effet il faut donc utiliser des capacitance un peu plus fortes de façon à pouvoir négliger ces parasites et controller la fréquence d'oscillation.

Oscillateur Clapp

Avec l'oscillateur Clapp si l'on veut une fréquence de $900~kH_z$ avec $C_1=2.2~nF$ et $C_2=1.5~nF$ on applique la formule ci-dessous (dérivée des formules du TP):

$$C_3 = \frac{1}{L(2\pi f)^2 - (\frac{1}{C_1} + \frac{1}{C_2})}$$

Ainsi on obtient $C_3=370\,pF$. La capacitance la plus proche normalisée est donc celle à $470\,pF$.

On relève la réponse indicielle suivante:

Circuit de l'oscillateur

Réponse Indicielle

La fréquence de l'oscillation est à $780~kH_z$ ce qui est moins que les $828~kH_z$ attendu, mais qui s'explique par le fait que l'on utilise pas une capacitances faibles, et donc prônes à subir les effets des capacitances parasites du cable BNC.

On observe une atténuation de 0.99 ce qui est proche de la valeur théorique $\frac{C_1}{C_2+C_3}=1.1$, et qui peut s'expliquer par les parasites des cables BNC.