Presek dveh implicitno danih ploskev

Ploskev v \mathbb{R}^3 lahko opišemo kot rešitev enačbe $f(\mathbf{x}) = C$, kjer je $\mathbf{x} = [x_1, x_2, x_3]^\mathsf{T} \in \mathbb{R}^3$, f pa funkcija treh spremenljivk. Recimo, da imamo dve ploskvi, opisani z enačbama $f_1(\mathbf{x}) = C_1$ in $f_2(\mathbf{x}) = C_2$. Presek ploskev je množica rešitev nelinearnega sistema enačb

$$f_1(\mathbf{x}) = C_1,$$

$$f_2(\mathbf{x}) = C_2.$$

Če sta f_1 in f_2 gladki funkciji in so izpolnjeni še nekateri pogoji, je presek teh dveh ploskev gladka krivulja K. Namen naloge poiskati to krivuljo.

Opis parametrizacije krivulje K kot rešitev sistema diferencialnih enačb

Enačbi $f_1(\mathbf{x}) = C_1$ in $f_2(\mathbf{x}) = C_2$ lahko gledamo tudi kot enačbi nivojnic funkcij f_1 in f_2 , krivulja K pa je presek teh nivojnic. Gradienta funkcij f_1 in f_2 sta v vsaki točki krivulje K torej pravokotna na K. To pomeni, da je (grad f_1) × (grad f_2) vektor, ki je tangenten na K. Pišimo

$$\mathbf{F}(\mathbf{x}) = \frac{(\operatorname{grad} f_1(\mathbf{x})) \times (\operatorname{grad} f_2(\mathbf{x}))}{\|(\operatorname{grad} f_1(\mathbf{x})) \times (\operatorname{grad} f_2(\mathbf{x}))\|}$$

in označimo z $\mathbf{x} = \mathbf{x}(t)$ naravno parametrizacijo krivulje K. Ta \mathbf{x} je rešitev avtonomnega sistema diferencialnih enačb

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}).$$

Če za začetni pogoj vzamemo $\mathbf{x}(0) = \mathbf{x}_0$, kjer je \mathbf{x}_0 na K, je rešitev ravno naravna parametrizacija za krivuljo K.

Reševanje sistema diferencialnih enačb na ploskvi

Pri reševanju sistema $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ s katerokoli od metod za numerično reševanje diferencialnih enačb (Eulerjevo ali Runge-Kutta) bomo na vsakem koraku dobili le približek rešitve. Ta približek moramo popraviti tako, da bo ležal na obeh ploskvah, preden izvedemo naslednji korak metode za reševanje DE.

Vzemimo \mathbf{y} , ki ga dobimo iz \mathbf{x}_0 po prvem koraku metode za reševanje DE. Ta \mathbf{y} ne leži nujno na krivulji K, leži pa zelo blizu K. Če označimo $\mathbf{v} = \mathbf{F}(\mathbf{y})$, potem je $\mathbf{v} \cdot \mathbf{x} = \mathbf{v} \cdot \mathbf{y}$ enačba ravnine, ki je zelo blizu normalni ravnini na krivuljo K. Da iz \mathbf{y} dobimo \mathbf{x}_1 , ki leži na krivulji K, sedaj rešimo sistem nelinearnih enačb (z neznanko \mathbf{x})

$$f_1(\mathbf{x}) = C_1,$$

 $f_2(\mathbf{x}) = C_2,$
 $\mathbf{v} \cdot \mathbf{x} = \mathbf{v} \cdot \mathbf{y}.$

Rešitev \mathbf{x}_1 tega sistema lahko poiščemo z Newtonovo metodo z začetnim približkom \mathbf{y} . Pričakujemo seveda, da je \mathbf{x}_1 blizu \mathbf{y} . V primeru, da ni, se vrnemo v \mathbf{x}_0 in ponovno poiščemo \mathbf{y} , tokrat z manjšo dolžino koraka metode za reševanje DE.

Strnimo konstrukcijo zaporednih točk na krivulji K. Iz \mathbf{x}_0 na K z enim korakom metode za reševanje $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$ dobimo vmesni približek \mathbf{y} , nato pa iz tega novo točko \mathbf{x}_1 na K. Preverimo, da je razdalja med \mathbf{x}_1 in \mathbf{y} dovolj majhna, sicer se vrnemo v \mathbf{x}_0 in popravimo dolžino koraka. V primeru, da je razdalja med \mathbf{x}_1 in \mathbf{y} premajhna, pa dolžino koraka povečamo. Postopek ponavljamo. Dobimo zaporedje krajevnih vektorjev točk

$$\mathbf{X}_0, \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n,$$

ki opisujejo krivuljo K.

Naloga

Za poljubni dve implicitno dani ploskvi in začetni približek \mathbf{x}_0 morate znati poiskati krivuljo K, ki je presek teh dveh ploskev.

- 1. Natančno razmislite, kako deluje opisana metoda. Razložite, kako metoda deluje, če za reševanje sistema DE uporabite Eulerjevo metodo. V tem primeru opišite postopek reševanja z izrazi iz geometrične intuicije, brez omembe diferencialnih enačb.
- 2. Privzemimo, da sta f_1 in f_2 gladki (vsaj enkrat zvezno odvedljivi) funkciji. Kateri dodaten pogoj za f_1 in f_2 mora biti izpolnjen, da opisana metoda deluje?
- 3. Za Newtonovo iteracijo bo treba poiskati Jacobijevo matriko leve strani sistema nelinearnih enačb na dnu prejšnje strani. Zapišite to Jacobijevo matriko!
- 4. Implementirajte opisano metodo za iskanje krivulje *K* na 4 načine: z uporabo Eulerjeve in z uporabo Runge-Kutta metode za reševanje DE, s fiksno dolžino koraka in z adaptivno izbiro dolžine koraka. (Postopek za adaptivno izbiro koraka določite empirično.)
- 5. Testirajte in primerjajte vse 4 implementirane metode na čimveč različnih primerih parov ploskev. Kaj so prednosti, kaj slabosti? (Primerjajte potrebno dolžino koraka pri uporabi Eulerjeve oz. Runge-Kutta metode, hitrost izvajanja,...)