Московский физико-технический институт Факультет общей и прикладной физики

Лабораторная работа № 3.2.3

(Общая физика: электричество и магнетизм)

Резонанс токов в параллельном контуре

Работу выполнил: Комкин Михаил, Б01-303

г. Долгопрудный 2024 год

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазовочастотных характеристик, а также определение основных параметров контура.

Оборудование: генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

1. Теоретическое введение и описание установки

Рис.2 Последовательная эквивалентная схема конденсатора с потерями.

Рис.1 Схема установки.

$$I=\frac{E}{R_I}=\frac{E_0cos(\omega t+\varphi_0)}{R_I}=I_0cos(\omega t+\varphi_0) \text{— ток на генераторе}$$

$$R_S=\frac{U_{RS}}{I}=\frac{U_{RS}}{\omega C U_{CS}}=\frac{1}{\omega C}tg\delta$$

где R_S - эквивалентное последовательное сопротивление (ЭПС) Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$

$$R_{\sum} = R + R_L + R_S$$

где R_{\sum} - суммарное активное сопротивление контура.

Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, Z_C = R_S - i\frac{1}{\omega C}, Z = R_{\sum} + i(\omega L - d\frac{1}{\omega C})$$

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно предствить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ - собственная частота, $\rho=\sqrt{\frac{L}{C}}$ - реактивное сопротивление контура, $Q=\frac{\rho}{-}R_{\sum}$ - добротность контура

Рассмотрим случай, когда $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_{c} = QI_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{c}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{c} = \frac{\pi}{2} - \frac{R + R_{L}}{\rho} - arctg(\tau \Delta \omega)$$

$$I_{L} = QI_{0} \frac{\omega_{0}}{\omega} \frac{e^{i\phi_{L}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{L} = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega)$$

$$U = Q\rho I_{0} \frac{\omega}{\omega_{0}} \frac{e^{i\phi_{U}}}{\sqrt{1 + (\tau \Delta \omega)^{2}}}, \phi_{U} = -\frac{\omega}{\omega_{0}} \frac{R + R_{L}}{\rho} + \delta - arctg(\tau \Delta \omega)$$

где $au = rac{2L}{R_{\sum}} = rac{2Q}{\omega_0}$ - время затухания.

При резонансе, т.е. когда $\Delta \omega = 0$:

$$I_c(\omega_0) = QI_0, \phi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0, \phi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0, \phi_U \omega_0 = -\frac{R + R_L}{\rho} + \delta$$

$$\phi'_c(\omega_0) = \phi'_L(\omega_0) = \phi'_U(\omega_0) = -\tau$$

2. Ход работы

Данные установки: $R = 3{,}50 \text{ Ом}, R_1 = 1008 \text{ Ом}.$

2.1. Измерения резонансных частот и напряжений, а также сопутствующих величин

Проведем для 7 разных конденсаторов емкости C_n измерения резонансных частот и напряжений на них, поддерживая напряжение на вольтметре 1 равным $E=0.2~\mathrm{B}$, а также вычислим дополнительные величины, следующие из наших измерений, по следующим формулам:

$$L = \frac{1}{C(2\pi f)^2} \tag{1}$$

$$\rho = \frac{1}{2\pi fC} \tag{2}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1 \tag{3}$$

$$Q = \frac{UR_1}{E_0} 2\pi f C \tag{4}$$

$$R_{\Sigma} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} \tag{5}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{6}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
 (7)

Результаты занесём в таблицу:

Таблица 1: Результаты измерений при E=0.2

C_n ,	f_{0n} , к Γ ц	U_{0n} , B	E, B	L , мк Γ н	ρ , Om	Z, Om	Q	R_{Σ} , Om	R_{Sm} , Om	R_L , Ом
25.1	32.1	1.18	0.2	980.4	197.6	5947.2	30.1	6.57	0.20	2.9
33.2	27.8	0.91	0.2	988.2	172.5	4586.4	26.6	6.49	0.17	2.8
47.3	23.2	0.67	0.2	996.0	145.1	3376.8	23.3	6.24	0.15	2.6
57.4	21.3	0.57	0.2	973.7	130.2	2872.8	22.1	5.90	0.13	2.3
67.5	19.5	0.48	0.2	987.9	121.0	2419.2	20.0	6.05	0.12	2.4
82.7	17.7	0.40	0.2	978.7	108.8	2016.0	18.5	5.87	0.11	2.3
101.6	16.0	0.34	0.2	974.9	98.0	1713.6	17.5	5.60	0.10	2.0
Среднее значение			982,8						2,5	
Случайная погрешность			6,3						0,2	

3. Измерение АЧХ

По результатам построим графики AYX для обоих емкостей C

Проведем нормировку U и f

Теперь найдем добротность по ширине резонансной кривой $\delta\omega$ на 2 графике как

$$Q = \frac{1}{\delta\omega} \tag{8}$$

Где $\delta \omega$ — расстояние между частотами при значении напряжения $\frac{1}{\sqrt{2}}$. Получаем ответ:

$$Q_2 = 25.9 \pm 2 \qquad Q_5 = 19.7 \pm 2 \tag{9}$$

3.1. Фазово-частотная характеристика

Для тех же кондесаторов определим фазово-частотную характеристику. Будем определять разность фаз между сигналами U(t), E(t) как $\Delta \phi = \frac{x}{x_0} \phi$, где x, x_0 — расстояния от начала отсчёта до момента обращения графиков этих значений в нуль. Результаты занесем в таблицу:

Аналогично определим добротность, подсчитав длину резонансной кривой как расстояние между частотами при разности фаз в $\frac{3}{4}\pi$ и $\frac{5}{4}\pi$:

$$Q_2 = 20.4 \pm 3 \qquad Q_5 = 27.1 \pm 3 \tag{10}$$

3.2. График зависимости R_L от f_{0n}

Теперь построим график зависимости $R_L(f_{0n})$ и проведем прямую $\langle R_L \rangle = 2,5$ Ом. Видно, что R_L возрастает при увеличении частоты. Это может быть объяснено скин-эффектом.

Теперь построим векторную диаграмму для контура с наименьшей добротностью, т.е. для последнего — $Q_7=17,5$.

Рис. 1: Векторная диаграмма Посчитаем ток $I=\frac{E}{R_1}=\frac{0.2}{1008}\approx 0.1.$ Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем сам \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\phi_C = \frac{\pi}{2} - \frac{R + R_l}{\rho}, \quad \phi_L = -\frac{\pi}{2} + \delta$$
 (11)

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол $\phi_C' = \frac{R+R_l}{\rho} \approx 0.0562.$

Аналогичный угол у напряжения $\vec{U}:\phi_U=-\frac{R+R_l}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на отрицательный угол.

Изобразим это на рисунке.

4. Вывод

В данной работе мы изучили резонанс токов в параллельном контуре. С помощью непосредственных измерений, графиков АЧХ и ФЧХ мы определили добротность контуров и получили, в пределах погрешно-

сти, хорошо совпадающие результаты.

Проделав измерения при двух разных напряжениях E, мы выяснили, что меняется только абсолютное значение резонансных амплитуд напряжения U (увеличивается при более высоком E).

В конце работы мы построили векторную диаграмму как наглядное представления «резонанса токов».

C = 33.2		C = 67.5	
U, B	f, кГц	U, B	f, кГц
0.0376	17.8	0.022	11.5
0.043	18.8	0.0267	12.5
0.0496	19.8	0.0323	13.5
0.058	20.8	0.04	14.5
0.069	21.8	0.0517	15.5
0.0846	22.8	0.0706	16.5
0.107	23.8	0.1072	17.5
0.1447	24.8	0.2031	18.5
0.216	25.8	0.444	19.5
0.4013	26.8	0.2072	20.5
0.9103	27.8	0.1163	21.5
0.4383	28.8	0.0809	22.5
0.2405	29.8	0.0625	23.5
0.1649	30.8	0.0515	24.5
0.1261	31.8	0.044	25.5
0.1026	32.8	0.0387	26.5
0.087	33.8	0.0347	27.5
0.0758	34.8	0.0315	28.5
0.0675	35.8	0.028	29.5
0.061	36.8	0.0267	30.5
0.056	37.8	0.0246	31.5
0.0517	38.8	0.0226	32.5
0.47	27	0.2462	18.7
0.6997	27.4	0.3348	19
0.8644	28	0.4363	19.7

$C = 33.2 \; \text{н}\Phi$				$C=67.5 \; \mathrm{H}\Phi$			
U, B	x_0	x	$\Delta \phi$	U, B	x_0	x	$\Delta \phi$
0.376	19	-9	-1.48	0.022	15	-7	-1.46
0.043	18	-8	-1.39	0.0267	14	-6	-1.34
0.0496	17	-7	-1.296	0.0323	13	-6	-1.44
0.058	16	-7	-1.37	0.04	11.5	-6	-1.63
0.069	15	-7	-1.46	0.0517	11	-5	-1.42
0.0846	15	-7	-1.46	0.0706	10.5	-4	-1.19
0.107	14	-6	-1.34	0.1072	10	-4	-1.256
0.1447	14	-6	-1.34	0.2031	9	-3	-1.04
0.216	13	-5.5	-1.32	0.444	9	0	0
0.4013	12.5	-5	-1.25	0.2072	8	3	1.17
0.9103	12	0	0	0.11	8	3.5	1.37
0.4383	12	4	1.05	0.0809	8	3.5	1.37
0.2405	11	5	1.43	0.0625	7	3	1.34
0.1649	11	5	1.43	0.0515	7	3	1.34
0.1261	10.5	5	1.49	0.044	7	3	1.34
0.1026	10.5	5	1.49	0.0387	7	3	1.34
0.087	10	5	1.57	0.0347	7	3	1.34
0.0758	10	5	1.57	0.0315	6	3	1.57
0.0675	9	5	1.74	0.028	6	3	1.57
0.61	9	5	1.74	0.0267	6	3	1.57
0.056	9	4	1.39	0.0246	5	3	1.884
0.0517	9	4	1.39	0.0226	5	2	1.256
0.47	6.5	-2	-0.96	0.2462	9	-2	-0.69
0.6997	6	-1	-0.52	0.3348	9	-2	-0.69
0.8644	6	1	0.52	0.4363	9	1.5	0.52
0.6199	6	1.5	0.79	0.3296	8.5	2.5	0.92

Рис.2 АЧХ с нормировкой

Рис.2 ФЧХ с нормировкой

Рис. 2: График зависимости $R_L(f_{0n})$