Formalización del teorema de representación subdirecta

Marco Nardelli

March 13, 2024

1 Introducción

El objetivo de este proyecto es el estudio de Álgebra Universal y la formalización de algunos resultados de esta área. Para ello, este trabajo consistirá en formalizar es el teorema de representación subdirecta (Birkhoff, 1944) [1]. En las próximas secciones de este documento se detallan las definiciones y lemas auxiliares necesarios para entender y saber qué modelar a la hora de formalizar la prueba del teorema. La herramienta a utilizar para dicha formalización es el asistente de pruebas Agda, tomando como base la librería de Álgebra Universal de Agda, desarrollada por William DeMeo.

2 Presentación del teorema

Teorema de representación subdirecta Toda álgebra no trivial es isomorfa a un producto subdirecto de álgebras subdirectamente irreducibles

2.1 Descomposición y estructura de la prueba:

A continuación, presentamos un listado, con detalles de las definiciones y resultados necesarios para realizar el trabajo.

2.1.1 Definición de Álgebra:

Un álgebra es un par $\langle A, F \rangle$ donde A es un conjunto no vacío y $F = \langle f_i : i \in I \rangle$ es una familia de operaciones sobre A, indexada en un conjunto I. Llamamos a la función $\rho: I \to \omega$, la función de tipo de **A**. Esta función asigna a cada $i \in I$ el rango de f_i .

Diremos que un álgebra es trivial si su universo tiene cardinalidad 1.

2.1.2 Definición de Subálgebra:

Dadas álgebras $\mathbf{A} = \langle A, F \rangle$ y $\mathbf{B} = \langle B, G \rangle$ del mismo tipo $\rho: I \to \omega$, diremos que \mathbf{B} es subálgebra de \mathbf{A} si $B \subseteq A$ y para cada $i \in I$, $g_i = f_i|_{B^{\rho(i)}}$

2.1.3 Homomorfismos, isomorfismos y embeddings:

Definición de Homomorfismo: Dadas álgebras $\mathbf{A} = \langle A, F \rangle$ y $\mathbf{B} = \langle B, G \rangle$ del mismo tipo. Una función $h: B \to A$ se le llama homomorfismo si para cada $i \in I$ y para cada $b_1, \ldots, b_n \in B$, $h(g_i(b_1, \ldots, b_n)) = f_i(h(b_1), \ldots, h(b_n))$

Definición de embedding Llamaremos embedding a la función $h: \mathbf{A} \to \mathbf{B}$ si es un homomorfismo inyectivo.

Definición de isomorfismo Si $h: A \to B$ es un homomorfismo biyectivo, luego $A \lor B$ son llamados isomorfos.

2.1.4 Producto directo, subdirecto y álgebras subdirectamente irreducibles:

Definición de producto directo: Sea $S = \langle S_i : i \in I \rangle$ una secuencia de conjuntos. El producto directo de S es el conjunto

$$\prod_{i \in I} S_i = \{ f : I \to \bigcup_{i \in I} | (\forall i \in I) f(i) \in S_i \}$$

Sea $\mathcal{A} = \langle \mathbf{A}_i : i \in I \rangle$ una secuencia de álgebras del mismo tipo. El producto directo de la secuencia es el álgebra \mathbf{B} con universo $B = \prod_{i \in I} A_i$ y para cada símbolo de operación g y $f_1, \ldots, f_n \in B$ tenemos

$$(g^{\mathbf{B}}(f_1,\ldots,f_n))(i) = g^{\mathbf{A}_i}(f_1(i),\ldots,f_n(i)), \quad \forall i \in I$$

Definición de producto subdirecto: Un álgebra **B** es un *producto subdirecto* de $\langle \mathbf{A}_i : i \in I \rangle$ si **B** es un subálgebra de $\prod_{i \in I} \mathbf{A}_i$ y para cada $i \in I$, $p_i|_B : \mathbf{B} \to \mathbf{A}_i$ es suryectiva.

Definición de subdirect embedding Dado un embedding $g: \mathbf{B} \to \prod_{i \in I} \mathbf{A}_i$ es llamado subdirecto si $g(\mathbf{B})$ es un producto subdirecto de $\langle \mathbf{A}_i : i \in I \rangle$.

Definición de álgebra subdirectamente irreducible: Un álgebra no trivial \mathbf{A} es llamada subdirectamente irreducible si para todo subdirect embedding $h: \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$, hay un $j \in I$ tal que $p_j \circ h: \mathbf{A} \to \mathbf{A}_j$ es un isomorfismo.

2.1.5 Relaciones de equivalencias y congruencias

Definición de relación de equivalencia: Sea A un conjunto, dada una relación binaria θ , es una relación de equivalencia sobre A si para todos $x,y,z\in A$ se tiene que:

```
x\theta x \quad (reflexividad)

x\theta y \Rightarrow y\theta x \quad (simetria)

x\theta y \wedge y\theta z \Rightarrow x\theta z \quad (transitividad)
```

Definición de kernel Sea $f: A \to B$ una función cualquiera. definimos

$$ker f = \{(x, y) \in A^2 : f(x) = f(y)\},\$$

llamada el kernel de f.

Clases de equivalencias Sea θ una relación de equivalencia sobre A. Para $a \in A$ escribimos

$$a/\theta = \{x \in A : a\theta x\},\$$

le llamamos la clase de equivalencia de a modulo θ . Y podemos escribir el conjunto A/θ , el cociente de A por θ , que contiene todas las clases de equivalencias modulo θ .

Definición de congruencia Sea **A** un álgebra y θ una relación de equivalencia sobre A, llamamos congruencia sobre **A** si θ satisface que para cada operación básica f se da:

$$x_1\theta y_1 \wedge \ldots \wedge x_n\theta y_n \Rightarrow f(x_1,\ldots,x_n)\theta f(y_1,\ldots,y_n)$$

Definición de álgebra cociente Sea **A** un álgebra y θ una congruencia sobre **A**. El álgebra cociente \mathbf{A}/θ es un álgebra similar a **A**, con universo A/θ y con las operaciones básicas definidas con la ecuación:

$$f^{\mathbf{A}/\theta}(a_1/\theta,\ldots,a_n/\theta) = f^{\mathbf{A}}(a_1,\ldots,a_n)/\theta$$

Mas notación para entender los lemas auxiliares a formalizar: Sea $0_A = \{(x, x) : x \in A\}$ y $1_A = A \times A$, son clases de equivalencias sobre A.

2.1.6 Definición de Elementos meet-irreducibles

Sea **L** un reticulado completo. Un elemento a es llamado meet-irreducible si $a = b \wedge c$ implica que a=b o a=c. Un elemento es completely meet-irreducible si $a \neq 1_L$ y $a = \bigwedge_{i \in I} b_i$, hay un $j \in I$ tal que $a = b_j$.

2.1.7 Lemas auxiliares a formalizar:

Proposición sobre subdirect embeddings: Sea \mathbf{A} un álgebra y sea θ_i una congruencia sobre \mathbf{A} para todo $i \in I$. Si $\bigcap_{i \in I} \theta_i = 0_A$, luego el mapeo natural $\mathbf{A} \to \prod_{i \in I} \mathbf{A}/\theta_i$ es un subdirect embedding. Contrariamente, si $g: \mathbf{A} \to \prod \mathbf{B}_i$ es un subdirect embedding, luego con $\theta_i = \ker(p_i \circ g)$, tenemos que $\cap \theta_i = 0_A$ y $\mathbf{A}/\theta_i \cong \mathbf{B}$

Lema de Zorn: Sea \mathbf{P} un poset no vacío. Supongamos que toda cadena en \mathbf{P} tiene una cota superior. Luego \mathbf{P} tiene un elemento maximal.

Teorema de álgebras subdirectamente irreducibles: Un álgebra $\bf A$ es subdirectamente irreducible si y solo si 0_A es completamente meet-irreducible en Con $\bf A$. Mas generalmente, si θ es una congruencia sobre un álgebra $\bf A$, luego $\bf A/\theta$ es subdirectamente irreducible si y solo si θ es completamente meet-irreducible en Con $\bf A$.

Lema de elementos completely meet-irreducible Sea a un elemento de un reticulado completo L las siguientes son equivalentes:

- 1. a es completely meet-irreducible
- 2. Hay un elemento $c \in L$ tal que a < cy para cada $x \in L, \, a < x$ implica $c \leq x$

2.2 Observaciones:

- En la librería de Algebra Universal de Agda, ya se encuentran modeladas las nociones de producto, congruencia y subálgebras. https://github.com/ualib/agda-algebras
- La prueba del teorema de birkhoff invoca resultados sin llamarlos

References

[1] Clifford Bergman: Universal Algebra Fundamentals and Selected Topics (2011)