HW

Samuel Lindskog

April 3, 2025

Definitions are partially or completely copied from "Analysis with an introduction to proof" by Steven Lay, or Tao. Propositions are original.

Definition 1.1 (bounded sequence). Let S be a subset of \mathbb{R} . If there exists a $m \in \mathbb{R}$ such that $m \geq s$ for all $s \in S$, then m is an upper bound. If a set is bounded above and below, then the set is bounded.

Definition 1.2 (convergent sequence). A sequence (s_n) is said to converge to the real number s provided that

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in N, (n \ge N \Rightarrow |s_n - s| < \epsilon).$$

Definition 1.3 (limit of a sequence). If (s_n) is said to converges to $s \in \mathbb{R}$, then s is called the limit of the sequence.

Definition 1.4 (supremum). Let S be a nonempty subset of \mathbb{R} . If S is bounded above, then the least upper bound of S is called its supremum, and is denoted by $\sup S$. Thus $m = \sup S$ iff

- (a) $\forall s \in S, m \geq s$;
- (b) $m' < m \Rightarrow \exists s' \in S \land s' > m'$

Definition 1.5 (limsup). Let S_n be a bounded sequence. A subsequential limit of (s_n) is any real number that is the limit of some subsequence of (s_n) . If S is the set of all subsequential limits of s_n , then the limit superior of (s_n) is

$$\lim \sup s_n = \sup S.$$

Definition 1.6 (subsequence). Let $(s_n)_{n=1}^{\infty}$ be a sequence and let $(n_k)_{k=1}^{\infty}$ be any sequence of natural numbers such that $n_1 < n_2 < n_3 < \dots$ The sequence $(s_{n_k})_{k=1}^{\infty}$ is called a subsequence of $(s_n)_{n=1}^{\infty}$.

Definition 1.7. Let $x \ge 0$ be a non-negative real, and let $n \ge 1$ be a positive integer. We define $x^{1/n}$, also known as the *n*th rooth of x, by the formula

$$x^{1/n} \coloneqq \sup\{y \in \mathbb{R} \mid y \ge 0 \land y^n \le x\}.$$

Definition 1.8. Let x > 0 be a positive real number, and let q be a rational number. To define x^q , we write q = a/b for some integer a and positive integer b, and define

$$x^q \coloneqq (x^{1/b})^a.$$

1

Proposition 1.9. Let set $S \subseteq \mathbb{R}$ such that $\sup S$ (inf S) exists and is equal to $L \in \mathbb{R}$. Then

$$\forall \epsilon > 0, \exists s \in S, (|L - s| < \epsilon).$$

Proof: Because $L = \sup S$, if $B = L - \epsilon$ for some $\epsilon > 0$, it follows from the definition of supremum that there exists $s \in S$ such that s > B. Because

$$L - B = L - (L - \epsilon) = \epsilon$$

and B < s < L, we have

$$0 < L - s < \epsilon$$

So $|L-s| < \epsilon$, as required. If $L = \inf S$ and $B = L + \epsilon$ for some $\epsilon > 0$, it follows from the definition of infimum that there exists $s \in S$ such that s < B Because

$$L - B = L - (L + \epsilon) = \epsilon$$

and L < s < B, we have

$$-\epsilon < L - s < 0$$

So $|L - s| < \epsilon$, as required.

Proposition 1.10. Let set $S \subseteq \mathbb{R}$ such that $\limsup S$ ($\liminf S$) exists and is equal to $L \in \mathbb{R}$. Then

$$\forall \epsilon > 0, \exists s \in S, (|L - s| < \epsilon).$$

Proof: If L is the limit of some subsequence $(a_{n_k})_{k=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$, then (a_{n_k}) converges to L, i.e.

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall k \in \mathbb{N}, (k > N \Rightarrow |L - a_{n_k}| < \epsilon).$$

In other words, for every subsequential limit in the set of subsequential limits S, there exists an element of the subsequence, and thus an element of the sequence, which is ϵ -close to this limit. It follows from proposition 1.9 that there exists $s \in S$ which is $\epsilon/2$ -close to $\sup S$, and an element of (a_n) which is $\epsilon/2$ close to s, so s is ϵ close to $\sup S$.

Exercise 6.4.4

Suppose that $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ are two sequences of real numbers such that $a_n \leq b_n$ for all $n \geq m$. Then we have the inequalities

$$\sup(a_n)_{n=m}^{\infty} \le \sup(b_n)_{n=m}^{\infty} \tag{1}$$

$$\inf(a_n)_{n=m}^{\infty} \le \inf(b_n)_{n=m}^{\infty} \tag{2}$$

$$\lim \sup (a_n)_{n=m}^{\infty} \le \lim \sup (b_n)_{n=m}^{\infty} \tag{3}$$

$$\lim\inf(a_n)_{n=m}^{\infty} \le \liminf(b_n)_{n=m}^{\infty} \tag{4}$$

Proof: We prove these statements by contradiction. Suppose to the contrary exclusively either

$$\sup(a_n)_{n=1}^{\infty} = L > \sup(b_n)_{n=1}^{\infty} = M;$$

$$\inf(a_n)_{n=1}^{\infty} = L > \inf(b_n)_{n=1}^{\infty} = M;$$

$$\limsup(a_n)_{n=1}^{\infty} = L > \limsup(b_n)_{n=1}^{\infty} = M;$$

$$\liminf(a_n)_{n=1}^{\infty} = L > \liminf(b_n)_{n=1}^{\infty} = M;$$

$$\limsup(a_n)_{n=1}^{\infty} = L > \liminf(b_n)_{n=1}^{\infty} = M. \quad \text{# for exercise 6.4.5}$$

Because L > M, there exists $c \in \mathbb{R}^+$ such that L = M + c. It follows from proposition 1.9 or 1.10 that there exists $a \in (a_n)$ such that a is c/2-close to L, and there exists $b \in (b_n)$ such that b is c/2-close to M. Because L - c/2 < a < L + c/2, we have M + c - c/2 < a < M + c + c/2, so a > M + c/2. But M - c/2 < b < M + c/2 so b < M + c/2 and b < a, contradicting the fact that $a \le b$.

Exercise 6.4.5

Let $(a_n)_{n=m}^{\infty}$, $(b_n)_{n=m}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ be sequences of real numbers such that $a_n \leq b_n \leq c_n$ for all $n \geq m$. Suppose also that $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ both converge to the same limit L. Then $(b_n)_{n=m}^{\infty}$ is also convergent to L.

Proof: It follows from Exercise 6.4.4 that $\limsup(c_n) \leq \liminf(b_n)$ and $\limsup(b_n) \leq \liminf(a_n)$. It follows from Tao proposition 6.4.12 that $\liminf(a_n) = c = \limsup(c_n)$. Thus $\limsup(b_n) = \liminf(b_n) = c$, and by the same proposition (b_n) converges to c.

Exercise 6.5.3

For any x > 0, we have $\lim_{n \to \infty} x^{1/n} = 1$.

Proof: It follows from the definition of an nth root that $\lim_{n\to\infty} x^{1/n}$ is equivalent to

$$\lim_{n \to \infty} \sup \{ y \in \mathbb{R} \, | \, y^n \le x \}.$$

If $L(n) = \sup\{y \in \mathbb{R} \mid y^n \le x\}$, and L(N) < L(N+1), is nonzero, it follows from proposition 1.9 that for any $\epsilon > 0$ there exists $l \in L_n$ such that $|L - l| < \epsilon$. But then

Exercise 6.6.5

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let L be a real number. Then the following two statements are logically equivalent:

- (a) The sequence $(a_n)_{n=1}^{\infty}$ converves to L.
- (b) Every subsequence of $(a_n)_{n=1}^{\infty}$ converges to L.