Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Previously Presented) A method for treating or preventing multiple sclerosis, the method comprising administering to a patient in need thereof a therapeutically effective amount of a compound represented by formula (I), or a pharmaceutically acceptable salt or hydrate thereof,

$$\begin{array}{c|c}
R^1 & X & \\
X & X & \\
X & X & \\
Z^2 & Z^1 & N &
\end{array}$$
(I)

wherein,

T¹ represents a mono- or bicyclic 4- to 12-membered heterocyclic group comprising one or two nitrogen atoms in a ring, which may have substituents;

X represents a C_{1-6} alkyl group that may have a substituent, a C_{2-6} alkenyl group that may have a substituent, a C_{6-10} aryl group that may have a substituent, a C_{6-10} aryl have a substituent, a C_{6-10} aryl C_{1-6} alkyl group that may have a substituent, or a 5-to 10-membered heteroaryl C_{1-6} alkyl group that may have a substituent;

in formula (I), the following formula

represents a single or double bond; and when the formula

represents a single bond, Z^1 represents a group represented by the formula -NR²-, and Z^2 represents a carbonyl group;

when the formula

represents a double bond, Z^1 and Z^2 each independently represent a nitrogen atom or a group represented by the formula -CR²=;

 R^1 and R^2 each independently represent a group represented by the formula $-A^0-A^1-A^2$ wherein, A^0 represents a single bond or a C_{1-6} alkylene group that may have one to three groups selected from a substituent group B described below;

A¹ represents a single bond, an oxygen atom, a sulfur atom, a sulfinyl group, a sulfonyl group, a carbonyl group, a formula -O-CO-, a formula -CO-O-, a formula -NR^A-, a formula -CO-NR^A-, a formula -NR^A-CO-, a formula -SO₂-NR^A-, or a formula -NR^A-SO₂-;

 A^2 and R^A each independently represent a hydrogen atom, a halogen atom, a cyano group, a guanidino group, a C_{1-6} alkyl group, a C_{3-8} cycloalkyl group, a C_{3-8} cycloalkenyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl group, a C_{6-10} aryl group, a 5- to 10-membered heteroaryl group, a 4- to 8-membered heterocyclic group, a 5- to 10-membered heteroaryl C_{1-6} alkyl group, a C_{6-10} aryl C_{1-6} alkyl group, or a C_{2-7} alkyl carbonyl group;

with the proviso that A^2 and R^A may each independently have one to three moieties selected from substituent group B, substituent group B consisting of:

a hydroxyl group, a mercapto group, a cyano group, a nitro group, a halogen atom, a trifluoromethyl group, a trifluoromethoxy group,

an alkylenedioxy group, a C_{1-6} alkyl group that may have a substituent, a C_{3-8} cycloalkyl group, a C_{2-6} alkenyl group, a C_{6-10} aryl group, a 5- to 10-membered heteroaryl group, a 4- to 8-membered heterocyclic group, a C_{1-6} alkoxy group, a C_{1-6} alkylthio group;

groups represented by the formulae -SO₂-NR^{B1}-R^{B2}, -NR^{B1}-CO-R^{B2}, and -NR^{B1}-R^{B2},

where R^{B1} and R^{B2} each independently represent a hydrogen atom or a C_{1-6} alkyl group,

a group represented by the formula -CO-RB3,

where R^{B3} represents a 4- to 8-membered heterocyclic group,

and groups represented by the formulae -CO- R^{B4} - R^{B5} and -CH₂-CO- R^{B4} - R^{B5}

where R^{B4} represents a single bond, an oxygen atom, or a formula -NR^{B6}-; and

 R^{B5} and R^{B6} each independently represent a hydrogen atom, a C_{1-6} alkyl group, a C_{3-8} cycloalkyl group, a C_{2-6} alkenyl group, a C_{2-6} alkynyl group, a C_{6-10} aryl group, a 5- to 10-membered heteroaryl group, a 4- to 8-membered heterocyclic C_{1-6} alkyl group, a C_{6-10} aryl C_{1-6} alkyl group, or a 5-10-membered heteroaryl C_{1-6} alkyl group; and

when Z^2 represents the formula -CR²=, R^1 and R^2 may together form a 5- to 7-membered ring.

2. (Previously Presented) The method of claim 1, wherein the compound has the formula:

$$R^1$$
 N
 N
 T^1
 (II)

3. (Previously Presented) The method of claim 1, wherein the compound has the formula:

4. (Previously Presented) The method of claim 1, wherein the compound has the formula:

5. (Previously Presented) The method of claim 1, wherein T^1 is selected from the group consisting of:

an azetidin-1-yl group that may have a substituent; a pyrrolidine-1-yl group that may have a substituent;

> a piperidine-1-yl group that may have a substituent; an azepan-1-yl group that may have a substituent; and a group represented by the following formula:

where n and m each independently represent zero or one.

6. (Previously Presented) The method of claim 1, wherein T¹ is selected from the group consisting of:

an azetidin-1-yl group that may have an amino group; a pyrrolidin-1-yl group that may have an amino group, a piperidin-1-yl group that may have an amino group; an azepan-1-yl group that may have an amino group; and is a group represented by the following formula:

where n and m each independently represent zero or one.

- 7. (Previously Presented) The method of claim 1, wherein T¹ is a piperazine-1-yl group or a 3-aminopiperidine-1-yl group.
- 8. (Previously Presented) The method of claim 1, wherein T¹ is a piperazine-1-yl group.

- 9. (Previously Presented) The method of claim 1, wherein X is a group represented by the formula $-X^1-X^2$ where
 - X^1 represents a single bond or a methylene group that may have a substituent;
 - X² represents
 - a C₂₋₆ alkenyl group that may have a substituent,
 - a C₂₋₆ alkynyl group that may have a substituent, or
 - a phenyl group that may have a substituent.
- 10. (Previously Presented) The method of claim 1, wherein X is a group represented by the formula $-X^{11}-X^{12}$ where
 - X¹¹ represents a single bond or a methylene group;
 - X¹² represents
 - a C₂₋₆ alkenyl group,
 - a C₂₋₆ alkynyl group, or
 - a phenyl group that may have a substituent.
- 11. (Previously Presented) The method of claim 9 or 10, wherein the phenyl group has at position 2 a substituent selected from the group consisting of: a hydroxyl group, a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a fluoromethyl group, a vinyl group, a methoxy group, an ethoxy group, an acetyl group, a cyano group, a formyl group, and a C_{2-7} alkoxycarbonyl group.
- 12. (Previously Presented) The method of claim 1, wherein X is a 3-methyl-2-buten-1-yl group, a 2-butyne-1-yl group, a benzyl group, or a 2-chlorophenyl group.
- 13. (Previously Presented) The method of claim 1, wherein X is a 2-butyne-1-yl group.
- 14. (Previously Presented) The method of claim 1, wherein R^1 is a hydrogen atom or a group represented by the formula $-A^{10}-A^{11}-A^{12}$ wherein,

- A^{10} represents a C_{1-6} alkylene group that may have one to three moieties selected from substituent group C, substituent group C consisting of:
 - a hydroxyl group, a nitro group, a cyano group, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group, a C_{1-6} alkylthio group, a trifluoromethyl group, a group represented by the formula -NR^{C1}-R^{C2},

where R^{C1} and R^{C2} each independently represent a hydrogen atom or a $C_{1\text{--}6}$ alkyl group,

and groups represented by the formulae -CO-R^{C3}-R^{C4} and -CH₂-CO-R^{C3}-R^{C4}, where R^{C3} represents a single bond, an oxygen atom, or a formula -NR^{C5}-; and

 R^{C4} and R^{C5} each independently represent a hydrogen atom or a C_{1-6} alkyl group;

 A^{11} represents a single bond, an oxygen atom, a sulfur atom, or a carbonyl group; A^{12} represents

- a hydrogen atom,
- a C₆₋₁₀ aryl group that may have one to three moieties selected from substituent group C,
- a 5- to 10-membered heteroaryl group that may have one to three moieties selected from substituent group C,
- a 5- to 10-membered heteroaryl C₁₋₆ alkyl group that may have one to three moieties selected from substituent group C, or
- a C_{6-10} aryl C_{1-6} alkyl group that may have one to three moieties selected from substituent group C.
- 15. (Previously Presented) The method of claim 1, wherein R¹ is a hydrogen atom,
- a C_{1-6} alkyl group that may have one to three moieties selected from substituent group C substituent group C consisting of:

a hydroxyl group, a nitro group, a cyano group, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group, a C_{1-6} alkylthio group, a trifluoromethyl group, a group represented by the formula -NR^{C1}-R^{C2},

where R^{C1} and R^{C2} each independently represent a hydrogen atom or a C_{1-6} alkyl group,

and groups represented by the formulae -CO- R^{C3} - R^{C4} and

-CH₂-CO-R^{C3}-R^{C4}

where R^{C3} represents a single bond, an oxygen atom, or a formula $-NR^{C5}$ -: and

 R^{C4} and R^{C5} each independently represent a hydrogen atom or a C_{1-6} alkyl group;

a 5- to 10-memebered heteroaryl C_{1-6} alkyl group that may have one to three moieties selected from substituent group C, or

a C_{6-10} aryl C_{1-6} alkyl group that may have one to three moieties selected from substituent group C.

- 16. (Previously Presented) The method of claim 14 or 15, wherein substituent group C consists of a cyano group, a C_{1-6} alkoxy group, a C_{2-7} alkoxycarbonyl group, and halogen atom.
- 17. (Previously Presented) The method of claim 1, wherein R¹ is a methyl group, a cyanobenzyl group, fluorocyanobenzyl group, a phenethyl group, a 2-methoxyethyl group, or a 4-methoxycarbonylpyridin-2-yl group.
- 18. (Previously Presented) The method of claim 1, wherein R^1 is a methyl group or a 2-cyanobenzyl group.
- $\label{eq:control} 19. \qquad \mbox{(Previously Presented) The method of claim 1, wherein R^2 is }$

a hydrogen atom,

```
Appl. No. 10/596,212
Amdt. dated November 30, 2009
Preliminary Amendment
```

```
a cyano group, or
a group represented by the formula -A<sup>21</sup>-A<sup>22</sup>
        where A<sup>21</sup> represents
                 a single bond,
                 an oxygen atom,
                 a sulfur atom,
                 a sulfinyl group,
                 a sulfonyl group,
                 a carbonyl group,
                 a formula -O-CO-,
                 a formula -CO-O-,
                 a formula -NR<sup>A2</sup>-,
                 a formula -CO-NR<sup>A2</sup>-,
                 or a formula -NRA2-CO-;
                          A^{22} and R^{A2} each independently represent a hydrogen atom, a
                                   cyano group, a C<sub>1-6</sub> alkyl group, a C<sub>3-8</sub> cycloalkyl group, a
                                   C<sub>2-6</sub> alkenyl group, a C<sub>2-6</sub> alkynyl group, a C<sub>6-10</sub> aryl group,
                                   a 5- to 10-membered heteroaryl group, a 4- to 8-membered
                                   heterocyclic group, a 5- to 10-membered heteroaryl C<sub>1-6</sub>
                                   alkyl group, or a C_{6-10} aryl C_{1-6} alkyl group;
                          with the proviso that A<sup>22</sup> and R<sup>A2</sup> each independently may have
                                   one to three moieties selected from substituent group D,
                                   substituent group D consisting of:
                                            a hydroxyl group,
                                            a cyano group,
                                            a nitro group,
                                            a halogen atom,
                                            a C<sub>1-6</sub> alkyl group,
                                            a C<sub>1-6</sub> alkoxy group,
```

> a C₁₋₆ alkylthio group, a trifluoromethyl group, a group represented by the formula -NR $^{\rm D1}\text{-R}^{\,\rm D2}$ where RD1 and RD2 each independently represent a hydrogen atom or a C₁₋₆ alkyl group, a group represented by the formula -CO-R $^{\rm D3}$ where RD3 represents a 4- to 8-membered heterocyclic group, and a group represented by the formula -CO-R $^{\text{D4}}\text{-R}^{\text{D5}}$ where R^{D4} represents a single bond, an oxygen atom, or a formula -NR D6-; R^{D5} and R^{D6} each independently represent a hydrogen atom, a C₃₋₈ cycloalkyl group, or a C₁₋₆ alkyl group.

20. (Previously Presented) The method of claim 1, wherein

R² is

a hydrogen atom,

a cyano group,

a carboxy group,

a C_{2-7} alkoxycarbonyl group,

a C_{1-6} alkyl group,

a group represented by the formula -CONR $^{\text{D7}}\text{R}^{\text{D8}}$

wherein R^{D7} and R^{D8} each independently represent a hydrogen atom or a $C_{1\text{-}6}$ alkyl group,

or a group represented by the formula $-A^{23}-A^{24}$ where A^{23} represents

 R^2 is

an oxygen atom,

a sulfur atom, or

a formula -NR^{A3}-;

A²⁴ and R^{A3} each independently represent

- a hydrogen atom,
- a C_{1-6} alkyl group that may have a moiety selected from substituent group D1, substituent group D1 consisting of:
 - a carboxy group,
 - a C₂₋₇ alkoxycarbonyl group,
 - a C₁₋₆ alkyl group,
 - a group represented by the formula -CONR $^{D7}R^{D8}$ wherein R^{D7} and R^{D8} each independently represent a hydrogen atom or a C_{1-6} alkyl group,
 - a pyrrolidin-1-ylcarbonyl group,
 - a C₁₋₆ alkyl group, and
 - a C_{1-6} alkoxy group,
- a C₃₋₈ cycloalkyl group that may have a moiety selected from substituent group D1,
- a C₂₋₆ alkenyl group that may have a moiety selected from substituent group D1,
- a C₂₋₆ alkynyl group that may have a moiety selected from substituent group D1,
- a phenyl group that may have a moiety selected from substituent group D1, or
- a 5- to 10-memb-ered heteroaryl group that may have a moiety selected from substituent group D1.
 - 21. (Previously Presented) The method of claim 1, wherein

```
Appl. No. 10/596,212
Amdt. dated November 30, 2009
Preliminary Amendment
```

a hydrogen atom,

a methyl group,

a cyano group,

a C₁₋₆ alkoxy group, or

a group represented by the formula $-A^{25}-A^{26}$

where A²⁵ represents

an oxygen atom,

a sulfur atom, or

a formula -NR^{A4}-;

A²⁶ and R^{A4} each independently represent

a hydrogen atom,

a C_{1-6} alkyl group that may have a moiety selected from substituent group D1, substituent group D1 consisting of:

a carboxy group,

a C₂₋₇ alkoxycarbonyl group,

a C₁₋₆ alkyl group,

a group represented by the formula -CONR $^{\text{D7}}\text{R}^{\text{D8}}$

wherein R^{D7} and R^{D8} each independently represent a hydrogen atom or a $C_{1\text{-}6}$ alkyl group,

a pyrrolidin-1-ylcarbonyl group,

a C_{1-6} alkyl group, and

a C_{1-6} alkoxy group;

a C_{3-8} cycloalkyl group that may have a moiety selected from substituent group D1, or

a phenyl group that may have a moiety selected from substituent group D1.

22. (Previously Presented) The method of claim 1, wherein

R² is

a hydrogen atom,

a cyano group,

a methoxy group,

a carbamoylphenyloxy group, or

a group represented by the following formula:

$$A^{28}$$
O

 A^{27}
O

 A^{28}
O

 A^{27}
 A^{28}
O

 A^{27}
 A^{28}
O

 A^{27}
 A^{28}
O

 A^{27}
 A^{28}
O

 A^{28}
O

 A^{27}
 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{29}
O

 A^{27}
 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{29}
O

 A^{29}
O

 A^{27}
O

 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{28}
O

 A^{29}
O

 A^{2

where A^{27} represents an oxygen atom, a sulfur atom, or -NH-; and A^{28} and A^{29} each independently represent a hydrogen atom or a C_{1-6} alkyl group.

- 23. (Previously Presented) The method of claim 1, wherein R² is a hydrogen atom, a cyano group, or a 2-carbamoylphenyloxy group.
- 24. (Previously Presented) The method of claim 1, wherein the compound represented by formula (I) is selected from the group consisting of:

7-(2-butynyl)-1,3-dimethyl-8-(piperazin-1-yl)-3,7-dihydropurine-2,6-dione,

7-(2-butynyl)-2-cyano-1-methyl-8-(piperazin-1-yl)-1,7-dihydropurin-6-one,

3-(2-butynyl)-5-methyl-2-(piperazin-1-yl)-3,5-dihydroimidazo[4,5-d]pyridazin-4-one,

 $2-(3-aminopiperidin-1-yl)-3-(2-butynyl)-5-methyl-3, \\ 5-dihydroimidazo \\ [4,5-d] pyridazin-4-one,$

 $2\hbox{-}[7\hbox{-}(2\hbox{-butynyl})\hbox{-}1\hbox{-methyl-}6\hbox{-}oxo\hbox{-}8\hbox{-}(piperazin-}1\hbox{-}yl)\hbox{-}6,7\hbox{-}dihydro\hbox{-}1H\hbox{-purin-}2\hbox{-}yloxy]benzamide,$

7-(2-butynyl)-1-(2-cyanobenzyl)-6-oxo-8-(piperazin-1-yl)-6,7-dihydro-1H-purine-2-carbonitrile, and

2-[3-(2-butynyl)-4-oxo-2-(piperazin-1-yl)-3,4-dihydroimidazo[4,5-d]pyridazin-5-ylmethyl]benzonitrile.

- 25. (Previously Presented) The method of claim 1, wherein the compound represented by formula (I) is selected from the group consisting of:
- 7-(2-butynyl)-2-cyano-1-methyl-8-(piperazin-1-yl)-1,7-dihydropurin-6-one,
- 3-(2-butynyl)-5-methyl-2-(piperazin-1-yl)-3,5-dihydroimidazo[4,5-d]pyridazin-4-one,
- 2-(3-aminopiperidin-1-yl)-3-(2-butynyl)-5-methyl-3,5-dihydroimidazo[4,5-d]pyridazin-4-one,
- $2\hbox{-}[7\hbox{-}(2\hbox{-}butynyl)\hbox{-}1\hbox{-}methyl\hbox{-}6\hbox{-}oxo\hbox{-}8\hbox{-}(piperazin\hbox{-}1\hbox{-}yl)\hbox{-}6,7\hbox{-}dihydro\hbox{-}1H\hbox{-}purin\hbox{-}2\hbox{-}yloxy]benzamide,}\\$
- 7-(2-butynyl)-1-(2-cyanobenzyl)-6-oxo-8-(piperazin-1-yl)-6,7-dihydro-1H-purine-2-carbonitrile, and
- 2-[3-(2-butynyl)-4-oxo-2-(piperazin-1-yl)-3,4-dihydroimidazo[4,5-d]pyridazin-5-ylmethyl]benzonitrile.