

Introduction to Jamovi

Introduction to Statistics / Neuroscience 2023/2024

Agenda

- What is Jamovi?
- R integration
- The statistical community
- Featured packages for neuroscience
- Getting familiar with Jamovi
- Exercises (about 10 min of introduction + ~1.2 hour of guided exercises)

What is Jamovi?

- Jamovi is a new "3rd generation" statistical spreadsheet.
- Designed from the ground up to be easy to use.
- Jamovi is a compelling alternative to costly statistical products such as SPSS and SAS.
- Jamovi is built on top of the R statistical language, giving you access to the best the statistics community has to offer.

R integration

- R excels in data analysis and statistical modelling.
- It offers a vast collection of packages for statistical analysis, hypothesis testing, and data visualization.
- R focus on reproducibility and transparency makes it well-suited for research projects.
- R strengths make it a preferred language in data-driven domains and for individuals working with large datasets.

Top companies working with Posit

source: https://posit.co/

Why Jamovi instead of RStudio?

- The RStudio IDE by Posit is the recommended software for development purposes while jamovi is preferred for built-in analyses.
- The software is comparable to point-and-click software such as <u>IBM SPSS</u> but can also work as an <u>interactive computing</u> platform. We aim to **reduce the learning curve** of the course.

Interesting sources of comparison

- For those who are already familiar with SPSS: From SPSS to jamovi: Linear regression.
- For those who are already familiar with JASP: Bringing jamovi and JASP labs into OpenIntro.
- Abbasnasab Sardareh, S., Brown, G. T., & Denny, P. (2021). Comparing four contemporary statistical software tools for introductory data science and statistics in the social sciences. Teaching Statistics, 43, S157-S172. (<u>link</u>)

Featured R packages in Neuroscience

<u>nat: NeuroAnatomy Toolbox</u> - Package for the (3D) visualisation and analysis of biological image data, especially tracings of single neurons.

brainGraph - Package for performing graph theory analyses of brain MRI data.

Installation

1. Go to jamovi website and find your operating system. (Linux users will probably need to install the flatpak library – ask me if you need help!)

5 minutes to install!

First steps in jamovi

- Does anyone need help with the installation?
- If not, go to the supporting doc First steps in jamovi.
- Import the following data to Jamovi.
- How to import data?
 - Type in a text note and save it as a .csv file.
 - Right-click and choose:
 - "Open with... Jamovi"

10 minutes to do so!

Analyses

- Try to reproduce the analysis you saw in the first video (First steps in jamovi).
- Copy the analysis and paste in a word/ppt file as in the second video (First steps in jamovi).
- The data regards to the The Effect of Vitamin C on Tooth Growth in Guinea Pigs.
 - > ToothGrowth.csv file.
- Format: A data frame with 60 observations on 3 variables.
 - length (Decimal): Length of odontoblasts (cells responsible for tooth growth).
 - > supp (Nominal): **Delivery method** type (VC ascorbic acid or OJ orange juice).
 - ➤ dose (Nominal): **Dose** in milligrams/day (0.5, 1.0 or 2.0).

Guinea Pigs

Analyses

- Download the ToothGrowth dataset here.
- > Try to **reproduce** the analysis you saw in the **First steps in jamovi video**.

ANOVA

ANOVA - length

	Sum of Squares	df	Mean Square	F	р
supp	205	1	205.4	15.57	<.001
dose	2426	2	1213.2	92.00	< .001
supp * dose	108	2	54.2	4.11	0.022
Residuals	712	54	13.2		

The Spreadsheet (Data Variables)

- Available data types: Integer, decimal, text.
- Available measure types: Nominal, ordinal, Continuous, ID.
 - The data type is chosen automatically according to the measure type.
 - ID is intended to identify the rows.
- Exercise: Try to change the name of the variable "len" to "lenght" (or vice-versa) using the F3 shortcut.

	len	
1	4.:	2 VC
2	11.	5 VC
3	7.	3 VC
4	5.	8 VC

The Spreadsheet (Computed Variable)

- Exercise: Use the "add" button to create the following variables.
 - ➤ LOG10(len)
 - VMEAN(len)
 - (dose VMEAN(len)) / VSTDEV(len)
 - Z(len)
- > Exercise: Write a description for each variable you created.

E.g.: LOG10(len): Logarithmic length of odontoblasts (base 10)

The Spreadsheet (Computed Variable)

Suggested description

- ➤ LOG10(len) = "Logarithmic length of odontoblasts (base 10)".
- VMEAN(len) = "Average length of odontoblasts (base 10)".
- (dose VMEAN(dose)) / VSTDEV(dose) = "Odontoblasts' length Z-score".
- Z(dose) = "Odontoblasts' length Z-score".

> There are many ways to reach out the same result!

The Spreadsheet (Filters)

- How many pigs were administered with ascorbic acid (VC)?
- How many of them were given a VC dosage exceeding 0.5 milligrams per day?
- How could you estimate the difference between observed odontoblasts in pigs that received ascorbic acid (VC) with a dosage below 2.0 milligrams per day compared to those that received lower dosages and/or orange juice (OJ)?

The Spreadsheet (Filters)

How many pigs were administered with ascorbic acid (VC)? 30 Guinea pigs (half data).

How many of them were given a VC dosage exceeding 0.5 milligrams per day? 20 Guinea

pigs (1/3 data).

- ➤ How could you estimate the difference between observed odontoblasts in pigs that received ascorbic acid (VC) with a dosage below 2.0 milligrams per day compared to those that received lower dosages and/or orange juice (OJ)?
- Statistics!

Descriptive statistics example

How could you estimate the difference between observed odontoblasts in pigs that received ascorbic acid (**VC**) with a dosage **below 2.0 milligrams** per day compared to those that received **lower dosages and/or** orange juice (**OJ**)?

		dose	Median	Percentiles		
	supp			50th	25th	75th
len	OJ	0.5	12.25	12.25	9.70	16.2
		1.0	23.45	23.45	20.30	25.7
		2.0	25.95	25.95	24.57	27.1
	VC	0.5	7.15	7.15	5.95	10.9
		1.0	16.50	16.50	15.27	17.3
		2.0	25.95	25.95	23.38	28.8

Updating the data

- Importing/Exporting and saving the results.
 - ➤ **Results:** Write the date, your name and the title as you prefer, and save the ANOVA results to a **.pdf file** using the Export tab.
 - > Script: Save the .omv file (jamovi script extension) you have just created.
 - ➤ Dataset: Update the dataset *ToothGrowth* including the variables created (use the Export tab again).

5 minutes!

Syntax mode will not be covered in this tutorial (R programming).