L. Vandenberghe EE133A (Spring 2017)

12. Cholesky factorization

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Definitions

ullet a symmetric matrix $A \in \mathbf{R}^{n imes n}$ is *positive semidefinite* if

$$x^T A x \ge 0$$
 for all x

ullet a symmetric matrix $A \in \mathbf{R}^{n \times n}$ is *positive definite* if

$$x^T A x > 0$$
 for all $x \neq 0$

this is a subset of the positive semidefinite matrices

note: if A is symmetric and $n \times n$, then $x^T A x$ is the function

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j} = \sum_{i=1}^{n} A_{ii}x_{i}^{2} + 2\sum_{i>j} A_{ij}x_{i}x_{j}$$

this is called a *quadratic form*

Example

$$A = \left[\begin{array}{cc} 9 & 6 \\ 6 & a \end{array} \right]$$

$$x^{T}Ax = 9x_1^2 + 12x_1x_2 + ax_2^2 = (3x_1 + 2x_2)^2 + (a - 4)x_2^2$$

• A is positive definite for a>4

$$x^T A x > 0$$
 for all nonzero x

ullet A is positive semidefinite but not positive definite for a=4

$$x^T A x \ge 0$$
 for all x , $x^T A x = 0$ for $x = (2, -3)$

ullet A is not positive semidefinite for a < 4

$$x^T A x < 0$$
 for $x = (2, -3)$

Simple properties

ullet every positive definite matrix A is nonsingular

$$Ax = 0 \implies x^T Ax = 0 \implies x = 0$$

(last step follows from positive definiteness)

ullet every positive definite matrix A has positive diagonal elements

$$A_{ii} = e_i^T A e_i > 0$$

ullet every positive semidefinite matrix A has nonnegative diagonal elements

$$A_{ii} = e_i^T A e_i \ge 0$$

Schur complement

partition $n \times n$ symmetric matrix A as

$$A = \begin{bmatrix} A_{11} & A_{2:n,1}^T \\ A_{2:n,1} & A_{2:n,2:n} \end{bmatrix}$$

• the *Schur complement* of A_{11} is defined as the $(n-1) \times (n-1)$ matrix

$$S = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T$$

• if A is positive definite, then S is positive definite to see this, take any $x \neq 0$ and define $y = -(A_{2:n,1}^Tx)/A_{11}$; then

$$x^{T}Sx = \begin{bmatrix} y \\ x \end{bmatrix}^{T} \begin{bmatrix} A_{11} & A_{2:n,1}^{T} \\ A_{2:n,1} & A_{2:n,2:n} \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} > 0$$

because A is positive definite

Singular positive semidefinite matrices

- we have seen that positive definite matrices are nonsingular (page 12-4)
- ullet if A is positive semidefinite, but not positive definite, then it is singular

to see this, suppose A is positive semidefinite but not positive definite

- there exists a nonzero x with $x^TAx = 0$
- since A is positive semidefinite the following function is nonnegative:

$$f(t) = (x - tAx)^{T} A(x - tAx)$$

$$= x^{T} Ax - 2tx^{T} A^{2}x + t^{2}x^{T} A^{3}x$$

$$= -2t||Ax||^{2} + t^{2}x^{T} A^{3}x$$

• $f(t) \ge 0$ for all t is only possible if ||Ax|| = 0, *i.e.*, Ax = 0

hence there exists a nonzero x with Ax = 0

Exercises

ullet show that if $A \in \mathbf{R}^{n \times n}$ is positive semidefinite, then

$$B^TAB$$

is positive semidefinite for any $B \in \mathbf{R}^{n \times m}$

• show that if $A \in \mathbf{R}^{n \times n}$ is positive definite, then

$$B^TAB$$

is positive definite for any $B \in \mathbf{R}^{n \times m}$ with linearly independent columns

Outline

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Exercise: resistor circuit

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

show that

$$A = \left[\begin{array}{cc} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{array} \right]$$

is positive definite if R_1 , R_2 , R_3 are positive

Solution

Solution from physics

- $x^T A x = y^T x$ is the power delivered by sources, dissipated by resistors
- power dissipated by the resistors is positive unless both currents are zero

Algebraic solution

$$x^{T}Ax = (R_{1} + R_{3})x_{1}^{2} + 2R_{3}x_{1}x_{2} + (R_{2} + R_{3})x_{2}^{2}$$

$$= R_{1}x_{1}^{2} + R_{2}x_{2}^{2} + R_{3}(x_{1} + x_{2})^{2}$$

$$\geq 0$$

and $x^T A x = 0$ only if $x_1 = x_2 = 0$

Gram matrix

recall the definition of *Gram matrix* of a matrix B (page 4-21):

$$A = B^T B$$

every Gram matrix is positive semidefinite

$$x^T A x = x^T B^T B x = ||Bx||^2 \ge 0 \quad \forall x$$

• a Gram matrix is positive definite if

$$x^T A x = x^T B^T B x = ||Bx||^2 > 0 \quad \forall x \neq 0$$

in other words, B has linearly independent columns

Graph Laplacian

recall definition of node-arc incidence matrix of a directed graph (page 3-29)

$$B_{ij} = \begin{cases} 1 & \text{if arc } j \text{ enters node } i \\ -1 & \text{if arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

assume there are no self-loops and at most one arc between any two nodes

$$B = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Graph Laplacian

the positive semidefinite matrix $A = BB^T$ is called the *Laplacian* of the graph

$$A_{ij} = \left\{ \begin{array}{ll} \text{degree of node } i & \text{if } i=j \\ -1 & \text{if } i\neq j \text{ and there is an arc } i\to j \text{ or } j\to i \\ 0 & \text{otherwise} \end{array} \right.$$

the degree of a node is the number of arcs incident to it

$$A = BB^{T} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

Laplacian function

recall the interpretation of matrix-vector multiplication with ${\cal B}^T$ (page 3-31)

• if y is vector of node potentials, then B^Ty contains potential differences:

$$(B^Ty)_j = y_k - y_l$$
 if arc j goes from node l to k

 $\bullet \ y^TAy = y^TBB^Ty$ is the sum of squared potential differences

$$y^T A y = ||B^T y||^2 = \sum_{\text{arcs } i \to j} (y_j - y_i)^2$$

Example: for the graph on the previous page

$$y^{T}Ay = (y_2 - y_1)^2 + (y_4 - y_1)^2 + (y_3 - y_2)^2 + (y_1 - y_3)^2 + (y_4 - y_3)^2$$

Variance and covariance of random variables

let $a = (a_1, a_2, \dots, a_n)$ be a random n-vector, with

$$\mu_i = \mathbf{E} a_i, \quad s_{ij} = \mathbf{E} \left((a_i - \mu_i)(a_j - \mu_j) \right)$$

(E denotes expectation)

- μ_i is the *mean* or *expected value* of a_i
- s_{ii} is the *variance* and $\sqrt{s_{ii}}$ is the *standard deviation* of a_i
- s_{ij} , for $i \neq j$, is the *covariance* of a_i and a_j

Note: these terms have a different meaning for (non-random) vectors (page 2-9)

Covariance matrix

covariance matrix (or variance-covariance matrix) has i, j element s_{ij} :

$$\begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{bmatrix} = \mathbf{E} \begin{pmatrix} \begin{bmatrix} a_1 - \mu_1 \\ a_2 - \mu_2 \\ \vdots \\ a_n - \mu_n \end{bmatrix} \begin{bmatrix} a_1 - \mu_1 \\ a_2 - \mu_2 \\ \vdots \\ a_n - \mu_n \end{bmatrix}^T \\ = \mathbf{E} \left((a - \mu)(a - \mu)^T \right)$$

- on the right-hand side, expectation of a matrix applies element-wise
- \bullet μ is the vector of means:

$$\mu = (\mu_1, \mu_2, \dots, \mu_n) = (\mathbf{E} a_1, \mathbf{E} a_2, \dots, \mathbf{E} a_n)$$

Positive semidefiniteness

every covariance matrix is positive semidefinite: for any x,

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \mathbf{E} \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T \begin{bmatrix} a_1 - \mu_1 \\ a_2 - \mu_2 \\ \vdots \\ a_n - \mu_n \end{bmatrix} \begin{bmatrix} a_1 - \mu_1 \\ a_2 - \mu_2 \\ \vdots \\ a_n - \mu_n \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \end{pmatrix}$$

$$= \mathbf{E} (x_1(a_1 - \mu_1) + x_2(a_2 - \mu_2) + \dots + x_n(a_n - \mu_n))^2$$
> 0

Outline

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Cholesky factorization

every positive definite matrix $A \in \mathbf{R}^{n \times n}$ can be factored as

$$A = R^T R$$

where R is upper triangular with positive diagonal elements

- ullet complexity of computing R is $(1/3)n^3$ flops
- ullet R is called the *Cholesky factor* of A
- can be interpreted as 'square root' of a positive definite matrix
- gives a practical method for testing positive definiteness

Cholesky factorization algorithm

$$\begin{bmatrix} A_{11} & A_{1,2:n} \\ A_{2:n,1} & A_{2:n,2:n} \end{bmatrix} = \begin{bmatrix} R_{11} & 0 \\ R_{1,2:n}^T & R_{2:n,2:n}^T \end{bmatrix} \begin{bmatrix} R_{11} & R_{1,2:n} \\ 0 & R_{2:n,2:n} \end{bmatrix}$$
$$= \begin{bmatrix} R_{11}^2 & R_{11}R_{1,2:n} \\ R_{11}R_{1,2:n}^T & R_{1,2:n}^T R_{1,2:n} + R_{2:n,2:n}^T R_{2:n,2:n} \end{bmatrix}$$

1. compute first row of R:

$$R_{11} = \sqrt{A_{11}}, \qquad R_{1,2:n} = \frac{1}{R_{11}} A_{1,2:n}$$

2. compute 2, 2 block $R_{2:n,2:n}$ from

$$A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = R_{2:n,2:n}^T R_{2:n,2:n}$$

this is a Cholesky factorization of order n-1

Discussion

the algorithm works for positive definite A of size $n \times n$

- step 1: if A is positive definite then $A_{11} > 0$
- step 2: if *A* is positive definite, then

$$A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T$$

is positive definite (see page 12-5)

- ullet hence the algorithm works for n=m if it works for n=m-1
- ullet it obviously works for n=1; therefore it works for all n

Example

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Example

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

• first row of R

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & R_{22} & 0 \\ -1 & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

second row of R

$$\begin{bmatrix} 18 & 0 \\ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} R_{22} & 0 \\ R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{22} & R_{23} \\ 0 & R_{33} \end{bmatrix}$$
$$\begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & R_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & R_{33} \end{bmatrix}$$

• third column of R: $10 - 1 = R_{33}^2$, i.e., $R_{33} = 3$

Solving equations with positive definite A

solve Ax = b with A a positive definite $n \times n$ matrix

Algorithm

- factor A as $A = R^T R$
- solve $R^T R x = b$
 - solve $R^Ty=b$ by forward substitution
 - solve Rx = y by back substitution

Complexity: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ flops

- factorization: $(1/3)n^3$
- forward and backward substitution: $2n^2$

Cholesky factorization of Gram matrix

- ullet suppose B is an m imes n matrix with linearly independent columns
- the Gram matrix $A = B^T B$ is positive definite (page 4-21)

two methods for computing the Cholesky factor of A, given B

1. compute $A = B^T B$, then Cholesky factorization of A

$$A = R^T R$$

2. compute QR factorization B=QR; since

$$A = B^T B = R^T Q^T Q R = R^T R$$

the matrix R is the Cholesky factor of A

Example

$$B = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \qquad A = B^T B = \begin{bmatrix} 25 & -50 \\ -50 & 101 \end{bmatrix}$$

1. Cholesky factorization:

$$A = \left[\begin{array}{cc} 5 & 0 \\ -10 & 1 \end{array} \right] \left[\begin{array}{cc} 5 & -10 \\ 0 & 1 \end{array} \right]$$

2. QR factorization

$$B = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}$$

Comparison of the two methods

Numerical stability: QR factorization method is more stable

- see the example on page 8-18
- QR method computes R without 'squaring' B (i.e., forming B^TB)
- this is important when the columns of B are 'almost' linearly dependent

Complexity

ullet method 1: cost of symmetric product B^TB plus Cholesky factorization

$$mn^2 + (1/3)n^3$$
 flops

- ullet method 2: $2mn^2$ flops for QR factorization
- method 1 is faster but only by a factor of at most two (if $m \gg n$)

Sparse positive definite matrices

Cholesky factorization of dense matrices

- $(1/3)n^3$ flops
- on a standard computer: a few seconds or less, for *n* up to several 1000

Cholesky factorization of sparse matrices

- ullet if A is very sparse, R is often (but not always) sparse
- if R is sparse, the cost of the factorization is much less than $(1/3)n^3$
- \bullet exact cost depends on n, number of nonzero elements, sparsity pattern
- very large sets of equations can be solved by exploiting sparsity

Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as

$$A = PR^T RP^T$$

P a permutation matrix; R upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

$$P^T A P = R^T R$$

- ullet choice of permutation greatly affects the sparsity R
- there exist several heuristic methods for choosing a good permutation

Example

sparsity pattern of \boldsymbol{A}

Cholesky factor of A

pattern of P^TAP

Cholesky factor of P^TAP

Solving sparse positive definite equations

solve Ax = b with A a sparse positive definite matrix

Algorithm

- 1. compute sparse Cholesky factorization $A = PR^TRP^T$
- 2. permute right-hand side: $c := P^T b$
- 3. solve $R^T y = c$ by forward substitution
- 4. solve Rz = y by back substitution
- 5. permute solution: x := Pz

Outline

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Quadratic form

suppose A is $n \times n$ and Hermitian ($A_{ij} = \bar{A}_{ji}$)

$$x^{H}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}\bar{x}_{i}x_{j}$$

$$= \sum_{i=1}^{n} A_{ii}|x_{i}|^{2} + \sum_{i>j} (A_{ij}\bar{x}_{i}x_{j} + \bar{A}_{ij}x_{i}\bar{x}_{j})$$

$$= \sum_{i=1}^{n} A_{ii}|x_{i}|^{2} + 2\operatorname{Re}\sum_{i>j} A_{ij}\bar{x}_{i}x_{j}$$

note that x^HAx is real for all $x \in \mathbf{C}^n$

Complex positive definite matrices

ullet a Hermitian $n \times n$ matrix A is positive semidefinite if

$$x^H A x \ge 0$$
 for all $x \in \mathbf{C}^n$

ullet a Hermitian $n \times n$ matrix A is positive definite if

$$x^H Ax > 0$$
 for all nonzero $x \in \mathbf{C}^n$

Cholesky factorization

every positive definite matrix $A \in \mathbf{C}^{n \times n}$ can be factored as

$$A = R^H R$$

where R is upper triangular with positive real diagonal elements

Outline

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Regularized least squares model fitting

we revisit the data fitting problem with linear-in-parameters model (page 9-9)

$$\hat{f}(z) = \theta_1 f_1(z) + \theta_2 f_2(z) + \dots + \theta_p f_p(z)
= \theta^T F(z)$$

- $F(z)=(f_1(z),\ldots,f_p(z))$ is a p-vector of basis functions $f_1(z),\ldots,f_p(z)$
- ullet here, we use the symbol z for the independent variable

Regularized least squares model fitting (page 10-7)

- $(x_1, y_1), \ldots, (x_N, y_N)$ are N data points
- ullet to simplify notation, we add regularization for all coefficients $\theta_1,\,\dots,\,\theta_p$
- ullet next discussion can be modified to handle $f_1(z)=1$, regularization $\sum_{j=2}^p heta_j^2$

Regularized least squares problem in matrix notation

minimize
$$||A\theta - y||^2 + \lambda ||\theta||^2$$

A has size $N \times p$ (# data points \times # basis functions)

$$A = \begin{bmatrix} F(x_1)^T \\ F(x_2)^T \\ \vdots \\ F(x_N)^T \end{bmatrix} = \begin{bmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_p(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_p(x_2) \\ \vdots & \vdots & & \vdots \\ f_1(x_N) & f_2(x_N) & \cdots & f_p(x_N) \end{bmatrix}$$

- we discuss methods for problems with $N \ll p$ (A is very wide)
- ullet equivalent 'stacked' least squares problem (page 10-3) has size (p+N) imes p
- ullet QR factorization method may be too expensive when $N \ll p$

Solution of regularized LS problem

from the normal equations:

$$\hat{\theta} = (A^T A + \lambda I)^{-1} A^T y = A^T (AA^T + \lambda I)^{-1} y$$

second expression follows from the property

$$(A^{T}A + \lambda I)^{-1}A^{T} = A^{T}(AA^{T} + \lambda I)^{-1}$$

this is easily proved, by writing it as $A^T(AA^T+\lambda I)=(A^TA+\lambda I)A^T$

• from the second expression for $\hat{\theta}$ and the definition of A,

$$\hat{f}(z) = \hat{\theta}^T F(z) = w^T A F(z) = \sum_{i=1}^N w_i F(x_i)^T F(z)$$

where
$$w = (AA^T + \lambda I)^{-1}y$$

Algorithm

1. compute the $N \times N$ matrix $Q = AA^T$, which has elements

$$Q_{ij} = F(x_i)^T F(x_j), \quad i, j = 1, \dots, N$$

2. use a Cholesky factorization to solve the equation

$$(Q + \lambda I)w = y$$

Remarks

ullet $\hat{ heta}=A^Tw$ is not needed; w is sufficient to evaluate the function $\hat{f}(z)$:

$$\hat{f}(z) = \sum_{i=1}^{N} w_i F(x_i)^T F(z)$$

ullet complexity: $(1/3)N^3$ flops for factorization plus cost of computing Q

Example: multivariate polynomials

 $\hat{f}(z)$ a polynomial of degree d (or less) in n variables $z=(z_1,\ldots,z_n)$

• $\hat{f}(z)$ is a linear combination of all possible monomials

$$z_1^{k_1} z_2^{k_2} \cdots z_n^{k_n}$$

where k_1, \ldots, k_n are nonnegative integers with $k_1 + k_2 + \cdots + k_n \leq d$

number of different monomials is

$$\left(\begin{array}{c} n+d \\ n \end{array}\right) = \frac{(n+d)!}{n! \ d!}$$

Example: for $n=2,\,d=3$ there are 10 monomials

1,
$$z_1$$
, z_2 , z_1^2 , z_1z_2 , z_2^2 , z_1^3 , $z_1^2z_2$, $z_1z_2^2$, z_2^3

Multinomial formula

$$(z_0 + z_1 + \dots + z_n)^d = \sum_{k_0 + \dots + k_n = d} \frac{(d+1)!}{k_0! \, k_1! \, \dots \, k_n!} \, z_0^{k_0} z_1^{k_1} \dots z_n^{k_n}$$

sum is over all nonnegative integers k_0, k_1, \ldots, k_n with sum d

• setting $z_0 = 1$ gives

$$(1+z_1+z_2+\cdots+z_n)^d = \sum_{k_1+\cdots+k_n\leq d} c_{k_1k_2\cdots k_n} z_1^{k_1} z_2^{k_2} \cdots z_n^{k_n}$$

- ullet the sum includes all monomials of degree d or less with variables z_1, \ldots, z_n
- coefficient $c_{k_1k_2\cdots k_n}$ is defined as

$$c_{k_1 k_2 \cdots k_n} = \frac{(d+1)!}{k_0! \ k_1! \ k_2! \cdots k_n!}$$
 with $k_0 = d - k_1 - \cdots - k_n$

Vector of monomials

write polynomial of degree d or less, with variables $z \in \mathbf{R}^n$, as

$$\hat{f}(z) = \theta^T F(z)$$

 \bullet F(z) is vector of basis functions

$$\sqrt{c_{k_1\cdots k_n}} \ z_1^{k_1} z_2^{k_2} \cdots z_n^{k_n}$$
 for all $k_1 + k_2 + \cdots + k_n \le d$

- length of F(z) is p = (n+d)!/(n! d!)
- multinomial formula gives simple formula for inner products $F(u)^TF(v)$:

$$F(u)^{T}F(v) = \sum_{k_{1}+\dots+k_{n}\leq d} c_{k_{1}k_{2}\dots k_{n}} (u_{1}^{k_{1}}\dots u_{n}^{k_{n}})(v_{1}^{k_{1}}\dots v_{n}^{k_{n}})$$

$$= (1+u_{1}v_{1}+\dots+u_{n}v_{n})^{d}$$

• only 2n+1 flops needed for inner product of length $p=(n+d)!/(n!\,d!)$

Example

vector of monomials of degree d=3 or less in n=2 variables

$$F(u)^{T}F(v) = \begin{bmatrix} 1 \\ \sqrt{3}u_{1} \\ \sqrt{3}u_{2} \\ \sqrt{3}u_{2} \\ \sqrt{6}u_{1}u_{2} \\ \sqrt{3}u_{2}^{2} \\ u_{1}^{3} \\ \sqrt{3}u_{1}^{2}u_{2} \\ \sqrt{3}u_{1}u_{2}^{2} \\ u_{2}^{3} \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}v_{1} \\ \sqrt{3}v_{2} \\ \sqrt{3}v_{1}^{2} \\ \sqrt{3}v_{2}^{2} \\ v_{1}^{3} \\ \sqrt{3}v_{1}^{2}v_{2} \\ \sqrt{3}v_{1}v_{2}^{2} \\ v_{2}^{3} \end{bmatrix}$$

 $= (1 + u_1v_1 + u_2v_2)^3$

Least squares fitting of multivariate polynomials

to fit polynomial of degree d or less to points $(x_1, y_1), \ldots, (x_N, y_N)$ with $x_i \in \mathbf{R}^n$ Algorithm (see page 12-35)

1. compute the $N \times N$ matrix Q with elements

$$Q_{ij} = K(x_i, x_j)$$
 where $K(u, v) = (1 + u^T v)^d$

- 2. use a Cholesky factorization to solve the equation $(Q + \lambda I)w = y$
- the fitted polynomial is

$$\hat{f}(z) = \sum_{i=1}^{N} w_i K(x_i, z) = \sum_{i=1}^{N} w_i (1 + x_i^T z)^d$$

• complexity: nN^2 flops for computing Q, plus $(1/3)N^3$ for the factorization, *i.e.*,

$$nN^2 + (1/3)N^3$$
 flops

Kernel methods

Kernel function: a generalized inner product K(u, v)

- K(u,v) is inner product of vectors of basis functions F(u) and F(v)
- F(u) may be infinite-dimensional
- ullet kernel methods work with K(u,v) directly, do not require F(u)

Examples

- the polynomial kernel function $K(u,v) = (1+u^Tv)^d$
- the Gaussian Radial Basis Function kernel

$$K(u, v) = \exp\left(-\frac{\|u - v\|^2}{2\sigma^2}\right)$$

kernels exist for computing with graphs, texts, strings of symbols, ...

Example: handwritten digit classification

we apply the method of page 12-40 to least squares classification

- training set is 10000 digits from MNIST data set (\approx 1000 examples per digit)
- vector z is vector of pixel intensities (size $n=28^2=784$)
- we use the polynomial kernel with degree d=3:

$$K(u, v) = (1 + u^T v)^3$$

hence F(z) has length p = (n + d)!/(n! d!) = 80,931,145

we calculate ten Boolean classifiers

$$\hat{f}_k(z) = \operatorname{sign}(\tilde{f}_k(z)), \quad k = 1, \dots 10$$

 $\hat{f}_k(z)$ distinguishes digit k-1 (outcome +1) form other digits (outcome -1)

the Boolean classifiers are combined in the multi-class classifier

$$\hat{f}(z) = \underset{k=1,\dots,10}{\operatorname{argmax}} \, \tilde{f}_k(z)$$

Least squares Boolean classifier

Algorithm: compute Boolean classifier for digit k-1 versus the rest

1. compute $N \times N$ matrix Q with elements

$$Q_{ij} = (1 + x_i^T x_j)^d, \quad i, j = 1, \dots, n$$

2. define N-vector y with elements

$$y_i = \left\{ \begin{array}{ll} +1 & x_i \text{ is an example of digit } k-1 \\ -1 & \text{otherwise} \end{array} \right.$$

3. solve the equation $(Q + \lambda I)w = y$

the solution w gives the Boolean classifier for digit k-1 versus rest

$$\tilde{f}_k(z) = \sum_{i=1}^N w_i (1 + x_i^T z)^d$$

Complexity

- the matrix Q is the same for each of the ten Boolean classifiers
- hence, only the right-hand side of the equation

$$(Q + \lambda I)w = y$$

is different for each Boolean classifier

Complexity

- ullet constructing Q requires $N^2/2$ inner products of length n: nN^2 flops
- Cholesky facorization of $Q + \lambda I$: $(1/3)N^3$ flops
- $\bullet \;$ solve the equation $(Q+\lambda I)w=y$ for the 10 right-hand sides: $20N^2$ flops
- $\bullet \ \ \text{total is} \ (1/3)N^3 + nN^2$

Classification error

percentage of misclassified digits versus $\boldsymbol{\lambda}$

Confusion matrix

Predicted	diait

Digit	0	1	2	3	4	5	6	7	8	9	Total
0	965	1	0	0	0	1	8	2	3	0	980
1	0	1127	2	1	1	0	2	1	1	0	1135
2	6	2	988	4	1	1	5	16	8	1	1032
3	0	0	7	973	0	12	0	8	6	4	1010
4	1	3	0	0	957	0	3	1	3	14	982
5	3	0	0	5	0	874	5	2	2	1	892
6	9	4	0	0	5	2	937	0	1	0	958
7	0	13	13	1	5	0	0	987	2	7	1028
8	3	1	3	11	4	4	3	5	934	6	974
9	3	4	2	7	13	3	1	6	4	966	1009
All	990	1155	1015	1002	986	897	964	1028	964	999	10000

- $\bullet\,$ multiclass classifier ($\lambda=10^4$) on 10000 test examples
- 292 digits are misclassified (2.9% error)

Examples of misclassified digits

Predicted digit Digit

Examples of misclassified digits

###