Graphs

LaurenceWarne

May 25, 2020

Contents

	tex Sequence Definition															
2.2	Definition						•						•	•	•	
2.3	Definition															
2.4	Definition															

1 Introduction

We denote a graph as G(V, E), where $V = \{v_1, v_2...v_n\}$ is the vertex set of the graph and $E = \{(v_a, v_b)...(v_c, v_d)\}$ as the edge set of the graph.

If G is a **directed graph** then the elements of E will be ordered (ie (v_1, v_2) is distinct from (v_2, v_1)), otherwise G is **undirected**.

2 Vertex Sequences

2.1 Definition

A walk in a graph G(V, E) is a finite sequence of vertices $(v_1...v_k)$ such that each consecutive pair forms an edge of G.

2.2 Definition

A trail is a walk in which all the edges $e_i = (v_i, v_{i+1})$ are distinct. We can remember this by associating them with **Eulerian trails** (which much visit every edge exactly once).

2.3 Definition

A path is a trail in which a vertex occurs occurs only once in the edge sequence.

2.4 Definition

A cycle is a trail in which all the vertices are distinct.

3 Adjacency Matrices

Given a directed or undirected graph G(V, E) on n vertices, we define the **adjacency matrix**, A, of G as an n * n matrix with entries given by:

$$A_{i,j} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

This is always symmetric if G is undirected, and zeroes always fill the main diagonal if G is simple.

3.1 Applications

Note $(A^k)_{i,j}$ gives the number of paths of length k starting at v_i and ending at v_j . Hence using matrix associativity we can compute this value in $O(\log(k))$ or O(1) time.

We can extend this to find the number of paths of length $1 \le x \le k$ starting at v_i and ending at v_j , by noting this is equal to:

$$(A + A^2 + \dots + A^k)_{i,j} = \left(A(A^k - I_n)(A - I_n)^{-1}\right)_{i,j}$$

Which can be computed in the same time complexity.