Homework 5: MC Integration

Shixiang Zhu (GTID # 903280826)

Email: shixiang.zhu@gatech.edu

Problem 6.7

Consider pricing a European call option on an underlying stock withcurrent price $S^{(0)}=50$, strike price K=52, and volatility $\sigma=0.5$. Suppose that there are N=30 days to maturity and that the risk-free rate of return is r=0.05.

a. Confirm that the fair price for this option is 2.10 when the payoff is based on $S^{(30)}$ [i.e. a standard option with payoff as in (6.74)]

$$\begin{split} E[C] &= exp(-\frac{rT}{365})E[max(0,S^{(0)}-K)] \\ &= exp(-\frac{rT}{365})S^{(0)}exp((r-\frac{\sigma^2}{2})\frac{T}{365}) \\ &\qquad ((1-\Phi(c-\sqrt{\frac{T}{365}}))exp(\frac{\sigma^2T}{365\times 2}) - (1-\Phi(c))\frac{K}{S^{(0)}}exp(-(\frac{r-\sigma^2}{2}\frac{T}{365})) \\ &\approx 2.101198 \end{split}$$

```
<- 50
         <- 52
    sigma <- 0.5
          <- 30
           <- 0.05
         <- 30
    n <- 1000
    m < -100
 9
    estimatedMu <- NULL
11
    for(j in 1:m){
12
     ST \leftarrow S0exp((r-(sigma^2)/2)T/365 + sigmarnorm(n)sqrt(T/365))
13
     C <- NULL
     for(i in 1:n){
15
         C[i] \leftarrow exp(-rT/365)max(c(0,ST[i] - K))
16
17
      estimatedMu[j] <- mean(C)</pre>
18
    }
```

The fair price estimated by MC is 2.106494, which is pretty close to 2.10.

b. Consider the analogous Asian option (same $S^{(0)}$, K, σ , N, and r) with payoff based on the arithmetic mean stock price during the holding period, as in (6.77). Using simple Monte Carlo, estimate the fair price for this option.

```
estimatedMu <- NULL
 2
    for(j in 1:m){
 3
     #calculate MC estimate of A and theta
 4
     A <- NULL
 5
     for(i in 1:n){
       ST <- NULL
 6
 7
       ST[1] <- S0
 8
       for(k in 2:T){
 9
           ST[k] \leftarrow ST[k-1]*exp(((r-(sigma^2)/2)/365) +
                                   sigma*rnorm(1)/sqrt(365))
10
11
12
        A[i] \leftarrow \exp(-rT/365)\max(c(0, mean(ST) - K))
13
14
      estimatedMu[j] <- mean(A)</pre>
15
    }
```

The estimated fair price is 0.8562979 after average. And its variance is 0.003393549

c. Improve upon the estimate in (b) using the control variate strategy described in Example 6.13

```
estimatedMuMC <- NULL
 1
 2
    estimatedTheta <- NULL
 3
    for(j in 1:m){
     # calculate MC estimate of A and theta
 4
            <- NULL
 5
     theta <- NULL
 6
 7
     for(i in 1:n){
        ST
             <- NULL
 8
9
        ST[1] <- S0
        for(k in 2:T){
10
11
           ST[k] \leftarrow ST[k-1]*exp(((r-(sigma^2)/2)/365) +
12
                                    sigma*rnorm(1)/sqrt(365))
13
         }
14
                \leftarrow \exp(-r*T/365)*max(c(0, mean(ST) - K))
        A[i]
         theta[i] \leftarrow \exp(-r*T/365)*\max(c(0,exp(mean(log(ST))) - K))
15
16
17
      estimatedMuMC[j] <- mean(A)</pre>
18
      estimatedTheta[j] <- mean(theta)</pre>
```

```
19
    }
20
21
   # Analytic solution for theta
22
   N <- T
23
    c3 < -1 + 1/N
24
    c2 \leftarrow sigma*((c3*T/1095)*(1 + 1/(2*N)))^.5
25
    c1 \leftarrow (1/c2)*(log(S0/K) + (c3*T/730)*(r - (sigma^2)/2) +
26
                  (c3*(sigma^2)*T/1095)*(1 + 1/(2*N)))
27
    theta <- S0*pnorm(c1)*exp(-T*(r + c3*(sigma^2)/6)*(1 - 1/N)/730) -
28
             K*pnorm(c1-c2)*exp(-r*T/365)
29
   # Control variate
30
    estimatedMuCV <- estimatedMuMC - 1 * (estimatedTheta-theta)</pre>
31
```

The estimated fair price is 0.9440792 and its variance is 7.143709e-06, which is way much better than the result in (b).

d. Try an antithetic approach to estimate the fair price for the option described in part (b).

```
estimatedMu1 <- NULL
 2
    estimatedMu2 <- NULL
 3
    for(j in 1:m){
 4
     # calculate MC estimate of A and theta
     A1 <- NULL
 5
     A2 <- NULL
 6
 7
     for(i in 1:n/2){
        ST1
 8
                <- NULL
 9
        ST2
                <- NULL
        ST1[1] <- S0
10
        ST2[1] <- S0
11
        for(k in 2:T){
12
13
           sample <- rnorm(1)</pre>
14
           ST1[k] \leftarrow ST1[k-1]*exp(((r-(sigma^2)/2)/365) +
15
                                       sigma*sample/sqrt(365))
16
           ST2[k] \leftarrow ST2[k-1]*exp(((r-(sigma^2)/2)/365) +
17
                                       sigma*(-sample)/sqrt(365))
18
         }
19
        A1[i] \leftarrow exp(-r*T/365)*max(c(0, mean(ST1) - K))
20
        A2[i] \leftarrow exp(-r*T/365)*max(c(0, mean(ST2) - K))
21
      }
22
      estimatedMu1[j] <- mean(A1)</pre>
23
      estimatedMu2[j] <- mean(A2)</pre>
24
    }
25
26
    estimatedMuA <- (estimatedMu1 + estimatedMu2)/2</pre>
```

The estimated fair price is 0.8709188 and its variance is 0.002547244, which is slightly better than the result in (b), but worse than (c).

e. Compare the sampling distributions of the estimators in (b), (c), (d).

Please see the details in (b), (c), (d).

Problem 6.8

Consider the model given by $X\ Lognormal(0,1)$ and $logY=9+logX+\epsilon$, where $\epsilon\ N(0,1)$. We wish to estimate $E\{Y/X\}$. Compare the performance of the standard Monte Carlo estimator and the Rao-Blackwellized estimator.

```
1 n <- 1000000
 x \leftarrow \exp(\operatorname{rnorm}(n, 0, 1))
 y1 \leftarrow \exp(9+3*\log(x)+rnorm(n, 0, 1))
 4 z1 < -y1/x
 5 mean(z1)
    var(z1)
 7
 8 # since E[Y/X \mid X] = E[exp(9+log(X))*exp(Normal(0, 1)/X] =
    exp(9+log(X))*exp(1/2)/X
 9
10
    x \leftarrow \exp(\operatorname{rnorm}(n, 0, 1))
11 y2 \leftarrow \exp(9+3*\log(x))*\exp(1/2)/x
12 y2 \leftarrow \exp(9) *x^2 * \exp(1/2)
13 | z2 <- y2
14 mean(z2)
15
    var(z2)
16
17 \# var(z2) < var(z1)
```

The estimated values are 98972.44 and 97806.38 respectively. However, the variance of Rao-Blackwellized estimator (399722278386) is smaller than the Monte Carlo one (2.186901e+12).