from sklearn.datasets import load_boston In []: boston=load_boston() In []: import pandas as pd In []: data=pd.DataFrame(boston.data,columns=boston.feature names In []: data['MEDV']=pd.DataFrame(boston.target) In []:
 CRIM
 ZN
 INDUS
 CHAS
 NOX
 RM
 AGE
 DIS
 RM
 TAX
 PTRATIO
 B

 0.00632
 18.0
 2.31
 0.0
 0.538
 6.575
 65.2
 4.0900
 1.0
 296.0
 15.3
 396.90
 Out[]: B LSTAT MEDV 0 0.00632 18.0 2.31 24.0 4.98 10.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6 **2** 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 **3** 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2 **501** 0.06263 0.0 11.93 0.0 0.573 6.593 69.1 2.4786 21.0 391.99 **502** 0.04527 0.0 11.93 0.0 0.573 6.120 76.7 2.2875 1.0 273.0 21.0 396.90 9.08 20.6 **503** 0.06076 0.0 11.93 0.0 0.573 6.976 91.0 2.1675 1.0 273.0 21.0 396.90 5.64 23.9 **504** 0.10959 0.0 11.93 0.0 0.573 6.794 89.3 2.3889 1.0 273.0 21.0 393.45 6.48 22.0 **505** 0.04741 0.0 11.93 0.0 0.573 6.030 80.8 2.5050 1.0 273.0 21.0 396.90 506 rows x 14 columns In []: pd.DataFrame(data.corr().round(2)) B LSTAT MEDV CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO Out[]: CRIM 1.00 -0.20 0.41 -0.06 0.42 -0.22 0.35 -0.38 0.63 0.58 0.29 -0.39 ZN -0.20 1.00 -0.53 -0.04 -0.52 0.31 -0.57 0.66 -0.31 -0.31 -0.39 0.18 -0.41 0.36 INDUS 0.41 -0.53 1.00 0.06 0.76 -0.39 0.64 -0.71 0.60 0.72 0.38 -0.36 0.60 -0.48 CHAS -0.06 -0.04 0.06 1.00 0.09 0.09 0.09 -0.10 -0.01 -0.04 -0.12 0.05 -0.05 0.18 NOX 0.42 -0.52 0.76 0.09 1.00 -0.30 0.73 -0.77 0.67 0.19 -0.38 RM -0.22 0.31 -0.39 0.09 -0.30 1.00 -0.24 0.21 -0.21 -0.29 -0.36 0.13 -0.61 0.70 AGE 0.35 -0.57 0.64 0.09 0.73 -0.24 1.00 -0.75 0.46 0.51 0.26 -0.27 0.60 -0.38 DIS -0.38 0.66 -0.71 -0.10 -0.77 0.21 -0.75 1.00 -0.49 -0.53 -0.23 0.29 -0.50 0.25 RAD 0.63 -0.31 -0.01 0.61 -0.21 0.46 -0.49 TAX 0.58 -0.31 0.72 -0.04 0.67 -0.29 0.51 -0.53 0.91 1.00 0.46 -0.44 0.54 -0.47 PTRATIO 0.29 -0.39 0.38 -0.12 0.19 -0.36 0.26 -0.23 0.46 0.46 1.00 -0.18 0.37 -0.51 B-0.39 0.18 -0.36 0.05 -0.38 0.13 -0.27 0.29 -0.44 -0.44 -0.18 1.00 -0.37 0.33 LSTAT 0.46 -0.41 0.60 -0.05 0.59 -0.61 0.60 -0.50 0.49 0.54 0.37 -0.37 1.00 -0.74 MEDV -0.39 0.36 -0.48 0.18 -0.43 0.70 -0.38 0.25 -0.38 -0.47 -0.51 0.33 -0.74 1.00 x=data[['RM','ZN']] y=data['MEDV'] In []: In []: RM 6.575 6.421 7.185 6.998 7.147 [506 0 1 2 3 from sklearn.model_selection import train_test_split In []: In []: x=pd.DataFrame(x) y=pd.DataFrame(y) In []: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2) In []: RM ZN Out[]: 148 5.186 **353** 6.728 90.0 200 7.135 95.0 29 6.674 0.0 **276** 7.267 40.0 **437** 6.152 0.0 235 6.086 0.0 **265** 5.560 20.0 195 7.875 80.0 In []: y_train MEDV Out[]: 148 17.8 **353** 30.1 200 32.9 276 33.2 437 8.7 **235** 24.0 265 22.8 367 23.1 195 50.0 404 rows x 1 columns

In []:	from sklearn.tree import DecisionTreeRegressor
In []:	dt1=DecisionTreeRegressor(max_depth=20)
In []:	dt1.fit(x_train,y_train)
Out[]: DecisionTreeRegressor(max_depth=20)	
In []:	y_pred1=dt1.predict(x_test)
In []:	import numpy as np
In []:	from sklearn.metrics import mean_squared_error
In []:	np.sqrt(mean_squared_error(y_test,y_pred1))
Out[]:7.154264805132725	
In []:	from sklearn.ensemble import RandomForestRegressor
In []:	rf1=RandomForestRegressor()
In []:	rf1.fit(x_train,y_train)
	cipython-input-24-18d10c9b918e>:1: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). rf1.fit(_train_y_train_) Out[]:
RandomFore	
In []:	rf1.score(x_test,y_test)
Out[]: 0.3334644045136971	
In []:	y_pred2=rf1.predict(x_test)
In []:	np.sqrt(mean_squared_error(y_test,y_pred2))
Out[]: 6.972159628039433	
Decision Tree Classifier	
In []:	from sklearn.tree import DecisionTreeClassifier
In []:	from sklearn.datasets import load_digits
In []:	digits=load_digits()
In []:	x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.25)
In []:	dt2=DecisionTreeClassifier(criterion="entropy")
In []:	dt2.ft(x_train,y_train)
Out[]: Decisi	onTreeClassifier(criterion='entropy')
In []:	dt2.score(x_test,y_test)
Out[]: 0.86	
In []:	dt3=DecisionTreeClassifier(max_depth=30)
In []:	dt3.fit(x_train,y_train)
Out[]: Decisi	onTreeClassifier(max_depth=30)
In []:	dt3.score(x_test,y_test)
Out[]: 0.8511111111111112	