This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

WEST

End of Result Set

Generate Collection

L6: Entry 6 of 6

File: JPAB

Jan 13, 1992

DOCUMENT-IDENTIFIER: JP 04006536 A TITLE: POWER TRANSMISSION DEVICE

FPAR:

PURPOSE: To reduce vibration an noise and prevent crack initiation and breakage in/of assist machines or the like by coupling the assist machines directly with a crank shaft using a belt transmitting mechanism installed at the tail of an engine, and thereby suppressing amplified vibration at the head of the engine and vibrations of the assist machines themselves.

FPAR:

CONSTITUTION: In a power transmission device according to the present invention, a transmission case 38, transfer case 39, etc., are installed in line at the side of the engine 31, so that the coupling rigidity of power plant is heightened, and booming noise likely at high speed revolutions of engine can be suppressed satisfactorily. An alternator 54 is installed at the outer side of a chain case 35, and a rotor 58 is coupled directly with the output shaft 45, so that the weight on the front side of the engine is reduced, and rotation of the alternator 4 is transmitted directly from the crank shaft 31a. Accordingly the amplified vibration can be suppressed sufficiently, and vibration of the alternator itself 54 be suppressed. This prevents generation of large vibratory sounds and also crack initiation and breakage in/of an alternator casing 55.

9日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A) 平4-8636

®Int. Cl. ⁵	識別記号	庁内整理番号	@公開	平成4年(1992)1月13日
B 60 K 17/348 5/04 17/02	C E Z	8710-3D 8710-3D 8710-3D		
F 16 H 7/06	2	7233 – 3 J		-
		審査請求	未請求 囂	青末項の数 1 (全6頁)

❷発明の名称 動力伝達装置

> 创特 顧 平2-110772

後出 願 平2(1990)4月26日

@発 明 者

和彦

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

勿出 顋 人 日産自動車株式会社 神奈川県横浜市神奈川区宝町2番地

10代理人 弁理士 志賀 富士弥 外3名

1. 発明の名称

動力伝達装置

2. 特許請求の範囲

(1) 機関のクランク軸の駆動力を、クラッチ機 構とベルト伝達機構を介して変速機に伝達する動 力伝達装置であって、前記機関の後端部に、前記 クラッッチ機構に動力を伝達する前記ペルト伝達 機構を取り付け、かつ前記クランク軸に、前記ペ・ ルト伝達機構を介して補機類を略直結したことを 特徴とする動力伝達装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は、例えば4輪駆動用の自動車用内燃機 関の動力伝達装置に関する。

従来の技術

周知のように、前輪駆動車(FF車)や4輪駆 動車(4WD車)等のパワープラント構造として は、機関をエンジンルーム内に構置きにすると共 に、トランスミッションを機関と直列に配置した

所謂ジアコーサタイプのものがある(特閒昭53 -100535号公积等参照)。

ところが、このジアコーサタイプのものでは、 パワープラントの全長が長く、最低次の固有振動 数が低くなるために、特に機関高回転時にパワー ブラントの振動によってこもり音が発生し易くな

そこで、第3図A。 Bに示すように、機関1の シリンダブロック2の側面に変速機たるトランス ミッション3と、トランスファイとを取り付け、 パワープラントの全長を短くして結合剛性を高め る工夫もなされている。即ち、機関1の後端部に クラッチハウジング5が取り付けられ、抜クラッ チハクジング5の後端部にチェーンケース8が収 り付けられていると共に、クラッチハウジング5 の餌部にトランスミッションケース6とトランス ファケース7がトランスミッションケース6を上 に一体に取り付けられている。

前記トランスミッション3は、トランスミッン ・ンケース6に収納され、主ギア列9aを上に副 ギア列95を下に、シリングプロック2の倒方に 並設されている。前記トランスファ4は、フロントデファレンシャル10. センタデファレンシャル11と共に、トランスファケース7に収納され、シリングプロック2下部のオイルパン12の倒方に配設されている。前記クラッチハウジング5は、フランジ13を介して機関1の前面にボルトにより固定され、トランスミッションケース6とトランスファケース7は、機関1側部に設けたフランジ14を介してさらにシリンダブロック2の側面とオイルパン12に側面に形成した取付座15にボルトにより固定される。

そして、前記クラッチハウジング 5 内には、クランク 約16の講部に連結されたフライホィール 17と降振クラッチ 18が収納されている。また、チェーンケース8 内には、前記摩抜クラッチ 18 の出力 約19 講部に投けられた出力側チェーンスプロケット 20 と、主ギア列 9 a のメインシャフト 21 端部に投けられたた人力側チェーンスプロケット 22 と、この両スプロケット 20.20

等に起因して機関!の駆動中にオルタネータ25 付近で機関前後及び巾方向(矢印方向)に過大な 一一増幅振動が発生する。この結果、大きな振動騒音 が単内外に伝播されると共に、過大振動により補 機類に亀裂や艇損が発生する成がある。

課題を解決するための手段

本発明は、前記従来の問題点に獲みて发出されたもので、機関の後端部に、クラッッチ機構に動力を伝達するベルト伝達機構を取り付け、かつクランク始に、前記ベルト伝達機構を介して補機類を略直結したことを特徴としている。

作用

前記様成の本発明によれば、特に機関の後端部に取り付けられたベルト伝達機構を介してクランク軸に補機類を略直結するようにしたため、機関前端側の重難低減化や補機類の駆動振動の減少化によって増橋振動の発生を十分に抑制できる。 実施例

以下、本発明の実施例を図面に基づいて詳述する。

間に巻笠された契動チェーン23とが収納されており、この駆動チェーン23を介してクランク始16の駆動力がトランスミッション3及びトランスファイに伝達されるようになっている。

更に、シリンダブロック2の前端側側部には、取付ブラケット24を介して捕機類だるオルクネータ25がベルト扱力四登用のアグャストバー26と共に取り付けられており、このオルタネータ25は、機関1前機関から突出したクランク怕16の他端部16aから伝達ベルト27を介して駆動力が伝達されるようになっている。

発明が解決しようとする課題

このように、従来の動力伝達装置にあっては、 機関1の側部に、トランスミッション3とトランスファイとを取り付けることによりパワープラントの結合剛性が高くなって、最低次の固有疑動設が低くなり高回転時のこもり音を十分に抑制できるものの、オルタネータ25 等の複数の桶機類が 機関1の前端側に集中配置されているため、機関 前端側の重量増や伝達ベルト27による引張り力

第1図は太発明に係る動力伝建装置を4WD車 に適用した第1実施例を示し、図中31は4気筒 内燃機関、32はシリンダブロック、33はトラー ンスミッション、34はトランスファであって. 前記機関31の後端部には、チェーンケース35 がポルト36により取り付けられている。また、 シリングブロック32の側部には、前端側がチェ ーンケース35にポルトにより進結されたクラッ チハウジング37が取り付けられていると共に、 該クラッチハウジング37後端側に、シリングブ ロック32側部に一体に有するフランジ32aを 介してトランスミッションケース38が取り付け られている。また、トランスミッションケース 3 8の下方に、トランスファケース39がシリング プロック32の側面とオイルパンの側面に形成し た取付座にポルトにより取り付けられている。

前記トランスミッションケース38内に収納されたトランスミッション33は、主ギア列33aと、抜主ギア列33aの下に配置された副ギア列33bとを備えている一方、トランスファケース

39内には、トランスファ34とフロントデファレンシャル40。センタデファレンシャル41が 夫々収納配置されている。また、前記チェーンケース35内には、機関31の駆動力が直接伝達されるベルト伝達機構42が収納されている一方、クラッチハワジング37内にはベルト伝達機構42からの回転力をトランスミッション33に伝達するクラッチ機構43が夫々収納されている。

具体的に説明すれば、前記ベルト伝達機構42は、一端が機関31のクランク軸31aに連結されてベアリング44。44により回転自在に支持された出力軸45に版出力軸45に固定された第1チェーンスプロケット46と、該第1チェーンスプロケット46と、該第1チェーンスプロケット46と、該人力軸48に固定されて、ベアリング47。47により回転自在に支持された人力軸48と、該人力軸48に固定された第2チェーンスプロケット49と、両チェーンスプロケット46。49間に登抜された駆動チェーン50とから構成されている。

また、前記グラッチ機構43は、前記入力船4

定されて、出力触45からの回転力が直接伝達されるようになっている。

したがって、本実絶例によれば、トランスミッションケース38やトランスファケース39等を、機関31の側部に並行に取り付けたため、パワープラントの結合剛性が高くなり、機関高回転時のこもり音を十分に抑制できることは勿論のこと、オルタネーク54をチェーンケース35の外側部に取り付けてロータ58を出力袖45に直結したため、機関31前機側の重量が低減すると共に、オルタネーク54の回転力がクランク袖31aから道接伝達される形になる。

したがって、増幅援助を十分に抑制できると共に、オルタネータ54自体の援助も抑制できる。 彼って、大きな援助経音の発生やオルタネータケーシング55の亀裂や破損等が防止される。尚、 ここでオルタネータ54は、削記のようにクラン り始31aに直接回転させられるため、機関31 駆動中において連続した発帯作用が得られる。

更に、ベルト伝達機構42をクランク軸31a

8の一選例大径割く8aに固着されたフライホイール51と、一線部が抜フライホイール51の略中央に連繋すると共に、他機部が主ギア列33aのメインシャフト33cに連結されたクラッチシャフト52に設けられた摩擦クラッチ53とを備えている。前記フライホイール51は、その外径寸法が前記ベルト伝連機構42で発生する債性モーメントを考慮して前記従来のものよりも小さく設定されている。

そして、可記チェーンケース35の第1チェーンスプロケット46例の外側部には、稀級類たるオルタネータ54が取り付けられている。このオルタネータ54は、一般的な構造でありチェーンケース35の外側壁にボルト56により固者されたケーシング55と、該ケーシング55の内部に収納されたステータ57と、ローク58と、ダイオード59と、ベアリング60と、スリップシング61等から構成されている。また、ロータ58の先端部に有するロータ軸58aが前記出力軸45の内部軸方向に穿設された固定用孔内に挿通

に直接接続したため、クランク始31aの回転トルク変動を、まず駆動チェーン50等のベルト伝達機構42で完生する債性セーメントー・で発生する頃性モーメントー・で発生する場合を吸収する。即ち、トルク変動をいてもいいのの他にベルトに連続し、のの質を必要ないできるため、フライキィール51の他にベルトにはほしいのはことができる。この特異、里重の軽量化と製造コストの低度化が図れる。

また、前述のようにベルト伝達機械42の個性 モーメント I niをも必要値性モーノント I niの一部として予め加えているため、必要以上の個性モーメントの発生が防止され、したがって、ノインシャフト33cがクランク铀31aと同期回転する。依って、変速ギアの切換えを円滑に行なうことが可能になる。

第2回は本発明の第2実施例を示し、この実施

特閒平4-8636(4)

例ではオルクキータ54が、第2チェーンスプロケット49関のチェーンケース35外側部にポルト62により取り付けられていると共に、ロータ 付58 a が人力付48の固定用孔に挿通固定されている。また、第2チェーンスプロケット49の外径が、第1チェーンスプロケット46のそれよりも小さく設定されて、第1実施例の場合よりも 増速されるようになっている。

したがって、この実施例では第2チェーンスプロケット49の増速に伴いオルタネータ54のロータ回転速度も速くなり発電効率も高くなるため、該オルタネータ54を可及的に小さくすることが可能になり、また、フライホィール51の似性モーメントも大きくなるので、該フライホィール51も可及的に小さくすることが可能となり、これによって単体の軽量化が一層助長される。

尚、本発明は、前記実施例の構成に限定されるものではなく、トランスミッションケース38やトランスファケース39等の配設位置等を任意に変更することも可能である。また、補機類として

は、オルタネータ以外のオイルポンプやエアコン ポンプ等でもよい。

発明の効果

以上の説明で明らかなように、本発明に係る動力伝達装置によれば、とりわけ機関の後端部にかり付けられたベルト伝連機構を介して、クランク性に補機類を略直結する構成としたため、機関の増幅振動が十分に抑制されると共に、補機類自体の振動も抑制される。この結果、振動騒音の低減化と補機類の亀裂や破損等が防止される。4. 図面の簡単な説明

第1図は本発明に係る動力伝達装置の第1実施 例を示す平断面図、第2図は本発明の第2実施例 を示す平断面図、第3図Aは従来の装置を示す平 断面図、同図Bは同従央装置の経断面図である。

31…内燃設関、3:a…クランク館、33… トランスミッション(変速機)42…ベルト伝達 機構、43…クラッチ機構、54…オルクネーク (桶機)。

第 1 図

-247-

第3図(B)

WEST

End of Result Set

Generate Collection

L6: Entry 6 of 6

File: JPAB

Jan 13, 1992

PUB-NO: JP404008636A

DOCUMENT-IDENTIFIER: JP 04008736 A TITLE: POWER TRANSMISSION DEVICE

PUBN-DATE: January 13, 1992

INVENTOR-INFORMATION:

NAME

KANETOSHI, KAZUHIKO

COUNTRY

ASSIGNEE-INFORMATION:

NAME

NISSAN MOTOR CO LTD

COUNTRY

N/A

APPL-NO: JP02110772

APPL-DATE: April 26, 1990

US-CL-CURRENT: 180/337; 180/391

INT-CL (IPC): B60K 17/348; B60K 5/04; B60K 17/02; F16H 7/06

ABSTRACT:

PURPOSE: To reduce vibration an noise and prevent crack initiation and breakage in/of assist machines or the like by coupling the assist machines directly with a crank shaft using a belt transmitting mechanism installed at the tail of an engine, and thereby suppressing amplified vibration at the head of the engine and vibrations of the assist machines themselves.

CONSTITUTION: In a power transmission device according to the present invention, a transmission case 38, transfer case 39, etc., are installed in line at the side of the engine 31, so that the coupling rigidity of power plant is heightened, and booming noise likely at high speed revolutions of engine can be suppressed patisfactorily. An alternator 54 is installed at the outer side of a chain case 35, and a rotor 53 is coupled directly with the output shaft 45, so that the weight on the front side of the engine is reduced, and rotation of the alternator 54 is transmitted directly from the crank shaft 31a. Accordingly the amplified vibration can be suppressed sufficiently, and vibration of the alternator itself 54 be suppressed. This prevents generation of large vibratory sounds and also crack initiation and breakage in/of an alternator casing 55.

COPYRIGHT: (C)1992, JPO&Japio