# Jupiter – PBA Report

#### Dataset – Investment Treaty Cases

- UN Website UNCTAD
- Data on 640 Decided and 341 Pending Investor State Cases
- Investor State Case what is involved?
- Second UN Website Human Development Index
- Geomteric mean measures Hdi between 0 and 1 (most develoepd country)

#### Problem Definition

- Is it possible to build models on identified key features from the chosen UN datasets which has some predictive power as to case outcome?
- Or is factual review of each case critical?
- Possible features to consider:
  - HDI Score
  - Identity of Judges (Arbitrators)
  - Claim for Direct Expropriation?
  - Industrial Sector, e.g. Electricity, Mining
  - Size of Claim

## Data Preparation (1)

Data Extraction – web scraping

- Data Cleaning:
  - Amount Fields
  - Arbitrators
  - Home / Claimant State Field
  - Update HDI

### Data Preparation (2)

- Model Features Final Variable Selection in Categorical Models
  - Arbitral Rules 1 hot
  - Breaches Alleged Direct Expropriation binary
  - Economic Sector 1 hot
  - Arbitrators (all 1 hot):
    - President
    - Claimant
    - Respondent
  - Claimant /Respondent HDI continuous
  - Success binary Settled or Award in favour of investor

### Modelling Approaches

- Mixed data set continuous and discrete categorical
- Regression on continuous data:
  - Correlation between Claimant/Respondent HDI and the amount of damages?
  - Renormalise Awarded Amount by dividing by Claimed Amount to give Damages Ratio, then rerun.
  - Correlation between damages claimed and damages awarded?
- Classification methods on categorical data, to model probability of successful case outcome, using:
  - Decision Tree; Boosted DT; Random Forest; Deep Neural Network; Multi-layer perceptron.
  - 6-fold validation (450/90)

## Model Output (1)

- Regression on continuous data of 181 cases where damages were awarded:
  - Essentially zero correlation between Claimant and Respondent HDI and amount of damages or damages normalised by claim amount (shown opposite).
  - Moderate Correlation between damages claimed and damages awarded (slope 0.34, R-squared 0.48). (Shown opposite)





# Model Output (2)

• Categorical and continuous data – results for DT Boosted in predicting case outcome using 28 variables:

| Measure   | Averaged Value |
|-----------|----------------|
| TP        | 25             |
| FN        | 20             |
| TN        | 30             |
| FP        | 13             |
| Accuracy  | 62.06          |
| pgood     | 66.39          |
| pbad      | 59.10          |
| FPR       | 30.73          |
| TPR       | 55.38          |
| TNR       | 69.27          |
| MCC       | 0.251          |
| Threshold | 0.54           |





DT C5.0 - K-fold BOOSTED= 20

#### Model Assessment

|              | TP | FN | TN | FP | accuracy | pgood | pbad  | FPR   | TPR   | TNR   | MCC  | threshold | varGood | varAccuracy | varMCC | folds |
|--------------|----|----|----|----|----------|-------|-------|-------|-------|-------|------|-----------|---------|-------------|--------|-------|
| RandomForest | 27 | 19 | 30 | 12 | 64.27    | 67.94 | 61.58 | 29.22 | 58.26 | 70.78 | 0.29 | 0.54      | 15.59   | 27.55       | 0.01   | 6     |
| DT_boost     | 25 | 20 | 30 | 13 | 62.06    | 66.39 | 59.10 | 30.73 | 55.38 | 69.27 | 0.25 | 0.54      | 27.16   | 17.55       | 0.01   | 6     |
| DT_Kfold     | 26 | 19 | 28 | 14 | 61.47    | 64.55 | 58.95 | 34.28 | 57.53 | 65.72 | 0.23 | 0.33      | 14.35   | 9.19        | 0.00   | 6     |
| MLP          | 25 | 21 | 29 | 13 | 61.12    | 65.08 | 58.17 | 31.54 | 54.29 | 68.46 | 0.23 | 0.51      | 18.61   | 13.31       | 0.01   | 6     |
| DT_Holdout   | 36 | 21 | 30 | 21 | 61.11    | 63.16 | 58.82 | 41.18 | 63.16 | 58.82 | 0.22 | 0.31      | 0.00    | 0.00        | 0.00   | 6     |
| Deep_Neural  | 27 | 19 | 24 | 19 | 57.78    | 59.49 | 56.85 | 43.83 | 59.28 | 56.17 | 0.16 | 0.52      | 8.36    | 9.79        | 0.00   | 6     |

- Random Forest / DT (Boosted) performed the best on most measures.
- Each had an MCC in excess of 0.25, and the highest accuracy rate
- They also had the greatest AUC in the ROC curves indicating superior performance in TPR vs FPR.
- Only in variance did Random Forest and DT Boosted (slightly) underperform relative to Deep Neural Network and MLP.
- Importantly, Random Forest and DT Boosted had the highest win-rate (the p-good measure) i.e. each successfully predicted winning cases approx. 66% of the time in the test samples of 90 cases.

#### Project Evaluation and Future Deployment

#### Key Results:

- Hypothesis States with a lower HDI ranking are unfairly treated (and vice versa for claimants in higher HDI states) – no evidence;
- Hypothesis Damages claimed is positively correlated to damages awarded some evidence;
- Hypothesis individual factual case analysis should be determinative when deciding on the likely outcome of a case – some evidence to reject partly.

DT Boosted/RF focused on a limited number of exogenous variables appeared able to predict winning cases with approximately 66% probability versus (88 case) sample mean of 51.8%. Appeared significant at 0.01 level given probability of getting 66% success cases out of random sample of 88 cases.

#### • Future:

- deploy the various models against the pending cases (341 cases)
- isolate the impact specific features have on case outcome, e.g. does a specific arbitrator or combination of arbitrators make a difference?
- combine existing model with a factual enquiry into case sample, reflecting additional factual features proposed by domain experts, then build improved model.