# Benchmarking of quasi-Newton methods

## Igor Sokolov

Optimization Class Project. MIPT

#### Introduction

The most well-known minimization technique for unconstrained problems is Newtons Method. In each iteration, the step update is  $x_{k+1} = x_k - (\nabla^2 f_k) \nabla f_k$ . wever, the inverse of the Hessian has to be calculated in every iteration so it takes . Moreover, in some applications, the second derivatives may be unavailable. One fix to the problem is to use a finite difference approximation to the Hessian.

We consider solving the nonlinear unconstrained minimization problem

$$\min f(x), x \in \mathbb{R}$$

Let's consider the following quadratic model of the objective function  $m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} B_k p$ , where  $B_k = B_k^T, B_k \succ 0$  is an  $n \times n$ 

The minimizer  $p_k$  of this convex quadratic model  $p_k = -B_k^{-1} \nabla f_k$  is used as the search direction, and the new iterate is

$$x_{k+1} = xk + \alpha p_k$$
, let  $s_k = \alpha p_k$ 

The general structure of quasi-Newton method can be summarized as follows

- Given  $x_0$ ,  $B_0$ (or  $H_0$ ),  $k \to 0$ ;
- For  $k = 0, 1, 2, \dots$

Evaluate gradient  $g_k$ .

Calculate  $s_k$  by line search or trust region methods.

$$x_{k+1} \leftarrow x_k + s_k$$

$$y_k \leftarrow a_{k+1} - a_k$$

 $y_k \leftarrow g_{k+1} - g_k$ Update  $B_{k+1}$  or  $H_{k+1}$  according to the quasi-Newton formulas.

#### End(for)

Basic requirement in each iteration, i.e.,  $B_k s_k = y_k$  (or  $H_k y_k = s_k$ )

## Quasi-Newton Formulas for Optimization

#### **BFGS**

$$\min ||H-H_k||,$$
 
$$\mathrm{s.t}\ H=H^T,\ Hy_k=s_k$$
 
$$H_{k+1}=(I-\rho s_k y_k^T)H_k(I-\rho y_k s_k^T)+\rho s_k s_k^T$$
 
$$\mathrm{where}\ \rho=\frac{1}{y_k^T s_k}$$
 
$$B_{k+1}=B_k-\frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}+\frac{y_k y_k^T}{y_k^T s_k}$$
 
$$\mathrm{DFP}$$

$$\begin{aligned} \min ||B - B_k||, & B_{k+1} &= (I - \gamma y_k s_k^T) H_k (I - \gamma s_k y_k^T) + \gamma y_k y_k^T \\ \text{s.t } B &= B^T, \ B s_k = y_k & \text{where } \gamma &= \frac{1}{y_k^T s_k} \\ H_{k+1} &= H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k} \end{aligned}$$

#### **PSB**

$$\begin{aligned} \min ||B - B_k||, & B_{k+1} &= B_k - \frac{(y_k - B_k s_k) s_k^T + s_k (y_k - B_k s_k)^T}{s_k^T s_k} + \\ \text{s.t } (B - B_k) &= (B - B_k)^T, & + \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ Bs_k &= y_k & + \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ H_{k+1} &= H_k - \frac{(s_k - H_k y_k) y_k^T + y_k (s_k - H_k y_k)^T}{y_k^T y_k} + \\ & + \frac{s_k (s_k - H_k y_k) y_k y_k^T}{(y_k^T y_k)^2} \end{aligned}$$

#### SR1

$$\begin{split} B_{k+1} &= B_k + \sigma \nu \nu^T, \\ \text{s.t } B_{k+1} s_k &= y_k \end{split} \qquad B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k} \\ H_{k+1} &= H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k} \end{split}$$



## Line Search vs. Trust Region

- Line search (strong Wolfe conditions)  $f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla_k^T p_k$  $|f(x_k + \alpha_k p_k)^T p_k| \le c_2 |\nabla f_k^T p_k|$
- Trust region

Both direction and step size find from solving  $\min_{p\in\mathbb{R}^n} m_k(p) = f_k + 
abla f_k^T p + rac{1}{2} B_k p$  s.t  $||p|| \leq \Delta_k$ 

## Numerical Experiment

- All quasi-newton methods (BFGS,DFP, PSB, SR1) with two strategies (line search, trust region) were implemented in Python (overall 8 algorithms)
- 165 various N- $d(N \ge 2)$  strong benchmark problems
- For each algorithm all problems were launched from random point of domain 100 times and results were averaged

## Examples of benchmark problems





### Results





Proportion of problems that have been successfully solved in more than half and in all launches respectively from random point of domain

| Strategy     | BFGS |      | DFP  |      | PSB  |      | SR1  |      | Total |      |
|--------------|------|------|------|------|------|------|------|------|-------|------|
| Line search  | 0.21 | 0.12 | 0.16 | 0.08 | 0.09 | 0.05 | 0.09 | 0.05 | 0.07  | 0.04 |
| Trust region | 0.18 | 0.12 | 0.16 | 0.1  | 0.19 | 0.14 | 0.11 | 0.06 | 0.1   | 0.05 |

Performance evaluation:  $n_s$  - number of solvers,  $n_p$  - number of problems,  $t_{s,p}$  time,  $r_{s,p} = \frac{t_{s,p}}{\min\{t_{s,p}:s \in S\}}$  - performance profile function

 $\rho_s( au) = \frac{1}{n_m} size\{p: 1 \le p \le n_p, \log(r_{s,p} \le au)\}$  - defines the probability for solver s that the performance ratio  $r_{s,p}$  is within a factor au of the best possible ratio





## Conclusions and Further Work

## Acknowledgements

The author of the project expresses gratitude to Daniil Merkulov for his lectures of optimization and his support in this project.

## Bibliography

- [1] Ding, Yang, Enkeleida Lushi, and Qingguo Li. "Investigation of quasi-Newton methods for unconstrained optimization." Simon Fraser University, Canada (2004)
- [2] Wright, Stephen, and Jorge Nocedal. Numerical optimization. Springer Science 35.67-68 (1999)
- [3] Dolan, Elizabeth D., and Jorge J. Mor. "Benchmarking optimization software with performance profiles." Mathematical programming 91.2 (2002): 201-213.