

Evaluación 4 – Análisis de Datos con Python: Potencial Solar Fotovoltaico

Joiner Arrieta, Julio Burgos, Rafael Ramos

Contexto del Análisis Fotovoltaico

- Uso de datos de la NSRDB NREL (EE.UU.).
- Radiación solar y variables meteorológicas a nivel global.
- Aplicación en evaluación del potencial solar fotovoltaico.

Objetivo y metodología

- Analizar datos reales de radiación solar con Python.
- Modelar un panel solar de referencia (585 W) en condiciones reales.
- Comparar el rendimiento entre Berlín Alemania y Montería – Colombia.

Herramientas utilizadas

- Python: pandas, numpy, matplotlib.
- Modelo OOP: simulación del panel solar.
- CSV: datos climáticos y de irradiancia de la NSRDB.

Ubicaciones de estudio

- Berlín, Alemania: ciudad europea de clima templado-continental.
- Montería, Colombia: ciudad tropical con alta radiación solar.

Berlín

El potencial del Sol

Centrales eléctricas que emplean energía solar

Importancia del análisis

- Identificar la influencia del clima y latitud en el potencial solar.
- Comparar eficiencia real de un mismo panel en dos contextos diferentes.
- Apoyar la toma de decisiones para proyectos fotovoltaicos en diversas regiones..

Capacidad de generación (megavatios)

1.000

Çartografía:

Álvaro Merino (2021)

vente:

Global Power Plant Database, World Resources Institute (2019)

Análisis de Datos

- Códigos para eliminación de datos y organización de estos
- Códigos para un procesamiento en donde se muestran los resultados de los datos escogidos

Antes de pasar por el codigo

A B	С	D	F F	G	Н	1	1	К	1	М
1 ource,Location ID,City,State						learsky DNI Ur	nits.Clearsky G		Point Units.DH	
2 ISRDB,756258,-,-,-,52.53,1										
3 ear, Month, Day, Hour, Minute				_	_					
4 019,1,1,0,30,1,0.65,0.0794										
5 019,1,1,1,30,6.8000000000	000001,1.18,0.07	74000000000000	01,0.64,0,0,0,7,6.4,	0,0,0,0,0.311,97.	31,146.76,0.12,	,1019,1.20000	00000000002	260,5		
6 019,1,1,2,30,7,1.2,0.0791,	0.64,0,0,0,8,6.60	000000000000000000000000000000000000000	5,0,0,0,0,0.313,97.0	4,140.24,0.12,10	18,1.1,262,5.60	000000000000	005			
7 019,1,1,3,30,6.9,1.23,0.07	42,0.64,0,0,0,7,6	6.4,0,0,0,0,0.312	,96.92,132.06,0.12,	1017,1.1,262,6						
8 019,1,1,4,30,6.5,1.21,0.07	26,0.64,0,0,0,7,6	5.1000000000000	0005,0,0,0,0,0.31,96	5.97,123.1300000	0000001,0.12,1	016,1.200000	0000000002,2	61,6.4		
9 019,1,1,5,30,6.2,1.16,0.07	32,0.64,0,0,0,6,5	5.5,0,0,0,0,0.309	,95.14,114.02,0.12,	1014,1.40000000	00000001,259,6	6.8000000000	00001			
10 019,1,1,6,30,6.2,1.130000	0000000001,0.07	76400000000000	01,0.64,0,0,0,7,5.2,	0,0,0,0,0.31,93.0	70000000000001	1,105.14,0.12,	1013,1.6,257,	7.2		
11 019,1,1,7,30,6.4,1.1,0.080	70000000000000	1,0.64,0,0,0,0,5.	2,0,0,0,0,0.311,92.0	1,96.8,0.12,1012,	1.6,258,7.5					
12 019,1,1,8,30,6.5,1.07,0.08	320000000000000	01,0.64,11,75,12	,1,5.4,11,75,0,12,0.	312,92.57000000	000001,88.95,0	.12,1011,1.5,2	263,7.7			
13 019,1,1,9,30,6.7,1.04,0.08	72,0.64,40,383,8	6,4,5.60000000	00000005,6,0,3,6,0.	314,92.85000000	000001,83.04,0	.12,1011,1.3,2	271,7.7			
14 019,1,1,10,30,7,0.85,0.131	12,0.64,66,465,1	59,4,5.9,11,0,3,1	1,0.317,92.59,78.54	,0.12,1010,1,280	,7.5					
15 019,1,1,11,30,7.10000000	00000005,0.53,0	.1637,0.64,86,47	70,200,1,5.7,86,470,	0,200,0.322,90.5	1,75.97,0.12,10	10,0.9,286,7.	5			
16 019,1,1,12,30,7,0.26,0.150	5,0.64,88,477,2	06,4,4.10000000	00000005,15,0,3,15	,0.325,82.070000	00000001,75.6	00000000000	01,0.12,1009,	0.9,287,7.8000	000000000001	
17 019,1,1,13,30,6.9,0.2,0.14	03,0.64,79,437,1	74,0,3.4000000	000000004,79,437,0	,174,0.326,78.22	,77.45,0.12,100	9,0.9,286,7.8	000000000000000000000000000000000000000	001		
18 019,1,1,14,30,6.30000000	0000001,0.19,0.1	1552,0.64,63,281	1,106,4,3.2,8,0,3,8,0	.328,80.36,81.35	000000000001,	0.12,1008,0.9	,286,7.7			
19 019,1,1,15,30,5.60000000	00000005,0.22,0	.1538000000000	0002,0.64,26,59,29	0,2.90000000000	000004,26,59,0,	,29,0.331,82.8	6,86.9,0.12,1	008,0.8,287,7.	60000000000	00005
20 019,1,1,16,30,4.9,0.26,0.1	51,0.64,0,0,0,0,2	2.4000000000000	0004,0,0,0,0,0.336,8	4.16,94.2100000	0000001,0.12,1	.008,0.8,288,7	.80000000000	00001		
21 019,1,1,17,30,4.3,0.25,0.1	696,0.64,0,0,0,4	,2,0,0,0,0,0.341,	84.86,102.28,0.12,1	007,0.8,289,8.1						
22 019,1,1,18,30,3.90000000	00000004,0.22,0	.1932,0.64,0,0,0	,4,1.4000000000000	0001,0,0,0,0,0.34	4000000000000	003,83.52,111	02,0.12,1007	0.8,290,8.3		
23 019,1,1,19,30,3.5,0.18,0.2	113000000000000	002,0.64,0,0,0,4,	0.5,0,0,0,0,0.34800	00000000003,80	.91,120.09,0.12	2,1007,0.8,29	L,8.4			
24 019,1,1,20,30,3.30000000	00000003,0.14,0	.2291,0.64,0,0,0	,4,-0.4,0,0,0,0,0.353	3,76.66,129.12,0.	12,1007,0.8,292	2,8.4				
25 019,1,1,21,30,3.1,0.11,0.2	709000000000000	003,0.64,0,0,0,8,	-0.9,0,0,0,0,0.356,7	5.05,137.62,0.12	1007,1,292,8.5	i				
26 019,1,1,22,30,3.1,0.1,0.32	5,0.64,0,0,0,8,-0	.5,0,0,0,0,0.357	77.44,144.81,0.12,1	.007,1,295,8.5						

Resultados de codigos de filtrado

	Α	В	С	D	Е
1	Year, Month, D	ay,Hour,Minute	e,Temperature	,GHI,DNI	
2	2019,1,1,0,0,2	23.8,0.0,0.0			
3	2019,1,1,1,0,2	23.700000000	0.0,0.0,800000)	
4	2019,1,1,2,0,2	23.5,0.0,0.0			
5	2019,1,1,3,0,2	23.200000000	0.0,0.0,800000)	
6	2019,1,1,4,0,2	23.0,0.0,0.0			
7	2019,1,1,5,0,2	22.900000000	000002,0.0,0.0)	
8	2019,1,1,6,0,2	23.1,0.0,0.0			
9	2019,1,1,7,0,2	25.200000000	000003,102.0,	333.0	
10	2019,1,1,8,0,2	27.700000000	0,00003,330.0	659.0	
11	2019,1,1,9,0,2	29.8,553.0,800	0.0		
12	2019,1,1,10,0	,31.70000000	0000003,736.0	,880.0	
13	2019,1,1,11,0	,33.30000000	0000004,855.0	,915.0	
14	2019,1,1,12,0	,34.6,902.0,92	26.0		
15	2019,1,1,13,0	,35.2,871.0,90	9.0		
16	2019,1,1,14,0	,35.300000000	0000004,767.0	,878.0	
17	2019,1,1,15,0	,34.5,599.0,81	15.0		
18	2019.1.1.16.0	.33.5.383.0.69	92.0		

-										
4	Α	В	С	D	Е	F	G	Н	1	J
1	Year	Month	Day	Hour		emperatur	GHI	DNI		
2	2019	1	1	0	0	,	0	0		
3	2019	1	1	1	0		0	0		
4	2019	1	1	2	0		0	0		
5	2019	1	1	3	0	,	0	0		
6	2019	1	1	4	0		0	0		
7	2019	1	1	5	0		0	0		
8	2019	1	1	6	0		0	0		
9	2019	1	1	7	0		102	333		
10	2019	1	1	8	0		330	659		
11	2019	1	1	9	0	29,8	553	800		
12	2019	1	1	10	0	31,7	736	880		
13	2019	1	1	11	0	33,3	855	915		
14	2019	1	1	12	0		902	926		
15	2019	1	1	13	0	35,2	871	909		
16	2019	1	1	14	0	35,3	767	878		
17	2019	1	1	15	0	34,5	599	815		
18	2019	1	1	16	0	33,5	383	692		
19	2019	1	1	17	0	30,3	151	435		
20	2019	1	1	18	0		0	0		
21	2019	1	1	19	0	26,6	0	0		
22	2019	1	1	20	0	25,7	0	0		
23	2019	1	1	21	0		0	0		
24	2019	1	1	22	0		0	0		
25	2019	1	1	23	0	24,2	0	0		
26	2019	1	2	0	0	24	0	0		
27	2019	1	2	1	0	23,9	0	0		
28	2019	1	2	2	0	23,7	0	0		
29	2019	1	2	3	0	23,5	0	0		

Resultados – Codigo de Analisis

```
PROMEDIOS:

    Promedio general (todas las horas): 106.83 W/m²

    Promedio diario (primeros 7 días ordenados):

     01) 2019-01-01 -> Promedio = 18.96 W/m<sup>2</sup> (horas registradas: 24)
     02) 2019-01-02 -> Promedio = 10.92 W/m<sup>2</sup> (horas registradas: 24)
     03) 2019-01-03 -> Promedio = 5.17 W/m<sup>2</sup> (horas registradas: 24)
     04) 2019-01-04 -> Promedio = 2.96 W/m<sup>2</sup> (horas registradas: 24)
     05) 2019-01-05 -> Promedio = 26.71 W/m<sup>2</sup> (horas registradas: 24)
     06) 2019-01-06 -> Promedio = 3.08 W/m<sup>2</sup> (horas registradas: 24)
     07) 2019-01-07 -> Promedio = 26.62 W/m<sup>2</sup> (horas registradas: 24)

    Promedio mensual (por año-mes):

      - 2019-01 -> Promedio = 15.63 W/m<sup>2</sup>
                                                 (horas: 744)
      - 2019-02 -> Promedio = 42.61 W/m<sup>2</sup> (horas: 672)
      - 2019-03 -> Promedio = 49.68 W/m<sup>2</sup> (horas: 744)
     - 2019-04 -> Promedio = 186.62 W/m<sup>2</sup>
                                                  (horas: 720)
     -2019-05 \rightarrow Promedio = 168.67 \text{ W/m}^2
                                                 (horas: 744)
     - 2019-06 \rightarrow Promedio = 270.82 \text{ W/m}^2
                                                  (horas: 720)
     - 2019-07 \rightarrow Promedio = 180.70 \text{ W/m}^2
                                                  (horas: 744)
     - 2019-08 -> Promedio = 180.05 W/m<sup>2</sup>
                                                  (horas: 744)
     - 2019-09 -> Promedio = 108.85 W/m<sup>2</sup>
                                                  (horas: 720)
     - 2019-10 \rightarrow Promedio = 49.98 \text{ W/m}^2
                                                 (horas: 744)
     -2019-11 \rightarrow Promedio = 15.35 \text{ W/m}^2
                                                (horas: 720)
      - 2019-12 -> Promedio = 11.73 W/m<sup>2</sup> (horas: 744)

    Promedio anual (por año):

      - 2019 -> Promedio = 106.83 W/m<sup>2</sup> (horas: 8760)
HORAS DE MÁXIMA Y MÍNIMA RADIACIÓN:

    Máxima: 906.00 W/m<sup>2</sup> en 2019-05-29 a las 12:00

  • Mínima: 0.00 W/m<sup>2</sup> en 2019-01-01 a las 00:00
```

```
INDICADORES ENERGÉTICOS (Wh/m²):
  • Energía total (suma de todas las horas): 935797.00 Wh/m<sup>2</sup>
  • Energía por mes (primeros 12 meses listados):
      - 2019-01 -> 11628.00 Wh/m<sup>2</sup>
                                         (horas: 744)
      - 2019-02 -> 28633.00 Wh/m<sup>2</sup>
                                         (horas: 672)
      - 2019-03 -> 36963.00 Wh/m<sup>2</sup>
                                         (horas: 744)
      - 2019-04 -> 134368.00 Wh/m<sup>2</sup>
                                          (horas: 720)
      - 2019-05 -> 125488.00 Wh/m<sup>2</sup> (horas: 744)
      - 2019-06 -> 194991.00 Wh/m<sup>2</sup> (horas: 720)
      - 2019-07 -> 134442.00 Wh/m<sup>2</sup> (horas: 744)
      - 2019-08 -> 133955.00 Wh/m<sup>2</sup> (horas: 744)
      - 2019-09 -> 78369.00 Wh/m<sup>2</sup>
                                         (horas: 720)
      - 2019-10 -> 37182.00 Wh/m<sup>2</sup>
                                         (horas: 744)
      - 2019-11 -> 11051.00 Wh/m<sup>2</sup>
                                          (horas: 720)
      - 2019-12 -> 8727.00 Wh/m<sup>2</sup>
                                        (horas: 744)
  • Energía por día (primeros 7 días listados):
      - 2019-01-01 -> 455.00 Wh/m<sup>2</sup> (horas: 24)
      - 2019-01-02 -> 262.00 Wh/m<sup>2</sup> (horas: 24)
      - 2019-01-03 -> 124.00 Wh/m<sup>2</sup> (horas: 24)
      -2019-01-04 \rightarrow 71.00 \text{ Wh/m}^2 \text{ (horas: 24)}
      - 2019-01-05 -> 641.00 Wh/m<sup>2</sup> (horas: 24)
      - 2019-01-06 -> 74.00 Wh/m<sup>2</sup> (horas: 24)
      - 2019-01-07 -> 639.00 Wh/m<sup>2</sup> (horas: 24)
POTENCIAL ENERGÉTICO (panel de referencia):
  • Área panel: 1.5 m<sup>2</sup>
  • Eficiencia panel: 18.0%
  • Potencial total ≈ 252665.19 Wh = 252.67 kWh
```


Distribución de temperatura

Distribución de temperatura

Radiación solar mensual

Resultados principales

- Producción anual total:
 - Montería: 823 kWh
 - Berlín: 451 kWh
- Diferencia: +372 kWh a favor de Montería (~82% más)
 - Mejor mes Berlín: junio (97 kWh)
 - Mejor mes Montería: junio (85 kWh)
- Peor mes Berlín: diciembre (3 kWh)
- Peor mes Montería: octubre (62 kWh)

Producción mensual de energía

- Montería: estable durante todo el año, sin caídas drásticas.
- Berlín: fuerte estacionalidad (alto en verano, casi nulo en invierno).

- Montería mantiene irradiancia promedio alta (130–175 kWh/m²).
- Berlín depende de la estación, con máximos en verano y mínimos extremos en invierno.

Comparación climática

- Montería: estable entre 27–29 °C.
- Berlín: gran variabilidad (0 °C en invierno hasta 23 °C en verano).
- La temperatura influye, pero la irradiancia es el factor más crítico en la generación.

Conclusiones

MONTERÍA SUPERA AMPLIAMENTE A BERLÍN EN PRODUCCIÓN ANUAL LA LATITUD Y LA ESTACIONALIDAD EXPLICAN LA DIFERENCIA EN RENDIMIENTO.

BERLÍN DEPENDE MÁS DEL DISEÑO DE SISTEMAS HÍBRIDOS O ALMACENAMIENTO.

MONTERÍA TIENE ALTA VIABILIDAD FOTOVOLTAICA PARA PROYECTOS SOLARES. PYTHON + OOP
PERMITIERON
MODELAR Y SIMULAR
RESULTADOS CON
DATOS REALES.

Bibliografía

- Global Power Plant Database, Word Resources Institute (2019)
- Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley.
- Green, M. A. (1982). Solar Cells: Operating Principles, Technology, and System Applications. Prentice-Hall.
- International Electrotechnical Commission (IEC). (2016). IEC 61215: Terrestrial Photovoltaic (PV) Modules Design Qualification and Type Approval. IEC.
- National Renewable Energy Laboratory (NREL). (2020). National Solar Radiation Database (NSRDB).
- Recuperado de: https://nsrdb.nrel.govTrina Solar. (2021). Datasheet Trina Solar Vertex 585W Module. Trina Solar.
- https://github.com/RafarelG/An-lisis-de-Datos-con-Python-/blob/0fda818a7f1d289afe8d1b9545faee5e1d4a8688/Filtrado_solar.ipynb

