

AMATÉRSKÉ RÁDIO

CASOPIS PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNÍK XXXIX(LXVIII) 1990 ● ČÍSLO 9

V TOMTO SĘSTĚ

Náš interview	321
OK2OX connected OE1FGW	322
Historie	323
AR seznamuje (TESLA Progression)	324
Měření parametrů transceiverů (pokračování)	325
AR mládeži	326
Potíže se zvukovým doprovodem u TVP, zakoupených v zahraničí	327
Úprava regulátoru ústředního řízení	327
Compact 144, zaměňovací příslušenství pro 144 MHz	328
Výzdvíž DO s CMOS	331
Výstup RGB pro ZX-Spectrum	332
Mikroelektronika	337
TV přijímač antény (dokončení)	345
Dálková kmínka do 1 GHz	346
Přesné znamy	347
Cílové náměty	350
Z radiometrického světa	351
Mládež a radiokluby	354
Inzerce	355
Ceník jmen	356

UPOZORNĚNÍ!

Uzávěrku Konkursu 1990 prodlužujeme do 15. září
Na konstruktéry čeká 20 000 Kčs v hotovosti!

AMATÉRSKÉ RÁDIO ŘADA A

Vydává Vydavatelství MAGNET - PRESS. Adresa redakce: Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7. Šéfredaktor, ing. Jan Klaba, OK1UKA, I-354. Redaktori: ing. P. Engel, ing. J. Kellner - I-353, ing. A. Mysík, OK1AMY, P. Havla, OK1PM, I-348; sekretáři: I-355. Redakční rada: předseda: ing. J. T. Hyán, členové: RNDr. L. Brunhofer, CSc., OK1HAQ, Kamil Donát, OK1DY, Dr. A. Glanc, OK1GW, Pavel Horák, Zdeněk Hradský, RNDr. L. Kryška, ing. J. Kundr, CSc., Miroslav Láb, ing. A. Mil, CSc., Vladimír Nármec, Alena Skálová, OK1PUP, ing. F. Smolík, OK1ASF, ing. M. Snajder, CSc., ing. M. Šred, OK1NL, ing. V. Teska, doc. ing. J. Vackář, CSc.

Ročně vychází 12 čísel. Cena výtisku 6 Kčs, poštovní předplatné 36 Kčs. Redakce distribuci časopisu nezajišťuje. Informace o předplatném podá a objednávky přijímá každá PNS. Zahranicní objednávky vytváří PNS Kováčkova 26, 160 00 Praha 6. V jednotkách ozbrojených sil zajišťuje MAGNET - PRESS, s. p. administrace, Vladislavova 26, 113 66 Praha 1. Tiskárna NAŠE VOJSKO, s. p. závod 8, 162 00 Praha 6 - Ruzyně. Vlastna 889/23. Inzerci přijímá Vydavatelství MAGNET - PRESS, s. p. Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-7 I-294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou. Navštěvy v redakci a telefonické dotazy po 14. hodině. Č. indexu 46 043.

Rukopisy čísla odevzdány tiskárně 6. 7. 1990.
Číslo má výjít podle plánu 28. 8. 1990.

© Vydavatelství MAGNET - PRESS, s. p. Praha.

NÁŠ INTERVIEW

s Ing. Miloslavem Štefanem, pracovníkem Výzkumného ústavu spojů v oboru koncových telefonních zařízení a telefonometrie, o možnostech využívání individuálně pořízených telefonních přístrojů a přídavných zařízení.

Obracejte se na nás čtenáři s dotazy na podmínky pro připojování telefonů a přídavných telefonních zařízení na účastnické vedení. Jaké možnosti má telefonní účastník?

Účastnickou stanici zřizuje na základě požadavku účastníka místní příslušná správa spojů. V československé telefonní síti smíjí být připojována pouze zařízení, schválena čs. správou spojů. To platí obdobně v celém světě. Vlivem rozdílných technických parametrů i organizace státních telefonních sítí je schválení nepřenosné. Výrobce obvykle vyrábí různé varianty jednoho typu zařízení, z nichž každá je určena k připojení jen v určitém státě.

Technické zařízení stanice je dosud majetkem spojů, výjma nepodstatného množství schválených soukromých telefonních zařízení. Zásah do technického zařízení je možný po souhlasu správy spojů. Účastník nesmí ani odpojit telefonní přístroj, neboť účastnická smyčka je pravidelně kontrolována přes zapojený telefonní přístroj. Do nedávne doby nebyl prodej telefonních přístrojů povolen. Nyní vlivem povoleného prodeje a především díky dovozu individuálně zakoupených přístrojů v zahraničí se účastníci často dopouštějí přestupků neodborném připojováním neschválených zařízení.

Máte-li se stát majitelem telefonního přístroje, odpovidače, záznamového zařízení, cílové číselnice, tj. obecně nějakého koncového telefonního zařízení, přesvědčte se především o tom, že zařízení je schváleno k připojení na čs. telefonní síť. Zajímat by vás to mělo i při prodeji tohoto zařízení, neboť podle občanského zákoniku odpovídá prodávající za vadu věci, která činí věc nepoužitelnou.

Co dělat, když jsem se stal majitelem neschváleného telefonního zařízení?

Především musíte požádat o Osvědčení k připojení na čs. jednotnou telekomunikační síť. Schvalovacím řízením byl Federálním ministerstvem spojů pověřen Výzkumný ústav spojů, pošta 415, p.o. 6, Praha 4-Horní Roztyly, PSČ 149 50. Schvalovací řízení (homologace) je buď individuální, nebo typové. Individuální homologace je vázána na určitého účastníka a jeho zařízení, typová je vázána na typ zařízení. O typovou homologaci žádá obvykle výrobce, dovozce nebo odpovědný zástupce, který je schopen zaručit technické parametry všech dodávaných zařízení schváleného typu. U typové homologace bývá obvykle zajištěn i servis zařízení. Homologace probíhá podle schválené směrnice FMS a je to služba placená, a to i v případě negativního výsledku, tj. neschválení zařízení k připojení. Kladným výsledkem je Osvědčení o schválení neveřejného zařízení k připojení na čs. jednotnou telekomunikační síť (JTS). V rámci homologace je zařízení proměřeno a přezkoušeno z hlediska rozhraní vůči čs. JTS - telefonní

Ing. Miloslav Štefan

a telefonometrická měření; rozhraní s obsluhou zařízení i čs. JTS z hlediska bezpečnosti – průrazná napětí, přepětí; z hlediska elektromagnetické kompatibilita – zatím jen rušení podle ČSN 342895.

Zařízení, které má Osvědčení, může účastník připojit?

Osvědčení charakterizuje způsobilost. Vlastní připojení, kromě výslově povolených výjimek, musí provést místní příslušná správa spojů, která zařízení registruje. Tím je informována Státní inspekce spojů o doplnění výbavy účastnické stanice. Také tento proces je obvyklý u většiny správ spojů ve světě. Víme, že připojení telefonního zařízení je v technickém hledisku jednoduché. Telefonní síť ale vyžaduje dodržení určitých pravidel, která zajíždají správnou činnost. Paralelní připojování zařízení, včetně telefonních přístrojů, je nepřípustné. Způsob připojení je součástí dokumentace nebo Osvědčení. Všechny čs. telefonní přístroje například mají od určité doby úpravu pro propojování s tzv. předností. Vyzvednutím mikrotelefónu se paralelní telefonní přístroj odpojí. Tím je zamezeno zneužívání telefonní sítě k funkci domácího telefonu.

Všeobecně je známo, kolik lidí má paralelní telefonní přístroje bez povolení. Všechny tyto telefonní přístroje byly do současné doby uvolněného prodeje získány nelegálním způsobem. Řada z nich má tlačítko zpětného dotazu, to znamená, že byly určeny původně do pobočkových sítí podniků nebo úřadů. Je jen otázkou času, kdy provozní organizace spojů ve snaze po zajištění příjemu začnou s prověrkou „paralelek“. Připojená záznamová zařízení se automaticky hlásí a zjištění „černého“ připojení je velmi jednoduché.

Proč se spoje brání používání levných, kompaktních telefonních přístrojů ze zemí Dálného východu?

Většina těchto telefonů nemá požadované technické vlastnosti. Například všechny mají velký vysílač vztlažný útlum, projevující se tím, že protější účastník vás slabě slyší. Ve snaze vyjít účastníkům vstříc v užívání těchto provozně jednoduchých telefonních přístrojů byly vyrobeny kompaktní telefonní přístroje, vyhovující požadavkům spojů (např. v SRN), ale jejich cena již není pro čs. turisty zajímavá. Totéž platí pro bezšňúrové telefonní přístroje, pracující v pásmu 50 MHz, které není pro tyto účely v Evropě povoleno. V Evropě je povoleno pro bezšňúrové tele-

fonní přístroje pouze pásmo 900 MHz. Vůči uživatelům bezšňurových telefonních přístrojů, které ruší televizní vysílání, bude využito všech zákonních prostředků.

Kdy se čs. občan dočká nabídky širokého sortimentu schválených telefonních zařízení?

Tuto otázku položte čs. výrobcům, kteří na jedné straně naříkají, že nemají co dělat, na druhé straně nevyužívají možnosti zahraniční spolupráce v tomto obooru a začnou s výrobou asi až v době, kdy bude trh nasycen. A zahraniční výrobci si zatím zajistují Osvědčení, ale přímý prodej jím ani nové čs. zákony nedovolily. Proto dále pokvete černým trh, neboť nabízí zboží atraktivní, laciné, bohužel neschválené, se všemi důsledky z tohoto faktu vyplývajícimi.

Děkuji Vám za rozhovor.

Ing. Přemysl Engel

Kompaktní telefonní přístroj TEMPO-PHONE

OK2QX CONNECTED OE1FGW

V březnu t. r. jsem se vydal „na zvědy“ za provozem packet radio (PR) k našim sousedům do Rakouska. Studium literatury pojednávající o té které věci je sice krásné, ale obvykle se ukáže, že praxe se od teorie v lečcems liší. Nejinak tomu bylo i tentokrát a musel jsem si hodně názorů na problém PR pooprativ.

Po 21 letech jsem se opět dostal po předchozí VKV a posléze telefonické domluvě do Vídni, kde na mne čekal můj přítel OE1FGW, se kterým se z pásmem i z osobního styku znám přes 25 let. Každý amatér má pochopitelně zájem vidět „in natura“ vše to, o čem na pásmech slyší – tedy celou paletu radioamatérských zařízení, od japonských po americké. Zde ve Vídni si musí nechat zajít chut. Většina obchodů pracuje objednávkovým způsobem a k vidění mimo prospektů jsou vždy jen tři-čtyři nejodprávěnější typy plus příslušenství, povětšinou z oblasti VKV. Velké obchody, kde by skladovali převážný sortiment zboží pro radioamatéry, bychom museli hledat v jiných městech (Graz), ale ne ve Vídni.

Druhá oblast zájmů většiny radioamatérů je uvidět „vše pro basti“; z této oblasti je zde již větší výběr. Nabízíme tedy jednu adresu ne proto, že bychom od majitele tohoto obchodu zásobeného vši možnou technikou získali za každého zákazníka z Československa tučnou provizi, ale proto, že je snadno dosažitelný pro návštěvníky přijíždějící do Vídni z Čech a Moravy autem, vlastem pak téměř pro všechny. Z Čech je hlavní příjezdovou komunikací Prager Str., z Moravy Brünnner Strasse. Ty se setkávají na „plácku“ Am Spitz, odkud pokračují do centra jako Floridsdorfer Hauptstrasse. Vlakem z Brünnu nebo Bratislavě dojedete obvykle na Südbahnhof, odkud pokračujete vlaky S (Schnellbahn) – ještě na mezinárodní jízdenku, pokud si ji takto necháte vypsat) na nádraží Floridsdorf, ze kterého vyděte na malé nádražíčko a vydáte se příčně vlevo. Pro jednoduchost připojuji ještě náčrtek. Na Floridsdorfer Hauptstrasse č. 23 sídlí firma TECHNOTRONIC, která vás jistě uspokojí bohatým výběrem součástek, měřidel, stavebnic – prostě všechno, co bychom v hojně míře potřebovali u nás, včetně prodeje velmi

laciných osazených desek z různé průmyslové i domácí elektroniky. Mají mimo jiné i celou paletu donedávna (nebo snad dosud?) embargovaných součástek, ke kterým patřila i většina obvodů CMOS! Rakouský zákazník zde vždy musel podepsat prohlášení, že součástky nebudu využevaty za hranice. Pokud vám nějaké šílenky při odchodu z obchodu zbudou, stačí když ještě omámeni překlopýtate ulici a navštívíte nově otevřený SEX SHOP... Pro přijíždějící po silnici ze Slovenska by byl popis trošku složitější, je však třeba se dostat přes Dunaj do XXI. okresu a jet směrem na Brno – ukazateľ je všude dostatek.

Mým hlavním zájmem však byl provoz v módu packet radio, který OE1FGW provozuje již asi pátý rok a je vybaven jak pro KV, tak i VKV provoz. Používá modemy vlastní konstrukce, na bázi IO 7911, který je prakticky nezbytný a těch asi 250 Sch by si zajemci měli na jeho náklup rychle obstarat. Herbert sám je „modemový expert“ – udělal jich již asi 10 a dohodl jsem se s ním, že poslední verzi popíše pro AR. Počítač má C64 s disketovou jednotkou, program DIGICOM 3.51. Pro ty, kdo nemají disketovou jednotku, je možné používat modul s pamětí EPROM a tímto programem.

Nebudu popisovat vlastní práci – o té již byla řeč v AR několikrát. Získal jsem poměrně obsáhlý obslužný popis programu DIGICOM a v některém z dalších čísel se pokusím některé základní postupy při práci s tímto programem zveřejnit, včetně všech řidičích příkazů. Je to v současné době program, maximalistický, jehož plné využití snad ani u nás nepřichází v úvahu a je již zpracován téměř na všechny rozšířenější osmibitové počítače, i na PC XT/AT. Doufám, že se u nás stane standardem.

Na rozdíl od mnou dříve hlášaného bludu, že lze PR provozovat jen se zařízením, které má rychlé elektronické přepínání, jsem se na vlastní oči přesvědčil, že to není pravda. Můžete používat cokoliv, co je s dostateč-

nou stabilitou schopno na VKV vysílat provozem FM, na KV pak SSB. Myslím, že daleko větší rozšíření má a dále se tento provoz bude rozvíjet na VKV. Musíme však i u nás postavit dostatečně citlivé a výkonné speciální převáděče – digipeatry, abychom se mohli zařadit do sítě sousedních zemí. Pak nebude problém navázat spojení po celé střední Evropě, byť prostřednictvím několika stanic. Na rozdíl od dosud používaných druhů provozu dojde zpráva adresátovi vždy bez jediné chyby (nebo nedojde vůbec). Je to rozhořněně přijemné rozšíření možnosti, které dosud u nás poskytuji VKV pásmo.

Poněkud horší je to však s provozem na KV. I když princip je pochopitelně stejný, přenos jakékoliv zprávy trvá v nejpříznivějším případě 4x déle (rozdíl mezi přenosovými rychlosťmi 300 a 1200 Bd), prakticky však dochází k daleko větším zpožděním díky tomu, že jakékoliv rušení na pásmu, které způsobí vymazání byl jediného bitu informace, známená opakování celého příslušného bloku (paketu). Ještě štěstí, že to za nás dělá program v počítači automaticky! Tady neexistuje redundancy, nepomůže nic, co by bylo ekvivalentní známému „hádání reportu“. Několik nedokončených spojení jsme sledovali v pásmu 20 m, kde je stanice nejvíce, ale také rušení – i od stanic pracujících RTTY provozem – největší. Pro PR provoz musí být oboustranně příjemové podmínky výborné a vše sami, kolikrát během CW spojení máte i silný signál narušen laděním, krátkodobým únikem ap. Ze se así PR provoz uplatní ne pro navazování obvyklých spojení, ale pro výběr potřebných zpráv z různých schránek (Mailbox), kde již dnes jsou uloženy DX informace, zprávy o diplomech, ionosféře ap.

Majitelům C 64 nabízíme program DIGICOM 3.51 se vším, co je k provozu nutné, a program, který z počítače udělá přesný nf generátor – pro nastavování modemů ideální pomocí. Zašlete si k tomu jednu disketu 5,25". Pokud vám, v pásmu 145 MHz v době přípravy tohoto článku spouštěli na Slovensku první digipeater, v Rakousku v hornaté oblasti OE3 dokončují větší s dosahem až do Prahy a Brna (odzkoušeno). Sháňka po obvodech 7911 (ev. 7910) určitě bude a předpokládám, že někdo zajistí i programy do modulů místo disketové jednotky. Problém bude pouze v pamětech EPROM, které jsou i v zahraničí poměrně drahé. K rozšíření PR provozu však dnes, po jeho uvolnění pro radioamatéry, rozhořně dojde, i když vzhledem k dostupné technice trochu pomaleji, než u našich jižních a západních sousedů.

2QX

HISTORIE

RADIOAMATÉR
Elektronik

Casopis pro radiotechniku a obory příbuzné

7-8

Ročník XXVII • V Praze 23. června 1984

VÝBERTE SI CO POTŘEBUJETE A IHNED OBJEDNEJTE:

111 - Radiopřijímač DKE v součástkách:

Skřínka se zadní stěnou (obrázek vedle), sifová přívodní sníru se zastríkou, sada ladiček cívek, plátno před amplionem, odpor odbrúvací, kondenzátor ladičky, kondenzátor reaktivní, montážní desítko s kabelem, sifový vypínač, předrozný odpor 120/220 V, 2 knofliky, 3 lampové spodky, 2 elektrolyty, 2 kondens. blok., trojtaž zdírkovnice, koš na amplion o 47 dalších součástek k této orig. soupravě náležejících, tedy celkem 70 součástek i se skřinkou za

Kčs 293,-

112 - Voj. přístroj v chassis, obsahující tyto součástky (na rozebrání):

Autotransf. prim. 12 V, sek. 240, 270, 280, 10, 10 V, modul. transf. nebo na obrov. fáze, filtračka 1000 μF na filtraci anod. proudu, filtračka na ferroc. ióde, 10 blok. kondens. 4 μF/1400 V, 10 μF/350 V, 1,6 μF/110–330 V, 0,5 μF/300 V, 0,05 μF/750–2200 V, 0,45 μF/110–330 V, o žx 22K-P-600 V, 4 odpory drátové, posuvné na keramice, 1 odpor 10 kΩ - 1 W, 3 odporu pevné na keramice, 6 odporů 1 MΩ - 0,5 W, 9 objímek bajonetových, 1 objímka pro stabiliz., 2 objímky pro RG 12 D 60, všechno za Kčs 198,-

Historie

Na stránkách našeho časopisu se čas od času setkáváme s články, které umožňují nahlédnout do časů dálno minulých. Jde většinou o portréty lidí z počátků radioamatérství a jejich místo či uplatnění ve společnosti, nebo je v nich popisována činnost předchozích generací techniků při rozvoji rozhlasového vysílání. Bohužel však ukázky či popisy tehdejších „výtvorů“ radiotechnického průmyslu poněkud opomíjíme. Abychom učinili zadost sběratelům „zhmotnělé“ historie a při tom seznámili i mladší generaci s počátky přijímací a reprodukční techniky a vším co s tím souviselo, otevříme více méně pravidelnou rubriku, věnovanou klubům nadšenců i jednotlivcům, pro historickou radiotechniku a obory s ní související.

Podnět k zavedení této rubriky nám dala skupina nadšenců sdružených v pardubickém radioklubu (i když se ozvali i další z Liberce, Zlína, Prahy aj.), zaměřených právě na: „oprášování zašlých radioaparátů a přístrojů blízce přibuzných“, včetně historické radiotechnické literatury. Díky přehledu a množství shromážděného materiálu, který již získali, jsme je požadali o spolupráci a pravidelnou spoluúčast na obsahové náplni jednotlivých pokračování.

Jak již jsme vás informovali v AR-A č. 2/90 vydávají titul sběratelé svůj zpravodaj s názvem Radiojournal. Řada čtenářů vyjádřila pěknými dopisy jejich redakci zájem o zaslání této revue. Proto připojujeme ještě několik dalších informací.

Do současné doby byla revue vydávána amatérským způsobem v omezeném počtu 30 kusů. Vzhledem k novým podmínkám a organizačním změnám bude vycházet dále nepravidelně (předpokládá se 3x ročně), ale v libovolném nákladu. Zájemci o oběr RADIOJOURNALU mohou napsat na níže uvedenou adresu do Pardubic (přiložte známku na odpověď).

„Historický pardubický radioklub“ je regionální sdružení sběratelů a zájemců o historickou radiotechniku. Členové sbírají a renovují staré radiopřijímače, zesilovače a další zařízení, shromažďují a studují literaturu, dokumentaci, prospekty, sbírají elektronky apod.

Klub byl založen v roce 1987, sdružuje sběratele z Pardubic a okolí a má nyní 19 členů. Výsledky své práce si sběratelé nenechávají pro sebe a proto, kromě publikační činnosti, klub uspořádal již dvě výstavy radiopřijímačů, poslední spojenou se setkáním sběratelů v březnu 1990 v Pardubicích.

Nyní však již dejme slovo dopisovatelům kolektivu tohoto radioklubu.

Na vlně HPR

Otočíme-li se zpět, ovane nás historie. Čas a atmosféra doby, kdy začalo vznikat a rozvíjet se rádio. Potkáváme vědce Loomise, Popova, Marconiho, de Foresta. Vidíme první pokusy s jiskrovou telegrafii. Spatříme vznik elektronky, první amatéry stavějící své krystalky. Pozorujeme zakládání radiotechnických firem, sledujeme technické zdokonalování radiopřijímačů. Dostaváme se až k tranzistoru a nakonec i k integrovanému obvodu.

Dnes pouze otočíme knoflíkem radiopřijímače a hned víme, co se událo na druhé straně Země. Ale v počátcích rádia? To byly nejprve krystalky jednoduchého zapojení, za to však nejrozmanitějších provedení. Později, se zdokonalováním elektronek, se začaly rozširovat přijímače „lampové“ – postupně nažávování jednotlivých lamp, ladění několika ovladači současně, potřeba baterií a akumulátorů. Byla to krásná doba, kdy majitelé přijímačů nosili akumulátory k nabíjení a při setkání na ulicích se srdečně zdravili ...

Mezi námi žijí amatéři – sběratelé, kterým právě stará rádia a věci kolem nich učarovaly. Neúnavně je vyhledávají, studují jejich zapojení, shromažďují dokumentaci a informace. Záhnd „pravé“ sběratelství není totiž pouhé hromadění věcí. To platí také zde, vždyť jen potřeba prostoru pro „dřevěné miláčky“ je značná. Nezanedbatelné není ani zatižení podlahy či vlastních zad a jejich následných bolestí po přenášení přijímačů. A což teprve mnohdy nevraživé pohledy rodinných příslušníků, odmitajících sdílet s rádiem těsný panelákový byt. Ale všechny trable s tímto netradičním koníčkem pak vynahradí zvuk vzdálené stanice linoucí se z plechového trchýřového reproduktoru a otáčení knoflíky ve změti drátů, batení, cívek a dalšího nezbytného příslušenství, ve které jen odborník rozezná první rádio. Jistě sami uznáte, že by byla veliká škoda, kdyby si sběratelé všechny své poznatky nechávali pro sebe. A tak se společně s námi – Historickým pardubickým radioklubem – vydejte na cestu historii.

Tuto rubriku budeme připravovat ve spolupráci nejen s československými sběrateli, ale budeme využívat i našich kontaktů na obdobná zahraniční sdružení. Chceme čtenáře seznamovat s jednotlivými firmami a jejich činností, různými historickými radiotechnickými událostmi, technicky a designersky zajímavými přijímači a jinými výrobky a mnoha dalšími věcmi. Jsme otevřeni připomínkám, námětům i příspěvkům vás, čtenářů Amatérského rádia. Staňte se spolutvůrci této rubriky. A pokud máte doma i předměty z dob dálno minulých, napište nám. Máme zájem o radiopřijímače, elektronky, součástky, literaturu atd. Pište, prosím, na naši adresu: Ivan Marek, Historický pardubický radioklub, Za pasáží 1342, 530 02 Pardubice. Těšíme se na vaše dopisy.

COMPEX 90

computer
exhibition

První mezinárodní přehlídka počítačové techniky a programů v ČSFR, navazující na úspěšné výstavy SOFTWARE 87–89. Praha 26. 9. až 29. 9. 1990, denně od 10.00 do 18.00 hodin, 26. 9. od 12.00 do 18.00 hodin.

Kulturní dům Vltavská, Bubenská 1, Praha 7.

**PŘIPRAVUJEME
PRO VÁS**

Ohříváč kojenecké stravy
a pití

AMATÉRSKÉ RADIO SEZNAME...

Rozhlasový přijímač TESLA PROGRESSON

Celkový popis

Přijímač Progresson je malý stolní rozhlasový přijímač v monofonním provedení se všemi běžnými vlnovými rozsahy, přičemž krátkovlnný rozsah obsahuje pouze pásmo od 31 do 49 m. Svým provedením i velikostí priblíženě odpovídá obdobným přijímačům jako Euridika, Eminent, Duetto, Alto, či polská Sniežka.

Přístroj je tedy v podlouhlém provedení ve skříni z šedé, povrchově lesklé, plastické hmoty. V levé části celní stěny je umístěn síťový spínač a vedle něj je černá děrována mřížka, pod níž je oválný reproduktor. Uprostřed je přepínač vlnových rozsahů a gramofonového vstupu. Vpravo pod stupnicí jsou tři otočné regulátory: hlasitosti, hloubek a výšek, nad stupnicí pak kolečko ladění. Na zadní stěně je pevně připojený síťový přívod, pojistka a dva konektory pro připojení magnetofonu či gramofonu a pro připojení vnějšího reproduktoru. Další dvě zásuvky slouží pro připojení antén pro rozsahy AM a FM. Cena přijímače byla stanovena na 1500,- Kčs.

Hlavní technické údaje podle výrobce

Vlnové rozsahy:	DV	150 až 285 kHz,
	SV	525 až 1605 kHz,
	KV	5,95 až 9,75 MHz,
	VKV I	66 až 73 MHz,
	VKV II	87,5 až 108 MHz,
Citlivost:	DV	250 μ V, s/s=20dB,
	SV	200 μ V, s/s=20dB,
	KV	250 μ V, s/s=20dB,
	VKV	8 μ V, s/s=26dB,
Gramofonový vstup:		200 mV/Ri=1 M Ω ,
Osazení:		14 tranzistorů,
		4 integrované obvody,
		30 diod.
Výstupní výkon:		2 W, k=5%
Zatěžovací impedance:		4 Ω .
Reproduktor:		ARE 4804.
Napájení:		220 V/50 Hz.
Spotřeba:		11 W.
Rozměry:		42x11x11 cm.
Hmotnost:		2,25 kg.

Funkce přístroje

Shodou okolnosti jsem měl možnost posuzovat tento přijímač velmi brzo za polským přijímačem Sniežka, který je Progressonu

dost podobný. Jestliže jsem polský výrobek kritizoval v tom smyslu, že co do výrobní technologie je poněkud zastaralý, pak Progresson naproti tomu dokazuje, že i s relativně modernější technologií lze vyrobit funkčně daleko horší přístroj.

Na přijímači Progresson se opět setkáváme s neosvětlenou stupnicí, ačkoli jde o výlučně síťový stolní přístroj, kde o úspore energie nemůže být řeč. Pod touto stupnicí je velice špatně viditelný ukazatel, na jehož horním konci skomírává svítí červená svítivá dioda. Už mi to připadá, jako kdyby mezi našimi výrobci byla vyhlášena nějaká skvěle dotovaná soutěž o ušetření stupnicových žárovek – v každém případě je však takové řešení nejen nevhodné, ale především nesmyslné.

Při hledání vysílačů užasneme nad zcela nepochopitelně vyřešeným laděním. Celková délka posudu stupnicového ukazatele je 104 mm, avšak jednotlivé stupnice jsou podstatně kratší, takže na obou okrajích jsou dlouhá, zcela nevyužitá místa. Pro informaci uvádíme, že nejdélší stupnice je středovlnná, která je dlouhá 70 mm, tedy 68 % z celkové dráhy ukazatele a nejkratší je stupnice krátkovlnná, která je dlouhá pouze 48 mm, tedy jen 47 % z celkové dráhy ukazatele. Přitom právě zhuštěné vysílače v krátkovlnném rozsahu by si vyžadovaly jemnější ladění. Toto řešení se již skutečně příčí zdravému rozumu, navíc proto, že převod ladění je nezdůvodnitelně strmý: pro přetladění z jednoho konce krátkovlnného rozsahu ke druhému postačuje 1/4 otáčky ladícího knofliku! Protože převod ladění navíc ještě trochu pruží, stává se ladění – především na krátkovlnných rozsazích – skutečným povyražením. Jak vyplývá z obrázku, je i popis stupnice spíše orientační než účelový, což promyšleně doplňuje popsáne negativní vlastnosti.

Přepínáme-li vlnové rozsahy, ozývají se z reproduktoru hlasité a málo příjemné loupance, což by též nemuselo být.

Pro výrobce tento relativně malý přijímač, který svou konцепci navíc nedovoluje účinný přenos signálů nižších kmotčů, využil oddělenou regulaci hloubek a výšek, zůstává další záhadou. Vždyť regulace hloubek u přijímače této třídy (a především velikosti) nemá vůbec žádný rozumný význam a kupující za ni musí zaplatit řadu aktivních

i pasivních prvků v kupní ceně navíc! Rád bych zde připomněl, že například zmíněný polský přijímač Sniežka nemá regulaci barvy zvuku vůbec a jeho uživatelům to nikterak nevadí. Regulace hloubek je u podobného přístroje úplně zbytečná a tónovou clonu si u těchto přijímačů nastavuje naprostá většina jejich uživatelů tak jako tak na maximum.

Prohlédneme-li si schéma zapojení tohoto přístroje, nemůžeme se zbavit dojmu, že tu někdo něco překombinoval, protože 14 tranzistorů, 4 integrované obvody a 30 diod se přece jen zdá být trochu moc. Moderní výrobci dokáží obdobný přijímač rozhodně vyřešit jednodušší a (pochopitelně k výhodě zákazníka) také levněji.

Vnější provedení přístroje

Této otázky jsem se vlastně dotkl již v předešlé kapitole. Chtěl bych jen připomenout, že jednou z výhrad, kterou posuzovatelé k vnitřnímu provedení měli, je povrch skřínky. Neutrálně sedí vysoko lesklý povrch se totiž u zahraničních přístrojů začal objevovat již koncem padesátých let, například také u známých krabiček na magnetofonové pásky firmy AGFA. Velmi brzy však výrobci pochopili jeho nevhodnost, protože na vysoké lesklém povrchu bylo vidět každé škrábnutí a tento nevýhodný lesk nahradili různými strukturami hrubších povrchů. Toto poznání bych doporučil i našemu výrobci.

Vnitřní provedení a opravitelnost

Po povolení šesti šroubků na zadní stěně lze přijímač rozdělit na dvě poloviny, jak vyplývá z obrázku. Potřebujeme-li pracovat na desce s plošnými spoji, musíme ji, zcela po staru, od plošněho víka pracně odšroubovat dalšími šroubkami.

Závěr

Závěrem si pokládám nezbytnou otázkou: co je důvodem, že na jediném přístroji nalezáme tolik zásadních chyb a nedostatků? Copak si nikdo z jeho tvůrců nepovídá toho, že je pro ladění využíváno stěží půl stupnice a že převod ladění je navíc ještě příliš strmý? Copak si nikdo nepovídá toho, že regulace hloubek u tohoto malého přístroje nemá a ani nemůže mít výraznější účinnost a zby-

Měření parametrů transceiverů

Ing. Jiří Hruška, OK2MMW

(Pokračování)

Rušení způsobené postranním šumem je v praxi velmi častým jevem a většinou je tvrdě přičítáno straně vysílající. Vzhledem k tomu, že u většiny zařízení je šum způsoben parazitní modulací (včetně diskrétních signálů) signálu hlavního oscilátoru, projeví se v podstatě totožné na vysílaném i přijímaném signálu. Vzájemné rušení šumem dvou stanic je tedy zcela reciprokové a rozdíl je dán pouze rozdílem ve výkonu a šumovém čísle. Bez účasti třetí stanice vybavené šumově lepším zařízením není možno objektivně rozchodnotit, či zařízení je na vině. Zmíněná reciprocity platí pouze pro šum způsobený parazitní modulací, tedy pro oblast několika desítek kHz kolem pracovního kmitočtu. Dojde-li na rušení širokopásmovým šumem, mohou být v jeho odstupu výrazné rozdíly mezi vysílačem a přijímačem téhož zařízení. Častěji je na vině vysílač, k parametrům vysílačů se však dostane nezádá.

Rušení způsobené šumem snadno poznáme v CW části pásmu, při SSB se téměř nedá odlišit od intermodulačních produktů vysílače. Vyčítáme-li nějaké stanici, že produkují „spletry“, poslechněme si ji na CW. Je-li šířka pásmá zabraná šumem stejná jako prskání na SSB, je chyba v šumu a otázka další, či zařízení ho produkuje. Je-li CW signál relativně čistý, pak jde o nonlinearitu ve vysílacím řetězci, nejčastěji přebuzený PA. Samozřejmou podminkou srovnání je stejná úroveň na vstupu přijímače.

Na závěr této kapitoly cítím potřebu upozornit, že nejde o problém, který by se týkal jen rušení od stanice „za rohem“. Pro příklad se pokusím ilustrovat situaci v pásmu 2 m při závodě. Signál S9 + 25 dB na vstupu přijímače nám vyrábí bez potíží stanice s výkonem 10 W ze vzdálenosti 20 km. Při výkonu 500 W, řádném antenním systému a vysoké kótě i ze vzdálenosti kolem 200 km. Velký vliv na sílu signálu má samozřejmě momentální směrování antén. Odhadněme tedy počet signálů o síle S9 + 25 dB a více, působících v jednom okamžiku na vstupu přijímače, na 20. Myslím, že pro takový Den rekordů KV i z jen průměrného kopce je to odhad velmi skromný. Dále budeme předpokládat, že všechny tyto stanice mají absolutně čistý signál. Šumové číslo našeho přijímače je 4 dB. Protože S9 + 25 dB odpovídá - 68 dBm, zvýšení šumu na výstupu přijímače o 3 dB nastane při odstupu šumu z reciprokového směšování - 68 - (-174 + 4) = 102 dBc/Hz. Průměrné kvalitní zařízení z hlediska šumu, jako např. FT225RD, dosahuje tohoto odstupu asi 5 kHz od signálu. Bude-li rušivý signál o dalších 20 dB silnější, což je nejméně u 3 až 4 stanic vysoko pravděpodobné, potřebuje takové zařízení odstup alespoň 25

kHz. Tedy uvedených 20 stanic nám zašumí a zapráší vinou přijímače $3 \cdot 50 + 17 \cdot 10 = 320$ kHz pásmo. V praxi to bude sice méně, neboť se tyto stanice nerodí rovněž po pásmu, o to vyšší bude však úroveň rušení na nejpoužívanějších kmitočtech. Máme-li některé z „levných“ zařízení, se syntezátorem pro FM (IC245E), zabere nám každá stanice nejméně dvakrát tolik.

Domyslíme-li si k tomu fakt, že nejméně stejný šum bude většina z těchto stanic i skutečně produkovat, k tomu nějaké ty spletry a kliksy, diskrétní „parazity“, málo potlačené druhé postranní pásmo atd., máme obrázek pásmá tak, jak při závodech skutečně vypadá. Ve všeobecném rušení se pak ztrati i stanice, které provozují všelijak kmitající stroje, na které doma nebyl čas a na kótě už to spravit nejde. Chceme-li, aby se tento obrázek měnil k lepšímu, nepůjde to bez zlepšování odstupu postranního šumu u většiny účastníků. Zlepší-li se celková čistota vody, bude lépe vidět i na ty, kteří ji kali.

Dvousignálová selektivita

Tento parametr jsem si zcela úmyslně nechal na konec povídání o vlastnostech přijímačů, důležitých pro elektromagnetickou slučitelnost. Pokud bych měl vyjádřit kvalitu přijímače jediným údajem, budu uvádět právě tento. Ke škodě radioamatérů je dvousignálová selektivita téměř neznámý pojmen a žádný výrobce zařízení pro radioamatéry tento parametr neuvedl. Přitom výrobci profesionálních radiostanic předepisují příslušné normy poměrně vysoké hodnoty, které spolu s požadavkem na čistotu signálu vysílače zaručují minimální problémy se vzájemným rušením. Myslím, že rozšíření povolovacích podmínek v části technických předpisů o alespoň základní požadavky na tyto parametry by radioamatérům vůbec neuškodilo. Diskuse o tom však není námětem tohoto článku.

Parametr „selektivity“ objevíme prakticky v každém reklamním letáku, pokud vůbec nějaký parametr obsahuje (viděl jsem i celou stránku citací z výroku nadšených uživatelů nabízeného zařízení a technický údaj žádný). Ovšem informace typu „selektivita je dána 8krystalovým filtrem“ je pustá lež a údaj „60 dB - 4kHz“ nic neříká, i kdyby byl pravdivý. Významné rozdíly v selektivitě začínají právě za hranicí 60 dB. V pásmu 14 MHz je 60 dB nad šumem signál zhruba S9, o rušení od těch silnějších nevime tedy nic.

Ríká se, že selektivita je schopnost přijímače vybrat užitečný signál a tedy i potlačit ostatní. Měřit tuto schopnost přijímače můžeme tak, že na vstup přivedeme slabý užitečný signál a zároveň nejméně jeden

silný rušivý. Napodobíme tedy situaci z praxe. Budeme uvažovat rušení jediným signálem, výsledek lze považovat za reprezentativní. Měření selektivity pro více rušivých signálů přináší zcela korespondující výsledky a je komplikovanější.

Definujme si tedy pojmem dvousignálová selektivita – pro žádaný kmitočtový odstup je to rozdíl mezi úrovní citlivosti přijímače a úrovní rušivého signálu, který způsobi zhoršení citlivosti o 3 dB. Z této definice přímo vyplývá exaktní postup měření: Na vstup přijímače přivedeme signál žádaného kmitočtu o úrovni, která zajistí na výstupu odstup (signál + šum)/šum 10 dB. Potom zvýšíme jeho úroveň o 3 dB. Pak přivedeme na vstup další signál v žádaném kmitočtovém odstupu a zvyšujeme jeho úroveň, až poměr (signál + šum)/šum poklesne opět na 10 dB. Selektivita je potom dána rozdílem mezi úrovní rušivého signálu a původní úrovni žádaného signálu.

Objektivita takto změřené selektivity obстоje i při podobném rozboru. Osobně mám jedinou námitku. Jak už jsem zdůvodňoval v kapitole o šumovém čísle, nepovažuji za zcela objektivní měření citlivosti u přijímačů pro SSB a CW. Proto i pro získání údaje dvousignálové selektivity doporučuji vycházet z hodnoty citlivosti získané přeponcem z hodnoty šumového čísla. Šumovou šířku pásmá všech měřených přijímačů přitom považovat za konstantní. Jinak nám může „hrbatý“ filtr zkreslit hodnotu citlivosti a tím i selektivity o několik dB. Pro získání základních představ o kvalitách přijímače lze tento rozdíl samozřejmě zanedbat. Je tu ovšem navíc dřívě uváděné riziko chybějícího změření citlivosti. Příklad výpočtu: změřili jsme šumové číslo KV TCVR 11 dB, úroveň signálu, který při odstupu 20 kHz způsobi zhoršení citlivosti o 3 dB, je -32 dBm.

Šumovou šířku pásmá si stanovíme 1800 Hz. Úroveň šumu na vstupu přijímače bude - 174 (základní úroveň 1 kT₀ v dBm/Hz) + 32,5 (vynásobení šířkou pásmá) + 11 (príspěvek přijímače vyjadřený šumovým číslem) = -130,5 dBm. Potřebná úroveň signálu pro odstup 10 dB je o 9,5 dB vyšší, tedy -121 dBm je úroveň citlivosti. Dvousignálová selektivita pro odstup 20 kHz je tedy -32 - (-121) = 89 dB.

Nároky na měření pracoviště jsou obdobné nárokům na pracoviště pro měření 1 dB komprese. Generátor rušivého signálu však musí mít čistotu stejnou, jako pro měření reciprokového šumu. Dále musíme být schopni alespoň přibližně indikovat 10 dB poměr (signál + šum)/šum na výstupu. V amatérských podmírkách pak bude problematické zajistit zesílení slabého signálu o právě 3 dB.

Při orientační srovnání přijímačů postačí zdroj kvalitního silného signálu a attenuátor. Na indikaci zhoršení odstupu šumu postačí cvičené ucho a zdroj slabého signálu nahradit anténu poblíž vstupu. Dostatek zkušenosnosti a trpělivosti nám umožní dosáhnout poměrně objektivní porovnání, nechťejme však takto získat absolutní údaj.

(Pokračování)

v AR A2/90 mě, namísto rozumného rozboru kritizovaných skutečností, označil jednoduše za nacionalisty. Rád bych proto panu náměstkovu tentokrát doporučil, aby se spíše velmi kriticky podíval na vlastní vývoj a konstrukci, protože špatný výrobek zůstane špatným jak v Čechách, tak na Slovensku či kdekoliv jinde a s národnostní otázkou bych to, být jím, rozhodně nesměšoval.

Hofhans

tečně výrobek prodražuje? Copak si nikdo nepovídá, že při špatném vnějším osvětlení není na stupni řádně vidět a na ukazateli už vůbec ne? Copak nikdo neslyšel ty nepříjemné lupance, které se projevují při prepínání vlnových rozsahů? Copak nikdo neměl jedinou námitku proti nepraktickému povrchu skříňky?

Uvažuji nad tím, zda totiž vše je jen důsledek jakéhosi nezájmu o vlastnosti výrobku podle hesla – vždyť se to stejně prodá, anebo zda je to důsledek skutečné ne-schopnosti. Tento jev, který u nás bohužel zdáleka není ojedinělý, těmito kritikami patr-

ně neodstraníme, jak nás minulost již mnohokrát přesvědčila. Vyřešen bude patrně až v okamžiku, kdy se k podobným výtvorům na trzích postaví konkurence, která bude nabízet výrobky lepší a levnější a pak si budou mnozí muset hledat takovou práci, na niž stačí.

Kdysi se u nás vyprávěl vtip, jak jeden Američan cosi konkrétního kritizoval v Rusku. Po chvíli odmlky mu Rus odpověděl jedinou větou: „A stejně lycujete černochy!“. Obdobně na mě zapůsobila reakce náměstka podniku TESLA Bratislava, ing. Šalinga, který po mé knitce jejich autoradia

XXII. ročník soutěže o zadaný elektronický výrobek 1990–91

Vzali jsme na vědomí připomínku, že úkoly minulého ročníku soutěže byly příliš obtížné a tak vám ty letošní, doufáme, nebudou dělat problém.

Platí ovšem nadále, že soutěžící neposílá všechny výrobky, ale jen ty, které porota soutěže vybere a vyžadá. Hodnotit je bude podle dokumentace, kterou zašlete do uzávěrky soutěže. Součástí dokumentace je potvrzení organizace, za kterou budete soutěžit.

Soutěž vyhlašuje ministerstvo školství, mládeže a tělovýchovy ČR. Pořadatelem soutěže je Ústřední dům dětí a mládeže, oddělení techniky, Havlíčkova sady 58, 120 28 Praha 2.

Kategorie:

M (žáci 3. až 5. ročníku základní školy), S (žáci 6. až 8. ročníku základní školy).

Úkoly soutěže

1. Soutěžící si vybere jedno zadané schéma (obr. 1 nebo obr. 2) a navrhe zapojení (přístroj), ve kterém bude toto schéma uplatněno.

2. Podle takto doplněného zapojení zhodní prototyp přístroje a předloží jej k posouzení organizaci, za kterou bude soutěžit (dům dětí a mládeže, pionýrská skupina, školní klub, radioklub ...). Od organizace si vyžadá písemné potvrzení, že výrobek překoušela a že přístroj splňuje určené funkce.

3. Potvrzení organizace zašle soutěžící spolu s průvodním listem a dokumentací výrobku nejpozději do 15. května 1991 na adresu pořadatele (oddělení techniky ÚDDM). Výrobek zatím neposílá a již jej dále neupravuje.

V průvodním listu musí být uvedeno: název výrobku, jméno autora, ročník základní školy a přesná adresa soutěžícího, potvrzení organizace. Dokumentace musí obsahovat: název výrobku a jméno autora, seznam použité literatury, popis využití přístroje, popis funkce a způsob ovládání, rozpis součástek a poznámky ke stavbě přístroje, schéma zapojení s vyznačením soutěžního schématu (viz příklad na obr. 3 – zadanou část schématu nelze měnit), návrh desky s plošnými spoji a nákres umístění součástek (ten-to bod dokumentace není povinný).

4. Bude-li návrh přístroje vybrán porotou k užšímu hodnocení, zašle soutěžící svůj výrobek po písemném vyrozumění porotou nejdéle do 14 dní pořadateli. O případné účasti na závěrečném soustředění jej porota uvědomí. Po vyhlášení konečných výsledků soutěže vrátí pořadatel autorům výrobky na ustanovenou adresu.

Hodnocení a ceny

Porota soutěže posoudí výrobky, zaslány k užšímu hodnocení a stanoví pořadí v každé kategorii. Současně doporučí zveřejnění zajímavých řešení v rubrice R 15 Amatérského radia. Pořadatel soutěže předá ceny, diplomy a výsledkové listiny vítězům, kteří se

umístí na prvním až třetím místě vyhlášeného pořadí. Všichni účastníci soutěže dostanou účastnický diplom a výsledkovou listinu. Radioklub ÚDDM doplní ceny soutěže o materiál a pomůcky, které využijí soutěžící při své další práci.

Diskvalifikace

Soutěžící může být diskvalifikován: není-li žákem základní školy, neuvede-li navštěvaný ročník ZŠ, je-li zasláno řešení dílem několika soutěžících, změnilo-li závaznou část zapojení (obr. 1 a 2), použije-li pro soutěž zapojení, uvedené jako příklad v časopisech ABC mladých techniků a přírodní vědců a Amatérské radio (obr. 3).

Obr. 1. Fotoelektrický spínač

Obr. 1. Zadané schéma A

Obr. 2. Zadané schéma B

Obr. 3. Příklad řešení úkolu (využití obvodu na obr. 2) – senzorový spínač. Toto řešení nelze použít jako řešení soutěžní!!

Pražské soutěžící žádáme, aby využívali náležitosti s pořadatelem soutěže osobně.
–zh–

Fotoelektrický spínač

Fotoelektrický spínač je osazen dvěma tranzistory a fotodiodou (obr. 2). Při osvětlení diodou je její odpor malý a tranzistor T1 je otevřen. Bázé tranzistoru T2 je tím spojena se záporným pólem zdroje a tranzistor nevede.

Zmenší-li se intenzita osvětlení, odporník fotodiody se zvětší, tranzistor T1 se uzavře.

Obr. 2. Deska Y47 s plošnými spoji

Tím se otevře tranzistor T2 a rozsvítí se LED v kolektoru tranzistoru.

Správná funkce spínače se nastaví odpovídáním trimrem tak, aby při osvětlené fotodiodě LED právě zhasla.

Svítivou diodu je možno nahradit citlivým relé a spínat např. osvětlení akvária.

Seznam součástek

R1	2,7 kΩ
R2	470 (330) kΩ
R3	1 kΩ
R4	3,9 kΩ
R5	270 Ω
D1	3WK 16473 svítivá dioda
D2	KC148
T1	KSY21
T2	KSY21

Deska s plošnými spoji
Napájecí vodič 2 ks

Ing. J. Winkler

Zkoušečka plošných spojů

Zkoušečka je vhodná k ověřování odporu mezi jednotlivými plošnými spoji, zejména při výrobě desek s plošnými spoji v domácích podmírkách. Je osazena dvěma tranzistory v Darlingtonově zapojení.

Obr. 1. Zkoušečka

Při přímém zkrate mezi hrotem zkoušečky a kladným napájecím napětím, vyvedeným kouskem vodiče, se rozsvítí červená dioda D1 i zelená dioda D2.

Při velkém odporu mezi hrotem a vývodem se rozsvítí zelená dioda D2.

Citlivost zkoušečky je možno nastavit volbou odporu rezistoru R1. Pro použitý rezistor 180 kΩ reagují diody na odpor zkoušeného

Obr. 2. Deska s plošnými spoji Y48

Seznam součástek

R1	180 kΩ
R2	270 Ω
R3	820 Ω
R4	390 Ω
T1	KC148 (KC507 až 509)
T2	KC148 (KC507 až 509)
D1	LED červená
D2	zelená
deska s plošnými spoji Y48	1 ks
vodič (0,5 mm)	15 cm
nапájecí vodič 2 × 0,5 cm²	

Potíže se zvukovým doprovodem u TVP, zakoupených v zahraničí

Televizory a videomagnetofony, zakoupené v zahraničí, nejsou vybaveny mf zesilovačem zvuku pro 6,5 MHz (OIRT) a při příjmu našich programů tedy mlčí. Lze samozřejmě zakoupit současně s televizorem i směšovač s oscilátorem 1 MHz, který prodávající doporučuje vestavět do přijímače a z původního mf zesilovače 5,5 MHz utvářit též mezfrekvenční 6,5 MHz. Novější televizory jsou však již často opatřeny obrazovým mezfrekvenčním stupněm v normě BG – o šířce 6 MHz. A v takovém případě již směšovač nepomůže. Nosný kmitočet zvuku je potlačen a uvedený princip směšování nelze použít. Navíc u mnoha televizorů nelze směšovač stejně nastavit tak, aby do zvuku nepronikal „brum“ při uvádění titulků apod. Této problémů nás dokonale zbaví jen paralelní zvukový konvertor. Takový konvertor vyrábí u nás s. p. „Elektroservis“ České Budějovice.

ce. Jedná se o paralelní zvukový konvertor 5,5/6,5 MHz, typ QSC-02. Konvertor zpracovává televizní signál, převedený do kmitočtového pásmá obrazové mezfrekvence. Obsahuje IO A240D, který zajišťuje potřebné zesílení a detekci do základního pásmá (6,5 MHz). Následuje dvoutranzistorový směšovač, který pomocí místního oscilátoru 1 MHz převádí pásmo 6,5 MHz do pásmá 5,5 MHz rozdílovým směšováním. Napájecí napětí pro konvertor by mělo být v mezik 10 až 12 V. Vyšší napětí se nedoporučuje s ohledem na ohřívání IO A240D. Konvertor je předem naladen. Výrobce jej neopatruje přivední vodiči. Připojné místa: výstup kanálového voliče přijímače je připojen na vstup konvertoru přes malou kapacitu (4,7 pF, tento kondenzátor je součástí konvertoru), výstup 5,5 MHz se připojí buď před, nebo za oddělovací keramický filtr 5,5 MHz

v přijímači. Je třeba zvážit připojení napájecího bodu +12 V v přístroji; konvertor odebírá proud 50 mA. Velkou výhodou uvedeného konvertoru je skutečnost, že je osazen dvěma keramickými filtry (5,5 a 6,5 MHz). Pouhou záměrou těchto filtrů může konvertor převádět zvukovou mf z pásmá 5,5 na 6,5 MHz. Jeho použití je tedy univerzální.

Autor tohoto článku – soukromý podnikatel, montuje tyto konvertové do televizních přijímačů libovolných výrobců. Má s tímto výrobkem Elektroservisu velmi dobré zkušenosti. Protože se jedná v podstatě o kvaziparalelní zpracování zvuku v přístroji, je zvuk čistý nezávisle na obrazové informaci.

Pavel Kotrás
opravy televizorů a elektroniky,
Kamenice 41, okr. Praha-východ
tel. 99 21 88

ÚPRAVA REGULÁTORU ÚSTŘEDNÍHO TOPENÍ

Malé kotly na tuhá paliva pro ústřední vytápění se dnes často vybavují regulátory RT - 1, které vyrábí RUKOV Rumburk. Některé kotly, např. kotel UR21, jsou timto regulátorem vybaveny již od výrobce. Princip regulátoru je jednoduchý. Na kotli je umístěno čidlo, snímající teplotu vody. Je-li teplota menší než žádaná, regulátor ovládáciem elektromagnetem pootevře „dusivku“, což je klapka na popelníkových dvírkách, a zvýší tak přívod vzduchu do kotla. Regulátor tedy pracuje jako dvoupolohový.

Myšlenka jednoduché regulace kotlu na tuhá paliva je v zásadě velmi prospěšná. Zmíněný regulátor však má řadu konstrukčních nedostatků.

Zmíněný regulátor však má řadu konstrukčních nedostatků.

Pomineme-li samostatnou regulaci přívodem vzduchu, můžeme je rozdělit do dvou skupin na závady konstrukčního provedení a závady elektronické části.

Konstrukční provedení je velmi jednoduché a tvarům podmínkám montáže na popelníková dvírka vyhovuje jen zčásti. Z regulátoru vyčinívá hřidel potenciometru o průměru 4 mm, který lze při příkládání nebo rošťování snadno poškodit. Mechanismus ani elektronická část nejsou dostatečně chráněny proti nečistotám a popelu. Konečně montážní šrouby tvoří tepelný most, kterým se vnitřek regulátoru nepréměřeně přehřívá. V elektronické části je jedna závada, jejíž odstranění je dále popsáno.

Regulátor (Obr. 1) je napájen z transformátoru přes usměrňovač. Odporový teplomér je zapojen v můstku a komparátor (MAA741) vyhodnocuje překročení nastavené teploty. Jeho výstupem je přes dvojici tranzistorů

KF517 a KU611 napájená ovládací cívka elektromagnetu. Nesnáz zde působí značně proměnné napájecí napětí. Z asi 23 V (při zapojeném magnetu) se zvětší asi na 40 až 43 V, když je cívka nevybuzena a v důsledku toho se zmenší odběr proudu. V noci, kdy sířkové napětí vystoupí leckdy až na 240 V, je napětí ve stavu „vypnuto“ ještě větší. V důsledku toho mám ve svém regulátoru již třetí obvod MAA741.

Tuto závadu snadno odstraníme, jestliže rozšíříme napájecí obvod o dvě v sérii zapojené Zenerovy diody KZ260/13, blokovací kondenzátor 10 μF/35 V a rezistor 330 Ω (1 W). Zapojení pracuje spíše jen jako omezovač, než jako stabilizační, ale spolehlivě zabraňuje zvětšení napájecího napětí nad povolenou mez.

Úprava je snadná. Na desce regulátoru vysledujeme vodič záporného a kladného napětí, vycházející od usměrňovacích diod. Kladný vodič na vhodném místě přerušíme, vyvrátíme díry pro přidané součástky a omezovač zapojíme. Od té doby regulátor slouží spolehlivě.

Ing. Jiří Vondrák, CSc.

Obr. 1. Zjednodušené schéma zapojení

COMPACT 144

Zaměřovací přijímač ROB pro pásmo 144 MHz

Ing. Jiří Mareček, OK2BWN

Rádiový orientační běh je sportem, který si zvláště v poslední době získává velkou oblibu, rovněž výsledky čs. reprezentantů na mezinárodním poli svědčí o kvalitní základně. Většimu rozšíření však stále brání nedostatek kvalitních, cenově přístupných přijímačů. Nedostatkem sériově vyráběné techniky je stále nízká spolehlivost a nevhovující ergonomické řešení. Cílem tohoto článku je tedy podat návrh konstrukce přijímače výrobne nenáročného, cenově přístupného a s výhovujícími elektrickými i ergonomickými parametry.

Technické parametry

- Zapojení: superhet s jedním směšováním
- Druh provozu: AM
- Kmitočtový rozsah: 143,9 až 146,1 MHz
- Citlivost: asi 0,5 μ V
- MF šířka pásma: asi 200 kHz
- Regulace zisku: plynulá
- Výstup: sluchátka 8 až 2000 Ω
- Napájení: 7,2 V/typ. 20 mA (6 ks NiCd 225)
- Doba provozu: min. 10 hodin při plně nabitéch akumulátořech
- Hmotnost: 450 g
- Rozměry (i s anténou): 1060 \times 28 \times 45 mm
- Provozní teplota: -10 až +40 °C
- Přijímač je odolný proti stříkající vodě a krátkodobému ponoření (do 5 sec.)

Popis obvodů

1. Antennní systém

Ze srovnání z několika typů antén vyšla vítězně anténa HB9CV v symetrické verzi, a to zejména pro své malé rozměry, příznivý využívací diagram, možnost realizace konců prvků jako ohebných, pružných a v neposlední řadě pro výrobni nenáročnost a levost. Anténa byla navržena s ohledem na maximální předozadní poměr, tj. s poměrem předního ku zadnímu prvku 1:1,12 (viz [1]). Výhodou nevodivého středního ráhna je necitlivost antény na dodržení přičné symetrie prvků u nesymetrické antény přijímače Delphin může odchylka hlavního laloku od osy přijímače způsobená nesymetrií prvku 2 mm (levá část delší než pravá) dosáhnout až 5 stupňů! Navíc ráhno symetrické antény může být položeno přímo na přijímač, případně může být obemknuto rukou, anž by to mělo vliv na vlastnosti antény. Symetrická impedance antény 300 Ω je transformována na nesymetrických 75 Ω balunem na dvouotvorovém feritovém jádru z hmoty N1.

2. Vstupní díl přijímače

Vstupní zesilovač je osazen tranzistorem T1 - KF907/KF910, zisk je řízen změnou předpěti emitoru oproti hradlům levou polovinou potenciometru P2. Parazitním oscilačním brání feritové perlíčky navlečené na vývody kolektoru a hradla G2. Zisk tohoto stupně je asi 20 dB.

Smešovač je tvořen integrovaným obvodem IO1 - UL1042 z produkce PLR (ekvivalent SO42P fy Siemens). Smešovač pracuje v samokmitajícím zapojení a má velmi dobré vlastnosti (šum, lineantu, stabilitu oscilátoru). Oscilátor je laděn varikapem D1 - KB105G, ladící napětí je stabilizováno

Zenerovou diodou D2 - KZ141. Konverzní zisk tohoto stupně je asi 15 až 20 dB.

3. Mezifrekvenční a nízkofrekvenční zesilovač

Na směšovač je přímo navázán keramický filtr SFE 10,7 MA. Filtr je z obou stran zakončen rezistory 330 Ω (R5, R9). Mezifrekvenční zesilovač, AM detektor i nf zesilovač je obsažen v integrovaném obvodu IO2 - A283D z produkce NDR (ekvivalent TDA 1083 fy Telefunken). Zisk mf zesilovače je řízen pravou polovinou potenciometru P2 souběžně s řízením zisku vf zesilovače tak, aby byl nejprve tlumen vf zesilovač a teprve potom mezifrekvenční. Tento souběh je důležitý, aby se nezahlcoval vf stupeň. Kondenzátory C18, C19 odstraňují nepříjemné chrapštění běžce potenciometru P2. AM detektor je ve struktuře IO připojen přímo na výstup mf zesilovače a jeho výstup je využíván na vývod 8 IO2. Kondenzátory C27, C29 filtrují zbytky mf kmitočtu. Následuje nf zesilovač se ziskem asi 40 dB. Sluchátka jsou připojena přes konektor DIN, který plní ještě další funkce:

- připojuje se přes něj nabíječ akumulátorů;
- vypíná přijímač při vytažení sluchátek z konektoru (nemůže se samovolně zapnout přijímač např. v zavazadle).

Zapojení konektoru je totožné s normou, používanou v SZTM ROB Brno i jinde, stejně je zapojen např. i konektor pro sluchátka přijímače F101 (AR č. 12/88).

Upozornění

V popisu přijímače F101 v AR-A č. 12/88 je na obr. 5 chybě zapojen konektor pro sluchátka (zaměněny špičky 4 a 5)! Správné zapojení je na obr. 2 popisu přijímače F101, resp. v tomto příspěvku.

Stavba přijímače

Při stavbě přijímače doporučujeme postupovat co nejpečlivěji. Přijímač ROB pracuje ve velmi náročných mechanických i klimatických podmínkách a na jeho spolehlivosti přímo závisí výkon závodníka. Pečlivá práce při stavbě přijímače se v provozu mnohonásobně vyplatí.

Většina součástek přijímače je umístěna na dvou deskách s plošnými spoji (viz obr. 2, 3). Prostor uvnitř skřínky přijímače je rozdělen na dvě části přepážkou, která současně mechanicky zpevňuje celou konstrukci. V jedné části je umístěn vstupní díl přijímače až po směšovač, filtr z části prochází otvorem v přepážce a zbytek přijímače a zdroj je umístěn v druhé části. Důvodem k tomuto uspořádání je dostatečný útlum v nepropustném pásmu filtru. Přepážkou prochází také průchodkové kondenzátory C16, C17, přes které je do vstupní části přijímače přivedeno napájecí napětí a regulace zisku vstupního zesilovače. Desky s plošnými spoji jsou ve skříně uchyceny připájením v rozích ke stěnám skřínky.

Obě desky s plošnými spoji jsou řešeny jako jednostranné, na straně součástek je ponechána měděná fólie. V místech, kde vývody součástek prochází otvory v desce, je zemnická fólie odvrácena vrtákem většího průměru. V bodech spojení součástky se zemnická fólie nejsou otvory vrtány, vývod je ohnuty v délce asi 2 mm a připájen na tupo. POZOR! V okoli tranzistoru KF907 nepoužívat transformátorovou páječku! Tento tranzistor je citlivý na magnetické pole a může dojít k jeho poškození (projeví se jen zvýšením šumu – bez speciální měřicí techniky to ani nemusíme poznat). Odpor R7 je připojen přímo mezi vývod potenciometru P1 a zemnickou fólii.

VYBRALI JSME NA
OBÁLKU

Obr. 2. Desky s plošnými spoji Y49 a Y50 (dole)

Obr. 3. Rozložení součástek

Seznam součástek

Rezistory (TR 212, R1 až R5 lépe TR 191)

R1	22 kΩ	R8	1 kΩ
R2	10 kΩ	R9	6.8 kΩ
R3, R4,		R10, R13	47 Ω
R5, R6		R11	18 kΩ
R7		R12	330 Ω
		R14	47 kΩ
		R15	viz text, typ. 150 kΩ

Kondenzátory

C1	viz text, typ. 1 pF, TK 656
C2	3,9 pF, TK 656
C3	330 pF, TK 754

C4, C8, C9, C24

C27, C29	15 nF, TK 744
C5	3,3 pF, TK 656
C6, C30	1,5 nF, TK 724
C7	10 nF, TK 744
C10, C11, C12	10 nF, TK 656
C17	8,2 pF, TK 656
C14	33 nF, TK 782
C15	68 nF, TK 782
C16, C17	3,3 nF, průchodkové, resp. TK 724

C18, C19, C21, C26

C20	22 nF, TE 132, TF 010
C23	1,5 μF, TE 005, TE 133
C25	120 pF, TK 754
C28	4,7 μF, TE 004, TE 131

Polovodíkové součástky

T1	KF907/KF910
D1	KB105G
D2	KZ141
IO1	UL1042 (SO42P, PC)
IO2	A283D

Cívky

L1	2x2x2,5 z drátu Cu Ø 0,5 mm s PE, izolací, dvouotvorové jádro z hmoty N1
L2	1 z drátu CuL Ø 0,2 mm
L3	5 z drátu CuL Ø 0,6 mm
L4	5 z drátu CuL Ø 0,6 mm
L5	1 z drátu CuL Ø 0,2 mm
L6	2,5 z drátu CuL Ø 0,2 mm
L7	4,5 z drátu CuL Ø 0,6 mm
L8	20 z drátu CuL Ø 0,2 mm
	kostra TESLA, jádro z hmoty N05

Ostatní součástky

P1	100 kΩ, lineární, TP 160
P2	50 kΩ, lineární, TP 160
Filtr	SFE 10,7 MA nebo podobný

Zdroj 6 x Aku NiCd 225

Obr. 4. Skříň přijímače

Všechny cívky jsou navinuty na kostříčky TESLA (5 mm, jádro M4). Pod cívkou v desce není obvyklý otvor, spodní část závitu pod základnou kostříčky je nutno pilníkem odříznout. Stínici kryty cívek jsou připájeny shora na zemnicki fólií desky.

Použité potenciometry TP 160 se vyznačují velkým mrtvým chodem, který je u ladění velice nepříjemný. Lze jej odstranit tak, že potenciometr rozebereme, ze zploštělého konce hřidele sejmeme polyetylénové tělesko s běžcem a posadíme jej zpátky přes malý kousek (asi 1x3 mm) polyetylénové fólie. Pak potenciometr opět složíme.

Kabeláz v přijímači je realizována lankem o Ø 0,35 mm, spoje jsou převlečeny bužírkou.

Mechanické provedení přijímače je přizpůsobeno použité anténě, se kterou skříň-

ka přijímače tvoří kompaktní celek (viz název přijímače). Nosné ráhno antény je vyrobeno podle obr. 7 z instalacní lišty L40, přední a zadní prvek (pevná část) z mosazné trubky o Ø 6/4 mm. Fázovací vedení je z mosazného drátu o Ø 1,5 mm. Anténu montujeme v tomto pořadí:

Nejprve do hotového nosného ráhna navlékneme díly A a B fázovacího vedení tak, aby se uprostřed mimoběžně křížily. Jejich konce ohneme v délce 5 mm přesně naproti díram Ø 1,5 mm, pocínujeme a připájíme na ně v označených místech díly C a D. Pájíme zásadně s ovinutím spoje tenkým drátem! Potom do dér na koncích ráhna narazíme pevné části prvků a vystředíme. Konce fázovacích vedení ohneme podle obr. 7 a připájíme k prvkům, rovněž s ovinutím spoje měděným drátem. Pokud je třeba, zajistíme pevné

části prvků: ve středu je přičně provrtáme Ø 1,5 mm, do této díry zastrčíme kousek drátu, který se potom (viz dále) zlepí při zaslepování konce ráhna. Nakonec zaslepíme všechny montážní díry (kromě dér na spodní straně předního konce ráhna, určených k připojení vstupu přijímače) a otevřené konce lišty. Jehlou nebo pinzetou do dér a do otevřených konců lišty napojíme molitan, zakápneme Lepoxem (případně s vhodným plnivem – např. dětský zásyp) a přelepíme izolepou. Po zatuhnutí (pokud je třeba) přebrousíme jemným smirkovým papírem.

Obr. 5. Přepážka

Ohebné konce prvků antény (v liškařském slangu „prvky“) jsou vyrobeny podle obr. 9a z ocelového svinovacího dvoumetru (jeden stačí na šest prvků, tj. jednu sadu + 2 náhradní) a mosazných šroubů M5×20 s šestihranou nebo válcovou hlavou podle obr. 9a. Hlavu šroubu dále nařízneme luppenkovou pilkou. Naříhané kusy pásma na konci očistíme od laku a s použitím salmiaku pocínujeme. Potom je vložíme do vyříznuté drážky v hlavě šroubu a připájíme. Je vhodné si na tuto práci vzít páječku s vyšším výkonem, pájený spoj bude v provozu silně mechanicky namáhan! Po vychladnutí důkladně očistíme celý prvek i závit šroubu a pájený spoj ovíjeme páskou PVC (šíře 15 mm, k dostání v prodejnách zahradnických potřeb) v délce asi 40 mm. Na šroub natočíme matici M5 (kontramatka) až na konec závitu a zastříhneme (do kulata) prvek na přesný rozměr.

Jinou možností je vyrobit si prvky tuhé, neohébné. Tyto prvky jsou výrobě mnohem jednodušší, materiálové náklady jsou asi 4× nižší a prvek je lehčí a v provozu mnohem trvanlivější. Podvědomý odpor závodnické veřejnosti proti tuhým prvkům vychází většinou z predstav a), „že se s tím nevejdou do kroví“, b) „pri nárazu to musím zlomit“. Nuž, ani jedna z těch predstav není správná. Závodník pronikající houštinou potřebuje pro sebe „průjezdny profil“ o rozměrech zhruba 150×40 cm (minimálně), do kterého se přijímač držený za zády nebo před tělem bezpečně vejde. Pokud se týče druhého důvodu, prvek ohnuty po pádu nebo nárazu lze jediným hmatem ruky opět narovnat. Uložení klasického (pružného) prvku je, zejména u mladších závodníků, běžnou záležitostí, kdežto ke zlomení tuhého prvku je třeba asi 50 ohybů okolo poloměru 10 mm.

Další výhodou tuhých prvků je to, že se při běhu nemrskají jako prvky pružné.

Tuhé prvky vyrobíme podle obr. 9b. Výchozím materiélem je mosazný šroub M5×40 a jehlice z eloxovaného hliníku Ø 4 mm. S výhodou lze použít na přední prvky jehlice jiné barvy, než na zadní. Šroubu uřízneme hlavu a vyvrátme do ní díru o Ø 4 mm (obr. 9b). Jehlici zastříhneme na správný rozměr, na konci do ní lehce několikrát „kousneme“ štipacími kleštěmi, lehce potěm Lepoxem a narazíme do šroubu. Tím je prvek hotov.

Skříňku přijímače spájíme z jednostranně plátovaného cuprextitu podle obr. 4 až 6. Polotovar skříně sešroubujeme a smirkovým papírem zabrousíme všechny hrany. Podélné hrany, které se drží v ruce, zabrousíme na větší poloměr.

Na horní stranu skřínky přilepíme Lepoxem anténu tak, aby na sebe lícovały díry pro její připojení. Celou skříňku nastíkáme nejprve základní barvou, potom vhodným krycím lakem. Barvu volíme podle svého vkusu, vhodnější je světlejší, výrazná (přijímač odložený v trávě je lépe vidět a na slunci se nezahřívá). Po dokonalem zaschnutí panel popísem Propisotem a přestříkáme několika tenkými vrstvami laku Pragosorb. Na horní stranu ráhna antény je možno přilepit

pruh bílé umělé hmoty (podložka do seštu) na případné poznamky (azimutu, limit).

Ze šesti článek NiCd 225 vyrobíme kompaktní baterii. Poskládáme je do sloupečku, na krajní připájíme přívody. Pájíme na bezvadně očištěné místo a co nejrychleji, aby se článek teplem nepoškodil. Pak článek pevně omotáme páskou PVC – nejprve asi čtyři závity podélne, potom tři vrstvy po šesti závitech napříč. Konec posledního závitu zatavíme páječkou.

Oživení, nastavení

Při pečlivém provedení by oživení přijímače nemělo být problémem i při velmi skromném přístrojovém vybavení. Výhodou je předchozí zkušenosť s VHF technikou. V nouzi lze vystačit s 1 až 2 vysílači pro ROB se známými kmitočty a univerzálním měřicím přístrojem, užitečný je generátor AM 10,7 MHz (BM368) a GDO.

Nejprve důkladně vizuálně zkонтrolujeme obě osazené desky – ušetří to později mnoho potíží!

Přijímač je nejlépe oživovat přímo ve skřínce, kde již máme osazeny oba potenciometry, zdroj a zásuvku na sluchátka. Za-

Obr. 6. Víko skřínky

Obr. 7. Anténa

Obr. 8. Sestava přijímače

rozměr L: přední 313 mm, zadní 358 mm

čneme mf dílem. Usadíme desku do skřínky přijímače, v rozích lehce přichytíme činem ke stěnám skřínky. Připojíme zdroj, sluchátka a potenciometr regulace citlivosti. Po zapnutí musí být ze sluchátek slyšet slabý šum závislý na nastavení P2. Při dotykům prstu na vývod 8 IO2 musí být ze sluchátek slyšet zřetelný brum. Zde je již užitečný vf generátor (např. BM368), který připojíme přes rezistor 270 Ω na vstup filtru (kmitočet do propustného pásmá filtru – zhruba 10,7 MHz, interní AM). Jádro cívky L8 nastavíme na největší úroveň nf signálu na sluchátkách. Při nf napětí na sluchátkách 50 mV by mělo být vf napětí před filtrem asi 20 μV až 20 mV v závislosti na nastavení P2. V použitém zapojení by se interní AVC mf zesilovače mělo projevit až při úrovni asi 100 mV před filtrem. Klidový odběr této části by měl být asi 12 mA. Nyní usadíme do skřínky desku v části a připojíme ji včetně antény. Odběr celého přijímače by měl být asi 20 mA. Pomoci GDO nebo vysílače pro ROB „najdeme“ kmitočet oscilátoru a jádrem cívky L7 a změnou rezistoru R7 nastavíme požadovaný kmitočtový rozsah. Jádry cívek L3 a L4 naladíme max. citlivost přijímače a, je-li třeba, změníme kondenzátory C2 a C5. Jádra v cívkách zajišťujeme tenkou gumíčkou (jedno gumové vlákno např. z textilní gumy) vloženou do závitu kostičky.

Tím je základní ozivení přijímače hotovo. Nyní definitivně připojíme desky do skřínky přijímače, na hřidle potenciometrů nasadíme knoflíky (např. z přijímače ROB80 nebo vlastní výroby s talířkem o Ø 45 mm) a zkoušme základní funkci přijímače v uzavřeném stavu (citlivost, kmitočtový rozsah, regulaci zisku).

Posledním úkolem je nastavení antény. Za tímto účelem připojíme do bodů připojení antény k symetrickému transformátoru na dva kousky vodiče kondenzátorový trim 12 pF. Vybereme si rovnou plochu aspoň

500 × 500 m, na vhodné místo nainstalujeme vysílač, postavíme se do vzdálenosti asi 100 m do maxima dipólu vysílače a kontrolním přijímačem zkontrolujeme, zda se v místě nenachází odrazy. Potom již zkusíme zaměřit vysílač zkompletovaným přijímačem. V této fázi by již měl být znát silný přední lalok antény. Jádro cívky L3 doladíme na maximum citlivosti, postavíme se čelem k vysílači a kondenzátorovým trimrem nastavíme maximální intenzitu signálu. Tímto nastavením vlastně kompenzujeme nedokonalost provedení a přizpůsobení antény, je tedy možné, že optimální kapacita vyjde 0 pF, tedy odpojený trim! V praxi většinou tato kapacita vychází okolo 1 až 2 pF.

Zbývá jen nahradit trimr pevným kondenzátorem, styčné plochy skřínky a vika natřít silikonovou vazelinou (proti pronikání vody do přijímače), nakreslit stupnice na knoflíky a v praxi ověřit vlastnosti přijímače. Další vylepšení (připevnění busoly, ukazatele stupnice apod.) jsou plně v rukou realizátora.

Nabíječ akumulátoru

Akumulátor přijímače je nutno nabít nejen po každém závodě, ale – vzhledem k samovýběru akumulátoru – ještě aspoň jednou měsíčně. Nabíjíme proudem 22,5 mA po dobu 16 hodin – hodnoty nejsou kritické. Na obr. 10 je zapojení nabíječe, ze kterého lze současně nabíjet 2 přijímače (např. 80 m i 2 m). Základním dílem je zvonkový transformátor JESAN, do jehož krytu se s trochou dobré vůle vejdu všechny součástky. Nabíjet lze baterie o napětí asi 6 až 12 V, nabíjecí proud zůstává v povolené toleranci. Místo žárovek by bylo možno použít rezistory 470 Ω, ovšem na úkor stabilizace proudu. Diody LED sloužící k indikaci nabíjecího proudu jsou vlepěny do otvorů Ø 5 mm v krytu transformátoru.

Závěr

Se součástkami uvedenými ve schématu byla vyrobena série 20 ks přijímačů, jejichž veškeré ozivení spouštělo v pootočení jádry cívek a nastavení kmitočtového rozsahu rezistorem R7. Rovněž kompenzační kondenzátor u antény vyšel ve všech přijímačích stejný, a sice 1 pF. Součástky nebyly nijak vybírány. Při výrobě se nevyskytly žádné problémy a všechny přijímače již v provozu osvědčily své dobré vlastnosti, vesměs v rukou našich předních závodníků, což považujeme za dobré svědectví o reprodukovatelnosti konstrukce.

V SZTM ROB Brno jsme v praxi ověřili i připojení popsané antény k přijímači Delfin (30 ks). Tato úprava výrazně zlepší zaměrovací vlastnosti přijímače a lze ji jen doporučit. Výše uvedená anténa je mechanicky odolnější, než anténa přijímače Delfin a její využití je nesrovnatelně lepší. Anténa je použita samozřejmě i s kompenzačním kondenzátorem a symetrizačním balunem.

Doporučená literatura

- [1] Anténa HB9CV, RZ č. 11–12/1969.
- [2] Vysokofrekvenční symetrický směšovač UL1042N. AR-B č. 2/88.
- [3] Integrovaný obvod A283D, AR-A č. 3/86, s. 107 až 110.

Obr. 10. Schéma zapojení nabíječe

Vysílač DO s CMOS

V AR č. 12/87 bolo publikované diaľkové ovládanie na princípe impulzne kódovaného infračerveného žiarenia. Jeho vysielac umožňoval vyslanie 15 povelov a pre dekódovanie tlačítka klávesnice na sériový kód používal obvody logiky TTL, čo v takýchto zariadeniach prináša zo seba určité nevyhodiny – nutnosť napäťia 5 V a spotreba. Pokúsil som sa v tomto vysielaci obvod pre dekódovanie klávesnice zostaviť z integrovaných obvodov CMOS.

Tlačítka klávesnice sú zapojené do matice 4 × 4 ako je znázornené na obr. 1, každé má jeden spínací kontakt, ktorý spája vodiče, križujúce sa vedľa tlačítka. V kľudovom stave (žiadane tlačítko nie je stisnuté) je na vstupoch JA, JB, JC, JD čítacia IO3 binárne slovo LLLL, takže tlačítko 0 bylo ne funkčné. Celkovo je teda možné zapojiť do matice 15 tlačítek (obr. 2) a vyslať 15 rôznych povelov, pričom tlačítku 1 zodpovedá 1 vyslaný impulz, tlačítku 2 zodpovedajú 2 vyslané impulzy atď.

Celý vysielac je možné napájať z 9 voltovej batérie.

Karel Burda

0 LLLL	1 LLLH	2 LLHL	3 LLHH
4 LHLL	5 LHLH	6 LHHL	7 LHHH
8 HLLL	9 HLLH	10 HLHL	11 HLHH
12 HHLI	13 HHLI	14 HHHL	15 HHHH

Obr. 2. Klávesnice

Obr. 1.
Schéma
zapojenia

Výstup RGB pro ZX Spectrum

Ing. Karel Zelinka

U nás velmi rozšířené mikropočítače ZX Spectrum a odvozené typy (DELTA, Didaktik gama) neumožňují přímé připojení k monitoru se vstupem RGB. V článku je popsán způsob, jak i u těchto typů počítačů toto připojení realizovat a zajistit tak maximální dosažitelnou jakost obrazu.

Úvod

Základními výstupními signály, které poskytuje každý počítač s možností barevného zobrazování, jsou signály RGB. Tyto signály obsahují plnohodnotnou barevnou informaci s maximální šírkou pásmo a jsou proto, jako výstup počítače na zobrazovací jednotku, jednoznačně nejvhodnější.

Protože ale připojení počítače k televiznímu přijímači přes RGB není pro běžné uživatele schůdné (mnoho typů barevných televizorů ještě vstup RGB nemá), byvá u domácích počítačů obvyklejší připojení přes signál VIDEO nebo po jeho namodulování na novou vlnu přes anténní konektor.

Signál VIDEO v počítači vzniká ze signálu RGB tak, že se na odporové matici vytvoří jasová složka -Y, jejím součtem se signály R a B vzniknou rozdílové složky R-Y a B-Y a pro obvykle použitou normu PAL se složka B-Y a po řádcích alternující složka R-Y zpracuje společně se signály pro synchronizaci obrazu a synchronizaci barev (BURST) v kvadraturním modulátoru, přičemž obvykle je televizní norma PAL poněkud „ošízena“ (nebývá použito prokládané řádkování, chybí vyrovnávací impulsy ve snímkovém zájemnovacím impulsu, není správný synchronní chod barvonošné s rozklady atd.).

Obr. 1. Zjednodušené blokové schéma

Obr. 2. Úplné blokové schéma

Z principu normy PAL vyplývá, že zatímco jasová složka je přenášena prakticky s plnou šírkou pásmo, barevná informace je namodulována na nosném kmitočtu 4433618,75 Hz a proto její šířka pásmo je značně omezená. Ostré zobrazení textu, zvláště nad 40 zn./rádek v sýtějších barvách, tedy není principiálně možné – v tomto směru bývá význam výstupu VIDEO často pře噏ován.

Pokud je připojen televizor k počítači přes anténní konektor, přistupují ke snížení kvality obrazu ještě další vlivy jako nonlinearita modulátoru UHF, není částečně potlačeno jedno stranné pásmo u AM, odrazy na napájecí, rušení TV vysílači a přenosové vlastnosti v trasy televizoru (volič, OMF, detekce). Tento způsob je tedy z hlediska dosažitelné kvality obrazu vhodný nejméně a má opodstatnění pouze v jednoduchosti připojení televizoru k počítači a v možnosti snadného rozvodu signálu k více televizorům současně.

Výstupy počítače pro zobrazování

Při konstrukci počítače ZX Spectrum byla snaha minimalizovat cenu a počet IO – výsledkem je mj. zákaznický obvod ULA, který zabezpečuje pro zobrazování přímo signály

vhodné pro kvadraturní modulátor PAL (IO LM1889), tj. signál -U (-B-Y), V (alternující signál R-Y) a jasovou složku -Y. Odporová matice pro Y a součtové zesilovače pro rozdílové složky U, V jsou součástí IO ULA a signály RGB nejsou z obvodu pro omezený počet vývodů vyvedeny. Dostupné signály jsou zpracovány v modulátoru PAL a získaný signál VIDEO je vyveden na přímý konektor počítače a lze jej v případě potřeby rovněž využít.

Možnosti získání signálů RGB

Na přímém konektoru počítače máme k dispozici rozdílové složky -U, V a jasový signál -Y, které vznikají z původních signálů RGB a existuje možnost, jak z nich zpětně signály RGB získat. Převážně „digitální“ přístup je popsán v [1]. Tento způsob vyžaduje náročné nastavení několika komparátorů, vychází poměrně složitý a ruší vliv příkazu BRIGHT. Dále popsáne zařízení je spíše analogového charakteru, zachovává plnohodnotné zobrazení a jeho nastavení je snadnější. Základní princip funkce je patrný z blokového schématu na obr. 1.

Signály RGB vznikají součtem na odporové matici R30 až R35 z rozdílových signálů a jasové složky Y. Zatímco Y a B-Y získáme snadno inverzí vstupních signálů -Y a -(B-Y), polaritu signálu R-Y musíme přepínat po řádcích analogovým přepínačem Př1 ve správné fázi; to zabezpečuje vyhodnocování impulsu, původně určených pro generování signálu synchronizace barev (BURST), blok označený SO. Rozdílový signál G-Y se získává obvyklým způsobem na odporové matici R25 až R27 podle známé rovnice:

$$Y = 0,299 R + 0,587 G + 0,114 B$$

Obr. 3. Průběhy napětí na výstupech Y, U, V počítače

Obr. 4. Celkové schéma zapojení přípravku RGB (T5 být správně n-p-n, u 103 mají být spojeny vývody 5 a 6)

odtud:

$$-(G-Y) = 0,509 (R-Y) + 0,194 (B-Y)$$

Signál G-Y pak získáme inverzí.

Pokud bychom realizovali zařízení podle blokového schématu na obr. 1, dočkali bychom se nepríjemného překvapení. Získali bychom na obrazovce sice krásné pastelové barvy, ale bohužel jiné, než by měly být. Abychom pochopili příčinu, musíme si objasnit způsob zpracování barevných signálů jak v počítaci ZX Spectrum, tak i v televizoru.

Popis zpracovávaných signálů

Informace pro synchronizaci přepínání fáze rozdílového signálu V(R-Y) vzniká v obvodu ULA tak, že se u obou rozdílových signálů vytváří asi 1 µs za synchronizačním impulsem pomocný impuls; tyto impulsy ze signálů B-Y a alternujícího R-Y se současně zpracovávají v kвadraturním modulátoru PAL zcela shodně jako běžná informace o barvě a získá se tak, po dobu trvání těchto impulsů, asi 10 až 12 kmitů barvonosného kmitočtu (BURST) s amplitudou a fází vhodnou pro pozdější synchronizaci přepínání RY v dekódéru přijímače PAL (viz obr. 3).

V televizním přijímači se obvykle v signálech RGB nepřenáší stejnosměrná složka. Protože je ale přesná hodnota této složky nutná pro správné podání barev, vyklíče se oblast rozdílových signálů za synchronizačním impulsem a podle ní se nastaví pracovní bod koncových zesilovačů barev na úroveň černé. V běžném TV signálu úrovně v této oblasti skutečně úrovni černé přibližně odpovídá; jak je ale vidět na obr. 3, u rozdílových signálů, které jsou k dispozici u počítače ZX Spectrum, tomu tak není! Zde přítomné impulsy pro synchronizaci barev (BURST) způsobí, že koncové zesilovače RGB v televizoru považují jejich vrcholky za úroveň černé

a nastaví své pracovní body zcela chybně – především se značně zvýrazní modré složky a potlačí se červené složky v všechn barvách. Tuto variantu (obr. 1) uvádíme jednak pro lepší pochopení funkce zařízení a jednak proto, že jsem se s konstrukcí podobné koncepce již mezi uživateli počítaců ZX Spectrum setkal. Uvedený nedostatek je odstraněn v blokovém schématu podle obr. 2.

Princip funkce přípravku

Rozdílový signál -(B-Y) je invertován a po dobu činné části řádku obrazu přiveden přes „kontakt“ analogového přepínače Př 5 na matici RGB obdobně, jako tomu bylo v obr. 1. Po dobu trvání synchronizačního impulsu přepne Př 4 a nabije kondenzátor C1 na ss napětí odpovídající úrovni černé. Po skončení synchronizačního impulsu se Př 4 přepne do původní polohy a na asi 3,5 μ s se přepne Př 5 a připojí tak C1 přímo na výstup. Tím se vlastně původní impuls po BURST ze signálu odstraní a nahradí se ss úrovní odpovídající černé, přičemž C1 zde pracuje jako paměť. Potřebné synchronizační impulsy ziskáme v oddělovači synchronizačních impulsů (SO), dobu přepnutí Př 5 ovládá monostabilní klopný obvod MKO2.

V kanálu R-Y je funkce obdobná (Př 2, Př 3) a navíc zde přistupuje inverze signálu pro každý druhý řádek (Př 1).

Pro získání všech potřebných impulsů se nejdříve oddělí synchronizační impulsy ze signálu -Y a současně se invertují. Tyto impulsy se využívají jednak pro synchronizaci rozkladu v televizoru, jednak se jejich vzestupnou hranou spouští monostabilní klopný obvod (MK01), který na výstupu generuje impulsy úrovně L, dlouhé asi 2 µs, jejichž vzestupná hrana časově souhlasí se středem impulsu pro synchronizaci barev

u alternujícího signálu R-Y. Následující klopný obvod nastaví svůj výstup podle logické úrovně signálu R-Y v okamžiku příchodu vzestupné hrany signálu z MKO1 – tím se zajistí překlápení výstupu KO a tím i Př 1 synchronně s alternující fází signálu R-Y. MKO2 generuje za synchronizačním impulsem obdélníkový puls úrovně H s dobou trvání asi 3,5 µs, který slouží k ovládání přepínačů (Př 3, Př 5) pro odstranění impulsu pro BUBST ze signálů R-Y a R-Y

Ponis zapojení

Konkrétní zapojení na obr. 4 vychází z blokového schématu na obr. 2, pro analogové přepínání je využito IO CMOS řady 4000. Vazba vstupů (-Y, -U, $\pm V$) na výstupu počítáče je stejnosměrná, což sice klade přísnější požadavky na dodržení ss úrovní, ale zabezpečí se tak nezávislost ss poměrů na průběhu zpracovávaného signálu (odstraní se tak např. možnost vysazování synchronizace při zobrazování kontrastních přechodů) a obvody se zjednoduší.

Jasová složka -Y se po inverzi (T1) a prouďovém zesílení (T2) přivádí na RGB matici přímo. Signál U (-B-Y) se invertuje (T3), přičemž Př 4 a Př 5 (IO2a, c) se odstraní nezádoucí impulsy pro BURST a přes emitorový sledovač (T4) se přivádí rovněž na RGB matici.

Obdobně je zpracován i signál V (alternující R-Y) s tím rozdílem, že se ze zesilovače (T5) odebírá invertovaný i neinvertovaný signál a ty se v rytme rádiového kmitočtu přepínají Př 1 (IO1b). Toto zapojení je kompromisem mezi jednoduchostí a požadavkem

„žaluzii“. Před odporovou maticí (R30 až R35) lze pak získat signály Y, R-Y a B-Y a za maticí po oddělení sledovači (T8 až T10) signály RGB.

Synchronizační impulsy jsou odděleny ze signálu -Y a současně invertovány komparátorem (IO3). Odtud je možno je odebírat v žádané fázi pro synchronizaci televizoru (T12). Dále spouštějí MKO1 (IO4a), jímž generované impulsy úrovně L určují svou vzestupnou hranou okamžik přepisu úrovni ze vstupu D (IO4b) na výstup Q', na kterém tak vzniká obdélníkový průběh o kmotku $f_h/2$, tj. 7812,5 Hz. Impulsy, jejichž polaria se má dekódovat jsou tvarovány (T11). K potlačení nežádoucích impulsů (pro BURST) jsou využity IO1a a IO2a, které jsou řízeny impulsy 3,5 µs z MKO2 (IO2b). Neobvyklé zapojení IO2b jako MKO vzniklo snahou využít zbyvající přepínač v IO2 a omezit tak počet aktivních součástek na minimum.

Pro zajištění minimálních rušivých jevů v obraze je nutné popsané obvody napájet dobře vyhlazeným napětím +7 V; toto napětí bylo zvoleno vzhledem k možnostem zdroje počítače Spectrum (9 V), požadavkům na rozkmit signálů a podstatně větší rychlosti přepínání obvodů CMOS při 7 V než při 5 V. Vzhledem k stejnosemerným vazbám v obvodech je vhodná velikost napájecího napětí dvojnásobek s přesností $7 V \pm 0,1 V$, odběr je asi 70 mA. Pronikání vf zvlnění přes napájení z počítače do obvodu RGB zabraňuje tlumivka TL1. Tento způsob napájení zatěžuje pouze síťový zdroj počítače, který je dostatečně dimenzován, odběr z vnitřního stabilizátoru +5 V v počítači se nezvětší.

Připojení k počítači

Všechny potřebné signály a napájecí napěti jsou u počítače Spectrum vyvedeny vzdadu na přímém konektoru, popsaném papír. v [6]. Budete-li chtít připojit uvedené zařízení bez nutnosti zásahu do počítače, lze odebírat -Y, -U, ±V a +9 V přímo z tohoto konektoru (zem připojte na vnější plášť konektoru pro výstup). Doporučují však tyto signály vyvést na zvláštní konektor, který lze umístit např. vedle anténního konektoru. Jsou pro to nejméně tři důvody: připojení RGB si neblokujeme přímý konektor pro připojení jiných periferií (ani ho nemusíme shánět); můžeme snadno zařadit do série se signály Y, U, V ochranné rezistory (přímý zkrat této výstupů proti nulovému potenciálu je nebezpečný pro IO ULAs); můžeme připojit „zem“ pro videosignály na kostru modulátoru (zem na přímém konektoru není vhodná, způsobuje v obraze silné moaré).

Na přidaný konektor doporučují vyvést signály -Y, -U, ±V (na konektoru počítače Spectrum značeno jako Y, U, V), dále zemnící přívod od upevňovací špičky krytu modulátoru UHF a napájecí nestabilizované napětí +9 V (ve skutečnosti zde bývá napětí o něco vyšší). Použijeme-li 7 dutinkový konektor, vyvedeme ještě signály VIDEO a napětí +5 V. Pro počítače Delta (ZX Spectrum+) je nevhodnější kulatý 7kolíkový FRB konektor WK46248, který vedle anténního konektoru pěsně „padne“. Otvor pro konektor propilujeme až nahoru, aby byl otevřený a konektor šel ze skřínky počítače vyjmout současně s deskou s plošnými spoji, bez nutnosti odpájení přívodů. Vhodné zapojení tohoto konektoru je na obr. 5.

Protože popsaný přípravek všechny takto vyvedené signály nevyužívá, stačí na vzájemné propojení pětižilový kabel, na jehož druhém konci je běžný pětikolíkový nf konektor K1, zapojený podle obr. 6. Do napájecí větve +9 V je vhodné zařadit v počítači ještě

jednu tlumivku shodnou s TL1 a na straně konektoru blokovat vývod +9 V proti zemi kondenzátorem 150 nF (TC 205 apod.). Kabel musí propojovat stejně označené signály obou konektorů. Protože výstupy počítače mají poměrně velkou impedanci, je třeba volit tento kabel s co nejmenší kapacitou (ne stíněný) a co nejkratší -max. 0,5 m, jinak se zhorší rozlišovací schopnost obrazu. V případě potřeby delšího kabelu mezi počítačem a připravkem bylo nutné zařadit na výstupy počítače Y, U, V emitorové sledovače a kabel na straně vstupu do připravku impendančně přizpůsobit.

Pro majitele počítače Didaktik bude napájení připravku problematický, protože zde napětí +9 V není přímo k dispozici. Bude nutné bud' k zařízení přidat zvláštní zdroj nebo nestabilizované napětí (asi 12 V) vyvět z původního napáječe, případně z počítače.

Připojení k televizoru

Tato problematika je na celé této záležitosti nejsložitější, poněvadž u nás používaných typů barevných televizorů je velké množství a jejich připojení se bude lišit. Velkou výhodou připojení počítače přes RGB je možnost využití prakticky všech televizorů, popř. i profesionálních monitorů pro barevnou televizi, při maximálně dosažitelné kvalitě obrazu a to bez ohledu na to, jestli mají zabudovaný dekodér PAL nebo SECAM, dokonce ani nemusí pracovat vt, mf dil televizoru, ni část a dekodery barev. Lze tedy využít i různých přenosných TV přijímačů sovětské výroby, kterých je v ČSFR značné množství.

Jako příklad je uvedeno připojení RGB k televizorům řady Oravan; pro televizor Colortron 4001A (NDR) lze doplnit vstup RGB obdobně. Pro jiné typy bude naznačen obecně přístup k této problematice.

U Oravanu je použit pro maticování barev IO A3501D, který přímo umožňuje připojení externích signálů RGB. Je nutné pouze osadit na desce modulu „G“ tři kondenzátory (např. TK 783 100 nF) a při delším kabelu mezi připravkem a televizorem i zatěžovací rezistory a vyvět je jako RGB na konektor (podrobnosti byly již uveřejněny v [3], protože

neuvádí). Dále doporučují na vhodné místo televizoru zabudovat dvoupólový přepínač s aretací (zostat, stáci i páckový) a zapojit ho podle obr. 7. Přepínání televizoru na režim externího vstupu pro video je nutné, jinak pronikající TV signál způsobuje v obraze rušivé jevy.

Nyní zbývá již jen připojení synchronizace. Zde je možností více, nejhodnější asi bude přivedení synchronizačních impulsů z výstupu SYNC ve správné fázi na VIDEO vstup televizoru (šp. 2 na konektoru VIDEO). Vhodnou velikost impulsů bude někdy třeba upravit sériovým rezistorem nebo děličem. Na vstup VIDEO televizoru lze přivést i signál Y z výstupu připravku (emitor T2).

Pro vstup RGB v televizoru lze použít běžný 7 kolíkový nf konektor, který zapojíme např. podle obr. 8, konektorovou zásuvku na straně připravky RGB jsem použil nf 7 kolíkovou 6AF28051, zapojenou podle obr. 9 (pro propojení zemí se využívá zemnice svorky a pláště konektoru, na straně kabelu je možné použít i obyčejný 5 kolíkový konektor – do 7 dutinkové zásuvky ho lze zasunout).

U takto zapojených televizorů lze regulovat kontrast a jas, ostatní ovládací prvky nemají na obraz vliv.

U některých televizorech jsou IO, které neumožňují jednoduché připojení externích signálů RGB, v jiných máme zase možnost výběru, jestli připojíme RGB nebo signály rozdílových složek R-Y a B-Y a využijeme RGB matice, která je součástí každého televizoru pro barevný příjem. Pro tento případ jsou na konektor K2 podle obr. 9 vyvedeny i signály U a V. Protože při tomto způsobu připojení budeme využívat pouze signály Y, R-Y a B-Y, je možné v připravku vypustit ze zapojení T7 až T10 a R25 až R41. Všechny ovládací prvky televizoru pro regulaci obrazu (jas, kontrast i barevná sytost) si ve většině případů svou funkci zachovají.

Nevyhodou bude nutnost většího zásahu do televizoru, než v předchozím případě – bude nutné zabezpečit přepínání rozdílových signálů pro externí vstup, popř. i upravit jejich úroveň. Připojení přes rozdílové signály lze proto doporučit jen těm zájemcům, kteří jsou s problematikou barevné televize dostatečně seznámeni.

Na tomto místě je nutné upozornit na důležitou okolnost. Pro připojení počítače přes vstup RGB (ale i VIDEO, popř. rozdílové signály) je bezpodmínečně nutné, aby všechny vodiče vstupu byly galvanicky oděleny od síti! To bude automaticky splněno u televizorů, které již měly vstup VIDEO zabudován, je ale celá řada našich televizorů (všechny až přibližně po řadu Color 110 včetně) i některé zahraniční, které mají vnitřní „zem“ vodivě spojenou se sítí. Zde je použití spolehlivého oddělovacího transformátoru naprostou nutností – nepomůže ani přepolování vidlice v zásuvce, tak oblibené u černobílých televizorů (i když kolidují s předpisy), protože např. Color 110 je napájen přes můstkový usměrňovač! Nepoužijeme-li zde transformátor, je velké nebezpečí likvidace počítače včetně periferií, televizoru, popř. i obsluhy!!!

Obr. 6. Zapojení konektoru K1 (vstup připravku pro počítač)

Obr. 7. Zapojení přídavného přepínače v televizoru

Obr. 8. Zapojení konektoru K2 (vstup připravku pro televizor)

Obr. 11. Rozložení součástek (R5 u R24 má být správně R55)

Obr. 10. Deska Y51 s plošnými spoji

Seznam součástek

Rezistory (TR 191, TR 151, TR 212)	R50	18 kΩ
R1, R6, R11, R15	R53	22 kΩ
R2, R7, R10, R28	R54	470 Ω (viz text)
R3, R8, R24, R29,	R55	120 Ω
R36 až R38,	R56	(viz text) TR 192
R46, R48, R49	Kondenzátory	10 nF, TK 724
R4, R9,	C1, C2	100 nF, TK 782
R23, R39 až R41	C3, C4, C8,	270 pF, TK 754
R5	C5	82 pF, TK 754
R12	C6	22 pF, TK 754
R13	C7	150 nF, TC 205
R14	C9	80 μF, TE 151
R16, R52	C10	(100 μF, TF 007, TE 981)
R17, R18	R50	18 kΩ
R19, R21, R26, R30,	R53	22 kΩ
R32 až R35, R47	R54	470 Ω (viz text)
R20	T1 až T10	KC507 až 509
R22, R51	T11, T12	BSX29 (TR15)
R25	D1, D2	KA222
R27, R44	IO1, IO2	MHB4053
R31, R43	IO3	MAC111
R42	IO4	MHB4013
R45	IO5	MA7805

Dále doporučují použít u televizoru třípramenou síťovou šňůru a kostru televizoru uzemnit (přímo nebo v případě vzniku nezádoucí zemní smyčky přes dvě antiparalelné zapojené diody nebo alespoň přes rezistor např. 10 kΩ, aby se nemohl televizor samovolně nabijet – vlivem občasných sršení by se mohl „záhadně“ hroutit program, v krajním případě by se mohl i poškodit počítač).

Konstrukce přípravku

Celé zapojení je na dvoustranné desce s plošnými spoji o rozměrech 90 × 80 mm, která je umístěna v krabičce z dvoustranného kuprexitu tl. 1,5 mm (vnější rozměry 99 × 94 × 28 mm). Většina rezistorů je umístěna nastojato, tranzistory i IO jsou za-

pájeny do desky přímo. Plošný spoj byl navrhován s ohledem na to, aby nebylo nutné prokovení děr; všechny součástky jsou uspořádány tak, aby ke všem jejich vývodom byl snadný přístup pájecíkou i ze strany součástek. Stabilizátor napětí IO5 pro napájení přípravku je umístěn přímo na desce s plošnými spoji na distančních sloupcích (přídavné chlazení nevyžaduje). Celá deska s plošnými spoji je přichycena ke krabičce v rozích. Deska s plošnými spoji je na obr. 10 a rozložení součástek je na obr. 11.

Na spodní straně desky jsou umístěny pouze R54 (přímo mezi vývody IO5), C11 (je umístěn u stěny krabičky a záporným vývodem připojen do stejného bodu, jako zemní konec R55), dále TL1 (R56) a C9 (jsou zapojeny mezi vývody konektoru K1 a bodem +9 V).

Všechny přívody ke K2 (kromě signálu SYNC) jsou vedeny z pájecích bodů na straně součástek, u K1 (kromě TL1 a C9) na straně spojů. Zemnicí přívod na K2 je přiveden z pájecího bodu na kraji desky (u R10), u K1 doporučují přivést zemnicí přívod přímo ze „studeného“ konce R55 (C10). Krabička je spojena se zemí přípravku přes pláští konektoru K1.

Horní a dolní víko krabičky je odnímatelné, vyjmout desku z krabičky a odpojovat konektory není tedy třeba ani v případě opravy nebo úprav. Uspořádání dílů v krabičce je

Obr. 12. Uspořádání dílů v krabičce a) ze strany součátek b) ze strany spojů

patrné z obr. 12 a titulní fotografie. Tlumivka TL1 má indukčnost asi $230 \mu\text{H}$, je navinuta na toroidu o vnitřním průměru 10 mm z materiálu H12 (20 z drátém o $\varnothing 0,8 \text{ mm}$) a je navlečena a vývody připájena na rezistor R56, na jehož odporu nezáleží (větší než $10 \text{ k}\Omega$).

Místo předepsaných tranzistorů n-p-n lze použít i jiné obdobné typy (KC237), pozor ale na rozdílné zapojení jejich vývodů!

Uvedení do chodu

Oživení by nemělo dělat potíže, pokud jsme se nedopustili při osazování chyby. V opačném případě se neobejdeme bez osciloskopu, raději dvoukanálového. Dále popsaný postup platí pro televizory řady Oravan apod., používající IO TDA3501, popř. TDA3505 (A3501D, MDA3505).

Nejdříve na vstup napojení +9 V (TL1) připojíme proti zemní svorce přípravku (pozor – ne proti kolektoru stabilizátoru!) přes ampérmetr zdroj ss napětí a pomalu zvýšujeme napětí až do 9 V při současné kontrole odběru, proud nesmí překročit 100 mA. Na výstupu IO5 (E) má být napětí $7\text{ V} \pm 0,1\text{ V}$, které lze dostavit změnou R54. Externí zdroj odpojíme, přípravek připojíme k počítači i k televizoru, přičemž počítač propojíme s televizorem současně přes antennní vstup a televizor na signál počítače normálně nalaďme. Na přepínači pro externí signál (viz obr. 7) odpojíme přívod +12 V (šp. 2b) a přepínač stiskneme. Tím v první fázi oživování aktivujeme sice externí vstup RGB televizoru, ale synchronizace obrazu je zabezpečena přes v řadě cestu (tento způsob synchronizace je samozřejmě možný jen u televizoru, který je schopen alespoň černobílého příjmu ve IV. TV pásmu).

Po zapnutí počítače by měl přípravek pracovat. Pokud tomu tak nebude nebo pokud

Obr. 13. Časové průběhy impulsních signálů

se chcete přesvědčit o správné funkci jednotlivých obvodů, doporučuji následující postup.

Nejdříve do počítače vložíme program pro generování svislých barevných pruhů podle klesajícího jasu. Výpis vhodného programu je uveden dále, generování pruhů je doprovázeno akustickými signály, což umožňuje kontrolu běhu programu i bez obrazu.

tento signál SYNC přes konektor RGB na vstup VIDEO (propojíme šp. 2 původního konektoru VIDEO se šp. 5 konektoru RGB (viz obr. 8).

Po técto úpravách by se mél znovu objevit obraz barevných pruhů, při případné nestabilité synchronizace zkuste změnit odporník přidaného rezistoru v sérii s C8. Dále doporučuji nahradit přechodné kombinaci R17 a R18 trimrem 22 k Ω a pak střídavě tímto trimrem a trimrem R13 nastavit minimální „žaluzie“ ve všech barvách (nejvýraznější bývají v pruzích RED a CYAN). Po nastavení obě hodnoty tohoto trimru změříme a nahradíme pevnými rezistory (R17 a R18), konečně jemně vyvážení lze pak kdykoli provést trimrem R13. Ještě můžeme zkontrolovat, jestli správně pracují obvody pro pojáločení impulsů pro BURST – stáčí, když zkratujeme proti zemi IO2-B (špa. 10 – vstup MKO). Zabarvení pruhů se musí výrazně změnit směrem k modré, červené a složka barev naopak zesláblé (tím vlastně změníme na chvíli zapojení z obr. 2 na zapojení z obr. 1).

Nakonec můžeme ještě zkontrolovat nastavení matice RGB. Při běžném jasu, v programu pro generování pruhů změníme v řádce 20 BORDER 2 na BORDER 0 a program spustíme. Odpojíme-li na výstupu signály G, B a ponecháme připojen signál R (a samozřejmě i SYNC), objeví se na obrazovce dva červené svislé pruhy (v místech pruhů, jejichž barvy obsahovaly červenou složku). Jas obou pruhů by ve stejných místech měl být stejný; lze toho dosáhnout změnou R2. Potom ponecháme připojen jen výstup B – na obrazovce se objeví čtyři modré pruhy, stejný jas pruhů lze dostavit R7. Na konec ponecháme připojen jen výstup G – na obrazovce se objeví široký zelený pruh, jehož jas by měl být ve vodorovném směru stálý; lze to dostavit R26 a poměrem R25, R27.

Nastavení matice RGB, uvádím jen pro úplnost; v praxi není nutné, menší odchylky nejsou na závadu a jsou závislé na nastavení a vlastnostech použitého televizoru. Tato kontrola je ale velmi názorná pro ty, kdo chtějí hlouběji proniknout do tajů barevné televize. Téměř doporučuji zejména literaturu [2] a dále [3] a [4], které ale již předpokládají znalosti principů soustav BTV.

Tím je nastavení skončeno, pro rychlé nalezení hrubých chyb jsou ve schématu uvedena stejnosměrná napětí (při zobrazení barevných pruhů).

Nyní můžeme srovnat vlastnosti vstupu RGB s původním vstupem přes anténu (nebo vstupem přes VIDEO) – např. zelené písmo na červeném podkladu je při sytéjších barvách při původním připojení téměř nečitelné, zatímco při připojení přes vstup RGB je velmi kvalitní a zcela zmizí známý neklid (vlnění) obrazu, působící rušivě zejména na barevných rozhraních.

Každý uživatel počítače Spectrum, který uvedené zařízení viděl v provozu je zatoužil mít a proto doufám, že popsaný příspěvek i vám zpříjemní chvíle u počítače při programování i hrách.

Literatura

- 1 Funkschau 6/87, s. 5.
 - 2 Křížek, F.: Od černobílé k barevné televizi. NADAS, Praha 1977.
 - 3 Přijímače pro příjem barevné televize AR-B, č. 4 až 6/87.
 - 4 Netušil, O.: Diagnostika a servis farebných televizorů. ALFA, Bratislava 1982.
 - 5 Vít, V. a kol.: Televizní technika. SNTL ALFA, Praha 1979.
 - 6 Zapojení přímého konektoru mikropočítáče ZX Spectrum: AR-A, č. 6/85; s. 219 AR-A č. 2/86, s. 57.

mikroelektronika

Po prázdninách a po dovolené jste jistě všichni opět plní nového tvůrčího elánu a je tedy ta pravá chvíle k vyhlášení dalšího ročníku naší soutěže o nejlepší příspěvky do této části časopisu. Nazvali jsme ji letos pouze Mikrokonkurs, ale zůstává soutěží pro programátory i konstruktéry. Pravidla minulého ročníku se osvědčila a nebudou v nich proto žádné větší změny. Jak jste si přečetli v minulém čísle, výsledkem loňských soutěží je několik pěkných konstrukcí a několik pěkných programů, právě asi tolik na kolik máme místo na zelených stránkách AR a v jeho zelené ročence.

I letos je hlavním cílem soutěže získat zajímavé příspěvky do našich časopisů, takové, aby byly zdrojem užitku, inspirace, poučení, a pomáhaly přímo i nepřímo k rozšíření výpočetní techniky a jejího využívání.

Protože chceme, aby náš časopis učil své čtenáře aktivnímu a tvůrčímu přístupu k problémům, a ne jen bezmyšlenkovitému kopírování toho co někdo vymyslel, budeme i nadále klást větší důraz na řešení než na jeho konkrétní realizaci. Samozřejmě význam to má pouze tehdy, bude-li řešení srozumitelně a jasně vysvětleno. Neklademe proto žádná omezení pokud jde o používané součástky, počítače nebo programovací jazyky, i když svůj praktický dopad na využitelnost příspěvku to má a může k tomu být i při hodnocení přihlášeno.

Jde o příspěvky do časopisu, který má pro tuto problematiku vyhrazeno pouze osm stran. I to je tedy hledisko, z kterého musíme přistupovat k výběru a hodnocení příspěvků. Dlouhé popisy, rozdělené na mnoho pokračování, jsou nepraktické a neoblíbené. Stejně tak příliš dlouhé programy nelze zveřejňovat nejen vzhledem k místu, které zaberou, ale i k nereálnosti jejich "ručního" přepisu do počítače. Optimální rozsah příspěvku je dvě až čtyři tiskové strany, pro ročenku čtyři až dvanáct tiskových stran. Pro vaši orientaci - na jednu tiskovou stranu se vejde šest normalizovaných rukopisních stránek (30 řádků po 60 znacích), samozřejmě bez obrázků. Prostor, který zaberou vaše obrázky, fotografie, tabulky a výpisy programů snadno odhadnete srovnáním s již uveřejněnými příspěvky v kterémkoli čísle AR. S výpisy programů pracujeme jako s obrázky, tj. otiskneme to, co nám pošlete. Musí mít proto potřebnou kvalitu - kontrastní, černé, délku řádek 32 až 40 znaků.

Zůstáváme u osvědčeného systému předběžných přihlášek, abyste zbytečně nevynakládali mnoho času na detailní zpracování příspěvků, které nemají naději na uveřejnění. Máte-li tedy v úmyslu přihlásit se do soutěže Mikrokonkurs 90/91, pošlete nám co nejdříve předběžnou přihlášku, obsahující tyto informace a údaje:

- 1) název příspěvku a stručný popis toho, co program nebo zařízení umí a v jakém rozsahu (asi 15 řádků),
- 2) s jakým počítačem může zařízení nebo program fungovat, u programu kolik paměti zabere,

3) blokové schéma, seznam použitých součástek, použitý programovací jazyk,

4) předpokládaný rozsah popisu a návodu k použití (přibližně v normalizovaných stránkách, tj. 30 řádků x 60 znaků),

5) u programů rozsah celého výpisu (listingu) programu v řádcích o délce 32 až 40 znaků,

6) předpokládané množství obrázků - schémat, vývojových diagramů, názorných obrázků, fotografií - přibližně v tiskových stranách, případně zda jste schopni dodat text příspěvku (nebo i obrázky) na disketu a v jakém formátu.

Dále uvedte

7) vaše jméno, adresu pro korespondenci, telefon, věk,

8) vaše zaměstnání a zaměstnavatele.

Tuto předběžnou přihlášku nám pošlete dvojmo (tj. s kopí) a s nadepsanou obálkou se zpáteční adresou (nefrankovanou). Kopii předběžné přihlášky Vám vrátíme

do 14 dnů po obdržení s naším vyjádřením, připomínkami, požadavky a podrobnějšími instrukcemi k vyhotovení soutěžního příspěvku. Předběžnou přihlášku můžete poslat kdykoli, se zřetelem na to, abyste po našem vyjádření měli ještě čas příspěvek zpracovat do definitivní podoby a "stihnout" jeho odeslání do uzávěrky, která je opět první jarní den, tj.

21. března 1991.

Cbě soutěže budou vyhodnoceny tak, aby výsledky mohly být uveřejněny v AR A č. 8/1991.

Příspěvky zařazené do kategorií A, B a C ("zlaté, stříbrné a bronzové medaile") budou odměněny diplomy a finanční částkou, určenou podle množství a kvality došlých příspěvků, a budou během následujících 12 měsíců zveřejněny v AR nebo jeho příloze (a běžně honorovány). Na ceny bude rozděleno 20 až 30 000 Kčs.

Přihlášky posílejte na adresu:

Redakce Amatérské radio
Mikrokonkurs
Jungmannova 24
113 66 Praha 1

**MIKROKONKURS
1990/91**

MIKROPOČÍTAČ MP-35

Ing. Karel Chramosil, ing. Petr Mudra

MP-35 je jednodeskový mikropočítač, osazený jednočipovým mikropočítačem TESLA MHB8035. Původně byl navržen pro použití v konkrétním zařízení, ale jeho zapojení je natolik univerzální, že jej lze prakticky bez změny využít i v mnoha dalších aplikacích. Mikropočítač je určen prakticky výlučně pro řídicí aplikace v jednodušších zařízeních.

V článku je popsána struktura a zapojení mikropočítače, spolu se stručným popisem jeho jednotlivých signálů a jejich významu i funkcí v mikropočítačovém systému. Je uveden postup při oživení mikropočítače. Způsob jeho nasazení a program si již musí uživatel navrhnut sám.

Mikropočítač je sestaven na desce s plošnými spoji 170 x 100 mm (Y510) a je osazen součástkami tuzemské produkce. Základní jádro mikropočítače (MHB8035, MH3212, MHB2716) je rozšířeno podpůrnými obvody MHB8155 a MHB8243. Realizován je i sériový kanál s optoelektronickým oddělením vnějších obvodů. Vzhledem k tomu, že s nasazením jednočipových mikropočítačů se počítá i ve zcela jednoduchých aplikacích (obsluha nejrůznějších převodníků, obsluha několika akčních členů, úprava dat při vysílání a příjmu, obsluha tiskárny aj.) lze předpokládat, že v mnoha aplikacích ani uvedené plné sestavy mikropočítače nevyužijeme. Pak stačí osadit desku pouze těmito součástkami, které jsou nezbytné pro danou aplikaci. "Povinné" zůstává pouze základní jádro mikropočítače.

Mikropočítač MP-35 je navržen v sestavě pro co nejširší rozsah aplikací, poslouží ale i pro základní pokusy s jednočipovými mikropočítači. Obsahuje následující části:

- vlastní jednočipový mikropočítač MHB8035 (8748, 8048), což je centrálníprocesorová jednotka (CPU) s 1 kB paměti programu, 64 B paměti dat, bránami P1 a P2, testovatelnými vstupy T0 a T1, vstupem vnějšího přerušení INT a osmibitovým čítačem/časovačem s možností přerušení;
- obvod pro strobování adresy MH3212;
- paměť EPROM 2716 / 2732;
- obvod MHB8155 - paralelní vstupy/výstupy, brány PA, PB, PC, čtrnáctibitový čítač/časovač a paměť dat RWM 256 B;
- obvod MHB8243 - expandér, čtyři čtyřbitové obousměrné statické porty s výstupní vyrovnávací pamětí P4, P5, P6, P7;

-interfejs pro sériový styk s prouduvou smyčkou 20 mA s galvanickým oddělením;

-zálohování paměti dat jednočipového mikropočítače řady 8035;

-jeden vstupní / výstupní konektor FRB.

Na obr. 1 je úplné schéma zapojení desky mikropočítače MP-35. Integrovaný obvod MHB8035 generuje a využívá veškeré řídicí datové a adresové signály.

Signál ALE, základní řídicí signál, je odvozen ze signálu o kmitočtu kryštalu připojeného k vývodům X1 a X2. Maximální kmitočet tohoto kryštalu je 6 MHz. Signál ALE je výběrový signál adresového registru, vydává se jednou během každého strojového cyklu a využívá se jako hodinový signál. Sesupnou hranou signálu ALE se zapisuje adresa do vnějších pamětí.

Signál PSEN je výstupní výběrový signál řídicí převzetí obsahu paměťového místa z vnější paměti programu.

Data D0 až D7 jsou vstupy/výstupy osmibitové obousměrné brány BUS, z které lze synchronně číst, a do níž lze zapisovat vzorkovací signály RD a WR; používá se též při styku s vnější pamětí programu. Ve strojovém cyklu převzetí instrukce obsahuje osm nížších bitů čítače instrukcí signálu PSEN. Rovněž obsahuje adresu a data

při styku s vnější pamětí dat. Styk řídí signály ALE, RD, WR.

Signál WR je výstup vzorkovacího signálu při zápisu obsahu brány BUS do vnějšího zařízení, využívá se jako vzorkovací signál zápisu do vnější paměti dat.

Signál RD je výstup řídicího signálu čtení. Při stavu log. "0" se zapisují data z vnějšího zařízení do brány BUS; signál se využívá jako vzorkovací signál pro vnější paměť dat.

Signál PROG je vstup programovacích impulsů, je také vstupním vzorkovacím signálem pro expandér 8243.

Signály P10 až P17 jsou vstupy/výstupy osmibitové nepravé obousměrné brány P2. Při styku s vnější pamětí její čtyři vstupy/výstupy P20 až P23 obsahují nejvyšší půlslabiku obsahu čítače instrukcí. Tyto vstupy/výstupy slouží rovněž pro expandér MHB8243.

Výstup P24 v zapojení slouží jako přepínač pracovního režimu obvodu MHB8155 (brána, paměť RWM). Výstupy P25 až P27 řídí sériovou prouduvou smyčku se dvěma hradly NAND a dvěma optovazebními členy WK 16413-4. Takto řešený sériový styk umožňuje propojení několika desek MP-35 sériově dvěma vodiči se vzájemným galvanickým oddělením, nebo připojení MP-35 k jinému systému (např. osobnímu počítači), který je rovněž vybaven sériovým stykem. Toto spojení umožňuje např. předávat data (povely) z osobního počítače mikropočítači MP-35 a zpětně od něj přijímat data (výsledky, hlášení, potvrzení).

Na obr. 2 je schématicky znázorněna jedna z možností vzájemné sériové komunikace mikropočítače MP-35.

Vstupní signál EA ve stavu log. "1" přeruší styk procesoru s vnitřní pamětí programu, všechny paměťové reference se pak vztahují k vnější paměti; využívá se k testování a odláďování programu.

Vstupní signál T0 lze přímo testovat instrukcí podmíněného skoku JT0, JNT0, jeho význam lze měnit instrukcí ENT0 CLK na výstupu hodinového signálu.

Vstupní signál T1 lze přímo testovat instrukcemi JT1 a JNT1, instrukcí STRT a CNT lze měnit jeho vliv na vstup čítače událostí.

Mikropočítač MHB8035 může být uveden do úsporného provozu, v němž nemůže provádět program, při

Obr. 2. Jedna z možností vzájemné sériové komunikace MP-35

Obr. 1. Schéma zapojení desky mikropočítače MP-35

sníženém příkonu asi na 10-15% však zůstanou zachována data v rezidentní paměti dat. Při normálním provozu jsou vývody V_{DD} a V_{CC} připojeny k napájecímu napětí 5 V, v úsporném provozu je vývod V_{CC} připojen na zem a k napájecímu napětí přes rezistor R_0 je připojen pouze vývod V_{DD} . Úsporný režim lze využít k ochraně dat při výpadku v napájení. MP-35 není vybaven pomocnými obvody, které by při vý-

padku napájení vypínaly podprogramy obsluhy přerušení, proto po obnově napájení se program rozběhne od adresy 0. Přesto je výhodné, že v rezidentní paměti dat můžeme uchovávat data (např. kalibrační konstanty). Rezistor R_0 a akumulátor mají na desce vymezené místo s univerzálním motivem plošného spoje. Odpor rezistoru zvolíme podle typu použitých akumulátorů.

Obvod MHB3212 pracuje v zapojení jako registr adresy. Adresa programu se zapíše vždy při sestupné hraně signálu ALE.

Obr. 4. Obrazec plošných spojů (strana se součástkami) desky Y510 mikropočítače MP-35

Paměť EPROM 2716 (2732) je řízena známým signálem PSEN, který je přiveden k signálu CS. Adresní sběrnici tvoří signály A0 až A10, datovou sběrnici signály D0 až D7.

Čtrnáctibitový dvojkový čítač MHB 4020 je určen pro dělení hodinového kmitočtu (signál ALE), jeho nastavení je možné propojkou v propojovacím poli. Taktto lze získat přibližně kmitočet 200 kHz až 14 kHz, ze systémového krystalu 6 MHz.

Obvod MHB8155 je inicializován signálem RESET. Jeho stav log. "1" převádí brány do vstupního režimu. Signály AD0 až AD7 jsou vstupy/výstupy sdílené adresové a datové sběrnice. Vstupní budič je třístavový, stav vstupních signálů se zapisuje do adresového registru. Obvod se aktivuje vždy při log. "0" výběrového signálu CE. Signál RD řídí čtení dat z obvodu, jsou-li signály RD a CE aktivní, uvádí se výstupní budič signálů AD0 až AD7 do vodivého stavu. WR je řídicí signál zápisu. Předepisuje zápis stavu signálu AD0 až AD7 příslušného registru nebo paměťového místa. Platná adresa se zapíše sestupnou hranou signálu ALE do adresového registru. Výběrový signál IO/M ve stavu log. "1" předepisuje výběr řídicího, stavového, popř. vstupních/výstupních registrů. Jeho stav log. "0" předepisuje výběr paměti pro zápis a čtení (RWM). Signály PA0 až PA7 jsou výstupy/vstupy brány PA. Signály PB0 až PB7 jsou vstupy/výstupy brány PB. PC0 až PC5 jsou vstupy/výstupy brány PC. Signál TIMER IN je vstup hodinového signálu

čítače/casovače. Signál TIMER OUT je výstup časovače.

Poslední popisovaný obvod MHB 8243 obsahuje čtyři čtyřbitové vstupní/výstupní brány P40, P50, P60, P70, které jsou účinně řízeny instrukcemi jednočipového mikropočítače. Signály P20 až P23 slouží jako adresová a datová sběrnice. Při každém přenosu se předávají prostřednictvím vnitřní sběrnice mezi mikropočítačem a expanderem dvě půlslabiky. V první půlslabice se předává adresa brány expanderu MHB8243, operační kód předepisuje typ přenosu.

Řídicí půlslabika je platná při sestupné hraně signálu pro PROG, dato-

vá slabika je platná při nástupní hraně tohoto signálu.

Oživení desky MP-35

Nejprve je třeba oživit vlastní jádro mikropočítače (8035, 3212, 2716). Pro integrované obvody mikropočítače a paměti je vhodné použít patice, ale nezbytně nutné to není. Osadíme nejprve samotný mikropočítač, připojíme krystal a ošetříme vstup RESET. Po připojení napětí zkонтrolujeme funkci mikropočítače, nejsnáze kontrolou signálů ALE a PSEN na osciloskopu. Pokračujeme osazením obvodu 3212 a paměti. Máme-li možnost, osadíme

```

;ZKUSEBNI PROGRAM MIKROPOCITACE MP35
;*****  

0000 27      START: CLR A           ;NA BRANU P1 NULY
0001 39      OUTL P1,A            ;NA BRANU P2 NULY
0002 3A      OUTL P2,A            ;CEKEJ 1/2 SEKUNDY
0003 140D    CALL CEKEJ          ;CEKEJ 1/2 SEKUNDY
0005 23FF    MOV A,#0FFH          ;NA BRANU P1 JEDNICKY
0007 39      OUTL P1,A            ;NA BRANU P2 JEDNICKY
0008 3A      OUTL P2,A            ;CEKEJ 1/2 SEKUNDY
0009 140D    CALL CEKEJ          ;A OPET ZNOVU
000B 0400    JMP START          ;  

  

;PODPORPROGRAM CASOVE PRODLEVY 1/2 SEKUNDY (PRIBLIZNE)
000D BAFA    CEKEJ: MOV R2,#250   ;POCET SMYCEK PO 2 MILISEC.
000F BBCB    TIME1: MOV R3,#200
0011 00      TIME2: NOP
0012 00      NOP
0013 EB11    DJNZ R3,TIME2     ;SMYCKA 2 MILISEC.
0015 EA0F    DJNZ R2,TIME1
0017 B3      RET
0000      END

```

Výpis 1. Zkušební program mikropočítače MP-35

Obr. 5. Obrazec plošných spojů (strana bez součástek) desky Y510 mikropočítače MP-35

nenaprogramovanou paměť (ve všech buňkách hodnota 0FFH, což odpovídá instrukci MOV A, R7). Při správné funkci by tento "program" měl provádět pouze přesun obsahu akumulátoru do registru R7 v nepřetržité posloupnosti, takže čítač adres (jedenáctibitový) by měl číst binárně nahoru (do 7FFH a opět do 0), což snadno prověříme osciloskopem na jednotlivých adresových vodičích, kde musí být signál se střídou 1:1 vždy s polovičním kmitočtem vůči předcházejícímu méně významnému adresovému vodiči. Pokud tomu tak není, bedlivě znova zkontrolujeme, zda všechny spoje jsou propojeny a mezi jednotlivými vodiči není na desce zkrat. Pokud budeme využívat další obvody, postupně je osadíme a vždy po osazení kontrolujeme opět činnost jádra, abychom ověřili, že připojením dalšího obvodu nedojde ke "zhroucení" mikropočítače. Tepře potom můžeme přistoupit k ověření činnosti právě osazeného obvodu.

Na závěr provedeme zkoušku mikropočítače s programem. Krátký testovací program podle **Výpisu 1** je zapsán v paměti EPROM, zabírá 20 bajtů a zbyvající obsah paměti může být libovolný. Program je sestaven pro vyzkoušení činnosti vstupních a výstupních linek brány P1 a P2. Pokud na kteroukoliv linku uvedených bran připojíme logickou sondu, bude na výstupu linky jednu sekundu log. 1 a jednu sekundu log. 0.

Závěr

Rádi bychom popráli všem, kdo se pustí do aplikace s deskou MP-35, úspěch při jejím oživení a nasazení. Rozhodně ale doporučujeme věnovat se již v počáteční fázi návrhu aplikace i detailnímu návrhu programu, abyste se po zhodovení desky mikropočítače nedočkali nepříjemného překvapení v podobě zjištění, že program je tak rozsáhlý, že Vašimi jednoduchými prostředky bude nezvládnutelný. Je třeba být připraven i na to, že první verze programu (druhá, třetí,...) s velkou pravděpodobností nebude správně pracovat. Očekávat správný běh programu na první pokus mohou pouze vynikající programátoři s letitou praxí, nebo úplní začátečníci, kteří zatím ještě žádný ucelený program nevytvořili. A téměř zkušeným bychom snad mohli zopakovat známou pravdu, že při použití jednoduchých prostředků tvorby programu vzniklá pracnost nikoliv lineárně s délkou programu, ale s jistou mocninou (obyčejně větší než druhou) jeho délky. Tento fakt by Vás ale neměl odradit od stavby zařízení s jednočipovým mikropočítačem, neboť i velmi jednoduché aplikace mohou přinést značný užitek.

Literatura

[1] Horák, V.: Jednočipové mikropočítače řady 8048. ARA 7/86.

[2] Starý, J.: Monolitické mikropočítáče řady 48. Dům techniky ČS VTS - Praha 1985.

[3] Nohel, J., Machačka, I., Pittarová, H.: Základní instrukce mikroprocesoru 8048, TESLA ELTOS - Praha 1983.

[4] Smutný, E.: Mikroprocesory a mikropočítače. AR 1/83.

Seznam součástek

Rezistory (TR 191)

R0	viz text
R1,R2,R3,R4,R5,R6,R7	4,7 kΩ
R8	470 Ω
R9	2,7 kΩ
R10	2,2 kΩ
R11	47 Ω

Kondenzátory

C1 20 μ F, TE984
 C2,C3 22 pF, TK774
 C4 47 μ F, TE121
 C5,C6,C7,C8,C9,C10,C11 68 nF, TK782

Plovodičové součástky

IO1	MHB8035
IO2	MH3212
IO3	K573RF5 (2716)
IO4	MHB8155
IO5	NHB4020
IO6	MHB8243
DD7	MH7400
VD0, VD1, VD2	KY130/80

Ostatní součástky

X1 krystal 6 MHz, KD 2/13
UF1, UF2 optron WK 164 13-4

SHELL SORT GENERATOR

Ing. Pavel Šrubař, Budějovická 855, 749 01 Vítkov

Na problém třídění narazí každý programátor, začne-li pracovat s většími soubory dat (databanky, adresáře, seznamy apod.). Dokud je potřeba seřadit jen několik závodníků do výsledkové listiny, stačí naprogramovat v BASICu triviální bublinkovou metodu. Ale už při několika desítkách tříděných záznamů začíná být čas zpracování neúměrně dlouhý a programátor začne pošilhávat po rychlejších metodách a jazyčích.

Profesionální operační systémy přikládají třídění velký význam a standardní třídicí programy jsou jejich nedílnou součástí hned vedle kompliátorů, řízení vstupu/výstupu, správy dat. Tyto třídicí programy jsou schopny v únosném čase seřídit i soubory svým rozsahem mnohonásobně přesahující objem operační paměti, pokud jsou umístěny na nosičích s přímým přístupem (magnetické disky či bubny). Aplikovat podobný přístup na ZX Spectrum s kazetovým magnetofonem není možné. Zde přichází v úvahu jen třídění souboru, jenž je celý umístěn v RAM.

K problematice třídění na Spectru lze přistupovat několika způsoby:

a) Při každé potřebě třídění napsat individuální třídicí rutinu. Toto řešení je optimální z hlediska volby algoritmu a délky třídicí rutiny, neboť vše nepotřebné lze vynechat a program přizpůsobit konkrétnímu souboru. Pokud ale neprogramujeme třídicí programy často, ztratíme mnoho času než se vpravíme do problematiky.

b) Napsat třídicí makro nebo univerzální rutinu v assembleru s využitím podmíněného překladu, aby se do cílového kódu přeložily jen ty úseky programu, které jsou potřebné vzhledem k použitým třídicím klíčům a charakteristikám souboru. Toto řešení narazí na málo rozvinuté prostředky podmíněného překladu běžných assemblérů (např. GENS).

c) Napsat programový generátor, který bude produkovat zdrojový text třídicího programu v assembleru nebo i vyšším programovacím jazyku. Nevhodou je složitá manipulace: výstupní soubor generátoru je třeba načíst komplátorem, přeložit a cílový program spojit s uživatelským. Navíc dostupné komplátory (C, Pascal apod.) zdaleka neprodukují optimální kód ve srovnání s assemblerem.

d) Napsat komplituječí generátor, který podle zadaných požadavků vytvoří třídicí rutinu ve strojovém kódu bez mezistupně v podobě zdrojového

textu. Toto řešení jsem použil při návrhu SHELL SORT GENERATORU.

Rutina je optimalizována podle těchto kritérií:

1. rychlosť třídění,
2. minimální délka kódu,
3. univerzálnost.

V úseku, který má zásadní vliv na rychlosť, rozhoduje každý takt. Naopak ty části rutiny, které se provádějí jen jednou, jsou komponovány s ohledem na minimální délku.

Například pro výpočet adresy I-té věty souboru je třeba délku věty (v registru HL) násobit číslem věty I (v registru DE). V první verzi generátoru jsem pro násobení obsahu registru HL obsahem DE využíval rutinu PROM pro šestnáctibitové násobení (30A9). Ukázalo se, že třídění lze značně zrychlit, když je obsah HL < 256 a použije se rychlejší rutina osmibitová:

5BCD	LD	A, H
5BCE	OR	A
5BCF	JP	NZ, #30A9
5BD2	LD	A, L
5BD3	LD	L, H
5BD4	LD	B, 8
5BD6	ADD	HL, HL
5BD7	RLCA	
5BD8	JR	NC, #5BDB
5BDA	ADD	HL, DE
5BDB	DJNZ	#5BD6
5BDD	RET	

Třídicí program si před zahájením třídění přenese tuto rutinu do Printer-bufferu. Při potřebě násobení ji pak volá příkazem CALL #5BCD. Je-li délka věty <256 (registrov H je nulový), provede se rychlé osmibitové násobení, jinak se výpočet svěří pomalejší rutině #30A9.

I toto řešení bylo možné urychlit: pokud je již při generování známo, že délka věty bude <256, tj. délka věty byla specifikována jako literál, je zbytečný test registru H a první tři instrukce lze vynechat. Generátor v tomto případě generuje místo CALL #5BCD instrukci CALL #5BD2 - viz řádek 236.

```
N:=počet vět
M:=N
LABEL1: M:=INT (M/2)
IF M=0 THEN
    konec
    K:=N-M
    J:=1
LABEL2: I:=J
LABEL3: L:=I+M
    IF Pořadí I-té
        a L-té věty
        vyhovuje
    THEN LABEL5
LABEL4: (Záměna I-té
        a L-té věty)
    I:=I-M
    IF I>0 THEN
        LABEL3
LABEL5: J:=J+1
    IF J<=K THEN
        LABEL2
    ELSE LABEL1
```

Algoritmus Shellova třídění

Ve většině publikovaných příkladů třídicích programů na domácí počítače je možné použít jen jeden třídicí klíč v kódu ASCII s délkou obvykle maximálně 256. Tato omezení při použití SHELL SORT GENERATORU neplatí. Lze třídit i podle čísel typu integer, short integer, word a real (kód kalkulátoru Spectra). Při třídění složitějších struktur je výhodná možnost deklarace více třídicích klíčů. Máme-li např. podle data seřadit věty začínající datem ve tvaru DD.MM.RR, použijeme tři klíče délky 2 s adresami 6, 3 a 0.

Za velmi potřebnou vlastnost třídicí rutiny považuji samopřemístitelnost. Jen tehdy ji lze umístit i do textu příkazu REM. Třídicí program je pak nedílnou částí BASICu, čímž se zrychlí jeho nahrávání a nemusíme se zabývat alokací rutiny nad RAMTOP a případnými kolizemi s jinými rutinami.

Algoritmus Shellova třídění vyžaduje několik programových skoků přes blok porovnání klíčů. Je-li počet klíčů >4, nestačí rozsah relativního skoku JR (± 128). Aby byla zachována samopřemístitelnost, organizuje generátor v takovém případě nepřímý skok

```
LD HL, (LABEL)
JP (HL)
```

SHELL SORT GENERATOR je napsán v BASICu. První 3 řádky obsahují verifikátor, který usnadní hledání překlepů při zápisu programu do počítače. Kontrole verifikátorem podléhá celý text včetně poznámek, nerozlišuje se ale velká a malá písmena. Po jeho spuštění příkazem RUN se automaticky vyedituje první řádek, v němž byla zjištěna chyba. Pokud verifikátor ohlásl zprávu 8 End of file, znamená to, že

nezjistil chybu, ale program ještě není napsán celý. Zpráva 0 O.K. znamená úspěšné ověření a tehdy lze řádky 1, 2 a 3 vymazat.

Generování probíhá v sedmi etapách:

- I. inicializace generátoru,
- II. popis tříděního souboru,
- III. popis třídicích klíčů,
- IV. popis doplňujících parametrů,
- V. generování kódu,
- VI. ošetření cílového modulu,
- VII. zakončení.

Ad II. Třídit můžeme tři typy souborů:

1. **Datový soubor** (zpravidla umístěný nad RAMTOP). Soubor je popsán počáteční adresou, počtem a délku vět.

2. **Znakové pole BASIC**. Je třeba definovat jméno pole. Počet a délka vět si třídicí program zjistí až před vlastním tříděním z oblasti popisu BASICové proměnné podle této pravidel: jednorozměrné pole je považováno za jedinou větu a neřídí se. U vícerozměrných polí je počet vět roven prvnímu rozměru, délka věty se vypočte jako součin ostatních rozměrů. Tak např. pole DIM x\$(600,15,3) je považováno za soubor 600 vět dlouhých 45 bajtů.

3. **Číselné pole BASIC**. Počet vět je vždy roven prvnímu rozměru. Délka věty je pro jednorozměrná pole 5, pro vícerozměrná pole je vypočtena jako součin druhého a dalších rozměrů násobený pěti. Např. pole DIM y(200,2) je považováno za soubor 200 vět o délce 10 znaků.

Ad III. Lze deklarovat libovolný počet klíčů. Pokud se pro dané dvě věty rovnají jejich první klíče, porovnávají se druhé klíče, pak případně třetí atd. Každý klíč je popsán svým typem, délkou, adresou v rámci věty (nulou počínaje) a smyslem třídění (vzestupně či sestupně).

Generátor umí pracovat s šesti typy klíčů:

1. Znakový - pořadí je vyhodnoceno podle kódu ASCII.

2. Jednobajtové číslo bez znaménka - to je vlastně zvláštní případ klíče typu 1 s délkou 1, porovnání je ale rychlejší.

3. Jednobajtové číslo se znaménkem (-128..+127).

4. Dvoubajtové číslo bez znaménka (0..65535)

5. Dvoubajtové číslo se znaménkem (-32768..+32767)

6. Pětibajtové číslo v kódu kalkulátoru Spectra.

S výjimkou typu 1 se délka klíče určuje implicitně. Při třídění číselného pole BASICu jsou všechny klíče automaticky typu 6; jejich adresy musí být dělitelná pěti.

Všechny parametry s výjimkou typu a smyslu klíče lze specifikovat dvo-

jím způsobem: jako literál, tj. konkrétní hodnotu, nebo jako vektor. V tomto případě zadáváme adresu paměťového místa, které bude obsahovat hodnotu parametru při spuštění třídicího programu. Vektorově specifikovaný třídicí program je univerzálnější, neboť můžeme jedním modulem třídit různě popsané soubory. Nesmíme ovšem zapomenout naplnit vektory potřebnými údaji před začátkem třídění.

Pro vektorovou specifikaci jednoho parametru (obvykle počtu vět souboru) je výhodná adresa systémové proměnné SEED (23670), kam lze hodně ukládat číslo 1 až 65535 příkazem RANDOMIZE n.

Veškeré vektorové specifikace ukazují na dvoubajtové číslo (méně významný bajt na nižší adrese) s výjimkou specifikace jména pole, kde se očekává kód písmen A až Z nebo a až z.

Délka a počet tříděných vět, jakož i délka a počet klíčů je principiálně omezena číslem 65535, v praxi jsme ovšem limitováni velikostí paměti.

Ad IV. Tři další parametry ovlivňují generování strojového kódu:

1. Kontrola parametrů. Do cílového programu se zařadí logické kontroly parametrů. Pokud je zjištěna chyba, třídění se nezahájí a oznamí se programová chyba podle tab. 1. Pokud lze logické kontroly provést již ve fázi generování, příslušný kontrolní blok se do cílového modulu nezařadí. Zvolíme-li zařazení kontrol, je třídicí program o několik bajtů delší, zato je však zcela "foolProof", tzn. při nesprávné specifikaci parametrů nemůže dojít ke zhroucení.

2. Možnost přerušení BREAK. Při této volbě je v průběhu třídění testována klávesa BREAK a je tedy možno

2 Variable not found: Tříděné pole nenalezeno.

4 Out of memory: Součet počáteční adresy souboru a délky věty násobené počtem vět přesahuje PRAMT.

A Invalid argument: Součet adresy a délky některého klíče přesahuje délku věty.

D BREAK - CONT repeats: bylo stisknuto BREAK.

F Invalid file name: Jméno tříděného pole bylo specifikováno jako vektor, avšak dotyčný bajt neobsahuje kód písmene A..Z,a..z.

M RAMTOP no good: Počáteční adresa tříděního souboru (nikoli pole) je nižší než aktuální RAMTOP.

Q Parametr error: Při třídění číselného pole není adresa některého klíče dělitelná pěti.

Tab. 1. Chybová hlášení

třídění přerušit. Doba třídění se prodlouží asi o 5 %.

3. Zákaz strojových přerušení. Během třídění je znemožněno přerušení procesoru. Třídění je asi o 1 % rychlejší, avšak nepracuje čtač času FRAMES.

Ad V. Po specifikaci všech parametrů probíhá vlastní generování třídicího programu nad RAMTOP. Výsledná rutina splňuje kritéria pro třídu 1 dle klasifikace v [3]. Nepoužívá zrcadlové registry ani IY. Jako pracovní paměť je využito posledních 51 bajtů PRINTER BUFFERu (tab. 2).

Rutina je relokativní, počáteční adresa je zároveň vstupním bodem. Pokud bychom ji volali jinak než prostřednictvím funkce USR, je třeba registr BC naplnit počáteční adresou.

5BCD	osmibit. násobení
5BDE	LABEL1
5BE0	LABEL2
5BE2	LABEL3
5BE4	LABEL4
5BE6	LABEL5
5BE8	adresa souboru
5BEA	adresa 1-té věty
5BEC	adresa L-té věty
5BEE	Proměnná I
5BF0	Proměnná J
5BF2	Proměnná K
5BF4	Proměnná L
5BF6	Proměnná M
5BF8	Počet vět
5BFA	délka věty
5BFC	jméno pole
5BFE	délka cíl. modulu

Tab. 2. Pracovní proměnné třídicího programu

VÝPIS PROGRAMU SHELL SORT GENERATOR

```

1 LET A$="210400CD5E19D5DDE17
EFE403042FD771023SE83FD730F23458
0234E810C23087ECDB51820043EFA804
7088510789D20ED23DD23D8604E50P2
8CE21B412E52H3DSCE5217/10E5ED733
DSC3E07C33B0FDD7E0SFPE0DC2E415CF
F"

2 READ A,B,C,D,E,F: DATA 10,1
1,12,13,14,15: LET P=23295: FOR
N=1 TO LEN A$: STEP 2: POKE P,15*
VAL A$(N)+VAL A$(N+1): LET P=P+1
: NEXT N: RUN USR 23296
3 REM BEALFJHKHNLKCAKBFHFCJN
KHBOKNGEBDLOEHPCRCILDDLDKHPPHJF
CDOOJEGBHHCHDGENDLMPJUPFGBBMHEFEP
IMDDIEEIGFDMKMHKHMHNMAHDADIDMDBNFLC
CBAMDHHFMMEHGONHHMDRKGKDEKLAFII
JLNNGDNNIGFBPBNAONIKKOGBNAKBSNNMHM
EOMDPPIJE

10 REM SHELL SORT GENERATOR
12 CLEAR 39999: RESTORE
14 GO SUB 376: PRINT #1;"Probl
ha iniciátor."
15 DEF FN e(x)=PEEK x+256*PEEK
(x+1): DEF FN h(x)=INT (x/256):
DEF FN l(x)=x-256*f(x)
18 DEF FN a$(x)=FN b$(FN l(x))
+FN b$(FN h(x))
20 DEF FN b$(x)=d$(2*x+1 TO 2*
x+2)
22 DEF FN b$(s)=("21" AND s=l
t)+(2^24 AND s=vec)
24 POKE 23609,33: GO SUB 392
25 READ A,B,C,D,E,F,mem,char,n
um,lit,vec,string,býte,sbyte,wör
d,sword,fp,asc,desc, yes,no,typ,l
ensp,LEN,adr,seq
26 DATA 10,11,12,13,14,15,1,2,
3,1,2,1,2,3,4,5,6,1,2,1,2,1,2,3,
4,5,6

```

30 LET bot=16384: LET top=FN e
 (23732)
 32 LET p\$="SORT se vyvola prik
 azem"
 34 LET r\$=CHR\$ 6+"1.an0"+CHR\$
 6+CHR\$ 6+"2.ne"
 36 LET s\$=CHR\$ 6+"1.literal"+C
 CHR\$ 6+CHR\$ 6+"2.vektor"
 38 LET v\$="vektor"
 40 DIM d\$(512)
 42 LET d\$=\$0001020304050607080
 90R0B0C0D0E0F0
 44 FOR i=33 TO 512 STEP 32: LE
 T d\$(i TO i+31)=d\$(i-32 TO i-1):
 NEXT i
 45 FOR i=33 TO 511 STEP 2: LET
 d\$(i)=d\$(2+2*INT(i/32)): NEXT i
 48 LET err=360: LET h=364: LET
 label=372: LET fork=382: LET pa
 ge=388
 50 GO SUB page: PRINT "POPI5 S
 OUBORU"
 52 INPUT "Typ souboru: ""1.nad
 RAMTOP""2.znakove pole BASIC
 "3.ciseline pole BASIC": AT 1,13; f
 typ
 54 IF ftyp<>mem THEN LET rlen
 sp=0: LET rlen=0: GO TO 64
 56 INPUT "Specifikace adresy s
 ouboru: "+\$; AT 1,28; fadrsp
 58 IF fadrsp<>lit AND fadrsp<>
 vec THEN GO SUB err: GO TO 56
 60 INPUT VAL\$ "v\$ AND fadrsp=v
 ec"+"&adresa souboru: "; fad
 62 IF fad\$<bot OR fad\$>top THE
 N GO SUB err: GO TO 60
 64 INPUT "Specifikace poctu ve
 t: "+\$; AT 1,23; nrecsp
 66 IF nrecsp<>lit AND nrecsp<>
 vec THEN GO SUB err: GO TO 64
 68 INPUT VAL\$ "v\$ AND nrecsp=v
 ec"+"&pocet vet: "; nrec
 70 IF nrec<1 OR nrec>bot AND n
 recsp=vec OR nrec>top THEN GO S
 UB err: GO TO 68
 72 INPUT "Specifikace delky ve
 ty: "+\$; AT 1,24; rlensp
 74 IF rlensp<>lit AND rlensp<>
 vec THEN GO SUB err: GO TO 72
 76 INPUT VAL\$ "v\$ AND rlensp=v
 ec"+"&delka vety: "; rlensp
 78 IF rlen<1 OR rlen>bot AND r
 lensp=vec OR rlen>top THEN GO S
 UB err: GO TO 76
 80 IF fad\$&nrec\$&rlensp>top AND f
 adrsp=lit AND nrecsp=lit AND rle
 nsp=lit THEN PRINT #1;"Soubor P
 resahuje RAM.": GO SUB err: GO T
 O 76
 82 GO TO 104
 84 IF ftyp<>char AND ftyp<>num
 THEN GO SUB err: GO TO 52
 85 INPUT "Specifikace jmena po
 le: "+\$; AT 1,24; fnamesp
 88 IF fnamesp<>vec THEN GO TO
 95
 90 INPUT "(v\$+"jmeno pole: "); f
 name
 92 IF fname<bot OR fname>top
 THEN GO SUB err: GO TO 90
 94 GO TO 104
 95 IF fnamesp<>lit THEN GO SU
 B err: GO TO 86
 98 POKE 23658,8: INPUT "Jmeno
 pole (A..Z): ", LINE 0\$
 100 IF LEN n\$<>1 THEN GO SUB e
 rr: GO TO 98
 102 LET fname=CODE n\$: IF fname
 <CODE "A" OR fname>CODE "Z" THEN
 GO SUB err: GO TO 98
 104 INPUT "Pocet klicu: "; nkey
 105 IF nkey<1 OR nkey>10 THEN GO
 SUB err: GO TO 104
 108 DIM k(nkey,5)
 110 FOR i=1 TO nkey
 112 GO SUB page: PRINT i; ".KLIC
 114 IF ftyp=enum THEN LET k(i,t
 yp)=fp: GO TO 118
 116 INPUT "Typ klice: ""1.Retez
 znaku""2.Jednobajtové cislo be
 z znaků""3.Jednobajtové cislo s
 znakem""4.Dvoubajtové cislo bez
 znaku""5.Dvoubajtové cislo s
 znakem": AT 1,11; k(i,typ)
 118 IF k(i,typ)=byte OR k(i,typ)
 =sbyte THEN LET k(i,lensp)=lit
 : LET k(i,len)=1: GO TO 134
 120 IF k(i,typ)=word OR k(i,typ)
 =word THEN LET k(i,lensp)=lit
 : LET k(i,len)=2: GO TO 134
 122 IF k(i,typ)=fp THEN LET k
 (i,lensp)=lit: LET k(i,len)=5: GO
 TO 134
 124 IF k(i,typ)>>string THEN G
 O SUB err: GO TO 116
 126 INPUT "Specifikace delky kl
 ice: "+\$; AT 1,25; k(i,lensp)
 128 IF k(i,lensp)<>lit AND k(i,
 lensp)<>vec THEN GO SUB err: GO
 TO 126
 130 INPUT VAL\$ "v\$ AND k(i,lens
 p)=vec"+"&delka klice: "; k(i,lensp)
 132 IF k(i,len)<1 OR k(i,len)<
 bot AND k(i,lensp)=vec OR k(i,len)
 >top THEN GO SUB err: GO TO 13
 134 INPUT "Specifikace adresy k
 lice: "+\$; AT 1,26; k(i,adrsp)
 136 IF k(i,adrsp)<>lit AND k(i,
 adrsp)<>vec THEN GO SUB err: GO
 TO 134
 138 INPUT VAL\$ "v\$ AND k(i,adr
 s)=vec"+"&adresa klice ve vete: "
 ; k(i,adr)
 140 IF k(i,adr)<0 OR k(i,adr)<
 bot AND k(i,adrsp)=vec OR k(i,adr)
 >top THEN GO SUB err: GO TO 13
 142 IF k(i,adr)+k(i,len)>rlen A
 ND k(i,adrsp)=lit AND k(i,lensp)
 =lit AND rlensp=lit THEN PRINT
 "#1.Klic presahuje delku vety": G
 O SUB err: GO TO 130
 144 IF k(i,adrsp)=lit AND ftyp=n

TO 264
 262 LET l\$="7EC6B04F1AC680B9":
 GO SUB h: GO SUB fork
 264 IF k(i,typ)>>word AND k(i,
 yp)>>sword THEN GO TO 272
 265 LET l\$="4E2345EBSE2356B":
 GO SUB h
 268 LET l\$="ED42" AND k(i,typ)=
 word: GO SUB h
 270 LET l\$="11008019EB09EBAFED5
 2" AND (i,typ)=sword: GO SUB h:
 GO SUB fork
 272 IF k(i,typ)>>fp THEN GO TO
 276
 274 LET l\$="D5CDB433E1CDB433EF0
 32938C0DF12B9297": GO SUB h: GO S
 UB fork
 276 NEXT i
 278 IF nkey<=4 THEN FOR i=1 TO
 nkey: POKE j(i)-1,PC-j(i): POKE
 j(i)+1,PC-j(i): NEXT i
 280 LET l\$="182B": GO SUB h
 282 IF nkey>4 THEN GO SUB labe
 l
 284 LET l\$="ED4BFA5B2AE5BED5BE
 C5B1AEDA02872739796020F62AE5BED5
 BF65BED5222E5B280838060D2AE25BD
 DE9": GO SUB h
 286 IF nkey>4 THEN GO SUB labe
 l
 288 LET l\$="2AF05B2322F05BEB2AF
 25BAPED52E8B3806D2AE05BDE90D2AD
 E5BDE9": GO SUB h
 290 LET plen=p-c-org: POKE 23550
 ,FN l(plen): POKE 23551, FN h(ple
 n)
 292 LET pc=23296
 294 LET l\$="ED4BFE5B2A765C2B09E
 B2B825C09EDB8C9": GO SUB h
 296 LET l\$="210A00CD619E521"+F
 N a\$(endline+1)+"CD6E19D1CDE519C
 FFF": GO SUB h
 298 LET l\$="ED4BFE5BC521210009E
 SCDBB1852A572A75CCD6E1928C1C055162
 323ED50765C72237323C171237023EB2
 16050B12000ED862A5B25C23C1EDB03E0
 D12C9": GO SUB h
 300 LET l\$="F9C0B022B8E323336333
 72B3235362ABE32333633382D585855
 8582B332362A3E3A": GO SUB h
 302 LET X\$=STR\$(plen+1): LET X
 \$="#000": (LEN X\$ TO 0)+X\$
 304 FOR i=1 TO 5: POKE 23413+i,X
 CODE X\$(i): NEXT X
 306 GO SUB page: PRINT "DELKA="
 ;plen
 308 LET max=top+1-plen
 310 INPUT "Cislovo modul: ""1.Na
 hrat na pasku""2.Presunout v RA
 M": 3.Uvystupit subrutinu BASICU
 ;AT 1,14;opt
 312 IF opt<>1 THEN GO TO 334
 314 INPUT "Jmeno nahrauvky: "; m\$
 316 IF LEN m\$<1 OR LEN m\$>10 TH
 EN GO SUB err: GO TO 314
 318 LET Z\$=""; +m\$+"": CODE "+\$T
 R\$ org+", "+STR\$ plen
 320 LET resave=FN e(23621): CLS
 : PRINT "+CHR\$ 248+z\$
 322 SAVE m\$CODE org,plen: GO SU
 B page
 324 INPUT AT 1,8;" VERIFY : "+r\$
 ;AT 1,18;vrf
 326 IF vrf<>yes THEN GO TO 332
 328 GO SUB page: PRINT "VERIFY
 "+r\$," Pri chybe"+CHR\$ 236;r
 esave
 330 VERIFY m\$CODE org,plen
 332 GO SUB page: PRINT p\$/";CHR\$
 239;"CODE a: RANDOMIZE USR
 a": GO TO 354
 334 IF opt<>2 THEN GO TO 344
 336 INPUT "Adresa v RAM: ";(org)
 ;": +(max): AT 1,14;radr
 338 IF radr>org OR radr>max THE
 N GO SUB err: GO TO 336
 340 RANDOMIZE radr: RANDOMIZE U
 SR 23296
 342 GO SUB page: PRINT p\$/"; RA
 NDOMIZE USR ;radr: GO TO 354
 344 IF opt<>3 THEN GO SUB err:
 GO TO 310
 345 INPUT "Cislo radku: ";(endli
 ne+1); 16383": AT 1,13;line
 348 IF line<endline OR line>16
 353 THEN GO SUB err: GO TO 346
 350 RANDOMIZE line: RANDOMIZE U
 SR 23323
 352 GO SUB page: PRINT p\$/"; GO
 SUB ";line
 354 INPUT "1.Generovat dalsi mo
 dul": 2.Uvymazat SORT-GEN": opt
 356 IF opt=2 THEN CLEAR : RAND
 OMIZE USR 23313
 358 GO TO 50
 360 REM Chybove hlaseni
 362 PRINT "#1;"Chyba specifikace
 "; FOR x=1 TO B: BEEP .1,0: NEXT
 X: RETURN
 364 REM generovani
 366 FOR j=1 TO LEN l\$ STEP 2
 368 POKE pc,16*VAL l\$(j)+VAL l\$
 (j+1)
 370 LET pc=pc+1: NEXT j: RETURN
 372 REM navesti
 374 LET nlabs=nlab+1: POKE l(nla
 b),1, FN h(p-c-org): POKE l(nlab)-
 2, FN l(p-c-org): RETURN
 376 REM t1iulek
 378 CLS : FOR j=64 TO 71: BEEP
 0.5, j+40: POKE 23681,j: LPRINT
 INVERSE 1, "", SHELL SORT GEN
 ERATOR 1, "", .: NEXT j
 380 DIM e*(256): PRINT BRIGHT
 1, 0: OVER 1,e*: RETURN
 382 REM velveni
 384 IF nkey>4 THEN LET l\$="300
 42B655BE928042AE45BE9": GO SUB h
 : RETURN
 386 LET l\$="3800": GO SUB h: LE
 T j(i),pc: LET l\$="2000": GO SUB
 h: RETURN
 388 REM nova strana
 390 CLS : PRINT AT 5,8: : FOR j=
 1 TO 2: BEEP .03,10: BEEP .03,16
 : BEEP .03,10: NEXT j: RETURN
 392 LET endline=FN e(23621): RE
 TURN : REM posledni radek

TV PŘIJÍMACÍ ANTÉNY – ŠIROKO-PÁSMOVÉ A DVOUPÁSMOVÉ

Přehled vyráběných typů

Jindra Macoun

Dvoupásmové antény (pro III. a IV. – V. pásmo)

Televizní vysílače základní sítě, které šíří první program na III. pásmu a druhý program na IV. – V. pásmu, se rozhodující měrou podílejí na pokrytí zejména historických zemí signály čs. televize. V takto zásobených oblastech – které jsou prakticky shodné s územím krajů – proto většina TV posluchačů používá pro příjem dvě samostatné antény. Jednu pro příslušný kanál III. pásmu a druhou pro příslušný kanál IV. – V. pásmu. Signál každé z antén je pak sveden k přijímači samostatným svodem – nejčastěji stále ještě dvoulinkelou (obr. 8) – a tam buď do příslušného symetrického vstupu přijímače, nebo, v lepším případě, pomocí pásmového sluchávce k jedinému koaxiálnímu vstupu přijímače soudobého.

Prakticky každý TV posluchač tedy provozuje dvě samostatné antény s napájecími, kterými přijímá signály obou programů, většinou z jediného krajského vysílače – a tedy i z jediného směru. Jsou-li pak oba programy vysílány se shodnou, přesněji – vodorovnou polarizací, jsou v mnoha případech splněny předpoklady k náhradě dvou antén anténu jedinou a to dvoupásmovou logaritmicko-periodickou anténu dipólovou. Původní 7prvková varianta tohoto typu, určená především pro příjem v oblasti Prahy (K7-K24) popř. v oblasti kraje východočeského (K6-K22) a na Klatovsku, byla uvedena na trh s. p. AERO-Vodochody již v roce 1986. Zvýšený zájem o tuto anténu se však očekával až po dokončení nového TV vysílače Praha-město. V roce 1985/86, kdy se o výrobě antény rozhodovalo, totiž nikdo nepochyboval o tom, že v souvislosti s činností

(Dokončení z č. 8)

nového vysílače na Žižkově budou antény, odkázané až dosud na příjem z Petřína, pouze přesměrovány (nebo obnoveny), protože petřínské kmitočty budou zachovány, jak to ostatně bylo i léta publikováno. Rozhodnutí o nové koncepci TV vysílání v Praze (všechny programy na IV. – V. pásmu) bylo zveřejněno až o dva roky později, koncem roku 1988. Je ovšem paradoxem, že jako jeden z hlavních argumentů, kterým byla změna původních kmitočtů zdůvodňována, byla uváděna právě výhoda použití jediné širokopásmové antény na IV. a V. pásmo místo antén dvou. Ze se v té době již druhý rok prodávala dvoupásmová anténa z AERO-Vodochody pro petřínské kmitočty zřejmě pracovníci spojů přehledli, a prodržali tak, částečně i z tohoto důvodu, novou koncepcí o dalších 150 mil. korun, které si na místo pouhého přesměrování původních antén nová koncepce vysílání v Praze při úplné rekonstrukci tisíců společných i individuálních antén dodatečně vyžádá. (Mimořádém absurdnost této nákladné akce, nemající svým rozsahem obdobu v celé historii TV vysílání, je navíc umocněna skutečností, že se realizuje v době, kdy se distribuce TV programů již dávno ubírá jiným směrem, zejména v hustě osídlených oblastech.)

Ovšem již se stalo, a tak venujme ještě trochu pozornosti dalším dvěma novým typům dvoupásmových antén z Vodochod, které pomohou zjednodušit příjem TV posluchačům v kraji západocheském (K10-K31), jihomoravském (K9-K29) a středoslovenském (K7-K32), obr. 9. Pokud ovšem tyto antény seženou. Obchodní organizace, jejichž prostřednictvím AERO-Vodo-

chody tyto antény do tržních sítí dodává, objednaly na tento rok pouze 500, popř. 1000 kusů antén pro zásobení výše zmíněných krajů (viz tab. 2). Pod tuto neradostnou skutečnost se rukou společnosti a nerozdílnou podepisují neodbornost, nezájem i lhotejnou konkrétních pracovníků ve zbyrokratizovaných obchodních organizacích.

Pro mnohé čtenáře AR je logaritmicko-periodická anténa stále ještě anténu méně známou, i když jsme o ni již podrobnejší referovali (viz AR-A č. 2/88). Charakteristikou vlastnosti antén tohoto typu jsou konstantní elektrické vlastnosti v celém pásmu, velmi dobré přizpůsobení a velké potlačení zadních laloků (dobrý „předozadní poměr“). Charakteristickou vlastností antén vodochodských je pak velmi dobré díleneské zpracování kvalitních materiálů, účinná povrchová ochrana, snadné připojení napájecího, jednoduché upevnění antény na stožár, skladný transportní obal, dobré zpracování návodu k sestavení a montáži, poněkud však pracnější, i když elektricky i mechanicky spolehlivé, upevnění prvků. Typové označení antén zahrnuje údaje o jejich zaručeném kanálovém pracovním rozsahu na obou pásmech, které se shodují s kanály krajských TV vysílačů, pro jejichž příjem jsou antény určeny především.

Ve skutečnosti a ve shodě s principem, zakládajícím jejich činnost, však ve IV.–V. pásmu překrývají výše uvedené antény širší pásmo než je v označení antén uvedeno, takže jsou použitelné i pro příjem jiných vysílačů popř. převáděčů. Podrobnejší vysvětlení tohoto fenoménu není složité, nicméně se vymyká z rámce dnešního článku. S ohledem na praktické použití těchto antén se spokojme s faktem, že jejich použitelný „kanálový“ rozsah ve IV.–V. pásmu je:

U antény **7LPDV K6/7 – K22/24 – K22 až K41** s výjimkou rozsahu kanálu K28 a K29, na nichž se výrazně zhorší ČZP (důvodem je vliv rezonanční délky vedení vytvořeného, dvoudílným nosným rámem, působící v oblasti kmitočtů K28 a K29 jako zkrátka vstupu antény). Antény, zakoupené pro příjem Petřína, je tedy možno použít i pro příjem obou čs. programů (K32, K39) z vykřivacího vysílače na Strahově, který má nahradit Petřín v místech, kde se neočekává kvalitní příjem z žižkovské věže.

Anténa **6LPDV K9/10 – K29/31**, určená pro příjem v kraji západocheském a jihomoravském, ve skutečnosti překrývá pásmo K27 až K42 a její úzkopásmovější varianta **6LPDV K7–K32**, určená pro oblast banskobystrickou, má poměrně dobré vlastnosti i na přilehlých kanálech K8 a K28 až K35.

Tyto dvoupásmové antény pochopitelně nezabezpečí dokonalý příjem v celé oblasti příslušného vysílače, ale – „jsou použitelné v místech s dobrými až průměrnými podmínkami, tj. v místech, kde pro příjem 1. programu na III. pásmu dosud vyhovují antény 3 až 5prvkové, a pro příjem 2. programu na IV. pásmu antény 5 až 10prvkové“ (viz obr. 8) – jak se uvádí v návodu. V místech se slabými signály je proto třeba sáhnout k jednopásmovým anténám s větším ziskem.

Z katalogů západních anténářských firem je zřejmé, že klasické TV antény jsou tam již nyní útlumovým programem. Tyto firmy přecházejí především na výrobu dílů a celých elektronických kompletů pro televizní kabelové rozvody, souběžně s výrobou antén a zařízení pro příjem družicový. Uvádí-li se, že rozvoj distribuce TV programů má u nás 10 až 15leté zpoždění, neznamená to však, že po tuto dobu bude ještě zajistěn odbytek klasických antén v dosavadním rozsahu.

Tab. 2. Dvoupásmové TV přijímací antény (přehled vyráběných typů)

1 Tab. znacení	L	M	N
2 Typové označení	7 LPDV 6/7-22/24	6 LPDV 9/10-29/31	6 LPDV 7/32
3 Výrobce	AERO s. p. – Vodochody, PSČ 250 70, p. Odolená Voda		
4 Druh antény	logaritmicko-periodická dipolová (V-dipoly)		
5 Kanálový rozsah	K6-K7	K22-K24	K9-K10
6 Kmitočtové pásmo MHz	174-190	478-202	198-214
7 Elektrické vlastnosti			
8 Zisk dB	4	8	4
9 Úhel příjmu (horizont.)	73°	30	71°
10 Úhel příjmu (vertikál.)	110°	80	110°
11 Činitel zpět. příjmu dB	>20	>25	>20
12 Činitel stojatých vln	<1.6	<1.6	<1.3
13 Impedance Ω	75	75	75
14 Mechanické vlastnosti			
15 Hmotnost kg	1.2	1.1	1.1
16 Větrná zátěž N	36	30	31
17 Upínání antény	vzadu	vzadu	vzadu
18 Sestavená anténa cm	104 x 81.5 x 6.2	88.5 x 74 x 6.2	88.5 x 74 x 6.2
19 V transp. obalu cm	98 x 8.5 x 8.5	80 x 8 x 8	80 x 8 x 8
20 Obal	krabice	krabice	krabice
21 SMC Kčs	285.—	255.—	255.—
22 Produkce 1989 ks	2000	100*	100*
23 Plán produkce 1990 ks	7000	500 (!)	1000 (!)

* ověřovací série

Obr. 8. Toto dvojčlennou anténní sestavu pro příjem obou programů na III. a IV. pásmu může nahradit jediná anténa dvoupásmová

Obr. 9. Dvoupásmové antény z Vodochod pro příjem obou čs. programů v oblastech vysílačů Krašov, Kojál (nahoře), Suchá hora (uprostřed), Petřín, Krásný, Barák (dole)

Výrobou TV a VKV rozhlasových přijímacích antén se u nás zabývají téměř výlučně podniky místního hospodářství a výrobní družstva. Produkce antén však v žádném z nich není programem výlučným, ale více či spíše méně významnou a technicky i materiálově méně náročnou částí celkového výrobního programu, která však na druhé straně není ekonomicky nevýhodná. Dlouholetá a finančně nenákladná spolupráce s antenáři TE – VÚST i Pardubice pak výrobce zavázala i problémů s obstaráváním a provozováním poměrně nákladné měřicí techniky pro kontrolu elektrických parametrů i pro vývoj nových typů antén. Za této situace se proto nelze divit, že na rozdíl od specializovaných firem zahraničních se naši výrobci antén nezabývají výrobou již zmíňovaných pasivních částí anténních rozvodů, jejichž nedostatek ve svých důsledcích vede u nás k relativně nízké technické i ekonomické úrovni nejen televizních rozvodů individuálních, ale i společných, a tomu odpovídající kvalitě a ekonomii příjmu. (Výmluvný příklad: Při rekonstrukci pražských STA bude Kovoslužba rozvádět signály všech čtyř programů z nového vysílače, přijímané jednou širokopásmovou anténtou, na vstupy jednotlivých měničů pomocí tří aperiodických dvojitých rozbočovačů PBC 21(!!), což zvyšuje požadavky na minimální intenzitu elektromagnetického pole v místě společného příjmu prakticky o 10 dB. Kdyby např. byly k dispozici vhodné selektivní výhybky, mohly by vysílače pracovat s desetinou plánovaného výkonu.) Výrobci s převládající kovovýrobou se pochopitelně nevyplati investovat do nezbytného laboratorního vybavení i nutného personálního obsazení, kterým je výroba diel i kompletů – a to i pasivních (neelektronických), podmíněna. V poslední době však snad o výrobu tohoto sortimentu projevují zájem i některé závody TESLA, které teď ztrácejí perspektivu v oblasti speciální výroby.

Nicméně dosavadní vývoj naší produkce TV antén je poznamenán i jedním kladným rysem. Je jím jistá, i když snad nezamýšlená specializace výrobců na určité typy antén, která umožnila dosáhnout

i v omezených podmínkách poměrně dobré technické úrovni některých typů, takže např. část produkce plzeňských antén nalezná odbytí i v devizové oblasti.

Za současných situací sice nelze jednoznačně posuzovat další perspektivu rozvoje výroby TV antén v jednotlivých podnicích, všeobecně však asi bude platit: V nastupující tržní ekonomice se budou muset naši výrobci zcela nutně věnovat průzkumu trhu, odborné propagaci svých výrobků, pružnějšímu styku se zákazníkem, a při tom samozřejmě sledovat vývojové trendy v oboru. Současný stav, kdy zákazníci – TV posluční – vůbec nevěděli co se vyrábí a co by tedy mělo být na trhu (ale není, protože distribuce výrobků je působením četných

obchodně administrativních mezičlánků nepružná a chaotická a výrobci neinzerují, protože nemusí), je neudržitelný. Neobdorost, neinformovanost i nezájem většiny pracovníků prodejních i obchodních organizací tento stav podporuje. Z výrobních podniků by se proto měly co nejdříve stát firmy v pravém slova smyslu, tzn. že by měly nejen vyrábět, ale i obchodovat prostřednictvím přímých dodávek, popř. zřízením prodejen vlastních. V nových ekonomických podmínkách uspěje ten podnik, který se jim rychle, odpovídá a odborně přizpůsobi – což bude platit i ve výrobě antén.

Podnikové prodejny výrobců antén

Průmyslový podnik města Plzně má prodejnu v Plzni a v Praze. Plzeňská prodejna zajišťuje zásilkový prodej antén i náhradních dílů. V obou prodejnách se prodává anténa TVa 21–60 se slevou 20 Kčs., tj. za 290 Kčs. (!).

301 51 Plzeň, Slovenská 26, tel. 407 35
130 00 Praha-Žižkov, Husitská 23, tel.
27 33 44
prod. doba – Po 9–18, Čt 8–18, Út, St, Pá
8–15

VD Mechanika Praha má řadu prodejen po celé Praze. Zásilkovou službu i prodej kompletních antén zajišťuje prodejna

112 00 Praha-Vinohrady, Francouzská
13, tel. 22 66 49,

prod. doba Po-Pá od 7 do 14 hod.

VD Likov – Liberec nezajišťuje zásilkový prodej, antény prodávají prodejny:

460 01 Liberec, ul. 1. máje 53a, tel. 210 85
460 01 Liberec, Zelezná 12a, tel. 280 23

Kovoplast Chlumec n. C. prodává antény prostřednictvím zásilkové prodejny TESLA OP v Uherském Brodě a patronální prodejny „Inženýrské služby“ v Hradci Králové, která má i náhradní díly.

688 19 Uherský Brod, Vítězného února 12
560 51 Hradec Králové, Marxova 575, tel.
61 55 71

prod. doba Po-Pá 8–12, 14–18

AERO s. p. Vodochody dodává antény jen prostřednictvím obchodní sítě (Domácí potřeby, Obchodní domy apod.).

Dělička kmitočtu do 1 GHz

RNDr. Ondřej Bůžek

V profesionální, ale i amatérské praxi, se stále zvyšují nároky na přesné měření kmitočtu. Nenávratně pryč je doba, kdy čítací do 100 MHz s předřazencem děličkou ECL do 250 MHz byl vrcholem amatérské techniky. V současné době jsou ve světě i levnější čítací vybavovány předděličkou kmitočtu do 1 GHz. Přístroje vyšší třídy jsou vybavovány předděličkou do 2 až 5 GHz.

Vyšší kmitočty se v současné době obvykle měří nepřímo pomocí násobiče kmitočtu a fázového závěsu. Tento princip je v amatérských podmínkách těžko realizovatelný a profesionální čítací pracující na tomto principu je pro amatéra prakticky nedosažitelný. Velké rozšíření rozsahu měřeného kmitočtu i u levnějších přístrojů bylo umožněno poměrně levnými monolitickými binárními děličkami ECL. Tyto levnější děličky, které vstupní kmitočet dělí obvykle v poměru 1:64 nebo 256, jsou bezproblémově použitelné jako součást čítací. Aby se údaj zobrazený na displeji čítací nemusel přepočítávat (násobit 64 nebo 256), je třeba vydělit impulsy časové „brány“ čítací ve stejném poměru. U nejmodernějších čítacích přepočet údaje obstarává mikroprocesor.

Pokud chceme rozšířit kmitočtový rozsah již hotového čítací, je použití levnějších binárních děliček problematické. Málokterý amatér by chtěl údaj (zobrazený čítacem)

násobit 64 nebo 256. Pro tyto účely je téměř nezbytné použít předděličku dekadickou. Monolitické dekadické děličky ECL pro kmitočty kolem 1 GHz, například SP8668 (Plessey), mají pro amatéra podstatnou vadu – vysokou cenu, která je způsobena větší složitostí a zejména menší sériovostí výroby. Dále je uveden poměrně elegantní a především levný způsob jak tento problém vyřešit.

Blokové schéma děličky 100 je na obr. 1. Vstupní kmitočet je v rychlé ECL děličce vydelen 64. V následujících obvodech je kmitočet dvakrát po sobě vydelen 5/4. Princip děličky pěti čtvrtinami spočívá v tom, že

Obr. 1. Blokové schéma

U nás se plošné antény, dovezené ze zahraničí, objevily teprve v poslední době a vzbudily u části odborné i neodborné veřejnosti značný zájem. Amatérská i poloprofesionální výroba standardních parabolických antén je již v plném proudu nebo se rozvíjá a existují i poměrně podrobné technologické návody k jejich konstrukci a výrobě [1, 2]. O plošných anténách je informován pouze úzký okruh odborníků – anténářů. Posláním tohoto článku je seznámit nespecializovanou veřejnost s problematikou a vlastnostmi plošných antén.

Zatímco u parabolických antén je využíváno quasioptických vlastností elektromagnetických vln, anténní řady pracují na principu interference elektromagnetického vlnění, tj. superpozice dílčích vlnění v prostoru. Tomuto principu, a s ním spojené technologii řešení ploché antény, budeme dále věnovat pozornost. Pro pochopení některých omezujících vlivů se nemůžeme vyhnout alespoň základní teorii anténních řad.

Antény ve tvaru plošné řady prvků nejsou v principu žádnou novinkou. Vzpomeňme např. vysílači antény pro krátkovlnný rozhlas ve formě vodorovných dipólů, sestavených do „záclon“, používaných od třicátých let až dodnes. Základním prvkem těchto antén je půlylnný dipól nebo soustava vodičů dlouhých půl vlny (systém Chireix-Mesny), připojených k vysílači nebo přijímači soustavou vedení (*feeder*), která zajišťovala většinou soufázové napájení jednotlivých prvků anténní řady. Co se s tím rozumí?

Na obr. 1a je uvedeno schéma lineární anténní řady (průmkové), složené z prvků

(např. půlvlnných dipólů). Dopadá-li na anténní řadu elektromagnetické vlnění ze směru S_i , tedy kolmo k osě na niž jsou uspořádány anténní prvky, jsou napětí vybuzená na výstupu jednotlivých prvků ve fázi a jsou-li všechna spojovací vedení s přijímačem stejně dlouhá, bude výsledné součítové napětí maximální. Dopadá-li však elektromagnetic-

Obr. 1. a) Lineární (přímková) anténní řada s paralelním napájením, b) anténní diagram

Obr. 2. a) Sériové napájení řady, b) sdružené napájení řady

z každých pěti pulsů jsou propuštěny pouze čtyři.

Abychom lépe pochopili princip celé dělícíky, uvažujeme, že na vstup přijde 1600 pulsů, po vydělení 64 jich bude 25, na výstupu první děličky $5/4$ zůstane 20 a na výstupu druhé 16 pulsů, což je přesně setina z původních 1600.

Praktická realizace zapojení je na obr. 2. Základem je poměrně dostupný obvod U664B firmy Telefunken, který obsahuje vstupní předzesilovač a děličku 64 s výstupem ECL. Rozsah napájecího napětí je 4,5 až 5,5 V, odběr 40 až 60 mA. Zaručená vstupní citlivost je 20 mV pro kmitočet od 80 do 1000 MHz a impedanci zdroje 50 Ω. Zaručený kmitočtový rozsah je 30 až 1000 MHz. Typický kmitočtový rozsah bývá 1200 MHz i více. Za děličkou následuje převodník úrovně ECL na TTL a kombinační obvod realizující dělení 5/4, jehož hlavní částí je dvojitý desílkový čítač 74LS390. Ten

má oddělený dělič 2 a 5 stejně jako u obvodu 7490A. Využity jsou pouze děliče 5, které v kombinaci s hradly tvoří děličky 5/4.

V kombinaci s hradou tvor. delceky 3/4. Vstup obvodu U664B je symetrický. Podle doporučení výrobce se vývod číslo 2 používá jako vstup přes kondenzátor 1 nF a vývod číslo 3 se zablokuje stejným kondenzátorem. Vstup je vhodné chránit Schottkyho diodami. Vyhoví jakékoliv vysokofrekvenční Schottkyho diody, z našich např. KAS31, 34. Místo 74LS390 je možno použít dva kusy 74LS90 nebo i případně 7490A. Při použití standardních TTL obvodů je nutno upravit převodník z EC1 úrovňě obvodu U664B na úroveň TTL s ohledem na větší proudy ze vstupů obvodů TTL.

Popsanou předděličku lze, ve spojení s běžným čítačem osazeným obvody TTL, použít i při nastavování družicového přijímače.

Vzhledem k různým možnostem použitých součástek není uvedena deska s ploš-

ké vlnění z jiného směru např. S_2 , vidíme, že na střední prvek dopadne vlnění s fázovým zpožděním úměrným délce l .

$$l = d \sin \Theta$$

tedy s fázovým zpožděním

$$\phi = \frac{2\pi l}{\lambda} \quad [\text{rad}]$$

Příspěvky jednotlivých prvků do společného přijímače pak nejsou ve fázi, jejich vektorový součet je menší než napětí získané při dopadu vln ze směru S_1 . Funkční závislost součtového napětí na úhlu určuje tzv. diagram anténní řady. Všimněme si, že fáze jednotlivých příspěvků závisí na vzájemné vzdálenosti antenních prvků d a na periodickém sinusové funkci. Typický anténní diagram takovéto řady pak má tvar podle obr. 1b. Velikost postranných smyček diagramu závisí v prvé řadě na rozteči prvků d a na vlastním diagramu anténního prvku. S roztečí antenních prvků nelze však libovolně zaházet. Mají-li totiž prvky řady příliš velkou vzájemnou vzdálenost d , příspěvky jednotlivých prvků se sčítají ve fázi ještě v dalších směrech, mimo směr S_1 , takže vznikají další podružná, tzv. nežádoucí maxima příjmu. V praxi tedy nelze zvětšit vzájemnou vzdálenost nad jednu vlnovou délku. S působením tohoto omezení se setkáme v dalším, při konstrukci napájecích soustav plošných antén. Připojení jednotlivých antennních prvků na přijímač podle obr. 1a se nazývá paralelní. Existují ještě další dva základní způsoby – sériové (obr. 2a) a srovnávací (obr. 2b).

nými spoji, při jejím návrhu je nutno vycházet ze zásad pro návrh UHF obvodů.

Stavebnici dělčíky z tohoto článku, která obsahuje návod, desku s ploskými spoji a kompletní sadu součástek si můžete za 485 Kčs objednat (zatím pouze písemně) na adresu: Dr. Ondra ELEKTRONIK, Národní 65, 116 26 Praha 1.

Seznam součástek

Kondenzátor

Kondenzatory
C1, C2, C3 1 nF, bezvývodový nebo SMD
C4 10 nF, bezvývodový nebo SMD
C5, C6, C7 100 nF TK 782

<i>Polovodičové součástky</i>	<i>Resistory (TR 191)</i>
IO1 U664B (S)	R1 1,2 kΩ
IO2 74LS390	R2 47 Ω
IO3 74LS132	R3 150 Ω
T1 BF324	
D1, D2 KAS21 (21)	HP2800, BAT45

Obr. 2. Schéma zapojení

Obr. 3. Plošná anténní řada dipólů – záclona

Obr. 4. Rozložení siločar elektrického pole v okolí dlouhého mikropáskového vedení

Obr. 5. Rozložení siločar elektrického pole na koncích krátkého mikropáskového vedení

Všechny uvedené způsoby lze dále kombinovat.

Dosud jsme hovořili o lineární anténní řadě. Rozložíme-li anténní prvky na rovinné ploše, vznikne další komplikace v systému připojení jednotlivých prvků. Na obr. 3 je uveden příklad propojení plošné řady dipólů – záclony. Vidíme, že jde o komplikovaný systém vodičů, které je třeba umístit mezi (nebo za) anténní prvky. Uvedený způsob propojení anténních prvků dvoudrátovým vedením si můžeme dovolit na nižších kmitočtech, kde rozdíly vodičů vedení, velikost ohýbu a záložní zámezí vedení (diskontinuit) jsou zanedbatelné ve srovnání s vlnovou délkou. Na kmitočtech v pásmu GHz, tedy v pásmu centimetrových vln, nelze tímto způsobem postupovat. Uvedené diskontinuity jsou srovnatelné s vlnovou délkou a jsou zdrojem parazitních příjmů, které častěji nebo zcela mohou znehodnotit činnost plošné anténní řady. Má-li pak plošná řada několik set prvků, aby se vyrovnaла účinností (ziskem) anténě parabolické, je zřejmé, že problém propojení prvků řady je problémem hlavním.

Riešení se nalezlo po objevu tzv. mikropáskových antén a rozmachu technologie plošných spojů. Počátky užívání mikropáskových vedení se objevují kolem roku 1950 a ihned bylo zjištěno, že obvody složené z mikropásků jsou schopny též vyzařovat (přijimat) elektromagnetické vlny. Myšlenka použít mikropásky jako antény byla nasnadě. Několik příkladů této antény bylo realizováno, ale více se uplatnily až v letech sedmdesátých. Umožnil to jednak pokrok v kvalitě a technologii dielektrických podložek (substrátů), na kterých jsou mikropásky realizovány, jednoduchost, nízké náklady, slučitelnost s integrovanými obvody a požadavek vytvořit antény vhodné pro umístění na raketách. Tedy plošné antény tvarové přizpůsobené zakřiveným povrchům různých těles. Od počátku osmdesátých let pak dochází k prudkému rozvoji mikropáskových antén a zejména teoretickému zvládnutí všech problémů s nimi spojených.

Všimněme si nyní, jak dochází k vyzařování (v dalším budeme používat tohoto pojmu, který je v anténní praxi reciproční pojmu příjmu) elektromagnetických vln u mikropáskových antén. Nejlépe je to zřejmě z obr. 4, kde je vyznačeno rozložení siločar elektrického pole v okolí mikropáskového vedení. Siločary jsou rozloženy souměrně po obou stranách vedení, takže složky elektrického pole působí proti sobě a nevzniká žádné podstatné vyzařování elektromagnetické energie. K vyzařování energie nedoje ani tehdy, půjde-li o kratší kus vedení (obr. 5). Opět elektrické složky elektromagnetického pole v prostoru jsou v protifázi a to pro oba konce vedení (podélný a příčný směr). Jiná situace nastane, bude-li podélný směr mikropásku rovný polovině vlnové délky (obr. 6). Elektrické složky elektromagnetického pole

od obou konců mikropásku budou ve fázi (v důsledku sinusového rozložení pole podél vedení), a nastane vyzařování energie ve směru kolmém (S) k rovině mikropáskového vedení.

Mikropáskové antény lze realizovat v řadě různých tvarů a rozměrů. Nicméně je lze rozdělit do tří základních skupin: mikropáskové „fličkové“ (patch) antény, mikropáskové antény s postupnou vlnou a mikropáskové antény štěrbinové. Několik typů „fličkových“ antén je na obr. 7. Mikropáskové antény s postupnou vlnou (obr. 8) sestávají z řetězce periodických struktur, jejichž otevřený konec je zakončen přizpůsobenou odporovou zátěží. Vyzařovací prvky u těchto antén jsou vlastně diskontinuity na mikropáskovém vedení. Mikropáskové štěbinové antény jsou tvorený štěbinou různého tvaru, vyřezanou v jedné z bocích v plátnu na oboustranně pokoveném substrátu.

Napájení je uskutečněno otevřeným kontaktem mikropáskového vedení (obr. 9). Mikropáskové štěbinové antény jsou na rozdíl od „fličkových“ antén a antén s postupnou vlnou napájeny kapacitní vazbou (obr. 10). Je zřejmé, že tento způsob napájení bude citlivý na změny tloušťky dielektrika a na rozdíly v vazební oblasti mikropáskového vedení se štěbinou.

U mikropáskových antén hraje vůbec velikou roli rozdíly vlastních antén a zejména rozdíly a permittivity substrátu. Elektrické pole je zde soustředěno převážně do dielektrika a každá změna jeho rozměrů a permittivity ovlivňuje parametry antény, zejména impedanci anténního pravu. Běžně požadovanou přesnosti tloušťky dielektrika je tolerance v rozmezí 0,1 až 0,05 mm. S předešlymi souvisí i šířka kmitočtového pásma, ve kterém je mikropásková anténa schopna pracovat. Silně soustředěné elektromagnetické pole v dielektriku dovoluje pracovní šířku pásma 1 až 5 %. Pro pásmo družicové televize v okolí 12 GHz to znamená max. 600 MHz, což ovšem stačí pouze na část vyhrazeného kmitočtového pásma. O zvětšení širokopásmovosti mikropáskových antén se v současné době velmi usiluje.

Podívejme se nyní jak otázky musíme vyřešit, chceme-li realizovat anténu pro příjem družicové televize. Potřebný zisk takovéto antény by neměl být menší než asi 35 dB. Výpočet zisku G právouhlé plošné řady, jejíž jednotlivé prvky mají jednosměrný diagram (s maximem kolmým k rovině řady) a jsou připojeny na přijímač soustavou vedení, která zaručuje impedanční přizpůsobení a soufázovost dílčích signálů, lze určit podle vzorce:

$$G = 10 \log \left(\frac{2\pi A}{\lambda^2} k \right) \text{ dB}$$

kde A je účinná plocha řady, λ je vlnová délka a k je koeficient, určující celkovou účinnost antény (včetně ztrát v soustavě spojovacích vedení). Pro $G = 35 \text{ dB}$; $k = 0,5$; $\lambda = 2,5 \text{ cm}$ dostaneme potřebnou plochu $A = 3145 \text{ cm}^2$, neboli čtverec o straně asi 56 cm. Do této plochy jsme schopni, při vzdálenosti anténních prvků 0,75 λ ,

Obr. 6. „Fličková“ mikropásková anténa a orientace siločívek elektrického pole

Obr. 7. Několik typů „fličkových“ mikropáskových antén

Obr. 8. Tři typy mikropáskových antén s postupnou vlnou

Obr. 9. Několik typů mikropáskových štěbinových antén

Obr. 10. Kapacitní vazba mikropásku na štěrbinovou anténu

Obr. 11. Část plošné řady s kombinovaným napájením

umístit kolem 780 zářičů. Podíváme-li se na obr. 1, 2, 3 vidíme ihned co to znamená za nároky na realizaci soustavy napájecího vedení. I když předpokládáme řešení technologií plošných spojů, je otázka, jsmeli vůbec schopni napájet vedení v patřičných fázovacích délkách mezi zářiče umístit.

Praxe však ukázala, že v důsledku vazeb mezi anténními prvky a ztrát v soustavě napájecích vedení, je bezpředmětně zvětšovat počet zářičů u této řady nad asi 400. Byly samozřejmě realizovány anténní plošné řady s více prvky (1024) na ploše 9.4×2.16 m se ziskem 33,8 dB, ale na kmitočtovém pásmu 1278 MHz, kde ztráty v dielektriku nebyly ještě příliš vysoké.

Příklad realizace lineárně polarizované plošné řady s kombinovaným způsobem napájení je na obr. 11. Jde o levou část většího anténního systému složeného z dílčích řad (subarray), 4×4 prvků, určené pro kmitočet 40 GHz, s pracovní šírkou pásma 2 %. Všimněme si krátkých částí mikropáskového vedení, které slouží jako čtvrtvlnné transformační členy pro impedanční přizpůsobení jednotlivých dílů řady.

Jiný příklad realizace plošné anténní řady pro kruhovou nebo lineární polarizaci je na obr. 12a. Řada je složena z anténních prvků podobných prvkům podle obr. 8c, kde aktivní prvky (vyzařujícími) jsou ostré ohby meandrovitého vedení (obr. 12b). Praktická měření ukázala, že parazitní vyzářování ze sdruženého vedení nejen snížila zisk antény asi o 4 dB, ale též ovlivnila tvar diagramu záření celé antény. Parametry této antény jsou:

Kmitočet:	17 GHz.
Zisk:	27,6 dB.
Účinnost:	32 %.
Šířka pásma:	6 %.

S účinností anténních plošných řad, založených na mikropáskových vedeních, jsou tedy problémy. Na obr. 13 je znázorněna dosažená účinnost různých plošných antén pro individuální příjem televize v pásmu 12 GHz. Pro antény se ziskem 35 až 40 dB je účinnost mikropáskových antén omezena na 40 až 50 %, a je podstatně menší než u běžného parabolického reflektoru. Ke snížení tohoto nedostatku byla navržena řada antén [3], avšak účinnost se příliš nezvětšila.

Ztráty v soustavě napájecího vedení řady odstraňuje řešení podle obr. 14 a. Jde o plošnou anténu se štěrbinami, buzenými

Obr. 12. a) Podklad pro výrobu plošné antény s kruhovou polarizací, b) rozměry anténních prvků s postupnou vlnou (1 – pro kruhovou polarizaci, 2 – pro horizontální, 3 – pro vertikální polarizaci, 4 – detail vyzařovacích míst, R – přizpůsobená odporová zátěž, λ – vlnová délka na mikropásku)

radiálním vlnovodem. Štěrbiny jsou uspořádány tak, že výsledné součtové elektromagnetické pole s maximem kolmo k rovině řady je lineárně polarizováno (uspořádání štěrbín pro kruhovou polarizaci je též možné). Kuželový přechod mezi souosým vedením a radiálním vlnovodem vybudi ve vlnovodu postupnou vlnu (typu TEM), která obráti směr svého šíření v horním patře antény a postupuje podél zpomalovací struktury ke středu antény, kde je pohlcena v absorberu. Při své cestě ke středu antény vybudi štěrbiny. S popsaným řešením byly dosaženy tyto parametry:

Kmitočet:	12 GHz.
Zisk:	36,3 dB.
Účinnost:	,76 %.

Uvedený typ antény má tedy elektrické parametry velmi dobré, jde jen o to, zda-li jeho výroba bude též výhodná cenově (cenové informace nejsou k dispozici).

Poslední uvedený typ antény ukázal, že ztráty v napájecím vedení plošné řady hrájí zásadní roli. Chceme-li zůstat u technologie

Obr. 13. Zisk a účinnost antén pro příjem družicové televize (■ mikropáskové antény, ▲ mikropáskové antény se zavěšeným vedením, ○ plošná kruhová anténa s radiálním vlnovodem)

Obr. 14. Plošná kruhová anténa s radiálním vlnovodem

Obr. 15. Štěrbinová anténa mikropásková a) pro lineární polarizaci, b) pro kruhovou polarizaci

mikropáskových antén, která má výhody v jednoduchosti výroby a tedy pravděpodobně i nízké ceny, je třeba najít takový anténní prvek a takovou napájecí soustavu, která bude mít nízké ztráty. Výzkumné práce ukázaly, že je třeba dodržet útlum mikropáskového vedení napájecí soustavy pod hodnotou asi 1,5 dB/m, pro kmitočty okolo 12 GHz. Tomuto požadavku vyhovuje mikropáskové vedení v téměř vzduchovém dielektriku, tzv. zavěšené mikropáskové vedení. Dielektrikem je zde pěněná vylehčená plastická hmota a vlastní mikropásek je nesen tenkou dielektrickou fólií. Shora uvedené požadavky a zmíněný problém umístění vodičů napájecí soustavy vedl konstruktéry k následujícímu řešení [5].

Základním prvkem plošné anténní řady je speciální štěrbinová anténa podle obr. 15a pro lineární polarizaci nebo podle obr. 15b

pro kruhovou polarizaci. Elektrické parametry tohoto anténního prvku jsou silně závislé na vzdálenosti od vodivé roviny, šířce a poloze napájecího páskového vedení a samozřejmě na rozdílech štěrbiny. Praxe ukázala, že nastavovat samotný prvek je obtížné a je výhodnější optimalizovat rovnou dílčí řadu 2×2 nebo 4×4 prvků. Příklad 16prvkové dílčí řady, včetně napájecího mikropáskového vedení, je na obr. 16. Na základě uvedeného principu vypracovaného u firmy Comsat (Matsushita) jsou realizovány různé velikosti plošných antén od $0,3 \text{ m}^2$ (256 prvků) až po $0,7 \text{ m}^2$ (1024 prvků). Ve všech případech byla jejich účinnost větší než 50 % při šířce pásma 10 % na 12 GHz. Konkrétním příkladem budiž anténa firmy Panasonic s těmito parametry:

<i>Kmitočtové pásmo:</i>	11,72 až 12 GHz.
<i>Zisk:</i>	34,2 dB.
<i>Účinnost:</i>	57 %.
<i>Rozměry:</i>	$600 \times 420 \times 16 \text{ mm}$.
<i>Váha:</i>	4 kg.
<i>Počet prvků:</i>	384 na ploše $540 \times 360 \text{ mm}$.
<i>Polarizace:</i>	kruhová.

Obr. 18. Částečně rozložená konstrukce antény firmy Panasonic

Obr. 16. Schéma 16prvkové dílčí řady s napájecím mikropáskovým vedením

Podobnou anténu dodává firma Bosch, ale s rozměry $720 \times 720 \times 20 \text{ mm}$ a ziskem 36,0 dB pro levotočivou kruhovou polarizaci. Schéma napájecí soustavy 16prvkových dílčích řad této antény je na obr. 17. Na titulní fotografii a na obr. 18 je vidět částečně rozebranou anténu firmy Panasonic.

Obr. 17. Schéma napájecí soustavy antény firmy Panasonic

Závěrem tohoto přehledového článku uvedeme hodnocení výhod a nevýhod plošné antény a několik poznámek o možnosti realizace takovéto antény u nás.

Pro individuální příjem družicové televize (větší vysílači výkony) se plochá anténa jeví jako vhodná alternativa k běžně používané parabolické anténě. Nabízí jednodušší montáž na boku budovy a je méně rušivým prvkem z hlediska architektonického. Anténa spolu s vnější jednotkou tvoří organický celek, nemá tedy žádné nosníky ozárovače, polarizační výhybky apod. Její mechanické

upevnění bude též méně náročné, protože má menší hmotnost a menší odpor větrů. Uvádí se, že výrobní cena této antény může být až o 50 % menší než výrobní cena kompletu parabolické antény. Budoucnost tohoto typu antény lze také spatřovat v možnosti integrovat do soustavy napáječe diodové fázovače, které umožní elektronické naměřování antény na různé družice [6].

Nevýhody této antény jsou zaklety již v jejím principu. Kruhově polarizovanou anténu pro jeden smysl polarizace nelze jednoduše upravit pro příjem druhého smyslu polarizace. Anténa může sice přijímat lineárně polarizovaný signál s různou prostorovou orientací, ale vždy se ztrátou 3 dB. Anténa je tedy převážně určena pro příjem družic s danou polarizací, s větším výkonem, tedy pro družice v pásmu 11,7 až 12,5 GHz (Olympus, Tdf1, TVSAT2, TELEX). Z výrobního hlediska je nejkritičtější dodržet poměrně úzké tolerance plošných prvků a napájecí soustavy včetně jejich vzájemné polohy.

Pokud jde o realizaci ploché antény uvedeného typu v našich podmínkách, autor této statě ověřil experimentálně (anténní laboratoře TESLA VÚST Praha) 16prvkovou dílčí řadu s lineární polarizací. Základem užité technologie byla fólie KUFLEX 0,1 (výrobce VUKI Bratislava), na které byly potřebně „motivy“ pro anténní prvky v napájecí vedení realizovány běžnou technologií plošných spojů. Pro izolační dielektrické me-

zivrstvy byl použit pěněný polyurethan (Sispur), řezaný do tenkých vložek $50 \times 50 \times 1 \text{ mm}$. Pro případnou výrobní technologii bylo třeba nalézt způsob výroby pěněně nízkoztrátové plastické hmoty s tloušťkou $1 \text{ mm} \pm 0,1 \text{ mm}$. Realizace práce na tomto typu antény předpokládají samozřejmě zajištění poměrně náročné měřicí techniky pro měření impedance a vyzárovačů diagramů antén.

Literatura

- 1 Procházka, M.: Parabolické antény. Sdělovací technika č. 5/1989.
- 2 Procházka, M.: Primární záříče pro malé parabolické reflektory. Sdělovací technika č. 6/1989.
- 3 Rames, E.: New wideband high-gain stripline planar array for 12 GHz satellite TV. Electronic Letters, sv. 18, č. 6, březen 1982.
- 4 Ando, M., aj.: A radial line slot antenna for DBS reception. 18 Microwave Conference Europe 1988 s. 306 až 311.
- 5 Sorbello, R. M., aj.: A high - efficiency flat plate array for direct broadcast satellite application. 18 Microwave Conference Europe 1988, s. 295 až 299.
- 6 Procházka, M.: Elektronicky rozmitané anténní soustavy. Sdělovací technika 11/1981.

ČTENÁŘI NÁM PÍŠÍ

Zváz mladých TESLA Piešťany sdělil naší redakci, že nabízí:

– zájemcom o stavbu Palubného počítače podla AR-A 3,4/1990 dodávku naprogramovaných jednočipových mikropočítačov MHB8748C za cenu 495 Kč/kus (včetně nákladov na odosielanie). Dodávané jednočipové mikropočítače sú otestované podľa požiadaviek uvedenej aplikácie: $f_{osc} = 4,192 \text{ MHz}$, $U_{CC} = 5 \text{ V} \pm 5 \%$, $T_a = 0$

až $+70^\circ \text{C}$, funkcia podľa naprogramovaného obsahu vnútorné pamäti EPROM,

– zájemcom z radov rádioamatérů, amatérů

– konstruktérů elektronických zariadení,

technickým klubom a krúžkom pre polytechnický výchovu mládeže zabezpečí dodávky

mimotolerančných polovodičových súčiastok z produkcie š. p. TESLA Piešťany.

Dodacie podmienky a cenník na požiadanie obratom zašleme.

Objednávky a dotazy prosíme zaslať na adresu:

Zväz mladých TESLA Piešťany
– Hospodárske združenie,
Vrbovská cesta 2617/102,
921 72 Piešťany,
tel. 0838/52932

Z RADIOAMATÉRSKÉHO SVĚTA

Sjezd Českého radioklubu

Sjezd Českého radioklubu se sešel 16. června 1990 v budově MTTU v Praze. Předcházely mu členské schůže v radio klubech bývalého Svazu v Čechách i na Moravě, které rozhodly o přistoupení či nepřistoupení k Českému radioklubu, a v kladném případě volily delegáty na sjezd. Ze zvolených 167 delegátů bylo sjezdu přítomno 127. Přítomni byli také hosté, zástupci SMSR, SČR a CLC, pozdravný telegram poslal i SSSAV z Bratislavы. Několik radioamatérů využilo možnosti zúčastnit se jako pozorovatele.

Jednání zahájil ing. Josef Plížák, CSc., OK1PD. Navázal ing. Karel Karmasin, OK2FD, se zprávou o činnosti přípravného výboru ČRK. O činnosti federální radioamatérské organizace hovořil Dr. Antonín Glanc, OK1GW, předseda Československého radioklubu. Následovala rozvaha ekonomické situace organizace, kterou předseda Jan Liomíšek, OK1XU. Úvodní blok užával ing. Miloš Prosteký, OK1MP, informaci o práci zkoušební komise. V úvodu diskuse vystoupili hosté, a následovalo dalších téměř třicet diskutujících. Ve druhé části sjezdu byly v dílech rozpravách přijaty stanovy Českého radioklubu, programové prohlášení, schválena předběžně výše členských příspěvků pro rok 1990, a konečně i usnesení sjezdu.

Jednání probíhalo ve vyšlovené věcné pracovní atmosféře. Hledalo cesty k tomu, aby Český radioklub byl plnokrevnou radioamatérskou organizaci, která má svým členům co nabídnout, a vede aktuálních potřeb sleduje také dlouhodobé perspektivy našeho hobby. To v současnosti znamená řešit rovnici s velmi mnoha neznámimi. Byly konstatovány minimální výhledy na získání státních dotací, proto musí ČRK začít ihned hospodařit tak, jakoby by žádne nedostával. Členské služby budou placeny téma, kde je užívají, a je nutné dosáhnout, aby byly co nejlevněji. Náklady na práci ústředí organizace musí být minimalizovány a budou hrazeny přímými příspěvky členů (v letošním roce formou registračního poplatku ve výši 100 Kčs pro dospělé a 20 Kčs pro děti). Radiokluby budou pracovat a hospodařit naprostě nezávisle, s majetkem budou nakládat jako se svým vlastnictvím, ovšem za svou činnost i hospodaření ponesou také plnou odpovědnost. Radiokluby mají právo u Českého radioklubu vystoupit i se svý majetkem.

V zahraničí je obvyklé, že radioamatérské organizace sdružují zejména individuální členy, radiokluby jsou výjimkou. U nás byly dosud všichni radioamatéři donuceni být členy radioklubů, a tak je Český radioklub na začátku své práce nuten převzít tuš strukturu. Stanovy ovšem počítají s tím, že přirozeným a nenásilným vývojem se dosavadní násilné vzniklé struktury bude rychle měnit, počítají nejen s radiokluby, ale i individuálními členy, kteří se mohou do ČRK přihlásit přímo u rady a zajistit si tak členské služby.

Stálá je dost žávých diskusi kolem členství radioamatérů ve Sdružení technických sportů a činností, v něž se transformoval bývalý SvaZarm. Vzor různým proklamacemi se totiž za členy Sdružení považují čtyři z pěti existujících radioamatérských organizací. Sdružení je ryze přechodným útvarem, vzniklým zejména proto, aby se mohly nástupnické organizace SvaZarmu v klidu zformovat a dohodnout o rozdělení majetku. Po dobu této tzv. delimitace, která má být dokončena nejdpozději 31. 3. 1991, je pro radioamatérů výhodné být členy Sdružení, protože tak mají právo zúčastnit se jako plnoprávní partneri všech důležitých jednání. Ještě zhruba 3/4 roku trpělivosti se určitě vyplatí, jde totiž o to, aby naša nová organizace měla dostatek prostředků k tomu, aby svým členům byla něco platná. Nikdo se nestane samostatným tím, že se za takového prohlásí, ale tím, že je schopen se sám postarat o své potřeby. A konečně – byla by škoda, kdyby toho, na co mají právo radioamatéři, nakonec užíval někdo jiný. Nově zvolené rádě ČRK bylo uloženo svolání dalšího sjezdu ihned po dokončení majetkového vypořádání k dořešení otázky členství ve Sdružení. Jak toto „dořešení“ dopadne, o tom není třeba pochybovat.

Sjezd zvolil definitivní radu Českého radioklubu (OK1GW, OK1MG, OK1XU, OK2BN, OK1WP, OK1PG, OK2WE, OK1UP, OK1VJ, OK1ADM), revizní komisi (OK1AYA, OK1UDN, OK1FAY, OK1MP, OK1WBK) a předsedu ČRK, jimž se stal ing. Josef Plížák, CSc., OK1PD. Do středu radioamatérského dění se tak po dvacetileté nucené přestávce vrátil prvotřídní radioamatér, dvojnásobný světový vítěz CQ WW DX Contest a čestný a obětavý člověk.

Ke dni sjezdu se k Českému radioklubu přihlásilo 165 radioklubů z Čech a Moravy s celkem 3847 členy (z OK2

39 radioklubů s 1021 členy). Další přihlášky klubů i jednotlivců je možné podat na adresu: Český radioklub, Vlnitá 33, 147 00 Praha 4. Tam lze získat i nejrůznější další informace, a to i telefonicky na pražském čísle 46 02 54.

OK1XU

Programové prohlášení Českého radioklubu

přijaté sjezdem Českého radioklubu dne 16. června 1990

I. Český radioklub chce být moderní demokratickou organizaci radioamatérů, která bude vyvjet maximální snahu o uspokojování potřeb svých členů a hájení jejich zájmů. Chce sdružovat zájemce o všechny radioamatérské činnosti a sporty a neuzavírat se ani dalším iniciativám. Chce navázat na vše pozitivní, čeho se v uplynulých šedesáti letech existence radioamatérské činnosti v Československu zdálo dosáhnout.

II. Český radioklub je si vědom, že jeho činnost je společensky prospěšná a přispívá rozvoji technických, sportovních, kulturních i morálních kvalit jeho členů, a proto je neopomenutelným přínosem rozmnozování duchovního a materiálního bohatství národa. Český radioklub chce navázat na šedesáti let tradiční tvorivé práce československých radioamatérů při výchově mladé generace a při práci pro rozkvět vlasti.

III. Český radioklub bude svým členům zabezpečovat základní systém členských služeb, bude organizační základnou pro sdružení a činnost radioamatérů a jejich klubů, zajistí činnost QSL služby, vydávání odborného a spolkového radioamatérského časopisu, bude se vydávat k přípravě předpisů dotýkajících se radioamatérského provozu a souvisejících činností státními orgány, hájí zájmy radioamatérů vůči orgánům státu, dalším organizacím i vůči komerčním zájmulům podniků a podnikatelů. Přímo nebo prostřednictvím celostátní organizace radioamatérů chce zajistit reprezentaci radioamatérů Čech a Moravy v Mezinárodní radioamatérské unii (IARU).

IV. Český radioklub bude hledat nejúčinnější cesty, jak zlepšit dostupnost radioamatérské techniky, jejíž nedostatek považuje za hlavní omezení dalšího rozvoje radioamatérské činnosti. Je si přitom vědom, že v nejblíž době nebude tato technika, at již z dovozu nebo domácí výroby, cenově dostupná mladým začínajícím radioamatérům. Proto pro nejbližší roky považuje za zásadní předpoklad uchování a rozvoje radioamatérské činnosti zabezpečení existence alespoň základní sítě radioklubů, které byly jak mistrem dělné spolupráce vyspělých radioamatérů, tak i středisky péče o radioamatérský dorost. Usnadní radioamatérské činnosti spatřuje také ve vlastní tvorivé technické činnosti členů, již chce napomáhat publikováním stavebních návodů a další technické a odborné literatury ve spolupráci s vydavatelskými zářízeními nebo i vlastní vydavatelskou činností. K výměně odborných znalostí bude organizovat semináře a radioamatérská setkání. Bude hledat cesty, jak radioamatérům zpřístupnit techniku vyžádanou jinými radiokomunikačními službami. Bude ovlivňovat výrobce i dodavatele elektronických zařízení k rozšíření sortimentu nabízeného zboží o radioamatérskou techniku, součástky a odbornou literaturu.

V. Český radioklub je si vědom, že hlavní náplní radioamatérské práce je aktívni provoz na radioamatérských pásmech a soutěžení v dalších radioamatérských sporotech. K tomu chce vytvářet při dodržení nezbytného úpravností co nejbohatší systém radioamatérských závodů a soutěží, diplomů a dalších provozních a sportovních podniků, které obohatí radioamatérskou činnost. Bude soustavně napomáhat tomu, aby provoz pod známkou OK byl příkladem provozní zručnosti a výspělosti. Bude pečovat o to, aby naši radioamatéři co nejdříve dosáhli radioamatéry vyspělých zemí ve využívání moderních druhů provozu. Radioamatérská činnost je mnohostranná, žádny její obor nesmí být nadále hmotně ani morálně zvýhodňován oproti ostatním.

VI. Český radioklub respektuje, že jednou ze zásad ham-spiritu je prospěšnost práce radioamatéra pro jeho zemi. Bude platformou pro vyvijení společensky užiteč-

ných aktivit radioamatérů při odborné výchově mladé generace, při budování v minulosti mnohokrát osvědčených nouzových radiokomunikačních sítí.

VII. Český radioklub bude spolupracovat s dalšími radioamatérskými organizacemi v ČSFR i s radioamatérskými složkami jiných organizací všude tam, kde to bude přínosem rozvoji radioamatérství. Bude se snažit sjednocovat radioamatéry ke společné práci i zájmům.

VIII. Český radioklub jako celá společnost je nuten překonávat v mnoha oblastech dědictví předchozích let nedemokratického totalitního vývoje. Jako jedinou cestu k tomu spatřuje důsledně demokratickou výstavbu a správu celé organizace, rozhodování výhradně demokraticky volenými zástupci všech členů a veřejnou kontrolou práce těchto zástupců. Bude rozhodně pokračovat v oproštění radioamatérských orgánů od těch, kdo v minulosti přispívali k nespravedlivým postihům radioamatérů a k neopodstatněným odnětím povolení. Bude i nadále prosazovat jmenovitou a adresnou omluvu odpovědných orgánů nespravedlivě postiženým radioamatérům.

OL1A/JP

V okamžiku, kdy jsem vstřebal žádost pana prezidenta, aby nás navštívil mimojiné Svatý otec Jan Pavel II., hned jsem si všed značek LG3JP, 912JP, 913JP, SN1-SNOJP představil i OK-OL-OM/JP. Až jsem netušil, že se zkrátka tato představa bude naplňovat. Po potvrzení zprávy v tisku, že se tato návštěva uskuteční, jsem odeslal žádost na příslušný povolovací orgán, a to v době, kdy bylo jasné, že SvaZarm už nám podobné akce nebudou schvalovat.

Poslal jsem žádost za radioklub OK1KPX a doufal, že jako jedna z prvních bude akceptována a zahrnuta do množství žádostí, které zcela jistě přijdou. Bohužel tři dny před návštěvou, která byla zcela nepochybně světovou událostí, jsem se dozvěděl, že žádost nelze vyhovět. Po několika telefonních rozhovorech s povolovacím orgánem jsem se přece jen dohodl, že bývalé povolení použít již vydanou značku pro reprezentaci OL1A a doplnit ji za lomítkem iniciálkami jmen JAN PAVEL. Púsobil to trochu zmatku, poněvadž podle starého značení jsme vlastní podnikli expedici do Japonska. Je pravdu, že vysvětlování bylo někdy zdlouhavé, ale zajímavé je, že jsme vysvětlovali častěji, kam patří prefix OL, než co znamená údaj za lomítkem.

Společně s OK1DTM a OK1TA jsme se snažili umožnit spojení s touto neobvyklou značkou co nejšířímu počtu volajících stanic a za 4 dny jsme navázali 3500 QSO ze 150 zemí DXCC, včetně stanic 1S0XV, S21U a AH3CK/HJS, které v té době šířily slávu svých zemí z míst nám zatím nedostupných. Ziskali jsme další poznatky, že pracovat v pile-upu, který se občas vytváří, není žádná legrace, ani při provozu „split“.

K původnímu záměru: myslím si, že touto cestou lze oslovit tisíce lidí na celém světě prostřednictvím značky OK, která by měla jednou vyjádřovat, že i jako Československo jsme „OK“.

OK1TN

OK-DXpress

OK-DXpress je nový bulletín pre rádioamatérov zaujímajúcich sa o DX prevádzku. V jeho čísloch nájdete najnovšie správy o DX expediciach, podmenky šírenia na najbližšie obdobie, reporty z pásiem, oznamy QSL managerov, adresy, QSL servis a mnoho ďalších informácií, ktoré Vám uľahčia prácu na pásmach a pri vypisovaní QSL lístkov. OK-DXpress vychádza od 15. mája 1990 jedenkrát týždenne. Jedno číslo stojí 3 Kčs vrátane poštovného a predplatné na 1 rok je 150 Kčs. Ak máte záujem, pošlite späťatočnú obálku na adresu: OK-DXpress, P. O. Box 814 40, 814 40 Bratislava, odkaž Vám bude zaslaná prihláška a šek.

Roman Kudláč, OK3EI

Program V. mistrovství světa v ROB - TATRY 1990

Ve dnech 10. až 15. září 1990 proběhne ve Vysokých Tatrách v oblasti Štrbského plesa V. mistrovství světa v ROB (ARDF). Ředitelem soutěže je M. Popelik, OK1DTW, předsedou organizačního výboru K. Kawasch, OK3UG, jeho zástupcem K. Souček, OK2VH. Vedoucími jednotlivými komisemi organizačního výboru jsou: M. Caha, OK2PAA (propagační), E. Kuběš, OK1AUH (technická), ing. A. Matáš, OK3CMR (informační), M. Záchvejová (hospodářská), S. Janov (tisková) a ing. M. Forišek, OK3CMF (dopravní).

Program mistrovství světa:

Pondělí 10. září: Příjezd závodníků a funkcionářů do hotelu Patria.

Úterý 11. září: Doprodele trénink v pásmech 80 i 2 m v okolí hotelu, odpoledne slavnostní zahájení.

Středa 12. září: Závod v pásmu 145 MHz.

Čtvrtek 13. září: Volný den.

Pátek 14. září: Závod v pásmu 3,5 MHz. Večer slavnostní vyhodnocení mistrovství a předání cen.

Sobota 15. září: Ukončení, odjezd výprav.

Kromě závodníků z asi 20 zemí budou přítomni jako hosté i jako pozorovatelé zástupci vedení IARU.

Seminář „PACKET RADIO“

Z iniciativy členů radioklubu OK2OII pořádáme ve dnech 7. až 9. 9. 1990 radioamatérský seminář přípravců provozu PACKET RADIO. Jedná se o moderní druh radioamatérské komunikace za využití domácích počítačů.

Hlavním cílem je seznámit všechny zájemce o tento druh provozu s jeho specifickými vlastnostmi, jak tento provoz probíhá a informovat o technickém vybavení jednotlivých stanic na KV a VKV. Budou přítomni i naši hosté, radioamatérští z Rakouska, kteří mají tento druh provozu dobré zvládnout. Bude to přátelské pracovní setkání v překrásném prostředí Podhorácka, které by mělo aktivizovat naše radioamatéry k používání tohoto druhu provozu. Po celou dobu semináře bude pracovat stanice OK2OII/p provozem FM/SSB/CW a PR. V pátek budeme pro navigaci pracovat FM na 145,550 MHz a na OK0H od 14.00 do pozdních večerních hodin, v sobotu na 145,550 MHz.

Seminář se uskuteční v turistickém středisku JALO-VEC nedaleko obce Číchov u Okříšek. Ubytování a stravování je chatové osadě kategorie A, cena za jedno lůžko je 24 Kčs, plná penze 35 Kčs a 20 Kčs manipulační poplatek. Sborník bude prodáván zvlášť. (Ceny jsou orientační.)

Je zajištěno zhruba 50 ubytovacích míst, proto bude seminář vzhledem k omezeným kapacitám organizován jako pracovní, nedoporučujeme účast rodinných příslušníků. Budou pořadně brány ty přihlášky s poukázanou zálohou 100 Kčs, které dojdou k pořadateli nejdříve do naplnění kapacity ubytování. Ostatní přihlášky budou vráceny i se zálohou 100 Kčs.

Přihlášku poskytne proti zaslání obálce se zpráteční adresou a známkou v hodnotě 1 Kčs:

Zdeněk Borovička, OK2BX
Račerovická 1/774
674 01 Třebíč

Program semináře

Pátek 7. 9. 1990:

14-18 hod. příjezd, ubytování a seznámení s okolím
18-19.30 úvodní přednáška o použití, významu a provozování PACKET RADIO (OK2FD, OK1VJG)

19.30-20.00 hod. PR a povolovací orgány (OK1PG) diskuse a volná zábava, degustace vín a dalších specialit z naší oblasti

Sobota 8. 9. 1990:

08-10 hod. technické přednášky o jednotlivých TNC Spectrum (OK2AQK)
10-12 TNC moduly pro Commodore 64 (OK2BX)
12-17 IBM a další PC (OK1VJG, OE1RZB)
radioamatérská burza
13-15 programové vybavení, základní programy (OK1VJG)
15-15.30 KV a VKV sítě (OK2FD)
15.30-17.30 BBS, mailboxy, NET/ROM (OK2FD)
od 19.00 společenský večer, včiná zábava

Neděle 9. 9. 1990:

09-10 hod. PR a družicové spojení (OK2AQK)
10-11 technické vybavení nódů (OE1RZB, OK2FD)
11.30 závěr setkání a odjezd

Po dobu konání semináře budou vystaveny prodejné funkční vzorky PR modemu fy AMATRONIK.

Z názoru čtenářů

Souhlasím se změnami, které, jak pevně věřím, nás posunou dál kupředu a to nejen od Svazarmu. Přečetl jsem si článek v „Amatérském rádiu“, co na to říká OFRA. Přečetl a musím se přiznat, mám povolen zvýšený výkon od 1. 3. 1983 do 1 kW. Za to že jsem splnil tedy stanovená kritéria. Nebudu popisovat, kolik jsem získal diplomů a jak v kterém závodě jsem se umístil, ale byl to poctivý přístup k radioamatérství se zařízením doma postaveným, později zakoupeným za své a v žádné politické straně jsem nikdy nebyl.

Silně mi tyto názory připomínají mého souseda, který mi závidí větší česnes. Asi čím hlupejší sedlák, tím větší bramby. Klidně to beru už proto, že jsem nikdy ani 1 kW PA neměl. Také jsem zvýšeným příkonem nenahrazoval lenost postavit pořádné antény. Důkazem je asi první směrovka na 7 MHz v OK. Jestli někdo namítl, že to ve městě nejde, má asi pravdu, ale já jsem taky kvůli rádiu postavil domek na vesnici. Piši o tom proto, že na OKOC slyším, jak mnozí několik let vylepsují GP. Taky jsem hostujícím reprezentantem na KV v OK1KSO. Kdo chce vědět, kolik ta bezva parta dostala na úkor těch ostatních, tak ať se jede podívat, co vydubovali. Zeptejte se, kolikrát byly první ve světových závodech s vlastním zařízením. A když dostali konečně zařízení, tak bez věškereho příslušenství, které u toho zcela určitě bylo. Kritiku bych tedy směroval konkrétně tam, kam patří. Nadávat obecně a na vše je nesmysl, který nikam nevede.

Tak jsem se přiznal a pokud mám právo, tak se přimlouvám ke shovívavosti a k návratu k základním myšlenkám radioamatérství. Pokud nám nemá vadit různá barva plati, politická příslušnost nebo náboženské vyznání, tak proč by nám vadilo, že Československo jsme reprezentovali a někdy i na světové úrovni.

Slávek Zeler, OK1TN

Jsem přesvědčen teměř tricetiletými zkušenostmi v oblasti zajímavé umělecké činnosti – obor fotografie a nyní asi pětiletými zkušenostmi v oboru rádiovým poslušnictvím, že mnozí z nás prostých členů mají potřebu být řízeni a jsou rádi, když je řidi lidé schopni a ochotní věnovat jim svůj soukromý čas a své znalosti a schopnosti. Nemyslím si, že je to strašidlo minulosti. Myslím si, že je to potřeba lidem přirozená, lidem vlastní. Abychom mohli všichni něco navrhnut a skupina zkušených to pak zkoordinovala a uvedla do života. Vždyť konečně proto se spojujeme a proto volime své vybrané.

Není mi jasné, proč všechno usili v organizování radioamatérského hnutí u nás není soustředěno na vytvoření jedné jednotné celostátní organizace, vedené téměř nejlepšími aktivisty z našich rad.

Přáme se, v čem konkrétně rádovým amatérům prospí jednotlivé regionální spolky? Jak bude provázána koncepční činnost, metodika, zabezpečení soutěží a závodů, hlavně ale QSL služba a diplomová služba? Mají snad územní spolky nahradit byvale krajské rady radioamatérství? Mají být filtry informací? Otázka rozdělování dotací tušíš padla. Aktiv schopných a ochotných je nyní větší než bude za rok či dva. Takže jejich diferenciace může být vlastním budoucím slabším organizačním struktury radioamatérství.

Naprosto tomu jsem přesvědčen, že bychom se měli snažit vybudovat profesni (odbornostní) svazy a spolky, ve kterých by ochotní a schopní aktivisté pečovali o zájmy svých členů a vzájemně je koordinovali. Například spoly amaterů vysílačů KV, VKV, RTTY, SSTV, RP, BCL, ROB, MVT, lektori, instruktori mládeže, konstruktoři a podobně.

Petr Pohanka, OK1-31484

„Napište to do novin“ Výsledky X., posledního ročníku

Závěrečného ročníku dopisovatelské soutěže „Napište to do novin“ se zúčastnili pouze dva dopisovatelé, z nichž F. Lorko, OK3CKC, absolvoval všechn deset (!) ročníků soutěže.

Porota, složená z členů redakce a redakční rady AR, ocenila dopisovatele takto:

Cena 100 Kčs udělena

Ing. Peteru Kráštovi za článek „Na vlnách éteru“, námět: činnost radioklubu OK3KUN v Čadci, vyšlo: 15. 12. 1989 v týdeníku ONV v Čadci „Kysuce“.

Cena 300 Kčs udělena

Františku Lorkovi, OK3CKC, za článek „Tu rádio klub OK3KYG“, námět: propagační akce radioklubu OK3KYG z Košic, vyšlo: 18. 10. 1989 v týdeníku ONV Košice-videk „Zora východu“.

Redaktek AR děkuje všem dopisovatelům, kteří se v uplynulých deseti letech do naší soutěže zapojili, za jejich záslužnost práci při propagaci radioamatérství a elektroniky mezi laickou veřejností. AR

V KV

Závody na VKV ve druhé polovině roku 1989

Polní den mládeže – proběhl za mírně lepších podmínek šíření vln, nežli ročník předchozí. Mírně vzrostl i počet stanic, hodnocených v obou kategoriích. V kategorii 144 MHz bylo hodnoceno 134 stanic a zvítězila OK1KRA/p, pracující z kóty Spáleniště v Krášných horách, JO60JJ a za 109 spojení získala 28 904 bodů. Nejlepší DX byl se stanicí F6HBP na vzdálenost 785 km, 2. místo obsadila OK1KTL/p – JN69UT – 141 – 22 219 a 3. OK2KZR/p – JN89DN – 154 – 22 141. V kategorii 432 MHz bylo hodnoceno 28 stanic s tímto pořadím: 1. OK1KQT/p – JO80EH – 47 QSO – 6527 bodů, 2. OK1KSH/p – JO80GF – 44 – 5696,3. OK1KE/p –

– JN79PP – 44 – 5606. Při vyhodnocování závodu vzbudil pozornost deník jedné stanice, která musela být diskvalifikována, protože ze 22 spojení v deníku uvedených bylo 18 velmi spárně změřených, nebo teď dalo dojem, že vzdálenost byly spíše velmi hrubě odhadovány. Kupříkladu ke stanici OK1KDO/p na Šumavě by mělo být podle dotyčné stanice z Krášných hor 652 km, na Sněžku 329 km a k jiné stanici v Krášných horách město správných 39 km bylo „odhadnuto“ 115 km. Bohužel podobným způsobem „měřila“ dotyčná stanice spojení i v závodu Polní den.

41. **Polní den na KV** – závod proběhl za průměrných ale spíše misty podprůměrných podmínek šíření vln. I když krátkodobě bylo možné z některých kót v Krášných horách pracovat během závodu z několika málou stanicemi z Velké Británie, maximální vzdálenost těchto stanic se pohybovala okolo 880 km. Většina DX spojení našich stanic byla v pásmech 144 a 432 MHz navázána se stanicemi z Itálie a Jugoslávie. Dokonce i v pásmu 1296 MHz je v denících našich stanic uvedeno několik značek stanic z Jugoslávie a I4JED/4. V I. kategorii pásmu 144 MHz bylo hodnoceno 86 stanic, 1. OK1KRU/p – JN89BO – 453 QSO – 101 826 bodů, 2. OK3RMM/p – JN88RS – 431 – 99 644, 3. OK3KAP/p – JN98HP – 404 – 98 619, 4. OK1KQT/p – 82 410 a 5. OK3KMY/p – 82 125 bodů. Ve II. kategorii pásmu 144 MHz bylo hodnoceno 225 stanic, 1. OK1KRG/p – JO60RN – 610 QSO – 194 764 bodů, 2. OK1KTL/p – JN69UT – 600 – 178 304, 3. OK1KAO/p – JO60OK – 600 – 177 041, 4. OK1KRA/p – 169 342 a 5. OK2KZR/p – 154 964 bodů. V kategorii III. – pásmo 432 MHz – do 5 wattů bylo hodnoceno 28 stanic, 1. OK1KQT/p – JO80EH – 133 QSO – 26 488 bodů, 2. OK3KVL/p – JN98AR – 128 – 25 518, 3. OK2Ji/p – JO80NB – 117 – 18 229. V kategorii IV. – pásmo 432 MHz bylo hodnoceno 67 stanic, 1. OK1KIR/p – JO60LJ – 182 QSO – 46 788 bodů, 2. OK1KRA/p – JO60JJ – 167 – 44 262, 3. OK1KEI/p – JN79PP – 156 – 36 823, 4. OK1KSF/p – 33 447 a 5. OK1KRG/p – 29 924 bodů. V kategorii V. – pásmo 1,3 GHz bylo hodnoceno 48 stanic, 1. OK1KIR/p – 71 QSO – 18 234 bodů, 2. OK1KEI/p – 56 – 11 635 a 3. OK1KQT/p – 51 – 8 997. V kategorii VI. – pásmo 2,3 GHz bylo hodnoceno 15 stanic, 1. OK1KIR/p – 17 QSO – 3 896 bodů, 2. OK1AIY/p – 9 – 1 405 a 3. OK2QQ/p – JN99FN – 7 – 1280. V kategorii VII. – pásmo 5,7 GHz hodnoceno 4 stanice, 1. OK1KIR/p – 966 bodů, 2. OK1KQT/p – 398 a 3. OK1AIY/p – 276. V kategorii VIII. – pásmo 10 GHz hodnoceno 6 stanic, 1. OK1KIR/p – 832 body, 2. OK1AIY/p – 444 a 3. OK1KQT/p – 434. V pásmu 24GHz hodnoceno 2 stanice, OK1KZN/p a OK1AIY/p – obě po 11 bodych.

V závodě VKV - 44 konaném koncem července bylo v I. kategorii pásmu 144 MHz hodnoceno 35 stanic a zvítězila OL1BSY/p z kóty Klinovec, která za 542 spojení získala 1813 bodů. V kategorii II. pásmu 144 MHz bylo hodnoceno 56 stanic a zvítězila OK1KKH/p z kóty Vysoká u Kutné hory, která za 387 spojení získala 1188 bodů. V kategorii III. pásmu 144 MHz hodnocena jediná stanice OK2-31714 s 89 body. V kategorii IV. pásmu 432 MHz bylo hodnoceno 15 stanic a zvítězila OK1OA/p - 84 QSO a 228 bodů. V kategorii V. pásmu 432 MHz hodnoceno 11 stanic a 1. CK1KKH/p - 91 QSO - 257 bodů. V kategorii VII. hodnoceno 10 stanic v pořadí 1. OK1KKH/p. 2. OK3KVL/p a 3. OK1KRG/p.

Závod Den rekordů na VKV konaný v září proběhl opětovně za průměrných podmínek šíření vln v pásmu 144 MHz a nejdéle spojení byla navázána se stanicemi v Anglii, Itálii a Jugoslávii. S anglickými stanicemi se však spojení dala navazovat jenom z několika málo kót v Královských horách. V kategorii „single op“ bylo hodnoceno 87 stanic a první z nich OK1MAC/p, která pracovala z kóty Melechov - JN79PP, získala za 510 spojení 134 191 bodů. V kategorii „multi op“ bylo hodnoceno 146 stanic a zvítězila OK1KTL/p z kóty Klinovec a za 714 spojení získala 225 538 bodů.

Den UHF mikrovlnných rekordů konaný v říjnu měl tradičně dobrou účast stanic ve všech pásmech. Poté, což je skutečnost, že v pásmu 10 GHz bylo hodnoceno jen 8 stanic, opět o dvě více, než v roce předchozím. Podmínky šíření vln byly horší a tomu odpovídají jak bodové výsledky stanic, tak i nejdéle navázána spojení. V kategorii „single op“ pásmu 432 MHz bylo hodnoceno 32 stanic a zvítězila OK1VFA/p - JO80EH - 141 QSO - 30 085 bodů. 2. OK3TMR/p - JN88UU - 142 - 27 782. 3. OK1AYR/p - JO80GF - 18 882. V kategorii „multi op“ pásmu 432 MHz bylo hodnoceno 43 stanic. 1. OK1KIR/p - JO60LJ - 209 QSO - 52 239 bodů. 2. OK1KRA/p - JO60JJ - 172 - 45 945. 3. OK1KTL/p - JN69UT - 172 - 42 207. V kategorii „single op“ pásmu 1.3 GHz bylo hodnoceno 15 stanic. 1. OK3TMR/p - JN88UU - 35 QSO - 5 197 bodů. 2. OK1AXH - JO70UR - 34 - 4954. 3. OK8AFJ/p - JO80XQ - 28 - 3788. V kategorii „multi op“ pásmu 1.3 GHz bylo hodnoceno 17 stanic. 1. OK1KIR/p - 77 QSO - 15 409 bodů. 2. OK2KQQ/p - JN99FN - 36 - 7414. 3. OK1KAJ/p - JO60XN - 45 - 7323. V kategorii „single op“ pásmu 2.3 GHz bylo hodnoceny jen 3 stanic. 1. OK1AIY/p - JO70SQ - 709 bodů. 2. OK3TTL - JN88NF - 354 a 3. OK1AIK - JO70WN - 10 bodů. V kategorii „multi op“ pásmu 2.3 GHz bylo hodnoceno 9 stanic. 1. OK1KIR/p - 3277 bodů. 2. OK2KQQ/p - 1325 a 3. OK1KTL/p - 1112 bodů. V pásmu 5.7 GHz bylo celkem hodnoceno 5 stanic a první „single op“ stanice byla OK1UWA/p - 868 bodů a v „multi op“ to byla OK1KIR/p - 764 bodů. V kategorii „single op“ pásmu 10 GHz byly hodnoceny 3 stanice a 1. OK1UWA/p - JO70UR - 4 QSO - 762 bodů. 2. OK1AIK/p - 638 a 3. OK1AIY/p - 589. V kategorii „multi op“ bylo hodnoceno 5 stanic a 1. OK1KIR/p - 9 QSO - 1025 bodů. 2. OK1KTL/p - 6 - 726 a 3. OK1KKD ze stálého QTH v Kládne za 6 QSO získala 566 bodů. A konečně v pásmu 24 GHz byly hodnoceny 2 stanice. OK1AIY/p a OK1KZN/p - obě po 6 bodech.

A1 Contest se konal v listopadu v pásmu 144 MHz. V kategorii „single op“ bylo hodnoceno 56 stanic a zvítězila OK1MAC/p z kóty Melechov - JN79PP a za 350 spojení získala 101 938 bodů. 2. OK1AXH - JO70UR - 326 - 89 718 a 3. OK1DXS - JN69NO - 223 - 60 075. V kategorii „multi op“ bylo hodnoceno 80 stanic. 1. OK1KTL/p - JO60LJ - 401 QSO - 125 367 bodů. 2. OK2KZR/p - JN89DN - 369 - 111 122 a 3. OK1KSO - JO60OK - 341 - 111 108.

OK1MG

KV

Kalendář KV závodů na září a říjen 1990

2. 9.	LZ DX contest	00.00-24.00
1.-2. 9.	Fieldday SSB contest	15.00-15.00
8.-9. 9.	European DX contest SSB	12.00-24.00
15.-16. 9.	Scandinavian act. contest CW	15.00-18.00
22.-23. 9.	Scandinavian act. contest SSB	15.00-18.00
28. 9.	TEST 160 m	20.00-21.00
29.-30. 9.	CQ WW RTTY contest	00.00-24.00
29.-30. 9.	Elettra Marconi	13.00-13.00
6. 10.	IRSA SSB Championship	00.00-24.00
6. 10.	AGCW 40 HTP	13.00-16.00
6.-7. 10.	VK - ZL fone	10.00-10.00
6.-7. 10.	Concurso Iberoamericano	20.00-20.00
7. 10.	Hanácky pohár	05.00-06.30
27.-28. 10.	CQ WW DX SSB contest	00.00-24.00

Podmínky závodů uvedených v kalendáři najdete v předchozích ročních červené řady AR takto: WAEDC AR 8/89. Fieldday AR 5/87. LZ-DX AR 8/87. tamtéž SAC.

Stručné podmínky CQ WW RTTY DX contestu

Závod se koná vždy poslední víkend v září celých 48 hodin. stanice s jedním operátorem mohou závodit jen 30 hodin, zbytek může být rozdělen nejméně do tříhodinových přestávek. Pokud stanice závodí dle, počít se pro závod prvých 30 hodin. Závod se v obvyklých kategoriích stanic pracujících s jedním operátorem na jednom či všechna stanicích s více operátory pracujícími na všech pásmech. Závodní pásmo jsou 160 - 10 metrů mimo WARC. spojení mohou být navazována různými druhy digitálních módů jako Baudot. AMTOR (FEC/ARQ), ASCII, Packet (mimo digipeatry). S každou značkou může být navázáno jedno spojení na každém pásmu bez ohledu na druh digitálního modu. Vymeňuje se kód složený v stanic USA a Kanady z RST. zkratky amer. státu nebo kanadské provincie a CQ zony, ostatní stanice předávají jen RST a číslo CQ zony. Bodování: 1 bod za spojení s vlastní zemí, 2 body za vlastní kontinent, 3 body za spojení s jiným kontinentem. Nasobiči jsou státy USA, kanadské provincie, DXCC a WAE země. Další nasobiče jsou CQ zony, vše na každém pásmu zvlášť. Deníky v obvyklé formě na adresu: Roy Gould, KT1N, P.O.Box DX, Stow, MA 01775 USA.

Podmínky víkendu aktivity QRP „Východ – Západ“

East to West European QRP Weekend 1990

OK QRP klub a G QRP Club zvou všechny příznivce provozu QRP k účasti na prvním víkendu aktivity QRP „Východ – Západ“, který má umožnit kontakty operátorů QRP z celé Evropy a přilehlých asijských oblastí. poskytnout možnosti vyzkoušení zařízení QRP ve spojeních na různých trasách a přispět k upevnění přátelských vztahů mezi operátory různých zemí Východu a Západu.

Oblasti: Pro tento víkend byly definovány dvě zeměpisné oblasti –

Oblast A se skládá z HA, LZ, OK, SP, TA (včetně asijské části), všech republik SSSR včetně asijských, YO a YU.

Oblast B se skládá ze všech ostatních zemí Evropy uvedených v seznamu DXCC (v oblasti B tedy leží DL i Y2).

Datum, čas: Platná spojení lze navazovat v době od pátku 28. září 1990, 16.00 UTC do neděle 30. září 1990, 23.59 UTC. (Protože se jedná o soutěž v přátelském duchu, navrhujeme se, aby si operátoři dopřáli dostatečně dlouhé přestávky k oddechu.)

Spojení: Pro přiznání bodu platí spojení mezi stanicemi odlišných oblastí (tedy QSO mezi stanicemi oblastí A a B). S každou stanicí lze na každém pásmu započítat jedno spojení, které se hodnotí jedním bodem. (Lze navazovat i spojení mezi stanicemi téže oblasti, avšak taková spojení se bodově neohodnotí.)

Výkon a druh provozu: Maximální výstupní výkon vysílače 5 W, pouze telegraficky CW (A1A). (Viz Pozn. 1.)

Výzva: ..CQ EW QRP“.

Kmitočty: 28 060, 21 060, 14 060, 7030, 3560 kHz, vše ± 10 kHz.

Předává se: RST, výkon ve wattech a jméno operátora.

Pozn. Kdo nemá možnost měřit výstupní výkon vysílače, musí měřit příkon koncového stupně a jáko výkon pak udávat polovinu příkonu.

Např. příkon 10 W = výkon 5 W, příkon 6 W = výkon 3 W atd.

Deníky: Je nutno použít zvláštní list pro každé pásmo. Všechna opakována spojení je nutno v deníku zřetelně vyznačit. V deníku musí být uvedeno datum a čas v UTC, značka protistanice, vyslané RST, přijaté RST, výkon a jméno operátora protistanice. K deníku musí být připojen souhrnný list s plným jménem a adresou operátora, popisem použitého zařízení antén, výkonem a čestným prohlášením. V poznamkách je možné uvést další podrobnosti a zajímavost, týkající se např. použitého zařízení nebo pozoruhodných spojení. (Protože deníky se budou vyhodnocovat v Československu, lze psát česky a slovensky.)

V souhrnném listu musí být rovněž uveden celkový počet QSO (= bodu) a počet různých zemí DXCC

z druhé oblasti, se kterými bylo navázáno spojení. Deníky se zasílají nejdříve do 30 dnů po skončení soutěže na adresu: Petr Douděra, OK1CZ, U 1, baterie 1, 162 00 Praha 6.

Diplomy: Diplomy budou uděleny

a) Třem stanicím v obou oblastech, které navaží největší počet spojení s různými stanicemi QRP ve druhé oblasti.

b) Stanici v každé zemi (pokud není zahrnuta pod a). která navaží největší počet spojení s různými stanicemi QRP ve druhé oblasti.

c) Podle rozhodnutí vyhodnocovatele dále až třem stanicím v každě z obou oblastí, které uskuteční spojení vynikající a pozoruhodné hodnoty (v uvalu se bere výkon, vzdálenost a kmitočet).

Rozhodnutí vyhodnocovatele (kterými jsou OK QRP klub a G QRP Club) se považuje za konečné ve všech případech, kdy se jedná o interpretaci a aplikaci pravidel soutěže.

OK1CZ

MAJSTROVSTVÁ ČSSR 1989 v práci na KV

Kategorie: jednotlivci

1. OK1ALW	25	-	25	22	-	25	25	75	bodov
2. OK1VD	22	25	19	9	25	-	16	72	
3. OK2RU	9	22	22	17	17	19	-	63	
4. OK2ABU	17	-	4	-	12	17	19	48	
5. OK3FON	3	16	17	-	10	-	13	46	
6. OK3PQ	7	-	-	-	13	-	22	42	
7. OK3IAG	16	-	-	-	5	6	16	37	
8. OK1MAW	19	-	-	-	-	-	-	17	36
9. OK2HI	1	7	10	12	-	-	14	36	
10. OK2PGT	-	12	11	13	4	2	-	36	

a dalších 77 stanic.

Kategorie: klubové stanice:

1. OK1KSO	-	25	25	25	-	-	-	75	bodov
2. OK1KQJ	17	-	16	-	25	17	25	67	
3. OK3KII	22	-	22	22	-	-	15	66	
4. OK1KSL	12	-	-	-	22	-	-	22	56
5. OK2KLI	6	15	-	17	17	19	4	53	
6. OK1OFM	13	-	17	-	16	16	17	50	
7. OK1ORA	7	16	-	-	11	22	8	49	
8. OK2KOD	-	11	22	-	19	15	15	49	
9. OK3KAG	19	22	-	19	-	9	25	47	
10. OK2RAB	11	-	-	-	-	25	16	41	

a dalších 55 stanic.

Poradie pretekov: OK DX, IARU, WAEDC CW, WAEDC FONE, CQ WW DX CW, CQ WW DX FONE, prebor ČSR alebo SSR.

Kategória: mládež (OL)

1. OL5BPH YL	25	25	22	-	72	bodov
2. OL8CVU	22	22	25	-	69	
3. OL1BSP	17	15	-	19	51	
4. OL8WAT	13	8	14	-	35	
5. OL9CUD	15	19	-	-	34	
6. OL1BUD	9	9	13	-	31	
7. OL6BTN	-	14	-	17	31	
8. OL9CUZ	-	11	16	-	27	
9. OL9CUH	14	10	-	-	24	
10. OL6BUR	19	-	-	-	19	

a dalších 15 stanic. **Poradie pretekov:** OK DX, OK CW a Závod mieru.

Kategória: poslušnici (RP)

1. OK3-27707	25	25	22	-	72	bodov
2. OK2-23072	-	22	19	22	63	
3. OK1-21937	14	-	17	25	56	
4. OK1-31484	17	19	10	19	55	
5. OK1-32783	13	17	13	17	47	
6. OK1-33237	7	16	14	16	46	
7. OK3-28232	-	15	12	14	41	
8. OK3-13095	15	-	15	-	30	
9. OK1-30598	19	-	9	-	28	
10. OK1-30633	-	-	25	-	25	
OK1-30823	-	14	11	-	25	

a dalších 24 stanic. **Poradie pretekov:** OK DX, OK CW, OK SSB, Závod mieru.

Vyhodnotil OK3IQ

Předpověď podmínek šíření KV na září 1990

Pro předpověď na září si stále ještě můžeme vybrat mezi odlišnými předpovědmi z různých renomovaných zdrojů zhruba v rozmezí R12 135 až 165 s chybou približně dalších ± 35. Z chování slunce v posledních měsících lze nyní usoudit na další pokračování rozšířeného maxima aktivity až do roku 1992 (pak by se možná dvaadvacátý cykl podobal čtvrtému, který trval 13.67 roku). Poruch bude zřejmě i nadále dost. také podmínky šíření KV budou silně kolísat mezi výtečnými až nepoužitelnými. Ale bude více šancí na výskyt polární záře. Proto nezapomeňme na „Aurora Warning Beacon“ DKOWCY.

Zozorované R v dubnu 1990 bylo 139,8; po dosazení do vzorce pro výpočet klozavého průměru máme za říjen 1989 R12 = 157. Dubnová denní měření slunečního toku dopadla následovně: 159, 153, 151, 150, 156, 149, 155, 151, 144, 147, 159, 168, 196, 211, 218, 232, 240, 236, 247, 249, 236, 227, 219, 212, 193, 187, 167, 148, 138 a 133, průměr je 184,4. Denní indexy aktivity magnetického pole Země určili v observatoři Wingst takt: 8, 12, 14, 14, 9, 8, 9, 8, 28, 92, 57, 69, 31, 37, 21, 14, 32, 20, 11, 19, 13, 15, 33, 23, 17, 10, 18, 17, 24 a 21. Podmínky šíření byly v prvních dvou dnech díky působení sezónních změn a dostatečné sluneční radiaci ještě velmi dobré; její pokles spolu s přilivem částic do polárních oblastí tomu ale učinil přítrž. Po horším dni 4. 4. došlo ještě ke krátkusu zlepšení. Definitivní zvrat způsobil silná porucha od 9. 4. U nás se projevila zlepšení v kladné fázi, ale v USA hlavně polární září, kde byla dokonc viditelná ze středních zeměpisných šířek. Rádiiovou auroru jsme v pásmu 2 m mohli využít 10. 4. a s postupem zvýšené ionizace do nižších šířek došlo den poté k výbušení TEP a spojením s africkými státnicemi v pásmu 50 MHz. I přes sérii dalších poruch došlo po opětovném vystupu sluneční aktivity ke zlepšení v intervalu mezi 20. 4. až 27. 4., zejména 20. 4. a ještě 26. 4., kdy byla Jižní Afrika opět dosažitelná via TEP.

Následuje výpočet intervalů otevření na jednotlivých pásmech. Časový údaj v závorce se vztahuje k minimu útlumu. Sezonní změny prolouží intervaly otevření a vzdmost použitelné kmitočty oproti srpnu na všech trasách do vyšších šířek severní i jižní polokoule. Malé zlepšení nastane do teplejších oblastí, na Jižní Ameriku dokonce malé zhoršení.

1,8 MHz: W3 01.00–05.00 (03.00), VE3 23.00–05.30 (03.30).

3,5 MHz: JA 17.00–22.00 (20.00), PY 21.30–05.45, W4 23.40–06.10 (02.30), W5 01.30–06.15, W6 02.20–06.10 (05.00).

7 MHz: A3 16.00–18.15 (18.00), 3B 16.00–03.00 (21.00), 6Y 22.00–07.00 (02.30), W3 21.50–07.20 (04.00), F08 06.00.

10 MHz: JA 15.00–22.30 (20.00), W4 22.00–07.20 (01.30).

14 MHz: A3-3D 16.00–17.50, FB8X 16.00–17.00 VE3 05.30–08.00 a 20.30–03.30 (01.30), W7 v lepších dnech okolo 06.00.

18 MHz: VK6 15.00–16.30, PY 06.00 a 19.30–02.00 (20.00).

21 MHz: UAOK 05.30–06.30 a 13.00–14.00, PY 19.30–21.00.

24 MHz: W3 14.00–20.30 (20.00), VE3 11.40–20.20 (19.00).

28 MHz: 3B 15.00–17.00 (16.15), ZD7 07.00 a 16.00–20.40 (18.30), W3 13.30–19.30 (16.45), VE3 12.30–19.30 (18.30).

Zvláštní pozornost stojí poměrně krátká okna v podvečer dlouhou cestou do oblasti Tichomoří: FO8 okolo 17.00 mezi 7 až 14 MHz, případně i 21 MHz, v nejlepších dnech i KH6 okolo 17.00 mezi 14 až 24 MHz, resp. k 17.30 v pásmu 28 MHz a W6 okolo 16.00 v pásmech 18 až 28 MHz. Pravidelně k takovému otevření dochází po větší sluneční erupci, je-li současně zemské magnetické pole v klidu.

OK1HH

Frank Langner, DJ9ZB, vydal pro všechny radioamatéry zabývající se DX provozem knihu Funk Technik Berater. Text na 360 stranách je doprovázen více jak 1000 ilustracemi, cena je pro nás poněkud exkluzivní – včetně poštovného 25 \$.

MLÁDEŽ A RADIOKLUBY

Udělali bychom zkoušku v Japonsku?

Odpovědi na minulé otázky:

- (a) 2. 2. 1. 2. 1
- (b) 1. 1. 1. 2. 2
- (c) 2
- (d) 5
- (e) 5

- | | | |
|------------|-----|---------------------------------|
| 3. OK2KJT | 927 | - radioklub Vsetín |
| 4. OK3KWW | 830 | - radioklub Bratislava |
| 5. OK2RGA | 587 | - radioklub Opava |
| 6. OK1KLO | 578 | - radioklub Praha |
| 7. OK1KUW | 550 | - radioklub Stříbro |
| 8. OK2OAJ | 550 | - radioklub Velká Polom u Opavy |
| 9. OK2KJU | 502 | - radioklub Přerov |
| 10. OK1KMP | 418 | - radioklub Nová Paka |
- Hodnoceno bylo celkem 18 klubových stanic.

Kategorie – posluchači do 19 roků:

- | | |
|----------------------|--|
| 1. OK3-28573 5073 b. | - Robert Gáta, Bratislava |
| 2. OK3-38575 4090 | - Robert Černík, Bratislava |
| 3. OK3-28660 3301 | - Martin Gančo, Bratislava |
| 4. OK1-33495 2543 | - Milan Purkart, Stříbro |
| 5. OK3-28689 2244 | - Anton Vojčák, Bobrov u Dolního Kubina |
| 6. OK1-33953 1698 | - Petr Hanč, Povrly u Ústí nad Labem |
| 7. OK2-32077 1426 | - Petr Horák, Přerov |
| 8. OK1-33732 1420 | - David Beran, Dolní Kamenice u Hoříšova |
| 9. OK1-33832 1394 | - Petr Andraschko, Jindřichův Hradec |
| 10. OK3-28766 1138 | - Roman Chvíla, Malacky |
- Celkem hodnoceno 60 posluchačů do 19 let.

Kategorie – stanice OL:

- | | | |
|------------|---------|---|
| 1. OL7BTG | 1426 b. | - Petr Horák, Přerov |
| 2. OL8CWM | 1138 | - Roman Chvíla, Malacky |
| 3. OL5VVL | 1054 | - Pavel Podobský, Nová Paka |
| 4. OL7MVJ | 1012 | - Jiří Kimmel, Opava |
| 5. OL9CWV | 911 | - Anton Vojčák, Bobrov u Dolního Kubina |
| 6. OL7BZV | 897 | - Pavel Bambach, Valašská Polanka |
| 7. OL4BVJ | 713 | - Martin Trykar, Žatec |
| 8. OL7BTX | 689 | - Petr Šíška, Vsetín |
| 9. OL1VPO | 645 | - Oldřich Linhart, Kolín |
| 10. OL5VSG | 573 | - Libor Tomek, Týniště nad Orlicí |
| OL7BTD | 573 | - Pavel Manzur, Výškovice u Ostravy |
- Celkem bylo hodnoceno 28 stanic OL.

Kategorie – YL:

- | | |
|---------------------|---|
| 1. OK1-33152 469 b. | - Kamila Hančová, Povrly u Ústí nad Labem |
| 2. OK2-33403 370 | - Marta Musilová, Nové Veselí |
| 3. OK1-30977 347 | - Lenka Nechvílová, Dašice v Čechách |

Hodnoceno bylo 10 YL.

V minulých letech byly podobné soutěže mládeže pořádány k významným výročím. Vyhodnocení soutěže se uskutečňovalo v Praze, kam byly na několik dnů povážováni nejlepší účastníci ze všech kategorií.

Jak bude organizováno vyhodnocení Soutěže mládeže na počest 60. výročí zahájení radioamatérského vysílání v Československu, to zatím nevíme, protože v současné době vedení Čs. radioklubu má zcela jiné starosti a dosud nepracuje ani příslušné komise. Věřím, že se vše v nejbližší době výřeší a soutěž mládeže, vzhledem k významnému výročí, bude důstojným způsobem vyhodnocena.

Dr. Ing. J. Daneš, OK1YG

Soutěž mládeže na počest 60. výročí zahájení radioamatérského vysílání v Československu

V letošním roce si připomínáme 60. výročí zahájení radioamatérského vysílání v Československu. Na oslavu tohoto výročí bude během roku uspořádáno několik akcí. Také komise mládeže rady radioamatérství se připojila k této oslavám a uspořádala Soutěž mládeže na počest 60. výročí zahájení radioamatérského vysílání v Československu, která probíhala po celý měsíc března. Soutěže se mohli zúčastnit mladí operátoři kolektivních stanic. OL a posluchači ve věku do 19 let. Celkem se této soutěži zúčastnilo 116 radioamatérů ve čtyřech kategoriích.

Nejúspěšnější účastníci jednotlivých kategorií:
Kategorie – klubové stanice:

- | | | |
|-----------|---------|------------------------|
| 1. OK3KME | 1057 b. | - radioklub Stará Turá |
| 2. OK1KTC | 966 | - radioklub Kolín |

Zájmové kroužky mládeže

Se začátkem nového školního roku se po letech prázdnin znovu ožívají také činnosti v radioamatérských a klubových stanicích, která v letech měsících v důsledku prázdnin a dovolených částečně upadla. Během prázdnin jste přiblížili radioamatérskou činnost mládeži v letech táborech. Mládež, která o činnosti radioamatérů před vaší ukázkou možná neměla ani tušení, se s naší činností seznámila poprvé. Činnost radioamatérů se jim možná zalíbila a z letošního tábora se vracejí domů s předem zájemem. Ze této prázdninové příhledy do zájmového kroužku rádia, aby se mohli také stát operačory klubových stanic.

Se zahájením nového školního roku proto pamatujte na nové zájemce o naši činnost. Navštívte školy a učňovská střediska ve vašem okolí a informujte mládež o vaší činnosti. Učitelé nebo vychovatelé vám jistě umožní uspořádat besedu o činnosti vašeho radioklubu.

Nezapomeňte také na propagaci činnosti vašeho radioklubu a klubové stánky ve výstavních skříňkách a pokud možno také ve výlohách prodejen a na jiných vhodných místech, kde by se mládež dozvíděla o vaší činnosti a adresu, kde váš radioklub může navštívit.

Na snímku propagace činnosti radioklubu OK1KJO v Klašterci nad Ohří

V radioklubech a kolektivních stanicích nebo v domě dětí a mládeže uspořádejte pro mládež zájmové kroužky radiotechniky a radioamatérského provozu. Během roku se vám v kroužcích podaří vychovat nové posluchače. OL a operátory třídy D nebo C. Mládež o radioamatérskou činnost zajímá, je třeba tento její zájem podchytit a využít.

Nezapomeňte, že . . .

závod WAEDC – část SSB bude probíhat v sobotu 8. září 1990 od 12.00 UTC do neděle 9. září 1990 24.00 UTC v pásmech 3.5 až 28 MHz. Závod je v kategorických kolektivních stanicích a jednotlivců započítáván do mistrovství ČSFR v práci na krátkých vlnách.

Přejí vám příjemné prožití zbytku dovolené a prázdnin. Těšíme se na vaše další dopisy. Pište mi na adresu: OK2-4857, Josef Čech, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

731 Josef, OK2-4857

INZERCE

Inzerci přijímá osobně a poštou vydavatelství MAGNET PRESS, s. p., inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9 linka 294. Uzávěrka tohoto čísla byla 25. 6. 1990, do kdy jsme můželi obdržet úhradu za inzerát. Neopomenejte uvést prodejní cenu, jinak inzerát neuvěřitelněm. Text píšte čitelně, aby se předešlo chybám vznikajícím z nečitelnosti predlohy. Cena za první rádek čini 50 Kčs a za každý (i započatý) 25 Kčs. Platby přijímáme výhradně na složenkách našeho vydavatelství.

PRODEJ

Hry a programy na Commodore 64 (á 5). M. Daříhelka, 264 01 Sedlčany 761.

Commodore Amiga 500 s myší i soc. organiz. Nepoužitý. (25 000). Z. Poledne, Dobrnice 27, 582 86 Leština u Světlé n. Sáz.

Nouov disk. jed. 1551 pro C+4 (7500) nebo vyměním za 1541. R. Staněk, Gen. Hrušky 22, 709 00 Ostrava 1.

Osciloskop N 3015 1 mV/dil., 0-10 MHz (4000). A. Štěrba, Lídická 566, 686 04 Kunovice.

Širokopásm. zesilňovač 40-800 MHz: BFG65+BFR91, zisk 24 dB, 75/75 Ω (400), 2x BFR91, zisk 22 dB, 75/75 Ω (350), oba vhodné pro slabé TV signály, BFG65+BFR96, zisk 23 dB, 75/75 Ω (400), vhodny pro malé domovní rozvody. F. Ridarík, Karpatká 1, 040 01 Košice.

Trafo 220/24 V, 400 VA (200), 220/24 V, 800 VA (400). J. Jilek, Díly 89, 345 35 Postřekov.

IFT 120 (60). R. Podhorná, U nádraží 25, 736 01 Havířov-Sumbark.

ZX Spectrum, literatura, programy, joystick (4900), oživený sat. přijímač podle AR (3900), doska STD bus s 8 konektormi (600), Z80A-CPU, DMA, PIO (150), CTC (100), 8255.51 (80, 60), CMOS 8 KB, 27128, 2716, 2114 (250, 300, 200, 50), E147C, 74LS157 (25). Naprogramujem PROM, EPROM. Oživím různé konstrukce podle AR. Ing. V. Horváth, J. Fučík 726/44. 018 51 Nová Dubnica.

Atari 130XE, mfg + Turbo 2000, joystick, programy, syst. literatura (9500). M. Vorel, Koliárova 1434, 266 01 Beroun 2.

Zesil. Mono 50, LP a CD oblast art. hard. metal. Seznam za známkou. P. Kovářík, Slunečná 28, 695 01 Hodonín.

Tužkový mult. 3 1/2 LCD s aut. volbou rozsahu U, I, T, R vč. logit. a diod. testem (1500). Z. Kořínek, Kořenského 3, 400 03 Ústí n. L.

BFR90, BFR91, SO42 (33, 37, 79), SFE6.5 (49), TDA2004 (240), TA7233P, TA7229P (250, 280), HA1367, HA12013 (190, 70), LA 4430, LA4192, LA4140 (190, 220, 80), µPC1156, µFC1185 (270, 280), AN7161 (300), zásuvka, zástrčka „Scar“ (50, 55). F. Spišák, Palánková 3/39, 040 00 Košice, tel. 095-690 45.

6 kazet hier na Commodore 64 (á 500). L. Janko, Tehelná 5, 903 01 Senec.

Elektronku GU-43B (KV 1 kW) nová, nepoužitá (10 000). Lenpisomné ponuky (+ adresu). K. Novák, Družstevna 30, 900 27 Bernolákovo.

Plovodíček BFQ69 (170), BFG65 (170), Siemens BFT97, F=1.8 dB/500 MHz (130), BFT96 (80), BFT66 (130), BFR90, 91 (60), kupim koax. kabel 200 m. P. Poremba, Clementisova 12, 040 14 Košice.

BFG65 (160), TL084 (60), TL072 (55). L. János, Cichowského 28, 851 01 Bratislava.

Disketovou mechaniku DS/DD 5.25" TEAC FD55FR (ES532301) (4500). J. Javodšnák, Zdkovice 22, 348 72 Zdkovice.

SIMONS-BASIC originál cartridge pro Commodore C64 (C64 II) + navod v němčině a manuál v angličtině (300). J. Kreček, Zahradní 638, 357 35 Chodov u K. Varu.

Aut. bubeník „Yamaha“ RX11 (20 000), gramofon „Sony“ PS-LX3 (5000), elektr. bicie + pady biele + stojany + kufor (5000, 5000), stojan na činel „Tama“ (1500), činel „Paiste“ Ø 18 China type (2500). D. Dudáš, Exnárova 3, 953 01 Zlaté Moravce, tel. 0814/213 86.

Ant. zesil. 2x BFR: k 1-60 22/5,5 dB (310), k 21-60 25/2,9 dB (290); s MOSFET VKV 24/1,4 dB; 6-12 20/1,9 dB (à 175); slučovače (50-90); vše 75/75 Ω; vstup symetr. (+15); nap. výhybka (+15); odzkušení; záruka. Ing. R. Rehák, Štipa 329, 763 14 Zlín.

Ant. zesil. 2x BFR: k 1-60 22/5,5 dB (310), k 21-60 25/2,9 dB (290); s MOSFET VKV 24/1,4 dB; 6-12 20/1,9 dB (à 175); slučovače (50-90); vše 75/75 Ω; vstup symetr. (+15); nap. výhybka (+15); odzkušení; záruka. Ing. R. Rehák, Štipa 329, 763 14 Zlín.

Širokopásmový anténní zesilovač s Mosfet I-II G=16 dB; III-V G=25 dB; F=4 dB (500). M. Busek, Vítězství 393, 691 55 Mor. Nová Ves.

Paměti K561RU8 (800), RU7 (1900), cena za 8 kusů. Otestovává. M. Musil, Strkáje 48, 679 23 Lomnice u Tišnova.

BFG65, BFR90, 91, 96 (200, 45, 50, 60), U733, NE555, 565 (100, 30, 100). H. Nagypál, Fandýho 805, 050 01 Revúca.

Pro ZX Spectrum, Didaktik programy, hry i nové (5). A. Svoboda, Gružinská 21, 301 56 Přešťov.

Didaktik Spectrum příručka, rady pro začínající a mírně pokročilé (30 + pošt.). J. Hellebrand, 252 46 Vrané n. Vlt. 430.

Stereofónie Walkman TOSHIBA, černý (1200), gramo so zesilňovačom 2x 15 W, NZC 431 (1600), mfg B90 (300), elektronkový TV MARINA fungujici (200), vrak autoradia ITT (200), neozivený mi podle ARA 5/87 (400). P. Rybář, Leningradská 67, 911 00 Trenčín.

Plotter 12-016 (3000). M. Wiśniewski, Sokolská 9, 772 00 Olomouc.

BFG65 (120), BFR90, 91, 96 (30, 30, 35), BB405 (30), CF300 (140), BF961, 63, 64 (30), TL081, 072, 074 (25, 35, 55), SO42 (80), SL 1451, 1452 (800, 900), C-MOS 40xx dle žádosti a jiné polovodiče, seznam za známkou. J. Bařina, SPC U75, 794 01 Kroměříž.

Pre ZX Spectrum plošný spoj ULA, Z80A, QUARTZ 14 MHz, EPROM a dálise (740, 980, 290, 190, 480) podrobný zoznam na požiadanie. Kompletnej modul s ICL7107 (680), merač frekvencie do 40 MHz (2600), sada súčastok a plošné spoje pre digit. LC merač podľa ARB 2/89 (940), EPROM 27128, 27C256 filter SFE6.5 a CDA6.5 (290, 370, 70, 70). Možnosť závfy pri odberu väčšieho množstva. Ing. M. Ondráš, Bajkalská 11, 040 12 Košice.

BFG65, BFT66, BFR90, 91, 96 (140, 130, 35, 38, 45), BFW93, BF199, BF245A, BC182B, BC212B (40, 15, 20, 9, 9), TDA1053, BB121, 221, SO42, LM733 (55, 7, 10, 80, 100), TBA1205, TDA440, ICL7106, K500LP116 (35, 50, 250, 60), TL071, 72, 74, 81, 82, 84 (30, 35, 55, 30, 35, 55). J. Kaiml, Šalounova 18, 703 00 Ostrava-Vítkovice.

IFK120 (70), krys. 128 kHz ve skle (180), KT911A (100). Z. Zubrycký, Klöstermannova 16, 430 01 Chomutov.

EQUALIZER YAMAHA QG1031BII (8500). P. Plevák, Svatovit-ská 508, 686 02 Uh. Hradiště 2, tel. 632 42 524.

Obč. radiostanice 40 kan. AM/FM 4/1 W. Cena dohodou. P. Širok, Starostraňská 11, 100 00 Praha 10.

MC10116 (200), BFG65 (130), BFQ69 (130), BFT66 (130), BB405 (40), BFR90, 91 (35), BFR96 (40), TL072 (35), TL074 (50), celá řada „CMOS“ (50) a jiné součástky. Z. Oborný, 739 38 Hor. Domaslavice 160.

Vstup. jedn. VKV (400), ARA 1980-88 (à 50), tov. ant. zes. VKV (150). P. Matlás, Ciglerova 1080, 198 00 Praha 9.

C64 II + soft (5960), Kombo IBANEZ GX20 pro hud. nást. a poč. 40 W overdrive, echo, 3-EQ (1930), kláves. pro APLE II aj. (72T, 340). L. Habrda, Borek 192, 370 10 Č. Budějovice.

Nové nepoužité objímky pro DIL 14, 16, 24 cena za kus (9, 10, 15), odber na doberku. P. Tunklová, Šafárikova 10, 040 11 Košice.

Sat. konvertor ECHOSTAR šum. c. 1,5 dB (6500). P. Neu-mann, Řetenická 138, 415 01 Újezdceek.

Počítač Schneider CPC 464 s rozš. paměti o 512 kB, foniční podsystem BOS 2.1, barevný monitor, disková jednotka DDI-1-3", 50 disket, tiskárna NLQ401, 2 ovladače, vše foniční pod op. systémem CPM, množství programů dokumentace. Nabídnete. Ing. J. Hassmann, Roháčova 4197, 430 03 Chomutov.

U806D (120), U807D (120), C520D (120), VQE12 (100), VOE22 (100), VQB73 (25), ker. filtr 10,7 MHz (40), 6,5 MHz (40). J. Povejš, Tyršova 61, 251 64 Mnichovice.

Výbojku IFK-120 (80). J. Kotyza, Hrnčířská 39, 602 00 Brno.

FTV Elektronika C 401 slabšia obraz. (800). P. Majerech, C 1 128/62 č. 127, 018 41 Dubnica n. V.

Nové floppy mechaniky jednostr. 5,25 BASF 6106 SD/DD (1250). M. Cibák, M. Bala 20, 921 07 Piešťany.

Barevnou tiskárnou Selskosa GP700VC, sériový přenos Commodore (10 000). R. Broda, Kamýšovská 22, 360 10 Karlovy Vary. Tel. 445 71.

FRB 62 pin (pár 100), A1818D (40), WQE14 (80). F. Kašpar-ek, S. Alenda 48, 775 00 Olomouc.

BFG65, BFQ69, BF961, BF961 (140, 150, 40, 35), různé tranz., IO, R, C, ant. techn., seznam proti známkce zašlu, nové videokazety SONY DX195 - 20 ks (à 220). Ing. M. Krejši, Dobročovická 46, 100 00 Praha 10.

Výbojky IFK 120 (à 75), na doberku. J. Pelant, Pplk. Sochora 39, 170 00 Praha 7.

BFR91, 96, 90, 94 (40, 45, 35), SO42 (80), BB221 (15), plast. 7805, 7815 (30), BF961 (30), ker. trimry C 2,5-6 pF (15). M. Pantúček, Kosmická 741, 149 00 Praha 4. tel. 795 00 63.

Mikropoč. Commodore 64, floppy VC1541, datasette PM4401C, tisk 1526, programy (10 disk. vč. editoru), boh. lit., mj. 40 stroj. prog. kompl. disassembly, podrob. prog. manuál (20 000). G. Heller, ČSM 1683, 436 01 Litvinov.

BB405 (30), BFG65 (120), BFR90, 91, 96 (30, 32, 40), BFT66 (130), UAT733 (70), CMOS 4066 (35), 4017 (45), 4024 (35) a další seznam za známkou. M. Urban, Zahradní 413, 747 57 Slavkov u Opavy.

Širokopás. zos. IV-V Tv G=25 dB s 2x BFF. à 300), F=3 dB alebo s BFT66+BFR (à 400) F=2 dB, III Tv a VKV G=22 dB s BFR90 (à 250) F=1,5 dB alebo s BFT66 (à 300) F=1,2 dB, výhybky (à 50), zlucovač VHF/UHF (à 50), zlucovač I. Tv+III. Tv+IV.-V. Tv+VVK (à 100), BFR90, 91, 96, BFT66 (49, 52, 58, 150), krok. motorčeky SMR 300-100 RI/24. L. Čemeš, Podhorie 1467, 018 61 Beluša.

Výbojky IFK 120 (à 50). J. Buršík, Hradíšťská 9, 301 51 Plzeň. Mixput 12/2 kopie XR1200 Peavy, zesilovač 2x 200 W crossover 3 pama stereo, equalizer 2x 10 band s analyzérem Dynako made in Japan. Končím. levně. J. Thener, Hornická 31, 747 23 Bolatice.

SORD-M5 + BASIC I.F. + RAM 64 kB s tiskárnou ATARI 1029 a magnetofonem ELTA (16900). M. Plintovič, Havlíčkova 15, 767 01 Kroměříž.

Satellite souprava i jednotlivé konv. 1,3 dB (6500), polarizer + feed (3400), parabola Ø 120 až 150 (3000), přijmač stereo (1500). J. Sklář, Hermaňák 54, 710 00 Ostrava 2, tel. 22 31 48.

Digitální multimeter V, Ω, mA; diody + logická sonda TTL + CMOS (1600), automatické přepínání rozsahů + DATA HOLD. P. Sochor, Čs. odborář 920, 357 35 Chodov u K. Váru.

Zesilovače pro IV.+V. TV s BFG65+BFR91, F=2 dB (290), s BFR90+BFR91, F=3 dB (190). J. Jelinek, Lipová alej 1603, 397 01 Písek.

BFG65 (150), BFR90, 91, 96 (35, 35, 40), BB405, 221 (40, 20), BFT66 (135), SO42 (95), BF199, 244, 245, 964 (25, 35, 35, 30), SL1451, 1452 (1250, 1250), TL072, 071, 074, 084 (45, 40, 50, 47), celá řada CMOS. D. Cienciala, Soběšovice 181, 739 38 Frýdek-Místek.

Antennní zesilovače pro IV. a V. TV s BFG65+BFR91, G=25 dB, F=1,4 dB (480); III. TVs BF960 G=23 dB, F=1,5 dB (170); VKV-CCIR s BF960 G=25 dB, F=1,5 dB (170) vše 75/75 Ω. L. Žabkovský, 273 06 Hrdlív 30.

Satellite parabolou 90, konvertor 1,5 dB (1100, 10 800). J. Sedláček, Předměstí 10, 569 73 Svojanov, tel. Polička 918 25.

BFR90, 91, 96 (29, 32, 35), BFG65, CF300A (120, 130), TDA5660, TDA1053 (480, 40), K500LP116, SO42 (100, 80), BB405, BB221, BF199 (35, 12, 15), TL072, TL074, NE5534A (35, 60, 100), HT 5082-2301 = KAS31 (40), BF964, BF961, BF960 (30, 30, 25), SL1452 (1100), keramické trnný 2,6 - 6 pF (12), kapacitní průchody 1 nF (3), celá řada CMOS 4000 + 4593. Zajistim jakékoli zahr. tranz., nad 1000 Kčs sleva 5 %. T. Majer, Soběšovice 157, 739 38 Frýdek-Místek, tel. 964 57.

ASM51 v2 ZX Spectrum software k vývoji a ladení programov na 8051 (à 200) majitelia v1 za poštovné. Š. Gensör, L. Štúra 717/5, 029 01 Náměstovo.

Dekódér sat. kanálu Film Net – Astra, samostavitelný kód, připojení ke všem přijímačům, výstup SAT, TV, Video, predvedu i na dobitku, kvalita (4500). Ing. R. Juřík, Folynova 15, 635 00 Brno.

K174GF1, IIAT739, SO42 (100, 75, 96), NE556, 74LS02 (38, 21), BFR90, 91, 96 (35, 37, 39). Z. Kubík, Pšenčíkova 684, 142 00 Praha 4, tel. 232 34 71 ráno.

Osciloskop C1-94 (3200). R. Knecht, Čtvrté 8, 603 00 Brno. **Monitor 12" zelený**, Mechaniku FD 2x40 stop (2900), progr. + emul. EPROM pro IBM (6500), 6116 CMOS RAM, 4164, 2708, 80CS1 (130, 85, 75, 230). J. Roud, Slovenská 17, 307 03 Plzeň.

Kompletní sadu IO pro AR CPU 2/F + orig. pl. spoj. (1400), trafo 3x 380 V/3x 110 V-150 A (800), nabídka Cartridge Atari s SRAM a seznam dalších IO, souč. a lit. za známkou. S. Petrášek, Pražská 439, 471 24 Mimon.

Nový hrot Shure V15 typ III (1300). L. Mazur, Kroupova 2775, 150 00 Praha 5.

Display MAN72A, červené na černém podkladě, el. ekvív. LO410, dovoz SRN (40). V. Vesely, V. Cibulkách 2, 150 00 Praha 5.

Commodore C64-2 + MGF + 10 kaz. prog. a her + manuály, knihy i pro náročné, vše orig. (7900); nová obrazovka a osaz. desky pro BTV Elektronika 430-432 (1200); startov. a nab. zdroj 6/12 V/500 A (690); el. a foto amat. věci a jiné. Sezn. proti zn. jen pís. E. Sucháňková, Štěchová 582, 140 00 Praha 4, tel. 25 01 88.

Tape deck Technics RS B505 Dolby B, C, HXPRO (8000), servis v ČSFR, ARV161, 801, 12QR50, UM-3 (V, A, Ω) vadny; anténa K31-36, RTS61, 3pásmove bedny (40, 15, 500, 150, 200, 500, à 2000), pl. spoje L17, V48-52 (10, 25, 25, 25, 25, 50), podrobnosti za známkou s obálkou. Koupím NE5534 a AN. Z. Libal, Sukorady 83, 507 73 Dobrá Voda.

Katalog et. souč. nabízených čs. amatéry (16). Katalog služeb výpočetní techniky (18). V. Bureš, Fučíkova 13, 301 25 Plzeň. **Technics digit tuner ST-500** (5400) a servisní manuály V4X, V45A, V55A, B405, B605, G55A, P220, 8046, 8040, 4060 (à 150). L. Svoboda, Palisády 15, 811 03 Bratislava.

Super hry na Commodore 64 (à 7). P. Sova, Brněnská 49, 040 11 Košice.

Nouvel tiskárnu Star LC10 (13 000). M. Vraný, Studentská 2363, 734 01 Karviná.

Hybridní integrovaný obvod ZVT 125

– přesný zesilovač s galvanickým oddělením určený k zesilování signálů mV úrovně s vysokou odolností proti rušení.

Elektrické parametry:

vstupní signál –	-40 mV až +40 mV,
vstupní odpór –	>1 MΩ,
výstupní signál –	-5 V až +5 V,
zatěžovací odpór –	100 kΩ,
přenos –	lineární s max. odchylkou 0,2 %.
napájení –	5 V, 40 mA,
galvanické oddělení – vstup, výstup, napájení	2,5 kV,
vliv součtového signálu (ss i 220 V/50 Hz) –	max. 0,1 %,
závislost na napájecím napětí –	max. 0,1 %/5 % U_N ,
teplotní závislost –	max. 0,1 %/10 °C,
rozdíly pracovních teplot –	0 až 70 °C,
rozměry –	53,5 × 20 × 15,5 (výška) mm,
kategorie klimatické odolnosti –	0/070/21.

V případě zájmu zašleme technické podmínky s podrobným schématem zapojení obvodu.

ZPA, s. p., Komenského 821, 541 35 Trutnov

Případné další informace podá p. Škop na telefonním čísle ZPA Trutnov (0439) 793 34 od 7.00 do 15.30 hod.

IO pro TV modulátor 512 barev.: LM1889, LM1886, X-4,4336 MHz, negrađej komplet (550). Koupím linearizační tlumivku do TVP Štětíško nebo nefungující TVP, ARA 11/85, 1/82 a roč. 81, 80, M. Kincel, Malostranská 54, 625 00 Brno.

Nový kufrový počítač Epson PX-8 (14 000) vč. liter. P. Savický, Mařovice 9, 468 01 Jablonec n. Nisu, tel. 0428-22 977.

Keramické filtry 6,5 MHz (48) a 5,5 MHz (46), ZX Spectrum + a 2 kazety programů (4700). R. Mazurek, Ostašská 252, 549 54 Police n. Met.

Na Commodore 64 nové programy (3-5). P. Žitný, Severní 335/V, 380 01 Dačice.

LCD-Multimetr (2400). I. Vrábel, Pivovar 3004, 276 01 Mělník.

VKV I KV zařízení, např. IC215, IC240, Kenwood TR2300, TR2400, TS120S, lineární F200 (600 W, 2 m), lineární F70 (400 W, 70 cm) a další. Též vyměním za inkuranty. Nabídka a bližší informace: Ing. M. Gütter, p. s. 12, 317 62 Plzeň 17.

PH, BFY90, BF900, 966, 959 (35, 20, 40, 20), TL081 (40), NE568 (900), SO42P (90), X-38,9 MHz (70), OFW11952, OFWGK492 (70), SFE4, 5, 5, 74, 5, 6, 10, 7 (20, 20, 60, 40), ariton 10-ti pol. (50) (250), min. dol. fól. C 1,2-16 pF, rastro 6 mm (20), čítací s ICM7226B 8 míst. (1500), LCD multimetr Superetesler 680D vč. pouzdra (1300) vstupní díl SAT fy. MITSUMI 0,9-1,75 GHz, vč. dokum. (1400). Wrobel J. SPC-G/38.794 01 Krmov.

Magneticí polarizer pro TV-SAT (1100). Sleva při odběru 10 nebo 100 ks. Ing. J. Kala, Čapkova 12, 678 01 Blansko.

Commodore +4, datassette floppy 1515, literatura programy na disketách (14 500). J. Matěj, Tichá 831, 721 00 Ostrava.

Programy na ZX Spectrum (5-12) nebo vyměním elektronky (směs 40 ks za 120), literatura o elektronice (65 % MC). M. Števnická, ČSA 373, 357 01 Rotava.

Ker. trimer 2,5-6 pF, C 7 (14), BFR90, 91, 96 (35, 40, 40), SO42, IIAT733 (à 75), BFG65 (120), K500LP116 (80), BB221 (15), stab. 7915, 7815, 7912, 7812, 7905, 7805 (à 25), 1053 (30), V. Hošťák, 023 45 Horný Vadičov 328.

Jednohlasý syntetizér TRANSCEDENT 2000 – osadený plošný spoj, nutné dokončit, 30ktavový továrenský klaviátor, přesné ladiací odpory (2900). F. Božek, Čapájevo 2490/27, 058 81 Poprad, tel. 092/234 33,369 73 večer.

Výbojky IFK 120 (80) a 2 ks krystalů 3,84 MHz (100). P. Jára, 345 01 Mrákovec.

Krystaly 10.7, 6.2, 1 MHz (80), 100 kHz (150). O. Štoučák, Pod rozličnou 1823, 760 01 Zlín.

BTVP Elektronika C430 i moduly samostatně (350), koupím osciloskop, výf gener., počítač. V. Kobližek, 788 13 Vítkovice 423.

Interface ATARI pro připojení jakéhokoliv magnetofonu jako paměti k počítači ATARI 65, 800, 130. Bere normál i Turbo. kopie zapojení originálního magnetofonu (800). Popis za známkou. J. Hrabovský, Husarova 18, 704 00 Ostrava-Výškovice.

Tovární zdroj Atari k disk jedn. SF314 (250). 16 ks DRAM 41256-15 (190). J. Duračka, Ružová 3083, 434 01 Most.

K500LP116 (200), SO42 (90), BFR91 (40), pl. spoje sat. přijímač ARA 6, 7/89 (120). M. Sláhučka, PK 644/55, 018 41 Dubnica n. Váhom.

BFG65, BFT66 (150, 100). J. Škoda, Tausigova 1182, 539 01 Hlinsko.

BFR90, 91, 96 (50, 55, 60); BFT66 (160); SO42P (120); ICL7106 (260); CMOS CD4020 (55), 4023 (55), 4024 (55), 4029 (60), 4116 (55), 4511 (55), 4518 (65). 4543 (65). Ing. V. Schwarz, Na vrchu 11, 751 27 Pendice.

KOUPĚ

Osciloskopický obrazovku 7QR20 a IO SAB3209. G. Turák, Buzulucká 4, 040 01 Košice.

Čas. RZ roč. 1968, 69, 80, 81 pouze kompletní. S. Vacek, Střekovská 1344, 182 00 Praha 8.

Osc. 10 MHz tov. výr., včetně dok. J. Kolfer, Rokytrnice 157, 763 22 Slavčin II.

AY-3-8912A, B. Hradířka, Podlesí 3, 678 01 Blansko.

E. schéma JVC PC-W100 kdo půjčí za odměnu nebo prodá kopii. J. Skokan, Slovenská 2630, 415 01 Teplice v Č.

ZX Spectrum, +, Delta i poškozený. Uveďte stav a cenu. O. Markvart, SNP 201/12, 415 01 Teplice.

Presné rezistory TR 161-164. Hodnoty dodám. P. Gregor, Kátovská 44, 908 51 Holíč.

Luxmet PU150, M. Tesai, Mattonova 72, 613 00 Brno.

Dokumentaci – schéma zapojení sat. Receiver Alba Sat 300E. J. Remis, Kržíkova 2740, 407 47 Varnsdorf.

Nový obraz. 7QR20 i s tef. krytom, BNC panelové, tranz. SF-245. V. Dubec, SNP 1429/11-14, 017 01 Pov. Bystrica.

Sat. konvertor OEM888, SCE773+PS75ET nebo UAS72 (73, 170, 171, 234, 236, 240, 241, 334, 336) ap. J. Jahn, Josefodol 18, 582 91 Svitávka n. Sáz.

Počítačové časopisy zaměřené na Atari, Amiga, PC a růz. periferie. P. Mikunda, 742 47 Hi. Živnice 38.

IO CIC4820. Súmre. Š. Šesták, Jesenná B7, 076 43 Čiemá n. Tisou.

VÝMĚNA

Amiga 500, vyměním programy. D. Spišák, Majakovského 12, 984 01 Lučenec.

RŮZNÉ

Stavební návod na použití st. ADM2001 na multimeter U, I, R, C s aut. volbou rozsahu. Cena 20,- + poštovné. M. Bubeník, Ke stadionu 225, 538 43 Třemošnice, tel. 0455/908 150.

Prodávám, koupím, vyměním programy na Atan ST. P. Janovský, Na Bučance 9, 140 00 Praha 4.

ZÁSILKOVÝ PRODEJ ORGANIZACÍM NA FAKTURU - OBČÁNŮM NA DOBÍRKU

objednávky vytížuje:

odčlení odbytu - Perneršlova 11/14, 757 01 Valašské Meziříčí - tel. 21 520,
21 753, 22 273

Hodnocení prodeje zařízuje maloobchodní proceury: Valašské Meziříčí, Perna.
Bratislava, Brno, Plzeň, Ústí nad Labem, Zlín, Český Těšín, Hradec Králové,
České Budějovice, Ostrava, Mělník, Liptovský Mikuláš, Košice.

DOSS

Mikropočítače typu Commodore, Atari, Spectrum a příslušenství opraví. Povolení mám. Ing. A. Olivedy, Manova 39, 943 01 Stúrovo.

Naprogramuji MHB8748 pro palubní počítač dle ARA 3/90 a jiné aplikace. Též paměti 2716, 2732, 2758 a jiné. Ing. M. Hušek, 503 64 Mělník 77, tel. (0448) 234 80 dopol.

Klub COMMODORE 64/128 Brno má zájem o spolupráci se stejně zaměřenými kluby z celé republiky. František Kreisinger, Kosmonautů 13, 625 00 Brno.

Spojení se světem, zábavu, kontakty a zajímavé hobby nabízíme prostřednictvím přístrojů prodávaných firmou

STABO - RICOFUNK

občanské radiostanice kapesní i do auta, přijímače, transceivery, antény a příslušenství, výrobky firmy

STABO, YAESU, JRC, STANDARD, DAIWA aj.

s dodáním na Vaši adresu se slevou až 30 %.

Info, katalogy, ceníky nabízí a dotazy zodpoví

FAN radio, František Andrlík, OK1DLP
Kralovická 53, 323 28 Plzeň

ELEKTRO

BROŽ

SHÁNÍTE MARNĚ V TESLE
ELEKTROSOUČÁSTKY?

Napište si o aktuální katalog!
Zdarma zašle ELEKTRO BROŽ,
box 14, 160 17 Praha 617

MITE

Ing. V. Pohnétal, Markova 741
500 02 Hradec Králové
tel. 049 37 133

NABÍZÍ

programové vybavení
pro vývoj řídicích programů
mikropočítačů na PC/XT/AT

SIM80
SIM48

včetně poradenských
a konzultačních služeb.
Demonstrační verze zdarma.

Zvýšení kapacity diskety

o 120% za 20 Kčs

služba pro občany i organizace

úprava a neformátování disket
-5,25" DSDD 360k na kapacitu 800k
pro použití v mechanice 5,25" 1.2M
-3,5" DSDD 720k na kapacitu 1.6M
pro použití v mechanice 3,5" 1.44M

Informace získáte, popřípadě diskety
můžete zaslat na adresu:
Ing. Štěpán FS 6, 620 00 Brno 20-Turany

KRYSTALY
všech možných hodnot

Předdělč k čitači do 1300 MHz
s velkou citlivostí; SMD, BNC

LK elektronik, Litvinovova 445
109 00 Praha 10

ny součástky do 250 Kčs!! Návod + předlohu spojů zašlu na dobuřku za 290 Kčs. I. Fořt, Riegrova 31, 612 00 Brno.

Opravím Commodore 64, Floppy 1541 (přip. nastavim hlavu). U tiskáren President, Robotron 6313, 6314, 6320, také provedu rekonstrukci rozhraní i systému (Commodore, Centronix pro IBM, Amiga, Atari ST). Prodám Final Cartridge (s českým manuálem). Možnost práce i pro organizace. Pavel Senfeldr, Luční č. 5, 795 01 Rymařov.

Dodáme sat. antény

-90, 120, 150 i s montáží, komplet i jednotlivě. Pro organizace i soukromníky. Možno se o nich dočist v ARA/89.

Z. Zicha, Nedašovská 338,
150 00 Praha 5 Zličín,
tel. 301 61 79.

srdečně zve k prohlídce své expozice
na podzimním strojírenském veletrhu
v Brně, 12. až 19. 9. 1990, pavilon C,
II. patro, stánek č. 236.

Zastoupení Intersim, Za strašnickou vozovnou 12, Praha 10,
ing. Petr Hejda, tel. (02) 77 07 96, 77 84 07

Divadlo pracujících v Mostě

prodá

2 ks barevných videorekordérů systému VCR, typ MTV 50, výrobce UNITRA PLR licence GRUNDIG

oba rok výroby 1983.

NEPOUŽÍVANÉ – ke každému kompletní servisní manuál + 1 kazeta VCR – cena za 1 ks – 3000 Kčs.

Informace: Divadlo pracujících v Mostě, tel. 79 62 43, linka 12 – Jiří Henzl.

KIKUSUI Oscilloscopes

*Superior in Quality,
first class in Performance!*

Phoenix Praha A.S., Ing. Havlíček, Tel.: (2) 69 22 906

elsinco

ZO ELEKTRONIKA UH. HRADIŠTĚ
pořádá pravidelnou podzimní celostátní burzu elektroniky v neděli 14. 10. 1990 od 7.00–12.00 hod. v prostoru městské tržnice u nádraží ČSD.
Stoly: Kulheim Old., Stěpnická 1054, 686 06 Uh. Hradiště, tel. 0632–62 102 (rezervace do 8.00 hodin).

MITE

Ing. V Pohnětaj, Markova 741
500 00 Hradec Králové
tel. 049 37 133

NABÍZÍ

pro tvorbu reklam, inzerátů, propagačních materiálů i technických sdělení na PC/XT/AT české znakové soubory do programu

VENTURA PUBLISHER

včetně manuálu i školení.

Elektrotechnická fakulta ČVUT v Praze
oznamuje, že od školního roku 1990/91
připravuje pro absolventy vysokých škol technického
a příbuzného směru postgraduální studia:

1. Mikroprocesory a mikropočítače – IX. běh
5. sem. – rekvalifikační – zahájení zim. sem. uzávěrka přihlášek 30. září 1990
2. Automatizované systémy řízení technologických procesů – XV. běh
5. sem. – rekvalifikační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
3. Moderní metody kybernetiky a informatiky – I. běh
5. sem. – rekvalifikační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
4. Průmyslové a ekologické aplikace akustiky – I. běh
5. sem. – specializační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
5. Družicové radiové systémy – I. běh
4. sem. – inovační+rekvalifikační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
6. Aplikovaná mikroelektronika a senzory v přístrojové a regulační tech. – I. běh
5. sem. – specializační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
7. Uživatelsky počítačový návrh zakázkových integrovaných obvodů – I. běh
4. sem. – inovační+rekvalifikační – zahájení zim. sem. uzávěrka přihlášek 30. září 1990
8. Spojovací systémy s programovým řízením – V. běh
3. sem. – specializační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990
9. Moderní elektrické pohony na bázi soudobé výkonové mikroelektroniky – I. běh
4. sem. – inovační+rekvalifikační – zahájení let. sem. uzávěrka přihlášek 30. listopadu 1990

Závazné přihlášky na PGS získáte osobně:
středa, pátek od 8.00 do 10.00 hod., úterý od 14.00 do 15.00 hod.,

nebo na telefonické vyžádání
ČVUT FEL PGS, Suchbátorova 2, 166 27 Praha 6,
tel.: 332 39 03 – p. Joudová, 332 39 16 – p. Kytnarová,
úš. 311 82 41/l. 3916, 3903.

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

příjme
do tříletého nově koncipovaného učebního oboru
**MANIPULANT POŠTOVNÍHO PROVOZU
A PŘEPRAVY**

chlapce

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlastních poštách, výpravních listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvýšení kvalifikace – nástava ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátu a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Blížší informace podá
Ředitelství poštovní přepravy, Praha 1, Opletalova 40,
PSČ 116 70, telef. 22 20 51-5, linka 277.
Náborová oblast:
Jihomoravský, Severomoravský kraj.

TESLA Vrchlabí, státní podnik
nabízí organizacím,
družstvům i drobným provoznám

ŠIROKÝ SORTIMENT VÝROBKŮ:

- tyristory
- triaky
- zobrazovače LED, LCD
- diody LED
- objímky pro LCD
- objímky pro diody LED Ø 4 a 5 mm
- kalkulačky MR 609, 6090

Informace na č. tel. (0438) 212 51,
kl. 460 – p. Nosek, OTS
Objednávky kl. 499 – p. Frömer, odbyt

TESLA Vrchlabí, státní podnik,
Bucharova 194, 543 17 Vrchlabí IV

KANCELÁRSKÉ STROJE,
obchodní podnik,
závod 07 České Budějovice,

Klavíkova ulice č. 7,
PSČ 370 62,
tel. 038/322 63, 322 16

vám nabízí k okamžitému dodání:

- Programátor jednočipových mikropočítačů a všech typů EPROM paměti připojitelný k PC.
cena: 8542 Kčs
- MAK 4 = 4xRS 232

Přídavný modul k PC umožňující řešení

- sběru dat
 - víceuživatelský provoz
 - připojení dalších zařízení pomocí sériového rozhraní
- cena: 7942 Kčs včetně SW

DATAPUTER

nabízí pro uživatele mikropočítačů ZX Spectrum, Delta,
Didaktik Gama, 128, 128+2 následující doplňky

- ZX DISKFACE** – disketový řadič pro připojení čtyř disketových jednotek 5,25 nebo 3,5. Operační systém CP/M a DP DOS. Cena 2800 Kčs
- ZX FXPRINT** – intelligentní interface pro tiskárny s rozhraním Centronics (Epson, STAR, Seikosha, D100, NL 2805). Cena 1500 Kčs
- ZX BTPRINT** – interface pro připojení jednojehličkové tiskárny BT 100. Cena 950 Kčs
- ZX EPROM** – rychlý programátor paměti EPROM 2716-27256. Cena 1500 Kčs

Provádění rozšíření paměti RAM na 80 KB, nabízíme levné disketové jednotky, tiskárny a programové vybavení na disketách.

Objednávky a dotazy: DATAPUTER, PS 6, 620 00 Brno 20 – Tuřany

Zemědělské družstvo Podhoran Lukov, 763 17 Lukov, středisko 492 – plošné spoje

Vyrábí plošné spoje jednostranné, oboustranné pro využití v elektrotechnice.

Plošné spoje mohou být doplněny:

- Dovozovou nepájivou maskou
- Robotiskem
- Vrtání na CNC vrtačkách (při větší sériovosti)
- Mechanickým zpracováním (lis, nůžky)
- Vysoce účinnou mechanickou úpravou pro pájení

Materiál SEB, SEC

Nabízíme dodání v krátkých termínech. V případě osobního jednání možnost výroby i v roce 1990.

Informace podá: p. Javořík Michal – tel. 91 63 10, 91 62 31

ČETLI JSME

Hábovčík, P.: LASERY A FOTODETEK-
TORY. Alfa: Bratislava 1989. 320 stran,
184 obr., 16 tabulek. Cena váz. 27 Kčs.

Jev stimulované emise byl popsán Albertem Einsteinem již v roce 1917, až téměř po polovině století však teprve začal prudký rozvoj, vedoucí k širokemu využití laserové techniky, založené na tomto fyzikálním jevu. Významného pokroku bylo dosaženo po úspěšné konstrukci rubinového laseru. Od té doby byla vyvinuta celá řada druhů laserů, ať již pokud jde o aktivní látku, vlnovou délku, či vyzářený výkon. Zajímavé vlastnosti monochromatického světla (koherence, směrovost, dosažitelná hustota výkonu aj.) daly vznik rozsáhlému uplatnění laserů v praktických aplikacích – optické lokaci, navigaci, přenosu informací, výpočetní technice a automatizaci, robotice, chemii, strojírenské technologii, medicíny, biologii a dalších oborech.

Kniha o laserech byla koncipována především jako vysokoškolská učebnice (byla schválena příslušným slovenským ministerstvem pro elektrotechnické fakulty v březnu 1989), proto její důkladné studium předpokládá znalosti z matematiky, fyziky, zejména z teorie elektromagnetického pole, stavby hmoty a z optiky.

<p>Radio (SSSR), č. 4/1990</p> <p>Avantgardní technologie – Příjem kódů Morse počítacem Radio-86RK – Univerzální číslicová stupnice – Číslicový měnič kmitočtu – Doplňky k elektronickým klíčům – Dvoukanálová souprava dálkového proporcionálního řízení – Hybridní IO – Organizace okének v programech BASIC – Technologie plošných spojů Orion 128 – Příjem televizního signálu z družic – Televizory 4USCT – Zlepšení reproduktoru soustavy 35AS-015 s použitím článkového filtru – K výpočtu ekvalizéru – Potlačení šumu v pauzách magnetofonového záznamu – Neobvyklé zapojení ekvalizéru – Rozhlasové přijímače SONY – Laboratorní napájecí zdroj – Počítac od začátku – Doplňek VKV k drátovému rozhlasu – Pro začínající – Příspěvky k továrním magnetofonům, otištěné v časopisu Radio – Integrovaný výkonový nf zesilovač 15 W K174UN19.</p>	<p>Radio-Electronics (USA), č. 5/1990</p> <p>Novinky z elektroniky – Měřič magnetického pole 60 Hz IER-109 Multimetr s měřením otáček Jameco Electronics M-3900 – Nové výrobky – Univerzální video-dekódér a obnovovač synchronizačních impulů – Obvody digitálních osciloskopů – Detektor Morse/RTTY – Vlastnosti různých provedení tranzistorů – Úvod do moderních systémů bezpečnosti domácnosti – Proces barevného kopirování Cylcolor – Nízkosúmové zesilovače – Součástky využívající Hallův jev – Systémy jakostních reproduktorů – Generátor synchronizačních impulů.</p>	<p>Elektronikschau (Rak.), č. 5/1990</p> <p>Zajímavosti z elektroniky – Radiokomunikační měřici pracoviště Marconi s přístrojem 2955R – Počítače při vývojových a konstrukčních pracích – CRISP: rozhraní člověk-stroj – Programy CAE optimalizují zpracování projektů – IBM: všechno mezi čipem a CIM – Dvanáctibitový vzorkovací převodník A/D ADS7800 – Měřicí systém v aktovce – Přehled vyráběných zapisovačů – Vysoké C (vývojový systém Dynamic C) – Nový trend v dovozu polovodičových součástek do Rakouska – Technologie BiCMOS v devadesáty letech – Systém 2900, nový programovací systém pro nový trh – Nové součástky a přístroje.</p>
<p>Funkamateur (NDR), č. 5/1990</p> <p>Commodore na jarním lipském veletrhu 1990 – ISDN, nová éra telekomunikaci (2) – Tipy pro začínající amatéry (2) – Úvod do programování počítače 8086 v assembleru – Připojení klavesnice K7659 pro PC/M (2) – Programování melodii zvonků s MRB Z1013 – K6311 . . . 14 na AC1 – Obvody pro generování tónů (2) – Odpojovací automatica s 555 – Katalog: Analogové IO a tranzistory řízené polem s kanálem n na bázi GaAs; Magnetické hlavy pro kazetové magnetofony – Mezifrekvenční a demodulační část stereofonního přijímače FM – Univerzální měnič napětí pro výkon 180 W – Bezpečnost proti úrazu elektrickým proudem v amatérské praxi (5) – Zařízení pro 1,3 GHz – Doplňek k rozhlasovému přijímači pro první pokusy zájemců o radioamatérský sport – Zkušenosť s krátkovlnnými anténami.</p>	<p>Radio, Fernsehen, Elektronik (NDR), č. 5/1990</p> <p>Vývoj elektroniky v NDR – Analogové stavebnicové skupiny z hradlových polí CMOS – U6264DG, statická paměť CMOS 64 Kbitů – Kapacity EPROM – U739DC, analogové digitální prevodník CMOS (2) – Mikrovlnné tranzistory z Neuhaus (NDR) – Tester pro sběrmici IEC – Rádiem řízené hodiny pro automatizační systémy – Zákaznické IO (16) – Pro servis – Informace o součástkách 17 – Elektrické požadavky pro rychlou sběrmici mikropočítačů – Disketa pro lokalizaci chyb (Robotron) – Komplexní funkční zkoušky paměti s libovolným výběrem – Příprava zkoušení a vyhodnocení metodou finite elementů – Určení úhlu antény pro stanoviště družice.</p>	<p>Practical Electronics (Vel. Brit.), č. 5/1990</p> <p>Novinky z elektroniky – K rozvoji japonské spotřební elektroniky – Programátor EPROM – Inteligentní moduly LCD – Z americké výstavy spotřební elektroniky – Postavte si vůz-robot (2) – Hodiny, řízené vysíláním časových signálů (3) – Astronomická rubrika – Učinky magnetických polí na lidský organismus – Základy elektroniky (5) – K využití sluneční energie.</p>

Fyzikální procesy jsou však vysvětleny tak, aby byly srozumitelné i čtenářům, kteří neabsolvovali vysokoškolskou fyziku, a kniha tedy může posloužit všem zájemcům o stav a možnosti této perspektivní oblasti vědy a techniky.

Stručnou rekapitulaci dosavadního vývoje oboru poslala autor v krátkém úvodě knihy. Druhá kapitola – Principy laseru – je věnována všeobecným teoretickým základům: stavbě hmoty, interakci elektromagnetického pole a hmoty, výkladu fyzikálních jevů, souvisejících s činností laserů, mechanismus vzniku jejich záření a popisu jeho vlastnosti atd.

Další tři kapitoly pojednávají o třech druzích laserů, rozlišených typem aktivní hmoty: lasery s hmotou v tuhé fázi (dielektrické) – rubinové neodymové, ale i organické a anorganické kapalinové; obsáhlá kapitola je věnována plynovým laserům (helium-neonové, ionové, molekulové a eximerové lasery); dalších pojednává o polovodičových laserech a jejich vlastnostech a možnostech využití.

Pro laserové systémy, pracující v periodickém impulsním režimu, jsou používány především speciální laserové s modulací kvality rezonátoru. U nich se dosahuje velkých impulsních výkonů při nanosekundových délках. O tomto druhu laseru stručně pojednává další (šestá) kapitola. Ještě stručněji je sedmá část, podávající nejzakladnější informace o přešlovaných laserech.

Fotodetektory, které jsou rovněž zahrnutы do titulu publikace, je věnována závěrečná osmá kapitola. Je v ní opět výklad uplatňujících se fyzikálních jevů, uvedeny základní typy fotodetektorů, popsána jejich činnost

a vlastnosti. Tuto kapitolu uzavírá pojednání o snímacích prvních CCD (s nábojovou vařbou).

Seznam literatury uvádí 61 pramenů převážně zahraniční literatury a z období 60. a 70. let. V závěru je zařazen věcný rejstřík.

Kniha vyšla v poměrně malém nákladu 2000 výtisků.

Ba

Škrášek, J., Tichý, Z.: ZÁKLADY APLIKOVANÉ MATEMATIKY I. SNTL, Praha 1989. 880 stran, 307 obr., 49 tabulek. Cena váz. 75 Kčs.

Matematika se obvykle zařazuje do přírodních věd, mezi níž však zaujmá zvláštní postavení. Zatímco obsahem studia ostatních věd jsou vlastnosti hmoty, posuzované z různých hledisek, předmětem studia matematiky jsou prostorové formy a kvantitativní vztahy hmotného světa, uvažované v čistém abstraktním tvaru. Protože jsou však matematické pojmy odvozeny z vnějšího světa, jsou také logické závěry, tj. závěry správně z nich utvořené, přímými odražy reálné skutečnosti.

Je nesporné, že matematika má významné poslání při budování technické základny moderní společnosti, což se projevuje především v požadavcích, které současná doba klade na přípravu inženýrských a technických kádrů. Aktuálním studijním potřebám se snaží využít všestranný trojdílný přehled aplikované matematiky, který po příznivém čtenářském ohlasu vychází nyní po šesti letech znovu ve druhém vydání.

Do prvního dílu přehledu aplikované matematiky jsou zařazeny základní matematické pojmy, na kterých spočívá většina matematických metod. Jde zejména o základní pojmy matematické logiky, teorie množin a moderní algebry. Analytická geometrie v rovině a prostoru je zpracována v klasické i vektorové formě tak, aby v ni

čtenář vystačil v ostatním výkladu i při řešení technických problémů. Hlavní pozornost je věnována základům diferenciálního počtu jedné reálné proměnné a několika reálných proměnných; k nim jsou připojeny základy numerických a grafických metod včetně nomografie. Tento první díl uvádí především učitele, zabývající se metodikou středoškolské matematiky nebo její výuky v prvním ročníku vysokých škol technických, neboť obsahuje také výklad základních pojmu výrokového a predikátorového počtu, teorie množin, binárních relací a operací, uzlových grafií, Booleovy algebry a dalších pojmu, které jsou nyní při modernizaci výuky matematiky předmětem zájmu již na středních školách.

Druhý díl obsahuje hlavní pojmy a metody integrálního počtu jedné proměnné i několika proměnných, křivkové a plošné integrály, číselné a funkční řady (včetně Fourierových řad), základní poznatky z diferenciální geometrie, metody řešení obyčejných i parcíálních diferenciálních rovnic, funkce komplexní proměnné a diferenční rovnice.

Do třetího dílu jsou zařazeny nejdůležitější speciální obory aplikované matematiky, jimž jsou počet pravděpodobnosti, matematická statistika, teorie informací, variační metody a metody řešení integrálních rovnic. Celé obsáhlé dílo uzavírá základní metody lineárního a nelineárního programování.

Výklad objasňuje četné obrázky, podrobně řešené příklady a mnoho cvičení s výsledky. Kniha je určena posluchačům vysokých škol s technickým a přírodnovědným zaměřením, technikům, inženýrům a výzkumným pracovníkům, jimž umožní získat potřebné znalosti k řešení provozních a vědeckovýzkumných problémů. Zvolený způsob podání celého textu bez složitých důkazů teoretických úvah předurčuje publikaci pro samostudijné studium čtenáře bez profesionálního matematického vzdělání. (tes)