Équation de droite et système d'équations linéaires

Équation réduite d'une droite

EXERCICE 1

Dans un repère, d est la droite d'équation : y = 3x + 7

- a) Vérifier que les points $A\left(-\frac{2}{3};5\right)$ et B(0;7) appartiennent à la droite d.
- b) Les points A, B et C(-1;4) sont-il alignés?

EXERCICE 2

Dans un repère, d est la droite d'équation : $y = \frac{5}{2}x - 1$.

- a) A est le point de *d* d'abscisse 6 ; quelle est son ordonnée ?
- b) B est le point de *d* d'abscisse 12 ; quelle est son ordonnée ?
- c) C est le point de *d* d'ordonnée 4 ; quelle est son abscisse ?
- d) D est le point de d d'ordonnée $-\frac{1}{2}$; quelle est son abscisse?

EXERCICE 3

Dans un repère d'origine O, on considère les points :

$$A(1;5), B(-2;4), C(1;4), D(-3;5)$$

Déterminer l'équation des droites suivantes : a) (AB) b) (BC) c) (AC) d) (OD)

Représentation graphique

EXERCICE 4

Associer les droites de d_1 à d_6 à leur équation :

$$y = \frac{2}{5}x - \frac{8}{5}$$

•
$$y = 5$$

$$\bullet \ y = \frac{3}{4}x$$

$$\bullet \ y = -x + \frac{1}{2}$$

$$y = 2x - \frac{8}{5}$$

•
$$x = -2$$

EXERCICE 5

Déterminer l'équation de la droite (MN) par la méthode de votre choix dans les cas suivants:

a)
$$M(-5;2)$$
, $N(7;20)$

b)
$$M(4,9;-2)$$
, $N(0,7;-2)$

c)
$$M\left(\frac{3}{4};25\right)$$
, $N(0,75;-100)$ d) $M\left(-\frac{1}{4};\frac{1}{2}\right)$, $N(4;-3)$

d)
$$M\left(-\frac{1}{4}; \frac{1}{2}\right)$$
, $N(4; -3)$

Droites parallèles, sécantes

EXERCICE 6

Dans un repère, on donne trois points : A(-1;6), B(3;-2), C(-5;3).

- a) Calculer le coefficient directeur de la droite (AB).
- b) Donner l'équation de la droite *d* passant par C et parallèle à la droite (AB)

EXERCICE 7

Dans un repère, on donne trois points : A(-1;2), B(3;7), C(5;-1)

- a) Déterminer les coordonnées du milieu I du segment [AB]
- b) Déterminer l'équation de la droite d parallèle à la droite (BC) et qui passe par I.
- c) Vérifier que la droite *d* passe par le milieu J du segment [AC]. Quelle propriété de géométrie vient-on d'illustrer?

EXERCICE 8

Dans un repère, on donne trois points : A(3;4), B(-5;2), C(1;-4)

- a) Déterminer les coordonnées du milieu I du segment [AB] et du milieu J du segment [AC].
- b) Déterminer l'équation de la droite (CI), puis de la droite (BJ).
- c) Déterminer les coordonnées du point d'intersection M des droites (BJ) et (CI). Quel rôle joue ce point pour le triangle ABC?

Résolution de systèmes

EXERCICE 9

$$1) \begin{cases} 2x + y = -2 \\ 5x + 4y = 1 \end{cases}$$

3)
$$\begin{cases} -x + 20y = 1\\ 2x - 60y = -3 \end{cases}$$

$$2) \begin{cases} 4x - 5y = 2 \\ -x + 3y = 3 \end{cases}$$

4)
$$\begin{cases} 12x + 7y = 41 \\ 4x - 15y = 239 \end{cases}$$

$$5) \begin{cases} 3x + 5y = 2\\ x - \frac{5}{2}y = 1 \end{cases}$$

6)
$$\begin{cases} \frac{1}{10}x + \frac{1}{20}y = 1\\ \frac{2}{5}x - \frac{1}{10}y = 10 \end{cases}$$

EXERCICE 10

$$1) \begin{cases} 2x - \sqrt{3}y = 0\\ \sqrt{3}x - 3y = -1 \end{cases}$$

4)
$$\begin{cases} 3x + 5y - 5 = 0 \\ 2x - 3y = 2 \end{cases}$$

2)
$$\begin{cases} 0.2x + 0.5y = 4 \\ x - y = 6 \end{cases}$$

$$5) \begin{cases} 3x + y = 5 \\ 6x + 2y = 10 \end{cases}$$

3)
$$\begin{cases} 5x + 2y = 14 \\ 2x + 5y = 14 \end{cases}$$

6)
$$\begin{cases} \frac{3}{2}x - \frac{5}{3}y = 1\\ \frac{x + 2y}{7} = 1 \end{cases}$$

EXERCICE 11

1)
$$\begin{cases} \frac{3}{2}x + \frac{9}{4}y = 0\\ \frac{1}{3}x + \frac{1}{2}y = \frac{17}{36} \end{cases}$$

$$3) \begin{cases} x\sqrt{2} + y = 4 \\ 2x - y\sqrt{2} = 0 \end{cases}$$

2)
$$\begin{cases} \frac{5}{3}x - \frac{1}{4}y = \frac{35}{8} \\ \frac{1}{3}x - \frac{1}{20}y = \frac{7}{8} \end{cases}$$

4)
$$\begin{cases} 3x^2 - y^2 = 3\\ x^2 + 2y^2 = 22 \end{cases}$$

5)
$$\begin{cases} \frac{2}{x+1} - \frac{5}{y-2} = -4\\ \frac{3}{x+1} + \frac{2}{y-2} = 13 \end{cases}$$

Problèmes

EXERCICE 12

Pêcheurs

Trois amis pêcheurs achètent des poches d'hameçons et des bouchons. Les poches sont toutes au même prix, les bouchons aussi.

Le premier prend 3 poches et 2 bouchons. Le second, 2 poches et 4 bouchons. Le troisième, 4 poches et 1 bouchon. Le premier a dépensé $4,60 \in$, le second $6 \in$. Combien a dépensé le troisième?

EXERCICE 13

Nombres

La somme de deux nombres *x* et *y* est 133.

Si on les augmente chacun de 5, leur rapport est $\frac{4}{7}$. Quels sont ces nombres ?

EXERCICE 14

Triangle

Le triangle ABC ci-contre est isocèle.

La droite d, bissectrice de l'angle \widehat{C} coupe [AB] en D et AD = DC.

Trouvez les mesures x et y en degrés des angles \widehat{A} et \widehat{B} .

EXERCICE 15

Nombres

La somme de deux nombres x et y est 206. Si l'on divise le plus grand x par le plus petit y, le quotient est 4 et le reste est 1. Quels sont ces nombres ?

EXERCICE 16

Rapport de deux nombres

 $\frac{x}{y}$ (avec $y \neq 0$) est le rapport de deux nombres.

Si on augmente le nombre x de 2, le rapport devient 3.

Si on diminue le nombre x de 2, le rapport devient 4.

Quels sont ces nombres?

Systèmes non linéaires se ramenant à un système linéaire

EXERCICE 17

La somme de deux nombres x et y est 29. La différence de leurs carrés est 145. Quels sont ces nombres ?

EXERCICE 18

- a) Montrer l'égalité : $(x+y)^2 = (x-y)^2 + 4xy$
- b) La différence de deux nombres *x* et *y* est 6 et leur produit 216. Quels sont ces nombres ?
- c) Trouver les dimensions d'un terrain rectangulaire de périmètre 44 m et d'aire 120 m².

EXERCICE 19

Trouver les dimension d'un triangle rectangle d'hypoténuse 13 cm et d'aire 30 cm².

EXERCICE 20

Tapis roulant

Dans une station de métro, les usagers ont à leur disposition un tapis roulant de 300 m de long.

Un piéton marchant à vitesse constante fait l'aller-retour. À l'aller, il met 1 minute et 30 secondes. Au retour, à contresens, il met 4 minutes et 30 secondes. Déterminez la vitesse du piéton et celle du tapis roulant en km/h.

EXERCICE 21

Y-a-t-il des perroquets intelligents?

Un marchant de glaces, heureux propriétaire d'un perroquet, vend des glaces à la vanille au prix unitaire de $0.50 \in$ et des glaces au chocolat $0.75 \in$.

- 1) À la fin de la journée, s'adressant à son volatile, il affirme :
 - "Si j'avais vendu les glaces à la vanille 0,75 € et les glaces au chocolat 0,50 €, j'aurai fait la même recette : 108,25 €."
 - "Impossible!" lui répond le perroquet.
 - Qu'en pensez-vous?
- 2) Le lendemain, n'ayant pas changé ses prix, pour vérifier les connaissances de son compagnon à plumes, il affirme, à la fin de la journée :
 - "La recette du jour est de 71,25 €. Si j'avais vendu les glaces à la vanille 0,75 € et les glaces au chocolat 0,50 €, j'aurai fait la même recette qu'hier!"
 - "Impossible!" lui répond le perroquet.

Qu'en pensez-vous?

Autres problèmes

EXERCICE 22

La balance

Trouver la masse de chaque objet (boule, cylindre et cône) sachant que dans chaque cas la balance est en équilibre.

EXERCICE 23

Voyage

Le responsable d'un groupe d'adultes et d'enfants désire organiser un voyage et demande les tarifs à deux compagnies de transport A et B qui proposent les conditions suivantes :

	Prix adulte	Prix enfants	Prix total
Compagnie A	280 €	200€	13 360 €
Compagnie B	320 €	160€	14 720 €

Déterminer le nombre d'adultes et d'enfants qui participent au voyage.

EXERCICE 24

Col

Pour aller de la ville A à la ville B, on doit gravir un col dont le sommet S est situé à *x* km de A et *y* km de B.

Pour aller de A vers B, un coureur cycliste met 1 h 30 mn; pour aller de B vers A, il met 1h 50 mn.

Sachant que sa vitesse moyenne horaire en montée est de 15 km/h et sa vitesse moyenne horaire en descente est de 45 km/h, déterminer les distance x et y.

EXERCICE 25

Les deux tours

Léonard de Pise, connu sous le nom de Fibonacci (XII^e siècle), raconte :

« Deux tours élevées l'une de 30 pas et l'autre de 40 pas sont distantes de 50 pas. Entre les deux se trouve une fontaine F vers laquelle deux oiseaux descendant des sommets des deux tours se dirigent du même vol et parviennent dans le même temps. »

Quelles sont les distances horizontales du centre de la fontaine aux deux tours? Sous quel angle voit-on de la fontaine F chacune des deux tours?

AIDE : L'expression du même vol signifie que les deux oiseaux volent à la même vitesse et en ligne droite.