MASTERS 2016 The Premier Technical Training Conference for Embedded Control Engineers

Desenvolvendo aplicações com Bluetooth® Low Energy RN4020

Objetivos da Aula

- Quando terminarmos esta aula, você poderá:
- Explicar os fundamentos da tecnologia Bluetooth® Low Energy (BLE)
- Entender a capacidade do módulo RN4020 BLE e sua interface simples em comandos ASCII através da UART
- Usar o RN4020 para aplicações BLE

Agenda

- Fundamentos do Bluetooth® Low Energy
- Introdução do módulo Microchip RN4020 BLE
- Funcionalidades avançadas do RN4020
- Desenvolver aplicações BLE utilizando RN4020

O que é Bluetooth?

Histórico do BT e BLE

- Bluetooth clássico introduzido em 1994
- Crescimento explosivo depois da adoção em telefones celulares
- Bluetooth 2.x adicionou suporte à EDR
- Bluetooth 4.0 adicionou suporte à Bluetooth Low Energy

BT Clássico x BLE

- Buscam aplicações diferentes
 - BT Classic: alta velocidade de comunicação e interoperabilidade
 - BLE: Baixo consumo de energia

- Dois tipos de BLE:
 - Bluetooth® Smart: Somente BLE
 - Bluetooth Smart Ready: Modo duplo

BLE é compatível com Apple.

Terminologias do BLE

- GAP
 - Central/Peripheral/ Broadcaster/Observer
- GATT
 - Server / Client
- Profiles
- Services
- Characteristics
 - Read, Write, Notify
- Public vs Private

Agenda

- Fundamentos do Bluetooth® Low Energy
- Introdução do módulo Microchip RN4020 BLE
- Funcionalidades avançadas do RN4020
- Desenvolver aplicações BLE utilizando RN4020

Modulo ou Chip

• Modulo:

 Simples, facilidade de uso, Time-to-Market, Certificações, Sistema aberto, independente de recursos, facilidade de portabilidade

Chip:

Baixo custo

Módulo BLE MCHP

			_		Maria	Contract S
	RN41 / 41N	RN42 / RN42N		RN4020	BM70/71 RN4870/71	BM78 RN4678
Туре	Class 1 Bluetooth 2.1	Class 2 Bluetooth 2.		Bluetooth LE 4.1	Bluetooth LE 4.2	Bluetooth 4.2 Dual Mode (Classic & LE)
Interfaces	← UART	/ USB		UART	UART	UART
Profiles/ Protocols	← SPP / HID / iAP / HCT			GATT / Health, Fitness / Proximity, Etc. / Custom data	GAP / SDP / SPP / GATT	GAP / SDP / SPP / GATT/iAP2
Power	3.0-3.6V	3.0-3.6V		1.8-3.6V	1.9-3.6V	3.3-4.2V
Antenna	Ceramic chip Antenna Or no Antenna	PCB Antenna or no Antenna		PCB	Ceramic chip Antenna Or RF pad for external	Ceramic chip Antenna Or RF pad for external
Size (mm)	13.4 x 25.8 x 2.0	RN42: 13.4x25.8x2.4 RN42N: 13.4x20.5x2.		11.5 x 19.5 x 2.5	BM70: Shield/Unshield 22 x12x2.4/15x12x1.6 BM71:Shield/Unshield 11.5x9x2.1/6x8x1.5	Shielded: 22 x 12 x 2.4 Unshielded: 15x12x1.8
Certification	FCC / IC/ CE / AUS / JP	FCC / IC/ CE / AUS / JP / Korea / Taiwan	/	FCC / IC/ CE / AUS / JP / Korea / Taiwan	FCC,IC,CE,NCC,KCC, MIC(Japan)	FCC,IC,CE,NCC,KCC, MIC(Japan)

RN4020

Funcionalidade de Hardware do **RN4020**

- RF Certificado (FCC, CE, IC)
- UART com baud rate configurável até 921 Kbps
- 3 I/O analógicas (10-bit)
- Digital I/Os
- 100 dBm Link
- 700nA Modo Dormant, 16mA Tx/Rx
- PCB antena

RN4020 - Hardware

RN4020

Capacidades do Firmware

- Compatível com BT 4.1 Bluetooth® Smart
- Suporte imediato a 13 perfis e 17 serviços públicos.
- Central/Peripheral/Broadcaster/Observer (GAP)
- Server/Client (GATT)
- Suporte a serviços privados
- Perfil de dados Microchip LE
- Capacidade Hostless Scripting
- Comandos remotos
- Firmware Upgrade de device

Interface de controle

- 3 entradas opcionais de controle
- 3 saídas opcionais de controle
- Interface de comandos ASCII via UART

GATT (Service/Characteristics)

- RN4020 Suporta 17 serviços públicos
 - Healthcare
 - Sports & Fitness
 - Proximity Sense
 - Alerts
- RN4020 Suporta serviço privado
 - Até 10 características privadas auto definidas

Serviço Privado

- Usuário pode definir serviço/características no RN4020
- 1 serviço privado e até 10 características privadas
 - 1 serviço privado é suficiente?
- UUIDs Públicos e Privados
 - 128bit vs. 16bit
 - Propriedades das características
 - Tamanhos dos dados das características
 - Características se referem como "Handle over the air"

Serviços

 Características dos endereços de comandos ASCII por seus UUID ou "Handle"

Access Server Service by UUID to Write Characteristic Value

Example: SUW,2A19,64

Access Client Service by Handle to Read Characteristic Value

Example: CHR,001E

Agenda

- Fundamentos do Bluetooth® Low Energy
- Introdução do módulo Microchip RN4020 BLE
- Funcionalidades avançadas do RN4020
- Desenvolver aplicações BLE utilizando RN4020

Funcionalidades avançadas do RN4020

- Microchip Low Energy Data Protocol (MLDP)
- Capacidade de Scripting em Standalone
- Funcionalidade para comandos remotos
- Firmware Update do device

міспоснір Low Energy Data Protocol (MLDP)

- BLE não possui suporte a "Data Stream" (SPP)
- Microchip define serviços privados que simulam o SPP (MLDP)
- Este serviço privado é transparente ao usuário no módulo RN4020

Requerimentos do MLDP

- H/W Flow Control para garantir integridade dos dados
- Two Control I/O Pins:
 - CMD/DATA Pin: MLDP Mode
 - MLDP_EV Pin: Indica mensagem de
 - CMD
- Até 20Kbps

Capacidade de Scripting em Standalone

- RN4020 pode rodar aplicações simples pelo "scripting"
 - Reduzindo custos no MCU principal
 - Aumento da vida de bateria
 - Facilidade de aprendizado Operações realizadas em comandos AT
 - Tempo de desenvolvimento reduzido

RN4020 Scripting

Acionados por evento

- 11 Eventos: @PW_ON, @CONN, @DISCON, @TMR1/2/3, @GPIOL/H, @ALERTH/L/O
- Sob cada evento, um ou mais comandos ASCII, atribuições, operações lógicas
- RN4020 roda todas as linhas de um Script até o final do script ou outro evento
- Uma porta I/O pode ser associada a um "Server Handle

RN4020 Scripting

Duas Variáveis

As Variáveis podem ter valores atribuídos

VAR1 = @I,0

Pode ser definido um Range

\$VAR1 < "0200"

Pode ser usada nos comando ASCII

SHW,001E,\$VAR1

Funcionalidade para comandos remotos

- Construído sobre o MLDP
- Executa comandos AT em dispositivo remoto
- Resultados das execuções são enviados de volta para o device local

Funcionalidade para comandos remotos

- Outro caminho para um periférico sem Host
 - Típicamente a MCU host controla os módulos via UART
 - Comandos remotos podem controlar o dispositivo usando um link BLE
 - Toda aplicação lógica pode ser realizada num dispositivo local
 - Sem desenvolvimento no dispositivo remoto

Firmware Update do device

- O RN4020 pode se atualizar em campo
- Pela UART
- Over The Air (OTA)
- DFU: Detecção de erros e recuperação

Firmware Update do device

DFU pela UART

- Hardware Flow Control
- 15 segundos (115Kbps UART)

OTA DFU

- Baseado no MLDP
- Local Hardware Flow Control precisa estar habilitado
- Mínimo de 30 segundos para Upgrade (depende muito da conexão)

Agenda

- Fundamentos do Bluetooth® Low Energy
- Introdução do módulo Microchip RN4020 BLE
- Funcionalidades avançadas do RN4020
- Desenvolver aplicações BLE utilizando RN4020 com a placa Curiosity

MASTERS 2016 The Premier Technical Training Conference for Embedded Control Engineers The Premier Technical Training Conference for Embedded Control Engineers

Laboratórios

Objetivos

- Desenvolver aplicações com a placa Curiosity e a BLE2 Click
- Entender como fazer a interface do RN4020 com um microcontrolador
- Desenvolver aplicações para interface com smartphone

Curiosity

- Conector USB mini-B (parte traseira);
- Pads para conector para fonte 9V;
- 3. Botão para Master Clear Reset;
- Jumper para seleção de fonte 3,3/5V p (J12);
- Pads para fonte externa;
- 6. Conectores de expansão;
- Soquete DIP para microcontrolador de 8, 14 e 20 pinos;
- 8. Conectores para padrão mikroBUS™;
- 9. Pads para módulo Bluetooth RN4020;
- 10. Potenciômetro;
- 11. LEDs;
- 12. Botão mTouch®;
- 13. Botão do tipo Push button.

PIC16F1619

Parameter	Value	
Name		
Program Memory Type	Flash	
Program Memory (KB)	14	
CPU Speed (MIPS)	8	
RAM Bytes	1,024	
Digital Communication Peripherals	1-UART, 1-SPI, 1- I2C	
Capture/Compare/PWM Peripherals	2 CCP	
Timers	4 x 8-bit, 3 x 16- bit	
Comparators	2	
Temperature Range (C)	-40 to 125	
Operating Voltage Range (V)	1.8 to 5.5	
Pin Count	20	
XLP	Yes	

Padrão mikroBUS™

Padrão mikroBUS™

BLE2 Click

BLE2 Click - Equemático

Ferramentas de software

Interface Comando

Pinos de Controle

7	WAKE_SW	Deep Sleep Wake; active-high to wake module from Deep Sleep.	Input; weak pull-down
8	CMD/MLDP	CMD – Command Mode – Module enters Command mode where UART commands and responses sent over UART are exchanged between the RN4020 command interpreter and the MCU host. MLDP Mode – Data Mode – Data through UART is sent over the Bluetooth Low Energy connection to the remote device using MLDP data service.	Input; active-high to enter Command
9	GND	Ground.	Ground
10	CONNECTION LED SCK PIO[1]	Default state is output: Active-high indicates the module is connected to a remote device. Active-low indicates a disconnected state. Configurable as PIO[1] via software command. SCK for diagnostics and factory calibration if pin 17 is asserted.	• Green LED • PIO[1] • SCK

Configuração da UART

Parameter	Value	
Baud Rate	115200	
Data Bits	8	
Parity	None	
Stop Bits	1	
Flow Control	None	

Lab 1: Criando estrutura do projeto

Lab 1 Objetivos

- Desenvolver aplicação no MPLAB X
- Configurar o microcontrolador usando o MCC
- Prepar estrutura para as aplicações com RN4020

Lab 1 Resumo

- Criamos um projeto com o MPLAB X para a placa Curiosity
- Configuramos os periféficos com o **MCC**
- Preparamos a estrutura para envio de comandos para o RN4020

Lab 2: Primeiros comandos para o RN4020

Lab 2 Objetivos

- Entender como iniciar o RN4020
- Enviar comandos de configurações
- Fazer a leitura das informações do divice através do RN4020

Lab 2 Resumo

- Enviamos comandos de configuração para o RN4020
- Habilitamos o serviço de informações do dispositivo
- Fizemos a leitura através de aplicativo no celular

Lab 3: Battery Service

Lab 3 Objetivos

- habilitar o Battery Service
- Enviar status da bateria para o smartphone
- Fazer a leitura dos valores no smartphone

Lab 3 Resumo

- Entendemos como habilitar o serviço de bateria
- Configuramos o conversor AD usando o MCC
- Simulamos o envio de valores
- Fizemos a leitura através de aplicativo no celular

Lab 4: Heart Rate Service

Lab 4 Objetivos

- Habilitar o Herat Rate Service
- Enviar status valores de Herat Rate para o smartphone
- Fazer a leitura dos valores no smartphone

Lab 3 Resumo

- Entendemos como habilitar o serviço Herat Rate
- Simulamos o envio de valores
- Fizemos a leitura através de aplicativo no celular

Lab 5: Health Thermometer Service

Lab 5 Objetivos

- Habilitar o Health Thermometer Service
- Enviar status valores de temperatura para o smartphone
- Fazer a leitura dos valores no smartphone

Lab 3 Resumo

- Entendemos como habilitar o serviço Health Thermometer
- Simulamos o envio de valores
- Fizemos a leitura através de aplicativo no celular

Resumo

- BLE é uma tecnologia nova e promissora
- O RN4020 BLE OEM Module é simples e poderoso
- A interface com o microcontrolador é simples
- Rápido desenvolvimento de aplicações

Ferramentas usadas

- DM164137 Curiosity
- RN4020-V/RM123
- TMIK037 BLE2 click

MASTERS 2016 The Premier Technical Training Conference for Embedded Control Engineers 1997-2016

Obrigado!

Contato

fabio.souza@embarcados.com.br

www.embarcados.com.br