## **Ensemble Learning**

담당자: 박무성



## 목차

- 1. XG Boost
- 2. Light Gradient Boost
- 3. Cat boost



## 목차

- 1. XG Boost
- 2. Light Gradient Boost
- 3. Cat boost



XG Boost는 Gradient Boost Machine이다!

-> GBM의 약점을 보완하고 더 빠른 학습을 위해 발전시킨 형태

Split Finding Algorithm

: "GBM처럼 하나하나 다 따져보지말고, 데이터를 분할해서 더 빠르게 최적의 분할 지점을 찾자"

Sparsity-Aware Split Algorithm

: "결측치, 0을 효과적으로 처리하자"



부스팅의 아이디어: weak model을 boosting 시켜서 strong model로 제작

Weak Model: Decision Tree -> Bagging -> Strong Model: Random Forest

Weak Model: Linear Classifier -> Boosting -> Strong Model: Ada Boost



약한 분류기로 Decision Tree 사용

기존의 Gradient Boosting Machine
: 모든 경우의 수를 탐색하는거라서 뚱뚱하고 무거워

병렬처리가 불가능한 Sequatial 방식이다보니 시간이 너무 오래 걸림 Decision Tree 복습 : Exact greedy algorithm ( purity를 높이는 가능한 모든 경우의 수 탐색 )

Weak Model인 Decision Tree가 작동하는 방식을 약간 바꿔볼까...?



기존의 방식

: Basic exact greedy algorithm

"decision tree에서 최적의 분할점을 찾기위해 모든 경우의 수를 시도해보자"

| Value |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lable | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

But,

만약 데이터가 메모리에 다 들어가지 않는다면...? (로딩되지 않는다면?)

하나하나 다 찾아봐야해서 병렬처리가 불가능



XG Boost의 아이디어

: "데이터를 분할해서 따로따로 최적의 분할 지점을 찾자"

For speed

#### Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to m do

Propose  $S_k = \{s_{k1}, s_{k2}, \dots s_{kl}\}$  by percentiles on feature k. Proposal can be done per tree (global), or per split(local).

#### end

for k = 1 to m do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$

#### end

Follow same step as in previous section to find max score only among proposed splits.



XG Boost의 아이디어

: "데이터를 분할해서 따로따로 최적의 분할 지점을 찾자"

1) Value를 sort하자

2) Percentile에 따라서 n개의 bucket으로 전체 데이터를 나누자

| Value |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lable | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |



XG Boost의 아이디어 : "데이터를 분할해서 따로따로 최적의 분할 지점을 찾자"





XG Boost의 아이디어 : "데이터를 분할해서 따로따로 최적의 분할 지점을 찾자"









Bucket의 수 : 1/ξ

Point. Global variant를 사용할거라면 hyper parameter ξ를 더 작게 잡아야한다.



결측치 or '0'을 효율적으로 처리

- 실제 데이터는 missing value가 많을 수 밖에 없음
- '0'으로 인코딩된 경우도 많음



결측치 or '0'을 효율적으로 처리

: default direction으로 보내버리자!

Missing value go to right

| Value | 1.8 |   | 1.1 | 0.7 |   | 2.3 | 0.3 |   | 1.5 | 3.3 | 0.2 | 0.9 |
|-------|-----|---|-----|-----|---|-----|-----|---|-----|-----|-----|-----|
| Lable | 1   | 0 | 1   | 0   | 0 | 01  | 0   | 0 | 1   | 1   | 0   | 0   |



| Value |   |   |   |   |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|
| Lable | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |



결측치 or '0'을 효율적으로 처리

: default direction으로 보내버리자!

Missing value go to left





| Value |   |   |   | 0.2 | 0.3 | 0.7 | 0.9 | 1.1 | 1.5 | 1.8 | 2.3 | 3.3 |
|-------|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lable | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 1   |



성능 비교





자료 구조 및 하드웨어 처리

과적합 규제



# Ensemble 첫번째 세션 복습



## 목차

- 1. XG Boost
- 2. Light Gradient Boost
- 3. Cat boost



## 2. Light GBM의 직관적 이해

Idea: 뚱뚱하고 시간이 오래걸리는 GBM을 효율적으로 사용할 순 없을까?

- Gradient based One-Side Sampling (GOSS)

"많이 틀린것만 다시 학습하자"

Exclusive Feature Bundling (EFB)

" 정보를 잃지않는 선에서 Feature끼리 묶어버리자"



Gradient based One-Side Sampling (GOSS)

"많이 틀린것만 다시 학습하자"



Exclusive Feature Bundling (EFB)

" 정보를 잃지않는 선에서 Feature끼리 묶어버리자"

Feature A는 0

Feature B는 정수 k 라면, 둘을 묶어서 하나의 feature로 만들면 정보 손실이 적지않을까?



- Exclusive Feature Bundling (EFB)

" 정보를 잃지않는 선에서 Feature끼리 묶어버리자"

|                 | ΧI | x <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> |
|-----------------|----|----------------|-----------------------|----------------|----------------|
| I <sub>I</sub>  | I  | I              | 0                     | 0              | I              |
| l <sub>2</sub>  | 0  | 0              | I                     | I              | I              |
| l <sub>3</sub>  | I  | 2              | 0                     | 0              | 2              |
| I <sub>4</sub>  | 0  | 0              | 2                     | 3              | I              |
| I <sub>5</sub>  | 2  | I              | 0                     | 0              | 3              |
| l <sub>6</sub>  | 3  | 3              | 0                     | 0              | I              |
| l <sub>7</sub>  | 0  | 0              | 3                     | 0              | 2              |
| I <sub>8</sub>  | I  | 2              | 3                     | 4              | 3              |
| l <sub>9</sub>  | 1  | 0              | 1                     | 0              | 0              |
| I <sub>10</sub> | 2  | 3              | 0                     | 0              | 2              |

|                           | $x_{l}$ | $x_2$ | <b>X</b> <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> |
|---------------------------|---------|-------|-----------------------|----------------|----------------|
| $\mathbf{x}_{\mathbf{l}}$ | -       | 6     | 2                     | I              | 6              |
| x <sub>2</sub>            | 6       | -     | ı                     | I              | 6              |
| X <sub>3</sub>            | 2       | I     | -                     | 3              | 4              |
| X <sub>4</sub>            | I       | I     | 3                     | -              | 3              |
| X <sub>5</sub>            | 6       | 6     | 4                     | 3              | -              |

|   | X <sub>5</sub> | x <sub>I</sub> | x <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> |  |
|---|----------------|----------------|----------------|----------------|----------------|--|
| d | 19             | 15             | 14             | 10             | 8              |  |







- Exclusive Feature Bundling (EFB)

"정보를 잃지않는 선에서 Feature끼리 묶어버리자"

|                 | xı | x <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | $x_5$ |
|-----------------|----|----------------|----------------|----------------|-------|
| I <sub>I</sub>  | ı  | ı              | 0              | 0              | I     |
| l <sub>2</sub>  | 0  | 0              | ı              | 1              | - 1   |
| l <sub>3</sub>  | 1  | 2              | 0              | 0              | 2     |
| l <sub>4</sub>  | 0  | 0              | 2              | 3              | I     |
| I <sub>5</sub>  | 2  | 1              | 0              | 0              | 3     |
| l <sub>6</sub>  | 3  | 3              | 0              | 0              | I     |
| l <sub>7</sub>  | 0  | 0              | 3              | 0              | 2     |
| l <sub>8</sub>  | 1  | 2              | 3              | 4              | 3     |
| l <sub>9</sub>  | 1  | 0              | 1              | 0              | 0     |
| I <sub>10</sub> | 2  | 3              | 0              | 0              | 2     |

|                 | X <sub>5</sub> | ΧI  | X <sub>4</sub> | $x_2$ | X <sub>3</sub> |
|-----------------|----------------|-----|----------------|-------|----------------|
| $I_1$           | 1              | - 1 | 0              | - 1   | 0              |
| l <sub>2</sub>  | 1              | 0   | 1              | 0     | 1              |
| l <sub>3</sub>  | 2              | ı   | 0              | 2     | 0              |
| I <sub>4</sub>  | 1              | 0   | 3              | 0     | 2              |
| I <sub>5</sub>  | 3              | 2   | 0              | ı     | 0              |
| I <sub>6</sub>  | 1              | 3   | 0              | 3     | 0              |
| I <sub>7</sub>  | 2              | 0   | 0              | 0     | 3              |
| l <sub>8</sub>  | 3              | - 1 | 4              | 2     | 3              |
| l <sub>9</sub>  | 0              | - 1 | 0              | 0     | 1              |
| I <sub>10</sub> | 2              | 2   | 0              | 3     | 0              |
|                 |                |     |                |       |                |



- Exclusive Feature Bundling (EFB)

" 정보를 잃지않는 선에서 Feature끼리 묶어버리자"

|                  |                | •              |                | 1              |    |
|------------------|----------------|----------------|----------------|----------------|----|
|                  | X <sub>5</sub> | x <sub>I</sub> | X <sub>4</sub> | × <sub>2</sub> | ×3 |
| $\mathbf{I}_{1}$ | 1              | 1              | 0              | 1              | 0  |
| I <sub>2</sub>   | 1              | 0              | 1              | 0              | ı  |
| I <sub>3</sub>   | 2              | 1              | 0              | 2              | 0  |
| I <sub>4</sub>   | 1              | 0              | 3              | 0              | 2  |
| I <sub>5</sub>   | 3              | 2              | 0              | ı              | 0  |
| 16               | 1              | 3              | 0              | 3              | 0  |
| I <sub>7</sub>   | 2              | 0              | 0              | 0              | 3  |
| I <sub>8</sub>   | 3              | 1              | 4              | 2              | 3  |
| l <sub>9</sub>   | 0              | 1              | 0              | 0              | 1  |
| I <sub>10</sub>  | 2              | 2              | 0              | 3              | 0  |
|                  |                |                |                |                |    |

|                 | X <sub>5</sub> | ×14 | X <sub>23</sub> |
|-----------------|----------------|-----|-----------------|
| $I_{L}$         | -1             | L   | -1              |
| l <sub>2</sub>  | -1             | 4   | 4               |
| l <sub>3</sub>  | 2              | 1   | 2               |
| l <sub>4</sub>  | - 1            | 6   | 5               |
| l <sub>5</sub>  | 3              | 2   | 1               |
| l <sub>6</sub>  | 1              | 3   | 3               |
| l <sub>7</sub>  | 2              | 0   | 6               |
| l <sub>8</sub>  | 3              | 1   | 2               |
| l <sub>9</sub>  | 0              | 1   | 4               |
| I <sub>10</sub> | 2              | 2   | 3               |



Idea: 뚱뚱하고 시간이 오래걸리는 GBM을 효율적으로 사용할 순 없을까?

Gradient based One-Side Sampling (GOSS)

"많이 틀린것만 다시 학습하자"

Exclusive Feature Bundling (EFB)

" 정보를 잃지않는 선에서 Feature끼리 묶어버리자"

