Лабораторная работа по дисциплине "Теория функций комплексной переменной"

Горюнов Семён Олегович Р3230,

Захарченко Роман Владимирович Р3231,

Милёхина Елизавета Алексеевна Р3232

October 2024

Доказательство свойств множества Мандельброта

Свойство 1. Множество Мандельброта переходит само в себя при сопряжении.

Пусть с принадлежит множеству Мандельброта (c = x + iy).

Рассмотрим $\widetilde{z_{n+1}}=\widetilde{z_n}+\bar{c}$. Докажем, что $\widetilde{z_n}$ сопряжено с z_n по индукции.

База. n = 0. $\widetilde{z_0} = \bar{z_0}$

Переход от
n к n+1.
$$\widetilde{z_n}=\bar{z_n}$$
 $\widetilde{z_{n+1}}=\widetilde{z_n}^2+\bar{c}=\bar{z_n}^2+\bar{c}=\overline{z_n^2}+\bar{c}=\overline{z_n^2}+\bar{c}$

Следовательно, \bar{c} принадлежит множеству Мандельброта.

Cвойство 2. Если |c| > 2, то с не принадлежит множеству Мандельброта.

Пусть |c| > 2. |c| = r = 1 + k, r, k - действительный числа (1 + k > 2,следовательно k > 1).

Докажем, что z_n не ограничено. Воспользуемся индукцией.

База: $|z_0| = 0$, $|z_1| = r$, $|z_2| = |z_1^2 + c| \ge |z_1^2| - |c| = r^2 - r = r(r-1) = rk = rk^{2^{n-2}}$

Переход от n к n+1. $|z_{n+1}| = |z_n + c| \ge |z_n^2| - |c|$ $|z_n^2| - |c| = (rk^{2^{n-2}})^2 - r = r(rk^{2^{n-1}} - 1) = r(k^{2^{n-1}} + k^{2^{n-1}+1} - 1) \ge rk^{2^{n-1}}$.

Так как k > 1, $k^{2^{n-1}+1} - 1 > 0$.

 $|z_{n+1}| \ge rk^{2^{n+1}-2}$. Следовательно, т.к. k > 1, то $rk^{2^{n-1}}$ возрастает. Получаем, что z_n не ограничено.

Код для визуализации множества Мандельброта, Жюлиа и бассейнов Ньютона

https://github.com/dfa-ra/FractalsTFCV/tree/master

3 Немного о бассейнах Ньютона

Еще один тип динамических фракталов составляют фракталы (так называемые бассейны) Ньютона. Формулы для их построения основаны на методе решения нелинейных уравнений, который был придуман великим математиком еще в XVII веке. Применяя общую формулу метода Ньютона $z_{n+1}=z_n-\frac{f(z_n)}{f'(z_n)},$ $n=0,1,2,\dots$ для решения уравнения f(z)=0 к многочлену z^k-a , получим последовательность точек: $z_{n+1}=\frac{((k-1)z_n^k-a)}{kz_n^{k-1}},$ $n=0,1,2,\dots$

Выбирая в качестве начальных приближений различные комплексные числа z_0 , будем получать последовательности, которые сходятся к корням этого многочлена. Поскольку корней у него ровно k, то вся плоскость разбивается на k частей — областей притяжения корней. Границы этих частей имеют фрактальную структуру.

Заметим в скобках, что если в последней формуле подставить $\mathbf{k}=2$, а в качестве начального приближения взять $z_0=a$, то получится формула, которую реально используют для вычисления квадратного корня из а в компьютерах.

Наш фрактал получается из многочлена $f(z) = z^3 - 1$.

4 Изображения множеств

Figure 1: Изображение множества Мандельброта

Figure 2: Изображение множества Мандельброта
(количество итераций: 15 $\,$

Figure 3: Изображение множества Мандельброта(количество итераций: 30)

Figure 4: Изображение множества Мандельброта
(количество итераций: 255)

Figure 5: Изображение множества Жюлиа

Figure 6: Изображение множества Жюлиа в точке (c=0.5251993+i0.5251993) (255 итераций)

Figure 7: Изображение множества Жюлиа в точке (-0.5, 0.5) (16 итераций)

Figure 8: Изображение множества Жюлиа в точке (0, 0.7) (255 итераций)

Figure 9: Изображение множества Жюлиа в точке (0, 0.7) (16 итераций)

Figure 10: Изображение бассейнов Ньютона для многочлена $z^10-1\ (1000\$ итераций) с приближением 0.000000001

Figure 11: Изображение бассейнов Ньютона для многочлена $z^3-1~(1000~$ итераций) с приближением 0.000000001

Figure 12: Изображение бассейнов Ньютона для многочлена $z^4-1~(1000~$ итераций) с приближением 0.000000001