ESSC 4520

Name: Wu Hei Tung SID: 1155109536 L10 Exercise

Ex1

The production term of each species ($P_{C,i,B,m}$):

O₃: $P_{C,O3,B,m} = k_1[O]_{B,m}$

 NO_2 : $P_{C,NO_2,B,m} = k_2[NO]_{B,m}[O_3]_{B,m}$

NO: $P_{C,NO,B,m} = J[NO_2]_{B,m}$ O(³P): $P_{C,O,B,m} = J[NO_2]_{B,m}$

The loss terms of each species $(L_{C,i,B,m})$:

O₃: $L_{C,O3,B,m} = k_2[NO]_{B,m}[O_3]_{B,m+1}$

 $NO_2{:}\ L_{C,NO2,B,m}\!=J[NO_2]_{B,m+1}$

NO: $L_{C,NO,B,m} = k_2[NO]_{B,m+1}[O_3]_{B,m}$

 $O(^{3}P)$: $L_{C,O,B,m} = k_{1}[O]_{B,m+1}$

The backward Euler formular:

$$N_{i,B,m+1} = \frac{N_{i,t-h} + hP_{C,i,B,m}}{1 + V_{C,i,B,m}}$$

While the $V_{C,i,B,m}$ of each species:

 O_3 : $L_{C,O3,B,m} = k_2[NO]_{B,m}$

 NO_2 : $L_{C.NO2.B.m} = J$

NO: $L_{C,NO,B,m} = k_2[O_3]_{B,m}$

 $O(^{3}P)$: $L_{C,O,B,m} = k_{1}$

The forward Euler formular:

$$N_{i,F,m+1} = N_{i,t-h} + h(P_{C,i,B,m} - L_{C,i,B,m})$$

Taking Np = 200, the result will be

