Yesod를 이용한 Haskell 웹 애플리케이션 개발 방법에 대한 실험

안형준⁰¹, 류샤오², 변석우³, 우균⁴

^{1,2,4}부산대학교 전기전자컴퓨터공학과, ³경성대학교 컴퓨터공학과, ⁴LG전자 스마트 제어 센터 hyungjun@pusan.ac.kr, liuxiao@pusan.ac.kr, swbyun@ks.ac.kr, woogyun@pusan.ac.kr

An Experiment of Haskell Web Application Development Based on Yesod

Hyungjun An^{O1}, Xiao Liu², Sugwoo Byun³, Gyun Woo⁴
^{1,2,4}Dep. of Electrical and Computer Engineering, Pusan National University,
³School of Computer Science & Engineering, Kyungsung University,
⁴Smart Control Center of LG Electronics

요 약

웹 애플리케이션 개발에는 많은 종류의 프레임워크가 사용된다. 그러나 기존의 웹 애플리케이션 개발 과정은 개발 부분마다 서로 다른 언어로 작성해야 하는 불편함이 있다. 더욱이, 기존 웹 레이아웃 제작을 위한 CSS, HTML 코딩은 단순한 기능을 구현하는 데만 해도 필요한 소스코드의 길이가 길다. 이러한 문제점은 Haskell의 DSL 기능을 사용하면 해결할 수 있다. 본 논문에서는 Haskell의 웹 개발 유용성을 설명하기 위해 Haskell 웹 프레임워크의 일종인 Yesod와 기존 프레임워크를 비교한다. 비교 결과 DSL 기능을 지원하는 Yesod는 하나의 소스코드 안에서 CSS, HTML 등을 작성할 수 있었다. 또한, 동일한 동작을 하는 Yesod 코드와 HTML 코드를 비교한 결과 Yesod 코드가 HTML 코드보다 6배 적은 LOC, 10배 작은 파일 크기를 보였다. 이를 통해 Yesod가 기존의 웹 프레임워크보다 개발 편의성이 높음을 알 수 있었다.

1. 서 론

유용한 웹 애플리케이션 개발을 위해서는 웹 전단부설계, 데이터 관리 및 요청처리 등 다양한 지식이 필요하다. 이때 효율적인 웹 애플리케이션 개발을 위해 ASP.NET, Zend Framework, Ruby on Rails 등 많은 종류의 프레임워크가 사용된다[1]. 그리고 이러한 웹 프레임워크는 각각 C#, PHP, Python, Ruby, HTML, CSS, Javascript 등 서로 다른 프로그래밍 언어를 사용한다[2].

이러한 웹 개발의 문제는 하나의 웹 애플리케이션을 개발하기 위해 여러 종류의 언어가 필요하다는 것이다. 실제로 웹 레이아웃 제작에는 HTML, CSS가, 알고리즘 구현에는 Javascript가, 서버 측 프로그래밍에는 PHP, C++, Java, Python 등이 사용된다. 이러한 여러 가지언어를 사용해야만 하는 기존 웹 애플리케이션 개발과정은 개발자가 언어별로 분할된 구조를 계속해서 신경 써야 하므로 개발 시간이 오래 걸린다.

이러한 문제점은 함수형 언어 Haskell의 DSL(Domain Specific Language) 기능을 통해 해결할 수 있다. Haskell DSL 기능을 이용해서 하나의 Haskell 코드 안에 여러 가지 언어를 작성할 수 있기 때문이다. 또한, Haskell은 순수 함수형 언어로써 지연 계산, 패턴 매칭, 타입 다형성, 리스트 조건제시식 등의 문법적 기능을 지원하며, 코드 재사용성이 높아 프로그램 개발 시간을 줄이는 장점이 있다[3].

본 논문은 Haskell의 웹 개발 편의성을 보이기 위해 Haskell 기반 웹 프레임워크 중 하나인 Yesod를 사용한다[4]. 그리고 Yesod와 다른 웹 프레임워크의 개발 편의성을 비교하기 위해 Yesod로 간단한 블로그를 제작한다. 추가로 같은 기능의 웹 애플리케이션을 Yesod로 구현했을 때와 HTML로 구현했을 때의 LOC 및 파일 크기를

비교하다.

본 논문은 다음과 같이 구성되어 있다. 2장에서는 기존 웹 개발 환경의 단점과 Haskell 웹 개발 환경을 소개한다. 3장에서는 Yesod를 이용한 Haskell 웹 애플리케이션 개발과정을 소개한다. 4장에서는 Yesod와 다른 웹 프레임워크의 개발 편의성을 비교한다. 끝으로 5장에서 결론을 맺는다.

2. 관련연구

2.1. 기존 웹 프레임워크 및 서버의 단점

ASP.NET, Zend Framework, Ruby on Rails 등 웹 개발을 위해 다양한 웹 애플리케이션 프레임워크가 사용된다. 또한, 효율적인 웹 애플리케이션 동작을 위해 IIS, Apache, Nginx 등 다양한 웹 서버가 사용된다[5]. 그러나 기존의 웹 애플리케이션 프레임워크와 웹 서버들은 표 1과 같은 한계가 있다[6-9].

(표 1) 기존 웹 프레임워크 및 서버의 단점

구 분	단 점	
ASP.NET	Microsoft Windows에서만 제대로 동작, Internet Explorer 브라우저에서만 동작 가능	
Zend Framework	복잡한 컴포넌트로 인한 실행 속도 저하	
Ruby on Rails	보안상 취약점이 발견됨	
IIS	Microsoft Windows에서만 제대로 동작	
Apache	복잡한 구성과 사용자 인터페이스	
Nginx	Apache와 비교 시, 동적 요청 처리 능력이 저조	

2.2. Yesod와 Warp

Yesod는 Haskell 기반의 웹 프레임워크이다. Yesod는 웹 개발을 위한 DSL 기능을 지원한다. 때문에, Haskell 코드만으로 레이아웃 설계, 기능 제작 및 배포 등 웹 애플리케이션 개발을 위한 대부분의 작업을 할 수 있다. 다시 말해, Yesod를 사용하는 개발자는 HTML, CSS, Javascript 코드 등을 별도로 작성하지 않아도 된다.

한편, Haskell 웹 프레임워크를 지원하는 웹 서버로 Warp가 있다. Yesod로 만든 웹 애플리케이션 또한 Warp를 서버로 사용할 수 있다. 이때, Yesod를 Warp가 아닌 다른 웹 서버와 함께 사용하는 것보다 Yesod, Warp를 같이 사용하는 것이 Yesod로 만든 애플리케이션 의 성능을 극대화하는 방법이다[6].

3. Yesod를 이용한 블로그 제작

본 장에서는 Yesod와 다른 웹 프레임워크의 개발 편의성을 비교하기 위해 Yesod를 이용하여 간단한 블로그를 제작하고자 한다. Yesod를 이용하여 만든 블로그의구조는 그림 1과 같이 라우팅 테이블, 블로그 객체 생성, 인증 및 권한 부여, 웹 컴포넌트 표현 및 배치, 블로그세부동작의 다섯 부분으로 나눌 수 있다. 눈여겨볼 부분은 그림 2와 3의 Yesod를 이용한 웹 컴포넌트 표현 및배치 부분이다. 왜냐하면, 별도의 추가 CSS, HTML 소스파일 없이 Yesod의 DSL 기능만으로 웹 컴포넌트 배치 및 표현을 할 수 있기 때문이다.

그림 3은 Yesod를 이용해서 블로그 로그인 창의 웹 컴포넌트를 표현한 코드이다. 이때 HTML을 Yesod 안에서 사용할 수 있게 해주는 Yesod DSL로서 Hamlet이 사용되었다. 그림 3은 Yesod를 이용해서 블로그 로그인 창의 웹 컴포넌트를 배치한 코드이다. 이때 CSS를 Yesod 안에서 사용하기 위한 Yesod DSL로서 Lucius가 사용되었다. Lucius가 사용된 부분은 그림 3의 네 번째 줄부터 마지막 줄까지이다. 이렇게 제작된 블로그 로그인 창과게시물 작성 화면은 각각 그림 4,5와 같다.

라우팅 테이블			
블로그 객체 생성			
인증 및 권한 부여			
웹 컴포넌트 표현 및 배치			
블로그 세부동작			

(그림 1) Yesod로 만든 블로그 구조

(그림 2) 블로그 로그인 창의 컴포넌트 표현 코드

```
defaultLayout inside = do
        mmsg <- getMessage</pre>
        pc <- widgetToPageContent $ do</pre>
             toWidget [lucius]
body {
    width: 760px;
    margin: 1em auto;
    font-family: sans-serif;
textarea {
    width: 400px;
    height: 200px;
}
#message {
    color: #900;
}
```

(그림 3) 블로그 로그인 창의 컴포넌트 배치 코드

Welcome to Blog

Show Blog list

This is an empty Blog

Log in as Blog owner

(그림 4) Yesod로 만든 블로그 로그인 창

(그림 5) Yesod로 만든 블로그의 게시물 작성 화면

4. 기존 제작방법과의 비교

3장에서의 웹 블로그 제작 과정을 통해 Yesod와 다른 웹 프레임워크의 개발 편의성을 비교하려 한다. 그림 2와 3에서 알 수 있듯이 웹 컴포넌트 배치 및 표현을 함에 있어 Yesod를 사용하면 별도의 추가 CSS, HTML 파일을 만들 필요가 없다. 이렇듯 Yesod를 이용 웹 개발은추가 소스코드 관리가 필요 없어서 기존의 개발 방법보다 개발 편의성이 높다.

Yesod의 장점은 '단일 소스코드로 웹 개발 가능'뿐만이 아니다. Yesod로 제작된 코드는 간결성 면에서도 다

른 웹 프레임워크보다 월등하다. 그림 6은 그림 4의 블로그 로그인 창을 HTML로 구현했을 때의 코드이다. 이를 똑같은 동작을 하는 그림 3의 Yesod 코드와 비교한 결과는 표 2와 같다. 표 2는 그림 6의 HTML 코드와 그림 2의 Yesod 코드에 대해 각각의 LOC와 파일 크기를 비교한 결과이다. Yesod 코드가 HTML보다 LOC는 약 6배 적고 파일 크기는 약 10배 작음을 알 수 있다.

```
** whead 
** whe
```

(그림 6) 그림 4를 단순 HTML로 구현한 코드

(표 2) 블로그 로그인 창을 만드는 HTML 코드와 Yesod 코드의 LOC 및 파일 크기 비교

구 분	LOC	파일 크기(byte)
HTML	54	1746
Yesod	9	184
HTML 대비 Yesod 비율	1/6	1/9.49

5. 결론 및 향후연구

본 논문에서는 Haskell의 웹 개발 편의성을 보였다. 이를 위해 Haskell 웹 프레임워크 Yesod를 이용해서 간단한 블로그를 제작했다. 이 과정에서 Yesod를 이용한 웹 개발에는 별도의 HTML, CSS 소스코드가 필요하지 않음을 알 수 있었다. 또한, 똑같은 동작을 하는 HTML 코드와 Yesod 코드의 LOC 및 파일 크기 비교를 통해 Yesod의 코드 간결성을 알 수 있었다. 즉, Haskell기반웹 프레임워크인 Yesod는 다른 웹 프레임워크보다 코드간결성, 개방 편의성 면에서 효율적이다.

향후 연구로는 병렬 프로그래밍을 지원하는 Haskell 웹 프레임워크에 관한 연구를 진행할 것이다. 왜냐하면,

인터넷 사용자가 늘어남에 따라 웹 프레임워크의 대규모 요청 처리 성능 또한 중요시되었기 때문이다. 그리고 이 러한 대규모 요청 처리를 효과적으로 해결하는 방법이 병렬 프로그래밍이기 때문이다.

ACKNOWLEDGMENT

본 연구는 미래창조과학부의 SW컴퓨팅산업원천기술개발 사업의 일환으로 수행하였음(B0101-16-0644, 매니코어 기반 초고성능 스케일러블 OS 기초연구).

*교신 저자 : 우균(부산대학교, woogyun@pusan.ac.kr).

참고문헌

- [1] A. Doupé, B. Boe, C. Kruegel, and G. Vigna, "Fear the ear: discovering and mitigating execution after redirect vulnerabilities," in Proceedings of the 18th ACM conference on Computer and communications security. ACM, pp.251-262, 2011.
- [2] J. N. Robbins, Learning web design: A beginner's guide to HTML, CSS, JavaScript, and web graphics., O'Reilly Media, Inc. 2012.
- [3] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães, "Giving haskell a promotion," in Proceedings of the 8th ACM SIGPLAN workshop on Types in language design and implementation. ACM, pp.53-66, 2012.
- [4] M. Snoyman, Developing web applications with Haskell and Yesod., O'Reilly Media, Inc, 2012.
- [5] S.-W. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya, "Modeling vulnerability discovery process in apache and iis http servers," Computers & Security, vol. 30, no. 1, pp.50-62, 2011.
- [6] A. Freeman and S. Sanderson, Pro ASP. NET MVC 4. Springer, 2012.
- [7] I. A. R. Proctor, M. Yang, and H. Zhao, "Executing server side script code specified using php on a server to generate dynamic web pages," Apr. 22 2014, uS Patent 8,707,161.
- [8] C. Brook, Security issue in ruby on rails could expose cookies, [Online], Available: https://threatpost.com/security-issue-inruby-on-rails-could-expose-cookies/102413/ (2013)
- [9] Allison, Compared with the advantages and disadvantages of nginx apache, [Online]. Available: http://www.programering.com/a/MjN1 gzMwATQ.html (2014)
- [10] M. Snoyman, "Warp: A haskell web server," IEEE Internet Computing, no. 3, pp.81-85, 2011.