

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 797 958 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
01.10.1997 Bulletin 1997/40

(51) Int Cl. 6: A61B 17/36, A61B 17/22

(21) Application number: 97302188.4

(22) Date of filing: 27.03.1997

(84) Designated Contracting States:
BE DE FR GB IT NL

(72) Inventor: Mueller, Richard L.
Byron, CA 94514 (US)

(30) Priority: 29.03.1996 US 627704

(74) Representative: Nicholls, Kathryn Margaret et al
MEWBURN ELLIS
York House
23 Kingsway
London WC2B 6HP (GB)

(54) Apparatus for laser-assisted transmyocardial revascularization and other surgical applications

(57) A balloon end contact scope device for performing laser-assisted transmyocardial revascularization (TMR) or other surgical and catheter procedures is provided, which is particularly adapted for delivery of laser energy via a laser delivery means and is configured to reach inside a body cavity or organ chamber at a point not directly accessible, either visually or otherwise, such as in a lateral or posterior position, the device having a hollow outer lumen, a balloon scope portion with an internal guide tube extending through the balloon portion for directing a laser delivery means or other surgical or catheter device through the visualization balloon toward the area being visualized. The balloon scope portion may have a plurality of guide holes extending therethrough. On the essentially transparent contact viewing surface a high friction surface may be applied to facilitate precise positioning and treatment therethrough. The device can be used for attaching a guide tether for placing marking devices or fluoroscopic locators, or for placing other interventional devices. The device may be used in a method of visualizing and treating the heart, other organs and internal parts of the human body comprising the following steps: providing a balloon end contact scope with a main lumen and an essentially transparent contact viewing portion of a predetermined size and material of construction and integral laser delivery means or other equipment channel suitable for viewing the heart, other organs and internal parts of the human body; precisely positioning the contact viewing portion in contact with a portion of the heart, other organ or internal body part adjacent the position to be viewed; and visualizing the heart, other organ or internal body part. The method can be used to place a guide wire or tether to the heart, other organ or internal body part in order to locate a fluoroscopic or other visualization means or

to perform additional visualization, fluoroscopic marking or other interventional procedure. The method also comprises the step of delivering laser energy to a portion of the heart to effect transmyocardial revascularization. The method can be performed either by surgically introducing a balloon end viewing scope into the chest cavity of a patient and through the pericardial sac of the heart to a position between the pericardial sac and the epicardial surface of the heart or by introducing a balloon end viewing scope into the vasculature of a patient, for example at a point on the femoral artery, and into an internal chamber of the heart.

FIG. 3

Description

The present invention relates to the surgical procedure known as laser-assisted transmyocardial revascularization (TMR), and more particularly, to improved methods and apparatuses for precisely positioning a fiber-optic or other waveguide adjacent the area or areas to be lasered, including at positions adjacent the posterior epicardial and endocardial surfaces of the heart and at trans-septal positions within the chambers of the heart, thereby making possible the creation of channels in myocardial tissue at precisely the positions in the heart where ischemia or infarction or other have rendered such treatment desirable or necessary. These methods and apparatuses can be adapted for use in surgical applications throughout the human body or in animals for transmitting laser energy precisely, at predetermined positions and to predetermined depths.

FIG. 1 is a schematic view of the human heart. The human heart 10 is a muscular dual pump that beats continuously throughout life sending blood to the lungs and the rest of the body. The interior of the heart consists of four distinct chambers. The septum 12, a thick central muscular wall, divides the cavity into right and left halves. On the right side, the upper half is known as the right atrium 14. Deoxygenated blood from the rest of the body arrives in the right atrium via the vena cava 16, the blood is pumped across a one-way valve known as the tricuspid valve 18 into the lower portion known as the right ventricle 20. From there the blood circulates to the lungs through the pulmonary valve 22 via the pulmonary artery 24 where it is oxygenated by circulation through the alveoli of the lungs (not shown). The blood returns via the pulmonary veins to the left atrium 26 and flows through a second valve, the mitral valve 28 into the left ventricle 30 where it is pumped via the aorta 32 to the rest of the body.

Much of the heart consists of a special type of muscle called myocardium. The myocardium requires a constant supply of oxygen and nutrients to allow it to contract and pump blood throughout the vasculature. The inner surfaces of the chambers of the heart are lined with a smooth membrane, the endocardium, and the entire heart is enclosed in a tough, membranous bag known as the pericardial sac.

The pumping action of the heart has three main phases for each heart beat. *Diastole* is the resting phase during which the heart fills with blood: while deoxygenated blood is entering the right atrium oxygenated blood is returned from the lungs to the left atrium. During the *atrial systole*, the two atria contract simultaneously, squeezing the blood into the lower ventricles. Finally, during *ventricular systole* the ventricles contract to pump the deoxygenated blood into the pulmonary arteries and the oxygenated blood into the main aorta. When the heart is empty, *diastole* begins again. The electrical impulses which stimulate the heart to contract in this manner emanate from the heart's own pacemaker, the

sinoatrial node. The heart rate is under the external control of the body's *autonomic nervous system*.

FIG. 2 is a schematic view of the coronary arteries on the outer surface of the human heart. Though the heart supplies blood to all other parts of the body, the heart itself has relatively little communication with the oxygenated blood supply. Thus, the two coronary arteries, the left coronary artery 40 and the right coronary artery 42 which arise from the aorta and encircle the heart muscle on either side "like a crown" to supply the heart itself with blood.

Heart disorders are a common cause of death in developed countries. They also impair the quality of life of millions of people restricting activity by causing pain, breathlessness, fatigue, fainting spells and anxiety. The major cause of heart disease in developed countries is impaired blood supply. The coronary arteries, which supply blood to the heart, become narrowed due to *atherosclerosis* and part of the heart muscle are deprived of oxygen and other nutrients. The resulting *ischemia* or blockage can lead to *angina pectoris*, a pain in the chest, arms or jaw due to a lack of oxygen to the heart, or *infarction*, death of an area of the myocardium caused by the *ischemia*.

Techniques to supplement the flow of oxygenated blood directly from the left ventricle into the myocardial tissue have included needle acupuncture to create transmural channels (see below) and implantation of T-shaped tubes into the myocardium. Efforts to graft the omentum, parietal pericardium, or mediastinal fat to the surface of the heart had limited success. Others attempted to restore arterial flow by implanting the left internal mammary artery into the myocardium.

Modernly, coronary artery blockage can be relieved in a number of ways. Drug therapy, including nitrates, beta-blockers, and peripheral vasodilator drugs (to dilate the arteries) or thrombolytic drugs (to dissolve the clot) can be very effective. If drug treatment fails transluminal angioplasty is often indicated - the narrowed part of the artery, clogged with atherosclerotic plaque or other deposits, can be stretched apart by passing a balloon to the site and gently inflating it a certain degree. In the event drug therapy is ineffective or angioplasty is too risky (often introduction of a balloon in an occluded artery can cause portions of the atherosclerotic material to become dislodged which may cause a total blockage at a point downstream of the subject occlusion thereby requiring emergency procedures), the procedure known as coronary artery bypass grafting (CABG) may be indicated. CABG is the most common and successful major heart operation performed, in America alone over 500,000 procedures being performed annually. The procedure takes at least two surgeons and can last up to five hours. First, the surgeon makes an incision down the center of the patient's chest and the heart is exposed by opening the pericardium. A length of vein is removed from another part of the body, typically the leg. The patient is connected to a heart-lung machine which takes

over the function of the heart and lungs during the operation. The section of vein is first sewn to the aorta and then sewn onto a coronary artery at a place such that oxygenated blood can flow directly into the heart. The patient is then closed. Not only does the procedure require the installation of the heart-lung machine, a very risky procedure, but the sternum must be sawed through and the risk of infection is enhanced during the time the chest cavity is spread open.

Another method of improving myocardial blood supply is called *transmyocardial revascularization* (TMR), the creation of channels from the epicardial to the endocardial portions of the heart. The procedure using needles in a form of "myocardial acupuncture" has been experimented with at least as early as the 1930s and used clinically since the 1960s. Deckelbaum, L.I., *Cardiovascular Applications of Laser technology, Lasers in Surgery and Medicine* 15:315-341 (1994). The technique was said to relieve ischemia by allowing blood to pass from the ventricle through the channels either directly into other vessels perforated by the channels or into myocardial sinusoids which connect to the myocardial microcirculation. The procedure has been likened to transforming the human heart into one resembling that of a reptile.

In the reptile heart, perfusion occurs via communicating channels between the left ventricle and the coronary arteries. Frazier, O.H., *Myocardial Revascularization with Laser - Preliminary Findings, Circulation*, 1995; 92 [suppl II]:II-58-II-65. There is evidence of these communicating channels in the developing human embryo. In the human heart, myocardial microanatomy involves the presence of myocardial sinusoids. These sinusoidal communications vary in size and structure, but represent a network of direct arterial-luminal, arterial-arterial, arterial-venous, and venous-luminal connections. This vascular mesh forms an important source of myocardial blood supply in reptiles but its role in humans is poorly understood.

Numerous studies have been performed on TMR using lasers to bore holes in the myocardium. The exact mechanism by which blood flows into the myocardium is not well understood however. In one study, 20-30 channels per square centimeter were bored into the left ventricular myocardium of dogs prior to occlusion of the arteries. LAD ligation was conducted on both the revascularized animals as well as a set of control animals. Results showed that animals having undergone TMR prior to LAD ligation acutely showed no evidence of ischemia or infarction in contrast to the control animals. After sacrifice of the animals at ages between 4 weeks and 5 months, the laser-created channels could be demonstrated grossly and microscopically to be open and free of debris and scarring.

It is believed that the TMR channels occlude toward the epicardial surface but that their subendocardial section remains patent (unobstructed) and establishes camerosinusoidal connections. It is possible that the

creation of laser channels in the myocardium may promote long-term changes that could augment myocardial blood flow such as by inducing angiogenesis in the region of the lased (and thus damaged) myocardium. Support of this possibility is reported in histological evidence of probable new vessel formation adjacent to collagen occluded transmyocardial channels. In the case of myocardial acupuncture or boring, which mechanically displaces or removes tissue, acute thrombosis followed by organization and fibrosis of clots is the principal mechanism of channel closure. By contrast, histological evidence of patent, endothelium-lined tracts within the laser-created channels supports the assumption that the inside of the laser channels is or can become hemocompatible and that it resists occlusion caused by thromboactivation and/or fibrosis. A thin zone of charring occurs on the periphery of the laser-created transmyocardial channels through the well-known thermal effects of optical radiation on cardiovascular tissue. This type of interface may inhibit the immediate activation of the intrinsic clotting mechanisms because of the inherent hemocompatibility of carbon. In addition, the precise cutting action that results from the high absorption and low scattering of laser energy (CO_2 , HO , etc.) may minimize structural damage to collateral tissue, thus limiting the tissue thromboplastin-mediated activation of the extrinsic coagulation.

U.S. Patent No. 4,658,817 issued Apr. 21, 1987 to Hardy teaches a method and apparatus for TMR using a laser. A surgical CO_2 laser includes a handpiece for directing a laser beam to a desired location. Mounted on the forward end of the handpiece is a hollow needle to be used in surgical applications where the needle perforated a portion of tissue to provide the laser beam direct access to distal tissue.

U.S. Patent No. 5,125,926 issued Jun. 30, 1992 to Rudko et al. teaches a heart-synchronized pulsed laser system for TMR. The device and method comprises a device for sensing the contraction and expansion of a beating heart. As the heart beat is monitored, the device triggers a pulse of laser energy to be delivered to the heart during a predetermined portion of the heartbeat cycle. This heart-synchronized pulsed laser system is important where the type of laser, the energy and pulse rate are potentially damaging to the beating heart or its action. Often, application of laser energy to a beating heart can induce fibrillation or arrhythmia. Additionally, as the heart beats, its spatial relationship between the heart and the tip of the laser delivery probe may change so that the necessary power of the beam and the required position of the handpiece may be unpredictable.

Finally, U.S. Patent Nos. 5,380,316 issued Jan. 10, 1995 and 5, 389,096 issued Feb. 14, 1995 both to Aita et al. teach systems and methods for intra-operative and percutaneous myocardial revascularization, respectively. The former patent is related to TMR performed by inserting a portion of an elongated flexible lasing apparatus into the chest cavity of a patient and lasing chan-

nels directly through the outer surface of the epicardium into the myocardium tissue. In the latter, TMR is performed by guiding an elongated flexible lasing apparatus into a patient's vasculature such that the firing end of the apparatus is adjacent the endocardium and lasing channels directly through the endocardium into the myocardium tissue without perforating the pericardium layer. These patents do not teach any method for controlling the elongated flexible laser delivery apparatus, nor do they teach methods of visualizing the areas of the heart being lased nor do they teach any method or devices for achieving TMR on surfaces or portions of the heart which are not directly accessible via a sternotomy, mini-sternotomy or via a trocar.

TMR is most often used to treat the lower left chamber of the heart. The lower chambers or ventricles are serviced by the more distal branches of the coronary arteries. Distal coronary arteries are more prone to blockage and resulting heart muscle damage. Roughly 50% of the left ventricle is direct line accessible through a thoracotomy or small incision between the ribs. However, roughly 50% is not direct line accessible and requires either rotating the heart or sliding around to the back side of the heart. Access to the heart is achieved by (1) sliding a device between the heart and pericardial sack which encases the heart, the device likely to have a 45-90 degree bend near the tip, (2) lifting the still beating heart, and (3) penetrating through the direct access side of the heart and/or through the septum of the heart. Lifting the still beating heart is less than desirable especially in patients with lowered heart performance. Furthermore, such manipulation can cause tachycardia (rapid beating of the heart absent undue exertion) fibrillation, arrhythmia or other interruptions in the normal beating cycle.

Thus, broadly, it is an object of the present invention to provide an improved method and device for surgery such as laser-assisted TMR.

It is a further object of the present invention to provide an improved method and device for laser-assisted TMR in which the procedure may be carried out from within the interior of the heart and in which visualization or positioning of the laser delivery means is done by improved means.

It is a further object of the present invention to provide an improved method and device for laser-assisted TMR in which the procedure may be carried out on rear surfaces and other visually hidden external surfaces of the heart and in which visualization or positioning of the laser delivery means is done by improved means.

In some embodiments of the present invention a device for laser-assisted TMR is provided in which the need for visualization during the procedure may be minimized by employing a depth stop, such as a mesh basket or "moly bolt" device adjacent the end of the elongated flexible laser delivery means, to position the distal end of the laser delivery means.

In further embodiments of the present invention a

device for laser-assisted TMR is provided in which the distal end of the elongated flexible laser delivery means comprises a known visualization system with an adjunct visualization device to enhance the quality of the visualized image.

In still further embodiments of the present invention a device for laser-assisted TMR is provided in which the need for visualization during the procedure may be minimised by deploying a mechanical or other tether coupled to the heart at a point adjacent to the area to be revascularized, thereby conveying the distal end of the laser delivery means to that area and maintaining it in a predetermined position during the creation of channels within the tissue of the myocardium.

According to a first aspect of the invention there is provided a device for performing laser-assisted myocardial revascularization (TMR) in a minimally invasive surgical procedure and configured to reach and view accessible and generally inaccessible surfaces of a heart or organ chamber, the device comprising:

an outer lumen having proximal and distal ends, the outer lumen adapted for conveying at least a laser delivery device;
 25 a scope portion at the distal end of the device and defining an at least partially essentially transparent, contact viewing portion and a body portion, the body portion disposed between the contact viewing portion and the distal end of the outer lumen;
 30 at least one aperture through the at least partially essentially transparent, contact viewing portion, the at least one aperture adapted for receiving a laser delivery device; and
 35 a viewing device operatively associated with the at least partially essentially transparent, contact viewing portion.

In one embodiment of this aspect a balloon end contact scope device for performing laser-assisted transmyocardial revascularization (TMR) or other surgical and catheter procedures is provided, the device particularly adapted for delivery of laser energy via a laser delivery means and configured to reach inside a body cavity or organ chamber at a point not directly accessible, either visually or otherwise, such as in a lateral or posterior position, the device particularly adapted for use in conjunction with a visualization means, the device comprising a hollow outer lumen, the outer lumen having a proximal end and a distal end, the outer lumen suitable for conveying a surgical device such as for laser delivery or visualization. The device has a balloon scope portion, the balloon scope portion attached to the distal end of the device, the balloon scope portion comprising an essentially transparent contact viewing portion, a main body portion, the main body portion disposed between the contact viewing portion and the distal end of the outer lumen and attached to the distal end of the outer lumen, the attachments between the main body

portion, the contact viewing portion and the distal end of the outer lumen sealed to prevent introduction of fluids into the balloon scope portion, and a guide tube, the guide tube having a proximal end and a distal end, the distal end of the guide tube attached to the contact viewing portion and positioned such that it extends longitudinally toward the distal end of the outer lumen, the proximal end of the guide tube positioned to receive the distal end of a surgical or catheter device extending through the outer lumen, the guide suitable for conveying a surgical or catheter device through the balloon scope portion to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment the outer lumen is rigid. In a preferred embodiment the outer lumen is flexible. In a preferred embodiment there is an inner lumen, the inner lumen having a proximal end and a distal end, the proximal end of the guide tube being attached to the distal end of the inner lumen such that a surgical or catheter device can extend through the inner lumen through the guide tube through the balloon scope portion to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment there is a plurality of guide tubes, the guide tubes having proximal ends and distal ends, the distal ends of the guide tubes attached to the contact viewing portion and positioned such that they extend longitudinally toward the distal end of the outer lumen, the proximal ends of the guide tubes positioned to receive the distal end of a surgical or catheter devices extending through the device, the guides suitable for conveying the surgical or catheter devices through the balloon scope portion to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment there is a plurality of inner lumens, the inner lumens having proximal ends and distal ends, the proximal ends of the guide tubes being attached to the distal ends of the inner lumens such that surgical or catheter devices can extend through the inner lumens of the device through the guide tubes through the balloon scope portion to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment there is a laser delivery means, the laser delivery means extending through the outer lumen of the device and through the guide tube of the balloon scope portion for delivery of laser energy to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment there is a plurality of laser delivery means, the laser delivery means extending through the outer lumen of the device and through the plurality of guide tubes of the balloon scope portion for delivery of laser energy to the surface of the tissue being visualized through the contact viewing portion. In a preferred embodiment there is a visualization means. In a preferred embodiment there is an inflating means, the inflating means suitable for introducing a suitable fluid such as air into the main body portion of the balloon scope portion. In a preferred embodiment the contact viewing portion of the balloon scope portion comprises

a central high friction surface area and an peripheral low friction surface area, the central high friction surface area immediately adjacent to the attachment point between the distal end of the guide tube and the contact viewing portion, the low friction surface area disposed on the peripheral portions of the contact viewing portion such that when the balloon scope portion has a relatively low internal pressure the peripheral low friction surface area will come into contact with the tissue being visualized or treated and when the balloon scope portion has a relatively higher internal pressure the central high friction surface area of the contact viewing portion will come into contact with the tissue being visualized or treated. A preferred embodiment is adapted for use as a surgical instrument. A preferred embodiment is adapted for use as a catheter instrument.

In another aspect, there is provided a fluoroscope locator and guide tether device for use as fluoroscopic marker or locator as well as a guide tether for a monorail or other mounted-type fluoroscopic marking tools and materials, laser delivery means, visualization mean and other surgical equipment which can be positioned precisely along the guide tether adjacent tissue to be inspected or treated, thereby preserving spatial references in relation to the subject tissue, the device comprising a guide tether portion, the guide tether portion having a proximal end and a distal end and a predetermined length, the guide tether portion having a strength and thickness suitable for conveying fluoroscopic marking tools and materials, laser delivery means, visualization means and other surgical equipment along its length, and a securing means, the securing means for securing the proximal end of the guide tether portion of the device to tissue or other structure adjacent the subject tissue being visualized, marked or otherwise treated. In a preferred embodiment the securing means is a suction cup. In a preferred embodiment the securing means is a tether clip. In a preferred embodiment the guide tether portion is made of a rigid material. In a preferred embodiment the guide tether portion is made of a flexible material. In a preferred embodiment there is a laser delivery means, the laser delivery means having a distal delivery end and capable of delivering laser energy in a predetermined beam position and pattern, the laser delivery means mounted on the guide tether portion of the device such that the guide tether portion acts as a monorail for conveying the distal delivery end of the laser delivery means to points adjacent the tissue or other structure being inspected or otherwise operated on. In a preferred embodiment the laser delivery means comprises a plurality of fiber optic cables. In a preferred embodiment there is a vacuum source, the vacuum source connected to the securing means, thereby maintaining the securing means attached to tissue or other structure by a vacuum seal. A preferred embodiment is adapted for use as a surgical instrument. A preferred embodiment is adapted for use as a catheter instrument.

The devices of the first and second aspects may

suitably be used in:

(1) A method of visualizing and treating the heart, other organs and internal parts of the human body comprising the following steps: (a) providing a balloon end contact scope with a main lumen and an essentially transparent contact viewing portion of a predetermined size and material of construction and integral laser delivery means or other equipment channel suitable for viewing the heart, other organs and internal parts of the human body; (b) precisely positioning the contact viewing portion in contact with a portion of the heart, other organ or internal body part adjacent the position to be viewed; and (c) visualizing the heart, other organ or internal body part. In a preferred embodiment the following step is included: (d) attaching a guide wire or tether to the heart, other organ or internal body part in order to locate a fluoroscopic or other visualization means or to perform additional visualization, fluoroscopic marking or other interventional procedure. In a preferred embodiment the portion of the heart, other organ or internal body part to be visualized or treated is on a lateral or posterior location on the heart, organ or other body part not directly visible or accessible via open surgery and other less-invasive techniques. In a preferred embodiment the following step is included: (e) delivering laser energy to the portion of the heart, other organ or internal body part to be treated via a laser delivery means introduced through the main lumen of the balloon end viewing scope. In a preferred embodiment the laser energy is delivered to the heart to effect transmyocardial revascularization. In a preferred embodiment step (b) is carried out by surgically placing the balloon end contact scope through an opening in the pericardial sac and adjacent the epicardial surface. In a preferred embodiment step (b) is carried out by placing the balloon end contact scope into the vasculature of the patient and into an inner chamber of the heart.

(2) A method of performing laser-assisted transmyocardial revascularization (TMR), the method utilizing a balloon end viewing scope with a central outer lumen to enhance visualization of surfaces being visualized or otherwise treated, the scope device having a means for delivering laser energy to the region being visualized, the method comprising the following steps: (a) surgically introducing a balloon end viewing scope into the chest cavity of a patient and through the pericardial sac of the heart to a position between the pericardial sac and the epicardial surface of the heart, eg introducing a viewing scope into the chest cavity through a conventional minimally invasive port; (b) precisely positioning the balloon end viewing scope adjacent an area of the epicardial surface from which revascularization is to be initiated, the precise positioning achieved

through the use of a visualization means disposed within the balloon end viewing scope, visualization achieved through the transparent or partially transparent walls of the balloon structure pressed against the epicardial surface; (c) positioning the distal end of a laser delivery means through the central lumen adjacent the area of the epicardial surface from which revascularization is to be initiated; and (d) delivering a controlled amount of laser energy directly onto the epicardial surface to create a TMR channel extending therethrough into the myocardium tissue. In a preferred embodiment the portions of the heart to be revascularized are located on the lateral and posterior sides of the heart.

(3) A method of performing laser-assisted transmyocardial revascularization (TMR), the method utilizing a balloon end viewing scope with a central outer lumen to enhance visualization of surfaces being visualized or otherwise treated, the scope device having a means for delivering laser energy to the region being visualized, the method comprising the following steps: (a) introducing a balloon end viewing scope into the vasculature of a patient, for example at a point on the femoral artery, and into an internal chamber of the heart; (b) precisely positioning the balloon end viewing scope adjacent an area of the endocardium surface from which revascularization is to be initiated, the precise positioning achieved through the use of a visualization means disposed within the balloon end viewing scope, visualization achieved through the transparent or partially transparent walls of the balloon structure pressed against the endocardium surface; (c) positioning the distal end of a laser delivery means through the central lumen adjacent the area of the endocardium surface from which revascularization is to be initiated; and (d) delivering a controlled amount of laser energy directly onto the endocardium surface to create a TMR channel extending therethrough into the myocardium tissue.

Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings in which the details of the invention are fully and completely disclosed as a part of this specification.

Embodiments of the invention are described below, 50 by way of example only, and with reference to the drawings, of which:

FIG. 1 is a schematic view of the human heart.

FIG. 2 is a schematic view of the coronary arteries on the outer surface of the human heart.

FIG. 3 is a cross section view of the human heart demonstrating a preferred method of TMR from the pericardium of the present invention.

FIG. 4 is a cross section view of the human heart

demonstrating a preferred method of TMR from the endocardium of the present invention.

FIG. 5A is a schematic view of a preferred embodiment of a balloon end contact scope of the present invention.

FIG. 5B is a detail view of a balloon end contact scope of the present invention.

FIG. 5C is a detail view of a balloon end contact scope of the present invention.

FIG. 6 is a graphic representation of the various components of assembly of a preferred embodiment of a balloon end contact scope of the present invention.

FIG. 7 is a schematic view of a preferred embodiment of the interface between a balloon end contact scope of the present invention and a lumen tip housing the distal end of a laser delivery means and a visualization scope.

FIG. 8 is a schematic view of a preferred embodiment of a balloon end contact scope having a patterning device built into the tip of the balloon of the present invention.

FIG. 9 is a schematic view of a preferred embodiment of a suction cup-type fluoroscope locator and guide tether of the present invention.

FIG. 10 is a schematic view of the method of operation of a preferred embodiment of a suction cup-type fluoroscope locator and guide tether in conjunction with a dye swab advance mechanism, a laser delivery means advance mechanism, a balloon fill and evacuate built-in syringe mechanism and visualization aid of the present invention.

FIG. 11 is a schematic view of a preferred embodiment of a suction cup-type fluoroscope locator and guide tether in conjunction with a catheter device of the present invention having a plurality of laser delivery means extending therefrom of the present invention.

FIG. 12 is a graphical representation of the beam pattern and channels created by a catheter device with a plurality of laser delivery means extending therefrom.

FIG. 13 is a schematic view of a preferred embodiment of a lateral aspect positioning device of the present invention for use with fluoroscope locators and guide tethers.

FIG. 14 is a schematic view of the method of operation of a preferred embodiment of a fluoroscope locator and guide tether in conjunction with a monorail-type mount surgical or catheter device of the present invention.

FIG. 15 is a schematic view of a preferred embodiment of a guide tether clip of the present invention having surface coining.

FIG. 16 is a schematic view of a preferred embodiment of a guide tether and clip of the present invention.

FIG. 3 is a cross section view of the human heart demonstrating a preferred method of TMR in which access to the heart is gained by sliding the surgical device between the exterior surface of the heart and the pericardial sac containing the heart. As is well known in sur-

gical methodology, the heart can be accessed externally via a mini-sternotomy perhaps with the use of a trocar or some other insertion tube device. The field of microsurgery is advancing rapidly and small sophisticated tools can be introduced into the chest cavity through some type of catheter device. The device could contain a visualization probe, such as a 2-millimeter fiber bundle, a laser delivery means, and other accessories including a dye swab, guide tether, illumination, etc. In this drawing, the surgical device 50 is inserted through a trocar device 52 into the thoracic cavity between the ribs 54 of the patient. An incision 55 is made in the pericardial sac 56 and the surgical device is inserted therethrough.

The balloon scope portion 57 is positioned adjacent the epicardial surface 58 of the heart. The surgical device would have a malleable stainless steel outer lumen 60. Inside the pericardial sac there is no blood in the space between the pericardial sac and the heart, however, the balloon still acts as a sliding surface and provides a suitable stand off distance for scope field of view. Thus, pushing blood out of the way is not a problem in this application, but holding the pericardium up like a tent is. The laser delivery means 62, optionally fiber optic or other waveguide, or other interventional or non-interventional surgical or catheter device would extend through with the balloon scope portion. As the laser energy is delivered to the adjacent epicardial surface, microchannels 64 are produced in the surface of the epicardium, extending into the myocardium tissue and through the interior endocardium surface of the chamber in front of the laser beam.

The handle 66 of the surgical or catheter device is located at the proximal 68 end of the outer lumen. A laser delivery means advance lever 70 is located on and integral with the handle. Any means for controlling the fiber in a predetermined, precisely controllable manner will be useful and will be known to those skilled in the art. The laser delivery means advance means could also be located separately from the handle. A balloon inflation and deflation line 72 also attaches to the handle. The laser delivery means enters the surgical or catheter device. Visualization means includes a 2 millimeter fiber bundle 74 or other suitable scope, connected to a camera 76, which is introduced to the outer lumen of the surgical or catheter device. A video monitor 78 is useful for providing real-time images or other images as the procedure is taking place.

The surgical tip version can also be used for trans septal approach, i.e., the tip of the device is pushed through the surface of the heart and is used to treat the heart muscle from the inside out. In this case, the balloon is probably between about 2 to 3 centimeters in diameter, since turbulence becomes a problem for balloons significantly larger than that. In this case, since the ventricle is filled with blood, the balloon does provide visualization in those areas.

The balloon end contact scope and methods of the present invention will function equally well adapted to

either surgical or catheter instruments, the distinction between the two being that catheter devices are generally considered to be devices used in the vasculature and other organ chambers of the body. A catheter tip would be smaller and adapted for introduction using percutaneous techniques. The catheter tip version would typically have a balloon end of less than about 1 centimeter diameter, and would be built on a braided or laminated urethane or other suitable material lumen for push and torque.

FIG. 4 is a cross section view of the human heart demonstrating a preferred method of TMR from the endocardium of the present invention. In this procedure, the left ventricle 80 is internally accessed via the aorta, the catheter device optionally introduced via the femoral artery or otherwise. The laser delivery 82 device extending from the outer lumen 84 of the catheter device is positioned adjacent the endocardium surface 86. Micro-channels 88 are lased into the myocardium tissue 90 but do not perforate the epicardial surface 92. Visualization through the balloon end contact scope portion 94 of the catheter device is improved over conventional catheter devices or scopes. In this manner, the chamber filled with blood or other organ cavities can be accessed, probed and treated with more precision and control than heretofore possible.

FIG. 5A is a schematic view of a preferred embodiment of a balloon end contact scope of the present invention. In this novel device, visualization of the surface being contacted is greatly enhanced. A stainless steel or other material malleable shaft 200 comprises the outer lumen of the catheter device. This semi-rigid lumen can be introduced into the chest cavity through a mini-sternotomy or trocar device and then positioned adjacent the posterior surface of the heart. In this manner, TMR can be performed on a portion of the heart otherwise visually inaccessible. For exemplary purposes, the surgical or catheter device is shown including an interventional device 202, such as a laser delivery means, and a viewing scope port 204, such as for a 2 millimeter fiber bundle. Either the entire surgical or catheter device could be pressurized or the device could also have a balloon fill port 206. The balloon 208 is attached to the distal end 210 of the device. Between the distal end of the device and the contact surface portion 212 of the balloon there is an extruded laser delivery means guide tube 214 with a central axis 215, proximal end 216 and distal end 217. Once the balloon is placed against the heart surface, blood is squeezed away and a clear, unobstructed view of the area being lased can be obtained with the viewing scope or fiber bundle. Providing a high friction surface 218 in the central portion of the contact surface portion will assist the surgeon maintain the balloon in place during delivery of laser energy, visualization, etc. A low friction surface 219 can be placed around the perimeter of the contacting surface portion. A similar smaller scale tip can be affixed to a catheter shaft or lumen and be introduced via percutaneous catheter

techniques, as shown in FIG. 4.

This device can be configured as either a catheter device or as a surgical tool. A catheter balloon end will be smaller (between about $\frac{1}{2}$ and 1 centimeter) than that of a surgical tool (between about 1 and 3 centimeters). A surgical tool would have a malleable stainless steel tubing construction, or similar. A catheter device might have a braided-laminate or other high push, high torque sustaining material or structure construction.

- 10 FIG. 5B is a detail view of a balloon end contact scope of the present invention. In this embodiment, the guide tube 400 is designed to be somewhat shorter in relation to the shape of the balloon. In the prior figure, the profile of the inflated balloon was fairly perpendicular to the central axis of the guide tube. In this embodiment, when a lower internal pressure is used, the balloon end scope contacts the surface of the area being visualized at the outer perimeter low friction surface 402 and the high friction surface area 404 is kept from contacting the tissue surface. In this modality the end of the scope can slide easily over surface areas being visualized.
- 15
- 20

FIG. 5C is a detail view of a balloon end contact scope of the present invention. In this embodiment, a higher internal balloon pressure is utilized to fully expand the balloon. In this modality, the high friction surface area 410 will come in contact with the adjacent tissue and will assist the surgeon maintain the balloon in place during delivery of laser energy, visualization, etc.

FIG. 6 is a graphic representation of the various components of assembly of a preferred embodiment of a balloon end contact scope of the present invention. The main body portion 220 of the balloon scope portion of the catheter device can be made of a flexible film of any suitable material, including urethane, nylon, rubber, plastic, etc. The contact surface portion 222 could be made of the same material or of a different material which allows for fiber scope visualization through the balloon contact wall. The contact surface portion can be sealed to the laser delivery means guide tube 224 such that the guide tube terminates at an opening 226 in the contact surface. The main body portion of the balloon scope portion is sealed to the outer perimeter of the contact viewing portion and the distal end of the adapter fitting 228 by any of various known or unknown, suitable sealing means, including RF, thermal, polymeric or other.

It will be obvious to those skilled in the art that the above-described combination of elements comprising the balloon scope portion of the catheter device of the present invention can be modified and adapted to any of various similar designs. The main body portion, contact viewing portion and adapter fitting can be integrated into a single "balloon"-type structure, or additional construction elements can be added to provide a balloon scope portion of a predetermined size, shape, orientation, flexibility, rigidity or transparency. Furthermore, the balloon scope portion of the catheter device can have mechanical, electrical, thermal, optical or acoustic sen-

sors, transducers, transceivers or other type of coupling device for determining ambient temperature, electrical activity, heart rate and pulse cycle, organ function and/or other parameters necessary or useful for performing TMR or other surgical procedures within the human or other animal body.

FIG. 7 is a schematic view of a preferred embodiment of the interface between a balloon end contact scope of the present invention and a lumen tip housing the distal end of a laser delivery means and a visualization scope. This view clearly shows the connection which must be made between the distal end 230 of the catheter device and the adapter fitting 232 of the balloon end contact scope of the present invention. The proximal end 234 of the laser delivery guide tube must be sealed to the distal end 236 of the laser delivery means inner lumen 238. The laser fiber delivery device 240, or other interventional device, will extend through the proximal end of the laser delivery means guide tube and as the balloon scope is pressed against the heart surface to be lased, the position of the laser delivery means can be visualized and controlled precisely.

FIG. 8 is a schematic view of a preferred embodiment of a balloon end contact scope having patterning guides built into the tip of the balloon of the present invention. In this embodiment, in addition to a laser delivery means or other interventional device central guide tube 250, there are an additional plurality of laser delivery guide tubes 252 extending through the balloon and attached to the balloon contacting surface 254 at certain, predetermined positions 256. The precise positions can be selected as desired, the group of three fibers or other waveguides shown in the figure being representative of a preferred embodiment. Furthermore, it will be understood that in addition to or instead of laser delivery means, other micro-surgical instruments may be useful or required for certain procedures, including irrigation, visualization, dye swabbing, marking or scanning, or other general or specific access to an internal organ. The balloon access ports 258 will also be used.

FIG. 9 is a schematic view of a preferred embodiment of a suction cup-type fluoroscope locator and guide tether of the present invention. This device serves multiple uses, including use as a fluoroscopic marker or locator as well as a guide tether for a monorail-type mounted catheter device which can be positioned precisely thereby. This is important because spatial references are easily lost when working through long ports, using cameras and tools with bends. Marking might help the surgeon developing a certain expertise performing TMR or other procedures. Extending through a malleable lumen 260 which forms the outer lumen of the device, a thin floppy vacuum line and tether 262 is attached at its distal end 264 to a soft rubber suction cup 266. It will be understood that the materials of construction for the various components may be rigid, semi-rigid or flexible materials, as might be indicated. In the preferred embodiment the suction cup or a portion thereof might

5 be filled with a radio-opaque material, such as 20% barium or bismuth solution, or other materials. In this manner, the position of the suction cup can be determined precisely using known methods of fluoroscopy. At the proximal end 268 of the malleable lumen, or some other position, a spring-loaded pin 270 extends into a channel 272 in the mechanism housing 274, thereby pinching the tube in certain configurations. A source of vacuum 276 would be used.

10 FIG. 10 is a schematic view of a preferred embodiment of the device and method of performing TMR or other procedure. The system includes a suction cup-type fluoroscope locator and guide-tether 280 anchored to tissue 282 adjacent the area being viewed or lased. A dye swab 286 could be advanced through access port 290. The access port is rotatably opened or closed constricting o-ring 292 to provide a vacuum tight but slideable seal on the advancing dye swab. A vacuum source 294 would also be used. This embodiment converts fluoroscopic location of the suction cup to a visual heart surface identifier for subsequent use of product as shown in FIG. 5A.

15 FIG. 11 is a schematic view of a preferred embodiment of a suction cup-type fluoroscope locator and 25 guide tether 300 in conjunction with a surgical device 302 of the present invention. The device has a plurality of laser delivery means 304 extending therefrom. The device has a slider 306 which rides on the tether up to the point where the suction cup 308 or attachment clip 30 is attached to the tissue adjacent the area to be lased. Rotation of the device in a direction B about the point of attachment by the suction cup portion onto the tissue will be facilitated.

20 FIG. 12 is a graphical representation of the beam pattern and channels created by a catheter device with 30 all of the extending laser delivery means simultaneously. Once a first set (denoted by the dashed lines 322) of channels 324 are created, slight re-orientation of the device about the attachment point will position the 35 extending laser delivery means to create a new set of channels in a position precisely defined in spatial relation to the tether anchor point. A series of channel sets can be created completely around the tether anchor point and revascularization at any indicated channel density in a given, precisely determined position can be achieved.

35 FIG. 13 is a schematic view of a preferred embodiment of a lateral aspect positioning device applicator of the present invention for use with fluoroscope locators and guide tethers. In this view, it is shown how parts of the heart 320 or any other organ or body part being worked on or near or behind are often situated in such a way as to make direct visualization impossible. In modern, less-invasive surgical techniques it is impossible

to manipulate the organ in the same way as if performing the procedure via an open chest cavity. In this view, a clip or other tether locator device applier 322 inserted, optionally through a trocar device 324. The applier has a bend at one end, with a given radius R and angle of orientation Y . Though there might be a plurality or bends or curves in the tether applier device, as appropriate for the procedure being performed, a standard radius of curvature might be between about 1 and 5 inches and the angle of orientation between about 45 and 120 degrees. The device can reach around to the back of the heart or other organ or orifice to attach a tether clip or suction cup or perform a marking or other function.

FIG. 14 is a schematic view of the method of operation of a preferred embodiment of a fluoroscope locator and guide tether in conjunction with a monorail-type mount catheter device of the present invention. Once in place, in this view attached to a tether anchor point 330 in the back of the heart, the guide tether 332 leads back through the trocar device 334, if used. Along the tether a catheter device 336 with a slider 338 can be slid along the tether through the trocar device or other entry point to the chest cavity or vasculature, and positioned adjacent the guide tether anchor point.

FIG. 15 is a schematic view of a preferred embodiment of a guide tether clip of the present invention having surface coining. In addition to the suction cup-type fluoroscopic marker and tether anchor, the guide can also be anchored to the heart other tissue, bone or other structure with a removable clip 350. Made out of metal, plastic, special radio-opaque or other suitable material. Coining marks 352 are often useful to enhance the gripping quality of the clip. These marks could be made in the molding or forming process, or stamped in or otherwise applied after fabrication.

FIG. 16 is a schematic view of a preferred embodiment of a guide tether and clip of the present invention. In this view, the distal end 360 of the tether 362 is shown attached to the removable clip 364. It will be understood by those skilled in the art that the materials of construction, dimensions and methods of using these systems may be modified to suit the particular patient's needs, the surgeon's expertise and preferred procedure, etc.

The present invention is intended for use with any medical laser. In particular, the Holmium laser, including many of various different types known and available now or at any time, will be particularly suited to the present invention. However, any suitable laser source, pulsed or otherwise, could provide laser energy to the laser delivery means of the present invention for performing the method of the present invention. Likewise, the catheter and surgical equipment, including laser delivery means, referred to in the present document as well as that known and used in the medicine and other disciplines today and in the future will be included in the scope of this application.

While the principles of the invention have been made clear in illustrative embodiments there will be im-

mediately obvious to those skilled in the art many modifications of the structure, arrangement proportions, the elements, materials, and the components used in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from those principles. The appended claims are intended to cover and embrace any and all such modifications, with the limits only of the true spirit and scope of the invention.

10

Claims

1. A device for performing laser-assisted myocardial revascularization (TMR) in a minimally invasive surgical procedure and configured to reach and view accessible and generally inaccessible surfaces of a heart or organ chamber, the device comprising:
 15 an outer lumen, the outer lumen having proximal and distal ends, the outer lumen adapted for conveying at least a laser delivery device; a scope portion at the distal end of the device and defining an at least partially essentially transparent, contact viewing portion and a body portion, the body portion disposed between the contact viewing portion and the distal end of the outer lumen;
 20 at least one aperture through the at least partially essentially transparent, contact viewing portion, the at least one aperture adapted for receiving a laser delivery device; and
 25 a viewing device operatively associated with the at least partially essentially transparent, contact viewing portion.
 30 35
 35 40
 40 45
 45 50
 50 55
 55 60
 60 65
 65 70
 70 75
 75 80
 80 85
 85 90
 90 95
 95 100
 100 105
 105 110
 110 115
 115 120
 120 125
 125 130
 130 135
 135 140
 140 145
 145 150
 150 155
 155 160
 160 165
 165 170
 170 175
 175 180
 180 185
 185 190
 190 195
 195 200
 200 205
 205 210
 210 215
 215 220
 220 225
 225 230
 230 235
 235 240
 240 245
 245 250
 250 255
 255 260
 260 265
 265 270
 270 275
 275 280
 280 285
 285 290
 290 295
 295 300
 300 305
 305 310
 310 315
 315 320
 320 325
 325 330
 330 335
 335 340
 340 345
 345 350
 350 355
 355 360
 360 365
 365 370
 370 375
 375 380
 380 385
 385 390
 390 395
 395 400
 400 405
 405 410
 410 415
 415 420
 420 425
 425 430
 430 435
 435 440
 440 445
 445 450
 450 455
 455 460
 460 465
 465 470
 470 475
 475 480
 480 485
 485 490
 490 495
 495 500
 500 505
 505 510
 510 515
 515 520
 520 525
 525 530
 530 535
 535 540
 540 545
 545 550
 550 555
 555 560
 560 565
 565 570
 570 575
 575 580
 580 585
 585 590
 590 595
 595 600
 600 605
 605 610
 610 615
 615 620
 620 625
 625 630
 630 635
 635 640
 640 645
 645 650
 650 655
 655 660
 660 665
 665 670
 670 675
 675 680
 680 685
 685 690
 690 695
 695 700
 700 705
 705 710
 710 715
 715 720
 720 725
 725 730
 730 735
 735 740
 740 745
 745 750
 750 755
 755 760
 760 765
 765 770
 770 775
 775 780
 780 785
 785 790
 790 795
 795 800
 800 805
 805 810
 810 815
 815 820
 820 825
 825 830
 830 835
 835 840
 840 845
 845 850
 850 855
 855 860
 860 865
 865 870
 870 875
 875 880
 880 885
 885 890
 890 895
 895 900
 900 905
 905 910
 910 915
 915 920
 920 925
 925 930
 930 935
 935 940
 940 945
 945 950
 950 955
 955 960
 960 965
 965 970
 970 975
 975 980
 980 985
 985 990
 990 995
 995 1000
 1000 1005
 1005 1010
 1010 1015
 1015 1020
 1020 1025
 1025 1030
 1030 1035
 1035 1040
 1040 1045
 1045 1050
 1050 1055
 1055 1060
 1060 1065
 1065 1070
 1070 1075
 1075 1080
 1080 1085
 1085 1090
 1090 1095
 1095 1100
 1100 1105
 1105 1110
 1110 1115
 1115 1120
 1120 1125
 1125 1130
 1130 1135
 1135 1140
 1140 1145
 1145 1150
 1150 1155
 1155 1160
 1160 1165
 1165 1170
 1170 1175
 1175 1180
 1180 1185
 1185 1190
 1190 1195
 1195 1200
 1200 1205
 1205 1210
 1210 1215
 1215 1220
 1220 1225
 1225 1230
 1230 1235
 1235 1240
 1240 1245
 1245 1250
 1250 1255
 1255 1260
 1260 1265
 1265 1270
 1270 1275
 1275 1280
 1280 1285
 1285 1290
 1290 1295
 1295 1300
 1300 1305
 1305 1310
 1310 1315
 1315 1320
 1320 1325
 1325 1330
 1330 1335
 1335 1340
 1340 1345
 1345 1350
 1350 1355
 1355 1360
 1360 1365
 1365 1370
 1370 1375
 1375 1380
 1380 1385
 1385 1390
 1390 1395
 1395 1400
 1400 1405
 1405 1410
 1410 1415
 1415 1420
 1420 1425
 1425 1430
 1430 1435
 1435 1440
 1440 1445
 1445 1450
 1450 1455
 1455 1460
 1460 1465
 1465 1470
 1470 1475
 1475 1480
 1480 1485
 1485 1490
 1490 1495
 1495 1500
 1500 1505
 1505 1510
 1510 1515
 1515 1520
 1520 1525
 1525 1530
 1530 1535
 1535 1540
 1540 1545
 1545 1550
 1550 1555
 1555 1560
 1560 1565
 1565 1570
 1570 1575
 1575 1580
 1580 1585
 1585 1590
 1590 1595
 1595 1600
 1600 1605
 1605 1610
 1610 1615
 1615 1620
 1620 1625
 1625 1630
 1630 1635
 1635 1640
 1640 1645
 1645 1650
 1650 1655
 1655 1660
 1660 1665
 1665 1670
 1670 1675
 1675 1680
 1680 1685
 1685 1690
 1690 1695
 1695 1700
 1700 1705
 1705 1710
 1710 1715
 1715 1720
 1720 1725
 1725 1730
 1730 1735
 1735 1740
 1740 1745
 1745 1750
 1750 1755
 1755 1760
 1760 1765
 1765 1770
 1770 1775
 1775 1780
 1780 1785
 1785 1790
 1790 1795
 1795 1800
 1800 1805
 1805 1810
 1810 1815
 1815 1820
 1820 1825
 1825 1830
 1830 1835
 1835 1840
 1840 1845
 1845 1850
 1850 1855
 1855 1860
 1860 1865
 1865 1870
 1870 1875
 1875 1880
 1880 1885
 1885 1890
 1890 1895
 1895 1900
 1900 1905
 1905 1910
 1910 1915
 1915 1920
 1920 1925
 1925 1930
 1930 1935
 1935 1940
 1940 1945
 1945 1950
 1950 1955
 1955 1960
 1960 1965
 1965 1970
 1970 1975
 1975 1980
 1980 1985
 1985 1990
 1990 1995
 1995 2000
 2000 2005
 2005 2010
 2010 2015
 2015 2020
 2020 2025
 2025 2030
 2030 2035
 2035 2040
 2040 2045
 2045 2050
 2050 2055
 2055 2060
 2060 2065
 2065 2070
 2070 2075
 2075 2080
 2080 2085
 2085 2090
 2090 2095
 2095 2100
 2100 2105
 2105 2110
 2110 2115
 2115 2120
 2120 2125
 2125 2130
 2130 2135
 2135 2140
 2140 2145
 2145 2150
 2150 2155
 2155 2160
 2160 2165
 2165 2170
 2170 2175
 2175 2180
 2180 2185
 2185 2190
 2190 2195
 2195 2200
 2200 2205
 2205 2210
 2210 2215
 2215 2220
 2220 2225
 2225 2230
 2230 2235
 2235 2240
 2240 2245
 2245 2250
 2250 2255
 2255 2260
 2260 2265
 2265 2270
 2270 2275
 2275 2280
 2280 2285
 2285 2290
 2290 2295
 2295 2300
 2300 2305
 2305 2310
 2310 2315
 2315 2320
 2320 2325
 2325 2330
 2330 2335
 2335 2340
 2340 2345
 2345 2350
 2350 2355
 2355 2360
 2360 2365
 2365 2370
 2370 2375
 2375 2380
 2380 2385
 2385 2390
 2390 2395
 2395 2400
 2400 2405
 2405 2410
 2410 2415
 2415 2420
 2420 2425
 2425 2430
 2430 2435
 2435 2440
 2440 2445
 2445 2450
 2450 2455
 2455 2460
 2460 2465
 2465 2470
 2470 2475
 2475 2480
 2480 2485
 2485 2490
 2490 2495
 2495 2500
 2500 2505
 2505 2510
 2510 2515
 2515 2520
 2520 2525
 2525 2530
 2530 2535
 2535 2540
 2540 2545
 2545 2550
 2550 2555
 2555 2560
 2560 2565
 2565 2570
 2570 2575
 2575 2580
 2580 2585
 2585 2590
 2590 2595
 2595 2600
 2600 2605
 2605 2610
 2610 2615
 2615 2620
 2620 2625
 2625 2630
 2630 2635
 2635 2640
 2640 2645
 2645 2650
 2650 2655
 2655 2660
 2660 2665
 2665 2670
 2670 2675
 2675 2680
 2680 2685
 2685 2690
 2690 2695
 2695 2700
 2700 2705
 2705 2710
 2710 2715
 2715 2720
 2720 2725
 2725 2730
 2730 2735
 2735 2740
 2740 2745
 2745 2750
 2750 2755
 2755 2760
 2760 2765
 2765 2770
 2770 2775
 2775 2780
 2780 2785
 2785 2790
 2790 2795
 2795 2800
 2800 2805
 2805 2810
 2810 2815
 2815 2820
 2820 2825
 2825 2830
 2830 2835
 2835 2840
 2840 2845
 2845 2850
 2850 2855
 2855 2860
 2860 2865
 2865 2870
 2870 2875
 2875 2880
 2880 2885
 2885 2890
 2890 2895
 2895 2900
 2900 2905
 2905 2910
 2910 2915
 2915 2920
 2920 2925
 2925 2930
 2930 2935
 2935 2940
 2940 2945
 2945 2950
 2950 2955
 2955 2960
 2960 2965
 2965 2970
 2970 2975
 2975 2980
 2980 2985
 2985 2990
 2990 2995
 2995 3000
 3000 3005
 3005 3010
 3010 3015
 3015 3020
 3020 3025
 3025 3030
 3030 3035
 3035 3040
 3040 3045
 3045 3050
 3050 3055
 3055 3060
 3060 3065
 3065 3070
 3070 3075
 3075 3080
 3080 3085
 3085 3090
 3090 3095
 3095 3100
 3100 3105
 3105 3110
 3110 3115
 3115 3120
 3120 3125
 3125 3130
 3130 3135
 3135 3140
 3140 3145
 3145 3150
 3150 3155
 3155 3160
 3160 3165
 3165 3170
 3170 3175
 3175 3180
 3180 3185
 3185 3190
 3190 3195
 3195 3200
 3200 3205
 3205 3210
 3210 3215
 3215 3220
 3220 3225
 3225 3230
 3230 3235
 3235 3240
 3240 3245
 3245 3250
 3250 3255
 3255 3260
 3260 3265
 3265 3270
 3270 3275
 3275 3280

- wherein the scope portion is expandable and the contact viewing portion stabilizes the device on the heart, the contact viewing portion further comprising a high friction surface area and a low friction surface area, a relatively low internal pressure in the expandable scope portion causing the low friction surface area to contact tissue and a relatively high internal pressure causing both the relatively high and relatively low friction surface areas to contact tissue.
- 5
7. The device of claim 5 having a plurality of laser delivery devices extending through the outer lumen and through a plurality of hollow guides and extendable through a plurality of apertures through the at least partially essentially transparent contact viewing portion.
- 10
8. The device of claim 7 wherein the outer lumen defines a plurality of inner lumens for extension of the plurality of laser delivery devices to the plurality of hollow guides aligned with the plurality of the inner lumens.
- 15
9. The device of any one of the preceding claims wherein the viewing device is a fiber optic assembly for visualization.
- 20
10. The device of any one of claims 1 to 8 wherein the viewing device is a visualization scope in the scope portion and in visual contact with the essentially transparent contact viewing portion.
- 25
11. The device of any one of the preceding claims wherein the outer lumen is at least partially rigid.
- 30
12. The device of any one of claims 1 to 10 wherein the outer lumen is flexible.
- 35
13. The device of any one of the preceding claims further comprising a tether for removably attaching the outer lumen thereto, the tether defining a means for securing the tether to tissue.
- 40
14. The device of claim 13 wherein the means for securing the tether to tissue is a suction cup.
- 45
15. The device of claim 13 wherein the means for securing the tether to tissue is a clamp.
- 50
16. The device of claim 14 further comprising a vacuum source operatively connected to the suction cup for providing a vacuum seal between the suction cup and the tissue.
- 55
17. A device for performing myocardial revascularization of a heart in a minimally invasive surgical procedure, the device comprising:
- a catheter having distal and proximal ends and defining at least one inner lumen; a collapsible body portion at the distal end and having a contact surface for positioning and stabilizing the catheter on a surface of a heart, at least a portion of the contact surface constructed to enable viewing of the surface of the heart, the collapsible body further defining at least one aperture through the contact surface; and a laser delivery device slidably and removable positioned in the at least one inner lumen and extendable through the at least one aperture in the contact surface for delivering laser energy to the heart.
18. The device of claim 17 further comprising a visualization device for viewing through the at least a portion of the contact surface enabling viewing.
19. The device of claim 18 wherein the visualization device is a visualization scope attached within the body portion and operatively connected to an external viewer.
20. The device of claim 18 wherein the visualization device is a fiber optic cable extending through the outer lumen into the body portion and operatively connected to an external viewer.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 7

FIG. 8

FIG. 11

FIG. 12

FIG. 9

FIG. 10

FIG. 14

FIG. 13

FIG. 16

FIG. 15

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	US 4 976 710 A (MACKIN ROBERT A) 11 December 1990 * column 3, line 48 - column 5, line 20; figures 2-5 *	1-5, 7-12, 17-20	A61B17/36 A61B17/22
A	WO 83 03188 A (LASERSCOPE INC) 29 September 1983 * page 6, line 11 - page 11, line 33; figures 1-3 *	1-5, 7-10, 17-20	
A	US 5 470 320 A (TIEFENBRUN JONATHAN ET AL) 28 November 1995 * column 2, line 1 - line 51; figures 3-5 *	1,12-16	
A	WO 94 14383 A (LASER ENGINEERING INC) 7 July 1994 * page 6, line 3 - line 24; figure 4 *	1,11	
A	EP 0 121 215 A (SUMITOMO ELECTRIC INDUSTRIES LTD) 10 October 1984 * claim 1; figures 1-3 *	1,17	TECHNICAL FIELDS SEARCHED (Int.Cl.) A61B
The present search report has been drawn up for all claims			
Place of search BERLIN	Date of completion of the search 16 June 1997	Examiner Hansen, S	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
<small>EPO FORM 150 (04/81) (PM/82/01)</small>			