Mål for opplæringen er at eleven skal kunne

• derivere sentrale funksjoner og bruke førstederiverte og andrederiverte til å drøfte slike funksjoner

0.1 Derivasjonsregler

I tidligere matematikkurs lærte du å derivere grunnleggende funksjoner og sammensatte funksjoner. Vi skal ta med oss en liten repetisjon av derivasjonsreglene og i tillegg presentere den deriverte av $\sin x$, $\cos x$ og $\tan x$. Men først må vi ha en liten redegjøring for føringen av funksjoner og deres deriverte:

For en funksjon f(x) vil f'(x) betegne f derivert med hensyn på x. Hvis det på forhånd er etablert at f er en funksjon av x, vil vi skrive f'(x) bare som f'.

Definisjon av den deriverte

For en deriverbar funksjon f(x) er den deriverte med hensyn på x definert som

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{0.1}$$

Den deriverte av utvalgte funksjoner av x

For en konstant k har vi at

$$(x^k)' = kx^{k-1} (0.2)$$

$$(\ln x)' = \frac{1}{x} \tag{0.3}$$

$$(e^x)' = e^x \tag{0.4}$$

$$(\sin x)' = \cos x \tag{0.5}$$

$$(\cos x)' = -\sin x \tag{0.6}$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x \tag{0.7}$$

$$(kf(x))' = kf'(x) \tag{0.8}$$

Kjerneregelen

For en funksjon f(x) = g(u(x)) har vi at

$$f' = g'(u)u' \tag{0.9}$$

Finn f' når $f(x) = (x^2 + x)^2$

Svar:

Vi setter $u(x) = x^2 + x$, og får at

$$g(u) = u^{2}$$
$$g'(u) = 2u$$
$$u' = 2x + 1$$

Altså blir

$$f' = g'(u)u'$$

= 2u(2x + 1)
= 2(x² + x)(2x + 1)

Produktregelen ved derivasjon

For funksjonen f(x) = u(x)v(x) har vi at

$$f' = u'v + uv' \tag{0.10}$$

Eksempel

Gitt funksjonen $f(t) = t^2 e^t$. Finn f'.

Svar:

Vi setter $u(t) = t^2$ og $v(t) = e^t$, og får at

$$u' = 2t$$
$$v' = e^t$$

Videre er da

$$f' = (uv)'$$

$$= u'v + uv'$$

$$= 2te^{t} + t^{2}e^{t}$$

$$= te^{t}(2+t)$$

Divisjonsregelen ved derivasjon

For funksjonen $f(x) = \frac{u(x)}{v(x)}$ har vi at

$$f' = \frac{u'v - uv'}{v^2} \tag{0.11}$$

Eksempel

Gitt funskjonen $f(x) = \frac{x^2}{\sin x}$. Finn f'.

Svar:

Vi setter $u(x) = x^2$ og $v(x) = \sin x$, og får da at

$$u' = 2x$$
$$v' = \cos x$$

Videre er da

$$f' = \left(\frac{u}{v}\right)'$$

$$= \frac{u'v - uv'}{v^2}$$

$$= \frac{(x^2)'\sin x - x^2(\sin x)'}{\sin^2 x}$$

$$= \frac{2x\sin x - x^2\cos x}{\sin^2 x}$$

$$= x\sin^{-2}(2\sin x - x\cos x)$$

Merk: (0.11) er bare en utvidelse av (0.10) kombinert med potensregelen $\frac{1}{a} = a^{-1}$. Uten å bruke (0.11) kunne vi derfor løst oppgaven slik¹:

Vi observerer at

$$f(x) = x^2 \sin^{-1} x$$

Av (0.10) er da

$$f' = (x^2)' \sin^{-1} x + x^2 (\sin^{-1} x)'$$
$$= 2x \sin^{-1} x - x^2 \sin^{-2} \cos x$$

$$= x\sin^{-1}x(2x - x\sin^{-1}\cos x)$$

I derivasjonen av $\sin^{-1} x$ har vi brukt kjerneregelen. Med litt omskriving vil du finne at det endelige svaret er ekvivalent med det vi fikk da vi brukte divisjonsregelen.

0.2 Andrederiverttesten

Trolig er du også kjent med å finne maksimum¹ og minimum² til en funksjon f ved å studere f' via et fortegnsskjema, men ofte er andrederiverttesten mindre tidkrevende:

Andrederiverttesten

Gitt en funksjom f(x) som er kontinuerlig omkring 1 c. Da har vi at

- Hvis f'(c) = 0 og f''(c) < 0, er f(c) et lokalt maksimum.
- Hvis f'(c) = 0 og f''(c) > 0, er f(c) et lokalt minimum.
- Hvis f'(c) = f''(c) = 0, kan man ikke ut ifra denne informasjonen alene si om f(c) er et lokalt maksimum eller minimum.

Om én av de to første punktene er oppfylt, er c et lokalt ekstremalpunkt.

¹Minner igjen om at $\sin^{-1} x$ i denne boka er det samme som $\frac{1}{\sin x}$, mens uttrykket i andre tekster kan være samsvarende med asin x.

 $^{^1}Kontinuerlig omkring c$ betyr at det for en funksjon f(x) finnes et åpent intervall Ihvor fer kontinuerlig og der $c\in I.$

 $^{^1{\}rm Vi}$ minner igjen om at en utfyllende liste over punkt på en graf er å finne i vedlegg $\ref{eq:Vi}$??.

 $^{^2{\}rm Maksimum}$ og minimum blir også kalt maksimumsverdier og minimumsverdier.

Gitt funksjonen

$$f(x) = x^3 - 3x^2 \quad , \quad x \in [-2, 3]$$

- a) Finn alle lokale maksimum og minimum for f.
- **b)** Finn maksimal- og minimalverdien til f.

Svar:

a) Vi starter med å finne punktene hvor f'(x) = 0:

$$f'(x) = 0$$
$$3x^2 - 6x = 0$$
$$3x(x - 2) = 0$$

f'(x) er altså 0 for x=0 eller x=2. Videre finner vi at

$$f''(x) = 6x - 6$$

og at

$$f''(0) = -6$$
$$f''(2) = 6$$

Av andrederiverttesten er da x = 0 et lokalt maksimum og x = 2 et lokalt minimum for f.

b) f-verdiene for de to lokale ekstremalpunktene vi fant i a) er

$$f(0) = 0$$
$$f(2) = -4$$

Men vi må ikke glemme å sjekke endepunktene til f:

$$f(-2) = -20$$
$$f(3) = 0$$

Altså er -20 minimumsverdien til f, mens 0 er maksimumsverdien.

Gitt funksjonen

$$f(x) = \cos x \quad , \quad x \in [0, \pi]$$

Finn lokale maksimum og minimum for f.

Svar:

Vi har at

$$f'(x) = -\sin x$$
$$f''(x) = -\cos x$$

Dette betyr at f' = 0 for $x \in \{0, \pi\}$ og at $f''(\pi) = -f''(0) = 1$. Men siden x = 0 og $x = \pi$ er endepunkter for f, er ikke f' kontinuerlig *omkring* disse verdiene, dermed har f ingen lokale maksumim eller miniumum. Istedenfor er f(0) = 1 absolutt maksimum og $f(\pi) = -1$ absolutt minimum.

0.3 Den antideriverte

Vi skal nå se på en definisjon som kan virke veldig triviell, men som viser seg å være en viktig brikke når vi i neste kapittel skal studere integrasjon.

La oss starte med å se på funksjonen $f(x) = x^2$. Å derivere f mhp. x byr på få problemer:

$$f' = 2x$$

Hva nå med den deriverte av $g(x) = x^2 + 1$? Svaret blir det samme som for f':

$$g' = 2x$$

Allerede nå innser vi at det finnes en haug av funksjoner, rett og slett uendelig mange, som har 2x som sin deriverte. Tiden er derfor inne for å lage en samlebetegnelse for alle funksjoner med samme deriverte:

Den antideriverte

Hvis F(x) er en deriverbar funksjon og F'(x) = f(x), da er F en antiderivert av f.

Undersøk om følgende funksjoner er en antiderivert til $f(x) = 2x + e^x$:

$$g(x) = x^{2} + e^{x}$$
$$h(x) = x^{2} + e^{2x}$$
$$k(x) = x^{2} + e^{x} + 4$$

Svar:

Vi finner de deriverte av g, h og k:

$$g'(x) = 2x + e^{x}$$
$$h'(x) = 2x + 2e^{2x}$$
$$k(x) = 2x + e^{x}$$

Siden g'(x) = k'(x) = f(x), mens $h'(x) \neq f(x)$, er bare g(x) og k(x) en antiderivert til f.

Forklaringer

Derivasjonsregler

Vi skal nøye oss med å finne uttrykket for den deriverte av de tre uttrykkene som ikke ble gitt i R1, nemlig $\cos x$, $\sin x$ og $\tan x$.

$$(\cos x)' = -\sin x$$

Vi skal her anvende de to ligningene (se vedlegg??)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{I}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \tag{II}$$

Per definisjon (se (0.1)) er $(\cos x)'$ gitt som

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x}$$

Ved (??) kan vi skrive

$$\lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos x \cos(\Delta x) - \sin x \sin(\Delta x) - \cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(\cos(\Delta x) - 1) \cos x - \sin x \sin(\Delta x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos(\Delta x) - 1}{\Delta x} \cos x - \lim_{\Delta x \to 0} \frac{\sin(\Delta x)}{\Delta x} \sin x$$

$$= 0 - 1 \cdot \sin x$$

$$= -\sin x$$

Mellom tredje og fjerde linje i likningen over brukte vi (I) og (II).

$$(\sin x)' = \cos x$$

Av (??), (??) og (??) har vi at

$$\sin x = \cos\left(x - \frac{\pi}{2}\right)$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Bruker vi det faktum at $(\cos x)' = -\sin x$, i kombinasjon med kjerneregelen, får vi at

$$(\sin x)' = \left(\cos\left(x - \frac{\pi}{2}\right)\right)'$$

$$= -\sin\left(x - \frac{\pi}{2}\right) \cdot 1$$
$$= \sin\left(\frac{\pi}{2} - x\right)$$
$$= \cos x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

Av kjerneregelen og produktregelen ved derivasjon (se $(0.9~{\rm og}~(0.10))$ er

$$(\tan x)' = \left(\sin x \cos^{-1} x\right)'$$

$$= \cos x \cos^{-1} x + \sin x \left(\cos^{-1}\right)'$$

$$= 1 + \sin x (-\cos^{-2} x)(-\sin x)$$

$$= 1 + \tan^2 x$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \qquad (\cos^2 x + \sin^2 x = 1)$$

$$= \frac{1}{\cos^2 x}$$

Andrederiverttesten

Av definisjonen for den deriverte har vi at

$$f''(c) = \lim_{\Delta x \to 0} \frac{f'(c + \Delta x) - f'(c)}{\Delta x}$$

Når f'(c) = 0, er

$$f''(c) = \frac{f'(c + \Delta x)}{\Delta x}$$

Når f''(c) < 0, betyr dette at

$$\lim_{\Delta x \to 0} \frac{f'(c + \Delta x)}{\Delta x} < 0$$

Altså må $f'(c + \Delta x)$ være positiv når Δx nærmer seg 0 fra negativ side av tallinjen og negativ når Δx nærmer seg 0 fra positiv side. Dermed skifter f' fortegn i c, som da må være et maksimalpunkt for f. Tilsvarende må c være et minimumspunkt for f hvis f(c) = 0 og f''(c) < 0.