111 學年度第 1 學期 Video Processing

Homework_2 Implementation of a video coding system

姓名: 柯佐勲

學號: 611415055

系所: 電機所

教師: 江瑞秋老師

日期: 2022.12.13

一、簡介

這次的作業是要透過撰寫程式完成影像編碼系統(Video Coding System),以 實現對特定的影像編碼格式進行壓縮。所謂的影像編碼是影像壓縮的一種方式, 將原始之輸入影像經過編碼(Encoding)處理後,在維持與輸入影像相同的品質、 解析度情況下,進行壓縮成影像編碼格式,以提升影像之儲存或傳輸之使用效率。 而在日常生活中我們在觀看的影片,其播放原理是在短時間內快速切換影像,透 過肉眼的視覺佔留,產生連續的播放效果。然而,要在每秒鐘快速地切換多個影像,將會使原始影片檔案的數據量變得相當龐大,不僅僅是佔據了儲存空間,也 不利於傳輸與播放。因此可藉由影像編碼的方式將這些原始影片資料做轉換與壓 縮,使其更易於儲存、傳輸以及播放的格式,以達到提升影片播放品質與傳輸效 率。

二、方法

本次作業之實驗方法主要流程分為,影像動作估測補償、轉換編碼、標準量化、Entropy 編碼以及最後的重建,組合成一影像編碼系統,做影像之壓縮、編碼與解碼之功能,如 Fig. 1 所示。

Fig. 1 VCS(Video Coding System)流程圖

第一步利用 Motion estimation and compensation 對影像中的每一幀做預測其影像中的對象/物件的像素運動方向,我使用 Exhaustive Block Matching Algorithm 對整張影像進行搜索,如 Fig. 2 所示,按 block 的順序在參考影像中,進行搜索整個全域範圍,再以全域範圍內 block 以所有位置為中心與目標 frame 的 block 進行比較,最後產生 error image 做後續的影像重建方法。

Fig. 2 EBMA 示意圖

第二步藉由運動估測所輸出的 error image, 做 8*8 之 DCT(Discrete Cosine Transform)離散餘弦轉換,經常被應用於信號或影像之處理,其功能為將影像資料先切割成 8X8 各區域,如 Fig. 3 所示,影像為 8*8 之大小,在座標(m,n)的灰階值為f(m,n),如公式(1-1)所示,再依據每個影像區域中的資料較不重要的部分做濾除,僅保留重要的影像資訊,以達到高效率的有損壓縮之目的。

2D DCT
$$F(u,v) = \frac{1}{4}C(u)C(v)\sum_{m=0}^{7}\sum_{n=0}^{7}f(m,n)\cos(\frac{(2m+1)u\pi}{16})\cos(\frac{(2n+1)v\pi}{16})$$
 (1-1)

Original 8*8 DCT

Fig. 3 實際以 Lena 影像做 8*8DCT 之結果圖

接著透過影像壓縮技術中常使用之曲折掃描 Zig-zag scanning,如 Fig. 4 所示,以曲折方式掃描影像中所有區塊之像素值,而在本次作業中僅保留前 4 個區塊的像素,其他區塊則歸零做有限係數之反轉換,再來進行 8*8 之 2D IDCT(Inverse Discrete Cosine Transform)反離散餘弦轉換,以及計算重建之後的error image 之峰值訊噪比 PSNR(Peak Signal-to-Noice Ratio),以 PSNR 之值來了解重建後之 error image 與第一步驟所產生的 error image 之間的失真量。

2D IDCT
$$f(m,n) = \frac{1}{4} \sum_{v=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v)\cos(\frac{(2m+1)u\pi}{16})\cos(\frac{(2n+1)v\pi}{16})$$
 (1-2)

Perceptual based quantization matrix:

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Zig-zag ordering of DCT coefficients:

Fig. 4 Zig-zag scanning 示意圖

第三步使用在第二步中前 4 個區塊的像素值係數,以標準量化的方式做量化 (Quantization),在影像品質可接受的情況下,將不重要的訊息捨棄掉,分配其參數位元為[4,2,2,2],做優化配置,如公式(1-3),再以反量化(Inverse Quantization)做反轉換,來完成影像之重建。而所謂的量化主要是用來對影像進行壓縮,將影像之像素值從浮點數轉成整數,此方法為有損壓縮。

$$Q(f) = \left\lfloor \frac{f - f_{\min}}{q} \right\rfloor * q + \frac{q}{2} + f_{\min}$$
 (1-3)

第四步將執行 Entropy coding 之運算與處理,使用最原始(步驟一)之 error image 作為輸入,並提取 error image 中的所有像素之顯示機率,以範圍-255 至 255 之直方圖做估計與顯示,並計算該 error image 的 entropy,可藉由 entropy 驗證在對影像進行壓縮時,是否完整保留在壓縮前的資訊,此目的是希望達到理想的影像資料壓縮比;Entropy coding 之第二小步透過 codeword length 建構霍夫曼編碼(Huffman code),並依據出現機率進行大小排序,排序方式為從 496 個小符號中,當機率小於前 15 個符號時,將此 15 個符號組合成一個新符號(ESCAPE符號),因此以此 15 個擁有高機率之符號和 ESCAPE 符號構建一霍夫曼表;在藉由附加一個 9 位元固定長的碼在 ESCAPE 符號後,用於區分機率較低之符號與 ESCAPE 符號的 VLC(Variable length coding)代碼字表,以此達到減少 bit 的目的,最後再計算壓縮數據前與後之壓縮比率,作為評斷解碼壓縮好壞之指標。

第五步將經過去量化和反 DCT 轉換之 error images 進行運動補償,以獲得一新的重建影像,並計算其影像之峰值訊噪比(PSNR, Peak-Signal to Noice-Ratio),如公式(1-5)所示,以驗證重建影像之精度。

$$MSE = \sigma_e^2 = \frac{1}{FrameSize} \sum_{n=1}^{FrameSize} (I_1 - I_2)^2$$
 (1-4)

$$PSNR = 10 \times \log_{10}(\frac{255^2}{\sigma_e^2})$$
 (1-5)

三、結果

在本次作業實驗中,我以網球選手(stefan)的影像資料集作為實驗對象,分別 取第一幀與第五幀影像作為步驟一 Exhaustive search 的輸入,做運度估測補償並 生成 error image,做後續的影像重建實驗。本章節將分別呈現每一步驟所得到的 重建影像以及相關數據結果。

Table. 1 硬體設備與實驗環境配置

作業系統	Windows 10 64 bits
CPU	Intel® Core TM i5-8265 @ 1.60 GHz
GPU	NVIDIA GeForce MX250 2GB
IDE	MATLAB R2022b

3.1 Step 1: Motion estimation and compensation

Table. 2 上方為 target frame 與 anchor frame,利用 EBMA 搜索法設置 Block size 為 16, search range 為 8, 得到 predicted frame 後藉由與 anchor frame 之間的 差異產生了 error image,可發現選手的臉部與腿部皆有明顯得失真情形,表示動作變化幅度較大。

Table. 2 EBMA 執行整數像素運動估計並獲得 error image

3.2 Step 2: Transform Coding

Error image 透過公式(1-1)、(1-2)執行二維的 8*8 DCT (Discrete cosine Transform)轉換,做影像之有損壓縮與編碼。接續做反 DCT 以及藉由 zig-zag scan 對影像中每個區塊的像素值進行掃描與取得,並透過遮罩的方式,實現 zigzag scan,只保留前 4 區塊的像素值,其餘皆改為 0。如 Fig. 5 所示,可發現經過轉換與掃描後的影像係數中,在每一個 8*8 區域之左上角區塊的係數值,均具有較大的能量,也可透過 Fig. 6 做驗證與顯示,可明顯地在左上角看到縮小化的 error image。最後在實驗中計算壓縮前後影像之 PSNR,作為影像重建好壞的評估標準,實驗中得到之 PSNR 值為 19.207 db,可藉由影像觀察以及 PSNR 的值得知,在第二步驟所重建的影像是具有較多失真的區域,如 Table. 3 所示。

<u> </u>	88x352 dou	ble						
	1	2	3	4	5	6	7	8
1	442.2500	128.9533	0	0	0	0	0	0
2	338.3265	0	0	0	0	0	0	0
3	45.7750	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0
9	77.6250	28.3296	0	0	0	0	0	0
10	-6.0471	0	0	0	0	0	0	0
11	2.8817	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0

Fig. 5 影像經二維 8*8 DCT 轉換以及 zigzag 後之陣列係數

Fig. 6 影像經二維 8*8DCT 轉換後之影像

Table. 3 以 DCT、zigzag 與 IDCT 重建之 error image, 並計算經轉換前後影像的 PSNR 值

3.3 Step 3: Quantization

使用在第二步中經過 DCT 轉換後之前 4 個區塊的像素值係數,以標準量化的方式做均勻量化(Quantization),並分配其參數位元為[4,2,2,2],做優化配置,如 Table.4 所示。最後再以反量化(Inverse Quantization)做反轉換,來完成影像之重建。並在實驗中計算 PSNR,作為影像量化、重建好壞的評估標準,實驗中得到之 PSNR 值為 18.81 db,相較於第二步所重建的影像而言,有較維多的失真情形出現,以 PSNR 值稍微下降來判定,如 Table. 5 所示。

Table. 4 error image 經量化後產生的影像與影像陣列數據

Quantized image	Quantized table							
	⊞ 288x3	52 double						
		1 2	3	4	5	6	7	8
	1	452 17	'4 0	0	0	0	0	0
	2	352	0 0	0	0	0	0	0
	3	60	0 0	0	0	0	0	0
	4	0	0 0	0	0	0	0	0
	5	0	0 0	0	0	0	0	0
* * * * * * * * * * * * * * * * * * *	6	0	0 0	0	0	0	0	0
	7	0	0 0	0	0	0	0	0
	8	0	0 0	0	0	0	0	0
	9	94 3	6 0	0	0	0	0	0
	10	-17	0 0	0	0	0	0	0
	11	60	0 0	0	0	0	0	0
	12	0	0 0	0	0	0	0	0
	13	0	0 0	0	0	0	0	0
	14	0	0 0	0	0	0	0	0
	15	0	0 0	0	0	0	0	0
	16	0	0 0	0	0	0	0	0

Table. 5 做量化與反量化後之重建影像, 以及計算其與第一步之 error image 之 PSNR 值

3.4 Step 4: Entropy Coding

透過原始(步驟一)之 error image 作為輸入,並提取 error image 中的所有像素之顯示機率,以範圍-255 至 255 之直方圖做估計與顯示,並在 Entropy coding 實驗中計算該 error image 的 entropy 值為 0.989 bit/pixel,如 Table.6 所示;接著使用 error image 的 codeword length 建構霍夫曼編碼(Huffman code),根據顯示機率進行大小排序,將 496 個小符號中,前 15 個擁有高機率之符號構建一 Huffman table,如 Table.7 所示,而剩餘的符號會用於組合成一個 ESCAPE 新符號,如 Table.8 所示,此用意是為了區分低於前 15 個高機率之剩餘符號。最後再計算壓縮數據前與後之壓縮比率,作為評斷解碼壓縮好壞之指標,得到之壓縮比率為 134.5401%。

Table. 6 Error image 之像素顯示機率直方圖與 Entropy 之值

Table. 7 為前 15 個高機率符號設計 — Huffman table

	Pixel value	顯示 機率	發生 次數	Number of Bit
	1	2	3	4
1	0	0.1212	12284	1
2	1	0.0983	9964	3
3	-1	0.0971	9840	3
4	2	0.0648	6569	4
5	-2	0.0641	6499	4
6	3	0.0377	3.8220e+	5
7	-3	0.0371	3763	5
8	4	0.0242	2454	5
9	-4	0.0238	2417	6
10	-5	0.0196	1.9850e+	6
11	5	0.0184	1869	6
12	6	0.0159	1.6150e+	7
13	-6	0.0157	1588	7
14	7	0.0148	1496	7
15	-7	0.0145	1473	7

ESCAPE {} 4 of Bit -8 0.0128 1 000001000000001 0.0120 2 000001000000010 0.0120 -9 0.0117 4 000001000000100 5 000001000000101 -10 0.0107 492 000001111101100 493 000001111101101 494 000001111101110 495 000001111101111 496 0000011111110000

Table. 8 為剩餘的符號(16~511)組合成為 ESCAPE 符號

3.5 Step 5: Reconstruction

最後將步驟 3 未經量化之 error images 與步驟一之 target frame 進行運動補償,以獲得新的重建影像,並計算其影像之峰值訊噪比(PSNR, Peak-Signal to Noice-Ratio),以驗證重建影像之精度,如 Fig.7 所示。

Fig. 7 重建影像

四、結論

這次的作業整合了本學期在 Video Processing 課堂中所學到的理論知識,關於影像壓縮、轉換、編碼等,也透過作業的方式實際以程式做出影像編碼系統,使我更加了解影像壓縮的過程,並在最後的實驗結果可得知在第 2 步之重建影像與 error iamge 之 PSNR 值(19.2),以及最後重建影像之 PSNR 值(22.67),有明顯的上升,表示失真有越來越少之趨向,更在設計 2 維 8*8 DCT 轉換時,實際以函式以及用 zigzag 掃描的方式更改影像的像素值,有別於以往在課堂中只有用聽的,現在以程式的方式實際完成了這項功能,充滿成就感。雖然這次作業相較於作業一來說困難許多,但是在經過與同學討論後,總算是一步一步地完成了。

而影像編碼系統(VCS)的使用情境以及應用,並非單純只在影像壓縮之任務中,也可應用在機場之行李流水線中[1],其功能為近一步解決行李箱上未成功被讀取之標籤,僅須透過 VCS 來正確地讀取與拍攝行李箱上之標籤,傳至操作員端做標籤之觀察,與排除無法準確辨識之問題,減少了機場在高峰時段期間可能出現的意外,同時提升運作效率。

參考文獻

[1] Take baggage tag encoding to another level with video coding: https://knowledge.beumergroup.com/airports/baggage-tag-video-coding-system