Feuille d'exercices n°5 Intégrales impropres

(du lundi 10 décembre 2012 au vendredi 25 janvier 2013)

Exercice 1

Déterminer la nature des intégrales suivantes où $(\alpha, \beta) \in \mathbb{R}^2$:

$$1. \int_0^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$

$$2. \int_{1}^{+\infty} e^{-\sqrt{t^2-t}} dt$$

3.
$$\int_{1}^{+\infty} \left(e - \left(1 + \frac{1}{t} \right)^{t} \right) dt$$

4.
$$\int_{1}^{+\infty} \left(\sqrt[3]{t^3 + 1} - \sqrt{t^2 + 1} \right) dt$$

5.
$$\int_0^{+\infty} \frac{\ln(1+t^2)}{t^2} dt$$

6.
$$\int_{1}^{+\infty} e^{\alpha t} t^{\beta} dt$$

$$7. \int_0^{+\infty} \frac{t^{\beta}}{1 + t^{\alpha}} \, \mathrm{d}t$$

Exercice 2

- 1. Montrer que l'intégrale $\int_0^1 \ln(x) dx$ est convergente.
- 2. En déduire la nature de l'intégrale $\int_0^1 \frac{\ln(x)}{1+x^2} dx$.
- 3. Soit $\alpha \in]0,1[$. Montrer par un changement de variable que

$$\int_{\alpha}^{1} \frac{\ln(x)}{1+x^{2}} dx = -\int_{1}^{\frac{1}{\alpha}} \frac{\ln(x)}{1+x^{2}} dx.$$

En déduire que l'intégrale $\int_1^{+\infty} \frac{\ln(x)}{1+x^2} dx$ converge.

4. Calcular
$$\int_0^{+\infty} \frac{\ln(x)}{1+x^2} \, \mathrm{d}x.$$

Exercice 3

Notons
$$I = \int_0^{+\infty} \frac{\ln(1+t^2)}{t^2} dt$$

- 1. a. Pour quelles valeurs de $\alpha \in \mathbb{R}$ a-t-on $\frac{\ln(1+t^2)}{t^2} = o\left(\frac{1}{t^{\alpha}}\right)$ quand $t \to +\infty$?
 - b. Montrer que I converge.
- 2. Notons pour tout $x \in \mathbb{R}^+$, $F_{\varepsilon}(x) = \int_{\varepsilon}^{x} \frac{\ln(1+t^2)}{t^2} dt$.
 - a. Soit $x \in \mathbb{R}^+$. Calculer $F_{\varepsilon}(x)$ par intégration par partie en fonction de x et ε .
 - b. En déduire pour tout $x \in \mathbb{R}^+$, $\int_0^x \frac{\ln(1+t^2)}{t^2} dt$ en fonction de x.
 - c. En déduire la valeur de I.

Exercice 4

Soient
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$
 et $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ où $(\alpha, x, y) \in \mathbb{R}^3$.

- 1. Étudier la nature de $\Gamma(\alpha)$ en fonction de α .
- 2. Former une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$.
- 3. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 4. Étudier la nature de $\beta(x,y)$ en fonction de x et y.
- 5. Montrer que $\beta(x,y) = \beta(y,x)$.
- 6. Montrer que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$.

Exercice 5

Pour $n \in \mathbb{N}^*$, on pose

$$I_n = \int_0^{+\infty} \frac{e^{nt}}{\left(1 + e^t\right)^{n+1}} \mathrm{d}t$$

- 1. Montrer que I_n converge pour tout $n \in \mathbb{N}^*$.
- 2. Montrer via une intégration par parties que

$$I_n = \frac{1}{n2^n} + \frac{n-1}{n}I_{n-1}.$$

- 3. On pose $J_n = nI_n$ où $n \in \mathbb{N}^*$.
 - a. Calculer J_1 .
 - b. Montrer que $I_n = \frac{1}{n} \left(1 \frac{1}{2^n} \right)$

Exercice 6

Considérons $I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$ et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

- 1. Montrer que I converge et que I = J.
- 2. Montrer que $I = \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$.
- 3. En déduire la valeur de I.

Exercice 7

- 1. Soit $f(x) = \frac{\sin(x)}{x^{\frac{3}{2}}}$.
 - a. Montrer que $\int_{1}^{+\infty} |f(x)| dx$ est convergente. En déduire que $\int_{1}^{+\infty} f(x) dx$ est convergente.
 - b. Montrer, en utilisant une intégration par parties, que $\int_1^{+\infty} \frac{\cos(x)}{\sqrt{x}} dx$ converge.
 - c. Par une démarche similaire, montrer que $\int_1^{+\infty} \frac{\cos(2x)}{x} dx$ est convergente.
- 2. Quelle est la nature de $\int_1^{+\infty} \frac{\cos^2(x)}{x} dx$?
- 3. Posons $g(x) = \frac{\cos(x)}{\sqrt{x}}$ et $h(x) = \frac{\cos(x)}{\sqrt{x}} + \frac{\cos^2(x)}{x}$.
 - a. Montrer que $\int_1^{+\infty} h(x) dx$ diverge.
 - b. Montrer que $g(x) \underset{x \to +\infty}{\sim} h(x)$.
 - c. $\int_{1}^{+\infty} g(x) dx$ et $\int_{1}^{+\infty} h(x) dx$ sont-elles de même nature?

Expliquer pourquoi le critère de comparaison ne s'applique pas.

Exercice 8

Le but de l'exercice est de calculer l'intégrale $I=\int_0^{+\infty}\frac{\mathrm{d}x}{(1+x^2)^2}$

- 1. Montrer que I est une intégrale impropre convergente.
- 2. A l'aide d'une intégration par parties, montrer que $\int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$
- 3. En déduire la valeur de I.
- 4. Retrouver la valeur de I en utilisant le changement de variable u=1/x.

Exercice 9

Soit $n \in \mathbb{N}$.

- 1. Déterminer la nature de $\int_0^{+\infty} \frac{n(1+nx)}{(1+x)^n} dx$
- 2. Déterminer $\lim_{n \to +\infty} \int_0^{+\infty} \frac{n(1+nx)}{(1+x)^n} dx$

(on pourra utiliser le changement de variable y = 1 + x).