Reinforcement Learning Basics

http://wangshusen.github.io/

Random Variable

 Random variable: unknown; its values depend on outcomes of random events.

Random Variable

- Random variable: unknown; its values depend on outcomes of random events.
- Uppercase letter X for a random variable.
- Lowercase letter x for an observed value.
- For example, I flipped a coin 4 times and observed:
 - $x_1 = 1$,
 - $x_2 = 1$,
 - $x_3 = 0$,
 - $x_4 = 1$.

Probability Density Function (PDF)

 PDF provides a relative likelihood that the value of the random variable would equal that sample.

Example: Gaussian distribution

- It is a continuous distribution.
- PDF:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Probability Density Function (PDF)

 PMF is a function that gives the probability that a discrete random variable is exactly equal to some value.

Example

• Discrete random variable: $X \in \{1, 3, 7\}$.

• PDF:

$$p(1) = 0.2,$$

 $p(3) = 0.5,$
 $p(7) = 0.3.$

Properties of PDF

- Random variable X is in the domain X.
- For continuous distributions,

$$\int_{\mathcal{X}} p(x) dx = 1.$$

For discrete distributions,

$$\sum_{x \in \mathcal{X}} p(x) = 1.$$

Expectation

- Random variable X is in the domain X.
- For continuous distributions, the expectation of f(X) is:

$$\mathbb{E}\left[f(X)\right] = \int_{\mathcal{X}} p(x) \cdot f(x) \, dx.$$

• For discrete distributions, the expectation of f(X) is:

$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} p(x) \cdot f(x).$$

Random Sampling

• There are 10 balls in the bin: 2 are red, 5 are green, and 3 are blue.

Terminologies

Terminology: state and action

state s (this frame)

Action $a \in \{\text{left, right, up}\}\$

policy π

• Policy function π : $(s, a) \mapsto [0,1]$:

$$\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$$

policy π

- $\pi(a \mid s)$ is the probability of taking action A = a given state s, e.g.,
- $\pi(\text{left } | s) = 0.2,$
- $\pi(\text{right}|s) = 0.1$,
- $\pi(\text{up} \mid s) = 0.7.$

policy π

- $\pi(a \mid s)$ is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

Random or deterministic policy?

Terminology: reward

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R = 0

state transition

state transition

- State transition can be random.
- Randomness is from the environment.

state transition

- State transition can be random.
- Randomness is from the environment.

state transition

- State transition can be random.
- Randomness is from the environment.
- $p(s'|s, \mathbf{a}) = \mathbb{P}(S' = s'|S = s, \mathbf{A} = \mathbf{a}).$

Agent-Environment Interaction

Agent-Environment Interaction

Two Sources of Randomness

Randomness in Actions

Given state s, the action can be random, e.g., .

- π("left"|s) = 0.2,
 π("right"|s) = 0.1,
 π("up"|s) = 0.7.

Randomness in States

- State transition can be random.
- The environment generates the new state S' by

$$S' \sim p(\cdot | s, a)$$
.

Two Sources of Randomness

The randomness in action is from the policy function:

$$A \sim \pi(\cdot \mid s)$$
.

• The randomness in state is from the state-transition function:

$$S' \sim p(\cdot \mid s, a)$$
.

Agent-Environment Interaction

Play game using AI

- Observe state s_t , select action $a_t \sim \pi(\cdot \mid s_t)$, and execute a_t .
- The environment gives new state s_{t+1} and reward r_t .

$$s_1 \longrightarrow a_1 \longrightarrow s_2$$
 r_1

Play game using AI

- Observe state s_t , select action $a_t \sim \pi(\cdot \mid s_t)$, and execute a_t .
- The environment gives new state s_{t+1} and reward r_t .

$$s_1 \longrightarrow a_1 \longrightarrow s_2 \longrightarrow a_2 \longrightarrow s_3 \longrightarrow a_3 \longrightarrow s_4 \longrightarrow \cdots$$
 $r_1 \longrightarrow r_2 \longrightarrow r_3$

Play game using AI

• (state, action, reward) trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_n, a_n, r_n.$$

• One episode is from the the beginning to the end (Mario wins or dies).

$$s_1 \longrightarrow a_1 \longrightarrow s_2 \longrightarrow a_2 \longrightarrow s_3 \longrightarrow a_3 \longrightarrow s_4 \longrightarrow \cdots$$
 $r_1 \longrightarrow r_2 \longrightarrow r_3$

Rewards and Returns

Return

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Return

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: At time t, are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$80 right now.
 - I will give you \$100 one year later.

Return

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Question: At time t, are R_t and R_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$80 right now.
 - I will give you \$100 one year later.
- Future reward is less valuable than present reward.
- R_{t+1} should be given less weight than R_t .

Discounted Returns

Definition: Return (aka cumulative future reward).

•
$$U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

Definition: Discounted return (aka cumulative discounted future reward).

• γ : discount factor (tuning hyper-parameter).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Discounted Returns

Definition: Discounted return (at time t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Randomness in Returns

Definition: Discounted return (at time t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

At time t, the rewards, R_t, \dots, R_n , are random, so the return U_t is random.

- Reward R_i depends on S_i and A_i .
- States can be random: $S_i \sim p(\cdot | s_{i-1}, a_{i-1})$.
- Actions can be random: $A_i \sim \pi(\cdot \mid s_i)$.
- If either S_i or A_i is random, then R_i is random.

Randomness in Returns

Definition: Discounted return (at time t).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

At time t, the rewards, R_t, \dots, R_n , are random, so the return U_t is random.

- Reward R_i depends on S_i and A_i .
- U_t depends on R_t , R_{t+1} , \cdots , R_n .
- $\rightarrow U_t$ depends on $S_t, A_t, S_{t+1}, A_{t+1}, \dots, S_n, A_n$.

Value Functions

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t].$$

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t \mid S_t = s_t, A_t = \mathbf{a}_t\right].$$

 U_t depends on states S_t, S_{t+1}, \dots, S_n and actions A_t, A_{t+1}, \dots, A_n .

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t \mid S_t = s_t, A_t = \mathbf{a}_t \right].$$

Regard s_t and a_t as observed values.

Regard S_{t+1}, \dots, S_n and A_{t+1}, \dots, A_n as random variables.

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t \mid S_t = s_t, A_t = \mathbf{a}_t\right].$$

- $S_{t+1} \sim p(\cdot | s_t, a_t),$ \vdots
- $S_n \sim p(\cdot | S_{n-1}, a_{n-1}).$

•
$$A_{t+1} \sim \pi(\cdot \mid s_{t+1}),$$

$$\vdots$$

•
$$A_n \sim \pi(\cdot \mid s_n)$$
.

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a_t}) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a_t}).$$

State-Value Function $V_{\pi}(s)$

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E} \left[U_t \mid S_t = s_t, \mathbf{A_t} = \mathbf{a_t} \right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$
 (Actions are discrete.)

Taken w.r.t. the action $A \sim \pi(\cdot | s_t)$.

State-Value Function $V_{\pi}(s)$

Definition: Discounted return.

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots + \gamma^{n-t} R_n$$
.

Definition: Action-value function.

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E} \left[U_t \mid S_t = s_t, A_t = \mathbf{a}_t \right].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$
. (Actions are discrete.)

•
$$V_{\pi}(s_t) = \mathbb{E}_A \left[Q_{\pi}(s_t, A) \right] = \int \pi(a|s_t) \cdot Q_{\pi}(s_t, a) da$$
. (Actions are continuous.)

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s, \mathbf{a}) = \mathbb{E}\left[U_t | S_t = s, A_t = \mathbf{a}\right].$
- Given policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.

Understanding the Value Functions

- Action-value function: $Q_{\pi}(s, a) = \mathbb{E}[U_t | S_t = s, A_t = a].$
- Given policy π , $Q_{\pi}(s, a)$ evaluates how good it is for an agent to pick action a while being in state s.

- State-value function: $V_{\pi}(s) = \mathbb{E}_{A} \left[Q_{\pi}(s, A) \right]$
- For fixed policy π , $V_{\pi}(s)$ evaluates how good the situation is in state s.
- $\mathbb{E}_{S}[V_{\pi}(S)]$ evaluates how good the policy π is.

Evaluating Reinforcement Learning

How does AI control the agent?

Suppose we have a good policy $\pi(a|s)$.

- Upon observe the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

Suppose we know the optimal action-value function $Q^*(s, a)$.

- Upon observe the state s_t ,
- choose the action that maximizes the value: $a_t = \operatorname{argmax}_a Q^*(s_t, a)$.

Terminologies

- Agent
- Environment
- State s
- Action *a*
- Reward *r*

Terminologies

- Agent
- Environment
- State s
- Action a
- Reward *r*
- Policy $\pi(a|s)$
- State transition p(s'|s, a)

Terminologies

- Agent
- Environment
- State s
- Action a
- Reward *r*
- Policy $\pi(a|s)$
- State transition p(s'|s,a)

Return and Value

• Return:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

Terminologies

- Agent
- Environment
- State s
- Action a
- Reward *r*
- Policy $\pi(a|s)$
- State transition p(s'|s,a)

Return and Value

• Return:

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}\left[U_t | s_t, \mathbf{a_t}\right].$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A} \sim \pi}[Q_{\pi}(s_t, \mathbf{A})].$$

We are going to study...

- 2. Value-based learning.
 - Deep Q network (DQN) for approximating $Q^*(s, a)$.
 - Learn the network parameters using temporal different (TD).
- 3. Policy-based learning.
 - Policy network for approximating $\pi(a|s)$.
 - Learn the network parameters using policy gradient.
- 4. Actor-critic method. (Policy network + value network.)
- 5. Example: AlphaGo

Thank You!