Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version: 0.1.20240606

https://github.com/P4ntomime/funktionen-mehrerer-variablen

Inhaltsverzeichnis

1

Ext	rema von Funktionen finden	2	1.3 Lokales oder Globales Extremum	2
1.1	Extrema von Funktionen zweier Variabeln finden	2		
1.2	Extrema von Funktionen mehrerer Variabeln finden	2	1.4 Extrema von Funktionen zweier Variabeln mit NB finden	- 2

1 Extrema von Funktionen finden

1.1 Extrema von Funktionen zweier Variabeln finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies f_x = 0 \\ f_y = 0 \implies x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$

$$f_{xy} = f_{yx} = \dots$$

$$f_{yy} = \dots$$

3. Determinante Δ der Hesse-Matrix H bestimmen:

$$\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - \left(f_{xy}(x_0; y_0)\right)^2$$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0; y_0) > 0$	\Longrightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

1.2 Extrema von Funktionen mehrerer Variabeln finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, \dots, t_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \cdots & f_{xt} \\ f_{yx} & f_{yy} & \cdots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \cdots & f_{tt} \end{pmatrix}$$

- Symmetrien beachier.
 Nicht doppelt rechnen!
 → f_{xt} = f_{tx}

$$\Rightarrow f_{xt} = f_{tx}$$

3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{cases}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

 $\det \left(\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} \right) = 0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix}$$

$$\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$$

$$\dots = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \dots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \dots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \dots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{pmatrix}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

- $\lambda_i < 0 \ \forall i \Leftrightarrow Alle \ \lambda_i \ sind \ negativ$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

1.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \le M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

grösstes lokales Maximum M_{\min} : kleinstes lokales Minimum

1.4 Extrema von Funktionen zweier Variabeln mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y) \stackrel{!}{=} 0$

Nebenbedingung: x + y = 1Standartform der Nebenbedingung: x + y - 1 = 0

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \mathcal{L}_\lambda \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$\mathcal{L}_{\lambda\lambda} = \dots$	8	$\mathcal{L}_{\lambda x} = \mathcal{L}_{x\lambda} = \dots$
$\mathcal{L}_{xx} = \dots$		$\mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = \dots$
$\mathcal{L}_{vv} = \dots$		$\mathcal{L}_{xy} = \mathcal{L}_{yx} = \dots$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}} = \begin{pmatrix} L_{\lambda\lambda}(x_0, y_0) & L_{\lambda x}(x_0, y_0) & L_{\lambda y}(x_0, y_0) \\ L_{x\lambda}(x_0, y_0) & L_{xx}(x_0, y_0) & L_{xy}(x_0, y_0) \\ L_{y\lambda}(x_0, y_0) & L_{yx}(x_0, y_0) & L_{yy}(x_0, y_0) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det\left(\overline{\mathbf{H}}\right) = \dots$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$\det\left(\overline{\mathbf{H}}\right) = 0$	\Longrightarrow	keine Aussage möglich