

Choose certainty.
Add value.

Report On

FCC and Industry Canada Testing of the Inmarsat Global Ltd IsatPhone Pro GMR2+ Satellite Phone

COMMERCIAL-IN-CONFIDENCE

FCC ID: YCTISATPHONE IC ID: 8944A-ISATPHONE

Document 75909459 Report 06 Issue 3

June 2010

TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC and Industry Canada Testing of the

Inmarsat Global Ltd IsatPhone Pro GMR2+ Satellite Phone

Document 75909459 Report 06 Issue 3

June 2010

PREPARED FOR Inmarsat Global Ltd

99 City Road London EC1Y 1AX

PREPARED BY

Bones

N Bennett

Senior Administrator

APPROVED BY

C Gould

Authorised Signatory

VI J Hardy

Authorised Signatory

DATED

14 June 2010

This report has been up-issued to Issue 3 to correct typographical errors.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47: Part 15C, RSS-210 and RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer();

R Hubbard

Stewn thatly S Hartley

S Bennett

CONTENTS

Section	1	Page No
1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Brief Summary of Results	
1.3	Declaration of Build Status	8
1.4	Product Information	
1.5	Test Conditions	
1.6	Deviations From the Standard	
1.7	Modification Record	11
2	TEST DETAILS	12
2.1	Conducted Emissions (AC Power Port)	13
2.2	Radiated Emissions (Enclosure Port)	
2.3	20dB Bandwidth	67
2.4	Maximum Peak Conducted Output Power	
2.5	EIRP Peak Power	
2.6	Spurious Emissions	
2.7	Band Edge Measurement	
2.8	Channel Dwell Time	
2.9 2.10	Channel Separation	
2.10	Number of Hopping Channels	
3	TEST EQUIPMENT USED	104
3.1	Test Equipment Used	105
3.2	Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	109
4.1	Accreditation, Disclaimers and Copyright	110

SECTION 1

REPORT SUMMARY

FCC and Industry Canada Testing of the Inmarsat Global Ltd IsatPhone Pro GMR2+ Satellite Phone

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Inmarsat Global Ltd, IsatPhone Pro GMR2+ Satellite Phone to the requirements of FCC CFR 47 Part 15C and RSS-210.

Objective To perform FCC and Industry Canada Testing to determine

the Equipment Under Test's (EUT's) compliance with the

Test Specification, for the series of tests carried out.

Manufacturer Inmarsat Global Ltd

Model Number(s) IsatPhone Pro GMR2+ Satellite Phone

Serial Number(s) IMEI: 004401510018183

IMEI: 004401510021666

Software Version V0.3.9 P6

Hardware Version 0321

Number of Samples Tested 2

Test Specification/Issue/Date FCC CFR 47 Part 15C: 2009

RSS-210: Issue 2: 2007 RSS-GEN: Issue 2: 2007

Incoming Release Declaration of Build Status

Date 02 June 2010

Disposal Held Pending Disposal

Reference Number Not Applicable
Date Not Applicable
Order Number 3100003117

Date 29 March 2010 Start of Test 19 April 2010

Finish of Test 17 May 2010

Name of Engineer(s) S C Hartley

A R Hubbard S Bennett

Related Document(s) ANSI C63.4: 2003

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of results for each configuration, in accordance with FCC CFR 47 Part 15C, RSS-210 and RSS-Gen is shown below.

Configura	ition 1 – Mob	ile Handset						
		Spec Clause	!					
Section	500	10	С	Test Description	Mode	Mod State	Result	Base Standard
	FCC	RSS-Gen	RSS-210	·				
					Bluetooth		N/A	
	15.207	7.2.2	-	Conducted Emissions (AC Power Port)	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
					Bluetooth	0	Pass	
2.2	15.247(d)	-	A8.5	Radiated Emissions (Enclosure Port)	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.3	(a)(1)	-	A8.1(a)	20dB Bandwidth	GPS Receive		N/A	
	(a)(1)				Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.4	(b)(3)	-	A8.4(4)	Maximum Peak Conducted Output Power	GPS Receive		N/A	
	(6)(3)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(b)(4)	-	A8.4(4)	EIRP Peak Power	GPS Receive		N/A	_ ANSI C63.4
	(5)(4)				Carrier Off		N/A	
					Bluetooth	0	Pass	
2.6	15.247 (d)	-	A8.5	Spurious Emissions	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
					Bluetooth		N/A	
	15.247 (d)	-	A8.5	Band Edge Measurements	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.8	(a)(1)(iii)	-	A8.1(d)	Channel Dwell Time	GPS Receive		N/A	
	(4)(1)(11)				Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.9	(a)(1)	-	A8.1(b)	Channel Separation	GPS Receive		N/A	
	(α)(1)				Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	_
2.10	(a)(1)(iii)	-	A8.1(d)	Number of Hopping Channels	GPS Receive		N/A	
	(4)(1)(11)				Carrier Off		N/A	

Configura	tion 2 - Mobi	le Handset + A	AC Charger					
		Spec Clause						
Section	FCC	FCC IC Test Description		Test Description	Mode		Result	Base Standard
	FCC	RSS-Gen	RSS-210	·				
					Bluetooth	0	Pass	
2.1	15.207	7.2.2	-	Conducted Emissions (AC Power Port)	GPS Receive		N/A	ANSI C63.4
					Carrier On	0	Pass	
					Bluetooth	0	Pass	
2.2	15.247(d)	-	A8.5	Radiated Emissions (Enclosure Port)	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(a)(1)	-	A8.1(a)	20dB Bandwidth	GPS Receive		N/A	
	(a)(1)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(b)(3)	-	A8.4(4)	Maximum Peak Conducted Output Power	GPS Receive		N/A	
	(0)(3)				Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.5	(b)(4)	-	A8.4(4)	EIRP Peak Power	GPS Receive		N/A	ANSI C63.4
	(6)(4)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(d)	-	A8.5	Spurious Emissions	GPS Receive		N/A	ANSI C63.4
	(u)				Carrier Off		N/A	
	15.247				Bluetooth	0	Pass	
2.7	(d)	-	A8.5	Band Edge Measurements	GPS Receive		N/A	ANSI C63.4
	(u)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(a)(1)(iii)	-	A8.1(d)	Channel Dwell Time	GPS Receive		N/A	
	(4)(1)(11)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(a)(1)	-	A8.1(b)	Channel Separation	GPS Receive		N/A	
	(α)(1)				Carrier Off		N/A	
	15.247				Bluetooth		N/A	
	(a)(1)(iii)	-	A8.1(d)	Number of Hopping Channels	GPS Receive		N/A	
	(a)(1)(iii)				Carrier Off		N/A	

Configura	tion 3 – Mob	ile Handset +	USB					
Spec Clause								
Section	500	10	C	Test Description	Mode	Mod State	Result	Base Standard
	FCC	RSS-Gen	RSS-210					
					Bluetooth		N/A	
2.1	15.207	7.2.2	-	Conducted Emissions (AC Power Port)	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
					Bluetooth	0	Pass	
2.2	15.247(d)	-	A8.5	Radiated Emissions (Enclosure Port)	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.1(a)	20dB Bandwidth	GPS Receive		N/A	
	(a)(1)				Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.4(4)	Maximum Peak Conducted Output Power	GPS Receive		N/A	
	(b)(3)		, ,		Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.4(4)	EIRP Peak Power	GPS Receive		N/A	ANSI C63.4
	(b)(4)		, ,		Carrier Off		N/A	
					Bluetooth		N/A	
	15.247 (d)	-	A8.5	Spurious Emissions	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
					Bluetooth		N/A	
	15.247 (d)	-	A8.5	Band Edge Measurements	GPS Receive		N/A	ANSI C63.4
					Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.1(d)	Channel Dwell Time	GPS Receive		N/A	
	(a)(1)(iii)				Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.1(b)	Channel Separation	GPS Receive		N/A	
	(a)(1)		, ,		Carrier Off		N/A	
	45.047				Bluetooth		N/A	
	15.247	-	A8.1(d)	Number of Hopping Channels	GPS Receive		N/A	
	(a)(1)(iii)			,, ,	Carrier Off		N/A	

N/A – Not Applicable

1.3 DECLARATION OF BUILD STATUS

	ı	MAIN EUT			
MANUFACTURING DESCRIPTION	Isat	Phone Pro GMR2+ Satellit	e Phone		
MANUFACTURER		arsat			
TYPE	Isat	Phone Pro			
PART NUMBER	NA				
	004	401510018092			
	004	401510018183			
	004	401510018167			
SERIAL NUMBER	004	401510018258 – HWID: 0	321 Rx Modification Fitted		
		401510018217 - HWID: 03	321 Rx Modification Fitted		
		401510021666			
		401510019736			
HARDWARE VERSION	032				
SOFTWARE VERSION		3.9_P6			
TRANSMITTER OPERATING RANGE		R 2+ 1626.5 – 1660.5 166	8 - 1675MHz		
		2402 – 2480 MHz			
DECENTED OPERATING DANCE	_	R2+ 1518 – 1559 MHz			
RECEIVER OPERATING RANGE		2402 – 2480 MHz S 1575.42MHz			
INTERMEDIATE FREQUENCIES					
EMISSION DESIGNATOR(S):	110.592 MHz				
(i.e. G1D, GXW)	G1D				
MODULATION TYPES:	GMR 2+ TX: GMSK				
(i.e. GMSK, QPSK)	Oivi	RX:OQPSK			
HIGHEST INTERNALLY GENERATED	005				
FREQUENCY	335	60MHz			
HIGHEST INTERNALLY GENERATED	311	8MHz			
FREQUENCY IN RECEIVE IDLE MODE					
OUTPUT POWER (W or dBm)		R2+ +33.5dBm			
	ВТ	+3.8dBm			
TECHNICAL DESCRIPTION (a brief description of the intended use and	CM	D2+ Catallita Dhana for Inc	narsat satellite network system		
operation)	Givi	KZ+ Satellite Friorie for illi	narsat satellite network system		
If unit is SRD being tested to ETS 301 489-3					
please state Class of Equipment as defined	3				
in Section 6.1					
ВАТ	TER'	//POWER SUPPLY			
MANUFACTURING DESCRIPTION		Li-Ion Battery	AC-Charger		
MANUFACTURER		VARTA	Tenwei		
TYPE		Li-lon 2600mAh	TAV01-00501200		
PART NUMBER		56626 701 099			
VOLTAGE		3.7V	5V		
SERIAL NUMBER		NA NA			
ANCILLARIES (if applicable)					
MANUFACTURING DESCRIPTION		Headset			
MANUFACTURER		TopDen			
TYPE		Mono headset with 2.5mm plug			
PART NUMBER		TS628D-168-4			
SERIAL NUMBER		NA			
•		•			

Signature	Held on File at TUV
Date	02 June 2010
D of B S Serial No	75909459/01
D of D o octial No	7 0000 10070 1

Note: This document has been prepared to enable manufacturers with no mechanism for producing their own Declaration of Build Status, to declare the build state of the equipment submitted for test.

No responsibility will be accepted by TÜV Product Service as to the accuracy of the information declared in this document by the manufacturer.

1.4 PRODUCT INFORMATION

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Inmarsat Global Ltd, IsatPhone Pro GMR2+ Satellite Phone as shown in the photograph below. A full technical description can be found in the manufacturer's documentation.

Equipment Under Test

1.4.2 Test Configuration

Configuration 1: Mobile Handset

The EUT was configured in accordance with FCC CFR 47 Part 15C, RSS-210 and RSS-GEN.

Configuration 2: Mobile Handset + AC Charger

The EUT was configured in accordance with FCC CFR 47 Part 15C, RSS-210 and RSS-GEN.

Configuration 3: Mobile Handset + USB

The EUT was configured in accordance with FCC CFR 47 Part 15C, RSS-210 and RSS-GEN.

1.4.3 EUT Cable / Port Identification

Port	Max Cable Length specified	Usage	Туре	Screened
AC Power	1.5m	AC Power Lead	2 core	No
USB Data	1.5m	Data Transfer	Multicore	No

1.4.4 Modes of Operation

Modes of operation of each EUT during testing were as follows:

Mode 1 - Bluetooth

Mode 3 - Carrier On

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure or test laboratories as appropriate.

The EUT was powered from a 3.7V internal battery or an AC power adaptor.

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory

Industry Canada Accreditation IC2932B-1 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.7 MODIFICATION RECORD

No modifications were made to the EUT during testing.

SECTION 2

TEST DETAILS

FCC and Industry Canada Testing of the Inmarsat Global Ltd IsatPhone Pro GMR2+ Satellite Phone

2.1 CONDUCTED EMISSIONS (AC POWER PORT)

2.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.207 RSS-GEN, Clause 7.2.2

2.1.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510018183 and IMEI 004401510018167

2.1.3 Date of Test and Modification State

23 April and 17 May 2010 - Modification State 0

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 2 - Mode 1

- Mode 3 (Tested with the Simple Hands Free device).

2.1.6 Environmental Conditions

23 April 2010 17 May 2010

Ambient Temperature 19°C 19°C Relative Humidity 27% 42%

Atmospheric Pressure 1013mbar 1021mbar

2.1.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Conducted Emission (AC Power Port).

The test results are shown below.

Configuration 2 - Mode 1

Top Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.151	39.5	66.0	-26.4	13.2	56.0	-42.7
0.172	30.1	64.9	-34.8	16.2	54.9	-38.7
0.345	38.4	59.1	-20.6	18.9	49.1	-30.1
0.361	27.5	58.7	-31.2	13.2	48.7	-35.5
0.376	41.1	58.4	-17.3	24.6	48.4	-23.8
2.610	27.8	56.0	-28.2	13.4	46.0	-32.6
2.645	28.4	56.0	-27.6	13.4	46.0	-32.6

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.175	29.0	64.7	-35.7	20.3	54.7	-34.4
0.344	36.0	59.1	-23.1	26.0	49.1	-23.1
0.369	38.8	58.5	-19.7	22.2	48.5	-26.3
0.374	39.3	58.4	-19.1	27.1	48.4	-21.3
1.815	26.5	56.0	-29.5	15.9	46.0	-30.1
2.611	28.1	56.0	-27.9	17.2	46.0	-28.8

Middle Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.152	35.1	65.9	-30.8	18.4	55.9	-37.5
0.363	42.3	58.7	-16.4	22.3	48.7	-26.3
0.541	31.7	56.0	-24.3	17.3	46.0	-28.7
0.565	29.6	56.0	-26.4	16.2	46.0	-29.8
0.915	28.5	56.0	-27.5	15.8	46.0	-30.2
1.720	28.0	56.0	-28.0	12.7	46.0	-33.3
2.184	27.9	56.0	-28.1	14.8	46.0	-31.2

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.150	32.6	66.0	-33.4	18.0	56.0	-38.0
0.550	35.9	56.0	-20.1	20.8	46.0	-25.2
0.725	34.5	56.0	-21.5	20.5	46.0	-25.5
0.769	33.9	56.0	-22.1	19.6	46.0	-26.4
0.946	33.7	56.0	-22.3	15.8	46.0	-30.2
2.346	30.1	56.0	-25.9	17.4	46.0	-28.6
2.467	28.7	56.0	-27.3	17.2	46.0	-28.8
2.522	28.8	56.0	-27.2	14.8	46.0	-31.2

Bottom Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.170	30.3	65.0	-34.6	16.4	55.0	-38.6
0.339	36.9	59.2	-22.3	18.2	49.2	-31.0
0.367	38.6	58.6	-19.9	21.4	48.6	-27.2
0.391	35.3	58.1	-22.7	16.0	48.1	-32.1
1.696	26.5	56.0	-29.5	10.8	46.0	-35.2
1.907	26.0	56.0	-30.0	11.6	46.0	-34.4
2.697	28.1	56.0	-27.9	12.7	46.0	-33.3

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	
0.172	28.9	64.9	-36.0	24.3	54.9	-30.5	
0.343	36.2	59.1	-22.9	24.4	49.1	-24.7	
0.369	38.3	58.5	-20.2	24.2	48.5	-24.4	
0.372	37.7	58.5	-20.7	27.0	48.5	-21.5	
0.614	27.8	56.0	-28.2	15.5	46.0	-30.5	
1.781	25.2	56.0	-30.8	14.8	46.0	-31.2	
2.670	26.1	56.0	-29.9	14.3	46.0	-31.7	

Configuration 2 - Mode 3

Top Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.176	38.3	64.7 -26.4		21.3 54.7		-33.3
0.284	39.7	60.7	-21.0	19.6	50.7	-31.1
1.253	33.6	56.0	-22.4	19.0	46.0	-27.0
2.282	33.8	56.0	-22.2	18.6	46.0	-27.4
2.457	35.3	56.0	-20.7	20.7	46.0	-25.3
4.428	31.3	56.0	-24.7	17.9	46.0	-28.1

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	
0.345	40.1	59.1	-19.0 23.7 49		49.1	-25.4	
0.482	39.1	56.3	-17.2	24.0	46.3	-22.3	
2.438	35.0	56.0	-21.0	22.3	46.0	-23.7	
4.264	32.9	56.0	-23.1	19.1	46.0	-26.9	
4.634	33.1	56.0	-22.9	18.2	46.0	-27.8	
5.188	32.5	60.0	-27.5	17.3	50.0	-32.7	

Middle Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.199	41.1	63.7	-22.5	19.1	53.7	-34.6
0.346	36.8	59.0	-22.3	18.4	49.0	-30.6
0.661	29.0	56.0	-27.0	14.9	46.0	-31.1
1.334	28.1	56.0	-27.9	15.2	46.0	-30.8
2.660	32.3	56.0	-23.7	18.3	46.0	-27.7
4.441	30.2	56.0	-25.8	16.1	46.0	-29.9

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	
0.175	39.4	64.7 -25.3		23.8	54.7	-30.9	
0.274	37.6	61.0	-23.4 21.9		51.0	-29.2	
0.650	35.0	56.0	-21.0 20.1		46.0	-25.9	
2.365	33.2 56.0		-22.8	21.6	46.0	-24.4	
4.304	31.5	56.0	-24.5	17.8	46.0	-28.2	
4.917	30.7	56.0	-25.3	16.2	46.0	-29.8	

Bottom Channel

Live Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.282	35.8	60.8	-24.9	17.7	50.8	-33.1
0.457	31.8	56.8	-25.0	16.3	46.8	-30.4
0.768	34.0	56.0	-22.0	17.1	46.0	-28.9
0.852	32.7	56.0	-23.3	17.3	46.0	-28.7
2.521	33.6	56.0	-22.4	19.3	46.0	-26.7
4.244	32.0	56.0	-24.0	18.1	46.0	-27.9

Neutral Line

Frequency (MHz)	QP Level (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dBuV/m)	AV Level (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.479	38.9	56.3	-17.4 23.1		46.3	-23.2
0.656	33.1	56.0	-22.9	19.7	46.0	-26.3
0.972	34.8	56.0	-21.2	18.5	46.0	-27.5
2.443	34.5	56.0	-21.5	22.2	46.0	-23.8
4.398	33.4	56.0	-22.6	18.7	46.0	-27.3
4.630	32.8	56.0	-23.2	17.8	46.0	-28.2

2.2 RADIATED EMISSIONS (ENCLOSURE PORT)

2.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d) RSS-210, Clause A8.5

2.2.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510018183 and IMEI 004401510018167

2.2.3 Date of Test and Modification State

19, 20 and 21 April 2010 - Modification State 0

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT, the list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Through this process of profiling the EUT, it was determined that the worst case was Configuration 2 (Mobile Handset + AC Charger), therefore a full sweep of plots for Top, Middle and Bottom Channels has been presented. For Configurations 1 and 3 a plot showing 30MHz to 1GHz for the Top and Bottom Channels plus a full sweep of plots for the Middle Channel have also been presented in this document to support this judgement.

Emissions within the restricted bands defined in 15.205 were measured in accordance with 15.209. Emissions measured below 1 GHz employed a peak detector unless the limit was exceeded in which case, a quasi peak detector was used, in accordance with 15.35(a). Emissions measured above 1 GHz employed an average detector as defined in 15.35(b). The peak level of the emission was also measured to ensure that a difference of 20 dB from the average level was not exceeded, as defined in 15.35(b). Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector. Other emissions from 30 MHz to 25 GHz excluding the restricted bands were measured using a peak detector.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1 Configuration 2 - Mode 1 Configuration 3 - Mode 1

2.2.6 Environmental Conditions

19 April 2010	20 April 2010	21 April 2010
---------------	---------------	---------------

Ambient Temperature 19°C 21.5°C 19°C Relative Humidity 31% 25% 32%

Atmospheric Pressure 1013mbar 1015mbar 1018mbar

2.2.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Radiated Emissions (Enclosure Port).

The test results are shown below.

Configuration 1 - Mode 1

Top Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.290	30.3	32.7	40.0	100	-9.7	-67.3	356	1.00	Vertical
41.202	24.9	17.6	40.0	100	-15.1	-82.4	82	1.00	Vertical
88.501	24.0	15.8	43.5	150	-19.5	-134.2	283	3.03	Horizontal
221.007	25.1	18.0	46.0	200	-20.9	-182.0	4	1.00	Vertical
460.627	34.1	50.7	46.0	200	-11.9	-149.3	46	3.27	Horizontal
887.266	35.4	58.9	46.0	200	-10.6	-141.1	9	1.00	Vertical

Middle Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.097	30.5	33.5	40.0	100	-9.5	-66.5	47	1.00	Horizontal
129.379	21.2	11.5	43.5	150	-22.3	-138.5	358	1.00	Horizontal
309.360	24.2	16.2	46.0	200	-21.8	-183.8	128	1.78	Vertical
460.632	35.1	56.9	46.0	200	-10.9	-143.1	6	1.00	Vertical
762.580	34.7	54.3	46.0	200	-11.3	-145.7	223	1.78	Horizontal
892.989	35.4	58.9	46.0	200	-10.6	-141.1	273	1.00	Horizontal

1GHz to 3GHz

Vertical

Date: 26.MAY.2010 00:23:43

Horizontal

Date: 26.MAY.2010 00:25:08

3GHz to 5.5GHz

Vertical

Date: 26.MAY.2010 01:33:35

Horizontal

Date: 26.MAY.2010 01:24:12

5.5GHz to 8GHz

Vertical

Date: 26.MAY.2010 01:32:22

Horizontal

Date: 26.MAY.2010 01:25:16

8GHz to 11GHz

Vertical

Date: 26.MAY.2010 01:54:11

Horizontal

Date: 26.MAY.2010 01:59:28

11GHz to 14GHz

Vertical

Date: 26.MAY.2010 01:55:27

Horizontal

Date: 26.MAY.2010 02:01:17

14GHz to 18GHz

Vertical

Date: 26.MAY.2010 01:56:34

Horizontal

Date: 26.MAY.2010 02:02:22

18GHz to 25GHz

Vertical

Date: 26.MAY.2010 02:18:17

Horizontal

Date: 26.MAY.2010 02:26:54

Bottom Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
31.844	29.5	29.9	40.0	100	-10.5	-70.1	293	1.40	Horizontal
217.006	24.6	17.0	46.0	200	-21.4	-183.0	189	1.02	Vertical
292.490	24.8	17.4	46.0	200	-21.2	-182.6	276	1.00	Horizontal
460.623	34.4	52.5	46.0	200	-11.6	-147.5	21	1.00	Vertical
857.168	34.7	54.3	46.0	200	-11.3	-145.7	250	1.21	Vertical
985.271	36.1	63.8	54.0	200	-17.9	-136.2	5	1.08	Horizontal

Configuration 2 - Mode 1

Top Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
31.740	29.8	30.9	40.0	100	-10.2	-69.1	137	1.00	Vertical
33.768	29.1	28.5	40.0	100	-10.9	-71.5	100	1.00	Vertical
34.246	29.0	28.1	40.0	100	-11.0	-71.9	83	1.00	Vertical
699.998	39.3	92.2	46.0	200	-6.7	-107.8	60	1.00	Horizontal
699.998	40.8	109.6	46.0	200	-5.2	-90.4	197	1.37	Vertical
922.657	38.8	87.1	46.0	200	-7.2	-112.9	21	1.00	Vertical
960.005	39.5	94.4	54.0	500	-14.5	-405.6	357	1.49	Vertical

1GHz to 3GHz

Vertical

Date: 19.APR.2010 18:37:49

Horizontal

Date: 19.APR.2010 18:43:01

3GHz to 5.5GHz

Vertical

Date: 19.APR.2010 20:51:33

Horizontal

Date: 19.APR.2010 20:47:58

5.5GHz to 8GHz

Vertical

Date: 19.APR.2010 20:50:31

Horizontal

Date: 19.APR.2010 20:49:03

8GHz to 11GHz

Vertical

Date: 19.APR.2010 21:48:18

Horizontal

Date: 19.APR.2010 21:54:35

11GHz to 14GHz

Vertical

Date: 19.APR.2010 21:51:22

Horizontal

Date: 19.APR.2010 21:56:36

14GHz to 18GHz

Vertical

Date: 19.APR.2010 21:52:46

Horizontal

Date: 19.APR.2010 21:57:29

18GHz to 25GHz

Vertical

Date: 19.APR.2010 23:28:27

Horizontal

Date: 19.APR.2010 23:43:20

Middle Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.035	30.6	33.9	40.0	100	-9.4	-66.1	69	1.00	Vertical
31.120	30.1	32.0	40.0	100	-9.9	-68.0	66	1.00	Vertical
33.769	29.1	28.5	40.0	100	-10.9	-71.5	304	1.00	Vertical
700.000	40.6	107.2	46.0	200	-5.4	-92.8	250	1.00	Horizontal
700.000	40.6	107.2	46.0	200	-5.4	-92.8	179	1.71	Vertical
922.669	37.5	75.0	46.0	200	-8.5	-125.0	169	1.00	Vertical
950.000	38.6	85.1	46.0	200	-7.4	-114.9	360	1.00	Vertical
959.999	40.1	101.2	46.0	200	-5.9	-98.8	259	1.00	Horizontal
997.461	39.6	95.5	54.0	500	-14.4	-404.5	358	1.00	Vertical

1GHz to 3GHz

Vertical

Date: 19.APR.2010 19:21:15

Horizontal

Date: 19.APR.2010 19:19:59

3GHz to 5.5GHz

Vertical

Date: 19.APR.2010 20:08:23

Horizontal

Date: 19.APR.2010 20:21:41

5.5GHz to 8GHz

Vertical

Date: 19.APR.2010 20:12:50

Horizontal

Date: 19.APR.2010 20:23:37

8GHz to 11GHz

Vertical

Date: 19.APR.2010 22:07:52

Horizontal

Date: 19.APR.2010 22:29:20

11GHz to 14GHz

Vertical

Date: 19.APR.2010 22:11:14

Horizontal

Date: 19.APR.2010 22:30:47

14GHz to 18GHz

Vertical

Date: 19.APR.2010 22:27:18

Horizontal

Date: 19.APR.2010 22:31:42

18GHz to 25GHz

Vertical

Date: 19.APR.2010 23:49:07

Horizontal

Date: 19.APR.2010 23:47:05

Bottom Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.037	30.6	33.9	40.0	100	-9.4	-66.1	64	1.02	Vertical
31.074	30.0	31.6	40.0	100	-10.0	-68.4	96	1.15	Vertical
31.535	29.9	31.3	40.0	100	-10.1	-68.7	6	1.00	Vertical
700.000	40.5	105.9	46.0	200	-5.5	-94.1	306	1.44	Horizontal
700.000	40.7	108.4	46.0	200	-5.3	-91.6	174	1.18	Vertical
922.655	39.0	89.1	46.0	200	-7.0	-110.9	19	1.15	Vertical
959.996	38.3	82.2	46.0	200	-7.7	-117.8	277	1.00	Horizontal

1GHz to 3GHz

Vertical

Date: 19.APR.2010 19:23:22

Horizontal

Date: 19.APR.2010 19:24:45

3GHz to 5.5GHz

Vertical

Date: 19.APR.2010 19:54:46

Horizontal

Date: 19.APR.2010 19:56:11

5.5GHz to 8GHz

Vertical

Date: 19.APR.2010 19:58:37

Horizontal

Date: 19.APR.2010 19:57:06

8GHz to 11GHz

Vertical

Date: 19.APR.2010 22:39:39

Horizontal

Date: 19.APR.2010 22:44:08

11GHz to 14GHz

Vertical

Date: 19.APR.2010 22:41:02

Horizontal

Date: 19.APR.2010 22:48:47

14GHz to 18GHz

Vertical

Date: 19.APR.2010 22:42:17

Horizontal

Date: 19.APR.2010 22:50:47

18GHz to 25GHz

Vertical

Date: 19.APR.2010 23:56:28

Horizontal

Date: 19.APR.2010 23:58:04

Configuration 3 - Mode 1

Top Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.873	30.0	31.6	40.0	100	-10.0	-68.4	270	1.00	Vertical
32.716	29.2	28.8	40.0	100	-10.8	-71.2	90	1.00	Vertical
822.733	34.7	54.3	46.0	200	-11.3	-145.7	90	1.00	Horizontal
830.687	34.8	55.0	46.0	200	-11.2	-145.0	90	1.00	Vertical
930.063	35.4	58.9	46.0	200	-10.6	-141.1	90	1.00	Horizontal
981.570	36.2	64.6	54.0	501	-17.8	-436.4	90	1.00	Horizontal

Middle Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.291	30.4	33.1	40.0	100	-9.6	-66.9	270	1.00	Vertical
30.873	30.1	32.0	40.0	100	-9.9	-68.0	180	1.00	Horizontal
699.979	33.2	45.7	46.0	200	-12.8	-154.3	270	1.00	Horizontal
845.334	34.8	55.0	46.0	200	-11.2	-145.0	180	1.00	Horizontal
941.121	35.5	59.6	46.0	200	-10.5	-140.4	90	1.00	Vertical
990.931	36.3	65.3	54.0	501	-17.7	-434.7	180	1.00	Vertical

1GHz to 4GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 12:27:43

4GHz to 8GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 12:14:53

8GHz to 11GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 11:56:13

11GHz to 14GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 11:38:55

14GHz to 18GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 11:32:09

18GHz to 25GHz

Combined Vertical and Horizontal Plot

Date: 26.MAY.2010 11:00:12

Bottom Channel

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (deg)	Height (m)	Polarity
30.327	30.4	33.1	40.0	100	-9.6	-66.9	17	2.60	Horizontal
31.862	29.6	30.2	40.0	100	-10.4	-69.8	8	1.00	Horizontal
697.761	33.1	45.2	46.0	200	-12.9	-154.8	48	1.00	Horizontal
811.007	34.7	54.3	46.0	200	-11.3	-145.7	299	1.00	Horizontal
933.942	35.4	58.9	46.0	200	-10.6	-141.1	237	1.00	Horizontal
937.182	35.4	58.9	46.0	200	-10.6	-141.1	250	1.00	Horizontal

2.3 20dB BANDWIDTH

2.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1) RSS-210, Clause A8.2 (1)

2.3.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.3.3 Date of Test and Modification State

07 May 2010 - Modification State 0

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15 and RSS-210.

The EUT was transmitted at maximum power at all data rates via a cable to the Spectrum Analyser. The Analyser settings were adjusted to display the resultant trace on screen. The peak point of the trace was measured and the markers positioned to give the -20dBc points of the displayed spectrum.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.3.6 Environmental Conditions

07 May 2010

Ambient Temperature 24°C Relative Humidity 27%

2.3.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for 20dB Bandwidth.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

Frequency (MHz)	Data Rate (Mbps)	20dB Bandwidth (kHz)		
	DH1	1052.307		
2402	DH3	1055.769		
	DH5	1052.307		
	DH1	1053.692		
2441	DH3	1052.307		
	DH5	1052.307		
	DH1	1055.769		
2480	DH3	1055.769		
	DH5	1055.769		

Limit Clause

15.247 (a)(1) for FCC and A8.1 (b) for RSS-210

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The channel separation is 1 MHz, therefore the 20 dB bandwidth is greater than 1 MHz.

Top Channel

<u>DH1</u>

OBW1 Date: 7.MAY.2010 10:15:00

<u>DH3</u>

OBW1 Date: 7.MAY.2010 10:09:33

<u>DH5</u>

OBW1 Date: 7.MAY.2010 10:05:50

Middle Channel

<u>DH1</u>

OBW1 Date: 7.MAY.2010 09:52:20

<u>DH3</u>

OBW1 Date: 7.MAY.2010 09:56:29

<u>DH5</u>

OBW1 Date: 7.MAY.2010 10:00:12

Bottom Channel

<u>DH1</u>

OBW1 Date: 7.MAY.2010 09:47:57

<u>DH3</u>

OBW1 Date: 7.MAY.2010 09:44:45

<u>DH5</u>

OBW1 Date: 7.MAY.2010 09:41:02

2.4 MAXIMUM PEAK CONDUCTED OUTPUT POWER

2.4.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(3) RSS-210, Clause A8.4 (4)

2.4.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.4.3 Date of Test and Modification State

12 May 2010 - Modification State 0

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15 and RSS-210.

The EUT was transmitted at maximum power at all data rates via a cable to the Peak Power Analyser. The auto scale function was used to display the resultant trace on the screen. The path loss was entered as a reference level offset and the peak measurement was recorded.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.4.6 Environmental Conditions

12 May 2010

Ambient Temperature 22°C Relative Humidity 25%

2.4.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Maximum Peak Conducted Output Power.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

Frequency (MHz)	Maximum Peak Conducted Output Power						
	dBm			mW			
	DH1	DH3	DH5	DH1	DH3	DH5	
2402	1.85	1.82	1.77	1.53	1.52	1.50	
2441	2.55	2.65	2.55	1.80	1.84	1.80	
2480	-0.60	-0.76	-0.58	0.87	0.84	0.87	

Limit Clause

15.247 (b)(1) for FCC

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

A8.4 (2) for RSS-210

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W. Except as provided in Section A8.4(5), the e.i.r.p shall not exceed 4W

2.5 EIRP PEAK POWER

2.5.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (b)(3) RSS-210, Clause A8.4(4)

2.5.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone: IMEI 004401510018183

2.5.3 Date of Test and Modification State

20 April 2010 - Modification State 0

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

Measurements of the fundamental from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The fundamental frequency was maximised by adjusting the antenna height, antenna polarisation and turntable azimuth. A peak detector was used with the trace set to max hold. The maximum result was recorded.

The EUT was then removed from the chamber and replaced with a substitution antenna. Using a signal generator the level was adjusted to achieve the same value on the measuring instrument as previously recorded with the EUT. The final result was determined by a calculation using the signal generator level, antenna gain and cable loss.

The measurements were performed at a 3m distance unless otherwise stated.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 2 - Mode 1

2.5.6 Environmental Conditions

20 April 2010

Ambient Temperature 21°C Relative Humidity 32%

2.5.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for EIRP Peak Power.

The test results are shown below.

Configuration 2 - Mode 1

Frequency (MHz)	Maximum Peak EIRP				
	DH5				
	dBm mW				
2480 (Top Channel)	8.4	6.91			
2441 (Middle Channel)	9.1	8.12			
2402 (Bottom Channel)	9.3	8.51			

Top Channel

Vertical

Date: 20.APR.2010 11:27:42

Date: 20.APR.2010 11:23:07

Middle Channel

Vertical

Date: 20.APR.2010 12:09:32

Date: 20.APR.2010 12:15:31

Bottom Channel

Vertical

Date: 20.APR.2010 10:16:11

Date: 20.APR.2010 10:25:59

Limit Clause

Clause 15.247 (b)(3) for FCC Part 15C

The EIRP peak power shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

A8.4(4) for RSS-210

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W. Except as provided in Section A8.4(5), the e.i.r.p shall not exceed 4W

2.6 SPURIOUS EMISSIONS

2.6.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d) RSS-210, Clause A8.5

2.6.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.6.3 Date of Test and Modification State

07 May 2010 - Modification State 0

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

In accordance with Part 15.247(c), the Spurious Conducted Emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 9 kHz to 25 GHz. The EUT was set to transmit on full power and frequency hopping on all channels. The resolution and video bandwidths were set to 100 kHz and 300 kHz respectively, in accordance with Part 15.247. The spectrum analyser detector was set to Max Hold.

With the EUT transmitting at maximum power, the Spectrum Analyser was set to Max Hold and the fundamental peak measured in a RBW and VBW of 100 kHz. This level was used to determine the limit line as displayed on the plots of -20dBc.

The maximum path loss across each measurement band was used as the reference level offset to ensure worst case results.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.6.6 Environmental Conditions

07 May 2010

Ambient Temperature 25°C Relative Humidity 23%

2.6.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Spurious Emissions.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

DH1

9kHz to 4GHz

Date: 7.MAY.2010 13:58:13

4GHz to 12GHz

OBW1 Date: 7.MAY.2010 14:17:21

12GHz to 18GHz

Date: 7.MAY.2010 14:28:17

OBW1 Date: 7.MAY.2010 14:45:44

<u>DH3</u>

9kHz to 4GHz

OBW1 Date: 7.MAY.2010 14:02:42

4GHz to 12GHz

OBW1 Date: 7.MAY.2010 14:19:59

12GHz to 18GHz

Date: 7.MAY.2010 14:32:26

18GHz to 25GHz

OBW1 Date: 7.MAY.2010 14:49:47

<u>DH5</u>

9kHz to 4GHz

OBW1 Date: 7.MAY.2010 14:08:54

4GHz to 12GHz

OBW1 Date: 7.MAY.2010 14:22:45

12GHz to 18GHz

Date: 7.MAY.2010 14:35:08

18GHz to 25GHz

OBW1 Date: 7.MAY.2010 14:53:47

Limit Clause

15.247 (d) for FCC and A8.5 for RSS-210

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval the attenuation required shall be 30 dB instead of 20 dB.

2.7 BAND EDGE MEASUREMENT

2.7.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (d) RSS-210, Clause A8.5

2.7.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone: IMEI 004401510018183

2.7.3 Date of Test and Modification State

20 April 2010 - Modification State 0

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of ANSI C63.4.

The band edge measurements were performed in accordance with ANSI C63.10 clause 6.9.3. The results were analysed to ensure compliance with the restricted bands. The EUT was set to the lowest and highest operating frequencies.

The measurements were performed at a 3m distance unless otherwise stated.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 2 - Mode 1

2.7.6 Environmental Conditions

20 April 2010

Ambient Temperature 21°C Relative Humidity 32%

2.7.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Band Edge Measurement.

The test results are shown below.

Configuration 2 - Mode 1

Frequency (MHz)			Height Azimuth	Field Strength				
		(cm)	(degree)	Average		Peak		
				dBµV/m	μV/m	dBµV/m	μV/m	
2480.0	Vertical	100	215	48.6	269.2	60.4	1047.1	
(Top Channel)	Horizontal	100	330	50.6	338.8	62.2	1288.2	
2390.0	Vertical	100	0	47.0	223.8	58.3	822.2	
(Bottom Channel)	Horizontal	100	331	47.3	231.7	58.0	794.3	

Top Channel

Vertical

Date: 20.APR.2010 11:36:17

Date: 20.APR.2010 11:19:16

Bottom Channel

Vertical

Date: 20.APR.2010 10:07:43

Date: 20.APR.2010 10:35:00

Limit Clause

15.247 (d) for FCC and A8.5 for RSS-210

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Frequency	Limit
30 MHz to 25 GHz excluding restricted bands	-20 dBc

2.8 CHANNEL DWELL TIME

2.8.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)(iii) RSS-210, Clause A8.1 (d)

2.8.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.8.3 Date of Test and Modification State

12 May 2010 - Modification State 0

2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15 and RSS-210.

DH1

The Bluetooth system hops at a rate of 1600 times per second. Thus, this equates to 1600 timeslots in 1 second.

The DH1 data rate operates on a Transmit on 1 timeslot and Receive on 1 timeslot basis. Thus, in 1 second, there are 800 Transmit timeslots and 800 Receive timeslots.

Thus:

1 Timeslot =
$$\frac{1}{1600}$$
 = 625 μ s

In 1 transmit timeslot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

DH1 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle

So, with 800 Tx and 800 Rx timelsots, the transmitter is on for $800 \times 405 \mu s = 0.324$ seconds.

$$\begin{array}{ccccc} \therefore & \underline{\text{Total Tx Time On}} & = & \underline{0.324} & = & 4.05\text{ms} \\ & \text{No of Channels} & & 80 & & & \end{array}$$

So, in 32 seconds, the transmitter dwell time per channel is:

$$32 \times 4.05 \text{ms} = 0.1296 \text{ seconds}$$

DH3

With data rate DH3, the data payload is higher and can use up to 3 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 3 slots, (ie. no receive slot in-between the 3 transmit slots). The 220 μ s off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 3 transmit timeslots. 2 are 625 μ s long and the final slot is transmitting for 405 μ s.

The DH3 data rate operates on a Transmit on 3 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1200 Transmit timeslots and 400 Receive timeslots.

Thus:

1 Timeslot =
$$\frac{1}{1600}$$
 = 625 μ s

The first 2 Transmit timeslots are transmitting for the complete $625\mu s$. In the third transmit slot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

<u>DH3 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

$$Tx$$
 (2 x 625µs) + (1 x 405µs) = 1.655ms

So:

 $800 \times 625 \mu s = 0.5 \text{ seconds}$ $400 \times 405 \mu s = 0.162 \text{ seconds}$

Thus: 0.5 + 0.162 = 0.662 seconds

So, in 32 seconds, the transmitter dwell time per channel is:

$$32 \times 8.275 \text{ms} = 0.2648 \text{ seconds}$$

DH5

With data rate DH5, the data payload is higher and can use up to 5 timeslots. When more than one timeslot is used, the frequency does not hop and transmission is continuous on all 5 slots, (ie. no receive slot in-between the 5 transmit slots). The $220\mu s$ off time for synthesizer retuning at the end of a slot is only used on the final slot. Thus, for one cycle, there are 5 transmit timeslots. 4 are $625\mu s$ long and the final slot is transmitting for $405\mu s$.

The DH5 data rate operates on a Transmit on 5 timeslots and Receives on 1 timeslot basis, (assuming maximum data payload). The frequency-hopping rate is the same. Thus, in 1 second, there are 1333.3 Transmit timeslots and 266.7 Receive timeslots.

Thus:

1 Timeslot =
$$\frac{1}{1600}$$
 = 625 μ s

The first 4 Transmit timeslots are transmitting for the complete $625\mu s$. In the fifth transmit slot, the transmit on time is only $405\mu s$. $220\mu s$ is reserved as off time for the synthesizer to re-tune ready for the next transmit frequency. The following timeslot is a receive slot. This process continues assuming the data rate remains the same.

<u>DH5 Timeslot Arrangement Showing One Complete Transmit and Receive Cycle, (Maximum Payload)</u>

Thus, the transmitter for one complete transmit and receive cycle would be on for:

$$Tx (2 \times 625 \mu s) + (1 \times 405 \mu s) = 2.905 ms$$

So:

 $1066.7 \times 625 \mu s = 0.666 \text{ seconds}$ $266.7 \times 405 \mu s = 0.108 \text{ seconds}$

Thus: 0.666 + 0.108 = 0.774 seconds

So, in 32 seconds, the transmitter dwell time per channel is:

 $32 \times 9.675 \text{ms} = 0.31 \text{ seconds}$

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.8.6 Environmental Conditions

12 May 2010

Ambient Temperature 22°C Relative Humidity 25%

2.8.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Channel Dwell Time.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

DH1

OBW1 Date: 12.MAY.2010 09:24:25

<u>DH3</u>

OBW1 Date: 12.MAY.2010 09:19:24

<u>DH5</u>

OBW1 Date: 12.MAY.2010 09:20:56

Limit Clause

15.247 (a)(1)(iii) for FCC and A8.1(d) for RSS-210

Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

2.9 CHANNEL SEPARATION

2.9.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1) RSS-210, Clause A8.1 (b)

2.9.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.9.3 Date of Test and Modification State

07 May 2010 - Modification State 0

2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15 and RSS-210.

The EUT was transmitted at maximum power into a Spectrum Analyser. The trace was set to Max Hold to store several adjacent channels on screen. Using the marker delta function, the markers were positioned to show the separation between adjacent channels.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.9.6 Environmental Conditions

07 May 2010

Ambient Temperature 24°C Relative Humidity 26%

2.9.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Channel Separation.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

1.004 MHz

OBW1 Date: 7.MAY.2010 11:42:50

Limit Clause

15.247 (a)(1) for FCC and A8.1(b) for RSS-210

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W.

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

2.10 NUMBER OF HOPPING CHANNELS

2.10.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.247 (a)(1)(iii) RSS-210, Clause A8.1 (d)

2.10.2 Equipment Under Test

IsatPhone Pro GMR2+ Satellite Phone, IMEI: 004401510021666

2.10.3 Date of Test and Modification State

07 May 2010 - Modification State 0

2.10.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.10.5 Test Method and Operating Modes

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15 and RSS-210.

The EUT was connected to a Spectrum Analyser via a cable. The EUT was set to transmit on maximum power and hopping on all channels. The span was adjusted to show the individual channels. To reasonably display the number of channels, the occupied band was split into four traces. The display trace was set to Max Hold and the plots recorded.

The test was performed with the EUT in the following configurations and modes of operation:

Configuration 1 - Mode 1

2.10.6 Environmental Conditions

07 May 2010

Ambient Temperature 24°C Relative Humidity 26%

2.10.7 Test Results

For the period of test the EUT met the requirements of FCC CFR 47 Part 15C and RSS-210 for Number of Hopping Channels.

The test results are shown below.

Configuration 1 - Mode 1

3.7 V DC Supply

0 to 79

OBW1 Date: 7.MAY.2010 11:11:39

Limit

15.247 (a)(1)(iii) for FCC and A8.1(d) for RSS-210

≥ 15 channels

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - Conducted E	missions		•		
3 Phase Artificial Mains Network (LISN)	Rohde & Schwarz	ESH2-Z5	16	12	11-Mar-2011
LISN	Rohde & Schwarz	ESH2-Z5	17	12	6-Jun-2010
LISN (1 Phase)	Chase	MN 2050	336	12	25-Mar-2011
Test Receiver	Rohde & Schwarz	ESIB40	1006	6	26-May-2010
Transient Limiter	Hewlett Packard	11947A	1032	12	22-Jun-2010
Screened Room (1)	Rainford	Rainford	1541	-	TU
Screened Room (5)	Rainford	Rainford	1545	36	11-Feb-2011
Test Receiver	Rohde & Schwarz	ESIB40	1934	12	28-Sep-2010
Transient Limiter	Hewlett Packard	11947A	2377	12	16-Dec-2010
Transient Limiter	Hewlett Packard	11947A	2378	12	22-Jun-2010
GPS/SBAS Simulator	Spirent	STR4500	3056	-	TU
Compliance 3 Emissions	Schaffner	C3e Software	3274	-	N/A -
		V.4.00.00			Software
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	1-Sep-2010
Section 2.2, 2.5 & 2.7 - Rac	liated Emissions, EIR	P Power and Band	Edge		
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	234	12	12-Oct-2010
Antenna (Double Ridge Guide, 1GHz-18GHz)	EMCO	3115	235	12	12-Oct-2010
Dual Power Supply Unit	Thurlby	PL320	288	-	TU
Antenna (Double Ridge Guide)	Q-Par Angus Ltd	QSH 180K	1511	24	17-Jul-2010
Pre-Amplifier	Phase One	PS04-0085	1532	12	16-Sep-2010
Pre-Amplifier	Phase One	PS04-0086	1533	12	17-Sep-2010
Pre-Amplifier	Phase One	PSO4-0087	1534	12	22-Sep-2010
Screened Room (5)	Rainford	Rainford	1545	36	11-Feb-2011
Mast Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Turntable/Mast Controller	EMCO	2090	1607	-	TU
Turntable/Mast Controller	EMCO	2090	1610	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	4-Dec-2011
Peak Power Analyser	Hewlett Packard	8990A	107	12	10-Feb-2011
Comb Generator	Schaffner	RSG1000	3034	-	TU
GPS/SBAS Simulator	Spirent	STR4500	3056	-	TU
Antenna (DRG Horn)	ETS-LINDGREN	3115	3125	12	1-May-2010
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	3171	12	4-Aug-2010
Compliance 3 Emissions	Schaffner	C3e Software V.4.00.00	3274	-	N/A - Software
High Pass Filter (3GHz)	RLC Electronics	F-100-3000-5-R	3349	12	22-May-2010
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	1-Sep-2010
3 GHz High Pass Filter	K&L uwave	11SH10- 3000/X18000- O/O	3552	12	14-Apr-2011
Bluetooth Tester	Tescom	TC30004	-	-	-

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due			
Section 2.3 – 20dB Bandwidth								
Attenuator (10dB)	Weinschel	47-10-34	481	12	26-Mar-2011			
Broadband Resistive Power Divider	Weinschel	1506A	605	12	8-Sep-2010			
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	8-Sep-2010			
Multimeter	Iso-tech	IDM101	2421	12	26-Oct-2010			
Programmable Power Supply	Iso-tech	IPS 2010	2436	-	O/P Mon			
Attenuator (3dB)	Suhner	6803.17.B	3026	12	26-Mar-2011			
Attenuator (20dB, 20W)	Weinschel	1	3032	12	10-Jul-2010			
Hygrometer	Rotronic	I-1000	3220	12	27-Apr-2011			
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	3-Jun-2010			
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	25-Feb-2011			
Bluetooth Tester	Tescom	TC-3000A	-	-	-			
Section 2.4 – Maximum Peak Conducted Output Power								
Peak Power Analyser	Hewlett Packard	8990A	107	12	10-Feb-2011			
Temperature Chamber	Montford	2F3	467	-	O/P Mon			
Broadband Resistive Power Divider	Weinschel	1506A	605	12	8-Sep-2010			
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	8-Sep-2010			
Cable (1m, sma(m) - sma(m)	Reynolds	262-0248-1000	2406	12	15-Oct-2010			
Multimeter	Iso-tech	IDM101	2421	12	26-Oct-2010			
Programmable Power Supply	Iso-tech	IPS 2010	2436	-	O/P Mon			
Power Sensor	Hewlett Packard	84812A	2743	-	TU			
Attenuator (20dB, 20W)	Weinschel	1	3032	12	10-Jul-2010			
Attenuator (30dB/50W)	Aeroflex / Weinschel	47-30-34	3164	12	28-Nov-2010			
Thermocouple Thermometer	Fluke	51	3172	12	3-Jul-2010			
Hygrometer	Rotronic	I-1000	3220	12	27-Apr-2011			
Power Meter	Rohde & Schwarz	NRP	3491	-	TU			
Wideband Power Sensor, 50MHz - 18GHz	Rohde & Schwarz	NRP-Z51	3492	12	15-Apr-2011			
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	25-Feb-2011			
'3.5mm' - '3.5mm' RF Cable (2m)	Rhophase	3PS-1803-2000- 3PS	3702	12	26-Jan-2011			
Bluetooth Tester	Tescom	TC-3000A	-	-	-			

Instrument	Manufacturer	Type No.	TE No.	Calibration	Calibration
matidifient	Manufacturer	Type No.	IL INO.	Period	Due
				(months)	Buc
Section 2.6 - Spurious Emis	ssions		I	(**************************************	
True RMS Multimeter	Fluke	79 Series III	411	12	24-Jul-2010
Tuneable Notch Filter	K&L uwave	5TNF-	435	-	TU
		1500/3000-N/N	100		
Attenuator (10dB)	Weinschel	47-10-34	481	12	26-Mar-2011
Power Divider	Weinschel	1506A	603	12	18-Mar-2011
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	19-Jun-2010
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	8-Sep-2010
800MHz Low Pass Filter	Mini-Circuits	NLP-800	1638	12	TU
Cable (1m, sma(m) -	Reynolds	262-0248-1000	2406	12	15-Oct-2010
sma(m)					
Multimeter	Iso-tech	IDM101	2421	12	26-Oct-2010
Programmable Power	Iso-tech	IPS 2010	2436	-	O/P Mon
Supply					
Spectrum Analyser	Rohde & Schwarz	FSU26	2747	12	2-Nov-2010
Power Supply Unit	Weir	460	2754	-	TU
High Pass Filter (4GHz)	RLC Electronics	F-100-4000-5-R	2773	12	8-Sep-2010
Filter (Hi Pass)	Lorch	5HP7-2500-SR	2779	12	TU
Attenuator (3dB)	Suhner	6803.17.B	3026	12	26-Mar-2011
Attenuator (20dB, 20W)	Weinschel	1	3032	12	10-Jul-2010
Beacon RF Unit	TUV	N/A	3066	-	TU
Attenuator (3dB, 20W)	Aeroflex /	23-03-34	3161	12	4-Jun-2010
Attenuator (30dB/50W)	Weinschel Aeroflex /	47-30-34	3164	12	28-Nov-2010
Allendator (300b/3000)	Weinschel	47-30-34	3104	12	26-1100-2010
Hygrometer	Rotronic	I-1000	3220	12	27-Apr-2011
Attenuator (20dB, 150W)	Narda	769-20	3367	12	19-May-2010
Attenuator (30dB, 150W)	Narda	769-30	3369	12	19-May-2010
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	3-Jun-2010
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	25-Feb-2011
Logic Level Shifter	Andy Blagg	0V to 10V to TTL Interface	3584	-	O/P Mon
'3.5mm' - '3.5mm' RF Cable	Rhophase	3PS-1803-2000-	3702	12	26-Jan-2011
(2m)		3PS			
Bluetooth Tester	Tescom	TC30004	-	-	-
Waveguide	Flann Microwave	18-26.5GHz	-	-	-
Bluetooth Tester	Tescom	TC-3000A	-	-	-
Section 2.8, 2.9 and 2.10 -					
Broadband Resistive Power Divider	Weinschel	1506A	605	12	8-Sep-2010
GPS Frequency Standard	Rapco	GPS-804/3	1312	6	8-Sep-2010
Cable (1m, sma(m) -	Reynolds	262-0248-1000	2406	12	15-Oct-2010
sma(m)					
Multimeter	Iso-tech	IDM101	2421	12	26-Oct-2010
Programmable Power Supply	Iso-tech	IPS 2010	2436	-	O/P Mon
Attenuator (3dB)	Suhner	6803.17.B	3026	12	26-Mar-2011
Attenuator (20dB, 20W)	Weinschel	1	3032	12	10-Jul-2010
Attenuator (10dB, 50W)	Aeroflex /	47-10-34	3166	12	4-Jun-2010
•	Weinschel				
Hygrometer	Rotronic	I-1000	3220	12	27-Apr-2011
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	3-Jun-2010
Bluetooth Tester	Tescom	TC-3000A	-	-	-

TU – Traceability Unscheduled O/P Mon – Output monitored using calibrated equipment.

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	Frequency / Parameter	MU
Radiated Emissions, Bilog Antenna, AOATS	30MHz to 1GHz Amplitude	5.1dB*
Radiated Emissions, Horn Antenna, AOATS	1GHz to 40GHz Amplitude	6.3dB*
Conducted Emissions, LISN	150kHz to 30MHz Amplitude	3.2dB*
Conducted Emissions, ISN	150kHz to 30MHz Amplitude	2.1dB
Substitution Antenna, Radiated Field	30MHz to 18GHz Amplitude	2.6dB
Discontinuous Interference	150kHz to 30MHz Amplitude	3.0dB*
Interference Power	30MHz to 300MHz Amplitude	3.0dB*
Radiated E-Field Susceptibility	10MHz to 6GHz Test Amplitude	2.0dB†
Conducted Susceptibility RF	50kHz to 1000MHz Amplitude EM Clamp Method of Test CDN Method of Test BCI Clamp Method of Test	3.1dB• 1.2dB• 1.1dB•
	Direct Injection Method of Test	1.2dB•
Conducted Susceptibility LF	DC to 150kHz	1.0%†
Power Frequency Magnetic Field	50Hz/60Hz Amplitude	0.45%
Magnetic Emissions	9kHz to 30MHz Amplitude	3.4dB*
Magnetic Field/Flux iaw EN 50366	10Hz to 400kHz	2.64%
Harmonics and Flicker	The test was applied using proprietary equipment that meets the requirements of EN 61000-3-2 and EN 61000-3-3	_
Mains Voltage Variations and Interrupts	The test was applied using proprietary equipment that meets the requirements of EN 61000-4-11	_
Fast Transient Burst	The test was applied using proprietary equipment that meets the requirements of EN 61000-4-4	_
Electrostatic Discharge	The test was applied using proprietary equipment that meets the requirements of EN 61000-4-2	_
Surge	The test was applied using proprietary equipment that meets the requirements of EN 61000-4-5	_
Vehicle Transients	The test was applied using proprietary equipment that meets the requirements of ISO 7637-1 and 2	_
Compass Safe Distance	Azimuth Accuracy	0.10°
Channel Occupancy/Separation	19.1kHz	N/A
Maximum Output Power	Not Applicable	±0.5dB
Number of Channels	Not Applicable	N/A
20dB Bandwidth	19.1kHz	±0.5dB

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

- * In accordance with CISPR 16-4-2
- † In accordance with UKAS Lab 34
- In accordance with EN61000-4-6

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV Product Service Limited

© 2010 TÜV Product Service Limited