Project A-1379

STUDY OF MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS TRANSPONDERS AND RECEIVERS

J. R. Walsh, R. D. Wetherington and L. D. Holland

Contract NAS8-28148

19 November 1972

Prepared for

National Aeronautics & Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

(NASA-CR-124097) STUDY OF MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS TRANSPONDERS AND PECEIVERS Final Report (Georgia Inst. of Tech.) 201 p HC \$12.25

N73-18172

Unclas 17278

Engineering Experiment Station
GEORGIA INSTITUTE OF TECHNOLOGY
Atlanta, Georgia

Project A-1379

STUDY OF MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS TRANSPONDERS AND RECEIVERS

J. R. Walsh, R. D. Wetherington and L. D. Holland

CONTRACT NAS8-28148

19 November 1972

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA

ABSTRACT

This report presents the results of work on the modeling of communication receivers at both the circuit detail level and at the block level. The largest effort was devoted to developing new models at the block modeling level. The available effort did not permit full development of all of the block modeling concepts envisioned, but idealized blocks were developed for signal sources, a variety of filters, limiters, amplifiers, mixers, and demodulators. These blocks were organized into an operational computer simulation of communications receiver circuits identified as the Frequency And Time Circuit Analysis Technique (FATCAT). The simulation operates in both the time and frequency domains, and permits output plots or listings of either frequency spectra or time waveforms from any model block. Transfer between domains is handled with a fast Fourier transform algorithm.

A separate block model effort was devoted to developing block models for use with the circuit simulation MIMIC.

Two efforts in modeling at the circuit detail level were also carried out. One of these demonstrated the feasibility of interfacing the time-domain analysis program CIRCUS with a frequency-domain analysis program to provide a more powerful model. The other effort demonstrated the use of ECAP to determine input parameters for CIRCUS which are otherwise difficult to determine.

Computer listings of the software developed and examples of use of the programs are included.

PRECEDING PAGE BLANK NOT FUMED

FOREWORD

This report was prepared at the Engineering Experiment Station at the Georgia Institute of Technology for the Astrionics Laboratory of Marshall Space Flight Center under Contract NASS-28148. The work was carried out under the direct supervision of Mr. J. R. Walsh, Project Director, and under the general supervision of Mr. D. W. Robertson, Chief of the Communications Division. The report describes the results of a one-year effort on the modeling of communications systems.

TABLE OF CONTENTS

			PAGE
I.	INTR	CODUCTION	1
II.		MEMATICAL MODELING OF COMMUNICATIONS CIRCUITS ON A	5
	Α.	Interfacing CIRCUS and the FFT	5
	•••	1. Time Domain vs Frequency Domain Analysis	5
		2. Description of Interface and Software	6
		3. Example of Using the CIRCUS-Frequency Domain	8
		Interface Program	19
	В.	Use of ECAP for Transfer Function Evaluation	25
	C.	Conclusions and Recommendations	2.5
III.		HEMATICAL MODELING OF COMMUNICATION SYSTEMS	29
	Α.	General Description	29
	В.	Program Control	30
		1. Block Input Commands	30
		a. Sources	31
		b. Filters	32
		c. Demodulators	33
		d. Other Blocks	33
		2. Control Commands	34
		3. Special Commands	37
	C.	Simulation Examples using FATCAT	39
		1. AM Receiver	39
		2. FM Receiver	52
	D.	Conclusions	57
IV.		TE DOMAIN SIMULATION	71
	Α.	Introduction	71
	В.	MIMIC: A Continuous System Simulation Language	72
	c.	TIMSIM: A User-Oriented Communications System Block Diagram Simulation Program	79
		1. Subprogram Derivation	79
		2. TIMSIM Subprogram Library	81
		3. Applications	81
	D.		95
	•		

TABLE OF CONTENTS (Continued)

																													PAGE
٧.	REFE	RENCE	ES	•	•		•	•		•		•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	96
APP	ENDIC	ES:																											
APP	ENDIX	A:																					•	•	•	•	•	•	97
																													101
																													117
																													179
APP	CNNTV	υ:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	-	-	-		

LIST OF FIGURES

		PAGE
1.	Test Circuit for the CIRCUS Frequency Domain Interface Program	9
2.	Execution of CIRCUS for Test Circuit	10
3.	Execution of Interface Program	13
4.	Spectrum of Data Set 3	18
5.	Time Waveform of Data Set 3	20
6.	Request for Calcomp Plot	21
7.	Calcomp Plot of the Frequency Spectrum of the Time Waveform Shown in Figure 5	22
8.	Circuit Diagram of CCS Telemetry Filter	24
9.	Circuit Description in ECAP Format	26
10.	Comparison of Response Calculation for CCS Telemetry Filter	27
11.	Sample of ECAP Output	28
12.	Block Diagram of Amplitude Modulation Receiver and FATCAT Model of Receiver	40
13.	Start of FATCAT Run for AM Receiver, Showing Spectrum at the Output of the Signal Generator	41
14.	Listing of the Frequency Function at the Output of the Signal Generator	43
15.	Listing of Frequency Function at the Output of the First Bandpass Filter	44
16.	Spectrum at the Output of the First Bandpass Filter	46
17.	Spectrum at the Output of the Ideal Multiplier	47
18.	Spectrum at the Output of the Second Bandpass Filter	48
19.	Spectrum at the Output of the Amplifier	49
20.	Spectrum at the Output of the AM Demodulator	50
21.	Time Waveform at the Output of the AM Demodulator	51
22.	Listing of Time Function at the Output of the AM Demodulator	53
23.	Spectrum at the Output of the AM Demodulator	54
24.	a a second and the Filter	55
25.	C PATCAT Analysis of an FM Receiver	56

LIST OF FIGURES (Continued)

		PAGE
26.	Start of FATCAT Run for FM Receiver, Showing Spectrum at the Output of the Signal Generator	58
27.	Spectrum at the Output of the First Bandpass Filter	59
28.	Spectrum at the Output of the Ideal Multiplier	60
29.	Spectrum at the Output of the Second Bandpass Filter	61
30.	Spectrum at the Output of the Amplifier	62
31.	Spectrum at the Output of the FM Demodulator	63
32.	Time Waveform at the Output of the FM Demodulator	64
33.	Listing of the Frequency Function at the Output of the FM Demodulator	65
34.	Spectrum at the Output of the Low Pass Filter	
35.	Time Waveform at the Output of the Low Pass Filter	67
36.	Listing of the Frequency Function at the Output of the Low Pass Filter	. 68
37.	Detailed MIMIC Block Diagram for a System Described by $\ddot{\mathbf{x}} + \dot{\mathbf{x}} + \mathbf{x} = 0$. 74
38.	MIMIC Instructions for Simulation of the System of Figure 37	. 74
39.	Block Diagram of Feedback Example	
40.	MIMIC Simulation of System of Figure 39	
41.	Subprogram Example	
42.	Single-Tuned Filter Flow Diagram	
43.		
44.	- · · · · · · · · · · · · · · · · · · ·	
45.		
46.		
47.	· · · · · · · · · · · · · · · · · · ·	
48.	TIMSIM Listing, Automatic Gain Control System	
/. Q	TIMSIM Results. AGC System	. 94

I. INTRODUCTION

This report discusses the results of a one-year effort directed toward the modeling of communications receivers. This effort followed a program carried out during the previous year under contract NAS8-20054 in which transmitter modeling was considered. Most of the modeling work carried out on the former program was directed toward modeling at the circuit detail level, and the simulation program CIRCUS was used as the primary analysis tool. Accomplishments under that program have been documented in previous reports [1,2].

On the current program, modeling of communications receiver circuits has been carried out on both the circuit detail level and the block modeling level, with emphasis on the latter. Several existing circuit simulation programs have been investigated and three of these (CIRCUS, ECAP, and MIMIC) were used in the modeling efforts reported herein. In addition, using a block modeling approach, work on a new circuit simulation program was undertaken and the program was developed to an operational state that provides a highly useful circuit analysis tool. However, the present form of the program is far from realizing the potential that the approach offers.

Two lines of effort were pursued in circuit detail modeling. One of these was an investigation of the feasibility of interfacing CIRCUS with some other circuit analysis program which operates in the frequency domain, thereby creating a more powerful analysis tool. The other effort was concerned with using ECAP as a basic tool for providing certain input parameters for CIRCUS which are difficult to determine otherwise. The results of both investigations were promising.

The need for interfacing CIRCUS with some other program arises from the fact that CIRCUS operates entirely in the time domain. Processing of signals requires step-by-step integration of the time function. Such a procedure is necessary when dealing with nonlinear portions of a circuit; when linear circuits with known transfer functions are involved, the effect of the circuit is much more readily computed in the frequency domain. Thus a model with the capability of processing nonlinear circuits

in the time domain, and linear portions in the frequency domain would be very attractive. Since CIRCUS is a very powerful time domain simulation, it would provide a good starting point for creating a two-domain model if it could be successfully interfaced with a frequency domain model.

The investigations conducted were really in the nature of feasibility investigations. Methods were developed for extracting the computed time functions from CIRCUS, converting them to the frequency domain, and displaying either time or frequency functions. This work is discussed in Section II and all software developed in this effort is listed in Appendices A and B.

The work with ECAP was directed toward using the a-c analysis capabilities of ECAP to investigate circuit parameter effects on the transfer functions of certain circuits, and thereby determine suitable parameter values for entry into CIRCUS. There are certain parameters required in specifying circuits to CIRCUS which are not easily estimated. One example is the values of coupling coefficients in coupled circuits. Unless reasonably good values for these parameters can be determined prior to entry into CIRCUS, interpreting the program's output may be very nearly impossible if it runs; sometimes the program will not even operate if the values are unrealistic.

The investigations reported herein show that ECAP is a useful tool for determining parameter values in many cases. Details of the investigation are also discussed in Section II.

The major effort in this program was devoted to circuit models based on a block modeling (as opposed to circuit detail modeling) approach. The block modeling work can also be divided into two lines of effort. The primary effort was devoted to developing models for circuit blocks and combining them to create an entirely new simulation program. The other effort consisted of investigating the use of the simulation program MIMIC in modeling circuits with feedback loops on a block modeling basis.

Development of the new simulation program was directed toward modeling each subsystem (mixers, filters, amplifiers, etc.) as a single block in order to obtain an efficient program for rapid analysis of communications receivers. The simulation was planned from the beginning to operate

in both the time and frequency domains. A representation of the signal is stored in a complex data array, and all processing blocks operate on this array. The array contents at any given time may be either a discrete spectrum representing the frequency function, or data points representing samples of a time waveform. The array contents are transformed from one domain to another as needed by a fast Fourier transform (FFT) algorithm.

The block model for each subsystem can be modeled in either the time domain or the frequency domain. Blocks have been created for signal sources, a variety of filters, mixers, limiters, amplifiers, and demodulators. Other needed software was developed to create an operational simulation identified as the Frequency and Time Circuit Analysis Technique (FATCAT). Control software was designed for conversational operation from a real time computer terminal; it is readily adaptable to batch processing, however.

The program was developed and completely implemented on a Univac-1108 computer at Georgia Tech. Required modifications were then made to adapt the program to a SIGMA-5 computer at Marshall Space Flight Center. The program is discussed in Section III and descriptions and listings of all software for the Univac-1108 version are given in Appendix C. Listings of the SIGMA-5 versions of those routines requiring modification are given in Appendix D.

Although the version of FATCAT presented here was brought to an operational state and has proved to be a highly useful simulation, it is by no means the ultimate simulation of its type. Many ideas exist for improving the program which could not be investigated during the time available. Ideas for improvement include changes to upgrade some of the existing model blocks, creation of new model blocks, and additional features that could be added to the control software which would make the simulation even easier to use. Some specific examples of improvements that should be developed are pointed out in Section IIID.

The other block modeling effort carried out under this program made use of the simulation program MIMIC, a dynamic system simulation program. MIMIC accepts user inserted "models" in the form of equations, and this feature was investigated as a method of modeling circuit blocks. The investigation is discussed in Section IV.

II. MATHEMATICAL MODELING OF COMMUNICATIONS CIRCUITS ON A CIRCUIT DETAIL BASIS

Interfacing CIRCUS and the FFT

Time Domain vs Frequency Domain Analysis

One of the major efforts related to circuit detail modeling was devoted to interfacing CIRCUS with other programs so that frequency domain representations of signals could be obtained. CIRCUS itself operates entirely in the time domain. Processing the signal requires step-by-step integration, often with very small steps. Although the process can be time consuming, it is & good method for performing analyses that must be performed in the time domain, such as analyzing nonlinear circuits or calculating the transient response of any circuit.

If only the steady state solution is desired for linear circuits, frequency domain analysis can be applied. Since frequency domain analysis is generally much less time consuming, and also since the steady state response is of prime interest in most circuit investigations, it would be preferable to analyze linear circuits in the frequency domain. However, entire equipments (such as a communications receiver) cannot usually be analyzed entirely in the frequency domain since they usually contain nonlinearities. The ideal solution would be to have an analysis program that operates in both domains and to have the ability to transfer from one domain to another.

The investigation reported here was directed toward investigating the possibility of combining circuit detail models which operate in the two domains, and thus create a single more powerful model with more efficient operation. The job of actually creating such a model was beyond the scope of this investigation, and only a feasibility study has been conducted.

Specifically, the task undertaken was to develop an interface with CIRCUS which would permit extraction of computed time waveforms. signals could then be operated on with a fast Fourier transform (FFT) to obtain frequency domain representations of the signals. Such an interface has been constructed, along with some supporting software that

permits recovery of the CIRCUS-generated signals, transforming between domains, and output of results. Details of the interface and software are described below, followed by sample runs.

2. Description of Interface and Software

For purposes of this feasibility study, the modifications made internally in CIRCUS were kept to a minimum. The immediate objective was to gain access to the computed time waveform data points, and to write these into a file external to CIRCUS so that the data would be stored when the run terminated. Other software was then constructed to access the stored data file and process it.

After examining several of the CIRCUS subroutines, it appeared that the desired data could be obtained easily by constructing a subroutine to be called by the PLOT statement. As a working procedure, subroutine PLOTER was disabled (by commenting out its call in subroutine LINK6A), and a new subroutine, PLTDTA, was constructed to extract the data. PLTDTA writes the data out on one of the FORTRAN output units (currently set at 19) and then terminates. This form of modification permitted testing without the necessity of revising the CIRCUS command structure. The PLOT statement could be used to specify the outputs wanted, and outputs from as many nodes as desired could be obtained. Thus the changes in CIRCUS were limited to construction of PLTDTA plus minor modifications to LINK6A. The modifications made in LINK6A were (1) deleting the calls to PLOTER by inserting comments on line, and (2) inserting calls to PLTDTA at the appropriate point. Listings of PLTDTA and the modified version of LINK6A are given in Appendix A.

The output generated by PLTDTA consists of two parameters and three arrays. In order these are: (1) the parameter NPNT specifying the number of points per data set; (2) the parameter NPLOTS specifying the number of data sets to be outputed; (3) the array TIME containing NPNT entries of the times corresponding to output data points; (4) the array PLOT containing NPLOTS sets of output data, each consisting of NPNT values of a node voltage, an element current, or whatever variable was

called for in the PLOT statement;* and (5) the array TITLE containing the title of the run (not used by the current version of the interface program).

In using the program, the modified version of CIRCUS is run with a PLOT statement included that has a list of the variables to be written out. When the computations are finished the CIRCUS run is terminated. The interface program can then be activated to call the data file and operate on it; the call is non-destructive and the same data file can be processed many times by the interface program.

There is one specific requirement that the user must be aware of and provide for. The FFT is designed to work only with data sets of N points where N is a power of two (N = 2^{IGAM} , where IGAM is an integer). Since the theory underlying the FFT requires that it be applied only to periodic signals, the user must pre-determine the period of the output waveform to be generated by CIRCUS. The period must then be divided by the chosen value of N (with N = 2^{IGAM}) to determine the time step at which outputs will be generated. This procedure insures that exactly N consecutive outputs will represent exactly one period of the output waveform.

While the time step size must be carefully determined, the overall time interval for which outputs are generated is not critical. More than N points can be outputed so long as exactly N consecutive points represent one period. In general it will be desirable to output more than N points so that if the first few contain transient effects they can be discarded.

The interface program, PLT, is used to access the data file and display the data in either the time domain or the frequency domain. Display capabilities include printed listings and plotted time waveforms or frequency spectra. Two types of plot routines are available, printer type plots (scaled not to exceed 72 columns so that they can be displayed by a teletype terminal), and Calcomp plots (frequency spectra only).

^{*}This list can contain any of the output variables specified in the CIRCUS users manual [3].

In the next section a specific example of using the program is shown, and the overall operation is further exaplined. A listing of all software used in the program is given in Appendix B.

3. Example of Using the CIRCUS-Frequency Domain Interface Program

Consider the simple transistor feedback amplifier shown in Figure 1. This amplifier, when operating in its linear region, would have a gain approximately equal to the ratio of the collector to emitter resistances. The drive has been set to a level such that the amplifier operates in a nonlinear region, theyby producing distortion in the output signal. A sample execution of the CIRCUS-frequency domain interface program for this circuit is presented to demonstrate the capabilities of the program.

Before executing CIRCUS, the file to accept the time waveform data from CIRCUS must be declared and linked to logical unit 19. The setup on the Univac-1108 is as follows:

@ASG, A PFILE.

@USE 19, PFILE

PFILE could be either a tape file or a mass storage file; as used here it is a Fastrand (mass storage) file. Execution of CIRCUS with a plot statement containing the data to be plotted will write these data on PFILE. An execution of CIRCUS for the simple circuit shown in Figure 1 is shown in Figure 2.

To use the transform and plotting program PLT, the file containing the CIRCUS data must be assigned to the run by the statements:

dASG, A PFILE.

CUSE 19, PFILE

The command to execute the plotting program produces several messages relative to the number and size of the data sets generated in CIRCUS and to the number of points in a transform. Figure 3 shows a sample execution of the transform and plotting program. The first messages received

Figure 1. Test Circuit for the CIRCUS Frequency Domain Interface Program.

CONTRACTOR OF THE CONTRACTOR O

```
READY
QUSE 19, PFILE
READY
exut CAA3.
 START
WADD CDI . DATA17
 'SINGLE STAGE TEST CIRCUIT'
 R1, 1, 2, 100.
 R2, 3, 7, 8.2E3
 R3, 0, 3, 2.2E3
 R4, 4, 7, 1.E3
 R5, 5, 6, 68.
 R6, 0, 6, 270.
 C1, 2, 3, 1.E-8
 C2, 0, 6, 1.E-6
 VS1, 0, 7, 12.
 T1, 3, 4, 5, 2N697
 SV1, 0, 1, 0., 0.5, 0., 2.E-6
 DEVICE PARAMETERS
 TRANSISTOR, 2N697, NPN,
 RB, 70., RC, 1.5, RE, .001, A1, 54.E-12,
 PHI1, .9, N1, .37, A2, 30.3E-12, PHI2, .9,
 N2, .36, IES, 4.47E-14, ICS, 2.24E-13, THETAN, 38.8,
 THETAI, 35.5
   BN, 0., 1.E-5, 1., 68.
   BI, 0., 1.E-5, 1., 4.7
  TCN, .001, 9.93E-10
  TCI, .001, .91E-7
  END
  INTERVALS, .125E-6, 8.E-6
  PRINT, UN1, UN2, UN4, IBT1, ICT1
  PLOT, UN1, UN2, UN4, IBT1, ICT1
  HOLD FINAL CONDITIONS
 EXECUTE
  EXECUTE
               50
  LINK5
```

•

@CAT PFILE.,F2

@ASG,A PFILE.

READY

Figure 2. Execution of CIRCUS for Test Circuit.

			(18) (1	IBT1	ICT1
TIME	VN1	SWV	VN4	1011	10.1
(NSEC)					E 004 03
•0	0.000	1.676-08	6.91	7 • 491 - 05	5.094-03
125.0	•191	•148	5.59	4.245-04	6.407-03
250 •0	•354	•296	3.74	4.858-04	8.264-03
375.0	•462	•399	2 • 3 8	4.811-04	9.618-03
500 • 0	•500	•430	2.19	5 • 375 • 04	9.806-03
625.0	•462	-414	2.17	3 • 399 - 04	9.833.03
750 • 0	•354	•354	2.15	-1 -160 -04	9.853-03
875.0	•191	•241	2.84	-5 • 401 -04	9.156-03
(USEC)					
1.000	1.589-08	4.633-02	5.76	-3.996-04	6.241-03
1.125	191	144	8.46	-2.984-04	3.538-03
1.250	354	306	10.6	-2 - 144 - 04	1.443-03
1.375	-•462	420	11.7	-1 -022 -04	2.884-04
1.500	500	466	11.9	3 • 461 - 06	5.021-05
1.625	462	- • 436	11.9	6.266-05	9-485-05
1.750	354	343	11.4	1 • 624 - 04	6.221-04
1.875	191	201	9.95	2.823-04	2.054-03
	-3 • 179 - 08	-2.918-02	7.91	3.838-04	4.088-03
2.000	•191	•145	5.72	4.551-04	6.282-03
2 • 1 2 5		•296	3.77	4.886-04	8 - 228 - 03
2.250	•354		2.40	4.794-04	9.598-03
2.375	•462	•400	2.19	5.303-04	9.806-03
2.500	•500	•431	2.17	3.332-04	9.832-03
2 • 625	•062 054	• Z 1 4		-1 •222 -04	9.852-03
2.750	•354	•355	2.15	-5.305-04	9.102-03
2.875	•191	•240	2.90	-3.955-04	6.206-03
3.000	2.265-07	4.604-02	5.79	-2.976-04	3.514-03
3.125	191	144	8 • 49		1.424-03
3.250	354	306	10.6	-2 • 141 - 04	2.773-04
3.375	462	419	11.7	-1.013-04	4.784-05
3.500	500	- • 466	12.0	2.678-06	8.995-05
3 • 625	- • 462	- • 435	11.9	6.238-05	
3 • 7 5 0	354	342	11.4	1.616-04	6.091-04
3 • 875	191	200	9.96	2.817-04	2.036-03
4.000	-4.212-07	-2 • 903 -02	7.93	3.832-04	4.070-03
4.125	•191	•145	5.74	4.544-04	6.263-03
4.250	•354	•296	3.79	4.876-04	8.211-03
4.375	•462	•400	2.42	4.774-04	9.584-03
4.500	•500	•432	2.19	5 • 24 7 - 04	9.805-03
4.625	•462	•415	2.17	3.278-04	9.832-03
4.750	•354	•356	2.15	-1 -271 -04	9.852-03
4 • 875	•191	•239	2.94	-5.232-04	9.061-03
5.000	5.563-07	4 • 583 - 02	5.82	-3 • 925 -04	6 • 178 - 03
5.125	191	144	8.50	-2 • 970 -04	3 • 495 - 03
5.250	354	306	10.6	-2 • 139 - 04	1 • 409 - 03
5 • 375	462	419	11.7	-1.007-04	2 • 683 -04
5.500	500	465	12.0	2.095-06	4 • 604 - 05
5 • 625	462	435	11.9	6.217-05	8 • 619 - 05
5.750	354	342	11.4	1.609-04	5.989-04
5.875	191	200	9.98	2.812-04	2.022-03
6.000	-8 • 106 - 07		7.95	3.827-04	4.055-03
6.125	•191	•146	5.75	4.538-04	6.249-03
		- · -		-	

Figure 2. (Continued).

END L5 43

'SINGLE STAGE TEST CIRCUIT'

TIME	N1 VN2	VN4	IBT1	ICT1
(USEC)				
6.250 .35	•296	3 •80	4 • 867 - 04	8.197-03
6.375 .46	·400	2.43	4.759-04	9.573-03
6.500 .50	0 •432	2.19	5.202-04	9.805-03
6.625 .40	· -	2.17	3 • 235 - 04	9.832-03
6.750 .35		2.15	-1.310-04	9.851-03
6.875		2.97	-5 - 176 - 04	9.028-03
0.000	05-06 4.567-02	5 • 84	-3.901-04	6.157-03
7.12519	•	8 • 52	-2.965-04	3 • 481 - 03
7.25039		10.6	-2 - 137 - 04	1.397-03
7.3754		11.7	-1.002-04	2.611-04
7.50050	· · · · · · · · · · · · · · · · · · ·	12.0	1 • 661 - 06	4.468-05
7.6254		11.9	6.201-05	8.331-05
7.7503		11.4	1.604-04	5 • 908 - 04
7.7301	· ·	9.99	2.808-04	2.011-03
, , , , ,	19-06 -2.882-02		3 • 823 -04	4.043-03

END OF JOB END OF JOB ENDJOB 43 END 8049 MLSEC

Figure 2. (Continued).

```
EXPT PLT.
 THE NUMBER OF POINTS PER DATA SET =
                                                 35
 THE NIMPER OF POINTS USED IN A TRANSFORM =
 THE NUMBER OF DATA SETS =
 FNTEP @ FOP PPINT OF DATA SET FROM CIPCUS
 ENTER PLUS DATA SET NUMBER FOR FREE FON
 ENTER MINUS DATA SET NUMBER FOR TIME FON
 ENTER & FOR TIME LISTING OF DATA SET NUMBER
                               TIME
                                                             6.2500-07
                                                 5.0000-07
                                      3.7500-07
                          2.5000-07
              1.2500-07
   0.000
                                                             1.3750-05
                                                 1.2500-06
                                      1.1250-06
                          1.0000-06
   7.5000-07
              8.7500-07
                                                             2.1250-06
                                      1.8750-06
                                                 2.0000-06
                          1.7500-06
              1.6250-06
   1.5000-06
                                                             2.8750-06
                                                 2.7500-06
                          2.5000-06
                                      2.6250-06
   2.2500-06
              2.3750-06
                                                  3.5000-06
                                                             3.6250-06
                                      3.3750-06
                          3. 2500-06
               3.1250-06
   3.0000-06
                                                             4.3750-06
                                                  4.2500-06
                                      4.1250-06
                          4. 0000-06
               3.8750-06
   3.7500-06
                                                             5.1250-06
                                                  5.0000-06
                                      4.8750-06
                          4.7500-06
               4.6250-06
   4.5000-06
                                                             5.8750-06
                                                  5.7500-06
                          5.5000-06
                                      5.6250-06
   5.2500-06
               5. 3750-06
                                                             6.6250-06
                                                  6.5000-06
                                      6.3750-06
               6.1250-06
                          6.2500-06
   6.0000-06
                                                             7.3750-06
                                                  7.2500-06
                                      7.1250-06
                          7.0000-06
               6.8750-06
   6.7500-06
                                                  8.0000-06
                                      7.8750-06
               7.6250-06
                          7.7500-06
   7.5000-06
 ENTER & FOR PRINT OF DATA SET FROM CIRCUS
 ENTER PLUS DATA SET NUMPER FOR FREG FON
 ENTER MINUS DATA SET NUMBER FOR TIME FON
 ENTER A FOR TIME LISTING OF DATA SET NIMPER
                           LATA SET NIMPEP
                                                             2.1672+00
                                                  2.1936+00
                                      2.3816+00
                          3.7362+00
               5.5934+00
   6.9060+00
                                                             1.1712+01
                                      8.4620+00
                                                  1.0557+01
               2.8444+00
                           5.7588+00
   2.1467+00
                                                             5.7183+00
                                                  7.9117+00
                                      9.9465+00
                           1.1378+01
               1.1905+01
    1.1950+01
                                                             P.8980+00
                                                  2.1475+00
                                      2.1675+00
                           2.1941+00
    3.7717+00
               2.4017+00
                                                             1.1910+01
                                                  1.1952+01
                                      1.1723+01
                           1.0576+01
               8.4859+00
    5.7943+00
                                                             2.4159+00
                                      5.7368+00
                                                  3.7890+00
                           7.9304+00
               9.9642+00
    1.1391+01
                                                             R. 5047+00
                                                  5.8219+00
                                      2.9394+00
                           2.1481+00
               2.1677+00
    2.1945+00
                                                  1.1401+01
                                                             9.9782+00
                                      1.1914+01
                           1.1954+01
               1.1732+01
    1.0591+01
                                                              2.1679+00
                                                  2.1948+00
                           3.8028+00
                                      2.4272+00
               5.7514+00
    7.9452+00
                                                              1.1739+01
                                                  1.0603+01
                                      8.5195+00
               2.9717+00
                           5.8435+00
    2.1486+99
```

ENTER A FOR PRINT OF DATA SET FFOM CIPCUS ENTER PLUS DATA SET NUMBER FOR FREA FCN INTER MINUS DATA SET NUMBER FOR TIME FCN

1-1917+01

1.1955+01

Figure 3. Execution of Interface Program.

1.1409+01

9.9891+00

7.9569+00

ENTER ISTART

32

THE PERIOD OF THE TIME FUNCTION = 4.0000-06 SEC

ENTER 100 FOR PHINT, 010 FOR CALCOMP PLOT, OR 001 FOR TTY PLOT

LINE	PEAL	IMAG	DP
1	-2.7697-02	0.0000	-31-15
۶	- 4.9144-04	6.6766-84	-61.63
3	2.0091-02	7.9110-03	- 33. 31
4	-9.1365-05	-6.3436-04	-63.86
5	-2.3060-02	9.5255-03	-32.06
6	-6.6337-04	2.3214-04	-63.06
7	2.9155-02	- 4.5856-02	-25.30
8	-1.9304-04	-1.1629-93	- 58 • 57
9	-7.8478-02	-1.6430-03	-22.10
10	- 5. 3355- 04	3.9614-04	-63.55
11	2.3091-01	1.2146-02	-12.72
12	1.0943-03	-1.6229-03	- 54 • 17
13	-1.3070-01	3.1161-02	- 17 • 43
14	-1.7313-03	-8.6959-05	- 55 • 22
15	1.4738+00	-2.2625+00	B • 63
16	-8.8963-04	-3.4519-03	-48.96
17	6.9555+00	0.000	16.85
18	-8.8963-04	3.4519-03	-48.96
19	1.4738+00	2.2625+00	8.63
20	-1.7313-03	8.6959-05	- 55 • 22
21	-1.3070-01	-3.1161-02	-17.43
22	1.0943-03	1.6229-03	-54.17
23	2.3091-01	-1.2146-02	-12.72
24	-5.3355-04	- 3.9614-04	- 63. 55
25	-7.8478-02	1.6439-03	-22.10
26	-1.9304-04	1.1629-03	- 58 • 57
27	2.9155-02	4.5856-02	- 25.30
28	-6.6337-04	-2.3214-04	-63.96
29	-2.3060-02	-9.5255-03	- 32.06
30	-9.1365-A5	6.3436-04	-63.86
31	2.0091-02	-7.9110-03	- 33. 31
38	-4.9144-84	-6.6766-04	-61.63
	Ø FOP PPINT OF	DATA SET FROM	CIFCUS

ENTER 0 FOR PRINT OF DATA SET FROM CIRCUS ENTER PLUS DATA SET NUMBER FOR FREQ FON FRIER MINUS DATA SET NUMBER FOR TIME FON -3

Figure 3. (Continued).

ENTEP ISTART

32

ENTER 100 FOR PRINT, 010 FOR CALCOMP PLOT, OR 001 FOR TTV PLOT

100

LINE REAL IMAG	LP
1 9.9642+00 0.0000	19.97
2 7.9304+00 0.0000	17.99
3 5.7368+00 0.0000	15.17
4 3.7890+00 0.0000	11.57
5 2.4159+00 0.0000	7.66
6 2.1945+00 0.0000	6.83
7 2.1677+00 0.0000	6.72
8 2.1481+00 0.0000	6.64
9 2.9394+00 0.0000	9 • 37
10 5.8219+00 0.0000	15.30
11 8.5047+00 0.0000	18 • 59
12 1.0591+01 0.0000	20.50
13 1.1732+01 0.0000	21 • 39
14 1.1954+01 0.0000	21.55
15 1.1914+01 0.0000	21.52
16 1.1401+01 0.0000	21.14
17 9.9782+00 0.0000	19.98
18 7.9452+00 0.0000	18-00
19 5.7514+00 0.0000	15.20
20 3.8028+00 0.0000	11.60
21 2.4272+00 0.0000	7.76
22 2.1948+00 0.0000	6.83
23 2.1679+00 0.0000	6.72
24 2.1486+00 0.0000	6-64
25 2.9717+40 0.0000	9.46
26 5.8435+00 0.0000	15.33
27 8.5195+00 0.0000	18.61
28 1.0603+01 0.0000	20.51
29 1.1739+01 0.0000	21.39
30 1.1955+01 0.0000	21.55
31 1-1917+01 0-0000	21.52
32 1.1409+01 0.0000	21.15

ENTER A FOR PRINT OF DATA SET FROM CIRCUS ENTER PLUS DATA SET NUMBER FOR FREA FON ENTER MINUS DATA SET NUMBER FOR TIME FON

3

Figure 3. (Continued).

after execution begins indicate a data set size of 65, the number of points in a transform to be 32, and the number of data sets to be 5 (these correspond to the 5 variables in the PLOT statement, see Figure 2). A message set then follows which requests the entry of an integer, a zero for print of a data set, a positive data set number for output of the frequency function, or a negative data set number for output of the time function.

The example shows the entry of a zero followed by another zero in answer to the next question, thus indicating data set number 0 (the time listing). This is followed by the 65 entries from CIRCUS making up data set 0. After the printing of these data is complete, the original questions pertaining to the data desired are repeated as shown in the example of Figure 3. This time a print of data set 3, the node 4 output voltage, from CIRCUS was requested.

The next response was a +3 requesting the frequency domain representation of data set number 3. The program then requests the value of ISTART, an integer specifying the starting index for the 32 values to be used in the transform. Care should be exercised to insure that ISTART is never greater than the number of points in the data set minus the number of points required for a transform; otherwise, the transform data will be taken from two adjacent data sets (or partially from an adjacent storage area) and the transform will be meaningless.

After entry of the value of ISTART, the period of the time function is displayed. This display occurs only on the first call for either a time function or a frequency function.

Next a statement relative to the type output desired is displayed. The code for response to this statement is 100 for print, 010 for Calcomp plot, and 001 for teletype plot. The example shows a request for print, followed by a printing of the 32 values of the frequency function obtained from the original data set number 3 starting at array element number 32. The three output types may be called individually, in pairs, or all at one time. For example, responding with 111 would generate printed output, a Calcomp plot, and a teletype plot of the specified data set. The response 101 would produce printed output and a teletype plot.

After execution of the print command in the example of Figure 3, the program cycles back to the first set of questions and asks again for the entry of a 0, or plus or minus a data set number. The response in the example of -3 indicates a request for the time waveform of data set number 3. Next, in response to the questions generated by the program, ISTART is specified as 32, and an output type of 100 (printed output) is entered by entry of the number 100. This is followed by a print of the 32 data points which would be input to the FFT had a frequency function been called. These 32 points are from data set 3, starting at element number 32 and ending at element number 63. This provision for selecting any 32 consecutive points desired from a 65 point data set allows the first part of the data to be skipped when it contains a transient response.

After execution of the given command the program again responds with a request for output data type desired. The example of Figure 3 shows a request for the frequency function of data set 3 starting with data set element number 32 and for a teletype plot of these data by entry of 001 to the request for output type. The program next asks for entry of FLO, the lowest frequency desired in the plot. This can be any frequency compatible with the size of the stored frequency function. Entry of this frequency is followed by a request for entry of FHI, the highest frequency desired in the teletype plot. Entry of these two frequencies satisfies the requirements of the program and a plot is produced on the teletype as shown in the example of Figure 4. The ordinate of the plot is displayed horizontally and is calibrated in decibels with automatic scaling. The abscissa of the plot appears vertically (along the teletype paper) and can be any length. This axis along the paper is the frequency axis extending from the FLO to FHI specified.

Completion of the teletype plot again generates the request for the output data desired which in the example is answered by a -3, a request for the time function of data set number 3. Again the request for ISTART is responded to with a 32 and a teletype plot is requested by entry of 001. Since a time plot has been specified, the program requests that the starting and stopping value of the index of the data array be entered.

4

```
ENTER ISTART
32
THE PEPIOD OF THE TIME FUNCTION = 4.0000-06 SEC
ENTER 120 FOR PRINT, 010 FOR CALCUMP PLOT, OF 001 FOR TTY PLOT
991
ENTER FLO
-3.75E6
ENTER FHI
3.75E6
   NSIZF = 31
                DECIPELS
 FREQUENCY (MHZ)
                                      10
             - 20
                      - 10
      - 30
       I----I----I-----I
 -3.750 I
 -3.500 I
 -3.250 I
 -3.000 I
 -2.750 I
  -2.500 I----
 -2.250 I
 -2.000 I-----
 -1.750 I
 -1.500 I-----
  -1.250 I
  -1.000 I----
  -.750 I
  -. 500 I-----
  -.250 I
   .000 I----
   .250 I
   .500 I-----
   .750 I
   1.000 I-----
   1.250 I
   1.500 I-----
   1.750 I
   2.000 1-----
   2.250 I
   2.500 I----
   2.750 I
   3.000 I
   3.250 I
   3.500 I
   3.750 I
     FPER
 ENTER O FOR PRINT OF DATA SET FROM CIRCUS
 ENTER PLUS DATA SET NUMBER FOR FPEO FCN
 ENTER MINUS DATA SET NUMBER FOR TIME FON
 - 3
```

Figure 4. Spectrum of Data Set 3.

The data array available for the time plot is contained in an array having the length of the transform array specified (in this case 32). Any stopping value up to the maximum length of the array may be specified (in this case 32). The entry shown is 32. The next request by the program is that for NJUMP which specifies the number of points skipped in the array between points plotted. This allows skipping points between plotted points and is a very useful feature when large data arrays are processed. In the example shown the transform data array size is small and the value of NJUMP is entered as 1. The output is shown in Figure 5 which displays the time waveform of the amplifier output.

The last request illustrated is that for a Calcomp plot. The Calcomp plotting routines and methods used for setting up the plot files are probably unique with the Georgia Tech 1108 computer. Similar routines and specific control directives should allow the use of the plotting routines with a minimum of changes at other installations. The Calcomp frequency plot routine contains as its last instruction a write statement to write a message "Plot Complete" indicating that the program has processed the plot routine. The command to generate a Calcomp plot of the frequency function is a plus data set number (3 in this case) followed by ISTART (32) followed by 010. These instructions are shown in Figure 6, and the resulting plot in Figure 7.

To exit the program, the command @EOF is given. The remaining information relative to the Calcomp plot and the time to execute the run is generated by the computer.

B. Use of ECAP for Transfer Function Evaluation

One of the difficulties frequently encountered in the use of CIRCUS was that of obtaining an accurate representation of a circuit for analysis. If the circuit description presented to CIRCUS is not an accurate representation of the actual circuit, then the results produced by CIRCUS will not accurately represent the circuit response. An example of this type of difficulty is that of entering an interstage bandpass filter which contains mutual inductance and is situated between two active

```
ENTER ISTART
32
ENTER 100 FOR PRINT, 010 FOR CALCOMP PLOT, OR 001 FOR TTY PLOT
901
                32 NSTOP MUST BE EQUAL TO UR LESS THAN THIS VALUE
ARPAY SIZE =
ENTER NSTAPT
ENTEP NSTOP
32
ENTEP NJIMP
1
            AMPLITUDE: MIN . 0000 , MAX .1196+02 VOLTS
            .1 .2 .3 .4 .5 .6 .7
                                              .8 .9 1.0
         I ----I ----I ----I ----I ----I ----I ----I
         I
        I
        I
      5
      6
      7
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     53
     24
     25
     26
     27
     28
     29
      30
      31
      35
      N
  ENTER & FOR PRINT OF DATA SET FROM CIRCUS
  ENTER PLUS DATA SET NUMBER FOR FREO FCN
 ENTER MINUS DATA SET NUMBER FOR TIME FON
```

Figure 5. Time Waveform of Data Set 3.

ENTER ISTART

3P
THE PERIOD OF THE TIME FUNCTION = 4.0000-06 SEC

ENTER 100 FOR PRINT, 010 FOR CALCOMP PLOT, OR 001 FOR TTY PLOT

010
ENTER THE HIGHEST DESIPED FREQ IN THE SPECTRUM, FMAX

3.75E6

PLOT COMPLETED
ENTER 0 FOR PRINT OF DATA SET FROM CIPCUS
ENTER PLUS DATA SET NUMBER FOR FREG FCN
ENTER MINUS DATA SET NUMBER FOR TIME FCN
• LOF

PLOT 2.7 MIN 1.3 FT 00F 112072191104 END 1348 MLSEC

Figure 6. Request for Calcomp Plot.

Figure 7. Calcomp Plot of the Frequency Spectrum of the Time Waveform Shown in Figure 5.

devices. Such filters usually have bandwidths wide enough to pass the significant sidebands of a signal of interest after allowing for such factors as frequency instability and temperature effects. For CIRCUS to provide an accurate representation of the circuit response, the transfer function of the filter must meet these bandwidth requirements. Since CIRCUS determines the circuit response by solving for its time response (which yields only a time waveform), the transfer characteristics of the bandpass filter cannot be readily determined from CIRCUS calculations.

In a search for better methods of coping with such problems, other analysis programs were investigated. Those having an a-c analysis capability in the frequency domain were of particular interest since the circuit description could be entered in a manner similar to that used in CIRCUS. If the computed circuit response was not as desired, adjustments in circuit parameters could be made and the transfer function evaluated again. Thus the variation of the transfer function with variation in the value of circuit parameters could be obtained.

With such an a-c analysis capability, much of the guesswork of entering a circuit into CIRCUS could be removed. This is not to say that the response of a filter, for example, is independent of the devices preceding and following it, but that values of circuit parameters could be determined to yield the desired filter response. These could then be adjusted for drive and load impedances, possibly by using CIRCUS to calculate the impedances presented by the circuit external to the filter.

The analysis program ECAP was selected to be used for the a-c analysis calculations. This selection was based largely on the availability of ECAP on the Georgia Tech Univac-1108 computer.

To illustrate the use of ECAP, a fairly complex circuit with a known response was selected. This circuit was the CCS telemetry bandpass filter for which calculated and experimentally determined responses have been previously obtained [1]. A circuit diagram of this filter is shown in Figure 8 with the input transformer replaced by its "T" equivalent circuit. The underlined numbers in the figure show the node numbers used for entry of the circuit into ECAP. The branches are shown in the

Figure 8. Circuit Diagram of CCS Telemetry Filter.

figure as numbers preceded by a "B" and are from left to right and from top to bottom. The circuit description in the format required by ECAP is shown in Figure 9. The circuit response calculated by ECAP agreed very closely with that obtained earlier, and is shown in Figure 10 by the "x" points superimposed on the response calculated previously [1].

A sample of the output produced by ECAP is shown in Figure 11. The output of ECAP is not easily interpreted. ECAP essentially re-executes for each new frequency and therefore produces an excessive amount of superfluous output information. A much easier to interpret output format would result if the output data were displayed in tabular form.

The ability of ECAP to solve for a transfer function of a circuit has been demonstrated and a familiarity with the user program interface was obtained.

C. Conclusions and Recommendations

An interface with the time domain program CIRCUS has been constructed which allows the frequency domain representation of time waveforms generated with CIRCUS to be produced. These frequency domain representations of signals are generated by use of the FFT algorithm. In addition, the capability has been provided for easily obtaining listings of the data sets obtained from CIRCUS, or for generating Calcomp or teletype, time or frequency plots of portions of these data sets.

The a-c analysis capabilities of ECAP have been investigated and found to be a useful tool for accurate preparation of data for input to programs such as CIRCUS. This a-c analysis capability is particularly useful in the evaluation of transfer functions.

It is recommended that the capabilities of the two programs, CIRCUS and ECAP (preferably the latest versions of these programs) be interfaced such that nonlinear circuits could be handled with CIRCUS and linear circuits with ECAP. The link between the frequency and time domains would be the fast Fourier transform algorithm. Part of this interface has already been established with techniques discussed in this section. There remains a need to interface the a-c analysis capabilities of ECAP with the frequency domain data obtained from CIRCUS. A study should be undertaken to determine an efficient method of providing this interface.

```
CCS TELEMETRY BANDPASS FILTER TRANSFER FUNCTION
С
C
      AC ANALYSIS
С
      N(0,1), R = 50 \cdot, E = 1 \cdot / 0 \cdot
ы
      N(1,2), L = -5.358E-6
Sa
      N(0,2), L = 6.06E-6
B3
       N(2,3), L = 51.94E-6
B4
       N(3.4), R = 7.78
B5
       N(0,4), C = 20.7E-12
B6
       N(0.4), h = 5.1E3
B7
       N(4,5), C = 480 \cdot E - 12
B8
       N(5,6), R = 1.7
B9
       N(6,7), L = 10.8E-6
B10
       N(0,7), C = 1368 \cdot E - 12
B11
       N(5.8), C = 510 \cdot E - 12
B12
       N(8,9) R = 8.01
B13
       N(9,10), L = 51 \cdot E - 6
ы14
       N(8,10), C = 16.1E-12
B15
       N(10,11), k = 2.51
B16
       N(11,12), L = 16 \cdot E - 6
B17
       N(0,12), C = 2200 \cdot E - 12
B18
       N(10,12), C = 344.E-12
 B19
       N(10,13), R = 8.01
B20
       N(13,14), L = 51 \cdot E - 6
 B21
       N(10,14), C = 16.9E-12
 B25
       N(0,14), R = 4.7E3
 BS3
       N(:4,15), C = 570 \cdot E - 12
 B24
       N(0,15), C = 1800 \cdot E-12
 B25
        N(0,15), R = 620.
 B26
        FREQUENCY = 1024.E3
        PRINT, VOLTAGES
        MODIFY
        FREQUENCY = .5E6(+25)3.E6
        EXECUTE
        END
```

Figure 9. Circuit Description in ECAP Format.

Figure 10. Comparison of Response Calculation for CCS Telemetry.

	NODES		NO5E-A0F	TAGES		
1A3 PHA	1- (4	•56120345-01 •84115225+02	.39131129+00 .86403404+02	.49595299+00 .83893297+02 -	.49516120+00 —.83313907+02-
AAG PHA	5-	8	•89044465-01 •83921702+02	.89041206-01 .83431645+02	.10424143+00 83431545+02	.13792944-01 10674115+03
MAG PHA	9- 1		•13643413=01 •10122808+03	.12976461-01 .86365494+02	.12969306-01 .84704815+02	.20500370-01 .84609381+02
MAG PH:-	13- 1	5	•12923102-01 •85551819+02	.16596556-01 	.39010933-02 94185616+02	
- 						
	- •	538/5	5705+06			
	NODES		NODE AOF	TAGES		
446				.42413890+00	•56286125+00 •83036861+n2	•56195544+00 •82408597+02
MAG-	NOJES	4	NODE VOL			
MAG PHA MAG	NODES 1-	8	NODE VOL -63436997-01 -83260122+02 -97972777-01	.42413890+00 .85906525+02 .97968375=01 .82546303+02	.83036861+02 	.82408597+02

Figure 11. Sample of ECAP Output.

III. MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS ON A BLOCK BASIS

A. General Description

The Frequency and Time Circuit Analysis Technique (FATCAT) is a computer implemented program for analyzing communications circuits and is designed on a block modeling approach. Circuits are represented as a linear collection of sub-assemblies and FATCAT provides a model block for a variety of sub-assemblies including signal sources, filters, demodulators, amplifiers, limiters, mixers, etc. The program is designed for use with either remote terminal or batch processing mode. For remote terminal operation the program is conversational in nature and provides considerable flexibility to the user. Input statements to specify the circuit configuration, to direct processing, and to direct output are given in alphanumeric codes along with numeric specification of parameters. The input formats were designed to be relatively simple and easy to use.

FATCAT is designed for steady-state analysis of circuits in which the signal flow is sequential; no provision is presently included for feedback loops. The model is designed to operate in both the time domain and the frequency domain. The signal being processed is stored in a complex array as either a frequency domain representation of the signal or one complete period of a time wave form. Transition from one state to another is made using a subroutine which performs a fast Fourier transform. Each model block was developed in whichever domain was most convenient for modeling that block. When calling for signal processing through any block, the domain representation of the signal which currently exists is checked and, if necessary, the conversion is automatically made. The same automatic conversion is available on output calls; this permits examining either the time waveform or the frequency spectrum at the output of any block. Outputs include both printed and plotted values of the time waveform or the frequency spectrum.

The entire program was developed and implemented on a Univac-1108 at Georgia Tech. Operation and command structure of the program along with

examples of using the program are given in the following sections. A brief description of each software unit along with a program listing is given in Appendix C.

After development of the program was completed to its present form, suitable modifications were made to implement it on a SIGMA-5 computer at Marshall Space Flight Center. Appendix D gives program listings of those routines that were changed for use on the SIGMA-5.

B. Program Control

Operation of the program is accomplished by giving a sequence of defined commands, each command being given basically with an alphanumeric string of 6 or less characters. In most cases other data, usually numeric will follow the basic command.

The set of commands can be broken into several categories (1) input (block specification) commands, (2) control commands, and (3) special commands.

After starting execution of the program, the first input command will either be specification of the first block of the circuit, or one of two special commands. These two special commands are (1) the ability to list the command structure of the program, and (2) the ability to list the input formats for all input commands. These two commands are provided as a convenience to the remote terminal user and are described in detail in Section IIIB3.

1. Block Input Commands

Each circuit block is specified with a line entry composed of the alphanumeric code for that block, followed by the parameters of the block. The entry items on a line are separated by commas; no comma is used after the last item. Each block has a specific entry format and these are described below.

The blocks of a circuit are entered sequentially in the order that they occur in the circuit. Thereafter they are identified by number, i.e., the first block entered is block number 1, the second is block

number 2, etc. The block numbers are important in directing processing and outputs.

Flexibility is provided for the remote terminal user in entering the blocks. All blocks comprising a circuit may be entered before any processing takes place, or only part of the blocks may be entered and processed through before the remaining blocks are entered. The user has the option of adding new blocks to the end of the input string at any time (provided the block count does not exceed the maximum allowable number of blocks, currently set at 20). One additional restriction is that if a block containing a source frequency (a mixer with a local oscillator, for example) is to be added after processing has begun, the source frequency must be chosen to be periodic in the time interval represented by the time function stored in the data array. This time interval (PERIOD) is printed out at the beginning of processing so that the choice of a suitable source frequency should be relatively easy.

a. Sources

Two signal source blocks are provided. The first simulates a signal generator and is called with

SIGGEN, FO, FMOD, AM, PM, FM, A

where

FO = carrier frequency (Hz),

FMOD = modulation frequency (Hz),

AM = percent AM modulation,

PM = peak phase deviation (radians),

FM = peak frequency deviation (Hz), and

A = peak amplitude (volts).

The signal generator block provides only sine wave modulation. Combinations of AM-PM or AM-FM modulation may be specified, but not PM-FM (either PM or FM must be zero). As an example, a signal generator with a carrier frequency of 1.0 MHz, a modulation frequency of 10.0 kHz, 50% AM modulation plus FM modulation with β = 2, and a peak amplitude of one volt would be entered as SIGGEN, 1.E6, 1.E4, 50., 0., 2.E4, 1.

A call for processing this block will generate the appropriate time waveform and store it in the data array.

The second signal source is a flat spectrum (impulse time function) generator specified by

FLATSP, AMP, DELF, N

where

AMP = amplitude of spectrum lines,

DELF = frequency separation of spectral lines (Hz), and

N = array size.

The user specified values of DELF and N determine the overall frequency spread of the spectrum being produced and hence determines the period of the impulse function being represented. When using FLATSP, the usual computation of the array size and period is not used. The actual value of N that is used will be a power of 2; if the input N is not a power of 2, it will be automatically raised to meet this requirement. (Example: if N = 500 is specified, N = 512 will be used.)

b. Filters

Eleven different filter blocks are included which simulate the action of Butterworth, Tchebysheff, and synchronously tuned filters in low pass, high pass, bandpass, and (except for sync tuned) band stop confugurations. Since the input statements are similar, the commands will be grouped by types and the inputs for Butterworth, Tchebysheff, and synchronously tuned filters of each type given in that order. The commands for low pass filters are:

BWLOWP, FC, NR
CHLOWP, FC, NR, EPSDB
SYNLP, FC, NR

where

FC = corner frequency (Hz),

NR = number of filter sections, and

EPSDB = Tchebysheff ripple factor in decibels.

The inputs for high pass filters are:

BWHIP, FC, NR

CHHIP, FC, NR, EPSDB

SYNHP, FC, NR

where the parameters are identical to those defined for low pass filters.

The inputs for bandpass filters are:

BWBNDP, FO, BW, NR

CHBNDP, FO, BW, NR, EPSDB

SYNBP, FO, BW, NR

where

FO = center frequency (Hz),

BW = total bandwidth (Hz), (3 dB bandwidth for synchronous and Butterworth filters and ripple amplitude bandwidth for Tchebyscheff filters),

NR = number of filter sections, and

EPSDB = Tchebysheff ripple factor in decibels.

The inputs for band stop filters are:

BWBSTP, FO, BW, NR

CHBSTP, FO, BW, NR, EPSDB

and the parameters are identical to those for band pass filters.

c. Demodulators

Demodulators for AM, FM, and PM are specified, respectively

with

AMDEMO, FO

FMDEMO, FO

PHDEMO, FO

where

FO = center frequency (Hz).

d. Other Blocks

In addition to the blocks categorized above, several other

blocks are provided. An amplifier is specified with

AMP, Gain

where

Gain = amplifier gain in dB.

A limiter is specified with

LIM, CL, CH, GL

where

CL = low clipping level (volts),

CH = high clipping level (volts), and

GL = limiter gain (volts/volt).

A frequency multiplier (a wide band harmonic generator) is specified with

FRQMUL

(no parameters necessary).

An ideal multiplier can be specified with

IDLMUL, ALO, FLO

where

ALO = amplitude of the LO signal (volts), and

FLO = frequency of LO signal (Hz).

2. Control Commands

A number of control commands are used to direct processing and to generate output. Processing of the signal to the output of any block is initiated with the command

BLOCK, N

where N is the number of the block. Note that processing occurs only when this command is given; entry of a block specification does not cause processing through that block.

Signal processing is non-reversible; if processing to the output of a given block has been completed, the outputs of earlier blocks are no longer available. Error detecting features are included in the program so that a BLOCK call with an N that is wrong will not upset the computations.

The command*

PRIME FACTORS

will list the prime factors of all source frequencies. These can be helpful when it is necessary to adjust one or more frequencies slightly so that all source frequencies will be periodic on an interval of reasonable size. A periodic interval that is too long will require an array of excessive size.

The command

END OF JOB

will terminate a run.

Other control commands are used to generate output. Outputs include printed listing, printer type plots, and plotting equipment outputs of both the time function and the frequency function. When any of the output commands are given, the output data is from the block output where processing currently stands. For example, in a six-block circuit, if processing through block 3 has been effected by the command BLOCK 3, then any output generated will be for the output of block 3. To examine the signal at the output of block 5, it will first be necessary to process the signal with BLOCK, 5, and then call for the output.

For a printed listing of the time function, the command is

PRINTT, NSTART, NSTOP

where

NSTART = the starting array index, and

NSTOP = the final array index (not to exceed the array size being used).

In conversational mode, an alternative command is

PRINTT

following which the machine will ask for the starting and stopping indices.

^{*}Only the first six characters of any command are important, and spaces (blanks) are ignored. This command can be abbreviated to PRIMEF.

For a printed listing of the frequency function the command is PRINTF, FLO, FHI

where

FLO = low frequency limit (Hz), and

FHI = high frequency limit (Hz).

Alternatively, the command

PRINTF

will produce questions asking for FLO and FHI, following which the same output will be generated. The use of these parameters permits only the portion of t e spectrum of interest to be printed.

The commands for plotted output utilize the same parameter forms described above, and when operating from a remote terminal the commands can be given with or without the parameters. When the parameters are omitted from the command, the computer will ask for them.

Printer plots (line printer for batch processing, teletype plots for operation from a remote teletype terminal) of the time function are obtained with

TPLOTT, NSTART, NSTOP, NJUMP

where

NJUMP = interval between plotted points and the other parameters are the same as for PRINTT.

Printer plots of the frequency spectrum are generated by

TPLOTF, FLO, FHI

where FLO and FHI are the same as for PRINTF.

Plotter outputs are similarly generated with

CPLOTT, NSTART, NSTOP

for the time function, and

CPLOTF, FLO, FHI

for the frequency function.

3. Special Commands

Three special commands are included for use in connection with establishing the size of the data array. Initial processing of any circuit containing source frequencies (such as those originating in a signal generator or the local oscillator of a mixer) will start with a determination of the smallest time increment on which all of the source frequencies are periodic, and a calculation of an array (sample) size that meets the Nyquist criterion for all frequencies. The calculated period and array size will then be printed out and the user asked if the size is satisfactory. At this point the program is positioned at a special input position, at which only four commands will be recognized:

YES

NO

N, NSIZE

END OF JOB

where NSIZE is an integer which specifies the size of the array. If the answer is NO, the program will ask for input of an integer for NSIZE. For either method of entering NSIZE, the input integer will be adjusted to a power of 2 by increasing it if necessary, and the new values of N, IGAM, and DELTA-T will be printed out. The question of whether these values are satisfactory will then be repeated. Thus this section of the program is a loop and will be exited only when a YES response (or an END OF JOB) is given. Processing of the signal to the block output designated will continue after a YES is entered provided N lies within acceptable limits. To be acceptable, N must be at least as large as the value initially computed in order to meet the Nyquist criterion; at the same time, it must be no larger than the size of the main data array declared in the main program. Since cases can occur where both these conditions cannot be met, recognition of END OF JOB has been included at this point to permit a normal termination of the run. Any attempt to continue a run with N outside the required limits will cause an error termination.

Two other special commands are included as an aid to the remote

terminal user. The command*

LIST COMMANDS

followed by a comma and one of several second words will produce a listing of part or all of the FATCAT commands. Permissible second words, and their effect are:

LIST COMMANDS - print instructions for using list commands,

ALL - list all operating commands,

SOURCES - list commands for inserting source blocks,

FILTERS - list commands for inserting filters,

DEMODULATORS - list commands for inserting demodulators,

MISC - list other block input commands, and

CONTROL COMMANDS - list control commands.

The above instruction will only list the command word for each instruction along with identifying information. Input data formats will not be listed. If the user wants information on the input data format for any block specification command, the command

INPUT FORMAT

followed by a comma and the name of any block specification command will produce a listing of the complete command with the required parameters, and will identify the meaning of each parameter. For example, the command

INPUT FORMAT, BWBNDP

will list the complete input instructions for a Butterworth band pass filter.

The command

INPUT FORMAT, ALL

will list the formats for all of the block specification commands.

^{*}May be abbreviated to LISTCO.

C. Simulation Examples using FATCAT

As examples of the use of the FATCAT program, two sample problems will be presented. Both examples represent receiving systems, the first being an amplitude modulation receiver and the second a frequency modulated receiver.

1. AM Receiver

A block diagram of an amplitude modulated superheterodyne receiver is shown in Figure 12. Figure 12a shows the actual configuration of the receiver, while Figure 12b shows the way that the receiver would presently be modeled using FATCAT. The signal source is presently represented by a signal generator which produces single tone modulated radio frequency signals. In the final version of FATCAT as envisioned, this signal source could be modeled as an actual transmitter with modulators, frequency multipliers and amplifiers. FATCAT does not presently include a propagation model or antenna models. Therefore the output of the signal generator represents the input signal to the receiver. The control program is structured so that additional model blocks such as those for transmitters, propagation, antennas, and many more, can be easily added to the model blocks already included in the program.

The first step in the analysis of the amplitude modulated receiver is a command for the execution of the FATCAT program. Figure 13 shows the command for execution of the program contained in file "R" as absolute element "U". Following this command the program responds with the word "START", which indicates that the program is ready for input commands. Following the sequence of blocks shown in Figure 12b the first input instruction given is that for an AM signal generator with a carrier frequency of 10 MHz, a modulation frequency of 10 kHz, 50 percent amplitude modulation, no phase or frequency modulation, and a carrier peak amplitude of 1 microvolt. This is the "SIGGEN" command shown in Figure 13. Next the command, "BLOCK, 1" is given which requests the program to process the submitted instruction and arrive at the output of block 1. After the first command to process to the output of a block for which

(a) Block Diagram of a Typical AM Receiver.

(b) Sequence of Blocks called in FATCAT to Model AM Receiver.

Figure 12. Block Diagram of Amplitude Modulation Receiver and FATCAT Model of Receiver.

```
exor F.U
START
SIGGEN, 1. E7, 1. E4, 50., 0., 0., 1. E-6
SIGGEN, 1. E7, 1. E4, 50., 0., 0., 1. E-6
PLOCK, 1
 PLOCK, 1
 PERIOD = 1.000-04 SECONDS, DELTA-F = 1.000+04
 N = 2048, IGAM = 11, DELTA-T = 4.883-08
 IS THIS SATISFACTORY
YES
 PROCESSING COMPLETE THRU PLOCK 1
TPLO TF
 TPLO TF
 ENTER LOW, HIGH FREQUENCIES
9.9E6, 10.1E6
     NSIZE =
             21
                         PECIPELS
   FREQUENCY (MHZ)
                                             -130 -120
                                    -140
                           -150
         I-----I-----I-----I
                 - 160
        -170
    9.900 I
    9.910 I
    9.920 I
    9.930 I
    9.940 I
    9.950 I
    9.960 I
    9.970 I
    9.980 1
    9.990 I----
    10.010 I----
    10.020 I
    10.030 I
    10.040 I
    10.050 1
    10.060 I
    10.070 1
    10.080 I
    10.090 I
    10.100 I
        FREG
```

Figure 13. Start of FATCAT Run for AM Receiver, Showing Spectrum at the Output of the Signal Generator.

input data has been submitted (which can be a single block or multiple blocks) the output information shown in Figure 13 is given. mation contains PERIOD which gives the period of the time function, DELTA-F, which is the spacing of possible spectral component in the frequency domain, N which is the array size needed to meet the minimum Nyquist requirements, IGAM the exponent to which 2 is raised to give N, and DELTA-T the sampling interval in the time domain. After the quantities have been printed the program asks if these values are satisfactory. Response to this question can be "YES" or "NO". If a "YES" is given processing proceeds to the output of the block specified. In the example of Figure 2 processing is completed through block 1. If "NO" had been given in response to the above question the program would have responded with "ENTER N, VALUE" which allows a new value of N to be inserted. This provision allows the number of samples per cycle of the highest frequency in the input signals to be increased. This is especially useful for plotting since just over two samples per cycle, which meets the Nyquist criterion, is not adequate for detailed plotting of the time function.

Next it is desirable to observe the output of the signal generator, and an observation of the frequency spectrum was selected. This is produced by the command "TPLOTF" (teletype plot of the frequency function) which is followed by a request for the low and high frequency limits of the spectrum to be observed. These were specified to be 9.9 MHz to 10.1 MHz as shown in Figure 13 and the program produced the spectrum plot shown in that figure. Note that the ordinate of the plot is automatically scaled. The spectrum of the AM signal is displayed with a carrier amplitude of 0.5 microvolts or -126 dB (one side of a two-sided spectrum); the amplitudes of each sideband component is 0.125 microvolt or -138 dB. A print of the frequency function is shown in Figure 14 which shows the amplitude and phase of these spectral components.

The next block in the diagram of Figure 12b is that of a single section Butterworth bandpass filter with a total 3 dB bandwidth of 20 kHz. This block command along with the command to process to the output of block 2 is shown at the top of Figure 15. The 3 dB point of the filter was placed at the sideband frequencies of the AM signal so that the effect of the filter could be observed. The print of Figure 15 when compared

PRINTF
PRINTF
ENTER LOW, HIGH FPEQUENCIES
9.9E6, 10.1F6

LINE	FPER	PEAL	IMAG	MAG	₽₽	PHASE
2015	9.9000+06	. 000	. 999	. 000	-236.18	87.4
2016	9.9100+06	000	. 000	. 000	-234.92	92.1
2017	9.9200+06	. 000	. 000	.000	-234.62	84.1
2018	9.9300+06	.000	. 000	.000	-233.22	82•6
2019	9.9400+06	000	. 000	.000	-232.73	96.0
	9.9500+06	.000	. 000	. 000	-230.36	88 • 2
2020	9.9600+06	. 000	. 999	. 000	-228.22	89.0
2021	9.9700+06	000	. 999	.000	-227.58	92.0
5055		. 000	. 000	. 994	-221.96	82.1
2023	9.9800+06		000	. 000	-138.06	-90.0
2024	9.9900+06	000	000	.000	-126.02	-90.0
2025	1.0000+07		000	.000	-138.96	-90.0
2026	1.0010+07	000	000	.000	- 222 - 49	-81.4
2027	1.0020+07	. 000	· · · -	.000	-228.82	-92.2
2028	1.0030+07	000	000	.000	- 229 • 39	-88.6
2029	1.0040+07	. aaa	000		-231.95	-88.3
2030	1.0050+07	. 000	000	. 000	-235.10	-98.4
2031	1.0060+07	000	000	. 000		-78.3
2032	1.0070+07	. 000	000	.000	-235.84	-80.1
2033	1.0080+07	. 000	000	. 000	-237.52	
2034	1.0090+07	000	000	. 000	-238.36	-96.6
2035	1.0100+07	. 000	000	. 000	-239.76	-86.4

Figure 14. Listing of the Frequency Function at the Output of the Signal Generator.

PWPN DP, 1.E7, 2.E4, 1
PWPN DP, 1.E7, 2.F4, 1
PLO CK, 2
PLO CK, 2
PPO CESSING COMPLETE THRU PLO CK 2
PRINTF
PRINTF
ENTEP LOW, HIGH FREQUENCIES
9.9E5+6, 10.1E6

LINE	FRED	REAL	IMAG	MAG	DB	PHASE
2015	9.9000+06	000	. 000	.000	-256.22	171.7
2016	9.9100+06	000	. 000	. 000	-254.06	175.8
2017	9.9200+06	000	. 000	. 000	-252.75	167.0
2018	9.9300+06	000	. 000	. 000	-250.21	164.5
	9.9400+06	000	. 000	.000	-248-41	176.5
2019	9.9500+06	000	.000	. 000	-244.51	166.9
2020		000	. 000	. 000	-240.53	164.9
5051	9.9600+06	000	.000	. 000	- 237.5F	163.6
2022	9.9700+06	000	. 000	. 000	-228.95	145.6
2023	9.9888+86	. 000	000	. 000	-141.07	-45.0
2024	9.9900+06	000	000	.000	-126.02	-90.0
2025	1.0000+07		000	. 000	-141.07	-135.0
2026	1.0010+07	000	000	.000	-229.48	-144.9
2027	1.0020+07	000	- ·	. 000	-238.82	-163.7
2028	1.0030+07	000	000	. 000	-241.69	-164.6
2029	1.0040+07	000	000		-246.10	-167.0
2030	1.0050+07	000	000	.000	-	-178.9
2031	1.0060+07	000	000	. 666	-250.78	-160.2
2032	1 • 0070+07	000	000	. 000	-252.83	-
2033	1.0080+07	000	000	. 000	-255.64	-162.9
2034	1. 949 9+ 97	000	. 000	. 000	-257.49	179.8
2035	1.0100+07	000	000	. 000	-259.81	-170.7

Figure 15. Listing of Frequency Function at the Output of the First Bandpass Filter.

with Figure 14 verifies this. The sidebands at 9.99 MHz and at 10.01 MHz have an amplitude of -141.07 dB out of the filter and had an amplitude of -138.06 at the input to the filter -- a difference of 3.01 dB. Note that the carrier amplitude is unchanged. A plot of the spectrum at the output of the filter is shown in Figure 16.

Next in the block diagram of the receiver is a mixer. This is modeled in FATCAT as an ideal mixer which produces sum and difference frequencies only. Another useful feature of FATCAT is the input format request command, shown at the top of Figure 17, which can be used when the input format of a block is not known. The request "INPUT FORMAT", followed by a comma, and then followed by the name of a block in the model library, yields the input parameters and their definition as shown in Figure 17 (use of this command has no effect on the circuit being processed). The ideal multiplier IDLMUL requires the peak amplitude of the local oscillator be entered as well as the frequency of the local oscillator. This amplitude in the example was given as 1 volt and the frequency as 9 MHz. This should result in the spectrum of the AM signal being shifted to 1 MHz and 19 MHz. The spectrum around the difference frequency is shown in Figure 17.

The next two blocks of the receiver are made up of a four section Butterworth bandpass filter with a center frequency of 1 MHz and a bandwidth of 20 kHz followed by an amplifier having a gain of 120 dB. The input commands for these blocks and the spectrum at the output of each block are shown in Figures 18 and 19, respectively.

Proceeding along the block diagram of Figure 12b, the next block is an amplitude demodulator. The input commands for this block and the output spectrum are shown in Figure 20. Note that the only two components in the spectrum displayed are the d-c component and the demodulated signal at 10 kHz.

Figure 21 shows the result of a call on the teletype time plot routine. This routine was called to plot the time function at the output of the demodulator. The request for the entry of NSTART, NSTOP, and NJUMP allows the starting point in the array containing the time function to be specified, the stopping point to be specified, and the number of points

```
TPLOTE
TPLO TF
ENTER LOW, HIGH FREQUENCIES
9.916, 10.116
               21
    NSIZE =
                       DECIPELS
  FREQUENCY (MHZ)
                                  -140 -130 -120
                         -150
                -160
      -170
        I----I----I-----I
   9.900 I
   9.910 1
   9.920 I
   9.930 I
   9.940 I
   9.950 I
   9.960 I
   9.970 I
   9.980 I
   9.990 I-
   10.000 I-
   10.010 I-
   10.020 I
   10.030 I
   10.040 I
   10.050 I
   10.060 I
   10.070 I
   10.080 I
   10.090 I
   10.100 I
      FPER
```

Figure 16. Spectrum at the Output of the First Bandpass Filter.

```
INPUT FORMAT, I DLMUL
INPUT FORMAT, I ULMUL
 IILMUL, ALO, FLO
ALO = PEAK AMPLITUDE OF LO SIGNAL, VOLTS
 FLO = FPEO OF LO, HZ
I DLM UL, 1., 9. E6
 I DLM UL, 1., 9. E6
PLOCL+K, 3
 BLOCK, 3
 PPOCESSING COMPLETE THRU PLOCK 3
TPLO TF
 TPLO TF
 ENTEP LOW, HIGH FPEQUENCIES
.9E6, 1.1E6
     NSIZF = 21
                       DECIPELS
  FREQUENCY (MHZ)
                                            - 140
                                   -150
                -170
                         -160
       -180
    .900 I
    .910 I
    .920 I
    .930 I
    .940 I
    .950 I
    .960 I
    .970 I
    .980 I
    .990 1-----
    1.000 I----
    1.010 1-----
    1.020 I
    1.030 I
    1.040 I
    1.050 I
    1.060 I
    1.070 I
    1.080 I
    1.090 I
    1.100 I
      FREG
```

Figure 17. Spectrum at the Output of the Ideal Multiplier.

```
FWENTP, 1. E6, 20. E3, 4
BWBN DP, 1. E6, 20. E3, 4
PLOCK, 4
BLOCK, 4
PROCESSING COMPLETE THRU BLOCK 4
TPLO TF
 TPLO TF
 ENTER LOW, HIGH FREQUENCIES
.9E6, 1.1E6
    NSIZE =
             21
                     DECIPELS
  FPECUENCY (MHZ)
                                         -140 -130
               -170
                                -150
      -180
                        -160
    .900 I
   .910 I
   .920 I
    •930 I
    .940 I
    .950 I
    .960 I
    .970 I
   .980 I
   .990 I----
   1.000 I----
   1.010 1-----
   1.050 I
   1.030 I
   1.040 I
   1.050 I
   1.060 I
   1.070 I
   1.080 I
   1.090 I
   1.100 I
     FREG
```

Figure 18. Spectrum at the Output of the Second Bandpass Filter.

```
AMP, 120.
AMP, 120.
PLOCK, 5
PLOCK, 5
PROCESSING COMPLETE THRU PLOCK 5
TPLOTF
TPLOTE
ENTER LOW, HIGH FREQUENCIES
.9E6, 1.1E6
    NSIZE =
              21
 FREQUENCY (MHZ)
                      DECIPELS
                                         - 20
                                 - 30
       -60
               - 50
                        - 40
       I----I----I----I-----I
   .900 I
   .910 I
   .920 I
   .930 I
   .940 I
   .950 I
   .960 I
   .970 I
   .980 I
   .990 I----
   1.000 I----
   1.010 1-----
   1.020 I
   1.939 I
   1.040 I
   1.050 I
   1.060 I
   1.070 I
   1.080 I
   1.090 I
   1.100 I
```

Figure 19. Spectrum at the Output of the Amplifier.

FRER

```
AM D'EMO
AM DEMO
PLOCK, 6
PLOCK, 6
 PROCESSING COMPLETE THRU BLOCK 6
TPLO TF
 TPLO TF
 ENTER LOW, HIGH FREQUENCIES
u., 200. £3
                21
     NSIZE =
                         DECI BELS
  FPEQUENCY (KHZ)
                                       - 30
                             - 40
                  - 50
         I----I----I----I-----I
  10.000 I-
  20.000 I
  30.000 I
  40.000 I
   50.000 I
  60.000 I
  70.000 I
  80.000 I
  90.000 I
  100.000 I
  110.000 I
  120.000 I
  130.000 1
  140.000 I
  150.000 I
  160.000 I
  170.000 I
  180.000 I
  190.000 I
  200.000 1
       FRER
```

Figure 20. Spectrum at the Output of the AM Demodulator.

```
ENTER NSTART, NSTOP, NJUMP
1,2048,64
                                             .3125+00 VOLTS
                             . 1875+00, MAX
            AMPLITUDE: MIN
                                             . 7
                                                  • 8
                                                      .9 1.0
                                       • 6
                             . 4
                                 • 5
                  . 2
                        • 3
            --I----I----I----I----I
         I -
         I
      1
     65
         I
         I
    159
    193
    257
    321
    385
         I
    449
    513
         Ī
    577
    641
         I
    705
         I
    769
    833
         I
    897
          T
    961
         1
   1025
          Ī
   1089
   1153
   1217
   1281
   1345
   1409
   1473
          I
   1537
          I
   1691
          I
   1665
          I
   1729
          I
    1793
    1857
    1921
          I
    1985
          1
      N
```

TPLOTT
TPLOTT

Figure 21. Time Waveform at the Output of the AM Demodulator.

to be skipped between plotted points to be specified. For the plot of Figure 21 the starting value was 1, the stopping value was 2048, and 64 points were skipped between points plotted.

Figure 22 illustrates the capability of printing the time function by use of the command "PRINTT". Following this command a request for the entry of the low and high array indices is printed. Figure 22 shows a print of the time function from array index 1 to index 30.

A plot of the baseband spectrum at the output of the demodulator is shown in Figure 23 to demonstrate the flexibility of the plotting program. The spectrum can be seen to contain a positive and a negative frequency component as well as a d-c term.

Input of the final block in the AM receiver is shown in Figure 24. This is a five section Tchebysheff lowpass filter with a corner frequency of 10 kHz and an inband ripple of 1 dB. Observation of the 10 kHz component in Figures 23 and 24 indicates that it has been reduced on the order of 1 dB as it should since this component lies at the filter corner frequency.

Exit from the program is effected by entering the command END OF JOB, which is followed in Figure 24 by the time required to simulate the receiver.

2. FM Receiver

The second example is that of the analysis of a proposed frequency modulated receiver. The block diagram used for the FATCAT analysis of the receiver is shown in Figure 25.

The characteristics of the blocks making up the FM receiver are:

- (1) A signal generator with a carrier frequency of 10 MHz, a modulation frequency of 10 kHz, no AM or PM modulation, FM modulation producing a peak frequency deviation of 30 kHz, and a carrier peak amplitude of 1 microvolt.
- (2) A single section Butterworth bandpass filter with a band-width of 80 kHz.
- (3) An ideal mixer with a local oscillator amplitude of 1 volt peak and a frequency of 9 MHz.

PRINTT
PRINTT
ENTER LOW, HIGH INDICES
1,30

LINE	PEAL	IMAG
1	2.058-01	0.000
2	2.057-01	3.341-09
3	2.055-01	3· 147- 09
4	2.054-01	P. 488-09
5	2.053-01	1.673-09
6	2.051-01	2.161-09
7	2.050-01	2.205-09
8	2.049-01	5-001-00
9	2.047-01	1.950-09
10	2.046-01	2.896-09
1.1	2.045-01	2.416-09
12	2.043-01	1.193-09
13	2-042-01	1.673-09
14	2.041-01	2.139-09
15	2.039-01	1.892-09
16	2.038-01	2.765-09
17	2.037-01	1.455-09
18	2.036-01	2.474-09
19	2.034-01	2.387-09
50	2.033-01	2.241-09
21	2.032-01	1.426-09
55	2.031-01	2.212-89
23	2.029-01	1.892-09
24	2.028-01	1.688-89
25	2.027-01	9.022-10
26	2.025-01	1.979-89
27	2.024-01	1.310-09
28	2.023-01	1.630-09
29	2.022-01	1.513-09
30	2.021-01	2.561-09

Figure 22. Listing of Time Function at the Output of the AM Demodulator.

```
TPLOTF
TPLO TF
ENTER LOW, HIGH FREQUENCIES
-1000-. F3, 100. E3
    NSIZE = 21
                       DECIPELS
  FREQUENCY (KHZ)
                                  -30 -20 -10
                          - 40
                - 50
       -60
        I-----I-----I------I
 -90.000 I
 -80.000 I
 -70.000 I
 -60.000 I
 -50.000 I
 -40.000 I
 -30.000 I
 -20.000 I
 -10.000 I-
    .000 I-
   10.000 I
  20.000 I
   30.000 I
   40.000 I
   50.000 I
   60.000 I
   70.000 I
   80.000 I
   90.000 I
  100.000 I
      FRER
```

Figure 23. Spectrum at the Output of the AM Demodulator.

```
CHLOWP, 10. F3, 5, 1.
PLUCK, 7
 PLOCK, 7
PROCESSING COMPLETE THRU FLOCK 7
TPLO TF
 TPLO TF
 ENTER LOW, HIGH FREQUENCIES
a., 200.E3
              21
    NSIZE =
                       DECIPELS
  FREQUENCY (KHZ)
                                            - 20
                                   - 30
                          - 40
       -60
                - 50
        I-----I-----I-----I-----I
    .000 I----
  10.000 I-----
  20.000 I
  30.000 I
  40.000 I
  50.000 I
  60.000 I
  70.000 I
  80.000 I
  90.000 I
  100.000 I
  110.000 I
  120.000 1
  130.000 I
  140.000 I
  150.000 I
  160.000 I
  170.000 I
  180.000 I
  190.000 I
  200.000 I
      FREC
 END OF JOP
```

END OF JOP END 16622 MLSEC

Figure 24. Spectrum at the Output of the Low Pass Filter.

₹-**為**

Figure 25. Block Diagram for FATCAT Analysis of an FM Receiver.

- (4) A six-section intermediate frequency Butterworth bandpass filter with a center frequency of 1 MHz and a bandwidth of 80 kHz.
- (5) An amplifier with a voltage gain of 140 dB.
- (6) A frequency demodulator with a center frequency of 1 MHz.
- (7) A ten-section Butterworth low-pass filter with a cutoff frequency of 15 kHz.

The frequency spectrum at the output of each block of the receiver, from block 1 (the output of the signal generator) to block 6 (the output of the frequency demodulator), is shown in Figures 26 through 31. Figure 26 shows the output from the signal generator for a modulating frequency of 10 kHz and a peak frequency deviation of 30 kHz which gives a modulation index of 3.

The output spectrum of the demodulator (Figure 31) shows distortion products produced by the bandpass filters in the receiver. Figure 32 is a time plot of the output of the frequency demodulator. A print of the frequency function at the frequency demodulator output is shown in Figure 33. This print shows the amplitudes and phases of the distortion products over a greater frequency range than the plot because of the limited 50 dB range of the plot.

Figure 34 shows the baseband spectrum at the output of a 10 section Butterworth low-pass filter with a cutoff frequency of 15 kHz. Figure 35 shows a plot of the time waveform at the output of this filter, and Figure 36 is a print of the frequency function at the filter output. It can be seen from Figure 36 that the ten-section Butterworth filter eliminates virtually all distortion products except the 20 kHz component, and it reduces this component's amplitude approximately 60 dB.

The command END OF JOB terminates the program and is followed by the time required to analyze the FM receiver.

D. Conclusions

A new circuit simulation program, FATCAT, for analyzing communications receiver circuits has been developed to an operational state,

```
exoT P.U
START
SIGGEN, 1. E7, 1. E4, 0., 0., 30. E3, 1. E-6
SIGGEN, 1. E7, 1. E4, 0., 0., 30. E3, 1. E-6
BLOCK, 1
PLOCK, 1
PERIOD = 1.000-04 SECONDS, DELTA-F = 1.000+04
N = 2048, IGAM = 11, DELTA-T = 4.883-08
IS THIS SATISFACTORY
YFS
YES
PROCESSING COMPLETE THRU BLOCK 1
TPLOTF
TPLO TF
ENTER LOW, HIGH FREQUENCIES
9.9E6, 10.1E6
   NSIZE = 21
                DECIBELS
 FREQUENCY (MHZ)
                                   -130
                      -150
          -170
              -160
    -180
      I-----I-----I-----I-----I
  9.900 I
  9.910 I
  9.920 I
  9.930 I--
  9.940 1-----
  9.960 I----
  9.970 1-----
  9.980 I----
  9.990 I----
  10. ADA I----
  10.010 I----
  10.020 1----
  10.030 I----
  10.040 I----
  10.050 1-----
  10.060 I-----
  10.070 I--
  10.080 I
  10.090 I
  10.100 I
    FPEQ
```

Figure 26. Start of FATCAT Run for FM Receiver, Showing Spectrum at the Output of the Signal Generator.

```
EVEN DP, 1. E7, 80. E3, 1
BWENDP, 1. E7, 80. E3, 1
PLOCK, 2
PLOCK, 2
PROCESSING COMPLETE THRU BLOCK 2
TPLOTF, 9.916, 10.116
TPLOTF, 9.9E6, 10.1E6
   NSIZE =
         21
               DECI BELS
 FREQUENCY (MHZ)
                                  -130
                             - 1.40
                      - 150
         -170
                -160
     I----I----I-----I
  9.900 I
  9.910 I
  9.920 I
  9.930 I
  9.940 I-----
  9.950 I-----
  9.960 I-----
  9.97И І----
  9.980 1-----
  9.990 I-----
 10.000 I-----
 10.010 I----
 10.020 I----
 10.030 I----
 10.040 I----
 10.050 I-----
 10.060 1-----
 10.070 I
 10.080 I
 10.090 I
 10.100 I
```

Figure 27. Spectrum at the Output of the First Bandpass Filter.

FREG

```
I DLMUL, 1., 9. E6
I DLMUL, 1., 9. E6
BLOCK, 3
PLOCK, 3
PROCESSING COMPLETE THRU BLOCK 3
TPLOTF, .9E6, 1.1E6
TPLOTF, . 9E6, 1. 1E6
   NSIZE = 21
 FREQUENCY (MHZ)
               DECIBELS.
                                -130
                      -150
                          -140
         -170
               -169
    -180
     I----I----I----I----I
  .900 I
  .910 I
  .920 I
  .930 I
  .940 I---
  .950 I-----
  .960 I-----
  .980 I----
  .990 I-----
  1.000 I-----
  1.010 1----
  1.020 I----
  1.030 I----
  1.040 I----
  1.050 I-----
  1.060 I---
  1.070 I
  1.080 I
  1.090 I
  1.100 I
   FREG
```

Figure 28. Spectrum at the Output of the Ideal Multiplier.

```
PWENDP, 1. E6, 8. E4, 6
PLOV-CK, 4
PLOCK, 4
PROCESSING COMPLETE THRU PLOCK 4
TPLOTF, .9E6, 1.1F6
TPLOTF, . 9E6, 1. 1E6
        21
   NSIZE =
               DECIPELS
 FREQUENCY (MHZ)
                            -140
                                 -130
                      - 150
          -170
                -160
    -180
     I----I----I----I-----I
  .900 I
  .910 I
  .920 I
  .930 I
  .940 I
  .950 I----
  .960 I-----
  .970 I----
  .980 I----
  .990 I----
  1.000 I----
  1.010 I-----
  1.020 I-----
  1.030 1----
  1.040 1-----
  1.050 1----
  1.969 I
  1.070 I
  1.080 I
  1.090 I
  1.100 I
    FPER
```

PWPNDP, 1. E6, 8. E4, 6

Figure 29. Spectrum at the Output of the Second Bandpass Filter.

```
AMP, 140.
AMP, 140.
PLOCK, 5
BLOCK, 5
PROCESSING COMPLETE THRU BLOCK 5
TPLOTF, .9E6, 1.1E6
TPLOTF, . 9E6, 1 . 1E6
  NSIZE = 21
 FREQUENCY (MHZ)
           DECI BELS
                                 10
                - 50
                     -10
        - 30
     I---+---I---+---I
  .900 I
  .910 I
  .920 I
  .930 I
  .940 I
  .950 I----
  .960 I-----
  .970 I----
  .980 I----
  .990 I----
  1.000 I-----
  1.010 I----
  1.020 I----
  1.030 I----
  1.040 1-----
  1.050 1----
  1.969 I
  1.070 I
  1.080 I
  1.090 I
  1.100 I
   FPEO
```

Figure 30. Spectrum at the Output of the Amplifier.

```
FMDEMO,1.E6
BLOCK,6
BLOCK.6
PROCESSING COMPLETE THRU BLOCK 6
TPLOTF,0.,200.E3
TPLOTF,0.,200.E3
    NSIZE = 21
                   DECIBELS
 FREQUENCY (KHZ)
                       -20
                               -10
          -30
       I----I----I
   •000 I
 10.000 I----
 I 000.0S
  30.000 I----
  40.000 I
  50.000 I--
  60.000 I
  70.000 I
  80.000 I
  90.000 I
 100.000 I
 110.000 I
 120.000 I
 130.000 I
 140.000 I
 150.000 I
 160.000 I
 170.000 I
 180.000 I
 190.000 I
 200.00C T
     FHLA
```

FMDEMO, 1 .E6

Figure 31. Spectrum at the Output of the FM Demodulator.

```
TPLOTT
TPLOTT
ENTER NSTART, NSTOP, NJUMP
1,2048,64
            AMPLITUDE: MIN -.2951+01, MAX .2951+01 VOLTS
                            -4
                                       • 6
                                             •7
                                                  •8
                                 •5
                       •3
              • 1
                 •2
         I ---I ---I ---I ---I ----I ----I ----I ----I
         I *
      i
         I
     65
    129
         I
    193
         I
    257
    321
    385
    449
         I
    513
         I
    577
         Ι
    641
         I
    705
         I
    769
         I
    833
         I
    897
         I
    961
   1025
   1089
   1153
   1217
          I
   1281
          I
   1345
   1409
   1473
          I
   1537
          1
   1601
   1665
   1729
          I
   1793
         I *
   1857
   1921
   1985
      N
```

Figure 32. Time Waveform at the Output of the FM Demodulator.

PRINTF
PRINTF
ENTER LOW, HIGH FREQUENCIES
0.,200.E3

LINE	FŘEG	REAL	IMAG	MAG	DB	PHASE
1025	0.0000	000	•000	•000	-164.10	180.0
1026	1 • 0 0 0 0 + 0 4	-1 -384	448	1.454	3.25	-162.1
1027	2.0000+04	•000	•000	•000	-108-66	28•8
1028	3 • 0000 + 04	000	020	•020	-33•92	-90 •0
1029	4.0000+04	•000	000	•000	-110.85	-44.1
1030	5 • 0 0 0 0 + 0 4	001	014	•014	-37.08	-92 • 3
1031	6.0000+04	000	•000	•000	-117.33	130 • 8
1032	7 • 0000 +04	007	001	•007	-43 • 44	-168•6
1033	8 • 0000 + 04	•000	000	•000	-124.88	-17.6
1034	9 • 000 U + 04	•000	•001	•001	-62 • 81	82 • 4
1035	1 • 0000 + 05	000	000	•000	-138-68	-122.5
1036	1 • 1000 + 05	000	000	•000	-72 •29	-132.0
1037	1 -2000 +05	000	•000	•000	-150 • 36	107.8
1038	1 • 3000 + 05	000	•000	•000	-78-32	145.4
1039	1 • 4000 + 05	•000	000	•000	-154 • 60	-40 •4
1040	1 • 5000 + 05	•000	•000	•000	-91.80	53 • 2
1041	1 •6000+05	000	000	•000	-164.34	-160 • 7
1042	1 •7000 +05	000	000	•000	-107.43	-140 • 9
1043	1 •8000 +05	•000	•000	•000	-174 • 48	47.2
1044	1 • 9000 + 05	000	•000	•000	-110.12	104.0
1045	2.0000+05	000	•000	•000	-192.12	100.0

Figure 33. Listing of the Frequency Function at the Output of the FM Demodulator.

```
BWLOWP,15.E3,10.
BWLOWP,15.E3,10.
BLOCK,7
BLOCK,7
PROCESSING COMPLETE THRU BLOCK 7
TPLOTF
TPLOTF
ENTER LOW, KIGH FREQUENCIES
0.,200.E3
    NSIZE =
             21
 FREQUENCY (KHZ)
                    DEC IBELS
          -30
      -40
                       -20
                               -10
       •000 I
 10.000 I----
 20.000 I
 30.000 I
 40.000 I
 50.000 I
 60.000 I
 70.600 I
 80.000 I
 90.000 1
 100.000 I
 110.000 I
 120.000 I
 130.000 I
 140.000 I
 150.000 I
 160.000 I
 170.000 I
 180.000 I
 190.000 I
 200.000 I
     FREQ
```

Figure 34. Spectrum at the Output of the Low Pass Filter.

```
TPLOTT
ENTER NSTART, NSTOP, NJUMP
1,2048,64
          AMPLITUDE: MIN -.2895+01, MAX .2895+01 VOLTS
          .1 .2 .3 .4 .5 .6 .7
                                          .8 .9 1.0
        I----I----I----I
     1
    65
        I
   129
        I
   193
   257
   321
   385
   449
        Ι
    513
        I
    577
        I
    641
    705
    769
        I
    835
        I.
    897
    961
   1025
   1089
   1153
         I
         ι
   1217
         I *
   1281
   1345
         4
   1409
   1473
         I #
         I
   1537
         I
   1601
   1665
   1729
   1793
   1857
   1921
    1985
      N
```

TPLOTT

Figure 35. Time Waveform at the Output of the Low Pass Filter.

PRINTF
PRINTF
ENTER LOW, HIGH FREQUENCIES
0.,200.E3

LINE	FREU	REAL	IMAG	DAG	ĎБ	PHASE
1025	() • () () ()	- • () () :	000	•000	-163 • 69	-1 80 •0
1026	1 • 0 () () () + () 4	• 691	-1.280	1 • 454	3.25	-61 • 6
1027	2.0000+04	000	•000	•000	-133 • 95	147.3
1028	3.00000+04	•000	-•0 ()()	•000	-94 • 18	-81 • 1
1089	4.0000+04	000	000	•000	-170.51	-160.3
1030	5.0000+04	- • () () ()	 () (1()	•000	-140 • 61	-160 • 1
1031	6.0000+04	•000	•000	•000	-175.73	79.9
1032	7 • 0000 +04	•000	000	000ء	-161.78	-34 • 8
1033	8.0000+04	•000	000	•000	-182 • 63	-14.2
1034	9.0000+04	000	000	•000	-169.67	-153.3
1035	1 •0000+05	000	000	•000	-181 -84	-170-3
1036	1 • 1000 + 05	•000	•000	•000	-168.75	51.7
1037	1 •2000 +05	•000	•000	•000	-176.93	54 • 6
1038	1 • 3000 + 05	000	•000	•000	-167.36	159•3
1039	1 • 4000 + 05	•000	000	•000	-182.79	-46 • 1
1040	1.5000+05	•000	000	•000	-168-67	-27. 5
1041	1 • 6000 +05	000	000	.000	-187 • 43	-116.5
1042	1 • 7000 + 05	000	000	•000	-160.39	-150 • 5
1043	1 •8000 +05	•000	•000	•000	-183.37	49.8
1044	1 • 9000 +05	•000	•000	•000	-182 • 41	72.0
1045	2.0000+05	000	000	•000	-180 • 54	-98 • 5

END OF JOB END OF JOB END 19203 MLSEC

Figure 36. Listing of the Frequency Function at the Output of the Low Pass Filter.

although there are many ways in which the system can be improved. The simulation consists of block models of signal sources, filters, amplifiers, mixers, demodulators, etc., along with an operating framework. The program has been fully implemented on both Univac-1108 and SIGMA-5 computers. Use of the present form of the program has shown it to be a useful tool for rapid analysis of communications circuits.

The time and effort available for this work did not permit investigation of numerous ideas for improvement. Additional development work could produce a far more powerful and flexible program. Some of the areas in which additional work should be undertaken are:

- (1) The present signal generator block permits simulation of only simple modulation frequencies. Development of a modulator block in which an arbitrary modulating signal could be stored in a data array is needed.
- (2) Models for coupled circuits are needed.
- (3) Present form of the FM and PM demodulators operate satisfactorily only when the demodulator frequency is perfectly aligned with the carrier frequency, hence no d-c level is generated. Better demodulation models would be desirable.
- (4) Control software could be modified to permit insertion, deletion, or replacement of a given block.
- (5) A restart capability without the necessity of re-entering the circuit blocks would be helpful.
- (6) A routine to print out the circuit description is needed.

IV. TIME DOMAIN SIMULATION

A. Introduction

Digital simulation of a system governed by differential equations can be based upon either a time domain or a frequency domain description of the system. For time domain simulation, the describing differential equations are usually expressed in state variable form and the system response is obtained by numerical integration of the state equations. The time domain simulation method is applicable to both linear and nonlinear systems. For frequency domain simulation, the describing differential equations are expressed in transfer function form, and simulation is accomplished by application of a fast Fourier transform (FFT) algorithm. Frequency domain simulation normally requires less computer time than does time domain simulation, but the transform theory upon which the frequency domain approach is based is limited to linear systems. Accordingly, the simulation of linear systems is usually based upon the frequency domain while that of nonlinear systems is based upon the time domain.

Cascade systems whose only nonlinearities are algebraic are exceptions to the above classification and can be effectively simulated using the FFT algorithm. Since such systems have no feedback, the complete response (for the time range of interest) of the first block or subsystem can be obtained before considering the response of the following blocks. Similarly, the response of the second block can be found after the first block's response has been found. The output of a block represented by an algebraic nonlinearity (e.g., multiplication, saturation, polynomial nonlinearities, etc.) depends only upon the instantaneous input to the block and can be readily determined from the algebraic description of the nonlinearity without recourse to differential equations or frequency domain transfer functions. A cascade system composed of linear dynamic blocks and nonlinear algebraic blocks can be simulated in a serial fashion using the FFT algorithm to transform back and forth between the time and frequency domains as required. This concept has been utilized at the Engineering Experiment Station in the development of the FATCAT simulation described in Section III of this report.

The digital simulation of communication systems with feedback and with nonlinear subsystems requires the use of the complete time domain formulation. The remainder of this section describes the development of a user-oriented communication system block diagram simulation program applicable to cascade or feedback, linear or nonlinear systems. Although the resulting time domain program has general applicability, its use is recommended only for those systems for which the more efficient FFT simulation program (FATCAT) is not applicable.

A number of computer languages have been developed for digital simulation of dynamic systems in recent years. These programming languages, such as MIMIC, DSL-90, CSMP, and CSSL [4], are intended to make it easy for an engineer experienced in analog computer simulation to use a digital computer. The languages have simple input/output instructions and generally have efficient numerical integration algorithms. They can be considered block diagram simulators only in the limiting case where each block is no more complex than a single integration or addition; i.e., only when the block diagram is in reality an analog computer flow diagram. However, at least one of these languages, MIMIC, has a subprogram capability which allows one to construct elementary blocks better suited to communication systems simulation than simple integrators and summers. With these block subprograms the communications system engineer can easily prepare the necessary simulation input data directly from his block diagram. Using the MIMIC simulation language as a basis, a modular time domain simulation program, TIMSIM, has been developed for communication system block diagram simulation. In the following, the basic language MIMIC will be described briefly and its use with TIMSIM will be developed. Application of TIMSIM to the simulation of an AM receiver and an automatic gain control system will also be given.

B. MIMIC: A Continuous System Simulation Language

The simulation language MIMIC was developed at Wright-Patterson AFB in the mid-1960's for the digital simulation of dynamic systems. Detailed instructions for its use are given in the original MIMIC report [5]

and in the previously referenced textbook by Stephenson [4]. Reference should be made to these sources for a more complete description of MIMIC than appears in the following.

The MIMIC language provides a set of functions (including integration) specifically chosen to perform the operations necessary to solve systems of ordinary differential equations. A function is used by listing the name of the output (beginning in column 10) and the name and arguments of the function (beginning in column 19) on standard computer cards. For example, the equation x = log(y) would be programmed by punching "X" in column 10 and "LOG(Y)" in columns 19-24. A block-oriented program for simulating a dynamic system is obtained by first drawing a detailed block diagram of the system and then listing the interconnections of the blocks. The block diagram and MIMIC program for a system described by $\ddot{x} + \dot{x} + x = 0$ for zero initial conditions is given in Figures 37 and 38. The first four lines in Figure 38 correspond directly to the connections at the four blocks in Figure 37. The name NEG2DX was arbitrarily selected to represent the negative of the second derivative of x. The first box follows from $-\ddot{x} = x + \dot{x}$, and the second box and instruction reverse the sign of the variable to give %. The third box and instruction correspond to the integration of $\ddot{\mathbf{x}}$ to give $\dot{\mathbf{x}}$ while the fourth ones further integrate \dot{x} to obtain the variable of interest, x. In the integration instructions, the "0" corresponds to the initial conditions. The detailed block diagram and resulting MIMIC instructions closely follow analog computer programming techniques, but do not require the amplitude scaling and time scaling required for analog computation. The last four MIMIC instructions in Figure 38 are bookkeeping instructions. FIN(T,10) instruction causes the simulation to stop when time, T, reaches ten seconds. The HDR(TIME,X) instruction establishes the headings on the computer output as TIME and X. The OUT(T,X) instruction means that the variables T and X are to be tabulated as simulation output. instruction, END, simply indicates the end of instructions.

The CON and PAR instructions in MIMIC are used to load numerical values for constants and parameters (constants which change from run to

£.

TO THE PARTY OF

Figure 37. Detailed MIMIC Block Diagram for a System Described by $\ddot{\mathbf{x}} + \dot{\mathbf{x}} + \mathbf{x} = 0$.

10	19	
NEG2DX	ADD(X,1DX)	
2DX	NEG (NEG2DX)	
1DX	INT(2DX,0.)	
X	INT(1DX,0.)	
	FIN(T,10.)	
	HDR (TIME,X)	
	OUT(T,X)	
	END	

Figure 38. MIMIC Instructions for Simulation of the System of Figure 37.

run). For example, if the system of Figure 37 had involved a constant, K2, in the differential equation, the instruction "CON(K2)", beginning in column 19, would precede the instructions in Figure 38 and the "END" instruction would be followed by a data card with the value of K2 entered in columns 1-12.

As another MIMIC example, consider unity negative feedback around a lowpass filter as shown in Figure 39. The closed loop transfer function is

$$\frac{X}{U} = \frac{K/(s+A)}{1+K/(s+A)} = \frac{K}{s+(K+A)},$$
 (1)

and the associated differential equation is

$$\dot{\mathbf{x}} = -(\mathbf{K} + \mathbf{A}) \mathbf{X} + \mathbf{K}\mathbf{u} . \tag{2}$$

The corresponding MIMIC program and simulation results for u(t) = 1, K = 1, and A = 0.1 are given in Figure 40.

An alternate method for MIMIC simulation of systems containing frequently occurring subsystems utilizes the subprogram feature of MIMIC. Rather than repeatedly deriving and programming descriptive differential equations for these subsystems, a library of subprograms can be established so that simulation of total systems is essentially reduced to describing the interconnection of the subsystems. Consider the development of a subprogram for the low pass filter previously considered. For subprogram purposes, rename the filter input and output variables as u_1 and x_1 , respectively. The describing differential equation can be shown to be $\dot{x}_1 = K \cdot u_1 - A \cdot x_1$, so that the describing MIMIC equation is

$$X1 = INT(K * U1 - A * X1, 0.)$$
 (3)

The associated subprogram is constructed by adding opening and closing instructions which name the subprogram and provide for arbitrary naming of the variables and constants within the subprogram. The resulting subprogram (named FIRST) for the current example is as follows:

Figure 39. Block Diagram of Feedback Example.

@GT*LIB.MIMIC,IS TEST MIMIC-03.2-06/09/72-10:32:17

@ADD LARRY.1

CADE LARRY			
1*	X	INT(-1.1*X+1.0,0.)	
2*		FIN(T,5.)	
3*		HDR (TIME,X)	
4*		OUT(T,X)	
5*		END	
FURTHER	DIAGNOSTICS AND	EXECUTION FOLLOW*	
TIME	X		
0.00000	0.00000	2.6000	.85703
1.00000-0	9.46962-02	2.7000	.86245
.20000	.17953	2.8000	.86731
.30000	. 25552	2.9000	.87166
.40000	.32360	3.0000	.87556
.50000	.38459	3,1000	.87905
.60000	.43923	3,2000	.88218
.70000	.48817	3,3000	.88499
.80000	.53202	3.4000	.88750
.90000	.57129	3.5000	.88975
1.00000	.60648	3,6000	.89176
1.1000	.63800	3.7000	.89357
1 2000	.66624	3.8000	.89518
1.3000	.69154	3.9000	.89663
1.4000	.71420	4.0000	.89793
1.5000	.73450	4.1000	.89909
1.6000	.75269	4.2000	.90013
1.7000	.76898	4.3000	.90107
1.8000	.78357	4.4000	.90190
1.9000	.79665	4.5000	.90265
2.0000	.80836	4.6000	.90332
2.1000	.81885	4.7000	.90392
2,2000	.82825	4.8000	.90446
2.3000	.83667	4.9000	.90494
2,4000	.84422	5.0000	.90538
2,5000	.85097	5.1000	.90576
2,3000	• • • • • • • • • • • • • • • • • • • •	END 568 M	LSEC

Figure 40. MIMIC Simulation of System of Figure 39.

10 19

FIRST BSP(U1, K, A)

X1 INT(K*U1 - A*X1, 0.)

FIRST ESP(X1) (4)

The letters BSP and ESP are abbreviations for "begin subprogram" and "end subprogram," respectively, and the arguments of BSP name the input variables and constants while that of ESP names the output variable. In calling such a subprogram from the main MIMIC program, the variable names need not be the same as those used in the subprogram but must be in the same order in the calling statement.

A MIMIC program using the low pass filter subprogram in the simulation of the system of Figure 39 is given in Figure 41. Note that lines 2, 3, and 4 are a listing of the subprogram which has been obtained from a library as a package. Instruction 5 describes the feedback connection for u(t) = 1, while instructions 6 and 7 are the instructions required to "call" the desired subprogram. The letters CSP and ESP represent "call subprogram" and "end subprogram", respectively. Comparison of the arguments of CSP and BSP shows that the input to the low pass filter is called "E" in the main program and "U1" within the subprogram, and that the constants "K" and "A" are to have the values 1.0 and 0.1, respectively. Note that the name of the subprogram being called is included on the CSP card. Instructions 7, 8, and 9 are not affected by the use of subprograms. Instruction 1 is a parameter statement which must be used to initialize the subprogram output variable for feedback system simulations; the initial value, 0., is entered in columns 1-12 of a data card.

The use of library subprograms to represent subsystems allows the design engineer to digitally simulate his system without a detailed knowledge of programming or of state variable techniques. In the following, a set of library subprograms for communication subsystems will be developed and presented. The composite system is entitled TIMSIM, for time domain simulation.

@GT*LIB.MIMIC,IS TEST MIMIC-03.2-06/13/72-08:33:42

@ADD LARRY 4		
1*		PAR (X)
2*	FIRST	BSP(U1,K,A)
3*	X1	INT(K*U1-A*X1,0.)
4*	FIRST	ESP(X1)
5*	E	1X
6*	FIRST	CSP(E,1.,.1)
7*		RSP(X)
8*		FIN(T,5.)
^ *		HDR(TIME, E,)
10*		OUT(T,E,X)
11*		END

FURTHER DIAGNOSTICS AND EXECUTION FOLLOW*

ENTER DATA NOW

X 0.00000

Figure 41. Subprogram Example.

C. TIMSIM: A User-Oriented Communications System Block Diagram Simulation Program

TIMSIM is not a new digital simulation language to compete with MIMIC, nor is it really a computer program. Rather, it is an operating philosphy and an expandable library of subprograms in the MIMIC language which represent the dynamics of communication subsystems. The communication subsystems modeled for TIMSIM herein by no means exhaust the possibilities but do provide a representative group of subsystems. Included are subprograms which model AM signal generators, bandpass single-tuned filters, bandpass RC filters, mixers, and lowpass RC filters. The mixer subprogram can also be used as a product detector. The method of development of subprograms is described in sufficient detail to allow users to expand the subprogram library to meet their changing needs.

1. Subprogram Derivation

The single-tuned, bandpass filter subprogram STFIL is based upon the transfer function

$$H(s) = \frac{K}{1 + \frac{f_o}{B} \left(\frac{s}{\omega_o} + \frac{\omega_o}{s}\right)} = \frac{X}{U} , \qquad (5)$$

as given in Pettit and McWhorter [6], where B is the filter 3 dB bandwidth (Hz), f_0 is the filter center frequency (Hz), K is the center frequency gain, and $\omega_0 = 2\pi f_0$. The transfer function can be rewritten as

$$\frac{X}{U} = \frac{sK}{s^2 (f_0/\omega_0 B) + s + (\omega_0 f_0/B)}$$
(6)

from which the corresponding differential equation could be obtained by inspection after cross multiplication with the interpretation of s^r factors as nth derivatives. The resulting differential equation, however, would involve an undesirable derivative of the input, U. This undesirable input signal differentiation can be avoided in the same manner as

with analog computer programming [7] by re-expressing the transfer function as

$$X = \frac{1}{s} \left[2\pi B \left(KU - X \right) - \frac{1}{s} \left(\omega_0^2 X \right) \right] \tag{7}$$

where the complex variables appear only in nested multiplications by 1/s. The desired form of the describing differential equation is obtained by drawing an elementary block diagram for this last expression, selecting the integrator outputs as the state variables, and writing the associated state equations (simultaneous first order differential equations). From Figure 42 the state equations are written as

$$\dot{\mathbf{x}} = 2\pi \mathbf{B} (\mathbf{K}\mathbf{u} - \mathbf{x}) + \mathbf{y}$$

$$\dot{\mathbf{y}} = -\omega_{\mathbf{o}}^{2} \mathbf{x}.$$
(8)

Figure 42. Single-Tuned Filter Flow Diagram.

Prior to writing the associated MIMIM subprogram, program names must be chosen for the variables. One of the requirements of MIMIC is that variable names not be repeated in other subprograms unless they represent exactly the same quantity. Accordingly, the TIMSIM subprograms are written with variable and constant names which end in a three digit number unique to that subprogram. Further, if a subprogram is repeated in a simulation (e.g., two single-tuned filters in one receiver system), the third digit is increased by one in each additional copy of the subprogram. The variable names selected for the single-tuned filter subprogram STFIL and their relationships to the algebraic variables are as follows: $x \rightarrow 0UT110$; $y \rightarrow Y110$; $u \rightarrow XIN110$; $K \rightarrow K110$; $B \rightarrow B110$; $f_0 \rightarrow FRQ110$.

2. IIMSIM Subprogram Library.

Table I contains the subprograms used to model AM signal generators (AMSIG, AMSIG5), single-tuned bandpass filters (STFIL), RC bandpass filters (BPFIL), mixers (MIXER), and RC low-pass filters (LPFIL). Included in the table are the definitions of the subprogram input and output variables.

3. Applications

The operation of TIMSIM is best described by examples. The block diagram of Figure 43 describes a hypothetical communication system consisting of an ideal AM signal generator, single-tuned rf filter, mixer (frequency converter), single-tuned i-f filter, product detector, and low pass filter. The corresponding TIMSIM simulation program is given in Figure 44. The first five instructions establish the names and sequence of appearance of constants whose numerical values are to be entered on the data cards. Instructions 6 through 38 present the library subprograms which model the communication subsystem. Note that both the single-tuned filter and the mixer subsystems appear twice in the AM system diagram so that the corresponding subprograms must also appear in duplicate. As mentioned earlier, the repeated use of a

TABLE I

TIMSIM SUBPROGRAM LIBRARY

```
****BEGIN SUBPROGRAM FOR AMPLITUDE MODULATED SIGNAL GENERATOR.***
                   BSP(XIN100, FRQ100, M100, K100)
          AMSIG
                   6.2831*FRQ100*T
          THT .00
                   K100*(1.+M100*XIN100)*COS(THT100)
          OUT100
                   ESP(OUT100)
          AMSIG
****END OF SUBPROGRAM****
Definitions
          XIN100 = Modulating Voltage
          FRQ100 = Carrier Frequency
                 = Modulation Index
          M100
          K100
                 = Gain
****BEGIN SUBPROGRAM FOR SIN AMPLITUDE MODULATED SIGNAL GENERATOR.
                   BSP(XIN105, FRQ105, M105, K105)
          AMSIG5
                   6.2831*FRQ105*T
          THT 105
                   K105*(1.+M105*XIN105)*SIN(THT10ン)
          OUT105
          AMSIG5
                   ESP(OUT105)
****END OF SUBPROGRAM****
Definitions
          Variables defined similarly to AMSIG above.
****BEGIN SUBPROGRAM FOR SINGLE-TUNED FILTER****
                    BSP(XIN110,B110,FRQ110,K110)
           STFIL
                    INT(Y110+(6.2831*B110)*(K110*XIN110-OUT110),0.)
           OUT110
                    INT(-(6.2831*FRQ110)*(6.2831*FRQ110)*OUT110,0.)
           Y110
                    ESP(OUT110)
           STFIL
 ****END OF SUBPROGRAM****
 Definitions
           XIN110 = Input Voltage
                 = Filter Bandwidth, Hz
           FRQ110 = Filter Center Frequency, Hz
           K110 = Center Frequency Gain
           OUT110 = Output Voltage
```

(Continued)

TABLE I (Continued)

```
****BEGIN SUBPROGRAM FOR MIXER****
                   BSP(XIN120,FRQ120,K120)
          MIXER
                   XIN120*K120*SIN(6.2831*FRQ120*T)
          OUT120
                   ESP(OUT120)
          MIXER
****END OF SUBPROGRAM****
Definitions
          XIN120 = Input Voltage
          FRQ120 = Mixer Product Frequency
                = Gain
          K120
          OUT120 = Output Voltage
****EEGIN SUBPROGRAM FOR LOW-PASS FILTER****
                   BSP(XIN130, FCN130, K130)
          LPFIL
                   INT(6.2831*FCN130*(XIN130-OUT130),0.)
          OUT130
                   ESP(OUT130)
          LPFIL
****END OF SUBPROGRAM****
Definitions
          XIN130 = Input Voltage
          FCN130 = Corner Frequency, Hz
          K130
                = DC Gain
          OUT130 = Output Voltage
****BEGIN SUBPROGRAM FOR RC BANDPASS FILTER****
                    BSP(XIN140, FL140, FH140, K140)
           BPFIL
           WL140
                    6.2831*FL140
                    6.2831*FH140
           WH140
                    INT(WL140*WH140*OUT140,0.)
           Y140
                    INT(K140*WH140*XIN140-(WL140+WH140)*OUT140-Y140,0.)
           OUT140
                    ESP(OUT140)
           BPFIL
 ****END OF SUBPROGRAM****
 Definitions
           XIN140 = Input Voltage
           FL140 = Lower Corner Frequency, Hz
           FH140 = Higher Corner Frequency, Hz
                 = Center Frequency Gain
           OUT140 = Output Voltage
```


Figure 43. Hypothetical AM Communication System.

```
CON(FM,FC,M,K,FO,B)
1*
                          CON(FMIX,KMIX)
2*
                          CON(FO1, BO1, KO1)
3*
                          CON (FMIX1, KMIX1)
4*
                          CON(FLP, KLP)
5*
6****BEGIN SUBPROGRAM FOR AMPLITUDE MODULATED SIGNAL GENERATOR.***
                          BSP(XIN100, FRQ100, M100, K100)
               AMSIG
7*
                          6.2831*FRQ100*T
                THT100
8*
                          K100*(1.+M100*XIN100)*COS(THT100)
               OUT100
9*
                          ESP(OUT100)
                AMSIG
10*
11****END OF SUBPROGRAM AMSIG**************
12****BEGIN SUBPROGRAM FOR SINGLE-TUNED FILTER******
                          BSP(XIN110, B110, FRQ110, K110)
                STFIL
13*
                          INT(Y110+(6.2831*B110)*(K110*XIN110-OUT110),0.)
                OUT110
14*
                          INT(-(6.2831*FRQ110)*(6.2831*FRQ110)*OUT110,0.)
                Y110
15*
                          ESP(OUT110)
                STFIL
16*
17****END OF SUBPROGRAM STFIL******
18****BEGIN SUBPROGRAM FOR MIXER***********
                          BSP(XIN120,FRQ120,K120)
                MIXER
19*
                          XIN120*K120*SIN(6.2831*FRQ120*T)
                OUT120
20*
                          ESP(OUT120)
                MIXER
21*
22****END OF SUBPROGRAM MIXER*************
23****BEGIN SUBPROGRAM FOR SINGLE-TUNED FILTER******
                          BSP(XIN111, B111, FRQ111, K111)
                STFIL1
24*
                          INT(Y111+(6.2831*B111)*(K111*XIN111-OUT111),0.)
                OUT111
25*
                           INT(-(6.2831*FRQ111)*(6.2831*FRQ111)*OUT111,0.)
                Y111
26*
                           ESP(OUT111)
                STFIL1
27*
28****END OF SUBPROGRAM STFIL1******
29****BEGIN SUBPROGRAM FOR MIXER***************
                           BSP(XIN121,FRQ121,K121)
                MIXER1
30*
                           XIN121*K121*SIN(6.2831*FRQ121*T)
                 OUT121
31*
                           ESP(OUT121)
                MIXER1
33*****END OF SUBPROGRAM MIXER1**************
34****BEGIN SUBPROGRAM FOR LOW-PASS FILTER******
                           BSP(XIN130, FCN130, K130)
                 LPFIL
 35*
                           INT(6.2831*FCN130*(XIN130-OUT130),0.)
                 OUT130
 36*
                           ESP(OUT130)
                 LPFIL
 37*
 38****END OF SUBPROGRAM LPFIL**************
                           SIN(6.2831*FM*T)
 39*
                           CSP(X,FC,M,K)
                 AMSIG
 40*
                           RSP(Y)
 41*
                           CSP(Y,B,FO,1.)
                 STFIL
 42*
                           RSP(Z)
 43*
                           CSP(Z,FMIX,KMIX)
                 MIXER
 44*
                           RSP(ZZ)
 45*
                           CSP(ZZ,BO1,FO1,KO1)
                 STFIL1
 46*
                           RSP(ZZZ)
 47*
                           CSP(ZZZ, FMIX1, KMIX1)
                 MIXER1
 48*
                           RSP(OUTPUT)
 49*
                            CSP(OUTPUT,FLP,KLP)
                  LPFIL
 50*
                            RSP(V)
 51*
```

Figure 44. TIMSIM Listing, Hypothetical Communication System. (Continued)

```
1./(50.*FM)
                 DT1
52*
                            1./(20.*FC)
                 DT2
53*
                            (20./(4.*FM))-DT2
                 T1
54*
                 TF
                            2./FM
55*
                 TTEST
                            T-T1
56*
                            FSW(TTEST, TRUE, FALSE, FALSE)
                 TLOGIC
57*
                            COM(TLOGIC)
                 NTLOG
58*
                            EQL(DT1)
                 DT
59* TLOGIC
                            EQL(DT2)
                 DT
60* NTLOG
                            FIN(T,TF)
61*
                            HDR (TIME, X, V)
62*
                            OUT(T,X,V)
63*
64*
```

FURTHER DIAGNOSTICS AND EXECUTION FOLLOW*

ENTER DATA NOW

FM	FC	М	K	FO	В
r ri	10		1 00000 03	1.00000+06	20000.
10000.	1.00000+06	.50000	1.00000-03	1.00000+00	20000.

ENTER DATA NOW

FMIX	KMIX
5.45000+05	10.000

ENTER DATA NOW

FO1	BO1	KO1
4.55000+05	20000.	10.000

ENTER DATA NOW

FMIX1	KMIX1
4.55000+05	100.00

ENTER DATA NOW

FLP KLP 10000. 1.0000

Figure 44. End.

subprogram within a TIMSIM simulation requires renumbering the variable names within each repetition. Accordingly, the second single-tuned filter subprogram is named STFIL1 and the internal variable names terminate in 111 rather than in 110. Instructions 39 through 51 constitute the heart of the TIMSIM input; these are the instructions which describe the system block diagram and specify the subsystem parameters through their calling of the subprograms. For instance, instructions 42 and 43 specify that the subsystem is a single-tuned filter whose input is named y (the output of the AM signal generator) and that the filter bandwidth is the input quantity B, the center frequency is the input quantity FO, and the center frequency gain is unity. Instruction 43 states that the output of the filter is designated Z. Instructions 52-60 result in two separate time spacings between lines of printout; spacing DTl is used for T < Tl while DT2 is used thereafter. This feature is used only when the simulation results of interest are preceded by a transient of no interest. Instructions 61-64 are as in the MIMIC example described earlier. Figures 45 and 46 present the simulation results in tabular and graphical form.

The block diagram of Figure 47 describes a hypothetical Automatic Gain Control (AGC) system used to demonstrate the application of TIMSIM to feedback systems. The corresponding TIMSIM simulation program is given in Figure 48. The first three instructions describe the constants of the simulation; repeated simulations for new values of the constants in the PAR statements can be made without repeating the program listing. Following the library subprograms (instructions 4-28), the interconnection of the AGC system blocks is described by a series of subprogram call statements. Within this group, instruction 35 gives the effect of the feedback signal upon the forward gain, and instruction 44 demonstrates the use of the internal MIMIC function for a limiter. The remainder of the simulation is analogous to that of the AM system discussed earlier. The simulation results are tabulated in Figure 49.

TIME	X	V
0.00000	0.00000	0.00000
2.00000-06	.12533	-9.69228-04
4.00000-06	.24869	-6.16795-03
6.00000-06	.36812	-1.71452-02
8.00000-06	.48175	-3.61954-02
1.00000-05	.58778	-6.83026-02
1.20000-05	.68454	11594
1.40000-05	.77051	 17394
1.60000-05	.84432	23469
1.80000-05	.90482	29958
2.00000-05	.95105	38015
2.20000 -0 5	.98228	48357
2.40000-05	.99803	5 9961
2.60000-05	.99803	70867
2.80000-05	.98229	80481
3.00000-05	.95106	90508
3.20000-05	.90484	-1.0299
3.40000-05	.84434	-1.1756
3.60000-05	.77053	-1.3140
3.80000-05	.68457	-1.4232
4.00000-05	.58781	-1.5143
4.20000-05	.48179	-1.6194
4.40000-05	.36816	-1.7525
4.60000-05	.24873	-1.8900
4.80000-05	.12537	-1.9960
5.00000-05	4.29471-05	-2.0634
5.20000-05	12529	-2.1229
5.40000-05	24864	-2.2064
5.60000-05	36808	-2.3090
5.80000-05	48171	-2.39 3 6
6.00000-05	58774	-2.4340
6.20000-05	68451	-2.4449
6.40000-05	77048	-2.4639
6.60000-05	84430	-2.5082
6.80000-05	90480	-2.5549
7.00000-05	95104	-2.5694 -2.5453
7.20000-05	98228	-2.5433 -2.5109
7.40000-05	99802	-2.4963
7.60000-05	99803	-2.4963 -2.4999
7.80000-05	98230	-2.4999 -2.4928
8.00000-05	95108	-2.4537
8.20000-05	90486 94437	-2.3932
8.40000-05	84437 77056	-2.3409
8.60000-05	68460	-2.3125
8.80000-05	58785	-2.2943
9.00000-05		-2.2608
9.20000-05	48182 36820	-2.2047
9.40000-05	-,24877	-2.1453
9.60000-05	24677 12542	-2.1069
9.80000-05	12342 -8.59539-05	-2.0929
1.00000-04	-0.77777-07	-4,0747

Figure 45. TIMSIM Results, Hypothetical AM Communication System. (Contined)

1.02000-04	.12525	-2.0830
1.04000-04	.24860	-2.0566
1.06000-04	.36804	-2.C173
1.08000-04	.48167	-1. 9894
1.10000-04	.58771	-1.9916
1.12000-04	.68448	-2.0153
1.14000-04	.77045	-2.0339
1.16000-04	.84427	-2.0326
1.18000-04	.90478	-2.0267
1.20000-04	.95102	-2.0456
1.22000-04	.98227	-2.0982
1.24000-04	.99802	-2.1612
1.26000-04	.99803	-2.2036
1.28000-04	.98231	-2.2228
1.30000-04	.95109	-2.2486
1.32000-04	.90488	-2.3094
1.34000-04	.84439	-2.3969
1.36000-04	.77059	-2.4735
1.38000-04	.68463	-2.5141
1.40000-04	.58788	-2.5358
1.42000-04	.48186	- 2.5782
1.44000-04	.36824	-2.6564
1.46000-04	.24881	-2.7415
1.48000-04	.12546	-2.7927
1.50000-04	1.29795-04	-2.8040
1.52000-04	12520	-2.8107
1.54000-04	24056	-2.8478
1.56000-04	36800	-2.9085
1.58000-04	48163	- 2.9521
1.60000-04	58767	-2.9509
1.62000-04	68444	-2.9216
1.64000-04	77042	-2.9045
1.66000-04	84425	-2.9169
1.68000-04	90476	-2.9340
1.70000-04	95101	-2.9193
1.72000-04	98226	-2.8665
1.74000-04	99802	-2.8058
1.76000-04	99804	-2.7679
1.78000-04	98232	-2.7506
1.80000-04	95110	-2.7236
1.82000-04	90489	-2.6652
1.84000-04	84441	-2.5864
1.86000-04	77062	-2.5178
1.88000-04	68467	-2.475 0
1.90000-04	58792	-2,4436
1.92000-04	48190	-2.3973
1.94000-04	36828	-2.3291
1.96000-04	24886	-2.2585
1.98000-04	12550	-2.2105
2.00000-04	-1.74173-04	-2.1878
2.02000-04	.12516	-2.1696
END 39256	MLSEC	

Figure 45. End.

Figure 46. Plot of TIMSIM Results for AM System.

Figure 47. Hypothetical Automatic Gain Control System.

```
CON (FC, KP, BW, K1, VSET)
1*
                           PAR (X4, FCR, KF, TPOINT, TF, KFORWD)
2*
                           PAR (FM)
4****BEGIN SUBPROGRAM FOR LOW-PASS FILTER***
                           BSP(XIN130, FCN130, K130)
              LPFIL
5*
                           INT(6.2831*FCN130*(XIN130-OUT130),0.)
              OUT130
6*
                           ESP(OUT130)
              LPFIL
 7*
8***
     **END OF SUBPROGRAM***
 9****BEGIN SUBPROGRAM FOR SINGLE-TUNED FILTER****
                           BSP(XIN110, B110, FRQ110, K110)
               STFIL
10%
                           INT(Y110+(6.2831*B110)*(K110*XIN110-OUT110),G.)
               OUT110
11*
                           INT(-(6.2831*FRQ110)*(6.2831*FRQ110)*OUT110,0.)
               Y110
12*
               STFIL
                           ESP(OUT110)
13*
14****
       END OF SUBPROGRAM****
15****BEGIN SUBPROGRAM FOR SIN AMPLITUDE MODULATED SIGNAL GENERATOR.
                            BSP(XIN105, FRQ105, M105, K105)
               AMSIG5
16*
                            6.2831*FRQ105*T
               THT105
17*
                            K105*(1.+M105*XIN105)*SIN(THT105)
               OUT105
18*
                            ESP(OUT105)
19*
               AMSIG5
20*****END OF SUBPROGRAM****
21*
     ***BEGIN SUBPROGRAM FOR RC BANDPASS FILTER****
                            BSP(XIN140, FL140, FH140, K140)
               BPFIL
22*
                            6.2831*FL140
               WL140
23*
                            6.2831*FH140
               WH140
24*
                            INT(WL140*WH140*OUT140,0.)
               Y140
 25*
                            INT(K140*WH140*XIN140-(WL140+WH140)*OUT140-Y140,0.)
               OUT140
 26*
                            ESP(OUT140)
               BPFIL
 27*
 28****END OF SUBPROGRAM***
                            SIN(6.2831*FM*T)
               XIN
 29*
                            CSP(XIN,FC,.95,1.)
                AMSIG5
 30*
                            RSP(XX)
 31*
                             CSP(XX,BW,FC,1.)
                STFIL
 32*
                            RSP(X)
 33*
                            KP*X
                X1
 34*
                             1. - K1*VF
                KVAR
 35*
                             KVAR*X1*KFORWD
                X2
 36*
                             X2*SIN(6.2831*FC*T)
                Х3
 37*
                             CSP(X3,.5*FM,.2*FC,1.)
                BPFIL
 38*
                             RSP(X5)
 39*
                             CSP(X3,FCR,1.)
                LPFIL
 40*
                             RSP(X4)
 41*
                             KF*(X4-VSET)
                VF1
 42*
                             .9/K1
 43*
                VFLIM
                             LIM(VF1,-VFLIM, VFLIM)
                VF
 44*
```

Figure 48. TIMSIM Listing, Automatic Gain Control System. (Continued).

```
0.05/FCR
               DT1
45*
                            .50/FC
               DT2
46*
                            TPOINT - DT2
               T1
47*
                            T-T1
               TTEST
48*
                            FSW(TTEST, TRUE, FALSE, FALSE)
               TLOGIC
49*
                            COM (TLOGIC)
               NTLOG
50*
                            EQL(DT1)
51* TLOGIC
               DT
                            EQL(DT2)
52* NTLOG
               DT
                            FIN(T,TF)
53*
                            HDR(TIME, X3, X4, VF, X5)
54*
                            OUT(T,X3,X4,VF,X5)
55*
                            END
56*
```

FURTHER DIAGNOSTICS AND EXECUTION FOLLOW*

ENTER DATA NOW

EC	KP	BW	K1	VSET
FC		- ···	1 00000 01	1.0000
10000.	2.00000-03	5000.0	1.00000-01	1.0000

ENTER DATA NOW

0	100.	3.	4.E-3	6. E- 3	1.E4
X4	FCR	KF	TPOINT	TF	KFORWD
0.00000	100.00	3,0000	4.00000-03	6.00000-03	10000.

ENTER DATA NOW 1000. FM 1000.0

Figure 48. End.

			•••	VE
TIME	X3	X4	VF	X5 0.00000
0.00000	0.00000	0.00000	-3.0000	-3.42534-02
5.00000-04	-4.07690-05	2.8968	5.6903	
1.00000-03	1.02872-04	2.6581	4.9742	-1.5398
1.50000-03	-6.78247-05	3.4256	7.2767	38317
2.00000-03	1.8412 0- 04	2.9041	5.7124	63602
2.50000-03	-9.51716-05	3.4685	7.4054	-1.71602-02
3.00000-03	2.84755-04	2.9241	5.7723	47952 2.04278 02
3.50000-03	-1.15230-04	3.4720	7.4159	3.04278-02
4.00000-03	3.95770-04	2.9258	5.7773	46301 .34545
4.05000-03	3.01825-04	2.9397	5.8191	1.1311
4.10000-03	1.84063-04	2.9858	5.9573	1.7666
4.15000-03	6.21273-05	3.0570	6.1709	
4.20000-03	-4.57693-05	3.1427	6.4279	2.1556
4.25000-03	-1.27702-04	3.2317	6.6947	2.2567
4.30000-03	-1.79128-04	3.3140	6.9417	2.0872
4.35000-03	-2.00990-04	3.3825	7.1474	1.7065
4.40000-03	-1.97042-04	3.4329	7.2985	1.1917
4.45000-03	-1.71074-04	3.4630	7.3889	.61588
4.50000-03	-1.25771-04	3.4723	7.4168	3.57353-02
4.55000-03	-6.23912-05	3.4610	7.3829	51181
4,60 0 00-03	1.81439-05	3.4298	7.2894	-1.0048
4.65000-03	1.14925-04	3.3801	7.1404	-1.4290
4.70000-03	2.24564-04	3.3142	6.9426	-1.7688
4.75000-03	3.39990-04	3.2358	6.7074	-2.0009
4.80000-03	4.49451-04	3.1508	6.4525	-2.0913
4.85000-03	5.37047-04	3.0675	6.2026	-2.0006
4.90000-03	5.85543-04	2.9958	5.9874	-1.6962
		0.0450	E 0276	-1.1710
4.95000-03	5.81355-04	2.9459	5.8376 5.7778	 46135
5.00000-03	5.20045-04	2.9259		.34709
5.05000-03	4 09642-04	2.9399	5.8195	1.1327
5.10000-03	2.68857-04	2.9859	5.9577	1.7682
5.15000-03	1.21864-04	3.0571	6.1712	2.1572
5.20000-03	-9.49593-06	3.1428	6.4282	2.1572
5.25000-03	-1.10613-04	3.2317	6.6950	2.0888
5.30000-03	-1.75682-04	3.3140	6.9419	
5.35000-03	-2.05506-04	3.3826	7.1476	1.7080
5.40000-03	-2.04383-04	3.4329	7.2987	1.1931
5.45000-03	-1.76745-04	3.4630	7.3891	.61719 3.69046-02
5.50000-03	-1.25781-04	3.4723	7.4170	
5.55000-03	-5.30914-05	3.4610	7.3830	51079 -1.0039
5.60000-03	4.04190-05	3.4299	7.2896	
5.65000-03	1.53555-04	3.3802	7.1405	-1.4282 -1.7683
5.70000-03	2.82489-04	3.3142	6.9427	
5.75000-03	4.19098-04	3.2358	6.7075	-2.0004 2.0010
5.80000-03	5.49811-04	3.1509	6.4527	-2.0910
5.85000-03	6.56145-04	3.0676	6.2027	-2.0004
5.90000-03	7.17897-04	2.9958	5.9875	-1.6960
5.95000-03	7.18865-04	2.9459	5.8377	-1.1707 46005
6.00000-03	6.53252-04	2.9260	5.7779	46095 24764
6.05000-03	5.29630-04	2.9399	5.8196	.34764

Figure 49. TIMSIM Results, AGC System.

D. Conclusions

As stated earlier, TIMSIM is basically a simulation philosophy rather than a program or language; it has been presented here within the framework of the simulation language MIMIC. Several subprograms representative of communication system building blocks have been presented and the method of generation of subprograms has been demonstrated so that additional subprograms can be generated as desired by the user. It is worth noting that the TIMSIM concept is also applicable to non-communication systems. Appropriate subprograms can be developed for mechanical systems, and control systems, etc.

V. REFERENCES

- 1. Holland, L. D., J. R. Walsh and R. D. Wetherington, Communication System Modeling, Technical Report No. 9, Contract No. NASS-20054, Georgia Institute of Technology, Engineering Experiment Station, 19 November 1971.
- Walsh, J. R., R. D. Wetherington and L. D. Holland, <u>Circuit Detail</u> <u>Modeling of the Airlock Module Transmitter</u>, Technical Report No. 10, <u>Contract No. NAS8-20054</u>, Georgia Institute of Technology, Engineer-ing Experiment Station, 19 November 1971.
- 3. Milliman, L. D., W. A. Massena and R. H. Dickhaut, A Digital Computer Program for Transient Analysis of Electronic Circuits Users Guide, Report 346-1, Contract No. DA-49-186-AMC-346(X), The Boeing Company, Seattle, Washington, January 1967.
- 4. Stephenson, R. E., <u>Computer Simulation for Engineers</u>, Harcourt, Brace, Jovanovich, Inc., New York, N. Y., 1971, pp 163-165.
- 5. Peterson, H. E., F. J. Sanson and L. M. Warshawsky, MIMIC A

 <u>Digital Simulation Program</u>, SESCA Internal Memo 65-12, Directorate
 for Computation, Deputy for Studies and Analysis, Systems Engineering Group, Wright-Patterson AFB, Ohio, May 1965.
- 6. Pettit, J. M., and M. M. McWhorter, <u>Electronic Amplifier Circuits</u>, McGraw-Hill, New York, N. Y., 1961, p 168.
- 7. Ogata, K., State Space Analysis of Control Systems, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967, p 182.

APPENDIX A

Listing of Software Modification to CIRCUS to Write Output Data into External File.

```
SUBROUTINE LINK 6A (PLOT, NPNT, TIME, DUMY2, LFLAG, DUMY3, NWP,
                     DELT, NREAD )
    1
     INTEGER HOUR(2), DAY(2)
     DIMENSION WORD(1), PLOT(NPNT,1), TIME(1)
     DIMENSION NWORD(1)
     COMMON WORD, N1, N5, N6, LPDS, LDS, JTIILE(192)
     COMMON INDPLT, IPLOTI, MPLOTS, KPRNT, DUMY1, DTC-JR
     COMMON /SCRTCH/ TITLE(150), AMAX, AMIN, DAY, HOUR, IBAD, IMAX,
              IMIN, KK, LA, NGC, NN, J, NWIPE, P, 1, 11, 12, 13, 14,
    1
              XPLCTS. A
     EQUIVALENCE ( WORD(126), N7 ), ( WORD(38), N2 )
     FOUTVALENCE ( WORD (33) + LINTVL )
     ROUIVALENCE ( MORD.NWORD )
     EQUIVALENCE ( MORD(109), LYMAX
      EQUIVALENCE ( WORD(110), LYMIN )
     FOUTVALENCE ( WORD(1111) , NPCELL )
     EQUIVALENCE ( WORD(112).LPLT
     NR = 51
      `vC = 21
      IF ( LFLAG-1 ) 390,385,390
  385 CONTINUE
      LFLAG = 2
      WRITE (N7) ( PLOP(I.1). I=1.NWIPE )
      NREAD = NWIPE
      REWIND N7
      READ (N2) XPLOTS, (TITLE(I), I=1, NPLOTS)
  39% CONTINUE
      WRITE (N6,30)
C**** READ TIME AND PLOT VARIABLES FOR NPN! VALUES OF TIME.
      VIVL = NAP
      APL = NPCELL/63
      36 213 JX=1,NPL
      NVK = NVL + (60* (NPLOTS+1)) - 1
      READ (N2) (PLOT(I+1)+ I=NWL+NWK)
      NWL = NWK+1
      CONTINUE
 210
      NPL = MPLOTS+1
      MINL = NWP
      00 230 JX=1,NPNT
      TIME(JX) = PLOT(NWL+1)
      PO 220 I=1.NPLOTS
      NRL = NML+1
      PLOT(JX \bullet I) = PLOT(N \lor L \bullet I)
     CONTINUE
       MAL = NWL+1
 230
      CONTINUE
      CALL CLOCK (6HRSTIME , IDUM)
      DO 21 J=1, NPLOTS
       REF = PLOT(1.J)
       AMAX = REF
       AMIN = REF
```

*

LINK6A (Continued)

```
C**** FIND MAXIMUM AND MINIMUM OF EACH VARIABLE
      DO 41 I=1, NPNT
      IF (AMAX.GT.PLOT(I.J)) GO TO 40
      AMAX = PLOT(I,J)
      IMAX = I
   40 IF (AMIN.LT.PLOT(I,J)) GO TO 41
      AMIN = PLOT(I,J)
      IMIN = I
   41 CONTINUE
      IF (ABS(AMAX-REF).GT.ABS(AMIN-REF)) GO TO 42
C**** USE *FINDER* TO DETERMINE 10 - 90 PERCENT RISE AND FALL
C**** TIMES FOR PREDOMINATELY POSITIVE VARIABLES.
      PT1 = .1*(AVIN-REF)+REF
      CALL FINDER ( IMIN, NPNT, 1, IMIN, T4, T1, PLOT(1, J), TIME )
      PT1 = .9*(AMIN-REF)+REF
      CALL FINDER ( IMIN, NPNT, 1, IMIN, T3, T2, PLOT(1, J), TIME )
      GO TC 43
   42 CONTINUE
C**** USE *FINDER* TO DETERMINE 10 - 90 PERCENT RISE AND FALL
C**** TIMES FOR PREDOMINATELY POSITIVE VARIABLES.
      PT1 = .1*(AMAX-REF)+REF
      CALL FINDER ( 1, IMAX, IMAX, NPNT, T1, T4, PLOT(1, J), TIME )
      PT1 = .9*(AMAX-REF)+REF
      CALL FINDER ( 1.1MAX, IMAX, NPNT, T2.13, PLOT(1, J), TIME )
   43 CONTINUE
C**** WRITE OUT RISE AND FALL TIMES.
C * * COMMENT BELOW SUPPRESSES PRINT OF RISE AND FALL TIMES.
       wRITE (N6,50) TITLE(J),T1,T2,T3,T4
C
    21 CONTINUE
C**** IF ONLY RESPONSE TIMES DESIRED, RETURN.
       IF (IPLOTI.EQ.4) GO TO 80
C
            INSERT PLOTTING ROUTINES HERE.
C
       CALL PLIDIA(PLOT(NWP.1), NR. NC. TIVE , PLOT. NPNT, NPLOTS.
      1 TITLE DELT NPNT)
 C
       CALL CLOCK (6H*PLOT*, IDUM)
 C * * NEXT TWO COMMENTS SUPPRESS LINE PRINTER PLOTS.
       CALL PLOTER ( PLOT(NWP+1)+NR+NC+TIME+PLOT+NPNT+NPLOTS+
      1 TITLE + DELT + NPNT)
      1 NPNT )
       CALL CLOCK (6HR-PLOT, IDUM)
    80 CONTINUE
       RETURN
    30 FORMAT(////52X15HRESPONSE TIMES//31X PARAMETER4X
      1 8H10 RISE 4X8H90 RISE4X8H10 FALL(X3H00 FALL/)
    50 FORMAT (33XA6+1X1P4E12+4)
       END
```

```
SUBROUTINE PLTDTA(NSCR,NR,NC,TIME,PLOT,NPNT,NPLOTS,

1 TITLE,DELT,NDIM)

DIMENSION PLOT(NDIM,NPLOTS), TITLE(NPLOTS)

PIMENSION NSCR(NR,NC), TIME(NPNT)

WRITE(19) NPNT

FRITE(19) MPLOTS

HRITE(19) TIME

ARITE(19) PLOT

MPITE(19) TITLE

RETURN

END
```

1.3

APPENDIX B

₹.

Listing of Software for Displaying Data Extracted from CIRCUS.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.

MAIN PROGRAM

: 3

```
PARAMETER N = 32
  DIMENSION TIME(5000), PLAT(5000)
  COMPLEX A(N)
  DIMENSION IBUF(10000)
  LOGICAL CPLT, PDPRT, DOMFLG
  CPLT = .FALSE.
  PDPRT = .FALSE.
  DOMFLG = .TRUE.
  READ(19) NPNT
  WRITE(6,200) NPNT
  NP = N
  WRITE(6,202) NP
  READ(19) NPLOTS
  WRITE(6,201) NPLOTS
  CALL ROTF(NPNT; NPLOTS, TIME, PLAT)
  IGAM = ALOG(N) / ALOG(2 \cdot) + \cdot 1
1 WRITE(6,101)
  WRITE(6,1001)
  WRITE(6,2001)
  READ(5,100,ERR=1,END=999) ISWTCH
  IF(ISWTCH .GT. 0) GO TO 2
  IF(ISWTCH .LT. U) GO TO 3
  CALL WRTDTA(NPNT, NPLOTS, TIME, PLAT)
  GO TO 1
2 IF(ISWTCH .GT. NPLOTS) GO TO 50
   WRITE(6,102)
   READ(5,100) ISTART
   DO 10 I = 1.N
   ITQ = I + ISTART - 1 + (ISWTCH - 1) * NPNT
10 A(I) = CMPLX(PLAT(ITQ), 0.)
   TP = ((TIME(ISTART + N - 1) - TIME(ISTART)) / (N -1)) * N
   IF(.NOT. PDPRT) WRITE(6,203) TP
   PDPRT = •TRUE •
   CALL FFT(A, IGAM,-1)
   CALL LFOLD(A:N)
   WRITE(6,103)
   READ(5,100) JSWTCH
   IF(JSWTCH .LT. 100) GO TO 20
   CALL PRNT(A,N)
   JSWTCH = JSWTCH - 100
```

```
20 IF(JSWTCH .EQ. 0) GO TO 1
   DELF = 1. / TP
   IF(JSWTCH .LT. 10) GO TO 30
   IF(.NOT. CPLT) CALL PLOTS(IBUF(1),10000,2)
   CPLT = .TRUE.
   WRITE(6,108)
   READ(5,100) FMAX
   CALL CPLOTF (A, N, DELF, FMAX)
   JSWTCH = JSWTCH - 10
   IF (JSWTCH .EQ. U) GO TO 1
30 CONTINUE
   WRITE(6,104)
   READ(5,100) FLO
   wRITE(6,105)
   READ(5,100) FHI
   CALL TIFP (A, N, DELF, FLO, FHI)
   GO TO 1
 3 ISWTCH = ABS(ISWTCH)
   IF(ISWICH .GT. NPLOTS) GO TO 50
   WRITE(6,102)
   READ(5,100) ISTART
   DO 11 I = 1.N
   ITQ = I + ISTART - 1 + (ISWTCH - 1) * NPNT
11 A(I) = CMPLX(PLAT(ITQ), U.)
    TP = ((TIME(1) - TIME(N)) / (N-1)) * N
    IF(.NOT. PDPRT) WRITE(6,203) TP
    PDPRT = .TRUE.
    wRITE(6,103)
    READ(5,100) JSWTCH
    IF(JSWTCH .LT. 100) GO TO 21
    CALL PRNT(A+N)
    JSWTCH = JSWTCH - 100
 21 IF(JSWTCH .EQ. 0) GU TO 1
    IF(JSWTCH .LT. 10) GO TO 31
    IF(.NOT. CPLT) CALL PLOTS(IBUF(1),10000,2)
    CPLT = .TRUE.
    PLACE CALCOMP TIME PLOTS HERE
    WRITE(6,900)
```

```
JSWTCH = JSWTCH - 10
    IF (JSWTCH .EQ. U) GO TO 1
 31 CONTINUE
    WRITE(6,304) NP
    wRITE(6,3C3)
    READ(5,100) NSTART
    NST = NSTART
    WRITE(6,3C5)
    READ(5,100) NSTOP
    NSP = NSTOP
    wRITE(6,306)
    READ(5,100) NJUMP
    CALL TITP(A, NST, NSP, NJUMP)
    GO TO 1
 50 WRITE(6,107) NPLOTS
    GO TO 1
100 FORMAT( )
101 FORMAT (- ENTER O FOR PRINT OF DATA SET FROM CIRCUS-)
1001 FORMAT (- ENTER PLUS DATA SET NUMBER FOR FREQ FCN-)
2001 FORMAT (- ENTER MINUS DATA SET NUMBER FOR TIME FCN-)
 102 FORMAT(- ENTER ISTART-)
 103 FORMAT (- ENTER 100 FOR PRINT, 010 FOR CALCOMP PLOT, -,
            - OR UU1 FOR TTY PLOT-)
    Α
 104 FORMAT (- ENTER FLO-)
 105 FORMAT (- ENTER FHI-)
 107 FORMAT(//- ERROR--LARGEST DATA SET NUMBER IS -.12/)
 108 FORMAT (- ENTER THE HIGHEST DESIRED FREQ IN THE SPECTRUM, FMAX-/)
 200 FORMAT (- THE NUMBER OF POINTS PER DATA SET = -, 15)
 201 FORMAT (- THE NUMBER OF DATA SETS = -, 12/)
 202 FORMAT (- THE NUMBER OF POINTS USED IN A TRANSFORM = -, 15)
 203 FORMAT (- THE PERIOD OF THE TIME FUNCTION = -. 1PE11.4, - SEC-/)
 303 FORMAT (- ENTER NSTART-)
 304 FORMAT (- ARRAY SIZE = -, 15, - NSTOP MUST BE EQUAL TO-
             - OR LESS THAN THIS VALUE-/)
    Α
 305 FORMAT (- ENTER NSTOP-)
 306 FORMAT (- ENTER NJUMP-)
 900 FORMAT( - CALCOMP TIME PLOT NOT OFERATIONAL -/)
 999 IF(CPLT) CALL PLOT(0.,0.,999)
     STOP
     END
```

```
SUBROUTINE (PLOTF (A, N, DELF, FMAX)
COMMENTAL THE FOLLOWING CONTROL STATEMENT MUST PRECEED THE
           EXECUTE STATEMENT FOR RUNS USING CALCOMP PLOTS.
C
      QUSE UNIT # TPFS
\langle
 * *
       COMPLEX A(1)
       IR = FRAX / DELF + .Cul
       FMAX = IR * DELF
       FLG = - FYAX
       FHI = FYAX
 1799 FORMAT()
       XTEST = ABS(FHI-FLU)
       IF(XTEST.LT.1.E-3)) GU 10 9999
       XTEST = XTEST/(ABS(FLO) + ABS(FHI))
       IF(XTEST-LT-1-5-3 ) 60 TO 9999
       YSPRED = 70.
       NZ = N/2
       NST = N2 - IR + I
       XSP = N2 + IR + 1
       T1 = 1.E - 35
       00 4 70 I = NST.4SP
       T2 = CAdS(A(I))
  4000 \text{ IF}(T2 \cdot GT \cdot T1) \text{ T1 = T2}
       D3MAX = 20.*ALOG1 (T1)
       CALL SCALE (DAMAX. MAXSCL)
       XMXSCL = MAXSCL
       XKSCAL = 10.**(-X*XSCL/20.)
       CALL FACTOR( 1.4)
        CALL PLOT(0.,-20.,3)
        CALL PLOT(12.,0.,-3)
        CALL PLOT(-1. . , -14 . , 3)
        00 3 I = 1.2
        CALL PLOT(-1--, <-, 2)
        CALL PL( T(10 . . . . . . 2)
        CALL PLOT(10.,-14.,2)
        CALL PLOT(-1: .01,-14.,2)
        CALL PLCT(-1 .01,00,01,2)
        CALL PLOT(10. .1,0. .1.2)
        CALL PLOT(10.01,-14.01.2)
      3 CALL PLOT(-10.,-14. 1.2)
        DO 3000 [AGAIN = 1.2
 \mathsf{C}
 \mathsf{C}
         DO LOOP 10 CALIBRATES THE LEFT PORMER
 \mathsf{C}
        00.101 = ...70
        Y = -14 \cdot + 0 \cdot 2 * I
        IF (MOD(I.5) .EQ. ) GO TO 6
```

```
CALL PLOT (-10.1,Y,3)
     GO TO 8
   6 IF (MOD(I,10) .EQ. 0) GO TO 7
     CALL PLCT (-10.16, Y, 3)
     GO TO 8
   7 CALL PLOT(-1 .2.Y.3)
   5 CALL PLOT (-15., Y, 2)
  10 CONTINUE
     Y = 2.
     00.15 I = 1.8
     J = I - 1
     Y = Y-2
     YY = XMX SCL - 10.*J*YSPRED/70.
  15 CALL NUMBER (-11.09, Y-.1.5, .21, YY, 0., -1)
     CALL SYMBOL(-11.24,-8.4,.21,14HAMPLITUDE (DB),90.0,14)
     FCENTR = (FLO + FHI)/2.
     FUPPER = FHI - FCENTR
      IF(FUPPER.GT.1.0) GO TO 2100
      IEXP = ALOGIO(FUPPER) - 1
      GO TO 2101
216 CONTINUE
     XIEXP = ALOGIC(FUPPER)
      IEXP = XIEXP
      RIEXP = IFXP
      IF((ASS(XIEXP-RIEXP).LT.1.E-20).AND.(XIEXP.GE.RIEXP))
        IEXP = IEXP - 1
 2101 CONTINUE
      FULSCL = FUPPER*(10.**(-IEXP))
      IFLSCL = FULSCL
      ITEMP = 10.*FULSCL
      RITEMP = ITEMP
      SCALE1 = IFLSCL
      SCALE1 = 10.*SCALE1/FULSCL
      TENIFS = 10.*IFLSCL
      SCALE1 = SCALE1/TENIFS
       DO LOOP 40 CALIBRATES THE BOTTOM POSITIVE BORDER
\mathsf{C}
\mathsf{C}
      DO 40 I = 0, ITEMP
      x = I * SCALE1
      IF (MOD(1,5) .FQ. 0) GO TO 32
      CALL PLOT(X,-14.1.3)
      GC TO 36
   32 IF (MOD(I.10) .EQ. J) GO TO 34
      CALL PLOT(X,-14.16,3)
      GO TO 36
   34 CALL PLOT(X,-14.2,3)
   36 CALL PLOT(X,-14.,2)
   40 CONTINUE
```

```
DO LOOP 140 CALIBRATES THE BOTTOM NEGATIVE BORDER
\mathsf{C}
      DO 140 I = 1 \cdot ITEMP
      X = -I*SCALE1
      IF(MOD(1.5).EQ.U)GO TO 132
      CALL PLOT(X_9-14.1.3)
      GO TO 136
  132 IF(VOD(I+10)+FQ+0) GO TO 134
      CALL PLOT(X,-14.16,3)
      GO TO 136
  134 CALL PLOT(X,-14.2,3)
  136 CALL PLOT(X,-14.,2)
  140 CONTINUE
C - -
      DO LOOP 240 CALIBRATES THE TOP POSITIVE BORDER
\mathsf{C}
C * *
       DO 240 1 = 0.1TEMP
       x = I*SCALE1
       IF(MOD(I,5).EQ.J) GO TO 232
       CALL PLOT(X, .1,3)
       GO TO 236
   232 IF(MOD(I+10) +FG+ 0) GO TO 234
       CALL PLCT(X_{\bullet}16,3)
       GO TO 236
   234 CALL PLOT(X . . 2 . 3)
   236 CALL PLOT(X,0.,2)
   240 CONTINUE
C * *
        DO LOOP 340 CALIBRATES THE TOP NEGATIVE BORDER
C
C * *
       DO 340 I = 1.1TEMP
       x = -I*SCALE1
       IF(MOD(I,5).EQ.O) GO TO 332
       CALL PLOT(X, \cdot 1, 3)
       GO TO 336
   332 IF(MOD(I+10)+FG+0) GO TO 334
       CALL PLOT(X, . 16,3)
       GO TO 336
   334 CALL PLOT(X . . 2 . 3)
   336 CALL PLOT(X,0.,2)
   340 CONTINUE
 C - -
          DO LOOP 20 CALIBRATES THE RIGHT HAND BORDER
 C
 C * *
        00 20 1 = 0.70
        Y = -14. + 0.2*I
        IF (MOD(1.5) .EQ. 3) 60 TO 16
        CALL PLOT( 10.1.Y.3)
        GO TO 18
```

```
16 IF (MOD(I.10) .EQ. J) GO TO 17
     CALL PLOT( 15.16, Y, 3)
     GO TO 18
  17 CALL PLOT( 10.2.Y.3)
  18 CALL PLOT( 10.,Y,2)
  20 CONTINUE
     AK1 = 10./FULSCL
     CALL NUMBER (- 0.06,-14.5,.21, 0..0.,-1)
     DO 200 I = 1.1FLSCL
     XPOS = -.06 + I*AK1
      XNEG = -.12 - I*AK1
     CALL NUMBER(XPOS,-14.5,.21,1.*1,0.,-1)
 200 CALL NUMBER (XNEG,-14.5,.21,-1.*I,0.,-1)
      CALL SYMBOL (-4.5,-14.9,.21,
     1 46H(FREQUENCY - FCENTER) DIVIDED BY FSCALE, (1'Z),0,,46)
      CALL SYMBOL(-4.5.-15.3..21.10HFCENTER = .J.,10)
      CALL NUMBER (-2.0,-15.3..21, FCENTR, 0.,0)
      CALL SYMBOL(U.,-15.3,.21.9HFSCALE = .0.,9)
      CALL NUMBER(2.4,-15.3,.21,10.**1EXP,0..0)
Capan CONTINUE
      ISTOP = NSP - NST + 1
      DENOM = NSP + NST
      DELX = 20./DENOM
      XS = -(N2 + 1 - NST) * DELX
      DO 30 I = 1.1STOP
      II = I - 1
      T1 = (CABS(A(I+NST-1)))*XKSCAL
      IF(T1 .LT. 1.F-7) GO TO 30
      Y1 = (70 \cdot / YSPRED) * 4 \cdot * ALOG10(T1)
      IF(Y1 .LE. -14.0) 60 TO 30
      x1 = II + DELX + XS
      IF(X1 .LT. -10.) GO TO 30
      IF(X1 .ST. 10.) 50 TO 30
       IF(Y1.LF.0.) GO TO 250
      CALL SYMBOL (X1, .16, .21, 1H*, 0, ,1)
      GO TO 30
  250 CONTINUE
       CALL PLOT(X1,-14.,3)
       CALL PLOT(X1,Y1,2)
       CALL PLOT(X1.-14..2)
    35 CONTINUE
       CALL PLOT(13.,-20.,-3)
    35 FORMAT(1H1.2X.14HPLOT COMPLETED)
       WRITE(6.35)
  9999 CONTINUE
       RETURN
       END
```

```
SUBROUTINE FFT(A, IGAM, ISN)
  COMPLEX A(1),T1,T2,TEMP
  DOUBLE PRECISION PI2.SO.CO.SI.CI.SN.CS
  PI2 = 6.28318530717958648D0
  N = 2 ** IGAM
  NBIT = 36 - IGAM
  N1 = N - 2
  DO 30 I = 1.N1
  IFLIP = 0
  I \times = I
  DO 10 J = 1,IGAM
  IOLD = IX
  IX = IX / 2
   IBIT = IOLD - 2 * IX
10 IFLIP = 2 * IFLIP + IBIT
   IF (I .LE. IFLIP) GO TO 30
   I1 = I + 1
   I2 = IFLIP + 1
   TEMP = A(12)
   A(I2) = A(I1)
   A(II) = TEMP
30 CONTINUE
   DO 80 I = 1.1GAM
   NEL = 2**I
   NEL2 = NEL / 2
   NSET = N / NEL
   SI = DSIN(PI2/NEL)
   CI = DCOS(PI2/NEL)
   DO 80 J = 1.NSET
   INCR = (J-1) * NEL
   50 = 0.000
   CO = 1.000
   DO 80 II = 1.NEL2
   J1 = II + INCR
   J2 = J1 + NEL2
   T1 = A(J1)
   T2 = A(J2) * CMPLX(COv ISN * SO)
   A(J1) = T1 + T2
   A(J2) = T1 - T2
   SN = SO + CI + CO + SI
   CS = CO * CI - SO * SI
   co = cs
80 SO = SN
    IF (ISN .GT. 0) GO TO 125
    DO 110 I = 1+N
110 A(I) = A(I)/N
12J CONTINUE
    RETURN
    END
```

SUBROUTINE LFOLD (A,N)
COMPLEX A (1),T1
N2=N/2
DO 10 I=1,N2
II=I+N2
II=A (I)
A (I)=A (II)
10 A (II)=T1
RETURN
END

SUBROUTINE PRNT(A,N)

COMPLEX A(1)

WRITE(6,101)

DO 10 I = 1,N

Db = 1.E30

T = CABS(A(I))

IF(T .GT. 0.) Db = 20. * ALOG10(T)

10 WRITE(6,100) I,A(I),Db

100 FORMAT(1X,15,1P2E15.4,5X,0PF8.2)

101 FORMAT(//,- LINE-,7X,-REAL-,11X,-IMAG-,12X,-DB-/)

RETURN

END

SUBROUTINE RDTF(NPNT, NPLOTS, TIME, PLOT)
DIMENSION TIME(NPNT), PLOT(NPNT, NPLOTS)
READ(19) TIME
READ(19) PLOT
RETURN
END

SUBROUTINE SCALE(DBMAX.MAXSCL) THIS SUBROUTINE ESTABLISHES ORDINATE SCALING FOR THE REMOTE SPECTRUM PLOTTER. IF (DBMAX.LE.U.) GO TO 10 MAXSCL = 0 1 MAXSCL = MAXSCL + 10 DIFF = DBMAX - MAXSCL IF(DIFF.GT.O.) GO TO 1 GO TO 999 10 MAXSCL = 011 MAXSCL = MAXSCL - 10 DIFF = (DBMAX - MAXSCL) IF(DIFF.LE.U.) GO TO 11 MAXSCL = MAXSCL + 10 999 RETURN **END**

```
SUBROUTINE TTFP(A,N,DELF,FLO,FHI)
C * * THIS SUBROUTINE PROVIDES A TELYTYPE PLOT OF THE FREQUENCY
      SPECTRUM FROM FLO TO FHI
      COMPLEX A(1)
      DIMENSION IA(50), MM(6)
      NST = (N/2) + INT(FLO/DELF + SIGN(.5.FLO))
      NST = NST + 1
      NSP = (N/2) + INT(FHI/DELF + SIGN(.5.FHI))
      NSP = NSP + 1
      DBMAX = -1 \cdot E30
       IEND = NSP - NST + 1
       DO 1 I = 1.1END
       DECTMP = CABS(A(NST + I - 1))
       IF(DECTMP.LT.1.E-30) DECTMP = 1.E-30
       B = 20. * ALOGIO(DECTMP)
       IF(b.GT.DBMAX) DbMAX = B
     1 CONTINUÉ
       WRITE(6,2) IEND
     2 FORMAT(/5x,8HNSIZE = ,15/)
  * * * *
       CALL SCALE (DBMAX, MAXSCL)
 C
      THE ORDINATE WILL VARY FROM(MAXSCL-50) DB UP
 C
      TO MAXSCL DB.
       DO 33 I = 1,50
    33 IA(I) = 1H
       DO 5 I = 1.6
     5 \text{ MM}(I) = \text{MAXSCL} - 10*(6-I)
       MAXF = ABS(FLO)
       IF(ABS(FHI).GT.MAXF) MAXF = ABS(FHI)
        NAMEF = 0
        IF (MAXF . GT . 1 . E3) NAMEF = 3
        IF (MAXF.GT.1.E6) NAMEF = 6
        IF(MAXF.GT.1.E9) NAMEF = 9
        IF(NAMEF.EQ.O) WRITE (6,200)
        IF(NAMEF.EQ.3) WRITE(6,203)
        IF(NAMEF.EQ.6) WRITE(6.206)
        IF(NAMEF.EQ.9) WRITE(6.209)
```

TTFP (Continued)

```
200 FORMAT (2X, 14HFREQUENCY (HZ), 9X, 8HDECIBELS)
203 FORMAT (2X, 15HFREQUENCY (KHZ), 8X, 8HDECIBELS)
206 FORMAT (2x, 15HFREQUENCY (MHZ), 8x, 8HDECIBELS)
209 FORMAT(2X, 15HFREQUENCY (GHZ), 8X, 8HDECIBELS)
    WRITE(6,7) (MM(I),I = 1,6)
  7 FORMAT(/7X,14,4(6X,14),5X,14)
    WRITE(6,8)
  8 FORMAT(9x,1HI,5(10H----+I))
    FFACT = 1.
    IF(NAMEF.EQ.3) FFACT = 1.E-3
    IF(NAMEF.EQ.6) FFACT = 1.E-6
    IF(NAMEF.EU.9) FFACT = 1.E-9
    FLO = FLO * FFACT
    FHI = FHI * FFACT
    DELF1 = DELF * FFACT
    FLOPRT = DELF1*(NST -1 -N/2)
    DO 10 I = 1.1END
    DECTMP = CABS(A(NST + I - 1))
    IF(DECTMP.LT.1.E-30) DECTMP = 1.E-30
    B = 20. * ALOGIO(DECTMP)
    M = 50 + B - MAXSCL
     J = I - 1
    L = LX
    FREQ = FLOPRT + XJ * DELF1
     IF(M.LT.0) GO TO 50
     IF(M.EQ.0) GO TO 34
     DO 1515 II = 1.M
1515 IA(II) = 1H-
     WRITE(6,35) FREQ, IA
     DO 1616 II = 1,M
1616 IA(II) = 1H
  35 FORMAT(F8.3.2H I,50A1)
     GO TO 36
  34 WRITE(6,37) FREQ
  37 FORMAT(1X,F7.3,2H -)
     GO TO 36
  50 WRITE(6,51) FREQ
  51 FORMAT(1X,F7.3,2H I)
1000 FORMAT( )
  36 CONTINUE
  10 CONTINUE
     WRITE(6,11)
  11 FORMAT (6X,4HFREQ)
     RETURN
     END
```

```
SUBROUTINE TITP (A. NST. NSP. NJUMP)
   COMPLEX A(1)
   DIMENSION IA(50)
   BMAX = U.
   SMIN = BMAX
   DO 1 I = NST.NSP.NJUMP
   b = REAL(A(I))
   IF (b.LT.BMIN) BMIN = B
 I IF(B.GT.BMAX) BMAX = B
    IF ( (BMAX-BMIN) .LT .1 . E-30) GO TO 999
    UC 33 I = 1,50
33 IA(I) = 1H
100 WRITE(6,4)
  4 FORMAT(5X,1H+)
    WRITE(6,3) BMIN,DMAX
  3 FORMAT(12X,-AMPLITUDE- MIN -, E9.4,-, MAX -, E9.4,- VOLTS-)
    WRITE(6,4)
    WRITE(6,6)
  6 FORMAT(8X,2H U,3X,2H.1,3X,2H.2,3X,2H.3,3X,2H.4,3X,2H.5,
       3X,2H.6,3X,2H.7,3X,2H.8,3X,2H.9,2X,3H1.0)
    WRITE(6,7)
  7 FORMAT(1H,8X,1HI,1J(5H----I))
    DO 10 I = NST.NSP.NJUMP
    B = REAL(A(I))
    b = (B-bMIN)/(BMAX-BMIN)
    M = INT(B*50*+C*5)
    IF(M.EQ.0) GO TO 34
     IA(M) = 1H*
    wR!TE(6,35) I,IA
    IA(M) = 1H
 35 FORMAT(2X, 15, 3H I, 5UAL)
    GO TO 36
 34 WRITE(6,37) I
 37 FORMAT(2X,15,3H
  36 CONTINUE
  10 CONTINUE
     WRITE(6,11)
  11 FORMAT (6X, 1HN)
     GO TO 900
 999 WRITE (6,9)
   9 FORMAT(1x,12HERROR FINISH)
 900 RETURN
     END
```

```
SUBROUTINE WRIDTA (NPNT, NPLOTS, TIME, PLOT)
   DIMENSION TIME (NPNT), PLOT (NPNT, NPLOTS)
   WRITE(6,110)
   READ(5,102) ISW
   IF(ISW .GT. U) GO TO 10.
   WRITE(6,101)
   wRITE(6,111)
   WRITE(6,100) TIME
   WRITE(6,100) TIME
   GO TO 999
10 IF(ISW .GT. NPLOTS) GO TO 20
   WRITE(6,101)
   WRITE(6,112) ISW
    wRITE(6,100) (PLOT(I, ISW), I = 1, NPNT)
    GO TO 999
20 WRITE(6,113) NPLOTS
100 FORMAT(1X,1P6E11.4)
101 FORMAT(///)
102 FORMAT( )
110 FORMAT (- ENTER O FOR TIME LISTING OR DATA SET NUMBER-)
111 FORMAT(3UX,-TIME-/)
112 FORMAT(25X,-DATA SET NUMBER -.12/)
113 FORMAT(//- ERROR--LARGEST DATA SET NUMBER IS -,12/)
999 WRITE(6,102)
    RETURN
    END
```

APPENDIX C

FATCAT PROGRAM DESCRIPTION AND LISTING

1. General Description

The program is coded in FORTRAN IV and the Univac-1108 version consists of a main program and 31 subroutines; in addition one of the subroutines (CPLOTF) which generates plots of frequency spectra on a CAL-COMP plotter requires calls to 5 other subroutines contained in a plotter control package. This plotting routine and associated plotter control subroutines are not used in the SIGMA-5 version.

Several of the subroutines contain multiple entry points; the total number of subroutine and function entry names in the Univac-1108 version is 47. These names are listed in alphabetical order in Table C 1 and those which are not subroutine names are identified.

In the following sections, the main program and all subroutines are briefly described, and each description is followed by a listing of the routine as used on the Univac-1108. For listings of the SIGMA-5 versions of those routines that were modified for that machine, see Appendix D.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.

PRECEDENG PAGE PLANT NOT THE PROPERTY.

TABLE C 1

ALPHABETICAL LISTING OF ALL SUBROUTINE ENTRIES IN FATCAT

(All names denote subroutines unless marked otherwise)

1.	ADJN	25.	LFOLD
2.	AMD EMO	26.	LIM
3.	AMP	27.	LSTCOM
4.	BCDFPT	28.	NUMBER+
5.	BWBNDP	29.	PDCHK
6.	BWBSTP* (BWBNDP)	30.	PERIOD
7.	BWHIP* (BWBNDP)	31.	PHDEMO
8.	BWLOWP* (BWBNDP)	32.	PLOT ⁺
9.	CHBNDP	33.	PLOTS ⁺
10.	CHBSTP* (CHBNDP)	34.	PROCES
11.	CHHIP* (CHBNDP)	35.	PRTFAC* (PERIOD)
12.	CHLOWP* (CHBNDP	36.	SCALE
13.	CPLOTF**	37.	SIGGEN
	ELFIND	38.	STRDTA
15.	FACTOR ⁺	39.	SYMBOL+
16.	FETCH	40.	SYNBP
17.	FFT	41.	SYNHP* (SYNRP)
18.	FILTER	42.	SYNLP* (SYNBP)
19.	FLATSP	43.	TELPLT
20.	FMD EMO	44.	TIMFCN
21.	FRQFCN* (TIMFCN)	45.	TTFP
	FRQMUL	46.	wrff* (wrtf)
	IDLMUL	47.	WRTF
24.			

^{*}Entry Point in subroutine named in parenthesis.

^{**}Not used in SIGMA-5 version.

⁺CALCOMP plotter subroutines called by CPLOT.

2. MAIN PROGRAM

Calls: PLOTS*, FETCH, ELFIND, WRTF, WRFF, TELPLT, TTFP, CPLOTF, PRTFAC, STRDTA, PROCES, LSTCOM, INPFOR, PDCHK.

Commons: blank, CFREQ, CDOM, CDATA, CCIRKT, CWORD, CFLGS.

Description: MAIN is the overall controlling program which directs the operations of command and data input, interpretation of input, data storage, and command execution. Most of the detailed work in all operations is carried out by subroutines.

Program Listing:

```
PARAMETER NMAX = 2048
      COMPLEX A(NMAX)
      COMMON N. IGAM, DELF, DELT, PD, CARRED
      COMMON /CFREG/ NFK + FR (6)
      COMMON /CDUM/ DUMFLG
      COMMON /CDATA/ JCTR DATA(200)
      COMMON /CCIRKT/ NBLK, ITYP (30,2)
      COMMON/CWORD/ WURD(10)
      COMMON/CFLGS/ PDFLG ARFLG
      LOGICAL PDFLG, ARFLG
      DIMENSION IBUF (5000)
C
      CALL PLOTS(IBUF(1),5000,2)
      JCTR = 1
      ITYP(1,2) = JCTR
      NFR = 0
      NBLK = 0
      IBLK = U
      PDFLG = .FALSE.
      ARFLG = .FALSE.
      WRITE(6,7036)
    1 DO 2 I = 1.10
    2 \text{ WORD(I)} = 6H
      CALL FETCH(WORD, L. NBAD)
      IF (NBAD .EQ. 0) GO TO 1
      CALL ELFIND(WORD, LTYP)
                                                         90, 100,
              10, 20, 30, 20, 50, 60,
                                              70,
                                                   80,
      GO TO(
              110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
              210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
              310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
     3
              410. 420. 4301.LTYP
```

^{*}CALCOMP plotter routine.

```
10 IF (WORD(3) .EQ. 1H ) GO TO 12
     N1 = WORD(2)
     N2 = WORD(3)
     60 TO 15
  12 WRITE(6,7004)
     READ(5,700) N1,N2
  15 CALL WRTF (A.N1.N2)
     GO TO 1
  20 IF (WORD(3) .EQ. 1H ) GO TO 22
     FRLO = WORD(2)
     FRHI = WORD(3)
      60 TO 25
  22 WRITE(6,7005)
      READ(5,7000) FRLO, FRHI
   25 IF (LTYP .EQ. 4) GO TO 40
      CALL WRFF (A,FRLO,FRHI)
      GO TO 1
C * * TTY TIME PLOT
   30 IF (WORD(3) .EQ. 1H ) GO TO 32
      NST = WORD(2)
      NSP = WORD(3)
      NJUMP = WORD(4)
      IF (NJUMP \bulletEG\bullet 1H ) NJUMP = 1
      GO TO 35
   32 WRITE(6,7007)
      READ(5.7000) NST.NSP.NJUMP
   35 IF (NJUMP -LT. 1) NJUMP = 1
      CALL TELPLT (A, NST, NSP, NJUMP)
      60 TO 1
C * * TTY FREQUENCY PLOT
   40 CALL TTFP(A,FRLO,FRHI)
      GO TO 1
C * * CALCOMP TIME PLOT
   50 WRITE(6.7101) ((ITYP(I.J), J = 1.2), I = 1.5)
 7101 FORMAT(1x,2(13,3X))
       GO TO 650
C * * CALCOMP FREQUENCY PLOT
    60 CALL CPLOTF(A)
       GO TO 1
C * * PRINT PRIME FACTORS
    70 CALL PRTFAC
       GO TO 1
 C * * END OF JOB
    80 GO TO 999
```

```
C * * BUTTERWORTH BANDPASS
   90 CALL STRDTA(3,0,0)
      NTYP = 3
      GO TO 600
C * * BUTTERWORTH LOWPASS
  100 CALL STRDTA(2,0,0)
      NTYP = 4
      GO TO 600
C * * BUTTERWORTH HIGHPASS
  110 CALL STRDTA(2,0,0)
      NTYP = 5
      GO TO 600
C * * BUTTERWORTH BANDSTOP
  120 CALL STRDTA(3,0,0)
      NTYP = 6
      60 TO 600
C * * CHEBYSHEV BANDPASS
  130 CALL STRDTA(4,0,0)
      NTYP = 7
      GO TO 600
C * * CHEBYSHEV LOWPASS
  140 CALL STRDTA(3,0,0)
      NTYP = 8
      GO TO 600
C * * CHEBYSHEV HIGHPASS
  150 CALL STRDTA(3,0,0)
      NTYP = 9
      GO TO 600
C * * CHEBYSHEV BANDSTOP
  160 CALL STRUTA(4,0,0)
       NTYP = 10
       GO TO 600
C * * SYNCHRONOUS BANDPASS FILTER
  170 CALL STRDTA(3,0,0)
       NTYP = 11
       GO TO 600
C * * SYNCHRONOUS LOWPASS FILTER
   180 CALL STRDTA(2,0,0)
       NTYP = 12
       GO TO 600
C * * SYNCHRONOUS HIGHPASS FILTER
   190 CALL STRDTA(2,0,0)
       NTYP = 13
```

GO TO 600

```
C * * SIGNAL GENERATOR
  200 CALL STRDTA(6,2,1)
      CARRFQ = WORD(2)
      NTYP = 1
      GO TO 600
C * * FREQUENCY MULTIPLIER
  210 NTYP = 4
      GO TO 600
  220 GO TO 430
C * * IDEAL MULTIPLIER
  230 CALL STRDTA(2,1,2)
      NTYP = 16
      GO TO 600
  240 GO TO 430
C * * FM DEMODULATOR
  250 CALL STRDTA(1,0,0)
      NTYP = 19
       GO TO 600
C * * PHASE DEMODULATOR
  260 CALL STRDTA(1,0,0)
       NTYP = 20
       GO TO 600
C * * AMPLIFIER
   270 CALL STRDTA(1,0,0)
       NTYP = 2
       GO TO 600
C * * LIMITER
   280 CALL STRDTA(3,0,0)
       NTYP = 17
       GO TO 600
   290 NOUT = WORD(2)
       IF(NOUT .LE. NBLK) GO TO 291
       WRITE(6,7001) NBLK
       GO TO 1
   291 IF(NOUT - IBLK) 295,295,293
   293 IF(PDFLG) CALL PDCHK
       ITMP = IBLK + 1
       DO 292 IBLK = ITMP, NOUT
       IBTYP = ITYP(IBLK.1)
       JCTR = ITYP(IBLK,2)
       CALL PROCES(IBTYP+A)
   292 CONTINUE
        IBLK = NOUT
   295 WRITE(6,7002) IBLK
        GO TO 1
```

```
300 CONTINUE
  310 CONTINUE
  320 GO TO 370
  330 GO TO 430
C * * AM DEMODULATOR
  340 CALL STRDTA(1,0,0)
      NTYP = 22
      GO TO 600
C * * FLAT SPECTRUM GENERATOR
  350 CALL STRUTA(3,0,0)
      CARREQ = 0.
      NTYP = 23
      GO TO 600
  360 CALL LSTCOM
      GO TO 1
  370 GO TO 650
  380 CALL INPFOR
      GO TO 1
  390 GO TO 650
  400 GO TO 650
  410 GO TO 650
  420 GO TO 650
  430 WRITE(6,7003)
      GO TO 1
  600 NBLK = NBLK + 1
       ITYP(NBLK,1) = NTYP
       ITYP(NdLK + 1,2) = JCTR
       GO TO 1
  650 WRITE(6,7150) WORD(1)
       GO TO 1
 7000 FORMAT()
 7001 FORMAT(- * * ERROR * * LARGEST BLOCK NO IS -, 12, - * *-)
  7002 FORMAT (- PROCESSING COMPLETE THRU BLOCK -, 12)
  7003 FORMAT (- * * UNDEFINED STATEMENT * *-)
  7004 FORMAT (- ENTER LOW, HIGH INDICES-)
  7005 FORMAT (- ENTER LOW, HIGH FREQUENCIES-)
  7006 FORMAT(- START-)
  7007 FORMAT (- ENTER NSTART, NSTOP, NJUMP-)
  7100 FORMAT (- COMMAND -, A6, - IS NOT YET OPERATIONAL-)
   999 CONTINUE
       CALL PLOTS(U., 0., 999)
       STOP
       END
```

3. Subroutine ADJN

Called by: PDCHK, PERIOD, FLATSP

Calls: none

Commons: blank
Entries: none

Description: ADJN adjusts N (number of data samples) to be a power of 2. If the current value of N (either that computed to meet the Nyquist criterion or that entered by the user) is already a power of 2 it is not changed; otherwise it is adjusted upward to the next power of 2.

٠.

Program Listing:

SUBROUTINE ADJN
COMMON N, IGAM, DELF, DELT, PD
IGAM = ALOG(N)/ALOG(2.) + .999
N = 2**IGAM
DELT = PD / N
RETURN
END

4. Subroutine AMDEMO

Called by: PROCES

Calls: FRQFCN, TIMFCN Commons: blank, CDATA

Entries: none

Description: AMDEMO simulates an ideal amplitude demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain produces a complex time wave form; conversion to a real time wave form is effected by replacing each time sample with one whose real part is the absolute value of the complex sample, and whose imaginary part is set to zero.

Program Listing:

```
SUBROUTINE AMDEMO(A)
      COMMON N. IGAM, DELF, DELT, PD, CARREG
      COMMON/CDATA/ JCTR, DATA(200)
      COMPLEX A(1)
      PI2 = 6.2831853
      N2 = N / 2
      F0 = WORD(JCTR)
      CALL FROFCN(A)
  * * REMOVE THE NEGATIVE FREQUENCY COMPONENTS
      00 10 I = 1.82
   10 A(I) = \{0., 0.\}
C * * MOVE THE MODULATED CARRIER TO ZERO FREWDENCY
      IFO = FU / DELF + .5
      NSTART = N2 + 1
      NSTOP1 = N - IFU + 1
      DO 11 I = NSTART.N
   11 A(I - IFU) = A(I)
      DO 12 I = NSTOP1.N
   12 A(I) = (0., 0.)
C * * RECOVER THE AMPLITUDE INFORMATION
      CALL TIMECN(A)
      DO 20 I = 1.N
      TEMP = CABS(A(I))
   20 A(I) = CMPLX(TEMP, U.)
      RETURN
      END
```

5. Subroutine AMP

Called by: PROCES

Calls: none

Commons: blank, CDATA

Entries: none

Description: AMP simulates an amplifier. Its action is simply to multiply each data sample by a constant. Since the multiplication is the same in both time and frequency domains, AMP accepts the data array in either domain.

Program Listing:

SUBROUTINE AMP(A)

COMPLEX A(1)

COMMON N * IGAM

COMMON/CDATA/ JCTk * DATA(2UJ)

XP = DATA(JCTR) / 2U*

G = 10**XP

DO 100 I = 1*N

100 A(I) = G*A(I)

RETURN
END

6. Function BCDFPT

Called by: FETCH

Calls: none

Commons: none

Entries: none

Description: BCDFPT accepts binary coded characters representing numerical quantities and converts them to a real number which is returned through the function name. This routine was adapted from CIRCUS with a few minor changes.

Program Listing:

```
FUNCTION ECCEPT( "CD,")
      POSERT CONVERTS DATA FROM BOTH TO FLOATING POINT.
      BOD IS AN ARRAY CONTAINING THE MIHOD CHARACTERS
      SHICH ARE TO BE CONVERTED.
        I = INDEX OF THE CHARACTER SEING CONVERTED.
        U = INDEX CORRESPONDING TO THE DIGIT U-1.
        K = 1 WHEN DECODING WHOLE NUMBER PORTION.
            2 WHEN DECODING FRACTIONAL PORTION.
            3 WHEN DECODING EXPONENT.
  INTEGER DIGIT, E. PLUS, DECPT, ECD
  LOGICAL EXPELS, DISFLG, DECELS, EXSIGN
  DIMENSION BOD(1).KSIGM(3).INTECP(3).RESULT(3).DIGIT(10)
  DATA DISIT / 1H3.1H1.1H2.1H3.1H4.1H5.1H5.1H7.1H8.1H9/
  DATA PLUS. MINUS. E. DECPT / 18+. 1H-. 1HE. 1H. /
  EXPELS = .FALSE.
  DIGFLS = .FALSE.
  DECELS = .FALSE.
  EXSIGN = .FALSE.
   70 11 <=1.3
  KSIGY(K) = 1
  INTEGR(K) = 1
11 CONTINUE
  MPLART = ?
   < = 1
   77 31 I=1.4
   ICHAR = GCD(I)
```

FUNCTION BCDFPT (Continued)

```
( *
           TEST FOR SIGN, DIGIT, DECIMAL POINT, OR E
\subset
C*
       IF ( ICHAR-PLUS ) 13,23,13
   13 IF ( ICHAR-MINUS ) 14,24,14
   14 DO 15 J=1,10
       IF ( ICHAR-DIGIT(J) ) 15,25,15
    15 CONTINUE
       IF ( ICHAR-DECPT ) 16,26,16
    16 IF ( ICHAR-E ) 21,29,21
:*
                                             PLUS SIGN
C*
C *
    23 IF ( DIGFLG ) GO TO 28
       GO TO 31
\zeta *
                                             MINUS SIGN
€ *
€*
    24 IF ( DIGFLG ) GO TO 27
       \langle SIGN(1) = -1 \rangle
       60 TO 31
\subset \ast
                                             DIGIT FROM 0 TO 9
C*
 € ≯
    25 INTEGR(\langle \rangle) = 10*INTEGR(\langle \rangle)+J-1
        NPLART = NPLART+K-1
        DIGFLG = .TRUE.
        GO TO 31
 €*
                                             DECIMAL POINT
 C *
        ONLY ONE DECIMAL POINT PER NUMBER IS ALLOWED.
 €¥
        DECIMAL POINT IS NOT ALLOWED IN EXPONENT.
 (#
 C *
     26 IF ( DECFLG ) GO TO 21
        1F ( EXPFLG ) GO TO 21
        DECFLG = .TRUE.
        K = 2
        GC TO 31
```

FUNCTION BCDFPT (Continued)

```
C*
                                           *E* FOR EXPONENT
\subset *
      BLANK TIMES TEN ** EXPONENT MOT ALLOWED.
\subset *
\subset *
   27 \text{ KSIGN}(3) = -1
   28 IF ( EXSIGN ) 30 TO 21
       EXSIGN = .TRUE.
      GO TO 30
   29 IF ( EXPFLG ) GO TO 21
       IF ( .NOT. DIGFLG ) GO TO 21
   30 EXPFLG = •TRUE•
       < = 3
       MPLASV = MPLART
   31 CONTINUE
C #
           THE NUMBER HAS BEEN SEPARATED INTO INTEGER, FRACTION,
\subset
C C
           AND EXPONENT PARTS. COMMINE THEY TO FORM THE
           NUMBER IN FLOATING POINT.
\subset
     IF ( EXPFLG ) GO TO 32
       EXPCN = 1.
       60 TO 35
C*
           CALCULATE EXPONENT. AN EXPONENT MAY BE ONLY TWO
\subset
           DIGITS LONG AND LESS THAN 38 IN MAGNITUDE.
C
C*
    32 IF ( NPLART-NPLASV-4 ) 33,33,21
    33 IEXPON = INTEGR(3)*KSIGN(3)
       IF ( IASS( IEXPON ) - 37 ) 34,34,21
    34 EXPON = 10.**IEXPON
       NPLART = NPLASV
(*
                                            CALCULATE MANTISSA
(*
C *
    35 RTSHFT = 10.**NPLART
       RESULT(1) = FLOAT( INTEGR(1)*KSIGN(1) )
       RESULT(2) = FLOAT( INTEGR(2)*KSIGN(1) ) / RTSHFT
       BCDFPT = ( RESULT(1) + RESULT(2) ) *EXPON
    41 RETURN
 (*
            ILLEGAL CHARACTER OR BAD SYNTAX.
 \mathsf{C}
 C*
    21 N = -1
       GO TO 41
       END
```

7. Subroutine BWBNDP

Called by: PROCES

Calls: FILTER

Commons: CDATA, CFILT

Entries: BWBSTP, BWLOWP, BWHID

Description: BWBNDP simulates a Butterworth bandpass filter; auxiliary entries produce simulations of Butterworth band stop, high pass, and low pass filters.

The Butterworth filter produces a maximmally flat response defined by the function

$$\left|H\left(\omega_{\mathbf{p}}\right)\right| = \frac{1}{\sqrt{1 + \left(\omega_{\mathbf{p}}^{2}\right)^{n}}} \tag{1}$$

where n is the filter order and $\boldsymbol{\omega}_p$ is a normalized frequency. The poles of Equation (1) are given by

$$S_{k} = e^{j\theta}$$
 (2)

where

$$\theta = \left(\frac{2k+n-1}{n}\right)\left(\frac{\pi}{2}\right), k=1, 2, \ldots 2n.$$
 (3)

With the poles known, the transfer function can be written in terms of the n poles lying in the left half-plane as

$$H(S) = \frac{1}{(S - S_1)(S - S_2)(S - S_3) \dots (S - S_n)}$$
(4)

The Butterworth filter models are implemented with Equations (2), (3), and (4). The computation of the transfer function, Equation (4), is carried out in subroutine FILTER. Subroutine EWBNDP computes the values of S_k , and sets up variables from which the normalized frequency, O_p , can be determined to satisfy the definitions

$$\omega_{\rm p} = \omega/\omega_{\rm c}$$
 for low pass,

$$w_p = \frac{w - w_o}{\frac{Bw}{2}}$$
 for band pass,

 $w_p = w_c/w$ for high pass,

 $\omega_{p} = \frac{\frac{B\omega}{2}}{\omega - \omega_{o}}$ for band stop,

where

 $\omega_c = 3 \text{ dB corner frequency, and}$

 $B\omega = full 3 dB bardwidth.$

All Butterworth filters calculated with this model will exhibit 3 dB attenuation at the corner frequency (low pass and high pass), or at one-half the bandwidth away from the center frequency (band pass and band stop). The computed transfer function of the latter two are symmetrical. Program Listing:

SUBROUTINE BWBNDP (A) COMPLEX A(1), S(20) COMMON/CDATA/ JCTR, DATA(200) COMMON/CFILT/ FU, FCOFF, NR, AMP, FFLG, S LOGICAL FFLG FFLG = •TRUE • GO TO 2 ENTRY BWBSTP(A) FFLG = .FALSE. 2 FO = DATA(JCTR)FCOFF = DATA(JCTR+1) / 2. NR = DATA(JCTR+2)GO TO 6 ENTRY BWLOWP(A) FFLG = •TRUE• GO TO 4 ENTRY BWHIP(A) FFLG = .FALSE. 4 F0 = 0.FCOFF = DATA(JCTR)NR = DATA(JCTR+1) $6 \text{ AMP} = 1 \cdot$ DO 10 K = 1.NR THETA = 1.5707963 * ((2.*k + NR-1)/NR)10 S(K) = CMPLX(CCS(THETA), SIN(THETA)) CALL FILTER(A) RETURN END

8. Subroutine CHBNDP

Called by: PROCES

Calls: FILTER

Commons: CDATA, CFILT

Entries: CHBSTP, CHLOWP, CHHIP

Description: CHBNDP simulates a Tchebysheff bandpass filter; auxiliary entries produce simulations of Tchebysheff bandstop, high pass, and low pass filters.

The implementation of the Tchebysheff (equal ripple) filter model is identical to that used for Butterworth filters except for the computation of the poles. The poles for the Tchebysheff filter are given by

$$S_{k} = \sigma_{k} + j\omega_{k} \tag{1}$$

where

$$\sigma_{k} = \pm \tanh a \sin \theta$$
,

$$\omega_{\mathbf{k}} = \cos \theta$$

$$a = \frac{1}{n} \sinh^{-1} \frac{1}{\epsilon}$$
,

$$\theta = \left(\frac{2k-1}{n}\right)\left(\frac{\pi}{2}\right), k = 1, 2, 3, \dots 2n,$$

$$\varepsilon$$
 = ripple width, $0 < \varepsilon < 1$.

CHBNDP computes the poles and then calls subroutine FILTER which actually computes the transfer function and applies it to the frequency function.

Program Listing:

```
SUBROUTINE CHENDP(A)
  COMPLEX A(1), S(20)
  COMMON/CDATA/ JCTR, DATA(200)
  COMMON/CFILT/ FO, FCOFF, NR, AMP, FFLG, S
  LOGICAL FFLG
  FFLG = .TRUE.
  GO TO 2
  ENTRY CHBSTP(A)
  FFLG = •FALSE•
2 FU = DATA(JCTR)
  FCOFF = DATA(JCTR+1) / 2.
  NR = DATA(JCTR+2)
  EPSDd = DATA(JCTR+3)
  GO TO 6
  ENTRY CHLOWP(A)
  FFLG = .TRUE.
  GO TO 4
  ENTRY CHHIP(A)
  FFLG = .FALSE.
4 F0 = 0.
  FCOFF = DATA(JCTR)
  NR = DATA(JCTR+1)
   EPSDB = DATA(JCTR+2)
6 \times = 1 \cdot / SQRT(EXP(\cdot 23 \cup 25851 * EPSDB) - 1 \cdot )
   ARG = X + SQRT(X ** 2 + 1)
   AE = ALOG(ARG) / NR
   CALL FRQFCN(A)
   DO 10 K = 1.00
   THETA = 1.5707963 * ((2.*(K + NR)-1)/NR)
   SIGK = TANH(AE) * SIN(THETA)
   OMEGK = COS(THETA)
10 S(K) = CMPLX(SIGK, OMEGK)
   FFAC = COSH(AE)
   IF (.NOT. FFLG) FFAC = 1./FFAC
   FCOFF = FFAC * FCOFF
   AMP = 1 \bullet
   DO 15 K = 1.NR
15 AMP = AMP * CABS(S(K))
   IF (MOD(NR+2) .EQ. U) AMP = AMP / EXP(.11512925*EPSDB)
   CALL FILTER(A)
   RETURN
   END
```

9. Subroutine CPLOTF

Called by: MAIN

Calls: FRQFCN, SCALE, FACTOR*, PLOT*, NUMBER*, SYMBOL*

Commons: blank
Entries: none

Description: CPLOTF is used to produce high quality plots of frequency spectra. The routine actually generates a data file suitable for driving an off-line CALCOMP plotter. Since the routine embodys both equipment and procedural considerations, its use is probably limited to the Univac-1108 and CALCOMP plotter at Georgia Tech. It is included here for completeness.

Program Listing:

```
SUBROUTINE CPLOTE(A)
COMMENTAL THE FOLLOWING CONTROL STATEMENT MUST PRECEED THE
          EXECUTE STATEMENT FOR RUNS USING CALCOMP PLOTS.
\subset
      QUSE UNIT # , TPFS
      COMMON N. IGAM, DELF
      COMPLEX A(1)
      CALL FROFCN(A)
 1799 FORMAT()
      ARITE(6,1716)
 1716 FORMAT(- ENTER FLO AND FHI FOR CALCOMP SPECTRUM PLOT .-)
      READ(5,1799) FLO, FHI
      XTEST = ABS(FHI-FLO)
       IF(XTEST.LT.1.5-30) 50 TO 9999
      XTEST = XTEST/(ABS(F_0) + ABS(FHI))
       IF(XTEST.LT.1.E-30) GO TO 9999
       YSPRED = 70.
       N2 = N/2
       NST = N2 + INT(FLO/DELF) + 1
       NSP = N2 + INT(FHI/DELF) - 1
       T1 = 1.E - 35
       DO 4000 I = NST.NSP
       T2 = CABS(A(I))
  4000 IF(T2.GT.T1) T1 = T2
       DBMAX = 20.*ALOG1 (f1)
       CALL SCALE (DBMAX . MAXSCL)
       XMXSCL = MAXSCL
       XKSCAL = 10.##(-XMXSCL/20.)
```

^{*}CALCOMP plotter routines

```
CALL FACTOR (0.4)
    CALL PLOT(0.,-20.,3)
   CALL PLOT(12.,0.,-3)
    CALL PLOT(-10.,-14..3)
    DO 3 I = 1.2
    CALL PLOT (-10.,0.,2)
    CALL PLOT(10.,0.,2)
    CALL PLOT(10.,-14.,2)
    CALL PLOT(-10.01,-14.,2)
    CALL PLOT(-10.01, /.01,2)
    CALL PLOT(10.01,0. 1,2)
    CALL PLOT(10.11,-14.01.2)
  3 CALL PLOT(-10.,-14.01.2)
    00 3 HO IAGAIN = 1.2
    00 17 I = 3,70
    Y = -14. + 0.2*I
    IF (MOD(1,5) .EQ. () GO TO 6
    CALL PLOT(-10.1. 4.3)
    GO TO 8
  6 IF (MOD(I,10) .EQ. 2) 60 TO 7
    CALL PLOT(-10.16, Y.3)
    GO TO 8
  7 CALL PLOT(-15.2.Y.3)
  8 CALL PLOT(-10.,Y,2)
 10 CONTINUE
    Y = 2
    00 15 1 = 1.8
    J = I - 1
    Y = Y-2
    YY = XMXSCL - 10.*J*YSPRED/70.
 15 CALL NUMBER (-11.09,Y-.105,.21,YY,0.,-1)
    CALL SYMBOL (-11.24,-8.4,.21,14HAMPLITUDE (D5),90.0,14)
     FCENTR = (FLC + FHI)/2.
     FUPPER = FHI - FCSNTR
     IF(FUPPER.GT.1.0) CO TO 2100
     IEXP = ALOGIC(FUPPER) - 1
     GO TO 2101
2100 CONTINUE
     XIEXP = ALCG1:(FUPPER)
     IEXP = XIEXP
     RIEXP = IEXP
     IF((ABS(XIEXP-RIEXP).LT.1.E-20).AND.(XIFXP.SF.RIEXP))
       I \cap XD = I \cap XD - I
2111 CONTINUE
     FULSCL = FUPPFS*(1 .**(-Ityp))
     IFLSCL = FULSCL
     ITEMP = 15.*FULSCL
     RITEMP = ITEMP
     SCALEL = IFLSCL
```

```
SCALE1 = 10.*SCALE1/FULSCL
   TENIFS = 10.*IFLUCL
   SCALF1 = SCALET/TEMIFS
   DO 40 I = ".ITEMP
   x = I*SCALE1
   IF (VOD(1,5) .EQ. 1) GO TO 32
   CALL PLOT(X,-14.1.3)
   GO TO 36
32 IF (MOD(I.10) .EQ. ) GO TO 34
   CALL PLOT(X,-14.16,3)
   00 TO 36
34 CALL PLOT(X,-14.2,3)
36 CALL PLOT(X .- 14 . . 2)
4. CONTINUE
    00 140 I = 1,ITEMP
   X = -I*SCALF1
    IF(MOD(I,5).E0.0)30 TO 132
    CALL PLOT(X -14.1.3)
   GO TO 136
132 IF(MOD(I+1-)+FQ+0) 30 TO 134
    CALL PLOT(X,-14.16,3)
    GO TO 136
13+ CALL PLOT (X +- 14 - 2 + 3)
136 CALL PLOT(X,-14.,2)
140 CONTINUE
    DO 240 I = 0.ITEMP
    X = I*SCALt1
    IF(MOD(I.5).FQ.') 60 TO 232
    CALL PLOT(X . . 1 . 3)
    GO TO 236
232 IF(MOD(I.10) .EQ. 0) 60 TO 234
    CALL PLOT(X, . 16,3)
    GO TO 236
234 CALL PLOT(X . . 2 . 3)
236 CALL PLOT(X, -. . 2)
240 CONTINUE
    DO 340 I = 1.ITEMP
     x = -I*SCALF1
     IF(MOD(I.5).EG.d) GO TO 332
     CALL PLOT(X++1+3)
     GO TO 336
 332 IF(MOD(I+1J)+E0+0) GO TO 334
     CALL PLOT(X, . 16,3)
     GO TO 336
 334 CALL PLOT (X . . 2 . 3)
 336 CALL PLOT(X, 0., 2)
 343 CONTINUE
```

```
00 2 / 1 = ...7
    Y = -14. + 0.2*I
    IF (MOD(1,6) .EA. .) CO TO 16
    CALL PLAT( 1 .1, Y, 3)
    GO TO 15
 16 IF (MOD(I,10) .FO. 0) GO TO 17
    CALL PLOT( 1..16.Y.3)
    30 TO 18
 17 CALL PLUT( 1 •2•Y•3)
 18 CALL PLOTO 1. . , Y . 2)
 ZU CANTINU
    AK1 = 1 •/FULSCL
    CALL NUMBER (- 0.06,-14.5,.21,
                                     J., . . . . - 1)
    to 2. I = I.IFLSCL
    xpcs = -...6 + I*AKI
    X^{N}FS = -.12 - I*A<1
    CALL MEM-FR(XPOS,-14.5,.21,1.*1,0.,-1)
     [ALL NOMPER(XNEA,-14.5,.21,-1.*1,00.,-1)
    CALL SY 1-01 (-4.5,-14.9,.21,
   1 46H(FREQUENCY - FOENTER) MIVIORD HY FSCALE, (HZ), 0.,461
    CALL SYMBOL(-4.5.-15.3..21.10HECENTER = ....10)
    CALL NUMBER (-2.1,-15.3,.21,FCENTR,0.,0)
    CALL SYVECT( ..-15.3,.21.9HFSCALE = ,0.,9)
    CALL NUMBER (2.4,-15.3,.21,10.**IEXP, ...C)
3-K J CONTINUE
    ISTUP = NSP - MST + 1
    DENOT = NSP - NST + 2
     SPLX = 20./OFNOM
     00.3 \cdot I = 1.1STOP
     T1 = (CAHS(A(I+NST)))*YKSCAL
     IF(T1 .LT. 1.5-7) GO TO 3:
     Y1 = (7.../YSPRED) * 4. * ALOGIO(T1)
     IF(Y1 .LF. -14.1) 30 TO 37
     X1 = I * DELX - 1...
     IF(X1 .LT. -1..) 30 TO 30
     IF(X1 •9T• 1 •) 60 TO 3.
     IF(Y1.LF. .) 60 TO 25
     CALL SYMMOL(X1,.16,.21,14*,0.,1)
     GO TO 3
    CONTINUE
     CALL PLOT(X1,-14.,3)
     CALL PEDT(X1,Y1,2)
     CALL PL^T(X1,-14.,2)
  3 CONTINUE
     CALL PLOT(13.,-2 .,-3)
  35 FORMAT(IH1,2X,14HPLOT COMPLETED)
     JRITE (6.35)
SIMP CONTINUE
     RETURN
     2 M
```

10. Subroutine ELFIND

Called by: INPFOR, MAIN, PDCHK

Calls: none Commons: none

Entries: none

Description: ELFIND compares a Hollerith string of up to six characters to a number of pre-stored character strings. When a match is found, an integer is set to a unique value which indicates the matched string. This is the basic operation of identifying the input commands; the integer is returned to the calling program and used to direct program flow to properly execute the command. This subroutine was patterned after a similar subroutine in CIRCUS, but is essentially a complete rewritten version.

Program Listing:

 \subset

C

C

```
SUBROUTINE ELFIND (NAME, L)
PARAMETER NMAX = 42
```

ELFIND TRIES TO MATCH THE KEY WORD FROM AN INPUT DATA STRING (NAME) AGAINST ONE OF THE ALLOWABLE INPUT FORMS. L IS SET TO THE INDEX WHICH CORRESPONDS TO THE MATCHED INPUT TYPE.

DIMENSION MATCH(NMAX)

DATA (MATCH(I), I=1,MMAX)

- A / 6HPRINTT,6HPRINTF,6HTPLOTT,6HTPLOTF,6HCPLOTT,6HCPLOTF, 6HPRIMEF,6HENDO, J,6HBWBNDP,6HBWLOVP,5HBWHIP,,6HBWBSTP,
- 6HCHBNDP,6HCHLDWP,5HCHHIP, 6HCHBSTP,5HSYNBP, 5HSYNLP, ,6HIDLMUL,6H
- SHSYNHP, 6HSIGGEN, 6HERGMUL, 6H SHBLOCK, 3HYES, 6HFMDEMO,6HPHDEMO,3HAMP, 3HLIM.
- .6HAMDEMO.6HFLATSP.6HLISTCO. 5H 1HN, 2HNO.
- 6HCIRCUI +6HINPUTF +6HDFLETF +6HINSERT +6HREPLAC +6HREPEAT/

DO 11 I = 1. NMAX

IF (NAME - MATCH(I)) 11,21,11

11 CONTINUE

I = NMAX + 1

21 L = IRETURN END

138

11. Subroutine FETCH

Called by: MAIN, PDCHK

Calls: BCDFPT
Commons: CFETCH
Entries: none

Description: FETCH is the main input routine, it reads in commands as a string of BCD characters, decodes the various elements in the input stream and stores them in array WORD. All blank characters are discarded; different elements are delimited by commas. Hollerith strings are truncated to the first six characters and stored in WORD. Numeric characters representing data are converted to real numbers by BCDPFT prior to storage. FETCH was also adapted from CIRCUS, but several changes were made. In particular, the program was modified to eliminate two calls to assembly language subroutines.

```
SURROUTING FETCH(XORD, LL, 340)
  INTEGER APOST BLANK COMMA PROPILIFOUAL PLUS RPAREN, TEST
  INTEGER SUFF1, HUFF2, BUFF3, ACOFPT, TITLE, WORD, E
  DIMENSION TITLE(12)
  COMMON/CEETCH/ HUFF2(6), HUFF1(80)
  DIMENSION WORD(1)
  DATA APOST . PLANK . COMMA . DECPT . EGUAL . MINUS . NINE . NZ . PLUS
     / 1H- ,1H ,1H,,1H, ,1H= ,1H- ,1H9 ,1H0 ,1H+ /
  DATA LPAREN, ROAREN
     / 18( , 17) /
  DATA E / 1HE /
  L = ..
  MCOLS = 80
  √∂AD = 1
     FETCH IS A ERRE-FIELD INDUT SUBPROGRAM WHICH RETURNS
     THE IMPUT DATA IN LE CONSECUTIVE CELLS OF THE
      ARRAY WORD. HOLLERITH IS TRUNCATED TO 6 CHAP. ...
1 CONTINUE
  READ (5.1001,END = 1.7) ( 60FF1(I),I=1.60 )
   WRITE (6,1005) ( BUFF1(I),I=1,80 )
2 v = ,
2 < = .
   ; = .
   NCOYYA = "
```

FETCH (Continued)

```
DO 3 I = 1.6
    3 BUFF2(I) = BLANK
C
    4 IF ( M-NCOLS ) 40,130,100
          EXAMINE EACH COLUMN. REMOVE BLANKS. AND TEST FOR
C
           SEPARATORS.
   40 \text{ M} = \text{M} + 1
      TEST = BUFF1(M)
       IF ( TEST - BLANK ) 41,4,41
   41 IF ( TEST - COMMA ) 42,6,42
   42 IF ( TEST - EQUAL ) 43,6,43
   43 IF ( TEST - LPAREN ) 44,6,44
   44 IF ( TEST - RPAREN ) 45,4,45
   45 N = N+1
       BUFF2(N) = TEST
       IF ( K ) 5,5,4
           IF TYPE HAS NOT BEEN SET (K=0). TEST CHARACTER TO
\subset
           DETERMINE IF IT IS A DIGIT OR SIGN (NO DECISION),
 C
           A 4-8 PUNCH (TITLE CARD), A DECIMAL POINT (FLOATING
 C
           POINT NUMBER) . OR NONE OF THESE . IN WHICH CASE A
 C
           HOLLERITH WORD IS ASSUMED. IF K IS SET. IT WILL BE
 C
                    O WHEN AN INTEGER
 C
                    1 WHEN A FLOATING POINT NUMBER
 C
                    2 WHEN A HOLLERITH WORD.
 C
     5 \text{ NCOMMA} = 1
       IF ( TEST - NZ ) 52,51,51
    51 IF ( TEST - NINE ) 4,4,52
    52 IF ( TEST - PLUS ) 53,4,53
    53 IF ( TEST - MINUS ) 54.4.54
    54 IF ( TEST - APOST ) 55,30,55
    55 IF ( TEST - DECPT ) 56,57,56
    56 IF ( TEST - E ) 561,560,561
   560 IF ( N-1 ) 561,561,4
    561 K = 2
        GO TO 4
    57 K = 1
        GO TO 4
```

FETCH (Continued)

```
SELECT MODE OF COMVERSION. RASED UPON K.
   6 IF ( K-1 ) 7,7,3
   7 BUFF3 = BCDFPT( BUFF2,N )
     IF ( N ) 116,106,8
   8 WORD(L+1) = SUFF3
     GD TC 91
   0 HMCCODE(6,1,02,WORD(L+1)) (BUFF2(I),I=1,6)
  91 L=L+1
          IF NOT FINISHED WITH THE CARD IMAGE, REINITIALIZE
          AND CONTINUE. IF THE MODES COLUMN CONTAINED A
          COUMA, PROCESS THE NEXT CARD. . . HERWISE, SET THE
          NUMBER OF WORDS CONVERTED IN LL AND RETURN.
      IF ( M-MCOLS ) 2,1 ,1.
   10 IF ( TEST - COMMA ) 11:1:11
   11 LL = L
      RETURN
          MOVE A TITLE CARD INTO THE TITLE ARRAY.
\subset
   30 ENCORE (72,1001,TITLE) (SUFF1(I), I = 1,72)
      GO TO 1
          A CARD IMAGE HAS HEEN PROCESSED. IF THE LAST
          NOM-BLANK SYMBOL WAS A COMMA (NCOMMA=1), RHAD
\subset
          THE NEXT CARD. OTHERWISE THERE IS IRFORMATION
C
          IN *BUFF2* TO BE CONVERTED, AFTER UHICH, FETCH
          WILL RETURN TO THE CALLING PROGRAM.
\subset
  100 IF ( NCOMMA ) 6,1,6
          FETCH FOUND CONCOMITANT SEPARATORS OR A NUMBER WITH
C
          MORE THAN 15 DIGITS AND COULD NOT CONTINUE.
  106 ARITE (6,200k) (SPFF2(I),I=1,6)
      MBAD = /
      RETURN
  107 STOP
 1001 FORMAT(8041)
 1002 FORMAT(6A1)
 1005 FORMAT(1X8, A1)
 2000 FORMAT(25H0** FETCH CANNOT DECOUR 6A1,4H
      CNB
```

12. Subroutine FFT

Called by: TIMFCN

Calls: none

Commons: none

Entries: none

Description: FFT performs the direct and inverse fast Fourier transform. This program is substantially the same FFT routine developed under Contract NASA8-20054 and previously reported*. It has been modified, however, to remove the FLD function, available in FORTRAN V, which appeared in the original version. These changes appear in the DO 10 loop, and the version listed here contains only standard FORTRAN-IV statements.

^{*}Walsh, J. R. and R. D. Wetherington, <u>CCS Down-Link Spectral Studies</u>, Technical Report No. 7, Contract NAS8-20054, Georgia Institute of Technology, 29 May 1970.

Program Listing:

```
SUBROUTINE FFT (A, IGAM, ISN)
  COMPLEX A(1),T1,T2,TEMP
  DOUBLE PRECISION PI2, SO, CO, SI, CI, SN, CS
  PI2 = 6.28318530717958648D0
  N = 2 ** IGAM
  NBIT = 36 - IGAM
  N1 = N - 2
  DO 30 I = 1.N1
  IFLIP = 0
  i \times = I
  DO 10 J = 1.1GAM
  IOLD = IX
   IX = IX / 2
   IBIT = IOLD - 2 * IX
10 IFLIP = 2 * IFLIP + IDIT
   IF (I .LE. IFLIP) GO TO 30
   11 = 1 + 1
   I2 = IFLIP + 1
   TEMP = A(12)
   A(I2) = A(I1)
   A(I1) = TEMP
30 CONTINUE
   DO 80 I = 1.1GAM
   NEL = 2**I
   NEL2 = NEL / 2
   NSET = N / NEL
   SI = DSIN(PI2/NEL)
   CI = DCOS(PI2/NEL)
   00 80 J = 1.NSET
   INCR = (J-1) * NEL
   50 = 0.000
   CO = 1.0D0
   DO 80 II = 1.NEL2
   J1 = II + INCR
   J2 = J1 + NEL2
   T1 = A(J1)
   T2 = A(J2) * CMPLX(CO o ISN * SO)
   A(J1) = T1 + T2
   A(J2) = T1 - T2
   SN = 50 * CI + CO * SI
    CS = CO * CI - SO * SI
    co = cs
80 SO = SN
    IF (ISN .GT. 0) GO TO 120
    00 110 I = 1.N
110 A(I) = A(I)/N
120 CONTINUE
    RETURN
    END
```

13. Subroutine FILTER

Called by: BWBNDP, CHBNDP

Calls: FRQFCN

Commons: blank, CFILT

Entries: none

Description: FILTER operates on the components in the frequency array to complete the computations for any type of Butterworth or Tchebysheff filter. Given the poles, $\mathbf{S_k}$, determined by BWBNDP or CHBNDP, FILTER calculates the transfer function

$$H(f_p) = \frac{1}{(f_p - S_1)(f_p - S_2) \cdots (f_p - S_n)}$$

where n is the filter order (number of poles) and $\hat{\boldsymbol{r}}_p$ is a normalized complex frequency defined by

$$f_{p} = \begin{cases} j & f - f_{o} \\ j & f_{cutoff} \end{cases}$$
, low pass band pass filters,
$$j & \frac{f_{cutoff}}{f - f_{o}}$$
, high pass or band stop filters.

All spectral lines subject to more than 300 dB rejection are set to zero.

Program Listing:

SUBROUTINE FILTER(A) COMPLEX A(1),5(20),HD,Z COMMON N.IGAM.DELF.DELT COMMON/CFILT/ FU,FCOFF,NR,AMP,FFLG,S LOGICAL FFLG TEST = EXP(35. / NR) CALL FRQFCN(A) DO 30 I = 1.N II = I - 1 - N/2F = II * DELF FP = SIGN(1...F) * (AdS(F) - F0) / FCUFFIF (FFLG) GO TO 15 IF (AdS(FP) .LT. 1.E-16) GO TO 25 FP = -1./FP15 IF (ABS(FP) .GT. TEST) GO TO 25 $Z = CMPLX(U \bullet \bullet FP)$ HD = CMPLX(1..0.)DO 20 K = 1.NR 20 HD = HD * (Z - S(K))A(I) = AMP + A(I) / HDGO TO 30 25 A(I) = CMPLX(0.,0.) 30 CONTINUE RETURN END

14. Subroutine FLATSP

Called by: PROCES

Calls: ADJN

Commons: blank, CDATA, CDOM

Entries: none

Description: FLATSP loads the frequency array with components of uniform amplitude thus simulating the spectrum of an impulse function. It is useful in examing the transfer functions of filters in detail.

Program Listing:

SUBROUTINE FLATSP(A) COMPLEX A(1) COMMON N.IGAM.DELF.DELT.PD COMMON /CDATA/ JCTR.DATA(200) COMMON /CDOM/ DOMFLG LOGICAL DOMFLG AMP = DATA(JCTR)DELF = DATA(JCTR+1) PD = 1./DELF N = DATA(JCTR+2)CALL ADJN DO 10 I = 1.N10 A(I) = $CMPLX(AMP \cdot 0 \cdot)$ DOMFLG = .FALSE. RETURN END

15. Subroutine FMDEMO

Called by: PROCES

Calls: FRQFCN, TIMFCN

Commons: blank, CDATA, CDOM

Entries: none

Description: FMDEMO simulates the action of an FM demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain and taking the complex logarithm of each time sample produces an imaginary part equal to the phase angle (modulo 2π). A tracking loop corrects for excursions beyond the $\pm \pi$ range thus reconstructing the phase deviation due to the angle modulation.

Program Listing:

```
SUBROUTINE FMDEMO(A)
      COMMON N. IGAM, DELF, DELT, PD, CARREQ
      COMMON/CDATA/ JCTR, DATA(200)
      COMPLEX A(1)
      PI2 = 6.2831853
      J = U.
      N2 = N /2
      FO = WORD(JCTR)
      CALL FRQFCN(A)
C * * REMOVE THE NEGATIVE FREQUENCY COMPONENTS
      DO 10 I = 1.N2
   10 A(I) = (0., 0.)
C * * MOVE THE MODULATED CARRIER TO ZERO FREQUENCY
      IFU = FU / DELF + .5
      NSTART = N2 + 1
      NSTOP1 = N - IFO + 1
      DO 11 I = NSTART N
   11 A(I - IFO) = A(I)
      DO 12 I = NSTOP1 \cdot N
   12 A(I) = (0., 0.)
C * * RECOVER THE ANGLE INFORMATION
      CALL TIMECN(A)
      A(1) = CLOG(A(1))
      THETA2 = AIMAG(A(1))
      DO 2U I = 2.N
      A(I) = CLOG(A(I))
       THETAl = AIMAG(A(I))
       THETAT = THETA1 * THETA2
       IF(THETAT .LE. O.) GC TO 21
       GO TO 29
   21 IF(AbS(THETA1) .LE. 1.57) GO TO 29
       IF (THETA2 .GE. U.) GO TO 22
       J = J - 1
       GO TO 29
   22 J = J + 1
   29 THETA2 = THETA1
       TEMP = THETA1 + PI2 * J
    20 A(I) = CMPLX(TEMP, U.)
       A(1) = CMPLX(AIMAG(A(1)), U.)
C * * ZERO THE D-C COMPONENT
       CALL FROFCN(A)
       A(N2 + 1) = CMPLX(U \bullet \bullet U \bullet)
       RETURN
       END
```

16. Subroutine FRQMUL

Called by: PROCES

Calls: TIMFCN
Commons: blank
Entries: none

Description: FRQMUL provides the action of a biased half-wave rectifier; operating on the time function, it passes only those time samples whose amplitude exceed a fixed threshold (currently set at 0.5 volts). The resulting signal is rich in harmonics of the carrier frequency. Particular multiples can be isolated by filtering. Note that the output of FRQMUL is not bandlimited and the user should be aware that aliasing may be a problem.

Program Listing:

SUBROUTINE FRQMUL(A)
DIMENSION A(1)
COMMON N. IGAM
CALL TIMFCN(A)
THRES = .5
NDBL = 2 * N - 1
DO 100 I = 1.NDBL.2
A(I) = A(I) - THRES
A(I + 1) = 0.
IF (A(I) .LT. 0.) A(I) = 0.
100 CONTINUE
RETURN
END

17. Subroutine IDLMUL

Called by: PROCES

Calls: TIMFCN

Commons: blank, CDATA, CFREQ

Entries: none

Description: IDLMUL is an ideal multiplier which operates in the time domain and generates the product of the signal being processed and a

local oscillator signal.

Program Listing:

SUBROUTINE IDLMUL(A) COMMON N.IGAM, DELF, DELT COMMON/CDATA/ JCTR, DATA(200) COMMON/CFREQ/ NFR, FR(6) COMPLEX A(1) AMPLO = DATA(JCTR)FLO = DATA(JCTR + 1)CALL TIMECN(A) PI2 = 6.2831853WLO = PI2 * FLO $DO 1 I = 1 \cdot N$ II = I - 1T = II * DELT 1 A(I) = A(I) * AMPLO * SIN(WLO * T)RETURN **END**

18. Subroutine INPFOR

Called by: MAIN
Calls: ELFIND
Commons: CWORD
Entries: none

Description: INPFOR is a service routine that will list the input format and define the parameters of any block input command. It is added as a convenience to the remote terminal user; it has no affect on the circuit or signal being processed.

Program Listing:

SUBROUTINE INPFOR COMMON /CWORD/ WORD(10) LOGICAL FLG FLG = .TRUE. CALL ELFIND(WORD(2),L) l, 9, 1, 10, GO TO (1, 1, l, 1, l, 1, 17, 18, 19, 20, 13, 14, 15, 16, 11, 12, 1, 27, 28, 1, 23, 1, 25, 26, ರ 21. 1, 1, 1, 35, 1, l, 1, 1, 34, C 1, 1, 1, 5001, L 1, 1 WRITE(6,7001) WURD(2) GO TO 999 20 WRITE(6,7020) WRITE(6,7104) IF (FLG) GC TO 999 35 WRITE(6,7035) wRITE(6,7111) IF (FLG) GO TO 999 9 WRITE(6,7009) WRITE(6,7101) IF (FLG) GO TO 999 10 WRITE(6,7010) WRITE(6,7102) IF (FLG) GO TO 999 11 WRITE(6,7011) WRITE(6,71-2) IF (FLG) GO TO 999 12 wRITE(6,7012) WRITE(6,7101) IF (FLG) GO TO 994 13 WRITE(6,7013) WRITE(6.7101) WRITE(6,7103) IF (FLG) GO TO 999

INPFOR (Continued)

```
14 WRITE(6,7"14)
   MRITE(6,7132)
   WRITE(6,71:3)
   IF (FLG) 60 TO 999
15 MRITE(6,7015)
   %RITF(6,71-2)
   WRITE (6,71,3)
   IF (FES) GO TO 999
16 WRITE (6,7, 16)
   ⊌RITE(6,7101)
   ARITE(6,7103)
   IF (FLG) 60 TO 939
17 PRITE(6,7017)
   SRITE(6.71.1)
   IF (FLG) 60 TO 999
18 PRITE(5,7018)
   /RITE(6,7102)
IF (FLG) 60 TO 999
19 VRITE(6,7019)
   WRITE(6,71 2)
IF (FLG) 60 TO 999
25 WRITE(6,7025)
   FRITE(6,71.7)
   IF (FLS) 60 TO 999
34 WRITE(6,7034)
    RRITE(6,7107)
    IF (FEG) 50 TO 999
26 WRITE(6,7026)
    WRITE(6,7107)
    IF (FLG) 60 TO 999
21 WRITE (6,7021)
    XRITE (6,7105)
    IF (FLS) 60 TO 999
 23 ARITE(6.7023)
    HRITE(6,71 6)
    IF (FLG) 50 TO 994
 27 %RITE(6,7027)
    IF (FLG) 60 TO 399
 28 MRITE(6,7-29)
    (RITE(5,711°)
    GO TO 999
50 IF (MORD(2) .FQ. 3-NLL) 50 TO 510
    XRITE(6,7112) NORD(2)
GO TO 999
    50 TO 2.
```

INPFOR (Continued)

```
7000 FORMAT()
7001 FORMAT(1X, A6, - IS NOT AN INPUT COMMAND-)
7009 FORMAT(/- BWBNDP, FC, BW, NR-)
7010 FORMAT(/+ BWLOWP, FC, NR-)
7011 FORMAT(/- SWHIP, FC, NR-)
7012 FORMAT(/- BWBSTP, FO, BW, NR-)
7013 FORMAT(/- CHBNDP, Fu, EM, NR, EPSDB+)
7014 FORMAT(/- CHLOWP, FC, NR, EPSD3-)
7015 FORMAT(/- CHHIP, FC, MR, EPSDB-)
7016 FORMAT(/- CHBSTP, FU, BW, NR, EPSDB-)
7017 FORMAT(/- SYNBP, FO, BW, NR-)
7018 FORMATI/- SYNLP, FC, NR-)
7019 FORMAT(/- SYNHP, FC, NR-)
7020 FORMAT(/- SIGGEN, FJ, FMOD, AM, PM, FM, A-)
7021 FORMAT(/- FRQMUL-)
7023 FORMAT(/- IDLMUL, ALO, FLO-)
7025 FORMAT(/- FMDEMO, FO-)
7026 FORMAT(/- PHDEMO, FU-)
7027 FORMAT(/- AMP, GAIN-/- GAIN = VOLTAGE GAIN, DB-
              - (6 08 = FACTOR OF 2)-)
7028 FORMAT(/- LIM, CL, CH, GL-)
7034 FORMAT(/- AMDEMO, FU-)
7035 FORMAT(/- FLATSP, AMP, DELF, N-)
 71-1 FORMAT(- FO = CENTER FREQ, HZ-/- BW = BANDWIDTH, HZ-/
              - NR = NUMBER OF SECTIONS-)
 7102 FORMAT(- FC = CORNER FREQ, HZ-/- NR = NUMBER OF SECTIONS-)
 7103 FORMAT(- EPSDB = CHEBYSHEV RIPPLE FACTOR, DB-)
 7104 FORMAT(- FO = CARRIER FREQ. HZ-/
             - FMOD = MODULATION FREG, HZ-/
     Δ
             - AM = PERCENTAGE AMPLITUDE MODULATION-/
             - PM = PEAK PHASE DEVIATION, RADIANS-/
     \boldsymbol{C}
             - FM = PEAK FREQUENCY DEVIATION. HZ-/
             - A = PEAK AMPLITUDE, VOLTS-)
 7105 FORMAT(- (NO PARAMETERS)-)
 7106 FORMATI- ALC = PEAK AMPLITUDE OF LO SIGNAL, VOLTS-/
              - FLO = FRED OF LO, HZ-1
 7107 FORMAT(- FO = CENTER FREG, HZ-)
 7110 FORMAT(- CL = LOW CLIPPING LEVEL. VOLTS-/
              - CH = HIGH CLIPPING LEVEL, VCLTS-/
     Δ
              - GL = LIMITER GAIN, VOLTS/VOLTS-)
 7111 FORMAT(- AMP = AMPLITUDE OF SPECTRAL LINES-/
              - DELF = FREQ SEPARATION OF LINES, HZ-/
              -N = ARRAY SIZE-1
 7112 FORMAT(/- INPFOR CANNOT DECODE -+A6/)
   999 WRITE(6,7000)
       RETURN
       END
```

19. Subroutine LFOLD

Called by: TIMFCN

Calls: none
Commons: none

Entries: none

Description: LFOLD provides the action of folding and unfolding the frequency spectrum to meet the requirements of the FFT. The frequency domain representation is always ordered by frequency except when entering or leaving the FFT.

٠.)

Program Listing:

SUBROUTINE LFOLD (A.N)
COMPLEX A (1).T1
N2=N/2
DO 10 I=1.N2
II=I+N2
T1=A (I)
A (I)=A (II)
10 A (II)=T1
RETURN
END

20. Subroutine LIM

Called by: PROCES

Calls: TIMFCN

Commons: blank, CDATA

Entries: none

Description: LIM operates on the time function to produce ideal limiting. Signal excursions are clipped to specified upper and lower limit levels. Note that the output of LIM is not bandlimited and the user should be aware that aliasing may be a problem.

Program Listing:

SUBROUTINE LIM(A)

COMMON N

COMMON/CDATA/ JCTR,DATA(2UU)

CLEVL = DATA(JCTR)

CLEVH = DATA(JCTR+1)

GL = DATA(JCTR+2)

COMPLEX A(1)

CALL TIMFCN(A)

DO 1 I = 1.9N

A(I) = GL*A(I)

IF (REAL(A(I)) .LE. CLEVL) A(I) = CMPLX(CLEVL,U.)

1 IF (REAL(A(I)) .GE. CLEVH) A(I) = CMPLX(CLEVH,O.)

RETURN

END

21. Subroutine LSTCOM

Called by: MAIN

Calls: none

Commons: CWORD
Entries: none

Description: LSTCOM is a service routine that will list all of the valid commands that are recognized by FATCAT. It is included as an aid to the remote terminal user; calling LSTCOM has no affect on the circuit or signal being processed.

4.3

Program Listing:

```
SUBPOUTING LSTCOM
    COMMON /CHORD/ WORD(1)
    2RITE(5.7071)
    T = '
    IF (WORD(2) .10. 3HALL) 60 TO 20
    I = ~
    IF (MORD(2) .EQ. 6HSOURCE) GO TO 20
    IF (voRD(2) •FG• 6HFILTER) 60 TO 30
    IF (WORD(2) •EV• 6HDEMODU) GO TO 40
    IF (WORD(2) . FQ. 4-41SC) 60 TO 50
    IF (WORD(2) .FD. 6HCONTRO) GO TO 60
    IF (MORD(2) .FQ. 5HNSIZE) GO TO 7/
    IF (WORD(2) .EQ. 6HLISTCO) GO TO 80
    ARITE(6,7021) VORD(2)
    GO TO 999
 2" VRITE(6,7" 2)
    IF (I .EQ. ) GO TO 999
 3, WRITE(6,7°,3)
    IF (I .EQ. 3) GO TO 999
 45 RRITE(6,7...4)
     IF (I .5Q. U) 60 TO 999
 5) WRITE(6,70 5)
    IF (I .50. -) 50 TO 999
 60 WRITE(6,70 6)
    IF (I .50. 0) 60 TO 999
 70 WRITE(6,7007)
     GO TO 999
    WRITE(6,7013)
999 RETURN
7001 FORMAT(/15X .- FATCAT COMMAND SUMMARY-)
70.2 FORMAT(/10x,-500PCES-//- SIBGEN-,5x,-SIGMAL GENERATOR-/
    A - FLATSP-,5X,-FLAT SPECTRUM GENERATUR-)
```

LSTCOM (Continued)

```
7003 FORMAT(/,10x,-FILTERS-//- BUTTERWORTH--/
      - BWENDP-,5X,-BAND PASS-/
      - BWLOWP-,5X,-LOW PASS-/
       - BWHIP-+6X,-HIGH PASS-/
    C
       - BWBSTP-,5x,-BAND STOP-/
       /- TCHEBYSHEFF--/
       - CHBNDP-,5X,-BAND PASS-/
       - CHLOWP-,5X,-LOW PASS-/
    G
      - CHHIP-,6X,-HIGH PASS-/
    Н
       - CHBSTP-,5X,-BAND STOP-/
      /- SYNCHRONOUSLY TUNED--/
      - SYNBP-,6X,-BAND PASS-/
       - SYNLP-,6X,-LOW PASS-/
    M - SYNHP-,6X,-HIGH PASS-1
7004 FORMAT(/.10X.-DEMODULATORS--//
    A - FMDEMO-,5X,-FM DEMODULATOR-/
       - AMDEMO-,5x,-AM DEMODULATOR-/
       - PHDEMO-,5X,-PHASE DEMODULATOR-)
7005 FORMAT(/,10x,- MISCELLANEOUS -//,
    A - FROMUL-,5X,-FREQUENCY MULTIPLIER-/,
       - IDLMUL-,5X,-IDEAL MULTIPLIER-/
       - AMP-,8X,-AMPLIFIER-/
    D
     E - LIM-,8X,-LIMITER-)
7006 FORMAT(/,10X,-CONTROL COMMANDS-//
       - PRINTT-,5X,-PRINT TIME FUNCTION-/
       - PRINTF-,5X,-PRINT FREQUENCY FUNCTION-/
        - TPLOTT-,5X,-PRINTER PLOT OF TIME FUNCTION-/
        - TPLOTF-,5X,-PRINTER PLOT OF FREQUENCY FUNCTION-/
        - CPLOTT-.5X.-REMOTE PLOT OF TIME FUNCTION-/
        - CPLOTF-,5X,-REMOTE PLOT OF FREQUENCY FUNCTION-/
       - BLOCK-,6X,-PROCESS SIGNAL TO OUTPUT OF BLOCK SPECIFIED-/
     G
       - PRIMEF-5X,-LIST PRIME FACTORS OF ALL SOURCE FREQUENCIES-/
       - END OF JOB-,1X,-TERMINATES RUN-/
                                   LIST INPUTS FOR NAMED BLOCK-/)
     J - INPUT FORMATS BLOCKNAME
 7007 FORMAT(/,4X,-SPECIAL COMMANDS TO SPECIFY ARRAY SIZE-//
        - YES-+8X+-LISTED ARRAY SIZE ACCEPTABLE-/
        - NO-,9X,-LISTED ARRAY SIZE NOT ACCEPTABLE-/
        - N-,10x,-SET ARRAY SIZE TO SPECIFIER VALUE-/)
 7008 FORMATI/ - LIST COMMANDS - COMMANDS ARE LISTED BY GIVING - ,
     A - TWO ALPHANUMERIC-/- WORD SETS SEPARATED BY A COMMA. -.
     B -THE FIRST IS -,1H-,-LIST COMMAND,-,1H-/,- POSSIBLE-,
     C - SECOND WORDS AND THE RESULTING OUTPUTS ARE--/
     D - ALL-+12X -- LIST ENTIRE COMMAND SET-/
       - SOURCES-,8X,-LIST COMMANDS FOR SOURCE BLOCKS-/
     F - FILTERS-,8X,-LIST COMMANDS FOR FILTERS-/
     G - DEMODULATORS-+3X+-LIST COMMANDS FOR DEMODULATORS-/
      H - MISC-+11X+-LIST OTHER ELOCK COMMANDS (AMP+LIF+ETC)-/
      I - CONTROL-.8x.-LIST CONTROL COMMANDS-/
      J - NSIZE-,10x,-LIST COMMANDS CONTROLLING ARRAY SIZE-/
      K - LIST COMMANDS-+2X+-LIST THE ABOVE INFORMATION-/)
  7020 FORMAT (/- LSTCOM CANNOT DECODE -+A6/)
       END
```

22. Subroutine PDCHK

Called by: MAIN

Calls: PERIOD, FETCH, ELFIND, ADJN, PRTFAC

Commons: blank, CWORD, CFLGS

Entries: none

Description: PDCHK is used in checking the period of the data set and ascertaining that the Nyquist criterion is met. This subroutine is largely executive in nature; the major calculations are carred out by subroutine PERIOD. PDCHK is called when processing is called for, provided a new source frequency has been added since the last processing call. On its initial call, it determines the period of the data set, and the associated Δf , Δt , and array size. On any subsequent calls (which happen only if a new source frequency has been introduced), it checks to see if all frequencies are still periodic on the established period. If they are, processing continues; if not, an error message is written and the run terminated.

Program Listing:

SUBROUTINE POCHK COMMON MOTGAMODELE OFLITOPO COMMON /CWORD/ WORD(11) COMMON /CFLGS/ POFLG, ARFLG LOGICAL POFLE, ARFLG MFLG = 0 NSET = NCALL PERIOD IF(ARFLG) GC TO 50 NSET = N RRITE(6,7000) PD,DELF 10 WRITE(6,7001) N, IGAM, DELT 20 CALL FETCH(BORD, L, NUMB) CALL ELFIND (YORD, LTYP) IF(LTYP . FG. 30) Sh Th 900 IF(LTYP .FQ. 31) 30 TO 3 IF(LTYP .EQ. 32) GO TO 40 IF(LTYP .FG. 8) STOP ARITE (6.73 2) GO TO 21

PDCHK (Continued)

```
30 WRITE(6,7003)
    GO TO 20
 40 N = WORD(2)
    NFLG = 0
    CALL ADJN
    IF(N .GE. NSFT) 60 TO 10
    NFLG = 1
    GO TO 900
 5J IF(NSET .GE. N) GO TO 990
    WRITE(6,7005) N
    CALL PRTFAC
    WRITE(6,7006)
    ·STOP
900 IF(NELG .EQ. 0) GO TO 999
    WRITE(6,7004) N,NSET
    WRITE(6,7003)
    GO TO 20
990 N = NSET
999 PDFLG = .FALSF.
     ARFLG = •TRUE•
     RETURN
7000 FORMAT(/,- PERIOD = -,1PE10.3,- SECONDS,-,-DELTA-F = -,
             E10.3)
7001 FORMAT(- N = -,16,-, IGAM = -,12,- , DELTA-T = -
             .1PE10.3/- IS THIS SATISFACTORY-)
   1
7002 FORMAT (- INPUT MEANINGLESS * ENTER YES, NO, OR N, VALUE-)
7003 FORMAT (- FNTER N. VALUE-)
7004 FORMAT(- N = -.16.- UNACCEPTABLE ** N MUST-
                  - BE-,16,- TO MEET NYQUIST CRITERION-)
   1
7005 FORMAT (- SOURCE FREQUENCIES REQUIRE THE ARRAY SIZE -
              -TO BE -, 19//- PRIME FACTORS ARE-/)
   1
7006 FORMAT(//- RUN IS BEING TERMINATED-)
     END
```

23. Subroutine PERIOD

Called by: PDCHK

Calls: ADJN

Commons: blank, CFREQ

Entries: PRTFAC

Description: PERIOD factors each source frequency into prime factors and constructs the highest common factor to determine Δf and the associated smallest period on which all of the frequencies are periodic. From the period and the highest frequency present, the number of samples to meet the Nyquist criterion is computed; this number is adjusted upward (if necessary) to a power of 2 by ADJN.

Entry PRTFAC will produce a listing of the prime factors of the source frequencies.

Program Listing:

SUBROUTINE PERIOD

C * * PERIOD FXAMINES NER FREQUENCIES (MAX 6) IN ARMAY FR,

C * * FACTORS BACH INTO PRIME FACTORS.CONSTRUCTS DELE AS THE

C * GREATEST COMMON FACTORS COMPUTES ARRAY SIZE N AND IGAM

C * * TO SATISEY THE NYQUIST CRITERION AND FET REDUIREMENTO

C * * COMPUTES THE TOTAL PERIOD PD AND SAMPLING PERIOD OFLT.

COMMON N.ISAN.DULF.DELT.DO

COMMON N.ISAN.DULF.DELT.DO

COMMON LA(30.6), IOUT(30), ICT(6)

LOSICAL FLAG

FLAG = .TRUF.

GO TO 5

ENTRY PRIFA(

FLAG = .FALSE.

PERIOD (Continued)

```
5 MAXFAC = 0
      00 100 I = 1.NFR
C * * CONVERT ITH FREG TO INTEGER.
      IFR = FR(I)
C * * CLEAR ITH COL OF FACTOR ARRAY IA.
      00 \ 10 \ J = 1.30
   10 IA(J,I) = 0
      J = 1
      ITEST = 2
      IDEL = 1
C * * FACTOR ITH FREQ INTO PRIME FACTORS.
      GO TO 40
   30 ITEST = ITEST + IDEL
      IDEL = 2
   40 IF(IFR .EQ. 1) 30 TO 90
      \Delta LIV = SQRT(IFR)
      IF(ITEST .GT. ALIM) GO TO 60
   50 IF(MOD(IFR.ITEST) .NE. 0) GO TO 30
       IA(J,I) = ITEST
       J = J + 1
       IF(J .GE. 30) 60 TO 990
      IFR = IFR / ITEST
       GO TO 50
   60 IA(J,I) = IFR
   90 IF (J .GT. MAXEAC) MAXEAC = J
   100 CONTINUE
       IF (FLAG) GO TO 1-2
       LIM = MAXFAC + 1
       DO 101 I = 1.1 IM
   101 WRITE(6,711) I,(IA(I,J),J=1,NFR)
       GO TO 999
 C * * ALL FREQS FACTORED. PRIME FACTORS IN FIRST NER COLS
 C * * OF IA. FIND COMMON FACTORS AND PLACE IN TOUT.
   102 IOCT = 1
       DO 110 I = 1.NFR
   110 ICT(I) = 1
   120 IMAX = 0
       DO 130 I = 1.NFR
   130 IF(IA(1,1) •GT • IMAX) IMAX = IA(1,1)
 C * * ADVANCE ALL ARRAY POINTERS TO A FACTOR •GE. IMAX.
   135 DO 2JO I = 1.NFR
   140 J = ICT(I)
        IF(IA(J.I) .EQ. 0) 50 TO 400
        IF(1A(J+I) .GF. IMAX) GO TO 200
        ICT(I) = J + 1
       GO TO 140
    200 CONTINUE
```

PERIOD (Continued)

```
C * * IF ALL POINTED FACTORS ARE NOT IMAX. ADVANCE IMAX.
  210 00 220 I = 1.NFR
      J = ICT(I)
      IF(IA(J.I) .N". IMAX) GO TO 300
  22 / CONTINUE
C * * ALL FACTORS ARE IMAX. TRANSFER TO TOUT, ADVANCE ALL
C * * POINTERS ONE STEP, AND RETEST FOR CO MON FACTOR.
      IOUT(IOCT) = I^{MAX}
       I \cap CT = I \cap CT + I
       00 231 I = 1,4FP
      ICT(I) = ICT(I) + 1
      60 TO 310
  3.1.14AX = IA(J,I)
       37 TO 135
  400 IDCT = IDCT - 1
      DELF = 1.
  * IF NO MACTIRS IN IDUT, DELF = 1. OTHERMISE DELF =
  * * PROTUCT OF ALL PRIMES IN ICUT.
       IF(100T •FQ• ) 30 TO 415
  00 41  I = 1,100T
410 UHLE = DELE*10UT(I)
   413 PD = 1. /PFLF
       FM4x = 0.
       no 420 I = 1.NFP
   42. IF(FR(I) \bulletCT\bullet FMAX) FMAX = FR(I)
 C * * SAMPLING PERIOD TO MEET NYBUIDE CRITERION.
       N = 2. * PD * FMAX + .5
 C * * ARRAY SIZE AND SAMP PERIOD (DELT) TO SATISFY FET.
       VUC4 JJA)
       00 10 999
   990 MRITE(6,70 ) I
       STOP
   7. J FORMAT(//IH +-FREQUENCY -+12+-HAS MORE THAN 29 FACTORS-/)
   711 FORVAT(1H ,6(1X,16))
   439 RETURN
       FND
```

24. Subroutine PHDEMO

Called by: PROCES

Calls: FRQFCN, TIMFCN
Commons: blank, CDATA

Intries: none

Description: PHDEMO simulates the action of an ideal phase demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain and taking the complex logarithm of each time sample produces an imaginary part equal to the phase angle (modulo 2π). A tracking loop corrects for excursions beyong the $\pm \pi$ range thus reconstructing the phase deviation due to the angle modulation.

Program Listing:

```
SUBROUTINE PHDEMO(A)
      COMMON N, IGAM, DELF, DELT, PD, CARREQ
      COMMON/CDATA/ JCTR, DATA(200)
      COMPLEX A(1)
      P12 = 6.2831853
      J = 0.
      N2 = N / 2
      FO = WORD(JCTR)
      CALL FROFCN(A)
C * * REMOVE THE NEGATIVE FREQUENCY COMPONENTS
      DO 10 I = 1.02
   10 A(I) = (0., 0.)
C * * MOVE THE MODULATED CARRIER TO ZERO FREQUENCY
      IFU = FU / DELF + .5
      NSTART = N2 + 1
      NSTOP1 = N - IF0 + 1
      DO 11 I = NSTART, N
   11 A(I - IF0) = A(I)
      DO 12 I = NSTOP1 \cdot N
   12 A(I) = \{0., 0.\}
C * * RECOVER THE ANGLE INFORMATION
      CALL TIMFCN(A)
      A(1) = CLOG(A(1))
      THETA2 = AIMAG(A(1))
      DO 20 I = 2.N
      A(I) = CLOG(A(I))
      THETA1 = AIMAG(A(I))
       THETAT = THETA1 * THETA2
       IF(THETAT .LE. U.) GO TO 21
       GO TO 29
   21 IF(ABS(THETAL) .LE. 1.57) GO TO 29
       IF(THETA2 .GE. 0.) GO TO 22
       J = J - 1
       GO TO 29
    22 J = J + 1
    29 THETA2 = THETA1
       TEMP = THETA1 + PI2 * J
    20 A(I) = CMPLX(TEMP+ 0.)
       A(1) = CMPLX(AIMAG(A(1)), \cup_{\bullet})
C * * ZERO THE D-C COMPONENT
       CALL FRQFCN(A)
       A(N2 + 1) = (0., 0.)
       RETURN
       END
```

25. Subroutine PROCES

Called by: MAIN

Calls: SIGGEN, AMP, BWBNDP, BWLOWP, BWHIP, BWBSTP, CHBNDP, CHLOWP, CHHIP, CHBSTP, SYNBP, SYNLP, SYNHP, FRQMUL, IDLMUL, LIM, FMDEMO, PHDEMO, AMDEMO, FLATSP.

...

Commons: none Entries: none

Description: PROCES is simply a switching routine that calls the proper block model for processing the signal.

Program Listing:

END

```
SUBROUTINE PROCES(I,A)
  COMPLEX A(1)
  GO TO ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
           21, 22, 23), [
1 CALL SIGGEN(A)
  RETURN
2 CALL AMP(A)
  RETURN
3 CALL BWBNDP(A)
  RETURN
4 CALL BWLOWP(A)
  RETURN
5 CALL SWHIP(A)
  RETURN
6 CALL BWBSTP(A)
  RETURN
7 CALL CHBNDP(A)
   RETURN
8 CALL CHLOWP(A)
   RETURN
9 CALL CHHIP(A)
   RETURN
10 CALL CHBSTP(A)
   RETURN
11 CALL SYNBP(A)
   RETURN
12 CALL SYNLP(A)
   RETURN
13 CALL SYNHP(A)
   RETURN
14 CALL FRGMUL(A)
15 RETURN
16 CALL IDLMUL(A)
   RETURN
17 CALL LIM(A)
18 RETURN
19 CALL FMDEMU(A)
   RETURN
20 CALL PHDEMU(A)
21 RETURN
22 CALL AMDEMO(A)
   RETURN
23 CALL FLATSP(A)
   RETURN
```

26. Subroutine SCALE

Called by: CPLOTF, TTFP

Calls: none

Commons: none
Entries: none

Description: SCALE establishes the (floating) ordinate scaling for spec-

trum plotter routines.

Program Listing:

SUBROUTINE SCALE(DBMAX.MAXSCL)

C * * * THIS SUBROUTINE ESTABLISHES ORDINATE SCALING FOR

THE REMOTE SPECTRUM PLOTTER.

IF(DBMAX.LE.U.) GO TO 10

MAXSCL = 0

1 MAXSCL = MAXSCL + 10

DIFF = DBMAX - MAXSCL

IF(DIFF.GT.O.) GO TO 1

GO TO 999

10 MAXSCL = 0

11 MAXSCL = MAXSCL - 10

DIFF = (DBMAX - MAXSCL)

IF(DIFF.LE.C.) GO TO 11

MAXSCL = MAXSCL + 10

999 RETURN
END

27. Subroutine SIGGEN

Called by: PROCES

Calls: none

Commons: blank, CDATA, CDOM

Entries: none

Description: SIGGEN generates and stores in the data array samples of the time function for the specified carrier frequency, modulation frequency, modulation types, and modulation indices. Modulation types include AM, FM, and PM; AM can be used in combination with either of the other two. At least one of the indices for FM and PM must be zero. SIGGEN flags the data array as containing a time function.

Program Listing:

: 50

```
SUBROUTING SIGGEN(A)
   COMMON/CDATA/ UCTR. DATA(2 / )
   COMMONICOOM/ DOMERO
   COMMON MOTGAMOREFORET
   COMPLEX A(1)
   LOGICAL DOMFLA
   DOVELG = .TRUF.
   FC = DATA(JCTF)
   FVOD = DATA(UCTP + 1)
   PCTAM = DATA(JCTR + 2)
   PKPHDV = DATA(JCTR + 3)
   P(FPDV = PATA(JCTR + 4)
   AAPS = DATA(UCTR + 5)
   PI2 = 6.2531852
   NC = P12 * FC
   %# = PI2 * FY00
   GETAAM = PCTAM / 10 .
   IF(PKPHNV .GT. . 1 .AND. PKEPDV .GT. ..1) GO TO 900
   IF(PKERDV .GT. . :1) 60 TO 50.
   00 1 I = 1.N
    II = I - 1
   T = II * DELT
   COEF = AMPS * ( 1. + SETAAM * COS(55 * T.))
    ANG = VC * T + PKPHDV * CCS(MM * T)
 1/A(I) = CMPLX((CORF * SIM(AMG)) * C*)
    60 TO 999
SUU RETARM = PREPRY / FMOT
    00 2 T = 1.M
    II = I - 1
    T = 11 * DELT
    COFF = AVPS * ( 1. + FFTAAV * COS( " * 1))
    ANG = WC * T + RETARM * STR(+1 * T)
  2 A(I) = CMPLX((COEF * SIN(AMG)) . ...)
    SC TO 999
9UT WRITE(6.101)
101 FORMAT(IM .-TIME FON ERROR - BOTH FR 9 PH "OD INDIC-5-
               - SPECIFIF"-1
710 RETURN
```

28. Subroutine STRDTA

Called by: MAIN

Calls: none

Commons: CDATA, CFREQ, CFLGS, CCIRKT, CWORD

Description: STRDTA stores the input parameters of all circuit blocks in permanent storage. The incoming data is removed from array WORD (placed there by FETCH) and stored in the basic data storage array DATA. Storage is dynamic, with the data location specified by JCTR. The type of block and the associated value of JCTR is stored external to this routine in the two column array ITYP.

Program Listing:

SUBROUTINE STRDTA(K1,K2,K3) COMMON/CDATA/ JCTR, DATA(200) COMMON/CFREQ/ NFR + FR (6) COMMON /CFLGS/ PDFLG, ARFLG COMMON /CCIRKT/ NOLK, ITYP(30,2) COMMON /CWORD/ WORD(10) LOGICAL PDFLG JCTR = ITYP(NBLK + 1,2)DO 10 I = 1.K1 10 DATA(JCTR + I - 1) = WORD(I + 1) JCTR = JCTR + K1 IF(K2 .EQ. 0) GO TO 999 PDFLG = .TRUE. DO 20 I = 1.K2 TEMP = WORD(K3 + I)IF (TEMP .LT. 1.) GO TO 20 NFR = NFR + 1IF(NFR .GT. 6) GO TO 50 FR(NFR) = TEMP20 CONTINUE GO TO 999 50 WRITE(6,7000) STOP 7000 FORMAT(/- INPUT FREQUENCIES EXCEED SIX-/) 999 RETURN END

29. Subroutine SYNBP

Called by: PROCES

Calls: FRQFCN

Commons: blank, CDATA
Entries: SYNLP, SYNHP

Description: SYNBP provides a model of a synchromously tuned bandpass filter. Entries SYNLP and SYNHP provide low pass and high pass models. The filter transfer function is computed to be

$$H(f) = \left(\frac{1}{1 + jf_p}\right)^n$$

where

n = number of sections,

$$f_{p} = \begin{cases} f/f_{co}^{1} & \text{for low pass,} \\ -f_{co}^{1}/f & \text{for high pass,} \\ (f -f_{o})/f_{co}^{1} & \text{for bandpass,} \end{cases}$$

$$f_{co}' = f_{co}/\Phi(n),$$

 $\Phi(n) = \sqrt{2^{1/n} - 1},$

and f_{CO} is the nominal corner frequency in Hz. For this idealized filter, the insertion loss at the center of the pass band is zero, and the attenuation at the corner frequency is 3 dB. The computed transfer function for the bandpass filter is symmetrical about center frequency.

Program Listing:

```
SUBROUTINE SYNEP(A)
  COMPLEX A(1),D,D1
  COMMON N.IGAM.DELF.DELT
  COMMON /CDATA/ JCTR, DATA(200)
  LOGICAL FFLG
  FO = DATA(JCTR)
  FCOFF = DATA(JCTR+1) / 2.
  NR = DATA(JCTR+2)
  FFLG = .TRUE.
  GO TO 20
  ENTRY SYNLP(A)
  FFLG = .TRUE.
  GO TO 10
   ENTRY SYNHP(A)
  FFLG = .FALSE.
10 FO = U.
  FCOFF = JATA(JCTR)
   NR = DATA(JCTR + 1)
20 TEST = EXP(35. / NR)
   CALL FROFCN(A)
   X = EXP(.69314718 / NR)
   PSI = SQRT(X - 1.)
   FCPR = FCOFF / PSI
   DO 50 I = 1.N
   II = I - 1 - N/2
   F = II * DELF
   FP = SIGN(1...F) * (AbS(F) - FO) / FCPR
   IF (FFLG) GO TO 30
   IF (ABS(FP) .LT. 1.E-16) GO TO 40
   FP = -1./FP
30 IF (AdS(FP) .GT. TEST) GO TO 40
   D1 = CMPLX(1.,FP)
   D = D1**NR
   A(I) = A(I) / D
   GO TO 50
40 A(I) = CMPLX(0..0.)
50 CONTINUE
   RETURN
   END
```

30. Subroutine TELPLT

Called by: MAIN

Calls: TIMFCN

Commons: blank

Entries: none

Description: TELPLT is a routine which provides a remote teletype plot of the time waveform data. The routine provides the capability of plotting selected portions of the array containing the data. This portion of the data array to be plotted is controlled by specification of the input parameters NST, NSP, NJUMP which specify the starting point in the data array, the stopping point, and the number of data array points skipped between plotted points.

Program Listing:

```
SUBROUTINE TELPLT (A, NST, NSP, NJUMP)
   COMPLEX A(1)
   DIMENSION IA(50)
   COMMON N. IGAM, DELF, DELT, PD
   CALL TIMECN(A)
   BMAX = REAL(A(NST))
   BMIN = BMAX
   DO 1 I = NST, NSP, NJUMP
   B = REAL(A(I))
   IF(0.LT. DMIN) DMIN = D
 1 IF(B.GT.SMAX) BMAX = b
    IF((BMAX-BMIN).LT.1.E-30) GO TO 999
    00 33 I = 1.50
33 IA(I) = 1H
100 WRITE(6,4)
  4 FORMAT(5X,1H+)
    wRITE(6,3) BMIN,DMAX
  3 FORMAT(12X,-AMPLITUDE- MIN -, E9.4,-, MAX -, E9.4,- VOLTS-)
    WRITE(6,4)
    WRITE(6,6)
  6 FORMAT(8X,2H 0,3X,2H,1,3X,2H,2,5X,2H,3,3X,2H,4,3X,2H,5,
       3X,2h.6,3X,2h.7,3X,2n.8,3X,2H.9,2X,3n1.0)
    WRITE (6,7)
  7 FORMAT(1H,8X,1HI,1U(5H----I))
    DO 10 I = NST.NSP.NJUMP
    b = REAL(A(I))
    D = (P-DMIN) \setminus (DMY - DMIN)
    M = INT(3*50*+*5)
    IF(M.EQ.0) GO TO 34
    IA(M) = 1H*
    WRITE(6,35) I, IA
    IA(M) = 1H
 35 FORMAT(2X, 15, 3H I,5 Al)
    GO TO 36
 34 WRITE(6,37) I
 37 FORMAT (2X, 15, 3H
 36 CONTINUE
  13 CONTINUE
     wRITE(6+11)
  11 FORMAT(6X,1HN)
     GO TO 930
 999 WRITE (6,9)
   9 FORMAT(1X,12HERROR FINISH)
 900 RETURN
     END
```

31. Subroutine TIMFCN

Called by: AMDEMO, FMDEMO, FRQMUL, IDLMUL, LIM, PHDEMO, TELPLT, WRTF

Calls: LFOLD, FFT

Commons: blank, CDOM

Entries: FRQFCN

Description: TIMFCN checks the type of function stored in the data array (indicated by DOMFLG) and transforms when necessary. A call to TIMFCN will assure that a time function is in the data array, while a call to FRQFCN will assure that a frequency function is in the data array.

Program Listing:

SUBROUTINE TIMECN(A) COMPLEX A(1) COMMON N.IJAM COMMON/CDOM/ DOMFLG LOGICAL DOMFLG IF (DOMFLG) GO TO 999 CALL LFOLD (A.N.) CALL FFT (A, IGAM, 1) DOMFLG = .TRUE. GO TO 999 ENTRY FROFCN(A) IF(.NOT. DOMFLG) GO TO 999 CALL FFT(A, IGAM,-1) CALL LFULD (A.N.) DOMFLG = .FALSE. 999 RETURN END

32. Subroutine TTFP

Called by: MAIN

Calls: FRQFCN, SCALE

Commons: blank
Entries: none

Description: TTFP is a routine which provides a remote teletype plot of the frequency function. The frequency spectrum is plotted between the limits specified as input parameters. These input parameters are FLO and FHI which specify the low and high frequency limits, in Hz, of the spectrum to be plotted.

Program Listing:

SUBROUTINE TTFP(A,FLO,FHI)

C * THIS SUBROUTINE PROVIDES A TELYTYPE PLOI OF THE FREQUENCY SPECTRUM FROM FLO TO FHI AND PRINTS THE CARRIER FREQUENCY COMPLEX A(1)

COMMON N,IGAM,DELF

DIMENSION TA(50),MM(6)

CALL FRUFCN(A)

C * * * *

NST = (N/2) + INT(FLO/DELF + SIGN(.5,FLO))

NST = NST + 1

NSP = (N/2) + INT(FHI/DELF + SIGN(.5,FHI))

NSP = NSP + 1

TTFP (Continued)

```
DBMAX = -1.E30
      IEND = NSP - NST + 1
      DO 1 I = 1 \cdot I \in ND
      DECTMP = CAbS(A(NST + I - 1))
      1F(DECTMP.LT.1.2-30) DECTMP = 1.E-30
      B = 20. * ALOGIC(DECTMP)
      IF(U.GT.DBMAX) DBMAX = B
    1 CONTINUE
     * *
     * *
      WRITE(6,2) IEND
    2 FORMAT(/5x_98HNSIZE = _9I5/)
      CALL SCALE (DBMAX, MAXSCL)
C
 * * * *
     THE ORDINATE WILL VARY FROM (MAXSCL-50) DB UP
C
C
     TO MAXSCL Do.
      DO 33 I = 1.50
   35 IA(I) = 1H
      DO 5 I = 1.6
    5 MN(I) = MAXSCL - 10*(6-I)
      MAXF = AbS(FLO)
      IF(ABS(FHI).GT.MAXF) MAXF = ABS(FHI)
      NAMEF = 0
       IF(MAXF \cdot GT \cdot 1 \cdot E3) NAMEF = 3
       IF(MAXF \cdot GT \cdot 1 \cdot E6) NAME = 6
       IF(MAXF.GT.1.E9) NAME: = 9
       IF(NAMEF.EQ.U) WRITE (6,200)
       IF(NAMEF.EG.3) WRITE(6,203)
       IF (NAMEF . EG . 6) WRITE (6,206)
       IF (NAMEF.EG.9) WRITE(6,209)
  200 FORMAT(2X, 14HFREGUENCY (HZ), 9X, 8HDECIDELS)
  203 FORMAT(2X, 15HFREQUENCY (KHZ), 8X, 8HDECIBELS)
  206 FORMAT(2x, 15HFREQUENCY (MHZ), 8x, 8HDECIBELS)
  209 FORMAT(2X, 15HFREQUENCY (GHZ), 8X, 8HDECIBELS)
       WRITE(6.7) (MM(I).I = 1.6)
     7 FORMAT(/7X,14,4(6X,14),5X,14)
       WRITE(6,8)
     8 FORVAT(9X,1HI,5(10H-----I))
```

TTFP (Continued)

```
FFACT = 1.
    IF(NAMEF.EQ.3) FFACT = 1.E-3
    IF(NAMEF.EG.6) FFACT = 1.E-3
    IF(NAMEF.EU.9) FFACT = 1.E-9
    FLO = FLO * FFACT
    FHI = FHI * FFACT
    DELF1 = DELF * FFACT
    FLOPRT = DELF1*(NST -1 -N/2)
    DO 10 I = 1.IEND
    DECTMP = CABS(A(NST + I - 1))
    IF(DECTMP.LT.1.E-30) DECTMP = 1.E-30
    # = 20. * ALOGIU(DECTMP)
    M = 50 + B - MAXSCL
     J = I - 1
    \mathbf{L} = \mathbf{L}\mathbf{X}
     FREG = FLOPRT + XJ * DELF1
     IF (M.LT.U) GO TO 50
     IF (M.EQ.U) GO TO 34
     00 1515 II = 1.M
1515 IA(II) = 1H-
     wRITE(6,35) FREG, IA
     00 1616 I! = 1.M
1616 IA(II) = 1H
  35 FORMAT(F8.3.2H I.5UA1)
     GO TO 36
  34 MRITE(6.37) FREG
  37 FORMAT(1X, F7.3,2H -)
     GO TO 36
  50 WRITE(6,51) FREQ
  51 FORMAT(1X,F7.3.2H I)
1000 FORMAT( )
  36 CONTINUE
  10 CONTINUE
     WRITE(6,11)
  11 FORMAT (6X,4HFREG)
      RETURN
      END
```

33. Subroutine WRTF

Called by: MAIN

Calls: TIMFCN, FRQFCN

Commons: blank
Entries: WRFF

Description: WRTF generates a printed listing of the time function between selected limits. Entry WRFF generates a printed listing of the

frequency function between selected limits.

Program Listing:

```
SUBROUTINE WKTF (A, N1, N2)
   COMPLEX A(1)
   COMMON N.IGAM, DELF
   CALL TIMECN(A)
   WRITE (6,704)
   DO 10 I = N1.N2
10 WRITE(6,700) I,A(I)
   GO TO 999
   ENTRY WRFF (A.FLU.FHI)
   CALL FRGFCN(A)
   NCTR = N/2 + 1
   FLOT = FLO - DELF/1.
   FHIT = FHI + DELF/10.
   WRITE(6.702)
   DC 2 \cup I = 1 \cdot N
   F = (I - NCTR) * JELF
   IF (F .LT. FLOT) GO TO 20
   IF (F .GT. FHIT) GO TO 999
   THETA = 1.E30
    T = CABS(A(I))
    IF (T .LT. 1.E-30) GO TO 15
    THETA = 57.29578*ATAN2(AIMAG(A(I)). REAL(A(I)))
15 DB = 1.E30
    IF (T .GT. U.) DO = 20. #ALOG10(T)
    WRITE(6,701) Isfam(I) aTaDosTHETA
25 CONTINUE
999 WRITE(6,703)
7UJ FORMAT(1H , 15,2(1PE1 - 3,2X))
701 FORMAT(1H .15.1PE12.4,3(2X,UFFd.3).2X,F7.2,2X,F6.1)
702 FORMAT(/- LINE-,5X,-FREU-,9X,-REAL-,6X,-IMAG-,6X,
       -MAG-,6X,-DB-,5X,-PHASE-/)
703 FORMAT(/)
704 FORMAT(/- LINE-+6X+-REAL-+8X+-IMAG-/)
    RETURN
    END
```

APPENDIX D

Listing of SIGMA-5 Version of those FATCAT Routines which were Modified to Adapt them to the SIGMA-5.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.

PRECEDING PAGE BLANK NOT FULKED

MAIN PROGRAM

```
COMPLEX A(1024)
   COMMON N. IGAM, DELF, DELT, PD, CARRED
   COMMON /CFREQ/ NFR, FR(6)
    COMMON /CDOM/ DOMFLG
    COMMON /CDATA/ JCTR.DATA(200)
    COMMON /CCIRKT/ NBLK, ITYP(30,2)
    COMMON/CWORD/ WORD(12)
    COMMON/CFLGS/ PDFLG, ARFLG
    LOGICAL PDFLG, ARFLG
    JCTR = 1
    ITYP(1,2) = JCTR
    NFR = 0
    NBLK = 0
    IBLK = 0
    POFLG = .FALSE.
    ARFLG = .FALSE.
    WRITE(6,7006)
  1 00 2 I = 1.12
  2 \text{ WORD}(I) = 4H
    CALL FETCH(WORD, L. NEAD)
     IF (NBAD .EQ. 0) GO TO 1
    CALL ELFIND(WORD, LTYP)
    GO TO( 10, 20, 30, 20, 50, 60, 70, 80, 90, 100,
            110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
            210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
    2
            310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
    3
            410, 420, 43U).LTYP
  10 IF (WORD(4) .EQ. 1H ) GO TO 12
     N1 = WORD(3)
     N2 = WORD(4)
     GO TO 15
  12 WRITE(6,7004)
     READ(5.7000) N1.N2
  15 CALL WRTF(A.NI.NZ)
     60 TO 1
  20 IF (WORD(4) .EQ. 1H ) GO TO 22
     FRLO = WORD(3)
     FRHI = WORD(4)
     GO TO 25
  22 WRITE(6.7005)
     READ(5,7000) FRLO, FRHI
  25 IF (LTYP .EQ. 4) GO TO 40
     CALL WRFF (A,FRLO,FRHI)
      GO TO 1
C # # TTY TIME PLOT
   30 IF (WORD(4) .EG. 1H ) GO TO 32
      NST = WORD(3)
      NSP = WORD(4)
      NJUMP = WORD(5)
      IF (NJUMP .EQ. 1H ) NJUMP = 1
      GO TO 35
```

MAIN (Continued)

4.4

```
32 WRITE(6,7007)
      READ(5,7000) NST,NSP,NJUMP
   35 IF (NJUMP \bulletLT\bullet 1) NJUMP = 1
      CALL TELPLT(A, NST, NSP, NJUMP)
      60 TO 1
C * * TTY FREQUENCY PLOT
   40 CALL TTFP(A, FRLO, FRHI)
      GO TO 1
C * * CALCOMP TIME PLOT
   50 wRITE(6,7101) ((ITYP(I,J), J = 1,2), I = 1,5)
 7101 FORMAT(1X,2(13,3X))
   60 GO TO 650
C * * PRINT PRIME FACTORS
   70 CALL PRIFAC
      60 TO 1
C * * END OF JOB
   80 GO TO 999
C * * BUTTERAURTH BANDPASS
   90 CALL STRUTA(3,0,0)
      NTYP = 3
      GO TO 600
C * * BUTTERWORTH LOWPASS
  100 CALL STRUTA(2,0,0)
      NTYP = 4
      GO TO 600
C * * bUTTERWORTH HIGHPASS
  110 CALL STRDTA(2,0,0)
      NTYP = 5
      GO TO 600
C * * BUTTERMORTH BANDSTOP
  123 CALL STRDTA(3,0,0)
      NTYP = 6
       GO TO 600
C * * CHEBYSHEV BANDPASS
  130 CALL STRUTA(4,0,0)
       NTYP = 7
       GO TO 600
C * * CHEBYSHEV LOWPASS
   140 CALL STRUTA(3,0,0)
       NTYP = 8
       GO TO 600
C * * CHEBYSHEV HIGHPASS
   150 CALL STRDTA(3,0,0)
       NTYP = 9
       60 TO 600
C * * CHEBYSHEV SANDSTOP
   160 CALL STRDTA(4,0,0)
       NTYP = 10
```

GO TO 600

MAIN (Continued)

```
C * * SYNCHRONOUS BANDPASS FILTER
  170 CALL STRDTA(3,0,0)
      NTYP = 11
      GO TO 600
C * * SYNCHRONOUS LOWPASS FILTER
  183 CALL STROTA(2,6,0)
      NTYP = 12
      GO TO 600
C * * SYNTHRONOUS HIGHPASS FILTER
  190 CALL STRUTA(2,0,0)
      NTYP = 13
      GO TO 600
C * * SIGNAL GENERATOR
  200 CALL STRDTA(6,2,1)
       CARRFQ = WORD(3)
       NTYP = 1
       GO TO 600
C * * FREQUENCY MULTIPLIER
   210 NTYP = 4
       GO TO 600
   220 GO TO 430
C * * IDEAL MULTIPLIER
   230 CALL STRDTA(2,1,2)
       NTYP = 16
       GO TO 600
   240 GO TO 430
 C * * FM DEMODULATOR
   250 CALL STRDTA(1,0,0)
       NTYP = 19
       GO TO 600
 C * * PHASE DEMODULATOR
   260 CALL STRUTA(1,0,0)
       NTYP = 20
       GO TO 600
 C * * AMPLIFIER
   270 CALL STRDTA(1,0,0)
       NTYP = 2
       GO TO 600
 C * * LIMITER
    280 CALL STRDTA(3,0.0)
        NTYP = 17
        GO TO 600
    290 NOUT = WORD(3)
        IF(NOUT .LE. NBLK) GC TO 291
        WRITE(6,7001) NOLK
        GO TO 1
    291 IF(NOUT - IBLK) 295,295,293
    293 IF(PDFLG) CALL PDCHK
        ITMP = IBLK + 1
```

DO 292 IBLK = ITMP, NOUT

MAIN (Continued)

```
IDTYP = !TYP(I3LK+1)
      JCTR = ITYP(IBLK,2)
      CALL PROCES(IBTYP+A)
 292 CONTINUE
      IBLK = NOUT
  295 WRITE(6,7002) IDLK
      30 TO 1
  300 CONTINUE
  310 CONTINUE
  320 GO TO 370
  330 GO TO 430
C * * AM DEMODULATOR
  340 CALL STROTA(1,0,0)
      NTYP = 22
      GO TO 600
C * * FLAT SPECTRUM GENERATOR
  350 CALL STRUTA(3,0,0)
      CARREQ = U.
      NTYP = 23
      GO TO 600
  360 CALL LSTCOM
      GO TO 1
  370 GO TO 65C
  380 CALL INPFOR
      30 TO 1
  390 GO TO 650
  400 GO TO 650
  410 GO TO 650
  420 GO TO 650
  430 WRITE(6,7003)
      GO TO 1
  600 NBLK = NBLK + 1
      ITYP(NBLK+1) = NTYP
      ITYP(N3LK + 1,2) = JCTR
      GO TO 1
  650 WRITE(6,7130) WORD(1), WORD(2)
      GO TO 1
 7000 FORMAT()
C7000 FORMAT(35.0)
 7001 FORMAT(- * * ERROR * * LARGEST BLUCK NO IS -, 12, - * *-)
 7002 FORMAT (- PROCESSING COMPLETE THRU BLUCK -, 12)
 7003 FORMAT(- * * UNDEFINED STATEMENT * *-)
 7004 FORMAT (- ENTER LOW, HIGH INDICES-)
 7005 FORMAT (- ENTER LOW, HIGH FREGUENCIES-)
 7006 FORMAT(- START-)
 7007 FORMAT (- ENTER NOTART, NOTOP, NJUMP-)
 7100 FORMAT (- COMMAND -, A4, A2, - IS NOT YEL CPERALLONAL-)
  999 CONTINUE
       STOP
       END
```

```
SUBROUTINE FETCH(WORD . LL . NBAD)
     INTEGER APOST, BLANK, COMMA, DECPT, EQUAL, PLUS, RPAREN, TEST
     INTEGER BUFF1, BUFF2, BUFF3, BCDFPT, TITLE, WORD, E
     DIMENSION TITLE(12)
     COMMON/CFETCH/ BUFF2(6),BUFF1(80)
     DIMENSION WORD(1)
     EQUIVALENCE (BUFF3.3UFF4)
     DATA APOST . BLANK . COMMA . DECPT . EQUAL . MINUS . NINE . NZ . PLUS
         / 1H- •1H •1H••1H• •1H- •1H9 •1H0 •1H+ /
     DATA LPAREN, RPAREN
         / 1H( , 1H) /
     DATA E / 1HE /
      L=0
      NCOLS = 80
      NBAD = 1
         FETCH IS A FREE-FIELD INPUT SUBPROGRAM WHICH RETURNS
C
         THE INPUT DATA IN LL CONSECUTIVE CELLS OF THE
C
C
         ARRAY WORD. HOLLERITH IS TRUNCATED TO 6 CHARS.
    1 CONTINUE
      READ (5,1001,END = 107) ( BUFF1(I),I=1,80 )
      WRITE (6,1005) ( BUFF1(I), I=1,80 )
   20 M = 0
    2 K = 0
      N = 0
      NCOMMA = 0
      DO 3 I = 1.6
    3 BUFF2(I) = BLANK
C
    4 IF ( M-NCOLS ) 40,100,100
           EXAMINE EACH COLUMN. REMOVE BLANKS. AND TEST FOR
C
           SEPARATORS.
    40 M = M+1
       TEST = BUFF1(M)
       IF ( TEST - BLANK ) 41.4.41
    41 IF ( TEST - COMMA ) 42.6,42
    42 IF ( TEST - EQUAL ) 43,6,43
    43 IF ( TEST - LPAREN ) 44.6.44
    44 IF ( TEST - RPAREN ) 45,4,45
    45 N = N+1
       BUFF2(N) = TEST
       IF ( K ) 5,5,4
            IF TYPE HAS NOT BEEN SET (K=0), TEST CHARACTER TO
            DETERMINE IF IT IS A DIGIT OR SIGN (NO DECISION),
 C
            A 4-8 PUNCH (TITLE CARD), A DECIMAL POINT (FLOATING
 C
            POINT NUMBER). OR NONE OF THESE. IN WHICH CASE A
 C
            HOLLERITH WORD IS ASSUMED. IF K IS SET. IT WILL BE
 C
 C
                    C WHEN AN INTEGER
 C
                    1 WHEN A FLOATING POINT NUMBER
 C
                     2 WHEN A HOLLERITH WORD.
```

FETCH (Continued)

```
5 \text{ NCOMMA} = 1
     IF ( TEST - NZ ) 52,51,51
  51 IF ( TEST - NINE ) 4,4,52
  52 IF ( TEST - PLUS ) 53,4,53
  53 IF ( TEST - MINUS ) 54,4,54
  54 IF ( TEST - APOST ) 55,30,55
  55 IF ( TEST - DECPT ) 56,57,56
  56 IF ( TEST - E ) 561,560,561
 560 IF ( N-1 ) 561,561,4
 561 K = 2
     GO TO 4
  57 K = 1
     GO TO 4
         SELECT MODE OF CONVERSION. BASED UPON K.
    6 IF ( K-1 ) 7,7,9
    7 BUFF4 = 3CDFPT( BUFF2,N )
      IF ( N ) 156,106,8
    8 \text{ WORD(L+1)} = \text{BUFF3}
      GO TO 91
    9 ENCODE(4,1302,WORD(L+1)) (8UFF2(I),I=1,4)
      ENCODE(2,1002,WOR)(L+2)) (BUFF2(1),1=5,6)
      L = L + 1
   91 L=L+1
          IF NOT FINISHED WITH THE CARD IMAGE. REINITIALIZE
\subset
          AND CONTINUE. IF THE NCOLS COLUMN CONTAINED A
\mathsf{C}
          COMMA, PROCESS THE NEXT CARD. OTHERWISE, SET THE
C
          NUMBER OF WORDS CONVERTED IN LL AND RETURN.
      IF ( M-NCOLS ) 2,10,10
   10 IF ( TEST - COMMA ) 11,1,1,11
   11 LL = L
      RETURN
           MOVE A TITLE CARD INTO THE TITLE ARRAY.
\mathsf{C}
     ENCODE (48,1(01,TITLE) (BUFF1(I), I = 1,48)
   30
      GO TO 1
           A CARD IMAGE HAS BEEN PROCESSED. IF THE LAST
C
           NON-BLANK SYMBOL WAS A COMMA (NCOMMA=0), READ
THE NEXT CARD. OTHERWISE THERE IS INFORMATION
           IN *BUFF2* TO BE CONVERTED. AFTER WHICH. FETCH
           WILL RETURN TO THE CALLING PROGRAM.
  100 IF ( NCOMMA ) 6,1,6
           FETCH FOUND CONCOMITANT SEPARATORS OR A NUMBER WITH
           MORE THAN 15 DIGITS AND COULD NOT CONTINUE.
  106 WRITE (6,2000) (BUFF2(I), I=1,6)
       NBAD = 0
       RETURN
  107 STOP
  1001 FORMAT(80A1)
  1002 FORMAT(6A1)
  1005 FORMAT(1X80A1)
  2000 FORMAT (25H)** FETCH CANNOT DECODE 6A1,4H **//)
       END
```

```
SUBROUTINE INPFOR
  COMMON /CWORD/ WORD(12)
  INTEGER WORD
  LOGICAL FLG
  FLG = .TRUE.
  CALL ELFIND(WORD(3)+L)
                                                   1,
                                                         9,
                                                             10,
                                  1,
                                        1,
                                              1,
                       1,
                             1.
             1,
                   1,
  GO TO (
                                                        19,
                                                             20,
                                  15,
                                                  18,
                                             17,
                             14,
                                       16,
                  12,
                       13,
            11,
                                                              1,
                                                  28,
                                                         1,
                                             27,
                                  25,
                                       26.
                             1,
                       23,
            21,
                   1,
 9
                                                         1,
                                                              1,
                                                   1,
                                              1,
                                        1,
                             34,
                                  35,
                        1,
                   1,
 C
             1,
                   1, 500), L
             1,
1 WRITE(6,7001) WORD(1), WORD(2)
  GO TO 999
20 WRITE(6,7020)
   WRITE(6,7104)
   IF (FLG) GO TO 999
35 WRITE(6,7035)
   wRITE(6,7111)
   IF (FLG) GO TO 999
 9 WRITE(6,7009)
   WRITE(6,7101)
   IF (FLG) GO TO 999
10 WRITE(6,7010)
   WRITE(6,7102)
   IF (FLG) GO TO 999
11 WRITE(6,7011)
   wRITE(6,7102)
    IF (FLG) GO TO 999
12 WRITE(6,7012)
    WRITE(6,7101)
    IF (FLG) GO TO 999
13 WRITE(6,7013)
    WRITE(6,7101)
    WRITE(6,7103)
    IF (FLG) GO TO 999
14 WRITE(6,7014)
    WRITE(6,7102)
    WRITE(6,7103)
    IF (FLG) GO TO 999
 15 WRITE(6,7015)
    WRITE(6,7102)
    WRITE(6,7103)
    IF (FLG) GO TC 999
 16 WRITE(6,7016)
    WRITE(6,7101)
    WRITE(6,7103)
    IF (FLG) GO TO 999
```

INPFOR (Continued)

```
17 WRITE(6,7017)
    wRITE(6,7101)
    IF (FLG) GO TO 999
 18 WRITE(6,7018)
    WRITE(6,71J2)
    IF (FLG) GO TO 999
 19 WRITE(6,7019)
    WRITE(6,7102)
    IF (FLG) GO TO 999
 25 WRITE(6,7025)
    WRITE(6,7107)
    IF (FLG) GO TO 999
 34 WRITE(6,7034)
    wRITE(6,7107)
    IF (FLG) GO TO 999
 26 WRITE(6,7026)
    wRITE(6,7107)
    IF (FLG) GO TO 999
 21 WRITE(6,7021)
    WRITE(6,7105)
    IF (FLG) GO TO 999
 23 WRITE(6,7023)
    WRITE(6,7106)
     IF (FLG) GU TO 999
 27 WRITE(6,7027)
     IF (FLG) GO TO 999
 28 WRITE(6,7028)
     wRITE(6,7110)
     GO TO 999
500 IF (WORD(3) .EQ. 3HALL) GO TO 510
     WRITE(6,7112) WORD(3)
     GO TO 999
 510 FLG = .FALSE.
     GO TO 20
7000 FORMAT()
70U1 FORMAT(1X,A4,A2,- IS NOT AN INPUT COMMAND-)
7009 FORMAT(/- BWBNDP, FU, BW, NR-)
7010 FORMAT(/- EWLOWP, FC, NR-)
7011 FORMAT(/- BWHIP, FC, NR-)
7012 FORMAT(/- BWBSTP, FJ, BW, NR-)
7013 FORMAT(/- CHENDP, FJ, dw. NR, EPSDB-)
7014 FORMAT(/- CHLOWP, FC, NR, EPSDB-)
7015 FORMAT(/- CHHIP, FC, NR, EPSDd-)
```

INPFOR (Continued)

```
7016 FORMAT(/- CHBSTP, FU, BW, NR, EPSDB-)
7017 FORMAT(/- SYNBP, FU, EW, NR-)
7018 FORMAT(/- SYNLP, FC, NR-)
7019 FORMAT(/- SYNHP, FC, NR-)
7020 FORMAT(/- SIGGEN, FU, FMOD, AM, PM, FM, A-)
7021 FORMAT(/- FRQMUL-)
7023 FORMAI(/- IDLMUL, ALO, FLO-)
7025 FORMAT(/- FMDEMO, FU-)
7026 FORMAT(/- PHDEMO, FU-)
7027 FORMAT(/- AMP, GAIN-/- GAIN = VOLTAGE GAIN, DB-
             - (6 DB = FACTOR OF 2)-)
    Α
7028 FORMAT(/- LIM, CL, CH, GL-)
7034 FORMAT(/- AMDEMO, FO-)
7035 FORMAT(/- FLATSP, AMP, DELF, N-)
7101 FORMAT (- FU = CENTER FREQ, HZ-/- BW = BANDWIDTH, HZ-/
              - NR = NUMBER OF SECTIONS-)
7102 FORMAT (- FC = CORNER FREQ. HZ-/- NR = NUMBER OF SECTIONS-)
7103 FORMAT (- EPSDB = CHEBYSHEV RIPPLE FACTOR, DB-)
 7104 FORMAT(- FU = CARRIER FREQ, HZ-/
             - FMOD = MODULATION FREW, HZ-/
     Α
             - AM = PERCENTAGE AMPLITUDE MODULATION-/
     ы
             - PM = PEAK PHASE DEVIATION, RADIANS-/
     C
             - FM = PEAK FREQUENCY DEVIATION, HZ-/
             - A = PEAK AMPLITUDE, VOLTS-)
 7105 FORMAT (- (NO PARAMETERS)-)
 7106 FORMAT(- ALO = PEAK AMPLITUDE OF LO SIGNAL, VOLTJ-/
             - FLO = FREQ OF LO, HZ-)
 7107 FORMAT (- FU = CENTER FREQ. HZ-)
 7110 FORMAT (- CL = LOW CLIPPING LEVEL, VOLTS-/
             - CH = HIGH CLIPPING LEVEL, VOLTS-/
             - GL = LIMITER GAIN, VOLTS/VOLTS-)
 7111 FORMAT (- AMP = AMPLITUDE OF SPECTRAL LINES-/
             - DELF = FREG SEPARATION OF LINES, HZ-/
     Α
              -N = ARRAY SIZE-)
     В
 7112 FORMAT(/- INPFOR CANNOT DECODE -, A6/)
  999 WRITE(6,7000)
      RETURN
       END
```

```
SUBROUTINE ELFIND (NAME . L)
  DIMENSION NAME(1) . MATCH(84)
  DATA (MATCH(I), I = 1.84)
 A/4HPRIN, 2HTT, 4HPRIN, 2HTF, 4HTPLO, 2HTT, 4HTPLO, 2HTF,
 B 4HCPLO, 2HTT, 4HCPLC, 2HTF, 4HPRIM, 2HEF, 4HENDO, 2HFJ,
 C 4HdwdN,2HDP,4HdwLC,2hwP,4HdwHI,2HP ,4HbwBS,2HTP,
 D 4HCHBN, 2HDP, 4HCHLO, 2HWP, 4HCHHI, 2HP , 4HCHBS, 2HTP,
 E 4HSYNB, 2HP , 4HSYNL, 2HP , 4HSYNH, 2HP , 4HSIGG, 2HEN,
                                               ,2H ,
                   ,2H ,4HIDLM,2HJL,4H
 F 4HFRQM, 2HUL, 4H
 G 4HFMDE, 2HMO, 4HPHJE, 2HMO, 4HAMP, 2H ,4HLIM, 2H
 H 4HBLOC, 2HK , 4HYES , 2H , 4HNO , 2H , 4HN
                                               •2H
          ,2H ,4HAMDE,2HMO,4HFLAT,2HSP,4HLIST,2HCO,
 J 4HCIRC,2HUI,4HINPU,2HTF,4HDELE,2HTE,4HINSE,2HRT,
   4HREPL, 2HAC, 4HREPE, 2HAT/
  NMAX = 84
  IF (NAME(1) - MATCH(I)) 11,5,11
5 IF (NAME(2) - MATCH(I + 1)) 11,21,11
11 CONTINUE
   I = NMAX + 1
21 L = (I + 1) / 2
   RETURN
   END
```

```
SUBROUTINE LSTCOM
    COMMON /CWORD/ WORD(12)
    INTEGER WORD
    WRITE(6,7001)
    IF (WORD(3) .EQ. 3HALL) GO TO 20
    I = 0
    IF (WORD(3) .EQ. 4HSOUR) GO TO 20
    IF (WORD(3) .EQ. 4HFILT) GO TO 30
    IF (WCRD(3) .EQ. 4HDEMO) GO TO 40
    IF (WORD(3) .EQ. 4HMISC) GO TO 50
    IF (WORD(3) .EQ. 4HCONT) GO TO 60
       (WORD(3) .EQ. 4HNSIZ) GO TO 70
    IF
       (WORD(3) .EQ. 4HLIST) GO TO 80
    IF
    WRITE(6,7020) WORD(3)
    GO TO 999
 20 WRITE(6,7002)
    IF (I .EQ. 0) GO TO 999
 30 WRITE(6,7003)
    IF (I .EQ. 0) 30 TO 999
 40 WRITE(6,7004)
    IF (I .EQ. 0) GO TO 999
 50 WRITE(6,7005)
     IF (I .EQ. 0) GO TO 999
 60 WRITE(6,7006)
     IF (I .EQ. 0) GO TO 999
 70 WRITE(6,7007)
    GO TO 999
 80 WRITE(6,7008)
999 RETURN
7001 FORMAT(/15X, -FATCAT COMMAND SUMMARY-)
7002 FORMAT(/10X,-SOURCES-//- SIGGEN-,5X,-SIGNAL GENERATOR-/
    A - FLATSP-,5X,-FLAT SPECTRUN GENERATOR-)
7003 FORMAT(/,10x,-FILTERS-//- BUTTERWORTH--/
      - BWBNDP-,5X,-BAND PASS-/
    Α
       - BWLOWP-,5X,-LOW PASS-/
    Ь
       - BWHIP-,6X,-HIGH PASS-/
    C
       - BWBSTP-,5X,-dAND STOP-/
    D
       /- TCHEBYSHEFF--/
    Ε
       - CHUNDP-+5X+-DAND PASS-/
    F
       - CHLOWP-,5X,-LOW PASS-/
    G
       - CHHIP-,6X,-HIGH PASS-/
    н
       - CHBSTP-,5X,-BAND STOP-/
    Ī
       /- SYNCHRONOUSLY TUNED--/
       - SYNBP-,6X,-BAND PASS-/
       - SYNLP-,6X,-LOW PASS-/
       - SYNAF-,6X,-HIGH PASS-)
```

LSTCOM (Continued)

```
7004 FORMAT(/,10X,-DEMODULATORS--//
      - FMDEMO-,5X,-FM DEMODULATOR-/
        AMDEMO-,5X,-AM DEMODULATOR-/
       - PHDEMO-,5X,-PHASE DEMODULATOR-)
7005 FORMAT(/.10x.- MISCELLANEOUS -//.
    A - FRGMUL-.5X,-FREQUENCY MULTIPLIER-/.
       - IDLMUL-.5X.-IDEAL MULTIPLIER-/
       - AMP-, SX,-AMPLIFIER-/
       - LIM-,8X,-LIMITER-)
7006 FORMAT(/,10x,-CONTROL COMMANDS-//
      - PRINTT-,5X,-PRINT TIME FUNCTION-/
      - PRINTF-,5X,-PRINT FREQUENCY FUNCTION-/
       - TPLOTT-, FX, -PRINTER PLOT OF TIME FUNCTION-/
      - TPLOTE-,5X,-PRINTER PLOT OF FREQUENCY FUNCTION-/
       - CPLOTT-,5X,-REMOTE PLOT OF TIME FUNCTION-/
       - CPLOTF-,5X,-REMOTE PLOT OF FREQUENCY FUNCTION-/
      - BLOCK-,6X,-PROCESS SIGNAL TO OUTPUT OF BLOCK SPECIFIED-/
       - PRIMEF-5X,-LIST PRIME FACTORS OF ALL SOURCE FREQUENCIES-/
       - END OF JOB-,1X,-TERMINATES RUN-/
                                   LIST INPUTS FOR NAMED BLOCK-/)
      - INPUT FORMATS BLOCKNAME
7007 FORMAT(/,4X,-SPECIAL COMMANDS TO SPECIFY ARRAY SIZE-//
      - YES-,8X,-LISTED ARRAY SIZE ACCEPTABLE-/
       - NO-,9X,-LISTED ARRAY SIZE NOT ACCEPTABLE-/
       - N-.10X.-SET ARRAY SIZE TO SPECIFIER VALUE-/)
7008 FORMATI/ - LIST COMMANDS - COMMANDS ARE LISTED BY GIVING - ,
    A - TWO ALPHANUMERIC-/+ WORD SETS SEPARATED BY A COMMA. -.
    링 -THE FIRST IS -+1H-+-LIST COMMAND+-+1H-/+- POSSIBLE-+
    C - SECOND WORDS AND THE RESULTING OUTPUTS ARE--/
    D - ALL-,12X,-LIST ENTIRE COMMAND SET-/
    E - SOURCES-,8X,-LIST COMMANDS FOR SOURCE BLOCKS-/
    F - FILTERS-,8x,-LIST COMMANDS FOR FILTERS-/
    G - DEMODULATORS-+3X+-LIST COMMANDS FOR DEMODULATORS-/
    H - MISC-+11X+-LIST OTHER BLOCK COMMANDS (AMP+LII+FTC)-/
    I - CONTROL-, EX, -LIST CONTROL COMMANDS-/
    J - NSIZE-,10x,-LIST COMMANDS CONTPOLLING ARRAY SIZE-/
    K - LIST COMMANDS-+2X+-LIST THE ABOVE INFORMATION-/)
7020 FORMAT ( /- LSTCOM CANNOT DECODE -+A6/)
      END
```

```
SUBROUTINE PDCHK
   COMMON N.IGAM. DELF. DELT.PD
   COMMON /CWORD/ WORD(12)
   COMMON /CFLGS/ PDFLG, ARFLG
   LOGICAL PDFLG, ARFLG
   NFLG = 0
   NSET = N
   CALL PERIOD
   IF(ARFLG) GC TO 50
   NSET = N
   WRITE(6,7000) PO.DELF
10 WRITE(6,7001) N.IGAM.DELT
20 CALL FETCH(NORD, L, NSAD)
    CALL ELFIND (WORD, LTYP)
   IF(LTYP .FQ. 30) GO TO 900
    IF(LTYP .EQ. 31) 60 TO 30
    IF(LTYP .EQ. 32) GO TO 40
    IF(LTYP .EQ. 8) STOP
    WRITE(6,7002)
    GO TO 20
 30 WRITE(6,7003)
    GO TO 20
 40 N = WORD(3)
    NFLG = 0
    CALL ADJN
    IF(N .GE. NSET) GO TO 10
    NFLG = 1
    GO TO 900
 50 IF(NSET .GE. N) GO TO 990
    WRITE(6,7005) N
    CALL PRTFAC
    WRITE(6,7036)
    STOP
900 IF(NFLG .EQ. 0) GO TO 999
    WRITE(6,7004) N,NSET
    WRITE(6,7003)
    GO TO 20
990 N = NSET
999 PDFLG = .FALSE.
     ARFLG = .TRUF.
     RETURN
7000 FORMAT(/ - PERIOD = -, 1PE10.3 - SECONDS - - - DELTA-F = -,
             E15.31
7001 FORMAT(- N = -.16.-. IGAM = -.12.- . DELTA-T = -
             *1PE10.3/- IS THIS SATISFACTORY-)
    1
7002 FORMAT (- INPUT MEANINGLESS * ENTER YES, NO, OR N, VALUE-)
7003 FORMAT (- ENTER N. VALUE-)
7004 FORMATI- N = -,16,- UNACCEPTABLE ** N MUST-
                   - BE-+16+- TO MEET NYGUIST CRITERION-)
    1
7005 FORMATI- SOURCE FREQUENCIES REGUIRE THE ARRAY STZE -
               -TO BE -+19//- PRIME FACTORS ARE-/)
    1
7006 FORMAT(//- RUN IS BEING TERMINATED-)
     END
```

```
SUBROUTINE STRDTA(K1.K2.K3)
    COMMON/CDATA/ JCTR.DATA(200)
    COMMON/CFREQ/ NFR+FR(6)
    COMMON /CFLGS/ PDFLG.ARFLG
    COMMON /CCIRKT/ NBLK, ITYP(30,2)
    COMMON /CWORD/ WORD(12)
    LOGICAL PDFLG
    JCTR = ITYP(NBLK + 1.2)
    DC 10 I = 1.K1
 10 DATA(JCTR + I - I) = WORD(I + 2)
    JCTR = JCTR + K1
    IF(K2 .EQ. U) GO TO 999
    PDFLG = •TRUE•
    DO 20 I = 1.K2
    TEMP = WORD(K3 + I + 1)
     IF (TEMP .LT. 1.) GO TO 20
    NFR = NFR + 1
     IF(NFR .GT. 6) GO TO 50
     FR(NFR) = TEMP
 20 CONTINUE
     GO TO 999
  50 WEITE (6,7000)
     STOP
TODU FORMAT(/- INPUT FREQUENCIES EXCLED SIX-/)
999 RETURN
     END
```

LSTCOM (Continued)

```
7004 FORMAT(/,10x,-DEMODULATORS--//
        - FMDEMO-,5X,-FM DEMODULATOR-/
        - AMDEMO-,5X,-AM DEMODULATOR-/
        - PHDEMO-,5X,-PHASE DEMODULATOR-)
     \mathsf{C}
 7005 FORMAT(/,10X,- MISCELLANEOUS -//,
        - FRGMUL-,5X,-FREQUENCY MULTIPLIER-/,
        - IDLMUL-.5X,-IDEAL MULTIPLIER-/
     C
        - AMP-,8X,-AMPLIFIER-/
        - LIM-,8X,-LIMITER-)
 7006 FORMAT(/,10x,-CONTROL COMMANDS-//
        - PRINTT-,5X,-PRINT TIME FUNCTION-/
     A
       - PRINTF-,5X,-PRINT FREQUENCY FUNCTION-/
       - TPLOTT-, FX, -PRINTER PLOT OF TIME FUNCTION-/
       - TPLOTE-,5X,-PRINTER PLOT OF FREQUENCY FUNCTION-/
       - CPLOTT-.5X,-REMOTE PLOT OF TIME FUNCTION-/
     Ε
       - CPLOTE-,5X,-REMOTE PLOT OF FREQUENCY FUNCTION-/
       - BLOCK-,6X,-PROCESS SIGNAL TO OUTPUT OF BLOCK SPECIFIED-/
    G
       - PRIMEE-5X,-LIST PRIME FACTORS OF ALL SOURCE FREQUENCIES-/
       - END OF JCB-,1X,-TERMINATES RUN-/
       - INPUT FORMATS, BLOCKNAME
                                    LIST INPUTS FOR NAMED BLOCK-/)
7007 FORMAT(/,4X,-SPECIAL COMMANDS TO SPECIFY ARRAY SIZE-//
       - YES-,8X,-LISTED ARRAY SIZE ACCEPTABLE-/
       - NO-,9X,-LISTED ARRAY SIZE NOT ACCEPTABLE-/
       - N-.10X.-SET ARRAY SIZE TO SPECIFIER VALUE-/)
7008 FORMAT(/ - LIST COMMANDS - COMMANDS ARE LISTED BY GIVING - ,
    A - TWO ALPHANUMERIC-/- WORD SETS SEPARATED BY A COMMA. -.
    8 -THE FIRST IS -,1H-,-LIST COMMAND,-,1H-/,- POSSIBLE+,
    C - SECOND WORDS AND THE RESULTING OUTPUTS ARE--/
    D - ALL-,12X,-LIST ENTIRE COMMAND SET-/
    E - SOURCES-,8X,-LIST COMMANDS FOR SOURCE BLOCKS-/
    F - FILTERS-,8x,-LIST COMMANDS FOR FILTERS-/
    G - DEMODULATORS-, 3X, -LIST COMMANDS FOR DEMODULATORS-/
    H - MISC-+11X+-LIST OTHER BLOCK COMMANDS (AMP+LII +FTC)-/
    I - CONTROL-, EX, -LIST CONTROL COMMANDS-/
    J - NSIZE-,10X,-LIST COMMANDS CONTROLLING ARRAY SIZE-/
    K - LIST COMMANDS-,2X,-LIST THE ABOVE INFORMATION-/)
7020 FORMAT(/- LSTCOM CANNOT DECODE -, A6/)
     END
```