Matematiska Institutionen KTH

TENTAMEN i Linjär algebra, SF1604, den 15 december, 2009.

Kursexaminator: Sandra Di Rocco

- Svaret skall motiveras och lösningen skrivas ordentligt och klart.
- Inga hjälpmedel är tillåtna.
- Betyg Fx ger möjlighet till att komplettera till betyg E. Datumet och formen på kompletteringsprovet meddelas via email.

Betyg enligt följande tabell:

- A minst 35 poäng
- B minst 30 poäng
- C minst 25 poäng
- D minst 20 poäng
- E minst 15 poäng
- Fx 13-14 poäng

DEL I

15 poäng totalt inklusive bonus poäng.

- 1. Låt $\vec{v} = (1, 2, 1), \vec{w} = (1, 2, -1), \vec{u}_t = (5, 3 + t, 1) \in \mathbb{R}^3$, där $t \in \mathbb{R}$.
 - (a) (2 p.) För vilka $t \in \mathbb{R}$ är vektorerna $\vec{v}, \vec{w}, \vec{u}_t$ linjärt oberoende? Matrisen

$$\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & 2 & -1 \\
5 & 3+t & 1
\end{array}\right)$$

har determinanten lika med 2t-14. då är vektorerna linjärt oberoende om $t \neq 7$.

(b) (3 p.) Bestäm $\dim(Span(\vec{v}, \vec{w}, \vec{u}_t))$ för alla $t \in \mathbb{R}$. Om $t \neq 7$ då utgör vektorerna en bas till \mathbb{R}^3 och dimensionen är lika med 3.

Om t=7 då är de linjärt beroende. Vektorerna $\vec{v}=(1,2,1), \vec{w}=(1,2,-1)$ är linjärt oberoende aftersom $k_1(1,2,1)+k_2(1,2,-1)$ leder till $k_1+k_2=0, k_1-k_2=0$ som ger $k_1=k_2=0$. Detta visar att i det här fallet är dimensionen lika med 2.

2. Betrakta följande linjer i rummet \mathbb{R}^3 :

$$l_1: \left\{ \begin{array}{rcl} x+y & = & 1 \\ 2x-z & = & 0 \end{array} \right., \quad l_2: \left\{ \begin{array}{rcl} x & = & 1-t \\ y & = & -t \\ z & = & 1-t \end{array} \right.$$

(a) (1 p.) Är linjerna parallella? Den parametriska ekvationen till linjen l_1 är:

$$l_1: \left\{ \begin{array}{rcl} x & = & t \\ y & = & 1-t \\ z & = & 2t \end{array} \right.$$

Man ser att linjärna inte är parallella föra att deras riktningsvektorer: $\vec{v_1} = (1, -1, 2), \vec{v_2} = (-1, -1, -1)$ inte är parallella (multipel).

Svar: Nei

(b) (2 p.) Skär linjerna varandra? Linjen l_2 har ekvationen:

$$l_2: \left\{ \begin{array}{rcl} x & = & z \\ y & = & x-1 \end{array} \right.$$

Linjerna skär varandra om systemet:

$$\begin{cases} x &= z \\ y &= x - 1 \\ x + y &= 1 \\ 2x - z &= 0 \end{cases}$$

är löserbar. Men man ser att systemet saknar lösningar.

Svar: Nej

(c) (2 p.) Skriv ekvationen till planet π , som innehåller linjen l_1 och är parallell till linjen l_2 . En normalvektorn, \vec{n} , till π ska vara ortogonal mot $\vec{v_1}$, $\vec{v_2}$ och då är \vec{n} parallell till $\vec{v_1} \times \vec{v_2}$.

$$\vec{v_1} \times \vec{v_2} = (3, -1, -2)$$

Ekvationen till π är 3x-y-2z+D=0 för något $D\in\mathbb{R}$. Eftersom π innehåller l_1 och $(0,1,0)\in l_1$, ska $(0,1,0)\in\pi$, och -1+D=0, som ger D=1. Svar: $\pi:3x-y-2z+1=0$.

3. Betrakta följande matris:

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 2 & 0\\ 3 & 0 & 0 \end{array}\right)$$

(a) (2 p.) Bestäm egenvektorerna till A. Den karakteristiska ekvationen är $p_A(\lambda) = (\lambda^2 - 3)(2 - \lambda) = 0$ som ger att egenvärdena till A är $\lambda = 2, \sqrt{3}. - \sqrt{3}$. Egenrummet E_2 till $\lambda = 2$ definieras av systemet:

$$\begin{cases} -2x + z &= 0\\ 3x - 2z &= 0 \end{cases}$$

som ger $E_2 = Span(0,1,0)$. Egenrummet $E_{\sqrt{3}}$ till $\lambda = \sqrt{3}$ definieras av systemet:

$$\begin{cases}
-\sqrt{3}x + z = 0 \\
(2 - \sqrt{3})y = 0 \\
3x - \sqrt{3}z = 0
\end{cases}$$

som ger $E_{\sqrt{3}}=Span(1,0,\sqrt{3}).$ Egenrummet $E_{-\sqrt{3}}$ till $\lambda=-\sqrt{3}$ definieras av systemet:

$$\begin{cases} \sqrt{3}x + z &= 0\\ (2 + \sqrt{3})y &= 0\\ 3x + \sqrt{3}z &= 0 \end{cases}$$

 $\text{som ger } E_{\sqrt{3}} = Span(1,0,-\sqrt{3}).$

Svar: Egenvektorerna är vektorerna som ligger på $Span(0,1,0) \cup Span(1,0,\sqrt{3}) \cup Span(1,0,-\sqrt{3})$ (unionen av tre linjer).

- (b) (1 p.) Är A diagonaliserbar? A är diagonaliserbar aftersom A har tre distinkta egenvärden.
- (c) (2 p.) Bestäm A^{10} . Observera att

$$A^2 = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{array}\right)$$

och då är:

$$A^{10} = (A^2)^5 = \begin{pmatrix} 3^5 & 0 & 0 \\ 0 & 4^5 & 0 \\ 0 & 0 & 3^5 \end{pmatrix}$$

DEL II, 15 poäng totalt

- 4. Betrakta mängden av komplexa tal $\mathbb C$ som ett vektor rum över $\mathbb R$. Låt $F:\mathbb C\to\mathbb C$ vara avbildningen definierat av $F(z)=z+\overline z$.
 - (a) (2 p.) Visa att F är en linjär avbildning. Låt $z_1, z_2 \in \mathbb{C}$, $F(z_1 + z_2) = z_1 + z_2 + \overline{z_1 + z_2} = z_1 + z_2 + \overline{z_1} + \overline{z_2} = F(z_1) + F(z_2)$. Låt $k \in \mathbb{R}$, $z \in \mathbb{C}$, $F(kz) = kz + k\overline{z} = kz + k\overline{z} = kF(z)$. Detta visar att F är linjär.
 - (b) (2 p.) Bestäm Ker(F). $Ker(F) = \{z = \alpha + i\beta \in \mathbb{C}, F(z) = 0\} = \{\alpha + i\beta \in \mathbb{C}, z = \alpha + i\beta = -\overline{z} = -\alpha + i\beta\}$ och då är:

$$Ker(F) = \{z = \alpha + i\beta \in \mathbb{C}, \alpha = 0\}$$

- (c) (1 p.) Är F en isomorfi? Observera att $Ker(F) = Span(i) = Span((0,1)) \subset \mathbb{R}^2$ som visar att $\dim(Ker(F) = 1$. Det följer att rang(F) = 2 1 = 1 och att F inte är en isomorfi.
- 5. Betrakta följande system, där $\lambda, \mu \in \mathbb{R}$:

$$\begin{cases} \lambda x + \lambda y & = \mu \\ \lambda x + y & = \mu \\ \lambda x + y - (\lambda + \mu)z & = \mu \end{cases}$$

(a) (2 p.) För vilka $\lambda, \mu \in \mathbb{R}$ har systemet en entydig lösning? Koefficientmatrisen associerad till systemet är:

$$A = \left(\begin{array}{ccc} \lambda & \lambda & 0\\ \lambda & 1 & 0\\ \lambda & 1 & -\lambda - \mu \end{array}\right)$$

Vi ser att $det(A) = -(\lambda + \mu)\lambda(1 - \lambda)$. Det följer att systemet har en entydig lösning om och endast om $\lambda \neq -\mu$ och $\lambda \neq 0$ och $\lambda \neq 1$.

- (b) (3 p) Sätt $\mu = 0$. Bestäm för vilka $\lambda \in \mathbb{R}$ har systemet ett lösningsrum av dimension 2. Om $\mu = 0$ då har systemet oändligt många lösningar om $\lambda = 0$ eller $\lambda = 1$.
 - Om $\lambda = 0$ då är lösningsrummet lika med Span((1,0,0),(0,0,1)), som har dimension 2.
 - Om $\lambda = 1$ då är lösningsrummet lika med Span((1, -1, 0)), som har dimension 1.

Svar: systemet har ett lösningsrum av dimension 2 bara om $\lambda = 0$.

- 6. Betrakta rummet \mathbb{R}^3 med den standardskalärprodukt.
 - (a) (3p.) Bestäm för vilka $a \in \mathbb{R}$ finns det en vektor $\vec{v} \in \mathbb{R}^3$ sådan att $||\vec{v}|| = a$ och $proj_U(\vec{v}) = (1,3,0)$, där U är xy-planet , dvs planet z=0. Låt $\vec{v}=(x,y,z)$. Eftersom $\{(1,0,0),(0,1,0)\}$ utgör en ON bas till U är

$$proj_U(\vec{v}) = \langle (x, y, z), (1, 0, 0) \rangle \langle (1, 0, 0) + \langle (x, y, z), (0, 1, 0) \rangle \langle (0, 1, 0) = (x, y, 0) = (1, 3, 0).$$

Låt då $\vec{v}=(1,3,z)$. Likhet $||\vec{v}||=a$ ger $\sqrt{10+z^2}=a$. Från ekvationen $z^2=a^2-10$ så följer det att:

- Om $0 \le a < \sqrt{10}$ då finns det ingen vektor \vec{v} .
- om $a = \sqrt{10}$ då finns det en vektor $\vec{v} = (1, 3, 0)$.
- om $a > \sqrt{10}$ då finns det två vektorer $\vec{v}_1 = (1, 3, \sqrt{a^2 10}), \vec{v}_2 = (1, 3, -\sqrt{a^2 10}).$

(b) (2p.) Bestäm om det finns ett a och en motsvarande vektor \vec{v} sådant att vinkeln mellan $proj_U(\vec{v})$ och \vec{v} är lika med $\frac{\pi}{3}$.

Låt θ vara vinkeln mellan $proj_U(\vec{v})$ och \vec{v} .

$$\cos(\theta) = \frac{\langle \vec{v}, proj_U(\vec{v}) \rangle}{||\vec{v}||||proj_U(\vec{v})||}.$$

Det följer att man ska bestämma för vilka a är $10 = \langle \vec{v}, proj_U(\vec{v}) \rangle = a\sqrt{10}\frac{1}{2}$. Detta gäller för $a=2\sqrt{10}$.

DEL III

10 poäng totalt

- 7. (5p.) I tillämpningar inom statistik förekommer stokastiska matriser. Det är kvadratiska matriser där elementen i matrisen är sannolikheter och därför ligger i intervallet [0, 1] och där summan av elementen i varje kolonn är lika med 1.
 - (a) Visa att produkten av två stokastiska matriser av samma storlek är en stokatisk matris. Låt $A = (a_{ij}), B = (b_{ij})$ vara två stokastiska matriser. Betrakta matriser $AB = (\sum_k a_{ik} b_{kj})$.
 - $\sum_{k=1}^{n} a_{ik} b_{kj} \ge 0$ eftersom $a_{ik} \ge 0, b_{kj} \ge 0, k = 1, \dots, n$. $\sum_{k=1}^{n} a_{ik} b_{kj} \le \sum_{k=1}^{n} b_{kj} = 1$ eftersom $a_{ik} \le 1, k = 1, \dots, n$.

Summan av elementen i kolonn j ges av

$$\sum_{i=1}^{n} \left(\sum_{k} a_{ik} b_{kj} = b_{1j} \left(\sum_{1}^{n} a_{i1}\right) + b_{2j} \left(\sum_{1}^{n} a_{i2}\right) + \dots + b_{nj} \left(\sum_{1}^{n} a_{in}\right) = \sum_{i=1}^{n} b_{ij} = 1,$$

eftersom $\sum_{i=1}^{n} a_{ij} = 1$ för $j = 1, \dots, n$.

(b) Visa att varje stokastik matris har ett egenvärde som är 1. Låt $A = (a_{ij})$ vara en stokastisk matris.

$$A - I_n = \begin{pmatrix} a_{11} - 1 & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - 1 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - 1 \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 \\ \dots \\ R_n \end{pmatrix}$$

 $R_1 + \dots + r_{n-1} = (\sum_1^{n-1} a_{1j} - 1) + \dots + (\sum_1^{n-1} a_{nj} - 1) = -a_{1n} - \dots - a_{nn} = R_n.$ Det följer att $det(A - I_n) = 0$ som visar att $\lambda = 1$ är en rot till den karakterstiska polynomet $det(A - \lambda I_n) = 0.$

- 8. (5 p.) Låt (V, <>) vara ett enligtdimensionellt euklidiskt rum. Låt $F: V \to V$ vara en linjär avbildning sådan att $||F(\vec{v})|| = ||\vec{v}||$ för alla $\vec{v} \in V$.
 - (a) Visa att $\langle F(\vec{u}), F(\vec{v}) \rangle = \langle \vec{u}, \vec{v} \rangle$ för alla $\vec{u}, \vec{v} \in V$.

$$||\vec{u} + \vec{v}||^2 = <\vec{u} + \vec{v}, \vec{u} + \vec{v}> = ||\vec{u}||^2 + ||\vec{v}||^2 + 2 < \vec{u}, \vec{v}>.$$

$$||\vec{u} + \vec{v}||^2 = ||F(\vec{u} + \vec{v})||^2 = ||F(\vec{u}) + F(\vec{v})||^2$$

Detta ger:

$$||\vec{u}||^2 + ||\vec{v}||^2 + 2 < \vec{u}, \vec{v}> = ||F(\vec{u})||^2 + ||F(\vec{v})||^2 + 2 < F(\vec{u}), F(\vec{v})>$$

och då
$$\langle F(\vec{u}), F(\vec{v}) \rangle = \langle \vec{u}, \vec{v} \rangle$$
.

(b) Visa att om $U\subseteq V$ är ett delrum till V sådan att $F(\vec{u})\in U$ för alla $\vec{u}\in U$ då gäller det att $F(\vec{v})\in U^\perp$ för alla $\vec{v}\in U^\perp$.

Observera att $F(\vec{v}) = \vec{0}$ ger $||F(\vec{v})|| = ||\vec{0}|| = 0$ och då $\vec{v} = \vec{0}$. Detta betyder att $Ker(F) = \{\vec{0} \text{ och att } F \text{ är en isomorfi.}$ Låt $U \subseteq V$ vara ett delrum till V sådan att $F(\vec{u}) \in U$ för alla $\vec{u} \in U$, dvs $F(U) \subseteq U$. Eftersom F är injektiv är $U \subseteq F(U)$ som betyder att F(U) = U och då $U^{\perp} = F(U)^{\perp}$. Om $\vec{v} \in U^{\perp}$, då är $<\vec{v},\vec{u}> = 0$ för alla $u \in U$. Det följer att $< F(\vec{u}), F(\vec{v})> = <\vec{u}, \vec{v}> = 0$ för alla $u \in U$ som visar att $F(\vec{v}) \in F(U)^{\perp} = U^{\perp}$.