Module 6: Unsupervised Learning: Clustering

Agenda for Today

- Measuring Distances
- Math free overview of clustering techniques

Supervised ML Process

Unsupervised ML Process

Unsupervised Clustering Algorithm

- 1. Select Features
- 2. Calculate a distance measure
- 3. Apply a clustering algorithm
- 4. Validate?

	Malware events
Dept1	6
Dept2	1
Dept3	8

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

	Malware events	Phishing	Open Tickets
Dept1	6	6	3
Dept2	1	2	1
Dept3	8	1	9

Computing Distance

	Malware events
Dept1	6
Dept2	1
Dept3	8

Compare:

Dept1 to Dept2: | 6 - 1 | = 5
Dept2 to Dept3: | 1 - 8 | = 7
Dept1 to Dept3: | 6 - 8 | = 2

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Multiple Distance methods

- Euclidean
- Manhattan
- Maximum
- Canberra
- Binary
- Minkowski

... (to name a few)

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Euclidean very common and easy to understand

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Euclidean very common and easy to understand: $a^2 + b^2 = c^2$

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Manhattan also easy to comprehend: a + b

	Malware events	Phishing
Dept1	6	6
Dept2	1	2
Dept3	8	1

Computing Distance

	Malware events	Phishing	
Dept1	6	6	Compare: Dept1 to Dept2: sqrt((6-1)^2 + (6-2)^2) = 6.4
Dept2	1	2	Dept2 to Dept3: = 7.1 Dept1 to Dept3: = 5.4
Dept3	8	1	

Euclidean Distance calculations

```
def dist(x,y):
    return np.sqrt(np.sum((x-y)**2))

> mat = np.array([[ 6,6,3 ], [1,2,1], [8,1,9]])
> dist(mat[0], mat[1])
6.7082039324993694

> dist(mat[1], mat[2])
10.677078252031311

> dist(mat[0], mat[2])
8.0622577482985491
```

	Malware events	Phishing	Open Tickets	
Dept1	6	6	3	
Dept2	1	2	1	6.7
Dept3	8	1	9	10.7

Stop

Clustering...

Clustering...

Clustering...

K-Means

Before starting, pick the number of clusters, K

- 1. Pick K random centroids within data range
- 2. Assign each data point to the nearest centroid
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

Step 1: Pick 3 random centroids within data range

Step 2: Assign each data point to the nearest centroid (1)

Step 3: Move centroid to center of assigned points (1)

Step 2: Assign each data point to the nearest centroid (2)

Step 3: Move centroid to center of assigned points (2)

Step 2: Assign each data point to the nearest centroid (3)

Step 3: Move centroid to center of assigned points (3)

Step 2: Assign each data point to the nearest centroid (4)

Step 3: Move centroid to center of assigned points (4)

Step 2: Assign each data point to the nearest centroid (5)

Step 3: Move centroid to center of assigned points (5)

Step 3: Move centroid to center of assigned points (5)

Stop

K-Means: Got a problem with it?

Before starting, pick the number of clusters, K

- 1. Pick K random centroids within data range
- 2. Assign each data point to the nearest centroid
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

K-Means: Got a problem with it?

Before starting, pick the number of clusters, K subjective

- 1. Pick K random centroids within data range Not Repeatable
- 2. Assign each data point to the nearest centroid sensitive to scale
- 3. Move centroid to center of assigned points
- 4. Repeat steps 2 and 3 until centroid stops shifting

How many clusters?

Random Start...

Random Start...

Random Start...

"...it's too easy to throw k-means on your data, and nevertheless get a result out (that is pretty much random, but you won't notice)."

— Anony-Mousse

http://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

Which one is correct?

Which one is correct?

Pain of optimization...Being stuck at sub-optimal local minimum...

Initial guess matters!
Same outcome cannot be guaranteed

Stop

K-Means in practice (Python version)

```
#Import from Scikit-learn
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

centroids = kmeans.cluster_centers_
labels = kmeans.labels_f
```


The Dataset

sns.pairplot(<data>)

K-Means Clustering

```
kmeans = KMeans( n_clusters=2 )
kmeans.fit( <data> )
```

K-Means Clustering

```
sns.pairplot(<data>,x_vars="col_1",y_vars="col_2",hue="kmeans_2",size=6)
plt.scatter(<cluster_centers>,<col_2>, linewidths=3, marker='x', s=200,
c='black')
```


K-Means is affected by the scale of every feature.

Feature Scaling

For k-means clustering, features must be scaled to the same ranges of values to contribute "equally" to the euclidean distance calculation.

Each row is transformed per-column by:

- Subtracting from the element in each row the mean for each feature (column) and then taking this value and
- Dividing by that feature's (column's) standard deviation.

Evaluating your Model

```
WCSS=[]
for i in range(1,20):
    kmeans=KMeans(n_clusters=I, init='k-means++')

kmeans.fit(final_data[scaled_feature_columns].sample(50000))
    WCSS.append(kmeans.inertia_)
```

Evaluating your Model

Evaluating your Model

from yellowbrick.cluster import SilhouetteVisualizer
model = MiniBatchKMeans(6)
visualizer = SilhouetteVisualizer(model)

visualizer.fit(X)
visualizer.poof()

