

QoS in Wireless Networks

Instructor: Dr. Hanal ABUZANAT

Introduction QoS

- Supports services for the applications that are timesensitive.
 - ex. Multimedia (video and voice), real-time, VoIP, etc.
- QoS guarantees can be characterized by:
 - Delay.
 - Delay jitter.
 - Bandwidth.
 - Packet losses.
- QoS managed:
 - Scheduling, Buffering, congestion control, Administration control

- Service for the applications that are timesensitive.
 - ex. multimedia, real-time, video and voice, etc.
- QoS guarantees can be characterized by:
 - Delay, delay jitter, bandwidth and Packet losses.
- A QoS architecture introduces tools to treat packets differently (ex. DiffServ):
 - Separate flows

Introduction WLAN

What is IEEE802.11(e)?

- 802.11 standards can not provide any QoS guarantees due to poor performance.
- 802.11e offers QoS support to time-sensitive applications.

Ad-hoc network

- An autonomous wireless network
- Can be formed without the need of any infrastructure or centralized administration.
- QoS can be administrated by each station:
 - Enhanced DCF channel access (EDCA).
- QoS hard challenge.

- High error rate and bursty error
 - Excessive amount of interference and higher error rates are typical
- Location-dependent
- Time-varying wireless link capacity and quality
- Scarce bandwidth
 - needs to be used efficiently
- User mobility
 - Mobility complicates resource allocation.
- Power constraint

Why we need QoS?

- A user need to send (FTP) packets of size 1500B.
- A user need to send VoIP packets of size 512B.
- A user need to send control packets of size 64B.

Introduction WLAN (1)

- Infrastructure Networks:
 - Centralized administration.
 - QoS administrated by Base-stations (AP).

Connectivity is done by the BS

Introduction WLAN (2)

Ad-hoc Networks:

- Autonomous network.
- Distributed administration.
- No need to Base station.
- Connectivity is done collaboration.
- QoS administrated by each station.
- QoS is a hard challenge.

Station (node)

State of the art Medium Access Control (MAC) in Ad-hoc

Standard IEEE 802.11:

- Distributed Contention Function (DCF).
- No QoS (equal priorities)
- Station may keep the medium busy.

5/2/2014

State of the art

Medium Access Control (MAC) in Ad-hoc

Standard 802.11e

- Enhanced DCF channel access (EDCA).
- Enhances IEEE 802.11 MAC layer.
- Queue-based enhancement scheme.
- Offers QoS (administrated in each node)

State of the art EDCA access channel

- Each AC in EDCA can access the channel after waiting time = AIFS(AC) + backoff :
 - Arbitrary InterFrame Slot (AIFS)
 - Backoff is a random countdown [0, CW]:
- The parameters of EDCA:
 - CWmin, CWmax, AIFSN

State of the art EDCA problematic

- No management control
- An extension is needed to be applied in EDCA to support fairness.

- Fairness model for EDCA.
- Local solution between the node and its neighbors.
- DCF-based access channel enhancement.
- Differentiating between routing and nonrouting nodes.

State of the art F-EDCA [Hanal08]

Routing node can access channel more frequently

than non-routing node.

a) BW allocation without Fairness $\{BW(B)_{Owned} < (BW(C)_{Owned} \approx BW(A)_{Owned})\}$

BW(C)

b) Wanted BW allocation with Fairness $\{BW(B)_{Owned} \approx BW(C)_{Owned} \approx BW(A)_{Owned}\}$

BW(C)

 $BW(B)_{Owned} \approx 1/3 BW_{total}$

State of the art

Scheduling

- Which packets should be given preference?
- How many packets should be transmitted from a flow?
- Scheduling (Queuing):
 - GPS, WFQ, WF2Q, RR, SP, VC, etc.

5/2/2014

State of the art Scheduling

- GPS is the fluid flow Ideal scheduling.
- WFQ is an emulation of GPS

- Introduction
- State of the Art:
- Our proposition
- Conclusion & Future works
- References

QoS in wired networks OoS Architectures

IntServ:

- Resource reservation per flow using RSVP.
- Similar to ATM virtual connections.
- Problems with scalability.

DiffServ:

- Aggregation of flows into per-hop behavior groups.
- Expedited forwarding and Assured forwarding.

QoS in wired networks

QoS in wired networks Scheduling Goals

- Congestion avoidance
- Sharing bandwidth
- Fairness of competing flows
- Resource allocation, bandwidth guarantees
- End-to-end bounded delay

QoS in WLAN Scheduling in Wireless

- Simple:
 - FIFO or [FCFS]
- Multiplexing:
 - Round-robin
- Based on virtual finishing time:
 - WFQ or WF²Q
 - time-stamping as Virtual-Time [VT]
 - is based on the resource reservation instead of an equal share to all users like WFQ
 - Self-clocked Fair Queuing [SCFQ]

QoS Adapting algo from wired to wireless

- Note: It's not simple to adapt a model that is designed for wired networks:
 - burst channel errors: it's assumed in wired scheduling that is error-free channel
 - location-dependent channel capacity and errors (Bandwidth Variation)
 - Adapting Techniques of scheduling is <u>Open Issue</u>

QoSWLAN access control schemes

- 802.11 medium access control schemes (MAC):
 - Distributed Coordination Function (DCF).
 - Point Coordination Function (PCF).
- 802.11e medium access control schemes (MAC):
 - It enhances IEEE 802.11 MAC sublayer.
 - Hybrid Coordination Function (HCF):
 - Enhanced DCF channel access (EDCA).
 - HCF controlled channel access (HCCA).

QoS DCF

- Ex. Ad-hoc
- to share the medium between multiple stations
 - Fairness needed <u>open issue</u>.
- Contention-Based (CW).
- Based on CSMA/CA.
- Uses a Contention window (Back-off interval).
 - Control CW for QoS is <u>open issue</u>.
- Designed for a best-effort service.
- Supports Asynchronous transmission.
 - No base station.

QoS DCF example

B1 and B2 are backoff intervals for nodes 1 and 2

Limitation of DCF

- No QoS guarantees.
- Does not support real-time application.
- Designed for equal priorities, there is no notion of high or low priority traffic.
- Station may keep the medium for as long as it chooses
- Does not support the concept of differentiating frames with different user priorities. (<u>open issue</u>)

State of the ART of QoS EDCA

- Contention-Based channel access.
- Provides service differentiation.
- Differentiate the traffic into 8 different priorities.
- Each station has 4 access categories to provide service differentiation.
- Implementing an arbitrary interframe space:
 - AIFS: is number of slots to back off before the beginning countdown of backoff procedure
 - To accelerate backoff countdown
 - AIFS number is bigger or equal 2

State of the ART of QoS EDCA

AIFS (AC) = SIFS + AIFSN (AC) * aSlotTime

QoSEDCA architecture

QoS IEEE802.11e (EDCA) architecture

- Contention-Based channel access.
- Provides service differentiation.
- Implementing an arbitrary interframe space:
 - AIFS: is number of slots to back off before the beginning countdown of backoff procedure

Access Category (AC)	Designation (Informative)	Priority	AIFSN	CWmin	CWmax
AC3	Best Effort	0	7	31	1023
	Best Effort	1			
	Best Effort	2			
AC2	Video Probe	3	3	15	1023
AC1	Video	4	2	7	31
	Video	5			
AC0	Voice	6	2	3	15
	Voice	7			