# Income Projections in America

A Data-Driven Approach to Predicting Income Trends in the U.S

**Author: Constance Gontier** 



### CONTEXT



### Goal

- Examine demographic characteristics of subpopulations across the US
- Identify the key influential factors on income prediction to allocate funding
- Predict whether an individual earns more or less than 50'000 \$ a year

### **Data**

- A dataset provided by the US Census Bureau
- ~ 300'000 individuals

### **PROJECT STEPS**



Data Analysis

Data Preparation

Data Modeling

Model Assessment

Results

Numerical insights
Graphical representations

Data Preparation

Data Modeling

Model Assessment

Results

Performance comparison
Choice of the best model

Future work

# Data Analysis

- A first glance at the data
- The influence of age
- The influence of sex
- The influence of race
- The influence of industry



# Data Analysis - A first glance at the data



### The training dataset

- Population: 199 523 individuals
- Attributes: 9 continuous columns and 32 categorical
- Income Distribution:
  - 6.2% earn more than 50'000\$
  - 93.8% earn less than 50'000\$

### The testing dataset

- Population: 99 762 individuals
- Same Income Distribution

# Data Analysis - The influence of age





**fig 1:** Aggregated age distribution with stacked income

### Remarks

- Distribution of higher earners centered around age 45
- Dip in population around age 20







**fig 2.a:** Pie chart of sex distribution for lower income

**fig 2.b:** Pie chart of sex distribution for higher income

### Remarks

- Balanced sex distribution for an income lower than 50'000\$
- Significantly **higher male population** for an income **higher** than 50'000\$

# **Data Analysis** - The influence of race





fig 3.a: Grouped race distribution



fig 3.a: Proportion of population for each income category by race

#### Remarks

 Comparison with actual U.S population Dataset population: US population\*:

• White: 83.9% • Black: 10.2%

• Asian/Pacific: 2.9%

• Other: 1.8% • Native: 1.1%

• White: 60.1%

• Black: 12.2% • Asian/Pacific: 5.6%

• Other: 21.4%

• Native: 0.7%

 White and Asian/Pacific have a higher proportion of population with high income (**7%** vs. 2-3%)



\*Source: US Census Bureau

# Data Analysis - The influence of industry





**fig 4.a:** Top 5 industries with proportion (%) in lower income values (- 50'000\$)

**fig 4.a:** Top 5 industries with proportion (%) in higher income values (50'000\$ +)

#### Remarks

- Industry with highest proportion in each income category:
  - 50'000\$: Retail trade (8.7%)
  - 50'000\$ +: Manufacturingdurable goods (12.1%)
- Proportion percentage for lower income is evenly distributed
- Proportion percentage for higher income has a focus on certain industries (fig 2b)

# Data Preparation

- Cleaning the data
- Engineering the features
- Creating data sub-sets



# Data Preparation - Cleaning the data



### **Missing Data**

- Missing or Not in Universe (or Children) values represent 2 076 058 cells -> **32.93%** of the dataset
- Columns with
  - More than 40% missing -> Remove 14 columns
  - Less than 40% missing -> Imputation on 3 columns

### **Duplicate Data**

- 4316 duplicate rows -> **2.16%** of the dataset
- Removed

# **Data Preparation** - Engineering the features



#### **Feature Creation**

- After cleaning:
  - 8 continuous columns (age, wage...)
  - 19 categorical columns (education, sector...)
- From 3 columns of numerical data -> Binning
  - Age, Wage per hour, Weeks worked in year
- From 2 columns of numerical data -> **Combining** for new feature
  - Total wage for year = Wage per hour x Weeks worked in year

### **Feature Engineering**

- Continuous columns:
  - Scaling (Standardization)
- Categorical columns:
  - One hot encoding

### **Data Preparation** - Creating data sub-sets



#### **Created 5 New Datasets**

- All features (369 features)
- **Best features** (108 features)
  - Based on correlation for continuous features -> 8 continuous features
  - Based on Chi2 for categorical features -> Isolate 100 best features

#### • PCA

- Retain 90% of variance
- 43 dimensions kept

#### Downsampling

Original dataset size: 195'207

Balanced dataset size: 24'764

#### Oversampling

Original dataset size: 195'207

Balanced dataset size: 365'650

# Data Modeling

- Random Forest
- Logistic Regression
- XG-Boost
- Neural Network



# Data Modeling - Random Forest



- Utilises a multitude of decision trees to improve accuracy and control over-fitting through bagging and feature randomness
- Each tree votes for the most popular class -> the majority vote determine the final prediction

|                      | All features | Top Features | PCA  | Downsampled | Oversampled |
|----------------------|--------------|--------------|------|-------------|-------------|
| f1 on evaluation set | 0.52         | 0.53         | 0.48 | 0.84        | 0.98        |
| f1 on testing set    | 0.52         | 0.54         | 0.48 | 0.54        | 0.56        |

# Data Modeling - Logistic Regression



- Statistical method for predicting binary outcomes
- Estimate probabilities using a logistic function, assuming a linear relationship between input features

|                      | All features | Top Features | PCA  | Downsampled | Oversampled |
|----------------------|--------------|--------------|------|-------------|-------------|
| f1 on evaluation set | 0.53         | 0.52         | 0.44 | 0.85        | 0.85        |
| f1 on testing set    | 0.51         | 0.51         | 0.44 | 0.47        | 0.47        |

### Data Modeling - XGBoost



- A novel tree learning algorithm
- A gradient boosting library that uses regularization to enhance performance and prevent overfitting

|   |                      | All features | Top Features | PCA  | Downsampled | Oversampled |
|---|----------------------|--------------|--------------|------|-------------|-------------|
| f | f1 on evaluation set | 0.58         | 0.58         | 0.52 | 0.86        | 0.90        |
|   | f1 on testing set    | 0.58         | 0.57         | 0.52 | 0.48        | 0.53        |

### Data Modeling - Neural Network



- Layers of neurons with activation functions
- Capable of modeling complex non-linear relationships by adjusting weights during training
- Utilizes a forward pass through layers with ReLU and sigmoid activations to predict probabilities

|                      | All features | Top Features | PCA  | Downsampled | Oversampled |
|----------------------|--------------|--------------|------|-------------|-------------|
| f1 on evaluation set | 0.55         | 0.56         | 0.47 | 0.85        | 0.87        |
| f1 on testing set    | 0.56         | 0.53         | 0.50 | 0.42        | 0.48        |

# Model Assessment

- Comparing our models
- Selecting the best model



# Model Assessment - Comparing our models



Metrics evaluation: Unbalanced dataset -> f1 score

|                    | Random<br>Forsest      | Logistic<br>Regression          | XGBoost                  | Neural<br>Network       |
|--------------------|------------------------|---------------------------------|--------------------------|-------------------------|
| Best perform<br>on | Oversampled<br>dataset | All and Top<br>features dataset | All features<br>datasets | All features<br>dataset |
| f1-score           | 0.56                   | 0.51                            | 0.58                     | 0.56                    |
| Training time      | 11.6 seconds           | 4.7 seconds /<br>3.2 seconds    | 1.3 seconds              | 36 seconds              |
| Testing time       | 1.1 seconds            | 0.3 seconds /<br>0.3 seconds    | 0.2 seconds              | 0.1 seconds             |

### Model selection

Based on f1 sore and run times:

• XGBoost is the best option

# Results

- Key features
- What next?



# **Results** - Key features



#### **Statistical Method**

• Chi2 gives us a list of Chi scores



### Using a model

• Random Forest gives us an order of feature importance



### **Results** - What next?



#### **Potential Ideas**

- **Dive into** *Not in Universe Values*: Analyze patterns behind "Not in Universe" entries to identify potential biases or systemic issues, potentially leading to targeted models for adults and children
- Segmented Modeling: Implement separate models for different demographic groups to address dataset imbalance and tailor predictions to specific populations (adults vs children for example)
- Incorporate External Data: Enrich the analysis with external datasets to add context, or to collect more data for the underrepresented class
- Explore Other Models: Test other more complex Neural Networks

# Thank You!

• Questions?



