Engineering Cryptographic Software Elliptic-curve arithmetic

Radboud University, Nijmegen, The Netherlands

Winter 2023/24

 \blacktriangleright Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G

·

- e-Hellman
 ► Let G be a cyclic, finite, abelian Group (written additively) and let
 P be a generator of G
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to Bob
 - ▶ Bob chooses random $b \in \{0, \dots, |G|-1\}$, computes bP, sends to Alice

- e-Hellman
 ► Let G be a cyclic, finite, abelian Group (written additively) and let
 P be a generator of G
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to Bob
 - Bob chooses random $b \in \{0, \dots, |G|-1\}$, computes bP, sends to
- ightharpoonup Alice computes joint key a(bP)
- ightharpoonup Bob computes joint key b(aP)

- \blacktriangleright Let G be a cyclic, finite, abelian Group (written additively) and let P be a generator of G
- Alice chooses random $a \in \{0, \dots, |G|-1\},$ computes aP, sends to
- Bob chooses random $b \in \{0, \dots, |G|-1\},$ computes bP, sends to
- $\,\blacktriangleright\,$ Alice computes joint key a(bP)
- ightharpoonup Bob computes joint key b(aP)
- ▶ DLP in G: given $kP \in G$ and P, find k
- ► Solving the DLP breaks security of Diffie-Hellman

- ightharpoonup Let G be a cyclic, finite, abelian Group (written additively) and let ${\cal P}$ be a generator of ${\cal G}$
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to
- Bob chooses random $b \in \{0, \dots, |G|-1\}$, computes bP, sends to
- $\,\blacktriangleright\,$ Alice computes joint key a(bP)
- lacktriangle Bob computes joint key b(aP)
- DLP in G: given $kP \in G$ and P, find k
- ► Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

lacktriangle Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup

- ightharpoonup Let G be a cyclic, finite, abelian Group (written additively) and let ${\cal P}$ be a generator of ${\cal G}$
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to
- Bob chooses random $b \in \{0, \dots, |G|-1\}$, computes bP, sends to
- $\,\blacktriangleright\,$ Alice computes joint key a(bP)
- ▶ Bob computes joint key b(aP)
- ▶ DLP in G: given $kP \in G$ and P, find k▶ Solving the DIP breaks security of Different
- ► Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- ightharpoonup Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup
- Nodern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup

- ightharpoonup Let G be a cyclic, finite, abelian Group (written additively) and let ${\cal P}$ be a generator of ${\cal G}$
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to
- Bob chooses random $b \in \{0, \dots, |G|-1\},$ computes bP, sends to
- lack Alice computes joint key a(bP)
- ▶ Bob computes joint key b(aP)
- ▶ DLP in G: given $kP \in G$ and P, find k
- ► Solving the DLP breaks security of Diffie-Hellman

Groups with hard DLP

- Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order
- subgroupSophisticated answer (not in this lecture): hyperelliptic curves of genus 2

- ightharpoonup Let G be a cyclic, finite, abelian Group (written additively) and let ${\cal P}$ be a generator of ${\cal G}$
- Alice chooses random $a \in \{0, \dots, |G|-1\}$, computes aP, sends to
- Bob chooses random $b \in \{0, \dots, |G|-1\},$ computes bP, sends to
- lack Alice computes joint key a(bP)
- Bob computes joint key b(aP)
- ► Solving the DLP breaks security of Diffie-Hellman \blacktriangleright DLP in $G\!\colon$ given $kP\in G$ and P, find k

Groups with hard DLP

- lacktriangle Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order lacktriangle Traditional answer: \mathbb{Z}_p^* with large prime-order subgroup
- Sophisticated answer (not in this lecture): hyperelliptic curves of subgroup

Typical view on elliptic curves

Definition Let K be a field and let $a_1,a_2,a_3,a_4,a_6\in K.$ Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

if the discriminant Δ of ${\cal E}$ is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Typical view on elliptic curves

Definition

Let K be a field and let $a_1,a_2,a_3,a_4,a_6\in K$. Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

if the discriminant Δ of E is not equal to zero. This equation is called the *Weierstrass form* of an elliptic curve.

Characteristic $\neq 2, 3$

If $\operatorname{char}(K) \neq 2,3$ we can use a simplified equation:

$$E: y^2 = x^3 + ax + b$$

Typical view on elliptic curves

Definition

Let K be a field and let $a_1,a_2,a_3,a_4,a_6\in K$. Then the following equation defines an elliptic curve E:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

if the discriminant Δ of E is not equal to zero. This equation is called the Weierstrass form of an elliptic curve.

Characteristic $\neq 2, 3$

If $\operatorname{char}(K) \neq 2,3$ we can use a simplified equation:

 $E: y^2 = x^3 + ax + b$

Characteristic 2 If $\operatorname{char}(K)=2$ we can (usually) use a simplified equation:

$$E: y^2 + xy = x^3 + ax^2 + b$$

Setup for cryptography

- \blacktriangleright Choose $K=\mathbb{F}_q$ Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$$

Setup for cryptography

▶ Choose $K = \mathbb{F}_q$ ▶ Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q)=\{(x,y)\in\mathbb{F}_q\times\mathbb{F}_q:y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6\}\cup\{\mathcal{O}\}$$

▶ The element O is the "point at infinity"

Setup for cryptography

lacktriangle Choose $K=\mathbb{F}_q$

$$\hbox{\blacktriangleright Consider the set of \mathbb{F}_q-rational points:}$$

$$E(\mathbb{F}_q)=\{(x,y)\in\mathbb{F}_q\times\mathbb{F}_q:y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6\}\cup\{\mathcal{O}\}$$

- lacktriangle The element ${\cal O}$ is the "point at infinity"
- ► This set forms a group (together with addition law)

Setup for cryptography

lacktriangle Choose $K=\mathbb{F}_q$

$$lacktriangle$$
 Consider the set of \mathbb{F}_q -rational points:

 $E(\mathbb{F}_q) = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\mathcal{O}\}$

- ► The element O is the "point at infinity"
- ► This set forms a group (together with addition law)
 - lacktriangle Order of this group: $|E(\mathbb{F}_q)|pprox |\mathbb{F}_q|$

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

The group law Example curve: $y^2 = x^3 - x$ over $\mathbb R$

imple curve: $y^2=x^3-x$ or Addition of points

ш

The group law Example curve: $y^2 = x^3 - x$ over $\mathbb R$

Addition of points

Graph of E over ${\mathbb R}$

- ▶ Add points
 P = (-0, 9; -0, 4135) and
 Q = (-0, 1; 0, 3146)
 ▶ Compute line through the two points

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

Addition of points

Graph of E over ${\mathbb R}$

- Add points P=(-0,9;-0,4135) and Q=(-0,1;0,3146) Compute line through the two
 - points
- $T=\left(x_{T},y_{T}\right)$ with the elliptic ► Determine third intersection

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

Addition of points

- Add points P = (-0, 9; -0, 4135) and Q = (-0, 1; 0, 3146) Compute line through the two
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

ı,

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

Point doubling

▶ Double the point P = (-0.7, 0.5975)

The group law Example curve: $y^2 = x^3 - x$ over ${\mathbb R}$

Point doubling

- ▶ Double the point P = (-0.7, 0.5975)
- \blacktriangleright Compute the tangent on P

The group law Example curve: $y^2=x^3-x$ over ${\mathbb R}$

Point doubling

- ▶ Double the point P = (-0.7, 0.5975)
- \blacktriangleright Compute the tangent on P
- Determine second intersection $T=(x_T,y_T)$ with the elliptic

The group law Example curve: $y^2=x^3-x$ over ${\mathbb R}$

Point doubling

- ▶ Double the point P = (-0.7, 0.5975)
- \blacktriangleright Compute the tangent on P
- ▶ Determine second intersection $T = (x_T, y_T)$ with the elliptic curve
- $\begin{tabular}{l} \blacktriangleright Result of the addition: \\ $P+Q=(x_T,-y_T)$ \end{tabular}$

Curve equation:
$$y^2 = x^3 + ax + b$$

. Curve equation: $y^2 = x^3 + ax + b$

 $\qquad \qquad \blacktriangleright \ \ P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R) \ \text{with}$

Point addition

Curve equation: $y^2 = x^3 + ax + b$

Point addition
$$\label{eq:point} \blacktriangleright \ P = (x_P, y_P), Q = (x_Q, y_Q) \to P + Q = R = (x_R, y_R) \text{ with }$$

Curve equation: $y^2 = x^3 + ax + b$

Point addition

$$\qquad \qquad \blacktriangleright \ P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R) \text{ with }$$

Point doubling

▶ $P = (x_P, y_P), 2P = (x_R, y_R)$ with

Curve equation: $y^2 = x^3 + ax + b$

Point addition

$$\blacktriangleright \ P=(x_P,y_P), Q=(x_Q,y_Q) \to P+Q=R=(x_R,y_R) \text{ with }$$

Point doubling

▶
$$P = (x_P, y_P), 2P = (x_R, y_R)$$
 with

$$x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P$$

$$Arr y_R = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P$$

- ► Neutral element is *O*
- \blacktriangleright Inverse of a point (x,y) is (x,-y)

- left Neutral element is ${\cal O}$
- ▶ Inverse of a point (x,y) is (x,-y)
- \blacktriangleright Note: Formulas don't work for P+(-P), also don't work for ${\cal O}$
- ► Need to distinguish these cases!

- ► Neutral element is *O*
- ▶ Inverse of a point (x,y) is (x,-y)
- \blacktriangleright Note: Formulas don't work for P+(-P), also don't work for ${\mathcal O}$
- ► Need to distinguish these cases! "Uniform" addition law in Hisl's
- "Uniform" addition law in Hişıl's Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
- Move special cases to other pointsNot safe to use on arbitrary input points!

- ► Neutral element is *O*
- ▶ Inverse of a point (x,y) is (x,-y)
- \blacktriangleright Note: Formulas don't work for P+(-P), also don't work for ${\cal O}$
- ► Need to distinguish these cases!
- "Uniform" addition law in Hisl's Ph.D. thesis, Section 5.5.2 (http://eprints.qut.edu.au/33233/):
- Move special cases to other pointsNot safe to use on arbitrary input points!
- lacktriangle Formulas for curves over \mathbb{F}_{2^k} look slightly different, but same special

Finding a suitable curve

Security requirements for ECC

- $\ell = |E(\mathbb{F}_q)| \text{ must have large prime-order subgroup}$ For n bits of security we need 2n-bit prime-order subgroup

Finding a suitable curve

Security requirements for ECC

- $\blacktriangleright \ \ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup
- \blacktriangleright For n bits of security we need 2n-bit prime-order subgroup
- ▶ Impossible to transfer DLP to less secure groups:

Finding a suitable curve

Security requirements for ECC

- $\blacktriangleright~\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup
- ightharpoonup For n bits of security we need 2n-bit prime-order subgroup
- ▶ Impossible to transfer DLP to less secure groups:
- ℓ must not be equal to q We need $\ell \nmid p^k 1$ for small k

Finding a curve

- Fix finite field \mathbb{F}_q of suitable size Fix curve parameter a (quite common: a=-3)
- ightharpoonup Pick curve parameter b until E fulfills desired properties
- This requires efficient "point counting"
- ► This requires efficient factorization or primality proving

"The nice thing about standards is that you have so many to choose from." — Andrew S. Tanenbaum

10

"The nice thing about standards is that you have so many to - Andrew S. Tanenbaum choose from. "

- ➤ Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bitsBinary curves with 163, 233, 283, 409, and 571 bits
- ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

"The nice thing about standards is that you have so many to - Andrew S. Tanenbaum choose from. "

- ➤ Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
 Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ▶ SECG curves (Certicom), prime-field and binary curves

"The nice thing about standards is that you have so many to - Andrew S. Tanenbaum choose from. "

- ➤ Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
 Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ► SECG curves (Certicom), prime-field and binary curves
- ► Brainpool curves (BSI), only prime-field curves

"The nice thing about standards is that you have so many to choose from." — Andrew S. Tanenbaum

- ► Various standardized curves, most well-known: NIST curves:
- Big-prime field curves with 192, 224, 256, 384, and 521 bits
 Binary curves with 163, 233, 283, 409, and 571 bits
 - Binary Curves with 105, 255, 405, 409, and 571 bits
 Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ► SECG curves (Certicom), prime-field and binary curves

► Brainpool curves (BSI), only prime-field curves

▶ FRP256v1 (ANSSI), one prime-field curve (256 bits)

Binary vs. big prime

Curves over big-prime fields

- \blacktriangleright Many fields of a given size \Rightarrow many curves
- ► Efficient in software (can use hardware multipliers)
 - ► Less efficient in hardware

Binary vs. big prime

Curves over big-prime fields

- \blacktriangleright Many fields of a given size \Rightarrow many curves
- ► Efficient in software (can use hardware multipliers)
- Less efficient in hardware

Curves over binary fields

- \blacktriangleright Important for security: exponent k in \mathbb{F}_{p^k} has to be prime
- ► Not many fields (not that many curves)
- ► More efficient in hardware
- ► Efficient in software only on some microarchitectures
- A hell to implement securely in software on some other microarchitectures

► Choose security level (e.g., 128 bits)

12

- ► Choose security level (e.g., 128 bits)
- Decide whether you want binary or big-prime field arithmetic, let's say big prime

- ► Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
- ▶ Pick corresponding standard curve, e.g., NIST-P256

- ► Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
 - ▶ Pick corresponding standard curve, e.g., NIST-P256
- Implement field arithmetic

- ► Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
 - ▶ Pick corresponding standard curve, e.g., NIST-P256
- ► Implement field arithmetic
- ► Implement ECC addition and doubling

- \blacktriangleright Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
 - ▶ Pick corresponding standard curve, e.g., NIST-P256
- ► Implement field arithmetic
- ► Implement ECC addition and doubling
- ► Implement scalar multiplication (Amber's lecture)

- ► Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
- ▶ Pick corresponding standard curve, e.g., NIST-P256
- ► Implement field arithmetic
- ► Implement ECC addition and doubling
- ► Implement scalar multiplication (Amber's lecture)
- ► You're done with ECDH software

- ► Choose security level (e.g., 128 bits)
- ► Decide whether you want binary or big-prime field arithmetic, let's say big prime
- ▶ Pick corresponding standard curve, e.g., NIST-P256
- ► Implement field arithmetic
- ► Implement ECC addition and doubling
- Implement scalar multiplication (Amber's lecture)
 You're done with BAD (!) ECDH software

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
 - ► Inversions are expensive
- ► Constant-time inversions are even more expensive

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
 - ► Inversions are expensive
- ► Constant-time inversions are even more expensive

Solution: projective coordinates

 \blacktriangleright Store fractions of elements of \mathbb{F}_q , invert only once at the end

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- ► Constant-time inversions are even more expensive

Solution: projective coordinates

- \blacktriangleright Store fractions of elements of \mathbb{F}_q , invert only once at the end
- \blacktriangleright Represent points in projective coordinates: $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P$ and $y_P=Y_P/Z_P$
- ightharpoonup The point (1:1:0) is the point at infinity

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- ► Constant-time inversions are even more expensive

Solution: projective coordinates

- \blacktriangleright Store fractions of elements of \mathbb{F}_q , invert only once at the end
- Represent points in projective coordinates: $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P$ and $y_P=Y_P/Z_P$
- ► The point (1:1:0) is the point at infinity ► Also possible: weighted projective coordinates:
- Jacobian coordinates: $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P^2$ and
 - $y_P=Y_P/Z_P^3$ López-Dahab coordinates (for binary curves): $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P$ and $y_P=Y_P/Z_P^2$

Inversions

- \blacktriangleright Adding $P=(x_P,y_P)$ and $Q=(x_Q,y_Q)$ needs an inversion in \mathbb{F}_q
- Inversions are expensive
- ► Constant-time inversions are even more expensive

Solution: projective coordinates

- \blacktriangleright Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in projective coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- The point (1:1:0) is the point at infinity
 ▶ Also possible: weighted projective coordinates:
- ▶ Also possible: weighted projective coordinates: ▶ Jacobian coordinates: $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P^2$ and
 - $y_P=Y_P/Z_P^3$ López-Dahab coordinates (for binary curves): $P=(X_P:Y_P:Z_P)$ with $x_P=X_P/Z_P$ and $y_P=Y_P/Z_P^2$
- Important: Never send projective representation, always convert to affinal

- \blacktriangleright Addition of P+Q needs to distinguish different cases:

- If P = O return Q
 Else if Q = O return P
 Else if P = Q call doubling routine
 Else if P = −Q return O
 Else use addition formulas

- $\,\blacktriangleright\,$ Addition of P+Q needs to distinguish different cases:

- If P = O return Q
 Else if Q = O return P
 Else if P = Q call doubling routine
 Else if P = -Q return O
 Else use addition formulas
 - ► Similar for doubling P:
 ► If $P = \mathcal{O}$ return P► Else if $y_P = 0$ return \mathcal{O}
- Else use doubling formulas

- $\,\blacktriangleright\,$ Addition of P+Q needs to distinguish different cases:

- If P = O return Q
 Else if Q = O return P
 Else if P = Q call doubling routine
 Else if P = -Q return O
 Else use addition formulas

- Similar for doubling P:
 If P = O return P
 Else if y_P = 0 return O
 Else use doubling formulas
- ► Constant-time implementations of this are horrible

- $\,\blacktriangleright\,$ Addition of P+Q needs to distinguish different cases:

- If P = O return Q
 Else if Q = O return P
 Else if P = Q call doubling routine
 Else if P = -Q return O
 Else use addition formulas

- Similar for doubling P:
 If P = O return P
 Else if y_P = 0 return O
 Else use doubling formulas
- ► Constant-time implementations of this are horrible
- $\,\blacktriangleright\,$ Good news: Can avoid the checks when computing $k\cdot P$ and

- $\,\blacktriangleright\,$ Addition of P+Q needs to distinguish different cases:

- | If $P = \mathcal{O}$ return Q| Else if $Q = \mathcal{O}$ return P| Else if P = Q call doubling routine | Else if P = -Q return \mathcal{O}
 - ► Else use addition formulas
- ► Similar for doubling *P*:
- ▶ If $P = \mathcal{O}$ return P▶ Else if $y_P = 0$ return \mathcal{O} ▶ Else use doubling formulas
- ► Constant-time implementations of this are horrible
- lacktriangle Good news: Can avoid the checks when computing $k\cdot P$ and $k<|E(\mathbb{F}_q)|$
- lacktriangle Bad news: Side-channel countermeasures use $k>|E(\mathbb{F}_q)|$

- ightharpoonup Addition of P+Q needs to distinguish different cases:

- | If $P = \mathcal{O}$ return Q| Else if $Q = \mathcal{O}$ return P| Else if P = Q call doubling routine | Else if P = -Q return \mathcal{O} ► Else use addition formulas
- Similar for doubling P:
- ▶ If $P = \mathcal{O}$ return P▶ Else if $y_P = 0$ return \mathcal{O}
- ► Else use doubling formulas
- ► Constant-time implementations of this are horrible
- lacktriangle Good news: Can avoid the checks when computing $k\cdot P$ and $k<|E(\mathbb{F}_q)|$
- Bad news: Side-channel countermeasures use $k>|E(\mathbb{F}_q)|$
- ▶ More bad news: Doesn't work for multi-scalar multiplication (next

- ightharpoonup Addition of P+Q needs to distinguish different cases:

- ▶ If $P = \mathcal{O}$ return Q▶ Else if $Q = \mathcal{O}$ return P▶ Else if P = Q call doubling routine
 - ightharpoonup Else if P=-Q return ${\mathcal O}$
- ► Else use addition formulas
 - Similar for doubling P:
- ▶ If $P = \mathcal{O}$ return P
- ightharpoonup Else if $y_P=0$ return ${\cal O}$
- ► Else use doubling formulas
- ► Constant-time implementations of this are horrible
- lacktriangle Good news: Can avoid the checks when computing $k\cdot P$ and
 - Bad news: Side-channel countermeasures use $k>|E(\mathbb{F}_a)|$ $k < |E(\mathbb{F}_q)|$
- More bad news: Doesn't work for multi-scalar multiplication (next
- Baseline: simple implementations are likely to be wrong or insecure

- ▶ Use Montgomery curve: $E_M: By^2 = x^3 + Ax^2 + x$.
- ► Use *x*-coordinate-only differential addition chain ("Montgomery ladder", next lecture)

- ▶ Use Montgomery curve: $E_M: By^2 = x^3 + Ax^2 + x$.
- ► Use *x*-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
 - Advantages:
- ► Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
 - ► Point compression/decompression for free

- ▶ Use Montgomery curve: $E_M: By^2 = x^3 + Ax^2 + x$.
- ightharpoonup Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
 - Advantages:
- ► Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
- Easy to implement, harder to screw up in hard-to-detect ways Point compression/decompression for free
 - Simple implementations are likely to be correct and secure

- ▶ Use Montgomery curve. $E_M: By^2 = x^3 + Ax^2 + x$.
- \blacktriangleright Use x-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
 - Advantages:
- ▼ Works on all inputs, no special cases
- Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free
- ► Easy to implement, harder to screw up in hard-to-detect ways
 - Simple implementations are likely to be correct and secureDisadvantages:
- ► Not all curves can be converted to Montgomery shape
 - Always have a cofactor of at least 4
- ► Ladders on general Weierstrass curves are much less efficient

- ▶ Use Montgomery curve. $E_M: By^2 = x^3 + Ax^2 + x$.
- ► Use *x*-coordinate-only differential addition chain ("Montgomery ladder", next lecture)
- Advantages:

 Works on all inputs, no special cases
- · Very regular structure, easy to protect against timing attacks
 - Point compression/decompression for free
- Easy to implement, harder to screw up in hard-to-detect ways
 - Simple implementations are likely to be correct and secureDisadvantages:
- ► Not all curves can be converted to Montgomery shape
- ► Always have a cofactor of at least 4
- ► Ladders on general Weierstrass curves are much less efficient
- We only get the x coordinate of the result, tricky for signatures
 Can reconstruct y, but that involves some additional cost

Solution II: (twisted) Edwards curves

- ► Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"

Solution II: (twisted) Edwards curves

- ► Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with

- ► Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ► Bernstein, Lange, 2007: very fast addition and doubling on these curves
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
 - ▶ No need to handle special cases
- ► No "point at infinity" to work with
- lacktriangle Can speed up doubling, but addition formulas work for P+P

- ► Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ► Bernstein, Lange, 2007: very fast addition and doubling on these
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
 - ► No need to handle special cases
- ► No "point at infinity" to work with
- $\,\blacktriangleright\,$ Can speed up doubling, but addition formulas work for P+P
- Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- Bernstein, Lange, 2007: very fast addition and doubling on these
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- ► No need to handle special cases
- ▶ No "point at infinity" to work with
- lacktriangle Can speed up doubling, but addition formulas work for P+P
- ► Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ► Bernstein, Lange, 2007: very fast addition and doubling on these
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- No need to handle special cases
- ▶ No "point at infinity" to work with
- lacktriangle Can speed up doubling, but addition formulas work for P+P
- ► Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- Always efficient: transformation between Montgomery curves and twisted Edwards curves
- · Again: simple implementations are likely to be correct and secure

- Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ► Bernstein, Lange, 2007: very fast addition and doubling on these
- Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- Core advantage of (twisted) Edwards curves: complete group law
- ► No need to handle special cases
- ▶ No "point at infinity" to work with
- lacktriangle Can speed up doubling, but addition formulas work for P+P
- ► Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- ► Always efficient: transformation between Montgomery curves and twisted Edwards curves
- Again: simple implementations are likely to be correct and secure
 - ► Disadvantage: always have a cofactor of at least 4

So, what's the deal with the cofactor?

So, what's the deal with the cofactor?

- Protocols need to be careful to avoid subgroup attacks
- ► Monero screwed this up, which allowed double-spending
- ► Elegant solution: "Ristretto" encoding by Hamburg, see: https://github.com/otrv4/libgoldilocks

Solution III: Complete group law on Weierstrass curves

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- ► Problem: Extremely inefficient

Solution III: Complete group law on Weierstrass curves

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- Problem: Extremely inefficient
- ► Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
- ► Less efficient than (twisted) Edwards
- Overhead quite architecture-dependent (Schwabe, Sprenkels, 2019)
- Covers all curves

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- ► Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- ► Alice learns Bob's secret scalar modulo the order of the small subgroup

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

Check that input point is on the curve (functional tests will miss this!)

ECDH attack scenario

- ▶ Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes "shared key" in that small subgroup
- ► Alice learns "shared key" through brute force
- $\,$ Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- \blacktriangleright Send compressed points $(x, \mathrm{parity}(y));$ decompression returns (x,y) on the curve or fails

ECDH attack scenario

- ► Alice sends point on different (insecure) curve with small subgroup
- ► Bob computes "shared key" in that small subgroup
- Alice learns "shared key" through brute force
- ► Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures

- Check that input point is on the curve (functional tests will miss this!)
- Send compressed points (x, parity(y)); decompression returns (x, y) on the curve or fails
 Send only x (Montagonery ladder): but: x could still be on the
 - $\,\,$ Send only x (Montgomery ladder); but: x could still be on the "twist" of E
- ► Make sure that the twist is also secure ("twist security")

- ► It is pretty clear that NSA put a backdoor in Dual _EC_ DRBG
- ► Constants of NIST curves have been obtained by hashing random
- ► No-backdoor claim: We know the preimages

- ▶ It is pretty clear that NSA put a backdoor in Dual EC DRBG
- Constants of NIST curves have been obtained by hashing random
- ▶ No-backdoor claim: We know the preimages
- Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve

- ▶ It is pretty clear that NSA put a backdoor in Dual EC DRBG
- Constants of NIST curves have been obtained by hashing random
- ▶ No-backdoor claim: We know the preimages
- ► Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ► Fact: There are no known insecurities of NIST curves

- It is pretty clear that NSA put a backdoor in Dual EC DRBG
- Constants of NIST curves have been obtained by hashing random
- ► No-backdoor claim: We know the preimages
- ► Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves
- ► Fact: There is no proof that there are no intentional vulnerabilities in NIST curves

- It is pretty clear that NSA put a backdoor in Dual EC DRBG
- Constants of NIST curves have been obtained by hashing random
- ▶ No-backdoor claim: We know the preimages
- ► Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- Fact: There are no known insecurities of NIST curves
- ► Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
- ▶ For more details, see BADA55 elliptic curves

Choosing a safe curve

Overview of various elliptic curves and thorough security analysis by Bernstein and Lange:

https://safecurves.cr.yp.to

(doesn't list cofactor-1 curves, so best to combine with Ristretto)

Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:

https://www.hyperelliptic.org/EFD/