Chapter 12: Nonparametric Inference

DSCC 462 Computational Introduction to Statistics

> Anson Kahng Fall 2022

• Introduce nonparametric analogues to hypothesis tests

- Introduce nonparametric analogues to hypothesis tests
- Wilcoxon Signed-Rank Test

- Introduce nonparametric analogues to hypothesis tests
- Wilcoxon Signed-Rank Test
 - Nonparametric analog to the one-sample or paired t-test

- Introduce nonparametric analogues to hypothesis tests
- Wilcoxon Signed-Rank Test
 - Nonparametric analog to the one-sample or paired t-test
- Wilcoxon Rank-Sum Test (Mann-Whitney U Test)

- Introduce nonparametric analogues to hypothesis tests
- Wilcoxon Signed-Rank Test
 - Nonparametric analog to the one-sample or paired t-test
- Wilcoxon Rank-Sum Test (Mann-Whitney U Test)
 - Nonparametric analog to the two-sample t-test

Plan for Today, Visualized

• Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)

- Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)
- In all of these, we knew the distribution of the population and we only needed to perform inference on the unknown parameters

- Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)
- In all of these, we knew the distribution of the population and we only needed to perform inference on the unknown parameters
 - Parametric methods

- Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)
- In all of these, we knew the distribution of the population and we only needed to perform inference on the unknown parameters
 - Parametric methods
 - We knew what distribution the population followed

- Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)
- In all of these, we knew the distribution of the population and we only needed to perform inference on the unknown parameters
 - Parametric methods
 - We knew what distribution the population followed
- What if we don't know the distribution of the population?

- Think about the statistical tests we've done so far (z-test, t-test, χ^2 -test, F-test, etc.)
- In all of these, we knew the distribution of the population and we only needed to perform inference on the unknown parameters
 - Parametric methods
 - We knew what distribution the population followed
- What if we don't know the distribution of the population?
 - Nonparametric methods

• When do we use nonparametric methods?

- When do we use nonparametric methods?
 - When we don't know the underlying population distribution

- When do we use nonparametric methods?
 - When we don't know the underlying population distribution
 - Or the data do not meet the assumptions needed for particular parametric techniques (e.g., CLT doesn't hold, normal approximation for proportions doesn't hold, etc.)

- When do we use nonparametric methods?
 - When we don't know the underlying population distribution
 - Or the data do not meet the assumptions needed for particular parametric techniques (e.g., CLT doesn't hold, normal approximation for proportions doesn't hold, etc.)
- In this case, we use *nonparametric methods*, which make fewer assumptions regarding the underlying distribution

- When do we use nonparametric methods?
 - When we don't know the underlying population distribution
 - Or the data do not meet the assumptions needed for particular parametric techniques (e.g., CLT doesn't hold, normal approximation for proportions doesn't hold, etc.)
- In this case, we use *nonparametric methods*, which make fewer assumptions regarding the underlying distribution
 - Also known as distribution-free methods

 Although nonparametric testing procedures make different assumptions, they still follow the same general setup as all hypothesis tests we have discussed so far

- Although nonparametric testing procedures make different assumptions, they still follow the same general setup as all hypothesis tests we have discussed so far
 - Make a claim, develop hypotheses, state significance level

- Although nonparametric testing procedures make different assumptions, they still follow the same general setup as all hypothesis tests we have discussed so far
 - Make a claim, develop hypotheses, state significance level
 - Calculate a test statistic based on a random sample of data

- Although nonparametric testing procedures make different assumptions, they still follow the same general setup as all hypothesis tests we have discussed so far
 - Make a claim, develop hypotheses, state significance level
 - Calculate a test statistic based on a random sample of data
 - Determine whether to reject or fail to reject the null hypothesis based on the test statistic and significance level

Suppose we want to determine whether a new drug changes tumor size

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- Can we apply the CLT here?

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- Can we apply the CLT here?
- This means that we need to use a nonparametric method

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- Can we apply the CLT here?
- This means that we need to use a nonparametric method
 - Wilcoxon Signed-Rank Test

Wilcoxon Signed-Rank Test

Wilcoxon Signed-Rank Test

Used to compare two samples from populations that are not independent

Wilcoxon Signed-Rank Test

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test
- Because we are considering paired data, we may look at the difference in values for each pair of observations

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test
- Because we are considering paired data, we may look at the difference in values for each pair of observations
- Does not require populations to be normally distributed

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test
- Because we are considering paired data, we may look at the difference in values for each pair of observations
- Does not require populations to be normally distributed
- Takes into account both the magnitudes of the differences and their signs

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test
- Because we are considering paired data, we may look at the difference in values for each pair of observations
- Does not require populations to be normally distributed
- Takes into account both the magnitudes of the differences and their signs
- Null hypothesis: In the underlying population differences among pairs, the median difference is equal to 0

- Used to compare two samples from populations that are not independent
 - Nonparametric analog to the paired t-test
- Because we are considering paired data, we may look at the difference in values for each pair of observations
- Does not require populations to be normally distributed
- Takes into account both the magnitudes of the differences and their signs
- Null hypothesis: In the underlying population differences among pairs, the median difference is equal to 0
 - Note that we consider medians for nonparametric tests as opposed to means

Suppose we want to determine whether a new drug changes tumor size

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- H_0 : The median difference in tumor size equals 0

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- H_0 : The median difference in tumor size equals 0
- H_1 : The median difference in tumor size is different from 0

- Suppose we want to determine whether a new drug changes tumor size
- We cannot assume that tumor sizes are normally distributed
- Let's say that we have a sample of n pairs of observations (tumor size before drug vs. tumor size after drug), where n=13
- H_0 : The median difference in tumor size equals 0
- H_1 : The median difference in tumor size is different from 0
- Test at the lpha=0.05 significance level

Next, take the difference for each pair of observations

- Next, take the difference for each pair of observations
- Ignoring the sign of these observations, rank their absolute values from smallest to largest

- Next, take the difference for each pair of observations
- Ignoring the sign of these observations, rank their absolute values from smallest to largest
 - A difference of 0 is not ranked

- Next, take the difference for each pair of observations
- Ignoring the sign of these observations, rank their absolute values from smallest to largest
 - A difference of 0 is not ranked
 - Remove pair from data set and reduce number of pairs by 1

- Next, take the difference for each pair of observations
- Ignoring the sign of these observations, rank their absolute values from smallest to largest
 - A difference of 0 is not ranked
 - Remove pair from data set and reduce number of pairs by 1
- Tied observations are assigned an average rank

$$d_{i} \rightarrow 0.5$$

$$\frac{1}{3} - \frac{2}{3}$$

$$Ranks \rightarrow 1$$

$$3 - 3$$

- Next, take the difference for each pair of observations
- Ignoring the sign of these observations, rank their absolute values from smallest to largest
 - A difference of 0 is not ranked
 - Remove pair from data set and reduce number of pairs by 1
- Tied observations are assigned an average rank
- Finally separate the ranks by sign to either + or -

Wilcoxon Signed-Rank Test: Data Table

4
5

Subject	Tumor Size (mm)		Difference	Rank	Signed Rank	
	Before	After	Difference	Kalik	+ -	
1	36.3	27.1	9.2			
2	21.7	17.4	4.3	4.5		
3	45.1	33.1	12.0			
4	27.8	32.1	-4.3	4-5		
5	5.1	8.3	-2.2	2		
6	23.4	22.1	→ 1.3			
7	25.0	31.2	-6.2			
8	12.6	16.4	-3.8	3		
9	19.9	12.5	7.4			
10	22.1	22.1	→ 0			
11	18.6	4.8	13.8			
12	8.9	22.6	-13.7			
13	12.7	6.4	6.3			
14	29.3	18.3	9.0			
15	26.4	21.8	4.6			

Wilcoxon Signed-Rank Test: Data Table

Subject	Tumor Size (mm)		Difference	Rank	Signed Rank	
	Before	After	Difference	Naiik	+	_
1	36.3	27.1	9.2	11		
2	21.7	17.4	4.3	4.5		
3	45.1	33.1	12.0	12		
4	27.8	32.1	-4.3	4.5		7 4.5
5	5.1	8.3	-2.2	2		
6	23.4	22.1	1.3	1		
7	25.0	31.2	-6.2	7		
8	12.6	16.4	-3.8	3		
9	19.9	12.5	7.4	9		
10	22.1	22.1	0	<u>-</u>		
11	18.6	4.8	13.8	14		
12	8.9	22.6	-13.7	13		
13	12.7	6.4	6.3	8		
14	29.3	18.3	9.0	10		
15	26.4	21.8	4.6	6		

Wilcoxon Signed-Rank Test: Data Table

Subject	Tumor Si	ize (mm)	Difference	Rank	Signed Rank		
Subject	Before	After	Difference		+	-	
1	36.3	27.1	9.2	11	11		
2	21.7	17.4	4.3	4.5	4.5		
3	45.1	33.1	12.0	12	12		
4	27.8	32.1	-4/.3	4.5		4.5	
5	5.1	8.3	2.2	2		2	
6	23.4	22.1	1.3	1	1		
7	25.0	31.2	-6/2	7		7	
8	12.6	16.4	-3.8	3		3	
9	19.9	12.5	7.4	9	9		
10	22.1	22.1	0	_			
11	18.6	4.8	13.8	14	14		
12	8.9	22.6	-13.7	13		13	
13	12.7	6.4	6.3	8 /	8		
14	29.3	18.3	9.0	10	10		
15	26.4	21.8	4.6	6	6		
					2 -> Tt	7 7	

• Calculate the sum of the positive ranks, T^+ , and the sum of the negative ranks, T^-

- Calculate the sum of the positive ranks, T^+ , and the sum of the negative ranks, T^-
- Calculate $T = T^+ T^-$

- Calculate the sum of the positive ranks, T^+ , and the sum of the negative ranks, T^-
- Calculate $T = T^+ T^-$
- Under the null hypothesis, the median of the underlying population differences is equal to 0

• Calculate the sum of the positive ranks, T^+ , and the sum of the negative ranks, T^- - $u(n\epsilon)$ - Calculate $T = T^+ - T^-$

- Under the null hypothesis, the median of the underlying population differences is equal to 0
- Thus, we expect approximately equal numbers of positive and negative ranks

- Calculate the sum of the positive ranks, T^+ , and the sum of the negative ranks, T^-
- Calculate $T = T^+ T^-$

differences is equal to 0

- Under the null hypothesis, the median of the underlying population
- Thus, we expect approximately equal numbers of positive and negative ranks
- Additionally, the sum of the positive ranks should be approximately equal to the sum of the negative ranks, so T should be approximately 0

• Evaluate the null hypothesis using the test statistic:

Evaluate the null hypothesis using the test statistic:

$$z_T = \frac{T - \mu_T}{\sigma_T}$$

Evaluate the null hypothesis using the test statistic:

$$z_T = \frac{T - \mu_T}{\sigma_T}$$

Note that

Evaluate the null hypothesis using the test statistic:

$$z_T = \frac{T - \mu_T}{\sigma_T}$$

Note that

$$\mu_T = 0$$

Evaluate the null hypothesis using the test statistic:

$$z_T = \frac{T - \mu_T}{\sigma_T}$$

Note that

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

Evaluate the null hypothesis using the test statistic:

$$z_T = \frac{T - \mu_T}{\sigma_T}$$

Note that

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

• $Z_T \sim N(0,1)$ given that n is large enough (typically n>12)

Histogram of Differences

Subject	Signed Rank	
	+	=
1	11	
2	4.5	
3	12	
4		4.5
5		2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

 Based on the histogram, the difference in tumor size does not appear to be normally distributed, so we want to use the Wilcoxon signed-rank test

Subject	Signed Rank	
	+	_
1	11	
2	4.5	
3	12	
4		4.5
5		2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

- Based on the histogram, the difference in tumor size does not appear to be normally distributed, so we want to use the Wilcoxon signed-rank test
- $T^+ =$

Subject	Signed Rank	
	+	_
1	11	
2	4.5	
3	12	
4		4.5
5		2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

 Based on the histogram, the difference in tumor size does not appear to be normally distributed, so we want to use the Wilcoxon signed-rank test

•
$$T^{+} =$$

Subject	Signed Rank	
	+	-
1	11	
2	4.5	
3	12	
4		4.5
5		4.5 2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

 Based on the histogram, the difference in tumor size does not appear to be normally distributed, so we want to use the Wilcoxon signed-rank test

•
$$T^{+} =$$

$$\bullet$$
 $T^- =$

•
$$T =$$

Subject	Signed Rank	
	+	=
1	11	
2	4.5	
3	12	
4		4.5
5		2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

 Based on the histogram, the difference in tumor size does not appear to be normally distributed, so we want to use the Wilcoxon signed-rank test

•
$$T^{+} = 75.5$$

•
$$T^{-} = 29.5$$

•
$$T = 46$$
.

$$\bullet \quad n = 14 > 12$$

Subject	Signed Rank	
Jubject	+	=
1	11	
2	4.5	
3	12	
4		4.5
5		2
6	1	
7		7
8		3
9	9	
10		
11	14	
12		13
13	8	
14	10	
15	6	

75.5

29.5

• Given T = 46, we then have the following:

• Given T = 46, we then have the following:

$$\mu_T = 0$$

• Given T = 46, we then have the following:

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}} = 31.86$$

• Given T = 46, we then have the following:

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}} = 0$$

Thus,

• Given T = 46, we then have the following:

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}} = 31.84$$

Thus,

$$z_T = \frac{T - \mu_T}{\sigma^T} = \frac{46 - 0}{3(.86)}$$

Calculating the p-value, we have

Calculating the p-value, we have

• Conclusion: P= 0.144 > x = 0.05

• If the sample size is $n \le 12$, we cannot use the normal approximation

- If the sample size is $n \le 12$, we cannot use the normal approximation
- In that case, we can use psignrank (T, n) in R to calculate the exact p-value

- If the sample size is $n \le 12$, we cannot use the normal approximation
- In that case, we can use psignrank (T, n) in R to calculate the exact p-value

Wilcoxon Signed-Rank Test: R Code

z~NLOII)

d: = x: - y.

> wilcox.test(before, after, paired=T, exact=F, correct=F)

Wilcoxon signed rank test

data: before and after
V = 64, p-value = 0.1961

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(before, after, paired=T, exact=T, correct=F)

Wilcoxon signed rank test

data: before and after V = 64, p-value = 0.2163

alternative hypothesis: true location shift is not equal to 0

Ps13urante (T. a)

• Suppose that we want to determine whether having a certain disease is associated with a raised body temperature

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1=12^7$ people who do not have the disease
- Take a sample of $n_2=15$ people who do have the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2=15$ people who do have the disease
- How can we compare the median body temperature for these two populations?

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2=15$ people who do have the disease
- How can we compare the median body temperature for these two populations?
 - Wilcoxon Rank-Sum Test (Mann-Whitney U Test)

Used to compare samples from independent populations

- Used to compare samples from independent populations
 - Nonparametric analog to the two-sample t-test

- Used to compare samples from independent populations
 - Nonparametric analog to the two-sample t-test
- Does not require populations to be normally distributed

- Used to compare samples from independent populations
 - Nonparametric analog to the two-sample t-test
- Does not require populations to be normally distributed
- Requires the two populations to have the same general shape

- Used to compare samples from independent populations
 - Nonparametric analog to the two-sample t-test
- Does not require populations to be normally distributed
- Requires the two populations to have the same general shape
- H_0 : The medians of the two populations are identical

Wilcoxon Rank-Sum Test: Back to Example #2

Wilcoxon Rank-Sum Test: Back to Example #2

 Suppose that we want to determine whether having a certain disease is associated with a raised body temperature

Wilcoxon Rank-Sum Test: Back to Example #2

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2 = 15$ people who do have the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2 = 15$ people who do have the disease
- H_0 : The median body temperature for those without the disease is greater than or equal to those with the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2 = 15$ people who do have the disease
- H_0 : The median body temperature for those without the disease is greater than or equal to those with the disease
- H_1 : The median body temperature for those without the disease is less than those with the disease

- Suppose that we want to determine whether having a certain disease is associated with a raised body temperature
- Cannot assume that body temperature is normally distributed
- Take a sample of $n_1 = 12$ people who do not have the disease
- Take a sample of $n_2 = 15$ people who do have the disease
- H_0 : The median body temperature for those without the disease is greater than or equal to those with the disease
- H_1 : The median body temperature for those without the disease is less than those with the disease
- Test at the $\alpha = 0.05$ significance level

 Combine all data from the two samples and rank the observations from smallest to largest

- Combine all data from the two samples and rank the observations from smallest to largest
- If ranks are tied, we assign the average rank to those values

- Combine all data from the two samples and rank the observations from smallest to largest
- If ranks are tied, we assign the average rank to those values
- We then find the sum of ranks for each of the two original samples, denoted W_1 and W_2 , and then let $W = \min(W_1, W_2)$

- Combine all data from the two samples and rank the observations from smallest to largest
- If ranks are tied, we assign the average rank to those values
- We then find the sum of ranks for each of the two original samples, denoted W_1 and W_2 , and then let $W = \min(W_1, W_2)$
- Under H_0 , the underlying populations have the same median, so we would expect ranks to be randomly distributed between the two groups

- Combine all data from the two samples and rank the observations from smallest to largest
- If ranks are tied, we assign the average rank to those values
- We then find the sum of ranks for each of the two original samples, denoted W_1 and W_2 , and then let $W = \min(W_1, W_2)$
- Under H_0 , the underlying populations have the same median, so we would expect ranks to be randomly distributed between the two groups
- Thus, the average ranks for the two samples (i.e., W_1/n_1 and W_2/n_2) should be approximately equal

Data Table

No Disease		Disease	
Temp	Rank	Temp	Rank
98.1		99.3	8
98.5	1	99.4	9.5
98.6	3	99.4	4.5
98.8	4	99.5	
98.9	\$	99.5	
99.0	6	99.6	
99.2	7	99.7	
99.5	·	99.7	
99.6		100.0	
99.7		100.0	
100.5		100.1	
101.0		100.1	
		100.1	
		101.1	
		101.9	

Data Table

No Disease		Disease	
Temp	Rank	Temp	Rank
98.1	*	99.3	8
98.5	2	99.4	9.5
98.6	3	99.4	9.5
98.8	4	99.5	12
98.9	5	99.5	12
99.0	6	99.6	14.5
99.2	7	99.7	17
99.5	12	99.7	17
99.6	14.5	100.0	19.5
99.7	17	100.0	19.5
100.5	24	100.1	22
101.0	25	100.1	22
		100.1	22
		101.1	26
		101.9	27
	WZZ		

. Evaluate the null hypothesis using the test statistic $z_W = \frac{W - \mu_W}{\sigma_W}$

- . Evaluate the null hypothesis using the test statistic $z_W = \frac{W \mu_W}{\sigma_W}$
- Let n_1 be the number of observations in the sample with the smaller sum of ranks

- Evaluate the null hypothesis using the test statistic $z_W = \frac{W \mu_W}{\sigma_W}$
- Let n_1 be the number of observations in the sample with the smaller sum of ranks
- Let n_2 be the number of observations in the sample with the larger sum of ranks

- . Evaluate the null hypothesis using the test statistic $z_W = \frac{W \mu_W}{\sigma_W}$
- Let n_1 be the number of observations in the sample with the smaller sum of ranks
- Let n_2 be the number of observations in the sample with the larger sum of ranks
- Then,

- Evaluate the null hypothesis using the test statistic $z_W = \frac{w \mu_W}{\sigma_W}$
- Let n_1 be the number of observations in the sample with the smaller sum of ranks
- Let n_2 be the number of observations in the sample with the larger sum of ranks

• Then,
$$\mu_W = \frac{n_1(n_1 + n_2 + 1)}{2} \text{ and } \sigma_W = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}} \qquad \mu = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}} \qquad \mu_{\infty} = \sqrt{\frac{n_1n_2(n_1 + n_2$$

- Evaluate the null hypothesis using the test statistic $z_W = \frac{W \mu_W}{\sigma_W}$
- Let n_1 be the number of observations in the sample with the smaller sum of ranks
- Let n_2 be the number of observations in the sample with the larger sum of ranks
- Then,

•
$$\mu_W = \frac{n_1(n_1 + n_2 + 1)}{2}$$
 and $\sigma_W = \sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}$

• $z_W \sim N(0,1)$ when n_1 and n_2 are large enough $(n_1,n_2>10)$

Histograms of Samples

 Based on the histograms, the two samples do not appear to be coming from normally distributed populations, so we want to use the Wilcoxan rank sum test

- Based on the histograms, the two samples do not appear to be coming from normally distributed populations, so we want to use the Wilcoxan rank sum test
- Wilcoxon rank sum test is appropriate since both populations have similar shapes

- Based on the histograms, the two samples do not appear to be coming from normally distributed populations, so we want to use the Wilcoxan rank sum test
- Wilcoxon rank sum test is appropriate since both populations have similar shapes
- The sum of ranks for sample 1 is 120.5

- Based on the histograms, the two samples do not appear to be coming from normally distributed populations, so we want to use the Wilcoxan rank sum test
- Wilcoxon rank sum test is appropriate since both populations have similar shapes
- The sum of ranks for sample 1 is 120.5 \sim
- The sum of ranks for sample 2 is 257.5 $\sim 10^{-2}$

- Based on the histograms, the two samples do not appear to be coming from normally distributed populations, so we want to use the Wilcoxan rank sum test
- Wilcoxon rank sum test is appropriate since both populations have similar shapes
- The sum of ranks for sample 1 is 120.5
- The sum of ranks for sample 2 is 257.5
- Thus, W = 120.5, $n_1 = 12$, and $n_2 = 15$

•
$$\mu_W = \frac{n_1(n_1 + n_2 + 1)}{2} =$$

Ranhs

•
$$\mu_W$$
 $\Rightarrow \frac{n_1(n_1 + n_2 + 1)}{2} =$

•
$$\sigma_W = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}} =$$

•
$$\mu_W = \frac{n_1(n_1 + n_2 + 1)}{2} = \frac{12(12+15+1)}{2}$$

•
$$\sigma_W = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}} = 29.49$$

. Thus, we have
$$z_W = \frac{W - \mu_W}{\sigma_W} = \frac{120.5 - 168}{20.49} = \frac{-2.318}{2}$$

Calculating the p-value:

Calculating the p-value:

$$P = Pr(Z L - 2.318) = pnom(-2.318) = 0.01$$

• Conclusion:

• If n_1 and n_2 are very small (i.e., either is less than or equal to 10), we cannot use the normal approximation

- If n_1 and n_2 are very small (i.e., either is less than or equal to 10), we cannot use the normal approximation
- When sample sizes are small, we can use the exact distribution to calculate p-values

- If n_1 and n_2 are very small (i.e., either is less than or equal to 10), we cannot use the normal approximation
- When sample sizes are small, we can use the exact distribution to calculate p-values
- In R, we use pwilcox $(W_{\mathrm{obs}}, n_1, n_2)$

- If n_1 and n_2 are very small (i.e., either is less than or equal to 10), we cannot use the normal approximation
- When sample sizes are small, we can use the exact distribution to calculate p-values
- In R, we use pwilcox $(W_{\text{obs}}, n_1, n_2)$
 - In this case, $W_{\text{obs}} = \underline{W} \frac{n_1(n_1 + 1)}{2}$

$$W = \min \left(W_1, W_2 \right)$$

$$W' = W - \frac{\min \left(W_1, W_2 \right)}{2}$$

- If n_1 and n_2 are very small (i.e., either is less than or equal to 10), we cannot use the normal approximation
- When sample sizes are small, we can use the exact distribution to calculate p-values
- In R, we use pwilcox $(W_{\text{obs}}, n_1, n_2)$
 - In this case, $W_{\text{obs}} = W \frac{n_1(n_1+1)}{2}$
 - pwilcox(120.5-78,12,15)=0.0093

Wilcoxon Rank-Sum Test: R Code

```
F-> N(O,1)

F-> William distr.
> wilcox.test(sample1,sample2, exact=F, correct=F, alt="less")
   Wilcoxon rank sum test
data: sample1 and sample2
W = 42.5, p-value = 0.01009
alternative hypothesis: true location shift is less than 0
```

Advantages:

- Advantages:
 - Do not impose restrictive assumptions

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error
 - Permits the use of ordinal data

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error
 - Permits the use of ordinal data

Disadvantages:

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error
 - Permits the use of ordinal data

- Disadvantages:
 - If a parametric test can be used, it is more powerful than its nonparametric counterpart

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error
 - Permits the use of ordinal data

- Disadvantages:
 - If a parametric test can be used, it is more powerful than its nonparametric counterpart
 - Hypotheses tend to be less specific for nonparametric tests

- Advantages:
 - Do not impose restrictive assumptions
 - Do not require normally distributed populations
 - Are sometimes easier to compute by hand
 - Ranks are less sensitive to measurement error
 - Permits the use of ordinal data

- Disadvantages:
 - If a parametric test can be used, it is more powerful than its nonparametric counterpart
 - Hypotheses tend to be less specific for nonparametric tests
 - Variances are typically overestimated

 Sometimes we want to run tests on variables but do not know their distributions

- Sometimes we want to run tests on variables but do not know their distributions
- Nonparametric tests are a flexible but sometimes underpowered way of doing so

- Sometimes we want to run tests on variables but do not know their distributions
- Nonparametric tests are a flexible but sometimes underpowered way of doing so
- Nonparametric analog to the one-sample or paired t-test: Wilcoxon Signed-Rank Test

- Sometimes we want to run tests on variables but do not know their distributions
- Nonparametric tests are a flexible but sometimes underpowered way of doing so
- Nonparametric analog to the one-sample or paired t-test: Wilcoxon Signed-Rank Test
- Nonparametric analog to the two-sample t-test: Wilcoxon Rank-Sum Test (Mann-Whitney U Test)

• TA review sessions (Wegmans 1201):

- TA review sessions (Wegmans 1201):
 - Tuesday, November 1, from 2 3 pm (Lucinda's normal OH)

- TA review sessions (Wegmans 1201):
 - Tuesday, November 1, from 2 3 pm (Lucinda's normal OH)
 - Wednesday, November 2, from 6 8 pm

- TA review sessions (Wegmans 1201):
 - Tuesday, November 1, from 2 3 pm (Lucinda's normal OH)
 - Wednesday, November 2, from 6 8 pm
- Instructor: Tuesday and Thursday during class

- TA review sessions (Wegmans 1201):
 - Tuesday, November 1, from 2 3 pm (Lucinda's normal OH)
 - Wednesday, November 2, from 6 8 pm
- Instructor: Tuesday and Thursday during class
 - Submit specific requests via Google Form