ME3475: IC Engine Lab Experiment 3

ME21BTECH11001
Abhishek Ghosh

Aim:

Performance Study of Port Fuel Injection (PFI) engine.

Procedure:

- 1. Start the engine.
- 2. Set the dynamometer load to 1 N, 4 N, and 9 N for additional experiments.
- 3. After adjusting the dynamometer load to the desired level, manipulate the fuel consumption rate by using the knob to regulate the throttle valve.
- 4. Ensure the RPM of the engine remains constant at 1800 RPM for each load by adjusting the throttle valve.
- 5. Measure the fuel consumption rate from an 12-cc tube using a stopwatch.
- 6. Organize the collected data into a table and compute Fuel consumption rate, Brake power, specific fuel consumption, brake thermal efficiency, and volumetric efficiency.

Formulas used:

1. Brake Power (BP):

$$BP = \frac{2 \times \pi \times N \times T}{60 \times 1000} \text{kW}$$

where $T = Torque = Load \times (Armlength)$, N = Rotational speed (rpm).

2. Fuel Consumption(FC):

$$FC = \frac{x}{t}(mL/s) = x \times 3600 \times \frac{\text{Specific gravity of petrol}}{1000 \times t}(\text{Kg/hr})$$

3. Specific Fuel Consumption(SFC):

$$SFC = \frac{FC}{BP}$$

4. Brake Thermal Efficiency (η_{BP}) :

$$\eta_{BP} = \frac{BP}{FC \times CV}$$

where CV = Calorific Value of the fuel.

5. Volumetric Efficiency (η_{vol}) :

$$\eta_{vol} = \frac{\text{Air Flow} \times 100}{N/2 \times V_s \times \rho_{\text{air}} \times 60}$$

Tabulation:

S No.	Load		Air Flow	Speed (N)	Time for	FC	BP	SFC (Kg/	η_{BP}	η_{Vol}
	(Kg)	Т	Rate (kg/hr)		rise of	(Kg/hr)	(KW)	KW hr)		
		(Nm)			fuel (s)					
1	1	2.29	7.54	1800	118	0.271	0.432	0.626	14.01%	17.244%
2	4	9.18	9.68	1800	92	0.348	1.729	0.2	43.71%	22.138%
3	9	20.65	10.62	1800	78	0.41	3.892	0.105	83.38%	24.288%

Calculation:

Given Data

- Load Torque (T) = 2 Nm
- N(RPM) = 1800
- Calorific Value of Fuel (CV) = 41000 KJ/kg
- Specific Gravity of Fuel = 0.74
- Bore = 87.5 mm = 0.075 m
- Stroke = 110 mm = 0.11 m
- Arm Length = 234 mm = 0.234 m
- *Air Density* = $1.225 kg/m^3$

Brake Power (BP) Calculation

$$BP = \frac{2\pi NT}{60 \times 1000} = \frac{2\pi \times 1800 \times 9.18}{60 \times 1000}$$
$$= 1.729 \text{ kW}$$

Fuel Consumption Rate (FC)

$$FC = \frac{12 \times 3600 \times \text{Specific Gravity of Fuel}}{t \times 1000} = \frac{12 \times 3600 \times 0.74}{92 \times 1000}$$
$$= 0.348 \, kg/hr$$

Specific Fuel Consumption (SFC)

$$SFC = \frac{FC}{BP} = \frac{0.348}{1.729}$$
$$= 0.2 \ kg/kW \ hr$$

Volume Displaced (V_s) Calculation

$$Vs = \frac{\pi \times d^2 \times L}{4} = \frac{3.14 \times (0.0875)^2 \times 0.11}{4}$$
$$= 0.000661 \, m3$$

Brake Thermal Efficiency (η_{BP})

$$\eta_{BP} = \frac{BP \times 3600}{FC \times CV} \times 100 = \frac{1.729 \times 3600}{0.348 \times 41000} \times 100$$

$$= 43.71 \%$$

Volumetric Efficiency (η_{vol})

$$\eta_{\text{vol}} = \frac{\text{Air Flow Rate} \times 100}{V_{\text{S}} \times N/2 \times \text{Air Density} \times 60} = \frac{9.68 \times 100}{0.000661 \times 1800/2 \times 1.225 \times 60} = 22.138 \%$$

Graph:

Conclusion:

- 1. The data analysis shows that the fuel consumption rate increases as the load increases. This is due to the higher fuel requirement to maintain the desired RPM at greater loads.
- 2. Based on the calculations and graphical analysis, it is evident that both thermal efficiency and volumetric efficiency improve as the load increases.