Cours: Mme Lamia EL ABED JILANI

Série N°3: Analyse Syntaxique

Exercice 1

Soit la grammaire suivante :

$$G = (V_T, V_N, A, P) \text{ avec } V_T = \{s, f, w, id, e, nb \}, V_N = \{A, B, C, D\}$$

$$G \begin{cases} A \rightarrow A f B \mid s \\ B \rightarrow id C \mid id C D e \\ C \rightarrow w D \mid \epsilon \\ D \rightarrow B > nb \mid D nb \end{cases}$$

1) Quels sont les éléments de l'ensemble P?

$$P = \{ A \rightarrow A f B \mid s, B \rightarrow id C \mid id C D e, C \rightarrow w D \mid \varepsilon, D \rightarrow B > nb \mid D nb \}$$

2) Si nécessaire, factoriser G à gauche.

$$G \left\{ \begin{array}{l} A \rightarrow A f B \mid s \\ B \rightarrow id C B' \\ B' \rightarrow D e \mid \epsilon \\ C \rightarrow w D \mid \epsilon \\ D \rightarrow B > nb \mid D nb \end{array} \right.$$

3) Si nécessaire, rendre G non récursive à gauche. Appeler alors cette grammaire G1.

$$G1 \left\{ \begin{array}{l} A \rightarrow sA' \\ A' \rightarrow fB A' \mid \epsilon \\ B \rightarrow id C B' \\ B' \rightarrow D e \mid \epsilon \\ C \rightarrow w D \mid \epsilon \\ D \rightarrow B > nb D' \\ D' \rightarrow nb D' \mid \epsilon \end{array} \right.$$

4) Donner la dérivation gauche de la chaine suivante :

sf idwid>nbnb

il faut d'abord écrire chaque règle de production dans une ligne et ensuite numéroter les règles $A=(1)sA'==>(2)f\underline{B}A'$ etc jusqu'à arriver à la chaine en question et à la fin donner $Dg=\{1,2,$ etc.}

- 5) Donner la dérivation droite relative à la même chaine que dans 4) facile
- 6) Donner l'arbre syntaxique de la chaine traitée en 4) facile
- 7) Est-il possible de construire un arbre syntaxique pour la chaine suivante : sfidw>nb>nb ? arbre sera incomplet blocquage essayer de construire l'arbre et vous verrez!

Exercice 2

Soit la grammaire G suivante avec A l'axiome :

$$G \begin{cases} A \rightarrow a|Bb|cB \\ B \rightarrow c|a|Ab \\ C \rightarrow bC|Ad|a \end{cases}$$

G est-elle récursive à gauche ? justifier.

Récursivité indirecte en A ou en B

Par exemple:

On pourrait remplacer le B de la règle A mais attention faut faire un seul choix! Soit remplacer le A soit remplacer le B!

Exercice 3

Reprendre la grammaire G1 de l'exercice 1

1) Calculer les ensembles PREMIERS des symboles non terminaux de la grammaire

-, -, -, -, -, -, -, -, -, -, -, -, -, -	5) 1110 0105 11011 to 111111111111111111111111111111
$PR(A)=\{s\}$	$S(A) = \{\$\}$
$PR(A')=\{f,\varepsilon\}$	$SV(A')=\{\$\}$
$PR(B)=\{id\}$	$SV(B) = \{f, >, \$\}$
$PR(B')=\{id, \varepsilon\}$	$SV(B') = \{f, >, \$\}$
$PR(C)=\{w, \varepsilon\}$	$SV(C) = = \{id, f, >, \$\}$
$PR(D)=\{id\}$	$SV(D)=\{e,id,f,>,\$\}$
$PR(D')=\{nb, \varepsilon\}$	$SV(D') = \{e, id, f, >, \$\}$

- 2) Calculer les ensembles SUIVANTS des symboles non terminaux de la grammaire
- 3) G1 est-elle une grammaire prédictive ? justifier.

Oui en appliquant le théorème disant que si

Pour A -> B | ε alors PR(A) \cap SV(A) = \emptyset or on vérifie que c'est bien le cas

4) Si G1 est prédictive alors construire la table d'analyse M d'un analyseur LL de L(G1) et analyser la chaine étudiée en 1) et ce, selon l'analyseur LL. Sinon, indiquer quelle analyse syntaxique peut-on effectuer sur G1.

ISG, Année Universitaire : 2014/2015 **Compilation** (3^{ème} IAG : Licence Fondamentale en Informatique de Gestion, 5^{ème} semestre) **Cours** : Mme Lamia EL ABED JILANI

La table d'analyse M d'un analyseur LL

	S	f	id	e	W	nb	>	\$
A	$A \rightarrow sA'$							
A'		A' → f B A'						A' → ε
В			$B \rightarrow id$ C B'					
B'		B' → ε	B' → D e				B' → ε	Β' → ε
C		C → ε	C → ε		$\begin{array}{c} C \rightarrow \\ w D \end{array}$		C → ε	C → ε
D			D → B>nb D'					
D'		D' → ε	D' → ε	D' →		D' → nb D'	D' →	D' → ε

Analyse de la chaine : sf idwid>nbnb

PILE	Tampon d'entrée	FLOT DE SORTIE
\$A	sf idwid>nbnb\$	
\$AA's	sf idwid>nbnb\$	A → sA'
\$AA'	f idwid>nbnb\$	
\$AA'Bf	f idwid>nbnb\$	$A' \rightarrow f B A'$
\$AA'B	idwid>nbnb\$	
\$AA'B'Cid	idwid>nbnb\$	$B \rightarrow id C B'$
\$AA'B'C	wid>nbnb\$	
\$AA'B'Dw	wid>nbnb\$	$C \rightarrow wD$
\$AA'B'D	id>nbnb\$	
\$AA'B'D'nb>B	id>nbnb\$	D → B>nb D'
\$AA'B'D'nb> B'Cid	id>nbnb\$	$B \rightarrow id C B'$
\$AA'B'D'nb>B'C	>nbnb\$	
\$AA'B'D'nb>B'	>nbnb\$	C → ε
\$AA'B'D'nb>	>nbnb\$	Β' → ε
\$AA'B'D'nb	nbnb\$	
\$AA'B'D'	nb\$	$D' \rightarrow nb D'$
\$AA'B'D'nb	nb\$	
\$AA'B'D'	\$	D' → ε
\$AA'B'	\$	Β' → ε
\$AA'	\$	Α' → ε
\$A	\$	succès

Exercice 4

Soit la grammaire suivante :

$$G \qquad \begin{cases} S \rightarrow iEtSS' \mid a \\ S' \rightarrow e \mid S \mid \epsilon \\ E \rightarrow b \end{cases}$$

1) Construire la table d'analyse M correspondant à G et dire si G est de type LL.

$PR(S)=\{i,a\}$	$S(S) = \{\$,e\}$
$PR(S')=\{e,\epsilon\}$	$SV(S')=\{\$,e\}$
$PR(E)=\{b\}$	$SV(E)=\{t\}$

La table d'analyse

	i	t	a	e	b	\$
S	S →		S → a			
	iEtSS'					
S'				S' → e S S' → ε		S' → ε
				S' → ε		
Е					E → b	

G n'est pas de type LL puisqu'il existe la cellule [S',e] qui comporte deux règles (il faut au plus une règle pour qu'elle soit LL).

- 2) G est en fait ambiguë, trouver la production qui est la cause de cette ambiguïté et donner un exemple d'une instruction ambiguë générée par G.
- $S' \rightarrow \varepsilon$ cause l'ambiguité (sera encore expliqué dans la réponse à la question 3)

Par exemple le mot : ibtibtaea est ambigu car :

Si on construit un arbre syntaxique alors on peut en trouver deux différents.

ISG, Année Universitaire : 2014/2015 **Compilation** (3^{ème} IAG : Licence Fondamentale en Informatique de Gestion, 5^{ème} semestre) **Cours** : Mme Lamia EL ABED JILANI

Ou encore deux suites de dérivations gauches différentes comme suit :

G
$$\begin{cases}
S \rightarrow iEtSS' (1) \\
S \rightarrow a (2) \\
S' \rightarrow e S (3) \\
S' \rightarrow \epsilon (4) \\
E \rightarrow b (5)
\end{cases}$$

$$S ==>(1)i\underline{E}tSS' ==>(5) ==>ibt\underline{S}S'(1) ==>ibti\underline{E}tSS'S'(5) ==>ibtibt\underline{S}S'S'(2) ==>ibtibta\underline{S}S'S'(3) ==>ibtibta\underline{S}S'(2) ==>ibtibta\underline{S}S'(4) ==>ibtibta\underline{S}S'(5) ==>ibtibta\underline{S}S'(5)$$

$$\begin{split} & \text{Ici D}_g = \{1,5,1,5,2,3,2,4\} \\ & S ==>(1) i \underline{E} t S S' ==>(5) ==> i b t \underline{S} S'(1) ==> i b t i \underline{E} t S S' S'(5) ==> i b t i b t \underline{S} S' S'(2) ==> i b t i b t a \underline{S} S' S'(4) \\ & ==> i b t i b t a \underline{S} S'(2) ==> i b t i \underline{S} S'(2) ==> i b t i \underline{S} S'(2) ==> i b t i \underline{S} S'(2) ==> i \underline{S}$$

On en déduit que cette grammaire est ambigue.

3) G peut-elle être modifiée et devenir LL? Oui car :

Cette grammaire décrit les Instructions conditionnelles de type if then else

ISG, Année Universitaire: 2014/2015

Compilation (3^{ème} IAG : Licence Fondamentale en Informatique de Gestion, 5^{ème} semestre) Cours : Mme Lamia EL ABED JILANI

Si on enlève la règle $S' \rightarrow \varepsilon$ alors la grammaire ne sera plus ambigue et dans une instruction if then else imbriquée, le else reviendra toujours au dernier if qui apparait.

Rappel : un analyseur syntaxique ne peut pas travailler avec une grammaire ambigue. Pour enlever l'ambiguité, il n'existe pas de procédé automatique, c'est l'humain qui doit la rendre non ambigue.