

Independent mechanisms for implicit ensemble learning and explicit ensemble perception?

¹Sabrina Hansmann-Roth, ¹Árni Kristjánsson, ²David Whitney & ³Andrey Chetverikov

10

Target CT-PD

Target CT-PD

¹Icelandic Vision Lab, University of Iceland, Reykjavik, Iceland ²Department of Psychology, University of California, Berkeley ³Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands

- INTRODUCTION

Ensemble perception refers to the visual system's ability to represent similar items using summary statistics such as the average size.

Perceived average:

Perceived variance:

Perceived skewness and kurtosis:

No discriminability of speed distributions varying in skewness or kurtosis and no discriminability of orientation distributions (Atchley and Anderson, 1994; Dakin and Watt, 1996).

How can we assess the representation of a feature distribution?

A successful implicit method was based on role reversals in visual search: RT's are slower if the previous distractor becomes the target.

3-4 Learning trials: Constant distractor distribution

RESEARCH QUESTION & GOALS -

Why do the implicit ensemble learning & explicit ensemble perception methods lead to different results? Compare both methods for judgments of mean, variance and higher order statistics (distribution shape) in a within-subject design.

MATERIAL & METHODS Learning trials Test trials Methods Gaussian feature distribution in Exp. 1 **Implicit** Search Search Exp.1 2AFC (mean) test set: same as learning set **Explicit** Exp.2 Search comparison set: varies in mean or SD Search 2AFC (SD) Exp.3 (13 sets) or distribution shape (6 sets): 2AFC (shape) Exp.4

search for oddly colored diamond and in test trial select set that looks more like the previous search sets

r RESULTS Fit circular Gaussian to get μ and SD from internal representation \longrightarrow compare with actual distribution parameters and estimate SD of these parameters to get estimate of precision μ of fitted circ. Gaussian (ideally $\mu = 0$) 3 .225 n=12 .200 .175 © 800 € Target CT-PD SD of fitted circ. Gaussian (ideally SD = 6) GS 5.5⋅ Target CT-PD

DISCUSSION

- Extracted information of mean and SD through explicit method is noisier than the implicit representation
- Learned distribution shape is not accessible through explicit method but is represented (implicit method)

图 800.

- Implicit information crucial to act, while explicit information might determine appearance
- → Decision is not based on the full perceptual representation

Shape of comparison set