Handout 2

Descriptive Time Series Statistics and Introduction to Autoregression

Class notes for Statistics 451: $\underline{ \text{Applied Time Series} }$ Iowa State University

Copyright 2004 W. Q. Meeker.

January 7, 2007 17h 8min

2 - 1

Populations

- A population is a collection of identifiable units (or a specified characteristic of these units).
- A frame is a listing of the units in the population.
- We take a sample from the frame and use the resulting data to make inferences about the population.

- Simple random sampling with replacement from a population implies independent and identically distributed (iid) observations.
- Standard statistical methods use the *iid* assumption for observations or residuals (in regeression).

2-2

Processes

 A process is a system that transforms inputs into outputs, operating over time.

- A process generates a sequence of observations (data) over time.
- We can use a realization from the process to make inferences about the process.
- The *iid* model is <u>rarely</u> appropriate for processes (observations close together in time are typically correlated and the process often changes with time).

2-3

Process, Realization, Model, Inference, and Applications

2-4

Stationary Stochastic Processes

 Z_t is a stochastic process. Some properties of Z_t include mean μ_t , variance σ_t^2 , and autocorrelation $\rho_{Z_t,Z_{t+k}}$. In general, these can change over time.

• Strictly stationary (also strongly or completely stationary):

$$F(z_{t_1},\ldots,z_{t_n})=F(z_{t_1+k},\ldots,z_{t_n+k})$$

Difficult to check.

• 2nd order weakly stationary (or covariance stationary) requires only that $\mu=\mu_t$ and $\sigma^2=\sigma_t^2$ be constant and that $\rho_k=\rho_{Z_t,Z_{t+k}}$ depend only on k.

Easy to check with sample statistics.

Generally, "stationary" is understood to be covariance stationary.

Change in Business Inventories 1955-1969

Estimation of Stationary Process Parameters

Process Parameter	Notation	Estimate	Formula Number in Wei
Mean of ${\it Z}$	$\mu_Z = E(Z)$	$\hat{\mu}_Z = \bar{Z} = \frac{\sum_{t=1}^n z_t}{n}$	(2.5.1)
Variance of $ar{Z}$	$\sigma_{\bar{Z}}^2 = \mathrm{Var}(\bar{Z})$	$S^2_{ar{Z}} = rac{\widehat{\gamma}_0}{n} \left[\cdots \right]$	(2.5.4)
Variance of ${\it Z}$	$\gamma_0 = \sigma_Z^2$	$\hat{\sigma}_Z^2 = \hat{\gamma}_0 = \frac{\sum_{t=1}^n (z_t - \bar{Z})^2}{n}$	(2.5.8)
Standard Deviation	σ_Z	$\hat{\sigma}_Z = \sqrt{\hat{\sigma}_Z^2}$	
Autocovariance	γ_k	$\hat{\gamma}_k = \frac{\sum_{t=1}^{n-k} (z_t - \bar{Z})(z_{t+k} - \bar{Z})}{n}$	(2.5.8)
Autocorrelation	$\rho_k = \frac{\gamma_k}{\gamma_0}$	$\widehat{\rho}_k = \frac{\widehat{\gamma}_k}{\widehat{\gamma}_0}$	(2.5.18)

Change in Business Inventories 1955-1969

2-8

Wolfer Sunspot Numbers 1770-1869

2 - 9

2-11

Data Analysis Strategy

2-10

Correlation [From "Statistics 101"]

Consider random data y and x (e.g., sales and advertising):

x	y
x_1	y_1
x_2	y_2
:	:
x_n	y_n

 $\rho_{x,y}$ denotes the "population" correlation between all values of x and y in the population.

To estimate $\rho_{x,y}$, we use the sample correlation

$$\hat{\rho}_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}, \quad \text{(Stat 101)}$$

$$-1 \le \widehat{\rho}_{x,y} \le 1$$

Sample Autocorrelation

Consider the random time series realization z_1, z_2, \dots, z_n

		Lagged Variables				
t	z_t	z_{t+1}	z_{t+2}	z_{t+3}	z_{t+4}	
1	z_1	z_2	z_3	z_4	z_5	
2	z_2	z_3	z_4	z_5	z_6	
3	z_3	z_4	z_5	z_6	z_7	
:		:		:	:	
n-2	z_{n-2}	z_{n-1}	z_n	-	-	
n-1	z_{n-1}	z_n	_	_	_	
n	z_n	_	_	_	-	

Assuming covariance stationarity, let ρ_k denote the process correlation between observations separated by k time periods. To compute the "order k" sample autocorrelation (i.e., correlation between z_t and z_{t+k})

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0} = \frac{\sum_{t=1}^{n-k} (z_t - \bar{Z})(z_{t+k} - \bar{Z})}{\sum_{t=1}^{n} (z_t - \bar{Z})^2}, \quad k = 0, 1, 2, \dots, \quad (2.5.18)$$

Note: $-1 \le \hat{\rho}_k \le 1$

Sample Autocorrelation (alternative formula)

Consider the random time series realization z_1, z_2, \ldots, z_n

		Lagged Variables					
t	z_t	z_{t-1}	z_{t-2}	z_{t-3}	z_{t-4}		
1	z_1	_	-	-	-		
2	z_2	z_1	-	_	-		
3	z_3	z_2	z_1	_	_		
4	z_4	z_3	z_2	z_1	-		
:	:	:	:	:	:		
n	z_n	z_{n-1}	z_{n-2}	z_{n-3}	z_{n-4}		

Assuming covariance stationarity, let ρ_k denote the process correlation between observations separated by k time periods.

To compute the "order k" sample autocorrelation (i.e., correlation between z_t and z_{t-k})

relation between
$$z_t$$
 and z_{t-k})
$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0} = \frac{\sum_{t=k+1}^n (z_t - \bar{Z})(z_{t-k} - \bar{Z})}{\sum_{t=1}^n (z_t - \bar{Z})^2}, \quad k = 0, 1, 2, \dots$$
 Note: $-1 \leq \hat{\rho}_k \leq 1$

2-13

Lagged Sunspot Data

		Lagged Variables					
t	Spot	Spot1	Spot2	Spot3	Spot4		
1	101	_	_	_	_		
2	82	101	_	_	_		
3	66	82	101	_	_		
4	35	66	82	101	_		
5	31	35	66	82	101		
:	:	:	:	:	:		
99	37	7	16	30	47		
100	74	37	7	16	30		
101	_	74	37	7	16		
102	_	_	74	37	7		
103	_	_	_	74	37		
104		_	_	-	74		

2-14

Wolfer Sunspot Numbers Correlation Between Observations Separated by One Time Period [show.acf(spot.ts)]

Wolfer Sunspot Numbers Correlation Between Observations Separated by k**Time Periods**

2-16

Wolfer Sunspot Numbers Sample ACF Function

Series : spot.ts

Autoregressive Models

• AR(0): $z_t = \mu + a_t$ (White noise or "Trivial" model)

• AR(1): $z_t = \theta_0 + \phi_1 z_{t-1} + a_t$

• AR(2): $z_t = \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t$

 $\bullet \ \mathsf{AR}(3) \colon \, z_t = \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \phi_3 z_{t-3} + a_t$

• AR(p): $z_t = \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$ $a_t \sim \operatorname{nid}(0, \sigma_a^2)$

AR(1) Model for the Wolfer Sunspot Data

Data and 1-Step Ahead Predictions

Sunspot Residuals, AR(1) Model

Series : residuals(spot.ar1.fit)

2 - 19

AR(2) Model for the Wolfer Sunspot Data

Data and 1-Step Ahead Predictions

Sunspot Residuals, AR(2) Model

Series : residuals(spot.ar2.fit)

Quantiles of Standard Norma

2 - 20

AR(3) Model for the Wolfer Sunspot Data

Data and 1-Step Ahead Predictions

Sunspot Residuals, AR(3) Model

Series : residuals(spot.ar3.fit)

2-21

AR(4) Model for the Wolfer Sunspot Data

Data and 1-Step Ahead Predictions

Sunspot Residuals, AR(4) Model

Series: residuals(spot.ar4.fit)

2 - 22

Summary of Sunspot Autoregressions

	Order	Regression Output				PACF
Model	p	R^2	S	$\widehat{\phi}_p$	$t_{\widehat{\phi}_p}$	$\widehat{\phi}_{pp}$
AR(1)	1	.6676	21.53	.810	13.96	.8062
AR(2)	2	.8336	15.32	711	-9.81	6341
AR(3)	3	.8407	15.12	.208	2.04	.0805
AR(4)	4	.8463	15.01	147	-1.41	0611

 $\widehat{\phi}_p$ is from ordinary least squares (OLS).

 $\hat{\phi}_{pp}$ is from formula (2.5.25), giving the solution to the Yule-Walker equations.

Sample Partial Autocorrelation

The "true partial autocorrelation function," denoted by ϕ_{kk} , for $k=1,2,\ldots$ is the process correlation between observations separated by k time periods (i.e., between z_t and z_{t+k}) with the effect of the intermediate z_{t+1},\ldots,z_{t+k-1} removed.

We can estimate $\phi_{kk}, \ k=1,2,\ldots$ with $\widehat{\phi}_{kk}, \ k=1,2,\ldots$

- $\hat{\phi}_{1,1} = \hat{\phi}_1$ from the AR(1) model
- $\hat{\phi}_{2,2} = \hat{\phi}_2$ from the AR(2) model
- $\hat{\phi}_{kk} = \hat{\phi}_k$ from the AR(k) model

General formula (2.5.25) gives somewhat different answers due to the basis of the estimator (ordinary least squares versus solution of the Yule-Walker equations).

Autoregressive-Moving Average (Box-Jenkins) Models

- AR(0): $z_t = \mu + a_t$ (White noise or "Trivial" model)
- AR(1): $z_t = \theta_0 + \phi_1 z_{t-1} + a_t$
- AR(2): $z_t = \theta_0 + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t$
- AR(p): $z_t = \theta_0 + \phi_1 z_{t-1} + \dots + \phi_p z_{t-p} + a_t$
- MA(1): $z_t = \theta_0 \theta_1 a_{t-1} + a_t$
- MA(2): $z_t = \theta_0 \theta_1 a_{t-1} \theta_2 a_{t-2} + a_t$
- MA(q): $z_t = \theta_0 \theta_1 a_{t-1} \dots \theta_q a_{t-q} + a_t$
- ARMA(1,1): $z_t = \theta_0 + \phi_1 z_{t-1} \theta_1 a_{t-1} + a_t$
- ARMA(p,q): $z_t = \theta_0 + \phi_1 z_{t-1} + \dots + \phi_p z_{t-p} \theta_1 a_{t-1} \dots \theta_q a_{t-q} + a_t$

 $a_t \sim \mathsf{nid}(0, \sigma_a^2)$

2 - 25

Graphical Output from Splusts Function iden(spot.d)

2-26

(3.1.7)

Tabular Output from Splusts Function iden(spot.d)

Identification Output for Wolfer Sunspots w= Number of Spots

[1] "Standard deviation of the working series= 37.36504" ACF

Lag ACF se t-ratio 1 1 0.806243956 0.1000000 8.06243956 2 2 0.428105325 0.1516594 2.82280693 3 0.069611110 0.1632975 0.42628402

•

Partial ACF

Lag Partial ACF se t-ratio 1 0.806243896 0.1 8.06243896

2 2 -0.634121358 0.1 -6.34121358

2-27

Standard Errors for Sample Autocorrelations and Sample Partial Autocorrelations

 $\bullet \ \ \underline{\mathsf{Sample ACF}} \ \mathsf{standard \ error:} \ \ \mathsf{S}_{\widehat{\rho}_{k}} = \sqrt{\left(\frac{1+2\widehat{\rho}_{1}^{2}+\dots+2\widehat{\rho}_{k-1}^{2}}{n}\right)},$

Also can compute the "t-like" statistics $t = \hat{\rho}_k/\mathrm{S}_{\hat{\rho}_k}$.

• <u>Sample PACF</u> standard error: $S_{\widehat{\phi}_{kk}} = \frac{1}{\sqrt{n}}$, (3.1.8)

Also can compute "t-like" statistics $t = \hat{\phi}_{kk}/\mathrm{S}_{\hat{\phi}_{kk}}.$

- \bullet In long realizations from a stationary process, the "t-like" statistics can be approximated by N(0,1)
- Values of $\hat{
 ho}_k$ and $\hat{\phi}_{kk}$ may be judged to be different from zero if the "t-like" statistics are outside specified limits (± 2 is often suggested; might use ± 1.5 as a "warning").

2 - 28

Drawing Conclusions from Sample ACF and PACF's

The "t-like" statistics should only be used as guidelines in model building because:

- An ARMA model is only an approximation to some true process
- Sampling distributions are complicated; the "t-like" do not really follow a standard normal distribution (only approximately, in large samples, with a stationary process)
- Correlations among the $\hat{\rho}_k$ values for different k (e.g., $\hat{\rho}_1$ and $\hat{\rho}_2$ may be correlated).
- Problems relating to simultaneous inference (looking at many different statistics simultaneously, confidence level have little meaning).