

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA AUTOMATYKI I INŻYNIERII BIOMEDYCZNEJ

Laboratorium Problemowe

Serwomechanizm

Autor: Jakub Tańcula, Wiktor Wąsowicz

Kierunek studiów: Automatyka i Robotyka

Spis treści

1.	Wst	ęp	3
2.	Iden	tyfikacja	3
	2.1.	Model matematyczny	3
	2.2.	Martwa strefa	4
	2.3.	Modele	5

1. Wstęp

W ramach zajęć laboratorium problemowego zostało postawione przed nami zadanie stworzenia regulatorów serwomechanizmu napędzanego przez silnik prądu stałego pozwalający na sterowanie położeniem wału serwomechnizmu. Schemat obiektu został przedstawiony na rysunku 2.1. W trakcie prac nad regulatorem korzystano z komputera, pakietu Matlab/simulink/

2. Identyfikacja

2.1. Model matematyczny

W celu wyznaczenia modelu matematycznego omawianego obiektu posłużono się rówaniami elektrycznym 2.1 oraz mechanicznym 2.2 silnika

Rys. 2.1. Model silnika prądu stałego.

$$u(t) = R \cdot i(t) + L \frac{d}{dt}i(t) + e_{rot}$$
(2.1)

$$J \cdot \frac{d}{dt}\omega(t) = K_E \cdot \phi \cdot i(t) \tag{2.2}$$

gdzie:

$$e_{rot} = k_E \cdot \phi \cdot \omega(t)$$

gdzie:

R - rezystancja uzwojeń twornika, L - indukcyjność uzwojeń twornika, e_{rot} - siła elektromotoryczna, J - moment bezwłądności silnika, ϕ -strumień wzbuczenia od magnesów trwałych k_E - wsppółczynnik proporcjonalności wiążący napięcie rotacji z prędkością kątową oraz moment elektromagnetyczny z prądem twornika

Skąd otrzymano układ równań silnika w postaci operatorowej postaci 2.3

$$\begin{cases}
U(s) = R \cdot I(s) + L \cdot I(s) \cdot s + k_E \cdot \phi \cdot \Omega(s) \\
J \cdot \Omega(s) \cdot s = K_E \cdot \phi \cdot I(s)
\end{cases}$$
(2.3)

Skąd po przekształceniach otrzymano wzór na transmitancję układu 2.4

$$G(s) = \frac{\Omega(s)}{U(s)} = \frac{K}{T \cdot s + 1}$$
(2.4)

Jest to transmitancja obiektu pierwszego rzędu opisującą zależność obrotów silnika od napięcia wejściowgo, natomiast transmitancja 2.5:

$$G(s) = \frac{\alpha(s)}{U(s)} = \frac{K}{s \cdot (T \cdot s + 1)}$$
(2.5)

opisuje zależność kąta wału silnika od napięcia wejściowego. Jest to transmitancja obiektu inercyjnego z członem całkującym

2.2. Martwa strefa

W trakcie badań nad systemem zauważono, że występuje w nim zjawisko martwej strefy. Zostało ono przedstawione na rysunku 2.2

Rys. 2.2. Martwa strefa silnika.

Na podstawie powyższego rysunku można stwierdzić iż silnik posiada niesymetryczną martwą strefę. Dla napięcia

2.3. Modele

Model z pojedyneczej transmitancji

Model z podwójnej transmitancji