

Atmósferas estelares

Práctica N° 1

1) Dadas las curvas de sensibilidad de los filtros U, B y V del sistema fotométrico UBV, y las curvas de sensibilidad del ojo humano (día y noche); determine la *longitud de onda equivalente* para cada una de las curvas de sensibilidad.

$\lambda(\mu)$	U_{λ}	B_{λ}	V_{λ}	$O_{día}$	O_{noche}
0.28	0.00				
0.30	0.13				
0.32	0.60				
0.34	0.92				
0.36	1.00	0.00			
0.38	0.72	0.13			0.00
0.40	0.09	0.92			0.02
0.42	0.00	1.00		0.00	0.08
0.44		0.92		0.02	0.21
0.46		0.76	0.00	0.06	0.41
0.48		0.56	0.01	0.14	0.65
0.50		0.39	0.36	0.32	0.90
0.52		0.20	0.91	0.71	0.96
0.54		0.07	0.98	0.95	0.68
0.56		0.00	0.80	1.00	0.35
0.58			0.59	0.87	0.14
0.60			0.39	0.63	0.05
0.62			0.22	0.38	0.02
0.64			0.09	0.18	0.01
0.66			0.03	0.06	0.00
0.68			0.01	0.02	
0.70			0.00	0.00	

- 2) Caclular la longitud de onda efectiva del filtro V para el flijo de un cuerpo negro cuya temperaturas son $T=25000K,\ T=10000K,\ T=5000K.$
- 3) Si se tiene un flujo de cuerpo negro observado con un receptor cuya sensibilidad es la misma que la del filtro V del sistema fotométrico UBV. Dar la longitud de onda del *flujo monocromático efectivo* que se calcula con

$$\langle B \rangle = \frac{\int_0^\infty V_\lambda B_\lambda \left(T \right) \mathrm{d}\lambda}{\int_0^\infty V_\lambda \mathrm{d}\lambda}$$

Asociar $\langle B\rangle=B_{\lambda}\left(T\right)$ y decir para que λ se da la igualdad. Considerar T=25000K , T=10000K y T=5000K

- 4) Cuál es el cambio δV en la magnitud V del sistema fotmétrico UBV que produce un cambio de longitud de onda efectiva $\delta \lambda$ calculado en 2. Calcular $\delta \lambda = \lambda_{eq} \lambda_{eff}$.
- Si $V=-2.5\log f_V+C$ tomar $f_V\simeq B\left(T\right)$, $T=T\left(\lambda_{eff}\right)$; suponer B_λ α $\lambda^{-v}\mathrm{e}^{-\frac{hc}{\lambda kT}}$ ley de Wien; calcular $\left(\frac{\mathrm{d}\ln f_\lambda}{\mathrm{d}\lambda}\right)_{\lambda=\lambda_{eq}}$
- 5) Cual es el cabio pocentual en f_V que representa el cambio δV calculado en 4.