Chess is a very popular game played by hundreds of millions of people. Nowadays, we have chess engines such as <u>Stockfish</u> and <u>Komodo</u> to help us analyze games. These engines are very powerful pieces of well-developed software that use intelligent ideas and algorithms to analyze positions and sequences of moves, as well as to find tactical ideas. Consider the following simplified version of chess:

- Board:
 - \circ It's played on a 4×4 board between two players named *Black* and *White*.
 - Rows are numbered from 1 to 4, where the top row is 4 and the bottom row is 1.
 - \circ Columns are lettered from A to D, where the leftmost column is A and the rightmost column is D.
- Pieces and Movement:
 - \circ *White* initially has $oldsymbol{w}$ pieces and *Black* initially has $oldsymbol{b}$ pieces.
 - There are no Kings on the board. Each player initially has exactly **1** Queen, at most **2** Pawns, at most **2** Rooks, and at most **2** minor pieces (i.e., a Bishop and/or Knight).
 - White's Pawns move up the board, while Black's Pawns move down the board.
 - Each move made by any player counts as a single move.
 - Each piece's possible moves are the same as in <u>classical chess</u>, with the following exceptions:
 - Pawns *cannot* move two squares forward.
 - The <u>en passant</u> move is not possible.
 - *Promotion*:
 - Pawns promote to either a Bishop, Knight, or Rook when they reach the back row (promotion to a Queen is not allowed).
 - The players *must* perform promotions whenever possible. This means *White* must promote their Pawns when they reach any cell in the top row, and *Black* must promote their Pawns when they reach any cell in the bottom row.
- Objective:
 - The goal of the game is to capture the opponent's Queen without losing your own.
 - There will never be a draw or tie scenario like you might see in classical chess.

Given m and the layout of pieces for g games, implement a very basic engine for our simplified version of chess that determines whether or not White can win in $\leq m$ moves (regardless of how Black plays) if White always moves first. For each game, print YES on a new line if White can win in $\leq m$ moves; otherwise, print NO.

Input Format

The first line contains an integer, g, denoting the number of games. The subsequent lines describe each game in the following format:

- The first line contains three space-separated integers describing the respective values of \boldsymbol{w} (the number of white pieces), \boldsymbol{b} (the number of black pieces), and \boldsymbol{m} (the maximum number of moves we want to know if *White* can win in).
- The w+b subsequent lines describe each chess piece in the form t c r, where t is a character $\in \{Q,N,B,R,P\}$ denoting the type of piece (where Q is Queen, N is Knight, B is Bishop, R is Rook, and P is a Pawn), and c and r denote the respective column and row on the board where the figure is located (where $c \in \{A,B,C,D\}$ and $r \in \{1,2,3,4\}$). These inputs are given as follows:
 - \circ Each of the first \boldsymbol{w} lines describes the type and location of a *White* piece.
 - \circ Each of the subsequent **b** lines describes the type and location of a *Black* piece.

Constraints

- $1 \le g \le 1000$
- $1 \leq w, b \leq 7$
- $1 \le m \le 6$
- Each player has exactly **1** Queen, at most **2** Pawns, at most **2** Rooks, and at most **2** minor pieces (i.e., a Bishop and/or Knight).
- It is guaranteed that the initial location of each chess piece is distinct.
- No pawn is initially placed in a row where it would promote.

Output Format

For each of the g games of simplified chess, print whether or not White can win in $\leq m$ moves on a new line. If it's possible, print YES; otherwise, print NO instead.

Sample Input 0

1 2 1 1

Q B 1 P B 3 Q A 4

Sample Output 0

YES

Explanation 0

We play the following $\emph{g}=\emph{1}$ game of simplified chess:

White wins by moving their Pawn to ${\it A4}$ and capturing ${\it Black}$'s Queen, so we print YES on a new line.