统计推断——假设检验——简单线性回归分析

一、线性^Q回归描述

- •父亲身高与儿子身高存在相关(相关关系)
- 可否通过父亲身高预测儿子的身高?
- 新生儿的体重与体表面积存在相关
- 可否通过体重预测体表面积? (依存关系)

1、概述

例为研究大气污染物一氧化氮(NO)的浓度是否受到汽车流量、气候状况等因素的影响,选择24个工业水平相近的城市的一个交通点,统计单位时间过往的汽车数(干辆)、同时在低空的相同高度测定了该时间段平均气温(°C)、空气湿度(%)、风速(m/s)以及空气中一氧化氮(NO)的浓度(ppm),数据如表所示。

表 11-1 24 个城市交通点空气中 NO 浓度监测数据

一氧化氮	车流量	气温	气湿	风速	一氧化氮	车流量	气温	气湿	风速
(Y)	(X_1)	(X_2)	(X_3)	(X_{4})	(Y)	(X_1)	(X_2)	(X_3)	(X_{4})
0.066	1.300	20.0	80	0.45	0.005	0.948	22.5	69	2. 00
0.076	1. 444	23.0	57	0.50	0.011	1.440	21.5	79	2.40
0.001	0.786	26. 5	64	1.50	0.003	1.084	28.5	59	3.00
0.170	1.652	23.0	84	0.40	0.140	1.844	26.0	73	1.00
0.156	1.756	29.5	72	0.90	0.039	1. 116	35.0	92	2.80
0.120	1.754	30.0	76	0.80	0.059	1.656	20.0	83	1.45
0.040	1. 200	22.5	69	1.80	0.087	1.536	23.0	57	1.50
0.120	1.500	21.8	77	0.60	0.039	0.960	24.8	67	1.50
0.100	1. 200	27.0	58	1.70	0.222	1.784	23.3	83	0.90
0.129	1.476	27.0	65	0.65	0.145	1.496	27.0	65	0.65
0.135	1.820	22.0	83	0.40	0.029	1.060	26.0	58	1.83
0.099	1. 436	28.0	68	2.00	0.099	1.436	28.0	68	2. 00

资料来源:数据选自《卫生统计学》第5版(方积乾主编),人民卫生出版社 gguohui_

研究目的

- 通过探讨与一氧化氮 (NO) 浓度相关的影响因素, 为控制空气污染提供依据。
- 研究一个变量的变化(如空气中NO浓度)受到另外一个或一些变量(如车流量)变化的制约。这些问题在统计学中采用线性回归模型(linear regression model)来进行分析。

基本概念

- 回归分析 $^{\mathbb{Q}}$ 中,若Y随 X_1 , X_2,\ldots,X_m 的改变而改变,则称Y为反应变量(response variable),又称为因变量(dependent variable);
- $\bullet X_1$, X_2 ,... , X_m 为解释变量(explanatory variable),又称为自变量(independent variable),通常我们把自变量看作影响因素(factors)。
 - 简单线性回归 (simple linear regression) -
 - 多重线性回归 (multiple linear regression) -

- •X 可以是随机变量,也可以是人为选择的数值
- Y 是按某种规律变化的连续型随机变量

2、简单线性回归模型

例,只考虑NO浓度与车流量的关系,以NO浓度为因变量,车流量为自变量,采用线性回归分析。问题如下:

问题

- 1. NO浓度随车流量的增加而增加吗? ——散点图
- 2. 是直线趋势还是曲线趋势? ——散点图
- 3. 如何采用回归方程定量地描述车流量对大气中NO浓度的影响? ——线性回归方程
- 4. 车流量每增加100辆, NO浓度平均会增加多少? ——回归方程的b值 (回归系数)
- 5. 车流量对NO浓度的影响有统计学意义吗? ——假设检验
- 6. 车流量对NO浓度的影响(贡献)有多大?——决定系数 R^2
- 7. 如何由车流量预测大气中NO平均浓度?——个体的容许区间、均数的置信区间
- 8. 如何通过控制车流量达到控制空气中NO浓度的目的?——根据求得的回归方程和给定的Y-hat值,求X值。

散点图

图.10-1 NO浓度与车流量的散点图angguohui_123

简单线性回归方程

以下为总体的线性回归方程, $\mu_{Y|X}$ 表示在给定的X数值的情况下,Y值的总体平均水平。

回归系数的含义

 β 的统计学意义是X每增加(或减少)一个单位,Y平均改变 β 个单位(即Y的均数 $\mu_{Y|X}$ 改变 β 个单位)。 β 越大表示Y随X增减变化的趋势越陡。

β 的意义

 β >0,表明Y与X呈同向线性变化趋势;

 β <0,表明Y与X呈反向线性变化趋势;

 β =0,表明Y与X无线性回归关系,但并不表明没有其它关系。

样本的回归方程

基于样本的信息和数据建立的回归方程我们称为样本的回归方程。如下图, \hat{Y} 表示刚才总体回归方程当中 μ 的一个估计值,也就是当X指定一个数值的时候Y的平均水平的估计值,

lacktriangle anb分别代表样本的截距和样本的回归系数,如果在方程的左边用个体的观察值Y,那么在它的等号的右边就要加上一个残差项 ε ,残差 ε 等于实际观察值Y与回归方程的 \hat{Y} 相减,它在理论上服从均数为0,标准差为 σ 的正态分布。

$$\hat{Y} = a + bX$$
 $\hat{Y} = \alpha + \beta X + \varepsilon$ $\varepsilon \sim N(0, \sigma^2)$
 $\hat{Y} = \hat{Y}$ 残差 (residual)

最小二乘估计

- 1. 最小二乘估计 (least square estimation, LSE)
- 2. 其想法是找一条直线, 使得实测点至该直线的纵向距离(即残差)的平方和最小,

此平方和称为残差平方和,记为 SS 。 残差平方和越小,该直线对散点趋势的代表性越好。

$$SS_{\mathcal{R}} = \sum (Y - \hat{Y})^2$$

a 和 b 的计算

分子为X和Y的离均差的积和,分母为X的离均差的平方和。

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} \qquad a = \overline{Y} - b\overline{X}$$

$$\hat{Y} = -0.1353 + 0.1584 X_{\odot}$$

注意: b的公式可以转化为如下公式:

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} = \frac{n \sum_{i=1}^n x_i y_i - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

二、线性回归的假设检验

回归方程有统计学意义吗?(在总体看来在X和Y之间是否同样具有如下的线性关系)

$$\hat{Y} = -0.1353 + 0.1584X$$

- 假设检验包括两个方面:
 - 1. 回归模型是否成立 (model test) : 方差分析 (F检验)
 - 2. 总体回归系数 (包括斜率和截距) 是否为零 (parameter test) : t检验。
 - 3.残差分析: D-W检验

在简单线性模型当中,由于仅仅包含一个自变量,所以对回归模型是否成立的假设检验 和总体回归系数是否为零的假设检验是等价的,涉及到多元回归方程,则t检验不再适用。

1、回归模型的假设检验:

①回归模型检验的思想

总变异的分解-1

下图中, P表示某一个观察点。

图10-3 Y的总变异分解示意图

总变异的分解-2

$$\sum (Y - \overline{Y})^{2} = \sum (\hat{Y} - \overline{Y})^{2} + \sum (Y - \hat{Y})^{2}$$

$$SS \underset{\text{dis}}{\otimes} = SS \underset{\text{old}}{\otimes} + SS \underset{\text{dis}}{\otimes}$$

$$u_{\text{id}} = n - 1$$
 $v_{\text{id}} = 1$
 $v_{\text{id}} = n - 2$

$$\nu_{\text{回归}}$$
 =]

$$\nu_{\text{ }\mathrm{g}}=n-2$$

$$u$$
 总 $=$ u 回归 $+$ u 残差ps://biog.csdn.net/huangguohui_123

注意: ν 回归即自变量 (方程的元) 的个数。

中心思想:相比较残差的变异,回归的变异比重很大的话,说明回归是有意义的。

图11-4 回归效果示意图

②回归模型假设检验的步骤

 H_0 : 总体回归方程不成立或总体中自变量X对因变量Y没有贡献

 H_1 : 总体回归方程成立或总体中自变量X对因变量Y有贡献

 $\alpha = 0.05$

$$F = \frac{SS_{\text{ph}} / \nu_{\text{ph}}}{SS_{\text{gk}} / \nu_{\text{gk}}} = \frac{MS_{\text{ph}}}{MS_{\text{gk}}}$$

对例的回归方程 $\hat{Y}=-0.1353+0.1584X$ 进行方差分析,结果如表所示(假设检验步骤

表10-2 简单线性回归模型方差分析表

变异	来源	SS	df	MS	F	P
回	リヨ	0.0530	1	0.0530	41.376	< 0.0001
残	差	0.0282	22	0.0013		
总 变	异	0.0812	23	https://blo	og.csdn.net/hi	uangguohui_123

由表首行末列可见,P<0.0001,按 α =0.05 水准,可认为 NO 浓度与车流量之间的回归方程 具有统计学意义。

2、回归系数的假设检验:

①对系数 (b) 的检验

对系数检验的步骤

 H_0 : $\beta = 0$

 $H_1: \beta \neq 0$

 α =0.05

下面式子b-0,是因为在H0成立的情况下,我们假定总体的回归系数等于0,b表示样本的回归系数, S_b 表示回归系数的标准误, $S_{Y.X}$ 表示在扣除X的影响下,Y剩余部分的标准差,也叫残差的标准差。

$$t = \frac{b - 0}{S_b} \qquad \qquad v = n - 2$$

$$S_{b} = \frac{S_{Y.X}}{\sqrt{\sum (X - \overline{X})^{2}}}$$

$$S_{Y.X} = \sqrt{\frac{SS_{\text{R}}}{n - 2}}$$

$$\text{REPORT } MELTING$$

接上例,经计算得(假设检验步骤略):

$$S_{Y.X} = 0.0358$$
, $S_b = 0.0246$,
 $|t| = \sqrt{F} = 6.432$, $v = n - 2 = 22$

b等于0.1584, t=0.1584/0.0246=6.4390, 且在一元线性回归模型当中, $t^2=F$ 。

由统计量t得P <0.0001,按 α =0.05水准,拒绝 H_0 ,故可认为该回归系数具有统计学意义。

注意:对于服从双变量正态分布的同样一组资料,若同时做了相关分析和回归分析,则相关系数的t检验与回归系数的t检验等价,且 $t_r=t_b$ 。

总体回归系数的区间估计:

$$b \pm t_{\alpha/2,\nu} S_b$$

$0.1584 \pm 2.074 \times 0.0246 = (0.1074, 0.2095)$

②对常数项 (a) 的检验

对常数项检验的步骤

 $H_0: \beta_{0=0}$

 $H_1: \beta_0 \neq 0$

 α =0.05

在H0成立的情况下,我们假定总体的常数项等于0,a表示样本的回归系数, S_b 表示回归常数项的标准误, $S_{Y.X}$ 表示在扣除X的影响下,Y剩余部分的标准差,也叫残差的标准差。

$$S_b = \frac{S_{Y.X} \sqrt{\sum X_i^2}}{\sqrt{\sum (X - \overline{X})}}$$

接上例,经计算得(假设检验步骤略):

$$S_{Y.X} = 0.0358$$
, $S_b = 0.0246$, $a = -0.1353$, $t = (-0.1353 \times 0.5131)/0.0246 = -2.8215$, $\nu = n - 2 = 22$.

由统计量t得P <0.05,按 α =0.05水准,拒绝 H_0 ,故可认为该回归常数项具有统计学意义。

当然,一般不以*t*检验决定常数项是否保留在模型中,而是从应用的实际意义方面分析 回归线是否应该通过原点,然后决定常数项的去留。

3、残差分析

残差是指由回归方程计算得到的预测值与实际样本值之间的差距, 定义为:

$$e_i = y_i - \hat{y}_i = y_i - (\beta_0 + \beta_1 x)$$
 (6.13)

对于线性回归分析来讲,如果方程能够较好地反映被解释变量的特征和规律性,那么残差序列中应不包含明显的规律性。残差分析包括以下内容:残差服从正态分布,其平均值等于0;残差取值与X的取值无关;残差的自相关性;残差方差相等。本文介绍部分残差分析的内容,读者有兴趣可查阅相关文献,探究另外几个分析内容。

- 1. 对于残差均值和方差齐次性检验可以利用残差图进行分析。如果残差均值为零,残差图的点应该在纵坐标为 0 的中心的带状区域中随机散落。如果残差的方差随着解释变量值(或被解释变量值)的增加呈有规律的变化趋势,则出现了异方差现象。
 - 2. DW 检验。DW 检验用来检验残差的自相关。检验统计量为:

$$DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=2}^{n} e_i^2} \approx 2(1 - \rho)$$
 (6.14)

DW=2 表示无自相关,在 $0\sim2$ 之间说明存在正自相关,在 $2\sim4$ 之间说明存在负自相关。一般情况下,DW 值在 $1.5\sim2.5$ 之间即可说明无自相关现象。 https://blog.csdn.net/huangguohui_123

4、回归直线的拟合优度(车流量对NO浓度的影响有多大?)

[决定系数]
$$R^2 = \frac{SS}{SS}$$
 回归 SS 点

$$R^{2} = \frac{SS_{\text{min}}}{SS_{\text{KS}}} = \frac{0.0530}{0.0812} = 0.6527 = 65.27\%$$
https://doi.org/10.000/j.ne/https://do

一元线性回归模型的决定系数和自变量、因变量的相关系数的关系:

$$R^{2} = r^{2}$$

如果判定系数太小,则说明自变量对因变量的线性解释程度太小,即模型的现实意义不大,可以考虑使用别的分析方法进行分析,或者使用多元性回归和曲线回归的方法。

线性回归分析的前提条件: LINE

- 1. 线性 (linear): 反应变量与自变量的呈线性变化趋势。
- 2. 独立性(independence):任意两个观察值相互独立,一个个体的取值不受其他个体的影响。
 - 3. 正态性 (normal distribution) : 在给定值X \mathbb{R}

4. 等方差性 (equal variance) : 对应于不同的X 值,Y值的总体变异相同 。

图11-2 回归模型前提假设立体示意图:900hul_123

三、简单线性回归的应用

问题

- 1. NO浓度随车流量的增加而增加吗?
- 2. 是直线趋势还是曲线趋势?
- 3. 如何采用回归方程定量地描述车流量对大气中NO浓度的影响?
- 4. 车流量每增加100辆,NO浓度平均会增加多少?
- 5. 车流量对NO浓度的影响有统计学意义吗?
- 6. 车流量对NO浓度的影响 (贡献) 有多大?
- 7. 如何由车流量预测大气中NO平均浓度?
- 8. 如何通过控制车流量达到控制空气中NO浓度的目的?

统计应用

统计预测

个体的容许区间: 预测是回归分析的重要应用之一,医学上常用在给定X值(预报因子)时,计算个体Y值的容许区间。所谓个体Y值的容许区间是指总体中X为某定值时,个体Y值的波动范围。

$$\hat{Y} \pm t_{\alpha/2,(n-2)} s_{Y}$$

$$S_Y = S_{Y.X} \sqrt{1 + \frac{1}{n} + \frac{\left(X_i - \overline{X}\right)^2}{\sum_{\text{https://miog.csdn.net/huangquonut}}^2}}$$

X表示给定的X的数值。

当车流量为1300辆时、 $\hat{Y} = -0.1353 + 0.1584 \times 1.300 = 0.0707$

空气中一氧化氮95%容许区间为

$$0.0707 \pm 2.074 \times 0.0358 \sqrt{1 + \frac{1}{24} + \frac{(1.3 - 1.4035)^2}{2.1124}} = (0.0000 \sim 0.1467) ppm$$

当车流量为1300辆时,大气中NO浓度的水平是存在变异的,大概95%的观察值分布的 范围是从0到0.1467ppm。

均数的置信区间: 当X为某定值和在给定置信度的情况下,欲知Y的总体均数的分布如何?我们可以估计总体中当X为某定值X。时,Y的总体均数 $\mu_{X|Y}$ 的 $(1-\alpha)$ 置信区间。

$$\hat{Y} \pm t_{\alpha/2,(n-2)} s_{\hat{Y}}$$

$$S_{\hat{Y}} = S_{Y.X} \sqrt{\frac{1}{n} + \frac{\left(X_{i} - \overline{X}\right)^{2}}{\sum_{i \in I} \left(X_{i} - \overline{X}_{i}\right)^{2}}}$$

当车流量为1300辆时, $\hat{Y} = -0.1353 + 0.1584 \times 1.300 = 0.0707$,

空气中一氧化氮95%置信区间为

$$0.0707 \pm 2.074 \times 0.0358 \sqrt{\frac{1}{24} + \frac{(1.3 - 1.4035)^2}{2.1124}} = (0.05465 \sim 0.08675) ppm$$

当车流量为1300辆时,大气中NO浓度的总体的平均水平应该在0.05465到0.08675ppm。

图11-5 回归方程、均数的置信区间与个体容许区间图

统计控制

根据空气污染指数分级,当空气质量状况不超过 Malak Equation 级时,要求空气中氮氧化物含量不超过0.100ppm~0.150ppm。该城市为降低空气中NO的含量,拟对车流量做适当控制。

依据估计的回归方程

 $\hat{Y} = -0.1353 + 0.1584 X$ 和以上标准,分别计算得:

$$Y_1 = 0.100ppm_{\text{BH}}$$
, $X_1 = (Y_1 - a)/b = 1.485 (\pm 4 \text{M})$

$$Y_2 = 0.150 ppm_{BT}$$
, $X_2 = (Y_2 - a)/b = 1.801_{(\mp 450)}$

该城市单位时间内车流量应控制在 1500 辆以内,超过此限可能导致轻度污染;当车流量大于 1800 辆时,可能导致空气中度污染。

结里据告

• 简单线性回归分析通常需要报告以下内容: 1. 分析目的; 2. 拟合简单线性回归方程的估计方法; 3. 是否符合前提条件(LINE); 4. 参数估计结果; 5. 模型的拟合优度及其假设检验; 6. 对结果的专业解释。 MATLAB统计分析-回归分析 介绍MATLAB统计分析中回归分析的内容,包括简单线性回归、多项式回归、非线性回归和稳健回归... fcxgfdjy的博客 ① 820 数模学习第四天---回归系数假设检验 直线回归系数的假设检验对B=0进行假设检验我们以下题数据为例作出解答:并计算有关指标: (其... 参与评论 您还未登录,请先 登录 后发表或查看评论 线性回归(假设检验)——学习笔记 一个噗噗的博客 ○ 1583 为什么要做假设检验 在回归分析中,我们关心真实的参数是否是0或者说特定的数值。 由于数据抽样... 简单线性回归截距假设检验 线性回归分析中的假设检验 weixin 36054159的博客 @ 431 讨论最简单的线性回归,假设有两个变量Y和X,对他们的做二元的线性回归\${hat{y} = \hat{\beta}_{0}+\... R中的假设检验 (三) 相关与回归 clancy_wu的博客 ① 1374 学到哪儿写到哪儿,这篇后面会随时更新。 一、相关分析研究变量与变量间的关系就需要分析其相关... 回归假设检验 Irjnumber的博客 ① 1415 回归假设检验 模型的显著性检验: 模型的显著性检验是指构成因变量的线性组合是否有效,即整个模... 线性回归中的假设检验 线性回归中的假设检验及Python编程0引言1一元线性回归模型2对于回归方程的检验F检验T检验一元... 数据分析回归作业.docx 题目在下面,通过SPSS做的回归分析小论文,原理操作都很详细。一:某公司在各地区销售一种特... 线性回归--假设检验 (F统计量、P-value) 九天揽月 ① 7307 一、F检验解释 F检验 (F-test) ,最常用的别名叫做联合<mark>假设检验</mark> (英语: joint hypotheses test) , ... 回归分析的假设条件 qq_42501075的博客 ① 1576 数据什么样就能扔进回归分析回归分析 Python数据分析与挖掘——回归模型的假设检验 Fo*(Bi)的博客 **②** 2129 模型的显著性检验是指构成因变量的线性组合是否有效,即整个模型中是否至少存在一个自变量能够... 回归分析-线性回归-检验-模型 OLS: 最小二乘法 通过预测变量的加权和来预测量化的因变量,其中权重是通过数据估计而得的参数 ... 应用回归分析 (基于R) R语言的假设检验 (一) 最新发布 Mrrunsen的博客 @ 501 假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差还是由本质差异所造成的一种统计... <mark>简单线性回归截距假设检验_统计推断——假设检验——简</mark>... weixin_34677379的博客 ◎ 1692 一、线性回归描述•父亲身高与儿子身高存在相关(相关关系)•可否通过父亲身高预测儿子的身高?•新... 回归分析的五个基本假设 热门推荐 Noob_daniel的博客 ① 10万+ 回归分析的五个基本假设 最近读到一篇很棒的文章,介绍了回归分析的五个基本假设,假设失效的影... 多元线性回归模型检验方法 banban008的博客 @ 1万+ 终于找到一篇全面而又简洁的讲多元线性回归模型检验方法的文章 PDF下载地址 链接:https://pan.bai... 线性回归中的前提假设 问道于盲 ① 1万+ 面试的时候被问到,在线性回归中,有三个假设,是哪三个?当时回答出来自变量x和因变量y之间是... 深入探讨回归分析的假设条件、散点图以及解决方案 xia ge tou lia (关注) a dia 回归分析标志着预测建模的第一步。毫无疑问,回归分析非

最新评论

数据挖掘案例——基于RFM模型的药店.

Arthur88888: 主要是为什么要选择使用零-均值规范化 🖰

数据挖掘案例——基于RFM模型的药店..

Arthur88888: 6.1的量纲差异处理不是很明 白,老师是否能简单说明一下,谢谢。

多元统计分析——数据降维——Fisher线... _一串随机数: FDA是无监督的,LDA的有监 督的

数据挖掘案例——基于RFM模型的药店...

芜湖123: 请问有数据集吗

dt.date和strftime('%Y-%m-%d')的区别 weixin_53484418: 请问解决了没有? 我也 遇到了

您愿意向朋友推荐"博客详情页"吗?

强烈不推荐 不推荐 一般般 推荐 强烈推荐

最新文章

机器学习——需求预测——准确性 (误差) 统计——MAE、MSE、MAPE、WMAPE

机器学习——特征工程——交互特征(多项 式特征)

统计推断——假设检验——线性回归——R的 平方可以为负数

2021年 1篇 2020年 83篇

2019年 16篇

目录

一、线性回归描述

1、概述

研究目的

基本概念

2、简单线性回归模型

问题

散点图

简单线性回归方程

回归系数的含义

的意义

xia ge tou lia (关注)

a 和 b 的计算

二、线性回归的假设检验

