Задача І. Двоичный поиск

Имя входного файла: binsearch.in Имя выходного файла: binsearch.out

Дан массив из n элементов, упорядоченный в порядке неубывания и m запросов: найти первое и последнее вхождение числа в массив.

Формат входного файла

В первую строке входного файла содержится одно число n — размер массива. ($1 \le n \le 100000$). Во второй строке находится n чисел в порядке неубывания — элементы массива. В третьей строке находится число m — количество запросов. В следующей строке находится m чисел — запросы.

Формат выходного файла

Для каждого запроса выведите в отдельной строке номер первого и последнего вхождения этого числа в массив. Если числа в массиве нет выведите два раза -1.

Пример

binsearch.in	binsearch.out
5	1 2
1 1 2 2 2	3 5
3	-1 -1
1 2 3	

Задача Ј. Гирлянда

Имя входного файла: garland.in Имя выходного файла: garland.out

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1=A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1}+h_{i+1})}{2}-1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B=h_n)$ при условии, что ни одна из лампочек не должна лежать на земле $(h_i > 0$ для $1 \le i \le N)$.

Формат входного файла

В первую строке входного файла содержится два числа n и A (3 $\leq n \leq 1000, n$ —целое, $10 \leq A \leq 1000, A$ —вещественное).

Формат выходного файла

Вывести одно вещественное число В с двумя знаками после запятой.

Пример

garland.in	garland.out
8 15	9.75
692 532.81	446113.34

Задача К. Поезда

Имя входного файла: trains.in Имя выходного файла: trains.out

В связи с участившимся числом аварий на железнодорожной ветке Москва-Саратов, руководство железной дороги решило изменить график движения поездов. Тщательный анализ состояния железнодорожного полотна показал, что оптимальным является следующий график движения поездов с учетом остановок на станциях: сначала поезд идет на протяжении T_1 минут со скоростью V_1 метров в минуту, затем T_2 минут со скоростью V_2 метров в минуту, ..., наконец, T_N минут со скоростью V_N метров в минуту. В течение некоторых интервалов поезд может стоять (скорость равна 0).

По действующей инструкции обеспечения безопасности движения поездов расстояние между локомотивами двух следующих друг за другом поездов должно быть не менее L метров. Определите минимально допустимый интервал в минутах между отправлениями поездов, позволяющий им двигаться по этому графику без опасного сближения.

Формат входного файла

В первых двух строках входного файла содержится два натуральных числа, задающие минимально допустимое расстояние L и количество участков пути N (100 $\leqslant L \leqslant 10\,00$, $1 \leqslant N \leqslant 1000$). Далее следует N пар целых чисел T_i и V_i , задающих график движения поездов (1 $\leqslant T_i \leqslant 1000$, 0 $\leqslant V_i \leqslant 1000$).

Формат выходного файла

В выходной файл необходимо вывести искомый интервал между отправлениями поездов в минутах, не менее чем с тремя верными знаками после десятичной точки.

Пример

trains.in	trains.out
1000	27.500
4	
10 0	
30 80	
15 0	
20 100	