НАЧАЛЬНАЯ ШКОЛА ПОСТРОЕНИЯ ИМПУЛЬСНЫХ DC/DC-ПРЕОБРАЗОВАТЕЛЕЙ (ТРЕТИЙ КЛАСС)

Александр Гончаров, к.т.н., главный конструктор ООО «Александер Электрик», координатор Российской ассоциации производителей источников электропитания (РАПИЭП)

«Первый ВИП — катушка зажигания автомобиля» — важный довод считать Вторичный Источник Питания «первичным» в электронике.

ПЕРЕХОДИМ В ТРЕТИЙ КЛАСС

В «первом и втором» классах (см. «ЭК» N_06 и N_07 за 2002 год) мы рассматривали некоторые основы построения очень важной для энергетической электроники схемы — одинарного (одиночного) однотактного прямоходового преобразователя (ОПП).

Сразу нужно заметить — маленькие ошибки при рассмотрении очень больших и важных вопросов иногда случаются. Вот и подписи под рисунками 6 и 7 («первый класс») должны быть совсем другими — «Диаграммы токов и напряжений в элементах ОПП с неразрывным током дросселя» и «Диаграммы током и напряжений в элементах ОПП с разрывным током дросселя» соответственно.

Да и рассуждения замучили - как правильно одиночный или одинарный? Дело в том, что автор приготовил для дальнейшего рассмотрения (опять же, покупайте все номера журнала!) интересные схемы, построенные на комбинации двух преобразователей. И если это будут «двойные» преобразователи – тогда удобен термин «одиночный», но скорее всего автор остановится на термине «сдвоенные» - и конечно правильнее - «одинарный». На ту же букву, но веселее. Согласитесь, «одиночный» — это чтото слишком грустное для такого замечательного и важного устройства.

Итак, рассмотрев схему одинарного однотактного прямоходового преобразователя (ОПП), и присвоив ему за высокую энергетическую эффективность звание «Мерседес среди DC/DC-преобразователей», попробуем найти что-то противоположное, концептуально другое — этакий «Пежо» (а кому нравится — «Тойота»...) среди источников электропитания. Таким «Пежо» является наиболее распространенный в мировой практи-

ке одинарный однотактный обратно-ходовой преобразователь (ООП).

Вспомните, как работает катушка зажигания в автомобиле. Вначале через контакты прерывателя с шунтиру-(помехоподавляющей) костью к аккумуляторной батарее подключается первичная обмотка катушки зажигания, а затем, после размыкания контактов, происходит разряд накопленной в катушке и «перепрыгнувшей» во вторичную обмотку энергии на свечу зажигания, в которой происходит дуговой разряд, кстати, стабилизирующий напряжение! Вот, когда в давние времена это придумали, тогда и появились первые ВИПы – однотактные обратноходовые преобразователи.

Итак — что же это за «Пежо» среди ВИПов?

ОДИНАРНЫЙ ОДНОТАКТНЫЙ ОБРАТНОХОДОВОЙ ПРЕОБРАЗОВАТЕЛЬ

Схема такого преобразователя приведена на рисунке 1. Синим цветом выделены элементы, действие которых будет пояснено при дальнейшем, более пристальном рассмотрении ООП.

Входное напряжение питания U_{вх} подается на последовательно соединенные первичную обмотку w1 трансформатора Т1 и ключ, реализованный на транзисторе VT1. Предположим, что ключ на МОП-транзисторе идеален, он быстро (условно - мгновенно) переключается из включенного состояния в выключенное и наоборот, а падение напряжения на включенном МОП-транзисторе исчезающе мало. Источник $U_{\rm BX}$ — стабилизированный, и через него без труда замыкаются высокочастотные импульсные токи преобразователя. Конденсатор С2 представляет собой (в некотором приближении) эквивалентную емкость всех емкостей, приведенных к первичной обмотке w1 трансформатора T1:

- собственной емкости обмотки w1;
- приведенной емкости обмотки w2;
- выходной емкости транзистора VT1:
 - емкости монтажа;

и т.п., вплоть до емкости, намеренно поставленной разработчиком ВИП. Как для ОПП, так и для ООП емкость С2 существует всегда, и для высокочастотных преобразователей пренебрегать ею нельзя.

Схема управления СУ1 подает на затвор МОП-транзистора VT1 управляющие импульсы (см. рис. 2 а), величина которых достаточна для надежного открывания транзистора VT1. При периоде следования импульсов Т относительная длительность каждого импульса равна @. При открытом транзисторе VT1 первичная обмотка w1 трансформатора Т1 подключена к источнику входного напряжения U_{вх}. Идеальная осциллограмма на стоке транзистора приведена на рисунке 2 б. В течение времени @ на обмотке w1 и конденсаторе С2 существует постоянное напряже-

Рис. 1. **Схема силовой части одинарного** однотактного прямоходового преобразователя

Рис. 2. **Диаграммы напряжения и тока** в схеме ООП для режима неразрывных токов

Рис. 3. Регулировочная характеристика

Рис. 4. **Диаграммы тока в схеме ООП для режима разрывных токов**

ние $U_{\rm BX}$ (см. рис. 2 в). Исходная полярность напряжения на обмотках трансформатора и на конденсаторе C2 показана на рисунке 1.

На вторичной обмотке w2 трансформатора Т1 в течение времени @ существует такое же по форме напряжение, имеющее величину в соответствии с коэффициентом трансформации. До времени @ выходной диод VD1 закрыт отрицательным напряжением, поступающим с обмотки w2.

В соответствии с формулой для индуктивности, ток через индуктивность обмотки w1 (через транзистор VT1) за время @ линейно нарастает (см. рис. 2 г). Так как передача энергии в нагрузку ООП не происходит (закрыт выходной диод), то в индуктивности обмотки w1 накапливается энергия $\mathbf{W} = \mathbf{L} \mathbf{1} \times \mathbf{I}^2/\mathbf{2}$.

При выключении транзистора VT1 во время @ выключение и спад тока через транзистор VT1 происходит «мгновенно». Условно мгновенно (правильно — очень быстро) разряжается до нуля конденсатор С2, так как в этот момент времени он отдает большой рабочий ток обмотке w1 (т.е. кратковременно выполняет роль источника входного напряжения). Но так как ток в индуктивности мгновенно исчезнуть не может, то он почти мгновенно перезаряжает конденсатор С2 в полярности, противоположной показанной на рисунке 1 до напряжения $U_{\text{вых}'}$. При этом из-за появления на обмотке w2 напряжения с полярностью, противоположной показанной на рисунке 1, мгновенно открывается диод VD1. В результате обмотка w2 через диод VD1 присоединяется к конденсатору С1, т.е. к нагрузке.

Здесь важно предположить, что емкость конденсатора С1 достаточно велика, чтобы можно было пренебречь пульсациями напряжения на нем, следовательно, напряжение на нагрузке стабильно и неизменно.

Так как накопленная в w1 энергия практически никуда не потратилась (конечно мы учитываем, что в конденсаторе C2 теперь имеется накопленная энергия $\mathbf{W} = \mathbf{C2} \times \mathbf{V}_{\mathbf{Bыx}^2}/\mathbf{2}$), она с момента времени @ начинает тратиться на заряд конденсатора C1 и на питание нагрузки (см. рис. 2 д) в виде спадающего тока обмотки w2.

Нужно заметить, дорогой читатель, что «Пежо», т.е. данный ООП, не лыком шит. В нем даже в этих простейших процессах прячется интрига. Посмотрите внимательно на ри-

сунок 2. Естественно, пока ток через обмотку w2 будет существовать весь интервал от момента времени @ до 1 (т.е. до T), обмотка w2 будет присоединена фактически к постоянному выходному напряжению через открытый диод VD1. Именно это и формирует прямоугольную часть напряжения на обмотке w1 величиной U_{вых}. Но так как вольт-секундная площадь напряжения на индуктивности за период всегда равна нулю (см. рис. 2 в), то зная напряжение входного питания и время открытого состояния ключа VT1, читатель всегда элементарным образом вычислит выходное напряжение ООП. Кстати, совсем без сложных выводов, приведенных в учебниках: $U_{\text{вых}} = U_{\text{вх}} \times N \times @/(1 - @),$ где N = w2/w1 — коэффициент трансформации Т1.

Регулировочная характеристика (а данное выражение она и есть) ООП, в отличие от таковой для ОПП, нелинейна. Здесь приятный сюрприз в том, что это просто и легко выводится графически.

А вот для тока через конденсатор С1, учитывая, что ампер-секундная площадь за период для конденсатора всегда равна нулю (см. рис. 2 е), легко увидеть, что если вершина импульса тока будет иметь достаточно крутой скос на интервале от @ до 1 (Т), то в конце этого интервала ток, отдаваемый конденсатором С1 (отрицательные значения тока), обязательно будет не прямоугольной формы, как это часто рисуют в учебниках, а с характерным пологим спадающим участком. Эти два интересных момента-сюрприза автор показал на рисунках 3 и 4.

Регулировочная характеристика ООП (см. рис. 3) кроме того, что она нелинейна, еще говорит и о том, что в ООП такие же изменения @, как и в ОПП, приводят к большим изменениям выходного напряжения. Т.е. ООП регулируется в более широких пределах. На практике используется зона @ от 0 до 0,7 (максимум). А вот часть диаграмм рисунка 2, приведенная на рисунке 4, наглядно выявляет упомянутый спадающий участок тока через конденсатор С1.

Режим, когда ток обмотки w2 за время от @ до 1 (Т) не успевает спадать до нуля, является режимом неразрывного тока. Естественно, может существовать и режим разрывного тока (см. рис. 5). Здесь есть интересная особенность — ток вторичной обмотки после некоторого времени от момента @ становится равным

нулю — то есть вся накопленная в трансформаторе Т1 энергия за время открытого состояния силового транзистора VT1 переходит в выходную емкость С1 и нагрузку. В результате напряжение на обмотке w2 в этот момент могло бы стать нулевым (если в индуктивности нет изменения тока — нет и напряжения), однако мы забыли о емкости С2.

Накопленная в ней энергия $\mathbf{W} = \mathbf{C2} \times \mathbf{U}_{\text{вых}^2}/\mathbf{2}$ с этого момента времени вызывает колебательный процесс (см. рис. 5 б и в), причем свободный, так как w1 свободна — силовой транзистор VT1 выключен, и w2 свободна — диод VD1 закрыт. На самом деле в нашей схеме все-таки есть небольшие потери в C2, которые делают упомянутый колебательный процесс затухающим.

Что характерно для режима разрывных токов? Легко заметить, что принципиально изменилась вольт-секундная площадь на интервале от (0) до (1). Так как рабочая часть импульса на этом интервале уменьшилась, трансформатор (1) компенсирует вольт-секундную площадь увеличением напряжения (1) вольт-секундную площадь импульса за время от (1) до (0) мы оставим прежнюю, как в режиме с неразрывными токами. То есть ООП в режиме разрывных токов начинает завышать выходное напряжение!

Видите, как много тонкостей возникает в работе даже идеальной схемы ООП, в этом, казалось бы, простеньком «Пежо»! Здесь вам и необходимость допущения потерь в изначально безпотерьной схеме и достаточно интересный дополнительный режим при неразрывных токах на интервале от @ до 1 (Т).

Кто же дирижирует всеми этими несуразностями, есть ли здесь своеобразный «властелин колец», такой как іо в ОПП? Да — это индуктивность обмоток трансформатора (достаточно оперировать значением одной индуктивности, например, L1 первичной обмотки w1, так как другие жестко с ней связаны через коэффициенты трансформации. Например, для обмотки w2: $\mathbf{L2} = \mathbf{L1} \times \mathbf{N}^2$).

Действительно, как мы показали, многие процессы в ООП меняют свое качество в зависимости от скорости нарастания и спадания рабочих токов в обмотках Т1. Попробуем вывести соотношение для граничного режима по току нагрузки (граничный он потому, что разделяет режим неразрывных токов и режим разрыв-

ных токов в обмотках трансформатора Т1).

Перед доказательством отметим две особенности. Первая заключается в том, что ток нагрузки есть среднее значение тока обмотки w2. Действительно, ток нагрузки — это постоянный ток. Через конденсатор постоянный ток протекать не может, а единственным источником энергии именно для постоянного тока на выходе ООП является обмотка w2. Так что достаточно мысленно взять площадь диаграммы тока w2 (см. рис. 2 д) и разделить ее на период T, чтобы получить ток нагрузки I_{вых}.

Вторая важная особенность ООП заключается в том, что скорость изменения (спадания) тока обмотки w2 при постоянном выходном напряжении и постоянной индуктивности L2 неизменна: $di/dt = -U_{\text{вых}}/L2$. Пытливый читатель легко это выведет из формулы для индуктивности. Поэтому при заданной L1, а следовательно и $L2 = L1 \times N^2$, можно представлять, как мы уменьшаем ток нагрузки $I_{\text{вых}}$, а диаграмма тока обмотки w2 при этом, не меняя наклона скоса вершины импульса тока, уменьшается по высоте, пока не коснется крайней правой точкой скоса вершины импульса на оси ординат.

В этом случае и наступит граничный режим, разделяющий режим неразрывных и разрывных токов. Тогда

$$\begin{split} &\Delta i/(T~(1-@_{_{MHH}}))=U_{_{BMX}}/L2\\ &L1=U_{_{BMX}}\times T\times (1-@_{_{MHH}})/N^2\times \Delta i; \end{split}$$

но в то же время определение выходного тока как среднее значение от тока w2 дает выражение:

$$I_{\text{вых}} = \Delta i \times (1 - @_{\text{мин}})/2$$

 $\Delta i = = 2I_{\text{вых}}/(1 - @_{\text{мин}}).$

В результате получаем:

$$\begin{array}{c} L1 = U_{\text{\tiny BbIX}} \times T \times \\ \times (1 - @_{\text{\tiny MHH}})2/(2I_{\text{\tiny BbIX}} \times N^2). \end{array}$$

Из этого выражения видно, что чем меньше ток нагрузки, тем большую индуктивность трансформатора необходимо обеспечить. Вспомните, что похожий вывод мы сделали для индуктивности выходного дросселя ОПП.

Также как и для ОПП, для ООП при $I_{вых} = 0$ значение $L1 = \infty$, т.е. такой трансформатор придется мотать «очень и очень долго», и единственный выход для сохранения режима

Рис. 5. **Диаграммы токов и напряжений в схеме ООП для режима разрывных** токов

Рис. 6. **Регулировочные характеристики ООП**

неразрывных токов при малых токах нагрузки — дополнительная «подгрузка» $OO\Pi$.

Характеристика выходного напряжения, в зависимости от наличия режимов неразрывных и разрывных токов, которую автор приводил для описания ОПП («первый класс») качественно актуальна и для ООП (см. рис. 6). Такая характеристика показывает эффект «задирания» выходного напряжения при уменьшении тока нагрузки из-за режима разрывного тока L1 трансформатора Т1. Но, как уже отмечалось выше, режим разрывных токов в ООП может быть весьма полезен при построении высоковольтных преобразователей.

Наиболее сложное в ООП — реализация трансформатора. В сущности это многообмоточный дроссель.

Действительно, на интервале от 0 до @ ток в обмотке w1 протекает от

ее начала к концу, формируя положительную напряженность магнитного поля магнитопровода трансформатора Т1, а на интервале от @ до 1 (Т) ток обмотки w2 также протекает от ее начала к концу и знак напряженности магнитного поля в магнитопроводе не меняется.

Таким образом, магнитопровод трансформатора Т1 (теперь уже — дросселя) находится под действием однонаправленного магнитного поля и постоянно намагничен. Известно, что в таком случае применяют специальные сердечники с немагнитным зазором, например ферритовые сердечники из двух половинок с за-

зором в виде немагнитной прокладки. Обычно именно этим зазором (после выбора сердечника) и формируется необходимая индуктивность обмоток Т1.

Также широко используются магнитопроводы из прессованных материалов, например из МО-пермаллоя. Такой сердечник — это крупинки пермаллоя, спрессованные в магнитопровод при помощи немагнитного связующего вещества. В результате наличия множества микрозазоров образуется равномерно распределенный зазор.

В данной части нашего урока полезно обратить внимание читателя на положительную роль емкости С2, которую она проявляет в режиме разрывных токов. При разряде емкости C2 — формировании свободного колебательного процесса — ток разряда емкости C2 протекает в направлении от конца обмотки w1 к ее началу. Это приводит к эффекту определенного размагничивания магнитопровода трансформатора T1.

Здесь автор предполагает, что к этому моменту читатели безусловно устали, котя и являются уже третьеклассниками. Поэтому другие интересные свойства ООП — в следующем рассказе-«классе».

Далее — рекламная пауза, посвященная любимой фирме.

I События рынка

>> FeRAM становится достойным конкурентом флэш-памяти

Компании Toshiba и Infineon "роют могилу" технологии flash-памяти, чипы которой используются в современных мобильных телефонах, карманных компьютерах, цифровых фотоаппаратах и пр. "Могильщиком" обещает стать память типа FeRAM. FeRAM, так же как и flash является энергонезависимой памятью, но отличается от последней более высокой плотностью и скоростью записи информации. При одинаковом размере чипов flash— и FeRAM—памяти, на последний можно записать вдвое больше данных. Время доступа к данным, записанным на карте flash—памяти, составляет порядка 200 мс, а у разработанного Toshiba и

Infineon чипа FeRAM-памяти время доступа составляет 50 нс. Кроме того, энергопотребление FeRAM-памяти ниже, чем у flash.

FeRAM-память работает, используя свойства ферроэлектрических кристаллов. Если к ферроэлектрическому кристаллу приложить внешнее электрическое поле, то центральный атом в кристалле сдвинется в направлении этого поля. При отключении электрического поля смещенный атом останется на месте. До сих пор технология FeRAM не могла тягаться с картами flash-памяти по причине того, что чипы FeRAM обладали довольно малой емкостью. Однако Toshiba и Infineou удалось создать чип емкостью 32 Мбит, который уже вполне пригоден для установки в мобильные телефоны и карманные компьютеры.

Toshiba Corp. http://www.toshiba.co.jp Источник: Россия–Он–Лайн

DC/DC МОДУЛИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Основа для построения высокоэффективной системы распределенного электропитания. Для потребителей, имеющих в аппаратуре входной выпрямитель сети и входной фильтр-сетевой конденсатор.

Самый экономичный путь реализации мощности до 120 Вт в малых габаритах

Входное напряжение DC 75...150, 175...350 В Габариты от 58х40х10мм до 110х84х13 мм Рабочая температура корпуса -60...+85С Энергетическая плотность до 1000 Вт/дм³

Группа компаний Александер Электрик www.aeps.ru (095) 181-0522 alecsan@online.ru www.aeps.ru (0732) 76-3390 alexdon@vmail.ru

 Официальные дистрибьюторы

 Компэл

 (095) 9299356 compel@compel.ru

 ПетроИнТрейд

 (812) 3246611 semicond@pit.spb.ru