

Tranformasi Geometri

A. PENDAHULUAN

Transformasi geometri adalah proses pemindahan atau pembentukan hasil atau bayangan dari suatu titik atau kurva.

B. JENIS-JENIS TRANSFORMASI GEOMETRI

▶ Jenis-jenis transformasi geometri terdiri dari translasi (pergeseran), transformasi bersesuaian matriks, refleksi (pencerminan), rotasi (perputaran), dan dilatasi (perkalian).

Jenis	Keterangan	Persamaan	Matriks		Hasil Bayangan
Translasi (T)	guii	. Cisamaan	i iai	4.1.9	a.s.c bayangan
	h sumbu x sejauh a dan	(x'\		a \	x' = a + x
searah sumbu y sejauh b.		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} + \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	$\binom{a}{b}$		y' = b + x
	rsesuaian matriks (M)				
transformasi oleh	matriks berordo 2 x 2.	$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(a c	$\begin{pmatrix} \mathbf{d} \end{pmatrix}$	x' = ax + by y' = cx + dy
Refleksi					
a. Sumbu x		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(1 0) (0 -1)	0)	x' = x
(y = 0)		$(\mathbf{y}') = (0 - 1)(\mathbf{y})$			y' = -y
b. Garis y = b		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \text{-} \mathbf{b} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \text{-} \mathbf{b} \end{pmatrix}$		-1)	x' = x $y' = 2b - y$
c. Sumbu y		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(-1 0 0 1		x' = -x
(x=0)		(y') (0 1) (y)		0)	y' = y
d. Garis x = a		$\begin{pmatrix} \mathbf{x'} - \mathbf{a} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \mathbf{a} \\ \mathbf{y} \end{pmatrix}$	0	1 /	x' = 2a - x $y' = y$
e. Garis y = x	pencerminan dengan cermin berupa suatu sumbu, garis atau titik.	$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(°0)	1 0	x' = y y' = x
f. Garis y = -x		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(°-1	-1 0	x' = -y y' = -x
g. Titik O (0,0)		$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(-1 ₀	0 -1)	x' = -x $y' = -y$
h. Titik P (a,b)		$\begin{pmatrix} \mathbf{x'} - \mathbf{a} \\ \mathbf{y'} - \mathbf{b} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} - \mathbf{a} \\ \mathbf{y} - \mathbf{b} \end{pmatrix}$			x' = 2a - x $y' = 2b - y$
i. Garis y = mx		$\binom{x'}{y'} = \frac{1}{1+m^2} \cdot \binom{1-m^2}{2m} \cdot \frac{2m}{-(1-m^2)} \binom{x}{y}$	$\begin{pmatrix} \frac{1-m^2}{1+m^2} \\ \frac{2m}{1+m^2} \end{pmatrix}$	$ \frac{2m}{1+m^2} \\ \frac{-(1-m^2)}{1+m^2} $	$x' = \frac{x + 2my - m^2x}{1 + m^2}$ $y' = \frac{-y + 2mx + m^2y}{1 + m^2}$
j. Garis		$(X')_{-1}(1-m^2)$ 2m (X)			
y = mx + n		$\binom{x'}{y'-n} = \frac{1}{1+m^2} \cdot \binom{1-m^2}{2m} \cdot \binom{2m}{-(1-m^2)} \binom{x}{y-n}$,	
Rotasi (R)					
a. Pusat O(0,0) sejauh α	perputaran terhadap suatu pusat dengan	$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	(cosα sinα	$-\sin\alpha$	$x' = x.\cos\alpha - y.\sin y' = x.\sin\alpha + y.\cos x'$
b. Pusat P(a,b)	sudut tertentu.	(-1 -)			, , , , , ,
sejauh α	-α jika searah jarum jam,+α jika berlawanan.	$\begin{pmatrix} \mathbf{x'} - \mathbf{a} \\ \mathbf{y'} - \mathbf{b} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \mathbf{x} - \mathbf{a} \\ \mathbf{y} - \mathbf{b} \end{pmatrix}$			
Dilatasi (D)					
a. Pusat O(0,0), faktor skala k	perkalian dari suatu pusat dengan faktor	$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{k} & 0 \\ 0 & \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$		0 k	x' = kx y' = ky
b. Pusat P(a,b), faktor skala k	skala k.	$\begin{pmatrix} \mathbf{x'} - \mathbf{a} \\ \mathbf{y'} - \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{k} & 0 \\ 0 & \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{x} - \mathbf{a} \\ \mathbf{y} - \mathbf{b} \end{pmatrix}$	(k 0		x' = k(x - a) + a y' = k(y - b) + b

C. BAYANGAN TITIK, KURVA DAN BANGUN DATAR

Bayangan titik dapat ditentukan menggunakan persamaan-persamaan transformasi.

Contoh 1:

Tentukan bayangan titik B(2, -1) oleh transformasi:

$$x' = 2 + 4 = 6$$

$$y' = -1 + 5 = 4$$

b. Transformasi bersesuaian matriks $\begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix}$

$$x' = (2).2 + (0).(-1) = 4$$

$$B'(4, -7)$$

$$y' = (-1).2 + (5).(-1) = -7$$

c. Refleksi terhadap sumbu x

$$x' = 2$$

$$y' = -(-1) = 1$$

d. Refleksi terhadap sumbu y

$$x' = -2$$

$$B'(-2, -1)$$

$$y' = -1$$

e. Refleksi terhadap titik P (4,5)

$$x' = 2(4) - 2 = 6$$

$$y' = 2(5) - (-1) = 11$$

f. Refleksi terhadap garis y = 3x

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{1 + (3)^2} \cdot \begin{pmatrix} 1 - (3)^2 & 2.3 \\ 2.3 & -(1 - (3)^2) \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} -8 & 6 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$x' = \frac{(-8).2 + 6.(-1)}{10} = -2.2$$
 $B'(-2.2, 0.4)$

$$y' = \frac{(6).2 + 8.(-1)}{10} = 0.4$$

g. Refleksi terhadap garis y = 3x + 1

$$\begin{pmatrix} x' \\ y'-1 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -8 & 6 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

$$x' = \frac{(-8).2 + 6.(-2)}{10} = -2.8$$

$$y' - 1 = \frac{(6).2 + 8.(-2)}{10} = -0.4 + 1 = 0.6$$

B'(-2,8,0,6)

Contoh 2:

Tentukan bayangan titik C(2, -4) yang diputar 30° searah jarum terhadap titik O.

Jawab:

$$x' = 2.\cos(-30) - (-4).\sin(-30) = 2.\frac{1}{2}\sqrt{3} - 4.\frac{1}{2} = \sqrt{3} - 2$$

 $y' = 2.\sin(-30) + (-4).\cos(-30) = -2.\frac{1}{2} - 4.\frac{1}{2}\sqrt{3} = -1 - 2\sqrt{3}$

$C'(\sqrt{3}-2,-1-2\sqrt{3})$

Contoh 3:

Tentukan titik Q jika Q'(8, -2) terjadi karena dilatasi pusat R(2,-1) dan faktor skala 2.

Jawab:

Gunakan invers matriks,

$$\begin{pmatrix} 8 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x-(2) \\ y-(-1) \end{pmatrix}$$

$$\begin{pmatrix} x-2 \\ y+1 \end{pmatrix} = \frac{1}{2(2) - 0(0)} \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 8 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} x-2 \\ y+1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$x - 2 = 4$$

$$x = 6$$

$$Q(6, -2)$$

$$y + 1 = -1$$

Bayangan kurva dapat ditentukan dengan memasukkan nilai x' dan y' ke dalam persamaan kurva y = f(x) sehingga menjadi y' = f(x').

Translasi

$$\binom{x'}{y'} = \binom{a}{b} + \binom{x}{y}$$

$$\binom{\mathbf{x}}{\mathbf{y}} = \binom{\mathbf{x'}}{\mathbf{y'}} - \binom{\mathbf{a}}{\mathbf{b}}$$

Transformasi geometri selain translasi

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\binom{x}{y} = \frac{1}{ad-bc} \binom{d}{-c} - \frac{b}{a} \binom{x'}{y'}$$

Persamaan bayangan kurva tidak perlu diberi tanda aksen pada x dan y nya.

Contoh 1:

Tentukan y = f(x') dari parabola y = $x^2 - 2x + 3$ oleh refleksi terhadap garis x = 2!

Jawab:

$$x' = 2(2) - x$$
, sehingga $x = 4 - x'$

$$y' = y$$
, sehingga $y = y'$

$$(y') = (4 - x')^2 - 2(4 - x') + 3$$

$$y' = 16 - 8x' + x'^2 - 8 + 2x' + 3$$
 (hilangkan aksen)

$$y = x^2 - 6x + 11$$

Contoh 2:

Tentukan bayangan dari garis 2x + 4y - 3 = 0 oleh transformasi yang bersesuaian dengan $\begin{pmatrix} 1 & -4 \\ -1 & 6 \end{pmatrix}$!

Jawab:

$$\binom{x}{y} = \frac{1}{(1)(6) - (-4)(-1)} \cdot \binom{6}{1} \cdot \binom{4}{1} \binom{x'}{y'} = \frac{1}{2} \cdot \binom{6}{1} \cdot \binom{4}{1} \binom{x'}{y'}$$

$$x = 3x' + 2y'$$

$$y = \frac{1}{2}x' + \frac{1}{2}y'$$

$$2(3x' + 2y') + 4(\frac{1}{2}x' + \frac{1}{2}y') - 3 = 0$$

$$6x' + 4y' + 2x' + 2y' - 3 = 0$$
 (hilangkan aksen)

$$8x + 6y - 3 = 0$$

Contoh 3:

Tentukan bayangan persamaan $4x^2 + 4y^2 - 3 = 0$ oleh dilatasi dengan pusat X(1,2) dan faktor skala 2!

$$x' = 2(x - 1) + 1$$
 $y' = 2(y - 2) + 2$
 $x' = 2x - 2 + 1$ $y' = 2y - 4 + 2$
 $x = \frac{x' + 1}{2}$ $y = \frac{y' + 2}{2}$

$$4(\frac{x'+1}{2})^2 + 4(\frac{y'+2}{2})^2 - 3 = 0$$

$$x'^2 + 2x' + 1 + y'^2 + 4y' + 4 - 3 = 0$$
 (hilangkan aksen)
 $x^2 + y^2 + 2x + 4y + 2 = 0$

- Bayangan bangun datar dapat ditentukan dengan mentransformasikan titik-titiknya menjadi bayangannya, sehingga terbentuk bangun bayangan.
- Luas bangun datar bayangan berubah jika mengalami dilatasi dan transformasi bersesuaian matriks, namun tetap sebangun.
- Luas bangun datar bayangan dapat ditentukan: Dilatasi

$$L' = k^2 + L$$
 k = faktor skala

Transformasi bersesuaian matriks

|M| = determinan matriks bersesuaian

D. KOMPOSISI TRANSFORMASI GEOMETRI

■ Komposisi transformasi (o) adalah kejadian dimana suatu titik atau kurva P mengalami transformasi A sehingga menghasilkan P', dan dilanjutkan oleh transformasi B sehingga menghasilkan P".

- Penulisan komposisi transformasi:
 - **B**•**A**, dibaca transformasi A dilanjutkan transformasi B.
- Bayangan akhir dicari dengan mentransformasikan titik atau kurva secara bertahap, atau dengan komposisi transformasi istimewa.
- Nomposisi transformasi istimewa:
 - 1) Translasi (T₂ o T₁)

Matriks bersesuaian untuk komposisi translasi 1 dilanjutkan translasi 2:

$$T_2 \circ T_1 = {c \choose d} + {a \choose b} = {c+a \choose d+b}$$

2) Transformasi (M₂ • M₁)

Matriks bersesuaian untuk komposisi transformasi bersesuaian matriks 1 dilanjutkan transformasi bersesuaian matriks 2:

$$M_2 \circ M_1 = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

3) **Refleksi** (Rf₂ ∘ Rf₁)

Komposisi refleksi	Hasil bayangan		
Terhadap garis x = a dilanjutkan garis x = b	x' = 2(b - a) + x $y' = y$		
Terhadap garis y = a dilanjutkan garis y = b	x' = x y' = 2(b - a) + y		
Terhadap garis yang tegak lurus	rotasi pada perpotongan garis sejauh 180°		
Terhadap garis yang berpotongan $(m_1 = tan\alpha, m_2 = tan\beta)$	rotasi pada perpotongan garis sejauh $2(\beta - \alpha)$		

4) **Rotasi** (R₂ • R₁)

Rotasi 1 pada pusat P sejauh α dilanjutkan rotasi 2 pada **pusat P** sejauh β adalah rotasi dengan pusat P sejauh $(\alpha + \beta)$.

Contoh:

Tentukan bayangan garis 10x - 5y + 3 = 0 oleh transformasi yang bersesuaian dengan $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ dilanjutkan $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$!

Jawab:

$$\begin{aligned} & \mathsf{M}_2 \ \mathsf{o} \ \mathsf{M}_1 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -4 & 1 \end{pmatrix} \\ & \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{(-3)(1) - (2)(-4)} \cdot \begin{pmatrix} -3 & 2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} \\ & \mathsf{x} = \frac{1}{5} \left(-3\mathsf{x}' + 2\mathsf{y}' \right) \\ & \mathsf{y} = \frac{1}{5} \left(-4\mathsf{x}' + \mathsf{y}' \right) \\ & \mathsf{10.} \left(\frac{1}{5} \left(-3\mathsf{x}' + 2\mathsf{y}' \right) \right) - \mathsf{5.} \left(\frac{1}{5} \left(-4\mathsf{x}' + \mathsf{y}' \right) \right) + 3 = 0 \\ & \mathsf{2} (-3\mathsf{x}' + 2\mathsf{y}') - (-4\mathsf{x}' + \mathsf{y}') + 3 = 0 \\ & \mathsf{-6}\mathsf{x}' + 4\mathsf{y}' + 4\mathsf{x}' - \mathsf{y}' + 3 = 0 \ \text{(hilangkan aksen)} \\ & \mathsf{3} \mathsf{y} - 2\mathsf{x} + 3 = 0 \end{aligned}$$