Cuestionario PCA

Mateo Valencia

Abril 2024

1 Diga si las siguientes enunciados son verdaderos o falsos

(a) La i-esima componente principal se toma como la dirección que es ortogonal al (i-1)-esimo componente principal y maximiza la variabilidad restante.

Respuesta: Es verdadero, ya que los valores de la varianza están acomodados por la Cámara de Weyl y esto asegura la maximización de la variabilidad restante. Asimismo, la i-ésima componentee es ortogonal a todas las componentes anteriores.

(b) Distintos componentes principales estan linealmente no correlacionadas.

Respuesta: Es verdadero, por la misma construcción del PCA ya que es una combinación lineal. Además esto es equivalente a que los eigenvectores sean ortogonales y al ser una representación de las varianzas se presentan no correlacionadas.

(c) La dimensión de los datos originales es siempre mayor que la dimensión de los datos transformados por un PCA.

Respuesta: Es verdadero, ya que este es el objetivo principal del PCA dado por el problema de Hotelling "Trabajar los datos reduciendo lo más posible su dimensión" y el problema de Hotelling Fisher "Aplicar una transformación ortogonal a los datos de tal manera que la pérdida de información sea controlable y pueda medirse".

2 Suponga que se tiene la siguiente matriz de covarianza XX^T :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Calcula la primer componente principal.

3 Suponga que se tiene la siguiente tabla:

X1	X2
-2	2
2	-2
	X1 -2 2

Tenemos los siguientes datos:

- La primer componente (loading) del eigenvector que resuelve el problema de optimización del PCA para X1 es 07071.
- La primer componente (loading) del eigenvector que resuelve el problema de optimización del PCA para X2 es negativa.

Calcula Xb1

4 Explica con todo detalle, la siguiente figura:

2

Sea (XX1X2) un vector gaussiano N(0I) y sean R 0. Defnase, Y1 = 05X +2X1 Sea Y = (Y1 Y2)T. Y2 = 05X+2X2 (1) Explica, con todo detalle, que Y tiene una distribucion gaussiana con parametros que deberas en contrar. Calcula los eigenvalores de la matriz de covarianza de Y . (2) Calcula, en funcion de Y1 y Y2, y luego en funcion de las componentes de X, las componentes principales 1 y 2 asociadas a Y. Muestra ademas que Var(i) = i y Cov(12) = 0. (3) Calcula ij y veri ca que 2 i1 + 2 i2 = 1 i = 12