Project Goals

Develop site suitability index for the development of affordable housing in Chicago by creating a raster layer combining a number of factors informed by a literture review:

- socioeconomic characteristics: ratio of median rent to median income (block group level) to measure the need for affordable housing in an area
- spatial characteristics: distance from CPS elementary schools, grocery stores, train stops, health clinics, and parks to measure the quality of access to necessities
- jusisdictional characteristics: buildable land, zoning, vacant land to measure jursdictional feasibility of construction
- economic characteristics: median assessed property value, TIF zones, and enterprise zones to measure economic feasibility from a developer's perspective

1. Sourcing Data

- socioeconomic characteristics
 - median after tax income
 - source: ACS 5 Year Estimates, table B19013
 - ratio of median rent to median income
 - source: ACS 5 Year Estimates, table B25071

spatial characteristics

- CPS elementary schools
 - source: Chicago Data Portal
- grocery stores
 - source: Chicago Data Portal
- train stops
 - source: Chicago Data Portal
- health clinics
- source: Chicago Data Portal
- parks
 - source: Chicago Data Portal

jusisdictional characteristics

- buildable land
 - source: CMAP Land Use Inventory
- zoning
 - source: Chicago Data Portal
- vacant land
 - source: CMAP Land Use Inventory

economic characteristics

- TIF boundaries
 - source: Chicago Data Portal
- Enterprise Zones
- source: Chicago Data Portal
- assessed property value
 - source: Cook County Assessor's Office

2. Preparing Data

- Project all data to NAD 1983 StatePlane Illinois East FIPS 1201 Feet
- For all Census data:
 - prepare tables in Excel (clean up GEOID for joining, remove secondary headers, rename columns as needed)
- Cook County Assessor's dataset may be too large to tidy in Excel and will be prepared for use in GIS in R
- For datasets that expand beyond Chicago:
 - SBL features with centers in the City of Chicago boundary
- Data > export > save new features in geodatabase

Project 3 Flow Chart

Bailey Foster, Reis O'Donnell, Elizabeth Miller UPP462 11/27/2023

3. ModelBuilder

- Amenities (elementary schools, grocery stores, train stops, health clinics, and parks) will need to be buffered because we want to prioritize building in places with a high level of ameni-
- **Create model in ModelBuilder to output rasters where values** within 0.5 miles of an amenity = 1 and values beyond = 0
 - Euclidean Distance, cell size = 90 x 90 ft
 - Reclassify
 - o 0 to 2640 ft = 1
 - 2640 ft and beyond = 0
 - output will be 5 rasters for each amenity type
 - school_dist
 - grocery_dist
 - train_dist
 - clinic_dist
 - parks_dist

4. Census Data

- we want to look at both median income and the ratio of median rent to median income to avoid focusing too much on high-income areas that may also have high rates of being rent-burdened
- join median after tax income (med_income) and ratio of median rent to median income (medrent_medincome) to shapefile of block groups in Chicago
- create 2 new fields to get approximate values for 90 x 90 cell (see Areal Interpolation exercise. We are using the **spatial statistics** modules for guiding the creation of our rasters.)
 - medincome90x90
 - ((90 * 90) * !med_income!) / !Shape_area!
 - ratio90x90
 - ((90 * 90) * !medrent_medincome!) / !Shape_area!
- Feature to Raster
 - Input Features: Chicago_block_groups
 - Field: medincome90x90
 - Output raster: income_raster
 - Output cell size: 90 ft
- Feature to Raster
 - Input Features: Chicago_block_groups
 - Field: ratio90x90
 - Output raster: ratio_raster
 - Output cell size: 90 ft
 - Reclassify both rasters
 - ratio_raster
 - sort into severely rent-burdened (50% or more of income goes to rent), rent-burdened (30% - 50% of income goes toward rent), or not rent burdened (30% or less of income goes to rent). Severely rent-burdened will be given highest weight, and not rent-burdened will be given lower weight.
 - income_raster
 - sort into percentages of Chicago's overall median income (30% or less of AMI, 30 % - 50% of AMI, 50% -80% of AMI, 80% - 100% of AMI, 100% - 150% AMI, 150% or greater AMI). 30% or less of AMI will be given highest weight, and 150% or greater AMI will be given lower weight.

5. Jurisdictional Characteristics & Funding Sources

- buildable land, zoning, vacant land, TIF boundaries, and Enterprise zones will all use a binary weighting schema, e.g. if a place is zoned to allow housing, it will receive a 1, but if not, it will receive a 0. processing extent will be set to the City of Chicago boundary.
- buildable land
 - Feature to Raster
 - Input Features: cmap_land_use
 - Field: land use code
 - Output raster: land_use
 - Output cell size: 90 ft
 - Reclassify
 - water, roads, etc will be given a 0
 - other land use types will be given a 1
- vacant land
 - Reclassify land_use raster from above again
 - non-vacant land will be given a 0
 - vacant land will be given a 1
- TIF boundaries
 - Feature to Raster
 - Input Features: tif_boundaries
 - Field: name of tif zone
 - Output raster: tif_raster
 - Output cell size: 90 ft
 - Reclassify
 - outside of a TIF will be given a 0
 - within a TIF will be given a 1
- Enterprise Zones
 - Feature to Raster
 - Input Features: enterprise_zones
 - Field: name of zone
 - Output raster: enterprise_raster
 - Output cell size: 90 ft
 - Reclassify
 - outside of an enterprise zone will be given a 0
 - within an enterprise zone will be given a 1

6. Property value

- Clip Cook County parcel shapefile to City of Chicago in Python window before bringing into ArcGIS Pro
- Create new field, price_per_sqft = board_tot / Shape_Area
- right-click on new field, find median price per square foot
- New field, price_ratio = median price per sq foot / price_per_sq_ft
- Feature to Raster
 - input feature: parcels
 - field: price_ratio
- May Reclassify, or may just use ratio as weight since price of land is such a considerable factor in construction

7. Combining Rasters

Use Raster Calculator to add all rasters together into final raster of suitability index for the construction of affordable housing

Literature Reviewed

- GIS techniques learned in Poholka, Holli. 2011. Locating Optimal Affordable Housing Sites: A Determination of Potential Site Locations for New Affordable Housing Units Using Multi-Criteria Analysis: A Case Study of Kelowna, British Columbia. https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-9774.
 - Thomson, Curtis N, and Perry Hardin. 2000. "Remote Sensing/GIS Integration to Identify Potential Low-Income Housing Sites." Cities 17 (2): 97-109. https://doi.org/10.1016/S0264-2751(00)00005-6. Zhang, Zuo, Yanzhong Liu, Jiangfeng Li, and Biao Chen. 2009. "Application of GIS and Spatial Decision Support System for Affordable Housing." In 2009 4th International Conference on Computer Science & Education, 1110-15. https://doi.org/10.1109/ICCSE.2009.5228554.
- class this semester have been highlighted in bold italics