RV UNIVERSITY Go. change the world an initialize of RV EDUCATIONAL INSTITUTIONS	USN: School of Comp	uter Science and Engineering B.Tech (Hons.) CIE-1			
	Academic Year $2024 - 2025$				
Course: Linear Algebra	Course Code: CS1807	Semester: II			
Date: 13 March 2025	Duration: 75 Minutes	Max Marks: 15 Marks			

Instructions:

• All questions are compulsory.

• Do not answer any part of the answers in the question paper.

• Do not engage in any unfair practices.

• Non-programmable calculators are allowed.

S.No	Question	Marks	Level	CO		
1	Determine the balanced chemical equation for	3	L3	CO 1		
	$C_3H_8 + O_2 \to CO_2 + H_2O$					
	by using Gauss-Jordan elimination method.					
2	Your class faculty is explaining a problem in a linear algebra session and presents the following 3×3 matrix: $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}.$ As a diligent and attentive student, assist your faculty in finding the inverse of matrix A using the Gauss-Jordan elimination method.	3	L3	CO 1		
	Continued on next page					

3	A structural engineering simulation requires solving the following system of equations to determine the forces acting on a joint section of a bridge	4	L3	CO 1
	5x - 2y + 3z = -1 $-3x + 9y + 2z = 2$ $2x - y + 7z = 6$			
	The engineer tells you to implement two iterations of the Gauss-Seidel method to approximate the solution to this system by considering the initial guess as $[x_1, x_2, x_3] = [0, 0, 0]$.			
4	Determine whether the vectors $(5, -2, 4), (2, -3, 5)$ and $(4, -5, 7)$ are linearly independent or dependent in \mathbb{R}^3 .	3	L3	CO 2
5	Determine whether W is a subspace of V , where $V = \mathbb{R}^3$ and $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid 2a - 5c = 11 \text{ and } a, b, c \in \mathbb{R} \right\}.$	2	L3	CO 2

	Course Outcomes				
CO1:	Apply Gaussian elimination, LU decomposition and others to solve systems of linear equations.				
CO2:	Compute the span, basis and dimension of matrix subspaces to solve related problems in computer science.				
CO3:	Compute eigenvalues and eigenvectors of a given matrix to solve real world problems.				
CO4:	Apply orthogonal projections, Gram-Schmidt processes, and Singular Value Decomposition to solve approximation problems.				

Marks Distribution									
L1 L2 L3 L4 L5 L6 CO1 CO2 CO3 CO4							CO4		
-	-	15	-	-	-	10	5	-	-

 \mathbf{End}

RV UNIVERSITY Go. change the world an initiative of RV EDUCATIONAL INSTITUTIONS	USN: School of Comp	uter Science and Engineering B.Tech (Hons.) CIE-1		
	Academic Year 2024 – 2025			
Course: Linear Algebra	Course Code: CS1807	Semester: II		
Date: 13 March 2025	Duration: 75 Minutes	Max Marks: 15 Marks		

Instructions:

• All questions are compulsory.

• Do not answer any part of the answers in the question paper.

• Do not engage in any unfair practices.

• Non-programmable calculators are allowed.

S.No	Question	Marks	Level	СО
1	Determine the balanced chemical equation for	3	L3	CO 1
	$Al + HCl \rightarrow AlCl_3 + H_2$			
	using Gauss-Jordan elimination method.			
2	Your class faculty is explaining a problem in a linear algebra session and presents the following 3×3 matrix: $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 2 \end{bmatrix}.$ As a diligent and attentive student, assist your faculty in finding the inverse of matrix A using the Gauss-Jordan elimination method.	3	L3	CO 1
		Continued	on next	page

3	A heat transfer analysis in a metal rod requires solving the following system of equations to determine the temperature distribution at three key points along its length	4	L3	CO 1
	4x - y + z = 3 $x + 5y - 2z = 3$ $2x - y + 4z = 7$			
	The analyst instructs you to perform two iterations of the Gauss Seidel method to approximate the solution to this system with an initial guess as $[x, y, z] = [0, 0, 0]$.			
4	Determine whether the vectors $(1, 1, 1), (1, 2, 3)$ and $(2, 3, 8)$ are linearly independent or dependent in \mathbb{R}^3 .	3	L3	CO 2
5	Determine whether W is a subspace of V , where $V = \mathbb{R}^3$ and $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid 3a + 4c = 7 \text{ and } a, b, c \in \mathbb{R} \right\}.$	2	L3	CO 2

	Course Outcomes				
CO1:	Apply Gaussian elimination, LU decomposition and others to solve systems of linear equations.				
CO2:	Compute the span, basis and dimension of matrix subspaces to solve related problems in computer science.				
CO3:	Compute eigenvalues and eigenvectors of a given matrix to solve real world problems.				
CO4:	Apply orthogonal projections, Gram-Schmidt processes, and Singular Value Decomposition to solve approximation problems.				

Marks Distribution									
L1 L2 L3 L4 L5 L6 CO1 CO2 CO3 CO4							CO4		
-	-	15	-	-	-	10	5	-	-

 \mathbf{End}

Instructions:

• All questions are compulsory.

• Do not answer any part of the answers in the question paper.

• Do not engage in any unfair practices.

• Non-programmable calculators are allowed.

S.No	Question	Marks	Level	CO
1	Determine the balanced chemical equation for	3	L3	CO 1
	$C_2H_6 + O_2 \to CO_2 + H_2O$			
	using Gauss-Jordan elimination method.			
2	Your class faculty is explaining a problem in a linear algebra session and presents the following 3×3 matrix:	3	L3	CO 1
	$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 1 & 0 \\ 4 & 6 & 1 \end{bmatrix}.$			
	As a diligent and attentive student, assist your faculty in finding the inverse of matrix A using the Gauss-Jordan elimination method.			
	C	ontinued	on next	page

3	A structural engineering simulation requires solving the following system of equations to determine the forces acting on a joint section of a bridge	4	L3	CO 1
	$12x_1 - 7x_2 + 3x_3 = 2$ $x_1 + 5x_2 + x_3 = -5$ $2x_1 + 7x_2 - 11x_3 = 6$			
	The engineer tells you to implement two iterations of the Gauss-Seidel method to approximate the solution to this system by considering the initial guess as $[x_1, x_2, x_3] = [0, 0, 0]$.			
4	Determine whether the vectors $(1, -1, 2), (2, 0, 1)$ and $(-1, 2, -1)$ are linearly independent or dependent in \mathbb{R}^3 .	3	L3	CO 2
5	Determine whether W is a subspace of V , where $V = \mathbb{R}^3$ and $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid c = a+b+1 \text{ and } a,b,c \in \mathbb{R} \right\}.$	2	L3	CO 2

Course Outcomes							
CO1:	Apply Gaussian elimination, LU decomposition and others to solve systems of linear equations.						
CO2:	Compute the span, basis and dimension of matrix subspaces to solve related problems in computer science.						
CO3:	Compute eigenvalues and eigenvectors of a given matrix to solve real world problems.						
CO4:	Apply orthogonal projections, Gram-Schmidt processes, and Singular Value Decomposition to solve approximation problems.						

Marks Distribution											
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4		
_	-	15	-	-	-	10	5	-	-		

 \mathbf{End}