Aula 1 - Introdução da disciplina, revisão de conceitos e histórico da área

Disciplina: Microprocessadores e Microcontroladores

Professor: Daniel Gueter

Disciplina: Microprocessadores e Microcontroladores

Assuntos a serem abordados:

- Histórico dos microprocessadores e microcontroladores
- Arquitetura e organização de um microprocessador
- Arquitetura do conjunto básico de instruções de microprocessadores
- Estudo particularizado de um microprocessador

- Arquitetura e organização de um microcontrolador
- Famílias de microcontroladores
- Programação de microcontroladores
- Interrupções e Timers
- Manipulação de entradas e saídas digitais
- Manipulação de saídas PWM

Disciplina: Microprocessadores e Microcontroladores

Bibliografias Básicas:

- GIMENEZ, S. P. Microcontroladores 8051: teoria do hardware e do software / aplicações em controle digital / laboratório e simulação. São Paulo: Pearson Education do Brasil, 2002.
- 2. VAHID, F. **Sistemas digitais: projeto, otimização e HDLs.** Porto Alegre: Bookmann, 2008.
- 3. AGRA, Andressa D.; BARBOZA, Fabrício F. M. **Segurança de sistemas da informação.** Porto Alegre: Sagah, 2018.

Metodologia e Avaliações

As aulas serão compostas por apresentações em Power Point, exercícios, vídeos, simulações e atividades.

Os critérios de avaliação e a sua respectiva composição na média final são:

Avaliação	Pontos na Média		
Prova física e presencial	6		
Prova virtual – AVA (?)	2		
Trabalho bimestral e atividades em sala	2		

Cronograma

08/05 – Aula 1 - Introdução da disciplina, revisão de conceitos e histórico da área

15/05 – Aula 2

22/05 – Aula 3

29/05 – Aula 4

05/06 – Aula 5

12/06 - Prova

19/06 – Feriado – Corpus Christi

26/06 – Exame

Revisão de conceitos

Sistema binário (Booleano) e operações lógicas

- Sistema em que todos os números, letras ou caracteres são representados por uma combinação de dois números: 0 e 1.
- Isso ocorre pois os sistemas digitais, como computadores, só entendem duas informações: Se tem energia, ou se não tem energia.
- Caso tenha energia, ele reconhece como 1. Caso n\u00e3o tenha energia, ele reconhece como 0.

Exemplo de sinal binário

Sistema binário (Booleano) e operações lógicas

- Existem maneiras de converter informações do sistema binário para outras bases, como a decimal.
 Entretanto, os sistemas digitais processam as informações de maneira binária, por meio das portas lógicas.
- Essas portas lógicas são compostas de componentes semicondutores (Ex: Diodos, transistores, MOSFETs), e realizam operações a partir dos códigos binários.

Decimal	Binário	Decimal	Binário	
0	0	11	1011	
1	1	12	1100	
2	10	13	1101	
3	11	14	1110	
4	100	15	1111	
5	101	16	10000	
6	110	17	10001	
7	111	18	10010	
8	1000	19	10011	
9	1001	20	10100	
10	1010	(444)		

Portas lógicas que realizam operações com 0 e 1

Sistema binário (Booleano) e operações lógicas

Porta lógica AND feita com transistores

- Juntando inúmeras portas lógicas, foram desenvolvidos uma série de circuitos lógicos, os quais são a base do processamento digital de informações (operações binárias).
- As partes básicas de microprocessadores e microcontroladores são feitas a partir da junção correta de circuitos lógicos a fim de executar uma determinada função.
- A seguir, faremos uma revisão dos principais circuitos lógicos que fazem parte de um microprocessador ou microcontrolador.

Antes de tudo, vamos relembrar duas definições importantes para o seguimento da disciplina:

- **Bit:** Abreviação do dígito binário (binary digit), que corresponde ao valor zero (O) lógico ou ao valor um (1) lógico. Zero lógico geralmente corresponde a zero volt (V) e um lógico, a 5 ou 3 volts (V).
- Byte: Informação composta por 8 bits.

Definição de bit e byte

Codificadores e Decodificadores

- Codificadores: Traduzem uma informação de outros códigos, como decimal ou hexadecimal, para binário.
- **Decodificadores:** Traduzem uma informação em código binário para outras bases, como decimal ou hexadecimal.

Circuito lógico de um codificador de decimal para binário

Multiplexadores (Mux) e Demultiplexadores (Demux)

- Multiplexadores: Juntam informações em paralelo, transformando em série (serial).
- **Demultiplexadores:** Separa informações em série (serial) em informações em paralelo.

Circuito lógico de um Mux e Demux

Flip-Flops

- Os Flip-Flops são circuitos lógicos capazes de armazenar uma informação de 1 bit, considerado a forma mais simples de uma memória digital.
- São a **base para outros circuitos lógicos**, como contadores, somadores, registradores e Unidades Lógicas Aritiméticas (ULAs).

Registradores

Conjunto de Flip-Flops capazes de armazenar informações representadas por mais de um bit. O
número de bits necessários é igual ao número de Flip-Flops que um registrador possui.

Registrador de 6 bits (Q0 a Q5)

Somadores e Subtratores

- Somadores: Somam bits e bytes, realizando operações lógicas e matemáticas.
- **Subtratores:** Subtraem bits e bytes, realizando operações lógicas e matemáticas.

Circuito lógico de somador de 2 bits, contendo 2 somadores de 1 bit

Contadores

 São circuitos responsáveis por implementar bits (contar) a partir de um clock (sinal periódico com certa frequência).

Contador assíncrono de 4 bits

Clock

- Todo microprocessador ou microcontrolador funciona com um clock.
- O clock é um sinal que sincroniza as instruções e operações de uma unidade de processamento.
 Quanto maior a frequência do clock, mais ciclos de processamento podem ser executados por segundo, sendo possível processar mais informações.

Aula 1 - Introdução da disciplina, revisão de conceitos e histórico da área

Microprocessadores e Microcontroladores

Microprocessadores e microcontroladores – O que são?

Microprocessador

- Também é denominado como unidade central de processamento (CPU).
- Fazendo analogia com o sistema de um ser humano, o microprocessador, ou CPU, de um microcomputador corresponde ao cérebro de um ser humano. Ele é responsável pela busca de um programa na memória e por sua execução.
- Fisicamente, é um circuito integrado (CI) constituído por **milhões de transistores que implementam uma variedade de circuitos**, como os vistos anteriormente (somadores, registradores, etc).
- Precisam de mais componentes para formar um microcomputador.

Microprocessadores e microcontroladores – O que são?

Microprocessadores

3091N3100

Aula 1 - Introdução da disciplina, revisão de conceitos e histórico da área

História dos microprocessadores e microcontroladores

- O primeiro microprocessador foi desenvolvido em 1971 pela Intel em parceria com a Nippon Calculating Machine Corporation para desenvolver uma nova calculadora.
- Ele era o microprocessador Intel 4004, que possuía uma central de processamento de 4 bits e era composto por ~ 2300 transistores.
- O Intel 4004 conseguia executar cerca de **60 mil** instruções por segundo.

- Em 1972, a Intel já desenvolveu o Intel 8008, o primeiro microprocessador de 8 bits, ou seja, que consegue processar 8 bits em paralelo por ciclo.
- Em 1974, a Intel desenvolveu o **primeiro microprocessador utilizado em um computador pessoal**, o Intel 8080.
- A partir deste ponto, os microprocessadores só se tornaram mais complexos, seguindo a Lei de
 Moore, que diz que o número de transistores em um chip de computador dobra aproximadamente
 a cada 2 anos, tornando os dispositivos mais rápidos, menores e baratos com o tempo.

História dos Microprocessadores – Lei de Moore

Gráfico com a Lei de Moore

História dos Microprocessadores – Lei de Moore

Evolução da arquitetura de microprocessadores

- A evolução dos microprocessadores geralmente acontece em três âmbitos:
 - Evolução no tamanho do processamento em paralelo: 4 8 16 32 e 64 bits.
 - Evolução no tamanho e número de transistores (Lei de Moore)
 - Evolução do clock (aumento da velocidade de processamento/frequência e consequentemente potência consumida)

- Além disso, a arquitetura pode evoluir utilizando do paralelismo de quatro formas:
 - Paralelismo Pipeline: Paralelismo no nível de instruções (Pentium)
 - Paralelismo Multicore: Paralelismo de núcleos no chip
 - Paralelismo de Multiprocessamento: Paralelismo entre duas CPUs dentro de um único sistema computacional.
 - Paralelismo de Multicomputadores: Computação descentralizada onde computadores completos operam em paralelo. Chamada de cluster e utilizada nos supercomputadores.

Nome	Data	Transistores	Microns	Velocidade do clock	Largura de dados	MIPS
8080	1974	6.000	6	2 MHz	8 bits	0,64
8888	1979	29.000	3	5 MHz	16 bits 8 bits	0,33
80286	1982	134.000	1,5	6 MHz	16 bits	1
80386	1985	275.000	1,5	16 MHz	32 bits	5
80486	1989	1.200.000	1	25 MHz	32 bits	20
Pentium	1993	3.100.000	8,0	60 MHz	32 bits 64 bits	100
Pentium II	1997	7.500.000	0,35	233 MHz	32 bits 64 bits	300

Nome	Data	Transistores	Microns	Velocidade do clock	Largura de dados	MIPS
Pentium III	1999	9.500.000	0,25	450 MHz	32 bits 64 bits	510
Pentium 4	2000	42.000.000	0,18	1,5 GHz	32 bits 64 bits	1,700
Pentium 4 "Prescott"	2004	125.000.000	0.09	3,6 GHz	32 bits 64 bits	7,000
Pent <mark>ium</mark> D	2005	230.000.000	90nm	2,8 GHz 3,2 GHz	32 bits	
Core2	2006	152.000.000	65nm	1,33 2,33 GHz	32 bits	26,000
Core 2 Duo	2007	820.000.000	45nm	3 GHz	64 bits	53,000
Core i7	2008	731.000.000	45nm	2,66 GHz 3,2 GHz	64 bits	76,000

Evolução dos Microprocessadores

Evolução dos Microprocessadores

