한국IT교육원

졸음운전 방지 예방을 위한 인공지능 기반 차량 내 전방주시 감지 여부

팀명 : 자율주행

팀원 : 조 수익, 김 덕열

01. 프로젝트 개요

02. 프로젝트 팀 구성 및 역할

03. 프로젝트 수행 절차 및 방법

04. 프로젝트 수행 결과

05. 참고 문헌

프로젝트 개요

- 프로젝트 주제 및 선정 배경
 - 졸음운전 방지 예방을 위한 전방 주시 감지 여부
 - 졸음운전 경고 장치인 'DSM(Driver Status Monitoring) 시스템 개발
- 프로젝트 개발 환경
 - OpenCV : V 4.5.3
 - Python : V 3.8.10
 - Keras : V 2.4.3
 - Tensorflow : V 2.5.0

- 졸음 운전자 상태 이미지 수집
- 수집한 이미지를 통한 학습
- 결과 도출 및 적용
- 기대 효과
 - 전방을 주시하는지 확인하여 사고예방 가능
 - 어두운 환경, 안경 착용, 마스크, 선글라스 등 DSM 인식률 향상

◎ 교 프로젝트 팀 구성 및 역할

팀원 별 역할 및 담당 업무

훈련생	역할	담당 업무
		▶ 알고리즘 개발 및 구현
조수익	팀장	▶ 데이터 전처리 및 최적화
		▶ PPT 제작
		▶ 졸음운전 예방 데이터 이미지 수집 및 분류(전방주시 / 비 전방주시)
김덕열	팀원	▶ PPT 제작
		▶ 발표

◎ 프로젝트 수행 절차 및 방법

45	구분	기간	활동	비고
	사전 기획	▶ 11/1(월)~11/1(월)	▶ 프로젝트 기획 및 주제 선정▶ 코드 구조 설계 (데이터셋, 알고리즘)	▶ 아이디어 선정
	데이터 수집	▶ 11/2(화)~11/2(화)	■ 필요 데이터 및 수집 절차 정의■ 데이터셋 확보	▶ Al-Hub 운전자 상태정보 이미지 수집
	코드 구현	▶ 11/3(个)~11/3(个)	▶ 데이터셋 전처리 ▶ 모델 학습	▶ 최적화, 오류 수정
	코드 함수화	▶ 11/4(목)~11/4(목)	▶ 인식률 개선 및 시연 ▶ ppt 제작	
	발표자료정리	▶ 11/5(금)~11/5(금)	▶ 최종 발표	▶ 발표
	총개발기간	▶ 11/1(월)~11/5(금)(총3주)	-	-

Flow Chart Algorithm

졸음운전 방지 예방을 위한 차량내 전방주시 감지 알고리즘

Flow Chart Algorithm

데이터 전처리

졸음운전 예방을 위한 운전자 상태 정보 영상 데이터 수집

전방 주시

비전방 주시

R00230Mg/M1,00,00,1 R00230Mg/M1,00,00,0 R00230Mg/M1,00,00 R00230Mg/M1,00,00

- ➤ Train_Data : 4,600장
 - Normal(전방 주시): 3,639장
 - Abnormal(비전방 주시): 961장
- > Image_size : 720 x 1280

(720 X 1280)

Image Resize (224 X 224) 데이터 증식 (Data Augmentation)

MboileNetV2 Train

MobileNetV2

MobileNetV2 Convolution block

(d) Mobilenet V2

• Architecture

Input	Operator	t	c	n	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 imes 32$	bottleneck	6	64	4	2
$14^2 \times 64$	bottleneck	6	96	3	1
$14^2 \times 96$	bottleneck	6	160	3	2
$7^2 imes 160$	bottleneck	6	320	1	1
$7^2 imes 320$	conv2d 1x1	-	1280	1	1
$7^{2} \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

MobileNetV2

- wide → narrow → wide 형태가 되어 가운데 narrow 형태가 bottleneck 구조 설계
- 처음에 들어오는 입력은 채널이 많은 wide한 형태이고 1x1 convolution을 이용하여 채널을 줄여 다음 layer에서 bottleneck을 설계
- Bottleneck에서는 3x3 convolution을 이용하여 convolution 연산을 하게 되고 다시 skip connection과 합쳐 지기 위하여 원래의 사이즈로 복원함
 - Relu 1 Relu

- 이 논문에서 제안된 inverted residual은 일반적은 residual block과 정반대로 움직임
- 처음 입력으로 그려진 점선 형태의 feature는 linear bottleneck 이다 (ReLU를 거치지 않음)
- 즉 narrow → wide → narrow 구조로 skip connectio을 합쳐짐
- 목적은 압축된 narrow layer를 skip connection으로 사용함으로써 메모리 사용량을 줄이기 위함이다

MobileNetV2(모델 최적화)

MobileNetV2 + User Layer Add

(d) Mobilenet V2

• Epoch : 100

• Accuracy: 93%

• Loss : 18%


```
Epoch 90/100
Epoch 91/100
        ====] - 167s 1s/step - loss: 0.1817 - accuracy: 0.9321 - val_loss: 0.1810 - val_accuracy: 0.9337
Epoch 92/100
Epoch 93/100
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 98/100
      :========] - 161s 1s/step - loss: 0.1845 - accuracy: 0.9307 - val_loss: 0.1837 - val_accuracy: 0.9348
115/115 [=========
Epoch 99/100
Epoch 100/100
```


Flow Chart Algorithm

ResNet SSD 모델

• SSD는 VGG19 네트워크를 Feature 추출기로 사용하는 Single Shot Detector이다. (Faster R-CNN의 CNN과 동일)

전방 주시: 93%

비 전방 주시 : 99%

참고문헌 및 참고 사이트

[1] AI Hub,「졸음운전 예방을 위한 운전자 상태 정보 영상」, 『개방데이터/안전』, https://aihub.or.kr/aidata/30744, 2021.11.02 검색

[2] 까먹으면 다시 보려고 정리하는 블로그, 「[논문 읽기] MobileNetV2(2018) 리뷰, MobileNetV2: Inverted Residuals and Linear Bottlenecks」, 『딥러닝 공부방』, https://deep-learning-study.tistory.com/541, 2021.11.04 검색