DSM Project 1

In [1]: impor

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

df = pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-wrangling/master/data/chp3/data-text.csv')
df.head(2)

Out[1]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Out[2]:

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG	PGTM	 WT09	WT07	WT01	WT06	WT05	W ⁻
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999	-9999	 -9999	-9999	-9999	-9999	-9999	-9!
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999	-9999	 -9999	-9999	-9999	-9999	-9999	-9!

2 rows × 21 columns

```
In [3]: # 1. Get the Metadata from the above files.
# Solution
df.info()
```

4656 non-null int64 WHO region 4656 non-null object World Bank income group 4656 non-null object Country 4656 non-null object 4656 non-null object Sex Display Value 4656 non-null int64 4656 non-null float64 Numeric 0 non-null float64 Low High 0 non-null float64 0 non-null float64 Comments

dtypes: float64(4), int64(2), object(6)

memory usage: 436.6+ KB

```
df1.info()
In [4]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 117208 entries, 0 to 117207
        Data columns (total 21 columns):
        STATION
                         117208 non-null object
        STATION NAME
                         117208 non-null object
        DATE
                         117208 non-null int64
                         117208 non-null int64
         PRCP
         SNWD
                         117208 non-null int64
                         117208 non-null int64
        SNOW
        TMAX
                         117208 non-null int64
                         117208 non-null int64
        TMIN
        WDFG
                         117208 non-null int64
         PGTM
                         117208 non-null int64
                         117208 non-null int64
        WSFG
                         117208 non-null int64
        WT09
        WT07
                         117208 non-null int64
                         117208 non-null int64
        WT01
        WT06
                         117208 non-null int64
        WT05
                         117208 non-null int64
        WT04
                         117208 non-null int64
                         117208 non-null int64
        WT16
                         117208 non-null int64
        WT08
        WT18
                         117208 non-null int64
        WT03
                         117208 non-null int64
        dtypes: int64(19), object(2)
        memory usage: 18.8+ MB
In [5]: #2. Get the row names from the above files.
         # Solution
        np.array(df.index)
Out[5]: array([
                               2, ..., 4653, 4654, 4655], dtype=int64)
In [6]: np.array(df1.index)
Out[6]: array([
                                     2, ..., 117205, 117206, 117207], dtype=int64)
                             1,
```

In [7]: # 3. Change the column name from any of the above file.
Solution
df_temp = df.rename(columns={'Indicator': 'Indicator_id'})
df_temp.head(2)

Out[7]:

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Out[8]:

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

In [9]: # 5. Change the names of multiple columns.
 df.rename(columns={'PUBLISH STATES': 'Publication Status','WHO region':'WHO Region'},inplace=True)
 df.head(2)

Out[9]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

Out[10]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1270	Life expectancy at birth (years)	Published	1990	Europe	High-income	Germany	Male	72	72.0	NaN	NaN	NaN
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Male	65	65.0	NaN	NaN	NaN
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Both sexes	68	68.0	NaN	NaN	NaN
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Male	15	15.0	NaN	NaN	NaN

In [11]: #7. Arrange multiple column values in ascending order.
 df.sort_values(['Indicator_id','Country','Year','WHO Region','Publication Status'])
 df[['Indicator_id','Country','Year','WHO Region','Publication Status']].head(3)

Out[11]:

	Indicator_id	Country	Year	WHO Region	Publication Status
0	Life expectancy at birth (years)	Andorra	1990	Europe	Published
1	Life expectancy at birth (years)	Andorra	2000	Europe	Published
2	Life expectancy at age 60 (years)	Andorra	2012	Europe	Published

In [12]: # 8. Make country as the first column of the dataframe.
df[['Country', 'Indicator_id', 'Publication Status', 'Year','WHO Region','World Bank income group','Sex','Display Value',

Out[12]:

	Country	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low	High	Comments
0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High-income	Both sexes	77	77.0	NaN	NaN	NaN
1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High-income	Both sexes	80	80.0	NaN	NaN	NaN
2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Female	28	28.0	NaN	NaN	NaN
3	Andorra	Life expectancy at age 60 (years)	Published	2000	Europe	High-income	Both sexes	23	23.0	NaN	NaN	NaN
4	United Arab Emirates	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High-income	Female	78	78.0	NaN	NaN	NaN

```
In [13]: #9. Get the column array using a variable
col = np.array(df['WHO Region'])
col
```

Out[13]: array(['Europe', 'Europe', '..., 'Africa', 'Africa', 'Africa'], dtype=object)

Out[14]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
11	Life expectancy at birth (years)	Published	2012	Europe	High-income	Austria	Female	83	83.0	NaN	NaN	NaN
24	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High-income	Brunei Darussalam	Female	21	21.0	NaN	NaN	NaN
37	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Cyprus	Female	26	26.0	NaN	NaN	NaN

```
In [15]: # 11. Get the subset rows excluding 5, 12, 23, and 56
    df_exclude = df.index.isin([3,5])
    df[~df_exclude].head()
```

Out[15]:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN
2	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Andorra	Female	28	28.0	NaN	NaN	NaN
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High-income	United Arab Emirates	Female	78	78.0	NaN	NaN	NaN
6	Life expectancy at age 60 (years)	Published	1990	Americas	High-income	Antigua and Barbuda	Male	17	17.0	NaN	NaN	NaN

```
In [16]: # Loading users csv file
    users = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/users.csv' )
    users.head()
```

Out[16]:

	UserID	User	Gender	Registered	Cancelled
0	1	Charles	male	2012-12-21	NaN
1	2	Pedro	male	2010-08-01	2010-08-08
2	3	Caroline	female	2012-10-23	2016-06-07
3	4	Brielle	female	2013-07-17	NaN
4	5	Benjamin	male	2010-11-25	NaN

In [17]: sessions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/sessions.csv')
 sessions.head()

Out[17]:

	SessionID	SessionDate	UserID
0	1	2010-01-05	2
1	2	2010-08-01	2
2	3	2010-11-25	2
3	4	2011-09-21	5
4	5	2011-10-19	4

In [18]: products = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/products.csv')
 products.head()

Out[18]:

	ProductID	Product	Price
0	1	А	14.16
1	2	В	33.04
2	3	С	10.65
3	4	D	10.02
4	5	Е	29.66

In [19]: | transactions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/transactions.csv') transactions

Out[19]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1
2	3	2011-06-16	3.0	3	1
3	4	2012-08-26	1.0	2	3
4	5	2013-06-06	2.0	4	1
5	6	2013-12-23	2.0	5	6
6	7	2013-12-30	3.0	4	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3
9	10	2016-05-08	3.0	4	4

In [37]: # 12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join)
pd.merge(transactions, users , on='UserID', how='left').fillna({'Registered':pd.NaT,'Cancelled':pd.NaT})

Out[37]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	1	2010-08-21	7.0	2	1	NaN	NaN	NaT	NaT
1	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
2	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2016-06-07
3	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	NaT
4	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2010-08-08
5	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2010-08-08
6	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaT	NaT
8	9	2015-04-24	7.0	4	3	NaN	NaN	NaT	NaT
9	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2016-06-07

In [22]: # 13. Which transactions have a UserID not in users?
mergedDF = transactions.merge(users,on=['UserID'])
transactions[(~transactions.UserID.isin(mergedDF.UserID))]

Out[22]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

In [38]: # 14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)
pd.merge(transactions, users, on='UserID').fillna({'Cancelled':pd.NaT})

Out[38]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	2	2011-05-26	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
1	3	2011-06-16	3.0	3	1	Caroline	female	2012-10-23	2016-06-07
2	7	2013-12-30	3.0	4	1	Caroline	female	2012-10-23	2016-06-07
3	10	2016-05-08	3.0	4	4	Caroline	female	2012-10-23	2016-06-07
4	4	2012-08-26	1.0	2	3	Charles	male	2012-12-21	NaT
5	5	2013-06-06	2.0	4	1	Pedro	male	2010-08-01	2010-08-08
6	6	2013-12-23	2.0	5	6	Pedro	male	2010-08-01	2010-08-08

In [39]: # 15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)
pd.merge(transactions, users, on='UserID', how='outer').fillna({'Registered':pd.NaT,'Cancelled':pd.NaT,'TransactionDate':

Out[39]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaT	NaT
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaT	NaT
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23	2016-06-07
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23	2016-06-07
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21	NaT
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01	2010-08-08
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01	2010-08-08
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaT	NaT
10	NaN	NaT	4.0	NaN	NaN	Brielle	female	2013-07-17	NaT
11	NaN	NaT	5.0	NaN	NaN	Benjamin	male	2010-11-25	NaT

In [40]: # 16. Determine which sessions occurred on the same day each user registered
pd.merge(users, sessions, right_on=['SessionDate','UserID'],left_on=['Registered','UserID'])

Out[40]:

	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate	
0	2	Pedro	male	2010-08-01	2010-08-08	2	2010-08-01	
1	4	Brielle	female	2013-07-17	NaN	9	2013-07-17	

In [44]: #17. Build a dataset with every possible (UserID, ProductID) pair (cross join)
users.assign(foo=1).merge(products.assign(foo=1)).drop('foo', 1)[['UserID', 'ProductID']]

Out[44]:

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3

	UserID	ProductID
23	5	4
24	5	5

In [45]: # 18. Determine how much quantity of each product was purchased by each user

df = users.assign(foo=1).merge(products.assign(foo=1)).drop('foo', 1)

df = pd.merge(df[['UserID','ProductID']] ,transactions, on=['UserID','ProductID'], how='left').fillna(0)

df[['UserID','ProductID','Quantity']]

Out[45]:

	UserID	ProductID	Quantity
0	1	1	0.0
1	1	2	3.0
2	1	3	0.0
3	1	4	0.0
4	1	5	0.0
5	2	1	0.0
6	2	2	0.0
7	2	3	0.0
8	2	4	1.0
9	2	5	6.0
10	3	1	0.0
11	3	2	0.0
12	3	3	1.0
13	3	4	1.0
14	3	4	1.0
15	3	4	4.0
16	3	5	0.0
17	4	1	0.0
18	4	2	0.0
19	4	3	0.0
20	4	4	0.0
21	4	5	0.0

	UserID	ProductID	Quantity
22	5	1	0.0
23	5	2	0.0
24	5	3	0.0
25	5	4	0.0
26	5	5	0.0

In [46]: # 19. For each user, get each possible pair of pair transactions (TransactionID1, TransacationID2)
pd.merge(transactions, transactions, on="UserID")

Out[46]:

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	TransactionDate_y	ProductID_y	Quantity_y
0	1	2010-08-21	7.0	2	1	1	2010-08-21	2	1
1	1	2010-08-21	7.0	2	1	9	2015-04-24	4	3
2	9	2015-04-24	7.0	4	3	1	2010-08-21	2	1
3	9	2015-04-24	7.0	4	3	9	2015-04-24	4	3
4	2	2011-05-26	3.0	4	1	2	2011-05-26	4	1
5	2	2011-05-26	3.0	4	1	3	2011-06-16	3	1
6	2	2011-05-26	3.0	4	1	7	2013-12-30	4	1
7	2	2011-05-26	3.0	4	1	10	2016-05-08	4	4
8	3	2011-06-16	3.0	3	1	2	2011-05-26	4	1
9	3	2011-06-16	3.0	3	1	3	2011-06-16	3	1
10	3	2011-06-16	3.0	3	1	7	2013-12-30	4	1
11	3	2011-06-16	3.0	3	1	10	2016-05-08	4	4
12	7	2013-12-30	3.0	4	1	2	2011-05-26	4	1
13	7	2013-12-30	3.0	4	1	3	2011-06-16	3	1
14	7	2013-12-30	3.0	4	1	7	2013-12-30	4	1
15	7	2013-12-30	3.0	4	1	10	2016-05-08	4	4
16	10	2016-05-08	3.0	4	4	2	2011-05-26	4	1
17	10	2016-05-08	3.0	4	4	3	2011-06-16	3	1
18	10	2016-05-08	3.0	4	4	7	2013-12-30	4	1
19	10	2016-05-08	3.0	4	4	10	2016-05-08	4	4
20	4	2012-08-26	1.0	2	3	4	2012-08-26	2	3
21	5	2013-06-06	2.0	4	1	5	2013-06-06	4	1
22	5	2013-06-06	2.0	4	1	6	2013-12-23	5	6

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	TransactionDate_y	ProductID_y	Quantity_y
23	6	2013-12-23	2.0	5	6	5	2013-06-06	4	1
24	6	2013-12-23	2.0	5	6	6	2013-12-23	5	6
25	8	2014-04-24	NaN	2	3	8	2014-04-24	2	3

In [48]: # 20. Join each user to his/her first occuring transaction in the transactions table
 users.merge(transactions.drop_duplicates('UserID'),how='left',on='UserID').fillna({'Cancelled':pd.NaT,'TransactionDate':p

Out[48]:

	UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID	Quantity
0	1	Charles	male	2012-12-21	NaT	4.0	2012-08-26	2.0	3.0
1	2	Pedro	male	2010-08-01	2010-08-08	5.0	2013-06-06	4.0	1.0
2	3	Caroline	female	2012-10-23	2016-06-07	2.0	2011-05-26	4.0	1.0
3	4	Brielle	female	2013-07-17	NaT	NaN	NaT	NaN	NaN
4	5	Benjamin	male	2010-11-25	NaT	NaN	NaT	NaN	NaN

```
In [49]: # 21. Test to see if we can drop columns
data = users.merge(transactions.drop_duplicates('UserID'),how='left',on='UserID')
my_columns = list(data.columns)
my_columns
```

```
In [50]: # set threshold to drop NAs
list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns)
```

Out[50]: ['UserID', 'User', 'Gender', 'Registered']

```
In [51]:
         missing info = list(data.columns[data.isnull().any()])
         missing info
Out[51]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
In [52]: for col in missing_info:
             num missing = data[data[col].isnull() == True].shape[0]
             print('number missing for column {}: {}'.format(col, num missing))
         number missing for column Cancelled: 3
         number missing for column TransactionID: 2
         number missing for column TransactionDate: 2
         number missing for column ProductID: 2
         number missing for column Quantity: 2
In [53]: for col in missing info:
             percent missing = data[data[col].isnull() == True].shape[0] / data.shape[0]
             print('percent missing for column {}: {}'.format( col,percent missing))
         percent missing for column Cancelled: 0.6
         percent missing for column TransactionID: 0.4
         percent missing for column TransactionDate: 0.4
         percent missing for column ProductID: 0.4
         percent missing for column Quantity: 0.4
```