1. Let function f be defined by the polynomial below:

$$f(x) = 2x^4 - 4x^3 - 9x^2 - 3x + 8$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	6	2	9
2	9	8	3
3	1	5	7
4	3	9	8
5	8	1	1
6	4	3	5
7	5	4	2
8	2	7	6
9	7	6	4

3. Evaluate g(3).

$$g(3) = 5$$

4. Evaluate $h^{-1}(2)$.

$$h^{-1}(2) = 7$$

5. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-9)?

If function h is odd, then

$$h(-9) = -4$$

6. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-1)?

If function f is even, then

$$f(-1) = 6$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + (-x)$$

 $p(-x) = x^3 - x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - x)$$
$$-p(-x) = -x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 4(x-5)$$

a. Evaluate f(21).

step 1: subtract 5 step 2: multiply by 4

$$f(21) = 4((21) - 5)$$
$$f(21) = 64$$

b. Evaluate $f^{-1}(68)$.

step 1: divide by 4 step 2: add 5

$$f^{-1}(x) = \frac{x}{4} + 5$$

$$f^{-1}(68) = \frac{(68)}{4} + 5$$

$$f^{-1}(68) = 22$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(8).

$$b(8) = 2$$

b. Evaluate $b^{-1}(4)$.

$$b^{-1}(4) = 5$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3	3	-3	3
-1	-6	6	6	-6
0	0	0	0	0
1	6	-6	-6	6
2	-3	3	-3	3

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.