质点运动学 (一)

一、选择题

一、选择题
1. 以下哪种情况不可以把研究对象看作质点 ()。
(A) 地球自转 (B) 地球绕太阳公转
(C) 平动的物体 (D) 物体的形状和线度对研究问题的性质影响很小。
2. 下面对质点的描述正确的是 ()。
①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观
粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有
大量质点的组合;⑤在自然界中,可以找到实际的质点。
$ \text{(A) } \ \ \textcircled{123} \qquad \qquad \text{(B) } \ \ \textcircled{245} \qquad \qquad \text{(C) } \ \ \textcircled{13} \qquad \qquad \text{(D) } \ \ \textcircled{1234} $
3. 质点作曲线运动,在时刻 t 质点的位矢为 \vec{r} , t 至(t + Δt)时间内的位移为 $\Delta \vec{r}$,路程为
Δs ,位矢大小的变化为 Δr (或称 $\Delta \vec{r} $),则必有()。
(A) $ \Delta \vec{r} = \Delta s = \Delta r$;
(B) $ \Delta \vec{r} \neq \Delta s \neq \Delta r$, 当 $\Delta t \rightarrow 0$ 时有 $ d\vec{r} = ds \neq dr$;
(C) $ \Delta \vec{r} \neq \Delta r \neq \Delta s$, 当 $\Delta t \rightarrow 0$ 时有 $ d\vec{r} = dr \neq ds$;
(D) $ \Delta \vec{r} = \Delta s \neq \Delta r$, 当 $\Delta t \rightarrow 0$ 时有 $ d\vec{r} = dr = ds$ 。
4. 质点沿 x 轴运动的加速度与时间的关系如图所示,由图可求出质点的()。
(A) 第6秒末的速度; (B) 前6秒内的速度增量;
(C) 第6秒末的位置; (D) 前6秒内的位移。
5. 下列几种运动形式,哪一种运动是加速度矢量 \bar{a} 保持不变的运 0 4 6
动? ()。
(A) 单摆运动; (B) 匀速度圆周运动;
(C) 抛体运动; (D) 以上三种运动都是 \bar{a} 保持不变的运动。
二、填空题
1. 一质点沿 x 轴运动, $v=1+3t^2(m/s)$ 。若 $t=0$ 时,质点位于原点,则 $t=2s$ 时,质点
加速度的大小 $a=$,质点的坐标 $x=$ 。
2. 一质点沿 y 轴作直线运动,速度 $\vec{v}=(3+4t)\vec{j}$, $t=0$ 时, $y_0=0$,采用 SI 单位制,则
质点的运动方程为 $y =$
3. 一个质点的运动方程为 $\vec{r}=A\cos\omega t \vec{i}+B\sin\omega t \vec{j}$,其中 A , B , ω 为常量。则质点的加速
rich B

4. 一个质点沿x方向运动,其加速度随时间变化的关系为a=3+2t (SI),如果初始时刻质点

的速度 $v_0=5m/s$,	则当 $t=3s$ 时,	质点的速度 v=	0

5. 一般可以把质点运动学所研究的问题分为两类: (1) 已知质点的运动方程, 求质点在任意时刻的速度和加速度。求解这类问题的基本方法是_____; (2) 已知运动质点的加速度(或速度)随时间的变化变化关系, 根据初始条件, 求质点在任意时刻的速度和运动方程。求这类问题的基本方法是_____。

三、计算题

- 1. 质点作直线运动, 其运动方程为 $x=12t-6t^2$ (式中x以m为单位, t以s为单位)。求:
- (1) t=4s 时, 质点的位置、速度和加速度;
- (2) 质点通过原点时的速度;
- (3) 质点速度为零时的位置;
- 2. 已知质点的位矢随时间变化的函数形式为 $\bar{r} = R(\cos\omega t\bar{i} + \sin\omega t\bar{j})$,其中 ω 为常量。求:
- (1) 质点的轨道方程;
- (2) 质点的速度和速率。