ZIYANG JIAO

Mobile: 3145849450 Email: zjiao04@syr.edu Address: 241 Lafayette RD, Syracuse, NY 13205

Washington University in St. Louis (WUSTL)

08/2019 - 08/2020

Major: Computer Science and Engineering

GPA: 4.0 Ranking: NA

Degree: Master of science in computer science (transferred to SU)

Syracuse University (SU)

08/2020 - Now

Major: Computer and Information Science and Engineering

GPA: 3.7 Ranking: NA

Degree: Ph.D. in computer science (expected in 2024)

Publications

Ziyang Jiao, Janki Bhimani, and Bryan S. Kim. Wear Leveling in SSDs Considered Harmful. In ACM Workshop on Hot Topics in Storage and File Systems, 2022 [Samsung Best Paper Award]

Ziyang Jiao and Bryan S. Kim. *Generating Realistic Wear Distributions for SSDs*. In ACM Workshop on Hot Topics in Storage and File Systems, 2022

Skills & Tools

Languages: C, C++, Python

Tracing: BPF(BCC Tools, bpftrace), blktrace, blkparse, btrecord, btreplay

SSD development platforms: FTLSim, Amber, FEMU, MQSim File system: LFS, f2fs, f2fs-tools, fio, geriatrix, impression

WORK EXPERIENCE

Syracuse University, Research Assistant, Syracuse, NY

Aug 2020 - Now

- Storage Systems Research. Currently working on <u>NSF grant CPR for Flash-Based Storage Systems</u> under <u>Prof.</u> Bryan Kim.
- Capacity-variant storage systems: exploiting the tradeoffs among capacity, performance, and reliability (CPR) and demonstrating the effectiveness of a capacity variant SSD.
- Self-learning systems: imbuing intelligence to the devices so that they can self-learn, self-configure, and self-manage.
- Next-generation storage stack with key-value / ZNS devices: exploring the design of a storage stack using key-value / ZNS devices instead of traditional block devices.

Washington University in St. Louis, Teaching Assistant, St. Louis, MO

Jan 2020 – May 2020

- Course Link: CSE 417T Introduction to Machine Learning
- Advisor: Prof. Chien-Ju Ho
- Topics: Generalization in finite and infinite hypothesis spaces; Model complexity, the VC bound, the bias-variance tradeoff; Linear models: the perceptron, regression, logistic regression; Nonlinear transformations of data; The problem of overfitting; Modern supervised learning techniques, including decision trees, neural networks, nearest neighbor methods, support vector machines, boosting, and random forests.

Chinese Academy of Sciences(CAS), Research Assistant, BeiJing

Nov 2018 - Jan 2019

- Laboratory for Face Recognition Based on Matlab+PCA+SVM.
- Advisor: Prof. Chao Liu
- Designing and building data pre-processing and training system
- Dataset: ORL face database + Real face image data
- Feature Engineering: Correlation analysis + PCA
- Model: NN, SVM, GAN

ACADEMIC EXPERIENCES

Generating Realistic Wear Distributions for SSDs

Aug 2021 - Now

Summary: Building Fast-Forwardable SSD, a machine learning-based SSD aging framework that generates representative future wear-out states.

- Research on SSD aging and fail-slow symptoms.
- Quantify the low-performance variation under various I/O traces.
- Develop FF-SSD, an ML-based framework for SSD aging, trace replay acceleration, and drive failure estimation.

Capacity Performance Reliability(CPR) for Flash-Based Storage Systems

Oct 2020 - Sep 2023

Summary: Exploiting tradeoffs among CPR and designing a capacity-variant interface that allows the SSD to maintain performance while gracefully reducing the capacity.

- link:nsf.gov/awardsearch/showAward?AWD ID=2008453
- Quantify the error-induced performance degradation.
- Build a capacity-variant system and demonstrate the effectiveness of a capacity variant SSD.
- Develop new filesystems and RAID systems to evaluate how capacity-variance can be extended to a heterogeneous set of SSDs.

Creating Synergies between Memory, Disk and Log in Log Structured KV Stores

Aug 2020 – Dec 2020

Summary: Improving the background I/O performance on LevelDB – an open sourced key-value store by Google

- Study on LevelDB and analyze performance under different configurations
- Implement techniques discussed in <u>TRIAD</u> on LevelDB
- Smarter categorizing and scheduling to amortize background IO costs in LevelDB
- Self-adaptive database adjusting to different workloads