CS 2200 Homework 6

Fall 2018

Instructions:

- Please print a copy of the assignment and hand write your answers. No electronic submissions
 are allowed. Please print as one double-sided page. Do NOT staple multiple sheets
 together. There will be a 60 point penalty if you do not.
- This is an individual assignment. You may discuss concepts but not the answers.
- Due Date: 10/17/18 6:00 PM in recitation. Bring your BuzzCard. Show up on time.

1	Name:	GT Username:	Section:
	preemption added in. Consider SRTF. The scheduler re-evalua	ng Time First (SRTF) is a variant of the following three processes vying tes which process to run only upon empletion of a process. The table sh	Shortest Job First (SJF) with for the CPU. The scheduler uses the arrival of a new process into
	Process	Arrival Time	Execution Time
İ	_,	_	

Process	Arrival Time	Execution Time				
P1	То	5ms				
P2	T ₀ +2ms	4ms				
P3	T ₀ +3ms	1ms				

The scheduling starts at time T_0 .

Fill in the table below with the process that is executing on the processor during each time slot.

Interval T ₀ +	0	1	2	3	4	5	6	7	8	9	10	11	12
Running													

Use the following tables to show your work as to how you arrived at the above schedule.

Time To:

Process	Remaining time							
P1	5ms							
P2	Not arrived yet							
P3	Not arrived yet							

Time T₀+2: (Process P2 arrives)

Tille 10+2. (Flocess F2 allives)									
Process	Remaining time								
P1									
P2									
P3	Not arrived yet								

Time T₀+3: (Process P3 arrives)

•	,
Process	Remaining time
P1	
P2	
P3	

2. Given the following schedule for three processes (starts at time = 0):

Note: P1 completes at t = 12, P2 completes at t = 16, and P3 completes at t = 16. Numbers above and below the boxes are the lengths of the schedules.

What is the average waiting time experienced by the processes in the above schedule?

What is the average throughput of the system?

3. Given the following processes, use the blanks provided above the diagrams to identify the algorithm used to generate the CPU timeline, as well as if it is preemptive or not. The I/O timeline will always be First Come First Served. Assume all processes arrive at the same time.

Process	CPU Burst 1	I/O Burst 1	CPU Burst 2	Priority
P1	3	5	1	7
P2	5	1	1	3
P3	2	5	2	5

Algorithm A _____ Preemptive? _____

Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13
CPU	P3	P3	P1	P1	P1	P2	P2	P3	P3	P2	P2	P2	P1	P2
I/O	-	-	P3	P3	P3	Р3	P3	P1	P1	P1	P1	P1	P2	-

Algorithm B_____ Preemptive? _____

Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13
CPU	P1	P1	P1	P3	P3	P2	P2	P2	P1	P2	P2	-	-	P3
I/O	-	-	-	P1	P1	P1	P1	P1	P3	P3	P3	P3	P3	P2

4. Please describe/explain one issue with the FCFS (First Come First Serve) algorithm?