

Operating System Fundamentals

Chapter Six

DEADLOCKS

Table of Content

- Introduction
- Deadlock Characterization
- Methods for Handling Deadlocks
- Deadlock Prevention
- Recovery from Deadlock

INTRODUCTION

The Deadlock Problem

A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

Example

- System has 2 tape drives.
- P1 and P2 each hold one tape drive and each needs another one.
- semaphores A and B, initialized to 1

```
P1
P2
```

wait (A); wait(B)

wait (B); wait(A)

Is this Deadlock?

Yes, How to prevent it?

Bridge Crossing Example

- Traffic only in one direction.
- Each section of a bridge can be viewed as a resource.
- If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).
- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible

DEADLOCK CHARACTERIZATION

Deadlock Characterization

- Deadlock can arise if four conditions hold simultaneously.
 - 1. Mutual exclusion: only one process at a time can use a resource.
 - 2. Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes.
 - 3. No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task.
 - 4. Circular wait: there exists a set {P0, P1, ..., P0} of waiting processes such that P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by P2, ..., Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting for a resource that is held by P0

Resource-Allocation Graph

• Process

• Resource Type with 2 instances

• Pi requests instance of Rj $\stackrel{Pi}{\longrightarrow}$ Rj

• Pi is holding an instance of Rj Pi Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Resource Allocation Graph With A Cycle But No Deadlock

Basic Facts

- If graph contains no cycles no deadlock.
- If graph contains a cycle
 - if only one instance per resource type, then deadlock.
 - if several instances per resource type, possibility of deadlock.

METHODS FOR HANDLING DEADLOCKS

Methods for Handling Deadlocks

- Ensure that the system will *never* enter a deadlock state.
- Allow the system to enter a deadlock state and then recover.
- Ignore the problem and pretend that deadlocks never occur in the system; used by most operating systems.

DEADLOCK PREVENTION

Deadlock Prevention

Mutual Exclusion

• Not required for sharable resources; must hold for non-sharable resources.

Hold and Wait

- must guarantee that whenever a process requests a resource, it does not hold any other resources.
 - Require process to request and be allocated all its resources before it begins execution, or allow process to request resources only when the process has none.
 - Low resource utilization; starvation possible.

Deadlock Prevention Cont'd

No Preemption

- If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released.
- Preempted resources are added to the list of resources for which the process is waiting.
- Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting.

Circular Wait

• Impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration.

RECOVERY FROM DEADLOCK

Recovery from Deadlock

- Abort all deadlocked processes.
- Abort one process at a time until the deadlock cycle is eliminated.
- In which order should we choose to abort?
 - Priority of the process.
 - How long process has computed, and how much longer to completion.
 - Resources the process has used.
 - Resources process needs to complete.
 - How many processes will need to be terminated.
 - Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

Selecting a victim

• minimize cost.

Rollback

• return to some safe state, restart process for that state.

Starvation

• same process may always be picked as victim, include number of rollback in cost factor.

