1

Gate 2022 EC Q55

EE23BTECH11212 - Manugunta Meghana Sai*

Gate 2022 EE Q55

For a vector $\bar{x} = [x[0], x[1], \dots, x[7]]$, the 8-point discrete Fourier transform (DFT) is denoted by $\bar{X} = DFT(\bar{x}) = [X[0], X[1], \dots, X[7]]$, where

$$X[k] = \sum_{n=0}^{7} x[n] \exp\left(-j\frac{2\pi}{8}nk\right).$$

Here $j = \sqrt{-1}$. If $\bar{x} = [1, 0, 0, 0, 2, 0, 0, 0]$ and $\bar{y} = DFT(DFT(\bar{x}))$, then the value of y[0] is **Solution:**

Parameter	Description	Value
X	$\mathrm{DFT}(\bar{x})$	_
\bar{x}	vector	[1,0,0,0,2,0,0,0]
ÿ	$\mathrm{DFT}(\mathrm{DFT}(\bar{x}))$	-

TABLE 0
GIVEN PARAMETERS

DFT of \bar{x}

$$X[k] = \sum_{n=0}^{7} x[n] \exp\left(-j\frac{2\pi}{8}nk\right) \tag{1}$$

As the only non-zero values in x are x[0] and x[4]:

$$X[k] = x[0] + x[4] \exp(-j\pi k)$$
 (2)

After substituting the values of k ranging from 0 to 7,

$$\bar{X} = DFT(\bar{x}) = [X[0], X[1], \dots, X[7]]$$
 (3)

$$\bar{X} = [3, -1, 3, -1, 3, -1, 3, -1]$$
 (4)

$$\bar{y} = DFT(DFT(\bar{x}))$$
 (5)

$$\bar{y} = [3, -1, 3, -1, 3, -1, 3, -1]$$
 (6)

$$y[0] = \sum_{n=0}^{7} x[n] \tag{7}$$

$$= x[0] + x[1] + \dots + x[7] \tag{8}$$

$$= 3 - 1 + 3 - 1 + 3 - 1 + 3 - 1 = 8 \tag{9}$$