Seminari 8

Matematičke metode za informatičare

Damir Horvat

FOI, Varaždin

Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

prvi zadatak

Zadatak 1

Odredite dimenziju i jednu bazu vektorskog prostora R svih realnih rješenja homogenog sustava linearnih jednadžbi

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

i nadopunite dobivenu bazu do baze za \mathbb{R}^4 .

x y z t

X	У	Z	t	
1	2	1	-3	0

X	У	Z	t	
1	2	1	-3	0
2	4	4	-1	0

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

X	У	Z	t	
1	2	1	$-3 \\ -1$	0
2	4	4	-1	0
3	6	7	1	0

X	У	Z	t	
1	2	1	-3	0
2	4	4	-1	0
3	6	7	1	0

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ	У	Z	t	
1	2	1	-3	0
2	4	4	-1	0
3	6	7	1	0

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

У	Z	t		
2	1	-3	0	_
4	4	-1	0	
6	7	$ \begin{array}{c c} t \\ -3 \\ -1 \\ \hline 1 \end{array} $	0	_/· 1

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ		Z			
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	-3 -1 ①	0	_/·1

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t	
1	2	1	-3	0
2	4	4	-1	0 ←+
3	6	7	1	0 0 + 0 /·1/·3

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

X	У	Z	t	
1	2	1	-3	0 ←
2	4	4	-1	0 +
3	6	7	1	0 0 0 1 /·1/·3

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t	
1	2	1	-3	
2	4	4	-1	
3	6	7	1	$0 / \cdot 1 / \cdot 3$

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	/·1/·3
					_
5					
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	_/·1/·3
					_
5	10				
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	_/·1/·3
5	10	11			
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
5	10	11	0		
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10					
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20				_
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22			
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

x y z t	
1 2 1 -3 0	.+
$2 4 4 -1 \mid 0 \leftarrow +$	/
$3 \ 6 \ 7 \ \boxed{1} \ 0 \ / \cdot 1$	/· 3
10 20 22 0	
5 10 11 0 0	
3 6 7 1 0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot$ 1/·3
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	← ⁺)
3	6	7	1	0	$/\cdot$ 1/·3
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	$\stackrel{-}{\leftarrow}$
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
3	6	7	1	0	

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	_ _
2	4	4	-1	0	←
3	6	7	1	0	/
10	20	22	0	0	_/
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
3	6	7	1	0	
					_

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	_
2	4	4	-1	0	+
3	6	7	1	0	/
10	20	22	0	0	_/
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
3	6	7	1	0	
					_

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	/.1/.3
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	_
					_

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

Χ	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	_
					'

$$x + 2y + z - 3t = 0$$

$$2x + 4y + 4z - t = 0$$

$$3x + 6y + 7z + t = 0$$

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	←
					- '

X	V	Z	t	I
<u> </u>	У		ι	

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	←
					_ '

X	у	Z	t	
5	10	11	0	0

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$/\cdot \frac{-3}{5}$
3	6	7	1	0	← ,
					'

X	y	Z	t	
5	10	11	0	0
0				

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$/\cdot \frac{-3}{5}$
3	6	7	1	0	← ,
					'

				ı
X	У	Z	t	
5	10	11	0	0
0	0			

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$/\cdot \frac{-3}{5}$
3	6	7	1	0	← ,
					'

X	у	Z	t	
5	10	11	0	0
0	0	<u>2</u> 5		
		5		

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	←
					_ '

у	z	t	
10	11	0	0
0	<u>2</u> 5	1	
	10	10 11	10 11 0

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	←
					_ '

X	У	Z	t	
5	10	11	0	0
0	0	<u>2</u> 5	1	0

X	У	Z	t	
1	2	1	-3	0 ←
2	4	4	-1	0 +
3	6	7	1	$0 / \cdot 1 / \cdot 3$
10	20	22	0	0 /: 2
5	10	11	0	0
3	6	7	1	0
5	10	11	0	0
5	10	11	0	0
3	6	7	1	0
<u>5</u>	10	11	0	$0 / \cdot \frac{-3}{5}$
3	6	7	1	0

X	У	Z	t	
5	10	11	0	0
0	0	<u>2</u> 5	1	0

X	У	Z	t		_
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot$ 1/·3
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$-/.\frac{-3}{5}$
3	6	7	1	0	←
					- '

X	У	Z	t		
5	10	11	0	0	_
0	0	<u>2</u> 5	1	0	/ · 5

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$-/.\frac{-3}{5}$
3	6	7	1	0	←

X	У	Z	t		
5	10	11	0	0	
0	0	<u>2</u> 5	1	0	/ ⋅5
5	10	11	0	0	_

X	У	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$-/.\frac{-3}{5}$
3	6	7	1	0	←
					_ '

X	У	Z	t		
5	10	11	0	0	_
0	0	<u>2</u> 5	1	0	/ ⋅5
5	10	11	0	0	_
0	0	2	5	0	

X	У	Z	t		_
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	-
5	10	11	0	0	
3	6	7	1	0	
<u>5</u>	10	11	0	0	$\left/ \cdot \frac{-3}{5} \right $
3	6	7	1	0	←
					1

$$5x + 10y + 11z = 0$$

X	У	Z	t	
1	2	1	-3	0 ←
2	4	4	-1	0 +
3	6	7	1	$0 / \cdot 1 / \cdot 3$
10	20	22	0	0 /: 2
5	10	11	0	0
3	6	7	1	0
5	10	11	0	0
5	10	11	0	0
3	6	7	1	0
5	10	11	0	$0 / \cdot \frac{-3}{5}$
3	6	7	1	0 4

X	У	Z	t		
5	10	11	0	0	_
0	0	$\frac{2}{5}$	1	0	/ ⋅5
5	10	11	0	0	
0	0	2	5	0	

$$5x + 10y + 11z = 0$$
$$2z + 5t = 0$$

X	У	Z	t	
1	2	1	-3	0 ←
2	4	4	-1	0 +
3	6	7	1	$0 / \cdot 1 / \cdot 3$
10	20	22	0	0 /: 2
5	10	11	0	0
3	6	7	1	0
5	10	11	0	0
5	10	11	0	0
3	6	7	1	0
5	10	11	0	$0 / \cdot \frac{-3}{5}$
3	6	7	1	0 4

X	у	Z	t		
5	10	11	0	0	_
0	0	<u>2</u> 5	1	0	/ ⋅5
5	10	11	0	0	
0	0	2	5	0	
				'	

$$5x + 10y + 11z = 0$$
$$2z + 5t = 0$$

X	У	Ζ	t		_
1	2	1	-3	0	+
2	4	4	-1	0	← ⁺ \
3	6	7	1	0	$/\cdot$ 1/·3
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$\left/\cdot \frac{-3}{5}\right $
3	6	7	1	0	_

$$\begin{array}{c|ccccc}
x & y & z & t \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0
\end{array}$$

$$5x + 10y + 11z = 0 \\
2z + 5t = 0$$

$$\begin{cases}
x = \\
y = \\
z = \\
z =
\end{cases}$$

X	y	Z	t	
1	2	1	-3	0 ←
2	4	4	-1	0 +
3	6	7	1	$0 / \cdot 1 / \cdot 3$
10	20	22	0	0 /: 2
5	10	11	0	0
3	6	7	1	0
5	10	11	0	0
5	10	11	0	0
3	6	7	1	0
<u>(5)</u>	10	11	0	$0 / \cdot \frac{-3}{5}$
3	6	7	1	0 ←+

$$\begin{array}{c|ccccc}
x & y & z & t \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0
\end{array}$$

$$5x + 10y + 11z = 0 \\
2z + 5t = 0$$

$$\begin{cases}
x = \\
y = \\
z =
\end{cases}$$

X	y	Z	t		
1	2	1	-3	0 ←	
2	4	4	-1	0 ←	+)
3	6	7	1	0 /	$\cdot 1 / \cdot 3$
10	20	22	0	0 /	: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0 /	$-\frac{3}{5}$
3	6	7	1	0 ←	

$$5x + 10y + 11z = 0$$
$$2z + 5t = 0$$

$$\begin{cases} x = \\ y = u \\ z = \\ t = \end{cases}$$

X	У	Z	t		
1	2	1	-3	0	+
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	_
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-\frac{1}{1}$ $\left(-\frac{3}{5}\right)$
3	6	7	1	0	_

$$\begin{array}{c|ccccc}
x & y & z & t & \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 & / \cdot 5 \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0 & \\
\hline
5x + 10y + 11z = 0 \\
2z + 5t = 0
\end{array}$$

$$\begin{cases} x = \\ y = t \\ z = v \\ t = \end{cases}$$

Χ	y	Z	t		
1	2	1	-3	0	
2	4	4	-1	0	+
3	6	7	1	0	$/\cdot 1/\cdot 3$
10	20	22	0	0	_/: 2
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	
5	10	11	0	0	
3	6	7	1	0	
5	10	11	0	0	$-/\cdot \frac{-3}{5}$
3	6	7	1	0	_ _ +

$$\begin{array}{c|ccccc}
x & y & z & t \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 & / \cdot 5
\end{array}$$

$$\begin{array}{c|cccccccccc}
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0
\end{array}$$

$$5x + 10y + 11z = 0 \\
2z + 5t = 0$$

$$\begin{cases}
x = -2u - \frac{11}{5}v & \longleftrightarrow \\
y = u \\
z = v \\
t = & \bullet
\end{cases}$$

$$\begin{array}{c|ccccc}
x & y & z & t \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0
\end{array}$$

$$\begin{array}{c|ccccc}
5x + 10y + 11z = 0 \\
2z + 5t = 0
\end{array}$$

$$\begin{cases}
x = -2u - \frac{11}{5}v & \longleftrightarrow \\
y = u \\
z = v
\end{cases}$$

$$\begin{array}{c|ccccc}
x & y & z & t & \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & \frac{2}{5} & 1 & 0 & \\
\hline
5 & 10 & 11 & 0 & 0 \\
0 & 0 & 2 & 5 & 0
\end{array}$$

$$\begin{array}{c|ccccc}
5x + 10y + 11z = 0 \\
2z + 5t = 0
\end{array}$$

$$\begin{array}{c|ccccc}
x = -2u - \frac{11}{5}v & \longleftrightarrow \\
y = u \\
z = v & u, v \in \mathbb{R}
\end{array}$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) =$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x,y,z,t)=\left(-2u-\frac{11}{5}v,\right.$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, \right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, \right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2,$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1,$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0,$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$
$$= u \cdot (-2, 1, 0, 0)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$
$$= u \cdot (-2, 1, 0, 0) + v \cdot$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$
$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, \frac{1}{5}\right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, \right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, \right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\mathcal{B}_R = \left\{ (-2, 1, 0, 0), \left(-\frac{11}{5}, 0, 1, -\frac{2}{5} \right) \right\}$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\mathcal{B}_R = \left\{ (-2, 1, 0, 0), \left(-\frac{11}{5}, 0, 1, -\frac{2}{5} \right) \right\}$$

 $\dim R = 2$

$$R < \mathbb{R}^4$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\mathcal{B}_R = \left\{ (-2, 1, 0, 0), \left(-\frac{11}{5}, 0, 1, -\frac{2}{5} \right) \right\}$$

 $\dim R = 2$

$$\dim \mathbb{R}^4 = 4$$

$$R<\mathbb{R}^4$$

$$\begin{cases} x = -2u - \frac{11}{5}v \\ y = u \\ z = v \\ t = -\frac{2}{5}v \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\mathcal{B}_R = \left\{ (-2, 1, 0, 0), \left(-\frac{11}{5}, 0, 1, -\frac{2}{5} \right) \right\}$$

 $\dim R = 2$

 $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} -2 & -\frac{11}{5} \\ 1 & 0 \\ 0 & 1 \\ 0 & -\frac{2}{5} \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} \\ 1 & 0 \\ 0 & 1 \\ 0 & -\frac{2}{5} \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & & \\ 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 0 & -\frac{2}{5} & 0 & \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 \end{bmatrix}$$

$\lceil -2 \rceil$	$-\frac{11}{5}$	1	0	0	0
1		0			
0	1				
0	$-\frac{2}{5}$	0	0	0	1

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ & & & & & & \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 2$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \ 0 & -rac{11}{5} & 1 & & & \ & & & & & \ \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & & \\ & & & & & \\ & & & & & \\ \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 \\ & & & & & \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ & & & & & & \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -\frac{11}{5} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ & & & & & & \\ & & & & & & \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -2 & -\frac{11}{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix})$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\frac{11}{5} & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} / \cdot 5 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \rangle \sim$$

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	1	0	0		
0	-11 1	5	10	0	0	5	•
0	1	0	0	1	0	Z	\sim
l۸	_2	n	Λ	Λ	5		

Γ1	0 -11 1 -2	0	1	0	[0	Γ	1	-
0	-11	5	10	0	0 <		j	
0	1	0	0	1	0 4	\sim		
0	-2	0	0	0	5		 	_

1	0	0	1	0	0		Γ1	0	0	1	0	0
0	$0 \\ -11 \\ 1 \\ -2$	5	10	0	0	5						
0	1	0	0	1	0) ~			-			ļ
0	-2	0	0	0	5				1			

Γ1	0	0	1	0	0		Γ1	0	0	1	0	0
0	0 -11 1	5	10	0	0	5	0	1	0	0	1	0
0	1	0	0	1	0	<i>√</i> ~						
0	-2	0	0	0					1			

Γ1	0 0	1	0	0		Γ1	0 0	1	0	0
0	$ \begin{array}{c cccc} -11 & 5 \\ 1 & 0 \end{array} $	10	0	0	5	0	1 0	0	1	0
0	1 0	0	1	0) ~	0	-11 5	10	0	0
0	$-2 \frac{1}{2} 0$	0	0	5			I I			

Γ1	0	0	1	0	0		Г 1	0	0	1	0	0
0	-11	5	10	0	0	Κ	0	1	0	0	1	0
0	$-11\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	0	0	1	0	√ ~	0	-11	5	10	0	0
	-2							-2				

	0 ¦						Г 1	0	0	1	0	0
0	-11	5	10	0	0	Κ	0	1	0	0	1	0
0	1	0	0	1	0	<i>√</i> ~	0	-11	5	10	0	0
	-2							-2				

$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot$	11
--	----

[1	0 0	1	0	[0	[1	0 0	1	0	[0
0	-11 5	10	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ \sim	0	1 0	0	1	0 / 11
0	1 0	0	1	0 2 ~	0	-11 5	10	0	0 +
0	$-2 \big 0$	0	0	5	0	$-2 \ \ 0$	0	0	5

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2$$

[1	0 0	1	0	[0	Γ1	0 0	1	0	0	
0	-11 5	10	0	0 5	0	1 0	0	1	0	/· 11/· 2
0	1 0	0	1	0 / ~	0	-11 5	10	0	0	/·11/·2 ←
0	-2 0	0	0	5	0	-2 0	0	0	5	+

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$
 $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & & & & \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11/\cdot 2}{\cdot 2} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$
 $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$
 $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$ $/ \cdot \frac{11}{2} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11/\cdot 2}{\cdot 2} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11/\cdot 2}{\sim} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11/\cdot 2}{\sim} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \rangle \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 5 & 10 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix}$$
 $\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 & 5 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\sim \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 5 & 10 & 11 & 0 \\
0 & 0 & 0 & 0 & 2 & 5
\end{bmatrix}$$

Jedna nadopuna do baze za \mathbb{R}^4

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \rangle \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\sim egin{bmatrix} (1) & 0 & 0 & 1 & 0 & 0 \ 0 & (1) & 0 & 0 & 1 & 0 \ 0 & 0 & (5) & 10 & 11 & 0 \ 0 & 0 & 0 & 0 & (2) & 5 \end{bmatrix}$$

Jedna nadopuna do baze za
$$\mathbb{R}^4$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Jedna nadopuna do baze za \mathbb{R}^4

$$\left\{ (-2,1,0,0), \left(-\frac{11}{5},0,1,-\frac{2}{5} \right), \right.$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot 11 / \cdot 2 \sim$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

Jedna nadopuna do baze za \mathbb{R}^4

$$\left\{ (-2,1,0,0), \left(-\frac{11}{5},0,1,-\frac{2}{5} \right), (1,0,0,0), \right.$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11}{\cdot} \cdot \frac{2}{\cdot} \sim$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 1 & 0 \\ 0 & 0 & \boxed{5} & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & \boxed{2} & 5 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Jedna nadopuna do baze za \mathbb{R}^4

$$\left\{ (-2,1,0,0), \left(-\frac{11}{5},0,1,-\frac{2}{5} \right), (1,0,0,0), (0,0,1,0) \right\}$$

drugi zadatak

Zadatak 2

$$U \mathcal{P}_3(t)$$
 zadan je skup $\mathcal{B} = \{t+2, t^2, t^2+t\}$.

- a) Dokažite da je \mathcal{B} baza za $\mathcal{P}_3(t)$.
- b) Bez korištenja matrice prijelaza pronađite koordinate polinoma $p(t) = t^2 + 3t 5$ u bazi \mathcal{B} .
- c) Pomoću matrice prijelaza pronađite koordinate polinoma $p(t) = t^2 + 3t 5$ u bazi \mathcal{B} .

a)
$$\mathcal{B} = \{t+2, t^2, t^2+t\}$$

a)
$$\mathcal{B} = \{t+2, t^2, t^2+t\}$$

$$\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2
ight\}$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t
ight\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2
ight\}$ $t+2$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$
$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2+t \longrightarrow (0,1,1)$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$
$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2+t \longrightarrow (0,1,1)$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$
$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2+t \longrightarrow (0,1,1)$$

$$\begin{bmatrix} 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$
$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2+t \longrightarrow (0,1,1)$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$
$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2+t \longrightarrow (0,1,1)$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ & & & \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ & & & \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \mathbf{\hat{1}} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1)$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1)$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ & & & \\ & & \\ & & &$$

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \mathbf{1} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, t^2, t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \boxed{1} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \mathbf{\hat{1}} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} \mathbf{\hat{1}} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} \mathbf{\hat{1}} & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} \mathbf{\hat{1}} & 0 & 0 \\ 0 & \mathbf{\hat{1}} & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B} = \left\{t+2, \ t^2, \ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$ $t+2 \longrightarrow (2,1,0)$ $t^2 \longrightarrow (0,0,1)$ $t^2+t \longrightarrow (0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

a)
$$\mathcal{B}=\left\{t+2,\ t^2,\ t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\implies \mathcal{B}$ je baza za $\mathcal{P}_3(t)$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$t^2 + 3t - 5 =$$

8/18

 $\mathcal{B} = \{t + 2, t^2, t^2 + t\}$

$$t^2 + 3t - 5 = \alpha_1 \cdot (t+2)$$

b) $p(t) = t^2 + 3t - 5$

 $t^2 + 3t - 5 = \alpha_1 \cdot (t+2) + \alpha_2 \cdot t^2$

$$t^2 + 3t - 5 = \alpha_1 \cdot (t+2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$

b)
$$p(t) = t^2 + 3t - 5$$

$$\mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
$$t^2 + 3t - 5 = \alpha_1 \cdot (t + 2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$
$$t^2 + 3t - 5 =$$

b)
$$p(t) = t^2 + 3t - 5$$

$$\mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
$$t^2 + 3t - 5 = \alpha_1 \cdot (t + 2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$
$$t^2 + 3t - 5 = (\alpha_2 + \alpha_3)t^2$$

b)
$$p(t) = t^2 + 3t - 5 \qquad \mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
$$t^2 + 3t - 5 = \alpha_1 \cdot (t + 2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$
$$t^2 + 3t - 5 = (\alpha_2 + \alpha_3)t^2 + (\alpha_1 + \alpha_3)t$$

b)
$$p(t) = t^2 + 3t - 5 \qquad \mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
$$t^2 + 3t - 5 = \alpha_1 \cdot (t + 2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$
$$t^2 + 3t - 5 = (\alpha_2 + \alpha_3)t^2 + (\alpha_1 + \alpha_3)t + 2\alpha_1$$

b)
$$p(t) = t^2 + 3t - 5$$

$$\mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
$$t^2 + 3t - 5 = \alpha_1 \cdot (t + 2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$$

$$\alpha_2 + \alpha_3 = 1$$
$$t^2 + 3t - 5 = (\alpha_2 + \alpha_3)t^2 + (\alpha_1 + \alpha_3)t + 2\alpha_1$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $t^2 + 3t - 5 = \alpha_1 \cdot (t+2) + \alpha_2 \cdot t^2 + \alpha_3 \cdot (t^2 + t)$

 $t^2 + 3t - 5 = (\alpha_2 + \alpha_3)t^2 + (\alpha_1 + \alpha_3)t + 2\alpha_1$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $\left. \begin{array}{l} \alpha_2 + \alpha_3 = 1 \\ \alpha_1 + \alpha_3 = 3 \\ 2\alpha_1 = -5 \end{array} \right\}$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_2	$lpha_{3}$	
0	1	1	1
1	0	1	3
2	0	0	-5

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_2	α_3	
0	1	1	1
1	0	1	3
2	0	0	-5

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_2	$lpha_{3}$	
0	1	1	1
1	0	0	3
2	0	0	-5

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		_
0	1	1	1	_
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
				-

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		
0	1	1	1	+
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
				_

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		
0	1	1	1	+
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
1	0	1	3	_

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		_
0	1	1	1	+
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
-1	1	0		_
1	0	1	3	

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		_
0	1	1	1	+
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
-1	1	0	-2	_
1	0	1	3	

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		_
0	1	1	1	+
1	0	1	3	$/\cdot (-1)$
2	0	0	-5	
-1	1	0	-2	_
1	0	1	3	
2	0	0	-5	
				_

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	α_{3}		α_1	α_{2}	α_3
0	1	1	1 ←+			
1	0	1	3 /· (-1)			
2	0	0	-5			
$\overline{-1}$	1	0	-2			
1	0	1	3			
2	0	0	−5 /: 2			

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_2	α_3				α_1	α_2	α_3	
0	1	1	1	+		$\overline{-1}$	1	0	-2
1	0	1	3	/· (-1	1)				
2	0	0	-5						
-1	1	0	-2	-					
1	0	1	3						
2	0	0	-5	/:2					
				-					

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

	α_1	α_{2}	α_{3}		α_1	α_{2}	α_3	
	0	1	1	1 ←+	$\overline{-1}$	1	0	-2
	1	0	1	3 /· (-1)	1	0	1	3
	2	0	0	-5				
	-1	1	0	-2				
	1	0	1	3				
	2	0	0	−5 /: 2				
•								

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$			α_1	α_{2}	$lpha_{3}$	
0	1	1	1	+	$\overline{-1}$	1	0	-2
1	0	1	3	$/\cdot (-1)$	1	0	1	3
2	0	0	-5		1	0	0	$-\frac{5}{2}$
-1	1	0	-2	_				
1	0	1	3					
2	0	0	-5	/: 2				
				_				

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	α_3		α_1	α_{2}	α_3	
0	1	1	1 ←+	$\overline{-1}$	1	0	-2
1	0	1	3 /· (-1)	1	0	1	3
2	0	0	_5	1	0	0	$-\frac{5}{2}$
$\overline{-1}$	1	0	-2				
1	0	1	3				
2	0	0	−5 /: 2				

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	α_3		α_1	α_{2}	α_3	
0	1	1	1 ←+	-1	1	0	-2
1	0	1	3 /· (-1)	1	0	1	3
2	0	0	-5	1	0	0	$-\frac{5}{2}$
$\overline{-1}$	1	0	-2				
1	0	1	3				
2	0	0	−5 /: 2				

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

01	01	01	1		01	01	01	1
$\frac{\alpha_1}{\alpha_1}$	α_2	α_3			α_1	α_2	α_3	
0	1	1	1 ← +		-1	1	0	-2
1	0	1	3 / · (-1	L)	1	0	1	3
2	0	0	-5		1	0	0	$-\frac{5}{2}$ $/\cdot$ (-1)
$\overline{-1}$	1	0	-2					/
1	0	1	3					
2	0	0	−5 /: 2					

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

0.	0.	0.	ſ		0.	0.	0.	I
$\frac{\alpha_1}{\alpha_1}$	_	α_3		_	$\frac{\alpha_1}{\alpha_1}$	α_2	α_3	
0	1	1	1	+	-1	1	0	_2
1	0	1	3	$/\cdot (-1)$	1	0	1	3 ← +
2	0	0	-5	_	1	0	0	$-\frac{5}{2}$ /· (-1)
-1	1	0	-2					2/
1	0	1	3					
2	0	0	-5	/:2				
				-				

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$		α_{1}	α_{2}	$lpha_{3}$	
0	1	1	1 +	$\overline{-1}$	1	0	-2
1	0	1	3 /· (-1)	1	0	1	3 ←+
2	0	0	-5	1	0	0	$-\frac{5}{2}$ /· (-1) /· 1
-1	1	0	-2				2//////////////////////////////////////
1	0	1	3				
2	0	0	−5 /: 2				

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t+2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

α_1	α_{2}	$lpha_{3}$				α_1	α_{2}	$lpha_{3}$	
0	1	1	1 ←	+		-1	1	0	-2 ← +
1	0	1	3 /-	(-1)		1	0	1	3 ←+
2	0	0	-5			1	0	0	$-\frac{5}{2}$ /· (-1) /· 1
$\overline{-1}$	1	0	-2		-				2/ / /
1	0	1	3						
2	0	0	−5 /:	2					

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{4}}{1} \quad \frac{\alpha_{5}}{1} \quad \frac{$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1 \quad 1} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{2} + \alpha_{3} = 1}{2\alpha_{1} + \alpha_{3} = 3}$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{2} + \alpha_{3} = 1}{2\alpha_{1} + \alpha_{3} = 3}$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{2} + \alpha_{3} = 1}{2\alpha_{1} + \alpha_{3} = 3}$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{2} + \alpha_{3} = 1}{2\alpha_{1} + \alpha_{3} = 3}$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1} \qquad \frac$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2} \quad \alpha_{3}}{-1} \quad \frac{\alpha_{2}}{1} \quad 0 \quad 1$$

$$\frac{\alpha_{1}}{1} \quad 0 \quad 0 \quad 0 \quad \frac{-5}{2} / \cdot (-1) / \cdot 1$$

$$\frac{2 \quad 0 \quad 0 \quad -5}{-1 \quad 1 \quad 0 \quad -2} \quad \frac{1}{1} \quad 0 \quad 0 \quad 0$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{4}}{1} \quad \frac{\alpha_{5}}{1} \quad \frac{$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{4}}{1} \quad \frac{\alpha_{5}}{1} \quad \frac{$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2} \quad \alpha_{3}}{-1} \quad \frac{\alpha_{1}}{1} \quad 0 \quad 1$$

$$\frac{\alpha_{1}}{1} \quad 0 \quad 0 \quad \frac{\alpha_{2}}{1} \quad 0 \quad 0 \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{4}}{1} \quad 0$$

$$\frac{\alpha_{1}}{1} \quad 0 \quad 0 \quad \frac{\alpha_{5}}{1} \quad 0 \quad 0 \quad \frac{\delta_{5}}{1} \quad \delta_{5} \quad \delta_$$

 $p(t) = t^2 + 3t - 5$

−5 /: 2

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \qquad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{-1 \quad 1 \quad 0} \qquad \frac{\alpha_{2} \quad \alpha_{3}}{0 \quad 1} \qquad \frac{\alpha_{3} \quad \alpha_{4} \quad \alpha_{5}}{0 \quad 1} \qquad \frac{\alpha_{5} \quad \alpha_{5}}{0 \quad 1} \qquad \frac{\alpha_{5}}{0 \quad 1} \qquad$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

 $p(t) = t^2 + 3t - 5$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t) \qquad \alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1} \qquad \alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

 $p(t) = t^2 + 3t - 5$

b)
$$p(t) = t^{2} + 3t - 5$$

$$B = \{t + 2, t^{2}, t^{2} + t\}$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t)$$

$$\alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1}$$

$$\alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1}}{0} + \frac{\alpha_{2}}{1} + \frac{\alpha_{3}}{1} + \frac{\alpha_{2}}{1} + \frac{\alpha_{3}}{1} + \frac{\alpha_{3}}{1} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1}}{1} + \frac{\alpha_{2}}{1} + \frac{\alpha_{3}}{1} + \frac{\alpha_{3}}{1} + \frac{\alpha_{3}}{1} = 3$$

$$\frac{\alpha_{1}}{1} + \frac{\alpha_{2}}{1} + \frac{\alpha_{3}}{3} = 3$$

$$\frac{\alpha_{1}}{1} + \frac{\alpha_{2}}{3} + \frac{\alpha_{3}}{3} = 3$$

$$\frac{\alpha_$$

b)
$$p(t) = t^{2} + 3t - 5$$

$$B = \{t + 2, t^{2}, t^{2} + t\}$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t)$$

$$\alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1}$$

$$\alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{0 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1} = \frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1 + 1}$$

$$\frac{\alpha_{1} + \alpha_{2} + \alpha_{3}}{1 + 1$$

b)
$$p(t) = t^{2} + 3t - 5$$

$$\mathcal{B} = \left\{ t + 2, \ t^{2}, \ t^{2} + t \right\}$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t)$$

$$\alpha_{2} + \alpha_{3} = 1$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1}$$

$$\alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5$$

$$\frac{\alpha_{1}}{0} \quad \frac{\alpha_{2}}{0} \quad \frac{\alpha_{3}}{0} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{0} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0}$$

$$\frac{\alpha_{1}}{0} \quad \frac{\alpha_{2}}{0} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0} \quad \frac{\alpha_{1}}{0} \quad \alpha_{2} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0} \quad \frac{\alpha_{1}}{0} \quad \alpha_{2} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0} \quad \frac{\alpha_{1}}{0} \quad \alpha_{3} \quad \frac{\alpha_{2}}{0} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0} \quad \frac{\alpha_{1}}{0} \quad \alpha_{3} \quad \frac{\alpha_{2}}{0} \quad \alpha_{3} \quad \frac{\alpha_{3}}{0} \quad \alpha_{3} \quad \alpha_{3} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad$$

c)
$$p(t) = t^2 + 3t - 5$$

 $\mathcal{B} = \{t + 2, t^2, t^2 + t\}$

$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$$

 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t
ight\} \qquad \mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2
ight\}$$

$$X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix}$$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$\mathcal{B}_{\mathsf{kan}} \stackrel{ oup}{-\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!-} \mathcal{B}$$

 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix}$$

$$egin{align*} \mathcal{B}_{\mathsf{kan}} &\longrightarrow \mathcal{B} \ \mathcal{B}_{\mathsf{kan}} &\longrightarrow \mathcal{B}_{\mathsf{ka$$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$egin{aligned} \mathcal{B} = \{t+2,t+t\} & \mathcal{B}_{\mathsf{kan}} = \{1,t,t\} \ t+2 & \longrightarrow & (2,1,0) \ & \mathcal{X}_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix} & \mathcal{T} = egin{bmatrix} T \ \end{bmatrix} \end{aligned}$$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

9/18

$$t+2 \longrightarrow (2,1,0)$$
 $X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix} \qquad \qquad T = egin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$egin{array}{ccccc} t+2 & \longrightarrow & (2,1,0) \ t^2 & \longrightarrow & (0,0,1) & X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix} & T = egin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}$$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$egin{array}{ccccc} t+2 & \longrightarrow & (2,1,0) \ t^2 & \longrightarrow & (0,0,1) & X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix} & T = egin{bmatrix} 2 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix} \end{array}$$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $t+2 \longrightarrow (2,1,0)$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$egin{array}{ccccc} t+2 & \longrightarrow & (2,1,0) \ t^2 & \longrightarrow & (0,0,1) & X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix} & & T = egin{bmatrix} 2 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix} \end{array}$$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$t + 2 \longrightarrow (2,1,0)$$
 $t^2 \longrightarrow (0,0,1)$
 $X_{\mathcal{B}_{\mathsf{kan}}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$
 $T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $t+2 \longrightarrow (2,1,0)$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $X_{\mathcal{B}_{\mathsf{kan}}} = T_{\mathcal{B}_{\mathsf{kan}} o \mathcal{B}} X_{\mathcal{B}}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

 $t+2 \longrightarrow (2,1,0)$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$\mathcal{B} = \{t + 2, t^2, t^2 + t\}$$
 $\mathcal{B}_{kan} = \{1, t, t^2\}$

$$t+2 \longrightarrow (2,1,0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$t^2 + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{\mathsf{kan}}} = egin{bmatrix} -5 \ 3 \ 1 \end{bmatrix}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{\mathsf{kan}}} = T_{\mathcal{B}_{\mathsf{kan}} o \mathcal{B}} X_{\mathcal{B}} \quad ext{ www} \quad X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{\mathsf{kan}}}$$

 $\mathcal{B}_{\mathsf{kan}} = \{1, t, t^2\}$

c) $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$X_{\mathcal{B}_{\mathsf{kan}}} = T_{\mathcal{B}_{\mathsf{kan}} o \mathcal{B}} X_{\mathcal{B}} \stackrel{\longleftarrow}{\longrightarrow} X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{\mathsf{kan}}} \qquad \qquad \mathcal{B} \stackrel{T^{-1}}{\longrightarrow} \mathcal{B}_{\mathsf{kan}}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $\mathcal{B}_{\mathsf{kan}} \xrightarrow{T} \mathcal{B}$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

0

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$p(t)=t^2+3t-5$$

$$\mathcal{B} = \left\{ t + 2, \ t^2, \ t^2 + t \right\}$$
$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^2 \longrightarrow (0,0,1)$$

$$X_{\mathcal{B}_{\mathsf{kan}}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

 $\mathcal{B}_{\mathsf{kan}} = \{1, t, t^2\}$

$$T = \begin{vmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $\mathcal{B}_{\mathsf{kan}} \xrightarrow{T} \mathcal{B}$

$$t^2+t \longrightarrow (0,1,1)$$

$$\mathcal{B} \xrightarrow{T^{-1}} \mathcal{B}_{\mathsf{kan}}$$

$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^{2} \longrightarrow (0, 0, 1)$$

$$t^{2} + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{kan}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{kan}} = T_{\mathcal{B}_{kan} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}_{kan}}$$

$$\mathcal{B} \xrightarrow{T^{-1}} \mathcal{B}_{kan}$$

 $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

11 / 18

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $T^{-1} = \begin{vmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{vmatrix}$

$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^{2} \longrightarrow (0, 0, 1)$$

$$t^{2} + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{kan}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{kan}} = T_{\mathcal{B}_{kan} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{kan}}$$

$$\mathcal{B} \xrightarrow{T^{-1}} \mathcal{B}_{kan}$$

$$T^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix}$$

 $p(t) = t^2 + 3t - 5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

11/18

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

$$\mathcal{B} = \{t + 2, t^{2}, t^{2} + t\} \qquad \mathcal{B}_{kan} = \{1, t, t^{2}\} \qquad \mathcal{B}_{kan} = \begin{cases} 1, t, t^{2} \\ 0, t$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

11/18

 $p(t)=t^2+3t-5$

$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^{2} \longrightarrow (0, 0, 1)$$

$$t^{2} + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{kan}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{kan}} = T_{\mathcal{B}_{kan} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{kan}}$$

$$\mathcal{B} \xrightarrow{T^{-1}} \mathcal{B}_{kan}$$

$$X_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

11/18

 $p(t)=t^2+3t-5$

 $\mathcal{B} = \{t + 2, t^2, t^2 + t\}$

$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^{2} \longrightarrow (0, 0, 1)$$

$$t^{2} + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{kan}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{kan}} = T_{\mathcal{B}_{kan} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{kan}}$$

$$X_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{9}{2} \\ \frac{11}{2} \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

11/18

 $p(t)=t^2+3t-5$

 $\mathcal{B} = \{t+2, t^2, t^2+t\}$

$$t + 2 \longrightarrow (2, 1, 0)$$

$$t^{2} \longrightarrow (0, 0, 1)$$

$$t^{2} + t \longrightarrow (0, 1, 1)$$

$$X_{\mathcal{B}_{kan}} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$X_{\mathcal{B}_{kan}} = T_{\mathcal{B}_{kan} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}_{kan}}$$

$$X_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{9}{2} \\ \cdots & \alpha_{3} \end{bmatrix} \longrightarrow T^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix}$$

 $\mathcal{B}_{\mathsf{kan}} = \left\{1, t, t^2\right\}$

 $p(t)=t^2+3t-5$

 $\mathcal{B} = \{t + 2, t^2, t^2 + t\}$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $\mathcal{B}_{\mathsf{kan}} \xrightarrow{I} \mathcal{B}$

treći zadatak

Zadatak 3

Neka je
$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}.$$

- a) Dokažite da je V potprostor od \mathbb{R}^3 .
- b) Provjerite da je skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ baza za V.
- c) Dokažite da je $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$ također baza za V.
- d) Odredite matricu prijelaza iz baze \mathcal{B}_1 u bazu \mathcal{B}_2 .
- e) Odredite koordinate vektora $(-3, 2, -1) \in V$ u bazi \mathcal{B}_2 .

a)

Rješenje

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a) $\alpha, \beta \in \mathbb{R}, a, b \in V$

Rješenje

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1)$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), x_1, y_1 \in \mathbb{R}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2)$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$

$$\alpha \mathbf{a} + \beta \mathbf{b} =$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$

$$\alpha \mathbf{a} + \beta \mathbf{b} = \alpha \cdot (\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_1 + \mathbf{y}_1)$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$

$$\alpha \mathbf{a} + \beta \mathbf{b} = \alpha \cdot (\mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_1 + \mathbf{y}_1) +$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2)$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$
 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$
 $\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$
 $= (\alpha x_1 + \beta x_2,$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$
 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$
 $\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$
 $= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2,$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$
 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$
 $\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$
 $= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1))$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) +$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2))$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$
 $b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$
 $\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$
 $= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2))$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2))$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) +$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2)$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2))$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2))$$

$$\implies \alpha \mathbf{a} + \beta \mathbf{b} \in V$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a)
$$\alpha, \beta \in \mathbb{R}$$
, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

 $\implies \alpha \mathbf{a} + \beta \mathbf{b} \in V \implies V < \mathbb{R}^3$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha a + \beta b = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2))$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b)

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$

b) (x, y, x + y) =

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) (x, y, x + y) = x.

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1,$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, y)$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1)$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1)$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 0, 1)$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

b)
$$(x,y,x+y) = x \cdot (1,0,1) + y \cdot (0,1,1)$$

Skup $\mathcal{B}_1 = \big\{(1,0,1),\, (0,1,1)\big\}$ je skup izvodnica za V ,

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

Skup $\mathcal{B}_1 = \{(1, 0, 1), (0, 1, 1)\}$ je skup izvodnica za V , a očito je i

linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

Skup $\mathcal{B}_1 = \{(1, 0, 1), (0, 1, 1)\}$ je skup izvodnica za V , a očito je i

Skup $\mathcal{B}_1=\left\{(1,0,1),\,(0,1,1)\right\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V. (x,y)

(x, y)

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

Skup $\mathcal{B}_{x} = \{(1, 0, 1), (0, 1, 1)\}$ is skup izvodnica za V_{x} a existe is i

Skup $\mathcal{B}_1=\left\{(1,0,1),\,(0,1,1)\right\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

(x,y) koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1

$$(x,y)$$
 koordinate vektora $(x,y,x+y)$ u bazi \mathcal{B}_1

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

c)

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

14/18

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .

(x, y) koordinate vektora (x, y, x + y) u bazi \mathcal{B}_1

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

linearno nezavisni pa je
$$\mathcal{B}_1$$
 jedna baza za V .

 (x,y) koordinate vektora $(x,y,x+y)$ u bazi \mathcal{B}_1

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

linearno nezavisni pa je
$$\mathcal{B}_1$$
 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i

 $(x,y) \leftarrow (x,y,x+y)$ u bazi \mathcal{B}_1

c)
$$\begin{bmatrix} 1 & -2 & & \\ 1 & 1 & & \\ 2 & -1 & & \end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

Skup
$$\mathcal{B}_1=\left\{(1,0,1),\,(0,1,1)
ight\}$$
 je skup izvodnica za V , a očito je i

linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

$$(x,y)$$
 koordinate vektora $(x,y,x+y)$ u bazi \mathcal{B}_1

c)
$$\begin{bmatrix} 1 & -2 & | & & \\ 1 & 1 & | & \\ 2 & -1 & | & & \end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

linearno nezavisni pa je
$$\mathcal{B}_1$$
 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

c)
$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

linearno nezavisni pa je
$$\mathcal{B}_1$$
 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i

c)
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & 1 \end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

Skyp $\mathcal{R} = \{(1, 0, 1), (0, 1, 1)\}$ is skyp izvednice ze V a exite in i

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

(x,y) koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

$$\mathcal{B}_2 = \{(1, 1, 2), (-2, 1, -1)\}$$
b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

(x,y) koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1

c)
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & 1 \end{bmatrix} / \cdot (-1)$$

$$\mathcal{B}_2 = \left\{ (1, 1, 2), (-2, 1, -1) \right\}$$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

(x,y) koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix} / \cdot (-1)$$

$$\mathcal{B}_2 = \left\{ (1, 1, 2), (-2, 1, -1) \right\}$$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

(x,y) koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1

c)
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & 1 \end{bmatrix} / \cdot (-1) / \cdot (-2)$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

(x, y) koordinate vektora (x, y, x + y) u bazi \mathcal{B}_1

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 (-2)
 (-2)
 (-2)
 (-3)
 (-2)
 (-3)
 (-2)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 \sim

$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
4 & 1 & 0 \\
4 & 1 & 1
\end{bmatrix}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 \sim

$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 (-2)
 (-1)
 (-2)
 (-2)
 (-2)
 (-2)
 (-3)
 (-1)
 (-2)
 (-3)
 (-1)
 (-2)
 (-3)
 (-1)
 (-2)
 (-3)
 (-1)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-3)
 (-1)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/(-2)$
 $(-1)/$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$
 $(-1)/(-2)$
 (-2)
 $(-1)/(-2)$
 (-2)
 (-2)
 (-2)
 (-2)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-1)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 (-3)
 $($

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\} \qquad V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

b)
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

linearno nezavisni pa je
$$\mathcal{B}_1$$
 jedna baza za V .

$$(x,y) \longleftarrow \text{ koordinate vektora } (x,y,x+y) \text{ u bazi } \mathcal{B}_1$$
c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix} / \cdot (-1) / \cdot (-2) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1
\end{bmatrix} / \cdot (-1) \sim \begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 &$$

Skup $\mathcal{B}_1 = \{(1,0,1),\,(0,1,1)\}$ je skup izvodnica za V, a očito je i

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

~

14 / 18

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .
$$(x,y) \longleftarrow \text{ koordinate vektora } (x,y,x+y) \text{ u bazi } \mathcal{B}_1$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

$$\sim egin{bmatrix} 1 & -2 & 1 & 0 \ & & & \end{bmatrix}$$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$\sim \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 3 & -1 & 1 \\ & & & \end{bmatrix}$$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .
$$(x,y) \leftrightsquigarrow koordinate vektora (x,y,x+y) u bazi \mathcal{B}_1$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .
$$(x,y) \longleftarrow \text{ koordinate vektora } (x,y,x+y) \text{ u bazi } \mathcal{B}_1$$

c)
$$\begin{bmatrix}
1 & -2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & -1 & 1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 3 & -1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & 3 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

Skup
$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 je skup izvodnica za V , a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V .

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x,y) \iff \text{koordinate vektora } (x,y,x+y) \text{ u bazi } \mathcal{B}_1$$

$$(x,y) \iff \text{loordinate vektora } (x,y,x+y) \text{ u bazi } \mathcal{B}_1$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{\mathcal{T}} \mathcal{B}_2$

$$\mathcal{T} = \left[\begin{array}{c} \end{array} \right]$$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

$$(1,1,2) =$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

T =

 $\dim V = 2$

$$(1,1,2) = 1 \cdot (1,0,1)$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

T =

$$(1,1,2) = 1 \cdot (1,0,1) +$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $T = \begin{bmatrix} \end{bmatrix}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} & & \\ & & \end{bmatrix}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = 1 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $(-2,1,-1) = -2 \cdot (1,0,1)$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = 1 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$

$$(x,y,x+y) = x \cdot (1,0,1) + y \cdot (0,1,1)$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$ $(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x,y,x+y) = x \cdot (1,0,1) + y \cdot (0,1,1)$$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

e) (-3, 2, -1)

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$

e) (-3,2,-1) **1. način:** pomoću matrice prijelaza

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$ $(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$

e)
$$(-3,2,-1)$$
 1. način: pomoću matrice prijelaza

$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 o \mathcal{B}_2} X_{\mathcal{B}_2}$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$

e) (-3,2,-1) **1. način:** pomoću matrice prijelaza

 $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$(-2,1,-1) = -2 \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$

e)
$$(-3,2,-1)$$
 1. način: pomoću matrice prijelaza $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \longrightarrow X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1}$

$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \xrightarrow{\bullet \bullet \bullet \bullet} X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$

$$e) \quad (-3,2,-1) \qquad \mathbf{1. \ na\check{c}in: \ pomo\acute{c}u \ matrice \ prijelaza}$$

$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \qquad X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1} \qquad X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $X_{\mathcal{B}_2} =$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

15 / 18

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

d)
$$\mathcal{B}_{1} \xrightarrow{T} \mathcal{B}_{2}$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
e) $(-3,2,-1)$ **1. način:** pomoću matrice prijelaza
$$X_{\mathcal{B}_{1}} = T_{\mathcal{B}_{1} \to \mathcal{B}_{2}} X_{\mathcal{B}_{2}} \xrightarrow{} X_{\mathcal{B}_{2}} \xrightarrow{} X_{\mathcal{B}_{2}} X_{\mathcal{B}_{$$

 $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

d)
$$\mathcal{B}_{1} \xrightarrow{T} \mathcal{B}_{2}$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1)$$
e) $(-3,2,-1)$ **1. način:** pomoću matrice prijelaza
$$X_{\mathcal{B}_{1}} = T_{\mathcal{B}_{1} \to \mathcal{B}_{2}} X_{\mathcal{B}_{2}} \xrightarrow{T} X_{\mathcal{B}_{1}} X_{\mathcal{B}_{2}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

d)
$$\mathcal{B}_1 \xrightarrow{\mathcal{T}} \mathcal{B}_2$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad \mathcal{T} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
 e) $(-3,2,-1)$ **1. način:** pomoću matrice prijelaza

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3}$$
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$
e) $(-3,2,-1)$ **1. način:** pomoću matrice prijelaza
$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \xrightarrow{} X_{\mathcal{B}_2} \xrightarrow{} X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1} \qquad X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

 $\dim V = 2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3}$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$
15/18

d)
$$\mathcal{B}_1 \xrightarrow{I} \mathcal{B}_2$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
e) $(-3,2,-1)$ **1. način:** pomoću matrice prijelaza
$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \xrightarrow{} X_{\mathcal{B}_2} \xrightarrow{} X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1}$$

$$X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \end{bmatrix}$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\begin{array}{c} \mathcal{B}_2 = \{(1,1,2), \ (-2,1,-1)\} \\ \text{dim } V = 2 \end{array}$$

$$\text{dim } V = 2$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \\ (-2,1,-1) = -2 \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \end{array}$$

$$T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$e) \ (-3,2,-1) \quad \textbf{1. način: pomoću matrice prijelaza}$$

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ & 1 \end{bmatrix}$$

 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \xrightarrow{\bullet} X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1}$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

d)
$$\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
 e) $(-3,2,-1)$ 1. način: pomoću matrice prijelaza

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 & 1 \end{bmatrix}$$
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

d)
$$\mathcal{B}_1 \xrightarrow{I} \mathcal{B}_2$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + 1 \cdot (0,1,1)$$
 e) $(-3,2,-1)$ 1. način: pomoću matrice prijelaza

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$
$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

15 / 18

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\begin{array}{c} \mathcal{B}_2 = \{(1,1,2), \, (-2,1,-1)\} \\ \text{dim } V = 2 \\ \end{array}$$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \\ (-2,1,-1) = -\frac{1}{2} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1) \\ \text{e) } (-3,2,-1) \qquad \qquad \mathbf{1. \ na\check{cin: pomo\acute{c}u matrice prijelaza}} \\ \end{array}$$

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$X_{\mathcal{B}_2} = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 \end{bmatrix} = \overline{3} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\mathcal{B}_{1} = \left\{ (1,0,1), (0,1,1) \right\} \qquad V = \left\{ (x,y,x+y) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), (-2,1,-1) \right\} \qquad \text{dim } V = 2$$

$$d) \ \mathcal{B}_{1} \xrightarrow{T} \mathcal{B}_{2}$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1)$$

$$e) \ (-3,2,-1) \qquad \mathbf{1.} \ \mathbf{na\check{c}in:} \ \mathbf{pomo\acute{c}u \ matrice \ prijelaza}$$

$$X_{\mathcal{B}_{1}} = T_{\mathcal{B}_{1} \to \mathcal{B}_{2}} X_{\mathcal{B}_{2}} \qquad X_{\mathcal{B}_{2}} = T^{-1} X_{\mathcal{B}_{1}} \qquad X_{\mathcal{B}_{1}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$X_{\mathcal{B}_{2}} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$X_{\mathcal{B}_{2}} = \begin{bmatrix} (x,y,x+y) = x \cdot (1,0,1) + y \cdot (0,1,1) \end{bmatrix}$$

15/18

$$\mathcal{B}_{1} = \left\{ (1,0,1), (0,1,1) \right\} \qquad V = \left\{ (x,y,x+y) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), (-2,1,-1) \right\} \qquad \text{dim } V = 2$$

$$d) \ \mathcal{B}_{1} \xrightarrow{T} \mathcal{B}_{2}$$

$$(1,1,2) = \mathbf{1} \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1) \qquad T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$(-2,1,-1) = -2 \cdot (1,0,1) + \mathbf{1} \cdot (0,1,1)$$

$$e) \ (-3,2,-1) \qquad \mathbf{1.} \quad \text{način: pomoću matrice prijelaza}$$

$$X_{\mathcal{B}_{1}} = T_{\mathcal{B}_{1} \to \mathcal{B}_{2}} X_{\mathcal{B}_{2}} \xrightarrow{X_{\mathcal{B}_{2}}} X_{\mathcal{B}_{2}} \xrightarrow{X_{\mathcal{B}_{2}}} X_{\mathcal{B}_{2}} \xrightarrow{X_{\mathcal{B}_{2}}} X_{\mathcal{B}_{2}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$X_{\mathcal{B}_{2}} = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$X_{\mathcal{B}_{2}} = \begin{bmatrix} \frac{1}{3} \\ \frac{5}{3} \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

 $\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3,2,-1) =$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

7)

$$(-3,2,-1)=\alpha_1\cdot(1,1,2)$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) +$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

-1)}

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

2. način: bez korištenja matrice prijelaza

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\dim V = 2$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\alpha_1 - 2\alpha_2 = -3$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

$$\dim V = 2$$

$$\alpha_1 - 2\alpha_2 = -3$$

 $\alpha_1 + \alpha_2 = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

$\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

2. način: bez korištenja matrice prijelaza

$$\alpha_1 + \alpha_2 = 2$$

$$2\alpha_1 - \alpha_2 = -1$$

 $\alpha_1 - 2\alpha_2 = -3$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

2. način: bez korištenja matrice prijelaza

$$\dim V = 2$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

2. način: bez korištenja matrice prijelaza

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

 $\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

2. način: bez korištenja matrice prijelaza

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & \\ \hline 1 & -2 & -3 \\ \hline \end{array}$$

 $\dim V = 2$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

$$\dim V = 2$$

2. način: bez korištenja matrice prijelaza

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$1 - 2\alpha_2 = -3$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & -2 & -3 \\ 1 & 1 & 2 \\ \end{array}$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

$$\dim V = 2$$

laza

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & -2 & -3 \\ 1 & 1 & 2 \\ 2 & -1 & -1 \\ \end{array}$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

$$\dim V = 2$$

laza

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & -2 & -3 \\ 1 & 1 & 2 \\ 2 & -1 & -1 \\ \hline \end{array}$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

 $\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|ccccc} \alpha_1 & \alpha_2 & & \\ \hline \hline (1) & -2 & -3 & \\ 1 & 1 & 2 & \\ 2 & -1 & -1 & \\ \hline \end{array}$$

$$\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$$

 $\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & -2 & -3 & / \cdot (-1) \\ 1 & 1 & 2 & \\ 2 & -1 & -1 & \end{array}$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

$$\dim V = 2$$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$$

$$\dim V = 2$$

 $(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $D_2 = \{(1, 1, 2), (-2, 1, -1)\}$

$\dim V = 2$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3$$

$$\alpha_1 + \alpha_2 = 2$$

$$2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

~2 ((-,-,-,, (-,-, -,))

$\dim V = 2$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

~2 ((-,-,-,, (-,-, -,))

$\dim V = 2$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$

$$\dim V = 2$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

~2 ((-,-,-,, (-,-, -,)

2. način: bez korištenja matrice prijelaza

 $(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$

$$\dim V = 2$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

~2 ((-,-,-), (-,-, -))

2. način: bez korištenja matrice prijelaza

 $(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $\dim V = 2$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

 $D_2 = \{(1, 1, 2), (2, 1, 1)\}$

1 -2 -3

2. način: bez korištenja matrice prijelaza

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

 $\alpha_1 - 2\alpha_2 = -3$ $\alpha_1 + \alpha_2 = 2$ $2\alpha_1 - \alpha_2 = -1$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\alpha_1 - 2\alpha_2 = -3$$

$$\alpha_1 + \alpha_2 = 2$$

$$2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $\dim V = 2$

 $\alpha_1 - 2\alpha_2 = -3$ $\alpha_1 + \alpha_2 = 2$ $2\alpha_1 - \alpha_2 = -1$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\begin{array}{c|ccccc}
1 & -2 & -3 \\
1 & 1 & 2 \\
\hline
2 & -1 & -1 \\
\hline
1 & -2 & -3 \\
0 & 3 & 5 \\
\hline
0 & 3 & 5
\end{array}$$

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$\dim V = 2$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\begin{array}{c|ccccc} \alpha_1 & \alpha_2 & & & \\ \hline 1 & -2 & -3 & & \\ 1 & 1 & 2 & & \\ \hline 2 & -1 & -1 & & \\ \hline 1 & -2 & -3 & & \\ 0 & 3 & 5 & & \\ \hline 0 & 3 & 5 & & \\ \end{array}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

 $\dim V = 2$

2. način: bez korištenja matrice prijelaza

 $(-3,2,-1)=\alpha_1\cdot(1,1,2)+\alpha_2\cdot(-2,1,-1)$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & & \\ \hline 1 & -2 & -3 & & \\ 0 & \boxed{3} & 5 & / \cdot \frac{2}{3} \end{array}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|ccccc} \alpha_1 & \alpha_2 & & & \\ \hline 1 & -2 & -3 & \\ 1 & 1 & 2 & \\ \hline 2 & -1 & -1 & \\ \hline 1 & -2 & -3 & \\ 0 & 3 & 5 & \\ \hline 0 & 3 & 5 & \\ \hline \end{array}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\mathcal{B}_1 = ig\{ (1,0,1), \, (0,1,1) ig\}$$
 $\mathcal{B}_2 = ig\{ (1,1,2), \, (-2,1,-1) ig\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3, 2, -1) = \alpha_1 \cdot (1, 1, 2) + \alpha_2 \cdot (-2, 1, -1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\frac{}{}$$
 $\frac{}{}$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

 $(-3,2,-1)=\alpha_1\cdot(1,1,2)+\alpha_2\cdot(-2,1,-1)$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\}$$

 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\dim V = 2$$

$$(-3,2,-1)=lpha_1\cdot (1,1,2)+lpha_2\cdot (-2,1,-1)$$

$$\left. \begin{array}{l} \alpha_1 - 2\alpha_2 = -3 \\ \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = -1 \end{array} \right\}$$

$$\begin{array}{c|ccccc}
\alpha_1 & \alpha_2 & & & \\
1 & -2 & -3 & & \\
0 & 3 & 5 & / \cdot \frac{2}{3} \\
1 & 0 & \frac{1}{3} \\
0 & 3 & 5
\end{array}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$

 $\dim V = 2$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|ccccc}
\alpha_1 & \alpha_2 \\
\hline
1 & -2 & -3 & + \\
0 & 3 & 5 & / \cdot \frac{2}{3} \\
\hline
1 & 0 & \frac{1}{3} & \longrightarrow & \alpha_1 = \frac{1}{3}
\end{array}$$

$$\mathcal{B}_1 = ig\{ (1,0,1),\, (0,1,1) ig\}$$
 $\mathcal{B}_2 = ig\{ (1,1,2),\, (-2,1,-1) ig\}$

$$\dim V = 2$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

$$\mathcal{B}_1 = ig\{ (1,0,1),\, (0,1,1) ig\}$$
 $\mathcal{B}_2 = ig\{ (1,1,2),\, (-2,1,-1) ig\}$

$$\dim V = 2$$

 α_2

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 =$$

$$\alpha_1 + \alpha_2 = 2$$

$$2\alpha_1 - \alpha_2 = -1$$

$$\begin{array}{c|ccccc}
1 & -2 & -3 & \leftarrow \\
\hline
0 & 3 & 5 & / \cdot \frac{2}{3} \\
\hline
1 & 0 & \frac{1}{3} & \longrightarrow \\
\end{array}$$

$$\mathcal{B}_1 = ig\{ (1,0,1),\, (0,1,1) ig\}$$
 $\mathcal{B}_2 = ig\{ (1,1,2),\, (-2,1,-1) ig\}$

$$\dim V = 2$$

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 α_2

$$\mathcal{B}_1 = ig\{ (1,0,1),\, (0,1,1) ig\}$$
 $\mathcal{B}_2 = ig\{ (1,1,2),\, (-2,1,-1) ig\}$

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\}$$
 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

$$V = \{(x, y, \underbrace{x+y}) : x, y \in \mathbb{R}\}$$

$$z = x + y$$

$$\mathcal{B}_1 = \big\{ (1,0,1), (0,1,1) \big\}$$

 $\mathcal{B}_2 = \big\{ (1,1,2), (-2,1,-1) \big\}$

$$V = \{(x, y, \underbrace{x + y}) : x, y \in \mathbb{R}\}$$

$$z = x + y$$

$$x + y - z = 0$$

$$\mathcal{B}_{1} = \left\{ (1,0,1), \, (0,1,1) \right\} \qquad \qquad V = \left\{ (x,y, x+y) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), \, (-2,1,-1) \right\} \qquad \qquad z = x+y$$
ravnina kroz ishodište $\rightarrow x+y-z=0$

$$\mathcal{B}_{1} = \left\{ (1,0,1), \, (0,1,1) \right\} \qquad \qquad V = \left\{ (x,y, \underbrace{x+y}) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), \, (-2,1,-1) \right\} \qquad \qquad z = x+y$$
ravnina kroz ishodište $\longrightarrow x+y-z=0$

• Potprostor V je ravnina kroz ishodište s jednadžbom x + y - z = 0.

$$\mathcal{B}_{1} = \left\{ (1,0,1), \, (0,1,1) \right\} \qquad \qquad V = \left\{ (x,y, \underbrace{x+y}) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), \, (-2,1,-1) \right\} \qquad \qquad z = x+y$$
ravnina kroz ishodište $\longrightarrow x+y-z=0$

- Potprostor V je ravnina kroz ishodište s jednadžbom x + y z = 0.
- Potprostor V je skup svih rješenja homogenog sustava x + y z = 0 koji se sastoji od jedne linearne jednadžbe s tri nepoznanice.

$$\mathcal{B}_{1} = \left\{ (1,0,1), \, (0,1,1) \right\} \qquad \qquad V = \left\{ (x,y,\underbrace{x+y}) : x,y \in \mathbb{R} \right\}$$

$$\mathcal{B}_{2} = \left\{ (1,1,2), \, (-2,1,-1) \right\} \qquad \qquad z = x+y$$
 ravnina kroz ishodište $\longrightarrow x+y-z=0$

- Potprostor V je ravnina kroz ishodište s jednadžbom x + y z = 0.
- Potprostor V je skup svih rješenja homogenog sustava x + y z = 0 koji se sastoji od jedne linearne jednadžbe s tri nepoznanice.
- Vektorska jednadžba ravnine s istaknutim vektorima iz baze \mathcal{B}_1

$$\vec{r} = u \cdot (1, 0, 1) + v \cdot (0, 1, 1), \quad u, v \in \mathbb{R}$$

$$\mathcal{B}_1 = \big\{ (1,0,1), \, (0,1,1) \big\}$$
 $V = \big\{ (x,y,x+y) : x,y \in \mathbb{R} \big\}$ $\mathcal{B}_2 = \big\{ (1,1,2), \, (-2,1,-1) \big\}$ $z = x+y$ ravnina kroz ishodište $x+y-z=0$

- Potprostor V je ravnina kroz ishodište s jednadžbom x + y z = 0.
- Potprostor V je skup svih rješenja homogenog sustava x+y-z=0 koji se sastoji od jedne linearne jednadžbe s tri nepoznanice.
- Vektorska jednadžba ravnine s istaknutim vektorima iz baze \mathcal{B}_1

$$ec{r}=u\cdot(1,0,1)+v\cdot(0,1,1),\quad u,v\in\mathbb{R}$$

ullet Vektorska jednadžba ravnine s istaknutim vektorima iz baze \mathcal{B}_2

$$\vec{r} = u \cdot (1, 1, 2) + v \cdot (-2, 1, -1), \quad u, v \in \mathbb{R}$$

$$U = \{(x, y, x + y + 1) : x, y \in \mathbb{R}\}$$

$$U = \{(x, y, (x + y + 1)) : x, y \in \mathbb{R}\}$$

$$z = x + y + 1$$

$$U = \{(x, y, x + y + 1) : x, y \in \mathbb{R}\}$$

$$z = x + y + 1$$

$$x + y - z + 1 = 0$$

• Je li U potprostor od \mathbb{R}^3 ?

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

• Je li U potprostor od \mathbb{R}^3 ?

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

 U n-dimenzionalnom afinom prostoru k-ravnina je zadana s točkom i k linearno nezavisnih vektora.

• Je li U potprostor od \mathbb{R}^3 ?

$$U = \left\{ \left(x, y, x + y + 1 \right) : x, y \in \mathbb{R} \right\}$$
ravnina koja ne prolazi kroz ishodište $x + y + 1 = 0$

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

 U n-dimenzionalnom afinom prostoru k-ravnina je zadana s točkom i k linearno nezavisnih vektora. Svaka k-ravnina je rješenje sustava od n – k nezavisnih linearnih jednadžbi s n nepoznanica.

• Je li U potprostor od \mathbb{R}^3 ?

$$U = \left\{ (x, y, x + y + 1) : x, y \in \mathbb{R} \right\}$$
ravnina koja ne prolazi kroz ishodište $x + y + 1 = 0$

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

- U n-dimenzionalnom afinom prostoru k-ravnina je zadana s točkom i k linearno nezavisnih vektora. Svaka k-ravnina je rješenje sustava od n – k nezavisnih linearnih jednadžbi s n nepoznanica.
- k-ravnina je potprostor jedino ako prolazi kroz ishodište, tj. ako sadrži nulvektor.

• Je li U potprostor od \mathbb{R}^3 ?

$$U = \left\{ \left(x, y, x + y + 1 \right) : x, y \in \mathbb{R} \right\}$$
ravnina koja ne prolazi kroz ishodište $x + y + 1 = 0$

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

- U n-dimenzionalnom afinom prostoru k-ravnina je zadana s točkom i k linearno nezavisnih vektora. Svaka k-ravnina je rješenje sustava od n – k nezavisnih linearnih jednadžbi s n nepoznanica.
- k-ravnina je potprostor jedino ako prolazi kroz ishodište, tj. ako sadrži nulvektor. Ravnine koje nisu potprostori zovemo linearnim mnogostrukostima.

18 / 18