Fonctions polynômes du second degré.

Archimède de Syracuse physicien, mathématicien et ingénieur au III° siècle avant J-C. Il démontre de nombreuses propriétés sur les paraboles dans « la quadrature de la parabole ».

I. Définition.

Définition : On appelle fonction polynôme de degré 2 ou trinôme du second degré, toute fonction f définie sur IR par une expression de la forme : $f(x) = ax^2 + bx + c$. où les coefficients a, b et c sont des réels donnés et $a \ne 0$.

☑ Savoir-faire: Savoir reconnaître les coefficients d'un trinôme du second degré:

Identifie les coefficients des trinômes suivants:

II. Forme canonique d'une fonction polynôme du second degré.

Exemple : Soit la fonction f définie sur IR par : $f(x) = 2x^2 - 20x + 10$. On veut exprimer la fonction f sous sa forme canonique : f(x) = .2 $(x - x^2)^2 + \beta$. $2x^2 - 20x + 10 = 2(x^2 - 10x) + 10$ $x^2 - 10x + 25 = (x - 5)^2 = 0$, $x^2 - 10x$, $= (x - 5)^2 - 25$ $2[(x - 5)^2 - 25] + 10 = 2(x - 5)^2 - 50 + 10 = 2(x - 5)^2 - 40$

Forme genérale:

$$\frac{1}{|A|} \frac{(x^2 + b)}{|A|} \frac{(x^2 + \frac{b}{a})^2}{(x^2 + \frac{b}{a})^2} = \frac{(x + \frac{b}{a})^2}{(x^2 + \frac{b}{a})^2} = \frac{(x + \frac{b}{a})^2}{(x^2 + \frac{b}{a})^2} = \frac{(x + \frac{b}{a})^2}{(x^2 + b)^2} = \frac{(x + \frac{b}{a})^2}{(x^2$$

Remarque : Si
$$f(x) = ax^2 + bx + c$$
. on a alors $\alpha = \frac{-b}{2c}$ et $\beta = \frac{-b^2 + 4ac}{ac}$

 \boxtimes Savoir-faire: Savoir trouver la forme canonique d'un trinôme du second degré: Détermine la forme canonique de la fonction f ayant pour expression $f(x) = -x^2 + 4x - 1$.

$$-x^{2} + 4x - 1 = -(x^{2} - 4x) - 1$$

$$x^{2} - 2x + 4 = (x - 2)^{2} \Rightarrow x^{2} - 4x - (x - 2)^{2} - 4$$

$$= -(x - 2)^{2} - 4 - 1$$

$$= -(x - 2)^{2} + 4 - 1$$

$$= -(x - 2)^{2} + 3$$

III. Représentation graphique d'une fonction polynôme du second degré.

Propriété : Soit f définie sur IR par $f(x) = ax^2 + bx + c$. La courbe représentative de f est une Son sommet a pour abscisse $x_s = \frac{-b}{2a}$... La droite qui a pour équation $x_s = \frac{-b}{2a}$...est l'axe de symétrie de la

- ◆ Si a < 0 alors la parabole a les branches tournées vers le ...bas......

Remarque : En utilisant la forme canonique, on obtient directement les coordonnées du sommet de la parabole.

☑ Savoir-faire : Savoir dresser le tableau de variations d'une fonction trinôme du second degré :

1) Dresser le tableau de variations de la fonction f_1 définie par $f_1(x) = 2x^2 + 3x - 5$: frest un trinome du second degre sa courbe est une parabole tournée vers le haut (a=2>0) et l'abssisse de son sommet $x_5 = \frac{-b}{2x} = \frac{-3}{4}$

2) Dresser le tableau de variations de la fonction f_1 définie par $f_1(x) = -x^2 + 2x + 3$:

a=-1 <0 Cfzest un parabole tournée vers le bas ~==== 1 fzest craissante sur J-∞, 1 Let décroissante sur I1; + oo [

IV. Résolution d'une équation du second degré.

☑ Savoir-faire: Savoir résoudre une équation produit nul du second degré :

Résoudre l'équation (E₁) : (-2x + 3) (3x + 5) = 0.

phrase magique in produit est nul si est sevement si un aux mains des facteurs est nul
$$-2x+3=0$$
 $3x+5=0$ $S(E_1)=\left\{-\frac{5}{3},\frac{3}{2}\right\}$

$$x=\frac{3}{2}$$
 $x=\frac{5}{3}$

Remarque:
$$(-2x+3)(3x+5) = -2(x-\frac{3}{2}) \times 3(x+\frac{5}{3}) = -6(x-\frac{3}{2})(x+\frac{5}{3})$$

Savoir-faire: Savoir résoudre une équation du type (E): $x^2 = a$: Résoudre les équations suivantes :

$$\bullet (E_1): x^2 = 16$$

$$\phi(E_2): x^2 = 13$$

$$\bullet$$
(E₃): $x^2 = 0$

$$◆(E_4): x^2 = -4$$

$rac{4}{5}(r) = 2(r+1)(r-3) - 3(r+1)^2$ $rac{4}{5}(r) = r^2 - 25$ $rac{4}{5}(r) = (r+1)^2 - (2r+3)^2$
$f(x) = \frac{(x+1)(2(x-3)-3(x+1)]}{f(x)=(x+1)(-x-9)} g(x) = \frac{x^2-5^2}{g(x-5)(x+5)} h(x) = \frac{(x+1)-(2x+3)}{(x+1)+(2x+3)}$
f(x)=(x+1)(-x-9) $g(x)=(x-5)(x+5)$ $h(x)=(-x-2)(3x+9)$
Proprieté: Si x_1 et x_2 sont deux solutions de l'équation (E): $x^2 - sx + p = 0$, alors $x_1 + x_2 = s$ et $x_1x_2 = p$.
$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_4x_2(E)$ $x^2-5+6=0$ x_4 $x_2=6$ $x_2=3$
Définition : On appelle discriminant du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.
M. Covair faire : Covair polaular la dispriminant d'un tripôme :
☑ <u>Savoir-faire : Savoir calculer le discriminant d'un trinôme :</u> Dans chaque cas ci-dessous calcule le discriminant :
a= 2 b= 3 c= 5 a= 1 b= -1 c= 0 a= -1 b= 0 c= 3 a= -2 b= 3 c= 20
$\Delta = 3^2 - 4 \times 2 \times (-5)$ $\Delta = (-1)^2 - 4 \times 4 \times C$ $\Delta = 6^2 - 4 \times (-1) \times 3$ $\Delta = 3^2 - 4 \times (-2) \times 26$
$\Delta = 49$ $\Delta = 12$ $\Delta = 169$
Propriété : Soit f une fonction polynôme du deuxième degré définie sur IR par : $f(x) = ax^2 + bx + c$ alors
- Si $\Delta = 0$: $\Delta \left(x + \frac{b}{2a} \right)^2$ - Si $\Delta > 0$: $\Delta \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b - \sqrt{\Delta^2}}{2a} \right)$
Démonstration exigible: En represent la forme canonique $ax^2 + bx + c = a(x + \frac{b}{2a})^2 + \frac{b^2 + 4ac}{4a}$ $a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a} = a(x + \frac{b}{2a})^2 - \frac{a}{4a^2}$ $5i A>0 = a(x + \frac{b}{2a}) - \sqrt{\frac{a}{4a^2}} \left[(x + \frac{b}{2a}) + \sqrt{\frac{a}{4a^2}} \right] = a(x - \frac{b\sqrt{a}}{2a})(x + \frac{b+\sqrt{a}}{2a})(x - \sqrt{a})(x + \sqrt{a})$
$(x + b)^2 - \frac{b^2 - 4ac}{a} = a((x + b)^2 - \frac{a}{a})$
$\frac{1}{2a} = \frac{1}{2a} $
$si \Delta > 0 - a [(x + \frac{1}{2a}) - \sqrt{\frac{1}{4a^2}}][(x + \frac{1}{2a}) + \sqrt{\frac{1}{4a^2}}] - a [x - \frac{1}{2a}](x + \frac{1}{2a})$
☑ Savoir-faire: Savoir factoriser une expression du second degré:
Soit f la fonction définie sur IR par : $f(x) = x^2 + x - 6$.
$a = 1, b = 1, c = 6 \qquad \Delta = 1^{2} - 4 \times 1 \times (-6) = 25$ $f(x) = 1 \times (x - \frac{-1 - \sqrt{25}}{2 \times 1})(x - \frac{-1 + \sqrt{25}}{2 \times 1})$ $f(x) = (x + 3)(x - 2)$
(1x) = (x + 3)(x - 2)
Propriété : Soit f une fonçtion polynôme du deuxième degré définie sur IR par : $f(x) = ax^2 + bx + c$ alors
-Si Δ < 0: l'equation (E): $f(x) = 0$ n'a pas de solution $\frac{1}{2}$ = $\frac{1}$
-Si \(= 0 : l'equation (E): \(f(x) = 0 \) a une salution act = \(\frac{1}{2} \) a
-SIΔ>0:equation.(Elif(x)
$e^{+} \propto_{2} = \frac{-6 + \sqrt{\Delta}}{2}$
✓ Savoir-faire : Savoir résoudre toutes les équations du second degré :
$ \phi(E_1): x^2 + x - 6 = 0 \qquad \phi(E_2): -2x^2 - 4x + 30 = 0 \qquad \phi(E_3): -x^2 + 3x - 5 = 0 \Delta = 1^2 - 4 \times 1 \times (-6) = 75 \qquad \Delta = (-4)^2 - 4 \times (-2) \times 30 = 256 \qquad \Delta = 3^2 - 4 \times (-1) \times (-5) = -11 $
$\Delta = 1^2 - 4 \times 1 \times (-6) = 75$ $\Delta = (-4)^2 - 4 \times (-2) \times 30 = 256$ $\Delta = 3^2 - 4 \times (-1) \times (-5) = -11$ $\Delta > 0$ Donc (E1) $\Delta = 2$ $\Delta > 0$ Donc (E2) $\Delta < 0$ Donc
solutions solutions l'équation (E3)
$3c_1 = \frac{b-\sqrt{a}}{2a}$ et $x_2 = \frac{b+\sqrt{a}}{2a}$ $x_1 = \frac{4-\sqrt{25}c}{2x(-2)}$ $x_2 = \frac{4+\sqrt{25}c}{2x(-2)}$ $x_1 = \frac{4-\sqrt{25}c}{2x(-2)}$
solutions solutions $x_1 = \frac{16-\sqrt{a}}{2a}$ et $x_2 = \frac{16+\sqrt{a}}{2a}$ $x_1 = \frac{4-\sqrt{25}c}{2x+2}$ $x_2 = \frac{4+\sqrt{25}c}{2x+2}$ $x_1 = \frac{4+\sqrt{25}c}{2x+2}$ $x_2 = \frac{4+\sqrt{25}c}{2x+2}$ $x_3 = \frac{4+\sqrt{25}c}{2x+2}$ $x_4 = -3$ $x_2 = 2$ $x_4 = -3$
$Rq = x^2 + x - 6 = (x+3)(x-2)$ $Rq = -2x^2 - 4x + 30 = -2(x-3)(x+5)$

V. Signes d'une fonction polynôme du second degré.

	Δ>0	$\Delta = 0$	Δ < 0
a > 0	y=0	y=0)= O
	i'equation $f(x)=0$ a 2 solution 5, on peut factoriser f $f(x)=a(x-x_1)(x-x_2)$	f(x)=0 at solutions $f(x)=a(x-x_1)^2$	f(x)=0 n'a pas de solution, on ne peut pas factoriser $f(x)$
a < 0	y = 0	y = O	y = 0

- ☑ Savoir-faire : Savoir résoudre les inéquations du second degré.
- 1) Résoudre les inéquations suivantes :
- \bullet (I₁): $x^2 + x 6 > 0$

On pose (E1) x2+x-6=0 = 25 $\Delta > 0$ (E₁) a 2 solution $x_1 = -3$ $x_2 = 2$

x	-00	-5		2	+∞
Signe de x²+x-6	+	Ò		P	+
1.)=]-	· ~ ; ~	-3 [UJ	2;	+ 00 [

 $(I_2): -2x^2 - 4x + 30 \le 0$ On pose $(E_2): -2 \times 2^2 - 4x + 36 = 6$

A=256 (E2) a 2 solution $x_4 = -5$ $x_2 = 3$

2) Soit f et g les fonctions définie sur IR par $f(x) = -2x^2 + 3x + 5$ et $g(x) = x^2 + x - 6$. Résoudre (I_1): $-2x^2 + 3x + 5 \le x^2 + x - 6$. Interpréter le résultat.

 $(1_4) \cdot f(x) = g(x)$

 $(1_1) \neq 0 f(x) - g(x) = 6$

 $(11)^{40} - 3 \times^2 + 2 \times + 11 = 0$ On pose (E): -3x2+2x+11=0

 $\Delta = 2^2 - 4 \times (-3) \times 11 = 136$ D > 0 $Donc(E) = 2 \text{ solutions} = \frac{-2 \cdot 1736}{-6}$

