

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Wed Nov 14 14:58:48 EST 2007

=====

Application No: 10567681 Version No: 1.0

Input Set:

Output Set:

Started: 2007-10-29 14:39:32.564
Finished: 2007-10-29 14:39:33.275
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 711 ms
Total Warnings: 9
Total Errors: 0
No. of SeqIDs Defined: 11
Actual SeqID Count: 11

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)

SEQUENCE LISTING

<110> Kureha Chemical Industry Company Limited

MUKAIDA, Naofumi

FUJII, Chifumi

<120> Polypeptide associated with hepatocellular carcinoma, polynucleotide encoding the polypeptide and RNA molecule supressing the polypeptide expression

<130> 0701011W01

<140> 10567681

<141> 2007-10-29

<150> PCTJP04/11669

<151> 2003-08-11

<160> 11

<170> PatentIn version 3.1

<210> 1

<211> 326

<212> PRT

<213> Homo sapiens

<400> 1

Met Leu Leu Ser Lys Phe Gly Ser Leu Ala His Leu Cys Gly Pro Gly
1 5 10 15

Gly Val Asp His Leu Pro Val Lys Ile Leu Gln Pro Ala Lys Ala Asp
20 25 30

Lys Glu Ser Phe Glu Lys Ala Tyr Gln Val Gly Ala Val Leu Gly Ser

35

40

45

Gly Gly Phe Gly Thr Val Tyr Ala Gly Ser Arg Ile Ala Asp Gly Leu
50 55 60

Pro Val Ala Val Lys His Val Val Lys Glu Arg Val Thr Glu Trp Gly
65 70 75 80

Ser Leu Gly Gly Ala Thr Val Pro Leu Glu Val Val Leu Leu Arg Lys
85 90 95

Val Gly Ala Ala Gly Gly Ala Arg Gly Val Ile Arg Leu Leu Asp Trp
100 105 110

Phe Glu Arg Pro Asp Gly Phe Leu Leu Val Leu Glu Arg Pro Glu Pro
115 120 125

Ala Gln Asp Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Asp Glu
130 135 140

Pro Leu Ala Arg Arg Phe Phe Ala Gln Val Leu Ala Ala Val Arg His
145 150 155 160

Cys His Ser Cys Gly Val Val His Arg Asp Ile Lys Asp Glu Asn Leu
165 170 175

Leu Val Asp Leu Arg Ser Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser
180 185 190

Gly Ala Leu Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg
195 200 205

Val Tyr Ser Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg
210 215 220

Ser Ala Thr Val Trp Ser Leu Gly Val Leu Leu Tyr Asp Met Val Cys
225 230 235 240

Gly Asp Ile Pro Phe Glu Gln Asp Glu Glu Ile Leu Arg Gly Arg Leu
245 250 255

Leu Phe Arg Arg Arg Val Ser Pro Glu Cys Gln Gln Leu Ile Arg Trp
260 265 270

Cys Leu Ser Leu Arg Pro Ser Glu Arg Pro Ser Leu Asp Gln Ile Ala
275 280 285

Ala His Pro Trp Met Leu Gly Ala Asp Gly Gly Ala Pro Glu Ser Cys
290 295 300

Asp Leu Arg Leu Cys Thr Leu Asp Pro Asp Asp Val Ala Ser Thr Thr
305 310 315 320

Ser Ser Ser Glu Ser Leu
325

<210> 2

<211> 2392

<212> DNA

<213> Homo sapiens

<400> 2
agcggaccga cgcgacacgc cgtgcgcctc cgccggctgctgctacgaaaaac gagtcccggaa 60
gcggccccgc gccccggca cccggccctc gcccacccga agacaggcgc ccagctgccc 120
cgccgtctcc ccagcttagcg cccggccgccc gcccgcctcgc gggccccggg cgaaagggggg 180
cggggtccccg attcgccccg ccccccggaa gggatacgcg gcgcggcggc ccaaaacccc 240
cggggcgaggc ggccggggcg ggtgaggcgc tccgcctgct gctcgctcac gcggtccccg 300
cggggccttcc gggcccaactg cgccgcgcgg accgcctcgg gtcggacgg ccggtgttccc 360
cggcgcgccg ctgcggccggaa tcggccgcgg ctgcggccgc tggggctcgg ggctccgggg 420
aggccgtcgc ccgcgtatgct gctctccaag ttccggctccc tggcgcacct ctgcggggccc 480
ggcggcggtgg accacctccc ggtgaagatc ctgcagccag ccaaggcggaa caaggagagc 540
ttcgagaagg cgtaccaggt gggcgccgtg ctgggtagcg gcccgttcgg cacggtctac 600
gcgggttagcc gcatcgccga cgggctcccc gtggctgtga agcacgtggta gaaggagcgg 660
gtgaccgagt gggcagccct gggcgccgcg accgtgcccc tggaggtggta gctgctgcgc 720
aagggtggccg cggcgccggcgg cgccgcgcggc gtcatccgcc tgcggactg gttcgagcgg 780
cccgacggct tcctgctggta gctggagcgg cccgagccgg cgcaaggaccc ttccgacttt 840

atcacggagc	gcggcgccct	ggacgagccg	ctggcgccc	gcttcttcg	gcaggtgctg	900
gccgcgggtgc	gccactgcca	cagctgcggg	gtcgtgcacc	gacgacattaa	ggacgaaaat	960
ctgcttgtgg	acctgcgctc	cggagagctc	aagctcatcg	acttcggttc	gggtgcgctg	1020
ctcaaggaca	cggctcacac	cgaattcgac	ggcacccgag	tgtacagccc	ccggagtg	1080
atccgctacc	accgctacca	cgggcgctcg	gccaccgtgt	ggtcgtggg	cgtgcttctc	1140
tacgatatgg	tgtgtggga	catccccttc	gagcaggacg	aggagatcct	ccgaggccgc	1200
ctgctttcc	ggaggagggt	ctctccagag	tgccagcagc	tgatccggtg	gtgcctgtcc	1260
ctgcggccct	cagagcgccc	gtcgctggat	cagattgcgg	ccatccctg	gatgctgggg	1320
gctgacgggg	gcgcggcgg	gagctgtgac	ctgcggctgt	gcaccctcga	ccctgatgac	1380
gtggccagca	ccacgtccag	cagcgagagc	ttgtgaggag	ctgcacctga	ctggagacta	1440
ggggaccacc	tgcctggcc	agacctggga	cgcccccaga	ccctgacttt	ttcctgcgtg	1500
ggccgtctcc	tcctgcccggaa	gcagtgaccc	ctgaccctg	gtgaccttcg	ctttgagtgc	1560
cttttgaacg	ctgggtcccg	gggacttggt	tttctcaagc	tctgtctgtc	caaagacgct	1620
ccggtcgagg	tcccgctgc	cctgggtgga	tacttgaacc	ccagacgccc	ctctgtgtcg	1680
ctgtgtccgg	aggcggcctt	ccatctgcc	tgcccacccg	gagcttttc	cgccggcgca	1740
gggtcccaag	cccacccccc	gcctcagtc	ctgcggtgt	cgtctggca	cgtcctgcac	1800
acacaatgca	agtccctggcc	tccgcgcccc	ccgcggccacg	cgagccgtac	ccgcggccaa	1860
ctctgttatt	tatggtgtga	ccccctggag	gtgcctcg	cccaccgggg	ctatttattg	1920
ttaatttat	ttgttgaggt	tatttcctct	gagcagtctg	cctctcccaa	gcggcagggg	1980
acagtgggg	ggcaggggag	ggggtgtggctg	tggtccagg	accccaggcc	ctgattcctg	2040
tgccctggcgt	ctgtctggc	ccgcctgtc	agaagatgaa	catgtatagt	ggctaactta	2100
aggggagtg	gtgaccctga	cacttccagg	cactgtgcc	agggtttggg	ttttaattta	2160
ttgactttgt	acagtcgtct	tgtgggtct	gaaagctggg	gtggggccag	agcctgagcg	2220
ttaatttat	tcagtagctg	tgttgtgtg	aatgcggtgt	gtgcaggcat	cgcagatgg	2280
ggttcttca	gttcaaaagt	gagatgtctg	gagatcatat	tttttatac	aggtatttca	2340
attaaaaatgt	ttttgtacat	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aa	2392

<210> 3

<211> 28

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; Pim-3 sense primer

<400> 3

aagcagtgac ctctgacccc tggtgacc

28

<210> 4

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; Pim-3 antisense primer

<400> 4

cagcggaacc gtcattgcc aatgg

25

<210> 5

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; GAPDH sense prime

<400> 5

accacagtcc atgcattcac

20

<210> 6

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; GAPDH antisense primer

<400> 6

tccaccaccc tgttgctgta

20

<210> 7

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; Probe used in first screening of hPim-3

<400> 7

ctgtgaagca cgtggtaag

20

<210> 8

<211> 19

<212> PRT

<213> Artificial sequence

<220>

<223> chemically synthesized; Epitop used in the production of antibody to hPim-3 polypeptide

<400> 8

Cys Gly Pro Gly Gly Val Asp His Leu Pro Val Lys Ile Leu Gln Pro

1 5 10

Ala Lys Ala

<210> 9

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> chemically synthesized; Targeted mRNA

<400> 9

gcacgtggtg aaggagcgcg g

21

<210> 10

<211> 21

<212> RNA

<213> Artificial sequence

<220>

<223> chemically synthesized; siRNA in example 9

<400> 10

ccgcgcuccu ucaccacgug c

21

<210> 11

<211> 19

<212> RNA

<213> Artificial sequence

<220>

<223> chemically synthesized; Random RNA fragment

<400> 11

gcgcgcuuug uaggauucg

19