Lecture 11: Design Theory II

Today's Lecture

- 1. Closures, superkeys & keys
 - ACTIVITY: The key or a key?
- 2. Boyce-Codd Normal Form
 - ACTIVITY
- 3. Decompositions & 3NF
 - ACTIVITY
- 4. MVDs
 - ACTIVITY

Lecture 10 > Section 2 > Closures

(بستار) Closures

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
F = {name} → {color}

{category} → {dept}

{color, category} →
{price}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
F = {name} → {color}

{category} → {dept}

{color, category} →
{price}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ =
{name, category}
```

```
{name, category}+ =
{name, category, color}
```

```
F = {name} → {color}

{category} → {dept}

{color, category} →
{price}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category, color}

{name, category}+ =
  {name, category, color, dept}
```

{name, category}+ =

{name, category}+ =

{name, category}

```
F = {name} → {color}
  {category} → {dept}
  {color, category} →
  {price}
```

```
{name, category}+ =
{name, category, color, dept,
price}
```

Example

R(A,B,C,D,E,F)

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute
$$\{A,B\}^+ = \{A, B,$$

Compute
$$\{A, F\}^+ = \{A, F,$$

Example

Compute
$$\{A,B\}^+ = \{A, B, C, D\}$$

Compute
$$\{A, F\}^+ = \{A, F, B\}$$

Example

$$R(A,B,C,D,E,F)$$

$$\{A,B\} \rightarrow \{C\}$$

$$\{A,D\} \rightarrow \{E\}$$

$$\{B\} \rightarrow \{D\}$$

$$\{A,F\} \rightarrow \{B\}$$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

1. Closures, Superkeys & Keys

What you will learn about in this section

- 1. Closures Pt. II
- 2. Superkeys & Keys
- 3. ACTIVITY: The key or a key?

Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
 - 1. Compute X⁺
 - 2. Check if A∈X⁺

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the **Split/combine** rule:

$$X \rightarrow A_1, ..., X \rightarrow A_n$$
implies
$$X \rightarrow \{A_1, ..., A_n\}$$

Example:
Given F =

```
\{A,B\} \rightarrow C
\{A,D\} \rightarrow B
\{B\} \rightarrow D
```

```
Step 1: Compute X<sup>+</sup>, for every set of attributes X:
```

```
{A}+ = {A}

{B}+ = {B,D}

{C}+ = {C}

{D}+ = {D}

{A,B}+ = {A,B,C,D}

{A,C}+ = {A,C}

{A,D}+ = {A,B,C,D}

{A,B,C}+ = {A,B,C,D}

{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}

{B,C,D}+ = {B,C,D}

{A,B,C,D}+ = {A,B,C,D}
```

No need to compute all of these- why?

Example:
Given F =

 ${A,B} \rightarrow C$ ${A,D} \rightarrow B$ ${B} \rightarrow D$

```
Step 1: Compute X<sup>+</sup>, for every set of attributes X:
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}
```

Example:
Given F =

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

```
Step 1: Compute X<sup>+</sup>, for every set of attributes X:
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

"Y is in the closure of X"

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}
```

Example:
Given F =

 ${A,B} \rightarrow C$ ${A,D} \rightarrow B$ ${B} \rightarrow D$

```
Step 1: Compute X<sup>+</sup>, for every set of attributes X:
```

```
{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D}, {A,B,C,D}+ = {A,B
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

The FD $X \rightarrow Y$ is non-trivial

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C}, {A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C}, {A,C,D} \rightarrow {B}
```

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes A_1 , ..., A_n s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A **key** is a *minimal* superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Finding Keys and Superkeys

- For each set of attributes X
 - 1. Compute X⁺
 - 2. If X^+ = set of all attributes then X is a **superkey**
 - 3. If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

```
{name, category} → price
{category} → color
```

What is a key?

Example of Keys

Product(name, price, category, color)

```
{name, category} → price
{category} → color
```

Activity-11-1.ipynb