Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления» Дисциплина «Технологии машинного обучения»

Отчёт

по лабораторной работе №1

«Разведочный анализ данных. Исследование и визуализация данных» $Bapuahm\ 12$

Студент:

Крюков Г. М.

Группа ИУ5-61Б

Преподаватель:

Гапанюк Ю. Е.

Цель лабораторной работы:

Изучение различных методов визуализации данных.

Краткое описание: Построение основных графиков, входящих в этап разведочного анализа данных.

Задание:

• Выбрать набор данных (датасет).

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Выполнение работы:

1. Текстовое описание выбранного набора данных

В качестве набора данных мы будем использовать набор данных, задачей которого является попытка предсказывания качества винной продукции.

https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

Решение этой задачи может быть актуально для любителей и эстетов в сфере винопотребления.

Датасет состоит из 1 файла: winequality-red.csv

Каждый файл содержит следующие колонки:

```
"fixed acidity" - фиксированная кислотность
```

[&]quot;volatile acidity" – летучая кислотность

[&]quot;citric acid" – лимонная кислота

[&]quot;residual sugar" – остаточный сахар

[&]quot;chlorides" – хлориды

[&]quot;free sulfur dioxide" – доля свободного диоксида серы

[&]quot;total sulfur dioxide" – общая доля диоксида серы

[&]quot;density" - плотность

[&]quot;рН" – индекс кислотности

[&]quot;sulphates" – сульфаты

[&]quot;alcohol" – доля алкоголя

[&]quot;quality" – общее качество напитка (от 0 до 10)

2. Основные характеристики датасета

Импорт библиотек

```
File Edit View Insert Runtime Tools Help

+ Code + Text

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks")

// usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: Fur import pandas.util.testing as tm
```

Загрузка данных

```
[12] data = pd.read_csv('/content/winequality-red.csv')
```

Основные характеристики датасета

data.head()												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

data.shape

(1599, 12)

```
total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
```

Всего строк: 1599

```
# Список колонок
data.columns
```

Список колонок с типами данных data.dtypes

fixed acidity float64 volatile acidity float64 float64 citric acid residual sugar float64 chlorides float64 free sulfur dioxide float64 total sulfur dioxide float64 density float64 float64 sulphates float64 alcohol float64 quality int64 dtype: object

```
# Проверим наличие пустых значений
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))
```

fixed acidity - 0
volatile acidity - 0
citric acid - 0
residual sugar - 0
chlorides - 0
free sulfur dioxide - 0
total sulfur dioxide - 0
density - 0
pH - 0
sulphates - 0
alcohol - 0
quality - 0

Основные статистические характеристки набора данных data.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983	5.636023
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668	0.807569
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000	3.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000	6.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000	6.000000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000	8.000000

Определим уникальные значения для целевого признака data['quality'].unique()

array([5, 6, 7, 4, 8, 3])

3. Визуальное исследование датасета

Для визуального исследования могут быть использованы различные виды диаграмм, мы построим только некоторые варианты диаграмм, которые используются достаточно часто.

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Не предполагается, что значения упорядочены (например, по времени).

Гистограмма

Позволяет оценить плотность вероятности распределения данных.

```
fig, ax = plt.subplots(figsize=(8,8))
sns.distplot(data['chlorides'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f0f057ed470>

25 -

20 -

15 -

10 -

5 -
```

0.3 chlorides

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

sns.jointplot(x='free sulfur dioxide', y='total sulfur dioxide', data=data)

<seaborn.axisgrid.JointGrid at 0x7f0f03c4bf28>

sns.jointplot(x='free sulfur dioxide', y='total sulfur dioxide', data=data, kind="hex")

<seaborn.axisgrid.JointGrid at 0x7f0f03e71358>

"Парные диаграммы"

Комбинация гистограмм и диаграмм рассеивания для всего набора данных.

Выводится матрица графиков. На пересечении строки и столбца, которые соответствуют двум показателям, строится диаграмма рассеивания. В главной диагонали матрицы строятся гистограммы распределения соответствующих показателей.

Ящик с усами

Отображает одномерное распределение вероятности.

Violin plot

Похоже на предыдущую диаграмму, но по краям отображаются распределения плотности.

4. Информация о корреляции признаков

Проверка корреляции признаков позволяет решить две задачи:

- 1. Понять какие признаки (колонки датасета) наиболее сильно коррелируют с целевым признаком (в нашем примере примере нет целевого признака) Именно эти признаки будут наиболее информативными для моделей машинного обучения. Признаки, которые слабо коррелируют с целевым признаком, можно попробовать исключить из построения модели, иногда это повышает качество модели. Нужно отметить, что некоторые алгоритмы машинного обучения автоматически определяют ценность того или иного признака для построения модели.
- 2. Понять какие нецелевые признаки линейно зависимы между собой. Линейно зависимые признаки, как правило, очень плохо влияют на качество моделей. Поэтому если несколько признаков линейно зависимы, то для построения модели из них выбирают какой-то один признак.

Корреляционная матрица Пирсона:

data.corr(method='pearson')												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668	0.124052
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288	-0.390558
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903	0.226373
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075	0.013732
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141	-0.128907
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408	-0.050656
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654	-0.185100
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180	-0.174919
pH	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633	-0.057731
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595	0.251397
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.093595	1.000000	0.476166
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731	0.251397	0.476166	1.000000

Корреляционная матрица Кендалла:

Корреляционная матрица Спирмана:

Можем видеть, что значения во всех трёх матрицах примерно равны в соответствующих ячейках.

Для визуализации корреляционной матрицы будем использовать "тепловую карту" heatmap, которая показывает степень корреляции различными цветами.

