

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

Hiroki TAWA et al. Group Art Unit: Unknown
Application No.: Unknown Examiner: Unknown
Filed: October 1, 2003 Attorney Dkt. No.: 107348-00372
For: WATER-COOLED VERTICAL ENGINE AND OUTBOARD MOTOR EQUIPPED
THEREWITH

CLAIM FOR PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Date: October 1, 2003

Sir:

The benefit of the filing date(s) of the following prior foreign application(s) in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Foreign application No. 2002-299001, filed October 11, 2002, in Japan.

In support of this claim, certified copy of said original foreign application is filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these/this document.

Please charge any fee deficiency or credit any overpayment with respect to this paper to Deposit Account No. 01-2300.

Respectfully submitted,

Charles M. Marmelstein
Registration No. 25,895

Customer No. 004372
AREN'T FOX KINTNER PLOTKIN & KAHN, PLLC
1050 Connecticut Avenue, N.W.,
Suite 400
Washington, D.C. 20036-5339
Tel: (202) 857-6000
Fax: (202) 638-4810
CMM/jns

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2002年10月11日
Date of Application:

出願番号 特願2002-299001
Application Number:

[ST. 10/C] : [JP2002-299001]

出願人 本田技研工業株式会社
Applicant(s):

2003年 8月12日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

出証番号 出証特2003-3064958

【書類名】 特許願
【整理番号】 H102143301
【提出日】 平成14年10月11日
【あて先】 特許庁長官殿
【国際特許分類】 F01P 3/00
F01P 7/16
B63H 20/00
【発明の名称】 水冷バーチカルエンジンおよびこれを搭載した船外機
【請求項の数】 5
【発明者】
【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内
【氏名】 田和 寛基
【発明者】
【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内
【氏名】 黒田 達也
【特許出願人】
【識別番号】 000005326
【氏名又は名称】 本田技研工業株式会社
【代表者】 吉野 浩行
【代理人】
【識別番号】 100071870
【弁理士】
【氏名又は名称】 落合 健
【選任した代理人】
【識別番号】 100097618
【氏名又は名称】 仁木 一明

【手数料の表示】

【予納台帳番号】 003001

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 水冷バーチカルエンジンおよびこれを搭載した船外機

【特許請求の範囲】

【請求項1】 概ね鉛直方向に配置されたクランクシャフト（13）と、
クランクシャフト（13）にコネクティングロッド（19）を介して接続され
たピストン（18）と、
ピストン（18）を往復動自在に収容するシリンダ（17）と、
シリンダ（17）が設けられたシリンダブロック（11）と、
シリンダブロック（11）に締結されてシリンダ（17）およびピストン（1
8）と協働して燃焼室（20）を構成するシリンダヘッド（15）と、
シリンダブロック（11）に形成されたシリンダブロック冷却ウォータージャケ
ット（JB）と、
シリンダヘッド（15）に形成されたシリンダヘッド冷却ウォータージャケット
(JH) と、
前記両ウォータージャケット（JB, JH）に冷却水を供給する冷却水ポンプ（
46）とを備えた水冷バーチカルエンジンであって、
シリンダブロック冷却ウォータージャケット（JB）とシリンダヘッド冷却ウォ
ータージャケット（JH）とを概ね独立させるとともに、冷却水ポンプ（46）か
らシリンダブロック冷却ウォータージャケット（JB）に冷却水を供給する冷却水
通路（11c）から分岐する左右一対の冷却水通路（11g, 11h）を、シリ
ンダブロック（11）およびシリンダヘッド（12）のパッキン面を通してシリ
ンダヘッド冷却ウォータージャケット（JH）に連通させたことを特徴とする水冷
バーチカルエンジン。

【請求項2】 前記冷却水通路（11c, 11g, 11h）の分岐部をシリ
ンダブロック（11）の内部に形成したことを特徴とする、請求項1に記載の水
冷バーチカルエンジン。

【請求項3】 シリンダヘッド（15）からシリンダブロック（11）を経
てオイルパン（36d）にオイルを戻すオイル戻し通路（11j, 15b）が、
前記左右一対の冷却水通路（11g, 11h）の間でシリンダブロック（11）

およびシリンダヘッド（15）のパッキン面を貫通することを特徴とする、請求項1に記載の水冷バーチカルエンジン。

【請求項4】 請求項1に記載した水冷バーチカルエンジンを搭載した船外機であって、

前記冷却水通路（11c, 11g, 11h）の分岐部を、エンジン（E）の下面を支持する支持フレーム（35, 36）の内部に形成したことを特徴とする、水冷バーチカルエンジンを搭載した船外機。

【請求項5】 前記冷却水通路（11c, 11g, 11h）の分岐部を、エンジン（E）の下面を支持する支持フレーム（35, 36）とシリンダブロック（11）との合わせ面に形成したことを特徴とする、請求項4に記載の水冷バーチカルエンジンを搭載した船外機。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、クランクシャフトを概ね鉛直方向に配置し、シリンダブロックおよびシリンダヘッドにそれぞれ独立したウォータージャケットを備えた水冷バーチカルエンジンと、それを搭載した船外機とに関する。

【0002】

【従来の技術】

一般に船外機用のバーチカルエンジンには水冷エンジンが使用されている。この種の水冷エンジンにおいて、シリンダブロックおよびシリンダヘッドを冷却水で均等に冷却すると、比較的に発熱量の大きいシリンダヘッドを適温に冷却した場合に、比較的に発熱量の小さいシリンダブロックが過冷却になる傾向がある。かかる問題を解消し、シリンダヘッドおよびシリンダブロックの両者を適温に冷却するための船外機の冷却構造が、下記特許文献により公知である。

【0003】

この特許文献に記載された各実施例およびその変形例（図2、図2a～図2c、図3、図3aおよび図3b参照）では、冷却水ポンプからの低温の冷却水をシリンダヘッドのウォータージャケットに供給し、その結果温度上昇した冷却水をシ

リンダブロックのウォータジャケットに供給することで、シリンドヘッドを充分に冷却しながらシリンドブロックの過冷却を防止している。

【0004】

【特許文献】

特開昭61-167111号公報

【0005】

【発明が解決しようとする課題】

ところで上記従来のものには、シリンドヘッドのウォータジャケットとシリンドブロックのウォータジャケットとが直列に接続されており、冷却水はシリンドヘッドのウォータジャケットを通過した後にシリンドブロックのウォータジャケットを通過するため、シリンドブロックの温度およびシリンドヘッドの温度を独立して適温に管理するのが困難である。

【0006】

また冷却水ポンプは一般にシリンドブロックの下方に設けられており、冷却水ポンプから離れたシリンドヘッド冷却ウォータジャケットへの冷却水の供給を外部配管を介して行うと、部品点数が増加したりシールが面倒になったりする問題がある。

【0007】

本発明は前述の事情に鑑みてなされたもので、概ね独立するシリンドブロック冷却ウォータジャケットおよびシリンドヘッド冷却ウォータジャケットを備えた水冷バーチカルエンジンにおいて、シリンドヘッド冷却ウォータジャケットへの冷却水の供給を容易に行えるようにして冷却効果を高めることを目的とする。

【0008】

【課題を解決するための手段】

上記目的を達成するために、請求項1に記載された発明によれば、概ね鉛直方向に配置されたクランクシャフトと、クランクシャフトにコネクティングロッドを介して接続されたピストンと、ピストンを往復動自在に収容するシリンドと、シリンドが設けられたシリンドブロックと、シリンドブロックに締結されてシリンドおよびピストンと協働して燃焼室を構成するシリンドヘッドと、シリンドブ

ロックに形成されたシリンダブロック冷却ウォータージャケットと、シリンダヘッドに形成されたシリンダヘッド冷却ウォータージャケットと、前記両ウォータージャケットに冷却水を供給する冷却水ポンプとを備えた水冷バーチカルエンジンであって、シリンダブロック冷却ウォータージャケットとシリンダヘッド冷却ウォータージャケットとを概ね独立させるとともに、冷却水ポンプからシリンダブロック冷却ウォータージャケットに冷却水を供給する冷却水通路から分岐する左右一対の冷却水通路を、シリンダブロックおよびシリンダヘッドのパッキン面を通してシリンダヘッド冷却ウォータージャケットに連通させたことを特徴とする水冷バーチカルエンジンが提案される。

【0009】

上記構成によれば、シリンダブロック冷却ウォータージャケットとシリンダヘッド冷却ウォータージャケットとを概ね独立させたので、シリンダブロックの温度およびシリンダヘッドの温度を独立して適温に設定するのが容易になる。またシリンダヘッド冷却ウォータージャケットへの冷却水の供給を、冷却水ポンプからシリンダブロック冷却ウォータージャケットに冷却水を供給する冷却水通路から分岐する左右一対の冷却水通路を、シリンダブロックおよびシリンダヘッドのパッキン面を通してシリンダヘッド冷却ウォータージャケットに連通させることで行うので、外部配管を通してシリンダヘッド冷却ウォータージャケットに冷却水を供給する場合に比べて部品点数およびスペースを削減できるだけでなく、冷却水通路がパッキン面を通過することで特別のシール部材を廃止することができる。しかも左右一対の冷却水通路をシリンダヘッド冷却ウォータージャケットに連通させたので、シリンダヘッド冷却ウォータージャケット内の冷却水の流れを均一化して冷却効果を高めることができる。

【0010】

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記冷却水通路の分岐部をシリンダブロックの内部に形成したことを特徴とする水冷バーチカルエンジンが提案される。

【0011】

上記構成によれば、シリンダブロック冷却ウォータージャケットに連なる冷却水

通路からシリンダヘッド冷却ウォータージャケットへの分岐部をシリンダブロックの内部に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【0012】

また請求項3に記載された発明によれば、請求項1の構成に加えて、シリンダヘッドからシリンダブロックを経てオイルパンにオイルを戻すオイル戻し通路が、前記左右一対の冷却水通路の間でシリンダブロックおよびシリンダヘッドのパッキン面を貫通することを特徴とする水冷バーチカルエンジンが提案される。

【0013】

上記構成によれば、シリンダヘッドからシリンダブロックを経てオイルパンにオイルを戻すオイル戻し通路がシリンダブロックおよびシリンダヘッドのパッキン面を貫通するので、オイル戻し通路のための特別の外部配管やシール部材が必要になって部品点数が削減される。またオイル戻し通路が左右一対の冷却水通路の間に配置されるので、左右一対の冷却水通路の冷却水の流量を均一化しながら狭いスペースにオイル戻し通路および冷却水通路をコンパクトに配置することができる。

【0014】

また請求項4に記載された発明によれば、請求項1に記載した水冷バーチカルエンジンを搭載した船外機であって、前記冷却水通路の分岐部を、エンジンの下面を支持する支持フレームの内部に形成したことを特徴とする、水冷バーチカルエンジンを搭載した船外機が提案される。

【0015】

上記構成によれば、シリンダブロック冷却ウォータージャケットに連なる冷却水通路からシリンダヘッド冷却ウォータージャケットへの分岐部を、エンジンの下面を支持する支持フレームの内部に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【0016】

また請求項5に記載された発明によれば、請求項4の構成に加えて、前記冷却水通路の分岐部を、エンジンの下面を支持する支持フレームとシリンダブロック

との合わせ面に形成したことを特徴とする、水冷バーチカルエンジンを搭載した船外機が提案される。

【0017】

上記構成によれば、シリンダブロック冷却ウォータージャケットに連なる冷却水通路からシリンダヘッド冷却ウォータージャケットへの分岐部を、エンジンの下面を支持する支持フレームとシリンダブロックとの合わせ面に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【0018】

尚、実施例のマウントケース35およびオイルケース36は本発明の支持フレームに対応する。

【0019】

【発明の実施の形態】

以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。

【0020】

図1～図19は本発明の一実施例を示すもので、図1は船外機の全体側面図、図2は図1の2-2線拡大断面図、図3は図2の3-3線拡大断面図、図4は図2の4方向拡大矢視図、図5は図4の5方向矢視図、図6は図1の要部拡大断面図、図7は図1の7-7線拡大矢視図（マウントケースの上面図）、図8は図1の8-8線拡大矢視図（ポンプボディの下面図）、図9は図1の9-9線拡大矢視図（ブロック等の小組体の下面図）、図10は排気マニホールドの拡大図、図11は排気マニホールドおよび排気ガイドの接続部の拡大図、図12は図14の12-12線矢視図（排気ガイドの平面図）、図13は図14の13-13線断面図、図14は図1の14-14線拡大矢視図、図15は図1の15-15線拡大矢視図、図16は図15の16-16線拡大断面図、図17は図16の17-17線断面図、図18は図16の18-18線断面図、図19はエンジン冷却系の回路図である。

【0021】

図1～図3に示すように、船外機Oは、ステアリング軸96を中心に左右方向

に舵取り運動を行い、チルト軸 97 を中心に上下方向にチルト運動を行うように船体に取り付けられており、船外機〇の上部に搭載された直列4気筒4ストロークの水冷バーチカルエンジン E は、シリンダブロック 11 と、シリンダブロック 11 の前面に結合されたロアブロック 12 と、概ね鉛直方向に配置されてジャーナル 13a…をシリンダブロック 11 およびロアブロック 12 に挟まれるように支持されたクランクシャフト 13 と、ロアブロック 12 の前面に結合されたクランクケース 14 と、シリンダブロック 11 の後面に結合されたシリンダヘッド 15 と、シリンダヘッド 15 の後面に結合されたヘッドカバー 16 とを備える。シリンダブロック 11 に鋳くるまれた4個のスリーブ状のシリンダ 17…の内部に摺動自在に嵌合するピストン 18…は、それぞれコネクティングロッド 19…を介してクランクシャフト 13 のクランクピン 13b…に接続される。

【0022】

シリンダヘッド 15 にピストン 18…の頂面に対向するように形成された燃焼室 20…は、シリンダヘッド 15 の左側面、即ち船の進行方向を前にして左舷側に開口する吸気ポート 21…を介して吸気マニホールド 22 に接続されるとともに、シリンダヘッド 15 の右側面に開口する排気ポート 23…を介してエンジンルーム内排気通路 24 に接続される。吸気ポート 21…の下流端を開閉する吸気バルブ 25…と、排気ポート 23…の上流端を開閉する排気バルブ 26…とは、ヘッドカバー 16 の内部に収納された D O H C 型の動弁機構 27 によって開閉駆動される。吸気マニホールド 22 の上流側は、クランクケース 14 の前方に配置され、前面に固定されたスロットルバルブ 29 に接続されており、サイレンサ 28 を経た吸気が供給される。シリンダヘッド 15 および吸気マニホールド 22 間に挟まれたインジェクタベース 57 に、吸入ポート 21…内に燃料を噴射するインジェクタ 58…が設けられる。

【0023】

エンジン E のシリンダブロック 11、ロアブロック 12、クランクケース 14 およびシリンダヘッド 15 の上面には、クランクシャフト 13 の駆動力を動弁機構 27 に伝達するタイミングチェーン 30（図 14 参照）を収納するチェーンカバー 31（図 15 参照）が結合され、またシリンダブロック 11、ロアブロック

12およびクランクケース14の下面にはオイルポンプボディ34が結合され、更にオイルポンプボディ34の下面にはマウントケース35、オイルケース36、イクステンションケース37およびギヤケース38が順次結合される。

【0024】

オイルポンプボディ34は、その下面とマウントケース35の上面との間にオイルポンプ33を収納するものであり、反対側のシリンダブロック11等の下面との間にはフライホイール32が配置され、オイルポンプボディ34によってフライホイール室とオイルポンプ室とが区画されている。そしてオイルケース36、マウントケース35およびエンジンEの下側の一部の周囲が合成樹脂製のアンダーカバー39で覆われ、エンジンEの上部がアンダーカバー39の上面に結合される合成樹脂製のエンジンカバー40で覆われる。

【0025】

クランクシャフト13の下端に接続された駆動軸41はポンプボディ34、マウントケース35、オイルケース36を貫通してイクステンションケース37の内部を下方に延び、後端にプロペラ43を備えてギヤケース38に前後方向に支持されたプロペラ軸44の前端に、シフトロッド52により操作される前後進切換機構45を介して接続される。駆動軸41に設けられた冷却水ポンプ46には、ギヤケース38に設けられたストレーナ47から上方に延びる下部給水通路48が接続され、冷却水ポンプ46から上方に延びる上部給水管49がオイルケース36に設けられた冷却水通路36b（図6参照）に接続される。

【0026】

図6に示すように、オイルケース36の下面36Lに、前記上部給水管49の上端が接続される冷却水供給孔36aが形成される。オイルケース36の上面36Uに、冷却水供給孔36aに連なる冷却水通路36bがオイルケースに一体に形成された排気管部36cの周囲の一部を囲むように形成される。マウントケース35の下面35Lに結合されるオイルケース36の上面36Uの冷却水通路36bと同形の冷却水通路35aが、マウントケース35を貫通する排気通路35bの周囲の一部を囲むように形成される。

【0027】

図7はマウントケース35を上方から見たもので、下面にオイルケース36が結合される。排気通路35bの外周を冷却水供給通路35c…および冷却水排出通路35dが囲んでいる。詳述すると、マウントケース35の下面35Lに下向きに開放するように形成された冷却水通路35aに連通する冷却水供給通路35c…(図6参照)が、マウントケース35の上面35Uのシリンダブロック搭載面の領域外の上面に上向きに開放するように、かつ円筒状の排気通路35bの外周に沿うように形成されている。実施例では、排気通路35bの外壁に連続する壁35h…によって、3個の円弧状の冷却水供給通路35c…に別れている。更に、円筒状の排気通路35bの外周の前記冷却水供給通路35c…の設置範囲以外の範囲に、1個の円弧状の冷却水排水通路35dが形成され、前記冷却水供給通路35c…とは外壁に形成された壁35i…によって区画されている。

【0028】

後述するオイルポンプボディ34を含むシリンダブロック小組体に結合されるマウントケース35の上面35Uに、冷却水供給通路35eが平面視でシリンダ17の中央を跨いで船外機Oの左右方向に延び、前記上面35Uに上向きに開放する横断面U字溝形状に形成されている(図6参照)。この冷却水通路35eに前記冷却水通路35aが上方に延びて連通する。マウントケース35の上面35Uには、その冷却水通路35aの圧力が所定値以上になったときに開弁して冷却水を逃がすリリーフバルブ51が設けられる(図4および図7参照)。

【0029】

尚、前記冷却水排出通路35dはオイルケース36の下面36Lの全域に形成された開口36e(図7参照)を介して、オイルケース36、イクステンションケース37およびギヤケース38の内部に形成された排気室63に連通する。またマウントケース35の下面35Lとオイルケース36の上面36Uとの間に挟まれたガスケット55には、マウントケース35の冷却水排出通路35d(図7参照)から落下する冷却水が通過するパンチング加工孔55a…と、膨張室63の一部を区画して消音効果を発揮するパンチング加工孔55b…とが設けられる(図6および図7参照)。

【0030】

次に、図4～図6および図10～図13に基づいてエンジンルーム内排気通路24の構造を説明する。

【0031】

排気通路手段は、大きく分けて、エンジンルーム内排気通路24部分と、エンジンルームと区画された排気室部分とに分けられる。エンジンルーム内排気通路24は、後述するようにシリンダヘッド15の右側面に結合され、各燃焼室20からの排気を導入する単管部61a…と、これらの下流域で集合する集合部61bとを備えた排気マニホールド61と、この排気マニホールド61に接続し、エンジンルーム外に排気を導く排気ガイド62とを備える。

【0032】

図6から明らかなように、排気ガイド62はエンジンルームの隔壁を構成するマウントケース35の上面35Uに結合し、マウントケース35を貫通する排気通路35bと連通する。排気通路35bはオイルケース36に一体に形成された排気管部36cと連通し、排気室63と連通する。実施例では、オイルケース36が排気室63の外壁部を構成するとともに、排気管部36cを構成しているが、他の構成として、排気管部36cを別個の通路としても良い。また排気通路手段は、その一部が一体的に連続する構成であっても良いが、エンジンルーム内排気通路24と同外部通路とを別体で構成することで、各部の組立性の向上や排気室63に対するシール性の確保を可能にすることができます。

【0033】

尚、排気室63の上部はオイルケース36に設けた排気導出管64を介してアンダーカバー39の外部に連通しており、エンジンEの低負荷運転時に排気ガスを水中に排出することなく、排気導出管64を介して大気中に排出するようになっている。

【0034】

排気マニホールド61は4個の排気ポート23…に連通する4個の単管部61a…と、それらの単管部61a…が一体に集合する集合部61bとを備えており、集合部61bの大部分はシリンダヘッド15の側面に密着しているが、集合部61bの下端部近傍がシリンダヘッド15の側面から離反する方向に、その中心

線が距離 α だけ屈曲している（図10参照）。排気ガイド62はS字状に湾曲し、その上端の大径になった結合部62aの内周に排気マニホールド61の下端部内周が一对のOリング53, 54を介して嵌合する。

【0035】

このように、排気マニホールド61の下端部近傍だけをシリンダヘッド15の側面から離反する方向に屈曲させ、排気マニホールド61の他の上半部は、シリンドラヘッド15の側面に沿う形で接続させたので、エンジンルーム内排気通路24の配置スペースを最小限に抑えながら、大径の結合部62aがシリンドラヘッド15と干渉するのを防止することができる。特に、排気マニホールド61は、最下位の燃焼室20よりも下方部分が屈曲しているので、上下方向に配置された複数の燃焼室20…からの排気ガスの流れにアンバランスな影響を与えることが防止され、排気効率の低下を最小限に抑えることができる。

【0036】

また排気マニホールド61および排気ガイド62の結合部62aはOリング53, 54を介して嵌合する構造であるため、排気マニホールド61および排気ガイド62の結合作業が簡単であるばかりか、エンジンルーム内排気通路24の上下方向の寸法誤差を結合部62aで吸収して組付性を高めることができる。しかもOリング53, 54の近傍に第1排気ガイド冷却ウォータジャケットJM1の上端部および排気マニホールド冷却ウォータジャケットJM2の下端部が位置していることから、Oリング53, 54の熱による劣化が防止される。

【0037】

排気ガイド62の下端に形成されたフランジ62bに3個のボルト孔62c…と、排気通路62dを囲む円弧状に分割された3個の冷却水流入口62e…と1個の冷却水流出口62fとが形成される。排気ガイド62のフランジ62bをマウントケース35の上面35Uの取付座35f（図7参照）にボルト締めしたとき、排気ガイド62の冷却水流入口62e…がマウントケース35の冷却水供給通路35c…に連通するとともに、冷却水流出口62fがマウントケース35の冷却水排出通路35dに連通する。取付座35fのマウントケース35の下面35L側については、冷却水排出通路35dを構成する外壁のうち、反排気通路3

5 b 側がガスケット面よりもやや高い位置に止まり、外壁下面とガスケット面との間から冷却水がガスケット 5 5 上に排水される。

【0038】

排気ガイド 6 2 には、その排気通路 6 2 d を囲むように上面側の半周を覆う第 1 排気ガイド冷却ウォータージャケット J M 1 と、下面側の半周を覆う第 2 排気ガイド冷却ウォータージャケット J M 3 とが形成されており、排気ガイド 6 2 の上端部において第 1 排気ガイド冷却ウォータージャケット J M 1 の円周方向の一部が半径方向に膨出して膨出部 6 2 g を構成する。

【0039】

排気マニホールド 6 1 の周囲を囲むように排気マニホールド冷却ウォータージャケット J M 2 が形成されており、その下端に円周方向に延びる通孔 6 1 c が形成される。従って、排気マニホールド 6 1 の下端を排気ガイド 6 2 の結合部 6 2 a の内周に嵌合させると、排気マニホールド 6 1 の排気マニホールド冷却ウォータージャケット J M 2 と排気ガイド 6 2 の第 1 排気ガイド冷却ウォータージャケット J M 1 とが、排気マニホールド 6 1 の通孔 6 1 c と排気ガイド 6 2 の膨出部 6 2 g とを介して相互に連通する（図 13 参照）。

【0040】

図 4 および図 5 から明らかなように、排気マニホールド 6 1 の排気マニホールド冷却ウォータージャケット J M 2 の上部には、冷却水の一部をシリンドラブロック 1 1 に分配するための継ぎ手 6 1 d と、冷却水の一部をホース 6 5 を介して検水口 6 6（図 2 参照）に供給するための継ぎ手 6 1 e と、冷却水の温度を検出する冷却水温度センサ 6 7 とが設けられる。

【0041】

次に、図 3～図 5 に基づいてシリンドラブロック 1 1 の冷却系の構造を説明する。

【0042】

排気ガイド 6 2 の第 1 排気ガイド冷却ウォータージャケット J M 1 および排気マニホールド 6 1 の排気マニホールド冷却ウォータージャケット J M 2 を通過してエンジンルーム内排気通路 2 4 を冷却することで温度上昇した冷却水は、排気マニ

ホールド61の排気マニホールド冷却ウォータジャケットJM2の上端に設けた前記継ぎ手61dから給水管68を経てT形の3方ジョイント、または分岐部材69に供給され、そこから2本の給水管70, 71に分岐する。シリンダブロック11には4個のシリンダ17…を囲むシリンダブロック冷却ウォータジャケットJBが形成される。シリンダブロック冷却ウォータジャケットJBの上端寄りの位置（最上位から2番目の燃焼室20の側部）と下端寄りの位置（最下位の燃焼室20の側部）とに継ぎ手11a, 11bが設けられおり、上側の継ぎ手11aに上側の給水管70が接続され、下側の継ぎ手11bに下側の給水管71が接続される。このように、排気マニホールド冷却ウォータジャケットJM2とシリンダブロック冷却ウォータジャケットJBとを給水管68, 70, 71で接続したので、シリンダブロック11やシリンダヘッド15の内部に冷却水供給通路を形成する場合に比べて加工が容易になる。

【0043】

ポンプボディ34を貫通するように形成されたスリット状の冷却水通路34a(図8参照)は、前記マウントケース35を貫通するように形成されたスリット状の冷却水通路35e(図7参照)に連通するとともに、シリンダブロック11の下面に形成された、前記冷却水通路35eと合わせ面形状が同じでシリンダ17…の左右幅方向中央を跨ぐように左右方向に延びる冷却水通路11c(図9参照)に連通する。図3および図9に示すように、シリンダブロック11の冷却水通路11cは下面が開放した溝状のもので、その溝の上壁を貫通する2個の通孔11d, 11eを介してシリンダブロック11のシリンダブロック冷却ウォータジャケットJBの下端に連通する。

【0044】

図3から明らかなように、シリンダブロック11のシリンダブロック冷却ウォータジャケットJBを流れた冷却水は、シリンダブロック11の上部左側に形成した冷却水通路11fを通って後述するサーモスタットに供給される。

【0045】

次に、図3、図6および図9に基づいてシリンダヘッド15の冷却系の構造を説明する。

【0046】

シリンダブロック11の下面に形成したスリット状の冷却水通路11cの側壁からシリンダヘッド15に向かって2本の短い冷却水通路11g, 11hが分岐しており、この冷却水通路11g, 11hはシリンダブロック11およびシリンダヘッド15間のガスケット56を通してシリンダヘッド15のシリンダヘッド冷却ウォータージャケットJHに連通する。尚、シリンダブロック11のシリンダ17…を取り囲むシリンダブロック冷却ウォータージャケットJBは、シリンダブロック11およびシリンダヘッド15の結合面に介在するガスケット56を介してシリンダヘッド15のシリンダヘッド冷却ウォータージャケットJHから隔絶している（図2および図6参照）。

【0047】

次に、冷却水の循環系に設けられたサーモスタットについて説明する。

【0048】

図14に示すように、クランクシャフト13の上端に設けたカム駆動スプロケット72とシリンダヘッド15の後部に位置する一対のカムシャフト73, 74に設けたカム従動スプロケット75, 75とにタイミングチェーン30が巻き掛けられる。油圧式のチェーンテンションナ76aがタイミングチェーン30の緩み側に当接し、反対側にはチェーンガイド76bが当接する。カム駆動スプロケット72の歯数はカム従動スプロケット75, 75の歯数の半分であり、従ってカムシャフト73, 74はクランクシャフトの半分の回転数で回転する。

【0049】

クランクケース14の内部にはバランサー装置77が収納されており、その2本のバランサーシャフト78, 79の一方に設けたバランサー従動スプロケット80とクランクシャフト13に設けたバランサー駆動スプロケット81とに無端チェーン82が巻き掛けられる。チェーンテンションナ83aが無端チェーン82の緩み側に当接し、反対側にはチェーンガイド63bが当接する。バランサー駆動スプロケット81の歯数はバランサー従動スプロケット80の歯数の2倍であり、従ってバランサーシャフト78, 79はクランクシャフト13の2倍の回転数で回転する。

【0050】

図15～図18から明らかなように、シリンダブロック11およびシリンダヘッド15の上面がチェーンカバー31で覆われており、このチェーンカバー31の内部にタイミングチェーン30が収納される。タイミングチェーン30の潤滑を図るべく、チェーンカバー31の内部は油霧圏気に維持されている。シリンダブロック11およびシリンダヘッド15の結合面に跨るようにチェーンカバー31に形成されたサーモスタッフ取付座31aは、その下面がシリンダブロック11およびシリンダヘッド15の上面に当接するとともに、その上面がチェーンカバー31の本体部分上面よりも一段高くなっている。尚、チェーンカバー31には、クランクシャフト13の回転数を検出するエンジン回転数センサ59が設けられる（図15参照）。

【0051】

チェーンカバー31のサーモスタッフ取付座31aには、シリンダブロック11のシリンダブロック冷却ウォータージャケットJBから上方に分岐する冷却水通路11iに連通する冷却水通路31b, 31cと、シリンダヘッド15のシリンダヘッド冷却ウォータージャケットJHから分岐する冷却水通路15aに連通する冷却水通路31d, 31eとが形成されており、冷却水通路31cにはシリンダブロック11側の第1サーモスタッフ84が取付られ、冷却水通路31eにはシリンダヘッド15側の第2サーモスタッフ85が取付られる。弁体84aを備えた第1サーモスタッフ84および弁体85aを備えた第2サーモスタッフ85はそれぞれサーモスタッフ室94, 95内に収納され、サーモスタッフ取付座31aの上面に3本のボルト86で固定される共通のサーモスタッフカバー87で覆われる。サーモスタッフカバー87に設けた継ぎ手87aが、排水管88を介して、排気ガイド62に設けた継ぎ手62hを介して前記第2排気ガイド冷却ウォータージャケットJM3に接続される。

【0052】

シリンダヘッド冷却ウォータージャケットJH側の第2サーモスタッフ85が臨むチェーンカバー31の冷却水通路31eに、冷却水温度センサ89が設けられる。

【0053】

以上説明したように、吸気バルブ25…および排気バルブ26…で遮断された燃焼室20…内の燃焼ガスが第1の熱源であり、エンジンルーム内排気通路24を通って外部に流れる排気ガスが第2の熱源であり、シリンダヘッド冷却ウォータジャケットJHとシリンダブロック冷却ウォータジャケットJBとが前記第1の熱源の冷却のための第1の冷却手段であり、この第1の冷却手段との熱交換の後、第2の熱源を冷却するのが第2の冷却手段であり、第1排気ガイド冷却ウォータジャケットJM1と排気マニホールド冷却ウォータジャケットJM2とがそれに相当する。

【0054】

次に、エンジンEの潤滑系の構造を、図3、図4および図6～図9を参照して説明する。

【0055】

オイルケース36はオイルパン36dを一体に備えており、その内部にオイルストレーナ91を備えたサクションパイプ92が収納される。オイルポンプ33にはオイル吸入通路33a、オイル吐出通路33bおよびオイルリリーフ通路33cが設けられており、オイル吸入通路33aはサクションパイプ92に接続され、オイル吐出通路33bはシリンダブロック11の下面に形成したオイル供給孔11m（図9参照）を経てエンジンEの各被潤滑部に接続され、オイルリリーフ通路33cはオイルポンプ33からの戻りオイルをオイルパン36d内に排出する。

【0056】

シリンダヘッド15およびヘッドカバー16の内部に設けられた動弁機構27からの戻りオイルの一部は、ヘッドカバー16に設けた継ぎ手16a、オイルホース93およびマウントケース35を貫通するオイル戻し通路35g（図7参照）を介してオイルパン36dに戻され、動弁機構27からの戻りオイルの他の一部は、シリンダヘッド15に形成したオイル戻し通路15b（図9参照）、シリンダブロック11およびシリンダヘッド15のパッキン面に開口するオイル戻し通路11j（図9参照）、シリンダブロック11を貫通するオイル戻し通路11

k (図9参照)、ポンプボディ34を貫通するオイル戻し通路34b (図8参照)およびマウントケース35を貫通するオイル戻し通路35g (図7参照)を経てオイルパン36dに戻される。シリンダブロック11およびシリンダヘッド15間のガスケット56に開口するオイル戻し通路11jは、そこに開口する2個の冷却水通路11g, 11hの間に挟まれるように配置される (図3参照)。

【0057】

またクランクケース14からの戻りオイルは、ポンプボディ34を貫通するオイル戻し通路 (図示せず) およびマウントケース35を貫通するオイル戻し通路35g (図7参照) を介してオイルパン36dに戻される。

【0058】

次に、上記構成を備えた本発明の実施例の作用を、主として図19の冷却水回路を参照して説明する。

【0059】

エンジンEの運転によりクランクシャフト13に接続された駆動軸41が回転すると、その駆動軸41に設けた冷却水ポンプ46が作動し、ストレーナ47を介して吸い上げた冷却水を下部給水通路48および上部給水管49を介してオイルケース36の下面の冷却水供給口36aに供給する。冷却水供給口36aを通過した冷却水はオイルケース36の上面36Uの冷却水通路36bおよびマウントケース35の下面35Lの冷却水通路35aに流入し、そこから分岐した冷却水の一部はエンジンルーム内排気通路24の排気ガイド62に形成した第1排気ガイド冷却ウォータージャケットJM1および排気マニホールド61に形成した排気マニホールド冷却ウォータージャケットJM2に供給される。シリンダヘッド15の燃焼室20…から排出された排気ガスは、排気マニホールド61の単管部61a…および集合部61b、排気ガイド62の排気通路62d、マウントケース35の排気通路35bおよびオイルケース36の排気管部36cを経て排気室63に排出され、その際に排気ガスで高温になったエンジンルーム内排気通路24を前記第1排気ガイド冷却ウォータージャケットJM1および排気マニホールド冷却ウォータージャケットJM2を流れる冷却水で冷却する。

【0060】

第1排気ガイド冷却ウォータジャケットJM1および排気マニホールド冷却ウォータジャケットJM2を下から上に流れて若干温度上昇した冷却水は、排気マニホールド61の上端に設けた継ぎ手61dから給水管68および分岐部材69を経て2本の給水管70, 71に分岐し、シリンダブロック11に設けた継ぎ手11a, 11bを経てシリンダブロック冷却ウォータジャケットJBの側面の下部および上部に流入する。このとき、冷却水通路36b, 35aの低温の冷却水の一部は、シリンダブロック11の下端の冷却水通路11cに開口する2個の通孔11d, 11eを介してシリンダブロック冷却ウォータジャケットJBの下端に流入する。また冷却水通路36b, 35aの低温の冷却水の一部は、シリンダブロック11の下端の冷却水通路11cから2個の冷却水通路11g, 11hを経てシリンダヘッド冷却ウォータジャケットJHの下端に流入する。

【0061】

エンジンEの暖機運転中は、シリンダブロック冷却ウォータジャケットJBの上端に連なる第1サーモスタッフ84およびシリンダヘッド冷却ウォータジャケットJHの上端に連なる第2サーモスタッフ85は閉弁しており、第1排気ガイド冷却ウォータジャケットJM1および排気マニホールド冷却ウォータジャケットJM2、シリンダブロック冷却ウォータジャケットJBおよびシリンダヘッド冷却ウォータジャケットJH内の冷却水は流れることなく滞留し、エンジンEの暖気が促進される。このとき、冷却水ポンプ46は回転し続けるが、そのゴム製のインペラの周囲から冷却水が漏れることで、冷却水ポンプ46は実質的に空転状態となる。

【0062】

エンジンEの暖機運転が完了して冷却水の温度上昇すると第1、第2サーモスタッフ84, 85が開弁し、シリンダブロック冷却ウォータジャケットJBの冷却水およびシリンダヘッド冷却ウォータジャケットJHの冷却水は、サーモスタッフカバー87の共通の継ぎ手87aから排水管88および排気ガイド62の継ぎ手62hを経て第2排気ガイド冷却ウォータジャケットJM3に流入する。そして第2排気ガイド冷却ウォータジャケットJM3を流れる間に排気ガイド62を冷却した冷却水は、マウントケース35およびオイルケース36を上から下に

通過して排気室 63 に排出される。エンジン E の回転数が増加して冷却水通路 3 6b, 35a の内圧が所定値以上になると、リリーフバルブ 51 が開弁して余剰の冷却水が排気室 63 に排出される。

【0063】

また排気マニホールド 61 の排気マニホールド冷却ウォータージャケット JM2 の上端に設けた継ぎ手 61e はホース 65 を介して検水口 66 に接続されており、この検水口 66 から水が噴出することで冷却水の循環を確認することができる。検水口 66 に連なる継ぎ手 61e が排気マニホールド冷却ウォータージャケット JM2 の上端に設けられているので、その排気マニホールド冷却ウォータージャケット JM2 内に滞留するエアを冷却水と共に検水口 66 から排出することができる。このように、検水口 66 を利用して排気マニホールド冷却ウォータージャケット JM2 内のエアの排出を行うので、エアを排出するための配管やエア排出口を特別に設ける必要がなくなり、部品点数および組付工数の削減に寄与することができる。

【0064】

しかも排気マニホールド 61 および検水口 66 をそれぞれ船外機〇の一方の舷側および他方の舷側〇に設けたので、排気マニホールド 61 に対して検水口 66 が低い位置にあっても、排気マニホールド 61 から検水口 66 までの距離を長くして下り勾配を弱めることで、排気マニホールド 61 内のエアを検水口 66 にスムーズに押し出すことができる。

【0065】

本実施例では排気マニホールド冷却ウォータージャケット JM2 がシリンドラブロック冷却ウォータージャケット JB に連通しており、第 1 排気ガイド冷却ウォータージャケット JM1、排気マニホールド冷却ウォータージャケット JM2 およびシリンドラブロック冷却ウォータージャケット JB を流れる冷却水の流量は第 1 サーモスタット 84 によって制御される。仮に、第 1 排気ガイド冷却ウォータージャケット JM1 および排気マニホールド冷却ウォータージャケット JM2 がシリンドラブロック冷却ウォータージャケット JB に連通しておらずに行き止まりであるとすると、検水口 66 を大径にして排気マニホールド冷却ウォータージャケット JM2 から出

た冷却水の全量を排出するか、検水口 6 6 とは別個の冷却水排出口を設けて冷却水を排出する必要があり、そのために冷却水の流量が増加して冷却水ポンプ 4 6 の負荷が増大する問題がある。しかしながら本実施例によれば、第 1 排気ガイド冷却ウォータジャケット J M 1 および排気マニホールド冷却ウォータジャケット J M 2 をシリンドラブロック冷却ウォータジャケット J B に連通させたことで、第 1 排気ガイド冷却ウォータジャケット J M 1 および排気マニホールド冷却ウォータジャケット J M 2 を通過した冷却水を無駄に排出する必要をなくして冷却水ポンプ 4 6 の負荷を軽減することができる。

【0066】

またシリンドラブロック冷却ウォータジャケット J B およびシリンドラヘッド冷却ウォータジャケット J H を相互に独立させ、エンジン E の運転中に過熱し易いシリンドラヘッド冷却ウォータジャケット J H に低温の冷却水を直接供給し、エンジン E の運転中に過冷却になり易いシリンドラブロック冷却冷却ウォータジャケット J B に、第 1 排気ガイド冷却ウォータジャケット J M 1 および排気マニホールド冷却ウォータジャケット J M 2 を通過して温度上昇した冷却水を供給するので、シリンドラヘッド 1 5 およびシリンドラブロック 1 1 を各々適温に冷却してエンジン E の性能を最大限に発揮させることができる。しかもシリンドラブロック冷却ウォータジャケット J B およびシリンドラヘッド冷却ウォータジャケット J H にそれぞれサーモスタッフ 8 4, 8 5 を設けたので、それぞれのサーモスタッフ 8 4, 8 5 の設定を変化させることで、シリンドラブロック冷却ウォータジャケット J B およびシリンドラヘッド冷却ウォータジャケット J H の冷却水の温度を独立してかつ任意に管理することができる。

【0067】

ところで上下方向に延びるシリンドラブロック冷却ウォータジャケット J B の下端から冷却水を供給して上端から冷却水を排出すると、冷却水温度の分布が下部で低温になって上部で高温になるため、シリンドラブロック冷却ウォータジャケット J B の冷却性能が上下方向に不均一になる可能性がある。しかしながら本実施例によれば、排気マニホールド冷却ウォータジャケット J M 2 からの冷却水をシリンドラブロック冷却ウォータジャケット J B の上下方向に離間した 2 カ所に供給

することで、シリンダブロック冷却ウォータージャケット JB の冷却性能を上下方向に均一化することができる。

【0068】

またエンジン回転数の急激な増加によって新規の冷却水が供給されても、その冷却水は第1排気ガイド冷却ウォータージャケット JM1 および排気マニホールド冷却ウォータージャケット JM2 を経て温度上昇した状態でシリンダブロック冷却ウォータージャケット JB に供給されるので、燃焼室 20…まわりの温度が急変するのを緩和することができる。

【0069】

更に、シリンダブロック冷却ウォータージャケット JB の下端に 2 個の通孔 11d, 11e を介して補助的に冷却水を供給することで、シリンダブロック冷却ウォータージャケット JB 内の冷却水の滞留を防止して冷却性能の均一化を一層促進することができ、しかもシリンダブロック冷却ウォータージャケット JB の下端に通孔 11d, 11e 設けられているので、エンジン停止時の残水の処理が容易である。

【0070】

更にまた、冷却水通路 36b, 35a からシリンダヘッド冷却ウォータージャケット JH への冷却水の供給を外部配管を介して行わず、シリンダブロック 11 に形成した冷却水通路 11g, 11h からシリンダヘッド 15 との間のガスケット 56 を介して行うので、その冷却水通路 11g, 11h の特別の組立が不要であるばかりか、外部配管を省略して部品点数を削減することができる。またシリンダブロック 11 およびシリンダヘッド 15 間に挟まれるガスケット 56 を利用して冷却水通路 11g, 11h をシールすることができるので、特別のシール部材が不要になって部品点数が削減される。しかも冷却水通路 11g, 11h がシリンダヘッド冷却ウォータージャケット JH の下端に設けられているので、エンジン停止時の残水の処理が容易である。

【0071】

特に、シリンダブロック冷却ウォータージャケット JB からシリンダヘッド冷却ウォータージャケット JH に冷却水を受け渡す 2 個の冷却水通路 11g, 11h を

左右に分離して設けたので、シリンダヘッド冷却ウォータージャケット J H の左右両側に冷却水を均等に供給して冷却効果を高めることができる。しかも 2 個の冷却水通路 11 g, 11 h の間にシリンダヘッド 15 からの戻りオイルを案内するオイル戻し通路 11 j を設けたので、2 個の冷却水通路 11 g, 11 h を流れる冷却水の流量がアンバランスになるのを防止しながら、冷却水通路 11 g, 11 h およびカム室最下部に設けたオイル戻し通路 11 j を狭いスペースにコンパクトに配置することができる。

【0072】

更に、シリンダブロック冷却ウォータージャケット J B に連通する通孔 11 d, 11 e と、シリンダヘッド冷却ウォータージャケット J H に連通する冷却水通路 11 g, 11 h とを、シリンダブロック 11 の内部に形成した分岐部である冷却水通路 11 c において分岐させたので、前記分岐部に特別のシール部材を設ける必要がなくなりて部品点数が削減される。

【0073】

さて、エンジン E の運転中に冷却水の温度が異常に上昇した場合、エンジン E がオーバーヒートする可能性があるとして警報が発せられる。本実施例では、第 1 排気ガイド冷却ウォータージャケット J M 1、排気マニホールド冷却ウォータージャケット J M 2 およびシリンダブロック冷却ウォータージャケット J B で構成される冷却系の冷却水温度センサ 6 7 が排気マニホールド冷却ウォータージャケット J M 2 の上端に設けられており、シリンダヘッド冷却ウォータージャケット J H で構成される冷却系の冷却水温度センサ 8 9 が第 2 サーモスタット 8 5 の近傍に設けられている。

【0074】

このように、第 1 排気ガイド冷却ウォータージャケット J M 1、排気マニホールド冷却ウォータージャケット J M 2、シリンダブロック冷却ウォータージャケット J B およびシリンダヘッド冷却ウォータージャケット J H の合計 4 個のウォータージャケットを 2 系統に分離したことにより、第 1 排気ガイド冷却ウォータージャケット J M 1、排気マニホールド冷却ウォータージャケット J M 2 およびシリンダブロック冷却ウォータージャケット J B に対して 1 個の冷却水温度センサ 6 7 を設ければ

よくなり、前記4個のウォータジャケットにそれぞれ冷却水温度センサを設ける場合に比べて部品点数を削減することができる。

【0075】

特に、第1排気ガイド冷却ウォータジャケットJM1、排気マニホールド冷却ウォータジャケットJM2およびシリンダブロック冷却ウォータジャケットJBのうち、シリンダブロック冷却ウォータジャケットJBよりも上流側の排気マニホールド冷却ウォータジャケットJM2に冷却水温度センサ67を設けたので、冷却水温度の異常上昇を素早く検出することができる。また排気マニホールド冷却ウォータジャケットJM2の冷却水温度センサ67は検水口66に連なる継ぎ手61eの近傍に設けられているため、検水口66に向けて冷却水が流れることで冷却水温度センサ67の近傍に冷却水が滞留することを防止し、冷却水の温度検出精度を高めることができる。

【0076】

シリンダブロック冷却ウォータジャケットJBからの冷却水の排出を制御する第1サーモスタッフ84と、シリンダヘッド冷却ウォータジャケットJHからの冷却水の排出を制御する第2サーモスタッフ85とは、エンジンEの上面においてクランクシャフト13およびカムシャフト73, 74を接続するタイミングチェーン30を覆うチェーンカバー31の上壁に設けられているため、エンジンカバー40を外すだけで、チェーンカバー31やタイミングチェーン30に邪魔されることなく第1、第2サーモスタッフ84, 85を上方から容易にメンテナンスすることができる。

【0077】

またシリンダブロック冷却ウォータジャケットJBを第1サーモスタッフ84に接続する冷却水通路31b, 31cと、シリンダヘッド冷却ウォータジャケットJHを第2サーモスタッフ85に接続する冷却水通路31d, 31eとをチェーンカバー31に形成したので、外部配管を介して接続する場合に比べて部品点数を削減することができる。更に、第1、第2サーモスタッフ84, 85の出口側は共通の排水管88を介して第2排気ガイド冷却ウォータジャケットJM3に接続されるので、エンジンEの内部に冷却水を排出する通路を形成する必要がな

くなって加工が容易になるだけでなく、排水管88の本数を1本に抑えて部品点数の削減を図ることができる。

【0078】

またシリンダブロック11側の第1サーモスタッフ84とシリンダヘッド15側の第2サーモスタッフ85とを相互に近接して配置し、かつシリンダブロック11およびシリンダヘッド15に共通のパッキン面を介して結合されるチェーンカバー31に第1、第2サーモスタッフ84，85を取り付けたので、第1、第2サーモスタッフ84，85を狭いスペースにコンパクトに取り付けることができる。特に、第1、第2サーモスタッフ84，85を収容するサーモスタッフ室94，95をタイミングチェーン30の回転平面よりも上方に配置しているため、相互の干渉を避けつつ大型化を抑えてコンパクトにすることができる。しかもサーモスタッフ室94，95に連なる冷却水通路31b，31dがタイミングチェーン30のループ内に配置されているためにデッドスペースが有効利用され、相互の干渉を避けつつ大型化を抑えてコンパクトにすることができる。

【0079】

またシリンダブロック冷却ウォータージャケットJBの最上部およびシリンダヘッド冷却ウォータージャケットJHの最上部から冷却水を導出するので、冷却水の導出が容易になる。

【0080】

またシリンダブロック冷却ウォータージャケットJBに冷却水を供給する上側の継ぎ手11aは最上位の燃焼室20の側方ではなく、上から2番目の燃焼室20の側方に設けられているため、前記継ぎ手11aから供給された冷却水が低温のまま第1サーモスタッフ84に作用して不適切な作動をするのを防止することができる。尚、第1サーモスタッフ84を適切に作動させるには、前記継ぎ手11aの位置を、少なくとも最上位の燃焼室20の上下方向中央位置よりも下方に配置することが必要である。

【0081】

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。

【0082】

例えば、実施例では多気筒エンジンEを例示したが、本発明は単気筒エンジンに対しても適用することができる。

【0083】

また実施例ではシリンダブロック11の内部でシリンダブロック冷却ウォータージャケットJBへの冷却水とシリンダヘッド冷却ウォータージャケットJHへの冷却水とを分岐させているが、請求項4に記載の発明の如く、エンジンEの下面を支持する支持フレーム、つまりマウントケース35およびオイルケース36の内部に分岐部を形成しても良い。あるいは請求項5に記載の発明の如く、前記支持フレームとシリンダブロック11との合わせ面に分岐部を形成しても良い。上記何れの場合でも、外部配管およびシール部材の削減を達成することができる。

【0084】**【発明の効果】**

以上のように請求項1に記載された発明によれば、シリンダブロック冷却ウォータージャケットとシリンダヘッド冷却ウォータージャケットとを概ね独立させたので、シリンダブロックの温度およびシリンダヘッドの温度を独立して適温に設定するのが容易になる。またシリンダヘッド冷却ウォータージャケットへの冷却水の供給を、冷却水ポンプからシリンダブロック冷却ウォータージャケットに冷却水を供給する冷却水通路から分岐する左右一対の冷却水通路を、シリンダブロックおよびシリンダヘッドのパッキン面を通してシリンダヘッド冷却ウォータージャケットに連通させることで行うので、外部配管を通してシリンダヘッド冷却ウォータージャケットに冷却水を供給する場合に比べて部品点数およびスペースを削減できるだけでなく、冷却水通路がパッキン面を通過することで特別のシール部材を廃止することができる。しかも左右一対の冷却水通路をシリンダヘッド冷却ウォータージャケットに連通させたので、シリンダヘッド冷却ウォータージャケット内の冷却水の流れを均一化して冷却効果を高めることができる。

【0085】

また請求項2に記載された発明によれば、シリンダブロック冷却ウォータージャケットに連なる冷却水通路からシリンダヘッド冷却ウォータージャケットへの分岐

部をシリンダブロックの内部に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【0086】

また請求項3に記載された発明によれば、シリンダヘッドからシリンダブロックを経てオイルパンにオイルを戻すオイル戻し通路がシリンダブロックおよびシリンダヘッドのパッキン面を貫通するので、オイル戻し通路のための特別の外部配管やシール部材が不要になって部品点数が削減される。またオイル戻し通路が左右一対の冷却水通路の間に配置されるので、左右一対の冷却水通路の冷却水の流量を均一化しながら狭いスペースにオイル戻し通路および冷却水通路をコンパクトに配置することができる。

【0087】

また請求項4に記載された発明によれば、シリンダブロック冷却ウォータジャケットに連なる冷却水通路からシリンダヘッド冷却ウォータジャケットへの分岐部を、エンジンの下面を支持する支持フレームの内部に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【0088】

また請求項5に記載された発明によれば、シリンダブロック冷却ウォータジャケットに連なる冷却水通路からシリンダヘッド冷却ウォータジャケットへの分岐部を、エンジンの下面を支持する支持フレームとシリンダブロックとの合わせ面に形成したので、分岐部のシール部材を廃止して部品点数を削減することができる。

【図面の簡単な説明】

【図1】

船外機の全体側面図

【図2】

図1の2-2線拡大断面図

【図3】

図2の3-3線拡大断面図

【図4】

図 2 の 4 方向拡大矢視図

【図 5】

図 4 の 5 方向矢視図

【図 6】

図 1 の要部拡大断面図

【図 7】

図 1 の 7-7 線拡大矢視図 (マウントケースの上面図)

【図 8】

図 1 の 8-8 線拡大矢視図 (ポンプボディの下面図)

【図 9】

図 1 の 9-9 線拡大矢視図 (ブロック等の小組体の下面図)

【図 10】

排気マニホールドの拡大図

【図 11】

排気マニホールドおよび排気ガイドの接続部の拡大図

【図 12】

図 14 の 12-12 線矢視図 (排気ガイドの平面図)

【図 13】

図 14 の 13-13 線断面図

【図 14】

図 1 の 14-14 線拡大矢視図

【図 15】

図 1 の 15-15 線拡大矢視図

【図 16】

図 15 の 16-16 線拡大断面図

【図 17】

図 16 の 17-17 線断面図

【図 18】

図 16 の 18-18 線断面図

【図19】

エンジン冷却系の回路図

【符号の説明】

1 1	シリンドラブロック
1 1 c	冷却水通路
1 1 g	冷却水通路
1 1 h	冷却水通路
1 1 j	オイル戻し通路
1 3	クランクシャフト
1 5	シリンドラヘッド
1 5 b	オイル戻し通路
1 7	シリンドラ
1 8	ピストン
1 9	コネクティングロッド
2 0	燃焼室
3 5	マウントケース（支持フレーム）
3 6	オイルケース（支持フレーム）
3 6 d	オイルパン
4 6	冷却水ポンプ
J B	シリンドラブロック冷却ウォータージャケット
J H	シリンドラヘッド冷却ウォータージャケット

【書類名】

図面

【図 1】

【図2】

【図3】

【図 4】

【図5】

【図 6】

【図 7】

【図 8】

【図9】

ブロック等の小組体の下面

【図10】

【図 1 1】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【四 19】

【書類名】 要約書

【要約】

【課題】 概ね独立するシリンダブロック冷却ウォータージャケットおよびシリンダヘッド冷却ウォータージャケットを備えた水冷バーチカルエンジンにおいて、シリンダヘッド冷却ウォータージャケットへの冷却水の供給を容易に行えるようにして冷却効果を高める。

【解決手段】 水冷バーチカルエンジンは、シリンダブロック11に形成されたシリンダブロック冷却ウォータージャケットJBと、シリンダヘッド15に形成されたシリンダヘッド冷却ウォータージャケットJHとを独立して備える。冷却水ポンプ46からの冷却水は通孔11d, 11eを介してシリンダブロック冷却ウォータージャケットJBに供給され、その手前で分岐した冷却水は、一対の冷却水通路11g, 11hからシリンダブロック11およびシリンダヘッド12のパッキン面を通してシリンダヘッド冷却ウォータージャケットJHに供給される。

【選択図】 図19