W2. Discrete Classification - Logistic Regression

Guang Cheng

University of California, Los Angeles guangcheng@ucla.edu

Week 2

• A typical dataset in classification $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.

- A typical dataset in classification $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
 - x_i : the covariate vector of *i*-th instance

- A typical dataset in classification $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
 - x_i : the covariate vector of *i*-th instance
 - $y_i \in \{-1,1\}$: binary label of *i*-th instance

- A typical dataset in classification $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
 - x_i : the covariate vector of *i*-th instance
 - $y_i \in \{-1,1\}$: binary label of *i*-th instance
- Question: Can we directly minimize the averaged 0-1 loss?

Training Error:
$$\frac{1}{n} \sum_{i=1}^{n} I(f(\mathbf{x}_i) \neq y_i)$$

- A typical dataset in classification $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
 - x_i : the covariate vector of *i*-th instance
 - $y_i \in \{-1,1\}$: binary label of *i*-th instance
- Question: Can we directly minimize the averaged 0-1 loss?

Training Error :
$$\frac{1}{n} \sum_{i=1}^{n} I(f(\mathbf{x}_i) \neq y_i)$$

• **Answer**: No, the 0-1 loss function is non-convex and discontinuous, so (sub)gradient methods cannot be applied.

Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^n I(f(\mathbf{x}_i) \neq y_i) \Rightarrow \frac{1}{n}\sum_{i=1}^n L(f(\mathbf{x}_i), y_i) = \frac{1}{n}\sum_{i=1}^n \phi(f(\mathbf{x}_i)y_i)$$

Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^{n}I(f(\mathbf{x}_{i})\neq y_{i})\Rightarrow\frac{1}{n}\sum_{i=1}^{n}L(f(\mathbf{x}_{i}),y_{i})=\frac{1}{n}\sum_{i=1}^{n}\phi(f(\mathbf{x}_{i})y_{i})$$

• Hinge loss: $\phi(x) = \max\{0, 1-x\}$

Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^{n}I(f(\mathbf{x}_{i})\neq y_{i})\Rightarrow\frac{1}{n}\sum_{i=1}^{n}L(f(\mathbf{x}_{i}),y_{i})=\frac{1}{n}\sum_{i=1}^{n}\phi(f(\mathbf{x}_{i})y_{i})$$

- Hinge loss: $\phi(x) = \max\{0, 1-x\}$
- Logistic loss $\phi(x) = \log(1 + \exp(-x))$

One surrogate loss - Hinge Loss

Definition of Hinge loss:

$$L_{hinge}(f(\mathbf{x}_i), y_i) = \begin{cases} 1 - f(\mathbf{x}_i)y_i & \text{if } f(\mathbf{x}_i)y_i \leq 1\\ 0, & \text{if } f(\mathbf{x}_i)y_i > 1 \end{cases}$$

• Let $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$. The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + \big(1 - \eta(\boldsymbol{X})\big) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Let $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$. The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[L_{hinge}(f(\boldsymbol{X}), Y) \big]$$

= $\mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$

• Suppose that $f(X) \in [-1,1]$, for any X, we have (pls verify in class)

$$egin{aligned} & \eta(oldsymbol{X})(1-f(oldsymbol{X})) + ig(1-\eta(oldsymbol{X})ig)(1+f(oldsymbol{X})) \ = & \eta(oldsymbol{X}) - 2\eta(oldsymbol{X})f(oldsymbol{X}) + 1 + f(oldsymbol{X}) - \eta(oldsymbol{X}) \ = & f(oldsymbol{X})ig(1-2\eta(oldsymbol{X})ig) + 1. \end{aligned}$$

• Let $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$. The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} [L_{hinge}(f(\boldsymbol{X}), Y)]$$
$$= \mathbb{E}_{X} \Big[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that $f(X) \in [-1,1]$, for any X, we have (pls verify in class)

$$egin{aligned} & \eta(\boldsymbol{X})(1-f(\boldsymbol{X})) + ig(1-\eta(\boldsymbol{X})ig)(1+f(\boldsymbol{X})) \ = & \eta(\boldsymbol{X}) - 2\eta(\boldsymbol{X})f(\boldsymbol{X}) + 1 + f(\boldsymbol{X}) - \eta(\boldsymbol{X}) \ = & f(\boldsymbol{X})ig(1-2\eta(\boldsymbol{X})ig) + 1. \end{aligned}$$

• The optimal function f_{hinge}^* minimizing $R_{hinge}(f)$ (why?)

• Let $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$. The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + \big(1 - \eta(\boldsymbol{X})\big) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that $f(X) \in [-1,1]$, for any X, we have (pls verify in class)

$$\eta(\mathbf{X})(1 - f(\mathbf{X})) + (1 - \eta(\mathbf{X}))(1 + f(\mathbf{X}))$$

= $\eta(\mathbf{X}) - 2\eta(\mathbf{X})f(\mathbf{X}) + 1 + f(\mathbf{X}) - \eta(\mathbf{X})$
= $f(\mathbf{X})(1 - 2\eta(\mathbf{X})) + 1$.

- The optimal function f_{hinge}^* minimizing $R_{hinge}(f)$ (why?)
 - If $\eta(\boldsymbol{X}) < 1/2$, hinge loss is minimized at $f(\boldsymbol{X}) = -1$

• Let $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$. The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that $f(X) \in [-1,1]$, for any X, we have (pls verify in class)

$$\eta(\mathbf{X})(1 - f(\mathbf{X})) + (1 - \eta(\mathbf{X}))(1 + f(\mathbf{X}))$$

$$= \eta(\mathbf{X}) - 2\eta(\mathbf{X})f(\mathbf{X}) + 1 + f(\mathbf{X}) - \eta(\mathbf{X})$$

$$= f(\mathbf{X})(1 - 2\eta(\mathbf{X})) + 1.$$

- The optimal function f_{hinge}^* minimizing $R_{hinge}(f)$ (why?)
 - If $\eta(\boldsymbol{X}) < 1/2$, hinge loss is minimized at $f(\boldsymbol{X}) = -1$
 - If $\eta(\mathbf{X}) > 1/2$, hinge loss is minimized at $f(\mathbf{X}) = 1$

• The optimal classifier (i.e., Bayes classifier) of Binary loss is defined as

$$f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) > 1/2 \\ 0 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) < 1/2 \end{cases}$$

• The optimal classifier (i.e., Bayes classifier) of Binary loss is defined as

$$f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) > 1/2 \\ 0 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) < 1/2 \end{cases}$$

Observation:

- (i) f_{hinge}^* is exactly the Bayes classifier defined above;
- (ii) The hinge loss is a convex function, which makes it possible to minimize the training error in practice.

Another surrogate loss - Logistic Loss

Definition of Logistic loss:

$$L_{log}(f(\mathbf{x}_i), y_i) = \log \left(1 + \exp(-f(\mathbf{x}_i)y_i)\right)$$

Why Logistic Loss?

• The logistic risk:

$$\begin{split} R_{log}(f) &= \mathbb{E}_{\boldsymbol{X},Y} \Big[\log \Big(1 + \exp(-f(\boldsymbol{X})Y) \Big) \Big] \\ = & \mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) \log \Big(1 + \exp(-f(\boldsymbol{X})) \Big) + \Big(1 - \eta(\boldsymbol{X}) \Big) \log \Big(1 + \exp(f(\boldsymbol{X})) \Big) \Big] \end{split}$$

Why Logistic Loss?

• The logistic risk:

$$\begin{split} R_{log}(f) &= \mathbb{E}_{\boldsymbol{X},Y} \Big[\log \Big(1 + \exp(-f(\boldsymbol{X})Y) \Big) \Big] \\ = & \mathbb{E}_{\boldsymbol{X}} \Big[\eta(\boldsymbol{X}) \log \Big(1 + \exp(-f(\boldsymbol{X})) \Big) + \Big(1 - \eta(\boldsymbol{X}) \Big) \log \Big(1 + \exp(f(\boldsymbol{X})) \Big) \Big] \end{split}$$

Take the derivative with respect to f, pls verify the following in class

$$\begin{split} &-\eta(\boldsymbol{X})\frac{\exp(-f(\boldsymbol{X}))}{1+\exp(-f(\boldsymbol{X}))} + \left(1-\eta(\boldsymbol{X})\right)\frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} \\ &= -\eta(\boldsymbol{X})\frac{1}{1+\exp(f(\boldsymbol{X}))} + \left(1-\eta(\boldsymbol{X})\right)\frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} \\ &= \frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} - \eta(\boldsymbol{X}) = 0 \longleftrightarrow f_{log}^*(\boldsymbol{X}) = \log\frac{\eta(\boldsymbol{X})}{1-\eta(\boldsymbol{X})} \end{split}$$

• The Bayes classifier $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2)$

- The Bayes classifier $f^*(x) = \text{sign}(\eta(x) 1/2)$
- ullet The optimal classifier of Hinge risk $f^*_{hinge}(oldsymbol{x}) = \mathrm{sign}(\eta(oldsymbol{x}) 1/2)$

- The Bayes classifier $f^*(x) = \text{sign}(\eta(x) 1/2)$
- ullet The optimal classifier of Hinge risk $f^*_{hinge}({m x}) = {
 m sign}(\eta({m x}) 1/2)$
- ullet The optimal classifier of Logistic risk $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$

- The Bayes classifier $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) 1/2)$
- ullet The optimal classifier of Hinge risk $f^*_{hinge}({m x}) = {
 m sign}(\eta({m x}) 1/2)$
- ullet The optimal classifier of Logistic risk $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$
- Question: what is the connection between these optimal classifiers?

- The Bayes classifier $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) 1/2)$
- ullet The optimal classifier of Hinge risk $f^*_{ ext{hinge}}(oldsymbol{x}) = ext{sign}(\eta(oldsymbol{x}) 1/2)$
- ullet The optimal classifier of Logistic risk $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$
- Question: what is the connection between these optimal classifiers?
- **Answer**: They are consistent in sign in the sense that signs of f^* , f^*_{hinge} , f^*_{log} are always the same, e.g., always positive as long as $\eta(\mathbf{x}) > 1/2$.

• To estimate $f_{log}^*(x)$, we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

• To estimate $f_{log}^*(\mathbf{x})$, we need to impose an assumption on the form of:

$$\eta(oldsymbol{X}) = \mathbb{P}ig(Y=1ig|oldsymbol{X}ig)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

• To estimate $f_{log}^*(\mathbf{x})$, we need to impose an assumption on the form of:

$$\eta(oldsymbol{X}) = \mathbb{P}ig(Y=1ig|oldsymbol{X}ig)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

• $\mathbf{x} = (x_1, \dots, x_p)^T$ is a *p*-dimensional predictor

• To estimate $f_{log}^*(\mathbf{x})$, we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},$$
 (1)

where

- $\mathbf{x} = (x_1, \dots, x_p)^T$ is a *p*-dimensional predictor
- ullet eta_0 and $oldsymbol{eta}=(eta_1,\ldots,eta_p)$ are unknown parameters to be estimated

• To estimate $f_{log}^*(\mathbf{x})$, we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

- $\mathbf{x} = (x_1, \dots, x_p)^T$ is a *p*-dimensional predictor
- ullet eta_0 and $oldsymbol{eta}=(eta_1,\ldots,eta_p)$ are unknown parameters to be estimated
- $\bullet \ \beta^T \mathbf{x} = \sum_{i=1}^p \beta_i x_i$

Rational behind logistic loss: log odds ratio

By reformulating (1), we have obtained

$$\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{1 - \mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)} = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{\mathbb{P}\Big(Y = 0 \big| \boldsymbol{X} = \boldsymbol{x}\Big)},$$

where the last term above is the ratio between the conditional probability of Y=1 and that of Y=0 on $\boldsymbol{X}=\boldsymbol{x}$, i.e., "odds ratio."

Rational behind logistic loss: log odds ratio

• By reformulating (1), we have obtained

$$\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{1 - \mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)} = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{\mathbb{P}\Big(Y = 0 \big| \boldsymbol{X} = \boldsymbol{x}\Big)},$$

where the last term above is the ratio between the conditional probability of Y=1 and that of Y=0 on $\boldsymbol{X}=\boldsymbol{x}$, i.e., "odds ratio."

• In other words, we can claim that the log-odds is assumed to be linear with respect to β :

$$eta_0 + oldsymbol{eta}^T oldsymbol{x} = \log \Big(rac{\mathbb{P} \Big(Y = 1 ig| oldsymbol{X} = oldsymbol{x} \Big)}{\mathbb{P} \Big(Y = 0 ig| oldsymbol{X} = oldsymbol{x} \Big)} \Big)$$

Interpretability: β_i can then be interpreted as the average change in the log-odds ratio given by a one-unit increase in x_i

Maximum likelihood estimation

• Likelihood function $L(\beta_0, \beta)$:

$$L(eta_0,oldsymbol{eta}) = \prod_{i=1}^n \Big(\mathbb{P}ig(Y = 1 ig| oldsymbol{X} = oldsymbol{x} ig)^{y_i} \Big(\mathbb{P}ig(Y = 0 ig| oldsymbol{X} = oldsymbol{x} ig)^{1-y_i}$$

Maximum likelihood estimation

• Likelihood function $L(\beta_0, \beta)$:

$$L(eta_0,oldsymbol{eta}) = \prod_{i=1}^n \Big(\mathbb{P} ig(oldsymbol{Y} = 1 ig| oldsymbol{X} = oldsymbol{x} \Big)^{y_i} \Big(\mathbb{P} ig(oldsymbol{Y} = 0 ig| oldsymbol{X} = oldsymbol{x} \Big) \Big)^{1-y_i}$$

• Logarithm of $L(\beta_0, \beta)$ (pls verify in class):

$$\log L(\beta_0, \boldsymbol{\beta}) = \sum_{i=1}^{n} \left[y_i \log \left(\mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) \right) + (1 - y_i) \log \left(\mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x}) \right) \right]$$
$$= \sum_{i=1}^{n} \left[y_i (\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) - \log \left(1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) \right) \right]$$

Gradient descent/ascent in the computation

Estimate β_0 and β (Gradient Ascent):

$$\beta_0^{(t+1)} \leftarrow \beta_0^{(t)} + \lambda \sum_{i=1}^n \left[y_i - \frac{\exp(\beta_0^{(t)} + \beta^{(t)T} x)}{1 + \exp(\beta_0^{(t)} + \beta^{(t)} x)} \right]$$
$$\beta^{(t+1)} \leftarrow \beta^{(t)} + \lambda \sum_{i=1}^n \left[y_i - \frac{\exp(\beta_0^{(t)} + \beta^{(t)T} x)}{1 + \exp(\beta_0^{(t)} + \beta^{(t)T} x)} \right] x_i$$

Now, we are ready to do classification

We have obtained the estimate for β_0 and β , denoted as $\widehat{\beta}_0$ and $\widehat{\beta}$, based on which we can estimate P(Y=1|X) as follows:

$$\widehat{\eta}(\mathbf{x}) = \frac{\exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}{1 + \exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}$$

Now, we are ready to do classification

We have obtained the estimate for β_0 and β , denoted as $\widehat{\beta}_0$ and $\widehat{\beta}$, based on which we can estimate P(Y=1|X) as follows:

$$\widehat{\eta}(\mathbf{x}) = \frac{\exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}{1 + \exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}$$

Then we make predictions by (recall that $\eta({m x}) = P(Y=1|{m X}))$

$$\widehat{f}(\mathbf{x}) = \begin{cases} 1, & \text{if } \widehat{\eta}(\mathbf{x}) > 1/2 \\ 0, & \text{if } \widehat{\eta}(\mathbf{x}) < 1/2 \end{cases}$$

If $\widehat{\eta}(\mathbf{x}) = 1/2$, then just randomly assign a label to it.

Example

Dataset
$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$$
, where $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$.

• Features are generated from uniform distribution $x_{il} \sim Unif(0,2), l = 1,2,3,4.$

Example

Dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$, where $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$.

- Features are generated from uniform distribution $x_{il} \sim Unif(0,2), l = 1,2,3,4.$
- $\beta_0 = 0.5$ and $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$ with $\beta_i \sim Unif(-1, 1)$

Example

Dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$, where $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$.

- Features are generated from uniform distribution $x_{il} \sim Unif(0,2), l = 1,2,3,4.$
- $\beta_0 = 0.5$ and $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$ with $\beta_i \sim Unif(-1, 1)$
- Model:

$$Y_i \sim Bernoulli(\frac{\exp(eta_0 + oldsymbol{eta}^T oldsymbol{x})}{1 + \exp(eta_0 + oldsymbol{eta}^T oldsymbol{x})}),$$

which means

$$P(Y_i = 1 | \boldsymbol{X}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}$$

Python Codes – data generation

```
import numpy as np
np.random.seed(2)
n,p = 5000,4 # Set training datasize and dimension of features
X = np.random.uniform(-1,1,[n,p]) # Generation of features
beta = np.random.uniform(0,2,4) # Generation of parameters
beta_0 = 0.5 # Set the intercept term to 0.5
logOdd = (X * beta).sum(axis=1)+beta_0 # Log-odds
Prob = np.exp(logOdd)/(1+np.exp(logOdd)), # Probability
Y = np.array(Prob - np.random.uniform(0,1,n)>0,dtype=int) # Generate labels
```

```
Beta_0_hat = 0. # Initialization of intercept term
Beta_hat = np.zeros(p) # Initialization of beta
lamb = 0.1 \# Learning rate
Error = \prod \# Error set
for i in range(2000):# Iterations of gradient ascent
  logOdd_hat = (X * Beta_hat).sum(axis=1)+Beta_0_hat
  Beta_0_hat = Beta_0_hat + lamb * np.mean(Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat)))
  Beta_hat = Beta_hat + lamb * ((Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat))) * X.T).mean(axis=1)
  Error.append(np.linalg.norm(Beta_hat-beta)**2)
import matplotlib.pyplot as plt
plt.plot(np.arange(0,2000),Error)
plt.xlabel('Number of iterations')
plt.ylabel('$\Vert \\beta - \hat{\\beta}\Vert_2^2$')
plt.grid()
```

Example: gradient ascent for logistic regression

Over/under-fitting problem

• Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.

Over/under-fitting problem

- Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.
- Underfitting, on the other hand, happens when a model is too simple to capture the underlying patterns in the data, resulting in poor performance on both the training and test data.

Over/under-fitting problem

- Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.
- Underfitting, on the other hand, happens when a model is too simple to capture the underlying patterns in the data, resulting in poor performance on both the training and test data.
- Let's use a simple example with polynomial regression and visualize the above with the out-of-sample (OOS) metrics.

An example - underfitting

Degree 1: Underfitting (Too simple) - The model is not able to capture the underlying pattern in the data.

An example - good fit

Degree 5: Good fit - The model captures the underlying pattern well and generalizes to the test data.

An example - overfitting

Degree 15: Overfitting (Too complex) - The model fits the training data too closely, capturing noise and performing poorly on new data.

Confusion matrix – measure the performance of classification

• In Machine Learning, to measure the performance of the classification model, such as logistic regression, we use the confusion matrix.

Confusion matrix – measure the performance of classification

- In Machine Learning, to measure the performance of the classification model, such as logistic regression, we use the confusion matrix.
- A confusion matrix is a matrix that displays the number of accurate and inaccurate classification outcomes for each input instance **X**.

To measure the performance of classification, we have the following metrics:

• true positives (TP): occurs when the model accurately predicts a positive data point, i.e., $\hat{y} = y = 1$.

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e., $\hat{y} = y = 1$.
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e., $\hat{y} = y = -1$.

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e., $\hat{y} = y = 1$.
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e., $\hat{y} = y = -1$.
- false positives (FP): occurs when the model predicts a positive data point incorrectly, i.e., $\hat{y} = 1$ but y = -1.

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e., $\hat{y} = y = 1$.
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e., $\hat{y} = y = -1$.
- false positives (FP): occurs when the model predicts a positive data point incorrectly, i.e., $\hat{y} = 1$ but y = -1.
- false negatives (FN): occurs when the model predicts a negative data point incorrectly, i.e., $\hat{y} = -1$ but y = 1.

An example : dog recognition

Dog: Y = 1 & Not Dog: Y = -1 (pls verify this table in class!)

		,	
index	actual	predicted	Result
1	Dog	Dog	TP
2	Dog	Not Dog	FN
3	Dog	Dog	TP
4	Not Dog	Not Dog	TN
5	Dog	Dog	TP
6	Not Dog	Dog	FP
7	Dog	Dog	ТР
8	Dog	Dog	TP
9	Not Dog	Not Dog	TN
10	Not Dog	Not Dog	TN

Pls take a min to count....

Actual Dog Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?
- True Negative Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?
- True Negative Counts = ?
- False Negative Counts = ?

Actual Dog Counts = 6

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1
- True Negative Counts = 3

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1
- True Negative Counts = 3
- False Negative Counts = 1

An example - construct the confusion matrix

Construct the Confusion Matrix

		Actual	
		Dog	Not Dog
Predicted	Dog	True Positive (TP =5)	False Positive (FP=1)
	Not Dog	False Negative (FN =1)	True Negative (TN=3)

An example - construct the confusion matrix

Construct the Confusion Matrix

		Actual	
		Dog	Not Dog
Predicted	Dog	True Positive (TP =5)	False Positive (FP=1)
	Not Dog	False Negative (FN =1)	True Negative (TN=3)

• How to use the Confusion Matrix for assessing a classification model's performance ?

Classification metrics based on confusion matrix: Accuracy

 Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.

Classification metrics based on confusion matrix: Accuracy

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- For the above case: Accuracy = ?

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- For the above case: Accuracy = ?
- For the above case: Accuracy = (5+3)/(5+3+1+1) = 8/10 = 0.8

 Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision = $\frac{TP}{TP+FP}$

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision = $\frac{TP}{TP+FP}$
- For the above case: Precision = ?

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision = $\frac{TP}{TP+FP}$
- For the above case: Precision = ?
- For the above case: Precision = 5/(5+1) = 5/6 = 0.8333

 Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall = $\frac{TP}{TP+FN}$

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall = $\frac{TP}{TP+FN}$
- For the above case: Recall = ?

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall = $\frac{TP}{TP+FN}$
- For the above case: Recall = ?
- For the above case: Recall = 5/(5+1) = 5/6 = 0.8333

• F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.
- The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.
- The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.
- For example, harmonic mean of 1, 4, 4 is

$$(\frac{1^{-1}+4^{-1}+4^{-1}}{3})^{-1}=2$$

• Pls verify this in class: F1-score = $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$

- Pls verify this in class: F1-score = $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$
- For the above case: F1-Score=?

- Pls verify this in class: F1-score = $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$
- For the above case: F1-Score=?
- For the above case: F1-Score = (2*0.8333*0.8333)/(0.8333+0.8333) = 0.8333

Problem statement

 You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
 - 40 emails are correctly identified as spam (True Positives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
 - 40 emails are correctly identified as spam (True Positives).
 - 10 emails are incorrectly identified as spam (False Positives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
 - 40 emails are correctly identified as spam (True Positives).
 - 10 emails are incorrectly identified as spam (False Positives).
 - 30 emails are correctly identified as not spam (True Negatives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
 - 40 emails are correctly identified as spam (True Positives).
 - 10 emails are incorrectly identified as spam (False Positives).
 - 30 emails are correctly identified as not spam (True Negatives).
 - 20 emails are incorrectly identified as not spam (False Negatives).

Your task

Construct a confusion matrix from these results.

- Construct a confusion matrix from these results.
- Calculate the following metrics:

- Construct a confusion matrix from these results.
- Calculate the following metrics:
 - Accuracy

- Construct a confusion matrix from these results.
- Calculate the following metrics:
 - Accuracy
 - Precision

- Construct a confusion matrix from these results.
- Calculate the following metrics:
 - Accuracy
 - Precision
 - Recall

- Construct a confusion matrix from these results.
- Calculate the following metrics:
 - Accuracy
 - Precision
 - Recall
 - F-1 Score

Solution

confusion matrix:

- confusion matrix:
 - True Positives (TP): 40

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20
- Calculate Accuracy: Accuracy = $\frac{40+30}{40+30+10+20} = 0.7$

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20
- Calculate Accuracy: Accuracy = $\frac{40+30}{40+30+10+20} = 0.7$
- Precision = $\frac{40}{40+10}$ = 0.8

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20
- Calculate Accuracy: Accuracy = $\frac{40+30}{40+30+10+20} = 0.7$
- Precision = $\frac{40}{40+10}$ = 0.8
- Recall = $\frac{40}{40+20} = \frac{2}{3}$

- confusion matrix:
 - True Positives (TP): 40
 - False Positives (FP): 10
 - True Negatives (TN): 30
 - False Negatives (FN): 20
- Calculate Accuracy: Accuracy = $\frac{40+30}{40+30+10+20} = 0.7$
- Precision = $\frac{40}{40+10}$ = 0.8
- Recall = $\frac{40}{40+20} = \frac{2}{3}$
- F-1 Score = $2 \times \frac{0.8 \times 0.667}{0.8 + 0.667} \approx 0.727$

 The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;
 - $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients associated with each feature.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;
 - $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients associated with each feature.
 - x_1 represents the Variance of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;
 - $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients associated with each feature.
 - x_1 represents the Variance of the Wavelet Transformed image.
 - x_2 represents the Skewness of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;
 - $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients associated with each feature.
 - x_1 represents the Variance of the Wavelet Transformed image.
 - x_2 represents the Skewness of the Wavelet Transformed image.
 - x_3 represents the Curtosis of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
 - β_0 : the intercept term;
 - $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients associated with each feature.
 - x_1 represents the Variance of the Wavelet Transformed image.
 - x_2 represents the Skewness of the Wavelet Transformed image.
 - x_3 represents the Curtosis of the Wavelet Transformed image.
 - x_4 represents the Entropy of the image.

• The logistic regression model makes the following assumption:

$$P(\text{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

• The logistic regression model makes the following assumption:

$$P(\text{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

• This probability is then used to make a classification decision.

• The logistic regression model makes the following assumption:

$$P(\mathsf{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

- This probability is then used to make a classification decision.
 - If $P(\text{authentic}) \ge 0.5$, the model predicts the banknote as authentic (Class 1)

• The logistic regression model makes the following assumption:

$$P(\mathsf{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

- This probability is then used to make a classification decision.
 - If $P(\text{authentic}) \ge 0.5$, the model predicts the banknote as authentic (Class 1)
 - If P(authentic) < 0.5, the model predicts the banknote as not authentic (Class 0)

Application of logistic regression: Results

Pls verify confusion matrix, precision, recall.... by hand after class

```
Variance Skewness Curtosis Entropy Class
   3.62160 8.6661
                    -2.8073 -0.44699
                                           0
  4.54590 8.1674 -2.4586 -1.46210
 3.86600 -2.6383 1.9242 0.10645
3 3.45660 9.5228 -4.0112 -3.59440
   0.32924 -4.4552 4.5718 -0.98880
Accuracy: 0.98
Confusion Matrix:
[[144 4]
   2 125]]
Classification Report:
             precision
                         recall f1-score
                                           support
          0
                  0.99
                           0.97
                                    0.98
                                               148
                 0.97
                           0.98
                                    0.98
                                               127
                                    0.98
                                               275
   accuracy
                           0.98
                                    0.98
                                               275
  macro avg
                  0.98
weighted avg
                 0.98
                           0.98
                                    0.98
                                               275
```

Statsmodels: Python package

 Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.

Statsmodels: Python package

- Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.
- Statsmodels includes modules for performing hypothesis tests, constructing confidence intervals, and fitting different types of statistical models with an emphasis on providing detailed statistical information.

Statsmodels: Python package

- Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.
- Statsmodels includes modules for performing hypothesis tests, constructing confidence intervals, and fitting different types of statistical models with an emphasis on providing detailed statistical information.
- Statsmodels is commonly used in academic research, econometrics, and any scenario where a detailed statistical analysis is required.

Statsmodels: Linear regression example

```
import statsmodels.api as sm
import numpy as np
# Generate some random data for demonstration
np.random.seed(42)
X = np.random.rand(100, 2)
y = 3 * X[:, 0] + 2 * X[:, 1] + 1 + 0.1 * np.random.randn(100)
# Add a constant term to the independent variable
X = sm.add constant(X)
# Create a linear model
model = sm.OLS(y, X)
results = model.fit()
# Print detailed statistical summary
print(results.summary())
```

Statsmodels: output

OLS Regression Results

Dep. Variable:			У	R-sq	uared:		0.991
Model:		OLS		Adj.	Adj. R-squared:		0.991
Method:		Least Squares		F-st	F-statistic:		5655.
Date:		Thu, 21 Dec	2023	Prob	(F-statistic)	:	3.86e-101
Time:		10:	0:14	Log-	Likelihood:		89.304
No. Observations:			100	AIC:			-172.6
Df Residuals:			97	BIC:			-164.8
Df Model:			2				
Covariance Type:		nonrobust					
	coef	std err		t	P> t	[0.025	0.975]
const		0.006		7 654		0.006	4 000
	0.9772					0.926	
x1	3.0339					2.968	
x2	2.0355	0.035	5	7.426	0.000	1.965	2.106
Omnibus:			.986		in-Watson:		2.104
Prob(Omnibus):			0.050		ue-Bera (JB):		5.624
Skew:			.439		` '		0.0601
Kurtosis:		3	3.761	Cond	. No.		5.22

Scikit-learn: Python Lib (a collection of Python packages)

 Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.

Scikit-learn: Python Lib (a collection of Python packages)

- Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.
- Functionality: Scikit-learn focuses on providing a consistent interface for various machine learning algorithms, making it easy to train models, perform feature engineering, and evaluate model performance.

Scikit-learn: Python Lib (a collection of Python packages)

- Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.
- Functionality: Scikit-learn focuses on providing a consistent interface for various machine learning algorithms, making it easy to train models, perform feature engineering, and evaluate model performance.
- Use Cases: Scikit-learn is widely used in industry for building and deploying machine learning models in areas such as image recognition, natural language processing, and predictive analytics.