CSR format with empty row

$$A = \begin{pmatrix} 1.0 & 0.1 & 0.5 & \cdot \\ 0.4 & \cdot & \cdot & 0.7 \\ \cdot & \cdot & \cdot & \cdot \\ 0.3 & \cdot & 0.2 & 0.8 \end{pmatrix}$$

```
nRow = 4; nCol = 4; nzMax = 8;
value[8] = {1.0, 0.1, 0.5, 0.4, 0.7, 0.3,
0.2, 0.8};
colIdx[8] = {0, 1, 2, 0, 3, 0, 2, 3};
rowStart[5] = {0, 3, 5, 5, 8};
```


1

Numerical Algorithms for HPC

KS methods in parallel, Preconditioning, matrix splitting and KS methods in action

epcc

Outline

- KS method in parallel
 - Matrix-vector multiplication
- Preconditioning
 - Basic concept
 - Matrix splitting
- · CG and BiCGStab in action

3

3

Matrix vector multiplication in parallel

- Krylov Subspace methods involve one or more matrixvector multiplications at each iteration
- The matrix-vector multiplication is the most computationally expensive part of most KS methods
- It makes sense to carry this out in parallel where possible
- We first look at trivially parallel case of block-diagonal matrix
- Then look at more general case for
 - Replicated vector
 - Distributed vector

4

Parallel matrix vector – block diagonal matrix

- How to decompose matrix across parallel machine?
 - Depends on how the matrix is stored
 - Depends on what the matrix is
- Block diagonal matrix-vector multiply routine is completely parallelisable

· Could further parallelise via threads within blocks

5

5

General parallel matrix-vector

- Multiplication of Av = w
- General approach is 1D decomposition of matrix A by row
 - each processor has m = Nrows/Nprocs rows of matrix
- Then have a choice as to whether the vector \boldsymbol{v} is
 - Replicated across all processors all processors can see all the entire vector at each iteration
 - Distributed across processors processors only see subset of data at any one time

,

Parallel matrix-vector - Replicated data

- Consider first processor, P_{1 Each processor has} copy of entire vector, \boldsymbol{v}
- All processors have copy of entire vector, v
- Need to broadcast data at end of each iteration to complete the vector \mathbf{w}
- Vector \mathbf{w} then replicated across procs and ready for next iteration
- Simple to implement with no communication during calculation
 - but high memory requirement and requires broadcast at the end

After multiplication, each processor initially only has

subset of resulting vector, w

Distributed vector: 2 processor 2×2 example

Both matrix and vector are distributed:

- Circled elements not initially available to relevant processor
- Calculate $a_{11} b_1$ on P_1 and $a_{22} b_2$ on P_2
- Then swap elements b_1 and b_2 between processors
- Then calculate $a_{12}b_2$ on P_1 and $a_{21}b_1$ on P_2
- Can generalise to more processors
 - e.g. pass around a ring rather than simply "swap" elements
- Can also generalise to bigger matrices
 - Then deal with blocks of rows instead
- No need to gather at the end vectors remain distributed!

Parallel matrix-vector – Distributed data

- Distributed vector
 - more complicated than replicated and more communication during calculations
 - but more efficient use of memory for storing both matrix **and** vectors
 - answer ends up distributed as before but can stay distributed!
 - · No need for final broadcast of data
 - locally accumulate matrix times vector block (i.e. partial dot products)
 - processors must exchange vector blocks to complete dot products
 - Sparse: may not need all processors to exchange blocks
- Smart implementations for specific matrix types
- Global sum still required if scalar products needed (e.g. residues)

9

9

Preconditioning: Overview

- Motivation
- What is preconditioning?
- What is its purpose?
- Common preconditioners

epcc

10

What is preconditioning?

"a preconditioner is any form of implicit or explicit modification of an original linear system which makes it "easier" to solve by a given iterative method"

Y Saad, Iterative methods for Sparse Linear Systems

- Examples of preconditioners
 - Scaling all rows so that diagonal entries are equal to 1 (Jacobi preconditioner)
 - See block Jacobi a few slides later...
 - Pre-multiplying the matrix by a given matrix, e.g. $A \rightarrow M^{-1}A$
 - Unlikely M or M⁻¹A ever computed directly
 - $^{\circ}$ $\it M^{-1}$ may be complicated. E.g. result of some FFT transformations or integral calculations

11

11

What is preconditioning? cont ...

- Two extremal cases:
 - Choice M = I is equivalent to no preconditioning
 - choice M = A is equivalent to factorising the problem directly
- We seek an intermediate M which ensures that KS method will converge and reduces (minimises) the cost of solver.
- Idea to preserve structure of A (particularly symmetry!)

Motivation

- · We would like Krylov subspace method
 - to converge (smoothly)
 - to converge in as few iterations as possible
 - · reduce the effects of rounding error
 - · make method more tractable for multiple righthand sides
- Number of iterations is affected by condition number, C, of the matrix
 - $C=rac{\lambda_{max}}{\lambda_{min}}$, where λ_{max} and λ_{min} are the maximum and minimum eigenvalues of the matrix respectively
 - a lower condition number implies fewer KS iterations
- · Choose preconditioner which reduces the condition number

13

13

Preconditioning in linear systems

Solving system

$$Au = b$$

• is equivalent to solving

$$\ddot{\mathbf{M}}^{-1}\mathbf{A}\mathbf{u} = \mathbf{M}^{-1}\mathbf{b}$$

- where *M* is a SPD matrix (for CG, at least).
- Idea is to choose M such that similar to A but easier to invert.
- Jacobi/Gauss-Seidel can be thought of as pre-conditioner (see matrix splitting later)

Incomplete LU factorisation

- A more powerful/expensive preconditioner is ILU factorisation
- Elements are computed as in LU factorisation, but those that fall outwith the sparsity pattern are discarded

$$A = LU - R$$

- M = LU can then be used as the preconditioner
- This preserves sparsity pattern
- No guarantee of existence of non-singular ILU factors.

18

· Many modifications exist

Preconditioned CG

- Remember, we were originally solving the linear system Av = b
- With the preconditioner, we are now solving the equally valid linear system

$$M^{-1}Av = M^{-1}b$$

Remember the original definition of the residual

$$r = b - Av$$

which would become, with preconditioning

$$\mathbf{M}^{-1}\mathbf{r} = \mathbf{M}^{-1}(\mathbf{b} - A\mathbf{v})$$

• We can introduce a preconditioned analogue, s:

$$s = M^{-1}r \Longrightarrow Ms = r$$

19

19

Preconditioned CG algorithm

```
Choose \mathbf{v}_0, compute \mathbf{r}_0 = \mathbf{b} - \mathbf{A} \mathbf{v}_0, k = 0,

Solve \mathbf{M} \mathbf{s}_0 = \mathbf{r}_0 (using a direct method), \mathbf{p}_0 = \mathbf{s}_0

While (\mathbf{k} < \mathbf{maxiter})

\alpha = \mathbf{r}_k . \mathbf{s}_k / \mathbf{p}_k . \mathbf{A} \mathbf{p}_k

\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha \mathbf{p}_k

\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha \mathbf{A} \mathbf{p}_k

if (||\mathbf{r}_{k+1}||_2 / ||\mathbf{b}||_2 < \text{tol}) break

Solve \mathbf{M} \mathbf{s}_{k+1} = \mathbf{r}_{k+1}

\beta = \mathbf{r}_{k+1} . \mathbf{s}_{k+1} / \mathbf{r}_k . \mathbf{s}_k

\mathbf{p}_{k+1} = \mathbf{s}_{k+1} + \beta \mathbf{p}_k

k = k+1

end while
```

Matrix Splitting

- Returning to Jacobi and Gauss Seidel...
- Any linear problem is of the form A x = b
 - A encodes the precise form of the PDE
 - **b** contains any fixed boundary conditions
- Could split A into three parts
 - Diagonal, Strictly Upper and Strictly Lower triangular: A = L + D + U
 - *not* the same as the LU factors!

$$(L+D+U)x = b,$$
 $Dx = -(L+U)x + b$

- view these as iterative expressions, e.g. Jacobi corresponds to

$$Dx^{(n+1)} = -(L+U)x^{(n)} + b$$

$$x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + D^{-1}b$$

21

21

Consider 1D Pollution Problem

$$A = \begin{bmatrix} 2 & -1 & \cdot & \cdot \\ -1 & 2 & -1 & \cdot \\ \cdot & -1 & 2 & -1 \\ \cdot & \cdot & -1 & 2 \end{bmatrix}$$

- A represents: $-\frac{d^2}{dx^2}$
- Splitting into L, D and U
 - Jacobi iteration is actually given by: $Dx^{(n+1)} = -(L+U)x^{(n)} + b$

$$\begin{bmatrix} 2 & \cdot & \cdot & \cdot \\ \cdot & 2 & \cdot & \cdot \\ \cdot & \cdot & 2 & \cdot \\ \cdot & \cdot & 2 & \cdot \\ \cdot & \cdot & \cdot & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n+1)} = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ \cdot & \cdot & 1 & \cdot \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}^{(n)} + \begin{bmatrix} b_1 \\ 0 \\ 0 \\ b_4 \end{bmatrix}$$

Jacobi Equations

- Equations the same as in previous lectures
 - with u_i replaced by x_i
 - exterior boundary values u_0 and u_{N+1} replaced by b_1 and b_N

$$x_{1}^{(n+1)} = \frac{1}{2} (b_{1} + x_{2}^{(n)})$$

$$x_{2}^{(n+1)} = \frac{1}{2} (x_{1}^{(n)} + x_{3}^{(n)})$$

$$x_{3}^{(n+1)} = \frac{1}{2} (x_{2}^{(n)} + x_{4}^{(n)})$$

$$x_{4}^{(n+1)} = \frac{1}{2} (x_{3}^{(n)} + b_{4})$$

- Procedure
 - impose PDE at each interior point
 - new value is the average of the old neighbouring points

23

23

Gauss Seidel

• Keep both ${\bf \it D}$ and ${\bf \it L}$ on the LHS: $({\bf \it D}+{\bf\it L})x^{(n+1)}=-{\bf\it \it U}\,x^{(n)}+{\bf\it \it b}$

$$\begin{bmatrix}
2 & \cdot & \cdot & \cdot \\
-1 & 2 & \cdot & \cdot \\
\cdot & -1 & 2 & \cdot \\
\cdot & \cdot & -1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4
\end{bmatrix}^{(n+1)} = \begin{bmatrix}
\cdot & 1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4
\end{bmatrix}^{(n)} + \begin{bmatrix}
b_1 \\ 0 \\ 0 \\ b_4
\end{bmatrix}$$

$$x_1^{(n+1)} = \frac{1}{2} \left(b_1 + x_2^{(n)} \right)$$

$$x_{1}^{(n+1)} = \frac{1}{2} (b_{1} + x_{2}^{(n)})$$

$$x_{2}^{(n+1)} = \frac{1}{2} (x_{1}^{(n+1)} + x_{3}^{(n)})$$

$$x_{3}^{(n+1)} = \frac{1}{2} (x_{2}^{(n+1)} + x_{4}^{(n)})$$

$$x_{4}^{(n+1)} = \frac{1}{2} (x_{3}^{(n+1)} + b_{4})$$

- equivalent to solving Jacobi equations in-place in order 1, 2, ..., N

Jacobi and (over-relaxed) Gauss-Seidel

- · Connection to matrix-splitting
 - Jacobi

$$\mathbf{x}^{(n+1)} = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(n)} + \mathbf{D}^{-1}\mathbf{b}$$

- Gauss-Seidel

$$\mathbf{x}^{(n+1)} = -(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}\mathbf{x}^{(n)} + \mathbf{D}^{-1}\mathbf{b}$$

- Over-relaxed Gauss-Seidel

$$\mathbf{x}^{(n+1)} = (\mathbf{D} + \omega \mathbf{L})^{-1} \left(\left((1 - \omega)\mathbf{D} - \omega \mathbf{U} \right) \mathbf{x}^{(n)} + \omega \mathbf{b} \right)$$

- All have the form

$$x^{(n+1)} = E^{-1}Fx^{(n)} + E^{-1}b$$

 $Ex^{(n+1)} = Fx^{(n)} + b$

epcc

25

Note: Convergence of Splitting

- General matrix splitting eqns: $Ex^{(n+1)} = Fx^{(n)} + b$
 - solution at iteration n is perfect solution $\widehat{\pmb{x}}$ plus correction $\pmb{\delta x}^{(n)}$

$$x^{(n)} = \hat{x} + \delta x^{(n)}$$
 where $E\hat{x} = F\hat{x} + b$

- substituting into main equation gives $E\delta x^{(n+1)} = F\delta x^{(n)}$
- error in solution evolves according to $\delta x^{(n)} = (E^{-1}F)^n \delta x^{(0)}$
- Convergence depends on eigenvalues of E⁻¹F
 - must all be less than one in order to get a solution
 - speed of convergence depends on condition number
- Iteration matrix
 - $-E^{-1}F$ is $-D^{-1}(L+U)$ for Jacobi and $-(D+L)^{-1}U$ for Gauss Seidel
 - can show that latter is better conditioned
 - heuristically, GS inverts more of the matrix at each step

CG and BiCGstab in action

- Next few slides look at KS in action for pollution problem
- Consider asymmetry (wind)
- · Look at convergence

27

27

Asymmetry - wind

- · With wind the matrix A is
 - not symmetric
 - positive definite
- CG properties no longer guaranteed
- · Gentle breeze,
 - CG still works
 - Takes longer to converge
- · Increase wind until CG breaks down
 - What happens to the norm of the residual?
- Implement BiCGstab
 - Play with a hurricane!

28

Conclusions

- Matrix-vector multiplication in parallel with vectors stored as
 - replicated data
 - distributed data
- Preconditioning of linear system can improve reliability of KS method, reduce iteration count and computational costs
- Simple preconditioners based on stationary splitting methods
- More complex methods such as ILU, or preconditioning using Fourier transforms are more effective but may not work at all.
- Also looked at CG and BiCGstab in action

35

35

Remaining exercises

- Pollution model
 - Write a method that converts a COO-formatted matrix into a CSRformatted matrix
 - Write a method that performs a matrix-vector multiplication for a CSR-formatted matrix.
 - Implement CG
- Matrix-vector in parallel no practical session for this
 - Take serial "power method" eigensolver and parallelise the matrixvector routine for both replicated data and distributed data

