CS 1501

Weighted Graphs

Last time, we said spatial layouts of graphs were irrelevant

- We define graphs as sets of vertices and edges
- However, we'll certainly want to be able to reason about bandwidth, distance, capacity, etc. of the real world things our graph represents
 - Whether a link is 1 gigabit or 10 megabit will drastically affect our analysis of traffic flowing through a network
 - Having a road between two cities that is a 1 lane country road is very different from having a 4 lane highway
 - If two airports are 2000 miles apart, the number of flights going in and out between them will be drastically different from airports 200 miles apart

We can represent such information with edge weights

- How do we store edge weights?
 - Adjacency matrix?
 - Adjacency list?
 - Do we need a whole new graph representation?

The Minimum Spanning Tree Problem

Given a graph *G*, find a set of edges that connect all vertices in the graph without any cycles and with the lowest possible sum of their edge weights

Prim's algorithm

- Initialize T to contain the starting vertex
 - T will eventually become the MST
- While there are vertices not in T:
 - Find minimum edge weight edge that connects a vertex in T to a vertex not yet in T
 - Add the edge with its vertex to T

Prim's algorithm

Runtime of Prim's

- At each step, check all possible edges
- For a complete graph:
 - o First iteration:
 - v 1 possible edges
 - Next iteration:
 - 2(v 2) possibilities
 - Each vertex in T shared v-1 edges with other vertices, but the edges they shared with each other already in T
 - Next:
 - \blacksquare 3(v 3) possibilities
 - 0 ...
- Runtime:
 - $\bigcirc \quad \sum_{i=1 \text{ to } v} (i * (v i))$
 - \blacksquare Evaluates to $O(v^3)$

Do we need to look through all remaining edges?

 No! We only need to consider the best edge for possible for each vertex!

Prim's algorithm

OK, so what's our runtime?

- For every vertex we add to T, we'll need to check all of its neighbors to check for edges to add to T next
 - Let's assume we use an adjacency matrix:
 - Takes O(v) to check the neighbors of a given vertex
 - Time to update parent/best edge arrays?
 - Time to pick next vertex?
 - What about with an adjacency list?

What about a faster way to pick the best edge?

- Sounds like a job for a priority queue!
 - Priority queues can remove the min value stored in them in O(lg n)
 - Also O(lg n) to add to the priority queue
- What does our algorithm look like now?
 - Visit a vertex
 - Add edges coming out of it to a PQ
 - While there are unvisited vertices, pop from the PQ for the next vertex to visit and repeat

Prim's with a priority queue

PQ:

- 1: (0, 2)
- 2: (5, 3)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (2, 1)
- 6: (0, 1)
- 6: (2, 4)
- 6: (5, 4)

Runtime using a priority queue

- Have to insert all e edges into the priority queue
 - In the worst case, we'll also have to remove all e edges
- So we have:
 - e * O(lg e) + e * O(lg e)
 - \circ = O(2 * e lg e)
 - \circ = O(e lg e)
- This algorithm is known as *lazy Prim's*

Do we really need to maintain e items in the PQ?

- I suppose we could not be so lazy
- Just like with the parent/best edge array implementation, we only need the best edge for each vertex
 - PQ will need to be indexable
- This is the idea of eager Prim's
 - Runtime is O(e lg v)

Comparison of Prim's implementations

Parent/Best Edge array Prim's

• Runtime: O(v²)

Space: O(v)

Lazy Prim's

o Runtime: O(e lg e)

Space: O(e)

Requires a PQ

• Eager Prim's

o Runtime: O(e lg v)

Space: O(v)

Requires an indexable PQ

The Shortest Path Problem

Given a graph *G*, and two vertices *u* and *w*, find a path *P* from *u* to *w* with the minimum possible sum of its edge weights

Dijkstra's algorithm

- Set a distance value of MAX_INT for all vertices but start
- Set cur = start
- While destination is not visited:
 - For each unvisited neighbor of cur:
 - Compute tentative distance from start to the unvisited neighbor through cur
 - Update any vertices for which a lesser distance is computed
 - Mark cur as visited
 - Let cur be the unvisited vertex with the smallest tentative distance from start

Dijkstra's example

	Distance	Via
0	0	
1	7	0
2	9	0
3	11	2
4	21	2
5	20	3

Analysis of Dijkstra's algorithm

- How to implement?
 - o Best path/parent array?
 - Runtime?
 - o PQ?
 - Turns out to be very similar to Eager Prims
 - Storing paths instead of edges
 - Runtime?

The Minimum Spanning Tree Problem (revisited)

Given a graph *G*, find a set of edges that connect all vertices in the graph without any cycles and with the lowest possible sum of their edge weights

Kruskal's MST algorithm

- Insert all edges into a PQ
- Grab the min edge from the PQ that does not create a cycle in the MST
- Remove it from the PQ and add it to the MST

Kruskal's example

PQ:

- 1: (0, 2)
- 2: (3, 5)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (1, 2)
- 6: (0, 1)
- 6: (2, 4)
- 6: (4, 5)

Kruskal's runtime

- Instead of building up the MST starting from a single vertex,
 we build it up using edges all over the graph
- How do we efficiently implement cycle detection?