Aula 14 – Mineração de regras de associação

1001524 – Aprendizado de Máquina I 2023/1 - Turmas A, B e C Prof. Dr. Murilo Naldi

Agradecimentos

 Parte do material utilizado nesta aula foi cedido pelo professor Diego Silva e, portanto, os agradecimentos

Problema clássico: análise da lista de compras

- Quais itens são frequentemente comprados juntos?
- Isso pode ser utilizado, por exemplo, para:
 - Deixar produtos na mesma prateleira ou corredor
 - Fazer promoções específicas

Por exemplo:

Outro exemplo:

Mas é sempre "óbvio" assim?

Fato ou fake?

Exemplo comum em livros didáticos

- Aos fins de semana, um cliente que compra cerveja também compra... fraldas!
- Esses são os "pais-de-família" que vão ao mercado comprar fraldas e aproveitam para comprar a cerveja
 - Ou o contrário
- Nesse caso, deixar um dos produtos no caminho entre o outro produto e o caixa pode aumentar o lucro

Outros exemplos

- Páginas de um portal acessadas na mesma seção
- Minerais encontrados na mesma região
- Pessoas que vão aos mesmos eventos
- Filmes que são assistidos pelos mesmos usuários
- etc

Outro exemplo

Famoso caso do Walmart

- Há anos, a rede de mercados decidiu minerar seus dados
- Encontrou diversos padrões interessantes e não tão óbvios:
 - Há regiões nos EUA com vários casos de tornado
 - Analisando esses períodos, o Walmart percebeu que havia em muitas compras um conjunto de produtos "óbvios", mas também percebeu...

Outro exemplo

Pop tarts de morango!

A história conta que aumentar a disponibilidade do produto quando há alerta de tornado aumenta sua venda em 7 vezes

Exemplo ilustrativo

Transação	Item 1	Item 2	Item 3
1	Açúcar	Leite	Café
2	Açúcar	Leite	Café
3	Açúcar	Leite	Café
4	Açúcar	Leite	
5	Açúcar	Leite	

Exemplo ilustrativo

Transação	Item 1	Item 2	Item 3
1	Açúcar	Leite	Café
2	Açúcar	Leite	Café
3	Açúcar	Leite	Café
4	Açúcar	Leite	
5	Açúcar	Leite	

Se açúcar é comprado, então leite também é comprado.

Se açúcar e leite são comprados, **então** café também é comprado (em 60% das transações).

Etc

Regras

Nesse caso, chamamos os termos "se-então" de regras

- Ainda, dizemos que o "se" é o lado esquerdo
- O "então" representa o lado direito

Exemplos de regras

• $\{Açúcar\} \Rightarrow \{Leite\}$

Exemplos de regras

• {Açúcar, Leite} \Rightarrow {Café}

O nome dado ao conjunto de itens que compõe um lado da regra é chamado de... conjunto de itens.

- Mais comum em inglês mesmo: *itemset*

Formalizando:

- $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m\}$ é o universo de m itens
- **I** ⊆ **A** é um *itemset*
- $T = (t_1, t_2, ..., t_n)$ é um conjunto de n transações
- Cada transação é um par 〈 tid_i, itens_i 〉
- itens_i \subseteq A e |itens_i| = k

Uma transação $\mathbf{t} \in \mathbf{T}$ suporta (dá **suporte**) um *itemset* I se I $\subseteq \mathbf{t}$.

- Ou seja, t contém todos os elementos de I
- Exemplo: $I = \{a,b,d\} e t = \{a,b,c,d\}$

Intuitivamente: dar suporte significa "testemunhar a favor"

O conjunto de transações K(I) que suporta I é dito conjunto suporte do *itemset*.

Suporte absoluto (\mathbf{s}_{T}) e relativo (σ_{T})

$$s_T(I) = |K_T(I)|$$

ou seja, número de transações que suportam I

$$\sigma_T(I) = rac{1}{n} s_T(I)$$

O problema de encontrar *itemset* frequentes pode ser definido por:

Dados:

Um conjunto A de itens, uma tabela T de transações sobre A e um número 0 < σ_{min} ≤ 1 (suporte mínimo)

Encontrar:

- Conjunto de *itemsets* com suporte maior ou igual a um valor σ_{min} definido pelo usuário
- Conjunto de regras de associações com confiança maior do que a estabelecida pelo usuário

	A
TID	Itens
1	{a,d,e}
2	{b,c,d}
3	{a,c,e}
4	{a,c,d,e}
5	{a,e}
6	{a,c,d}
7	{b,c}
8	{a,c,d,e}
9	{b,c,e}
10	{a,d,e}

0 itens	1 item	2 itens	3 itens
Ø: 10	{a}: 7	{a,c}: 4	{a,c,d}: 3
	{b}: 3	{a,d}: 5	{a,c,e}: 3
	{c}: 7	{a,e}: 6	{a,d,e}: 4
	{d}: 6	{b,c}: 3	
	{e}: 7	{c,d}: 4	
		{c,e}: 4	
		{d,e}: 4	

Figura 10.1 Um banco de dados de transações, com 10 transações, e a enumeração de todos os conjuntos de itens frequentes usando o suporte mínimo de $s_{\min} = 3$.

Espaço de busca

O espaço de busca para o conjunto **A** tem 2^{|A|} itemsets

- Devemos reduzir o espaço
- Usualmente, considera-se o fato que
 - Seja X, Y ⊆ I
 - Se $X \subseteq Y \Rightarrow suporte(Y) \leq suporte(X)$
 - Portanto, se um itemset é pouco frequente, todos seus superconjuntos também serão

Espaço de busca

Em outras palavras: adicionar um item no *itemset* diminui seu suporte. Portanto o suporte é monotonicamente não crescente ao se fazer seguidas operações desse tipo.

Espaço de busca

Figura 10.2 Um banco de dados de transações, com 10 transações, e o espaço de busca para encontrar todos os possíveis itemsets frequentes usando o suporte mínimo de $s_{\min} = 3$.

Apriori

Esse fato é utilizado pelo primeiro (e mais conhecido) algoritmo de descoberta de *itemsets* frequentes:

Apriori

- Baseado em busca em largura
- A cada nível, se cria itemsets a partir dos itemsets do nível anterior
- A frequência é novamente calculada para os novos itemsets

Apriori

Inicialmente, cada elemento é um *itemset* (candidato) unitário

- Os itemsets de tamanho k+1 são obtidos a partir dos itemsets de tamanho k
- Isso é obtido pela combinação do k-ésimo conjunto de candidatos (\mathbf{F}_k) com ele mesmo

Apriori

- X U Y dos itens X, Y \in \mathbf{F}_k é gerada se eles têm o mesmo prefixo de k-1 elementos
 - Fácil de se obter se os itens forem mantidos em ordem
- Varre-se o banco recalculando os suportes e inserindo os *itemsets* com suporte mínimo em \mathbf{F}_{k+1}

 Dado o conjunto de itens, selecionamos os com suporte mínimo 0.4

	support	itemsets	length
0	0.444444	(Beer)	1
1	0.777778	(Diaper)	1
2	0.222222	(Gum)	1
3	0.555556	(Soda)	1
4	0.444444	(Snack)	1

Selecionados

	support	itemsets	length
0	0.444444	(Beer)	1
1	0.777778	(Diaper)	1
2	0.555556	(Soda)	1
3	0.444444	(Snack)	1

Repete cálculo para os pares com suporte mínimo 0.4

	support	itemsets	length
0	0.444444	(Diaper, Beer)	2
1	0.222222	(Soda, Beer)	2
2	0.22222	(Snack, Beer)	2
3	0.333333	(Soda, Diaper)	2
4	0.22222	(Snack, Diaper)	2
5	0.333333	(Soda, Snack)	2

Repete cálculo para os pares com suporte mínimo 0.4

	support	itemsets	length
0	0.444444	(Diaper, Beer)	2
1	0.22222	(Soda, Beer)	2
2	0.22222	(Snack, Beer)	2
3	0.333333	(Soda, Diaper)	2
4	0.22222	(Snack, Diaper)	2
5	0.333333	(Soda, Snack)	2

Sobraram com suporte mínimo 0.4

	support	itemsets	length
0	0.444444	(Beer)	1
1	0.777778	(Diaper)	1
2	0.55556	(Soda)	1
3	0.444444	(Snack)	1
4	0.444444	(Diaper, Beer)	2

- Combinação dos itemsets que sobraram não gera nenhuma combinação com suporte mínimo de 0.4
 - O algoritmo pára

	support	itemsets	length
0	0.222222	(Soda, Diaper, Beer)	3
1	0.222222	(Snack, Diaper, Beer)	3

Resultado:

	support	itemsets	length
0	0.444444	(Beer)	1
1	0.777778	(Diaper)	1
2	0.55556	(Soda)	1
3	0.444444	(Snack)	1
4	0.444444	(Diaper, Beer)	2

Figura 10.2 Um banco de dados de transações, com 10 transações, e o espaço de busca para encontrar todos os possíveis itemsets frequentes usando o suporte mínimo de $s_{\min} = 3$.

Apriori - Regras de associação

Além de encontrar *itemsets* frequentes, o Apriori tem um segundo passo para encontrar regras de associação

- Combina-se termos para construir regras da forma
 A→ B, tal que A U B é um itemset frequente
- O grau de interesse da regra é dado pela sua confiança

$$confian$$
ç $a(A{
ightarrow}B)=rac{P(A\cup B)}{P(A)}=rac{suporte(A\cup B)}{suporte(A)}$

Apriori - Regras de associação

- O algoritmo gera todos os subconjuntos não vazios do itemset
- Para cada subconjunto s, verifica a confiança da regra dada por s → {I\s}

Apriori - Regras de associação

Figura 10.3 Espaço de busca de regras de associação para um itemset frequente.

Apriori - Regras de associação

Há diversas soluções para melhorar a eficiência da solução

- O livro da Katti apresenta o FP-Growth
 - Utiliza uma trie (árvore de sufixos)

Mas há outro problema: número excessivo de regras

Pós-processamento

Vamos pós-processar a base de regras

 Ex: eliminar itemsets que são subconjuntos de outros itemsets frequentes

Pós-processamento

Algumas definições:

- Itemset frequente maximal: se é frequente, mas nenhum dos seus superconjuntos é frequente
- Itemset frequente fechado: se e somente se ele não possui superconjuntos com a mesma frequência

Pós- Processamento

• *itemsets* frequentes maximais

TID	Itens
1	{a,d,e}
2	{b,c,d}
3	{a,c,e}
4	${a,c,d,e}$
5	{a,e}
6	$\{a,c,d\}$
7	{b,c}
8	{a,c,d,e}
9	{b,c,e}
10	{a,d,e}

0 itens	1 item	2 itens	3 itens
Ø: 10	{a}: 7	{a,c}: 4	{a,c,d}: 3
	{b}: 3	{a,d}: 5	{a,c,e}: 3
	{c}: 7	{a,e}: 6	{a,d,e}: 4
	{d}: 6	{b,c}: 3	
	{e}: 7	{c,d}: 4	
		{c,e}: 4	
		{d,e}: 4	

Pós- Processamento

itemsets frequentes fechados

TID	Itens
1	{a,d,e}
2	{b,c,d}
3	{a,c,e}
4	{a,c,d,e}
5	{a,e}
6	{a,c,d}
7	{b,c}
8	{a,c,d,e}
9	{b,c,e}
10	{a,d,e}

0 itens	1 item	2 itens	3 itens
Ø: 10	{a}: 7		{a,c,d}: 3
	{b}: 3	{a,d}: 5	{a,c,e}: 3
	{c}: 7	{a,e}: 6	{a,d,e}: 4
	{d}: 6	{b,c}: 3	
	{e}: 7	{c,d}: 4	
		{c,e}: 4	
		{d,e}: 4	

Pós-Processamento

- Exemplo: avaliar a regra {chá} → {café}
 - Suporte = 150/1000 = 0.15
 - Confiança = 0,15/0,2 = 0,75

Tabela 10.2 Preferências sobre o consumo de Chá e Café de 1000 consumidores

	Café	Não Café	Total
Chá	150	50	200
Não Chá	650	150	800
Total	800	200	1000

Porém, a probabilidade de alguém tomar café (independente do chá) é 80%. Portanto, a regra é enganosa.

Coeficiente de interesse (lift)

$$Lift(A o B) = rac{confiança(A o B)}{suporte(B)} = rac{suporte(A \cup B)}{suporte(A) imes suporte(B)}$$

- Lift = 1 significa que A e B são independentes
- Valores menores que um indicam correlação negativa
- Valores maiores que um, correlação positiva
 - No exemplo, Lift({chá} → {café}) = 0,9375 (< 1)

Coeficiente de interesse (lift)

$$Lift(A o B) = rac{confiança(A o B)}{suporte(B)} = rac{suporte(A \cup B)}{suporte(A) imes suporte(B)}$$

Quociente entre confiança e valor esperado para a confiança

- Lift = 1 significa que A e B são independentes
- Valores menores que um indicam correlação negativa
- Valores maiores que um, correlação positiva
 - No exemplo, Lift({chá} → {café}) = 0,9375 (< 1)

Coeficiente de interesse (lift)

Em outras palavras:

- > 1 indica que A tem efeito positivo sobre a ocorrência de B e, portanto, tendem a aparecer junto quando A ocorre
- < 1 indica o contrário, ou seja, A tem efeito negativo sobre a ocorrência de B, inibindo-a
- = 1 indica que A n\(\tilde{a}\)o influencia na ocorr\(\tilde{e}\)ncia de B e que eles ocorrem independentemente

Convicção

$$convic$$
çã $o(A o B)=rac{1-suporte(B)}{1-confiança(A o B)}$

Também demonstra efeito negativo da regra quando seu valor é menor que 1. Tende a infinito quando a confiança da regra tende a 1. Zero indica que B está em todas as transações.

No exemplo, convicção($\{chá\} \rightarrow \{café\}) = 0.8 (< 1)$

Convicção

$$convic$$
çã $o(A o B)=rac{1-suporte(B)}{1-confiança(A o B)}$

Quociente da frequência esperada de A ocorrer sem B

Também demonstra efeito negativo da regra quando seu valor é menor que 1. Tende a infinito quando a confiança da regra tende a 1. Zero indica que B está em todas as transações.

No exemplo, convicção($\{chá\} \rightarrow \{café\}) = 0.8 (< 1)$

Bibliografia

V. TAN, STEINBACH, M., KUMAR, P. Introdução ao Data Mining (Mineração de Dados). Edição 1. Ciência Moderna 2009. ISBN 9788573937619.

Inteligência Artificial - Uma Abordagem de Aprendizado de Máquina. Katti Faceli, Ana Carolina Lorena, João Gama, André C. P. L. F. de Carvalho. Grupo Gen 2011

Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993