

テキストタグを併用した 画像の品質評価モデルの提案

杉浦敦之, 山内悠嗣(中部大学)

1. 研究背景, 目的

- ・スマートフォンや画像生成AIの普及に伴い, デジタル画像が急増
- → 画像の品質を自動的に評価する技術の需要が高まる
- ・色, 構図などの視覚的特徴のみでは 人間の感性に近い品質評価を捉えることが困難
- ・画像内容を記述したテキストタグを併用
- ・視覚情報、言語情報を考慮した品質評価を提案

2. 提案手法

マルチモーダル学習+ランキング学習

マルチモーダル学習

- ・画像品質、画像とテキストの意味的一致性を同時に評価
- → 単一の情報だけでは捉えきれない, より複雑な情報を理解
- ・基盤として、画像とテキストをマルチモーダルに 学習するCLIP[1]モデルを採用

提案手法の流れ

- 1. **画像と画像に対応したテキストタグ**をCLIPモデルに入力
- 2. CLIPモデルで各モーダルの特徴量を抽出
- 3. Cross-Attentionで各特徴量を統合
- 4. 統合後の特徴量をMLPに入力,品質スコアを推定

ランキング学習

- ・2つの指標を用いたランキング情報を付与 画像の品質スコア+CLIP類似度
- ・順位関係に基づいた学習により, 品質に加え, テキストの整合性の高い画像を高く評価

3. 実験結果

各手法における画像の品質評価精度を比較

- 従来手法[2]
 - ・CNNベースであり、視覚特徴を基に品質スコアを 回帰予測するモデル
- ・提案手法

「AVAデータセット[3]での実験結果 '

・人間の感覚を表す品質スコアを正解スコアとして, 品質評価精度と予測分布を比較

Method	Error ↓	LCC (mea	· · .	SRCC ↑ (mean)	KL Divergence ↓	EMD↓
Conventional	Conventional 0.478(±0.36) 0.59		96	0.556	0.295	0.106
Ours	$0.482(\pm 0.15)$	0.68	34	0.620	0.138	0.094
0.8		d Truth	0.8			Ground Truth Predicted Scores
0.6	Predic	ited scores	0.6			Fredicted Scores
Sit V			Density 6.0			
Density 0.4			Der Der			
0.2			0.2			
0.0			0.0			
2 4	Score ⁶	8		2	⁴ Score ⁶	8
Conventional Method					Ours	
	TextTag	Birds	W.		TextTag	Nature
	Conventional	5.36			Conventio	nal 4.98
	Ours	6.62			Ours	5.91
	Human Evaluation	6.84			Human Evaluation	1 5 87

より人間の評価に近い予測が可能

「生成画像データセットでの実験結果

・CFG Scale: プロンプトに対する画像生成の忠実度を調整するパラメータ

4. 今後の展望,参考文献

- ・人間の評価に近い画像の品質評価モデルの構築
- ・画像に対する品質評価の説明性の出力
- [1] Radford, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.
- [2] Talebi, et al. "NIMA: Neural image assessment." IEEE transactions on image processing, 2018.
- [3] Murray, et al. and Florent Perronnin. "AVA: A large-scale database for aesthetic visual analysis." CVPR, 2012.