Big Data & Data Science

Infraestrutura Computacional Parte 1: GNU/Linux e Shell

Introdução ao GNU/Linux

Apresentação

Prof. Lucas Ferrari de Oliveira

- Iferrari@inf.ufpr.br
- web.inf.ufpr.br/lferrari
- Áreas de Pesquisa
 - Processamento de Imagens
 - Processamento de Imagens Médicas
 - Reconhecimento de Padrões

Arquitetura de von Neumann

UNIX

No princípio (1970) era o UNIX...

- Sistema Operacional criado no AT&T Bell Labs
- Introduziu e popularizou conceitos poderosos
 - sistema de arquivos, shell, processos, usuários
- Por volta de 1990
 - Patentes e copyright isolaram UNIX em nichos
 - Não era compatível com PCs (x86)
 - UNIX foi padronizado (POSIX)

GNU

... e o UNIX se fez GNU, e habitou entre nós

- ► GNU's Not Unix: conjunto de programas FOSS compatíveis com POSIX e funcionalidade similar ao UNIX
 - Shell (interpretador de comandos)
 - Utilidades básicas UNIX: cp, mv, cat, ls, awk, sed, grep, less, man, kill, ps, chmod
 - Editor de textos (Emacs, vi)
 - Interface Gráfica (GNOME)

Linux

Todo SO precisa de um *kernel*, que controle o hardware

- Linux foi criado em 1992 por Linus Torvalds para x86
- Compatível com UNIX: mesma API de chamadas de sistema, design e arquitetura semelhantes
- Programas GNU podiam ser compilados e rodar em x86
- Distribuições = kernel + software
 - ► GNU/Linux
 - ▶ Debian, Slackware, SUSE, RedHat, Fedora, Ubuntu, CentOS, Mint

Por que GNU/Linux?

Boa implementação de excelentes ideias UNIX

Grande comunidade de Software Livre

adicionando funcionalidades, suporte a hardware, correção de bugs, testando

Licensa GPL permite uso mas exige distribuição do código fonte

Alta performance, escalabilidade, suporte a grande quantidade de dispositivos

Por que GNU/Linux?

Computadores pessoais (Desktop)

- Escolha uma distribuição e experimente
 - Geração de pendrive para carga do SO
 - Instalação concomitante com outro SO

Smartfones (Android, Tizen)

Dispositivos Embarcados

Roteadores, GPS, Raspberry Pi

Servidores WEB

Por que GNU/Linux

Supercomputadores

TOP 500 (100% desde nov/2017)

Space X Falcon 9

International Space Station

Command Line Heroes

Sistema Operacional GNU/Linux

Características do GNU/Linux

- Portável: diferentes tipos de hardware
- Open Source: www.gnu.org (copyleft)
- Multi usuário: acesso simultâneo
- Multi processos: diversos programas simultaneamente
- Sistema de Arquivos Hierárquico
- Shell: programa interpretador de comandos
- Segurança: autenticação de usuários, criptografia, controle de acesso

Sistema Operacional

O Sistema Operacional é um software que controla o hardware e faz a interface deste com as aplicações

Sistema Operacional GNU/Linux

É um gerenciador de recursos composto pelo Kernel e um conjunto de aplicações básicas

- Serviços e daemon
- Programas utilitários (shell, editor, compilador)
- Biblitoeca C (libc)

Sistema Operacional GNU/Linux

Kernel Linux

O kernel é uma parte do SO:

- Controla a CPU, memória e outros dispositivos
- Acessa dados em dispositivos de armazenamento
- Escalona processos
- Roda aplicações, isolando-as umas das outras
- Disponibiliza uma API (system calls) para atividades restritas

User × Kernel space

O GNU/Linux executa seu kernel (Linux) em uma região de memória restrita e protegida (kernel space)

Programas do SO e dos usuários rodam em outra região de memória (user space)

Spectre & Meltdown

Interface de system call (SCI)

Funções que podem ser invocadas em user space para serem executadas em kernel space

Gerenciamento de Processos (PM)

- Executa processos ou threads, que são a virtualização do processador e memória
- Provê API para criação, destruição e comunicação interprocessos
- Escalona processos compartilhando o mesmo hardware

Gerenciamento de Memória (MM)

- Divide a memória em blocos e gerencia sua alocação
- Permite crescimento e redução dinâmicos da memória ocupada
- Separa memória de cada processo e usuário
- Provê memória adicional através swap

Sistema de Arquivos Virtual (VFS)

- Provê uma interface abstrata comum para sistemas de arquivos (open, close, read, write)
 - O sistema tem um diretório raiz: /
- Gerencia buffer caches para acelerar acesso ao sistema de arquivos
- Interface para acesso ao kernel em /proc

Camada de Rede

- Implementa protocolos de rede (TCP, IP, Infiniband)
- Provê uma interface chamada socket, que é a maneira de comunicação ponto a ponto em Linux

Drivers de dispositivos

Software específico para acesso aos diferentes dispositivos

Código dependente de Arquitetura

Perguntas?

Computação de Alto Desempenho

High Performance Computing

HPC refere-se à prática de agregar poder computacional (diversos processadores) de forma a obter uma performance muito maior do que poderia ser obtida com um computador individual, a fim de resolver problemas de grande escala.

Escalas de grandeza

Prefix	Symbol	1000 ^m	10 ⁿ	Decimal	Short scale	Long scale	Since ^[n 1]
yotta	Υ	1000 ⁸	10 ²⁴	1 000 000 000 000 000 000 000	Septillion	Quadrillion	1991
zetta	Z	1000 ⁷	10 ²¹	1 000 000 000 000 000 000 000	Sextillion	Trilliard	1991
еха	Е	1000 ⁶	10 ¹⁸	1 000 000 000 000 000 000	Quintillion	Trillion	1975
peta	Р	1000 ⁵	10 ¹⁵	1 000 000 000 000 000	Quadrillion	Billiard	1975
tera	Т	1000 ⁴	10 ¹²	1 000 000 000 000	Trillion	Billion	1960
giga	G	1000 ³	10 ⁹	1 000 000 000	Billion	Milliard	1960
mega	М	1000 ²	10 ⁶	1 000 000	Million		1960
kilo	k	1000 ¹	10 ³	1 000	Thousand		1795
hecto	h	1000 ^{2/3}	10 ²	100	Hundred		1795
deca	da	1000 ^{1/3}	10 ¹	10	Ten		1795
		10000	10 ⁰	1	0	ne	_
deci	d	1000-1/3	10 ⁻¹	0.1	Tenth		1795
centi	С	1000-2/3	10 ⁻²	0.01	Hundredth		1795
milli	m	1000 ⁻¹	10 ⁻³	0.001	Thousandth		1795
micro	μ	1000-2	10 ⁻⁶	0.000 001	Millionth		1960
nano	n	1000-3	10 ⁻⁹	0.000 000 001	Billionth	Milliardth	1960

Unidades de Medida

Byte (armazenamento de dados)

- ▶ 1 Byte = 8 bits (dígitos 0 ou 1)
- Imagem tons de cinza: 1 Byte por ponto (pixel)
- Caracteres de texto: 1 a 2 Bytes por caractere (depende da codificação)
- Números: inteiro (int: 4 Bytes, long: 8 Bytes), real (float: 4 Bytes, double: 8 Bytes)
- Disco rígido (HD) de 8TB, Memória RAM de 16 GB

bps (bits por segundo)

Velocidade de transmissão de dados (rede de 1 Mbps)

FLOP/s (Float Operations por segundo)

Velocidade de operações aritméticas

Lei de Moore

1965, G. Moore: número de transistores por chip duplica a cada 12-14 meses

Lei de Moore

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

O problema do calor

Core

- Cada núcleo de uma pastilha. É a unidade básica de computação.
- Podem efetuar algumas operações aritméticas em paralelo

Nodo

- Possui diversas pastilhas (CPU) combinadas em uma placa mãe
- Compartilham memória entre cores e entre pastilhas
- Pastilhas tem de 8 a 64 cores
- Aceleradores
- Troca de dados entre cores de uma mesma pastilha é rápida

Data Science & Big Data

Cluster

- Milhares de nodos conectados por uma rede de alta velocidade
- Comunicação entre nodos implica no envio de mensagens
- Alta latência, banda estreita

Sistema Operacional para HPC

GNU/Linux

SO para HPC

Nodo de acesso e nodos de processamento Sistema de gerenciamento de trabalhos (*jobs*)

- Alocação de programas e usuários nos diversos nodos
- Controla tempo de execução e recursos/usuários
- Ex: slurm, pbs

Sistemas de arquivo paralelo

- Acesso simultâneo e paralelo
- Escalabilidade e redundância a falhas

Perguntas?

Armazenamento de Dados

Hard Disk Drive Braço atuador **Discos** Divididos em setores (512B) Cabeça **Atuador**

Solid State Drive

 $https://en.wikipedia.org/wiki/Solid-state_drive$

Armazenamento de Dados

Volátil x não volátil Acesso aleatório x sequencial

Memory Hierarchy

Registers

1 ns 1x

Cache
10 ns 10x

Main memory
100 ns 100x

Magnetic disk
100 ms 100,000,000x

Magnetic tape
10 s 1e+10x

A fita Magnetica

Se Reutilizar a informações Salva em me moria SEMPRE será MUITO mais RAPIDO

Data Science & Big Data

Redundant Array of Inexpensive

Disks (RAID)

Combinação de dois ou mais discos Padrões de organização, ou níveis:

- RAID 0: stripping
- RAID 1: espelhamento
- RAID 6: *stripping* de blocos com redundância de 2 discos
- RAID 1+0 ou 10: combinação

Implementação via software (md) ou hardware (controladora)

Sistemas de Arquivo

Sistemas de Arquivo

Virtual File System (VFS)

- Camada do Linux que permite acesso uniforme a diversos sistemas de arquivo
- Especifica uma interface (API) de acesso a arquivos. Padrão POSIX (open, close, read, write, seek, link, ...)
- 2 conceitos fundamentais: arquivos e diretórios
- Estrutura de diretórios em árvore, com diretório raiz "/"
 - : referência ao próprio diretório
 - . . : referência ao diretório pai

D. Weingaertner e Lucas Ferrari

Sistemas de aquivo de disco

Gerencia os blocos de dados (setores) do disco

- Associa nomes de arquivos a blocos
- Mantém metadados
- Controla espaço livre (fragmentação), quota, permissões

Diversas implementações

- ext4, zfs, ntfs, fat
- Algumas implementações fazem versionamento ou journaling

Sistemas de Arquivo em disco

Partições

Partições proveem uma melhor separação dos dados em disco

- Cada partição tem seu próprio sistema de arquivos
- Comando fdisk, parted
- Partição de dados x partição de swap
- Segurança para falha no sistema de arquivos

Sistemas de Arquivo

Um SA precisa ser montado antes de ser acessado

- Montar significa indicar o diretório a partir do qual o SA será acessado neste computador
- A montagem sobrepõe qualquer dado existente (fica inacessível)
- ▶ df -h
- mount

Sistemas de Arquivo em Rede

Um SA pode ser exportado pela rede e montado por diversos clientes

- Arguitetura cliente-servidor
- Compartilhamento se dá através da montagem via protocolos específicos
- NFS, SAMBA, DNDB3

Clustered File System é um SA que distribui os dados em diversos servidores

- Redundância a falhas, acesso paralelo, escalabilidade
- Geralmente baseados em objetos (object file system):
 - Separação de Metadados e Dados
- GFS, Lustre, Hadoop, Gluster

Sistemas de Arquivo especiais

/dev

- Acesso direto aos dispositivos (devices) da máquina.
- ls -l /dev/sd*

/proc

- Acesso aos processos
- cat proc/cpuinfo

/sys

- Acesso aos dispositivos através do kernel. Muito utilizado para configurações
- cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Arquivos

"Em um sistema UNIX, tudo é um arquivo; se algo não é um arquivo, é um processo"

Tipos de arquivo (opção - 1 do comando 1s)

- Arquivos regulares (-): armazenam dados. Não há divisão em nome.extensão
- Diretórios (d): são arquivos que contém outros arquivos
- Dispositivos (b, c): acessam dispositivos de hardware. Podem ser arquivos de bloco ou caracteres
- Links (1): ponteiros para outros arquivos. Podem ser soft ou hard links.

Sistema de Arquivos Linux

Caminhos

- > \$PATH
- caminhos relativos (. e . .) e absolutos (/)

Diretório HOME

- quota -vs
- ~

Segurança de arquivos

GNU/Linux tem um sistema bastante rígido de permissões para arquivos

- Todo arquivo pertence a um usuário e um grupo
- As permissões de leitura, escrita, e execução devem ser definidas para o usuário, grupo e outros
- Comando id mostra usuário e grupos aos quais pertence
- Comando ls l mostra permissões de forma posicional
 - usuário, grupo, outros

Modos de acesso para arquivos

Código	Significado
o ou -	Acesso desta posição não concedido
1 ou x	Permissão de execução nesta posição
2 ou w	Permissão de escrita nesta posição
4 ou r	Permissão de leitura nesta posição
u	Permissão do usuário
g	Permissão do grupo
0	Permissão para outros
a	Permissão para todos

Cuidados no uso de arquivos

Acesso a arquivos é várias ordens de grandeza mais lento que o processador

Performance é dominada pelo número de acessos a disco

~10 ms por acesso

Custo do acesso é dominado pela latência

- tempo de busca + latência de rotação + bytes / bandaDisco
 - ► 1 setor: $5ms + 4ms + 2,5\mu s$ (≈ 512 B/200 MB/s) ≈ 9ms
 - 100 setores: 5ms + 4ms + 0,25ms ≈ 9,25ms
 - 100 vezes mais dados com 3% de aumento no tempo

Perguntas?

Acesso local ao Laboratório

Comandos Básicos

Bash

Bash é um interpretador de comandos. É um programa usado para iniciar e controlar a execução de outros programas.

- Possui uma sintaxe própria para programação
- Define alguns comandos internos (cd, exit, logout, pwd)
- Define algumas variáveis de ambiente (HOME, PATH, PS1)

Obtendo ajuda

GNU/Linux tem a filosofia de tornar seu usuário mais independente.

- Diversos fóruns ajudam com perguntas
- Em geral, assume-se que o usuário leu o manual antes
 - Comandos: man, info, whatis, apropos
 - Teclas de navegação: /string (busca), q (para encerrar)
 - Opção --help
 - RTFM! é uma resposta comum a perguntas cuja resposta está no manual

Comandos iniciais

Comando	Significado
ls	mostra a lista de arquivos de um diretório
cd <diret></diret>	muda de diretório corrente
less <arq></arq>	mostra o conteúdo de um arquivo
cat <arqtxt></arqtxt>	mostra o conteúdo do arquivo <arqtxt></arqtxt>
pwd	mostra o diretório corrente
exit ou logout	sai da seção atual
man <i>comando</i>	ler páginas de manual sobre comando
apropos <i>string</i>	procura pela string na base do <i>whati</i> s

Combinações de tecla em Bash

Tecla(s)	Função
Ctrl+c	encerra a execução de um programa
Ctrl+d	encerra a seção atual do shell
Ctrl+l	limpa a tela
Ctrl+r	procura no histórico de comandos
Ctrl+z	suspende um programa
SetaCima/Baixo	navega no histórico de comandos
Shift+PageUp/ Shift+PageDown	navega no <i>buffer</i> do terminal (para ver texto que passou)
Tab	completa comando ou nome de arquivo
Tab Tab	mostra opções de comandos ou arquivos

Exercícios

Digite os comandos a seguir e tente interpretar o que acontece. Pergunte!

echo hello world	whoami	echo \$SHELL
date	who	<pre>echo {con,pre}{sent,fer}{s,ed}</pre>
hostname	id	man ls (q)
arch	last	cal 2018
uname -a	finger	echo 3*5 bc -l
dmesg less	W	yes please (Ctrl+c)
uptime	file .	time sleep 5
echo \$HOME	top (q)	history

Manipulando Arquivos

Manipulação de permissões

Comando	Significado
chmod	modifica as permissões de um arquivo
chown	modifica usuário ou grupo de um arquivo
mkdir	cria um diretório
cp -R -avu	copia um arquivo
mv	move um arquivo
rm -f -r <dir></dir>	apaga o diretório <dir></dir>
head ou tail	mostra linhas iniciais ou finais do arquivo
ln -s	faz um link entre arquivos

Arquivos, usuários e permissões

Comando	Significado
finger	mostra informações sobre usuário
who	mostra usuários logados no sistema
quota	mostra a quota do usuário
find	procura arquivos

Manipulação de arquivos

Comando	Significado
ls -a -l -R -F -t	mostra a lista de arquivos de um diretório
file <arq></arq>	mostra o tipo do arquivo
mkdir	cria um diretório
cp -R -avu	copia um arquivo
mv	move um arquivo
rm -f -r	remove um arquivo
head ou tail	mostra linhas iniciais ou finais do arquivo
ln -s	faz um link entre arquivos
touch	muda a data de um arquivo

Wildcards

São caracteres especiais usados para criar padrões definindo um conjunto de arquivos ou diretórios

- * representa zero ou mais caracteres
- ? representa apenas um caractere
- [] representa um intervalo de caracteres
- [^] representa a negação de um intervalo de caracteres

Wildcards

Comando	Significado
ls b*	Arquivos iniciando com b
ls -ld .g*	Arquivos iniciando com .g
ls ?i*	Arquivos com um caractere seguido de i
ls [sv]*	Arquivos que iniciem com s ou v
ls *[0-9]*	Arquivos com um dígito de 0-9
mv *.??g fotos/	Move arquivos .png e .jpg para dir. fotos
ls *[[:upper:]]*	Arquivos com uma letra maiúscula

Referências

- Anatomy of the Linux kernel
- Linux OS Tutorial
- ► Introduction to UNIX
- ► Introduction to Linux

