Towards a Practical Cluster Analysis over Encrypted Data

Jai Hyun Park Seoul National University (SNU)

Joint work with

Jeong Hee Cheon and Duhyeong Kim (SNU)

August 14, 2019, Waterloo, Canada

Summary of This Work

 The first privacy preserving non-interactive solution of mean-shift clustering algorithm based on homomorphic encryption

- Outstanding performance: Fast and Accurate
 - 99.99% accuracy on 262,144 data within only 82 min
 - 400 times faster than the previous work (SAC 18)

Data Clustering

- Grouping a set of given data into several subgroups
- Unsupervised machine learning task

Privacy Preserving Clustering

- Clustering is used in fields dealing with private information
 - Bioinformatics, finance, customer behavior analysis
- People do not want to delegate clustering of raw data to untrusted server

Privacy Preserving Clustering

- Clustering is used in fields dealing with private information
 - Bioinformatics, finance, customer behavior analysis
- People do not want to delegate clustering of raw data to untrusted server

Homomorphic Encryption

Homomorphic encryption (HE) allows arithmetic operations on ciphertexts without any decryption process

Homomorphic Encryption

- Homomorphic encryption (HE) allows arithmetic operations on ciphertexts without any decryption process
- Non-arithmetic operations (comparison, min, max) can be approximately computed
 - But expensive

Privacy Preserving Clustering

 People can delegate clustering of private data to untrusted server with homomorphic encryption

Privacy Preserving Clustering

 People can delegate clustering of private data to untrusted server with homomorphic encryption

Two main issues:

- 1. Which clustering algorithm?
- 2. How to make it arithmetic?

K-means vs. Mean-shift

- K-means is faster
 - But uses <u>more pieces of</u> information

	K-means Clustering	Mean-shift Clustering
Complexity	O(#clusters · #points · #iterations)	O(#points ² · #iterations)
Parameter	Number of None	
Shape of data	Should be convex	None
Comparison Operations	A number of comparison operations	None

K-means vs. Mean-shift

- K-means is faster
 - But uses <u>more pieces of</u> information
- Mean-shift clustering is more HE applicable
 - Non-parametric
 - No restriction on the shape of data
 - Does not use comparison operations

	K-means Clustering	Mean-shift Clustering
Complexity	O(#clusters · #points · #iterations)	O(#points ² · #iterations)
Parameter	Number of Clusters	None
Shape of data	Should be convex	None
Comparison Operations	A number of comparison operations	None

- Clustering technique based on an estimated <u>density map</u>
 - Label each point by its closest local maximum (mode) of a Kernel Density Estimator (KDE)

- Clustering technique based on an estimated <u>density map</u>
 - Label each point by its closest local maximum (mode) of a Kernel Density Estimator (KDE)

- Clustering technique based on an estimated density map
 - Label each point by its closest local maximum (mode) of a Kernel Density Estimator (KDE)

Kernel function

 A function indicating a probability density map generated by a given datum

Kernel function

$$K(x, P_i) = c_k k(\|P_i - x\|^2)$$
 profile k is a non-negative and decreasing function

 A function indicating a probability density map generated by a given datum

Kernel function

$$K(x, P_i) = c_k k(||P_i - x||^2)$$

profile k is a non-negative and decreasing function

 A function indicating a probability density map generated by a given datum

KDE map

$$F(\boldsymbol{x}) = \frac{1}{p} \cdot \sum_{i=1}^{p} K(\boldsymbol{x}, P_i)$$

 Estimator of probability density function based on the given kernel function

Kernel function

$$K(x, P_i) = c_k k(||P_i - x||^2)$$

profile k is a non-negative and decreasing function

 A function indicating a probability density map generated by a given datum

KDE map

$$F(\boldsymbol{x}) = \frac{1}{p} \cdot \sum_{i=1}^{p} K(\boldsymbol{x}, P_i)$$

 Estimator of probability density function based on the given kernel function

Modes

The local maxima of the KDE map

Mean-shift process

$$m{x} \leftarrow m{x} + \left(\sum_{i=1}^p rac{k'(||m{x} - P_i||^2)}{\sum_{j=1}^p k'(||m{x} - P_j||^2)} \cdot P_i - m{x}
ight)$$

- Slightly moves each x to a denser point
- Gradient descent method to seek modes

Mean-shift process

$$x \leftarrow x + \left(\sum_{i=1}^{p} \frac{k'(||x - P_i||^2)}{\sum_{j=1}^{p} k'(||x - P_j||^2)} \cdot P_i - x\right)$$

- Slightly moves each x to a denser point
- Gradient descent method to seek modes

Mean-shift clustering

 Cluster each point by the mode it goes by mean-shift processes

Drawbacks of Mean-shift

1. Non-arithmetic kernel function

-Gaussian kernel function

•
$$K_G(x,y) = c_{k_G} \cdot e^{-\frac{\|x-y\|^2}{\sigma^2}}$$

Exponential function

2. Computationally expensive

 $-0(\#points^2 \cdot \#iterations)$

IDEA1: HE Friendly Kernel

New kernel function

$$k(x) = (1-x)^{2^{\Gamma}+1}$$

- 1. Similar performance with usual kernels
 - Satisfies the necessary conditions of kernel functions
 - Decreasing and non-negative on its domain
 - Manage to group plaintexts of public datasets properly

IDEA1: HE Friendly Kernel

New kernel function

$$k(x) = (1 - x)^{2^{\Gamma} + 1}$$
 $\times k_g(x) = e^{-\frac{x}{\sigma^2}}$

- 1. Similar performance with usual kernels
 - Satisfies the necessary conditions of kernel functions
 - Decreasing and non-negative on its domain
 - Manage to group plaintexts of public datasets properly

IDEA1: HE Friendly Kernel

New kernel function

$$k(x) = (1 - x)^{2^{\Gamma} + 1}$$
 $\times k_g(x) = e^{-\frac{x}{\sigma^2}}$

- 1. Similar performance with usual kernels
 - Satisfies the necessary conditions of kernel functions
 - Decreasing and non-negative on its domain
 - Manage to group plaintexts of public datasets properly
- 2. Arithmetic
- 3. Efficient
 - Requires log degree number of computations

 Shift only sampled points (dusts) rather than all points

- Shift only sampled points (dusts) rather than all points
 - $-0(\#dusts \cdot \#points) < 0(\#points^2)$

- Shift only sampled points (dusts) rather than all points
 - $-0(\#dusts \cdot \#points) < 0(\#points^2)$
 - Cannot label all points only by mean-shift process on sampled dusts

- Shift only sampled points (dusts) rather than all points
 - $-0(\#dusts \cdot \#points) < O(\#points^2)$
 - Cannot label all points only by mean-shift process on sampled dusts
 - But, can seek modes of KDE

- Shift only sampled points (dusts) rather than all points
 - $-0(\#dusts \cdot \#points) < O(\#points^2)$
 - Cannot label all points only by mean-shift process on sampled dusts
 - But, can seek modes of KDE
- Label each point by its closest mode
 - $-0(\#dusts \cdot \#points)$

	Original Mean-shift	Dust Sampling Method
Mean-shift	All points	Only sampled points
Structure	Find the modes and label the points at the same time	Find the modes first, and label the points later
Computational Complexity	O(#points ²)	<u>O(#dusts · #points)</u>

Our Modified Scheme

Sample dusts from given data

- 2. Apply mean-shift to dusts and find modes
 - Use HE friendly kernel
- 3. Label each points to its closest mode

Experimental Result

- High accuracy on public datasets
 - Covers <u>various features of dataset</u>: shape of data, number of data, number of attributes, and number of clusters
- Fast and accurate performance on large scale dataset

	Num of	Num of	Num of	Comp. Time	of Comp. Quality Evaluation		Evaluation
	Data	Attributes	Clusters		Accuracy	Silh Coeff	
Hepta	212	3	7	25 min	212/212	0.702 (0.702)	
Tetra	400	3	4	36 min	400/400	0.504 (0.504)	
Two Diamonds	800	2	2	38 min	792/800	0.478 (0.485)	
Large Scale	262,144	4	4	82 min	262127 /262144	0.781 (0.781)	

W Use multi-threading (8 threads)

Experimental Result

 400 times faster than the previous work (JA18) on Lsun public dataset

	JA18	Our work
Comp. Time	25.79 days	83 min
HE library	TFHE	HEAAN

X Use a single thread

Q&A Thank you!