Analog IC Design

Lecture 22 Variability and Mismatch

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Introduction to PVT variations
- Corners and mismatch
- ☐ Mismatch in amplifiers: Offset voltage

Outline

- Introduction to PVT variations
- Corners and mismatch
- ☐ Mismatch in amplifiers: Offset voltage

Variability (PVT Variations)

- ☐ Manufacturing variations: Process variations
- Environmental variations: Voltage and temperature variations

☐ PVT: Process, voltage, and temperature

- Variability is a random process
 - Model using a statistical distribution

- The statistical distribution can be
 - 1. Uniform distribution
 - 2. Normal (Gaussian) distribution

Process Variations

- Examples of process variations
 - Threshold voltage
 - Random dopant fluctuations (RDF)
 - Channel length
 - Lithography limitations
 - Varying etch rates
 - Line edge roughness
- Binning: Faster parts are rated for higher frequency and sold for more money
 - Ex: Intel CPU binning

Normal (Gaussian) Distribution

- 68–95–99.7 rule: More accurately, 68.27%, 95.45% and 99.73%
- 3-sigma range is usually acceptable (0.27% of parts rejected)
- ☐ Components replicated millions of times (e.g., memory cells) are designed to tolerate 5- to 7-sigma variations

Voltage Variations

- ☐ Supply voltage may vary around its nominal value
 - Regulator tolerances
 - iR drops
 - L*di/dt noise
- Voltage varies in both space (across chip) and time
- Typically tolerate 10% variation
- CAD tools can draw voltage droop map

Uniform distribution

☐ Usually assume uniform distribution for voltage variations

$$V_{DD} = V_{DD,NOM} \pm \Delta V_{DD}$$

- \Box Tolerate all variations within $\pm \Delta V_{DD}$
- \Box Ex: $V_{DD} = 1V \pm 10\% \rightarrow \Delta V_{DD} = 100mV$

Temperature Variations

- Ambient temp ranges:
 - Commercial (0 to 70°C)
 - Industrial (-40 to 85°C)
 - Military (-55 to 125°C)
- Junction temp may significantly exceed the ambient
 - Commercial parts commonly verified at 125°C junction temp
- ☐ Temperature varies in both space (across chip, a.k.a. temperature gradients) and time (temperature fluctuations)
 - Circuits in a 1 mm diameter see nearly the same temperature
 - Temperature varies in time on a scale of milliseconds
- ☐ Drain current in WI (SI) increases (decreases) with temperature

Outline

- ☐ Introduction to PVT variations
- Corners and mismatch
- ☐ Mismatch in amplifiers: Offset voltage

Design Corners

- MOS: Slow (S), typical/nominal (T), and fast(F)
- \square Voltage: S (0.9V_{DD}), T (V_{DD}), and F (1.1V_{DD})
- Temp: S (125°C), T (70°C), and F (0°C)
- Few corners for old technologies
 - Simulate all
- Thousands of corners for DSM nodes
 - Identify what corners are important for a given circuit
 - Depend on experience or use specialized CAD tools

Monte Carlo Simulation

- ☐ The worst-case corners can be too pessimistic for practical design
 - Lead to using unnecessary excessive design margins
 - Results in performance degradation
- Monte Carlo generates the statistical distribution of the variations
 - Repeated simulations with parameters randomly varied each time
 - The design margins can be adjusted depending on the required yield
- ☐ Yield (Y) is the fraction of manufactured chips that are operational or that work according to specifications
 - Can tolerate one-sigma: Y = 68%
 - Can tolerate two-sigma: Y = 95%

Process Variations Classification

- Process corners (L2L extremes) are very pessimistic
- Within-die (WID)variation is whatmatters most foranalog design
- A.k.a. mismatch
 - Modeled using Pelgrom's model
 - Simulated using Monte Carlo simulation

Pelgrom's Mismatch Model

- □ The standard deviation of random within die (WID) variations is inversely proportional to the square root of the transistor area (WL)
- ☐ This makes sense intuitively because variations tend to average out over a larger area

$$\sigma_{V_{TH}} = \frac{A_{V_{TH}}}{\sqrt{WL}}$$

$$\sigma_{\Delta\beta/\beta} = \frac{A_{\beta}}{\sqrt{WL}}$$

- \square $A_{V_{TH}}$ and A_{β} are constants (Pelgrom's coefficients) determined by the foundry by experimental measurements
- \square $A_{VTH} \sim 2 5 \ mV \cdot \mu m$ and $A_{\beta} \sim 1 2\% \cdot \mu m$

Outline

- ☐ Introduction to PVT variations
- Corners and mismatch
- ☐ Mismatch in amplifiers: Offset voltage

Mismatch Circuit Model

- lacktriangle The most important mismatch effects in MOS devices is V_{TH} mismatch
 - V_{TH} is a function of doping levels in the channel
 - These levels vary randomly from one device to another
- $oldsymbol{\square}$ V_{TH} variation can be modeled by a dc source at the gate
 - ΔV_{TH} is a random variable with $\sigma_{V_{TH}} = \frac{A_{V_{TH}}}{\sqrt{WL}}$

Mismatch in Diff Pair

 \square ΔV_{TH} is a random variable with $\sigma_{V_{TH}} = \frac{A_{V_{TH}}}{\sqrt{WI}}$

$$\Box \ \sigma(V_{TH,tot}) = \sqrt{\sigma_{V_{TH1}}^2 + \sigma_{V_{TH2}}^2} = \sqrt{2} \ \sigma_{V_{TH}}$$

Offset Voltage

- \Box With $V_{id}=0$ and perfect symmetry: $\Delta V_{out}=0$
 - But in the presence of mismatches: $\Delta V_{out} \neq 0$
- The input-referred offset voltage (V_{os}): the input level that forces the output voltage to go back to zero
- \Box V_{os} is random variable: $\sigma(V_{os}) = \sigma(\Delta V_{tot})$

Quiz: Offset Voltage

- lacktriangle Assume PMOS V_{TH} mismatch is σ_P and NMOS mismatch is σ_N
- What is the rms input referred offset voltage?
- Hint: The mismatch is usually a small perturbation
 - We can analyze it using small signal models (same as noise)

Systematic Offset

- Systematic offset is due to design or layout issues rather than random variations
 - It can be nulled by proper design and layout
- One common example is Miller OTA
 - Must size M6 such that $V_{GS6} = V_{GS3,4} \rightarrow V_{out1Q} = V_{in2Q}$

OTA Offset Simulation

Connect the OTA in unity-gain negative feedback loop

$$V_{out} \approx V_{in,CM} - \Delta V_{tot}$$

 $V_{os} \approx V_{in,CM} - V_{out}$

- lacktriangle Set $V_{in,CM}$ to $V_{out,CM}$ to avoid finite loop-gain errors
- A non-inverting amplifier topology can be also used

References

- B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017
- Neil Weste and David Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson, 4th ed., 2010

Thank you!