Estatísticas Descritiva

Prof. Sandro Jerônimo de Almeida

+ °

Intervalo

- Diferença entre o máximo e o mínimo:
 - intervalo(x) = max(x) min(x)
- Exemplo: 17, 18, 6, 29, 38, 21, 22, 40
- O intervalo do conjunto é: 40 6 = 34

Variância

- Dado um conjunto de dados, a variância é uma medida de dispersão que mostra o quão distante cada valor desse conjunto está do valor central (médio).
- Quanto menor é a variância, mais próximos os valores estão da média; mas quanto maior ela é, mais os valores estão distantes da média.

Variância

Considere que x₁, x₂, ..., xn são os n elementos de uma amostra e que X é a média aritmética desses elementos. O cálculo da variância amostral é dado por:

■ Var = $(x_1 - X)^2 + (x_2 - X)^2 + (x_3 - X)^2 + ... + (x_n - X)^2$ n - 1

Variância

- Exemplo de idades: {25, 28, 20, 19, 23}
- Média das idades: 115 / 5 = 23 anos

■ Var =
$$(25-23)^2 + (28-23)^2 + (20-23)^2 + (19-23)^2 + (23-23)^2$$

$$(5-1)$$

$$= (4 + 25 + 9 + 16 + 0) / 4 = 13,5$$

Desvio Padrão

- O desvio padrão é capaz de identificar o "erro" em um conjunto de dados, caso quiséssemos substituir um dos valores coletados pela média aritmética.
- O desvio padrão aparece junto à média aritmética, informando o quão "confiável" é esse valor. Ele é apresentado da seguinte forma:
 - média aritmética (x) ± desvio padrão (dp)

Variância (σ2)

• $variancia(x) = \sigma^2(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Desvio padrão (σ): raiz quadrada da variância

$$desvio\ padrao(x) = \sigma \quad (x) = \sqrt{\sigma^2(x)}$$

Ambos também são sensíveis a outliers

Desvio Padrão

- Exemplo de idades: {25, 28, 20, 19, 23}
- Média das idades: 115 / 5 = 23 anos

$$= (4 + 25 + 9 + 16 + 0) / 4 = 13,5$$

• Desvio Padrão = $\sqrt{Var} = \sqrt{13,5} = 3,67$ \longrightarrow 23 ± 3,67

Algumas outras medidas

$$AAD(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

$$MAD(x) = mediana(\{|x_1 - \bar{x}|, \cdots, |x_n - \bar{x}|\})$$

Intervalo interquertil (IQR – *interquartil interval*):

$$IQR(x) = P_{75\%} - P_{25\%}$$

Base de Dados IRIS

Dados sobre de espécies de lírios

- Iris é uma base de dados disponível no *Machine* Learning Repository da UC Irvine.
- http://archive.ics.uci.edu/ml/

Base de Dados IRIS

Estatística Descritiva

	Comprimento da sépala (cm)	Largura da sépala (cm)	Comprimento da pétala (cm)	Largura da pétala (cm)
count	150,00000	150,00000	150,00000	150,00000
mean	5,84333	3,05400	3,75867	1,19867
std	0,82807	0,43359	1,76442	0,76316
min	4,30000	2,00000	1,00000	0,10000
25%	5,10000	2,80000	1,60000	0,30000
50%	5,80000	3,00000	4,35000	1,30000
75%	6,40000	3,30000	5,10000	1,80000
max	7,90000	4,40000	6,90000	2,50000

