CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 5- GEOMETRIA E ALGEBRA LINEARE 2016/17

Esercizio 5.1. [5.16] Si considerino le matrici

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & k+1 \\ 4 & k-3 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 \\ 2k-2 & 2k-1 \end{bmatrix}$$

- a) Si stabilisca per quale valore di $k \in \mathbb{R}$ le matrici A, B e C sono linearmente dipendenti.
- b) Per il valore trovato in a) esprimere B come combinazione lineare di A e C.

Esercizio 5.2. [5.17] Date le matrici

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 1 \\ 2 & 3 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$

stabilire se D è combinazione lineare di A, B, C.

Esercizio 5.3. [7.22] Siano dati i seguenti vettori di \mathbb{R}^3 :

$$v_1 \equiv (1, 1, 1),$$
 $v_2 \equiv (2, 7, 7),$ $v_3 \equiv (0, k^2 + 2, 3),$ $v_4 \equiv (1, k + 3, k^2 + 2).$

Stabilire se v_4 è combinazione lineare di v_1 , v_2 e v_3 al variare del parametro k.

Esercizio 5.4. [7.25]

a) Mostrare che i vettori

$$v_1 = (0, 1, 1), \quad v_2 = (-1, k, 0), \quad v_3 = (1, 1, k)$$

sono linearmente indipendenti per ogni valore di $k \in \mathbb{R}$.

b) Esprimere il vettore v = (2, 1, 2) come combinazione lineare di v_1, v_2, v_3 .

Esercizio 5.5. [5.19] Siano dati i polinomi

$$p_1(x) = 1 + x,$$
 $p_2(x) = 1 + 2x + x^2,$ $p_3(x) = x - x^2.$

Esprimere, se è possibile, $f(x) = x^2 - x + 2$ come combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$.

Esercizio 5.6. [7.27] Si consideri il sottospazio $V = \langle v_1, v_2, v_3 \rangle$ di \mathbb{R}^5 generato dai vettori

$$v_1 = (-1, 1, 2, 1, 0), v_2 = (0, 2, 1, 1, 0), v_3 = (1, 1, -1, 0, 0).$$

- a) Trovare una base di V.
- b) Determinare le coordinate del vettore $v = (-2, 6, 6, 4, 0) \in V$ rispetto alla base trovata al punto a).

Esercizio 5.7. [7.33] Si considerino i vettori di \mathbb{R}^4

$$v_1 = (1, 2, -1, 3), \quad v_2 = (-2, -4, 2, -6), \quad v_3 = (3, 6, k - 6, 3k)$$

- a) Si stabilisca per quali valori di k il vettore v_3 appartiene al sottospazio $W = \langle v_1, v_2 \rangle$ generato da v_1 e v_2 .
- b) Si trovi, al variare di k, una base di W e una base del sottospazio $\langle v_1, v_2, v_3 \rangle$.

Esercizio 5.8. [7.37] Sia V lo spazio vettoriale generato dai vettori $v_1 = (1, -2, 4, 0), v_2 = (2, 3, -1, 1)$ e $v_3 = (0, -1, 3, 0)$:

$$V = \langle v_1, v_2, v_3 \rangle$$

- (1) Determinare la dimensione dello spazio vettoriale V.
- (2) Determinare se il vettore $v_4 = (3, 1, 3, 1)$ appartiene a V. In caso positivo esprimere v_4 come combinazione lineare di v_1 , v_2 e v_3 .
- (3) Determinare la dimensione dello spazio vettoriale $W = \langle v_1, v_2, v_3, v_4 \rangle$.

Esercizio 5.9. [7.52] Si consideri il sottoinsieme S di \mathbb{R}^4 costituito dai vettori v della forma

$$v = (a_1 - a_2 + 2a_3, a_1, 2a_1 - a_2, a_1 + 3a_2 + a_4)$$

dove a_1, a_2, a_3 e a_4 sono parametri reali.

- a) S è un sottospazio vettoriale di \mathbb{R}^4 ?
- b) In caso di risposta affermativa ad a), trovare una base di S.

Esercizio 5.10. [7.53] Si consideri il sottoinsieme S di \mathbb{R}^4 costituito dai vettori v della forma

$$v = (a_1 - a_2 + 2a_3 + a_4, a_1, 2a_1 - a_2, a_1 + 3a_2)$$

dove a_1, a_2, a_3 e a_4 sono parametri reali.

- a) S è un sottospazio vettoriale di \mathbb{R}^4 ?
- b) In caso di risposta affermativa ad a), trovare una base di S.

Esercizio 5.11. [7.56] Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + (k+1)z = k, \quad 2x + y + z = 0 \}$$

- a) Stabilire per quali valori di k l'insieme S è un sottospazio di \mathbb{R}^3 .
- b) Per il valore di k trovato al punto precedente determinare una base di S.

Esercizio 5.12. [7.57] Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + kz = k - 1, \quad x - 2y + z = 0, \quad -2x + 4ky - 2z = 0 \}$$

- a) Stabilire per quali valori di k l'insieme S è un sottospazio di \mathbb{R}^3 .
- b) Per il valore di k trovato al punto precedente determinare una base di S.

Esercizio 5.13. [7.63] Sia A la matrice reale seguente:

$$A = \begin{bmatrix} k & -k & 0 & -1 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & k & 1 \end{bmatrix}$$

- a) Determinare il rango di A al variare del parametro reale k.
- b) Calcolare una base del nucleo di A, cioé dello spazio delle soluzioni del sistema lineare omogeneo Ax = 0, nel caso k = 1.

Esercizio 5.14. [7.64]

a) Sia

$$V = \langle (1,2,1), (-1,3,0), (3,1,2) \rangle$$

Si determini la dimensione e una base di V.

b) Sia

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 3z = 0, \ 2x + 3y + z = 0, \ x + 2z = 0 \}$$

Si determini la dimensione e una base di S.

c) Si confrontino i metodi risolutivi e i risultati dei due precedenti punti.

Esercizio 5.15. [7.70] Sia dato l'insieme

$$V = \{p(x) \in \mathbb{R}_3[x] \mid p(1) = 0 \}$$

- a) Verificare che l'insieme V è un sottospazio vettoriale di $\mathbb{R}_3[x]$.
- b) Determinare una base di V.

Esercizio 5.16. [7.71] Siano dati i polinomi

$$p_1(x) = 1 + x,$$
 $p_2(x) = 1 + 2x + x^2,$ $p_3(x) = x - x^2$

- a) Verificare che l'insieme $\{p_1(x), p_2(x), p_3(x)\}$ è una base di $\mathbb{R}_2[x]$.
- b) Esprimere $f(x) = x^2 x + 2$ come combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$.

Esercizio 5.17. [7.74] Sia W l'insieme dei polinomi $p(x) = ax^3 + bx^2 + cx + d \in \mathbb{R}[x]$, di grado al più 3, tali che p(0) = p(1) = 0. Determinare un insieme generatore di W.

Esercizio 5.18. [7.84] Sia S l'insieme delle matrici simmetriche:

$$S = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix} \mid a, b, d \in \mathbb{R} \right\}$$

(Notiamo anche che $S = \{A \in M_{2\times 2} \mid A^T = A\}$).

- a) Verificare che S è un sottospazio di $M_{2\times 2}$.
- b) Determinare una base di S.

Esercizio 5.19. /7.89/ Sia

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

e sia $S = \{M \in M_2(\mathbb{R}) \mid AM = MA = 0\}$. Dimostrare che S è un sottospazio di $M_2(\mathbb{R})$ e calcolarne la

Esercizio 5.20. [7.90] Si consideri la matrice

$$A = \begin{bmatrix} 1 & k \\ 2 & 3 \end{bmatrix}.$$

- a) Si determini una base del sottospazio $U = \{X \in M_2(\mathbb{R}) : AX = XA\}$. b) Mostrare che il sottoinsieme $W = \{X \in U : X \text{ è invertibile}\}$ non è un sottospazio vettoriale di U.

Esercizio 5.21. [7.91] Sia $W = \langle A, B, C \rangle$ il sottospazio di $M_2(\mathbb{R})$ generato dalle matrici

$$A = \begin{bmatrix} 0 & 0 \\ k & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & k \\ -2 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} k & 1 \\ k-1 & 1 \end{bmatrix}$$

Si determini la dimensione di W e una sua base al variare del parametro reale k.

Esercizio 5.22. [7.92] Sia $V = \langle A, B, C \rangle$ il sottospazio di $M_{2 \times 2}(\mathbb{R})$ dove

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}, \qquad \qquad B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, \qquad \qquad C = \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}.$$

- a) Si determini la dimensione e una base di V.
- b) Si esprima $D = \begin{bmatrix} 2 & 2 \\ 5 & 6 \end{bmatrix}$ come combinazione lineare della base trovata al punto a).