♣ Let's play music with MiMC

Clémence Bouvier 1, 17
joint work with Anne Canteaut 2 and Léo Perrin 3

[↑]Sorbonne Université.

Inria Paris, team COSMIQ

Rump session, EUROCRYPT, 2021

- Minimize the number of multiplications in a large finite field.
- Construction of MiMC [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 127)
 - *▶ n*-bit key *k*
 - decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

- Minimize the number of multiplications in a large finite field.
- Construction of MiMC [Albrecht et al., EC16]:
 - ♪ n-bit blocks (n odd ≈ 127)
 - ♪ *n*-bit key *k*
 - ♦ decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Algebraic degree of MilVIC

- ▶ Preliminary study: [Eichlseder et al., AC20]
- Our study: plateaus on the algebraic degree
- Nound 1 : deg = 2

$$\mathcal{P}_1(x) = x^3$$

$$3 = [11]_2$$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

1 Algebraic degree of MiMC

- ▶ Preliminary study: [Eichlseder et al., AC20]
- Our study: plateaus on the algebraic degree
- Nound 1 : deg = 2

$$Arr$$
 Round 2 : $deg = 2$

$$\mathcal{P}_1(x) = x^3$$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$3 = [11]_2$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow \text{No exponent } 2^{2k} - 1$

... 3^r

Maximum-weight exponents:

Let
$$k_r = |r \log_2 3|$$
.

$$\forall r \in \mathcal{R} = \{4, ..., 16265\} \setminus \mathcal{F}$$
 with $\mathcal{F} = \{465, 571, ...\}$:

ightharpoonup if k_r is odd,

$$2^{k_r}-5\in\mathcal{E}_r,$$

ightharpoonup if k_r is even,

$$2^{k_r} - 7 \in \mathcal{E}_r$$
.

Constructing exponents.

 \Rightarrow plateau when k_r is odd and k_{r+1} is even

After r rounds of MIMC₃:

$$\deg = 2 \times \lceil k_r/2 - 1 \rceil .$$

After r rounds of MIMC₃:

$$\deg = 2 \times \lceil k_r/2 - 1 \rceil.$$

For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128}{\rm XOR}$	2^{128}	[EGL+20]
81/82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	New
80/82	$2^{125} \mathrm{XOR}$	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

▶ Patterns in sequence $(k_r)_{r>0}$:

 \Rightarrow denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$

$$\mathfrak{D} = \{ 1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots \},$$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

Music theory:

- ▶ perfect octave 2:1
- perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad \text{7 octaves } \sim 12 \text{ fifths}$$

Thanks for your attention !

