Question of the Day

Fill in the blank:

"All models are _____, but some are _____."

"If you have a hammer, then everything looks like _____"

Your alien friend sees that people use umbrellas in the rain, and infer that umbrellas are a rain-blessing artifact. He is committing the fallacy of ______

COGS118C: Neural Signal Processing

Spikes: Rate Models & Rate-LFP Analyses

Lecture 13 July 24, 2019

Course Outline: Road Map

Goals for Today

- Conceptualize neuron as computational device
- 2. Compute spike counts, smoothing & firing rate
- 3. Understand correlation and rate-LFP analyses

Single Neuron as a Computational Device

Systems engineering view: neuron receives (sensory or synaptic) input, performs a "computation", and sends the result as an output.

This is a model, or abstraction, of the biological cell!

Single Neuron as a Computational Device

dot product

w: "synaptic" weights

x: inputs

b: bias

f(): nonlinearity

But what is x, physically?

Information Encoding

The biological neuron only receives and emits discrete action potentials.

What aspect of the action potential "encodes information", that we can manipulate computationally?

Action potentials (more or less) have constant amplitudes and widths...

One view (rate coding):

Number of spikes within a time window.

Spike Count: over a longer window

Firing Rate: "instantaneous" quantity

Spikes, Spike Counts, & Firing Rate

Receptive Fields & Stimulus-Tuned Neurons

Stimulus with **varying aspects** are presented, e.g.:

- location
- orientation (angle)
- color
- sound frequency
- etc...

"This neuron has an orientation preference."

Receptive Fields & Stimulus-Tuned Neurons

Tuning	Location in the Brain	Special Name?
place	hippocampus	place cells & grid cells
motion	retina, or V5/MT	direction cells/motion cells
grandmother	IT/hippocampus	gnostic/grandmother/Jennifer aniston cells
numerosity	PFC	numerons
biological motions	premotor/SMA	mirror neuron
phallic images		

Google: "__ tuned neuron" or "neuron responsive to ___" or "__ cell neuroscience"

Single Neuron as a Computational Device

$$f\left(\sum_i w_i x_i + b
ight)$$

dot product

w: "synaptic" weights

x: inputs

b: bias

f(): nonlinearity

Different neurons have different "tuning curves", i.e., sensitive to different values of the variable.

downstream neuron combines them linearly via dot product (linear filter)

Naive model of a neuron's function!

Linear-Nonlinear Poisson Model

linear: dot product / filter of stimulus tuning

nonlinear: activation function, e.g., sigmoid, ReLu

Poisson: spikes are randomly emitted as a Poisson process, given the **average rate parameter**

$$P\{N(t)=n\}=rac{(\lambda t)^n}{n!}e^{-\lambda t}.$$

Brief Intro to Poisson Spikes

Poisson: spikes are randomly emitted as a Poisson process, given the **average rate parameter**

$$P\{N(t)=n\}=rac{(\lambda t)^n}{n!}e^{-\lambda t}.$$

Generate a random number between 0-1 at every time step.

If that number is greater than (rate * interval length) -> no spike.

Otherwise -> spike

Exercise: rate = 5Hz, interval length = 0.1s, total time = 2 seconds

nice property:

for some duration T, average count = rate * T = variance

Rate Encoding Model

Model of how a neuron encodes information via spike trains.

Assumption: information (e.g., stimulus intensity) is encoded via a neuron's firing rate.

Assumes precise spike timing on the millisecond scale does not matter (in contrast to **spike timing encoding models**).

Given some spike timestamps, we want to estimate firing rate.

Goals for Today

- Conceptualize neuron as computational device
- 2. Compute spike counts, smoothing & firing rate
- 3. Understand correlation and rate-LFP analyses

Spike Times to Spike Counts

Time bin width is a parameter choice!

Smaller bins = better temporal resolution, but noisier estimate Bigger bins = worse temporal resolution, more accurate estimate

Spike Counts to Firing Rate

Spike count vector is usually very noisy, we want a more continuous & smooth firing rate estimate.

Solution: take "moving average".

Moving Average Smoothing as Filter

Equivalent to convolution with:

0.5 0.5

2-point boxcar or rectangular window

Firing Rate: Smoothed Spike Count

Smoothing is applying a low-pass filter!

Goals for Today

- Conceptualize neuron as computational device
- 2. Compute spike counts, smoothing & firing rate
- 3. Understand correlation and rate-LFP analyses

Firing Rate & LFP Analysis

Use same time bin width (dt) to bin spike counts

Firing Rate & LFP Analysis

How to quantify their relationship?

Correlation

Pearson Correlation Coefficient

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

For two discrete signals x and y:

$$r_{xy} \ \stackrel{ ext{def}}{=} \ rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{(n-1)s_x s_y} = rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum\limits_{i=1}^n (x_i - ar{x})^2 \sum\limits_{i=1}^n (y_i - ar{y})^2}},$$

Correlation

For two discrete signals x and y:

$$r_{xy} \stackrel{ ext{def}}{=} rac{\sum\limits_{i=1}^n (x_i-ar{x})(y_i-ar{y})}{(n-1)s_xs_y} = rac{\sum\limits_{i=1}^n (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum\limits_{i=1}^n (x_i-ar{x})^2\sum\limits_{i=1}^n (y_i-ar{y})^2}},$$
standard deviation

of x and y

covariance

$$\sum\limits_{i=1}^n (x_i-ar{x})(y_i-ar{y})$$

what is this operation if
$$\bar{x} = 0$$
, $\bar{y} = 0$ dot product!

Pearson correlation coefficient is the dot product between 2 mean-subtracted signals, normalized by their standard deviations

Rate-Power Correlation

np.corrcoef()

Correlation Does Not Imply Causation

Summary

- Conceptualize neuron as computational device
- 2. Compute spike counts, smoothing & firing rate
- 3. Understand correlation and rate-LFP analyses

https://tinyurl.com/cogs118c-att

