DSD Midterm exam

11/16 2011

- Use the K-map method to find the minimized sum-of-product expression for each
 F: (8%)
 - a) **(4%)** $F(W, X, Y, Z) = \prod M(0,1,2,5,8,9,10,15) * \prod D(7,13,14)$
 - b) **(4%)** $F(A, B, C, D, E) = \sum m (0,2,4,8,9,11,13,15,18,20,22,25,29,31) + \sum d(6,10,19,23,27)$
- 2. Hazards in circuit design: (12%)
 - a) There are two kinds of static hazards, what are they? Give an example of a static hazard and explain how to avoid it. (8%)
 - b) Give an example to illustrate when will a dynamic hazard occur? (4%)
- 3. Realize an one-bit full adder using a 3-to-8 line decoder as Fig 1 below and
 - (a) Two **OR** gates. (5%)
 - (b) Two **NOR** gates. **(5%)**

4. If the ROM in the hexadecimal to ASCII code converter of FIGURE is replaced with a PAL, give the internal connection diagram. (20%)

, 3			
FIGURE Hexadecimal-to- ASCII Code Converter	Input W X Y Z	Hex Digit	ASCII Code for Hex Digit $A_6 A_5 A_4 A_3 A_2 A_1 A_0$
	0 0 0 0	0	0 1 1 0 0 0 0
	0 0 0 1	1	0 1 1 0 0 0 1 " [
	0 0 1 0	2	0 1 1 0 0 1 0 \xrightarrow{X} ROM
	0 0 1 1	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0 1 0 0	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0 1 0 1	5	0 1 1 0 1 0 1
	0 1 1 0	6	0 1 1 0 1 1 0
	0 1 1 1	7	0 1 1 0 1 1 1
	1 0 0 0	8	0 1 1 1 0 0 0
	1 0 0 1	9	0 1 1 1 0 0 1
	1 0 1 0	Α	1 0 0 0 0 0 1
	1 0 1 1	В	1 0 0 0 0 1 0
	1 1 0 0	C	1 0 0 0 0 1 1
	1 1 0 1	D	1 0 0 0 1 0 0
	1 1 1 0	E	1 0 0 0 1 0 1
	1 1 1 1	F	1 0 0 0 1 1 0

Example of PAL structure

5. This is an optimal implementation for master-slave flip flops. It only requires 7 2-input gates. Please draw the waveform for QA ,QB ,QC according to the waveform of the clock and b of the following circuit. Assume QA ,QB , and QC = 0 initially. (20%)

- 6. (20%)(you can choose either (a) or (b) below, but not both.)
 - (a) (20%) A sequential circuit has two D flip-flops A, B, and two input X, Y
 The circuit is described by the following input equations:

DA = X'A + XY DB = X'A + XB Z = XB where X' is the compliment of X Please first draw the circuit and derive the state table, and then draw the state diagram.

(b) (20%)Please design the synchronous schematic of the given state diagram (a) by using positive edge clock trigger JK flip-flop, state diagram (b) by using positive edge trigger clock D flip-flop. (20%)

- 7. Please design the circuits as follows:
 - (a), Using D type latch to design a one-bit memory cell with a Data_IO signal, a AddressEnable signal and a RW signal, which store the data at Data_IO to memory when both RW signal and AddressEnable is high. Output the stored data to Data_IO when RW is low and Address. (5%)

- (b), Design a schematic for Z = ABC + AD + C'D using only 2-input NAND gates. Use as few gates as possible. (5%)
- (c) Implement ABDE' + A'B' + C using three 3-input-NOR and one 2-input-NOR gates. Note: your input can be A, A', B, B', C, C', D, D', E and E' but output is F. (4%)
- 8. Consider the two Boolean functions, F1 and F2, given by the following truth table:

	x	y	z	F_2	F_2'	F_1	F_1'
0	0	0	0	0	1	0	1
1	0	0	1	1	0	0	1
2	0	1	0	0	1	0	1
3	0	1	1	0	1	1	0
4	1	0	0	1	0	0	1
5	1	0	1	0	1	1	0
6	1	1	0	0	1	1	0
7	1	1	1	1	0	1	0

- (a) Express F1 & F2 in its sum-of-product canonical form. (4%)
- (b) Express F1 & F2 in its product-of- sum canonical form. (4%)
- 9. Consider a simple car alarm system involving three sensors. "G" is 0 or 1 if the ignition is OFF or ON, respectively. "D" is 0 if all doors are CLOSED and 1 if any door is OPEN. "L" is 0 or 1 if the headlights are OFF or ON, respectively. The output "ALARM" should be 1 (HIGH) in the following cases:
 - 1. The headlights are ON while the ignition is OFF.
 - 2. Any door is OPEN while the ignition is ON.
 - (a) Build the truth table (G,D,L, ALARM), construct the K-map, and derive the simplified sum-of-products expression for ALARM. (4%)
 - (b) Implement the ALARM function using exactly four 2-input NAND gates. Do not use complemented inputs. (4%)