mean absolute error.

Boston House Price Prediction is a example of regression analysis and is often used to teach machine learning concepts. The dataset is also used in research to compare the performance of different regression models.

Source Code with Explanation-

```
#Importing the pandas for data processing and numpy for numerical computing import numpy as np
```

```
import pandas as pd
```

Importing the Boston Housing dataset from the sklearn

from sklearn.datasets import load_boston

boston = load_boston()

#Converting the data into pandas dataframe

data = pd.DataFrame(boston.data)

#First look at the data

data.head()

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

#Adding the feature names to the dataframe

data.columns = boston.feature names

#Adding the target variable to the dataset

data['PRICE'] = boston.target

#Looking at the data with names and target variable

data.head(n=10)

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

#Shape of the data

print(data.shape)

#Checking the null values in the dataset

data.isnull().sum()

CRIM 0 ZNINDUS 0 CHAS NOX 0 RM0 AGE 0 DIS 0 RAD 0 TAX PTRATIO В LSTAT PRICE 0

#Checking the statistics of the data

data.describe()

dtype: int64

[#] This is sometimes very useful, for example if you look at the CRIM the max is 88.97 and 75% of the value is below 3.677083 and

[#] mean is 3.613524 so it means the max values is actually an outlier or there are

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
std	8.601545	23,322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

#	Column	Non-Null Count	21
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	PRICE	506 non-null	float64

dtypes: float64(14)
memory usage: 55.5 KB

#checking the distribution of the target variable
import seaborn as sns
sns.distplot(data.PRICE)

#The distribution seems normal, has not be the data normal we would have perform log transformation or took to square root of the data to make the data normal. # Normal distribution is need for the machine learning for better predictiblity of the model

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d082c670>

#Distribution using box plot
sns.boxplot(data.PRICE)

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d077ed60>

#Checking the correlation of the independent feature with the dependent feature # Correlation is a statistical technique that can show whether and how strongly pairs of variables are related. An intelligent correlation analysis can lead to a greater understanding of your data

#checking Correlation of the data

correlation = data.corr()

correlation.loc['PRICE']

CRIM -0.388305

```
0.360445
ZN
INDUS
          -0.483725
CHAS
           0.175260
NOX
          -0.427321
RM
           0.695360
          -0.376955
AGE
DIS
           0.249929
          -0.381626
RAD
TAX
          -0.468536
PTRATIO
          -0.507787
           0.333461
В
LSTAT
          -0.737663
           1.000000
PRICE
```

Name: PRICE, dtype: float64

plotting the heatmap

import matplotlib.pyplot as plt

fig,axes = plt.subplots(figsize=(15,12))

sns.heatmap(correlation, square = True, annot = True)

By looking at the correlation plot LSAT is negatively correlated with -0.75 and RM is positively correlated to the price and PTRATIO is correlated negatively with -0.51


```
# Checking the scatter plot with the most correlated features
plt.figure(figsize = (20,5))
features = ['LSTAT','RM','PTRATIO']
for i, col in enumerate(features):
    plt.subplot(1, len(features) , i+1)
    x = data[col]
    y = data.PRICE
    plt.scatter(x, y, marker='o')
    plt.title("Variation in House prices")
    plt.xlabel(col)
    plt.ylabel('"House prices in $1000"')
          Variation in House prices
                                                                         Variation in House prices
                                          Variation in House prices
                                prices in $1000"
&
                                                                prices in $1000"
  10
                                                                 10
                                                                              PTRATIO
# Splitting the dependent feature and independent feature
#X = data[['LSTAT','RM','PTRATIO']]
X = data.iloc[:,:-1]
y= data.PRICE
# In order to provide a standardized input to our neural network, we need the
perform the normalization of our dataset.
# This can be seen as an step to reduce the differences in scale that may arise
from the existent features.
# We perform this normalization by subtracting the mean from our data and
dividing it by the standard deviation.
# One more time, this normalization should only be performed by using the mean
and standard deviation from the training set,
# in order to avoid any information leak from the test set.
mean = X train.mean(axis=0)
std = X train.std(axis=0)
```

X_train = (X_train - mean) / std
X test = (X test - mean) / std

from sklearn.linear model import LinearRegression

#Linear Regression

```
regressor = LinearRegression()
#Fitting the model
regressor.fit(X train, y train)
# Model Evaluation
#Prediction on the test dataset
y pred = regressor.predict(X test)
# Predicting RMSE the Test set results
from sklearn.metrics import mean squared error
rmse = (np.sqrt(mean squared error(y test, y pred)))
print(rmse)
from sklearn.metrics import r2 score
r2 = r2 score(y test, y pred)
print(r2)
# Neural Networks
#Scaling the dataset
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
# Due to the small amount of presented data in this dataset, we must be careful
to not create an overly complex model,
# which could lead to overfitting our data. For this, we are going to adopt an
architecture based on two Dense layers,
# the first with 128 and the second with 64 neurons, both using a ReLU activation
function.
# A dense layer with a linear activation will be used as output layer.
# In order to allow us to know if our model is properly learning, we will use a
mean squared error loss function and to report the performance of it we will
adopt the mean average error metric.
# By using the summary method from Keras, we can see that we have a total of
10,113 parameters, which is acceptable for us.
#Creating the neural network model
import keras
from keras.layers import Dense, Activation, Dropout
from keras.models import Sequential
model = Sequential()
model.add(Dense(128,activation = 'relu',input dim =13))
model.add(Dense(64,activation = 'relu'))
```

```
model.add(Dense(32,activation = 'relu'))
model.add(Dense(16, activation = 'relu'))
model.add(Dense(1))
#model.compile(optimizer='adam', loss='mse', metrics=['mae'])
model.compile(optimizer = 'adam',loss ='mean squared error',metrics=['mae'])
!pip install ann visualizer
!pip install graphviz
from ann visualizer.visualize import ann viz;
#Build your model here
ann viz(model, title="DEMO ANN");
history = model.fit(X train, y train, epochs=100, validation split=0.05)
# By plotting both loss and mean average error, we can see that our model was
capable of learning patterns in our data without overfitting taking place (as
shown by the validation set curves)
from plotly.subplots import make subplots
import plotly.graph objects as go
fig = go.Figure()
fig.add trace(go.Scattergl(y=history.history['loss'],
                    name='Train'))
fig.add trace(go.Scattergl(y=history.history['val loss'],
                    name='Valid'))
fig.update layout (height=500, width=700,
                  xaxis title='Epoch',
                  yaxis title='Loss')
fig.show()
                                                      - Train
                                                     Valid
   500
   400
   300
   200
   100
    0
             20
     0
                                         80
                          Epoch
```

fig = go.Figure()

```
fig.add trace(go.Scattergl(y=history.history['mae'],
                      name='Train'))
fig.add trace(go.Scattergl(y=history.history['val mae'],
                      name='Valid'))
fig.update layout (height=500, width=700,
                    xaxis title='Epoch',
                    yaxis title='Mean Absolute Error')
fig.show()
                                                                - Train
                                                                - Valid
    20
Mean Absolute Error
    15
    10
     5
                20
                                     60
     0
                           40
                                                80
                              Epoch
#Evaluation of the model
y pred = model.predict(X test)
mse nn, mae nn = model.evaluate(X test, y test)
print('Mean squared error on test data: ', mse nn)
print('Mean absolute error on test data: ', mae nn)
4/4 [==================] - 0s 4ms/step - loss: 10.5717 - mae: 2.2670
Mean squared error on test data: 10.571733474731445
Mean absolute error on test data: 2.2669904232025146
#Comparison with traditional approaches
#First let's try with a simple algorithm, the Linear Regression:
from sklearn.metrics import mean absolute error
lr model = LinearRegression()
lr model.fit(X train, y train)
```

```
y pred lr = lr model.predict(X test)
mse lr = mean squared_error(y_test, y_pred_lr)
mae lr = mean absolute error(y test, y pred lr)
print('Mean squared error on test data: ', mse lr)
print('Mean absolute error on test data: ', mae lr)
from sklearn.metrics import r2 score
r2 = r2 score(y test, y pred)
print(r2)
0.8812832788381159
 # Predicting RMSE the Test set results
 from sklearn.metrics import mean squared error
 rmse = (np.sqrt(mean_squared_error(y_test, y_pred)))
 print(rmse)
 3.320768607496587
 # Make predictions on new data
 import sklearn
 new data = sklearn.preprocessing.StandardScaler().fit transform(([[0.1, 10.0,
 5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]]))
 prediction = model.predict(new data)
 print("Predicted house price:", prediction)
 1/1 [======] - Os 70ms/step
 Predicted house price: [[11.104753]]
 #new data
 sklearn.preprocessing.StandardScaler().fit transform(([[0.1,
                                                                    10.0,
 5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]])) is a line of code
 that standardizes the input features of a new data point.
 In this specific case, we have a new data point represented as a
 list of 13 numeric values ([0.1, 10.0, 5.0, 0, 0.4, 6.0, 50, 6.0, 1,
 400, 20, 300, 10]) that represents the values for the 13 features of
 the Boston House Price dataset.
 The StandardScaler() function from the sklearn.preprocessing module
 is used to standardize the data. Standardization scales each feature
 to have zero mean and unit variance, which is a common preprocessing
 step in machine learning to ensure that all features contribute
 equally to the model.
 The fit transform() method is used to fit the scaler to the data and
```

apply the standardization transformation. The result is a new data