

PolarHT[™] Power MOSFET

IXTQ 69N30P IXTT 69N30P $V_{DSS} = 300 V_{DSS} = 69 A_{DS(on)} = 49 m\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C}$ to 150°C $T_J = 25^{\circ}\text{C}$ to 150°C; $R_{\text{GS}} = 1 \text{ M}\Omega$	300 300	V	
$V_{\rm gss}$	Transient	±20	V	
V _{GSM}		±30	V	
I _{D25}	T _c = 25°C	69	А	
I _{DM}	$T_{\rm C} = 25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	200	Α	
I _{AR}	T _c = 25°C	69	А	
E _{AR}	$T_{c} = 25^{\circ}C$	50	mJ	
E _{as}	$T_{c} = 25^{\circ}C$	1.5	J	
dv/dt	$I_{S} \leq I_{DM}$, di/dt \leq 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_{J} \leq$ 150°C, $R_{G} = 4 \Omega$	10	V/ns	
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _c = 25°C	500	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C	
T_L	1.6 mm (0.062 in.) from case for 10 s	300	°C	
M _d	Mounting torque (TO-3P)	1.13/10	Nm/lb.in.	
Weight	TO-3P TO-268	5.5 5.0	g g	

TO-3P (IXTQ)

TO-268 (IXTT)

G = Gate D = Drain S = Source TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Symbol **Test Conditions** Characteristic Values (T₁ = 25°C, unless otherwise specified) Min. | Typ. Max. $V_{GS} = 0 \text{ V}, I_{D} = 250 \,\mu\text{A}$ ٧ 300 V_{DSS} $V_{\text{GS}(th)}$ ٧ $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ 2.5 5.0 $V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$ ±100 nΑ l_{gss} $\mathbf{I}_{\mathrm{DSS}}$ $V_{DS} = V_{DSS}$ $V_{GS} = 0 V$ 25 μΑ T₁ = 125°C 250 μΑ $\mathsf{m}\Omega$ $R_{\scriptscriptstyle DS(on)}$ $V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ 49 Pulse test, $t \le 300 \mu s$, duty cycle d $\le 2 \%$

PolarHT[™] DMOS transistors utilize proprietary designs and process. US patent is pending.

Symbo	ol	Test Conditions	Characteristic Values		
		$(T_{J} = 25^{\circ}C,$, unless otherwise specified)		
			Min.	∣Typ.	Max.
g _{fs}		V_{DS} = 10 V; I_{D} = 0.5 I_{D25} , pulse test	30	48	S
\mathbf{C}_{iss})			4960	pF
$\mathbf{C}_{\mathrm{oss}}$	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		760	pF
C _{rss}				190	pF
t _{d(on)})			25	ns
t_{r}	Ţ	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = I_{D25}$		25	ns
$\mathbf{t}_{d(off)}$		$R_{G} = 4 \Omega $ (External)		75	ns
t _f				27	ns
$\mathbf{Q}_{\mathrm{g(on)}}$)			156	180 nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$		32	nC
\mathbf{Q}_{gd}	J			79	nC
R_{thJC}					0.25 K/W
R_{thCK}		(TO-247, TO-3P)		0.21	K/W

Source-Drain Diode

Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions	Min.	typ.	Max.	
l _s	$V_{GS} = 0 V$			69	Α
I _{SM}	Repetitive			200	Α
$V_{_{\mathrm{SD}}}$	$I_F = I_S$, $V_{GS} = 0$ V, Pulse test, $t \le 300$ μs , duty cycle $d \le 2$ %			1.5	V
T_{JM}	I _F = 25 A -di/dt = 100 A/μs		250		ns
Q_{RM}	V _R = 100 V		3.0		μС

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics @ 125 Deg. C

Fig. 5. $\rm R_{\rm DS(on)}$ Normalized to $\rm I_{\rm D25}$ Value vs. $\rm I_{\rm D}$

Fig. 2. Extended Output Characteristics @ 25 deg. C

Fig. 4. $R_{DS(on)}$ Normalized to I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

Fig. 13. Maximum Transient Thermal Resistance