TD 4: Tests et IC

Préambule:

On rappelle que:

1. $\chi^2(n)$ désigne la loi d'une somme des carrés de n variables aléatoires $\mathcal{N}(0,1)$ indépendantes :

Si
$$X_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$
, alors :

$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n).$$

2. On admet que dans un modèle gaussien i.i.d. $\mathcal{N}(m, \sigma^2)$, l'estimateur non biaisé de la variance $\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ vérifie :

$$(n-1)\frac{\hat{S}_n^2}{\sigma^2} \sim \chi^2(n-1) \text{ et } \hat{S}_n^2 \coprod \bar{X}.$$

3. St(n) désigne la loi du quotient entre une variable aléatoire $\mathcal{N}(0,1)$ et la racine d'une $\chi^2(n)$ normalisée par le nombre de degrés de liberté, indépendantes :

si
$$Z \sim \mathcal{N}(0,1), U \sim \chi^2(n), Z \coprod U$$
:

$$\frac{Z}{\sqrt{\frac{U}{n}}} \sim \operatorname{St}(n).$$

4. On rappelle que dans un modèle gaussien $\mathcal{N}(m, \sigma^2)$, on a

$$\sqrt{n}\frac{\bar{X}-m}{\hat{S}_n} \sim \operatorname{St}(n-1).$$

5. Si Y est issu d'une loi discrète donnée par $\forall k \in [1, K], \mathbb{P}(Y = k) = p_k$, que Y_1, \dots, Y_N est un échantillon i.i.d. de même loi que Y, et qu'on note $O_k = \sum_{i=1}^N \mathbbm{1}_{Y_i = k}$, et $E_k = Np_k$, alors :

$$\sum_{k=1}^K \frac{(O_k - E_k)^2}{E_k} \xrightarrow{\mathcal{L}} \chi^2(K-1) \text{ (quand N tend vers l'infini)}.$$

6. Si (X,Y) désigne un couple de variables aléatoires discrètes indépendantes, à valeurs dans $[1,K_1]\times[1,K_2]$, que $(X_1,Y_1),\cdots,(X_N,Y_N)$ est un échantillon i.i.d. de même loi que (X,Y), et qu'on note

$$O_{k_1,k_2} = \sum_{i=1}^N \mathbbm{1}_{X_i = k_1, Y_i = k_2}$$
, et $M_{k_1} = \sum_k O_{k_1,k}$ et $L_{k_2} = \sum_k O_{k,k_2}$, et $E_{k_1,k_2} = \frac{M_{k_1} L_{k_2}}{N}$ on a :

$$\sum_{k_1, k_2=1}^{K_1, K_2} \frac{\left(O_{k_1, k_2} - E_{k_1, k_2}\right)^2}{E_{k_1, k_2}} \xrightarrow{\mathcal{L}} \chi^2 \Big((K_1 - 1)(K_2 - 1) \Big).$$

7. La loi de Fisher $F(n_1,n_2)$ désigne un rapport de deux χ^2 à n_1,n_2 degrés de libertés, renormalisés par le nombre de degrés de liberté : Si $U_1 \sim \chi^2(n_1)$ et $U_2 \sim \chi^2(n_2)$, alors :

$$\frac{\frac{U_1}{n_1}}{\frac{U_2}{n_2}} \sim F(n_1, n_2).$$

8. On rappelle qu'une combinaison affine de variables aléatoires de loi normales indépendantes reste de loi normale.

9. On rappelle le TCL : Si $(X_i)_{i\in\mathbb{N}}$ est une suite de variables aléatoires i.i.d. d'espérance m et de variance σ^2 , alors

$$\sqrt{n} \frac{\bar{X} - m}{\sigma} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, 1).$$

10. On rappelle enfin que grâce au lemme de Slutsky, on peut remplacer l'écart-type dans la convergence précédente par une estimation consistante de ce dernier.

1

Exercice 1 IC et test bilatéraux vs unilatéraux

On mesure la concentration en nitrates dans 30 points d'un cours d'eau. On modélise ces mesures comme des réalisations i.i.d. d'une loi normale d'espérance m inconnue et de variance σ^2 inconnue. Les mesures ont donné $\bar{x}=46.7 mg.L^{-1}$ et $\hat{s}^2=81.3 mq^2.L^{-2}$.

- 1. Donner un intervalle de confiance pour m, au degré de confiance 99%
- 2. Donner la p-valeur du test

$$H_0: m = 50 \ mg.L^{-1}$$

$$H_1: m \neq 50 \ mq.L^{-1}$$

- 3. Le test précédent est il rejeté au niveau $\alpha = 0.05$?
- 4. Le taux ne doit surtout pas dépasser $50mg.L^{-1}$, sous peine de hauts risques sanitaires. Expliquer pourquoi on choisira de tester

$$H_0: m \geq 50 \ mg.L^{-1}$$

$$H_1: m < 50 \ mg.L^{-1}$$

plutôt que dans l'autre sens.

- 5. Donner la p-valeur du test précédent.
- 6. Ce test est il rejeté au niveau $\alpha = 0.05$? et au niveau $\alpha = 0.01$?
- 7. Donner un intervalle de confiance unilatéral à droite (de la forme $]-\infty,A])$ pour m, au degré de confiance 99%.
- 8. Aurait-on pu utiliser cet intervalle de confiance pour effectuer le test au niveau 1%

Exercice 2 Test sur la variance et la moyenne

On vous demande de tester la qualité de vis devant correspondre aux caractéristiques suivantes :

- \bullet Longueur: 40mm
- Diamètre : 3mm
- Diamètre de la tête : 6.5mm

Le fabriquant annonce que l'écart-type de toutes les mesures est de 0.5mm. Vous procédez à 25 mesures (L_i, d_i, D_i) de la longueur, diamètre, et diamètre de la tête, et vous obtenez

$$\bar{L} = 40.2, \bar{d} = 3.1, \bar{D} = 6.4, \hat{S}_{L,n} = 0.54, \hat{S}_{d,n} = 0.25, \hat{S}_{D,n} = 0.60$$

On modélise les données comme issues de lois normales indépendantes.

- Tester (au niveau 5%) pour chaque dimension, si la variance est celle donnée par le fabriquant, et donner les p - valeurs associées.
- 2. Tester (au niveau 5%) si les dimensions sont celles données par le fabriquant, donner les p valeurs associées.
- 3. Donner les intervalles de confiance bilatéraux pour la variance, au degré de confiance de 95%.
- 4. Donner les intervalles de confiance unilatéraux à droite pour la variance (de la forme [0, A]), au degré de confiance de 95%.
- 5. Refaire le test (au niveau 5%) sur le diamètre en considérant la variance connue (et en prenant celle donnée par le fabriquant).
- 6. Comment pourriez-vous corriger le fait d'avoir voulu faire plusieur tests simultanéments pour contrôler la probabilité qu'au moins un de ces tests soit rejeté à tord ? Est-ce pertinent dans ce cadre là ?

Exercice 3 Statistiques de tests

Soient X_1, \dots, X_{n_1} i.i.d. $\mathcal{N}(m_1, \sigma^2)$, et Y_1, \dots, Y_{n_2} i.i.d. $\mathcal{N}(m_2, \sigma^2)$, des échantillons indépendants de même variance σ^2 . On note \bar{X}, \bar{Y} les moyennes empiriques associées, et $\hat{S}^2_{X,n_1}, \hat{S}^2_{Y,n_2}$ les estimateurs sans biais de la variances associés.

- 1. En admettant le point 2 et 3 du préambule, montrer le point 4 du préambule.
- 2. En utilisant le point 1 du préambule, donner la loi d'une somme de χ^2 indépendantes, à respectivement n_1 et n_2 degrés de liberté.
- 3. En déduire la loi de $\frac{(n_1-1)\hat{S}_{X,n_1}^2+(n_2-1)\hat{S}_{Y,n_2}^2}{\sigma^2}$.
- 4. Calculer la loi de $\sqrt{n'} \frac{\bar{X} m_1 (\bar{Y} m_2)}{\sigma}$, où $n' = \frac{1}{\frac{1}{n_1} + \frac{1}{n_2}}$.
- 5. En utilisant le point 3 du préambule, et les deux dernières questions, montrer que $U = \sqrt{n'} \frac{\bar{X} m_1 (\bar{Y} m_2)}{\sqrt{\frac{(n_1 1)\hat{S}_{X,n_1}^2 + (n_2 1)\hat{S}_{Y,n_2}^2}{n_1 + n_2 2}}}$ vérifie

$$U \sim \operatorname{St}(n_1 + n_2 - 2).$$

Exercice 4 Test de comparaison de variances et de moyenne

On a mesuré les dimensions d'une tumeur chez des souris traitées ou non avec une substance antitumorale. On modélise les données comme issues de lois normales indépendantes d'espérances respectives m_1 et m_2 , et de variances respectives σ_1^2 et σ_2^2 . On a obtenu les résultats suivants :

Souris témoins : $n_1 = 20, \bar{X} = 7,075cm^2, \hat{S}_{X,20} = 0,576cm^2$. Souris traitées : $n_2 = 18, \bar{Y} = 5,850cm^2, \hat{S}_{X,20} = 0,614cm^2$.

1. Montrer que si $\sigma_1^2 = \sigma_2^2$, alors on a

$$W := \frac{\hat{S}_X^2}{\hat{S}_Y^2} \sim F(n_1 - 1, n_2 - 1).$$

2. Tester (au niveau 5%, et en donnant la p-valeur) :

$$H_0: \sigma_1 = \sigma_2$$

$$H_1:\sigma_1\neq\sigma_2$$

3. Tester (au niveau 5%, et en donnant la p-valeur), en supposant l'égalité des variances, et en utilisant l'exercice précédent :

$$H_0: m_1 = m_2$$

$$H_1: m_1 \neq m_2$$

4. Tester (au niveau 5%, et en donnant la p-valeur), en supposant l'égalité des variances, et en utilisant l'exercice précédent :

$$H_0: m_1 \geq m_2$$

$$H_1: m_1 > m_2$$

Exercice 5 Test de comparaison de variances et de moyenne 2

Le pH (degré d'acidité) a été mesuré dans deux types de solutions chimiques A et B. Dans la solution A, six mesures ont été faites, avec un pH moyen de 7,52 et un écart-type estimé de 0,024. Dans la solution B, cinq mesures ont été faites, avec un pH moyen de 7,49 et un écart-type estimé de 0,032. On modélise les données comme issues de lois normales indépendantes. Déterminer si, au niveau 0,05, les deux solutions ont des pH différents (donner la p-valeur).

Exercice 6 Test sur la variance

On veut évaluer la performance de deux appareils de mesures de pression, à haute-pression. Pour cela, on travaille a pression contante et contrôlée de $m_0 = 100$ bars, et on prend 20 mesures avec chaque appareil, et calcule leur estimateur de la variance à espérance connue, \hat{V}_1^2 et \hat{V}_2^2 (définies par $\hat{V}^2 := \frac{1}{n} \sum_{i=1}^n (X_i - m_0)^2$.)

On modélise les mesures faites avec l'appareil i comme des réalisations indépendantes de lois normales d'espérance m_0 et de variance σ_i^2 . Les observations ont donné $\hat{v}_1^2 = 0.0009$ et $\hat{v}_2^2 = 0.0019$.

1. Calculer la p-valeur du test :

$$H_0: \sigma_1^2 > \sigma_2^2$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

2. Donner aussi la p-valeur du test :

$$H_0: \sigma_1^2 < \sigma_2^2$$

$$H_1: \sigma_1^2 > \sigma_2^2$$