Prof. Cynthia Bortolotto

Lista 7

- 1. (Ergoroff's Theorem) Let $\mu(X) < \infty$, (f_n) a sequence of complex measurable functions which converges pointwise at every point of X, and $\varepsilon > 0$. Prove that there is a measure set $E \subset X$, with $\mu(X E) < \varepsilon$ such that (f_n) converges uniformly on E.
- 2. Suppose that μ is a measure on X, $\mu(X) < \infty$, $f_n \in L^1(\mu)$, $f_n(x)$ converges to f(x) a.e, and there exists p > 1 and $C < \infty$ such that $\int_X |f_n|^p d\mu < C$, for all n. Prove that

$$\lim_{n \to \infty} \int_X |f - f_n| d\mu = 0.$$

- 3. Suppose X consists of two points a and b; define $\mu(\{a\}) = 1$, $\mu(\{b\}) = \mu(X) = \infty$. Is it true, for this μ , that L^{∞} is the dual space of $L^{1}(\mu)$?
- 4. (Lebesgue-Stiltjes Integral) Let $F:[a,b]\to\mathbb{R}$ be an increasing function.
 - (a) Prove that F has a coutable number of discontinuities.
 - (b) If x_0 is a discontinuity point, prove that

$$F(x_0^+) = \lim_{\substack{x > x_0 \\ x \to x_0}} F(x)$$

is well-defined (i.e the limit exists).

(c) By possibly modifying F in its discontinuity points x_0 , assume that $F(x_0) = F(x_0^+)$.

Prove that there is a unique measure μ on Borel sets of \mathbb{R} such that $\mu((a,b]) = F(b) - F(a)$. We write, for $f \in L^1(\mu)$

$$\int_{a}^{b} f(x)d\mu(x) = \int_{a}^{b} f(x)dF(x).$$

(d) Prove that if F is continuously differentiable function then

$$\int_{a}^{b} f(x)dF(x) = \int_{a}^{b} f(x)F'(x)dx,$$

for all f that is $L^1(\mu)$.

(e) Let (x_n) be a sequence in [a, b], (α_n) a sequence of positive numbers such that

$$\sum_{n=1}^{\infty} \alpha_n < \infty.$$

Let

$$j_n(x) = \begin{cases} 0 & \text{if } x < x_n \\ 1 & \text{otherwise} \end{cases}$$

and define the function

$$F(x) = \sum_{n=1}^{\infty} \alpha_n j_n(x).$$

For $f \in L^1(dF)$, find

$$\int_{a}^{b} f(x)dF(x).$$