Лекція 4. Статистичне виведення в R. Оцінки та асимптотика

Данило Тавров

01.03.2023

План лекції

- Основні поняття статистичного виведення
- Статистичні оцінки
- Середнє вибіркове та вибіркова дисперсія
- Асимптотичні розподіли

Вступні зауваги

- Ми продовжуємо розгляд основних понять із теорії ймовірностей і статистики та їхніх реалізацій в R
- Сьогодні згадаємо першу половину основних понять зі статистики
 - Ми пригадаємо, що таке статистична оцінка та які її властивості
 - Ми з'ясуємо, чому нас у першу чергу цікавлять асимптотичні властивості оцінок
- Корисними матеріалами є:
 - Фундаментальна книжка All of Statistics (Larry Wasserman), розділи 6, 9 (викладено на диску в загальному каталозі з літературою)
 - Книжка Introduction to Econometrics (Bruce Hansen) (розділи 6, 8) (викладено на диску в загальному каталозі з літературою)
 - Книжка Using R for Introductory Statistics (John Verzani), розділ 7 (викладено на диску в каталозі з лекцією)
- Матеріал цієї лекції частково базується на конспекті лекцій із дисципліни ЕСОN 141 Econometrics: Math Intensive (University of California, Berkeley) авторства Віри Семенової та Данила Таврова

Параметричне і непараметричне виведення

- Типовим питанням статистичного виведення ϵ : «Маючи на руках вибірку $X_1,\dots,X_n\sim F$, що можна сказати про F?»
- ullet Статистичною моделлю (statistical model) вважатимемо множину розподілів ${\mathcal F}$
- Параметричною моделлю (parametric model) ϵ статистична модель $\mathcal F$, яку можна параметризувати скінченною кількістю параметрів
 - Наприклад, нормальний розподіл є параметричною моделлю:

$$\mathcal{F} = \left\{ f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \ \mu \in \mathbb{R}, \sigma > 0 \right\}$$

• У загальному випадку маємо деяку модель

$$\mathcal{F} = \{ f(x; \theta) : \theta \in \Theta \} ,$$

де $\Theta \in \mathbf{простором} \mathbf{параметрів}$ (parameter space)

- **Непараметричною моделлю** (nonparametric model) ϵ модель \mathcal{F} , яку неможливо параметризувати скінченним числом параметрів
 - Тобто ми нічого не знаємо про DGP і припускаємо, що це деякий розподіл
 - Тоді потрібно оцінити цілу функцію такого розподілу, тобто незліченну кількість параметрів (значень функції в кожній точці)
- У нашому курсі ми розглянемо (деякі!) методи виведення як параметричні, так і непараметричні

Приклади параметричного виведення

- ullet Нехай $X_1,\dots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathrm{Bern}\,(p)$
 - ullet Тоді задача стоїть оцінити параметр p
- \bullet Нехай $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} N(\mu,\sigma^2)$
 - Тоді задача стоїть оцінити параметри μ і σ^2
 - Задача може стояти оцінити **тільки** параметр μ
 - Тоді σ буде вважатися **завадним параметром** (nuisance parameter)

Приклади непараметричного виведення

- ullet Нехай $X_1,\dots,X_n\stackrel{\mathrm{i.i.d.}}{\sim} F$
 - ullet Задача може стояти оцінити $F\in \mathcal{F}$, де \mathcal{F} множина всіх можливих функцій розподілу
 - Задача може стояти оцінити f=F' , де $f\in\mathcal{F}$ множина всіх щільностей розподілу таких, що, наприклад, $\int_{\mathbb{R}}\left(f''(x)\right)^2\,dx<\infty$
 - Вимагаємо певної гладкости
- \bullet Нехай $X_1,\dots,X_n \overset{\text{i.i.d.}}{\sim} \mathbb{P}_X$
 - Задача може стояти оцінити **функціонал** (functional) від функції розподілу F, що відповідає \mathbb{P}_X , або від самого \mathbb{P}_X
 - ullet Наприклад, сподівання $\mathbb{E}\left[X
 ight] = \int X\,d\mathbb{P}_X$
 - Або медіану $M(F) = F^{-1}(0.5)$

Приклад напівпараметричного виведення

- \bullet Нехай маємо вибірку $(X_1,Y_1)^\top,\dots,(X_n,Y_n)^\top$
 - ullet Наприклад, X_i відповідає артеріальному тиску
 - А Y_i відповідає тривалості життя
- У цьому контексті X називають **предиктором** (predictor), **регресором** (regressor), **ознакою** (feature) або **незалежною змінною** (independent variable)
- У цьому контексті Y називають **результатом** (outcome), **відгуком** (response) або **залежною змінною** (dependent variable)
- ullet Ми називаємо $r(x) = \mathbb{E}\left[Y \mid X = x\right]$ функцією регресії (regression function)
- Якщо $r \in \mathcal{F}$, де \mathcal{F} має скінченну кількість параметрів (напр., множина всіх прямих), то маємо параметричну регресійну модель (parametric regression model)
- Якщо ж \mathcal{F} є класом деяких функцій, які неможливо описати скінченним числом параметрів, то маємо **непараметричну регресійну модель**
- Статистичне виведення в цьому сенсі може мати таку інтерпретацію:
 - Якщо потрібно спрогнозувати Y для нового пацієнта з певним тиском X, то матимемо задачу прогнозування
 - Якщо Y дискретна (напр., «вижив» або «помер»), то маємо задачу класифікації
 - Якщо ж потрібно оцінити функцію r (напр., щоб проаналізувати зв'язок між змінними), то маємо задачу регресійного аналізу
- ullet Часто ми не накладаємо жодних обмежень на розподіл X_i , але розглядаємо тільки параметричні регресійні моделі
 - Тоді такі моделі називають напівпараметричними (semiparametric)

План лекції

- Основні поняття статистичного виведення
- Отатистичні оцінки
- ③ Середнє вибіркове та вибіркова дисперсія
- 4 Асимптотичні розподіли

Типовий приклад, де постає потреба оцінювання

- Нехай маємо деяку популяцію, наприклад, усіх зростів людей на планеті Земля
- ullet Нехай X=«зріст випадково вибраної людини»
 - Нехай стоїть задача оцінити середній зріст у популяції
 Тобто фактично чому дорівнює
 $\mathbb{E}[X]$
- Вочевидь, ми можемо мати доступ тільки до деякої вибірки
- ullet Тому потрібно порахувати деяку **оцінку** $\mathbb{E}\left[X
 ight]$ на основі наявної вибірки
- ullet Вибірку X_1, X_2, \dots, X_n можна розглядати як:
 - ullet n незалежних реалізацій X
 - Що те ж саме (але простіше для аналізу): реалізації n незалежних та однаково розподілених (independent and indentically distributed, i.i.d.) величин X_1, X_2, \dots, X_n
 - У цьому контексті незалежність означає, що реалізація X_i не впливає на реалізацію X_i , $i \neq j$
 - Однаковий розподіл означає, що всі реалізації походять з однакового розподілу
 - Таку вибірку також називають **репрезентативною** (representative)

Термінологія

- У загальному випадку ми хочемо оцінити (можливо, багатовимірний) параметр θ деякої модели 1
 - Цей параметр є фіксованою константою!
- Статистикою (statistic) називають будь-яку функцію від вибірки
 - Статистика є випадковою величиною!
 - Це тому, що вибірка має випадкову природу: інші вибірка інше значення
- Статистикою не може бути функція, яка залежить від невідомого параметра!
- Приклади статистик:
 - ullet Середнє вибіркове: $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$
 - Вибіркова дисперсія: $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \overline{X}\right)^2$
 - Перше спостереження: X_1
 - Медіана
 - ullet Середн ϵ вибіркове всіх значень, за виключенням найменших 10% і найбільших 10%
- Приклади величин, які **не** ϵ статистиками:
 - Центроване вибіркове середнє $\overline{X} \mu_X$ (μ_X невідоме)
 - ullet Z-оцінка: $Z=rac{\overline{X}-\mu_X}{\sigma_X/\sqrt{n}}$ (μ_X,σ_X невідомі)
- ullet Оцінкою (estimator) $\overset{..}{\theta}$ ε статистика, яку використовують для оцінювання θ
 - Це є випадкова величина!
- Ми будемо відрізняти оцінку від значення оцінки (estimate) її реалізації
 - Така реалізація (для конкретної вибірки) є константою!

 $^{^{1}}$ Ці самі поняття стосуються і непараметричного виведення, але так трішки простіше

Властивості оцінок

- Дуже грубо всі властивості оцінок можна розділити на:
 - Властивості на малих вибірках (small-sample properties), які описують поведінку оцінки для деякої вибірки фіксованого розміру n
 - Властивості на великих вибірках, або асимптотичні (large-sample, asymptotic properties), які описують поведінку оцінки, коли $n o \infty$
 - Прямування до нескінченности потрібно сприймати як синонім фрази «коли n достатньо велике»
 - ullet У різних контекстах «достатньо великими» можуть бути різні n
- Основними властивостями на малих вибірках, які нас цікавлять, є незміщеність та ефективність
- Основними асимптотичними властивостями, які нас цікавлять, є спроможність та, ширше, асимптотичний розподіл
 - Особливо якщо можна довести, що він буде нормальний
- У нашому курсі ми робимо акцент на великих наборах даних, тому нас у першу чергу цікавлять саме асимптотичні властивості оцінок

Незміщені оцінки

- Як правило, ми хочемо, щоб наша оцінка була «точною» в тому сенсі, що вона якнайближче відповідає популяційному параметру
- Кажучи неформально, якби ми могли зібрати велику кількість вибірок, то середнє підрахованих оцінок повинно було б бути близьким до справжнього значення параметра
- ullet Формальніше, оцінку $\hat{ heta}$ називають **незміщеною** (unbiased), якщо

$$\mathbb{E}\left[\hat{\theta}\right] = \theta \tag{2.1}$$

• Тоді **зміщенням** (bias) є (сподівана) різниця між оцінкою та параметром:

$$\operatorname{Bias} = \mathbb{E}\left[\hat{\theta}\right] - \theta \tag{2.2}$$

Приклад аналізу оцінки на незміщеність

- ullet Нехай $U_1, U_2, \dots, U_n \overset{ ext{i.i.d.}}{\sim} \mathrm{U}\left([0;b]\right) = U$, параметр b невідомий
- Розгляньмо оцінку $\hat{b} = \max\{U_1, U_2, \dots, U_n\}$
- Як відомо з теорії ймовірностей, з урахуванням незалежности всіх величин,

$$F_{\hat{b}}(x) = \mathbb{P}_U\left(U_1 \leq x\right) \cdot \ldots \cdot \mathbb{P}_U\left(U_n \leq x\right) = (F_U(x))^n = \begin{cases} 0 \ , & x < 0 \\ \left(\frac{x}{b}\right)^n \ , & 0 \leq x < b \\ 1 \ , & b \leq x \end{cases}$$

Тоді щільність такого розподілу дорівнює відповідній похідній:

$$f_{\hat{b}}(x) = \begin{cases} \frac{nx^{n-1}}{b^n} \;, & 0 \leq x \leq b \\ 0 \;, & \text{інакше} \end{cases}$$

- ullet Отже $\mathbb{E}\left[\hat{b}\right] = \int_{0}^{b} x \cdot \frac{nx^{n-1}}{b^n} \, dx = \frac{n}{n+1} \cdot b$

- ullet До речи, іншою незміщеною оцінкою b може бути $\tilde{b}=2\overline{U}\equiv rac{2}{n}\sum_{i=1}^n U_i$ • Перевірте це самостійно

Ефективні оцінки

- Оцінка невідомого параметра повинна бути не тільки незміщеною, а ще й зосередженою навколо параметра
- Іншими словами, ми хочемо, щоб оцінка мала малу дисперсію
- На практиці в нас є доступ тільки до однієї вибірки (як правило)
 - Отже якщо дисперсія велика, то немає жодної впевнености, що пораховане значення близьке до θ
- Проте така постановка питання не є адекватною
 - Зрештою, $\theta \equiv 0$ має найменшу дисперсію нульову
 - Але це безсенсовна оцінка
 - Тому доречно говорити про порівняння дисперсій оцінок у деякому класі
- Розгляньмо клас незміщених оцінок
- ullet Тоді оцінка $\hat{ heta}$ **ефективніша** (more efficient) від оцінки $ilde{ heta}$, якщо
 - ullet Var $\left(\widehat{ heta}
 ight) \leq$ Var $\left(\widetilde{ heta}
 ight)$ для всіх heta
 - ullet Var $\left(\hat{ heta}
 ight) <$ Var $\left(\tilde{ heta}
 ight)$ щонайменше для одного heta
- Кажемо, що оцінка $\hat{\theta}$ є **найефективніша** (the most efficient), або просто **ефективна**, у деякому класі, якщо вона має найнижчу дисперсію серед оцінок цього класу

Приклад ефективної оцінки

- \bullet Нехай оцінкою сподівання $^2 \, \mathbb{E} \left[X \right] \equiv \theta \, \varepsilon$ статистика $\tilde{\theta} = X_1$
- ullet Ця оцінка ефективніша від оцінки $\check{ heta} = rac{X_1 + X_2}{2}$
- ullet Справді, обидві оцінки незміщені, оскільки $\mathbb{E}\left[X_1
 ight]=\mathbb{E}\left[X_2
 ight]=\mathbb{E}\left[X
 ight]= heta$
- Проте

$$\operatorname{Var}\left(\check{\theta}\right) = \frac{\sigma_X^2}{2} < \sigma_X^2 = \operatorname{Var}\left(\tilde{\theta}\right) \;, \quad \forall \theta \in \mathbb{R}$$

ullet Далі ми побачимо, що вибіркове середн ϵ є ефективним у класі лінійних оцінок

Середньоквадратична похибка

 Для визначення, наскільки далекою є оцінка від справжнього параметра, використовують середньоквадратичну похибку (mean squared error, MSE):

$$MSE(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} - \theta\right)^2\right] \tag{2.3}$$

• Якщо розписати МЅЕ, дістанемо

$$\mathbb{E}\left[\left(\hat{\theta}-\theta\right)^2\right] = \operatorname{Var}\left(\hat{\theta}\right) + \operatorname{Bias}^2\left(\hat{\theta}\right)$$

- Зокрема, якщо оцінка незміщена, то її МЅЕ дорівнює дисперсії
- На практиці доволі часто виринають оцінки, які є зміщеними, але які мають меншу дисперсію, ніж відповідні незміщені аналоги
- Для таких оцінок МЅЕ буде менша
- Тобто незміщеність не є дуже принциповою характеристикою
- Значно важливіше щоб оцінка була спроможною

Спроможні оцінки (1)

- Кажучи неформально, оцінка $\hat{\theta}$ є **спроможною** (consistent), якщо її розподіл «концентрується» навколо θ зі збільшенням n
- Формальніше, оцінка $\hat{\theta}$ є спроможною, якщо вона збігається до θ за ймовірністю: $\hat{\theta}_n \stackrel{p}{\to} \theta$

Визначення 2.1

Ми кажемо, що послідовність випадкових величин X_n **збігається** до випадкової величини X **за ймовірністю** (converges in probability), якщо

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}_{X_n,X} \left(|X_n - X| > \varepsilon \right) = 0 \tag{2.4}$$

- Інтерпретація збіжности за ймовірністю така: зі збільшенням розміру вибірки n імовірність відхилення оцінки $\hat{\theta}$ від справжнього значення θ прямує до 0
- Тобто якщо n «дуже велике», то підраховане для деякої вибірки значення $\hat{\theta}$ можна вважати близьким до θ

Спроможні оцінки (2)

- Оскільки нас у цьому курсі цікавлять асимптотичні властивості оцінок, то аналіз оцінки на спроможність є ключовим
 - Якщо оцінка не є спроможною, у ній немає жодного практичного сенсу
 - Тому потрібно обов'язково доводити спроможність будь-якої оцінки, із якою ми працюємо
- Якщо оцінка незміщена, то довести її спроможність можна доволі просто за допомогою нерівности Чебишова
- Згадаймо цю нерівність для випадкової величини X:

$$\forall \varepsilon > 0 \quad \mathbb{P}_{X}\left(\left|X - \mathbb{E}\left[X\right]\right| \geq \varepsilon\right) \leq \frac{\mathrm{Var}\left(X\right)}{\varepsilon^{2}}$$

ullet Оскільки для незміщної оцінки $\mathbb{E}\left[\hat{ heta}
ight]= heta$, маємо

$$\forall \varepsilon > 0 \quad \mathbb{P}\left(\left|\hat{\theta} - \theta\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(\hat{\theta}\right)}{\varepsilon^2}$$

- $\bullet\;$ Відтак достатньо показати, що Var $\left(\hat{\theta} \right) o 0$, коли $n o \theta$
- Власне, саме так доводять так званий закон великих чисел (ЗВЧ)

Спроможні оцінки (3) — Закон великих чисел

Теорема 2.2 ((Слабкий) Закон великих чисел (Weak law of large numbers))

- ullet Нехай маємо послідовність незалежних випадкових величин X_1, X_2, \dots
- ullet Нехай їхні сподівання існують, скінченні й дорівнюють $\mathbb{E}\left[X_i
 ight]=\mu_i, i\geq 1$
- Нехай їхні дисперсії також існують, скінченні й рівномірно обмежені, тобто ${\rm Var}\,(X_i) \leq C < \infty, i=1,2,...$
- Тоді

$$\frac{1}{n}\sum_{i=1}^{n}\left(X_{n} - \mathbb{E}\left[X_{n}\right]\right) \stackrel{p}{\to} 0 \tag{2.5}$$

- Існують інші формулювання ЗВЧ, де до послідовности випадкових величин висувають трішки інші вимоги:
 - Усі величини незалежні й мають однаковий розподіл зі скінченним сподіванням $\mathbb{E}\left[X_i\right] = \mu, i = 1, 2, \dots$
 - \bullet Усі величини незалежні, дисперсії скінченні й $\sum_{n=1}^{\infty} \frac{\mathrm{Var}\left(X_{n}\right)}{n^{2}} < \infty$
- Для нашого курсу слабкого ЗВЧ цілком достатньо³
- Деталі див. у Конспекті лекцій із теорії ймовірностей, Розд. 14

 $^{^3}$ Хоча існує й **посилений** (strong) ЗВЧ, де замість збіжности за ймовірністю використовується збіжність майже напевно

Спроможні оцінки (4)

ullet Отже, маючи деяку вибірку $X_1,\dots,X_n\stackrel{ ext{i.i.d.}}{\sim} X$, можемо за ЗВЧ стверджувати, що

$$\frac{1}{n}\sum_{i=1}^{n}\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right)\overset{p}{\rightarrow}0\quad\Rightarrow\quad\overline{X}\overset{p}{\rightarrow}\mathbb{E}\left[X\right]$$

• У схожий спосіб можна показати, наприклад, що

$$\frac{1}{n}\sum_{i=1}^{n}X_{n}^{2} \equiv \overline{X^{2}} \stackrel{p}{\to} \mathbb{E}\left[X^{2}\right]$$

• Але корисних оцінок подібної структури можна придумати не так багато

Спроможні оцінки (5)

Тому на практиці для доведення спроможности корисно застосовувати таку теорему

Теорема 2.3 (Теорема про неперервне відображення, ТНВ (Continuous mapping theorem, CMT))

- ullet Нехай маємо послідовність випадкових векторів $\mathbf{X}_n \overset{p}{ o} \mathbf{X}$
- ullet Нехай $q:\mathbb{R}^k \to \mathbb{R}^n$ неперервна майже напевно
- ullet Тоді $q(\mathbf{X}_n) \stackrel{p}{ o} q(\mathbf{X})$
- Наприклад, застосування цієї теореми безпосередньо дає такі результати, як

 - $\bullet \ \left(\overline{X}\right)^2 \overset{p}{\to} \left(\mathbb{E}\left[X\right]\right)^2 \\ \bullet \ \frac{1}{\overline{X}} \overset{p}{\to} \frac{1}{\mathbb{E}\left[X\right]} \text{ тощо}$

План лекції

- Основні поняття статистичного виведення
- Статистичні оцінки
- 3 Середнє вибіркове та вибіркова дисперсія
- Асимптотичні розподіли

Середнє вибіркове (1)

- Розгляньмо властивості чи не найчастіше використовуваної оцінки оцінки сподівання $\mathbb{E}\left[X\right]$ деякої випадкової величини X
- Нехай $X_i \overset{\text{i.i.d.}}{\sim} X$, $i=1,\ldots,n$, $\mathbb{E}\left[X\right] = \mu$, $\operatorname{Var}\left(X\right) = \sigma^2$
- ullet Тоді **середнє вибіркове** (mean) $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$ має корисні властивості
- Воно незміщене:

$$\mathbb{E}\left[\overline{X}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right] = \mu$$

 \bullet Воно спроможне за ЗВЧ: $\overline{X} \stackrel{p}{\to} \mu$

Середнє вибіркове (2)

ullet Дисперсією \overline{X} (з урахуванням незалежности величин!) є

$$\operatorname{Var}\left(\overline{X}\right) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left(X_{i}\right) = \frac{\sigma^{2}}{n}$$

- ullet Звісно, це менше від, скажімо, ${
 m Var}\,(X_1) = \sigma^2$
- Проте в загальному випадку середнє вибіркове не є ефективною оцінкою⁴
 - ullet Згідно з теоремою Рао-Блеквелла (Rao-Blackwell theorem), ефективність оцінки $\hat{ heta}$ можна підвищити
 - Для цього потрібно взяти умовне сподівання $\mathbb{E}\left[\hat{\theta}\mid T\right]$, обумовивши так званою достатньою статистикою T
 - ullet Зокрема, для рівномірного розподілу достатніми статистиками ϵ мінімум і максимум

 - Наприклад, якщо $X_1,X_2,\dots\stackrel{\text{i.i.d.}}{\sim} \mathrm{U}\left((0; heta)\right)$, то $\hat{ heta}=\frac{n+1}{2n}\max\left\{X_1,\dots,X_n\right\}$ має найменшу дисперсію серед усіх незміщених оцінок

 $^{^4}$ Нижченаведені факти не є обов'язковими до розуміння, їх наведено з міркувань цікавости

Ефективність середнього вибіркового в класі лінійних оцінок (1)

 Можемо показати, що середнє вибіркове є ефективним у класі лінійних (linear) оцінок:

$$\mathcal{L} = \left\{ \sum_{i=1}^n w_i X_i \equiv \mathbf{w}^\top \mathbf{X} \; , \; \mathbf{w} \in \mathbb{R}^n \right\}$$

- ullet Тут $\mathbf{w}^{ op} = (w_1, w_2, \dots, w_n)$ ϵ вектором вагових коефіцієнтів
- Приклади лінійних оцінок:
 - \bullet Середнє вибіркове: $\mathbf{w}^{\top} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$
 - Перше спостереження: $\mathbf{w}^{\top} = (1, 0, ..., 0)$
- ullet Цілком очевидно, що всі оцінки $\hat{ heta} \in \mathcal{L}$ незміщені тоді й тільки тоді, коли

$$\mathbb{E}\left[\hat{\theta}\right] = \mathbb{E}\left[\sum_{i=1}^n w_i X_i\right] = \left(\sum_{i=1}^n w_i\right) \mu = \mu$$

ullet Тобто коли вагові коефіцієнти нормовані: $\displaystyle\sum_{i=1}^n w_i = 1^5$

 $^{^5}$ Окрім, звісно, випадку $\mu=0$, але тоді вагові коефіцієнти можуть бути довільні, тобто в тому числі й нормовані

Ефективність середнього вибіркового в класі лінійних оцінок (2)

• Дисперсією лінійної оцінки, з урахуванням незалежности, є

$$\operatorname{Var}\left(\hat{\theta}\right) = \operatorname{Var}\left(\sum_{i=1}^n w_i X_i\right) = \left(\sum_{i=1}^n w_i^2\right) \sigma_X^2$$

• Отже, ефективною незміщеною оцінкою буде така оцінка, яка є розв'язком такої мінімізаційної задачі:

$$\min_{\mathbf{w}} \sum_{i=1}^{n} w_i^2$$

$$\text{s.t.} \sum_{i=1}^n w_i = 1$$

- Нескладно показати⁶, що оптимальним розв'язком є вектор $\mathbf{w}^* = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$
- Оскільки цей вектор відповідає вибірковому середньому, воно є найліпшою лінійною незміщеною оцінкою (best linear unbiased estimator, BLUE) сподівання

 $^{^6}$ Лагранжіан дорівнює $L=\sum_{i=1}^n w_i^2 - \lambda \left(\sum_{i=1}^n w_i-1\right)$, і умова першого порядку дає $2w_j=\lambda$, $j=1,\ldots,n$. Оскільки $1=\sum_{i=1}^n w_i=rac{n\lambda}{2}$, маємо $\lambda=rac{n}{2}$, а відтак $w_j=rac{1}{n}$ for each j

Ефективність середнього вибіркового в класі лінійних оцінок (3)

 \bullet До речи, якщо Var $(X_i)=\sigma_i^2$, тобто дисперсії неоднакові, то мінімізаційна програма набуває виду

$$\min_{\mathbf{w}} \sum_{i=1}^n w_i^2 \sigma_i^2$$
 s.t.
$$\sum_{i=1}^n w_i = 1$$

• Тоді її розв'язок буде

$$w_i = \frac{1}{C\sigma_i^2} \;, \quad i=1,\ldots,n \;, \quad C = \sum_{i=1}^n \frac{1}{\sigma_i^2} \label{eq:window}$$

Середнє вибіркове як оцінка найменших квадратів (1)

- Також можемо показати, що середнє вибіркове постає в зовсім іншому контексті • Ці міркування будуть для нас корисні, коли ми розглядатимемо регресійний аналіз
- Нехай маємо вибірку $X_1, ..., X_n$ ullet Нехай нам потрібно з'ясувати значення m^* таке, що сумарна відстань кожного
- X_i , $i=1,\ldots,n$, до нього є мінімальною
- Замість того, щоб рахувати відстань через модуль, ми візьмемо квадрат відхилення
 - У цьому випадку сумарна «відстань» буде гладкою функцією
- Ми маємо таку оптимізаційну задачу:

$$m^* = \mathop{\arg\min}_{m} \sum_{i=1}^{n} \left(X_i - m\right)^2$$

• Виконуючи стандартні маніпуляції, маємо:

$$\begin{split} \sum_{i=1}^{n} \left(X_{i} - m\right)^{2} &= \sum_{i=1}^{n} \left(X_{i} - \overline{X} + \overline{X} - m\right)^{2} \\ &= \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2} + 2\left(\overline{X} - m\right) \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) + n\left(\overline{X} - m\right)^{2} \end{split}$$

Середнє вибіркове як оцінка найменших квадратів (2)

• Можна помітити, що

$$\frac{1}{n}\sum_{i=1}^n\left(X_i-\overline{X}\right)=\frac{1}{n}\sum_{i=1}^nX_i-\overline{X}=0$$

• Відтак середній доданок пропадає, і залишається

$$\sum_{i=1}^{n} \left(X_i - m\right)^2 = \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2 + n\left(\overline{X} - m\right)^2$$

- ullet Сума $\sum_{i=1}^n \left(X_i \overline{X}
 ight)^2$ не залежить від m
- ullet Отже весь вираз мінімізовано, коли $m=\overline{X}$

Ілюстрація властивостей середнього вибіркового (1)

- \bullet Розгляньмо вибірку $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} X = \operatorname{Exp}\left(2\right)$
- $\bullet\,$ Сподіванням повинно бути $\mathbb{E}\left[X\right]=0.5$, проте ми цього не знаємо і хочемо оцінити
- Проілюструймо властивості \overline{X} як оцінки сподівання за допомогою **симуляцій** за методом Монте-Карло (Monte Carlo simulations) 7
- Для цього:
 - Згенеруймо випадкову вибірку розміром n
 - ullet Обчислімо значення \overline{X} для цієї вибірки
 - Повторімо цей процес «велику» кількість разів (наприклад, 10 000)
- Розгляньмо вибірки трьох різних розмірів: n=10,100,1000
- Для порівняння розгляньмо оцінку X_1 , яка є незміщеною для $\mathbb{E}\left[X\right]$, але явно не є спроможною ($X_1 \stackrel{p}{\to} X_1$)

⁷Відповідну назву запропонував угорсько-американський математик Джон фон Нойманн (John von Neumann, 1903–1957) для опису першої симуляції такого роду, яка мала місце для дослідження поведінки нейтронів у науковій лабораторії Лос-Аламос під час Другої світової війни. Назва «Монте-Карло», вочевидь, походить від назви курорту в Монако, відомого своїми гральними закладами

Ілюстрація властивостей середнього вибіркового (2)

- Для імплементації методу Монте-Карло в R потрібно написати функцію, яку будемо повторювати
- У нашому випадку ця функція генерує вибірку та обчислює на її основі дві оцінки

```
estimate_expectation <- function(n) {
  x <- rexp(n, rate = 2)

result <- c(mean(x), x[1], n)
  names(result) <- c("mean", "first", "n")

return(result)
}</pre>
```

• Тепер потрібно викликати цю функцію багато разів (за допомогою replicate) для різних n і сформувати датафрейм

```
T <- 10000

df <- NULL

for (n in c(10, 100, 1000)) {
    df <- rbind(df, as_tibble(t(replicate(T, estimate_expectation(n)))))
}
```

- Ми використали функцію транспонування t, оскільки replicate повертає результат кожного запуску як стовпець, а нам треба рядок
- Ми конвертуємо результати застосування $estimate_expectation\ n$ pasib у датафрейм
- Ми нарощуємо в циклі великий датафрейм, для кожного n дописуючи до поточного новий шматок

Ілюстрація властивостей середнього вибіркового (3)

- ullet Як можна бачити, хоча обидві оцінки незміщені, тільки оцінка \overline{X} є спроможною
- ullet Також видно, що \overline{X} має меншу дисперсію від X_1
- ullet Можете самостійно модифікувати код і перевірити, чи ϵ оцінка

$$\frac{n+1}{2n}\max\left\{X_1,\dots,X_n\right\}$$
ефективною для випадку $X_1,\dots,X_n\stackrel{\text{i.i.d.}}{\sim} \mathrm{U}\left((0;\theta)\right)$

Вибіркова дисперсія (1)

- ullet Для оцінки дисперсії можна було б використати вираз $rac{1}{n}\sum_{i=1}^n \left(X_i-\mu
 ight)^2$
- Проте це не ε статистикою, адже μ нев<u>ід</u>оме
- Але μ можна, у свою чергу, оцінити як \overline{X} , що веде до такої оцінки:

$$\hat{\sigma}^2 \equiv \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

• Простими, але нудними маніпуляціями можна показати, що

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \mu \right)^2 - \left(\mu - \overline{X} \right)^2$$

- ullet Зокрема, можна далі показати, що $\mathbb{E}\left[\hat{\sigma}^2
 ight]=rac{n-1}{n}\sigma^2$
- ullet Тобто $\hat{\sigma}^2$ ϵ зміщеною
- Незміщеною оцінкою є вибіркова дисперсія (sample variance):

$$s_X^2 \equiv \frac{n}{n-1}\hat{\sigma}^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$$
 (3.1)

Вибіркова дисперсія (2)

- Можна показати, що (3.1) є спроможною
- ullet По-перше, $rac{n}{n-1} o 1$, коли $n o \infty$
- ullet Тому $s_X^2 = rac{n}{n-1}\hat{\hat{\sigma}}^2$ прямуватиме «туди ж», куди й $\hat{\sigma}^2$
- Тоді можна було б застосувати ТНВ і сказати, що

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \overset{p}{\to} \mathbb{E} \left[\left(X_i - \mu \right)^2 \right] = \sigma^2$$

- Проте ми **не можемо** собі цього дозволити, адже випадкові величини $X_1 \overline{X}$, ..., $X_n \overline{X}$ **не є незалежні**
 - Це очевидно на такому простому міркуванні

 - ullet Це тому, що \overline{X} є функцією від X_1, X_2, \dots, X_n

Вибіркова дисперсія (3)

• Проте ми знаємо, що

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \mu \right)^2 - \left(\mu - \overline{X} \right)^2 \overset{p}{\to} \mathbb{E} \left[\left(X_i - \mu \right)^2 \right] - \left(\mu - \mu \right)^2 = \sigma^2 - 0 = \sigma^2$$

• А відтак остаточно

$$s_X^2 = \frac{n}{n-1} \cdot \hat{\sigma}^2 \stackrel{p}{\to} 1 \cdot \sigma^2 = \sigma^2$$

 За цією ж логікою спроможною також є оцінка середньоквадратичного відхилення:

$$\widehat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2} \overset{p}{\to} \sigma$$

План лекції

- Основні поняття статистичного виведення
- Статистичні оцінки
- Середнє вибіркове та вибіркова дисперсія
- Асимптотичні розподіли

Вступні зауваги

- Як ми вже з'ясували, оцінка $\hat{\theta}$ деякого параметра θ є випадковою величиною
- Підрахувавши її для наявної вибірки, ми всього лише маємо одну реалізацію
- Якщо оцінка спроможна, то ми можемо вважати, що ця реалізація доволі близька до θ
- Але щоб з'ясувати, **наскільки** вона близька, нам потрібно знати **розподі**л $\hat{\theta}$
- Знання цього розподілу дає змогу оцінити, наскільки далеко ця реалізація може відхилятися від справжнього θ
- У цьому курсі нас переважно цікавитимуть методи аналізу даних з доволі великими вибірками
- Відтак нас у першу чергу цікавлять асимптотичні розподіли оцінок
- Основним інструментом, який дає нам змогу встановити асимптотичний розподіл, є центральна гранична теорема (ЦГТ)
- Щоб її сформулювати, пригадаймо, що таке збіжність за розподілом

Збіжність за розподілом

Визначення 4.1

• Послідовність випадкових величин X_n з функціями розподілу F_n збігається до випадкової величини X із функцією розподілу F за розподілом (converges in distribution), якщо

$$\lim_{n\to\infty} F_n(x) = F(x) \tag{4.1}$$

для всіх точок x, у яких F неперервна

- \bullet Це позначають як $X_n \Rightarrow X$ або $X_n \stackrel{d}{\rightarrow} X$
- ullet Тобто маємо збіжність послідовности X_1, X_2, \ldots у тому розумінні, що їхні функції розподілів прямують до деякої граничної функції розподілу
- Або, кажучи неформально, можемо говорити про «приблизний» розподіл X_n для деякого «великого» n
- ullet Ми позначатимемо це через $X_n \overset{\mathrm{a}}{\sim} X$
- Між збіжностями за ймовірністю та за розподілом існує зв'язок
 - \bullet Можна довести, що якщо $X_n \overset{p}{\to} X$, то $X_n \overset{d}{\to} X$
 - Зворотне твердження в **загальному** випадку **не \varepsilon** справедливим
 - \bullet Проте можна довести, що якщо $X_n \overset{d}{\to} c, c \in \mathbb{R}$, то $X_n \overset{p}{\to} c$

Центральна гранична теорема

Теорема 4.2 (Центральна гранична теорема Ліндеберга-Леві (Lindeberg-Lévy central limit theorem) 8)

- Нехай маємо послідовність X_1, X_2, \dots незалежних величин з однаковим розподілом зі скінченними сподіванням μ та дисперсією σ^2
- Тоді

$$Z_n \equiv \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\to} Z \sim N(0, 1)$$
 (4.2)

- \bullet Неформально, для «дуже великого n» Z_n має приблизно стандартний нормальний розподіл
 - Тобто $Z_n \stackrel{\mathrm{a}}{\sim} N(0,1)$
- Альтернативний для (4.2) запис можна дістати, якщо домножити зліва й справа на σ :

$$\sqrt{n}\left(\overline{X}-\mu\right) \stackrel{d}{\to} N\left(0,\sigma^2\right)$$

• Він чіткіше дає змогу побачити, якою є асимптотична дисперсія

⁸Ярл Ліндеберг (Jarl Waldemar Lindeberg, 1876–1932) — фінський математик. Поль Леві (Paul Pierre Lévy, 1886–1971) — французький математик

Приклад застосування ЦГТ до вибіркових середніх

• Якщо в (4.2) домножити на весь знаменник і додати μ зліва і справа, то дістанемо

$$\overline{X} \overset{\mathrm{a}}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

- ullet Отже за ЗВЧ ми знаємо, що $\overline{X} \stackrel{p}{ o} \mu$
- ullet А ЦГТ додатково вказує, який розподіл має \overline{X} «на шляху до» μ
- ullet Для того, щоб виводити асимптотичні розподіли для інших оцінок, відмінних від \overline{X} , корисно розглянути декілька додаткових теорем

Декілька важливих теорем

- По-перше, для збіжности за розподілом справедлива ТНВ, як і для збіжности за ймовірністю
- Також корисною є така теорема

Teopeмa 4.3 (Теорема Слуцького (Slutsky's Theorem)⁹)

- ullet Нехай маємо дві послідовності випадкових величин $X_n\stackrel{d}{ o} X$ і $Y_n\stackrel{p}{ o} c$
- ullet Тоді $X_n + Y_n \stackrel{d}{
 ightarrow} X + c$
- ullet Також $X_nY_n\stackrel{d}{ o} Xc$ ullet Якщо $c \neq 0$, то $\dfrac{X_n}{Y_n}\stackrel{d}{ o} \dfrac{X}{c}$
- Разом ці теореми дають змогу встановлювати факт збіжности за розподілом

 $^{^9}$ Євген Слуцький (1880–1948) — український радянський математик, економіст і статистик

Асимптотичний розподіл вибіркової дисперсії (1)

- Як приклад, з'ясуймо, який асимптотичний розподіл має вибіркова дисперсія
- ullet Для спрощення аналізу подамо її в такий спосіб: $s_X^2 = rac{1}{n} s_X^2 + rac{n-1}{n} s_X^2$
- Потрібно розглянути

$$\sqrt{n}\left(s_X^2 - \sigma^2\right) = \frac{1}{\sqrt{n}}s_X^2 + \sqrt{n}\left(\frac{n-1}{n}s_X^2 - \sigma^2\right) = \frac{1}{\sqrt{n}}s_X^2 + \sqrt{n}\left(\hat{\sigma}^2 - \sigma^2\right)$$

- ullet За ЗВЧ, $s_X^2 \stackrel{p}{ o} \sigma^2$, і також $rac{1}{\sqrt{n}} \stackrel{p}{ o} 0$
- ullet Отже, за теоремою Слуцького, $rac{1}{\sqrt{n}}s_X^2\stackrel{d}{
 ightarrow}\sigma^2\cdot 0=0$
- 3 урахуванням раніше показаних викладок,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \mu \right)^2 - \left(\mu - \overline{X} \right)^2$$

- Розберімося спочатку з другим доданком
 - ullet Можна переписати $\sqrt{n}\left(\mu-\overline{X}
 ight)^2=\sqrt{n}\left(\mu-\overline{X}
 ight)\left(\mu-\overline{X}
 ight)$
 - За ЗВЧ та ТНВ, $\mu \overline{X} \stackrel{p}{\to} 0$
 - За ЦГТ, $\sqrt{n}\left(\mu-\overline{X}\right)\overset{d}{\to}N(0,1)$
 - ullet Отже, за теоремою Слуцького, $\sqrt{n}\left(\mu-\overline{X}
 ight)^2\stackrel{d}{
 ightarrow}0$

Асимптотичний розподіл вибіркової дисперсії (2)

• Відтак маємо

$$\sqrt{n}\left(s_X^2 - \sigma^2\right) = \sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n\left(X_i - \mu\right)^2 - \sigma^2\right)$$

- ullet Проте $\mathbb{E}\left[\left(X_i-\mu
 ight)^2
 ight]=\sigma^2$ за визначенням
- Отже застосовна ЦГТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-\sigma^{2}\right)\overset{d}{\rightarrow}N\left(0,\operatorname{Var}\left((X_{i}-\mu)^{2}\right)\right)$$

• Відтак остаточно

$$s_X^2 \overset{\mathrm{a}}{\sim} N\left(\sigma^2, \frac{\mathrm{Var}\left((X_i - \mu)^2\right)}{n}\right) = N\left(\sigma^2, \frac{\mathbb{E}\left[(X_i - \mu)^4\right] - \sigma^4}{n}\right)$$

• Між іншим, очевидно, що це справедливо, тільки якщо четвертий момент $\mathbb{E}\left[X_i^4
ight]$ скінченний

Дельта-метод

• Іще один спосіб виводити асимптотичний розподіл застосовний, якщо нас цікавить розподіл функції від оцінки, розподіл якої відомий

Теорема 4.4 (Дельта-метод (Delta-method))

- Нехай маємо $X_1, X_2, ...$, і сподівання та дисперсії кожної з них скінченні й дорівнюють μ і σ^2 відповідно
- \bullet Нехай виконується $\frac{X_n-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0,1)$
- $\bullet\,$ Нехай функція $g\left(X_{n}\right)$ диференційовна, і її похідна в точці μ не дорівнює 0
- Тоді

$$\frac{g(X_n) - g(\mu)}{\sigma g'(\mu)/\sqrt{n}} \stackrel{d}{\to} N(0, 1) \tag{4.3}$$

• Абож

$$g(X_n) \overset{\mathrm{a}}{\sim} N\left(g(\mu), \frac{\sigma^2\left(g'(\mu)\right)^2}{n}\right)$$

ullet Наприклад, оскільки $s_X = \sqrt{s_X^2}$, і $\mathbb{E}\left[s_X^2\right] = \sigma^2$, то

$$s_X \overset{\mathrm{a}}{\sim} N\left(\sigma, \frac{\mathbb{E}\left[(X_i - \mu)^4\right] - \sigma^4}{n} \cdot \left(\frac{1}{2\sqrt{\sigma^2}}\right)^2\right) = N\left(\sigma, \frac{\mathbb{E}\left[(X_i - \mu)^4\right] - \sigma^4}{4\sigma^2 n}\right)$$

Ілюстрація ЦГТ в R (1)

- \bullet Розгляньмо вибірку $X_1,\ldots,X_n \overset{\mathrm{i.i.d.}}{\sim} X = \mathrm{Exp}\left(4\right)$
- ullet Тоді $\mathbb{E}\left[X
 ight]=rac{1}{4}=0.25$, Var $(X)=rac{1}{16}=0.0625$
- Проведімо симуляцію за методом Монте-Карло для вибірок трьох різних розмірів: n=10,100,1000
- \bullet Для вибірки кожного розміру підрахуймо \overline{X} та s_X^2 та проаналізуймо їхній розподіл
- ullet Ми вже знаємо, що $\overline{X}\stackrel{\mathrm{a}}{\sim} N\left(rac{1}{4},rac{1}{16n}
 ight)$
- ullet Також ми знаємо, що $s_X^2 \stackrel{\mathrm{a}}{\sim} N\left(rac{1}{16},rac{\mathbb{E}\left[(X_i-0.25)^4
 ight]-rac{1}{16^2}}{n}
 ight)$
- \bullet Можна акуратно порахувати, що $\mathbb{E}\left[(X_i-0.25)^4\right]=\frac{9}{4^4}$
- ullet Відтак $s_X^2 \stackrel{\mathrm{a}}{\sim} N\left(\frac{1}{16}, \frac{1}{32n}\right)$
- ullet 3 аналогічних міркувань та з урахуванням дельта-методу, $s_X \overset{\text{a}}{\sim} N\left(\frac{1}{4},\frac{1}{8n}\right)$

Ілюстрація ЦГТ в R (2)

• Функція, яка рахує вибіркові статистики:

```
sample_statistics <- function(n, rate) {
  x <- rexp(n, rate = rate)

result <- c(mean(x), sd(x), (sd(x))^2, n)
  names(result) <- c("mean", "sd", "var", "n")

return(result)
}</pre>
```

• Викликаємо багато разів для різних n і формуємо датафрейм:

```
 \begin{array}{l} T <- \ 10000 \\ ns <- \ c(10,\ 100,\ 1000) \\ lambda <- 4 \\ df <- \ NULL \\ \mbox{for (n in ns)} \{ \\ df <- \ rbind(df,\ as\_tibble(t(replicate(T,\ sample\_statistics(n,\ lambda))))) \} \\ \end{array}
```

Ілюстрація ЦГТ в R (3) — розподіл \overline{X}

- N(2.50e-01, 6.25e-03) N(2.50e-01, 6.25e-04) N(2.50e-01, 6.25e-05)
- Згідно з ЦГТ, розподіли прямують до нормального (і дуже швидко)
- ullet Оцінка X незміщена для μ і спроможна (дисперсія все менша й менша)
- Теоретичні асимптотичні розподіли підтверджуються симуляцією

Ілюстрація ЦГТ в R (4) — розподіл s_X^2

Розподіл
— N(6.25e-02, 3.13e-03) — N(6.25e-02, 3.13e-04) — N(6.25e-02, 3.13e-05)

- Згідно з ЦГТ, розподіли прямують до нормального
- Але для малих n розподіли далекі від нормального!

Ілюстрація ЦГТ в R (5) — розподіл s_X

Розподіл
— N(2.50e-01, 1.25e-02) — N(2.50e-01, 1.25e-03) — N(2.50e-01, 1.25e-04)

Стандартна похибка

ullet Якщо $\hat{ heta} \stackrel{\mathrm{a}}{\sim} N\left(\mu, \mathrm{Var}\left(\hat{ heta}
ight)
ight)$, то **стандартною похибкою** (standard error) ϵ

$$\operatorname{se}\left(\hat{\theta}\right) = \sqrt{\operatorname{Var}\left(\hat{\theta}\right)} \tag{4.4}$$

- Стандартну похибку варто відрізняти від вибіркового середньоквадратичного відхилення $\sqrt{s_X^2}$
 - Останнє є оцінкою середньоквадратичного відхилення X, $\sigma = \sqrt{{
 m Var}\left(X
 ight)}$
 - ullet Стандартна похибка ullet середньоквадратичним відхиленням $\hat{ heta}$
- Будь-яка оцінка, подана без відповідної їй стандартної похибки, є НЕПОТРЕБОМ!!!
- Не маючи жодної інформації про середньоквадратичне відхилення $\hat{\theta}$, неможливо оцінити, наскільки далеким від істини є підраховане значення оцінки

Способи підрахунку стандартних похибок (1)

- Ідеальною є ситуація, коли ми знаємо асимптотичну дисперсію точно
 - Тоді достатньо взяти корінь і дістати середньоквадратичне відхилення
 - У попередньому прикладі ми саме так і зробили, оскільки це був повністю контрольований симульований експеримент
- ullet На практиці, якщо ми маємо вибірку $X_1,\dots,X_n \sim X$ з невідомого розподілу, усе, що ми в найліпшому випадку знаємо, це що $\overline{X} \stackrel{\mathrm{a}}{\sim} N\left(\mathbb{E}\left[X\right], rac{\mathrm{Var}(X)}{n}
 ight)$
 - Так, ми знаємо, що це буде саме асимптотичний нормальний розподіл
 - \bullet Але нам невідома Var(X)!
- Тому на практиці найчастіше потрібно **оцінювати** асимптотичну дисперсію, і тоді замість стандартної похибки ми використовуємо її оцінку:

$$\widehat{\operatorname{se}}\left(\widehat{\theta}\right) = \sqrt{\widehat{\operatorname{Var}}\left(\widehat{\theta}\right)}$$

- Зверніть увагу на таке:
 - ullet Нехай $rac{\hat{ heta}- heta}{\sqrt{\mathrm{Var}(\hat{ heta})}/\sqrt{n}}\stackrel{d}{
 ightarrow} N(0,1)$
 - $\bullet \;$ Також нехай $\widehat{\mathrm{Var}}\left(\widehat{\theta}\right) \overset{p}{\to} \mathrm{Var}\left(\widehat{\theta}\right)$, тобто наша оцінка дисперсії є спроможною
 - ullet Тоді, за теоремою Слуцького, також $\dfrac{\hat{ heta}- heta}{\sqrt{\widehat{\mathrm{Var}}(\hat{ heta})}/\sqrt{n}} \overset{d}{ o} N(0,1)$
 - ullet Це означає, що якщо ми можемо оцінити дисперсію Var $(\hat{ heta})$ спроможною оцінкою $\widehat{ ext{Var}}(\hat{ heta})$, то «все буде в порядку»

Способи підрахунку стандартних похибок (2)

- Отже якщо можна показати, що розподіл $\hat{\theta}$ буде асимптотично нормальний $N\left(\theta, \mathrm{Var}\left(\hat{\theta}\right)\right)$ із деякою дисперсією $\mathrm{Var}\left(\hat{\theta}\right)$, її оцінку можна дістати, замінивши всі моменти на вибіркові аналоги
 - Тобто замінити всі сподівання на вибіркові середні тощо
 - За ЗВЧ та ТНВ такі оцінки будуть спроможними
 - В англомовній літературі такі оцінки називають plug-in estimators
- Якщо вираз асимптотичної дисперсії не можна (або дуже важко) вивести теоретично, то оцінку можна дістати шляхом симуляцій
- Якщо можна симулювати весь експеримент, можна застосувати метод Монте-Карло
 - Тоді на основі симульованого розподілу можна визначити середньоквадратичне відхилення
- Якщо ж експеримент відтворити неможливо, тобто якщо в нас наявна тільки одна-єдина вибірка, то можна застосувати метод бутстреп (bootstrap)
 - Він дає змогу проводити «фейкові» симуляції на основі однієї-єдиної вибірки
 - Ми до нього повернемося в Лекції 6

Ілюстрація підрахунків стандартних похибок (1)

- Розгляньмо простий приклад на основі даних пасажирів «Титаніка»
 - На перший погляд може здатися, що це окрема популяція, тому будь-які статистики будуть точними
 - Проте згідно з джерелом даних, це всього лише вибірка з 891 пасажира з-поміж 1309
- Спробуймо оцінити (безумовну) ймовірність уціліти
 - Тобто не враховуючи жодних інших характеристик пасажирів
 - Така ймовірність навряд чи цікава сама по собі
 - Але вона відіграє свою ілюстративну роль
- Оскільки змінна Survived є бінарною, фактично маємо справу з величиною

```
X \sim \text{Bern}(p)
```

```
ullet Тоді p = \mathcal{P}_X (X = 1) = \mathbb{E}[X]
```

ullet А відтак $\hat{p} = \overline{X}$

```
p_est <- passengers %>% filter(!is.na(Survived)) %>% summarise(p_hat = mean(Survived))
p_est

## # A tibble: 1 x 1
## p_hat
## <abla abla = abla
```

- Саме по собі значення 0.384 жодного сенсу немає
- Потрібно оцінити стандартну похибку

Ілюстрація підрахунків стандартних похибок (2)

- ullet Згадаймо, що $\overline{X} \overset{\mathrm{a}}{\sim} N\left(\mathbb{E}\left[X\right], \frac{\mathrm{Var}(X)}{n}\right) = N\left(p, \frac{p(1-p)}{n}\right)$
 - Кількість спостережень близько тисячі дає підстави застосувати ЦГТ
- Отже $\widehat{se}(\hat{p}) = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$
 - Ми замінили всі параметри на їхні вибіркові аналоги (тобто p замінили на \hat{p})
 - Звісно, можна було б використати функцію var і порахувати вибіркову дисперсію Survived, результат буде дуже подібний

```
p est <- passengers %>% filter(!is.na(Survived)) %>%
  summarise (p hat = mean (Survived),
            p se = sqrt(p hat * (1 - p hat) / n()))
p est
## # A tibble: 1 x 2
## <dbl> <dbl>
## 1 0 384 0 0163
```

• Тепер можемо бачити, що, згідно з правилом трьох сигм, приблизно 95% значень зосереджено в інтервалі

 $[0.384 - 2 \cdot 0.016; 0.384 + 2 \cdot 0.016] = [0.352; 0.416]$

• Ми до цих міркувань повернемося в наступній лекції, коли будемо розглядати довірчі інтервали

Ілюстрація підрахунків стандартних похибок (3)

- \bullet Розгляньмо тепер таку характеристику, як **шанси** (odds): $odds = \frac{p}{1-p}$
- Наприклад, якщо $p=\frac{1}{4}$, то $odds=\frac{p}{1-p}=\frac{1}{3}$, тобто шанси один до трьох, що подія станеться
- Для нашого прикладу оцінкою odds є $\widehat{odds} = \frac{\hat{p}}{1-\hat{p}}$
- За ЗВЧ і ТНВ вона є спроможною
- Стандартну похибку такої оцінки можна знайти за допомогою дельта-методу
 - ullet Справді, маємо функцію $g(x)=rac{x}{1-x}$
 - ullet її похідна дорівнює $g'(x)=rac{1}{(1-x)^2}$
 - Усі інші умови Теореми 4.4 також виконуються
- Відтак

$$\widehat{odds} \overset{\text{a}}{\sim} N\left(odds, \frac{\operatorname{Var}\left(X\right)}{n} \cdot \left(\frac{1}{(1-p)^2}\right)^2\right) = N\left(odds, \frac{p}{n(1-p)^3}\right)$$

• У нашому випадку це можна обчислити так:

<dh1>

```
p_est <- passengers %>% filter(!is.na(Survived)) %>%
   summarise(p_hat = mean(Survived),
        p_se = sqrt(p_hat * (1 - p_hat) / n()),
        odds_hat = p_hat / (1 - p_hat),
        odds_se = sqrt(p_hat / ((1 - p_hat)^3 * n())))
p_est

## A tibble: 1 x 4
## p phat p se odds hat odds se
```

<dbl> <dbl> <dbl> <dbl>

1 0.384 0.0163 0.623 0.0429

Ілюстрація підрахунків стандартних похибок (4)

 Для автоматизації цього процесу можна використати функцію deltamethod із пакету msm

- Зверніть увагу, що для застосування дельта-методу потрібна (принаймні асимптотична) нормальність розподілу \hat{p} та добра якість лінійної апроксимації похідної g'
 - Інакше відповідна стандартна похибка була далека від істини

Ілюстрація ЦГТ в R (1)

- \bullet Розгляньмо вибірку $X_1,\ldots,X_n \overset{\text{i.i.d.}}{\sim} X = \operatorname{Exp}\left(4\right)$
- ullet Тоді $\mathbb{E}\left[X
 ight] = rac{1}{4} = 0.25$, Var $(X) = rac{1}{16} = 0.0625$
- Проведімо симуляцію за методом Монте-Карло для вибірок трьох різних розмірів: n=10,100,1000
- ullet Для вибірки кожного розміру підрахуймо \overline{X} та s_X^2 та проаналізуймо їхній розподіл
- ullet Ми вже знаємо, що $\overline{X}\stackrel{\mathrm{a}}{\sim} N\left(rac{1}{4},rac{1}{16n}
 ight)$
- ullet Також ми знаємо, що $s_X^2 \stackrel{\mathrm{a}}{\sim} N\left(rac{1}{16}, rac{\mathbb{E}\left[(X_i 0.25)^4
 ight] rac{1}{16^2}}{n}
 ight)$
- \bullet Можна акуратно порахувати, що $\mathbb{E}\left[(X_i-0.25)^4\right]=\frac{9}{4^4}$
- ullet Відтак $s_X^2 \stackrel{\mathrm{a}}{\sim} N\left(\frac{1}{16}, \frac{1}{32n}\right)$
- ullet 3 аналогічних міркувань та з урахуванням дельта-методу, $s_X \stackrel{\mathrm{a}}{\sim} N\left(rac{1}{4},rac{1}{8n}
 ight)$