Learning a Molecule &

An interactive understanding of expressive GNNs for molecular representation, and how to scale them to infinity of

A presentation by Dominique Beaini
Research lead at Valence Labs
Adjunct Prof at Université de Montreal
Associate Industry member at Mila – Quebec AI institute

Meeting Graphy 👋

Hello everyone !! I'm Dom's assistant for today!

Let's visit the molecular graph world together!

We'll first learn what are graphs and how to manipulate them

Then we'll look into standard GNNs graph neural networks

And how to build more expressive GNNs for molecules

Then, we will scale a Graph Transformer together

Finally, we'll work through some applications

Anatomy of Graphy \$

Anatomy of Graphy

Permutation invariance

Laplacian matrix

Anatomy of a molecule &

Molecules are <u>defined</u> as graphs!

Anatomy of atoms and bonds &

Molecular Property Prediction

Designing a GNN 💡

- How do we deal with permutation invariance?
- And the varying #nodes / neighbors?
- And the isotropy or lack of direction?
- And the expressivity?

Designing a GNN 💡

permutation invariance

- Apply MLPs on each node
- Pass the features on the edges

varying #nodes

- Aggregation (mean/max/sum)
- Pooling (mean/max/sum)

lack of direction

expressivity

Make some weind proofs regnare that it is a problem Don't worry, I'll show you a better way

A Microscopic Adventure 1

Mean Aggregation Conv

Cannot answer simple questions:

How many neighbors do I have? What colors are my neighbors?

Over-smoothing

All nodes converge to the same value

Over-squashing

Cannot send information far in the graph

Sum Aggregation Conv

Cannot answer simple questions:

What colors are my neighbors? (In theory it can, but not really in practice)

Over-smoothing

Low-pass filter, but sensitive to degree Can explode in high-degree graphs

Over-squashing

Information heavily distorted when travelling

Sum aggregation graph CIN convolutional network

Gating \[\]

Attention is all you need

Attention is all you need

- ATTENTION IS ALL YOU NEED
 - · Certain conditions apply
 - Read the fineprints for more details
 - You also need good positional and structural encodings, ideally a biased attention, lots and lots of long-range data, ...

Attention is all you need

- ATTENTION IS ALL YOU NEED
 - · Certain conditions apply
 - Read the fineprints for more details
 - You also need good positional and structural encodings, ideally a biased attention, lots and lots of long-range data, ...

Fineprints of Attention - Position

- positional and structural encodings
- biased attention
- · lots and lots of long-range data

Fineprints of Attention - Bias

- positional and structural encodings
- biased attention
- lots and lots of long-range data

Fineprints of Attention - Data

- positional and structural encodings
- biased attention
- lots and lots of long-range data

Attention - Position and Structure

- WL Expressivity why simple GNNs are not enough
- Positional encodings via eigenvectors
- Structural encodings via random walks
- Relative positions via distances and heat kernels

WL Expressivity

Weisfeiler-Lehman

WL Expressivity or

Let's play a game! Are these graphs the same? Let's shrink again and count the neighbors

WL Expressivity or

WL Expressivity or

They're the same! Wait... That's not right.

There are things we cannot see from inside because we do not have position or direction!

I know what you're thinking. Graphs have no direction

We'll circle back on that...

2 3

Higher order features

Can we find some higher-order features?

Features that are permutation invariant but that can be computed?

Perhaps features inspired by higher order WL-tests by walking around the graph?

Let's look at random walks and motif detection

Structural encodings &

These are nice local encodings!

But is there anything more global?

Structure encoding by identifying motifs and random walks

Random walk 3-step

Random walk 4-step

Now we can distinguish the graphs and nodes! We can concatenate them to node features We can bias the connectivity of the message passing We are again more expressive

Positional encodings

Low-frequency eigenvectors of the Laplacian (lowest non-0 eigenvalue)

Positional encodings

Low-frequency eigenvectors of the Laplacian (lowest non-0 eigenvalue)

Now we can distinguish the graphs and nodes!
We can concatenate them to node features
We can bias the direction of the message passing
We are more expressive

Low-frequency eigenvectors

The DGN work showed that they generalize CNNs when applied to grid graphs

Directional Graph Networks

Basic graph Transformers

Basic graph Transformers have very poor results

- The connectivity is a strong inductive bias
- The eigenvectors are noisy and hard to understand for the network
- Edge features are missing

Node features

Laplacian eigenvectors

Biased Full-Attention ®

Relative distance

SAN - Spectral Attention Network

Rethinking Graph Transformers with Spectral Attention

Devin Kreuzer * McGill University, Mila Montreal, Canada

Montreal, Canada devin.kreuzer@mail.mcgill.ca

Dominique Beaini
Valence Discovery
Montreal, Canada
dominique@valencediscovery.com

William L. Hamilton McGill University, Mila Montreal, Canada wlh@cs.mcgill.ca Vincent Létourneau University of Ottawa Ottawa, Canada vletour2@uottawa.ca

Prudencio Tossou Valence Discovery Montreal, Canada prudencio@valencediscovery.com

Pre-training Y

Since we need lots and lots of data, Let's do pre-training.

How do we pre-train a molecular representation?

Chemistry

Protein assays Physicochemical (solubility, etc.)

Quantum mechanics

HOMO-LUMO gap Partial charges

Self-surervision

Finding mying atoms Enumeration structures SMIL S reconstruction

Multi-Level multi-tasking &

Multi-Level multi-tasking

Multi-Level positional encoding

Multi-Level graph Transformer

Finetuning 🛛

Normalized performance

To infinity, and Beyond!

Limitation in no-context finetuning

- Even a model that perfectly understand physics and biology will overfit without context of the task
- Tasks can be encoded as
 - natural language
 - protein sequences
 - · Cellular context
- Multimodality allows to encode context, and will make the GNNs much much more powerful

MOLPHENIX

How molecules impact cells The state of the compact cells Unlocking phenomolecular retrieval

A presentation by Dominique Beaini From Valence Labs / Recursion

Modeling a disease... And curing it

Phenomics screening of molecules

How to build a model for this equation to understand how molecules impact cells?

Let's try some contrastive Learning

Prior methods have not succeeded, achieving only 8% recall

The 3 Challenges and The Piano in New York

Which molecule is playing?

The 3 Challenges and The Piano in New York

The 3 Challenges

Natural variations: Batch effects are the largest source of variation in phenomics images.

Can we ignore it?

90% inactives: Most molecules have no visible effect.

How to handle this source of random noise?

Concentration

Too low: Nothing happens

Too high: Everyone dies

How to model this non-linear relationship?

Pre-train your vision encoder

Average experimental replicates Re-center to the controls x

center to the controls x Discard/reweight inactives

Plate 1 Use statistical analysis to

Use statistical analysis to find inactive compounds from similarity to the controls

Better contrastive Learning with S2L Loss

Re-weight samples based on Phenomics embedding

$$\mathcal{L}_{S2L} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \log \left[\frac{w_{i,j}^{\chi}}{1 + \exp(-\alpha \langle \mathbf{z}_{X}, \mathbf{x}_{m} \rangle + b)} + \frac{1 - w_{i,j}^{\chi}}{1 + \exp(\alpha \langle \mathbf{z}_{X}, \mathbf{x}_{m} \rangle + b)} \right]$$

Use sigmoid to reduce the effect of false negatives

10x recall compared to previous SOTA

Downstream applications

Can we find gene/mol relations?

Half as good as experiments without even training on genes

Is a molecule pheno-active?

Single linear layer achieves 90% AUROC

MolPhenix

- MolPhenix opens a completely new direction for ML in drug discovery with 10x improvement
- We can model how molecules impact cells, not just do some predictive assays
- A first step towards Virtual Cells, to industrialize drug discovery in the age of AI

Thank you Graphy!! And Dom

Finally, Dom will stop talking!

But if you're not tired of him, you can follow him on Twitter X @Dom_Beaini

Thanks to a thousand co-authors!