

Winning Space Race with Data Science

Sahil Anand 16/6/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection with API lab
- 2. Data collection with web scraping lab
- 3. Data Wrangling
- 4. Exploratory data analysis with SQL
- 5. Exploratory data analysis with visualization
- 6. Visual analytic with folium lab
- 7. Dash board with ploty dash
- 8. Machine learning prediction
- Summary of all results
- 1. Various model provided optimal result
- 2. Helpful visualization of the data

Introduction

- Project background and context
- Space X trying develops the model to predict successful landing of falcon rockets
- Problems you want to find answers
- 1. What is factor affecting failure?
- 2. What will be the next step to improve landing of the falcon rockets?
- 3. How to improve the accuracy of the landing?

Methodology

Executive Summary

- Data collection methodology:
- Data is collected with API and Web scraping
- Perform data wrangling
- Data transformed and cleaned for analysis and later used for predicted model
- Perform exploratory data analysis (EDA) using visualization and SQL
- Find out pattern in data frame and evaluate the result
- Perform interactive visual analytics using Folium and Plotly Dash
- Create graphs and maps to help visualize the data
- Perform predictive analysis using classification models
- Predictive model created to help predict if future landing will be success

Data Collection

- Describe how data sets were collected.
- Data is collect from the URL "https://api.spacexdata.com/v4/rockets/"
- Acquire the data in URL, normalize that data with Json normalization and convert it into proper data frame.
- Update column and row in data frame
- Filter that data to proper analysis.
- Convert that data file to .csv file.

Data Collection - SpaceX API

- Acquiring data from URL
- Normalize the data to json normalize

- Pre processing the data
- Filter data in data frame
 - Github= https://github.com/sahil9939/IBM-Data-Science-/blob/3aa7c5f0714e3e4ceaf14dbe7028 435883940ba3/question1%20api.ipynb

```
To make the requested JSON results more consistent, we will use the following static response object for this project:
110]: static_json_url='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/API_call_spacex_api.json'
      We should see that the request was successfull with the 200 status response code
111]: response.status_code
 # Use json normalize meethod to convert the json result into a dataframe
 data = pd.json_normalize(response.json())
 Using the dataframe data print the first 5 rows
 # Get the head of the dataframe
 data.head()
  # Lets take a subset of our dataframe keeping only the features we want and the flight number, and date utc.
   data = data[['rocket', 'payloads', 'launchpad', 'cores', 'flight number', 'date utc']]
   # We will remove rows with multiple cores because those are falcon rockets with 2 extra rocket boosters and rows that have multiple payloads in a singl
   data = data[data['cores'].map(len)==1]
   data = data[data['payloads'].map(len)==1]
   # Since payloads and cores are lists of size 1 we will also extract the single value in the list and replace the feature.
   data['cores'] = data['cores'].map(lambda x : x[0])
   data['payloads'] = data['payloads'].map(lambda x : x[0])
   # We also want to convert the date utc to a datetime datatype and then extracting the date leaving the time
   data['date'] = pd.to_datetime(data['date_utc']).dt.date
  # Using the date we will restrict the dates of the launches
   data = data[data['date'] <= datetime.date(2020, 11, 13)]</pre>
   data_falcon9 = df[df.BoosterVersion == 'Falcon 9']
   data_falcon9
                      Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused Legs
                                             NaN LEO CCSFS SLC 40 None None
               8 2012-05-22
                                             525.0 LEO CCSFS SLC 40 None None
                                                                                                                                      0 B0005 -80.577366 28.561857
```

Data Collection - Scraping

Request the Falcon9 Launch Wiki page from its URL

- Extract all column/variable names from the HTML table header
- Create a data frame by parsing the launch HTML tables

Github=https://github.com/sahil9939/IBM-Data-Science-/blob/3aa7c5f0714e3e4ceaf14dbe70284358 83940ba3/question2%20webscraping.ipynb

```
5]: # use requests.get() method with the provided static_url
# assign the response to a object
html_data = requests.get(static_url)
html_data.status_code
```

```
[8]: # Use the find_all function in the BeautifulSoup object, with element type `table`
# Assign the result to a list called `html_tables`
html_tables = soup.find_all('table')

Starting from the third table is our target table contains the actual launch records.

[9]: # Let's print the third table and check its content
first_launch_table = html_tables[2]
print(first_launch_table)
```

```
]: launch_dict= dict.fromkeys(column_names)
   # Remove an irrelvant column
   del launch_dict['Date and time ( )']
   # Let's initial the launch_dict with each value to be an empty list
   launch_dict['Flight No.'] = []
   launch_dict['Launch site'] = []
   launch_dict['Payload'] = []
   launch_dict['Payload mass'] = []
   launch_dict['Orbit'] = []
   launch_dict['Customer'] = []
   launch_dict['Launch outcome'] = []
   # Added some new columns
   launch_dict['Version Booster']=[]
   launch_dict['Booster landing']=[]
   launch_dict['Date']=[]
   launch_dict['Time']=[]
```

Data Wrangling

- Calculate the number of launches on each site
- Calculate the number and occurrence of each orbit
- Calculate the number and occurrence of mission outcome per orbit type
- Create a landing outcome label from Outcome column
- Github=https://github.com/sahil9939/IBM-Data-Science-/blob/3aa7c5f0714e3e4ceaf14dbe7028435883940ba 3/question3%20data%20wrangling.ipynb

```
: # Apply value_counts() on column LaunchSite
  df.value_counts('LaunchSite')
 LaunchSite
  CCAFS SLC 40
                55
  KSC LC 39A
  VAFB SLC 4E
  dtype: int64
     Use the method .value_counts() on the column Outcome to determine the number of landing_outcomes. Then assign it to a variable landing_outcomes.
12]: # Landing_outcomes = values on Outcome column
     landing_outcomes = df.value_counts('Outcome')
     True Ocean means the mission outcome was successfully landed to a specific region of the ocean while False Ocean means the mission outcome was unsuccessful
     outcome was successfully landed to a ground pad. True ASDS means the mission outcome was unsuccessfully landed to a ground pad. True ASDS means the mission
     mission outcome was unsuccessfully landed to a drone ship. None ASDS and None None these represent a failure to land.
13]: for i,outcome in enumerate(landing_outcomes.keys()):
         print(i,outcome)
  ]: # Apply value_counts on Orbit column
     df.value_counts('Orbit')
1]: # landing_class = 0 if bad_outcome
     landing_class=[]
     for outcome in df['Outcome']:
         if outcome in bad_outcomes:
              landing_class.append(0)
              landing class.append(1)
     # landing_class = 1 otherwise
     This variable will represent the classification variable that represents the outcome of each launch. If the value is zero, the first stage did not land suc
2]: df['Class']=landing_class
     df[['Class']].head(8)
```

EDA with Data Visualization

- ► All the chart summary
- Visualize the relationship between Flight Number and Launch Site
- Visualize the relationship between Payload and Launch Site
- > Visualize the relationship between success rate of each orbit type
- > Visualize the relationship between Flight Number and Orbit type
- Visualize the relationship between Payload and Orbit type
- Visualize the launch success yearly trend
- All the visualization chart help in providing overview of relation of each element help in success or failure of falcon 9 landing.

GitHub=https://github.com/sahil9939/IBM-Data-Science-lob/3aa7c5f0714e3e4ceaf14dbe7028435883940ba3/question5%20visualization.ip

EDA with SQL

- Using SQL to manipulate data frame
- Name of the unique launch sites
- 5 records where sites begin with the string 'CCA'
- Total payload mass carried by boosters.
- Average payload mass carried by booster
- Name of booster which have success in drone ship and have payload mass greater than 4000 but less than 6000.
- Total number of successful and failure mission outcome
- Booster version which have carried the maximum payload mass
- Landing outcomes in drone ship and launch site name for the year 2015
- Rank the count landing outcome between the date 04-06-2010 and 20-03-2017

GitHub=https://github.com/sahil9939/IBM-Data-Science-lob/3aa7c5f0714e3e4ceaf14dbe7028435883940ba3/question4%20sql.ipynb

Build an Interactive Map with Folium

Folium.marker(), folium.cicle(), folium.icon(), folium.polyline(), folium.plugins.antpath() and markercluster() are some function used in for map manipulation.

GitHub=https://github.com/sahil9939/IBM-Data-Science-/blob/3aa7c5f0714e3e4ceaf14dbe7028435883940ba3/question6%20folium%20complete.ipynb

Build a Dashboard with Plotly Dash

14

GitHub= https://github.com/sahil9939/IBM-Data-Science-
/blob/acc443c1a534dca733362f5bafe5ebb6a2b94db1/question8%20plotly.py

Predictive Analysis (Classification)

- Build the model
- Create column for the class
- Standardize the data
- Split the data info train and test stes
- Build the model and fit the data
- Evaluate the model
- Calculate the accuracy
- Calculate the confusion matrixes
- Plot the result
- Finding the optimal model
- Find the hyperparameters for the model
 - Find the accuracy
- Confirm the optimal model

Github= https://github.com/sahil9939/IBM-Data-Science-ob/3aa7c5f0714e3e4ceaf14dbe7028435883940ba3/question8%20last%20not%20complete.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Scatter plot of Flight Number vs. Launch Site

Launches from the site of CCAFS SLC 40 are higher than other sites

Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site

Pay load mass is higher in CCAFS SLC 40 compare to other site

Success Rate vs. Orbit Type

Bar chart for the success rate of each orbit type

The orbit of ESL1, GEO, GTO, HEP and SSO have higher success rate

Flight Number vs. Orbit Type

Scatter point of Flight number vs. Orbit type

There is shift in trend for VLEO orbit is higher number flight

Payload vs. Orbit Type

Scatter point of payload vs. orbit type

- ISS has Pay load mass from the range of 2000 to 4000kg of mass
- GTO has Pay load mass form the range of 3000 to 7000kg of mass

Launch Success Yearly Trend

Line chart of yearly average success rate

Launch success rate is on forward trend form 2013 onwards

All Launch Site Names

- ► Names of the unique launch sites
- . CCAFS LC-40
- 2. VAFB SLC-4E
- 3. KSC LC-39A
- 4. CCAFS SLC-40
- Present your query result with a short explanation here

Launch Site Names Begin with 'CCA'

5 records where launch sites begin with `CCA`

1. F9	v1.0	B0003	CCAFS	LC-40
	v 1.0			

2. F9 v1.0 B0004 CCAFS LC-40

3. F9 v1.0 B0005 CCAFS LC-40

4. F9 v1.0 B0006 CCAFS LC-40

5. F9 v1.0 B0007 CCAFS LC-40

Display 5 records where launch sites begin with the string 'CCA'

[8]: %sql select Booster_Version, launch_site from SPACEXTBL where launch_site like 'CCA%' limit 5

* sqlite:///my_datal.db
Done.

[8]: Booster_Version Launch_Site

F9 v1.0 B0003 CCAFS LC-40

F9 v1.0 B0004 CCAFS LC-40

F9 v1.0 B0005 CCAFS LC-40

F9 v1.0 B0006 CCAFS LC-40

F9 v1.0 B0007 CCAFS LC-40

Present your query result with a short explanation here

Total Payload Mass

Calculate the total payload carried by boosters from NASA

Potal payload= 619967.0

Present your query result with a short explanation here

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
 - Average payload mass =6138.28712871
- Present your query result with a short explanation here

```
Display average payload mass carried by booster version F9 v1.1

: %sql select AVG(PAYLOAD_MASS__KG_) from SPACEXTBL

* sqlite://my_datal.db
Done.

: AVG(PAYLOAD_MASS__KG_)

6138.287128712871
```

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad First successful landing= 01/08/2018
- Present your query result with a short explanation here

```
List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

%sql SELECT MIN(Date) AS FirstSuccessfull_landing_date FROM SPACEXTBL WHERE Landing_Outcome LIKE 'Success (ground pad)'

* sqlite:///my_datal.db
Done.

%8]: FirstSuccessfull_landing_date

01/08/2018
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- f. F9 FT B1022
- F9 FT B1026
- 3. F9 FT B1021.2
- F9 FT B1031.2
- Present your query result with a short explanation here

 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

]: %sql SELECT Booster_Version FROM SPACEXTBL WHERE Landing_Outcome = 'Success (drone ship)' AND PAYLOAD_MASS__KG_ > 4000 AND PAYLOAD_MASS__KG_ < 6000

* sqlite:///my_data1.db

F9 FT B1022
F9 FT B1026
F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- ► Calculate the total number of successful and failure mission outcomes
- Successful mission=100
- ► Failure mission=1
- Present your query result with a short explanation here

Boosters Carried Maximum Payload

List the names of the booster which have carried the maximum payload mass

1.	F9 B5 B1048.4	15600.0
2.	F9 B5 B1048.5	15600.0
3.	F9 B5 B1049.4	15600.0
4.	F9 B5 B1049.5	15600.0
5.	F9 B5 B1049.7	15600.0
6.	F9 B5 B1051.3	15600.0
7.	F9 B5 B1051.4	15600.0
8.	F9 B5 B1051.6	15600.0
9.	F9 B5 B1056.4	15600.0
О.	F9 B5 B1058.3	15600.0
11.	F9 B5 B1060.2	15600.0
12.	F9 B5 B1060.3	15600.0

Present your query result with a short explanation here

2015 Launch Records

- List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- 1. F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)
- 2. F9 FT B1020 CCAFS LC-40 Failure (drone ship)
- Present your query result with a short explanation here

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

► Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Landing_Outcome	COUNT(Landing_Outcome)
Success	19
No attempt	9
Success (ground pad)	6
Success (drone ship)	5
Failure (drone ship)	3
Failure	3
Failure (parachute)	2
Controlled (ocean)	2
No attempt	1

Present your query result with a short explanation here

All Launch site Location marker

► All launches near USA, Florida and California.

Color label launch outcome

 Color label launch outcome of CCAFS SAF 40

Launch site proximities

Launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

Space X Launch Record Dashboard

This pie chart represent record of all launch site.

SpaceX launch record of highest success rate

This pie chart represent highest success launch record of all site

Payload vs launch outcome

Payload range of 0 to 4000kg

Section 5 **Predictive Analysis** (Classification)

Classification Accuracy

➤ Visualize the built model accuracy for all built classification models, in a bar chart

Accuracy	Algorithm
0.833	Logistic Regression
0.833	SVM
0.833	KNN
0.778	Decision Tree

Confusion Matrix

► Show the confusion matrix of the best performing model with an explanation

Conclusions

- ► Low weighted payloads perform better than the heavier payloads.
- Launch success rate is on forward trend form 2013 onwards and stabilize at 2019.
- ► KSC LC-39A had most successful launched from all the sites.
- ► Orbit GEO,HEO,SSO,ES-L1 has the best success rate.
- Pay load mass is higher in CCAFS SLC 40 compare to other site

Appendix

- ▶ Data is collect from the URL https://api.spacexdata.com/v4/rockets/.
- ▶ Python reference material from "The Python Language Reference Python 3.11.4 documentation"
- Coursera IBM Data Science course material.
- ► SQL reference material form-"SQL Quick Reference (w3schools.com)".
- ► IBM skill network labs.

