Projekt 2

Albma622 & Wiler441

Grafen visar tydligt jämförelsen mellan att inte använda riskfri tillgång och att använda det. Det syns tydligt att tillgången till en riskfri tillgång möjliggör portföljer med högre förväntad avkastning per enhet risk, vilket betyder att använda riskfria tillgångar är överlägsen ur ett mean-variance perspektiv.

Grafen till vänster visar den analytiska lösningen med och utan riskfri ränta. Bilden nedan visar värdena på r och d i uträkningarna med riskfri ränta och de optimerade värdena för μ och σ i beräkningarna utan riskfri ränta.

W/ Risk Free Rate		W/O Risk Free Rate					
Volatility		Expected Return		Variance			
Coefficient	Value	Coefficient	Value	Coefficient	Value		
r	3,68%	a ₁	9,7597	b ₂	9,7597		
d	3,1736	a ₀	0,1043	b ₁	0,0000		
				b ₀	0,0146		

Vår portfölj ligger i den övre halvan av parabolen, vilket är i linje med teorin att högre risk bör ge högre förväntad avkastning. För att ligga där krävs att den riskfria räntan är lägre än portföljens avkastning.

Marknadsvikterna x är positiva och summerar till 1, vilket är förväntat. Vikterna ser rimliga ut. Jämförelsen visar också god konsistens mellan CAPM och Mean-Variance: om vi använder μ_{CAPM} i MV-modellen får vi tillbaka exakt marknadsvikterna. Detta bekräftar att modellerna är teoretiskt förenliga. Värdena visas i tabellen nedan.

	Historic	cal Data	Consistency					
Stocks	Expected Return	Market Portfolio	Market Capitalization Weights	Beta	САРМ	Market Porfolio		
	∞	X _M	Х	b	∞	X _M		
ACS.MC	25,42%	0,8712	0,2213	1,1049	14,32%	0,2213		
BBVA.MC	29,99%	1,0893	0,0525	1,1986	15,22%	0,0525		
CABK.MC	34,92%	1,2749	0,0301	0,9156	12,50%	0,0301		
CLNX.MC	-6,24%	1,6529	0,1381	1,1292	14,56%	0,1381		
FER.MC	17,68%	-2,2448	0,1744	1,0228	13,53%	0,1744		
IBE.MC	15,13%	1,1567	0,0626	0,6681	10,12%	0,0626		
ITX.MC	19,10%	0,3266	0,1913	1,0469	13,76%	0,1913		
REP.MC	-15,20%	0,7622	0,0497	0,6634	10,07%	0,0497		
TEF.MC	1,01%	-2,0987	0,0721	0,6378	9,82%	0,0721		
SAN.MC	29,42%	-1,7902	0,0079	1,2244	15,47%	0,0079		

Reflektion

Mest utmanande i projektet var nog att få till CAPM. Det svåra var att få rätt dimensioner på alla olika matriser för att till slut landa i rätt format. Det kopplar även till en viktig insikt som då är att vi ibland fick gå bakvägen för att ta reda på var vi hade fel. När vi visste vilken slutgiltig dimension vi ville nå kunde vi kolla på de ingående variabler för att avgöra var felet antagligen kom ifrån.