The answer to Problem III

- 1. The rule is not correct. For instance, {id} -> {name}, but {name} is not a subset of {id}.
- 2. Pseudo-transitivity
 - a. Armstrong:

```
Assume that X \rightarrow Y(1), Z \rightarrow V(2), and Z (belongs) Y(3)
```

Since Z (belongs) Y (3) then Y \rightarrow Z (4), by reflexivity

Since $X \rightarrow Y$ (1) and $Y \rightarrow Z$ (4) then $X \rightarrow Z$ (5), by transitivity

Since $X \rightarrow Z$ (5) and $Z \rightarrow V$ (2) then $X \rightarrow V$ (QED), by transitivity

- b. Transitivity can be deduced from pseudo transitivity alone; therefore the Armstrong axioms in which transitivity is replaced by pseudo-transitivity are still complete.
- 3. $F=\{\{A\}->\{B\},\{C\}->\{D\},\{B,D\}->\{E\},\{D\}->\{A,D\},\{A,C\}->\{E,B\}\}$
- a. Empty instance or an instance with only one tuple.
- b. (1,1,1,1,1) and (1,2,2,2,2).
- c.
- d. AB->A
- e. A->B
- f. AC->BC
- g. $C+(0) = \{C\}$
 - $C+(1) = \{C, D\}$ by using $\{C\} \{D\}$
 - $C+(2) = \{C, D, A\}$ by using $\{D\} \{A, D\}$
 - $C+(3) = \{C, D, A, B\}$ by using $\{A\} > \{B\}$
 - $C+ (4) = \{C, D, A, B, E\}$ by using $\{B,D\} > \{E\}$

 $C+ = \{C, D, A, B, E\}$, we can stop, we have every attribute. $\{C\}$ is a superkey

There is no proper subset which is a superkey (only one proper subset -> and it is not a superkey), therefore {C} is a candidate key.

It is the only one. {C} is a primary key.

- h. Minimal cover
- 1. Simplify the right-hand side

$$F'=\{ \{A\}->\{B\}, \{C\}->\{D\}, \{B,D\}->\{E\}, \{D\}->\{A\}, \{D\}->\{D\}, \{A,C\}->\{E\}, \{A,C\}->\{B\} \}$$

2. Simplify the left-hand side

$$F''=\{ \{A\} -> \{B\}, \{C\} -> \{D\}, \{D\} -> \{E\}, \{D\} -> \{A\}, \{D\} -> \{D\}, \{C\} -> \{E\} \}$$

$$\{A,C\} \rightarrow \{B\}$$
 can be removed because $\{A\} \rightarrow \{B\}$ is there (and $\{A\} \rightarrow \{A,B\}$)

- $\{B,D\} \{E\}$, can be replaced by $\{D\} \{E\}$, (because $\{D\} \{A\}$ and $\{A\} \{B\}$)
- $\{A,C\} \rightarrow \{E\}$ can be replaced by $\{C\} \rightarrow \{E\}$, (because $\{C\} \rightarrow \{D\}$ and $\{D\} \rightarrow \{E\}$)
- 3. Eliminate redundant rules

```
\begin{aligned} & \text{Min}(F) = \{ \ \{A\} -> \{B\}, \{C\} -> \{D\}, \ \{D\} -> \{A\} \ \} \\ & \{D\} -> \{D\}, \text{ can be removed because it is trivial} \\ & \{C\} -> \{E\} \text{ can be removed because it can obtained from } \{C\} -> \{D\}, \ \{D\} -> \{E\}. \end{aligned}
```