Lineare Regression	Regularisierung	Convolutional Neuronal Networks
Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert. Hypothesenfunktion: $h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$ Kostenfunktion (MSE): $J(\theta) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$ Ziel: Finde Parameter θ um J zu minimieren min $J(\theta)$ Multivariat: Mehrere Features x_1, x_2, \ldots, x_n Polynom-Regression: $h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \ldots$	$\begin{aligned} & \textbf{Kostenfunktion mit L2-Regularisierung:} \\ & J(\theta) = \text{frac}\{1\}\{2n\} \sum \left(h_{\theta(x^{\{(i)\}})} - y^{\{(i)\}}\right)^2 + \lambda \sum_{\{j=1\}}^d \theta_j^2 \end{aligned} \\ & \textbf{Effekt von } \lambda: \\ & \bullet \lambda = 0 \rightarrow \text{kein Penalty} \\ & \bullet \text{großes } \lambda \rightarrow \text{starke Bestrafung, Underfitting} \\ & \textbf{Bias-Term } \theta_0 \text{ wird oft nicht regularisiert} \end{aligned}$	
	Support Vector Machines	
Gradient Descent	Ziel: $m \underset{\{w,b\}}{\in} \{frac\{1\}\{2\} \ w ^2 + C \sum x i_i)$	
Update-Regel: $ \partial_j := \theta_j - \alpha \mathrm{frac} \{\partial\} \big\{\partial \theta_j \big\} J(\theta) $	Nebenbedingungen: $y^{\{(i)\}}(w^Tx^{\{(i)\}}+b)ge1-xi_i$ mit xi_ige0	
Für lineare Regression: $ heta_j \coloneqq heta_j + lpha \; \mathrm{frac}\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{ heta(x^{(i)})} ight) \cdot x_j^{\{(i)\}}$ Lernrate $lpha$:	C kontrolliert Trade-off: großes $C o$ weniger Fehler, kleines $C o$ größerer Margin	
Zu groß → Divergenz, zu klein → langsame Konvergenz	Kernel-Trick: z.B. $K(x,x')=e^{\{-\gamma x-x' ^2\}}$ (RBF-Kernel)	
Logistische Regression	Neuronale Netzwerke	
Sigmoidfunktion: $g(z) = \operatorname{frac}\{1\}\left\{1+e^{\{-z\}}\right\}$	Feedforward: $z^{\{(l+1)\}} = \theta^{\{(l)\}}a^{\{(l)\}}$ $a^{\{(l+1)\}} = g(z^{\{(l+1)\}})$	
	Backpropagation:	Modell Evaluation
classifikation: $\theta(x) ge0.5 \rightarrow \text{Klasse 1}$	$\begin{array}{l} \delta^{\{(L)\}} = a^{\{(\bar{L})\}} - y \\ \delta^{\{(l)\}} = \left(\theta^{\{(l)\}}\right)^T \delta^{\{(l+1)\}} \cdot * g'(z^{\{(l)\}}) \end{array}$	Entscheidungsbäume
$g_{(x)} < 0.5 ightarrow ext{Klasse 0}$	Gradientenabstieg: $\theta^{\{(l)\}} := \theta^{\{(l)\}} - \alpha \delta^{\{(l)\}} a^{\{(l-1)\}}$	
Entscheidungsgrenze: $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$	$\theta^{(i,j)} := \theta^{(i,j)} - \alpha \theta^{(i,j)} a^{(i,j)}$	Pricipal Component Analysis (PCA)