G6021: Comparative Programming

Some more exercises on the λ -calculus

- 1. Insert all the missing parentheses and λ 's into the following abbreviated λ -terms, where $I = \lambda x.x.$
 - λxy.x
 - λxy.xyy
 - $\lambda xyz.xz(yz)$
 - $\lambda xyz.x(yz)$
 - \bullet $\lambda xyz.xzy$
 - $\lambda xy.x(xy)$
 - $\lambda x.xI$
 - λx.xII
 - $\lambda x.xIII$
 - $(\lambda xy.y(xxy))(\lambda xy.y(xxy))$
 - $\lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$
- 2. Let $I = \lambda x.x$, $B = \lambda xyz.x(yz)$, $C = \lambda xyz.xzy$, $T = \lambda xy.x(xy)$ and $Y = (\lambda xy.y(xxy))(\lambda xy.y(xxy))$. Reduce the following terms to normal form, if they have one. You do not need to draw a reduction graph.
 - CI
 - $C(\lambda x.xII)I$
 - Y
 - TBCI
 - \bullet TI
 - \bullet TT
 - \bullet TTT (Just joking this takes 42 beta reductions...)