CE 191: Civil and Environmental Engineering Systems Analysis

LEC 08: Branch & Bound

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014

Intro to Branch and Bound

Problem Statement

Solve integer programming problem with no special structure:

min
$$c^T x$$

s. to $Ax \le b$
 $x \in \mathbb{Z}$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

$$\begin{array}{ll} \min & x_1-2x_2\\ \text{s. to} & -4x_1+6x_2 \leq 9\\ & x_1+x_2 \leq 4\\ & x_1 \geq 0\\ & x_2 \geq 0\\ & x_1,x_2 \in \mathbb{Z} \end{array}$$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

Branch and Bound algorithm

$$\min \qquad x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

 $x_1 + x_2 \le 4$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve LP: $x^* = (1.5, 2.5), f^* = -3.5$

Problem P1: add constraint $x_2 \ge 3$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1: Add constraint $x_2 > 3$

min x_1-2x_2 s. to $-4x_1+6x_2 \leq 9$ $x_1+x_2 \leq 4$ $x_1 \geq 0$ $x_2 \geq 0$ $x_1,x_2 \in \mathbb{Z}$

Problem P1: add constraint $x_2 \ge 3$

$$\min x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1 + x_2 \le 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0: $x^* = (1.5, 2.5), f^* = -3.5$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible

Problem P1: discard

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

min

$$x_1 - 2x_2$$

s. to

$$-4x_1+6x_2\leq 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Problem P2: add constraint $x_2 \le 2$

$$\min \qquad x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint $x_2 \le 2$

Problem P2: add constraint $x_2 \le 2$

$$\min \qquad x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1 + x_2 \leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint
$$x_2 \le 2$$

$$x^* = (0.75, 2), f^* = -3.25$$

Problem P2: add constraint $x_2 \le 2$

$$\min \qquad x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint
$$x_2 \le 2$$

$$x^* = (0.75, 2), f^* = -3.25$$

Problem P3: add constraint $x_1 \leq 0$

$$\min x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1 + x_2 < 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint
$$x_2 \le 2$$

 $x^* = (0.75, 2), f^* = -3.25$

P3 : P2 + constraint $x_1 \leq 0$

Problem P3: add constraint $x_1 \leq 0$

$$\min$$

$$x_1 - 2x_2$$

$$-4x_1+6x_2\leq 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0: $x^* = (1.5, 2.5), f^* = -3.5$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint $x_2 \le 2$ $x^* = (0.75, 2), f^* = -3.25$

P3: P2 + constraint $x_1 \le 0$ $x^* = (0, 1.5), f^* = -3$

Problem P4: add constraint $x_1 \ge 1$

$$\min x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint $x_2 \le 2$ $x^* = (0.75, 2), f^* = -3.25$

P3 : P2 + constraint $x_1 \le 0$ $x^* = (0, 1.5), f^* = -3$

P4 : P2 + constraint $x_1 \ge 1$

Problem P4: add constraint $x_1 \ge 1$

$$\min x_1 - 2x_2$$

s. to
$$-4x_1 + 6x_2 \le 9$$

$$x_1+x_2\leq 4$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint $x_2 \le 2$ $x^* = (0.75, 2), f^* = -3.25$

P3 : P2 + constraint $x_1 \le 0$ $x^* = (0, 1.5), f^* = -3$

P4 : P2 + constraint $x_1 \ge 1$ $x^* = (1, 2), f^* = -3$

Optimum Found

$$\min$$

$$x_1 - 2x_2$$

$$-4x_1 + 6x_2 \le 9$$

$$x_1 + x_2 \le 4$$

$$x_1 > 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Solve P0:
$$x^* = (1.5, 2.5), f^* = -3.5$$

P1 : Add constraint $x_2 \ge 3$ P1 infeasible \rightarrow DISCARD

P2 : P0 + constraint $x_2 \le 2$ $x^* = (0.75, 2), f^* = -3.25$

P3 : P2 + constraint $x_1 \le 0$ $x^* = (0, 1.5), f^* = -3$

P4 : P2 + constraint $x_1 \ge 1$ $x^* = (1, 2), f^* = -3$

Optimum is $x^* = (1, 2), f^* = -3$ TERMINATE

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

$$\begin{array}{ll} \min & x_1-2x_2\\ \text{s. to} & -4x_1+6x_2 \leq 9\\ & x_1+x_2 \leq 4\\ & x_1 \geq 0\\ & x_2 \geq 0\\ & x_1,x_2 \in \mathbb{Z} \end{array}$$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

min
$$x_1 - 2x_2$$

s. to $-4x_1 + 6x_2 \le 9$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

s. to
$$-4x_1 + 6x_2 \le 9$$
$$x_1 + x_2 \le 4$$
$$x_1 \ge 0$$

$$x_2 \geq 0$$

$$x_1, x_2 \in \mathbb{Z}$$

A generic branch and bound algorithm

- Get bound on optimum by solving relaxed LP
- For variable with fractional sol'n, add constraints bounding away
- Solve subproblem. If infeasible, then stop. If feasible, compute optiumum.
- Go to step 2. Repeat until optimum has integer solution.

Additional Reading

Revelle Section 7.C - Solving IP problems that do not have special structure