

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 99/08990

C07C 51/43, 63/46

A1

(43) International Publication Date:

25 February 1999 (25.02.99)

(21) International Application Number:

PCT/US98/16691

(22) International Filing Date:

12 August 1998 (12.08.98)

(30) Priority Data:

9717251.4

15 August 1997 (15.08.97)

GB

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): BICKHAM, David, Robert [GB/GB]; 8 Berkley Drive, Guisborough, Cleveland TS14 7LX (GB).
- (74) Agent: KRUKIEL, Charles, E.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AU, BR, CA, CN, ID, JP, KR, MX, NZ, TR, US, VN, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: IMPROVED PROCESS FOR SEPARATING PURE TEREPHTHALIC ACID

(57) Abstract

An improved process for separating pure terephthalic acid crystals from a slurry in a centrifuge whereby steam is introduced as a carrier fluid into the centrifuge continuously and simultaneously with the slurry.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG CA CCF CCG CCH CCI CCM CN CCU CZ DE DK EE	Armenia Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	FI FR GB GE GH GN GR HU IB IL IS TP KE KC KP KR LC LL LK	Finland Prance Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberin	LT LU LV MC MD MG MK MI MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lithuania Luxenbourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slovakia Senegal Swaziland Chad Togo Tajikistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe	
---	--	--	---	--	---	--	--	--

TITLE

IMPROVED PROCESS FOR SEPARATING PURE TEREPHTHALIC ACID

This application claims benefit of GB Provisional Application No. 9717251.4, filed August 15, 1997.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

The present invention relates to an improved process for separating pure terephthalic acid crystals from a slurry which contains such crystals along with dissolved impurities using a centrifuge, and, more particularly, to a process improvement whereby a carrier fluid is introduced into the centrifuge continuously and simultaneously with the slurry with the result that a higher proportion of impurities are removed from the pure terephthalic acid crystals than could have been achieved otherwise.

The production of pure terephthalic acid (PTA) involves oxidising para-xylene to form crude terephthalic acid (TA) which contains a number of impurities, particularly 4-carboxybenzaldehyde (4-CBA), and then purifying the crude TA. Crude TA crystals are dissolved in water at elevated pressure and temperature, and the solution is subjected to hydrogenation in the presence of a Group VIII noble metal hydrogenation catalyst. The purified acid is recovered by crystallizing the acid from the hydrogen treated aqueous solution, i.e., the pure plant mother liquor (PPML). The principal impurities, which are ptoluic acid derived from the compound 4carboxybenzaldehyde and unidentified color bodies, along with some other organic components, such as benzoic acid and residual terephthalic acid, remain dissolved in the aqueous solution. The pure TA crystals are then separated from the pure plant mother liquor in one or more centrifuges, usually at elevated pressure. The present invention results in the isolation of pure TA crystals having lower levels of impurities, particularly p-toluic acid, than could have

been isolated otherwise using high pressure centrifuges.

SUMMARY OF THE INVENTION

The present invention is an improved process for 5 separating pure terephthalic acid crystals from a slurry which contains such crystals along with dissolved impurities using a centrifuge. improvement comprises introducing steam, optionally in the presence on an inert gas, such as nitrogen, as a carrier fluid into the centrifuge continuously and 10 simultaneously with the slurry with the result that a higher proportion of the impurities, particularly ptoluic acid, are removed from the pure terephthalic acid crystals than could have been achieved otherwise. The centrifuges contemplated for use according to the 15 invention typically include means for introducing the slurry into the centrifuge, along with a liquid and a solids output means. A difference in pressure is typically maintained between the liquid output means and the centrifuge and the solids output means of about 20 1-10 kPa. The separation of solid pure acid crystals from pure plant mother liquor is achieved according to the invention by introducing steam, optionally in the presence of an inert gas, such as, for example, nitrogen, into the centrifuge simultaneously and 25 continuously with the slurry. The carrier fluid moves through the centrifuge and exits therefrom with separated pure plant mother liquor via the liquid output means. The recovered PTA crystals have an unexpectedly low concentration of p-toluic acid than 30 PTA crystals produced without the use of a carrier fluid.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a simplified schematic diagram of a separation process according to the invention.

DETAILED DESCRIPTION

In the purification stage of typical commercial processes for producing pure terephthalic acid, i.e.,

PCT/US98/16691 WO 99/08990

PTA,, crude terephthalic acid crystals are dissolved in water at elevated pressure and temperature, and the solution is subjected to hydrogenation in the presence of a Group VIII noble metal hydrogenation catalyst. The purified acid is recovered by crystallizing the

acid from the hydrogen treated aqueous solution and then separating the pure crystals from the solution using one or more high pressure centrifuges. separation process can be conducted batch-wise,

although the process is usually carried out on a 10 continuous basis. The principal impurities which are present in the hydrogen treated aqueous solution are ptoluic acid derived from the compound 4carboxybenzaldehyde and various color bodies, along

15 with some other organic components, such as benzoic acid and residual terephthalic acid. These impurities for the most part remain dissolved in the aqueous solution during the separation process. The aqueous solution which remains after separation of the pure TA crystals is referred to as "pure plant mother liquor", i.e., PPML.

20

25

The invention resides in the discovery that pure TA crystals can be separated from a pure plant mother liquor with a substantially lower concentration of ptoluic acid than could be achieved otherwise by introducing steam, optionally in the presence on an inert gas, such as nitrogen, as a carrier fluid into the centrifuge continuously and simultaneously with the slurry. Any carrier fluid which is inert with respect 30 to the pure TA and PPML is contemplated for use in carrying out the invention.

In practice, the slurry of pure TA crystals passes into the centrifuge from a crystallizer, in which the temperature and pressure of the incoming slurry has been reduced thereby producing steam. This, in turn, can be a source of steam for practicing the invention. Residual solids which may be present in the steam as it is vented from the crystallizer can be

removed before it is introduced into the centrifuge. A water spray in the crystalliser steam vent line is suitable for this purpose.

The flow of steam, i.e., carrier fluid, through the centrifuge can be adjusted by valves.

5

10

15

20

25

30

35

In practice, the pressure in the liquid output means from the centrifuge is less than the pressure in the centrifuge, and this pressure differential provides a convenient method for inducing a flow of the carrier fluid through the centrifuge and facilitates its removal via the liquid output means such that said carrier fluid flows into and through the centrifuge continuously and simultaneously with the pure TA slurry. The flow of carrier fluid through the centrifuge and into the liquid output means is responsive to the reduction of pressure in the liquid output means relative to the pressure of the centrifuge.

In practice, a water spray can be directed into the liquid output means, e.g. into the vessel for containing the liquid or into the vapor line which exits such a vessel which, in turn, acts to reduce foaming in the liquid output means and thereby reduce carry over of any solids into the vapor lines.

An embodiment of the process of the invention will now be described with reference to Fig. 1, which is a simplified schematic diagram of the relevant portion of a process for purifying crude terephthalic acid.

The purification of crude terephthalic acid to produce PTA is carried out largely to remove 4-carboxy benzaldehyde (4-CBA). 4-CBA is an undesirable impurity in a PTA product because it can detrimentally affect the molecular weight of the polyester, i.e., poly(ethylene terephthalate) made therefrom. A typical specification for commercially produced PTA specifies a 4-CBA concentration of less than 20 ppm. In a typical process for removing 4-CBA, the 4-CBA is catalytically hydrogenated to p-toluic acid, which is then removed by

dissolution in water, from which solution PTA is crystallized out.

The crystallization process is multi-stage and operates at elevated temperatures and pressure. The final crystallizer is typically operated at a temperature in the range of from 140° to 155°C and at a pressure in the range of from 400 to 500 kPa, although higher and lower temperatures and pressures can be used with satisfactory results.

Referring now to the drawing, final crystallizer 10 10 produces a slurry of PTA crystals in the pure plant mother liquor. The slurry is pumped via line 12 to centrifuge 11. In practice PTA crystals are separated as a solid and recovered from the slurry in one or more centrifuges 11. Centrifuge 11 has a discharge chute 15 for continuously removing solids via line 13 and a liquid runoff line 14 which runs to mother liquor storage tank 15, collectively "liquid output means". Spray 21 sprays water into the mother liquor storage 20 tank 15 which reduces foaming and, in turn, improves the flow of mother liquor from the centrifuge. Solid PTA, recovered as a "cake" from the centrifuge, is reslurried with water and re-centrifuged and then dried to form a final PTA crystalline product. The pressure in mother liquor storage tank 15 and line 14 is low 25 relative to the pressure in centrifuge 11. Steam flows continuously from the crystallizer exit via transfer line 16 into centrifuge 11 and exits through line 14 with pure plant mother liquor. As shown, steam is generated in crystallizer 10 during operation by . 30 reducing the temperature and pressure of the incoming aqueous slurry of pure terephthalic acid. Hot water spray 20 is present as shown to remove residual solids to the extent they may be present in the vapor line being carried over from the crystallizer. The steam is returned to a steam venting system via line 17. The flow of steam from crystallizer 10 can be controlled as

PCT/US98/16691 WO 99/08990

shown by valves 18 & 19. Valve 19 controls the flow of steam to vent header.

The advantage of using a carrier fluid such as steam according to the invention is compared to a conventional process and illustrated in the following examples.

Example

10

20

25

30

A terephthalic acid purification process was operated using a crude terephthalic acid feed obtained from the oxidation of p-xylene. Crude terephthalic acid (CTA) was purified by dissolving it in water to produce an aqueous solution which was then hydrogenated in the presence of a hydrogenation catalyst whereby 4-CBA was reduced to p-toluic acid. The hydrogenated 15 CTA was then passed through a series of crystallizers in which pure terephthalic acid crystallized out of solution leaving the p-toluic acid and other impurities in solution. The 4-CBA contained in the crude TA feed was measured at different points in time and the p-toluic acid content of the purified TA was also measured. Since the process involved conversion of 4-CBA to p-toluic acid, as the 4-CBA content of the feed increased, the amount of dissolved p-toluic acid which must be removed in the centrifuge also increased.

Table 1 shows typical levels of 4-CBA in the crude CTA feed and the p-toluic acid levels in the resulting PTA product using a centrifuge with and without introduction of a steam carrier fluid. The mother liquor output tank, i.e., "liquid output means" was maintained at a reduced pressure relative to the centrifuge. All of the PTA product contained less than 150 ppm of p-toluic acid. Before introducing steam as carrier fluid, low levels of p-toluic acid were achieved by reducing the amount of 4-CBA produced in 35 the oxidation stage of the process. However, in doing so, some of the p-xylene feedstock and acetic acid solvent was consumed in undesirable side reactions,

which, in turn, can substantially increase the cost of operating the process on a commercial scale.

Table 1

				_		
	Befo	re st	eam	Afte	r st	eam
4-CBA in feed (%w/w)	0.2	0.1	0.18	0.2	0.2	0.23
4 CBN 211 2001	0	7		2	1	
p-toluic acid in PTA	145	130	140	125	107	117
product (ppm)						

5

The p-toluic acid levels in the PTA product after introducing steam into the centrifuge as a carrier fluid according to the invention are significantly lower, although the levels of 4-CBA in the feed are generally higher than runs measured without the carrier fluid. Thus, separation of p-toluic acid has been improved using a carrier fluid, e.g., steam, according to the invention.

15

10

WHAT IS CLAIMED IS:

15

1. In a process for purifying crude terephthalic acid comprising the steps of:

- a) dissolving said crude terephthalic acid in water at elevated temperature and pressure,
 - b) passing the resulting solution with hydrogen over a hydrogenation catalyst whereby 4-CBA is converted to p-toluic acid,
- 10 c) reducing the temperature of the hydrogenated solution whereby pure terephthalic acid crystals crystallize out of solution to form a slurry, and
 - d) separating the pure terephthalic acid crystals from the slurry using centrifugal force in a centrifuge, the improvement comprising
 - e) introducing a carrier fluid into the centrifuge continuously and simultaneously with the slurry.
 - 2. The process of Claim 1 in which the carrier fluid is steam.
- 20 3. An improved process for separating pure terephthalic acid crystals from a slurry which contains such crystals along with dissolved impurities using centrifugal force in a centrifuge wherein the improvement comprises introducing steam as a carrier fluid into the centrifuge continuously and simultaneously with the slurry.
 - 4. The process of claim 2 in which said steam is accompanied by an additional inert gas.
- 5. The process of Claim 3 in which the inert gas is nitrogen.

Z

INTERNATIONAL SEARCH REPORT

in attornal Application No PCT/US 98/16691

a. classii IPC 6	FICATION OF SUBJECT MATTER C07C51/43 C07C63/46	·	
According to	International Patent Classification (IPC) or to both national classi	fication and IPC	
	SEARCHED		
	cumentation searched (classification system followed by classific	ation symbols)	
IPC 6	C07C	,	
Documentat	ion searched other than minimum documentation to the extent tha	it such documents are included in the fields so	earched
Electronic da	ata base consulted during the international search (name of data	base and, where practical, search terms used)
	•		
			· · · · · · · · · · · · · · · · · · ·
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to daim No.
Calogoly			
.,	WO 93 24440 A (IMPERIAL CHEMICA	1 ·	1-4
X	INDUSTRIES PLC) 9 December 1993	L	• 1
	see page 8, line 21 - page 9, 1	ine 24	
	see page 10, line 1 - line 18	1110 21	
}	see page 11, line 23 - page 12,	line 7	•
	see page 20, line 23 - page 21,	line 7	
	see page 24 - page 28; claims		
	see figure 5		
	·		
			,
	·		
	·		
1			·
ļ		•	
Ì	·		
Fur	ther documents are listed in the continuation of box C.	X Patent family members are fisted	l in annex.
* Special c	ategories of cited documents :	"T" later document published after the int	emational filing date
I.A. dogum	nent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or the	the application but
consi	dered to be of particular relevance	invention	•
"E" earlier filing	document but published on or after the international date	"X" document of particular relevance; the cannot be considered novel or cannot	it be considered to
"I " docum	ent which may throw doubts on priority claim(s) or	involve an inventive step when the d	ocument is taken alone
citatio	n is cited to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in	nventive step when the
"O" docum	nent referring to an oral disclosure, use, exhibition or r means	document is combined with one or ments, such combination being obvious	ous to a person skilled
"P" docum	nent published prior to the international filing date but	in the art. "&" document member of the same paten	t femily
	than the priority date claimed actual completion of the international search	Date of mailing of the international se	
	13 January 1999	21/01/1999	
		Authorized officer	
Name and	I malling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2		
	NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Kinzinger, J	

INTERNATIONAL SEARCH REPORT

information on patent family members

in atlonal Application No
PCT/US 98/16691

Patent document clied in search report	Publication date		Patent family member(s)	Publication date	
WO 9324440 A	09-12-1993	AU	681078 B		
		AU	4081593 A	30-12-1993	
		BR	9306434 A	15-09-1998	
		CA	2136621 A	09-12-1993	
		CN	1085889 A	27-04-1994	
		EP	0642490 A	15-03-1995	
		JP	7507291 T	10-08-1995	
		ΜX	9303173 A	29-07-1994	
		SG	52279 A	28-09-1998	
		US	5583254 A	10-12-1996	
		ÜS	5698734 A	16-12-1997	