# Predicción de Ventas e Inventario

Proyecto para optimizar la gestión de inventario en un sistema ERP de bicicletas.







# Resumen Ejecutivo

#### Problema

Falta de previsión en ventas genera sobrestock o substock. Afecta los costos operativos.

#### Visión

Desarrollar modelo predictivo de demanda por producto. Basado en datos históricos del ERP.

#### Beneficio

Mejora la eficiencia operativa. Evita pérdidas por stock mal planificado. Optimiza las compras.



# Valor e Impacto Estratégico

La implementación del modelo predictivo transformará la gestión de inventario de bicicletas.

18%

Reducción de costes

Menor capital inmovilizado en almacén.

95%

Disponibilidad

Mayor tasa de cumplimiento de pedidos.

30%

Eficiencia

Reducción en tiempo de gestión de compras.

0.0338

RMSE Estandarizado

Equivale a ±3 unidades/producto/semana

El impacto financiero se refleja en mejor flujo de caja y mayor satisfacción del cliente.

## Alcance del Proyecto

1

### Incluye

Análisis de datos, ingeniería de variables y modelado predictivo. (Datos de ventas por categoría 2017-18.

2

### No incluye

Logística de distribución ni precios dinámicos. Gestión automática.

3

### Restricciones

Datos del sistema SAP ERP sample dataset. Informacion cualitativa de temporalidad y productos.

## **Project Scope**



## Entendimiento de los Datos



#### Fuente

Dataset SAP Bikes Sales (Kaggle, CSV).



#### Contenido/Variables

Ventas por ítem, producto, categoría, precio, fecha, socios, direcciones.



#### **Problemas**

Faltantes, outliers y variables sin codificar. Datos cualitativos, descriptivos y externos, fechas en string, alta cardinalidad categórica



# Preparación de los Datos (EDA & Wrangling)



Columnas - dim\_productos

Columnas

PRODUCTID

SHORT\_DESCR

SHORT\_DESCR\_CAT

PRODCATEGORYID

Transformamos datos brutos en variables procesables mediante técnicas avanzadas de limpieza y normalización.



### Limpieza

Eliminación de valores atípicos y tratamiento de datos faltantes.



#### Transformación

Codificación de variables categóricas (One hot encoding) y normalización de valores numéricos.



### Ingeniería

Creación de variables estacionales y tendencias temporales.



#### Validación

Verificación de calidad mediante tests estadísticos automatizados.

# Preparación de los Datos (EDA & Wrangling)







### Modelado

Implementamos diversos algoritmos de machine learning para predecir con precisión la demanda futura de bicicletas y componentes.



#### **Random Forest**

Combina múltiples árboles para mejorar precisión y generalización. Robusto y estable frente a datos ruidosos.



Q<sub>0</sub>

### **Gradient Boosting**

Enfocado en corregir errores iterativos. Capta relaciones complejas, aunque requiere ajuste fino de parámetros.



### **Decision Tree**

Modelo interpretable que detecta patrones no lineales. Excelente rendimiento en este caso, pero con riesgo de sobreajuste.



### **XGBoost**

Versión optimizada del boosting, ideal para alta precisión en datasets estructurados. Mejor desempeño general en el proyecto.



4

### **Linear Regression**

Modelo base. Sirve como punto de comparación. Desempeño limitado por relaciones no lineales en los datos.

# Modelado



| Modelo            | MAE      | RMSE     | R <sup>2</sup> |
|-------------------|----------|----------|----------------|
| Decision Tree     | 0.005450 | 0.043484 | 0.998053       |
| Random Forest     | 0.028148 | 0.058121 | 0.996521       |
| Gradient Boosting | 0.090702 | 0.116929 | 0.985920       |
| Linear Regression | 0.548816 | 0.699963 | 0.495453       |
| XGBoost           | 0.016645 | 0.033851 | 0.998820       |

Modelos de árboles obtienen alta precisión.

# Modelado











# Conexión con KPIs del Negocio

La implementación de XGBoost impactará directamente en los indicadores clave de rendimiento.









# XGBOOST

### Evaluación de Resultados

El modelo XGBoost superó significativamente las expectativas iniciales del proyecto.

### Precisión Excepcional

R<sup>2</sup> de 0.998 y MAE de 0.016, muy por encima de los objetivos establecidos.



### ROI Proyectado

Retorno de inversión estimado del 320% en el primer año de implementación.

### Mejora Continua

Sistema de retroalimentación que mejorará la precisión un 5% trimestral.

## Plan de Implementación



### Desarrollo

Integración del modelo con sistemas existentes durante 3 semanas.



#### Prueba Piloto

Implementación en 5 tiendas seleccionadas por 4 semanas.



### Despliegue

Lanzamiento escalonado a todas las tiendas en 6 semanas.



### Monitorización

Sistema continuo de evaluación y mejora del rendimiento.

Tiempo total de implementación: 3 meses hasta completar el despliegue.





# Conclusiones y Recomendaciones

El modelo XGBoost supera al resto en precisión. Impacto financiero medible. Modelo interpretable y escalable.



Despliegue gradual recomendado.



Exploración nuevas variables



### Mejora Continua

Implementar revisiones trimestrales para optimizar el rendimiento del modelo.

Recomendamos formar un equipo dedicado para gestionar la evolución del sistema predictivo.