A Few Thoughts on Deep Learning-Based Scientific Computing

Haizhao Yang

Department of Mathematics Purdue University

Inverse Problems Seminar
Department of Mathematics and Computer Science
University College London
February 5, 2021

Deep Learning for Scientific Computing?

Some pieces of error analysis but not a complete story.

Outline

- Neural Network Approximation
 - Exponential Approximation Rate
 - Curse of dimensionality
 - · Deep network is powerful
- Neural Network Optimization
 - Global convergence for supervised learning
 - Global convergence for solving PDEs
 - But assumption is strong
- Neural Network Generalization
 - Generalization for supervised learning
 - Generalization for solving PDEs
 - But requires regularization

Supervised machine learning

- Given data pairs $\{(x_i, y_i = f(x_i))\}$ from an unknown map f;
- Construct a finite family of maps $\{h(x; \theta)\}_{\theta}$;
- Create an empirical loss to quantify how good $h(x; \theta) \approx f(x)$ is:

$$R_{\mathcal{S}}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(h(x_i; \theta), y_i) \stackrel{\text{e.g.}}{=} \frac{1}{N} \sum_{i=1}^{N} (h(x_i; \theta) - y_i)^2;$$

■ The best solution is $h(x; \theta_S)$ with

$$\theta_{\mathcal{S}} = \operatorname{argmin} R_{\mathcal{S}}(\theta);$$

■ Numerical optimization to obtain a numerical solution $h(x; \theta_N)$.

Supervised machine learning

- Data $\{x_i\}_{i=1}^n$ are sampled randomly from an unknown distribution U(x);
- Population loss as the ideal averaged prediction error:

$$R_D(\theta) := \mathsf{E}_{x \sim U(\Omega)} \left[\mathcal{L}(h(x;\theta), f(x)) \right],$$

and the ideal prediction $h(x; \theta_D)$ with

$$\theta_D := \operatorname{argmin} R_D(\theta).$$

- In practice, $\theta_N \neq \theta_S \neq \theta_D$.
- How good does the actually learned function $h(x; \theta_N)$ predict f(x) when x is unseen?
- $R_D(\theta_N)$ as the expected prediction error over all possible data samples.

A full error analysis of $R_D(\theta_N)$:

$$\begin{split} R_{D}(\theta_{N}) &= [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] + [R_{S}(\theta_{S}) - R_{S}(\theta_{D})] \\ &+ [R_{S}(\theta_{D}) - R_{D}(\theta_{D})] + R_{D}(\theta_{D}) \\ &\leq R_{D}(\theta_{D}) + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] \\ &+ [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{D}) - R_{D}(\theta_{D})], \end{split}$$

A full error analysis of $R_D(\theta_N)$:

$$\begin{split} R_{D}(\theta_{N}) &= [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] + [R_{S}(\theta_{S}) - R_{S}(\theta_{D})] \\ &+ [R_{S}(\theta_{D}) - R_{D}(\theta_{D})] + R_{D}(\theta_{D}) \\ &\leq R_{D}(\theta_{D}) + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] \\ &+ [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{D}) - R_{D}(\theta_{D})], \end{split}$$

■ $R_D(\theta_D) = \int_{\Omega} (h(x;\theta_D) - f(x))^2 d\mu(x) \le \int_{\Omega} (h(x;\tilde{\theta}) - f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of $\tilde{\theta}$

A full error analysis of $R_D(\theta_N)$:

$$\begin{split} R_{D}(\theta_{N}) &= [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] + [R_{S}(\theta_{S}) - R_{S}(\theta_{D})] \\ &+ [R_{S}(\theta_{D}) - R_{D}(\theta_{D})] + R_{D}(\theta_{D}) \\ &\leq R_{D}(\theta_{D}) + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] \\ &+ [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{D}) - R_{D}(\theta_{D})], \end{split}$$

- $R_D(\theta_D) = \int_{\Omega} (h(x;\theta_D) f(x))^2 d\mu(x) \le \int_{\Omega} (h(x;\tilde{\theta}) f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of $\tilde{\theta}$
- \blacksquare $[R_S(\theta_N) R_S(\theta_S)]$ is the optimization error

A full error analysis of $R_D(\theta_N)$:

$$\begin{split} R_{D}(\theta_{N}) &= [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] + [R_{S}(\theta_{S}) - R_{S}(\theta_{D})] \\ &+ [R_{S}(\theta_{D}) - R_{D}(\theta_{D})] + R_{D}(\theta_{D}) \\ &\leq R_{D}(\theta_{D}) + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] \\ &+ [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{D}) - R_{D}(\theta_{D})], \end{split}$$

- $R_D(\theta_D) = \int_{\Omega} (h(x; \theta_D) f(x))^2 d\mu(x) \le \int_{\Omega} (h(x; \tilde{\theta}) f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of $\tilde{\theta}$
- \blacksquare $[R_S(\theta_N) R_S(\theta_S)]$ is the optimization error
- Other two terms are the generalization error

This talk discusses the case when $h(x; \theta)$ is a deep neural network.

Deep Neural Network

Function composition in the parametrization:

$$y = h(x; \theta) := T \circ \phi(x) := T \circ h^{(L)} \circ h^{(L-1)} \circ \cdots \circ h^{(1)}(x)$$

where

- $h^{(i)}(x) = \sigma(W^{(i)}^T x + b^{(i)});$
- $T(x) = V^T x;$
- $\bullet \theta = (W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V).$

Deep Learning for Solving PDEs

Figure: Figure by Phillip Peterson.

Least Square Methods

Neural networks + least square for PDEs (date back to 1990s),

$$\mathcal{D}(u) = f \quad \text{in } \Omega,$$

$$\mathcal{B}(u) = g$$
 on $\partial \Omega$.

A DNN $\phi(\mathbf{x}; \theta^*)$ is constructed to approximate the solution $u(\mathbf{x})$ via

$$\begin{array}{ll} \mathcal{H} \, \mathcal{B} \, \mathsf{NN} \, \boldsymbol{\psi}(\boldsymbol{x}, \boldsymbol{\theta}') \, \mathsf{is constructed to approximate the solution} \, \boldsymbol{u}(\boldsymbol{x}) \, \mathsf{Via} \\ \boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \, \mathcal{L}(\boldsymbol{\theta}) \\ &:= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \, \|\mathcal{D} \boldsymbol{\phi}(\boldsymbol{x}; \boldsymbol{\theta}) - f(\boldsymbol{x})\|_2^2 + \lambda \|\mathcal{B} \boldsymbol{\phi}(\boldsymbol{x}; \boldsymbol{\theta}) - g(\boldsymbol{x})\|_2^2 \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \, \mathbb{E}_{\boldsymbol{x} \in \Omega} \left[|\mathcal{D} \boldsymbol{\phi}(\boldsymbol{x}; \boldsymbol{\theta}) - f(\boldsymbol{x})|^2 \right] + \lambda \mathbb{E}_{\boldsymbol{x} \in \partial \Omega} \left[|\mathcal{B} \boldsymbol{\phi}(\boldsymbol{x}; \boldsymbol{\theta}) - g(\boldsymbol{x})|^2 \right]. \end{array}$$

Least Square Methods

Stochastic gradient descent method

- Randomly generate sample sets Ω^r and $\partial \Omega^r$
- Define a random loss function

$$\mathcal{L}(\boldsymbol{\theta}, \Omega^r, \partial \Omega^r) := \frac{1}{|\Omega^r|} \sum_{\boldsymbol{x} \in \Omega^r} \left[|\mathcal{D}\phi(\boldsymbol{x}; \boldsymbol{\theta}) - f(\boldsymbol{x})|^2 \right] + \frac{\lambda}{|\partial \Omega^r|} \sum_{\boldsymbol{x} \in \partial \Omega^r} \left[|\mathcal{B}\phi(\boldsymbol{x}; \boldsymbol{\theta}) - g(\boldsymbol{x})|^2 \right].$$

Update via gradient descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \mathcal{L}(\boldsymbol{\theta}, \Omega^r, \partial \Omega^r)}{\partial \boldsymbol{\theta}}$$

Least Square Methods

We aim at the full error analysis:

- Approximation theory
- Optimization theory
- Generalization theory

Deep Network Approximation

Goals

- The curse of dimensionality exist? e.g., # parameters not $(\frac{1}{\epsilon})^d$
- Is exponential approximation rate available? e.g., # parameters $\log(\frac{1}{\epsilon})$

Why this goal?

Computational efficiency especially in high dimension

Literature Review

Active research directions

Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Liang and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017; E and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018; Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019; Gühring et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019; Bao et al., 2019; E et al., 2019; Opschoor et al., 2019; Yarotsky and Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019; Chen and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.

Literature Review

Functions spaces

- Continuous functions
- Smooth functions
- Functions with integral representations

Analysis tools

- Polynomial approximations
- The law of large number
- Kolmogorov-Arnold representation theory
- Bit extraction technology (Bartlett et al., 1998; Harvey et al., 2017)

ReLU DNNs, continuous functions $C([0,1]^d)$

ReLU; Fixed width O(d), varying depth L

- Nearly tight error rate $O(L^{-2/d})$ with L^{∞} -norm
- Yarotsky, 2018

ReLU; Fixed network width O(N) and depth O(L)

- Nearly tight error rate $5\omega_f(8\sqrt{d}N^{-2/d}L^{-2/d})$ simultaneously in N and L with L^{∞} -norm. Shen, Y., and Zhang (CiCP, 2020)
- lacksquare ω_f is the modulas of continuity
- Improved to a tight rate $O\left(\sqrt{d}\,\omega_f\left(\left(N^2L^2\log_3(N+2)\right)^{-1/d}\right)\right)$. Shen, Y., and Zhang (Preprint, 2021)

Curse of dimensionality exists!

ReLU DNNs, smooth functions $C^s([0,1]^d)$

Does smoothness help?

ReLU; Fixed width O(d), varying depth L

- Nearly tight error rate $O(L^{-2s/d})$ with L^{∞} -norm
- Yarotsky, 2019

ReLU; Fixed network width O(N) and depth O(L)

- Nearly tight rate $85(s+1)^d 8^s ||f||_{C^s([0,1]^d)} N^{-2s/d} L^{-2s/d}$ simultaneously in N and L with L^{∞} -norm
- Lu, Shen, Y., and Zhang (preprint, 2020)

The curse of dimensionality exists if s is fixed.

DNNs with advanced activation function

Sine-ReLU; Fixed width O(d), varying depth L

- lacksquare exp $(-c_{r,d}\sqrt{L})$ with L^{∞} -norm for $C^{r}([0,1]^{d})$
- Root exponential approximation rate achieved
- Curse of dimensionality is not clear
- Yarotsky, 2019

Floor and ReLU activation, width O(N) and depth O(dL), $C([0,1]^d)$

- Error rate $\omega_f(\sqrt{d}N^{-\sqrt{L}}) + 2\omega_f(\sqrt{d})N^{-\sqrt{L}}$ with L^{∞} -norm
- Merely based on the compositional structure of DNNs
- NO curse of dimensionality for many continuous functions
- Root exponential approximation rate
- Shen, Y., and Zhang (Neural Computation, 2020)

DNNs with advanced activation function

What if we use more activation functions?

Floor, Sign, and 2^x activation, width O(N) and depth 3, $C([0,1]^d)$

- Error rate $\omega_f(\sqrt{d}2^{-N}) + 2\omega_f(\sqrt{d})2^{-N}$ with L^{∞} -norm
- Merely based on the compositional structure of DNNs
- NO curse of dimensionality for many continuous functions
- Exponential approximation rate
- Shen, Y., and Zhang (preprint, 2020)

Explicit error bound

Floor, Sign, and 2^x activation, width O(N) and depth 3, Hölder($[0,1]^d, \alpha, \lambda$)

- Error rate $3\lambda(2\sqrt{d})^{\alpha}2^{-\alpha N}$ with L^{∞} -norm
- NO curse of dimensionality
- Exponential approximation rate
- Shen, Y., and Zhang (preprint, 2020)

Does the domain $[0,1]^d$ matter? No

Floor, Sign, and 2^x activation, width O(N) and depth 3, Hölder($[-R, R]^d, \alpha, \lambda$)

■ Error rate $3\lambda(3R\sqrt{d})^{\alpha}2^{-\alpha N}$ in the L^{∞} -norm and $E=[-R,R]^{d}$.

Does ω_f matter? Yes

Floor, Sign, and 2^x activation, width O(N) and depth 3, $C([0,1]^d)$

- Error rate $\omega_f(\sqrt{d}2^{-N}) + 2\omega_f(\sqrt{d})2^{-N}$ with L^{∞} -norm
- lacksquare $\omega_f(r) = rac{1}{\ln(1/r)}$

$$3(N \ln 2 - \frac{1}{2} \ln d - \ln 2)^{-1}$$

$$\omega_f(r) = \frac{1}{\ln^{1/d}(1/r)}$$

$$3(N \ln 2 - \frac{1}{2} \ln d - \ln 2)^{-1/d}$$

Realistic consideration

- Constructive approximation requires f or exponentially many samples given
- Constructed parameters require high precision computation
- Floor and Sign are discontinuous functions leading to gradient vanishing

For
$$\mathbf{x} \in Q_{\beta}$$
:
 $\mathbf{x} \to \phi_1(\mathbf{x}) = \beta \to \phi_2(\beta) = k_{\beta} \to \phi_3(k_{\beta}) = f(\mathbf{x}_{\beta}) \approx f(\mathbf{x})$

- Piecewise constant approximation: $f(\mathbf{x}) \approx f_p(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$
- 2^N pieces per dim and 2^{Nd} pieces with accuracy 2^{-N}
- Floor NN $\phi_1(\mathbf{x})$ s.t. $\phi_1(\mathbf{x}) = \beta$ for $\mathbf{x} \in Q_\beta$ and $\beta \in \mathbb{Z}^d$.
- Linear NN ϕ_2 mapping β to an integer $k_\beta \in \{1, ..., 2^{Nd}\}$
- Key difficulty: NN ϕ_3 of width O(N) and depth O(1) fitting 2^{Nd} samples in 1D with accuracy $O(2^{-N})$
- ReLU NN fails

Figure: Uniform domain partitioning.

Figure: Floor function.

Figure: ReLU function.

Binary representation and approximation

 $\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$ with $\theta_{\ell} \in \{0, 1\}$ is approximated by $\sum_{\ell=1}^{N} \theta_{\ell} 2^{-\ell}$ with an error 2^{-N} .

Bit extraction via a floor NN of width 2 and depth 1

$$\phi_k(\theta) := \lfloor 2^k \theta \rfloor - 2 \lfloor 2^{k-1} \theta \rfloor = \theta_k$$

Bit extraction via a floor NN of width 2N and depth 1

Given
$$\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$$

$$\phi(\theta) := \begin{pmatrix} \phi_1(\theta) \\ \vdots \\ \phi_N(\theta) \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_N \end{pmatrix} \in \mathbb{Z}^N$$

Encoding K numbers to one number

- **Extract bits** $\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$ from $\theta^{(k)} = \sum_{\ell=1}^{\infty} \theta_\ell^{(k)} 2^{-\ell}$ for $k = 1, \ldots, K$
- sum up to get $a = \sum_{\ell=1}^{N} \theta_{\ell}^{(1)} 2^{-\ell} + \sum_{\ell=N+1}^{2N} \theta_{\ell}^{(2)} 2^{-\ell} + \cdots + \sum_{\ell=\ell-N+1}^{KN} \theta_{\ell}^{(K)} 2^{-\ell}$

Decoding one number to get the k-th numbers

- **Extract bits** $\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$ from a via $\psi(k) := \phi(2^{(k-1)N}a - |2^{(k-1)N}a|)$
 - of width O(N) and depth O(1).
- \blacksquare sum up to get $\theta^{(k)} \approx \sum_{\ell=1}^{N} \theta_{\ell}^{(k)} 2^{-\ell} = [2^{-1}, \dots, 2^{-N}] \psi(k) := \gamma(k),$

Key Lemma

There exists an NN γ of width O(N) and depth O(1) that can memorize arbitrary samples $\{(k, \theta^{(k)})\}_{k=1}^K$ with a precision 2^{-N} .

For
$$\mathbf{x} \in Q_{\boldsymbol{\beta}}$$
:

$$\mathbf{x} \to \phi_1(\mathbf{x}) = \mathbf{\beta} \to \phi_2(\mathbf{\beta}) = \mathbf{k}_{\mathbf{\beta}} \to \phi_3(\mathbf{k}_{\mathbf{\beta}}) = f(\mathbf{x}_{\mathbf{\beta}}) \approx f(\mathbf{x})$$

- Piecewise constant approximation: $f(\mathbf{x}) \approx f_D(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$
- 2^N pieces per dim and 2^{Nd} pieces with accuracy 2^{-N}
- Floor NN $\phi_1(\mathbf{x})$ s.t. $\phi_1(\mathbf{x}) = \beta$ for $\mathbf{x} \in Q_\beta$ and $\beta \in \mathbb{Z}^d$.
- Linear NN ϕ_2 mapping β to an integer $k_\beta \in \{1, ..., 2^{Nd}\}$
- Key difficulty: NN ϕ_3 of width O(N) and depth O(1) fitting 2^{Nd} samples in 1D with accuracy $O(2^{-N})$
- Key Lemma: There exists an NN γ of width O(N) and depth O(1) that can memorize arbitrary samples $\{(k, \theta^{(k)})_{k=1}^K$ with a precision 2^{-N} .

Figure: Uniform domain partitioning.

Figure: Floor function.

Figure: ReLU function.

Summary

- Deep Neural Networks are powerful
- Quantitative approximation results are available
- How to quantify deep learning optimization and generalization errors?

Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Neural tangent kernel/Lazy training

- Jacot et al. 2018; Du et al. 2019a; Allen-Zhu et al. 2019b; Du et al. 2019b; Zou et al. 2018; Chizat et al. 2019, etc.
- Idea: in the limit of infinite width, DNN becomes kernel methods

Mean-field analysis

- Chizat and Bach 2018; Mei et al. 2018; Mei et al. 2019, Lu et al. 2020, etc.
- Idea:
 - 1) a two-layer neural network can be seen as an approximation to an infinitely wide neural network with parameters following a distribution p_t ;
 - 2) understanding network training via the evolution of p_t .

In the setting of solving PDEs: vastly open

Key Analysis of Neural Tangent Kernel

Simplifying the residual dynamic via approximation:

$$\phi(\mathbf{X}; \boldsymbol{\theta}_{t+1}) - f(\mathbf{X}) \approx [\mathbf{I} - \frac{N\eta}{n} \mathbf{H}_t] (\phi(\mathbf{X}; \boldsymbol{\theta}_t) - f(\mathbf{X})) \qquad \text{(NN dynamic)}$$

$$\approx [\mathbf{I} - \frac{N\eta}{n} \mathbf{H}_0] (\phi(\mathbf{X}; \boldsymbol{\theta}_t) - f(\mathbf{X})) \qquad \text{(lazy training)}$$

$$\approx [\mathbf{I} - \frac{N\eta}{n} \mathbf{H}] (\phi(\mathbf{X}; \boldsymbol{\theta}_t) - f(\mathbf{X})) \qquad \text{(NTK dynamic)}$$

- Training samples $\boldsymbol{X} = [\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n]^T$;
- Learning rate η;
- Width N;
- Gram matrix $\mathbf{H}_t := (\frac{1}{N} \langle \nabla \phi(\mathbf{x}_i; \theta_t), \nabla \phi(\mathbf{x}_i; \theta_t) \rangle)_{n \times n};$
- NTK $\boldsymbol{H} = \lim_{N\to\infty} \boldsymbol{H_0}$;
- \approx valid when $\theta_{t+1} \approx \theta_t \leftarrow \eta \approx 0$;
- \approx valid when $\theta_t \approx \theta_0 \leftarrow \eta \approx 0$ and $N \rightarrow \infty$;
- $\blacksquare \approx$ valid when $N \to \infty$ by the law of large numbers.

Optimization for PDE Solvers

Question: can we apply existing optimization analysis for PDE solvers?

A simple example

- Two-layer network: $\phi(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x})$.
- A second order differential equation: $\mathcal{L}u = f$ with

$$\mathcal{L}u = \sum_{\alpha,\beta=1}^{d} A_{\alpha\beta}(\mathbf{x}) u_{\mathbf{x}_{\alpha}\mathbf{x}_{\beta}}.$$

- $f(\mathbf{x}; \theta) := \mathcal{L}\phi(\mathbf{x}; \theta) = \sum_{k=1}^{N} a_k \mathbf{w}_k^{\mathsf{T}} A(\mathbf{x}) \mathbf{w}_k \sigma''(\mathbf{w}_k^{\mathsf{T}} \mathbf{x}) \text{ to fit } f(\mathbf{x})$
- Much more difficult nonlinearity in x and w in the fitting than the original NN fitting.

Optimization for PDE Solvers

Assumption

- Two-layer network: $\phi(\mathbf{x}; \theta) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x})$ on $[0, 1]^d$.
- A second order differential equation: $\mathcal{L}u = f$ with

$$\mathcal{L}u = \sum_{\alpha,\beta=1}^d A_{\alpha\beta}(\mathbf{x}) u_{\mathbf{x}_{\alpha}\mathbf{x}_{\beta}} + \sum_{\alpha=1}^d b_{\alpha}(\mathbf{x}) u_{\mathbf{x}_{\alpha}} + c(\mathbf{x})u.$$

• \mathcal{L} satisfies the condition: there exists $M \geq 1$ such that for all $\mathbf{x} \in \Omega = [0, 1]^d$, $\alpha, \beta \in [d]$, we have $\mathbf{A}_{\alpha\beta} = \mathbf{A}_{\beta\alpha}$

$$|A_{\alpha\beta}(\mathbf{x})| \leq M, \quad |b_{\alpha}(\mathbf{x})| \leq M, \quad \text{and} \quad |c(\mathbf{x})| \leq M.$$

- Fixed *n* samples in the PDE domain.
- Empirical loss

$$R_{S}(\theta) = \frac{1}{2n} \sum_{\{\boldsymbol{x}_i\}_{i=1}^{n}} |\mathcal{L}\phi(\boldsymbol{x}_i; \theta) - f(\boldsymbol{x}_i)|^2$$

and population loss

$$R_{\mathcal{D}}(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[|\mathcal{L}\phi(\boldsymbol{x}_i; \boldsymbol{\theta}) - f(\boldsymbol{x}_i)|^2 \right]$$

with ϕ satisfying boundary conditions.

Optimization for PDE Solvers

Luo and Y., preprint, 2020

Theorem (Linear convergence rate)

Let $\boldsymbol{\theta}^0 := \operatorname{vec}\{\boldsymbol{a}_k^0, \boldsymbol{w}_k^0\}_{k=1}^N$ be the GD initialization, where $\boldsymbol{a}_k^0 \sim \mathcal{N}(0, \gamma^2)$ and $\boldsymbol{w}_k^0 \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}_d)$ with any $\gamma \in (0, 1)$. Let $C_d := \mathbb{E} \|\boldsymbol{w}\|_1^{12} < +\infty$ with $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}_d)$ and λ_S be a positive constant. For any $\delta \in (0, 1)$, if width

$$\begin{split} N \geq \max \left\{ \frac{512 n^4 M^4 C_d}{\lambda_S^2 \delta}, \frac{200 \sqrt{2} M d^3 n \log(4N(d+1)/\delta) \sqrt{R_S(\theta^0)}}{\lambda_S}, \\ \frac{2^{23} M^3 d^9 n^2 (\log(4N(d+1)/\delta))^4 \sqrt{R_S(\theta^0)}}{\lambda_S^2} \right\}, \end{split}$$

then with probability at least 1 $-\delta$ over the random initialization θ^0 , we have, for all $t \ge 0$,

$$R_{\mathbb{S}}(\theta(t)) \leq \exp\left(-\frac{N\lambda_{\mathbb{S}}t}{n}\right)R_{\mathbb{S}}(\theta^0).$$

Generalization of PDE solvers

Luo and Y., preprint, 2020

Theorem (A posteriori generalization bound)

For any $\delta \in (0,1)$, with probability at least $1-\delta$ over the choice of random sample locations $S:=\{\boldsymbol{x}_i\}_{i=1}^n$, for any two-layer neural network $\phi(\boldsymbol{x};\theta)$, we have

$$|R_{\mathcal{D}}(\theta) - R_{\mathcal{S}}(\theta)| \leq \frac{(\|\theta\|_{\mathcal{P}} + 1)^2}{\sqrt{n}} 2M^2 \left(14d^2\sqrt{2\log(2d)} + \log[\pi(\|\theta\|_{\mathcal{P}} + 1)] + \sqrt{2\log(1/3\delta)}\right)$$

Proof: $|R_{\mathcal{D}}(\theta) - R_{\mathcal{S}}(\theta)| \leq \text{Rademacher complexity} + \text{Stat error}$ $\leq O\left(\frac{\|\theta\|_{\mathcal{P}}}{\sqrt{n}}\right) + O\left(\frac{1}{\sqrt{n}}\right)$

Generalization of PDE solvers

Regression: E, Ma, and Wu, 2019

PDE solvers: Luo and Y., preprint, 2020

Theorem (A priori generalization bound)

Suppose that $f(\mathbf{x})$ is in the Barron-type space $\mathcal{B}([0,1]^d)$ and $\lambda \geq 4M^2[2+14d^2\sqrt{2\log(2d)}+\sqrt{2\log(2/3\delta)}]$. Let

$$m{ heta}_{\mathcal{S},\lambda} = \arg\min_{m{ heta}} J_{\mathcal{S},\lambda}(m{ heta}) := R_{\mathcal{S}}(m{ heta}) + rac{\lambda}{\sqrt{n}} \|m{ heta}\|_{\mathcal{P}}^2 \log[\pi(\|m{ heta}\|_{\mathcal{P}} + 1)].$$

Then for any $\delta \in (0,1)$, with probability at least $1-\delta$ over the choice of random samples $S := \{\mathbf{x}_i\}_{i=1}^n$, we have

$$\begin{split} R_{\mathcal{D}}(\boldsymbol{\theta}_{S,\lambda}) &:= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \frac{1}{2} (\mathcal{L}\phi(\boldsymbol{x}; \boldsymbol{\theta}_{S,\lambda}) - f(\boldsymbol{x}))^2 \\ &\leq \frac{6M^2 \|f\|_{\mathcal{B}}^2}{N} + \frac{\|f\|_{\mathcal{B}}^2 + 1}{\sqrt{n}} (4\lambda + 16M^2) \left\{ \log[\pi(2\|f\|_{\mathcal{B}} + 1)] + 14d^2 \sqrt{\log(2d)} + \sqrt{\log(2/3\delta)} \right\}. \end{split}$$

Proof: $R_{\mathcal{D}}(\theta_{S,\lambda}) \leq \text{Approximation error} + \text{Rademacher complexity} + \text{Stat error} \leq O\left(\frac{\|f\|_{\mathcal{B}}^2}{N}\right) + O\left(\frac{\|\theta\|_{\mathcal{P}}}{\sqrt{n}}\right) + O\left(\frac{1}{\sqrt{n}}\right) \leq O\left(\frac{\|f\|_{\mathcal{B}}^2}{N}\right) + O\left(\frac{\|f\|_{\mathcal{B}}^2}{\sqrt{n}}\right)$

Acknowledgment

Collaborators

Qiang Du, Yiqi Gu, Jianguo Huang, Jianfeng Lu, Tao Luo, Hadrien Montanelli, Zuowei Shen, Chunmei Wang, Haoqin Wang, Shijun Zhang, Chao Zhou

Funding

National Science Foundation under the grant award 1945029

