A graph is connected if there is a path between any two vertices x and y
for x in G:
for y in G:
path_exists(x,y)
<u>Theorem</u>
Let v be a vertex in G. If there is a path from v to any vertex w in G, then G is connected.
v = some vertex in G
for w in G:
path_exists(v,w)
Proof: Assume that there is a path from some vertex v to any vertex x and any vertex y.
Then there is a path from x->v and a path from v->y, meaning that there is a path from x->y for any two
vertices x and y.
This satisfies the definition.
Ex. Prove that the n-cube is connected for each n≥0.
let x & V(G)
x has k 1s, in positions i, i, (not necessarily consecutive)
(an be i, i3, i4, in, ik
Let v. be a binary string with I's in positions i, i,
=> same positions as in i, i, but out (j=t)
A path from 0" -> x is vov Vx
if x i j, j 2 j j j j j j j j j j j j j j j j
This sofisfies the theorem for connectedness

A component of G is a subgraph C of G such that C is connected No subgraph of G that properly contains C is connected O A subset of G that contains C must have more than one component Cut: partition into two disjoint subsets **a** () a, bThe cut "induced" by X is the set of edges that have exactly one end in X A graph is not connected if there exists a proper nonempty subset X of V(G) such that the cut induced by X is empty with exactly **a** () one end disconnected x comesponds component

Summary:																				
To show G is connected, find a path between some vertex v and any vertex w																				
To show G is not connected, find a cut such that cut(X) is empty																				