CLAIMS

What is claimed is:

1	1.	A preamplifier system, comprising:
2	(a)	a magneto-resistive (MR) sensor;
3	(b)	an alternating current (AC) coupling module coupled to the MR sensor for
4		blocking a direct current (DC) voltage associated with an input signal, and
5		filtering low frequency noise associated with the input signal;
6	(c)	a gain stage module coupled to the AC coupling module, the gain stage module
7		including a plurality of cascode field effect transistors (FETs) configured for
8		amplifying the input signal, while reducing intrinsic noise and increasing
9		operational bandwidth; and
10	(d)	a control circuit coupled to the gain stage module for feeding back an output of
11		the gain stage module.

- 1 2. The system as recited in claim 1, wherein one of the cascode FETs includes a
- dimension ratio (width/length) with a value of at least 4000.

1 3. The system as recited in claim 1, wherein the gain stage module includes a first 2 transistor including a source terminal coupled to ground, a gate terminal, and a 3 drain terminal; a second transistor including a source terminal coupled to the drain terminal of the first transistor, a gate terminal, and a drain terminal coupled to the 4 5 output of the gain stage module; a third transistor including a source terminal 6 coupled to the drain terminal of the second transistor, a gate terminal coupled to 7 the power source, and a drain terminal coupled to the power source; a fourth 8 transistor including a source terminal coupled to ground, a gate terminal coupled 9 to the drain terminal of the first transistor, and a drain terminal coupled to the gate 10 terminal of the second transistor; a fifth transistor including a source terminal 11 coupled to the power source, a gate terminal, and a drain terminal coupled to the 12 drain terminal of the fourth transistor and the gate terminal of the second 13 transistor; and a capacitor coupled between ground and the drain terminal of the 14 fifth transistor, the drain terminal of the fourth transistor, and the gate terminal of 15 the second transistor.

- 1 4. The system as recited in claim 3, wherein the AC coupling module includes a
 2 capacitor including a first terminal coupled to the gate terminal of the first
 3 transistor and the MR sensor.
- The system as recited in claim 3, wherein the control circuit includes an

 operational transductance amplifier with a first input coupled to the output of the

 gain stage module and a second input coupled to a reference output, the

4

5

6

7

8

10

1

2

3

4

5

6

7

1

6.

operational transductance amplifier including an output coupled to a gate terminal of a sixth transistor including a source terminal coupled to the power source, and a drain terminal, the control circuit further including a first resistor having a first terminal coupled to the drain terminal of the sixth transistor and a second terminal coupled to the gate terminal of the first transistor, a second resistor including a first terminal coupled to the drain terminal of the sixth transistor and a second terminal coupled to ground.

- The system as recited in claim 5, wherein the reference output is defined by an eighth transistor including a source terminal, a gate terminal, and a drain terminal coupled to the reference output; a ninth transistor including a source terminal coupled to the reference output, a gate terminal coupled to the power source, and a drain terminal coupled to the power source; and a current source including a first terminal coupled to the source terminal of the eighth transistor and a second terminal coupled to ground.
- 7. The system as recited in claim 3, wherein a gain at the drain terminal of the first
 transistor is less than one (1).
- 1 8. A preamplifying method, comprising:
- 2 (a) receiving an input signal from a magneto-resistive (MR) sensor;
- 3 (b) blocking a direct current (DC) voltage associated with the input signal;

- 4 (c) filtering low frequency noise associated with the input signal;
 5 (d) amplifying the input signal utilizing a plurality of cascode field effect transistors
 6 (FETs); and
- 7 (e) feeding back an output of the amplification utilizing a control circuit.
- 1 9. A preamplifier circuit, comprising:
- a first transistor including a source terminal coupled to ground, a gate terminal,
- 3 and a drain terminal;
- 4 a second transistor including a source terminal coupled to the drain terminal of the
- 5 first transistor, a gate terminal, and a drain terminal coupled to an output;
- a third transistor including a source terminal coupled to the drain terminal of the
- 7 second transistor, a gate terminal coupled to the power source, and a drain terminal
- 8 coupled to the power source;
- a fourth transistor including a source terminal coupled to ground, a gate terminal
- 10 coupled to the drain terminal of the first transistor, and a drain terminal coupled to the
- 11 gate terminal of the second transistor;
- a fifth transistor including a source terminal coupled to the power source, a gate
- terminal, and a drain terminal coupled to the gate terminal of the second transistor and the
- 14 drain terminal of the fourth transistor; and
- a capacitor coupled between ground and the drain terminal of the fifth transistor,
- the drain terminal of the fourth transistor, and the gate terminal of the second transistor.

- 1 10. The preamplifier circuit as recited in claim 9, wherein the first transistor includes
 2 a field effect transistor (FET).
- 1 11. The preamplifier circuit as recited in claim 10, wherein the first transistor includes
 2 a dimension ratio (width/length) with a value of at least 4000.
- 1 12. The preamplifier circuit as recited in claim 9, and further comprising a sixth
 2 transistor including a source terminal coupled to the power source, a gate
 3 terminal, and a drain terminal.
- 1 13. The preamplifier circuit as recited in claim 12, and further comprising a seventh
 2 transistor including a source terminal coupled to the power source, a gate
 3 terminal, and a drain terminal coupled to a magneto-resistive (MR) sensor.
- 1 14. The preamplifier circuit as recited in claim 13, and further comprising an eighth
 2 transistor including a source terminal, a gate terminal, and a drain terminal
 3 coupled to a second output.
- 1 15. The preamplifier circuit as recited in claim 14, and further comprising a ninth
 2 transistor including a source terminal coupled to the second output, a gate
 3 terminal coupled to the power source, and a drain terminal coupled to the power
 4 source.

- The preamplifier circuit as recited in claim 15, and further comprising an operational transductance amplifier with a first input coupled to the first output and a second input coupled to the second output, the operational transductance amplifier including an output coupled to the gate terminal of the sixth transistor.
- 1 17. The preamplifier circuit as recited in claim 16, and further comprising a first
 2 current source including a first terminal coupled to the source terminal of the
 3 eighth transistor and a second terminal coupled to ground.
- 1 18. The preamplifier circuit as recited in claim 17, and further comprising a second
 2 current source including a first terminal coupled to the power source and a second
 3 terminal coupled to the gate terminal of the fourth transistor.
- 1 19. The preamplifier circuit as recited in claim 18, and further comprising another
 2 capacitor including a first terminal coupled to the gate terminal of the first
 3 transistor and a second terminal coupled to a magneto-resistive (MR) sensor.
- 1 20. A preamplifier circuit system, comprising:
- a magneto-resistive (MR) sensor including a first terminal coupled to ground and
- 3 a second terminal;
- a first transistor including a source terminal coupled to ground, a gate terminal
- 5 coupled to a first node, and a drain terminal;

6	a second transistor including a source terminal coupled to the drain terminal of the
7	first transistor, a gate terminal coupled to a second node, and a drain terminal coupled to
8	a first output;
9	a third transistor including a source terminal coupled to the drain terminal of the
10	second transistor, a gate terminal coupled to a power source, and a drain terminal coupled
11	to the power source;
12	a fourth transistor including a source terminal coupled to ground, a gate terminal
13	coupled to the drain terminal of the first transistor, and a drain terminal coupled to the
14	second node;
15	a fifth transistor including a source terminal coupled to the power source, a gate
16	terminal, and a drain terminal coupled to the second node;
17	a sixth transistor including a source terminal coupled to the power source, a gate
18	terminal, and a drain terminal coupled to a third node;
19	a seventh transistor including a source terminal coupled to the power source, a
20	gate terminal, and a drain terminal coupled to the second terminal of the MR sensor;
21	an eighth transistor including a source terminal, a gate terminal, and a drain
22	terminal coupled to a second output;
23	a ninth transistor including a source terminal coupled to the second output, a gate
24	terminal coupled to the power source, and a drain terminal coupled to the power source;
25	an operational transductance amplifier with a first input coupled to the first output
26	and a second input coupled to the second output, the operational transductance amplifier
27	including an output coupled to the gate terminal of the sixth transistor;

28	a first current source including a first terminal coupled to the source terminal of	
29	the eighth transistor and a second terminal coupled to ground;	
30	a second current source including a first terminal coupled to the power source and	
31	a second terminal coupled to the gate terminal of the fourth transistor;	
32	a first capacitor including a first terminal coupled to the power source and a	
33	second terminal coupled to the gate terminal of the sixth transistor;	
34	a second capacitor including a first terminal coupled to the second node and a	
35	second terminal coupled to ground;	
36	a third capacitor including a first terminal coupled to the first node and a second	
37	terminal coupled to the second terminal of the MR sensor;	
38	a first resistor including a first terminal coupled to the third node and a second	
39	terminal coupled to the first node; and	
40	a second resistor including a first terminal coupled to the third node and a second	
41	terminal coupled to ground.	
1	21. A disk drive system, comprising:	
2	a magnetic recording disk;	
3	a magnetic head including an magneto-resistive (MR) sensor;	
4	an actuator for moving the magnetic head across the magnetic recording disk so	
5	the magnetic head may access different regions of the magnetic recording disk; and	
6	a controller electrically coupled to the magnetic head including a preamplifier	
7	including:	

8	an alternating current (AC) coupling module coupled to the MR sensor for
9	blocking a direct current (DC) voltage associated with an input signal, and
10	filtering low frequency noise associated with the input signal,
1	a gain stage module coupled to the AC coupling module, the gain stage
12	module including a plurality of cascode field effect transistors (FETs) configured
13	for amplifying the input signal, while reducing intrinsic noise and increasing
4	operational bandwidth, and
5	a control circuit coupled to the gain stage module for feeding back an
6	output of the gain stage module.