线性代数检测题(矩阵的运算)

一. 填空题

1. 设A 为任意n 阶方阵,矩阵B 满足AB = BA ,则B =_____.

3. 设
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, n 为正整数,则 $\mathbf{A}^n = \underline{\hspace{1cm}}$.

4. 设
$$A = \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix}$$
 $(4 -2 3)$,则 $A^5 =$ _______.

5. 设 \mathbf{A} 、 \mathbf{B} 为n阶方阵,则 $\mathbf{A}^2 - \mathbf{B}^2 = (\mathbf{A} + \mathbf{B})(\mathbf{A} - \mathbf{B})$ 的充分必要条件是

二. 选择题

1. 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
, 则 ().

(A)
$$\begin{pmatrix} 0 & 2 & 4 \\ 1 & 2 & 1 \end{pmatrix} = 2A$$
; (B) $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix} = A$;

(C)
$$2(A-2A) = \begin{pmatrix} 0 & -2 & -4 \\ -2 & -4 & -2 \end{pmatrix};$$
 (D) $A + \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$

- 2. 设 $A \times B$ 为两个矩阵,则下列说法正确的是().
 - (A) 若AB = O,则A = O或B = O; (B) 若 $A \setminus B$ 为同型矩阵,则AB = BA;
 - (C) 若AB = O, BA = O, 则AB = BA; (D) 若kA = O, 则k = 0或A = O.
- 3. 设 $\mathbf{A} \times \mathbf{B} \times \mathbf{C}$ 均为n阶方阵,下列说法**不正确**的是().

(A)
$$(A+B)+C=A+(B+C)$$
; (B) $(AB)C=A(BC)$;

(C)
$$(A+B)C = AC + BC$$
; (D) $AB = AC$, $A \neq O$, $\emptyset B = C$.

4. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} x & 1 \\ 2 & y \end{pmatrix}$, 则 \mathbf{A} 、 \mathbf{B} 相乘可交换的充要条件是().

(A)
$$x = y + 1$$
; (B) $x = y - 1$; (C) $x = y$; (D) $x = 2y$.

5. 设矩阵
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 则 $\mathbf{P}\mathbf{A}\mathbf{Q} = ($

(A)
$$\begin{pmatrix} a_{21} + a_{23} & a_{22} & a_{23} \\ a_{11} + a_{13} & a_{12} & a_{13} \\ a_{31} + a_{33} & a_{32} & a_{33} \end{pmatrix} ;$$
 (B)
$$\begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} + a_{12} & a_{31} + a_{11} & a_{33} + a_{13} \end{pmatrix} ;$$

(C)
$$\begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{21} & a_{32} + a_{22} & a_{33} + a_{23} \end{pmatrix};$$
 (D)
$$\begin{pmatrix} a_{21} & a_{22} & a_{21} + a_{23} \\ a_{11} & a_{12} & a_{11} + a_{13} \\ a_{31} & a_{32} & a_{31} + a_{33} \end{pmatrix}.$$

三. 计算题

1. 已知
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 7 & 6 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 3 & 0 \\ 5 & 7 & -4 \end{pmatrix}$, 求 $2A - 3B$

2. 计算矩阵的乘积:
$$\begin{pmatrix} 2 & -2 & 3 \\ 4 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

3. 计算矩阵的乘积:
$$(x \ y \ z)$$
 $\begin{pmatrix} 4 & 3 & -2 \\ 3 & 5 & 2 \\ -2 & 2 & 6 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$