scverse

Scientific Python Sparse Summit

What is single cell RNA-seq?

- High throughput assays on single cells
- Thousands to millions of observations (cells) on tens of thousands of variables (genes)
- Identify cell types, states, and dynamics

single cell data is sparse

- The data is
 - ~20k possible genes
 - ~3-5k counts per cell
 - Increasing dataset sizes (1m+)
- Benefits of sparse representation
 - Memory usage
 - Compute time

graphs are important in our domain

Normal Workflow

Clustering via

graphs are important in our domain

Normal Workflow

Graph based

graphs are important in our domain

Normal Workflow

Graph based

Spatial Graphs

gene expression

- immune cell
- repressed cancer cell malignant cancer cell
- epithelial cell

cell type

- immune cell
- cancer cell
- O epithelial cell

How we handle sparse data

- AnnData container
 - Special casing sparse access
 - On disk representation (zarr, hdf5)
 - with out of core access (largely used for viz)
- Compute
 - PCA on sparse data
 - Fast sparse statistics (mean, var)
 - Fast Graph statistics (Morans I, etc)

What do we want

- Array API friendly sparse arrays
 - Eventual compatibility with xarray
 - Dask support (?)
- Consistent support throughout ecosystem (e.g. sklearn, pytorch-geometric)
- Out of core sparse arrays