Symulacja Cyfrowa Projekt Metoda symulacji: Protokół dostępu do łącza: M1 A2

1. Treść zadania.

Wykonał: Adam Rektor 144319

Rozważmy system radiokomunikacyjny składający się z dwóch stacji bazowych BS1 i BS2, oddalonych od siebie o odległość l. W losowych odstępach czasu τ w systemie pojawiają się użytkownicy. System może jednocześnie obsługiwać n użytkowników, każdy kolejny użytkownik trafia do kolejki, gdzie oczekuje na zwolnienie miejsca w systemie. Użytkownicy pojawiają się w odległości x od BS1 i poruszają się z losową prędkością v w kierunku BS2. Użytkownik opuszcza system, kiedy znajdzie się w odległości mniejszej niż x od BS2. Użytkownik znajdujący się w systemie w stałych odstępach czasu t raportuje moc odbieraną przez obsługującą go stację bazową i sąsiednią

stację bazową (np. użytkownik obsługiwany przez stację bazową BS1 raportuje do niej moc odbieraną od stacji BS1 i BS2). Moc odbierana $P\ b$ dana jest wzorem (na podstawie 3GPP TR 138.901):

$$Pb(d) [dBm] = 4.56 - 22 log 10 d [m] + s[dB],$$

gdzie d oznacza odległość od stacji bazowej, a s zmienną losową o rozkładzie Gaussa ze średnia

zero i odchyleniem standardowym 4 dB. Jeśli moc odbierana przez użytkownika od sąsiedniej stacji jest większa od mocy odbieranej przez stację obsługującą użytkownika o α przez czas t t t (ang. Time to Trigger), wówczas użytkownik zmienia obsługującą go stację bazową np. z BS1 na BS2. Jeśli moc odbierana przez użytkownika od obsługującej go stacji bazowej będzie o Δ dB niższa niż

moc odbierana od sąsiedniej stacji bazowej, wówczas mamy do czynienia z zerwaniem łącza radiowego. Użytkownik, którego łącze radiowe zostało zerwane jest usuwany z systemu.

Opracuj symulator sieci bezprzewodowej zgodnie z przypisaną metodą M (Tabela 1) oraz parametrami podanymi w Tabeli 3. W zależności od wybranego scenariusza A należy znaleźć wartość wskazanego parametru.

- Za pomocą symulacji ustal minimalną intensywność zgłoszeń, która zapewni obsługę n użytkowników w systemie przez cały okres eksperymentu (z pominięciem fazy początkowej).
- W zależności od scenariusza A znajdź, za pomocą symulacji, optymalną wartość parametru $t\ t\ t$ lub α tak, aby zapewnić minimalną liczbę przełączeń użytkowników pomiędzy stacjami

bazowymi przy liczbie zerwanych łączy radiowych mniejszej niż 0.1 na obsłużonego użytkownika. Następnie wyznacz:

- średnią liczbę przełączeń użytkowników między stacjami (uśrednioną po obsłużonych użytkownikach),
 - średnią liczbę zerwanych połączeń radiowych (uśrednioną po obsłużonych użytkownikach),
 - średnią granicę komórek, tj. odległość od BS1, w jakiej powinno dojść do przełączenia użytkownika między stacjami bazowymi.
 - Sporządź wykres średniej liczby przełączeń użytkowników między stacjami bazowymi w funkcji optymalizowanego parametru α lub $t\ t\ t$.
 - Sporządź wykres średniej liczby zerwanych łączy radiowych w funkcji optymalizowanego parametru lpha lub t t t
 - Ustal stalą wartość prędkości użytkowników v i dla ustalonej wcześniej wartości parametrów α i t t t sporządź wykresy średniej liczby przełączeń użytkowników pomiędzy stacjami bazowymi i średniej liczby zerwanych łączy radiowych w funkcji prędkości użytkowników

1.1. Parametry.

- L stała równa 5000m,
- x stała równa 2000m,
- v zmienna losowa o rozkładzie jednostajnym w przedziale [5,50] m/s,
- t stała równa 20ms,
- s zmienna losowa o rozkładzie Gaussa ze średnią równą 0 i odchyleniem standardowym 4dB,
- Δ stała równa 20dB,
- τ zmienna losowa o rozkładzie wykładniczym o intensywności λ.

2. Krótki opis modelu symulacyjnego.

2.1. Schemat modelu symulacyjnego.

2.2. Opis klas wchodzących w skład systemu i ich atrybutów.

- O User klasa reprezentująca użytkownika w systemie.
 - Atrybuty klasy User:
 - Id id użytkownika
 - Speed- prędkośc użytkownika
 - Station stacja to której podłącozny jest aktualnie użytkownik
 - distance dystans na którym aktualnie znajduję się użytkownik
 - PowerBS1 moc odbierana ze stacji bazowej BS1
 - PowerBs2 moc odbierana ze stacji bazowej BS2
 - handoverTime czas używany do przełączenia użytkownika między stacjami
 - timeReport czas najbliższego raportu użytkownika
 - CounterSwitches zliczenie przełączeń użytkownika
 - DistanceSwitches zliczany dystans podczas przełączenia

Metody klasy User:

- Def __init__ ()- konstruktor klasy User, wywoływany podczas tworzenia nowego użytkownika. Przyjmuje parametry: speed, clock, generator1, generator2). Przypisuje unikalne ID użytkownikowi.
- Def updatePower() metoda która aktualizuje moc sygnału użytkownika, od stacji bazowych, na podstawie danych z generatorów liczb losowych. Metoda zapisuje Moc w atrybutach powerBS1 i powerBS2.
- Def updatePosition()- metoda aktualizująca pozycję użytkownika w systemie na podstawie prędkości.
- Def updateReportTime() metoda aktualizująca czas następnego raportu użytkownika. Zwiększa wartość timeReport o 20 jednostek czasu.
- Def checkSwitchStation() metoda sprawdzająca, do której stacji powinien być podłączony użytkownik, na podstawie różnicy mocy (power BS1 i powerBs2) w stosunku do parametru ALFA. Zwraca wartość True jeżeli użytkownik powinien zostać przełączony między stacjami.
- Def checkDeleteUser() metoda sprawdzająca czy użytkownik powinien zostać wyrzucony z systemu na podstawie swojej pozycji.
- Def checkDisconnectUser() metoda sprawdzająca, do której stacji powinien być podłączony użytkownik, na podstawie różnicy mocy (power BS1 i powerBs2) w stosunku do parametru Delta. Zwraca wartość True jeżeli użytkownik powinien zostać rozłączony z sieci.
- Queue klasa reprezentująca system kolejki
 - Atrybuty klasy Queue:
 - usersList lista użytkowników aktualnych w systemie
 - waitQueue lista użytkowników oczekujących na zwolnienie miejsca

Metody:

- Def createuser() metoda tworząca nowego użytkownika, oraz dodająca go do w kolejce aktywnych użytkowników – usersList, bądź w kolejce oczekujących użytkowników - waitQueue, w zależności od stopnia zapełnienia.
- Def deleteUser() metoda usuwająca użytkownika z kolejki aktywnych, oraz w przypadku gdy w kolejce oczekujących znajduję się użytkownik, dodaje go do kolejki aktywnych.

- UniformGenerator klasa reprezentująca generator, oparty na rozkładzie równomiernym, wykorzystywany do obliczania prędkości.
 - Metody klasy UniformGenerator:
 - Def __init__() metoda przyjmująca seed jako argument, inicjalizuje generator losowy na bazie ziarna.
 - Def uniformGenerator() metoda generuje i zwraca liczbę losową z rozkładem jednostajnym w przedziale 5 do 50.
- GaussianGenerator klasa reprezentująca generator wykorzystywany do generowania składowej mocy.
 - Metody klasy GaussianGenerator:
 - Def __init__() metoda przyjmująca seed jako argument, inicjalizuje generator losowy na bazie ziarna.
 - Def GaussianGenerator()-metoda generuje i zwraca liczbę losową z rozkładem normlanym o średniej μ = 0 i odchyleniu standardowym σ =4.
- ExponentialGenerator klasa reprezentująca generator oparty na rozkładzie wykładniczym, wykorzystywany do intensywności ruchu.
 - Metody klasy ExponentialGenerator:
 - Def __init__() metoda przyjmująca seed jako argument, inicjalizuje generator losowy na bazie ziarna.
 - Def GaussianGenerator()-metoda generuje i zwraca liczbę losową z rozkładem wykładniczym o określonym parametrze lambda λ.

3. Opis przydzielonej metody symulacyjnej.

Została przydzielona mi metoda przeglądania działań. Jest to technika symulacji, która polega na przeglądaniu wszystkich zdarzeń czasowych oraz warunkowych, w celu sprawdzenia czy mogą one zostać uruchomione, bądź zakończone. W symulacji ustalany jest czas do najbliższego zdarzenia, a następnie zdarzenie to jest wykonywane. Czas ustalany jest metodą bezwzględną, co oznacza, że najmniejszy czas wśród czasu zdarzeń, przypisywany jest do czasu całego systemu.

3.1. Schemat blokowy pętli głównej.

3.2. Lista zdarzeń czasowych/warunkowych

- Zdarzenia czasowe:
 - Stworzenie i dodanie nowego użytkownika użytkownik zostaje wygenerowany w pewnych odstępach czasowych, na podstawie generatora wykładniczego. Zostaje dodany do listy aktywnych, bądź do kolejki, w zależności od zajętości systemu.
 - Raportowanie użytkownika Raportowanie mocy odbieranej ze stacji oraz pozycji użytkownika aktualizowane jest co 20ms.

• Zdarzenia warunkowe:

- Użytkownik zerwał połączenie zależne od mocy sygnału odbieranego od aktualniej stacji
- Przełączenie stacji zależne od różnicy mocy od stacji bazowych, jeżeli różnica ta utrzymuje się pewny czas(TTT), następuje przełączenie.
- Opuszczenie systemu Po przejściu 3km użytkownik jest usuwany z systemu.

4. Parametry wywołania programu.

- Wartość parametru TTT
- Wartość parametru Lambda
- Liczba obsłużonych użytkowników
- Wartość końca fazy początkowej
- Numer ziarna

5. Generatory.

Program wykorzystuje trzy różne typy generatorów liczb pseudolosowych:

- Generator o rozkładzie jednostajnym, który używany jest określaniu prędkości użytkownika. Wygenerowane wartości mieszczą się w przedziale [5, 50].
- Generator o rozkładzie Gaussa o średniej równiej 0 i odchyleniu standardowym równym 4 dB. Ten generator jest używany do generowania zmiennej używanmej do obliczenia mocy odbieranej ze stacji bazowej.
- Generator o rozkładzie wykładniczym o intensywności λ, generuje wartości używane w procesie tworzenia użytkowników w systemie.

Każdy z tych generatorów opiera się na bibliotece języka programowania Python o nazwie "random" i ma zdefiniowaną wartość seed podczas inicjalizacji. W celu zapewnienia niezależności replikacji, do każdego z generatorów użyto innych zestawu innych seedów(pierwsze 10 seedów do pierwszego generatora, drugie 10 seedów do drugiego itd.) . Tak łącznie przeprowadzono 10 testów. Wszystkie ziarna zostały wygenerowane za pomocą generatora o rozkładzie jednostajnym z biblioteki "random" o wartości seed równą 2256. Każde ziarno było od siebie oddzielone odległością 100 000. Po ich wygenerowaniu, zostały zapisane do pliku o rozszerzeniu json, a następnie przerzucone do pliku o rozszerzaniu txt,jedna po drugiej. Umożliwiło mi to automatyczne sczytywanie sedesów.

Rysunek 1. Histogram przedstawiający rozkład generatora równomiernego.

Rysunek 2. Histogram przedstawiający rozkład generatora wykładniczego.

Rysunek 3. Histogram przedstawiający rozkład generatora opartego na składowej Gaussowskiej.

6. Krótki opis zastosowanej metody testowania i weryfikacji poprawności działania programu.

Program był rozwijany etapowo, co umożliwiało systematyczną weryfikację otrzymywanych danych. Po zakończeniu każdej symulacji, zbierane były istotne statystyki, takie jak liczba przełączeń, rozłączeń, dystans pokonany podczas przełączania oraz ogólna liczba utworzonych użytkowników. Te dane pozwalały na przeprowadzanie testów oraz bieżącą weryfikację działania programu zarówno w trakcie jego tworzenia, jak i w efekcie końcowym.

```
Wartość TTT = 120 zestaw seed: 0
Rozłączenia = 182
Przełączenia = 277
Dystans przełączeń = 768065.4318990221
Wartość TTT = 120 zestaw seed: 1
Rozłączenia = 199
Przełączenia = 259
```

7. Wyniki Symulacji

7.1. Wyznaczenie długości fazy początkowej (wykres i opis)

W celu wyznaczenia fazy początkowej, zmieniany był parametry lambda, który wpływa na intensywność generowania użytkowników w systemu. Dla każdej lambdy wykonałem po 10 symulacji, z różnymi ziarnami, a następnie wyniki zostały uśrednione, w zależności od liczby obsłużonych użytkowników była równa 500. Wartości lambda które miały kluczowy wpływ na wyznaczenie długości fazy początkowej, zostały przedstawione poniżej na rysunku. Koniec fazy początkowej przyjąłem po 65 użytkownikach.

7.2. Wyznaczenie wartości parametru lambda (wykres z przedziałami ufności i opis)

Kolejnym etapem było wyznaczenie parametru lambda, który musiał zostać tak dobrany, aby utrzymywał zajętość systemu dla 40 użytkowników, po pominięciu fazy początkowej. Wykorzystując wartości uzyskane podczas wyznaczania fazy początkowej, wyznaczenie parametru lambda rozpocząłem od wartości 0.001 do wartości 0.00116, z krokiem co 0.0002. Dla każdej wartości lambda wykonałem 10 symulacji z odpowiednimi ziarnami, wybrałem minimalną wartość z każdej z symulacji, a następnie uśredniłem te wyniki. Wyliczone zostało odchylenie standardowe z próby, rozkład T studenta, a przyjętym parametrem alfa = 0.05 oraz przedziały ufności. Przedziały ufności pokazały mi że, wartość lambda 0.0011, będzie optymalną wartością parametru lambda do kontynuowania symulacji.

7.3. Tabelka z wynikami symulacji dla każdego przebiegu symulacyjnego.

Wyznaczono mi optymalizację parametru TTT(Time to Trigger). Odpowiada po jakim czasie użytkownik ma zostać przełączony do innej stacji bazowej, która ma większą moc od aktualnie podłączonej. Dla każdej wartości TTT zostało przeprowadzone 10 symulacji, gdzie koniec symulacji uważało się moment obsłużenia 500 użytkowników, z pominięciem fazy początkowej. Zbierałem statystyki takie jak: suma przełączeń, suma rozłączeń, suma odległości przełączenia od stacji bazowej BS1. Po przeprowadzeniu symulacji, wybrana została wartość TTT równa 60, ponieważ ilość przełączeń oraz rozłączeń jest możliwie najmniejsza.

7.3.1. Optymalizacja parametru TTT

❖ TTT=20

Nr. Symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	42298	84,596	165	0,33	2471,075894
2	41055	82,11	178	0,356	2466,32992
3	44430	88,86	169	0,338	2471,517199
4	41904	83,808	160	0,32	2473,099777
5	44443	88,886	170	0,34	2466,3456
6	44682	89,364	150	0,3	2473,316471
7	43704	87,408	175	0,35	2468,718234
8	44246	88,492	159	0,318	2471,333946
9	42309	84,618	152	0,304	2470,969009
10	46318	92,636	155	0,31	2474,855557
Średnia	43538,9	87,0778	163,3	0,3266	2470,75616
Odchylenie	1600,830441	3,201660881	9,638464608	0,019276929	2,850168035
P. Ufności	1145,165111	2,290330222	6,89494222	0,013789884	2,038887387

❖ TTT = 40

Nr. symulacji	Przełączenia	Przełączenia/os	Rozłączenia	Rozłączenia/os	Średnia odległość przełączenia
1	9783	19,566	131	0,262	2483,440495
2	10102	20,204	145	0,29	2481,02423
3	10043	20,086	127	0,254	2479,732322
4	10489	20,978	118	0,236	2485,828388
5	10556	21,112	126	0,252	2485,251423
6	10589	21,178	123	0,246	2480,369756
7	10601	21,202	134	0,268	2479,259505
8	10160	20,32	129	0,258	2479,835472
9	10274	20,548	115	0,23	2480,902326
10	10938	21,876	120	0,24	2486,068834
Średnia	10353,5	20,707	126,8	0,2536	2482,171275
Odchylenie	341,014581	0,682029162	8,715248451	0,017430497	2,702220562
P. Ufności	243,9471355	0,487894271	6,234513166	0,012469026	1,93305214

❖ TTT = 60

Nr. Symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	2541	5,082	115	0,23	2501,906388
2	2738	5,476	106	0,212	2503,498659
3	2479	4,958	121	0,242	2495,84934
4	2596	5,192	114	0,228	2502,003128
5	2810	5,62	92	0,184	2501,635897
6	2553	5,106	101	0,202	2499,937092
7	2530	5,06	118	0,236	2500,617318
8	2722	5,444	118	0,236	2500,793504
9	2627	5,254	100	0,2	2498,513828
10	2409	4,818	92	0,184	2510,66381
Średnia	2600,5	5,201	107,7	0,2154	2501,541896
Odchylenie	124,9366506	0,249873301	10,96509614	0,021930192	3,843571411
P. Ufności	89,37429583	0,178748592	7,843957248	0,015687914	2,749525353

❖ TTT = 80

Nr. Symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	813	1,626	112	0,224	2559,680412
2	796	1,592	114	0,228	2555,667633
3	721	1,442	110	0,22	2571,169236
4	851	1,702	126	0,252	2545,840818
5	797	1,594	106	0,212	2536,159604
6	772	1,544	115	0,23	2552,670169
7	813	1,626	113	0,226	2551,083201
8	803	1,606	121	0,242	2552,799714
9	769	1,538	111	0,222	2558,577735
10	796	1,592	96	0,192	2559,708756
Średnia	793,1	1,5862	112,4	0,2248	2554,335728
Odchylenie	34,15471336	0,068309427	8,071899129	0,016143798	9,302436936
P. Ufności	24,43281007	0,04886562	5,774288787	0,011548578	6,654562504

❖ TTT = 100

Nr. symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	405	0,81	135	0,27	2665,902837
2	422	0,844	149	0,298	2666,803434
3	398	0,796	158	0,316	2667,088087
4	415	0,83	138	0,276	2668,561165
5	429	0,858	143	0,286	2668,012993
6	442	0,884	127	0,254	2678,891004
7	416	0,832	151	0,302	2667,323266
8	383	0,766	140	0,28	2685,79427
9	430	0,86	148	0,296	2670,31944
10	423	0,846	127	0,254	2678,480661
Średnia	416,3	0,8326	141,6	0,2832	2671,717716
Odchylenie	17,19205243	0,034384105	10,22198067	0,020443961	6,828815197
P. Ufności	12,29845343	0,024596907	7,312364467	0,014624729	4,885040111

❖ TTT = 120

Nr. symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	277	0,554	182	0,364	2772,799393
2	259	0,518	199	0,398	2769,291706
3	263	0,526	208	0,416	2751,709934
4	269	0,538	205	0,41	2757,770206
5	297	0,594	174	0,348	2772,834543
6	290	0,58	189	0,378	2767,289518
7	278	0,556	175	0,35	2770,992989
8	285	0,57	186	0,372	2757,350636
9	284	0,568	188	0,376	2766,99919
10	284	0,568	176	0,352	2765,557864
Średnia	278,6	0,5572	188,2	0,3764	2765,259598
Odchylenie	11,97404601	0,023948092	12,29091806	0,024581836	7,248216329
P. Ufności	8,565716504	0,017131433	8,792393112	0,017584786	5,185061607

❖ TTT = 140

Nr. symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	196	0,392	236	0,472	2829,293004
2	178	0,356	256	0,512	2812,954651
3	195	0,39	235	0,47	2824,047001
4	187	0,374	242	0,484	2804,487782
5	175	0,35	242	0,484	2806,817903
6	185	0,37	225	0,45	2805,660541
7	202	0,404	228	0,456	2809,584838
8	204	0,408	218	0,436	2836,96608
9	166	0,332	247	0,494	2820,597199
10	184	0,368	217	0,434	2819,459492
Średnia	187,2	0,3744	234,6	0,4692	2816,986849
Odchylenie	12,19107141	0,024382143	12,66842093	0,025336842	10,9472129
P. Ufności	8,720967127	0,017441934	9,062442401	0,018124885	7,831164346

❖ TTT = 160

Nr. symulacji	Przełączenia	Przełączenia/os	Rozłączenia	rozłączenia/os	Średnia odległość przełączenia
1	92	0,184	287	0,574	2847,075078
2	116	0,232	267	0,534	2833,760648
3	96	0,192	276	0,552	2876,206446
4	86	0,172	280	0,56	2847,609178
5	108	0,216	283	0,566	2853,477891
6	108	0,216	267	0,534	2844,142871
7	120	0,24	270	0,54	2837,76325
8	88	0,176	276	0,552	2854,593724
9	98	0,196	284	0,568	2849,982175
10	98	0,196	264	0,528	2857,443698
Średnia	101	0,202	275,4	0,5508	2850,205496
Odchylenie	11,55662388	0,023113248	8,085652588	0,016171305	11,72364311
P. Ufności	8,267110704	0,016534221	5,784127418	0,011568255	8,386589065

• Wykres średniej liczby przełgczeń w zależności od parametru TTT, wraz z przedziałami ufności.

Wykres średniej liczby zerwań w zależności od parametru TTT, wraz z przedziałami ufności.

7.3.2. Wpływ prędkości użytkownika.

Symulacje przeprowadzone zostały również pod względem różnej prędkości użytkowników, oraz przenalizowany został wpływ prędkości użytkownika na średnią liczbę przełączań oraz zerwań (na użytkownika). Dla każdej prędkości zostało przeprowadzone 10 symulacji, gdzie tak jak w optymalizacji parametru TTT, koniec symulacji uważało się na moment obsłużenia 500 użytkowników, z pominięciem fazy początkowej. Dla każdego wyniku, obliczono średnią, odchylenie standardowe, oraz przedział ufności.

V = 5 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	3,794	0,616	2469,798471
2	3,748	0,576	2475,709498
3	3,732	0,584	2484,075348
4	3,996	0,61	2466,047598
5	3,732	0,594	2472,411254
6	3,982	0,59	2472,794877
7	3,796	0,61	2466,668019
8	3,886	0,588	2476,681575
9	3,802	0,596	2481,992425
10	3,96	0,574	2480,710152
średnia	3,8428	0,5938	2474,688922
Odchylenie	0,104469879	0,014436066	6,275283632
P. Ufności	0,074733249	0,010326939	4,489067483

❖ V = 15 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,922	0,246	2519,994901
2	1,918	0,29	2521,57487
3	1,818	0,268	2534,938284
4	1,976	0,272	2520,036032
5	1,952	0,26	2519,58125
6	1,798	0,282	2525,288988
7	1,804	0,308	2516,486253
8	1,796	0,264	2526,424165
9	1,744	0,282	2521,795642
10	1,874	0,248	2523,815048
średnia	1,8602	0,272	2522,993543
Odchylenie	0,078612693	0,019136933	5,116040446
P. Ufności	0,056236133	0,013689738	3,659794865
Lower	1,803963867	0,258310262	

❖ V = 25m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,38	0,176	2561,482609
2	1,488	0,174	2564,157258
3	1,388	0,198	2561,876801
4	1,452	0,19	2573,798898
5	1,428	0,162	2569,12535
6	1,402	0,186	2559,057061
7	1,416	0,184	2571,579802
8	1,364	0,2	2557,13563
9	1,492	0,192	2554,599866
10	1,416	0,186	2571,079096
średnia	1,4226	0,1848	2564,389237
Odchylenie	0,043390219	0,011554701	6,65936482
P. Ufności	0,031039493	0,008265735	4,763822613

❖ V = 35m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,212	0,14	2590,269802
2	1,228	0,186	2574,243974
3	1,168	0,162	2583,711301
4	1,218	0,17	2582,485057
5	1,228	0,144	2598,022313
6	1,276	0,136	2601,818966
7	1,248	0,162	2592,251603
8	1,276	0,158	2588,910658
9	1,176	0,178	2583,075
10	1,28	0,126	2581,881562
średnia	1,231	0,1562	2587,667024
Odchylenie	0,039835774	0,01930918	8,260252442
P. Ufności	0,028496796	0,013812955	5,909028629

❖ V = 45 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,112	0,146	2612,885432
2	1,116	0,13	2618,954839
3	1,088	0,16	2624,184743
4	1,084	0,144	2625,161255
5	1,138	0,11	2630,858875
6	1,15	0,14	2612,771652
7	1,096	0,142	2622,588139
8	1,092	0,126	2632,43956
9	1,182	0,134	2624,698985
10	1,106	0,15	2624,808318
średnia	1,1164	0,1382	2622,93518
Odchylenie	0,031436709	0,013966627	6,553310926
P. Ufności	0,022488467	0,009991123	4,687956228

❖ V = 55 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,098	0,112	2654,732423
2	1,018	0,114	2654,292534
3	1,04	0,128	2647,307692
4	1,046	0,114	2638,063098
5	1,086	0,086	2650,039227
6	1,046	0,088	2658,609751
7	1,05	0,124	2657,797905
8	1,054	0,126	2643,182732
9	0,998	0,134	2655,461122
10	1,066	0,112	2643,359662
średnia	1,0502	0,1138	2650,284615
Odchylenie	0,029309839	0,016012495	7,032302742
P. Ufności	0,020966996	0,011454649	5,030606332

❖ V = 65 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,002	0,12	2672,03513
2	0,978	0,11	2670,744172
3	1,03	0,096	2666,793981
4	1,038	0,118	2657,877649
5	1,02	0,134	2653,43098
6	1,06	0,092	2655,852453
7	1,02	0,106	2655,587451
8	0,99	0,112	2677,714949
9	1,014	0,116	2658,048718
10	1,104	0,092	2646,994928
średnia	1,0256	0,1096	2661,508041
Odchylenie	0,036194536	0,013492385	9,745573601
P. Ufności	0,025892011	0,009651871	6,971563378

❖ V = 75 m/s

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	0,93	0,132	2687,903226
2	0,958	0,092	2684,673278
3	0,994	0,09	2696,914487
4	0,96	0,104	2686,2875
5	0,96	0,112	2681,025
6	0,97	0,108	2675,865979
7	1,014	0,1	2682,911243
8	0,948	0,116	2689,446203
9	1,042	0,098	2691,338772
10	0,964	0,092	2696,423237
średnia	0,974	0,1044	2687,278892
Odchylenie	0,033333333	0,013091134	6,618556078
P. Ufności	0,02384523	0,009364833	4,734629798

Nr. Symulacji	Przełączenia/os	rozłączenia/os	Średnia odległość przełączenia
1	1,008	0,096	2706,095238
2	0,946	0,11	2695,130655
3	0,974	0,092	2694,041889
4	0,988	0,088	2698,14413
5	0,96	0,116	2694,33
6	0,942	0,116	2676,487473
7	1,004	0,102	2675,722709
8	0,94	0,092	2704,578723
9	0,986	0,084	2694,383773
10	0,992	0,078	2686,170968
średnia	0,974	0,0974	2692,508556
Odchylenie	0,025560386	0,013234635	10,31025346
P. Ufności	0,018284799	0,009467487	7,375511014

 Wykres średniej liczby przełączeń w zależności od prędkości użytkownika wraz z przedziałami ufności.

• Wykres średniej liczby rozłączeń w zależności od prędkości użytkownika wraz z przedziałami ufności.

8. WNIOSKI

Celem projektu było stworzenie systemu radiokomunikacyjnego, w którym symulowani było użytkownicy przebywający drogę od jednej do drugiej stacji bazowej. W projekcie, zastosowana została metoda przeglądania działań, która polega na przeszukiwaniu aktywności i podejmowanie działań na ich podstawie. W programie wykorzystane zostało 3 generatory liczb pseudolosowych, które miały wpływ na: obliczenie mocy odbieranej ze stacji bazowych, czasu tworzenia użytkownika oraz prędkości poruszania się użytkownika w systemie. W programie zostały dostosowane odpowiednie parametry:

- $\lambda = 0.0011$
- TTT = 60
- Koniec fazy początkowej po obsłużeniu 65 użytkowników

Po wykonaniu symulacji, wyciągnąłem następujące wnioski:

- Wraz ze wzrostem parametru λ zwiększyło się natężenie dodawania nowych użytkowników w systemie.
- Wraz ze wzrostem parametru TTT zmniejszyła się liczba przełączeń między stacjami bazowymi, natomiast z początku ilość zerwań wraz ze wzrostem parametru TTT malała, gdzie najmniejsza wartość rozłączeń nastąpiła dla TTT = 60. Od tej wartości parametru, wraz z jego wzrostem, wartość przerwań rosła.
- Wraz ze wzrostem prędkości użytkowników zmniejszała się liczba przełączeń oraz zerwań,. Efekt ten jest spowodowany rzadszym raportowaniem przez użytkowników, który następował co 20ms.