

			8 20 3	
4.	Bayes ru	le is	defined	as
	,			

$$igotimes P(X \mid Y) = P(Y \mid X) imes rac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(Y)}{P(X)}$$

$$\bigcirc P(X \mid Y) = P(X \mid Y) \times \frac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) imes rac{P(X)}{P(Y \mid X)}$$

- Correct Yes.
- 5. Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: 'happy to learn NLP'. What is the probability that this tweet is positive? (Please, round your answer up to two decimal places. Remember that 0.578 = 0.58 and 0.572 = 0.57)

1/1 point

1/1 point

0.77

That's right. You just applied Bayes' rule.

6. The log likelihood for a certain word w_i is defined as:

 $\log(\frac{P(w_i|pos)}{P(w_i|neg)}).$

Positive numbers imply that the word is positive.

⊘ Correct

- Positive numbers imply that the word is negative.
- Negative numbers imply that the word is negative.

⊘ Correct

Negative numbers imply that the word is positive.

7.		log likelihood mentioned in lecture, which is the log of the ratio between two probabilities is bounded ween	1/1 point
	O	-1 and 1 $-\infty$ and ∞ 0 and ∞ 0 and 1 Correct Yes!	
8.	Whe	en implementing naive Bayes, in which order should the following steps be implemented.	1/1 point
	•	1. Get or annotate a dataset with positive and negative tweets	
		2. Preprocess the tweets: process_tweet(tweet) →	
		3. Compute freq(w, class)	
		4. Get P(w pos), P(w neg)	
		5. Get λ(w)	
		6. Compute logprior = log(P(pos) / P(neg))	
	0	1. Get or annotate a dataset with positive and negative tweets	
		2. Preprocess the tweets: process_tweet(tweet) →	
		3. Compute freq(w, class)	
		4. Get λ(w)	
		5. Get P(w pos), P(w neg)	

	Preprocess the tweets: process_tweet(tweet) →	
	4. Compute logprior = log(P(pos) / P(neg)	
	5. Get P(w pos), P(w neg)	
	6. Get λ(w)	
	✓ CorrectYes, that is correct.	
9.	To test naive bayes model, which of the following are required?	1/1 point
	$igotimes X_{ ext{val}}, Y_{ ext{val}}, \lambda, logprior \ igotimes X_{ ext{val}}, Y_{ ext{val}}, logprior$	
	$igcup X_{\mathrm val}, Y_{\mathrm val}, logprior$	
	$igcirc X_{ ext{val}}, \lambda, logprior \ igcirc Y_{ ext{val}}, \lambda, logprior$	
	$igcirc Y_{\mathrm val}, \lambda, logprior$	
	 ✓ Correct This is correct. 	
10.	Which of the following is NOT an application of naive Bayes?	1/1 point
(O Sentiment Analysis	
	O Author identification	
(O Information retrieval	
	O Word disambiguation	
	Numerical predictions	
	✓ Correct This is correct.	