

REGTECH WORKSHOP!

Credit scoring model development: importance of dataset and dataset analysis

Andrea Sorrentino, Head of Fintech

modefinance

A **credit score**, is an **opinion on the creditworthiness of a company**, finalized to understand the likelihood the company will meet its financial commitments within a given time horizon (usually one year).

Credit score is expressed via an established ranking system.

A **Credit Rating**, as defined in *Article* 3(1)(a) of the CRA Regulation, include quantitative analysis and sufficient qualitative analysis, according to the rating methodology established by the credit rating agency.

A measure of creditworthiness derived from summarising and expressing data based only on a pre-set statistical system or model, without additional substantial qualitative rating-specific analytical input from a rating analyst should not be considered as a credit rating.

A credit score cannot be considered a credit rating

A credit score can derive from a completely automated model (algorithm).

In the filed of creditworthiness analyses, several kind of different algorithms have been developed (Heuristic models, Machine Learning, Causal models) as previously mentioned.

As seen previously, creditworthiness analysis, since Altman's pioneer work, has become a science, and so did the approach.

Nevertheless, data science is a necessary but not sufficient condition.

Financial knowledge of what numbers are telling us is mandatory.

(I) $Z = .012X_1 + .014X_2 + .033X_3 + .006X_4 + .999X_5$ where $X_1 = \text{Working capital/Total assets}$ $X_2 = \text{Retained Earnings/Total assets}$ $X_3 = \text{Earnings before interest and taxes/Total assets}$ $X_4 = \text{Market value equity/Book value of total debt}$ $X_5 = \text{Sales/Total assets}$ Z = Overall Index

Morning session

Afternoon session

Data collection is the development phase in which we're creating a data set.

When we refer to a credit scoring model, the dataset will consist essentially of:

- **Registry information** about the counterparties (eg: country, industry classification, consolidation code of the accounts, etc.);
- Financials (balance sheet and income statement: issue of data availability and accounting differences among different countries);
- Sub sets of Active and Defaulted companies.

For the purpose of this event, we've collected data and created a dataset of companies with the following characteristics:

- Country: **Italy**;
- Size: **SMEs**;
- Type of entities: **Industrial companies**;
- Number of selected active companies: 13,413*;
- Number of selected **defaulted** companies: **1,632**.

*data collected to 2017

For these SMEs we've computed all financial ratios needed to perform a fundamentals' analysis:

RATIO001 (Total assets - Shareholders RATIO019 Interest paid/(Profit before	
Funds)/Shareholders Funds Interest paid)	ore taxes +
RATIO002 (Long term debt + Loans)/S. Funds RATIO027 EBITDA/interest paid	
RATIO003 Total assets/Total liabilities RATIO029 EBITDA/Operating reve	enues
RATIO004 Current assets/Current liabilities RATIO030 EBITDA/Sales	
RATIO005 (Current assets - Current assets: stocks)/Current liabilties RATIO036 Constraint EBIT	
RATIO006 (Shareholders Funds + Non current liabilities)/Fixed assets RATIO037 Constraint PL before tax	ζ
RATIO008 EBIT/interest paid RATIO039 Constraint Financial PL	
RATIO011 $\frac{\text{(Profit (loss) before tax + Interest}}{\text{paid)/Total assets}}$ RATIO040 $\frac{\text{Constraint P/L for perio}}{\text{EUR}}$	d th
RATIO012 P/L after tax/Shareholders Funds DPO $\frac{\text{Trade Payables/Operatin}}{\text{revenues}}$	ıg
RATIO013 GROSS PROFIT/Operating revenues DSO Trade Receivables/Operative revenues	ating
RATIO017 Operating revenues/Total assets DIO Inventories/Operating re-	venues
RATIO018 Sales/Total assets NACE Industry classification on	1 NACE

In creditworthiness analysis, **leverage and financial leverage represent fundamental metrics**.

Leverage is defined as: Total liabilities/Shareholders funds

It is a measure of the level of indebtedness of a company, respect its own sources.

The lower the better, BUT negative means disaster!

Financial leverage is defined as: Financial liabilities/Shareholders funds

It represents the **amount of bank debts** (i.e. high seniority) respect a company own funds.

	Chamber of			2015-12-31 f commerce
Turnover (€)	184,919,000	188,274,000	180,554,000	
modefinance score	CCC	В	В	
Probability of default				
1 year	25.33 %	5.08 %	4.70 %	
Confidence	100.00 %	100.00 %	100.00 %	
Solvency ratios				
Leverage ratio 🔞	17.51	11.05	11.92	
Financial leverage ②	10.00	6.23	6.94	
Total asset/Total liabilities 🔞	1.06	1.09	1.08	
Liquidity ratios				
Current ratio 🔞	0.78	0.87	0.96	
Quick ratio ②	0.49	0.58	0.66	
Cash cycle ratio	40.00	38.00	53.00	
Profitability ratios				
Return on investement ROI 🔞	0.35 %	8.76 %	7.63 %	
Return on equity ROE 🔞	-55.52 %	18.99 %	30.53 %	
Asset turnover 🔞	1.06	1.05	1.01	
Interest Coverage ratios				
EBIT interest coverage ratio 💿	1.03	2.83	2.63	

Cash cycle represents the time (expressed in days) needed by a company to convert its inventory and trade receivables into cash, and the time used to repay the trade debtors.

The constituents of the cash cycle are:

DIO: Inventories/Op. Revenues;

DSO: Trade receivables/Op. Revenues;

DPO: Trade payables/Op. Revenues.

Cash Cycle: DIO + DSO - DPO

BALANCE SHEET (th €)	31/12/2017	31/12/2016	31/12/2015
Accounting practice	Local GAAP	Local GAAP	Local GAAP
Exchange rate USD - EUR	0.83382	0.94868	0.91853
Number of months	12	12	12
Total assets	23,893,423	21,500,887	7,410,618
Fixed assets	18,414,792	15,562,363	4,855,271
Intangible fixed assets	351,654	356,840	0
Tangible fixed assets	17,086,320	14,265,177	4,771,505
Other fixed assets	976,818	940,346	83,766
Current assets	5,478,631	5,938,524	2,555,347
Stocks	1,887,382	1,961,346	1,173,728
Debtors	429,735	473,525	155,199
Other current assets	3,161,514	3,503,654	1,226,420
Cash & cash equivalent	2,808,234	3,219,066	1,099,392
Shareholders funds	3,533,097	4,508,977	995,411
Capital	141	153	120
Other shareholders funds	3,532,956	4,508,825	995,291
Total liabilities	20,360,326	16,991,910	6,415,207
Non current liabilities	13,961,032	11,463,965	3,833,196
Long term debt	7,853,241	5,671,460	1,899,860
Other non-current liabilities	6,107,791	5,792,504	1,933,335
Current liabilities	6,399,294	5,527,946	2,582,011
Loans	747,561	1,091,118	576,768
Creditors	1,993,038	1,764,863	841,506
Other current liabilities	3,658,695	2,671,965	1,163,737
Total shareh. funds & liab.	23,893,423	21,500,887	7,410,618
NET DEBT (th €)	31/12/2017	31/12/2016	31/12/2015
Short term debts	747,561	1,091,118	576,768
Long term debt	7,853,241	5,671,460	1,899,860
Cash & cash equivalent	2,808,234	3,219,066	1,099,392
Net debt	5,792,568	3,543,513	1,377,236
	31/12/2017	31/12/2016	31/12/2015
Working capital	324,079	670,008	487,421
Net Current Assets	-920,662	410,579	-26,664
	31/12/2017	31/12/2016	31/12/2015
Days Sales Of Inventory (DIO)	70	108	115
Days Sales Outstanding (DSO)	16	26	15
Days Payable Outstanding (DPO)	74	97	83
Cash Conversion Cycle (DIO + DSO - DPO)	12	37	47

BALANCE SHEET (th €)	31/12/2017	31/12/2016	31/12/2015
Accounting practice	Local GAAP	Local GAAP	Local GAAP
Exchange rate EUR - EUR	1	1	1
Number of months	12	12	12
Total assets	559,071	567,436	577,692
Fixed assets	338,734	347,448	362,414
Intangible fixed assets	8,113	8,304	12,373
Tangible fixed assets	329,876	338,399	349,691
Other fixed assets	746	745	350
Current assets	220,336	219,988	215,278
Stocks	105,675	106,602	105,771
Debtors	35,732	34,940	35,307
Other current assets	78,929	78,446	74,199
Cash & cash equivalent	51,447	52,154	37,748
Shareholders funds	127,134	128,772	131,806
Capital	20,250	20,250	20,250
Other shareholders funds	106,884	108,522	111,556
Total liabilities	431,937	438,664	445,886
Non current liabilities	100,132	100,237	125,034
Long term debt	71,417	71,518	96,260
Other non-current liabilities	28,715	28,719	28,774
Current liabilities	331,805	338,427	320,852
Loans	73,953	75,184	79,811
Creditors	225,710	224,229	210,442
Other current liabilities	32,142	39,015	30,599
Total shareh. funds & liab.	559,071	567,436	577,692
NET DEBT (th €)	31/12/2017	31/12/2016	31/12/2015
Short term debts	73,953	75,184	79,811
Long term debt	71,417	71,518	96,260
Cash & cash equivalent	51,447	52,154	37,748
Net debt	93,923	94,548	138,323
	31/12/2017	31/12/2016	31/12/2015
Working capital	-84,303	-82,687	-69,364
Net Current Assets	-111,469	-118,440	-105,575
net carrent Assets	-111,405	-110,440	-105,575
	31/12/2017	31/12/2016	31/12/2015
Days Sales Of Inventory (DIO)	35	35	34
Days Sales Outstanding (DSO)	12	12	11
Days Payable Outstanding (DPO)	75	74	68
Cash Conversion Cycle (DIO + DSO - DPO)	(-28	-27	-23

In this morning session we'll go through an algorithm that was developed so to carry on the following conceptual steps:

- Data comprehension: descriptive statistics;
- Correlation analysis;
- Discriminating capacity analysis.

In a few minutes we'll run a code that will display some nice statistics. Here are the basics.

Percentile: represent the values that break the frequency distribution into parts, of preset frequencies or percentages. Of particular interest are the quartiles, which correspond to the values which divide the distribution into four equal parts*.

*Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini © 2009 John Wiley & Sons, Ltd.

Percentile distribution example

BoxPlots: Box plots are very useful data visualization tools for depicting many different summary statistics and especially for graphically comparing multiple data sets. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually.

Correlation: The correlation coefficient is a measure of the direction and strength of the linear dependence between two continuous variables.

It is calculated using the covariance (*A*,*B*) and the standard deviation of both the *A* and *B* variables.

$$\rho(A, B) = \frac{\text{cov}(A, B)}{\sigma_A \sigma_B}$$

Correlation matrix example

In the afternoon session we'll go through some credit scoring algorithms, namely:

- Logistic regression;
- Tree models;
- Random forests.

Before going hands on within those algorithms, we'll go through some theory underneath each of them.

afternoon session

There are several factors/shrewdness to take into account when developing/applying a scoring model, the following are probably the most important:

- 1) Divide the dataset in two sub samples: one for training/development of the model, the other one for validation;
- 2) Model's choice: depending on the needs and the available data, different models have different pros and cons;
- 3) -Out of sample- validation of the model: there are several techniques to validate a model, the most common applied in credit scoring are represented by CAP/ROC curves;
- 4) Perform some statistics on the output, focus on "extreme" outcomes: they should not derive from "factual errors" and have to be somehow justifiable.

- It's very important that the model is not back-tested on the same data it has been developed (**Out of sample validation vs In sample validation**).
- Usually it results to be fair enough to split the dataset into **70-30** subsets, first for development, second for validation.
- Out of sample validation will confirm (or not) the final quality of the model, spotting potential overfitting.

We've seen there are different "kind" of scoring models: heuristic, Machine learning, causal models, etc.

Depending on need and dataset, one model can represent a better choice respect another one.

For instance, if we apply a simple logistic regression model, we may want to factor qualitative elements, such as Country or Sector ex-ante; meaning developing sub-model for different sectors and/or countries.

If we develop a random forest, we've got to be careful with data availability and how the network reacts to missing data.

Any model needs a thorough validation aimed to understand the model performance.

The key elements of a scoring model are:

- **Discriminating power of the model**: verify that the model discriminates "healthy" companies from bankrupt companies;
- **Bankruptcy dynamics**: for bankrupt companies, the assigned score deteriorates, approaching the default date.

Apart from the said validation, which is carried on "massively", developers have to analyze carefully also "extreme" output, eventually spotting exceptions that lead to unwanted results, or to verify that extreme results are always "justifiable".

An answer like "the model said so", is **never acceptable** by the end user of the model in case of anomalies.

This last task is harder to carry on when dealing with Machine Learning models.

LET'S SEE THIS!

THANKSOU

Andrea Sorrentino, Head of Fintech

modefinance

