

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年3月25日 (25.03.2004)

PCT

(10)国際公開番号
WO 2004/025876 A1

(51)国際特許分類:

H04B 7/26

(72)発明者; および

(21)国際出願番号:

PCT/JP2003/008881

(75)発明者/出願人(米国についてのみ): 篠井 健一郎
(SHINOI,Kenichiro) [JP/JP]; 〒233-0013 神奈川県横浜市港南区丸山台2-37-37-302 Kanagawa (JP). 須藤 浩章 (SUDO,Hiroaki) [JP/JP]; 〒224-0045 神奈川県横浜市都筑区東方町597-20 Kanagawa (JP).

(22)国際出願日:

2003年7月14日 (14.07.2003)

(25)国際出願の言語:

日本語

(26)国際公開の言語:

日本語

(30)優先権データ:

特願2002-264098 2002年9月10日 (10.09.2002) JP
特願2003-104428 2003年4月8日 (08.04.2003) JP

(71)出願人(米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市大字門真1006番地 Osaka (JP).

(74)代理人: 鷲田 公一 (WASHIDA,Kimihito); 〒206-0034 東京都多摩市鶴牧1丁目24-1 新都市センタービル5階 Tokyo (JP).

(81)指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NL, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,

(総葉有)

(54) Title: RADIO COMMUNICATION DEVICE, RECEIVER DEVICE, AND RECEPTION MANNER SELECTING METHOD

(54)発明の名称: 無線通信装置、受信装置、および受信方式選択方法

- 102...RADIO TRANSMISSION/RECEPTION PART
104...KNOWN-SIGNAL ACQUIRING PART
A...PROPAGATION ENVIRONMENT ESTIMATING PART
106...SIR MEASURING PART
122...CQI DECIDING PART
108...DOPPLER FREQUENCY DETECTING PART
110...INTERFERENCE POWER MEASURING PART
112...RECEPTION MANNER SELECTING PART
114...RAKE RECEPTION PART
116...LINEAR EQUALIZATION PART
118...DEMODULATING PART
120...DECODING PART
B...DECODED DATA

(57) Abstract: A radio communication device and reception manner selecting method that improve the throughput of the whole system. An SIR measuring part (106) measures the SIR of a known signal. A Doppler frequency detecting part (108) detects the Doppler frequency from the received signal to measure the Doppler shift amount, which is an index of the mobile velocity of a mobile station device. An interference power measuring part (110) measures the interference power from a different cell. A known-signal acquiring part (104), SIR measuring part (106), Doppler frequency detecting part (108) and interference power measuring part (110) constitute a propagation environment estimating part in a present embodiment. A reception manner selecting part (112) selects, based on the SIR, Doppler shift amount and interference power, a reception manner that is either RAKE reception or linear equalization.

(総葉有)

WO 2004/025876 A1

SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ,
SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(57) 要約: システム全体のスループットを向上させる無線通信装置および受信方式選択方法。SIR測定部(106)は、既知信号のSIRを測定する。ドップラー周波数検出部(108)は、受信信号からドップラー周波数を検出し、ドップラーシフト量を測定する。ドップラーシフト量は、移動局装置の移動速度の指標となる。干渉電力測定部(110)は、他セルからの干渉電力を測定する。なお、既知信号取得部(104)、SIR測定部(106)、ドップラー周波数検出部(108)、および干渉電力測定部(110)は、本実施の形態における伝搬環境推定部を構成している。受信方式選択部(112)は、SIR、ドップラーシフト量、および干渉電力に基づいて、RAKE受信もしくは線形等化のいずれかの受信方式を選択する。

明細書

無線通信装置、受信装置、および受信方式選択方法

5 技術分野

本発明は、無線通信装置、受信装置、および受信方式選択方法に関する。

背景技術

従来、無線通信システムにおいては、システム全体のスループットを向上させるために、例えば変調方式と符号化率からなる伝送レートであるMCS (Modulation Coding Schemes) を伝搬環境に応じて適応的に選択する適応変調方式を用いることが検討されている。

このMCS選択による適応変調方式を基地局装置からの送信データに適用する場合には、まず、基地局装置が送信する既知信号を移動局装置が受信する。そして、移動局装置は、受信した既知信号を用いて、例えばSIR (Signal to Interference Ratio : 信号電力対干渉電力比) などの受信品質を測定し、この受信品質に基づいて伝搬環境の状況を示すCQI (Channel Quality Indicator) を基地局装置へ通知する。そして、基地局装置は、あらかじめ備えられたテーブルを参照してCQIに対応するMCSを選択し、選択されたMCSによって規定される符号化および変調を送信データに対して行い、移動局装置へ送信する。

これにより、基地局装置は、伝搬環境が良好な移動局装置に対しては高い伝送レートでデータを送信し、伝搬環境が劣悪な移動局装置に対しては低い伝送レートでデータを送信することができ、誤りの発生を抑制し、システム全体のスループットを向上させることができる。

このような適応変調方式を、遅延波などの干渉波が存在するマルチパス環境において用いる際には、例えば特開平10-056420号公報に開示されて

いるように、干渉波のレベルを推定し、推定結果に応じて変調方式を選択したり、受信側でRAKE受信を行ったりすることにより、干渉波の影響を軽減することができる。

しかしながら、従来の適応変調方式においては、データを送信する基地局装置の送信電力が低い場合には、高伝送レートとなるMCSを選択すると、特にマルチパス環境において誤り率が非常に高くなる。そのため、このような高いMCSが選択される可能性がほとんどない。したがって、システム全体のスループットを充分に向上させることができないという問題がある。

また、データを受信する移動局装置が高速に移動している場合には、基地局装置へ報告したCQIに基づくMCSでデータが送信されると、CQIを報告した時点の伝搬環境と実際にデータを受信する時点の伝搬環境とが異なっていることがあるため、受信データの誤り率が高く、スループットの低下を招くという問題がある。

15 発明の開示

本発明の目的は、システム全体のスループットを向上させることである。

本発明者らは、移動局装置が比較的低速で移動している場合には、線形等化器を用いることにより、マルチパスの影響を軽減することができる一方、移動局装置が高速で移動している場合や他セルからの干渉電力が大きい場合には、
20 線形等化器と比較してRAKE受信を行う方が良好な受信特性を得られることに着目した。そして、伝搬環境の変化に応じて線形等化とRAKE受信とを併用することにより、マルチパスの影響を充分に軽減し、高伝送レートのMCSを選択できることを見出し、本発明をするに至った。

すなわち、本発明の主題は、マルチパスの影響を軽減できる線形等化やRAKE受信などの受信方式を、伝搬環境の変化に応じて切り替えて用いることにより、より伝送レートの高い変調方式によるデータの送信を可能とすることである。

本発明の一形態によれば、無線通信装置は、信号の伝搬環境を推定する推定手段と、少なくとも線形等化を含む2つ以上の受信方式から、推定された伝搬環境に応じて前記信号の受信方式を選択する選択手段と、を有する構成を探る。

本発明の他の形態によれば、受信装置は、少なくとも線形等化を含む2つ以上の受信方式から、伝搬環境に応じて選択された受信方式に関する情報を取得する取得手段と、取得された受信方式情報によって指定された受信方式で信号を受信する受信手段と、を有する構成を探る。

本発明のさらに他の形態によれば、受信方式選択方法は、信号の伝搬環境を推定するステップと、少なくとも線形等化を含む2つ以上の受信方式から、推定した伝搬環境に応じて前記信号の受信方式を選択するステップと、を有する。

図面の簡単な説明

図1は、本発明の実施の形態1に係る移動局装置の構成を示すブロック図、
図2は、実施の形態1に係る移動局装置の受信方式選択動作を示すフロー図、
15 図3は、本発明の実施の形態2に係る移動局装置の構成を示すブロック図、
図4は、実施の形態2に係る移動局装置のCQI決定動作を示すフロー図、
図5は、実施の形態2に係る移動局装置の動作を説明するための図、
図6は、本発明の実施の形態3に係る基地局装置の構成を示すブロック図、
図7は、実施の形態3に係る移動局装置の構成を示すブロック図、
20 図8は、実施の形態3に係る基地局装置の受信方式選択動作を示すフロー図、
図9は、実施の形態3に係る基地局装置のMCS選択動作を示すフロー図、
図10は、本発明の実施の形態4に係る基地局装置の構成を示すブロック図、
図11は、実施の形態4に係る移動局装置の構成を示すブロック図、
図12は、実施の形態4に係る移動局装置の受信方式選択動作を示すフロー
25 図、
図13は、本発明の実施の形態5に係る基地局装置の構成を示すブロック図、
図14は、本発明の実施の形態6に係る移動局装置の構成を示すブロック図、

図15は、実施の形態6に係る移動局装置の受信方式選択動作を示すフロー図、

図16は、本発明の実施の形態7に係る移動局装置の構成を示すブロック図、および、

5 図17は、実施の形態7に係る移動局装置の受信方式選択動作を示すフロー図である。

発明を実施するための最良の形態

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

10 (実施の形態1)

図1は、本発明の実施の形態1に係る移動局装置の構成を示すブロック図である。図1に示す移動局装置は、無線送受信部102、既知信号取得部104、SIR測定部106、ドップラー周波数検出部108、干渉電力測定部110、受信方式選択部112、RAKE受信部114、線形等化部116、復調部118、復号部120、およびCQI決定部122を有している。

無線送受信部102は、アンテナを介して信号を送受信し、所定の無線処理(ダウンコンバート、A/D変換、D/A変換、およびアップコンバートなど)を行う。既知信号取得部104は、無線送受信部102によって受信された信号から、既知信号を取得する。

20 SIR測定部106は、既知信号のSIRを測定する。SIRは、信号電力と干渉電力との比を示すものであり、SIRに応じて通信相手である基地局装置に対して報告するCQIが決定され、基地局装置は、CQIからMCSを選択する。ドップラー周波数検出部108は、受信信号からドップラー周波数を検出し、ドップラーシフト量を測定する。ドップラーシフト量は、移動局装置の移動速度の指標となる。干渉電力測定部110は、他セルからの干渉電力を測定する。なお、既知信号取得部104、SIR測定部106、ドップラー周波数検出部108、および干渉電力測定部110は、本実施の形態における伝

搬環境推定部を構成している。

受信方式選択部112は、SIR、ドップラーシフト量、および干渉電力に基づいて、RAKE受信もしくは線形等化のいずれかの受信方式を選択する。受信方式選択部112による受信方式の選択については、後に詳述する。

5 RAKE受信部114は、受信方式選択部112によってRAKE受信が選択された場合に、受信信号をRAKE受信する。線形等化部116は、受信方式選択部112によって線形等化が選択された場合に、受信信号を線形等化する。線形等化部116に備えられている線形等化器には、既知信号を逆拡散して積分するための積分周期に一定の限界があるため、移動局装置の移動速度が10高速になると性能が劣化することが知られている。復調部118は、線形等化後の信号を復調する。復号部120は、RAKE受信後の信号または復調後の信号を復号し、復号データを得る。

CQI決定部122は、SIR測定部106によって測定されたSIRに対応するCQIを決定し、無線送受信部102から送信させる。

15 次いで、上記のように構成された移動局装置における受信方式の選択動作について、図2に示すフロー図を参照しながら具体的に説明する。なお、以下の選択動作は、受信方式選択部112において行われる。

まず、ドッpler周波数検出部108によって測定されたドップラーシフト量が、所定の閾値Aと比較される(ST1000)。

20 この比較の結果、ドップラーシフト量が所定の閾値Aより大きければ、線形等化部116に備えられた線形等化器が追隨不可能な速度で移動局装置が移動しているものと判断し、受信方式としてRAKE受信が選択される(ST1600)。

また、ドップラーシフト量が所定の閾値A以下であれば、干渉電力測定部121によって測定された他セルからの干渉電力が所定の閾値B1と比較される(ST1100)。この比較の結果、干渉電力が所定の閾値B1以下であれば、受信方式として線形等化が選択される(ST1500)。また、干渉電力

が所定の閾値B1より大きければ、SIR測定部106によって測定されたSIRが所定の閾値C1と比較され(ST1200)、SIRが所定の閾値C1以上であれば、受信方式として線形等化が選択される(ST1500)。

そして、SIRが所定の閾値C1未満であれば、再び干渉電力が所定の閾値5 B2と比較される(ST1300)。ここで、ST1300において干渉電力と比較される所定の閾値B2は、ST1100における所定の閾値B1よりも大きい値である。この比較の結果、干渉電力が所定の閾値B2より大きければ、受信方式としてRAKE受信が選択される(ST1600)。

一方、干渉電力が所定の閾値B2以下であれば、さらにSIRが所定の閾値10 C2と比較される(ST1400)。ここで、ST1400においてSIRと比較される所定の閾値C2は、ST1200における所定の閾値C1よりも大きい値である。この比較の結果、SIRが所定の閾値C2未満であれば、受信方式としてRAKE受信が選択され(ST1600)、SIRが所定の閾値C2以上であれば、受信方式として線形等化が選択される(ST1500)。

15 このように受信方式が選択されることにより、ドップラーシフト量が大きい場合、換言すれば、移動局装置の移動速度が高速である場合は、線形等化部116に備えられた線形等化器が追随できないため、受信方式としてRAKE受信が選択されることになる。また、他セルからの干渉電力が大きく、かつ、SIRが低い場合も、受信方式としてRAKE受信が選択されることになる。一方、ドップラーシフト量が小さい、換言すれば、移動局装置の移動速度が低速で、かつ、干渉の影響が小さい場合は、受信方式として線形等化が選択されることになる。

20 このように、本実施の形態によれば、SIR、ドップラーシフト量、および干渉電力に応じて、移動局装置の移動速度が低速で、干渉の影響が小さい場合には、受信方式として線形等化が選択されるため、高伝送レートとなるMCSでデータが送信された場合に、RAKE受信では所望の誤り率が達成できなくとも、線形等化によってマルチパスの影響を軽減して、所望の誤り率を達成す

ることができ、システム全体のスループットを向上させることができる。

なお、本実施の形態においては、受信方式を選択する際に、干渉電力およびSIRについてそれぞれ2つの閾値を設定する構成としたが、本発明はこれに限定されず、いくつの閾値を設定しても良い。

5 (実施の形態2)

本発明の実施の形態2の特徴は、移動局装置が、伝搬環境に応じて受信方式を選択すると同時に、高伝送レートとなるMCSが選択されるようなCQIを基地局装置へ送信する点である。

図3は、本実施の形態に係る移動局装置の構成を示すブロック図である。同10 図に示す移動局装置において、図1に示す移動局装置と同じ部分には同じ符号を付し、その説明を省略する。

図3に示す移動局装置は、無線送受信部102、既知信号取得部104、SIR測定部106、ドップラ一周波数検出部108、干渉電力測定部110、受信方式選択部112、RAKE受信部114、線形等化部116、復調部118、復号部120、およびCQI決定部122aを有している。

CQI決定部122aは、SIR測定部106によって測定されたSIRに対応するCQIを決定するとともに、受信方式として線形等化が選択された場合には、新たにCQIを決定し、2つのCQIのうち、より高伝送レートのMCSが選択されるようなCQIを無線送受信部102から送信させる。

20 次いで、上記のように構成された移動局装置におけるCQI決定の動作について、図4に示すフロー図を参照しながら具体的に説明する。なお、以下のCQI決定動作は、CQI決定部122aにおいて行われる。また、CQI決定部122aには、RAKE受信または線形等化のいずれの受信方式が受信方式選択部112によって選択されたかについての情報が通知されているものとする。ここで、受信方式選択部112による受信方式の選択動作は、実施の形態1と同様であり、その説明を省略する。

まず、SIR測定部106によって測定されたSIRに基づいて、受信方式

としてRAKE受信が選択された場合のCQI_Rが決定される(ST2000)。ここで、CQI_Rは、例えば図5に示すように、送信ビット長、多重コード数、および変調方式(すなわち、MCS)を規定する値であり、この値が基地局装置へ報告されることにより、基地局装置は、上記のMCSを選択してデータを
5 送信する。

そして、受信方式選択部112から通知された情報に基づいて、選択された受信方式は線形等化であるか否かが判定され(ST2100)、線形等化が選択されていない場合は、CQI_Rが無線送受信部102から送信される(ST
2400)。

10 一方、線形等化が選択されている場合は、線形等化が行われることを前提としたCQI_{EQ}が新たに決定され、CQI_{EQ}とCQI_Rが比較される(ST2200)。この比較の結果、CQI_{EQ}がCQI_R以上であれば、CQI_{EQ}が無線送受信部102から送信され(ST2300)、CQI_{EQ}がCQI_R未満であれば、CQI_Rが無線送受信部102から送信される(ST2400)。

15 これにより、受信方式選択部112によって線形等化が受信方式として選択された場合に、より高伝送レートのMCSでデータ送信を行える場合には、そのMCSが選択されるようなCQIが基地局装置へ報告されることになる。したがって、基地局装置は、移動局装置がRAKE受信のみを行う場合には選択されることのない高伝送レートのMCSでデータを送信することができる。

20 このように、本実施の形態によれば、受信方式として線形等化が選択された場合には、より高伝送レートのMCSが選択されるようなCQIを基地局装置へ報告するため、基地局装置は伝送レートを高くしてデータ送信を行うことができ、システム全体のスループットを向上させることができる。

(実施の形態3)

25 本発明の実施の形態3の特徴は、基地局装置が、伝搬環境に応じて受信方式を選択し、移動局装置へ通知する点である。

図6は、本実施の形態に係る基地局装置の構成を示すブロック図である。図

6に示す基地局装置は、無線送受信部202、ドップラ一周波数検出部204、CQI抽出部206、受信方式選択部208、通知信号生成部210、MCS選択部212、適応符号化部214、適応変調部216、および多重部218を有している。

5 無線送受信部202は、アンテナを介して信号を送受信し、所定の無線処理(ダウンコンバート、A/D変換、D/A変換、およびアップコンバートなど)を行う。ドップラ一周波数検出部204は、受信信号からドップラ一周波数を検出し、ドップラーシフト量を測定する。ドップラーシフト量は、移動局装置の移動速度の指標となる。なお、ドップラ一周波数検出部204は、本実施の10 形態における伝搬環境推定部を構成している。CQI抽出部206は、受信信号に含まれるCQIを抽出する。

受信方式選択部208は、通信相手局である移動局装置の受信方式として、RAKE受信もしくは線形等化のいずれかの受信方式をドップラーシフト量に基づいて選択する。通知信号生成部210は、選択された受信方式を通知するための通知信号を生成する。

MCS選択部212は、CQIに対応するMCSを選択し、選択されたMCSの情報を適応符号化部214および適応変調部216へ通知する。適応符号化部214は、選択されたMCSによって規定される符号化率で送信データを符号化する。適応変調部216は、選択されたMCSによって規定される変調方式によって送信データを変調する。

多重部218は、送信データと通知信号を多重し、無線送受信部202を介して送信する。

図7は、本実施の形態に係る移動局装置の構成を示すブロック図である。同図に示す移動局装置において、図1に示す移動局装置と同じ部分には同じ符号を付し、その説明を省略する。

図7に示す移動局装置は、無線送受信部102、既知信号取得部104、SIR測定部106、RAKE受信部114、線形等化部116、復調部118、

復号部 120、CQI 決定部 122、通知信号取得部 142、および受信方式切替部 144 を有している。

通知信号取得部 142 は、受信信号に含まれる通知信号を取得する。受信方式切替部 144 は、通知信号に従って、受信方式を RAKE 受信または線形等化に切り替える。
5

次いで、上記のように構成された基地局装置および移動局装置の動作について、図 8 および図 9 に示すフロー図を参照しながら説明する。

まず、移動局装置は、SIR 測定部 106 によって測定された SIR から、受信方式として RAKE 受信を選択した場合の CQI_R を CQI 決定部 122
10 にて決定し、この CQI_R を含む信号を無線送受信部 102 を介して送信する。送信された信号は、基地局装置の無線送受信部 202 によって受信され、所定の無線処理が行われる。

そして、ドップラー周波数検出部 204 によって、受信信号からドップラー周波数が検出され、ドップラーシフト量が測定される。ドップラーシフト量が
15 測定されると、受信方式選択部 208 によって、図 8 に示すフローに従って受信方式が選択される。すなわち、ドップラーシフト量が所定の閾値 A と比較され (ST 3000)、ドップラーシフト量が所定の閾値 A 以下であれば、移動局装置における受信方式として線形等化が選択され (ST 3100)、反対にドップラーシフト量が所定の閾値 A より大きければ、移動局装置の移動速度が
20 高速であるため線形等化器が追隨不可能であると判断され、移動局装置における受信方式として RAKE 受信が選択される (ST 3200)。

選択された受信方式は、通知信号生成部 210 および MCS 選択部 212 へ通知され、通知信号生成部 210 によって、選択された受信方式を移動局装置へ通知するための通知信号が生成される。

一方、CQI 抽出部 206 によって受信信号に含まれる CQI_R が抽出されると、MCS 選択部 212 によって、図 9 に示すフローに従って MCS が選択される。すなわち、まず、移動局装置における受信方式として RAKE 受信が

- 選択された場合の CQI_R が CQI 抽出部 206 によって抽出された値に決定され (ST 4000)、受信方式選択部 208 から通知された移動局装置における受信方式が線形等化であるか否かが判定される (ST 4100)。そして、線形等化が選択されていない場合は、 CQI_R に対応する MCS が選択される (ST 4400)。一方、線形等化が選択されている場合は、線形等化が行われることを前提とした CQI_{EQ} が新たに決定され、 CQI_{EQ} と CQI_R が比較される (ST 4200)。この比較の結果、 CQI_{EQ} が CQI_R 以上であれば、 CQI_{EQ} に対応する MCS が選択され (ST 4300)、 CQI_{EQ} が CQI_R 未満であれば、 CQI_R に対応する MCS が選択される (ST 4400)。
- これにより、受信方式選択部 208 によって線形等化が移動局装置における受信方式として選択された場合に、より高伝送レートの MCS でデータ送信を行える場合には、その MCS が選択されることになる。

送信データは、適応符号化部 214 および適応変調部 216 によって、それぞれ選択された MCS によって規定される符号化率および変調方式で符号化および変調される。さらに、送信データと通知信号生成部 210 によって生成された通知信号とが、多重部 218 によって多重され、無線送受信部 202 を介して送信される。

基地局装置から送信された信号は、移動局装置の無線送受信部 102 によって受信され、所定の無線処理が行われる。

そして、既知信号取得部 104 によって既知信号が取得され、再び SIR 測定部 106 によって SIR が測定され、CQI 決定部 122 によって CQI_R が決定される。

また、通知信号取得部 142 によって、受信信号に含まれる通知信号が取得され、移動局装置において選択すべき受信方式の情報が取得される。この情報は、受信方式切替部 144 へ出力され、受信方式切替部 144 によって、RAKE 受信部 114 または線形等化部 116 のいずれか一方が動作するように制御される。

これにより、基地局装置において線形等化が移動局装置の受信方式として選択され、それに応じた高伝送レートなMCSでデータが送信された場合でも、線形等化部116が正しく動作し、受信データに対して線形等化が行われ、復調部118によって復調され、復号部120によって復号データが得られる。

5 このように、本実施の形態によれば、基地局装置において、移動局装置における受信方式を選択し、選択された受信方式を移動局装置へ通知するとともに、受信方式として線形等化が選択された場合には、移動局装置において線形等化が行われることを前提としたMCSが選択されてデータが送信されるため、基地局装置は、伝送レートを高くしてデータ送信を行い、移動局装置は、受信したデータに対して線形等化を行って正しく復調・復号を行うことができ、システム全体のスループットを向上させることができる。

(実施の形態4)

本発明の実施の形態4の特徴は、移動局装置が線形等化を行うための既知信号の積分周期、すなわち、線形等化器における係数の更新周期が短縮できることを基地局装置において検出し、移動局装置の移動速度が高速である場合にも受信方式として線形等化を選択できるようにする点である。

図10は、本実施の形態に係る基地局装置の構成を示すブロック図である。なお、同図に示す基地局装置において、図6に示す基地局装置と同じ部分には同じ符号を付し、その説明を省略する。

20 図10に示す基地局装置は、無線送受信部202、CQI抽出部206、MCS選択部212a、適応符号化部214、適応変調部216、多重部218a、および最短周期検出部242を有している。

MCS選択部212aは、CQI抽出部206によって抽出されたCQIに対応するMCSを選択する。

25 多重部218aは、送信データと後述する最短周期検出部242によって検出される最短周期の情報を多重し、無線送受信部202を介して送信する。

最短周期検出部242は、移動局装置に備えられた線形等化器において係数

を更新できる最短周期を検出する。ここで、移動局装置に備えられた線形等化器において既知信号の積分を行う際に、積分周期を短縮（例えば、既知信号 1 シンボルが 256 チップで構成されている場合に、128 チップに対応する 1 / 2 シンボル周期または 64 チップに対応する 1 / 4 シンボル周期などに短縮）しても、非直交となるコードが他の信号を多重するために使用されていなければ、正常に線形等化を行うことができ、この積分周期を最大限に短縮した場合の周期を最短周期という。

図 11 は、本実施の形態に係る移動局装置の構成を示すブロック図である。なお、図 11 に示す移動局装置において、図 1 に示す移動局装置と同じ部分には同じ符号を付し、その説明を省略する。

図 11 に示す移動局装置は、無線送受信部 102、既知信号取得部 104、SIR 測定部 106、ドップラー周波数検出部 108、干渉電力測定部 110、受信方式選択部 112a、RAKE 受信部 114、線形等化部 116、復調部 118、復号部 120、CQI 決定部 122、および最短周期取得部 162 を有している。

受信方式選択部 112a は、SIR、ドップラーシフト量、干渉電力、および最短周期に基づいて、RAKE 受信もしくは線形等化のいずれかの受信方式を選択する。受信方式選択部 112a による受信方式の選択については、後に詳述する。

最短周期取得部 162 は、受信信号に含まれる最短周期の情報を取得し、受信方式選択部 112a へ通知する。なお、既知信号取得部 104、SIR 測定部 106、ドップラー周波数検出部 108、干渉電力測定部 110、および最短周期取得部 162 は、本実施の形態における伝搬環境推定部を構成している。

次いで、上記のように構成された基地局装置および移動局装置の動作について、図 12 に示すフロー図を参照しながら説明する。

まず、移動局装置は、SIR 測定部 106 によって測定された SIR から CQI を CQI 決定部 122 にて決定し、この CQI を含む信号を無線送受信部

102を介して送信する。送信された信号は、基地局装置の無線送受信部202によって受信され、所定の無線処理が行われる。そして、CQI抽出部206によって受信信号に含まれるCQIが抽出され、MCS選択部212aによって、CQIに対応するMCSが選択される。

5 送信データは、適応符号化部214および適応変調部216によって、それぞれ選択されたMCSによって規定される符号化率および変調方式で符号化および変調される。

一方、最短周期検出部242によって、既知信号を逆拡散する際の積分周期が短縮された場合に非直交となるコードが用いられているか否かの情報に基づいて、移動局装置に備えられた線形等化器の最短周期が検出される。検出された最短周期は、多重部218aによって送信データと多重され、無線送受信部202を介して送信される。

基地局装置から送信された信号は、移動局装置の無線送受信部102によって受信され、所定の無線処理が行われる。

15 そして、既知信号取得部104によって既知信号が取得され、再びSIR測定部106によってSIRが測定され、CQI決定部122によってCQIが決定されるとともに、SIR、ドップラーシフト量、および干渉電力が受信方式選択部112aへ通知される。

また、最短周期取得部162によって、受信信号に含まれる最短周期の情報20が取得され、最短周期が受信方式選択部112aへ通知される。

以下、図12に示すフロー図を参照して、受信方式選択部112aによる受信方式の選択動作について説明する。

まず、最短周期に基づいてドップラーシフト量の判定のための閾値A'が選択される(ST5000)。この閾値A'は、線形等化部116に備えられた25線形等化器の積分周期を最短周期以上の周期とした際に、線形等化器が追隨可能な最速の移動速度を示すドップラーシフト量と等しい値となる。

そして、ドップラー周波数検出部108によって測定されたドップラーシフ

ト量が、閾値A' と比較される (ST5100)。

この比較の結果、ドップラーシフト量が閾値A' より大きければ、移動局装置は線形等化部116に備えられた線形等化器が追隨不可能な速度で移動しているものと判断し、受信方式としてRAKE受信が選択される (ST570
5 0)。

また、ドップラーシフト量が閾値A' 以下であれば、干渉電力測定部110によって測定された他セルからの干渉電力が所定の閾値B1と比較される (ST5200)。この比較の結果、干渉電力が所定の閾値B1以下であれば、受信方式として線形等化が選択される (ST5600)。また、干渉電力が所定の閾値B1より大きければ、SIR測定部106によって測定されたSIRが所定の閾値C1と比較され (ST5300)、SIRが所定の閾値C1以上であれば、受信方式として線形等化が選択される (ST5600)。
10

そして、SIRが所定の閾値C1未満であれば、再び干渉電力が所定の閾値B2と比較される (ST5400)。ここで、ST5400において干渉電力と比較される所定の閾値B2は、ST5200における所定の閾値B1よりも大きい値である。この比較の結果、干渉電力が所定の閾値B2より大きければ、受信方式としてRAKE受信が選択される (ST5700)。
15

一方、干渉電力が所定の閾値B2以下であれば、さらにSIRが所定の閾値C2と比較される (ST5500)。ここで、ST5500においてSIRと比較される所定の閾値C2は、ST5300における所定の閾値C1よりも大きい値である。この比較の結果、SIRが所定の閾値C2未満であれば、受信方式としてRAKE受信が選択され (ST5700)、SIRが所定の閾値C2以上であれば、受信方式として線形等化が選択される (ST5600)。
20

このように受信方式が選択されることにより、最短周期に基づいた閾値と測定されたドップラーシフト量とが比較され、基地局装置の通信状況に応じて、移動局装置が高速に移動している場合でも、受信方式として線形等化が選択されることになる。
25

このように、本実施の形態によれば、SIR、ドップラーシフト量、干渉電力、および最短周期に応じて受信方式として線形等化が選択されるため、移動局装置の移動速度が比較的高速である場合でも、基地局装置の通信状況によつては、線形等化器が追隨可能となって受信方式として線形等化が選択され、システム全体のスループットを向上させることができる。

なお、本実施の形態においては、受信方式を選択する際に、干渉電力及びSIRについてそれぞれ2つの閾値を設定する構成としたが、本発明はこれに限定されず、いくつの閾値を設定しても良い。

(実施の形態5)

本発明の実施の形態5の特徴は、移動局装置が線形等化を行うための既知信号の積分周期、すなわち、線形等化器における係数の更新周期が短縮できることを基地局装置において検出し、最適な更新周期を決定した上で移動局装置における受信方式を選択する点である。

図13は、本実施の形態に係る基地局装置の構成を示すブロック図である。なお、同図に示す基地局装置において、図6および図10に示す基地局装置と同じ部分には同じ符号を付し、その説明を省略する。また、同図に示す基地局装置は、図7(実施の形態3)に示す移動局装置と通信を行うものとする。

図13に示す基地局装置は、無線送受信部202、ドップラー周波数検出部204、CQI抽出部206、受信方式選択部208a、通知信号生成部210、MCS選択部212、適応符号化部214、適応変調部216、多重部218、最短周期検出部242、および最適周期決定部262を有している。

受信方式選択部208aは、ドップラーシフト量および後述する最適周期に基づいて、RAKE受信もしくは線形等化のいずれかの受信方式を選択する。

最適周期決定部262は、移動局装置に備えられた線形等化器が追隨可能な最短周期以上であって、かつ、線形等化を行うのに最適な最適周期を決定する。なお、ドップラー周波数検出部204、最短周期検出部242、および最適周期決定部262は、本実施の形態における伝搬環境推定部を構成している。

次いで、上記のように構成された基地局装置における移動局装置の受信方式選択動作について説明する。

まず、最適周期に基づいてドップラーシフト量の閾値が決定される。この閾値は、移動局装置における線形等化器の積分周期を最適周期とした際に、線形等化器が追随可能な最速の移動速度を示すドップラーシフト量と等しい値となる。
5

そして、ドップラー周波数検出部 204 によって測定されたドップラーシフト量が、この閾値と比較され、ドップラーシフト量が閾値以下であれば、移動局装置における受信方式として線形等化が選択され、反対にドップラーシフト量が閾値より大きければ、移動局装置の移動速度が高速であるため線形等化器が追随不可能であると判断され、移動局装置における受信方式として RAKE 受信が選択される。
10

これにより、最適周期に基づいた閾値と測定されたドップラーシフト量が比較され、基地局装置の通信状況に応じて、移動局装置が高速に移動している場合でも、受信方式として線形等化が選択されることになる。
15

このように、本実施の形態によれば、基地局装置において、通信状況に応じたドップラーシフト量の閾値を設定し、移動局装置における受信方式を選択し、選択された受信方式を移動局装置へ通知するとともに、受信方式として線形等化が選択された場合には、移動局装置において線形等化が行われることを前提としたMCSが選択されてデータが送信されるため、基地局装置は、伝送レートを高くしてデータ送信を行い、移動局装置は、受信したデータに対して線形等化を行って正しく復調・復号を行うことができ、システム全体のスループットを向上させることができる。
20

(実施の形態 6)

25 本発明の実施の形態 6 の特徴は、SIR の測定結果のみに基づいて受信方式を選択し、消費電力の削減を図る点である。

図 14 は、本実施の形態に係る移動局装置の構成を示すブロック図である。

同図に示す移動局装置において、図1に示す移動局装置と同じ部分には同じ符号を付し、その説明を省略する。

図14に示す移動局装置は、無線送受信部102、既知信号取得部104、SIR測定部106、受信方式選択部112b、RAKE受信部114、線形等化部116、復調部118、復号部120、およびCQI決定部122を有している。

受信方式選択部112bは、SIRのみに基づいて、RAKE受信もしくは線形等化のいずれかの受信方式を選択する。具体的には、受信方式選択部112bは、SIRが所定の閾値未満である場合には、受信方式としてRAKE受信を選択し、反対にSIRが所定の閾値以上である場合には、受信方式として線形等化を選択する。なお、既知信号取得部104およびSIR測定部106は、本実施の形態における伝搬環境推定部を構成している。

次いで、上記のように構成された移動局装置における受信方式の選択動作について、図15に示すフロー図を参照しながら具体的に説明する。なお、以下の選択動作は、受信方式選択部112bにおいて行われる。

まず、SIR測定部106によって測定されたSIRが、所定の閾値Cと比較される(ST6000)。

この比較の結果、SIRが所定の閾値C以上であれば、受信方式として線形等化が選択され(ST6100)、一方、SIRが所定の閾値C未満であれば、受信方式としてRAKE受信が選択される(ST6200)。

一般に、SIRが低い場合、移動局装置は、セルの境界付近に存在することが多い。セルの境界付近では、熱雑音と隣接するセルからの干渉とが移動局装置における誤り率を劣化させる主要因となっている。熱雑音と隣接セルからの干渉とは、線形等化によって除去することが困難であるため、RAKE受信の方が良好な誤り率特性を得ることができる。したがって、SIRが所定の閾値C未満である場合は、受信方式としてRAKE受信が選択される。

一方、SIRが高い場合、移動局装置は、セルの中心付近(すなわち、基地

局装置付近)に存在することが多い。セルの中心付近では、マルチパスの影響が移動局装置における誤り率を劣化させる主要因となっている。マルチパスの影響は、線形等化によって容易に除去することができる。したがって、SIRが所定の閾値以上である場合は、受信方式として線形等化を選択する。

5 このように、本実施の形態によれば、SIRの測定結果のみに基づいて、より良い誤り率特性を得ることができる受信方式を選択するため、ドップラーシフト量を測定するための回路が不要となり、消費電力を大幅に削減することができる。

(実施の形態7)

10 本発明の実施の形態7の特徴は、MCSによって定まる変調方式および多重コード数の情報を用いて受信方式を選択する点である。

図16は、本実施の形態に係る移動局装置の構成を示すブロック図である。同図に示す移動局装置において、図1に示す移動局装置と同じ部分には同じ符号を付し、その説明を省略する。

15 図16に示す移動局装置は、無線送受信部102、既知信号取得部104、SIR測定部106、受信方式選択部112c、RAKE受信部114、線形等化部116、復調部118、復号部120、CQI決定部122、制御情報取得部182、および逆拡散部184を有している。

制御情報取得部182は、受信信号に含まれる、基地局装置において選択されたMCSに関する制御情報を取得し、受信方式選択部112cへ通知する。ここで、基地局装置がCQIに基づいてMCSを変更する場合(例えば図5に示した例では、送信ビット長、多重コード数、および変調方式を変更してデータ送信する場合)、基地局装置は送信データとともに変更後のMCSに関する制御情報を移動局装置へ送信する。これにより、移動局装置は、送信データの変調方式などを知り、正しく復調することができる。

逆拡散部184は、制御情報によって通知された多重コード数に応じて、受信データを逆拡散する。

次いで、上記のように構成された移動局装置における受信方式の選択動作について、図17に示すフロー図を参照しながら具体的に説明する。なお、以下の選択動作は、受信方式選択部112cにおいて行われる。

まず、SIR測定部106によって測定されたSIRが、所定の閾値Cと比較される(ST7000)。

この比較の結果、SIRが所定の閾値C未満であれば、受信方式としてRAKE受信が選択される(ST7400)。

また、SIRが所定の閾値C以上であれば、制御情報によって通知された変調方式が16QAMであるか否かが判定される(ST7100)。この判定の結果、変調方式が16QAMではなく、QPSKまたはBPSKであれば、受信方式としてRAKE受信が選択される(ST7400)。また、変調方式が16QAMであれば、制御情報によって通知された多重コード数が所定の閾値Dと比較され(ST7200)、多重コード数が所定の閾値D以上であれば、線形等化が選択される(ST7300)。一方、多重コード数が所定の閾値D未満であれば、受信方式としてRAKE受信が選択される(ST7400)。

このように受信方式が選択されることにより、SIRが大きく、変調方式が16QAMであり、かつ、多重コード数が多い場合にのみ、受信方式として線形等化が選択されることになる。

ここで、16QAMに比べQPSKやBPSKは、データの伝送効率は落ちるもの、誤り率特性は良好となる。また、多重コード数が少ない場合も、符号間の干渉が小さくなり、誤り率特性は良好となる。本実施の形態においては、このように誤り率特性が良好となるMCSが選択されている場合には、受信方式としてRAKE受信が選択される。これにより、誤り率特性が劣悪となるMCSが選択されている場合のみ、線形等化器を動作させればよく、上記実施の形態6と比較して消費電力をさらに削減することができる。

そして、受信方式としてRAKE受信が選択された場合、受信信号は、逆拡散部184によって、制御情報によって通知された多重コード数に応じて逆拡

散される。その後、RAKE受信部114によってRAKE受信され、復号部120によって復号され、復号データが得られる。

一方、受信方式として線形等化が選択された場合、受信信号は、線形等化部116によって線形等化され、逆拡散部184によって逆拡散される。逆拡散
5 後の信号は、復調部118によって、制御情報によって通知された変調方式に応じて復調され、復号部120によって復号され、復号データが得られる。

このように、本実施の形態によれば、SIRの測定結果および制御情報に基づいて、SIRが所定の閾値より高く、かつ、誤り率特性が劣悪となるMCS
10 が選択されている場合にのみ、受信方式として線形等化を選択するため、ドップラーシフト量を測定するための回路が不要になるとともに、線形等化器を動作させる時間を短くすることができ、消費電力をさらに大幅に削減することができる。

なお、本実施の形態においては、制御情報に含まれる変調方式および多重コード数の双方の情報を用いて受信方式を選択する構成としたが、変調方式または多重コード数の情報のいずれか一方のみを用いて受信方式を選択しても良い。

また、本実施の形態においては、16QAMの場合に受信方式として線形等化を選択し、QPSKまたはBPSKの場合に受信方式としてRAKE受信を選択する構成としたが、変調方式はこれらのものに限定されず、より誤り率特性が良好な変調方式が選択されている場合に受信方式としてRAKE受信が選択されれば良い。

以上説明したように、本発明によれば、システム全体のスループットを向上させることができる。

本明細書は、2002年9月10日出願の特願2002-264098および2003年4月8日出願の特願2003-104428に基づく。これらの内容はすべてここに含めておく。

産業上の利用可能性

本発明は、無線通信装置、受信装置、および受信方式選択方法に適用することができる。

請求の範囲

1. 信号の伝搬環境を推定する推定手段と、
少なくとも線形等化を含む2つ以上の受信方式から、推定された伝搬環境に
応じて前記信号の受信方式を選択する選択手段と、
を有する無線通信装置。
2. 前記推定手段は、
信号に含まれる既知信号を取得する既知信号取得部と、
取得された既知信号の受信品質を測定する受信品質測定部と、
自装置の移動速度を検出する移動速度検出部と、
自装置が属するセル以外のセルから到来する干渉波の電力を測定する干渉
電力測定部と、
を有する請求の範囲第1項記載の無線通信装置。
3. 前記選択手段は、
自装置の移動速度が所定速度以下であり、かつ、干渉波の影響が所定レベル
以下である場合に、受信方式として線形等化を選択する請求の範囲第1項記載
の無線通信装置。
4. 前記選択手段は、
通信相手局の移動速度が所定速度以下である場合に、当該通信相手局におけ
る受信方式として線形等化を選択する請求の範囲第1項記載の無線通信装置。
5. 前記推定手段は、
線形等化処理のための係数を更新する周期の最短周期を取得する最短周期
取得部、を有し、
前記選択手段は、
取得された最短周期に基づいて前記所定速度を決定する請求の範囲第3項
記載の無線通信装置。
6. 前記推定手段は、

線形等化処理のための係数を更新する周期の最短周期を取得する最短周期取得部、を有し、

前記選択手段は、

取得された最短周期に基づいて前記所定速度を決定する請求の範囲第4項

5 記載の無線通信装置。

7. 信号の受信品質に対応し、伝送レートを選択するための回線品質指標を決定する決定手段、をさらに有し、

前記決定手段は、

前記選択手段によって線形等化が受信方式として選択された場合に、線形等化を行うことを前提として回線品質指標を決定する請求の範囲第1項記載の無線通信装置。

8. 前記選択手段によって選択された受信方式を通信相手局へ通知する通知手段と、

前記選択された受信方式および回線品質指標に基づく伝送レートで信号を送信する送信手段と、

をさらに有し、

前記送信手段は、

前記選択された受信方式が線形等化である場合に、前記通信相手局が線形等化を行うことを前提とした伝送レートで信号を送信する請求の範囲第1項記載の無線通信装置。

9. 前記推定手段は、

信号に含まれる既知信号を取得する既知信号取得部と、

取得された既知信号の受信品質を測定する受信品質測定部と、を有し、

前記選択手段は、

25 取得された受信品質が所定レベルより高い場合に、受信方式として線形等化を選択する請求の範囲第1項記載の無線通信装置。

10. 信号の変調方式に関する制御情報を取得する取得手段、をさらに有し、

前記選択手段は、

前記推定手段によって推定された伝搬環境および前記変調方式に応じて前記信号の受信方式を選択する請求の範囲第1項記載の無線通信装置。

11. 信号に多重されている多重コード数に関する制御情報を取得する取得手段、をさらに有し、

前記選択手段は、

前記推定手段によって推定された伝搬環境および前記多重コード数に応じて前記信号の受信方式を選択する請求の範囲第1項記載の無線通信装置。

12. 少なくとも線形等化を含む2つ以上の受信方式から、伝搬環境に応じて選択された受信方式に関する情報を取得する取得手段と、

取得された受信方式情報によって指定された受信方式で信号を受信する受信手段と、

を有する受信装置。

13. 請求の範囲第1項記載の無線通信装置を有する移動局装置。

14. 請求の範囲第1項記載の無線通信装置を有する基地局装置。

15. 請求の範囲第12項記載の受信装置を有する移動局装置。

16. 請求の範囲第12項記載の受信装置を有する基地局装置。

17. 信号の伝搬環境を推定するステップと、

- 少なくとも線形等化を含む2つ以上の受信方式から、推定した伝搬環境に応じて前記信号の受信方式を選択するステップと、

を有する受信方式選択方法。

1/17

図 1

2/17

図 2

3/17

図 3

4/17

図 4

5/17

CQI値	送信ビット長	多重コード数	変調方式
1	137	1	QPSK
2	173	1	QPSK
3	233	1	QPSK
4	317	1	QPSK
5	377	1	QPSK
6	461	1	QPSK
7	650	2	QPSK
8	792	2	QPSK
9	931	2	QPSK
10	1262	3	QPSK
11	1483	3	QPSK
12	1742	3	QPSK
13	2279	4	QPSK
14	2583	4	QPSK
15	3319	5	QPSK
16	3565	5	16-QAM
17	4189	5	16-QAM
18	4664	5	16-QAM
19	5287	5	16-QAM
20	5887	5	16-QAM
21	6554	5	16-QAM
22	7168	5	16-QAM

図 6

7/17

図 7

8/17

図 8

9/17

図 9

図 10

11/17

卷之三

12/17

図 12

13/17

図 13

14/17

図 14

15/17

図 15

16/17

図 16

17/17

図 17

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/08881

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ H04B7/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H04B7/24-7/26, H04Q7/00-7/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2002-208881 A (Mitsubishi Electric Information Technology Centre Europe B.V.), 26 July, 2002 (26.07.02), Par. Nos. [0005] to [0008], [0023] to [0028] & EP 1179935 A1 & US 2002/0167998 A1	1, 4, 9, 12-17
Y		2, 3, 10, 11
A		5-8
X	JP 5-207076 A (NEC Corp.), 13 August, 1993 (13.08.93), Abstract; Figs. 1, 3; Par. Nos. [0020] to [0023] (Family: none)	1, 12-17
Y	JP 2001-196974 A (NTT Docomo Inc.), 19 July, 2001 (19.07.01), (Family: none)	2, 3

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
10 October, 2003 (10.10.03)Date of mailing of the international search report
28 October, 2003 (28.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/08881

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-10363 A (Matsushita Electric Industrial Co., Ltd.), 11 January, 2002 (11.01.02), (Family: none)	10
Y	JP 2002-26919 A (Matsushita Electric Industrial Co., Ltd.), 25 January, 2002 (25.01.02), Par. Nos. [0060], [0073] & WO 02/03617 A1 & BR 200106987 A & KR 2002026609 A & CZ 200200763 A3	11 & AU 200166353 A & EP 1209856 A1 & US 2002/0145991 A1 & CN 1389044 A
P,A	JP 2003-69459 A (Nippon Soken, Inc.), 07 March, 2003 (07.03.03), Figs. 1, 3; Par. Nos. [0045] to [0063] (Family: none)	1-17

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int. Cl' H04B7/26

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int. Cl' H04B7/24-7/26
H04Q7/00-7/38

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2003年
日本国登録実用新案公報	1994-2003年
日本国実用新案登録公報	1996-2003年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2002-208881 A (ミツビシ・エレクトリック・インフォメイション・テクノロジー・センター・ヨーロッパ・ビー・ヴィ) 2002. 07. 26 [0005] - [0008], [0023] - [0028]	1, 4, 9, 12-17
Y	& EP 1179935 A1	2, 3, 10, 11
A	& US 2002/0167998 A1	5-8

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「I」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であつて出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であつて、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であつて、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

10. 10. 03

国際調査報告の発送日

28.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

望月 章俊

5 J 4101

電話番号 03-3581-1101 内線・3534

C(続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	JP 5-207076 A (日本電気株式会社) 1993. 08. 13 要約, 図1, 図3, [0020] - [0023] (ファミリーなし)	1, 12-17
Y	JP 2001-196974 A (株式会社エヌ・ティ・ティ・ドコモ) 2001. 07. 19 (ファミリーなし)	2, 3
Y	JP 2002-10363 A (松下電器産業株式会社) 2002. 01. 11 (ファミリーなし)	10
Y	JP 2002-26919 A (松下電器産業株式会社) 2002. 01. 25 [0060], [0073] & WO 02/03617 A1 & AU 200166353 A & BR 200106987 A & EP 1209856 A1 & KR 2002026609 A & US 2002/0145991 A1 & CZ 200200763 A3 & CN 1389044 A	11
PA	JP 2003-69459 A (株式会社日本自動車部品総合研究所) 2003. 03. 07 図1, 図3, [0045] - [0063] (ファミリーなし)	1-17