Internet of Things

Uma rede LoRa para envio de imagens

Victor E. Almeida Marco A. Guerra

UNIOESTE

22 de julho de 2022

Materiais e métodosImplementaçãoResultadosDiscussãoConclusão000000000000000

Conteúdo

- Definições
- Materiais e métodos
 - Algoritmos utilizados
 - Dispositivos utilizados
- Implementação
- Resultados
- Discussão
- 6 Conclusão

Definições

• Internet das coisas: Internet of things (IoT), uma rede que conecta diversas "coisas" a internet, através de software, com o objetivo de trocar informações, tais "coisas" são dispositivos físicos ou lógicos, podem ser sensores, microcontroladores ou até mesmo objetos que nunca imaginamos tais como geladeiras, televisores, entre outros.

Definições II

Definições

LoRa

- Atua na camada física;
- Radio frequência;

Materiais e métodos

- Longas distâncias;
- Baixo custo de transmissão;

Algoritmo CRC 16 bits

```
uint16_t computeCRC(uint8_t* data_in, uint16_t length) {
1
        uint8_t bitbang, j;
2
        uint16_t i, crc_calc = INIT;
3
       for (i = 0; i < length; i++)
4
            crc_calc = (((uint16_t)data_in[i]) & 0x00FF);
5
            for (j = 0; j < 8; j++) {
                bitbang = crc_calc;
7
                crc calc >>= 1:
                if (bitbang & 1) crc_calc ^= POLY;
9
       return (crc_calc & 0xFFFF);
13
```


Algoritmo Stop and Wait - Sender

```
void sender() {
        InitCamera();
2
        InitLoRa();
3
       TakePicture(image);
4
        SplitImage(image);
5
        while(image.sendedParts < image.totalParts) {</pre>
6
            SendImagePart(image.part());
7
            ReceivePacketCommand(buffer);
            if (buffer . messageType == ACK) {
9
                image.sendedParts++;
11
12
13
```


Algoritmo Stop and Wait - Receiver

```
void reciver() {
       InitImage(image);
2
       InitLoRa();
3
       while(true) {
4
           ReceivePacketCommand(buffer);
5
           SaveImageBytes(buffer);
           PrepareFrameCommand(); // prepara ACK
7
           SendPacket();
           if (image.isComplete()) {
9
               SaveImage(image);
```


Materiais e métodosImplementaçãoResultadosDiscussãoConclusão○○○●○○○○○○○○○○○

LoRaMESH EndDivice

Definições

Página 8 de 20

 Materiais e métodos
 Implementação
 Resultados
 Discussão
 Conclusão

 ○○○●○
 ○○○○
 ○○○○
 ○○○

ESP32

 Materiais e métodos
 Implementação
 Resultados
 Discussão
 Conclusão

 ○○○○
 ○○○
 ○○○
 ○○
 ○○

ESP32-CAM

Definições

Página 10 de 20

Definições Materiais e métodos Implementação Resultados Discussão Conclusão oo oo oo oo

Estruturas de dados enviadas

ID	Command	Payload	CRC
2 bytes	1 byte	1 - 231 bytes	2 bytes

Payload				
Туре	ID	Part	Total	Message
1 byte	1 byte	1 byte	1 byte	1 - 227 byte

Payload		
ACK	ID	
1 byte	1 byte	

Implementação em código

```
struct _payload {
1
        uint8_t byte_array [MAX_PAYLOAD_SIZE];
2
        uint8_t size;
3
    };
5
    struct _fields {
        uint8_t type, id, part, last_part;
8
9
   union ImagePart {
10
        _fields fields:
11
        _payload payload;
12
13
```


Fluxograma Sender

Fluxograma Receiver

Teste de Velocidade de transmissão

- Envia e recebe a resposta em 2 segundos, timeout = 3 segundos;
- Máximo descrito na documentação = 21875 bits por segundo.
- Máximo utilizando stop and wait = 232 * 8 = 1856 bits por segundo

Testes no tamanho da imagem I

Definições

Os testes seguiram os seguintes critérios:

- 3 fotos por resolução escolhendo sempre a mediana.
- Fotos tiradas do mesmo local na mesma posição;
- Imagens em escala de cinsa;

 Materiais e métodos
 Implementação
 Resultados
 Discussão
 Conclusão

 ○○○○○
 ○○○○
 ○○○
 ○○○

Testes no tamanho da imagem II

Compressão constante em 0

Resolução (pixels)	Tamanho (bytes)
640×480	73260
480x320	39139
400×296	35916
320x240	23510
240×176	14242
176×144	9147

Tabela 2: Mudança de resolução afetando o tamanho da imagem

Testes no tamanho da imagem III

Resolução constante em 480x320

Qualidade (0-63)	Tamanho (bytes)	
0	39139	
10	8456	
20	6371	
30	5613	
40	5161	
50	4842	
60	4665	
63	4616	

Tabela 3: Mudança de qualidade da imagem afetando o tamanho

 Materiais e métodos
 Implementação
 Resultados
 Discussão

 ○○○○○
 ○○○○
 ●○

Mão na massa!!

 Definições
 Materiais e métodos
 Implementação
 Resultados
 Discussão
 Conclusão

 ○○
 ○○○○○
 ○○○○
 ○●

Agradecimentos

Perguntas?

Obrigado pela atenção

Página 20 de 20