PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ Resolução de Problemas Estruturados em Computação – CIÊNCIA DA COMPUTAÇÃO

Professor: Andrey Cabral Meira **Estudante:** Nicolas Andreas Jackel

Relatório de Implementação e Análise dos Algoritmos Counting Sort e Quick Sort

Repositório GitHub: https://github.com/concertmaster40/TDE3-EstruturaDados

Objetivo:

Neste relatório está contida e análise dos algoritmos Counting Sort e Quick Sort, implementados em JAVA. Foram analisadas as métricas de desempenho a partir de execuções em arrays com cinco tamanhos variados e elementos aleatórios, gerados com uma seed fixa.

Algoritmos e Métricas Avaliadas:

As métricas coletadas durante os testes incluem:

- Tempo de execução
- Total de trocas (apenas no Quick Sort, pois o Counting Sort não efetua trocas, apenas gera array)
- Total de iterações

Os algoritmos foram testados em arrays com os seguintes tamanhos: 1.000, 10.000, 100.000, 500.000 e 1.000.000 de elementos. Cada tamanho foi executado cinco vezes.

Resultados Obtidos:

Counting Sort:

Tamanho do Array	Tempo Médio de Execução (ms)	Iterações Médias
1.000	7.949	1002000.00
10.000	10.623	1020000.00
100.000	5.329	1200000.00
500.000	13.247	2000000.00
1.000.000	18.585	3000000.00

Quick Sort:

Tamanho do Array	Tempo Médio de	Trocas Médias	Iterações Médias

	Execução (ms)		
1.000	0.292	6051.60	11997.80
10.000	1.901	83087.40	165156.60
100.000	11.225	1057579.00	2129476.20
500.000	71.372	6400647.00	12209345.80
1.000.000	128.456	13342420.00	25669866.60

Análise dos Resultados:

Desempenho:

O Counting Sort apresentou um desempenho estável e rápido, principalmente para arrays grandes, já que sua complexidade é O(n+k). Já o Quick Sort mostrou um aumento considerável no número de trocas e iterações conforme o tamanho do array crescia, o que está alinhado com sua complexidade média de O(n log n).

Comparação e Conclusões:

O Counting Sort apresentou uma média de tempo muito mais curta do que o Quick Sort para organizar os arrays, outro ponto é que o Quick Sort faz muito mais iterações para retornar o array final, no Counting Sort é muito menos, como podemos ver no gráfico. Contudo, o Quick Sort se mostra muito mais vantajoso se pensarmos em flexibilidade, pois não necessita saber o valor máximo de elementos no array previamente

Gráficos:

Gráficos de Comparação de Desempenho de Tempo e Iterações:

