

Lesion Segmentation in Brain MRI

Dr. Debdoot Sheet

Assistant Professor, Department of Electrical Engineering
Principal Investigator, Kharagpur Learning, Imaging and Visualization Group
Indian Institute of Technology Kharagpur

www.facweb.iitkgp.ernet.in/~debdoot/

Contents

- Challenge
- Rational
- Dataset and Appearances
- State of the Art Solutions
- Endnote

Challenge

IACL Page

http://iacl.ece.jhu.edu/index.php/MSChallenge

ABOUT IACL
CONTACT
PEOPLE
RESEARCH
PUBLICATIONS
RESOURCES
LINKS
OPENINGS
NEWS
INTRANET

> TOOLBOX

THE 2015 LONGITUDINAL MS LESION SEGMENTATION CHALLENGE

2015 Longitudinal MS Lesion Segmentation Challenge

MS Challenge Overview

MS Challenge Data

MS Challenge Evaluation

I. INTRODUCTION

The Longitudinal MS Lesion Segmentation Challenge was conducted at the 2015 International Symposium on Biomedical Imaging P in New York, NY, April 16-19. Competing teams applied their automatic lesion segmentation algorithms to MR neuroimaging data acquired at multiple time points from MS patients. Algorithms were evaluated against manual segmentations from two raters in terms of their segmentation accuracy and ability to track lesion evolution.

34 Teams initially registered for the Challenge coming from 15 different countries, representing 27 different institutions/universities. Congratulations to Team IIT Madras (First Prize), Team PVG_1 (Second Prize), and Team IMI (Third Prize and Efficiency Prize)!

Information about the data is available here, and the evaluation software from here,

2015 Longitudinal MS Lesion Segmentation Challenge

CURRENT LEADERBOARD

A live leaderboard is maintained on the Smart Stats Website &. This leaderboard is updated to include links to the associated papers; most currently point to the main Challenge Article: A. Carass, S. Roy, A. Jog, J.L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C.H. Sudre, M.J. Cardoso, N. Cawley, O. Ciccarelli, C.A.M. Wheeler-Kingshott, S. Ourselin, L. Catanese, H. Deshpande, P. Maurel, O. Commowick, C. Barillot, X. Tomas-Fernandez, S.K. Warfield, S. Vaidya, A. Chunduru, R. Muthuganapathy, G. Krishnamurthi, A. Jesson, T. Arbel, O. Maier, H. Handels, L.O. Iheme, D. Unay, S. Jain, D.M. Sima, D. Smeets, M. Ghafoorian, B. Platel, A. Birenbaum, H. Greenspan, P.-L. Bazin, P.A. Calabresi, C.M. Crainiceanu, L.M. Ellingsen, D.S. Reich, J.L. Prince, and D.L. Pham, "Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge", Neurolmage, 148(C):77-102, 2017. (doi) & (PubMed) &.

Rational

Contribution

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Longitudinal multiple sclerosis lesion segmentation: Resource and challenge

Aaron Carass^{a,b,*,1}, Snehashis Roy^{c,1}, Amod Jog^{b,1}, Jennifer L. Cuzzocreo^{d,1}, Elizabeth Magrath^{c,1}, Adrian Gherman^{e,1}, Julia Button^{d,1}, James Nguyen^{d,1}, Ferran Prados^{f,g}, Carole H. Sudre^f, Manuel Jorge Cardoso^{f,h}, Niamh Cawley^g, Olga Ciccarelli^g, Claudia A.M. Wheeler-Kingshott^g, Sébastien Ourselin^{f,h}, Laurence Cataneseⁱ, Hrishikesh Deshpandeⁱ, Pierre Maurelⁱ, Olivier Commowickⁱ, Christian Barillotⁱ, Xavier Tomas-Fernandez^{j,k}, Simon K. Warfield^{j,k}, Suthirth Vaidya^l, Abhijith Chunduru^l, Ramanathan Muthuganapathy^l, Ganapathy Krishnamurthi^l, Andrew Jesson^m, Tal Arbel^m, Oskar Maierⁿ, Heinz Handelsⁿ, Leonardo O. Iheme^o, Devrim Unay^o, Saurabh Jain^p, Diana M. Sima^p, Dirk Smeets^p, Mohsen Ghafoorian^q, Bram Platel^r, Ariel Birenbaum^s, Hayit Greenspan^t, Pierre-Louis Bazin^{u,1}, Peter A. Calabresi^{d,1}, Ciprian M. Crainiceanu^{e,1}, Lotta M. Ellingsen^{a,v,1}, Daniel S. Reich^{d,w,1}, Jerry L. Prince^{a,b,1}, Dzung L. Pham^{c,1}

Dataset

Data Set N (M/F)		Time-Points	Age	Follow-Up	
		Mean (SD)	Mean (SD)	Mean (SD)	
Training	5 (1/4)	4.4 (±0.55)	43.5 (±10.3)	1.0 (±0.13)	
RR	4 (1/3)	$4.5 (\pm 0.50)$	$40.0 (\pm 7.55)$	$1.0 (\pm 0.14)$	
PP	1 (0/1)	4.0	57.9	$1.0 \ (\pm 0.04)$	
Test A	10 (2/8)	4.3 (±0.68)	37.8 (±9.18)	1.1 (±0.28)	
RR	9 (2/7)	$4.3 (\pm 0.71)$	37.4 (±9.63)	$1.1 (\pm 0.29)$	
SP	1 (0/1)	4.0	41.7	$1.0 \ (\pm 0.05)$	
Test B	4 (1/3)	4.5 (±0.58)	43.3 (±7.64)	1.0 (±0.05)	
RR	3 (1/2)	$4.7 (\pm 0.58)$	44.8 (±8.65)	$1.0 (\pm 0.05)$	
PP	1 (0/1)	4.0	39.0	$1.0 \ (\pm 0.04)$	

Dataset

Evaluation Metrics

$$\mathrm{Dice}(\mathcal{M}_{R},\,\mathcal{M}_{A}) = 2 \frac{|\mathcal{M}_{R} \cap \mathcal{M}_{A}|}{|\mathcal{M}_{R}| + |\mathcal{M}_{A}|}, \qquad \mathrm{ASSD}(\mathcal{M}_{R},\,\mathcal{M}_{A}) = \frac{\sum_{r \in \mathcal{L}_{R}} d(r,\,\mathcal{L}_{A}) + \sum_{a \in \mathcal{L}_{A}} d(a,\,\mathcal{L}_{R})}{2},$$

$$\operatorname{PPV}(\mathcal{M}_R, \, \mathcal{M}_A) = \frac{|\mathcal{M}_R \cap \mathcal{M}_A|}{|\mathcal{M}_R \cap \mathcal{M}_A| + |\mathcal{M}_R^c \cap \mathcal{M}_A|}, \quad \operatorname{TPR}(\mathcal{M}_R, \, \mathcal{M}_A) = \frac{|\mathcal{M}_R \cap \mathcal{M}_A|}{|\mathcal{M}_R \cap \mathcal{M}_A| + |\mathcal{M}_R \cap \mathcal{M}_A^c|}.$$

$$LFPR(\mathcal{M}_{R}, \mathcal{M}_{A}) = \frac{|\mathcal{L}_{R}^{c} \cap \mathcal{L}_{A}|}{|\mathcal{L}_{R}^{c} \cap \mathcal{L}_{A}| + |\mathcal{L}_{R}^{c} \cap \mathcal{L}_{A}^{c}|}, \qquad LTPR(\mathcal{M}_{R}, \mathcal{M}_{A}) = \frac{|\mathcal{L}_{R} \cap \mathcal{L}_{A}|}{|\mathcal{L}_{R} \cap \mathcal{L}_{A}| + |\mathcal{L}_{R} \cap \mathcal{L}_{A}^{c}|},$$

$$\text{AVD}(\mathcal{M}_R,\,\mathcal{M}_A) = \frac{\text{Max}(|\mathcal{M}_R|,\,|\mathcal{M}_A|) - \text{Min}(|\mathcal{M}_R|,\,|\mathcal{M}_A|)}{|\mathcal{M}_R|}.$$

Human Rater Diversity

Symmetric metrics							
Dice		0.6340					
ASSD		3.5290					
Longitudinal correlation		-0.0053					
Asymmetric metrics	R1 vs. R2	R2 vs. R1					
PPV	0.7828	0.5688					
TPR	0.5029	0.8224					
Lesion FPR	0.1380	0.5630					
Lesion TPR	0.4370	0.8620					
AVD	0.3726	0.6117					

Methods

Name	Approach	Sequences
S Team CMIC	Multimodal patch matching with an l_2 -norm	T_1 -w, T_2 -w, PD-w, & FLAIR
U Team VISAGES GCEM	Robust EM initialized graph cut	T_1 -w, T_2 -w, & FLAIR
S Team VISAGES DL	Class specific sparse dictionaries	T_1 -w, T_2 -w, PD-w, & FLAIR
S Team CRL	Mixture of global & local intensity distributions from a reference population	T_1 -w, T_2 -w, & FLAIR
S Team IIT Madras	n ³ Convolutional Neural Networks	T_1 -w, T_2 -w, PD-w, & FLAIR
S Team PVG One	Hierarchical MRF & random forest refinement	T_1 -w, T_2 -w, & FLAIR
S Team IMI	Random forests	T_1 -w, T_2 -w, PD-w, & FLAIR
U Team MSmetrix	Hierarchical EM followed by temporal consistency check	T ₁ -w & FLAIR
S Team DIAG	n ² Convolutional Neural Networks	T_1 -w, T_2 -w, PD-w, & FLAIR
U Team TIG	Hierarchical subject specific GMM	T_1 -w, T_2 -w, & FLAIR

Performance Comparison

- M Rater #2
- M Rater #1
- 8 Team PVG One
- S Team DIAG
- **8 MV-CNN**
- S Team IMI
- Team VISAGES GCEM
- S Team CMIC

- U Lesion-TOADS
- Team MSmetrix
- Team IIT Madras
- Team TIG BF
- **8 MORF**
- S Team VISAGES DL
- **M** BAUMIP
- S Team CRL

Performance Comparison

Name	N-Dice	N-PPV	N-TPR	1-LFPR	N-LTPR	LongCorr	TotalCorr	Final Score	Ranking
S Team IIT Madras	0.9448	1.2465	0.7395	0.5873	0.6656	0.5540	0.8753	0.7179	1
S Team PVG One	1.0599	1.2664	0.8857	0.8479	0.5209	0.2503	0.8506	0.7041	2
S Team IMI	1.0149	1.3172	0.8404	0.7318	0.6037	0.2542	0.8611	0.6981	3
S Team CMIC	0.9390	1.0671	0.8194	0.6104	0.4666	0.3268	0.8543	0.6518	4
U Team MSmetrix	0.9417	1.2008	0.7544	0.6246	0.5340	0.3325	0.8583	0.6506	5
U Team VISAGES GCEM	1.0212	1.2238	0.8917	0.6944	0.6805	0.0576	0.7958	0.6435	6
S Team DIAG	0.8509	0.8688	0.8779	0.4202	0.7413	0.2123	0.8027	0.6102	7
S Team CRL	0.7062	1.1122	0.5140	0.5863	0.3495	0.3268	0.8543	0.5642	8
U Team TIG	0.5970	1.1083	0.3987	0.4281	0.6184	0.1770	0.8075	0.5487	9
8 Team VISAGES DL	0.6830	1.0082	0.5554	0.5608	0.4603	0.1716	0.6459	0.5188	10

Take Home Messages

A. Carass et al., "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge," *NeuroImage*, vol. 148, pp. 77–102, 2017.