

دانشگاه صنعتی شریف دانشکدهی مهندسی هوافضا

> پروژه کارشناسی مهندسی کنترل

> > عنوان:

کنترل وضعیت سه درجه آزادی استند چهارپره به روش کنترلکننده مربعی خطی مبتنی بر بازی دیفرانسیلی

نگارش:

علی بنی اسد

استاد راهنما:

دكتر نوبهاري

شهرویر ۱۴۰۰

سپاس

از استاد بزرگوارم جناب آقای دکتر نوبهاری که با کمکها و راهنماییهای بیدریغشان، بنده را در انجام این پروژه یاری دادهاند، تشکر و قدردانی میکنم. در این پژوهش از یک روش مبتنی بر تئوری بازی استنفاده شده است. در این روش سیستم و اغتشاش دو بازیکن اصلی در نظر گرفته شده است. هر یک از دو بازیکن سعی میکنند امتیاز خود را با کمترین هزینه افزایش دهند که در اینجا، وضعیت استند امتیاز بازیکنها در نظر گرفته شده است. در این روش انتخاب حرکت با استفاده از تعال نش که هدف آن کم کردن تابع هزینه با فرض بدترین حرکت دیگر بازیکن است، انجام می شود. این روش نسبت به اغتشاش خارجی و نویز سنسور مقاوم است. همچنین نسبت به عدم قطعیت مدلسازی نیز از مقاومت مناسبی برخوردار است. از روش ارائه شده برای کنترل یک استند سه درجه آزادی چهار پره که به نوعی یک آونگ معکوس نیز هست، استفاده شده است. عملکرد این روش با اجرای شبیه سازی های مختلف مورد ارزیابی قرار خواهد گرفت. همچنین، عملکرد آن در حضور نویز و اغتشاش و عدم قطعیت مدل از طریق شبیه سازی ارزیابی خواهد شده.

كليدواژهها: چهارپره، بازی ديفرانسيلی، تئوری بازی، تعادل نش، استند سه درجه آزادی، شبيهسازی، تابع هزينه

¹Game Theory

²Nash Equilibrium

فهرست مطالب

٢	شبیه سازی کانال رول استند در حضور کنترلکننده LQIDG	1-0-0
٣	شبیه سازی کانال رول-پیچ استند در حضور کنترلکننده LQIDG	Y-0-0

٥

فهرست شكلها

٢	عملکرد LQIDG در کنترل زاویه رول (تعقیب ورودی صفر)	١
۴	تغییرات زاویه رول	۲
۴	تغییرات زاویه پیچ	٣
۴	عملکرد کنترلکننده LQIDG در کنترل زاویه رول و پیچ (تعقیب ورودی صفر)	۴
۵	موتور شماره یک	۵
۵	موتور شماره دو	۶
۵	موتور شماره سه	٧
۵	موتور شماره چهار	٨
۵	فرمان کنترلکننده در کنترل زاویه رول و پیچ (تعقیب ورودی صفر)	٩

۰-۰- شبیه سازی کانال رول استند در حضور کنترل کننده LQIDG

در بخش ؟؟ شبیه سازی کانال رول استند چهارپره انجام شد. در این بخش به بررسی عملکرد چهارپره در حضور کنترلکننده LQDG در بخشهای ؟؟ و ؟؟ بررسی شده است. در شبیه سازی برای بهینه سازی ضرایب وزنی از روش TCACS [۱] استفاده شده است.

شكل ۱: عملكرد LQIDG در كنترل زاويه رول (تعقيب ورودي صفر)

بر اساس خروجی شبیهسازی (شکل ۰-۰-۱) ،کانال رول در حضور کنترلکننده LQIDG در حدود پنج ثانیه به تعادل میرسد و خطای ماندگار آن در حدود صفر است.

$^{\circ}$ LQIDG شبیه سازی کانال رول-پیچ استند در حضور کنترلکننده

در بخش ؟؟ شبیه سازی کانال رول استند چهارپره انجام شد. در این بخش به بررسی عملکرد چهارپره در حضور کنترلکننده LQDG در بخشهای ؟؟ و ؟؟ بررسی شده است. در شبیه سازی برای بهینه سازی ضرایب وزنی از روش TCACS [۱] استفاده شده است.

بر اساس خروجی شبیهسازی (شکل ۰-۰-۱) ،کانال رول در حضور کنترلکننده LQIDG در حدود پنج ثانیه و کانال پیچ در حدود هشت ثانیه به تعادل میرسد و خطای ماندگار آن در حدود صفر است.

شکل ۳: تغییرات زاویه پیچ شکل ۷: تغییرات در کنترل زاویه رول و پیچ (تعقیب ورودی صفر) شکل ۷: عملکرد کنترلکننده

شکل ۵: موتور شماره یک

شكل ۶: موتور شماره دو

شكل ٧: فرمان كنترلكننده در كنترل زاويه رول و پيچ (تعقيب ورودي صفر)

مراجع

[1] A. Karimi, H. Nobahari, and P. Siarry. Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions. *Computational Optimization and Applications*, 45(3):639–661, Apr 2010.

Sharif University of Technology Department of Aerospace Engineering

Bachelor Thesis

LQDG Controler for 3DOF Quadcopter Stand

By:

Ali BaniAsad

Supervisor:

Dr. Nobahari

August 2021