પ્રશ્ન 1(અ) [3 ગુણ]

8085 નું બસ ઓર્ગેનાઈઝેશન દોરો.

જવાબ:

બસના પ્રકારો:

• Address Bus: મેમરી એડ્રેસિંગ માટે 16-bit એકદિશીય બસ

• Data Bus: ડેટા ટ્રાન્સફર માટે 8-bit દ્વિદિશીય બસ

• Control Bus: RD, WR, ALE, IO/M જેવા કંટ્રોલ સિગ્નલ્સ

ਮੇਮਣੀ ਟ੍ਰੀਡ: "ADC - Address, Data, Control"

પ્રશ્ન 1(બ) [4 ગુણ]

માઈક્રોપ્રોસેસરની માઈક્રોકંટ્રોલર સાથે સરખામણી કરો.

લક્ષણ	માઈકોપ્રોસેસર	માઈક્રોકંટ્રોલર
આર્કિટેક્ચર	બાહ્ય ઘટકોની જરૂર	એક જ ચિપ પર બધા ઘટકો
મેમરી	બાહ્ય RAM/ROM જરૂરી	આંતરિક RAM/ROM ઉપલબ્ધ
કિંમત	વધુ સિસ્ટમ કોસ્ટ	ઓછી સિસ્ટમ કોસ્ટ
પાવર	વધુ પાવર વપરાશ	ઓછો પાવર વપરાશ
સાઈઝ	મોટું સિસ્ટમ સાઈઝ	કોમ્પેક્ટ સિસ્ટમ
ઉપયોગ	સામાન્ય હેતુ કમ્પ્યુટિંગ	એમ્બેડેડ કંટ્રોલ એપ્લિકેશનો

મુખ્ય મુદ્દાઓ:

• **માઈક્રોપ્રોસેસર**: માત્ર CPU, બાહ્ય સપોર્ટ ચિપ્સ જરૂરી

• માઈક્રોકંટ્રોલર: ચિપ પર સંપૂર્ણ કમ્પ્યુટર સિસ્ટમ

મેમરી ટ્રીક: "MICRO - Memory Internal, Compact, Reduced cost, Optimized"

પ્રશ્ન 1(ક) [7 ગુણ]

8085 માઈક્રોપ્રોસેસરના દરેક બ્લોક દોરો અને સમજાવો.

જવાબ:

બ્લોકના કાર્યો:

• ALU: અંકગણિત અને તાર્કિક ઓપરેશન કરે છે

• Accumulator: ડેટા પ્રોસેસિંગ માટે પ્રાથમિક કામકાજ રજિસ્ટર

• Register Array: B, C, D, E, H, L સામાન્ય હેતુ રજિસ્ટરો

• **Program Counter**: આગળના instruction નું address ધરાવે છે

• Stack Pointer: મેમરીમાં stack ના ટોપને પોઈન્ટ કરે છે

• Control Unit: પ્રોસેસરના એકંદર ઓપરેશનને કંટ્રોલ કરે છે

મેમરી ટ્રીક: "APRIL - ALU, Program counter, Registers, Instruction decoder, Logic control"

પ્રશ્ન 1(ક) OR [7 ગુણ]

8085 માઈક્રોપ્રોસેસરનો પીન ડાયાગ્રામ દોરો અને કોઈ પણ 4 પીન સમજાવો.

જવાબ:

```
8085 PIN DIAGRAM
      1 +----+ 40 Vcc
            39 HOLD
  X2
      2
RESET 3
             38 HLDA
 SOD 4 | 37 CLK(OUT)
 SID 5 | 8085 | 36 RESET IN
TRAP 6 | 35 READY
             | 34 IO/M
RST7.5 7
             | 33 S1
RST6.5 8
RST5.5 9
             | 32 RD
INTR 10
             | 31 WR
INTA 11
             | 30 ALE
AD0-7 12-19
            23-29 A8-A15
     20 +----+ 21 A15-A8
```

પીન સમજાવટ:

- ALE (Pin 30): Address Latch Enable multiplexed bus પર address અને data અલગ કરે છે
- RD (Pin 32): Read control signal active low, read operation ะยเโ่ฯ ยั
- WR (Pin 31): Write control signal active low, write operation દર્શાવે છે
- **RESET (Pin 36)**: Reset input low થાય ત્યારે processor initialize કરે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "ARWA - ALE, Read, Write, rAset"

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યા આપો: (1) Opcode (2) Operand

જવાબ:

વ્યાખ્યાઓ:

- **Opcode**: Operation Code કરવાનું operation સ્પષ્ટ કરે છે (ADD, MOV, JMP)
- **Operand**: જે ડેટા અથવા address પર operation કરવાનું છે

ઉદાહરણ:

ਮੇਮਣੀ ਟ੍ਰੀs: "OO - Operation + Operand"

પ્રશ્ન 2(બ) [4 ગુણ]

RISC અને CISC વચ્ચે તફાવત આપો.

જવાબ:

લક્ષણ	RISC	CISC
Instructions	સરળ, fixed format	જટિલ, variable format
Execution	Single cycle execution	Multiple cycle execution
Addressing	થોડા addressing modes	ยยเ addressing modes
Memory	Load/Store architecture	Memory-to-memory operations
Compiler	જટિલ compiler design	સરળ compiler design

મુખ્ય મુદ્દાઓ:

• RISC: Reduced Instruction Set Computer - સરળ, ઝડપી

• CISC: Complex Instruction Set Computer - feature rich

મેમરી ટ્રીક: "RISC is SLIM - Simple, Load-store, Instruction reduced, Memory efficient"

પ્રશ્ન 2(ક) [7 ગુણ]

Von-Neumann અને Harvard Architecture વચ્ચે તફાવત આપો.

લક્ષણ	Von-Neumann	Harvard
Memory	data અને instructions માટે single memory	data અને instructions માટે અલગ memory
Bus Structure	Single bus system	Dual bus system
Access	data અને instructions ને sequential access	simultaneous access શક્ય
Cost	ઓછી કિંમત	વધુ કિંમત
Speed	bus conflicts કારણે ધીમું	parallel access કારણે ઝડપી
Examples	8085, સામાન્ય computers	8051, DSP processors

મેમરી ટ્રીક: "VH - Von has one bus, Harvard has two"

પ્રશ્ન 2(અ) OR [3 ગુણ]

વ્યાખ્યા આપો: (1) T-State (2) Instruction Cycle (3) Machine Cycle

જવાબ:

વ્યાખ્યાઓ:

• **T-State**: Time state - મૂળભૂત timing unit, એક clock period

• Instruction Cycle: એક instruction નું સંપૂર્ણ execution

• Machine Cycle: એક memory operation માટે જરૂરી T-states નું જૂથ

સંબંધ:

```
Instruction Cycle = Multiple Machine Cycles
Machine Cycle = Multiple T-States (3-6 T-states)
```

મેમરી ટ્રીક: "TIM - T-state, Instruction cycle, Machine cycle"

પ્રશ્ન 2(બ) OR [4 ગુણ]

8085 ના Address અને Data Bus નું De-Multiplexing સમજાવો.

પ્રક્રિયા:

- **Step 1**: T1 દરમિયાન, AD0-AD7 માં lower 8-bit address હોય છે
- **Step 2**: ALE high થાય છે, external latch માં address latch થાય છે
- Step 3: બાકીના T-states માટે AD0-AD7 data bus બને છે

જરૂરી ઘટકો:

- 74LS373: Address latching หเว้ Octal latch IC
- ALE: Timing หเ2 Address Latch Enable signal

મેમરી ટ્રીક: "LAD - Latch Address with Data separation"

પ્રશ્ન 2(ક) OR [7 ગુણ]

8085 નો Flag Register દોરો અને સમજાવો.

જવાબ:

```
D7 D6 D5 D4 D3 D2 D1 D0
+----+---+---+----+----+
| S | Z | X | AC | X | P | X | CY |
+----+----+----+-----+----+
```

Flag વર્ણન:

- CY (D0): Carry flag carry આવે ત્યારે set થાય છે
- P (D2): Parity flag even parity માટે set થાય છે
- AC (D4): Auxiliary carry BCD operations માટે set થાય છે
- **Z (D6)**: Zero flag પરિણામ zero હોય ત્યારે set થાય છે
- **S (D7)**: Sign flag પરિણામ negative હોય ત્યારે set થાય છે

Flag Operations:

• Conditional Jumps: Flag status પર આધારિત (JZ, JC, JP)

• **Arithmetic Results**: ALU operations પછી automatically update થાય છે

મેમરી ટ્રીક: "SZAPC - Sign, Zero, Auxiliary, Parity, Carry"

પ્રશ્ન 3(અ) [3 ગુણ]

SFR એટલે શું? કોઈ પણ ત્રણ SFR ની યાદી બનાવો.

જવાલ:

SFR વ્યાખ્યા:

Special Function Register - microcontroller માં વિશિષ્ટ કાર્યો સાથે dedicated registers

ત્રણ SFRs:

• ACC (E0H): Accumulator register

• PSW (D0H): Program Status Word

• SP (81H): Stack Pointer register

લાક્ષણિકતાઓ:

• Address Range: Internal RAM માં 80H થી FFH

• Bit Addressable: કેટલાક SFRs individual bit access આપે છે

• Function Specific: દરેકનું dedicated hardware function હોય છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "APS - ACC, PSW, Stack Pointer"

પ્રશ્ન 3(બ) [4 ગુણ]

Program Counter (PC) અને Data Pointer (DPTR) Register સમજાવો.

જવાબ:

Program Counter (PC):

• Size: 16-bit register

• Function: આગળના instruction નું address ધરાવે છે

• **Auto-increment**: Instruction fetch પછી automatically increment થાય છે

• Range: 0000H ଥା FFFFH

Data Pointer (DPTR):

• Size: 16-bit register (DPH + DPL)

• **Function**: External data memory locations ને point કરે છે

• Usage: External memory access માટે MOVX instructions સાથે વપરાય છે

• Components: DPH (83H) ਅਜੇ DPL (82H)

भेभरी ट्रीड: "PD - PC Points to Program, DPTR Points to Data"

પ્રશ્ન 3(ક) [7 ગુણ]

8051 નું આર્કિટેક્ચર દોરો અને સમજાવો.

4KB ROM 0000-
128B RAM
SFR Area
Port 0
Port 1
Port 2
Port 3
Timer 0

આર્કિટેક્ચર ઘટકો:

- CPU: Accumulator અને B register સાથે 8-bit ALU
- Memory: 4KB internal ROM, 128B internal RAM
- I/O Ports: ચાર 8-bit bidirectional ports (P0-P3)
- **Timers**: બे 16-bit timers/counters (T0, T1)
- Serial Port: Communication หเล full duplex UART
- Interrupts: Priority levels સાથે 5 interrupt sources

વિશેષ લક્ષણો:

- Boolean Processor: Bit manipulation capabilities
- Addressing Modes: 8 ਅਕਾ addressing modes
- Power Management: Idle ਅਜੇ power-down modes

મેમરી ટ્રીક: "MIPTIS - Memory, I/O, Processor, Timers, Interrupts, Serial"

પ્રશ્ન 3(અ) OR [3 ગુણ]

8051 ની નીચેની પીન સમજાવો: (1) ALE (2) PSEN (3) XTAL1 & XTAL2

જવાબ:

પીન કાર્યો:

- ALE (Pin 30): Address Latch Enable
 - o Lower address byte latch કરવા માટે output pulse
 - o Oscillator frequency ના 1/6 પર active high signal
- PSEN (Pin 29): Program Store Enable
 - o External program memory read मारे active low output

- o External EPROM ના OE pin સાથે જોડાય છે
- XTAL1 & XTAL2 (Pins 19, 18): Crystal connections
 - o Clock generation માટે external crystal જોડાય છે
 - o સામાન્ય frequency: 11.0592 MHz અથવા 12 MHz

મેમરી ટ્રીક: "APX - ALE latches Address, PSEN enables Program, XTAL generates clock"

પ્રશ્ન 3(બ) OR [4 ગુણ]

8051 માઈક્રોકંટ્રોલરનું આંતરિક RAM ઓર્ગેનાઈઝેશન સમજાવો.

જવાબ:

```
8051 Internal RAM Organization (128 Bytes)
   General Purpose
    Scratch Pad Area | 78H-7FH (8 bytes)
78H +----+
   General Purpose | 30H-77H (72 bytes)
    Data Memory
30H +----+
  Bank 3 (R0-R7)
20H +----+
  Bank 2 (R0-R7) | 10H-17H
18H +----+
  Bank 1 (R0-R7) | 08H-0FH
10H +----+
               00H-07H
  Bank 0 (R0-R7)
08H +----+
  Default Register Bank
```

RAM વિભાગો:

- Register Banks: 4 banks × 8 registers εὲs (00H-1FH)
- Bit Addressable: Individual bit access સાથે 16 bytes (20H-2FH)
- General Purpose: User data หเ2 80 bytes (30H-7FH)
- Stack Area: સામાન્યતે 08H થી ઉપર શરૂ થાય છે

Addressing:

- **Direct**: વાસ્તવિક address વાપરીને (MOV 30H, A)
- Indirect: Register pointer વાપરીને (MOV @R0, A)

મેમરી ટ્રીક: "RBGS - Register banks, Bit addressable, General purpose, Stack"

પ્રશ્ન 3(ક) OR [7 ગુણ]

8051 નો પીન ડાયાગ્રામ દોરો અને કોઈ પણ 4 પીન સમજાવો.

જવાબ:

			8051	PIN	DIAGRAM
P1.	. 0	1 -	++	40	Vcc
P1.	.1	2		39	P0.0/AD0
P1.	. 2	3		38	P0.1/AD1
P1.	. 3	4		37	P0.2/AD2
P1.	. 4	5	8051	36	P0.3/AD3
P1.	. 5	6		35	P0.4/AD4
P1.	. 6	7		34	P0.5/AD5
P1.	. 7	8		33	P0.6/AD6
RES	SET	9		32	P0.7/AD7
P3.0	0/RXD	10		31	EA/VPP
P3.1	1/TXD	11		30	ALE/PROG
P3.2	2/INTO	12		29	PSEN
P3.3	3/INT1	13		28	P2.7/A15
P3.4	4/T0	14		27	P2.6/A14
P3.5	5/T1	15		26	P2.5/A13
P3.6	6/WR	16		25	P2.4/A12
P3.7	7/RD	17		24	P2.3/A11
XTAI	L 2	18		23	P2.2/A10
XTAI	ե1	19		22	P2.1/A9
VSS	S	20	++	21	P2.0/A8

પીન સમજાવટ:

- EA/VPP (Pin 31): External Access Program memory selection control ອ ຂໍ ອັ
- P0 (Pins 32-39): Port 0 External memory भा2 multiplexed address/data bus
- P2 (Pins 21-28): Port 2 External memory भाटे high-order address bus

મેમરી ટ્રીક: "REPP - REset, External Access, Port 0, Port 2"

પ્રશ્ન 4(અ) [3 ગુણ]

R0 રજિસ્ટરમાં સ્ટોર થયેલ ડેટાને R1 રજિસ્ટરમાં સ્ટોર થયેલ ડેટા સાથે ગુણાકાર કરો અને પરિણામ R2 રજિસ્ટરમાં(LSB) અને R3 રજિસ્ટરમાં(MSB) સ્ટોર કરવાનો પ્રોગ્રામ લખો.

જવાબ:

```
ORG 0000H

MOV R0, #05H ; પહેલો નંબર લોડ કરો

MOV R1, #03H ; બીજો નંબર લોડ કરો

MOV A, R0 ; R0 ને accumulator માં મૂકો

MOV B, R1 ; R1 ને B register માં મૂકો

MUL AB ; A અને B નો ગુણાકાર કરો

MOV R2, A ; LSB ને R2 માં સ્ટોર કરો

MOV R3, B ; MSB ને R3 માં સ્ટોર કરો
```

પ્રોગ્રામ ફ્લો:

- Operands લોs કરો R0 અને R1 માં
- ટ્રાન્સફર કરો ગુણાકાર માટે A અને B registers માં
- Execute ระโ MUL AB instruction
- **સ્ટોર કરો** 16-bit પરિણામ (A=LSB, B=MSB)

પરિણામ સ્ટોરેજ:

- R2: Product +1 lower 8 bits
- R3: Product +1 upper 8 bits

મેમરી ટ્રીક: "LTSE - Load, Transfer, multiply, Store result"

પ્રશ્ન 4(બ) [4 ગુણ]

ડેટા ટ્રાન્સફર ઇન્સ્ટ્રકશનની યાદી આપો. કોઈ પણ બે ડેટા ટ્રાન્સફર ઇન્સ્ટ્રકશન ઉદાહરણ સહિત સમજાવો.

જવાબ:

ડેટા ટ્રાન્સફર ઇન્સ્ટ્રકશન:

Instruction	รเช่		
MOV	Registers/memory વચ્ચે data move કરે છે		
MOVX	External memory થી data move કરે છે		
MOVC Code byte ને accumulator માં move કરે છે			
PUSH Data ને stack પર push કરે છે			
POP	Stack માંથી data pop કરે છે		
XCH	Accumulator સાથે register exchange કરે છે		
XCHD	Lower nibble exchange နု ဲ છે		

વિગતવાર ઉદાહરણો:

1. MOV Instruction:

```
MOV A, #50H ; Immediate data 50H i accumulator Hi (I)S SEÌ
MOV RO, A ; Accumulator content i RO Hi copy SEÌ
MOV 30H, A ; Accumulator content i address 30H YE EEÌE SEÌ
```

2. PUSH/POP Instructions:

```
PUSH ACC ; Accumulator + stack 42 push 52ì

PUSH 00H ; R0 content + stack 42 push 52ì

POP 01H ; Stack content + R1 Hi pop 52ì

POP ACC ; Stack content + accumulator Hi pop 52ì
```

મેમરી ટ્રીક: "Move Makes Programs Possible - MOV, MOVX, PUSH, POP"

પ્રશ્ન 4(ક) [7 ગુણ]

8051 ના એડ્રેસિંગ મોડ્સને વ્યાખ્યાયિત કરો અને સમજાવો.

જવાબ:

8051 એડ્રેસિંગ મોડ્સ:

મોડ	વર્ણન	ઉદાહરણ	ઉપયોગ
Immediate	Data instruction નો ભાગ છે	MOV A, #50H	સ્થિર મૂલ્યો
Register	Register નો સીધો ઉપયોગ	MOV A, R0	ઝડપી access
Direct	સીધું address વાપરે છે	MOV A, 30H	RAM locations
Indirect	Register ને pointer તરીકે વાપરે છે	MOV A, @R0	Dynamic addressing
Indexed	Base + offset addressing	MOVC A, @A+DPTR	Table lookup
Relative	PC + offset	SJMP LOOP	Branch instructions
Absolute	Direct jump address	LJMP 1000H	Long jumps
Bit	Individual bit access	SETB P1.0	Control operations

વિગતવાર ઉદાહરણો:

```
; Immediate Addressing
MOV A, #25H ; 25H i A ii dis sei

; Register Addressing
MOV A, R1 ; R1 i A ii copy sei

; Direct Addressing
MOV A, 40H ; Address 40H iiil dis sei
```

```
; Indirect Addressing
MOV RO, #40H ; RO 40H i point set is
MOV A, @RO ; RO GIEL pointed address Hiel His set

; Indexed Addressing
MOV DPTR, #TABLE ; Table i point set
MOV A, #02H ; Index value
MOVC A, @A+DPTR ; TABLE+2 Hiel His set
```

મેમરી ટ્રીક: "IRIDRAB - Immediate, Register, Indirect, Direct, Relative, Absolute, Bit"

પ્રશ્ન 4(અ) OR [3 ગુણ]

RO રજિસ્ટરમાં સ્ટોર થયેલ ડેટાનું 2's Complement શોધવાનો પ્રોગ્રામ લખો.

જવાબ:

```
ORG 0000H

MOV RO, #85H ; टेस्ट Sेटा GÌS કરો

MOV A, RO ; Sेटाने accumulator Hi copy કરो

CPL A ; GEI bits complement કરો (1's complement)

INC A ; 2's complement माटे 1 ઉमेरो

MOV R1, A ; परिधाम R1 मां स्टोर डरो

END
```

Algorithm:

- Step 1: RO માંથી ડેટાને accumulator માં લોડ કરો
- Step 2: CPL A વાપરીને બધા bits complement કરો
- Step 3: 2's complement માટે INC A વાપરીને 1 ઉમેરો
- Step 4: પરિણામ પાછું સ્ટોર કરો

ચકાસણી:

```
မွတ: 85H = 10000101B
1's Comp: 7AH = 01111010B
2's Comp: 7BH = 01111011B
```

મેમરી ટ્રીક: "CCI - Complement, aCd 1, Include result"

પ્રશ્ન 4(બ) OR [4 ગુણ]

લોજિકલ ઇન્સ્ટ્રકશનની ચાદી આપો. કોઈ પણ બે લોજિકલ ઇન્સ્ટ્રકશન ઉદાહરણ સહિત સમજાવો.

જવાબ:

લોજિકલ ઇન્સ્ટ્રકશન:

Instruction	รเช
ANL	Logical AND operation
ORL	Logical OR operation
XRL	Logical XOR operation
CPL	Complement operation
RL/RLC	Rotate left
RR/RRC	Rotate right
SWAP	Swap nibbles

વિગતવાર ઉદાહરણો:

1. ANL (AND Logic):

```
MOV A, #0F0H ; A = 11110000B
ANL A, #0AAH ; 10101010B સાથે AND SRÌ
; ਪਵਿधाम: A = 10100000B = A0H
```

ઉપયોગ: વિશિષ્ટ bits masking, અનચાહતા bits clear કરવા

2. ORL (OR Logic):

```
MOV A, #0F0H ; A = 11110000B
ORL A, #00FH ; 00001111B સાથે OR કરો
; પરિણામ: A = 111111111B = FFH
```

ઉપયોગ: વિશિષ્ટ bits setting, bit patterns combine કરવા

મેમરી ટ્રીક: "AXOR - AND masks, XOR toggles, OR sets, Rotate shifts"

પ્રશ્ન 4(ક) OR [7 ગુણ]

નીચેની ઇન્સ્ટ્રકશન સમજાવો: (1)ADDC (2) INC (3) DEC (4) JZ (5) SUBB (6) NOP (7) RET

જવાબ:

ઇન્સ્ટ્રકશન સમજાવટ:

1. ADDC (Add with Carry):

```
MOV A, #80H
ADDC A, #90H ; A = A + 90H + Carry flag
```

કાર્ય: Source, destination, અને carry flag ઉમેરે છે

2. INC (Increment):

```
INC A ; A = A + 1
INC R0 ; R0 = R0 + 1
INC 30H ; (30H) = (30H) + 1
```

કાર્ય: Operand માં 1 વધારે છે

3. DEC (Decrement):

```
DEC A ; A = A - 1

DEC R1 ; R1 = R1 - 1

DEC 40H ; (40H) = (40H) - 1
```

કાર્ય: Operand માંથી 1 ઓછું કરે છે

4. JZ (Jump on Zero):

```
DEC A

JZ ZERO_LABEL ; A = 0 હોય dì jump કરો
```

કાર્ય: Zero flag set હોય ત્યારે conditional jump

5. SUBB (Subtract with Borrow):

```
MOV A, #50H
SUBB A, #30H ; A = A - 30H - Carry flag
```

કાર્ય: Accumulator માંથી source અને carry ઓછું કરે છે

6. NOP (No Operation):

```
NOP ; કંઈ ન કરો, 1 cycle વાપરો
```

કાર્ય: Timing delay આપે છે, placeholder

7. RET (Return):

```
CALL SUBROUTINE
...
SUBROUTINE:
MOV A, #10H
RET ; Caller ਜੇ ਪਾਲਾ ਅਮੀ
```

કાર્ય: Subroutine માંથી calling address પર પાછા જાય છે

મેમરી ટ્રીક: "AIDS NR - Add, Increment, Decrement, Subtract, No-op, Return"

પ્રશ્ન 5(અ) [3 ગુણ]

DJNZ અને CJNE ઇન્સ્ટ્રકશન યોગ્ય ઉદાહરણ સહિત સમજાવો.

જવાબ:

DJNZ (Decrement and Jump if Not Zero):

```
MOV RO, #05H ; Counter initialize કરો
LOOP:
MOV A, #00H ; કોઈ operation
DJNZ RO, LOOP ; RO ઓછું કરો, zero નથી તો jump કરો
```

કાર્ય: Decrement અને conditional jump operations combine કરે છે

CJNE (Compare and Jump if Not Equal):

```
MOV A, #30H
CJNE A, #30H, NOT_EQUAL ; A ને 30H સાથે compare Stì
MOV R0, #01H ; Equal case
SJMP CONTINUE
NOT_EQUAL:
MOV R0, #00H ; Not equal case
CONTINUE:
```

કાર્ય: બે operands compare કરે છે અને સમાન નથી તો jump કરે છે

ઉપયોગો:

- DJNZ: Loop control, counting operations
- CJNE: Decision making, condition checking

મેમરી ટ્રીક: "DC - Decrement count, Compare jump"

પ્રશ્ન 5(બ) [4 ગુણ]

ટાઈમર 0 નો ઉપયોગ કરી 30 મિલી સેકંડનો ટાઈમ ડિલે જનરેટ કરવા માટે એસેમ્બલી પ્રોગ્રામ બનાવો. ક્રિસ્ટલ ફ્રિકવન્સી 12 મેગા હર્ટઝ ગણતરીમાં લેવી.

```
ORG 0000H
MAIN:
   CALL DELAY_30MS ; 30ms delay call sel
   SJMP MAIN
                     ; Repeat કरो
DELAY 30MS:
   MOV TMOD, #01H ; Timer 0, Mode 1 (16-bit)
   MOV THO, #8AH
                     ; 30ms માટે high byte લોડ કરો
                     ; Low byte લોડ કરો
   MOV TL0, #23H
                     ; Timer O start કरो
   SETB TRO
WAIT:
   JNB TFO, WAIT ; Timer overflow માટે રાહ જુઓ
                      ; Timer stop કरो
   CLR TRO
   CLR TF0
                       ; Timer flag clear Sel
```

```
RET
END
```

30ms delay માટે ગણતરી:

```
Crystal Frequency = 12 MHz Machine Cycle = 12/12 MHz = 1 \mus 30ms HIŽ = 30,000 \mus = 30,000 machine cycles Timer Count = 65536 - 30000 = 35536 = 8A23H THO = 8AH, TLO = 23H
```

Timer Configuration:

- TMOD: Timer mode register configuration
- TH0/TL0: Timer 0 high/low byte registers
- TRO: Timer 0 run control bit
- **TF0**: Timer 0 overflow flag

મેમરી ટ્રીક: "CLSW - Calculate, Load, Start, Wait"

પ્રશ્ન 5(ક) [7 ગુણ]

8051 માઈક્રોકંટ્રોલર સાથે LCD નો ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો અને ઇન્ટરફેસિંગ માટે જરૂરી LCD ની તમામ પીનો સમજાવો.

જવાબ:

LCD પીન કાર્યો:

- RS (Pin 4): Register Select 0=Command, 1=Data
- RW (Pin 5): Read/Write 0=Write, 1=Read
- EN (Pin 6): Enable Data transfer માટે high to low pulse

• D4-D7 (Pins 11-14): Commands/data भारे 4-bit data lines

ઇન્ટરફેસ જરૂરિયાતો:

- Power Supply: VCC=+5V, VSS=GND, VEE=Contrast control
- Control Lines: LCD control માટે 3 pins (RS, RW, EN)
- Data Lines: 4-bit mode operation หเ2 4 pins (D4-D7)

મૂળભૂત LCD Commands:

- 0x38: Function set (8-bit, 2 lines)
- 0x0E: Display ON, cursor ON
- 0x01: Clear display
- 0x80: Set cursor to first line

મેમરી ટ્રીક: "REED - RS selects, RW reads, EN enables, Data transfers"

પ્રશ્ન 5(અ) OR [3 ગુણ]

65h મેમરી લોકેશન પર સ્ટોર થયેલ ડેટાનું 75h મેમરી લોકેશન પર સ્ટોર થયેલ ડેટા સાથે OR ઓપરેશન કરો અને પરિણામ R6 રજિસ્ટરમાં સ્ટોર કરવાનો પ્રોગ્રામ લખો.

જવાબ:

```
ORG 0000H

MOV 65H, #0F0H ; 65H પર ટેસ્ટ ડેટા સ્ટોર કરો

MOV 75H, #0AAH ; 75H પર ટેસ્ટ ડેટા સ્ટોર કરો

MOV A, 65H ; 65H માંથી ડેટાને accumulator માં લોડ કરો

ORL A, 75H ; 75H પરના ડેટા સાથે OR કરો

MOV R6, A ; પરિણામ R6 register માં સ્ટોર કરો
```

ઓપરેશન વિગતો:

- Load: Memory location 65H માંથી પહેલો operand
- **OR**: 75H પરના બીજા operand સાથે logical OR કરો
- Store: પરિણામ R6 register માં

ઉદાહરણ ગણતરી:

```
65H પરનો ડેટા: F0H = 11110000B
75H પરનો ડેટા: AAH = 10101010B
OR પરિણામ: FAH = 11111010B
```

ਮੇਮਣੀ ਟ੍ਰੀs: "LOS - Load, OR, Store result"

પ્રશ્ન 5(બ) OR [4 ગુણ]

P1.3 પર 2 કિલો હર્ટઝનો સ્કવેર વેવ જનરેટ કરવા માટે એસેમ્બલી પ્રોગ્રામ લખો. ક્રિસ્ટલ ફ્રિકવન્સી 11.0592 મેગા હર્ટઝ ગણતરીમાં લેવી.

જવાબ:

```
ORG 0000H
MAIN:
                 ; P1.3 ને high કરો
   SETB P1.3
   CALL DELAY 250US ; अऽधा period भारे delay
                       ; P1.3 ને low કરો
   CLR P1.3
   CALL DELAY 250US ; अऽधा period मारे delay
   SJMP MAIN
                       ; सतत repeat sei
DELAY 250US:
   MOV TMOD, #01H ; Timer 0, Mode 1
   MOV THO, #0FEH ; High byte Gis sei
MOV TLO, #0CBH ; Low byte Gis sei
   SETB TRO
                       ; Timer 0 start કरो
WAIT:
   JNB TF0, WAIT ; Overflow માટે રાહ જુઓ
   CLR TR0
                       ; Timer stop કरो
   CLR TF0
                       ; Flag clear કरो
    RET
END
```

2KHz Square Wave માટે ગણતરી:

```
Frequency = 2\text{KHz}, Period = 500\mu\text{s}

Half Period = 250\mu\text{s}

Crystal = 11.0592 MHz

Machine Cycle = 11.0592/12 = 0.921 MHz = 1.085\mu\text{s}

Timer Count = 250\mu\text{s} / 1.085\mu\text{s} = 230 cycles

Timer Value = 65536 - 230 = 65306 = \text{FECBH}

THO = FEH, TLO = CBH
```

Square Wave Generation:

• **High Period**: Pin high કરો, 250µs રાહ જુઓ

• Low Period: Pin low કરો, 250µs રાહ જુઓ

• **Frequency**: $1/(250\mu s + 250\mu s) = 2KHz$

મેમરી ટ્રીક: "SCDW - Set high, Clear low, Delay, Wait"

પ્રશ્ન 5(ક) OR [7 ગુણ]

8051 માઈક્રોકંટ્રોલર સાથે 7-Segment ડિસ્પ્લેનો ઇન્ટરફેસિંગ દોરો અને સમજાવો.

```
8051 to 7-Segment Display Interfacing
8051 Port 1
                         7-Segment Display
-----
                          _____
P1.0 ----[R]----> a (Pin 7)
P1.1 ----[R]---> b (Pin 6)
                                  aaaa
P1.2 ----[R]----> c (Pin 4) f b
P1.3 ----[R]----> d (Pin 2) f b
P1.4 ----[R]----> e (Pin 1) gggg
P1.5 ----[R]----> f (Pin 9)
                                 e c
P1.6 ----[R]----> g (Pin 10) e c
P1.7 ----[R]----> dp (Pin 5) dddd dp
[R] = Current limiting resistor (330\Omega)
For Common Cathode:
Common pin (Pin 3,8) ---> GND
For Common Anode:
Common pin (Pin 3,8) ---> +5V
```

ડિસ્પ્લે કોન્ફિગરેશન:

અક્ષર	Common Cathode ទទំន	Common Anode รìร
0	3FH	СОН
1	06H	F9H
2	5BH	A4H
3	4FH	ВОН
4	66H	99H
5	6DH	92H
6	7DH	82H
7	07H	F8H
8	7FH	80H
9	6FH	90H

નમૂના પ્રોગ્રામ:

```
ORG 0000H

MOV DPTR, #DIGIT_TABLE ; Lookup table ਜੇ point Stì

MOV A, #05H ; અંક 5 દર્શાવો

MOVC A, @A+DPTR ; 7-segment sìs મેળવો

MOV P1, A ; Display ਜੇ મોકલો

SJMP $ ; અહીં રહો

DIGIT_TABLE:

DB 3FH, 06H, 5BH, 4FH, 66H ; 0,1,2,3,4

DB 6DH, 7DH, 07H, 7FH, 6FH ; 5,6,7,8,9

END
```

ઇન્ટરફેસ ઘટકો:

- Current Limiting Resistors: LED current หน่าโชิส ระศา 330Ω
- **Common Connection**: GND ને cathode અથવા +5V ને anode
- Data Lines: Segments a-g અને decimal point માટે 8 bits

મલ્ટિપલ ડિજિટ્સ માટે Multiplexing:

- Digit Select: Digit selection માટે વધારાના pins
- Time Division: Digits વચ્ચે ઝડપથી switch કરવું
- Persistence of Vision: એકસાથે display નો ભ્રમ બનાવે છે

મેમરી ટ્રીક: "CRAM - Common connection, Resistors limit, Address segments, Multiplex digits"