

NORMALIZACIÓN DE DATOS

NORMALIZACIÓN DE DATOS

Reglas bien definidas sobre las entidades que presentan anomalías en los atributos que las describen. Se pretende eliminar o disminuir al máximo la redundancia de datos y de datos innecesarios.

TERMINOLOGÍA RELACIONAL

Modelo Relacional	Programador	Usuario
Afinidad	Archivo	Tabla
Tupla (Fila)	Registro	Fila
Atributo	Campo	Columna

EJEMPLO

Atributos

	NumEmpleado	Edad	Sexo	Nombre
T_{\lceil}	010110	21	F	Andres
U	010100	22	M	David
Р	101000	22	M	Grover
	201100	21	F	Josue
٨	111100	19	M	Mario
Α	111101	20	F	Nancy
S	111111	19	M	Eduardo

Estructura de la Afinidad:

EMPLEADO(NumEmpleado, Edad, Sexo, Nombre)

DEPENDENCIAS FUNCIONALES

- Es una relación entre uno o más atributos; es decir, si se da el valor de un atributo se puede obtener o buscar el valor de otro.
- En general:
 - El atributo Y depende del atributo X;
 siempre y cuando el valor de X determine el valor de Y.
- Notación:

 $X \rightarrow Y$ (X se llama Determinante!!)

EJEMPLO

- IdCliente → NombreCliente
 - El atributo IdCliente determina funcionalmente al atributo NombreCliente.
- Otro ejemplo:
 - Sea: Importe = Cantidad * Precio
 - Entonces:

(Cantidad, Precio) → Importe

DEPENDENCIAS FUNCIONALES

 Las dependencias funcionales pueden involucrar grupos de atributos.

Ejemplo:

- Sea: NOTAS(IdAlumno, IdCurso, Puntaje)
- La combinación: IdAlumno + IdCurso determina un Puntaje.
- Entonces:
 - (IdAlumno, IdCurso) → Puntaje

PARTICULARIDAD

- Si $X \rightarrow (Y, Z)$; Entonces: $X \rightarrow Y \land X \rightarrow Z$
- Ejemplo:
 - Si IdAlumno→(NombreAlumno, Especialidad)
 - Entonces:
 - IdAlumno → NombreAlumno y
 - IdAlumno → Especialidad
 - Al Contrario:
 - Si $(X, Y) \rightarrow Z$
 - No es cierto que: $X \rightarrow Z \circ Y \rightarrow Z$

PARTICULARIDAD ...

- Ejemplo:
- Si (IdAlumno, IdCurso) → Puntaje
- Entonces:
 - IdAlumno por sí mismo NO puede determinar Puntaje, del mismo modo que IdCurso por si solo no puede determinar puntaje.

CLAVES

 Son grupos de uno o más atributos que identifican de modo único a una hilera.

Ejemplo:

- DOCENTE(<u>CodigoID</u>, Nombre, DNI, Telefono, Especialidad)
- La Clave primaria, se encuentra subrayada!! DOCENTE

CodigolD

Nombre

DNI

Telefono

Especialidad

CLAVE CONCATENADA

- Son claves formadas por dos ó más atributos.
- Ejemplos:
 - Usaremos los atributos:
 NumFactura+CodServicio para registrar el PAGO por un servicio atendido.

PAGO

NumFactura CodServicio

Tratamiento Importe

CLAVE FORÁNEA (FK)

 Se usan para establecer una relación con otra tabla, en la cuál estos atributos se han definido como Clave Primaria.

FORMAS NORMALES

RELACIÓN NO NORMALIZADA

 En un Sistema de Ventas se registra la FACTURA; para llevar la cuenta de las ventas efectuadas.

Datos contenidos en el documento FACTURA

FACTURA

Numero de Factura

Fecha de Factural RUC del Cliente Nombre del Cliente Direccion del Cliente Telefono del Cliente Descripcion del Producto Cantidad del Pedido Precio del Producto Unidad de Medida Importe Total Bruto Descuento Impuesto de Venta Total Neto

PRIMERA ANOMALÍA

- En una misma Factura, hay un grupo de Productos distintos que conforman la Línea de Venta.
- Entonces, Aplicaremos la siguiente regla para reducir esta anomalía:

PRIMERA FORMA NORMAL

- "Eliminar los grupos repetidos".
 - Estrategia: Dividir la tabla FACTURA en dos tablas, de la siguiente manera:

FACTURA

SEGUNDA ANOMALÍA

 No todos los atributos de la tabla LINEA DE VENTA dependen de la clave concatenada!

LINEA DE VENTA

Numero de Factura (FK) Codigo del Producto

Descripcion del Producto
Cantidad del Pedido
Precio del Producto
Unidad de Medida
Importe

SEGUNDA FORMA NORMAL

 "Los atributos de una tabla serán funcionalmente dependientes de la clave primaria".

•Esta regla se aplica a las tablas que se identifican a través de atributos de claves concatenadas.

TERCERA ANOMALÍA

 En FACTURA hay atributos dependientes de otros atributos no claves.

FACTURA

Numero de Factura

Fecha de Factura

RUC del Cliente

Nombre del Cliente

Direccion del Cliente

Telefono del Cliente

<u>Total Bruto</u>

Descuento

Impuesto de Venta

Total Neto

TERCERA FORMA NORMAL

 "Todos los atributos deben ser funcionalmente dependientes de su clave principal".

MODELO DE DATOS DE VENTAS

Además; se pueden eliminar los atributos calculables.

CONSIDERACIONES PARA LA BCNF

- Sea la tabla ASESOR; con las características:
- Un IdAlumno puede tener varias especialidades
 - IdAlumno → → Especialidad
- Un IdAlumno puede tener varios Asesores.
 - IdAlumno → → Asesor
- IdAlumno por sí mismo NO puede ser una CLAVE !!
 - (IdAlumno, Especialidad) → Asesor y
 - (IdAlumno, Asesor) → Especialidad
 - Cualquiera de estas combinaciones puede ser la Clave.
 - Aparece el término: Clave Candidata

ASESOR

ldAlumno Especialidad Asesor

OTRAS CONSIDERACIONES ...

- Un Especialidad puede tener varios Asesores
 - Especialidad Asesor
- Un Asesor sólo imparte asesoría en una Especialidad.
 - Asesor Especialidad
- Luego; Asesor es un DETERMINANTE!!

ASESOR

ldAlumno Especialidad Asesor

ANOMALÍAS

De Eliminación

 Si un Estudiante deja la Escuela; al eliminar la fila perderíamos el hecho de que un Asesor imparte Asesoría en una Especialidad determinada.

De Inserción

– ¿Cómo almacenaremos el hecho de que un Asesor asesora en una Especialidad determinada? Esto no será posible hasta que el Estudiante se inscriba en una materia!!

FORMA NORMAL DE BOYCE y CODD

- Una Afinidad está en BCNF si cada determinante es una clave candidata.
 - En el ejemplo anterior; ASESOR no está en BCNF porque tiene un determinante Asesor que no es una clave candidata.
- Así:
 - ESTUD_ASESOR(<u>IdAlumno +Asesor</u>)
 - ASESOR_ESPECIALIDAD(<u>Asesor</u>, Especialidad)

CONSIDERACIONES PARA LA 4NF

- Sea la tabla ESTUDIANTE con las características:
 - Un estudiante puede inscribirse en varias Especialidades y participar en diversas Actividades.
 - Existe una dependencia multivaluada entre IdAlumno y Especialidad; y, Actividades.
 - IdAlumno → → Especialidad
 - IdAlumno → → Actividad

ESTUDIANTE

ldAlumno Especialidad Actividad

OTRAS CONSIDERACIONES

ESTUDIANTE

ldAlumno Especialidad Actividad

- La Tabla ESTUDIANTE está en 2NF porque todo es Clave.
- Está en 3NF porque no tiene dependencias transitivas; y
- Está en BCNF porque no tiene determinantes que no son claves.

ANOMALÍAS

- De Inserción
 - Si un estudiante toma otra especialidad;
 se debe ingresar una fila para la nueva especialidad, y juntarla con cada una de las actividades del estudiante.
 - Sucede lo mismo si un estudiante se inscribe en una nueva actividad.
- De Eliminación
 - Si un estudiante deja una especialidad se deben eliminar cada uno de los registros que contienen tal materia.

CUARTA FORMA NORMAL

- Una Afinidad está en 4NF si está en BCNF y no tiene dependencias de valores múltiples.
 - Para evitar tales anomalías, se deben eliminar las dependencias de valores múltiples. Esto se hace construyendo dos Afinidades, donde cada una almacena datos para solamente uno de los atributos de valores múltiples.
 - Las afinidades resultantes, no tienen anomalías; asi:
- ESTU-ESPECIALIDAD(<u>IdAlumno</u>, <u>Especialidad</u>)
- ESTU-ACTIVIDAD(IdAlumno, Actividad)

QUINTA FORMA NORMAL

Dependencias de Unión

 Ocurre cuando una tabla tiene dependencia de unión con varias de sus proyecciones y se puede obtener la tabla por medio de la unión de dichas proyecciones.

PROYECCION

 Creación de una tabla cuyos elementos forman un subconjunto de una tabla dada. Se incluyen todas las flas y algunas columnas.

UNIÓN

 Formar a partir de 2 tablas, una nueva con todos los campos de una de ellas y los registros de ambas; excepto los repetidos. Ambas tablas deben tener el mismo grado y las mismas columnas.

QUINTA FORMA NORMAL

- Conocida como FN de Proyección-Unión; es un nivel de normalización designado para reducir redundancias que guardan hechos multivalores aislando semánticamente relaciones múltiples.
- Una Tabla se dice que está en 5NF si y sólo si; está en 4NF y las únicas dependencias que existen son las dependencias de Unión de una tabla con sus proyecciones; relacionándose entre las distintas proyecciones mediante la clave primaria o cualquier clave candidata.

QUINTA FORMA NORMAL

- Este es el caso de una Empresa que guarda información de sus empleados con sus datos Personales, Datos Profesionales, Datos Clínicos y Datos de su vivienda.
- Si esta tabla ya está en 4NF; entonces podremos tener las tablas:
 - Empleados-Personales
 - Empleados-Profesionales
 - Empleados-Clinicos
 - Empleados-Vivienda.

EMPLEADOS

EmpleadoID

NumSequro Nombre. Direction EstadoCivil **FechaNacimiento** Profesion Universidad AñoEgreso TrabajoActual Añolngreso EnfermCronicas TipoSangre Estatura Peso TipoVivienda TipoConstruccion NumHabitaciones NumBaños NumPisos

TABLAS EN 5NF

EMPLEADO_PERSONAL

EmpleadoID

NumeroSeguro

Nombre:

Direction.

EstadiCivil

FechaNacimiento

EMPLEADO_PROFESIONAL

EmpleadoID

Profesion

Universidad

AñoEgreso

TrabajoActual

Añolngreso

EMPLEADO_CLINICO

EmpleadoID

EnfermCronicas

TipoSangre

Estatura

Peso

EMPLEADO_VIVIENDA

EmpleadolD

TipoVivienda.

TipoConstruccion

NumHabitaciones

NumBaños

NumPisos

RESUMEN

Forma	Características que la define	
1NF	Cualquier Afinidad	
2NF	Todos los atributos que no son clave dependen por completo de las claves	
3NF	No hay dependencias transitivas	
BCNF	Cada determinante es una candidata para clave	
4NF	No hay dependencias de valores múltiples	
5NF	Proyección-Unión	
DK/NF	Todas las restricciones en las actividades son consecuencias lógicas de los dominios y las claves	

RESUMEN DE LAS AFINIDADES

Referente a las Afinidades uno-a-uno

- •Los atributos que tienen una relación uno-a-uno deben aparecer juntos en cuando menos una afinidad. Llame a esta afinidad R y a los atributos A y B.
- •A o B deben ser la clave de R
- •Un atributo puede agregarse a R si está determinado funcionalmente por A o B.
- •Un Atributo que no está determinado funcionalmente por A o B no puede agregarse a R.
- •A y B deben aparecer juntos en R, pero no deberán aparecer juntos en otras afinidades.
- •A o B deben usarse consistentemente para representar el par en las afinidades diferentes a R.

RESUMEN DE LAS AFINIDADES

Referente a Relaciones Muchos-a-Uno

- •Los atributos que tienen una relación muchos-a-uno pueden existir juntos en una afinidad.
- •Supongamos que C determina D en una Afinidad S.
- C debe ser la clave de S
- Un atributo puede agregarse a S si está determinado por C
- •Un atributo que no está determinado por C no puede agregarse a S.

RESUMEN DE LAS AFINIDADES

Referente a las relaciones Muchos-a-Muchos

- •Los atributos que tienen una relación muchos-a-muchos pueden existir juntos en una afinidad.
- •Supongamos que los atributos E y f, residen juntos en la afinidad T.
- La clave de T debe ser (E, F)
- •Un atributo puede agregarse a t si está determinado por la combinación (E, F)
- •Un atributo no puede agregarse a T, si no está determinado por la combinación (E, F)
- •Si agregar un nuevo atributo G, expande la clave a (E, F, G); entonces el tema de la afinidad ha sido cambiado. G no pertenece a T o el nombre de T debe cambiarse para reflejar el nuevo tema.