WEST

End of Result Set

Generate Collection Print

L8: Entry 1 of 1

File: DWPI

Mar 15, 1984

DERWENT-ACC-NO: 1984-069938

DERWENT-WEEK: 198412

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Carboxamide compsn. and polymer - stabilised with tetra: methyl:piperidine

ester or amine and alkali hypophosphite

INVENTOR: MAAHS, G; ROMBUSCH, K

PATENT-ASSIGNEE:

ASSIGNEE

CODE

CHEM WERKE HUELS AG

CHEM

PRIORITY-DATA: 1982DE-3233953 (September 14, 1982)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

DE 3233953 A

March 15, 1984

009

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

DE 3233953A

September 14, 1982

1982DE-3233953

INT-CL (IPC): C08K 3/32; C08K 5/34; C08L 77/00

ABSTRACTED-PUB-NO: DE 3233953A

BASIC-ABSTRACT:

Moulding compsns. or mouldings with carboxamide gps. contain as stabiliser (A) 0.01-2 wt.% of an ester or amine of 2,2,6,6-tetramethylpiperidine of formula (I), (III) or (IV). where m= 1-18; p, q and r= 2-6; and X= 5-55, o= 1-18; and R' and R" are H or 1-12C alkyl, or n= 2-6; and y= 3-17 and (B) 0.01-1.5% of an alkali hypophosphite. The polymer may be a polyamide, or a poly-ether- and/or -ester-amide.S The compsns. have better resistance to light, esp. outdoors. The stabiliser is not limited to partic. polyamides or processes. Use of the polymers includes fibres, films and plates.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: CARBOXAMIDE COMPOSITION POLYMER STABILISED TETRA METHYL PIPERIDINE ESTER AMINE ALKALI HYPOPHOSPHITE

DERWENT-CLASS: A60 E13

CPI-CODES: A05-E07; A05-F01B; A08-A03; E07-D05; E31-K07;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

THIS PAGE BLANK (USPTO)

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenl gungsschrift [®] DE 32 33 953 A 1

(5) Int. Cl. 3: C 08 L 77/00 C 08 K 5/34

C 08 K 3/32

DEUTSCHES PATENTAMT

21) Aktenz ichen: P 32 33 953.4
 22) Anmeldetag: 14. 9. 82
 23) Offenlegungstag: 15. 3. 84

7 Anmelder:

Chemische Werke Hüls AG, 4370 Marl, DE

② Erfinder:

Rombusch, Konrad, Dr.; Maahs, Günther, Dr., 4370 Marl, DE

Carbonamidgruppenhaltige Formmassen oder Formkörper mit verbesserter Beständigkeit gegen die Einwirkung von Licht

Gegenstand der Erfindung sind carbonamidgruppenhaltige Formmassen oder Formkörper mit verbesserter Beständigkeit gegen die Einwirkung von Licht, die als Stabilisierungsmittel ein Gemisch enthalten aus

A) 0,01 bis 2,0 Gew.% Ester oder Amine des 2,2,6,6-Tetramethylpiperidins und

B) 0,01 bis 1,5 Gew.% Alkalisalze der unterphosphorigen

Säure, jeweils bezogen auf den carbonamidgruppenhaltigen Kunststoff. (32 33 953)

Patentanspruch:

Carbonamidgruppenhaltige Formmassen oder Formkörper mit verbesserter Beständigkeit gegen die Einwirkung von Licht enthaltend als Stabilisierungsmittel

(A)

5

O,01 bis 2,0 Gewichtsprozent Ester oder Amine des

2,2,6,6-Tetramethylpiperidins der allgemeinen Formeln

in der m den Wert 1 bis 18 bedeutet,

25 in der p, q, r die Zahlen 2 bis 6 darstellen und x den Wert 5 bis 55 annehmen kann,

in der o den Wert 1 bis 18 annehmen kann und R₁ und R₂
35 gleich oder verschieden sein können und Wasserstoffatome
oder Alkylreste mit 1 bis 12 Kohlenstoffatomen bedeuten,
oder

O.Z. 3831

in der n den Wert 2 bis 6 bedeutet, R2 ein Wasserstoffatom oder einen Alkylrest mit 1 bis 12 Kohlenstoffatomen darstellt und y den Wert 3 bis 17 annehmen kann und

(B)

15

0,01 bis 1,5 Gewichtsprozent Alkalisalze der unterphosphorigen Säure; jeweils bezogen auf den carbonamidgruppenhaltigen Kunststoff. 20

0.Z. 3831

Carbonamidgruppenhaltige Formmassen oder Formkörper mit verbesserter Beständigkeit gegen die Einwirkung von Licht

Es ist bekannt, daß die mechanischen Eigenschaften von Kunststoffen durch den Einfluß von erhöhter Temperatur, von Sauerstoff und von Licht verschlechtert werden. Als Stabilisierungsmittel für Kunststoffe sind zahlreiche Substanzen bekannt geworden (Thinius, Stabilisierung und Alterung von Plastwerkstoffen, Band 1 (1969), Seiten 167 bis 634).

Insbesondere gilt dies auch für carbonamidgrupphenhaltige
10 Kunststoffe, wie Polyamide, Polyesteramide, Polyetheramide oder Polyetheresteramide.

Zum Stand der Technik verweisen wir hierzu auf "Kunststoff-Handbuch", Band VI, Polyamide (1966), Seiten 455 ff. 15 und Seite 240; beispielsweise seien hier genannt Verbindungen, welche aromatische Hydroxygruppen enthalten, wie z. B. Brenzkatechin und Hydrochinon (US-PS 2 598 163), p-Hydroxybenzoesäureester (US-PS 2 597 163), 2,6-Di-tert.buty1-4-alkyl-phenol (DE-AS 10 32 679). Ferner Derivate der Quadratsäure (DE-AS 26 38 855, DE-AS 27 30 020). 20 Schließlich ist auch bekannt, daß die vorgenannten, sog. sterisch gehinderten aromatischen Phenole, insbesondere zusammen mit Sauerstoffsäuren des Phosphors, besonders günstige stabilisierende Wirkung besitzen (BE-PS 705 780). Andererseits hat sich gezeigt, daß dies nicht allgemein 25 für Polyamide gültig ist, sondern nur durch Auswahl bestimmter Säuren des Phosphors in Art, Menge und Einarbeitungsverfahren (DE-AS 19 19 021).

Aufgabe der Erfindung war es daher, ein Stabilisatorgemisch bereitzustellen, das bei der Verwendung in carbonamidgruppenhaltigen Kunststoffen sowohl eine verbesserte
Beständigkeit gegenüber Licht ergibt, als auch in seiner

5

Anwendung nicht auf bestimmte Polyamide oder auf ein bestimmtes Verfahren gebunden ist.

Die Lösung der Aufgabe gelingt mit Hilfe eines in den 5 Patentansprüchen beanspruchten Stabilisatorgemisches.

Verbindungen der Gruppe A sind Ester oder Amine des 2,2,6,6-Tetramethylpiperidins.

Folgende Verbindungen seien beispielsweise genannt der Formel ∞;
der Dodecandisäurediester von 4-Hydroxy-2,2,6,6-tetramethylpiperidin der Sebazinsäurediester von 4-Hydroxy-2,2,6,6-tetramethylpiperidin,

der Formel ß;
der Oligoester aus Bernsteinsäure und 4-Hydroxyethyl2,2,6,6-tetramethyl-piperidin, x ~ Ø 6,5 (Molgewicht Ø 3700)

201

N, N-Bis-(2, 2, 6, 6-tetramethyl-piperidyl-(4) -hexa-methylendiamin

N, N-Bis-(2, 2, 6, 6-tetramethyl-piperidyl-(4)-dodeca-methylendiamin und

der Formel & ;

der Formel X ;

Oligomeres Isooctyl-amino-1,3,5-triazin, dessen Verknüpfung über ein N,N-bis-(2,2,6,6-tetramethyl-piperidyl-(4)-hexamethylendiamin erfolgt.

y ~ Ø 4,5 (Molgewicht Ø 2690)

Gruppe B sind Alkalisalze der unterphosphorigen Säure.

30 Als Alkalisalze werden insbesondere die Natriumsalze eingesetzt, jedoch sind auch Kalium- oder Lithiumsalze geeignet.

Im allgemeinen setzt man von der Gruppe A 0,05 bis 1,5

Gewichtsprozent, vorzugsweise O,1 bis 1,0, insbesondere
O,15 bis 0,4 Gewichtsprozent und von Gruppe B 0,01 bis
1,5, vorzugsweise 0,05 bis 0,75, insbesondere 0,1 bis

O,3 Gewichtsprozent ein, jeweils bezogen auf den carbon-amidgruppenhaltigen Kunststoff.

Unter carbonamidgruppenhaltigen Kunststoffen werden verstanden Homo- und Copolyamide von aliphatischen ω - Aminocarbonsäuren bzw. Lactamen, insbesondere solche mit mindestens 10 Kohlenstoffatomen oder aliphatischen Dicarbonsäuren und aliphatischen Diaminen, ferner Polyetheramide, Polyesteramide oder Polyetheresteramide oder auch Gemische dieser Kunststoffe, wobei als Etherkomponente insbesondere α , ω -Dihydroxy-(polytetrahydrofuran) eingesetzt wird.

Die Kunststoffe können neben den erfindungsgemäß verwendeten Stabilisator-Mischungen weitere Zusätze, wie
Pigmente, Farbstoffe oder Weichmacher oder auch - falls
gewünscht - zusätzliche Stabilisatoren oder gegebenenfalls auch Treibmittel enthalten.

Die Stabilisierungsmittel gemäß der Erfindung lassen sich 20 auf bekannte Weise den Kunststoffen zufügen. Zum Beispiel können diese vor oder während der Polymerisation bzw. Polykondensation den Monomeren zugegeben werden oder sie können in Knetern oder Strangpressen in die Formmassen eingeknetet werden. Sie können aber auch Lösungen der 25 Kunststoffe zugesetzt werden, aus denen nach Entfernen des Lösungsmittels z. B. Pulver für Überzugsmittel oder Folien hergestellt werden. Die Art der Einarbeitung richtet sich hier in üblicher Weise nach der Art des carbonamidgruppenhaltigen Kunststoffs, seiner Herstellung oder 30 seiner Verarbeitung. Außerdem können sie bei der Herstellung der Formkörper in die Formmassen eingebracht oder - falls besonders gewünscht - auf die Formkörper in geeigneter Weise, wie z. B. durch Auftrommeln oder Aufsprühen in Form einer Lösung, aufgebracht werden. 35 So ist es möglich, die Stabilisierungsmittel für Kunststoffe einzusetzen die zur Herstellung von Fasern,

10

Folien, Platten oder anderen extrudierten oder spritzgegossenen Formkörpern dienen.

Kunststoffe mit Gehalt an den erfindungsgemäßen Mischungen in stabilisierend wirkenden Mengen eignen sich besonders zur Herstellung von Formteilen, die auch bei langandauernder Belichtung, vor allem im Freien, die guten mechanischen Eigenschaften und damit verbunden ihr vorteilhaftes Aussehen nicht einbüßen dürfen.

10

15

20

5

Zur Prüfung der Wirksamkeit als Lichtstabilisatoren wurden die zu prüfenden Produkte auf die Kunststoff-Granulate aufgetrommelt und das erhaltene Gemisch in einem Zweischneckenextruder homogenisiert. Die auf diese Weise erhaltenen Granulate wurden sodann zu 1 mm starken Platten gepreßt und einer durch Filter dem Sonnenlicht angeglichenen Strahlung ausgesetzt. Die Prüfung erfolgte an abgeschnittenen, ca. 1 x 3 cm großen Plättchen, indem diese in Richtung der unbestrahlten Seite um 90 °C gebogen wurde ("Knicktest"). Notiert wurde die Zeit bis zum Bruch der Plättchen (s. Tabelle).

Die Prüfungen wurden an Polylaurinlactam vorgenommen.

Ŋ

Bei- spiel	Lichtstabilisator	Dosie- rung (GewT.)	Bestrah- lungszeit bis Bruch (h)	zusätzlicher Einsatz von	Dosie- rung +) (GewT.)	Bestrah- lungszeit bis Bruch (h)	.
	Oligomeres Iso-octylamino-1,3,5-triazin, dessen Verknüpfung über ein N,N-Bis-/2,2,6,6-tetramethyl- piperidyl-(4)/-hexamethylendiamin erfolgt (Substanz 1)	0,25	452	ман ₂ РО ₂ • Н ₂ О	0,2	98 98 98	
	Diester aus Sebazinsäure und 4-Hydroxy-2,2,6,6-tetramethyl- piperidin (Substanz 2)	0,25	520	$^{\mathrm{NaH}_2\mathrm{PO}_2}$ $^{\mathrm{H}_2\mathrm{O}}$	0,2	1 133	
							7.
							3233
							953, .
						• .	

Tabelle - Fortsetzung

	Vgl	Lichtstabilisator	Dosie-	Bestrah-	zusätzlicher	Dosie-	Bestah-
	pe i-		rung	lungszeit	lungszeit Einsatz von	rung +/	lungszeit
ហ	spiel		(GewT.)	bis Bruch		(GewT.)	bis Bruch
				(h)			(h)
	н	N, N'-Bis-(3-(3,5-di-tertbutyl-	0,25	102	NaH, PO, . H, O	0,2	102
10		4-hydroxyphenyl) -propionyl) -			1		
	1	1					
	~	Octadecyl-3-(3,5-di-tertbutyl-	0,25	160	NaH ₂ PO ₂ ·H ₂ O	0,2	160
		4-hydroxyphenyl) -propionat					
15	ო	Pentaerythrityl-tetrakis-(3-(3,5-	0,25	320	NaH, PO, H,O	0,2	280 ;
		di-tertbutyl-4-hydroxy-phenyl)-	•		1		
		propionat)					•

+) Kristallwasser nicht berücksichtigt

THIS PAGE BLANK (USPTO)