In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
```

In [2]:

```
df = pd.read_csv("AirPassengers.csv")
```

In [3]:

df.head()

Out[3]:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121

In [4]:

```
plt.figure(figsize=(6,4))
plt.plot(df["#Passengers"])
plt.show()
```


In [5]:

```
result = seasonal_decompose(df["#Passengers"], model ="multiplicative", period=12)
```

In [6]:

```
plt.rcParams.update({'figure.figsize': (8,10)})
result.plot()
plt.show()
```


stationery and differencing

In [7]:

df.head()

Out[7]:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121

In [8]:

df.tail()

Out[8]:

Month		#Passengers
139	1960-08	606
140	1960-09	508
141	1960-10	461
142	1960-11	390
143	1960-12	432

In [9]:

plt.plot(df["#Passengers"])

Out[9]:

[<matplotlib.lines.Line2D at 0x17ebcd24f40>]

In [10]:

```
difference = df["#Passengers"] - df["#Passengers"].shift(1)
```

In [11]:

```
plt.plot(difference.dropna())
```

Out[11]:

[<matplotlib.lines.Line2D at 0x17ebd0e0790>]

In [12]:

```
seasonal_difference = df["#Passengers"] - df["#Passengers"].shift(12)
```

In [13]:

plt.plot(seasonal_difference.dropna())

Out[13]:

[<matplotlib.lines.Line2D at 0x17ebd14db50>]

In [14]:

double_difference = seasonal_difference - seasonal_difference.shift(1)

In [15]:

plt.plot(double_difference.dropna())

Out[15]:

[<matplotlib.lines.Line2D at 0x17ebcca00a0>]

In [16]:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

In [17]:

```
plot_pacf(double_difference.dropna(), lags=20)
plt.show()
```


In [18]:

plot_acf(double_difference.dropna(), lags=20)
plt.show()


```
In [19]:
```

```
df["#Passengers"].shape
Out[19]:
```

(144,)

arima

```
In [20]:
```

```
from statsmodels.tsa.arima_model import ARIMA
import warnings
warnings.filterwarnings("ignore")
```

```
In [21]:
```

```
model=ARIMA(df["#Passengers"],order=(1,1,1))
model=model.fit()
```

```
In [22]:
```

```
df["forecast"] = model.predict(start=101 , end=143)
```

In [23]:

```
df.tail()
```

Out[23]:

	Month	#Passengers	forecast
139	1960-08	606	-40.288792
140	1960-09	508	-35.283191
141	1960-10	461	-9.551907
142	1960-11	390	3.093402
143	1960-12	432	21.733947

```
In [24]:
```

```
plt.figure()
plt.plot(df[["#Passengers","forecast"]])
plt.show()
```


SARIMAX

In [25]:

```
import statsmodels.api as sm
```

In [26]:

```
model = sm.tsa.statespace.SARIMAX(df['#Passengers'],order=(1, 1, 1),seasonal_order=(1,1,1,1
model = model.fit()
```

In [27]:

```
df['forecast2']=model.predict(start=101,end=143)
```

In [28]:

```
plt.figure()
plt.plot(df[["#Passengers","forecast2"]])
plt.show()
```


In []:

localhost:8889/notebooks/TS/Assignment/ARIMA or SARIMAX.ipynb