世界知的所有権機関 国際事務局

A1

JΡ

JР

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5 C07C 217/14, 217/28, 217/42 C07C 219/06, 251/32, C07D 295/08 C07D 317/50, C07F 9/12 A61K 31/135, 31/15, 31/36 A61K 31/395, 31/66

(11) 国際公開番号

WO 92/19585

(43) 国際公開日

1992年11月12日(12.11.1992)

(21) 国際出願番号 PCT/JP92/00570 (22) 国際出願日 1992年4月30日(30.04.92) (30) 優先権データ 特顯平3/124583 1991年4月30日(30.04.91) JР 特願平3/124584 1991年4月30日(30,04,91) JΡ 特願平3/156268 1991年5月31日(31, 05, 91) JΡ 特願平3/189495 1991年7月4日(04.07.91) JΡ

1991年8月6日(06.08.91) JΡ

特願平3/226419 1991年8月13日(13.08.91) 特願平3/296641 1991年10月17日(17. 10. 91) (81) 指定国

AT(欧州特許), AU, BE(欧州特許), CA, CH(欧州特許), DE(欧州特許), DK(欧州特許), ES(欧州特許), FR(欧州特許), GB(欧州特許), GR(欧州特許), IT(欧州特許), LU(欧州特許), MC(欧州特許), NL(欧州特許), SE(欧州特許), US.

添付公開書類

国際調査報告書

(71) 出願人(米国を除くすべての指定国について)

旭化成工業株式会社

特顯平3/219377

(ASAHI KASEI KOGYO KABUSHIKI KAISHA)[JP/JP]

〒530 大阪府大阪市北区堂島浜一丁目2番6号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

小路弘行(KOUJI, Hiroyuki)[JP/JP]

〒416 静岡県富士市中丸179-5 Shizuoka, (JP)

安藤 敏(ANDO, Satoshi)[JP/JP]

〒416 静岡県富士市川成島100-824 Shizuoka, (JP)

(74) 代理人

弁理士 萩野 平,外(HAGINO, Taira et al.)

〒100 東京都千代田区霞が関3丁目8番1号 虎の門三井ビル14階

栄光特許事務所 Tokyo, (JP)

(54) Title :TRIPHENYLETHYLENE DERIVATIVE AND PHARMACEUTICAL PREPARATION CONTAINING THE

(54) 発明の名称 トリフェニルエチレン誘導体及びそれを含有する医薬用薬剤

$$-CH_{2} CHCH_{2} N \stackrel{R_{5}}{\underset{R_{7}}{\bigcap}} (2)$$

$$-CH_{2} CH_{2} N \stackrel{R_{6}}{\underset{R_{7}}{\bigcap}} (3)$$

$$-CH_{2} CH_{2} N \stackrel{R_{6}}{\underset{R_{7}}{\bigcap}} (4)$$

(57) Abstract

A triphenylalkene derivative represented by general formula (1), a pharmaceutically acceptable acid addition salt thereof, and a pharmaceutical composition thereof having a tumor inhibitory action and an osteoporosis curing activity. In general formula (1) R₁ represents a group selected among those represented by formulae (2), (3) and (4); R₆ and R₇ represent each hydrogen, alkyl or cycloalkyl, or R₆ and R₇ together form a heterocyclic group with the adjacent nitrogen atom, provided that R₆ and R₇ should not be hydrogen atoms at the same time; R₈ represents hydrogen or alkylcarbonyl; R₂ represents alkyl or cycloalkyl; R₃ represents phenyl or 3,4-methylenedioxyphenyl, provided that when R₃ represents phenyl, the case where R₁ represents a group of formula (4) is excluded; R₄ represents hydrogen, hydroxyl, R₉C(O)O-, R₁₀OCH₂O-, -OPO(OH)₂ or CH = NOR₁₁; R_9 represents alkyl; R_{10} represents alkyl or alkylcarbonyl; R_5 represents hydrogen or CH = NOR₁₁; and R_{11} represents hydrogen, alkyl or substituted alkyl.

(57) 要約 本発明は、下配一般式(1)で表わされるトリフェニルアルケン誘導 体またはその製薬学的に認容される酸付加塩であって、腫瘍抑制作 用を有し、更に骨粗鬆症治療活性を有する医薬組成物を提供する。

(式中、B₁ は、式(2)、(3)、または(4)より最ばれ、R₆、B₇ は、水素、アルキル基、シクロアルキル基、又は隣接するNと一緒に複業環式基を形成する。(但し、B₆ とB₇ が同時に水素になることはない。)B₆ は、水素、アルキルカルボニル基を、B₂ は、アルキル基、シクロアルキル基を、B₃ は、フェニル基または3,4ーメチレンジオキシフェニル基を表わす。(但し、B₃ がフェニル基の場合、B₁ が式(4)の場合を除く。)B₄ は水素、水酸基、B₆ C (0)0一基、B₁₀0CH₂0一基、一0P0(0H)₂またはCH=N0B₁₁基を表わす。B₆ はアルキル基を、B₁₆はアルキル基またはアルキルカルボニル基を表わす。B₅ は水素、CH=N0B₁₁を表わし、B₁₁は水素、アルキル基、置換されたアルキル基を表す。)

情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア AU オーストリテリフ BB ハルドラリス BE フルルギーファ BF ファルナンファリ BG ファルナンジル CA カナージグファー CF コンスートルコス CH スートルコス CS チェイン ハ CM チェイン ク ES スペーン

明 細 書

トリフェニルエチレン誘導体及びそれを含有する医薬用薬剤 技術分野

本発明は、トリフェニルアルケン誘導体及びそれを含有する腫瘍 5 抑制作用および骨粗鬆症治療活性を有する医薬組成物に関する。

背景技術

1, 1, 2ートリフェニルー1ーブテンを基本骨格とし1位のフェニル基に置換アミノアルコキシ基の置換した化合物は、非ステロイド系の抗エストロゲン活性があることが知られている。(Z)ー2-[4-(1, 2-ジフェニルー1-ブテニル)フェノキシ]-N, N-ジメチルエチルアミン(タモキシフェン)はその代表化合物でその強い抗エストロゲン作用により、ホルモン依存性の乳癌に対して有用な治療薬となっている(英国特許第1013907号)。

また、最近、タモキシフェンに骨粗鬆症治療効果があることが報告され〔乳ガン研究及び治療(Breast Cancer Research and Treat ment) 10: 31-35, 1987; 第11回アメリカ骨代謝学会要旨集 演題425番 S180頁など〕、注目されている。

本発明は、乳房腫瘍に対し、タモキシフェンよりも更に優れた抗腫瘍効果を有し、さらに骨粗鬆症治療薬としても有用なトリフェニルアルケン誘導体を提供することを目的とする。

発明の開示

本発明の新規なトリフェニルアルケン誘導体は、下記一般式(1)で表わされるトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩である。

15

一般式 (1)

$$\begin{array}{c}
 & \text{OR}_1 \\
 & \text{CR}_2 \text{R}_3
\end{array}$$

10

式中、R, は、次式 (2)、(3)、または (4) より選ばれ、

$$-CH2CHCH2N R7 (2)$$
OR₈

 $-CH\left(\begin{array}{c} CH_2N \\ R_7 \end{array}\right) \qquad (3)$

$$-CH2CH2N < R6 (4)$$

25

R。、Rrは同じでも異なっていてもよく、水素原子、低級アルキル基、低級シクロアルキル基を表わすか、または隣接する窒素原子と一緒にヘテロ原子(例えば、窒素、硫黄、酸素原子)を含んで

もよい複素環式基を形成するものを表わすか、R。とR、が同時に 水素原子になることはない。R。は水素原子、低級アルキルカルボ ニル基を表わす。

R 。は低級アルキル基、低級シクロアルキル基を表わし、R 。は 5 フェニル基または 3 , 4 - メチレンジオキシフェニル基を表わす。 但し、R 。がフェニル基の場合、R 」が式 (4) の場合を除く。

R、は水素原子、水酸基、R。C(O)O-基、

 R_{10} OCH $_2$ O-基、 $_1$ OPO(OH) $_2$ またはCH=NOR $_{11}$ 基を表わす。 $_1$ R。は低級アルキル基を表わし、 $_1$ R。は低級アルキル基 または低級アルキルカルボニル基を表わす。 $_1$ R。は水素原子、CH=NOR $_{11}$ を表わし、 $_1$ R。は水素原子、低級アルキル基、フェニル基またはアルコキシカルボニル基で置換された低級アルキル基を表す。ただし、ここにおいて、「低級」とは炭素を $_1$ C。6個持つことを意味する。

15 又、本発明は、前記一般式(1)で表わされるトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩を製薬学的に認容される希釈剤または担持物質と一緒に含有することを特徴とする腫瘍抑制作用を有する医薬組成物又は骨粗鬆症治療薬としての活性を有する医薬組成物である。

20 一般式(1)のトリフェニルアルケン誘導体には、炭素ー炭素二重結合に対し幾何異性体であるE体及びZ体の2種が存在する。両異性体はエーテル結合に隣接するメチレン基のプロトンの核磁気共鳴信号によりはっきり区別することが出来る。本発明には、上記E・Z異性体の混合物及びそれぞれ単離したE体Z体各々も含まれる。また一般式(1)のトリフェニルアルケン誘導体には、式(2)に示されるようなアミノアルキル側鎖のヒドロキシ基が結合した炭素について光学異性体であるR体とS体の2種が存在するものもある。この両異性体は光学異性体分離用カラムを用いた液体クロマトグラフィーによりはっきり区別することが出来、単離することもで

10

25

ニル) -1-ブテン

きる。さらに光学活性なオキシラン誘導体を材料として用いることにより光学活性なトリフェニルアルケン誘導体としてR体S体を各々得ることも出来る。また、光学活性な酸を用いて塩を形成させ、光学分割することが可能である。本発明には、上記R・S異性体の混合物及びそれぞれ単離したR体S体各々も含まれる。

本発明のトリフェニルアルケン誘導体としては、例えば次のもの が挙げられる。

- - ・1-[4-(3-ピロリジノー2-ヒドロキシプロポキシ)フェ -1-(4-ヒドロキシフェニル)-2-(3,4-メチレ ンジオキシフェニル)-1-ブテン
- 20 $\cdot 1 [4 (3 \mathbb{C}^2 \mathbb{C}^2)] 2 \mathbb{C}^2 \mathbb{C}^$
- - ・1-[4-(3-ジエチルアミノ-2-ヒドロキシプロポキシ)

j.

- 5 $7 \times 2 \times 10^{-5}$
 - $\cdot 1 [4 (3 \mathbb{C} \mathbb{C}$
- - ・1 [4 (3 ジェチルアミノ 2 ヒドロキシプロポキシ)フェニル] 1 (4 メトキシメトキシフェニル) 2 (3, 3)

- ・1-[4-(3-)20-
- - ・1-[4-(3-ピロリジノ-2-ヒドロキシプロポキシ)フェニル] -1-(4-アセトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- 15 ンジオキシフェニル) -1-ブテン
 ・1-[4-(3-ピペリジノー2-ヒドロキシプロポキシ) フェニル] -1-(4-アセトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- ・1-[4-(3-)20-000]・1-[4-(3-)20-000]・1-[4-(3-)20-000]0 プロポキシ)フェニル] -1-(4-)20+ アセトキシフェニル)-2-(3,4-)3+20
 - ・1-[4-(3-i)x+i)フェニル]-1-(4-(i)x+i)ル]-2-(3,4-i)

 $-\mu$) $-2-(3, 4-\chi + \nu)$ $-2 - (3, 4-\chi + \nu)$ $-1 - (3 - \nu)$ $-1 - (4 - (3 - \nu))$ $-1 - (4 - \nu)$ $-1 - (4 - \nu)$

- 10 キシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1 -ブテン
 - ・1-[4-(3-i)x+i)x+i)フェニル]-1-(4-i)x+i)4-i

メチレンジオキシフェニル) -1-ブテン

- 5 7x=n] -1-(4-l!)(1
- - ・1 [4 (3 ピペリジノ 2 ヒドロキシプロポキシ)フェニル] 1 (4 ピバロイルオキシメトキシフェニル) 2 (
- 15 3, 4-メチレンジオキシフェニル)-1-ブテン $\cdot 1-[4-(3-$ シクロヘキシルメチルアミノ-2-ヒドロキシ プロポキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- 20 $\cdot 1 [4 (3 i j j + i j j j 2 i$
- - ・1-[4-(3-ピロリジノ-2-ヒドロキシプロポキシ)フェ

ニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -2-シクロプロピルエテン

- $\cdot 1 [4 (3 \mathbb{C}^{3} \mathbb{C$
- $\cdot 1 [4 (3 \nu) \nu] 1 (4 \nu) 2 \nu \nu$ プロポキシ)フェニル] $-1 (4 \nu) 2 \nu$ (3, 4ν) アンジオキシフェニル) -2ν つ プロピルエテン

- ・1-[4-(3,4-x)-b-2) センフィーファン・ 1-[4-(3-x)-b-2) ・ 1-[4-(3-x)-b-2) ・ 1-[4-(3-x)-b-2] ・ 1-[4-(3-x)-b
- - 1-「4-(3-ジメチルアミノ-2-ヒドロキシプロポキシ)

フェニル] -1-(4-ヒドロキシフェニル) -2-フェニル<math>-1

- ・1-[4-(3-ジェチルアミノ-2-ヒドロキシプロポキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-フェニル-1
- ・1-[4-(3-ピロリジノー2-ヒドロキシプロポキシ)フェ 10 -ル]-1-(4-ヒドロキシフェニル)-2-フェニルー1-ブテン
 - ・ $1-[4-(3-l^2 v) 2-l^2 v] 2-l^2 v$ コー $[4-l^2 v]$
- - ・1-[4-(3-ジメチルアミノ-2-ヒドロキシプロポキシ)フェニル] -1, 2-ジフェニル-1-ブテン
- - ・1-[4-(3-エチルメチルアミノー2-ヒドロキシプロポキシ) フェニル] -1, 2-ジフェニル-1-ブテン
- ・1-[4-(3-ピロリジノ-2-ヒドロキシプロポキシ)フェ 25 = μ -1 -1 2-ジフェニル-1-ブテン
 - ・1 [4 (3 ピペリジノ 2 ヒドロキシプロポキシ) フェニル] -1, 2 - ジフェニル - 1 - ブテン。
 - $\cdot 1 [4 (3 \nu / 2 \nu /$

- $\cdot 1 [4 (3 i) x + i) 2 i$ 2 i -
- ・1 [4 (3 9 x + y + y + 2 2 2 + y + 2 y + 2 y + 2 + 2 y + 2
- $\cdot 1 [4 (3 ピロリジノ 2 ヒドロキシプロポキシ) フェ$ ニル] - 1 - (4 - メトキシメトキシフェニル) - 2 - フェニルー1 - ブテン
 - $\cdot 1 [4 (3 \mathbb{C}^{3} \mathbb{C$
 - ・ $1-[4-(3-\nu)0-(4-\nu)0]$ ・ $1-[4-(3-\nu)0-(4-\nu)0]$ ・ $1-[4-(3-\nu)0-(4-\nu)0]$ ・ $1-(4-\nu)0$ ・1-(4-
- ・1-[4-(3-9)] ・ 1-[4-(3-9)
- - ・1-[4-(3-ピロリジノ-2-ヒドロキシプロポキシ)フェ -1-(4-アセトキシフェニル)-2-フェニル-1-ブ

テン

- 5 $\cdot 1 [4 (3 \nu) 0 1 (4 \nu)]$ $\cdot 1 [4 (3 \nu) 0 1 (4 \nu)]$ $\cdot 1 (4 \nu)$ $\cdot 1 ($
- 10 ν) -2-7ェニル-1-7テン -1-[4-(3-9)エチルアミノ-2-ヒドロキシプロポキシ) フェニル] -1-(4-9)ヒドロキシフォスフィノオキシフェニル -2-7ェニル-1-7テン
 - ・1-[4-(3-エチルメチルアミノ-2-ヒドロキシプロポキ
- 15 シ) フェニル] -1-(4-ジヒドロキシフォスフィノオキシフェニル) <math>-2-フェニル-1-ブテン
 - ・1-[4-(3-llu)] 1-[4-(3-llu)] 1-(4-llu) 1-(4-llu) 1-(4-llu) 1-llu) 1-llu)
- - ・1-[4-(3-)20-(3-)20-(4-)20-
- 25 キシフェニル) -2-フェニル-1-ブテン -1-[4-(3-ジメチルアミノ-2-ヒドロキシプロポキシ) -1-(4-ベンゾイルオキシフェニル) -2-フェニル-1-ブテン
 - 1 [4 (3 ジエチルアミノー2 ヒドロキシプロポキシ)

フェニル] -1-(4-ベンゾイルオキシフェニル) -2-フェニル-1-ブテン

- 5 ェニルー1ーブテン

ーフェニルー1ーブテン

- - ・ $1 [4 (3 \nu) \nu]$ ・ $1 [4 (3 \nu) \nu]$ ・ $1 (4 \nu)$ ・ $1 (4 \nu)$ ・ 1ν ・
- 15 $\cdot 1 [4 (3 i j j + i j j 2 i$
- - ・1- [4-(3-ll)] -2-ll [4-(3-ll)] -2-ll [4-(3-ll)] -2-ll [4-ll] -2-ll [4

- ・ $1-[4-(3-\nu)\rho$ ロヘキシルメチルアミノー2-ヒドロキシプロポキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-2-フェニル-1-ブテン
- ・1-[4-(3-ジメチルアミノ-2-ヒドロキシプロポキシ)
- - ・ $1-[4-(3-l^2 v^2) 2-l^2 v^2]$ フェニル] $-1-(4-l^2 v^2)$ フェニル) $-2-l^2 v^2$ クロプロピルエテン
- ・ $1-[4-(3-\nu)\rho$ ロヘキシルメチルアミノー $2-\nu$ ヒドロキシ プロポキシ)フェニル] $-1-(4-\nu)$ ロポキシフェニル) $-2-\nu$ フェニル $-2-\nu$ クロプロピルエテン
 - ・1-[4-(3-i)x+i)フェニル]-1-(4-i) ロプロパンカルボニルオキシフェニル]-2-i

ニル) -2-フェニル-1-ブテン

- 5 $\cdot 1 [4 (3 \mathbb{C}^{n} \mathbb{C}^{n})] 2 \mathbb{C}^{n} \mathbb{C}^{n} \mathbb{C}^{n}$ $\cdot 1 [4 (3 \mathbb{C}^{n} \mathbb{C}^{n})] 1 (4 \mathbb{C}^{n}) \mathbb{C}^{n}$ $\cdot 1 \mathbb{C}^{n} \mathbb{C}^{n} \mathbb{C}^{n}$ $\cdot 1 \mathbb{C}^{n} \mathbb{C}^{n}$ $\cdot 1 \mathbb{C}^{n} \mathbb{C}^{n}$ $\cdot 1 \mathbb{C}^{n} \mathbb{C}$
 - $\cdot 1 [4 (3 \nu) \nu] 1 (4 \nu) \nu$ フェニル] $-1 (4 \nu) \nu$ ロポキシ) フェニル]
- $\cdot 1 [4 (3 \cancel{3} + \cancel{4} + \cancel{5})]$ $1 (4 \cancel{5} + \cancel{5})]$ $2 (3, 4 \cancel{5} + \cancel{5})]$

キシフェニル) -2-フェニル-1-ブテン

- 20 $\cdot 1 [4 (3 \nu) \rho \Box \nabla \nu + \nu \nabla \nu] 2 \nu \Box \nabla \nu$ $+ \nu) \nabla \nu \Box \nu] - 1 - (4 - \nu \Box \nu + \nu) - 2 - (3, 4 - \nu) - 1 - \nu$
- $25 4 \cancel{y} + \cancel{y}$
 - ・1 [4-(3-x)] 1-(3-x) 1-(3-x)
 - ・1-「4-(3-エチルアミノ-2-ヒドロキシプロポキシ)フ

ェニル] -1-フェニル-2-(3, 4-メチレンジオキシフェニル) <math>-1-ブテン

- ・1-[4-(3-イソプロピルアミノ-2-ヒドロキシプロポキ
- シ)フェニル] -1-フェニル-2-(3, 4-メチレンジオキシ
- 5 $7x=\mu$) $-1-\tau$

 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ
- 10 +シ) フェニル] -1 -フェニル-2 -(3, 4 -メチレンジオキシフェニル) -1 -ブテン
 - ・1-[4-(3-メチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-メトキシメトキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン
- 15 $\cdot 1 [4 (3 x + y)]$ 2 y
 - ・1-[4-(3-7)] 1-(4-1) -
- 20 3, 4-メチレンジオキシフェニル) -1-ブテン
 - ・ $1-[4-(3-\nu)2-\nu]$ ・ $1-[4-(3-\nu)2-\nu]$ ・ $1-[4-(3-\nu)2-\nu]$ ・ $1-[4-(3-\nu)2-\nu]$ ・ $1-(4-\nu)2-\nu$ ・ $1-(3,4-\nu)2-\nu$ ・1-(3
 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ
- - ・1-[4-(3-メチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-アセトキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン

- ・1-[4-(3-4)] つ 1-(4-7) つ 1-(3-4) つ
 - ・ $1-[4-(3-\nu)0$ ロペンチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-アセトキシフェニル) -2-(3,4-メチレンジオキシフェニル) -1-ブテン
- - ・1-[4-(3-メチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-(ジヒドロキシフォスフィノオキシフェニル
- 15) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
 ・1-[4-(3-エチルアミノー2-ヒドロキシプロポキシ) フェニル] -1-(4-ジヒドロキシフォスフィノオキシフェニル)
 -2-(3, 4-メチレンジオキシフェニル) -1-ブテン・
- ・1-[4-(3-4)] ロポキシ)フェニル] -1-(4-3) ビアミノー 2-2 ビア・フォスフィノオキシフェニル) -2-(3,4-3) チレンジオキシフェニル) -1-3 ブテン
- - ・1-[4-(3-)2000+2)ルアミノー2ーヒドロキシプロポキシ)フェニル] -1-(4-ジヒドロキシフォスフィノオキシフェニル) -2-(3,4-メチレンジオキシフェニル) -1-ブテ

ン

- ・1-[4-(3-メチルアミノー2-ヒドロキシプロポキシ)フェニル]-1-(4-ベンゾイルオキシフェニル)-2-(3,4ーメチレンジオキシフェニル)-1-ブテン
- 5 $\cdot 1 [4 (3 x + y)] + (3 x + y)$ x + y
 - ・1-[4-(3-7)] ロピルアミノー2ーヒドロキシプロポキシ) フェニル] -1-(4-7) フェニル) -2-(7)
- 10 3, 4-メチレンジオキシフェニル)-1-ブテン $\cdot 1-[4-(3-$ シクロペンチルアミノー2-ヒドロキシプロポ キシ)フェニル]-1-(4-ベンゾイルオキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ
- 15 キシ) フェニル] -1-(4-ベンゾイルオキシフェニル) -2- (3, 4-メチレンジオキシフェニル) <math>-1-ブテン
 - ・1-[4-(3-メチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-ピバロイルオキシメトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- $25 2 (3, 4 \cancel{4} + \cancel{4}$
 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ

10

・1 - [4 - (3 - x + y) + y + y] ・1 - [4 - (3 - x + y) + y + y] フェニル[-1 - (4 - y) + y + y] コープロパンカルボニルオキシフェニル[-2 - (3, 4 - y + y) + y + y] ・[-2 - (3, 4 - y + y) + y] ・[-2 - (3, 4 - y + y) + y] ・[-2 - (3, 4 - y + y) + y] ・[-2 - (3, 4 - y) + y] ・[-2 - (3,

ン

5

- ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ キシ)フェニル] -1-(4-シクロプロパンカルボニルオキシフ ェニル) -2-(3,4-メチレンジオキシフェニル)-1-ブテ
- ン ・1-「4-(3-メチルアミノ-2-ヒドロキシプロポキシ)フ ェニル] -1- (4-ヒドロキシフェニル) -2-フェニル-1-ブテン
- ・1-[4-(3-エチルアミノ-2-ヒドロキシプロポキシ)フ ェニル] -1- (4-ヒドロキシフェニル) -2-フェニル-1-10 ブテン
 - ・1- [4-(3-イソプロピルアミノ-2-ヒドロキシプロポキ シ)フェニル]-1-(4-ヒドロキシフェニル)-2-フェニル -1-ブテン
- ・1-[4-(3-シクロペンチルアミノ-2-ヒドロキシプロポ 15 キシ) フェニル] -1-(4-ヒドロキシフェニル) -2-フェニ ルー1ーブテン
 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ キシ) フェニル] -1-(4-ヒドロキシフェニル) -2-フェニ ルー1ーブテン
- 1 [4 (3 -メチルアミノー2 -ヒドロキシプロポキシ) フ ェニル] -1, 2-ジフェニル-1-ブテン
 - ・1-[4-(3-エチルアミノ-2-ヒドロキシプロポキシ)フ ェニル] -1, 2-ジフェニル-1-ブテン
- ・1-[4-(3-イソプロピルアミノ-2-ヒドロキシプロポキ 25 シ) フェニル] -1, 2-ジフェニル-1-ブテン
 - ・1-「4-(3-シクロペンチルアミノ-2-ヒドロキシプロポ キシ)フェニル]-1,2-ジフェニル-1-ブテン
 - ・1-[4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポ

キシ) フェニル] -1, 2-ジフェニル-1-ブテン $\cdot 1-$ [4-(3-ジメチルアミノ-2-アセトキシプロポキシ) フェニル] -1- (4-ヒドロキシフェニル) -2- (3, 4-メチレンジオキシフェニル) -1-ブテン

- ・1-[4-(3-ピロリジノー2-アセトキシプロポキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - ・1 [4 (3 ピペリジノ 2 アセトキシプロポキシ)フェニル] 1 (4 ヒドロキシフェニル) 2 (3, 4 メチレ)
- 15 = -1 (4 E F D + D D E D D E D D E D D E D D E D D E D D E D D E D
 - ・ $1-[4-(3-\nu)\rho 1-\nu]$ ・ $1-[4-(3-\nu)\rho 1-\nu]$ ・ $1-[4-(3-\nu)\rho 1-\nu]$ ・ $1-(4-\nu)\rho 1-\nu$ ・ $1-(3-\nu)\rho 1-\nu$ ・ $1-\nu$ ・1
- 25 $= \mu$) -1 7 = 7

 - ・1-[4-(3-ピロリジノ-2-アセトキシプロポキシ)フェ

・1-[4-(3-ピペリジノ-2-アセトキシプロポキシ)フェニル] -1-フェニル-2-(3, 4-メチレンジオキシフェニル) -1-ブテン

 5) -1-ブテン
 ·1-[4-(3-シクロヘキシルメチルアミノー2-アセトキシ プロポキシ)フェニル]-1-フェニルー2-(3, 4-メチレン ジオキシフェニル)-1-ブテン

・1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)

・ $1-[4-(3-\Im x + \nu r)]$ $-1-[4-(3-\Im x + \nu r)]$ $-1-(4-\varkappa + \nu \varkappa + \nu$

・1-[4-(3-ピロリジノー2-アセトキシプロポキシ)フェ -ル]-1-(4-メトキシメトキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン

・ $1-[4-(3-l^2 < l^2)] - 2-r + l^2 + l^2$

・ $1-[4-(3-\nu)\rho$ ロヘキシルメチルアミノー2-アセトキシ プロポキシ)フェニル $]-1-(4-\lambda)$ トキシメトキシフェニル) $-2-(3,4-\lambda)$ チレンジオキシフェニル)-1-ブテン ・ $1-[4-(3-\nu)$ メチルアミノー2-アセトキシプロポキシ)

フェニル] -1-(4-アセトキシフェニル) -2-(3, 4-メ チレンジオキシフェニル) -1-ブテン

- ・1-[4-(3-ジェチルアミノ-2-アセトキシプロポキシ)フェニル] -1-(4-アセトキシフェニル) -2-(3,4-メチレンジオキシフェニル) -1-ブテン
- - ・1-[4-(3-ピロリジノ-2-アセトキシプロポキシ)フェニル] -1-(4-アセトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- - $\cdot 1 [4 (3 \nu) \nu] 1 (4 \nu) 2 \nu$ $\neg \nu$ $\neg \nu$ $\neg \nu$ $\neg \nu$ $\neg \nu$ $\neg \nu$ $\rightarrow \nu$
 - ・1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)フェニル] -1-(4-(ジヒドロキシフォスフィノオキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン

2-(3,4-メチレンジオキシフェニル)-1-ブテン

・ $1-[4-(3-\nu)-1-(4-\nu)]$ ・ $1-[4-(3-\nu)-1-(4-\nu)]$ ・ $1-(4-\nu)$ ・ $1-(4-\nu)$ ・ $1-(4-\nu)$ ・ $1-(4-\nu)$ ・ $1-(3-\nu)$ ・1-(3-

5 ーブテン

・1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)フェニル] -1-(4-ベンゾイルオキシフェニル) -2-(3,

4-メチレンジオキシフェニル) -1-ブテン

1-[4-(3-ジエチルアミノー2-アセトキシプロポキシ)

・1-[4-(3-ピペリジノ-2-アセトキシプロポキシ)フェニル] -1-(4-ベンゾイルオキシフェニル) -2-(3,4-

20 メチレンジオキシフェニル) -1-ブテン

 1-[4-(3-シクロヘキシルメチルアミノー2-アセトキシプロポキシ) フェニル] -1-(4-ベンゾイルオキシフェニル)
 -2-(3, 4-メチレンジオキシフェニル) -1-ブテン

・1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)

フェニル] -1-(4-l!) (4 - l!) (4 - l!) -2 (3, 4-l!) -2 (3, 4-l!) -1 (4 - l!) -1 (7) -1 (7) -1 (7) -1 (7) -1 (7) -1 (7) -1 (7) -1 (8) -1 (9) -1 (10) -1 (10) -1 (11) -1 (11) -1 (11) -1 (12) -1 (12) -1 (13) -1 (13) -1 (13) -1 (14) -1 (15

- $\cdot 1 [4 (3 l^2 l^2$
 - $\cdot 1 [4 (3 l^2 -$
- ・1-[4-(3-i)x+i) 15 フェニル] -1-(4-i)x+i フェニル] -1-(4-i)x+i フェニル) -2-(3,4-i) チレンジオキシフェニル) -2-i クロプロピルエテン・1-[4-(3-i)x+i)x+i フェチルアミノ-2-x+i

フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メ チレンジオキシフェニル) -2-シクロプロピルエテン

- - - ・1-[4-(3-シクロヘキシルメチルアミノ-2-アセトキシ

プロポキシ) フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) <math>-2-シクロプロピルエテン

- 1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)
- 5 フェニル] -1-(4-シクロプロパンカルボニルオキシフェニル
 -)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - 1 [4 (3 ジエチルアミノー2 アセトキシプロポキシ)
 - フェニル] -1-(4-シクロプロパンカルボニルオキシフェニル
 -)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- シ) フェニル] -1-(4-シクロプロパンカルボニルオキシフェ
 - (3, 4-) (3, 4-) エルンジオキシフェニル) (3, 4-) デンジオキシフェニル)
 - ・1-[4-(3-ピロリジノ-2-アセトキシプロポキシ)フェ
- ニル] -1-(4-シクロプロパンカルボニルオキシフェニル) -
- $15 \quad 2 (3, 4 \cancel{4} + \cancel{4}$
 - ・1-[4-(3-ピペリジノ-2-アセトキシプロポキシ)フェ
 - ニル] -1-(4-シクロプロパンカルボニルオキシフェニル)-
 - 2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - 1-[4-(3-シクロヘキシルメチルアミノー2-アセトキシ
- 20 プロポキシ) フェニル] -1-(4-シクロプロパンカルボニルオ
 - キシフェニル) -2-(3,4-メチレンジオキシフェニル)-1
 - ーブテン
 - ・1-[4-(3-ジメチルアミノ-2-シクロプロパンカルボニ
 - ルオキシプロポキシ)フェニル] -1-(4-ヒドロキシフェニル
- 25) -2-(3, 4-x+1) -1-7
 - ・1-[4-(3-ジエチルアミノ-2-シクロプロパンカルボニ
 - ルオキシプロポキシ)フェニル] -1-(4-ヒドロキシフェニル
 -)-2-(3,4-メチレンジオキシフェニル)-1-ブテン
 - 1 [4 (3 エチルメチルアミノー2 シクロプロパンカル

ボニルオキシプロポキシ) フェニル] -1-(4-E)ドロキシフェニル) -2-(3, 4-yチレンジオキシフェニル) -1-ブテン・1-[4-(3-E)ロリジノー2-シクロプロパンカルボニルオキシプロポキシ) フェニル] -1-(4-E)ロキシフェニル) -2-(3, 4-yチレンジオキシフェニル) -1-ブテン

- ・1-[4-(3-ピペリジノ-2-シクロプロパンカルボニルオキシプロポキシ)フェニル]-1-(4-ヒドロキシフェニル) 2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- ・ $1-[4-(3-\nu)\rho 1-\nu]$ $1-(4-\nu)\rho 1-\nu$ $1-(4-\nu)\rho 1-\nu$
- 15 $4-x+\nu\nu\nu$ $3+\nu\nu$ $1-(3-\nu\nu)$ $1-(3-\nu\nu)$ $1-(4-\nu\nu)$ $1-(4-\nu\nu)$ $1-(4-\nu\nu)$ $1-(4-\nu\nu)$ $1-(3-\nu\nu)$ $1-(3-\nu\nu)$

4-メチレンジオキシフェニル)-1-ブテン

- 25 $\cdot 1 [4 (3 \mathbb{C}^{3} \mathbb{C}^{3} \mathbb{C}^{3} \mathbb{C}^{3}] 2 \mathbb{C}^{3} \mathbb{C}^$
 - ・ $1 [4 (3 \nu) \nu]$ $1 (4 \nu)$ $1 (4 \nu)$ $1 (4 \nu)$ $1 (4 \nu)$ 1ν 1ν 1

- -2-(3, 4-メチレンジオキシフェニル) -1-ブテン $\cdot 1-[4-(1, 3-ビスジメチルアミノ-2-プロポキシ) フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン$
- - ・1-[4-(1, 3-ビスエチルメチルアミノー2-プロポキシ) フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-
- 10 $_{3}$ $_{4}$ $_{7}$
- ・1-[4-(1, 3-ビスピペリジノ-2-プロポキシ)フェニ
 ル]-1-(4-ヒドロキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - ・1-[4-(1, 3-ビスジメチルアミノー2-プロポキシ)フェニル] -1-フェニル-2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- - ・1-[4-(1, 3-ビスエチルメチルアミノー2ープロポキシ)フェニル]-1-フェニルー2-(3, 4-メチレンジオキシフ
- 25 $_{x}$ $_{x}$ $_{x}$ $_{x}$ $_{x}$ $_{x}$ $_{x}$ $_{x}$ $_{y}$ $_$
 - ・1- [4-(1, 3-ビスピペリジノー2-プロポキシ)フェニ

[n] [-1-7] [n] [-1-7] [n] [n]

- - ・1-[4-(1, 3-ビスジエチルアミノ-2-プロポキシ)フェニル] -1-(4-メトキシメトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- - ・1-[4-(1, 3-ビスピロリジノー2-プロポキシ)フェニル]-1-(4-メトキシメトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- 15 ・1-[4-(1,3-ビスピペリジノ-2-プロポキシ)フェニル] -1-(4-メトキシメトキシフェニル) -2-(3,4-メチレンジオキシフェニル) -1-ブテン
- ・1-[4-(1, 3-ビスジメチルアミノー2-プロポキシ)フェニル]-1-(4-アセトキシフェニル)-2-(3, 4-メチンジオキシフェニル)-1-ブテン
 - ・1- [4-(1, 3-EZ) エチルアミノ-2-プロポキシ)フェニル]-1-(4-P セトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- ・1-[4-(1, 3-ビスエチルメチルアミノー2-プロポキシ25) フェニル] -1-(4-アセトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) <math>-1-ブテン
 - ・1 [4-(1, 3-EZ)] 2-Z Z

- ・1-[4-(1, 3-ビスピペリジノ-2-プロポキシ)フェニル] -1-(4-アセトキシフェニル)-2-(3, 4-メチレンジオキシフェニル) <math>-1-ブテン
- - ・1-[4-(1, 3-ビスジエチルアミノ-2-プロポキシ)フェニル] -1-(4-フォスフォノキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- 10 $\cdot 1 [4 (1, 3 \forall Z + \lambda x + \lambda x$
 - ・1-[4-(1, 3-ビスピロリジノー2-プロポキシ)フェニル] -1-(4-フォスフォノキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
- $\cdot 1 [4 (1, 3 \forall z + \forall y)] 2 \forall x + \forall y$ フェニル $-1 (4 \forall x + \forall y) 2 (3, 4 \forall x)$ チレンジオキシフェニル) $-1 \forall x + \forall y$
- ・1-[4-(1, 3-ビスジメチルアミノ-2-プロポキシ)フ 20 $_{x}$ ニル] -1-(4-ベンゾイルオキシフェニル) -2-(3, 4 -メチレンジオキシフェニル) -1-ブテン
 - ・1-[4-(1, 3-EZYTFNF]]-2-プロポキシ)フェニル] -1-(4-KYYTNT) -2-(3, 4-XF) -2
- - ・1-[4-(1, 3-ビスピロリジノー2-プロポキシ)フェニル] -1-(4-ベンゾイルオキシフェニル)-2-(3, 4-メ

チレンジオキシフェニル) -1-ブテン

- ・1-[4-(1, 3-ビスピペリジノ-2-プロポキシ)フェニル] -1-(4-ベンゾイルオキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- 5 $\cdot 1 [4 (1, 3 \forall Z \forall X \neq N + \nabla Z + \nabla Z$
 - ・1 [4 (1, 3 ビスジエチルアミノー2 プロポキシ)フェニル] 1 (4 ピバロイルオキシメトキシフェニル) 2 -
- (3, 4-x+1)
 - ・1-[4-(1, 3-ビスエチルメチルアミノー2-プロポキシ) フェニル] -1-(4-ピバロイルオキシメトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) <math>-1-ブテン
 - ・1-[4-(1, 3-ビスピロリジノ-2-プロポキシ)フェニ
- 15 ν] -1-(4-ピバロイルオキシメトキシフェニル) <math>-2-(3. 4-メチレンジオキシフェニル) -1-ブテン
- - ・1-[4-(1, 3-ビスジエチルアミノー2-プロポキシ)フェニル] -1-(4-ヒドロキシフェニル)-2-(3, 4-メチ
- - ・1-[4-(1, 3-EZXTFNYFNTS]-2-TDH+シ) フェニル] -1-(4-EFD+シフェニル)-2-(3, 4-YFVンジオキシフェニル)-2-シクロプロピルエテン
 - ・1-[4-(1, 3-ビスピロリジノ-2-プロポキシ)フェニ

 ν] -1-(4-ヒドロキシフェニル) <math>-2-(3, 4-メチレン ジオキシフェニル) -2-シクロプロピルエテン

・1-[4-(1, 3-ビスピペリジノ-2-プロポキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレン

5 ジオキシフェニル) -2-シクロプロピルエテン

・1-[4-(1, 3-ビスジメチルアミノ-2-プロポキシ)フ

ェニル] -1-(4-シクロプロパンカルボニルオキシフェニル)

-2-(3, 4-メチレンジオキシフェニル)-1-ブテン

・1-[4-(1, 3-ビスジエチルアミノ-2-プロポキシ)フ

 $10 \quad _{x}=1$ -1 -(4 - > 0 - 0

-2-(3, 4-メチレンジオキシフェニル)-1-ブテン

1-[4-(1, 3-ビスエチルメチルアミノー2-プロポキシ

) フェニル] -1-(4-シクロプロパンカルボニルオキシフェニ

ル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン

- (3, 4-メチレンジオキシフェニル) -1-ブテン

・1-[4-(1, 3-ビスピペリジノ-2-プロポキシ)フェニ

 $[\mu]$ [-1]

・1-[4-(1, 3-ビスジメチルアミノ-2-プロポキシ)フ

ェニル] -1, 2-ジフェニル-1-ブテン

1-[4-(1, 3-ビスジエチルアミノー2-プロポキシ)フ

ェニル] -1, 2-ジフェニル-1-ブテン

) フェニル] -1, 2-ジフェニル-1-ブテン

1-[4-(1, 3-ビスピロリジノー2-プロポキシ)フェニ

ル] -1, 2-ジフェニル-1-ブテン

・1- [4-(1, 3-ビスピペリジノ-2-プロポキシ) フェニ

- ル] -1, 2-ジフェニル-1-ブテン
- ・1-[4-(1, 3-ビスジメチルアミノ-2-プロポキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-フェニルー1-ブテン
- 5 $\cdot 1 [4 (1, 3 \forall Z \forall X + \lambda Y \forall Y + 2 \forall Y d \forall Y + 2)]$ $z = x \lambda (4 \forall Y + 2)$ z =
 - 1-[4-(1, 3-ビスエチルメチルアミノー2ープロポキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-フェニルー1-ブテン
 - ・1-[4-(1, 3-EZ)] フェニル -1-(4-E) フェニル) -2-Z エニル -1-(4-E) フェニル -2-Z エニル -1-Z ン
- ・1- [4-(1, 3-ビスピペリジノ-2-プロポキシ) フェニ ν ル] -1- (4-ヒドロキシフェニル) -2-フェニル-1-ブテン
 - ・1-[4-(2-メチルアミノエトキシ) フェニル] -1-(4-) ーレドロキシフェニル) -2-(3,4-) チレンジオキシフェニル) -1- ブテン
- 20 ・1-[4-(2-エチルアミノエトキシ)フェニル]-1-(4 -ヒドロキシフェニル)-2-(3, 4-メチレンジオキシフェニ ル)-1-ブテン
 - ・1-[4-(2-4)] ロピルアミノエトキシ)フェニル] -1 (4-1) フェニル) -2-(3, 4-1) チレンジオキシ
- 25 7 = -10 -1 = 7

 - $\cdot 1 [4 (2 ジメチルアミノエトキシ) フェニル] 1 ($

4-ヒドロキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン

- ・1-[4-(2-ジェチルアミノエトキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-(3,4-メチレンジオキシフェ
- $\frac{5}{2}$ ニル) -1-ブテン
 - $\cdot 1 [4 (2 \cancel{\forall} + \cancel{\nabla} + \cancel{\nabla}$
- ・1-[4-(2-)200
 - ・1-[4-(2-llu)] ンェニル]-1-(4-llu) フェニル]-1-(4-llu) ヒドロキシフェニル]-2-(3,4-llu) フェニル]-1-llu)
- 20 フェニルー2 (3, 4 メチレンジオキシフェニル) <math>-1 -ブテン

-フェニル-2-(3,4-メチレンジオキシフェニル)-1-ブ テン

・1-[4-(2-シクロヘキシルメチルアミノエトキシ)フェニ ル] -1-フェニル-2-(3, 4-メチレンジオキシフェニル)

5 -1-ブテン

10

- ・1-[4-(2-ピロリジノエトキシ)フェニル]-1-フェニ ルー2-(3,4-メチレンジオキシフェニル)-1-ブテン
- ・1-[4-(2-メチルアミノエトキシ) フェニル] -1-(4 -メトキシメトキシフェニル) -2-(3, 4-メチレンジオキシ
- フェニル) -1-ブテン ・1- [4-(2-エチルアミノエトキシ) フェニル] -1-(4 -メトキシメトキシフェニル)-2-(3,4-メチレンジオキシ フェニル) -1-ブテン
 - ・1- [4-(2-イソプロピルアミノエトキシ) フェニル] -1
- -(4-メトキシメトキシフェニル) -2-(3, 4-メチレンジ15 オキシフェニル) -1-ブテン
 - ・1-[4-(2-シクロヘキシルアミノエトキシ)フェニル]-1-(4-メトキシメトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- ・1-[4-(2-ジメチルアミノエトキシ)フェニル]-1-(20 4-メトキシメトキシフェニル)-2-(3,4-メチレンジオキ シフェニル) -1-ブテン
 - ・1-[4-(2-ジエチルアミノエトキシ)フェニル]-1-(4-メトキシメトキシフェニル)-2-(3,4-メチレンジオキ
- シフェニル) -1-ブテン 25
 - -1-[4-(2-メチルエチルアミノエトキシ) フェニル] -1- (4-メトキシメトキシフェニル) -2- (3, 4-メチレンジ オキシフェニル) -1-ブテン
 - ・1-[4-(2-シクロヘキシルメチルアミノエトキシ)フェニ

- ル] -1-(4-メトキシメトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- 5 x = 10 1 = 7
 - ・1-[4-(2-メチルアミノエトキシ)フェニル] -1-(4-アセトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- ・1-[4-(2-エチルアミノエトキシ)フェニル]-1-(4
 10 -アセトキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテン
 - ・1-[4-(2-4)] ロピルアミノエトキシ)フェニル] -1 (4-7) セトキシフェニル) -2-(3,4-) チレンジオキシフェニル) -1- ブテン
- 15 1 [4 (2)2)4 (2)7)7 (4)7)7 (3, 4)7)8)9
 - ・1 [4 (2 i) + i) i (2 i) + i
- 20 ニル) -1 ブテン
 - ・1-[4-(2-ジェチルアミノエトキシ)フェニル] -1-(4-rセトキシフェニル) -2-(3,4-メチレンジオキシフェニル) -1-ブテン

- ・1-[4-(2-ピロリジノエトキシ)フェニル] -1-(4- アセトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
- $\cdot 1 [4 (2 \cancel{y} + \cancel{y} + \cancel{y} + y)] 1 (4)$ $(\cancel{y} + \cancel{y} + y) 2 (3, 4 y)$ + (3, 4 y) (3, 4 y)
 - ・1-[4-(2-x+n)] フェニル] -1-(4-y+n) フェニル] -1-(4-y+n) フェニル) -2-(3,4-y+n) チレンジオキシフェニル) -1-y+n
- - ・ $1 [4 (2 \nu) \nu]$ $1 (4 \nu) \nu$ $1 (4 \nu) \nu$ $1 (3 \nu)$ 1ν 1ν -

ーメチレンジオキシフェニル)-1-ブテン

- 1-[4-(2-ジエチルアミノエトキシ)フェニル]-1-(
- $4 \mathcal{I} = \mathcal{I} + \mathcal{I$
 - $1 [4 (2 \cancel{1} + \cancel{1}$
- 0.5 0.1 [4 (2 200 -

ジヒドロキシフォスフィノオキシフェニル) -2-(3,4-メチ

25

レンジオキシフェニル) -1-ブテン

- ・1-[4-(2-メチルアミノエトキシ)フェニル]-1-(4ーベンゾイルオキシフェニル) -2-(3,4-メチレンジオキシ フェニル) -1-ブテン
- 5 1-「4-(2-エチルアミノエトキシ)フェニル]-1-(4 -ベンゾイルオキシフェニル)-2-(3,4-メチレンジオキシ フェニル) -1-ブテン
 - -1 [4 (2 4) プロピルアミノエトキシ) フェニル] 1-(4-ベンゾイルオキシフェニル) -2-(3, 4-メチレンジ
- オキシフェニル) -1-ブテン 1 - [4 - (2 - シクロヘキシルアミノエトキシ) フェニル] -1 - (4 - ベンゾイルオキシフェニル) - 2 - (3, 4 - メチレンジオキシフェニル) -1-ブテン
- -1-[4-(2-ジメチルアミノエトキシ) フェニル] -1-(4-ベンゾイルオキシフェニル)-2-(3,4-メチレンジオキ 15 シフェニル) -1-ブテン
 - ・1-[4-(2-ジエチルアミノエトキシ)フェニル]-1-(4-ベンゾイルオキシフェニル)-2-(3,4-メチレンジオキ シフェニル) -1-ブテン
- ・1- [4-(2-メチルエチルアミノエトキシ) フェニル] -1 20 -(4-ベンゾイルオキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン
 - -1 [4 (2 シクロヘキシルメチルアミノエトキシ) フェニ ν] -1-(4-ベンゾイルオキシフェニル) <math>-2-(3, 4-)チレンジオキシフェニル) -1-ブテン
 - ・1-[4-(2-ピロリジノエトキシ)フェニル]-1-(4-ベンゾイルオキシフェニル) -2-(3,4-メチレンジオキシフ xニル) -1 - \overline{y} \overline{z} \overline{z}
 - ・1-[4-(2-メチルアミノエトキシ)フェニル]-1-(4

- 5 ジオキシフェニル)-1 ブテン
 - $\cdot 1 [4 (2 4) 7 2] 1$ - (4 - 2) - (3, 4 - 4)- (4 - 2) - (3, 4 - 4)- (4 - 2) - (3, 4 - 4)- (4 - 2) - (3, 4 - 4)
 - ・1-[4-(2-シクロヘキシルアミノエトキシ)フェニル]-
- $10 \quad 1 (4 ll) (1 ll) ($
- - $1 [4 (2 \cancel{\forall} + \cancel{\forall}$
 - ・ $1 [4 (2 \nu) \nu]$ フェニル $-1 (4 \nu)$ フェニル $-1 (4 \nu)$ フェニル) $-1 (3 \nu)$ -1ν -1ν
- - ・1-[4-(2-メチルアミノエトキシ) フェニル] -1-(4-) ヒドロキシフェニル) -2-(3, 4-) チレンジオキシフェニル) -2- シクロプロピルエテン

- $\cdot 1 [4 (2 ジメチルアミノエトキシ) フェニル] 1 (4 ヒドロキシフェニル) 2 (3, 4 メチレンジオキシフェニル) 2 シクロプロピルエテン$
 - ・1-[4-(2-ジェチルアミノエトキシ)フェニル] -1-(4-)000 フェニル] -1-(4-)000 フェニル) -2-(3,4-)000 フェニルシフェ
- 15 ニル) -2-シクロプロピルエテン
 ・1-[4-(2-メチルエチルアミノエトキシ) フェニル] -1
 -(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシ)

フェニル) -2-シクロプロピルエテン

- ・ $1-[4-(2-\nu)\rho$ ロヘキシルメチルアミノエトキシ)フェニ 20 ル] $-1-(4-\nu)$ には $-2-(3,4-\nu)$ ジオキシフェニル) $-2-\nu$ のプロピルエテン
 - ・1-[4-(2-llu)] ンェニル]-1-(4-llu) フェニル]-1-(4-llu) ヒドロキシフェニル]-2-(3,4-llu) フェニル]-2-llu
- - ・1-[4-(2-x+y)] フェニル] -1-(4-y) フェニル] -1-(4-y) フェニル) -2-(3,4-y)

チレンジオキシフェニル) -1-ブテン

- ・1 [4 (2 4) プロピルアミノエトキシ) フェニル] 1- (4 - 9) - 2 - (3)
- 4-メチレンジオキシフェニル)-1-ブテン
- 5 1 $[4 (2 \nu \rho \nu \rho \nu + \nu \nu r +$
 - , 4-メチレンジオキシフェニル) -1-ブテン
 - ・1-[4-(2-ジメチルアミノエトキシ)フェニル]-1-(
- $10 \quad \forall f \in (0, 1)$
 - ・1-[4-(2-ジエチルアミノエトキシ)フェニル]-1-(
 - 4-シクロプロパンカルボニルオキシフェニル)-2-(3,4-
 - メチレンジオキシフェニル) -1-ブテン
- ・1-[4-(2-メチルエチルアミノエトキシ)フェニル]-1
- -(4-9)
 - 4-メチレンジオキシフェニル) -1-ブテン
 - 1 [4 (2 シクロヘキシルメチルアミノエトキシ)フェニ
 - ν] -1-(4-シクロプロパンカルボニルオキシフェニル) <math>-2
 - (3, 4-メチレンジオキシフェニル) -1-ブテン
- 20 1 [4 (2 ピロリジノエトキシ) フェニル] 1 (4 VOID) シクロプロパンカルボニルオキシフェニル) 2 (3, 4 VIII) レンジオキシフェニル) 1 VIII
- 25 メタン
 - $\cdot 1 [4 (5) \times 5 + 1 \times 5] \times [4 (5) \times 5 + 1 \times 5] \times [4 (5) \times 5 \times 5] \times [4 (5) \times 5 \times 5] \times [4 (5) \times 5]$
 - 1-「4-(ジメチルアミノエトキシ)フェニル]-1-フェニ

ルー1ー (1ーインダニリデン) メタン

- $\cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 フェニ$ $\nu - 1 - (5 - ベンゾシクロヘプチリデン) メタン$
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-フェニ
- 5 ルー1ー(4ークロマニリデン)メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル] -1-フェニル-1-(4-チオクロマニリデン)メタン
- $egin{array}{llll} & oldsymbol{\cdot} 1- \left[4-\left(arphi
 ight) + nr \left(1-r
 ight) + rr \left(1-r
 ight$
- 15 ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-フェニ ル-1-[2-(1-メチル-1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
 - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-フェニ ルー1-[1-(5-メトキシー1, 2, 3, 4-テトラヒドロナ
- 20 フチリデン)]メタン
 - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-フェニ ルー1-[4-(1, 2, 3, 4-テトラヒドロキノリニリデン)] メタン
- ・1-[4-(ジェチルアミノエトキシ) フェニル] -1-フェニ 25 ル-1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
 - ・1 [4 (メチルエチルアミノエトキシ) フェニル] 1 フェニル-1 [1 (1, 2, 3, 4 テトラヒドロナフチリデン)] メタン

- ・1-[4-(ピロリジノエトキシ) フェニル] -1-フェニルー1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- ・1 [4 (シクロヘキシルメチルアミノエトキシ) フェニル] -1 フェニル-1 [1 (1, 2, 3, 4 テトラヒドロナフチリデン)] メタン
 - ・1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 ヒドロキシフェニル) 1 [1 (1, 2, 3, 4 テトラヒドロナフチリデン)] メタン
- 10 ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ヒドロキシフェニル)-1-[1-(4-メチル-1, 2, 3, 4 -テトラヒドロナフチリデン)]メタン
- 15 ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ヒドロキシフェニル)-1-(5-ベンゾシクロヘプチリデン)メタン
- 20 $\cdot 1 [4 (ij x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i f l x f n r i$
- 25 $\cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 ヒドロキシフェニル) 1 (4 チオクロマニリデン-1、1 ジオキシド) メタン$
 - ・1- [4-(ジメチルアミノエトキシ) フェニル]-1-(4-ヒドロキシフェニル)-1-[2-(1, 2, 3, 4-テトラヒド

ロナフチリデン)]メタン

- $\cdot 1 [4 (\Im x + \pi x)] 1 (4 (4 \pi x)) 1 [2 (1 \pi x)] 1 (4 \pi x) 1 [2 (1 \pi x)] 1 (4 \pi x)$
- - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-(4-ヒドロキシフェニル) -1-[4-(1, 2, 3, 4-テトラヒド
- 10 ロキノリニリデン)] メタン
 - ・1-[4-(ジェチルアミノエトキシ) フェニル] -1-(4- ヒドロキシフェニル) -1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- ・1-[4-(メチルエチルアミノエトキシ)フェニル]-1-(15 4-ヒドロキシフェニル)-1-[1-(1, 2, 3, 4-テトラ ヒドロナフチリデン)]メタン
 - ・1-[4-(ピロリジノエトキシ) フェニル] -1-(4-ヒドロキシフェニル) -1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- $egin{array}{llll} & \cdot 1 \left[4 \left({\mathop{>}} {\mathop{>}$
 - ・1-[4-(ジメチルアミノエトキシ) フェニル]-1-(4-メトキシメトキシフェニル)-1-[1-(1, 2, 3, 4-テト
- ²⁵ ラヒドロナフチリデン)] メタン
 - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-(4- メトキシメトキシフェニル) -1-[1-(4-メチルー1,2,3,4-テトラヒドロナフチリデン)] 、タン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-

- 5 $\cdot 1 [4 (ij x + in x$
- 10 $\cdot 1 [4 (ij \times f) + ij \times f) = 1 (4 ij$
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-メトキシメトキシフェニル)-1-(4-チオクロマニリデン-1
- 15 、1-ジオキシド)メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル] -1-(4-メトキシメトキシフェニル) -1-[2-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- 25 $\cdot 1 [4 (ij \times f) + ij \times f) = 1 (4 ij \times f) + ij \times f$ $+ ij \times f$
 - ・1-[4-(ジェチルアミノエトキシ) フェニル] -1-(4-メトキシメトキシフェニル) -1-[1-(1, 2, 3, 4-]テト

ラヒドロナフチリデン)] メタン

- ・1- [4- (メチルエチルアミノエトキシ) フェニル] -1- (4-メトキシメトキシフェニル) -1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)]メタン
- ・1- [4-(ピロリジノエトキシ) フェニル] -1-(4-メト 5 キシメトキシフェニル) -1-[1-(1, 2, 3, 4-テトラヒ ドロナフチリデン)] メタン
 - ・1-[4-(シクロヘキシルメチルアミノエトキシ)フェニル]
- 3. 4ーテトラヒドロナフチリデン)]メタン ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-アセトキシフェニル) -1- [1-(1, 2, 3, 4-テトラヒド ロナフチリデン)]メタン
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-アセトキシフェニル) -1- [1-(4-メチル-1, 2, 3, 4 15 ーテトラヒドロナフチリデン)]メタン
 - \cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 -アセトキシフェニル) -1-(1-インダニリデン) メタン
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-アセトキシフェニル) -1-(5-ベンゾシクロヘプチリデン)メ 20 タン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-アセトキシフェニル) -1- (4-クロマニリデン) メタン
 - \cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 -
- アセトキシフェニル) -1-(4-チオクロマニリデン) メタン 25 ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-アセトキシフェニル) -1-(4-チオクロマニリデン-1-オキ シド) メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-

アセトキシフェニル) $-1-(4- + \pi / 1 - \pi / 1 -$

- ・1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 アセトキシフェニル) 1 [2 (1, 2, 3, 4 テトラヒドロナフチリデン)] メタン
- - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-(4-7セトキシフェニル) -1-[4-(1, 2, 3, 4-テトラヒドロキノリニリデン)] メタン
- 15 ・1- [4-(ジエチルアミノエトキシ) フェニル] -1-(4-アセトキシフェニル) -1- [1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- ・1-[4-(メチルエチルアミノエトキシ)フェニル]-1-(
 4-アセトキシフェニル)-1-[1-(1, 2, 3, 4-テトラ
 ヒドロナフチリデン)] メタン
 - ・1-[4-(ピロリジノエトキシ) フェニル] -1-(4-アセトキシフェニル) -1-[1-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン
- - $\cdot 1 [4 (5) \times 5 \times 5] \times 1 [4 (4 5) \times 5] \times 1 [4 (5) \times 5] \times 1 [4 (4 5) \times 5] \times 1 [4 (5) \times 5] \times 1 [4 (5) \times 5] \times 1 [4 (4 5) \times 5] \times 1 [4 (4 6) \times 5] \times 1 [4 (4$

- ・1-[4-(ジメチルアミノエトキシ)フェニル] -1-(4-ジヒドロキシフォスフィノオキシフェニル) -1-[1-(4-メチルー1, 2, 3, 4ーテトラヒドロナフチリデン)] メタン
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-
- 5 ジヒドロキシフォスフィノオキシフェニル) -1-(1-インダニリデン)メタン
- 10 $\cdot 1 [4 (ij + i) + i + i) + i i (4 i) + i (4 i) +$
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ジヒドロキシフォスフィノオキシフェニル)-1-(4-チオクロ
- 15 マニリデン) メタン
 - $1 [4 (\Im y + \Im v + \Im v + \Im v + 2 \Im v +$
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-20 ジヒドロキシフォスフィノオキシフェニル)-1-(4-チオクロマニリデン-1,1-ジオキシド)メタン
- 25 $\cdot 1 [4 (iy + i + i + i)] 1 (4 i + i + i + i)$ i + i + i + i + i i + i + i + i i + i i
 - ・1-[4-(ジメチルアミノエトキシ)フェニル] -1-(4-ジヒドロキシフォスフィノオキシフェニル) -1-[1-(5-)

| 1, 2, 3, 4 - 7, 7 +・1-「4-(ジメチルアミノエトキシ)フェニル]-1-(4-ジヒドロキシフォスフィノオキシフェニル] - 1 - [4 - (1, 2)]. 3、4ーテトラヒドロキノリニリデン)]メタン

- ・1-[4-(ジエチルアミノエトキシ)フェニル]-1-(4-ジヒドロキシフォスフィノオキシフェニル) -1-[1-(1, 2 . 3. 4ーテトラヒドロナフチリデン)]メタン
 - ・1-「4-(メチルエチルアミノエトキシ)フェニル]-1-(4 - ジヒドロキシフォスフィノオキシフェニル) - 1 - [1 - (1)]
- . 2, 3, 4ーテトラヒドロナフチリデン)]メタン ・1-[4-(ピロリジノエトキシ)フェニル]-1-(4-ジヒ ドロキシフォスフィノオキシフェニル) -1-[1-(1, 2, 3)], 4ーテトラヒドロナフチリデン)]メタン
 - ・1-[4-(シクロヘキシルメチルアミノエトキシ)フェニル]
- 15 1-(1, 2, 3, 4-テトラヒドロナフチリデン)]メタン ・1- [4-(ジメチルアミノエトキシ)フェニル] -1-(4-(1, 2, 3, 4-7)ラヒドロナフチリデン)] メタン
- 20 1-「4-(ジメチルアミノエトキシ)フェニル]-1-(4-ベンゾイルオキシフェニル) -1-[1-(4-メチル-1, 2,3, 4-テトラヒドロナフチリデン)]メタン
- ・1-「4-(ジメチルアミノエトキシ)フェニル]-1-(4-ベンゾイルオキシフェニル)-1-(1-インダニリデン)メタン 25 ・1- [4-(ジメチルアミノエトキシ)フェニル] -1-(4-ベンゾイルオキシフェニル)-1-(5-ベンゾシクロヘプチリデ ン) メタン ・
 - ・1-「4-(ジメチルアミノエトキシ)フェニル]-1-(4-ベンゾイルオキシフェニル) -1-(4-クロマニリデン) メタン

- ・1-[4-(9)xチルアミノエトキシ)フェニル]-1-(4-(2)x ベンゾイルオキシフェニル)-1-(4-(2)x) タン
- 5 ベンゾイルオキシフェニル) -1-(4-チオクロマニリデン-1-オキシド) メタン
- $egin{array}{llll} & \cdot & 1 & [4 (\it{ij}$ \it{ij} \it{ij}
 - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-(4-(3)) ベンゾイルオキシフェニル) -1-[2-(1-)] 2,
- 15 3, 4-r
 - ・1-[4-(ジメチルアミノエトキシ) フェニル] -1-(4-(3)) ベンゾイルオキシフェニル) -1-[1-(5-)+キシ-1, 2] , 3 , 4-テトラヒドロナフチリデン)] メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-
- 20 ベンゾイルオキシフェニル) -1- [4-(1, 2, 3, 4-テトラヒドロキノリニリデン)] メタン
 - ・1-[4-(ジェチルアミノエトキシ) フェニル] -1-(4-(3)) ベンゾイルオキシフェニル) -1-[1-(1,2,3,4-)] ラヒドロナフチリデン)] メタン
- $egin{array}{llll} & \cdot 1 \left[4 \left({\it y} + {\it v} +$
 - ・1-[4-(ピロリジノエトキシ) フェニル] -1-(4-ベン ゾイルオキシフェニル) <math>-1-[1-(1, 2, 3, 4-テトラヒ

ž

ドロナフチリデン)] メタン

- ・1 [4 (シクロヘキシルメチルアミノエトキシ) フェニル]-1 - (4 - ベンゾイルオキシフェニル) -1 - [1 - (1, 2, 3, 4 - テトラヒドロナフチリデン)] メタン
- - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-1-[1-(4-メチルー
- 10 1, 2, 3, 4ーテトラヒドロナフチリデン)]メタン
 ・1ー[4ー(ジメチルアミノエトキシ)フェニル]ー1ー(4ー ピバロイルオキシメトキシフェニル)ー1ー(1ーインダニリデン)メタン
- ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4 ピバロイルオキシメトキシフェニル)-1-(5-ベンゾシクロヘ プチリデン)メタン
 - ・1-[4-(i)メチルアミノエトキシ)フェニル]-1-(4-i)ピバロイルオキシメトキシフェニル)-1-(4-i)ロマニリデン)メタン
- 20 ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-1-(4-チオクロマニリ デン)メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-1-(4-チオクロマニリ デン-1-オキシド)メタン
 - ・1-[4-(i)] チルアミノエトキシ)フェニル]-1-(4-i) ピバロイルオキシメトキシフェニル)-1-(4-i) デン-1、1-i オキシド)メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-

ピバロイルオキシメトキシフェニル) -1-[2-(1, 2, 3, 4-テトラヒドロナフチリデン)] メタン

- ・1-[4-(ジメチルアミノエトキシ)フェニル] -1-(4-ピバロイルオキシメトキシフェニル) -1-[2-(1-メチル-
- 5 1, 2, 3, 4ーテトラヒドロナフチリデン)] メタン
 - $\cdot 1 [4 (3 \lor + v)] 1 (4 4 1)$ フェニル[4 (5 v)] 1 (5 v) ピバロイルオキシメトキシフェニル[4 (5 v)] 1 (5 v) [4 (5 v)] [4 (5 v)]
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-
- 10 ピバロイルオキシメトキシフェニル) -1-[4-(1, 2, 3, 4-テトラヒドロキノリニリデン)] メタン
 - ・1-[4-(ジエチルアミノエトキシ)フェニル] -1-(4-ピバロイルオキシメトキシフェニル) -1-[1-(1, 2, 3,
 - 4-テトラヒドロナフチリデン)]メタン
- - 3, 4ーテトラヒドロナフチリデン)]メタン
 - ・1- [4-(ピロリジノエトキシ)フェニル]-1-(4-ピバロイルオキシメトキシフェニル)-1-[1-(1, 2, 3, 4-
- 20 テトラヒドロナフチリデン)]メタン
 - ・1-[4-(シクロヘキシルメチルアミノエトキシ)フェニル]
 - -1-(4-ピバロイルオキシメトキシフェニル) -1-[1-(
 - 1, 2, 3, 4ーテトラヒドロナフチリデン)]メタン
 - ・1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4-
- 25 シクロプロパンカルボニルオキシフェニル) -1- [1-(1, 2
 - , 3, 4ーテトラヒドロナフチリデン)] メタン

 - チルー1, 2, 3, 4ーテトラヒドロナフチリデン)]メタン

- ・1 [4 (3) + 2 + 2] + 1 (4 4) + 1 (4 4) + 1 (1 4) + 1
- $\cdot 1 [4 (ij) + ij] 1 (4 ij) 1 (4 ij) 1 (5 ij) (5 i$
 - $\cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 シクロプロパンカルボニルオキシフェニル) 1 (4 クロマニリデン) メタン$
- -10 -1-[4-(ジメチルアミノエトキシ)フェニル]-1-(4- シクロプロパンカルボニルオキシフェニル)-1-(4-チオクロマニリデン)メタン
 - ・1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 シクロプロパンカルボニルオキシフェニル) 1 (4 チオクロマニリデン-1 オキシド) メタン
- ・1- [4-(ジメチルアミノエトキシ)フェニル] -1-(4-シクロプロパンカルボニルオキシフェニル) -1-(4-チオクロ マニリデン-1、1-ジオキシド) メタン
 - ・1- [4- (ジメチルアミノエトキシ) フェニル] -1- (4-
- 20 シクロプロパンカルボニルオキシフェニル) -1- [2-(1, 2
 3, 4-テトラヒドロナフチリデン)] メタン
 - $\cdot 1 [4 (ジメチルアミノエトキシ) フェニル] 1 (4 シクロプロパンカルボニルオキシフェニル) 1 [2 (1 メチル-1, 2, 3, 4 テトラヒドロナフチリデン)] メタン$
- $0.1 [4 (i) \times i \times i \times i] 1 (4 i) \times i \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i$ $0.1 [4 (i) \times i \times i] \times i \times i$ $0.1 [4 (i) \times i] \times i \times i$ $0.1 [4 (i) \times i] \times i \times i$ $0.1 [4 (i) \times i] \times i$

- , 3, 4ーテトラヒドロキノリニリデン)]メタン
- ・1-[4-(ジェチルアミノエトキシ)フェニル] -1-(4-シクロプロパンカルボニルオキシフェニル) -1-[1-(1, 2
- . 3. 4-テトラヒドロナフチリデン)]メタン
- 5 $\cdot 1 [4 (\cancel{y} + \cancel{v} + \cancel{v}$
 - ・1-[4-(ピロリジノエトキシ) フェニル]-1-(4-シクロプロパンカルボニルオキシフェニル) -1-[1-(1, 2, 3)]
- - ・1- [4-(シクロヘキシルメチルアミノエトキシ)フェニル]
 - -1-(4-シクロプロパンカルボニルオキシフェニル) -1-[
 - 1-(1, 2, 3, 4-テトラヒドロナフチリデン)]メタン
 - ・2- [4- [1- (4-ヒドロキシイミノメチルフェニル) -2
- 15 -フェニル-1-ブテニル〕フェノキシ〕<math>-N, N-ジメチルエチルアミン
- - ・1-[2-[1-(3-メトキシイミノメチルフェニル) -2-フェニル-1-ブテニル] フェノキシ] -N, N-ジメチルエチル
- 25 アミン
 - $\cdot 1 [2 [1 (4 x + y) + y] 2 [1 (4 x + y)] 2 [1 (4 x + y)] [1 x] [1 x]$
 - ・2 [4 [1 (3 -エトキシカルボニルメトキシフェニル)

-2-フェニルー1-プテニル〕フェノキシ〕<math>-N, N-ジメチルエチルアミン

・2 - [4-[1-(3-フェニルメトキシイミノメチルフェニル) -2-フェニル-1-ブテニル] フェノキシ] <math>-N, N-ジメチルエチルアミン

本発明の一般式(1)で表されるトリフェニルエチレン誘導体の 10 中で、化2式を選んだ誘導体は、下記式(5):

15
$$\mathbb{R}_{12}$$
 \mathbb{C} \mathbb{C}

 $(R_{12}$ は水素原子または水酸基を表わす)で示されるベンゾフェノ 20 ン誘導体と式(6):

$$\begin{array}{c|c}
C & R_3 \\
\downarrow & R_2
\end{array}$$
(6)

25

(式中、R2, R3は前記と同じ意味を表わす)で示されるケトン体とを、実質上乾燥した不活性雰囲気下で還元性チタニウム化合物及び実質上原子価0状態のチタニウムを発生させるに有効な還元剤

を含む媒体中で反応させ、得られた混合物中から式(7):

5
$$CR_2R_3$$

10

(式中、 R_2 , R_3 , R_{12} は前記と同じ意味を表わす) で表わされ るフェノール誘導体をカラムクロマト等で精製した後、これをフェ ノキシドに変換し、オキシラン誘導体を作用させ式(8):

OCH₂CH
$$\sim$$
 CH₂

$$CR_2R_3$$

$$R_{12}$$
(8)

(式中、 R_2 , R_3 , R_{12} は前記と同じ意味を表わす) で表わされ るエポキシ誘導体を得、これに適当なアミンを反応させることによ り式(9):

25

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

10 (式中、R₂, R₃, R₆, R₇, R₁₂は前記と同じ意味を表わす) で示されるアミン誘導体を得る。これに適当な塩基または相関移動触媒の存在下に酸無水物,酸ハライドを反応させる事により目的物を得ることが出来る。また、R₇の置換基に置換された水酸基 (R₃C(O)O-、R₁₀OCH₂O-及び-OPO(OH)₂) を導入する場合、式(7)でR₁₂が水酸基の化合物に置換基を導入し、以下上記の方法によって得ることが出来る。

一般式(1)のトリフェニルエチレン誘導体の中で、式(3)を 選んだ誘導体は式(7)で示されるフェノール誘導体に、例えばジ シクロヘキシルカルボジイミド等の脱水縮合剤とヨウ化銅の存在下 、式(10):

$$HO-CH(CH_2N < R_7) (10)$$

25

20

(式中、R₆, R₇ は前記と同じ意味を表わす)で表わされるアルコール誘導体と反応させることにより得ることが出来る。

一般式(1)のトリフェニルエチレン誘導体の中で、式(4)を 選んだ誘導体は式(7)で示されるフェノール誘導体をフェノキシ

ドに変換し、ジハロエタンを作用させ下記式(11):

5 OCH₂CH₂X₁

$$CR_2R_3$$

$$R_{12}$$

10 (式中、R2, R3, R12は前記と同じ意味を表わし、X1はハロゲン原子を表わす)で示されるハロゲン誘導体を得、これに適当なアミンを反応させることにより得ることが出来る。

一般式(1)のトリフェニルエチレン誘導体の中で、 R_1 , R_5 に $-CH=NOR_{11}$ を有する化合物群は、例えば、式(12):

15

$$R_{1}O - C - CH - R_{3}$$
 (12)

20

(式中、 R_1 、 R_2 , R_3 は前記と同じ意味を表わす)で示されるケトン誘導体に式(13):

(式中、 R_{13} は MgX_2 及びリチウムを表し、 X_2 は塩素原子及び 臭素原子を表わす)で表されるフェニルジオキソラン誘導体を反応

させ、式(14):

5 OR₁

$$R_{2}$$
OH R₃

10 (式中、 R_1 、 R_2 , R_3 は前記と同じ意味を表わす)で表される アルコール誘導体を得た後、鉱酸存在下で脱水反応を行うことにより、同時にアセタールが分解し式(1.5):

OR₁

$$CR_2R_3$$
(15)

(式中、 R_1 、 R_2 , R_3 は前記と同じ意味を表わす)で表わされるアルデヒド誘導体を得ることが出来る。この化合物にO-置換ヒドロキシルアミンを反応させることにより得ることが出来る。式(14)の脱水反応は、濃塩酸等の鉱酸の存在下、加熱することにより行われる。

以上の方法によって得られた一般式(1)で表されるトリフェニルエチレン誘導体は、炭素-炭素二重結合に対してE・Z異性体の混合物であるが高速液体クロマトグラフ上では、2つのピークに分離し分取操作を加えることにより各々単独に分離することが出来る

10

15

20

25

。他に分離方法としては、鉱酸の塩にして再結晶法により分離する ことも可能である。また一般式(1)で表わされるトリフェニルエ チレン誘導体の中で、式(2)を選んだ化合物群は、アミノアルキ ル側鎖のヒドロキシ基の根元の炭素が不整で、光学異性体であるR 体とS体の混合物であるが、両異性体は光学異性体分離用カラムを 用いた高速液体クロマトグラフィーにより各々単独に分離すること が出来る。さらに光学活性な酸と塩を形成させることにより、分離 精製も可能である。また式(7)のフェノール誘導体に光学活性な オキシラン誘導体を作用させ、光学活性なエポキシ体を得た後、適 当なアミン体を反応させることにより光学活性なトリフェニルエチ レン誘導体を得ることも出来る。また一般式(1)で表わされる本 発明化合物は、無機酸または有機酸と処理して薬理学的に許容され る酸付加塩に誘導できる。無機酸としては塩酸、臭化水素酸、硫酸 、リン酸等が、有機酸としては、クエン酸、マレイン酸、リンゴ酸 、フマル酸、コハク酸、メタンスルホン酸、p-トルエンスルホン 酸、シュウ酸等が挙げられる。

一般式(1)で表される本発明化合物及び薬理学的に許容される酸付加塩は、優れた抗エストロゲン作用を有しており、特に乳房腫瘍の治療に有効である。さらにそのエストロゲン作用により骨粗しょう症の治療薬としても用いられる。

本発明化合物を投与する際の投与形態としては、例えば錠剤、カプセル剤、顆粒剤、散剤、液剤などの経口剤、注射剤、座薬などをとり得るが、経口剤が一般的に好ましい。錠剤、カプセル剤、顆粒剤、散剤を製造する際に用いられる賦形剤としては、例えば乳糖、ショ糖、デンプン、タルク、ステアリン酸マグネシウム、結晶セルロース、メチルセルロース、グリセリン、アルギン酸ナトリウム、アラビアゴム、コーンスターチ、ブドウ糖、ソルビット、二酸化ケイ素等を、結合剤としては、ポリビニルアルコール、ポリビニルエーテル、エチルセルロース、アラビアゴム、シエラツク、白糖、ト

ラガント、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、ポリビニルピロリドン等を、潤滑剤としてはステアリン酸マグネシウム、タルク等を、その他通常公知の着色剤、崩壊剤等の添加剤を任意に用いることが出来る。尚、錠剤は周知の方法でコーティングしてもよい。また、液体製剤は、水性または油性の懸濁液、溶液、シロップ、エリキシル剤であってもよく、通常の添加剤を用いて常法に従い調製される。

本発明化合物を患者に対し経口投与する際の投与量は、患者の症状、体重、年齢などによって異なり一概に規定できないが、通常成 10 人一人当り約 $1\sim500$ mgとすれば良く、これは好ましくは $1\sim4$ 回に分けて投与される。また一回投与量当りの有効成分化合物含量は、約 $0.5\sim50$ mgとするのが好ましい。

発明を実施するための最良の形態

20 実施例 1

 $(E \cdot Z) - 1 - [4 - (3 - i j j j f n) r i j l - 2 - i j r$

25 アルゴン気流下、240 ml無水テトラヒドロフランに氷冷下で四塩化チタン12.6 mlを滴下した。室温に戻し約15分撹拌したのち亜鉛粉末12gを加え、1.5時間加熱還流した。この溶液を室温に冷却したのち4,4'-ジヒドロキシベンゾフェノン3.84gと3,4-メチレンジオキシプロピオフェノン3.22gを加え

2時間加熱還流した。この反応液を冷却し、200mlの水に添加し、次いでエーテル抽出を行った。この有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒を真空下で除去した。油状残留物をシリカゲルカラム(展開溶媒:クロロホルム/メタノール)にかけ1,

- 5 1-ビス(4-ヒドロキシフェニル)-2-(3, 4-メチレンジオキシフェニル)-1-ブテンの結晶3.73gを得た。これを22mlの0.5N KOH(エタノール溶液)に溶解し、真空下に溶媒を除去して1,1-ビス(4-ヒドロキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテンのフェノキサイド
- 10 を油状物として得た。これを45mlのDMF溶媒中、2.6mlのエピプロモヒドリンと室温で4時間撹拌した。反応液を100mlの水に添加しエーテル抽出を行なった。この有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒を真空下に除去し、1-[4-(2,

3-xポキシプロポキシ)フェニル]-1-(4-x)ドロキシフェニル)-2-(3,4-x)チレンジオキシフェニル)-1-x を含む混合物を得た。これを30 mlのx タノールに溶かし、ジメチルアミン(50 %水溶液)3 mlを加え室温で4 時間撹拌した。反応後、溶媒を真空下に除去し、シリカゲルカラム(展開溶媒:クロロホルム/メタノール)で精製し、目的物である1-[4-(3-x)]

20 メチルアミノー2ーヒドロキシプロポキシ)フェニル] - 1- (4 ーヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン1.95gの淡黄色油状物(E・Z混合物)を得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 25 0. 90 (3H, t, CH2 CH3)
 - , $C\underline{H}_2$ N)
 - 3. 84, 3. 96 (2H, t, OCH₂ CH (OH) CH₂ N)
 - 4. 04-4. 11, 4. 10-4. 19°

(1 H, m, OCH₂ C \underline{H} (OH) CH₂ N)

4.64

(2H, bs, ph-OH, OCH₂ CH(OH) CH₂ N)

- 5. 88 (2H, s, OCH_2 O)
- 6. 47-7. 15 (11H, m, 芳香族プロトン)
- 5 実施例 2

- 10 実施例1における1-[4-(2,3-エポキシプロポキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテンにジエチルアミンを実施例1と同様の方法で反応させ、同様の操作で淡黄色油状の目的物(E・Z混合物)2.04gを得た。
- 15 1 H-NMRスペクトラム, δ (CDC1):
 - 1. 09, 1. 10 (6H, 2t, N(CH₂ CH₃)₂,)
 - 2. 30-2. 45 (2H, m, CH₂ CH₃)
 - 2. 51-2. 82 (6 H, m, OCH₂ CH(OH) CH₂ N, N(CH₂ CH₃)₂)
- 3.70-4.37

(5 H, m, ph - $O\underline{H}$, $OC\underline{H}_2$ $C\underline{H}$ ($O\underline{H}$) CH_2 N)

5. 90 (2H, s, OCH₂O)

実施例 3

 (E・Z) -1- [4-(3-エチルメチルアミノー2-ヒドロキシプロポキシ) フェニル] - 1- (4-ヒドロキシフェニル) - 2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物3)の合成

実施例1における $1-[4-(2, 3-x^2+y^2)]$ フェニル $[-1-(4-x^2+y^2)]$ フェニル $[-1-(4-x^2+y^2)]$

レンジオキシフェニル)-1-ブテンにメチルエチルアミンを実施例1と同様の方法で反応させ、同様の操作で淡黄色油状の目的物($E \cdot Z$ 混合物)1.98gを得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 5 0. 92 (3H, t, CH₂ C<u>H</u>₃)
 - 1. 10, 1. 12 (3H, t, $NCH_2 CH_3$,)
 - 2. 30-2. 48 (5 H, m, $NC\underline{H}_3$, $C\underline{H}_2$ CH_3)
 - 2.48-2.73

(4 H, m, OCH₂ CH(OH) CH_2 NC H_2 CH₃)

- 10 3. 81-3. 93, 3. 95-4. 03 (2H, m, OCH₂ CH(OH) CH2 N)
 - 6. 48-7. 18 (11H, m, 芳香族プロトン)

実施例 4

20

(E・Z) -1-[4-(3-シクロヘキシルメチルアミノ-2]
 15 -ヒドロキシプロポキシ)フェニル] - 1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物4)の合成

実施例1における1-[4-(2,3-x*+**)]フェニル]-1-(4-x*+**)フェニル]-2-(3,4-x*+**)

レンジオキシフェニル) -1-ブテンにシクロヘキシルメチルアミンを実施例1と同様の方法で反応させ、同様の操作で淡黄色油状の目的物(E・Z混合物)2.20gを得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 92 (3H, t, CH_2 $C\underline{H}_3$)
- 25 1.01-2.20 (10H, m, シクロヘキサン環のメチレンプロトン)
 - 2. 31-2. 48 (2H, m, $C\underline{H}_2$ CH_3)
 - 2. 73-2. 91 (3H, d, $NC\underline{H}_3$)
 - 2. 92-3. 53 (3H, m, OCH₂ CH(OH) C \underline{H}_2 N,

シクロヘキサン環のメチンプロトン)

- 3. 69-4. 18 (2 H, m, OCH₂ CH(OH) CH₂ N)
- 4. 27-4. 57 (1H, m, OCH₂ CH(OH) CH₂ N)
- 5. 88 (2H, s, OCH₂ O)
- 56.48-7.13(11H, m, 芳香族プロトン)実施例 5
- (E) -1- [4-(3-ジメチルアミノー2-ヒドロキシプロポキシ) フェニル] -1-フェニルー2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物5)及び(Z) -1- [4-(3-ジメチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-フェニルー2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物6)の合成

アルゴン気流下、240ml無水テトラヒドロフランに氷冷下で四 塩化チタン12.6mlを滴下した。室温に戻し約15分撹拌したの 15 ち亜鉛粉末12gを加え、1.5時間加熱還流した。この溶液を室 温に冷却したのち4ーヒドロキシベンゾフェノン3.56gと3, 4-メチレンジオキシプロピオフェノン3. 22g を加え2時間加 熱還流した。この反応液を冷却し、2.00m1の水に添加し、次い でエーテル抽出を行った。この有機層を水洗し、硫酸ナトリウム上 20 で乾燥した後溶媒を真空下で除去した。油状残留物をシリカゲルカ ラム(展開溶媒:クロロホルム/メタノール)にかけ1-(4-ヒ ドロキシフェニル) -1-フェニル-2-(3,4-メチレンジオ キシフェニル) -1 - ブテン3. 4 6 gの結晶を得た。これを2 2 mlの0.5N KOH (エタノール溶液) に溶解し、1-(4-ヒ 25 ドロキシフェニル) -1 - フェニル -2 - (3, 4 - メチレンジオ キシフェニル) -1-ブテンのフェノキサイドを油状物として得た 。これを45mlのDMF溶媒中、2.6mlのエピブロモヒドリンと 室温で4時間撹拌した。反応液を100mlの水に添加しエーテル 抽出を行なった。この有機層を水洗し、硫酸ナトリウム上で乾燥し

キシ)フェニル] -1-フェニル-2-(3,4-メチレンジオキ シフェニル) -1-ブテンを含む混合物を得た。これを30mlのエ タノールに溶かし、ジメチルアミン (50%水溶液) 3 mlを加え室 温で4時間撹拌した。反応後、溶媒を真空下に除去し、シリカゲル 5 カラム (展開溶媒:クロロホルム/メタノール) で精製し、(E・ Z) - 1 - [4 - (3 - ジメチルアミノ - 2 - ヒドロキシプロポキシ) フェニル] -1-フェニル-2-(3, 4-メチレンジオキシ フェニル) -1-ブテン1. 78gの淡黄色油状物を得た。この内 の240mgをとり、ウォーターズ社製 PREPPAK CAR 10 TRIDGE DELTA-PAK C18 (内径47mm×長さ 30cm)のカラムを用い、水:メタノール=37:63(トリフ ルオロ酢酸 0. 1%を含む)の溶媒を使用し、流速 70 m l /分で 行なった高速液体クロマトグラフィーで、目的物である(E)-1 - [4-(3-ジメチルアミノ-2-ヒドロキシプロポキシ)フェ 15) -1-ブテン70mg及び (Z) -1- [4- (3-ジメチルア ミノー2-ヒドロキシプロポキシ)フェニル]-1-フェニルー2 -(3, 4-メチレンジオキシフェニル) -1-ブテン<math>60mgを 20 得た。

'H-NMRスペクトラム、 δ (CDC1):

化合物 5

- 0. 92 (3H, t, CH₂ C<u>H</u>₃)
- 2.09-2.67
- 25 (10 H, m, N (CH3)₂, CH₂ CH₃, CH₂ N)
 - 3. 70-4. 27 (3 H, m, $OC\underline{H}_2$ $C\underline{H}$ (OH) CH_2 N)
 - 5. 80 (2H, s, OCH₂ O)
 - 6. 46-7. 33 (12H, m, 芳香族プロトン)

化合物 6

- 0. 90 (3H, t, CH₂ CH₃)
- 2.10-2.83

(10H, m, N (CH₃)₂, CH₂ CH₃, CH₂ N)

- 3. 27 (1 H, bs, OCH₂ CH (OH) CH₂ N)
- 5 3. 67-4. 27 (3H, m, OCH₂ CH(OH) CH₂ N)
 - 5. 83 (2H, s, OCH₂ O)
 - 6. 33-7. 53 (12H, m, 芳香族プロトン)

実施例 6

 $\frac{(E \cdot Z) - 1 - [4 - (3 - ジメチルアミノ - 2 - E F D + 2)}{\mathcal{I}_{0} \mathcal{I}_{0} \mathcal$

アルゴン気流下、240m1無水テトラヒドロフランに氷冷下で 四塩化チタン16m1を滴下した。室温に戻し約20分撹拌したの ち亜鉛粉末14.3gを加え、2時間加熱還流した。この溶液を室 15 温に冷却したのち4、4′ージヒドロキシベンゾフェノン5、46 gとプロピオフェノン3. 42gを加え4時間加熱還流した。この 反応液を冷却し、200mlの水に添加し、次いでエーテル抽出を 行った。この有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒 を真空下で除去した。油状残留物をシリカゲルカラム (展開溶媒: 20 ヘキサン/酢酸エチル)にかけ、結晶約8gを得、これをトルエン 溶媒を用いて再結晶することで、1,1-ビス(4-ヒドロキシフ ェニル) -2 -フェニル -1 - ブテン 6 . 0 0 g の 白色 結晶 を 得た 。この結晶2.0gを9.7m1の0.5N 水酸化カリウム(エ タノール溶液)に溶解し、真空下に溶媒を除去して1,1-ビス(25 4-ヒドロキシフェニル)-2-フェニル-1-ブテンのフェノキ サイドを油状物として得た。これを30mlのジメチルホルムアミ ド溶媒中、1.5mlのエピプロモヒドリンと室温で4時間撹拌し た。反応液を100m1の水に添加しエーテル抽出を行なった。こ の有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒を真空下に

除去し、1- [4-(2,3-エポキシプロポキシ)フェニル] - 1-(4-ヒドロキシフェニル) -2-フェニル-1-ブテンを含む混合物を得た。この混合物800mgを12m1のエタノールに溶かし、50%ジメチルアミン水溶液0.678m1を加え室温で一晩撹拌した。反応後、溶媒を真空下に除去し、薄層クロマトグラフィー(展開溶媒:クロロホルム/メタノール=5/1)で精製し、目的物である1- [4-(3-ジメチルアミノー2-ヒドロキシプロポキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-フェニル-1-ブテン125mgの淡黄色油状物(E・Z混合物)

10 を得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 89 (3H, t, CH₂ CH₃)
- 2. 33, 2. 38 (3H, s, N ($C_{\underline{H}_3}$) 2)
- 2.33-2.70
- 15 (4 H, m, CH₂ CH₃, OCH₂ CH (OH) CH₂ N)
 - 3. 67-4. 33 (3H, m, $OC\underline{H}_2$ $C\underline{H}$ (OH) CH₂ N)
 - 5. 10-5.67

(2 H, m, OCH₂ CH(O \underline{H}) CH₂ N, Ar-O \underline{H})

- 6. 27-7. 27 (13H, m, 芳香族プロトン)
- 20 実施例 7

ジメチルアミンの代わりにシクロヘキシルアミンを用いる以外は 25 実施例6と同様の方法で反応させ、同様の操作で淡黄色油状の目的 物170mgの淡黄色油状物(E・Z混合物)を得た。

1H-NMRスペクトラム, δ(CDC1:):

- 0. 91 (3H, t, CH_2 $C\underline{H}_3$)
- 1. 45-2.17

(10H, m, シクロヘキサン環のメチレン水素)

- 2. 41-2. 50 (2 H, q, CH₂ CH₃)
- 2. 93-3. 11 (1H, m, シクロヘキサン環のメチン水素)
- 3. 11-3. 37 (2 H, m, OCH₂ CH(OH) CH₂ N)
- 5 3. 75-3. 90, 3. 93-4. 08 (2H, m, OCH₂ CH(OH) CH₂ N)
 - 4. 26-4. 50 (1H, m, OCH₂ CH(OH) CH₂ N)
 - 6. 39 (1 H, bs, OCH₂ CH(OH) CH₂ N)
 - 6. 45-7. 17 (13H, m, 芳香族プロトン)
- 10 7. 60-7. 82, 8. 83-9. 09 (2H, m, N<u>H</u>, Ar-O<u>H</u>)

実施例 8

(E・Z) -1- [4-(3-シクロヘキシルアミノ-2-ヒドロキシプロポキシ)フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物9)の合成

ジメチルアミンの代わりにシクロヘキシルアミンを用いる以外は 実施例1と同様の方法で反応させ、同様の操作で1.95gの淡黄 色油状目的物(E・Z混合物)を得た。

- 20 'H-NMRスペクトラム, δ (CDC13):
 - 1. 18-2.18

(10H, m, シクロヘキサン環のメチレン水素)

- 2. 38 (2H, q, CH₂ CH₃)
- 2. 91-3. 12 (1H, m, シクロヘキサン環のメチン水素)
- 25 3. 07-3. 31 (2H, m, OCH₂ CH(OH) CH₂ N)
 - 3. 80-4. 07 (2 H, m, $OC_{\frac{H}{2}}$ CH(OH) CH₂ N)
 - 3. 96-4. 29 (1 H, m, OCH₂ CH(OH) CH₂ N)
 - 4. 18-4. 55 (1H, m, OCH₂ CH(OH) CH₂ N)
 - 5. 88, 5. 89 (2H, s, OCH₂ O)

- 6. 47-7. 07 (11H, m, 芳香族プロトン)
- 7. 93-8.19(1H, m, NH)
- 9. 23-9. 42(1H, bs, Ar-O<u>H</u>)

実施例 9

- (E・Z) -1- [4-(3-メチルアミノー2-ヒドロキシプロポキシ) フェニル] -1- (4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物10)

 の合成
- ジメチルアミンの代わりにメチルアミンを用いる以外は、実施例 10 1 と同様の方法で反応させ、同様の操作で1. 6 g の淡黄色油状目 的物 (E・Z混合物)を得た。
 - $^{1}H-NMR$ スペクトラム、δ(CDC1₃ , CD₃ OD, D₂ O):
 - 0. 90 (3H, t, CH₃)
 - 2. 07-2. 70 (5 H, m, $-NHCH_3$, $-CH_2CH_3$)
- 15 2. 70-3. 10 (2H, m, OCH₂ CH(OH) C \underline{H}_2 N)
 - 3. 67-4. 40 (3H, m, $OC\underline{H}_2$ $C\underline{H}$ (OH) CH_2 N)
 - 5. 78 (2H, s, OCH_2 O)
 - 6. 47-7. 07 (11H, m, 芳香族プロトン)

実施例 10

- (E・Z) -1- [4-(3-エチルアミノー2-ヒドロキシプロポキシ) フェニル] -1- (4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物11)

 の合成
- ジメチルアミンの代わりにエチルアミンを用いる以外は、実施例 25 1と同様の方法で反応させ、同様の操作で1.5gの淡黄色油状目 的物(E・Z混合物)を得た。
 - 1 H-NMRスペクトラム、δ(CDC1 $_{3}$):
 - 0. 90, 1. 13 (6H, $t \times 2$, NHCH₂ CH₃, CH₂ CH₃)

- 2. 10-3. 10
 (6H, m, OCH₂ CH(OH) CH₂ NCH₂ CH₃,
 CH₂ CH₃)
- 3.63-4.53
- 5 (6 H, m, $OC\underline{H}_{2}$ $C\underline{H}$ ($O\underline{H}$) CH_{2} $N\underline{H}$, \underline{H} OPh)
 - 5. 78 (2H, s, OCH₂ O)
 - 6. 26-7. 23 (11H, m, 芳香族プロトン) 実施例 11

アルゴン気流下、240m1無水テトラヒドロフランに氷冷下で 四塩化チタン16m1を滴下した。室温に戻し約20分撹拌したの ち亜鉛粉末14.3gを加え、2時間加熱還流した。この溶液を室 15 温に冷却したのち4ーヒドロキシベンゾフェノン4.76gとプロ ピオフェノン3. 22gを加え2時間加熱還流した。この反応液を 冷却し、200mlの水に添加し、次いでエーテル抽出を行った。 この有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒を真空下 で除去し、1-(4-ヒドロキシフェニル)-1,2-ジフェニル 20 -1-ブテンを含む粗結晶 9. 8 8 gを得た。この油状残留物を 6 6 m 1 の 0 . 5 N 水酸化カリウム (エタノール溶液) に溶解し、 真空下に溶媒を除去して1-(4-ヒドロキシフェニル)-1,2 - ジフェニル-1-ブテンのフェノキサイドを油状物として得た。 これを150mlのDMF溶媒中、6.2mlのエピブロモヒドリ 25 ンと室温で3時間撹拌した。反応液を200mlの氷水に添加しエ ーテル抽出を行なった。この有機層を水洗し、硫酸ナトリウム上で 乾燥した後溶媒を真空下に除去し、1-[4-(2, 3-x]]キシ プロポキシ)フェニル]-1, 2-ジフェニル-1-ブテンを含む混合物 1 0. 3 gを得た。このうちの 5 0 0 m g を 7. 5 m l のエ

タノールに溶かし、シクロヘキシルアミン0.403m1を加え室温で4時間撹拌した。反応後、溶媒を真空下に除去し、薄層クロマトグラム(展開溶媒:クロロホルム/メタノール=14/1)で精製し、エーテルから再結晶させることで目的物である1-[4-(

5 3 - シクロヘキシルアミノー2 - ヒドロキシプロポキシ)フェニル] - 1, 2 - ジフェニルー1 - ブテン1 2 7 m g の白色結晶を得た

 1 H-NMRスペクトラム, δ (CDC1 $_{3}$):

- 0. 92 (3H, t, CH₂ C<u>H</u>3)
- 10 0.83-2.13 (10H, m, シクロヘキサン環のメチレン水素)
 - 2. 47 (2H, q, CH₂ CH₃)
 - 73-3.23 (3H, m, OCH₂ CH(OH) CH₂ N, シクロヘキサン環のメチン水素)
- 15 3. 70-3. 93 (2 H, m, OCH_2 CH(OH) CH₂ N)
 - 4. 0.1-4.57 (1 H, m, OCH₂ CH₂ OH) CH₂ N)
 - 5. 18 (2H, bs, NH, OCH₂ CH(OH) CH₂ N)
 - 6.38-7.42 (14H, m, 芳香族プロトン) 実施例 12

20 <u>(Z) -1-[4-(3-エチルアミノ-2-ヒドロキシプロポキシ) フェニル] -1, 2- ジフェニル-1-ブテン(化合物1</u>3) の合成

実施例11における1-[4-(2,3-x+2)] フェニル] -1, 2 ジフェニル-1-ブテン5 0 0 m g に x に x に x に x の x の x の x の x を x を x を x を x に

'H-NMRスペクトラム, δ (CDC13):

- 0. 90 (3H, t, $CCH_2C\underline{H}_3$)
- 1. 33 (3H, t, NCH₂ C<u>H</u>₃)

- 2. 45 (2H, q, CCH₂ CH₃)
- 2.73-3.37

(4H, m, NCH₂ CH₃, OCH₂ CH(OH) CH₂ N)

- 3. 67-3. 96 (2H, m, OCH₂ CH(OH) CH₂ N)
- ⁵ 4. 23-4. 77 (1H, m, OCH₂ CH(OH) CH₂ N)
 - 5. 82 (2 H, bs, NH, OCH₂ CH(OH) CH₂ N)
 - 6. 30-7. 33 (14H, m, 芳香族プロトン)

実施例 13

実施例11における1-[4-(2,3-x+2)]フェニル] -1,2ジフェニル-1-x+200 mgにイソプロピルアミン0.3mlを実施例1と同様の方法で反応させ、同様の操作で230mgの目的物を白色結晶として得た。

'H-NMRスペクトラム, δ (CDC1₃):

- 0. 91 (3H, t, CCH₂ CH₃)
- 1. 25, 1. 37 (6H, m, NCH (CH₃)₂)
- 2. 43 (2H, q, CCH₂ CH₃)
- 20 2. 83-3. 42 (3H, m, NCHC (CH₃)₂, CH(OH) CH₂ N)
 - 3. 61-4. 00 (2H, m, OCH_2 CH(OH) CH₂ N)
 - 4. 0.8-4. 6.7 (1 H, m, OCH₂ CH(OH) CH₂ N)
 - 5. 81 (2H, bs, NH, OCH₂ CH(OH) CH₂ N)
- ²⁵ 6.26-7.31 (14H, m, 芳香族プロトン)

実施例 14

)の合成

化合物 1, 500 m g を ピリジン 7. 5 m 1 に溶解し、無水酢酸 1. 0 m 1 を加え、室温で 5 時間撹拌した。反応系を減圧濃縮した 後、シリカゲルカラム(展開溶媒:クロロホルム/メタノール)で 精製し、目的物である、1-[4-(3-i)メチルアミノー2ーアセトキシプロポキシ)フェニル]-1-(4-i)ーン・に -1-i・アセトキシフェニル)・2-(3, 4-i)・フェニル)・1-i
合物 15)を 200 m g の 淡黄色油状物(E・ i Z 混合物)として得た。

- 10 1 H-NMRスペクトラム, δ (CDC1 $_{3}$):
 - 0. 92 (3H, t, CH₂ CH₃)
 - 2. 04, 2. 09, 2. 16, 2. 21 (6H, 2s, 2OAc)
 - 2. 25, 2. 30 (6 H, s, N (C \underline{H}_3) $_2$)
 - 2. 44 (2 H, q, C_{H_2} C_{H_3})
- 2.53, 2.61 (2H, t, OCH₂ CH (OAc) C \underline{H}_2 N)
 - 3. 95-4. 18 (2H, m, OCH₂ CH (OAc) CH₂ N)
 - 5. 20-5. 32 (1H, m, OCH₂ C \underline{H} (OAc) CH₂ N)
 - 5. 88 (2H, s, OCH₂ O)

実施例 15

 (E・Z) -1- [4-(3-ジメチルアミノー2-アセトキシ プロポキシ) フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物16) の合成

実施例1における1-[4-(3-ジメチルアミノ-2-ヒドロ キシプロポキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン500m gをジオキサン3m1に溶解し、粉末状の水酸化ナトリウム100 mgとテトラーn-ブチルアンモニウム ハイドロジェンスルフェ イト2mgを加えて撹拌しているところへ、ジオキサン1m1に溶 解した塩化アセチル97mgを30分以上かけて滴下した。室温で3時間以上撹拌したのち、反応系を2N塩酸水溶液を用いて中和し、生じた塩を濾去し、濾液を減圧濃縮した。これを薄層クロマトグラフィー(展開溶媒:クロロホルム/メタノール)で精製し目的物である1-[4-(3-ジメチルアミノ-2-アセトキシプロポキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン90mgを淡黄色油状物として得た。

¹H−NMRスペクトラム, δ (CDC1₃):

- 10 0. 92 (3H, t, CH₂ CH₃)
 - 2. 00, 2. 05 (3H, s, OAc)
 - 2. 29, 2. 33 (6 H, s, N(CH_3)₂,)
 - 2. 39, 2. 40 (2H, q, CH₂ CH₃)
 - 2. 52-2. 75 (2H, m, OCH₂ CH (OAc) CH₂ N)
- 15 3. 93-4. 16 (2H, m, OCH₂ CH (OAc) CH₂ N)
 - 5. 22-5. 35 (1H, m, OCH₂ CH (OAc) CH₂ N)
 - 5. 89, 5. 90 (2H, s, OCH2O)

実施例 16

 (E・Z) -1 - [4 - (3 - ジメチルアミノー2 - アセトキシ

 20
 プロポキシ) フェニル] -1 - (4 - メトキシメトキシフェニル) -2 - (3, 4 - メチレンジオキシフェニル) -1 - ブテン (化合物 17) の合成

実施例1における1, 1-ビス(4-ヒドロキシフェニル)-2
-(3, 4-メチレンジオキシフェニル)-1-ブテン4gを22
m1の0.5N水酸化カリウム(エタノール溶液)に溶解し、真空下に溶媒を除去して1, 1-ビス(4-ヒドロキシフェニル)-2
-(3, 4-メチレンジオキシフェニル)-1-ブテンのフェノキサイドを、油状物として得た。これに、アルゴン雰囲気下で326mgの18-クラウン-6エーテル及び50mlのアセトニトリル

を加えて室温で30分撹拌した。-20℃で0.837m1のクロ ロメチルメチルエーテルを加え、室温までゆっくりと加温しながら 1時間30分撹拌した後、反応液を飽和炭酸水素ナトリウム水溶液 で中和し、エーテル抽出した。この有機層を水洗し、無水硫酸ナト リウム上で乾燥した後溶媒を真空下で除去し、1-(4-メトキシ メトキシフェニル) -1- (4-ヒドロキシフェニル) -2- (3 , 4 -メチレンジオキシフェニル) - 1 -ブテンを1.8 g、1,1-ビス(4-メトキシメトキシフェニル)-2-(3,4-メチ レンジオキシフェニル)-1-ブテンを1.6 g得、また原料を1 . 1g回収した。1.8gの1-(4-メトキシメトキシフェニル10) - 1 - (4 - ヒドロキシフェニル) - 2 - (3, 4 - メチレンジオキシフェニル) -1-ブテンを9.2mlの0.5N水酸化カリ ウム (エタノール溶液) に溶解し、真空下に溶媒を除去してフェノ キサイドを油状物として得た。これを25mlのDMF溶媒中、0 . 4 m l のエピブロモヒドリンと室温で 4 時間撹拌した。反応液を 50m1の水に添加し、1-[4-(2,3-エポキシプロポキシ) フェニル] -1- (4-メトキシメトキシフェニル) -2- (3 , 4-メチレンジオキシフェニル)-1-ブテンを得た。精製する ことなしにこれを25mlのエタノールに溶解し、ジメチルアミン (50%水溶液) 0.5mlを加えて室温で一晩撹拌した。反応後 20 、溶媒を真空下に除去し、シリカゲルカラム(展開溶媒:トルエン /エタノール、0.1%ジエチルアミン含有)で精製し、1-[4 - (3-ジメチルアミノ-2-ヒドロキシプロポキシ)フェニル] $-1 - (4 - \cancel{1} + \cancel{1}$ ンジオキシフェニル)-1-ブテン2.2gを無色透明の油状物と して得た。この1-[4-(3-ジメチルアミノ-2-ヒドロキシ プロポキシ)フェニル]-1-(4-メトキシメトキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン170mgを3mlのピリジンに溶解し、3mlの無水酢酸を加えて、室

温で4時間撹拌した。反応後、溶媒を真空下に除去し、シリカゲルカラム(展開溶媒:トルエン/エタノール、0.1%ジエチルアミン含有)で精製し、目的物である1-[4-(3-3)ジメチルアミノー2ーアセトキシプロポキシ)フェニル1-(4-3) フェニル)ー1-(4-3) トキシフェニル)ー1-(3) 8 m g を淡黄色油状物として得た。

 $^{1}H-NMR$ 2 2 1 1 2 3 4 5 6 6 6 6 7 1

- 0. 90 (3H, t, CH₂ CH₃)
- 1. 97, 2. 03 (3H, s, OAc)
- 10 2. 20, 2. 26 (6H, s, N (CH3)₂)
 - 2. 27 2.70

(4 H, m, CH₂ CH₃, OCH₂ CH (OAc) CH₂ N)

- 3. 36, 3. 45 (3H, s, OCH₂ OCH₃)
- 3. 83-4. 16 (2 H, m, OCH₂ CH (OAc) CH₂ N)
- 15 5. 00, 5. 11 (2H, s, $OC_{\underline{H}_2}$ OCH₃)
 - 5.20-5.43

(1H, m, OCH₂ CH (OAc) CH₂ N)

5. 80 (2H, s, OCH₂O)

実施例 17

 (E・Z) -1- [4-(1, 3-ビスジメチルアミノ-2-プロポキシ) フェニル] -1-(4-ヒドロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) -1-ブテン(化合物18)

 の合成

実施例1で得られた1, 1-ビス(4-ヒドロキシフェニル)25 2-(3, 4-メチレンジオキシフェニル)-1-ブテンの結晶0
.949gとり、1, 3-ビスジメチルアミノ-2-プロパノール
0.658g、ジシクロヘキシルカルボジイミド1.05g及びヨウ化銅40mgの混合物(60℃にて2時間撹拌したもの)に加え、60℃にて2時間撹拌した。この反応液にエーテル50m1を加

25

え、生じた固体を濾別した後、濾液を濃縮した。濃縮後の油状残留物を薄層クロマトグラフィー(展開溶媒:トルエン/メタノール)により精製し、目的物である(E・Z)-1-[4-(1,3-ビスジメチルアミノ-2-プロポキシ)フェニル]-1-(4-ヒド

5 ロキシフェニル) -2-(3, 4-メチレンジオキシフェニル) <math>-1-ブテン0.402gを得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 90-0. 93 (3H, t, $CH_2 CH_3$)
- 2.11-2.66
- 10 (18H, m, N (CH3)₂, (CH₃)₂ N, NCH₂ CH (OAr) CH₂ N, CH₂ CH₃)
 - 3. 95-4. 09 (1H, m, NCH2 CH (OAr) CH2 N
)
 - 5. 87 (2H, s, OCH₂ O)
- 6. 49-6. 81 (10H, m, 芳香族プロトン, <u>H</u>O-ph)
 7. 01-7. 10 (2H, m, 芳香族プロトン)
 実施例 18

実施例6で得られた1,1ービス(4ーヒドロキシフェニル)ー2ーフェニルー1ーブテン6.15gの白色結晶3.0gを14.3mlの1,2ージブロモエタンに溶解し、0.513gの粉末状の水酸化カリウムを加えて2日間加熱環流を行なった。反応は2割程度進行した後停止したので、この段階で以下の処理を行なった。すなわち、反応系を200m1塩化メチレンで希釈し、2N塩酸水溶液で洗浄した後に有機層を無水硫酸ナトリウム上で乾燥させた。無水硫酸ナトリウムを濾去した後に濾液を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール)

で分離精製して、淡黄色の粘性液体としてブロム体 0.680 gを得、また原料のジフェノール体 2 gを回収した。ブロム体はバイルシュタイン反応において陽性を示した。このブロム体 0.2 gをエタノール 0.5 m 1 に溶解し、シクロヘキシルアミン 0.5 m 1 を加え約 6 0 0 で一晩撹拌した。反応は 5 割程度進行した後停止したので、この段階で次の処理を行なった。すなわち反応系を減圧濃縮し、得られた残渣を分取薄層クロマトグラフィー(クロロホルム:メタノール 0.5 m 0.5 m

 $^{\dagger}H-NMR$ \mathcal{N} $\mathcal{$

- 0. 92 (3H, t, CH₂ CH₃)
- 1. 13-2. 05 (11H, m, シクロヘキサン環のメチレン水
- 15 素、NH)
 - 2. 38-2. 43 (2H, m, CH₂ CH₃)
 - 2. 44-2. 60 (1H, m, シクロヘキサン環のメチン水素)
 - 2. 99-3. 09 (2 H, m, OCH_2 CH_2 N)
 - 3. 90-4. 52 (3 H, m, OCH₂ CH₂ N, OH)
- 20 5. 88-5. 89 (2H, s, OCH₂ O)
 - 6. 44-7. 18 (11H, m, 芳香族プロトン) 実施例19

 $(E \cdot Z) - 1 - [4 - (2 - ジメチルアミノエトキシ) フェニル] - 1 - (4 - ヒドロキシフェニル) - 2 - (3, 4 - メチレン$

25 ジオキシフェニル)-1 - ブテン(化合物 2 0)の合成

実施例 180 プロム体 1.62 gをエタノール 24 m 1 に溶解し、50% ジメチルアミン水溶液 1.00 m 1 を加えて約 45%で 6時間撹拌し、再び 50% ジメチルアミン水溶液 1.00 m 1 を加えて約 45% で 6時間撹拌した。反応は 8 割程度進行したのち停止し

たので次の処理を行なった。すなわち反応系を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(エタノール/トルエン)で分離精製し、目的物である1-[4-(2-ジメチルアミノエトキシ)フェニル]-1-(4-ヒドロキシフェニル)-2-(3,

4 -メチレンジオキシフェニル)-1 -ブテン0. 8 1 8 m gを白 色結晶として得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 82 (3H, t, CH₂ CH₃)
- 2. 20-2. 45 (8 H, m, $C\underline{H}_2$ CH_3 , N ($C\underline{H}_3$) $_2$)
- 10 2. 78-2. 87 (2 H, m, OCH₂ C<u>H</u>₂ N)
 - 3. 85-4. 00 (2 H, m, OCH_2 C H_2 N)
 - 5. 77, 5. 80 (2H, s, $OC\underline{H}_2$ O)
 - 6. 22-7. 02 (11H, m, 芳香族プロトン)
 - 8. 0.0-8. 0.6 (1 H, m, OH)
- 15 実施例 20

2-[4-[1-(4-ヒドロキシイミノメチルフェニル)-2 -フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルエチルアミン(化合物 2 1)の合成

アルゴン気流下で、20m1無水テトラヒドロフラン中、4-ブロモフェニル-1,3-ジオキソラン 25gと金属マグネシウム2.6gにより調製したグリニャール試薬に10m1の無水テトラヒドロフラン中の1-[4'-(2-ジメチルアミノエトキシ)フェニル]-2-フェニルーn-ブタン-1-オンを添加し、ついでこの混合物を2時間還流させた。この反応液を冷却し、100m25 1の飽和塩化アンモニウム溶液に添加し、次いでエーテル抽出を行った。この有機層を水洗し、硫酸ナトリウム上で乾燥した後溶媒を真空下で除去した。油状残留物を100m1濃塩酸に懸濁し、2時間還流した。冷却後、水酸化ナトリウム水溶液でアルカリ性にしてクロロホルム抽出を行った。有機層を水洗し、硫酸ナトリウムで

乾燥した後、溶媒を真空下で除去した。得られた褐色の油状物質をシリカゲルカラムクロマトグラフィ(展開溶媒:クロロホルム/メタノール)により精製し、2-[4-[1-(4-ホルミルフェニル)-2-フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルエチルアミン13gの淡黄色油状物を得た。これより1gを20m1エタノールに溶解し、ヒドロキシルアミン塩酸塩300mgと炭酸カリウム600mgを加え5時間加熱還流させた。反応後、溶媒を留去してエーテルに溶解し、水洗を行ない硫酸ナトリウムで乾燥した後、溶媒を留去した。得られた油状物質をシリカゲルクロマトグラフィ(展開溶媒:クロロホルム/メタノール)により精製し、目的物である2-[4-[1-(4-ヒドロキシイミノメチルフェニル)-2-フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルエチルアミン0.5gの淡黄色油状物を得た。

 $^{1}H-NMR$ \mathcal{N} $\mathcal{$

- 15 2. 28-2. 57 (8H, m, N (CH₃)₂, CH₂ CH₃,)
 - 2. 71, 2. 82 (2H, t, OCH₂ CH₂ N)
 - 4. 01, 4. 17 (2H, t, OCH₂ CH₂ N)
 - 6. 50-7. 62 (13H, m, 芳香族プロトン)
 - 7. 93, 8. 12 (1H, s, CH = N)
- 20 実施例 21

2-[4-[1-(4-メトキシイミノメチルフェニル)-2-フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルアミン (化合物 22)の合成

実施例20における2-[4-[1-(4-ホルミルフェニル)
 25 -2-フェニルー1-ブテニル]フェノキシ]-N, N-ジメチルエチルアミンにO-メチルヒドロキシルアミンを実施例20と同様の方法で反応させ、同様の操作で淡黄色油状の目的物0.6gを得た。

 $^{\mathsf{H}-\mathsf{NMR}}$ NMR $\mathsf{$

- 0. 90 (3H, t, CH₂ CH₃)
- 2. 22-2. 77 (10H, m, N (CH₃)₂, CH₂ CH₃, CH₂ CH₂ N)
- 3. 84-4. 10 (5 H, m, $OC\underline{H}_2$ CH_2 N, $NOC\underline{H}_3$)
- 5 6.48-7.59 (13H, m, 芳香族プロトン)
 - 7. 88, 8. 06 (1H, s, CH = N)

実施例 2 2

 $\frac{2-[4-[1-(3-E)] + 2-[1]}{2-[1]} = \frac{2-[4-[1-(3-E)] + 2-[4]}{2-[4]} = \frac{2-[4-[4] + 2-[4]}{2-[4]} = \frac{2-[4-[4] + 2-[4]}{2-[4]} = \frac{2-[4-[4] + 2-[4]}{2-[4]} = \frac{2-[4-[4] + 2-[4]}{2-[4]} = \frac{2-[4]}{2-[4]} = \frac{2-$

10 ミン (化合物 2 3) の合成

4-ブロモフェニルー1, 3-ジオキソランの代わりに3-ブロモフェニルー1, 3-ジオキソランを用いる以外は実施例20と同様の方法で得られた2-[4-[1-(3-ホルミルフェニル)ー2-フェニルー1-ブテニル]フェノキシ]-N, N-ジメチルエ

15 チルアミンにヒドロキシルアミンを実施例20と同様の方法で反応 させ、同様の操作で淡黄色油状の目的物0.4gを得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 90 (3H, t, CH_2 CH_3)
- 2. 27-2. 50 (8 H, m, $C \underline{H}_2$ $C H_3$, N ($C \underline{H}_3$) 2)
- 20 2. 71, 2. 80 (2H, t, OCH₂ C<u>H</u>₂ N)
 - 3. 97, 4. 12 (2H, t, OCH₂)
 - 6. 50-7. 52 (13H, m, 芳香族プロトン)
 - 7. 84, 8. 12 (1H, s, CH = N)

実施例 2 3

25 実施例 2 2 における 1 - [2-[1-(3-メトキシイミノメチルフェニル) - 2-フェニル- 1-ブテニル] フェノキシ] - N, N-ジメチルアミン(化合物 24)

2-[4-[1-(3-ホルミルフェニル)-2-フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルエチルアミンに<math>O- メチルヒドロキシルアミンを実施例20と同様の方法で反応させ、 同様の操作で淡黄色油状の目的物0.6gを得た。

1H-NMRスペクトラム, δ (CDC13):

- 2. 17-2. 82 (10H, m, N (CH $_3$) $_2$, CH $_2$ CH $_3$,
- $5 \quad CH_2 CH_2 N)$
 - 3.85-4.13 (5 H, m, OCH₂ CH₂ N, NOCH₃)
 - 6. 52-8. 08 (14H, m, 芳香族プロトン, C<u>H</u>=N) 実施例24

1-[2-[1-(4-エトキシカルボニルメトキシイミノメチ

10 $n = \frac{n - 2 - 2 - 2 - n - 1 - 2 - n}{n - 2 + n}$ フェノキシ] - n,

実施例 2 0 で得られた 2-[4-[1-(4-ホルミルフェニル) -2-フェニル-1-ブテニル] フェノキシ] -N, N-ジメチルエチルアミンにエトキシカルボニルメトキシアミンを実施例 <math>2 0

15 と同様の方法で反応させ、同様の操作で淡黄色油状の目的物 0.7 gを得た。

 $^{1}H-NMR$ 2 2 1

- 0. 90 (3H, t, $= CCH_2 CH_3$)
- 1. 25, 1. 28 (3H, t, COOCH₂ CH₃)
- 20 2. 25-2. 55 (8 H, m, N ($C\underline{H}_3$) 2, $C\underline{H}_2$ CH_3 ,)
 - 2. 63, 2. 72 (2H, t, CH₂ CH₂ N)
 - 3. 91, 4. 08 (2H, t, OCH₂ CH₂ N)
 - 4. 21, 4. 25 (2H, q, COOCH₂)
 - 4. 63, 4. 70 (2H, s, NOCH₂ COO)
- 25 6.52-7.60(13H, m, 芳香族プロトン)
 - 8. 04, 8. 22 (1 H, s, $C\underline{H} = N$)

実施例 2 5

2-[4-[1-(3-x)++) 2-x] ルフェニル) -2-x ニルー1-x フェノキシ] -x - N,

N-ジメチルアミン(化合物 2 6)

実施例 2 2 における 2-[4-[1-(3-ホルミルフェニル) -2-フェニル-1-ブテニル] フェノキシ] -N, N-ジメチル エチルアミンにエトキシカルボニルメトキシアミンを実施例 2 0 2

5 同様の方法で反応させ、同様の操作で淡黄色油状の目的物 0.7 g を得た。

 $^{1}H-NMR$ スペクトラム、 δ (CDC1 $_{3}$):

- 0. 89, 0. 93 (3H, t, $= CCH_2CH_3$)
- 1. 25 (3H, t, COOCH₂ CH₃)
- 10 2. 24-2. 60 (8 H, m, N ($C\underline{H}_3$) 2, $C\underline{H}_2$ CH_3)
 - 2. 62, 2. 71 (2H, t, CH_2 $C\underline{H}_2$ N)
 - 3. 90, 4. 07 (2H, t, $OC\underline{H}_2$ CH₂ N)
 - 4. 21 (2H, q, COOCH₂)
 - 6. 50-7. 62 (13H, m, 芳香族プロトン)
- 15 7. 92, 8. 20 (1H, s, $C\underline{H} = N$)

実施例 26

2-[4-[1-(3-ベンジルオキシイミノメチルフェニル)-2-フェニル-1-ブテニル]フェノキシ]-N, N-ジメチルアミン (化合物 2 7)

 実施例22における2-[4-[1-(3-ホルミルフェニル) -2-フェニルー1-ブテニル]フェノキシ]-N, N-ジメチル エチルアミンにO-ベンジルアミンを実施例20と同様の方法で反 応させ、同様の操作で淡黄色油状の目的物0.7gを得た。

'H-NMRスペクトラム、 δ (CDC1 $_3$):

- 25 0.90, 0.94 (3H, t, CH₂ CH₃)
 - 2. 20-2. 60 (8 H, m, N (C \underline{H}_3) 2, C \underline{H}_2 CH $_3$)
 - 2. 63, 2. 71 (2H, t, $CH_2 C\underline{H}_2 N$)
 - 3. 90, 4. 05 (2H, t, OCH2 CH2 N)
 - 5. 13, 5. 19 (2H, s, NOCH₂ $-\phi$)

6. 50-7. 60 (13H, m, 芳香族プロトン) 7. 85, 8. 12 (1H, s, CH = N) 実施例 27

(E) −1− [4− (3−ジメチルアミノ−2−ヒドロキシプロ 5 - (3, 4-メチレンジオキシフェニル)-1-ブテン(化合物2 8) 及び (Z) -1- [4- (3-ジメチルアミノー2-ヒドロキ シプロポキシ)フェニル] -1-(4-メトキシメトキシフェニル)-2-(3,4-メチレンジオキシフェニル)-1-ブテン(化

10 合物29)の合成

15

20

25

実施例1で用いられた1-ビス(4-ヒドロキシフェニル)-2 (3.4-メチレンジオキシフェニル)-1-ブテンの結晶4. 00gを22m1の0.5N KOH(エタノール溶液)に溶解し 、真空下に溶媒を除去してK塩を得た。これをアルゴン雰囲気下、 50m1のアセトニトリル溶媒中、330mgの18ークラウンー 6 エーテルと室温で30分間撹拌した。0.84mlのクロロメ チルメチルエーテルを-20℃でゆっくりと加え、撹拌しながら1 時間かけて室温まで戻した。反応液を飽和重曹水で中和し、酢酸エ チルで抽出を行った。この有機層を水洗し、硫酸ナトリウムで乾燥 した後、溶媒を真空下に除去し、シリカゲルカラム(展開溶媒:酢 酸エチル/ヘキサン)で精製し、1-(4-ヒドロキシフェニル) ンジオキシフェニル)-1-ブテン7.8gの白色結晶(E・Z混 合物)をえた。これを 9. 3 m 1 の 0. 5 N K O H (エタノール) 溶液)に溶解し、真空下に溶媒を除去し、K塩をえた。これを25 mlのDMF溶媒中、0.4mlのエピブロモヒドリンと室温で3 時間撹拌した。反応液を50mlの水に注ぎ、エーテル抽出を行っ た。この有機層を水洗し、硫酸ナトリウムで乾燥した後、溶媒を真 空下に除去し、1-[4-(2, 3-x + 2)] つまった。 3-x + 2 つまった。 3-x + 2 つまった。

- ・化合物 2 8 の 1 H NMRスペクトラム, δ (CDC 13) :
- 15 0. 92 (3 H, t, CH₂ C<u>H</u>₃) 2. 12-2. 62 (5 H, m, OCH₂ CH (O<u>H</u>) C<u>H</u>₂ N, C<u>I</u>₂ CH₃)
 - 2. 32 (6 H, s, N ($C_{\underline{H}_3}$) 2)
 - 3. 40 (3H, s, OCH₂ OC \underline{H}_3)
- 20 3. 83-4. 18 (2 H, m, $OC\underline{H}_2$ CH (OH) CH₂ N)
 - 5. 06 (2H, s, OCH₂ OCH₃)
 - 5. 85 (2 H, s, OC_{H_2} O)
 - 6. 22-7. 02 (11H, m, 芳香族プロトン)
 - ・化合物 2 9 の 1 H NMRスペクトラム, δ (CDC 1 ₃) :
- 25 0. 92 (3H, t, CH₂ CH₃)
 - 2. 0.8-2. 5.3 (5H, m, OCH₂ CH (OH) CH₂ N, CH₂ CH₃)
 - 2. 27 (6 H, s, N ($C_{\underline{H}_3}$) 2)
 - 3. 47 (3 H, s, OCH₂ OC \underline{H}_3)

3. 88-4. 20 (2 H, m, $OC_{\frac{H}{2}}$ CH (OH) CH_2 N)

5. 13 (2H, s, $OC\underline{H}_2$ OCH_3)

5. 83 (2H, s, OC<u>H</u>2O)

6. 37-7. 23 (11H, m, 芳香族プロトン)

5 実施例29

その他、上記の実施例で示した合成法を用いて合成された代表化合物の構造と'H-NMRスペクトルデータを表1にまとめて示す。

10 表1-1の一般式

OCH₂CHCH₂N
$$R_6$$
OR₈
 R_7
 CR_2R_3

20 表1-2の一般式

OCH
$$\left(\begin{array}{c} \text{CH}_2\text{N} \\ \text{R}_7 \end{array}\right)$$

$$\begin{array}{c} \text{CR}_2\text{R}_3 \\ \text{R}_4 \\ \text{R}_5 \end{array}$$

OCH₂CH₂N R₇

CR₂R₃

10

5

15

20

25

表1-1 式(2)を有する化合物群

,					· · · · · · · · · · · · · · · · · · ·				
'H-NMRスペクトラム δ (CDC 13)	0.90(3H, t), 2.25-2.70(10H, m), 3.84, 3.96(2H, t), 4.04-4.11, 4.10-4.19(1H, m), 4.64(2H, bs), 5.88(2H, s), 6.47-7.15(11H, m)	0.91(3H, t), 1.09, 1.10(6H, 2t), 2.30-2.45(2H, m), 2.51-2.82(6H, m), 3.70-4.37(5H, m) 5.90(2H, s), 6.47-7.19(11H, m)	0.92(3H, t), 1.10, 1.12(3H, t), 2.30-2.48(5H, m), 2.48-2.73(4H, m), 3.81-3.93, 3.95-4.03(2H, m), 5.92(2H, s), 6.48-7.18(11H, m)	0.92(3H, t), 1.01-2.20(10H, m), 2.31-2.48(2H, m), 2.73-2.91(3H, d), 2.92-3.53(3H, m), 3.69-4.18(2H, m), 4.27-4.57(1H, m), 5.88(2H, s), 6.48-7.18(11H, m)	0.92(3H, t), 2.09-2.67(10H, m), 3.79(1H, bs), 3.70-4.27(3H, m), 5.80(2H, s), 6.46-7.33(12H, m)	0.90(3H, t), 2.10-2.83(10H, m), 3.27(1H, bs), 3.67-4.27(3H, m), 5.83(2H, s), 6.33-7.53(12H, m)	0.89(3H, t), 2.33, 2.38(3H, s), 2.03-2.70(4H, m), 3.67-4.33(3H, m), 5.40-5.67(2H, m), 6.27-7.27(13H, m)	0.91(3H, t), 1.45-2.17(10H, m), 2.41-2.50(2H, q), 2.93-3.11(1H, m), 3.11-3.37(2H, m), 3.75-3.90, 3.93-4.08(2H, m), 4.26-4.50(1H, m), 6.39(1H, bs), 6.45-7.17(13H, m), 7.60-7.82, 8.83-9.09(2H, m)	0.90(3H, t), 1.18-2.18(10H, m), 2.38(2H, q), 2.91-3.12(1H, m), 3.07-3.31(2H, m), 3.80-4.07(2H, m), 3.96-4.29(1H, m), 5.88, 5.89(2H, s), 6.47-7.07(11H, m), 7.93-8.19(1H, m)
\mathbb{R}_{8}	H	H	H	H	æ	=	H	Н	H
R_7	Me	Bt	Bt	沙nv 4沙	Me	Me	Me	沙叭 卡沙	がか キ洲
R	Ме	Bt	Me	Me	Me	Me	Me	==	н
R,	Н	Н	Н	H	Н	Н	Н	=	Н
R4	HO	НО	HO	OH	Н	H	HO	НО	НО
R³	MGP	MGP	MGP	MGP	MGP	MGP	Ph	Ph	MGP
R_2	Et	田	Et.	Et	Bt.	Bt.	Bt	Bt	Bt
化合物No.	1	2	က	4	ಬ	9	_	∞	6

表1-1 (つづき) 式(2)を有する化合物群

						Υ	· · · · · · · · · · · · · · · · · · ·			
'H-NMRスペクトラム & (CDC13)	0.90(3H, t), 2.07-2.70(5H, m), 2.70-3.10(2H, m), 3.67-4.40(3H, m), 5.78(2H, s) 6.47-7.07(11H, m)	0.90-1.13(6H, 2t), 2.10-3.10(6H, m), 3.63-4.53(6H, m), 5.78(2H, s), 6.26-7.23(11H, m)	0.92(3H, t), 0.83-2.13(10H, m), 2.47(2H, q), 2.73-3.23(3H, m), 3.70-3.93(2H, m), 4.01-4.57(1H, m), 5.18(2H, bs), 6.38-7.42(14H, m)	0.90(3H, t), 1.33(3H, t), 2.45(2H, q), 2.73-3.37(4H, m), 3.67-3.96(2H, m), 4.23-4.77(1H, m), 5.82(2H, bs), 6.30-7.33(14H, m)	0.91(3H, t), 1.25, 1.37(6H, m), 2.43(2H, q), 2.83-3.42(3H, m), 3.61-4.00(2H, m), 4.08-4.67(1H, m), 5.81(2H, bs), 6.26-7.31(14H, m)	0.92(3H, t), 2.04, 2.09, 2.16, 2.21, (6H, 2s), 2.25, 2.30(6H, s), 2.44(2H, q), 2.53, 2.61(2H, t), 3.95-4.18(2H, m), 5.20-5.32(1H, m), 5.88(2H, s), 6.52-7.26(11H, m)	0.92(3H, t), 2.00, 2.05(3H, s), 2.29, 2.33(6H, s), 2.39, 2.40(2H, q), 2.52-2.75(2H, m) 3.93-4.16(2H, m), 5.22-5.35(1H, m), 5.89, 5.90(2H, s), 6.47-7.26(11H, m)	0.92(3H, t), 1.97, 2.03(3H, s), 2.20, 2.26(6H, s), 2.27-2.70(4H, m), 3.36, 3.45(3H, s) 3.83-4.16(2H, m), 5.00-5.11(2H, s), 5.20-5.43(1H, m), 5.80(2H, s), 6.47-7.26(11H, m)	0.92(3H, t), 2.12-2.62(5H, m), 2.32(6H, s), 3.40(3H, s), 3.83-4.18(2H, m), 5.06(2H, s), 5.85(2H, s), 6.22-7.02(11H, m)	0.92(3H, t), 2.08-2.53(5H, m), 2.27(6H, s), 3.47(3H, s), 3.88-4.20(2H, m), 5.13(2H, s), 5.83(2H, s), 6.37-7.23(11H, m)
R ₈	Н	Н	Н	=	H	Ac	Ac	Ac	H	Н
R,	Ме	Bt	シウロペキシル	Bt	<i>ላንプ</i> ઘ ይ ቤ	Ме	Ме	Me	Me	Me
Re	H	Н	Н	Н	E	Me	Me	Me	Ме	Me
Rs	F	н	Н	Н	Н	Ħ	H	H	Ħ	=
R4	Ж	Ħ	Ħ	H	I	0Ac	HO	ОМОМ	OMOM	MOMO
R ₃	MGP	MGP	Ph	Ph	-Ph	MGP	MGP	MGP	MGP	MGP
R2	Bt	Bt	Bt	Bt	Et	Et	Bt.	Bt	н †	Bt
化合物No.	1 0	11	1 2	1 3	1 4	1 5	16	1.7	2 8	2 9

表1-1 (つづき) 式(2)を有する化合物群

"H-NMRX%\$ F= \$ (CDC13)	0.90(3H, t), 2.00-2.70(4H, m), 2.25(6H, s), 3.06-3.33(1H, bs), 3.67-4.17(3H, m) 6.67-7.33(14H, m)	0.90(3H, t), 1.60-2.00(4H, m), 2.40(2H, q), 2.50-2.87(6H, m), 3.50(1H, bs), 3.67-4.27(3H, m), 5.87(2H, s), 6.15-7.27(12H, m)	0.90(3H, t), 2.30, 2.33(6H, s), 2.30-2.93(5H, m), 3.40, 3,47(3H, s), 3.73-4.17(3H, m) 5.05, 5.13(2H, s), 5.83(2H, s), 6.50-7.33(11H, m)	0.90(3H, t), 1.00(3H, t), 2.23(2H, s), 2.00-2.83(7H, m), 3.67-4.07(3H, m), 5.80(2H, s), 6.33-7.33(12H, m)	0.92(3H, t), 2.17-2.67(10H, m), 3.17(1H, bs), 3.67-4.27(3H, m), 5.82(2H, s), 6.40-7.33(12H, m)	0.67-2.90(15H, m), 0.90(3H, t), 2.37(2H, q), 3.67-3.97(3H, m), 5.83(2H, s), 6.33-7.30(12H, m)	0.93(3H, t), 1.01-1.31, 1.60-1.76, 2.15-2.53, 2.90-2.95(10H, m), 1.90-1.93(2H, m), 2.15-2.51(4H, m), 2.73-2.78(1H, m), 3.95-4.05(3H, m), 6.85-7.34(14H, m)	0.90(3H, t), 1.27-2.00(9H, m), 2.17-2.83(5H, m), 2.83-3.27(1H, bs), 3.57-4.10(3H, m) 6.33-7.33(14H, m)	0.90(3H, t), 1.33-2.76(12H, m), 2.76-3.07(1H, bs), 3.55-4.05(3H, m), 6.25-7.30(14H, m)	0.66-1.13(6H, m), 1.33-1.93(2H, m), 2.17-3.17(6H, m), 3.56-4.00(2H, m), 4.00-4.53(1H, m), 5.17-5.60(2H, m), 6.33-7.40(14H, m)
R	Н	=	=	=	Ħ	=	Ħ	H	=	=
К,	Me	ÿ∕10₹ У£16	Me	Bt	Me	シクロハ キシル	<u>ジ</u> のハ キジル	沙叭	沙叮机	n-7a 53
R ₆	Me	ÿ∕Ω√ У₹1€	Me	Me	Me	Н	Н	Ħ	=	=
Rs	Н	Н	Н	Н	Н	Н	æ	=	Ħ	=
R	=	НО	OMOM	н	Н	E	E	=	H	=
R³	Ph.	MGP	MGP	MGP	MGP	MGP	H.	Ph	Ph	Ph
R2	Bt	Et	Et .	E E	Et	Et	Bt t	Et	Bt	<u>т</u>
化合物No.	3 0	3.1	3 2	က	3 4	8 8	3 9	4 0	4.1	4.2

表1-1 (つづき) 式(2)を有する化台物群

					,	,			1	1
'H-NMRスペクトラム δ (CDC13)	0.99(3H, t), 2.12-2.88(9H, m), 3.67-4.17(2H, m), 4.10-4.60(1H, m), 6.35-7.35(14H, m)	0. 92(3H, t), 1. 00-1. 95(10H, m), 2. 32, 2. 39(3H, s), 2. 42-2. 74(5H, m), 3. 93-4. 16(2H, m), 4. 25-4. 72(2H, bs), 6. 42-7. 25(13H, m)	0.90(3H, t), 1.20-1.80(6H, m), 2.00-2.80(8H, m), 3.13-3.3081H, s), 3.65-4.10(3H, m) 6.30-7.30(14H, m)	0.90(3H, t), 1.00-2.00(11H, m), 2.10-2.70(4H, m), 2.20-2.30(3H, s), 3.00-3.25(1H, bs) 3.60-4.10(3H, m), 6.30-7.40(14H, m)	0.90(3H, t), 2.00(3H, s), 2.20(6H, s), 2.30-2.70(4H, m), 3.90(2H, d), 5.00-5.40(1H, m) 6.30-7.40(14H, m)	0.95(3H, t), 2.20-2.80(8H, m), 2.80-3.15(4H, m), 3.70-4.10(5H, m), 6.40-7.40(14H, m)	0.90(3H, t), 2.15-3.00(12H, m), 3.10-3.30(1H, bs), 3.65-4.20(3H, m), 6.30-7.30(14H, m)	0.90(3H, t), 2.20-2.70(8H, m), 3.00-3.25(1H, bs), 3.10-4.15(7H, m), 6.40-7.40(14H, m)	0.90(3H, t), 1.1(3H, t), 2.00-2.70(3H, m), 3.10-3.60(4H, m), 3.6-4.2(3H, m) 6.35-7.40(19H, m)	0.90(6H, t), 1.10-3.10(13H, m), 3.50(1H, s), 3.70-4.10(3H, m), 6.40-7.40(14H, m)
\mathbb{R}_8	H	Ħ	H	=	=	=		=	=	=
\mathbb{R}_{7}	Me	沙の十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	(欄外	37DA 43/L	Me	(欄外	(欄外	(欄外	4E	注5 (欄外 参照)
R	H	Me	并 参照()	Me	Me	注 5 参照	所 参 (無)	并4 参照)	報	许5参照
Rs	Н	H	ш	ш	#	H	E	Ħ	=	Н
R,	=	HO	Ħ	Н	H	H	н	#	H	H
R ₃	Ph	Ph	Ph	Ph	Ч	Ph	Ph	Ph	H.	Ph
\mathbb{R}_2	Et T	Bt	Bt	Et	Et	Bt	Bt	Bt	Bt	Bt
化合物No.	43	4 6	4.7	4 8	4 9	5 0	5 1	2 5	53	5 4

表1-1 (つづき) 式(2)を有する化合物群

					. e)
'H-NMRスペクトラム δ (CDC13)	0.90(3H, t), 1.60-1.90(4H, m), 2.10-2.90(8H, m), 3.70-4.10(4H, m), 6.40-7.40(14H, m)	0.70-1.30(15H, m), 2.20-4.00(10H, m), 6.40-7.35(14H. m)	0.60-1.10(9H, m), 1.10-1.8(4H, m), 2.10-2.70(8H, m), 3.55(1H, s), 3.60-4.10(3H, m) 6.30-7.30(14H, m)	0.70-1.40(9H, m), 2.20-2.85(8H, m), 3.60(1H, s), 3.70-4.20(3H, m), 6.40-7.30(14H, m)	0.90(3H, t), 1.00(6H, t), 2.20-2.80(8H, m), 3.70-4.10(4H, m), 6.40-7.40(14H, m)	0.90(3H, t), 1.10(3H, t), 1.90-2.70(12H, m), 4.00(2H, d), 4.90-5.40(1H, m), 5.80(2H, s), 6.30-7.30(12H, m)
R	=	=	≖	Ħ	==	Ac
R,	注6 (欄外 参照)	17.70 即	n-10 EU	Et	Et	Bt
Re	注 6 参照)	1770 EN	n-10 EN	Bt	Bt	Ме
R5	æ	Н	H	н	Ħ	H
R4	Н	НО	Н	Н	Н	Н
R³	Ph	Ph	Ьĥ	Ph	Ph	MGP
R2	Bt	Bt	Bt .	EE T	Bt	Βt
化合物No. R2	5 5	5 6	5.7	22 8	5 9	6 1

$$MGP: \begin{array}{c} \begin{pmatrix} - \\ - \\ - \end{pmatrix} & OMOM: -OCH_2 \ OCH_3 \ Ac: - CH_3 \ Et: -CH_2 \ CH_3 \ Me: -CH_3 \end{array}$$

ĵ

~ 3
I
-
表

式(3)を有する化合物群

	,			
δ (CDC1 ₃)	0.90-0.93(3H, t), 2.11-2.66(18H, m), 3.95-4.09(1H, m), 5.87(2H, s), 6.49-7.10(12H, m)	(3H, t), 2. 10-2. 78(18H, m) 9 72-4.05(1H, m), 6.73-7.42(14H, m)	Et 0. 67-1. 27(15H, m), 2. 17-2. 78(14H, m), 3. 83-4. 13(1H, m), 6. 48-7. 27(14H, m)	0.72-1.60(15H, m), 2.30-3.00(14H, m), 3.93-4.28(1H, m), 5.43(1H, bs), 5.85(2H, s), 6.37-7.27(11H, m)
'II−NMRスペクトラム	0.90-0.93(3H, t), 2.11-2.66(18H, m),	0.92(3H, t), 2.10-2.78(18H, m) 9.72	0.67-1.27(15H, m), 2.17-2.78(14H, m)	0. 72-1. 60(15H, m), 2. 30-3. 00(14H, m) 6. 37-7. 27(11H, m)
R,	Me	Me	Bt	Bt
R	Me	Me	19	Bt
R ₆ R ₆ R ₇	H	Н	Н	Н
R4	HO	Н	Н	HO
R,	MGP	Ph	Ph	MGP
R2	Bt	Bt	Bt	. 19
1L合物No. R2	1.8	3 5	3 6	3.7

表1-3 式(4)を有する化合物群

94	, -	. <u>,</u>		·
'H-NMRスペクトラム δ (CDC13)	0. 92(3H, t), 1. 13-2. 05(11H, m), 2. 38-2. 43(2H, m), 2. 44-2. 60(1H, m), 2. 99-3. 09(2H, m), 3. 90-4. 52(3H, m), 5. 88-5. 89(2H, s), 6. 44-7. 18(11H, m)	0.82(3H, t), 2.20-2.45(8H, m), 2.78-2.87(2H, m), 3.85-4.00(2H, m), 5.77,5.80(2H, s), 6.22-7.02(11H, m), 8.00-8.06(1H, m)	0.92(3H, t), 2.28-2.57(8H, m), 2.71, 2,82(2H, t), 4.01,4.17(2H, t), 6.50-7.62(13H, m), 7.93,8.12(1H, s)	0.90(3H, t), 2.22-2.77(10H, m), 3.84-4.10(5H, m), 6.48-7.59(13H, m), 7.88, 8.06(1H, s)
\mathbb{R}_7	グで	Me	We	₩
Re	Ħ	Me	Me	Æ
Rs	Ħ	H	=	H
R,	Ю	HO	准7	注8
R³	MGP	MGP	Ph	Ph
\mathbb{R}_2	Et	Bt	Bt	Bt
化合物No.	1 9	2 0	2 1	2.2

表1-3 (つづき) 式(4)を有する化合物群

					.	a —			
"H−NMRスペクトラム δ (CDC1₃)	0.90(3H, t), 2.27-2.50(8H, m), 2.71, 2,80(2H, t), 3.97,4.12(2H, t), 6.50-7.52(13H, m), 7.84, 8.12(1H, s)	0.91, 0.94(3H, t), 2.17-2.82(10H, m), 3.85-4.13(5H, m), 6.52-8.08(14H, m)	0.90(3H, t), 1.25.1.28(3H, t), 2.25-2.55(8H, m), 2.63.2.72(2H, t), 3.91, 4.08(2H, t), 4.21, 4.25(2H, q), 4.63, 4.70(2H, s), 6.52-7.60(13H, m), 8.04, 8.22(1H, s)	0.89, 0.93(3H, t), 1.25(3H, t), 2.24-2.60(8H, m), 2.62, 2.72(2H, t), 3.90, 4.07(2H, t), 4.21(2H, q), 4.60, 4.68(2H, s), 6.50-7.62(13H, m), 7.92, 8.20(1H, s)	0.90, 0.94(3H, t), 2.20-2.60(8H, m), 2.63, 2.71(2H, t), 3.90, 4.05(2H, t), 5.13, 5.19(2H, s), 6.50-7.62(13H, m), 7.85, 8.12(1H, s)	2.03, 2.06(3H, s), 2.27, 2.33(6H, s), 2.67, 2.75(2H, t), 3.13, 4.03(2H, t), 5.80, 5.82(2H, m) 6.40-7.30(12H, m)	0.90(3H, t), 2.27(6H, s), 2.30(2H, q), 2.60(2H, t), 3.90(2H, t), 5.82(2H, s), 6.37-7.27(12H, m) 7.84, 8.12(1H, s)	1.20(3H, t), 2.30(6H, s), 2.40-2.80(2H, t), 5.80(2H, s), 6.40-7.30(12H, m)	0.86(3H, t), 2.30-2.42(2H, m), 2.50(6H, s), 2.50-2.80(2H, m), 4.05-4.15, 4.17-4.27(2H, m) 5.94, 5.95(2H, s), 6.51-710(11H, m)
R,	Me	Me	Me	Me	Me	Me	Me	Me	Me
R	Me	Me	Me	Me	Me	Me	Me	Me	Me
Rs	注7	注8	Н	注9	注10	Н	I	H	н
R,	Н	Н	注9	Н	Н	Н	H	Н	注11
R ₃	Ph	Ph	Ph	Ph	Ph	MGP	MGP	MGP	MGP
R_2	Bt	Bt	표 +	Æŧ	Et	Me	Et	Bt	Et
(L合物No.	2 3	24	2 2	2 6	2.7	4 4	4 5	0 9	2 9

注7:-CH=NOH, 注8:-CH=NOMe、注9:-CH=NOCH2 COEt、注10:-CH=NOBu、注11:-OP (OH) 2

ŧ

実施例30

(抗エストロジェン作用)

本発明のトリフェニルエチレン誘導体の抗エストロジェン活性を 該化合物がラットの子宮重量に及ぼす影響で評価した。 3 週齢の雌 の S D ラットに、所定量の本発明のトリフェニルエチレン誘導体及 び 0.0 1 m g / m 1 のエストラジオールのオリーブオイル溶液を 各々 100 μ 1 皮下に 3 日間連続注射した。 4 日目に子宮を取り出し乾燥重量を測定した。エストラジオールのみを含むオリーブオイルを投与した時の子宮重量を E とし、オリーブオイルのみを投与した時の子宮重量を V とし、エストラジオールと本発明のトリフェニルエチレン誘導体両者を含むオリーブオイルを投与したときの子宮重量を W とした時の抗エストロジェン作用(子宮重量増加抑制作用)を以下の式で求めた。

各誘導体の抗エストロジェン作用の値を表 2 にまとめた。タモキシフェンを用いた時の値を比較例として示す(TAM)。

(エストロジェン作用)

20 本発明のトリフェニルエチレン誘導体のエストロジェン活性を該化合物がラットの子宮重量に及ぼす影響で評価した。3週齢の雌のSDラットに、所定量の本発明のトリフェニルエチレン誘導体及び0.01mg/元のエストラジオールのオリーブオイル溶液を各々100μ1皮下に3日間連続注射した。4日目に子宮を取り出し乾燥重量を測定した。エストラジオールのみを含むオリーブオイルを投与した時の子宮重量をEとし、オリーブオイルのみを投与した時の子宮重量をVとし、本発明のトリフェニルエチレン誘導体を含むオリーブオイルを投与したときの子宮重量をWとした時のエストロジェン作用(子宮重量増加作用)を以下の式で求めた。

$$E-W$$
 エストロジェン作用 (%) = (1 - $\frac{E-V}{}$) × 100

各誘導体のエストロジェン作用の値を表 2 にまとめた。タモキシ フェンを用いた時の値を比較例として示す (TAM)。

(ヒト乳ガン細胞MCF-7増殖抑制作用)

本発明化合物の乳癌に対する効果をヒト乳癌細胞MCF-7を用いて測定した。ファルコン社製96穴プレートに各濃度の本発明化合物を加え、1ウエル当り10³個(エストロジェン(E)100 n Mの場合のみ10⁴個)の細胞を植えた。RPMI1640培地に牛胎児血清を5%添加し、さらに所定の濃度に成るようにエストロジェンを加えた培地で、37℃、5%CO₂存在下6日間(エストロジェンを加えた培地で、37℃、5%CO₂存在下6日間(エストロジェン100n Mの場合は3日間)培養した。生細胞をグルタルアルデヒドで固定し、メチレンブルーで染色した後、665nmの吸光度を測定する。ベンゾキシム誘導体を加えないウエルの吸光度を1とした時の0.5を与える濃度をIC₅₀と定義し、各誘導体の値を表2にまとめた。

20

MCF-7(Łト乳儿ン細胞)増殖抑制作用(X10- ^a M) 日 0.1nM 1nM 1nM 100nM (←-E 添加量)		0.064.7	0. 1 4. 7	0, 2 1 5, 6		1. 8	0. 2.1 4. 3	0.62	0.464.5	5. 6	0.05 5.6	1. 2
ン作用(%) 10 μ g/ラット/	2 1. 6 1 9. 4			1 7. 8 6. 8		4 4 9 4 3. 1	34.74.3.1	2 0. 3 1 9. 4	1 9. 4 1 9. 4	-2.9		2 4. 7 6. 8
エストロジェン作用(%) 1 μg/ラット/目 10μg/ラット/目	1 9. 4 3. 9			-5. 4 6. 8		1 5. 0 1 5. 4	1 9. 2 1 5. 6	9. 3. 9	3. 9.	33.9	-	-11.6 6.8
- ン作用 (%) 10 μ g/ラット/日	6 4 . 2 2 0 . 0	5 3. 5 2 0. 0	6 4. 4 2 0. 0	7 5. 8	1 7: 1	55.4 45.5	5 8 . 8 2 8 . 8	3.7. 1 4.7. 3	2 9. 0 4 7. 3	$\begin{array}{cccc} -9. & 2 \\ 4.1. & 7 \end{array}$	5 7. 9 5 1. 9	27.0 56.7
抗エストロジェ 1 μ8/ラット/目	56.6 5.8	4 2. 2 5. 8	55.0 5.0 5.0	3 7. 9 2 4. 6	9. 4 7. 7	2 4. 8 1 8. 8	3 7. 3 1 5. 6	$\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 6 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4 0. 4	$-\frac{1}{4}\frac{1}{6}$. 8
化合物 No.	1 (下段はTAM)	2	3	4	5	9	7	8	6	1 0	1	1 2

表2

化合物 No.	抗エストロジュ 1 μg/ラァト/日	ェン作用(%) 10μg/ラット/日	エストロジェン作用 (%) 1 μg/ラット/日 10μg/ラット/日	/作用(%) 10μ8/ラット/日	MCF-7(Łト型Lが細胞)増殖抑制作用(X10-®M) 0.1nM 1nM (← E 添加量)
13 (下段はTAM)	13.6 5.8	4 2. 3 2 0. 0	-5.6 13.1	3 3. 2 6. 3	7. 5
1.4	36.5 5.8	6 5. 4 2 0. 0			0. 4 1 1. 8 5
15	38. 2 22. 3	4 2. 1			0. 3 1 4. 7
16	2 8. 9 5. 8	5 5. 6 2 0. 0	35.3 15.6	3 8. 9 4 3. 1	0. 16
17	2 4. 4 1 5. 6	5 3 3 8 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9			
1 8	65. 1 15. 6	7 1. 4 2 8. 8			0. 43 5. 6
1 9	2 4. 9 1 5. 0	5 3. 8 5 0. 3			0.16
2 0	3 0. 1 1 6. 1	5 5. 4 5 0. 3	3 2 . 9 1 5 . 6	3 9. 5 4 3. 1	0. 1.9 4. 8
2 1		19.7	7. 6	1 6. 7 2 5. 8	4. 6 9. 1
2 2		16.7	6.9	3 4. 7	7. 1
2 3		11.8	1. 5	3 6. 8	9. 8
2 8			3 6. 0 1 3. 0	3 2. 5 3 7. 5	

表2 (つづき)

1 0 0

化合物 No.	抗エストロジェ 1 μg/ラット/日	ン作用(%) 10 μg/ラット/目	エストロジェン作用(%) 1 μg/ラット/日 10μg/ラット/日	MCF-7(Łト乳ガン細胞)増殖抑制作用(X10-ªM) 0.1nM inM inM (← E 添加量)
30 (下段はTAM)	$\frac{-6}{1} \cdot \frac{7}{3}$	7 0. 5 6 4. 8		3. 3 5. 1
3 1	2 3. 2 1 3. 6	3 8 . 3 3 . 3		1. 6 5. 6
3.2	2 7. 9 - 8. 4	6 8 . 8 5 7 . 8		3.8 10.2
က	2 0 . 0 1 8. 7	5 2. 3 4 7. 7		0. 6 1. 9
3.4	$-\frac{2}{1}\frac{3}{2}$. 5	4 3. 8 4 9. 4	3. 1 35. 0 13. 1 26. 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1. 6	8. 8 2.7. 3 2.6. 8	1. 9 4. 7
3 6	-14.2	-3.0	8.2 21.6	1. 6
3.7	. 17. 5 -16. 7	6 0 . 0 4 1. 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 0 6 3. 4
3 8	$\begin{bmatrix} -1 & 0 & 1 \\ 6 & 3 \end{bmatrix}$	$\begin{array}{ccc} 1 & 2 & 7 \\ 2 & 0 & 9 \end{array}$	-14.4 4 11.6	0. 2 1 1. 9
3 9			-12.3 1.4	5. 6 6. 4
4 0	1 0. 6 4. 3	35.4 45.3		2. 7
4 1	4. 3	17.4 45.3		3. 4

以(つ) 22

1 0 1

	<u></u>		1	1			1	T	-			1
MCF-7(ヒト乳イン約用胞)増殖抑制作用(X10-6M) 0. InM 100M (←E 添加量)	3. 7	3. 0	8.99.4	4.88	0. 1 5 4. 7 5	3. 6	1 0. 0	1 0. 0	8 . 9	6.9	11.0	7.1
エストロジェン作用(%) 1 μg/ラット/日 10μg/ラット/日		14. 1 14. 1 26. 2		2 9. 5 37. 8			-7.5 31.5	-0. 7 36.6 26.1			0. 7 28. 4 26. 1	15. 6 11. 3 13. 1 26. 3
ン作用(%)10μg/ラット/日		4 9. 2	4 6. 4 5 0. 5	6 8 . 6 6 4 . 8	7 5. 8 4 6. 9	1 9. 4 3 2. 9	27.3 45.3	2 1. 6	1 4. 7 5 3. 8		35.8	-17.5 49.4
抗エストロジェ 1 μg/ラット/日	ŧ	4.2	3 3. 7	2 5. 7 1 3. 3	3 0. 8 2 4. 6	$\begin{array}{cccc} -0. & 6 \\ -4. & 5 \end{array}$	-12. 4 4. 3	-36.5	1 4. 0 3 4. 3		3. 7	-15.6
化合物 No.	42 (下段はTAM)	4 3	4 4	4 5	46	4.7	4 8	4 9	5 0	5 1	5 2	5 3

2 (つづま

	<u>. </u>						1		
MCF-7(Eト乳LがAURD)均殖抑制作用(X10-aM) 0.1nM 1nM 1nM 100nM (←E添加量)	3. 3 8. 9	3. 8 8. 9	3. 1 9. 4	0. 9 6 1. 9	3. 0	3. 8 8. 9		1. 2 1. 9	
エストロジェン作用 (%) 1 μg/ラット/目 10μg/ラット/目		24.9 33.7				2 1. 8 3 6. 3 3 2. 1	18.9 34.6 30.4		14. 7 35. 3 13. 1 26. 0
抗エストロジェン作用(%) 1 μg/ラット/日 10μg/ラット/日	13.3 20.4 7.7 17.1	17.7 47.5 7.17.1	2 1. 7 4 2. 2	-2. 4 1 9. 8 -4. 2 2 9. 9		29.0 29.5	16.6 22.6	1 8: 7 4 5 1: 0	
化合物 No.	(下段はTAM)	5 5	5 6	5.7	5 8	5 9	0 9	6.1	6 2

表2 (つづき)

1 0 3

実施例 31

本発明のトリフェニルアルケン誘導体の乳ガンに対する効果をヒト乳ガン培養細胞 Z R - 75-1を用いて測定した。ファルコン社製96穴プレートに各濃度のトリフェニルアルケン誘導体を加え、1ウエル当り2×10°個の細胞を植えた。R P M I 1640培地に牛胎児血清を10%添加し、さらに10-0モルになるようにエストロジェンを加えた培地で、37℃、5%CO2存在下5日間培養した。生細胞をグルタルアルデヒドで固定し、メチレンブルーで染色した後0.33N塩酸で抽出し、665nmの吸光度を測定した。トリフェニルアルケン誘導体を加えないウエルの吸光度を1とした時の0.5を与える濃度をIC50と定義し、各誘導体の値を表3にまとめた。タモキシフェンを用いた時の値を比較例として示す

表 3

15

I C ₅₀ (×10 ⁻⁶ M)
4. 0
1. 4
0. 9 5
0.87
1.6 -
1. 4

20

実施例 32

本発明化合物の骨密度減少抑制効果を骨粗鬆症病態モデルラット を用いて評価した。7ヶ月齢のフィッシャーラット32匹のうち、24匹の卵巣を摘出し、8匹づつ3群に分け、それぞれ病態群(P群)、タモキシフェン投与群(T群),化合物1投与群(S群)とし、残りの8匹については偽手術を施行しコントロール群(C群)とした。術後1週間目よりC群、P群には0.2m1/ラットのオリーブ油を、T群、S群にはそれぞれ400マイクロg/Kgのタ

モキシフェン及び化合物 1 を 0 . 2 m 1 のオリーブ油に溶かし、1 日 1 回、4 τ 月間経口投与した。投与終了後、ラットの左大腿骨を取り出し、体積(V)、乾燥後の重量(W)を測定し、骨密度(D)を式、D=W/Vにより算出した。表 4 に示す通り化合物 1 は、卵巣摘出によって生じる骨密度の減少を有意に抑制し、その程度はタモキシフェンより強かった。

表 4

10

25

5

	C群	P群	T群	S群
骨密度	1. 0599	0.9830	1.0214	1.0312

調剤例

産業上の利用可能性

本発明は、腫瘍抑制剤、特にヒト乳ガン増殖抑制剤あるいは骨粗 鬆症治療剤等の医薬組成物を経口製剤として提供することが可能で ある。

1 0 5

請 求 の 範 囲

1. 下記一般式(1)で表わされるトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩。

5 一般式(1)

$$CR_2R_3$$
 R_4
 R_5

[式中、R. は、次式 (2)、 (3)、または (4) より選ばれ

$$-CH_{2}CHCH_{2}N \xrightarrow{R_{6}} (2)$$

$$0R_{8}$$

20

15

10

$$-CH\left(CH_{2}N \begin{array}{c} R_{6} \\ R_{7} \end{array}\right) \qquad (3)$$

25

$$-CH2CH2N
R7$$
(4)

20

R。、R、は同じでも異なっていてもよく、水素原子、低級アルキル基、低級シクロアルキル基を表わすか、または隣接する窒素原子と一緒にヘテロ原子を含んでもよい複素環式基を形成するものを表わすか、R。とR、が同時に水素原子になることはない。R。は水素原子、低級アルキルカルボニル基を表わす。

 R_2 は低級アルキル基、低級シクロアルキル基を表わし、 R_3 はフェニル基または 3 、4 -メチレンジオキシフェニル基を表わす。但し、 R_3 がフェニル基の場合、 R_1 が式 (4) の場合を除く。

10 R, は水素原子、水酸基、R。C(O) O-基、 R₁₀OCH₂O-基、-OPO(OH)₂またはCH=NOR₁₁ 基を表わす。R。は低級アルキル基を表わし、R₁₀は低級アルキル基または低級アルキルカルボニル基を表わす。R。は水素原子、CH=NOR₁₁を表わし、R₁₁は水素原子、低級アルキル基、フェニル基またはアルコキシカルボニル基で置換された低級アルキル基を表す。]

- 請求の範囲第1項において、R₄が水素原子、水酸基、R₈C(O)O-基、R₁₀OCH₂O-基または
 OPO(OH)₂を表し、R⁵が水素原子を表すトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩。
- 3. 前記一般式(1)で表わされるトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩を製薬学的に認容される 希釈剤または担持物質と一緒に含有することを特徴とする腫瘍抑制作用を有する医薬組成物。
- 4. 前記一般式(1)で表わされるトリフェニルアルケン誘導体またはその製薬学的に認容される酸付加塩を製薬学的に認容される 希釈剤または担持物質と一緒に含有することを特徴とする骨粗鬆症治療薬としての活性を有する医薬組成物。

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP92/00570

1 1					International Application No PCT/JP92/005/0
					assification symbols apply, indicate all) 6
According to I					National Classification and IPC
TIIL.	CTo				7/28, C07C217/42, C07C219/06, 5/08, C07D317/50, C07F9/12,
		C07C2:)1/32,	C07D293)/06, C0/D31//30, C0/F9/12,
II. FIELDS SI	EARCH	IED			
		 		Minimum Docu	mentation Searched 7
Classification Sy	ystem				Classification Symbols
		C07C2:	L7/14,	C07C217	7/28, C07C217/42, C07C219/06,
IPC					5/08, C07D317/50, C07F9/12,
		A61K3	L/135,	A61K31/	15, A61K31/36, A61K31/395,
					er than Minimum Documentation nts are included in the Fields Searched ⁸
III. DOCUMEN	NTS C	ONSIDERED	TO BE RI	FLEVANT 9	
Category * \					appropriate, of the relevant passages 12 Relevant to Claim No.
					, No. 5 (1987), 1-3
					es on the ligand
					l identity of
					binding sites"
		41-551		-	
-					
					io. 3 (1986), 1-3
1					omal binding
					in rat liver.
			and d	etergent	solubilization"
P	. 9	03-911			
		•			
ĺ					·
ļ					
İ					
	•				
• Canadal antam			_4_ 10		"T" later document published after the international filing date
 Special categ "A" document 				art which is not	priority date and not in conflict with the application but cited
considere	d to be	of particular re	elevance		understand the principle or theory underlying the invention
"E" earlier do		out published	on or after	the international	be considered novel or cannot be considered to involve inventive step
"L" document	t which			iority claim(s) or	"V" document of portionier relevance: the eleimed investion can
		establish the special reason		date of another d)	be considered to involve an inventive step when the docume is combined with one or more other such documents, su
"O" document other mea	referrir	ng to an oral o	lisclosure, u	se. exhibition or	combination being obvious to a person skilled in the art
"P" document	publish			al filing date but	"&" document member of the same patent family
	· · · · ·	ority date claim	ed		
V. CERTIFICA		pletion of the	Internations	Search	Date of Mailing of this International Search Report
June 9		•			August 18, 1992 (18. 08. 92)
nternational Sea	arching	Authority			Signature of Authorized Officer
Japanes	•	-	Office	2	
napanes	oc f	arent (OTITCE	=	

(Information concerning IPC to be added in the column I) A61K31/135, A61K31/15, A61K31/36, A61K31/395, A61K31/66

(Information concerning The Classification System to be added in the column II)

A61K31/66

国際調査報告

国際出願番号PCT/JP 9 2 / 0 0 5 7 0

I. 発										
	明の属する	分野の分類								
国際特許	午分類(IPC	Int. C.L.								
		C 0 7 C 2 1 7/1 4,	C07C917/9	0 <i>ሮስማ (</i>	3017/10					
	H- 1791-1-1	C 0 7 C 2 1 9 / 0 6,	0070251/3	2, 0071	0295/08,					
	際調査を行っ	100								
/\ *	: 44- 57	調査を行っ		資料						
分類	(体 系		類記号		· · · · · · · · · · · · · · · · · · ·					
	ļ	C 0 7 C 2 1 7/1 4,	C07C217/2	8, C070	217/42					
IPC		C07C219/06, C07C251/32, C07C295/08								
		C 0 7 D 3 1 7/5 0,			•					
			資料で調査を行ったも							
***************************************		A J AA J AA J	A11 CME 211 5/C	0 00	 					
Ⅲ. 関泊	重する技術に	関する文献								
川君文献の カテゴリー ※		献名 及び一部の箇所が関連す	7 1. 4.3. 7. 0 55 5 2 4	**						
シテゴリー ^^	31/8/	一 次の。中の面がが民座す	るとされ、その関連する[固所の表示 	請求の範囲の番号					
x	Mo 1 P	harmacol., 第31:	巻、 館 5 号 (1 9)	87年)	1-3					
		K.W. etc. Stud			1 3					
		ficity and pote								
		somal antiestre								
		-551								
	•									
x	Bioch	em J., 第236卷,	第3号(1986年	Ę)	1-3					
x	Colin	K.W. etc. [Micr	osomal bindi	ng	1-3					
x	Colin sites	K.W. etc. [Micr for antiestrog	osomal bindi ens in rat	ng liver.						
x	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
x	Colin sites Prope	K.W. etc. [Micr for antiestrog	osomal bindi ens in rat	ng liver.						
x	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
x	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
X	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
x	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
X	Colin sites Prope	K.W. etc. [Micr for antiestrog rties and deter	osomal bindi ens in rat	ng liver.						
	Colin sites Prope on p.	K.W. etc. [Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi	ng liver. lizati-						
※ 引用文ii	Colin sites Prope on p.	K.W. etc. [Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi 「T」国際出願日又は優 節と矛盾するもの	ng liver. lizati-	された文献であって出					
※ 引用文章 A] 特にB を] 先行な	Colin sites Prope on p. が p.	K.W. etc. 「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi 「T」国際出願日又は優 願と矛盾するもの のために引用する	ng liver。 lizatiー た日の後に公表 ではなく、発明で	された文献であって出 の原理又は理論の理解					
※ 引用文章 A] 特に を] 先行 L] 優先相	Colin sites Prope on p.	K.W. etc. 「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi 「T」国際出願日又は優 願と矛盾するもの のために引用する 「X」特に関連のある文	ng liver。 lizatiー た日の後に公表に ではなく、発明で ものであって、当	された文献であって出 の原理又は理論の理解 玄文献のみで発明の新					
※ 引 名 】 特に 引 先 長 と に 引 を で に こ と に こ と に こ と に こ に こ に こ に こ に こ に	Colins Prope on p. が関文ををくれる。 Distance on p. からのででは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、こ	K.W. etc. 「Micr for antiestrog rties and deter 903-911 druck (一般的技術水準を示する。 が、国際出願日以後に公表されたもの と提起する文献又は他の文献の発行。 に理由を確立するために引用する文献	osomal bindi ens in rat gent solubi 「T」国際出願日又は優 願と矛盾するもの のために引用する 「X」特に関連のある文	ng liver。 lizatiー た日の後に公表に ものなく、 発明の もでした。 ここの ないと考えられる	された文献であって出 の原理又は理論の理解 亥文献のみで発明の新					
※ 引 条 元 と 」 を で に で に で に で に で に で に で に で に で に で	Colins Property を Transparent	K.W. etc. 「Micr for antiestrog rties and deter 903-911 druck (一般的技術水準を示する が、国際出願日以後に公表されたるの と提起する文献又は他の文献の発行。 定理由を確立するために引用する文献 使用、展示等に言及する文献	osomal bindi ens in rat gent solubi T J 国際出願日又はもののため関連のあるするが、 現性と関連のあるが、 「Y J 特に関連のある者 文献との。当	ng liver。 lizatiー 先でも献ない。 のなく、ころ、ののなく、ころ、のでいるとあって。 はないでとっても、当れいまでとってものでとって自明では、このでは、このでは、このでは、このでは、このでは、このでは、このでは、この	された文献であって出 の原理又は理論の理解 亥文献のみで発明の新					
※A」 用特に行名 ・	Colins Property を Transparent	K.W.etc.「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi T J国際出版日本の B 所以 B 所述 B のの のために引用るする のために引用る が大切に関連のある が大切に関連のある で Y J 特に関連のよう を 大変になる。	ng liver. lizatiー 先でもます。 のなくってえて自のなくってえて自の ながでとれるものでいてとれる。 1000000000000000000000000000000000000	された文献であって出 の原理又は理論の理解 変文献のみで発明の新 るもの 変文献と他の1以上の					
※ 引 ・	Coltes Prop. 就関文をといった。 からはにのすりののではにのすりのではにのすりのではにのすりのではにのすりのではにのすりのできる。 が関文をといった。 からはにのすりのできる。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が関文をといった。 が可える。 のできる。 ので。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 のできる。 ので。 のできる。 のでを。 のでを。 のでを。 のでを。 のでを。 のでを。 のでを。 のでを。 のでで。 のでを。 のでを。 のでを。 ので	K.W.etc.「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi T J 国際出願日又はもののため関連のあるするが、 現性と関連のあるが、 「Y J 特に関連のある者 文献との。当	ng liver. lizatiー 先でもます。 のなくってえて自のなくってえて自の ながでとれるものでいてとれる。 1000000000000000000000000000000000000	された文献であって出 の原理又は理論の理解 変文献のみで発明の新 るもの 変文献と他の1以上の					
※引用特代方式 上」完了上 上」完了上 「E」是若(四国的 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記	To a te s p c o a te s p r o p c が p x を c te c s p r o p c か か a な を c te c s p r o p c o a を c te c s p r o p c o a を c te c s p r o p c o a を c te c	K.W.etc.「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi T J 国際出願日又なも ののた関連なるのの が、対 特に関連のある文が 「Y J 特に関連ののかいと 文献とのないいとファ	ng liver. lizatiー 先でもます。 のなくってえて自のなくってえて自の ながでとれるものでいてとれる。 1000000000000000000000000000000000000	された文献であって出 の原理又は理論の理解 変文献のみで発明の新 るもの 変文献と他の1以上の					
※引用特代方式 上」完了上 上」完了上 「E」是若(四国的 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記 で、記	To a te s p c o a te s p r o p c が p x を c te c s p r o p c か か a te c te c s p r o p c o a te c te	K.W.etc.「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi T J国際出版日本の B 所以 B 所述 B のの のために引用るする のために引用る が大切に関連のある が大切に関連のある で Y J 特に関連のよう を 大変になる。	ng liver. lizatiー 先でもます。 のなくってえて自のなくってえて自の ながでとれるものでいてとれる。 1000000000000000000000000000000000000	された文献であって出 の原理又は理論の理解 変文献のみで発明の新 るもの 変文献と他の1以上の					
※ A」 特先 是若 (Toltepp. Tolt	K.W.etc.「Micr for antiestrog rties and deter 903-911	osomal bindi ens in rat gent solubi T J 国際出願日又なも ののた関連なるのの が、対 特に関連のある文が 「Y J 特に関連ののかいと 文献とのないいとファ	ng livatiー lizatiー 先でも献ないて、 のなく、ったえて自のないでした。 のなく、ったまってものでいてとなってもの文献でとれりー	された文献であって出の原理又は理論の理解 変文献のみで発明の新るを立献と他の1以上の ちる 対象 古色 は と は の は と は と は と は と は と は と は と は と					
※ 「 A」 「 E」	Coltes Prop. 就関文をといった。 かので現代のすりのではにのすりのではにのすりのではにのすりできる。 が関文をといった。 からいてはいった。 からいてはいった。 では、これができる。 では、 では、 では、 では、 では、 では、 では、 では、	K.W.etc.「Micr for antiestrog rties and deter 903-911	Somal bindi ens in rat gent solubi 「T」国際出頭日又な 頭面する引力を ののた関ではもって が、「X」特に関連ののもするでが、「Y」特に関連のの当当者を 歩性がないとのないとの、 をというによって をようによって、 をようによって、 「&」同一パテントファ	ng livatiー lizatiー 先でも献ないて、 のなく、ったえて自のないでした。 のなく、ったまってものでいてとなってもの文献でとれりー	された文献であって出 の原理又は理論の理解 変文献のみで発明の新 るもの 変文献と他の1以上の					
※ 日本 ・	Toltes Coltes Pon 対数文を(由こと類に かのので現代のす関節表 かのので現代のす関節表 たっても のので現代のす関節表 にいて のので現代のする を のので現代のする を のので現代の ののでは のので現代の のので のので のので のので のので のので のので のので のので の	K.W.etc.「Micr for antiestrog rties and deter 903-911 **Cではなく、一般的技術水準を示する。 が、国際出版の文献又は他の文献の発行に と提起する文献又は他の文献の発行に 理由を確立するために引用する文献 は一級示等に言及する文献 いつ優先権の主張の基礎となる出願の で文献	Somal bindi ens in rat gent solubi T J 国際出願日子の B 所との B 所との B 所に B がたに関する B がたい C Y J 特に関連の B がたがです。 B がたいとしている B がたい	ng livatiー lizatiー 先でも献ないて、 のなく、ったえて自のないでした。 のなく、ったまってものでいてとなってもの文献でとれりー	された文献であって出 の原理又は理論の理解 玄文献のみで発明の新 る文献と他の1以上の ちる組合せによって進					
※ 日本 ・	Toltes Coltes Pon 対数文を(由こと類に かのので現代のす関節表 かのので現代のす関節表 たっても のので現代のす関節表 にいて のので現代のする を のので現代のする を のので現代の ののでは のので現代の のので のので のので のので のので のので のので のので のので の	K.W.etc.「Micr for antiestrog rties and deter 903-911	Somal bindi ens in rat gent solubi 「T」国際出頭日又な 頭面する引力を ののた関ではもって が、「X」特に関連ののもするでが、「Y」特に関連のの当当者を 歩性がないとのないとの、 をというによって をようによって、 をようによって、 「&」同一パテントファ	ng livatiー lizatiー 先でも献ないて、 のなく、ったえて自のないでした。 のなく、ったまってものでいてとなってもの文献でとれりー	された文献であって出解で文献で表明の知识を文献のみで発明の新変文献のみで発明の新変文献のと他の1以上のも変文組合せによって進					

7

(I欄の続き)

C07D317/50, C07F9/12, A61K31/135, A61K31/15, A61K31/36, A61K31/395, A61K31/66

(Ⅱ欄の続き)

A61K31/15, A61K31/36, A61K31/395, A61K31/66