Entanglement in Featureless Mott Insulators

Brayden Ware ¹

Itamar Kimchi ² Siddarth Parameswaran ³ Bela Bauer ⁴

 1 UC Santa Barbara 2 UC Berkeley 3 UC Irvine 4 Microsoft Station Q

March 6th 2014

Featureless Insulators

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state
F₁ = F₂ > const

Alternate Definition

- Unique ground state on all boundary-less systems
- Possibly with 'features' localized to edge of system

Featureless Insulators

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on all boundary-less systems
- Possibly with 'features' localized to edge of system

- Unique ground state:
 - $E_1 E_0 \ge const.$
 - Gapless modes:

$$E_1 - E_0 \sim \frac{1}{L^z}$$

Spontaneous symmetry breaking:

$$E_1 - E_0 = 0$$

Topological order:

$$E_1 - E_0 \sim e^{-L/\xi}$$

Examples of Featureless Insulators

Classical Insulators

Free fermion band insulator

Atomic picture

Topological Insulators

Band insulator with chiral edge

Atomic picture breaks down

Q (~

Obstructions to Featurelessness

Fundamental Result

A featureless insulator must have an integer charge per unit cell

- (Lieb, Schultz, Mattis 1961)
- (Hastings 2004)

For certain lattices, not all integers are possible

(Parameswaran 2013)

For this talk, we will look at a proposed honeycomb lattice featureless insulator with charge 1 per unit cell.

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

Leaves honeycomb lattice

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks translationally symmetry, unit cell is 3 times larger

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Band insulator with chiral edge ¹

The Haldane Chern insulator is NOT an example. D_6 explicitly broken.

 $^{^{1}(?)}$

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

$$|\psi\rangle = \prod_{\bigcirc} \left(\sum_{i\in\bigcirc} b_i^{\dagger}\right) |\mathbf{0}\rangle$$

Proposed Solution by ?

Bosons filled into non-orthogonal, plaquette centered orbitals works. Numerics confirm the expected wavefunction properties, but no known parent Hamiltonian has been found.

Computations on Honeycomb FBI

$$|\psi\rangle = \prod_{\mathcal{Q}} \left(\sum_{i \in \mathcal{Q}} b_i^{\dagger} \right) |\mathbf{0}\rangle$$

Simple tensor network representation

Cylinder slice treated as single site of an effective 1D system.

Schmidt decomposition computed as in 1D matrix product states.

Computations on Honeycomb FBI

Form of a honeycomb lattice PEPS on zig-zag cylinder with width L=3

Simple tensor network representation

Cylinder slice treated as single site of an effective 1D system.

Schmidt decomposition computed as in 1D matrix product states.

Computations on Honeycomb FBI

Form of a honeycomb lattice PEPS on zig-zag cylinder with width L=3

Simple tensor network representation

Cylinder slice treated as single site of an effective 1D system.

Schmidt decomposition computed as in 1D matrix product states.

Entanglement Spectrum

Entanglement Spectrum

Finite Size Analysis

Identification of Edge CFT

Conformal Charge via 'Nested Entanglement Entropy'

$$c = 1$$

Identification of Edge CFT

Conformal Weights

We can match the rescaled entanglement energies to the conformal weights of a free bosonic CFT.

$$\mathbf{H} \propto e^2 + \frac{m^2}{\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

Conformal primary identification in entanglement spectra

Symmetry Protection of Degenerate Edge

$$|\psi\rangle = \sum_{i} \lambda_{i} |\psi_{L}^{i}\rangle |\psi_{R}^{i}\rangle$$

Inversion symmetry $\mathcal I$ induces an edge antiunitary action $V_{\mathcal I}$

This occurs in two steps:

- $|e,K\rangle_L \to |e,-K\rangle_R$
- $|e,K\rangle_R \to |-e,-K\rangle_L$

Combined:

$$V_{\mathcal{I}}|e,K\rangle \propto |-e,K\rangle$$

Phases work out like this:

$$V_{\mathcal{I}} \sim \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Charge symmetry θ induces an edge unitary action V_{θ}

For charge parity $\pi \in U(1)$:

$$V_{\pi}|e,K\rangle = (-1)^{e}|e,K\rangle$$

$$V_{\pi} \sim \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Combined antiunitary action $V_{\mathcal{I}\pi}$ satsfies

$$V_{\mathcal{I}\pi}V_{\mathcal{I}\pi}^* = -1$$

Conclusions

For the honeycomb featureless boson insulator:

- Entanglement spectrum reveals a gapless free boson edge
- Edge spectrum points with nonzero charge or nonzero momentum are degenerate
- This degeneracy is protected by combined inversion and charge parity
- Cannot be deformed to trivial state while the bosons are not allowed to live at the hexagon centers
- The representation of the lattice and charge symmetry (size of unit cell and charge per unit cell) matters for classifying featureless insulators

Questions?

Brayden Ware brayden@physics.ucsb.edu

Bonus slides

Resources

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Trivial Chain

1D Topological Chain

$$\bigcirc\bigcirc$$
 = \bigcirc

$$\bigcirc \bullet = 1$$

$$\bigcirc \bullet = 2$$

Projectors and entangled pairs (PEPS) used in state construction

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Trivial Chain

Product state with one boson per site

1D Topological Chain

Haldane Insulator Phase?

- Unitarily related to AKLT
- No SU(2) symmetry
- Symmetry protected 2-fold edge degeneracy

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Topological Chain

$$\begin{array}{ccc}
\bullet \bullet &= \circ & \bullet & \bullet & \circ \\
\hline
\bullet \circ &= & -\sqrt{2} \\
\hline
\bullet \bullet &= & 0 \\
\hline
\bullet \bullet &= & +\sqrt{2}
\end{array}$$

Projectors and entangled pairs (PEPS) for SU(2) symmetric state

$$|\psi\rangle = \prod_{\bigcirc} \left(\sum_{i \in \bigcirc} b_i^{\dagger}\right) |\mathbf{0}\rangle$$

$$\bigcirc = \bigcirc \sqrt{2!}$$

Generic honeycomb lattice PEPS on zig-zag cylinder with L=3

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- \blacksquare Physical site dimension 4^{2L}

Honeycomb lattice tensor network on zig-zag cylinder with L=3

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- Physical site dimension 4^{2L}

Honeycomb lattice PEPS on zig-zag cylinder with L=3, acheived by factoring W-state of plaquette bosons

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- Physical site dimension 4^{2L}
- MPS bond dimension = Rank of $\rho_r = 2^L$
- Entanglement spectrum $\{\epsilon_i\}$ defined from eigenvalues $\{\rho_i\}$ of ρ_r via $\epsilon_i = e^{-\rho_i}$
- Charge and Translation represented linearly on edge

Honeycomb lattice PEPS on zig-zag cylinder with L=3, acheived by factoring W-state of plaquette bosons

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- Physical site dimension 4^{2L}
- MPS bond dimension = Rank of $\rho_r = 2^L$
- Entanglement spectrum $\{\epsilon_i\}$ defined from eigenvalues $\{\rho_i\}$ of ρ_r via $\epsilon_i = e^{-\rho_i}$
- Charge and Translation represented linearly on edge

Topological Entanglement Entropy

Known Results for Honeycomb FBI

Correlations

$$< b_i^{\dagger} b_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 3.6$

$$< n_i n_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 1.6$

Hamiltonian Construction

Try filling plaquette orbitals

$$b_{\bigcirc} = \sum_{i \in \bigcirc} \frac{1}{\sqrt{6}} b_i^{\dagger}$$

$$H = \sum_{\bigcirc} -\frac{t}{6} b_{\bigcirc}^{\dagger} b_{\bigcirc} + V n_{\bigcirc} n_{\bigcirc}$$

$$= \left(\sum_{\bigcirc} \sum_{i,j \in \bigcirc} -tb_i^{\dagger} b_j\right) - \frac{3t}{6} N + V \dots$$

- Fails, gapless modes
- Parent Hamiltonian not known

190

Known Results for Honeycomb FBI

Correlations

$$< b_i^{\dagger} b_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 3.6$

$$< n_i n_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 1.6$

Hamiltonian Construction

To get a parent Hamiltonian:

- Need symmetric, exponentially localized, orthogonal orbitals
- Such as the Wannier orbitals of a classical band insulator

Other lattices:

- Need a fixed point of all lattice symmetries
- Fails on nonsymmorphic lattices
- Extension of LSM theorem
- ?

Future Work

Entanglement properties with different geometries

- Armchair cylinder edge
- Finite size clusters
- Explain results for arbitrary geometries with tensor network properties, e.g. 'MPO injectivity'

Find a 2D local Hamiltonian and confirm with numerics

$$H_{EBH} = \left(\sum_{i,j\in\mathcal{O}} \sum_{i,j\in\mathcal{O}} -tb_i^{\dagger}b_j + Vn_i n_j\right) + \mu N?$$

Physical properties of the phase

Can we constructan SU(2) symmetric FI?