Week 7

Agenda

- 1. Neural Network discussion
- 2. Deep Learning notebook

For next week: Backpropagation discussion during next week's office hour

History

Timeline

- 40s-50s Idea emerges.
- 1962 Perceptron learning
- 1969 Minisky: XOR problem
- 1982 Multi-layer neural networks
- 1986 Backpropagation
- 1989 Universal Approximation Theorem
- 90s-00s SVMs gain favor
- 00s SGD popularized
- 2009-present Deep learning: return of neural nets

People to Know

- Geoffrey Hinton. http://www.cs.toronto.edu/~hinton/ (https://www.coursera.org/learn/neural-networks)
- Yann LeCun. http://yann.lecun.com/
- Yoshua (and Samy) Bengio.
 http://www.iro.umontreal.ca/~bengioy/yoshua_en/
- Leon Bottou (SGD). http://leon.bottou.org/

Conferences

- NIPS, ICML
- APPLIED: KDD, SIGIR, AAAI

1. What's the limitation of a perceptron? What differs about Neural Nets that allow them to learn non-linear function?

Example Trained Neural Network

Error: 0.054446 Steps: 12122

- 1. What do you remember about Iris dataset?
- 2. How many parameters in this model?
- 3. How is multi-class handled?
- 4. Sparse vs dense representation. Which one will we get? Why?
- 5. How many layers?
- 6. How can we think about this network as an ensemble/stacked model?
- 7. How can we think about this network as a series of matrix operations?

A challenge...

Describe logistic regression represented as a NN?

Price = beta * numBeds + alpha * numBaths

Accuracy on MNIST

Type \$	Classifier +	Distortion +	Preprocessing +	Error rate (%)
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[9]
Non-Linear Classifier	40 PCA + quadratic classifier	None	None	3.3 ^[9]
Neural network	2-layer 784-800-10	None	None	1.6 ^[17]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[15]
Neural network	2-layer 784-800-10	elastic distortions	None	0.7 ^[17]
Support vector machine	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[16]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[14]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	elastic distortions	None	0.35 ^[18]
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10	elastic distortions	Width normalizations	0.23 ^[8]

Universal Approximation Theorem

- · Two-layer networks are universal function approximators
 - Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer neural network F' with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of F.

$$|F(x) - F'(x)| < \varepsilon$$

- Two-layer networks can approximate any function.
- Still may want more than two layers (fewer neurons, time to learn, time to compute, etc).

1. Why is this a theorem about representation rather than learning?

Training and Predicting

Intuition: Forward Propagation Given a training example (X₁, X₂) and output Y_i · Propagate inputs/activations forward, applying sigmoid function on dot products X,

Intuition: Backward Propagation (cont.)

• For each hidden unit h in kth layer:

$$\delta_{hk} = Y_{hk} (1 - Y_{hk}) \sum_{j \in K} w_{hj} \delta_j$$

- Update each weight as $+\eta \delta_{hk} x_i$.
 - Daume ch. 8 for full algorithm

Activation Functions are Active Area of Research

Name +	Plot +	Equation •	Derivative (with respect to x) +	Range
Identity	/	f(x)=x	f'(x)=1	$(-\infty,\infty)$
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$	{0,1}
Logistic (a.k.a. Soft step)		$f(x) = \frac{1}{1+e^{-x}}$	f'(x) = f(x)(1-f(x))	(0,1)
TanH		$f(x)=\tanh(x)=\frac{2}{1+e^{-2x}}-1$	$f'(x) = 1 - f(x)^2$	(-1,1)
ArcTan		$f(x)=\tan^{-1}(x)$	$f'(x) = \frac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
Softsign [7][8]		$f(x) = \frac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)
Rectified linear unit (ReLU) ^[9]		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$[0,\infty)$
Leaky rectified linear unit (Leaky ReLU) ^[10]		$f(x) = \left\{egin{array}{ll} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$
Parameteric rectified linear unit (PReLU) ^[11]		$f(lpha,x) = \left\{ egin{array}{ll} lpha & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$

Beyond Basic FF Networks -- Many Architectures

Final Thoughts?