Esercitazione di Informatica A

Codifiche numeriche: Rappresentazioni binarie

Stefano Cherubin <nome>.<cognome>@polimi.it

Esercitazione 2 22 Ottobre 2015

Conversione da decimale a binario

Algoritmo

Dividere ripetutamente per la base (2). Scrivere i resti della divisione in ordine inverso.

Conversione da base n a decimale

Algoritmo

Moltiplicare il valore di ciascuno dei bit di modulo per la base (2) elevata alla rispettiva posizione. Sommare il tutto.

0	0	1	0	1	0	1	0	
	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^{0}	
\pm	modulo							

Numeri binari relativi (1/2)

+42

Modulo e segno

Complemento a 2

Numeri binari relativi (2/2)

-42

Modulo e segno

Cambiare il bit di segno, mantenendo uguale il modulo.

Complemento a 2

Invertire tutti i bit. Poi sommare 1

Conversione da binario a decimale (C2)

Algoritmo per la rappresentazione in complemento a 2

Moltiplicare il valore di ciascuno dei bit per la base (2) elevata alla rispettiva posizione. Solo il bit più significativo (più a sinistra) avrà contributo negativo. Sommare il tutto.

0	0	1	0	1	0	1	0		
2^{7}	2^{6}	2^{5}	2^{4}	2^3	2^{2}	2^1	2^{0}		
+		modulo							

Intervallo di rappresentazione

Su N bit si possono avere 2^N rappresentazioni di numeri binari. Il dominio di dimensione 2^N può essere usato per rappresentare numeri

$$\left[0; 2^N - 1\right]$$

Se introduciamo i numeri negativi occorre rappresentare in qualche modo l'informazione sul segno del numero. Per fare ciò si utilizza un bit, per convenzione il più significativo. Resta un bit in meno per rappresentare il modulo. Quindi il dominio sarà

$$\left[-\left(2^{N-1}-1\right);2^{N-1}-1\right]$$

Con la rappresentazione in complemento a due, il valore che in modulo e segno sarebbe uno 0 di segno negativo (10000000...) rappresenta invece -2^{N-1} . Il dominio diventa quindi

$$\left[-2^{N-1}; 2^{N-1} - 1\right]$$

Complemento a 2

Trova la rappresentazione in complemento a 2 di lunghezza fissa 8 bit dei seguenti numeri espressi in decimale

- +14
- −66
- −31

Complemento a 2: +14

Trova la rappresentazione in complemento a 2 di lunghezza fissa 8 bit di

$$|+14| = \frac{14 \mid 2}{7 \mid 0} \uparrow$$

$$|+14| = 3 \mid \mathbf{1} \mid \uparrow = 1110$$

$$1 \mid \mathbf{1} \mid \uparrow$$

$$0 \mid \mathbf{1} \mid \uparrow$$
in più per il segno: 01110

Applichiamo un bit in più per il segno: 01110 Estendiamo in segno fino a raggiungere 8 bit

$$|-66| = \begin{vmatrix} 66 & 2 \\ 33 & 0 & \uparrow \\ 16 & 1 & \uparrow \\ 8 & 0 & \uparrow \\ 4 & 0 & \uparrow \\ 2 & 0 & \uparrow \\ 1 & 0 & \uparrow \\ 0 & 1 & \uparrow \end{vmatrix}$$

Applicare un bit in più per il segno: +66 = 01000010Invertire tutti i bit e poi sommare 1

0	1	0	0	0	0	1	0	
1	0	1	1	1	1	0	1	+
							1	=
1	0	1	1	1	1	1	0	

Stefano Cherubin Binario 22 Ottobre 2015 12 / 24

$$|-31| = \frac{31 \mid 2}{15 \mid 1} \uparrow$$

$$|-31| = \begin{array}{c|c} 7 & 1 & \uparrow \\ 3 & 1 & \uparrow \\ 1 & 1 & \uparrow \\ 0 & 1 & \uparrow \end{array}$$

$$\text{s in più per il segno: } +31 = 01111$$

Applichiamo un bit in più per il segno: +31 = 011111Invertire tutti i bit e poi sommare 1

		0	1	1	1	1	1	
		1	0	0	0	0	0	+
							1	=
		1	0	0	0	0	1	
1	1	1	0	0	0	0	1	
\leftarrow	\leftarrow	\leftarrow						

Stefano Cherubin Binario 22 Ottobre 2015 13 / 24

Numero minimo di bit

Qual è il numero minimo di bit necessari a rappresentare i seguenti numeri relativi?

- -70
- +25
- +256
- -256

Numero minimo di bit: -70

Qual è il numero minimo di bit necessari a rappresentare

$$-70$$

Calcoliamo |-70| = 70 in base 2

1000110

Servono quindi 7 bit per rappresentare il modulo di -70. Occorre un bit in più per il segno, quindi arriviamo a 8 bit.

Infatti con 8 bit possiamo rappresentare numeri da

$$\begin{aligned} [-2^{N-1} & ; & 2^{N-1} - 1] \\ [-2^{8-1} & ; & 2^{8-1} - 1] \\ [-128 & ; & 127] \\ \\ -70 \in [-128; 127] \end{aligned}$$

Numero minimo di bit: +25

Qual è il numero minimo di bit necessari a rappresentare

• +25

Calcoliamo |+25| = 25 in base 2

11001

Servono quindi 5 bit per rappresentare il modulo di +25. Occorre un bit in più per il segno perché operiamo nel dominio dei numeri relativi, quindi arriviamo a 6 bit.

Infatti con 6 bit possiamo rappresentare numeri da

$$[-2^{6-1} ; 2^{6-1} - 1]$$

$$[-32 ; 31]$$

$$+25 \in [-32; 31]$$

Numero minimo di bit: +256

Qual è il numero minimo di bit necessari a rappresentare

+256

Calcoliamo |+256| = 256 in base 2

100000000

Servono quindi 9 bit per rappresentare il modulo di +256. Occorre un bit in più per il segno, quindi arriviamo a 10 bit.

Infatti con 10 bit possiamo rappresentare numeri da

$$[-2^{10-1} ; 2^{10-1} - 1]$$
$$[-512 ; 511]$$
$$+256 \in [-512; 511]$$

Numero minimo di bit: -256

Qual è il numero minimo di bit necessari a rappresentare

-256

Calcoliamo |-256| = 256 in base 2

100000000

Servono quindi 9 bit per rappresentare il modulo di -256. Occorrebbe un bit in più per il segno, quindi arriveremmo a 10 bit MA... ...nei casi speciali delle esatte potenze di 2 ($256 = 2^8$) ci troviamo agli estremi dell'intervallo rappresentabile. È opportuno ricordare che, in questi casi, per rappresentare una potenza esatta di 2 con segno negativo si può usare un bit in meno.

$$[-2^{9-1} ; 2^{9-1} - 1]$$

$$[-256 ; 255]$$

$$-256 \in [-256; 255]$$

Somme, overflow, underflow

Si eseguano le seguenti operazioni in binario

- 36 + 11
- 38 83

Si eseguano le seguenti operazioni in binario su 6 bit e si dica in quali occasioni si presenta overflow o underflow

- 15 18
- -27-10

Operazioni in binario: 36+11

Si esegua la seguente operazione in binario

•
$$36 + 11$$

$$1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 32 + 8 + 4 + 2 + 1 = 47$$

Stefano Cherubin Binario 22 Ottobre 2015 20 / 24

Si esegua la seguente operazione in binario

•
$$38 - 83$$

$$= 38 + (-83)$$

0	0	1	0	0	1	1	0	+
1	0	1	0	1	1	0	1	=
1	1	0	1	0	0	1	1	

Operazioni in binario: 15-18

Si esegua la seguente operazione in binario su 6 bit e si dica se si presenta overflow o underflow

•
$$15 - 18$$

$$= 15 + (-18)$$

- NO overflow
- NO underflow

Operazioni in binario: -27-10

Si esegua la seguente operazione in binario su 6 bit e si dica se si presenta overflow o underflow

$$-27-10$$

$$= -27 + (-10)$$

- NO overflow
- Sì underflow

Fine

Queste slides contengono elementi tratti da materiale di Gerardo Pelosi redatto per il corso di Fondamenti di Informatica per Ingegneria dell'Automazione a.a. 2014/15.

Grazie per l'attenzione!

Licenza Beerware¹

Queste slides sono opera di Stefano Cherubin. Mantenendo questa nota, puoi fare quello che vuoi con quest'opera. Se ci dovessimo incontrare e tu ritenessi che quest'opera lo valga, in cambio puoi offrirmi una birra.

Stefano Cherubin Binario 22 Ottobre 2015 24 / 24

¹http://people.freebsd.org/~phk/