MSAI 495 Introduction to Computer Vision - Assignment 2 Sayantani Bhattacharya

Morphological Operators

Algorithms Used:

I. For dilation:

- A. Scan the binary image pixel by pixel.
- B. For each pixel, extract a neighborhood around it using the kernel size.
- C. If **any pixel** in the neighborhood (overlapped with the kernel) is white (255), set the **center pixel** in the output to white.
- D. This causes white regions to grow or "dilate", filling small holes and connecting nearby white regions.

II. For erosion:

- I. Scan the binary image pixel by pixel.
- II. For each pixel, extract a neighborhood using the kernel size.
- III. If **all pixels** in the neighborhood are white (255), set the **center pixel** in the output to white.
- IV. If even one pixel is black, the output is black.
- V. This removes noise and shrinks the white regions, eroding away thin lines or edges.

III. Opening:

- A. Apply **erosion** first to remove small white noise.
- B. Then apply **dilation** to restore the main shapes that survived erosion.
- C. Good for removing small white specs or disconnected blobs.

IV. Closing:

- A. Apply **dilation** first to fill in small black holes or gaps.
- B. Then apply **erosion** to restore the original object size.
- C. Good for filling in gaps within the foreground objects.

V. Boundary:

- A. Apply **dilation** and **erosion** on the binary image.
- B. Subtract the eroded image from the dilated one.
- C. The result highlights boundaries (edges) of the foreground objects.

Results:

1. Dilation (3*3 kernel with 1s)

2. Erosion (3*3 kernel with 1s):

3. Opening:

4. Closing:

5. Boundary (2*2 Kernel gave better results for this)

6. Custom kernel structures:

[1	1	1	1]
[1	1	1	1]
[1	1	1	1]
[1	1	1	1]

