Robust Computational Models for Water Waves

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

August 30, 2018

Outline of the Presentation

- Motivation
- History
- Contribution
 - Method
 - Validation

Physical Phenomena: Water Waves

Water wave hazards:

- Tsunamis
- Storm Surges
- Rogue Waves

Phenomena caused by water waves:

- Nutrient Transport
- Beach Erosion
- Breakup of Sea Ice

Computational Modelling

Goal: Model Physics On Computers

Water Wave Modelling

Introduction

ANUGA

└─Water Wave Modelling

└─ Introduction

ANUGA: Water Waves

ANUGA: Shallow Water Wave Equations

Water Wave Modelling

Introduction

ANUGA

Robust Computational Models for Water Waves

Water Wave Modelling

Introduction

Outcome

New project at the ANU to build robust computational model from dispersive mathematical models

Water Wave Modelling

Mathematical Model

Serre Model

Assumptions

▶ Particle: u'(x, z, t) constant in z

▶ Particle:
$$v'(x, z, t) = u \frac{\partial b}{\partial x} - (z - b) \frac{\partial b}{\partial x}$$

► Particle:
$$p'(x, z, t) = g\xi + \xi \Psi + \frac{1}{2}\xi (2h - \xi) \Phi$$

with

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2},$$

$$\Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Equations

Mass:
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\text{Momentum:} \qquad \frac{\partial (uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

 $+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$

Pros and Cons

Pro:

- ► Far simpler than the Euler equations
- Includes dispersive effects
- Still a good model for long wavelength waves and also a good model for shorter wavelengths
- Considered one of the best models for water waves up to wave breaking

Cons:

- More complicated than the Shallow Water Wave Equations
- Cannot model breaking waves

└─Water Wave Modelling

Computational Model

Previous Work at the ANU

- 2014: Chris Zoppou's PhD thesis
 Demonstrated computational model based on Finite Volume
 Method for the Serre equations with varying bathymetry in
 2D.
- 2014: My Honours thesis Independent reproduction of Chris Zoppou's computational model

Open problems:

3D: Extension of the method to 3D flows

Robust: Validation of model with steep gradients in free surface

Robust: Validation of model in the presence of dry beds

Thesis Goals

Solve these open problems:

3D: Extension of the method to 3D flows

Robust: Validation of model with steep gradients in free surface

Robust: Validation of model in the presence of dry beds

Technique: Develop a robust computational model from the 2D

Serre equations that can be easily extended to 3D.

Method

Brief description of the method which is a combination of a Finite Volume Method and a Finite Element method.

3D: Extends well to 3D

Robust: Stable in the presence of steep gradients

Robust: Stable in the presence of dry beds

Maintains conservation properties of the equations

Chris Zoppou's thesis demonstrated how an adaptation of the Finite Volume Method to the Serre Equations.

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x}\left(u^2h + \frac{gh^2}{2} + \frac{h^2}{2}\Psi + \frac{h^3}{3}\Phi\right) + \frac{\partial b}{\partial x}\left(gh + h\Psi + \frac{h^2}{2}\Phi\right) = 0$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

For a Finite Volume Method we require equations in the form

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

where f(q) and s(q) do not contain temporal derivatives

Finite Volume Method Example

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Function at $t = t_0$

Cell Discretisation

Total Amount

Flux Left

Flux Right

Source

Finite Volume Update

$$\overline{q}_{2}^{1} = \overline{q}_{2}^{0} - \left(F_{\frac{5}{2}}^{0} - F_{\frac{3}{2}}^{0}\right) - \left(S_{2}^{0}\right)$$
$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

Finite Volume Update

$$\overline{q}_{2}^{1} = \overline{q}_{2}^{0} - \left(F_{\frac{5}{2}}^{0} - F_{\frac{3}{2}}^{0}\right) - \left(S_{2}^{0}\right)$$
$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} + s(q) = 0$$

$$\int_{C_{2}} q(x, t^{1}) dx = \int_{C_{2}} q(x, t^{0}) dx - \left(\int_{t^{0}}^{t^{1}} f(q(x_{5/2}, t)) dt - \int_{t^{0}}^{F_{\frac{3}{2}}^{0}} \int_{C_{2}}^{F_{\frac{3}{2}}^{0}} f(q(x_{3/2}, t)) dt \right) - \int_{t^{0}}^{t^{1}} \int_{C_{2}} s(q(x, t)) dt$$

Update Formula for Serre Equations

$$\overline{h}_{j}^{n+1} = \overline{h}_{j}^{n} - \left[F_{j+1/2}^{n} - F_{j-1/2}^{n} \right]$$

$$\overline{G}_{j}^{n+1} = \overline{G}_{j}^{n} - \left[F_{j+1/2}^{n} - F_{j-1/2}^{n} \right] - S_{j}^{n}$$

- ▶ All the fluxes $F_{j+1/2}^n$ and $F_{j-1/2}^n$ and the source term S_j^n require u
- require a method to obtain u from \overline{h}_j^n , \overline{G}_j^n and b

Calculate Velocity

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

- Chris Zoppou's Thesis used a Finite Difference Method
- Goal: Solve using a Finite Element Method

Finite Element Method

3D: Extends well to 3D

Robust: Stable in the presence of steep gradients

▶ Maintains conservation properties for conservation equations

Finite Element Method Example

Example:

$$-\frac{\partial^2 u}{\partial x^2} = f.$$

Weak Form

$$-\int_{\Omega} \frac{\partial^2 u}{\partial x^2} v = \int_{\Omega} f v \ dx$$

Integrate by parts (Dirichlet boundary conditions):

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \ dx = \int_{\Omega} fv \ dx$$

Finite Element Method

$$\int_{\Omega} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx = \int_{\Omega} fv dx$$

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} fv dx \right]$$

Piecewise Polynomial Representation

Finite Element Method

$$\sum_{j} \left[\int_{C_{j}} \frac{\partial u_{j}}{\partial x} \frac{\partial v_{j}}{\partial x} dx \right] = \sum_{j} \left[\int_{C_{j}} f_{j} v_{j} dx \right]$$

$$\mathbf{A}\vec{u} = \vec{c}$$

where

- ightharpoonup A depends on the polynomial representation of v
- $ightharpoonup \vec{u}$ determines the polynomial representation of u
- $ightharpoonup ec{c}$ depends on polynomial representation of f and v

Finite Element Method for Serre Equations

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

$$\mathbf{A}\vec{u}=\vec{c}$$

where

- ► **A** depends on the polynomial representation of *h*, *b* and test function
- $ightharpoonup ec{u}$ determines the polynomial representation of u
- $ightharpoonup \vec{c}$ depends on polynomial representation of G and test function

Method

- ▶ Reconstruction: Calculate the representations of h and G over the cells from the averages \bar{h} and \bar{G}
- ▶ Finite Element: use the representations of *h* and *G* over the cells to calculate the representation of *u* over the cell
- ► Finite Volume Method: Update *h* and *G* to the next time using the Finite Volume Method update

Progress

3D: Extension of the method to 3D flows ✓

Robust: Validation of model with steep gradients in free surface

Robust: Validation of model in the presence of dry beds

Statement of Problem

How does this initially still body of water evolve?

Our New Numerical Solution

Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

What was known

- No analytic solutions
- Asymptotic results for step gradient problems as $t \to \infty$
- Some experimental comparisons ¹
- Other numerical solutions from the literature; some solving the actual steep gradient problem and some solving a smoothed initial water profile.

¹Zoppou, C. (2014). Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University.

Solution

- Demonstrate convergence to one solution for many numerical methods
- Demonstrate good agreement with asymptotic results
- Comprehensively review many numerical methods and smoothing techniques from the literature

Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

└ Model Validation for Steep Gradients in the Flow

Convergence

Model Validation for Steep Gradients in the Flow

└ Model Validation for Steep Gradients in the Flow

└ Model Validation for Steep Gradients in the Flow

Asymptotic Results

Review of Smoothing and Methods

- Demonstrated that behaviour is consistent across many numerical methods
- Were able to explain why the behaviour had not previously been observed

Result

Our numerical solutions for the steep gradient problems are well validated 2

 $^{^2}$ Pitt, J., Zoppou, C., and Roberts, S. (2018). Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited. Wave Motion, 76(1):6177.

Model Validation for Steep Gradients in the Flow

Progress

3D: Extension of the method to 3D flows ✓

Robust: Validation of model with steep gradients in free surface \checkmark

Robust: Validation of model in the presence of dry beds

Statement of Problem

Properly handle interaction of waves and the dry bed

Solution in the Presence of Dry Beds

What was known

- No analytic solutions
- A variety of numerical techniques only validated against experimental data

Solution

- Solved modified equations that did possess analytic solutions
- Compared with experimental data

Constructing Modified Equations

- ▶ Pick functions for height, velocity and bed: h^* , u^* and b^*
- Add Source terms to Serre equations that force a solution for h*, u* and b*
- Validation tests

Pick Functions

Modify Equations

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} &= S_h^*, \\ \frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right) \\ &+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} &= S_G^*. \end{split}$$

 S_h^* and S_G^* are just the LHS with the quantities replaced by their associated chosen function. We solve the LHS using our method and add in the source terms on the RHS analytically.

Results t = 0s

Results t = 0s, 2.5s

Results t = 0s, 2.5s, 5.0s

Results t = 0s, 2.5s, 5.0s, 7.5s

Results t = 0s, 2.5s, 5.0s, 7.5s, 10.0s

Modified Equations Validation Conclusions

- Very strong test that we are actually solving the Serre equations accurately as all terms must be accurately approximated
- Can measure the convergence of numerical solutions to the force solutions

Solution in the Presence of Dry Beds

Experimental Data

$$t = 30s$$

L Thesis

Solution in the Presence of Dry Beds

t = 40s

$$t = 50s$$

$$t = 60s$$

t = 70s

Experimental Validation Conclusions

- Demonstrates that our computational model agrees with the physical process
- not a very stringent test as there are many source of errors
- few experimental results for non breaking waves

Solution in the Presence of Dry Beds

Progress

3D: Extension of the method to 3D flows ✓

Robust: Validation of model with steep gradients in free surface \checkmark

Robust: Validation of model in the presence of dry beds ✓

Solution in the Presence of Dry Beds

Conclusions

 Developed a Robust Computational Model from the Serre equations for the 2D water wave problem

References I

Pitt, J., Zoppou, C., and Roberts, S. (2018).

Behaviour of the serre equations in the presence of steep gradients revisited.

Wave Motion, 76(1):61–77.

, ()

Zoppou, C. (2014).

Numerical Solution of the One-dimensional and Cylindrical Serre Equations for Rapidly Varying Free Surface Flows. PhD thesis, Australian National University, Mathematical Sciences Institute, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 2600, Australia.