数字逻辑

补码加减法运算

2019年3月18日

补码加减法运算

1. 原码加/减法运算

加法规则:

先判符号位,若相同,绝对值相加,结果符号不变; 若不同,则作减法, |大| - |小|,结果符号与|大|相同。

减法规则:

两个原码表示的数相减,首先将减数符号取反,然后将被减数与符号取反后的减数按原码加法进行运算。

2. 补码加法运算

补码加法的公式:

$$[x]_{*} + [y]_{*} = [x+y]_{*} \pmod{2}$$

特点:不需要事先判断符号,符号位与码值位一起参加运算。 符号位相加后若有进位,则舍去该进位数字。

在模2意义下,任意两数的补码之和等于该两数之和的补码。 这是补码加法的理论基础。

补码加法的特点:

- (1) 符号位要作为数的一部分一起参加运算;
- (2) 在模2的意义下相加,即大于2的进位要丢掉。

其结论也适用于定点整数。

例: x=0.1001, y=0.0101, 求 x+y。

解:
$$[x]_{*}=0.1001$$
, $[y]_{*}=0.0101$

$$[x]_{*}$$
 0. 1 0 0 1

 $+$ $[y]_{*}$
 0. 0 1 0 1

 $[x+y]_{*}$
 0. 1 1 1 0

 所以
 $x+y=+0.1110$

例:
$$x=+0.1011$$
, $y=-0.0101$, 求 $x+y$ 。

解:
$$[x]_{*}=0.1011$$
, $[y]_{*}=1.1011$

所以 x+y=0.0110

3. 补码减法

补码减法运算的公式:

$$\begin{bmatrix} x - y \end{bmatrix}_{\stackrel{1}{\uparrow}} = \begin{bmatrix} x \end{bmatrix}_{\stackrel{1}{\uparrow}} - \begin{bmatrix} y \end{bmatrix}_{\stackrel{1}{\uparrow}} = \begin{bmatrix} x \end{bmatrix}_{\stackrel{1}{\uparrow}} + \begin{bmatrix} -y \end{bmatrix}_{\stackrel{1}{\uparrow}}$$

两数差的补码等于两数补码之差

公式证明: 只要证明 $[-y]_{i}$ = $-[y]_{i}$, 上式即得证。

证明:

减法运算化为加法完成。关键是求[-Y]*

例: x=+0.1101, y=+0.0110, 求 x-y。

 \mathbf{M} : $[x]_{*} = 0.1101$

$$[y]_{\frac{1}{4}} = 0.0110 \quad [-y]_{\frac{1}{4}} = 1.1010$$

$$\therefore x - y = +0.0111$$

例: x=-0.1101, y=-0.0110, 求x-y=?

M:
$$[x]_{\lambda}=1.0011$$
 $[y]_{\lambda}=1.1010$ $[-y]_{\lambda}=0.0110$

$$x - y = -0.0111$$

溢出及与检测方法

1. 概念

在定点小数机器中,数的表示范围为|x|<1。在运算过程中如出现大于1的现象,称为 "溢出"。

发生溢出的原因,是因为运算结果超出编码所能表示的数字大小。

两个正数相加:结果大于机器所能表示的最大正数,称为上溢;两个负数相加:结果小于机器所能表示的最小负数,称为下溢。

$$m:$$
 $[x]_{*}=0.1011$ $[y]_{*}=0.1001$ $[x]_{*}$ $[x]_{*}$ $[x]_{*}=0.1001$ $[x]_{*}$ $[x]_{*}=0.1001$ $[x]_{*}$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$ $[x]_{*}=0.1001$

$$0.10101 + 0.0100$$

0.11101

两个正数相加的结果成为负数,这显然是错误的。

例:
$$x=-0.1101$$
, $y=-0.1011$, 求 $x+y$ 。

$$\mathbf{M}$$
: $\begin{bmatrix} x \end{bmatrix}_{\frac{1}{4}} = 1.0011$ $\begin{bmatrix} y \end{bmatrix}_{\frac{1}{4}} = 1.0101$ $\begin{bmatrix} x \end{bmatrix}_{\frac{1}{4}} = 1.0011$ $\begin{bmatrix} 1.00101 \\ - & 1.00101 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}_{\frac{1}{4}} = 1.0101$ $\begin{bmatrix} x \end{bmatrix}_{\frac{1}{4}} = 1.0101$ $\begin{bmatrix} x \end{bmatrix}_{\frac{1}{4}} = 1.0101$

$$1.10101$$
 $+ 1.11000$

1 1 .0 1 1 0 1

两个负数相加的结果成为正数,这同样是错误的。

正常结果

2. 溢出的检测方法

$$\begin{bmatrix}
 x \end{bmatrix}_{\frac{1}{1}} & 1. & 0 & 0 & 1 & 1 \\
 + & [y]_{\frac{1}{1}} & 1. & 0 & 1 & 0 & 1 \\
 & [x+y]_{\frac{1}{1}} & 0. & 1 & 0 & 0 & 0$$

(1)单符号位检测方法1

设两数符号位分别为 S1、S2 和数符号位 Sc

溢出逻辑表达式为:

$$V = \overline{S}_1 \overline{S}_2 S_c + S_1 S_2 \overline{S}_c$$

判断电路

(2) 单符号位检测方法2

符号位进位C_f,最高位进位C_n

$$+ 0.01000$$

0.11101

$$C_f = 0$$
, $C_n = 0$

$$+ 0.11000$$

1.01101

$$C_{f} = 0, C_{n} = 1$$

$$C_{f} = 1, C_{n} = 1$$

$$+ 1.11000$$

$$C_{f} = 1, C_{n} = 0$$

从上面例中看到:

当最高有效位有进位而符号位无进位时,产生上溢;

当最高有效位无进位而符号位有进位时,产生下溢。

(简单地说是正数相加为负数或负数相加为正数则产生溢出)

故溢出逻辑表达式为: $V=C_f \oplus C_o$

其中C_f为符号位产生的进位、C_o为最高有效位产生的进位。

此逻辑表达式也可用异或门实现。

(3) 双符号位法

一个符号位只能表示正、负两种情况,当产生溢出时,符号位的含义就会发生混乱。如果将符号位扩充为两位(S_{f1} 、 S_{f2}),其所能表示的信息量将随之扩大,既能判别是否溢出,又能指出结果的符号。

双符号位法也称为"变形补码"或"模4补码"。

定点小数变形补码定义:

字长n+2定点整数,变形补码定义:

$$\begin{bmatrix} x \end{bmatrix}_{\nmid h} = \begin{cases} x & 0 \le x < 2^n \pmod{2^{n+2}} \\ 2^{n+2} + x & -2^n \le x < 0 \end{cases} \pmod{2^{n+2}}$$

采用变形补码后数的表示:

- 任何小于1的正数: 两个符号位都是"0",即 00. $x_1x_2...x_n$;
- 任何大于-1的负数: 两个符号位都是"1", 即 $11. x_1 x_2 \cdots x_n$

模4补码加法公式: $[x]_{i}+[y]_{i}=[x+y]_{i}$ (mod 4)

两数变形补码之和等于两数和的变形补码,要求:

- 两个符号位都看做数码一样参加运算;
- 两数进行以4为模的加法,即最高符号位上产生的进位要丢掉。

双符号数溢出检测

$$00.10101$$
 $+00.01000$

00.11101

正常结果

00.10101

+ 00.11000

0101101

非正常符号位,溢出

+ 11.11000

1 1 1 .0 1 1 0 1

符号位进位舍去, 正常结果

11.00101

+ 11.11000

1 10 .11101

非正常符号位,溢出

双符号位的含义如下:

 $S_{f1}S_{f2}=00$ 结果为正数,无溢出

01 结果正溢

10 结果负溢

11 结果为负数,无溢出

即: 结果的两个符号位的代码不一致时,表示溢出;

两个符号位的代码一致时,表示没有溢出。

不管溢出与否,最高符号位永远表示结果的正确符号。

溢出逻辑表达式为: $V=S_{f1} \oplus S_{f2}$

式中: S_{f1}和S_{f2}分别为最高符号位和第二符号位,此逻辑表达式可用异或门实现。

例 x= +0.1100, y= +0.1000, 求x+y。

解:
$$[x]_{*}=00.1100$$
 $[y]_{*}=00.1000$ $[x]_{*}=00.1000$ $[y]_{*}=00.1000$ $[y]_{*}=00.1000$ $[y]_{*}=00.1000$

符号位出现"01",表示已溢出,正溢。即结果大于+1

例
$$x=-0.1100$$
, $y=-0.1000$, 求 $x+y$ 。

$$m$$
:
 $[x]_{\uparrow \uparrow} = 11.0100$
 $[y]_{\uparrow \uparrow} = 11.1000$
 $[x]_{\uparrow \uparrow}$
 $[x]_{\uparrow \uparrow}$

符号位出现"10",表示已溢出,负溢出。即结果小于-1

基本的二进制加法/减法器

1. 一位全加器

逻辑方程

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i}$$

$$C_{i+1} = A_{i}B_{i} + (A_{i} \oplus B_{i})C_{i}$$

一位全加器真值表

输入		输出		_↑ S _i	
A_{i}	$B_{\mathbf{i}}$	$C_{\mathbf{i}}$	S_{i}	C_{i+1}	
0	0	0	0	0	
0	0	1	1	0	$C_{i+1} \longleftarrow FA \longleftarrow C_i$
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	⇒ A _i B _i
1	0	1	0	1	Λ_{i}
1	1	0	0	1	一位全加器
1	1	1	1	1	

逻辑方程

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

2. n位的行波进位加减器

n个1位的全加器(FA)可级联成一个n位的行波进位加减器。

3. n位的行波进位加法器的问题

典型门电路的逻辑符号和延迟时间

门的名称	门的功能	逻辑符号(正逻辑)	时间延迟
与非	NAND	A A B	T
或非	NOR	A A+B	T
非	NOT	A	T
与	AND	A A·B	2T
或	OR	A A + B	2T
异或	XOT	A⊕ B	3T
异或非	XNOR	A B AOB	3T
接线逻辑 (与或非)	AOI	AB+CD	T+T _{RC}

T被定义为相应 于单级逻辑电路 的单位门延迟。

T通常采用一个 "与非"门或一 个"或非"门的 时间延迟来作为 度量单位。 (1)对一位全加器 (FA)来说, S_i 的时间延迟为6T (每级异或门延迟3T); C_{i+1} 的时间延迟为5T。

(2) n位行波进位加法器的延迟时间 t 为:

考虑溢出检测时,有: $t_a = n \cdot 2T + 9T = (2n + 9)T$

- 9T为最低位上的两极"异或"门再加上溢出"异或"门的总时间;
- 2T为每级进位链的延迟时间。

当不考虑溢出检测时,有: $t_a = (n-1) \cdot 2T + 9T$

ta为在加法器的输入端输入加数和被加数后,在最坏的情况下加法器输出 端得到稳定的求和输出所需要的最长时间。

ta越小越好。

由一位全加器(FA)构成的行波进位加法器:

缺点:

- (1) 串行进位, 它的运算时间长;
- (2) 只能完成加法和减法两种操作而不能完成逻辑操作。

能否提前产生各位的进位输入? 使得各位的加法运算能并行起来,即可提高多位加法器运算速度

并行加法器进位链

- $S_i = A_i \oplus B_i \oplus C_{i-1}$
- $C_i = A_i B_i + (A_i \oplus B_i) C_{i-1}$
- G_i = A_iB_i G_i 进位生成函数 Generate
- P_i=A_i⊕B_i
 P_i进位传递函数 Propagate
- $C_i = G_i + P_i C_{i-1}$
- $C_n = A_n B_n + (A_n \oplus B_n) C_{n-1} = G_n + P_n C_{n-1}$
- $C_{n-1} = A_{n-1}B_{n-1} + (A_{n-1} \oplus B_{n-1})C_{n-2} = G_{n-1} + P_{n-1}C_{n-2}$
-
- $C_1 = A_1B_1 + (A_1 \oplus B_1)C_0 = G_1 + P_1C_0$
- 高位的运算依赖于低位运算的进位输入计算不能并行
- 能否提前得到当前位的进位输入??

并行加法器进位链

$$\begin{split} &C_1 = A_1 B_1 + (A_1 \oplus B_1) C_0 = G_1 + P_1 C_0 \\ &C_2 = A_2 B_2 + (A_2 \oplus B_2) \ C_1 = G_2 + P_2 C_1 \\ &= G_2 + P_2 (G_1 + P_1 C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 C_0 \\ &C_3 = A_3 B_3 + (A_3 \oplus B_3) \ C_2 = G_3 + P_3 C_2 \\ &= G_3 + P_3 (G_2 + P_2 G_1 + P_2 P_1 C_0) \\ &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_0 \\ &C_{n-1} = G_{n-1} + P_{n-1} G_{n-2} + P_{n-1} P_{n-2} G_{n-3} \dots + P_n P_{n-1} \dots P_1 C_0 \\ &\dots \\ &C_n = G_n + P_n G_{n-1} + P_n P_{n-1} G_{n-2} + P_n P_{n-1} P_{n-2} G_{n-3} \dots \\ &+ P_n P_{n-1} P_{n-2} \dots P_1 C_0 \end{split}$$

位数越长,进位链电路复杂度越高通常按照4位一组进行分组运算

四位快速加法器

16位加法器

- 组内先行进位
- 组间串行进位
- 可否组间并行?

成组进位

■
$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0$$

■ $G_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1$ 成组进位发生输出

- P₄*= P₄P₃P₂P₁ 成组进位传递函数
- $\mathbf{C}_4 = \mathbf{G}_4^* + \mathbf{P}_4^* \mathbf{C}_0$
- $C_1 = G_1 + P_1 C_0$ 比较原相邻位进位公式

$$C_4 = G_4^* + P_4^* C_0$$

$$C_8 = G_8^* + P_8^* (G_4^* + P_4^* C_4)$$

$$= G_8^* + P_8^* G_4^* + P_8^* P_4^* C_0$$

$$C_{16} = G_{16}^* + P_{16}^* G_{12}^* + P_{16}^* P_{12}^* G_8^*$$

$$+ P_{16}^* P_{12}^* P_8^* G_4^* + P_{16}^* P_{12}^* P_8^* P_4^* C_0$$

- 用4组 P* G*作输入,即可复用原先行进位电路
- 产生组间先行进位信号

先行进位电路74182

- 输入: P₄G₄ P₃G₃ P₂G₂ P₁G₁ C₀
- 輸出: 先行进位输出C₄C₃C₂C₁

成组进位传送输出P*

成组进位发生输出G*

$$C_n = G_n + P_n G_{n-1} + P_n P_{n-1} G_{n-2} + P_n P_{n-1} P_{n-2} G_{n-3} ... + P_n P_{n-1} ... P_1 C_0$$

• $G_i = X_i Y_i$ $P_i = X_i \oplus Y_i$

ALU74181

■ 先行进位的多功能算术/逻辑运算单元

16位组内先行进位,组间先行进位

32位先行进位系统

64位先行进位系统

先行进位电路时间延迟分析

 $C_n = G_n + P_n G_{n-1} + P_n P_{n-1} G_{n-2} \dots + P_n P_{n-1} \dots P_1 C_0$

假设所有门电路均按照2输入

G_n 需要1个门电路延迟

P_nG_{n-1} 需要2个门电路延迟

 $P_n P_{n-1} G_{n-2}$ 需要3个门电路延迟

 $P_n P_{n-1} P_1 C_0$ 需要n+1个门电路延迟

考虑并发,时间延迟级别[log₂(2n+1)] + 1

十进制加法器

十进制加法器可由BCD码(二一十进制码)来设计,它可以在二进制加法器的基础上加上适当的"校正"逻辑来实现。

故: 1. 和为10~15时,加6校正; 2. 和数有进位时,加6校正。

一位BCD码行波式进位加法器一般结构:

n位BCD码行波式进位加法器一般结构:

