Computing All Pure Squares In Compressed Texts

Lesha Khvorost

Ural State University

July 14, 2011

Decoding DNA and Feature Extraction

Searching a Criminal by His Photo

SLP that Generates a¹²

Simple Definitions

Primitive string

A string x is **primitive** if $x = u^k$ for some k implies that k = 1 and u = x.

Pure square and repetition

A **pure** square is a square xx where x is primitive. Otherwise, xx is called a **repetition**.

Main Problem

Computing All Pure Squares Problem

INPUT: an SLP S that derives some text S; OUTPUT: a data

structure (a PS-table) that contains information about all pure squares in S in a compressed form;

Pure Squares Table

PS-table Properties

- The size of *PS*-table is equal to $(\lfloor \log |S| \rfloor + 1) \times (|S| + 1)$;
- The cell PS(i,j) with i,j > 0 contains information about the family of all pure squares such that
 - **1** they touch the cut position of the rule S_i ;
 - ② they are contained in the text S_j ;
 - 3 lengths of their roots belong to the interval $[2^{i-1}, 2^i)$.

Summarize

Features of the algorithm

- The algorithm runs on $O(\max(|\mathbb{S}|^5 \log |S|, |\mathbb{S}|^3 \log^3 |\mathbb{S}| \log |S|))$ time and requires $O(\mathbb{S}^3)$ space;
- The algorithm is divided into independent steps in contrast to classical algorithms in this area which consecutively accumulate information about required objects. As a result it can be parallelized;
- The algorithm is not excluded that the constants hidden in the "O" notation are actually very big;

Genesis and Migration of Mice Problem

Open Problems

Computing All Squares Problem

Can we compress all other families of repetitions?

Optimization

Can we optimize a time complexity of the algorithm?

Haven't you slept yet?

