İşaret İşleme

Fourier Serileri ve Fourier Dönüşümü-H10CD2

Dr. Meriç Çetin

versiyon291020

EEEN343 Sinyaller ve Sistemler Ders Notları

Prof. Dr. Serdar İplikçi

EEEN343 Sinyaller ve Sistemler Ders Notları

Prof. Dr. Serdar İplikçi

Giriş

- Önceki bölümlerde, zaman domenindeki sürekli ve ayrık-zamanlı sinyallerin Laplace ve z dönüşümleriyle s ve z domenine dönüştürerek daha kolay analiz ve işlem yapılabileceği görülmüştü.
- Bunun yanısıra, bu dönüşümler bir çok sinyal ve sistemin özelliklerinin daha iyi kavranmasını sağlar.
- Bu bölümde ilk olarak Fourier serileri görülecek, ardından da sürekli-zaman domenindeki sinyallerin frekans domenine dönüştürülmesi ve bu domende analiz edilmesi görülecektir.
- Fourier serileri, sinyalleri sinüzoidler cinsinden temsil eder. Bu gösterim sistemlerin yeni bir temsille (filtre gibi) gösterilmesini sağlar.

Fourier Serileri

Jean-Baptiste Joseph Fourier (1768-1830)

• Fourier showed that any periodic signal s(t) can be written as a sum of sine waves with various amplitudies, frequencies and phases

$$s(t) = a_0 + a_1 \sin(\omega t + \phi_1) + a_2 \sin(2\omega t + \phi_2) + a_3 \sin(3\omega t + \phi_3) + \cdots$$

• where ai's are amplitudes, ϕi 's are phase shifts, and ω is the *fundamental* frequency. The higher order frequencies 2ω , 3ω , etc. are called harmonics.

• The *time domain* signal of the square wave, s(t), is shown on the left. The so-called *frequency domain* representation, $S(\omega)$, is shown on the right. $S(\omega)$ is

called the *Fourier transform* of s(t)

Representing signals by their harmonic components.

6.003 Signals and Systems Fall 2011

Musical Instruments

6.003 Signals and Systems Fall 2011

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS.html)

What signals can be represented by sums of harmonic components?

6.003 Signals and Systems
Fall 2011

Only periodic signals: all harmonics of ω_0 are periodic in $T=2\pi/\omega_0$.

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: triangle waveform

Fourier Series

One can visualize convergence of the Fourier Series by incrementally adding terms.

Example: square wave

Periyodik bir sinyalin genlik ve faz spektrumu

Temel periyodu To olan bir x(t) periyodik sinyalinin karmaşık üstel Fourier serisi gösterilimi:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jkw_0 t} \qquad w_0 = \frac{2\pi}{T_0}$$

buradaki c_k katsayılar

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jkw_0 t} dt$$

Periyodik bir sinyalin genlik ve faz spektrumu

Bu c_k katsayıları karmaşık sayılar olup

$$c_k = |c_k| e^{j\phi_k}$$

şeklinde ifade edilebilir, burada $|c_k|$ genlik, ϕ_k ise fazdır. Açısal frekans w'a karşı $|c_k|$ 'nın grafiğine x(t) periyodik sinyalinin genlik spektrumu, açısal frekans w'a karşı ϕ_k 'nın grafiğine x(t) periyodik sinyalinin faz spektrumu denir. k indisi yalnızaca tamsayı değerler aldığı için bu spektrumlar sürekli eğriler olmayıp yalnızca kw_0 ayrık frekans değerlerinde ortaya çıkarlar. Bu nedenle de bunlara ayrık frekans spektrumları ya da cizgi spektrumları denir. Şekil 5.3'te, karmaşık üstel Fourier serisi katsayıları

Periyodik bir sinyalin genlik ve faz spektrumu

Şekil 5.3 Periyodik bir Sinyalin Genlik ve Faz Spektrumları

Fourier Transformu

Fourier Dönüşümü

Sürekli-zamanlı bir x(t) işaretinin Fourier dönüşümü $X(w) = \mathcal{F}\{x(t)\}$ ile gösterilir

$$x(t) \longleftrightarrow X(w) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

buradaki w değişkeni açısal frekansı temsil eden bağımsız bir değişkendir. Fourier dönüşümünün bulunduğu ortama *frekans-domeni* adı verilmektedir. Benzer şekilde, Fourier dönüşümü X(w) olan sürekli-zamanlı bir x(t) işareti, aşağıdaki gibi verilen ters Fourier dönüşümü ile elde edilir:

$$X(w) \longleftrightarrow x(t) = \mathcal{F}^{-1}\{X(w)\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w)e^{jwt}dw.$$

• Fourier transformation is the mathematical procedure connecting s(t) and $S(\omega)$. If s(t) is specified, $S(\omega)$ may be computed, and vice versa. The equations require some knowledge of complex numbers and calculus to make sense. Here I will simply provide the defining equations for completeness:

$$S(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t}dt$$

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega$$

Örnek olarak

birim darbe fonksiyonunun Fourier dönüşümünü bulalım.

$$x(t) = \delta(t) \iff X(w) = \int_{-\infty}^{+\infty} \delta(t)e^{-jwt}dt = 1$$

 $x(t) = e^{-at}u(t)$ sinyalinin a > 0 olmak üzere Fourier dönüşümü

$$x(t) = e^{-at}u(t) \iff X(w) = \int_{-\infty}^{+\infty} e^{-at}u(t)e^{-jwt}dt$$

$$= \int_{0}^{+\infty} e^{-at}e^{-jwt}dt$$

$$= \int_{0}^{+\infty} e^{-(jw+a)t}dt$$

$$= \frac{-1}{jw+a}e^{-(jw+a)t}\Big|_{0}^{+\infty}$$

$$= \frac{-1}{jw+a}e^{-(jw+a)\infty} - \frac{-1}{jw+a}e^{-(jw+a)0}$$

$$= \frac{-1}{jw+a}e^{-(jw+a)\infty} + \frac{1}{jw+a}$$

$$= \frac{1}{jw+a}$$

Genel Karmaşık Üstel Sinyaller

$$x(t) = e^{(\sigma + j\omega_0)t}.$$

Genel Karmaşık Üstel Sinyaller

$$x(t) = e^{(\sigma + j\omega_0)t}.$$

Euler bağıntısı
$$x(t) = e^{(\sigma + j\omega_0)t} = e^{\sigma t}\cos\omega_0 t + je^{\sigma t}\sin\omega_0 t.$$

Şimdi de $x(t) = \cos(w_0 t)$ sinyalinin Fourier dönüşümünü bulalım. Bunun için $\cos(w_0 t) = \frac{1}{2} e^{jw_0 t} + \frac{1}{2} e^{-jw_0 t}$ şeklindeki <u>Euler formülünden</u> yararlanacağız. Ancak, öncelikle $e^{\mp jw_0 t}$ sinyalinin Fourier dönüşümünü bulalım. $1 \leftrightarrow 2\pi \delta(w)$ dönüşümüne frekans-domeninde öteleme özelliği olan $e^{jw_0 t} x(t) \leftrightarrow X(w-w_0)$ eşitliğini uygularsak,

$$e^{\mp jw_0t} \leftrightarrow 2\pi\delta(w \pm w_0)$$

elde edilir. Böylece,

$$x(t) = \cos(w_0 t) \iff X(w) = \mathcal{F} \left\{ \frac{1}{2} e^{jw_0 t} + \frac{1}{2} e^{-jw_0 t} \right\}$$

$$= \frac{1}{2} 2\pi \delta(w - w_0) + \frac{1}{2} 2\pi \delta(w + w_0)$$

$$= \pi \delta(w - w_0) + \pi \delta(w + w_0)$$

Tablo 5.1 Fourier Dönüşümünün Özellikleri

Özellik	x(t)	X(w)
	$x(t)$ $x_1(t)$ $x_2(t)$	$X(w)$ $X_1(w)$ $X_2(w)$
Doğrusallık	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(w) + a_2 X_2(w)$
Zamanda Öteleme	$x(t-t_0)$	$e^{-jwt_0}X(w)$
Frekans -domeninde Öteleme	$e^{jw_0t}x(t)$	$X(w-w_0)$
Zamanda Ölçekleme	x(at)	$\frac{1}{ a }X\left(\frac{w}{a}\right)$
Zamanda Geri Dönüş	x(-t)	X(-w)
Zamanda Türev	$\frac{d}{dt}x(t)$	jwX(w)
Frekans-domeninde Türev	-jtx(t)	$\frac{d}{dw}X(w)$
Çifteşlik	X(t)	$2\pi x(-w)$
Konvolüsyon	$x_1(t) * x_2(t)$	$X_1(w)X_2(w)$
Çarpma	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(w) * X_2(w)$
Parseval Bağıntısı	$\int_{-\infty}^{+\infty} x(t) ^2 dt =$	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) ^2 dw$

Tablo 5.2 Bazı Fourier Dönüşüm Çiftleri

x(t)	X(w)	X(s)
$\delta(t)$	1	1
u(t)	$\pi\delta(w) + \frac{1}{jw}$	$\frac{1}{s}$
-u(-t)	$\pi\delta(w) - \frac{1}{jw}$	$\frac{1}{s}$
1	$2\pi\delta(w)$	
sgn(t)	2 jw	
tu(t)		$\frac{1}{s^2}$
$e^{-at}u(t)$	$\frac{1}{jw+a}$	$\frac{1}{s+a}$
$-e^{-at}u(-t)$	$\frac{1}{jw+a}$	$\frac{1}{s+a}$
$te^{-at}u(t)$	$\frac{1}{(jw+a)^2}$	$\frac{1}{(s+a)^2}$
$-te^{-at}u(-t)$	$\frac{1}{(jw+a)^2}$	$\frac{1}{(s+a)^2}$

x(t)	X(w)	X(s)
$e^{-at}\cos(w_0t)u(t)$	$\frac{jw+a}{(jw+a)^2+w_0^2}$	$\frac{s+a}{(s+a)^2+w_0^2}$
$e^{-at}\sin(w_0t)u(t)$	$\frac{w_0}{(jw+a)^2 + w_0^2}$	$\frac{w_0}{(s+a)^2+w_0^2}$
$e^{\mp jw_0t}$	$2\pi\delta(w\pm w_0)$	
$\cos(w_0t)$	$\pi\delta(w-w_0)+\pi\delta(w+w_0)$	
$\sin(w_0t)$	$-j\pi\delta(w-w_0)+j\pi\delta(w+w_0)$	
e-a t	$\frac{2a}{a^2 + w^2}$	
$\frac{1}{a^2+t^2}$	$\frac{\pi}{a}e^{-a w }$	
$P_a(t)$	$2\frac{\sin(aw)}{w}$	
$\frac{\sin(at)}{\pi t}$	$P_a(w)$	
e-at2	$\sqrt{\frac{\pi}{a}}e^{-\frac{w^2}{4a}}$	
$\sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	$w_0 \sum_{k=-\infty}^{\infty} \delta(w - kw_0)$	

Fourier Dönüşümü ile Laplace Dönüşümü Arasındaki İlişki

Bilindiği gibi, sürekli-zamanlı bir x(t) işaretinin Fourier dönüşümü

$$x(t) \leftrightarrow X(w) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

eşitliği ile bulunurken Laplace dönüşümü de

$$x(t) \leftrightarrow X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

eşitliği ile bulunmaktadır. Bu iki eşitlik karşılaştırıldığında aralarında

$$\mathcal{F}\{x(t)\} = X(w) = X(s)|_{s \to jw}$$

Relation between Fourier and Laplace Transforms

There are also important differences.

Compare Fourier and Laplace transforms of $x(t) = e^{-t}u(t)$.

Laplace transform

$$X(s) = \int_{-\infty}^{\infty} e^{-t}u(t)e^{-st}dt = \int_{0}^{\infty} e^{-(s+1)t}dt = \frac{1}{1+s}$$
; Re(s) > -1

a complex-valued function of complex domain.

Fourier transform

$$X(j\omega) = \int_{-\infty}^{\infty} e^{-t}u(t)e^{-j\omega t}dt = \int_{0}^{\infty} e^{-(j\omega+1)t}dt = \frac{1}{1+j\omega}$$

a complex-valued function of real domain.

Laplace Transform

The Laplace transform maps a function of time t to a complex-valued function of complex-valued domain s.

Fourier Transform

The Fourier transform maps a function of time t to a complex-valued function of real-valued domain ω .

Tablo 5.1 Fourier Dönüşümünün Özellikleri

Özellik	x(t)	X(w)
	$x(t)$ $x_1(t)$ $x_2(t)$	$X(w)$ $X_1(w)$ $X_2(w)$
Doğrusallık	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(w) + a_2 X_2(w)$
Zamanda Öteleme	$x(t-t_0)$	$e^{-jwt_0}X(w)$
Frekans -domeninde Öteleme	$e^{jw_0t}x(t)$	$X(w-w_0)$
Zamanda Ölçekleme	x(at)	$\frac{1}{ a }X\left(\frac{w}{a}\right)$
Zamanda Geri Dönüş	x(-t)	X(-w)
Zamanda Türev	$\frac{d}{dt}x(t)$	jwX(w)
Frekans-domeninde Türev	-jtx(t)	$\frac{d}{dw}X(w)$
Çifteşlik	X(t)	$2\pi x(-w)$
Konvolüsyon	$x_1(t) * x_2(t)$	$X_1(w)X_2(w)$
Çarpma	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(w) * X_2(w)$
Parseval Bağıntısı	$\int_{-\infty}^{+\infty} x(t) ^2 dt =$	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) ^2 dw$

Tablo 5.2 Bazı Fourier Dönüşüm Çiftleri

x(t)	X(w)	X(s)
$\delta(t)$	1	1
u(t)	$\pi\delta(w) + \frac{1}{jw}$	$\frac{1}{s}$
-u(-t)	$\pi\delta(w) - \frac{1}{jw}$	$\frac{1}{s}$
1	$2\pi\delta(w)$	
sgn(t)	2 jw	
tu(t)		$\frac{1}{s^2}$
$e^{-at}u(t)$	$\frac{1}{jw+a}$	$\frac{1}{s+a}$
$-e^{-at}u(-t)$	$\frac{1}{jw+a}$	$\frac{1}{s+a}$
$te^{-at}u(t)$	$\frac{1}{(jw+a)^2}$	$\frac{1}{(s+a)^2}$
$-te^{-at}u(-t)$	$\frac{1}{(jw+a)^2}$	$\frac{1}{(s+a)^2}$

x(t)	X(w)	X(s)
$e^{-at}\cos(w_0t)u(t)$	$\frac{jw+a}{(jw+a)^2+w_0^2}$	$\frac{s+a}{(s+a)^2+w_0^2}$
$e^{-at}\sin(w_0t)u(t)$	$\frac{w_0}{(jw+a)^2 + w_0^2}$	$\frac{w_0}{(s+a)^2 + w_0^2}$
$e^{\mp jw_0t}$	$2\pi\delta(w\pm w_0)$	
$\cos(w_0t)$	$\pi\delta(w-w_0)+\pi\delta(w+w_0)$	
$\sin(w_0t)$	$-j\pi\delta(w-w_0)+j\pi\delta(w+w_0)$	
e-a t	$\frac{2a}{a^2 + w^2}$	
$\frac{1}{a^2+t^2}$	$\frac{\pi}{a}e^{-a w }$	
$P_a(t)$	$2\frac{\sin(aw)}{w}$	
$\frac{\sin(at)}{\pi t}$	$P_a(w)$	
e-at2	$\sqrt{\frac{\pi}{a}}e^{-\frac{w^2}{4a}}$	
$\sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	$w_0 \sum_{k=-\infty}^{\infty} \delta(w - kw_0)$	

Bu ders notu için faydalanılan kaynaklar

EEEN343 Sinyaller ve Sistemler Ders Notlan

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011 Prof. Dr. Serdar İplikçi Pamukkale Üniversitesi Mühendislik Fakültesi

Elektrik-Elektronik Mühendisliği

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.