An homogeneous formulation for Unbalanced Regularized Optimal Transport

Journée thématique OT-ML Institut Henri Poincaré 18 novembre 2021

theo.lacombe@univ-eiffel.fr

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). The unbalanced, regularized Optimal Transport problem is defined as

$$OT_{\epsilon}(\alpha, \beta) := \inf_{\pi \in \mathcal{M}_{+}(\Omega \times \Omega)} \underbrace{\langle \pi, c \rangle}_{\text{transport cost}} + \underbrace{D_{\varphi}(\pi_{1}|\alpha) + D_{\varphi}(\pi_{2}|\beta)}_{\text{marginal errors}} + \underbrace{\epsilon \text{KL}(\pi|\alpha \otimes \beta)}_{\text{entropic regularization}}$$
(1)

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). The unbalanced, regularized Optimal Transport problem is defined as

$$OT_{\epsilon}(\alpha, \beta) := \inf_{\pi \in \mathcal{M}_{+}(\Omega \times \Omega)} \underbrace{\langle \pi, c \rangle}_{\text{transport cost}} + \underbrace{D_{\varphi}(\pi_{1}|\alpha) + D_{\varphi}(\pi_{2}|\beta)}_{\text{marginal errors}} + \underbrace{\epsilon \text{KL}(\pi|\alpha \otimes \beta)}_{\text{entropic regularization}} \tag{1}$$

$$= \sup_{f,g \in \mathcal{C}(\Omega)} \langle -\varphi^*(-f), \alpha \rangle + \langle -\varphi^*(-g), \beta \rangle - \epsilon \langle e^{\frac{f \oplus g - c}{\epsilon}} - 1, \alpha \otimes \beta \rangle$$
 (2)

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). The unbalanced, regularized Optimal Transport problem is defined as

$$OT_{\epsilon}(\alpha, \beta) := \inf_{\pi \in \mathcal{M}_{+}(\Omega \times \Omega)} \underbrace{\langle \pi, c \rangle}_{\text{transport cost}} + \underbrace{D_{\varphi}(\pi_{1}|\alpha) + D_{\varphi}(\pi_{2}|\beta)}_{\text{marginal errors}} + \underbrace{\epsilon \text{KL}(\pi|\alpha \otimes \beta)}_{\text{entropic regularization}}$$

$$= \sup_{f, g \in \mathcal{C}(\Omega)} \langle -\varphi^{*}(-f), \alpha \rangle + \langle -\varphi^{*}(-g), \beta \rangle - \epsilon \langle e^{\frac{f \oplus g - c}{\epsilon}} - 1, \alpha \otimes \beta \rangle$$
(2)

Proposition: [Séjourné et al.,2021] Define $\operatorname{aprox}: p \mapsto -\operatorname{arg\,min}_q\left\{\epsilon\exp\left(\frac{p-q}{\epsilon}\right) + \varphi^*(q)\right\}$. Let $f_0, g_0 \in \mathcal{C}(\Omega)$, and let

$$f_{t+1} = -\operatorname{aprox}\left(\epsilon \log \int e^{\frac{g_t(y) - c(\cdot, y)}{\epsilon}} d\beta(y)\right)$$
$$g_{t+1} = -\operatorname{aprox}\left(\epsilon \log \int e^{\frac{f_{t+1}(x) - c(x, \cdot)}{\epsilon}} d\alpha(x)\right).$$

Under mild assumptions, $(f_t, g_t)_t \to (f^*, g^*)$ optimal for (2).

Note: using $m(\alpha) = m(\beta)$ and $\varphi^* = id$ ($\Rightarrow aprox = id$), we retrieve the Balanced OT model.

Théo Lacombe, LIGM, Université Gustave Eiffel

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). The unbalanced, regularized Optimal Transport problem is defined as

$$OT_{\epsilon}(\alpha, \beta) := \inf_{\pi \in \mathcal{M}_{+}(\Omega \times \Omega)} \underbrace{\langle \pi, c \rangle}_{\text{transport cost}} + \underbrace{D_{\varphi}(\pi_{1}|\alpha) + D_{\varphi}(\pi_{2}|\beta)}_{\text{marginal errors}} + \underbrace{\epsilon \text{KL}(\pi|\alpha \otimes \beta)}_{\text{entropic regularization}}$$

$$= \sup_{f \in \mathcal{A}(\Omega)} \langle -\varphi^{*}(-f), \alpha \rangle + \langle -\varphi^{*}(-g), \beta \rangle - \epsilon \langle e^{\frac{f \oplus g - c}{\epsilon}} - 1, \alpha \otimes \beta \rangle$$
(2)

 $-\sup_{f,g\in\mathcal{C}(\Omega)} \langle -\varphi (-f), \alpha \rangle + \langle -\varphi (-g), \beta \rangle - \epsilon \langle e^{-\epsilon} - 1, \alpha \otimes \beta \rangle \tag{2}$

Proposition: [Séjourné et al.,2021] If (f,g) are optimal for (2), then

$$\pi = \exp\left(\frac{f \oplus g - c}{\epsilon}\right) d\alpha d\beta$$

is optimal for (1).

Observation: If we replace α, β by $\lambda \alpha, \lambda \beta$ for some $\lambda > 0$, the dual objective function becomes

$$\frac{\lambda \left\langle -\varphi^*(-f), \alpha \right\rangle + \lambda \left\langle -\varphi^*(-g), \beta \right\rangle - \lambda^2 \epsilon \left\langle e^{\frac{f \oplus g - c}{\epsilon}} - 1, \alpha \otimes \beta \right\rangle,}{\epsilon}$$

and then

$$\mathrm{OT}_{\epsilon}(\lambda\alpha,\lambda\beta) \neq \lambda \cdot \mathrm{OT}_{\epsilon}(\alpha,\beta)$$

when $\epsilon > 0$, while this holds when $\epsilon = 0$.

Quadratic term, feels like $\epsilon \to \lambda \epsilon$

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) .

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) . Then, the sequence generated for the couple $(\lambda \alpha, \lambda \beta)$ is $(f_t - \epsilon \log(\lambda), g_t)_t$.

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) . Then, the sequence generated for the couple $(\lambda \alpha, \lambda \beta)$ is $(f_t - \epsilon \log(\lambda), g_t)_t$.

Corollary: If (f, g) is optimal for (α, β) , then $(f - \epsilon \log(\lambda), g)$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow There is a shift in $f \oplus g$ which diverges as $\lambda \rightarrow \infty$ (or $\lambda \rightarrow 0$).

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) . Then, the sequence generated for the couple $(\lambda \alpha, \lambda \beta)$ is $(f_t - \epsilon \log(\lambda), g_t)_t$.

Corollary: If (f, g) is optimal for (α, β) , then $(f - \epsilon \log(\lambda), g)$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow There is a shift in $f \oplus g$ which diverges as $\lambda \rightarrow \infty$ (or $\lambda \rightarrow 0$).

Corollary: If π is an optimal transport plan between α and β , then $\lambda \pi$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow Good news: the optimal transport plan **is** homogeneous is this setting!

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) . Then, the sequence generated for the couple $(\lambda \alpha, \lambda \beta)$ is $(f_t - \epsilon \log(\lambda), g_t)_t$.

Corollary: If (f, g) is optimal for (α, β) , then $(f - \epsilon \log(\lambda), g)$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow There is a shift in $f \oplus g$ which diverges as $\lambda \rightarrow \infty$ (or $\lambda \rightarrow 0$).

Corollary: If π is an optimal transport plan between α and β , then $\lambda \pi$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow Good news: the optimal transport plan **is** homogeneous is this setting!

```
Corollary: OT_{\epsilon}(\lambda \alpha, \lambda \beta) = \lambda OT_{\epsilon}(\alpha, \beta) + \epsilon \lambda (\lambda - 1) m^2 - \epsilon \lambda \log(\lambda) m
```

 \rightarrow Optimal value is not homogeneous and tends to be over-estimated.

How bad is it?

• In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):

Proposition: Fix (f_0, g_0) as the initial state for Sinkhorn iterations. Let $(f_t, g_t)_t$ be the sequence generated for the couple (α, β) . Then, the sequence generated for the couple $(\lambda \alpha, \lambda \beta)$ is $(f_t - \epsilon \log(\lambda), g_t)_t$.

Corollary: If (f, g) is optimal for (α, β) , then $(f - \epsilon \log(\lambda), g)$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow There is a shift in $f \oplus g$ which diverges as $\lambda \rightarrow \infty$ (or $\lambda \rightarrow 0$).

Corollary: If π is an optimal transport plan between α and β , then $\lambda \pi$ is optimal for $(\lambda \alpha, \lambda \beta)$.

 \rightarrow Good news: the optimal transport plan **is** homogeneous is this setting!

```
Corollary: OT_{\epsilon}(\lambda \alpha, \lambda \beta) = \lambda OT_{\epsilon}(\alpha, \beta) + \epsilon \lambda (\lambda - 1) m^2 - \epsilon \lambda \log(\lambda) m
```

 \rightarrow Optimal value is not homogeneous and tends to be over-estimated.

Corollary: The (balanced) Sinkhorn divergence $Sk_{\epsilon}(\alpha, \beta) := OT_{\epsilon}(\alpha, \beta) - \frac{1}{2}OT_{\epsilon}(\alpha, \alpha) - \frac{1}{2}OT_{\epsilon}(\beta, \beta)$ is homogeneous!

How bad is it?

- In the balanced case $(m(\alpha) = m(\beta) = m, \varphi^* = id$, and aprox = id):
 - \Rightarrow Things are going well.

One (potential) numerical issue:

It is natural to fix a stopping criterion in the Sinkhorn iterations in terms of relative variations of the objective value: IF (new_ot_estim - ot_estim)/ot_estim < crit: STOP.

Non-homogeneity hinders this approach.

How bad is it?

• And in the general case, where $\varphi^* \neq id$ (hence $aprox \neq id$)?

Things get worse: Sk_{ϵ} , π , etc. won't be homogeneous for general φ^* .

Depends on the behavior of $aprox(p + \epsilon \log(\lambda))$.

For instance, if $\varphi(p) = z \log(z) - z + 1$ (KL), $\varphi^*(q) = e^q - 1$ and $\operatorname{aprox}(p) = \frac{1}{1+\epsilon}p$; in this setting, $\operatorname{Sk}_{\epsilon}$ is **not** 1-homogeneous anymore.

Note: numerically, it seems nonetheless that when $D_{\varphi} = \mathrm{KL}$, then Sk_{ϵ} is $\underbrace{1 + \epsilon/(2 + \epsilon)}_h$ -homogeneous, i.e. $\mathrm{Sk}_{\epsilon}(\lambda \alpha, \lambda \beta) = \lambda^h \mathrm{Sk}_{\epsilon}(\alpha, \beta)$. But if

for instance $D_{\varphi}=\mathrm{TV}$ the total variation, h-homogeneity does not hold.

Théo Lacombe, LIGM, Université Gustave Eiffel

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). We propose to introduce the homogeneous, unbalanced, regularized Optimal Transport problem as:

$$OT_{\epsilon}^{(h)}(\boldsymbol{\alpha}, \boldsymbol{\beta}) := \inf_{\boldsymbol{\pi} \in \mathcal{M}_{+}(\boldsymbol{\Omega} \times \boldsymbol{\Omega})} \langle \boldsymbol{\pi}, c \rangle + D_{\varphi} \left(\boldsymbol{\pi}_{1} | \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\beta})}{m(\boldsymbol{\alpha})}} \right) + D_{\varphi} \left(\boldsymbol{\pi}_{2} | \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \right) + \epsilon KL \left(\boldsymbol{\pi} | \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \right)$$

$$= \sup_{\boldsymbol{f}, \boldsymbol{g} \in \mathcal{C}(\boldsymbol{\Omega})} \langle -\varphi^{*}(-\boldsymbol{f}), \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle + \langle -\varphi^{*}(-\boldsymbol{g}), \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle - \epsilon \langle e^{\frac{\boldsymbol{f} \oplus \boldsymbol{g} - c}{\epsilon}} - 1, \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \rangle \tag{4}$$

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). We propose to introduce the homogeneous, unbalanced, regularized Optimal Transport problem as:

$$OT_{\epsilon}^{(h)}(\boldsymbol{\alpha}, \boldsymbol{\beta}) := \inf_{\boldsymbol{\pi} \in \mathcal{M}_{+}(\boldsymbol{\Omega} \times \boldsymbol{\Omega})} \langle \boldsymbol{\pi}, \boldsymbol{c} \rangle + D_{\varphi} \left(\boldsymbol{\pi}_{1} | \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\beta})}{m(\boldsymbol{\alpha})}} \right) + D_{\varphi} \left(\boldsymbol{\pi}_{2} | \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \right) + \epsilon KL \left(\boldsymbol{\pi} | \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \right)$$

$$= \sup_{\boldsymbol{f}, \boldsymbol{g} \in \mathcal{C}(\boldsymbol{\Omega})} \langle -\varphi^{*}(-\boldsymbol{f}), \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle + \langle -\varphi^{*}(-\boldsymbol{g}), \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle - \epsilon \langle e^{\frac{\boldsymbol{f} \oplus \boldsymbol{g} - \boldsymbol{c}}{\epsilon}} - 1, \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \rangle \tag{4}$$

Main observation: This formulation is homogeneous by construction, no matter φ or ϵ .

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). We propose to introduce the homogeneous, unbalanced, regularized Optimal Transport problem as:

$$OT_{\epsilon}^{(h)}(\boldsymbol{\alpha}, \boldsymbol{\beta}) := \inf_{\boldsymbol{\pi} \in \mathcal{M}_{+}(\boldsymbol{\Omega} \times \boldsymbol{\Omega})} \langle \boldsymbol{\pi}, c \rangle + D_{\varphi} \left(\boldsymbol{\pi}_{1} | \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\beta})}{m(\boldsymbol{\alpha})}} \right) + D_{\varphi} \left(\boldsymbol{\pi}_{2} | \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \right) + \epsilon KL \left(\boldsymbol{\pi} | \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \right) \tag{3}$$

$$= \sup_{\boldsymbol{f}, \boldsymbol{g} \in \mathcal{C}(\Omega)} \langle -\varphi^*(-\boldsymbol{f}), \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle + \langle -\varphi^*(-\boldsymbol{g}), \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle - \epsilon \langle e^{\frac{\boldsymbol{f} \oplus \boldsymbol{g} - c}{\epsilon}} - 1, \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \rangle$$
(4)

Main observation: This formulation is homogeneous by construction, no matter φ or ϵ .

Intuition: Entropic reg. : made homogeneous + reconcile D_{φ} and KL terms.

Théo Lacombe, LIGM, Université Gustave Eiffel

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). We propose to introduce the homogeneous, unbalanced, regularized Optimal Transport problem as:

$$OT_{\epsilon}^{(h)}(\boldsymbol{\alpha}, \boldsymbol{\beta}) := \inf_{\boldsymbol{\pi} \in \mathcal{M}_{+}(\boldsymbol{\Omega} \times \boldsymbol{\Omega})} \langle \boldsymbol{\pi}, \boldsymbol{c} \rangle + D_{\varphi} \left(\boldsymbol{\pi}_{1} | \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\beta})}{m(\boldsymbol{\alpha})}} \right) + D_{\varphi} \left(\boldsymbol{\pi}_{2} | \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \right) + \epsilon KL \left(\boldsymbol{\pi} | \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \right)$$

$$= \sup_{\boldsymbol{f}, \boldsymbol{g} \in \mathcal{C}(\boldsymbol{\Omega})} \langle -\varphi^{*}(-\boldsymbol{f}), \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle + \langle -\varphi^{*}(-\boldsymbol{g}), \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle - \epsilon \langle e^{\frac{\boldsymbol{f} \oplus \boldsymbol{g} - \boldsymbol{c}}{\epsilon}} - 1, \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \rangle \tag{4}$$

Adapted Sinkhorn algorithm: For any φ , the sequence $(f_t, g_t)_t$ produced by the fixed-point alg. used between $\lambda \alpha$ and $\lambda \beta$ is independent of $\lambda > 0$.

Let α, β be two (non-negative, finite) Radon measures supported on a compact domain $\Omega \subset \mathbb{R}^d$. Let $c: \Omega \times \Omega \to \mathbb{R}_+$, $\epsilon > 0$, $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a divergence (and $\varphi^*(q) := \sup_p \{pq - \varphi(p)\}$ be its Legendre transform). We propose to introduce the homogeneous, unbalanced, regularized Optimal Transport problem as:

$$OT_{\epsilon}^{(h)}(\boldsymbol{\alpha}, \boldsymbol{\beta}) := \inf_{\pi \in \mathcal{M}_{+}(\Omega \times \Omega)} \langle \pi, c \rangle + D_{\varphi} \left(\pi_{1} | \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\beta})}{m(\boldsymbol{\alpha})}} \right) + D_{\varphi} \left(\pi_{2} | \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \right) + \epsilon KL \left(\pi | \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \right)$$

$$= \sup_{\boldsymbol{f}, \boldsymbol{g} \in \mathcal{C}(\Omega)} \langle -\varphi^{*}(-\boldsymbol{f}), \boldsymbol{\alpha} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle + \langle -\varphi^{*}(-\boldsymbol{g}), \boldsymbol{\beta} \sqrt{\frac{m(\boldsymbol{\alpha})}{m(\boldsymbol{\beta})}} \rangle - \epsilon \langle e^{\frac{\boldsymbol{f} \oplus \boldsymbol{g} - \boldsymbol{c}}{\epsilon}} - 1, \frac{\boldsymbol{\alpha} \otimes \boldsymbol{\beta}}{\sqrt{m(\boldsymbol{\alpha})m(\boldsymbol{\beta})}} \rangle \tag{4}$$

Adapted Sinkhorn algorithm: For any φ , the sequence $(f_t, g_t)_t$ produced by the fixed-point alg. used between $\lambda \alpha$ and $\lambda \beta$ is independent of $\lambda > 0$.

Convexity and reparametrization. Unfortunately, $\mathrm{OT}^{(h)}_{\epsilon}$ is **not** convex in α or β a priori. However, using the reparametrization $\mu := \alpha/\sqrt{m(\alpha)}$ (resp. $\nu := \beta/\sqrt{m(\beta)}$), then it is convex in μ and ν (a priori not jointly). This reparam. is somewhat natural: when $\epsilon \to \infty$, we can expect $\pi_{\epsilon} \to \mu \otimes \nu$ and $\epsilon \mathrm{KL}(\pi_{\epsilon}|\dots) \to 0$, yielding $\mathrm{OT}^{(h)}_{\epsilon}(\alpha,\beta) - \frac{1}{2}\mathrm{OT}^{(h)}_{\epsilon}(\alpha,\alpha) - \frac{1}{2}\mathrm{OT}^{(h)}_{\epsilon}(\beta,\beta) \to \mathrm{MMD}(\mu,\nu)$.

Conclusion

Take home messages:

- Balanced, Regularized OT yields homogeneous transport plan and Sinkhorn divergences.
- Unbalanced regularized OT may not be homogeneous.
- Can introduce an homogeneous unbalanced regularized OT model, which seemingly invites us to replace α, β by $\frac{\alpha}{\sqrt{m(\alpha)}}, \frac{\beta}{\sqrt{m(\beta)}}$. Seems to be $\geqslant 0$ (to be proved).

Thank you for your attention!