Optimización de Joins

Clase 16

IIC 3413

Prof. Cristian Riveros

Optimización de consultas

Zoom al optimizador de consultas

Desde plan lógico a plan físico

Dado nuestro plan lógico:

¿cómo construir nuestro plan físico?

Encontrar el "mejor" plan físico

El santo grial de los DBMS!!!

Debemos escoger:

- 1. los operadores físicos para cada operador lógico.
- 2. el orden de joins/uniones/intersecciones.
- 3. que resultados materializar.

¿qué tan importante es un buen plan físico?

Suponga la siguiente consulta:

SELECT *

FROM Players AS P, Matches AS M, Players_Matches AS PM

WHERE P.pld = PM.pld AND PM.mld = M.mld AND

P.name = 'Alexi' AND M.year = 2001

con el siguiente plan lógico:

¿cuál es el mejor plan físico?

Como escoger un plan físico

Primera posibilidad, la estrategia exhaustiva:

- 1. Enumerar todos los posibles planes físicos.
 - Para cada plan lógico, probar todos los operadores físicos.
- 2. Estimar el costo de cada plan físico.
- 3. Elegir el mejor plan físico y ejecutarlo.

Para enumerar planes, dos posibles estrategias:

- Top-down.
- Bottom-up.

¿es factible esta estrategia?

Alternativas a la estrategia exhaustiva

- Branch-and-bound.
- Hill climbing.
- Programación dinámica.
- Heurísticas.

Posibles heurísticas a considerar

- usar index-scan cuando hay índices.
- usar index-join cuando existe un índice sobre los atributos.
- preferir sort-join sobre hash-join cuando las relaciones están ordenadas.
- empezar el join/intersección/unión sobre las relaciones más pequeña.

El secreto mejor guardado de todo motor DBMS!

Encontrar el "mejor" plan físico

El santo grial de los DBMS!!!

Debemos escoger:

- 1. los operadores físicos para cada operador lógico. \checkmark
- 2. el **orden** de joins/uniones/intersecciones.
- 3. que resultados materializar.

Orden de operadores conmutativos y asociativos

Dado un plan de lógico con nodos de la forma:

¿qué orden de los operadores usamos en el plan físico?

Orden de joins

Para $R \bowtie S \bowtie T$, tenemos todos estos planes posibles:

¿cuál de todos escogemos?

¿cuántos planes de joins podemos escoger?

Para *n*-joins de la forma $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_{n+1}$:

El número de posibles árboles de join para *n*-joins:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$$

(conocidos como "Catalan numbers")

¿cuántos planes de joins podemos escoger?

Resolviendo esta ecuación recursiva:

$$C_n = \frac{(2n)!}{(n+1)!n!}$$

Multiplicando por todas las permutaciones n! de las n relaciones:

#-planes de joins =
$$\frac{(2n)!}{(n+1)!}$$

Una cantidad exponencial de posibles planes!

¿y ahora quién podrá defendernos?

Tres opciones para enumerar planes de joins:

- 1. Considerarlos todos.
- 2. Considerar un subconjunto de los planes.
- 3. Usar una heurística.

1. Considerar todos los planes

Clave: usar programación dinámica!

Para un multi-join $R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$:

- **Caso base:** Para cada par $\{R_i, R_j\}$:
 - Estimar el join con menor costo entre $R_i \bowtie R_i \lor R_i \bowtie R_i$.
 - Almacenar el mejor plan.
- Inducción (i): Para cada subconjunto $\mathcal{R} \subseteq \{R_1, \dots, R_n\}$ con $|\mathcal{R}| = i$.
 - Para cada división de R = R₁ \(\psi \) R₂.
 - Estimar el join con menor costo entre:

$$(\bowtie_{R \in \mathcal{R}_1} R) \bowtie (\bowtie_{R \in \mathcal{R}_2} R)$$
 o $(\bowtie_{R \in \mathcal{R}_2} R) \bowtie (\bowtie_{R \in \mathcal{R}_1} R)$

Almacenar el mejor plan de todas las particiones.

Enumeración basado en programación dinámica

- Encuentra el plan de joins con mejor costo (estimado).
- No es necesario enumerar todos los planes (¿cierto?).
- La cantidad de planes para joins de *N*-relaciones es mucho menor:

$$\sum_{k=1}^{n} \binom{n}{k} \cdot (2^{k} - 2) \le 3^{n} << \frac{(2n)!}{(n+1)!}$$

¿Y ahora quién podrá defendernos?

Tres opciones para enumerar planes de joins:

- Considerarlos todos. ✓
- 2. Considerar un subconjunto de los planes.
- 3. Usar una heurística.

2. Considerar un subconjunto de los planes

Distintos tipos de planes:

¿qué ventaja tiene cada plan?

Subconjunto de planes prometedores

Considerar solo left-deep plans.

Ventajas:

- Un subconjunto menor de planes a considerar (¿cuantos?).
- Buena interacción con los operadores físicos de join.

Podemos considerar programación dinámica sobre este subconjunto!!

Optimizador de Selinger

Optimizador de Selinger

Clave (de nuevo): usar programación dinámica!

Para un multi-join $R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$:

- **Caso base:** Para cada par $\{R_i, R_j\}$:
 - Estimar el join con menor costo entre $R_i \bowtie R_j \bowtie R_i$.
 - Almacenar el mejor plan.
- Inducción (i): Para cada subconjunto $\mathcal{R} \subseteq \{R_1, \dots, R_n\}$ con $|\mathcal{R}| = i$.
 - Para cada $R \in \mathcal{R}$.
 - Estimar el join:

$$(\bowtie_{R'\in\mathcal{R}-\{R\}} R')\bowtie R$$

Almacenar el mejor plan de todos los R.

Ejemplo del optimizador de Selinger

Ejemplo

Calcular el tamaño/costo del natural join:

$$R(a,b)\bowtie S(b,c)\bowtie T(c,d)\bowtie U(d,a)$$

suponiendo que cada relación tiene 1000 tuplas y:

	R(a,b)	S(b,c)	T(c,d)	U(d,a)
$distinct_a(\cdot)$	100			50
$distinct_b(\cdot)$	200	100		
$distinct_c(\cdot)$		500	20	
$distinct_d(\cdot)$			50	1000

¿Y ahora quién podrá defendernos?

Tres opciones para enumerar planes de joins:

- 1. Considerarlos todos. \checkmark
- 2. Considerar un subconjunto de los planes. 🗸
- 3. Usar una heurística.

3. Usar una heurística

Heuristica greedy para: $R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$

- Mantener un conjunto de planes P.
- Iniciar el conjunto de planes \mathcal{P} con todas las relaciones:

$$\mathcal{P} = \{R_1, \dots, R_n\}$$

■ En cada iteración, escoger dos planes $P_1, P_2 \in \mathcal{P}$ tal que:

$$cost(P_1 \bowtie P_2) = \min_{P,P' \in \mathcal{P}} cost(P \bowtie P')$$

y reemplazar
$$\mathcal{P} \coloneqq (\mathcal{P} - \{P_1, P_2\}) \cup \{P_1 \bowtie P_2\}.$$

¿cuál es el tiempo de esta heurística?

Otras heurísticas

- Algoritmos aleatorios.
- Algoritmos genéticos.

Encontrar el "mejor" plan físico

El santo grial de los DBMS!!!

Debemos escoger:

- 1. los operadores físicos para cada operador lógico. \checkmark
- 2. el orden de joins/uniones/intersecciones. ✓
- 3. que resultados materializar.

Pipeline

- Ejecución en serie del plan físico.
- Cada operador genera una tupla a la vez.
- Cada operador no almacena sus resultados intermedios y los retorna a su operador padre.

Materialización

- Almacena el resultado de la subconsulta en disco.
- Solo necesario si la subconsulta es requerida reiteradas veces.

Pipeline vs Materialización

Siempre se prefiere pipeline sobre materialización

Usar materialización si:

- Subconsulta es llamada reiteradas veces.
- Costo de almacenamiento es menor a recalcular la consulta.

Finalmente, ejecutamos nuestro plan físico de consultas...

