1.033/1.57

Mechanics of Material Systems

(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F 3:00-4:30

Part III: Elasticity and Elasticity Bounds

6. The Theorem of Virtual Work and Variational Methods in Elasticity

Content 1.033/1.57

Part I. Deformation and Strain

- 1 Description of Finite Deformation
- 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses

- 3 Momentum Balance
- 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds

5 Thermoelasticity,

6 Variational Methods

Part IV. Plasticity and Yield Design

- 7 1D-Plasticity An Energy Approac
- 8 Plasticity Models
- 9 Limit Analysis and Yield Design

Convexity of a function Secant f(x')Tangent f(x) χ

$$\left| \frac{\partial f}{\partial x} \right|_{x} (x' - x) \le f(x') - f(x)$$

1.033/1.57 Mechanics of Material Systems

Convexity: Applied to Free Energy

Theorem of Minimum Potential Energy

1-Parameter System

$$E_{pot}(\xi) = \min_{\xi' KA} [W(\epsilon') - \Phi(\xi')]$$

1.033/1.57 Mechanics of Material Systems

Upper Energy Bound

Ex: Heterogeneous Material System I

1. Displacement Field (KA)

$$\xi'=a\mathbf{x}$$

2. Stored Energy

$$W(\varepsilon'=a\mathbf{1})$$

3. External Work

$$\Phi(\xi') = f(T^d)$$

$$E_{pot}(\xi') = W(\epsilon') - \Phi(\xi')$$

1.033/1.57 Mechanics of Material Systems

Upper Energy Bound

Theorem of Minimum Complementary

1-Parameter System

$$E_{com}(\sigma) = \min_{\sigma' SA} [W^*(\sigma') - \Phi^*(\sigma')]$$

Energy Bound

Lower

Ex: Heterogeneous Material System II

1. Stress Field (SA)

$$\sigma'=p1$$

2. Complementary Energy

$$W^*(\sigma'=p1)$$

3. External Work

$$\Phi^*(\sigma') = f(\xi^d)$$

$$E_{com}(\sigma') = W^*(\sigma') - \Phi^*(\sigma')$$

1.033/1.57 Mechanics of Material Systems

Lower Energy Bound

Elements of Elastic Energy Bounds

Statically Admissible
Stress Field

o'

Kinematically Admissible
Displacement Field

Tellow

**Tello

Elastic Energy Bounds (Cont'd)

Statically Admissible
Stress Field

o'

$$\leq -E_{com}(\sigma) = E_{pot}(\xi) \leq$$

$$-E_{com}(\sigma') = -W^*(\sigma') + \Phi^*(\sigma')$$

$$\partial \Omega_{\xi d}$$

$$E_{pot}(\xi') = W(\epsilon') - \Phi(\xi')$$

$$\uparrow$$

$$\partial \Omega_{\mathbf{T}d}$$

Training Set: Effective Modulus

Voigt-Reuss Bounds

Problem Set Recitation

