HOMEWORK 2

Q1: Determine the multiplicative inverse of $x^3 + 1$ in GF(2^4)

Q2: Determine the multiplicative inverse of $x^3 + x + 1$ in GF(24)

Q3: Addition in GF(2^4): Compute A(x)+B(x) mod P(x) in GF(2^4) using the irreducible polynomial P(x) = $x^4 + x + 1$. What is the influence of the choice of the reduction polynomial on the computation?

1.
$$A(x)=x^2+1$$
, $B(x)=x^3+x^2+1$

2.
$$A(x) = x^2 + 1$$
, $B(x) = x + 1$

Q4: Multiplication in GF(24): Compute $A(x) \cdot B(x)$ mod P(x) in GF(2⁴) using the irreducible polynomial $P(x) = x^4 + x + 1$. What is the influence of the choice of the reduction polynomial on the computation?

1.
$$A(x)=x^2+1$$
, $B(x)=x^3+x^2+1$

2.
$$A(x) = x^2 + 1$$
, $B(x) = x + 1$

Q5: Using the extended Euclidean algorithm, find the multiplicative inverse of

- A) 1234 mod 4321
- B) 24140 mod 40902
- C) 550 mod 1769

Q6:

- A) Determine gcd(24140, 16762).
- B) Determine gcd(4655, 12075).