Course Code 21CSS101J	Course Name	PROGRAMMING FO	OR PROBLEM SOLVING	Course Category	S	Engineering Sciences 2 1 1 P 3 0 2	C 4
Pre-requisite Courses Nil Course Offering Department	Computer Scie	Co-requisite Courses Nil	Data Book / Codes/Standards	Progre Cour Nil		Nil	
Course Learning Rationale (CLR):		arning this course is to:	Data Book / Codes/Standards	Learnin	ıg	Program Learning Outcomes (PLO)	

CLR-1:	Think and evolve with a logic to construct an algorithm and pseudocode that can be converted into a program			3	ļ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Utilize the appropriate operators and control statements to solve engineering problems								당			ility								
CLR-3:	Store and retrieve data in a single and multidimensional array	Thinking (Bloom)	Proficiency (%)	(%)		ge		ŧ	Research			Sustainability		녿		Ф				
CLR-4:	Create custom designed functions to perform repetitive tasks in any application	율	5	ent		ed		me	æ	<u>e</u>		sta		Team Work		Finance	_			
CLR-5:	Create basic Abstract Data Types with python	Ē	.es	nme		ě	SS.	흜	Ę,	Sac	9	S Su		am	8		earning			
CLR-6:	Create applications using suitable python library functions for solving datascience problems.	i.	Jo.	Attainment (%)		Α	Analysis	Development	Design,	9	Culture	± w		~×	g	⊸ŏ ÷÷	æ			
Course Lea	arning Outcomes (CLO): At the end of this course, learners will be able to:	Level of Th	Expected F	Expected /		Engineering Knowledge	Problem A	Design & [Analysis, [Modern Tool Usage	Society & (Environment d	Ethics	Individual &	Communication	Project Mgt.	Life Long L	PS0 - 1	PS0 - 2	PSO - 3
CLO-1:	o solve problems through computer programming. Express the basic data types and variables in C	2	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
	To use appropriate data types in simple data processing applications. To create programs using the CLO-2: concept of arrays.		85	80		L	Н	Н	Н	Н		-	М	М	L	-	Н	-	-	-
CLO-3:	o create string processing applications with single and multi-dimensional arrays.	3	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
	To create user defined functions with required operations. To implement pointers in applications with dynamic memory requirements.		85	80		L	Н	Н	Н	Н		-	М	М	L	-	Н	-	-	-
CLO-5 : T	To create programs using the python data types, loops, control statements for problem solving		85	80	-	L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-6: .	To implement the suitable python library based solutions for solving statistical problems in data science :		85	80		L	Н	Н	Н	Н	•	-	М	М	L	-	Н	-	-	-

Unit-1 Evolution of Programming & Languages - Problem solving through programming - Writing algorithms & Pseudo code - Single line and multiline comments - Introduction to C: Structure of the C program - Input and output statements. Variables and identifiers, Constants, Keywords - Values, Names, Scope, Binding, Storage Classes - Numeric Data types: integer, floating point Non-Numeric Data types: char and string - L value and R value in expression, Increment and decrement operator - Comma, Arrow and Assignment operator, Bitwise and Size-of operator - Arithmetic, Relational and logical Operators - Condition Operators, Operator Precedence - Expressions with pre / post increment operator

Unit-2 Conditional Control -Statements: Simple if, if...else - Conditional Statements: break, continue, goto - Looping Control Statements: for, while, do..while - Looping Control Statements: nested for, nested while - Introduction to Arrays - One Dimensional (1D) Array Declaration and initialization - Accessing, Indexing and operations with 1D Arrays - Array Programs – 1D - Initializing and Accessing 2D Array, Array Programs – 2D - Pointer and address-of operators - Pointer Declaration and dereferencing, Void Pointers, Null pointers

Pointer based Array manipulation

Unit-3 String Basics - String Declaration and Initialization - String Functions: gets(), puts(), getchar(), putchar(), printf() - Built-inString Functions: atoi, strlen, strcat, strcmp -String Functions: sprint, sscanf, strrev, strcpy, strstr, strtok - Operations on Strings - Function prototype declaration, function definition - Actual and formal parameters - Function with and without Arguments - Function with and without return values - Call by Value, Call by Reference - Passing Array to Function - Passing Array elements to Function - Function Pointers

Unit-4 Python: Introduction to Python - Introduction to Google Colab - Basic Data Types: Integers, Floating Points, Boolean types - Working with String functions - Working with Input, Output functions - Python-Single and Multi line Comments/ Error Handling - Conditional & Looping Statements: If, for, while statements - Working with List structures - Working with Tuples data structures - Working with Sets - Working with Dictionaries - Introduction to Python Libraries - Introduction to Numpy - High Dimensional Arrays

Unit-5 Creating NumPy Array -Numpy Indexing - Numpy Array attributes - Slicing using Numpy - Descriptive Statistics in Numpy: Percentile - Variance in Numpy -Introduction to Pandas - Creating Series Objects, Data Frame Objects - Simple Operations with Data frames - Querying from Data Frames -Applying Functions to Data frames - Comparison between Numpy and Pandas - Speed Testing between Numpy and Pandas - Other Python Libraries

Lab

Lab 1: Input, Output Statements, Variables

Lab 2: Data types & Operators-I

Lab 3: Data types & Operators-II

Lab 4: Control Statements (Branching, Looping)

Lab 5: Arrays

Lab 6: Arrays with Pointers

Lab 7: Strings

Lab 8: Functions

Lab 9: Arrays and Functions

Lab 10: Input, Output in Python

Lab 11: Python data structures

Lab 12: Arrays in Python

Lab 13: Operations with Numpy

Lab 14: Operations with Pandas

Lab 15: case study: Data science with Numpy, Pandas

	Reference Books (C):	
	1. Programming in C, E.Balagurusamy,Mc Graw Hill, Eighth Edition.2019. [chapters 1 to 6 & 8 To 11]	Reference Books (Python):
	2. Head First C: A Brain-Friendly Guide, By David Griffiths, Dawn Griffiths, Oreilly. [Chapters 2 to 4]	7. Python Datascience Handbook, Oreilly, Jake VanderPlas,
Learning	Let Us C, Fifth Edition, Yashavant P. Kanetkar, BPB publications. [Chapters 1 to 6, 8 to 9]	2017.[Chapters 2 &3]
Resources	4. Problem Solving & Programming Concepts, Maureen Sprankle, Jim Hubbard, Prentice Hall, Ninth Edition.	8. Python For Beginners, Timothy C.Needham,2019. [Chapters 1 to 4]
	[Chapters 1 to 7]	9. https://www.tutorialspoint.com/python/index.htm
	https://www.tutorialspoint.com/cprogramming/index.htm	10. https://www.w3schools.com/python/
	6. https://www.geeksforgeeks.org/c-programming-language/	

		By The CoE							
	Bloom's Level of Thinking	CLA-I A uni	native verage of t test 0%)	Lea CLA-II-	Long* rning Practice 0%)	Fi Exam	mative inal ination eightage)		
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	15%	-	-	-	15%	-		
Level 2	Understand	20%	-	-	30%	20%	-		
Level 3	Apply	35%	-	-	35%	35%	-		
Level 4	Analyze	30%	-	-	35%	30%	-		
Level 5	Evaluate	-	-	-			-		
Level 6	Create	-	-	-	-	-	-		
	Total	100 %		10	0 %	100 %			

C	Durse Designers		
E	operts from Industry	Experts from Higher Technical Institutions	Internal Experts
1.	Dr. Sainarayanan Gopalakrishnan, HCL Technologies, sai.jgk@gmail.com	1. Prof. Janakiram D, IIT Madras, djram@iitm.ac.in	1. Dr. E.Poovammal, SRMIST
2.	Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Rajeev Sukumaran, IIT Madras, rajeev@wmail.iitm.ac.in	2. Dr. B. Amutha, SRMIST