CORRECTION DU CONCOURS DIRECT D'ENTREE À L'ESATIC

SESSION 2016

EPREUVE DE PHYSIQUE

QUESTION À CHOIX MULTIPLES (QCM)

Remarques importantes:

1)Ce sujet ne comportent que des questions à choix multiple (QCM). Choisir en cochant la ou les bonne(s) réponse(s). 2)Les 5 premières questions (Q1, Q2, Q3, Q4, Q5) se rapportent à l'énoncé ci-dessous, choisir et cocher les propositions vraies. Les questions Q6 à Q20 sont indépendantes.

Un point M mobile décrit sur un axe (O, \overrightarrow{i}) un mouvement uniformément varié d'accélération $\overrightarrow{a} = 2 \overrightarrow{i}$.

A l'instant t=0, le vecteur vitesse est $\overrightarrow{V}_0 = -4 \overrightarrow{i}$ et le vecteur $\overrightarrow{OM} = \overrightarrow{i}$

Question-01: A L'instant initiale t = 0, on remarque que :

- □ A : Le Mobile se trouve à l'origine du repère
- □ B: L'accélération du mobile est nulle
- C : Les vecteurs vitesse et position sont colinéaires
- D: les vecteurs accélération et position sont colinéaires

Justification:

Question-02: En un instant t > 0, la vitesse du mobile est :

- \Box **A**: v(t)=2t
- **B**: v(t)=2t-4
- \Box **C**: v(t)=-2t-4
- D: une fonction croissante du temps

Justification:

Question-03 : Pour t > 0, l'équation horaire x(t) donnant la position du mobile est :

- \Box **A**: x(t) = 2t 4
- \Box **B**: $x(t) = 2t^2 4t + 1$
- **C**: $x(t) = t^2 4t + 1$
- $\hfill \Box$ \hfill : une fonction croissante croissante du temps

Justification:

Question-04: I	Lorsque la	vitesse di	u mobile s'aı	nnule, celui-ci s	e trouve à la	position

 \Box **A**: x=0

B : x = -3m

 \square C: x = -4m

 \square **D**: x = 1m

Justification:

Question-05 : Le mouvement du point M est accéléré lorsque :

 \Box **A**: t > 0

 \square **B**: t < 2s

 \Box **C**: t=0

D: t > 2s

Justification:

Question-06 : Un point M effectue un mouvement selon une trajectoire circulaire de rayon 2 m. Sa vitesse linéaire varie selon la loi : $v(t) = 2t^2 + 2t$

 \blacksquare A : à l'instant initial t = 0, son accélération tangentielle vaut 2 m/s²

 \blacksquare B: à l'instant initial t = 0, son accélération normale est nulle.

 \Box C: à l'instant t = 1s, son accélération tangentielle est nulle

 \Box **D**: à l'instant t = 1s, son accélération normale vaut 6 m/s²

Justification:

Question-07 : Dans un plan $(O, \overrightarrow{x}, \overrightarrow{z})$, on lance vers le haut une bille assimilée à un point M à la vitesse initiale v_0 =72 km/h faisant un angle α avec l'horizontale. On donne l'accélération de la pesanteur $g=10 \text{ m/s}^2$ et l'équation de la trajectoire de la bille $z=x(\sqrt{3}-\frac{x}{20})$ Quelle était donc l'angle de tir α ?

 \Box **A** : 30⁰

□ **B** : 45°

C: 60°

 \Box **D**: 90⁰

Justification: $\frac{2v_0^2COS^2\alpha}{g} = 20$ et $\tan\alpha = \sqrt{3}$ après une identification avec l'équation de la trajectoire qui doit être déterminée

Question-08 :Quelle est l'origine de la pression exercée par un fluide sur la partie intérieure latérale du récipient le contenant ?

□ A : L'accélération de la pésanteur

■ B: La poussée d'achimède

 \square C : les collisions continuelles de ses molécules avec les parois

 $\hfill \square$ \hfill : la diminution de la température du fluide contenu dans le récipient

Justification: Question générale

Question-09 : Quelle est en moyenne la vitesse du son dans l'air ambiante?

□ **A**: 3000 m/s

 \Box **B**: 3.10⁸ m/s

■ C: 340 m/s

 \square **D**: 555 m/s

Justification: Culture générale

Question-10 : La tension aux bornes d'un générateur linéaire est de 100 V quand il débite un courant de 40 A et 115 V pour un courant de 10 A. Quelle est la force électromotrice et la résistance interne de ce générateur ?

 \square A: 100 V et 1 Ω

 \square **B** : 110 V et 0.5 Ω

 \square C : 115 V et 2 Ω

D: 120 V et 0.5Ω

Justification: u(t) = E - ri(t) on fait des systèmes d'équations pour trouver 3E=360 alors E = 120 V et r = 0.5 Ω

Question-11:

Quelle est la capacité du dipôle AB du montage ci-dessous ?: On donne $C_1=0.5\mu F,\,C_2=1\mu F,\,C_3=2\mu F$

- \square a) $3\mu F$
- **b**) $4,5\mu F$

 \Box c) $1,5\mu F$

 \Box d): $6\mu F$

Justification: En serie on n'a Ceq = $\frac{C_1C_2}{C_1+C_2}$ En parallèle on a Ceq = C_1+C_2 donc Ceq₁= $C_1+C_1+C_3$ Ceq₂= $\frac{(C_2+C_2)C_3}{C_2+C_2+C_3}$ pour finir on n'applique que Ceq = Ceq₁ // Ceq₂ après calcul on trouve B

Question-12:

quelle peut être l'origine d'un champ magnétique?

■ a) Un aimant

■ b) Un courant

□ c) Une charge positive et une charge négative

■ d): La terre

Justification: Voir cours

Question-13:

Une bobine isolée de longueur l=12,6cm, comporte 200 spires de 1,2cm rayon. Le champ magnétique à l'intérieur de la bobine vaut B=2mT. On prend la perméabilité magnétique du vide $\mu_0=4\pi 10^{-7} {\rm SI}$. Que vaut l'intensité du courant dans la bobine ?

 \Box a) $1\mu A$

■ b) 1*A*

 \square c) 1mA

 \Box d): 1kA

Justification: $I = \frac{LB}{\mu_0 N}$; AN: $I = \frac{12.6 \times 10^{-2} \times 2 \times 10^{-3}}{4\pi \times 10^{-7} \times 200} = 1A$

Question-14:

Considérons un dipôle série comportant une bobine d'inductance L, de résistance interne r et un résistor de résistance R. Ce dipôle est soumis à un échélon de tension E délivré par un générateur de tension idéal. A t=0, on ferme l'interrupteur K. Si on pose $\beta = \frac{R+r}{L}$ alors quelle est l'intensité du courant i(t) qui s'établi dans le circuit ?

 \Box **a)** $i(t) = \frac{RE}{R+r}(1 - e^{-\beta t})$

 \Box **b)** $i(t) = \frac{R+r}{E}(1+e^{-\beta t})$

a c) $i(t) = \frac{E}{R+r}(1 - e^{-\beta t})$

 \Box **d)**: $i(t) = \frac{E}{R+r}(1+e^{-\beta t})$

Justification: La loi des mailles donne donne $E = u_L(t) + u_R(t) = L\frac{di}{dt} + (R+r)i(t)$.

 $\frac{di}{dt} + \frac{R+r}{L}i(t) = \frac{E}{L}$ il s'agit donc d'une équation différentielle de premier ordre avec second membre. sa solution est donc $i(t) = \frac{E}{R+r}(1-e^{-\beta t})$

Question-15:

Un électron pénètre dans un champ magnétique \overrightarrow{B} avec une vitesse \overrightarrow{v} perpendiculaire à \overrightarrow{B} . Lesquelles de ces figures représentent correctement la force magnétique $\overrightarrow{F_m}$ qui s'exerce sur l'électron ?

- □ a)
- **■** b)
- \Box c)
- \Box d)

Justification: Voir cours

Question-16:

Un circuit RLC série est composé d'une résistance de 15ω , d'une bobine de 260mH et d'un condensateur de $2,5\mu F$. Il est raccordé sur une sourc alternative qui délivre une tension $u(t)=60\sqrt{2}\cos(\omega t)$. la résonance, déterminer respectivement la fréquence et la puissance qu'il consomme

- □ **a)** 50Hz et 4W
- **b)** 197,4Hz et 240W
- □ **c)** 1240Hz et 240W
- \Box **d)** 7793Hz et 339,4W

Justification: $f = \frac{1}{2\pi\sqrt{LC}}$ après AN on trouve f = 197,4 hz on n'a $p = \frac{U^2}{R}$ avec U = $U_{eff} = \frac{U_{max}}{\sqrt{2}}$ AN on trouve P = 240 W

Question-17:

Les intensités i_1 et i_2 de deux courants sont: $i_1=4\sqrt{2}\sin{(\omega t+\frac{\pi}{6})},\ i_2=2\sqrt{2}\sin{(\omega t+\frac{\pi}{2})}$

5

- **a**) $i_3 = 3, 5\sqrt{2}\sin(\omega t)$
- \Box **b)** $i_3 = 2\sqrt{2}\sin(\omega t \frac{\pi}{3})$

 \Box c) $i_3 = 6\sqrt{2}\sin(\omega t)$

 \Box **d)** $i_3 = 3, 5\sqrt{2}\cos(\omega t)$

Justification: $i_3 = i_1 - i_2 = 4\sqrt{2}sin(\omega t + \frac{\pi}{6}) - 2\sqrt{2}sin(\omega t + \frac{\pi}{2})$ et après développement on trouve $i_3 = 3, 5\sqrt{2}sin(\omega t)$

Question-18:

Une bobine de 800 spires et de section $12cm^2$ est soumis à l'action d'un champ magnétique de sens confondu avec l'axe de la bobine et de module variable B=at+b. Quelle est la force electromotrice induite e dans la bobine? on donne: a=-10mT/s et b=1T

 \square a) -72mV

 \square b) 7,2mV

a c) 9,6mV

 \Box **d)** : 15,6mV

Justification: $e=-\frac{d\Phi}{dt}$ avec $\Phi=N\times B\times S$, $e=-a\times N\times S$

AN: $e = -(-0.01) \times 800 \times 0.0012 = 9.6 mV$

Question-19:

Dans le circuit ci-dessous, on suppose que la diode D est parfaite. Quelle est l'intensité du courant i ?

 \Box a) i = 0, 4A

b) i = 0.019A

 \Box **c**) i = 0, 1A

 \Box **d)**: i est nulle

Justification: D est une diode parfaite donc pour $i_D>0$, D est un circuit ouvert. D'où $u_D=(R_1+R_2)i\Rightarrow i=\frac{u_D}{R_1+R_2}=\frac{20}{1050}=0.019A$

Question-20:

Les oscillogrammes de la figure suivante représentent les variations de 2 tensions sinusoïdales u_1 et u_2 sinusoïdales en fonction du temps. Si $u_1 = U_{1m} \sin(\omega t)$, trouver l'expression de u_2

- $\Box \quad \mathbf{a)} \quad u_2 = U_{2m} \sin\left(\omega t \frac{\pi}{6}\right)$
- $\Box \quad \mathbf{b)} \quad u_2 = U_{2m} \sin\left(\omega t + \frac{\pi}{6}\right)$
- $\blacksquare \quad \mathbf{c)} \quad u_2 = U_{2m} \sin\left(\omega t \frac{\pi}{3}\right)$
- \Box **d)**: $u_2 = U_{2m} \sin(\omega t + \frac{\pi}{3})$

Justification: Car la fonction sinus est périodique 2π de plus, U_1 atteind sa valeur masc avant U_2 . D'où U_2 est en retard sur U_1 comme 1 carré $=\frac{2\pi}{6}=\frac{\pi}{3}$ on dit que U_2 est en retard sur U_1 de $\frac{\pi}{3}$ on n'a $U_2=U_{max}sin(\omega t-\frac{\pi}{3})$

Réalisé par OVI Jude Schadrac, KONE Namogo Ben Armel, BOUAKI Kouadio Julien, DJAKI Loba Stephane Etudiant à Ecole Supérieure Africaine des Technologies de l'Information et de la Communication Zone 3, Km 4 Bd Marseille - 18 Bp 1501 Abidjan 18 - www.esatic.ci Mail: direction.esatic@esatic.ci