TUTORIAL – wstępny projekt w języku VHDL

(wersja on-line)

Dla systemu operacyjnego Windows 10 należy przed uruchomieniem systemu projektowego wykonać poniższe zmiany:

ISE 14.7 64-bit - Turning off SmartHeap:

- 1) Navigate to the following ISE install directory: <install_path>\Xilinx\14.7\ISE_DS\ISE\lib\nt64\
- 2) Rename the file "libPortability.dll" to "libPortability.dll.orig".
- 3) Copy the "libPortabilityNOSH.dll" file to the same folder, and rename it to "libPortability.dll".

4) Repeat steps 1-3 in the following folder: $\left| \frac{14.7}{SE_DS}\right|$

The above steps substitute the original "libPortability.dll" with a "libPortability.dll" file that has SmartHeap disabled, the NOSmartHeap (NOSH) version.

This does not negatively impact the operation of the tools, and should successfully work around the ISE 14.7 crash documented above.

Uruchomienie systemu projektowego ISE Design Suite 14.7

Na wstępie należy utworzyć katalog dla projektu...

System uruchamia się poprzez dwukrotne kliknięcie lewym klawiszem myszki na ikonie *ISE Design Suite*, lub wybierając z rozwijanego menu: *Start* \rightarrow *Xilinx Design Tools* \rightarrow *64-bit Project Navigator*. Po uruchomieniu programu pojawia się nawigator projektu *ISE Project Navigator*.

Plik licencyjny

Utworzenie nowego projektu typu HDL

- 1. Wybrać *File* → *New Project*... uruchamiając aplikację *New Project Wizard*
- 2. W polu Location: ustawić utworzony folder dla projektu
- 3. W polu Name: wpisać nazwę projektu, np. witek
- 4. Sprawdzić czy w polu Top-level source type: jest wybrana opcja HDL
- 5. Nacisnąć przycisk Next
- 6. Wypełnić pola okna *Project Settings*, gdzie najważniejsze ustawienia to *Family* → Spartan3 , *Device* → XC3S200 , *Package* → FT256 oraz *Preferred Language* → VHDL

- 7. Nacisnąć przycisk Next
- 8. W oknie Project Summary nacisnąć Finish

Opis działania układu w języku VHDL

- 1. Wybrać *Project* → *New Source...* uruchamiając *New Source Wizard*
- 2. W oknie Select Source Type zaznaczyć typ VHDL Module
- 3. W polu File name: wpisać nazwę gates
- 4. W polu *Location* powinien być wybrany folder projektu

- 5. Nacisnąć Next
- 6. W oknie *Define Module* wypełnić odpowiednie kolumny nazwami sygnałów (*Port Name*) i ich parametrami (*Direction*), jak poniżej

- 7. Nacisnąć Next
- 8. W oknie *Summary* nacisnąć *Finish*
- 9. W utworzonym pliku *gates.vhd* opisać działanie układu jak poniżej (można usunąć "zielony" tekst :), zapisać plik

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity gates is
   port( a : in std_logic;
        b : in std_logic;
        y : out std_logic );
end gates;

architecture Behavioral of gates is begin

y <= a and b;
end Behavioral;</pre>
```


10. W celu sprawdzenia poprawności kodu w języku VHDL należy w obszarze *Hierarchy* zaznaczyć plik *gates – Behavioral (gates.vhd)*, następnie w polu *Processes* rozwinąć wiersz *Synthesize – XST* i uruchomić *Check Syntax*, poprawić ewentualne błędy...

Symulacja działania układu

- 1. Wybrać **Project** → **New Source...** uruchamiając **New Source Wizard**
- 2. W oknie Select Source Type zaznaczyć typ VHDL Test Bench

- 3. W polu *File name:* wpisać nazwę *test*
- 4. W polu *Location* powinien być wybrany folder projektu...
- 5. Nacisnąć *Next*
- 6. W kolejnym oknie *Assiociate Source* powinien być zaznaczony *gates*, nacisnąć *Next*
- 7. W oknie **Summary** nacisnąć **Finish**
- 8. W utworzonym module testowym **test.vhd** można zastosować przykładowy algorytm testowy jak poniżej. Moduł ustala stany na wejściach **a** i **b**, którymi są kolejne kombinacje binarne zmieniane co 50 ns. Ostatnia instrukcja **wait** zatrzymuje symulację.

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY test IS
END test;

ARCHITECTURE behavior OF test IS

-- Component Declaration for the Unit Under Test (UUT)
COMPONENT gates
PORT(a : IN std_logic;
b : IN std_logic;
y : OUT std_logic);
END COMPONENT;

-- Inputs
signal a : std_logic := '0';
signal b : std_logic := '0';
```

```
-- Outputs
signal y: std_logic;

BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: gates PORT MAP ( a => a, b => b, y => y );

-- Stimulus process
stim_proc: process
begin

a<='0'; b<='0'; wait for 100 ns;
a<='0'; b<='1'; wait for 50 ns;
a<='1'; b<='0'; wait for 50 ns;
a<='1'; b<='1'; wait for 50 ns;
a<='1'; b<='1'; wait for 50 ns;
a<='0'; b<='1'; wait;
end process;

END;
```


9. Następnie w polu View: zaznaczyć Simulation, a w rozwijanym menu wybrać Behavioral

- 10. W obszarze Hierarchy zaznaczyć plik test behavior (test.vhd)
- 11. W polu *Processes* rozwinąć *ISim Simulator* i uruchomić *Behavioral Check Syntax*, poprawić ewentualne błędy...
- 12. Uruchomić symulację poprzez Simulate Behavioral Model
- 13. Wynik symulacji zaobserwować w postaci przebiegów sygnałów...

Implementacja projektu w układzie FPGA

1. W polu *View:* wybrać *Implementation* (wyjście z symulacji, powrót do projektowania...)

- 2. Wybrać *Project* → *New Source...* uruchamiając *New Source Wizard*
- 3. W oknie Select Source Type zaznaczyć typ Implementation Constrains File

- 4. W polu *File name:* wpisać nazwę *porty*
- 5. W polu *Location* powinien być wybrany folder projektu
- 6. Nacisnąć Next, a następnie Finish
- Do projektu został dołączony plik tekstowy porty.ucf (rozwinąć wiersz gates – Behavioral (...) w polu Hierarchy)
- 8. Jako zawartość pliku *porty.ucf* wpisać poniższy zapis, będący przyporządkowaniem końcówek układu FPGA do sygnałów projektu, zapisać i zamknąć plik

```
NET "a" LOC="F12";
NET "b" LOC="G12";
NET "y" LOC="K12";
```

- 9. W obszarze Hierarchy zaznaczyć wiersz gates Behavioral (...)
- 10. Następnie w polu *Processes* uruchomić *Generate Programming File*

Uwaga!

Podczas pierwszej implementacji po uruchomieniu systemu projektowego *ISE Design Suite* należy ponownie uruchomić *Generate Programming File*, wybierając prawy przycisk myszki *Rerun All*. Taka operacja wynika z błędnego przypisywania końcówek układu scalonego do sygnałów projektu, ale po ponownej re-implementacji problem "znika".

Konfiguracja układu FPGA

- 1. Sprawdzić podłączenie płytki testowej!
- Następnie w polu Processes rozwinąć wiersz Configure Target Device i uruchomić Manage Configuration Project (iMPACT), jeśli pojawi się ostrzeżenie – nacisnąć OK
- 3. Pojawia się aplikacja ISE iMPACT, w polu iMPACT Flows uruchomić Boundary Scan

- 4. Następnie wybrać *File* → *Initialize Chain*
- 5. Jeśli pojawi się okno Assign New Configuration Files Query Dialog, to nacisnąć Yes
- 6. Następnie pojawia się okno, w którym należy wskazać katalog projektu i wybrać plik *gates.bit*, nacisnąć *Open*
- 7. W kolejnym oknie nacisnąć *Cancel*
- 8. W oknie *Device Programming Properties ...* zatwierdzić proponowane opcje konfigurowania układów FPGA i PROM poprzez *OK*
- 9. Następnie nacisnąć prawym klawiszem myszki na symbolu układu FPGA i wybrać **Program** z listy poleceń. Konfigurowanie w toku...
- 10. Sprawdzić praktycznie działanie projektu...

HARMONOGRAM

LAB 1	 Projekt wstępny z instrukcji laboratoryjnej. Projekt zawierający dwie bramki n-wejściowe typu OR i AND. Konwerter 3-bitowego kodu binarnego na kod "1 z 8" (aktywny stan 1 lub 0). Sumator dwóch liczb 4-bitowych.
LAB 2	 25-bitowy licznik binarny z kasowaniem asynchronicznym. (zastosować sygnał zegarowy z płyty projektowej, osiem najbardziej znaczących bitów licznika wyprowadzić na diody LED) 8-bitowy licznik Johnsona. (jako dzielnik częstotliwości sygnału zegarowego zastosować N-bitowy licznik binarny, dobrać N) 8-bitowy licznik pierścieniowy typu "krążąca jedynka" . (zastosować dzielnik częstotliwości) Zmodyfikować punkt 3) tak, aby za pomocą suwaka wybierać pomiędzy "krążącą jedynką" a "krążącym zerem"
LAB 3	Projekt cyfrowego układu do pomiaru wielkości fizycznej (czas, częstotliwość) na przykładzie projektu stopera elektronicznego. Odczyt wyniku pomiaru przy użyciu wyświetlacza 7-segmentowego.