Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

What is the problem with Latin speech recognition?

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
 - the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

Text data

Regions of origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)

- In-domain data (Monasterium): medieval charters (HU), 480k/35k token/type
- Background data (Latin Library): historical texts, 1.3M/115k token/type

Spelling variants

Speech data

- CZ: 76 hours
- HU: 567 hours (G2P) or 112 hours (grapheme and USG)
- PL: 31 hours
- RO: 35 hours

Test data

- Independent medieval charters
- Region of read text: CZ, HU, PL
- Native language of test speakers: CZ, HU, PL, SK

Perplexity measures on test

Table 1: Perplexity/OOV rate

	Te			
Corpus	CZ	HU	PL	All
Monasterium	551	82	3130	671
Latin Library	3266	3549	2305	4303
Interpolated	924	82	2288	953

Language model

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora
- SRILM [2]

Dimensions of data

- Region of training text: HU, mixed
- Speech data: CZ, HU, PL, RO
- Model type: grapheme, G2P, USG
- Native language of test speakers: CZ, HU, PL, SK
- Region of test text: CZ, HU, PL

System diagram

Acoustic model

- Mel-Frequency Cepstrum + Energy features were used with Linear Discriminant
 Analysis (LDA) + Maximum Likelihood
 Linear Transformation (MLLT), with a splice
 context of ±4 frames, 10 ms of frame
 shift.
- 9×40 dimensional spliced up feature vectors served as input to the feed-forward, 6 hidden-layer neural network with p-norm [1] activation function.
- Prior to DNN training, a Gaussian Mixture Model (GMM) pre-training was performed.
- Clustering and Regression Tree (CART) [1] was applied to obtain acrossword context dependent shared state phone (or graph) models and their time alignment.
- The number of senones (and so the size of the DNN softmax output layer) was between 7.000 and 11.000 depending on the nature of the training data.
- The size of the hidden layers was kept constantly on 2.000.
- A minibatch size of 512, an initial learning rate of 0.1, and final learning rate of 0.01 was applied in 20 epochs using the Kaldi toolkit [1].

Language CZ Model HU Medieval PL GRA Latin ASR Acoustic G2P RO Model USG SK Speaker Evaluate

Training text

Test text

GRA: baseline grapheme model
G2P: grapheme-to-phoneme model
USG: Unified Simplified Grapheme model

Figure 1: Medieval Latin Speech Recognizer

Baseline Grapheme Model

- All graphemes are trained
- Only those grapheme models are retained that are part of the Latin alphabet

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

	S	Speaker				
AM Language	CZ	HU	PL	SK	\sum	
CZ	53.6	73.8	62.9	45.7	59.0	
HU				29.1		
PL	65.0	67.6	46.4	51.1	57.5	
RO	53.6	69.1	44.7	43.8	52.8	

Knowledge-based grapheme-to-phoneme (G2P) mapping

Table 3: Latin digraph context-insensitive rewrite rules.

		Digraph						
		ae	oe	ph	qu			
$\overline{\mathbf{C}}$	Z	e	oe	f	kv			
Н	U	e	Ø	f	kv			

-	GR	c	c	ch	ch	gu	gu	ti	ti
	PH	ts	k	h	k	gv	gu	tsi	ti
_	rule	cVP	c^VP	VC*ch	^C*ch	guV	guC	$[\hat{s}tx]tiV$	tiC

Table 5: WER[%] for Czech-Latin source-target G2P model. Acoustic model training set: 76 hours.

	Latin Test Text						
Speaker	CZ	HU	PL	\sum			
CZ			49.1				
HU	48.7	40.0	58.7	49.1			
PL	53.3	18.2	53.2	41.6			
SK	30.3	30.0	44.0	34.8			
\sum_{i}	43.9	28.9	50.8	41.2			

Table 6: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours.

	Latin Test Text						
Speaker	CZ	HU	PL	\sum			
CZ	19.4	6.4	28.0	17.9			
HU		25.4					
PL	28.9	15.4	41.3	28.5			
SK	20.4	9.1	22.9	17.5			
$\overline{\sum}$	22.6	12.5	28.1	21.1			

Unified Simplified Grapheme (USG) Model

Table 7: Simplification examples for the unified model.

1	1			
Language	CZ	HU	PL	RO
Orthographic form	řekl	őz	miś	apă
USG transcription	rekl	ΟZ	mis	apa

Table 8: WER[%] for all the three-language USG models

JSG models.						
	S	Speaker				
AM Language	CZ	HU	PL	SK	\sum	
CZ+HU+PL	28.2	28.2	27.7	22.4	26.6	
CZ+HU+RO	23.3	21.4	23.9	19.2	21.9	
CZ+PL+RO	24.6	33.1	25.6	19.8	25.8	
HU+PL+RO	24.8	21.5	25.7	20.7	23.2	

Table 9: WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

Latin Test TextSpeakerCZHUPL \sum CZ20.411.830.721.0HU21.114.625.720.5PL23.010.033.022.0SK14.512.724.817.3 \sum 19.912.229.020.4

Conclusions

- Four-language USG is the best
- It is able to generalize over different speaker test sets

References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)