Определение 1

Определим общую информацию трех случайных величин:

$$I(\alpha : \beta : \gamma) = I(\alpha : \beta) - I(\alpha : \beta \mid \gamma).$$

Соотношения на информационные величины имеют удобную геометрическую интерпретацию. Давайте нарисуем три круга Эйлера и сопоставим площади каждой из получившихся замкнутых области некоторую информационную величину.

1. Докажите неравенство или предъявите контрпример к нему:

a)
$$H(\alpha \mid \beta) + H(\alpha \mid \gamma) \leq H(\alpha) + H(\alpha \mid \beta, \gamma) + I(\beta : \gamma \mid \alpha)$$
,

b)
$$H(\gamma) < I(\alpha : \gamma) + I(\beta : \gamma) + H(\gamma \mid \beta, \alpha)$$
.

- **2.** Пусть энтропия случайной величины a равна n, а взаимная информация пар a и b, а также a и c больше 3n/4. Докажите, что I(b:c) > n/2.
- **3.** Пусть G=(V,E) неориентированный граф, t число треугольников и ℓ число ребер. Докажите, что $(6t)^2 < (2\ell)^3$.
- **4** (неравенство Фано). Пусть случайные величины принимают значения в n элементном множестве. Обозначим за $\varepsilon = \Pr[\alpha \neq \beta]$. Докажите, что $H(\alpha \mid \beta) \leq \varepsilon \log(n-1) + h(\varepsilon)$, где $h(\varepsilon)$ обозначает функцию Шеннона энтропию случайной величины с двумя значениями, имеющими вероятности ε и $1-\varepsilon$.
- **5** (обобщенное неравенство Фано). Пусть случайная величина α принимает значения в некотором n элементном множестве A. Пусть значение случайной величины β принадлежит A с вероятностью p, причём условная вероятность события $\alpha \neq \beta$ при условии $\beta \in A$ равна ε . Докажите, что выполняется неравенство:

$$H(\alpha \mid \beta) < (1-p)\log n + p\varepsilon\log(n-1) + ph(\varepsilon).$$

2.3 (Б09). Пусть T_1, \ldots, T_k — произвольные кортежи, составленные из переменных $\alpha_1, \ldots, \alpha_n$, причем каждая переменная входит ровно в r кортежей. Докажите, что $rH(\alpha_1, \ldots, \alpha_n) \leq H(T_1) + \ldots + H(T_n)$.

2.6 (Б09, Б10). Пусть $\alpha=(\alpha_1,\dots,\alpha_n)$ — случайная величина, задающая последовательность состояний Марковской цепи, изображенной на рисунке. Чему равен предел $\lim_{n\to\infty}\frac{H(\alpha)}{n}$, если $\alpha_0=0$?

- **2.7** (Б09, Б10). Пусть α, α' две независимые одинаково распределенные величины. Докажите, что $\Pr[\alpha=\alpha'] \geq 2^{-H(\alpha)}$.
- **2.8** (Б09). Имеется набор из n камней. Сколько взвешиваний необходимо, чтобы найти самый тяжелый и самый легкий камни (на каждую чашу можно класть не более одного камня)?

