```
puntos fijos mo son simplemente x, deino que tomeión - x, de
no recomente
                                                             estón estos equilibrios, sino que tomeien eroy mimimos que
 son estodos mezcea
 Definimos una métrica soure configuraciones de actividad neuroncel
 supengomos que tenemos dos configuraciones
                                                                                                                                                                  OVERLAP
   r 1 avonous eos conj. son iquoles
 )-1 avondo xj = - yj
       si los configuraciones son estadisticamente ind, m tendrá una
          distribución goussiana con y = 0 y 0 = \frac{1}{N}
      ejemple estodos x_j^1, x_j^2, x_j^3
                                                                      construye un estocle mescle x_j^n = og(x_j^2 + x_j^2 + x_j^3)
                                                                                 m^{1,0} = \frac{1}{N} \sum_{j=1}^{N} x_{j}^{1} \log (x_{j}^{1} + x_{j}^{2} + x_{j}^{3})
                                                                                             = \frac{1}{N} \sum_{j=1}^{N} \log(x_{j}^{1}(x_{j}^{1} + x_{j}^{2} + x_{j}^{3}))
                                                                                             = \frac{1}{N} \sum_{j=1}^{N} \alpha g \left( 1 + x_j x_j^2 + x_j^1 x_j^3 \right)
                                                                                          = \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{1}{N} \left( \frac{3}{4} - \frac{1}{4} \right) \cdot N
= \frac{
                                                                          S_{j}(0) = \log (x_{j}^{1} + x_{j}^{2} + x_{j}^{3})
                                                                         S_{i}(1) = 2g \left( \sum_{j=1}^{N} w_{ij} S_{i}(0) \right)
                                                                                                 = 29 \left( \sum_{j=1}^{n} \left( \frac{1}{N} + \sum_{j=1}^{p} x_{j}^{n} x_{j}^{m} \right) \log \left( x_{j}^{j} + x_{j}^{2} + x_{j}^{3} \right) \right)
                                                                                                 = \log \left( \sum_{j=1,2,3} \sum_{j} x_{j}^{m} \chi_{j}^{m} \log \left( x_{j}^{l} + x_{j}^{2} + x_{j}^{3} \right) \right)
                                                                                                                                          \sum_{M>3} \sum_{j} x_{j}^{M} x_{j}^{M} \log \left( x_{j} + x_{j}^{2} + x_{j}^{3} \right)
                                                                                                            \log \left( \sum_{M=1/2,3} \times_{1}^{2} - \sum_{M=1/2}^{M} \times_{1}^{M} + \sum_{M>3} \times_{1}^{M} - \sum_{M=1/2}^{M} \times_{1}^{M} \right)
                                                        Si(1) = ng\left(\frac{x_j^2 + x_j^2 + x_j^3}{2} + 2R\right)
                                                                                                                               Q = \mathcal{N} / 0, \ O = \sqrt{\frac{\rho - 3}{N}}
```

Dinámica	ESTOCÁSTICA								
h; (τ) ε	$\sum_{j=1}^{N} W_{ij} S_{i} $	τ)							
	depende pr								
P(s; (t.	+1)=1)=	e phi(t) Bhi(t) -phi(-)		B-70	e'mi;	te esto	cósti w	P(S) = 1
					3-) (V) ; S; (t. S; (t.	+1) = 1	h; (t) > h;(t) <	0
P(Si(e+	1) = -1) = <u>e</u>	e-Bhill) phi(1) + e-Bhil	:()					ministo.	
) entre el minin			r a tiemp	۶ ٦				
	$= \frac{1}{N} \sum_{j=1}^{N} \langle s_i \rangle$	volo medio	solve	-la					
		dimár	mica						
			+= 1/B		B	conico y N			
Vamos	a outener:			.u _	gr	uonde, v.a.	ind		
				m = 0					
			m ^m ≠ t						
				0,14	\longrightarrow	d = P/N			
aprolimac	ción de comp	29 medio							
aproximoc	ión en mo	delos con	. M.a	stocis	uw,	. Hay em	a serie	de proe	lemas
donde	esta es exoc	to.							
Consi de	romos la s	rimplificoc	i on	dona	و	Wij = W	¥ i,j		
			U			.0			
En or	se cono:	ha (+)	=1 5	WSj (T)				
			= <u>w</u> /	ر ک کی (ک) =1					
		-							
			-	vona vel vul conn	en				
				νω ωμη , η(τ)					
	$(+1)=1)=e^{f}$					-1)			
<5(t	-+1)> = 1. P(S	s(t+1)=1)	-1 P(S(++1) =	1				
		omh (Bh(t)							
apurim	ación k	n(T) > < h	(七) >	= W <	S (T)	>			


```
exponción en toma de término grande
            m^{U} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{U} \left[ tomh \left( B \left[ x_{i}^{1} m^{1} + \sum_{u \neq 1, U} x_{i}^{u} m^{u} \right] \right) \right] +
                                                                                                                                                                                           [ 7 - tonh (B(xi1m + 5 ximm) xim) xim)
                                      (4) \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} x_{i}^{2} x_{i}^{2} x_{i}^{2} x_{i}^{3} 
                                                                                                                                                                                                                                                                                                 dist menoral con
M = 0 \quad ( + C L)
0 = dR
con R = 1 \quad \sum_{\alpha} m^{\alpha^2}
\alpha \quad \alpha \neq \tau_{\alpha} u
                                                                                                                                                                                                                                                                                            \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
\int_{-\infty}^{\infty} \frac{dz}{2\pi i} e^{-\frac{z^2}{2}} \left[1 - tgh^2 \left[\beta \left(m^{\frac{1}{4}} \sqrt{\alpha R}\right)^2\right]\right] m \beta
                                                                             Pana N grandl aproximamo)
                                                                                                                                                                                                                                                                                                                                                      \frac{1}{N} \sum_{i} J(x_i) = \int dx P(x_i) f(x_i)
                                                                                 g(x_i) : x_i \sim P(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                reemplosamos
                                                                                 m' = m' p - m' p q = m' p (1-q)
                                                  = m^{\nu} \left[ 1 - p(1-q) \right] = \frac{1}{l} \sum_{i} x_{i}^{\nu} x_{i}^{-1} ton h \left( p \left[ m^{2} + \sum_{i} x_{i}^{\nu} x_{i}^{m} \right] \right)
                                                                                                                                     m^{\prime\prime} = \frac{1}{N} \sum_{i} x_{i}^{\prime\prime} x_{i}^{1} ton h \left(p \left(m^{1} + \sum_{i} x_{i} x_{i}^{\prime\prime} m^{\prime\prime}\right)\right)
1 - p \left(1 - q\right)
                                                                                                                                                   R = \frac{q}{[1-p(1-q)]^2}
                                                                                                               m^{1} = \frac{1}{N} \sum_{i} ton \left(\beta \left[m^{1} + \sum_{i\neq j} x_{i}^{i} m^{ij}\right]\right)
                                                                                                                                               m' = \int_{-\infty}^{\infty} \frac{dz}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \tanh \left[ B(m' + \sqrt{\alpha}R'z) \right]
                                                                                                                                           q = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{-z^2/2} \tanh \left[\beta(m^2 + \lceil \alpha \rceil 2)\right]
```

