

Algorithmen und Komplexität **TIF 21 A/B** Dr. Bruno Becker

8. Graphenalgorithmen

Graphenalgorithmen

- Definitionen und Begriffe
- Datenstrukturen für Graphen
- Tiefensuche
- Breitensuche

Graphen

- Ein (ungerichteter) Graph G= (V,E) besteht aus
 - einer endlichen Menge V von Knoten (vertices)
 - einer Menge E von Kanten (edges), die je 2 Knoten verbinden

Ungerichteter Graph: Kanten sind bidirektional

Gerichteter Graph: Kanten sind Pfeile mit Anfangs- und Endknoten

Graphen: Begriffe

- Benachbarte (adjazente) Knoten: sind durch eine Kante verbunden
- Grad eines Knotens = Anzahl Nachbarn = Anzahl Kanten am Knoten
- Pfad (Weg): Folge durch Kanten verbundener Knoten
 - Muss nicht eindeutig sein
- Länge eines Pfades = Anzahl Kanten
- Zyklus: Pfad mit erstem = letztem Knoten

Anwendungen von Graphen

- Straßen- und Leitungsnetze
- Flugstrecken
- Computernetzwerke
- Soziale Netzwerke
- Situationen und Züge in Spielen
- Abhängigkeiten zwischen Aktivitäten in Projektplänen
- ...
- Was sind hier jeweils die Knoten/Kanten?

Übung: Anzahl der Kanten in einem Graphen

Graph mit 1,2, 3,4,5 Knoten und maximaler Zahl grafisch darstellen

Wie ist allgemein die maximale Kantenanzahl für Graph mit n Kanten?

n*(n-1)/2

Graphenalgorithmen

- Definitionen und Begriffe
- Datenstrukturen für Graphen
- Tiefensuche
- Breitensuche

Datenstrukturen für Graphen

- Abspeicherungen der Kanten
 - in 2-dimensionalem Array -> Adjazenzmatrix
 - für jeden Knoten eine verkettete Liste mit Nachbarn -> Adjazenzliste

- Codierung des Graphen in Textdatei einfach möglich
 - **1** 1-3, 2-3, 2-5, 3-4, 3-5, 4-6, 5-6

Adjazenzmatrix

- Matrix | V | x | V |
 - a_{ij} = 1, falls es Kante zwischen i und j gibt, 0 sonst
 - Für ungerichtete Graphen reicht halbe Matrix (oberhalb oder unterhalb Diagonale) aus

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	0	0	1	0	1	0
3	1	1	0	1	1	0
4	0	0	1	0	0	1
5	0	1	1	0	0	1
6	0	0	0	1	1	0

Adjazenzliste

- **Array** || *V* ||
 - a_i enthält lineare Liste für die Nachbarn von i

Aufwandsbetrachtung

Adjazenzmatrix

- Statische Struktur
- Bei *n* Knoten *n*² Speicherplatz
- Matrix häufig sehr dünn besetzt -> viel ungenutzter Speicherplatz

Adjazenzliste

- "Halbdynamische" Struktur
- Bei n Knoten und m Kanten $\Theta(n + m)$ Speicherplatz
- Für viele Operationen (z.B. Verfolgen von Kanten) gut geeignet
- "Volldynamische Variante"
 - Knoten in doppelt verketteter Liste mit Zeigern auf Vorgänger, Nachfolger, Kantenliste
 - Jeder Eintrag in Kantenliste enthält Zeiger auf Vorgänger, Nachfolger und Knoten

Graphenalgorithmen

- Definitionen und Begriffe
- Datenstrukturen für Graphen
- Tiefensuche
- Breitensuche

Suche in Graphen

- Suchproblem (Traversierung)
 - Gegeben Graph G(V,E) und hieraus Knoten v als Startpunkt
 - Finde alle von v aus erreichbaren Knoten und je einen Pfad dorthin
 - Erweiterung: Finde jeweils den kürzesten Pfad

Klassisches Vorbild: Theseus im Labyrinth Bindfaden als Hilfe

Tiefensuche (Depth-First-Search, DFS)

Rekursiver Algorithmus für Start-Knoten v aus Graph G (V,E)

- Markiere v als besucht
- Besuche rekursiv alle unmarkierten Nachbarn w von v (und speichere v als deren unmittelbaren Nachfolger im Suchpfad, d.h. Kante v-w führt zu Markierung von w)

Reihenfolge der besuchten Knoten

- Läuft solange bis zum nächsten Knoten, bis es keinen unmarkierten Nachbarn mehr gibt (Sackgasse).
- Geht dann schrittweise zurück, bis wieder unmarkierter Nachbar vorhanden ist, bzw.
 alle Knoten markiert (Backtracking)
- Reihenfolge innerhalb der Nachbarn so, wie in der Implementierung gegeben z.B. sequentieller Durchlauf durch Adjazenzliste

Beispiel Tiefensuche (DFS)

Lörrach

Beispiel DFS

DFS(1); //1 Startknoten Markiere 1;

DFS(3); //1. Nachbar (Nb) von 1

Markiere 3 und merke Kante (1,3);

DFS(2); //1. unmarkierter Nb von 3

Markiere 2 und merke Kante (3,2);

DFS(5); //1. unmarkierter Nb von 2

Markiere 5 und merke Kante (2,5);

DFS(6) //Nb 2 und 3 sind markiert

Markiere 6 und Kante (5,6)

Fertig 6, 5, 2,

Markiere 4 und merke Kante (3,4)

3 3 1 3 2		
3 3 1 3 2		
5 2 3	3	5

Knoten	Edge_to
1	
2	3
3	1
4	3
5	2
6	5

Eigenschaften Tiefensuche

Aufwand

- Tiefensuche markiert alle Knoten, die mit Startknoten s verbunden sind, in einer Zeit proportional zur Summe der Grade
- O(||V|| + ||E||)

Anwendungen

- Gibt es zu einem Startknoten s und Zielknoten v im Graph G einen Pfad?
- Wenn ja, gib einen Pfad aus (Traversieren im Baum mit Wurzel s zu v)
- Liefert nicht unbedingt den kürzesten Pfad (Beispiel 1-3-2-5-6 statt 1-3-5-6)
- Gut für strukturelle Informationen wie z.B. Zusammenhang eines Graphen

Zusammenhangskomponenten

Definition

- Ein ungerichteter Graph G heißt **zusammenhängend**, wenn es von jedem Knoten v zu jedem anderen Knoten w mindestens einen Pfad gibt.
- Ein maximal zusammenhängender Teilgraph eines ungerichteten Graphen G heißt Zusammenhangskomponente (connected component) von G.

Algorithmus zur Ermittlung der Zusammenhangskomponenten

- Tiefensuche für einen beliebigen Startknoten findet dessen
 Zusammenhangskomponente. Markiere die Knoten dieses Komponente mit 1
- Tiefensuche für beliebigen unmarkierten Knoten, markieren Knoten mit 2
- **=**
- Bis kein unmarkierter Knoten mehr vorhanden

Zusammenhangskomponenten - Visualisierung

Graphenalgorithmen

- Definitionen und Begriffe
- Datenstrukturen für Graphen
- Tiefensuche
- Breitensuche

Breitensuche (Breadth-First-Search, BFS)

Ziel und Lösungsansatz:

- Ziel: Kürzeste Pfade (d.h. kleinste Kantenzahl) vom Startknoten zu jedem erreichbaren Knoten finden
- Idee: Knoten in aufsteigender Entfernung zum Start durchsuchen
- Ansatz: Iterativer Algorithmus mit Queue (Warteschlange, FIFO)

Breitensuche

- Füge Startknoten s in Queue ein und markiere s als besucht
- Wiederhole, bis Queue leer ist:
 - Entnimm den ältesten Knoten v aus der Queue
 - Füge alle unmarkierten Nachbarn von v in die Queue ein und markiere sie als besucht

Lörrach

Beispiel BFS

BFS(1); //1 Startknoten in Schlange (Q=(1))
Markiere 1;

1 aus Q, Nachbarn von 1 in Q= (3),

3 markieren und merke Kante (1,3);

3 aus Q, unmark. Nachbarn von 3 in Q =(2,4,5) und merke Kanten (3,2), (3,4) und (3,5);

2 aus Q, alle Nachbarn von 2 schon markiert Q= (3,5)

4 aus Q, alle Nachbarn von 4 schon markiert Q = (5)

5 aus Q, Nachbarn 6 in Q (6) und merke Kante (5,6) Q= (6)

6 aus Q, alle Nachbarn von 6 schon markiert Q = (0)

Fertig;

Knoten	Edge_to
1	
2	3
3	1
4	3
5	3
6	5

Eigenschaften Breitensuche

Aufwand

Zeit: O(|| V || + || E ||), Platz O(|| V ||)

Anwendungen

- Breitensuche berechnet für jeden Knoten v, der von s erreicht werden kann, einen kürzesten Pfad. (Beweis durch Induktion)
- Das gilt für den Fall, dass Kanten alle gleich lang sind. In der Praxis haben Kanten unterschiedliches Gewicht, dann benötigt man anderes Verfahren für kürzesten Weg (-> Algorithmus von Dijkstra, später in der Vorlesung)

Zusammenfassung Tiefen- und Breitensuche

Aufgaben und Grenzen

- Tiefensuche gut für Strukturaufgaben (z.B. Zusammenhangskomponente)
- Tiefensuche benötigt i.a. weniger Speicherplatz als Breitensuche, weil immer nur ein Pfad gemerkt werden muss
- Tiefensuche "geht in die Knie" wenn einzelne Pfade des Graphen extrem lang sind.
 Alternative z.B. Iterative Tiefensuche mit Tiefenbeschränkung
- Breitensuche findet für ungewichtete Graphen alle kürzeste Wege

Animation der Algorithmen

- https://www.cs.usfca.edu/~galles/visualization/DFS.html
- https://www.cs.usfca.edu/~galles/visualization/BFS.html