Devoir surveillé nº 2

Consignes: - Les documents et outils électroniques sont interdits.

- Le devoir a un total de 24 points. Les notes ≥ 20 seront considérées comme 20.
- Vous devez justifier vos réponses au maximum.
- Les affirmations irresponsables vous font perdre la confiance du correcteur : Il faut les éviter à tout prix.
- La bonne compréhension et interprétation des questions fait partie du devoir.
- Le barème est donné à titre indicatif.

Conventions. Dans la suite, G désigne un groupe.

Exercice 1 (Question de cours). (5pts) Soient $K \triangleleft G$ et $H \triangleleft G$. Expliquer, en donnant toutes les démonstrations requises, l'affirmation " $K \cdot H$ est un sous-groupe de G."

Correction. Expliquer KH (1pt). Prouver que KH est sous-groupe. (4pts).

Exercice 2. Soit $n \ge 1$ un entier et $G_n = GL_n(\mathbf{C})$.

- (1) (1 pt) Soit $H_n = \{g \in G_n : \det(g) \in \mathbf{R}\}$. Montrer que H_n est un sous-groupe distingué.
- (2) (5 pts) Construire un isomorphisme $\varphi: G_n/H_n \to G_1/H_1$.

Correction. Soit $f: G_n \to G_1/H_1$ le morphisme $g \mapsto \det(g)H_1$. Il s'agit d'un morphisme car det $: G_n \to G_1$ est morphisme ainsi comme $g \mapsto gH_1$ est un morphisme (la projection canonique). Le noyau de f est $H_n: f(g) = 1H_1$ si et seulement si $\det(g) \in H_1$. Par le théorème du noyau et de l'image, f induit un iso. $\varphi: G_n/H_n \to \operatorname{Im}(f)$. Finalement, chaque élément de G_1/H_1 est de la forme f(g) car chaque $\lambda \in G_1$ est un déterminant, par exemple $\det(\operatorname{diag}(\lambda, 1, \ldots, 1)) = \lambda$. Donc l'image est G_1/H_1 .

(3) (5 pts) Soit $U=\{z\in {\bf C}^*: |z|=1\}$ (vous pouvez admettre qu'il s'agit d'un sousgroupe de ${\bf C}^*$). Déterminer un isomorphisme

$$\psi: \underbrace{G_1/H_1}_{\mathbf{C}^*/\mathbf{R}^*} \longrightarrow U/\boldsymbol{\mu}_2.$$

(Indication : Pensez au cordonnées polaires.)

Correction. On définit

$$p(z) = \frac{z}{|z|} \boldsymbol{\mu}_2.$$

Comme avant, il s'agit d'un morphisme car $z \mapsto \frac{z}{|z|}$ est morphisme. Ensuite, $p(z) = 1\mu_2$ signifie que $z/|z| \in \mu_2 = \{\pm 1\} \Rightarrow z \in \mathbf{R}^*$. Et, si $z \in \mathbf{R}^*$, alors p(z) est la classe du signe de z, donc $p(z) = \mu_2$. On passe au quotient pour trouver un iso. $\psi: G_1/H_1 \to \operatorname{Im}(p)$. Il est clair que p est surjectif parce que $p(\zeta) = \zeta$ pour chaque $\zeta \in U$. Donc ψ est iso.

Exercice 3. Soit A le sous-ensemble des bijections $\mathbf{C} \to \mathbf{C}$ de la forme $f: z \mapsto \lambda z + c$ avec $\lambda \in \mathbf{C}^*$.

(1) (2 pts) Montrer que A est un sous-groupe de $Bij(\mathbf{C})$.

Correction. On compose $f_{c,\lambda} \circ f_{d,\mu}(z) = f_{c,\lambda}(\mu z + d) = \lambda \mu z + \lambda d + c$. Donc A est stable par composition. Ensuite, $f_{\lambda,c}(z) = w$ montre que $w - c = \lambda z \Rightarrow z = \lambda^{-1}w - \lambda^{-1}c \Rightarrow f_{\lambda,c}^{-1} = f_{\lambda^{-1},-\lambda^{-1}c}$.

(2) (6 pts) Montrer que A est isomorphe à $\mathbb{C} \rtimes_{\alpha} \mathbb{C}^*$, où $\alpha : \mathbb{C}^* \to \operatorname{Aut}(\mathbb{C})$ est un morphisme qu'on rendra explicite. (Ici : \mathbb{C} est le groupe additif des complexes et \mathbb{C}^* est le groupe multiplicatif.)

Correction. Soit H le sous-groupe des homothéties : $h_{\lambda}: z \mapsto \lambda z$. Soit T le sous-groupe des translations $t_c: z \mapsto z + c$. Clairement, $t: \mathbf{C} \to T$ et $h: \mathbf{C}^* \to H$ sont des isos. De plus, $T \cap H = \mathrm{id}$.

Par définition, chaque élément de A s'écrit comme produit $t_c h_{\lambda}$. De plus, $h_{\lambda} t_c(z) = \lambda z + \lambda c = t_{\lambda c} h_{\lambda}(z)$. Donc, $h_{\lambda} t_c h_{\lambda}^{-1} = t_{\lambda c}$. On déduit que $T \lhd A$ et que A = TH. La conjugaison $\gamma : H \to \operatorname{Aut}(T)$ est $\gamma(\lambda) : c \mapsto \lambda c$ par les calculs précédents. Un théorème du cours assure que $T \rtimes_{\alpha} H$, avec $\alpha : \mathbb{C}^* \to \operatorname{Aut}(\mathbb{C})$ définit par $\alpha(\lambda) : c \mapsto \lambda c$, est isomorphe à A.