Lab 2: Packet Losses and Their Impact on Streaming Video Quality

1

Kyeong Soo (Joseph) Kim
Department of Communications and Networking
School of Advanced Technology
Xi'an Jiaotong-Liverpool University
19 April 2024

I. INTRODUCTION

In this Lab, you are to investigate packet losses and their impact on streaming video quality through the evaluation of the decodable frame rate (DFR) [1], [2] with and without forward error correction (FEC) and convolutional interleaving/deinterleaving based on the loss models you studied in Lab 1.

You need to submit a Lab report and program source code through the Learning Mall Online by the end of Sunday, 12 May 2024.

II. EVALUATION OF DECODABLE FRAME RATE (DFR) IN VIDEO STREAMING

Fig. 1 shows a video streaming model for the analysis of packet loss impact on video quality, which consists of one server and one client connected through a lossy channel.

Fig. 1. A video streaming model.

You are to evaluate DFR [1] to quantify the impact of packet losses on streaming video quality step by step as follows:

- 1) Generate symbol loss sequences using the Simple Gilbert model (SGM) [3] (i.e., the model studied in Lab 1).
- 2) Map symbol losses to packet losses based on the number of symbols per packet under the following conditions:
 - Without FEC.
 - With FEC.

• With FEC and convolutional interleaving/deinterleaving.

We assume 8 bits per symbol and 188 symbols per packet. In case of FEC, a Reed-Solomon code of RS(204, 188, t=8) from the digital video broadcasting (DVB) standard is applied to each packet, resulting in 204-symbol packets. We assume that there are *no other overhead*, *randomization*, *and interpolation during the packetization*.

3) Map packet losses to frame losses based on the number of bits per frame for a given video trace. For this Lab assignment, we use *The Silence of the Lambs* video trace from the Arizona State University H.264/AVC video trace library, which is shown below and can be downloaded from Learning Mall Online.

```
# Frame Time [ms]
                       Type
                                Size [Bit]
0
         0.000000
                                536
                       Ι
4
         133.333330
                       Ρ
                                152
1
         33.333330
                       В
                                136
2
         66.666670
                       В
                                136
3
         100.000000
                                136
                       В
8
         266.666670
                       Р
                                160
5
         166.666670
                       В
                                136
         200.000000
6
                       В
                                136
         233.333330
7
                       В
                                136
12
         400.000000
                       Ρ
                                160
         300.000000
9
                                136
                       В
         333.333330
10
                                136
                       В
11
         366.666670
                                136
                       В
16
         533.333330
                                528
                       Ι
13
         433.333330
                                136
                       В
14
         466.666670
                       В
                                136
15
         500.000000
                                136
                       В
. . .
```

For simplicity, we treat any *partially-filled* packets at the end of frames (e.g., the second packet from a frame of 1664 bits (\sim 1.1064 packets) as normal 188-symbol packets (before FEC) during the loss mapping.

- 4) Calculate DFR based on the GOP structure and the coding dependencies of frames. The GOP structure of *The Silence of the Lambs* video trace is IBBBPBBBPBBBB (i.e., M=4, N=16).
- Fig. 2 illustrates the whole procedure for evaluating DFR from symbol losses.
- III. TASK: ANALYSIS OF PACKET LOSS IMPACT ON STREAMING VIDEO QUALITY For this task, you need to submit a Lab report and program source code summarizing the following activities:
 - #1 [30 points] Read the types and sizes of 10,000 video frames from the *The Silence of the Lambs* trace and generate symbol loss sequences for two symbol loss rates (p_L) of 1×10^{-4} and 1×10^{-3}

Fig. 2. Evaluating DFR from symbol losses.

using the SGM with $p=1 \times 10^{-4}$. Based on the procedure described in Sec. II, calculate DFR for each loss rate.

- #2 [25 points] Repeat #1 with RS(204, 188, t=8).
- #3 [25 points] Repeat #2 with convolutional interleaving/deinterleaving.
- #4 [20 points] Generate a plot comparing the resulting DFRs (similar to the one shown in the Lab slides for DFR) and discuss the advantages and disadvantages of using RS code and/or convolutional interleaving/deinterleaving.

Note that The following files are provided on Learning Mall Online for this task:

- conv_interleave.py: Code for convolutional interleaving/deinterleaving.
- *dfr_simulation_template.py*: Skeleton code for the simulation.
- sgm_generate.py: Code for generating loss patterns based on SGM.
- *silenceOfTheLambs_verbose*: Video trace file for the simulation.

REFERENCES

- [1] A. Ziviani, B. E. Wolfinger, J. F. Rezende, O. C. Duarte, and S. Fdida, "Joint adoption of QoS schemes for MPEG streams," Multimedia Tools Appl., vol. 26, no. 1, pp. 59–80, 2005.
- [2] K. S. Kim, "The effect of ISP traffic shaping on user-perceived performance in broadband shared access networks," <u>Computer Networks</u>, vol. 70, pp. 192–209, Sep. 2014.
- [3] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, "Measurement and modelling of the temporal dependence in packet loss," in <u>Proc.</u> 1999 IEEE INFOCOM, vol. 1, Mar. 1999, pp. 345–352.