Lógica de Predicados

Relembrando....

Quantificadores - Tipos

- Universal:
 - considera todos os elementos de um conjunto
- Existencial:
 - Existe um ou mais elementos de um conjunto.

Traduzindo para o Português

- Fizemos 5 e 6
- Ficou para vocês: 9 a 16

- 5) Considere P(x) como a proposição "x passa mais do que cinco horas em aula todos os dias", em que o domínio de x são todos os estudantes. Expresse cada uma dessas quantificações em português.
 - a) $\exists x P(x)$
 - b) $\forall x P(x)$
 - c) ∃x~P(x)
 - d) $\forall x \sim P(x)$

6) Considere N(x) como a proposição "x visitou Dakota do Norte", em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português.

a) $\exists x N(x)$

b) $\forall x N(x)$

- c) $\sim \exists x N(x)$
- d) $\exists x \sim N(x)$

e) $\sim \forall x N(x)$

f) $\forall x \sim N(x)$

9) Considere P(x) como a proposição "x fala russo" e considere Q(x) como a proposição "x sabe a linguagem computacional C++". Expresse cada uma dessas sentenças em termos de P(x), Q(x), quantificadores e conectivos lógicos. O domínio para quantificadores são todos os estudantes de sua escola.

- 9) Considere P(x) = "x fala russo" Q(x)="x sabe a linguagem C++". Domínio ={todos os estudantes de sua escola}
- a) Há um estudante em sua escola que fala russo e sabe C++.

- 9)P(x) = "x fala russo"
 - Q(x)="x sabe a linguagem C++".
 - Domínio ={todos os estudantes de sua escola}
- a) Há um estudante em sua escola que fala russo e sabe C++.

$$\exists x (P(x) \land Q(x))$$

escola}

- 9)P(x) = "x fala russo"Q(x)="x sabe a linguagem C++".Domínio ={todos os estudantes de sua
- b) Há um estudante em sua escola que fala russo mas não sabe C++.

- 9)P(x) = "x fala russo"
 - Q(x)="x sabe a linguagem C++".
 - Domínio ={todos os estudantes de sua escola}
- b) Há um estudante em sua escola que fala russo mas não sabe C++.

$$\exists x (P(x) \land \sim Q(x))$$

- 9)P(x) = "x fala russo"
 Q(x)="x sabe a linguagem C++".
 Domínio ={todos os estudantes de sua escola}
- c) Todo estudante em sua escola ou fala russo ou sabe C++.

- 9)P(x) = "x fala russo"
 Q(x)="x sabe a linguagem C++".
 Domínio ={todos os estudantes de sua escola}
- c) Todo estudante em sua escola ou fala russo ou sabe C++.

$$\forall x (P(x) \lor Q(x))$$

- 9)P(x) = "x fala russo"
 Q(x)="x sabe a linguagem C++".
 Domínio ={todos os estudantes de sua escola}
- d) Nenhum estudante em sua escola fala russo ou sabe C++.

- 9)P(x) = "x fala russo"
 Q(x)="x sabe a linguagem C++".
 Domínio ={todos os estudantes de sua escola}
- d) Nenhum estudante em sua escola fala russo ou sabe C++.

$$\sim \exists x (P(x) \lor Q(x))$$

11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?

- a) P(0)
- b) P(1)
- c) P(2)
- d)P(-1)
- e) ∃x P(x)
- f) $\forall x P(x)$

{...,-2,-1,0,1,2,...}

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) P(1)
 - c) P(2)
 - d)P(-1)
 - e) $\exists x P(x)$
 - f) $\forall x P(x)$

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) $P(1) = "1 = 1^2" \text{ \'e Verdade}$
 - c) P(2)
 - d)P(-1)
 - e) $\exists x P(x)$
 - f) $\forall x P(x)$

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) $P(1) = "1 = 1^2" \text{ \'e Verdade}$
 - c) $P(2) = "2 = 2^2" \text{ \'e Falso}$
 - d)P(-1)
 - e) $\exists x P(x)$
 - f) $\forall x P(x)$

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) $P(1) = "1 = 1^2" \text{ \'e Verdade}$
 - c) $P(2) = "2 = 2^2"$ é Falso
 - d) $P(-1) = "-1 = -1^2"$ é Falso
 - e) $\exists x P(x)$
 - f) $\forall x P(x)$

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) $P(1) = "1 = 1^2" \text{ \'e Verdade}$
 - c) $P(2) = "2 = 2^2" \text{ \'e Falso}$
 - d) $P(-1) = "-1 = -1^2"$ é Falso
 - e) ∃x P(x) a,b mostram que é Verdade
 - f) $\forall x P(x)$

- 11) Considere P(x) como o predicado "x =x²". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $P(0) = 0^{2}$ é Verdade
 - b) $P(1) = "1 = 1^2" \text{ \'e Verdade}$
 - c) $P(2) = "2 = 2^2" \text{ \'e Falso}$
 - d) $P(-1) = "-1 = -1^2"$ é Falso
 - e) ∃x P(x) a,b mostram que é Verdade
 - f) ∀x P(x) c,d são contra exemplos,Falso

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) Q(0)
 - b) Q(-1)
 - c) Q(2)
 - d) $\exists x Q(x)$
 - e) \forall x Q(x)
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) Q(-1)
 - c) Q(2)
 - d) $\exists x Q(x)$
 - e) \forall x Q(x)
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) Q(-1) = "-1+1>2x-1" é Verdade
 - c) Q(2)
 - d) $\exists x Q(x)$
 - e) \forall x Q(x)
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) $Q(-1) = "-1+1>2\times-1"$ é Verdade
 - c) $Q(2) = "2+1>2\times2"$ é Falso
 - d) $\exists x Q(x)$
 - e) ∀ x Q(x)
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) $Q(-1) = "-1+1>2\times-1"$ é Verdade
 - c) $Q(2) = "2+1>2\times2"$ é Falso
 - d) ∃ x Q(x) a,b mostram que é Verdad
 - e) \forall x Q(x)
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) Q(-1) = "-1+1>2x-1" é Verdade
 - c) $Q(2) = "2+1>2\times2"$ é Falso
 - d) ∃ x Q(x) a,b mostram que é Verdade
 - e) ∀ x Q(x) c é contra exemplo, é Falso
 - $f) \exists x \sim Q(x)$
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) $Q(-1) = "-1+1>2\times-1"$ é Verdade
 - c) $Q(2) = "2+1>2\times2"$ é Falso
 - d) ∃ x Q(x) a,b mostram que é Verdade
 - e) ∀ x Q(x) c é contra exemplo, é Falso
 - f) ∃ x ~Q(x) c mostra que é Verdade
 - g) \forall x \sim Q(x)

- 12) Considere Q(x) como o predicado "x+1>2x". Se o domínio forem os números inteiros, quais serão os valores-verdade?
 - a) $Q(0) = "0 + 1 > 2 \times 0"$ é Verdade
 - b) $Q(-1) = "-1+1>2\times-1"$ é Verdade
 - c) $Q(2) = "2+1>2\times2"$ é Falso
 - d) ∃ x Q(x) a,b mostram que é Verdade
 - e) ∀ x Q(x) c é contra exemplo, é Falso
 - f) ∃ x ~Q(x) c mostra que é Verdade
 - g) ∀ x ~Q(x) a,b são contra exemplos, Falso

- 13) Determine o valor verdade de cada uma destas proposições, se o domínio forem todos os números inteiros.
- a) ∀ n (n+1>n)
- b) \exists n (2n = 3n)
- c) \exists n (n = -n)
- d) \forall n (n² \geq n)

- 13) Determine o valor verdade de cada uma destas proposições, se o domínio forem todos os números inteiros.
- a) ∀ n (n+1>n) é Verdade
- b) \exists n (2n = 3n)
- c) \exists n (n = -n)
- d) \forall n (n² \geq n)

- 13) Determine o valor verdade de cada uma destas proposições, se o domínio forem todos os números inteiros.
- a) ∀ n (n+1>n) é Verdade
- b) \exists n (2n = 3n) é Verdade (Qual?)
- c) \exists n (n = -n)
- d) \forall n (n² \geq n)

- 13) Determine o valor verdade de cada uma destas proposições, se o domínio forem todos os números inteiros.
- a) ∀ n (n+1>n) é Verdade
- b) \exists n (2n = 3n) é Verdade (Qual?)
- c) \exists n (n = -n) ????
- d) \forall n (n² \geq n)

- 13) Determine o valor verdade de cada uma destas proposições, se o domínio forem todos os números inteiros.
- a) ∀ n (n+1>n) é Verdade
- b) \exists n (2n = 3n) é Verdade (Qual?)
- c) \exists n (n = -n) ????
- d) \forall n (n² \geq n) é Verdade

Lógica de Predicados

Negação Equivalências

6) Considere N(x) como a proposição "x visitou Dakota do Norte", em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português.

a) $\exists x N(x)$

b) $\forall x N(x)$

- c) $\sim \exists x N(x)$
- d) $\exists x \sim N(x)$

e) $\sim \forall x N(x)$

f) $\forall x \sim N(x)$

 Não é o caso de todos os estudantes desta classe terem feito aulas de lógica.

$$\sim \forall x P(x)$$

 Não é o caso de todos os estudantes desta classe terem feito aulas de lógica.

$$\sim \forall x P(x)$$

Podemos reformular a frase para:

 Existe um estudante desta classe que não teve aula de lógica.

$$\exists x \sim P(x)$$

 Não é o caso de todos os estudantes desta classe terem feito aulas de lógica.

$$\sim \forall x P(x)$$

 Existe um estudante desta classe que não teve aula de lógica.

$$\exists x \sim P(x)$$

Ilustramos que:

$$\sim \forall x P(x) \equiv \exists x \sim P(x)$$

 Existe um estudante na classe que teve aulas de calculo.

$$\exists x P(x)$$

 Não é o caso de existir um estudante na classe que teve aulas de calculo.

$$\sim \exists x P(x)$$

 Não é o caso de existir um estudante na classe que teve aulas de calculo.

$$\sim \exists x P(x)$$

Podemos reformular a frase para:

 Todo os estudantes nesta classe não tiveram aulas de calculo.

$$\forall x \sim P(x)$$

 Não é o caso de existir um estudante na classe que teve aulas de calculo.

$$\sim \exists x P(x)$$

Todo os estudantes nesta classe não tiveram aulas de calculo.

$$\forall x \sim P(x)$$

Ilustramos que:

$$\sim \exists x P(x) \equiv \forall x \sim P(x)$$

 As regras para negações de quantificadores são chamadas de Leis de De Morgan para quantificadores.

$$\sim \forall x P(x) \equiv \exists x \sim P(x)$$

$$\sim \exists x P(x) \equiv \forall x \sim P(x)$$

- 1) Qual a negações de:
 - a) "Existe um político honesto"

"Existe um político honesto"

H(x) = "x 'e honesto"

Domínio = {todos os políticos}

Como fica a proposição???

"Existe um político honesto"

H(x) = "x 'e honesto"

Domínio = {todos os políticos}

 $\exists x \; H(x)$

"Existe um político honesto"

 $H(x) = "x ext{ \'e honesto"}$

Domínio = {todos os políticos}

 $\exists x H(x) \text{ negando } \sim \exists x H(x)$

"Existe um político honesto"

 $H(x) = "x ext{ \'e honesto"}$

Domínio = {todos os políticos}

 $\exists x H(x) \text{ negando } \sim \exists x H(x)$

Sabemos que $\sim \exists x H(x) \equiv \forall x \sim H(x)$

Então podemos dizer que:

"Existe um político honesto"

H(x) = "x 'e honesto"

Domínio = {todos os políticos}

 $\exists x H(x) \text{ negando } \sim \exists x H(x)$

Sabemos que $\sim \exists x H(x) \equiv \forall x \sim H(x)$

Então podemos dizer que:

Todos os políticos são desonestos.

Quais a negações de:

"Todos os brasileiros comem churrasco"

"Todos os brasileiros comem churrasco"

C(x) = "x como churrasco"

Domínio = {todos os brasileiros}

Como fica a proposição???

"Todos os brasileiros comem churrasco"

C(x) = "x como churrasco"

Domínio = {os brasileiros}

∀x P(x)

"Todos os brasileiros comem churrasco"

P(x) = "x como churrasco"

Domínio = {todos os brasileiros}

x P(x)

 $\sim \forall x P(x)$

"Todos os brasileiros comem churrasco"

P(x) = "x como churrasco"

Domínio = {todos os brasileiros}

 $\forall x P(x)$

 $\sim \forall x P(x) \equiv \exists x \sim P(x)$

"Todos os brasileiros comem churrasco"

$$P(x) = "x como churrasco"$$

$$\sim \forall x P(x) \equiv \exists x \sim P(x)$$

Existe pelo menos um brasileiro que não come churrasco.

Algum brasileiro não come churrasco

Equivalências

Leis de De Morgan

$$\sim \forall x P(x) \equiv \exists x \sim P(x)$$

$$\sim \exists x P(x) \equiv \forall x \sim P(x)$$

Equivalências (S ≡T)

COPY

 Sentenças que envolvem predicados e quantificadores são logicamente equivalentes se e somente se elas têm o mesmo valor verdade quaisquer que sejam os predicados substituídos nessas sentenças e qualquer que seja o domínio para as variáveis nessas funções proposicionais.

Equivalências

- $\forall x(P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

Equivalências

- $\forall x(P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

CUIDADO!!!!

- $\forall x(P(x) \vee Q(x)) \neq \forall x P(x) \vee \forall x Q(x)$
- $\exists x (P(x) \land Q(x)) \neq \exists x P(x) \land \exists x Q(x)$

Exercícios – Rosen(47 e 48)

- 17 ao 19
- 33 e 34

